Math 129 Problem Set 10

Lev Kruglyak

May 12, 2022

Problem 6.11. Show that if $\mathcal{O}_K = \mathbb{Z}$ and m is any nonzero integer, then $G_{(m)}^+$ is isomorphic to \mathbb{Z}_m^{\times} .

First let's describe the equivalence relation $\sim_{(m)}^+$. Two ideals $I, J \subset \mathcal{O}_K$ are equivalent under this relationship if there exist $\alpha I = \beta J$ where $\alpha \equiv \beta \equiv 1 \mod m$. Since $\mathcal{O}_K = \mathbb{Z}$ is a PID, ideals are of the form I = (a), J = (b) for some $a, b \in \mathbb{Z}$. Since $(\alpha a) = (\beta b)$ is equivalent to $\alpha a = \pm \beta b$, and this implies that $a \equiv b \mod m$, there is a one to one correspondence between elements of \mathbb{Z}_m^{\times} and equivalence classes under $\sim_{(m)}^+$. This correspondence behaves well with respect to multiplication so $G_{(m)}^+ \cong \mathbb{Z}_m^{\times}$.

Problem 6.12. Let U_M^+ denote the group of totally positive units in \mathcal{O}_K satisfying $u \equiv 1 \mod M$. Show that U_M^+ is a free abelian group of rank r+s-1.

In Problem 6.5, it is proved that if the field K has at least one real embedding, then U^+ , the group of all totally positive units is a free abelian group of rank r+s-1. Let u_1, \ldots, u_{r+s-1} be some basis for U^+ . For every u_i , there is some $k_i \in \mathbb{Z}$ such that $u_i^{k_i} \equiv 1 \mod M$. Then the free module generated by $u_i^{k_i}$ has rank r+s-1, and since $U_M^+ \subset U_+$ which has rank r+s-1, it follows that U_M^+ also has rank r+s-1.

Problem 6.13. Modify the proof of Theorem 39 to yield the following improvement: If C is any ray class (equivalence under \sim_M^+), then (with the obvious notation) we have

$$i_C(t) = \kappa_M^+ t + \varepsilon_C(t)$$

where κ_M^+ is independent of C and $\varepsilon_C(t)$ is $O(t^{1-1/n})$.

The proof is essentially unchanged, we know that U_M^+ is a free abelian group of rank r+s-1, and we get the same lattice behavior and properties as for the non ray class group. The only crucial difference is that κ_M^+ would be smaller since ray classes are smaller than ordinary ideal classes.

Problem 6.14. Let u_1, \ldots, u_{r+s-1} be any r+s-1 units in a number ring \mathcal{O}_K and let G be the subgroup of $U = \mathcal{O}_K^{\times}$ generated by all u_i and all roots of unity in \mathcal{O}_K . Let Λ_G be the sublattice of Λ_U consisting of the log vectors of units in G.

- (a) Prove that the factor groups U/G and Λ_U/Λ_G are isomorphic.
- (b) Prove that the log vectors of the u_i are linearly independent over \mathbb{R} iff U/G is finite.
- (c) Define the regulator $reg(u_1, ..., u_{r+s-1})$ to be the absolute value of the determinant formed from the log vectors of the u_i along with any vector having coordinate sum 1. Show that U/G is finite iff $reg(u_1, ..., u_{r+s-1}) \neq 0$.
- (d) Assuming that $reg(u_1, \ldots, u_{r+s-1}) \neq 0$, prove that

$$reg(u_1, \dots, u_{r+s-1}) = |U/G| \cdot reg(R).$$

- (a) Recall that we have an (injective) embedding of $K \to \mathbb{R}^{r+2s}$ which restricts to an embedding $\lambda : \mathcal{O}_K \to \Lambda_K$, where Λ_K is the fundamental lattice of the number field. This embedding is also an additive homomorphism, so we have a surjective map $U \to \Lambda_U/\Lambda_G$ which takes an α and maps it to $\lambda(\alpha) + \Lambda_G$. The kernel of this map is the set of α such that $\lambda(\alpha) \in \Lambda_G$, which is exactly G. So the first isomorphism theorem gives us a canonical isomorphism $U/G \to \Lambda_U/\Lambda_G$.
- (b) Suppose first that the log vectors of the u_i are linearly independent over \mathbb{R} . Then letting $\log : \Lambda_K \to \mathbb{R}^{r+s}$ be the standard log map, it follows that $\log(u_1, \ldots, u_{r+s-1})$ is a r+s-1 dimensional sublattice of $\log \Lambda_K$. Thus the quotient is finite. If the quotient is infinite, we get a clear contradiction which shows that the log vectors aren't linearly independent.

Problem 7.1. Fill in details in the proof of Theorem 42:

(a) Show that

$$1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \dots = (1 - 2^{1-s})\zeta(s)$$

for s > 1.

- (b) Verify that $1 2^{1-s}$ has a simple zero at s = 1.
- (a) Observe that

$$(1 - 2^{1-s})\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} - 2\sum_{n=1}^{\infty} \frac{1}{(2n)^s} = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots$$

(b) First we'll expand $1-2^{1-s}$ as a power series. Note that

$$2^z = e^{z \log 2} = \sum_{n=0}^{\infty} \frac{(z \log 2)^n}{n!}$$

so $1 - 2^{1-s}$ has the power series

$$1 - 2^{1-s} = 1 - \sum_{n=0}^{\infty} \frac{(1-s)^n \log^n 2}{n!} = -\sum_{n=1}^{\infty} \frac{(1-s)^n \log^n 2}{n!} = (s-1) \left(\sum_{n=1}^{\infty} \frac{(1-s)^{n-1} \log^n 2}{n!} \right).$$

The second part of the factor has simple form, and the power of (s-1) is one, so the zero at 1 is simple.

Problem 7.3. Let A and B be disjoint sets of primes in a number field. Show that

$$\delta(A \cup B) = \delta(A) + \delta(B)$$

if all of these polar densities exist, and that if any two of them exist, then so does the third.

First suppose all the polar densities exist. By definition, we have $\zeta_{K,A}(s) = (s-1)^{n\delta(A)}g_A(s)$ for some analytic function $g_A(s)$ which is defined and nonzero at s=1. We have the same for $\zeta_{K,B}(s)$. Then,

$$\zeta_{K,A \cup B}(s) = \prod_{\mathfrak{p} \in A \cup B} \left(1 - \frac{1}{\|\mathfrak{p}\|^s} \right)^{-1} = \prod_{\mathfrak{p} \in A} \left(1 - \frac{1}{\|\mathfrak{p}\|^s} \right)^{-1} \prod_{\mathfrak{p} \in B} \left(1 - \frac{1}{\|\mathfrak{p}\|^s} \right)^{-1}$$

which can be extended to a function $(s-1)^{n(\delta(A)+\delta(B)}g_A(s)g_B(s)$, and so $\delta(A \cup B) = \delta(A) + \delta(B)$. Now suppose that two of them exist; there are two cases to consider. If both $\delta(A)$ and $\delta(B)$ exist, then the above argument shows that $\delta(A \cup B)$ must also exist. To address the other case, suppose without loss of generality that $\delta(A)$ and $\delta(A \cup B)$ exist. Then

$$\zeta_{K,B}(s) = \frac{\zeta_{K,A\cup B}(s)}{\zeta_{K,A}(s)}$$

so any extension of the two that exist gives an extension to $\zeta_{K,B}(s)$ giving a well defined density.

Problem 7.6. Let H be a proper subgroup of \mathbb{Z}_m^* . Give an elementary proof, using nothing more that the Chinese remainder theorem that there are infinitely many primes $p \in \mathbb{Z}$ such that $\overline{p} \notin H$.

Suppose for the sake of contradiction that there were a finite number of primes p_1, \ldots, p_k with $\overline{p_i} \notin H$. Let $x \in \mathbb{Z}$ be an integer congruent to 1 mod p_i for all i (This works by Chinese remainder theorem) and $\overline{x} \notin H$. We can ensure the second part since all $x + np_1 \cdots p_k$ are solutions for some fundamental solution $x < p_1 \cdots p_k$. Then