Separators and decision trees

Andreas Hoppe

September 16, 2014

Contents

1	Separators	1								
2	2 Decision tree for time points									
3	Decision trees for phases	5								
	3.1 All factors	5								
	3.2 Excluding all factors with only 3 repeats	7								
	3.3 Excluding factors which can not be measured in blood plasma	ç								

1 Separators

This section is about factor which have different values in a certain time frame. A time frame is a consecutive series of time points, it may or not start at 0h, may or may not end at 14d, and may also consist of only a single time point. A separator is a combination of a factor, a threshold value and a time frame. If the factor's value of a putative mouse above (or below, for separators marked as reverse in the tbale below) the threshold it is predicted that the time after BDL is in the specified time frame. The prediction can be tested on a set of mice with known, and the ratio of correct predictions is called recall.

There are 41 perfect separators of a time frame, i.e. a factor, whose values are on opposites sides of a threshold for mice inside versus outside the time frame. Perfect means, that the time frame is recalled with 100%. 35 of the time frames include the beginning/end of the whole experiment, i.e. values change (mostly up) at a certain time point and remain until 14d.

12 separators predict a single time point. 6 separators of which separate the 0h time point (the control) from the treated mice. The 6 remaining separators time frames are of particular interest, Nr0b2_RNAa is strongly decreases only for all mice in the 6h timepoint, the threshold value leading to a perfect prediction is 162.

The quality of a perfect separator, the separation, is measured by two parameters: (i) the actual gap between the values of the split time frames in relation to the whole factor variation, and (ii) the differences of the averages in relation to the standard deviation inside each of the time frame's data. Separators of a higher separation have a better chance to perform well for mice not included in the training data set.

Cyp24a1_RNAa is also a perfect separator for the 6h time point as Nr0b2_RNAa, but the separation is lower. So for a particular prediction the separators with a high separation are preferred.

Not for all time point there is a single separator (Mmp10_RNAf is a perfect separator for the 18h time point, the only other internal time point with such a separator). However, by the combination of two or three factors, each time point can be predicted, see below.

The factor CTGF_cells appears as a perfect separator for several time frames (0-30h, 0-5d, 0-12h, 0-6h) the first of which is also the topmost separating separator. Thus, it is the best candidate to monitor the disease progress.

Among the RNA, Il28b_RNAz, Col3a1_RNAf, Sparc_RNAf, Il13_RNAz, Pdgfb_RNAf, Tgfb2_RNAf (time frame 0h-2d) as well as Cyp1a2_RNAa (time frame 0h-6h) are factors showing a high separation. With respect to the transcriptional changes there is a large change from the 2d and 5d time point.

