COMPUTAÇÃO BÁSICA

Algoritmos Computacionais e Estrutura Seqüencial

Prof. Bruno Macchiavello (bruno@cic.unb.br)

Universidade de Brasília – UnB Instituto de Ciências Exatas – IE Departamento de Ciência da Computação – CIC

Algoritmos Computacionais

- Um algoritmo computacional é uma seqüência de instruções que sejam capaz de ser compreendidas por um computador para manipular certos dados.
 - Instruções: comandos que determinam a forma pela qual os dados devem ser tratados. Comandos que indicam ou computador realizar uma determinada tarefa básica.
 - Dados: elementos recolhidos/fornecidos por diversos meios e que serão processadas pelo computador através das instruções.

Dados em Algoritmos Computacionais

- Os dados de um algoritmo computacionais podem ser de diferentes tipos, a classificação deles é a seguinte:
 - Dados Numéricos
 - Dados Literais
 - Dados Lógicos

Tipos de Dados – Dados Numéricos

- Numéricos inteiros
 - Os números inteiros são aqueles que não possuem componentes decimais ou fracionários, podendo ser positivos ou negativos

Exemplos de números inteiros:

```
36 número inteiro positivo;
0 número inteiro;
-18 número inteiro negativo.
```

Tipos de Dados – Dados Numéricos

- Numéricos reais
 - Os dados de tipo real são aqueles que podem possuir componentes decimais ou fracionários, e podem também ser positivos ou negativos.

Exemplos de números reais:

36.01	número real positivo com duas casas decimais;
166.	número real positivo com zero (nenhuma) casa decimal;
-18.8	número real negativo com uma casa decimal;
0.0	número real com uma casa decimal;
0.	Número real com zero (nenhuma) casa decimal.

Tipos de Dados – Dados Numéricos

- Numéricos Binários
 - Normalmente as linguagens de programação de alto nível não proporcionam a possibilidade de criar um dado numérico do tipo binário de mais de um BIT.
 - Dado binário de um BIT é conhecido como dado booleano.

Verificar em casa:

Como trabalhar com números binários de mais de um bit?

Dica: Verificar a função de Deslocamento (shift)

Tipos de Dados – Dados Literais

Dados Literais:

- Uma seqüência de caracteres contendo letras, dígitos e/ou símbolos especiais.
- Também chamados de alfanumérico, cadeia de caracteres ou, ainda, String.
- Usualmente são representados nos algoritmos pela coleção de caracteres delimitada em seu início e fim com aspas (" ").

Exemplos de dados literais:

```
"QUEM?"
Literal de comprimento 5;
Literal de comprimento 1;
"COMO!?#"
Literal de comprimento 7;
"AbcDEFghi"
Literal de comprimento 9;
Literal de comprimento 6;
Literal de comprimento 1;
Literal de comprimento 1;
Literal de comprimento 9;
```

É comum em algumas linguagens a diferenciação entre um caracter ('A') e um conjunto de caracteres ("Olá Mundo").

Tipos de Dados – Dados Lógicos

- Dados Lógicos
 - São caracterizados como tipos lógicos, os dados com valores verdadeiro e falso, sendo que este tipo de dados poderá representar apenas um dos valores.
 - É chamado por alguns de tipo booleano (matemático George Boole).
 - Se definimos que Verdadeiro = 1, e Falso = 0, então um dado booleano = 1 BIT.

Conceitos Básicos de Algoritmos Computacionais

- Os conceitos básicos de um algoritmo computacional são os seguintes:
 - Constante
 - Variáveis
 - Palavras Reservadas
 - Expressões Aritméticas
 - Expressões Lógicas
 - Comando de Atribuição e Entrada/Saída

- Entendemos que um dado é uma constante quando não sofre nenhuma variação no decorrer do tempo.
- Em relação à informática, é um espaço em memória identificado por um nome conhecido como identificador que pode conter dados de algum dos tipos anteriormente mencionados.
- Os dados armazenados são o conteúdo, o conteúdo não varia durante a execução de um programa, ou seja, o valor é o mesmo do inicio ao fim da execução do algoritmo.

```
0x00000000
             10110....011
0x0000001
             10110....011
             10110....011
0x00000002
             10110....011
0x00000003
0x0000004
             10110....011
             10110....011
0x0000005
             10110....011
0x00000006
             10110....011
0x0000007
0x00000009
             10110....011
OxFFFFFFF
             10110....011
```

BLOCO DE MEMORIA

Identificador: Nome da constante, é uma palavra que ao compilar o programa é vinculado a um determinado endereço de memória. O identificador **não** pode mudar durante a execução de uma programa.

