IPv6

Chapter 13

Success of IPv4

- IPv4 has worked amazingly well for over 30 years
 - Handled many different kinds of networks easily
 - Scaled up from a few networks to millions of networks
 - Accommodated new hardware and software technologies

Mike Meyers' Network+® Guide to Managing and Troubleshooting Network Thy Change from IPv4?

Main motivation is address space exhaustion

- IPv4 has about 4 billion addresses
- However, inefficient use wastes a lot of them
- Wireless devices are becoming big consumers of IP addresses
- Billions of new users around the world
- "Work arounds" like CIDR, NAT and DHCP have conserved IP addresses over the last few years.
- However, we will soon run out of addresses. All CIDR blocks have been allocated

- Next IP is version 6
- Originally known as IP The Next Generation (IPng)
- Version 5 was based on the OSI 7-layer model. It was skipped after a series of mistakes, misunderstandings, and a numbering mix-up

- IPv6 retains many features of IPv4
 - Connectionless delivery
 - Variable size datagram
 - Concepts of most IPv4 options

Changes in IPv6

- Larger addresses (128 bits)
- Fixed size base header for quicker processing
- Variable length extension headers for fragmentation or for other options
- More efficient routing
- Better security and mobility

IPv6 Addresses

- 128 bits or 16 bytes long
- Supports 10³⁸ addresses
- The number of addresses is about the same as the number of grains of sand on Earth
- Each of the 7 billion people on Earth can have 288 addresses

IPv6 Addresses

- Expressing an IPv6 address as dotted decimal is possible, but addresses are too long for easy use
 - 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16
- Instead, use colon hexadecimal notation for a more compact address
 - 0102:0304:0506:0708:090A:0B0C:0D0E:0F10
- 8 fields separated by colons
- Each field represents 16 binary bits (2 bytes)
- Hexadecimal digits (0 .. F)

Binary and Hex

hex	dec	bin	hex	dec	bin
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	4	0100	C	12	1100
5	5	0101	D	13	1101
6	6	0110	E	14	1110
7	7	0111	F	15	1111
			10	16	10000

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks Converting to Binary

 To convert colon hex to binary, convert each hex digit to 4 binary digits using the table on the previous slide.

• 0102:0304:0506:0708:090A:0B0C:0D0E:0F10

0000 0001 0000 0010 0000 1111 0001 0000

 Each binary address must be exactly 128 bits, so do not drop leading zeros.

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networ Converting from Binary

 To convert binary to colon hex, convert each group of 4 binary digits to hexadecimal using the table on the previous slide

Leading Zeros

- Recall that in IPv4 dotted decimal notation, leading zeros in any field can be dropped
- 051.103.000.006 same as 51.103.0.6

(Note that the zero in the middle of the second field cannot be dropped. Note also that there must be 4 fields, so a field that is 000 is represented as 0.)

Leading Zeros

- Similarly, leading zeros in any colon hex field can be dropped
- 2001:0000:0000:3210:0800:200C:00CF:1234
 same as

2001:0:0:3210:800:200C:CF:1234

(Note that the zeros in the middle or ends of fields cannot be dropped. Note also that there must be 8 fields, so a field that is 0000 is represented as 0.)

- String of repeated zeros can be replaced by ::
- Can only be applied once in an address
- Used to further reduce size of addresses and improve ease of use
- FF05:0:0:0:0:0:0:B3 can be compressed to FF05::B3

Show shortest form

- 2340:0:0:0:0:119A:A001:0

2340::119A:A001:0

- 1:2:3:0:0:0:0

1:2:3:: OR 1:2:3::0

 To return to the original form, replace :: with enough zeros so there are 8 colon hex fields

Show original form of

```
- 123::1:2
```

123:0:0:0:0:0:1:2

- CF90:3214::

CF90:3214:0:0:0:0:0:0

- Can only use :: once in an address
- If you use it twice, leads to ambiguous expansion - cannot tell how many zeros to replace each :: with
- FEDC::CF::BA98:1234 (INVALID!)

Is this FEDC:0:0:0:CF:0:BA98:1234

or FEDC:0:0:CF:0:0:BA98:1234

or FEDC:0:CF:0:0:0:BA98:1234?