2 1 SEPARATORS

factor	time frame start	time frame end	reverse	separation range percentage	separator value by median of gap	minimum of lower value set	maximum of lower value set	minimum of higher value set	maximum of higher value set
GTGF_cells S100A4_cells Il28b_RNAz CTGF_cells Bili_blood Col3a1_RNAf Sparc_RNAf Nr0b2_RNAa Cyp1a2_RNAa Il13_RNAz Pdgfb_RNAf ALT_blood Tgfb2_RNAf Il17a_RNAz SMA_cells Cyp2c37_RNAa CTGF_cells Cyp2c37_RNAa CTGF_cells Cyp24a1_RNAa Cd86_RNAz Col1a1_RNAf S100A4_cells Bili_blood Cyp2e1_RNAf Hmox1_RNAa SMA_cells GLDH_blood Cd14_RNAz SMA_cells Cxcl2_RNAz Mmp10_RNAf Hgf_RNAz Cdh2_RNAf Cd14_RNAz Il10rb_RNAz Ccl2_RNAz	0h 0	30h 30h 2d 5d 2d 614d 2d 614d 2d 6h 4d 2d 6h 4d 2d 6h 4d 12h 6h 6d 2d 5d 12h 6h 6h 6h 6h 6h 6h 6h 6h 6h 6h 6h 6h 6h	000000100000000000000000000000000000000	18.6 16.3 15.6 15.1 12 11.2 10.4 9.55 9.34 6.36 5.48 5.34 5.11 5.01 4.92 4.78 4.65 3.49 3.16 2.7 2.61 2.55 2.04 1.82 1.74 1.25 0.76 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	28 36 12865 72.5 168.4 4.64 2.07 161.9 1915 1.74 63.1 1.79 14034 9 0.79 12 4.5 67.7 1.59 5.38 3.46 19.5 5.31 0.7 0.57 16 44.3 0.39 2.5 0.13 57.4 1.79 0.9 0.18 1.79 0.18 1.79 0.18 1.79 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	1 12 0.002 1 0.53 0.05 0.24 0 0.39 0.001 0.37 26.5 0.29 0.01 1 0.02 0.26 0.07 0.23 12 0.53 0.26 0.27 1 8.4 0.06 1 0.01 0.02 0.01 0.01 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05	20 32 122.2 66 144.2 3.38 1.73 130.6 1.76 240.5 1.61 33.2 1.54 0.04 6 0.72 10 3 9.76 1.48 5.1 3.34 19 1.65 0.69 0.55 15 20.6 0.37 2 0.09 42.8 1.77 0.89 0.17 1.36 0.27	36 40 25608 79 192.5 5.89 2.41 193.2 2.02 3590 1.87 93 2.04 28068 12 0.86 14 6 125.7 1.69 5.67 3.57 20 8.96 0.72 0.59 17 68 0.42 3 0.18 7 2 1.81 0.9 0.19 1.81 0.9 0.19 1.81 0.9 0.19 1.81 0.9 0.19 0.19 0.19 0.19 0.19 0.19 0.19	87 61 1.6·10 ⁵ 87 401.5 22.4 6.8 655.5 3.19 52699 5.13 1146 10.1 5.6·10 ⁵ 123 3.18 87 87 3663 7.91 21.6 9.42 61 401.5 1.99 2.49 123 3794 6.16 123 11.7 4971 7.75 3.2 6.16 5 13.3
Timp1_RNAf II28b_RNAz II2_RNAz Mmp10_RNAf	0h 6h 18h 0h	0h 2d 2d 0h	0 0 0 0	0.13 0.01 0.002 0	0.12 9.17 0.12 0.002	0.06 0.002 0.0003 0.001	0.11 0.01 0.001 0.002	0.13 18.3 0.23 0.002	11.7 1.6·10 ⁵ 14869 4971

Table 1 – list of perfect separators sorted by the relative gap

Split	question	relative gap (%)				
Split between 30h and 2d	e(CTGF_cells)<28 <=> before 2d	18.6047				
Split between 12h and 18h	e(CTGF_cells)<12 <=> before 18h	21.0526				
Split between 6h and 12h	e(SMA_cells)<9 <=> before 12h	42.8571				
Split between 0h and 6h	e(Tnfrsf1a_RNAz)<0.80662 <=> before 6h	37.6697				
Split between 18h and 30h	e(Gstm1_RNAa)<1.38529 <=> before 30h	13.8217				
Split between 5d and 14d	e(CTGF_cells)<72.5 <=> before 14d	25.4902				
Split between 2d and 5d e(II28b_RNAz)<21392.5 <=> before 5d 26.2641						
24/24 correct, 0/24 wrong predictions; 17 unapplicable.						

Table 2 – decision tree for time points, all mouse data. The last line refers to the check on all 41 mice, whether the decision tree predicts the correct time point. Tests are referred to as unapplicable if the decision tree contains a factor not measured for the tested mouse, in this case, CTGF cells, which is only measured for three repeats.

2 Decision tree for time points

This section is about predicting the time point a mouse belongs with binary decision trees. A decision tree is a scheme consisting of questions of the form "Is factor X larger than a value y?" When several of these questions have been answered, the automated predictor decides to which time point the mouse belongs.

Only those factors are considered where the values one time frame are in a disjoint interval compared to the values of another time frame. Between the intervals there is a gap, where the size of gap, compared with the range of all values of both intervals — the relative gap — measures the fitness of the factor to tell one time point from another. If several factors are candidates the one with the larger relative gap is perferred. The median of the gap is the suggested splitting point between the two time points.

For the decision tree generated from all mice, see Table 2. For the decision trees of the leave-one-out tests, see Table 3.

