10

What is claimed is:

1. A polymer or copolymer characterized by a repeat unit having the formula:

$$\begin{array}{c} X^{-} \\ \downarrow \\ R_{3} \end{array} \qquad \begin{array}{c} X^{-} \\ \downarrow \\ R_{2} \end{array} \qquad \begin{array}{c} X^{-} \\ \downarrow \\ R_{2} \end{array} \qquad \begin{array}{c} X^{-} \\ \downarrow \\ \end{array} \qquad \begin{array}{c} X^{-} \\ \end{array} \qquad$$

wherein R_1 is a substituted or unsubstituted lower alkylene group; R_2 and R_3 are each independently hydrogen or a substituted or unsubstituted lower alkyl; A is a bond or a substituted or unsubstituted lower alkylene group; and each X^- , separately or taken together, is a physiologically acceptable anion.

2. The polymer or copolymer of Claim 1 wherein the polymer or copolymer is characterized by a repeat unit of formula II, III or IV:

(VII).

10 A pharmaceutical composition comprising a polymer or copolymer characterized by a repeat unit having the formula:

$$\begin{array}{c} X^{-} \\ \star \\ R_{3} \end{array} \qquad \begin{array}{c} X^{-} \\ R_{2} \end{array} \qquad \begin{array}{c} X^{-} \\ R_{2} \end{array} \qquad \begin{array}{c} X^{-} \\ \end{array} \qquad$$

wherein R₁ is a substituted or unsubstituted lower alkylene group; R₂ and R₃ are each independently hydrogen or a substituted or unsubstituted lower alkyl group; A is a bond or a substituted or unsubstituted lower alkylene group and each X̄, separately or taken together, is a physiologically acceptable anion; and a physiologically acceptable diluent or carrier.

4. The pharmaceutical composition of Claim 3 wherein the polymer or copolymer 10 is characterized by repeat units of formula II, III or IV:

5. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 1.

20

- 6. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 2.
- 5 7. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 3.
- 8. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 4.
 - 9. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 1.
 - 10. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 2.

11. A polymer or copolymer characterized by a repeat unit of formula VIIIa and a repeat unit of formula VIIIb:

wherein Y is P or N; R₃ is a substituted or unsubstituted arylene or lower alkylene
25 group, R₄ and R₅ are independently a substituted or unsubstituted aliphatic or aromatic
group; and each X⁻ in the polymer or copolymer, separately or taken together, is a
physiologically acceptable anion.

12. The polymer of copolymer of Claim 11, wherein the polymer or copolymer is characterized by repeat units of the formula:

wherein R_7 is a substituted or unsubstituted lower alkylene group having from 1 to about 24 carbon atoms and each X^- , separately or taken together, is a physiologically acceptable anion.

10 13. The polymer of copolymer of Claim 11 wherein the polymer or copolymer is characterized by repeat units of formula X or XI:

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

10

$$\begin{array}{c|c} X & \\ \\ \downarrow \\ P^{+} & \\ X & \\ \end{array}$$

$$(XI).$$

14. A pharmaceutical composition comprising a physiologically acceptable carrier or diluent and a polymer or copolymer characterized by a repeat unit of formula VIIIa and a repeat unit of formula Vb:

$$* \begin{bmatrix} R_4 & X^- \\ P_+ & R_3 \end{bmatrix} * * \begin{bmatrix} R_4 & X^- \\ P_+ & R_3 \end{bmatrix} * (VIIIa) * (VIIIb)$$

wherein Y is P or N; R_3 is a substituted or unsubstituted arylene or lower alkylene group, R_4 and R_5 are independently a substituted or unsubstituted aliphatic or aromatic group; and each X^- in the polymer or copolymer, separately or taken together, is a physiologically acceptable anion.

15. A pharmaceutical composition comprising a physiologically acceptable carrier or diluent and a polymer or copolymer characterized by a repeat unit of formula IX:

wherein R_7 is a substituted or unsubstituted lower alkylene group having from 1 to about 24 carbon atoms and each X^- , separately or taken together, is a physiologically acceptable anion.

