Міністерство освіти і науки, молоді та спорту України Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики Кафедра обчислювальної матаматики

Звіт на тему:

"Розв'язування задачі Діріхле-Неймана для рівняння Лапласа"

Виконали: студенти 4-го курсу групи ПМп-41 напрямку підготовки (спеціальності) 113 — "Прикладна математика" Бугрій Б.О.

Середович В.В.

Перевірив: ст. в. Гарасим Я.С.

Зміст

В	ступ	3
1	Постановка задачі	4
2	Коректність задачі 2.1 Єдиність розв'язку задачі	5
3	Зведення до інтегрального рівняння 3.1 Теорія потенціалів. Потенціал простого шару	
4	Коректність інтегрального рівняння	8
5	Параметризація	9
6	Чисельне розв'язування 6.1 Метод колокації	
7	Якийсь приклад	14

Вступ

літературний огляд хто розглядав розв'язування цієї задачі які процеси описує мета - розв'язати якимось методом огляд наступних розділів

1 Постановка задачі

Припускаємо, що деяке двовимірне тіло задається двозв'язною областю $D \subset \mathbb{R}$ з досить гладкою границею що складається з внутрішньої кривої Γ_1 та зовнішньої Γ_2 .

Нехай $D_1 \subset \mathbb{R}^2$ — обмеженна область з гладкою границею $\Gamma_1 \subset C^2$ та $D_2 \subset \mathbb{R}^2$ — обмеженна область з гладкою границею $\Gamma_2 \subset C^2$. Тоді двозв'язна область $D = D_2 \setminus \overline{D}_1$ матиме вигляд:

Рис. 1:

Мішана задача Діріхле-Неймана для рівняння Лапласа полягає в знаходженні такої функції $u(x_1,x_2)\in C^2(D)\bigcap C^1(\overline{D})$ що задовольняє

1. Рівняння Лапласа:

$$\Delta u = 0 \quad \text{B} \quad D \tag{1}$$

2. Граничні умови:

$$u = f_1$$
 на Γ_1 , (2)

$$\frac{\partial u}{\partial \nu} = f_2$$
 на Γ_2 , (3)

де $\nu=\nu(x)$ - одиничний вектор зовнішньої нормалі, (2) є умовою Діріхле, а (3) є умовою Неймана.

2 Коректність задачі

...

2.1 Единість розв'язку задачі

Теорема 1. Нехай D - область з межею $\partial D \in C^1$ і $\overrightarrow{\nu}$ — одиничний вектор зовнішньої нормалі до межі ∂D . Тоді для $u \in C^1(\overline{D})$ і $v \in C^2(\overline{D})$ має місце перша формула Гріна

$$\int\limits_{D} (u\Delta v + gradu \cdot gradv) dx = \int\limits_{\partial D} u \frac{\partial v}{\partial \nu} ds$$

і для $u,v\in C^2(\overline{D})$ має місце друга формула Гріна

$$\int\limits_{D} (u\Delta v - v\Delta u)dx = \int\limits_{\partial D} \left(u\frac{\partial v}{\partial \nu} - v\frac{\partial u}{\partial \nu} \right)ds$$

Доведення. Посилання на Креса.

Теорема 2. Нехай Γ_1 , Γ_2 – гладкі границі, що належать класу C^1 , обмежують двозв'язну область D. Тоді задача (1) – (3) має на D не більше одного розв'язку.

