Quentin HUBERT Sarah KIEFFER Adrien LUNEAU

CIR3

Théorie des Langages

ISEN 2016/2017

PBison

Rapport et Manuel d'utilisation

(Exemple d'utilisation avec y(x)=1/x)

Rapport du projet

I.Introduction

Le but de ce projet est le développement d'un outil qui permet grâce à un mini-langage de calculer et d'afficher des fonctions mathématiques.

Ainsi comme montré dans l'exemple, un utilisateur doit être capable d'entrer simplement une fonction et d'obtenir la courbe correspondante. Un manuel d'utilisation expliquera par la suite, et en détails, le langage et les possibilités de notre outil PBison.

PBison est accessible au lien suivant : http://stormhost.fr/projetbison/

II.Outils utilisés

BackEnd:

Le langage a été créé à partir de Flex et Bison. Ils vont créer un programme en C++ qui est compilé par gcc et exécuté par PHP.

FrontEnd:

Pour tracer le graphe, dygraphs fait une requête à PHP(en Ajax) qui va lui renvoyer du JSON.

Dygraphs est un framework JS, il prend une liste de points pour tracer un graphe.

III.Les difficultés rencontrées

La première difficulté a été d'avancer sur le projet sans connaître la notion de "postfixé".

La deuxième difficulté a été de gérer les exceptions, en effet certaines fonctions sont compliquées (par exemple le cas de la division par 0 pour 1/x)

IV.Le manuel d'utilisation

PBison nous permet d'afficher des fonctions de la forme y = f(x) où f(x) est composée de différentes expressions.

Quelques informations:

Il n'y a pas de limites dans le nombre de fonctions ou de variables définies, elles doivent être séparées par un point virgule ou un retour à la ligne.

Pour définir une variable y, la syntaxe est, par exemple, y=5.

Pour définir une fonction y, la syntaxe est, par exemple, y=5*x.

Une variable ou une fonction ne peut prendre le nom d'un mot déjà défini dans le langage.

L'usage de la variable "y", se fait de la façon suivante f=y*x.

L'usage de la fonction "y", se fait de la manière suivante $f=y(x)^*x$.

Ainsi il est possible de combiner les fonctions.

Exemple: f=5*x; g=2*x; h=f(g(x))

Un mauvais usage de ces règles ou l'oubli d'une déclaration génère une erreur.

Il est possible de modifier l'échelle des axes des abscisses et des ordonnées.

Il est possible de zoomer en faisant un cliquer-glisser selon un axe. Un double-clic gauche sur le repère permet de dézoomer.

L'usage des parenthèses () est supporté. les fonctions mathématiques ne sont pas sensibles à la casse. pi est défini avec la valeur M_PI de math.h, 3.14159265358979323846

La règle mathématique sur la priorité est respectée, d'abord, sur les parenthèses, puis sur la multiplication et la division et enfin sur l'addition et la soustraction.

Les opérations mathématiques de base:

Opération	Description	Syntaxe	Exemple
Addition	Addition de 2 expressions	"expression" + "expression"	5+3
Soustraction	Soustraction de 2 expressions	"expression" - "expression"	2-1
Multiplication	Multiplication de 2 expressions	"expression" * "expression"	3*2
Division	Division de 2 expressions	"expression" / "expression"	10/5

Les fonctions mathématiques utilisables:

Fonction	Description	Syntaxe	Exemple
cosinus	Calcul du cosinus d'une expression	cos("expression")	cos(5x)
sinus	Calcul du sinus d'une expression	sin("expression")	sin(2x)
tangente	Calcul de la tangente d'une expression	tan("expression")	tan(4x)
arc cosinus	Calcul de l'arc cosinus d'une expression	acos("expression")	acos(x)
arc sinus	Calcul de l'arc sinus d'une expression	asin("expression")	asin(x)
arc tangente	Calcul de l'arc tangente d'une expression	atan("expression")	atan(x)
cosinus hyperbolique	Calcul du cosinus hyperbolique d'une expression	cosh("expression")	cosh(x)

		a.	
sinus hyperbolique	Calcul du sinus hyperbolique d'une expression	sinh("expression")	sinh(x)
tangente hyperbolique	Calcul de la tangente hyperbolique d'une expression	tanh("expression")	tanh(x)
arc cosinus hyperbolique*	Calcul de l'arc cosinus hyperbolique d'une expression	acosh("expression")	acosh(x)
arc sinus hyperbolique	Calcul de l'arc sinus hyperbolique d'une expression	asinh("expression")	asinh(x)
arc tangente hyperbolique*	Calcul de l'arc tangente hyperbolique d'une expression	atanh("expression")	atanh(x)
racine carrée	Calcul de la racine carrée d'une expression	sqrt("expression")	sqrt(x)
valeur absolue	Renvoie la valeur absolue d'une expression	abs("expression")	abs(-8x)
log	Calcul du logarithme naturel	log("expression")	log(x)
log2	Calcul du logarithme en base 2	log2("expression")	log2(x)
log10	Calcul du logarithme en base 10	log10("expression")	log10(x)
ceil	Arrondi à l'entier supérieur	ceil("expression")	ceil(3.2) = 4.0
floor	Arrondi à l'entier inférieur	floor("expression")	floor(3.2) = 3.0
trunc	Troncature	trunc("expression")	trunc(3.2)= 3.0
round	Arrondi au plus proche	round("expression")	round(3.2) = 3.0
puissance	puissance d'une expression	"expression"^"expression"	2x^3
exponentielle	fonction exponentielle	e("expression")	e(2x)

^{*}Seulement la partie réelle de ces fonctions est affichée.