Colour & I/O Devices

Where we Are

Today's Topics

- How our Eyes see
- Colour Spaces
- Colour Models
- Sensors & Input Devices
- Output Devices

How are eyes see

- We have two types of cells in our eyes
 - Rods to see intensity of light
 - Cone to see different wavelengths (colour)

Cones & Colour

- Three types of cones
- Respond to different wavelengths:

Tri-stimulus Theory

- Mix R, G & B to get any colour desired
- Human can't tell the difference

RGB Coordinates

- Specify colours as a triple (R, G, B)
 - a vector representation of a colour
- We can define a colour space
 - the set of all possible RGB colours
- And we can change coordinate systems!

RGB Colour Cube

RGB Constraints

- We can only use positive R, G, B values
- Some colours can't be matched properly
 - red & green cones overlap in response
 - blue cones are weaker than red & green

XYZ Colour Space

- By the CIE (Commission Internationale d'Eclairage)
- Every visible colour uses positive coords

RGB to XYZ

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 2.36460 & -0.51515 & 0.00520 \\ -0.89653 & 1.42640 & -0.01441 \\ -0.46807 & 0.08875 & 1.00921 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- This is just a matrix transformation
 - we'll worry about that later

CIE Chromaticity Diagram

- Project colour space to plane X + Y + Z = 1
- Pure colours appear along the edge

RGB vs. XYZ

- RGB colour combines positive RGB coords
- Only colours in triangle can be given in RGB

YUV Colour Space

- Early TV was a monochrome signal
 - Measured total intensity Y of light
 - Axis from black to white
- Colour TV is backward compatible
 - Y component is still transmitted
 - Components U,V were added

HSV Colour Space

- The colour wheel
 - H hue
 - S saturation
 - V value
 - (or B brightness)

Choosing Colours

- How do we get "yellow"?
 - start with the rainbow: R O Y G B I V
 - mix R & G to get Y
- Or look at the colour wheel
- Or just play with RGB until we get it right

Additive Colour

- These models assume light is added
 - Colour is the *sum* of components
 - Suitable for combining light sources
- But this isn't the only way of doing it
 - Go back to the physics again

Colour Absorption

- Objects are coloured by pigments
 - that absorb certain colours of light
- E.g. *chlorophyll* in leaves
 - absorbs almost all red / blue light
 - but reflects green light
 - so output light is green

Subtractive Colour

- For pigments, we subtract colour
 - Blue + Yellow = Green
 - blue reflects some green as well
 - so does *yellow*
 - green is only colour reflected by both
- We learned this colour model in school

CMYK model

- Printers use *CMYK*
 - Cyan removes red
 - Magenta removes green
 - Yellow removes blue
 - Black removes everything

Colour Lighting

- A coloured light shines on a coloured surface
- The surface subtracts colour from the light
- Only reflects wavelengths common to both
- This is called *colour modulation*
- We assume only 3 wavelengths possible: RGB

Colour Modulation

- Light source is given as (R, G, B)
- Surface colour is given as (r, g, b)
- Output colour is (R * r, G * g, B * b)

Input Devices

- Generically called sensors
 - Human Eye
 - Film Cameras
 - Digital Cameras / Scanners (CCDs)
 - Sensors for non-visible light

Sensors

- Infrared imaging
- Radar
- Lidar
- X-ray imaging
- Satellite imaging

Theory of Images

- Back to Alberti's Window:
- Measure light passing through image plane
 - At a single point or for entire square?

Ideal Image

- We want to measure light everywhere
 - for each point on retina
 - parameterize retina with x, y
- So light *intensity* (brightness) is a function
 - \bullet I(x,y)
- Intensity is a *continuous* function
- If the light is capture all around an individual point, we call that a light field

Detecting Light

- Photons are energetic
 - they carry packets (quanta) of energy
 - transferred to something else on impact
- Some chemicals are *light-sensitive*
 - good at absorbing light
 - basis of all sensors

Sensor Construction

- Sensor cells have light-sensitive molecules
 - collect energy from photons
 - many molecules / cell
 - measure total intensity over cell area
 - the *integral* of the intensity over the cell

Film Photography

- Light-sensitive silver iodide crystals
 - Uniformly small in size (i.e. cell size)
 - Turn dark when hit by photons
 - a negative image
 - Treated (developed) with chemicals
 - to *fix* the image (*prevent* more changes)

Second picture reverses negative image

Digital Photography

- Most digital cameras use CCDs:
 - charge-coupled devices
 - one capacitor per pixel stores energy
 - releases it all at once when triggered
 - transferred to standard memory

Infrared Photography

- *Infrared* is just light we can't see
 - our eyes have the wrong chemicals
 - can build sensors with the right ones
- Same is true for *microwave*, *ultraviolet*, X-rays, &c.

Radar / Lidar

- Still the same idea:
 - radar uses microwaves
 - lidar uses visible light
- But they send the light out first
 - i.e. a big spotlight + a sensor

Multi-Spectral Sensors

- Measure different wavelengths separately
 - the eye (R, G, B)
 - cameras (R, G, B tinted silver iodide)
 - TV cameras (R, G, B phosphors)
 - different microwave wavelengths (radar)

Output Devices

- Fall into three basic categories:
 - Reflective, subtractive colour (printing)
 - Emissive, additive colour (CRTs, LEDs)
 - Polarizing, additive colour (LCDs)

Colour Printing

- The *subtractive* colour model
 - add pigments to white paper
 - subtract light from reflection
 - capable of very high resolution
 - may require many pigments

Colour TV

- A TV is a CRT (cathode-ray tube)
- Electron gun spits out electrons
- Electrons hit inside of front glass
- Electron energy absorbed by coloured phosphors
- Phosphors re-emit light slowly
 - hence the way TVs fade out when turned off

Raster Scan

- Electron beam is deflected in x, y
 - beam *scans* from left to right
 - then returns to left, but further down
 - returns to top when done
 - phosphors glow unevenly
 - which is why 60 Hz+ is necessary

• (raster is from Latin word for rake)

LCD Panels

- Liquid Crystal Diode panels
 - Backlight is *polarized* light
 - Crystals in front *polarize* with electricity
 - block the light from passing through
 - we control *how much* light electronically
 - No raster scan needed

OLED Displays

- Most Common in new phones, Organic Light Emitted Diodes
- Only possible with advanced in LED technology,
- Blue diode: 2014 Nobel Prize
- OLED are cheaper to manufacture than typical LED's.
- Directly produce light as can be seen in this image

Nexus One smartphone using the RGBG system of the PenTile matrix family (Image from Wikipedia)

Efficiency per Watt (why LED are used)

Image taken from Nobel Prize 2014 booklet

Colour Calibration

- The *gamut* of a device is the set of colours it can display
- Different devices have different gamuts
- Similarly, different sensors are sensitive to different frequencies
- Must *convert* colours between devices
- Requires calibrating colour of a device

