Analysis of

June 23, 2018

```
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
## Loading required package: tidyr
## Loading required package: knitr
## Loading required package: ggplot2
## Loading required package: maps
## Loading required package: RColorBrewer
## Loading required package: summarytools
## Loading required package: magrittr
## Attaching package: 'magrittr'
## The following object is masked from 'package:tidyr':
##
##
       extract
## Loading required package: stargazer
##
## Please cite as:
  Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics Tables.
   R package version 5.2. http://CRAN.R-project.org/package=stargazer
```

Import Breweries Data

#print the summary in a way that it doesn't look like vomit
kable(brewery_summary_raw, digits = 2)

					_	
State	count	min	max	mean	median	sd
AK	7	103	558	366.14	454.0	167.33
AL	3	287	479	393.00	413.0	97.55
AR	2	140	260	200.00	200.0	84.85
AZ	11	31	550	306.36	233.0	191.48
CA	39	4	556	281.92	311.0	178.40
CO	47	7	552	320.13	387.0	168.49
CT	8	90	513	271.88	242.5	162.87
DC	1	228	228	228.00	228.0	NaN
DE	2	317	540	428.50	428.5	157.68
FL	15	68	528	356.07	379.0	135.54
GA	7	50	476	325.43	401.0	158.69
HI	4	204	440	306.25	290.5	120.36
IA	5	209	483	399.80	469.0	116.69
ID	5	170	314	264.20	308.0	65.98
IL	18	41	553	152.44	70.5	143.05
IN	22	17	507	128.82	27.5	147.27
KS	3	46	501	277.00	284.0	227.58
KY	4	2	389	138.75	82.0	171.74
LA	5	153	554	337.20	270.0	193.96
MA	23	3	512	277.52	294.0	131.19
MD	7	69	522	253.86	256.0	186.93
ME	9	43	503	303.78	318.0	154.54
MI	32	8	542	169.06	123.5	159.55
MN	12	1	475	186.33	141.0	155.85
MO	9	32	443	224.11	189.0	158.24
MS	2	134	246	190.00	190.0	79.20
MT	9	220	544	444.89	500.0	111.24
NC	19	70	541	333.84	360.0	162.77
ND	1	336	336	336.00	336.0	NaN
NE	5	190	509	340.20	338.0	118.32
NH	3	48	548	235.33	110.0	272.55
NJ	3	218	282	241.00	223.0	35.59
NM	4	266	444	359.00	363.0	76.82
NV	2	234	531	382.50	382.5	210.01
NY	16	47	557	360.56	336.5	155.06
ОН	15	92	435	211.07	184.0	118.76
OK	6	183	506	326.33	349.0	122.13
OR	29	81	495	285.45	207.0	132.74
PA	25	44	546	291.40	323.0	143.94
RI	5	87	380	198.60	144.0	126.79
\overline{SC}	$\stackrel{\circ}{4}$	6	519	289.25	316.0	219.07
$\overline{\mathrm{SD}}$	1	213	213	213.00	213.0	NaN
TN	3	240	520	357.67	313.0	145.25
TX	28	30	471	210.32	186.5	124.15
UT	4	160	400	307.00	334.0	105.89
VA	16	51	456	294.62	325.5	126.02
VT	10	42	502	276.50	274.5	117.27
	10		5 5 2			

count	\min	max	mean	median	sd
23	171	545	402.78	402.0	101.13
20	33	555	309.65	317.5	172.90
1	157	157	157.00	157.0	NaN
4	80	551	320.25	325.0	220.90
	23 20 1	23 171 20 33 1 157	23 171 545 20 33 555 1 157 157	23 171 545 402.78 20 33 555 309.65 1 157 157 157.00	20 33 555 309.65 317.5 1 157 157 157.00 157.0

```
stargazer::stargazer(brewery_summary_raw, type = , title = "Table
with stargazer")

##

## % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard
## % Date and time: Sat, Jun 23, 2018 - 4:38:22 PM

## \begin{table}[!htbp] \centering

## \caption{Table
## with stargazer}

## \label{}

## \begin{tabular}{@{\extracolsep{5pt}}lccccc}

## \\[-1.8ex]\hline
## \hline \\[-1.8ex]

## Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multi
## \hline \\[-1.8ex]

## \hline \\[-1.8ex]

## \hline \\[-1.8ex]
```

