

Hartmut Häffner

Department of Physics, University of California, Berkeley, USA and Institute for Quantum Optics and Quantum Information, Innsbruck

- Introduction
- Ion-wire interaction
- Decoherence sources
- First experiments
- Plans & vision
- Conclusions

Two trapped ions ...

Two trapped ions + a wire

Transport of quantum information

No trace of the quantum information should remain in the wire

super conducting wire

Two trapped ions + an ordinary wire

Applications

Physics:

- Decoherence in charge transport
- Wire mediated laser cooling to a few μK
- Cooling of LC resonators

Heinzen and Wineland, PRA 47, 2977 (1990).

Technology:

- Scalable quantum computing with trapped ions/electrons
- Hybrid quantum computing
- Quantum detectors

- Introduction
- Ion-wire interaction
- Decoherence sources
- Experiments
- Plans & vision
- Conclusions

Wiring up ions

with
$$I = \frac{q}{D}\dot{x}$$
, $L_{\rm ion} = \frac{mD^2}{q^2}$, $C_{\rm ion} = \frac{1}{\omega^2 L_{\rm ion}}$

Energy exchange rate:

$$rac{1}{T}=rac{1}{2\pi}rac{q^2}{mD^2}rac{1}{\omega}rac{1}{C_{
m wire}}$$

D.J. Wineland and H.G. Dehmelt, J. Appl. Phys **46**, 919 (1975).

D.J. Heinzen and D.J. Wineland, PRA 47, 2977 (1990).

Experimental set-up

Some numbers

Projected numbers:

$$D_{\rm eff} = 3.6 \times 50 \ \mu m$$

$$\omega = 2\pi \times 500 \text{ kHz}$$

$$C_{\text{vire}} = 6 \text{ fF } (I_{\text{vire}} = 0.5 \text{mm})$$

$$\gamma = 2\pi \times 100 \text{ Hz}$$

Some numbers

Current numbers:

$$D_{\rm eff} = 3.6 \times 300 \ \mu m$$

$$\omega = 2\pi \times 500 \text{ kHz}$$

$$C_{\text{vire}} = 120 \text{ fF } (I_{\text{vire}} = 1 \text{ cm})$$

 γ would be $2\pi \times 0.14$ Hz

Projected numbers:

$$D_{\rm eff} = 3.6 \times 50 \ \mu m$$

$$\omega = 2\pi \times 500 \text{ kHz}$$

$$C_{\text{vire}} = 6 \text{ fF } (I_{\text{vire}} = 0.5 \text{mm})$$

$$\gamma = 2\pi \times 100 \text{ Hz}$$

- Introduction
- Ion-wire interaction
- Decoherence sources
- Experiments
- Plans & vision
- Conclusions

Coupling

with
$$I=\frac{q}{D}\dot{x}$$
 , $L_{\rm ion}=\frac{mD^2}{q^2}$, $C_{\rm ion}=\frac{1}{\omega^2L_{\rm ion}}$

Energy exchange rate:

$$rac{1}{T}=rac{1}{2\pi}rac{q^2}{mD^2}rac{1}{\omega}rac{1}{C_{
m wire}}$$

D.J. Wineland and H.G. Dehmelt, J. Appl. Phys **46**, 919 (1975).

D.J. Heinzen and D.J. Wineland, PRA 47, 2977 (1990).

Dissipation in the wire

Trap parameters: $\omega = 2\pi \cdot 500 \text{ kHz}$, $D = 3.6 \cdot 50 \mu \text{m}$, $R = 0.1 \Omega$

Induced current: $I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16}\,A$ Dissipation rate for motional quantum: $\gamma = \frac{I^2R}{\hbar\omega} \approx 10^{-6}\,\frac{1}{s}$

But what about Johnson noise?

Dissipation in the wire

Trap parameters: $\omega = 2\pi \cdot 500 \text{ kHz}$, $D = 3.6 \cdot 50 \mu \text{m}$, $R = 0.1 \Omega$

Induced current:
$$I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16} A$$

Induced current: $I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16}\,A$ Dissipation rate for motional quantum: $\gamma = \frac{I^2R}{\hbar\omega} \approx 10^{-6}\,\frac{1}{s}$

Johnson noise heating

Heating rate :
$$\gamma_{\rm J}=\frac{P_{\rm J}}{\hbar\omega}=\frac{k_{\rm B}T\gamma}{\hbar\omega}\approx 14\frac{1}{s}$$

Three coupled harmonic oscillators:

$$|1,0,0\rangle$$
 $|0,1,0\rangle$ $|0,0,1\rangle$

Three coupled harmonic oscillators:

Anything else?

Anomalous heating

From: L. Deslauriers et al., PRL 97, 103007 (2006).

Projected numbers

• Trap size: \sim 50 μ m, trap distance 500 μ m

• Induced current: ~10⁻¹⁶ A

• Coupling time: ~10 ms

• Wire resistivity: 1 Ω

=> Time scales for decoherence:

Dissipation of the induced current in the wire	10 ⁵ s
Johnson noise heating at 300 K	100 ms
Anomalous heating at 300 K	???

- Introduction
- Ion-wire interaction
- Decoherence sources
- Experiments
- Plans & vision
- Conclusions

Experimental set-up

Experimental set-up

Ion height $\approx 220~\mu m$

 $\Omega_{\mbox{\tiny FE}} \approx 2\pi \cdot 15 \mbox{ MHz}$

 $V_{\text{FF}} \approx 100 \text{ V}$

 $V_{DC} < 10 \text{ V}$

 $\omega_{\text{H}} \approx 2\pi \cdot 1.3 \text{ MHz}$

 $\omega_{_{V}}\approx 2\pi\cdot 1.5~\text{MHz}$

 $\omega_{\text{A}} \approx 2\pi \cdot 300 \text{ kHz}$

Trap fabrication

N. Daniilidis *et.al.* in preparation, *Collaboration with A. Wallraff, ETH, Zürich*

Experimental set-up

Laser cooling and detection: 397nm and 866nm laser

Gold on sapphire microfabricated trap

Wire on translation stage

Experimental set-up

Ion transport

Derived electric stay fields

Heating of the ion motion

Moving the wire closer

Moving the wire in

Moving the wire in

Moving the wire in

- Introduction
- Ion-wire interaction
- Decoherence sources
- Experiments
- Plans & vision
- Conclusions

Enhancing the coupling

Laser cooling a resonator mode

$$T_r = \frac{\gamma_{\text{res}}}{\gamma_{\text{coupling}} \left(1 + \frac{\gamma_{\text{res}}}{\gamma_{\text{coupling}}}\right)} T$$

Example:

$$\gamma_{\rm res} = 2\pi \ 10 \ 1/{\rm s}$$
 (Q= 10 000, ω = 2 π 100 kHz) $\gamma_{\rm cupirg} = 2\pi \ 1000 \ 1/{\rm s}$

=> temperature reduction by two orders of magnitude

Quantum sensors

Quantum sensor

Ultimate control and detection

Hybrid devices

Quantum sensors

Quantum sensor

Ultimate control and detection

Quantum sensors

© Nathan Flowers Jacobs, JILA

See: L. Tian, P. Zoller, PRL 93, 266403 (2004). W. K. Hensinger, PRA 72, 041405R (2005).

A vision

Summary

- Quantum electronics
- Status of the experiments
- Laser cooling of an LC resonator

Challenges for the future

- Connecting the experiments to work!

 Connecting the experiments to work!

 First: get the experiments to work!

 First: detectors