Projection

Consider the projection of b onto the column space of A.

- 1. If A is a matrix with linearly independent columns, the projection is ______
- 2. If A = QR, then the projection is ______.
- 3. If $A = U_1 \Sigma_r V_1^T$, then the projection is ______.

Determinant

1. Formula of the determinate of a 2×2 matrix.

Geometric meaning.

2. Formula of the determinate of a 3×3 matrix.

Geometric meaning:

- 3. Axiomatic Approach:
- 4. Properties:
 - \bullet |AB| =
 - \bullet $|A^T| =$
 - $|A^{-1}| =$

Problems

- 1. What is the projection of $b=\begin{pmatrix}1\\2\\3\end{pmatrix}$ on (a) the column space of $A=\begin{pmatrix}1&0\\0&1\\1&0\end{pmatrix}$?

(b) the column space of $B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$?

- 2. Suppose the determinate of $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ is a.
 - (a) What is the determinate of 2A?

(b) What is the determinate of $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} + a_{21} \\ a_{11} & a_{12} & a_{13} + a_{11} \\ a_{31} & a_{32} & a_{33} + a_{31} \end{pmatrix}$?

(c) Given a random 3×3 matrix D, is the |A + D| = |A| + |D|?

(d) Suppose further that $a_{11} = a_{12} = a_{13}$. What is the determinate of

$$C = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + 1 & a_{22} + 1 & a_{23} + 1 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}?$$