

T-test

Evaluation Methods & Statistics – Lecture 7

Benjamin Cowan & Andrew Howes

What we will cover

- Experiment Design
- 2 samples t-test
 - Independent
 - Dependent
- Independent, Dependent Variables
- Reporting the findings

A Study.....

Research Example

- Consequences of a secondary task on driving
- Does using a mobile phone to text cause driving quality to deteriorate?

Independent and dependent variables

■ We systematically manipulate the IV

 We want to see how this systematic manipulation impacts an outcome (or DV)

Research Set-Up

Independent Variable (IV)

Secondary Driving Task

This independent variable has **2 levels** or **factors**

1) Control Group

Just driving (no secondary task)

2) Texting Group

 Participants asked to text whilst driving Dependent Variable (DV)

Driving Quality Score

Main task for the participants is to drive for an hour in a simulator

Hypotheses

Null Hypothesis

■ There will be no significant difference between secondary driving tasks on driving quality score

Research Hypothesis

■ There will be a significant difference between secondary driving tasks on driving quality score

Experiment Design

Methods of data collection

Between-subjects

Different groups of people take part in each driving task

Within-Subjects

Same group of people take part in each driving task

IV Level 1 Participants

IV Level 2 Participants

IV Level 1 Participants

IV Level 2 Participants

Methods of data collection

- This influences what statistical test you use
- It also influences how you design your experiment
 - Counterbalancing (In Within Subjects)
 - Sample matching (in Between Subjects)
 - To minimise confound effects on the variance

Unsystematic

Differences in DV due to unknown (or unmeasured) factors

Systematic

Differences in DV due to the change in IV

e.g. personality, change in room environment between conditions 1 and 2

e.g. Changes in driving score due to systematic manipulation of IV

Between-Subjects

Unsystematic variation due to sample differences

naturally vary in IQ, Personality, attention span

We can try to control for this

- Include high risk variables as part of design
- E.g. high and low attention span as another IV

Randomly allocate participants to condition

Spreads the variation across conditions

Within Subjects

- Unsystematic variation controlled
 - More power to identify effects
- Systematic confounds
 - Practice effects
 - Boredom effects
- Form a risk to our conclusions if we assume that systematic variation is all due to IV
- Counterbalance to reduce impact of this confound
 - 50% of participants- Condition 1 before 2
 - 50% of participants- Condition 2 before 1

T-Test

Guinness & t-test

- William Sealy Gosset (1876-1937)
- Worked for Guinness as a statistician
- They needed stats to examine which types of barley had the best yield
- In 1908 published a paper which introduced the t-distribution under the pseudonym "Student"

T-Test

- T-test is looking at **differences**
- It is testing to see if the two sample means gathered are from different populations
- Why might they be from different populations?
 - Due to the levels of our IV

T-test

Driving scores for texting (blue) and control (purple) conditions

T-Test: Rationale

If the sample mean difference is larger than we expect

We have collected two sample by chance that are atypical of the population

OR

■ The two samples are from different populations

T-Test: Rationale

If the sample comes from the same population (i.e. as assumed in H_0)

- we'd expect these means to be roughly equal
- Large differences between sample means should occur rarely

If they do, it is because sample means are from different populations

Types of t-test

■ Independent means t-test

- Different participants are allocated to each of the secondary driving task conditions
- AKA independent measures & independent samples

Dependent means t-test

- Each participant completes both of the secondary driving task conditions
- AKA matched pairs & paired samples

Keep in mind with t-test we are interested in differences

The Dependent t-test: Calculation

Difference expected between population means (because of H0 then this is 0)

Dependent t-test calculation

score_control	score_text	D
3.85	5	-1.15
5.29	4.96	0.33
5.52	4.09	1.43
5.07	3.77	1.3
5.11	5.24	-0.13
4.04	4.6	-0.56
5.34	5.36	-0.02
6.66	6.41	0.25

■ The mean of the D values

Standard Error of Differences

Used as variability gauge between sample means

- If this is small -- most samples should have similar means, thus we would expect a small D
- If this is large large D is likely

Independent t-test

The same premise as the dependent but some important differences

Instead of differences between pairs of scores it looks at differences between **overall means**

Because we don't have pairs of scores for each participant

Independent t-test

This means we cannot calculate the SE of differences by using the **differences in the sample**

There are 2 independent samples

Calculated using the variance sum law

- The variance of a difference between two independent variables is equal to the sum of their variances
- Then square root this to get SE

Effectively this is doing the same thing as the denominator in previous equation

Independent t-test equationwith equal sample sizes

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{(\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2})}}$$

T-test: R output

T Distribution

Reporting the t-test

- Need to report
 - The t statistic
 - The degrees of freedom (N-2)
 - The significance value (or full p statistic)

e.g. t (dof) = t statistic, pvalue

The Concept of Degrees of Freedom

- The number of observations that are free to vary
- Imagine a rugby team:
 - 15 people needed
 - If you arrive last then you have no choice in where to play
 - But the other 14 did
 - There are therefore 14 degrees of freedom (15-1)
 - In our t-test our degrees of freedom are the number of differences that are free to vary

The Concept of Degrees of Freedom

- Dependent t-test
 - N-1
 - Because we are using 1 variable (mean of differences)
- Independent t-test
 - N-2
 - Because we are using 2 variables in the calculation

Parametric assumptions of t-test

Both tests

- Data is normally distributed (Shapiro Wilk test)
- Data is interval or ratio scale

Independent t-test only

- Variance in populations are roughly equal (Equality of variance)- Levene's test
- Scores are independent (i.e. They come from different people).

Shapiro-Wilk (Normality)

- Compares sample distribution to normal distribution
- If our sample varies significantly from this distribution, what would we expect?
- > shapiro.test (control)

Shapiro-Wilk normality test

data: control W = 0.9584, p-value = 0.6332

Shapiro-Wilk (Normality)

- Compares sample distribution to normal distribution
- If our sample varies significantly from this distribution, what would we expect?
- Test will be statistically significant
- We want it to be non significant (p>.05)

> shapiro.test (control)

Shapiro-Wilk normality test

data: control W = 0.9584, p-value = 0.6332

Shapiro-Wilk

Levene's Test (Homogeinity of Variance)

- Compares variance in each sample to see if they are roughly equal
- We want both variances to be similar
- Do we want the test to be statistically significant or not?

Levene's Test (Homogeinity of Variance)

- Compares variance in each sample to see if they are roughly equal
- We want both variances to be similar
- Do we want the test to be statistically significant or not?
- We want it to be non significant (p>.05)

Levene's Test

Commands used in practical

Data Manipulation

subset()

Graphing Data:

- barplot()
- boxplot()
- se.bar()
 - This is our own "homemade" function

Descriptives & Assumptions

- mysummary()
 - Again, a homemade function
- shapiro.test()
- leveneTest()

Analysis

t.test()

Task for next week

- Complete the dependent and independent ttest manual calculation on Canvas
- Do this using a calculator (no R!)
- Solution will be posted online

- Field, Miles & Field (2012) Chapter 9
- Howell (2010) Chapter 7 p.194-213

