Matrikelnummer:	Endnote:
Vorname:	
Name:	Nicht bestanden: □

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist eine Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Wintersemester 2024/25

"The test of a student is not how much he knows, but how much he wants to know." — Alice W. Rollins

1

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 65 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 85 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
81.5 - 85.0	1,0
77.0 - 81.0	1,3
73.0 - 76.5	1,7
68.5 - 72.5	2,0
64.5 - 68.0	2,3
60.5 - 64.0	2,7
56.0 - 60.0	3,0
52.0 - 55.5	3,3
47.5 - 51.5	3,7
42.5 - 47.0	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	E	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	9	10	10	12	12	12	NA

• Es sind ____ von 65 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

ANOVA

1. Aufgabe (2 Punkte)

Sie führen einen Versuch mit einer Behandlung und drei Faktorleveln durch. Danach rechnen Sie eine einfaktorielle ANOVA und es ergibt sich ein $\eta^2 = 0.31$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Das η^2 ist damit mit dem R^2 aus der linearen Regression zu vergleichen.
- **B** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **C** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **D** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.

2. Aufgabe (2 Punkte)

Sie führen ein Feldexperiment durch um das Gewicht von Erdbeeren zu steigern. Die Pflanzen wachsen unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.23$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der durch den Forschenden entsteht. Es gilt die Regel, dass ca. 70% der Varianz eines Versuches durch die Versuchsdurchführung entstehen sollen.
- **B** \square Es werden 77% der Varianz durch die Behandlung erklärt. Das η^2 beschreibt den Anteil der Varianz, der von den unterschiedlichen Behandlungsbedingungen nicht erklärt wird.
- **C** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 23% der Varianz durch die Behandlungsgruppen erklärt.
- ${f D}$ ${f \Box}$ Es werden 23% der Varianz durch den Versuch erklärt. Das η^2 beschreibt den Anteil der Varianz, der durch Fehler in der Versuchsdurchführung entsteht.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Umweltbedingungen erklärt wird. Daher werden 23% der Varianz durch die Umweltbedingungen erklärt. Der Anteil der Varianz durch die Behandlungsgruppen ist dann 77%.

3. Aufgabe (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA und erhalten eine Teststatistik. Nun müssen Sie diese Teststatistik interpretieren. Welche Aussage ist richtig?

- **A** □ Wenn die F-Statistik höher ist als der kritische Wert kann die Nullhypothese nicht abgelehnt werden. Die F-Statistik ist die Differenz der MS der Behandlung durch die MS des Fehlers.
- **B** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- C □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese abgelehnt werden.

- D □ Die F-Statistik wird berechnet indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich kaum von der Null unterscheidet kann die Nullhypothese nicht abgelehnt werden.
- **E** □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.

Die ANOVA ist ein statistisches Verfahren welches häufig in den Auswertungen von Experimenten in den Agrarwissenschaften angewendet wird. Dabei wird die ANOVA als ein erstes statistischen Werkzeug für die Übersicht über die Daten benutzt. Eine ANOVA testet dabei...

- **A** □ ... den Unterschied zwischen der F-Statistik anhand der Varianz der Gruppen. Wenn die F-Statistik exakt 0 ist, kann die Nullhypothese abgelehnt werden.
- **B** □ ... den Unterschied zwischen der Mittelwerte und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist bekannt welcher Vergleich konkret unterschiedlich ist.
- C □ ... den Unterschied zwischen der globalen Varianz und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist nicht bekannt welcher Vergleich konkret unterschiedlich ist.
- **D** □ ... den Unterschied zwischen der Varianz über alle Behandlungsgruppen oder der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, muss sich zwischen einem der beiden Varianzquellen entschieden werden.
- **E** \square ... den Unterschied zwischen der Varianz durch verschiedene Behandlungsguppen unter der Varianz über alle Behandlungsgruppen. Wenn die ANOVA signifikant ist, kann kein Effekt η^2 bestimmt werden.

5. Aufgabe (2 Punkte)

Die folgende Abbildung enthält die Daten aus einer Studie zur Bewertung der Wirkung von Vitamin E auf das Zahnwachstum bei Schweine. Der Versuch wurde an 61 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Welche Aussage ist richtig im Bezug auf eine zweifaktorielle ANOVA?

- **A** \square Die Koeffizienten sind negativ ($\beta_0 < 0$; $\beta_1 < 0$).
- **B** \square Keine Interaktion liegt vor $(p \le 0.05)$.
- **C** \square Eine mittlere bis starke Interaktion liegt vor ($p \le 0.05$)
- **D** \square Eine Korrelation liegt vor ($p \le 0.05$).
- **E** \square Das Bestimmtheitsmaß R^2 ist groß.

Deskriptive Statistik & Explorative Datenanalyse

6. /	Aufgabe (2 Punkte)
Bere	chnen Sie den Mittelwert und Standardabweichung von y mit 11, 10, 11, 9 und 9.
A 🗆	Sie erhalten 10 +/- 0.5
B 🗆	Es ergibt sich 9 +/- 0.5
C 🗆	Es ergibt sich 10 +/- 1
D 🗆	Es berechnet sich 10 +/- 1
E 🗆	Es ergibt sich 11 +/- 0.5
7. /	Aufgabe (2 Punkte)
Bere	chnen Sie den Median, das 1^{st} Quartile sowie das 3^{rd} Quartile von y mit 11, 17, 20, 26, 9, 28 und 51.
A 🗆	Es berechnet sich 21 [12; 27]
В□	Es ergibt sich 20 +/- 11
C 🗆	Es berechnet sich 23 [12; 29]
D 🗆	Es ergibt sich 23 +/- 11
E 🗆	Es berechnet sich 20 [11; 28]
8. /	Aufgabe (2 Punkte)
Die 6	mpfohlene Mindestanzahl an Beobachtungen für die Visualisierung mit einem Dotplot sind
A 🗆	10 Beobachtungen.
В□	1 Beobachtung.
C 🗆	Die untere Grenze liegt bei einer Beobachtung.
D 🗆	Mindestens 20 Beobachtungen.
E 🗆	Die untere Grenze liegt bei zwei bis fünf Beobachtungen.
9. /	Aufgabe (2 Punkte)
Um d	lie Standardabweichung zu berechnen müssen wir folgende Rechenoperationen durchführen.
A 🗆	Wir berechnen erst den Mittelwert und dann die absoluten Abstände zu dem Mittelwert. Diese quadra- tischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl.
B 🗆	Den Mittelwert berechen, dann die quadratischen Abstände zum Mittelwert aufsummieren und durch die Fallzahl teilen.
C 🗆	Den Mittelwert berechnen und die Abstände quadrieren. Die Summe mit der Fallzahl multiplizieren.
D 🗆	Den Mittelwert berechen, dann die quadratischen Abstände zum Mittelwert aufsummieren und durch die Fallzahl teilen, dann die Wurzel ziehen.
E 🗆	Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummieren

In Ihrer Abschlußarbeit wolllen Sie Ihre Daten für den Ertrag in einem Boxplot darstellen. Sie nutzen den Boxplot auch, da der Boxplot zu den meist genutzten Visualiserungen von Daten gehört. Welche statistischen Maßzahlen stellt der Boxplot dar?

- **A** □ Durch die Abbildung des Boxplot erhalten wir die Informationen über den Median und die Quartile.
- **B** □ Durch die Abbildung des Boxplot erhalten wir die Informationen über die Mittelwerte und die Standardabweichung.
- C □ Durch die Abbildung des Boxplot erhalten wir die Informationen über die Mittelwerte und die Varianz.
- **D** □ Den Mittelwert sowie den Median und die Streuung.
- **E** □ Den Mittelwert und die Varianz.

11. Aufgabe (2 Punkte)

Der Mittelwert \bar{y} und der Median \hat{y} unterscheiden sich nicht in Ihren Feldexperiment zu Leistungssteigerung von Brokoli. Welche Aussage ist richtig?

- **A** □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
- **B** □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich keine Outlier in den Daten vor. Wir verweden den Datensatz so wie er ist.
- **C** □ Der Mittelwert und der Median sollten gleich sein, wenn Outlier in den Daten vorliegen.
- **D** ☐ Wenn sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor.
- **E** □ Da sich der Mittelwert und der Median unterscheiden, ist der Datensatz nicht zu verwenden. Mittelwert und Median müssen gleich sein.

12. Aufgabe (2 Punkte)

Ihre Betreuung der Abschlussarbeit fragt überraschend in der letzten Besprechung, ob Ihre Messwerte einer Varianzhomogenität genügen. Sonst könnten Sie ja gar nicht einen t-Test rechnen. Da Ihnen die Zeit wegrennt, entscheiden Sie sich für eine schnelle Visualisierung im Anhang. Welche Visualisierung nutzen Sie und welche Regel kommt zur Abschätzung einer Varianzhomogenität zur Anwendung?

- **A** □ Einen Boxplot. Der Median, dargestellt als Linie, muss in der Mitte des IQR, dargestellt durch die Box, liegen.
- **B** □ Nach dem Einlesen der Daten nutzen wir einen Barplot um zu schauen, ob alle Mittelwerte über alle Behandlungen in etwa gleich groß sind. Damit ist dann auch die Varianz in allen Behandlungen in etwa gleich.
- C □ Nach dem Einlesen der Daten nutzen wir einen Boxplot um zu schauen, ob alle Boxen über alle Behandlungen in etwa gleich groß sind. Damit ist dann auch das IQR in allen Behandlungen in etwa gleich.
- **D** □ Einen Violinplot. Der Bauch der Violine muss hierbei einen höhren Wert annehmen als der Steg der Violine. Dann kann die Annahme einer Varianzhomogenität angenommen werden.
- **E** □ Wir erstellen uns für jede Behandlung einen Dotplot und schauen, ob die Dots und damit die Varianz für jede Behandlung gleich groß sind.

Sie wollen in Ihrer Abschlussarbeit über eine explorative Datenanalyse überprüfen, ob Ihr gemessener Endpunkt einer Normalverteilung folgt. Welche drei Abbildungen eignen sich insbesondere für die Überprüfung?

- **A** □ Boxplot, Densityplot, Violinplot
- **B** □ Violinplot, Scatterplot, Barplot
- **C** □ Scatterplot, Mosaicplot, Boxplot
- **D** □ Boxplot, Violinplot, Mosaicplot
- **E** □ Scatterplot, Densityplot, Barplot

14. Aufgabe (2 Punkte)

In dem folgenden Histogramm von n = 175 Pflanzen ist welche Verteilung abgebildet?

- **A** □ Eine multivariate Normalverteilung.
- **B** □ Eine Standardnormalverteilung.
- **C** □ Es handelt sich um eine Normalverteilung.
- **D** □ Wir haben eine Poisson-Verteilung vorliegen.
- **E** □ In dem Histogramm ist eine Ordinalverteilung dargestellt.

Lineare Regression & Korrelation

15. Aufgabe (2 Punkte)

Sie haben das Modell $Y \sim X$ vorliegen und wollen nun ein prädiktives Modell rechnen. Welche Aussage ist richtig?

- **A** □ Es wird ein Trainingsdatensatz zum Modellieren des Trainingsmodells benötigt. Der Testdatensatz dient rein zur Visualisierung. Dies gilt vor allem für ein prädiktives Modell.
- **B** □ Wenn ein prädiktives Modell gerechnet werden soll, dann muss zum einen ein Traingsdatensatz sowie ein Testdatensatz definiert werden. Dabei ist der Trainingsdatensatz meist 1/10 und der Testdatensatz 1/3 der Fallzahl groß. Der Testdatensatz dient zur Validierung.
- **C** \square Ein prädiktives Modell schliesst grundsätzlich lineare Modell aus. Es muss ein Graph gefunden werden, der alle Punkte beinhaltet. Erst dann kann das R^2 berechnet werden.
- **D** □ Wenn ein prädiktives Modell gerechnet werden soll dann kann dies auf dem gesamten Datensatz geschehen. Das Ziel ist es einen Zusammenhang von X auf Y zu modellieren. Wie wirken sich die Einflussvariablen X auf den gemessenen Endpunkt Y aus?
- **E** □ Ein prädiktives Modell basiert auf einem Traingsdatensatz und einem Testdatensatz. Auf dem Trainingsdatensatz wird das Modell trainiert und auf dem Testdatensatz validiert.

Nach einer Regressions sollten die Residuen normalverteilt sein. Was bei einer simplen Regression noch relativ einfach visuell in einem Scatterplot zu überprüfen ist. Für komplexere Modell liefert der QQ-Plot die notwendigen Informationen über die Normalverteilung. Welche Aussage ist richtig?

- **A** □ Wir betrachten die Gerade und dabei insbesondere die beiden Enden der Gerade. Hier sollten die Punkte auf der Geraden liegen, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- **B** □ Wir betrachten die Gerade und dabei insbesondere die beiden Enden der Gerade in dem IQR, also dem ersten und dritten Quartile. Hier sollten die Punkte auf der Geraden liegen, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- C □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **D** □ Wir betrachten die Gerade, die durch die einzelnen Punkte laufen sollte. Wenn die 95% der Punkte von der Geraden getroffen werden, dann gehen wir von normalverteilten Residuen aus.
- **E** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden und Korrelation ist negativ.

17. Aufgabe (2 Punkte)

Nach einer Regressions sollten die Residuen (.resid) gleichmäßig um die Gerade verortet sein. Was bei einer simplen Regression noch relativ einfach visuell in einem Scatterplot zu überprüfen ist. Für komplexere Modell liefert der Residual Plot die notwendigen Informationen. Welche Aussage ist richtig?

A □ Die Punkte müssen gleichmäßig in dem negativen Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Die Analyse ist gescheitert.

- **B** □ Die Punkte müssen gleichmäßig, mit ähnlichen Abständen, in dem positiven wie auch negativen Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Wir können mit dem Model so nicht rechnen und müssen erst die auffälligen Werte gesondert betrachten.
- **C** □ Wenn die Punkte gleichmäßig in dem positiven wie auch negativen Bereich ohne ein klares Muster liegen, dann hat unsere Modellierung geklappt. Wir können mit dem Modell weitermachen.
- D □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Vereinzelte Punkte liegen oberhalb bzw. unterhalb der Geraden um die 0 Linie weiter entfernt. Ein klares Muster ist zu erkennen.
- **E** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Diagonalen. Damit ist das Modell erfolgreich geschätzt worden.

