

دانشگاه صنعتی امیر کبیر دانشکده مهندسی کامپیوتر

تمرین چهارم درس «سیگنالها و سیستمها» اساتید درس: دکتر راستی، دکتر آقائیان مهلت تحویل: ۹۹/۹/۱۲

- تمرینات به صورت انفرادی پاسخ داده شوند.
- فایل پاسخ با قالب «HW4_stdNumber.zip» (شامل فایل pdf بخش تئوری و کد قسمت پیادهسازی) بارگذاری شود.
 - از طریق ایمیل زیر میتوانید با تدریسیاران درس در ارتباط باشید:

signalsystem.fall2020@gmail.com

بخش تئوري.

سوال ۱- سیگنال x(t) به صورت یک پالس مربعی متقارن حول مبدا، به عرض x(t) و ارتفاع 1 است.

الف) سیگنال x(t) و سیگنال $\widehat{x}(t)$ که یک سیگنال متناوب حاصل از تکرار x(t) با دوره تناوب اصلی x(t) است را رسم کنید.

 $|\omega| < rac{6\pi}{T_1}$ را در بازهی $|X(\omega)|$ را محاسبه کنید و $|X(\omega)|$ را در بازهی رسم کنید.

 $\widehat{x}(t)$ ضرایب سری فوریه سیگنال $\widehat{x}(t)$ را محاسبه کنید.

ت) با استفاده از دو قسمت قبل نشان دهید برای این سوال رابطه زیر برقرار است.

$$a_k = rac{1}{T_0} X(\omega) \mid_{\omega = rac{2\pi k}{T_0}}$$

ث) با توجه به قسمت قبل توضیح دهید که چگونه سری فوریه یک سیگنال متناوب، از روی تبدیل فوریه این سیگنال در یک دوره تناوب بدست می آید.

سوال ۲- با استفاده از رابطه صریح تبدیل فوریه و یا استفاده از خواص تبدیل فوریه، برای سیگنالهای زیر تبدیل فوریه را محاسبه کنید.

$$(a) \; x(t) = e^{-3|t|} sin(2t)$$

$$(b) \; x(t) = egin{cases} 1 - t & 0 < t < 1 \ 0 & o. \, w. \end{cases}$$

$$(c) \; x(t) = rac{\sin 3t \cdot \cos t}{\pi t}$$

$$(d) \; x(t) = t e^{-2|t-1|}$$

$$(e) \ x(t) = t(\frac{\sin t}{\pi t})^2$$

سوال ۳- عکس تبدیل فوریه سیگنال های زیر را محاسبه کنید.

$$(a) \; X(\omega) = 2\delta(\omega+6)$$

$$(b)~X(\omega)=rac{7j\omega+46}{-\omega^2+13j\omega+42}$$

$$(c) \; X(\omega) = rac{d}{d\omega} (rac{sin2\omega - j \, cos2\omega}{1 + rac{j\omega}{3}})$$

$$(d)~X(\omega)=\pi e^{-3|\omega|}$$

سوال ۴- قطار ضربه زیر را در نظر بگیرید.

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$$

الف) سری فوریه سیگنال p(t) را بیابید.

ب تبدیل فوریه سیگنال p(t) را بیابید.

ی) سیگنال x(t) به صورت زیر است.

سیگنال $\widehat{x}(t)$ را از رابطه زیر بدست آورده و رسم کنید.

$$\hat{x}(t) = x(t) * p(t)$$

توضیح دهید که چرا حاصل کانولوشن سیگنال با قطار ضربه (اگر فاصلهی سیگنال ضربهها کافی باشد)، سیگنالی متناوب است که از تکرار سیگنال اصلی تشکیل شده است.

سوال ۵- در سیستمی که در ادامه آمده است، سیگنالهای $A(j\omega)$, $B(j\omega)$, $C(j\omega)$ و $D(j\omega)$ را به دست آورید.

$$x(t)=rac{sin(\pi t)}{\pi t}$$

$$p(t) = rac{sin(2\pi t)}{\pi t}$$

$$q(t) = cos(3\pi t)$$

$$H(jw)=2u(\omega+3\pi)-2u(\omega-3\pi)$$

$$r(t) = rac{sin(\pi t)}{\pi t}$$

سوال ۶- پاسخ فرکانسی یک سیستم LTI پایدار به صورت زیر است :

$$H(j\omega)=rac{j\omega+2}{6-\omega^2+5j\omega}$$

الف) یک معادله دیفرانسیل که رابطه ورودی و خروجی این سیستم را مشخص میکند، بنویسید.

ب) پاسخ ضربه را برای این سیستم بدست آورید.

. بیابید $x(t) = (1-t)e^{-4t}u(t)$ ورودی $y(t) = (1-t)e^{-4t}$ بیابید

ث) خروجی $x_1(t) = e^{2t}$ را به ازای $y_1(t)$ بیابید.

سوال ۷- یک سیستم LTI با سکون ابتدایی با معادله دیفرانسیل زیر توصیف شده است:

$$rac{d^2y(t)}{dt^2} + 6rac{dy(t)}{dt} + 9y(t) = rac{d^2x(t)}{dt^2} + 3rac{dx(t)}{dt} + 2x(t)$$

الف) پاسخ ضربه این سیستم را بیابید.

ب) فرض کنید که وارون این سیستم نیز دارای سکون ابتدایی است و با یک معادله دیفرانسیل توصیف می شود. این معادله دیفرانسیل را بیابید.

پ) پاسخ ضربه این سیستم وارون را بدست آورید.

ىيادەسازى.

در بخش پیادهسازی قصد داریم که کد مخفی شده در حوزه فرکانس تعدادی فایل صوتی را کشف کنیم. به این منظور باید:

- فایل صوتی مربوطه را بخوانیم.
- با استفاده از توابع مناسب، دادههای مربوط به حوزه فرکانس را استخراج کنیم.
- در نمونههای قرار گرفته شده، کد مخفی درون ناحیه فرکانسی از فرکانس ۳۰۰ کیلوهرتز آغاز می شود.
- این کد با بازنمایی باینری در ناحیه طیفی سیگنال گنجانده شده است. دقت کنید که اندازهی کد ۴۴ بیت است.
- هر عدد ۸ بیتی نمایشگر یک کاراکتر ASCII است، پس کافی است که عدد باینری ۸ بیتی را به عدد دهدهی متناظر تبدیل کنید. این عدد خانهی کاراکتر مربوطه را در جدول ASCII نشان می دهد.
 - رشتهی ۸ کاراکتری حاصل را گزارش کنید.
 - این کار را به ازای همهی فایلهای صوتی که در اختیارتان قرار گرفته، تکرار کنید.

به سوالات زير پاسخ دهيد:

۱. چرا ناحیه انتخاب شده برای قرار دادن کد، از ناحیه ۳۰۰ کیلوهرتز آغاز شده است؟

 ۲. به نظر شما روش فوق چه کاربردهایی می تواند داشته باشد؟ مزایا و معایب این روش را شرح دهید.

شما باید علاوه بر کد پیادهسازی شده، در قالب گزارشی عکس سیگنال های صوتی هم در ناحیه زمان و هم در ناحیه فرکانس، کد کشفشده مربوط به هر سیگنال و پاسخ سوالات را ضمیمه کنید.