On the Role of Learning, Human Capital and Performance Incentives for Wages

Braz Camargo¹ Fabian Lange² Elena Pastorino³

¹Sao Paulo-FGV ²McGill University ³Stanford University and Hoover Institution

ES Dynamic Structural Econometrics Conference 2024

- To align workers' incentives to firms' objectives, firms often link compensation to performance on the job
 - o through bonuses, commissions and piece rates
 - \circ but for most, performance pay (PP) accounts for <10% of pay (not major component at any point over life cycle)
 - open question: do incentives for performance matter for the typical worker and if so why is PP so small?

- To align workers' incentives to firms' objectives, firms often link compensation to performance on the job
 - o through bonuses, commissions and piece rates
 - but for most, performance pay (PP) accounts for <10% of pay (not major component at any point over life cycle)
 - o open question: do incentives for performance matter for the typical worker and if so why is PP so small?

- One reason: workers may already face strong *implicit* incentives for performance i.e. motivated to work hard
 - $\circ \ \ \text{so as to convince potential employers, who are uncertain about their talent, their productivity is high}\\$

- To align workers' incentives to firms' objectives, firms often link compensation to performance on the job
 - o through bonuses, commissions and piece rates
 - but for most, performance pay (PP) accounts for <10% of pay (not major component at any point over life cycle)
 - o open question: do incentives for performance matter for the typical worker and if so why is PP so small?

- One reason: workers may already face strong *implicit* incentives for performance i.e. motivated to work hard
 - $\circ~$ so as to convince potential employers, who are uncertain about their talent, their productivity is high

- This well-known career-concerns (CC) argument (Holmström, 1982 and 1999) is common explanation
 - o not only for why PP often makes up only a small portion of pay but also for how PP varies over time

- To align workers' incentives to firms' objectives, firms often link compensation to performance on the job
 - o through bonuses, commissions and piece rates
 - o but for most, performance pay (PP) accounts for <10% of pay (not major component at any point over life cycle)
 - o open question: do incentives for performance matter for the typical worker and if so why is PP so small?

- One reason: workers may already face strong *implicit* incentives for performance i.e. motivated to work hard
 - $\circ~$ so as to convince potential employers, who are uncertain about their talent, their productivity is high

- This well-known career-concerns (CC) argument (Holmström, 1982 and 1999) is common explanation
 - o not only for why PP often makes up only a small portion of pay but also for how PP varies over time
 - o intuitively, as workers accumulate experience and their productivity becomes better known
 - o implicit incentives from CC weaken so explicit ones from PP should substitute becoming more and more important

- · Key prediction of CC models: since ability eventually learned and incentives to "prove oneself" disappear
 - $\circ~$ PP as fraction of total pay should increase with experience

• This prediction has found some support from evidence on top-executive pay

Key prediction of CC models: since ability eventually learned and incentives to "prove oneself" disappear
 PP as fraction of total pay *should increase with experience*

• This prediction has found some support from evidence on top-executive pay but o.w. highly *counterfactual*

- Key prediction of CC models: since ability eventually learned and incentives to "prove oneself" disappear
 - $\circ~$ PP as fraction of total pay should increase with experience

- · This prediction has found some support from evidence on top-executive pay but o.w. highly counterfactual
 - o PP as fraction of total pay tends to decline over second half of life cycle (precisely when it should be increasing)
 - o in fact, profile of PP relative to total pay is hump-shaped with experience in a variety of public and firm-level data sets

- Key prediction of CC models: since ability eventually learned and incentives to "prove oneself" disappear
 - $\circ~$ PP as fraction of total pay should increase with experience

- This prediction has found some support from evidence on top-executive pay but o.w. highly counterfactual
 - PP as fraction of total pay tends to decline over second half of life cycle (precisely when it should be increasing)
 - o in fact, profile of PP relative to total pay is hump-shaped with experience in a variety of public and firm-level data sets

- Given this failure of existing models to account for basic features of data
 - o how can we rationalize the pattern of PP over the life cycle?
 - o do we need to account for performance incentives at all if PP on average accounts for no more than 10% of wages?

