

Algorithmen und Datenstrukturen

Wintersemester 2018/19 17. Vorlesung

Nächstes Paar

2. Zwischentest

Bitte melden Sie sich sofort an, falls Sie das noch nicht getan haben.

Die Abstimmung endet heute (Di, 18.12.) um 14:00 Uhr.

Problem:

Gegeben: Menge P von n Punkten in der Ebene,

jeder Punkt $p \in P$ als (x_p, y_p) .

Finde: Punktepaar $\{p, q\} \subseteq P$ mit kleinstem

(euklidischen) Abstand.

Def. Euklidischer Abstand von p und q ist

$$d(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}.$$

Lösung:

Laufzeit: $\Theta(n^2)$

- Gehe durch alle $\binom{n}{2}$ Punktepaare und berechne ihren Abstand.
- Gib ein Paar mit kleinstem Abstand zurück.

Mach's besser!

Entwurfsparadigma: – inkrementell?

– randomisiert?

- Teile und Herrsche?!

Spezialfall:

Lösung:

- Sortiere (nach x-Koordinate).
- Berechne Abstände aller *aufeinanderfolgender* Punktepaare.
- Bestimme das Minimum dieser Abstände.

Strukturelle Einsicht:

Kandidatenmenge der Größe n-1, die gesuchtes Objekt enthält.

- 2. Herrsche
- 3. Kombiniere

Algorithmus
$$T(n) = \begin{cases} \text{Laufzeit des rekursiven Teils,} \\ \text{d.h. ohne Vorverarbeitung (1.)} \end{cases}$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \ldots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts} P_{rechts}

- 4. Kombiniere:
 - $d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$
 - sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} : für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$; halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\text{links}}$ und $q \in K_p$
 - gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Algorithmus

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: $P_{\mathsf{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}, P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

- 4. Kombiniere:
 - $d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$

 $O(n \log n)$

- sortiere P_{links} und P_{rechts} nach y-Koordinate
- gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
- ullet bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
- ullet gib Min. von $d_{
 m mitte}$, $d_{
 m links}$ und $d_{
 m rechts}$ (und entspr. Paar) zurück

Laufzeit

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n \log n)$$

Also
$$T(n) \approx 2T(n/2) + O(n \log n)$$

Rekursionsgleichung mit Master-Theorem lösen?

Bestimme Parameter für das Theorem:

$$a = b = 2$$
, $f(n) = O(n \log n)$.

Betrachte $n^{\log_b a} = n^{\log_2 2} = n^1$.

$$ext{Gilt } f \in egin{dcases} O(n^{1-arepsilon}) & ext{für ein } arepsilon > 0 \ \Theta(n^1) & & \ \Omega(n^{1+arepsilon}) & ext{für ein } arepsilon > 0 \ \end{pmatrix} ?$$

Nein, $f: n \mapsto O(n \log n)$ passt in keinen der drei Fälle.

Die Rekursionsbaummethode liefert... $T(n) = O(n \log^2 n)$.

Noch besser?

$$T(n) \approx 2T(n/2) + O(n(\log n)) = O(n\log^2 n)$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$
- 2. Teile: P in $P_{\mathsf{links}} = \{p_1, \ldots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\mathsf{rechts}} = P \setminus P_{\mathsf{links}}$
- 3. Herrsche:
- Place Place Place Place Place Place Place Place Place d_{rechts} Paaren in P_{links} Prechts
- 4. Kombiniere:
 - $d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$
 - \bullet sortiere P_{links} und P_{rechts} nach y-Koordinate
 - gehe "gleichzeitig" durch P_{links} und P_{rechts} :

 für jeden Punkt p in P_{links} gehe in P_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\to K_p)$
 - bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P_{\mathsf{links}}$ und $q \in K_p$
 - ullet gib Min. von $d_{
 m mitte}$, $d_{
 m links}$ und $d_{
 m rechts}$ (und entspr. Paar) zurück

Noch besser!

