Capítulo 1

Definição do Problema

1.1 Problema do Caixeiro Viajante (TSP)

Um problema computacional bastante conhecido é o do caixeiro viajante: dado um conjunto de cidades, que devem ser percorridas por um caixeiro, qual a rota que minimiza a distância a percorrer? Um modo direto de resolução deste problema é analisar todas as possibilidades possiveis e encontrar a com menor distância. Esta abordagem não é a mais aconselhavel uma vez que o número de operações requeridas para tal cresce exponencialmente com o número de cidades a percorrer.

Por este motivo se desenvolveu ao longo de varios anos métodos menos custosos para obter ou pelo menos se aproximar da solução. Listaremos agora as estratégias mais comuns utilizadas

- 1. Vizinho mais próximo
- 2. Dois ótimo

1.2 Problema de roteamento de veículos

Uma extensão clara do problema do caixeiro viajante é o problema de roteamento de veículos: dado um conjunto de entregas para clientes, que podem ser atendidos por mais que um veículo, qual o melhor conjunto de rotas que miniza a distância total percorrida?

A seguir especificaremos o problema matematicamente.

Dado C (conjunto de clientes) tal que $C \subset \mathbb{R}^2$. O algoritmo Alg(k,C) retorna o conjunto $f_i \in \mathbb{N}_i \times C$ de funções (rotas) tal que $\sum_{i=1}^k \# \mathbb{N}_i = \# C$ e $\cap_{i=1}^k \mathbb{N}_i = \emptyset$

Dado um conjunto de pontos em um plano devesse determinar a ordem a percorrer estes pontos de modo a minimizar o custo do percurso.

Capítulo 2

Algoritmos de Poupança

2.1 Clark and Wright

O algoritmo econômia de Clarke e Wright é uma das mais conhecidas heuristicas para VRP. Foi desenvolvido em referenciar e aplica-se a problemas para os quais o numero de veículo não é fixo, e trabalha igualmente bem para problemas com digrafos e grafos. Quando duas rotas $(0, \ldots, i, 0)$ e $(0, j, \ldots, 0)$ podem possivelmente ser mescladas em uma rota simples $(0, \ldots, i, j, \ldots, 0)$, uma economia de distância $s_{ij} = c_{i0} + c_{0j} - c_{ij}$ é gerada. O algoritmo trabalha como segue:

Step 1. Savings computation

- Calcule o custo $s_{ij} = c_{i0} + c_{0j} c_{ij}$ para $i, j = 1, \dots, n$ e $i \neq j$.
- Crie n rotas de veículos (0, i, 0) para $i = 1, \dots, n$.
- Ordene as poupanças de modo não crescente (Não é necessário)

Step 2. Melhor combinação possivel

Inicie do topo da lista de custos, executando o seguinte:

- Dada um custo s_{ij} , determine se há duas rotas que podem possivelmente ser mescladas:
 - Uma iniciando com (0, j)
 - Uma terminando com (0, i)
- Combine essas duas rotas deletando (0,j) e (0,i) e introduzindo (i,j).

2.2 Emparelhamento baseado no algoritmo de poupança

Ista é uma modificação interessante para o algoritmo de poupança padrão (descrições similares são feitas por referênciar e referênciar onde em cada interação a poupança s_{ij} obtida por mesclar rotas p e q é calculado como $s_{ij} = t(S_i) + t(S_j) - t(S_i \cap S_j)$, onde S_k é o conjunto de vértices da rota k, e $t(S_k)$ é o comprimento de uma solução ótima para o TSP em S_k .

Um problema de emparelhamento sobre o conjunto S_k é resolvido usando os s_{ij} valores com custo de emparelhamento, e as rotas correspondem à emparelhamento ótimo estão mescladas a permanencia da fazibilidade.

