

Universidad Nacional de Ingeniería

Facultad de Ingeniería Mecánica

Departamento Académico de Ingeniería Aplicada

Asignatura: Refrigeración y Aire Acondicionado MN 374

Periodo Académico 2018-1

EXAMEN PARCIAL

Profesores

Jaime Ravelo C., Luis Bocanegra O.

Sección

A D

Duración:

110 minutos

Fecha

Jueves, 10 de Mayo del 2018

Hora

12 a 14 Horas

Indicaciones:

Esta permitido usar apuntes de clase, tablas y diagramas. Se prohíbe el uso de libros o solucionarios, así como de celulares y otros medios de comunicación durante la prueba. Las respuestas deben ser concisas y con letra legible, escribir con lapicero azul o negro. No se permite el intercambio de materiales de consulta.

EL ALUMNO DEBERA REGISTRAR EN EL CUADERNILLO DESARROLLO LA FEHA Y HORA EN QUE RINDIO EL EXAMEN.

A1) Responda según corresponda(2puntos)

- 1) Indique cuál de las afirmaciones son ciertas para un compresor de refrigeración:
 - a) Succiona el vapor refrigerante b) Reduce la presión de evaporación, para mantener a la temperatura de evaporación requerida. c) Eleva la temperatura del refrigerante por encima de la temperatura del medio refrigerante. d) Produce y mantiene la recirculación del refrigerante por todo el circuito. d) Todas las anteriores
- ¿Cuál de los siguientes tipos de compresores se usa en centrales de acondicionamiento de aire;
 - a) Reciprocante
- b) Rotativo
- c) De tomillo
- d) Scroll
- e) Centrífugo.
- 3) ¿Qué tipo de compresor es el más utilizado en aplicaciones comerciales, domesticas e industriales?:
 - a) Reciprocantes b) Rotativos c) De tomillo d) Scroll c) Centrífugos.
- 4) ¿Qué tipo de compresor se adapta a diferentes refrigerantes, posee un apropiado desplazamiento reducido y es muy eficaz a presiones de condensación elevadas y altas relaciones de compresión y costo relativamente bajo:
 - a) Reciprocantes b) Rotativos c) De tornillo d) Scroll c) Centrífugos.

A2) Elija la respuesta correcta (2puntos)

- 1- Sirven para arrancar o parar el motor que acciona el compresor de un equipo frigorífico por compresión de vapor.
 - a) Termostatos b) presostatos c) válvula solenoide d) cualquiera de los anteriores.
- 2- Para seleccionar un filtro secador se requiere el diámetro de la línea de líquido y:
 - a) La capacidad del equipo b) Tipo de refrigerante c) La capacidad de absorción del agua d) Todas las anteriores
- 3 -Deben usarse separadores de aceite con menores diámetros que la tubería de descarga del compresor.
 - a) siempre
 b) a veces
 c) nunca
 d) cuando la temperatura es muy baja.
- 4- La mejor posición para instalar un filtro secador debe ser:
 - a) Horizontal b) Vertical c) Inclinada d) Cualquiera de las anteriores

B) Responda las siguientes preguntas:

Pregunta N ° 1 (06 puntos.)

Un sistema de presiones múltiple con dos compresores y dos evaporadores, utiliza un depósito separador enfriador y usa como refrigerante amoniaco, el cual condensa a 90°F uno de los evaporadores tiene una capacidad de 20 Ton evaporando a -30°F. El otro tiene una capacidad de 40 Ton evaporando a -22 °F. Calcular la presión intermedia y el coeficiente de funcionamiento para que la potencia teórica total sea 70 HP.

Pregunta N ° 2 (10 puntos.)

Se requiere diseñar de una cámara frigorífica para el congelar 10 toneladas de conchas de abanico, para lo cual se ha determinado que el ingreso diario a la cámara de congelamiento es 4800 libras, se sabe que el punto de congelamiento es 27°F (-3°C), la Temperatura de congelamiento es - 38°F (3°C), la humedad relativa recomendada es 70% y el tiempo máximo de almacenamiento es 10 días.

Se pide:

a) Mostrar la distribución del producto dentro de la cámara de congelamiento (indicar el número de coches) y la estructura de las paredes, del piso y del techo.

b) Calcular la capacidad de enfriamiento del túnel de congelamiento.

c) Usando el método grafico determinar la capacidad Balanceada usando los datos seleccionados de los catálogos, mostrados en la tabla T1 para la Unidad de Condensación y T2 para el o los Evaporadores.