Clean Breweries Data

\end{tabular}
\end{table}

```
# remove punctionation from all columns and trim whitespace
breweries_data <- as.data.frame(</pre>
                      apply(breweries_data #data set
                             , 2 #apply function column-wise
                             , function(x) trimws(gsub('[[:punct:]]+',' ',x))) #anonymous function to r
                             , stringsAsFactors = FALSE) #do not implicitly convert strings to factors
breweries_data$Name <- as.factor(breweries_data$Name) # convert Name column to factor
breweries_data$Brew_ID <- as.integer(breweries_data$Brew_ID) # convert Brew_ID to integer
# confirm Brew_ID + City + State is a unique key
breweries_summary <-</pre>
  select(breweries_data, Brew_ID, City, State, Name) %>%
  group_by(Name) %>%
  summarize_all(funs(
    count = n_distinct(Brew_ID, City, State))) %>%
  select(Name, Brew_ID_count) %>% # select only Name and Brew_ID_count columns
  arrange(desc(Brew_ID_count)) # sort by Brew_ID_count desc
```

```
# capture potential duplicates
breweries_dups <- filter(breweries_summary, Brew_ID_count > 1) # if Brew_ID_count > 1 then there is a p
# rejoin potential dups to original dataset
breweries_dups <- select(breweries_dups %>% inner_join(breweries_data, by="Name"), -ends_with("_count")
# Fix Errors #
# Fix Brew_ID=378, change City(Menominee -> Menominie)
breweries_dups <- breweries_dups %>%
    mutate(City=replace(City, Brew_ID==378, "Menominie")) %>%
    as.data.frame()
# Fix Brew_ID=96, change State(MA -> MI)
breweries_dups <- breweries_dups %>%
    mutate(State=replace(State, Brew_ID==96, "MI")) %>%
    as.data.frame()
#capture known duplicates
breweries_dups <- breweries_dups %>%
                 group_by(Name, City, State) %>%
                 filter(n()>1)
#create surrogate key for duplicates
breweries_sk <- breweries_dups %>%
                   group_by(Name, City, State) %>%
                   summarize_all(funs(
                     Brew_SK = (sum(Brew_ID)*sum(Brew_ID)),
                     count = n()
                     )) %>% #end summarize_all
                   ungroup() %>%
                   right_join(breweries_dups, by = c("Name", "City", "State")) %>% # rejoin to dupes b
                   select(Brew_ID, Brew_SK)
breweries_data$Brew_ID[(breweries_data$Brew_ID %in% breweries_sk$Brew_ID)] <- breweries_sk$Brew_SK # up
breweries_clean <- distinct(breweries_data, Brew_ID, .keep_all = TRUE) %>% rename(Brewery_Name = Name)
#Check for Outliers
#Impute missing values
summary(breweries_clean)
##
      Brew ID
                                         Brewery_Name
                                                          City
## Min. :
                1.0 Blackrocks Brewery
                                              : 2
                                                     Length:555
## 1st Qu.: 143.5 Blue Mountain Brewery
                                               : 2
                                                    Class :character
                                                     Mode :character
## Median : 282.0 Oskar Blues Brewery
                                               : 2
## Mean : 1627.3 Otter Creek Brewing
                                               : 2
## 3rd Qu.: 421.5 Sly Fox Brewing Company : 2
```

```
:697225.0
                        10 Barrel Brewing Company: 1
##
    Max.
##
                        (Other)
                                                  :544
##
       State
  Length:555
##
##
    Class : character
   Mode :character
##
##
##
##
##
# See stats.rmd
```

