Introduction to the Course

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Example of Time Series: Google Trends

Example of Time Series: Climate Data

Example of Time Series: Quarterly Earnings Data

Example of Multiple Series: Natural Gas and Heating Oil

Goals of Course

- Learn about time series models
- Fit data to a times series model
- Use the models to make forecasts of the future
- Learn how to use the relevant statistical packages in Python
- Provide concrete examples of how these models are used

Some Useful Pandas Tools

Changing an index to datetime

```
df.index = pd.to_datetime(df.index)
```

Plotting data

```
df.plot()
```

• Slicing data

```
df['2012']
```

Some Useful Pandas Tools

Join two DataFrames

```
df1.join(df2)
```

Resample data (e.g. from daily to weekly)

```
df = df.resample(rule='W', how='last')
```

More pandas Functions

• Computing percent changes and differences of a time series

```
df['col'].pct_change()
df['col'].diff()
```

pandas correlation method of Series

```
df['ABC'].corr(df['XYZ'])
```

pandas autocorrelation

```
df['ABC'].autocorr()
```

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Correlation of Two Time Series

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Correlation of Two Time Series

Plot of S&P500 and JPMorgan stock

Correlation of Two Time Series

Scatter plot of S&P500 and JP Morgan returns

More Scatter Plots

• Correlation = 0.9

• Correlation = -0.9

• Correlation = 0.4

• Corelation = 1.0

Common Mistake: Correlation of Two Trending Series

 Dow Jones Industrial Average and UFO Sightings (www.nuforc.org)

- Correlation of levels: 0.94
- Correlation of percent changes: pprox 0

Example: Correlation of Large Cap and Small Cap Stocks

- Start with stock prices of SPX (large cap) and R2000 (small cap)
- First step: Compute percentage changes of both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Example: Correlation of Large Cap and Small Cap Stocks

Visualize correlation with scattter plot

```
plt.scatter(df['SPX_Ret'], df['R2000_Ret'])
plt.show()
```


Example: Correlation of Large Cap and Small Cap Stocks

Use pandas correlation method for Series

```
correlation = df['SPX_Ret'].corr(df['R2000_Ret'])
print("Correlation is: ", correlation)
```

```
Correlation is: 0.868
```

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Simple Linear Regressions

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

What is a Regression?

• Simple linear regression: $y_t = lpha + eta x_t + \epsilon_t$

What is a Regression?

Ordinary Least Squares (OLS)

Python Packages to Perform Regressions

In statsmodels:

```
import statsmodels.api as sm
sm.OLS(y, x).fit()
```

Warning: the order of x and

y is not consistent across packages

• In numpy:

```
np.polyfit(x, y, deg=1)
```

In pandas:

```
pd.ols(y, x)
```

• In scipy:

```
from scipy import stats
stats.linregress(x, y)
```

Example: Regression of Small Cap Returns on Large Cap

Import the statsmodels module

```
import statsmodels.api as sm
```

As before, compute percentage changes in both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Add a constant to the DataFrame for the regression intercept

```
df = sm.add_constant(df)
```

Regression Example (continued)

Notice that the first row of returns is NaN

```
SPX_Price R2000_Price SPX_Ret R2000_Ret

Date
2012-11-01 1427.589966 827.849976 NaN NaN
2012-11-02 1414.199951 814.369995 -0.009379 -0.016283
```

Delete the row of NaN

```
df = df.dropna()
```

Run the regression

```
results = sm.OLS(df['R2000_Ret'],df[['const','SPX_Ret']]).fit()
print(results.summary())
```

Regression Example (continued)

		OLS Regi	ression Re	sults			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Fr	_	es F-sta 18 Prob 55 Log-L: 57 AIC: 55 BIC:	R-squared:	:	0.753 0.753 3829. 0.00 4882.4 -9761.	
	coef	std err	t	P> t	[95.0% Co	nf. Int.]	
const -4.964 SPX_Ret 1.	e-05 1412	0.000 0.018	-0.353 61.877	0.724 0.000	-0.000 1.105	0.000 1.177	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		61.99 0.00 0.20 4.59	00 Jarqu 56 Prob(<pre>Jarque-Bera (JB): Prob(JB):</pre>		1.991 148.100 6.93e-33 131.	

Regression output

- Intercept in results.params[0]
- Slope in results.params[1]

Regression Example (continued)

• Regression output

OLS Regression Results							
Dep. Variable:		R2000 R	et	R-squ	ıared:		0.753
Model:	· · · · · · · · · · · · · · · · · · ·			Adj. R-squared:			0.753
Method: Least Squares			F-statistic:			3829.	
Date: Fri, 26 Jan 2018			Prob	(F-statistic):		0.00	
Time:		13:29:	55	Log-L	.ikelihood:		4882.4
No. Observations:		12	57	AIC:			-9761.
Df Residuals:		12	55	BIC:			-9751.
Df Model:			1				
Covariance Type:		nonrobu	st				
	coef	std err	====	t	P> t	[95.0% Co	nf. Int.]
const -4.964	e-05	0.000		.353	0.724	-0.000	0.000
SPX_Ret 1.	1412	0.018	61	.877	0.000	1.105	1.177
Omnibus:	======	61.9	==== 50	Durbi	in-Watson:	=======	1.991
Prob(Omnibus):		0.0	00	Jarqu	ue-Bera (JB):		148.100
Skew:		0.2	66	Prob((JB):		6.93e-33
Kurtosis:		4.5	95	Cond.	No.		131.
============				=====			

Relationship Between R-Squared and Correlation

- $[\mathrm{corr}(x,y)]^2=R^2$ (or R-squared)
- sign(corr) = sign(regression slope)
- In last example:
 - R-Squared = 0.753
 - Slope is positive
 - \circ correlation = $+\sqrt{0.753}=0.868$

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Autocorrelation

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

What is Autocorrelation?

Correlation of a time series with a lagged copy of itself

Series	Lagged Series		
5			
10	5		
15	10		
20	15		
25	20		
:	:		

- Lag-one autocorrelation
- Also called serial correlation

Interpretation of Autocorrelation

• Mean Reversion - Negative autocorrelation

Interpretation of Autocorrelation

• Momentum, or Trend Following - Positive autocorrelation

Traders Use Autocorrelation to Make Money

- Individual stocks
 - Historically have negative autocorrelation
 - Measured over short horizons (days)
 - Trading strategy: Buy losers and sell winners
- Commodities and currencies
 - Historically have positive autocorrelation
 - Measured over longer horizons (months)
 - Trading strategy: Buy winners and sell losers

Example of Positive Autocorrelation: Exchange Rates

- Use daily Y/\$ exchange rates in DataFrame df from FRED
- Convert index to datetime

```
# Convert index to datetime
df.index = pd.to_datetime(df.index)
# Downsample from daily to monthly data
df = df.resample(rule='M', how='last')
# Compute returns from prices
df['Return'] = df['Price'].pct_change()
# Compute autocorrelation
autocorrelation = df['Return'].autocorr()
print("The autocorrelation is: ",autocorrelation)
```

The autocorrelation is: 0.0567

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

