

Reg. No.							9

B.Tech. DEGREE EXAMINATION, MAY 2024

Seventh Semester

18EEE405T -- POWER ELECTRONICS IN RENEWABLE ENERGY SYSTEM

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

 Part - R & Part - C should be answered in answer booklet.

Time: 3	hours			Max. I	Marl	cs: 1	00
		$PART - A (20 \times 1 = 20 Marks)$		Marks	BL	со	PO
		Answer ALL Questions					
1.	For 1	he same size of PV module,I	V is capable of giving	3 1	2	1	1
		power.					
		Dye sensitized (B) Mono cr	ystalline				
		Polycrystalline (D) Thin filr	n				
2.	As to	mperature increases in a PV cell, the open circ	uit voltage	1	2	1	1
		Increases (B) Remains	s constant				
157	(C)	Decreases (D) Increase constant	s to 0.6 V then remains	5		10	
3.	Pitch	angle control in wind turbines is related with		1	2	1	1
	(A)	Blade positioning (B) Nacelle	positioning				
	(C)	Grid synchronization (D) Battery	management system				
4.	The	oss of voltage at no load in a fuel cell is called	as	1	1	1	1
		Resistance loss (B) Capacita	ance loss				
	(C)	Activation loss (D) Mass tra					
5.		T stands for		1	1	2	1
	, ,	Maximum power point (B) Maximu tracking tracking					
	(C)	Maximum point potential (D) Maximut tracking transfer	ım power potentia	1			
6.	A 12	V, 7 Ah battery can provideA for	half an hour.	1	2	2	1
	(A)	7 (B) 21					
	(C)	3.5 (D) 14					
7.		ery storage will be a part of		1	. 2	2	1
	(A)		nnected PV system				
	(C)	Non isolated PV system (D) Transfo	rmerless PV system				

8.	. In a boost converter, the output voltage equation is given by (A) $V_0 = V_{in}.S$ (B) $V_0 = \frac{V_{in}}{S-1}$	1	1	2	
	(A) $V_0 = V_{in}.\mathcal{S}$ (B) $V_0 = \frac{V_{in}}{\delta - 1}$ (C) $V_0 = \frac{V_{in}}{1 - \delta}$ (D) $V_0 = \frac{V_{in}}{\delta}$				
9.	. Yaw control is relevant to changing the angles of	± 1	1	3	1
10.	. The speed of wind can be measured using (A) Fluke speedometer (B) Anemometer (C) Pyranometer (D) Heliometer	1	1	3	1
11.	During the generating mode in an induction generator, the slip is (A) Zero (B) Negative (C) Positive (D) Infinity	1	2	3	1
12.	In a horizontal axis machine, for high power generation, the wind spee range need to be	d ¹	1	3	1
	(A) 20-30 m/s (B) 15-25 m/s (C) 10-15 m/s (D) 25-35 m/s	а г			
13.	Which of the following is continuously replaced in a fuel cell? (A) Electrolyser (B) Oxidiser (C) Electrodes (D) Catalysts	1	1	4	1
14.	Among the following is not a fuel cell. (A) Methyl oxygen alcohol cell (B) Hydrogen oxygen cell (C) Propare oxygen cell (D) Hexanone oxygen cell	1	1	4	1
15.	The standard emf in a hydrogen-oxygen fuel cell is (A) 1.86 (B) 0.58 (C) 2.54 (D) 1.23	1	1	4	1
16.	Fuel cell usesas a fuel in most cases. (A) Oxygen (B) Propare (C) Hydrogen (D) Hexanone	1	1	4	1
17.	To get a constant DC bus voltage in a hybrid renewable system is mandatory. (A) Wind turbine (B) Battery storage (C) Photovoltaic (D) Geothermal	, 1	2	5	2
18.	For synchronizing renewable sources with gridshould ge matched. (A) V, f, ϕ (B) I, ϕ , f (C) V, I, f (D) f, V, δ	t ¹	1	5	1

19.	Hybrid system improves the		1	2	5	1
	(A) Power quality (B) Reliability					
	(C) Harmonics (D) Surge impact					
20.	Diesel generators are hybridized with PV system and here the power delivery is ensured by	e optimized	I	2	5	1
	(A) The grid tie inverter in PV (B) The grid tie inverter	er in diesel				
	system generator					
	(C) The governor in diesel (D) Net metering concep generator	t				
	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions		Marks	BL	co	PO
21	Duran the name flow showed in a DV and tied exetem wi	th natmatar	4	1	1	1
21.	Draw the power flow channels in a PV grid tied system wijnstalled.	in netmeter	ė	•	•	•
22.	A PV panel is of 200 W. Draw a PV system layout for 2kW.	The inverter	4	2	2	1
assist only series parallel connection.						
23	Compare DFIG with IG.		4	1	3	1
ĻJ.	55. Compare Di 16 wan 16.					
24.	24. Explain the working of a hydrogen energy fuel cell system.		4	1	4	1
25.	Discuss flux additive dc-dc converter.	6	4	1	5	I
26.	Assume renewable sources like biomass, PV, wind, fuel cell, sources may be preferably blended for hybrid renewable so stand alone systems. Justify.		4	2	5	1
27.	Assume 3 panels are connected in series. Each panel is of 200 10 I _{mp}), 20 W (50 V _{mp} , 4 I _{mp}), 200 W(40 V _{mp} , 5 I _{mp}). What cumulative voltage, current and power? Justify the answer.		4	2	2	2
	PART - C (5 × 12 = 60 Marks) Answer ALL Questions		Marks	BL	CO	PO
28. a.	Discuss in detail the renewable energy scenario in India. Wit date. Write about the measures taken to mitigate global climate		12	1	1	1
	(OR)					
b.	Elaborate the following		12	1	1	1
	(i) Photovoltaic power system with net metering(ii) Site selection considerations for wind turbine					
	(ii) Site selection considerations for which turome					
29. a.	A PV panel of 100W(20V _{mp} , 5I _{mp}) need to charge a battery of 12 V, 10 Ah. Construct a suitable MPPT charging circuit and explain its functionalities.			2	2	1
	(OR)					
	(~~~)					

Page 3 of 4

23MF7/18EEE405T

b.	Compare isolated and non isolated dc-dc converters for PV aided applications with necessary circuits.		2	2	I
30. a.	Discuss how active and reactive injection happens in DFIG aided grid tied WECs.	12	1	3	1
	(OR)				
b.	Describe the following (i) Working of horizontal axis wind turbine with yaw control (ii) Matrix converter	6 _.	1	3	1
31. a.	With a flow chart, explain the power tracking schemes in fuel cell systems.	12	1	4	1
b.	(OR) Explain with necessary diagrams, the working of high temperature fuel cell power system.	12	I	4	1
32. a.	What is multiport converter? Apply a multiport converter and explain its working for a PV, fuel cell and battery hybrid sources system.	12	1	5	1
b.	(OR) With relevant diagrams, explain any five power quality issues pertaining to grid tied hybrid renewable energy system.	12	1	5	1

* * * * *

23MF7/18EEE405T