Medical Image Seminar

Yicheng Jiang CUHK, Shenzhen May 27, 2020

Paper Information

TITLE

Semi-supervised Breast Lesion Detection In Ultrasound Video Based On Temporal Coherence

Authors

Sihong Chen1, Weiping Yu*2, Kai Ma1, Xinlong Sun3, Xiaona Lin4, Desheng Sun4 and Yefeng Zheng11

¹Tencent YouTu X-Lab, Shenzhen, China ²School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China ³Tsinghua University, Shenzhen, China ⁴Peking University Shenzhen Hospital, Shenzhen, China

Problem

Target

Detect breast lesions in ultrasound video

Difficulties

- 1. The lesion boundary is blurry in some frames
- 2. High similarity to the background of soft tissues and shadow artifacts result in failure detection of lesions
- 3. There is only 2D image annotations because sonographers commonly save and label the key frames only. Labeled video data is lack.

Problem

Target & Challenges

Figure 1: The challenging cases in breast lesion video detection. (a) Blurry boundaries; (b) High similarity to background; (c) Our proposed method on challenging samples

- STCD (Semi-supervised Temporal Coherent Detection)
- Contributions:
- 1. STCD offers a semi-supervised solution to train a network with unlabeled video data and a different set of labeled images.
- 2. STCD improves breast lesion detection accuracy by automatically analyzing the temporal relationship across frames
- 3. Due to the sparse distribution of key frames in the video, most of the video frames are processed by the proposed efficient MotionNet and WarpNet, which help the network achieve real-time performance.

STCD (Semi-supervised Temporal Coherent Detection)

Figure 2: STCD Workflow

- STCD (Semi-supervised Temporal Coherent Detection)
- Training Strategy

Figure 3: Semi-supervised Training of STCD

- STCD (Semi-supervised Temporal Coherent Detection)
- Training Strategy
- Loss:
- Feature loss L_{feat} to measure correlation between F_{k→i} and F_i (Not Given)
- L_{dec} to achieve adaptive key-frame scheduling mechanism

$$Q_{k\to i} = \frac{\sum (F_{k\to i}(p) - F_i(p))^2}{N_p}$$

$$L_{dec} = (Q_{k \to i} - S_i)^2.$$

Data

- 5,608 labeled breast lesion ultrasound images for training detection network
- 80 unlabeled sequences and 10 labeled sequences (from 90 patients, where each video sequence contains 105 to 188 frames)
- Randomly Select 1/3 frames of the unlabeled training sequences as the key frames.
- Each of the above key frames is paired with a non-key frame in 20 adjacent frames.
- Form 59,962 training pairs
- 10 labeled sequences are used to be the test set

STCD is effective

Figure 4: Breast lesion detection results of RetinaNet and the proposed STCD method

Figure 5: Effectiveness of Unlabeled Data

MotionNet and WarpNet is efficient : Faster and More Accurate

Table 1: Performance of STCT with different backbones for breast lesion detection on the test set of ultrasound videos

Method	Backbone	mAP(%)	GPU Runtime (ms)	CPU Runtime (ms)
YOLOV3 [7]	DarkNet	80.6	25	1071
YOLOV3 (STCD)	DarkNet	81.8	19	630
RetinaNet [6]	ResNet-50	82.0	23	913
RetinaNet (STCD)	ResNet-50	86.0	16	540
RetinaNet [6]	ResNet-101	85.4	28	1161
RetinaNet (STCD)	ResNet-101	89.9	17	577
RetinaNet [6]	ResNet-152	86.6	32	1548
RetinaNet (STCD)	ResNet-152	91.3	19	619

Ablation Study

Figure 6: Accuracy (mAP) and runtime of breast lesion detection under different threshold τ for key frame decision

Figure 7: Accuracy (mAP) and runtime of (a) different key-frame scheduling; (b) different MotionNet architectures under different threshold τ for key frame decision

Paper Information

TITLE

Semi-supervised Segmentation of Lesion from Breast Ultrasound Images with Attentional Generative Adversarial Network

Authors

Luyi Han^a, Yunzhi Huang^{a,b,*}, Haoran Dou^c, Shuai Wang^d, Sahar Ahamad^d, Honghao Luo^e, Qi Liu^a, Jingfan Fan^f, Jiang Zhang^a

^a College of Electrical Engineering, Sichuan University, Chengdu 610065, China

b Department of Biomedical Engineering, Sichuan University, Chengdu 610065, China

^c National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China

^d Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA

e Department of Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, China

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

Problem

Target

Automatic segmentation of breast lesion

 Large-scale breast ultrasound (BUS) images remain unannotated and need to be effectively explored to improve the segmentation quality

BUS-GAN

Fig. 2. Overview of the dual-attentive GAN-based semi-supervised segmentation network.

