# **Mutating Joins**

Joe Nese

**University of Oregon** 

Fall 2022

## **Share**

```
{tidylog}
```

Provides feedback about {dplyr} and {tidyr} operations

[view link]

# Mutating Joins Week 7

Credit Daniel Anderson for slides

## **Agenda**

- bind\_rows()
- \*\_join()

#### **Overall Purpose**

- Understand and be able to identify keys
- Understand different types of mutating joins
  - o left\_join
  - o right\_join
  - one-to-one
  - one-to-many
- Understand some ways joins fail

## A bit about joins

- Also data "merge"
- Today we'll talk about mutating joins
- Mutating joins add columns to a dataset
- Mutating joins are the most common, but filtering joins can be very powerful

#### What if I want to add rows?

Not technically a join (no key involved)

## **Binding rows**

```
g3
                           g4
## # A tibble: 3 x 3
                           ## # A tibble: 3 x 3
## sid grade score
                           ##
                                sid grade score
## <int> <dbl> <int>
                          ## <int> <dbl> <int>
## 1
           3 210
                   ## 1 9
                                      4 201
## 2 2 3 191
## 3 3 198
                          ## 2 10 4 189
排 3 3
                          ## 3 11 4 187
```

# bind\_rows()

- In examples like the previous data sets, we just want to combine the data by stacking the rows
- Data have same (or approximately same) columns
- We can do so with bind\_rows()

```
bind_rows(g3, g4)
```

```
## # A tibble: 6 x 3
      sid grade score
###
    <int> <dbl> <int>
###
## 1
              3
                  210
## 2
                  191
## 3
                  198
## 4
                  201
              4
## 5
       10
              4 189
## 6
       11
           4
                  187
```

# dplyr::bind\_rows()

an efficient way to bind many data frames into one, by stacking rows
 can bind multiple datasets

```
one <- mtcars[1:4, ]
two <- mtcars[6:10, ]
three <- mtcars[12:14, ]
bind_rows(one, two, three)</pre>
```

- like joining (merging) data frames that have the same columns
- columns don't need to match when row-binding

## Optional . id argument

- What if we knew the grade, but didn't have a variable in each dataset already?
- Use .id to add an index for each dataset

```
bind_rows(select(g3, -grade), select(g4, -grade), .id = "dataset")
```

```
## # A tibble: 6 x 3
## dataset sid score
## <chr> <int> <int>
## 1 1
               1
                   210
## 2 1
               2 191
               3 198
## 3 1
## 4 2
                   201
## 5 2
                   189
              10
## 6 2
               11
                   187
```

## Recode .id column

```
bind_rows(select(g3, -grade), select(g4, -grade), .id = "dataset") %>%
  mutate(grade = ifelse(dataset == 1, 3, 4))
```

```
## # A tibble: 6 x 4
## dataset sid score grade
## <chr> <int> <int> <dbl>
## 1 1
             1
                 210
## 2 1
             2 191
## 3 1
             3 198
                 201
## 4 2
            10 189 4
排 5 2
             11 187
## 6 2
```

### **Even better**

```
bind_rows(select(g3, -grade), select(g4, -grade), .id = "grade") %>%
  mutate(grade = ifelse(grade == 1, 3, 4))
```

```
## # A tibble: 6 x 3
## grade sid score
## <dbl> <int> <int>
## 1
           1
              210
## 2 3
           2 191
## 3 3
           3 198
## 4 4
         9
              201
## 5 4 10 189
## 6 4 11
              187
```

#### What if columns don't match exactly?

#### Pads with NA

```
bind_rows(g3, g4[ ,-2], .id = "dataset")
## # A tibble: 6 x 4
## dataset sid grade score
## <chr> <int> <dbl> <int>
                     3 210
## 1 1
## 2 1
                     3 191
## 3 1
                     3 198
## 4 2
               9
                    NA 201
                    NA 189
## 5 2
              10
## 6 2
              11
                    NA 187
```

## You can also bind\_cols()

```
math
read
## # A tibble: 3 x 2
                              ## # A tibble: 3 x 1
      sid read
##F
                              4£4£
                                    math
## <int> <int>
                              ## <int>
## 1
        1 210
                              ## 1
                                     202
排 2 2 223
                              ## 2 197
## 3 3
          200
                              ## 3 217
```

# bind\_cols()

```
bind_cols(read, math)
```

```
## # A tibble: 3 x 3
## sid read math
## <int> <int> <int> 210 202
## 2 2 223 197
## 3 3 200 217
```

# **Joins**

(not to be confused with row binding)

