Profiling & Parallelization

Lecture 21

Dr. Colin Rundel

Profiling & Benchmarking

profvis demo

```
1  n = le6
2  d = tibble(
3     x1 = rt(n, df = 3),
4     x2 = rt(n, df = 3),
5     x3 = rt(n, df = 3),
6     x4 = rt(n, df = 3),
7     x5 = rt(n, df = 3),
8  ) |>
9     mutate(y = -2*x1 - 1*x2 + 0*x3 + 1*x4 + 2*x5 + rnorm(n))
```

```
1 profvis::profvis(lm(y~., data=d))
```

profvis demo 2

```
profvis::profvis({
   data = data.frame(value = runif(5e4))

data$sum[1] = data$value[1]

for (i in seq(2, nrow(data))) {
   data$sum[i] = data$sum[i-1] + data$value[i]

}

}

}
```

```
profvis::profvis({
    x = runif(5e4)
    sum = x[1]
    for (i in seq(2, length(x))) {
        sum[i] = sum[i-1] + x[i]
    }
}
```

Benchmarking - bench

```
1 d = tibble(
2     x = runif(10000),
3     y = runif(10000)
4 )
5
6 (b = bench::mark(
7     d[d$x > 0.5, ],
8     d[which(d$x > 0.5), ],
9     subset(d, x > 0.5),
10     filter(d, x > 0.5)
```

```
# A tibble: 4 \times 6
 expression
                                   median `itr/sec` mem alloc `gc/sec`
                             min
  <bch:expr>
                       <bch:tm> <bch:tm>
                                             <dbl> <bch:byt>
                                                                 <dbl>
                                             7179. 238.91KB
                                                                 19.4
1 d[d$x > 0.5, ]
                          128 \mu 	extsf{s}
                                   138 \mu s
2 d[which(d$x > 0.5), ] 137\mus
                                 152 \mu s
                                             6514. 269.81KB
                                                                  33.9
3 \text{ subset}(d, x > 0.5)
                                             5138. 287.91KB
                          168 \mu s
                                 190 \mu s
                                                                  26.3
4 filter(d, x > 0.5)
                           385 \mu s
                                 412\mu s
                                             2384.
                                                       1.47MB
                                                                  42.3
```

Larger n

```
1 d = tibble(
2     x = runif(le6),
3     y = runif(le6)
4 )
5
6 (b = bench::mark(
7     d[d$x > 0.5, ],
8     d[which(d$x > 0.5), ],
9     subset(d, x > 0.5),
10     filter(d, x > 0.5)
```

```
# A tibble: 4 \times 6
 expression
                         min
                               median `itr/sec` mem alloc `gc/sec`
 <bch:expr>
                     <bch:tm> <bch:tm>
                                         <dbl> <bch:byt>
                                                          <dbl>
                               12.2ms
               11.6ms
                                         82.5
                                                 13.4MB
                                                           78.2
1 d[d$x > 0.5, ]
2 d[which(d$x > 0.5), ] 12.8ms
                             13.6ms
                                         74.0
                                                 24.8MB
                                                          123.
3 subset(d, x > 0.5) 17.3ms
                                         56.1
                             17.8ms
                                                 24.8MB
                                                          84.2
4 filter(d, x > 0.5)
                         14ms
                               14.2ms
                                         70.4
                                                 24.8MB
                                                           51.9
```

bench - relative results

```
1 summary(b, relative=TRUE)
# A tibble: 4 \times 6
 expression min median `itr/sec` mem_alloc `gc/sec`
                                     <dbl>
 <bch:expr>
                <dbl> <dbl>
                             <dbl>
                                           <dbl>
1 d[d$x > 0.5, ] 1 1
                              1.47
                                            1.51
2 d[which(d$x > 0.5), ] 1.10 1.12 1.32 1.86 2.38
3 subset(d, x > 0.5) 1.49 1.46 1 1.86 1.62
4 filter(d, x > 0.5) 1.20 1.17
                              1.25 1.86
                                            1
```

Sta 523 - Fall 2024 8

t.test

Imagine we have run 1000 experiments (rows), each of which collects data on 50 individuals (columns). The first 25 individuals in each experiment are assigned to group 1 and the rest to group 2.