Question	1	Question 2	2 Question	on 3	Questio	n 4	Questio	n 5 Questic	on 6 Qu	estion 7	result
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Col8a1>0.83	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d II28b>16.6	0h 6h Nr0b2>97.5	6h 12h	CTGF<12	12h 18	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139		5d n.appl.
CTGF<28	30h	2d Fn1<0.79	0h 6h Nr0b2>97.5	6h 12h	CTGF<12	12h 18	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	SMA<3.5	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d wrong
CTGF<28	30h	2d Fn1<0.83	0h 6h Nr0b2>97.5	6h 12h	CTGF<12	12h 18	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<8.5	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<4	6h 12h GLDH<268.3	0h 6h	CTGF<12	12h 18	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	ALT<221.6	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<11.5	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<6	6h 12h Tnfrsf1a<0.8	1 0h 6h	CTGF<12	12h 18	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d Gstm1<1.29	18h 30h CTGF<13	12h 18h	SMA<9	6h 12	h Tnfrsf1a<0.81	0h 6h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Fn1>1.23	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d wrong
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Cd86<0.61	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d wrong
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Cyp1a2>0.92	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h S100A4<27	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d wrong
CTGF<27.5	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Mki67<0.88	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d ALT<138.1	0h 6h Nr0b2>97.5	6h 12h	BrdU_NP<0.43	3 18h 30	h CTGF<13	12h 18h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
S100A4<34.5	30h	2d CTGF<13	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h SMA<39.5	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d wrong
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Birc5<0.71	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<30.5	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h Gdf2<1.44	2d 5d CTGF<72.5	5 5d	14d wrong
Bili<150.7	2d	5d CTGF<28	30h 2d CTGF<12	12h 18h	SMA<9	6h 12	h Tnfrsf1a<0.81	0h 6h Gstm1<1.39	18h 30h CTGF<72.5	5 5d	14d correct
S100A4<38	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d BrdU_Stella	ate<0.97 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139		5d n.appl.
II10rb<2.1	2d	5d CTGF<28	30h 2d CTGF<12	12h 18h	SMA<9	6h 12	h Tnfrsf1a<0.81	0h 6h Gstm1<1.39	18h 30h CTGF<72.5	5 5d	14d n.appl.
CTGF<66	5d	14d BrdU_Stellate<1.14	4 2d 5d CTGF<28	30h 2d	CTGF<12	12h 18	h SMA<9	6h 12h Tnfrsf1a<0.81	1 0h 6h Gstm1<1.3	9 18h	30h wrong
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d Bili<192.6	2d	5d wrong
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d CTGF<47.5	5 2d	5d wrong
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
CTGF<75.5	5d	14d II28b<21454	2d 5d CTGF<28	30h 2d	CTGF<12	12h 18	h SMA<9	6h 12h Tnfrsf1a<0.81	1 0h 6h Gstm1<1.3	9 18h	30h correct
BrdU_Stellate<0.9	7 2d	5d CTGF<28	30h 2d CTGF<12	12h 18h	SMA<9	6h 12	h Tnfrsf1a<0.81	0h 6h Gstm1<1.39	18h 30h CTGF<72.5		14d n.appl.
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139		5d correct
CTGF<28	30h	2d CTGF<12	12h 18h SMA<9	6h 12h	Tnfrsf1a<0.81	0h 6	h Gstm1<1.39	18h 30h CTGF<72.5	5d 14d II28b<2139	3 2d	5d n.appl.
II28b<18045	2d	5d CTGF<28	30h 2d CTGF<12	12h 18h	SMA<9	6h 12	h Tnfrsf1a<0.81	0h 6h Gstm1<1.39	18h 30h CTGF<72.5	5 5d	14d correct
		<u> </u>	I		1		1	1			

15/24 correct, 9/24 wrong predictions; 17 unapplicable.

Table 3 – decision trees of leave-one-out tests for time points. The last line refers to the check on all 41 mice, whether the decision tree predicts the correct time point. Tests are referred to as unapplicable if the decision tree contains a factor not measured for the tested mouse, in this case, CTGF_cells, which is only measured for three repeats.

3 Decision trees for phases

Here, only the phases are to be predicted, i.e. 4 classes of mice: control, initial (6-12h), perpetuation (18h-2d), and progression (5-14d). Thus, three questions are sufficient.

