专知-基于知识图谱的内容分发

方全 副研究员

中国科学院自动化所 模式识别国家重点实验室 2018-01-30

提纲

- 1 专知介绍
- 2 专知技术
- 3 专知应用

大数据时代-"专"与"知"的问题

- 移动互联大数据时代,我们随时随地生产和消费内容的同时,伴随两大问题:
 - ✓ 问题-"专":内容质量良莠不齐,专业可信度缺失
 - ✓ 问题-"<mark>知</mark>": 网络内容碎片化,不成知识体系,不利于用户 学习和认知

专知-基于知识图谱的内容分发

- 专知,连接人与知识,提供专业可信的知识分发服务:
 - ✓利用以知识图谱为核心技术解决"专"与"知"的问题,进行产品化,帮助用户又好又快找到所需知识
 - ✓ 专业可信的内容分发技术体系

专知技术体系架构

■ 内容生产、内容处理、内容分发

专知-内容生产

- 实时全网定点内容采集系统
 - ✓ 基于专知团队核心成员自主开发的开源爬虫WebColloctor 框架实现
 - ✓ 采集站点源
 - · UGC内容: 微信公众号、知乎、简书、微博、Twitter等
 - ・专业内容: arXiv、DBLP等论文

专知-内容处理

- 解决内容的"知"与"专"的问题,得到专业可信的知识
 - ✓ 基于知识图谱技术构建特定领域知识内容库,其主体架构 是主题知识树,涵盖完整的特定领域知识体系结构
 - ✓ 以知识计算为核心技术算法框架,进行内容理解、用户建模和交互计算的研究与技术应用

专知-主题知识树

- 特定领域的完整知识体系结构
 - ✓ 每个主题的描述、图标、父子上下位关系等信息
 - ✓机器算法与人工审核协作进行

专知-主题知识树

- 机器算法自动构建知识库体系结构
 - ✓ 自动从用户产生的网络标签数据自动构建知识库体系结构 算法框架,概念自动发现、概念关系提取、概念层次结构 构建,有效辅助人工构建高质量可扩展的知识库

Fang et al. IEEE Trans. MM 2016

专知-知识计算

■ 专知内容处理核心算法框架

专知知识计算-用户内容特征表示

- 对内容和用户进行特征表示,支撑内容理解和用户 建模
 - ✓ 符号表示法: 基于字符串共现的稀疏表示
 - ✓ 分布式向量表示: 低维稠密实值向量表示

Hu et al. Submitted to ICME 2018

专知知识计算-内容"知"的处理

- 内容到知识: 结构化、体系化、链路化来理解分析组织内容,形成知识
 - ✓ 结构化: 文档内容语义结构性理解,产出文档主题、事件等结构性信息
 - ✔ 体系化:对内容进行语义层次化体系性组织,知识体系化
 - ✓ 链路化:对内容进行语义有序性组织,构成知识链路

专知知识计算-内容"专"的处理

- 内容知识专业可信性的评估
 - ✓ 专业性: 在特定领域下内容知识的专业权威度
 - ✓ 可信性: 内容知识的真实可信度
- 人工审核与机器算法学习协作完成
 - ✓ 通过引入人工专家的交互反馈信息,采用机器学习算法构建专业质量评估模型,来自动筛选专业可信的内容

专知-专业可信的知识分发

主题知识库

主题知识树

主题知识链路

主题知识荟萃

主题动态内容

搜索发现

精准搜索 发现更多

个人用户

企业用户

主题链路

系统性知识

精品

专业 可信

主题定制

个性化定制资讯

媒体服务

个人用户

交互评论

社会交互 可信评论

收藏 评论

点赞

创作分发

专业创作高效分发

个人用户 合作团体 AI机构

提纲

- 1 专知介绍
- 2 专知技术
- 3 专知应用

军事资讯内容分发-专知http://military.zhuanzhi.ai

■ 专知

- ✓ 主题知识树:构建了上千个主题
- ✓ 内容生产:基于WebCollector构建了全网关于军事的站点 做了精选采集
- ✓ 内容处理: 对军事内容进行结构化和专业质量评估
- ✓ 内容分发:提供定制推荐、搜索发现的功能

军事资讯内容分发-专知http://military.zhuanzhi.ai

■ 专知,专业可信的人工智能知识分发服务

- ✓ 针对AI知识资源分布不均衡状况和各行业AI人才需求,聚 焦在人工智能领域,为人工智能从业者提供专业可信的AI 知识分发服务
- ✓ 人工智能主题知识树:构建了包含5千多个人工智能主题 的知识库,涵盖人工智能、大数据分析、系统架构、编程 语言等类目
- ✓ 内容生产:基于WebCollector构建了实时定点精选采集内 容生产系统,采集微信、微博、垂直站点、Arxiv等网站
- ✓ 内容处理:对AI内容进行结构化和专业质量评估
- ✓ 内容分发: 为用户提供定制推荐、搜索发现、链路学习的 服务