Доведення. Від супротивного. Нехай $\exists u_1, u_2 \in C^2(\overline{D}) : u_1 \neq u_2$ – два різні розв'язки задачі (1) – (3). Запишемо цю задачу для функції $u^* = u_1 - u_2$:

$$\Delta u^* = \Delta u_1 - \Delta u_2 = 0$$
 $u^* = u_1 - u_2 = f_1 - f_1 = 0$ на Γ_1 $\frac{\partial u^*}{\partial \nu} = \frac{\partial u_1}{\partial \nu} - \frac{\partial u_2}{\partial \nu} = f_2 - f_2 = 0$ на Γ_2

Застосуємо першу формулу Гріна з теореми 1 при $u=v=u^*$:

$$\int_{D} (\operatorname{grad} u^{*})^{2} dx = \int_{\partial D} u^{*} \frac{\partial u^{*}}{\partial \nu} dS - \int_{D} u^{*} \Delta u^{*} dx$$

Тут $\partial D=\Gamma_1\cup\Gamma_2$. Так як $\Delta u^*=0$ (чи ні?) в D, $u^*=0$ на Γ_1 і $\frac{\partial u^*}{\partial \nu}=0$ на Γ_2 , то отримуємо рівність

$$\int\limits_{D} (\operatorname{grad} u^*)^2 dx = 0,$$

з якої випливає, що $\frac{\partial u^*}{\partial x_1}=0$ і $\frac{\partial u^*}{\partial x_2}=0$ на всій області D, тобто $u^*=\mathrm{const}$. Функція u^* неперервна в \overline{D} і $u^*=0$ на $\Gamma_1\subset\overline{D}$, отже $u^*\equiv0\Rightarrow u_1\equiv u_2$, що суперечить початковому припущенню. \blacksquare

3 Зведення до інтегрального рівняння

. . .

3.1 Теорія потенціалів. Потенціал простого шару

Означення гармонічної функції ...

Теорема 3. Функція

$$\Phi(x,y) := \frac{1}{2\pi} \ln \frac{1}{|x-y|}$$

визначена на $x \neq y$, $x \in \mathbb{R}$ називається фундаментальним розв'язком рівняння Лапласа. Для фіксованого $y \in \mathbb{R}^2$ вона є гармонічною в $\mathbb{R}^2 \setminus \{y\}$.

Означення 1. Нехай функція $\varphi \in C(\partial D)$, тоді

$$u(x) := \int_{\partial D} \varphi(y) \Phi(x, y) ds(y), \quad x \in \mathbb{R}^m \backslash \partial D$$

називають потенціалом простого шару з густиною φ .

Теорема 4. Нехай ∂D належить класу C^2 і $\varphi \in C(\partial D)$. Тоді потенціал простого шару u з густиною φ неперервний на \mathbb{R}^m . На границі області справджується рівність

$$u(x) = \int_{\partial D} \varphi(y)\Phi(x,y)ds(y), \quad x \in \partial D$$

де інтеграл існує і розуміється як невласний. Доведення. Кресс

Щось про стрибок ...?

Теорема 5. Нехай ∂D належить класу C^2 . Тоді для потенціалу простого шару u з неперервною густиною φ маємо, що

$$\frac{\partial u_{\pm}}{\partial \nu}(x) = \int_{\partial D} \varphi(y) \frac{\partial \Phi(x, y)}{\partial \nu(x)} ds(y) \mp \frac{1}{2} \varphi(x), \quad x \in \partial D$$

де

$$\frac{\partial u_{\pm}}{\partial v}(x) := \lim_{h \to +0} v(x) \cdot \operatorname{grad} u(x \pm hv(x))$$

is to be understood in the sense of uniform convergence on ∂D and where the integral exists as an improper integral.

3.2 Загальний вигляд розв'язку

Потенціал простого шару є гармонічною функцією, тому розв'язок задачі (1) – (3) будемо шукати у вигляді суми потенціалів простого шару

$$u(x) = \int_{\Gamma_1} \varphi_1(y)\Phi(x,y)ds(y) + \int_{\Gamma_2} \varphi_2(y)\Phi(x,y)ds(y), \quad x \in D$$

з невідомими густинами $\varphi_1 \in C(\Gamma_1), \ \varphi_2 \in C(\Gamma_2)$.

