Design and Analysis of Algorithms Lecture-5: Quicksort & Linear Time Sorting

Prof. Eugene Chang

Overview

- Quicksort
 - Concept
 - Time Complexity Analysis
- More about sorting
 - Theoretical lower-bound
 - Linear-time sorting algorithms
 - Stability of sorting

 Part of the slides are based on material from Prof. Jianhua Ruan, The University of Texas at San Antonio

Quick sort

- Another divide and conquer sorting algorithm like merge sort
- Anyone remember the basic idea?
- The worst-case and average-case running time?
- Learn some new algorithm analysis tricks

Quicksort

- Main idea:
 - Find a Pivot element
 - Split array into elements less than pivot, equal to pivot, and greater than pivot, called partitioning
 - Recursively sort the pieces

Divide and Conquer

- 1. Pick a pivot element
- 2. Put everything <pivoton the left and everythingpivot on right.
- 3. Recursively Sort the left and right

Quick sort

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partition

- All the action takes place in the partition () function
 - Rearranges the subarray in place
 - End result: two subarrays
 - All values in first subarray ≤ all values in second
 - Returns the index of the "pivot" element separating the two subarrays

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, q+1, r)
```

Initial call: QUICKSORT(A, 1, n)

Idea of partition

• If we are allowed to use a second array, it would be easy

10/7/2015

SVU CS502

Another idea

• Keep two iterators: one from head, one from tail

In-place Partition

Partition In Words

- Partition(A, p, r):
 - Select an element to act as the "pivot" (which?)
 - Grow two regions, A[p..i] and A[j..r]
 - All elements in A[p..i] <= pivot
 - All elements in A[j..r] >= pivot
 - Increment i until A[i] > pivot
 - Decrement j until A[j] < pivot
 - Swap A[i] and A[j]
 - Repeat until i >= j
 - Swap A[j] and A[p]
 - Return j

Note: different from book's partition(), which uses two iterators that both move forward.

Partition Code

```
Partition(A, p, r)
    x = A[p]; // pivot is the first element
    i = p;
    j = r + 1;
    while (TRUE) {
        repeat
            i++;
        until A[i] > x or i >= j;
        repeat
                                             What is the running time of partition()?
            j--;
        until A[j] < x or j < i;
        if (i < j)
            Swap (A[i], A[j]);
        else
                                            partition () runs in \Theta(n) time
            break;
   swap (A[p], A[j]);
   return j;
```

	p							r	
x = 6	6	10	5	8	13	3	2	11	
	i								$oldsymbol{j}$
	6	10	5	8	13	3	2	11	scan
		i					$oldsymbol{j}$		
	6	2	5	8	13	3	10	11	swap
		i					\boldsymbol{j}		
Partition example	6	2	5	8	13	3	10	11	scan
				i		$oldsymbol{j}$			
	6	2	5	3	13	8	10	11	swap
				i		$oldsymbol{j}$			
	6	2	5	3	13	8	10	11	scan
	р			$oldsymbol{j}_{q}$	i			r	
10/7/2015	3	2	5	6 /U CS5	13	8	10	11	final swap

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- Quicksort(A, p, r)

 if p < rthen $q \leftarrow \text{Partition}(A, p, r)$ Quicksort(A, p, q-1)

 Quicksort(A, p, q+1, r)
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

$$T(n) = T(0) + T(n-1) + n$$

$$T(n) = T(0) + T(n-1) + n$$

$$T(n) = T(0) + T(n-1) + n$$

$$T(0)$$
 $T(n-1)$

$$T(n) = T(0) + T(n-1) + n$$

$$T(n) = T(0) + T(n-1) + n$$

$$T(n) = T(0) + T(n-1) + n$$

$$T(0) \qquad (n-1)$$

$$T(0) \qquad (n-2)$$

$$T(0) \qquad T(0)$$

$$T(0)$$

$$T(n) = T(0) + T(n-1) + n$$

$$O\left(\sum_{k=1}^{n} k\right) = O\left(n^{2}\right)$$

$$height = n$$

$$T(0)$$

$$T(0)$$

$$T(n) = T(0) + T(n-1) + n$$

$$\Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^{2})$$

$$height = n$$

$$\Theta(1)$$

$$\Theta(1)$$

$$\Theta(1)$$

$$\Theta(1)$$

$$\Theta(1)$$

$$\Theta(1)$$

Best-case analysis

(For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \log n)$ (same as merge sort)

What if the split is always

$$\frac{1}{10}:\frac{9}{10}$$
?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

T(n)

$$T(\frac{1}{10}n)$$
 $T(\frac{9}{10}n)$

Quicksort Runtimes

- Best-case runtime $T_{\text{best}}(n) \in \Theta(n \log n)$
- Worst-case runtime $T_{worst}(n) \in \Theta(n^2)$
- Worse than mergesort? Why is it called quicksort then?
- Its average runtime $T_{avg}(n) \in \Theta(n \log n)$
- Better even, the expected runtime of randomized quicksort is $\Theta(n \log n)$

Randomized quicksort

- Randomly choose an element as pivot
 - Every time need to do a partition, throw a die to decide which element to use as the pivot
 - Each element has 1/n probability to be selected