Detalles de bandejas y coches

Bandejas

Se utilizarán bolsas y envases de cartón parafinado conteniendo cada uno de ellos 5 libras de producto

Se colocarán 12 de estas cajas en bandejas

Coche

Cada coche tiene una capacidad para almacenar 10 bandejas.

Tabla T1- Condensadores (operando a nivel del mar)

Unidad de	6	T.ID	Temperatura	C	apacidad	(BTU	h) R-50	2
condensación	Compresor	HP	ambiente (°F)	-4 °F	-13 °F	-22 °F	-31 °F	-40 °F
TK 1600 IV	D99C-1500 L	1.5	80	80438	66172	53175	41468	31469
06-1500 LX	D99C-1500 L	13	110	59088	48136	37997	28492	20556
1112 2000 13	D006 2000 I	20	80	111907	90874	71946	55556	40556
012-2000 LX	D99S-2000 L	20	110	85160	68573	53175	40119	

Tabla T-2 Evaporadores (operando a nivel del mar)

Para un DT = 10 °F, la capacidad de los evaporadores es:

	Capacidad (Btu/h)	
EEP024b	EEP031B	EGB2700
24000	30000	27000

Delains de bandejas y cochut

Sundering

for all transport training y movemen derigide parafrigide conteniarios cedif.

than his wind a christian parabolishmedout 17 ethal.

	TIP - A G						nh ontant
	OT HE	TRO I	Q I	TET De	(T) utrai-bus	mandar.	
				HE BOTT	1112		
a0 8 G D							A LANGE LAND
	WEE IN				D8.		
			12 3	COLUM		Acres - Control	CHOR-LI