Враховуючи інтегральне подання розв'язку, крайові умови та властивості потенціалу простого шару, для знаходження невідомих функцій отримаємо таку систему інтегральних рівнянь:

$$\begin{cases} \int\limits_{\Gamma_{1}} \varphi_{1}(y)\Phi(x,y)ds(y) + \int\limits_{\Gamma_{2}} \varphi_{2}(y)\Phi(x,y)ds(y) = f_{1}(x), & x \in \Gamma_{1} \\ 2\int\limits_{\Gamma_{1}} \varphi_{1}(y)\frac{\partial\Phi(x,y)}{\partial\nu(x)}ds(y) - \varphi_{2}(x) + 2\int\limits_{\Gamma_{2}} \varphi_{2}(y)\frac{\partial\Phi(x,y)}{\partial\nu(x)}ds(y) = 2f_{2}(x), & x \in \Gamma_{2} \end{cases}$$

Пояснити про стрибок ... (ще раз перевірити на стрибок)

4 Коректність інтегрального рівняння

5 Параметризація

Припустимо, що криві Γ_1 та Γ_2 задані в параметричному вигляді:

$$\Gamma_i := \{x_i(t) = (x_{i1}(t), x_{i2}(t)), \ t \in [0, 2\pi]\}, \quad i = 1, 2$$
 (4)

де $x_i: \mathbb{R} \to \mathbb{R}^2$, 2π періодична $\forall t |x'(t)| > 0$

Позначимо ν - одиничний вектор зовнішньої нормалі до кривої Γ_i , заданий як:

$$\nu(x_i(t)) = \left(\frac{x'_{i2}(t)}{|x'_i(t)|}, -\frac{x'_{i1}(t)}{|x'_i(t)|}\right)$$

Обчислимо похідну по нормалі від фундаментального роз'вязку

$$\frac{\partial \Phi(x,y)}{\partial \nu(x)} = -\frac{1}{2\pi} \frac{\partial \ln(r)}{\partial r} \frac{\partial r}{\partial \nu(x)}$$

де r = |x - y|, отримаємо

$$\frac{\partial \Phi(x,y)}{\partial \nu(x)} = \frac{1}{2\pi} \frac{(y-x) \cdot \nu(x)}{r^2}$$

Перейдемо до параметризованої системи. Таким чином використовуючи параметризацію та описані вище перетворення перейдемо до параметризованої системи.

$$\begin{cases}
\frac{1}{2\pi} \int_{0}^{2\pi} \psi_{1}(\tau) K_{11}(t,\tau) d\tau + \frac{1}{2\pi} \int_{0}^{2\pi} \psi_{2}(\tau) K_{12}(t,\tau) d\tau = g_{1}(t) \\
-\frac{\psi_{2}(t)}{|x'_{2}(t)||} + \frac{1}{\pi} \int_{0}^{2\pi} \psi_{1}(\tau) K_{21}(t,\tau) d\tau + \frac{1}{\pi} \int_{0}^{2\pi} \psi_{2}(\tau) K_{22}(t,\tau) d\tau = 2g_{2}(t)
\end{cases}$$

де
$$\psi_i(t) = \varphi(x_i(t)) \cdot |x_i'(t)|, \ g_i = f_i(x_i(t)), \ i = 1, 2; \ t \in [0, 2\pi]$$

Ядра матимуть вигляд:

$$K_{11}(t,\tau) = \ln \frac{1}{|x-y|} \Big|_{\substack{x = x_1(t) \\ y = x_1(\tau)}}, \quad t \neq \tau$$

$$K_{12}(t,\tau) = \ln \frac{1}{|x-y|} \Big|_{\substack{x = x_1(t) \\ y = x_2(\tau)}}; \quad \vdots$$

$$K_{21}(t,\tau) = \frac{(y-x) \cdot \nu(x)}{r^2} \Big|_{\substack{x = x_2(t) \\ y = x_1(\tau)}}; \quad t \neq \tau$$

$$K_{22}(t,\tau) = \frac{(y-x) \cdot \nu(x)}{r^2} \Big|_{\substack{x = x_2(t) \\ y = x_2(\tau)}}, \quad t \neq \tau$$

В ядрах K_{12} , K_{21} внаслідок параметризації точки x та y знаходяться на різних кривих, з чого випливає що ці ядра неперервні і при інтегруванні в них не виникають особливості.

