Devoir surveillé n° 10 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Une famille de polynômes.

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2. On identifiera un polynôme à la fonction polynomiale qui lui est associée.

Partie I.

On note Id l'endomorphisme identité sur $\mathbb{R}_n[X]$. Soit φ l'application qui, à $P \in \mathbb{R}_n[X]$, associe

$$\varphi(P) = \left[(X^2 - 1)P \right]'' = (X^2 - 1)P'' + 4XP' + 2P.$$

- 1) a) Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
 - b) Former la matrice représentant φ dans la base canonique $\mathscr{B} = (1, X, \dots, X^n)$ de $\mathbb{R}_n[X]$.
- 2) a) Soit $\lambda \in \mathbb{R}$. Montrer l'équivalence entre les trois propositions suivantes.
 - i) L'équation $\varphi(P) = \lambda P$ possède un polynôme unitaire pour solution.
 - ii) $\operatorname{Ker}(\varphi \lambda \operatorname{Id}) \neq \{0\}.$
 - iii) $det(\varphi \lambda Id) = 0$.
 - b) Soit $k \in \{0, 1, ..., n\}$. Justifier que l'équation $\varphi(P) = (k+1)(k+2)P$ possède un polynôme unitaire pour solution, que celui-ci est unique et qu'il est de degré k.

Dans toute la suite du sujet, ce polynôme sera noté P_k .

- c) Justifier que la famille (P_0, \ldots, P_n) est une base de $\mathbb{R}_n[X]$.
- 3) a) Déterminer P_0 et P_1 .
 - b) Si $2 \leq k \leq n$, déterminer les coefficients de X^{k-1} et de X^{k-2} dans P_k .

Partie II.

On note E l'ensemble des fonctions réelles définies et continues sur le segment [-1,1]. Si $f,g\in E$, on pose :

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)(1 - t^2) dt.$$

Enfin, si $f \in E$ est de classe \mathscr{C}^2 , on définit :

$$\varphi(f): x \mapsto \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[(x^2 - 1)f(x) \right] = (x^2 - 1)f''(x) + 4xf'(x) + 2f(x).$$

- **4)** a) Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
 - **b)** Montrer que $\forall P, Q \in \mathbb{R}[X], \langle XP, Q \rangle = \langle P, XQ \rangle.$
- **5)** a) Soit $f, g \in E$ de classe \mathscr{C}^2 . Montrer que $\langle \varphi(f), g \rangle = \langle f, \varphi(g) \rangle$.

b) Montrer que la suite (P_0, \ldots, P_n) définie dans la première partie vérifie la propriété suivante :

$$\forall k, \ell \in \{0, \dots, n\}, \ k \neq \ell \Rightarrow \langle P_k, P_\ell \rangle = 0.$$

- c) Soit $k \in \{0, ..., n\}$ et $Q \in \mathbb{R}[X]$. Montrer que si $\deg(Q) < k$, alors $\langle P_k, Q \rangle = 0$.
- **6)** Soit $k \in \{2, \ldots, n\}$.
 - a) Montrer que le polynôme $P_k XP_{k-1}$ est de degré au plus k-1 et qu'il est orthogonal à tout polynôme de degré inférieur ou égal à k-3.
 - b) En déduire que le polynôme $P_k XP_{k-1}$ est combinaison linéaire de P_{k-1} et de P_{k-2} .
 - c) En utilisant le résultat obtenu à la question 3)b), montrer que

$$P_k = X P_{k-1} - \frac{(k-1)(k+1)}{(2k-1)(2k+1)} P_{k-2}.$$

- d) Déterminer P_2 et P_3 .
- 7) Soit $k \in \{0, \dots, n\}$.
 - a) Montrer que $\langle P_k, P_k \rangle = \langle P_k, X^k \rangle$.
 - b) En calculant de deux manières différentes $\langle \varphi(P_k), X^{k+2} \rangle$, exprimer $\langle P_k, X^{k+2} \rangle$ en fonction de $\langle P_k, P_k \rangle$.
 - c) Déterminer une relation permettant pour calculer, pour tout $k \ge 2$, $\langle P_k, P_k \rangle$ en fonction de $\langle P_{k-1}, P_{k-1} \rangle$ et de $\langle P_{k-2}, P_{k-2} \rangle$.

