

axxi

AEDC-TSR-78-V20 August 1978

STATIC FORCE TESTS OF THE AEDC-VKF STANDARD 5-DEG CONE IN TUNNELS A $(M_{\infty} = 3.0 \text{ TO } 5.5)$ AND B $(M_{\infty} = 6)$

Leroy M. Jenke
ARO, Inc., AEDC Division
A Sverdrup Corporation Company
von Karmán Gas Dynamics Facility
Arnold Air Force Station, Tennessee

Period Covered: May 25 to July 7, 1978

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Reviewed by:

E. P. JASKOLSKI, CAPT., USAF

Test Director, VKF Division
Directorate of Test Operations

Approved for Publication FOR THE COMMANDER:

Alan Pevena

ALAN L. DEVEREAUX Colonel, USAF Deputy for Operations

78 10 02 056

Prepared for: Arnold Engineering Development

Center/DOOV

Air Force Systems Command Arnold AF Station, TN 37389

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

UNCLASSIFIED

	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AEDC-TSR-78-V-201	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
The second secon	THE SECTION AND ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION AND ADDRESS OF THE SECTION ADDRESS	TYPE OF BEPORT & PERIOD COVERED
Static Force Tests of the AEDC-VKF	Standard 5	Final Report
Deg Cone in Tunnels A (M = 3.0 an		5 May -25 10 July 1978
$B \left(M_{\infty} = 6 \right) .$	was a second	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(a)
Leroy M./Jenke		
PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Cen	ter/DOOV	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Systems Command	LEI/DOOV	Program Element 65807F
Arnold Air Force Station, TN 37389		Control Number 9703-90-8
CONTROLLING OFFICE NAME AND ADDRESS	(11	12 REPORT DATE
Arnold Engineering Development Cen Air Force Systems Command	iter/DOS (//	August 1978
Arnold Air Force Station, TN 37389		41
MONITORING AGENCY NAME & ADDRESS(II different		15. SECURITY CLASS. (of this report)
(1)	430/	UNCLASSIFIED
101	P	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
Angeron		N/A
DISTRIBUTION STATEMENT (of this Report)		
SUPPLEMENTARY NOTES		
A KEY WORDS (Continue on reverse side if necessary and aerodynamic forces Rey standard 5 deg cone	identily by block number; vnolds number	
aerodynamic forces Rey standard 5 deg cone base pressures	vnolds number	
aerodynamic forces Rey standard 5 deg cone base pressures supersonic flow		
aerodynamic forces Rey standard 5 deg cone base pressures supersonic flow boundary layer trips	nolds number	0,000
aerodynamic forces Rey standard 5 deg cone base pressures supersonic flow boundary layer trips	rnolds number	0,000
aerodynamic forces Rey standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressure)	Identify by block number)	onducted, on the AEDC-VKF
aerodynamic forces Rey standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressure standard force cone. The tests we	Identify by block number) are tests were core performed at	onducted, on the AEDC-VKF nominal Mach numbers of 3.01,
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressus standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04	Identify by block number) are tests were core performed at	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side if necessary and Static stability and base pressus standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per	Identify by block number) are tests were core performed at 4, 5.58, and 5.95 foot to 7 x 10	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of-
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side if necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges we	Identify by block number) are tests were core performed at 4, 5.58, and 5.9. If foot to 7 x 10 over e-13 to 13 do	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side if necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges w geometry, boundary layer trips, fi	include number Identify by block number) ire tests were concerned at 4, 5.58, and 5.9, and 5.9, and 5.9, and 5.9, and 5.9, are 13 to 13 doing, Reynolds number	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose mber, and model location in the
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges w geometry, boundary layer trips, fit test section were investigated.	dentify by block number) are tests were core performed at 4, 5.58, and 5.9. If foot to 7 x 10 were -13 to 13 dains, Reynolds number of the foodel flow-field	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose mber, and model location in the photographs were obtained on
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges w geometry, boundary layer trips, fit test section were investigated.	dentify by block number) are tests were core performed at 4, 5.58, and 5.9. If foot to 7 x 10 were -13 to 13 dains, Reynolds number of the foodel flow-field	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose mber, and model location in the photographs were obtained on
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges w geometry, boundary layer trips, fit test section were investigated.	dentify by block number) are tests were core performed at 4, 5.58, and 5.9. If foot to 7 x 10 were -13 to 13 dains, Reynolds number of the foodel flow-field	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose mber, and model location in the photographs were obtained on
standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side if necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges w geometry, boundary layer trips, fit test section were investigated.	dentify by block number) are tests were core performed at 4, 5.58, and 5.9. If foot to 7 x 10 were -13 to 13 dains, Reynolds number of the foodel flow-field	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose mber, and model location in the
aerodynamic forces standard 5 deg cone base pressures supersonic flow boundary layer trips ABSTRACT (Continue on reverse side II necessary and Static stability and base pressu standard force cone. The tests we 3.25, 3.51, 3.76, 4.02, 4.52, 5.04 numbers ranging from 0.8 x 106 per attack and sideslip angle ranges we geometry, boundary layer trips, fit test section were investigated.	dentify by block number) are tests were core performed at 4, 5.58, and 5.9. If foot to 7 x 10 were -13 to 13 dains, Reynolds number of the foodel flow-field	onducted, on the AEDC-VKF nominal Mach numbers of 3.01, 5 at free-stream unit Reynolds 6 per foot. The angle-of- eg. The effects of nose mber, and model location in the photographs were obtained on

UNCLASSIFIED

all configurations at selecte	d conditions.
i de la companya de l	
AFSC Armold AFS Tenn	

UNCLASSIFIED

CONTENTS

		CONTENTS		
	ii.		Page .	
1.0	INTR		2 4 4	
3.0	2.3 TEST 3.1	Test Instrumentation 2.3.1 Test Conditions	. 5	
	3.2 3.3	Uncertainty of Measurements 3.3.1 General	. 7	
4.0	DATA	3.3.2 Test Conditions	8 9 10 ES	
		APPENDIXES	THE CATION OF THE CONTRACTION OF	
I. '	ILLUS	TRATIONS	NASH JANA	
Figu	re		ALGERICATION BY DISTRIBUTION	_
1. 2. 3. 4. 5. 6.	Tunn Mode Phot Phot Mode	del A	. 13 . 14 . 17 rips 19	A
II.	TABL	ES		
Table	<u>e</u>			
1. 2. 3. 4.	Bala Bala	Configuration Designation		
III.	SAM	PLE TABULATED DATA AND DATA NOMENCLATURE		
1.	-	lated Data Nomenclature	. 35	

