Querschnittprüfung Physik o6

HINWEISE:

- erlaubte Hilfsmittel: Taschenrechner, FoTa, Formelblatt (zwei Seiten A4, handgeschrieben)
- Berechnungen immer mit Herleitung (algebraische Lösung und Ausrechnung mit eingesetzten Werten)
- numerische Resultate korrekt runden
- Ein 30 cm langer Massstab aus Aluminium wurde bei 20 °C kalibriert. Berechnen Sie seine Länge bei einer Temperatur von 35 °C. (3 P)
- 2. Der beheizte Teil eines Bügeleisens besteht aus 1.3 kg Eisen und 270 g Aluminium. Die Heizung hat eine Leistung von 1.3 kW. Wie lange dauert es, bis das Bügeleisen von Zimmertemperatur auf die Betriebstemperatur 210 °C aufgeheizt worden ist? (4 P)
- 3. Ein Schmied taucht ein glühendes Hufeisen (550 °C, 290 g) in einen Kessel mit Wasser der Temperatur 15 °C. Wie viel Wasser ist mindestens erforderlich, damit nicht die ganze Flüssigkeit zu sieden beginnt? (4 P)
- 4. Der Raymax® 1010 mit schwarzer Oberfläche liefert bis zu 1.5 W/cm² Wärmestrahlung bei maximal 540 °C Oberflächentemperatur. Das Strahlungsmaximum befindet sich bei 3.5 bis 4.0 μm. Das Gerät trocknet z.B. Farben oder hält Speisen warm.
 - a) Wie effizient arbeitet das Gerät, d.h. welchen Bruchteil der theoretische erreichbaren Wärmestrahlung gibt es tatsächlich ab? (4 P)
 - b) Passt die Wellenlängenangabe? (4 P)
- 5. Jemand stellt folgende Behauptung auf: "Wer sich nach dem Duschen nicht abreibt, verliert beim Trocknen Energie und nimmt ab." Bei einem Selbstversuch wurden nach dem Duschen 50 g Wasser am Körper gemessen (Lie. 7/06). Fettgewebe hat einen Brennwert von ca. 33 MJ/kg.
 - Wie viel Fett hat man somit nach 300 Duschen verloren? (5 P)
- 6. Der erste Prototyp eines Dieselmotors (1897) wies bei einem Wirkungsgrad von 26 % eine Leistung von rund 15 kW auf. Die Verbrennungstemperatur von Dieselkraftstoff liegt bei 2'000 °C, die Abgase weisen unter Volllast eine Temperatur von etwa 500 °C auf.
 - a) Wie viel Energie muss dem Motor pro Minute in Form von Wärme zugeführt werden? (3 P)
 - b) Wie gross wäre die Leistung einer idealen Wärmekraftmaschine bei den gegebenen Temperaturen und bei gleichem Kraftstoffverbrauch? (4 P)
- 7. In einem Dampfkochtopf siedet Wasser bei ca. 120 °C.
 - a) Wie gross ist der Überdruck im Dampfkochtopf? Geben Sie das Ergebnis in der Einheit bar an. (3 P)
 - b) Wie viel Wasser muss mindestens in einen Dampfkochtopf mit Inhalt 4.5 l gegeben werden, damit der Dampf bei 120 °C gesättigt ist? Was geschieht, wenn es mehr ist? (4 P)
- 8. In einem Kernspintomographen wird zum Kühlen flüssiges Helium eingesetzt. Berechnen Sie die mittlere Geschwindigkeit der beim Verdampfen austretenden Heliumatome. (6 P)
- 9. Eine Faustregel in der Feuerwehr besagt, dass aus einem Liter Löschwasser 1.7 m³ Dampf werden. Berechnen Sie, zu welchem Wert für die Dampftemperatur diese Angaben führen. Ist dieser Wert realistisch? Geben Sie eine Begründung für Ihre Antwort. (6 P)

Total (50 P)

Quarschuff prufung Physik 06

1.
$$\ell = \ell_0 \cdot (1 + \alpha \cdot \Delta T)^{(1)} = 30 \text{ cm} \cdot (1 + 23, 8 \cdot 10^{-6} \text{ k}^{-1} \cdot 15 \text{ k})$$

= $30, 01 \text{ cm}^{(4)}$

2.
$$Q' = (C_{Fe} \cdot M_{Fe} + C_{Ae} \cdot M_{Ae}) \cdot \Delta \theta^{(4)} = P. \Delta t^{(4)}$$

$$= \Delta t = \frac{(C_{Fe} \cdot M_{Fe} + C_{Ae} \cdot M_{Ae}) \cdot \Delta \theta}{P}$$

$$= \frac{(450) / (y \cdot k) \cdot 1/3 \cdot y + 896 \cdot y \cdot (y \cdot k) \cdot 0/27 \cdot y \cdot 190 \cdot k}{1/3 \cdot 10^3 \cdot N} = \frac{1205}{1}$$

