Topic Modeling on Newsgroups Dataset

Techniques: LDA (Latent Dirichlet Allocation) & NMF (Non-negative Matrix Factorization) **Goal:** Automatically discover 10 topics from a corpus of news articles using unsupervised machine learning.

Dataset Description

The dataset is a pickled file containing a list of raw news documents.

```
with open('C:/Users/Skander/Downloads/newsgroups', 'rb') as f:
    newsgroup_data = pickle.load(f)
```

Preprocessing Steps

Each document goes through:

- Lowercasing
- Special character removal
- Whitespace normalization
- Stopword removal (using NLTK's English stopword list)

```
def clean_text(text):
...
```

Topic Modeling Algorithms

Two unsupervised methods were used to extract topics from the corpus:

Metho d	Vectorizer Used	Description
LDA	CountVector izer	Probabilistic model that assumes documents are mixtures of topics
NMF	TfidfVector izer	Matrix factorization model using non-negativity constraints

III LDA Output

Bar Plot: Top 10 Words per Topic (LDA)

Interpretation of selected topics:

Topic	Top Keywords	Interpretation
1	team, new, time, gm, hockey	Sports (e.g., hockey)
2	pit, chi, bos, tor, stl	City/team names – likely sports-related
3	game, team, season, win	Competitive games or sports
5	car, insurance, years	Auto insurance discussions
10	space, nasa, god, atheism, cancer	Science and philosophy topics

WordClouds – LDA Topics

These visualizations show the most representative words per topic in **larger font sizes**, indicating their **weight within the topic**.

- Topic 1: "team", "time", "gm", "hockey" → clearly sports/hockey
- Topic 2: city/team abbreviations → NHL/MLB discussions
- Topic 3: "game", "season", "play", "win" → competitive events

NMF Output

Bar Plot: Top 10 Words per Topic (NMF)

Topic	Top Keywords	Interpretation
1	bike, good, want, use	Bike usage and maintenance
2	skepticism, intellect, cadre	Philosophy or abstract debate

- drive, floppy, bios, controller
- Computer hardware discussion
- 5 car, auto, volvo, dealer
- **Automobile topics**
- 6 god, atheism, argument, religion
- Theological discussions

WordClouds – NMF Topics

- **Topic 1 (bike-related):** Words like "bike", "ride", "look", "problem" dominate.
- Topic 2 (philosophy): "skepticism", "shameful", "intellect", "chastity".
- Topic 3 (hardware): "floppy", "bios", "installed", "controller", "drive".

Comparison: LDA vs NMF

Criteria	LDA	NMF
Model Type	Probabilistic	Linear Algebraic
Output Topics	Broad semantic clusters	Sharp, domain-specific clusters
Overlapping Topics	Higher	Lower
Strengths	Interpretability, soft clustering	Distinct topic separation, efficiency

Conclusion

Both LDA and NMF successfully extracted coherent, interpretable topics:

• LDA captures broader semantic structures (e.g., **sports**, **science**, **insurance**)

• NMF captures sharper, more focused topics (e.g., bike issues, computer hardware, religious debate)

Each is useful depending on whether you want high-level insights (LDA) or actionable segmentation (NMF).