NOMENCLATURE

ii.	
A _b	Base area, 28.274 in. ²
c _A	Forebody axial-force coefficient, $c_{A_t} - c_{A_b}$
C _{A_D}	Base axial-force coefficient, $-(p_b - p_{\infty})A_b/(q_{\infty}S)$
c _{At}	Total axial-force coefficient, axial force/ $(q_{\infty}S)$
c _k	Rolling-moment coefficient, rolling moment/ $(q_{\infty}Sl)$
c _m	Pitching-moment coefficient, pitching moment/ $(q_{\infty}Sl)$
c _N	Normal-force coefficient, normal force/ $(q_{\infty}S)$
C _n	Yawing-moment coefficient, yawing moment/q _∞ SL)
CY	Side-force coefficient, side force/ $(q_{\infty}S)$
C.R.	Center of rotation of the tunnel pitch mechanism, in.
h	Boundary layer trip height, in.
L	Model length (virtual), 34.290 in.
	in the state of th
M _∞	Free-stream Mach number
M _∞ P _b	Free-stream Mach number Base pressure used to calculate the base axial
	Free-stream Mach number
	Free-stream Mach number Base pressure used to calculate the base axial force coefficient, $(p_{b_1} + p_{b_2} + p_{b_3} + p_{b_4})/4$ or
P _b	Free-stream Mach number Base pressure used to calculate the base axial force coefficient, $(p_b_1 + p_b_2 + p_b_3 + p_b_4)/4$ or p_b_D , psia Base pressures measured with the standard system,
P _b	Free-stream Mach number Base pressure used to calculate the base axial force coefficient, $(p_b + p_b + p_b + p_b)/4$ or p_b , psia Base pressures measured with the standard system, psia (not valid on continuous sweep data) Fast response base pressure, psia (not valid on
P _b P _{b1-4} P _{bD}	Free-stream Mach number Base pressure used to calculate the base axial force coefficient, $(p_b + p_b + p_b + p_b) + p_b$, psia Base pressures measured with the standard system, psia (not valid on continuous sweep data) Fast response base pressure, psia (not valid on point-pause data)
Pb 1-4 PbD Po	Base pressure used to calculate the base axial force coefficient, $(p_b + p_b + p_b + p_b)/4$ or $(p_b)/4$ or
Pb 1-4 Pb D Po Po	Free-stream Mach number Base pressure used to calculate the base axial force coefficient, $(p_b_1 + p_b_2 + p_b_3 + p_b_4)/4$ or p_b_p , psia Base pressures measured with the standard system, psia (not valid on continuous sweep data) Fast response base pressure, psia (not valid on point-pause data) Tunnel stilling chamber pressure, psia Free-stream static pressure, psia
Pb 1-4 Pb D Po Po Qo Qo	Base pressure used to calculate the base axial force coefficient, $(p_b + p_b + p_b) + p_b$, $(p_b + p_b) + p_b$, $(p_b) + p_b$
Pb Pb 1-4 Pb Po Po Po Po r r	Base pressure used to calculate the base axial force coefficient, $(p_{b_1} + p_{b_2} + p_{b_3} + p_{b_4})/4$ or p_{b_1} , psia Base pressures measured with the standard system, psia (not valid on continuous sweep data) Fast response base pressure, psia (not valid on point-pause data) Tunnel stilling chamber pressure, psia Free-stream static pressure, psia Free-stream dynamic pressure, psia Nose radius, in.

П	To	Tunnel stilling chamber temperature, °R
4)	X	Model axial location in the test section, positive upstream, in.
	α	Angle of attack, deg
п	a _{s.}	Tunnel sector angle of attack, deg
D	β	Sideslip angle, deg
1)	φ	Aerodynamic roll angle, positive clockwise when looking upstream, deg
	φ _s	Tunnel roll mechanism roll angle, positive clockwise when looking upstream, deg

1.0 INTRODUCTION

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65807F, Control Number 9T03-00-8. The results were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was conducted in the von Karman Gas Dynamics Facility (VKF), Tunnels A and B during the period of May 25, 1978 through July 7, 1978 under ARO Project No. V41A/B/C-02.

The primary objective of these tests was to provide a "high quality" data bank for the VKF standard cone in Tunnels A and B. The standard cone model (and data bank) will be used for defining test section flow nonuniformity effects and evaluating the performance of the total system (balance-support hardware, model dynamics, data acquisition systems, data reduction techniques, etc.) on a routine and systematic basis using "selected" test installations. The effects of transition, boundary layer trips, tunnel center of rotation, tunnel axial location, and fins were also investigated.

Static stability, axial force, and base pressure data were obtained at $M_{\infty}=3$ through 5.5 in Tunnel A and at $M_{\infty}=6$ in Tunnel B for Reynolds numbers from 0.8 x $10^6/{\rm ft}$ to 7 x $10^6/{\rm ft}$. The angle-of-attack range was -13 to 13 deg and the roll angle ranged from -180 deg to 180 deg. Model flow-field photographs were obtained on all configurations at selected model attitudes and test conditions.

Inquiries to obtain copies of the test data should be directed to AEDC/DOOV, Arnold Air Force Station, Tennessee 37389. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 TEST FACILITIES

Tunnels A and B (Figs. 1 and 2) are continuous, closed-circuit, variable density wind tunnels. Tunnel A has an automatically driven flexible-plate-type nozzle and a 40- by 40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at maximum stagnation pressures from 29 to 200 psia, respectively, and stagnation temperatures up to $750^{\circ}R$ (M = 6). Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number.

Tunnel B has a 50-in.-diam test section and two interchangeable axisymmetric contoured nozzles to provide Mach numbers of 6 and 8. The tunnel can be operated continuously over a range of pressure levels from 20 to 300 psia at $\rm M_{\infty}=6$, and 50 to 900 psia at $\rm M_{\infty}=8$, with air supplied by the VKF main compressor plant. Stagnation temperatures sufficient to avoid air liquefaction in the test section (up to 1350°R) are obtained through the use of a natural gas fired combustion heater. The entire tunnel (throat, nozzle, test section, and diffuser) is cooled by integral, external water jackets. Each tunnel is equipped with a model injection system which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnels may be found in the Test Facilities Handbook*.

^{*} Test Facilities Handbook (Tenth Edition). "von Karman Gas Dynamics Facility, Vol. 3." Arnold Engineering Development Center, May 1974.