Welche Aussage über den Korrelationskoeffizienten ρ ist richtig?

- **A** \square Der Korrelationskoeffizienten ρ zeigt keinen Zusammenhang zwischen zwei Variablen x und y bei einem Wert von 0. Einen negativen Zusammenhang Richtung -1 und somit auch einen positiven Zusammenhang Richtung 1. Je größer die Zahl allgemein, desto stärker der Effekt.
- **B** \square Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ als standardisierte Steigung zu verstehen, wenn eine Standardisierung durchgeführt wurde. Diese Adjustierung nach Fischer muss am Anschluß der Berechnung der Korrelation durchgeführt werden.
- ${f C}$ \square Der Korrelationskoeffizienten ho ist eine veraltete Darstellungsform von Effekten in der linearen Regression und wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ho beschreibt den Anteil an erklärter Varianz durch die Regression.
- **D** \square Der Korrelationskoeffizienten ρ zeigt keinen Zusammenhang zwischen zwei Variablen x und y bei einem Wert von 0. Einen maximalen negativen Zusammenhang bei -1 und somit auch einen maximalen positiven Zusammenhang bei 1. Korrelationskoeffizienten ρ ist einheitslos.
- **E** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden.

19. Aufgabe (2 Punkte)

Nach einer simplen linearen Regression zur Untersuchung vom Einfluss der NO_3 -Konzentration in $[\mu g]$ im Wasser auf das Wachstum von Brokkoli in [kg] erhalten Sie einen β_{NO_3} Koeffizienten von 1.1×10^{-5} und einen hoch signifikanten p-Wert mit 0.00032. Warum sehen Sie so einen kleinen Effekt bei einer so deutlichen Signifikanz?

- **A** □ Die Fallzahl ist zu hoch angesetzt. Je höher die Fallzahl ist, desto kleiner ist die Teststatistik und damit ist dann auch der *p*-Wert sehr klein. Es sollte über eine Reduzierung der Fallzahl nachgedacht werden. Dann sollte der Effekt zum p-Wert passen.
- **B** \square Wenn der Effekt β_{NO_3} sehr klein ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{NO_3} in y. Daher ist hier mit einer anderen Einheit in den Daten zu rechnen, so dass wir hier einen besser formatierten Effekt sehen. Der p-Wert stammt aus einer einheitslosen Teststatistik.
- ${\bf C} \square$ Die Einheit der NO_3 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der NO_3 -Konzentration hängen antiproportional zusammen.
- **D** \square Das Gewicht und die NO_3 -Konzentration korrelieren sehr stark, deshalb wird der β_{NO_3} Koeffizient sehr klein. Mit einer ANOVA kann für die Korrelation korrigiert werden und der Effektschätzer passt dann zum p-Wert.
- **E** \square Wenn der Effekt β_{NO_3} winzig ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{NO_3} in x. Wir müssen daher die Einheit von y entsprechend anpassen.

Neben der klassischen Regression kann die Funktion lm() in \mathbb{R} auch für welche andere Art von Anwendung genutzt werden?

- **A** \square Ist die Einflussvariable X numerisch so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.
- **B** □ Die Funktion lm() in wird klassischerweise für die nicht-lineare Regression genutzt. Ist die Einflussvariable *X* numerisch so werden die Gruppenmittelwerte geschätzt.
- C □ Die Funktion lm() berechnet die Varianzstruktur für eine ANOVA. Dannach kann dann über eine explorative Datenalayse nochmal eine Signifikanz berechnet werden. Sollte vor der Verwendung der Funktion lm() schon eine EDA gerechnet worden sein, so ist die Analyse wertlos.
- **D** □ Ist die Einflussvariable *X* ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich. Dennoch muss zuerst ein lineares Modell mit der Funktion lm() in qerechnet werden.
- **E** □ Die Funktion lm() in ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenvarianzen bestimmt.

21. Aufgabe (2 Punkte)

Welche Aussage über das generalisierte lineare Modell (GLM) ist richtig?

- **A** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien außer die Normalverteilung mit einer linearen Regression modelliert werden. Dafür werden alle Verteilungen in eine Normalverteilung überführt und anschließend standardisiert.
- **B** □ In ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in auch mit zusätzlich geladenen Paketen nicht möglich.
- ${f C} \square$ Das generalisierte lineare Modell (GLM) erlaubt auch weitere Verteilungsgruppen für das X bzw. die Einflussvariablen in einer linearen Regression zu wählen.
- **D** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien als die Normalverteilung mit einer linearen Regression modelliert werden.
- **E** □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.

Vermischte Themen

22. Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- **A** □ Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **B** □ Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.
- **C** □ Durch eine Randomisierung können wir von Strukturgleichheit zwischen der Stichprobe und der Grundgesamtheit ausgehen.
- **D** □ Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
- **E** □ Randomisierung ist die direkte Folge von Strukturgleichheit. Die Strukturgleichheit erlaubt es erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.

Wenn Sie einen Datensatz erstellen, dann ist es ratsam die Spalten und die Einträge in englischer Sprache zu verfassen, wenn Sie später die Daten in Rauswerten wollen. Welcher Aussage ist richtig?

- **A** □ Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.
- **B** □ Die Spracherkennung von **Q** ist nicht in der Lage Deutsch zu verstehen.
- **C** □ Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Daher ist die Nutzung in Deutsch in den AGBs von 😱 untersagt.
- **D** □ **R** Pakete sind nur in englischer Sprache verfasst. Es macht keinen Sinn **R** daher in Deutsch zu bedienen.
- **E** □ Im Allgemeinen haben Programmiersprachen Probleme mit Umlauten und Sonderzeichen, die in der deutschen Sprache vorkommen. Eine Nutzung der englischen Sprache umgeht dieses Problem auf einfache Art.

24. Aufgabe (2 Punkte)

Bei der explorativen Datenanalyse (EDA) in quibt es eine richtige Abfolge von Prozessschritten, auch extitCircle of life genannt. Wie lautet die richtige Reihenfolge für die Erstellung einer EDA?

- A ☐ Wir lesen die Daten über eine generische Funktion read() ein und müssen dann die Funktion ggplot() nur noch installieren. Dann haben wir die Abbildungen als *.png vorliegen.
- **B** □ Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.
- C □ Die Funktionsreihenfolge ist wie folgt: read_excel() -> mutate() -> ggplot(). Dabei ist bei der Transformation der Daten darauf zu achten, dass die Faktoren richtig erstellt werden.
- D □ Die Funktionsreihenfolge ist wie folgt: read_excel() -> mutate() -> ggplot(). Dabei ist bei der Transformation der Daten darauf zu achten, dass keine Faktoren erstellt werden.
- **E** □ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.

25. Aufgabe (2 Punkte)

Sie haben das abstrakte Modell $Y \sim X$ mit X als Faktor mit zwei Leveln vorliegen. Welche Aussage über $n_1 < n_2$ ist richtig?

- $\mathbf{A} \square$ Es liegt Varianzhetrogenität vor.
- **B** □ Es liegt Varianzhomogenität vor.
- **C** □ Es handelt sich um ein unbalanciertes Design.
- **D** □ Es handelt sich um unabhängige Beobachtungen.
- **E** □ Es handelt sich um ein balanciertes Design.

26. Aufgabe (2 Punkte)

In einem Zuchtexperiment messen wir die Ferkel verschiedener Sauen. Die Ferkel einer Muttersau sind daher im statistischen Sinne...

A □ Abhängig von der Stallanlage und des Experiments können die Ferkel abhängig oder unabhängig sein. Allgmein gilt, dass Ferkel von unterschiedlichen Sauen näher miteinander verwandt sind als Ferkel von gleichen Sauen. Das Fisher-Axiom.

- **B** □ Die Ferkel stammen vom gleichen Muttertier und haben vermutlich eine ähnlichere Varianzstruktur als die Ferkel von anderen Sauen. Die Ferkel sind untereinander über die Mutter abhängig.
- **C** □ Untereinander abhängig, wenn die Mütter ebenfalls miteinander verwandt sind. Erst die Abhängigkeit 2. Grades wird in der Statistik modelliert.
- **D** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander unabhängig.
- **E** □ Je nach Stallanlage kommt eine andere Analyse in Betracht. Eine allgemeine Aussage über Ferkel und Sauen lässt sich statistisch nicht treffen.

Sie führen ein Experiment zur Behandlung von Klaueninfektionen bei Schafe durch. Bei 4 Tieren finden Sie eine Erkrankung der Klauen vor und 8 Tiere sind gesund. Welche Aussage über den Effektschätzer Risk ratio ist richtig?

- **A** □ Das Verhältnis von Chancen Risk ratio ergibt ein Chancenverhältnis von 0.5.
- **B** □ Es ergibt sich ein Risk ratio von 2, da es sich um ein Anteil handelt.
- C □ Der Anteil der Gesunden wird berechnet. Da es sich um ein Anteil handelt ergibt sich ein Risk ratio von 0.33.
- D □ Das Verhältnis der Anteile Risk ratio ergibt ein Anteilsverhältnis von 0.33. Wir sind am Anteil der Kranken interessiert.
- **E** □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Risk ratio von 3.

28. Aufgabe (2 Punkte)

In der Bio Data Science wird häufig mit sehr großen Datensätzen gerechnet. Historisch ergibt sich nun ein Problem bei der Auswertung der Daten und deren Bewertung hinsichtlich der Signifikanz. Welche Aussage ist richtig?

- **A** □ Aktuell werden immer größere Datensätze erhoben. Eine erhöhte Fallzahl führt automatisch auch zu mehr signifikanten Ergebnissen, selbst wenn die eigentlichen Effekte nicht relevant sind.
- **B** \square Riesige Datensätz haben mehr Fallzahl was zur α -Inflation führt. Durch eine Adjustoerung kann dem Problem entgegengewirkt werden.
- **C** □ Aktuell werden zu grosse Datensätze für die gänigige Statistik gemessen. Daher wendet man maschinelle Lernverfahren für kausale Modelle an. Hier ist die Relevanz gleich Signifikanz.
- $\mathbf{D} \square$ Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.
- **E** □ Big Data ist ein Problem der parametrischen Statistik. Parameter lassen sich nur auf kleinen Datensätzen berechnen, da es sich sonst nicht mehr um eine Stichprobe im engen Sinne der Statistik handelt.

Multiple Gruppenvergleiche

29. Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.01, 0.89, 0.42 und 0.34. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.04, 1, 1 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 1.25% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.04, 3.56, 1.68 und 1.36. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.04, 1, 1 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.

- D □ Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0025, 0.2225, 0.105 und 0.085. Die adjustierten p-Werte werden zu einem α -Niveau von 1.25% verglichen. **E** □ Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0025, 0.2225, 0.105 und 0.085. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen. 30. Aufgabe (2 Punkte) Sie rechnen einen PostHoc-Test. Nun sollen Sie ein CLD erstellen. Was bedeutet dieser Fachbegriff und welche folgende Beschreibung der Interpretation ist korrekt? A 🗆 Compact line display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Früher wurden keine Buchstaben sondern eine durchgezogene Linie verwendet. Bei mehr als drei Gruppen funktioniert die Linie aber graphisch nicht mehr. **B** Compound letter display. Gleichheit in dem Outcomes wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des Verbunds (eng. compound) herausfordernd, da wir ia nach dem Unterschied suchen. C 🗆 Compact letter display. Gleiche Buchstaben bedeuten, dass sich die Behandlungen unterscheiden. Daher ist das CLD sehr unintuitiv. Es wäre besser, wenn gleiche Buchstaben Gleichheit anzeigen würden. Dies ist aber leider in der statistischen Testtheorie nicht möglich. **D** Compact letter display. Gleiche Buchstaben zeigen Gleichheit in den Behandlungen. Die Interpretation ist deshalb sehr intuitiv und einfach. Darüber hinaus ist damit das CLD auch auf einer Linie mit der Testtheorie, da wir ja auch dort die Gültigkeit der Nullhypothese nachweisen. Wir suchen ja Gleichheit. E Compact letter display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des CLD herausfordernd, da wir ja nach dem Unterschied suchen. 31. Aufgabe (2 Punkte) In Ihrer Bachelorarbeit müssen Sie einen Feldversuch auswerten. Nachdem Sie die zweifaktorielle ANOVA gerechnet haben und keine signifikante Interaktion vorliegt, wollen Sie jetzt einen Posthoc-Test rechnen. Welches R Paket nutzen Sie dafür am besten?
- **A** □ Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- **B** □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.
- C □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- D □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem {emmeans} Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- **E** □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.

Bei einem Posthoc-Test kann es zu einer überraschenden Besonderheit beim statistischen Testen kommen. Wie lautet der Fachbegriff und wie kann mit der überraschenden Besonderheit umgegangen werden?

 $\bf A \ \Box$ Beim multiplen Testen kann es zu einer β -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 20%. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.

