PVS in Practice

César A. Muñoz

NASA Langley Research Center Cesar.A.Munoz@nasa.gov

PVS Tutorial 2017

The World According to PVS

All Models are Wrong

All models are wrong; the practical question is how wrong do they have to be to not be useful.

G. Box and N. Draper, Empirical Model Building and Response Surfaces, 1987.

Prototype Verification System

- ► PVS (http://pvs.csl.sri.com) is developed by SRI International (http://www.sri.com).¹
- Strongly typed specification language based on classical higher-order logic.
- ► Theorem prover with built-in decision procedures.

¹Current version is 6.0.

Specification Language

- Classical logic: "To be or not to be" trivially holds!
- ▶ Higher-order logic: Quantification over sets and functions.
- Strongly typed language: All declarations have to be explicitly typed.
 - Predicate subtyping.
 - Dependent records.
 - Abstract Data Types.
 - Co-inductive types.

PVS's Type System is Undecidable

```
The following PVS specification
```

```
FermatNumber : TYPE =
    {n:above(2) \mid EXISTS (a,b,c:nat): a^n+b^n = c^n}
  flt : FermatNumber
generates the following Type Correctness Condition (TCC)
  FermatNumber_TCC1: OBLIGATION
   flt_TCC1: OBLIGATION EXISTS (x: FermatNumber): TRUE;
```

Mechanical Theorem Prover

- ► Interactive and extensible theorem prover.
- Decision procedures for several theories: propositional logic, linear arithmetic, finite state machines, equality with uninterpreted functions, etc.
- Soundness-preserving strategy language.
- Semi-decision procedures for non-linear arithmetic.

PVS Standard Contributions

- ► NASA PVS Library: Large collection of PVS developments.
- ProofLite: Batch proving and proof scripting.
- PVSio: Animation and rapid prototyping.
- Manip and Field: Algebraic manipulation of real-valued expressions.
- Sturm and Tarski: Decision procedures for single-variable polynomials.
- Interval, Affine Arithmetic and Bernstein Polynomials: Semi-decision procedures for real-valued expressions.
- MetiTarski: External oracle for real-valued expressions.
- ► PRECiSA: Certifier of round-off floating point errors.
- Hypatheon: Database utility for PVS developments.

Traffic Alert and Collision Avoidance System (TCAS)*

- Family of of airborne systems designed to reduce the risk of mid-air collisions between cooperative aircraft.
- Mandated in the US for aircraft with greater than 30 seats or a maximum takeoff weight greater than 33,000 pounds.
- Current version, TCAS II V7.1, provides:
 - ► Traffic Alerts (TAs).
 - (Vertical) Resolution Advisories (RAs).

^{*}Notional picture. Source of graphics: Wikipedia.

TCAS Alerting Logic

- ► TCAS logic uses 3-dimensional tracking of aircraft position.
- ► TCAS logic assumes linear trajectories that are extrapolation of current states.
- Parameters of extrapolated trajectories are compared to time and distance thresholds, whose values depend on sensitivity level.

TCAS Time and Distance TA Thresholds

Ownship Altitude	SL	TAU	DMOD	ZTHR
(feet)		(sec)	(nmi)	(feet)
Below 1000	2	20	0.30	850
1000 - 2350	3	25	0.33	850
2350 - 5000	4	30	0.48	850
5000 -10000	5	40	0.75	850
10000 - 20000	6	45	1.0	850
20000 - 42000	7	48	1.3	850
Above 42000	8	48	1.3	1200

Range, Closure Rate, and au

- ▶ Range (r): Horizontal distance between 2 aircraft.
- ▶ Closure rate $(-\dot{r})$: Negative of range rate.
- ▶ Tau (τ) : Range over closure rate

$$au \equiv -rac{r}{\dot{r}}.$$

▶ Tau's little secret: It is NOT the time of closest approach.

The Story of Tau (vs. TCPA)

Deconstructing TCAS 2D Core Alerting Logic

A Traffic Alert (TA) is issued when¹

- ▶ The value of τ is below TAU threshold for appropriate sensitivity level or
- ► The distance *r* is below DMOD threshold for appropriate sensitivity level.

¹This is a *simplified* version of the logic!

