1 Задание 6

1.1 Задача 1

Кажется, что да, попробуем это доказать.

Единица на нечетном месте, будем считать слева направо, при делении на 3 даёт остаток 1, на четном даёт остаток 2:

 $1 \mod 3 \equiv 1$, $2 \mod 3 \equiv 2$, $4 \mod 3 \equiv 1$.

При добавлении символа каждая четная позиция становится нечетной, и каждая нечетная становится четной. Новый символ (слева) меняет позиции с четных на нечетные и нечетные на четные, а сам считываемый символ всегда на несчитываемой символ. Тогда будем рассматривать следующие комбинации: Кол-во Ч (Остаток от деления кол-ва единиц на четных местах), Кол-во Н (Остаток от деления кол-ва единиц на нечетных местах), в – слово, которое будем дописывать.

пил кол-ва единиц на нечетных местах), в слово, которое будем дописывать.					
N	Кол-во Ч	Кол-во Н	$\omega \mod 3$	S	ω ·s mod 3
1	1	1	$1 \cdot 2 + 1 \cdot 1 \equiv 0 \bmod 3$	0	$1 \cdot 2 + 1 \cdot 1 + 0 \equiv 0 \mod 3$
2	1	2	$1 \cdot 2 + 2 \cdot 1 \equiv 1 \bmod 3$	0	$2 \cdot 2 + 1 \cdot 1 + 0 \equiv 2 \mod 3$
3	1	0	$1 \cdot 2 + 0 \cdot 1 \equiv 2 \bmod 3$	0	$0 \cdot 2 + 1 \cdot 1 + 0 \equiv 1 \mod 3$
4	2	1	$2 \cdot 2 + 1 \cdot 1 \equiv 2 \bmod 3$	0	$1 \cdot 2 + 2 \cdot 1 + 0 \equiv 1 \mod 3$
5	2	2	$2 \cdot 2 + 2 \cdot 1 \equiv 0 \bmod 3$	0	$2 \cdot 2 + 2 \cdot 1 + 0 \equiv 0 \mod 3$
6	2	0	$2 \cdot 2 + 0 \cdot 1 \equiv 1 \bmod 3$	0	$0 \cdot 2 + 2 \cdot 1 + 0 \equiv 2 \mod 3$
7	0	1	$0\cdot 2+1\cdot 1\equiv 1\bmod 3$	0	$1 \cdot 2 + 0 \cdot 1 + 0 \equiv 2 \mod 3$
8	0	2	$0 \cdot 2 + 2 \cdot 1 \equiv 2 \bmod 3$	0	$2 \cdot 2 + 0 \cdot 1 + 0 \equiv 1 \mod 3$
9	0	0	$0 \cdot 2 + 0 \cdot 1 \equiv 0 \bmod 3$	0	$0 \cdot 2 + 0 \cdot 1 + 0 \equiv 0 \mod 3$
10	1	1	$1 \cdot 2 + 1 \cdot 1 \equiv 0 \bmod 3$	1	$1 \cdot 2 + 1 \cdot 1 + 1 \equiv 1 \mod 3$
11	1	2	$1 \cdot 2 + 2 \cdot 1 \equiv 1 \bmod 3$	1	$2 \cdot 2 + 1 \cdot 1 + 1 \equiv 0 \mod 3$
12	1	0	$1 \cdot 2 + 0 \cdot 1 \equiv 2 \bmod 3$	1	$0 \cdot 2 + 1 \cdot 1 + 1 \equiv 2 \mod 3$
13	2	1	$2 \cdot 2 + 1 \cdot 1 \equiv 2 \bmod 3$	1	$1 \cdot 2 + 2 \cdot 1 + 1 \equiv 2 \mod 3$
14	2	2	$2 \cdot 2 + 2 \cdot 1 \equiv 0 \bmod 3$	1	$2 \cdot 2 + 2 \cdot 1 + 1 \equiv 1 \mod 3$
15	2	0	$2 \cdot 2 + 0 \cdot 1 \equiv 1 \bmod 3$	1	$0 \cdot 2 + 2 \cdot 1 + 1 \equiv 0 \mod 3$
16	0	1	$0\cdot 2 + 0\cdot 1 \equiv 1 \bmod 3$	1	$1 \cdot 2 + 0 \cdot 1 + 1 \equiv 0 \mod 3$
17	0	2	$0 \cdot 2 + 2 \cdot 1 \equiv 2 \bmod 3$	1	$2 \cdot 2 + 0 \cdot 1 + 1 \equiv 2 \mod 3$
18	0	0	$0 \cdot 2 + 0 \cdot 1 \equiv 0 \bmod 3$	1	$0 \cdot 2 + 0 \cdot 1 + 1 \equiv 1 \mod 3$

