Investigación Operativa - Clase 4

Minimax y maximin

Nazareno Faillace Mullen

Departamento de Matemática - FCEN - UBA

Para ir pensando

¿Cómo modelarías linealmente el siguiente problema?

$$\begin{array}{lll} \min & \max\{2x_1+x_2, -x_1+3x_2\} \\ \text{s.a.} & x_1+x_2 & \leq & 4 \\ & 2x_1-x_2 & \geq & 2 \\ & x_1, x_2 & \in & \mathbb{R}_{\geq 0} \end{array}$$

-

Minimax

Lo reformulamos como un problema de programación lineal añadiendo una nueva variable real w:

La solución óptima es $(x_1^*, x_2^*, w^*) = (1, 0, 2)$

Minimax

• El objetivo es minimizar el máximo de un conjunto de funciones lineales, sujetos a ciertas restricciones

$$\begin{aligned} & \min & & \max\{f_1(x), f_2(x), \dots, f_\ell(x)\} \\ & s.a.: & & Ax \leq b \end{aligned}$$

Minimax - transformación a problema lineal

 \cdot Consideramos una nueva variable real w y le imponemos el siguiente conjunto de restricciones:

$$w \ge f_k(x) \quad \forall k \in \{1, \dots, \ell\}$$

El problema queda formulado entonces como:

$$\begin{array}{ll} \min & w \\ s.a. : & Ax & \leq b \\ & w & \geq f_k(x) \quad \forall k \in \{1,\dots,\ell\} \\ & x & \in \mathbb{K}^n \\ & w & \in \mathbb{R} \end{array}$$

Maximin

Obs: una idea análoga sirve para el caso maximin

• El objetivo es maximizar el mínimo de un conjunto de funciones lineales, sujetos a ciertas restricciones

$$\begin{aligned} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ s.a.: & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & &$$

Maximin - transformación a problema lineal

 \cdot Consideramos una nueva variable real w y le imponemos el siguiente conjunto de restricciones:

$$w \le f_k(x) \quad \forall k \in \{1, \dots, \ell\}$$

El problema queda formulado entonces como:

$$\begin{aligned} & \max & & w \\ & s.a. : & Ax & \leq b \\ & & w & \leq f_k(x) & \forall k \in \{1,\dots,\ell\} \\ & & x & \in \mathbb{K}^n \\ & & w & \in \mathbb{R} \end{aligned}$$

Ejercicio

Para dar a conocer sus productos, MicroApple decidió invertir 850 mil pesos en publicidad. Hay tres proyecciones distintas de audiencia (en miles de personas) por cada anuncio en cada uno de los medios:

	Redes Sociales	TV	Radio	Periódico	
P1	50	31	20	26	
P2	32	41	15	19	
Р3	60	38	22	25	

Los datos se encuentran en la siguiente tabla:

	Redes Sociales	TV	Radio	Periódico
Costo por anuncio (en miles)	35	29	22	27
Máxima cantidad de anuncios	20	15	25	15

Además de respetar el presupuesto, el departamento de marketing requiere que:

- (1) el valor absoluto de la diferencia entre la cantidad de anuncios en medios masivos (redes soluciones y televisión) y la cantidad en medios tradicionales (radio y periódico) sea a lo sumo 10.
- (2) los anuncios en radio deben ser al menos el 5 % de los anuncios totales

Elaborar un modelo para decidir cuántos anuncios de cada medio debe comprar MicroApple para maximizar el mínimo de audiencia alcanzada según las proyecciones.