5 16. The pharmaceutical composition of Claim 14 wherein the polymer or copolymer is characterized by repeat units of formula X or XI:

$$\begin{array}{c|c} X & \\ X &$$

17. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 11.

(XI).

15 18. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 12.

- 19. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 13.
- 5 20. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 14.
- 21. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 15.
 - 22. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 16.
 - 23. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 11.

15

- 24. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 12.
- 25 25. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 13.
 - 26. A polymer or copolymer characterized by a repeat unit having the formula:

10

and physiologically acceptable salts thereof, wherein Z is a substituted or unsubstituted lower alkylene or lower alkylene glycol group; x is an integer from 1-4; and y is an integer from 2-5.

(XII)

27. The polymer or copolymer of Claim 26 wherein the polymer and copolymer are characterized by repeat units of formula XIII or XIV:

28. A pharmaceutical composition comprising a physiologically acceptable diluent or carrier and a polymer or copolymer characterized by a repeat unit having the formula:

$$* \frac{1}{z} \left[\begin{array}{c} H \\ N \\ NH \end{array} \right]_{x}$$

$$(XII)$$

or a physiologically acceptable salts thereof, wherein Z is a substituted or unsubstituted lower alkylene or lower alkylene glycol group; x is an integer from 1-4; and y is an integer from 2-5.

29. The pharmaceutical composition of Claim 28 wherein the polymer or copolymer is characterized by repeat units of formula XIII or XIV:

10

5

- 30. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 26 or a pharmaceutically acceptable salt thereof.
- 15 31. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 27 or a pharmaceutically acceptable salt thereof.

- 32. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 28.
- 5 33. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 29.
- 34. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 26 or a pharmaceutically acceptable salt thereof.
 - 35. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 27 or a pharmaceutically acceptable salt thereof.
 - 36. A polymer or copolymer characterized by a repeat unit having the formula:

$$* \left[\begin{array}{c} X^{r} & X \\ \\ N + \\ \end{array}\right] \times (XV).$$

- wherein Y₁ and Y₂ are independently a lower alkylene or lower alkylene glycol group, provided that Y₂ is substituted with two or more alcohol groups; each X⁻, separately or taken together, is a physiologically acceptable anion; and said polymer or copolymer is substantially free of diphenol.
- 25 37. The polymer of Claim 36, wherein said polymer is a homopolymer.

38. The polymer or copolymer of C laim 36 wherein the polymer or copolymer is characterized by repeat units of formula XVI or XVII:

39. A pharmaceutical composition comprising a physiologically acceptable carrier or diluent and a polymer or copolymer characterized by a repeat unit having the formula:

$$\begin{array}{c|c} X & X & X \\ \hline \\ N + & & & \\ \end{array}$$

wherein Y₁ and Y₂ are each independently a substituted or unsubstituted lower alkylene or lower alkylene glycol group; and each X̄, separately or taken together, is a physiologically acceptable anion.

- 40. The pharmaceutical composition of Claim 39, wherein at least one lower alkylene or lower alkylene glycol group represented by Y_1 and Y_2 is substituted.
- 41. The pharmaceutical composition of Claim 39, wherein the polymer or copolymer is characterized by repeat units of formula XVI or XVII:

42. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 36.

15

- 43. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a homopolymer of Claim 37.
- 20 44. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a polymer or copolymer of Claim 38.

20

- 45. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 39.
- 5 46. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 40.
- 47. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 41.
 - 48. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 36.
 - 49. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a homopolymer of Claim 37.

50. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer or copolymer of Claim 38.

25 51. A polymer or copolymer characterized by a repeat unit having the formula:

and physiologically acceptable salts thereof.