## **Keys**

- Uniquely identify rows in a dataset
- Variable(s) in common between two datasets to be joined
- A key can be more than one variable

#### Types of keys

- Small distinction that you probably won't have to worry about much, but is worth mentioning:
  - **Primary keys**: uniquely identify observations in *their* dataset
  - Foreign keys: uniquely identify observations in other datasets

## What's the primary key here?

First, let's break down the code:

```
## # A tibble: 984 x 33
     child id teache~1 schoo~2 k type schoo~3 sex ethnic famtype numsibs SE
##F
              <chr>
                       <chr>
##F
     <chr>
                               <chr>
                                      <chr> <chr> <chr> <chr>
                                                                     <dbl>
   1 0842021C 0842T02 0842
                               full-~ public male BLACK~ BIOLOG~
###
                                                                         1
                               full-~ private male ASIAN BIOLOG~
###
   2 0905002C 0905T01 0905
   3 0150012C 0150T01
                       0150
                               full-~ private fema~ BLACK~ BIOLOG~
###
                               full-~ private fema~ HISPA~ BIOLOG~
###
   4 0556009C 0556T01
                       0556
                               full-~ public male WHITE~ BIOLOG~
###
   5 0089013C 0089T04
                      0089
   6 1217001C 1217T13
                       1217
                               half-~ public fema~ NATIV~ BIOLOG~
                                                                         0
##F
   7 1092008C 1092T01
                       1092
                               half-~ public fema~ HISPA~ BIOLOG~
###
                               full-~ public male WHITE~ BIOLOG~
4F4F
   8 0083007C 0083T16
                      0083
   9 1091005C 1091T02
                      1091
                               half-~ private male WHITE~ BIOLOG~
                                                                         0
## 10 2006006C 2006T01
                       2006
                               full-~ private male WHITE~ BIOLOG~
## # ... with 974 more rows, 23 more variables: SES_cat <chr>, age <dbl\frac{17}{75}
```

## Let's verify the key

```
count(child id)
## # A tibble: 984 x 2
###
      child id
                   n
###
   <chr> <int>
###
  1 00010100
###
   2 0002010C
###
   3 0009005C
   4 0009014C
##F
###
    5 0009026C
###
  6 0013003C
## 7 0016004C
## 8 0016009C
###
    9 0022005C
## 10 0022014C
## # ... with 974 more rows
```

ecls %>%

## Let's verify the key

## # ... with 2 variables: child\_id <chr>, n <int>

```
ecls %>%
  count(child_id) %>%
  arrange(desc(n)) %>%
  slice(1:3)
## # A tibble: 3 x 2
## child id
## <chr> <int>
## 1 0001010C
## 2 0002010C
## 3 0009005C
OR
ecls %>%
  count(child_id) %>%
  filter(n > 1)
## # A tibble: 0 x 2
```

## What about the key here?

```
income_ineq <- read_csv(here("data", "incomeInequality_tidy.csv"))
head(income_ineq, n = 15)</pre>
```

```
## # A tibble: 15 x 6
###
       Year Number.thousands realGDPperCap PopulationK percentile
                                                                            income
      <fdb>>
                         <fdb>
                                         <fdb>>
                                                      <fdb>
                                                                   <fdb>
                                                                             <dbl>
###
###
       1947
                         37237
                                        14117.
                                                     144126
                                                                            14243
    1
                                                                    20
                                        14117.
                                                     144126
                                                                            22984
###
       1947
                         37237
                                                                    40
##F
       1947
                         37237
                                        14117.
                                                     144126
                                                                    60
                                                                            31166
                                        14117.
                                                     144126
                                                                            44223
###
       1947
                         37237
                                                                    80
###
    5
                         37237
                                        14117.
                                                     144126
                                                                            26764.
       1947
                                                                    50
                                        14117.
                                                     144126
###
       1947
                         37237
                                                                    90
                                                                            41477
###
       1947
                         37237
                                        14117.
                                                     144126
                                                                    95
                                                                            54172
###
    8
       1947
                         37237
                                        14117.
                                                     144126
                                                                    99
                                                                           134415
###
       1947
                         37237
                                        14117.
                                                     144126
                                                                    99.5
                                                                           203001
                                        14117.
                                                                    99.9
###
  10
       1947
                         37237
                                                     144126
                                                                           479022
## 11
       1947
                         37237
                                        14117.
                                                     144126
                                                                   100.
                                                                         1584506
## 12
                                                                            13779
       1948
                         38624
                                        14452.
                                                     146631
                                                                    20
## 13
       1948
                         38624
                                        14452.
                                                     146631
                                                                    40
                                                                            22655
## 14
                         38624
                                        14452.
                                                     146631
                                                                            30248
       1948
                                                                    60
## 15
       1948
                         38624
                                        14452.
                                                     146631
                                                                    80
                                                                            42196
```

```
income_ineq %>%
    count(Year, percentile) %>%
    filter(n > 1)
```

```
## # A tibble: 0 x 3
## # ... with 3 variables: Year <dbl>, percentile <dbl>, n <int>
```

