

Machine Learning

2024 Fall, Final Review

Xiangchen Tian

Jan 2, 2025

Table of Contents

- ► SVM
- ▶ Decision Tree:
- ▶ Boosting
- ▶ PCA
- Nearest Neighbor and LSF
- Personalization
- Summary

Support Vector Machine(a.k.a. SVM)1 SVM

- 支持向量机是一种监督学习算法
- 通过构造极大边距超平面以更好泛化
- 两种常见形式: Hard-SVM 和 Soft-SVM

Hard-SVM

1 SVM

- 设训练数据集 $S = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \cdots, (\mathbf{x}_m, \mathbf{y}_m)\}$, 其中 $\mathbf{x}_i \in \mathbb{R}^d$, $\mathbf{y}_i \in \{-1, 1\}$ 。
- 线性可分数据集:存在一个超平面 (\mathbf{w}, b) 使 $\forall i, y_i = \text{sign}(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)$ 。
- Hard-SVM 只能处理线性可分数据集。

算法:

Hard-SVM

input:
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$$
 solve:

$$(\mathbf{w}_0, b_0) = \underset{(\mathbf{w}, b)}{\operatorname{argmin}} \|\mathbf{w}\|^2 \text{ s.t. } \forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 \quad (15.2)$$

output:
$$\hat{\mathbf{w}} = \frac{\mathbf{w}_0}{\|\mathbf{w}_0\|}, \ \hat{b} = \frac{b_0}{\|\mathbf{w}_0\|}$$

分析: 固定标度最大化边距, 相当于固定边距最小化标度; 最后归一化还原成固定标度最大化边距的结果。

- Soft-SVM 可以处理非线性可分数据集。
- 思想: 放宽限制为 $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 \xi_i$

算法:

Soft-SVM

input:
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$$
 parameter: $\lambda > 0$ solve:

$$\min_{\mathbf{w},b,\xi} \left(\lambda \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)
\text{s.t. } \forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0$$
(15.4)

output: \mathbf{w}, b

hinge loss

1 SVM

- \not E \not L hinge loss ℓ ^{hinge} $(x) = \max\{0, 1 x\}$
- $\not \in \not \perp L_S^{hinge}((\mathbf{w}, b)) = \frac{1}{m} \sum_{i=1}^m \ell^{hinge}(y_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle + b))$
- 注意到 (15.4) 式等价于

$$\min_{\mathbf{w},b} \left(\lambda \, \|\mathbf{w}\|^2 + \mathsf{L}_{\mathsf{S}}^{\mathsf{hinge}}((\mathbf{w},b)) \right)$$

这就是标准的 regularized loss minimization problem, 其中 $\lambda \|\mathbf{w}\|^2$ 是 ℓ_2 正则化。

• 因此 Soft-SVM 等价于一个 hinge loss、 ℓ_2 正则化的优化问题。

duality 1 SVM

• 以 Hard-SVM 为例 (忽略 b), 定义

$$g(\mathbf{w}) = \max_{\alpha \in \mathbb{R}^m, \alpha \geqslant 0} \sum_{i=1}^m \alpha_i \cdot (1 - \mathbf{y}_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle)) = \begin{cases} 0 & \text{if } \forall i, \mathbf{y}_i \, \langle \mathbf{w}, \mathbf{x}_i \rangle \geqslant 1 \\ +\infty & \text{otherwise} \end{cases}$$

则 (15.2) 式等价于

$$\min_{\mathbf{w}} \left(\|\mathbf{w}\|^{2} + g(\mathbf{w}) \right) \\
= \min_{\mathbf{w}} \max_{\alpha \in \mathbb{R}^{m}, \alpha \geqslant 0} \left(\|\mathbf{w}\|^{2} + \sum_{i=1}^{m} \alpha_{i} \cdot (1 - y_{i} \cdot (\langle \mathbf{w}, \mathbf{x}_{i} \rangle)) \right) = p^{*} \\
\geqslant \max_{\alpha \in \mathbb{R}^{m}, \alpha \geqslant 0} \min_{\mathbf{w}} \left(\|\mathbf{w}\|^{2} + \sum_{i=1}^{m} \alpha_{i} \cdot (1 - y_{i} \cdot (\langle \mathbf{w}, \mathbf{x}_{i} \rangle)) \right) = d^{*} \tag{1}$$

