Обзор комплексного анализа

Сюй Минчуань

29 августа 2020 г.

Содержание

1	Осн	ювные понятия и элементарные функции	3
	1.1	Дифференцируемость функций комплексной переменной. Усло-	
		вия Коши-Римана. Аналитичность. Вопрос 1 Лек.2	3
	1.2	Свойства аналитических функций. Геометрический смысл про-	
		изводной. Вопрос 6 Лек.2	3
	1.3	Дробно-линейные функции: инвариантность двойного отно-	
		шения, круговое свойство. Вопрос 5 Лек.3	4
	1.4	Сохранение симметрии. Примеры типовых дробно-линейных	
		отображений. Вопрос 7 Лек.4	5
	1.5	Функция Жуковского. Вопрос 20	6
	1.6	Показательная функция. Тригонометрические и гиперболи-	
		ческие функции. Вопрос 14 Лек.5	7
2	Инт	гегралы по комплексным переменным	8
	2.1	Интегральная теорема Коши и её обобщения. Вопрос 11 Лек.6	8
	2.2	Неопределённый интеграл и теорема о первообразной. Вопрос	
		21 Лек.7	9
	2.3	Дифференцирование интеграла по параметру. Бесконечная	
		дифференцируемость аналитических функций. Вопрос 8 Лек.8	10
	2.4	Теоремы Морера и Лиувилля. Основная теорема высшей ал-	
		гебры. Вопрос 15 Лек.8	11
3	Ряд	цы аналитических функций	11
	3.1	Равномерно и нормально сходящиеся ряды аналитических функ-	
		ций. Теоремы Вейерштрасса. Вопрос 19 Лек.9	11
	3.2	Аналитичность суммы степенного ряда. Теорема Тейлора. Во-	
		прос 16 Лек.9	12
	3.3	Теорема единственности и её следствия. Вопрос 17 Лек. 10 $$	13
4	Ряд	цы Лорана и изолированные точки	14
	4.1	Ряды Лорана. Теорема Лорана. Вопрос 4 Лек.11	14
	4.2	Классификация изолированных особых точек. Устранимая осо-	
		бая точка. Полюс. Вопрос 18 Лек.11	14

	4.3	Существенно особая точка. Теорема Сохоцкого. Теорема Пикара (без доказательства). Вопрос 13 Лек.11-12	15
5	Teo	рия вычетов и их приложения	16
	5.1	Теоремы о вычетах и полной сумме вычетов. Вычет относи-	
		тельно полюса. Вопрос 12 Лек.13	16
	5.2		
		на. Вопрос 10 Лек.13	17
	5.3	Логарифмический вычет. Принцип аргумента. Теорема Руше.	
		Вопрос 9 Лек.14	18
6	Теорема об образе области		
	6.1	Теорема об образе области. Принципы максимума и миниму-	
		ма модуля аналитической функции. Вопрос 2 Лек.15	20

Основные понятия и элементарные функции

1.1 Дифференцируемость функций комплексной переменной. Условия Коши-Римана. Аналитичность. Вопрос 1 Лек.2

Пусть f - функция комплексного переменного, определённая и однозначная на некотором множестве ${\bf E}$, и пусть z_0 - какая-либо точка этого множества, являющаяся предельной для него. Если существует предел

$$\lim_{E\ni z\to z_0} \frac{f(z)-f(z_0)}{z-z_0} \tag{1}$$

то он называется **производной функции** f по множеству E в точке z_0 и обозначается через $f'(z_0)$. Сама функция f, обладающая производной называется **дифференцируемой** или моногенной по Множеству в точке z_0 . **Критерий дифференцируемости** Функция f тогда и только тогда дифференцируема в точке z_0 , когда её приращение в этой точке можно представить в виде

$$\Delta f(z) = A \cdot \Delta z + \alpha(z_0, \Delta z) \cdot \Delta z \tag{2}$$

где A - константа, а $\alpha(z_0,\Delta z)$ бесконечная малая при $z\to z_0$. Если такое представление возможно, то $A=f'(x_0)$.

Условия Копи-Римана Функция f(z) = u(x,y) + iv(x,y), определённая в области ${\bf G}$, тогда и только тогда дифференцируема в точке $z_0 = x_0 + iy_0$ этой области, когда функции u(x,y) и v(x,y) дифференцируемы в точке (x_0,y_0) и их частные производные в этой точке удовлетворяют соотношениям

$$u'_{x} = v'_{y}, \quad u'_{y} = -v'_{x}$$
 (3)

Определение 1 Функция f, дифференцируемая в каждой точке области G, называется дифференцируемой или **аналитической** в этой области.

Определение 2 Если функция f дифференцируема в каждой точке области G, а ее производная непрерывна в этой области, то f называется аналитической в G.

Эти определения эквивалентны, для удобства в дальнейшем мы будем использовать Определение 2. Обозначение: $f \in \mathcal{A}(\mathbf{G})$.

Функция f аналитична на всей плоскости $\mathbb C$ называется **целыми** (аналитическими) функциями.

1.2 Свойства аналитических функций. Геометрический смысл производной. Вопрос 6 Лек.2

Свойства аналитических функций

1)
$$f \in \mathcal{A}(\mathbf{G}) \Rightarrow f \in \mathcal{C}(\mathbf{G})$$
.

