Tema 3. Modelo relacional

Tema 3. Modelo relacional

El modelo de datos relacional, las restricciones relacionales y el álgebra relacional.

Elmasri/Navathe 02

Transformación de ER y ERE en relacional, y otros lenguajes relacionales.

Elmasri/Navathe 02

- Conceptos del modelo relacional (7.1)
- Restricciones de integridad (7.2)
- Operaciones de actualización (7.3)
- Transformación ER-relacional (9.1)

Conceptos del modelo relacional

- **BD**: Colección de *relaciones*.
 - La BD Universidad (en el tema 1) sigue este modelo.

ALUMNO

Nombre	Código alumno	Año	Especialidad
Smith	17	1	CS
Brown	8	2	CS

- Terminología del modelo relacional
 - Cada tabla es una relación.
 - Los campos de la tabla (cabeceras de las columnas) son los atributos.
 Cada uno consta de nombre, tipo de datos y formato.
 - El tipo de datos válidos para una columna es el dominio del atributo.
 El dominio es un conjunto de valores atómicos. Ejemplo para Año: valor numérico entero entre 1 y 4.
 - Cada registro (fila de datos de la tabla) es una tupla. Cada tupla representa a una entidad o a un vínculo.

Conceptos del modelo relacional (2)

- El <u>esquema</u> de relación $R(A_1, ..., A_n)$ describe la relación, siendo:
 - **R** el nombre de la relación.
 - $-A_1, \dots, A_n$ su lista de atributos.
 - $dom(A_i)$ el dominio del atributo A_i .
 - Grado de la relación: Número de atributos (n).
- El <u>estado</u> $r = \{t_1, t_2, ..., t_m\}$ de un esquema $R(A_1, ..., A_n)$ es un conjunto de n-tuplas, donde:
 - Cada n-tupla t_i es una lista ordenada de valores $t=\langle v_1, v_2, \ldots, v_n \rangle$
 - Cada v_i con $1 \le i \le n$ es un elemento de $dom(A_i)$ o un valor nulo.

Conceptos del modelo relacional (3)

ALUMNO

Nombre	Código alumno	Año	Especialidad	
Smith	17	1	CS	$\exists \ \exists \ \mathbf{Es}$
Brown	8	2	CS	
	•	•	•	_ 49

Estado de la relación: datos que contiene

• **Esquema** de la relación. Para ALUMNO (de grado 4).

ALUMNO (Nombre, Código alumno, Año, Especialidad)

• Los atributos se califican como RELACIÓN. Atributo. Para la relación ALUMNO.

ALUMNO.Nombre

ALUMNO.Año

• **Estado** actual o ejemplar de la relación, indica el conjunto actual de tuplas.

Para ALUMNO serían los datos de la tabla de la figura

• **Tupla** de la relación, son los datos de una fila/registro de la relación. Para ALUMNO sería una de las filas de datos de la tabla (4-tupla)

Uno o varios valores de los atributos de una tupla:

t [Código Alumno, Especialidad, Año] = <17,'CS',1>

Características de las relaciones

• Orden entre las tuplas:

No se considera ningún orden concreto (como en los elementos de un conjunto).

Orden en los valores de una tupla:

- Una n-tupla es una lista ordenada de n valores.
- A nivel lógico lo que cuenta es mantener la correspondencia entre atributos y valores.

• Valores en las tuplas:

Son atributos atómicos.

- No se admiten atributos compuestos .
- Ni multivaluados.

• Existe el valor nulo.

Restricciones de Integridad (RI) en las relaciones

1. RI de dominio:

- El valor de cada atributo debe ser atómico.
- En SQL se verán los tipos disponibles.

2. RI de clave:

Atributo(s) de un esquema de relación que identifican unívocamente a las tuplas. No puede haber dos tuplas con la misma clave.

- Superclave y clave.
- Clave candidata
- Clave primaria (o principal CP).

3. RI de entidades:

Ningún atributo de la clave primaria puede contener el valor nulo.

4. RI referencial:

Una tupla que referencia a otra relación, debe referirse a una tupla existente en dicha relación.

- Claves externas (extranjeras o foráneas CE):
 - Son la forma de hacer referencia a otras relaciones.
 - En una relación aparece la clave principal de otra relación.

1. RI de Dominio

"El valor de cada atributo debe ser atómico y concordar con el tipo y condiciones definidas."

Por ejemplo, si al crear la relación DEPARTAMENTO el campo NÚMEROD se definió como de tipo entero comprendido entre 1 y 100, los datos marcados no cumplirían la restricción de dominio.

DEPARTAMENTO		NO VALEN	
NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	DeparX	333445555	1988-05-22
Administración	400	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

2. RI de Clave

"En una relación no hay 2 tuplas con todos sus valores iguales."

(si no, no sería un conjunto de tuplas según la teoría de conjuntos).