3.1 All factors

First, there is no restriction on the selected factors For the decision tree generated from all mice, see Table 4. As you can see, Il28b, Fn1, and CTGF cells are used as predictors. As the first decision is made for Il28b, a factor measured on all repeats, there are only 11 unapplicable mice.

For the decision trees of the leave-one-out tests, see Table 5. The sole wrong prediction is mouse where the Il10rb value is an outlier, resulting Il10rb chosen as the root question.

Split	question	relative gap (%)					
Split between perpetuation and progression Split between control and initial Split between initial and perpetuation	e(II28b_RNAz)<12864.9 <=> before progression e(Fn1_RNAf)<0.78008 <=> before initial e(CTGF_cells)<12 <=> before perpetuation	15.6446 17.4244 9.7561					
30/30 correct, 0/30 wrong predictions; 11 unapplicable.							

Table 4 – decision tree for phases, all mouse data.

Q	uestion 1	Que	stion 2		Qı	uestion 3	result
II28b<12865	perpetuation progression	Fn1<0.78	control	initial	CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression		control	initial	CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	correct
II28b<12855	perpetuation progression					initial perpetuation	
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78				initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78	control	initial	CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78	control	initial	CTGF<12	initial perpetuation	n.appl.
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	n.appl.
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	n.appl.
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	n.appl.
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	correct
II28b<12865	perpetuation progression	Fn1<0.78	control	initial	CTGF<12	initial perpetuation	n.appl.
II28b<12865	perpetuation progression				CTGF<13	initial perpetuation	
II28b<12865	perpetuation progression	Fn1<0.78			CTGF<12	initial perpetuation	n.appl.
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	correct
Bili<150.7	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression	Fn1<0.8			CTGF<12	initial perpetuation	n.appl.
ll28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
ll10rb<2.1	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
Bili<177.1	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
ll28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
BrdU_Stellate<0.97					CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
II28b<12865	perpetuation progression				CTGF<12	initial perpetuation	
ll28b<18045	perpetuation progression	Fn1<0.78	control	initial	CTGF<12	initial perpetuation	correct

28/29 correct, 1/29 wrong predictions; 12 unapplicable.

 ${\bf Table}~{\bf 5}-{\bf decision}~{\bf trees}~{\bf of}~{\bf leave-one-out}~{\bf tests}~{\bf for}~{\bf phases}.$

3.2 Excluding all factors with only 3 repeats

Here the cell counts of CTGF, α -SMA, and S100a4, the factors with only 3 repeats, are excluded. For the decision tree generated from all mice, see Table 6. The left out mouse can be ignored, it is a repeat experiment where only few factors are measured, and not the Fluidigm qPCR runs. Not surprisingly, Il28b and Fn1 are again chosen as questions, and CTGF is replaced with Cdh2, encoding Cadherin.

For the decision trees of the leave-one-out tests, see Table 7. One wrong predictions comes from the same mentioned above, the Il10rb is chosen as the root predictor. Another wrong prediction comes from an mouse where Cyp1a2 has an outlier values, and is chosen as a predictor. The third wrong prediction is very close. The spearation value for Cdh2 is set to 0.88 instead 0.9, just enough to let the decision tree fail.

Split	question	relative gap (%)					
Split between perpetuation and progression Split between control and initial	e(II28b_RNAz)<12864.9 <=> before progression e(Fn1_RNAf)<0.78008 <=> before initial	15.6446 17.4244					
Split between initial and perpetuation	e(Cdh2_RNAf)<0.899067 <=> before perpetuation						
40/40 correct, 0/40 wrong predictions; 1 unapplicable.							

Table 6 – decision tree for phases excluding all factors with only 3 repeats, all mouse data.

Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Il28b<12865 perpetuation progression Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b<12865 perpetuation progres	Question 1		Question 2				uestior	result	
Il28b-12865 perpetuation progression Fn1<0.77 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Il28b	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
IZ8b<12865 perpetuation progression IZ8b<12865 perpetuation progre	II28b<12865 perpetuation p	orogression II	l28b>16.6	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct corr	II28b<12865 perpetuation p	progression F	-n1<0.77	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct corr				control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct Il28b-12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct corr	II28b<12865 perpetuation p	progression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct correct Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 Initial perpetuation correct II28b<12865 perpetuation progression	II28b<12865 perpetuation p	progression F	-n1<0.78	control	initial	Cdh2<0.9			
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct initial cdh2<0.9 initial perpetuation correct correct correct initial cdh2<0.9 initial perpetuation correct corr	II28b<12865 perpetuation p	progression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Fn1<0.78 Fn1<0.78 Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Fn	II28b<12865 perpetuation p	progression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
II28b<12865 perpetuation progression II28b<12865 perp	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Il28b<12865 perp	II28b<12865 perpetuation p	progression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Il28b<12865 perp	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Fn1<0.78 Control initial Cdh2<0.9 Initial Derpetuation Initial Cdh2<0.9 Initial Derpetuation Initial Cdh2<0.9 Initial Derpetuation Derpetuation Initial Derpetuation Derpetuation Initial Derpetua	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Correct Il28b<12865 perpetuation progression Fn1<0.78 Control initial Cdh2<0.9 Initial perpetuation Initial perpe	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.88	initial	perpetuation	wrong
II28b<12865 perpetuation progression II28b<12865 perpetuation progress	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
II28b<12865 perpetuation progression II28b<12865 II28	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cyp1a2>1.17	' initial	perpetuation	wrong
II28b<12865 perpetuation progression II28b<12865 perpetuation II28b<12865 II2865	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
II28b<12865 perpetuation progression II28b<12865 perp	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
II28b< 12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.91	initial	perpetuation	correct
II28b<12865 perpetuation progression II28b<12865 perp	II28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 control initial Cdh2<0.9 initial perpetuation correct c									
II28b<12865 perpetuation progression II28b<12865 perp	Il28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Bili<150.7 perpetuation progression Il28b<12865 perpetuation progression Bili<150.7 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation	Il28b<12865 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct
Il28b<12865 perpetuation progression Bili<150.7 perpetuation progression progression Il28b<12865 perpetuation Il28b<12865							initial	perpetuation	correct
Bili<150.7 perpetuation progression II28b<12865 perpetuation II28b<12865 perpetuation		_						•	l
Il28b<12865 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuat		orogression F	-n1<0.78	control	initial	Cdh2<0.9			
II28b<12865 perpetuation progression II10rb<2.1 perpetuation progression II28b<12865 perpetuation progression II10rb<2.1 perpetuation progression II28b<12865 p	Bili<150.7 perpetuation p	orogression F							
Il28b<12865 perpetuation progression Il10rb<2.1 perpetuation progression Il28b<12865 perpetuation progression Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865									
Il10rb<2.1 perpetuation progression Il28b<12865 perpetuation progression Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation								•	l
Il28b<12865 perpetuation progression Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuatio									
Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuatio								•	
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct initial perpetuation correct cor								•	1
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation n.appl. initial perpetuation correct									
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation n.appl. II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct		_							
Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct		-							l
Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct		-							
II28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct									
Il28b<12865 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct									
Il28b<18045 perpetuation progression Fn1<0.78 control initial Cdh2<0.9 initial perpetuation correct	II28b<18045 perpetuation p	orogression F	-n1<0.78	control	initial	Cdh2<0.9	initial	perpetuation	correct

Table 7 - decision trees of leave-one-out tests for phases excluding all factors with only 3 repeats.

37/40 correct, 3/40 wrong predictions; 1 unapplicable.

3.3 Excluding factors which can not be measured in blood plasma

Additionally to the cell counts of CTGF, α -SMA, and S100a4, further factors are excluded, which presumably can not be found in blood plasma.

For the decision tree generated from all mice, see Table 8. Here, Cdh2 is replaced with Il2, and the interleukin is excreted from cells and also found in blood plasma.

Split	question	relative gap (%)					
Split between perpetuation and progression	e(II28b_RNAz)<12864.9 <=> before progression	15.6446					
Split between control and initial	e(Fn1_RNAf)<0.78008 <=> before initial	17.4244					
Split between initial and perpetuation	e(II2_RNAz)>0.115964 <=> before perpetuation	0.447211					
40/40 correct, 0/40 wrong predictions; 1 unapplicable.							

Table 8 – decision tree for phases excluding all intracellular factors, all mouse data.

For the decision trees of the leave-one-out tests, see Table 9. Apart from Il10rb, already discussed above, also Bilirubin is used as tree question, and led to a wrong predicton in one case.

Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.77 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct Il28b<12865 perpetuation progression F	Question 1	Que	estion 2			Questi	on 3	result
Il28b<12865 perpetuation progression Fn1								
IZ8b<12865 perpetuation progression IZ8b<12865 perpetuation progre								
Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progression Fn1<0.78 Control initial Il2>0.12 Initial perpetuation Correct Il28b-12865 perpetuation progres								
II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.15 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b-12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 pe		I						
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.15 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial								
II28b<12865 perpetuation progression II28b<12865 perp								
II28b<12865 perpetuation progression II28b<12865 perp								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 per								
II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial III2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b								
II28b<12865 perpetuation progression II28b<12865 perp								
II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation corr								
II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 Control initial II2>0.12 initial perpetuation correct	, , , , ,	I						
II28b<12865 perpetuation progression II28b<12865 per								
II28b<12865 perpetuation progression II28b<12865 perp								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct correct correct II2>0.12 initial perpetuation correct correct correct correct II2>0.12 initial perpetuation correct correct correct correct II2>0.12 initial perpetuation correct co								
II28b<12865 perpetuation progression II28b<12865 perpetuation II28b<12865 perpetuation II28b<12865 perpetuation II28b<12865 perpetuation II28b<12865 perpetuation								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct control initial II2>0.12 initial perpetuation correct correct correct II2b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct II2b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct correct II2b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct correct II2b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct co								
II28b< 12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct control II28b< 12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct control II28b< 12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct control II28b< 12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct control II28b< 12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct control III2>0.12 initial perpetuation correct correct control III2>0.12 initial perpetuation correct		I						
Il28b<12865 perpetuation progression Il28b<12865								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correc								
II28b<12865 perpetuation progression II28b<12865 perp								
Il28b<12865 perpetuation progression Bili<150.7 perpetuation progression progr								
Bili<150.7 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuatio								
II28b<12865 perpetuation progression II28b<12865 perpetuation II28b<12865 perpetuation II28b<12865								
Il28b<12865 perpetuation progression Il28b<12865 perpetuation progression progression Il28b<12865 perpetuation Il28b<128								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II2b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II2b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II2>0.13 II2>0.14 II2>0.15 II2>0.15 II2>0.15 II2>0.15 II2>0.16 II2>0.16 II2>0.17 II2>0.18 II2>0.19 II2					I			l
Il10rb<2.1 perpetuation progression Il28b<12865 perpetuation progression Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuatio								
Il28b<12865 perpetuation progression Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuati								
Bili<177.1 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation progression Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuation Il28b<12865 perpetuatio		I						
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation n.appl. II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial correct correct correct II28b<12865 control initial II2>0.12 initial correct co					I			l
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation n.appl. correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct correc								
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation n.appl. II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct corre		I						
II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct II28b<12865 perpetuation progression Fn1<0.78 control initial II2>0.12 initial perpetuation correct correct II28b<12865 control initial II2>0.12 initial perpetuation correct II28b<12865 control initial II2>0.13 initial perpetuation correct II28b<12865 control initial II2>0.14 initial II2>0.15 ini					I			l
ll28b<12865 perpetuation progression Fn1<0.78 control initial ll2>0.12 initial perpetuation correct ll28b<12865 perpetuation progression Fn1<0.78 control initial ll2>0.12 initial perpetuation correct								
Il28b<12865 perpetuation progression Fn1<0.78 control initial Il2>0.12 initial perpetuation correct								
		I						
1128h - 12865 pornotuation progression En 1 - 0.78 control initial II2 - 0.12 initial pornotuation correct								
	II28b<12865 perpetuation progression							
ll28b<18045 perpetuation progression Fn1<0.78 control initial ll2>0.12 initial perpetuation correct	II28b<18045 perpetuation progression	າ Fn1<0.78	control	initial	II2>0.12	initial	perpetuation	correct

 ${\bf Table} \ {\bf 9} - {\bf decision} \ {\bf trees} \ {\bf of} \ {\bf leave-one-out} \ {\bf tests} \ {\bf for} \ {\bf phases} \ {\bf excluding} \ {\bf all} \ {\bf intracellular} \ {\bf factors}.$

38/40 correct, 2/40 wrong predictions; 1 unapplicable.