

Database Systems

Lecture 5: Introduction to SQL (part 1)

Dr. Momtazi momtazi@aut.ac.ir

based on the slides of the course book

Outline

- Overview of The SQL Query Language
- Data Definition
- Basic Query Structure
- Additional Basic Operations
- Set Operations
- Null Values
- Aggregate Functions
- Nested Subqueries
- Modification of the Database

History

- IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory
- Renamed Structured Query Language (SQL)
- ANSI and ISO standard SQL:
 - SQL-86
 - SQL-89
 - SQL-92
 - SQL:1999 (language name became Y2K compliant!)
 - SQL:2003
- Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later standards and special proprietary features.
 - Not all examples here may work on your particular system.

Data Definition Language

The SQL data-definition language (DDL) allows the specification of information about relations, including:

- The schema for each relation.
- The domain of values associated with each attribute.
- Integrity constraints
- And as we will see later, also other information such as
 - The set of indices to be maintained for each relations.
 - Security and authorization information for each relation.
 - The physical storage structure of each relation on disk.

Domain Types in SQL

- char(n). Fixed length character string, with user-specified length n.
- varchar(n). Variable length character strings, with user-specified maximum length n.
- int. Integer (a finite subset of the integers that is machine-dependent).
- smallint. Small integer (a machine-dependent subset of the integer domain type).
- numeric(p,d). Fixed point number, with user-specified precision of p digits, with d digits to the right of decimal point. (ex., numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)
- real, double precision. Floating point and double-precision floating point numbers, with machine-dependent precision.
- float(n). Floating point number, with user-specified precision of at least n digits.

More are covered in Chapter 4.

Create Table Construct

An SQL relation is defined using the create table command:

```
create table r(A_1 D_1, A_2 D_2, ..., A_n D_n, (integrity-constraint<sub>1</sub>), ..., (integrity-constraint<sub>k</sub>))
```

- r is the name of the relation
- each A_i is an attribute name in the schema of relation r
- D_i is the data type of values in the domain of attribute A_i
- Example:

```
create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))
```


Integrity Constraints in Create Table

- not null
- **primary key** $(A_1, ..., A_n)$
- foreign key $(A_m, ..., A_n)$ references r

Example:

primary key declaration on an attribute automatically ensures not null

create table department(

```
dep_name varchar(20),
building varchar(15),
budget numeric(12,2),
primary key (dept_name));
```


create table course (

```
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),
foreign key (dept_name) references department);
```


create table section (

course_id varchar(8),

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

building varchar(15),

room_number varchar(7),

time_slot_id varchar(4),

primary key (course_id, sec_id, semester, year),

foreign key (course_id) references course);

create table student (

create table takes (

```
ID     varchar(5),
    course_id     varchar(8),
    sec_id     varchar(8),
    semester     varchar(6),
    year          numeric(4,0),
    grade     varchar(2),
    primary key (ID, course_id, sec_id, semester, year) ,
    foreign key (ID) references student,
    foreign key (course_id, sec_id, semester, year) references section);
```

 Note: sec_id can be dropped from primary key above, to ensure a student cannot be registered for two sections of the same course in the same semester

Updates to tables

- Insert
 - insert into instructor values ('10211', 'Smith', 'Biology', 66000);
- Delete
 - Remove all tuples from the student relation
 - delete from student
- Drop Table
 - drop table r
- Alter
 - alter table r add A D
 - where A is the name of the attribute to be added to relation r and D is the domain of A.
 - All exiting tuples in the relation are assigned null as the value for the new attribute.
 - alter table r drop A
 - where A is the name of an attribute of relation r
 - Dropping of attributes not supported by many databases.

Outline

- Overview of The SQL Query Language
- Data Definition
- Basic Query Structure
- Additional Basic Operations
- Set Operations
- Null Values
- Aggregate Functions
- Nested Subqueries
- Modification of the Database

Basic Query Structure

A typical SQL query has the form:

select
$$A_1, A_2, ..., A_n$$
 from $r_1, r_2, ..., r_m$ **where** P

- A_i represents an attribute
- R_i represents a relation
- *P* is a predicate.
- The result of an SQL query is a relation.

The select Clause

- The **select** clause lists the attributes desired in the result of a query
 - corresponds to the projection operation of the relational algebra
- Example: find the names of all instructors:

select name from instructor

- NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)
 - E.g., Name = NAME = name
 - Some people use upper case wherever we use bold font.