Tuble 1-2 Prespondence research a reset day many

Para un El P 72 7 la representad en los enapores el 151 9 72 m. emp

1		Capacidad (Bitch)	
	2015/03	w18075c	
		Optob	10000

CHAPTER 16 Fundamen

AMONIACO

Ammonia) Properties of Liquid and Saturated Vapor

	Press		Volum cu H/II	De De	ensity b/cu fi		lpy"	100	Entropy Stu/(Ib)	(°A)	Temp	1.	Pressu		Volume ev ft/tb	fb	nsity /cu ft	Entha Biu	lpy**		Entros Bio/(jb	(°K)
Temp	psiq	pilg	Vap	or L	iquid	Liquid h	Vapor he	U	quid	Vapor 4		P	ala	prig	Vapor V _B	1	141	Liquid hy	Vapo		lquid	Vapor s,
-105 -104 -103 -102 -101	0.000 1.041 1.087 1.135 1.184	27.0° 27.8° 27.7° 27.6° 27.8°	213. 214. 205.	- 7	6 71 8 67 8 63 5 50 45 55	-68.5 -07.6 -06.4 -85.4 -64.3	370.3 570.7 571.2 571.6 572.1	=	.1774 .1741 .1714 .1683 .1883	1.6243 1.6263 1.6167 1.6123 1.6092	-15 -14 -13 -12 -11	22000	0.88 1.43 1.90 2.55 3.15	6.2 6.7 7.3 7.5 8.8	12.97 12.60 12.36 12.06 11.78	30,000	2.00 1.96 1.91 1.87 1.82	28.7 27.8 28.9 30.0 41.0	606. 607. 607. 607. 608.		0618 0642 0666 0600 0714	1.3642 1.3642 1.3600 1.3570
-100 - 99 - 98 - 95 - 95 - 93 - 93 - 91	1.24 1.29 1.34 1.46 1.52 1.53 1.65 1.73	27 .4° 27 .2° 27 .2° 25 .0° 26 .8° 20 .7° 25 .6° 26 .4° 26 .4°	162. 155. 150. 144. 138. 133.	5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.42 45.43 45.40 45.36 45.36 45.32 46.28 45.21 45.21	-63.8 -62.2 -61.2 -60.1 -50.1 -57.0 -57.0 -54.9 -53.8	572.6 572.0 573.4 573.8 574.7 575.1 575.6 576.0 576.5	===	.1626 .1807 .1568 .1520 .1810 .1481 .1482 .1423 .1395 .1366	1.6015 1.6015 1.5082 1.5045 1.5010 1.6874 1.6001 1.6801 1.6788 1.5734	-10	20 101010101	3.74 4.35 4.35 5.61 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25	9.0 9.7 10.3 10.9 11.6 12.2 12.9 13.6 14.3 15.0	11.80 11.23 10.97 10.71 10.47 10.23 9.69 9.54 9.54 9.53	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.78 1.74 1.60 1.65 1.50 1.50 1.52 1.47 1.13	32.1 33.2 34.3 35.4 36.4 37.5 38.6 39.7 40.7	608. 609. 600. 610. 610. 610. 611.	52 56 0	0762 0786 0809 0833 0857 0880 0904 0928	1.365 1.353 1.351 1.340 1.347 1.345 1.343 1.341 1.339 1.337
- 90 - 89 - 88 - 87 - 85 - 85 - 84 - 83	1.86 1.04 2.02 2.10 2.18 2.27 2.35 2.45 2.54	26.1 28.0 25.6 25.6 25.5 25.1 24.1 24.7	124 110 115 111 107 103	1 6 3	45.12 45.08 45.04 45.00 44.06 44.02 44.85 44.86 44.80 44.75	-52.8 -51.7 -50.7 -40.6 -47.5 -45.4 -45.4 -43.3	576.0 577.3 577.8 578.2 578.2 579.1 579.5 579.4 580.4	12	0.1338. .1309 .1281 .1254 .1228 0.1197 .1160 .1141 .1113 .1085	1.5400 1.5451 1.5451 1.5594 1.5594 1.5498 1.5465 1.5432 1.5400	012234557.89	and the principle for	10.42 11.16 11.19 12.60 13.47 14.27 184.27 185.92 186.77 187.63	15.7 16.5 17.2 18.0 18.8 19.6 20.4 21.2 22.0	0.11 8.01 8.71 8.33 8.15 7.77 7.70 7.60	6 9	1.34 11.20 11.25 11.20 11.16 11.11 11.07 11.01 140.08 40.03	42.9 44.0 45.1 46.2 47.2 48.3 40.4 50.5 51.5 52.7	614	038036	.0075 .0098 .1022 .1045 .1060 .1092 .1115 .1138 .1162 .1185	1.335 1.333 1.381 1.329 1.327 1.328 1.328 1.328 1.315