2.3 Algoritmo de melhoria para Mult-rota

Algoritmos de melhoria esforçam-se para atualizar alguma possivel solução executando um sequência de mudançãs dos vertices e arestas dentro ou entre rotas de veículos. Heuristicas de melhoramento de multi-rotas para VRP operão em cada rota de veículo tomando muitas rotas em um tempo(?). Podemos encontrar descrições de mudanças de arestas para VRP nestas três referências:

- Referenciar
- Referenciar
- Referenciar

Thompson e Psaraftis (1993) propõem um método baseado nos conceitos de k-transferência ciclicas que envolvem transferência de k demandas da rota I^j para a rota $I^{\delta(j)}$ para cada j e inteiro fixo k. O conjunto de rotas $\{I^r\}$, com $r=1,\ldots,m$, constitui um solução possivel e δ é uma permutação cíclica de um subconjunto de $\{1,\ldots,m\}$. Em particular, quando δ tem cardinalidade fixa C, obtemos um C-ciclo k-transferência. Permitindo k demanda modelo em cada rota, transferência de demanda pode ser realizada através de permutações mais que permutações ciclicas, Devido a complexidade das pesquisas de vizinhanças de transferências cíclicas, é realizada heuristicamente. O operador de 3-ciclo 2-transferências é ilustrado na figura abaixo.

Figura 2.1: O operador de transferência cíclica. A ideia base é transferir simultaneamente os clientes denotados pelo ciclo branco de maneira ciclica entre as rotas. Mais precisamente aqui clientes a e c na rota 1, f e j na rota 2 e o e p na rota 4 são transferidos simultaneamente para as rotas 2, 4, e 1 respectivamente e a rota 3 permanece intocada.

2.3.1 VAN BREEDAM'S ANALYSIS

Agora sumarizaremos a analise de Van Breedam's. Há quatro operações a considerar, as quais são:

- 1. String Cross (SC): Duas cadeias de vertices são mudadas pelo cruzamento de duas arestas de diferêntes rotas.
- 2. String Exchange (SE): Duas cadeias de no mínimo k vértices são mudadas entre duas rotas.
- 3. String Realocação (SR): Uma cadeia de no mínimo k vertices é deslocada de uma rota para outra, tipicamente com k=1 ou 2.

4. String Mix (SM): O melhor movimento entre SE e SR é selecionado.

Para avaliar estes movimentos, Van Breedam considerou duas estratégias de melhoria local:

- (a) First Improvement (FI): Consiste de implementar o primeiro movimento que melhora a função objetivo.
- (b) Best Improvement (BI): Avalia todas os possiveis movimentos e implementa o melhor destes.

Van Breedam então define um conjunto de paramentros que pode influenciar o comportamento da produção da melhoria local:

- A solução inicial (pobre, bom)
- O comprimento da string (k) para movimentos do tipo SE, SR, SM (k=1 ou 2)
- A estratégia de selação (FI, BI)
- O processo de avaliação para uma string de comprimento k > 1 (avaliar todas as possiveis strings de comprimento entre um de rotas, crescentod k

quando uma avaliação de ciclo inteiro tem sido completado sem identificar um mevimento de melhoria).

2.3.2 KINDERWATER AND SAVELSBERGH

Na heuristica de Kinderwater e Savelsbergh rotas não são isoladas, então caminhos e clientes são mudados entre diferêntes rotas. A operação que faz essas mudanças são:

1. Customer Relocation: Um cliente localizado em uma rota é mudado para outra

2. Crossover: Duas rotas são misturadas em um ponto

3. Customer Exchamge: Dois clientes de ruas rotas diferêntes são mudados entre duas rotas

Nas figuras seguintes podemos ver um exemplor um pouco mais complexo:

Capítulo 3

Algoritmos de dois passos

3.1 Cluster-First Route-Second Method

Este método faz uma simples clusterização do conjunto de vértices e então determina uma rota de veículos em cada cluster. Descreveremos o próximo algoritmos:

- Fisher and Kaikumar
- The Petal algorithm
- The Sweep algorithm
- Taillard

3.1.1 Algoritmo de Fisher and Jalkumar

O algoritmo de Fisher e Jaikumar referência é bem conhecido. Resolve um Problema Genérico de Tarefa (GAP) para formar clusters. O número de veículos k é fixo. O algoritmo pode ser descrito como segue:

- 1. Seed Selection. Escolha pontos semente J_k em V para inicializar cada cluster k.
- 2. Allocation of Customers to Seeds. Calcule o custo d_{ik} da alocar cada cliente i para cada cliente k com

$$d_{ijk} = \min(c_{0i} + c_{ijk} + c_{J_k0}, c_{0J_k} + c_{J_ki} + c_{i0}) - c_{0J_k} + c_{J_k0}.$$

- 3. Generalized Assignment. Resolver um GAP com custo d_{ij} , peso do cliente q_i e capacidade do veículo Q.
- 4. TSP Solution. Resolve o TSP para cada cluster correspondente para a solução do GAP.