- 2) Пусть $f_1, f_2 \in \mathcal{A}(\mathbf{G})$. Тогда сумма, разность и произведение функций f_1 и f_2 также являются аналитическими функциями в \mathbf{G} . Функция $\varphi = \frac{f_1}{f_2}$ аналитична всюду, где $f_2(z) \neq 0$.
- 3) Теорема об образе области Пусть $f \in \mathcal{A}(\mathbf{G})$ и $f \neq const.$ Тогда множество $\mathbf{D} = f(\mathbf{G})$ также является областью.
- 4) Аналитичность сложной функции Пусть $f(z) \in \mathcal{A}(G)$ и $f(z) \neq const.$ Если в области $\mathbf{D} = f(\mathbf{G})$ определена аналитическая функция $\zeta = g(w),$ $\zeta = g(f(z)) \equiv H(z)$ является аналитической функцией переменной z в области \mathbf{G} .
- 5) Аналитичность обратной функции Пусть $f(z) \in \mathcal{A}(G)$ и $f'(z_0) \neq 0$ в некоторой точке $z_0 \in \mathbf{G}$. Положим $w_0 = f(z_0)$. Тогда найдутся окрестность K_{ε} точки w_0 и функция $z = \varphi(w)$ такие, что:
- 1. Функция ϕ обратна k f, т.е. $f[\phi(w)] = w \quad \forall w \in K_{\varepsilon}$,
- 2. $\phi(w) \in \mathcal{A}(K_{\varepsilon})$,
- 3. производную $\phi'(w_0)$ можно вычислить по хорошо известной формуле $\phi'(w_0) = \frac{1}{f'(z_0)}$.
- 6) **Ортогональность линий уровня** Линии уровня разных семейств в каждой точке области **G** ортогональны.

Геометрический смысл аргумента производной Число $\arg f'(z_0)$ есть угол поворота всякой гладкой кривой, проведённой через точку z_0 , при переходе от плоскости z к плоскости w. Этот поворот происходит под действием функции f.

Локальная конформность Отображение посредством непрерывной функции, сохраняющее углы между кривыми, проходящими через данную точку, называется конформный в этой точке.

Глобальная конформность Пусть функция f отображает область G в D взаимно однозначно. Если при этом f конформна в каждой точке $z \in G$, то говорят, что f отображает G в D конформно.

Достаточное условие локальной конформности Отображение конформно во всех точках z_0 , где $f'(z_0) \neq 0$.

1.3 Дробно-линейные функции: инвариантность двойного отношения, круговое свойство. Вопрос 5 Лек.3

$$w = L(z) = \frac{az+b}{cz+d} \tag{4}$$

При этом не должно быть равно нулю число

$$\delta = ad - bc = \det \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
 (5)

называемое **определителем** функции L.

Инвариантность двойного отношения

Пусть a,b,c,d - конечные и попарно различные комплексные числа. Их **двойным (или ангармоническим) отношением** называется число

$$(a, b, c, d) = \frac{c - a}{c - b} : \frac{d - a}{d - b}$$
 (6)

Теорема. Двойное отношение есть инвариант дробно-линейного преобразования Пусть w=L(z) - произвольная дробно-линейная функция, a,b,c,d - произвольные конечные и попарно различные числа, A,B,C,D - их образы под действием функции L(z). Утверждается, что

$$(a, b, c, d) = (A, B, C, D)$$
 (7)

Теорема. Круговое свойство Образ прямой или окружности при дробнолинейном преобразовании есть прямая или окружность.

Замечание Если прямая или окружность (не) проходит через особую точку $\delta = -d/c$ дробно-линейной функции L(z), то ее образ под действием этой функции (не) должен содержать точку $\infty = L(\delta)$ и, следовательно, является прямой (окружностью).

1.4 Сохранение симметрии. Примеры типовых дробнолинейных отображений. Вопрос 7 Лек.4

Говорят, что точки z_1 и z_2 симметричны относительно окружности γ , если прямая и всякая окружность, проходящие через z_1 и z_2 ортогональны γ (см. слайд "Симметрия относительно окружности").

Пусть γ задана уравнением |z-a|=R, тогда справедливо

$$z_2 = a + \frac{R^2}{\overline{z_1 - a}} \tag{8}$$

Теорема Под действии произвольного дробно-линейного преобразования w = L(z) точки z_1 и z_2 , симметричные относительно прямой или окружности γ , переходят в точки w_1 и w_2 , симметричные относительно прямой или окружности $\Gamma = L(\gamma)$.

Пример¹ Построить дробно-линейное преобразование w=L(z), преобразующее круг |z|< R в круг |w|< R так, чтобы заданная точка α первого круга перешла в центр w=0 второго круга. Рассмотрим два возможных случая.

- 1) $\alpha=0$, тогда решение будет целая линейная функция вида $w=e^{i\phi}z$, где ϕ произвольное число из $[0,2\pi)$.
- $2)~\alpha \neq 0,$ тогда решение будет дробно-линейная функция вида $w=R^2e^{i\phi}\frac{z-\alpha}{R^2-\overline{\alpha}z}.$

¹Подробнее объяснение см. стр.70-72

1.5 Функция Жуковского. Вопрос 20

Функция Жуковского

$$w = \lambda(z) = \frac{1}{2}(z + \frac{1}{z}), dom \,\lambda = \mathbb{C} \setminus \{0\}, im \,\lambda = \mathbb{C}$$
 (9)

Функция Жуковского имеет непрерывную производную, и поэтому $\lambda(z)$ аналитична в $dom \lambda$, обладает свойством локальной комформности, но не обладает глобальной комформности. Она двулистна² в своей области определения. Её областью однолистности является 1) единичный круг |z| < 1, 2) область |z| > 1, 3) полуплоскость Im z < 0 и 4) полуплоскость Im z > 0.