Conteúdo: Bits que representam um dado de um determinado tipo. Esse conjunto de bits **não** muda durante a execução do programa.

Tipo: É o tipo de dados que o conteúdo da variável representa. O tipo de uma constante **não** muda durante a execução de um programa.

Variável

- Um dado é classificado como variável quando tem a possibilidade de ser alterado em algum instante no decorrer do tempo.
- Em relação à informática, variável é um espaço na memória, identificado por um nome conhecido como identificador, que pode conter dados de algum determinado tipo.
- Os dados armazenados em uma variável são o seu conteúdo. O conteúdo pode variar durante a execução do programa à qual ele pertença.

Variável

Identificador: Nome da variável, é uma palavra que ao compilar o programa é vinculado a um determinado endereço de memória. O identificador **não** pode mudar durante a execução de uma programa.

Conteúdo: Bits que representam um dado de um determinado tipo. Esse conjunto de bits **pode mudar** em qualquer instante de tempo durante a execução do programa.

Tipo: É o tipo de dados que o conteúdo da variável representa. O tipo de uma variável **não** muda durante a execução de um programa.

Variável

ESCOPO

- O escopo de uma variável de programa é a faixa de instruções na qual a variável é visível
- Uma variável é visível em uma instrução se puder ser referenciada nesta instrução
- Ex: O escopo de uma variável pode ser uma determinada função dentro de um programa (variável local), ou pode ser vista em todo o programa (variável local).

Identificador

- Identificadores são conjuntos de caracteres, regido por determinadas leis, que representam constantes, variáveis, tipos, procedimentos, unidades, programas e campos de um registro (estes itens serão analisados mais adiante no curso).
- Regras:
 - O primeiro caractere deve ser uma letra;
 - No conteúdo do identificador não pode conter caracteres especiais (!@#\$%&*/-+<>?), ou seja no identificador só podemos ter, após o primeiro caráter, letras, números e sublinhada (_);
 - Nomes de variáveis escritas com letras maiúsculas serão diferentes de letras minúsculas (case sensitive);
 - Nenhuma palavra reservada à ferramenta (linguagem de programação) poderá ser usada como nome de uma variável;
 - Procure dar nomes significativos para a variável (mnemônicos), mas não muito longos.
 - Não podem ter identificadores com o mesmo nome para dois objetos diferentes.

Identificador

- Existe uma tamanho máximo para um identificador?
 - Depende da Linguagem da Programação:
 - FORTRAN I (Máx. 6)
 - COBOL (Máx. 30)
 - C/C ++ (sem limite, depende do compilador)
 - Java (sem limite)

Palavras Reservadas

- Palavras reservadas, são identificadores que já foram usados pelo programa, ou seja se caso utilizarmos uma destas palavras iremos infringir a regra de que não se pode haver identificadores repetidos.
- Em ANSI C algumas das palavras reservadas são:
 - auto, double, int, struct, break, else, long, switch, case, enum, register, typedef, char, extern, return, union, const, float, short, unsigned, continue, for, signed, void, default, goto, sizeof, volatile, do, if, static, while.

Exemplos de Nomes de Identificadores

- Identificadores validos:
 - Alpha, X, BJ153, K7, Notas, Média, ABC, INPS, FGTS, i, j, nome 1.
- Identificadores inválidos:
 - 5X, E(13), A:B, X-Y, Nota/2, AWQ*, P&AA, nome 2.
- É sempre melhor usar nomes significativos para a variável (mnemônicos), mas não muito longos.
- Exemplo: para identificar 3 provas, identificadores significativos **são** "p1,p2,p3" ou "prova1, prova2, prova3" ou "prova_1, prova_2, prova_3". **Não** são significativos "e1,p2,t3" ou "a,b,c".