• 在 Hard-SVM 中,由于特殊条件的满足, $p^* = d^*$,所以可以通过求解对偶问题来求解原问题。

- 对内部 w 取最小值,得到 w = $\sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$
- 带回对偶问题(1)式,得到

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geqslant 0} \left(\sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j \mathbf{y}_i \mathbf{y}_j \left\langle \mathbf{x}_i, \mathbf{x}_j \right\rangle \right)$$

• 关键: 只与 (x_i, x_i) 有关, 而不与 x_i 有关, 这是核技巧的基础。

kernel method

 思想:由于很多问题在原空间中线形不可分,希望先将原数据点映射到一个 (更高维)空间中,然后在更高维空间中执行 SVM 算法。

算法:

- 设原数据点定义域为 X, 映射函数为 φ: X → F, 其中 F 是特征空间 (feature space)。
- 给定原带标签数据集 $S = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \cdots, (\mathbf{x}_m, \mathbf{y}_m)\}$, 构造像数据集 $\hat{S} = \{(\phi(\mathbf{x}_1), \mathbf{y}_1), (\phi(\mathbf{x}_2), \mathbf{y}_2), \cdots, (\phi(\mathbf{x}_m), \mathbf{y}_m)\}$ 。
- 在Ŝ上执行 SVM 算法,得到超平面 (**w**, b),对应一个线性分类器 h: ψ (**x**) \mapsto **y**。
- 预测原空间中 test set example \mathbf{x} 为 $h(\psi(\mathbf{x}))$

- kernel 是 feature space 中的 inner product。
- 给定 embedding $\phi: X \mapsto F$, 定义 kernel function

$$K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

• K表征了 x, x' 的相似度

kernel trick

1 SVM

• 很多 SVM 问题都可以总结为以下 general 问题的实例:

$$\min_{\mathbf{w}} \left(f(\langle \mathbf{w}, \mathbf{x}_1 \rangle, \langle \mathbf{w}, \mathbf{x}_2 \rangle, \cdots, \langle \mathbf{w}, \mathbf{x}_m \rangle) + R(\|\mathbf{w}\|_2) \right)$$

- Example 1: Soft-SVM, $R(a) = \lambda a^2$, $f(a_1, a_2, \dots, a_m) = \frac{1}{m} \sum_{i=1}^m \max\{0, 1 y_i a_i\}$
- Example 2: Hard-SVM, $R(a) = a^2$, $f(a_1, a_2, \dots, a_m) = \begin{cases} 0 & \text{if } \exists b \text{ s.t. } y_i(a_i + b) \geqslant 1 \\ +\infty & \text{otherwise} \end{cases}$
- 而 $\mathbf{w} \in \text{span}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)$ (reference, Theorem 16.1),因而事实上不会涉及 \mathbf{x}_i 的具体值,只会涉及到 $\langle \mathbf{x}_i, \mathbf{x}_i \rangle$ 。
- 因此,只需要知道 kernel function $K(\mathbf{x}_i, \mathbf{x}_j)$,就能隐式在高维特征空间中执行 SVM 算法。

characterizing kernel function

• 一个良定义的 kernel function 必须对应一个合理的 feature space embedding ϕ 。 自然的问题: 什么样的 kernel function 是合理的?