## Sometimes there is no key

These tables have an *implicit* id - the row numbers. For example:

install.packages("nycflights13")

```
library(nycflights13)
head(flights)
## # A tibble: 6 x 19
  year month day dep time sched dep~1 dep d~2 arr t~3 sched~4 arr d~5 ca
###
    <int> <int> <int> <int>
                                                        <int>
                                                               <dbl> <c
###
                                  <int>
                                         <dbl> <int>
## 1 2013
                   1
                         517
                                    515
                                                  830
                                                          819
                                                                  11 UA
                                                  850
                                                          830
排 2 2013
                         533
                                    529
                                                                  20 UA
排 3 2013
                         542
                                    540
                                               923
                                                          850
                                                                  33 AA
## 4 2013
                         544
                                    545
                                            -1
                                                         1022
                                                                 -18 B6
                                                  1004
## 5 2013
                         554
                                    600
                                            -6 812
                                                         837
                                                                 -25 DL
## 6 2013
                         554
                                    558
                                                   740
                                                          728
                                                                  12 UA
## # ... with 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## # time hour <dttm>, and abbreviated variable names 1: sched dep time,
### ##
      2: dep delay, 3: arr time, 4: sched arr time, 5: arr delay
```

```
flights %>%
  count(year, month, day, flight, tailnum) %>%
  filter(n > 1)
```

```
## # A tibble: 11 x 6
##
       vear month
                    day flight tailnum
##
      <int> <int> <int> <int> <chr>
                                       <int>
                2
##
   1 2013
                           303 <NA>
                                           2
                      9
                                           2
##
   2 2013
                2
                      9 655 <NA>
                                           2
##
   3 2013
                      9
                          1623 <NA>
                6
                          2269 N487WN
                                           2
##
   4 2013
                      8
                                           2
    5 2013
4F4F
                6
                     15
                          2269 N230WN
                                           2
                          2269 N440LV
##
   6 2013
                6
                     22
##
   7 2013
                     29
                          2269 N707SA
                                           2
                6
                                            2
##
       2013
                      6
                          2269 N259WN
                8
                                           2
4F4F
   9 2013
                          2269 N446WN
                                           2
                8
## 10 2013
                     10
                          2269 N478WN
                                           2
## 11
       2013
               12
                     15
                           398 <NA>
```

## Create a key

If there is no key, it's often helpful to add one

These are called surrogate keys

```
flights2 <- flights %>%
  rowid_to_column()

flights2 %>%
  select(1:3, ncol(flights))
```

```
## # A tibble: 336,776 x 4
##
     rowid year month minute
     <int> <int> <int> <dbl>
##
         1 2013
## 1
                           15
## 2
         2 2013
                           29
   3
         3 2013
4F4F
                          40
         4 2013
4F4F
                           45
                     1
         5 2013
4F4F
                           0
         6 2013
##
                           58
## 7
         7 2013
                           0
         8 2013
4F4F
                           0
                           0
##F
            2013
```

# **Mutating joins**

# Mutating \*\_joins()

- In {tidyverse}, we use mutate() to create new variables within a dataset
- A mutating join works similarly, in that we're adding new variables to the existing dataset through a join
- Join: Two tables of data joined by a common key

## Four types of joins

- left\_join: keep all the data in the left dataset, drop any non-matching cases from the right dataset
- right\_join: keep all the data in the right dataset, drop any non-matching cases from the left dataset

- inner\_join: keep only data that matches in both datasets
- full\_join: keep all the data in both datasets (also sometimes referred to as an outer join)

## Four types of joins

#### **Mutating joins**

- left\_join: keep all the data in the left dataset, drop any non-matching cases from the right dataset
- right\_join: keep all the data in the right dataset, drop any non-matching cases from the left dataset

#### **Filtering joins**

- inner\_join: keep only data that matches in both datasets
- full\_join: keep all the data in both datasets (also sometimes referred to as an outer join)

## Four types of joins

#### **Mutating joins**

- left\_join: keep all the data in the left dataset, drop any non-matching cases from the right dataset
- right\_join: keep all the data in the right dataset, drop any non-matching cases from the left dataset

