

• Find V_o using the superposition

ANSWER: $V_0 = 5.6 \text{ V}.$

(a) Using repeated source transformations, reduce the circuit below to a voltage source in series with a resistor, both of which are in series with the 6 M Ω resistor. (b) Calculate the power dissipated by the 6 M Ω resistor using your simplified circuit.

Power dissipated by the 6 M Ω is = 5.27 μ watt.

• Obtain the Thevenin and Norton equivalent circuits of the circuit shown below:

Thevenin's Equivalent

Norton's Equivalent

• For the circuit given below, what value of *RL* will ensure it absorbs the maximum possible amount of power?

 $R_{th} = 0.967 \Omega$

• For the network of Fig. 5.97, select a value of $\it R$ such that the network has an equivalent resistance of 9Ω . Round your answer to two significant figures

• Verify the reciprocity theorem:

Note: To verify the reciprocity, interchange the source and observer, that is, place 5 A current source in parallel with 5 ohm resistor and calculate the voltage across the 2 ohm resistor. Then the voltage across 2 ohm resistor must be 3.07 V.