BUS-GAN (Detail-Architecture)

Fig. 3. The architecture of the BUS-S network and BUS-E network.

BUS-GAN (Detail-Architecture)

Fig. 4. Illustration of the dual-attentive-fusion block.

Loss:

$$\ell_S = \ell_{seg} + \lambda_{adv} \cdot \ell_{adv} \tag{1}$$

$$\ell_{seg}(X_a, Y_a; \theta_S) = \ell_{dce}(Seg(X_a), Y_a) + \ell_{bce}(Seg(X_a), Y_a)$$
 (2)

$$\mathfrak{l}_{adv}(X_a, X_u; \theta_S) = \lambda_a \cdot \mathfrak{l}_{bce}(Eva(X_a, Seg(X_a)), 1)
+ \lambda_u \cdot \mathfrak{l}_{bce}(Eva(X_u, Seg(X_u)), 1)$$
(3)

$$\ell_{E}(X_{a}, X_{u}, Y_{a}; \theta_{E})$$

$$= \ell_{bce}(Eva(X_{a}, Y_{a}), 1) + \lambda_{a} \cdot \ell_{bce}(Eva(X_{u}, Seg(X_{u})), 0)$$

$$+ \lambda_{u} \cdot \ell_{bce}(Eva(X_{u}, Seg(X_{u})), 0)$$
(4)

Data

Table 1
Diagnosis for the in-house dataset.

	Biopsy Results	Trai	ning	Testing	Total	
		Anno.	Unan.			
	Fibroadenomas	17	340	155		
	Adenosis of Breast	14	255	117		
Danian	Adenosis with Fibroadenoma Formation of Breast	16	311	87	1400	
Benign	Sclerosing Adenosis	1	22	10	1400	
	Intraductal Papillary Neoplasms	1	12	6		
	Granulomatous Mastitis	1	24	11		
	Invasive Ductal Carcinoma	47	867	384		
Malignant	Ductal Carcinoma in Situ	2	46	21	1400	
_	Invasive Lobular Carcinoma	1	23	9		
	Total	100	1900	800	2800	

Semi- is effective

Table 2
Testing results of the BUS-GAN model by training with a fixed number of annotated images and a variable number of unannotated images. The segmentation results of the testing data are evaluated in terms of area overlap and boundary error. (Dataset A: in-house testing dataset, Dataset B: public testing dataset).

#images involved		Area Overlap							Boundary Error				
		DSC (%)		JI (%)		Precision (%)		HD (pixels)		AvgD (pixels)			
Anno.	Unanno.	Dataset A	Dataset B	Dataset A	Dataset B								
100	103	84,31 (8,482)	79.08 (11.25)	74.01 (11.18)	67.68 (15,17)	83.85 (12.83)	78.44 (16.52)	25.87 (18.49)	33.19 (34.42)	6,105 (5,182)	9.264 (13.28)		
100	500	85.37 (7.726)	79.25 (10.86)	75.75 (10.90)	67.67 (15.21)	84.65 (11.33)	78.38 (16.23)	24.60 (17.87)	32.96 (33.82)	5,940 (5,068)	9.201 (13.39)		
100	1000	86,50 (6,710)	79.53 (10.80)	76.51 (9.837)	67.89 (15.03)	85,63 (11.46)	78.42 (16.02)	24.43 (16.16)	32.65 (32.53)	5.872 (5.641)	9.126 (12.91)		
100	1500	86.75 (6.383)	79.75 (10.35)	76.80 (9.023)	68.00 (14.87)	86.02 (11.24)	78.50 (15.76)	24.37 (16.54)	32.23 (31.74)	5,806 (5,650)	9.098 (12.44)		
100	1900	87.12 (5.650)	79.82 (10.38)	77.62 (8.642)	68.03 (14.98)	86.38 (10.79)	78.58 (15.95)	23.61 (15.76)	32.15 (31.85)	5,364 (4,902)	9.089 (12.55)		

Comparison with other methods

Comparison with other methods

Table 3

Comparison between the proposed BUS-GAN and other semi-supervised learning methods with five evaluation metrics, including DSC, JI, Precision, HD, and AvgD, (Dataset A: in-house testing dataset, Dataset B: public testing dataset).