Типичные преобразования Функции Жуковского

1) Семейство окружностей

$$\gamma_r : z = r(\cos t + i\sin t), t \in [0, 2\pi], r \in (0, 1)$$
(10)

переходит в объединение софокусных (точки -1 и 1) эллипсов

$$\Gamma_r : w = \frac{1}{2}(r + \frac{1}{r})\cos t - i\frac{1}{2}(r - \frac{1}{r})\sin t, t \in [0, 2\pi], r \in (0, 1)$$
(11)

То есть

$$|z| < 1 \xrightarrow[\text{конформно}]{\lambda(z)} \mathbb{C} \setminus \{(u, v) : -1 \le u \le 1, v = 0\}$$
 (12)

2) Аналогично,

$$\underbrace{\{z:|z|<1,Imz>0\}}_{\text{конформно}}\xrightarrow{\lambda(z)}Imz<0$$
 верхняя половина единичного круга

$$\underbrace{\{z:|z|>1,Imz<0\}}_{\text{конформно}}\xrightarrow{\lambda(z)}Imz<0$$
нижняя полуплоскость кроме верхнего полукруга

нижняя полунілоскость кроме верхнего полукруга
$$\underbrace{\{z:|z|<1,Imz<0\}}_{\text{конформно}} \xrightarrow{\lambda(z)} Imz>0$$
 нижняя половина единичного круга

$$\underbrace{\{z:|z|>1,Imz>0\}}_{\text{верхняя полуплоскость кроме верхнего полукруга}}\xrightarrow{\lambda(z)}Imz>0$$

- 3) $P^+ = Imz > 0, P^- = Imz < 0$ верхнюю или нижнюю полуплоскость переходит в $\mathbb{C} \setminus (-\infty, -1] \bigcup [1, +\infty)$.
- 4) Семейство радиусов единичного круга

$$r_{\alpha}: z = t(\cos \alpha + i \sin \alpha), t \in (0, 1), \alpha \in [0, 2\pi]$$

$$\tag{14}$$

переходит в софокусных (точки -1 и 1) гиперболов

$$R_{\alpha}: w = \frac{1}{2}(t + \frac{1}{t})\cos\alpha - i\frac{1}{2}(t - \frac{1}{t})\sin\alpha, t \in (0, 1), \alpha \in [0, 2\pi]$$
 (15)

²Определения см. стр.75

Рис. 1: Конформное действие функции Жуковского в единичном круге

1.6 Показательная функция. Тригонометрические и гиперболические функции. Вопрос 14 Лек.5

Показательная функция Пусть z = x + iy, то

$$e^z = e^x(\cos x + i\sin y), dom e^z = \mathbb{C}, im e^z = \mathbb{C} \setminus \{0\}$$
 (16)

Эта функция аналитична во всей комплексной плоскости и $2\pi i$ периодична, обладает локальной и глобальной конформности в любой точке плоскости. Всякая горизонтальная полоса $g:\phi_0 < y < \phi_1$ ширины $h=\phi_1-\phi_0 \le 1\pi$ является областью однолистности Каждое число w из образа функции имеет прообразы вида $z=\ln|w|+iArg\,w$. Каждое из этих чисел назывется (натуральным) логарифмом числа w. Все они расположены на одной и той же вертикальной прямой $x=\ln|w|$, и расстояние между соседними равно $2\pi i$.

Типичные преобразования показательной функции

1) Горизотальная прямая

$$I_{\phi}: z = t + i\phi, -\infty < t < +\infty, \phi_0 < \phi < \phi_1 \tag{17}$$

переходит в луч

$$L_{\phi}: w = e^{t}(\cos\phi + i\sin\phi), -\infty < t < +\infty, \phi_{0} < \phi < \phi_{1}, -\infty < t < +\infty, \phi_{0} < \phi < \phi_{1}$$
(18)

Таким образом, горизотальная полоса g переходит в сектор G раствора h с вершиной в точке w=0. Граничные лучи этого сектора задаются уравнениями $Arg\ w=\phi_0+2k\pi$ и $Arg\ w=\phi_1+2k\pi$. То есть

$$g \xrightarrow[\text{конформно}]{exp \, z} G$$
 (19)

2) Вертикальная прямая

$$I_c: z = c + it, -\infty < t < +\infty \tag{20}$$

переходит в окружность

$$\gamma_c: w = e^c(\cos t + i\sin t) \tag{21}$$

Каждому отрезку длины 2π на прямой I_c соответствует один обход γ_c .

3) Прямая, не параллельная вещественной и мнимой осям, отображается экспонентой в логарифмическую спираль (кривую, задаваемую полярным уравнением $\rho = Ce^{k\phi}$, где C>0 и k - константы).

Тригонометрические и гиперболические функции Мы определим таких функции:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\operatorname{ch} z = \frac{e^{z} + e^{-z}}{2}, \operatorname{sh} z = \frac{e^{z} - e^{-z}}{2}$$

$$\operatorname{tg} z = \frac{\sin z}{\cos z}, \operatorname{ctg} z = \frac{\cos z}{\sin z}$$

$$\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}, \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z}$$
(22)

Первые четыри функции, будучи линейными комбинациями экспонент, являются целыми и наследуют от них периодичность. При этом sh z и ch z имеют тот же период $2\pi i$. Тригонометрические функции $\sin z$ и $\cos z$ имеют период 2π . Последние четыри являются аналитическими всюду, где определены и периодичны, причем th z и cth z имеют период πi , а tg z и ctg z - период π .

 $\sin z$ и $\cos z$ в нуль не обращаются вне вещественной оси, и они неограничены на плоскости.

Все эти функции могут быть представлены композициями ранее функций: дробно-линейных, функции Жуковского и экспонет.

2 Интегралы по комплексным переменным

2.1 Интегральная теорема Коши и её обобщения. Вопрос 11 Лек.6

Теорема Жордана Всякая замкнутая жорданова кривая Γ делит плоскость $\mathbb C$ на две различные области, общей границей которых она является. При этом одна из областей ограничена. Она называется **внутренностью** Γ и обозначается int Γ (от interior). Вторая область не ограничена, называется внешностью Γ и обозначается ext Γ (от exterior).

Формула Грина Пусть область D ограничена контуром C, а функции P(x,y) и Q(x,y) непрерывны в замкнутой области D и имеют в D непрерывные частные производные $\frac{\partial Q}{\partial x}$ и $\frac{\partial P}{\partial y}$. Тогда справедлива формула Гри-

$$\int_{C^{+}} P dx + Q dy = \iint_{\bar{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy \tag{23}$$

при условии, что двойной интеграл в правой части существует хотя бы как несобственный.

