İçindekiler

1 Z ve S tanım bölgesi

3

2 İÇİNDEKİLER

Bölüm 1

Z ve S tanım bölgesi

Zaman tanım bölgesinden S tanım gölgesine dönüşüm

$$F(s) = \mathcal{L}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)e^{-kTs}$$

= $f(0) + f(T)e^{-Ts} + f(2T)e^{-2Ts} + \cdots$ (1.1)

olarak verilmiştir. Zaman tanım bölgesinden Z tanım bölgesine geçiş ise

$$F(z) = \mathcal{Z}{f(t)} = \sum_{k=0}^{\infty} f(kT)z^{-k}$$

= $f(0) + f(T)z^{-1} + f(2T)z^{-2} + \cdots$ (1.2)

şeklindedir. S ve Z tanım bölgesi dönüşümlerine dikkat edilirse

$$\mathcal{L}\lbrace f(t)\rbrace = \sum_{k=0}^{\infty} f(kT)(e^{Ts})^{-k}$$

$$\mathcal{Z}\lbrace f(t)\rbrace = \sum_{k=0}^{\infty} f(kT)z^{-k}$$
(1.3)

ifadelerinden

$$z = e^{sT} (1.4)$$

ilişkisi elde edilir.

Z dönüşümü için tablo Tablo 1.1 ile verilmiştir.

$$\int_0^\infty u dv = uv - \int_0^\infty v du \tag{1.5}$$

Zaman domeni	F(s)	F(z)
$\delta(t)$	1	1
$\delta(t - kT)$	e^{-kTs}	z^{-k}
u(t) = 1	$\frac{1}{8}$	$\frac{z}{z-1}$
t	$\frac{\frac{s}{1}}{s^2}$	$\frac{\tilde{T}z^{1}}{(z-1)^{2}}$
e^{-at}	_1_	$\frac{z}{z-e^{-aT}}$
	a + a	$z-e^{-aT}$ $z(1-e^{-aT})$
$1 - e^{-at}$	$\overline{s(s+a)}$	$\overline{(z-1)(z-e^{-aT})}$
sin(wt)	$\frac{w}{s^2+w^2}$	$\frac{z\sin(wT)}{(z-1)(z^2-2z\cos(wT)+1)}$
cos(wt)	s	z(z-cos(wT))
()	$\overline{s^2+w^2}$	$(z-1)(z^2-2zcos(wT)+1)$

Tablo 1.1: S ve Z dönüşümü tablosu

kullanarak u=tve $dv=e^{-st}dt$ olmak üzere

$$dv = e^{-st}dt$$

$$\int dv = \int e^{-st}dt$$

$$v = \frac{e^{-st}}{-s}$$
(1.6)

ve dolayısıyla

$$L\{t\} = \int_{t=0}^{\infty} t e^{-st} dt$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} - \int_{t=0}^{\infty} \frac{e^{-st}}{-s} dt$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} + \frac{1}{s} e^{-st} \Big|_{t=0}^{\infty}$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} + \frac{1}{s^2}$$

$$= \frac{1}{s^2}$$
(1.7)