Mercer's Theorem

一个对称函数 $K: X \times X \to \mathbb{R}$ (对称: $K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x}), \forall \mathbf{x}, \mathbf{x}' \in X$) 可实现为某特征空间中的内积,当且仅当 K 对应的 Gram matrix 是正定的。

- Gram matrix $G: G_{ii} = K(\mathbf{x}_i, \mathbf{x}_i)$.
- 证明思路: (⇒)straight forward, (⇐) 采用构造法,构造出一个特征空间和一个内积,使得这个内积对应的 kernel function 为 K。

Table of Contents

2 Decision Trees

- ► SVN
- **▶** Decision Trees
- **▶** Boosting
- ▶ PCA
- Nearest Neighbor and LSF
- ▶ Personalization
- Summary

Decision Tree

一个决策树是一个 Boolean Function $f: \mathbb{F}_2^n \to \mathbb{R}$ 的表示方法。它是一个含根二叉树,其中内部节点由某个 $i \in [n]$ 来标记,每个内部节点的出边被标记为 0 或 1 ,每个叶子节点都有一个实数值,且要求没有 $i \in [n]$ 在一条从根到叶节点的路径上出现多于一次。

- 称决策树的叶节点总个数为决策树的大小 (size) s, 称决策树根到叶节点路径的最大长度为决策树的深度 (depth) d。
- 根据定义,每个决策树都对应一个有 n 个变量的布尔函数。

Decision Trees Example

2 Decision Trees

Example:

Note: 这棵树事实上对应函数 Sort₃, 其中 Sort₃(x_1, x_2, x_3) = 1 当且仅当 $x_1 \ge x_2 \ge x_3$ 或 $x_1 \le x_2 \le x_3$ 。

Theoretical Guarantee

2 Decision Trees

Theorem: Convert decision tree to low degree sparse function

对任意有 s 个叶节点的决策树 T,存在一个 degree 为 $\log(s/\epsilon)$, L_0 -norm(sparsity) 为 s^2/ϵ 的布尔函数 h 能够 4ϵ -approximate T。

证明思路:

- 将决策树 T 截断到深度为 $\log(s/\epsilon)$, 最大误差为 ϵ 。
- 截断后的树 T' 能用一个 $L_1(f) \leq s$, $\deg(f) = \log(s/\epsilon)$ 的布尔函数 f 严格表示。
- 上述满足 $L_1(f) \leq s$, $\deg(f) = \log(s/\epsilon)$ 的布尔函数 f 能用另一个满足 $L_0(h) \leq s^2/\epsilon$, $\deg(h) = \log(s/\epsilon)$ 的布尔函数 $h \neq \epsilon$ -approximate 表示。

综上,
$$\|T - f\|^2 \le \epsilon$$
, $\|f - h\|^2 \le \epsilon$
⇒ $\|T - h\|^2 \le 2 \|T - f\|^2 + 2 \|f - h\|^2 \le 4\epsilon$

Practical Algorithms 1

2 Decision Trees

由于使用上述定理提供的方法求 low degree approximate function h 的复杂度较高, 实际中采用以下几种算法:

• LMN: 设 T 对应布尔函数 f,均匀采样 m 个 f 定义域内的点 $\{x_i, i \in [m]\}$,计算 $f(x_i)$,对每个 $|S| \leq \log(s/\epsilon)$ 的 S 估计傅立叶系数 $\hat{f}(S) \approx \frac{1}{m} \sum_{i=1}^m f(x_i) \chi_S(x_i)$ 。最后 返回

$$h = \sum_{S: |S| \leqslant \log(s/\epsilon)} \hat{f}(S) \chi_S$$

 Harmonica: 这个问题本质上是求一个在傅立叶基下稀疏的布尔函数,可以用 compress sensing 范式求解。

Practical Algorithms 2

2 Decision Trees

现实问题中的决策树:给定若干样例,希望从样例中学习决策树。 Example:

Past trend	Open interest	Trading volume	Return
Positive	Low	High	Up
Negative	High	Low	Down
Positive	Low	High	Up
Positive	High	High	Up
Negative	Low	High	Down
Positive	Low	Low	Down
Negative	High	High	Down
Negative	Low	High	Down
Positive	Low	Low	Down
Positive	High	High	Up