3.
$$C_{Fe} \cdot M_{Fe} \cdot (\vartheta_{Fe} - \vartheta_{M}) = C_{N} \cdot M_{N} \cdot (\vartheta_{M} - \vartheta_{W})^{(1)}$$

$$= M_{N} = M_{Fe} \cdot \frac{C_{Fe}}{C_{N}} \cdot \frac{\vartheta_{Fe} - \vartheta_{M}}{\vartheta_{M} - \vartheta_{W}}^{(1)} = 0,29 \, \text{Mg} \cdot \frac{450}{4!(82)} \cdot \frac{550 - 400}{100 - 15}^{(1)}$$

$$= \frac{170 \, g^{(1)}}{2}$$

4. a)
$$J_{\text{max}} = \sigma \cdot T^{4} \stackrel{(1)}{=} \frac{J_{15} N_{\text{m2}} \cdot 10^{4}}{J_{\text{max}}} = \frac{1.5 N_{\text{m2}} \cdot 10^{4}}{5.67 \cdot 10^{-6} N_{\text{m2}} \cdot 243)^{4} k^{4}} = \frac{61\%}{(1)} \stackrel{(1)}{=} \frac{61\%}{(1)}$$

B)
$$\lambda_{\text{max}} \cdot T = \frac{b^{(1)}}{b}$$
 $\lambda_{\text{max}} \cdot T = \frac{b^{(1)}}{b} = \frac{2,96 \cdot 10^{-3} \text{ k} \cdot \text{m}^{(4)}}{(940 + 273) \text{ k}} = \frac{3,6 \text{ } \mu \text{m}^{(4)}}{(940 + 273) \text{ k}}$
 $\lambda_{\text{max}} \cdot T = \frac{b^{(1)}}{T} = \frac{2,96 \cdot 10^{-3} \text{ k} \cdot \text{m}^{(4)}}{(940 + 273) \text{ k}} = \frac{3,6 \text{ } \mu \text{m}^{(4)}}{(940 + 273) \text{ k}}$

5. Verdunshing swame:
$$Qv = Lv \cdot mw^{(1)}$$
 $Verbrunungswame: QH = H_E^* m_F^{(1)}$
 $Qv = QH \implies m_F = mv \cdot \frac{Lv}{H_F} = \frac{300.50g}{300.50g} \cdot \frac{2.25c \cdot 10^6 J \cdot m_F^{(1)}}{33.10^6 J \cdot m_F^{(1)}}$
 $= \frac{1.0 m_F^{(1)}}{100.50g}$

6. a)
$$\gamma = \frac{W}{Q^2}$$
 $\Rightarrow Q^2 = \frac{W'''}{\gamma} = \frac{P. \Delta t}{\gamma}$
= $\frac{45 \cdot 10^3 W \cdot 605''' = 3.5 MJ'''}{0.26}$

6)
$$p_{id} = 1 - \frac{T_2}{T_1}$$

$$\frac{P_{id}}{P} = \frac{p_{id}}{q} = \frac{P \cdot \frac{q_{id}}{q}}{\frac{q_{id}}{q}} = \frac{P \cdot \frac{q_{id}}{q}}{\frac{q_{id}}{q}} = \frac{P \cdot \frac{1 - T_2/T_0}{q}}{\frac{q_{id}}{q}} = \frac{15 \text{ kW} \cdot \frac{1 - 793/2273^{(a)}}{0,26}}{0,26} = 38 \text{ kW}^{(i)}$$

7. a)
$$p_s = 198,53 \text{ kPa}^{(1)} = 210 \text{ bar}^{(1)}$$
 $\Rightarrow \Delta p = 110 \text{ bar}^{(1)}$

85 = 1,122 kg/m³ (1)

MN
$$\geq$$
 85. V (1) = 1,122 kg/m³. 4,5. 10⁻³ m³ = 5,0 g (1)

well Warry: Hoekistry van Flimipheit und 895 (dynamiodus

glerchpewids) (1)

8.
$$\overline{E}_{min} = \frac{3}{2} k.T = \frac{1}{2} m. \overline{U}^{2}$$
 = $\sqrt{\frac{3 \cdot 1/38 \cdot 10^{-23} \text{ J/k} \cdot (-268, 94 + 273.15) \text{ K}^{(2)}}{4 \cdot 1/67 \cdot 10^{-27} \text{ Ly}}}$ = $\frac{160 \text{ m/s}^{(1)}}{10^{-27} \text{ Ly}}$

$$T = \frac{p \cdot V}{u \cdot R} = \frac{M \cdot p \cdot V}{m \cdot R} = \frac{0.018 \text{ kg/msc} \cdot 10^5 \text{ pg} \cdot 1.7 \text{ m}^3 \text{ (1)}}{1 \text{ kg} \cdot 8.3 \text{ (145)}}$$

$$= \frac{368 \text{ K}'' = 95^{\circ}\text{C}'' \text{ (1)}}{1 \text{ kg} \cdot 8.3 \text{ (1)}}$$

ca. 100°C (Siedesempreatur van Warn bis Hormaldurde)