#### **Filtering joins**

- inner\_join: keep only data that matches in both datasets
- full\_join: keep all the data in both datasets (also sometimes referred to as an outer join)

## Using joins to recode

Say you have a dataset like this

```
## # A tibble: 6 x 3
## sid dis_code score
## <int> <int> <int> <int> 
## 1 1 74 190
## 2 2 40 200
## 3 3 60 200
## 4 4 00 183
## 5 5 10 210
## 6 6 96 188
```

#### Codes

| Code | Disability                     |
|------|--------------------------------|
| 0    | 'Not Applicable'               |
| 10   | 'Intellectual Disability'      |
| 20   | 'Hearing Impairment'           |
| 40   | 'Visual Impairment'            |
| 43   | 'Deaf-Blindness'               |
| 50   | 'Communication Disorder'       |
| 60   | 'Emotional Disturbance'        |
| 70   | 'Orthopedic Impairment'        |
| 74   | 'Traumatic Brain Injury'       |
| 80   | 'Other Health Impairments'     |
| 82   | 'Autism Spectrum Disorder'     |
| 90   | 'Specific Learning Disability' |
| 96   | 'Developmental Delay 0-2yr'    |
| 98   | 'Developmental Delay 3-4yr'    |

## Recode method

Using case\_when()

```
dis_tbl %>%
  mutate(disability = case_when(
    dis_code == "10" ~ "Intellectual Disability",
    dis_code == "20" ~ 'Hearing Impairment',
    ...,
    TRUE ~ "Not Applicable"
    )
)
```

## Join method

```
dis code tbl <- tibble(</pre>
  dis code = c(
    "00", "10", "20", "40", "43", "50", "60",
    "70", "74", "80", "82", "90", "96", "98"
    ),
  disability = c(
    'Not Applicable', 'Intellectual Disability',
    'Hearing Impairment', 'Visual Impairment',
    'Deaf-Blindness', 'Communication Disorder',
    'Emotional Disturbance', 'Orthopedic Impairment',
    'Traumatic Brain Injury', 'Other Health Impairments',
    'Autism Spectrum Disorder', 'Specific Learning Disability',
    'Developmental Delay 0-2yr', 'Developmental Delay 3-4yr'
```

#### dis\_code\_tbl

```
## # A tibble: 14 x 2
      dis code disability
##F
###
      <chr>
               <chr>
## 1 00
               Not Applicable
4⊧4⊧
   2 10
               Intellectual Disability
   3 20
               Hearing Impairment
4F4F
## 4 40
               Visual Impairment
## 5 43
               Deaf-Blindness
## 6 50
               Communication Disorder
               Emotional Disturbance
##
   7 60
## 8 70
               Orthopedic Impairment
## 9 74
               Traumatic Brain Injury
## 10 80
               Other Health Impairments
## 11 82
               Autism Spectrum Disorder
## 12 90
               Specific Learning Disability
## 13 96
               Developmental Delay 0-2yr
## 14 98
               Developmental Delay 3-4yr
```

## Join the tables

```
left join(dis tbl, dis code tbl)
## Joining, by = "dis_code"
## # A tibble: 200 x 4
###
       sid dis code score disability
## <int> <chr> <int> <chr>
## 1
         1 74
                     190 Traumatic Brain Injury
排 2
        2 40
                     200 Visual Impairment
排 3
        3 60
                     200 Fmotional Disturbance
## 4 4 00
                     183 Not Applicable
## 5 5 10
                     210 Intellectual Disability
## 6 6 96
                     188 Developmental Delay 0-2vr
## 7 7 60
                     203 Fmotional Disturbance
## 8 8 82
                     204 Autism Spectrum Disorder
                     201 Developmental Delay 3-4yr
排 9 98
## 10 10 10
                     198 Intellectual Disability
## # ... with 190 more rows
```

## Imperfect key match?

# Consider the following

```
frl <- tibble(key = 1:3, frl = rbinom(3, 1, .5))
sped <- tibble(key = c(1, 2, 4), sped = rbinom(3, 1, .5))</pre>
```

```
frl
```

```
## # A tibble: 3 x 2
## key frl
## <int> <int>
## 1 1 0
## 2 2 1
## 3 3 0
```

```
sped
```

```
## # A tibble: 3 x 2
## key sped
## <dbl> <int>
## 1 1 0
## 2 2 1
## 3 4 0
```

# Consider the following

### left\_join()?

```
left_join(frl, sped)
```

```
## # A tibble: 3 x 3
## key frl sped
## <dbl> <int> <int>
## 1 1 0 0
## 2 2 1 1
## 3 3 0 NA
```

