

TABLE OF CONTENTS

A quick overview of this presentation

Our Topic and Our Data	The where? what? and why?
Questions Originally Asked	What did we want to know?
The EDA	The initial analysis
Technologies Used	The tools for our deeper analysis
Results of Analysis	Our findings after
Recommendation	How to move forward
Recommendation	now to move forward

OUR DATA SOURCE

QUESTIONS

What relationships are there between the type, color, or maker of a car with violations?

Can vehicle type predict type of violation?

What color cars are more prone to violations (in comparison to the proportion of colors of cars)?

Can machine learning detect these relationships?

OUR DATA

Parking Violations Raw float Summons_Number Plate ID varchar(10) Registration State varchar(2) Plate Type varchar(3) Issue_Date timestamp Violation Code int >--Vehicle_Body_Type varchar(4) Vehicle_Make varchar(5) Issuing_Agency varchar(1) Street_Code1 int Street Code2 int Street Code3 inf Vehicle_Expiration_Date Violation Location Violation_Precint Issuer_Precinct int Issuer_Code

Cleaned Data

Parking_Violations_Clean

+	Registration_State	varchar(2)
+	Plate_Type	varchar(3)
-	Violation_Code	int
-	Vehicle_Body_Type	varchar(4)
-	Vehicle_Make	varchar(5)
-	Violation_Time	timestamp
-	Vehicle_Color	varchar(6)
-	Vehicle_Year	int

DATA CLEANING

- Identify relevant data that can be used in machine learning and discard all the rest.
- Transform data into useable forms.

Parking Violations Clean

Registration_State	varchar(2)
Plate_Type	varchar(3)
Violation_Code	int
Vehicle_Body_Type	varchar(4)
Vehicle_Make	varchar(5)
Violation_Time	timestamp
Vehicle_Color	varchar(6)
Vehicle_Year	int

Parking_Violations_ML

Registration_State_Group	int
Plate_Type_Group	int
Violation_Code	int
Vehicle_Body_Type_Grou	p int
Vehicle_Make_Group	int
Violation_Time d	atetime
Vehicle_Color_Group	int
Vehicle_Year	int

Parking Violations Board

Ponictration State

Registration_State	valunan(2)
Plate_Type_Group_Name	varchar(3)
Violation_Code	int
Vehicle_Body_Type_Group_Name	varchar(4)
Vehicle_Make_Group_Name	varchar(5)
Vehicle_Expiration_Date	int
Violation_Location	int
Violation_Time	datetime
Street_Name	varchar(20)
Vehicle_Color_Group_Name	varchar(6)
Vehicle_Year	int

Postgres Exploration

				W #	•	- 4	•	
77	10	ra	ш	V				ns
\mathcal{I}_{Λ}		IQ	ш		U	U	U	113

Colors

Manufacturer

	count bigint	violation_code integer		count bigint	violation_code integer	vehicle_color character varying (3)		count bigint	violation_code integer	vehicle_make character vary
1	3194638	36	1	685661	36	WHT	1	27904	14	FRUEH
2	810066	21	2	160093	21	WHT	2	16332	46	FRUEH
3	434559	38	3	110786	38	WHT	3	11905	20	FRUEH
4	367550	71	4	86793	14	WHT	4	10193	69	FRUEH
5	345813	7	5	82210	20	WHT	5	9624	19	FRUEH
6	315737	14	6	82047	71	WHT	6	7032	47	FRUEH
7	310018	5	7	76118	7	WHT	7	5828	38	FRUEH
8	277004	20	8	69265	5	WHT	8	5691	10	FRUEH
9	237735	40	9	61307	69	WHT	9	4261	48	FRUEH
10	216345	70	10	52523	40	WHT	10	3875	36	FRUEH

Data Analysis

R Studio		istic gression	Chi Squared test	Code	Tableau
Was used to logistic regi chi-squared	ression and learning there related between	used to see if was a onship een all of our orical data	Color: significant p-value All Variables: significant p-value	The more variables I added to the Logistic Model the higher the r-squared value	<u>Tableau</u>

Data Analysis

```
car_sub <- subset(cars, Violation_Code=='36', select=c('Violation_Time', 'Vehicle_Make', 'Vehicle_Color', 'Violation_Code'))
car_sub <- subset(cleaned_data, Violation_Code=='36', select=c('Violation_Time', 'Vehicle_Make', 'Vehicle_Color', 'Violation_Code'))
car_subs <- subset(cars, Violation_Code=='46', select=c('Violation_Time', 'Vehicle_Make', 'Vehicle_Color', 'Violation_Code'))
summary(lm(Violation_Code ~ Violation_Time + Vehicle_Make + Vehicle_Color, data=cleaned_data))
save.image("C:/Users/nextg/Downloads/Group_Final_Project-main/Group_Final_Project-main/Notebooks/Final_Project_Data (Prelim Code).RData")
chi_table <-(cleaned_data$Violation_Code,cleaned_data$Vehicle_Color)</pre>
```


ENCODING FOR ML

Color

Top Six:

C

'NY': 0

'FL': 1 'VA': 2

'GA': 3

'OH': 4

'NJ': 5

Top Eight:

'PAS': O 'COM': I 'OMT': 2

'SRF': 3

'OMS': 4 'APP': 5

'ORG': 6

'SPO': 7

Top Eight:

'SUBN': O '4DSD': I

VAN': 2

'PICK':3 'DELV':4

'2DSD':5

'REFG':6 **'SDN':7**

Top Eight:

'HONDA':0 'FORD':I

'TOYOT':2 'NISSA':3

'CHEVR':4

'ME/BE':5 'BMW':6

'JEEP':7

'FRUEH':8 'HYUND':9

'SUBAR':10

'LEXUS':II

Top Ten:

'RED': I 'BLK': 2

'BLU': 3

'WHT': 4 'GRN': 5

'GRY': 6

'ORG': 7 'BRN': 8

'OTH': 9

36

Speeding in School Zone

The largest number of violations

RESULTS

Logistic Regression

max_iter = 500 solver = 'saga' Accuracy: 0.5764 Precision: 0.4249 Recall: 0.0181 F1 Score: 0.0348 Accuracy: 0.5995 Precision: 0.5828 Recall: 0.1708

F1 Score: 0.2642

Random Forest

warm_start = true n-estimators = 1000

Logistic Regression with Scaler

StandardScaler max_iter = 500 solver = 'saga' Accuracy: 0.5764 Precision: 0.4249 Recall: 0.0181 F1 Score: 0.0348

K-Means

n_clusters = 7

Random Forest Confusion Matrix

We see that the proportion of True Negative (0,0) is really high.

This means our model is good at predicting which car types **would not** be caught speeding in a school zone.

If only we had more time...