2.2 TEST ARTICLE

The standard cone model (Figs. 3 and 4) is a 5-deg, half-angle cone with a 6-in. base diameter fabricated from stainless steel. There are two basic interchangeable nose sections: sharp (0.002-in. spherical radius), and 12.5 percent blunt ($r_n/r_b = 0.125$). The virtual length of the sharp cone is 34.290 inches and the model wall thickness is typically 0.25 in. Several boundary layer trips (Figs. 3c and 5) were used to ensure a fully turbulent boundary layer over the majority of the model surface. Most of these trips were machined; therefore, they will be unchanged for any furture tests. A cylindrical section with four rectangular fins was also provided (Fig. 3b). The model weight is about 30 lbs with its standard base plate and about 42 lbs with the fins. A wide range of balance adapters exist to fit the model to most VKF balances (normal load range from 80 to 1000 lbs). The model components designation is presented in Table 1.

The model/balance combinations were supported on a two-piece, slender, tapered sting as shown in Fig. 6. This sting assembly is about 28 in. long and tapers from about 2.3 in. near its base to about 1 in. at the balance. It is designed to accommodate the load capacity of the 500 lb-range balances. A small adapter can be used to accommodate 200 lb-range balances. The sting has a stainless steel core which allows water cooling passages near the outer surface and is covered by an 0.50-in. thick outer skin. Cooling water is transferred through fittings in the clutch faces between the sting sections. These features minimize warpage. Model base and cavity pressure tubes and balance cooling water lines are contained within the sting. Water is transferred to the balance through an 0-ring and bellows assembly.

2.3 TEST INSTRUMENTATION

2.3.1 Test Conditions

Tunnel A stilling chamber pressure is measured with a 15-, 60-, 150-, or a 300-psid transducer referenced to a near vacuum. Based on periodic comparisons with secondary standards, the accuracy (a bandwidth which includes 95 percent of the residuals, i.e. 20 deviation) of these transducers is estimated to be within ±0.2 percent of reading or ±0.015 psi, whichever is greater. Stilling chamber temperature is measured with a copper-constantan thermocouple with an accuracy of ±3°F based on repeat calibrations (20 deviation).

Tunnel B stilling chamber pressure is measured with a 200- or 1000-psid transducer referenced to a near vacuum. Based on periodic comparisons with secondary standards, the accuracy (a bandwidth which includes 95 percent of the residuals, i.e. 20 deviation) of these transducers is estimated to be within ± 0.25 percent of reading or ± 0.30 psi, whichever is greater for the 200-psid range and ± 0.25 percent of reading or ± 0.8 psi, whichever is greater for the 1000-psid range. Stilling chamber temperature measurements are made with Chromel®-Alumel® thermcouples which have an accuracy of $\pm (1.5\,^{\circ}\text{F} + 0.375$ percent of reading) based on repeat calibrations (20 deviation).

2.3.2 Test Data

Model forces and moments were measured with a six-component, strain-gage balance (see Tables 2 and 3) calibrated by VKF. Prior to the test, static loads in each plane and combined static loads were applied to the balance to simulate the range of loads and center-of pressure locations anticipated during the test. The range of check loads applied and the measurement accuracies are given in Tables 2 and 3. The accuracies represent the bands of 95 percent (20 deviation) of the measured residuals, based on differences between the applied loads and the corresponding values calculated from the balance calibration equations included in the final data reduction.

The standard Tunnel A base pressure system uses 15-psid transducers which are referenced to a near vacuum and are calibrated at 0.5, 1, 3, 6, 9, 12, and 15 psia. Based on periodic comparisons with secondary standards, the accuracy is estimated to be ±0.15 percent of pressure or ±0.003 psia, whichever is greater. The standard Tunnel B base pressure system uses 1-psid transducers referenced to a near vacuum. Based on periodic comparisons with secondary standards, the estimated accuracy is ±0.2 percent of reading or ±0.0015 psia, whichever is greater. Fast response base pressure (p_b) measurements taken during continuous sweep runs were made with a low volume 15 psid transducer (calibrated at 1 psia full scale) which has an estimated accuracy of ±0.06 percent of the calibrated full scale. The base pressure measurement accuracy, however, is no better than that of the standard pressure system to which these transducers are referenced.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

3.1.1 General

A summary of the nominal test conditions at each Mach number is given below.

M _∞	P _o , psia	To, or	q _∞ , psia	p _∞ , psia	$\frac{\text{Re}_{\infty}/\text{ft} \times 10^{-6}}{}$	Plant Staging
3.01	5.0	560	0.85	0.134	0.73	2
3.01	11.0	580	1.87	0.295	1.53	3
3.01	26.0	580	4.42	0.697	3.62	· 3
3.01	10.6	560	1.80	0.284	1.56	2
3.01	25.0	560	4.25	0.670	3.67	2
3.01	48.0	560	8.16	1.287	7.04	2
3.25	32.0	580	4.45	0.602	3.93	3
3.51	35.0	580	3.90	0.452	3.74	3
3.76	41.0	600	3.70	0.374	3.66.	3
4.02	47.0	600	3.41	0.301	3.67	3
4.52	65.0	620	3.13	0.219	3.76	4
5.04	81.0	620	2.60	0.146	3.65	4
5.58	124.0	700	2.58	0.118	3.54	5
5.90	52.0	850	0.89	0.037	1.00	5
5.94	130.0	850	2.16	0.088	2.45	5
5.95	200.0	850	3.31	0.133	3.76	5
5.95	270.0	850	4.46	0.180	5.07	5

A test summary showing all configurations tested and the variables for each is presented in Table 4.

In the VKF continuous flow wind tunnels (A, B, C), the model is mounted on a sting support mechanism in an installation tank directly underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, and the model is injected into the airstream, and the fairing doors are closed. After the data are completed, the model is retracted into the tank and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next run. The sequence is repeated for each configuration change.

Model attitude positioning and data recording were accomplished with the point-pause and sweep modes of operation, using the VKF Model Attitude Control System (MACS). Model pitch and yaw requirements were entered into the controlling computer prior to the test. Model positioning and data recording operations were performed automatically during the test by selecting the list of desired model attitudes and initiating the system.

3.1.2 Data Acquisition

Data were recorded in either the point-pause or sweep mode of operation, using the MACS. The mode for each data group is identified in the test summary (Table 4).

Three types of point-pause data were recorded: (1) α - β data were obtained for finite values of α and φ with a time delay before each data point to allow the base pressures $(p_b^- - p_b^-)$ to stabilize. (2) α =0 data were obtained with the model at α =0 before the sector was pitched. (3) X transverse data were recorded in Tunnel A as the model was moved downstream in the test section at α = β =0. Each data point for this mode of operation represents the resultant of a Kaiser-Bessel digital filter utilizing 16 samples taken over a time span of 0.333 sec.

