Lamma Tommaso 0000881007 Turno II

Misura della caratteristica di uscita di un BJT P-N-P in configurazione a emettitore comune

Nella prova si sono prese le caratteristiche in uscita alle correnti di base $100\mu A$ e $200\mu A$. Il circuito utilizzato per la prova è il seguente :

Gli strumenti utilizzati nella prova sono:

- (i) Potenziometro da $1k\Omega$
- (ii) Potenziometro da $100k\Omega$
- (iii) Transistor BJT 2N3906(BU) (Si PNP)
- (iv) Breadboard generica
- (v) Oscilloscopio GOS-652 GW
- (vi) Multimetro digitale FLUKE 77
- (vii) Generatore di tensione continua IPS 3303 ISO-TECH

I grafici in valore assoluto delle caratteristiche in uscita sono:

Caratteristica in uscita($I_B = 100 \mu A$)

Caratteristica in uscita($I_B = 200 \mu A$)

Nonostante i valori di tensione e resistenza siano effettivamente negativi ne sono omessi i segni nelle tabelle e nei grafici. I dati misurati con corrente di base $10\mu A$ e $200\mu A$ sono:

Corrente di base $100\mu A$					
V[V]	$\delta V[V]$	I[mA]	$\delta I[mA]$	fondoscala[V]	
3.8	0.2	22.5	0.3	1	
3.6	0.1	22.5	0.3	1	
3.4	0.1	22.5	0.3	1	
3.2	0.1	22.4	0.3	1	
3	0.1	22.2	0.3	1	
2.8	0.1	22.1	0.3	1	
2.6	0.1	21.8	0.3	1	
2.4	0.1	21.5	0.3	1	
2.2	0.1	21.3	0.3	1	
2	0.1	21.1	0.3	1	
1.8	0.1	20.9	0.3	1	
1.6	0.1	20.6	0.3	1	
1.4	0.1	20.4	0.3	1	
1.2	0.1	20.2	0.3	1	
1.15	0.04	19.9	0.3	0.2	
1.1	0.04	19.8	0.3	0.2	
1.05	0.04	19.7	0.3	0.2	
1	0.04	19.6	0.3	0.2	
0.5	0.02	18.6	0.3	0.1	
0.4	0.02	17.9	0.3	0.1	
0.3	0.01	16.5	0.2	0.1	
0.2	0.01	13.3	0.2	0.1	
0.18	0.01	12	0.2	0.1	
0.16	0.01	10.5	0.2	0.1	
0.13	0.01	8.7	0.1	0.1	
0.12	0.01	6.4	0.1	0.1	
0.1	0.01	4.3	0.06	0.1	
0.08	0.003	2.3	0.03	0.02	
0.07	0.003	1.7	0.03	0.02	
0.06	0.003	1.1	0.02	0.02	
0.05	0.003	0.8	0.01	0.02	
0.04	0.002	0.4	0.006	0.02	
0.03	0.002	0.2	0.003	0.02	

Corrente di base 200μ A						
$\mathbf{V}[V]$	$\delta V[V]$	I[mA]	$\delta I[mA]$	fondoscala $[V]$		
4	0.2	37.6	0.6	1		
3.8	0.2	39.2	0.6	1		
3.6	0.1	39.1	0.6	1		
3.4	0.1	38.8	0.6	1		
3.2	0.1	38.4	0.6	1		
3	0.1	37.9	0.6	1		
2.8	0.1	37.4	0.6	1		
2.6	0.1	37	0.6	1		
2.4	0.1	36.5	0.5	1		
2.2	0.1	36.1	0.5	1		
2	0.1	35.6	0.5	1		
1.8	0.1	35.1	0.5	1		
1.6	0.1	34.5	0.5	1		
1.4	0.1	33.8	0.5	1		
1	0.04	32.2	0.5	0.2		
0.9	0.03	31.7	0.5	0.2		
0.8	0.03	31.2	0.5	0.2		
0.2	0.01	18.9	0.3	0.1		
0.15	0.01	14.2	0.2	0.1		
0.12	0.01	9.9	0.1	0.1		
0.1	0.004	6.5	0.1	0.02		
0.08	0.003	3.9	0.06	0.02		
0.06	0.003	2.1	0.03	0.02		
0.05	0.003	1.3	0.02	0.02		

Graficando i due fit nella stesso grafico otteniamo effetti compatibili con l'effetto Early:

I risultati finali sono:

	a_1	$(16 \pm 1)V$
$I_B = 100mA$	b_1	$(0.88 \pm 0.05)k\Omega$
	g_1	$(1.14 \pm 0.06)m \mho$
	a_2	$(16 \pm 3)V$
$I_B = 200mA$	b_2	$(0.51 \pm 0.08)k\Omega$
	g_2	$(1.9 \pm 0.3)m\mho$
$\beta(-3V)$		157 ± 9

Tali risultati sono stati ottenuti tramite un fit lineare pesato sugli errori dovuti all'oscilloscopio nel range di linearità delle due caratteristiche, dove le a_i indicano le intercette, le b_i le pendenze e le g_i gli inversi delle pendenze e β infine è il guadagno di corrente al variare della corrente di base per un $V_{CE}=-3V$. Per l'incertezza dovuta alla misura effettuata con l'oscilloscopio era sempre visibile la mezza tacca, dunque ho scelto come incertezza da associare un decimo del fondoscala.