- 81 - 79 - 78 - 77 - 76 - 75 - 74 - 73 - 71	2.74 2.84 2.05 3.06 3.13 3.29 3.42 3.54	24.1 24.1 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27	* 86 * 80 * 77 * 77	.50 .54 .69 .95 .33 .81 .39 1.06 1.82	44 .73 44 .68 44 .60 44 .50 44 .52 44 .48 44 .40 44 .40	-42.2 -41.2 -40.1 -39.1 -38.0 -37.0 -34.9 -33.8	581.4 681.4 682.1 582.4 582.4 583.4	1111111	0.1057 1030 1002 0075 0047 0.0020 1892 4865 0818	1.5368 1.5336 1.5341 1.5242 1.5242 1.5241 1.5149 1.5149 1.5149	14 15 16 17		38.51 39.40 40.31 41.24 42.18 43.14 44.12 45.12 46.13 47.16	23.8 24.7 25.5 26.5 27.5 28.4 20.4 21.4 23.5	7.30 7.11 8.8 6.7 6.5 6.4 6.4 6.0	13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	40,80 40,84 50,80 40,75 40,71 42,58 40,61 40,61 40,62 40,63	53.8 54.0 58.0 57.1 58.2 50.3 61.4 62.5 63.6	616 616 616 617	255125025	1208 1231 1254 1277 1300 1323 1346 1360 1302 1415	1.31 1.31 1.30 1.30 1.30 1.30 1.30 1.30
- 71 - 70 - 69 - 68 - 67 - 68 - 63 - 64 - 62 - 62 - 62	3.94 4.08 4.33 4.53 4.63 5.01 5.01	21. 21. 21. 21. 20. 20. 20. 10.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.60 0.61 7.60 5.85 1.08 2.37 0.73 9.14 7.62 6.15	44.33 44.24 44.19 44.11 44.11	-31.1 -30.1 -20.1 -28.1 -27.1 -20.1 -25.1	585. 586. 586. 587. 587. 4 588.	503715048	0.0784 .0757 .0730 .0703 .0676 -0.0650	1.5050 1.502 1.499 1.497 1.497 1.491 1.493 1.485	20 21 22 23 24 25 26 27 28		45 21 49 28 50 35 51 47 52 50 53 73 54 90 56 08 57 28 58 50	33.5 34.6 35.7 36.8 37.9 39.0 40.2 41.4 42.8 43.8	5.1	27 23 21	40.43 40.38 40.34 40.25 40.25 40.15 40.10 40.00	71.	0 61 0 61 0 61 5 61 5 61	.0	0.1437 1460 1483 1505 1528 0.1551 1573 1506 1618	1.25
- 60 - 59 - 58 - 57 - 50 - 55 - 54 - 53 - 53	5.5 5.7 5.9 6.1 6.3 6.5 6.5 7.2	5 18 4 18 3 17 3 17 3 17 4 16 5 18 7 15 0 15	8- 4- 10- 6- 2- 7-	4.73 3.37 2.05 0.79 0.54 08.38 07.24 06.16 05.09	43 .51 43 .83 43 .87 43 .77 43 .77 43 .64 43 .84 43 .84 43 .85	1 -21 7 -20 3 -10 8 -18 -17 -15 6 -14 -13 8 -12	2 880. 1 500. 1 500. 0 501. 0 501. 0 501. 8 502. 8 592. 7 502.	6 0 4 8 2 6 1 4 9	-0.0517 0464 0464 0462 0596 0596 0596 0596 0596	1.476 1.474 1.471 1.464 1.463 1.463 1.460 1.457	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	55578	50.74 81.00 62.20 63.50 64.91 66.26 67.63 60.02 70.43 71.87	47.48.50.51.52.54.55.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25 30 37 47 159 173 260 125 148	39.06 39.91 39.86 30.82 30.77 30.72 39.67 39.63 39.54	74. 77. 79. 80. 81. 82. 83. 84. 85.	8 62 62 62 62 62 82 82 82 62 62 62 62 62 62	1.7	0.1686 .1708 .1730 .175 0.177: .170: .181: .184 .186	1.2
