Advanced Machine Learning

Singular Value Decomposition (SVD)

_

Singular Valued Decomposition, SVD, general linear maps

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

1. Singular Value Decomposition

2. General Linear Mappings

3. Linear Regression Revisited

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Singular Valued Decomposition

• Consider an arbitrary $n \times m$ matrix \mathbf{X} , and construct the $(n+m) \times (n+m)$ symmetric matrix, \mathbf{B} ,

- $\binom{u}{v}$ is an eigenvector of **B** with eigenvalue s
- We observe that

$$\mathbf{X} \mathbf{v} = s \mathbf{u}$$
 $\mathbf{X}^\mathsf{T} \mathbf{u} = s \mathbf{v}$ $\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v} = s \mathbf{X}^\mathsf{T} \mathbf{u} = s^2 \mathbf{v}$ $\mathbf{X} \mathbf{X}^\mathsf{T} \mathbf{u} = s \mathbf{X} \mathbf{v} = s^2 \mathbf{u}$

\mathbf{X}^{T} $\mathbf{0}$ $\begin{vmatrix} \mathbf{u} \\ \mathbf{v} \end{vmatrix} = s \begin{vmatrix} \mathbf{u} \\ \mathbf{v} \end{vmatrix}$

Eigenvectors

Outline

ullet Note that as $\mathbf{X} oldsymbol{v} = s oldsymbol{u}$ and $\mathbf{X}^\mathsf{T} oldsymbol{u} = s oldsymbol{v}$ then

$$\mathbf{X}(-\mathbf{v}) = (-s)\mathbf{u}$$
 $\mathbf{X}^{\mathsf{T}}\mathbf{u} = (-s)(-\mathbf{v})$

if $\binom{u}{v}$ is an eigenvector of $\mathbf B$ with eigenvalue s then so is $\binom{u}{-v}$ with eigenvalue -s

- \bullet If n < m then $\mathbf{X}^\mathsf{T}\mathbf{X}$ is not full rank so some eigenvalues are zero
- As a consequence m-n vectors exist such that ${m X}{m v}=0$
- The eigenvalues and eigenvectors are

$$n \times \left(s_i, \begin{pmatrix} u_i \\ v_i \end{pmatrix}\right) \quad n \times \left(-s_i, \begin{pmatrix} u_i \\ -v_i \end{pmatrix}\right) \quad m - n \times \left(0, \begin{pmatrix} 0 \\ v_k \end{pmatrix}\right)$$

Matrix Decomposition

• Stacking the eigenvectors into a matrix

- Since the vectors $\binom{u_i}{v_i}$ are eigenvectors of a symmetric matrix they from an orthogonal matrix if they are normalised.
- Multiply on the right by the transpose of the orthogonal matrix

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

SVD

- Any matrix, X, can be written as $X = USV^T$
 - * U, V are orthogonal matrices
 - $\star S = \text{diag}(s_1, s_2, ..., s_n)$
- s_i can always be chosen to be positive and are known as **singular** values
- Singular value decomposition applies to both square and non-square matrices—they describe general linear mappings

Normalisation Subtlety

• Multiplying out we have

$$X = 2USV^T$$

$$\mathbf{X}^{\mathsf{T}} = 2\mathbf{V}\mathbf{S}\mathbf{U}^{\mathsf{T}}$$

ullet Now the vectors $oldsymbol{u}_i$ and $oldsymbol{v}_i$ form an orthogonal set as it satisfy

$$\mathbf{X}^\mathsf{T}\mathbf{X}\mathbf{v} = s^2\mathbf{v}$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{v} = s^2\mathbf{v}$$
 $\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{u} = s^2\mathbf{u}$