The continuous sweep data were obtained for a fixed value of φ with a sweep rate (α) of 0.5 deg/sec (Tunnel A) and 1.0 deg/sec (Tunnel B) or a fixed value of α with a rollrate (φ) of 3 deg/sec. A data sample was recorded every 0.0208 sec and 16 samples were applied to a Kaiser-Bessel digital filter to produce a data point every 0.01 deg (Tunnel A) and 0.02 deg (Tunnel B) in pitch and every 0.06 deg in roll. The data were then interpolated to obtain the data at the requested model attitudes. The base pressures were obtained from the fast response system described in Section 2.3 and were used to calculate the base axial force coefficient.

3.2. DATA REDUCTION

The cone static force data were obtained utilizing the tunnel data acquisition system as described in Section 3.1.2. The force and moment measurements were reduced to coefficient form using the digitally filtered data points and correcting for first and second order balance interaction effects. The coefficients were also corrected for model tare weight and

balance-sting deflections. Model attitude, tunnel stilling chamber pressure, and fast response base pressure were also calculated from digitally filtered values.

The aerodynamic force and moment coefficients are presented in the body, and nonrolling body (missile) axis systems. For the missile axis system the normal-force direction is always in the pitch plane of the tunnel and normal to the longitudinal axis of the model. In the body axis system, the pitching and yawing moment coefficients are referenced to two points on the model centerline which were $1/2 \, \ell$ and $2/3 \, \ell$ from the model nose. Model length (34.290 in.) and base area (28.274 in.²) were used as the reference length and area for the aerodynamic coefficients.

3.3 UNCERTAINTY OF MEASUREMENTS

3.3.1 General

The accuracy of the basic measurements (p and T) was discussed in Section 2.3. Based on repeat calibrations, these errors were found to be

$$\frac{\Delta P_o}{P_o} = 0.002 = 0.2\%, \quad \frac{\Delta T_o}{T_o} = 0.005 = 0.5\%$$

Uncertainties in the tunnel free-stream parameters and the model aerodynamic coefficients were estimated using the Taylor series method of error propagation, Eq. (1),

$$(\Delta F)^{2} = \left(\frac{\partial F}{\partial X_{1}} \Delta X_{1}\right)^{2} + \left(\frac{\partial F}{\partial X_{2}} \Delta X_{2}\right)^{2} + \left(\frac{\partial F}{\partial X_{3}} \Delta X_{3}\right)^{2} \dots + \left(\frac{\partial F}{\partial X_{n}} \Delta X_{n}\right)^{2}$$
(1)

where ΔF is the absolute uncertainty in the dependent parameter $F = f(X_1, X_2, X_3, \dots, X_n)$ and X_n are the independent parameters (or basic measurements). ΔX_n are the uncertainties (errors) in the independent measurements (or variables).

3.3.2 Test Conditions

The accuracy (based on 20 deviation) of the basic tunnel parameters, p_0 and T_0 , (see Section 2.3) and the 20 deviation in Mach number determined from test section flow calibrations were used to estimate uncertainties in the other free-stream properties using Eq. (1). The computed uncertainties in the tunnel free-stream conditions at which most of the data were recorded (Re $_{\rm m}=3.7 \times 10^6/{\rm ft}$) are summarized in the following table.

Uncertainty,	(±)	percent o	f actua	1 value

M _∞	M _∞	\mathbf{p}_{∞}	q_{∞}	Re _∞ /ft
3.01	0.56	2.6	1.4	1.2
3.25	0.80	3.8	2.2	1.6
3.51	0.34	1.7	1.0	1.0
3.76	0.53	2.8	1.7	1.3
4.02	0.45	2.4	1.5	1.2
4.52	0.49	2.7	1.8	1.3
5.04	0.52	3.0	2.0	1.4
5.58	0.30	1.8	1.2	1.1
5.95	0.17	1.1	0.7	0.8

3.3.3 Test Data

The uncertainties of the aerodynamic coefficients are presented in the following tables for the test conditions at which most of the data were recorded (${\rm Re}_{\infty} \approx 3.7 \times 10^6/{\rm ft}$). These were established near the maximum aerodynamic loading condition for the cone without fins using the Taylor series method of error propagation (Eq. 1) with the independent variables determined from the accuracy of the six component balance (listed in Section 2.3), the accuracy of the base pressure transducer (Section 2.3), and the uncertainties in the tunnel parameters (p_{∞}, q_{∞}) listed in Section 3.3.2.

Maximum Coefficient Uncertainty (±)

M _∞	c_{N}	C _m	c _y	C _n	c _k	C _A t	C _A
3.01.	0.0110	0.00070	0.0095	0.00082	0.00005	0.0030	0.0018
3.25	0.0136	0.00067	0.0126	0.00079	0.00004	0.0039	0.0017
3.51	0.0105	0.00076	0.0086	0.00090	0.00005	0.0025	0.0020
3.76	0.0128	0.00081	0.0111	0.00095	0.00005	0.0032	0.0020
4.02	0.0128	0.00087	0.0110	0.00102	0.00005	0.0029	0.0022
4.52	0.0144	0.00095	0.0123	0.00111	0.00006	0.0031	0.0025
5.04	0.0169	0.00114	0.0143	0.00134	0.00007	0.0035	0.0030
5.58	0.0151	0.00115	0.0120	0.00135	0,00007	0.0031	0.0033
5.95	0.0040	0.00019	0.0046	0.00035	0.00002	0.0013	0.0014

Note: C_{m} and C_{n} referenced to 2/3 ℓ moment reference location.

The basic precision of the aerodynamic coefficients was also computed using only the balance and base pressure accuracies listed in Section 2.3 along with the nominal test conditions, using the assumption that the freestream flow nonuniformity is a bias type of uncertainty which is constant for all test runs. These values therefore represent the data repeatability expected and are especially useful for detailed discrimination purposes in parametric model studies.

Coefficient Repeatability (±)

M _∞	C _N	C _m	_c _y _	C _n	_c _l _	CA _t	C _A
3.01	0.0083	0.00070	0.0062	0.00082	0.00005	0.0029	0.0018
3.25	0.0080	0.00066	0.0060	0.00078	0.00004	0.0038	0.0017
3.51	0.0091	0.00076	0.0068	0.00089	0.00005	0.0024	0.0020
3.76	0.0096	0.00080	0.0072	0.00094	0.00005	0.0031	0.0020
4.02	0.0104	0.00087	0.0078	0.00102	0.00005	0.0028	0.0022
4.52	0.0113	0.00094	0.0085	0.00111	0.00006	0.0030	0.0025
5.04	0.0136	0.00114	0.0102	0.00134	0.00007	0.0034	0.0030
5.58	0.0137	0.00115	0.0103	0.00135	0.00007	0.0030	0.0033
5.95	0.0016	0.00018	0.0027	0.00034	0.00002	0.0012	0.0014

The uncertainty in model angle of attack (α) and sideslip (β), as determined from calibrations and consideration of the possible errors in model deflection calculations, is estimated to be ± 0.1 deg. The uncertainty in model roll angle is estimated to be ± 0.2 deg. The uncertainty of the tunnel center of rotation (C.R.) and model axial location (X) is estimated to be ± 0.1 inches.