Declaração de Variáveis

- Declaração de Variáveis
 - São declaradas no início (alocação de memória)
 - Podem ser dos tipos: inteiro, real, literal, ou lógico
 - Permite que o algoritmo saiba os tipos de operações que cada variável pode realizar

identificador : Tipo

Exemplo 1:

Dada uma lista de compras com o código, quantidade, e preço de oito produtos, crie um algoritmo que escreva o valor total da compra.

codigo: literal (ou string)

quantidade : inteiro preço, valortotal : real

Exemplo 2:

Ao serem fornecidos um valor a ser pago e uma taxa para multa, pois o pagamento está sendo feito após o vencimento, calcule o valor da multa e o valor total a ser pago.

virconta, taxamulta, virmulta, virtotal: real

Exemplo 3:

É solicitada a um motorista recém chegado de uma viagem a quantidade de quilômetros por ele percorrida. O motorista informa o solicitado e você deverá informar a ele a quantos metros se refere à quantidade de quilômetros.

quilômetros: real

metros: inteiro

Expressões Aritméticas

 São aquelas cujo resultado da avaliação é do tipo numérico, seja ele inteiro ou real. Somente o uso de operadores aritméticos e variáveis numéricas (inteiras ou reais) é permitido em expressões deste tipo.

Operador	Operação	Prioridade	Exemplo
-	Inversão de Sinal	1	-(-1) = 1
+	Manutenção de Sinal	1	+1 = 1
۸	Exponenciação	2	9^2 = 81
*	Multiplicação	3	6 * 7 = 42
/	Divisão	3	8 / 2 = 4
+	Adição	4	1 + 2 = 3
-	Subtração	4	4 - 5 = -1

Expressões Aritméticas

- Prioridade:
 - $1 + 4 * 3 / 6 3 ^ 2$
 - 1 + 4 * 3 / 6 9
 - 1 + 12/6 9
 - 1 + 2 9
 - -6
- Prioridade:
 - $1 + (4 * 3 / (6 3)) ^ 2$
 - 1 + (4 * 3 / 3) ^ 2
 - 1 + (4) ^ 2
 - 1 + 16
 - 17

Expressões Lógicas

 São aquelas cujo resultado da avaliação é um valor lógico (VERDADEIRO ou FALSO)

		CONJUNÇÃO	DISJUNÇÃO	NEGAÇÃO
Х	У	хЕу	х ОО у	NÃO(x)
V	V	V	V	F
V	F	F	V	F
F	V	F	V	V
F	F	F	F	V

Operador	Operação	Prioridade	Linguagem C
OU	Disjunção	3	П
Е	Conjunção	2	&&
NÃO	Negação	1	!

Expressões Lógicas

- Operadores relacionais:
 - Operadores utilizados para realizar comparações.
 - Comparações só podem ser feitas entre <u>variáveis do mesmo tipo</u>.
 - O <u>resultado</u> de uma comparação é <u>sempre um valor lógico</u>.

Operador	Comparação	Linguagem C
=	Igual	==
≠	Diferente	!=
<	Menor	<
<=	Menor ou Igual	<=
>	Maior	>
>=	Maior ou Igual	>=

Expressões Lógicas

Exemplos (V = Verdadeiro, F = Falso):

Expressão	Resultado
2 * 4 = 24 / 3	V
15 mod 4 < 19 mod 6	F
(2 < 5) e (15 / 3 = 5)	V
(2 < 5) ou (15 / 3 = 5)	V
(3 >= 2) ou (8 < 7)	V
(3 >= 2) e (8 < 7)	F
(V) e (10 + 2 = 4 * 3)	V
(0) e (5 = 5 + 0)	F
(F) ou (1)	V

Notar que um número booleano é um bit onde V=1 e F=0.