Aircraft State Information

Horizontal Plane

- ightharpoonup
 vert
 vert
- ightharpoonup
 igh
- $ightharpoonup \mathbf{s}_o(t) = \mathbf{s}_o + t\mathbf{v}_o$: Ownship's position at time t.
- ▶ $\mathbf{s}_i(t) = \mathbf{s}_i + t\mathbf{v}_i$: Intruder's position at time t.

Reconstructing TCAS 2D Detection Logic

Assuming accurate vector information

Let
$$\mathbf{s} = \mathbf{s}_o - \mathbf{s}_i$$
 and $\mathbf{v} = \mathbf{v}_o - \mathbf{v}_i$, $r(\mathbf{s}) \equiv \|\mathbf{s}\|$, $\dot{r}(\mathbf{s}, \mathbf{v}) \equiv \frac{\mathbf{s} \cdot \mathbf{v}}{\|\mathbf{s}\|}$, $\tau(\mathbf{s}, \mathbf{v}) \equiv -\frac{\|\mathbf{s}\|^2}{\mathbf{s} \cdot \mathbf{v}}$, $t_{\text{cpa}}(\mathbf{s}, \mathbf{v}) \equiv -\frac{\mathbf{s} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$ converging? $(\mathbf{s}, \mathbf{v}) \equiv \mathbf{s} \cdot \mathbf{v} < 0$, $\text{TCAS_2D?}(\mathbf{s}, \mathbf{v}) \equiv \begin{cases} \tau(\mathbf{s}, \mathbf{v}) < \text{TAU}_{\ell} & \text{if converging?}(\mathbf{s}, \mathbf{v}), \\ r(\mathbf{s}) < \text{DMOD}_{\ell} & \text{otherwise.} \end{cases}$

(TAU $_\ell$ and DMOD $_\ell$ are the thresholds for sensitivity level ℓ)

TCAS 2D Traffic Alerting Logic in PVS

A Simple Theory of Units

Units : THEORY

BEGIN

```
ft : MACRO posreal = 0.3048 % 1 foot in meters
```

nmi : MACRO posreal = 1852 % 1 nautical mile in meters

min : MACRO posreal = 60 % 1 minute in seconds hour : MACRO posreal = 3600 % 1 hour in seconds

knt : MACRO posreal = nmi/hour % 1 knot in m/s

fpm : MACRO posreal = ft/min % 1 foot per minute in m/s

END Units

TCAS 2D Traffic Alerting Logic in PVS

A Simple Theory of Units

Units : THEORY

BEGIN

```
ft : MACRO posreal = 0.3048 % 1 foot in meters
```

nmi : MACRO posreal = 1852 % 1 nautical mile in meters

knt : MACRO posreal = nmi/hour % 1 knot in m/s

fpm : MACRO posreal = ft/min % 1 foot per minute in m/s

END Units

TCAS 2D Traffic Alerting Logic in PVS

A Simple Theory of Units

Units : THEORY

BEGIN

```
ft : MACRO posreal = 0.3048 % 1 foot in meters
```

nmi : MACRO posreal = 1852 % 1 nautical mile in meters

knt : MACRO posreal = nmi/hour % 1 knot in m/s

fpm : MACRO posreal = ft/min % 1 foot per minute in m/s

END Units

```
TCAS_tables : THEORY
BEGIN
  TMPORTING Units
  SensitivityLevel : TYPE = subrange(2,8)
  sensitivity_level(alt:nnreal) : SensitivityLevel =
    TABLE
          0*ft <= alt AND alt < 1000*ft | 2 ||
        1000*ft <= alt AND alt < 2350*ft | 3 ||
        2350*ft <= alt AND alt < 5000*ft | 4 ||
       5000*ft <= alt AND alt < 10000*ft | 5 ||
     | 10000*ft <= alt AND alt < 20000*ft | 6 ||
     | 20000*ft <= alt AND alt < 42000*ft | 7 ||
     | ELSE
                                          | 8 ||
    ENDTABLE
```