• But they are not normalised (since $\binom{u_i}{v_i}$ is normalised). If we define $\tilde{\mathbf{U}} = \sqrt{2}\mathbf{U}$ and $\tilde{\mathbf{V}} = \sqrt{2}\mathbf{V}$ we find

$$X = \tilde{U} \, S \, \tilde{V}^\mathsf{T}$$

$$\mathbf{X}^\mathsf{T} = \tilde{\mathbf{V}} \mathbf{S} \tilde{\mathbf{U}}^\mathsf{T}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Finding SVD

- Most libraries will compute the SVD for you
- They can do this by choosing the smaller of two matrices XX^T and X^TX and then compute the eigenvalues
- The singular values are the square root of the eigenvalues (notice that XX^T and X^TX are both positive semi-definite so the eigenvalues will be non-negative)
- ullet It can compute the $oldsymbol{\mathrm{U}}$ matrix or $oldsymbol{V}$ matrix by multiplying through by X or X^T ($U = XVS^{-1}$ and $V = X^TUS^{-1}$)
- In practice to perform PCA most people subtract the mean from their data and then perform SVD

Economical Forms of SVD

ullet Often the rows or columns of the orthogonal matrices U and V that are not associated with a singular value are ignored

$$\begin{array}{cccc}
\mathbf{X} &= \mathbf{u} & \mathbf{S} & \mathbf{V}^{\mathsf{T}} \\
& & & & \\
& & & & \\
\end{array}$$

$$\begin{array}{ccc}
\mathbf{X} &= \mathbf{u} & \mathbf{S} & \mathbf{V}^{\mathsf{T}} \\
& & = \begin{pmatrix} & & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \end{pmatrix}$$

• In Matlab these are obtained using

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

General Matrix

- Recall that we can compute the SVD for any matrix, X
- As matrices describe the most general linear mapping

$$oldsymbol{v} o \mathcal{T}[oldsymbol{v}] = oldsymbol{\mathsf{X}} oldsymbol{v}$$

- We can use SVD to understand any linear mapping
- Thus any linear mapping can be seen as a rotation followed by a squashing or expansion independently in each coordinate followed by another rotation!

Outline

- 1. Singular Value Decomposition
- 2. General Linear Mappings
- 3. Linear Regression Revisited

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

__

Matrices

$$\mathbf{M} = \begin{pmatrix} -0.45 & 1.9 \\ -0.77 & -0.025 \end{pmatrix} = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}} = \begin{pmatrix} \cos(-175) & \sin(-175) \\ -\sin(-175) & \cos(-175) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

Determinants

- The determinant, |M| of a matrix M is defined for square matrices
- It describes the change in volume under the mapping
- Now for any two matrices |AB| = |A||B|
- Thus $|\mathbf{M}| = |\mathbf{U}||\mathbf{S}||\mathbf{V}^{\mathsf{T}}|$
- For and orthogonal matrix $|\mathbf{U}| = \pm 1$ since $\mathbf{U}\mathbf{U}^\mathsf{T} = \mathbf{I} \Rightarrow |\mathbf{U}\mathbf{U}^\mathsf{T}| = |\mathbf{I}| \Rightarrow |\mathbf{U}||\mathbf{U}^\mathsf{T}| = 1 \text{ for } |\mathbf{U}|^2 = 1 \text{ for } |\mathbf{U}$
- Thus

$$|\mathbf{M}| = \pm |\mathbf{S}| \mathbf{I} = \pm \prod_{i} s_{i} \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Duality Revisited

• If $X = USV^T$ then

$$\begin{split} C &= XX^T & D &= X^TX \text{I} \\ &= USV^TVS^TU^T & = VS^TU^TUSV^T \text{I} \\ &= U(SS^T)U^T & = V(S^TS)V^T \text{I} \end{split}$$

- If X is an $p \times m$ matrix then SS^T is a $p \times p$ diagonal matrix with elements $S_{ii}^2 = s_i^2$
- S^TS is an $m \times m$ matrix with elements $S_{ii}^2 = S_i^2$
- U and V are matrices of eigenvectors for C and D
- The eigenvalues are $\lambda_i = S_{ii}^2 = s_i^2$