4.0 DATA PACKAGE PRESENTATION

Tabulated model aerodynamic force and moment data are presented in the body and missile axis systems. For the body axis system, the pitching moment and yawing moment coefficients were referenced to two moment references points on the model centerline $(1/2 \ \text{l})$ and $2/3 \ \text{l})$. The model base pressure data are presented in the form of pressure ratios and base axial force coefficients. It should be noted that all five base pressures are tabulated; however, only p_{l} through p_{l} are valid for point-pause data and only p_{l} is valid for continuous sweep

valid for point-pause data and only $\mathbf{p}_{\mathbf{b}_{\mathbf{p}}}$ is valid for continuous sweep data. Sample tabulated data along with the tabulated data nomenclature are presented in Appendix III.

APPENDIX I

· ...

ILLUSTRATIONS

a. Tunnel assembly

b. Tunnel test section Fig. 1 Tunnel A

a. Tunnel assembly

b. Tunnel test section Fig. 2. Tunnel B

All Dimensions in Inches

a. Model External Geometry (Basic Cone) Fig. 3 Model Details

ii.

b. Fin Extension Fig. 3 Continued

Trips are not drawn to scale.

* Spacing between pyramids is 0.022 in.

hmin around the Circumference 66 66 33 0.002 0.009 0.019 T08A 0.008 T15B 0.015 T30C 0.030 hmax CODE

16

TYPE II

TYPE I

hmin around the Circumference

hmax

CODE

133

0.006

T15A 0.015 T30A 0.030

Number of Pyramids

c. Boundary Layer Trips Concluded

a. Tunnel A Tank (Configuration NOO.0-T30A-F4-B0) Fig. 4 Photographs of the Model Installation

17

NACE TO-AED INC. A ON SVERDRUP CORPORATION COMPANY ARROLD AS 15 YEAR OF THE A APPROVAL DETERMENT OF THE A APPROVAL DETERMENT OF THE RESPONSIBLE AND FORCE OF THE CHAPTION.

b. Tunnel B Test Section (Configuration N12.5-T00-F0-B1) Fig. 4 Concluded

A E D C 6559-78

AEDC/ARO.Inc.

a. Sharp Noses (T30X) Fig. 5 Photographs of the Model Noses and Boundary Layer Trips

6559 (7-26-78) V41A/B-02 VKF STANDARD FORCE CONE NOSE TIPS

A E D C 6556-78

Machined Boundary Layer Trips Fig. 5 Continued р.

(7-26-78) V41A/8-02 VKF STANDARD FORCE CONE NOSE TIPS

9559

d. Type II Machined Boundary Layer Trip Details Fig. 5 Continued

FORCE HOTO-A

"RO INC., TASKING COMPANY
ARROND A.F. STATION, TENN.
THOUT RRIDE FOR POSICIO EL RASE
THOUT RRIDE WRITTE A REPROVAL
OF THE RESPONSIBLE AIR FORCE

A E D C 6561-78

AEDC/AROJInc.

e. Trip Ring Details (T78A) Fig. 5 Concluded

6561 (7-26-78) V4.1A/B-02 WKF STANDARD FORCE CONE NOSE TIPS

4.06-Z-02-006 Dimensions in Inches Tunnel Wall -High Temperature Windows --- -- Low Temperature Windows Sta. 0.00 Roll Hub Tunnel Wall 2.32 . Diam Slender Sting (Minimum Interference) 4.06-Z-21-07Z+ .25.2 in.-VKF Water-Cooled Aft C. R.(0) Sta. 24.72 4.01-Y-36-043 Balance 4.08-Y-81-026 Water Jacket .1.62 Diam 40-in. -diam Supersonic Tunnel A Pin A Nom. C. R. (18) Sta. 42.72 67. 998 in. 68. 248 in. 68. 213 in. Sta. 0 to x -078 Used unless Noted .06-2-2 500-lb.Balance & 600-lb Sting (Shown) Fwd. C. R.(30) Sta. 54.72 1,000-lb Balance & 1,200-lb Sting Center of Rotation 200-lb Balance & 300-lb Sting Sta. x | Sharp-Pointed Model Max. Fwd. Pt. Sta. 73.22

· ...

a. Tunnel A Fig. 6 Model Installation Sketches

50-in, -diam Hypersonic Tunnels B & C.

· ...

b. Tunnel B Fig. 6 Concluded

APPENDIX II

· ...

TABLES

TABLE 1

MODEL CONFIGURATION DESIGNATION

Nose Designation (NXX.X)

```
N00.0 sharp nose
N12.5 spherically blunted nose (r_n/r_b = 0.125)
```

Boundary-Layer Trip Designation (TXXX)

T000	no trips (clean model)
TO8A	machined trips, $h_{max} = 0.008$ in., Type II machined trips, $h_{max} = 0.015$ in., Type II machined trips, $h_{max} = 0.015$ in., Type II
T15A	machined trips, $h_{max}^{max} = 0.015$ in., Type I
T15B	machined trips, h = 0.015 in., Type II
T30A	machined trips, h _{max} = 0.030 in., Type II
T30 B	grit trips, $h_{\text{max}} \approx 0.030$ in.
T30C	machined trips, $h_{max} = 0.030$, Type II
T78A	trip ring with 0.078-indiam balls

Fin Designation (FX)

FO	no fins or body extension
F2	two fins (horizontal plane)
F4	four fins

Base Plate Designation (BX)

во	no base plate
B1	lightweight base plate
B2	heavy base plate

TABLE 2
BALANCE MEASUREMENT ACCURACY
(TUNNEL A)

Balance 4.01-Y-36-043

Component	Balance Design Loads	Calibration Load Range	Range of Check Loads	Measurement Accuracy
Normal force, 1b	± 500	± 500	± 500	±1.00
Pitching moment,* in1b	±1850	±1850	±1100	±2.00 '
Side force, 1b	± 250	± 250	± 250	±0.75
Yawing moment,* inlb	± 925	± 925	± 550	±3.00
Rolling moment, inlb	± 100	± 100	± 20	±0.18
Axial force, 1b	± 300	0 to 300	0 to 50	±0.20

^{*}About balance forward moment bridge.

· ...

The transfer distances from the balance forward moment bridge to the two model moment reference locations were -2.052 in. and 3.663 in.

along the longitudinal axis and were measure to an estimated accuracy of ±0.005 in.