Остатки при делении на 3 задают классы эквивалентности по отношению \sim действительно:

- 1. $\omega \bmod 3 \equiv 1,$ to $\omega \cdot 0 \bmod 3 \equiv 2 \in L,$ $\omega \cdot 1 \bmod 3 \equiv 0 \not\in L$
- 2. $\omega \mod 3 \equiv 2$, to $\omega \cdot 0 \mod 3 \equiv 1 \notin L$, $\omega \cdot 1 \mod 3 \equiv 2 \in L$
- 3. $\omega \mod 3 \equiv 0$, to $\omega \cdot 0 \mod 3 \equiv 0 \notin L$, $\omega \cdot 1 \mod 3 \equiv 1 \notin L$

Построим ДКА из этих классов по алгоритму и получим:

1 TPAII

Доказано

1.2 Задача 2

a) cooming soon... b) cooming soon... b) cooming soon...

1.3 Задача 3

Угадали решение: $n=3\cdot k+1$ (на самом деле нашли с помощью алгоритма Евклида)

Найдем классы L-эквивалентности. Классы эквивалентности найдены аналогично задачи 1:

- 1. L_0 язык всех слов, дающих остаток 0 при целочисленном делении на 3
- 2. L_1 язык всех слов, дающих остаток 1 при целочисленном делении нв 3
- 3. L_2 язык всех слов, дающих остаток 2 при целочисленном делении на 3

Получили, что язык L – регулярен.

<u>Ответ:</u> Язык L – регулярен.

1.4 Задача 4

а) Пусть $L = \{xy : |x| > |y|, x содержит букву а\}$

Выберем два множества: L_1 – язык всех слов, не содержащих букву а, L_2 – язык всех слов, содерщащих букву а.

Теперь будет проверять будут ли они классам L-эквивалентности. Возьмём два любых слова из L_1 и L_2 , тогда приписывание произвольного слова $t \in \sum^*$ меняет принадлежность к L получшихся слов одновременно.

2 ТРЯП

Пусть теперь $x \in L_1$, $y \in L_2$ и $\omega = b$ будет разделяющим словом. При приписывании слова t к словам x и y, получаем, что $yt \in L$, $xt \notin L$. Получили два класса L-эквивалентности. По теореме Майхилла-Нероуда L – регулярный язык. **б)** cooming soon...

1.5 Задача 5

а) Рассмотрим два произвольных слова из языка L_q . Количество состояний конечно и определены переходы по всем буквам алфавита, т.к. \mathcal{A} - полный ДКА. Можем приписать к двум любым словам из L_q ω . Подадим получившиеся слово на вход в автомат, тогда он придет сначала в состояние q, это следует из определения L_q . Потом автомат приступит к обработке слова ω , т.к. автомат ДКА то он придет либо в принимающее состояние, либо в непринимающее состояние. Т.е. все слова из левого языка будут принадлежать некоторому «левому» классу L – эквивалентности.

Доказано

- $\overline{\bf 6}$) Для каждой вершин вершины автомата $\mathcal A$ рассмотрим множество L_q . Теперь рассмотрим L-эквивалентность слов из разных L_q . Если у нас два слова окажутся эквивалентными, то в далее будем рассматривать их вместе. Таким образом получим разбиение множества всех «левых» языков L_q для каждой вершина на множества L_{q_k} , которые будут попарно неэквивалентны в силу построения. Т.е. для каждого класса эквивалетности существует подмножество состояние, что этому классу соответствует язык L_q , который мы можем представить в виде объединения L_{q_k} по всем состояниям из рассматриваемого множества состояний. Доказано
- $\overline{\mathbf{B}}$) Если у нас есть два слова из классов L_q и L_t и они лежат в одном классе эквивалентности, то при дописывании к ним любого слова ω означает то, что автомат закончит работу в одинаковом состоянии. Если так получилось, что автомат закончил в принимающеем состоянии, тогда это означает то, что $R_q = R_p$, иначе получаем, что эти два слова не принадлежат одному и тому же классу эквивалентности.