B \square Das globale Signifikanzniveau explodiert und erreicht Werte größer als Eins. Es kommt zu einer α -Inflation. Dagegen kann mit der Adjustierung der α -Werte nach Bonferroni vorgegangen werden. C □ Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden. D □ Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Es kommt zu einer α -Inflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden. **E** ☐ Beim multiplen Testen kann es zu Varianzheterogenität kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5%. Daher müssen die p-Werte entsprechend adjustiert werden. Das Verfahren nach Welch, bekannt aus dem t-Test, ist hier häufig anzuwenden. 33. Aufgabe (2 Punkte) Sie rechnen mehrere t-Tests für einen multiplen Vergleich nachdem eine einfaktorielle ANOVA sich als signifikant herausgestellt hat. Welche Aussage im Bezug auf den Effekt ist richtig? A □ Beim multiplen Testen kann es zu einer Δ-Inflation kommen. Das globale Effektniveau liegt nicht mehr bei 20%. Daher müssen die Effekte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Effekte nach Bonferroni das bekanneste Verfahren **B** □ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nach Bonferroni adjustiert werden. Dafür wird der Effekt mit der Anzahl an Vergleichen k multipliziert. Dies geschiet analog zu den p-Werten. C □ Beim multiplen Testen kann es zu einer Effektüberschätzung (Δ-Inflation) kommen. Daher müssen die Effekte angepasst werden. Dies geschieht nicht händisch sondern intern in den angewendeten Algorithmen. **D** □ Beim multiplen Testen muss der Effekt, wie der Mittelwertsunterschied Δ aus einem t-Test, nicht adjusiert werden. E 🗆 Beim multiplen Testen werden die Effekte der paarweisen Vergleiche ignoriert. Der Nachteil des multiplen Testens ist ja auch, dass wir am Ende keine Effekte mehr vorliegen haben. Eine ANOVA liefert hier bessere Informationen. Statistische Testtheorie 34. Aufgabe (2 Punkte) Sie haben den mathematischen Ausdruck $Pr(D|H_0)$ vorliegen, welche Aussage ist richtig? $\mathbf{A} \square Pr(D|H_0)$ ist die Wahrscheinlichkeit nicht die Daten D zu beobachten sondern die Nullhypothese, wenn diese wahr ist. **B** \square $Pr(D|H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1 - Pr(H_A)$ $\mathbf{C} \square Pr(D|H_0)$ stellt die Wahrscheinlichkeit die Daten D und somit die Teststatistik T_D zu beobachten dar, wenn die Nullhypothese wahr ist. $\mathbf{D} \square Pr(D|H_0)$ stellt die Wahrscheinlichkeit die Teststatistik T zu beobachten dar, wenn die Nullhypothese falsch ist. **E** □ Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

- **A** □ ... dass ein minderwertes Modell durch ein minderwertiges Modell ersetzt wird. Es gilt das Verifikationsprinzip nach Karl Popper.
- **B** □ ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.
- **C** □ ... dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **D** □ ... dass ein schlechtes Modell durch ein schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- ${\bf E} \ \square \ \dots$ dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.

36. Aufgabe (2 Punkte)

Das Signifikanzniveau α wird auch Fehler 1. Art genannt und liegt bei 5%. Warum wurde der Grenzwert von 5% als Signifikanzschwelle gewählt?

- **A** \square Die Festlegung von $\alpha = 5\%$ ist eine Kulturkonstante. Wissenschaftler benötigt eine Schwelle für eine statistische Testentscheidung, der Wert von α wurde aber historisch mehr zufällig gewählt.
- **B** \square Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α in einer großen Konferenz 1945 gewählt. Damit ist $\alpha=5\%$ eine Kulturkonstante mit einem Rank einer Naturkonstante.
- **C** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.
- D □ Der Wert ergab sich aus einer Auswertung von 1042 wissenschaftlichen Veröffentlichungen zwischen 1914 und 1948. Der Wert 5% wurde in 28% der Veröffentlichungen genutzt. Daher legte man sich auf diese Zahl fest.
- **E** □ Auf einer Statistikkonferenz in Genf im Jahre 1942 wurde dieser Cut-Off nach langen Diskussionen festgelegt. Bis heute ist der Cut Off aber umstritten, da wegen dem 2. Weltkrieg viele Wissenschaftler nicht teilnehmen konnten.

37. Aufgabe (2 Punkte)

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das "signal" mit dem "noise" aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

A □ Es gilt $T_D = signal \cdot noise$

B □ Es gilt
$$T_D = \frac{signal}{noise}$$

C □ Es gilt
$$T_D = \frac{signal}{noise^2}$$

D
$$\square$$
 Es gilt $T_D = (signal \cdot noise)^2$

E □ Es gilt
$$T_D = \frac{noise}{signal}$$

Sie versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie ist richtig?

H₀ beibehalten obwohl die H₀ falsch ist

- **A** \square Dem β -Fehler mit der Analogie eines Rauchmelders: *Fire without alarm*.
- **B** \square *Alarm with fire*, dem α -Fehler in der Analogie von Feuer.
- **C** \square Dem β -Fehler mit der Analogie eines brennenden Hauses: *Fire without alarm*.
- **D** \square In die Analogie eines Rauchmelders: *Alarm without fire*, dem α -Fehler.
- **E** □ In die Analogie eines Feuerwehrautos: *Car without noise*.

39. Aufgabe (2 Punkte)

Sie sollen in Ihrer Abschlussarbeit die Relevanz und die Signifikanz in einer statistischen Maßzahl vereinen. Welche Aussage ist richtig?

- A

 Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.
- **B** \square Einem Konfidenzintervall. Das Konfidenzinterval bringt durch eine Visualisierung und drei Intervallgrenzen die Möglichkeit mit, eine Relevanzschwelle neben der Signifikanzschwelle und der α -Schwelle zu definieren.
- **C** □ Über das Konfidenzintervall. Das Konfidenzinterval beitet eine Entscheidung über die Signifikanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Relevanzschwelle definiert werden.
- f D \Box Das Δ . Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
- **E** \square Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.

40. Aufgabe (2 Punkte)

Welche Aussage über den p-Wert und dem Signifikanzniveau α gleich 5% ist richtig?

- **A** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt.
- **B** \square Wir schauen, ob der *p*-Wert größer ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_A gilt.
- $\mathbf{C} \square$ Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 . Der p-Wert wird mit dem Signifikanzniveau verglichen und bewertet.
- **D** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.
- **E** \square Wir machen ein Aussage über die Flächen und zwischen den Kurve der Teststatistiken der Hypothesen H_0 und H_A , wenn die H_0 gilt. Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve repräsentiert werden.

Die Ergebnisse der einer statistischen Analyse können in die Analogie einer Wettervorhersage gebracht werden. Welche Analogie für die Ergebnisse eines statistischen Tests trifft am besten zu?

- **A** □ In der Analogie der Regenwahrscheinlichkeit: ein statistischer Test gibt die Wahrscheinlichkeit für das Auftreten eines Ereignisses wieder. Die Stärke des Effektes wird nicht wiedergeben.
- **B** □ In der Analogie der Durchschnittstemperatur: Wie oft tritt ein Effekt durchschnittlich ein? Wir erhalten eine Wahrscheinlichkeit für die Effekte. Zum Beispiel, wie hoch ist die Wahrscheinlichkeit für einen Mittelwert als Durchschnitt.
- **C** □ In der Analogie der Regenwahrscheinlichkeit in einem bestimmten Gebiet: ein statistischer Test gibt die Wahrscheinlichkeit für ein Ereignis in einem Experiment mit den Daten *D* wieder und lässt sich kaum verallgemeinern.
- **D** □ In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
- **E** □ In der Analogie der Maximaltemperatur: Was ist der maximale Unterschied zwischen zwei Gruppen. Wir erhalten hier eine Aussage über die Spannweite und den maximalen Effekt.

42. Aufgabe (2 Punkte)

Sie wollen eine Aussage über ein untersuchtes Individuum treffen. Dazu nutzen Sie einen statistischen Test. Können Sie eine valide Aussage aus einem statistischen Test erhalten?

- **A** □ Ja, wir erhalten nur eine Aussage zu zwei Individuen. Ein statistischer Test liefert Informationen zu einem Individuum im Vergleich zu einem anderen Individuum.
- **B** □ Ja, ein untersuchtes Individuum können wir mit einem statistischen Test auswerten. Wir erhalten dann eine Aussage zum Individuum.
- C □ Nein, wir können ein untersuchtes Individuum nicht mit einer ANOVA auswerten. Wir erhalten keine Aussage zum Individuum. Wir können aber den Test adjustieren und so die Auswertung ermöglichen.
- **D** □ Nein, es ist nicht möglich ein untersuchtes Individuum mit einem t-Test auszuwerten. Wir erhalten dann leider keine Aussage zum Individuum.
- **E** □ Ja, wir erhalten eine Aussage. Müssen aber das Individuum im Kontext der Population adjustieren.

43. Aufgabe (2 Punkte)

In der statistischen Testtheorie gibt es den Begriff *Power*. Was sagt der statistische Begriff *Power* aus?

- **A** \square Es gilt $\alpha + \beta = 1$ und somit liegt β meist bei 95%.
- **B** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 20% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 80% gesetzt.
- $\mathbf{C} \square$ Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht.
- **D** \square Die Power wird nicht berechnet sondern ist eine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_A bewiesen wird
- **E** \square Die Power $1-\beta$ wird auf 80% gesetzt. Damit liegt die Wahrscheinlichkeit für die H_0 bei 20%.

44. Aufgabe (2 Punkte)

Welche Aussage über den Effekt eines statistischen Tests ist richtig?

A □ Der Forschende muss am Anfang wissen, ob das Eregbnis eines Experiments relevant für seine Forschung ist. Dafür kann der Effekt eines statistischen Tests genutzt werden oder auch der Prähoc-Test. Damit beschreibt der Effekt den biologischen interpretierbaren Teil eines Experimnts vor der Durchführung. Zum Beispiel der Unterschied zwischen zwei Mittelwerten.

- ${\bf B} \ \square$ Der Effekt eines statistischen Tests beschreibt den Output oder die Wiedergabe eines Tests in einem Computer.
- ${f C}$ Durch den Effekt erfahren wir die statistische interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Signifikanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.
- **D** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
- **E** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Zum Beispiel den mittleren Unterschied zwischen zwei Gruppen aus einem t-Test. Damit ist der Effekt direkt mit dem Begriff der Relevanz verbunden. Die Entscheidung über die Relevanz trifft der Forschende unabhängig von der Signifikanz eines statistischen Tests.

Welche Aussage über die Entscheidung anhand des p-Wertes gegen die Nullhypothese ist richtig?

- **A** \square Ist in dem 95%-Konfidenzintervall nicht die Null enthalten dann wird die Nullhypothese H_0 abgelehnt.
- **B** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.
- ${\bf C} \ \square$ Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert in dem Signifikanzniveauintervall α dann kann die Nullhypothese abgelehnt werden.
- **D** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- **E** \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert über oder gleich dem Signifikanzniveau α dann kann die Nullhypothese abgelehnt werden.

46. Aufgabe (2 Punkte)

Wenn Sie im Allgemeinen einen statistischen Test rechnen, dann kommen Sie um eine statistische Hypothese *H* nicht herum. Welche Aussage über statistische Hypothesen ist richtig?

- **A** □ Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternativehypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird.
- **B** \square Es gibt bedingt durch das das Falsifikationsprinzip ein Set von k Nullhypothesen, die iterative gegen k-1 Alternativhypothesen getestet werden.
- $\mathbf{C} \square$ Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation.
- **D** \square Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet.
- **E** \square Es gibt ein statistisches Hypothesenpaar mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 .

Statistische Tests für Gruppenvergleiche

47. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit rechnen Sie einen Student t-Test. Welche Aussage ist auch für den Welch t-Test richtig?

A □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte in den Gruppen signifikant unterscheiden.

- **B** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte *jeweils* von Null unterscheiden.
- **C** □ Der t-Test vergleicht die Varianzen von mindestens zwei oder mehr Gruppen
- **D** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%.
- **E** □ Der t-Test vergleicht zwei oder mehr Gruppen indem die Mittelwerte miteinander verglichen werden.

Ein Versuch wurde in 7 Parzellen pro Gruppe durchgeführt. Die folgende Abbildung enthält die Daten aus diesem Versuch zur Bewertung der Wirkung des Mikronährstoff Nitrat auf den Ertrag in t/ha von Weizen im Vergleich zu einer Kontrolle. Welche Aussage ist richtig, wenn Sie einen t-Test rechnen?

- **A** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt liegt bei -5.
- **B** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt kann nicht bei einem t-Test aus Barplots bestimmt werden.
- C □ Der Effekt und die Signifikanz lassen sich nicht aus Barplots abschätzen. Höchtens der Effekt als relativer Unterschied zwischen der Höhe der Barplots. Standard ist der mediane Unterschied aus Boxplots.
- **D** □ Es liegt ein signifikanter Unterschied vor. Der Effekt liegt bei -5.
- **E** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -5 unter einer groben Abschätzung. Wir müssen aber eine ANOVA rechnen um den Effekt wirklich bestimmen zu können.

49. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit betrachten Sie die Effekte von einer Behandlung vor und nach der Gabe eines Vitamins. Sie müssen einen gepaarten t-Test rechnen. Welche Aussage ist richtig?

- **A** □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.
- **B** □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.
- **C** □ Wenn die Beobachtungen nicht unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir die Differenz zwischen den zwei Messpunkten.
- **D** □ Der gepaarte t-Test wird gerechnet, wenn die Beobachtungen abhängig voneinander sind. Wir messen jede Beobachtung nur einmal und berechnen dann die Differenz zu dem Mittel der anderen Beobachtungen.
- **E** □ Beim gepaarten t-Test kombinieren wir die Vorteile des Student t-Test für Varianzhomogenität mit den Vorteilen des Welch t-Test für Varianzheterogenität. Wir bilden dafür die Differenz der Einzelbeobachtungen.

Sie führen paarweise t-Tests für alle Vergleiche der verschiedenen Rapssorten in Ihrem Experiment durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Ihr Experiment beinhaltet fünf Rapssorten und eine ANOVA ergibt p=0.049 für den Ertrag. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.053$. Welche Aussage ist richtig?

- **A** □ Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- **B** Das ist kein Wunder. Die ANOVA testet nicht auf der gesamten Fallzahl und die paarweisen t-Tests gewinnen immer eine oder mehr Gruppen als Fallzahl dazu. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- C □ Es gibt einen Fehler in der Varianzstruktur. Daher kann die ANOVA nicht richtig sein und paarweise t-Tests liefern das richtige Ergebnis.
- **D** □ Der Fehler liegt in den t-Tests. Wenn eine ANOVA signifikant ist, dann muss zwangsweise auch ein t-Test signifikant sein.
- **E** □ Das Beispiel kann so nicht auftreten, da die ANOVA und die t-Tests algorithmisch miteinander verschränkt sind.

Teil I.

Deskriptive Statistik & Explorative Datenanalyse

51. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Barplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Yuki nicht gemerkt, welche statistischen Maßzahlen für einen Barplot erhoben werden müssen. Besser wäre was anderes gewesen. Am Ende dann noch Orchideen. Wunderbar. Eine echte Ablenkung für Yuki. Das ist in soweit doof, da nach ihrer Betreuerin erstmal ein Barplot nachgebaut werden soll, bevor es mit ihrer Abschlussarbeit losgeht. Dann hat sie schonmal den R Code vorliegen und nachher geht dann alles schneller. Na dann mal los. Yuki schafft sich die nötige Stimmung. Wenn London Grammar ertönt, dann sucht das Minischwein schleunigst Schutz unter dem Sofa. Yuki schüttelt den Kopf. In der Behandlung für Lauch werden verschiedene Bewässerungstypen (low, mid und high) sein. Erfasst wird als Endpunkt (Y) Ertrag. Yuki soll dann yield in ihrer Exceldatei eintragen.