Conceptos derivados. Tipos de claves en una relación:

- Superclave: Subconjunto de atributos de un esquema de relación que cumple:
 - No hay 2 tuplas con *todos* sus valores iguales.
 - El conjunto de atributos de una relación es superclave.
- Clave: Superclave donde cualquier atributo que se elimine produce un subconjunto que no es superclave.
 - El ser o no clave no debe cambiar con el tiempo.
- Clave candidata: Una clave posible.
- Clave primaria (CP): La clave candidata elegida. Cada relación solo puede tener una.
 - Se subraya.
 - Es preferible que sea un solo atributo o un subconjunto reducido de atributos.

2. RI de Clave (2): ejemplos de claves

COCHE

<u>NúmeroMatrícula</u>	NúmeroSerieMotor	Marca	Modelo	Año
Texas ABC-739	A69352	Ford	Mustang	96
Florida TVP-347	B43696	Oldsmobile	Cutlass	99
N. York MPO-22	X83554	Oldsmobile	Delta	95
California 432-TFY	C43742	Mercedes	190-D	93
California RSK-629	Y82935	Toyota	Camry	98
Texas RSK-629	U028365	Jaguar	XJS	98

Figura 7.4. La relación COCHE.

Dos claves candidatas: NúmeroMatrícula y NúmeroSerieMotor

Clave primaria: NúmeroMatrícula

Ejemplo de superclave: La combinación NúmeroMatricula y Marca.

Restricción de clave: No podríamos poner otro coche con la matrícula "Texas ABC-739" porque esa matrícula ya existe.

3. RI de Entidades

"Ningún campo de una clave primaria puede tener valor nulo."

DEPARTAMENTO		NO VALE	
NOMBRE	AUÚBAEDOD	NCC IEEE	550114 19110 1555
NOMBRED	<u>NÚMERÓD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación		333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

4. RI Referencial

"Cuando una tupla de la relación A hace referencia a la relación B, deberá referirse a una tupla existente en B."

- La integridad referencial se da entre 2 relaciones.
- Garantiza la consistencia entre tuplas de las 2 relaciones.

- Ejemplo:

Α .

В

EMPLEADO.ND y DEPARTAMENTO.NUMEROD.

EMPLEADO

NOMBRE	INIC	APELLIDO	<u>NSS</u>
John	В	Smith	123456789
Franklin	T	Wong	333445555
Alicia	J	Zelaya	999887777
Jennifer	S	Wallace	987654321
Ramesh	K	Narayan	666884444
Joyce	Α	English	453453453
Ahmad	V	Jabbar	987987987
Jaime	Ē	Borg	888665555

SALARIO	NSS_SUPERV	ND
30.000	333445555	5
40.000	888665555	5
25.000	987654321	4
43.000	888665555	4
38.000	333445555	5
25.000	333445555	5
25.000	987654321	4
55.000	nulo	1

DEPARTAMENTO

NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

4. RI Referencial (2): Clave Externa (CE)

- **CE** conjunto no vacío de atributos de una relación (R₁).
- CE es clave externa (extranjera o foránea) si:
 - **CP** es clave primaria de una relación (R₂)
 - Los dominios de **CE** coinciden con los de **CP**.
 - **CE** hace referencia a **CP**:
 - $\forall t_1 \in R_1 \exists t_2 \in R_2 \mid t_1 [CE] = t_2 [CP]$.
 - o bien t₁ [CE] = valor nulo .

.

4. RI Referencial (3): Clave Externa (CE)

- Ejemplos de claves externas:
 - EMPLEADO.ND, que hace referencia a DEPARTAMENTO.
 - EMPLEADO.NSS_SUPERV, que hace referencia a EMPLEADO.
- Una clave externa puede hacer referencia a otra relación distinta o a la propia relación.

EMPLEADO

NOMBRE	INIC	APELLIDO	<u>NSS</u>
John	В	Smith	123456789
Franklin	Т	Wong	333445555
Alicia	J	Zelaya	999887777
Jennifer	S	Wallace	987654321
Ramesh	K	Narayan	666884444
Joyce	Α	English	453453453
Ahmad	V	Jabbar	987987987
Jaime	E	Borg	888665555

SALARIO	NSS_SUPERV	ND
30.000	333445555	5
40.000	888665555	5
25.000	987654321	4
43.000	888665555	4
38.000	333445555	5
25.000	333445555	5
25.000	987654321	4
55.000	nulo	1

DEPARTAMENTO

NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

4. RI Referencial (4): Ejemplo BD EMPRESA

Una BD relacional contiene muchas relaciones. Sus tuplas se relacionan entre sí.

Figura 7.5. Esquema relacional de la BD EMPRESA; las claves primarias están subrayadas.

4. RI Referencial (5): Ejemplo BD EMPRESA

Figura 7.7. **Esquema relacional de la BD** EMPRESA **con las restricciones de integridad referencial** representadas.

LDD: Definición de esquemas de BD relacionales

• Un esquema de base de datos relacional (BDR) se define mediante un **lenguaje de definición de datos** (LDD). La mayoría de los lenguajes para las BD relacionales se basan en el lenguaje SQL, que a su vez se basa en el álgebra relacional.