Доказано

3

1.6 Задача 6

Построим табличку непринимающих состояний и принимающих состояний и выполним алгоритм.

Ура, всё получилось, теперь можем построить ДКА из этой картинки.

4 ТРЯП

1.7 Задача 7

$$L = \{ab^{2^{i}} \mid i \ge 0 \} \cup \{b^{j} \mid j \ge 0\} \cup \{a^{m}b^{n} \mid m > 1, n \ge 0 \}$$

$$L_{1} = \{ab^{2^{i}} \mid i \ge 0 \}$$

$$L_{2} = \{b^{j} \mid j \ge 0 \}$$

$$L_{3} = \{a^{m}b^{n} \mid m > 1, n \ge 0 \}$$

$$L = L_{1} \cup L_{2} \cup L_{3}$$

Теперь, докажем, что лемма о накачке выполняется для этого языка L.

Рассмотрим лемму: для L_1 можем взять $p_1=1, x=\epsilon, y=a(|y|=1\leqslant p_1), z=b^{2^i}$. Тогда при k=0 $xy^kz=b^{2^i}\in L_2\subseteq L$; При k=1 $xy^kz=ab^{2^i}\in L_1\subseteq L$. При k>1 $xy^j=a^jb^{2^i}\in L_3\subseteq L$. Значит все слова из L_1 удовлетворяют лемме о накачке для L.

Рассмотрим лемму: для L_2 можем взять $p_2=1, x=\epsilon, y=b(|y|=1\leqslant p), z=b^{j-1}$. Тогда $xy^kz=b^{j+k-1}\in L_2\subseteq L$. Значит все слова из L_2 удовлетворяют лемме о накачке для L.

Для L_3 можно построить ДКА A_3 . Приведу его ниже:

Значит для L_3 выполняется лемма о накачке: $\exists p_3 \forall \omega \in L_3 : |\omega| > p_3, \exists xyz = \omega$ $((y \neq \epsilon) \land (|xy| \geqslant p_L)) \land (\forall i \geqslant 0 \ xy^iz \in L)) \rightarrow xy^iz \in L.$

Доказано

Теперь докажем, что $L \notin REG$. $L_1 \cap L_2 = \emptyset$, $L_1 \cap L_3 = \emptyset$, $L_2 \cap L_3 = \emptyset$. $L1 = L \ (L_2 \cup L_3)$. REG замкнуто относительно разности и объединения, тогда от противного предположим, что $L \in REG$, т.к. $L_3 \in REG$ по доказанному выше, а $\{b\} \in REG \to L_2 = \{b\}^* \in REG, (L_2 \cup L_3) \in REG \to L_1 \in REG$.

Но $L_1 \notin REG$. Для него не выполняется лемма о накачке, т.е.

$$\forall p \exists \omega \in L : |\omega| > p, \forall xyz = \omega((y = \epsilon) \bigvee (|xy| > p) \bigvee (\exists \geqslant 0 : xy^tz \notin L))$$

Теперь попробуем показать это: Если взять $x=\epsilon$, $y=ab^k$, то $xy^0z=b^{2^i-k}\notin L_1$, если взять $y=b^k$, то $xy^iz=ab^{2^i-k+tk}=ab^{2^i+(t-1)k}$. Если бы $L_1\in REG$, то $\forall k>0$ $\forall t\geqslant 0$ $2^i+(t-1)k=2^j$. Но при четном k, i>0 или нечетного k, i=0 это не будет выполнено ни для какого четного t, а в случае нечетного k, i>0 или четного k, i=0 - ни для какого четного t.

Следовательно лемма не выполнется, т.е. $L_1 \notin REG \to L \notin REG$ Доказано

5 ТРЯП