Formelsammlung - ET/TI

Marc Ludwig

4. Februar 2013

Inhaltsverzeichnis

Ι	\mathbf{M}	athen	aatik	6
1	Alg	ebra		7
	1.1		enregeln fuer Potenzen	7
	1.2	Zusan	nmenhang zwischen Wurzeln und Potenzen	7
	1.3		zen und Logarithmen	8
	1.4		Sinomische Lehrsatz	8
	1.5		Kosinus, Tangens und Kotangens	Ś
		1.5.1	Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens	Ć
		1.5.2	Additionstheoreme	Q
	1.6	Komp	olexe Zahlen	11
		1.6.1	Umrechnungen zwischen den Darstellungsformen	11
		1.6.2	Rechnen mit Komplexen Zahlen	12
2	Fun	ktione	en	13
_	2.1		nungen	13
		2.1.1	Gleichungen <i>n</i> -ten Grades	13
		2.1.2	Lineare Gleichungen	13
		2.1.3	Quadratische Gleichungen	14
		2.1.4	Biquadratische Gleichungen	14
		2.1.5	Gleichungen höheren Grades	14
		2.1.6	Wurzelgleichung	14
		2.1.7	Ungleichungen	15
		2.1.8	Betragsgleichungen	15
3	Vek	torrec	chnung	16
U	3.1		rrechnung	16
	0.1	3.1.1	Grundlagen	16
		3.1.2	Vektoroperationen	17
		3.1.2	Geraden	18
		3.1.4		18
		0.1.4	Ebenen	10

4	Diff	erentialrechnung 2
	4.1	Differntialrechnung
		4.1.1 Erste Ableitungen der elementaren Funktionen 2
		4.1.2 Rechenregeln
		4.1.3 Fehlerrechnung
		4.1.4 Linearisierung und Taylor-Polynom
		4.1.5 Grenzwertregel von Bernoulli und de l'Hospital 2
		4.1.6 Differentielle Kurvenuntersuchung
	4.2	Differentialgleichungen
		4.2.1 DG 1. Ordnung
		4.2.2 Lineare DG 2. Ordnung
	4.3	Differential- und Integralrechnung mit mehreren Variablen 2
		4.3.1 Differentialrechnung
		4.3.2 Mehrfachintegral
5	Fold	gen und Reihen 3
J	5.1	Reihen
	9.1	5.1.1 Geometrische Folge
		5.1.2 Harmonische Reihe
		5.1.3 Konvergenz
		5.1.4 Bekannte konvergente Reihen
	5.2	Funktionenreihen
	0.2	5.2.1 Potenzreihen
		5.2.2 Bekannte Potenzreihen
		5.2.3 spezielle Reihen
		5.2.4 Fourier Reihen
6		rpolation 3
	6.1	Interpolationspolynome
II	P	hysik 3
7	Kin	ematik 3
	7.1	Analogietabelle
		7.1.1 Translation
		7.1.2 Rotation
	7.2	Dynamik
	•	7.2.1 Geradlinig (Translation)
		7.2.2 Drehbewegung(Rotation)
		7.2.3 Geneigte Ebene
		7.2.4 Reibung
		7.2.5 Feder

		7.2.6 Elastischer Stoß	. 43
		7.2.7 Unelastischer Stoß	. 44
		7.2.8 Rotierendes Bezugssystem	. 45
	7.3	Schwerpunkt	
	7.4	Trägheitsmoment	
	7.5	Elastizitätslehre	
	7.6	Schwingungen	
	• • •	7.6.1 Ungedämpfte Schwingungen	
		7.6.2 Gedämpfte Schwingungen	
		Tion 2 Goddan proc Son wing dinger T.	. 50
8	Flui	ddynamik	51
	8.1	Ohne Reibung	. 51
	8.2	Laminare Reibung	
9	Gra	vitation	53
10	Elek	trostatik	5 4
	2101		0.
11	The	rmodynamik	56
	11.1	Wärmedehnung	. 56
	11.2	Wärme	. 56
	11.3	Mischtemperatur	. 56
		Wärmeleitung	
	11.5	Wärmekonvektion	. 56
	11.6	Wärmewiderstand	. 57
		11.6.1 Wärmeübertragung	
		11.6.2 Wärmestrahlung	
		11.6.3 Zustandsänderung des idealen Gases	
10	04		60
14	Opt		
		<u>e</u>	
		Totalreflexion	
		Hohlspiegel	
		Linse	
	12.5	Lichtwellenleiter	. 62
TT.		Noleturat a alousila	os.
II	ı E	Elektrotechnik	63
13	Glei	chstromtechnik	64
	13.1	Grundgrößen	. 64
		Lineare Quellen	
		Kirchhoffsche Gesetze	

14 W	echselstromtechnik	66
14	1 Definitionen	66
	14.1.1 Periodische zeitabhängige Größen	66
		66
		66
14		67
14		67
14		68
15 Si	gnal- und Systemtheorie	7 5
		75
		76
		80
	9	82
		85
		86
		~ ~
		90
	1 /	90
	•	95
16	3 Korrelation	95
17 Bi	näre Rechenoperationen	96
17	1 Zahlensysteme	96
	17.1.1 Dualsystem	96
	17.1.2 Ternärsystem	96
	17.1.3 Oktalsystem	96
	17.1.4 Hexadezimalsystem	96
		96
		97
		97
		97
17		97
		97
		98
		98
		96
		96
		or Or

ΙV	Analoge Schaltungstechnik	101
18	Grundschaltungen	102
\mathbf{V}	Messtechnik	106
19	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
\mathbf{V}	I Anhang	114

Teil I Mathematik

Kapitel 1

Algebra

Why waste time learning when ignorance is instantaneous?
- Hobbes

1.1 Rechenregeln fuer Potenzen

$$a^{m} \cdot a^{n} = a^{m+n} \qquad \frac{a^{m}}{a^{n}} = a^{m-n} \qquad (a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n}$$
$$a^{n} \cdot b^{n} = (a \cdot b)^{n} \qquad \frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n} \qquad \text{(fuer a > 0) } a^{b} = e^{b \cdot \ln a}$$

1.2 Zusammenhang zwischen Wurzeln und Potenzen

 Im Folgenden wird vorausgesetzt, dass alle Potenzen und Wurzeln existieren.

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \qquad \sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \left(\sqrt[n]{a}\right)^m = a^{\frac{m}{n}}$$

1.3 Potenzen und Logarithmen

Schreibweise: $x = \log_a(b)$ mit $a > 0, a \neq 1$ und b > 0.

Es gillt: $\log_a(1) = 0$, $\log_a(a) = 1$.

Der natuerliche Logarithmus

Der Logarithmus zur Basis e mit $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2,71828...$

$$\log_e(b) = \ln(b) \qquad \qquad \ln\left(\frac{1}{e}\right) = -1; \text{ da } e^{-1} = \frac{1}{e}$$

Man beachte: $x^a = e^{\ln(x) \cdot a}$

Rechnen mit Logarithmen

Es gillt:	Weitere Beziehungen:
$\log_a(u \cdot v) = \log_a(u) + \log_a(v)$	$\log_a\left(\sqrt[n]{u}\right) = \frac{1}{n}\log_a\left(u\right)$
$\log_a\left(\frac{u}{v}\right) = \log_a\left(u\right) - \log_a\left(v\right)$	$a^{\log_a(u)} = \log_a^n(a^u) = u$
$\log_a(u^p) = p \cdot \log_a(u)$	$\log_a(u) = \frac{\log_c(u)}{\log_c(a)}$

1.4 Der Binomische Lehrsatz

Die Potenzen eines Binoms a+b lassen sich nach dem Binomischen Lehrsatz wie folgt entwickeln $(n \in \mathbb{N}^*)$:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1} \cdot b^1 + \binom{n}{2}a^{n-2} \cdot b^2 + \binom{n}{3}a^{n-3} \cdot b^3 + \ldots + \binom{n}{n-1}a^1 \cdot b^{n-1} + b^n$$

Die Koeffizienten $\binom{n}{k}$ heißen Binominalkoeffizienten, ihr Bildungsgesetz lautet:

$$\binom{n}{k} = \frac{n(n-1)(n-2)...[n-(k-1)]}{k!} = \frac{n!}{k!(n-k)!}$$

9

Einige Eigenschaften der Binominalkoeffizienten

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = 0 \text{ fuer } k > n \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

1.5 Sinus, Kosinus, Tangens und Kotangens

1.5.1 Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1 \qquad \tan(\alpha) \cdot \cot(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \qquad \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$

$$1 + \tan^{2}(\alpha) = \frac{1}{\cos^{2}(\alpha)} \qquad 1 + \cot^{2}(\alpha) = \frac{1}{\sin^{2}(\alpha)}$$

1.5.2 Additions theoreme

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$$

Funktionen des doppelten und halben Winkels

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 - \cos(\alpha))$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 + \cos(\alpha))$$

$$\tan^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}$$

Umformungen

Summe oder Differenz in ein Produkt

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Produkt in eine Summe oder Differenz

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

1.6 Komplexe Zahlen

Für die Menge aller komplexen Zahlen schreibt man:

$$\mathbb{C} = \{z | z = a + bj, a \in \mathbb{R} \land b \in \mathbb{R}\}\$$

a-Realteil b-Imaginaerteil j-imaginaere Einheit

kartesiche Form	trigonometrische Form	exponentialform	
z = a + bj	$z = z (\cos \varphi + j \cdot \sin \varphi)$	$z = z \cdot e^{j\varphi}$	
$z^* = (a+bj)^* = a-bj$	$z^* = z (\cos \varphi - j \cdot \sin \varphi)$	$z^* = z \cdot e^{-j\varphi}$	

|z| = Betrag von z

 $\varphi = \text{Argument (Winkel) von z}$

 $z^* = \text{Konjugiert komplexe Zahl}$

1.6.1 Umrechnungen zwischen den Darstellungsformen

 $Polarform \rightarrow Kartesiche Form$

$$z = |z| \cdot e^{j\varphi} = |z| \left(\cos\varphi + j \cdot \sin\varphi\right) = \underbrace{|z| \cdot \cos\varphi}_a + j \cdot \underbrace{|z| \cdot \sin\varphi}_b = a + bj$$

 $\mathbf{Kartesische\ Form\ } \rightarrow \mathbf{Polarform}$

$$|z| = \sqrt{a^2 + b^2}$$
, $\tan \varphi = \frac{b}{a}$

1.6.2 Rechnen mit Komplexen Zahlen

Multiplikation

In kartesischer Form:

$$z_1 \cdot z_2 = (a_1 + jb_1) \cdot (a_2 + jb_2) = (a_1a_2 - b_1b_2) + j \cdot (a_1b_2 + a_2b_1)$$

In der Polarform:

$$z_{1} \cdot z_{2} = [|z_{1}| (\cos \varphi_{1} + j \cdot \sin \varphi_{1})] \cdot [|z_{2}| (\cos \varphi_{2} + j \cdot \sin \varphi_{2})]$$

$$= (|z_{1}| |z_{2}|) \cdot [\cos (\varphi_{1} + \varphi_{2}) + j \cdot \sin (\varphi_{1} + \varphi_{2})]$$

$$= (|z_{1}| \cdot e^{j\varphi_{1}}) \cdot (|z_{2}| \cdot e^{j\varphi_{2}}) = (|z_{1}| |z_{2}|) \cdot e^{j(\varphi_{1} + \varphi_{2})}$$

Division

In kartesischer Form

In der Polarform

Kapitel 2

Funktionen

2.1 Gleichungen

2.1.1 Gleichungen n-ten Grades

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0 = 0 \quad (a_n \neq 0, a_k \in \mathbb{R})$$

Eigenschafften

- \bullet Die Gleichung besitzen maximal n reelle Lösungen.
- ullet Es gibt genau n komplexe Lösungen.
- \bullet Für ungerades n gibt es mindestens eine reelle Lösung.
- Komplexe Lösungen treten immer Paarweise auf.
- Es existieren nur Lösungsformeln bis $n \leq 4$. Für n > 4 gibt es nur noch grafische oder numerische Lösungswege.
- Wenn eine Nullstelle bekannt ist kann man die Gleichung um einen Grad verringern, indem man denn zugehörigen Linearfaktor $x-x_1$ abspaltet(Polynome Division).

2.1.2 Lineare Gleichungen

$$a_1 \cdot x + a_0 = 0 \Rightarrow x_1 = -\frac{a_0}{a_1} \quad (a_1 \neq 0)$$

2.1.3 Quadratische Gleichungen

$$a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0 \quad (a_2 \neq 0)$$

Normalform mit Lösung

$$x^{2} + p \cdot x + q = 0 \Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

Überprüfung (Wurzelsatz von Vieta)

$$x_1 + x_2 = -p \qquad \qquad x_1 \cdot x_2 = q$$

 x_1, x_2 : Lösung der quadratischen Gleichung.

2.1.4 Biquadratische Gleichungen

Diese Gleichungen lassen sich mithilfe der Substitution lösen.

$$a \cdot x^4 + b \cdot x^2 + c = 0$$

$$a \cdot u^2 + b \cdot u + c = 0$$

$$u = x^2$$

$$x = \pm \sqrt{u}$$

Das u kann mithilfe der Lösungsformel einer quadratischen Gleichung gelöst werden.

2.1.5 Gleichungen höheren Grades

Gleichungen höheren Grades kann man durch graphische oder numerische Ansätze lösen. Hilfreich ist das finden einer Lösung und das abspalten eines Linearfaktor , mithilfe der Polynomdivision oder dem Hornor Schema,von der ursprünglichen Gleichung.

Polynomdivision

$$\frac{f(x)}{x - x_0} = \frac{a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0}{x - x_0} = b_2 \cdot x^2 + b_1 \cdot x + b_0 + r(x)$$

 x_0 ist dabei die erste gefunden Nullstelle. r(x) verschwindet wenn x_0 ein Nullstellen oder eine Lösung von f(x) ist.

$$r(x) = \frac{a_3 \cdot x_0^3 + a_2 \cdot x_0^2 + a_1 \cdot x_0 + a_0}{x - x_0} = \frac{f(x_0)}{x - x_0}$$

2.1.6 Wurzelgleichung

Wurzelgleichungen löst man durch quadrieren oder mit hilfe von Substitution. Bei Wurzelgleichung ist zu beachten das quadrieren keine Aquivalente Umformung ist und das Ergebniss überprüft werden muss.

2.1.7 Ungleichungen

- Beidseitiges Subtrahieren oder Addieren ist möglich
- Die Ungleichung darf mit einer beliebige positiven Zahl multipliziert oder dividiert werden
- Die Ungleichung darf mit einer beliebige negativen Zahl multipliziert oder dividiert werden, wenn man gleichzeitig das Relationszeichen umdreht.

2.1.8 Betragsgleichungen

Betragsgleichungen löst man mithilfe der Fallunterscheidung. Dabei wird einmal davon ausgegangen das der Term inerhalb des Betrags einmal positiv und einmal negativen sein kann.

$$y = |x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Kapitel 3

Vektorrechnung

3.1 Vektorrechnung

3.1.1 Grundlagen

Darstellung

$$\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z$$

$$= a_x \vec{e}_x + a_y \vec{e}_y + a_y \vec{e}_y$$

$$= \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

Betrag

$$\begin{aligned} |\vec{a}| &= a \\ &= \sqrt{a_x^2 + a_y^2 + a_z^2} \\ &= \sqrt{\vec{a} \circ \vec{a}} \end{aligned}$$

2 Punkt Vektor

$$\vec{P_1P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Richtungswinkel

$$\cos \alpha = \frac{a_x}{|\vec{a}|}$$

$$\cos \beta = \frac{a_y}{|\vec{a}|}$$

$$\cos \gamma = \frac{a_z}{|\vec{a}|}$$

$$1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$

3.1.2 Vektoroperationen

Addition und Subtraktion

$\vec{a} \pm \vec{b} = \begin{pmatrix} a_x \pm b_x \\ a_y \pm b_y \\ a_x + b_y \end{pmatrix}$

Skalarprodukt

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \circ \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$
$$= a_x b_x + a_y b_y + a_z b_z$$
$$= |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}, \vec{b})$$

Kreuzprodukt

 $|\vec{a} \times \vec{b}|$ Fläche des Parallelograms \vec{a}, \vec{b} $\vec{a} \times \vec{b} \perp \vec{a} \wedge \vec{a} \times \vec{b} \perp \vec{b}$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

$$= \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

$$= \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Schnittwinkel

$$\cos \angle (\vec{a}, \vec{b}) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Multiplikation mit einem Skalar

$$a \cdot \vec{b} = \begin{pmatrix} ab_x \\ ab_y \\ ab_z \end{pmatrix}$$

Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|} = \begin{pmatrix} a_x/|\vec{a}| \\ a_y/|\vec{a}| \\ a_z/|\vec{a}| \end{pmatrix}$$

Spatprodukt

 $\vec{a}\circ(\vec{b}\times\vec{c})$ Volumen des Parallelpipe
d \vec{a},\vec{b},\vec{c}

$$\begin{aligned} [\vec{a}\vec{b}\vec{c}] &= \vec{a} \circ (\vec{b} \times \vec{c}) \\ &= a_x (b_y c_z - b_z c_y) \\ &+ a_y (b_z c_x - b_x c_z) \\ &+ a_z (b_x c_y - b_y c_x) \\ &= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \end{aligned}$$

Projektion

$$\vec{a}_b = \left(\frac{\vec{a} \circ \vec{b}}{|\vec{a}|^2}\right) \vec{a} = (\vec{b} \circ \vec{e}_a) \vec{e}_a$$

