Teoría de enteros Matemática Estructural y Lógica

Miguel De Ávila

3 de noviembre de 2017

Axiomas de Peano

Los números naturales pueden definirse con ayuda de los axiomas de Peano. Los axiomas se expresan en términos del 0 y la función sucesor $S: \mathbb{N} \to \mathbb{N}$.

- 1. $0 \in \mathbb{N}$
- 2. $(\forall n : \mathbb{N} | : S(n) \in \mathbb{N})$
- 3. $(\forall n : \mathbb{N} | : S(n) \neq 0)$
- 4. $(\forall n, m : \mathbb{N} | S(n) = S(m) : n = m)$
- 5. $(\forall A : \mathbb{P}(\mathbb{N}) | 0 \in A \land (\forall n : A | : S(n) \in A) : A = \mathbb{N}).$

Una vez definidos los números naturales es posible definir los números enteros y las operaciones de suma y multiplicación.

Principio del buen orden

El axioma 5 de los axiomas de Peano es equivalente al principio del buen orden, que establece lo siguiente:

Teorema

Sea $A \subseteq \mathbb{N}$ un conjunto de números naturales tal que $A \neq \emptyset$. Entonces A tiene un elemento mínimo. Es decir: existe un a tal que:

- 1. $a \in A$.
- 2. $(\forall b : A | : a \leq b)$.

La relación |

Recordemos la definición de la relación divide: $|: \mathbb{Z} \leftrightarrow \mathbb{Z}$ donde

$$a|b \equiv (\exists c : \mathbb{Z}| : b = ac)$$

En caso de que a|b se dice que a divide a b o que b es múltiplo de a.

Teoremas de

Los siguientes son algunos teoremas importantes sobre |...a, b| y c son enteros cualesquiera.

- 1. $a|b \Rightarrow a|bc$.
- 2. $a|b \wedge b|c \Rightarrow a|c$.
- 3. $a|b \wedge a|c \Rightarrow a|(mb + nc)$.
- 4. $c \neq 0 \Rightarrow (ca|cb \equiv a|b)$.
- 5. $a|b \wedge b|a \Rightarrow |a| = |b|$.
- 6. $(a|b) \wedge (a>0) \wedge (b>0) \Rightarrow a \leq b$.

Números primos

Un número natural p se dice primo si p>1 y los únicos divisores de p son 1 y p. O sea:

$$\textit{primo}(p) \equiv p > 1 \land (\forall d : \mathbb{N} | d > 0 \land d | p : d = 1 \lor d = p)$$

Más adelante veremos que existen infinitos números primos.

Algoritmo de la división

El algoritmo de la división afirma que dados dos enteros: un dividendo y un divisor, si el divisor es distinto de 0 entonces podemos encontrar un cociente y un residuo:

Teorema

Sean $n, d \in \mathbb{Z}$ con d > 0. Entonces existen q, r tal que $0 \le r < d$ y n = qd + r. Más aún, q y r son únicos.

Como el teorema garantiza que q y r son únicos podemos definir dos funciones importantes.

÷ y mod

Definimos las funciones ÷ y mod así:

$$n \div d = q$$
 donde q y r son tal que $n = qd + r$.
 $n \mod d = r$ donde q y r son tal que $n = qd + r$.

Entonces $n \div d$ es el cociente de la división entera de n entre d, mientras que $n \mod d$ es el residuo de la misma. Por ejemplo, $-17 \div 6 = -3$, $-17 \mod 6 = 1$.

mcd y mcm

Definimos las funciones mcd, mcm.

$$mcd, mcm : \mathbb{Z} \leftrightarrow \mathbb{Z}$$

$$mcd(b,c) = (\max d : \mathbb{N}|(d|b \wedge d|c) : d) \text{ si } b \neq 0 \lor c \neq 0$$

 $mcd(0,0) = 0.$

$$mcm(b,c) = (\min d : \mathbb{N}|(b|d \wedge c|d) : d) \text{ si } b \neq 0 \lor c \neq 0$$

 $mcm(0,0) = 0.$

Propiedades del mcd

Algunas propiedades importantes del mcd:

- 1. mcd(b, c) = mcd(c, b).
- 2. Si $b \neq 0$ o $c \neq 0$ entonces $mcd(b, c) = (\min x, y | bx + cy > 0 : bx + cy)$.
- 3. mcd(b, mcd(c, d)) = mcd(mcd(b, c), d)
- 4. $d|c \wedge d|b \Rightarrow d|mcd(b,c)$.
- 5. mcd(b, b) = |b|.
- 6. mcd(b, 1) = 1.
- 7. mcd(b,c) = mcd(b,b+c) = mcd(b,b-c).
- 8. $d > 0 \Rightarrow d \cdot \operatorname{mcd}(b, c) = \operatorname{mcd}(db, dc)$.
- 9. $d|bc \wedge mcd(d,c) = 1 \Rightarrow d|b$.