• By first providing new evidence on importance of PP for life-cycle w at odds w/ predictions of existing models

- By first providing new evidence on importance of PP for life-cycle w at odds w/ predictions of existing models
- Then reexamine role of incentives for wages by proposing new model
 - o nests performance incentives, uncertainty and learning about ability, and human capital (HK) acquisition
 - $\circ \ \ micro-founds \ notion \ of jobs \ as \ requiring \ multiple \ tasks \ that \ are \ contractable \ to \ different \ degrees$
 - o allows us to analytically decompose PP into the relative contribution of primitive forces we integrate

- By first providing new evidence on importance of PP for life-cycle w at odds w/ predictions of existing models
- Then reexamine role of incentives for wages by proposing new model
 - o nests performance incentives, uncertainty and learning about ability, and human capital (HK) acquisition
 - o micro-founds notion of jobs as requiring multiple tasks that are contractable to different degrees
 - o allows us to analytically decompose PP into the relative contribution of primitive forces we integrate

Show model

- o identified from panel data on wages and their fixed/variable components based on this characterization
- $\circ \ \ \text{reproduces dynamics of } w, \text{dispersion, their fixed-variable pay comp'n as well as workers' task-assignments profiles}$

- By first providing new evidence on importance of PP for life-cycle w at odds w/ predictions of existing models
- Then reexamine role of incentives for wages by proposing new model
 - o nests performance incentives, uncertainty and learning about ability, and human capital (HK) acquisition
 - o micro-founds notion of jobs as requiring multiple tasks that are contractable to different degrees
 - o allows us to analytically decompose PP into the relative contribution of primitive forces we integrate

Show model

- o identified from panel data on wages and their fixed/variable components based on this characterization
- \circ reproduces dynamics of w, dispersion, their fixed-variable pay comp'n as well as workers' task-assignments profiles
- Demonstrate our model resolves puzzle on level and variability of PP
 - o PP is low for insurance reasons to mitigate workers' correlated life-cycle wage risk due to uncertainty about their ability
 - o eventually ↓ whenever effort to produce output ↑ HK (once HK less valuable, impl./expl. incentives optimally lower)
 - o find PP central to dynamics of w: contributes $\approx 30\%$ of growth and variability in w over first 10 to 20 yrs of experience

Data

- We use public worker panel data (PSID, NLSY79 and NLSY97) and confidential firm personnel records
 - o from three influential studies in the literature (Baker-Gibbs-Holmström 1994a,b, Gibbs-Hendricks 2004)
 - o to provide evidence on experience profile of wages and fixed/variable components

- In all samples: wages (labor earnings) are given by sum of fixed f_t and variable v_t pay: $w_t = f_t + v_t$
 - \circ since in our model variable pay v_t is proportional to performance y_t via piece rate b_t : $v_t = b_t y_t$
 - \circ can measure sensitivity of pay to performance b_t as $\mathbb{E}(v_t)/\mathbb{E}(w_t)$ under the assumption of free entry $(\mathbb{E}(w_t) = \mathbb{E}(y_t))$

- Based on these data spanning across different years, workers and firms
 - o we document ratio of PP to total eventually declines with experience
 - o contrary to the prediction of CC models with explicit incentives

Next: for today will focus on our two firm-level data sets

In Both Data Experience Profile of Sensitivity Hump-Shaped

White-Collar Workers and College-Educated White-Collar Workers in GH Sample

Next: present model we propose to account for these patterns

Competitive Labor Market

- Over finite horizon populated by homogeneous risk-neutral firms (can relax) and heterogeneous workers
 - \circ workers have CARA preferences with parameter r nonsep. over time: $-\exp\{-r[\sum_{t=0}^T \delta^t(w_t e_{1t}^2/2 e_{2t}^2/2)]\}$
 - o so workers indifferent among all deterministic wage streams with constant PV (as in Gibbons and Murphy, 1992)
 - * note: cost of effort quadratic (second derivative set to 1 for ease of exposition and reasons of identification)
- Workers each period exert two types of effort
 - \circ on simple tasks e_{1t} easy to monitor (contractable): entail creating/selling products or direct contacts with clients
 - $\circ \ \ \text{on } \textit{complex tasks } e_{2t} \ \text{difficult to monitor } (\textit{non-contractable}) \text{: entail managing large groups or strategic planning}$
 - \rightarrow we think of firms' *jobs* as primitive bundles of simple and complex tasks (continuum of them)
- Firms compete by offering one-period wage contracts linear in worker's output y_t

 - o assuming long-term contracts infeasible equivalent to feasible but renegotiation-proof (reneg'ted if Pareto inefficient)