У випадку K_{11} , K_{22} обидві точки знаходяться на одній кривій і тому вони мають, відповідно, логарифмічну і сингулярну особливості при $t=\tau$.

Для виділення логарифмічної особливості виконаємо наступні перетворення з K_{11}

$$K_{11}(t,\tau) = \frac{1}{2} \ln \frac{1}{|x_1(t) - x_1(\tau)|^2} \pm \frac{1}{2} \ln \left(\frac{4}{e} \sin^2 \frac{t - \tau}{2} \right) =$$

$$= -\frac{1}{2} \ln \left(\frac{4}{e} \sin^2 \frac{t - \tau}{2} \right) + \frac{1}{2} \ln \frac{\frac{4}{e} \sin^2 \frac{t - \tau}{2}}{|x_1(t) - x_1(\tau)|^2}$$

Отже, ядро K_{11} можна записати у вигляді:

$$K_{11}(t,\tau) = K_{11}^{(1)} \ln\left(\frac{4}{e}\sin^2\frac{t-\tau}{2}\right) + K_{11}^{(2)}(t,\tau)$$

де ядра $K_{11}^{(1)}$ і $K_{11}^{(2)}$ матимуть вигляд:

$$K_{11}^{(1)}(t,\tau) = -\frac{1}{2};$$
 ra $K_{11}^{(2)}(t,\tau) = \frac{1}{2} \ln \frac{\frac{4}{e} \sin^2 \frac{t-\tau}{2}}{|x_1(t) - x_1(\tau)|^2},$ $t \neq \tau;$

Для того щоб довизначити $K_{11}^{(2)}$, знайдему границю за правилом Лопіталя

$$\lim_{\tau \to t} K_{11}^{(2)}(t,\tau) = \lim_{\tau \to t} \ln \frac{\frac{4}{e} \sin^2 \frac{t-\tau}{2}}{|x_1(t) - x_1(\tau)|^2} = \ln \frac{\frac{4}{e} \frac{(t-\tau)^2}{4}}{|x_1'(t)|^2 (t-\tau)^2} = \ln \frac{1}{e |x_1'(t)|^2}$$

В результаті отримаємо:

$$K_{11}^{(2)}(t,\tau) = \begin{cases} \frac{1}{2} \ln \frac{\frac{4}{e} \sin^2 \frac{t-\tau}{2}}{|x_1(t) - x_1(\tau)|^2}, & t \neq \tau \\ \frac{1}{2} \ln \frac{1}{e |x_1'(t)|^2}, & t = \tau \end{cases}$$

Виділимо сингулярну особливість ядра K_{22} . Знайдемо границю при au o t

$$\lim_{\tau \to t} \frac{\partial \Phi(x_2(t), x_2(\tau))}{\partial \nu(t)} = \frac{x_2''(\tau) \cdot \nu(x_2(t))}{2|x_2'(t)|^2}$$

Отримаємо наступне параметризованне подання ядра:

$$K_{22}(t,\tau) = \begin{cases} \frac{(x_2(\tau) - x_2(t)) \cdot \nu(x_2(t))}{|x_2(t) - x_2(\tau)|^2}, & t \neq \tau \\ \frac{x_2''(\tau) \cdot \nu(x_2(t))}{2|x_2'(t)|^2}, & t \neq \tau \end{cases}$$