Clean Beer Data

```
beer_data <- read.csv("../data/Beers.csv", header=TRUE)</pre>
head(beer_data)
##
                    Name Beer_ID
                                  ABV IBU Brewery_id
## 1
                            1436 0.050 NA
                Pub Beer
                                                   409
## 2
             Devil's Cup
                            2265 0.066
                                        NA
                                                   178
                            2264 0.071
## 3 Rise of the Phoenix
                                        NA
                                                   178
                Sinister
                            2263 0.090
                                        NA
                                                   178
## 5
           Sex and Candy
                            2262 0.075
                                                   178
                                         NA
## 6
            Black Exodus
                            2261 0.077
                                         NA
                                                   178
##
                              Style Ounces
## 1
                American Pale Lager
                                         12
## 2
            American Pale Ale (APA)
                                         12
## 3
                       American IPA
                                         12
## 4 American Double / Imperial IPA
                                         12
## 5
                       American IPA
                                         12
## 6
                      Oatmeal Stout
                                         12
beer_data$Brewery_id[(beer_data$Brewery_id %in% breweries_sk$Brew_ID)] <- breweries_sk$Brew_SK # updat
## Warning in beer_data$Brewery_id[(beer_data$Brewery_id %in% breweries_sk
## $Brew_ID)] <- breweries_sk$Brew_SK: number of items to replace is not a
## multiple of replacement length
beer_clean <- distinct(beer_data) %>% rename(Brew_ID = Brewery_id, Beer_Name = Name) #
# kable(as.data.frame(summarytools::descr(beer_clean)),digits = 2)
```

Question 1

```
states <- states %>%
    left_join(
        states %>%
        group_by(state) %>%
        summarise_all(funs(n=n())) %>%
        select(state, group_n) %>%
        distinct(state, .keep_all = TRUE)
}

## Joining, by = "state"

breweries_by_state <- select(breweries_clean, Brew_ID, State) %>%
    group_by(State) %>%
    summarise_all(funs(Brewery_count = n()))

# state_ll %>%
    inner_join(states)

kable(as.data.frame(summarytools::descr(breweries_by_state, transpose = TRUE)),digits = 2)
```

	Mean	Std.Dev	Min	Median	Max	MAD	IQR	CV	Skewness	SE.Skewness	Kurtosis	N
Brewery_count	10.88	10.59	1	7	47	5.93	12.5	1.03	1.43	0.33	1.57	

```
freq(breweries_clean$State, order = "freq")
```

```
## Frequencies
## State
## Data frame: h
```