3.1.3 Geraden

Geradegleichung

$$\vec{r}(t) = \vec{r_1} + t\vec{a}$$

= $\vec{r_1} + t(\vec{r_2} - \vec{r_1})$

 $=\vec{r_1}+t\vec{a}$

Geraden

$$ec{r}(t) = ec{r}_1 + tec{a}$$

$$d = \frac{|ec{a} \times \left(ec{OP} - ec{r}_1 \right)|}{ec{a}}$$

Abstand zweier paralleler Geraden

Abstand zweier windschiefen Geraden

Abstand eines Punktes von einer

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_1$$

$$d = \frac{|\vec{a}_1 \times (\vec{r}_2 - \vec{r}_1)|}{\vec{a}_1}$$

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_2$$

$$d = \frac{|\vec{a}_1 \circ (\vec{a}_2 \times (\vec{r}_2 - \vec{r}_1))|}{\vec{a}_1 \times \vec{a}_2}$$

3.1.4 Ebenen

Ebenengleichung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ &= \vec{r}_1 + t (\vec{r}_2 - \vec{r}_1) \\ &+ s (\vec{r}_3 - \vec{r}_1) \end{split}$$

Parameterfreie Darstellung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ \vec{r} \circ (\vec{a}_1 \times \vec{a}_2) &= \vec{r}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ t \vec{a}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ s \vec{a}_2 \circ (\vec{a}_1 \times \vec{a}_2) \\ \vec{r} \circ \vec{n} &= \vec{r}_1 \circ \vec{n} + 0 + 0 \\ \vec{n} \circ (\vec{r} - \vec{r}_1) &= 0 \end{split}$$

Normalenvektor

 $\vec{n} = \vec{a}_1 \times \vec{a}_2$

Normierter Normalenvektor

$$\vec{e}_n = \frac{\vec{a}_1 \times \vec{a}_2}{|\vec{a}_1 \times \vec{a}_2|}$$

Hessesche Normalform

Abstand eines Punktes von einer Ebene

$$0 = \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}}$$

$$d = \frac{|\vec{n} \times \left(\vec{OP} - \vec{r_1} \right)|}{\vec{n}}$$

$$d = \frac{Ap_1 + Bp_2 + Cp_3 + D}{\sqrt{A^2 + B^2 + C^2}}$$

Abstand einer Geraden von einer Abstand zweier paralleler Ebenen Ebene

$$\vec{r}(t) = \vec{r}_G + t\vec{a}_1$$

$$d = \frac{|\vec{n} \times (\vec{r}_G - \vec{r}_1)|}{\vec{n}}$$

$$d = \frac{Ar_{G1} + Br_{G2} + Cr_{G3} + D}{\sqrt{A^2 + B^2 + C^2}}$$

$$\vec{r}(t,s) = \vec{r}_1 + t\vec{a}_1 + s\vec{a}_2$$

$$\vec{g}(t,s) = \vec{r}_2 + t\vec{a}_3 + s\vec{a}_4$$

$$d = \frac{|\vec{n} \times (\vec{r}_1 - \vec{r}_2)|}{\vec{n}}$$

Schnittwinkel zweier Ebenen

Durchstoßpunkt

$$\cos\angle(\vec{n}_1,\vec{n}_2) = \frac{\vec{n}_1 \circ \vec{n}_2}{|\vec{n}_1| \cdot |\vec{n}_2|}$$

$$\vec{r}(t) = \vec{r}_G + t\vec{a}$$

$$\vec{r}_s = \vec{r}_G + \frac{\vec{n} \circ (\vec{r}_1 - \vec{r}_G)}{\vec{n} \circ \vec{a}} \vec{a}$$

$$\varphi = \arcsin\left(\frac{|\vec{n} \circ \vec{a}|}{|\vec{n}| \cdot |\vec{a}|}\right)$$

Kapitel 4

Differentialrechnung

4.1 Differntial rechnung

4.1.1 Erste Ableitungen der elementaren Funktionen

Potenzfunktion

$x^n \iff n \cdot x^{n-1}$

${\bf Exponential funktionen}$

$$\begin{array}{ccc} e^x & \iff & e^x \\ a^x & \iff & \ln a \cdot a^x \end{array}$$

Logarithmusfunktionen

$$\ln x \qquad \iff \qquad \frac{1}{x} \\
\log_a x \qquad \iff \qquad \frac{1}{(\ln a) \cdot x}$$

Trigonometrische Funktionen

$$\begin{array}{ccc}
\sin x & \iff & \cos x \\
\cos x & \iff & -\sin x \\
\tan x & \iff & \frac{1}{\cos^2 x} \\
\tan x & \iff & 1 + \tan^2 x
\end{array}$$

Arcusfunktionen

Hyperbolische Funktionen

4.1.2 Rechenregeln

Faktorregel

Summenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(C \cdot f(x) \right) = C \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(g(x) + f(x) \right) = g'(x) + f'(x)$$

Produktregel

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(x) \cdot f(x)) = g'(x) \cdot f(x) + g(x) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} (h(x) \cdot g(x) \cdot f(x)) = h' \cdot g \cdot f + h \cdot g' \cdot f + h \cdot g \cdot f'$$

Quotientenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{g(x)}{f(x)} \right) = \frac{g'(x) \cdot f(x) - g(x) \cdot f'(x)}{f(x)^2}$$

Kettenregel

Logarithmische Ableitungen

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(f(x))) = g'(f) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} y = f(x)$$

$$\frac{1}{y} y' = \frac{\mathrm{d}}{\mathrm{d}x} \ln f(x)$$

4.1.3 Fehlerrechnung

Absoluter Fehler

 Δx Absoluter Fehler der Eingangsgröße Δy Absoluter Fehler der Ausgangsgröße

$$\Delta y = f(x + \Delta x) - f(x)$$

Relativer Fehler

 δx Relativer Fehler der Eingangsgröße in % δy Relativer Fehler der Ausgangsgröße in %

$$\delta x = \frac{\Delta x}{x}$$

$$\delta y = \frac{\Delta y}{y}$$

$$\Delta y = f'(x) \cdot \Delta x$$

$$\delta y = \frac{x \cdot f'(x)}{f(x)} \delta x$$

4.1.4 Linearisierung und Taylor-Polynom

Tangentengleichung

 x_0 Punkt an dem das Polynom entwickelt wird

$$y_T(x) = f(x_0) + f'(x_0)(x - x_0)$$

Taylor Polynom

 \boldsymbol{x}_0 Punkt an dem das Polynom entwickelt wird \boldsymbol{R}_n Restglied

$$y(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$
$$y(x) = \sum_{i=0}^n \frac{f^{(i)}}{i!}(x - x_0)^i + R_n(x)$$

Restglied

 x_0 Punkt an dem das Polynom entwickelt wird

$$x_0 < c < x$$
, wenn $x_0 < x$

$$x_0 > c > x$$
, wenn $x_0 > x$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

4.1.5 Grenzwertregel von Bernoulli und de l'Hospital de l'Hospital

Gilt nur wenn $\lim_{x \to x_0} f(x)$ gleich $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ist

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

4.1.6 Differentielle Kurvenuntersuchung

Normale der Kurve

$$y_N(x) = f(x_0) - \frac{1}{f'(x)} (x - x_0)$$

Monotonie-Verhalten

$f'(x) = \begin{cases} > 0 \text{ Monoton wachsend} \\ < 0 \text{ Monoton fallend} \end{cases}$

Ableitung in Polarkordinaten

 \dot{r} Ableitung nach φ \ddot{r} Zweite Ableitung nach φ

$$y(\varphi) = r(\varphi)\sin\varphi$$

$$x(\varphi) = r(\varphi)\cos\varphi$$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$$

$$y'' = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{2(r')^2 - r\cdot r'' + r^2}{(r'\cos\varphi - r\sin\varphi)^3}$$

Krümmungs-Verhalten

$$f''(x) = \begin{cases} > 0 \text{ Linkskr.(konvex)} \\ < 0 \text{ Rechtskr.(konkav)} \end{cases}$$

Ableitung in Parameterform

 \dot{x} Ableitung nach t \dot{y} Ableitung nach t

$$y = y(t)$$

$$x = x(t)$$

$$y' = \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$y'' = \frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$

Bogendifferential

"Wegelement" einer Funktion

$$ds = \sqrt{1 + (f'(x))^2} \cdot dx$$
$$ds = \sqrt{(\dot{x})^2 + (\dot{y})^2} \cdot dt$$
$$ds = \sqrt{r^2 + (r')^2} \cdot d\varphi$$

Krümmungskreis

$$\rho = \frac{1}{|\kappa|}$$

$$x_K = x_P - y' \frac{1 + (y')^2}{|y''|}$$

$$y_K = y_P + \frac{1 + (y')^2}{|y''|}$$

$$\rho : \text{Radius}$$

 (x_K, y_K) : Kreismittelpunkt (x_P, y_P) : Kurvenpunkt

Winkeländerung

$$\tau = \arctan y'$$
$$d\tau = \frac{y''}{1 + (y')^2} \cdot dx$$

Kurvenkrümmung

$$\kappa = \frac{d\tau}{ds}$$

$$= \frac{y''}{\sqrt{(1 + (y')^2)^3}}$$

$$= \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\sqrt{(\dot{x}^2 + \dot{y}^2)^3}}$$

$$= \frac{2(r')^2 - r \cdot r'' + r^2}{\sqrt{(r^2 + (r')^2)^3}}$$

4.2 Differentialgleichungen

Anfangswertproblem: Werte nur an einer Stelle vorgegeben Randwertproblem: Werte an mehreren Stellen vorgegeben

Lineare DG

$$y_{all} = y_h + y_p$$

4.2.1 DG 1. Ordnung

Trennung der variablen

$y'(x) = f(x) \cdot g(y)$ $\int \frac{\mathrm{d}y}{g(y)} = \int f(x) \, \mathrm{d}x$

Lineare DG

$$y'+f(x)\cdot g(y) = g(x)g(x) = 0 \Rightarrow \text{homogen}$$

$$y_{all} = e^{-F(x)} \cdot \left(\int g(x) \cdot e^{F(x)} \, dx + C \right)$$

4.2.2 Lineare DG 2. Ordnung

Darstellung

$$a(x) \cdot y'' + b(x) \cdot y' + c(x) \cdot y = g(x)$$

 $g(x) = 0 \Rightarrow \text{homogen}$

Fundamental Lösungen

$$a\lambda^{2} + b\lambda + c = 0$$

$$\lambda_{1/2} = \alpha \pm \beta \cdot j$$

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}e^{\lambda_{2}x} \quad \lambda_{1} \neq \lambda_{2}$$

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}xe^{\lambda_{2}x} \quad \lambda_{1} = \lambda_{2}$$

$$y_{h} = C_{1}e^{\alpha x} \cdot \cos(\beta x)$$

$$+ C_{2}e^{\alpha x} \cdot \sin(\beta x)$$

In Folgenden Aufzählungen gillt:

- G(x) Ansatz
- g(x) Störglied
- r Anzahl der Resonanzfälle

Partikuläre Lösungen(Polynom)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}$$

$$G(x) = B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n} \qquad \lambda \neq 0$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) \cdot x^{r} \qquad \lambda = 0$$

Partikuläre Lösungen(Polynom und e-Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx}$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \qquad \lambda \neq m$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot x^{r} \qquad \lambda = m$$

Partikuläre Lösungen(sin- und cos Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = a\cos(kx) + b\sin(kx)$$

$$G(x) = A\cos(kx) + B\sin(kx)$$

$$\lambda \neq \pm kj$$

$$G(x) = A\cos(kx) + B\sin(kx) \cdot x^{r}$$

$$\lambda = \pm kj$$

Partikuläre Lösungen(e-, sin- und cos Funktion)

$$0 = a\lambda^{2} + b\lambda + c$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx} \cdot (c\cos(kx) + d\sin(kx))$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot (C\cos(kx) + D\sin(kx))$$

$$\lambda \neq m \pm kj$$

$$G(x) = (B_0 + B_1 x + B_2 x^2 + \dots + B_n x^n) e^{mx} \cdot (C\cos(kx) + D\sin(kx)) \cdot x^r$$

$$\lambda = m \pm kj$$

4.3 Differential- und Integralrechnung mit mehreren Variablen

4.3.1 Differential rechnung

Aleitung

$$y = f(x_1, x_2, \dots, x_3)$$

$$\frac{\partial y}{\partial x_1} = y_{x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$\frac{\partial y}{\partial x_n} = y_{x_n}$$
Alles bis auf x_n ist konstant beim ableiten
$$\frac{\partial^2 y}{\partial x_1^2} = y_{x_1x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$y_{x_1x_2} = y_{x_2x_1}$$

Tangentialebene

 (x_0, y_0) Entwicklungspunkte der Ebene

$$z - z_0 = f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

Totales Differential

$$dz = f_x \cdot dx + f_y \cdot dy$$

Extrema

$$\begin{split} f_x(x_0,y_0) &= 0 & f_y(x_0,y_0) = 0 \\ f_{xx}(x_0;y_0) &< 0 & \text{Maximum} \\ f_{xx}(x_0;y_0) &> 0 & \text{Minimum} \\ \left| f_{xx}(x_0;y_0) & f_{xy}(x_0;y_0) \right| &> 0 \end{split}$$

Sattelpunkt

$$\begin{aligned} f_x(x_0, y_0) &= 0 & f_y(x_0, y_0) &= 0 \\ \begin{vmatrix} f_{xx}(x_0; y_0) & f_{xy}(x_0; y_0) \\ f_{xy}(x_0; y_0) & f_{yy}(x_0; y_0) \end{vmatrix} &< 0 \end{aligned}$$

Richtungsableitung

$$\frac{\partial z}{\partial \vec{a}} = \frac{1}{\sqrt{a_x^2 + a_y^2}} \cdot (a_x z_x + a_y z_y)$$
$$\frac{\partial z}{\partial \alpha} = z_x \cos \alpha + z_y \sin \alpha$$
$$\frac{\partial z}{\partial \alpha} = \vec{e_a} \cdot \text{grad}(z)$$

4.3.2 Mehrfachintegral

Polarkordinaten

$$x = x_0 + r\cos\varphi \qquad \qquad y = y_0 + r\sin\varphi$$

Volumen

$$\begin{split} & \qquad \qquad \qquad \mathbf{Fl\"{a}che} \\ & \iiint_V \mathrm{d}V = \int_x \int_y \int_z \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x \\ & \iiint_V \mathrm{d}V = \int_r \int_\varphi \int_z r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\varphi \\ & \qquad \qquad A = \iint_{(A)} \mathrm{d}A \end{split}$$

Masse

$$\begin{split} m &= \iint_{(A)} \rho(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ &= \iint_{(A)} \rho(r,\varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi \\ &= \iiint_{(V)} \rho(x,y) \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y \\ &= \iiint_{(V)} \rho(r,\varphi) r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\varphi \end{split}$$

Statisches Moment

 $y_s = \frac{M_x}{m}$

 $(M_x, M_y) \text{ Achsmomente}$ $M_x :$ $= \iint_{(A)} y \rho(x, y) \, dx \, dy$ $= \iint_{(A)} y_0 + r \sin \varphi \rho(r, \varphi) r \, dr \, d\varphi$ $M_y :$ $= \iint_{(A)} x \rho(x, y) \, dx \, dy$

 $= \iint_{(A)} x_0 + r \cos \varphi \rho(r, \varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi$

Schwerpunkt

$$x_s = \frac{M_y}{m}$$

Trägheitsmoment

$$I_x = \iint_{(A)} y^2 \rho(x, y) \, dx \, dy$$

$$I_x = \iint_{(A)} (y_0 + r \sin \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

$$I_y = \iint_{(A)} x^2 \rho(x, y) \, dx \, dy$$

$$I_y = \iint_{(A)} (x_0 + r \cos \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

Polares Trägheitsmoment

$$I_x = \iint_{(A)} (y^2 + x^2) \rho(x, y) dx dy$$
$$I_x = \iint_{(A)} ((y_0 + r \sin \varphi)^2 + (x_0 + r \cos \varphi)^2) \rho(r, \varphi) r dr d\varphi$$

${\bf Kugelkoordinaten}$

$$V = \int_r \int_{\vartheta} \int_{\varphi} r^2 \sin \vartheta \, \mathrm{d}\varphi \, \mathrm{d}\vartheta \, \mathrm{d}r$$

Kapitel 5

Folgen und Reihen

5.1 Reihen

5.1.1 Geometrische Folge

Darstellung

$$a_n = a \cdot q^n$$

$$\sum_{n=0}^{\infty} a \cdot q^n = \frac{a}{1-q}$$

Konvergent für |q| < 1

5.1.2 Harmonische Reihe

Darstellung

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

Konvergent für $s>1\,$

5.1.3 Konvergenz

Majorantenkriterium

Minorantenkriterium

$$\sum_{n=0}^{\infty} a_n \leq \sum_{n=0}^{\infty} b_n$$

$$b_n \text{ bekannte konvergente Reihe}$$

$$\sum_{n=0}^{\infty} a_n \ge \sum_{n=0}^{\infty} b_n$$

$$b_n \text{ bekannte divergente Reihe}$$

Wurzelkriterium

$$\lim_{n\to\infty} \sqrt[n]{a_n} = q \begin{cases} q>1 \text{ ist die Reihe divergent} \\ q<1 \text{ ist die Reihe konvergent} \\ q=1 \text{ ist keine Aussage möglich} \end{cases}$$

Quotientenkriterium

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q\begin{cases}q>1\text{ ist die Reihe divergent}\\q<1\text{ ist die Reihe konvergent}\\q=1\text{ ist keine Aussage möglich}\end{cases}$$

Leibnizkriterium

Nur bei alternierenden Reihen

$$\lim_{n \to \infty} (-1)^n a_n$$

$$\lim_{n \to \infty} a_n = q$$

$$\lim_{n \to \infty} (-1)^n a_n = \lim_{n \to \infty} a_n$$

$$q = 0 \text{ ist die Reihe divergent}$$

$$\lim_{n \to \infty} (-1)^n a_n = \lim_{n \to \infty} a_n$$
Absolut Konvergent

5.1.4 Bekannte konvergente Reihen

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e} \qquad \sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = \frac{2}{3} \qquad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2 \qquad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n-1} = \frac{\pi}{4}$$

5.2 Funktionenreihen

Darstellung

$$\sum_{n=0}^{\infty} f_n(x)$$

5.2.1 Potenzreihen

Darstellung

$\sum_{n=0}^{\infty} a_n x^n$ $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ $x_0: \text{Verschiebung des}$ Entwicklungspunktes.