Practical Algorithms 2

2 Decision Trees

与上面的 approach 不同,另一种方法是递归选取最重要的变量作为内部节点划分样例。

算法:

```
function Learn-Decision-Tree(examples, attributes, parent examples) returns 一棵树
```

if examples不为空 then return Plurality-Value(parent examples)
else if 所有examples有相同的分类 then return 分类
else if attributes为空 then return Plurality-Value(examples)
else

A←argmax_{acattributes} IMPORTANCE(a, examples)
tree ← 一个以測试A为根的新的决策树
for each A中的值v do
 exs←{e: e∈examples and e.A = v}
subtree←LEARN-DECISION-TREE (exs, attributes¬A, examples)
将一个带有标签(A = v)和子树 subtree的分支加入tree

return tree

解释:每次根据某种准则选择最重要的变量 i (若某变量的取值几乎决定了最终的类别是什么,说明这个变量较重要)

- Gini Index 是一种判断某个变量是否重要的一种准则。
- 定义: 对变量 A, $Gini(A) = \sum_a p(A=a)Gini(a)$, 其中 $Gini(a) = 1 \sum_i p_i^2$ (详见课件例子)
- Gini(a) 越小表示区分度越好(如果一个变量 A 取正时所有结果都是正,一个变量取负时所有结果都是负,则 Gini(A)=0),故每次划分变量时选择 Gini(A) 最小的变量 A。
- 其他准则: Information Gain

Table of Contents

3 Boosting

- ► SVN
- ▶ Decision Trees
- **▶** Boosting
- ▶ PCA
- Nearest Neighbor and LSH
- Personalization
- Summary

- 思想:希望能有一种方法能够聚合多个弱学习器(每个弱学习器可以只比随机 猜测表现好一点),使得整体学习器的性能更好。
- 一次性学习强学习器可能计算复杂度上承担不起,但每个弱学习器的计算复杂度较低,聚合多个弱学习器的计算复杂度可以接受。

AdaBoost (a.k.a Adaptive Boosting)

3 Boosting

- AdaBoost 是最典型的 boosting 算法。
- AdaBoost 思想:在简单假设类上构建线性预测期作为更强大的假设类。

算法:

AdaBoost

```
\begin{aligned} & \text{training set } S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \\ & \text{weak learner WL} \\ & \text{number of rounds } T \\ & \text{initialize } \mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m}). \\ & \text{for } t = 1, \dots, T: \\ & \text{invoke weak learner } h_t = \text{WL}(\mathbf{D}^{(t)}, S) \\ & \text{compute } \epsilon_t = \sum_{i=1}^m D_i^{(t)} \mathbb{1}_{[y_i \neq h_t(\mathbf{x}_i)]} \\ & \text{let } w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right) \\ & \text{update } D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-w_t y_i h_t(\mathbf{x}_i))}{\sum_{j=1}^m D_j^{(t)} \exp(-w_t y_j h_t(\mathbf{x}_j))} \text{ for all } i = 1, \dots, m \\ & \text{output the hypothesis } h_s(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^T w_t h_t(\mathbf{x})\right). \end{aligned}
```


AdaBoost Analysis

3 Boosting

Theorem: AdaBoost Training Error Upper Bound

S 是一个训练集,假设在 AdaBoost 的每一次迭代中,弱分类器返回的假设满足 $\epsilon_t \leq \frac{1}{2} - \gamma$ 。则 AdaBoost 输出的最终假设的训练误差满足以下不等式:

$$L_{S}(h_{s}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[h_{s}(x_{i}) \neq y_{i}] \leq \exp(-2\gamma^{2}T)$$

