1 Explaining the Concept of Score Matching

1.1 Definition of the Score Function

For a given data probability density function p(x), its **Score Function** S(x) is defined as the gradient of the log-probability density function with respect to the data x.

$$S(x) \equiv \nabla_x \log p(x)$$

This function S(x) is a vector field. At any point x in the data space, it points in the direction of the **steepest ascent** for the probability density p(x).

1.2 Explicit Score Matching (ESM)

The goal of "Score Matching" is to train a parameterized model $S(x;\theta)$ (e.g., a neural network) to approximate the true score function S(x).

The most intuitive method is to minimize the L2 distance between them. This is known as **Explicit Score Matching (ESM)**, and its loss function L_{ESM} is defined as:

$$L_{ESM}(\theta) = \mathbb{E}_{x \sim p(x)} \left[\|S(x; \theta) - \nabla_x \log p(x)\|_2^2 \right]$$

The Core Problem: This loss function is intractable (impossible to compute). This is because we only have data samples from p(x) and do not know the true score $\nabla_x \log p(x)$.

1.3 Denoising Score Matching (DSM)

Denoising Score Matching (DSM) was proposed to solve the problem of ESM. Its core idea is: instead of matching the score of the original data x_0 , it aims to match the score of **perturbed** (noisy) data x.

1. **Define the Perturbation Process:** We first define a perturbation process $p_{\sigma}(x|x_0)$, typically Gaussian noise. Let $x_0 \sim p_0(x_0)$ be the original data. The perturbed data x is:

$$x = x_0 + \epsilon_{\sigma}$$
, where $\epsilon_{\sigma} \sim \mathcal{N}(0, \sigma^2 I)$

This x is drawn from the "perturbed data distribution" $p_{\sigma}(x) = \int p_{\sigma}(x|x_0)p_0(x_0)dx_0$.

2. The DSM Objective Function: The goal of DSM is to train a model $S_{\sigma}(x;\theta)$ to match the conditional score of this perturbed data, $\nabla_x \log p_{\sigma}(x|x_0)$. Its loss function L_{DSM} is defined as:

$$L_{DSM}(\theta) = \mathbb{E}_{x_0 \sim p_0(x_0)} \mathbb{E}_{x \sim p_\sigma(x|x_0)} \left[\left\| S_\sigma(x; \theta) - \nabla_x \log p_\sigma(x|x_0) \right\|_2^2 \right]$$

3. The Feasibility of DSM (The Key Insight): This L_{DSM} is tractable! This is because the perturbation process $p_{\sigma}(x|x_0)$ is a Gaussian distribution defined by us:

$$p_{\sigma}(x|x_0) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2\sigma^2} \|x - x_0\|_2^2\right)$$

We can easily compute its score (the "ground truth"):

$$\nabla_x \log p_{\sigma}(x|x_0) = \nabla_x \left(-\frac{1}{2\sigma^2} ||x - x_0||_2^2 + \text{const} \right) = -\frac{1}{\sigma^2} (x - x_0)$$

4. The Final, Tractable Loss Function: Plugging this known "ground truth" score into L_{DSM} , we get:

$$L_{DSM}(\theta) = \mathbb{E}_{x_0 \sim p_0(x_0)} \mathbb{E}_{x \sim p_\sigma(x|x_0)} \left[\left\| S_\sigma(x; \theta) + \frac{x - x_0}{\sigma^2} \right\|_2^2 \right]$$

Since $x = x_0 + \epsilon_{\sigma}$, we have $x - x_0 = \epsilon_{\sigma}$. The loss can be rewritten as:

$$L_{DSM}(\theta) = \mathbb{E}_{x_0 \sim p_0(x_0)} \mathbb{E}_{\epsilon_{\sigma} \sim \mathcal{N}(0, \sigma^2 I)} \left[\left\| S_{\sigma}(x_0 + \epsilon_{\sigma}; \theta) + \frac{\epsilon_{\sigma}}{\sigma^2} \right\|_2^2 \right]$$

Important Conclusion: Training the DSM model S_{σ} to match the score is mathematically equivalent to (via re-parameterization, e.g., $S_{\sigma}(x;\theta) \approx -\frac{\epsilon_{\theta}(x;\theta)}{\sigma}$) training a denoising network ϵ_{θ} to **predict the added noise** ϵ .

2 Application of Score Matching in Score-Based (Diffusion) Generative Models

Score-based generative models (or diffusion models) use Score Matching to learn how to progressively restore real data from pure noise.

