fMRI Video Team

Финальная часть

Боева Галина, Корнилов Никита, Хусаинов Марат, Михайлов Баир

Наши работники месяца

Галя

Никита

Марат

Баир

Что сделано за весь проект?

- Рассмотрены статьи для работы с многомерными данными.
 Многие из них не используют пространство как связность признаков, основываясь на временной части. Но есть интересные идеи по сокращению пространства, то есть снижение размерности, но в разных проекциях
- Описание постановки задачи, детальное рассмотрение выбранного подхода
- Реализация идеи по модернизации существующего решения
- Написание отчета по проекту
- Финальная презентация

Обзор литературы

Название / Год	Задача / Область	Описание решения
[1]Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis 2023	Работа с высоко размерными данными	Суть метода заключается в работе с процессами многомерных наблюдений. Здесь данные переводятся в латентное пространство. D4(модель декодера) может включать любую информацию из истории наблюдаемых данных в различных временных масштабах при вычислении оценки этого процесса состояния. D4 принципиально отличается от SSMS, где информация только в двух временных масштабах: а) быстрая, которая переносится наблюдением, и б) медленная, определяемая процессом состояния, объединяется при оценке процесса состояния.
[2] Decoding Hidden Cognitive States From Behavior and Physiology Using a Bayesian Approach 2019	Работа с высоко размерными данными	Теоретическая статья. Нет практической составляющей. Интересные идеи, на основе энкодеров и декодеров, вроде бы используют как временную, так и пространственную составляющую, но как это применить к нашим данным большой вопрос.
[3] A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data 2022	Работа с данными FMRI	Модель основанная на двух блоках. Первый - это сверточная временная сетка для работы с временной компонентой данных. Вторая - это граф для связи признаков, которые распределены в пространстве, то есть учет пространственной компоненты.
[4] Deep Neural Generative Model of Functional MRI Images for Psychiatric Disorder Diagnosis 2019	Работа с данными FMRI	Тут в работе рассматриваются подходы, которые помогают работать с сигналами, которые могут быть нам неинтересны. Предложена глубокая нейронная генеративная модель на данных fmri в состоянии покоя. Предлагаемая модель обусловлена предположением о состоянии субъекта и оценивает апостериорную вероятность состояния субъекта с учетом данных визуализации, используя теорему Байеса.

Название / Год	Задача / Область	Описание решения
[5] Parametric Gaussian Process Regressors 2020	Решается задача регрессии с оценкой неопределенности прогнозирования.	Используется вариационный вывод к FITC (Fully Independent Training Conditional)
[6] Deep Generative Analysis for Task-Based Functional MRI Experiments 2022	Рассматриваются подходы к решению задач, связанных с анализом временных рядов трехмерных изображений мозга.	Используется гибридный подход, объединяющий глубокие порождающие модели (пространственная компонента) с гауссовскими процессами (ковариации) в обобщенной аддитивной модели (GAM).
[7] Deep Latent State Space Models for Time-Series Generation 2023	Предложена модель LS4 — генеративная модель для последовательностей со скрытыми переменными. Однако работают со скалярами в каждый момент времени.	В LS4 последовательность скрытых переменных представлена в виде решения линейных уравнений пространства состояний.
[8] Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models	Быстрая генерация нейроповедения по скрытым переменным	Авторы предложили использовать смесь гауссиан для моделирования отклика каждой клетки FMRI, тем самым сократив время вычислений до приемлемого на практике.

Название / Год	Задача / Область	Описание решения
[9] The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion, 2021	Генерация fMRI по видео	В этом соревновании необходимо было предсказывать fMRI мозга по 3 секундному видео. Был представлен датасет (сейчас недоступен, но наверное можно попросить) из 102 видео и fMRI 10 людей реагирующих на них Было представлено много разных решений.
[10] Effective Ensemble of Deep Neural Networks Predicts Neural Responses to Naturalistic Videos, 2021	Генерация fMRI по видео	Решение победителей соревнования. Используется ансамбль энкодер-декодеров, каждый из которых отвечает за разные области: пространственно-временная информация, движение, контуры, статичные картинки, аудио. Их независимые предсказания учитываются с разным весом.
[11] Self-Supervised Transformers for fMRI representation, 2021	Трансформер для fMRI	В работе представлен трансформер для анализа fMRI. Его обучение производится в 2 этапа.1)Заполнение пропусков в fMRI 2) Fine-tuning под конкретные задачи:предсказание пола, возраста и т.п.Данный трансформер представляется полезным для нашей задачи.
 [12] An Intuitive Tutorial to Gaussian Processes Regression by J. Wang, 2021 + A Tutorial on Gaussian Processes by Z. Ghahramani, 2010 	Регрессия гауссовских процессов	В этих работах туториалах была рассмотрена регрессия гауссовских процессов. К сожалению, её работа занимает O(N^3) по времени и O(N^2) по памяти, что не подойдет для нашей задачи. Однако, возможно рассмотреть разреженные гауссовские процессы.
[13] Deep Direct DiscriminativeDecoder-D4+[14] Bayesian Decoder Models with a Discriminative Observation Process	Генерация нейро поведения при воздействии внешних факторов	Использование байесовских метод для генерации и моделирование распределения вероятностей поведения и марковских цепей для учета временных зависимостей.