### right\_join()?

```
right_join(frl, sped)
```



From r4ds

## **Animations**

All of the following animations were created by Garrick Aden-Buie and can be found here

### left\_join(x, y)



### right\_join(x, y)



### What if the key is not unique?

- Not an issue, as long as they are unique in one of the tables
  - In this case, it's called a one-to-many join



We saw this when we joined disability code with disability

### left\_join(x, y)



### **Example**

### Student-level data

```
(stu <- tibble(
   sid = 1:9,
   scid = c(1, 1, 1, 1, 2, 2, 3, 3
   score = c(10, 12, 15, 8, 9, 11)</pre>
```

```
## # A tibble: 9 x 3
      sid scid score
###
## <int> <dbl> <dbl>
## 1
                  10
## 2 2
             1 12
## 3 3
             1 15
## 4 4
             1
                 8
## 5
             2
                 11
## 6
             3
                  12
## 7
```

### School-level data

```
(schl <- tibble(
    scid = 1:3,
    stu_tch_ratio = c(22.05, 31.14,
    per_pupil_spending = c(15741.08
    )
)</pre>
```

```
## # A tibble: 3 x 3
      scid stu tch ratio per pupil spend
##
##
     <int>
                   <dbl>
                                      <d
                                     157
## 1
                    22.0
## 2 2
                    31.1
                                     117
                    24.9
                                     130
## 3
```

### One to many

```
left_join(stu, schl)
```

```
## # A tibble: 9 x 5
##
       sid scid score stu_tch_ratio per_pupil_spending
###
     <int> <dbl> <dbl>
                                 <dbl>
                                                     <dbl>
## 1
         1
                1
                     10
                                  22.0
                                                    15741.
## 2
                     12
                                  22.0
                                                    15741.
## 3
                1
                     15
                                  22.0
                                                    15741.
## 4
                      8
                                  22.0
                                                    15741.
                2
                      9
                                  31.1
## 5
                                                    11732.
## 6
                     11
                                  31.1
                                                    11732.
                3
                     12
                                  24.9
## 7
                                                    13028.
## 8
                    15
                                  24.9
                                                    13028.
## 9
                     17
                                  24.9
                                                    13028.
```

# What if key is not unique to either table?

Generally this is an error

Result is probably not going to be what you want



### **Example**

```
seasonal_means <- tibble(
  scid = rep(1:3, each = 3),
  season = rep(c("fall", "winter", "spring"), 3),
  mean = rnorm(3*3)
)
seasonal_means</pre>
```

### left\_join(stu, seasonal\_means)

```
## # A tibble: 27 x 5
###
        sid scid score season
                                 mean
     <int> <dbl> <dbl> <chr>
4F4F
                                <dbl>
##
          1
                1
                     10 fall 0.345
          1
                1
##
                     10 winter 1.54
                1
   3
          1
##
                     10 spring -0.330
                1
###
   4
          2
                     12 fall 0.345
          2
                1
                     12 winter 1.54
##
          2
                1
##
                     12 spring -0.330
          3
                1
##
                     15 fall 0.345
          3
                1
## 8
                     15 winter 1.54
          3
4F4F
                1
                     15 spring -0.330
                1
## 10
          4
                      8 fall
                                0.345
## # ... with 17 more rows
```

### How do we fix this?



In some cases, the solution is obvious, in others it is not

### In this case

Move the dataset to wide before joining

### Move to wide

We will cover this in Week 8

### Join

### One to many join

```
left_join(stu, seasonal_means_wide)
```

```
## # A tibble: 9 x 6
       sid scid score fall winter spring
##
     <int> <dbl> <dbl> <dbl> <dbl> <dbl>
##
## 1
                    10 0.345 1.54 -0.330
               1
## 2
                    12 0.345 1.54 -0.330
## 3
                    15 0.345 1.54 -0.330
         4
               1
## 4
                     8 0.345 1.54 -0.330
               2
## 5
                     9 0.948 -0.479 -1.51
## 6
                    11 0.948 -0.479 -1.51
## 7
                    12 0.435 -0.520 -0.835
## 8
                    15 0.435 -0.520 -0.835
         9
               3
## 9
                    17 0.435 -0.520 -0.835
```

### **Another example**

- Often you want to add summary info to your dataset
- You can do this easily with by piping arguments