Non-Square Matrices

- When the matrices are non-square then the matrix of singular value matrix will either
 - ★ Squash some directions to zero
 - ★ Introduce new dimensions orthogonal to the vector

$$\begin{array}{cccc}
X & = & \mathbf{u} & \mathbf{S} & \mathbf{V}^{\mathsf{T}} \\
 & & & & \\
\end{array}$$

• The rank of an arbitrary matrix is the number of non-zero singular values (also number of linearly independent rows or columns)

https://ecs-vlc.github.io/comp6208/

SS^T and S^TS

$$\mathbf{S} = \begin{pmatrix} s_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_m & 0 & 0 \cdots & 0 \end{pmatrix} \blacksquare$$

$$\mathbf{S}^{\mathsf{T}}\mathbf{S} = \begin{pmatrix} s_1^2 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_m^2 & 0 & 0 \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 \end{pmatrix}$$

$$\mathbf{S}\mathbf{S}^{\mathsf{T}} = \begin{pmatrix} s_1^2 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_m^2 \end{pmatrix} \mathbf{I}$$

• It's really easy to verify this in MATLAB or OCTAVE

>> X = rand(3,2) >> [U, S, V] = svd(X) >> U*S*V' >>_U(:,1)'*U(:,2) >> U'*U >>_U*U' >> [Ua,L] = eig(X*X') >>_S*S'

- 1. Singular Value Decomposition
- 2. General Linear Mappings
- 3. Linear Regression Revisited

Test yourself!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Linear Regression

- ullet Given a set of data $\mathcal{D} = \{(oldsymbol{x}_i, y_i) | k=1,2,...,m\}$
- In linear regression we try to fit a linear model

$$f(\boldsymbol{x}|\boldsymbol{w}) = \boldsymbol{x}^\mathsf{T} \boldsymbol{w}$$

• Which we fit by minimising the squared error loss

$$L(\boldsymbol{w}) = \sum_{k=1}^{m} (f(\boldsymbol{x}_i | \boldsymbol{w}) - y_i)^2 \blacksquare$$

Matrix Form

ullet In matrix from we write $L(oldsymbol{w}) = \left\| oldsymbol{X} oldsymbol{w} - oldsymbol{y}
ight\|^2$

$$\mathbf{X} = egin{pmatrix} oldsymbol{x}_1^{\mathsf{T}} \ oldsymbol{x}_2^{\mathsf{T}} \ dots \ oldsymbol{x}_m^{\mathsf{T}} \end{pmatrix}$$
 $oldsymbol{y} = egin{pmatrix} y_1 \ y_2, \ dots \ y_m \end{pmatrix}$

• Then $\nabla L(\boldsymbol{w}^*) = 0$ implies

$$oldsymbol{w}^* = ig(\mathbf{X}^\mathsf{T} \mathbf{X} ig)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

• This is known as the pseudo-inverse

Using SVD

• Using $X = USV^T$ then

$$\begin{aligned} X^+ &= \left(X^\mathsf{T} X \right)^{-1} X^\mathsf{T} \mathbf{I} \\ &= \left(V S^\mathsf{T} S V^\mathsf{T} \right)^{-1} V S^\mathsf{T} U^\mathsf{T} \mathbf{I} \\ &= V \left(S^\mathsf{T} S \right)^{-1} V^\mathsf{T} V S^\mathsf{T} U^\mathsf{T} \mathbf{I} \\ &= V \left(S^\mathsf{T} S \right)^{-1} S^\mathsf{T} U^\mathsf{T} \mathbf{I} = V S^+ U^\mathsf{T} \mathbf{I} \end{aligned}$$

• If m > p

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

III-Conditioned Data Matrix

• Recall that

$$\boldsymbol{w}^* = \mathbf{X}^+ \boldsymbol{y} = \mathbf{V} \mathbf{S}^+ \mathbf{U}^\mathsf{T} \boldsymbol{y}$$