• El LDD permite:

- Dar nombre al esquema de BD.
- Declarar dominios de atributos:
 - Nombre dominio y Tipo de datos.
- Definir cada relación:
 - Nombre relación, Nombre atributos y Dominio atributos.
 - Indicar clave primaria (y candidatas).
 - Indicar claves extranjeras (claves que son primarias en otra relación).
- Las restricciones de integridad (RI) se especifican utilizando el lenguaje LDD. El SGBD puede imponerlas automáticamente. Muy pocos SGBD soportan RI semánticas como: "El salario de un empleado no debe ser superior al de su jefe", "Dedicación semanal de un empleado a todos los proyectos no superior a 56 horas".

4. RI Referencial (6): Ejemplo BD EMPRESA

EMPLEADO

NOMBRI	E INIC	APELLIDO	<u>NSS</u>	FECHA_NCTO	DIRECCIÓN	
John	В	Smith	123456789	1965-01-09	Fresnos 731, Houston, TX	
Franklin	Т	Wong	333445555	1955-12-08	Valle 638, Houston, TX	
Alicia	J	Zelaya	999887777	1968-07-19	Castillo 3321, Sucre, TX	
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX	•••
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX	
Joyce	Α	English	453453453	1972-07-31	Rosas 5631, Houston, TX	
Ahmad	V	Jabbar	987987987	1969-03-29	Dalias 980, Houston, TX	
Jaime	E	Borg	888665555	1937-11-10	Sorgo 450, Houston, TX	

TRABAJA_EN

4S 5
)
)
)
)
)
)
)
)
)
)
1
)
)
)

SEXO	SALARIO	NSS_SUPERV	ND
Н	30.000	333445555	5
Н	40.000	888665555	5
M	25.000	987654321	4
M	43.000	888665555	4
Н	38.000	333445555	5
M	25.000	333445555	5
Н	25.000	987654321	4
Н	55.000	nulo	1

Figura 7.6 (1º parte). **Estado de la BD** relacional del esquema EMPRESA.

DEPARTAMENTO

NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

4. RI Referencial (7): Ejemplo BD EMPRESA

LOCALIZACIONES_DEPT

<u>NÚMEROD</u>	<u>LOCALIZACIÓND</u>
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

Figura 7.6 (2ª parte). **Estado de la BD** relacional del esquema EMPRESA.

PROYECTO

NOMBREP	<u>NÚMEROP</u>	LOCALIZACIÓNP	NUMD
ProductoX	1	Bellaire	5
ProductoY	2	Sugarland	5
ProductoZ	3	Houston	5
Automatización	10	Stafford	4
Reorganización	20	Houston	1
Nuevos beneficios	30	Stafford	4

DEPENDIENTE

NSSE	NOMBRE DEPENDIENTE	SEXO	FECHA_NCTO	PARENTESCO
333445555	Alicia	M	1986-04-05	HIJA
333445555	Theodore	Н	1983-10-25	HIJO
333445555	Joy	M	1958-05-03	ESPOSA
987654321	Abner	Н	1942-02-28	ESPOSO
123456789	Michael	Н	1988-01-04	HIJO
123456789	Alicia	M	1988-12-31	HIJA
123456789	Elizabeth	M	1967-05-05	ESPOSA

LMD: Operaciones de actualización

- Las operaciones de consulta y actualización sobre los datos de la BD se especifican utilizando otra parte del lenguaje llamada lenguaje de manipulación de datos (LMD).
- Las operaciones de actualización *cambian los datos de la BD*, frente a las operaciones de consulta que simplemente recuperan datos de la BD pero no los cambian. Son las siguientes:
 - Insertar.
 - Eliminar.
 - Modificar.
- Cuando se aplican no deben violar ninguna restricción de integridad. A continuación vemos:
 - Qué RI puede violar cada operación.
 - Qué acciones se pueden emprender en caso de violación.

ACEPTABLE

Operaciones de actualización: Insertar

- Insertar en EMPLEADO < 'Cecilia', 'F', 'Kolonsky', '677678989', '05-ABR-60', 'Calle Viento 6357, Malinalco, TX', 'M', 28000, nulo, 4 >.
- Puede violar los 4 tipos de RI:
 - Dominio: Insertar < ..., 'Depto 3'>
 - **Entidades**: Insertar < 'Cecilia',..., 'Kolonsky', <u>nulo</u>,...,4>
 - **Clave**: Insertar < 'Cecilia', ..., '999887777', ..., 4>
 - **I. referencial**: Insertar < 'Cecilia', ..., 7>

EMPLEADO

IVII ELADO						
NOMBRE	INIC	APELLIDO	<u>NSS</u>	FECHA_NCTO	DIRECCIÓN	
John	В	Smith	123456789	1965-01-09	Fresnos 731, Houston, TX	
Franklin	T	Wong	333445555	1955-12-08	Valle 638, Houston, TX	
Alicia	J	Zelaya	999887777	1968-07-19	Castillo 3321, Sucre, TX	
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX	••
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX	
Joyce	Α	English	453453453	1972-07-31	Rosas 5631, Houston, TX	
Ahmad	V	Jabbar	987987987	1969-03-29	Dalias 980, Houston, TX	
Jaime	E	Borg	888665555	1937-11-10	Sorgo 450, Houston, TX	