The goal is to calculate the t-statistic for each experiment comparing group 1 to group 2.

```
1 m = 1000
 2 n = 50
 3 \quad X = matrix(
     rnorm(m * n, mean = 10, sd = 3),
      ncol = m
     |>
 6
     as.data.frame() |>
 8
     set names(paste0("exp", seq len(m))) |>
 9
     mutate(
       ind = seq len(n),
10
       group = rep(1:2, each = n/2)
11
12
      ) |>
     as tibble() |>
13
     relocate(ind, group)
14
```

```
1 X
# A tibble: 50 × 1,002
     ind group exp1 exp2 exp3 exp4 exp5
  <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
            1 9.54 10.9 11.8 12.2 12.2 12.6
 1
                          9.21 9.48 13.1
            1 7.78 12.7
                                            7.67
 2
            1 10.5 10.8
                          7.36 7.04 12.1
 3
                                            6.23
            1 8.71 7.36 9.20 12.4
                                      4.42 12.8
            1 7.38 9.47 10.5 13.4 10.2
 5
                                            7.35
            1 9.68 9.71 10.9
                                8.89 10.9 13.3
            1 7.40 13.2
                               8.76 7.02 3.30
                          6.02
            1 12.7 14.2
                          3.93 8.53
                                      5.45 6.96
 9
            1 7.15 8.81 13.8
                                8.28 8.64 7.75
            1 8.80 14.4 15.9
                                7.93 12.3 13.6
10
     10
   40 more rows
# i 994 more variables: exp7 <dbl>, exp8 <dbl>,
   exp9 <dbl>, exp10 <dbl>, exp11 <dbl>,
   exp12 <dbl>. exp13 <dbl>. exp14 <dbl>.
```

Implementations

0.051

0.001

0.052

```
1 ttest formula = function(X, m) {
    for(i in 1:m) t.test(X[[2+i]] ~ X$group)$stat
3 }
4 system.time(ttest formula(X,m))
user system elapsed
0.186 0.001
             0.187
1 ttest for = function(X, m) {
    for(i in 1:m) t.test(X[[2+i]][X$group == 1], X[[2+i]][X$group == 2])$stat
4 system.time(ttest for(X,m))
user system elapsed
0.066
       0.001
               0.068
1 ttest apply = function(X) {
    f = function(x, g) {
     t.test(x[q==1], x[q==2])$stat
    apply(X[,-(1:2)], 2, f, X$group)
6
  system.time(ttest apply(X))
user system elapsed
```

Implementations (cont.)

```
1 ttest hand calc = function(X) {
     f = function(x, grp) {
       t stat = function(x) {
        m = mean(x)
 4
        n = length(x)
 5
        var = sum((x - m)^2) / (n - 1)
 6
 8
         list(m = m, n = n, var = var)
 9
10
11
     q1 = t stat(x[qrp == 1])
12
     g2 = t stat(x[grp == 2])
13
14
       se total = sqrt(g1\$var / g1\$n + g2\$var / g2\$n)
15
       (g1$m - g2$m) / se total
16
17
       apply(X[,-(1:2)], 2, f, X$group)
18
19 }
```

```
user system elapsed
0.015  0.000  0.015
```

Comparison

```
bench::mark(
ttest_formula(X, m),

ttest_for(X, m),

ttest_apply(X),

ttest_hand_calc(X),

check=FALSE

)
```