Konvergenz

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$
Ränder müssen

untersucht werden.

5.2.2 Bekannte Potenzreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad x \in \mathbb{R}$$

$$\ln x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^{n} \qquad x \in (0,2]$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} \qquad x \in (-1,1]$$

$$\ln (1-x) = -\sum_{n=1}^{\infty} \frac{x^{n}}{n} \qquad x \in [-1,1]$$

$$(1+x)^{\alpha} = \sum_{n=1}^{\infty} {\alpha \choose n} x^{n} \qquad x \in [-1,1]$$

5.2.3 spezielle Reihen

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2 (2n+1)} x^{2n+1} \qquad x \in [-1,1]$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\operatorname{arsinh} x = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{2^{2n} (n!)^2 (2n+1)} x^{2n+1} \qquad x \in [-1,1]$$

$$\operatorname{artanh} x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)} x^{2n+1} \qquad x \in \mathbb{R}$$

5.2.4 Fourier Reihen

Allgemein

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega_0 t) + a_n \cdot \sin(n\omega_0 t))$$
$$a_0 = \frac{2}{T} \int_{(T)} y(t) dt$$
$$a_n = \frac{2}{T} \int_{(T)} y(t) \cdot \cos(n\omega_0 t) dt$$
$$b_n = \frac{2}{T} \int_{(T)} y(t) \cdot \sin(n\omega_0 t) dt$$

Symetrie

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega_0 t))$$
$$y(t) = \sum_{n=1}^{\infty} (b_n \cdot \sin(n\omega_0 t))$$
gerade Funktion $b_n = 0$ ungerade Funktion $a_n = 0$

Komplex

$$y(x) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{jnx}$$
 $c_n = \frac{1}{T} \int_{(T)} y(x) \cdot e^{-jnx} dx$

Umrechnung

$$c_{0} = \frac{1}{2}a_{0}$$

$$c_{n} = \frac{1}{2}(a_{n} - jb_{n})$$

$$c_{-n} = \frac{1}{2}(a_{n} + jb_{n})$$

$$a_{0} = 2c_{0}$$

$$a_{n} = c_{n} + c_{-n}$$

$$b_{n} = j(c_{n} - c_{-n})$$

Interpolation

6.1 Interpolationspolynome

Entwicklung einer Polynomfunktion anhand von n+1 Kurvenpunkten.

- \bullet 1. Möglichkeit: Aufstellen von n+1 Gleichungen und ermitteln der Kurvenfunktion mithilfe des Gauß' Algorithmus.
- 2. Möglichkeit: Interpolationspolynome nach Newton.

Interpolationspolynome nach Newton

Gegeben sind die Punkte:

 $P_0 = (x_0; y_0), P_1 = (x_1; y_1), P_2 = (x_2; y_2), \dots, P_n = (x_n; y_n),$ damit lautet die Funktion wie folgt.

$$f(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1)$$

$$+ a_3 \cdot (x - x_0) \cdot (x - x_1) \cdot (x - x_2)$$

$$+ \dots$$

$$+ a_n \cdot (x - x_0) \cdot \dots \cdot (x - x_{n-1})$$

Die Koeffizienten $a_0, a_1, a_2, \ldots, a_n$ lassen sich mithilfe des Differentenschema berechnen. Dabei ist $y_0 = a_0, [x_0, x_1] = a_1, [x_0, x_1, x_2] = a_2$ usw.

Differentenschema

k	x_k	y_k	1	2	3	
0	x_0	y_0				
			$[x_0, x_1]$			
1	x_1	y_1		$[x_0, x_1, x_2]$		
			$[x_1, x_2]$		$[x_0, x_1, x_2, x_3]$	
2	x_2	y_2		$[x_1, x_2, x_3]$		
			$[x_2, x_3]$		$[x_0, x_1, x_2, x_3]$	
3	x_3	y_3		$[x_2, x_3, x_4]$		
:	:	:				
•	•	•				
n	x_n	y_n				

Rechenregeln für dividierte Differenzen

$$[x_0, x_1] = \frac{y_0 - y_1}{x_0 - x_1} \qquad [x_1, x_2] = \frac{y_1 - y_2}{x_1 - x_2}$$

$$[x_0, \dots, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2} \qquad [x_1, \dots, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3}$$

$$[x_0, \dots, x_3] = \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_2} [x_1, \dots, x_4] = \frac{[x_1, x_2, x_3] - [x_2, x_3, x_4]}{x_1 - x_3}$$

Teil II Physik

Kinematik

Perfection is achieved only on the point of collapse.

- C. N. Parkinson

7.1 Analogietabelle

Translation		Rotation
\vec{s}		$ec{arphi}$
$\downarrow \frac{ds}{dt}$		$ \downarrow \frac{d\varphi}{dt} $
$ec{v}$	$\vec{v} = \vec{\omega} \times \vec{r}$	(i)
$ \downarrow \frac{ds}{dt} \vec{v} \downarrow \frac{dv}{dt} \vec{a} $		$ \downarrow \frac{d\omega}{dt} \\ \vec{\alpha} $
\vec{a}	$a = \alpha \times r - \omega^2 r$	\vec{lpha}
	a_{Tan} a_{R}	
m		J
$ec{ec{F}}_{dt}$		$\downarrow \frac{dJ}{dt}$
$ec{F}$		$ec{M}$
$ \downarrow \frac{dF}{dt} \\ \vec{p} \\ \frac{m}{2}v^2 $		$\downarrow \frac{dM}{dt}$
$ec{p}$		\dot{L}
$\frac{m}{2}v^2$	E_{kin}	$ec{L} rac{\omega_M}{dt} \ rac{J}{2} \omega^2$

7.1.1 Translation

$$a(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$
$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Bahngroessen

$$a_t(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$
$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Kreisfrequenz

$$\omega = \frac{2 \cdot \pi}{T}$$

$$= 2 \cdot \pi \cdot n$$

$$= 2 \cdot \pi \cdot f$$

Umdrehungen

$$N = \frac{\omega_0 \cdot t}{2 \cdot \pi} + \frac{1}{2} \cdot \frac{\alpha}{2 \cdot \pi} \cdot t^2$$
$$= n_0 \cdot t + \frac{\alpha}{4 \cdot \pi} \cdot t^2$$

7.1.2 Rotation

$$\alpha(t) = \alpha_0 = \frac{d\omega}{dt} = \dot{\omega} = \ddot{\varphi}$$

$$\omega(t) = \alpha_0 \cdot t + \omega_0 = \frac{d\varphi}{dt} = \dot{\varphi}$$

$$\varphi(t) = \frac{1}{2}\alpha_0 \cdot t^2 + \omega_0 \cdot t + \varphi_0$$

Winkelgroessen

$$\vec{a_t} = \vec{\alpha} \times \vec{r} = \alpha \cdot r \qquad \alpha \perp r$$

$$\vec{\alpha} = \vec{r} \times \vec{a_t}$$

$$\vec{v} = \vec{\omega} \times \vec{r} = \omega \cdot r \qquad \omega \perp r$$

$$\vec{\omega} = \vec{r} \times \vec{v}$$

$$s = \varphi \cdot r$$

Radialbeschleunigung

$$a_r = \frac{v^2}{r}$$
$$= v \cdot \omega$$
$$= \omega^2 \cdot r$$

7.2 Dynamik

7.2.1 Geradlinig (Translation)

$$\vec{F} = m \cdot \vec{a}$$

$$\vec{F}_{Tr} = -m \cdot \vec{a}$$

Impuls

Kraftstoss

$$\vec{p} = m \cdot \vec{v}$$

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m \cdot \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \vec{v} \cdot \frac{\mathrm{d}m}{\mathrm{d}t}$$
$$\Delta \vec{p} = \vec{p}_2 - \vec{p}_1 = \int_{\vec{p}_2}^{\vec{p}_1} \mathrm{d}p = \int_0^t \vec{F} \, \mathrm{d}t$$

Arbeit

Hubarbeit

$$W = -\int_{\vec{s}_1}^{\vec{s}_2} \vec{F}_{\text{Tr}} \circ d\vec{s}$$
$$= \int_{\vec{v}_0}^{\vec{v}_1} m\vec{v} \circ d\vec{v} = \frac{1}{2} m \left(v_1^2 - v_0^2 \right)$$

 $W_{\rm hub} = mgh$

Kinetische Energie

Leistung

$$E_{\rm kin} = \frac{1}{2}mv^2$$

$$P = \vec{F} \circ \vec{v} = \frac{\mathrm{d}W}{\mathrm{d}t} = \dot{W}$$

7.2.2 Drehbewegung(Rotation)

Massentraegheitsmoment

Drehmoment

$$J = \int r^2 \, \mathrm{d}m$$

$$\vec{M} = \vec{r} \times \vec{F} = J\vec{\alpha} = \dot{\vec{L}}$$

Drehimpuls

$\vec{L} = \vec{r} \times \vec{p}$ = $J \cdot \vec{\omega}$

Arbeit

$$W = \int_{\varphi_0}^{\varphi_1} \vec{M} \circ \vec{e_\omega} \, d\varphi$$
$$= \int_{\vec{\omega}_0}^{\vec{\omega}_1} J \vec{\omega} \, d\vec{\omega}$$
$$= \frac{1}{2} J \left(\omega_1^2 - \omega_0^2 \right)$$

7.2.3 Geneigte Ebene

Kräfte

$$\vec{F}_N = \vec{F}_G \cos \alpha$$
$$\vec{F}_H = \vec{F}_G \sin \alpha$$

7.2.4 Reibung

 ${\bf Reibungskraft}$

$$F_R = \mu \cdot F_N$$

Kinetische Energie

$$E_{kin} = \frac{1}{2}J\omega^2$$

Leistung

$$P = \vec{M} \circ \vec{\omega}$$

Zentripedalkraft

$$F_{zp} = -m \cdot \omega^2 \cdot r$$
$$= -m \cdot v^2 \cdot \frac{\vec{e_r}}{r}$$

Rollreibung

$$M = f \cdot F_N$$
$$F_R = \frac{f}{r} \cdot F_N$$

7.2.5 Feder

HOOKsches Gesetz

Federspannarbeit

$$F = -kx$$
$$M = D\varphi$$

$$W = \int_{x_{\min}}^{x_{\max}} F \, \mathrm{d}x = \int_{x_{\min}}^{x_{\max}} kx \, \mathrm{d}x$$
$$= \frac{1}{2} \cdot k \cdot \left(x_{\max}^2 - x_{\min}^2\right)$$

7.2.6 Elastischer Stoß

Energie vor den Stoß = Energie nach den Stoß

$$\sum E_{\rm kin} = \sum E'_{
m kin}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Zentraler, Gerader, Elastischer Stoß

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$
$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2$$
$$v_1' = \frac{2m_2}{m_1 + m_2} v_2 + \frac{m_1 - m_2}{m_1 + m_2} v_1$$

7.2.7 Unelastischer Stoß

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß + Arbeit

$$\sum E_{\rm kin} = \sum E'_{\rm kin} + \Delta W$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Total unelastischer Stoss

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$$
$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$

${\bf Drehimpulser haltungs satz}$

Drehinpuls zur Zeit 1 = Drehinpuls zur Zeit 2

$$\sum \vec{L} = \sum \vec{L}'$$

Kopplung zweier Rotationskörper

$$\vec{\omega}' = \frac{J_0 \vec{\omega_0} + J_1 \vec{\omega_1}}{J_1 + J_2}$$

$$W = \frac{J_0 \cdot J_1}{2(J_0 + J_1)} (\omega_0 - \omega_1)^2$$

7.2.8 Rotierendes Bezugssystem

Zentrifugalkraft

$$\vec{F}_Z = F_r \cdot \vec{e}_r = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$
$$= -m\vec{\omega} \times \vec{v}$$
$$F_Z = -m\frac{v^2}{r} = -m\omega^2 r$$

Corioliskraft

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v}$$

7.3 Schwerpunkt

mehrere Punktmassen

$$\vec{r}_{\mathrm{Sp}} = \frac{\sum \vec{r}_i m_i}{\sum m_i}$$

Schwerpunkt in Zylinderkoordinaten

$$\begin{split} r_{\mathrm{Sp}} &= \frac{\int_{z} \int_{\varphi} \int_{r} r^{2} \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z}{\int_{z} \int_{\varphi} \int_{r} r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z} \\ \varphi_{\mathrm{Sp}} &= \frac{\int_{z} \int_{\varphi} \int_{r} \varphi r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z}{\int_{z} \int_{\varphi} \int_{r} r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z} \\ z_{\mathrm{Sp}} &= \frac{\int_{z} \int_{\varphi} \int_{r} z r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z}{\int_{z} \int_{\varphi} \int_{r} r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z} \\ x &= r \cos \varphi \quad y = r \sin \varphi \quad z = z \end{split}$$

Allgemein

$$\vec{r}_{\mathrm{Sp}} = \frac{\int \vec{r} \, \mathrm{d}m}{\int \mathrm{d}m}$$

Schwerpunkt in karthesischen Koordinaten

$$x_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} x \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$y_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} y \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$z_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} z \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$

7.4 Trägheitsmoment

$$J = \sum_{i} m_{i} r_{i}^{2}$$

$$J = \int_{m} r^{2} dm$$

$$J = \int_{z} \int_{\varphi} \int_{r} r^{3} \rho dr d\varphi dz$$

STEINER'scher Satz

$$J_x = mr^2 + J_s$$

Trägheitsmoment Kugel

$$J_{\rm Sp} = \frac{2}{5}mr^2$$

Trägheitsmoment Zylinder

$$J_{\rm Sp} = \frac{1}{2}mr^2$$

Trägheitmoment Kreisring (Torus)

$$J_{\rm Sp} = mr^2$$

Trägheitsmoment Stab

$$J_{\rm Sp} = \frac{1}{12} m l^2$$

7.5 Elastizitätslehre

Spannung

$$\vec{\sigma} = \frac{\mathrm{d}\vec{F}_n}{\mathrm{d}A}$$

$$\sigma = E\varepsilon = E\frac{\Delta l}{l}$$

$$\vec{\tau} = \frac{\mathrm{d}\vec{F}_t}{\mathrm{d}A}$$

Schubmodul

$$G = \frac{\tau}{\varphi}$$

$\mathbf{Drillung}$

$$\psi = \frac{\mathrm{d}\varphi}{\mathrm{d}l} = \frac{W_t}{G \cdot J_p} \tau = \frac{M_t}{G \cdot J_p}$$

48

Flächenmoment

Verformungsarbeit

$$J_p = \int r^2 dA = \int_{\varphi} \int_r r^3 dr d\varphi \qquad W = V \int \sigma(\varepsilon) d\varepsilon$$

7.6 Schwingungen

Harmonische Schwingungen

$$u(t) = A\cos(\omega t + \varphi_0)$$

7.6.1 Ungedämpfte Schwingungen

$$\ddot{x} = -\frac{k}{m}x$$

$$x(t) = \hat{x}\cos(\omega_0 t + \varphi_0)$$

$$\dot{x}(t) = -\hat{x}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{x}(t) = -\hat{x}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

$$T = 2\pi\sqrt{\frac{m}{k}}$$

Mathemetisches Pendel

$$\ddot{\varphi} = -\frac{g}{l}\varphi$$

$$\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{q}}$$

Torsionsschwingung

$$\ddot{\varphi} = -\frac{D}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{D}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{D}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{D}}$$

Elektrischer Schwingkreis

$$0 = L\ddot{Q} + \frac{Q}{C}$$

$$q(t) = \hat{Q}\cos(\omega_0 t + \varphi_0)$$

$$\dot{q}(t) = -\hat{Q}\omega\sin(\omega_0 t + \varphi_0)$$

Physikalisches Pendel

$$\ddot{\varphi} = -\frac{lmg}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{mgl}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{mgl}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{mgl}}$$

Flüssigkeitspendel

$$\ddot{y} = -\frac{2A\rho g}{m}y$$

$$\varphi(t) = \hat{y}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{y}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{y}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{2A\rho g}{m}} = \sqrt{\frac{2g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{2g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{2g}}$$

$$\ddot{q}(t) = -\hat{Q}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{1}{LC}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{1}{LC}}$$

$$T = 2\pi\sqrt{\frac{1}{LC}}$$

7.6.2 Gedämpfte Schwingungen

Schwingungsgleichung

COULOMB Reibung

$$m\ddot{x} = -kx + F_R$$

$$F_R = -\operatorname{sgn}(\dot{x})\mu F_N$$
$$0 = m\ddot{x} + kx + \operatorname{sgn}(\dot{x})\mu F_N$$