- 50 - 40 - 47 - 45 - 45 - 44	7.5 7.5 8.6 8.6 9.6	7 14 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	3* 8* 3* 3* 1* 	33.08 32.12 31.20 30.31 20.45 28.62 27.82 27.82 27.82 27.82	43, 4 43, 4 43, 4 43, 3 43, 3 43, 3 43, 3 43, 3	0 -10, 5 - 9, 1 - 8, 7 - 7, 3 - 6, 8 - 5, 4 - 4, 9 - 2, 16 - 2,	6 504 5 504	04000048	-0.025 - 020 - 017 - 017 - 015 - 012 - 016 - 016 - 007 - 005 - 002	1.447 4 1.444 9 1.441 3 1.472 7 1.432 2 1.434 6 1.431 1 1.432	5 4 4 5 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0123456789	73,39 74,86 76,31 77,8 79,38 80,06 82,51 84,16 85,8 87,40	61. 63. 64. 66. 67. 69.	1 3. 1 3. 7 3. 3 3. 5 3.	971 847 823 782 682 614 614 547 481 418 358	39.44 30.34 30.34 30.34 30.24 30.14 30.14 30.00	89 4 90 91 92 9 93 4 94 0 05	0 6: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	3.0	0,188 190 193 195 197 0,159 201 206 ,208	8 1.2 0 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
- 44 - 31 - 33 - 33 - 33 - 33 - 33	10.10.11.11.11.11.11.11.11.11.11.11.11.1	61 72 72 73 71 71 71 77 14	933	24.86 24.18 23.53 22.80 22.27 21.68 21.10 20.54 20.00	43.4 43.1 42.4 42.4 42.4 42.4 42.4 42.4 42.4 42	18 0 14 1 10 2 15 3 10 4 16 5 17 5 17 5	.0 597 .1 598 .1 508 .3 508 .3 508 .4 508 .4 608	.7	0.000 - 002 - 003 - 007 - 007 - 018 - 018 - 018 - 018 - 018 - 018	1 1.41 1 1.41 1 1.41 1 1.41 1 1.41 1 1.41 1 1.41 1 1.41 1 1.40 1 1.40	17 18 19 41 20 16 72 48	50 51 53 54 55 58 57	80.10 90.9 92.6 94.4 98.0 98.0 99.9 101.8 153.7 105.6	1 76. 78. 79. 3 81. 6 83. 1 85. 80.	30754 3322	204 274 176 110 063 008 1154 002 .851 .500	38.0 38.0 38.8 38.6 38.7 38.7 38.7 38.6 38.6	5 90 0 100 5 101 0 103 6 103 0 104 15 105 105 108	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25.2 25.7 25.9 26.1 26.3 26.5 26.5 26.7 26.9	, 1234	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1111111	0 13. 9 14. 8 14. 7 15. 6 15. 15. 15. 16. 2 17.	90 30 71 12 53 98 24 88 34	6° 0.8 1.7 2.2 2.5 3.1	18.45 18.45 17.00 16.60 16.20 15.6 15.4	42. 42. 42. 42. 42. 42. 44. 42. 44. 42. 34. 42. 43. 42. 44. 42. 43. 42. 43. 42. 43. 43. 43. 43. 43. 43. 43. 43. 43. 43	85 10 61 11 57 13 34 15 48 14 40 17 35 14 31 19	7 50 50 50 50 50 50 50 50 50 50 50 50 50 5	1.4 1.7 2.5 3.2 3.5 3.5 4.6	0.02 .62 .63 .63 .63 .63 .64 .64	75 1.39 80 1.30 74 1.38 90 1.30 23 1.30 48 1.30	78 55 621 69 886 63 640 618	60 61 63 63 64 65 65 65 68	107.6 119.6 111.6 115.7 115.7 120.0 122.1 124.3	94 96 96 98 101 103 107 107 100 111	.9 2 .0 2 .0 2 .1 3 .5 2 .8 2	.751 .703 .650 .610 .565 .520 .477 .435 .303 .352	38.	16 110 10 111 135 112 100 113 125 114 120 114 10 114 105 114	1.6 1.6 1.6 1.7 1.8 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	27.3 27.8 27.7 27.9 28.0 28.4 28.4 28.5	23 23 24 24 24 24 24 24 24 24 24 24 24	44 1. 85 1. 87 1. 08 1. 30 1. 81 1. 73 1. 94 1. 15 1.
=	18 18 18	30 79 70 81 34	3.0 4.1 4.0 5.1 5.5	14.6	8 42 42 7 42 7 42	22 2 18 2 13 2 00 2	2.4 5t 3.5 8t 4.6 6t	15.0 15.3 15.7 16.1	0.04 .03 .03 .05	21 1.3 15 1.3	752 720 708	70 71 72 73 74	128. 131. 133. 135. 135.	1 10	1.0	.312 .273 .235 .107 2.16	37 37 37	84 12	2.8	529. 529. 620. 620.	6 2	58 I