```
Rand-Partition(A, p, r)
    d = random();    // a random number between 0 and 1
    index = p + floor((r-p+1) * d);    // p<=index<=r
    swap(A[p], A[index]);
    Partition(A, p, r);    // now do partition using A[p] as pivot</pre>
```

10/7/2015 SVU CS502 33

Running time of randomized quicksort

$$T(n) = \begin{cases} T(0) + T(n-1) + dn & \text{if } 0: n-1 \text{ split,} \\ T(1) + T(n-2) + dn & \text{if } 1: n-2 \text{ split,} \\ \vdots & & \\ T(n-1) + T(0) + dn & \text{if } n-1: 0 \text{ split,} \end{cases}$$

The expected running time is an average of all cases

Expectation
$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + T(n-k-1)) + n$$

10/7/2015

$$\overline{T}(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left(\overline{T}(k) + \overline{T}(n-k-1) \right) + n$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} \overline{T}(k) + n$$

Solving recurrence

- 1. Recursion tree (iteration) method
 - Good for guessing an answer
- 2. Substitution method
 - Generic method, rigid, but may be hard
- 3. Master method
 - Easy to learn, useful in limited cases only
 - Some tricks may help in other cases

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

- 1. Guess the form of the solution:(e.g. using recursion trees, or expansion)
- 2. Verify by induction (inductive step).

Expected running time of Quicksort

$$\overline{T}(n) = \frac{2}{n} \sum_{k=0}^{n-1} \overline{T}(k) + n$$

- Guess $\overline{T}(n) = O(n \log n)$
- We need to show that $T(n) \le cn \log n$ for some c and sufficiently large n
- Use T(n) instead of $\overline{T}(n)$ for convenience

• Fact:

$$T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + n$$

- Need to show: $T(n) \le c n \log(n)$
- Assume: $T(k) \le ck \log(k)$ for $0 \le k \le n-1$
- Proof:

$$T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + n$$

$$\leq \frac{2c}{n} \sum_{k=0}^{n-1} k \log k + n$$

$$\leq \frac{2c}{n} \left(\frac{n^2}{2} \log n - \frac{n^2}{8} \right) + n \quad \text{using the fact that} \qquad \sum_{k=0}^{n-1} k \log k \leq \frac{n^2}{2} \log n - \frac{n^2}{8}$$

$$\leq cn \log n - \frac{cn}{4} + n$$

 $cn \log n$ if $c \ge 4$. Therefore, by defintion, $T(n) = \Theta$ (nlogn)

$$\sum_{k=0}^{n-1} k \lg k = \sum_{k=1}^{n-1} k \lg k$$

$$= \sum_{k=1}^{n/2} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$

$$\leq \sum_{k=1}^{n/2} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$

$$= \sum_{k=1}^{n/2} k \lg k + \lg k \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$

$$= \sum_{k=1}^{n/2} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$\lim_{x\to 0} x \lg x = 0$$

Split the summation for a tighter bound

The lg k in the second term is bounded by lg n

Move the lg n outside the summation

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg (n/2) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k (\lg n - 1) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= (\lg n - 1) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$
Move $(\lg n - 1)$ outside the summation

$$\sum_{k=1}^{n-1} k \lg k \leq \left(\lg n - 1\right) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$
The summation bound so far
$$= \lg n \sum_{k=1}^{\lceil n/2 \rceil - 1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$
Distribute the (\lg n - 1)
$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$
The summations overlap in range; combine them
