Modern Cryptography

Indistinguishability under CCA

Sep 12, 2025

Dr Shashank Singh

TABLE OF CONTENTS

1. CCA Security

Dr Shashank Singh

CCA SECURITY

Indistinguishability Exp. under CCA

Consider the following experiment:

$\operatorname{PrivK}_{\mathscr{A},\Pi}^{\operatorname{cca}}(n)$:

- 1. $k \leftarrow \text{GEN}(n)$
- 2. \mathscr{A} is given $\Pi(n)$, and oracles $\mathrm{ENC}_k(\cdot)$, $\mathrm{DEC}_k(\cdot)$. The adversary \mathscr{A} produces $m_0, m_1 \in \{0, 1\}^\star$ with $|m_0| = |m_1|$.
- 3. $b \stackrel{\$}{\leftarrow} \{0, 1\}$ and $c \leftarrow \text{ENC}(k, m_b)$ is given to the adversary \mathscr{A} .
- 4. \mathscr{A} is not allowed to query c to the oracle $\mathrm{DEC}_k(\cdot)$. The adversary \mathscr{A} returns a bit b'.
- 5. The output of the experiment is $b' \stackrel{?}{=} b$.

~

CCA-SECURITY

Definition 1

A private key encryption scheme $\Pi(n)$ has an indistinguishable encryption under chosen ciphertext attack, or is CCA-secure, if for all PPT adversaries \mathscr{A} , there is a negligible function $\varepsilon()$ such that, for all n,

$$\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{cca}}(n) = 1\right] \le \frac{1}{2} + \varepsilon(n). \tag{1}$$

Theorem 2

 \bigcirc

Definition 3 (Encryption Scheme)

Let F be a pseudorandom function. Define a private-key encryption scheme, $\Pi = (GEN, ENC, DEC)$, for messages of length n as follows:

- The key $k \leftarrow \text{GEN}(n)$ is uniform on $\{0, 1\}^n$.
- For $m \in \{0, 1\}^n$, ENC(k, m) picks $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$ and outputs c, where

$$c := \langle r, F_k(r) \oplus m \rangle$$

• On input $c = \langle r, s \rangle$ and a key k, DEC(k, c) outputs m, where

$$m := F_k(r) \oplus s$$

÷

Exercise. Show that the above encryption scheme given by Definition 3 is not CCA-secure.

A PRACTICAL CCA: PADDING ORACLE ATTACK

• The CBC mode of operation requires plaintext to be a multiple of the block length. If this is not the case, a suitable padding scheme must be used.

PKCS #5 padding Scheme

Let L be a block length (in bytes). If the message is falling short of b-bytes ($1 \le b \le L$), this scheme appends b as one-byte b times to the message.

- For the block length L=8, and message $1A \mid 2B$, the padded message would be $1A \mid 2B \mid 06 \mid 06 \mid 06 \mid 06 \mid 06 \mid 06$.
- Even if the message size is a multiple of *L* bytes, a whole new block of padding is applied in this scheme. This method assists in verifying proper padding and allows for easy unpadding.

•

- In the CBC decryption, it is easy to detect and remove the PKCS #5 padding. (Why?)
- In implementations, the standard involves removing valid padding and raising an exception for an invalid one. E.g.
 - javax.crypto.BadPaddingException.
- Such exceptions give adversary \mathcal{A} a tool, that we call a Partial Decryption Oracle.
- The adversary \mathcal{A} can use it to mount an attack to recover some part of the message comunicated secretly using CBC-MOP.

Dr Shashank Singh