Leider kennt sich Yuki mit der Erstellung von Barplots in \mathbf{R} nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Barplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Yuki einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Barplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Alex nicht gemerkt, welche statistischen Maßzahlen für einen Barplot erhoben werden müssen. Besser wäre was anderes gewesen. Starcraft. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Alex denkt gerne über Starcraft nach. Das ist in soweit doof, da nach seinem Betreuer nun Barplots aus seinen Daten gebaut werden sollen, bevor es mit dem statistischen Testen weitergeht. Na dann mal los. Alex schafft sich die nötige Stimmung. Wenn Abba ertönt, dann sucht die Katze schleunigst Schutz unter dem Sofa. Alex schüttelt den Kopf.. Die Behandlung für Brokoli waren verschiedene Substrattypen (torf, 40p60n und 70p30n). Erfasst wurde von Alex als Messwert (Y) Trockengewicht. Alex hat dann drymatter in seiner Exceldatei eintragen. Aber auch irgendwie egal. Alex will später nochmal raus um zu Laufen. Druck ablassen, dass muss er auch.

treatment	drymatter
torf	53.6
70p30n	32.8
40p60n	30.5
70p30n	37.0
70p30n	15.7
40p60n	38.7
torf	31.9
40p60n	29.4
70p30n	33.5
torf	42.3
torf	28.0
70p30n	35.1
torf	29.9
40p60n	30.9

Leider kennt sich Alex mit der Erstellung von Barplots nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Brokoli! Beschriften Sie die Achsen entsprechend!**(4 Punkte)**
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Alex *keinen Effekt* zwischen den Behandlungen von Brokoli erwarten würde, wie sehen dann die Barplots aus? *Antworten Sie mit einer Skizze der Barplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Boxplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Tina nicht gemerkt, welche statistischen Maßzahlen für einen Barplot erhoben werden müssen. Besser wäre was anderes gewesen. Tina liebt Astronomie. Darin kann sie sich wirklich verlieren und immer wieder neu begeistern. Das ist in soweit doof, da nach ihrem Betreuer erstmal ein Barplot nachgebaut werden soll, bevor es mit ihrem Projektbericht losgeht. Dann hat sie schonmal den Code vorliegen und nachher geht dann alles schneller. Na dann mal los. Tina schafft sich die nötige Stimmung. Wenn Tocotronic ertönt, dann sucht die Spinne schleunigst Schutz unter dem Sofa. Tina schüttelt den Kopf. In der Behandlung für Erdbeeren werden verschiedene Lüftungssystemen und Folientunneln (ctrl, storm und tornado) sein. Erfasst wird als Outcome (Y) Frischegewicht. Tina soll dann freshmatter in ihrer Exceldatei eintragen. Aber nur in passender Atmospäre! Schon dutzende Male gesehen: Indiana Jones. Aber immer noch großartig zusammen mit Katjes.

Leider kennt sich Tina mit der Erstellung von Boxplots in \P nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Boxplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Tina einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina steht vor einem ersten Problem, denn wenn es nach ihrem Betreuer geht, soll sie in einem einem Versuch in einer Klimakammer Maiss auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Am Ende dann noch Astronomie. Wunderbar. Eine echte Ablenkung für Tina. Die Behandlung waren verschiedene Lichtstufen (none und 600lm). In ihrer Exceldatei hat sie den Outcome (Y) Trockengewicht als drymatter aufgenommen. Nun soll Tina die Daten eimal als Boxplots in einer Präsentation visualisieren, damit ihrem Betreuer wieder klar wird, was sie eigentlich nochmal gemacht hat und was für ein Ergbnis in einem statistischen Test zu erwarten wäre. Anhand von Boxplots lässt sich eine Aussage über die Normalverteilung von Y treffen. Wäre da nicht noch etwas. Wenn die Vergesslichkeit nicht wäre, ja dann wäre wohl vieles möglich für Tina! Aber so... Aber egal. Einfach mal raus um zu Boxen. Ohne Ziel und Uhr. Das ist was für Tina.

treatment	drymatter
600lm	27.1
none	26.3
600lm	28.5
none	27.1
600lm	35.6
600lm	21.6
none	31.7
none	41.4
none	16.7
none	32.4
600lm	29.8
600lm	38.0
none	33.3
none	27.1
600lm	26.3
600lm	33.1
600lm	31.1

Leider kennt sich Tina mit der Erstellung von Boxplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Maiss! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie *keinen Effekt* zwischen den Behandlungen von Maiss erwarten würden, wie sehen dann die beiden Boxplots aus? *Antworten Sie mit einer Skizze der Boxplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In seinem Projektbericht möchte Yuki gerne die Daten aus einem Kreuzungsexperiment mit Lamas in einem Histogramm darstellen. Das Histogramm erlaubt ihm dabei Rückschlüsse auf die Verteilung über das Outcome (Y) zu treffen. In seinem Experiment hat Yuki die auffälligen Hautflecken gezählt.

Die auffälligen Hautflecken: 7, 4, 3, 4, 2, 3, 5, 1, 6, 6, 4, 5, 4, 3, 2, 2, 1, 6, 1, 2, 5, 6, 6, 5, 3, 3, 4, 5, 7, 5, 2, 6, 4, 6, 3, 7

Leider kennt sich Yuki mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit mehr als die Anzahl 5 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance mehr als die Anzahl 5 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In seiner Projektbericht möchte Jonas gerne die Daten aus einem Kreuzungsexperiment mit Lamas in einem Histogramm darstellen. Das Histogramm erlaubt ihm dabei Rückschlüsse auf die Verteilung über das Outcome (Y) zu treffen. In seinem Experiment hat Jonas die mittleren dunklen Pigmentstörungen gezählt.

Die mittleren dunklen Pigmentstörungen: 11.8, 8.2, 12.5, 9.5, 11, 6.5, 11.7, 7.1, 11, 9.6, 10.1, 7.9, 8.4, 9.5, 8.6, 9.1, 11.1, 8.6, 14, 8.5, 9.7, 11.2, 9.4, 6.8, 9.6, 12.9, 9.1, 7.3

Leider kennt sich Jonas mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wenn es nach Mark ginge, wäre er schon längst fertig mit seinem Projektbericht. In seinem Projektbericht hatte er ein Kreuzungsexperiment in der Uckermark durchgeführt. Nach der Meinung seinem Betreuer sieht das jedoch etwas anders aus. Jetzt soll er doch noch eine explorative Datenanalyse für den Zusammenhang zwischen mittlerer Eisenkonzentration [Fe/ml] und Fettgehalt [%/kg] in Lamas durchführen. Wie nervig! Da zwei kontinuierliche Variablen vorliegen, geht die explorative Datenanalyse leider nicht mit Boxplots oder Barplots.

Mittlerer Eisenkonzentration [Fe/ml]	Fettgehalt [%/kg]
21.0	28.8
19.9	24.4
21.9	28.8
25.4	25.1
16.4	22.1
23.8	29.9
23.2	30.0
25.9	30.8
21.3	25.3
18.2	25.3
13.5	18.3

Leider kennt sich Mark mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn *ein* Effekt von *x* auf *y* vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? **(2 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff!', denkt sich Mark. Jetzt hat er doch tatsächlich zwei kategoriale Variablen in seiner Hausarbeit gemessen. Zum einen die Behandlung Außenklimakontakt [ja/nein] und zum anderen die Messung Fettgehalt erreicht [ja/nein] im Kontext von Lamas. Hierfür hat er ein Stallexperiment in der Uckermark durchgeführt. Jetzt möchte Mark die Daten einmal in einer explorativen Datenanalyse darstellen. Danach kann er dann über den passenden statistischen Test nachdenken. Dabei unterstützt sein Betreuer diesen Ansatz bevor es in der Datenanalyse weiter geht.

Fettgehalt reicht	er-	Außenklimakontakt
ja nein nein nein ja		ja ja ja ja nein
nein ja nein ja nein		nein nein ja ja ja
nein nein nein ja ja		ja ja ja nein ja
nein		ja

Fettgehalt reicht	er-	Außenklimakontakt
nein nein nein nein ja		ja ja ja ja ja
ja ja ja ja nein		ja nein ja ja ja
ja nein ja ja ja		ja ja ja ja ja
ja		ja

Leider kennt sich Mark mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn *ein* Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Zeichnen Sie über die untenstehenden Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die untenstehenden Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wieviel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wieviel Prozent der Beobachtungen fallen in ±2s unter der Annahme einer Normalverteilung? Wenn möglich, ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie 2 Normalverteilungen in einer Abbildung mit $\bar{y}_1 \neq \bar{y}_2$ und $s_1 \neq s_2$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den entsprechenden Parametern! (2 Punkte)
- 3. Ergänzen Sie die Bereiche in der 68% und 95% der Beobachtungen fallen! Beschriften Sie die Grenzen der Bereiche mit der statistischen Maßzahl! (2 Punkte)
- 4. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie in die unten stehenden, freien Abbildungen die Verteilungen, die sich nach der Abbildungsüberschrift ergeben! (6 Punkte)
- 2. Beschriften Sie die Achsen der Abbildungen entsprechend! (1 Punkt)
- 3. Achten Sie auf die entsprechende Skalierung der beiden Verteilungen in den Abbildungen! (2 Punkte)

Pois(20) und Pois(1)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Sie haben folgende Zahlenreihe y vorliegen $y = \{18, 21, 21, 17, 17\}$.

- 1. Visualisieren Sie den Mittelwert von y in der untenstehenden Abbildung! (4 Punkte)
- 2. Beschriften Sie die Y und X-Achse entsprechend! (2 Punkte)
- 3. Für die Berechnung der Varianz wird der Abstand der einzelnen Werte y_i zum Mittelwert \bar{y} quadriert. Warum muss der Abstand, $y_i \bar{y}$, in der Varianzformel quadriert werden? Erklären Sie den Zusammenhang unter Berücksichtigung der Abbildung! (2 Punkte)

Teil II.

Statistisches Testen & statistische Testtheorie

63. Aufgabe (9 Punkte)

Grundlage des statistischen Testen ist das Verständnis von der Grundgesamtheit (eng. *population* oder *ground truth*) und der experimentellen Stichprobe (eng. *sample*).

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! Nutzen Sie hierfür als Veranschaulichung die Körpergröße von Männern oder Frauen aus den Gummibärchendaten! (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)$! Nutzen Sie hierfür als Veranschaulichung zusätzlich die Gruppierungsvariable "Modul" aus den Gummibärchendaten! (3 Punkte)

Für ein besseres Verständnis der statistischen Testtheorie, auch Null-Ritual genannt, kann eine Visualisierung als Kreuztabelle genutzt werden.

 Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

Testentscheidung 5% 20% H₀ beibehalten

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem Jahr Alarm schlagen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Abgebildet ist die t-Verteilung unter der Anahme der Gültigkeit der Nullhypothese. Beachten Sie, dass im Folgenden keine numerisch korrekte Darstellung verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 0.95"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $+T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen nicht signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche der Mittelwerte. Sie schätzen den Unterschied zwischen dem mittleren Befall mit Parasiten zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 90% Konfidenzintervall.
 - (b) Ein 95% Konfidenzintervall mit höherer Fallzahl n in der Stichprobe als der Rest der 95% Konfidenzintervalle
 - (c) Ein signifikantes, nicht relevantes 95% Konfidenzintervall
 - (d) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall
 - (e) Ein signifikantes, relevantes 95% Konfidenzintervall
 - (f) Ein 95% Konfidenzintervall mit niedriger Fallzahl n in der Stichprobe als der Rest 95% der Konfidenzintervalle

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- 2. Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in *einem* Wort oder Symbol beschreiben! **(4 Punkte)**

		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ	1				Δ↓			
S	1				s ↓			
n	1				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 99%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil III.

Der Student t-Test, Welch t-Test & gepaarter t-Test

68. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der t-Test testet einen normalverteilten Messwert (Y).', liest Tina laut. Das hilft jetzt auch nur bedingt weiter. Laut ihrem Betreuer ist zwar ihr Messwert Schlachtgewicht [kg] normalverteilt, aber wie rechnet sie jetzt einen t-Test? Für ihren Projektbericht zum Testen einer neuen technischen Anlage musste sie ein Kreuzungsexperiment mit Lamas im Emsland durchführen. Als wäre das nicht schon anstrengend genug gewesen bei dem anspruchsvollen Pilotprojekt mit sehr geringer Fallzahl ($n_1 = n_2 = 3$). Jetzt soll sie auch noch testen, ob die Behandlung Genotypen (AA und BB) ein signifikantes Ergebnis liefert.

treatment	weight
dose	22.7
ctrl	14.5
ctrl	13.6
ctrl	16.3
dose	17.0
dose	15.2

Leider kennt sich Tina mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Welch t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Tina über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der t-Test. Jessica erschaudert. Ein mächtiges Werkzeug in den Händen desjenigen, der ein normalverteiltes Outcome (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Jessica überhaupt aus? Jessica hat einen Leistungssteigerungsversuch mit Lamas durchgeführt. Dabei wurde die Behandlung Elterlinie (Standard und Xray) an den Lamas getestet. Gemessen hat Jessica dann als Messwert Schlachtgewicht [kg]. Warum der Versuch im Oldenburger Land für ihren Projektbericht stattfinden musste, ist ihr bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Schlachtgewicht [kg]?

Elterlinie	Schlachtgewicht
Xray	36.4
Xray	51.5
Xray	32.9
Xray	44.8
Xray	28.5
Xray	42.7
Standard	45.9
Xray	32.1
Xray	52.4
Standard	39.1
Xray	43.2
Standard	45.7
Standard	46.3
Standard	43.3
Xray	25.7
Standard	52.2
Standard	39.3
Xray	27.5
Standard	38.4

Leider kennt sich Jessica mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie einen Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann der Effekt? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Jessica über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der t-Test. Steffen erschaudert. Ein mächtiges Werkzeug in den Händen desjenigen, der einen normalverteilten Endpunkt (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Steffen überhaupt aus? Steffen hat ein Stallexperiment mit Lamas durchgeführt. Dabei wurde die Behandlung Bestandsdichte (*Verordnung* und *Erhht*) an den Lamas getestet. Gemessen hat Steffen dann als Messwert Protein/Fettrate [%/kg]. Warum der Versuch im Oldenburger Land für seinen Projektbericht stattfinden musste, ist ihm bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Protein/Fettrate [%/kg]?