	SEXO	SALARIO	NSS_SUPERV	ND
	Н	30.000	333445555	5
	Н	40.000	888665555	5
	М	25.000	987654321	4
	М	43.000	888665555	4
	Η	38.000	333445555	5
	М	25.000	333445555	5
	Η	25.000	987654321	4
	Н	55.000	nulo	1

Operaciones de actualización: Insertar (2)

- Ante violación de RI al insertar, se puede:
 - **Rechazar**: Es lo que se hace normalmente.
 - Corregir: Se usa más para modificaciones y eliminaciones.
 - Entidades:
 - Pedir NSS válido.
 - Que la clave no sea nula ni exista ya.
 - I.Referencial:
 - Pedir valor existente o nulo.
 - Pedir introducción de la tupla correspondiente al valor referenciado:
 - » Pedir datos del departamento <u>7</u> (que no existía)
 - Pedir en Cascada :
 - » Pedir datos del departamento 7
 - » Una vez que el departamento existe, pedir de nuevo el empleado
- En general, el SGBD permite especificar la opción a aplicar.

ACEPTABLE

Operaciones de actualización: Eliminar

- Eliminar todos los TRABAJA_EN con NSSE='999887777' y NP=10.
- Se eliminan todas las tuplas que cumplan la condición.
- Solamente se puede violar la integridad referencial si las CEs de otras tuplas de la BD hacen referencia a la tupla que se va a eliminar.
- Puede violar **I. referencial**:
 - Eliminar todo EMPLEADO con NSS='999887777'
 - Eliminar todo EMPLEADO con NSS='333445555'

EMPLEADO

NOMBRE	INIC	APELLIDO	<u>NSS</u>	FECHA_NCTO	DIRECCIÓN	
John	В	Smith	123456789	1965-01-09	Fresnos 731, Houston, TX	
Franklin	Т	Wong	333445555	1955-12-08	Valle 638, Houston, TX	
Alicia	J	Zelaya	999887777	1968-07-19	Castillo 3321, Sucre, TX	
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX	• •
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX	
Joyce	Α	English	453453453	1972-07-31	Rosas 5631, Houston, TX	
Ahmad	V	Jabbar	987987987	1969-03-29	Dalias 980, Houston, TX	
Jaime	E	Borg	888665555	1937-11-10	Sorgo 450, Houston, TX	

	SEXO	SALARIO	NSS_SUPERV	ND
	Н	30.000	333445555	5
	Н	40.000	888665555	5
	M	25.000	987654321	4
•••	M	43.000	888665555	4
	Н	38.000	333445555	5
	M	25.000	333445555	5
	Н	25.000	987654321	4
	Н	55.000	nulo	1

Operaciones de actualización: Eliminar (2)

- Ante violación de RI al eliminar, se puede:
 - Rechazar.
 - Propagar:
 - Eliminar todas las tuplas con referencia a la eliminada. A esto se le denomina **eliminación en cascada**.
 - Modificar:
 - Poner un valor existente en las referencias a lo que se ha eliminado.
 - Poner valor nulo en referencias (no si es parte de la clave primaria).
 - Propagar y modificar:
 - Al eliminar un EMPLEADO podríamos:
 - Eliminar referencias en TRABAJA_EN y DEPENDIENTE.
 - Modificar referencias en EMPLEADO y DEPARTAMENTO (las de los empleados y departamentos en los que era jefe el empleado borrado).

Operaciones de actualización: Modificar

- Modificar el SALARIO del EMPLEADO con NSS='999887777' a 28.000.
- Con atributos que no sean clave primaria ni externa:
 - No suelen producirse problemas.
 - Salvo que no sea un valor del dominio.
- Si es clave primaria:
 - Equivale a eliminar la tupla e insertar una nueva.
 - Mismos problemas que en insertar y eliminar.
- Si es clave extranjera:
 - El SGBD debe asegurar que el nuevo valor existe.
- Ejemplos que violan la RI:
 - I. Referencial:

Modificar todos los ND de EMPLEADO con NSS='999887777' a 7.

- Clave primaria e I. referencial:

Modificar los NSS de EMPLEADO con NSS='999887777' a '987654321'.

Ejemplos RI en la BD UNIVERSIDAD con ACCESS

Ejemplos RI en la BD UNIVERSIDAD con ACCESS (2)

• **RI de clave y de entidad**: La clave primaria de la tabla no puede estar repetida ni estar vacía en ningún campo. Código alumno en la tabla ALUMNO o la combinación Código alumno + Identificador sección en la tabla INFORME_CALIFICACIONES.

© C.P.G. 2024

Tema 3. Modelo relacional

Ejemplos RI en la BD UNIVERSIDAD con ACCESS (3)

• **RI referencial**: Todo registro de INFORME_CALIFICACIONES se corresponde con algún alumno que exista en la tabla ALUMNO. Importante para mantener la coherencia de los datos en la BD.

Ejemplos RI en la BD UNIVERSIDAD con ACCESS (4)

• Si no se le exige integridad referencial al SGBD, los datos NO se comprueban automáticamente. Esto es lo predefinido en ACCESS.