Algoritmo de Euclides

Utilizando el hecho de que $mcd(b,c) = mcd(c,b \mod c)$. Se propone el siguiente algoritmo para calcular el mcd de b y c:

```
x = b;

y = c;

while(y! = 0){

x_1 = x;

x = y;

y = x_1 \mod x;

}
```

Al final, x = mcd(b, c). Por ejemplo, calculemos mcd(963, 657). Es posible extender este algoritmo para hallar los *coeficientes de Bézout* de b y c, o sea x e y tales que mcd(b, c) = bx + cy.

Más sobre primos

El siguiente teorema nos será útil:

Teorema

Si p es primo y p|ab entonces p|a o p|b.

Demostración.

Si p|a entonces se tiene el resultado. Si p|a, entonces mcd(a,p)=1. Por el resultado 9 de las propiedades del mcd, entonces p|b. De cualquier modo, $p|a \lor p|b$.

Teorema fundamental de la aritmética

Teorema

Sea n un número natural, n > 1. Entonces n es un producto de primos:

$$n = p_1 \dots p_n$$

Además, p_1, \ldots, p_n son únicos salvo orden.

Usos del teorema fundamental

Teorema

Existen infinitos primos

Demostración.

Suponga por contradicción que no. Entonces p_1, \ldots, p_k es una lista con todos los primos que existen. Considere $n=p_1\ldots p_k+1$. Por el teorema fundamental de la aritmética, n es un producto de primos, pero ninguno de los p_i divide a n, porque de lo contrario dividirían a 1, lo cual es imposible. Entonces n debe ser primo, pero entonces encontramos un nuevo primo que no estaba en la lista, lo cual nos da la contradicción deseada.

Teorema

$$mcd(b, c) \cdot mcm(b, c) = bc$$

Congruencias

Definición

Sea m un entero con $m \neq 0$. Definimos la siguiente relación: = $_m$: $\mathbb{Z} \leftrightarrow \mathbb{Z}$ dada por

$$a =_m b \equiv m | (b - a)$$

Se lee: a congruente módulo m a b. También es usual escribir $a \equiv_m b$.

Es fácil ver que $=_m$ es una relación de equivalencia.

Propiedades de congruencias

Teorema

- 1. $a =_m b \equiv res(a, m) = res(b, m)$.
- 2. $=_m$ es una relación de equivalencia.
- 3. $a =_m b \Rightarrow a + c =_m b + c$.
- 4. $a =_m b \Rightarrow ac =_m bc$
- 5. $a =_m b \land c =_m d \Rightarrow (a + c) =_m (b + d)$.
- 6. $a =_m b \land c =_m d \Rightarrow ac =_m bd$.

Clase de equivalencia de $=_m$

Como $=_m$ es una relación de equivalencia, podemos calcular la clase de equivalencia de un entero a. El numeral 1 del teorema nos dice que

$$[a] = \{x \mid : x \bmod m = a \bmod m\} = [a \bmod m]$$

Entonces podemos identificar cada clase de equivalencia con el residuo que dejan sus elementos al ser divididos por m, o sea $a \mod m$.

Más propiedades del módulo

Teorema

- 1. $(ax =_m ay \land mcd(a, m) = 1 \Rightarrow x =_m y)$.
- 2. $x =_m y \wedge d | m \Rightarrow x =_d y$.

Teorema de Fermat

El teorema de Fermat nos da una propiedad interesante para congruencias con exponentes primos:

Teorema

Sea p un primo que no divide a a. Entonces $a^{p-1} =_p 1$.

Función ϕ de Euler

Definición

Se dice que m y n son primos relativos (y se escribe $m \perp n$) si mcd(m,n)=1.

Definición

Definimos la función ϕ de Euler así:

$$\phi(n) = (+k|0 < k \le n \land k \perp n:1)$$

Esta función cumple las siguientes dos propiedades:

- 1. Si p es primo, $\phi(p) = p 1$.
- 2. Si $p \perp q$ entonces $\phi(pq) = \phi(p) \cdot \phi(q)$.

Teorema de Euler

Teorema

Sean a, m enteros tal que a \perp m. Entonces

$$a^{\phi(m)} =_m 1$$