$$= \lg n \left(\frac{(n-1)(n)}{2}\right) - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$
The Guassian series

$$\sum_{k=1}^{n-1} k \lg k \leq \left(\frac{(n-1)(n)}{2}\right) \lg n - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$
 The summation bound so far
$$\leq \frac{1}{2} \left[n(n-1)\right] \lg n - \sum_{k=1}^{n/2 - 1} k$$
 Rearrange first term, place upper bound on second
$$\leq \frac{1}{2} \left[n(n-1)\right] \lg n - \frac{1}{2} \left(\frac{n}{2}\right) \left(\frac{n}{2} - 1\right)$$
 Guassian series
$$\leq \frac{1}{2} \left(n^2 \lg n - n \lg n\right) - \frac{1}{8} n^2 + \frac{n}{4}$$
 Multiply it all out

$$\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}$$

$$= \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 + \left(\frac{n}{4} - \frac{n}{2} \lg n \right)$$

$$\le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \text{ when } n \ge 2$$
Done! !!

Comparison

	Time complexity	Stable?	In-place?
Merge sort			
Quick sort			
Heap sort			

Comparison

	Time complexity	Stable?	In-place?
Merge sort	Θ (n log n)	Yes	No
Quick sort	Θ(n log n)expected.Θ(n^2) worstcase	No	Yes
Heap sort	Θ (n log n)	No	Yes

More about sorting

- How many sorting algorithms do you know?
- What are their time complexity?
- What's common about them?
- Can we do better than Θ(n log n)?
- Yes and no

Theoretical lower-bound

- Comparison sort: determines the relative order of two elements only by comparison
 - What else can you do ...
 - Text book Ch8.1 shows that the theoretical lower-bound for any comparison-based sorting algorithm is $\Theta(n \log n)$

Lower-bound of comparison-based sort

- Assume an array A with 3 distinct elements, a_1 , a_2 , and a_3
- Use insertion sort
- # comparisons?
- A = [965]
- A = [569]
- A = ...

Lower-bound of comparison-based sort

- Assume all elements are distinct, each comparison has two possible outcomes: a_i < a_j or a_i > a_j
- Based on the outcome, change the relative order of some elements
- Output is a permutation of the input
- A correct sorting algorithm can handle any arbitrary input
- n! possible permutations
- Therefore, at least log(n!) = Θ(nlogn) comparisons in the worst case

10/7/2015

SVU CS502

Sorting in linear time

- Is there a problem with the theory?
- No. We are going to sort without doing comparison
- How is that possible?
- Key: knowledge about the data
 - Example: Almost sorted? All distinct? Many identical ones? Uniformly distributed?
 - The more you know about your data, the more likely you can have a better algorithm

Counting sort

- Knowledge: the numbers fall in a small range
- Example 1: sort the final exam score of a large class
 - 1000 students
 - Maximum score: 100
 - Minimum score: 0
 - Scores are integers
- Example 2: sort students according to the first letter of their last name
 - Number of students: many
 - Number of letters: 26

Counting sort

- *Input*: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- *Output*: *B*[1 . . *n*], sorted.
- Auxiliary storage: C[1..k].
- Not an in-place sorting algorithm
- Requires Θ (n+k) additional storage besides the original array

Intuition

• S1: 100

• S2: 90

• S3: 85

• S4: 100

• S5: 90

• ...

•

... S3 ... S2, S5, ..., S1, S4

Intuition

50 students with score ≤ 75

What is the rank (lowest to highest) for a student with score = 75?

50

200 students with score ≤ 90

What is the rank for a student with score = 90?

200 or 199

Counting sort