Gleitreibung

$$x(t) = -(\hat{x}_0 - \hat{x}_1)\cos(\omega t) - \hat{x}_1 \qquad 0 \le t \le \frac{T}{2}$$

$$x(t) = -(\hat{x}_0 - 3\hat{x}_1)\cos(\omega t) + \hat{x}_1 \qquad \frac{T}{2} \le t \le T$$

$$\hat{x}_1 = \frac{\mu F_N}{k}$$

Viskosereibung

$$d = 2D$$

$$Q = \frac{1}{d}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2}t}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\omega_0\sqrt{1 - D^2}t}$$

$$\delta = \frac{b}{2m}$$

$$D = \frac{\delta}{\omega_0}$$

$$D = \frac{b}{2\sqrt{mk}}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\Lambda = \ln\left(\frac{x(t)}{x(t+T)}\right)$$

$$\Lambda = \delta T$$

$$\omega_D = \sqrt{\frac{k}{m}} - \left(\frac{b}{2m}\right)^2$$

$$Aperiodischer Grenzfall \delta = \omega_0$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

Fluiddynamik

Premature optimization is the root of all evil.
- D. Knuth

On the other hand, we cannot ignore efficiency. - Jon Bentley

8.1 Ohne Reibung

Statischer Druck

Dynamischer Druck

 ${\bf Schweredruck}$

$$p = \frac{\mathrm{d}F_N}{\mathrm{d}A}$$

$$p = \frac{1}{2}\rho v^2$$

$$p = \frac{\rho V g}{A}$$
$$= h \rho g$$

Volumenstrom

Massenstrom

$$\begin{split} \dot{V} &= vA \\ &= \iint_A \vec{v} \, \mathrm{d}\vec{A} \\ &= \frac{\mathrm{d}V}{\mathrm{d}t} \\ &= Q \end{split}$$

$$\dot{m} = jA$$

$$= \iint_{A} \vec{j} \, d\vec{A}$$

$$= \frac{dm}{dt}$$

Auftrieb

$$\vec{F_A} = -\rho_V \vec{g}V$$
$$= -\frac{\rho_V}{\rho_M} \vec{F_G}$$

Kompressibilität

$$\kappa = \frac{\Delta V}{\Delta p V}$$

Volumenausdehnungskoeffezient

$$\frac{\Delta V}{V} = \gamma \Delta T$$

8.2 Laminare Reibung

Newtonsches Reibungsgesetz

$$F_R = \eta A \frac{\mathrm{d}v}{\mathrm{d}x}$$

Laminare Strömung (Rohr)

$$v(r) = \frac{p}{4\eta l} \left(R^2 - r^2 \right)$$
$$p = \frac{4\eta l}{R^2} v(0)$$
$$\dot{V} = \frac{\pi R^4}{8\eta l} p$$

Umströmung (Kugel)

$$F_R = 6\pi \eta r v$$

Kontinuitätsgleichung

$$\begin{split} \dot{m}|_1 &= \dot{m}|_2 \quad \dot{V}\Big|_1 = \dot{V}\Big|_2 \\ v_1 A_1 &= v_2 A_2 \quad \rho_1 = \rho_2 \end{split}$$

Barometrische Höhenformel

$$p = p_0 e^{-Ch}$$
$$C = \frac{\rho_0 g}{p_0}$$

Bernoulli Gleichung

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const}$$

Bernoulligleichung mit Reibung

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1$$

= $p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2 + \Delta p$

Reynoldszahl

$$Re = \frac{L\rho v}{\eta}$$

$$Re > Re_{krit}$$
 Strömung wird Turbulent

Gravitation

The year is 787!

A.D.?

- Monty Python

Gravitationskraft

$$\begin{split} \vec{F}_{g,2} &= -G\frac{m_1m_2}{r_{12}^2}\vec{e}_r \\ \vec{F}_g &= \vec{E}_g \cdot m = \vec{g}m \end{split}$$

Arbeit

$$W_{12} = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_g \circ d\vec{r}$$
$$= GmM\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Gravitationspotential

$$\phi = -G\frac{M}{r}$$

$$\vec{E}_g = \operatorname{grad}\phi$$

Planetenbahnen

$$\left(\frac{a}{a_E}\right)^3 = \left(\frac{T}{T_E}\right)^2$$

Elektrostatik

Don't interrupt me while I'm interrupting.

- Winston S. Churchill

Ladung

$$Q = n \cdot e_0$$
$$= CU$$
$$= \int i \, dt$$

COULOMB Gesetz

$$\begin{split} \vec{F}_{12} &= \frac{1}{4\pi\epsilon} \frac{Q_1 Q_2}{r^2} \vec{r_1} 2 \\ &= \vec{E} Q \\ \vec{E} &= \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \vec{r} \\ &= -\operatorname{grad} \varphi \\ &= -\left(\frac{\partial \varphi}{\partial x} \vec{e}_x + \frac{\partial \varphi}{\partial y} \vec{e}_y + \frac{\partial \varphi}{\partial z} \vec{e}_z\right) \end{split}$$

Punktladungen

$$\vec{E}(\vec{r}) = \sum_{i=1}^{N} \vec{E}_i \vec{r}_i$$

Spannung

$$U_{AB} = \frac{W_{AB}}{Q}$$

$$= \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \oint_{s} \vec{E} \circ d\vec{s} = 0$$

$$= \varphi_{A} - \varphi_{B}$$

$$= -\int_{\infty}^{A} \vec{E} \circ d\vec{s}$$

$$-\left(-\int_{\infty}^{B} \vec{E} \circ d\vec{s}\right)$$

El- / Verschiebungsfluß

$$\psi = \int_A \vec{E} \circ d\vec{A}$$
$$\psi = \oint_A \vec{E} \circ d\vec{A} = \frac{Q}{\epsilon}$$

Kapazität

$$Q = CU$$

OHMsches Gesetz

$$\begin{split} I &= \oint_{A} \vec{j} \circ \mathrm{d}\vec{A} \\ &= \oint_{A} \kappa \vec{E} \circ \mathrm{d}\vec{A} \\ &= \underbrace{\kappa E \cdot 4\pi r^{2}}_{\mathrm{Kugel}} \end{split}$$

Flußdichte

$$\vec{D} = \frac{\mathrm{d}Q}{\mathrm{d}A}\vec{e}_A$$

$$\vec{D} = \epsilon \vec{E}$$

$$Q = \oint_A D \,\mathrm{d}A$$

Arbeit im elektrischen Feld

$$w = \frac{1}{2}\vec{E} \circ \vec{D}$$

$$W = \int_{V} w \, dV$$

$$= -Q \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \int_{U} Q \, dU$$

$$= \int_{U} CU \, dU$$

$$= \frac{1}{2}CU^{2}$$

Thermodynamik

11.1 Wärmedehnung

$$\rho(T) = \rho_0 (1 - \beta (T - T_0))$$

$$V(T) = V_0 (1 + \gamma (T - T_0))$$

$$l(T) = l_0 (1 + \alpha (T - T_0))$$

$$\gamma \approx 3 \cdot \alpha$$

$$\gamma \approx \beta$$

11.2 Wärme

$$\Delta Q = c \cdot m(T - T_0)$$

$$\Delta Q = C(T - T_0)$$

$$\Delta Q = \int_{T_0}^T c \cdot m \, dT$$

$$\Delta Q = c_{mol} \cdot n(T - T_0)$$

11.3 Mischtemperatur

$$T_{m} = \frac{\sum_{i=1}^{n} T_{i} m_{i} c_{i}}{\sum_{i=1}^{n} m_{i} c_{i}}$$

 \dot{Q} Ist durch einen mehrschichtiges stationäres System Konstant

11.4 Wärmeleitung

$$\begin{split} \dot{Q} &= \frac{\mathrm{d}Q}{\mathrm{d}t} = \Phi = P \\ \vec{q} &= \frac{\dot{Q}}{A} \cdot \vec{e_A} \\ \vec{q} &= -\lambda \, \mathrm{grad}T \\ \vec{q} &= \frac{\lambda}{s} \left(T_A - T_B \right) \cdot \vec{e_s} \\ \dot{q} &= \frac{1}{\sum_{i=1}^n \frac{s_i}{\lambda_i}} \cdot \left(T_A - T_B \right) \end{split}$$

11.5 Wärmekonvektion

$$\dot{q} = \alpha \left(T_A - T_B \right)$$

$$\dot{q} = \frac{1}{\sum_{i=1}^n \frac{1}{\alpha_i}} \cdot \left(T_A - T_B \right)$$

11.6 Wärmewiderstand

$$R_{th} = \frac{T_A - T_B}{\dot{q} \cdot A} = \frac{s}{\lambda A} = \frac{1}{k} = \frac{1}{\alpha A} = \sum_{i=1}^{n} R_i$$

11.6.1 Wärmeübertragung

$$k = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i} + \sum_{i=1}^{n} \frac{1}{\alpha_i} + \sum_{i=1}^{n} R_i}$$

$$\dot{q} = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i} + \sum_{i=1}^{n} \frac{1}{\alpha_i} + \sum_{i=1}^{n} R_i} \cdot (T_A - T_B)$$

$$\dot{q} = k \cdot (T_A - T_B)$$

11.6.2 Wärmestrahlung

$$\sigma = 5,6704 \cdot 10^{-8} \frac{W}{m^2 K^4} \quad BoltzmannKonstante$$

$$\sigma_A = c_A$$

$$\alpha = \varepsilon$$

$$1 = \alpha + \tau + \vartheta$$

$$\dot{Q} = \varepsilon A \sigma T^4$$

$$\dot{Q}_{AB} = C_{AB} A_A \left(T_A^4 - T_B^4 \right)$$

$$C_{AB} = \varepsilon_{AB} \sigma = \frac{\sigma}{\frac{1}{\varepsilon_A} + \frac{1}{\varepsilon_B} - 1} = \frac{1}{\frac{1}{\sigma_A} + \frac{1}{\sigma_B} - \frac{1}{\sigma}}$$

$$Parallel$$

$$C_{AB} = \frac{\sigma}{\frac{1}{\varepsilon_A} + \frac{A_A}{A_B} \left(\frac{1}{\varepsilon_B} - 1 \right)}$$

$$C_{AB} \approx \varepsilon_A \sigma$$

$$Parallel (A_A \ll A_B)$$

11.6.3 Zustandsänderung des idealen Gases

Teilchen stehen nicht in Wechselwirkung, besitzen kein Volumen und es kommt zu keinem Phasenübergang

Energie

$$U_{12} = Q_{12} + W_{12}$$
Nur Isobar:
$$dH = c_p m dT = U + p dV$$

$$dS = \frac{dQ}{T}$$

Isotherm

$$\begin{split} pV &= \text{const} \\ T &= \text{const} \\ U_{12} &= 0 \\ U_{12} &= Q_{12} + W_{12} \\ Q_{12} &= -W_{12} \\ W_{12} &= p_1 V_1 \ln \frac{V_2}{V_1} \\ W_{12} &= p_1 V_1 \ln \frac{p_1}{p_2} \\ S_{12} &= m c_p \ln \frac{V_2}{V_1} + m c_V \ln \frac{p_2}{n_1} \end{split}$$

Isobar

$$\begin{split} \frac{V}{T} &= \text{const} \\ p &= \text{const} \\ Q_{12} &= mc_p \left(T_2 - T_1 \right) \\ W_{12} &= -p \left(V_2 - V_1 \right) \\ U_{12} &= Q_{12} + W_{12} \\ S_{12} &= mc_p \ln \frac{V_2}{V_1} \end{split}$$

Zustandsgleichung

$$\begin{aligned} \frac{pV}{T} &= \text{const} \\ pV &= NkT = mR_sT = nRT \\ R_s &= \frac{nR}{m} \\ R_s &= c_p - c_v \end{aligned}$$

Isochor

$$\frac{p}{T} = \text{const}$$

$$V = \text{const}$$

$$Q_{12} = mc_v (T_2 - T_1)$$

$$W_{12} = 0$$

$$U_{12} = Q_{12}$$

$$S_{12} = mc_v \ln \frac{p_2}{p_1}$$

Adiabat

$$pV^{\kappa} = \text{const}$$

$$Q = \text{const}$$

$$\kappa = \frac{c_p}{c_V}$$

$$\frac{T_2}{T_1} = \left(\frac{V_2}{V_1}\right)^{1-\kappa} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$

$$Q_{12} = 0$$

$$W_{12} = mc_v \left(T_2 - T_1\right)$$

$$W_{12} = \frac{RT_1}{\kappa - 1} \left(\left(\frac{V_2}{V_1}\right)^{1-\kappa} - 1\right)$$

$$U_{12} = W_{12}$$

$$S_{12} = 0;$$

Kreisprozeß

$$\oint dU = 0$$

$$\oint dU = \oint dQ + \oint dW \qquad \qquad \eta_C = \frac{W_{ab}}{Q_{zu}}$$

$$\text{Revesiebel: } \oint dS \qquad = 0 \qquad \qquad \eta_C = \frac{Q_{zu} - Q_{AB}}{Q_{zu}}$$

$$\text{Irrevesiebel } \oint dS \qquad > 0 \qquad \qquad \eta_C = \frac{T_h - T_n}{T_n}$$

Optik

The path taken between two points by a ray of light is the path that can be traversed in the least time.

- Pierre de Fermat

12.1 Brechung

$$\begin{split} \frac{\sin \varepsilon_1}{\sin \varepsilon_2} &= \frac{n_2}{n_1} = \frac{c_1}{c_2} \\ \varepsilon_2 &= \arcsin \frac{\sin \varepsilon_1 \cdot n_1}{n_2} \end{split}$$

12.2 Total reflexion

$$\sin \varepsilon_g = \frac{n_2}{n_1}$$

Totalreflexion tritt nur auf, wenn der Lichtstrahl von einem dichteren in einen optisch dünneren Stoff übergeht.

12.3 Hohlspiegel

$$\frac{1}{f'} = \frac{1}{a} + \frac{1}{a'}$$
$$f' = \frac{r}{2}$$

$$\beta' = \frac{y'}{y}$$
$$\beta' = -\frac{a'}{a}$$

12.4 Linse

$$\frac{1}{f'} = \frac{1}{a'} - \frac{1}{a}$$
$$\frac{1}{f} = \frac{1}{a'} + \frac{1}{a}$$

$$f = \frac{a \cdot a'}{a + a'} = -f'$$

$$a' = \frac{af'}{a + f'}$$

$$\beta' = \frac{f'}{a + f'}$$

$$\beta' = \frac{y'}{y}$$

$$D' = \frac{1}{f'} = (n_L - 1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Linsenform	\bigcirc					
Bezeichnung	bi- konvex	plan- konvex	konkav- konvex	bi- konkav	plan- konkav	konvex- konkav
Radien	$r_1 > 0$ $r_2 < 0$	$\begin{array}{c} r_1 = \infty \\ r_2 < 0 \end{array}$	$r_1 < r_2 < 0$	$r_1 < 0 \\ r_2 > 0$	$r_1 = \infty \\ r_2 > 0$	$r_2 < r_1 < 0$
Brennweite im optisch dünneren Medium	f'>0	f'>0	f'>0	f' < 0	f' < 0	f' < 0

12.5 Lichtwellenleiter

Totalreflexion (Grenzwinkel)

$$n_1 \sin (90^\circ - \vartheta_1) = n_2 \Longrightarrow \cos \vartheta_1 = \frac{n_2}{n_1}$$

numerische Apertur

$$\begin{aligned} A_{WL} &= n_0 \sin \vartheta_0 = n_1 \sqrt{1 - \cos^2 \vartheta_1} \\ &= n_1 \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2} \\ &= \sqrt{n_1^2 - n_2^2} \\ &= \sqrt{n_{Kern}^2 - n_{Mantel}^2} \end{aligned}$$

Teil III Elektrotechnik

Gleichstromtechnik

13.1 Grundgrößen

Elementarladung

$$e \approx 1, 6 \cdot 10^{-19} C$$

Strom

$$[I] = 1A$$
$$i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Potential

$$[\varphi] = 1V = 1\frac{Nm}{As} = 1\frac{kgm^2}{As^3}$$
$$\varphi = \frac{W}{Q}$$

$$[Q] = 1C = 1As$$
$$Q = n \cdot e$$

Stromdichte

$$[J] = 1 \frac{A}{mm^2}$$

$$\vec{J} = \frac{I}{\vec{A}}$$

Spannung

$$[U] = 1V$$

$$U_{AB} = \varphi_a - \varphi_b$$

Widerstand und Leitwert

$$[R] = 1\Omega = 1\frac{V}{A}$$

$$R = \frac{U}{I}$$

$$= \rho \frac{l}{A} = \frac{1}{\kappa} \frac{l}{A}$$

$$[G] = 1S = 1\frac{A}{V}$$

$$G = \frac{I}{U}$$

$$= \frac{1}{R}$$

$$= \kappa \frac{A}{l} = \frac{1}{\rho} \frac{A}{l}$$

Temperaturabhängigkeit

$$R_{2} = R_{1} \cdot \left(1 + \alpha \left(\vartheta_{2} - \vartheta_{1}\right) + \beta \left(\vartheta_{2} - \vartheta_{1}\right)^{2}\right)$$

Leistung

Leistung im Mittel

$$[P] = 1W = 1VA$$
$$P = u(t) \cdot i(t)$$

$$P = \frac{1}{T} \int_0^T u(t) \cdot i(t) \, \mathrm{d}t$$

13.2 Lineare Quellen

Spannungsquelle

$$U = U_q - R_i \cdot I$$
$$I_K = \frac{U_q}{R_i}$$

Stromquelle

$$I = I_q - \frac{U}{R_i}$$
$$U_l = I_q \cdot R_i$$

13.3 Kirchhoffsche Gesetze

Knotenpunktsatz

$$\sum_{i=1}^{n} I_i = 0$$

Maschensatz

$$\sum_{i=1}^{n} U_i = 0$$

Wechselstromtechnik

No rule is so general, which admits not some exception.