- If any of the singular values of X are small then S^+ will magnify components in that direction
- Any errors in the target y will be magnified
- This leads to poor weights

Pseudo-Inverse of S

$$\mathbf{S}^{\mathsf{T}}\mathbf{S} = \begin{pmatrix} s_1^2 & 0 & \cdots & 0 \\ 0 & s_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_p^2 \end{pmatrix} \mathbf{I} \left(\mathbf{S}^{\mathsf{T}}\mathbf{S}\right)^{-1} = \begin{pmatrix} s_1^{-2} & 0 & \cdots & 0 \\ 0 & s_2^{-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_p^{-2} \end{pmatrix} \mathbf{I}$$

$$\mathbf{S}^{+} = \left(\mathbf{S}^{\mathsf{T}}\mathbf{S}\right)^{-1}\mathbf{S}^{\mathsf{T}} = \begin{pmatrix} s_{1}^{-1} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & s_{2}^{-1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & s_{3}^{-1} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & s_{p}^{-1} & 0 & 0 \cdots & 0 \end{pmatrix} \mathbf{I}$$

Regularisation

Consider linear regression with a regulariser

$$\mathcal{L}(\boldsymbol{w}) = \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2 + \eta \|\boldsymbol{w}\|^2$$
$$= \boldsymbol{w}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \eta \mathbf{I}) \boldsymbol{w} - 2 \boldsymbol{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y}^{\mathsf{I}}$$

Thus

$$\nabla \mathcal{L}(\boldsymbol{w}) = 2\left(\mathbf{X}^\mathsf{T}\mathbf{X} + \eta \mathbf{I}\right)\boldsymbol{w} - 2\mathbf{X}^\mathsf{T}\boldsymbol{y}$$

• and $\nabla \mathcal{L}(\boldsymbol{w}^*) = 0$ gives

$$oldsymbol{w}^* = \left(\mathbf{X}^\mathsf{T} \mathbf{X} + \eta \mathbf{I} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y}$$

Regularisation Continued

• Using $X = USV^T$

$$egin{aligned} oldsymbol{w}^* &= \left(\mathbf{X}^\mathsf{T} \mathbf{X} + \eta \mathbf{I} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y}^{\mathsf{I}} \ &= \mathbf{V} \left(\mathbf{S}^\mathsf{T} \mathbf{S} + \eta \mathbf{I} \right)^{-1} \mathbf{S}^\mathsf{T} \mathbf{U}^\mathsf{T} oldsymbol{y}^{\mathsf{I}} \end{aligned}$$

where

$$(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \eta \mathbf{I})^{-1}\mathbf{S}^{\mathsf{T}} = \begin{pmatrix} \frac{s_1}{s_1^2 + \eta} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \frac{s_2}{s_2^2 + \eta} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \frac{s_3}{s_3^2 + \eta} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{s_p}{s_p^2 + \eta} & 0 & 0 & \cdots & 0 \end{pmatrix} \mathbf{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Summary

- Any matrix can be decomposed as $X = USV^T$ where
 - \star U and V are orthogonal (rotation matrices)
 - \star **S** = diag $(s_1,...,s_n)$ is a diagonal matrix of positive singular values
- This describes the most general linear transform
- The transform exploits the duality between XX^T and X^TX
- In linear regression the pseudo-inverse involves the reciprocal of the singular values, which can lead to poor generalisation
- Regularisation improves the conditioning of the "inverse" matrix

Effect of Regularisation

- Without regularisation if $s_i = 0$ the problem would be ill-posed (even S^+ does not exist since s_i^{-1} would be ill defined) and if s_i is small then S^+ is ill conditioned
- Using $\hat{S}^+ = (S^TS + \eta)^{-1}S^T$ instead of S^+ then

• Regularisation makes the machine much more stable (reduces the variance)