IPv6 Addresses

- Two parts
 - Prefix identifies the network (similar to net id in IPv4)
 - Suffix identifies a particular computer on the network (similar to host id in IPv4)
- Split between prefix and suffix can be anywhere per the RFC, but all host addresses currently have 64 bits of network prefix and 64 bits of suffix

- 64 bits of host ID can be assigned in several different ways
 - Auto configured from a MAC address to an EUI-64
 - Manually configured
 - Auto generated pseudo-random number (used in newer Windows)

- Extended Unique Identifier, 64 bit
- Created from the 48 bit MAC address

64-Bit IPv6 Modified EUI-64 Interface Identifier

EUI-64 Example

- MAC address is 00-0C-29-53-45-CA
- Remove dashes and split in half

000C29

5345CA

- Add FFEE in the middle 000C29FFE5345CA
- Flip bit 7 (makes the MAC address locally administered instead of globally unique)
 Second hex digit = 0000, so change to 0010 (2 hex)
- 020C29FFFE5345CA
- Rewrite in standard form 020C:29FF:FE53:45CA

Prefixes

- Hosts can have several addresses, each with a different scope:
 - Node Local This host only
 - Link Local this network only
 - Global Unicast Routed through the internet, one sender and one receiver
 - Multicast one sender, many receivers

Address Scope

- Node-local scope
 - This host only
 - Loopback address 00:00:00:00:00:00:00:01or ::1

Address Scope

Link-local scope

- This network only
- Every host has a link-local address
- Similar to IPv4 local addresses, link-local addresses are not meant to be routed
- Intended for local communication
- Prefix is always FE80:0:0:0
- -Ex: FE80::020C:29FF:FE53:45CA

Global Scope

- Global scope
 - Prefix assigned by ISP and distributed by router
- Multi-level hierarchy of addresses
- For example, in a global unicast address for a host:
 - First 48 bits of network prefix assigned by ISP
 - Last 16 bits of network prefix can be used for subnets

Global Routing Prefix (48 bits)	Subnet ID (16 bits)	Suffix (64 bits)
---------------------------------------	------------------------	------------------

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks IPv6 Address Types

- Unicast one source to one destination
- Anycast one source to the one most reachable member of a group
- Multicast one source to many destinations
 - Broadcast is treated as a special case of multicasting.
 - Support for multicasting is a required part of IPv6.

Multi-Cast

- One source to many destinations
- Destination is a set of addresses
- Useful multicast prefixes

- FF02::1 All nodes on a network

FF02::2 All routers on a network

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks

Figure 13.3 Multicast to routers

Anycast

- One source to most reachable member of a group
- "Most reachable" could be closest, fastest response, etc
- All members of an anycast group share a single unicast address
- Routers need to know which member is most reachable
- Example: there are 13 DNS (Domain Name Server) root servers around the world with duplicate information. Anycast will send the request to the closest root server.

- CIDR-type notation can also be used with IPv6 addresses
- IPv6 prefix is similar to the IPv4 netid
- Inumber identifies the length of the prefix
- Ex: 12AB::CD30:0:0:12/48

 prefix is 48 bits, so a mask of 48 consecutive ones will be used

Routing

- IPv6 makes routing easier
- Network ID assigned systematically
- Each router uses a subnet of it's parent router's IP address
- Reduces size and complexity of tables
- IPv6 makes it easier to change IP addresses

Mike Meyers' Network+® Guide to Managing and Troubleshooting Network Metwork Metwo

- When a host boots, it sends out a router solicitation message to find its gateway router
- Router sends the global address prefix to the host
- Host combines this with its suffix (EUI-64 or random) to get global address

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks

Figure 13.4 Getting a global address

Aggregation

- Every router uses a subnet of the next higher router's routes
- Reduces size and complexity of tables
- Gives detailed geographic picture
- IP address shows location
- Too late to do this for IPv4, but part of IPv6

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks Aggregation Example

- Address of a host is 2001:d0be:7922:1:fc2d:aeb2:99d2:e2b4
 - Network prefix is 2001:dObe:7922:1 /64
 - Host got prefix from gateway router
- Gateway router built its prefix from the upstream router's prefix plus a subnet id
 - Upstream router's prefix: 2001:d0be:7922/48
 - 16 bit subnet id added at router
 - Network prefix is thus 2001:dObe:7922:1 /64

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks Aggregation Example

- Upstream router built its prefix from it's parent router's prefix plus a subnet id
 - Parent router's prefix is 2001:D0BE /32
 - Parent routers prefix assigned by IANA
 - 16 bit subnet id added at router
 - Network prefix of parent router is thus 2001:dObe:7922/48