2.1 Forward Process (Diffusion)

This is a fixed, progressive **noising** process. From t = 0 to t = T, we add varying levels of noise σ_t to the original data x_0 , obtaining a sequence of noisy samples x_t .

$$x_0 \to x_1 \to \cdots \to x_t \to \cdots \to x_T$$

The distribution of x_t is $p(x_t)$, and the distribution of x_T , $p(x_T)$, approaches a known prior distribution, such as pure noise $\mathcal{N}(0, I)$.

2.2 Reverse Process (Generation)

This is the process the model must **learn**. We want to start from pure noise $x_T \sim \mathcal{N}(0, I)$ and progressively **denoise** it, reversing the forward process to eventually generate a real data sample x_0 .

$$x_T \to x_{T-1} \to \cdots \to x_t \to \cdots \to x_0$$

2.3 The Core Application of Score Matching

The Key Question: In the reverse process, when we are at x_t , how do we know the "correct denoising direction" to get x_{t-1} ?

The Answer: Mathematical theory (e.g., the reverse of a Stochastic Differential Equation) shows that this reverse step depends entirely on knowing the score function of the data distribution at time t, i.e., $\nabla_{x_t} \log p(x_t)$.

This is precisely where Score Matching is applied:

- 1. Training Objective: Our goal is to train a single, time-dependent neural network $S_{\theta}(x_t, t)$ that can estimate the true score $\nabla_{x_t} \log p(x_t)$ at any noise level t.
- 2. Training Method (using DSM): Learning $\nabla_{x_t} \log p(x_t)$ directly is hard. However, $p(x_t)$ is just the result of noising $p(x_0)$ with the process $p(x_t|x_0)$. This perfectly fits the DSM framework.

Instead of matching $\nabla_{x_t} \log p(x_t)$, we match the **known conditional score** $\nabla_{x_t} \log p(x_t|x_0)$.

The total loss function is the expectation of the L_{DSM} loss over all timesteps t:

$$L(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,T)} \left[L_{DSM}^{(t)}(\theta) \right]$$

Where $L_{DSM}^{(t)}$ is the DSM loss at time t (using the corresponding noise level σ_t):

$$L_{DSM}^{(t)}(\theta) = \mathbb{E}_{x_0, x_t} \left[\| S_{\theta}(x_t, t) - \nabla_{x_t} \log p(x_t | x_0) \|_2^2 \right]$$

3. Simplification to Noise Prediction: As shown before, $\nabla_{x_t} \log p(x_t|x_0)$ is known (e.g., in the DDPM framework, it is $-\frac{\epsilon}{\sigma_t}$, where ϵ is the added standard Gaussian noise).

Therefore, in practice, the score model S_{θ} is often re-parameterized as a "noise predictor" $\epsilon_{\theta}(x_t, t)$. Training S_{θ} to match the score becomes equivalent to training ϵ_{θ} to match the noise ϵ .

The loss function becomes the well-known form:

$$L(\theta) = \mathbb{E}_{t,x_0,\epsilon} \left[\|\epsilon_{\theta}(x_t,t) - \epsilon\|_2^2 \right]$$
 where $x_t = \alpha_t x_0 + \sigma_t \epsilon$

2.4 Generation (Sampling)

Once the model $S_{\theta}(x_t, t)$ (or $\epsilon_{\theta}(x_t, t)$) is trained:

- 1. We start with a sample from the prior distribution, $x_T \sim \mathcal{N}(0, I)$.
- 2. We iterate from t = T down to t = 1.
- 3. At each step t, we feed x_t and t into the model to get an estimate of the score $\hat{S} = S_{\theta}(x_t, t)$.
- 4. We use this \hat{S} as a "denoising guide" in the reverse process update rule (e.g., an SDE solver or the DDPM sampling step) to calculate x_{t-1} .
- 5. The final x_0 is a new sample generated by the model.

The content is written with reference to chatgpt, and chatgpt is requested to modify the format.

3 Questions

1. Why is "predicting noise" equivalent to "matching the score"?

In The class notes show that the L_{DSM} loss can be rewritten. Intuitively, one model is $S_{\sigma}(x;\theta)$ (the score model), and the other target is ϵ (the noise). Why did practice (e.g., DDPM) converge on training a model $\epsilon_{\theta}(x_t,t)$ to "predict the noise ϵ " instead of directly "matching the score $\nabla_x \log p(x|x_0)$ "? Is there a concrete difference in training stability or performance between these two approaches?