18/37

```
TCAS_tables : THEORY
BEGIN
  TMPORTING Units
  SensitivityLevel : TYPE = subrange(2,8)
  sensitivity_level(alt:nnreal) : SensitivityLevel =
    TABLE
          0*ft <= alt AND alt < 1000*ft | 2 ||
        1000*ft <= alt AND alt < 2350*ft | 3 ||
        2350*ft <= alt AND alt < 5000*ft | 4 ||
        5000*ft <= alt AND alt < 10000*ft | 5 ||
      10000*ft <= alt AND alt < 20000*ft | 6 ||
     | 20000*ft <= alt AND alt < 42000*ft | 7 ||
     I ELSE
    ENDTABLE
```

```
TCAS_tables : THEORY
BEGIN
  TMPORTING Units
  SensitivityLevel : TYPE = subrange(2,8)
  sensitivity_level(alt:nnreal) : SensitivityLevel =
   TABLE
      0*ft <= alt AND alt < 1000*ft | 2 ||
       1000*ft <= alt AND alt < 2350*ft | 3 ||
      2350*ft <= alt AND alt < 5000*ft | 4 ||
       5000*ft <= alt AND alt < 10000*ft | 5 ||
     | 10000*ft <= alt AND alt < 20000*ft | 6 ||
     | 20000*ft <= alt AND alt < 42000*ft | 7 ||
     l ELSE
    ENDTABLE
```

```
TCAS_tables : THEORY
BEGIN
 TMPORTING Units
 SensitivityLevel : TYPE = subrange(2,8)
 sensitivity_level(alt:nnreal) : SensitivityLevel =
   TABLE
     0*ft <= alt AND alt < 1000*ft | 2 ||
      1000*ft <= alt AND alt < 2350*ft | 3 ||
     2350*ft <= alt AND alt < 5000*ft | 4 ||
    | 5000*ft <= alt AND alt < 10000*ft | 5 ||
    | 10000*ft <= alt AND alt < 20000*ft | 6 ||
    | 20000*ft <= alt AND alt < 42000*ft | 7 ||
   ENDTABLE
```

```
TCAS_tables : THEORY
BEGIN
 IMPORTING Units
 SensitivityLevel : TYPE = subrange(2,8)
 sensitivity_level(alt:nnreal) : SensitivityLevel =
  TABLE
  V+----++
       0*ft \le alt AND alt \le 1000*ft | 2 | 1
  %+----++
     1000*ft <= alt AND alt < 2350*ft | 3 | |
  %+----++
     2350*ft <= alt AND alt < 5000*ft | 4 ||
     5000*ft <= alt AND alt < 10000*ft | 5 ||
   | 10000*ft <= alt AND alt < 20000*ft | 6 ||
  %+----++
   | 20000*ft <= alt AND alt < 42000*ft | 7 ||
  %+----++
   LELSE
  %+----++
  ENDTABLE
```

TCAS Tables: TAU, DMOD, and ZTHR

```
ThresholdSymbol : TYPE = { TAU, DMOD, ZTHR }
TA_thr(sl:SensitivityLevel,thr:ThresholdSymbol) : nnreal =
  TABLE sl . thr
           |[ TAU | DMOD | ZTHR ]| | |
       | 2 | 20 | 0.30*nmi | 850*ft ||
       | 3 | 25 | 0.33*nmi | 850*ft ||
       | 4 | 30 | 0.48*nmi | 850*ft ||
       | 5 | 40 | 0.75*nmi | 850*ft ||
       | 6 | 45 | 1.0*nmi | 850*ft ||
       | 7 | 48 | 1.3*nmi | 850*ft ||
       | 8 | 48 | 1.3*nmi | 1200*ft ||
  ENDTABLE
```

TCAS Tables: TAU, DMOD, and ZTHR

```
ThresholdSymbol : TYPE = { TAU, DMOD, ZTHR }
TA_thr(sl:SensitivityLevel,thr:ThresholdSymbol) : nnreal =
  TABLE sl , thr
          |[ TAU | DMOD | ZTHR ]| | |
       | 2 | 20 | 0.30*nmi | 850*ft ||
      | 3 | 25 | 0.33*nmi | 850*ft ||
       | 4 | 30 | 0.48*nmi | 850*ft ||
       | 5 | 40 | 0.75*nmi | 850*ft ||
      | 6 | 45 | 1.0*nmi | 850*ft ||
       | 7 | 48 | 1.3*nmi | 850*ft ||
       | 8 | 48 | 1.3*nmi | 1200*ft ||
  ENDTABLE
```

TCAS Tables: TAU, DMOD, and ZTHR

```
ThresholdSymbol : TYPE = { TAU, DMOD, ZTHR }
TA_thr(sl:SensitivityLevel,thr:ThresholdSymbol) : nnreal =
  TABLE sl .
    %--- +----++
        |[ TAU | DMOD | ZTHR ]|
    %--- +----++
     | 2 | 20 | 0.30*nmi | 850*ft ||
    %--- +----++
     | 3 | 25 | 0.33*nmi | 850*ft ||
    %--- +----++
     | 4 | 30 | 0.48*nmi | 850*ft ||
    %--- +----++
     | 5 | 40 | 0.75*nmi | 850*ft ||
    %---++
     | 6 | 45 | 1.0*nmi | 850*ft ||
    %--- +----++
     | 7 | 48 | 1.3*nmi | 850*ft ||
    %---++
     | 8 | 48 | 1.3*nmi | 1200*ft ||
    %--- +----++
  ENDTABLE
```

TCAS Tables: Type Correctness Conditions

```
% Disjointness TCC generated (at line 10, column 4) for
   % TABLE
   % | 0 * 0.3048 <= alt AND alt < 1000 * 0.3048 | 2 ||
   % ENDTABLE
 % proved - complete
sensitivity_level_TCC1: OBLIGATION
 FORALL (alt: nnreal):
        NOT ((0*0.3048 \le alt AND alt < 1000*0.3048) AND
             1000*0.3048 <= alt AND alt < 2350*0.3048) ...
% Coverage TCC generated (at line 34, column 5) for
   % TABLE sl, thr
   % %+----++
      | TAU | DMOD | ZTHR ]|
   % ENDTABLE
 % proved - complete
TA_thr_TCC1: OBLIGATION
 FORALL (sl: SensitivityLevel):
       s1=2 OR s1=3 OR s1=4 OR s1=5 OR s1=6 OR s1=7 OR s1=8;
```

TCAS Converging, Range, Closure Rate

```
TCAS_tau : THEORY
BEGIN
  %% All units are internal
  IMPORTING vectors@vectors_2D
  % s is a 2D relative position
  % v is a 2D relative velocity
  s,v: VAR Vect2
  converging?(s)(v) :bool =
    s*v < 0
  range(s) : nnreal = norm(s)
  closure_rate(s:Nz_vect2,v): real =
    -(s*v)/norm(s)
```

TCAS Converging, Range, Closure Rate

```
TCAS_tau : THEORY
BEGIN
  %% All units are internal
  IMPORTING vectors@vectors_2D
  % s is a 2D relative position
  % v is a 2D relative velocity
  s,v: VAR Vect2
  converging?(s)(v) :bool =
    s*v < 0
  range(s) : nnreal = norm(s)
  closure_rate(s:Nz_vect2,v): real =
    -(s*v)/norm(s)
```

TCAS Converging, Range, Closure Rate

```
TCAS_tau : THEORY
BEGIN
  %% All units are internal
  IMPORTING vectors@vectors_2D
  % s is a 2D relative position
  % v is a 2D relative velocity
  s,v: VAR Vect2
  converging?(s)(v) :bool =
    s*v < 0
  range(s) : nnreal = norm(s)
  closure_rate(s:Nz_vect2,v): real =
    -(s*v)/norm(s)
```

```
% Current tau is only defined when aircraft are converging
tau(s:Vect2,v:(converging?(s))) : nnreal =
  -sqv(s)/(s*v)
```

```
% Current tau is only defined when aircraft are converging
  tau(s:Vect2,v:(converging?(s))) : nnreal =
   -sqv(s)/(s*v)
tau_TCC1: OBLIGATION FORALL (s: Vect2, v: (converging?(s))):
  (s*v) /= 0:
```

```
% Current tau is only defined when aircraft are converging
  tau(s:Vect2,v:(converging?(s))) : nnreal =
   -sqv(s)/(s*v)
tau_TCC2: OBLIGATION
  FORALL (s: Vect2, v: (converging?(s))):
 -sqv(s)/(s*v) >= 0;
```

```
tau_def : LEMMA
  tau(s,v) = range(s)/closure_rate(s,v)
```

```
tau_def : LEMMA
    converging?(s)(v) IMPLIES
    tau(s,v) = range(s)/closure_rate(s,v)
%|- (expand* "range" "closure_rate" "tau" "converging?")
```