Bestandsdichte	Protein/Fettrate
Erhöht	45.8
Erhöht	45.4
Erhöht	46.7
Verordnung	38.2
Verordnung	41.2
Erhöht	43.9
Erhöht	42.2
Erhöht	38.5
Verordnung	36.5
Verordnung	46.2
Erhöht	44.1
Verordnung	44.5
Erhöht	41.4
Verordnung	23.4
Erhöht	36.7
Verordnung	31.0
Erhöht	42.6
Erhöht	50.2
Verordnung	33.7

Leider kennt sich Steffen mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 90% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Steffen über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es gibt ja immer die Möglichkeit sich Hilfe zu holen. Das geht natürlich auch immer in einem Projektbericht. Deshalb arbeiten Paula und Tina gemeinsam an einem Projektbericht. Das macht dann auch die Analyse ihres Hauptversuches einfacher. Zwar hat jeder von ihnen noch ein Subthema, aber auch da kann man sich ja helfen. In dem Hauptversuch wurde Folgendes von den beiden gemacht. Paula und Tina haben sich Lamas angeschaut. Dabei geht um Zusammenhang zwischen Flüssignahrung (1l/d und 5l/d) und Fettgehalt [%/kg]. Jetzt sollen beide einen gepaarten t-Test rechnen.

ID	treatment	freshmatter
6	5l/d	26.0
3	1l/d	26.0
2	5l/d	31.0
7	51/d	36.9
6	1l/d	17.6
2	1l/d	29.4
5	1l/d	37.0
1	1l/d	31.3
3	5l/d	20.0
7	1l/d	40.1
1	5l/d	38.8
4	5l/d	35.6
8	51/d	26.6
4	1l/d	29.2
5	5l/d	28.3

Leider kennen sich Paula und Tina mit der Berechnung eines gepaarten t-Tests überhaupt nicht aus. Deshalb brauchen sie beide bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines gepaarten t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie den *p*-Wert des gepaarten t-Tests ab! Begründen Sie Ihre Antwort mit einer Skizze! **(2 Punkte)**
- 6. Formulieren Sie eine Antwort an Paula über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Almería. Spanien. Sonne und Strand. Alex und Jessica haben ihren gemeinsamen Auslandsaufenthalt sichtlich genossen. Dann hatte sich auch noch angeboten ihre Abschlussarbeit gemeinsam in Almería durchzuführen. Nur muss jetzt alles in Regerechnet werden, da Reinternational der Standard in der Datenauswertung ist und die Betreuer in Spanien nur können. Während beide Mark Oliven füttern, hoffen sie mehr Informationen von ihr über ihm seltsamen Rausgabe des t-Tests. Immerhin erinnern beide sich an die Behandlung Bestandsdichte (*Verordnung* und *Erhht*) und das es um Lamas ging.

```
##
## Two Sample t-test
##
## data: Gewichtszuwachs by Bestandsdichte
## t = -0.16076, df = 16, p-value = 0.8743
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -8.051349 6.916284
## sample estimates:
## mean in group Verordnung mean in group Erhöht
## 41.51818 42.08571
```

Helfen Sie Mark bei der Interpretation des t-Tests! Sonst geht es auch für Alex und Jessica nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.12|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark und Steffen sind bei Tina um sich Hilfe in \mathbb{R} zu holen. Die beiden hatten zwar schon erste Kontakte mit \mathbb{R} sind sich aber unsicher bei der Interpetierung der Ausgabe eines t-Tests für ihren gemeinsamen Versuch. In einer Hausarbeit haben sie zusammen Lamas untersucht. Dabei ging es um den Zusammenhang zwischen der Behandlung Lüftungssystem (*keins* und *vorhanden*) und dem Messwert Protein/Fettrate [%/kg]. Der Versuch wurde in einem Stallexperiment im Wendland durchgeführt. Nach der Betreuerin ist der Messwert Protein/Fettrate [%/kg] normalverteilt und ein t-Test passt daher. Das wird jetzt nicht mehr angezweifel...

```
##
## Two Sample t-test
##
## data: Protein/Fettrate by Lüftungssystem
## t = -4.841, df = 14, p-value = 0.0002616
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -14.829038 -5.723343
## sample estimates:
## mean in group keins mean in group vorhanden
## 30.46667 40.74286
```

Helfen Sie Tina bei der Interpretation des t-Tests! Sonst geht es auch für Mark und Steffen nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

ist schon ein tolles Programm, wenn man mit dem Ding umgehen kann. Super umgehen kann damit Jessica. Deshalb sind auch Mark und Tina bei ihr um sich bei einem gemeinsamen Projekt helfen zu lassen. Beide arbeiten gemeinsam an einer Hausarbeit. In dem zu beschreibenden Versuch geht es im Wendland um einem Kreuzungsexperiment mit Lamas. Dabei ging darum herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (*ctrl* und *flOw*) und dem Messwert Schlachtgewicht [kg] gibt. Da der Messwert Schlachtgewicht [kg] normalverteilt ist kann ein t-Test gerechnet werden.

Helfen Sie Jessica bei der Interpretation des t-Tests! Sonst geht es auch für Mark und Tina nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen und Mark haben sich dazu entschieden zusammenzuarbeiten. Das sollte alles etwas einfacher machen. Jeder hat zwar ein getrenntes Themenfeld aber den Hauptversuch machen beide gemeinsam. Das hat sich schonmal als gut Idee soweit herausgestellt. In einem Projektbericht sollen beide herausfinden, ob es einen Zusammenhang zwischen Genotypisierung (0d und 14d) und Fettgehalt [%/kg] gibt. Die Besonderheit ist hierbei, dass die Messungen an der gleichen Beobachtung stattfinden. Beide messen also zweimal an den gleichen Lamas. Hier muss dann wohl auf ein normalverteiltes Outcome (Y) ein gepaarter t-Test gerechnet werden. Leider kennen sich beide nicht sehr gut in Raus.

```
##
## Paired t-test
##
## data: Fettgehalt by Genotypisierung
## t = 1.9055, df = 8, p-value = 0.09317
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -0.8336637 8.7669971
## sample estimates:
## mean difference
## 3.966667
```

Jetzt brauchen Steffen und Mark Ihre Hilfe bei der Berechnung eines gepaarten t-Tests in Rum ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Skizzieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil IV.

Die einfaktorielle & zweifaktorielle ANOVA

76. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen und Paula schauen sich etwas entnervt an. Gemeinsam schreiben die beiden ihre Abschlussarbeit und sollen nun als erstes einmal die Daten visualisieren damit abgeschätzt werden kann, ob überhaupt signifikante Ergebnisse zu erwarten sind. Die beiden waren in der Uckermark um einen Leistungssteigerungsversuch mit Lamas durchzuführen. Dabei haben Steffen und Paula den Messwert Fettgehalt [%/kg] unter der Behandung Flüssignahrung (ctrl, superIn und flOw) ermittelt.

Flüssignahrung	Fettgehalt
flOw	45
flOw	45
flOw	44
superIn	30
ctrl	31
flOw	45
ctrl	29
ctrl	30
flOw	45
superIn	29
ctrl	31
superIn	31
superIn	28
ctrl	28
flOw	45
superIn	30

Leider kennen sich Steffen und Paula mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Globale Mittelwert: β_0 (1 Punkt)
 - Mittelwerte der einzelnen Behandlungsstufen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$ (1 Punkt)
 - Mittelwertsdifferenz der einzelnen Behandlungsstufen: $\beta_{0.5}$, $\beta_{1.5}$ und $\beta_{2.5}$ (1 Punkt)
 - Residuen oder Fehler: ε (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Als erstes bauen wir uns aus unsere Daten die ANOVA Tabelle dann sehen wir schon, ob unser Gruppenvergleich in der ANOVA signifikant ist.', Jonas schaut Yuki fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Yuki tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Beide waren in der Uckermark um einen Leistungssteigerungsversuch mit Lamas durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Ernährungszusatz (ctrl, fedX und getIt) und dem Messwert Schlachtgewicht [kg] gibt.

Leider kennen sich Jonas und Yuki mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Ernährungszusatz	2				
error	17	815.05			
Total	19	1655.8			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.59$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Als erstes bauen wir uns aus unsere Daten die ANOVA Tabelle dann sehen wir schon, ob unser Gruppenvergleich in der ANOVA signifikant ist.', Nilufar schaut Jessica fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Jessica tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Nun möchte erstmal ihre Betreuung der Arbeit eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag. Beide waren in der Uckermark um ein Kreuzungsexperiment mit Lamas durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (*ctrl*, *superIn* und *flOw*) und dem Messwert Gewichtszuwachs in der 1LW gibt.

Leider kennen sich Nilufar und Jessica mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Flüssignahrung	2	91.06			
Error	22	1156.77			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.44$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Flüssignahrung	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	7	7.00	4.83
superIn	10	8.90	5.22
flOw	8	4.38	10.50

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nilufar schaut sich fragend in der Bibliothek um. Nilufar hatte gehofft, dass jemand hier sein würde, den sie kennt und sich mit auskennt. Wird aber enttäuscht. Nilufar war in der Uckermark um einen Leistungssteigerungsversuch mit Lamas durchzuführen. Nun möchte ihre Betreuerin ihrem Projektbericht erstmal eine ANOVA sehen und die Ergebnisse präsentiert bekommen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Ernährungszusatz (ctrl, fedX und getIt) und dem Messwert Fettgehalt [%/kg] gibt.

Leider kennen sich Nilufar mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wie absolut ärgerlich. Jetzt stellt sich tatsächlich heraus, dass seinem Betreuer keine Anhnung von der zweifaktoriellen ANOVA hat. Woher soll Steffen jetzt das Wissen nehmen? Immerhin muss er ja noch mit seiner Abschlussarbeit dieses Jahr fertig werden. In einen Leistungssteigerungsversuch hatte er Lamas mit der Behandlung Flüssignahrung (ctrl, superIn und flOw) sowie der Behandlung Lüftungssystem (keins und thunder) in der Uckermark untersucht. Es wurde als Messwert Gewichtszuwachs in der 1LW bestimmt. Jetzt muss er erstmal die zweifaktorielle ANOVA verstehen.

Leider kennen sich Steffen mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Flüssignahrung	3	106.76			
Lüftungssystem	1	1.12			
Flüssignahrung:Lüftungssystem	3	409.89			
Error	18	464.1			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	$F_{lpha=5\%}$
Flüssignahrung	4.26
Lüftungssystem	3.40
Flüssignahrung:Lüftungssystem	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Flüssignahrung:Lüftungssystem aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es ist schon kurz nach fünf und Mark wird langsam nervös. Mark wollte heute Abend noch seine E-Sport Qualifikation schauen. Stattdessen versucht seine Betreuerin die Ausgabe der zweifaktoriellen ANOVA zu visualieren und zu überprüfen, ob es mit der Visualisierung der Daten als Boxplots zusammenpasst. Mark hatte in der Uckermark ein Stallexperiment mit Lamas durchgeführt. Es gab dabei zwei Behandlungen. Einmal Ernährungszusatz (ctrl, fedX und getIt) sowie als zweite Behandlung Flüssignahrung (ctrl und flOw). Gemessen wurde der Messwert (Y) Gewichtszuwachs in der 1LW. So kompliziert kann das jetzt doch nicht sein!

```
## Analysis of Variance Table
##
## Response: Gewichtszuwachs
                                   Df Sum Sq Mean Sq F value
                                                                Pr(>F)
## Ernährungszusatz
                                    2 67.93 33.967
                                                     3.7435
                                                               0.04371
                                              6.279 0.6920
## Flüssignahrung
                                    1
                                       6.28
                                                               0.41639
                                   2 625.59 312.797 34.4724 6.987e-07
## Ernährungszusatz:Flüssignahrung
                                   18 163.33 9.074
## Residuals
```

Leider kennen sich Mark mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! **(5 Punkte)**

In der untenstehenden Tabelle ist die Formel für den F-Test aus der ANOVA und die Formel für den Student t-Test dargestellt. In der ANOVA berechnen Sie die F-Statistik F_{calc} und in dem Student t-Test die T-Statistik T_{calc} .

$$F_{calc} = rac{MS_{treatment}}{MS_{error}}$$
 $T_{calc} = rac{ar{y}_1 - ar{y}_2}{s_p \cdot \sqrt{2/n_g}}$

- 1. Erklären Sie den konzeptionellen Zusammenhang zwischen der F_{calc} Statistik und T_{calc} Statistik! (2 **Punkte**)
- 2. Visualisieren Sie eine nicht signifikante F_{calc} Statistik sowie eine signifikante F_{calc} Statistik anhand von $MS_{treatment}$ und MS_{error} ! Beschriften Sie die Abbildung! (2 Punkte)
- 3. Erklären Sie an der Formel des F-Tests sowie an der Abbildung warum das Minimum der F-Statistik 0 ist! (2 Punkte)
- 4. Wenn die F-Statistik 0 ist, spricht dies eher für oder gegen die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen eine zweifaktorielle ANOVA und erhalten einen signifikanten Interaktionseffekt zwischen den beiden Faktoren f_1 und f_2 . Der Faktor f_1 hat drei Level. Der Faktor f_2 hat dagegen nur zwei Level.

- 1. Visualisieren Sie in zwei getrennten Abbildungen eine schwache und keine Interaktion zwischen den Faktoren f_1 und f_2 ! (4 Punkte)
- 2. Erklären Sie den Unterschied zwischen den beiden Stärken der Interaktion! (2 Punkte)
- 3. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen bei einem Posthoc-Test? (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA mit einem Faktor f_1 mit fünf Leveln. Nachdem Sie die einfaktorielle ANOVA gerechnet haben, erhalten Sie einen p-Wert von 0.078 und eine F Statistik mit $F_{calc}=1.2$. Als Sie sich die Boxplots der Behandlungen anschauen, stellen Sie fest, dass es eigentlich einen Mittelwertsunterschied zwischen dem ersten und zweiten Level geben müsste. Die IQR-Bereiche überlappen sich nicht und die Mediane liegen auch weit vom globalen Mittel entfernt.