```
1. for i \leftarrow 1 to k
do C[i] \leftarrow 0

2. for j \leftarrow 1 to n
 do C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}| 
3. for i \leftarrow 2 to k
 do C[i] \leftarrow C[i] + C[i-1] \quad \triangleright C[i] = |\{\text{key} \leq i\}| 
4. for j \leftarrow n downto 1
 C[A[j]] \leftarrow A[j] 
 C[A[j]] \leftarrow C[A[j]] - 1
```

Counting-sort example

B:

Loop 1: initialization

1. for
$$i \leftarrow 1$$
 to k do $C[i] \leftarrow 0$

2. for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

2. for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{key} = i\}|$

2. for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

2. for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{key} = i\}|$

2. for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{key} = i\}|$

Loop 3: compute running sum

3. for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

Loop 3: compute running sum

3. for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{ \text{key } \le i \}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

Loop 3: compute running sum

3. for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{ \text{key } \le i \}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

4. for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

```
\Theta(k) \qquad \begin{array}{c} \textbf{1. for } i \leftarrow 1 \text{ to } k \\ \textbf{do } C[i] \leftarrow 0 \\ \\ \Theta(n) \qquad \begin{array}{c} \textbf{2. for } j \leftarrow 1 \text{ to } n \\ \textbf{do } C[A[j]] \leftarrow C[A[j]] + 1 \\ \\ \Theta(k) \qquad \begin{array}{c} \textbf{3. for } i \leftarrow 2 \text{ to } k \\ \textbf{do } C[i] \leftarrow C[i] + C[i-1] \\ \\ \textbf{4. for } j \leftarrow n \text{ downto } 1 \\ \textbf{do } B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \\ \\ \end{array}
```

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, theoretical lower-bound sorting takes $\Omega(n \log n)$ time!
- Problem with the theory?

Answer:

- Comparison sorting takes $\Omega(n \log n)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Why this is important? What other algorithms have this property?

Name			Address	
Last	First	Street	City	State
Bayless	Andrew	West Ave	Houston	TX
Benitez	Michael	North Ave	Los Angeles	CA
Chu	Henry	East Ave	San Diego	CA
Dangelo	David	Third St	Detroit	MI
Dawood	Hussam	Lincoln Rd	Detroit	MI
Devineni	Soujanya	Northwestern Ave	Houston	TX
Dunne	Brendan	EAST AVE.	Dallas	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Godfrey	Daryl	MAIN ST	Austin	TX
Guerra	John	DALLAS AVE.	Austin	TX
Guevara	Clovis	University Pkwy	San Antonio	TX
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Mirabal	Renato	FIRST ST	Columbus	ОН
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Moon	Ryan	EAST AVE.	Madison	WI

Name			Address			
Last	First	Street	City	State		
Martinez	Juan	OAK CLIFF	Pheonix	AZ		
Benitez	Michael	North Ave	Los Angeles	CA		
Chu	Henry	East Ave	San Diego	CA		
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA		
Dangelo	David	Third St	Detroit	MI		
Dawood	Hussam	Lincoln Rd	Detroit	MI		
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН		
Mirabal	Renato	FIRST ST	Columbus	ОН		
Bayless	Andrew	West Ave	Houston	TX		
Devineni	Soujanya	Northwestern Ave	Houston	TX		
Dunne	Brendan	EAST AVE.	Dallas	TX		
Edwards	Brian	De Zavala Rd	San Antonio	TX		
Godfrey	Daryl	MAIN ST	Austin	TX		
Guerra	John	DALLAS AVE.	Austin	TX		
Guevara	Clovis	University Pkwy	San Antonio	TX		
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX		
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX		
Honeycutt	Richard	Southwest Ave	San Antonio	TX		
Mayo	Nathan	UTSA BLVD	San Antonio	TX		
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX		
Moon	Ryan	EAST AVE.	Madison	WI		

Name			Address 🕇	
Last	First	Street	City	State
