CS 291 Exam 2 March 24, 2021

Name.			
name:			

1. (15 points) Use equivalences to construct both prenex conjunctive normal form and prenex disjunctive normal form for the following wff:

$$A(x) \land \forall x (B(x) \to \exists y \ C(x,y) \lor \neg \exists y \ A(y))$$

2.	(15 points)	Give a forma	al proof that	the following	g wff is valid	using nat	tural deduc	tion and	the CP	rule:
	$\forall x(p(x) \rightarrow$	$q(x)) \to (\exists x)$	$p(x) \to \exists x \ q(x)$	x))						

3.	(10 points)	Use Robinson's	unification	algorithm	to find a	most	general	unifier	for	the	following	set	of
	atoms. You	ı must show your	work for fr	ull credit:									

$$S = \{p(f(x, g(y)), y), p(f(g(a), z), b)\}$$

4.	(20 points)	Prove that	t the	following	statement	is v	alid l	by using	resolution	to p	orove	that	its	negation	ı is
	unsatisfiable	e:													

$$\forall x A(x) \lor \forall y B(y) \to \forall x (C(x) \lor D(x))$$

5.	(15 points) Do a proof of program correctness to prove that the following wff is correct:
	$\{x < y\}temp := x; x := y; y := temp\{y < x\}$

<u> </u>	mple of a wff for eac	O V		

 $6.~(15~{
m points})$ In first-order logic we use the terms $valid,~satisfiable,~{
m and}~unsatisfiable.$ Define each term

7.	(10 points) Over the domain of all people, let $C(x)$ mean that x is a computer science major. mean that x owns a tablet device. Come up with a quantified logical sentence that means: Not all computer science majors own tablets.	Let	T(x)