Pre-MidSem Revision

LS2103 IISER Kolkata

Dr. Neelanjana Sengupta

https://www.iiserkol.ac.in/~n.sengupta/

Scales and Approximations

The mass of water within the hydration layer of thickness d surrounding a near-spherical cell of radius $R_e = 50$ nm is estimated to be 1.76 x 10^{-17} grams.

The hydration layer is 2 water molecules thick, and the density of water is 1.0 g cm⁻³.

Since d is much smaller than R_e , the volume of the layer may be approximated as $(4\pi R_e^2.d)$.

Estimate the diameter of a water molecule, in Angstroms, from this information.

Hydrophobicity: entropic cost of solvation

H₂O form tetrahedral structure

Network of hydrogen bonded molecules

Small (water unfriendly) solute

VS.

Large solute

Hydrophobicity: entropic cost of solvation

H₂O form tetrahedral structure

radius

~ 1 Å

Small (water unfriendly) solute

VS.

Network of hydrogen bonded molecules

Large solute

Entropy estimates

$$S = k_B \ln(\Omega)$$

Protein binding sites on DNA:

Entropy of composite systems:

For the composite system,
$$\Omega_{\text{(Hotal)}} \Omega_{1} \times \Omega_{2}$$

$$S = R_{B} \ln \Omega_{-} = S_{1} + S_{2}$$

Entropy is additive

Approximating the entropic cost

6 possible molecular orientations

Approximating the entropic cost of hydrophobic solvation

$$\Omega$$
 original = 6
 Ω reduced = 3

6 possible molecular orientations

When one site is replaced, 3 orientations are lost.

Approximating the entropic cost of hydrophobic solvation

Water molecule orientations

△S hydrofhasic = Sredned - Soriginal

When 'n' molecules lose one H-bonding partner,

Approximating the entropic cost of hydrophobic solvation

If enthalpic (energetic) cost is insignificant,

∆Ghydrophere = - T△Shydrophere

Now 'n' is proportional to the area (A) of hydrophobic solute, ie. the hydrophobic entropy penalty is,

$$\Delta G$$
 mydrophotic = (cost per unit area) X A

(RT) is the energy scale in molecular biology