Godfrey	Daryl	MAIN ST	Austin	TX
Guerra	John	DALLAS AVE.	Austin	TX
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Mirabal	Renato	FIRST ST	Columbus	ОН
Dunne	Brendan	EAST AVE.	Dallas	TX
Dangelo	David	Third St	Detroit	MI
Dawood	Hussam	Lincoln Rd	Detroit	MI
Bayless	Andrew	West Ave	Houston	TX
Devineni	Soujanya	Northwestern Ave	Houston	TX
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Benitez	Michael	North Ave	Los Angeles	CA
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Moon	Ryan	EAST AVE.	Madison	WI
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Edwards	Brian	De Zavala Rd	San Antonio	TX
Guevara	Clovis	University Pkwy	San Antonio	TX
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Chu	Henry	East Ave	San Diego	CA

Name		.	Address		
Last	First	Street	City	State	
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН	
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX	
Guerra	John	DALLAS AVE.	Austin	TX	
Edwards	Brian	De Zavala Rd	San Antonio	TX	
Chu	Henry	East Ave	San Diego	CA	
Dunne	Brendan	EAST AVE.	Dallas	TX	
Moon	Ryan	EAST AVE.	Madison	WI	
Mirabal	Renato	FIRST ST	Columbus	ОН	
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA	
Dawood	Hussam	Lincoln Rd	Detroit	MI	
Godfrey	Daryl	MAIN ST	Austin	TX	
Benitez	Michael	North Ave	Los Angeles	CA	
Devineni	Soujanya	Northwestern Ave	Houston	TX	
Martinez	Juan	OAK CLIFF	Pheonix	AZ	
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX	
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX	
Honeycutt	Richard	Southwest Ave	San Antonio	TX	
Dangelo	David	Third St	Detroit	MI	
Guevara	Clovis	University Pkwy	San Antonio	TX	
Mayo	Nathan	UTSA BLVD	San Antonio	TX	
Bayless	Andrew	West Ave	Houston	TX	

Name			Address	
Last	First	Street	City	State
Bayless	Andrew	West Ave	Houston	TX
Benitez	Michael	North Ave	Los Angeles	CA
Chu	Henry	East Ave	San Diego	CA
Dangelo	David	Third St	Detroit	MI
Dawood	Hussam	Lincoln Rd	Detroit	MI
Devineni	Soujanya	Northwestern Ave	Houston	TX
Dunne	Brendan	EAST AVE.	Dallas	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Godfrey	Daryl	MAIN ST	Austin	TX
Guerra	John	DALLAS AVE.	Austin	TX
Guevara	Clovis	University Pkwy	San Antonio	TX
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Mirabal	Renato	FIRST ST	Columbus	ОН
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Moon	Ryan	EAST AVE.	Madison	WI

	Name	*	Address	÷
Last	First	Street	City	State
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Guerra	John	DALLAS AVE.	Austin	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Chu	Henry	East Ave	San Diego	CA
Dunne	Brendan	EAST AVE.	Dallas	TX
Moon	Ryan	EAST AVE.	Madison	WI
Mirabal	Renato	FIRST ST	Columbus	ОН
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Dawood	Hussam	Lincoln Rd	Detroit	MI
Godfrey	Daryl	MAIN ST	Austin	TX
Benitez	Michael	North Ave	Los Angeles	CA
Devineni	Soujanya	Northwestern Ave	Houston	TX
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Dangelo	David	Third St	Detroit	MI
Guevara	Clovis	University Pkwy	San Antonio	TX
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Bayless	Andrew	West Ave	Houston	TX

Name			Address 🕇		
Last	First	Street	City	State	
Guerra	John	DALLAS AVE.	Austin	TX	
Godfrey	Daryl	MAIN ST	Austin	TX	
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН	
Mirabal	Renato	FIRST ST	Columbus	ОН	
Dunne	Brendan	EAST AVE.	Dallas	TX	
Dawood	Hussam	Lincoln Rd	Detroit	MI	
Dangelo	David	Third St	Detroit	MI	
Devineni	Soujanya	Northwestern Ave	Houston	TX	
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX	
Bayless	Andrew	West Ave	Houston	TX	
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA	
Benitez	Michael	North Ave	Los Angeles	CA	
Moon	Ryan	EAST AVE.	Madison	WI	
Martinez	Juan	OAK CLIFF	Pheonix	AZ	
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX	
Edwards	Brian	De Zavala Rd	San Antonio	TX	