Example: select clause

name

Sriniyasan

Wu.

Mozart

Einstein

El Said

Gold

Katz

Califieri

Singh

Crick

Brandt

Kim

Figure 3.2 Result of "select name from instructor".

The select Clause

- SQL allows duplicates in query results.
- To force the elimination of duplicates, insert the keyword distinct after select.
- Find the department names of all instructors, and remove duplicates select distinct dept_name from instructor
- The keyword all specifies that duplicates should not be removed.

select all dept_name **from** instructor

Example: select clause

dept_name

Comp. Sci.

Finance

Music

Physics

History

Physics

Comp. Sci.

History

Finance

Biology

Comp. Sci.

Elec. Eng.

Figure 3.3 Result of "select dept.name from instructor".

The select Clause

An asterisk in the select clause denotes "all attributes"

select *
from instructor

An attribute can be a literal with no from clause

select '437'

- Results is a table with one column and a single row with value "437"
- Can give the column a name using:

select '437' as FOO

An attribute can be a literal with from clause

select 'A' **from** *instructor*

 Result is a table with one column and N rows (number of tuples in the instructors table), each row with value "A"

The select Clause

- The **select** clause can contain arithmetic expressions involving the operation, +, −, *, and /, and operating on constants or attributes of tuples.
 - The query:

select *ID, name, salary/12* **from** *instructor*

would return a relation that is the same as the *instructor* relation, except that the value of the attribute *salary* is divided by 12.

Can rename "salary/12" using the as clause:

select *ID, name, salary/12* **as** *monthly_salary*

The where Clause

- The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.

■ To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = 'Comp. Sci.'

The where Clause

- Comparison results can be combined using the logical connectives and, or, and not
 - To find all instructors in Comp. Sci. dept with salary > 70000
 select name
 from instructor
 where dept_name = 'Comp. Sci.' and salary > 70000

Comparisons can be applied to results of arithmetic expressions.

Example: where clause

name Katz

Brandt

Figure 3.4 Result of "Find the names of all instructors in the Computer Science department who have salary greater than \$70,000."

The from Clause

- The from clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- Find the Cartesian product *instructor X teaches*

select *
from instructor, teaches

- generates every possible instructor teaches pair, with all attributes from both relations.
- For common attributes (e.g., *ID*), the attributes in the resulting table are renamed using the relation name (e.g., *instructor.ID*)
- Cartesian product not very useful directly, but useful combined with where-clause condition (selection operation in relational algebra).

Cartesian Product

instructor

teaches

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
00454		731	0,000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009

Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2009
	***	•••	•••		•••	•••	•••	** *
		•••	•:••	• • •	• • •		***	
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2009
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2010
12121	Wu	Pinance	90000	10101	CS-347	1	Fall	2009
12121	Wu	Pinance	90000	12121	FIN-201	1	Spring	2010
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2010
12121	Wu	Pinance	90000	22222	PHY-101	1	Fall	2009
***	***		•••	•••	• • •		•••	***
	**************************************		• • •	•••	•••			

Example: from clause

- Find the names of all instructors who have taught some course and the course_id
 - select *from instructor, teacheswhere instructor.ID = teaches.ID

Example: from Clause

ID	пате	dept_name	salary	course_id	sec.id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
12121	Wu	Finance	90000	FIN-201	1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	BIO-301	1	Summer	2010
83821	Brandt	Comp. Sci.	92000	CS-190	1	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-190	2	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-319	2	Spring	2010
98345	Kim	Elec. Eng.	80000	EE-181	1	Spring	2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

Example: from clause

- Find all instructors who have taught some course
 - select *from instructor, teacheswhere instructor.ID = teaches.ID
- This query can be written more concisely using the natural-join operation in SQL as:
 - select * from instructor natural join teaches

Example: from clause

- Find the names of all instructors who have taught some course and the course_id
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID
 - select name, course_id
 from instructor natural join teaches

Example: from Clause

name	course_id
Srinivasan	CS-101
Srinivasan	CS-315
Srinivasan	CS-347
Wu	FIN-201
Mozart	MU-199
Einstein	PHY-101
El Said	HIS-351
Katz	CS-101
Katz	CS-319
Crick	BIO-101
Crick	BIO-301
Brandt	CS-190
Brandt	CS-190
Brandt	CS-319
Kim	EE-181

Figure 3.7 Result of "For all instructors in the university who have taught some course, find their names and the course ID of all courses they taught."