Отже, система буде мати вигляд

$$\begin{cases}
\int_{0}^{2\pi} \psi_{1}(\tau) \left\{ K_{11}^{(1)}(t,\tau) \ln \left(\frac{4}{e} \sin^{2} \frac{t-\tau}{2} \right) + K_{11}^{(2)}(t,\tau) \right\} d\tau + \\
+ \int_{0}^{2\pi} \psi_{2}(\tau) K_{12}(t,\tau) d\tau = 2\pi g_{1}(t) \\
-\pi \frac{\psi_{2}(t)}{|x'_{2}(t)||} + \int_{0}^{2\pi} \psi_{1}(\tau) K_{21}(t,\tau) d\tau + \int_{0}^{2\pi} \psi_{2}(\tau) K_{22}(t,\tau) d\tau = 2\pi g_{2}(t)
\end{cases}$$

Використовуючи параметризацію ref можемо записати наближенний розв'язок мішаної задачі ref в параметризованому вигляді:

$$u(x) = \frac{1}{2\pi} \int_0^{2\pi} \psi_1(\tau) K_1(x,\tau) d\tau + \frac{1}{2\pi} \int_0^{2\pi} \psi_2(\tau) K_2(x,\tau) d\tau, \quad x \in D$$

де відповідні ядра K_1 і K_2 мають вигляд:

$$K_1(x,\tau) = \ln \frac{1}{|x - x_1(\tau)|}$$
 ta $K_2(x,\tau) = \ln \frac{1}{|x - x_2(\tau)|}$

6 Чисельне розв'язування

6.1 Метод колокації

• • •

...

Шукані функції подамо у вигляді суми ... (сказати щось про n):

$$\tilde{\psi}_k(x) = \sum_{j=1}^n c_j^{(k)} \gamma_j^{(k)}(x), \quad k = 1, 2$$

Підставивши їх у систему оримаємо:

$$\begin{cases}
\sum_{j=1}^{n} c_{j}^{(1)} \int_{0}^{2\pi} \gamma_{j}^{(1)}(\tau) K_{11}(t,\tau) d\tau + \sum_{j=1}^{n} c_{j}^{(2)} \int_{0}^{2\pi} \gamma_{j}^{(2)}(\tau) K_{12}(t,\tau) d\tau = 2\pi g_{1}(t) \\
\sum_{j=1}^{n} c_{j}^{(1)} \int_{0}^{2\pi} \gamma_{j}^{(1)}(\tau) K_{21}(t,\tau) d\tau \\
+ \sum_{j=1}^{n} c_{j}^{(2)} \left\{ -\pi \frac{\gamma_{j}^{(2)}(t)}{|x_{2}'(t)|} + \int_{0}^{2\pi} \gamma_{j}^{(2)}(\tau) K_{22}(t,\tau) d\tau \right\} = 2\pi g_{2}(t)
\end{cases}$$

Цю систему необхідно протабулювати п разів по змінній t, щоб знайти відповідні значення векторів $c^{(1)}$ і $c^{(1)}$. Запишемо отриману систему у зручному матричному вигляді

$$Ac = g$$

де

$$A = \begin{pmatrix} G_{11}^{(1)} & \dots & G_{1n}^{(1)} & G_{11}^{(2)} & \dots & G_{1n}^{(2)} \\ \vdots & \ddots & & \vdots & \ddots & \vdots \\ G_{n1}^{(1)} & & G_{nn}^{(1)} & G_{n1}^{(2)} & & G_{nn}^{(2)} \\ G_{11}^{(3)} & \dots & G_{1n}^{(3)} & G_{11}^{(4)} & \dots & G_{1n}^{(4)} \\ \vdots & \ddots & & \vdots & \ddots & \vdots \\ G_{n1}^{(3)} & & G_{nn}^{(3)} & G_{n1}^{(4)} & & G_{nn}^{(4)} \end{pmatrix} c = \begin{pmatrix} c_{1}^{(1)} \\ \vdots \\ c_{n}^{(1)} \\ \vdots \\ c_{n}^{(2)} \\ c_{1}^{(2)} \\ \vdots \\ c_{n}^{(2)} \end{pmatrix} g = \begin{pmatrix} 2\pi g_{1}(x_{1}) \\ \vdots \\ 2\pi g_{2}(x_{1}) \\ \vdots \\ 2\pi g_{2}(x_{n}) \end{pmatrix}$$