- \bullet Worker (log) output at any t depends (log linearly) on worker ability, HK and effort and is subject to shocks
 - $\circ \ y_t = \theta_t + \xi_k k_t + \xi_1 e_{1t} + \xi_2 e_{2t} + \varepsilon_t \ \text{(e.g. } \xi_k = \xi_1 = 0 \text{: CC; } \xi_k = \xi_1 = \xi_2 = 0 \text{: learning; all known: labor S and HK)}$
 - \circ whereas ability θ_t is unobserved to all, human capital k_t and effort e_{2t} on complex tasks are observed only to worker

- ullet Worker (log) output at any t depends (log linearly) on worker ability, HK and effort and is subject to shocks
 - $\circ \ y_t = \theta_t + \xi_k k_t + \xi_1 e_{1t} + \xi_2 e_{2t} + \varepsilon_t \ \text{(e.g. } \xi_k = \xi_1 = 0 \text{: CC; } \xi_k = \xi_1 = \xi_2 = 0 \text{: learning; all known: labor S and HK)}$
 - \circ whereas ability θ_t is unobserved to all, human capital k_t and effort e_{2t} on complex tasks are observed only to worker
- $\theta_{t+1} = \theta_t + \zeta_t$: ability θ_t evolves over time according to random walk (uncertainty renewed through ζ_t)
 - \circ θ_0 normal mean-zero w/ variance σ^2_{θ} and ζ_t normal mean-zero w/ variance σ^2_{ζ} (alternatively, shock to HK)

- ullet Worker (log) output at any t depends (log linearly) on worker ability, HK and effort and is subject to shocks
 - $\circ \ y_t = \theta_t + \xi_k k_t + \xi_1 e_{1t} + \xi_2 e_{2t} + \varepsilon_t \ \text{(e.g. } \xi_k = \xi_1 = 0 \text{: CC; } \xi_k = \xi_1 = \xi_2 = 0 \text{: learning; all known: labor S and HK) }$
 - \circ whereas ability θ_t is unobserved to all, human capital k_t and effort e_{2t} on complex tasks are observed only to worker
- $\theta_{t+1} = \theta_t + \zeta_t$: ability θ_t evolves over time according to random walk (uncertainty renewed through ζ_t)
 - \circ θ_0 normal mean-zero w/ variance σ^2_{θ} and ζ_t normal mean-zero w/ variance σ^2_{ζ} (alternatively, shock to HK)
- $k_{t+1} = \lambda k_t + \gamma_1 e_{1t} + \gamma_2 e_{2t} + \beta_t$: HK accumulates with effort in each task at rates (γ_1, γ_2) (LBD or LOD) • depreciates at rate $1 - \lambda$ (can allow for semiparametric law $k_{t+1} = \lambda k_t + F(e_{1t}, e_{2t})$)

- ullet Worker (log) output at any t depends (log linearly) on worker ability, HK and effort and is subject to shocks
 - $\circ \ y_t = \theta_t + \xi_k k_t + \xi_1 e_{1t} + \xi_2 e_{2t} + \varepsilon_t \ \text{ (e.g. } \xi_k = \xi_1 = 0 \text{: CC; } \xi_k = \xi_1 = \xi_2 = 0 \text{: learning; all known: labor S and HK)}$
 - \circ whereas ability θ_t is unobserved to all, human capital k_t and effort e_{2t} on complex tasks are observed only to worker
- $\theta_{t+1} = \theta_t + \zeta_t$: ability θ_t evolves over time according to random walk (uncertainty renewed through ζ_t)
 - \circ θ_0 normal mean-zero w/ variance $\sigma^2_{ heta}$ and ζ_t normal mean-zero w/ variance σ^2_{ζ} (alternatively, shock to HK)
- $k_{t+1} = \lambda k_t + \gamma_1 e_{1t} + \gamma_2 e_{2t} + \beta_t$: HK accumulates with effort in each task at rates (γ_1, γ_2) (LBD or LOD) • depreciates at rate $1 - \lambda$ (can allow for semiparametric law $k_{t+1} = \lambda k_t + F(e_{1t}, e_{2t})$)
- At end of each period t: beliefs about θ_t are updated based on realized y_t according to Bayes' rule
 - o given worker's conjectured \hat{k}_t and $(\hat{e}_{1t} \ \hat{e}_{2t})$: $\mathbf{z}_t = y_t \xi_k \hat{k}_t \xi_1 \hat{e}_{1t} \xi_2 \hat{e}_{2t}$ is signal about θ_t extracted from y_t
 - \circ so workers have an incentive to exert effort to affect signal z_t and so market beliefs about θ_t (CC incentive for effort)

Next: turn to characterize sensitivity of pay to performance

$$\bullet \ \ \text{Given by} \ b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^*}_{(1)} - \underbrace{rH_t^*}_{(2)} + \underbrace{\gamma_{2t} \sum\nolimits_{\tau=1}^{T-1} \delta^\tau \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right] \ \text{where}$$

- scaling factor $b_t^0 = 1/[1 + r(\sigma_t^2 + \sigma_{\varepsilon}^2)]$ is standard piece rate from static (linear normal) MH models
- \circ so optimal b_t^* differs from static one due to last three terms
 - * first two are negative so depress piece rates relative to static level
 - * last has ambiguous effect: consists of positive and negative term (if $\gamma_{2t} > 0$ as we estimate)
- Note that if workers were risk neutral, $b_t^* = 1$ so v_t would move 1-1 with y_t
 - o since workers are risk averse, firms optimally provide incentives by smoothing variability of w over time
 - o they do so balancing at the margin strength of explicit and implicit incentives

$$\bullet \ \, \text{Given by} \, \, b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^* - \underbrace{rH_t^*}}_{(1)} + \underbrace{\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^\tau \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right] \, \text{where}$$

- \circ scaling factor $b_t^0 = 1/[1 + r(\sigma_t^2 + \sigma_\varepsilon^2)]$ is standard piece rate from static (linear normal) MH models
- \circ so optimal b_t^* differs from static one due to last three terms
 - * first two are negative so depress piece rates relative to static level
 - * last has ambiguous effect: consists of positive and negative term (if $\gamma_{2t} > 0$ as we estimate)
- Note that if workers were risk neutral, $b_t^* = 1$ so v_t would move 1-1 with y_t
 - o since workers are risk averse, firms optimally provide incentives by smoothing variability of w over time
 - o they do so balancing at the margin strength of explicit and implicit incentives
- $R_{CC,t}^* = \sum_{\tau=1}^{T-t} \delta^{\tau} (1 b_{t+\tau}^*) \partial \mathbb{E}_t(\theta_{t+\tau}) / \partial e_{2t}$: CC provide implicit effort incentives even in absence of PP
 - o so by partially substituting for explicit incentives lead to lower piece rates

Given by
$$b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^*}_{(1)} - \underbrace{rH_t^*}_{(2)} + \underbrace{\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right]$$
 where

- $rH_t^* = r\sigma_t^2 \sum_{\tau=1}^{T-t} \delta^{\tau}$: captures insurance against wage risk due to uncertainty via \downarrow piece rates
 - $\circ \propto$ variance of beliefs that leads to variability in w_t workers dislike (firms partially shield workers $\downarrow corr(w_t, w_{t+ au})$)
 - \circ term depends on r: optimal insurance higher, the more risk averse workers are

Given by
$$b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^* - rH_t^*}_{(1)} + \underbrace{\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^\tau \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right]$$
 where

- $rH_t^* = r\sigma_t^2 \sum_{\tau=1}^{T-t} \delta^{\tau}$: captures insurance against wage risk due to uncertainty via \downarrow piece rates
 - $\circ \propto$ variance of beliefs that leads to variability in w_t workers dislike (firms partially shield workers $\downarrow corr(w_t, w_{t+ au})$)
 - \circ term depends on r: optimal insurance higher, the more risk averse workers are
- $\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} R^*_{LBD,t}$: novel adjustment term for HK consists of two further components

Given by
$$b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^*}_{(1)} - \underbrace{rH_t^*}_{(2)} + \underbrace{\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^\tau \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right]$$
 where

- $rH_t^* = r\sigma_t^2 \sum_{\tau=1}^{T-t} \delta^{\tau}$: captures insurance against wage risk due to uncertainty via \downarrow piece rates
 - $\circ \propto$ variance of beliefs that leads to variability in w_t workers dislike (firms partially shield workers $\downarrow corr(w_t, w_{t+ au})$)
 - \circ term depends on r: optimal insurance higher, the more risk averse workers are
- $\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} R^*_{LBD,t}$: novel adjustment term for HK consists of two further components
 - o first: accounts for impact of effort on future output (social marginal return)