- 1. Erklären Sie die Annahme der Normalverteilung und die Annahme der Varianzhomogenität für eine ANOVA an einer passenden Abbildung! (3 Punkte)
- 2. Visualisieren Sie die Berechnung von F_{calc} am obigen Beispiel! (3 Punkte)
- 3. Erklären Sie das Ergebnis der obigen einfaktoriellen ANOVA unter der Berücksichtigung der Annahmen an eine ANOVA! (3 Punkte)

Teil V.

Multiple Gruppenvergleiche

85. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Stallexperiment mit Lamas wurde die Behandlung Genotypen (00, AA, AB und BB) gegen die Ergebnisse einer früheren Studie von Meyer et al. (2021) verglichen. Im Rahmen des Experiments haben Nilufar und Jessica verschiedene Student t-Tests für den Mittelwertsvergleich für den Messwert Gewichtszuwachs in der 1LW gerechnet. Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Meyer et al. (2021). Jetzt sollen die beiden einmal schauen, was in den Daten so drin ist.

Rohen p-Werte	Adjustierte p-Werte	Nullhypothese ablehnen?
0.3400		
0.0012		
0.0020		
0.0010		

Leider kennen sich Nilufar und Jessica mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 **Punkte**)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen hatte in seinem Projektbericht einen Leistungssteigerungsversuch durchgeführt. Soweit so gut. Dabei hat er sich mit Lamas beschäftigt. Angeblich der neueste heiße Kram... aber das ist wiederum was anderes. So richtig mitgenommen hat Steffen das Thema dann doch nicht. Hat er sich doch mit Genotypen (00, AA, AB und BB) und Schlachtgewicht [kg] schon eine Menge an Daten angeschaut. Nach seinem Betreuer soll er nun ein CLD bestimmen. Weder weiß er was ein CLD ist, noch war sein erster Gedanke mit Köln und die LGBTQ Community richtig...

Behandlung	Compact letter display
00	a
AA	b
AB	a
BB	b

Leider kennen sich Steffen mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki hatte in der Projektbericht einen Leistungssteigerungsversuch durchgeführt. Soweit so gut. Dabei hat er sich mit Lamas beschäftigt. Angeblich der neueste heiße Kram... aber das ist wiederum was anderes. So richtig mitgenommen hat Yuki das Thema dann doch nicht. Hat er sich doch mit Bestandsdichte (effizient, standard, eng und kontakt) und Schlachtgewicht [kg] schon eine Menge an Daten angeschaut. Nach seine Betreuerin soll er nun ein CLD bestimmen. Weder weiß er was ein CLD ist, noch war sein erster Gedanke mit Köln und die LGBTQ Community richtig... Als erstes solle er die Gruppen nach absteigender Effektstärke sortieren. Was immer das jetzt bringen soll.

Bestandsdichte	Fallzahl (n)	Mittelwert	Standardabweichung
effizient	7	4.10	3.16
standard	9	10.48	3.44
eng	7	5.37	2.21
kontakt	7	16.46	1.83

Leider kennen sich Yuki mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Yuki und Jessica! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Das Problem ist, dass SPSS eben keine CLD kann. Die bräuchten wir dann schon dringend für unser Poster!', merkt sein Betreuer mit Nachdruck an. Alex neigt den Kopf. 'Das wussten wir nicht vorher?', entfährt es ihm leicht entnervt. Da schaut sein Betreuer seltsam betroffen. Hilft jetzt auch so gar nicht. Alex hatte sich zwei Variablen mit Genotypen (00, AA, AB und BB) und Protein/Fettrate [%/kg] in ein Kreuzungsexperiment mit Lamas angeschaut. Jetzt möchte er eigentlich fertig werden und nicht nochmal alles neu in Rund {emmeans} machen. Dabei hatte er schon echt ne Menge in in der Uckermark gemacht. Dann eben per Hand aus der Matrix der p-Wert. Alex muss sich echt zusammenreißen.

	00	AA	AB	ВВ
00	1.0000000	0.0122284	0.7304756	0.2016556
AA	0.0122284	1.0000000	0.0332689	0.2001509
AB	0.7304756	0.0332689	1.0000000	0.3627375
BB	0.2016556	0.2001509	0.3627375	1.0000000

Leider kennen sich Alex mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für Alex und Jessica! (2 Punkte)

Teil VI.

Der Chi-Quadrat-Test & Der diagnostische Test

89. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende hätte Paula dann doch einen normalverteilten Endpunkt in ihrem Projektbericht nehmen sollen. Vor ihr liegen jetzt die Daten von zwei Variablen als Kategorien oder wie es in \P so schön heißt, als Faktoren. Aber immerhin, hofft sie das was bei den Daten rausgekommen ist. Gezählt hat Paula einiges mit n=96 Beobachtungen von Lamas. Zum einen hat sie als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Protein/Fettrate im Zielbereich [ja/nein] ermittelt. Nun möchte ihr Betreuer gerne einen χ^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

24	21	
13	38	

Leider kennt sich Paula mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}^2_{\alpha=5\%}=3.841!$ Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! (2 Punkte)
- 7. Berechnen Sie den Effektschätzer Cramers V! Interpretieren Sie den Effektschätzer! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica hat sich ein Herz gefasst und war für ihrem Projektbericht in die Niederlande gegangen. Das war eine super Zeit in der sie viel gelernt hat. Klar gab es auch die ein oder andere Besonderheit, aber das gehört hier eher nicht hin. Jessica ist schon eine ganze Zeit im Büro, da ihr Betreuer möchte, dass sie jetzt auf ihren Daten mit n=120 Beobachtungen von Lamas einen \mathcal{X}^2 -Test rechnet. Das ginge, da sie als Behandlung Ökologisch [ja/nein] bestimmt und zum anderen die Variable Gewichtszuwachs erreicht [ja/nein] ermittelt hat. Wie genau, das ist jetzt eine andere Frage.

		68
		52
69	51	120

Leider kennt sich Jessica mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *ein* signifikanter Effekt zu erwarten wäre! **(2 Punkte)**
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende war es für Nilufar in ihrem Projektbericht dann doch kein normalverteiltes Outcome. Das was jetzt etwas doff, da er sich auf eine ANOVA gefreut hatte. Prinzipiell ginge das auch irgendwie, aber nun möchte ihre Betreuerin gerne einen \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen. Nilufar hatte sich in ein Kreuzungsexperiment n=120 Beobachtungen von Lamas angeschaut. Dabei hat sie als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Protein/Fettrate im Zielbereich [ja/nein] ermittelt. Jetzt muss Nilufar mal schauen, wie sie das jetzt rechnet. Nach ihrem Experiment erhielt sie folgende 2x2 Kreuztabelle aus ihren erhobenen Daten.

```
## Automatische Fütterung
## Protein/Fettrate im Zielbereich ja nein
## ja 17 5
## nein 4 12
```

Dann rechnete Nilufar den Fisher-Exakt-Test auf der 2x2-Kreuztabelle in \mathbb{R} und erhielt folgende \mathbb{R} Ausgabe der Funktion fisher.test().

```
##
## Fisher's Exact Test for Count Data
##
## data: Protein/Fettrate im Zielbereich
## p-value = 0.002568
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.85845 61.14631
## sample estimates:
## odds ratio
## 9.451509
```

Leider kennt sich Nilufar mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung des 95% Konfidenzintervalls! (1 Punkt)
- 6. Interpretieren Sie das *Odds ratio* im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)

Die Prävalenz von Klauenseuche bei Wollschweinen wird mit 2% angenommen. In 80% der Fälle ist ein Test positiv, wenn das Wollschwein erkrankt ist. In 8% der Fälle ist ein Test positiv, wenn das Wollschwein nicht erkrankt ist und somit gesund ist. Sie werten 2000 Wollschweine mit einem diagnostischen Test auf Klauenseuche aus.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! Beschriften Sie auch die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (8 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Folgender diagnostischer Doppelbaum nach der Testung auf Klauenseuche bei Fleckvieh ist gegeben.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! (4 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Berechnen Sie die Prävalenz für Klauenseuche! (2 Punkte)
- 4. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests für Klauenseuche! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle aus dem ausgefüllten Doppelbaum! (4 Punkte)

Teil VII.

Lineare Regression & Korrelation

94. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Alex. 'Ich sehe nur eine Zahlen und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen?', fragt Jessica. Alex atmet schwer ein. Die beiden hatten ein Kreuzungsexperiment im Oldenburger Land mit Lamas durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlerer Eisenkonzentration [Fe/ml] und Fettgehalt [%/kg]. Jetzt will die Betreuung von den beiden einmal die Visualisierung der Daten und auch gleich noch die lineare Regression gerechnet bekommen.

Fettgehalt [%/kg]	Mittlerer Eisenkonzentration [Fe/ml]
19.1	24.5
18.7	22.5
22.9	26.6
27.6	30.2
15.7	17.5
22.6	24.7
29.3	29.8
14.8	18.4
22.4	25.5

Leider kennen sich Alex und Jessica mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? Antworten Sie mit einer Skizze der Geraden! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Ich glaube du bringst da was durcheinander. Wir nutzen zwar auch für die ANOVA die Funktion lm() aber hier wollen wir, glaube ich, eine Gerade durch die Punkte zeichnen.', merkt Steffen an. 'Ich sehe keine Punkte... ich sehe nur zwei Zeilen einer Tabelle und ich glaube du hast gerade was gelöscht.', antwortet Jonas sichtlich übernächtigt. 'Wir müssen die Koeffizienten der linearen Regression ja auch erst interpretieren!', spricht Steffen sehr deutlich und langsam. Die beiden hatten ein Stallexperiment im Emsland mit Lamas durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlere Eisenkonzentration [Fe/ml] und Schlachtgewicht [kg]. Jetzt wollen sie erstmal schauen, ob es einen Zusammenhang gibt und das soll mit der Rausgabe möglich sein.

term	estimate	std.error	t statistic	p-value
(Intercept)	1.40	1.97		
Mittlere Eisenkonzentration	0.17	0.19		

Leider kennen sich Steffen und Jonas mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Tina. 'Ich sehe nur Kauderwelsch und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen? Und warum überhaupt? War das unsere Fragestellung?', fragt Jessica. Tina atmet schwer ein und starrt auf die Ausgabe der Funktion lm(). Die beiden hatten einen Leistungssteigerungsversuch im Teuteburgerwald mit Lamas durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlere Anzahl an weißen Blutkörperchen [LEU/ml] und Fettgehalt [%/kg]. Jetzt will die Betreuung von den beiden die Interpretierung der Daten in Form einer linearen Regression gerechnet bekommen. Das haben beide in Regmacht, aber wie soll das jetzt gehen? Das mit der Interpretation?

```
## Call:
## Fettgehalt ~ Mittlere_Anzahl
##
## Residuals:
                10 Median
                                 30
##
      Min
                                        Max
## -3.6634 -0.5475 0.1580
                            0.9255
                                    2.6120
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     1.7298
                                1.8789
                                          0.921
## Mittlere_Anzahl
                     1.1081
                                0.1885
                                          5.879 8.34e-07
## Residual standard error: 1.512 on 38 degrees of freedom
## Multiple R-squared: 0.4763, Adjusted R-squared: 0.4625
## F-statistic: 34.56 on 1 and 38 DF, p-value: 8.344e-07
```

Leider kennen sich Tina und Jessica mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert 0.48 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Was ist denn das? Das wird ja immer wilder! Hatten wir als Aufgabe eine Korrelation zu berechnen? Wir bauen aus kontinuierlichen Daten eine Abbildung und interpretieren diese dann?', fragt sich Steffen laut. 'Keine Ahnung... das ist jetzt jedenfalls keine Abbildung von irgendwas sondern eine Ausgabe mit ganz wilden Bezeichnungen...', denkt er. Steffen hatte ein Stallexperiment im Oldenburger Land mit Lamas durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Bewegungsscore [Movement/h] und Gewichtszuwachs in der 1LW. Jetzt hat er eigentlich alles zusammen. Eigentlich..., denn mit der Ausgabe hat Steffen jetzt ein Problem.

```
##
## Pearson's correlation
##
## data: Durchschnittlicher Bewegungsscore [Movement/h] and Gewichtszuwachs in der 1LW
## t = 12.176, df = 8, p-value = 1.918e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8907114 0.9940463
## sample estimates:
## cor
## 0.9740663
```

Leider kennt sich Steffen mit der Korrelationsanalyse in Rüberhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Erstellen Sie eine Visualisierung für den Korrelationskoeffizienten! Beschriften Sie die Abbildung! (2 Punkte)
- 4. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 5. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Visualisieren Sie das 95% Konfidenzintervall! Beschriften Sie die Abbildung! (2 Punkte)

98. Aufgabe (9 Punkte)

In den folgenden Abbildungen sehen Sie drei leere Scatterplots. Füllen Sie diese Scatterplots nach folgenden Anweisungen.

- 1. Zeichnen Sie für die angegebene ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die angegebenen R^2 -Werte die entsprechende Punktewolke um die Gerade. (3 Punk-
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (3 Punkte)

Pearsons $\rho = 0.25$

$$R^2 = 1$$

Pearsons $\rho = -0.25$

$$R^2 = 0.25$$

In den folgenden Abbildungen sehen Sie vier Scatterplots. Ergänzen Sie die Überschriften der jeweiligen Scatterplots.