TABLE 3

BALANCE MEASUREMENT ACCURACY
(TUNNEL B)

Balance 4.00-Y-36-049

Component	Balance Design Loads	Calibration Load Range	Range of Check Loads	Measurement Accuracy
Normal force, 1b	± 200	± 200	± 120	±0.15
Pitching moment,* inlb	± 680	± 680 .	± 230	±0.50
Side force, 1b	± 200	± 200	± 120	±0.25
Yawing moment,* inlb	± 680	± 680	± ·230	±1.00
Rolling moment, in1b	± 100	± 100 ·	± 20	±0.06
Axial force, 1b	± 100	± 100	0 to 20	±0.10

^{*}About balance forward moment bridge.

The transfer distances from the balance forward moment bridge to the two model moment reference locations were -1.826 in. and 3.889 in. along the longitudinal axis and were measured with an estimated accuracy of ±0.005 in.

TABLE 4 TEST SUIMARY

Tunnel A

								Con	figurat	ion Num	ber and	Code		
						1	4	15	16	18	5	9	17	19
M _m	Re _∞ x 10 ⁶ -ft ⁻¹	C.R., in.	Data Type Polar	φ _s , deg	α _s , deg	N00.0 T000 F0 B1	NOO.0 T30A FO B1	N00.0 T30B F0 B1	NOO.0 T30C F0 B1	NOO.0 T15B FO B1	N12.5 T000 F0 B1	NOO.0 T30A F4 B0	N00.0 T30C F4 B0	N00.0 T15B F4 B0
3.01	0.8	0.8	a	0	٧				432* 433 434					
	1.6	0.8	α	0	٧	428* 429			423* 424 425					
		18.0	α	0	٧	295* 296 297	305* 306 307	300* 301 302						
٠	3.7	0.8	α	0	٧		437* 438 439		420* 421 422				382* 383	
				180	٧								384_	
			а-в	V	V						385 386			
		18.0	α	0	٧	264	270 275 471* 472 473 276* 277# 284+	267		477 478	288 292	254 259) ,	482
				180	٧		282* 283 ⁺ 273				291	257		485
			В	90	V		272				290	256		484
			٠.	-90	٧		271				289	255		483
			α-β	٧	٧					·	·			487 488
			•	V	0		274					258		
			X	0	0		279					260		
3.25	3,7	18.0	α	0	٧		310* 311 315							
				180	V		314							
			В	90	V		313							
				-90	V		312							
			X	0	0		316				·			
3.51	3.7	18.0		0	Ý	330 331	319* 320 325							
				180	V		323	-				·		
			В	90	V		322							
				-90	V	·	321							
			•	V	0		324							
			X	0	0		327					<u> </u>		

NOTES: Letter V stands for variable

. ii.

*α = 0, point-pause

 $^{+}$ 0 recorded at ϕ = 180 $^{\circ}$

X = 46.56 in. unless noted

*x = 40.56 in. *x = 34.56 in.

TABLE 4 TEST SUMMARY (continued)

Tunnel A

								Con	figurat	ion Num	ber and	Code		
						1	4	15	16	18	5	9	17	19
н_	Re_ x	C.R.,	Data Type	φ _s .	α,,	N00.0 T000 F0	N00.0 T30A F0	N00.0 T30B F0	N00.0 T30C F0	N00.0 T15B F0	N12.5 T000 F0	N00.0 T30A F4	N00.0 T30C F4	NOO. T15E F4 BO
	10-16	1n.	Polar	deg	deg	B1	B1	B1	B1	B1	B1	B0	B0	RO
3.76	3.7	18.0	a	0	٧		334* 335							
				180	V		337 ·							_
			В	90	٧		336							
			X	0	0		338							
4.02	3.7	0.8	a	0	٧								390* 391 396	
				180	٧								394	
			В	90	٧								393	
				-90	٧		•						392	
			а-в	٧	٧								397 398	
				V	0								395	
			X	0	0								399	
		18.0	a	0	٧		341* 342 347					351* 352 353		492
				180	٧		345							49
			В	90	٧		344							49
	}			-90	V		343							49
			a-6	٧	V									49
			•	V	0		346							
4 52	1 27	100	X	0	0		348							
4.52	3.7	18.0	a	180	V					-				-
			B	90	V					-				-
			X	0	0			-		-				-
5.04	3.7	0.8	a	0	٧								402* 403 407	
				180	V								406	
			В	90	٧								405	
				-90	٧								404	
			α-β	٧	٧								409 410	
			•	٧	0								407	
			X	0	0								411	
		18.0	a	0	V	363* 364 365	368* 369							
				180	V		371							
			В	90	V		370							
			•	٧	0		372							
			X	0	0		373							
5.58	3.7	18.0	a	0	٧							376* 377		_
			α-β	V	V							378		
			X	0	0.							379		

NOTES: Letter V stands for variable

*a = 0, point-pause *O recorded at \$ = 180°

X = 46.56 in. unless noted

*x'= 40.56 in.

/x = 34.56 in.

TABLE 4 CONCLUDED TEST SUMMARY - TUNNEL B

							Conf	igurati	on Numb	er and	Code	
						1 .	4	3	12	5	.13	9
w.	Re _∞ x 10 ⁶ -ft ⁻¹	C. R., in.	Data Type Polar	φ _s , deg	α _s , deg	N00.0 T000 F0 B1	N00.0 T30A F0 B1	N00.0 T15A F0 B1	N00.0 T78A F0 B1	N12.5 TOOD FO B1	N12.5 T78A F0 B1	N00.0 T30A F4 B0
5.90	1.0	4.1	α	0	v		238 239					!
\		21.0	α	0	ď	244 245	240 241			249 250		1
			β	90	V	246						t
		30.0	α	0	v		236 237					!
5.94	2.4	21.0	α	0	v	226 227	231 232					
5.95	3.7	4.1	α	0	v	:	183 184			,		
		21.0	α	0	v	130 131 132 133°	141 142 143 156 157 158 174 175	136 137 138	146 147 148	151 152 153 188 189 194	.197 198	203 204 208
				180	v		169 170 171 178			192		207
			β	90	v		165 166 177		•	191		206
				-90		•	.161 162 176			190		205
			φ	v	0		179			193		209
				v	10							210
		30.0	α	0	.v		181 182					
	5.0	21.0	α	0	v	217 218	213			222		
			β	90	v	219	214			223		!

Letter V stands for variable

* α = 0, point-pause
point-pause

· ...

