Lecture 03 (More on Definitions and Observations)

- $x \leftarrow S \implies x$ is uniformly chosen from S
- $|C| \ge |M|$ since inverse (partial) function exists
- K is sampled uniformly

1 Relation Between |K| and |M|

- 1. To ensure that the definition of perfect indistinguishability holds, $|\{k_i|enc(m,k_i)=c\}|$ should be independent of m for each c
- 2. Therefore, we should have at least cardinality of the above set times the number of keys as the message space
- 3. In general, we can say that $|K| \ge |M|$
- 4. This is terrible news :(

2 Shannon's OTP's Limitations

- 1. Each key can only be used only once
- 2. Russians used OTP for encryption and this was cracked
- 3. Malleability attacks (why is sir good at remembering names?)
 - can find out \tilde{m}

3 Practical Encryption Schemes - |K| < |M|

- 1. Use a deterministic function such that if input is random, then output "looks" random
- 2. Allow for ϵ error in probability

Above two won't work. Instead, we try to provide security against polynomial time adversaries.

3.1 Security Game

Given two messages m_0, m_1 by adversary, challenger picks a random bit b and a random key k. Challenger gives $enc(m_b, k)$ and the adversary has to identify b 'efficiently' (polynomial time) correctly with probability $\leq \frac{1}{2}$ (only equality will hold otherwise, we can have an adversary which can guess the opposite of an adversary that has < 1/2 leading to contradiction).

4 Questions

- 1. Relation Between |K| and |C| (my thoughts: can't say anything)
- 2. Come up with a definition for two time security