- 1. Schätzen Sie die ρ -Werte in der entsprechenden Abbildung! (4 Punkte)
- 2. Schätzen Sie die \mathbb{R}^2 -Werte in der entsprechenden Punktewolke um die Gerade! (4 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (1 **Punkt**)

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m^2 (*drymatter*) und Wassergabe l/m^2 (*water*) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	27.2	11.2	26.3	
2	6.9	0.2	8.9	
3	14.9	4.3	15.4	
4	23.7	9.2	23.1	
5	25.1	10.0	24.3	
6	22.5	10.3	24.9	
7	21.8	7.7	20.7	
8	17.3	3.6	14.2	
9	26.5	11.2	26.2	
10	21.8	9.3	23.3	
_11	25.5	11.1	26.0	

- 1. Ergänzen Sie die Werte in der Spalte .resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! **(4 Punkte)**
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

 Zeichen Sie in die drei untenstehenden, leeren Abbilungen die Zeile des Regressionskreuzes der Binomialverteilung. Wählen Sie die Beschriftung der y-Achse sowie der x-Achse entsprechend aus! (6 Punkte)

- 2. Ergänzen Sie die jeweiligen statistischen Methoden zu der Abbildung! (2 Punkte)
- 3. Welchen Effektschätzer erhalten Sie aus der entsprechend linearen Regression bzw. den Gruppenvergleich? Geben Sie ein Beispiel! (2 Punkte)
- 4. Wenn Sie keinen Effekt erwarten, welchen Zahlenraum nimmt dann der Effektschätzer ein? Geben Sie ein Beispiel! (2 Punkte)

Ein Feldexperiment wurde mit n = 200 Pflanzen durchgeführt. Folgende Einflussvariablen (x) wurden erhoben: fertilizier, P und center. Als mögliche Outcomevariablen stehen Ihnen nun folgende gemessene Endpunkte zu Verfügung: drymatter, yield, count, quality score und dead.

- 1. Wählen Sie ein Outcome was zu der Verteilungsfamilie Poisson gehört! (1 Punkt)
- 2. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} in der Funktion glm() üblich ist *ohne Interaktionsterm*! (3 Punkte)
- 3. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} üblich ist und ergänzen Sie einen Interaktionsterm nach Wahl! (1 Punkt)
- 4. Zeichen Sie eine *starke* Interaktion in die Abbildung unten für den Endpunkt *yield*. Ergänzen Sie eine aussagekräftige Legende. Wie erkennen Sie eine Interaktion? Begründen Sie Ihre Antwort! **(4 Punkte)**

Teil VIII.

Experimentelles Design

103. Aufgabe (16 Punkte)

Paula und Alex sind bei Tina um sich Hilfe für eine Versuchsplanung in \P zu holen. Dabei geht es um den Zusammenhang zwischen der Behandlung Ernährungszusatz (ctrl, fedX und getIt) sowie Lüftungssystem (keins und thunder) und dem Messwert Schlachtgewicht [kg] in Lamas. Der Versuch soll in einem Stallexperiment in der Uckermark durchgeführt werden. Nach der Dozentin ist der Messwert Schlachtgewicht [kg] normalverteilt. Die beiden entschieden sich für ein faktorielles Versuchsdesign. Im ersten Schritt überlegt Tina ein einfaches experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein Complete Com

Leider kennen sich Tina, Paula und Alex mit dem *Complete randomized design (CRD)* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 🔃 (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (3 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (2 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Begründen Sie Ihre Antwort! (2 Punkte)

Steffen und Tina sind bei Yuki um sich Hilfe für eine Versuchsplanung in Ruu holen. Dabei geht es um den Zusammenhang zwischen der Behandlung Bestandsdichte (standard, eng, weit und kontakt) sowie Flüssignahrung (ctrl und flOw) sowie drei Blöcken und dem Messwert Schlachtgewicht [kg] in Lamas. Der Versuch soll in einem Leistungssteigerungsversuch in der Uckermark durchgeführt werden. Nach dem Dozenten ist der Messwert Schlachtgewicht [kg] normalverteilt. Die beiden entschieden sich für ein faktorielles Versuchsdesign. Im ersten Schritt überlegt Yuki ein komplexeres experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein Randomized complete block design mit Berücksichtigung einer Interaktion. Das sollte für den anfang erstmal reichen. 'Und jetzt, was machen wir jetzt?', Tina schaut die anderen beiden mit großen Augen an. Die zucken mit der Schulter.

Leider kennen sich Yuki, Steffen und Tina mit dem *Randomized complete block design* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistische Hypothesenpaare! (2 Punkte)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (4 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (3 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Welche Annahme hinsichtlich der Modellierung haben Sie getroffen? Begründen Sie Ihre Antwort! (3 Punkte)

Teil IX.

Programmieren in R

105. Aufgabe (9 Punkte)

Alex muss seiner Hausarbeit mit Rarbeiten. Deshalb sitzt er jetzt mit Ihnen zusammen und hat einige Fragen zu den Grundlagen in Ran Sie! Na dann wollen Sie mal helfen. Immerhin will seine Betreuerin, dass Rgenutzt wird.

Alex: Ich habe doch die Spalte mutiert und geändert. Warum sehe ich das in R aber mein Datensatz ändert sich nicht? (1 Punkt)

Sie antworten:

Alex: Wie war nochmal der Name der Funktion in dem wir in R Daten intern abspeichern? Was waren da nochmal die Vorteile? (1 Punkt)

Sie antworten:

Alex: Wie sieht der Zuweisungs-Operator aus und was ist seine Funktion? Gerne mit Beispiel! (1 Punkt) Sie antworten:

Alex: Was ist der Unterschied zwischen einem Objekt, einem Wort und einer Funktion? (1 Punkt) Sie antworten:

Alex: Warum gibt es eigentlich das RStudio und R? Wie unterscheiden sich beide voneinander? (1 Punkt) Sie antworten:

Alex: Wie sieht der Pipe-Operator aus und was ist seine Funktion? Gerne mit Beispiel! (1 Punkt) Sie antworten:

Alex: Gibt es einen Vorteil von der Nutzung von ? (1 Punkt) Sie antworten:

Alex: Jetzt lese ich hier von einem Faktor. Was ist ein Faktor in ? (1 Punkt) Sie antworten:

Alex: Wir brauchen recht häufig die Tilde (~) in R. Wo wird die nochmal angewandt und genutzt? (1 Punkt) Sie antworten:

'Hm...am Ende ist dann Reigentlich gar nicht so schwer, wenn ich Hilfe habe.', meint Jessica stolz und lacht Sie an. Nur leider kennt sie sich überhaupt nicht mit Raus! Das heißt, Sie müssen hier einmal Rede und Antwort stehen und helfen. Sonst wird es für Jessica dann in ihrem Projektbericht nichts mit der Auswertung und Abgabe. Das kann auch keine Lösung für Jessica und Sie sein. Immerhin haben Sie schon so viel gelernt.

Jessica fragt: Ich baue mir ja meinen Datensatz in Excel. Was muss ich da im Bezug auf die Namen der Spalten beachten? (1 Punkt)

Sie antworten:

Jessica fragt: Das Dateiformat in R hat einen Namen. Wie heißt der und gerne mit Beispiel! (1 Punkt) Sie antworten:

Jessica fragt: Nach der EDA zu urteilen liegt eine Interakton vor, wie spezifiziere ich diese im Modell, so dass ich die interaktion zwischen zwei Faktoren f_1 und f_2 testen kann? (1 Punkt)

Sie antworten:

Jessica fragt: Welche Funktionen brauche ich nochmal für die Erstellung eines CLD und was war noch gleich die Reihenfolge? (2 Punkte)

Sie antworten:

Jessica fragt: Ich glaube ich habe Varianzheterogenität zwischen den Gruppen vorliegen. Wie funktioniert die Adjustierung dafür nochmal in emmeans ()? (1 Punkt)

Sie antworten:

Jessica fragt: Okay, und für was brauche ich nochmal die R Pakete {emmeans}, {ggplot} und {readxl}? (2 Punkte)

Sie antworten:

Jessica fragt: Warum wurde jetzt nach dem Laden der Daten die Funktion mutate() genutzt? (1 Punkt) Sie antworten:

Teil X.

Forschendes Lernen

Das forschende Lernen basiert zum einen auf den folgenden wissenschaftlichen Veröffentlichungen. Für die Prüfung wird die vertiefende Kenntnis der folgenden Veröffentlichungen vorausgesetzt.

In der Prüfung erhalten Sie einen Auszug der wissenschaftlichen Veröffentlichung. Für die Einarbeitung in die Veröffentlichung ist in der Prüfung ausdrücklich keine Zeit vorgesehen.

- Sánchez, M., Velásquez, Y., González, M., & Cuevas, J. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Scientia Horticulturae, 304, 111320. [Link]
- Petersen, F., Demann, J., Restemeyer, D., Olfs, H. W., Westendarp, H., Appenroth, K. J., & Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. [Link]
- Selle, P. H., Cadogan, D. J., Li, X., & Bryden, W. L. (2010). Implications of sorghum in broiler chicken nutrition. Animal Feed Science and Technology, 156(3-4), 57-74. [Link]
- Wu, G., Knabe, D. A., & Kim, S. W. (2004). Arginine nutrition in neonatal pigs. The Journal of Nutrition, 134(10), 2783S-2790S. [Link]

Das forschende Lernen basiert zum anderen auf den folgenden wissenschaftlichen Datensätzen und deren vertiefende Analyse werden als bekannt vorausgesetzt. Die Teilaufgaben der Aufgaben stellen nur eine zufällige Auswahl an möglichen Fragen dar. Die Datensätze werden über ILIAS bereitgestellt.

In der Prüfung erhalten Sie <u>keinen Auszug</u> aus den wissenschaftlichen Daten. Die Datensätze werden als bekannt in der Prüfung vorgesetzt. Sie haben sich vorab Notizen und Anmerkungen gemacht.

• bar

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen hält die wissenschaftliche Veröffentlichung *Selle, P. H., et al. (2010). Implications of sorghum in broiler chicken nutrition* unter einem Schnaufen in die Luft. 'Worum geht es denn eigentlich in dieser Arbeit?', fragt er stirnrunzelnd. Steffen soll die Veröffentlichung nutzen um das eigene Experiment zu planen. Als eine Vorlage sozusagen. Daher möchte seine Betreuerin, dass er einmal die Veröffentlichung sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden.

Leider kennt sich Steffen mit dem Lesen einer wissenschaftlichen Veröffentlichung mit Fokus auf die Statistik überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe! Glücklicherweise kennen Sie die wissenschaftliche Veröffentlichung schon im Detail und können sofort helfen.

- 1. Erläutern Sie die wissenschaftliche Fragestellung der wissenschaftlichen Veröffentlichung anhand des OCAR Prinzips nach Schimel (2012)¹ (4 Punkte)
- 2. Nennen Sie die untersuchten Endpunkte in der wissenschaftlichen Veröffentlichung! Wie lautet der primäre Endpunkt? (2 Punkte)
- 3. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 4. Nennen Sie eine Auswahl an bedeutenden statistischen Maßzahlen in der wissenschaftlichen Veröffentlichung! (1 Punkt)
- 5. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 6. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Effektstärke für den primären Endpunkt! (2 Punkte)
- 7. Diskutieren Sie die ökonomische Relevanz der Hauptaussage der wissenschaftlichen Veröffentlichung im Bezug auf Signifikanz und Effektstärke für den primären Endpunkt! (1 Punkt)
- 8. Skizzieren Sie für den primären Endpunkt den sich ergebenden Datensatz in R für eine ausgewählte Abbildung! (2 Punkte)
- 9. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)
- 10. Schätzen Sie die benötigte Fallzahl für ein zukünftiges Experiment anhand der Ergebnisse in der wisenschaftlichen Veröffentlichung für den primären Endpunkt! (2 Punkte)

¹Schimel, J. (2012). Writing science: how to write papers that get cited and proposals that get funded. OUP USA.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Unter einem langen Schnaufen starrt Yuki auf den wissenschaftlichen Datensatz data4 in seinem Laptop. 'Worum geht es denn eigentlich in diesem Datensatz?', fragt er kopfschüttelnd. Yuki soll die Datentabelle nutzen um das eigene Experiment zu planen und eine Blaupause zu haben. Als eine Vorlage sozusagen, die er nur noch ausfüllen muss. Daher möchte seine Betreuerin, dass er einmal die Daten sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden.

Leider kennt sich Yuki mit der Analyse eines wissenschaftlichen Datensatzes überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe! Glücklicherweise kennen Sie den wissenschaftlichen Datensatz aus Ihren eigenen Analysen schon im Detail und können sofort helfen.

- 1. Formulieren Sie die wissenschaftliche Fragestellung des Datensatzes in Form einer PowerPoint Folie! (2 Punkte)
- 2. Nennen Sie zwei Besonderheiten des Datensatzes! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Nennen Sie die untersuchten Endpunkte in dem Datensatz! Wie lautet der primäre Endpunkt für die Auswertung? (2 Punkte)
- 4. Skizzieren Sie die großen Analysebereiche der Statistik! Beschriften Sie die Abbildungen! (2 Punkte)
- 5. In welchen der großen Analysebereiche der Statistik fällt die Auswertung des primären Endpunktes? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie eine ikonische Abbildung für den primären Endpunkt im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 7. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 8. Skizzieren Sie die Datenanalyse hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 9. Skizzieren Sie die Berechnung der Effektstärke für den primären Endpunkt! (2 Punkte)
- 10. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)

Teil XI.

Mathematik

109. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte².

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 0.8mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 10.5m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in *m* der Eiche im Jahr 1805 als Herodot in der Eiche versteckt werden sollte? (2 Punkte)
- Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 180cm, eine Breite von 80cm sowie eine Länge von 250cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *mühsam* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 20*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! **(2 Punkte)**

²Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 160 Stockrosen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Stockrosen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Stockrosen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 8.5cm und eine Höhe von 9cm. Der Kubikmeterpreis für Torf liegt bei 270 EUR.

- 1. Skizzieren Sie den Versuchsplan auf zwei Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Tischfläche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(3 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Hühnerstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Hühnerstall hat eine Höhe h_{ν} von 5m. Die hintere Seite des Hühnerstall hat eine Höhe h_b von 11m. Der Hühnerstall hat eine Tiefe t von 14m und eine Breite b von 50m.

- 1. Skizzieren Sie den Hühnerstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! (2 **Punkte**)
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Hühnerstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1.2m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 10t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 15% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80° C eine Dichte von $235kg/m^3$. Bei -100° C hat Methan eine Dichte von $290kg/m^3$. Sie betrieben Ihre Anlage bei -90° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 Punkte)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von einem Mädchen mit Zöpfen und Zahnspange. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Edeka über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile³. Tja, die Deutschen und Südamerika

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von einem Mädchen mit Zöpfen und Zahnspange?