APPENDIX III

SAMPLE TABULATED DATA AND DATA NOMENCLATURE

TABULATED DATA NOMENCLATURE

A.C.	Aerodynamic center of pressure in missile axis system ratioed to model length, (CM-ALPHA)/(CN-ALPHA) + XMR/L, sweep data only
ALPHA	Model angle of attack in body axis, deg
ALPHAP	Model angle of attack in missile axis, deg
ALPHA-I	Sector indicated angle of attack, deg
ALPHA-2	Not used
BALCAL	Balance and balance calibration identification
BETA	Model angle of sideslip, deg
CA	Forebody axial-force coefficient (CAT-CAB), body axis system
CA-P	Forebody axial-force coefficient (C^T-P - CAB-P), missile axis system
CAB	Base axial-force coefficient, body axis system
CAB-P .	Base axial-force coefficient, missile axis system
CAT	Total axial-force coefficient, body axis system
CAT-P	Total axial-force coefficient, missile axis system
CLL	Rolling-moment coefficient, body axis system
CLL-P	Rolling-moment coefficient, missile axis system
CLM	Pitching-moment coefficient, body axis system
CLM-P	Pitching-moment coefficient, missile axis system
CLN	Yawing-moment coefficient, body axis system
CLN-BETA	Slope of CLN versus BETA curve at BETA=0, calculated from a first degree least-squares curve fit over BETA range -1 to 1 deg, deg-1
CLN-P	Yawing-moment coefficient, missile axis system
CM-ALPHA	Slope of CLM versus ALPHA curve at ALPHA = 0, calculated from a first degree least-squares curve fit over ALPHA range from -1 to 1 deg, deg ⁻¹
CN	Normal-force coefficient, body axis system
CN-ALPHA .	Slope of CN versus ALPHA curve at ALPHA = 0, calculated from a first degree least-squares curve fit over ALPHA range -1 to 1 deg, deg ⁻¹

Normal-force coefficient, missile axis system CN-P CODE Configuration code number CONFIG Configuration designation Tunnel center of rotation, in. CR CY Side-force coefficient, body axis system Slope of CY versus BETA curve at BETA=0, CY-BETA calculated from a first degree least-squares curve fit over BETA range -1 to 1 deg, deg-CY-P . Side-force coefficient, missile axis system Data loop period, 0.0208 sec DLP Natural frequence of the model-balance-sting FREQ system, HZ GROUP Data group number Virtual model length, 34.290 in. L MACH Free-stream Mach number Normal-force center-of-pressure location in the NCP/L body axis system, in. from model station 0 ratioed to model length (calculated using CN and CLM) P-INF, P8 Free-stream static pressure, psia PBA/P8 Ratio of average base pressure to free-stream PBD/P8 Ratio of fast response base pressure to freestream static pressure PB1/P8, Ratio of base pressure to free-stream static PB2/P8, pressure for base pressures one, two, three PB3/P8, and four, respectively PB4/P8 PB5/P8 Not used PHI Model roll angle, deg PHIT Total model roll angle, deg PHI-I Sector indicated roll angle, deg POINT Point number of a data group PO Tunnel stilling chamber pressure, psia PS VKF plant compressor staging configuration

Q-INF, Q8	Free-stream dynamic pressure, psia
RE/FT	Free-stream Reynolds number, ft ⁻¹
SR	Tunnel sector pitch rate, deg/sec
T-INF	Free-stream static temperature, °R
TO	Tunnel stilling chamber temperature, °R
TXL	Model axial location in the test section (Tunnel A), 0 is the most aft position and positive is upstream, in.
XMR .	Distance from the model nose (virtual tip) to the moment reference point, in.
YCP/L	Side force center-or-pressure location in the body axis system, in. from model station O ratioed to model length (calculated using CY and CLN)

ARCA INC AEDC DIVISION TOWNY AND STRUCTS CONTINCE CONT
AEDC DIVISION FACILITY SPORTS TO STATION TENNESSEE TATION

101728 101728 101738																									N			
COMPUTTY 23-CUN-76 COMFU 10:55:22 RECORDED 9-CUN-78 RECORDED 20:41:12 ECT NUMBER V41A-02A	CM-ALPHA .	,	A.		802	810	622	827	. 832	. 836	8 3 6	027	836	936	. 636	833	636	000	835	833	834	832	828	928	200		805	
PHHTE PHHTE	CN-ALPHA 0.0624			-	0	an a	3321	00	æ	00	CO C	D U	6.40	æ	œ	.6237	w (D G	0 00	8337	(3)	8341	8333	8.20	5070	8262	8236	
	RE/FT 0.369E+07		5	041	1028 0	.1031 0	1028 0	1037 0	.1036 0	.1045 0	1046	7501	1053	.1047 0	.1049 0	.1049 0	1021		1054	1046	1040	1046	.1039	1041	1031	1022	1027	
·	T-INF 206.1		O	0,1256	. ~	-:		: -:	=	٦.	٠.	:-	•	-	٦.	-:	٦.	:-		-		-	-:	-:	•	:-	: -:	
	P-INF 0.7097		O	0.2296									4 64					•										
	4.501			0.000116																								
	579.7	TXL 46.56	ERENC	6000	0	0.0002	0000	0.0003	.0003	.0003	0.0003	5000.0		0.0004	.0003	.0003	00000	2000	4000	0000	0.0002	.0002	.0002	000	0000		000	
	26.5	FREG 11.0	H	0 0	-0.003	-0.001	4000	0.00	0.0	ċ	0.002	200.0	0	0.003	0.003	0.003	0.003	2000		0.002	0	0.002	0.003	0.003	0000		0.005	
	3.01	BALCAL 43-13	CLM	0.12	-0.10	-0.08	-0.07689	0.05	-0.04332	-0.03241	-0.02151	000000000000000000000000000000000000000	-0.00824	-0.00531	-0.00301	+0.0000-0-	0.00229	0.000.0	0.01067	0.01610	0.02142	0.03205	0.04275	0.05390	0.05492	0.0000	0.09982	
Pant Cility Tennessee	6-90	3.5	· ·	0.8122	0,6253	0							0.0470			•	•	•	•	•	•	•	-0.2567	-0.3261	20.00	200	-0.6361	
* AEDC DIVISION CORPORATION COMPANY S DYNAMICS FACILITY * URCE STATION, TENNES	CONFIG 0.0-130C-F4-B0	88. 0.50	PHI	00	•	•	0.0	~	•	0	0	00	00	•	•	0	0 (0	• •				•	•	0.00			
- AEDC D P CORPORA N S DYN R LURCE S FORCE CON	CODE NO	8°.	KIS	0.090	•	0.0	-0.076	•	0			200			•	•	•	20.00		0			-0.01		0.0	20.00	0.0	
ARO, INC AEDC DIVISION A SVERDRUP FORPORATION COMPANY VON KARMAN S DYNAMICS FACILITY ARNOLD AIR * URCE STATION, TENNESSEE STANDARD FORCE CONE (5 DEG)	383	0,0208	PHA	11.000	0	0	000	8.000	4.000	3.000	2.000	000	0.150	0.500	0.250	000.0	-0.250	0000	1000	3	-2.000	-3.000	0	2,00	90	000	00.6	