- Robert Burton

14.1 Definitionen

14.1.1 Periodische zeitabhängige Größen

Allgemein
$$x(t) \to \text{speziell } u(t); i(t); q(t); \dots$$

es gillt $x(t) = x(t + n \cdot T); (n \in \mathbb{N}^*)$

14.1.2 Wechselgrößen

Allgemein $x_{\sim}(t)$; periodisch sich ändernde Größe, deren Gleichanteil bzw. zeitlich linearer Mittelwert gleich Null ist.

Nachweis:

$$\int_{t_1}^{t_1+n \cdot T} x_{\sim}(t) dt = 0 \; ; \; (n \in \mathbb{N}^*) \; ; \; t_1 \text{ beliebiger Zeitwert}$$

14.1.3 Mischgrößen

Sind periodisch, Ihr Gleichanteil \overline{x} bzw. zeitlich linearer Mittelwert jedoch ist ungleich Null.

Mischgröße = Wechselgröße + Gleichanteil

$$x(t) = x_{\sim}(t) + \overline{x}$$

= gleichanteilbehaftete Wechselgröße

14.2 Anteile und Formfaktoren

Gleichanteil

$$\overline{x} = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} x(t) dt$$

Gleichrichtwert

$$\left|\overline{x}\right| = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} \left|x\right|(t) dt$$

Effektivwert

$$x_{eff} = X = \sqrt{\frac{1}{n \cdot T} \cdot \int_{t_{1}}^{t_{1} + n \cdot T} x^{2} \left(t \right) dt}$$

 $n \in \mathbb{N}^* \to t1$ beliebiger Zeitwert $\to [|\overline{x}|] = [x(t)]$

14.3 Leistung und Leistungsfaktoren

Wirkleistung

$$P = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} P(t) dt$$
$$= \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u(t) \cdot i(t) dt$$

Mittlere Leistung

Formfaktor

crest - Faktor

 $\sigma = \frac{\hat{x}}{x_{\text{off}}}$

$$\bar{p}(t) = P = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} P(t) dt$$

 $F = \frac{x_{eff}}{|\overline{x}|} \qquad x_{eff} = |\overline{x}| \cdot F$

Scheinleistung

$$S = u_{eff} \cdot i_{eff} = U \cdot I$$

Leistungsfaktor

$$\begin{split} \lambda &= \frac{P}{S} \\ &= \frac{\frac{1}{n \cdot T} \int_{t_{1}}^{t_{1} + n \cdot T} p\left(t\right) dt}{u_{eff} \cdot i_{eff}} \\ &= \frac{\int_{t_{1}}^{t_{1} + n \cdot T} u\left(t\right) \cdot i\left(t\right) dt}{\sqrt{\int_{t_{1}}^{t_{1} + n \cdot T} u^{2}\left(t\right) dt} \cdot \sqrt{\int_{t_{1}}^{t_{1} + n \cdot T} i^{2}\left(t\right) dt}} \end{split}$$

14.4 Sinusförmige Größen

Sinusschwingung

$$x(t) = \hat{x}\sin(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\sin(\omega t + \varphi_x)$$

- \hat{x} : Amplitude
- φ_x : Nullphasenwinkel
- $\varphi_x > 0$: Linksverschiebung der Kurve

Kosinusschwingung

$$x(t) = \hat{x}\cos(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\cos(\omega t + \varphi_x)$$

- \hat{x} : Amplitude
- φ_x : Nullphasenwinkel
- $\varphi_x > 0$: Rechtssverschiebung der Kurve

Nullphasenzeit

$$t_x = -\frac{\varphi_x}{\omega} = -\varphi_x \cdot \frac{T}{2\pi}$$

Addition zweier Sinusgrößen gleicher Frequenz

mit:
$$a = \hat{a}\sin(\omega t + \alpha) \wedge b = \hat{b}\sin(\omega t + \beta)$$

Resultierende Funktion:

$$x = a + b$$

$$= \hat{a}\sin(\omega t + \alpha) + \hat{b}\sin(\omega t + \beta)$$

$$= \hat{x}\sin(\omega t + \varphi)$$

- \hat{x} : resultierende Amplitude
- φ : Nullphasenwinkel

Wobei:
$$\hat{x} = +\sqrt{\hat{a}^2 + \hat{b}^2 + 2\hat{a}\hat{b}\cos(\alpha - \beta)}$$

$$\varphi = \arctan\frac{\hat{a}\sin\alpha + \hat{b}\sin\beta}{\hat{a}\cos\alpha + \hat{b}\cos\beta}$$

Vierquadrantenarkustangens

$\varphi = \operatorname{arc}$	$\tan \frac{ZP}{NP}$
2. Quadrant $ZP > 0, NP < 0$	1. Quadrant $ZP > 0, NP > 0$
3. Quadrant $ZP < 0, NP < 0$	4. Quadrant $ZP < 0, NP > 0$

Der rotierende Zeiger als rotierender Vektor

Allgemein gillt:
$$\sin{(\omega t + \varphi_x)} = \frac{GK}{HT} = \frac{b}{\hat{x}}$$

$$\cos{(\omega t + \varphi_x)} = \frac{AK}{HT} = \frac{a}{\hat{x}}$$

$$b = \hat{x}\sin{(\omega t + \varphi_x)}$$

$$a = \hat{x}\cos{(\omega t + \varphi_x)}$$
Als Einheitsvektor: $\vec{x} = a \cdot \vec{i} + b \cdot \vec{j}$

Zeigerspitzenendpunkt

Wechsel zwischen Sinus und Kosinus

$$\hat{x}(t)\cos(\omega t + \varphi_x) \equiv \hat{x}(t)\sin(\omega t + \varphi_x + \frac{\pi}{2})$$

$$\hat{x}(t)\sin(\omega t + \varphi_x) \equiv \hat{x}(t)\cos(\omega t + \varphi_x - \frac{\pi}{2})$$

Merke:
$$\frac{1}{j} = -j \qquad j = e^{j\frac{\pi}{2}}$$

Differentiation und Integration von Sinusgrößen

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\frac{d^n x(t)}{dt^n} \xrightarrow{HT_{1/2}}$	$\frac{d^n \underline{x}(t)}{dt^n} = (j\omega)^n \underline{x}$

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\int \cdots \int x(t) dt^n \xrightarrow{HT_{1/2}}$	$\int \cdots \int \underline{x}(t) dt = \frac{1}{(j\omega)^n} \underline{x}$

R, L und C im kompl. Zeigerbereich

Ohmscher Widerstand	$\hat{U} = R\hat{I} \hat{I} = \frac{\hat{U}}{R}$
Induktivität	$\hat{U} = \omega L \hat{I}$ $\hat{I} = \frac{\hat{U}}{\omega L}$
Kapazität	$\hat{U} = \frac{\hat{I}}{\omega C} \hat{I} = \omega C \hat{U}$

Widerstands und Leitwertoperator

\underline{Z} komplexer Widerstand / Impedanz	\underline{Y} komplexer Leitwert / Admitanz
$\underline{Z} = \frac{\underline{u}}{\underline{i}} = \frac{\hat{U}}{\hat{I}} \cdot e^{j(\varphi_u - \varphi_i)}$	$\underline{Y} = \frac{1}{\underline{Z}} = \frac{\hat{I}}{\hat{U}} \cdot e^{j(\varphi_i - \varphi_u)}$
$ \underline{Z} = Z = \frac{\hat{U}}{\hat{I}} = \frac{U}{I}$	$ \underline{Y} = Y = \frac{1}{\underline{Z}} = \overline{U}$
$mit \varphi_u - \varphi_i = \varphi_Z$	$mit \varphi_i - \varphi_u = -\varphi_Z = \gamma_Y$

Widerstand

$$\underline{Z} = R \wedge \underline{Y} = 1/R$$

 $Kapazit\ddot{a}t$

$$\underline{Z} = \frac{1}{j\omega C} = \frac{1}{\omega C} e^{-j\frac{\pi}{2}} \wedge \underline{Y} = j\omega C = \omega C e^{j\frac{\pi}{2}}$$

 $Induktivit \ddot{a}t$

$$\underline{Z} = j\omega L = \omega L e^{j\frac{\pi}{2}} \wedge \underline{Y} = \frac{1}{j\omega L} = \frac{1}{\omega L} e^{-j\frac{\pi}{2}}$$

Zeitbereich		komplexer Zeitbereich
$x = \hat{x}\sin\left(\omega t + \varphi_x\right)$	$\frac{Hintransformation1}{-}$	$\underline{x} = \hat{x}\cos(\omega t + \varphi_x) + j\hat{x}\sin(\omega t + \varphi_x)$
$x = \hat{x}\cos\left(\omega t + \varphi_x\right)$	$\frac{Hintransformation2}{}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
		Berechnungen im komplexen Bereich
$y = Im \{y\} = \hat{y} \sin (\omega t + \varphi_y)$	$\langle Ruecktransformation1 \rangle$	$\underline{y} = \hat{y}e^{j(\omega t + \varphi_y)}$
$y = Re\{y\} = \hat{y}\cos(\omega t + \varphi_y)$	$\langle Ruecktransformation2 \rangle$	$\underline{y} = \hat{y}\cos(\omega t + \varphi_y) + j\hat{y}\sin(\omega t + \varphi_y)$

HT1 erfordert die Ergänzung eines gleichwertigen reellen Kosinusterms mit dem ursprünglichen Sinusterm als Imaginärteil

HT2 erfordert die Ergänzung eines gleichwertigen imaginären Sinusterms mit dem ursprünglichen Kosinusterm als Realteil

RT1 entnahme des Imaginärteils

RT2 entnahme des Realteils

Resultierende Operatoren

Reihenschaltung

Parallelschaltung

$$\underline{Z}_{ges} = \sum_{i=1}^{n} \underline{Z}_{i}$$

$$\underline{Y}_{ges} = \sum_{i=1}^{n} \underline{Y}_{i}$$

Spannungsteiler

Stromteiler

$$\frac{\underline{u}_1}{\underline{u}_2} = \frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_2}$$

$$\frac{\underline{i}_1}{\underline{i}_2} = \frac{\underline{Y}_1}{\underline{Y}_2}$$

Anteile am komplexen Widerstand (Impedanz)

$$\underline{Z} = \operatorname{Re}\{\underline{Z}\} + j \cdot \operatorname{Im}\{\underline{Z}\} = R + jX = |\underline{Z}| \cdot e^{j\varphi}$$

mit $\varphi = \varphi_u - \varphi_i$ Phasenwinkel; R = Wirkwiderstand; X = Blindwiderstand; $|\underline{Z}| =$ Scheinwiderstand

$$R = R \qquad L = \frac{X}{\omega} \text{ mit } X > 0 \qquad C = -\frac{1}{\omega X} \text{ mit } X < 0$$

Anteile am komplexen Leiwert (Admitanz)

$$\underline{Y} = \text{Re}\{\underline{Y}\} + j \cdot \text{Im}\{\underline{Y}\} = G + jB = |\underline{Y}| \cdot e^{j\gamma}$$

mit $\gamma = \varphi_i - \varphi_u$ Phasenwinkel; G = Wirkleitwert; B = Blindleitwert; $|\underline{Y}| =$ Scheinleitwert

$$R = \frac{1}{G} \qquad C = \frac{B}{\omega} \text{ mit } B > 0 \qquad L = -\frac{1}{\omega B} \text{ mit } B < 0$$

komplexer Widerstand / komplexer Leitwert

$$\underline{Y} = G + jB = \frac{1}{\underline{Z}} = \frac{1}{Z} \cdot e^{-j\varphi}$$

$$= \frac{1}{\sqrt{R^2 + X^2}} \cdot e^{-j \arctan \frac{X}{R}}$$

$$= \frac{1}{R + jX} = \frac{R - jX}{R^2 + X^2} = \underbrace{\frac{R}{R^2 + X^2}}_{G} \underbrace{-j\frac{X}{R^2 + X^2}}_{B}$$

$$\underline{Z} = R + jX = \frac{1}{\underline{Y}} = \frac{1}{Y} \cdot e^{-j\gamma}$$

$$= \frac{1}{\sqrt{G^2 + B^2}} \cdot e^{-j \arctan \frac{B}{G}}$$

$$= \frac{1}{G + jB} = \frac{G - jB}{G^2 + B^2} = \underbrace{\frac{G}{G^2 + B^2}}_{R} - j\frac{B}{G^2 + B^2}$$

Momentanleistung / Augenblicksleistung

$$P(t) = \underbrace{UI\cos\varphi}_{\text{zeitlich konstant}} - \underbrace{UI\cos\left(2\omega t + \varphi_u + \varphi_i\right)}_{\text{mit doppelter Frequenz schwingend}}$$
$$= UI\cos\varphi - UI\cos\left(2\omega t + 2\varphi_u - \varphi\right)$$

$$mit \varphi = \varphi_u - \varphi_i \to \varphi_i = \varphi_u - \varphi$$

Blindleistung Ermittlung des Blindleistungsanteils aus der Momentanleistung

$$P\left(t\right) = \underbrace{UI\cos\varphi}_{\text{Wirkleistung}} \underbrace{-UI\sin\varphi \cdot \sin\left(2\omega t + 2\varphi_u\right)}_{\text{Blindleistung}}$$
$$P_{ges}\left(t\right) = P_{wirk}\left(t\right) + P_{blind}\left(t\right)$$

$$u\left(t\right)\cdot i\left(t\right) \begin{cases} > 0$$
 Energie zum Verbraucher
 < 0 Energie zum Erzeuger

Mittlere Leistung / Wirkleistung

$$P = \overline{P}(t) = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u(t) \cdot i(t) dt = UI \cos \varphi$$

Definition von Blind- und Scheinleistung

$$Q = UI \sin \varphi \quad [Q] = \text{var} \quad \text{mit} \begin{cases} Q > 0 \text{ induktive Blindleistung } Q_{ind} \\ Q < 0 \text{ kapazitive Blindleistung } Q_{kap} \end{cases}$$

$$S = u_{eff} \cdot i_{eff} = U \cdot I \quad [S] = VA$$

Beziehungen zwischen Wirk- Blind- und Scheinleistung

$$P = UI \cdot \cos \varphi \qquad Q = UI \cdot \sin \varphi \qquad S = UI$$

$$\tan \varphi = \frac{Q}{P} = \frac{\sin \varphi}{\cos \varphi}$$
 Leistungsfaktor
$$\lambda = \frac{P}{S} = \cos \varphi$$

$$P = \sqrt{S^2 - Q^2}$$

$$= S \cdot \cos \varphi$$

$$= \frac{Q}{\tan \varphi}$$

$$Q = \begin{cases} > 0 \rightarrow Q_{ind} = \sqrt{S^2 - P^2} \\ < 0 \rightarrow Q_{kap} = -\sqrt{S^2 - P^2} \end{cases}$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = \frac{Q}{\sin \varphi}$$

$$Q = \frac{Q}{\cos \varphi}$$

$$Q = \frac{Q}{\cos \varphi}$$

$$Q = \frac{Q}{\cos \varphi}$$

$$Q = \frac{$$

Die komplexe Leistung

$$\underline{S} = \underline{U} \cdot \underline{I}^* \qquad * - \text{konjugiert Komplex}$$

$$= U \cdot I \cdot e^{j(\varphi_u - \varphi_i)}$$

$$= S \cdot e^{j\varphi}$$

$$= \underline{S \cdot \cos \varphi} + j \cdot \underline{S \cdot \sin \varphi}$$

$$= P + jQ \qquad [S] = VA \quad [P] = W \quad [Q] = var$$

Zusammenhang mit dem komplexen Leitwert / Widerstand

$$S = I^2 \cdot Z$$
 $P = I^2 \cdot R = U^2 \cdot G$ $Q = I^2 \cdot X = -U^2 \cdot B$

Kapitel 15

Signal- und Systemtheorie

15.1 Einfache Impulse

Rechteckimpuls/ -funktion $rect_T(t)$

$$x\left(t\right) = X_{0} \cdot rect_{T}\left(t\right)$$

- an den Sprungstellen nimmt der Impuls die Hälfte des max. Wertes an

Dreiecksimpuls/ -funktion $\Lambda_T(t)$

$$x\left(t\right) = X_{0} \cdot \Lambda_{T}\left(t\right)$$

$$\Lambda_{T}\left(t\right) = \begin{cases} 1 - |t/T| & \text{für } |t| < T \\ 0 & \text{für } |t| > T \end{cases}$$

• T: Dauer einer ansteigenden / abfallenden Flanke

15.2 Elementare Operationen auf zeitliche Verläufe

Beeinflußung der Ordinate

Signaloffset X_{OFFS}

$$x_{neu}(t) = x_{alt}(t) + X_{OFFS}$$

Skalierungsfaktor $V(V \neq 0)$

$$x_{neu}(t) = V \cdot x_{alt}(t)$$

Beeinflußung der Abszisse

zeitliche Verschiebung t_0

$$x_{neu}(t) = x_{alt}(t - t_0)$$
 mit $t_0 = const.$

- Zusammenfassung der Offsetbehafteten Zeit $t-t_0$ zu einer neuen Zeitbasis $\tau=t-t_0$
- $x_{neu} (\tau + t_0) = x_{alt} (\tau)$ t > 0 Verschiebung nach rechts t < 0 Verschiebung nach links