- 1. Wenn 7 Blaubeerschalen 11.13 Euro kosten, wie viel kosten 8 Schalen? (2 Punkte)
- 2. Wenn Sie die 8 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 2.59 EUR können Sie sich dann noch für 200 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Edeka über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 1901 Wasser. Eine Strauchtomate wiegt 120 120g.
- Ein Kilo Salat benötigt 100l Wasser. Ein Salatkopf wiegt 310 510g.
- Ein Kilo Avocado benötigt 950l Wasser. Eine Avocado wiegt 150 380g.
- Ein Kilo Blaubeeren benötigt 880l Wasser. Eine Blaubeere wiegt 3.2 3.6g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2024 blieben die Erträge von Blaubeeren mit 7.9×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 7.2%. Die Exporte für Avocados fielen in dem gleichen Zeitraum um 21.2% auf 2×10^5 t.

4. Wie viele Tonnen Wasser hat Chile in dem Exportjahr 2023 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur zwei Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 61 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 10 - 15 Liter pro Minute Duschen und 3 - 12 Liter pro Minute Händewaschen.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von einem Mädchen mit Zöpfen und Zahnspange erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

³Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Kardaschow-Skala • Dyson-Sphäre • Hohlerde • Entropie • Proton $r_P = 1.7 \times 10e - 15$ • Wasserstoff $r_H = 5.3 \times 10e - 11$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 67 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde *heutzutage* so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen⁴.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.87m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.235 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.86g/cm^3 . Das Gewicht von einem heute lebenden asiatischen Elefanten liegt bei 3t bis 5t und das Gewicht von einem Triceratops bei 6t bis 12t.

- 1. Welchen Durchmesser müsste die Erde vor 67 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 67 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 Punkt)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 67 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 1.03 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.52×10^8 km angegeben. Der *massebehaftete* Sonnenwind besteht aus 84% Wasserstoffkernen mit einer molaren Masse von 1.08g/mol, 8% Heliumkernen mit 4.01g/mol sowie 8% weiteren Atomkernen mit 69.18g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm $^{-3}$ pro Sekunde mit einer mittleren Teilchendichte von 5cm $^{-3}$ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 4. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 5. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die Sonne pro Sekunde in alle Richtungen aussendet! (2 Punkte)
- 6. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

⁴Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Entschuldigung, ist das Ihre Feder in meinem Auge? So hört man häufiger höfliche Enten in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen wir aber als vorsorgliche Enten-Halter:innen nicht⁵. Betrachten wir also einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Enten für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Ente plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- i dem Verhalten: (1) standing, (2) wingflapping, (3) walking und (4) foraging incl. scratching.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
standing	35cm; 21cm; 7.2%	35cm; 26cm; 8.9%	34cm; 27cm; 10.1%
wingflapping	40cm; 25cm; 2.1%	35cm; 37cm; 1.8%	41cm; 34cm; 4.1%
walking	30cm; 30cm; 0.2%	30cm; 26cm; 0.2%	29cm; 27cm; 0.4%
foraging incl. scratching	36cm; 26cm; 0.8%	28cm; 25cm; 0.8%	31cm; 24cm; 0.8%

- 1. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für r, R und PB aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 Punkte)
- 2. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 3. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 4. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Enten für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 Punkte)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Enten in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 Punkte)

⁵Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 40 Tagen die ersten Symptome ein; die ersten Toten sind nach 72 Tagen zu beklagen; nach 110 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 222 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 90 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[…] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $4000\mu g/50mg$ Vitamin C. Der Bedarf liegt bei 105mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in kg an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 20 Tage über den Pazifik! (3 Punkte)
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{30} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 3000m kollabiert, wird die Sonne 45% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} gegeben⁶.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \quad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- ullet m_f , gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- G, gleich der Gravitationskonstante mit $6.674 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (1 Punkt)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 **Punkte**)
- 6. Eine Kirchenglocke und eine Klorolle stürzen aus großer und gleicher Höhe in ein schwarzes Loch. Welches der beiden Objekte überschreitet zuerst den Ereignishorizont des schwarzes Loches? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁷

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt vier Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.0523 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 750 Jahren ist die Replikation abgeschlossen und wiederum vier Sonden werden ausgesendet. Gehen Sie von 5.16 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 1.5×10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.7 \times 10^8 m/s$ an.

- Skizzieren Sie in einer Abbildung die ersten vier Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.6×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 9×10^7 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁷Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die niedersächsichen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 72 Grad im Vergleich zu den ägyptischen Pyramiden mit 60 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 38 Königsellen. Eine Königselle misst 52.4cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 38 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 7cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 5 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Schulterschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 90% aus. In eine Schubkarre passen 95 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 11°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die niedersächsiche Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Versicherungsverteter*) mit, das die Pyramide zu flach sei und somit nicht in die niedersächsiche Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 5° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Sie schwingen sich auf Ihr Cachermobil um mit 16km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in Ihren Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Sie wollen diesmal endlich die aufwärts Terrainchallenge durchführen. Die Reihenfolge der Caches nach Terrainwertung gibt daher die von Ihnen abzufahrenden Orte vor. Die Terrain- und Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Ihnen für Ihre Planung der Route zu Verfügung⁸.

Ort	Cache	Wertung (S T G)
Α	GCACKPS	2.5 2.5 Mikro
В	GCT1AQM	3.5 4.5 Mikro
С	GCYYQW2	4.0 4.0 Normal
D	GC5JILQ	1.0 1.0 Klein
Е	GCN8BIU	3.0 2.0 Mikro

Im Weiteren sind Ihnen folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AC} ist 3km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 7.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 1.5-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 30° südlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 35° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E südlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort C Ihre Cachertour.

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! (2 Punkte)
- 2. Welche Strecke in km legen Sie bei der Bewältigung der aufwärts Terrainchallenge zurück? (5 Punkte)
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

$$Suchzeit = 0.2 + 0.15 \cdot Schwierigkeit$$

beschreiben. Wie lange in Stunden benötigen Sie um die aufwärts Terrainchallenge zu erfüllen? (3 Punkte)

4. An der höchsten Schwierigkeit müssen Sie angeln. Ihre Angel ist ausgefahren 8m lang. Erreichen Sie einen Cache in der Höhe von 9.6m? Berechnen Sie dazu Ihre maximale mögliche Angelhöhe! Welche Annahmen mussten Sie treffen um die Aufgabe zu lösen? (2 Punkte)

⁸Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivist

Die atmende Wand und Brot aus Luft Als Kellerkind vom Dorf wollen das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 19:00 bestimmen Sie dreimal automatisch die Radonbelastung in Ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung⁹.

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $400Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 2.8d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 143d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $400Bq/m^3$ auf unter $80Bq/m^3$ gefallen ist? (4 Punkte)

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	79.7	28.1	
Sauerstoff	19.5	16.5	
Kohlenstoffdioxid	0.045	11.8	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Sie Ihr etwas pappiges Toastbrot mampfen kommt Ihnen die Dokumentation über Brot aus Luft in den Sinn. Sie denken darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung 10:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wieviel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

⁹Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

¹⁰Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Ihr Studentenjob war nach Ladenschluss bei Kaufland die Regale einzuräumen. Dabei ist Ihnen in der Auslage der Sonderangebote das Necronomicon¹¹ in die Hände gefallen. Nun sind Sie eine Magierin der Zeichen geworden! Also eigentlich können Sie nur Mathe und das dämliche Necronomicon hat Sie in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 1175 n. Chr. für den neuen Lehnsherren Henry dem Roten. Sie bauen natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Ihnen stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung.

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- v, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit $9.81\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 40mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 11m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 11m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 3.1mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.7mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 1.2×10^6 Bleikugeln zusammen. Blei hat eine Dichte von $15.1q/cm^3$.

4. Wie schwer in Kilogramm kg sind die 1.2×10^6 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 700 Bleikugeln produzieren wollen und die Bleikugel im Fall 0.5cm Abstand haben müssen? **(1 Punkt)**

¹¹Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Kaninchen Leider hat es mit Ihrer Koalakuschelschule in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür haben Sie eine Neue! Oder wie es Mike Tyson zugeschrieben wird: "Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!". Daher machen Sie jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1860 ungefähr 30 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Dem wollen wir mal mathematisch nachgehen!¹²

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 1.1 \times 10^{10} - 1.1 \times 10^9 \cdot 2^{-0.2 \cdot t + 3.2}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 9 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 20 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 2.2 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 7 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 99.7% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 60% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Norden von Australien. Australien hat eine West-Ost-Ausdehnung von 4400km und eine Nord-Süd-Ausdehnung von knapp 3700km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 8.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 9\$ pro Tier und der durchführende Arzt verlangt ca. 45\$ pro Tier.

6. In Ihrem Stall leben 800 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹²Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Lüneburger Heide. Unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer der Kuh Frida und Ihnen. Grünes Gras unter Ihren Füßen und ein strammer Wind im Gesicht, egal wohin Sie schauen. Ein schmatzendes Geräusch ertönt unter Ihnen. Sie sinnieren, sollten Sie Ihre weiten Graslandschaften jetzt schon düngen? Dafür benötigen Sie die *Grünlandtemperatur*! Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Sie sehen nicht ein, Geld für einen Agrarmetrologen zu bezahlen. Also rechnen Sie mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit 0.6×, Februar mit 0.75× und März mit 1.2×. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2023	0.1
01. Feb 2023	1.5
01. Mrz 2023	2.7
01. Apr 2023	6.1

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 **Punkt**)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! **(1 Punkt)**
- 4. Osterglocken beginnen ab einer GLT von 190°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2023 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* **(4 Punkte)**

Auf dem Weg zu Ihrer Boskoopplantage wurden Sie mit Ihrem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Frida und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Frida mit 230N. Die elektrifizierter Renter bringen eine Kraft von 140N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Frida lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Frida und die Rentner mit einem 50° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.3t schweren Trecker *jeweils* aus dem Graben, wenn $F = m \cdot a$ gilt? **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In der Kartonagenfabrik Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Also geht es mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren Sie, dass die Kartons zum Versand von Nägeln nicht hier zusammengebaut werden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte Doppelt gewellte, 4-mal-gefaltete, 0.5mm, 60-cm-Karton durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen Sie wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren. Der nun zu optimierende, flache Karton hat eine Länge von 60cm und eine Breite von 20cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge \boldsymbol{x} falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blattr*ohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 130m Zaun zu Verfügung. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 130m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ein Pfund Insekten, bitte! Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen 13 . Schauen wir uns dazu einmal den Vergleich Deutschland zu Nigeria an. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2021 leben ca. 8.4×10^7 Menschen in Deutschland und ca. 1.8×10^8 Menschen in Nigeria. Mit den Informationen wollen wir anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im folgenden ist Abbildung des Fleischkonsums im Jahr 2021 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2021 *pro Kopf* in einer aussagekräftigen Tabelle dar! **(2 Punkte)**
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2021 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹³Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 70%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2021! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2021, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legen Sie die historische Ausgabe des Spiegels aus den 80zigern beiseite. Sie sind bei Ihrem Augenarzt und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken Sie und Ihr Partner über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Sie nun aber über AIDS und dem diagnostischen AIDS-Test, den Sie nun machen werden?

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.75% angenommen. In 92% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 2.5% der Fälle ist ein HIV-Test positiv, wenn der Patient *nicht* erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+), wenn Sie einen positiven AIDS-Test vorliegen haben (T^+)? Gehen Sie für die folgenden Berechnungen von $n = 4 \times 10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹⁴.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 **Punkte**)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 Punkte)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Sie, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen Sie so noch nicht und deshalb stellen Sie für sich den Zusammenhang in einer 2x2 Kreuztabelle dar.

- 6. Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹⁴Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive Überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Network-Marketing oder Schneeballschlacht! Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Dann wollen wir mal loslegen. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Wir wollen hier einmal in die Untiefen des "passiven Einkommens" abtauchen¹⁵.

Das Jahr 2022 war das erfolgreichste Jahr in der Geschichte von Healthy Herbs Manufacture International (HeHeMan). Das Unternehmen steigerte den Umsatz um rund 27 Prozent von 275 Millionen Euro im Jahr 2021. Doch wie viel kommt bei den Partnern an? Laut HeHeMan habe das Unternehmen 3.8×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma HeHeMan im Jahr 2022! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2022 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 35%? (1 Punkt)

Ihr zu vermarkendes Produkt, hinter dem Sie voll stehen, kostet 50EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 20%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 3.25%, 2.25% und 1.75%. Jeder Ihrer angeworbenen "Partner" wirbt wiederum drei Partner für sich selbst an. Pro Monat werden im Schnitt fünf Einheiten vom Produkt verkauft. Sie wollen nun 2500EUR im Monat passiv – also durch indirekte Provisionen – erwirtschaften.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Sie mussten zum Einstieg bei HeHeMan Einheiten des Produkts für 1750EUR kaufen. Diese Einheiten können Sie nur direkt verkaufen. Leider mussten Sie den Kauf über einen Kredit über 6.2% p.a. über 72 Monate finanzieren.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- 8. Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1 Punkt)

¹⁵Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einer Ihrer Freundinnen einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 7 achtseitige Würfel (7d8) zum würfeln in der Hand. Wenn Sie eine 8 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 6 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei achtseitigen Würfeln (2d8) als Schaden oder das Schwert mit einem vierseitigen Würfel plus 7 (1d4+7) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.65, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.75. Sie haben mitgezählt und festgestellt, dass in 45 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega=100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 Punkte)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Retrocheck im TV "Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!", ertönt es und Sie fragen sich, ob Sie nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Sie brauchen das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Helmut und Thorsten das Team der drei Kandidaten.

Name	P(win)	P(outbid)
Helmut	0.2	0.11
Thorsten	0.1	0.043

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre Überbietungswahrscheinlichkeit *P(outbid)* bei 0.05 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt auf der Kirmes und spielen mit einem Typen in einem Tentakelkostüm um das große Geld. Das Glücksrad hat 22 Felder. Sie drehen das Glücksrad zweimal. Auf 8 Feldern gewinnen Sie 3000EUR sonst 2000EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 5000EUR? (1 Punkt)

Nach Ihrem Fiebertraum reisen Sie im Zug nach Köln um bei "Geh aufs Ganze!" mitzuspielen. Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen.

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das "Ziegenproblem"! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

Teil XII.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

130. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

131. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Var_i: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_i: fixer Effekt der j-ten Erstkalbealtergruppe (j: EKA ≤ 25 Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- e_{ijkl} : zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

132. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.