INDIVIDUAL TEST S.-T YAU COLLEGE MATH CONTESTS 2012

Algebra and Number Theory

Please solve 5 out of the following 6 problems, or highest scores of 5 problems will be counted.

- 1. Prove that the polynomial $x^6 + 30x^5 15x^3 + 6x 120$ cannot be written as a product of two polynomials of rational coefficients and positive degrees.
- **2.** Let \mathbb{F}_p be the field of *p*-elements and $GL_n(\mathbb{F}_p)$ the group of invertible n by n matrices.
 - (1) Compute the order of $GL_n(\mathbb{F}_n)$.
 - (2) Find a Sylow p-subgroup of $GL_n(\mathbb{F}_p)$.
 - (3) Compute the number of Sylow p-subgroups.
- **3.** Let V be a finite dimensional vector space over complex field \mathbb{C} with a nondegenerate symmetric bilinear form (,). Let

$$O(V) = \{ g \in GL(V) | (gu, gv) = (u, v), \ u, v \in V \}$$

be the orthogonal group. Prove that fixed point subspace $(V \otimes_{\mathbb{C}} V)^{\mathsf{O}(\mathsf{V})}$ is 1-dimensional.

4. Let \mathfrak{D} be the ring consisting of all linear differential operators of finite order on \mathbb{R} with polynomial coefficients, of the form

$$D = \sum_{i=0}^{n} a_i(x) \frac{d^i}{dx^i}$$

for some natural number $n \in \mathbb{N}$ and polynomials $a_0(x), \dots, a_n(x) \in \mathbb{R}[x]$. This ring \mathfrak{D} operates naturally on $M := \mathbb{R}[x]$, making M a left \mathfrak{D} -module.

- (1) (to warm up) Suppose that $b(x) \in \mathbb{R}[x]$ is a non-zero polynomial in M, and let c(x) be any element in M. Show that there is an element $D \in \mathfrak{D}$ such that D(b(x)) = c(x).
- (2) Suppose that m is a positive integer, $b_1(x), \dots, b_m(x)$ are m polynomials in M linearly independent over \mathbb{R} and $c_1(x), \dots, c_m(x)$ are m polynomials in M. Prove that there exists an element $D \in \mathfrak{D}$ such that $D(b_i(x)) = c_i(x)$ for $i = 1, \dots, m$.
- **5.** Let Λ be a lattice of \mathbb{C} , i.e., a subgroup generated by two \mathbb{R} -linear independent elements. Let R be the subring of \mathbb{C} consists of elements α such that $\alpha\Lambda\subset\Lambda$. Let R^{\times} denote the group of invertible elements in R.
 - (1) Show that either $R = \mathbb{Z}$ or have rank 2 over \mathbb{Z} .

(2) Let $n \geq 3$ be a positive integer and $(R/nR)^{\times}$ the group of invertible elements in the quotient R/nR. Show that the canonical group homomorphism

$$R^{\times} \to (R/nR)^{\times}$$

is injective.

- (3) Find maximal size of R^{\times} .
- **6.** Let V be a (possible) infinite dimensional vector space over \mathbb{R} with a positive definite quadratic norm $\|\cdot\|$. Let A be an additive subgroup of V with following properties:
 - (1) A/2A is finite;
 - (2) for any real number c the set

$$\{a \in A: \qquad \|a\| < c\}$$

is finite.

Prove that A is of finite rank over \mathbb{Z} .