Estudo de Caso 03: Comparison of Rising Drilling Configurations

Equipe 04 24 de Junho de 2017

Coordenador: Relator: Verificador: Monitor:

1. Descrição do Problema

Descrever problema, parâmetros, etc.

- Nível de significância: $\alpha = 0.05$;
- Tamanho de efeito de interesse prático para os ganhos de tempo: $d_t^{\star} = 1.0$;
- Margem de não-inferioridade para acurácia: $\delta^*_{acc}=0.05;$
- Potência desejada: $\pi = 0.8$.

2. Planejamento Experimental

Os dados experimentais utilizados foram obtidos através de simulação, por meio de um aplicativo web. Os dados gerados informam o BLA BLA BLA. A data de nascimento do segundo membro mais jovem da equipe (15/10/1992) é parâmetro utilizado como semente do gerador de números da simulação. O número de instâncias utilizadas e de execuções por instâncias deve ser selecionado no aplicativo.

2.1 Análise de Variância

Discutir ANOVA

2.2 Comparações Múltiplas

Discutir análise one-vs-all necessária depois do anova, se diferença for verificada.

Comentar alpha ajustado

2.3 Definição do Tamanho Amostral

Tamanho amostral anova:

Discutir ideia bla bla

$$\tau = \left(-\frac{(a-1)\delta^{\star}}{a}, \frac{\delta^{\star}}{a}, \frac{\delta^{\star}}{a}, \frac{\delta^{\star}}{a}\right)$$

Tamanho amostral one-vs-all unilateral:

Calculado com alpha ajustado.

$$n_i = \left(1 + \frac{1}{K}\right) \left(\frac{\hat{\sigma}}{\delta^*}\right)^2 (t_{\alpha_{adj}} + t_{\beta})^2$$
$$n_0 = n_i \sqrt{K}$$

em que $t_{\alpha_{adj}}$ e t_{β} são dependentes de n. Para solucionar esse problema, eles são substituídos por $z_{\alpha_{adj}}$ e z_{β} e a equação é testada iterativamente até convergência (implementação em anexo no arquivo calcN.R). Dessa forma, foi encontrado o valor $n_1 = 60$.

Número necessário pra anova: 60*3 + 50

Número necessário pra análises subsequentes: 58*3 + (101 - 10)

Mais barato fazer ANOVA antes e pegar mais amostras do grupo 1 apenas se necessário. N das comparações multiplas não é tão grande por ser unilateral.

CUSTO TOTAL!

2.4 Tratamento e Validação dos Dados

Considerando o experimento realizado, foi criada uma rotina para validação dos dados obtidos e identificação de erros. bla bla

1. LogTTF > 0

Caso os valores de uma execução não atendam essas condições, ela seria descartada. No entanto, nenhuma das amostras apresenta problema.

3. Análise Estatística

3.1 Análise de Variância

Gráfico não indica visualmente diferença significativa. P
 valor grande -> não rejeita hipótese de que não há diferença

Não é necessário fazer comparação múltipla.

3.2 Validação das Premissas

Normalidade

p valor rejeita normalidade No entanto, q
q plot mostra que as violações de normalidade são muito pequenas. Anova é robusto a pequenas variações, então tudo ok
. =)

Homocedasticidade

Comentar plot e p valor. Variância praticamente a mesma

Independência

O plot dos valores ordenados de diferenças de tempo entre os algoritmos não apresenta nenhum indício de dependência temporal dos valores. O teste de autocorrelação serial Durbin-Wastson apresenta p=0, o que reforça a hipótese de que não há autocorrelação serial entre as amostras.

4. Discussão e Conclusões

Os testes realizados levam às seguintes conclusões:

Variância entre grupos é explicada pela variância intra grupo. Não há indício de diferença significativa entre eles

Recomenda-se manter riser 1. Custo do experimento é significativo, mas previniu um custo potencialmente maior de trocar o Riser.

Referências