### **ECLS-K** reminder

```
ecls
```

```
## # A tibble: 984 x 33
     child id teache~1 schoo~2 k type schoo~3 sex ethnic famtype numsibs SE
##F
                       <chr>
                               <chr>
                                      <chr> <chr> <chr>
                                                                     <dbl>
###
     <chr>
              <chr>
                                                           <chr>
   1 0842021C 0842T02 0842
                               full-~ public male BLACK~ BIOLOG~
###
                               full-~ private male ASIAN BIOLOG~
##F
  2 0905002C 0905T01 0905
                      0150
   3 0150012C 0150T01
                               full-~ private fema~ BLACK~ BIOLOG~
###
                               full-~ private fema~ HISPA~ BIOLOG~
##F
   4 0556009C 0556T01
                       0556
                               full-~ public male WHITE~ BIOLOG~
##F
   5 0089013C 0089T04
                       0089
                               half-~ public fema~ NATIV~ BIOLOG~
##F
   6 1217001C 1217T13
                      1217
##F
   7 1092008C 1092T01
                      1092
                               half-~ public fema~ HISPA~ BIOLOG~
                               full-~ public male WHITE~ BIOLOG~
##F
   8 0083007C 0083T16
                       0083
                               half-~ private male WHITE~ BIOLOG~
##F
   9 1091005C 1091T02
                      1091
                               full-~ private male WHITE~ BIOLOG~
  10 2006006C 2006T01
                       2006
                                                                      53/\frac{1}{7}5
```

### Compute group means

```
ecls %>%
  group_by(school_id) %>%
  summarize(sch pre math = mean(T1MSCALE))
## # A tibble: 515 x 2
  school id sch pre math
##
  <chr>
###
                      <fdb>>
                       20.5
## 1 0001
排 2 0002
                       15.0
                       18.8
排 3 0009
## 4 0013
                       42.3
                       17.6
## 5 0016
                       17.8
排 6 0022
  7 0023
                       15.5
4£4£
排 8 0025
                      19.4
                       16.9
###
  9 0026
排 10 0028
                       14.4
```

## # ... with 505 more rows

# Join within pipeline

ecls %>%

group by (school id) %>%

```
summarize(sch pre math = mean(T1MSCALE)) %>%
  left join(ecls) %>%
  select(child_id, school_id:k_type) # Just for space
## # A tibble: 984 x 5
##F
     child id school id sch pre math teacher id k type
     <chr>
               <chr>
                                <dbl> <chr>
                                                  <chr>>
###
   1 0001010C 0001
###
                                 20.5 0001T01
                                                  full-day
## 2 0002010C 0002
                                 15.0 0002T01
                                                  half-day
4F4F
   3 0009026C 0009
                                 18.8 0009T01
                                                  half-day
   4 0009014C 0009
                                                  half-day
##
                                 18.8 0009T02
4£4£
   5 0009005C 0009
                                 18.8 0009T01
                                                  half-day
## 6 0013003C 0013
                                                  full-day
                                 42.3 0013T01
## 7 0016004C 0016
                                 17.6 0016T01
                                                  half-day
## 8 0016009C 0016
                                 17.6 0016T01
                                                  half-day
## 9 0022005C 0022
                                 17.8 0022T01
                                                  half-day
## 10 0022014C 0022
                                                  half-day
                                 17.8 0022T03
## # ... with 974 more rows
```

### Default join behavior

## # time hour <dttm>

By default, the \_join functions will use all columns with common names as keys

```
flights2 <- flights %>%
  select(year:day, hour, origin, dest, tailnum, carrier)
flights2[1:2, ]
## # A tibble: 2 x 8
## year month day hour origin dest tailnum carrier
## <int> <int> <dbl> <chr> <chr>
                                         <chr>
## 1 2013 1
                 1 5 EWR
                             IAH N14228
                                         IJΑ
## 2 2013 1 1 5 LGA IAH N24211
                                         UA
weather[1:2, ]
## # A tibble: 2 x 15
## origin year month day hour temp dewp humid wind_dir wind_speed wind
    <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
###
                                                        <dbl>
## 1 EWR 2013
                  1
                       1
                            1 39.0 26.1 59.4
                                                 270
                                                        10.4
## 2 EWR 2013
                  1 1
                            2 39.0 27.0 61.6 250 8.06
## # ... with 4 more variables: precip <dbl>, pressure <dbl>, visib <dbl>,
```

