

Abstraction

Addition

Addition

Multiplication

Multiplication

C'est l'histoire de Loulou Lapierre

Une p'tite mère ben ordinaire

Qui travaille à temps partiel

Comme femme de chambre dans un hôtel

Joyeux calvaire! - Les Cowboys Fringants

C'est l'histoire de Loulou Lapierre Une p'tite mère ben ordinaire Qui travaille à temps partiel Comme femme de chambre dans un hôtel	A A B B
Joyeux calvaire! - Les Cowboys Fringants	

C'est l'histoire de Loulou Lapierre	A	
Une p'tite mère ben ordinaire	A	
Qui travaille à temps partiel	В	
Comme femme de chambre dans un hôtel	В	
Joyeux calvaire! - Les Cowboys Fringants		
و لا في بهالحب مصاري	A	
و لا في بهالحب مصاري و لا ممكن فيه ليرات	В	
و لا ممكن في اراضي و لا فيه مجوهرات	A	
و لا فیه مجو هر ات	В	
Ziad Rahbani - بلا ولا شي		

Une petite histoire

TW: maths!

Théorème: Une loi distributive entre deux monades induit une structure de monade composée.

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ \overline{M} (\widehat{\eta} \diamond \eta) = \mathbb{1}_{\overline{M}} \qquad (\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ (\widehat{\eta} \diamond \eta) \overline{M} = \mathbb{1}_{\overline{M}}$$

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ (\widehat{\mu} \diamond \mu) \overline{M} \circ \widehat{M} \lambda M \overline{M} = (\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ \overline{M} (\widehat{\mu} \diamond \mu) \circ \overline{M} \widehat{M} \lambda M$$

Théorème: Une loi distributive entre deux monades induit une structure de monade composée.

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ \overline{M} (\widehat{\eta} \diamond \eta) = \mathbb{1}_{\overline{M}}$$

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ (\widehat{\eta} \diamond \eta) \overline{M} = \mathbb{1}_{\overline{M}}$$

Exemples

Procédés Quantiques

Quantum Teleportation

Liens: <u>article</u>, <u>bouquin</u>, <u>NLP quantique</u>, <u>blog</u>

Circuits Quantiques

We can now rewrite the Toffoli gate to a more efficient construction:

Liens: article, communauté, implémentation Julia, implémentation Python

Figure 1. Composition of categorical Feynman diagrams, cf. Section 4.4.

Automates

$$\langle e+f\rangle = \xrightarrow{(C4)}_{KAA} \xrightarrow{(C4)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 0\rangle = \xrightarrow{(C3)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C4)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C3)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C3)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C4)}_{F}$$

For example, $\langle ab(a+ab)^* \rangle =$

Liens: article (automates probabilistes)

Monoidal Width

Example 5.16. The 3-clique has a branch decomposition as shown on the top. The corresponding monoidal decomposition is shown below it.

Théorèmes

$$\begin{aligned} \mathsf{twd}(G) &\leq \mathsf{mtwd}(g) \leq 2 \cdot \mathsf{twd}(G) \\ \tfrac{1}{2} \cdot \mathsf{bwd}(G) &\leq \mathsf{mwd}(g) \leq \mathsf{bwd}(G) + 1 \\ \mathsf{pwd}(G) &= \mathsf{mpwd}(g) \end{aligned}$$

Liens: <u>article</u>

Modélisation Scientifique

Liens: <u>blogpost</u>, <u>AlgebraicJulia</u>

Logique en Couleurs

a R b

f(a) S g(b)

Liens: conférence, article, thésard

Merci!