^{*} From National Bureau of Standards Circular No. 112 (1945) and Circular No. 472 (1948).

* Inches of meteors below one standard skinosphers.

Table 21 Refrigerant 717 Properties of Liquid and Saturated Vapor* (Concluded)

	Press	ure Sk : 1	Volume Sires Aco ft/lb	Density Ib/cu	Enthe Bru	lpy** /fb	Entre Blu/(lb	pyee	Temp	Pres	sure.	Valume cu It/Ib	Density Ib/cu ft	Entho	//b	Entro	py*** b) (°R)
F.	psla	psig	Vapor	Liquid 1/v/	Liquid by	Vapor h _s	Liquid"	Vapor	F	psia	prig	Vapor V,	tiquid 1/r/	Liquid by	Vapor he	Liquid.	Vapor
75 76 77 78 79 80 81 82 83	140.5 143.0 145.4 147.9 150.5 153.0 155.6 158.3 161.0	125.8 128.3 130.7 133.2 135.8 138.3 140.0 143.6	2.125 2.080 2.055 2.021 1.088 1.955 1.923 1.802	-	126.2 127.4 128.5 129.7 130.8 132.0 133.1 134.3 135.4	629.9 630.1 630.2 630.4 630.5 630.7 630.8 631.0	0.2543 .2564 .2685 .2706 .2728 0.2749 .2760 .2760 .2791 .2812	1.2068 1.2080 1.2085 1.2020 1.2008 1.1001 1.1076 1.1062 1.1047	100 101 102 103 104 105 106 107 108	211.9 215.2 218.6 222.0 225.4 223.0 232.5 236.0 239.7 243.3	197.2 200.5 203.9 207.5 210.7 214.2 217.8 221.3 225.0 228.5	1.419 1.307 1.375 1.354 1.334 1.313 1.293 1.274 1.254 1.235	36.40 35.34 36.29 36.13 36.12 36.06 36.01 35.95 35.90	155.2 156.4 157.6 158.7 150.0 161.1 162.3 163.5 154.6 165.8	633.0 633.2 633.3 633.4 633.4 633.6 633.6 633.6 633.7	0.3166 .3187 .3207 .3228 .3248 0.3269 .3289 .3310 .3330 .3351	1.1705 1.1601 1.1677 1.1663 1.1649 1.1636 1.1621 1.1607 1.1596 1.1586
85 86 87 88 89 90 91 92 93	163.7 166.4 169.2 172.0 174.8 177.7 180.8 183.6 183.6 189.6	149.0 151.7 154.8 167.3 160.1 163.0 168.0 171.1 174.1 178.0	1.831 1.801 1.773 1.744 1.716 1.883 1.883 1.883 1.883 1.883	37.26 37.21 37.16 37.11 37.05 37.00 36.95 36.95 36.84 36.78	136.6 137.8 138.9 140.1 141.2 142.4 143.6	632.3 632.3 632.5	3041	-1-1033 1.1904 1.1869 1.1875 1.1875 1.1846 1.1832 1.1818 1.1789	119	247.0 250.8 254.5 258.4 262.2 266.2 270.1 274.1 278.2 282.3	232.8 235.1 230.8 243.7 247.1 251.1 255.2 259.2 267.1	1.217 1.198 1.180 1.163 1.142 1.112 1.113 1.054 1.07 1.07	35.84 35.78 35.67 35.61 35.81 35.85 35.45 35.45 35.34 35.34	170.6 171.8 173.0 174.2 175.4 176.6 177.3	633.9 634.0 634.0 634.0	3556	1.14
95 95 97 98 99	195.8 198.9 202.1 205.3 206.6	187.	6 1.46	4 30.4	150.5 151.7 182.5	632.6 632.6 632.6	3104	1.1778 1.1761 1.1747 1.1732 1.1719	122	285.4 290.6 294.8 299.1 303.4 307.6	271. 275. 280. 284. 288. 293.	1 1.00	7 35.1 2 35.0 7 35.0	8 182. 2 183.	4 634.	0 363	8 1.14 8 1.13 0 1.13

one of the second of the second

						連	F			
							18			
	BY.	9 5								

SOLUCIONARIO:

EXAMEN PARCIAL DE REFRIGERACION Y AIRE ACONDICIONADO MN 374- 2018-1

N° Preg.	Datos	Solución	MIN 374- 2010-1
A1	Alternativas múltiples	1) d 2) e 3) a 4) a	
A2	Alternativas múltiples	1) b 2) a 3) c 4) d	
B-P1	Sistema de presiones múltiples, con 2 evaporadores, 2compresores, un depósito separador enfriador. Ref. R-717 T1 = -30 °F CAP1 = 20 TON T2 = -22 °F CAP2 = 40 TON T5 =90°F	SEV2 1 3 F2 -304 3 2 NB	CATE OF THE COP : 400 (ARCE) ARCE OF STREET
		a) Número de coches:	
	Peso del producto =	Nc = 4800 lbs/10 (bandejas/coche) *12(cajas/bandejas	s) *5 (lbs/caja) = 8 cochas
	4800 lbs. T evaporación =	2 44 34	
	T congelamiento= 27°F. Humedad Relativa del producto = 70%	Anthroping part made	structure de lan E Pared composida em la camara de congelam em la camar
B-P2		Estructura del techo (medidas en pulgadas) b) Cálculo de la capacidad de enfriamiento:	Medidas en pulgadas estructura del piso
		Calor por paredes, techo y piso (Q1)	
		Calor por radiación solar (Q2)	65337,63
j		Calor por rambios de aire (Q3)	3544,14
		Calor per products (Q4)	42874,68
		Calor por cargas miscelaneas (Q5)	751920,00
		Calor Total (QT)	43761,30 998181,53
		Luego La capacidad calculada será: CAPcc = QT_opera Para un tiempo de operación de 20 h/dia -> CAPcc =6	acion

c) Determinación Grafica de la capacidad Balanceada

Capacidad calculada	49909 BTU/h
Temperatura de la cámara	-22 °F
Temperatura ambiente	80 °F
Humedad relativa	90%
DT	(10 - 12) °F

- *Para una humedad 70%-> 16°F < DT_evap < 18 °F, debemos seleccionar:
 - Unidad de condensación:
 - Modelo U12-2000 LX
 - Compresor:
 - Modelo D992-2000 L
 - Unidad de evaporación:
 - Modelo EEP024B