56 / 75

### ## Joining, by = c("year", "month", "day", "hour", "origin") ## # A tibble: 336,776 x 18 ### vear month day hour origin dest tailnum carrier temp dewp humid <dbl> <dbl> <dbl> ### <int> <int> <dbl> <chr> <chr> <chr> <chr> ### 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4 5 LGA ### 2013 1 1 IAH N24211 UA 39.9 25.0 54.8 2013 1 1 5 JFK MIA N619AA 27.0 ### AA 39.0 61.6 1 2013 1 5 JFK BON В6 27.0 ### 4 N804JB 39.0 61.6 1 2013 1 6 LGA ATL N668DN DL 39.9 25.0 54.8 ### 1 1 ##F 6 2013 5 EWR ORD N39463 UA 39.0 28.0 64.4 1 2013 1 6 EWR FLL N516JB 37.9 28.0 ### В6 67.2 1 1 6 LGA IAD N829AS EV 25.0 ### 8 2013 39.9 54.8 1 4F4F 6 JFK MCO N593JB B6 37.9 27.0 9 2013 64.3 1 1 6 LGA ORD ## 10 2013 N3ALAA AA 39.9 25.0 54.8 ## # ... with 336,766 more rows, and 7 more variables: wind dir <dbl>, wind speed <dbl>, wind gust <dbl>, precip <dbl>, pressure <dbl>, ### ## ### ## visib <dbl>, time hour <dttm>

left join(flights2, weather)

## Use only certain keys?

If we were joining *flights2* and *planes*, we would not want to use the year variable in the join, because **it means different things in each dataset** 

```
head(planes)
```

```
## # A tibble: 6 x 9
    tailnum year type
                                           manuf~1 model engines seats speed e
###
    <chr>
            <int> <chr>
                                                   <chr>
                                                           <int> <int> <
###
                                           <chr>
             2004 Fixed wing multi engine EMBRAER EMB-~
                                                                    55
## 1 N10156
                                                               2
                                                                          NA T
## 2 N102UW
             1998 Fixed wing multi engine AIRBUS~ A320~
                                                                   182
                                                                          NA T
## 3 N103US
            1999 Fixed wing multi engine AIRBUS~ A320~
                                                                   182
                                                                          NA T
## 4 N104UW
             1999 Fixed wing multi engine AIRBUS~ A320~
                                                                   182
                                                                          NA T
             2002 Fixed wing multi engine EMBRAER EMB-~
                                                                    55
                                                                          NA T
## 5 N10575
             1999 Fixed wing multi engine AIRBUS~ A320~
## 6 N105UW
                                                                   182
                                                                          NA T
## # ... with abbreviated variable name 1: manufacturer
```

# Specify \*\_join() keys

Specify the variables with by

```
left_join(flights2, planes, by = "tailnum")
```

```
## # A tibble: 336,776 x 16
      vear.x month day hour origin dest tailnum carrier year.v type
###
                                                                               ma
###
       <int> <int> <int> <dbl> <chr>
                                       <chr> <chr>
                                                      <chr>
                                                                <int> <chr>
                                                                               <c
        2013
                              5 FWR
                                       IAH
                                              N14228
                                                                 1999 Fixed w~
###
    1
                 1
                                                      IJΑ
                                                                               BO
        2013
                              5 LGA
                                       IAH
                                              N24211
                                                                 1998 Fixed w~
                                                                               B0
##
                                                      UA
        2013
                              5 JFK
                                       MIA
                                             N619AA
                                                                 1990 Fixed w~ BO
###
                                                      AA
                                              N804JB
        2013
                                                                 2012 Fixed w~ AI
##F
    4
                              5 JFK
                                       BON
                                                      B6
                 1
##F
    5
        2013
                        1
                              6 LGA
                                       ATL
                                              N668DN
                                                      DI
                                                                 1991 Fixed w~ BO
        2013
##F
                              5 EWR
                                       ORD
                                              N39463
                                                      UA
                                                                 2012 Fixed w~ BO
        2013
                 1
                        1
                                       FLL
                                              N516JB
                                                                 2000 Fixed w~ AI
##F
                              6 EWR
                                                      B6
        2013
                 1
##F
                              6 LGA
                                       IAD
                                              N829AS
                                                      F۷
                                                                 1998 Fixed w~ CA
        2013
                 1
                              6 JFK
                                       MCO
                                                                 2004 Fixed w~ AI
##F
                                              N593JB
                                                      B6
###
  10
        2013
                              6 LGA
                                       ORD
                                              N3ALAA
                                                      AA
                                                                   NA <NA>
                                                                               < N
     ... with 336,766 more rows, 5 more variables: model <chr>, engines <int>,
### #
### ##
     seats <int>, speed <int>, engine <chr>, and abbreviated variable name
       1: manufacturer
### #
```

# Specify \*\_join() keys

I like to **always** specify the by = vars

Makes intent explicit

Helps me review my own code

## Mismatched key names

What if you had data to merge like this?