TCAS Tau

```
tau_def : LEMMA
    converging?(s)(v) IMPLIES
    tau(s,v) = range(s)/closure_rate(s,v)
%|- tau_def : PROOF
%|- (then
%|- (skeep)
% - (expand* "range" "closure_rate" "tau" "converging?")
%|- (grind-reals)
%|- (rewrite "sq" :dir rl)
%|- (rewrite "sq_norm"))
%I- QED
```

TCPA vs. TCAS Tau

```
% Time of closest point of approach
tcpa(s,v) : nnreal =
  IF converging?(s)(v) THEN
    -(s*v)/sqv(v)
  ELSE
  ENDIF
tau_ge_tcpa : LEMMA
  converging?(s)(v) IMPLIES
    tau(s,v) >= tcpa(s,v)
```

TCPA vs. TCAS Tau

```
% Time of closest point of approach
  tcpa(s,v) : nnreal =
    IF converging?(s)(v) THEN
      -(s*v)/sqv(v)
    ELSE
    ENDIF
  tau_ge_tcpa : LEMMA
    converging?(s)(v) IMPLIES
      tau(s,v) >= tcpa(s,v)
% |- tau_ge_tcpa : PROOF
% |- (then (grind) (metit *))
%|- QED
```

Generic TCAS 2D Alerting

```
TCAS_2D[(IMPORTING TCAS_tables) Thr : TCAS_Table] : THEORY BEGIN
```

IMPORTING TCAS_tau

Generic TCAS 2D Alerting

```
TCAS_2D[(IMPORTING TCAS_tables) Thr : TCAS_Table] : THEORY
BEGIN
 IMPORTING TCAS_tau
 sl : VAR SensitivityLevel
 so,si: VAR Vect2 % Ownship's and intruder's positions
 vo, vi : VAR Nz_vect2 % Ownship's and intruder's velocities
```

END TCAS_2D

Generic TCAS 2D Alerting

```
TCAS_2D[(IMPORTING TCAS_tables) Thr : TCAS_Table] : THEORY
BEGIN
  IMPORTING TCAS_tau
  sl : VAR SensitivityLevel
  so,si: VAR Vect2 % Ownship's and intruder's positions
  vo, vi : VAR Nz_vect2 % Ownship's and intruder's velocities
  TCAS_2D?(sl,so,vo,si,vi) : bool =
    LET s = so-si,
        v = vo-vi IN
      IF converging?(s)(v) THEN
        tau(s,v) < Thr(sl,TAU)</pre>
      FLSE.
        range(s) < Thr(sl,DMOD)
      ENDIF
END TCAS_2D
```

Safety Property

```
TCAS safe : CONJECTURE
  range(so-si) < Thr(sl,DMOD) IMPLIES</pre>
  TCAS_2D?(sl,so,vo,si,vi)
```

Safety Property

```
TCAS safe : CONJECTURE
    range(so-si) < Thr(sl,DMOD) IMPLIES</pre>
    TCAS_2D?(sl,so,vo,si,vi)
{1} FORALL (si: Vect2, sl: SensitivityLevel, so: Vect2,
              vi, vo: Nz_vect2):
        range(so - si) < Thr(sl, DMOD)
        IMPLIES TCAS_2D?(sl, so, vo, si, vi)
Rule? (skeep) (expand "TCAS_2D?") (ground)
```

Safety Property

```
TCAS safe : CONJECTURE
    range(so-si) < Thr(sl,DMOD) IMPLIES</pre>
    TCAS_2D?(sl,so,vo,si,vi)
{1} FORALL (si: Vect2, sl: SensitivityLevel, so: Vect2,
              vi, vo: Nz_vect2):
        range(so - si) < Thr(sl, DMOD)
        IMPLIES TCAS_2D?(sl, so, vo, si, vi)
Rule? (skeep) (expand "TCAS_2D?") (ground)
{-1} converging?(so - si)(vo - vi)
{-2} range(so - si) < Thr(sl, DMOD)</pre>
\{1\} tau(so - si, vo - vi) < Thr(sl, TAU)
Rule? ...
```

