

ch6: Logistic Regression

(Linear) Discriminant Functions

Discriminant Functions(判别函数)(P9)

• Function that characterize the degree of data belonging to a class, parameterized with a set of parameters θ_i .

$$g_i(x \mid \theta_i)$$

 Model the decision boundaries between classes directly and simultaneously.

Determinizing class boundaries (discriminants) is usually easier than estimating the class densities.

- consider a classifier with *c* classes
- define c discriminant functions $g_i(x)$
- **decision rule**: assign *x* to C_i if $g_i(x) > g_i(x)$, $\forall i \neq j$

Example - Bayes Decision(P10)

1. Linear Discriminant Functions(P11-12)

• A linear discriminant function models a linear decision boundary of two classes.

Advantages:

- simplicity: *O*(*d*) time and space complexity; 可解释性. 最终的输出是属性的加权和
- understandability: final output is a weighted sum of attributes;
- accuracy: quite accurate if some assumptions are satisfied.

Geometry Interpretation: Hyperplane(P13)

The linear function g(x) defifines a **hyperplane** that divides the input space into 2 half-spaces

Perceptron(感知机)

Definition(P16)

• The first, naïve linear classifier. (to introduce in future lectures)

- Train:
- Train: 根据误差评估以系数w estimate the parameters w and wo from data
- - calculate $g(x) = w^T x + w_0$ and choose C_1 if g(x) > 0 or choose C_2 if g(x)<0.

perceptron classifies data based on which side of the plane the new point lies on.

Training(P17)

Let x denote the data input, and $r \in \{1,-1\}$ (means the sign of g(x)) denote the label of target classes.

Input: dataset $D = \{(x^{(1)}, r^{(1)}), (x^{(2)}, r^{(2)}), \dots (x^{(N)}, r^{(N)})\}$ **for** each training instance $(x^{(\ell)}, r^{(\ell)}) \in D$: if $r^{(\ell)}g_i(x^{(\ell)}) \le 0$: // a misclassification occurs $w \leftarrow w + \eta r^{(\ell)} x^{(\ell)} // \text{ move the hyperplane (defined by } w)$ towards the misclassified data point repeat until the entire training set is classified correctly

Limitations of Perceptron(P18)

Hard Decision and Optimization:只有0-1二值,难以优化

Logistic Regression

Linear Classifification with Uncertainty (P19)

• What is the posterior probability of choosing C1 (or C2)?

Let

$$P(C_1 | \mathbf{x}) = y$$
 $P(C_2 | \mathbf{x}) = 1 - y$

Classification rule:

Choose
$$\left\{ \begin{array}{ll} C_1 & \text{if } y > 0.5 \\ C_2 & \text{otherwise} \end{array} \right.$$

Equivalent Rule:

$$\frac{y}{1-y} > 1 \qquad \text{or} \qquad \log \frac{y}{1-y} > 0$$

$$\frac{\log \log y}{\log y} > 0$$

$$\frac{\log \log y}{\log y} > 0$$

$$\frac{\log \log y}{\log y} > 0$$

The Sigmoid Function(P21)

$$\Rightarrow y = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

• The sigmoid function (or logistic function) is the **inverse function** of logit, which directly computes the **posterior** class probability $P(C_1|x)$.

Logistic Regression(P22)

• A classifier that estimates the decision boundary as a logistic function:

$$y = \text{sigmoid } (\mathbf{w}^{T}x + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^{T}x + w_0)]}$$

- Train:
 - estimate the parameters w and w_0 from data
- Test:
 - calculate $y = \text{sigmoid}(w^T x + w_0)$ and choose C_1 if y > 0.5 (y can be interpreted as a posterior probability).