Интегральная теорема Коши Пусть $f(z)=u(x,y)+iv(x,y)\in \mathcal{A}(\mathbf{G}).$ Если C - любой контур, принадлежащий области \mathbf{G} вместе со своей внутреннстью, то

$$\oint_C f(z)dz = 0 \tag{24}$$

Следствие Пусть G - односвязная³ область и $f(z) \in \mathcal{A}(\mathbf{G})$. Тогда равенство 24 имеет место для любого контура $C \subset G$.

Обобщённая теорема Коши Пусть **G** - область, ограниченная контуром C. Если функция $f(z) \in \mathcal{A}(G)$ сохраняет непрерывность на границе области, то

$$\oint_C f(z)dz = 0 \tag{25}$$

Составным контуром называется объединение $C = C_0 \cup C_1 \cup \cdots \cup C_n$ обычных (**простых**) контуров такое, что:

- 1) Контур C_0 , называемый **внешним**, содержит внутри себя все остальные (**внутренние**) контуры C_1, \ldots, C_n .
- 2) Каждый из контуров C_1, \ldots, C_n лежит во внешности любого другого внутреннего контура.

Теорема о составном контуре Пусть G - область, ограниченная составным контуром $C = C_0 \cup C_1 \cup \cdots \cup C_n$. Если функция $f(z) \in A(G)$ сохраняет непрерывность на границе области, то

$$\oint_{C^{+}} f(z)dz = \oint_{C_{0}^{+}} f(z)dz + \oint_{C_{0}^{-}} f(z)dz + \dots + \oint_{C_{n}^{-}} f(z)dz = 0$$
 (26)

Чаще всего используется такая формулировка:

$$\oint_{C^{+}} f(z)dz = \oint_{C_{0}^{+}} f(z)dz + \dots + \oint_{C_{n}^{+}} f(z)dz$$
 (27)

2.2 Неопределённый интеграл и теорема о первообразной. Вопрос 21 Лек.7

Пусть $f \in \mathcal{C}(\mathbf{G})$. Функция $\Phi \in \mathcal{A}(\mathbf{G})$ называется **первообразной** функции f в этой области, если $\Phi'(z) = f(z)$. Совокупнсть первообразных функции f в данной области называется её **неопределенным интегралом** в этой области.

Теорема о первообразной⁴ Пусть $f \in \mathcal{C}(\mathbf{G})$, и пусть для f имеет место C -

³Это существенное условие, см. стр.112

 $^{^4}$ Теорема об эквивалентности трех высказывания см. стр. 122-123

свойство в G. Последнее корректно определяет интеграл $F(z)=\int_{z_0}^z f(\zeta)d\zeta$ как функцию только от верхнего предела z. Тогда:

(A) $F \in \mathcal{A}(G)$

(B)
$$F'(z) = f(z) \forall z \in \mathbf{G}$$

Формула Коши Пусть $f \in \mathcal{A}(\mathbf{G})$, контур $L \subset \mathbf{G}$, подобласть $\mathbf{D} \subset \mathbf{G}$ ограничена контуром L. Тогда для всякой точки $z_0 \in \mathbf{D}$ справедлива формула Коши.

$$f(z_0) = \frac{1}{2\pi i} \oint_L \frac{f(z)dz}{z - z_0}$$
 (28)

Формула среднего значения Пусть **G** - круг радиуса R с центром в точке $z_0, f \in \mathcal{A}(\mathbf{G})$ и f сохраняет непрерывность на границе области $\partial G = L$. Принимая для L параметризацию $z = z_0 + Re^{i\phi}$, получаем по формуле Коши

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\phi})}{Re^{i\phi}} iRe^{i\phi} d\phi = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\phi}) d\phi \qquad (29)$$

2.3 Дифференцирование интеграла по параметру. Бесконечная дифференцируемость аналитических функций. Вопрос 8 Лек.8

Мы будем в дальнейшем рассматривать комплексные интегралы вида

$$F(z) = \int_{L} \phi(z, \zeta) d\zeta \tag{30}$$

при следующих предположениях:

- (1) L кривая на плоскости переменного $\zeta = \xi + i\eta$, а z изменяется в некоторой области ${\bf G}$ на плоскости переменного z = x + iy.
- (2) При любом фиксированном значении $\zeta \in L$ функция $\phi(z,\zeta)$ аналитическая в области ${\bf G}.$
- (3) Функции $\phi(z,\zeta)$ и $\phi_z'(z,\zeta)$ непрерывны по совокупности переменных z и $\zeta.$

Теорема об интеграле с параметром Пусть выполнены предположения (1)-(3). Тогда:

- 1) интеграл $F(z) \in \mathcal{A}(\mathbf{G})$;
- 2) производную F'(z) можно вычислить по правилу Лейбница:

$$F'(z) = \int_{L} \phi_{z}'(z,\zeta)d\zeta \tag{31}$$

Теорема о бесконечной дифференцируемости аналитической функции Пусть $f \in \mathcal{A}(\mathbf{G})$. Тогда в каждой точке $z \in \mathbf{G}$ функция f имеет производные всех порядков. Если контур L принадлежит \mathbf{G} вместе со своей

 $^{{}^5\}phi_L\,f(z)dz=0$, где $L\subset {f G}$. см. стр.123

внутренностью и z - внутренняя точка этого контура, то производная $f^{(n)}(z)$ может быть вычислена по формуле

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_L \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
 (32)

Следствие Производная аналитической функции сама является аналитической функцией.

2.4 Теоремы Морера и Лиувилля. Основная теорема высшей алгебры. Вопрос 15 Лек.8

Теорема Морера Пусть $f \in \mathcal{C}(\mathbf{G})$ и f обладает -свойством в области \mathbf{G} . Тогда, в действительности, $f \in \mathcal{A}(\mathbf{G})$.

