Лабораторна робота №7

Модульні обчислення

Мета роботи: навчитися застосовувати оператори SymPy для побудови функцій для дослідження властивостей модульних обчислень

Теоретичні відомості

https://uk.wikipedia.org/wiki/Китайська_теорема_про_залишки

https://uk.wikipedia.org/wiki/Символ_Лежандра

https://uk.wikipedia.org/wiki/Символ_Якобі

https://uk.wikipedia.org/wiki/Символ_Кронекера_—_Якобі

Завдання:

Варіант 1. Китайську теорема про залишки можна сформулювати наступним чином. Нехай y_1, y_2, \dots, y_k довільні цілі числа, а n_1, n_2, \dots, n_k попарно взаємно прості числа. Тоді наступна система:

$$x \equiv y_1 \pmod{n_1}$$

$$x \equiv y_2 \pmod{n_2}$$

$$\vdots$$

$$x \equiv y_k \pmod{n_k}$$
(*)

має розв'язок і всі її розв'язки рівні за модулем $M=n_1n_2\dots n_k$.

Розробити процедуру розв'язку системи (*) порівнянь, що приймає список цілих чисел y_1, y_2, \dots, y_k и (такої ж довжини) та список попарно взаємно простих модулів m_1, m_2, \dots, m_k та повертає розв'язок х та модуль М.

Варіант 2. Розробити та перевірити функцію LEGENDREsymb(a,p), що обчислює символ Лежандра. Обчислити LEGENDREsymb(2562357894096485,1000003); LEGENDREsymb(80,2)

Варіант 3. Розробити та перевірити функцію JACOBIsymb(a,m), що обчислює символ Якобі. Обчислити JACOBIsymb(-6,7); JACOBIsymb(-6,63)

Варіант 4. Розробити та перевірити функцію KRONECKERsymb(a,m), що обчислює символ Кронекера. Заповнити таблицю значень $\left(\frac{a}{m}\right)$ для a=-4...4 (відкладається по горизонталі) m= -4. . 4 (відкладається по вертикалі).