■ 专知,专业可信的人工智能知识分发服务

- ✓ 针对AI知识资源分布不均衡状况和各行业AI人才需求,聚 焦在人工智能领域,为人工智能从业者提供专业可信的AI 知识分发服务
- ✓ 人工智能主题知识树:构建了包含5千多个人工智能主题 的知识库,涵盖人工智能、大数据分析、系统架构、编程 语言等类目
- ✓ 内容生产:基于WebCollector构建了实时定点精选采集内 容生产系统,采集微信、微博、垂直站点、Arxiv等网站
- ✓ 内容处理:对AI内容进行结构化和专业质量评估
- ✓ 内容分发: 为用户提供定制推荐、搜索发现、链路学习的 服务

■ 专知,专业可信的人工智能知识分发服务

产品于2017年9月15号上线!

■ 截止2018年1月30日

专知平台

专知平台 使用用户数 网页日访问量级

5400+ 2K+

专知微信 专知微信 公众号用户数 文章日阅读量级

19000+

■ 专知使用

■ 专知公众号-第一时间获取人工智能资讯知识

< 返回 专知

专知,一个新的认知方式!

2017-09-16 Quan 专知

时光荏苒, 岁月如梭, 转瞬间我从阿里回到所 里(中科院自动化所)也快一年了。选择回 来,目的很简单,就是选择一种创业方式,践 行下自己思考的一些想法, 做点事情。万事开 头难,在实验室的支持下,我们从0开始到0.1 再到0.2, 一路建团队、搭环境、做产品。时至 今日, 专知基本版正式Ready, 我们特别地向大 家介绍下, 专知是什么, 希望大家喜欢。

■ 中国移动 令 21:34 @ 7 0 \$ 41% I < 仮回 专知 •••

【重磅】2018年IEEE Fellow出 炉! 17位中国大陆学者当选、香 港台湾共15人新当选!

原创 2017-11-22 专知内容组 专知

击上方"专知"关注获取专业AI知识!

日前、全球最大的非营利专业技术学会IEEE(国际

く返回 专知

构建AI知识体系-专知主题知识树 简介

2017-09-17 Quan 专知

【导读】主题知识树是专知的核心结构之一,为 构建结构化、体系化、链路化的知识内容库提供 基础设施, 以及进一步支持个性化主题定制、主 题链路知识学习、智能搜索、探索发现等智能应 用提供保障。今天为大家简单介绍主题知识树的 定义、构建方法和应用,希望大家喜欢,也请多

く返回 专知 【教程】专知-PvTorch手把手深 度学习教程系列完整版

原创 2017-10-11 Huaiwen et. 专知

点击上方"专知"关注获取更多AI知识!

【导读】主题链路知识是我们专知的核心功能之 一, 为用户提供AI领域系统性的知识学习服务, 一 站式学习人工智能的知识,包含人工智能(机器 学习、自然语言处理、计算机视觉等)、大数 据、编程语言、系统架构。使用请访问专知 进行 主题搜索查看 - 桌面电脑访问www.zhuanzhi.ai,

く返回 专知

【学术盛宴】多媒体顶级会议 ACM Multimedia 2017 China Pre-conference论文宣讲研讨会

原创 2017-10-16 SiGMM China 专知

点击上方"专知"关注获取更多AI知识!

【导读】第25届ACM国际多媒体会议(ACM International Conference on Multimedia. 简称

专知 く返回

【ICCV2017视觉盛宴概况】何 恺明博士包揽最佳论文和最佳学 生论文奖! Facebook成大赢家!

原创 2017-10-25 专知内容组 专知

点击上方"专知"关注获取更多AI知识!

く返回 专知

【专知荟萃01】深度学习知识资 料大全集(入门/进阶/论文/代码/ 数据/综述/领域专家等) (附pdf 下载)

原创 2017-11-01 专知内容组 专知

点击上方"专知"关注获取更多AI知识!

【导读】主题荟萃知识是专知的核心功能之一,

······ 中国移动 🗢 く返回 专知

【专知荟萃】人工智能领域26个 主题知识资料全集(入门/进阶/ 论文/综述/视频/专家等)

2017-12-16 专知内容组 专知

点击上方"专知"关注获取专业AI知识!

【导读】主题荟萃知识是专知的核心功能之一, 为 用户提供AI领域系统性的知识学习服务。主题荟萃 为用户提供全网关于该主题的精华 (Awesome) 知

■ 定制主题,获取最新资讯知识

■ 定制主题,获取最新资讯知识

■ 定制主题,获取最新资讯知识

■ 定制主题,获取最新论文

■ 主题链路,学习系统性知识

■ 搜索发现,精准获取AI知识资料

谢谢各位专家和领导!

www.zhuanzhi.ai