Warning: Some expressions had a GC in every iteration; so filtering is disabled.

```
# A tibble: 4 \times 6
 expression
                            median `itr/sec` mem alloc `gc/sec`
                       min
 <bch:expr>
                  <bch:tm> <bch:tm>
                                      <dbl> <bch:byt>
                                                       <dbl>
1 ttest formula(X, m) 188.85ms 192.35ms
                                       5.18
                                              8.24MB
                                                       22.5
2 ttest for(X, m) 61.45ms 64.52ms 15.6
                                              1.91MB
                                                       23.5
3 ttest apply(X) 54.61ms 57.83ms 17.3
                                              3.48MB
                                                       23.0
4 ttest hand calc(X) 8.73ms 9.04ms
                                      93.1
                                              3.44MB
                                                       23.8
```

Parallelization

parallel

Part of the base packages in R

- tools for the forking of R processes (some functions do not work on Windows)
- Core functions:
 - detectCores
 - pvec
 - mclapply
 - mcparallel & mccollect

detectCores

Surprisingly, detects the number of cores of the current system.

```
1 detectCores()
```

[1] 10

pvec

Parallelization of a vectorized function call

```
1 system.time(pvec(1:1e7, sqrt, mc.cores = 1))
      system elapsed
 user
0.017
       0.012 0.028
1 system.time(pvec(1:1e7, sqrt, mc.cores = 4))
      system elapsed
 user
0.176 0.174 0.278
1 system.time(pvec(1:1e7, sqrt, mc.cores = 8))
      system elapsed
 user
0.090 0.201 0.178
1 system.time(sqrt(1:1e7))
      system elapsed
 user
0.017 0.020
              0.037
```

pvec - bench::system_time

```
1 bench::system_time(pvec(1:1e7, sqrt, mc.cores = 1))

process    real
63.2ms 62.3ms

1 bench::system_time(pvec(1:1e7, sqrt, mc.cores = 4))

process    real
    163ms    188ms

1 bench::system_time(pvec(1:1e7, sqrt, mc.cores = 8))

process    real
    219ms    230ms
```

```
1 bench::system_time(Sys.sleep(.5))

process real
  142µs 493ms

1 system.time(Sys.sleep(.5))

user system elapsed
  0.000 0.000 0.507
```

Cores by size

```
1 cores = c(1,4,6,8,10)
 2 order = 6:8
 3 	ext{ f = function}(x,y) {
     system.time(
    pvec(1:(10^y), sqrt, mc.cores = x)
 6
     )[3]
7 }
 8
9 \text{ res} = map(
     cores,
10
     function(x) {
11
12
     map dbl(order, f, x = x)
13
14 ) |>
     do.call(rbind, args = )
15
16
17 rownames(res) = paste0(cores, " cores")
18 colnames(res) = paste0("10^",order)
```

```
1 res
```

```
10^6 10^7 10^8
1 cores 0.004 0.036 0.367
4 cores 0.036 0.151 1.917
6 cores 0.030 0.111 1.332
8 cores 0.042 0.155 1.506
10 cores 0.045 0.192 1.567
```

mclapply

Parallelized version of lapply

```
1 system.time(rnorm(1e7))
user system elapsed
0.264
       0.003
               0.267
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 2)))
user system elapsed
0.329
       0.112
               0.284
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 4)))
user system elapsed
0.334
       0.102
              0.180
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 8)))
user system elapsed
0.340
       0.150
               0.174
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e6), mc.cores = 10)))
user system elapsed
0.362
       0.162
               0.178
```

mcparallel

Asynchronously evaluation of an R expression in a separate process

```
1 m = mcparallel(rnorm(1e6))
 2 n = mcparallel(rbeta(1e6,1,1))
 3 \circ = mcparallel(rgamma(1e6,1,1))
 1 str(m)
List of 2
 $ pid: int 78380
 $ fd : int [1:2] 5 8
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
 1 str(n)
List of 2
 $ pid: int 78381
 $ fd : int [1:2] 6 10
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
```