Negation des Arguments t

$$x_{neu}\left(t\right) = x_{alt}\left(-t\right) \text{ mit } \tau = -t$$

 $x_{neu}\left(-\tau\right) = x_{alt}\left(\tau\right)$

 gleiche Funktionswerte mit negierter Zeitbasis, somit Spiegelung an der Ordinate

Nagation des Arguments t sowie eine Verschiebung um t_0

$$\begin{aligned} x_{neu}\left(t\right) &= x_{alt}\left(t_0 - t\right) \\ \text{mit } t_0 &= const. \\ x_{neu}\left(t\right) &= x_{alt}\left(\tau + 1/2t_0\right) \\ x_{neu}\left(1/2t_0 - \tau\right) &= x_{alt}\left(\tau + 1/2t_0\right) \end{aligned}$$

- neue Zeitbasis $\tau + 1/2t_0$
- \bullet gleiche Funktionswerte, gespiegelt an der Senkrechten von $1/2t_0$

Skalierungsfaktor $a \neq 0$

$$x_{neu}(t) = x_{alt}(a \cdot t)$$
mit $a = const$.
$$x_{neu}(t) = x_{alt}(\tau)$$

$$x_{neu}(\tau/a) = x_{alt}(\tau)$$

- neue Zeitbasis $\tau = a \cdot t$
- $\bullet\,$ gleiche Funktionswerte, wenn die Zeitbasis durch a geteilt wird
- a > 1 Funktion wird gestaucht 0 < a < 1 Funktion wird gestreckt

Einheitssprungfunktion

angenäherte Einheitssprungfunktion $\tilde{\sigma}\left(t,\epsilon\right)$

- endlicher Geradenanstieg
- Endwert von 1

Einheitsimpuls / Deltaimpuls $\tilde{\delta}(t,\epsilon)$

- Fläche des Impulses ist 1
- Impulshöhe und Breite variabel

Mathematischer Zusammenhang:

$$\tilde{\delta}\left(t,\epsilon\right) = \frac{d\tilde{\sigma}\left(t,\epsilon\right)}{dt} \quad \leftrightarrow \quad \tilde{\sigma}\left(t,\epsilon\right) = \int_{-\infty}^{t} \tilde{\delta}\left(t,\epsilon\right) dt$$

Beim Grenzübergang $\epsilon \to 0$ ergibt die Einheitssprungfunktion $\sigma(t)$ bzw. deren Ableitung den Deltaimpuls $\delta(t)$.

$$\delta\left(t\right) = \frac{d\sigma\left(t\right)}{dt} = \begin{cases} +\infty \text{ für } t = 0\\ 0 \text{ für } t \neq 0 \end{cases} \qquad \sigma\left(t\right) = \int_{-\infty}^{t} \delta\left(t\right) dt = \begin{cases} 1 \text{ für } t > 0\\ \frac{1}{2} \text{ für } t = 0\\ 0 \text{ für } t < 0 \end{cases}$$

Zusammenhang zwischen Deltaimpuls, Einheitssprungfunktion und Einheitsanstiegsfunktion

$$\delta(t) = \frac{d\sigma(t)}{dt} = \frac{d^{2}\alpha(t)}{dt^{2}} \qquad \qquad \sigma(t) = \int_{0}^{t} \delta(t) dt = \frac{d\alpha(t)}{dt}$$

$$\alpha\left(t\right) = \begin{cases} t \text{ für } t > 0 \\ 0 \text{ für } t \leq 0 \end{cases} = \int_{-\infty}^{t} \sigma\left(t\right) dt = \int_{-\infty}^{t} \int_{-\infty}^{t} \delta\left(t\right) dt$$

zeitliche Verschiebung und Wichtung

Deltaimpuls

$$x(t) = A_x \cdot \delta(t - t_0)$$
$$[x(t)] = [A_x] \cdot [\delta(t)]$$

Einheitssprung

$$x(t) = X_0 \cdot \sigma(t - t_0)$$
$$[x(t)] = [X_0]$$

${\bf Einheits anstiegs funktion}$

$$x(t) = m \cdot \alpha(t - t_0)$$
$$[x(t)] = [m] \cdot [\alpha(t)]$$

15.3 Signale

Definition: Ein Signal ist eine zeitlich und / oder örtlich veränderliche Größe (physikalisch). Die Veränderung dieser physikalischen Größe, sagt nichts über Ihren Informationsgehalt aus.

Energiewandlung

$$E_R = \int_{-\infty}^{\infty} u(t) \cdot i(t) dt$$

$$[E_R] = V \cdot A \cdot s = Ws$$

$$\text{mit } i(t) = \frac{u(t)}{R} \text{ folgt}$$

$$E_R = \frac{1}{R} \int_{-\infty}^{\infty} u^2(t) dt$$

Momentanleistung $P_r(t_1)$

$$P_{R}\left(t_{1}\right)=u\left(t_{1}\right)\cdot i\left(t_{1}\right) \qquad \qquad \left[P_{R}\left(t_{1}\right)\right]=W$$

$$P_{R}=U_{0}\cdot I_{0}=\frac{U_{0}^{2}}{R} \qquad \qquad \text{bei Gleichleistung}$$

Mittlere Leistung P_R

$$P_R = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1+T} u(t) \cdot i(t) dt$$

$$= \frac{1}{R} \cdot \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1+T} u^2(t) dt$$

$$[P_R] = W$$

Spezialfall: Periodische Signalverläufe

$$=\frac{1}{n \cdot t_{P}} \int_{t_{1}}^{t_{1}+n \cdot t_{P}} u_{P}\left(t\right) \cdot i_{P}\left(t\right) dt = \frac{1}{R \cdot n \cdot t_{P}} \int_{t_{1}}^{t_{1}+n \cdot t_{P}} u_{P}^{2}\left(t\right) dt$$

T: Betrachtungszeit, Meßdauer t_1 : Startzeitpunkt t_P : Periodendauer R = const.

Signalenergie / Impulsenergie / Impulsmoment 2. Ordnung E_U Nur für Energiesignale sinnvoll.

$$E_U = m_{i2} = \int_0^\infty u^2(t) dt \qquad [E_U] = V^2 s$$

Zeitdiskrete Signalverläufe:

$$E_X = m_{i2} = \sum_{k=-\infty}^{\infty} X_q^2(k)$$
 $[E_X] = 1$

Entnormierung über einem realen Widerstand:

$$E_R = E_U \cdot \frac{1}{R} \qquad [E_R] = Ws$$

Mittlere Signalleistung P_u / Gesamtsignalleistung P_i / quadratischer Mittelwert $\overline{u^2}$ / gewöhnliches Moment 2. Ordnung m_2

Nur für Leistungssignale sinnvoll.

$$P_u = \overline{u^2} = m_2 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} u^2(t) dt$$
 [P_u] = V^2

Spezialfall: Periodische Signalverläufe

$$P_u = \overline{u^2} = m_2 = \frac{1}{t_p} \int_{t_1}^{t_1 + t_p} u_p^2(t) dt$$

Spezialfall: zeitdiskrete Signalverläufe

beliebiges nichtperiodisches Signal:

periodisches Signal:

$$P_X = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{k=k_1}^{k_1+N-1} X_q^2(k)$$

$$P_X = \frac{1}{N_P} \sum_{k=k_1}^{k_1+N-1} X_q^2(k)_P$$

Spezialfall: konstannte Werte

$$P_X = X_q^2 \left(k_1 \right)_k$$

Entnormierung über einem realen Widerstand:

$$P_R = P_U \cdot \frac{1}{R} \qquad [P_R] = W$$

$Signalenergie \leftrightarrow Signalleistung$

	Energiesignal	Leistungssignal
Signalenergie	endlicher Wert	$+\infty$
Signalleistung	0	endlicher Wert

15.4 Signalbeschreibung Leistungssignale

Effektivwert

Energiesignale haben einen Effektivwert von Null.

$$u_{eff} = \sqrt{P_u} = \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} u^2(t) dt}$$

Spezialfall: zeitdiskrete Signalverläufe

$$X_{eff} = \sqrt{P_X} = \sqrt{\lim_{N \to \infty} \frac{1}{N} \cdot \sum_{k=k_1}^{k_1 + N - 1} X_q^2(k)}$$

gerader-/ungerader Anteil

gerader Anteil:

ungerader Anteil:

$$u_{g}\left(t\right) = \frac{u\left(t\right) + u\left(-t\right)}{2}$$

$$u_{u}\left(t\right) = \frac{u\left(t\right) - u\left(-t\right)}{2}$$

Gleichanteil / linearer Mittelwert / gewöhnliches Moment 1. Ordnung m_1

Enrgiesignale haben einen Gleichanteil von Null.

beliebige Signalverläufe

$$\overline{x} = m_1 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} x(t) dt \qquad [\overline{x}] = [x]$$

periodische Signalverläufe

$$\overline{x} = m_1 = \frac{1}{t_p} \int_{t_1}^{t_1 + t_p} x(t) dt \qquad [\overline{x}] = [x]$$

zeitdiskrete Signalverläufe

$$\overline{x_k} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=k_1}^{k_1 + N - 1} x_q(k)$$

periodische zeitdiskrete Signalverläufe

$$\overline{x_k} = \frac{1}{N_p} \sum_{k=k_1}^{k_1+N-1} x_q \left(k\right)_p$$

Signalgleichleistung / quadrierter linearer Mittelwert \overline{u}^2 / quadriertes gewöhnliches Moment 1. Ordnung m_1^2

Energiesignale haben eine Signalgleichleistung von Null.

beliebige Signalverläufe

$$P_{u_{=}} = \left[\overline{u}\right]^{2} = m_{1}^{2} = \left[\lim_{T \to \infty} \frac{1}{T} \int_{t_{+}}^{t_{1}+T} u(t) dt\right]^{2}$$
 $[P_{u_{=}}] = V^{2}$

zeitdiskrete Signalverläufe

$$P_{X_{=}} = \left[\overline{x}\right]^{2} = m_{1}^{2} = \left[\lim_{N \to \infty} \frac{1}{N} \sum_{k=k_{1}}^{k_{1}+N-1} X_{q}(k)\right]^{2} \qquad [P_{X_{=}}] = 1$$

Entnormierung

$$P_{R_{=}} = \frac{P_{u_{=}}}{R}$$

$$[P_{R_{=}}] = W$$

Signalwechselleistung $P_{u_{\sim}}/$ Varianz $\sigma^2/$ zentrales Moment 2. Ordnung μ_2

Energiesignale haben eine Signalwechselleistung von Null.

$$P_{u_{\sim}} = \sigma^2 = \mu_2 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} [u(t) - \overline{u}]^2 dt$$

periodischer Spannungsverlauf

$$P_{p_{\sim}} = \frac{1}{t_p} \int_{t_1}^{t_1+t_p} [u(t) - \overline{u}]^2 dt$$

zeitdiskrete Signale

$$P_{X_{\sim}} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=k_{1}}^{k_{1}+N-1} \left[X_{q}(k) - \overline{X} \right]^{2}$$

periodische zeitdiskrete Signale

$$P_{X_{\sim}} = \frac{1}{N_p} \sum_{k=k_1}^{k_1+N-1} \left[X_q \left(k \right)_p - \overline{X} \right]^2$$

Entnormierung

$$P_{R_{\sim}} = \frac{P_{u_{\sim}}}{R}$$
 $[P_{R_{\sim}}] = W$

Leistungsbilanz

$$P_u = P_{u_{=}} + P_{u_{\sim}} = m_2 = m_1^2 + \mu_2 = [\overline{u}]^2 + \sigma^2$$

15.5 Signalbeschreibung Energiesignale

Impulsfläche A_u / Impulsmoment 1. Ordnung m_{i1}

Leistungssignale besitzen Flächen von $\pm \infty$ bzw. Null.

$$A_{u} = \int_{-\infty}^{\infty} u(t) dt \qquad [A_{u}] = Vs$$

zeitdiskrete Signale

$$A_X = \sum_{k=-\infty}^{\infty} X_q(k) \qquad [A_X] = 1$$

15.6 Systeme

Definition: Ein System ist ein physikalisches oder auch technisches Gebilde, welches ein Signal (Eingangssignal, Systemerregung / -anregung) in ein im Allgemeinen andersartiges Signal umformt. Dieses wird Ausgangssignal bzw. Systemantwort / -reaktion genannt.

Übersicht:

Ubersicht:					
Linearität	Ist nur vorhanden, wenn Homogenität und Additivität vorliegen.				
	Die Multiplikation eines konstannten Faktors mit dem Eingang,				
	führt zu Multiplikation des gleichen Faktors mit dem Ausgang.				
Additivität	x(t) ist additiv zerlegbar, diese Anteile können getrennt verar-				
	beitet sowie die Systemreaktionen addiert werden.				
Zeitinvarianz	nz Zeitinvarianz ist vorhanden, wenn sich die Systemeigenscha				
	zeitlich nicht ändern.				
	Eine Zeitverzögerung des Eingangssignals überträgt sich somit				
	um eine gleiche Verzögerung ins Ausgangssignal.				
Kausalität	Kausalität ist Vorhanden, wenn die Systemreaktion nicht schon				
	vor Begin der Systemerregung einsetzt.				
	Somit ist jedes realisierbare System zwingend kausal.				
Stabilität	Stabilität				
	Ist vorhanden, wenn bei einem betragsmäßig beschränktem, be-				
	liebigem breitbandigen Eingangssignal auch ein betragsmäßig				
	beschränktes Ausgangssignal vorliegt.				
	Grenzstabilität				
	Bedingungen der Stabilität werden nicht erfüllt, jedoch ist die				
	Signalleistung ab einem best Zeitpunkt konstannt.				
	Instabilität				
	Ausgangssignal wächst selbst beim verschwinden von $x\left(t\right)$ unbe-				
	grenzt an.				

Impulsantwort / Gewichtsfunktion g(t)

mit
$$x(t) = \delta(t)$$
 folgt $y(t) = g(t)$
$$[g(t)] = [\delta(t)] = s^{-1}$$

$$y(t) = T\{x(t)\} = \int_{-\infty}^{\infty} x(\tau) \cdot g(t - \tau) d\tau = x(t) \star g(t)$$

Zeitdiskret:

$$y(k) = \sum_{L=-\infty}^{\infty} x(k) \cdot g(k-L) = x(k) \star g(k)$$

Sprungantwort / Übergangsfunktion h(t)

Zusammenhang:

$$\sigma(t) = \int_{-\infty}^{t} \delta(t) dt \Leftrightarrow \delta(t) = \frac{d\sigma(t)}{dt}$$
$$FT\{\sigma(t)\} = \frac{1}{2}\delta(f) - j\frac{1}{2\pi f}$$

Zusammenhang zwischen Übergangs- und Gewichtsfunktion

$$g\left(t\right) = \frac{\mathrm{d}h\left(t\right)}{\mathrm{d}t} \qquad \qquad \Rightarrow \qquad \qquad h\left(t\right) = \int\limits_{-\infty}^{t} g\left(t\right) \mathrm{d}t$$

$$= \int\limits_{KausalesSystem}^{t} g\left(t\right) \mathrm{d}t$$

Faltungsoperation

- setzt LTI-Systeme voraus
- Gewichtsfunktion wird nur bei LTI-Systemen angegeben

$$y(t) = T\{x(t)\} = \int_{-\infty}^{\infty} x(\tau) \cdot g(t - \tau) d\tau = x(t) * g(t)$$

zeitdiskrete Systeme:

$$y(k) = T\{x(k)\} = \sum_{L=-\infty}^{\infty} x(k) \cdot g(k-L) = x(k) * g(k)$$

Polynommultiplikation:

$$p_{p} = \sum_{p} Ordinatenwert \cdot r^{Abszissenwert}$$
$$y_{p}(k) = x_{p} \cdot g_{p}$$

Kapitel 16

Signalverarbeitung

16.1 Laplace / Fourier-Transformation Laplaceintegral

$$X(p)$$
 \bullet \sim $x(t)$
$$X(p) = \mathcal{L}\{x(t)\} = \int_{0}^{\infty} x(t) e^{-p \cdot t} dt$$

Fourierintegral

$$X(\omega) = \mathscr{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$X(\omega) \quad \bullet \longrightarrow x(t)$$

$$X(f) = \mathscr{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

$$X(f) = \int_{-\infty}^{\infty} (x_{re} + jx_{im}) \cdot (\cos(2\pi f t) - j \cdot \sin(2\pi f t)) dt$$

$$X(f) \quad \bullet \longrightarrow x(t)$$

$$x(t) = \frac{1}{2 \cdot \pi} \cdot \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} d\omega$$

Diskrete Fourier Transformation

1. Variante

$$X(l) = \sum_{k=0}^{N-1} x(k) e^{-j2\pi \cdot l \cdot \frac{k}{N}}$$
$$x(k) = \frac{1}{N} \sum_{l=0}^{N-1} x(k) e^{j2\pi \cdot l \cdot \frac{k}{N}}$$

2. Variante

$$X(l) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) e^{-j2\pi \cdot l \cdot \frac{k}{N}}$$

$$x(k) = \sum_{k=0}^{N-1} x(k) e^{j2\pi \cdot l \cdot \frac{k}{N}}$$

3. Variante

$$X(l) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) e^{-j2\pi \cdot l \cdot \frac{k}{N}}$$
$$x(k) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) e^{j2\pi \cdot l \cdot \frac{k}{N}}$$

