# Non-Greenhouse Gas Emissions Estimates Across Sectors

Gary Collins<sup>1,3</sup>, Michael Robinette<sup>1,3</sup>, Lekha Sridhar<sup>2,3</sup>, Elizabeth Reilly<sup>1,3</sup>, and Marisa Hughes<sup>1,3</sup>



2) WattTime, 3) Climate TRACE



#### 1. Introduction

The World Health Organization (WHO) estimates that globally 6.7 million premature deaths annually are caused by poor air quality, with 4.2 million of those deaths caused by ambient outdoor air pollution [1]. Whereas the impacts from releasing greenhouse gasses (GHGs) are long term, air pollution can have both long-term and immediate impacts on the health of individuals and communities. Further, anthropogenic sources of air pollutants are also an issue of climate justice as the impacts of air pollution are disproportionately felt by poorer, disadvantaged communities and the Global South.

Currently there are gaps in the knowledge of the sources and magnitude of ambient air pollution, and these gaps are a major impediment to addressing critical health and environmental problems. While there are many datasets that focus on air pollution used by researchers, there is no air pollution dataset that has facility-specific emissions, global coverage, and high recency. These characteristics are necessary for direct accountability of polluters, for policy and decision-makers to regulate pollutants and improve public health more efficiently, and for activists to direct action effectively. This document describes Climate TRACE's initial efforts to fill this gap by applying their knowledge of and approaches for estimating greenhouse gas sources to air pollution.

## 2. Data and Methods

#### 2.1. Overview

Estimates of emissions that take a bottom-up approach (where emissions are estimated by accounting for different consumption, energy-demand, and other activities) often lack facility-level specificity that is required for identifying polluters and holding them accountable. This includes the high-quality Emissions Dataset for Atmospheric Research (EDGAR) and the mosaic Community Emissions Data System (CEDS) which use sophisticated and granular approaches to estimating emissions and mitigation approaches for country-level emissions estimates but rely on proxies for distributing emissions spatially [2,3,4]. While these approaches are highly useful for atmospheric modeling, they ultimately lack facility-level information.

A Tier 0 non-greenhouse gas (non-GHG) emissions estimation approach was developed and applied to Climate TRACE asset-level data that leveraged country-level mitigation and reduction

estimates from CEDS and EDGAR non-GHG datasets. The approach assumes a linear relationship between emissions of GHGs and non-GHGs, i.e. for every X tonnes of greenhouse gas emitted, Y tonnes of pollutant is emitted. These ratios are estimated at a country-sector-fuel level, and then applied across Climate TRACE assets – essentially utilizing CEDS/EDGAR emissions estimates but rescaled and distributed based on Climate TRACE data.

Overall, these estimates are considered Tier 0, as facilities within countries do not differ in terms of mitigation and reduction approaches; however, as Climate TRACE's effort in air quality continues, it is expected many parts of this dataset will be replaced with higher quality estimates.

#### 2.2. **Data**

CEDS air pollution emissions estimates are primarily used for predicting the air pollution emissions for Climate TRACE assets. A mapping of CEDS sectors (which are IPCC code-based) and Climate TRACE sectors is needed for making this estimate and is shown in Table 2 in Supplementary Materials. In addition, as CEDS and EDGAR only estimate emissions up to 2022, forward filling is used for any date after.

Countries are matched according to ISO3 codes. CEDS does not provide estimates for 31 countries/territories that are available in Climate TRACE. Many of these are small island nations or territories, so proxy estimates are provided based on similar nearby countries or sovereign states (see Table 3 in the supplemental).

Three sectors in CEDS data (International Shipping, International Aviation, Domestic Aviation) are not provided for each country. Instead, these are provided as "Global" aggregates. To generate country-level emissions estimates, emissions values for these sectors are duplicated for all countries before merging with Climate TRACE data.

### 2.3. Estimation Approach

The Climate TRACE approach to estimating GHGs is based on the IPCC methodologies where an activity measurement is used in conjunction with an emissions factor (*EF*) for a given gas in order to determine the amount of emissions produced, expressed for an individual facility/asset *a* by,

$$EM_{a,g} = A_a \cdot EF_{a,g}$$
 (Eq. 1),

where  $EM_{a,g}$  is the emission for an asset for a given pollutant g, which is similar to the approach taken by EDGAR and CEDS for estimating GHGs. Given that this mirrors the approach used by EDGAR and CEDS, Climate TRACE similarly modifies Equation 1 to predict emissions from air pollution,

$$EM_{jg} = A_a \cdot \widetilde{EF}_{a,g}$$
 (Eq. 2),

where  $\widetilde{EF}_{a,g}$  is a modified emissions factor, which comprises the emissions of the pollutant and any mitigation approaches used.

Although these modifications are simple, the size, availability, and heterogeneity of information that needs to be collected at a facility-level poses a challenge for producing emissions estimates. So preliminary emissions factors were estimated by using EDGAR and CEDS country-level GHG and non-GHG emissions estimates. EDGAR and CEDS produce non-GHG emissions estimates by using county-level economic and technology information, and hence using their estimates would allow for the creation of consummate Climate TRACE non-GHG estimates that are consistent with the other existing inventories.

For a given pollutant g, the country-level emissions factor was determined by the ratio of its emissions to the  $CO_2$  equivalent ( $CO_2$ eq) emissions between Climate TRACE and the comparison inventory, disaggregated by sector s and fuel f. This is expressed for country c by,

$$EM_{c,g,s,f,ClimateTRACE} = EM_{c,g,s,f,CEDS} \cdot (EM_{c,CO2eq,s,f,ClimateTRACE} / EM_{c,CO2eq,s,f,CEDS})$$
 (Eq. 3),

Dividing this estimation of the total country-level air pollution by the sum of the activity yields a constant emissions factor, defined by

$$\widetilde{EF}_{c, a, g, f} = EM_{c, g, s, f, ClimateTRACE} / \Sigma A_{c, s, f, ClimateTRACE}$$
 (Eq. 4),

The outcome of this approach, although having uniform emissions factors across all facilities from the same sector and using the same fuel, is that the estimated  $EM_{c,g,s,f,ClimateTRACE}$  is conserved and distributed based on facility-level activity and location directly as opposed to spatial proxies. In addition, the use of  $CO_2$  equivalent – a weighted sum of GHG species based on their heat absorption compared to  $CO_2$  – allows for this analysis to be applied to sectors where different GHG species are dominant and others are negligible.

Carbon monoxide (CO), ammonia (NH<sub>3</sub>), non-methane volatile organic compounds (NMVOC), nitrogen oxides (NOx), sulfur dioxide (SO<sub>2</sub>), and speciated components of PM<sub>2.5</sub> that are byproducts of combustion – black carbon (BC) and organic carbon (OC) – were estimated in this manner and for most anthropogenic sectors. PM<sub>2.5</sub> itself is computed for several sectors; however, complete sector coverage for PM<sub>2.5</sub> is on-going.

CEDS was used for most sectors; however, an additional conversion step was needed to produce  $PM_{2.5}$  as CEDS only provided the speciated BC and OC. We assume that the mitigation of BC was as equally effective for mitigating  $PM_{2.5}$  since BC is a subspecies of  $PM_{2.5}$ . Thus, a conversion of CEDS BC emissions to  $PM_{2.5}$  emissions can be made with,

$$Em_{c, PM2.5, s,f, CEDS} = \rho_{BC} \cdot Em_{c, BC, s,f, CEDS}$$
, (Eq. 5),

where  $\rho_{BC} = \frac{1}{\% of PM2.5 that is BC}$ . The value of  $\rho_{BC}$  is computed for most sectors with the EMEP/EEA Air Pollutant Emission Inventory Guidebook [5], with the only exception being aviation where EPA Smartway is used [6].

The PM<sub>2.5</sub> from a handful of sectors were computed with Equations 3 and 4 but using EDGAR air pollutant emissions estimates instead of CEDS: enteric fermentation, manure management, rice cultivation, and solid waste disposal. These sectors produce PM<sub>2.5</sub> with non-combustion emissions, and hence BC emissions are negligible and not computed by CEDS.

Most industrial sectors are also impacted by CEDS only producing combustion based PM<sub>2.5</sub> emissions as their estimates only reflect the emissions from fuel use and not the underlying industrial process. EDGAR does provide non-combustion related PM<sub>2.5</sub> for many of these sectors; however, in order to properly estimate PM<sub>2.5</sub> emissions using Equation 3, fuel and process GHG emissions needed to be disaggregated in Climate TRACE. This is only the case for cement, and hence emissions for coal mining and manufacturing of paper and pulp, chemicals, aluminum, and petrochemicals are only "partial" estimates containing only the PM<sub>2.5</sub> from fuel use.

Cement PM<sub>2.5</sub> emissions utilize both CEDS and EDGAR to produce emissions estimates for fuel and non-combustion emissions. This is performed with a modified version of Equation 3 which is combined with Equation 5, yielding

$$Em_{c,PM, cement,CT} = \rho_{BC} \left( \frac{Em_{c,BC, cement,f, CEDS}}{Em_{c,CO2e, cement,f, CEDS}} \cdot Em_{c,CT, CO2e, s,f} \right) + \frac{Em_{c,PM, cement,process, EDGAR}}{Em_{c,CO2e, cement, process, EDGAR}} \cdot Em_{c,CO2e, cement,process, CT}$$
(Eq. 6).

For emissions from open waste-burning, the global median of the emissions ratio in Equation 3 is used instead of a country-by-country approach. At a country-level, this value for Portugal and Spain is 4 orders of magnitude larger than the median which is caused by relatively small CO<sub>2</sub>e estimates but nominal-sized non-GHG estimates. This may be potentially erroneous, and the impact of using the country-level CEDS values is that the Climate TRACE CO estimates are 5 times larger globally, with 80% of emissions arising from these countries. The rationale for using the median is that it is expected that mitigation of open burning likely does not vary much country-by-country, nor does not the composition of waste.

Finally, certain sectors have already begun to produce non-GHG estimates: road transportation, shipping, and electricity generation. These replace estimates produced here. A matrix of sectors and approach for emissions estimates for each gas is shown in Table 4 in the supplement. In all, non-GHGs emissions estimates are provided from 2021 to 2024.

## 2.4. Uncertainty & Confidence

Uncertainty analysis was not performed for this initial development of air quality datasets; however, as the dataset matures, uncertainty of activity for sectors will be incorporated with the uncertainty of emissions factors and mitigation approaches. As UQ was not performed and country-level mitigation and reduction technologies are considered constant across facilities, the confidence of these estimates are considered *Very Low*.

#### 3. Results

The total asset-level emissions estimate for each species predicted is in Table 1 as well as a comparison to CEDS and EDGAR global non-GHG emissions. Comparatively, the order of magnitude of Climate TRACE non-GHG emissions estimates is fairly aligned with the comparable inventories for most gasses. EDGAR and CEDS substantially differ on global emissions estimates for SO<sub>2</sub> and OC, with Climate TRACE naturally aligning more with the latter. The largest noticeable differences of the remaining gasses are NO<sub>x</sub> and PM<sub>2.5</sub>. The difference in NO<sub>x</sub> estimates is due to the provision of NO<sub>x</sub> estimates from the Climate TRACE leads for road transportation, shipping, and electricity generation as the NO<sub>x</sub> estimates are 114 MT if these supplemented estimates are not used. The lack of sectoral coverage is the cause of the smaller PM estimates.

**Table 1.** Global emissions estimate for each species per inventory.

| Species           | Climate TRACE (MT) | CEDS<br>(MT) | EDGAR<br>(MT) |
|-------------------|--------------------|--------------|---------------|
| ВС                | 6.8                | 5.3          | 4.7           |
| СО                | 563                | 425          | 450           |
| NH <sub>3</sub>   | 46                 | 64           | 57.3          |
| NMVOC             | 151                | 134          | 138           |
| $NO_X$            | 91                 | 113          | 110           |
| OC                | 16                 | 13           | 93            |
| $SO_2$            | 84                 | 73           | 37            |
| PM <sub>2.5</sub> | 33                 | N/A          | 58            |

A sector-to-sector, country-to-country comparison to CEDS/EDGAR is shown in Figure 1. Emissions quantities between Climate TRACE and the comparison inventory are correlated; however, deviations occur with differences in estimated CO2 equivalents.



**Figure 1.** Country-to-country, sector-to-sector comparison between Climate TRACE and the comparable inventory emissions for 2022. CEDS is the comparison inventory for most gases, with the only exception being  $PM_{2.5}$ . Each dot represents a country and a sector, and while Climate TRACE and the comparison inventory are correlated, differences arise from differences in  $CO_2$  equivalent estimates. See Figures 4 and 5 for a country and sector breakdown of non-GHG emissions.

 $SO_2$  is a significantly impactful pollutant on both the environment and human health, and hence understanding the sources of  $SO_2$  is important for reducing its impact. As shown by Figure 2,  $SO_2$  emissions are dominated by countries with large energy demand and where coal use is prevalent. When broken down by industry, industrial sectors and power dominate the emissions, as shown by Figure 3. Country-level and sector-level comparisons of the remaining gasses are in the Supplement section shown in Figures 4 and 5.



Figure 2. Top ten countries with the largest SO<sub>2</sub> emissions in 2022.



**Figure 3.** All sources of  $SO_2$  that are estimated and non-zero. The largest sources of  $SO_2$  pollution are from the metal (primarily from fuel use) and energy industry in 2022.

### 4. Conclusions

Climate TRACE has heretofore primarily focused on greenhouse gas emissions estimation and advanced the field of bottom-up inventories by providing precise location estimates for sources

of emissions. These sources of greenhouse gas emissions are often also sources of air pollution, and knowledge of the precise location of sources of air pollution can provide insight for decision-makers, scientists, activists alike. Hence, the data approach described here is the first steps into non-greenhouse gas emissions modeling by Climate TRACE.

The air pollution signatures of a region are heavily affected by regulation, and to incorporate regulatory effects into emissions estimates, this model leverages emissions estimate ratios at a country-sector-fuel level from EDGAR and CEDS which have already performed a country-by-country analysis of pollution reduction and mitigation trends. Overall, these emissions estimates align well with these inventories with differences arising from disparate CO<sub>2</sub> equivalent emissions.

However, there are many limitations of this dataset that should be noted. First, this dataset does not have complete sector coverage of PM, which significantly impacts human health. In the future, Climate TRACE intends to fill this gap. Second, emissions estimates are aligned at a country-sector level, which essentially assumes a linear relationship between emissions of GHGs and non-GHGs for each facility at that level. This is likely not true, and a planned higher tier estimate intends to incorporate facility-level differences in mitigation technology. Lastly, many large sources of air pollution are non-anthropogenic, like forest fires, which are not estimated here; however, future versions of this dataset intend to include more natural sources of emissions in addition to anthropogenic.

## 5. Acknowledgements

Thank you to Lekha Sridhar, Ting So, and Gavin McCormick for their guidance in this work and networking results for use by the Carnegie Mellon CREATE Lab for pollution modeling, and thank you to Zoheyr Doctor, Dan Moore, and Krsna Raniga for their assistance in quality control.

## 6. Supplementary Materials

**Table 2.** Mapping of Climate TRACE sectors to CEDS sectors.

| Comparison Sector                           | Comparison Subsector   | Climate TRACE Sectors                     | CEDS Sectors                                              |
|---------------------------------------------|------------------------|-------------------------------------------|-----------------------------------------------------------|
| Energy Industries and<br>Fugitive Emissions | Electricity Generation | electricity-generation                    | 1A1a_Electricity-autoproducer,<br>1A1a_Electricity-public |
| Energy Industries and<br>Fugitive Emissions | Heat Plants            | heat-plants                               | 1A1a_Heat-production                                      |
| Energy Industries and<br>Fugitive Emissions | Other Energy Use       | oil-and-gas-refining,<br>other-energy-use | 1A1bc_Other-transformation,<br>1A5_Other-unspecified      |

| Comparison Sector                           | Comparison Subsector                       | Climate TRACE Sectors                                                                              | CEDS Sectors                                                                                                 |
|---------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Energy Industries and Fugitive Emissions    | Solid Fuels                                | coal-mining,<br>solid-fuel-transformation                                                          | 1B1_Fugitive-solid-fuels                                                                                     |
| Energy Industries and<br>Fugitive Emissions | Oil and Gas<br>Production and<br>Transport | oil-and-gas-production,<br>oil-and-gas-transport                                                   | 1B2_Fugitive-petr,<br>1B2b_Fugitive-NG-prod                                                                  |
| Energy Industries and<br>Fugitive Emissions | Other Fossil Fuel<br>Operations            | other-fossil-fuel-operation<br>s                                                                   | 1B2d_Fugitive-other-energy,<br>1B2b_Fugitive-NG-distr                                                        |
| Manufacturing and Industrial Processes      | Cement                                     | cement                                                                                             | 2A1_Cement-production                                                                                        |
| Manufacturing and Industrial Processes      | Metal Industry                             | iron-and-steel                                                                                     | 1A2a_Ind-Comb-Iron-steel,<br>2C1_Iron-steel-alloy-prod                                                       |
| Manufacturing and Industrial Processes      | Metal Industry                             | aluminum, other-metals                                                                             | 1A2b_Ind-Comb-Non-ferrous-metals,<br>2C3_Aluminum-production,<br>2C4_Non-Ferrous-other-metals                |
| Manufacturing and Industrial Processes      | Chemicals                                  | chemicals,<br>petrochemical-steam-crac<br>king, other-chemicals                                    | 1A2c_Ind-Comb-Chemicals,<br>2B_Chemical-industry,<br>2B2_Chemicals-Nitric-acid,<br>2B3_Chemicals-Adipic-acid |
| Manufacturing and Industrial Processes      | Pulp and Paper                             | pulp-and-paper                                                                                     | 1A2d_Ind-Comb-Pulp-paper                                                                                     |
| Manufacturing and Industrial Processes      | Mining and Quarrying                       | sand-quarrying, rock-quarrying, bauxite-mining, iron-mining, copper-mining, other-mining-quarrying | 1A2g_Ind-Comb-mining-quarying                                                                                |
| Manufacturing and Industrial Processes      | Food Beverage and Tobacco                  | food-beverage-tobacco                                                                              | 1A2e_Ind-Comb-Food-tobacco                                                                                   |
| Manufacturing and Industrial Processes      | Textiles Leather and Apparel               | textiles-leather-apparel                                                                           | 1A2g_Ind-Comb-textile-leather                                                                                |
| Manufacturing and Industrial Processes      | Wood and Wood<br>Products                  | wood-and-wood-products                                                                             | 1A2g_Ind-Comb-wood-products                                                                                  |
| Manufacturing and Industrial Processes      | Lime                                       | lime                                                                                               | 2A2_Lime-production                                                                                          |
| Manufacturing and Industrial Processes      | Glass                                      | glass                                                                                              | 2Ax_Other-minerals                                                                                           |

| Comparison Sector                      | Comparison Subsector                                    | Climate TRACE Sectors                                                                                                | CEDS Sectors                                                                                                                                                                                                                                                                                    |  |  |  |  |
|----------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Manufacturing and Industrial Processes | Other Manufacturing                                     | other-manufacturing,<br>fluorinated-gases                                                                            | 1A2f_Ind-Comb-Non-metalic-minerals, 1A2g_Ind-Comb-Construction, 1A2g_Ind-Comb-machinery, 1A2g_Ind-Comb-other, 1A2g_Ind-Comb-transpequip, 2D_Chemical-products-manufacture-pro cessing, 2D_Degreasing-Cleaning, 2D_Other-product-use, 2D_Paint-application, 2H_Pulp-and-paper-food-beverage-wood |  |  |  |  |
| Transport                              | Domestic Aviation                                       | domestic-aviation                                                                                                    | 1A3aii_Domestic-aviation                                                                                                                                                                                                                                                                        |  |  |  |  |
| Transport                              | International Aviation                                  | international-aviation                                                                                               | 1A3ai_International-aviation                                                                                                                                                                                                                                                                    |  |  |  |  |
| Transport                              | Domestic Shipping                                       | domestic-shipping                                                                                                    | 1A3dii_Domestic-navigation                                                                                                                                                                                                                                                                      |  |  |  |  |
| Transport                              | International Shipping                                  | international-shipping                                                                                               | 1A3di_International-shipping,<br>1A3di_Oil_Tanker_Loading                                                                                                                                                                                                                                       |  |  |  |  |
| Transport                              | Road Transportation                                     | road-transportation                                                                                                  | 1A3b_Road                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Transport                              | Railways                                                | railways                                                                                                             | 1A3c_Rail                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Transport                              | Other Transport                                         | other-transport                                                                                                      | 1A3eii_Other-transp                                                                                                                                                                                                                                                                             |  |  |  |  |
| Buildings                              | Residential Onsite<br>Fuel Usage                        | residential-onsite-fuel-usa<br>ge                                                                                    | 1A4b_Residential                                                                                                                                                                                                                                                                                |  |  |  |  |
| Buildings                              | Non-Residential<br>Onsite Fuel Usage                    | non-residential-onsite-fuel<br>-usage                                                                                | 1A4a_Commercial-institutional                                                                                                                                                                                                                                                                   |  |  |  |  |
| Buildings                              | Other Onsite Fuel<br>Usage                              | other-onsite-fuel-usage                                                                                              | 1A4c_Agriculture-forestry-fishing                                                                                                                                                                                                                                                               |  |  |  |  |
| Agriculture                            | Enteric Fermentation                                    | enteric-fermentation-cattle<br>-operation,<br>enteric-fermentation-cattle<br>-pasture,<br>enteric-fermentation-other | 3E_Enteric-fermentation                                                                                                                                                                                                                                                                         |  |  |  |  |
| Agriculture                            | Manure Management                                       | manure-management-cattl<br>e-operation,<br>manure-management-othe<br>r,<br>manure-left-on-pasture-ca<br>ttle         | 3B_Manure-management                                                                                                                                                                                                                                                                            |  |  |  |  |
| Agriculture                            | Rice Cultivation                                        | rice-cultivation                                                                                                     | 3D_Rice-Cultivation                                                                                                                                                                                                                                                                             |  |  |  |  |
| Agriculture                            | Direct Nitrogen<br>Emissions from<br>Agricultural Soils | synthetic-fertilizer-applica<br>tion,<br>manure-applied-to-soils,<br>crop-residues,<br>soil-organic-carbon           | 3D_Soil-emissions                                                                                                                                                                                                                                                                               |  |  |  |  |

| Comparison Sector               | Comparison Subsector                                   | Climate TRACE Sectors                                                                                 | CEDS Sectors                                                 |
|---------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Agriculture                     | Other Agriculture                                      | other-agricultural-soil-emi<br>ssions                                                                 | 3I_Agriculture-other,<br>7BC_Indirect-N2O-non-agricultural-N |
| Waste                           | Solid Waste Disposal                                   | solid-waste-disposal                                                                                  | 5A_Solid-waste-disposal                                      |
| Waste                           | Other Waste                                            | biological-treatment-of-so<br>lid-waste-and-biogenic                                                  | 5E_Other-waste-handling                                      |
| Waste                           | Incineration and Open<br>Burning of Waste              | incineration-and-open-bur<br>ning-of-waste                                                            | 5C_Waste-combustion                                          |
| Waste                           | Wastewater Treatment<br>and Discharge                  | industrial-wastewater-trea<br>tment-and-discharge,<br>domestic-wastewater-treat<br>ment-and-discharge | 5D_Wastewater-handling                                       |
| Forestry and Land Use<br>Change | Biomass Burning                                        | forest-land-fires,<br>shrubgrass-fires,<br>wetland-fires,<br>cropland-fires,                          |                                                              |
| Forestry and Land Use<br>Change | Emissions and<br>Removals Excluding<br>Biomass Burning | forest-land-clearing,<br>forest-land-degradation,<br>removals, water-reservoirs                       |                                                              |

**Table 3.** Country proxy used for emissions estimates. As CEDS does not provide emissions estimates for 31 regions, they are mapped to respective proxy countries based on geography, cultural ties, and governmental relationships. Countries mapped to *zero* (UNK) imply that no compatible mapping was needed.

| Country | Proxy<br>Country |
|---------|------------------|
| AIA     | GRB              |
| ALA     | FIN              |
| AND     | FRA              |
| ATA     | zero             |

| Country | Proxy<br>Country |
|---------|------------------|
| MCO     | ITA              |
| MNP     | ASM              |
| MYT     | LKA              |
| NFK     | AUS              |

| ATF | SXM  |
|-----|------|
| BES | SXM  |
| BLM | FRA  |
| BVT | zero |
| CCK | LKA  |
| CXR | LKA  |
| GGY | GBR  |
| HMD | zero |
| IMN | GBR  |
| IOT | GBR  |
| JEY | GBR  |
| MAF | FRA  |
|     |      |

| NRU | ASM  |
|-----|------|
| PCN | AUS  |
| PSE | LBN  |
| SGS | GBR  |
| SHN | GBR  |
| SJM | NOR  |
| SMR | ITA  |
| TUV | ASM  |
| UMI | ASM  |
| VAT | ITA  |
| ZNC | TUR  |
| UNK | zero |

**Table 4.** Method used for estimating emissions. *CEDS/EDGAR* indicates they are CEDS/EDGAR-based, and *Sector Leads* indicate they are estimated by the team that estimates the GHGs of that sector. Green boxes indicate a complete emissions estimate, yellow boxes are for partial estimates, and red boxes are for sectors-gases with no estimates

| Sector Name                                          | ВС   | СО   | NH3  | NMVOC | NOx  | ОС   | SO2  | PM2.5            | PM10             |
|------------------------------------------------------|------|------|------|-------|------|------|------|------------------|------------------|
| aluminum                                             | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS*            | Not<br>Predicted |
| bauxite-mining                                       | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| biological-treatment-of-solid-waste-and<br>-biogenic | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| cement                                               | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | EDGAR            | Not<br>Predicted |
| chemicals                                            | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS*            | Not<br>Predicted |
| coal-mining                                          | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS*            | Not<br>Predicted |
| copper-mining                                        | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| crop-residues                                        | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |

| Sector Name                                    | ВС   | СО              | NH3  | NMVOC           | NOx             | ОС   | SO2             | PM2.5            | PM10             |
|------------------------------------------------|------|-----------------|------|-----------------|-----------------|------|-----------------|------------------|------------------|
| domestic-aviation                              | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | CEDS             | Not<br>Predicted |
| domestic-shipping                              | CEDS | Sector<br>Leads | CEDS | Sector<br>Leads | Sector<br>Leads | CEDS | Sector<br>Leads | Sector<br>Leads  | Sector<br>Leads  |
| domestic-wastewater-treatment-and-dis charge   | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| electricity-generation                         | CEDS | CEDS            | CEDS | CEDS            | Sector<br>Leads | CEDS | Sector<br>Leads | Sector<br>Leads  | Not<br>Predicted |
| enteric-fermentation-cattle-operation          | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| enteric-fermentation-cattle-pasture            | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | EDGAR            | Not<br>Predicted |
| enteric-fermentation-other                     | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | EDGAR            | Not<br>Predicted |
| fluorinated-gases                              | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| food-beverage-tobacco                          | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| glass                                          | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| heat-plants                                    | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| incineration-and-open-burning-of-waste         | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | CEDS             | Not<br>Predicted |
| industrial-wastewater-treatment-and-dis charge | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| international-aviation                         | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | CEDS             | Not<br>Predicted |
| international-shipping                         | CEDS | Sector<br>Leads | CEDS | Sector<br>Leads | Sector<br>Leads | CEDS | Sector<br>Leads | Sector<br>Leads  | Sector<br>Leads  |
| iron-and-steel                                 | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | CEDS             | Not<br>Predicted |
| iron-mining                                    | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | CEDS             | Not<br>Predicted |
| lime                                           | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | Not<br>Predicted | Not<br>Predicted |
| manure-applied-to-soils                        | CEDS | CEDS            | CEDS | CEDS            | CEDS            | CEDS | CEDS            | EDGAR            | Not<br>Predicted |

| Sector Name                        | ВС   | СО   | NH3  | NMVOC | NOx  | ОС   | SO2  | PM2.5            | PM10             |
|------------------------------------|------|------|------|-------|------|------|------|------------------|------------------|
| manure-left-on-pasture-cattle      | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | EDGAR            | Not<br>Predicted |
| manure-management-cattle-operation | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| manure-management-other            | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | EDGAR            | Not<br>Predicted |
| non-residential-onsite-fuel-usage  | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| oil-and-gas-production             | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| oil-and-gas-refining               | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| oil-and-gas-transport              | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| other-agricultural-soil-emissions  | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| other-chemicals                    | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| other-energy-use                   | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| other-fossil-fuel-operations       | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| other-manufacturing                | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| other-metals                       | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| other-mining-quarrying             | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| other-onsite-fuel-usage            | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| other-transport                    | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |
| petrochemical-steam-cracking       | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS*            | Not<br>Predicted |
| pulp-and-paper                     | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS*            | Not<br>Predicted |
| railways                           | CEDS | CEDS | CEDS | CEDS  | CEDS | CEDS | CEDS | CEDS             | Not<br>Predicted |

| Sector Name                      | ВС   | СО              | NH3  | NMVOC | NOx             | ОС   | SO2  | PM2.5            | PM10             |
|----------------------------------|------|-----------------|------|-------|-----------------|------|------|------------------|------------------|
| residential-onsite-fuel-usage    | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | CEDS             | Not<br>Predicted |
| rice-cultivation                 | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | EDGAR            | Not<br>Predicted |
| road-transportation              | CEDS | Sector<br>Leads | CEDS | CEDS  | Sector<br>Leads | CEDS | CEDS | Sector<br>Leads  | Not<br>Predicted |
| rock-quarrying                   | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | CEDS             | Not<br>Predicted |
| sand-quarrying                   | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | CEDS             | Not<br>Predicted |
| soil-organic-carbon              | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | EDGAR            | Not<br>Predicted |
| solid-fuel-transformation        | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | CEDS             | Not<br>Predicted |
| solid-waste-disposal             | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | EDGAR            | Not<br>Predicted |
| synthetic-fertilizer-application | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| textiles-leather-apparel         | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | Not<br>Predicted | Not<br>Predicted |
| wood-and-wood-products           | CEDS | CEDS            | CEDS | CEDS  | CEDS            | CEDS | CEDS | CEDS             | Not<br>Predicted |





Figure 4. Countries with the largest sources of emissions per gas in 2022.







OC Emissions (T)



**Figure 5.** All sources of air-pollution estimated and larger than zero, broken-down by sector and sorted from largest to smallest for year 2022.

**Permissions and Use:** All Climate TRACE data is freely available under the Creative Commons Attribution 4.0 International Public License, unless otherwise noted below.

**Data citation format:** Collins, G., Robinette, M., Sridhar, L., Reilly, E, Hughes, Marisa (2024). *Non-Greenhouse Gas Emissions Estimates Across Sectors.* The Johns Hopkins University Applied Physics Laboratory (JHU/APL), USA, WattTime, USA, Climate TRACE Emissions Inventory. https://climatetrace.org [Accessed date]

Geographic boundaries and names (iso3\_country data attribute): The depiction and use of boundaries, geographic names and related data shown on maps and included in lists, tables, documents, and databases on Climate TRACE are generated from the Global Administrative Areas (GADM) project (Version 4.1 released on 16 July 2022) along with their corresponding ISO3 codes, and with the following adaptations:

- HKG (China, Hong Kong Special Administrative Region) and MAC (China, Macao Special Administrative Region) are reported at GADM level 0 (country/national);
- Kosovo has been assigned the ISO3 code 'XKX';
- XCA (Caspian Sea) has been removed from GADM level 0 and the area assigned to countries based on the extent of their territorial waters;
- XAD (Akrotiri and Dhekelia), XCL (Clipperton Island), XPI (Paracel Islands) and XSP (Spratly Islands) are not included in the Climate TRACE dataset;
- ZNC name changed to 'Turkish Republic of Northern Cyprus' at GADM level 0;
- The borders between India, Pakistan and China have been assigned to these countries based on GADM codes Z01 to Z09.

The above usage is not warranted to be error free and does not imply the expression of any opinion whatsoever on the part of Climate TRACE Coalition and its partners concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its borders

**Disclaimer:** The emissions provided for this sector are our current best estimates of emissions, and we are committed to continually increasing the accuracy of the models on all levels. Please review our terms of use and the sector-specific methodology documentation before using the data. If you identify an error or would like to participate in our data validation process, please contact us.

### 7. References

- [1] World Health Organization, 2021. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
- [2] Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, doi:10.5194/essd-10-1987-2018, 2018.

- [3] Hoesly, R.M., Smith, S.J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J.J., Vu, L., Andres, R.J., Bolt, R.M. and Bond, T.C., 2018. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). *Geoscientific Model Development*, *11*(1), pp.369-408.
- [4] Crippa, M., Guizzardi, D., Pagani, F., Schiavina, M., Melchiorri, M., Pisoni, E., Graziosi, F., Muntean, M., Maes, J., Dijkstra, L. and Van Damme, M., 2023. Insights on the spatial distribution of global, national and sub-national GHG emissions in edgarv8. 0. *Earth System Science Data Discussions*, 2023, pp.1-28.
- [5] European Environment Agency. 2023. EMEP/EEA Air Pollution Emission Inventory Guidebook 2023: Technical Guidance to Prepare National Emission Inventories.
- [6] United State Environmental Protection Agency. 2024. 2024 SmartWay Air Carrier Partner Tool: Technical Documentation. US Version 1.0. EPA-420-B-24-008.