10

15

20

52. A pharmaceutical composition comprising a polymer, copolymer or a physiologically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent, wherein the polymer and copolymer are characterized by a repeat unit having the formula:

53. A polymer or copolymer characterized by a repeat unit having the formula:

and physiologically acceptable salts thereof.

54. A pharmaceutical composition comprising a polymer, copolymer or a physiologically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent, wherein the polymer and copolymer are characterized by a repeat unit having the formula:

55. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 52.

10

15

25

56. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer, copolymer or physiologically acceptable salt thereof, wherein the polymer or copolymer is characterized by a repeat unit having the formula:

- 57. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of claim 54.
- 58. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer, copolymer or physiologically acceptable salt thereof, wherein the polymer or copolymer is characterized by a repeat unit having the formula:

59. A pharmaceutical composition comprising a polymer or copolymercharacterized by a repeat unit having the formula:

$$\begin{array}{c} * \\ + \\ N \end{array} \begin{array}{c} X \\ Y \\ N \end{array} \begin{array}{c} X \\ Y \\ X \end{array} \begin{array}{c} X \\ Y \\ X \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y \end{array} \begin{array}{c} X \\ Y \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y \end{array} \begin{array}{c} X \\ Y \\ Y \end{array} \begin{array}{c} X \\ Y$$

and a pharmaceutically acceptable carrier or diluent, wherein each X, separately or taken together, is a pharmaceutically acceptable anion.

15

20

25

- 60. A method of treating a microbial infection in the gastrointestinal tract of a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of claim 59.
- 61. A polymer or copolymer characterized by a repeat unit having the formula:

and physiologically acceptable salts of the polymer and copolymer.

10 62. A pharmaceutical composition comprising a polymer, copolymer or a physiologically acceptable salt thereof, wherein the polymer or copolymer is characterized by a repeat unit having the formula:

and a pharmaceutically acceptable carrier or diluent.

- 63. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of Claim 62.
- 64. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a polymer, copolymer or physiologically acceptable salt thereof, wherein the polymer or copolymer is characterized by a repeat unit having the formula:

10

20

65. A pharmaceutical composition comprising a polymer or copolymer characterized by a repeat unit having the formula:

$$* \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

and a pharmaceutically acceptable carrier or diluent, wherein each X⁻, separately or taken together, is a physiologically acceptable anion.

- 66. A method of treating a microbial infection of the oral mucosa or gastrointestinal tract of a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of claim 65.
- 15 67. A copolymer characterized by a repeat unit having the formula:

(XXIII)

wherein each X⁻, separately or taken together, is a physiologically acceptable anion.

68. A pharmaceutical composition comprising a polymer or copolymer characterized by a repeat unit having the formula:

(XXIII),

and a pharmaceutically acceptable carrier or diluent, wherein each X⁻, separately or taken together, is a physiologically acceptable anion.

5

- 69. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a copolymer of claim 67.
- 10 70. A method of treating a microbial infection in a mammal comprising the step of administering to said mammal a therapeutically effective amount of a pharmaceutical composition of claim 68.
 - 71. A method of inhibiting the growth of a microorganism on a surface comprising the step of contacting said surface with an effective amount of a copolymer of claim 67.
 - 72. A method of preparing an ionene polymer, comprising the step of reacting an α, ω -diaminoalkane, a diepoxide represented by the formula:

wherein k is an integer from 1 to 10, and an acid.

20

15

73. A method of preparing an ionene polymer, comprising the step of reacting an α, ω -alkylenedipiperidine represented by the formula:

wherein k is an integer from 1 to 10 and R_2 and R_3 are each independently hydrogen or a substituted or unsubstituted lower alkyl group, a diepoxide represented by the formula:

wherein k is an integer from 1 to 10, and an acid.

74. A method of preparing an ionene polymer, comprising the step of reacting an α, ω -alkylenedipyridine represented by the formula:

10

5

wherein k is an integer from 1 to 10, a diepoxide represented by the formula:

wherein k is an integer from 1 to 10, and an acid.