DFT als Matrizen-Multiplikation

$$[X(l)] = \frac{1}{\alpha} \cdot [F_{l,k}^{N}] \cdot [x(k)] \qquad t \Rightarrow f$$

$$[x(k)] = \frac{1}{\alpha} \cdot [f_{k,l}^{N}] \cdot [X(l)] \qquad f \Rightarrow t$$

$$[f_{k,l}^{N}] = \frac{1}{\alpha} \cdot [F_{l,k}^{N}]^{*}$$

 α ist je nach Art der Transformationsvariante 1, N oder \sqrt{N} und eigentlich schon in der Transformationsvorschrifft enthalten.

$$F_{l,k}^{N} = e^{-j2\pi \cdot l \cdot \frac{k}{N}} = \cos\left(2\pi l \frac{k}{N}\right) - j\sin\left(2\pi l \frac{k}{N}\right)$$

Additionssatz

$$x(t) = x_1(t) + x_2(t) + \dots \quad \bigcirc \quad X(f) \qquad = X_1(f) + X_2(f) + \dots$$

Linearität

$$x(t) = C \cdot x_1(t)$$
 $\circ \longrightarrow X(f) = C \cdot X_1(f)$

Verschiebungssatz

$$x(t) = x_1(t - t_0)$$
 \longrightarrow $X(f) = X_1(f) \cdot e^{-j2\pi f \cdot t_0}$

Ähnlichkeitssatz

$$x(t) = x_1(a \cdot t) \quad \circ \longrightarrow \quad X(f) = \frac{1}{|a|} X_1\left(\frac{f}{a}\right)$$
$$x(t) = \frac{1}{|b|} x_1\left(\frac{t}{b}\right) \quad \circ \longrightarrow \quad X(f) = X_1(b \cdot f)$$

Differentiationssatz

$$x\left(t\right) = \frac{\mathrm{d}x_{1}\left(t\right)}{\mathrm{d}t} \quad \circ -\!\!\!\!- \quad X\left(f\right) = j2\pi f \cdot X\left(f\right)$$

$$x\left(t\right) = \frac{\mathrm{d}^{K}x_{1}\left(t\right)}{\mathrm{d}t^{K}} \quad \circ -\!\!\!\!- \quad X\left(f\right) = j^{K}\left(2\pi f\right)^{K} \cdot X\left(f\right)$$

$$x\left(t\right) = \frac{\mathrm{d}^{K}x_{1}\left(t\right)}{\mathrm{d}t^{K}} \quad \circ -\!\!\!\!- \quad X\left(\omega\right) = j^{K}\left(\omega\right)^{K} \cdot X\left(\omega\right)$$

Integrationssatz

$$x(t) = \int_{-\infty}^{t} x_{1}(\tau) d\tau \quad \circ \longrightarrow \quad X(f) = \frac{1}{j2\pi f} \cdot X_{1}(f) + \frac{1}{2}X_{1}(f = 0) \delta(f)$$
$$x(t) = \int_{-\infty}^{t} x_{1}(\tau) d\tau \quad \circ \longrightarrow \quad X(\omega) = \frac{1}{j\omega} \cdot X_{1}(\omega) + \pi \cdot X_{1}(\omega = 0) \delta(\omega)$$

Integrationssatz im Frequenzbereich

$$x(t) = \frac{1}{-j2\pi t} \cdot x_1(t) + \frac{1}{2}x_1(t=0) \,\delta(t) \quad \circ \longrightarrow \quad X(f) = \int_{-\infty}^{f} X_1(\varphi) \,\mathrm{d}\varphi$$
$$x(t) = \frac{1}{-jt} \cdot x_1(t) + \pi \cdot x_1(t=0) \,\delta(t) \quad \circ \longrightarrow \quad X(\omega) = \int_{-\infty}^{\omega} X_1(\varphi) \,\mathrm{d}\varphi$$

Vertauschungssatz

$$x(t) = x_1(t) \quad \circ \longrightarrow \quad X(f) = X_1(f)$$

$$x(t) = X_1(t) \quad \circ \longrightarrow \quad X(f) = x_1(-f)$$

$$x(t) = x_1(t) \quad \circ \longrightarrow \quad X(\omega) = X_1(\omega)$$

$$x(t) = X_1(t) \quad \circ \longrightarrow \quad X(\omega) = 2\pi \cdot x_1(-\omega)$$

Faltung

$$x(t) = x_1(t) \quad \circlearrowleft \quad X(f) = \int_{-\infty}^{\infty} X_1(\varphi) \cdot X_2(f - \varphi) \, \mathrm{d}\varphi$$

$$x(t) = x_1(t) \quad \circlearrowleft \quad X(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\varphi) \cdot X_2(\omega - \varphi) \, \mathrm{d}\varphi$$

$$x(t) = \int_{-\infty}^{\infty} x_1(\tau) \cdot x_2(t - \tau) \, \mathrm{d}\tau \quad \circlearrowleft \quad X(f) = x_1(f) \cdot x_2(f)$$

Delta-Impulsfläche

$$\coprod_{p} (t) = \sum_{k=-\infty}^{\infty} \delta (t - kt_{p}) s^{-1} \quad \bigcirc \quad \coprod_{A} (f) = f_{a} \sum_{m=-\infty}^{\infty} \delta (f - mf_{a}) Hz^{-1}$$

$$f_{a} = \frac{1}{t_{p}}$$

$$\coprod_{a} (t) = t_{a} \sum_{k=-\infty}^{\infty} \delta (t - kt_{a}) s^{-1} \quad \bigcirc \quad \coprod_{P} (f) = \sum_{m=-\infty}^{\infty} \delta (f - mf_{p}) Hz^{-1}$$

$$f_{p} = \frac{1}{t_{p}}$$

Periodifizierung

$$x(t) = x_T(t) * \coprod_p (t) \circ \longrightarrow X(f) = X_T(f) \cdot \coprod_A (f)$$

Abgetastete Funktionen

$$x_{\delta}\left(t\right) = x\left(t\right) \cdot \coprod_{a}\left(t\right) \quad \circ \longrightarrow \quad X_{\delta}\left(f\right) = X\left(f\right) \ast \coprod_{p}\left(f\right)$$

$$x_{\delta}\left(t\right) = \sum_{k=-\infty}^{\infty} x\left(kt_{a}\right) \cdot t_{a} \cdot \delta\left(t - kt_{a}\right) \quad \circ \longrightarrow \quad X_{\delta} = \sum_{m=-\infty}^{\infty} X\left(f - mf_{p}\right)$$

Abgetastete und Periodifizierte Funktionen

$$x_{\delta p}(t) = (x_T(t) * \coprod_p (t)) \cdot \coprod_a (t)$$

$$x_{\delta p}(t) = \sum_{m = -\infty}^{\infty} \sum_{k = -\infty}^{\infty} x_T(kt_a - mt_p) \cdot t_a \cdot \delta(t - kt_a)$$

$$X_{\delta p}(t) = (X_T(f) \cdot \coprod_a (f)) * \coprod_p (f)$$

$$X_{\delta p}(t) = \sum_{m = -\infty}^{\infty} \sum_{k = -\infty}^{\infty} X_T(mf_a - kf_p) \cdot f_a \cdot \delta(f - mf_a)$$

$$f_a = \frac{1}{t_p}$$

$$f_p = \frac{1}{t_a}$$

Korrespodenz

$$x(t) = \hat{X} \operatorname{rect}_{T}(t) \quad \circ \longrightarrow \quad X(j\omega) = \hat{X}T \cdot \operatorname{si}\left(\omega \cdot \frac{T}{2}\right)$$

$$x(t) = \hat{X}\Lambda_{T}(t) \quad \circ \longrightarrow \quad X(j\omega) = \hat{X}T \cdot \operatorname{si}^{2}\left(\omega \cdot \frac{T}{2}\right)$$

$$x(t) = \hat{X} \sin(2\pi f_{0}t) \quad \circ \longrightarrow \quad X(f) = \frac{j\hat{X}}{2}\left(\delta\left(f + f_{0}\right) - \delta\left(f - f_{0}\right)\right)$$

$$x(t) = \hat{X} \cos(2\pi f_{0}t) \quad \circ \longrightarrow \quad X(f) = \frac{\hat{X}}{2}\left(\delta\left(f + f_{0}\right) + \delta\left(f - f_{0}\right)\right)$$

16.2 Spektrum

Betragsspektrum

$$|X(f)| = \sqrt{(\text{Re}\{X(f)\})^2 + (\text{Im}\{X(f)\})^2}$$

Betragsquadratspektrum

$$|X(f)|^2 = (\text{Re}\{X(f)\})^2 + (\text{Im}\{X(f)\})^2$$

Theorem von Parseval

$$E = m_{i2} = \int_{-\infty}^{\infty} x^2(t) dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

16.3 Korrelation

Kreuzkorrelationsfunktion

$$E_{x_1 x_2}(\tau) = \int_{-\infty}^{\infty} x_2(t+\tau) \cdot x_1(t) dt = \int_{-\infty}^{\infty} x_1(t-\tau) \cdot x_2(t) dt$$
$$E_{x_1 x_2}(l) = \sum_{k=-\infty}^{\infty} x_2(k+l) \cdot x_1(k) dt$$

Normierte Kreuzkorrelationsfunktion

$$\mathring{x} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

$$\mathring{E}_{x_1 x_2} = \sqrt{\int_{-\infty}^{\infty} x_1^2(t) \, dt} \cdot \int_{-\infty}^{\infty} x_2^2(t) \, dt$$

$$r_{x_1 x_2}(\tau) = \frac{E_{x_1 x_2}(\tau)}{\mathring{E}_{x_1 x_2}} = \frac{\int_{-\infty}^{\infty} x_2(t+\tau) \cdot x_1(t) \, dt}{\sqrt{\int_{-\infty}^{\infty} x_1^2(t) \, dt} \cdot \int_{-\infty}^{\infty} x_2^2(t) \, dt}$$

$$|r_{x_1 x_2}(\tau)| \le 0$$

Kapitel 17

Binäre Rechenoperationen

17.1 Zahlensysteme

17.1.1 Dualsystem

Basis: $2 \ z \in (1; 0)$

Format: $2^{n-1} \dots 2^0, 2^{-1} \dots 2^{-m}$

Zahlenwert : $\sum_{l=-m}^{n-1} z_l \cdot 2^l$

17.1.2 Ternärsystem

Basis: $2 \ z \in (1; 0; -1)$

17.1.3 Oktalsystem

Basis: 8 $z \in (0; 1; 2; 3; 4; 5; 6; 7)$

17.1.4 Hexadezimalsystem

Basis: 16 $z \in (0; 1; 2; 3 \dots d; e; f)$

17.1.5 Dezimalsystem

Basis: 10 $z \in (0; 1; 2; 3 \dots 8; 9)$

17.1.6 Stellenberechnung

k: Zahlenwert

l: Anzahl Nachkommastellen im Dezimalsystem

n: Anzahl Vorkommanstellen im Dualsystem

m: Anzahl Nachkommastellen im Dualsystem

$$n \ge \operatorname{ceil}\left(\frac{\lg(k+1)}{\lg(2)}\right)$$
 $m \ge \operatorname{ceil}\left(\frac{l}{\lg(2)}\right)$

17.1.7 Wertebereich und Quantisierungsfehler(Dualsystem)

n: Anzahl Vorkommanstellen im Dualsystem

m: Anzahl Nachkommastellen im Dualsystem

Wertebereich =
$$0 \dots 2^n - 2^{-m}$$

Quantisierungsfehler =
$$\pm \frac{1}{2}$$
LSB = $\pm 2^{-m-1}$

Quantisierungsstufen = 2^{-m}

17.1.8 Umwandlung Negativer Dualzahlen

$$n = \operatorname{ceil}\left(1 + \frac{\lg\left(|\operatorname{Wert}|\right)}{\lg\left(2\right)}\right)$$
$$\Delta = 2^{n-1} - |\operatorname{Wert}|$$

Umwandlung von Δ bis MSB Stelle -1, danach setzten der richtigen MSB-Stelle.

17.2 Addition

17.2.1 Zwei Operanden

Carry-Look-Ahead

 \boldsymbol{s}_i : Summe der Stelle i

 p_{i+1} : Propagate Übertrag an der Stelle i

 g_{i+1} : Generate Übertrag kompensation

$$s_i = a_i \nsim b_i \nsim c_i$$

$$p_{i+1} = a_i \nsim b_i$$

$$g_{i+1} = a_i \cdot b_i$$

$$c_{i+1} = p_{i+1} \cdot c_i + g_{i+1}$$

Halbaddierer

 s_i : Summe der Stelle i c_{i+1} : Übertrag der Stelle i+1

$$s_i = a_i \nsim b_i$$
$$c_{i+1} = a_i \cdot b_i$$

Volladdierer

 s_i : Summe der Stelle i c_{i+1} : Übertrag der Stelle i+1 c_i : Übertrag der Stelle i

$$s_i = a_i \nsim b_i \nsim c_i$$

$$c_{i+1} = a_i \cdot b_i + (a_i \nsim b_i) \cdot c_i$$

17.2.2 Mehrere Operanden

 $\label{eq:Ripple-Carry: Jede Stufe addiert jeweils einen Operanden hinzu.}$

Baumstruktur: Die einzelnen Operanden werden Baumförmig addiert.

Carry-Save: Nur der letzte Addierer ist Sequentiel aufgebaut. Daher wird der Übertrag des Vorgängers beim nächsten aufaddiert.

17.2.3 Überlauf

Vermeidung

r: Zusätzliche Summenstellen

p: Operandenanzahl

$$r = \operatorname{ceil}\left(\frac{\lg\left(p\right)}{\lg\left(2\right)}\right)$$

Positive Operanden

s: Summe

n: Vorkommanstellen im Dualsystem

$$s = (a+b) \bmod 2^n$$

Negative Operanden

s: Entstehender Summenwert

n: Vorkommanstellen im Dualsystem

p: Operandenanzahl

$$s = \left(a + b + 2^n \operatorname{ceil}\left(\frac{p-1}{2}\right) + 2^{n-1}\right) \operatorname{mod} 2^n - 2^{n-1}$$

17.2.4 Überlaufserkennung

Vergleich der MSB Stellen

$$\begin{array}{ll} a_{MSB} \neq b_{MSB} & \Rightarrow \text{Kein Überlauf m\"oglich} \\ a_{MSB} = b_{MSB} = s_{MSB} & \Rightarrow \text{Kein \"Uberlauf m\"oglich} \\ a_{MSB} = b_{MSB} = 0 & \& s_{MSB} = 1 & \Rightarrow \text{Positiver \"Uberlauf} \\ a_{MSB} = b_{MSB} = 1 & \& s_{MSB} = 0 & \Rightarrow \text{Negativer \"Uberlauf} \\ MIN = a_{MSB} \\ OVF = \overline{a}_{MSB} \cdot s_{MSB} \left(\overline{b}_{MSB} \not\sim s_{MSB} \right) + a_{MSB} \cdot \overline{s}_{MSB} \left(b_{MSB} \not\sim s_{MSB} \right) \end{array}$$

Vergleich des Carry

$$\begin{array}{lll} c_{I;MSB}=c_{O;MSB} &\Rightarrow \text{Kein Überlauf m\"oglich} \\ c_{I;MSB}=1 &\& c_{O;MSB}=0 &\Rightarrow \text{Positiver \"Uberlauf} \\ c_{I;MSB}=0 &\& c_{O;MSB}=1 &\Rightarrow \text{Negativer \"Uberlauf} \\ MIN=c_{O;MSB} &\\ OVF=c_{I;MSB} \nsim c_{O;MSB} \end{array}$$

Erweiterung der MSB Stelle

$$\begin{array}{lll} s_{MSB} = s_{MSB+1} & \Rightarrow \text{ Kein Überlauf möglich} \\ s_{MSB} = 1 & \& s_{MSB+1} = 0 & \Rightarrow \text{ Positiver Überlauf} \\ s_{MSB} = 0 & \& s_{MSB+1} = 1 & \Rightarrow \text{ Negativer Überlauf} \\ MIN = s_{MSB} & \\ OVF = s_{MSB} \not\sim s_{MSB+1} \end{array}$$

17.2.5 Sättigung

 s_{MSB} : Behandlung der höchsten Stelle s_{LSB} : Behandlung der restlichen Stellen

$$\begin{aligned} s'_{MSB} &= s_{MSB} \cdot \overline{OVF} + OVF \cdot MIN \\ s'_{LSB} &= s_{LSB} \cdot \overline{OVF} + OVF \cdot \overline{MIN} \end{aligned}$$

${\bf 17.2.6}\quad {\bf Umwandlung\ Tern\"{a}rcode}$

h_i	b_{i+1}	b_i	c_i	h_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	-1	1
1	0	0	1	0
1	0	1	0	1
1	1	0	-1	1
1	1	1	0	1

Teil IV Analoge Schaltungstechnik

Kapitel 18

Grundschaltungen

Konstantstromquelle

mit Bipolartransistoren

$$\begin{split} I_E \approx & I_c = \frac{U_B - U_{BE}}{R_E} = const. \\ \sim & \underbrace{I_c = \frac{R_2}{R_E} \cdot I_1}_{Stromspiegel} \end{split}$$

