In [40]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import statsmodels.formula.api as smf
df = pd.read_csv('suicide_rates.csv')
```

The project uses a data set of suicides number and many other factors to explore what factors has the most significant impact on the suicides rate.

In [41]:

In [42]:

```
# the data in year 2016 is not complete, so it should be dropped

df = df.loc[df['year']!=2016,:]

df['gdp_for_year'] = df['gdp_for_year'].str.replace(',','').astype(int)

df_year = df.groupby('year')['suicides_no'].sum()
```

In [43]:

df

Out[43]:

	country	year	sex	age	suicides_no	population	suicides_rate	country-year	HDI	gdp_for_yea
0	Albania	1987	male	15- 24 years	21	312900	6.71	Albania1987	NaN	215662490
1	Albania	1987	male	35- 54 years	16	308000	5.19	Albania1987	NaN	215662490
2	Albania	1987	female	15- 24 years	14	289700	4.83	Albania1987	NaN	215662490
3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	215662490
4	Albania	1987	male	25- 34 years	9	274300	3.28	Albania1987	NaN	215662490

In [44]:

```
# show the change in suicides number per year
fig, ax = plt.subplots()
df_year.plot(x='year', y='suicides_no', ax = ax)
ax.set_title('Number of suicides from 1985 to 2015')
```

Out[44]:

Text(0.5, 1.0, 'Number of suicides from 1985 to 2015')

In [45]:

```
df_country_year = df.groupby('country-year')['suicides_no'].sum()
df_population = df.groupby('country-year')['population'].sum()
df_country_pgdp = df.groupby('country-year')['gdp_per_capita'].sum()
df_country_gdp = df.groupby('country-year')['gdp_for_year'].sum()
```

In [46]:

```
# explore the relationship between gdp per capita and suicides rate
suicide_pgdp = pd.DataFrame()
```

In [47]:

```
suicide_pgdp['gdp_percapita'] = df_country_pgdp
suicide_pgdp['suicides_rate'] = df_country_year / df_population
```

In [48]:

```
fig, ax = plt.subplots()
suicide_pgdp.plot.scatter(x='gdp_percapita', y='suicides_rate', ax=ax)
ax.set_ybound(lower=0, upper=0.0006)
ax.set_xbound(lower=0)
ax.set_title('Relationship between gdp per capita and suicides rate')
```

Out[48]:

Text(0.5, 1.0, 'Relationship between gdp per capita and suicides rat e')

In [49]:

```
reg = smf.ols('suicides_rate ~ gdp_percapita', data=suicide_pgdp).fit()
print(reg.summary())
```

OLS Regression Results

old regression results						
Dep. Variable:	s	uicides_rate	R-squared:			
0.004						
Model:		OLS	Adj. R-squared:			
0.003						
Method:	L	east Squares	F-statistic			
8.542						
Date:	Thu,	19 Dec 2019	Prob (F-sta	1		
0.00351						
Time:		10:21:21	Log-Likelih			
18226.						
No. Observation	ns:	2305	AIC:	_		
3.645e+04						
Df Residuals:		2303	BIC:		_	
3.644e+04						
Df Model:		1				
Covariance Type	:	nonrobust				
===========	=======	========	=========	======	========	
========						
	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	0.0001	2.49e-06	45.227	0.000	0.000	
0.000						
gdp_percapita	2.397e-11	8.2e-12	2.923	0.004	7.89e-12	
4.01e-11						
=======================================		========	==========	======		
======						
Omnibus:		440.100	Durbin-Wats			
0.125						
<pre>Prob(Omnibus):</pre>		0.000 Jarque-Bera (JB):				
783.348						
Skew:		1.199	<pre>Prob(JB):</pre>			
7.91e-171						
Kurtosis:		4.550	Cond. No.			
4.06e+05						
==========		========	========	======	========	
======						

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.06e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

The t-value and p-value told us that there is a relationship between suicides rate and gdp_percapita, but we can find that the R_squared is very lower, so we may conclude that the gdp_percapita does not influence the suicides rate a lot.

In [50]:

```
# explore the relationship between gdp and suicides rate
suicide_gdp = pd.DataFrame()
suicide_gdp['gdp'] = df_country_gdp
suicide_gdp['suicides_rate'] = df_country_year / df_population
suicide_gdp
```

Out[50]:

gdp suicides_rate

25879498800	0.000027
25512000000	0.000023
28021499856	0.000024
8513431008	0.000017
14736852456	0.000026
23828085576	0.000018
29093988108	0.000030
39778779504	0.000030
28318837296	0.000057
	25512000000 28021499856 8513431008 14736852456 23828085576 29093988108 39778779504

In [51]:

```
fig, ax = plt.subplots()
suicide_gdp.plot.scatter(x='gdp', y='suicides_rate', ax=ax)
ax.set_ybound(lower=0, upper=0.0006)
ax.set_xbound(lower=0)
ax.set_title('Relationship between gdp and suicides rate')
```

Out[51]:

Text(0.5, 1.0, 'Relationship between gdp and suicides rate')

In [52]:

```
reg = smf.ols('suicides_rate ~ gdp', data=suicide_gdp).fit()
print(reg.summary())
```

OLS Regression Results

					=========		
Dep. Variab	suicides ra	ate	R-san	ared:			
0.005	bulolueb_1	200	ic bqc	arca.			
Model:	(OLS	Adi.	R-squared:			
0.005	`	200	1107.	n bquarea.			
Method:	Least Squar	res	F_sta	tistic:			
12.08		Loube bquu.	- 05	1 500	.0150101		
Date:	1	Thu. 19 Dec 20	119	Prob	(F-statistic)	•	
0.000519		1114, 15 200 2	3 1 3	1100	(1 500015010)	•	
Time:		10:21	24	I-oa-I	ikelihood:		
18228.		10121		209 2	.Inollinood v		
No. Observa	tions:	2:	305	AIC:			_
3.645e+04	010115	2.	303	11101			
Df Residual	s:	2.	303	BIC:			_
3.644e+04							
Df Model:			1				
	Type:	nonrob	_				
				======	:========	=======	===
=======							
	coef	std err		t	P> t	[0.025	
0.975]					1 - 1		
Intercept	0.0001	1.94e-06	5	9.445	0.000	0.000	
0.000							
gdp	3.686e-19	1.06e-19		3.476	0.001	1.61e-19	
5.77e-19							
========	=======	=========		======	:========	=======	
======							
Omnibus:		422.	152	Durbi	.n-Watson:		
0.125							
Prob(Omnibu	0.0	0.000 Jarque-Bera (JB):					
730.017	,			-	` ,		
Skew:		1.	1.172 Prob(JB):				
3.01e-159				`	,		
Kurtosis:	4.4	453	Cond. No.				
1.91e+13							
========	=======	========	====	======	========	=======	===
======							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.91e+13. This might indicate that there are

strong multicollinearity or other numerical problems.

The t-value and p-value told us that there is a relationship between suicides rate and gdp, but we can find that the R_squared is very lower, so we may conclude that the gdp does not influence the suicides rate a lot.

In [54]:

```
df2 = df.dropna()
df2_suicide_rate = df2.groupby('country-year')['suicides_no'].sum() / df2.groupby('country-year')['HDI'].mean()
```

In [55]:

```
# explore the relationship between hdi and suicides rate
suicide_hdi = pd.DataFrame()
suicide_hdi['hdi'] = df2_hdi
suicide_hdi['suicides_rate'] = df2_suicide_rate
```

In [56]:

```
fig, ax = plt.subplots()
suicide_hdi.plot.scatter(x='hdi', y='suicides_rate', ax=ax)
ax.set_ybound(lower=0, upper=0.0006)
```


In [57]:

```
reg = smf.ols('suicides_rate ~ hdi', data=suicide_hdi).fit()
print(reg.summary())
```

OLS Regression Results

```
______
Dep. Variable:
                 suicides rate
                             R-squared:
0.047
Model:
                         OLS
                             Adj. R-squared:
0.046
Method:
                 Least Squares
                             F-statistic:
34.23
               Thu, 19 Dec 2019
Date:
                             Prob (F-statistic):
7.54e-09
Time:
                     10:21:49
                             Log-Likelihood:
5577.5
No. Observations:
                         697
                             ATC:
1.115e+04
                             BIC:
Df Residuals:
                         695
1.114e+04
Df Model:
                           1
Covariance Type:
                    nonrobust
______
                              t P>|t|
            coef std err
                                            [0.025
0.9751
Intercept -3.629e-05 2.57e-05 -1.410 0.159 -8.68e-05
1.43e-05
hdi
           0.0002 3.29e-05
                           5.851
                                    0.000
                                             0.000
0.000
=======
Omnibus:
                      191.474 Durbin-Watson:
0.411
Prob(Omnibus):
                        0.000 Jarque-Bera (JB):
470.773
Skew:
                             Prob(JB):
                        1.424
5.93e-103
                        5.846 Cond. No.
Kurtosis:
______
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The t-value and p-value told us that there is a relationship between suicides rate and hdi, and the R-square is higher, which is 0.047, but we still can not find a strong relationship between hdi and suicides rate.

```
In [58]:
```

```
# explore the relationship between hdi and sex
male_female = df.groupby('sex')['suicides_no'].sum() / df.groupby('sex')['population
```

In [59]:

```
male_female.plot.bar()
```

Out[59]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1a1c8e10>

We can find a clear distinction between the suicides rate of male and female, this tells us that male has four times the possibility of suicide than female.

In [60]:

```
ages = df.groupby('age')['suicides_no'].sum() / df.groupby('age')['population'].sum
```

In [61]:

```
ages.sort_values().plot.bar()
```

Out[61]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1ac8a6d8>

We can also find a relationship between suicides rate and age, generally speaking, as age increases, the

probability of suicide increases.

In [62]:

```
ages = df.groupby('generation')['suicides_no'].sum() / df.groupby('generation')['por
ages.sort_values().plot.bar()
```

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1accf3c8>

The relationship between suicides rate and generation just corresponds to that between suicides rate and age.

We have found out that sex and age influence suicides the most, so we are going to use these two factors to build KNeighborsRegreessor model to predict the suicides rate.

In [66]:

```
from patsy import dmatrices
from sklearn.neighbors import KNeighborsRegressor as knn
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor as rf
```

In [67]:

```
# y, X = dmatrices('suicides_rate ~ HDI + gdp_for_year + gdp_per_capita', df2)
y, X = dmatrices('suicides_rate ~ sex + age', df2)
```

In [68]:

```
knn_scores = pd.Series()
for i in range(100, 120, 1):
    knn_scores.loc[i] = cross_val_score(knn(n_neighbors=i),X,np.ravel(y),cv=2).mean(knn_scores.plot())
```

Out[68]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a19fc9780>

In [69]:

```
# We can find that the model is most useful when n_neighbors is set to 106
cross_val_score(knn(n_neighbors=106),X,np.ravel(y),cv=2).mean()
```

Out[69]:

0.3477382747360774

In [70]:

```
knn(n_neighbors=106).fit(X,y).predict(X)
```

Out[70]: