(1) f(x1, x2, x3) = x1, x2 x3 + x1, x2

Touth Table:

_	ж,	×2	213	21, 21 ₂ 21 ₃	21, 212	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	-1	- -1	-1	-1	-1	-1
	-1	-1	1	-1	-1	-1
	-1	1	-1	-\	-)	-1
	-1	1	1	1	-1	1
	1	-1	-1	-1	I	1
	•	-1	1	-1	1	1
	1	1	-)	-1	-1	-1
	1	1	1	-1	-1	-
					1	}

(2)
$$n_1 = -1$$
, $n_2 = -1$, $n_3 = 1$
 $\omega_0 - \omega_1 - \omega_2 + \omega_3 < 0$

(3)
$$n_1 = -1, \quad n_2 = 1, \quad n_3 = -1$$

 $\omega_0 - \omega_1 + \omega_2 - \omega_3 < 0$

(5)
$$y_1 = 1$$
, $y_2 = -1$, $y_3 = -1$
 $\omega_0 + \omega_1 - \omega_2 - \omega_3 < 0$

(6)
$$\varkappa_1 = 1, \ \varkappa_2 = -1, \ \varkappa_3 = 1$$
 $\omega_0 + \omega_1 - \omega_2 + \omega_3 < 0$

(7)
$$x_1 = 1$$
, $x_2 = 1$, $x_3 = -1$
 $\omega_0 + \omega_1 + \omega_2 - \omega_3 < 0$

(8)
$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 1$
 $\omega_0 + \omega_1 + \omega_2 + \omega_3 < 0$

From the above equations: 1 + 8 <0 (D+6) <0 0 + 0 <0 => [wo < 0] =) Wo-W2 <0 =) w, - w3 <0 $\Rightarrow \left[\omega_2 > \omega_0\right]$ =) \(\omega_3 > \omega_0 \) (g) - (1) > 0 4-0 >0 (4) -(3) >0 =) W₂ + W₃ > 0 => [w3 >0] \Rightarrow $\left[\omega_{2} > 0\right]$ 2) \[\omega_2 > -\omega_3 \] (f) - (6) > 0 4 - 8 > 0 e) -2W, >0 =) -2W,+2W2 >0 $(\omega_1 < 0)$ \Rightarrow $\left[\omega_{1} < \omega_{2}\right]$ From above inequalities, from (h) - (7) > 0 toral and error => -2 w, +2 w3 >0 $\frac{\omega_0}{-2}$ $\frac{\omega_1}{-1}$ $\frac{\omega_2}{1}$ $\frac{\omega_3}{1}$ $\omega_1 - \omega_3 < 0$ $\omega_1 < \omega_3$ weights for $\pi_1 \pi_2 \pi_3$ are $\omega_0 = -2$, $\omega_1 = -1$, $\omega_2 = 1$, $\omega_3 = 1$, satisfy eans (1) to (8) For n, n2: Sanl.) $\mathcal{H}_{1} \widetilde{\mathcal{H}}_{2} = Sgn(\omega_{0} + \omega_{1}\mathcal{H}_{1} + \omega_{2}\mathcal{H}_{2})$ 0 $n_1 = -1, \quad n_2 = -1$ (3) $x_1 = 1, x_2 = -1$ ω₀ -ω, -ω₂ < 0 Wo+W, 1-W2 >0 2 $x_1 = -1$, $x_2 = 1$ 4) 2,=1, 2=1 000 - W1 + W2 < 0 Wo + W, + W2 20

From the above equations: D+ 9 <0 2 + 4 <0 D + D 20 =) [60, 40] => \(\omega_0 - \omega_1 < 0\) > W0+W2 <0 => [w, 2 w, ⇒ [ω, ∠-ω₂] 3 -0 >0 3 - 2 >0 (3) - (4) >0 \Rightarrow $\left[\omega, > 0\right]$ $\Rightarrow \omega_1 - \omega_2 > 0$ =) -ω₂ > 0 \Rightarrow $\left[\omega, > \omega_{2}\right]$ $\omega_2 < 0$ From above inequalities, from total and error. $\frac{\omega_0}{-2}$ $\frac{\omega_1}{\omega_2}$ $\frac{\omega_2}{\omega_1}$ $\frac{\omega_2}{\omega_2}$ $\frac{\omega_2}{\omega_2}$ $\frac{\omega_1}{\omega_2}$ $\frac{\omega_2}{\omega_1}$ $\frac{\omega_2}{\omega_2}$ $\frac{\omega_2}{\omega_2}$ $\frac{\omega_1}{\omega_2}$ $\frac{\omega_2}{\omega_2}$ \frac -2 | 1 | -2 weights for n no are w.=-2, w,=1, w2=-2, satisfy econs (1) to (4) For \$\overline{\pi}_1 \pi_2 \pi_3 + \pi_1 \overline{\pi_2} m, 22 m3 + 21, 22 21, 7/2 W2 let x, = n, x2x2, x2 = x, x2 x, x2 x3 + x, x2 = Sgn(Wo + W, x, + W2 x2) ① $x_1 = -1, x_2 = -1$ ② $x_1 = 1, x_2 = -1$ ③ $x_1 = -1, x_2 = -1$ $\omega_0 - \omega_1 - \omega_2 < 0$ $\omega_0 + \omega_1 - \omega_2 > 0$ $\omega_0 - \omega_1 + \omega_2 > 0$ From above eans, 2 + 3 > 0 ② - ① >0 (3) - () > 0=> [w, > 0] \Rightarrow $\left[\omega, > 0\right]$ ⇒ [w₂ >0]

From above inequalities, from total and error W2 1 « (ean () not satisfied) 2 weights for 7, 12 23 + 21, 22 are wo = 2, w1=2, w2=1 satisfy earns 1) to 3). Sgn (·) 12 21, 212 2 let outputs of first hidden layer be X1, X2, X3 $X_1 = u(1+x-y), X_2 = u(1-x-y)$ X3 = U(-x) Z = u(-1.5 + u(1+n-y) + u(1-n-y) - u(-n))For 2=1, u(1+x-y) + u(1-x-y) - u(-x) > 1.5

u (1+n-y) + u(1-n-y) - u(-n) 2 1.5 $u(1+x-y) + u(1-x-y) - u(-x) \ge 1.5$ is possible when W(1+x-y) = 1 , W(1-x-y)=1 , W(-x) = D u(1+2-y)=1 => [2-y+1 =0] - 0 $U(1-x-y)=1 \Rightarrow 1-x-y \ge 0 \Rightarrow [x+y \le 1] - 2$ -x 40 => [x >0] -3 u (-x) =0 =) n-y==1 2 >0 E1,0) (1,0)

is the shaded region for which Z=1 in x-y plane (Does not include points (9,4) lying on y-axis as x>0)

2+ 8 = 1