Теорема Лиувилля Целая функция f, ограниченная во всей комплексной плоскости, есть константа.

Основная теорема высшей алгебры Всякий многочлен P(z) положительной степени n имеет хотя бы один корень.

3 Ряды аналитических функций

3.1 Равномерно и нормально сходящиеся ряды аналитических функций. Теоремы Вейерштрасса. Вопрос 19 Лек.9

Говорят, что ряд $\sum_{n=1}^{\infty} u_n(z)$ сходится **нормально** в области \mathbf{G} (к функции f), если этот ряд сходится равномерно (к f) на каждом компакте $\mathbf{K} \subset \mathbf{G}$. **Первая Теорема Вейерштрасса** Пусть ряд $\sum_{n=1}^{\infty} u_n(z)$, где $u_n(z) \in \mathcal{A}(\mathbf{G}), n = 1, 2, \ldots$, сходится нормально в области \mathbf{G} к функции f. Тогда:

- 1) Сумма ряда $f \in \mathcal{A}(\mathbf{G})$.
- 2) Ряд $\sum_{n=1}^{\infty} u_n(z)$ можно почленно дифференцировать любое число раз, т.е.

$$f^{(k)}(z) = \sum_{n=1}^{\infty} u_n^{(k)}(z) \quad \forall k \in \mathbb{N}, \quad z \in \mathbf{G}$$
 (33)

3) Все ряды (33) сходятся нормально в области G.

Вторая Теорема Вейерштрасса Пусть функции $u_n(z), n = 1, 2, \ldots$ аналитические в области \mathbf{G} , ограниченной контуром Γ (простым или составным). Если эти функции сохраняют непрерывность на граничном контуре Γ и ряд $\sum_{n=1}^{\infty} u_n(z)$ сходится равномерно на Γ , то он сходится равномерно и в замкнутой области $\overline{\mathbf{G}} = \mathbf{G} \cup \Gamma$.

3.2 Аналитичность суммы степенного ряда. Теорема Тейлора. Вопрос 16 Лек.9

Степенные ряды

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n \tag{34}$$

Положим

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}} \tag{35}$$

Теорема Коши-Адамара

- 1) Если R = 0, то ряд (34) сходится лишь в точке z_0 .
- 2) Если R>0 (возможен случай $R=\infty,$ то ряд (34) сходится абсолютно при $|z-z_0|< R$ и расходится при $|z-z_0|> R.$

Число R называется радиусом сходимости.

Круг $K_R: |z-z_0| < R$ - кругом сходимости ряда (34).

Формула для числа R называется формулой Коши-Адамара.

Ряд (34) сходится нормально в круге K_R .

Сумма f(z) ряда (34) аналитична в его круге сходимости K_R .

Равенство $f(z) = \sum_{0}^{\infty} c_n (z-z_0)^n$ можно почленно дифференцировать любое число раз, что дает

$$f^{(k)}(z) = \sum_{n=k}^{\infty} c_n n(n-1) \dots (n-k+1) (z-z_0)^{n-k}$$
 (36)

Все продифференцированные ряды имеют тот же радиус сходимости, что и исходный ряд (34).

Коэффициенты сходящегося степенного ряда однозначно определяются его суммой f(z).

Пологая $z = z_0$, получим

$$c_0 = f(z_0), c_k = \frac{f^{(k)}(z_0)}{k!}, k = 1, 2, \dots$$
 (37)

Степенной ряд, коэффициенты которого выражаются формулами (37) для некоторой аналитической функции f(z), называется **рядом Тейлора** этой функции.

Теорема Тейлора Пусть $f \in \mathcal{A}(\mathbf{G})$ и $z_0 \in \mathbf{G}$ - точка, находящаяся на расстоянии r от границы Γ области \mathbf{G} . Тогда в круге $\mathbf{K}_r: |z-z_0| < r$ функция f может быть представлена рядом по степеням $z-z_0$, причем это представление единственно.

3.3 Теорема единственности и её следствия. Вопрос 17 Лек.10

Пусть в рассматриваемой области G выделено бесконечное подмножество E, имеющее конечную предельную точку z_0 . Эта точка не обязана принадлежать самому подмножеству E, но должна принадлежать области G.

Первая формулировка Может существовать не более одной функции $f \in \mathcal{A}(\mathbf{G})$, принимающей заданные значения на подмножестве \mathbf{E} .

Вторая формулировка Если функция $\varphi \in \mathcal{A}(\mathbf{G})$ обращается в нуль на подмножестве \mathbf{E} , то $\varphi \equiv 0$ в области \mathbf{G} .

Эти две формулировки эквивалентны.

Точки, в которых аналитическая функция f(z) принимает заданное значение A, будем называть A-точками этой функции.

Если в A-точке z_0 производные функции f(z) порядков $1, 2, \ldots, k-1$ равны нулю, но $f^k(z_0) \neq 0$, то говорят, что **порядок** или **кратность** этой точки равны k.

Если k=1, то A-точку называют **простой**, а в противном случае - **кратной**. При A=0 будем вместо 0-точек говорить о **нулях функции** f(z).

Следствие 1. Пусть функция f(z) - аналитическая в области ${\bf G}$ и при этом отличная от константы. Тогда, каково бы ни было число A, всякий компакт $F\subset G$ может содержать лишь конечное множество A-точек этой функции. Замечание ${\bf B}$ неограниченной области или на незамкнутом множестве аналитическая функция, отличная от константы, может иметь бесконечное множество A-точек.

Следствие 2. Пусть на $(a,b) \subset \mathbb{R}$ определена функция $\varphi(x)$ вещественной переменной x и пусть для области $\mathbf{G} \subset \mathbb{C}$ справедливо включение $(a,b) \subset G$. В таком случае существует не более одной функции, аналитической в \mathbf{G} и совпадающей с $\varphi(x)$ для $x \in (a,b)$.