Data frame: breweries_clean

Type: Character

Freq % Valid % Valid Cum. % Total % Total Cum. ## ----- ---- -----## CO 47 8.47 8.47 8.47 8.47 ## CA 39 7.03 15.50 7.03 15.50 ## ΜI 32 5.77 21.26 5.77 21.26 ## OR 29 26.49 5.23 5.23 26.49 ## TX 28 5.05 31.53 5.05 31.53 ## PA25 4.50 36.04 4.50 36.04 ## MA 23 4.14 40.18 4.14 40.18 ## WA 23 4.14 44.32 4.14 44.32 ## IN 22 3.96 48.29 3.96 48.29 ## NC 19 3.42 51.71 3.42 51.71 ## WI 19 3.42 55.14 3.42 55.14 ## IL18 3.24 58.38 3.24 58.38 ## NY 16 2.88 61.26 2.88 61.26 ## VA 16 2.88 64.14 2.88 64.14 ## FL 15 2.70 66.85 2.70 66.85 ## OH 15 2.70 69.55 2.70 69.55 ## ΑZ 1.98 71.53 1.98 71.53 11 ## MN 10 1.80 73.33 1.80 73.33 75.14 75.14 ## VT 10 1.80 1.80

```
76.76
                                                                        76.76
##
             ΜE
                             1.62
                                                        1.62
##
             MO
                     9
                             1.62
                                            78.38
                                                        1.62
                                                                        78.38
                                                                        80.00
##
            MT
                     9
                             1.62
                                            80.00
                                                        1.62
##
             CT
                     8
                             1.44
                                            81.44
                                                        1.44
                                                                        81.44
##
             ΑK
                     7
                             1.26
                                            82.70
                                                        1.26
                                                                        82.70
##
             GA
                     7
                             1.26
                                            83.96
                                                        1.26
                                                                        83.96
##
             MD
                     7
                             1.26
                                            85.23
                                                        1.26
                                                                        85.23
             OK
                     6
                                            86.31
                                                        1.08
                                                                        86.31
##
                             1.08
##
             ΙA
                     5
                             0.90
                                            87.21
                                                        0.90
                                                                        87.21
##
             ID
                     5
                             0.90
                                                        0.90
                                                                        88.11
                                            88.11
##
             LA
                     5
                             0.90
                                            89.01
                                                        0.90
                                                                        89.01
             NE
##
                     5
                             0.90
                                            89.91
                                                        0.90
                                                                        89.91
             R.I
                     5
                                            90.81
                                                                        90.81
##
                             0.90
                                                        0.90
##
             ΗI
                     4
                                            91.53
                                                                        91.53
                             0.72
                                                        0.72
##
             ΚY
                     4
                             0.72
                                            92.25
                                                        0.72
                                                                        92.25
##
             NM
                     4
                             0.72
                                            92.97
                                                        0.72
                                                                        92.97
##
             SC
                     4
                                            93.69
                                                        0.72
                                                                        93.69
                             0.72
##
             UT
                     4
                             0.72
                                            94.41
                                                        0.72
                                                                        94.41
##
             WY
                     4
                             0.72
                                            95.14
                                                        0.72
                                                                        95.14
                     3
##
             AL
                             0.54
                                            95.68
                                                        0.54
                                                                        95.68
##
             KS
                     3
                             0.54
                                            96.22
                                                        0.54
                                                                        96.22
##
             NH
                     3
                             0.54
                                            96.76
                                                        0.54
                                                                        96.76
                                            97.30
                                                                        97.30
##
             NJ
                     3
                             0.54
                                                        0.54
##
             TN
                     3
                             0.54
                                            97.84
                                                        0.54
                                                                        97.84
##
                     2
                             0.36
                                            98.20
                                                        0.36
                                                                        98.20
             AR
##
            DE
                     2
                             0.36
                                            98.56
                                                        0.36
                                                                        98.56
##
             MS
                     2
                             0.36
                                            98.92
                                                        0.36
                                                                        98.92
##
             NV
                     2
                             0.36
                                            99.28
                                                        0.36
                                                                        99.28
##
             DC
                     1
                             0.18
                                            99.46
                                                        0.18
                                                                        99.46
                                            99.64
                                                                        99.64
##
             ND
                     1
                             0.18
                                                        0.18
##
             SD
                     1
                             0.18
                                            99.82
                                                        0.18
                                                                        99.82
##
             WV
                     1
                             0.18
                                           100.00
                                                        0.18
                                                                       100.00
##
           <NA>
                     0
                                                        0.00
                                                                       100.00
##
         Total
                   555
                           100.00
                                           100.00
                                                      100.00
                                                                       100.00
#map of breweries by state
ggplot(data = breweries_by_state %>%
  inner_join(state_ll, by=c("State" = "Abbr")) %>%
  inner join(states)) +
```

```
#map of breweries by state
ggplot(data = breweries_by_state %>%
  inner_join(state_ll, by=c("State" = "Abbr")) %>%
  inner_join(states)) +
  geom_polygon(aes(x = long, y = lat, group=group, fill=Brewery_count), color = "black") +
  #geom_text(aes(x = long, y = lat, label = as.character(Brewery_count), color = "black")) +
  coord_fixed(1.3) +
  guides(alpha=FALSE)
```

```
## Warning: Column `State`/`Abbr` joining character vector and factor,
## coercing into character vector
## Joining, by = "state"
```


