

Masterarbeit MA 0000 Titel

Bearbeiter: Arda Buglagil

Betreuer: Prof.

Betreuer1 Betreuer2

Ausgabedatum: 01.04.2023 **Abgabedatum:** 30.09.2023

ch versichere, dass ich die vorliegende Arbeit ohne fremde Hilfe und ohne Benutzung
inderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher
der ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von die-
er als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.
Ort, Datum Unterschrift

Kurzzusammenfassung

— deutsche Kurzzusammenfassung —

Abstract

— englische Kurzzusammenfassung —

Inhaltsverzeichnis

Sy	mbo	ls	VI
1	Intr	oduction	1
2	Gru	ndlagen	2
	2.1	Aufzählungen	2
	2.2	Verlinkungen und Zitate	2
		2.2.1 Verlinkungen	2
		2.2.2 Zitate	3
	2.3	Einbinden von Bildern	3
	2.4	Gleichungen	3
	2.5	Tabellen	5
3	Pro	ject	6
	3.1	Mapping Steering Mirror Coordinates to Target Plane Coordinates	6
		3.1.1 Computation of mirror normal vector (n_m)	8
		3.1.2 Computation of mirror coordinates (x, y)	9
	3.2	Position Error Measurement System	10
		3.2.1 Test results	12
	3.3	Mapping Depth Camera Coordinate System to Steering Mirror Coordinate	
		System	12
	3.4	Calibration Procedure	13
		3.4.1 Visible Laser	14
		3.4.2 IR Laser	15
4	Zus	ammenfassung	22
Α	Anh	nang: Überschrift	23
Αŀ	bildı	ungsverzeichnis	25
Ta	belle	enverzeichnis	26
l id	terati	urverzeichnis	27

 α

Symbols

 P_0 incoming beam origin incoming beam direction (unit vector) n_0 Mmirror center Ccenter of rotation ddistance between M and Cmirror normal vector n_m reflected beam origin P_1 reflected beam direction (unit vector) n_1 Ddistance between mirror center(C) and target plane target plane normal vector n_t P_2 the point reflected beam hits the target plane

rotation degree of the target plane with respect to steering mirror

1 Introduction

— Introduction —

2 Grundlagen

2.1 Aufzählungen

LATEX erlaubt viele verschiedene Formatierungen. Allein bei Aufzählungen sind description und itemize zu nennen:

Ein Stichpunkt mit Beschreibung

Noch ein Stichpunkt mit noch einer Beschreibung

- kursiver Text
- fetter Text
- normaler Text
- kleiner Text

2.2 Verlinkungen und Zitate

2.2.1 Verlinkungen

Dieses Kapitel hat die Nummer 2.2.1. Referenzen können das gesamte Dokument umfassen und zum Beispiel auch auf Bilder wie 2.2 verweisen.

Ein Link aus dem Dokument in das Internet ist mit dem Paket hyperref ebenfalls möglich:

https://wch.github.io/latexsheet/

Unter dieser Adresse findet sich ein gutes LATEX Befehlsblatt!

2.2.2 Zitate

Zitate ergeben ebenfalls Verlinkungen ins Quellenverzeichnis [1] und [2, S.10].

Dies ist ein Zitat zum Test. Es ist an der Einrückung erkennbar. Bei langen Zitaten wird die automatische Einrückung der Folgezeilen sichtbar.

2.3 Einbinden von Bildern

Abb. 2.1: Bild mit Tikz erstellt, Bildunterschrift einzeilig und zentriert.

Abb. 2.2: Gewöhnliches Bild (hier pdf) und da dies eine zweizeilige Bildunterschrift ist, ist sie linksbündig und die zweite Zeile eingerückt.

2.4 Gleichungen

Gleichungen wie a=b+c können in einem Fließtext als Inline-Formel auftreten oder als abgesetzte Formel:

$$x = \frac{1+2+i}{2} \,. \tag{2.1}$$

Abgesetzte Formeln müssen in den Text eingefügt werden wie folgender Satz zeigt. Die Eulerformel, die man in der Form

$$e^{j\varphi} = \cos(\varphi) + j\sin(\varphi) \tag{2.2}$$

4 2 Grundlagen

angeben kann, ist in vielen Formelsammlungen zu finden.

Bei den Formeln ist auf ISO-31 und DIN 1338 konformes Setzen zu achten. Dokumente hierzu findet man unter http://www.moritz-nadler.de/formelsatz.pdf und http://www.et.tu-dresden.de/ifa/fileadmin/user_upload/www_files/richtlinien_sa_da/auszug_din_1338.pdf

2.5 Tabellen 5

2.5 Tabellen

Tabellen können einfach mit der tabular-Umgebung aufgebaut werden.

Allerdings sind sie floats (sie ordnen sich automatisch an den besten Platz) und so oft irgendwo unterwegs. Diese Tabelle würde direkt über der Überschrift stehen, obwohl sie darunter definiert wurde. Dies kann mit [!ht] unterdrückt werden, was aber oft nicht sinnvoll ist (wegen den Regeln des Textsatzes). [ht] ist die abgeschwächte Version des Befehls und zu bevorzugen.

Tab. 2.1: Amateurfunkbänder (Auswahl)

Band	Frequenzen	Nutzungsstatus
80 m	$3.5-3.8\mathrm{MHz}$	primär
40 m	$7-7.1\mathrm{MHz}$	primär
20 m	$14 - 14{,}35\mathrm{MHz}$	primär
$17\mathrm{m}$	$18,068 - 18,168\mathrm{MHz}$	primär
$15\mathrm{m}$	$21-21{,}45\mathrm{MHz}$	primär
10 m	$28-29{,}7\mathrm{MHz}$	primär
$2\mathrm{m}$	$144-146\mathrm{MHz}$	primär
$70\mathrm{cm}$	$430-440\mathrm{MHz}$	primär
$23\mathrm{cm}$	$1240-1300{ m MHz}$	sekundär
$13\mathrm{cm}$	$2320 - 2450\mathrm{MHz}$	sekundär

3 Project

3.1 Mapping Steering Mirror Coordinates to Target Plane Coordinates

To direct the laser beam MR-E-2 beam steering mirror is used. Laser beam is produced by a laser which is stationary. Laser is positioned to hit the steering mirror in the center. After the beam hits the mirror, it is directed to required position by adjusting the position of the mirror.

Abb. 3.1: Laser, depth camera, and beam steering mirror setup

Using the mirror to steer the laser beam requires a mapping from 3D world coordinate system to mirror coordinate system. The mapping calculates the required rotation of the mirror around its axes to direct the laser beam to intended 3D position. Mirror coordinate system is defined in [1] as in following figure.

The coordinate system is a Cartesian coordinate system with X and Y axes. Rotation of the mirror around its horizontal and vertical axes are expressed as x and y values. The range of both axes are [-1, 1] interval. Mirror has maximum deflection angle of 25°. θ is the angle between incoming and reflected beam. $\theta = +50^{\circ}$ corresponds to +1 and $\theta = -50^{\circ}$ corresponds to -1. X and Y values are required to be inside a unit circle in order to be a valid point accessible by the mirror.

In the system setup used in experiments following configuration is used:

Abb. 3.2: Internal mirror coordinate system[1]

Abb. 3.3: Relation between rotation of the mirror (θ) and the mirror coordinate (x) in X-axis[1]

Abb. 3.4: Mirror coordinate system [1]

- $P_1 = M = C$
- $O = P_1 = M = C$
- d = 0
- Incoming ray is coming in y-z plane.

The conversion of coordinates on target plane (x_t, y_t) to mirror coordinates (x, y) is performed in two main steps. Firstly, the mirror normal (n_m) is calculated based on position of the laser, position of the target plane and (x_t, y_t) . In the next step, corresponding mirror coordinates (x, y) is calculated using n_m .

3.1.1 Computation of mirror normal vector (n_m)

There are 2 different frames of reference I and T. Reference frame I is centered around O. Its z-axis is aligned with $-n_m$ direction and its y-axis is aligned so that incoming laser beam propagates through yz plane. Reference frame T is centered around T. Its z-axis is aligned with n_t direction and its y-axis is aligned so that reflected laser beam propagates through yz plane. The transformation between frame of references is done with orthogonal transformation matrices A_{IT} and A_{TI} .

$$n_t^T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$r_{OT}^T = \begin{bmatrix} 0 \\ 0 \\ -D \end{bmatrix}$$

$$r_{TP_2}^T = \begin{bmatrix} x_t \\ y_t \\ 0 \end{bmatrix}$$

$$n_0^I = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$A_{IT} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\alpha) & -sin(\alpha) \\ 0 & sin(\alpha) & cos(\alpha) \end{bmatrix}$$

Mirror normal vector is calculated with following steps:

$$\begin{aligned} n_{t}^{I} &= A_{IT} \cdot n_{t}^{T} \\ n_{OT}^{I} &= A_{IT} \cdot r_{OT}^{T} \\ r_{TP_{2}}^{I} &= A_{IT} \cdot r_{TP_{2}}^{T} \\ r_{OP_{2}}^{I} &= r_{OT}^{T} \cdot r_{TP_{2}}^{I} \\ n_{1}^{I} &= normalize(r_{OP_{2}}^{I}) \\ n_{m}^{I} &= normalize(n_{1} - n_{0}) \end{aligned}$$

3.1.2 Computation of mirror coordinates (x, y)

$$r_{C}^{I} = \begin{bmatrix} 0 \\ 0 \\ d \end{bmatrix} \qquad \qquad N_{0}^{I} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

$$n_{t}^{T} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \qquad r_{OT}^{T} = \begin{bmatrix} 0 \\ 0 \\ -D \end{bmatrix}$$

$$A_{IT} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} t_1 &= \frac{(R_C^I - r_{OP_0}^I) \cdot n_m^I + d}{n_0^I \cdot n_m^I} \\ r_{OP_1}^I &= r_{OP_0}^I + t_1 \cdot n_0^I \\ n_1^I &= n_0^I - 2 \cdot (n_0^I \cdot n_m^I) \cdot n_m^I \\ t_2 &= \frac{(r_{OT}^T - r_{OP_1}^I) \cdot n_t^T}{n_1^I \cdot n_t^T} \\ r_{OP_2}^I &= r_{OP_1}^I + t_2 \cdot n_1^I \\ x &= \frac{r_{OP_2}^I[0]}{D \cdot tan(50^\circ)} \\ y &= \frac{r_{OP_2}^I[1]}{D \cdot tan(50^\circ)} \end{split}$$

3.2 Position Error Measurement System

Abb. 3.5: Position error test setup

Measurements are done with a 2-dimensional servo motor system with a PM400 power meter attached. Measurements are performed by pointing the laser to a specified target position and then sweeping the power meter in a linear trajectory. Power recordings are recorded with recording times and plotted to find the instance with maximum power. The point with maximum power gives the center position of the laser. Power measurements are performed by a Python script which has a loop with a period of around 0.01s. This sampling period is not constant throughout the measurements and might deviate from 0.01s. For this reason, after the measurement, cubic interpolation is performed to get a uniformly sampled signal.

Abb. 3.6: Power(mW) - Position(mm) graphs for raw signal and cubic interpolation signal

Interpolation solves the nonuniform sampling problem. Obtained signal still has noise in it which might alter the maximum position. To remove the noise a low pass filter in the form of a moving average filter is applied. The figure below depicts the signal before and after the low pass filter. High-frequency noise components are removed from the signal while keeping the original signal mostly intact. This operation produced a smoother signal which is more suitable for peak finding operation.

Abb. 3.7: Power(mW) - Position(mm) graphs for raw signal and cubic interpolation signal

The recorded power signal is plotted with respect to distance in order to find the position of the laser's center. This method gives the position of the laser relative to the initial position of the servo motor. The figure below shows the power levels with respect to time and position. Position with maximum power is written in the fourth graph in millimeters.

Abb. 3.8: Power(mW) - Position(mm) graphs for raw signal and cubic interpolation signal

Measurements are performed with different parameters such as the distance between the mirror and target plane, different sweep locations.

3.2.1 Test results

The coordinate systems that are used in the steering mirror and the depth camera don't coincide. They are rotated and translated versions of each other. A point in camera coordinate system, c, can be transformed into a point in mirror coordinate system, m, with the following mapping:

3.3 Mapping Depth Camera Coordinate System to Steering Mirror Coordinate System

The coordinate systems that are used in the steering mirror and the depth camera don't coincide. They are rotated and translated versions of each other. A point in camera coordinate system, c, can be transformed into a point in mirror coordinate system, m, with the following mapping:

$$m = Rc + t$$

R is 3x3 an orthogonal rotation matrix and t is a 3x1 translation vector. Optimal R and t are found by the following algorithm [2] [3] [4]: R is an orthogonal rotation matrix and t is a translation vector. Optimal R and t are found by the following algorithm [2] [3] [4]:

To find the rotation matrix R,

$$H = (A - m_A)(B - m_B)^T$$

$$U, S, V^T = SVD(H)$$

$$R = VU^T$$

To find translation vector t,

Abb. 3.9: Recording of the same points in steering mirror and depth camera coordinate systems

$$t = m_B - Rm_A$$

Optimal transformation maps each point in camera coordinate system to a point in mirror coordinate system. After the mapping mirror points and camera points are almost aligned as shown in Figure 8. With this mapping, any point recorded by depth camera can be transformed into a point which can be used by the mirror controller.

3.4 Calibration Procedure

Calibration of the system is done in order to coordinate depth camera and mirror together. Both steering mirror and depth camera have their own coordinate systems. The relationship between these coordinate systems is unknown which makes them unable to

Abb. 3.10: Camera points after the transformation

perform tasks together. The main objective of the calibration is to find the rotation and translation of the coordinate systems relative to each other. For this purpose, the optimal R and t finding algorithm discussed in previous chapter is used. Calibration procedure is responsible for obtaining point pairs consisting of a point in depth camera coordinate system and its corresponding point in steering mirror coordinate system. After the collection of the dataset, the mapping is computed and saved for later usage. Point pair collection operation depends on the type of laser used in the system. For easier testing a visible laser is used. However, in the end system an IR laser is used. Using IR laser restricts the usage of camera since it is not visible by camera sensor. IR laser requires IR light intensity sensors to detect and a different calibration procedure than visible laser.

3.4.1 Visible Laser

The laser is pointed at 30 different positions in a plane 560 mm away from the mirror center. These points are recorded as mirror points B. Each laser position is extrac-

ted from the color images by using Hough Circle Detection algorithm. Once 2D pixel coordinates are found they are converted to 3D coordinates by Kinect Azure SDK's k4a::calibration::convert_2d_to_3d [5] function. Extracted 3D depth camera points are named A. Points A and B are formed into matrices with shape 3xN. Finally, algorithm 1 is used to find R and t matrices

3.4.2 IR Laser

IR laser requires different calibration method from the visible laser. Point patching operation is done via laser intensity sensors. The sensor setup used to detect positions is in figure below. 3 sensors generate analog output signals based on the intensity of light hitting them. The analog signal is captured by ADCs on a Raspberry Pi Pico board and transmitted to host computer via USB.—add sensor picture While the sensor is recording the signal intensity, laser scans the area near the sensor position based on an initial sensor position estimate in terms of a 3D coordinate. Each signal point is plotted with respect to position of the laser at the time of recording. As a result, an intensity profile is generated. The maximum intensity level of this profile is chosen as the sensor position. This process is performed by all three sensors, and 3 different images are generated. In each image a peak intensity is observed, and it is marked as that specific sensor's position.

Abb. 3.11: Rough sensor image.

Abb. 3.12: Fine sensor image.

3 3D coordinates generated are not exact coordinates due to the initial position estimate. The x and y positions determined by scanning the laser are valid if and only if the initial distance between mirror center and target plane is correct. Since this won't be the case for most cases, found points should be used to calculate the real distance between mirror center and target plane.

To calculate the distance between mirror center and target plane, the geometry of the sensors is used. Sensors are placed on top of each other as in Figure 9 and the plate holding the sensors is placed perpendicular to ground. This configuration places all the sensors at the same distance from mirror center in the z direction. Using this constraint, the distance between sensors and mirror center in z direction is calculated:

Abb. 3.13: Sensor positions (S1, S2, S3), detected sensor positions (M1, M2, M3) and steering mirror position (O) from camera view.

Abb. 3.14: Sensor positions (S1, S2, S3), detected sensor positions (M1, M2, M3) and steering mirror position (O) from top view.

Tab. 3.1: Distance between mirror and target plane is set to 410mm. Actual distance between mirror and target plane is 425mm.

Mirror Input x	Mirror Input y	Peak Power Position	Relative Distance
$-3\mathrm{mm}$	$-5\mathrm{mm}$	2,322 mm	$-3,096\mathrm{mm}$
$-2.5\mathrm{mm}$	$-5\mathrm{mm}$	$2,853\mathrm{mm}$	$-2,565\mathrm{mm}$
$-2\mathrm{mm}$	$-5\mathrm{mm}$	$3{,}372\mathrm{mm}$	$-2,046\mathrm{mm}$
$-1.5\mathrm{mm}$	$-5\mathrm{mm}$	$3,868\mathrm{mm}$	$-1,550\mathrm{mm}$
$-1 \mathrm{mm}$	$-5\mathrm{mm}$	$4{,}392\mathrm{mm}$	$-1,026\mathrm{mm}$
$-0.5\mathrm{mm}$	$-5\mathrm{mm}$	$4,905\mathrm{mm}$	$-0.513\mathrm{mm}$
$0\mathrm{mm}$	$-5\mathrm{mm}$	5,418 mm	$0\mathrm{mm}$
$0.5\mathrm{mm}$	$-5\mathrm{mm}$	$5,921\mathrm{mm}$	$0,503\mathrm{mm}$
$1 \mathrm{mm}$	$-5\mathrm{mm}$	$6,446\mathrm{mm}$	$1,028\mathrm{mm}$
$1.5\mathrm{mm}$	$-5\mathrm{mm}$	$6,923\mathrm{mm}$	$1,505\mathrm{mm}$
$2\mathrm{mm}$	$-5\mathrm{mm}$	$7,427\mathrm{mm}$	$2,009\mathrm{mm}$
$2.5\mathrm{mm}$	$-5\mathrm{mm}$	$7,937\mathrm{mm}$	$2,519\mathrm{mm}$
$3\mathrm{mm}$	$-5\mathrm{mm}$	$8,452\mathrm{mm}$	$3,034\mathrm{mm}$
$-3\mathrm{mm}$	$0\mathrm{mm}$	$2,278\mathrm{mm}$	$-3,089\mathrm{mm}$
$-2.5\mathrm{mm}$	$0\mathrm{mm}$	$2,792\mathrm{mm}$	$-2,575\mathrm{mm}$
$-2\mathrm{mm}$	$0\mathrm{mm}$	$3,311\mathrm{mm}$	$-2,056\mathrm{mm}$
$-1.5\mathrm{mm}$	$0\mathrm{mm}$	$3,829\mathrm{mm}$	$-1,538\mathrm{mm}$
$-1\mathrm{mm}$	$0\mathrm{mm}$	$4,327\mathrm{mm}$	$-1,040\mathrm{mm}$
$-0.5\mathrm{mm}$	$0\mathrm{mm}$	$4,860\mathrm{mm}$	$-0.507\mathrm{mm}$
$0\mathrm{mm}$	$0\mathrm{mm}$	$5,367\mathrm{mm}$	$0\mathrm{mm}$
$0.5\mathrm{mm}$	$0\mathrm{mm}$	$5,878\mathrm{mm}$	$0,511{ m mm}$
$1\mathrm{mm}$	$0\mathrm{mm}$	$6,379\mathrm{mm}$	1,012 mm
$1.5\mathrm{mm}$	$0\mathrm{mm}$	6,880 mm	$1,513\mathrm{mm}$
$2\mathrm{mm}$	$0\mathrm{mm}$	$7{,}392\mathrm{mm}$	$2,025\mathrm{mm}$
$2.5\mathrm{mm}$	$0\mathrm{mm}$	7,880 mm	$2,513\mathrm{mm}$
$3\mathrm{mm}$	$0\mathrm{mm}$	$8,390\mathrm{mm}$	$3,023\mathrm{mm}$
$-3\mathrm{mm}$	$5\mathrm{mm}$	$2,391\mathrm{mm}$	$-3,097\mathrm{mm}$
$-2.5\mathrm{mm}$	$5\mathrm{mm}$	$2,909\mathrm{mm}$	$-2,579\mathrm{mm}$
$-2\mathrm{mm}$	$5\mathrm{mm}$	$3,424\mathrm{mm}$	$-2,064\mathrm{mm}$
$-1,5\mathrm{mm}$	$5\mathrm{mm}$	$3,949\mathrm{mm}$	$-1,539\mathrm{mm}$
$-1\mathrm{mm}$	$5\mathrm{mm}$	$4,468\mathrm{mm}$	$-1,020\mathrm{mm}$
$-0.5\mathrm{mm}$	$5\mathrm{mm}$	$4,974\mathrm{mm}$	$-0.514\mathrm{mm}$
$0\mathrm{mm}$	$5\mathrm{mm}$	$5,488\mathrm{mm}$	$0\mathrm{mm}$
$0.5\mathrm{mm}$	$5\mathrm{mm}$	$6{,}013\mathrm{mm}$	$0,525\mathrm{mm}$
$1\mathrm{mm}$	$5\mathrm{mm}$	$6,534\mathrm{mm}$	$1,046\mathrm{mm}$
$1,5\mathrm{mm}$	$5\mathrm{mm}$	$7,042\mathrm{mm}$	$1,554\mathrm{mm}$
$2\mathrm{mm}$	$5\mathrm{mm}$	$7,547\mathrm{mm}$	$2,059\mathrm{mm}$
$2,5\mathrm{mm}$	$5\mathrm{mm}$	$8,052\mathrm{mm}$	$2,564\mathrm{mm}$
$3\mathrm{mm}$	$5\mathrm{mm}$	8,561 mm	$3,073\mathrm{mm}$

Tab. 3.2: Distance between mirror and target plane is set to 425mm. Actual distance between mirror and target plane is 425mm.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mirror Input x	Mirror Input y	Peak Power Position	Relative Distance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·	′
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		· · · · · · · · · · · · · · · · · · ·	′
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-5\mathrm{mm}$		· ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	$-5\mathrm{mm}$	· · · · · · · · · · · · · · · · · · ·	′
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-5\mathrm{mm}$	$8{,}716\mathrm{mm}$	$-1,007\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0.5\mathrm{mm}$		$9{,}228\mathrm{mm}$	$-0,494\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0\mathrm{mm}$	$-5\mathrm{mm}$	$9{,}722\mathrm{mm}$	$0.0\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.5\mathrm{mm}$	$-5\mathrm{mm}$	$10,\!212\mathrm{mm}$	$0{,}49\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1\mathrm{mm}$	$-5\mathrm{mm}$	$10,695\mathrm{mm}$	$0,973\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1,5\mathrm{mm}$	$-5\mathrm{mm}$	$11{,}191\mathrm{mm}$	$1{,}469\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2\mathrm{mm}$	$-5\mathrm{mm}$	$11,\!673\mathrm{mm}$	$1{,}951\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2,5\mathrm{mm}$	$-5\mathrm{mm}$	$12{,}151\mathrm{mm}$	$2{,}429\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3\mathrm{mm}$	$-5\mathrm{mm}$	$12,\!653\mathrm{mm}$	$2,931\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-3\mathrm{mm}$	$0\mathrm{mm}$	$6{,}788\mathrm{mm}$	$-2,956\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-2.5\mathrm{mm}$	$0\mathrm{mm}$	$7{,}275\mathrm{mm}$	$-2,469\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-2\mathrm{mm}$	$0\mathrm{mm}$	$7{,}777\mathrm{mm}$	$-1,967{ m mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-1.5\mathrm{mm}$	$0\mathrm{mm}$	$8,\!289\mathrm{mm}$	$-1,455\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-1\mathrm{mm}$	$0\mathrm{mm}$	$8{,}758\mathrm{mm}$	$-0.986\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0.5\mathrm{mm}$	$0\mathrm{mm}$	$9{,}248\mathrm{mm}$	$-0.496\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0\mathrm{mm}$	$0\mathrm{mm}$	$9{,}744\mathrm{mm}$	$0.0\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.5\mathrm{mm}$	$0\mathrm{mm}$	$10{,}225\mathrm{mm}$	$0,481{ m mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1\mathrm{mm}$	$0\mathrm{mm}$	$10{,}711\mathrm{mm}$	$0,967\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.5\mathrm{mm}$	$0\mathrm{mm}$	$11{,}207\mathrm{mm}$	$1,463\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2\mathrm{mm}$	$0\mathrm{mm}$	$11,\!666\mathrm{mm}$	$1,922\mathrm{mm}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.5\mathrm{mm}$	$0\mathrm{mm}$	$12{,}156\mathrm{mm}$	$2,412\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3\mathrm{mm}$	$0\mathrm{mm}$	$12,\!654\mathrm{mm}$	$2{,}91\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-3\mathrm{mm}$	$5\mathrm{mm}$	$6,849\mathrm{mm}$	$-2,978\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-2.5\mathrm{mm}$	$5\mathrm{mm}$	$7{,}364\mathrm{mm}$	$-2,463\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-2\mathrm{mm}$	$5\mathrm{mm}$	$7,\!867\mathrm{mm}$	$-1,959\mathrm{mm}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-1.5\mathrm{mm}$	$5\mathrm{mm}$	$8,\!359\mathrm{mm}$	$-1,468\mathrm{mm}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-0.5\mathrm{mm}$	$5\mathrm{mm}$	$9{,}34\mathrm{mm}$	$-0.487\mathrm{mm}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0\mathrm{mm}$	$5\mathrm{mm}$	$9,\!826\mathrm{mm}$	$0.0\mathrm{mm}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.5\mathrm{mm}$	$5\mathrm{mm}$	$10,308\mathrm{mm}$	$0,481\mathrm{mm}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1\mathrm{mm}$	$5\mathrm{mm}$	$10,\!824\mathrm{mm}$	· ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.5\mathrm{mm}$	$5\mathrm{mm}$	· · · · · · · · · · · · · · · · · · ·	·
2,5 mm 5 mm 12,279 mm 2,453 mm	'		· ·	· ·
	$2.5\mathrm{mm}$	$5\mathrm{mm}$,	
5 12,101 mm	$3\mathrm{mm}$	$5\mathrm{mm}$	$12,781 \mathrm{mm}$	$2,954\mathrm{mm}$

Tab. 3.3: Distance between mirror and target plane is set to 210mm. Actual distance between mirror and target plane is 225mm.

Mirror Input x	Mirror Input y	Peak Power Position	Relative Distance
-3 mm	-5 mm	6,723 mm	$-2,999\mathrm{mm}$
$-2.5\mathrm{mm}$	$-5\mathrm{mm}$	$7,225\mathrm{mm}$	$-2,497\mathrm{mm}$
$-2\mathrm{mm}$	$-5\mathrm{mm}$	7,727 mm	$-1,995 \mathrm{mm}$
$-1.5\mathrm{mm}$	$-5\mathrm{mm}$	8,218 mm	$-1,504\mathrm{mm}$
$-1\mathrm{mm}$	$-5\mathrm{mm}$	8,716 mm	$-1,007\mathrm{mm}$
$-0.5\mathrm{mm}$	$-5\mathrm{mm}$	$9,228\mathrm{mm}$	$-0.494\mathrm{mm}$
$0\mathrm{mm}$	$-5\mathrm{mm}$	$9,722\mathrm{mm}$	$0.0\mathrm{mm}$
$0.5\mathrm{mm}$	$-5\mathrm{mm}$	$10,212\mathrm{mm}$	$0.49\mathrm{mm}$
1 mm	$-5\mathrm{mm}$	$10,695\mathrm{mm}$	$0.973\mathrm{mm}$
1,5 mm	$-5\mathrm{mm}$	11,191 mm	$1,469\mathrm{mm}$
$2 \mathrm{mm}$	$-5\mathrm{mm}$	$11,673\mathrm{mm}$	$1,951\mathrm{mm}$
2,5 mm	$-5\mathrm{mm}$	12,151 mm	$2,429\mathrm{mm}$
$3\mathrm{mm}$	$-5\mathrm{mm}$	$12,653\mathrm{mm}$	2,931 mm
$-3\mathrm{mm}$	$0\mathrm{mm}$	6,788 mm	$-2,956\mathrm{mm}$
$-2.5\mathrm{mm}$	$0\mathrm{mm}$	$7,275\mathrm{mm}$	$-2,469\mathrm{mm}$
$-2\mathrm{mm}$	$0\mathrm{mm}$	7,777 mm	$-1,967 \mathrm{mm}$
$-1.5\mathrm{mm}$	$0 \mathrm{mm}$	8,289 mm	$-1,455\mathrm{mm}$
$-1\mathrm{mm}$	$0\mathrm{mm}$	8,758 mm	$-0.986\mathrm{mm}$
$-0.5\mathrm{mm}$	$0\mathrm{mm}$	9,248 mm	$-0.496\mathrm{mm}$
$0\mathrm{mm}$	$0\mathrm{mm}$	$9,744\mathrm{mm}$	$0.0\mathrm{mm}$
$0.5\mathrm{mm}$	$0\mathrm{mm}$	$10,225\mathrm{mm}$	$0,481\mathrm{mm}$
$1 \mathrm{mm}$	$0\mathrm{mm}$	$10,711\mathrm{mm}$	$0.967\mathrm{mm}$
$1.5\mathrm{mm}$	$0\mathrm{mm}$	$11,207\mathrm{mm}$	$1,463\mathrm{mm}$
$2\mathrm{mm}$	$0\mathrm{mm}$	11,666 mm	$1,922\mathrm{mm}$
$2.5\mathrm{mm}$	$0\mathrm{mm}$	$12,156\mathrm{mm}$	$2,412\mathrm{mm}$
$3\mathrm{mm}$	$0\mathrm{mm}$	$12,654\mathrm{mm}$	$2,91\mathrm{mm}$
$-3\mathrm{mm}$	$5\mathrm{mm}$	6,849 mm	$-2,978\mathrm{mm}$
$-2.5\mathrm{mm}$	$5\mathrm{mm}$	$7,364\mathrm{mm}$	$-2,463\mathrm{mm}$
$-2\mathrm{mm}$	$5\mathrm{mm}$	$7,867\mathrm{mm}$	$-1,959\mathrm{mm}$
$-1.5\mathrm{mm}$	$5\mathrm{mm}$	$8,359\mathrm{mm}$	$-1,468\mathrm{mm}$
$-1\mathrm{mm}$	$5\mathrm{mm}$	8,843 mm	$-0.984\mathrm{mm}$
$-0.5\mathrm{mm}$	$5\mathrm{mm}$	$9,34\mathrm{mm}$	$-0.487\mathrm{mm}$
$0\mathrm{mm}$	$5\mathrm{mm}$	$9,826\mathrm{mm}$	$0.0\mathrm{mm}$
$0.5\mathrm{mm}$	$5\mathrm{mm}$	$10,308\mathrm{mm}$	0,481 mm
$1\mathrm{mm}$	$5\mathrm{mm}$	$10,824\mathrm{mm}$	$0,998\mathrm{mm}$
$1,5\mathrm{mm}$	$5\mathrm{mm}$	11,304 mm	1,478 mm
$2\mathrm{mm}$	$5\mathrm{mm}$	$11,793\mathrm{mm}$	$1,967\mathrm{mm}$
$2,5\mathrm{mm}$	$5\mathrm{mm}$	$12,\!279\mathrm{mm}$	$2,453\mathrm{mm}$
$3\mathrm{mm}$	$5\mathrm{mm}$	$12,781 \mathrm{mm}$	$2,954\mathrm{mm}$

Tab. 3.4: Distance between mirror and target plane is set to 225mm. Actual distance between mirror and target plane is 225mm.

Mirror Input x	Mirror Input y	Peak Power Position	Relative Distance
$-3\mathrm{mm}$	$-5\mathrm{mm}$	$4,985\mathrm{mm}$	$-3,044\mathrm{mm}$
$-2.5\mathrm{mm}$	$-5\mathrm{mm}$	$5{,}503\mathrm{mm}$	$-2,526\mathrm{mm}$
$-2\mathrm{mm}$	$-5\mathrm{mm}$	$6{,}007\mathrm{mm}$	$-2,023\mathrm{mm}$
$-1.5\mathrm{mm}$	$-5\mathrm{mm}$	$6{,}505\mathrm{mm}$	$-1,524\mathrm{mm}$
$-1\mathrm{mm}$	$-5\mathrm{mm}$	$7{,}034\mathrm{mm}$	$-0,995\mathrm{mm}$
$-0.5\mathrm{mm}$	$-5\mathrm{mm}$	$7{,}536\mathrm{mm}$	$-0,494\mathrm{mm}$
$0\mathrm{mm}$	$-5\mathrm{mm}$	$8{,}029\mathrm{mm}$	$0.0\mathrm{mm}$
$0.5\mathrm{mm}$	$-5\mathrm{mm}$	$8{,}539\mathrm{mm}$	$0,509\mathrm{mm}$
$1\mathrm{mm}$	$-5\mathrm{mm}$	$9{,}045\mathrm{mm}$	$1{,}016\mathrm{mm}$
$1.5\mathrm{mm}$	$-5\mathrm{mm}$	$9,546\mathrm{mm}$	$1{,}517\mathrm{mm}$
$2\mathrm{mm}$	$-5\mathrm{mm}$	$10,045\mathrm{mm}$	$2{,}015\mathrm{mm}$
$2.5\mathrm{mm}$	$-5\mathrm{mm}$	$10,529\mathrm{mm}$	$2,499\mathrm{mm}$
$3\mathrm{mm}$	$-5\mathrm{mm}$	$11,009\mathrm{mm}$	$2{,}98\mathrm{mm}$
$-3\mathrm{mm}$	$0\mathrm{mm}$	$4,989{ m mm}$	$-2,992{\rm mm}$
$-2.5\mathrm{mm}$	$0\mathrm{mm}$	$5{,}493\mathrm{mm}$	$-2,488\mathrm{mm}$
$-2\mathrm{mm}$	$0\mathrm{mm}$	$5{,}999\mathrm{mm}$	$-1,982\mathrm{mm}$
$-1.5\mathrm{mm}$	$0\mathrm{mm}$	$6,49\mathrm{mm}$	$-1,491\mathrm{mm}$
$-1\mathrm{mm}$	$0\mathrm{mm}$	$6{,}998\mathrm{mm}$	$-0.984\mathrm{mm}$
$-0.5\mathrm{mm}$	$0\mathrm{mm}$	$7{,}459\mathrm{mm}$	$-0,523\mathrm{mm}$
$0\mathrm{mm}$	$0\mathrm{mm}$	$7{,}981\mathrm{mm}$	$0.0\mathrm{mm}$
$0.5\mathrm{mm}$	$0\mathrm{mm}$	$8,461\mathrm{mm}$	$0,\!479\mathrm{mm}$
$1\mathrm{mm}$	$0\mathrm{mm}$	$8,952\mathrm{mm}$	$0.971\mathrm{mm}$
$1.5\mathrm{mm}$	$0\mathrm{mm}$	$9,485\mathrm{mm}$	$1,503\mathrm{mm}$
$2\mathrm{mm}$	$0\mathrm{mm}$	$9{,}976\mathrm{mm}$	$1,994\mathrm{mm}$
$2.5\mathrm{mm}$	$0\mathrm{mm}$	$10,464\mathrm{mm}$	$2,483{ m mm}$
$3\mathrm{mm}$	$0\mathrm{mm}$	$10,956\mathrm{mm}$	$2,975\mathrm{mm}$
$-3\mathrm{mm}$	$5\mathrm{mm}$	$5{,}156\mathrm{mm}$	$-2,982\mathrm{mm}$
$-2.5\mathrm{mm}$	$5\mathrm{mm}$	$5{,}664\mathrm{mm}$	$-2,475\mathrm{mm}$
$-2\mathrm{mm}$	$5\mathrm{mm}$	$6{,}153\mathrm{mm}$	$-1,986\mathrm{mm}$
$-1.5\mathrm{mm}$	$5\mathrm{mm}$	$6,649\mathrm{mm}$	$-1,49\mathrm{mm}$
$-1\mathrm{mm}$	$5\mathrm{mm}$	$7{,}154\mathrm{mm}$	$-0.985\mathrm{mm}$
$-0.5\mathrm{mm}$	$5\mathrm{mm}$	$7,64\mathrm{mm}$	$-0.498\mathrm{mm}$
$0\mathrm{mm}$	$5\mathrm{mm}$	$8{,}138\mathrm{mm}$	$0.0\mathrm{mm}$
$0.5\mathrm{mm}$	$5\mathrm{mm}$	$8,634\mathrm{mm}$	$0,496\mathrm{mm}$
$1\mathrm{mm}$	$5\mathrm{mm}$	$9{,}126\mathrm{mm}$	$0,988{ m mm}$
1,5 mm	$5\mathrm{mm}$	$9,635\mathrm{mm}$	$1,497\mathrm{mm}$
$2\mathrm{mm}$	$5\mathrm{mm}$	$10{,}126\mathrm{mm}$	1,988 mm
$2,5\mathrm{mm}$	$5\mathrm{mm}$	$10,\!609\mathrm{mm}$	$2,47\mathrm{mm}$
$3\mathrm{mm}$	$5\mathrm{mm}$	$11{,}103\mathrm{mm}$	$2{,}965\mathrm{mm}$