Если такая функция f(z) действительно существует, то о ней говорят как об аналитическом продолжении функции $\varphi(x)$ с интервала (a,b) в область G.

Теорема единственности часто используется для доказательства сохранения свойства вещественной функции при продолжении на комплексную плоскость, или доказательства несуществования аналитической функции с заданным свойством.

⁶Если предельной точки не существует, то может иметь различные аналитические функции, значения которых совпадают на бесконечном множестве точек. Пример см. стр.178

4 Ряды Лорана и изолированные точки

4.1 Ряды Лорана. Теорема Лорана. Вопрос 4 Лек.11

Пусть $f \in \mathcal{A}(K)$, где **K** - проколотая окрестность точки z_0 , т.е. множество вида $0 < |z - z_0| < R$.

Рядом Лорана называется ряд вида

$$\sum_{-\infty}^{\infty} c_n (z - z_0)^n \tag{38}$$

Представим его как сумму двух рядов

$$\sum_{-\infty}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n}$$
(39)

Будем называть эти ряды **ряд** I и **ряд** II. Говорят, что ряд (38) сходится в точке z, если в этой точке сходятся оба ряда I и II.

Для сходящегося ряда Лорана (38) типичной областью сходимости является круговое кольцо с центром в точке z_0 . Радиусы его граничных окружностей могут быть вычислены по коэффициентам ряда с помощью формулы Коши-Адамара.

Замечание о единственности Пусть ряд (38) сходится в кольце $D: R_2 < |z-z_0| < R_1$ к функции f(z). Коэффициенты этого ряда однозначно определяются его суммой f(z).

Теорема Лорана Функция f, аналитическая в кольце $D: R_2 < |z-z_0| < R_1$, может быть представлена рядом Лорана по степеням $z-z_0$, причем это представление единственно.

4.2 Классификация изолированных особых точек. Устранимая особая точка. Полюс. Вопрос 18 Лек.11

Пусть $D:0<|z-z_0|< R$ - проколотая окрестность точки z_0 и $f\in\mathcal{A}(\mathbf{D})$. В этом случае говорят, что z_0 является для f изолированной особой точкой.

Для этого имеются три возможности 7 :

- 1) Ряд (38) не содержит членов с отрицательными степенями $z-z_0$, т.е. является степенным рядом. В этом случае z_0 называют **устранимой особой точкой** функции f.
- 2) Ряд (38) содержит конечное число членов с отрицательными степенями $z-z_0$. В этом случае z_0 называют **полюсом** функции f.

 $^{^{7}}$ Здесь не надо рассмотреть члены с неотрицательными членами. Суть этой классфикации заключается в том что мы основываем на поведение функции при предельном переходе от z до z_0 , и каждому случаю соответствует одна классификация про члены с отрицательными членами.

3) Ряд (38) содержит бесконечное число членов с отрицательными степенями $z-z_0$. В этом случае z_0 называют **существенно особой точкой** функции f.

Часть членов с отрицательными степенями называется **главной частью** этого ряда. Члены с неотрицательными степенями образуют **правильную часть** этого ряда.

Теорема для устранимой особой точки Следующие три высказывания эквивалентны:

- (A) z_0 устранимая особая точка функции f.
- (В) существует конечный предел $\lim_{z\to z_0} f(z)$.
- (c) функция f ограничена в некоторой окрестности точки z_0 .

В окрестности полюса z_0 согласно определению полюса, лорановское разложение возле точки z_0 имеет вид

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \frac{c_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{c_{-1}}{z - z_0} + c_0 + c_1 (z - z_0) + \dots$$
 (40)

где $c_{-m} \neq 0$.

Число m называется **порядком** или **кратностью** полюса z_0 .

Теорема для полюса Изолированная особая точка z_0 функции f тогда и только тогда является полюсом этой функции, когда $f\to\infty$ при $z\to z_0$. **Теорема** Точка z_0 тогда и только тогда является полюсом порядка m функции f когда z_0 есть нуль порядка m для функции $g(z)=\frac{1}{f(z)}$, доопределенной соотношением $g(z_0)=0$.

4.3 Существенно особая точка. Теорема Сохоцкого. Теорема Пикара (без доказательства). Вопрос 13 Лек.11-12

Теорема Сохоцкого-Казорати-Вейерштрасса Пусть z_0 - существенно особая точка функции f. Тогда для любого числа A, конечного или бесконечного, найдется последовательность точек z_n такая 8 , что $z_n \to z_0$ и $f(z_n) \to A$.

Для заданного числа A последовательность z_n , описываемую этой формулировкой, будем называть **-последовательностью Сохоцкого**.

Большая теорема Пикара Пусть z_0 - существенно особая точка функции f(z). Тогда для любого конечного числа A, за возможным исключением одного значения $A=A_0$ существует последовательность A-точек функции f(z), сходящаяся к z_0 .

Особенность в бесконечной удаленной точке

Пусть функция f(z) - аналитическая в окрестности D бесконечно удаленной

 $^{^8 \}mbox{9} \mbox{то}$ и показывает что в точке z_0 не существует предела.

точки: D:|z|>R. Сопоставим f вспомогательную функцию $g(\zeta)=f\left(\frac{1}{\zeta}\right)$, определённую в окрестности $0<|\zeta|<\frac{1}{R}$ точки $\zeta_0=0$.

Точка $z_0 = \infty$ является для f устранимой особенностью, полюсом или существенно особой точкой, если $\zeta_0 = 0$ есть соответственно устранимая особенность, полюс или существенно особая точка для функции $g(\zeta)$.