Looking for a Counterexample to Safety Property

IMPORTING TCAS_tables,TCAS_2D[TA_thr]

TCAS_unsafe : THEORY BEGIN

```
sl : SensitivityLevel = 8
so : Vect2 = (0,0)
vo : Nz vect2 = (0.600*knt)
```

```
TCAS_unsafe : THEORY
BEGIN
  IMPORTING TCAS_tables,TCAS_2D[TA_thr]
  sl : SensitivityLevel = 8
  so : Vect2 = (0,0)
  vo : Nz vect2 = (0.600*knt)
  TCAS_unsafe : LEMMA EXISTS (six,siy,vix,viy: real):
      abs(six) <= TA_thr(sl,DMOD) AND
      abs(siy) <= TA_thr(sl,DMOD) AND
      abs(vix) <= 600*knt AND abs(viy) <= 600*knt AND
      LET si : Vect2 = (six,siy), vi : Vect2 = (vix,viy) IN
      250*knt <= norm(vi) AND norm(vi) <= 600*knt AND
      converging?(so-si)(vo-vi) AND
      range(so-si) < TA_thr(sl,DMOD) AND</pre>
      tau(so-si,vo-vi) > TA_thr(sl,TAU)
```

```
TCAS_unsafe : THEORY
BEGIN
  IMPORTING TCAS_tables,TCAS_2D[TA_thr]
  sl : SensitivityLevel = 8
  so : Vect2 = (0,0)
  vo : Nz vect2 = (0.600*knt)
  TCAS_unsafe : LEMMA EXISTS (six,siy,vix,viy: real):
      abs(six) <= TA_thr(sl,DMOD) AND
      abs(siy) <= TA_thr(sl,DMOD) AND
      abs(vix) <= 600*knt AND abs(viy) <= 600*knt AND
      LET si : Vect2 = (six,siy), vi : Vect2 = (vix,viy) IN
      250*knt \le norm(vi) AND norm(vi) \le 600*knt AND
      converging?(so-si)(vo-vi) AND
      range(so-si) < TA_thr(sl,DMOD) AND</pre>
      tau(so-si,vo-vi) > TA_thr(sl,TAU)
```

```
{1} EXISTS (six, siy, vix, viy: real):
Rule? (grind :if-match nil :exclude "abs")
{1} EXISTS (six, siy, vix, viy: real):
             abs(six) \le 12038/5 AND abs(siy) \le 12038/5
         AND abs(vix) <= 926/3 AND abs(viy) <= 926/3
         AND 2315/18 \leq sqrt(vix*vix + viy*viy)
         AND sqrt(vix*vix + viy*viy) \le 926/3
         AND six*vix + siy*viy - 926/3*siy < 0
         AND sqrt(six*six + siy*siy) < 12038/5
         AND -(six*six + siy*siy) /
              (six*vix + siy*viy - 926/3*siy) > 48
```

```
{1} EXISTS (six, siy, vix, viy: real):
Rule? (grind :if-match nil :exclude "abs")
{1} EXISTS (six, siy, vix, viy: real):
             abs(six) \le 12038/5 AND abs(siy) \le 12038/5
         AND abs(vix) <= 926/3 AND abs(viy) <= 926/3
         AND 2315/18 \leq sqrt(vix*vix + viy*viy)
         AND sqrt(vix*vix + viy*viy) <= 926/3
         AND six*vix + siy*viy - 926/3*siy < 0
         AND sqrt(six*six + siy*siy) < 12038/5
         AND -(six*six + siy*siy) /
              (six*vix + siy*viy - 926/3*siy) > 48
```