Aggregation in IPv6

Figure 13.9 Adding the first prefix

Figure 13.10 Adding the second prefix

Figure 13.11 New IP address updated downstream

IPv6 Datagram

0 4		1	6	24	31
VERS TRAF	FIC CLASS	FLOW LABEL			
PAYLO	PAYLOAD LENGTH		NEXT HEADER	HOP LIMIT	
SOURCE ADDRESS —					
	DESTINA	ATIOI	N ADDRESS	_	

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks Base Header Fields

- VERS Version of the IP protocol used to create this datagram 6 for IPv6
- TRAFFIC CLASS Same as IPv4 service class field - priorities, differentiated services

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks Base Header Fields

FLOW LABEL

- A flow is a path through the internet along which intermediate routers guarantee a specific quality of service
- Flow label allows router to associate a particular datagram with a flow
- Ex: A video transmission can use a high-bandwidth flow

Mike Meyers' Network+® Guide to Managing and Troubleshooting Network Base Header Fields

- PAYLOAD LENGTH Number of bytes in datagram excluding the base header
- NEXT HEADER Type of information in the next section of the datagram
- HOP LIMIT Similar to Time To Live in IPv4
- SOURCE and DESTINATION ADDRESSES 128 bits each

Mike Meyers' Network+® Guide to Managing and Troubleshooting Networks Metworks Managing and Troubleshooting Networks Metworks Metwor

- Note there is no checksum as there is in IPv4
- Speeds up routing
- Must depend on the frame CRC in the data link layer and the header checksum at the transport layer (TCP or UDP) for error detection

IPv6 Next Header

Base Header	TCD Sogmont
Next = TCP	TCP Segment

(a)

Base Header	Route Header	TCD Sogmont
Next = Route	Next = TCP	TCP Segment

(b)

Base Header	Route Header	Auth Header	TCP Segment
Next = Route	Next = Auth	Next = TCP	1 Cr Segment

(c)

Mike Meyers' Network+® Guide to Managing and Troubleshooting Network Pv6 Extension Headers

- Hop-by-Hop Options Options to be used only by routers
- Destination Options Options to be used only by the final destination
- Routing similar to Loose Source Routing Option in IPv4
- Fragment Used for datagram fragmentation
- Encapsulated Security Payload and Authentication - both used for security

Mike Meyers' Network+® Guide to Fragment Extension Header Managing and Troubleshooting Networks Format

0	8 1	6	29	31	
NEXT HEADER	RESERVED	FRAGMENT OFFSET	RS	M	
DATAGRAM IDENTIFICATION					

Mike Meyers' Network+® Guide to Fragment Extension Header Managing and Troubleshooting Networks Fields

- NEXT HEADER Type of information in the next section of the datagram
- FRAGMENT OFFSET Just as in IPv4.
 Number of bytes between the start of this fragment and the start of the datagram. In 8 byte units
- M More fragments flag
- DATAGRAM IDENTIFICATION Similar to IPv4.
 All fragments from the same datagram will have the same identification

Enabling IPv6

- All modern standard operating systems support
 IPv6
- Check to see if IPv6 is running
 - IPCONFIG in Windows
 - IFCONFIG in Linux or Mac OS X

Moving to IPv6

Change is Difficult

- IP is central to all Internet communication
- Changing IP requires a change to the entire Internet

IPv4 and IPv6

- What is *not* ready for IPv6?
 - Some home routers
 - Some Internet routers and servers
- What is ready for IPv6?
 - All recent operating systems
 - All root DNS servers
 - All tier-one ISP routers
 - Many big sites, such as Google and Facebook

- For a while, IPv4 and IPv6 will co-exist.
- Use dual-stack devices to run both protocols simultaneously
- Use translation programs so that IPv4-only devices can communication with IPv6-only devices
- Use tunnels to send IPv6 packets through IPv6ignorant routers

World IPv6 Day

- June 8, 2011
- Many ISPs and web sites (Google and Facebook for example) switched to IPv6 for a 24 hour test
- Surprisingly successful very few problems

World IPv6 Launch

- June 6, 2012
- Global permanent deployment of IPv6
 - Participating major websites (Google, Facebook, etc)
 permanently enabled IPv6
 - Participating ISPs offer IPv6 connectivity
 - Router manufacturers offering routers enabled for IPv6 by default
- As of this date, about 3% of internet traffic is IPv6
 - 51% of Google Fiber traffic is IPv6 and 39% of Verizon
 Wireless traffic is IPv6
 - About 20% of traffic to Google is IPv6

- IPv6 is here, really!
 - IPv6 is happening now
 - IPv4 addresses are running out
 - Knowing IPv6 important to your future