• En este caso se dejaría cambiar el código 22 al alumno o borrarlo aunque tenga notas asociadas. También dejaría incluir notas para un alumno que no exista, por ejemplo el 300.

Ejemplos RI en la BD UNIVERSIDAD con ACCESS (5)

• Si se exige la restricción de **integridad referencial**, todo informe de calificaciones debe ser de algún alumno existente. El SGBD comprueba automáticamente los datos en la relación establecida.

Ejemplos RI en la BD UNIVERSIDAD con ACCESS (6)

• Actualización en cascada: si se modifica el código de alumno de un ALUMNO hay que modificar también el de su informe.

• **Borrado en cascada**: si se borra un alumno, se deben borrar también sus calificaciones.

- Si no se indica actualizar en cascada el código del alumno no se podrá cambiar mientras haya algún registro relacionado en INFORME_CALIFICACIONES.
- Si no se indica eliminar en cascada el alumno no se podrá eliminar mientras haya algún registro relacionado en INFORME_CALIFICACIONES.
- Al marcar la opción que sea, el SGBD lo hará automáticamente.

Transformación ER-relacional

• **Algoritmo en 7 pasos** para transformar un esquema E/R en el modelo relacional correspondiente. Los pasos se han de dar en el orden indicado.

1 Paso 1: T. entidades normales (no débiles)

Por cada tipo de entidad normal E: crear una relación R que contenga todos los atributos simples de E. Si hay algún atributo compuesto se ponen sus componentes simples. Los derivados, si su cálculo es simple, no se ponen. Se elige una clave como clave primaria.

Transformación ER-relacional (2)

Paso 2: T. entidades débiles (+Vínculos identificadores)

Por cada tipo de entidad débil W: crear una relación R con todos los atributos de W (los compuestos con sus componentes simples).

Se incluyen también como atributos las claves primarias de la/s relación/es propietarias. La clave de la nueva relación R estará formada por la combinación de las claves primarias de las relaciones propietarias más la clave parcial de W.

Con este paso quedan tratados tanto los tipos de entidad débiles, como sus vínculos identificadores.

Transformación ER-relacional (3)

Por cada vínculo 1:1 se incluye como clave externa en S (mejor que S sea la de participación total, si la hay) la clave primaria de T. Si hay atributos en el vínculo se ponen también en S.

Transformación ER-relacional (4)

Paso 4: T. de vínculo de uno a varios

Por cada vínculo 1:N se incluye como clave externa en S (la relación surgida de la parte N del vínculo, en el ejemplo E1) la clave primaria de T (que es la relación / tabla surgida de E2). Si hay atributos en el vínculo se ponen también en S.

- El * de la figura en (*,1) y (*,n) es la participación (que será 0 parcial ó >0 total).

Transformación ER-relacional (5)

Paso 5: T. de vínculo de varios a varios

Por cada tipo de vínculo M:N se crea una nueva relación S para representar al vínculo R.

Se incluyen como atributos de clave externa las claves primarias de las relaciones surgidas a partir de E1 y E2.

La clave primaria de S será la combinación de las claves primarias anteriores.

Si el tipo de vínculo tiene atributos, éstos se incluyen también en S.

- Se puede usar también para 1:1 y 1:N.
- Mejor cuando haya pocas ocurrencias de la relación (menos nulos).

Transformación ER-relacional (6)

6 Paso 6: T. de vínculos n-arios (con grado n>2)

La conversión de los tipos de vínculos con grado mayor que dos (ternarios, cuaternarios, etc...) se hace igual que la de los vínculos de varios a varios en los vínculos binarios (paso 5).

Así, por cada tipo de vínculo n-ario R se crea una nueva relación S con atributos clave externa las claves primarias de las relaciones surgidas de todos los tipos de entidad participantes. La clave primaria de S será una combinación de estas claves.

Si existen atributos en el vínculo, se añadirán también como atributos de S.

• Si hay algún (*,1) entonces la clave es la de esta entidad. El * es la participación (0 parcial ó >0 total).

Transformación ER-relacional (7)

Paso 7: Atributos multivaluados

Por cada atributo multivaluado A2 se crea una nueva relación R que incluye el atributo correspondiente a A2 y la clave primaria K de la relación correspondiente al tipo de entidad donde está A2.

La clave será normalmente la combinación de A2 más K.

Transformación ER-relacional (8): Ejemplo BD EMPRESA

© C.P.G. 2024 Tema 3. Modelo relacional 39

Transformación ER-relacional (9): Ejemplo BD EMPRESA

1 PASC) 1: TE	. Fuerte	S				RTAMENTO	,	IEDO
EMPLEADO						IN	OMBRE	<u>NÚM</u>	EKU
NOMBRI	REP INICIAL		LES APELLIDO		<u>NSS</u>	FECHA_N	NCTO	SEXO	
PROYECTO							DIR	SALA	RIO
NOMBRE	<u>N</u>	<u>ÚMERO</u>	LC)CALIZA	ACIÓN				
PASO DEPENDIENTE	2: TI	E. Débile	es						
NSS NON	IBRE	SEXO	FECH	HA_NCT	ГО	PARE	NTESCO		
3 PASO		V. 1:1							
NOMBRE	,	<u>/IERO</u>	NSS_JE	EFE	FE	CHA_INI	C_JEFE		
4 PASO	4: T	V. 1:N							
NOMBRE	NÚN	/IERO	LOC	ALIZAC	IÓN	ND	1		
EMPLEADO									
NOMBREP	INICIA	ALES	APELLIC	00	<u>NSS</u>	FECH	IA_NCTO	SEXC)
		•••	DIR	SA	LARIO	ND	NSS_	SUPERV	