11 10555122 050 9-508-78 020 2014112 MBER V41A-023	CH-ALPHA		X		000	00000	000	0	000		00	00.	8	96	00	5	00	000	00.	0	0	0	00	0		9 6	
DATE COMPUTED TIME COMPUTED DATE RECORDED TIME RECORDED PROJECT NUMBER	CN-ALPHA CN-		P/L YCP/L	234	297	321	364	381	393	164	403	419	0 1	527	192	28.	300	324	137	245	3/1	733	325	303	582	202	
	RE/FT 0.369E+07		N.	32 0.8	031 0.6	028	037 0.8	036 0.6	9.0	047	052 0.6	.53	047	0 6 6 0 0 6 6 0	05: 0.8	C52 0.6	0.0 650	054 0.6	046 0.8	0 00	046 0.8	039	0 110	031	0 50	022	
	T-INF 206,1			0.1259		•			•			•	•	•	8 .		•		•		•	10%	•	•	•	•	•
	P-INF 0.7097			0.2291		•			•	• •			•	•	• •			•	•	•	•	•	•	•	•	•	•
. С	4.501		(1/2) (EL	0.000097	0.0000000	- 3			•	•	00	00	0			8	00.	0.	00.	٠.	٠.	0.000155		00015	.0001	1000	•
	579.7	TXL 46.56		0.00054		0		0	-0.0006	0	-0.00084	-0.00084	-0.00091	0.0000	-0.0000-	86000.0-	-0.00096	66000.0-	-0.00077	-0.00072	•	-0.00074	•	•	-0.00065	•	•
	26.5	FREG 11.0	OMENT	0.0049	-0.0031	0.000		0	0	•	0.002	0.002		0.003		0.003	0.003	0.003		0.002	0.0026	0.0030	0.0032		003	8400	200
	3.01	BALCAL 43-13	LW	-0,2394	-0.2043	0.15	-0.13075	0	1	9	0	0	0	0	0	0	0	•	•		.0639	0.08554	0.1082	0	0.1546	00	0000
ANY CILITY TENNESSEE	14-80	3.	2		0.5427		0.3911		0.1877	0.0927		•	•	0.0162		-0.0325	-0.0469	99	96	23	0	256	326	396	470	-0.5499	000
AEDC DIVISION PORATION COMPANY DYNAMICS FACILI ORCE STATION, TENN CE CONE (5 DEG)	CONFIG.	SR 0.50			000	0	000		0.0		0.0			0.0		0.0		0.0		•					•		•
P AEDC DIN N C DYNI R FORCE SI	CODE NOO	n. 8.	E E	0.01	-0.075	-	-0.078	-0.078	9,078	-0.079	-0.079	-0.079	-0.019	0.079	-0.019	-0.079	-0.079	-0.080	α.	-0.080		-0.079	-0.080	00	-0.082	1000	2
ARC, INC AEDC DIVISION A SVERDRUP COMPANY YON KARMAN C DYNAMICS FACILITY ARNOLD AIR FORCE STATION, TENNESSEE STANDARD FORCE CONE (5 DEG) PAGE 3	383	0,0208	~ 7			1.000			0000		000.1	•	n.	0,250	2	-	-0.750	-1,000	-1.500	-2.000	000.6- 4	•	2		0	000	?

5 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3																									
UTT 20-50M-72 UT: 10:5522 RDEU 9-50N-73 RDED 20:41:11	CH-ALPHA -0.0106		U	793	0.8028	816	827	. 832	836	837	.837	836	20 00	635	.836	200	9 40	835	834	832	270		815	808	808
DATE COMPUTATION OF THE RECORDED PROJECT NUMBER	CN-ALPHA CM-0.0624 -0.		0.	• •	0.5225		- 00					۰.				•			-	•		•		. 9	
			_ B		0.8268			00	œ a			œ, c	D 0		00	B 0			8		, a	• 0	• •	- 00	
	0.359E+07		. 4	103	0.1028	102	103	.103	104	104	.105	105	104	104	.105	105	105	104	104	104	501		100	102	102
	T-INT 206.1		•	-	0.1256		-	-		-		-	-		•	-		, ~	-	-	~ •		-		-
	P-INT 0.7057		CAT-P	7.7	0.2285	22	22	. 22	.22	22	22	.22	.22	22	. 22	.22	22	22	. 22	.22	25.	,,,	,,,	22	23
	4.501		CLL-P		0.000050	0000		0000	0000		0000	0001	0000	0001	.0001	.0001		000	.0001	000	2000			1000	000
	578.7	46.56	CLN	000	-0.00021	000	0000	000	000	0000	000	000	4000	000	4000	000	4000	0003	0000	0000	2000				0.00016
	26.5	FREG 11.0	CX-P	0 0	-0.0031	000	000	.001	000	50	.002	.002	M 000	003	.003	600	0.0034	02	005	20	000		0.00.0	9	900
	3.01	BALCAL 43-13	CUM	-0.1123	-0.10011	-0.0768	-0.05454		-0.03241	-0.01500	-0.01079	-0.0082	-0.0053	-0.0000	0.0022	0.0052	0.00.08	0.0161	0.0214	0.0320	0.0427	4600.	7647	0877	866
ANY ILLITY FENNESSEE	4-80	3.		0.8122	0.6253	0.4648		252	٦.			•	0.0300		-0.0150	-0.0325	0.0408			•	0.2567	306		549	636
AEDC DIVISION "SORATION COMPANY UNMAMICS FACILITY ORCE STATION, TENNES CE CONE (5 DEG)	CONFIG NOO.O-T30C-F4-BO	. SR 0.50	H	000	000				•				000			0.0	000	0	0.0		•				-0.0
FORCE STA	CODE NOO.	8.0 8.0	XX	10.000	8.000	7.000	5.001	4.001	3.001	1.502	1.003	0.754	0.508	0.035	-0.262	905.00	1003	-1.502	-2.002	100	or u	7		8 00	
ARO, INC AEDC DIVISION A SVERDRUP C''DORATION COMPANY VON KARMAN (DYNAMICS FACILITY ARNOLD AIR FORCE STATION, TENNESSEE STANDARD FORCE CONE (5 DEG)	GROUP .C	0.0208	U) A	10.000	000 8		0000				•	•	0 0000		052.0- 4	9	1.000	: ::	•		÷ .		1,000		