Emitterschaltung

Verstärkung

$$A \text{ bzw. } V = \frac{\mathrm{d}U_a}{\mathrm{d}U_e}$$

$$= -S\left(R_C \| r_{CE}\right)$$

Eingangswiderstand

$$r_e = r_{BE} = \frac{\mathrm{d}U_e}{\mathrm{d}I_e} = \frac{1}{Y_{11}}$$

Ausgangswiderstand

$$r_a = -\frac{\mathrm{d}U_a}{\mathrm{d}I_a} = R_C || r_{CE}$$

Parameter

$$dI_{B} = \underbrace{\frac{\partial I_{B}}{\partial U_{BE}}}_{Y_{11} = \frac{1}{r_{BE}}} \cdot dU_{BE}$$

$$+ \underbrace{\frac{\partial I_{B}}{\partial U_{CE}}}_{Y_{12} = Sr} \cdot dU_{CE}$$

$$dI_{C} = \underbrace{\frac{\partial I_{C}}{\partial U_{BE}}}_{Y_{21} = S} \cdot dU_{BE}$$

$$+ \underbrace{\frac{\partial I_{C}}{\partial U_{CE}}}_{Y_{22} = \frac{1}{r_{CE}}} \cdot dU_{CE}$$

Differenzverstärker

reine Differenzaussteuerung

$$\Delta U_{B_1} = -\Delta U_{B_2} \quad \rightsquigarrow \quad \mathrm{d} U_{B_1} = -\mathrm{d} U_{B_2} = \tfrac{\mathrm{d} U_D}{2}$$

mit $U_E = const.$ folgt:

$$\begin{split} \frac{\mathrm{d}U_{C1}}{\mathrm{d}U_D} &= \frac{\mathrm{d}U_{C1}}{2\mathrm{d}U_{B_1}} = -\frac{1}{2}S\left(R_C \parallel r_{CE}\right) = -A_D\\ \frac{\mathrm{d}U_{C2}}{\mathrm{d}U_D} &= \frac{\mathrm{d}U_{C2}}{2\mathrm{d}U_{B_2}} = \frac{1}{2}S\left(R_C \parallel r_{CE}\right) = A_D \end{split}$$

Gleichtaktaussteuerung

$$dU_E = dU_{GL} \quad \leadsto \quad dI_K = \frac{dU_{GL}}{r_K} \neq const.$$

mit $dU_C = -dI_C \cdot R_C$ folgt:

$$dU_{C1} = dU_{C2} = -\frac{R_C}{2r_K} \cdot dU_{Gl} \quad \rightsquigarrow \quad A_{Gl} = \frac{dU_a}{dU_{Gl}} = -\frac{R_C}{2r_K}$$

Mischaussteuerung (lineare Überlagerung)

$$\begin{split} \mathrm{d}U_{C1} &= -\frac{1}{2}S\left(R_C \parallel r_{CE}\right) \cdot \mathrm{d}U_D - \frac{1}{2} \cdot \frac{R_C}{r_K} \cdot \mathrm{d}U_{Gl} \\ \mathrm{d}U_{C2} &= +\frac{1}{2}S\left(R_C \parallel r_{CE}\right) \cdot \mathrm{d}U_D - \frac{1}{2} \cdot \frac{R_C}{r_K} \cdot \mathrm{d}U_{Gl} \end{split}$$

Eingangswiderstand

Teil V Messtechnik

Kapitel 19

Grundlagen

19.1 Begriffe

- Messwert x_i : gemessener Wert der Messgröße
- Wahrer Wert x_w : existierender Wert der Messgröße
- \bullet Messabweichung e: Differenz zwischen gemessenem und wahrem Wert
- Systematische Messabweichung e_{sys} : Bekannte systematische Messabweichung (korrigierbar)
- Messunsicherheit u: Intervall um den Messwert in dem der wahre Wert mit einer bestimmten Wahrscheinlichkeit zu finden ist

19.2 Messabweichung e

$$e = x - x_w$$

19.2.1 relative Messabweichung

$$e_{rel} = \frac{e}{x_w} = \frac{x - x_w}{x_w} = \frac{x}{x_w} - 1$$

108

Korrekturfaktor K

Korrigierter Messwert x_{korr}

Bei bekannter systematischer Messabweichung.

$$K = -e_{sys} x_{korr} = x + K$$

19.2.2 Messabweichung e_y

$$e_y = y - y_w = f(x_1 + e_{x_1}, x_2 + e_{x_2}, \dots, x_n + e_{x_n})$$

$$e_y = \sum_{i=1}^n \frac{\partial f}{\partial x_i} e_{x_i}$$

$$\Delta y = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

19.2.3 Fortpflanzung systematischer Messabweichungen Addition / Subtraktion

$$y = x_1 \pm x_2$$
 \longrightarrow $e_y = e_{x_1} \pm e_{x_2}$

Multiplikation

$$y = x_1 \cdot x_2 \qquad \longrightarrow \qquad e_y = x_2 \cdot e_{x_1} + x_1 \cdot e_{x_2}$$

$$e_{rel} = \frac{e_y}{y} = \frac{x_2 \cdot e_{x_1} + x_1 \cdot e_{x_2}}{x_1 \cdot x_2} = e_{rel, x_1} + e_{rel, x_2}$$

Division

$$y = \frac{x_1}{x_2} \qquad \qquad \longrightarrow \qquad \qquad e_y = \frac{1}{x_2} e_{x_1} - \frac{x_1}{x_2^2} e_{x_2}$$

$$e_{rel} = \frac{e_y}{y} = \frac{\frac{1}{x_2}e_{x_1} - \frac{x_1}{x_2^2}e_{x_2}}{x_1 \cdot x_2^{-1}} = e_{rel,x_1} - e_{rel,x_2}$$

19.3 Statistische Größen

Verteilungsfunktion

Verteilungsdichtefunktion

$$F\left(x\right) = prob\left(X \le x\right)$$

$$f\left(x\right) = \frac{d}{dx}F\left(x\right)$$

Es gillt:

$$\begin{split} F\left(x\right) &= \int_{-\infty}^{x} f\left(t\right) dt \\ F\left(x \to \infty\right) &= \int_{-\infty}^{\infty} f\left(t\right) dt = 1 \\ prob\left(a < x \le b\right) &= F\left(b\right) - F\left(a\right) = \int^{b} f\left(x\right) dx \end{split}$$

19.4 Erwartungswert, Varianz und Standardabweichung

Erwartungswert μ

wahrer Wert X

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$= \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$
 nur für stetige Zufallsgrößen

 $x_w = \mu$ nach Korrektur der systematischen Abweichung

Varianz σ^2

Standardabweichung

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
$$= \int_{-\infty}^{\infty} (x_i - \mu)^2 \cdot f(x) dx$$

$$\sigma = \sqrt{\sigma^2}$$

19.5 Verteilungsfunktionen

Normalverteilung

- Normal oder Gaußverteilung
- gute Näherung bei unbekannter statistischer Verteilung
- Werteverteilung:
 - -68.3% aller Werte liegen in $\mu \pm \sigma$
 - -95.5% aller Werte liegen in $\mu \pm 2\sigma$
 - -99.7% aller Werte liegen in $\mu \pm 3\sigma$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
$$\int_{-\infty}^{\infty} f(x) = 1$$

Gleichverteilung

- auch Rechteckverteilung
- alle vorkommenden Werte besitzen gleiche Wahrscheinlichkeit im Intervall

$$f(x) = \begin{cases} \frac{1}{2a} & \mu - a < x < \mu + a \\ 0 & \text{sonst} \end{cases}$$
$$\int_{-\infty}^{\infty} f(x) = 1$$
$$\sigma^2 = \frac{1}{3}a^2$$

19.6 Stichprobe

Mittelwert \overline{x}

empirische Varianz s^2

Der Mittelwert ist ein Schätzwert für den Erwartungswert μ und damit für den wahren Wert.

Die empirische Varianz ist ein Schätzwert für die eigentliche Varianz der Messreihe.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

19.7 Vertrauensbereich für den Erwartungswert

Endlich große Stichprobe liefert zufällige Differenz zwischem Schätzwert \overline{x} und wahrem Wert $\mu=x_w$.

$$\overline{x_g} = \frac{1}{m} \sum_{i=1}^m \overline{x_i} s_g^2 = \frac{1}{m} s_i^2 s_g = \frac{1}{\sqrt{m}} s_i$$

Vertrauensbereich:

$$\overline{x} - \frac{t}{\sqrt{n}}s < \mu < \overline{x} + \frac{t}{\sqrt{n}}$$
 mit $t = t(n, \alpha)$

Studentverteilung

Gibt den t Faktor für Normalverteilungen an

 α Überschreitungswhrscheinlichkeit

$1 - \alpha$ Vertrauensniveau

$1 - \alpha$	68,3%	95%	99,73%
n=2	1,84	12,70	235,80
n = 3	1,32	4,30	19,21
n = 4	1,20	3,18	$9,\!22$
n = 5	1,15	2,78	6,62
n = 6	1,11	$2,\!57$	5,51
n = 10	1,06	2,26	4,09
n = 20	1,03	2,09	3,45
n = 50	1,01	2,01	3,16
$n \to \infty$	1,00	2,00	3,00

19.8 Fortpflanzung zufälliger Abweichungen

Bedingung: Messergebnis setzt sich aus mehreren Messgrößen x_i zusammen

Erwartungswerte

Varianzen

$$\mu_n = \frac{1}{N} \sum_{i=1}^{N} x_{n_i}$$

$$\sigma_n^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{n_i} - \mu_n)^2$$

Worst-Case-Kombination

Maximale Abweichung des Ergebnisses vom Mittelwert.

$$y = f(x_1, x_2, \dots, x_n)$$
$$|\Delta y| = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \Delta x_i \right|$$

statistische Kombination der Varianzen

Gaußsches Fehlerfortpflanzungsgesetz...

$$y = f(x_1, x_2, \dots, x_n)$$

$$\sigma_y^2 = \sum_{k=1}^n \left(\left(\frac{\partial f}{\partial x_k} \Big|_{(\mu_1, \mu_2, \dots, \mu_n)} \right)^2 \sigma_k^2 \right)$$

$$\sigma_y^2 = \left(\frac{\partial f}{\partial x_1} \Big|_{\mu_1} \sigma_1 \right)^2 + \left(\frac{\partial f}{\partial x_2} \Big|_{\mu_2} \sigma_2 \right)^2 + \left(\frac{\partial f}{\partial x_3} \Big|_{\mu_3} \sigma_3 \right)^2 + \dots$$

...kann auf empirische Varianz übertragen werden.

$$y = f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})$$

$$s_y^2 = \sum_{k=1}^n \left(\left(\frac{\partial f}{\partial \overline{x_k}} \Big|_{(\mu_1, \mu_2, \dots, \mu_n)} \right)^2 s_k^2 \right)$$

19.9 Fortpflanzung von Messunsicherheiten

Worst Case Abschätzung und Gaußsches Fortpflanzungsgesetz lassen sich auf die Messunsicherheiten übertragen.

Worst Case Abschätzung der Un
- Statistische Fortpflanzung der Unsichersicherheit heit

$$u_y = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| u_{x_i} \qquad \qquad u_y^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \right)^2 u_{x_i}^2$$

Teil VI Anhang

Sachregister

A	\mathbf{C}
Additionssatz92	Carnot'prozeß
Additionstheoreme	D
gerade	Delta Impulsfläche
ungerade	Deltaimpuls
Anteile	Differentialgleichungen 25
crest - Faktor	1.Ordnung 25
Effektivwert 67	2.Ordnung
Formfaktor	Linear
Gleichanteil	Partikuläre Lösungen
Gleichrichtwert	e-, sin- und cos Funktion26
Gierenitenewere	Polynom
В	Polynom und e-Funktion26
	sin- und cos Funktion 26
$Betrag squadrat spektrum \dots \dots 95$	Differentiationssatz
Betragsspektrum95	Differenzverstärker104
Binäre Rechenoperationen	Differenzaussteuerung104
Addition	Eingangswiderstand105
Überlauf98	Gleichtaktaussteuerung105
CLA97	Mischaussteuerung 105
Halbaddierer97	Diskrete Fourier Transformation 91
mehrere Operanden 98	Matrizen-Multiplikation 91
Sättigungsverhalten99	_
Volladdierer97	${f E}$
Quantisierungsfehler97	Db 16
Stellenberechnung97	Ebenen
Umwandlung Negativer Dualzahlen	Hessesche Normalform19
97	Schnittwinkel zweier Ebenen 19
Wertebereich	
Zahlensysteme	Einheitsanstiegsfunktion
Binomischer Lehrsatz 8	Einheitssprungfunktion77 f

Elastischer Stoß	zufällige Abweichungen
Impulserhaltung43	Erwartungswerte112
Zentral und Gerade 43	Varianzen112
Elastizitätslehre	Fourier Reihen34
Drill	Fourierintegral90
Flächenmoment 48	Funktionenreihen
Schub	
Spannung 47	G
Verformungsarbeit48	
Elektrostatik	Geneigte Ebene
Arbeit im elektrischen Feld55	Geraden
Coulomb Gesetz54	Abstand eines Puktes 18
Fluß	Abstand paralleler Geraden 18
Flußdichte	Abstand windschiefer Geraden18
Kapazität	Gesamtsignalleistung81
Ladung	gewöhnliches Moment 2. Ordnung81
Ohm'sches Gesetz	Gewichtsfunktion
Punktladungen54	Gleichungen
Spannung	Gravitation
Elementarladung64	Arbeit 53
Emitterschaltung	Planetenbahnen
Energiesignale	н
Impulsfläche85	п
Impulsmoment 1. Ordnung 85	Hook'sches Gesetz
Erwartungswert	TIOOK SCHOS GCSC12
<u> </u>	I
\mathbf{F}	
	Ideales Gas
Faltung	Adiabat
Polynommultiplikation 89	Energie
zeitdiskret89	Isobar58
Fluiddynamik	Isochor58
Laminare Reibung52	Isotherm
Ohne Reibung51	Zustandsgleichung58
Formfaktoren	Impulsantwort
crest - Faktor	Impulse
Effektivwert	Dreieck
Formfaktoren67	Rechteck
Gleichanteil 67	Impulsenergie
Gleichrichtwert 67	Impulsmoment 2. Ordnung81
Fortpflanzung	Integrationssatz92
Fehlerfortpflanzungsgesetz $Gau\beta 112$	Interpolation36
Messunsicherheiten113	Differentenschema37

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mittlere Leistung
Kinematik Analogietabelle Translation - Rotation 39 Bahngrößen 40 Rotation 40 Translation 40 Winkelgrößen 40 Knotenpunktsatz 65 Komplexe Zahlen 11 f. Konstantstromquelle Bipolar 102	Wirkleistung
Konvergenz32Bekannte konvergente Reihen32Leibnizkriterium32Majorantenkriterium32Minorantenkriterium32Quotientenkriterium32	Leitwert
Wurzelkriterium 32 Korrekturfaktor 108 Korrelation 95 Kosinus 9 Differentiation 70 Schwingung 68 zu Sinus 69 Kotangens 9 Kreisprozeß 59	Maschensatz 65 Messabweichung 107 f. Fortpflanzung 108 relativ 107 Messtechnik Begriffe 107 Mischgrößen 66 N
Kreuzkorrelationsfunktion.95-normierte.95Kreuzprodukt.17	Nullphasenzeit
L Laplaceintegral 90 Leistung 73 Blindleistung 73 Definition 73 komplexe L 74 Leistungssfaktor 67	Operatoren Leitwertsop

Brechung60	Viskosereibung50
Hohlspiegel60	Mathematisches Pendel49
Lichtwellenleiter62	Physikalisches Pendel49
Linse61	Torsionsschwingung 49
numerische Apertur 62	Signale
Totalreflexion 60	Abtastung94
	$Abtastung + Periodifizierung \dots 94$
P	Definition
	Energiewandlung80
Polynomdivision	Mittlere Leistung81
Potential	Momentanleistung80
Potenzen7f.	Periodifizierung 94
Potenzreihen	Signalenergie
Bekannte Potenzreihen	Signalleistung82
spezielle Reihen	Mittlere
D	Sinus
R	Addition
Reihen	Differentiation70
Geometrische Folge31	Schwingung
Harmonische Reihe31	zu Kosinus
Rotation	Skalierungsfaktor76 f
Drehimpuls 42	Spannung
Drehmoment	Spannungsquelle 65
Massenträgheitsmoment41	Spatprodukt
Zentripedalkraft42	Spektrum95
rotierender Zeiger	Sprungantwort88
Rotierendes Bezugssystem	Standardabweichung109
Corioliskraft45	Stichprobe
Zentrifugalkraft 45	empirische Varianz 111
0	Mittelwert
\mathbf{S}	Strom
	-dichte
Schwerpunkt	Stromquelle65
Allgemein	Studentverteilung111
Kartesischekoordinaten45	Systeme
Punktmasse	Übersicht
Zylinderkoordinaten45	Eigenschaften
Schwingungen	
Flüssigkeitspendel49	T
gedämpft	Tangang
COULOMB Reibung50	Tangens
Gleitreibung 50	Theorem von Parseval
Schwingungsgleichung50	Thermodynamik

Mischtemperatur 56 Wärme 56 -übertragung 57 -konvektion 56 -leitung 56 -strahlung 57 -widerstand 57 Wärmedehnung 56 Trägheitsmoment 46 Transformation 71 Zeitbereich 71 Transformationen 71 Korrespondenz 94 Translation 41 Impuls 41 U	Wurst Käse 112 Wurzelsatz von Vieta 14 Z Zeigerbereich C 70 L 70 R 70
Übergangsfunktion	
Varianz 109 Vektorrechnung 16 Verschiebungssatz 92 Vertauschungssatz 92 Verteilungsdichtefunktion 109 Verteilungsfunktion 109 Gleichverteilung 110 Normalverteilung 110 Vertrauensbereich 111 W wahrer Wert 109 Wechselgrößen 66	
Widerstand	