Transformación ER-relacional (8): Ejemplo BD EMPRESA

PASO 5: TV. M:N

TRABAJA_EN

NÚMEROP NSSE HORAS

PASO 7: Atr. Multivaluados

LOCALIZACIONES_DPTO

<u>NÚMEROD</u> <u>LOCALIZACIÓN</u>

Solución completa: **PROYECTO** NÚMERO LOCALIZACIÓN **NOMBRE** ND **DEPARTAMENTO** NÚMERO **NSS JEFE** FECHA INIC JEFE **NOMBRE EMPLEADO** INICIALES **APELLIDO NSS NOMBREP** FECHA NCTO **SEXO** SALARIO DIR ND **NSS SUPERV** DEPENDIENTE FECHA NCTO **PARENTESCO** NSS **NOMBRE SEXO** TRABAJA EN LOCALIZACIONES DPTO NÚMEROP **NSSE HORAS** LOCALIZACIÓN NÚMEROD

Más ejemplos transformación ER- relacional

• Convertir los esquemas conceptuales de los ejercicios BUQUES y BIBLIOTECA del tema anterior en los modelos relacionales correspondientes aplicando el algoritmo de los 7 pasos.

Ejercicios Tema 3

Elmasri & Navathe 7.19

Analizar todas las R.I. que viola cada operación cuando se ejecuta sobre la BD de la figura:

- a) Insertar <'Robert', 'F', 'Scott', '943775543', '1952-06-21', '2365 Ave. Naranjos, Bellaire TX', 'H', 58000, '888665555', 1> en EMPLEADO.
- b) Insertar < 'ProductoA', 4, 'Bellaire', 2> en PROYECTO.
- c) Insertar < 'Producción', 4, '943775543', '1998-10-01'> en DEPARTAMENTO.
- d) Insertar < '677678989', nulo, 40.0> en TRABAJA_EN.
- e) Insertar < '453453453', 'John', 'H', '1970-12-12', 'ESPOSO'> en DEPENDIENTE.
- f) Eliminar tuplas de TRABAJA_EN con NSSE='333445555'.
- g) Eliminar la tupla de EMPLEADO con NSS= '987654321'.
- h) Eliminar la tupla de PROYECTO con NOMBREP='ProductoX'.
- i) Modificar NSS_JEFE y FECHA_INIC_JEFE en las tuplas de DEPARTAMENTO con NÚMEROD=5 por los valores '123456789' y '1999-10-01' respectivamente.
- j) Modificar NSS_SUPERV del EMPLEADO con NSS='999887777' por el valor '943775543'.
- k) Modificar HORAS de la tupla TRABAJA_EN con NSSE='999887777' y NP=10 por el valor 5.0.

DEPENDIENTE

<u>NSSE</u>	NOMBRE_DEPENDIENTE	SEXO	FECHA_NCTO	PARENTESCO
333445555	Alicia	M	1986-04-05	HIJA
333445555	Theodore	Н	1983-10-25	HIJO
333445555	Joy	M	1958-05-03	ESPOSA
987654321	Abner	Н	1942-02-28	ESPOSO
123456789	Michael	Н	1988-01-04	HIJO
123456789	Alicia	M	1988-12-31	HIJA
123456789	Elizabeth	M	1967-05-05	ESPOSA

Elmasri & Navathe 7.19 (2)

EMPLEADO

NOMBRE	INIC	APELLIDO	NSS	FECHA_NCTO	DIRECCIÓN	
John	В	Smith	123456789	1965-01-09	Fresnos 731, Houston, TX	
Franklin	Т	Wong	333445555	1955-12-08	Valle 638, Houston, TX	
Alicia	J	Zelaya	999887777	1968-07-19	Castillo 3321, Sucre, TX	
Jennifer	S	Wallace	987654321	1941-06-20	Bravo 291, Bellaire, TX	_•••
Ramesh	K	Narayan	666884444	1962-09-15	Espiga 875, Heras, TX	
Joyce	Α	English	453453453	1972-07-31	Rosas 5631, Houston, TX	
Ahmad	V	Jabbar	987987987	1969-03-29	Dalias 980, Houston, TX	
Jaime	E	Borg	888665555	1937-11-10	Sorgo 450, Houston, TX	

TRABAJA EN		
<u>NSSE</u>	<u>NP</u>	HORAS
123456789	1	32.5
123456789	3	7.5
666884444		40.0
453453453	1	20.0
453453453	2	20.0
333445555	3	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	nulo