Question 2

Question 3

```
# Number of nulls in each column
merged_data %>%
   select_if(function(x) any(is.na(x))) %>%
   summarise_all(funs(sum(is.na(.))))

## ABV IBU
## 1 62 1005
#TODO: add plot?
```

Question 4

```
IBU
##
       State
                   ABV
               Min.
                     :0.04000
                                      :32.00
## AK
         : 1
                               Min.
               1st Qu.:0.05400
                               1st Qu.:33.88
## AL
         : 1
## AR
         : 1
               Median :0.05550 Median :39.75
## AZ
         : 1
               Mean :0.05514
                               Mean :42.25
                               3rd Qu.:48.12
## CA
          : 1
               3rd Qu.:0.05800
## CO
         : 1
               Max.
                     :0.06250 Max. :57.50
## (Other):45 NA's
                     :18
                               NA's
                                      :47
```

kable(as.data.frame(summarytools::descr(beer_clean)),digits = 2)

	Beer_ID	ABV	IBU	Brew_ID	Ounces
Mean	1431.11	0.06	42.71	1772.99	13.59
Std.Dev	752.46	0.01	25.95	31761.76	2.35
Min	1.00	0.00	4.00	1.00	8.40
Median	1453.50	0.06	35.00	207.00	12.00
Max	2692.00	0.13	138.00	697225.00	32.00
MAD	934.78	0.01	25.20	194.22	0.00
IQR	1267.50	0.02	43.00	273.50	4.00
CV	1.90	4.41	1.65	0.06	5.78
Skewness	-0.12	0.96	0.79	21.78	2.04
SE.Skewness	0.05	0.05	0.07	0.05	0.05
Kurtosis	-1.09	1.14	-0.14	473.88	9.01
N.Valid	2410.00	2348.00	1405.00	2410.00	2410.00
Pct.Valid	100.00	97.43	58.30	100.00	100.00

```
merged_by_state %>% na.omit(IBU)
```

```
## # A tibble: 4 x 3
##
    State
             ABV IBU
    <fctr> <dbl> <dbl>
##
## 1 MS 0.0580 45.0
## 2 ND
          0.0500 32.0
## 3 NJ
          0.0460 34.5
## 4 WV
           0.0620 57.5
#MEDIAN
ggplot(merged_by_state, aes(x=State, y=ABV)) +
 geom_bar(stat = "identity", position = "dodge") +
 ylim(0, .075) +
 theme(text = element_text(size=10),
       axis.text.x = element_text(angle=90, hjust=1))
```

Warning: Removed 18 rows containing missing values (geom_bar).

Question 5

Warning: Removed 62 rows containing non-finite values (stat_boxplot).

Warning: Removed 1005 rows containing non-finite values (stat_boxplot).


```
max_abv <- (select(merged_data, State, ABV) %>%
                 group_by(State) %>%
                 #filter(ABV == max(ABV)) %>%
                 arrange(desc(ABV)) %>% #sort by ABV
                 filter(row_number() == 1))[1,] #get first row
max_abv
## # A tibble: 1 x 2
## # Groups: State [1]
    State
            ABV
##
    <chr> <dbl>
          0.128
## 1 CO
max_ibu <- (select(merged_data, State, IBU) %>%
                 group_by(State) %>%
                 #filter(ABV == max(ABV)) %>%
                 filter(row_number() == 1))[1,] #get first row
max_ibu
## # A tibble: 1 x 2
```

Groups: State [1]

<chr> <int>

IBU

138

State

##

1 OR

Question 6

```
#summaryize ABV
# tidy_summary <- tidy(summary(merged_data$ABV)) #For some reason this line wont knit
abv_stats <- as.data.frame(t(summary(merged_data$ABV))) %>% #summarize and transpose
            rename("ABV"=Freq, Statistic=Var2) %>%
            select(Statistic, ABV)
abv_stats$ABV <- round(abv_stats$ABV, digits = 3)
abv_stats #TODO: Add IQR, stdev #TODO: Compare to quinton's summary
##
    Statistic
                 ABV
## 1
         Min. 0.001
## 2
     1st Qu. 0.050
## 3
      Median 0.056
         Mean 0.060
## 4
## 5
      3rd Qu. 0.067
## 6
         Max. 0.128
## 7
         NA's 62.000
```