mccollect

Checks mcparallel objects for completion

```
1 str(mccollect(list(m,n,o)))
List of 3
$ 78380: num [1:1000000] -0.1712 -0.0412 -0.9246 -1.2699 -1.274 ...
$ 78381: num [1:1000000] 0.201 0.838 0.289 0.192 0.722 ...
$ 78382: num [1:1000000] 0.7425 0.5719 0.4059 0.0538 0.7154 ...
```

mccollect - waiting

```
1 p = mcparallel(mean(rnorm(1e5)))
 1 mccollect(p, wait = FALSE, 10)
$\^78383\`
[1] 0.006051739
 1 mccollect(p, wait = FALSE)
Warning in selectChildren(jobs, timeout): cannot wait for child 78383
as it does not exist
NULL
 1 mccollect(p, wait = FALSE)
Warning in selectChildren(jobs, timeout): cannot wait for child 78383
as it does not exist
NULL
```

doMC & foreach

doMC & foreach

Packages by Revolution Analytics that provides the foreach function which is a parallelizable for loop (and then some).

- Core functions:
 - registerDoMC
 - foreach, %dopar%, %do%

registerDoMC

Primarily used to set the number of cores used by foreach, by default uses options ("cores") or half the number of cores found by detectCores from the parallel package.

```
1 options("cores")
$cores
NULL
 1 detectCores()
[1] 10
  1 getDoParWorkers()
[1] 1
    registerDoMC(4)
  2 getDoParWorkers()
[1] 4
```

foreach

A slightly more powerful version of base for loops (think for with an lapply flavor). Combined with %do% or %dopar% for single or multicore execution.

[1] 2.236068

```
1 for(i in 1:10) {
2   sqrt(i)
3 }
```

```
1 foreach(i = 1:5) %do% {
      sgrt(i)
[[1]]
[1] 1
[[2]]
[1] 1.414214
[[3]]
[1] 1.732051
[[4]]
[1] 2
[[5]]
```

foreach - iterators

foreach can iterate across more than one value, but it doesn't do length coercion

```
1 foreach(i = 1:5, j = 1:5) %do% {
      sqrt(i^2+j^2)
 3 }
[[1]]
[1] 1.414214
[[2]]
[1] 2.828427
[[3]]
[1] 4.242641
[[4]]
[1] 5.656854
[[5]]
[1] 7.071068
```

```
1 foreach(i = 1:5, j = 1:2) %do% {
2   sqrt(i^2+j^2)
3 }

[[1]]
[1] 1.414214

[[2]]
[1] 2.828427
```

foreach - combining results

```
1 foreach(i = 1:5, .combine='c') %do% {
    sqrt(i)
 3 }
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
 1 foreach(i = 1:5, .combine='cbind') %do% {
   sqrt(i)
 3 }
    result.1 result.2 result.3 result.4 result.5
[1,] 1 1.414214 1.732051 2 2.236068
 1 foreach(i = 1:5, .combine='+') %do% {
 2 sqrt(i)
 3 }
[1] 8.382332
```

foreach - parallelization

Swapping out %do% for %dopar% will use the parallel backend.

```
1 registerDoMC(4)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.297
      0.040
              0.113
1 registerDoMC(8)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.303
      0.052
               0.082
1 registerDoMC(10)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
       system elapsed
 user
0.327 0.064 0.078
```


furrr / future

```
1 system.time( purrr::map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
0.001
      0.001 3.012
1 system.time( furrr::future_map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
       0.006
              3.076
0.042
1 future::plan(future::multisession) # See also future::multicore
2 system.time( furrr::future map(c(1,1,1), Sys.sleep) )
       system elapsed
 user
0.202
      0.006
              1.459
```