SEXO	SALARIO	NSS_SUPERV	ND
Н	30.000	333445555	5
Н	40.000	888665555	5
M	25.000	987654321	4
M	43.000	888665555	4
Н	38.000	333445555	5
M	25.000	333445555	5
Н	25.000	987654321	4
H	55.000	nulo	1

DEPARTAMENTO

NOMBRED	<u>NÚME-</u> ROD	NSS_JEFE	FECHA- INIC-JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

PROYECTO

NOMBREP	<u>NÚME-</u> ROP	LOCALI- ZACIÓNP	NUMD	
ProductoX	1	Bellaire	5	
ProductoY	2	Sugarland	5	
ProductoZ	3	Houston	5	
Automatización	10	Stafford	4	_
© CReorganización	20	Houston 3.	Modelo relac	cior
Nuevos beneficios	30	Stafford	4	

LOCALIZACIONES_DEPT

<u>NÚMEROD</u>		<u>LOCALI-</u> ZACIÓND	
	1	Houston	
	4	Stafford	
	5	Bellaire	
nal	5	Sugarland	
	5	Houston	

Ejercicio 1: Transformación ER-Relacional

• Transformar a relacional el esquema ER de la figura:

Ejercicio 2 con notación M,N,P: Transformación ER-Relacional

Ejercicio 2 con notación (min,max): Transformación ER-Relacional

Ejercicio 3: Transformación ER-Relacional

Ejercicio 4: Transformación ER-Relacional

Algoritmo de los 7 pasos

Numeración Pasos:

- 1. Entidad fuerte (en el diagrama A, B y E)
- 2. E. débil (en el diagrama C y D)
- 3. Vínculo 1:1 (rombo entre D y E)
- 4. V. 1:N (rombo entre A y B, rombo de B consigo mismo)
- 5. V. M:N (rombo entre B y D)
- 6. V. Grado > 2 (rombo entre B, D y E)
- 7. Atributo Multivaluado (en diagrama A3 y AB)

51

Pasos 1 y 2 – Se crea una tabla nueva por cada tipo de entidad (rectángulo). Incluye a los rombos dobles.

PASOS 1 y 2

Pasos:

- 1. Entidad fuerte
- 2. E. débil

Explicación:

- 1. Entidad fuerte → Al convertir B, se elige uno de los dos atributos subrayados como clave de la tabla. Los atributos derivables (con puntos, como el E2) no se ponen.
- E. débil → Se empieza convirtiendo C, porque D depende de ella. Se convierten también los vínculos identificadores (que son los rombos dobles) que nos indican dónde está la parte de la clave que falta (la de C está en A y la de D está en C, por eso D depende de C). Los atributos del vínculo si hay también van a la misma tabla (atributo CD).

Pasos 3 y 4 – No se crean nuevas tablas, se añaden atributos de claves y vínculos, en las tablas de la parte (loquesea , 1)

PASOS 3 Y 4

Numeración Pasos:

- 3. Vínculo 1:1
- 4. V. 1:N

Explicación:

- 3. Vínculo 1:1 \rightarrow se ponen los atributos de la clave de TABLA_D en TABLA_E
- V. 1:N → Primer vinculo: se ponen los atributos de la clave de TABLA_B en TABLA_A. Segundo vínculo: Se pone en TABLA_B el atributo Rol2

NO HAY TABLAS NUEVAS

Pasos 5 y 6 – Se crean nuevas tablas

- 5. V. M:N
- 6. V. Grado > 2

Explicación:

- 5. Vínculo M:N → se pone como clave los atributos de las claves de TABLA_B y TABLA_D y se añaden los atributos del vínculo si hay (atributo BD)
- 6. V. grado >2 → Lo mismo pero con más de 2. En este caso TABLA_B, TABLA_D Y TABLA_E

TABLA_A (A1, A2, B1)

TABLA_B (B1,) B2, B3, B1Rol2) **TABLA_E** (E11, E12, A1, C1, D2) **TABLA_C** (A1, C1, C2) **TABLA_D**(A1, C1, D2) D11, D12, D3, CD) **TABLA_B_D** (B1, A1, C1, D2) **TABLA_B_D_E** (B1, A1, C1, D2, E11, E12, BDE)

Paso 7 – Atrib. Multivaluados. Se crean nuevas tablas

PASO 7

Numeración Pasos:

7. Atributo Multivaluado

TABLA_A3 (A1, A3) TABLA_AB (A1, AB)

TABLA A (A1, A2, B1)

TABLA_B (<u>B1</u>, B2, B3, B1Rol2) **TABLA_E** (<u>E11</u>, <u>E12</u>, A1, C1, D2)

TABLA_C (<u>A1</u>, <u>C1</u>, C2)

TABLA_D (A1, C1, D2, D11, D12, D3, CD)

Explicación:

7. Atributo multivaluado → Sale una nueva tabla por cada atributo multivaluado, con clave la de donde esté unido más el propio atributo multivaluado. Para A3 su clave es la de TABLA_A y el propio atributo A3. Para AB, al tener cardinalidad (1,1) con A, es como si también estuviera unido a A como A3 en la clave de TABLA_A y el propio atributo. También serviría TABLA_AB (A1,B1, AB), aunque B1 sobra por lo explicado.