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX	
Honeycutt	Richard	Southwest Ave	San Antonio	TX	
Guevara	Clovis	University Pkwy	San Antonio	TX	
Mayo	Nathan	UTSA BLVD	San Antonio	TX	
Chu	Henry	East Ave	San Diego	CA	

Name			Address	
Last	First	Street	City	State
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Benitez	Michael	North Ave	Los Angeles	CA
Chu	Henry	East Ave	San Diego	CA
Dawood	Hussam	Lincoln Rd	Detroit	MI
Dangelo	David	Third St	Detroit	MI
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Mirabal	Renato	FIRST ST	Columbus	ОН
Guerra	John	DALLAS AVE.	Austin	TX
Godfrey	Daryl	MAIN ST	Austin	TX
Dunne	Brendan	EAST AVE.	Dallas	TX
Devineni	Soujanya	Northwestern Ave	Houston	TX
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Bayless	Andrew	West Ave	Houston	TX
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Guevara	Clovis	University Pkwy	San Antonio	TX
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Moon	Ryan	EAST AVE.	Madison	WI

Name			Address	
Last	First	Street	City	State
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Benitez	Michael	North Ave	Los Angeles	CA
Chu	Henry	East Ave	San Diego	CA
Dawood	Hussam	Lincoln Rd	Detroit	MI
Dangelo	David	Third St	Detroit	MI
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Mirabal	Renato	FIRST ST	Columbus	ОН
Guerra	John	DALLAS AVE.	Austin	TX
Godfrey	Daryl	MAIN ST	Austin	TX
Dunne	Brendan	EAST AVE.	Dallas	TX
Devineni	Soujanya	Northwestern Ave	Houston	TX
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Bayless	Andrew	West Ave	Houston	TX
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Guevara	Clovis	University Pkwy	San Antonio	TX
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Moon	Ryan	EAST AVE.	Madison	WI

	Name		Address	·
Last	First	Street	City	State
Bayless	Andrew	West Ave	Houston	TX
Benitez	Michael	North Ave	Los Angeles	CA
Chu	Henry	East Ave	San Diego	CA
Dangelo	David	Third St	Detroit	MI
Dawood	Hussam	Lincoln Rd	Detroit	MI
Devineni	Soujanya	Northwestern Ave	Houston	TX
Dunne	Brendan	EAST AVE.	Dallas	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Godfrey	Daryl	MAIN ST	Austin	TX
Guerra	John	DALLAS AVE.	Austin	TX
Guevara	Clovis	University Pkwy	San Antonio	TX
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Mirabal	Renato	FIRST ST	Columbus	ОН
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Moon	Ryan	EAST AVE.	Madison	WI

Name		*	Address	:
Last	First	Street	City	State
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН
Guerra	John	DALLAS AVE.	Austin	TX
Edwards	Brian	De Zavala Rd	San Antonio	TX
Chu	Henry	East Ave	San Diego	CA
Dunne	Brendan	EAST AVE.	Dallas	TX
Moon	Ryan	EAST AVE.	Madison	WI
Mirabal	Renato	FIRST ST	Columbus	ОН
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA
Dawood	Hussam	Lincoln Rd	Detroit	MI
Godfrey	Daryl	MAIN ST	Austin	TX
Benitez	Michael	North Ave	Los Angeles	CA
Devineni	Soujanya	Northwestern Ave	Houston	TX
Martinez	Juan	OAK CLIFF	Pheonix	AZ
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX
Honeycutt	Richard	Southwest Ave	San Antonio	TX
Dangelo	David	Third St	Detroit	MI
Guevara	Clovis	University Pkwy	San Antonio	TX
Mayo	Nathan	UTSA BLVD	San Antonio	TX
Bayless	Andrew	West Ave	Houston	TX

Name			Address		
Last	First	Street	City	State	
Guerra	John	DALLAS AVE.	Austin	TX	
Godfrey	Daryl	MAIN ST	Austin	TX	
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН	
Mirabal	Renato	FIRST ST	Columbus	ОН	
Dunne	Brendan	EAST AVE.	Dallas	TX	
Dawood	Hussam	Lincoln Rd	Detroit	MI	
Dangelo	David	Third St	Detroit	MI	
Devineni	Soujanya	Northwestern Ave	Houston	TX	
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX	
Bayless	Andrew	West Ave	Houston	TX	
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA	
Benitez	Michael	North Ave	Los Angeles	CA	
Moon	Ryan	EAST AVE.	Madison	WI	
