DS2.P1 Harahortemarkis Oy 2. 2004 P9 915 GW (a) het h: D -> D be cts for domeni D. Define his (4) = What). Clearly if Ph(x) = 2 , ie 26 a prefixed pt., then $\bot \equiv x$. Assuming, inductively, best h'(1) = 2e 写 (h+1(L) E h(n) E x by monotomats of 4. , So h n+1 (+) = x. By idudos, h'(1) En lo fix(4) Ex.

(b) Let $f: D \times E \longrightarrow D$ and $g: D \times E \longrightarrow E$ be

As. for domains D, E. Then $f: g > : D \times E \longrightarrow D \times E$ is often and

Any a least prefixed pt. (do, eo)

A = fix ($\lambda d.f(d,e)$) where $e = fix (\lambda d.f(d,e))$.

(i) $\langle f,g \rangle$ $(\hat{a},\hat{e}) = (f(\hat{a},\hat{e}), g(\hat{a},\hat{e}))$ But $\hat{d} = f(\hat{d},\hat{e})$ divertly from the left of \hat{d} as a least fix $\hat{\mu}$ t. of λd . $f(d,\hat{e})$.

Ad $\hat{e} = g(\Re fix(\lambda d. f(d, \hat{e})), \hat{e})$ des directly from its defin.

· g(景d, é).

Have $\langle f_{19} \rangle (\hat{a}, \hat{c}) = (\hat{a}, \hat{c})$ and $(d_{0}, e_{0}) \equiv (\hat{a}, \hat{e})$.

(ii) We require (â,ê) = (do,eo)

By depi. è is least element s.t.

ê = g(fix (2d. f(d, é)), ê).

We mon g (fix (rd. fld, e.o.)), e.o.) = eo 6 = eo.

Let d = hix (dd. f(d,eo)). Then

as the f(do, eo) =do, m fix (dd. f(d, eo)) = ds.
buy the last prefixed H of d to f(d, eo).

Hence $g(fix(Ad.f(d,e_o)),e_o) = g(do,e_o) = e_o$ So $\hat{e} = e_o$ because $\hat{e} = c_o$ the least prefixely of $e \mapsto g(fix(Ad.f(d,e)),e)$.

Now $f(d_0, \hat{e}) \subseteq f(d_0, e_0) = d_0$ so d_0 is a prefixed $p \neq d$ d +) $f(d, \hat{e})$ and hence $\hat{d} \subseteq d_0$.