Question 7

```
# fig.height=48
#plot relationshiop of ABV and IBU
#retreive linear model equation -- source(https://stackoverflow.com/questions/7549694/adding-regression
lm_eqn = function(m) {
 1 <- list(a = format(coef(m)[1], digits = 2),</pre>
      b = format(abs(coef(m)[2]), digits = 2),
      r2 = format(summary(m)$r.squared, digits = 3));
  if (coef(m)[2] >= 0) {
   eq <- substitute(italic(y) == a + b \%.% italic(x)*","~~italic(r)^2~"="~r2,1)
   eq <- substitute(italic(y) == a - b \%.% italic(x)*","~~italic(r)^2~"="~r2,1)
  as.character(as.expression(eq));
ggplot(beer_clean, aes(x=ABV, y=IBU)) +
  geom_point() +
 geom smooth(method = "lm") +
 geom_text(aes(x = .02, y = 100, label = lm_eqn(lm(ABV ~ IBU ,beer_clean))), parse = TRUE, color = "re
## Warning: Removed 1005 rows containing non-finite values (stat_smooth).
## Warning: Removed 1005 rows containing missing values (geom_point).
```


Yes, there is a positive relationship between ABV and IBU. #TODO:Add explanation

Appendex

Session Info

```
sessionInfo()
```

```
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 16299)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United States.1252
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
## other attached packages:
## [1] bindrcpp_0.2
                             stargazer_5.2
                                                  magrittr_1.5
```

```
[4] summarytools_0.8.0
                             RColorBrewer_1.1-2
                                                  maps_3.2.0
##
  [7] ggplot2_2.2.1
                             knitr_1.18
                                                  tidyr_0.7.2
## [10] dplyr_0.7.4
                             RevoUtilsMath 10.0.1 RevoUtils 10.0.7
## [13] RevoMods_11.0.0
                             MicrosoftML_9.3.0
                                                  mrsdeploy_1.1.3
## [16] RevoScaleR_9.3.0
                             lattice_0.20-35
                                                   rpart_4.1-11
##
## loaded via a namespace (and not attached):
## [1] purrr_0.2.4
                               pander_0.6.1
                                                       colorspace_1.3-2
##
   [4] htmltools_0.3.6
                               yaml_2.1.16
                                                       CompatibilityAPI_1.1.0
##
  [7] utf8_1.1.2
                               rlang_0.1.6
                                                       pillar_1.0.1
## [10] glue_1.2.0
                               pryr_0.1.3
                                                       matrixStats_0.52.2
## [13] foreach_1.4.5
                               bindr_0.1
                                                       plyr_1.8.4
## [16] stringr_1.2.0
                               munsell_0.4.3
                                                       gtable_0.2.0
## [19] codetools_0.2-15
                               evaluate_0.10.1
                                                       labeling_0.3
## [22] curl_3.1
                               highr_0.6
                                                       Rcpp_0.12.14
## [25] scales_0.5.0
                               backports_1.1.2
                                                       jsonlite_1.5
## [28] rapportools_1.0
                               digest_0.6.13
                                                       stringi_1.1.6
## [31] grid 3.4.3
                               rprojroot_1.3-1
                                                       cli 1.0.0
## [34] tools_3.4.3
                               bitops_1.0-6
                                                       lazyeval_0.2.1
## [37] RCurl_1.95-4.9
                               tibble_1.4.1
                                                       crayon_1.3.4
## [40] pkgconfig_2.0.1
                               assertthat_0.2.0
                                                       rmarkdown_1.8
## [43] iterators_1.0.9
                               R6_2.2.2
                                                       compiler_3.4.3
```