

AoPS Community 1990 AMC 8

AMC 8 1990

www.artofproblemsolving.com/community/c4773 by Mrdavid445, rrusczyk

What is the smallest sum of two 3-digit numbers that can be obtained by placing each of the six digits 4, 5, 6, 7, 8, 9 in one of the six boxes in this addition problem?

- **(A)** 947
- **(B)** 1037
- **(C)** 1047
- **(D)** 1056
- **(E)** 1245

2 Which digit of 0.12345, when changed to 9, gives the largest number?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5

3 What fraction of the square is shaded?

- (A) $\frac{1}{3}$
- (B) $\frac{2}{5}$
- (C) $\frac{5}{12}$
- (D) $\frac{3}{7}$
- (E) $\frac{1}{2}$

Which of the following could not be the unit's digit [one's digit] of the square of a whole number?

(A) 1

(B) 4

(C) 5

(D) 6 (E) 8

5 Which of the following is closest to the product (.48017)(.48017)(.48017)?

(A) 0.011

(B) 0.110

(C) 1.10

(D) 11.0

(E) 110

6 Which of these five numbers is the largest?

(A) $13579 + \frac{1}{2468}$

(B) $13579 - \frac{1}{2468}$

(C) $13579 \times \frac{1}{2468}$ (D) $13579 \div \frac{1}{2468}$

(E) 13579.2468

7 When three different numbers from the set $\{-3,-2,-1,4,5\}$ are multiplied, the largest possible product is

(A) 10

(B) 20

(C) 30

(D) 40

(E) 60

A dress originally priced at 80 dollars was put on sale for 25% off. If 10% tax was added to the sale price, then the total selling price (in dollars) of the dress was

(A) 45 dollars

(B) 52 dollars

(C) 54 dollars

(D) 66 dollars

(E) 68 dollars

9 The grading scale shown is used at Jones Junior High. The fifteen scores in Mr. Freeman's class were:

89, 72, 54, 97, 77, 92, 85, 74, 75, 63, 84, 78, 71, 80, 90.

In Mr. Freeman's class, what percent of the students received a grade of C?

A: 93-100

B: 85-92

C: 75-84

D: 70-74

F: 0-69

(A) 20%

(B) 25%

(C) 30%

(D) $33\frac{1}{3}\%$

(E) 40%

On this monthly calendar, the date behind one of the letters is added to the date behind C. If this sum equals the sum of the dates behind A and B, then the letter is

Tues.	Wed.	Thurs.	Fri.	Sat.	
		С	A		
		Q			
S	В	Р	Т	R	

- (A) P (B) Q (C) R (D) S (E) T
- The numbers on the faces of this cube are consecutive whole numbers. The sums of the two numbers on each of the three pairs of opposite faces are equal. The sum of the six numbers on this cube is

- **(A)** 75
- **(B)** 76
- **(C)** 78
- **(D)** 80
- **(E)** 81
- There are twenty-four 4-digit numbers that use each of the four digits 2, 5, 7, and 4exactly once. Listed in numerical order from smallest to largest, the number in the 17th position in the list is
 - **(A)** 4527
- **(B)** 5724
- (C) 5742
- **(D)** 7245
- **(E)** 7524
- One proposal for new postage rates for a letter was 30 cents for the first ounce and 22 cents for

each additional ounce (or fraction of an ounce). The postage for a letter weighing $4.5\ \mathrm{ounces}$ was

- (A) 96 cents
- (B) 1.07 dollars
- (C) 1.18 dollars
- (D) 1.20 dollars
- (E) 1.40 dollars
- A bag contains only blue balls and green balls. There are 6 blue balls. If the probability of drawing a blue ball at random from this bag is $\frac{1}{4}$, then the number of green balls in the bag is
 - **(A)** 12
- **(B)** 18
- **(C)** 24
- **(D)** 30
- **(E)** 36
- 15 The area of this figure is 100 cm^2 . Its perimeter is

- (A) 20 cm
- (B) 25 cm
- (C) 30 cm
- (D) 40 cm
- (E) 50 cm
- **16** $1990 1980 + 1970 1960 + \cdots 20 + 10 =$
 - (A) -990
- **(B)** -10
- **(C)** 990
- **(D)** 1000
- **(E)** 1990
- A straight concrete sidewalk is to be 3 feet wide, 60 feet long, and 3 inches thick. How many cubic yards of concrete must a contractor order for the sidewalk if concrete must be ordered in a whole number of cubic yards?
 - **(A)** 2
- **(B)** 5
- **(C)** 12
- **(D)** 20
- (E) more than 20
- 18 Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have?

- **(A)** 24
- **(B)** 30
- (C) 36
- **(D)** 42
- **(E)** 48

Assume that the planes cutting the prism do not intersect anywhere in or on the prism.

- There are 120 seats in a row. What is the fewest number of seats that must be occupied so the next person to be seated must sit next to someone?
 - **(A)** 30
- **(B)** 40
- **(C)** 41
- **(D)** 60
- **(E)** 119
- 20 The annual incomes of 1000 families range from 8200 dollars to 98000 dollars. In error, the largest income was entered on the computer as 980000 dollars. The difference between the mean of the incorrect data and the mean of the actual data is
 - (A) 882 dollars
- (B) 980 dollars
- (C) 1078 dollars
- (D) 482,000 dollars
- (E) 882,000 dollars
- A list of 8 numbers is formed by beginning with two given numbers. Each new number in the list is the product of the two previous numbers. Find the first number if the last three are shown:

- (A) $\frac{1}{64}$
- (B) $\frac{1}{4}$
- **(C)** 1
- **(D)** 2
- **(E)** 4
- Several students are seated at a large circular table. They pass around a bag containing 100 pieces of candy. Each person receives the bag, takes one piece of candy and then passes the bag to the next person. If Chris takes the first and last piece of candy, then the number of students at the table could be
 - **(A)** 10
- **(B)** 11
- **(C)** 19
- **(D)** 20
- **(E)** 25
- The graph relates the distance traveled [in miles] to the time elapsed [in hours] on a trip taken by an experimental airplane. During which hour was the average speed of this airplane the largest?

(A) first (0-1)

(E) last (11-12)

Three \triangle 's and a \diamondsuit will balance nine \bullet 's. One \triangle will balance a \diamondsuit and a \bullet .

(B) second (1-2)

(C) third (2-3)

(D) ninth (8-9)

How many \bullet 's will balance the two \diamondsuit 's in this balance?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

AoPS Community 1990 AMC 8

25 How many different patterns can be made by shading exactly two of the nine squares? Patterns that can be matched by flips and/or turns are not considered different. For example, the patterns shown below are not considered different.

(A) 3

(B) 6

(C) 8

(D) 12

(E) 18

These problems are copyright © Mathematical Association of America (http://maa.org).