Problema 5

El suelo seco a la frecuencia f=100 MHz se comporta como un mal conductor (dieléctrico de bajas pérdidas) y su permeabilidad magnética relativa es $\mu_r=1$. Para esa frecuencia se sabe que la profundidad de penetración para una onda electromagnética plana es 83.92 m, de modo que el campo magnético de la onda electromagnética está retrasado 0.2061° respecto al campo eléctrico. Para la frecuencia anterior:

- (a) Determinar la permitividad eléctrica relativa, ε_r , y la conductividad, σ , del suelo seco.
- (b) Escribir el vector de onda complejo, en forma binómica y en forma polar, para una onda electromagnética plana que se propaga en el suelo seco, y calcular la relación de amplitudes B_0/E_0 de la onda electromagnética plana.
- (c) Calcular la profundidad a la cual la intensidad de la onda electromagnética vale un 10% de su valor inicial.

$$\tilde{k} = k + i\beta$$

$$\begin{cases}
k = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} + 1 \right]^{1/2} \\
\beta = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} - 1 \right]^{1/2}
\end{cases}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \, C^2 \cdot N \cdot m^{-2}$$
 $\mu_0 = 4\pi \times 10^{-7} \, N \cdot A^{-2}$

(a) Mal condutor
$$\frac{\pi}{\epsilon_{w}} < 1$$
 $k = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} + 1 \right] \simeq w \sqrt{\frac{\epsilon_{w}}{2}} \left[1 + 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \sqrt{2} = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}} - 1 \right] = w \sqrt{\frac{\epsilon_{w}}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\epsilon_{w}}\right)^{2}$

$$k = \sqrt{E\mu} \otimes \rightarrow k^{2} = E\mu \otimes^{2} \rightarrow E = \frac{k^{2}}{\mu W^{2}} = \frac{3.313^{2}}{4\pi \cdot 10^{3}} (2\pi \cdot 10^{6})^{2}$$

$$= 2Z.06 \times 10^{-12} (2\pi \cdot 10^{6})^{2}$$

$$E = \frac{E}{6} = \frac{22.06 \times 10^{-12}}{8.85 \times 10^{-12}} = 2.5$$

$$E = \frac{1}{8} \sqrt{\frac{E}{6}} = \frac{22.06 \times 10^{-12}}{8.85 \times 10^{-12}} = 2.5$$

$$E = \frac{1}{8} \sqrt{\frac{E}{6}} = \frac{22.06 \times 10^{-12}}{8.85 \times 10^{-12}} = 2.5$$

$$E = \frac{1}{8} \sqrt{\frac{E}{6}} = \frac{2}{8.85 \times 10^{-12}} = 2.5$$

$$E = \frac{1}{8} \sqrt{\frac{E}{6}} = \frac{2}{8.33 \times 10^{-12}} = \frac{2}{83.92} \sqrt{\frac{22.06 \times 10^{-12}}{4\pi \cdot 10^{-12}}} = 10^{-12}$$

$$E = \sqrt{\frac{1}{8} \times 10^{-12}} = 2.5$$

$$E = \frac{1}{8} \sqrt{\frac{1}{8}} = \frac{2}{8.33 \times 10^{-12}} = \frac{2}{83.92} \sqrt{\frac{1}{4\pi \cdot 10^{-12}}} = 10^{-12}$$

$$E = \sqrt{\frac{1}{8} \times 10^{-12}} = \frac{3.3130124}{2\pi \cdot 10^{-12}} = \frac{2}{83.92} \times 10^{-12} = \frac{2}{82} \times 10^{-12}$$

$$E = \sqrt{\frac{1}{8} \times 10^{-12}} = \frac{2}{10^{-12}} = \frac{2}{10^{-12}}$$