COVID-19 Data Analysis

An analysis of COVID-19 data

Introduction

1 Purpose of the analysis

The analysis aims to ensure data accuracy and uncover insights from the COVID-19 dataset, helping to understand trends and statistics.

2 Brief overview of the dataset

The dataset contains COVID-19 related information such as confirmed cases, deaths, and recoveries, along with other details.

Checking for Missing Values

Query: Check for NULL values in the dataset

The Query

SELECT *

FROM [Corona Virus].[dbo].[Corona Virus Dataset]

--where Province, Country, Region, Latitude, Longitude, Deaths, Recovered, Confirmed, Date is null

Handling Missing Values

Query: Update NULL values with zeros for all columns

The Query

update [Corona Virus].[dbo].[Corona Virus
Dataset]
set Confirmed = coalesce(Confirmed,0)

Total Number of Rows

Query: Calculate the total number of rows in the dataset

The Query:

The Output

select count(*) as total_Rows
from [Corona Virus].[dbo].[Corona Virus
Dataset]

total_Rows -----28543

New Columns for Calculations

- Query: convert year to Date time
- Query : Convert Deaths, confirmed and Recovered to float

The Query:

--Made three new columns to combine
alter table [Corona Virus].[dbo].[Corona Virus Dataset]
add day_column int,
month_column int,
year_column int

--insert in each column from the date column

update [Corona Virus].[dbo].[Corona Virus Dataset]

set day_column = CAST(SUBSTRING(Date, 1, 2) AS int), month_column = CAST(SUBSTRING(Date, 4, 2) as int), year_column = CAST(SUBSTRING(Date, 7, 4) AS int);

--make the converted Date column to the right data type to make calculation

ALTER TABLE [Corona Virus].[dbo].[Corona Virus Dataset] ADD Converted_Date date;

--updated and combine the three column

- make new columns to convert

alter table [Corona Virus].[dbo].[Corona Virus Dataset] add Converted_Deaths float, converted_Confirmed float, Converted_Recovered float;

-- update them with new data type to make caclulations

UPDATE [Corona Virus].[dbo].[Corona Virus Dataset]

SET Converted_Deaths = TRY_CAST(Deaths AS int), converted_Confirmed = TRY_CAST(Confirmed AS int), Converted_Recovered = TRY_CAST(Recovered AS int);

-- Delete any zeros and null values

DELETE FROM [Corona Virus].[dbo].[Corona Virus Dataset]
WHERE Converted_Deaths IS NULL OR Converted_Deaths = '0'
OR Converted_Deaths IS NULL OR Converted_Deaths = '0'
OR Converted_Deaths IS NULL OR Converted_Deaths = '0';

Start and End Dates

 Queries: Extract start and end dates from the dataset

The Query:

--Start_date

select MIN(Converted_Date) as Start_date from [Corona Virus].[dbo].[Corona Virus Dataset]

--- End_date

select MAX(Converted_Date) as End_date from [Corona Virus].[dbo].[Corona Virus Dataset]

The Output:

Start_date

2020-01-24

(1 row affected)

End_date

2021-06-13

Number of Months Present

 Query: Calculate the number of unique months present in the dataset

The Query:

SELECT COUNT(DISTINCT MONTH(Converted_Date)) AS num_of_months FROM [Corona Virus].[dbo].[Corona Virus Dataset];

The Output:

num_of_months
----12

Monthly Averages for Confirmed, Deaths, and **Recovered Cases**

Query: Calculate monthly averages for confirmed, deaths, and recovered cases

MONTH(Converted_Date) AS month,

ROUND(AVG(converted_Confirmed), 2) AS

ROUND(AVG(Converted_Recovered), 2) AS

[Corona Virus].[dbo].[Corona Virus Dataset]

ROUND(AVG(Converted_Deaths), 2) AS

The Query:

avg_confirmed,

avg_deaths,

GROUP BY

ORDER BY

FROM

avg_recovered

MONTH(Converted_Date)

MONTH(Converted_Date);

SELECT

month avg_confirmed avg_deaths avg_recovered

The Output:

4264.66

4298.07

5602.6

5240.71

3338.45

3733.25

3756.91

3801.94

4627.9

6932.82

6180.77

3204

5 6

8

9

10

3244.3 3057.52 4081.27 5470.12 3238.9 2598.07 3162.75

4136.88

3346.48 3298.81 4434.35

96.76 129.16 122.16 102.22 92.22 88.93 77.88 75.51 108.08

109.31

116.71

92.97

5502.98

Most Frequent Values for Confirmed, Deaths, and Recovered Cases Each Month

 Query: Identify the most frequent values for confirmed, deaths, and recovered cases each month

The Output:

19

66 1024

1 126 2 39 2 1 1 14 3 24 1 1 4 9 1 2 5 1 1 1 6 20 3 5 7 21 1 5 8 145 22 989

2206

10

month most_freq_confirmed most_freq_Deaths most_freq_Recoverd

The Query:

WITH MonthFreq AS(
Select MONTH(Converted_Date) as month,
converted_Confirmed as Confirmed,
Converted_Deaths as Deaths,
Converted_Recovered as Recoverd,

ROW_NUMBER() over (partition by month(Converted_Date) order by count (*)desc) as rn

from[Corona Virus].[dbo].[Corona Virus Dataset]

group by MONTH(Converted_Date),converted_Confirmed, Converted_Deaths,Converted_Recovered)

select month, Confirmed as most_freq_confirmed , Deaths as most_freq_Deaths , Recoverd as most_freq_Recoverd

from MonthFreq

where rn = 1;

Minimum Values for Confirmed, Deaths, and Recovered Cases Per Year

year

The Output:

year	min_Confirmed	min_Deaths	min_Recovered
2021	1	1	1
2020	1	1	1

Queries: Find the minimum values for confirmed, deaths, and recovered cases each

The Query:

```
select
YEAR(Converted_Date) as year,
min(converted_Confirmed) as
min_Confirmed,
min(Converted_Deaths) as min_Deaths,
min(Converted_Recovered) as min_Recovered
from [Corona Virus].[dbo].[Corona Virus Dataset]
group by YEAR(Converted_Date);
```

Maximum Values for Confirmed, Deaths, and Recovered Cases Per Year

Queries: Find the maximum values for confirmed, deaths, and recovered cases each year

The Query:

The Output:

year max_Confirmed		max_Confirmed	max_Deaths	max_Recovered	
	2021	414188	7374	422436	
	2020	823225	3410	1123456	

select YEAR(Converted_Date) as year, max(converted_Confirmed) as max_Confirmed,

max(Converted_Deaths) as max_Deaths,

max(Converted_Recovered) as max_Recovered

from [Corona Virus].[dbo].[Corona Virus Dataset] group by YEAR(Converted_Date);

Total Number of Cases of Confirmed, Deaths, and Recovered Each Month

 Query: Calculate the total number of confirmed, deaths, and recovered cases each month

The Query:

```
select
month(Converted_Date) as month,
sum(converted_Confirmed)asTotal_Confirmed,
sum(Converted_Deaths) as Total_Deaths,
sum(Converted_Recovered) as Total_Recovered
from [Corona Virus].[dbo].[Corona Virus Dataset]
group by month(Converted_Date)
order by month;
```

Month	Total_Confirmed	Total_Deaths	Total_Recovered
1	9326801	239054	9047361
2	6552180	190126	6634597
3	11162089	251274	7940387
4	20415880	470656	14872163
5	19595017	456750	20452795
6	8219255	251665	7974181
7	6581728	162580	4580405
8	7235816	171281	6091450
9	7402368	151638	6515606
10	9394631	153288	6696585
11	14240010	221988	9108146
12	13282469	250802	11825913

Spread of Coronavirus with Respect to Confirmed Cases

 Query: Calculate total confirmed cases, their average, variance, and standard deviation

The Output:

total_confirmed avg_confirmed variance_confirmed stdev_confirmed

133408244 4673.94 321129066.39 17920.07

The Query:

SELECT ROUND(SUM(converted_Confirmed),2) AS total_confirmed_cases,

ROUND(AVG(converted_Confirmed),2) AS avg_confirmed_case,

ROUND(VAR(converted_Confirmed),2) AS variance_confirmed_cases,

ROUND(STDEV(converted_Confirmed),2) AS stdev_confirmed_cases

FROM [Corona Virus].[dbo].[Corona Virus Dataset];

Spread of Coronavirus with Respect to Death Cases Per Month

Query: Calculate total death cases, their average,

variance, and standard deviation per month

The Query:

SELECT month(Converted_Date) as month, ROUND(SUM(Converted_Deaths), 2) AS total_Deaths,

ROUND(AVG(Converted_Deaths), 2) AS avg_Deaths,

ROUND(VAR(Converted_Deaths),2) AS

group by month(Converted_Date)

order by month;

ROUND(STDEV(Converted_Deaths),2) AS

FROM [Corona Virus].[dbo].[Corona Virus Dataset]

variance_Deaths,

stdev_Deaths

239054

190126

251274

470656

456750

251665

162580

171281

151638

153288

221988

250802

10

11

12

The Output:

month total_Deaths avg_Deaths variance_Deaths

109.31

92.97

96.76

129.16

122.16 102.22

92.22

88.93 77.88

75.51 108.08

116.71

69805.35

51141.31

48649.66

80416.49

149729.92

181723.62

114905.05

51210.79

51434.45

43599.11

35587.88

49555.14

stdev_Deaths

226.14

220.57

283.58

386.95

338.98

426.29

226.3

226.79

188.65

208.8

Spread of Coronavirus with Respect to Recovered Cases

 Query: Calculate total recovered cases, their average, variance, and standard deviation per month

The Query:

SELECT month(Converted_Date) as month,

ROUND(SUM(Converted_Recovered),2) AS total

- ROUND(AVG(Converted_Recovered),2) AS avg
- ROUND(VAR(Converted_Recovered),2) AS variance
- ROUND(STDEV(Converted_Recovered),2) AS stdev

FROM [Corona Virus].[dbo].[Corona Virus Dataset] group by month(Converted_Date) order by month;

mon	th total	avg	variance s	tdev
1	9047361	4136.88	59567024.82	7717.97
2	6634597	3244.3	45515958.73	6746.55
3	7940387	3057.52	59858550.93	7736.83
4	14872163	4081.27	280591735.08	16750.87
5	20452795	5470.12	957446798.69	30942.64
6	7974181	3238.9	198098512.35	14074.75
7	4580405	2598.07	62884301.2	7929.96
8	6091450	3162.75	93637670.32	9676.66
9	6515606	3346.48	128163882.86	11320.95
10	6696585	3298.81	167209487.92	12930.95
11	9108146	4434.35	103282567.4	10162.8
12	11825913	5502.98	709581840.99	26637.98

Country with the Highest Number of Confirmed Cases

• Query: Identify the country with the highest number of confirmed cases

[Corona Virus].[dbo].[Corona Virus Dataset]

The Query:

SELECT TOP 5 [Country Region],

MAX(converted_Confirmed) AS highest_confirmed_cases

[Country Region]

FROM

GROUP BY

ORDER BY highest_confirmed_cases DESC;

Country Region	highest_confirmed_cases	
Turkey	823225	
India	414188	
US	240089	
France	117900	
Brazil	100158	

Country with the Lowest Number of Death Cases

 Query: Identify the country with the lowest number of death cases

The Query:

SELECT TOP 5 [Country Region],

min(Converted_Deaths) AS Lowest_Deaths_cases

FROM [Corona Virus].[dbo].[Corona Virus Dataset] GROUP BY

[Country Region]

ORDER BY Lowest_Deaths_cases DESC;

Country Region	Lowest_Deaths_cases
Turkey	14
Mexico	8
US	6
Spain	5
Peru	Δ

Top 5 Countries with the Highest Number of Recovered Cases

 Query: Identify the top 5 countries with the highest number of recovered cases

The Query:

```
SELECT TOP 5 [Country Region],
```

max(Converted_Recovered) AS highest_Recovered_cases

FROM

[Corona Virus].[dbo].[Corona Virus Dataset]

GROUP BY
[Country Region]
ORDER BY
highest_Recovered_cases DESC;

Country Region	highest_Recovered_cases	
Turkey	1123456	
India	422436	
Brazil	388340	
US	150267	
Colombia	89557	

Conclusion

1 Summary of key findings and insights

Through the analysis, we discovered important trends such as the average monthly values for confirmed cases, deaths, and recoveries, as well as the most frequent values for each month. Additionally, we identified minimum and maximum values per year

2 Recommendations for further analysis or actions

Further analysis should delve into specific regions or demographics to understand COVID-19 case variability, while predictive modeling can inform future public health interventions and policies.

