Malware Analysis Report

By: Nijat Ismayilov

31st March 2025

Table of Contents

- 1. Introduction
- 2. What is Malware?
- 3. The Importance of Malware Analysis
- 4. Types of Malware
- 5. Malware Analysis Methods
 - 5.1.Static Analysis
 - 5.2. Dynamic Analysis
 - 5.3 Malware Analysis Sample
- 6. Sandboxing & Detection Techniques
- 7. Indicators of Compromise (IOCs)
- 8. Tools Used for Malware Analysis
- 9. Conclusion & Recommendations

1. Introduction

With the rise in cyber threats, malware remains a significant tool for attackers. Organizations must understand malware behavior to improve defense mechanisms. This report dissects a malware sample through **static and dynamic analysis**, examines its behavior in a **sandboxed environment**, and provides **Indicators of Compromise (IOCs)**.

2. What is Malware?

Malware (malicious software) is any software designed to disrupt, damage, or gain unauthorized access to systems. Common examples include viruses, worms, Trojans, ransomware, and spyware.

3. The Importance of Malware Analysis

Malware analysis helps organizations to:

- 1.Identify how malware spreads.
- 2. Understand its behavior.
- 3. Develop effective detection and mitigation strategies.
- 4. Gather IOCs for future defense mechanisms.

4. Types of Malware

Туре	Description
Virus	Attaches itself to legitimate files and spreads when executed.
Worms	Self-replicating malware that spreads across networks.
Trojans	Disguised as legitimate software to trick users into executing it.
Ransomwar e	Encrypts files and demands payment for decryption.
Spyware	Secretly collects user data without consent.
Rootkits	Hides malicious processes to maintain persistent access.

5. Malware Analysis Methods

5.1 Static Analysis

Static analysis examines malware **without executing it**, using reverse engineering tools. This includes:

- Examining file properties (using PEiD, Exeinfo PE).
- Extracting strings (using Strings, Floss).
- Checking dependencies (Dependency Walker).
- Disassembling code (Ghidra, IDA Pro).

Example (Using Ghidra):

- Load the binary into Ghidra and analyze its functions.
- Look for suspicious API calls (e.g., CreateRemoteThread, VirtualAllocEx).
- Identify hardcoded IPs, domains, or URLs.

5.2 Dynamic Analysis

Dynamic analysis involves **executing malware in a controlled environment (sandbox)** to observe its behavior.

- Cuckoo Sandbox Runs malware in a virtualized environment.
- Remnux A Linux distro specialized for malware analysis.
- Wireshark Captures network traffic generated by the malware.
- Procmon & RegShot Monitors system changes.

5.3 Malware Sample Overview

Sample Details

SHA-256 Hash:

33f2ddf371bcd01156ebac2c17567c1e61e7518fa3b77ab274d07706e04f5c

• **File Type:** .TAR Archive (Compressed file)

• Size: 1.20 MB

• **Detection Rate:** 29/64 antivirus engines flagged it as malicious

5.3.1 Analysis of the Malware

5.3.1.1 Static Analysis

Static analysis involves examining the malware binary without executing it.

• Identified as: Trojan.Droptor/GenSteal.MSIL

• Threat Category: Trojan

Family Labels: droptor, gensteal, msil

• Signature-Based Detections:

- Multiple vendors flagged it as MSILZilla, indicating it is written in .NET/MSIL
- Microsoft detected it as Trojan.Script.Wacatac.B!ml
- o Possible threat indicator: **Stealer Trojan**, often used for credential theft

5.3.1.2 Dynamic Analysis

Dynamic analysis involves running the malware in a controlled environment to observe behavior.

- Potential Behavior (Based on Signature Matching):
 - o **Data Exfiltration**: May attempt to steal credentials or sensitive data
 - Persistence Mechanism: Could modify registry keys for persistence
 - Network Activity: Likely connects to external command-and-control (C2) servers

• File Modifications: May drop additional payloads

5.3.2 Indicators of Compromise (IOCs)

Indicators of Compromise help detect similar infections.

SHA-256

SHA-256

33f2ddf371bcd01156ebac2c17567c1e61e7518fa3b77ab2
74d07706e04f5cc1

Malware Family

Possible C2 (Need further network analysis)
Domains

Registry Modificatio ns

5.3.3 Recommendations and Mitigation

Prevention Strategies

Avoid downloading unknown .tar files or executables Regularly update antivirus signatures Monitor network traffic for suspicious outgoing connections Implement endpoint security and behavioral analysis tools

Incident Response Steps

1: Isolation: Quarantine infected machines

2: Forensics: Examine logs, file system changes, and memory dumps

- 3: Mitigation: Block related domains, remove persistence mechanisms
- 4: Patch & Protect: Keep OS and software updated

5.3.4 Conclusion

This analysis highlights that the malware is a potential **Trojan Stealer**, likely designed to extract credentials or sensitive data. Given its .NET/MSIL nature, it can be obfuscated and challenging to detect. Proper security measures and endpoint monitoring can help mitigate similar threats.

6. Sandboxing & Detection Techniques

Technique Purpose

API Hooking Monitors system calls made by malware.

Code Injection Determines if malware injects itself into other

processes.

Memory Analysis Analyzes malicious behavior in RAM.

Network Identifies malicious IPs, domains, and traffic patterns.

Analysis

7. Indicators of Compromise (IOCs)

IOCs help in identifying infected systems and tracking malware activity.

Type of IOC Example

File Hash (MD5, a2c4f3...3d2f7e7f

SHA-256)

Malicious Domains badsite[.]com

IP Addresses 192.168.1.100

Registry HKLM\Software\Microsoft\Windows\CurrentVersion\Ru

Modifications n\malware.exe

Mutexes Global\Malware_Mutex

8. Tools Used for Malware Analysis

Tool Purpose

Ghidra Static analysis and reverse engineering.

IDA Pro Advanced disassembly and debugging.

Cuckoo Safe execution of malware for analysis.

Sandbox

Wireshark Captures and analyzes network traffic.

Procmon Monitors system activity in real time.

VirusTotal Checks malware signatures against known

databases.

9. Conclusion & Recommendations

- Avoid downloading untrusted software.
- Use endpoint protection (EDR, antivirus, sandboxing).
- Regularly update security tools to detect new malware variants.
- Monitor network activity for abnormal patterns.