де

$$G_{ji}^{(1)} = \int_{0}^{2\pi} \gamma_{j}^{(1)}(\tau) K_{11}(t_{i}, \tau) d\tau \qquad G_{ji}^{(2)} = \int_{0}^{2\pi} \gamma_{j}^{(2)}(\tau) K_{12}(t_{i}, \tau) d\tau$$

$$G_{ji}^{(3)} = \int_{0}^{2\pi} \gamma_{j}^{(1)}(\tau) K_{21}(t_{i}, \tau) d\tau \qquad G_{ji}^{(4)} = -\pi \frac{\gamma_{j}^{(2)}(t_{i})}{|x_{2}'(t_{i})||} + \int_{0}^{2\pi} \gamma_{j}^{(2)}(\tau) K_{22}(t_{i}, \tau) d\tau$$

Обчислення ядра K_{11}

For the full discretization of the integral equation of the first kind (3.5), which has a logarithmic singularity, we apply a quadrature method together with the quadrature rule [13,14] based on trigonometric interpolation. For this purpose, we choose an equidistant mesh by setting $t_i := i\pi/M, i = 0, \ldots, 2M - 1, M \in \mathbb{N}$ and use the quadrature rules

$$\frac{1}{2\pi} \int_0^{2\pi} f(\tau) d\tau \approx \frac{1}{2M} \sum_{j=0}^{2M-1} f(t_j) \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \ln\left(\frac{4}{e} \sin^2 \frac{t-\tau}{2}\right) d\tau \approx \sum_{j=0}^{2M-1} R_j(t) f(t_j)$$

with known weight functions R_j (see [13]).

$$R_j(t) = -\frac{1}{n} \sum_{m=1}^{n-1} \frac{1}{m} \cos m (t - t_j) + \frac{1}{2n} \cos n (t - t_j)$$

6.2 Похибка

2). Проекційний (інтерполяційний) о-р визначається як

$$(P_n\varphi)(x) = \sum_{j=0}^n \varphi(x_i) l_j(x).$$

Для $P_n\varphi$ маємо такі оцінки

$$\varphi \in C^2[a, b], \qquad \|P_n \varphi - \varphi\|_{\infty} \le \frac{1}{8} h^2 \|\varphi''\|_{\infty}$$

 $\varphi \in C[a, b], \qquad \|P_n \varphi - \varphi\|_{\infty} \le w(\varphi, h) \to 0$

Звідси

$$P_n\varphi \to \varphi \quad \varphi \in C[a,b]$$

Тепер для відповідного інтегрального оператора $A:C[a,b]\to C[a,b]$ маємо за лемою $4.2\left\|P_nA-\dot{A}\right\|\to 0, n\to\infty$ Отже, результати теореми 4.1 можна використати в цьому конкретному випадку. Таким чином для дост. великого $n\geq N$ апроксимаційне р-ня цього варіанту методу колокації $(I-P_nA)\,\varphi_n=P_nf$ має єдиний $_1$ р-к для $f\in C[a,b]i\,\|\varphi_n-\varphi\|_\infty\leq \dot{M}\,\|P_n\varphi-\varphi\|_\infty$. Для $\varphi\in C^2[a,b]\,\|\varphi_n-\varphi\|_\infty\leq M\frac18h^2\,\|\varphi''\|_\infty$ |нтеграли (3) слід обчислювати наближено з використанням квадратур, які не понижують отриманої вище оцінки. Зокрема можна скористатись способом, розглянутим у в-ку м-ду вир. ядер. Для кускової інтерполяції можна вибирати поліноми вищого степеня r. При цьому заг. ідея залишається незмінною і порядок збіжності буде $O\left(h^{r+1}\right)$ для $\varphi\in C^{r+1}[a,b]$.

7 Якийсь приклад