3.1.2 Algoritmo Pétala

Uma extensão natural do algoritmo de varredura é gerar muitas rotas, chamadas pétalas referência, e fazer uma seleção final resolvendo um problema de partição de conjunto da forma:

$$\min \sum_{k \in S} d_k x_k$$
 sujeito a:
$$\sum_{k \in S} a_{ik} x_k = 1 \quad (i=1,\dots,n)$$
 com
$$x_k = 0, 1, k \in S,$$

onde S é o conjunto de rotas, $x_k = 1$ se, e somente se, a rota k pertence à solução, a_{ik} é o parâmetro binário iqual a 1 somente se o vértice i pertence a rota k, e d_k é o custo da rota da pétala k. Se as rotas corresponde a setores contínuos de vértices, então esse problema possui o propriedade de coluna circular e é resolvido em tempo polinomial referência.

3.1.3 O Algoritmo de varredura

O Algoritmo de varredura aplica-se a instâncias planares do VRP. Consiste de duas partes:

- Split: Clusters possiveis são iniciados formando rotação e centro de raio no deposito
- TSP: Uma rota de veículo é então obtida para cada cluster resolvendo o TSP.

Algumas implementações incluem uma fase de otimização posterior na qual os vértices são mudados entre clusters adjacêntes, e as rotas são reotimizadas. Uma implementação simples deste método é como segue. onde assumimos que cada vértice i é representado por suas coordenadas polares (θ_i, ρ_i) , onde θ_i é o ângulo e ρ_i é o comprimento de raio. Atribuindo um valor $\theta^* = 0$ para um vértice arbitrário i^* e calculando os ângulos remanecentes de IMG6 $(0, i^*)$. Graduando os vértices em ordem crescente de sua IMG2.

- 1. Route Initialization. Escolha um não utilizado veículo k.
- 2. Route Construction. Inicie dos vértices não roteados tendo ângulo menor, atribuindo vertices ao vértice k enquanto sua capacidade ou o comprimento máximo da rota não é excedido.
- 3. Route Optimization. Otimizar cada rota de veículos separadamente resolvendo o correspondete TSP (exatamente ou aproximadamente).

3.1.4 Algoritmo de Talliard

O algoritmo de Talliard referência define-se vizinhança usando o λ -intermudança mecanismo de Geração referência. Rotas individuais são reotimizadas usando algoritmo de otimização de referência. Um traço nobel do algoritmo de Talliard é a decomposição dos problemas essenciais em subproblemas.

Em problemas planares, estes subproblemas são obtidos inicialmente particionando os vértices em setores centradas no deposito, e em regiões concentricas dentro de cada setor. Cada subproblema pode ser resolvido independentemente, mas movimentos periódicos de vértices para setores adjacêntes são necessários. Isso faz sentido quando o deposito é centrado e os vértices são uniformemente distribuidos no plano.

Para problemas não planares, e para problemas planares não possuindo esta propriedade, o autor sugere uma método de partição diferênte baseado no calculo da mais curta

espação de arborecência enraizadas no depósito. Esse método de decomposição é particularmente bem conviniente para implementeções paralelas com subproblemas podem então ser distribuidos através de varios processadores.

A combinação dessas estratégias produz excelentes resultados computacionais.

3.2 Métode de roteamento seguido de cluster

O métode de roteamento seguido de cluster constroi numa primeira fase uma grande rota de TSP, observando as restrições laterais, e depositando esta rota dentro das possiveis rotas de veículos numa segunda fase. Essa ideia aplicasse a problemas com uma número livre de veículso. Foi primeiro posto por Beasley o qual observou que o problema da segunda fase é um problema de caminho mínimo padrão em grafo acíclico e pode ser assim resolvido em tempo $O(n^2)$. No algoritmo de caminho mínimo, o custo d_{ij} da viagem entro os nós i e j é igual a $c_{0i} + c_{0j} + l_{ij}$, onde l_{ij} é o custo da viagem de i a j na rota TSP.

Não estamos conscientes de algumas experiências computacionais mostrando que a heuristica de roteamento primeiro seguido de cluster são competitivas com outras aproximações.