IMPORTING interval_arith@strategies

```
AND 2315/18 <= sqrt(vix*vix + viv*viy)
AND sqrt(vix*vix + viy*viy) <= 926/3
AND sqrt(six*six + siy*siy) < 12038/5
```

```
{1} EXISTS (six, siy, vix, viy: real):
             abs(six) \le 12038/5 AND abs(siy) \le 12038/5
         AND abs(vix) <= 926/3 AND abs(viy) <= 926/3
         AND 2315/18 \leftarrow sqrt(vix*vix + viy*viy)
         AND sqrt(vix*vix + viy*viy) <= 926/3
         AND six*vix + siy*viy - 926/3*siy < 0
         AND sqrt(six*six + siy*siy) < 12038/5
         AND -(six*six + siy*siy) /
              (six*vix + siy*viy - 926/3*siy) > 48
Rule? (interval)
```

{1} EXISTS (six, siy, vix, viy: real): $abs(six) \le 12038/5$ AND $abs(siy) \le 12038/5$ AND abs(vix) <= 926/3 AND abs(viy) <= 926/3AND 2315/18 \leftarrow sqrt(vix*vix + viy*viy) AND $sqrt(vix*vix + viy*viy) \le 926/3$ AND six*vix + siy*viy - 926/3*siy < 0AND sqrt(six*six + siy*siy) < 12038/5 AND -(six*six + siy*siy) / (six*vix + siy*viy - 926/3*siy) > 48Rule? (interval) Q.E.D. Run time = 2.94 secs.

```
{1}
     EXISTS (six, siy, vix, viy: real):
             abs(six) \le 12038/5 AND abs(siy) \le 12038/5
         AND ...
Rule? (interval :verbose? t)
```

```
{1} EXISTS (six, siy, vix, viy: real):
             abs(six) \le 12038/5 AND abs(siy) \le 12038/5
         AND ...
Rule? (interval :verbose? t)
Sequent holds for \sin = -54171/40, \sin = 78247/40,
                  vix = -463/3, viy = 463/3
Splits: 42. Depth: 10
____
Q.E.D.
```

PVS Animation via PVSio

```
TCAS_unsafe : THEORY
BEGIN
  IMPORTING TCAS_tables, TCAS_2D[TA_thr]
  sl : SensitivityLevel = 8
  so : Vect2 = (0,0)
  vo : Nz_{vect2} = (0.600*knt)
  si : Vect2 = (-54171/40, 78247/40)
  vi : Nz_vect2 = (-463/3, 463/3)
END TCAS_unsafe
```

```
<PVSio> si;
(\# x := -54171/40, y := 78247/40 \#)
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
(\# x := -463/3, y := 463/3 \#)
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
<PVSio> print(vi'x);
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
<PVSio> print(vi'x);
-154.33333
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
<PVSio> print(vi'x);
-154.33333
<PVSio> print(vi'x/knt);
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
<PVSio> print(vi'x);
-154.33333
<PVSio> print(vi'x/knt);
-300
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
<PVSio> print(vi'x);
-154.33333
<PVSio> print(vi'x/knt);
-300
<PVSio> printf("si = (~f,~f), vi = (~f,~f)",
               (si'x/nmi,si'y/nmi,vi'x/knt,vi'y/knt));
```

```
<PVSio> si;
==>
(\# x := -54171/40, y := 78247/40 \#)
<PVSio> vi;
==>
(\# x := -463/3, y := 463/3 \#)
<PVSio> print(vi'x);
-154.33333
<PVSio> print(vi'x/knt);
-300
<PVSio> printf("si = (~f,~f), vi = (~f,~f)",
               (si'x/nmi,si'y/nmi,vi'x/knt,vi'y/knt));
si = (-0.73125, 1.05625), vi = (-300.0, 300.0)
```