- 1) $z_0=\infty$ тогда и только тогда является устранимой особой точкой функции f, когда существует конечный предел $\lim_{z\to\infty}f(z)$, или, что равносильно, когда f ограничена в некоторой окрестности бесконечно удаленной точки.
- $2)\,z_0=\infty$ тогда и только тогда является полюсом функции f, когда $\lim_{z\to\infty}f(z)=\infty.$
- 3) $z_0 = \infty$ тогда и только тогда является существенно особой точкой функции f, когда не существует ни конечного, ни бесконечного предела $\lim_{z\to\infty} f(z)$.

5 Теория вычетов и их приложения

5.1 Теоремы о вычетах и полной сумме вычетов. Вычет относительно полюса. Вопрос 12 Лек.13

Пусть z_0 - изолированная особая точка функции f. В некоторой проколотой окрестности D этой точки f представима рядом Лорана

$$\sum_{n=-\infty}^{\infty} c_n \left(z - z_0 \right)^n \tag{41}$$

Вычетом f относительно точки z_0 (или в точке z_0) называется коэффициент c_{-1} этого ряда. Для этого числа будем использовать символ

$$\operatorname{res}\left[f(z), z_0\right] \tag{42}$$

Пусть $\gamma:|z-z_0|=\rho$ - окружность, проведённая в **D**. Тогда вычет c_{-1} может быть записан как интеграл

$$\operatorname{res}\left[f(z), z_0\right] = \frac{1}{2\pi i} \oint_{\gamma^+} f(z) dz \tag{43}$$

Это выражение получена в доказательстве Теоремы Лорана.

Теорема о вычетах Пусть контур Γ проходит в области G и содержит внутри изолированные особые точки z_1, z_2, \ldots, z_n функции f. Тогда

$$\oint_{\Gamma^+} f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{res}\left[f(z), z_k\right] \tag{44}$$

Формулы для вычисления вычета относительно полюса

1) Для простого полюса: $c_{-1} = \operatorname{res}\left[f(z), z_0\right] = \lim_{z \to z_0} [f(z)(z-z_0)]$. Если f

представлена в виде $f(z) = \frac{\phi(z)}{\psi(z)}$, где $\phi(z_0) \neq 0$, то $c_{-1} = \text{res}[f(z), z_0] = \frac{\phi(z_0)}{\psi'(z_0)}$. 2) Для полюса произвольного порядка m:

$$c_{-1} = \operatorname{res}\left[f(z), z_{0}\right] = \frac{1}{(m-1)!} \lim_{z \to z_{0}} \frac{d^{m-1}\left[f(z)\left(z - z_{0}\right)^{m}\right]}{dz^{m-1}}$$
(45)

Пусть $f \in \mathcal{A}(\mathbf{D}), D: |z| > R$. В этом случае ∞ рассматривают как изолированную особую точку функции f. В кольце \mathbf{D} функция f представляется рядом Лорана:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n \tag{46}$$

Вычетом f относительно точки ∞ называется взятый со знаком минус коэффициент c_{-1} этого ряда.

Интегральное представление этого вычета таково:

$$\operatorname{res}[f(z), \infty] = \frac{1}{2\pi i} \oint_{\gamma^{-}} f(z)dz \tag{47}$$

Здесь γ - произвольная окружность вида $|z| = \rho$, где $\rho > R$.

Теорема о полной сумме вычетов Пусть функция f имеет в $\mathbb C$ лишь конечное число особых точек z_1, z_2, \ldots, z_n . Положим $z_0 = \infty$. Тогда

$$\sum_{k=0}^{n} \text{res} [f(z), z_k] = 0$$
(48)

Вычисление интегралов с помощью вычетов. Лемма Жордана. Вопрос 10 Лек.13

Вычисление интегралов с помощью вычетов 1) Интегралы вида $\int_0^{2\pi} R(\cos\phi,\sin\phi)d\phi$. Замена $z=e^{i\phi}$. Так как

$$\cos \varphi = \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right) = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

$$\sin \varphi = \frac{1}{2i} \left(z - \frac{1}{z} \right), \quad dz = i e^{i\varphi} d\varphi$$

$$d\varphi = \frac{dz}{iz}$$

$$(49)$$

то результатом этой замены является интеграл

$$\frac{1}{i} \oint_{|z|=1} R\left[\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right] \frac{dz}{z} \tag{50}$$

Затем можно использовать теоремы связанные с вычетом.

2) Интегралы вида $\int_{-\infty}^{+\infty} f(x) dx$

Предположим, что подынтегральная функция f аналитически продолжена в верхнюю или нижнюю полуплоскость комплексной плоскости. Для определенности, пусть это будет верхняя полуплоскость $\pi_+: \text{Im } z > 0$. Ее замыкание действительной осью будем обозначать через $\bar{\pi}_+$.

Теорема для интеграла 2-ого вида Пусть функция f, распространенная с действительной оси в верхнюю полуплоскость, удовлетворяет следующим условиям:

- (1) f имеет в π_+ конечное число особых точек z_1, z_2, \dots, z_n и непрерывна в точках действительной оси;
- (2) для всех достаточно больших z, находящихся в $\bar{\pi}_+$, выполняется оценка

$$|f(z)| \leqslant \frac{M(z)}{|z|} \tag{51}$$

Здесь M(z) - неотрицательная функция комплексного переменного z, стремящаяся к нулю при $z \to \infty$ и остающемся в замкнутой верхней полуплос-

Тогда интеграл $I=\int_{-\infty}^{\infty}f(x)dx$ существует хотя бы в смысле главного значения и

$$(v \cdot p \cdot) \int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \operatorname{res} [f(z), z_k]$$
 (52)

