

Our goal:

 To train a model that given an image, can automatically generate a caption for it

a dog is playing with a frisbee in the grass

Our Data

- We have 123,287 images, each paired with a string containing five different captions describing the contents of the image.
- We will split these data:
 - 82,783 for training
 - 40,504 for validation

A cat sitting on a pink stripped couch
An orange and white cat sitting in a striped chair.
An orange and white cat sleeping on a remote
Brown and white cat sleeping on couch while lying on remote.
A cat closing its eyes while lounging on a chair.

Our Model

- Our model will take images and output captions
- We will start with a Convolutional Neural Network to take in the images
- We will end with a Recurrent Neural Network to produce the captions

Model in More Detail

- The Convolutional Neural Network will reduce the image to a onedimensional array of numbers
- This array will be used as the starting state for a Long-Short Term Memory (LSTM) Model
- The LSTM model will train on how closely it can approximate the captions paired with the image

Taking a Shortcut

- Training this model would take weeks if not months
- Google has a pre-trained model for the images: InceptionV3
- We can piggyback off InceptionV3 for the CNN portion of our model
- This means feeding weights from InceptionV3 into our RNN

Inception V3

Basically, we will take everything from InceptionV3 except for the last layer (in this case, softmax)

How did it do?

a clock tower with a clock on top of it

a man riding on the back of a horse

According to the model

 Accuracy for predicting the next word was 0.40629 for predicting the next word in a sentence

In Human Terms: Some Good Examples

a bunch of apples sitting on a table

a woman in a cowboy hat holding a horse

A group of young men playing soccer on a field

In Human Terms: Some Bad Examples

a close up of a pair of orange scissors a man is riding a surfboard on a wave

a person standing in the middle of a field

Uses and Consideration

- At this level, captions are at the level of a parlor trick
- However, this also shows how effective ML is at classifying images
- Some uses of image classification include:
 - Helping organize or search an unlabeled image archive
 - Autofocusing a camera on people, animals, or objects
 - Watching a nature camera for when a rare species appears