Methods	Area Overlap	Area Overlap							Boundary Error				
	DSC (%)		JI (%)		Precision (%)		HD (pixels)		AvgD (pixels)				
	Dataset A	Dataset B	Dataset A	Dataset B									
Feng [23]	83,06 (8.620)	76.37 (15.64)	72.89 (11.86)	65.72 (19.94)	82.85 (13.49)	76.88 (17.39)	28.79 (18.99)	34.98 (32.79)	7.150 (6.252)	9,328 (14,68)			
ASDNet [22]	85.00 (7.544)	77.50 (14.67)	74.78 (11.71)	66.89 (16.32)	84.08 (12.56)	77.22 (16.88)	26.03 (18.48)	33.68 (33.84)	6.729 (5.519)	9.749 (14.59)			
DAN [21]	85.20 (7.331)	77.62 (11.77)	75.42 (10.51)	67.13 (17.62)	84.28 (11.52)	77.54 (16.43)	25.51 (18.33)	34.06 (33.52)	5,894 (6,123)	9.857 (14.84)			
Proposed	87.12 (5.650)	79.82 (10.38)	77.62 (8.642)	68.03 (14.98)	86.38 (10.79)	78.58 (15.95)	23.61 (15.76)	32.15 (31.85)	5.364 (4.902)	9.089 (12.55)			

Ablation Study

 Table 4

 Quantitative analysis of segmentation performance from different settings of the proposed BUS-CAN. (Dataset A: in-house testing dataset, Dataset B: public testing dataset).

Backbone		+Semi-	+Attention	Area Overlap						Boundary Error				
				DSC (%)		JI (X)		Precision (%)		HD (pixels)		AvgD (pixels)		
				Dataset A	Dataset B	Dataset A	Dataset B	Dataset A	Dataset B	Dataset A	Dataset B	Dataset A	Dataset B	
BUS-S				83.11 (9.094)	77,81 (13,36)	72.44 (11,90)	67,54 (15.26)	79,55 (13,33)	77,94 (16,68)	29,32 (19,52)	34,25 (34.52)	6,894 (5.914)	9,989 (14,56)	
	J			83.45 (9.102)	78.97 (12.02)	72.67 (12.08)	67.67 (15.65)	83.34 (13.48)	77.34 (17.41)	28.92 (19.02)	33.92 (35.36)	6.687 (6.256)	9.613 (15.25)	
	√		√	83.88 (9.010)	78,94 (11,10)	73.01 (10,80)	67,49 (15.35)	84,55 (13,73)	78,55 (16,39)	28,32 (18,88)	33,32 (34.08)	6,254 (5,953)	9,258 (13,93)	
	J	J		85.75 (8.255)	79.32 (11.55)	75.87 (11.37)	67.98 (15.17)	82.72 (12.73)	78.32 (16.71)	26.28 (18.65)	33.01 (33.65)	5.977 (5.914)	$9.123\ (13.94)$	
	√	√	√	87.12 (5.650)	79.82 (10.38)	77.62 (8.642)	68.03 (14.98)	86.38 (10.79)	78,58 (15,95)	23.61 (15.76)	32.15 (31.85)	5.364 (4.902)	9.089 (12.55)	

Ablation Study

Fig. 6. Sample cases resulted from experiments by adding different elements listed in Table 4. From the first to the fifth column, each column exhibits the predicted contours from experiment "Backbone (BUS-S)", "BUS-S + BUS-E", "BUS-S + Attention", "BUS-S + BUS-E + Semi-", "BUS-S + BUS-E + Semi-+Attention", respectively, Case1 and Case2 derived from the in-house testing dataset and Case3 resulted from the public dataset,

Effectiveness of the segmentation backbone

Table 5
Accuracy comparison between the backbone BUS-S and other fully supervised learning-based methods with five evaluation metrics, including DSC, JI. Precision. HD. and AvgD. (Dataset A: in-house testing dataset. Dataset B: public testing dataset).