4 Zusammenfassung

- Zusammenfassung -

A Anhang: Überschrift

— Anhang —

Abbildungsverzeichnis

2.1	Bild mit Tikz erstellt, Bildunterschrift einzeilig und zentriert	3
2.2	Gewöhnliches Bild (hier pdf) und da dies eine zweizeilige Bildunterschrift	
	ist, ist sie linksbündig und die zweite Zeile eingerückt	3
3.1	Laser, depth camera, and beam steering mirror setup	6
3.2	Internal mirror coordinate system $[1]$	7
3.3	Relation between rotation of the mirror (θ) and the mirror coordinate (x)	
	in X -axis[1]	7
3.4	Mirror coordinate system $[1]$	7
3.5	Position error test setup	10
3.6	Power(mW) - Position(mm) graphs for raw signal and cubic interpolation signal	10
3.7	$\operatorname{Power}(\operatorname{mW})$ - $\operatorname{Position}(\operatorname{mm})$ graphs for raw signal and cubic interpolation	
	signal	11
3.8	Power(mW) - Position(mm) graphs for raw signal and cubic interpolation signal	11
3.9	Recording of the same points in steering mirror and depth camera coor-	
	dinate systems	13
3.10	Camera points after the transformation	14
3.11	Rough sensor image	15
3.12	Fine sensor image	15
3.13	Sensor positions (S1, S2, S3), detected sensor positions (M1, M2, M3) and	
	steering mirror position (O) from camera view	17
3.14	Sensor positions (S1, S2, S3), detected sensor positions (M1, M2, M3) and	
	steering mirror position (O) from top view	17

Tabellenverzeichnis

2.1	Amateurfunkbander (Auswahl)	5
3.1	Distance between mirror and target plane is set to 410mm. Actual distance	
	between mirror and target plane is 425mm	18
3.2	Distance between mirror and target plane is set to 425mm. Actual distance	
	between mirror and target plane is 425mm	19
3.3	Distance between mirror and target plane is set to 210mm. Actual distance	
	between mirror and target plane is 225mm	20
3.4	Distance between mirror and target plane is set to 225mm. Actual distance	
	between mirror and target plane is 225mm	21

Literaturverzeichnis

- [1] FINKENZELLER, K.: RFID-Handbuch: Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC. 7. Auflage. Carl Hanser Verlag GmbH & Company KG, 2015
- [2] Tietze, U.; Schenk, C.; Gramm, E.: *Halbleiter-Schaltungstechnik*. 13. Auflage. Springer-Verlag Berlin Heidelberg, 2010