证明:对于每一轮t,记 $f_t = \sum_{p < t} w_p h_p$,因此AdaBoost的输出为 f_T 。此外,记

$$Z_t = \sum_{i=1}^m \exp(-y_i f_t(x_i))$$

AdaBoost Analysis

3 Boosting

注意到对于任何假设都有 $\mathbb{I}[h(x) \neq y] \leq \exp(-yh(x))$ 。因此,训练误差满足:

$$L_S(f_T) \leq Z_T$$

所以我们只需证明 $Z_T \leq \exp(-2\gamma^2 T)$ 。为了 bound 住 Z_T ,我们将其重写为:

$$Z_{T} = \frac{Z_{T}}{Z_{T-1}} \cdot \frac{Z_{T-1}}{Z_{T-2}} \cdots \frac{Z_{2}}{Z_{1}} \cdot \frac{Z_{1}}{Z_{0}}$$

其中我们使用了 $Z_0 = 1$,因为 $f_0 \equiv 0$ 。现在我们只需证明对于每一轮t:

$$\frac{\mathsf{Z}_{t+1}}{\mathsf{Z}_t} \le \exp(-2\gamma^2)$$

为了证明上式,首先通过简单的归纳推理可知对于所有的t和i都有:

$$D_{i}^{(t+1)} = \frac{\exp(-y_{i}f_{t}(x_{i}))}{\sum_{j=1}^{m} \exp(-y_{j}f_{t}(x_{j}))}$$

AdaBoost Analysis

3 Boosting

因此:

$$\begin{split} \frac{Z_{t+1}}{Z_t} &= \frac{\sum_{i=1}^m \exp(-y_i f_{t+1}(x_i))}{\sum_{j=1}^m \exp(-y_j f_t(x_j))} = \frac{\sum_{i=1}^m \exp(-y_i f_t(x_i)) \exp(-y_i w_{t+1} h_{t+1}(x_i))}{\sum_{j=1}^m \exp(-y_j f_t(x_j))} \\ \Rightarrow \frac{Z_{t+1}}{Z_t} &= \exp(-w_{t+1}) \left(1 - \epsilon_{t+1}\right) + \exp(w_{t+1}) \epsilon_{t+1} = 2\sqrt{\epsilon_{t+1} (1 - \epsilon_{t+1})} \end{split}$$

根据我们的假设, $\epsilon_{t+1} \leq \frac{1}{2} - \gamma$ 。由于函数 g(a) = a(1-a) 在区间 $[0, \frac{1}{2}]$ 上是单调递增的,我们得到:

$$2\sqrt{\epsilon_{t+1}(1-\epsilon_{t+1})} \leqslant 2\sqrt{\left(\frac{1}{2}-\gamma\right)\left(\frac{1}{2}+\gamma\right)} \leqslant \sqrt{1-4\gamma^2}$$

因此,
$$\frac{Z_{t+1}}{Z_t} \leq \exp(-2\gamma^2)_{\circ}$$

Table of Contents 4 PCA

- ► SVM
- ▶ Decision Trees
- **▶** Boosting
- ► PCA
- Nearest Neighbor and LSH
- Personalization
- Summary

Principal Component Analysis (a.k.a. PCA)^{4 PCA}

- PCA 是一种降维技术,将高维空间中的数据映射到低维空间。
- 详细请参考计算机与人工智能应用数学
- power method: 一种高效求解最大本征值和对应的本征向量的方法

Table of Contents

5 Nearest Neighbor and LSH

- ► SVN
- ▶ Decision Trees
- ▶ Boosting
- ▶ PCA
- ► Nearest Neighbor and LSH
- Personalization
- Summary

- Nearest Neighbor 是一种非参数化模型。(数据集就是参数)
- 直接用遍历所有点的方式找到邻居的方法非常耗时,希望有一种数据结构能够 高效返回近似最近邻
- LSH algorithm

LSH

5 Nearest Neighbor and LSH

Table of Contents

6 Personalization

- ► SVN
- ▶ Decision Tree:
- ▶ Boosting
- ▶ PCA
- Nearest Neighbor and LSF
- **▶** Personalization
- ▶ Summary

Table of Contents

7 Summary

- ► SVN
- ▶ Decision Trees
- **▶** Boosting
- ▶ PCA
- Nearest Neighbor and LSF
- ▶ Personalization
- **▶** Summary

Machine Learning

Thank you for listening!
Any questions?