Loss Function(P23)

- For a given input x, the model outputs a probability y of $x \in C_1$. Let $r \in \{0, 1\}$ be the label of the real class $(r = 1: x \in C_1, r = 0: x \in C_2)$:
 - if r = 1: we aim to maximize $\log p(C_1|x) = \log y$, cost is $\log y$
 - if r = 0: we aim to maximize $\log p(C_2|x) = \log (1-y)$, cost is $\log (1-y)$
- Can writhe this succinctly as a cross-entropy loss:

$$\ell(w, w_0 \mid x, r) = -r \log y - (1 - r) \log (1 - y)$$

$$= \mathbb{E}_{x \sim p(x)} \left\{ \log \frac{1}{q(x)} \right\}$$

$$= -\sum_{x \in X} p(x) \log_2 q(x)$$

$$= -\sum_{x \in X} p(x) \log_2 q(x)$$

• Equivalent to maximize the likelihood:

$$r \mid x \sim \text{Bernoulli}(y)$$

$$p(r|x) = y^{\text{r}} (1-y)^{(1-r)} = \begin{cases} y & \text{if } r=1\\ 1-y & \text{if } r=0 \end{cases}$$

Training(P24)

Given: $D = \{(x^{(1)}, r^{(1)}), ..., (x^{(N)}, r^{(N)})\}$

minimize the loss function using gradient descend:

Goal:

$$\min_{\mathbf{w}} L(\mathbf{w})$$

• Iteration:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \frac{\partial L}{\partial w}$$

Optimization – Gradient Descend(P25-27)

比较复杂的数学推导,回头只需要掌握结论

$$\ell(w, w_0 | x, r) = -r \log y - (1-r) \log (1-y)$$

$$L(\mathbf{w}, w_0 | D) = -\sum_{\ell=1}^{N} r^{(\ell)} \log y^{(\ell)} + (1 - r^{(\ell)}) \log (1 - y^{(\ell)})$$

What is
$$\frac{\partial L}{\partial w}$$
?

What is $\frac{\partial L}{\partial w}$?

Hint: if $y = \text{sigmoid}(a) = 1/[1 + \exp(-a)]$, its derivative is $\frac{dy}{da} = y(1-y)$

For each w_i (j = 1, ..., d):

$$\frac{\partial L}{\partial w_j} = -\sum_{\ell} \left(\frac{\partial L}{\partial y^{(\ell)}} \frac{\partial y^{(\ell)}}{\partial a^{(\ell)}} \frac{\partial a^{(\ell)}}{\partial w_j} \right) = -\sum_{\ell} \left(\frac{r^{(\ell)}}{y^{(\ell)}} - \frac{1 - r^{(\ell)}}{1 - y^{(\ell)}} \right) \frac{\partial y^{(\ell)}}{\partial a^{(\ell)}} \frac{\partial a^{(\ell)}}{\partial w_j}$$
Chain rule

For each w_j (j = 1,...,d):

$$\frac{\partial L}{\partial w_j} = -\sum_{\ell} \left(\frac{r^{(\ell)}}{y^{(\ell)}} - \frac{1 - r^{(\ell)}}{1 - y^{(\ell)}} \right) \frac{\partial y^{(\ell)}}{\partial a^{(\ell)}} \frac{\partial a^{(\ell)}}{\partial w_j}$$

Since $a^{(l)} = \mathbf{w}^{\mathrm{T}} x^{(l)} + w_0$, we have $\frac{\partial a^{(\ell)}}{\partial w_i} = x_i^{(\ell)}$

So,

$$\frac{\partial L}{\partial w_j} = -\sum_{\ell} \left(\frac{r^{(\ell)}}{y^{(\ell)}} - \frac{1 - r^{(\ell)}}{1 - y^{(\ell)}} \right) y^{(\ell)} \left(1 - y^{(\ell)} \right) x_j^{(\ell)} = -\sum_{\ell} (r^{(\ell)} - y^{(\ell)}) x_j^{(\ell)}$$

An interesting point

$$\frac{\partial L}{\partial w_{j}} = -\sum_{l} (r^{(l)} - y^{(l)}) x_{j}^{(l)}$$
error
input

The update to each weight is the product of error and input (signal)

Algorithm (P28) (没细看,感觉应该不会考)

Gradient Descend for LR

Input:
$$D = \{(\mathbf{x}^{(l)}, \mathbf{r}^{(l)})\} \ (l = 1:N)$$

for $j = 0, ..., d$
 $\mathbf{w}_j \leftarrow rand \ (-0.01, 0.01)$
repeat
for $j = 0, ..., d$
 $\Delta \mathbf{w}_j \leftarrow 0$
for $l = 1, ..., N$
 $a \leftarrow 0$
for $j = 0, ..., d$
 $a \leftarrow a + \mathbf{w}_j \mathbf{x}_j^{(l)}$
 $y \leftarrow \text{sigmoid } (a)$
 $\Delta \mathbf{w}_j \leftarrow \Delta \mathbf{w}_j + (r^{(l)} - y) \mathbf{x}_j^{(l)}$
for $j = 0, ..., d$
 $\mathbf{w}_j \leftarrow w_j + \eta \Delta w_j$
until convergence

