Ricardo Montiel Manriquez 30 de Junio del 2021

```
Algoritmo 1 misterio(n)
     total=0;
for i=0 to n-1 do
         for j=n-1 to i down by 1 do total = total+1
      end for return dotal;
En la linea 1 tenemos un acceso y 1 una asignación = 2.
En la linea 2 el ciclo se repiten veces. = n
En la linea 3 el ciclo se regite (n)+ (n-1)+(n-2)+...=0
y esto nos da n(n+1)/2
 En la linea 4 tenemes 2 accesos, 1 asignación y
\therefore f(n) = \left(\frac{n(n+1)}{2} + 4\right) + 4
```

a) 2n+1 € 12(2n)

Verda de ro

(3)

JCERT Y JnoENUfOFI Yn 7,00.

 $0 \le cg(x) \le f(x)$

g(n)=20

f(v) = 543

Tomames no = 1

P.D: 0 (2") < 2"+1

277,0

c (2") < 7 n+1

=7 1. (27) 6 2

b) logz 2° & O(n log 2°)

Para n, z tenemos que n log 2°, logz 2ⁿ

· · · Tomando no = 1, se cumple que .

logz 2°, n log z°'

a) $f(n) = (n^2 - 2n + 1)/2$; g(n) = 4n. $g(n) = 4n \in O(n)$ $f(n) = n^2 - 2n + 1$ $n^2 \in O(n^2)$, $2n \in O(n)$, $1 \in O(1)$ $O(1) \in O(n)$

 $O(n) \in O(n^2)$... $(n^2 - 2n + 1)/2 \in O(n^2)$

y por dominancia

g(n) ∈ O(f(n)) pero f(n) × O(g(n)).

b) $f(n) = n \log_2 n$ $g(n) = n^3 \sqrt{n}/2$ $f(n) = n \log_2 n$ $n \in O(n^2)$ por propiedad S $\log_2 n \in O(n)$ $n \log_2 n \in O(n^2)$ por regla del producto $g(n) = n^3 \sqrt{n}/2$ $n^3 \in O(n^3)$, $\sqrt{n} \in O(2^n)$ $1/2 \in O(1)$ por regla del producto $n^3 \sqrt{n}/2 \in O(2^n n^3)$ Por dominancia $f(n) \in O(g(n))$

.

·

· · · · .