3) Интегралы вида $\int_{-\infty}^{+\infty} e^{iax} f(x) dx$ Лемма Жордана Пусть функция f, непрерывная в замкнутой области $|z|\geqslant R_0, \ln z\geqslant 0$ стремится к нулю при $z
ightarrow\infty$ и остающемся в полуплоскости $\bar{\pi}_+$. Тогда для всех a>0 интеграл

$$J = \int_{\gamma_R} e^{iaz} f(z) dz \tag{53}$$

стремится к нулю при $R \to \infty$. Здесь γ_R - полуокружность $|z| = R, \text{Im } z \geqslant 0$. **Теорема для интеграла 3-его вида** Пусть функция f, распространенная с действительной оси в верхнюю полуплоскость, удовлетворяет условию 1 теоремы для интеграла 2-ого вида и стремится к нулю при $z \to \infty$ и остающемся в замкнутой верхней полуплоскости. Тогда для всех a>0 интеграл $I=\int_{-\infty}^{\infty}e^{iax}f(x)dx$ существует хотя бы в смысле главного значения

$$(v \cdot p.) \int_{-\infty}^{\infty} e^{iax} f(x) dx = 2\pi i \sum_{k=1}^{n} \text{res} \left[e^{iaz} f(z), z_k \right]$$
 (54)

Логарифмический вычет. Принцип аргумента. Теорема Руше. Вопрос 9 Лек.14

Два дополнительных ограничения:

1) Особые точки функции f в области G могут быть только полюсами.

2) Все контуры, рассматриваемые в дальнейшем, не проходят не только через полюсы, но и черезнули функции f.

Внутри контура Γ , проведённого в области ${\bf G}$, число нулей функции f конечно.

Фиксируем контур $\Gamma \subset \mathbf{G}$. Положим:

 z_1,\ldots,z_p - полюсы функции f внутри Γ .

 $\alpha_1, \ldots, \alpha_p$ - их кратности;

 ζ_1,\ldots,ζ_n - нули функции f внутри $\Gamma.$

 β_1,\ldots,β_n - их кратности. Определим величины

$$N_f(\Gamma) = \sum_{k=1}^n \beta_k, \quad P_f(\Gamma) = \sum_{m=1}^p \alpha_m$$
 (55)

и назовем их соответственно полным числом нулей и полным числом полюсов функции f внутри контура Γ .

Теорема о логарифмическом вычете

$$N_f(\Gamma) - P_f(\Gamma) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f'(z)}{f(z)} dz$$
 (56)

Логарифмическим вычетом функции f относительно контура Γ называется интеграл в правой части формулы (56). Функция $\varphi(z) = \frac{f'(z)}{f(z)}$ в логарифмическом вычете называется **логарифмической производной** функции f.

Обобщение формулы Ньютона-Лейбница на случай многозначной первообразной функции Фиксируем какую-либо точку z_0 на контуре Γ и какое-либо значение $F_1(z_0)$ функции F(z) в этой точке. Совершаем обход контура, следя за непрерывным изменением первообразной при этом обходе. Пусть F_2 - (z_0) значение F(z), с которым мы вернемся в точку z_0 по завершении обхода. Тогда

$$\oint_{\Gamma} \varphi(z)dz = F_2(z_0) - F_1(z_0)$$
(57)

В случае логарифмического вычета

$$F(z) = \ln f(z) = \ln |f(z)| + i \operatorname{Arg} f(z)$$
(58)

поэтому числа $F_1(z_0)$ и $F_2(z_0)$ могут различаться только значениями, которые мы приписываем аргументу f в начале обхода и по его окончании. Обозначим эти аргументы через ϕ_1 и ϕ_2 , а разность $\phi_2 - \phi_1$ назовем **приращением аргумента** функции f при обходе точкой z контура Γ и будем обозначать символом $\mathrm{Var}_{\Gamma} \mathrm{Arg} \, f(z)$.

Принцип аргумента

$$N_f(\Gamma) - P_f(\Gamma) = \frac{1}{2\pi} \operatorname{Var}_{\Gamma} \operatorname{Arg} f(z)$$
 (59)

Когда точка z обходит контур Γ , соответствующая ей точка w=f(z) описывает некоторую замкнутую кривую Δ на плоскости w. Будем интерпретировать w как вектор с началом в точке $w_0=0$, и пусть ν есть количество полных оборотов вокруг w_0 , которые этот вектор совершит, пока z обходит Γ . Каждый оборот засчитываем за +1 или -1 В зависимости от того, совершается ли он в положительном или отрицательном направлении. Тогда приращение аргумента функции f получаемое при обходе Γ , выразится числом $2\pi\nu$. К новой формулировке теоремы о логарифмическом вычете приходим

$$N_f(\Gamma) - P_f(\Gamma) = \nu \tag{60}$$

Теорема Руше Пусть $f, \varphi \in \mathcal{A}(\mathbf{G})$, и пусть контур Γ принадлежит области \mathbf{G} вместе со своей внутренностью. Если в точках этого контура выполняется неравенство

$$|f(z)| > |\varphi(z)| \tag{61}$$

то функция $F(z) = f(z) + \varphi(z)$ имеет внутри Γ столько же нулей, сколько их имеет функция f.

Основная теорема алгебры Всякий многочлен $P(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n$ степени $n \geqslant 1$ имеет в $\mathbb C$ ровно n корней (с учетом их кратностей).

6 Теорема об образе области

6.1 Теорема об образе области. Принципы максимума и минимума модуля аналитической функции. Вопрос 2 Лек.15

Теорема об образе области Пусть $f \in \mathcal{A}(\mathbf{G})$ и $f \neq const.$ Тогда множество $\mathbf{D} = f(\mathbf{G})$ также является областью.

Принцип максимума Пусть $f \in \mathcal{A}(\mathbf{G})$ и $f \neq const.$ Тогда ни в одной точке из \mathbf{G} модуль этой функции не может достигать максимума. Если \mathbf{G} - ограниченная область и f сохраняет непр ррывность на ее границе, то максимум модуля достигается на ∂G .

Принцип минимума Пусть $f \in \mathcal{A}(\mathbf{G})$ и $f \neq const.$ Пусть кроме того, $f(z) \neq 0, \forall z \in \mathbf{G}$. Тогда ни в одной точке из \mathbf{G} модуль этой функции не может достигать минимума.