II. Étude d'une série.

Le but de ce problème est de déterminer la nature de la série $\sum_{n\geqslant 1} \frac{\sin{(\pi\sqrt{n})}}{n^{\alpha}}$, suivant la valeur du paramètre réel α .

Partie I : Préliminaires et cas où $\alpha > 1$.

- 1) Rappeler la définition de la convergence absolue d'une série.
- 2) Étant donné une suite $(a_n)_{n\in\mathbb{N}}$, montrer que la série $\sum_{n\geqslant 0}a_{n+1}-a_n$ converge si et seulement si la suite $(a_n)_{n\in\mathbb{N}}$ converge.

Préciser, le cas échéant, la somme de cette série.

3) On suppose pour cette question que $\alpha > 1$. Montrer la convergence de la série $\sum_{n\geqslant 1} \frac{\sin{(\pi\sqrt{n})}}{n^{\alpha}}$.

Partie II : Cas où $\frac{1}{2} < \alpha \leqslant 1$.

On suppose dans cette partie que $-\frac{1}{2} < \alpha \le 1$, et l'on définit la fonction

$$\varphi: \left\{ \begin{array}{ccc} [1,+\infty[& \longrightarrow & \mathbb{R}, \\ & t & \longmapsto & \frac{\sin\left(\pi\sqrt{t}\right)}{t^{\alpha}}. \end{array} \right.$$

On pose, pour tout entier naturel n non nul, $u_n = \varphi(n) = \frac{\sin(\pi \sqrt{n})}{n^{\alpha}}$ et $v_n = \int_n^{n+1} \varphi(t) dt$.

On admettra enfin que $x \mapsto \int_1^x \varphi(t) dt$ admet une limite finie lorsque x tend vers $+\infty$.

- 1) Étude de la dérivée de φ .
 - a) Justifier que φ est continuement dérivable (de classe \mathscr{C}^1) sur $[1, +\infty[$ et déterminer φ' .
 - **b)** À l'aide de la fonction $u\mapsto \frac{\sin(\pi u)}{u}$, montrer qu'il existe un réel K>0 tel que :

$$\forall t \in [1, +\infty[, |\varphi'(t)| \leqslant \frac{K}{t^{\alpha + \frac{1}{2}}}.$$

c) En déduire que :

$$\forall a \in [1, +\infty[, \forall b \in]a, +\infty[, |\varphi(a) - \varphi(b)| \le \frac{K}{a^{\alpha + \frac{1}{2}}} |a - b|.$$

- 2) Nature de la série $\sum_{n\geqslant 1} v_n$.
 - a) Exprimer, pour tout entier naturel N non nul, la somme partielle $V_N = \sum_{n=1}^N v_n$ à l'aide d'une intégrale.
 - **b)** Quelle est la nature de la série $\sum_{n\geq 1} v_n$?
- 3) Nature de la série $\sum_{n\geq 1} u_n v_n$.
 - a) Montrer que : $\forall n \in \mathbb{N}^*, \ u_n v_n = \int_n^{n+1} \varphi(n) \varphi(t) \, dt.$
 - **b)** En déduire la nature de la série $\sum_{n\geq 1} u_n v_n$.
- 4) En déduire la nature de la série $\sum_{n\geq 1} \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$.

Partie III : Cas où $\alpha = \frac{1}{2}$.

On suppose dans cette partie que $\alpha = \frac{1}{2}$.