[15] Variational Auto-encoded Deep Gaussian Processes 2016	Модель Variational Auto-Encoded deep Gaussian process (VAE-DGP). Решаются задачи по типу генерации чисел MNIST.	Модель состоит из нескольких слоев скрытых переменных и использует гауссовские процессы для отображения между последовательными слоями.

Описание решения

Задача / Область

Название / Год

Теоретическая часть

Постановка задачи

Пусть дан временной ряд из Т элементов fMRI и видео, а именно $\{(X_t, V_t)\}_{t=1}^{T}$, где переменная $X_t \in \mathbb{R}^{H \times W \times D}$ отвечает за fMRI снимок размера $H \times W \times D$ в момент времени t, а переменная $V_t \in \mathbb{R}^{H \times W \times C}$ за кадр видео размера $H_v \times W_v$ с C каналами. Будем считать, что видеоряд и fMRI являются согласованными, то есть реакции X_t происходит на фрагмент видео V_t в тот же самый момент времени. Задача заключается в прогнозировании fMRI ряда на N моментов времени наперёд.

Описание подхода

Наша архитектура основана на модели TTF - трансформера, реализованного под данные fMRI.

Архитектура трансформера состоит из двух слоев трансформера с многоголовым вниманием. Эта сеть также использует стандартный уровень позиционного кодирования, в котором ее выходные данные суммируются с промежуточными векторами. Больше об архитектуре можно почитать в статье ниже.

Но есть два основных блока, которые стоит расписать.

Encoder: Пусть есть функция f: $X -> R^{m_*n}$, где m - это размерность входного вектора, n - размерность векторного представления, которое пойдет на вход TTF.

Decoder: Пусть есть функция g: R^{p_xq} -> Y, где p_xq - размерность выхода после декодера, Y - восстановленное изображение, размерность которого совпадает с X.

https://arxiv.org/pdf/2112.05761.pdf

Практическая часть

Датасет

sound_annotation_questions.tsv

video_annotation_animal.tsv

Датасет

Видео: фильм состоял из 13 чередующихся речевых и музыкальных блоков по 30 секунд, каждый (семь музыкальных блоков, шесть речевых блоков). Первоначально фильм был на шведском, но дублирован на голландский.

Препроцессинг:

По каждому снимку применяются voxel norm и global norm, которые сохраняются в отдельный файл. Кадры видео обрезаются до размера 224х224 элемент датасета – 2 нормализованные версии для Т измерений fMRI. Размер тензора получается равным - [2, 40, 64, 64, T]. N соответствующих фреймов видео, индексы позиций для видео, Интервал fMRI вида 5*i:5*(i+k) соответствует интервалу видео 76*i:76*(i+k).

Voxel Norm - дисперсия и среднее считается по отдельному voxel, и кадр нормализуется с этими значениями.

Global Norm - дисперсия и среднее считается по всему датасету и применяется к каждому кадру.

Датасет

• 30 наблюдений fMRI с размерностью [c=40, h=64, w=64, t=641]

Архитектура модели

 L_1 - отвечает за минимизацию расстояния L2 между картами признаков первого и второго слоев, извлеченными из восстановленных данных и входных кадров

 $\mathsf{L}_{\mathsf{perceptual}}(\mathsf{L}_{\mathsf{p}})$ - это стандартный лосс, применяемый между выходом декодера и глобально нормализованными кадрами

 $L_{\text{intensity}}(L_1^{\ \ b})$ - эта потеря основана на L1, применяемом к подмножеству вокселов, связанных с локальными значениями интенсивности, которые представляют соответствующий сигнал

Процесс обучения

$$L_{reconstruction} = L_1 + L_{perceptual} + Loss_{intensity}$$

L₁ - отвечает за минимизацию расстояния L2 между картами признаков первого и второго слоев, извлеченными из восстановленных данных и входных кадров

 $L_{
m perceptual}(L_{
m p})$ - это стандартный лосс, применяемый между выходом декодера и глобально нормализованными кадрами

 $L_{\text{intensity}}(L_1^{\ b})$ - эта потеря основана на L1, применяемом к подмножеству вокселов, связанных с локальными значениями интенсивности, которые представляют соответствующий сигнал

По графику видно, что метод сходится, обучение корректное

Результаты работы

Предсказания получились достаточно шумными. Заметим, что область предсказана верно, но из-за большого количества шума, это окрестность больше исходной. Есть несколько способов борьбы с данными неточностями, нормализация, регуляризация может помочь в обучении, чтобы оно было устойчивым, для генеративных моделей это важный фактор.

Выводы

- Реализовали неплохой подход в данной постановке задачи
- Отличная работа в команде, все пытались делать вовремя, все внесли вклад в данный результат.

Отчет - https://www.overleaf.com/project/6519341350815f838bcd65e3

Гитхаб - https://github.com/intsystems/CreationOfIntelligentSystems FMRI 23