Martinez	Juan	OAK CLIFF	Pheonix	AZ	
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX	
Edwards	Brian	De Zavala Rd	San Antonio	TX	
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX	
Honeycutt	Richard	Southwest Ave	San Antonio	TX	
Guevara	Clovis	University Pkwy	San Antonio	TX	
Mayo	Nathan	UTSA BLVD	San Antonio	TX	
Chu	Henry	East Ave	San Diego	CA	

Name			Address		
Last	First	Street	City	State	
Martinez	Juan	OAK CLIFF	Pheonix	AZ	
Halbeisen	Gerald	FOREST CIRCLE	Los Angeles	CA	
Benitez	Michael	North Ave	Los Angeles	CA	
Chu	Henry	East Ave	San Diego	CA	
Dawood	Hussam	Lincoln Rd	Detroit	MI	
Dangelo	David	Third St	Detroit	MI	
Hohmann	Shawn	COLLEGE PKWY	Cleveland	ОН	
Mirabal	Renato	FIRST ST	Columbus	ОН	
Guerra	John	DALLAS AVE.	Austin	TX	
Godfrey	Daryl	MAIN ST	Austin	TX	
Dunne	Brendan	EAST AVE.	Dallas	TX	
Devineni	Soujanya	Northwestern Ave	Houston	TX	
Modebe	Nnaemeka	RIVERSIDE ST	Houston	TX	
Bayless	Andrew	West Ave	Houston	TX	
Hernandez	Monica	COLLEGE PKWY	San Antonio	TX	
Edwards	Brian	De Zavala Rd	San Antonio	TX	
Hawkins	Richard	RIVERSIDE ST	San Antonio	TX	
Honeycutt	Richard	Southwest Ave	San Antonio	TX	
Guevara	Clovis	University Pkwy	San Antonio	TX	
Mayo	Nathan	UTSA BLVD	San Antonio	TX	
Moon	Ryan	EAST AVE.	Madison	WI	

Stable sort

- Most Θ(n^2) sorting algorithms are stable
 - Standard selection sort is not, but can be made so
- Most Θ(n log n) sorting algorithms are not stable
 - Except merge sort
- Generic way to make any sorting algorithm stable
 - Use two keys, the second key is the original index of the element
 - When two elements are equal, compare their second keys

$$(5, 1), (6, 2), (5, 3), (1, 4), (2, 5), (3, 6), (2, 7), (6, 8)$$

$$(5, 1) < (5, 3)$$

$$(2, 5) < (2, 7)$$

How to sort very large numbers?

Those numbers are too large for the int type. 198099109123518183599 They are represented as strings. 340199540380128115295 384700101594539614696 382408360201039258538 One method: Use comparison-based sorting, but compare 614386507628681328936 strings character by character. 738148652090990369197 987084087096653020299 185664124421234516454 Change if (A[i] < A[j]) to if (compare(A[i], A[j]) < 0)785392075747859131885 Compare(s, t) 530995223593137397354 for i = 1 to length(s) 267057490443618111767 795293581914837377527 if (s[i] < t[i]) return -1; 815501764221221110674 else if (s[i] > t[i]) return 1; 142522204403312937607 return 0; 718098797338329180836 856504702326654684056 What's the cost to compare two strings, each with d characters? 982119770959427525245 528076153239047050820 $\Theta(d)$ Total cost: Θ(d n log n) 305445639847201611168

SVU CS502

478334240651199238019

94

Radix sort

- Similar to sorting address books
- Treat each digit as a key
- Start from the least significant bit

• Use simpler examples:

• Sort the last digit:

		1
2	3	0
1	3 6 3 4 1 7 5 3 8 6 1 6 1 4 8	1
0	3	1
7	4	2
4	1	2
0	1	3
1	7	3
0	5	4
4	3	4
9	3	5
3	8	5
3	6	5
1	1	6
6	6	6
0	1	6
<u>7</u>	4	8
6	8	8

• Sort the second digit:

	1	
4	1	2
0	1	3
1	1	6
0	1	6
2	3	0
0	3	1
4	3	4
9	3	<u>5</u>
7	4	2
7	4	8
0	5	4
1	6	1
3	6	<u>5</u>
6	6	6
1	7	3
3	1 1 1 3 3 3 3 4 4 5 6 6 7 8	5
6	2	2

• Sort the first digit:

0	1	3
0	1	6
0	3	1
0	5	4
1	1	6
1	6	1
1	7	3
2	3	0
3	6	5
3	8	5
4	1	2
4	3	4
6	6	6
6	8	8
7	4	2
7	1 3 5 1 6 7 3 6 8 1 3 6 8 4 4	8
9	3	5

Time complexity

- Sort each of the d digits by counting sort
- Total cost: d(n + k)
 - *k* = 10
 - Total cost: $\Theta(dn)$
- Partition the d digits into groups of 3
 - Total cost: $(n+10^3)d/3$
- We work with binaries rather than decimals
 - Partition d bits into groups of r bits
 - Total cost: $(n+2^r)d/r$
 - Choose r = log n
 - Total cost: dn / log n
 - Compare with *dn log n*
- Catch: radix sort has a larger hidden constant factor

Space complexity

- Calls counting sort
- Therefore additional storage is needed
- Θ(n)