Multiple Classes

• Linear Classififier for Multiclass (P30)

• *K* discriminant functions:

$$g_i(\mathbf{x} \mid \mathbf{w}_i, w_{i0}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

• Linearly separable classes:

$$g_i(\mathbf{x} \mid \mathbf{w}_i, w_{i0}) = \mathbf{w}_i^* \mathbf{x} + w_{i0}$$

early separable classes:
 $g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \begin{cases} > 0 & \text{if } \mathbf{x} \in C_i \\ \leq 0 & \text{otherwise} \end{cases}$

For each class C_i , there exists a hyperplane H_i such that all $\mathbf{x} \in C_i$ lie on the positive side and all other $\mathbf{x} \in C_i, j \neq i$ lie on the negative side.

• decision rule for any test case *x*:

Choose
$$C_i$$
 if $g_i(\mathbf{x}) = \max_{j=1}^K g_j(\mathbf{x})$

• geometrically a linear classifier partitions the feature space into K convex decision regions \mathcal{R}_{i} .

What is the posterior probability of choosing C_i (i=1,...,K)?

- One of the K classes, e.g., C_K , is taken as the reference class.
- Assume that

$$\log \frac{p(\mathbf{x}|C_i)}{p(\mathbf{x}|C_K)} = \mathbf{w}_i^T \mathbf{x} + w_{i0}^0, \ i = 1, \dots, K-1$$

So we have

$$\frac{P(C_i \mid \mathbf{x})}{P(C_K \mid \mathbf{x})} = \frac{p(\mathbf{x} \mid C_i)P(C_i)}{p(\mathbf{x} \mid C_K)P(C_K)}$$

$$= \exp\left(\mathbf{w}_i^T \mathbf{x} + w_{i0}^0\right) \cdot \exp\left(\log\frac{P(C_i)}{P(C_K)}\right)$$

$$= \exp\left(\mathbf{w}_i^T \mathbf{x} + w_{i0}\right) \tag{1}$$

where $w_{i0} = w_{i0}^0 + \log[p(C_i)/P(C_K)]$.

Softmax Regression

Softmax Function (P33-34)

If we want to treat all classes uniformly without having to choose a reference class, we can use the softmax function instead for the posterior class probabilities:

$$y_i = \hat{P}(C_i \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_i^T \mathbf{x} + w_{i0}\right)}{\sum_{j=1}^K \exp\left(\mathbf{w}_j^T \mathbf{x} + w_{j0}\right)}, \ i = 1, \dots, K$$

• In general, the **softmax function** is defined as

$$y_{i} = \text{softmax } (a_{1}, ..., a_{K})_{i} = \frac{e^{a_{i}}}{\sum_{j=1}^{K} e^{a_{j}}}$$

where the inputs $a_i = W_i x + w_{i0}$ are called the **logits**. W_i and w_{i0} are the trainable parameters.

if
$$a_k \gg a_j$$
, $\forall j \neq k$, then $p(\mathcal{C}_k|\mathbf{x}) \approx 1$, $p(\mathcal{C}_j|\mathbf{x}) \approx 0$.

- If one of the a_k 's is much larger than the others, softmax $(a_1, \ldots a_K)$ is a smoothed approximation of argmax. (so really it's more like "soft-argmax".)
 - "max" because it amplifies probability of the largest logit a_i .
 - "soft" because still assigns some probability to smaller a_i .
- The softmax function behaves like taking a maximum, but it has the advantage of being differentiable.

Softmax Regression (P35)

• A classifier that estimates the decision boundaries as **Softmax functions**:

$$y_i = \text{softmax} \left(w_i^T x + w_{i0} \right) = \frac{\exp\left[w_i^T x + w_{i0} \right]}{\sum_{j=1}^K \exp\left[w_j^T x + w_{j0} \right]} \quad (i = 1, ..., K)$$

- Train:
 - estimate the parameters w_i and w_{i0} (i=1:K) from data
- Test:
 - calculate $y_i = \text{softmax}(w_i^T x + w_0)$ and choose C_i if $y_i = \text{max}\{y_{I:K}\}$ (y can be interpreted as a posterior probability).