RESULTADO COMPLETO

- TABLA_A3 (A1, A3) TABLA_AB (A1, AB)
- 1 TABLA_A (A1, A2, B1)
- TABLA_B (B1, B2, B3, B1Rol2) 1 TABLA_E (E11, E12, A1, C1, D2)

 - **TABLA_C** (A1, C1, C2)
 - **TABLA_D**(A1, C1, D2) D11, D12, D3, CD)
- 5 TABLA_B_D (B1, A1, C1, D2, BD)
 - TABLA_B_D_E (B1, A1, C1, D2, E11, E12, BDE)

Numeración Pasos:

- Entidad fuerte
- 2. E. débil
- Vínculo 1:1
- 4. V. 1:N
- 5. V. M:N
- 6. V. Grado > 2
- 7. Atributo Multivaluado

EJERCICIOS DE MODELADO (TEMAS 2 Y 3)

Para cada uno de los siguientes enunciados se pide:

- **Diseño conceptual** de la BD utilizando el modelo E-R
- Realizar el **paso** del modelo E-R **al modelo relacional**, obteniendo el esquema relacional.
- **1.-** La **cadena de videoclubs** Glob_Gusters ha decidido, para mejorar su servicio, emplear una BD para almacenar la información referente a las películas que ofrece en alquiler. Esta información es la siguiente:
- a. Una película se caracteriza por su id, título, nacionalidad, productora y año de estreno (Por ejemplo, Quo Vadis, Estados Unidos, M.G. M., 1995).
- b. En una película pueden participar varios actores (id, nombre, nacionalidad, sexo), algunos de ellos como actores principales.
- c. Una película está dirigida por un director (id, nombre, nacionalidad).
- d. De cada película se dispone de uno o varios ejemplares diferenciados por un número de ejemplar dentro de cada película y caracterizados por su estado de conservación.
- e. Un ejemplar se puede encontrar alquilado a algún cliente (nombre, dirección, teléfono). Se desea almacenar la fecha de comienzo del alquiler y la de devolución.
- f. Cada actor, película, director y cliente del videoclub tiene un Id único que lo identifica.

EJERCICIOS DE MODELADO (TEMAS 2 Y 3)

- **2.-** La asociación "Amigos de la Fiesta" desea recoger en una BD toda la información acerca de las **corridas de toros** que se celebran en España y de todos los datos relacionados con ellas.
- a. Se desea tener información acerca de cada corrida, identificada conjuntamente por un número de orden, la feria en la que se celebra y el año de celebración (por ejemplo: orden=2, feria=San Isidro, año=1990).
- b. En una determinada corrida actúan una serie de toreros (mínimo 1 y máximo 3) de los que se desea guardar su DNI, nombre, apodo y fecha en que tomó la alternativa (fecha en la que se convirtió en matador de toros). Además se desea saber quién fue el torero que le dio la alternativa (padrino) en su día (un torero puede dar la alternativa a varios compañeros o a ninguno).
- c. En cada corrida un torero obtiene una serie de premios (cuántas orejas, cuántos rabos y si salió por la puerta grande o no) de los que se desea mantener información.
- d. Cada torero puede tener un apoderado del que es protegido. A su vez, un apoderado lo puede ser de varios toreros. De él se desea saber su DNI, nombre, dirección y teléfono.
- e. Una corrida se celebra en una plaza de toros de la que se desea saber su nombre que se supone único, localidad, dirección y aforo. En una misma plaza se pueden celebrar varias corridas de toros.
- f. En cada corrida son estoqueados al menos 6 toros. Cada toro viene identificado con el código de la ganadería a la que pertenece, el año en que nació y un número de orden. Además, se desea mantener información acerca de su nombre y color así como el orden en que fue toreado.
- g. Cada toro pertenece a una ganadería determinada. De cada ganadería se pretende saber su código, nombre, localidad y antigüedad (fecha de creación).

EJERCICIOS DE MODELADO (TEMAS 2 Y 3)

- **3.-** El ministerio de Educación y Ciencia desea mantener información acerca de todos los cuadros que se encuentran en las **pinacotecas españolas** y toda la información relacionada con ellos.
- a. De cada pinacoteca se desea saber el nombre (que se supone único), la ciudad en que se encuentra, la dirección y los metros cuadrados que tiene.
- b. Cada pinacoteca tiene una serie de cuadros de los que se quiere mantener información acerca de su código, nombre, dimensiones, fecha en que fue pintado y técnica utilizada.
- c. Cada cuadro es pintado por un determinado pintor (Identificativo único, nombre, país, ciudad, fecha de nacimiento y fecha de defunción). Un pintor puede tener a otro como maestro; a su vez, un maestro puede serlo de varios (o de ninguno).
- d. Los pintores pueden pertenecer o no a una escuela de la que se desea saber su nombre y en qué país y qué fecha apareció.
- e. Los pintores pueden tener también uno o varios mecenas que les protegen (nombre, fecha, país y ciudad de nacimiento y fecha de muerte). A su vez, un mismo mecenas puede serlo de varios pintores. Se desea saber cuál es la relación que existe entre un pintor y su mecenas.