8

## 4

```
names(schl)[1] <- "school id"</pre>
schl
## # A tibble: 3 x 3
    school_id stu_tch_ratio per_pupil_spending
##
        <int>
                      <fdb>>
                                         <fdb>
4F4F
## 1
                       22.0
                                        15741.
## 2
                       31.1
                                        11732.
                       24.9
## 3
                                        13028.
stu
## # A tibble: 9 x 3
      sid scid score
##
## <int> <dbl> <dbl>
## 1
                   10
排 2 2
              1 12
## 3 3
              1 15
```

### Join with mismatched key names

```
left_join(stu, schl, by = c("scid" = "school_id"))
```

```
## # A tibble: 9 x 5
##F
       sid scid score stu tch ratio per pupil spending
    <int> <dbl> <dbl>
###
                                <fdb>>
                                                    <fdb>
## 1
                                 22.0
                                                   15741.
               1
                    10
## 2
               1 12
                                 22.0
                                                   15741.
## 3
               1 15
                                 22.0
                                                   15741.
               1
## 4
                     8
                                 22.0
                                                   15741.
               2
## 5
                     9
                                 31.1
                                                   11732.
               2
## 6
                    11
                                 31.1
                                                   11732.
               3
## 7
                   12
                                 24.9
                                                   13028.
               3
                    15
## 8
                                 24.9
                                                   13028.
## 9
                    17
                                 24.9
                                                   13028.
```

# **Next time**

### **Before next class**

- Homework
  - Homework 8
- Reading
  - R4DS 12
  - Wickham, H. (2014). Tidy Data.
  - R-Ladies Sydney. CleanItUp 5

## **Homework 8**

# **Final Project**

# **Final Project**

Final paper: R Markdown document

### Final project must:

- Be fully reproducible
  - This implies the data are open
- Be a collaborative project hosted on GitHub
- Move data from its raw "messy" format to a tidy data format
- Include at least two exploratory plots
- Include at least summary statistics of the data in tables, although fitted models are also encouraged

# **Final Project - Dates**

- Week 9 (11/23): Data prep script due
- Week 10 (11/30): Peer review due
- Week 10 (11/30): Final project presentations
- Week 11 (12/7): Final Paper due

### Final Project - Data Prep Script

- Expected to be a work in progress
- Provided to your peers so they can learn from you as much as you can learn from their feedback

### **Peer Review**

- Understand the purpose of the exercise
- Conducted as a professional product
- Should be very encouraging
- Zero tolerance policy for inappropriate comments

# Final Project - Presentation

Groups are expected to present for approximately 15 minutes (split evenly among members). Group order randomly assigned.

### Presentation cover the following:

- Share your journey (everyone, at least for a minute or two)
- Discuss challenges you had along the way
- Celebrate your successes
- · Discuss challenges you are still facing
- Discuss substantive findings
- Show off your cool figures!
- Discuss next R hurdle you want to address

# Final Project - Presentation Scoring Rubric

### **Final Presentation Rubric**

| Criteria                             | Points possible |
|--------------------------------------|-----------------|
| Challenges faced along the way       | 5               |
| Victories and things to celebrate    | 5               |
| Challenges you are still facing      | 5               |
| Substantive findings/interpretations | 5               |
| Next R hurdle to tackle              | 5               |
| Total                                | 25              |

# Final Project - Paper

- R Markdown document
  - Abstract, Intro, Methods, Results, Discussion, References
  - Should be brief: 3,500 words max
- No code displayed should look similar to a manuscript being submitted for publication
- Include at least 1 table
- Include at least 2 plots
- Should be fully open, reproducible, and housed on GitHub
  - I should be able to clone your repository, open the R Studio Project, and reproduce the full manuscript (by knitting the R Markdown doc)

## **Final Paper - Scoring Rubric**

| Criteria                              | Points Possible |
|---------------------------------------|-----------------|
| Writing                               |                 |
| Abstract                              | 5               |
| Introduction                          | 5               |
| Methods                               | 5               |
| Results                               | 5               |
| Discussion                            | 5               |
| References                            | 5               |
| Code                                  |                 |
| Document is fully reproducible        | 25              |
| Demonstrate use of inline code        | 5               |
| At least two data visualizations      | 10 (5 pts each) |
| Demonstrate tidying messy data using: |                 |
| pivot_longer()                        | 5               |
| mutate()                              | 5               |
| select() and filter()                 | 5               |
| pivot_wider()                         | 5               |
|                                       |                 |

# **Final Project**

### The following functions:

- pivot\_longer()
- mutate()
- select()
- filter()
- pivot\_wider()
- group\_by()
- summarize()