Example - Bootstraping

Bootstrapping is a resampling scheme where the original data is repeatedly reconstructed by taking a samples of size n (with replacement) from the original data, and using that to repeat an analysis procedure of interest. Below is an example of fitting a local regression (loess) to some synthetic data, we will construct a bootstrap prediction interval for this model.

```
1  set.seed(3212016)
2  d = data.frame(x = 1:120) |>
3     mutate(y = sin(2*pi*x/120) + runif(length(x),-1,1))
4
5  l = loess(y ~ x, data=d)
6  p = predict(l, se=TRUE)
7
8  d = d |> mutate(
9   pred_y = p$fit,
10  pred_y_se = p$se.fit
11 )
```

```
1 ggplot(d, aes(x,y)) +
2     geom_point(color="gray50") +
3     geom_ribbon(
4     aes(ymin = pred_y - 1.96 * pred_y_se,
5         ymax = pred_y + 1.96 * pred_y_se),
6     fill="red", alpha=0.25
7     ) +
8     geom_line(aes(y=pred_y)) +
9     theme_bw()
```


Bootstraping Demo

What to use when?

Optimal use of parallelization / multiple cores is hard, there isn't one best solution

- Don't underestimate the overhead cost
- Experimentation is key
- Measure it or it didn't happen
- Be aware of the trade off between developer time and run time

BLAS and LAPACK

Statistics and Linear Algebra

An awful lot of statistics is at its core linear algebra.

For example:

• Linear regession models, find

$$\beta = (X^T X)^{-1} X^T y$$

- Principle component analysis
 - Find T = XW where W is a matrix whose columns are the eigenvectors of X^TX .
 - Often solved via SVD Let $X = U\Sigma W^T$ then $T = U\Sigma$.

Numerical Linear Algebra

Not unique to Statistics, these are the type of problems that come up across all areas of numerical computing.

- Numerical linear algebra ≠ mathematical linear algebra
- Efficiency and stability of numerical algorithms matter
 - Designing and implementing these algorithms is hard
- Don't reinvent the wheel common core linear algebra tools (well defined API)

Sta 523 - Fall 2024 ₄

BLAS and LAPACK

Low level algorithms for common linear algebra operations

BLAS

- Basic Linear Algebra Subprograms
- Copying, scaling, multiplying vectors and matrices
- Origins go back to 1979, written in Fortran

LAPACK

- Linear Algebra Package
- Higher level functionality building on BLAS.
- Linear solvers, eigenvalues, and matrix decompositions
- Origins go back to 1992, mostly Fortran (expanded on LINPACK, EISPACK)

Modern variants?

Most default BLAS and LAPACK implementations (like R's defaults) are somewhat dated

- Written in Fortran and designed for a single cpu core
- Certain (potentially non-optimal) hard coded defaults (e.g. block size).

Multithreaded alternatives:

- ATLAS Automatically Tuned Linear Algebra Software
- OpenBLAS fork of GotoBLAS from TACC at UTexas
- Intel MKL Math Kernel Library, part of Intel's commercial compiler tools
- cuBLAS / Magma GPU libraries from Nvidia and UTK respectively
- Accelerate / vecLib Apple's framework for GPU and multicore computing

Sta 523 - Fall 2024 45

OpenBLAS Matrix Multiply Performance

```
1 x=matrix(runif(5000^2),ncol=5000)
   sizes = c(100,500,1000,2000,3000,4000,5000)
   cores = c(1,2,4,8,16)
   sapply(
     cores,
     function(n cores) {
 8
       flexiblas::flexiblas set num threads(n cores)
 9
       sapply(
10
         sizes,
11
12
        function(s) {
       y = x[1:s,1:s]
13
           system.time(y %*% y)[3]
14
15
16
17
18)
```

n	1 core	2 cores	4 cores	8 cores	16 cores
100	0.000	0.000	0.000	0.000	0.000
500	0.004	0.003	0.002	0.002	0.004
1000	0.028	0.016	0.010	0.007	0.009
2000	0.207	0.110	0.058	0.035	0.039
3000	0.679	0.352	0.183	0.103	0.081
4000	1.587	0.816	0.418	0.227	0.145
5000	3.104	1.583	0.807	0.453	0.266

Matrix Multiply of (n x n) matrices

Matrix Multiply of (n x n) matrices

Sta 523 - Fall 2024 49