Loss Function (P36)

$$r = \underbrace{(0, \dots, 0, 1, 0, \dots, 0)}_{\text{entry } k \text{ is } 1}$$

- For a given input x, the model outputs a vector of class probabilities $y = (y_1, ..., y_K)$, and the label of target class is a one-hot vector $\mathbf{r} = (r_1, ..., r_K)$ $(r_i=1:x \in C_i, r_i=0:x \notin C_i)$
 - if r_1 = 1: we aim to maximize $\log p(C_1|x) = \log y_1$, cost is $-\log y_1$ if r_2 = 1: we aim to maximize $\log p(C_2|x) = \log y_2$, cost is $-\log y_2$
- We can write this succinctly as a **cross-entropy** loss function:

$$L_{\text{CE}}(\boldsymbol{y}, \boldsymbol{r}) = -\sum_{i=1}^{K} r_i \log y_i = -\boldsymbol{r}^T (\log \boldsymbol{y})$$

where the log is applied elementwise.

Training & Optimization – Gradient Descend (P37-38)

- Given: $D = \{(x^{(1)}, r^{(1)}), \dots, (x^{(N)}, r^{(N)})\}$
- minimize the loss function using **gradient descend**:
- Goal:

$$\min_{w} L(w)$$

• Iteration:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \frac{\partial L}{\partial w}$$

$$L(\mathbf{w}|\mathbf{x},\mathbf{r}) = -\sum_{i=1}^{K} r_i \log y_i$$

$$L(\boldsymbol{w}|D) = -\sum_{\ell=1}^{N} \left[\sum_{i=1}^{K} r_i^{(\ell)} \log y_i^{(\ell)}\right]$$

What is
$$\frac{\partial L}{\partial w}$$
?

What is $\frac{\partial L}{\partial w}$?

Hint: if $y_i = \exp(a_i)/\Sigma_j \exp(a_j)$, its derivative is $\frac{\partial y}{\partial a} = y_i(\delta_{ij} - y_j)$ where $\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$

For each w_i and w_{i0} (j=1,...,K), given $\Sigma_i r_i^{(\ell)} = 1$:

$$-\frac{\partial L}{\partial w_{j}} = \sum_{l} \sum_{i} \frac{\partial L}{\partial y_{i}^{(\ell)}} \frac{\partial y_{i}^{(\ell)}}{\partial a^{(\ell)}} \frac{\partial a^{(\ell)}}{\partial w_{j}} = \sum_{l} \sum_{i} r_{i}^{(\ell)} (\delta_{ij} - y_{j}^{(l)}) \boldsymbol{x}^{(\ell)}$$
$$= \sum_{l} \left[\sum_{i} r_{i}^{(\ell)} \delta_{ij} - y_{j}^{(\ell)} \sum_{i} r_{i}^{(\ell)} \right] \boldsymbol{x}^{(\ell)} = \sum_{l} (r_{j}^{(\ell)} - y_{j}^{(\ell)}) \boldsymbol{x}^{(\ell)}$$

The Algorithm (P39)

Gradient Descend for Softmax Regression

```
for i = 1, ..., K, for j = 0,...,d,
      w_{ij} \leftarrow \text{rand}(-0.01, 0.01) // \text{initialization}
repeat
      for i = 1,...,K, for j = 0,...,d, \Delta w_{ij} \leftarrow 0
     for l = 1,...,N
             for i = 1,...,K
                    a_i \leftarrow 0
                    for j = 0, ..., d
                          a_{i} \leftarrow a_{i} + w_{ij}x_{j}^{(l)}
             for i = 1, ..., K
                   y_i \leftarrow \exp(a_i)/\Sigma_j \exp(a_j)
             for i = 1,...,K
                    for j = 0, ..., d
                          \Delta w_{ij} \leftarrow \Delta w_{ij} + (r_i^{(l)} - y_i) x_j^{(l)}
     for i = 1,...,K
            for j = 0, ..., d
                       w_{ij} \leftarrow w_{ij} + \boldsymbol{\eta} \Delta w_{ij}
until convergence
```