Familienname: Vorname: Matrikelnummer: Studienkennzahl(en):

1	
2	
3	
4	
\mathbf{G}	

Note:

Einführung in das mathematische Arbeiten Roland Steinbauer, Wintersemester 2004/05 5. Prüfungstermin (4.3.2005)

- 1. (a) (Trigonometrie) Ein Beobachter sieht die Spitze eines auf einer horizontalen Ebene stehenden Turmes in der Entfernung b=45m unter einem doppelt so großen Höhenwinkel wie in einer Entfernung a=120m. Berechne die Höhe des Turmes unter der Annahme, dass sich die Augen des Beobachters 1,5m über dem Boden befinden. (4 Punkte)
 - (b) (Analytische Geometrie) Bestimme rechnerisch die Lagebeziehung der drei Ebenen ε_1 , ε_2 und ε_3 im Raum und fertige eine Skizze an. (5 Punkte)

(4 Punkte)

2. (Kurvendiskussion) Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ hat an der Stelle 4 den Funktionswert -3. Die erste Ableitung von f lautet

$$f'(x) = \frac{x^3}{4} - 3x.$$

- (a) Bestimme die Funktionsgleichung von f. (3 Punkte)
- (b) Bestimme Nullstellen, Hoch- und Tiefpunkte von f. (3 Punkte)
- (c) Bestimme Wendepunkte und Wendetangenten von f. (2 Punkte)
- (d) Skizziere den Graphen von fim Intervall $\left[-5,5\right]$ (1 Punkt)
- (e) Berechne den Inhalt des Flächenstücks, dass der Graph von f mit den beiden Wendetangenten einschließt. (3 Punkte)

- 3. (Mengen)
 - (a) Seien A und B Mengen. Definiere den Durchschnitt $A \cap B$, die Vereinigung $A \cup B$ und die Mengendifferenz $A \setminus B$ von A und B. (3 Punkte)
 - (b) Wann heißen zwei Mengen gleich mächtig? Was bedeutet das für endliche Mengen? (3 Punkte)
 - (c) Zeige, dass die Menge \mathbb{N}_g der geraden natürlichen Zahlen gleichmächtig zu \mathbb{N} selbst ist. (3 Punkte)
- 4. (a) (Algebra) Auf der Menge Q sei die Verknüpfung

$$\circ: (r,s) \mapsto r+s-7$$

definiert. Bildet (\mathbb{Q}, \circ) eine ablesche Gruppe? (5 Punkte)

(b) (Induktion) Beweise mittels vollständiger Induktion für $x \neq -1$ und $n \in \mathbb{N}$

$$(1-x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}})(1+x^{2^n})=\frac{1-x^{2^{n+1}}}{1+x}.$$

Wird die Voraussetzung $x \neq -1$ wirklich benötigt; wenn ja, wo? (6 Punkte)