	Area Overlap	Area Overlap							Boundary Error				
Method	DSC (%)		JI (%)		Precision (%)		HD (pixels)		AvgD (pixels)				
	Dataset A	Dataset B											
FCN-16s	79,33 (13,56)	70.85 (16.92)	67.56 (17.24)	60.44 (19.25)	78,90 (15,73)	71.85 (19.71)	33.10 (26.65)	37.43 (35.63)	8.992 (12.06)	11,21 (15.78)			
U-Net	80.84 (12.35)	75,40 (15.74)	69.22 (16.11)	63.63 (18.36)	80.29 (18.04)	79.01 (18.04)	31.85 (25.35)	34,34 (33.05)	8.430 (11.38)	10.93 (14.32)			
DeepLab BUS-S (backbone)	81,91 (11,21) 83,11 (9,094)	77,44 (13.08) 77,81 (13.36)	70.98 (12.80) 72.44 (11.90)	67,26 (15.80) 67,54 (15.26)	79,20 (13,74) 79,55 (13,33)	77,58 (16.08) 77,94 (16.68)	31,59 (21.06) 29,32 (19.52)	35,03 (34.37) 34,25 (34.52)	8.034 (9.684) 6.894 (5.914)	10,06 (13.84) 9,989 (14,56)			

Effectiveness of the segmentation backbone

Fig. 7. Sample cases resulted from different fully supervised leaning based methods. Each column corresponds to the predicted contours from "FCN", "U Net", "DeepLab", "BUS S", respectively (1st. 4th column), Case1 and Case2 are sample cases from in house testing images and Case3 is a sample case from the public dataset.

Impact of the Dual-Attentive-Fusion Block

Table 6

Comparisons of the results from different inputs of the proposed DAF block and those from different dual attention methods with five evaluation metrics, including DSC, JI, Precision, HD, and AwgD. (Dataset A: in-house testing dataset, Dataset B: public testing dataset).

Method	Area Overlap	Area Overlap							Boundary Error				
	DSC (%)		JI (%)		Precision (%)		HD (pixels)		AvgD (pixels)				
	Dataset A	Dataset B	Dataset A	Dataset B									
Seg-only	83.35 (8.758)	78.06 (12.81)	72.33 (11.94)	67.61 (14.85)	82.35 (13.27)	78.00 (16.33)	28.20 (18.17)	33.82 (33.43)	6.634 (5.120)	9.635 (14.08)			
Concatenation	85.75 (8.255)	79.32 (11.55)	75.87 (11.37)	67.98 (14.17)	82.72 (12.73)	78.32 (16.71)	26.28 (18.65)	33.01 (33.65)	5.977 (5.914)	9.123 (13.94)			
No-inverse	86.32 (8.012)	79.57 (10.99)	76.71 (11.14)	68.01 (15.12)	83.40 (11.90)	78.34 (16.08)	25.66 (18.81)	33.24 (32.31)	5.869 (5.622)	9.201 (13.34)			
DANet	86.07 (7.908)	79.43 (10.58)	76.18 (11.10)	68.00 (14.83)	84.31 (12.18)	78.27 (15.73)	24.30 (18.34)	32.42 (32.08)	5.722 (5.233)	9.184 (12.78)			
CBAM	86.36 (8.492)	79.69 (10.65)	76.72 (10.16)	68.01 (15.01)	84.02 (11.22)	78.39 (16.32)	25.87 (18.76)	32.59 (31.35)	6.191 (6.486)	9.137 (12.86)			
Proposed	87.12 (5.650)	79.82 (10.38)	77.62 (8.642)	68.03 (14.98)	86.38 (10.79)	78.58 (15.95)	23.61 (15.76)	32.15 (31.85)	5.364 (4.902)	9.089 (12.55)			

Impact of the Dual-Attentive-Fusion Block

Fig. 8. Samples of the segmentation probability heatmaps resulted from different inputs of the BUS-E network. From the third column to the sixth column represents the segmented probability maps from method "Seg-only", "Concatenation", "No-Inverse", "DANet", "CBAM" and the proposed method, respectively. Case1-3 correspond to the results from the in-house testing dataset and Case 4 refers to the result from the public dataset.

Contribution

- Make full use of unannotated BUS images to improve segmentation performance
- The proposed BUS-GAN model is tested on multi-site breast ultrasound datasets and achieve the best segmentation accuracy compared with the-stateof-art semi- supervised segmentation methods
- A developed dual-attentive-fusion (DAF) block is incorporated into the evaluator of the segmentation mode