Examples: from clause

- Find the names of all instructors who have taught some course and the course_id
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID
- Find the names of all instructors in the Art department who have taught some course and the course_id
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID and instructor. dept_name = 'Art'

The Rename Operation

- The SQL allows renaming relations and attributes using the as clause:
 old-name as new-name
- Find the names of all instructors who have a higher salary than some instructor in 'Comp. Sci'.
 - select distinct T.name
 from instructor as T, instructor as S
 where T.salary > S.salary and S.dept_name = 'Comp. Sci.'
- Keyword **as** is optional and may be omitted instructor **as** $T \equiv instructor T$

Cartesian Product Example

Relation emp-super

person	supervisor
Bob	Alice
Mary	Susan
Alice	David
David	Mary

Find the supervisor of "Bob"

Select supervisor from emp-super where person= 'Bob'

Cartesian Product Example

Relation emp-super

person	supervisor
Bob	Alice
Mary	Susan
Alice	David
David	Mary

■Find the supervisor of the supervisor of "Bob"

Select B.supervisor **from** emp-super **as** A, emp-super **as** B **where** A.supervisor = B.person

String Operations

- SQL includes a string-matching operator for comparisons on character strings. The operator like uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - underscore (_). The _ character matches any character.
- Find the names of all instructors whose name includes the substring "dar".

select name from instructor where name like '%dar%'

Match the string "100%"

like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

String Operations (Cont.)

- Patterns are case sensitive.
- Pattern matching examples:
 - 'Intro%' matches any string beginning with "Intro".
 - '%Comp%' matches any string containing "Comp" as a substring.
 - '___' matches any string of exactly three characters.
 - '___ %' matches any string of at least three characters.
- SQL supports a variety of string operations such as
 - concatenation (using "||")
 - converting from upper to lower case (and vice versa)
 - finding string length, extracting substrings, etc.

Ordering the Display of Tuples

List in alphabetic order the names of all instructors

```
select distinct name
from instructor
order by name
```

- We may specify desc for descending order or asc for ascending order, for each attribute; ascending order is the default.
 - Example: order by name desc
- Can sort on multiple attributes
 - Example: order by dept_name, name

Where Clause Predicates

- SQL includes a between comparison operator
- **Example:** Find the names of all instructors with salary between \$90,000 and \$100,000 (that is, \geq \$90,000 and \leq \$100,000)
 - select name
 from instructor
 where salary between 90000 and 100000
- Tuple comparison
 - select name, course_id
 from instructor, teaches
 where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

Duplicates

- In relations with duplicates, SQL can define how many copies of tuples appear in the result.
- Multiset versions of some of the relational algebra operators given multiset relations r_1 and r_2 :
 - 1. $\sigma_{\theta}(r_1)$: If there are c_1 copies of tuple t_1 in r_1 , and t_1 satisfies selections σ_{θ} , then there are c_1 copies of t_1 in $\sigma_{\theta}(r_1)$.
 - 2. $\Pi_A(r)$: For each copy of tuple t_1 in r_1 , there is a copy of tuple $\Pi_A(t_1)$ in $\Pi_A(r_1)$ where $\Pi_A(t_1)$ denotes the projection of the single tuple t_1 .
 - 3. $r_1 \times r_2$: If there are c_1 copies of tuple t_1 in t_2 and t_3 copies of tuple t_2 in t_3 , there are t_3 copies of the tuple t_4 . t_4 in t_5 in t_7 in t_8 copies of the tuple t_8 .

Duplicates (Cont.)

Example: Suppose multiset relations r_1 (A, B) and r_2 (C) are as follows:

$$r_1 = \{(1, a) (2,a)\}$$
 $r_2 = \{(2), (3), (3)\}$

- Then $\Pi_B(r_1)$ would be {(a), (a)}, while $\Pi_B(r_1)$ x r_2 would be {(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
- SQL duplicate semantics:

select
$$A_1, A_2, ..., A_n$$
 from $r_1, r_2, ..., r_m$ **where** P

is equivalent to the *multiset* version of the expression:

$$\prod_{A_1,A_2,\ldots,A_n} (\sigma_P(r_1 \times r_2 \times \ldots \times r_m))$$

Questions?