- 1) a) Former les développements asymptotiques en $+\infty$ à l'ordre $\frac{1}{n\sqrt{n}}$ de $\sqrt{n+1} + \sqrt{n}$ ainsi que de $\sqrt{n+1} \sqrt{n}$.
 - b) Montrer qu'asymptotiquement

$$\sin\left[\frac{\pi}{2}\Big(\sqrt{n+1}+\sqrt{n}\Big)\right] \underset{n\to+\infty}{=} \sin\left(\pi\sqrt{n}\right) + \frac{\pi\cos\left(\pi\sqrt{n}\right)}{4\sqrt{n}} - \frac{\pi^2\sin\left(\pi\sqrt{n}\right)}{32n} + o\left(\frac{1}{n}\right).$$

c) Montrer qu'asymptotiquement

$$\sin\left[\frac{\pi}{2}\left(\sqrt{n+1}-\sqrt{n}\right)\right] \underset{n\to+\infty}{=} \frac{\pi}{4\sqrt{n}} - \frac{\pi}{16n\sqrt{n}} - \frac{\pi^3}{384n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right).$$

d) En déduire, en utilisant une formule de factorisation, qu'asymptotiquement

$$\cos\left(\pi\sqrt{n+1}\right) - \cos\left(\pi\sqrt{n}\right) \underset{n \to +\infty}{=} -\frac{\pi\sin\left(\pi\sqrt{n}\right)}{2\sqrt{n}} - \frac{\pi^2\cos\left(\pi\sqrt{n}\right)}{8n} + \frac{c\sin\left(\pi\sqrt{n}\right)}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right),$$

où c est une constante réelle que l'on ne détaillera pas.

e) En déduire qu'asymptotiquement

$$\frac{\sin\left(\pi\sqrt{n}\right)}{\sqrt{n}} \underset{n \to +\infty}{=} -\frac{2}{\pi} \left[\cos\left(\pi\sqrt{n+1}\right) - \cos\left(\pi\sqrt{n}\right)\right] - \frac{\pi\cos\left(\pi\sqrt{n}\right)}{4n} + \frac{c'\sin\left(\pi\sqrt{n}\right)}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right),$$

où c' est une constante réelle que l'on ne détaillera pas.

- 2) On pose, pour tout entier naturel n non nul, $\alpha_n = \cos(\pi \sqrt{n})$. Montrer que la suite $(\alpha_n)_{n \in \mathbb{N}^*}$ est divergente.
- 3) En admettant que la série $\sum_{n\geqslant 1}\frac{\cos{(\pi\sqrt{n})}}{n}$ est convergente, en déduire la nature de la série $\sum_{n\geqslant 1}\frac{\sin{(\pi\sqrt{n})}}{\sqrt{n}}.$

Partie IV : Cas où $\alpha < \frac{1}{2}$.

On suppose dans cette partie que $\alpha < \frac{1}{2}$ et l'on va montrer par l'absurde que la série $\sum_{n \geqslant 1} \frac{\sin(\pi \sqrt{n})}{n^{\alpha}}$ diverge.

On suppose donc que cette série converge et l'on pose, pour tout entier naturel p non nul, $S_p = \sum_{n=1}^p \frac{\sin(\pi \sqrt{n})}{n^{\alpha}}$ ainsi que $S_0 = 0$.

1) Montrer que:

$$\forall n \in \mathbb{N}^*, \ \frac{\sin(\pi\sqrt{n})}{\sqrt{n}} = n^{\alpha - \frac{1}{2}}(S_n - S_{n-1})$$

et en déduire que

$$\forall N \in [2, +\infty[, \sum_{n=1}^{N} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}} = \sum_{n=1}^{N} S_n(n^{\alpha - \frac{1}{2}} - (n+1)^{\alpha - \frac{1}{2}}) + S_N(N+1)^{\alpha - \frac{1}{2}}.$$

- 2) Justifier que la suite $(S_n)_{n\in\mathbb{N}^*}$ est bornée et en déduire que la série $\sum_{n\geqslant 1}\frac{\sin{(\pi\sqrt{n})}}{\sqrt{n}}$ est convergente.
- 3) Conclure.

— FIN —