$$T(n) \approx 2T(n/2) + O(n\log n) = O(n\log n)$$

- 1. Sortiere P nach x-Koordinate $\rightarrow p_1, \ldots, p_n$ mit $x_1 \leq \cdots \leq x_n$ und P' = P nach y-Koordinate $\rightarrow p'_1, \ldots, p'_n$ mit $y'_1 \leq \cdots \leq y'_n$
- 2. Teile: P in $P_{\text{links}} = \{p_1, \dots, p_{\lfloor n/2 \rfloor}\}$ und $P_{\text{rechts}} = P \setminus P_{\text{links}}$ P' in P'_{links} und P'_{rechts} (sortiert nach y-Koordinate)
- 3. Herrsche:

bestimme rekursiv kleinsten Abstand d_{links} v. Paaren in P_{links} d_{rechts}

4. Kombiniere:

- $d = \min\{d_{\text{links}}, d_{\text{rechts}}\}$
- gehe "gleichzeitig" durch P'_{links} und P'_{rechts} :

 für jeden Punkt p in P'_{links} gehe in P'_{rechts} bis y-Koord. $y_p + d$;

 halte die letzten 6 Punkte im grauen Streifen aufrecht $(\rightarrow K_p)$
- bestimme Min. d_{mitte} über alle d(p,q) mit $p \in P'_{\text{links}}$ und $q \in K_p$
- ullet gib Min. von d_{mitte} , d_{links} und d_{rechts} (und entspr. Paar) zurück

Zusammenfassung

1. Vorverarbeitung (2× Sortieren) $O(n \log n)$

2. Teilen
$$O(n)$$

2. Teilen
$$O(n)$$
3. Herrschen $2T(n/2)$ $T(n) = O(n \log n)$ [MergeSort-Rek.!]
4. Kombinieren $O(n)$

Gesamtlaufzeit

 $O(n \log n)$

Speicherplatzbedarf?

O(n), wenn P' in situ in P'_{links} und P'_{rechts} zerlegt wird.

Ist die Laufzeit $O(n \log n)$ optimal?

- **Def.** Element-Uniqueness-Problem (für natürliche Zahlen) Gegeben eine Folge a_1, \ldots, a_n von n Zahlen, kommt jede Zahl nur einmal vor, d.h. $a_i \neq a_j$ für $i \neq j$?
- Satz. Das Element-Uniqueness-Problem kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden wenn man als Rechenmodell das sogenannte algebraische Entscheidungsbaummodell zugrunde legt.

Was bedeutet das für das Problem Nächstes Paar?

Angenommen wir könnten Nächstes Paar in $o(n \log n)$

Zeit lösen – dann auch Element Uniqueness!

Wie? Teste, ob das nächste Paar Abstand 0 hat!

Das heißt...

- Satz. Das Problem Nächstes Paar kann nicht schneller als in $\Omega(n \log n)$ Zeit gelöst werden, wenn man als Rechenmodell das algebraische Entscheidungsbaummodell zugrunde legt.
- Kor. Unser $O(n \log n)$ -Zeit-Algorithmus für das Problem Nächstes Paar ist asymptotisch optimal, wenn man....

Учиться, учиться и учиться

- Implementieren Sie die einfache Brute-Force-Lösung in Java.
- Implementieren Sie einen einfachen Teile-und-Herrsche-Algorithmus, der im Herrsche-Schritt alle (quadratisch vielen)
 (•,•)-Kandidaten testet. (Ist der schneller als der Brute-Force-Alg.?)
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in $O(n \log^2 n)$ Zeit läuft!
- Implementieren Sie den hier vorgestellten Teile-und-Herrsche-Algorithmus, der in O(n log n) Zeit läuft!

Goodrich & Tamassia: Data Structures & Algorithms in Java. Wiley, 4. Aufl., 2005 (5. Aufl., 2010)

Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung haben Sie schon gelernt...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

Inhalt:

- Grundlagen und Analysetechniken
 - Sortierverfahren
 - Java
 - Datenstrukturen
 - Graphenalgorithmen (kürzeste Wege, min. Spannbäume)
 - Systematisches Probieren (dynamisches Progr., Greedy-Alg.)