M-x PVSio

```
alerts : void =
  LET i = query_int("Up to time? ") IN
  printf("TAs up to: ~a~%",i) &
  FORALL(t:upto(i)):
  IF TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi) THEN
   print(t+" ")
  ELSE
   skip
  ENDIF
```

```
alerts : void =
    LET i = query_int("Up to time? ") IN
    printf("TAs up to: ~a~%",i) &
    FORALL(t:upto(i)):
    IF TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi) THEN
      print(t+" ")
    ELSE
      skip
    ENDIF
<PVSio> alerts:
```

```
alerts : void =
    LET i = query_int("Up to time? ") IN
    printf("TAs up to: ~a~%",i) &
    FORALL(t:upto(i)):
    IF TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi) THEN
      print(t+" ")
    ELSE
      skip
    ENDIF
<PVSio> alerts;
Up to time?
```

```
alerts : void =
    LET i = query_int("Up to time? ") IN
    printf("TAs up to: ~a~%",i) &
    FORALL(t:upto(i)):
    IF TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi) THEN
      print(t+" ")
    ELSE
      skip
    ENDIF
<PVSio> alerts;
Up to time?
60
```

```
alerts : void =
    LET i = query_int("Up to time? ") IN
    printf("TAs up to: ~a~%",i) &
    FORALL(t:upto(i)):
    IF TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi) THEN
      print(t+" ")
    ELSE
      skip
    ENDIF
<PVSio> alerts;
Up to time?
60
TAs up to 60:
2 3 4
```

```
{1} FORALL(t:real): t ## [| 5, 60 |] IMPLIES
      NOT TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi)
Rule? (skeep)(grind)
```

```
{1} FORALL(t:real): t ## [| 5, 60 |] IMPLIES
      NOT TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi)
Rule? (skeep)(grind)
\{-1\} 5 <= t
\{-2\} t <= 60
{-3} sqrt(6122593009/1600 - 36228361/60*t + 214369/9*(t*t) +
            -54171/40*(-54171/40) + 2*(-463/3*(-54171/40)*t)
            + -463/3*(-463/3)*t*t
       < 12038/5
{1}
     214369/9*t - 36228361/120 + -463/3*(-54171/40) +
       -463/3*(-463/3)*t
       < 00
```

```
{1} FORALL(t:real): t ## [| 5, 60 |] IMPLIES
      NOT TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi)
Rule? (skeep)(grind)
\{-1\} 5 <= t
\{-2\} t <= 60
{-3} sqrt(6122593009/1600 - 36228361/60*t + 214369/9*(t*t) +
            -54171/40*(-54171/40) + 2*(-463/3*(-54171/40)*t)
            + -463/3*(-463/3)*t*t
       < 12038/5
{1}
     214369/9*t - 36228361/120 + -463/3*(-54171/40) +
       -463/3*(-463/3)*t
       < 00
Rule? (interval -3 1)
```

```
{1} FORALL(t:real): t ## [| 5, 60 |] IMPLIES
      NOT TCAS_2D?(sl,so+t*vo,vo,si+t*vi,vi)
Rule? (skeep)(grind)
\{-1\} 5 <= t
\{-2\} t <= 60
{-3} sqrt(6122593009/1600 - 36228361/60*t + 214369/9*(t*t) +
            -54171/40*(-54171/40) + 2*(-463/3*(-54171/40)*t)
            + -463/3*(-463/3)*t*t
       < 12038/5
     214369/9*t - 36228361/120 + -463/3*(-54171/40) +
{1}
       -463/3*(-463/3)*t
       < 00
Rule? (interval -3 1)
Q.E.D.
```

Finally

top: THEORY

IMPORTING Units.

BEGIN

```
TCAS_tau, % Definition of tau and TCPA
           TCAS_2D, % 2-D alerting logic
           TCAS_safety % Safety properties
END top
```

TCAS_tables, % TCAS threshold tables

% Unit conversion functions

Finally

top: THEORY

IMPORTING Units.

BEGIN

```
TCAS_tables, % TCAS threshold tables
           TCAS_tau, % Definition of tau and TCPA
           TCAS_2D, % 2-D alerting logic
           TCAS_safety % Safety properties
END top
$ proveit -a
```

% Unit conversion functions

Finally

```
top: THEORY
BEGIN
 IMPORTING Units. % Unit conversion functions
           TCAS_tables, % TCAS threshold tables
           TCAS_tau, % Definition of tau and TCPA
           TCAS_2D, % 2-D alerting logic
           TCAS_safety % Safety properties
END top
$ proveit -a
Processing ./top.pvs. Writing output to file ./top.summary
Proof summary for theory TCAS_2D
   TCAS_safe.....unfinished
   Theory totals: 1 formulas, 1 attempted, 0 succeeded
Grand Totals: 16 proofs, 16 attempted, 15 succeeded (13.30 s)
```