Given by
$$b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^* - \underbrace{rH_t^*}}_{(1)} + \underbrace{\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right]$$
 where

- $rH_t^* = r\sigma_t^2 \sum_{\tau=1}^{T-t} \delta^{\tau}$: captures insurance against wage risk due to uncertainty via \downarrow piece rates
 - $\circ \propto$ variance of beliefs that leads to variability in w_t workers dislike (firms partially shield workers $\downarrow corr(w_t, w_{t+ au})$)
 - \circ term depends on r: optimal insurance higher, the more risk averse workers are
- $\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} R^*_{LBD,t}$: novel adjustment term for HK consists of two further components
 - o first: accounts for impact of effort on future output (social marginal return)
 - \circ second: accounts for HK implicitly incentivizing e_{2t} (private marginal return) so partially substitutes for explicit incent's
 - $*~b_t^*$ provides incentives just for the portion of HK return that workers do \it{not} internalize

Given by
$$b_t^* = b_t^0 \left[1 - \underbrace{R_{CC,t}^* - \underline{rH_t^*}}_{(1)} + \underbrace{\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} - R_{LBD,t}^*}_{(3)} \right]$$
 where

- $rH_t^* = r\sigma_t^2 \sum_{\tau=1}^{T-t} \delta^{\tau}$: captures insurance against wage risk due to uncertainty via \downarrow piece rates
 - $\circ \propto$ variance of beliefs that leads to variability in w_t workers dislike (firms partially shield workers $\downarrow corr(w_t, w_{t+ au})$)
 - \circ term depends on r: optimal insurance higher, the more risk averse workers are
- $\gamma_{2t} \sum_{\tau=1}^{T-1} \delta^{\tau} \lambda^{\tau-1} R_{LBD,t}^*$: novel adjustment term for HK consists of two further components
 - o first: accounts for impact of effort on future output (social marginal return)
 - o second: accounts for HK implicitly incentivizing e_{2t} (private marginal return) so partially substitutes for explicit incent's
 - * b_t^* provides incentives just for the portion of HK return that workers do *not* internalize

Next: experience profile of $\{b_t^*\}$ naturally depends on relative strength of all these forces

- For instance, with ability uncertainty but w/o HK: $b_t^* \uparrow \text{ with } t$ as in Gibbons-Murphy (1992)
 - o intuition: explicit incentives substitute for implicit ones as uncertainty decreases

- For instance, with ability uncertainty but w/o HK: b_t^{*} ↑ with t as in Gibbons-Murphy (1992)
 intuition: explicit incentives substitute for implicit ones as uncertainty decreases
- W/o ability uncertainty but with LBD-HK, piece rates exhibit opposite profile: $b_t^* \downarrow$ with t
 - o intuition: returns to HK investments decline over time as residual lifetime shortens
 - $\circ \ \ \text{so optimal to provide strongest incentives early on (i.e.\ explicit\ and\ implicit\ incentives\ complements) }$

- For instance, with ability uncertainty but w/o HK: $b_t^* \uparrow \text{ with } t$ as in Gibbons-Murphy (1992)
 - o intuition: explicit incentives substitute for implicit ones as uncertainty decreases
- W/o ability uncertainty but with LBD-HK, piece rates exhibit opposite profile: $b_t^* \downarrow$ with t
 - o intuition: returns to HK investments decline over time as residual lifetime shortens
 - o so optimal to provide strongest incentives early on (i.e. explicit and implicit incentives complements)
- Combined model inherits both forces so can lead to profile for b_t^*
 - $\circ \ \ \text{hump-shaped: if LBD-HK motives} \ \textit{weaker} \ \text{than uncertainty at low levels of experience} \ (\sigma_{\theta}^2 \ \text{large}, \sigma_{\zeta}^2 \ \text{small}, T \ \text{large})$
 - $\circ\;$ u-shaped: if LBD-HK motives $\mathit{stronger}$ than uncertainty at low levels of experience

- For instance, with ability uncertainty but w/o HK: $b_t^* \uparrow$ with t as in Gibbons-Murphy (1992)
 - o intuition: explicit incentives substitute for implicit ones as uncertainty decreases
- W/o ability uncertainty but with LBD-HK, piece rates exhibit opposite profile: $b_t^* \downarrow$ with t
 - o intuition: returns to HK investments decline over time as residual lifetime shortens
 - o so optimal to provide strongest incentives early on (i.e. explicit and implicit incentives complements)
- Combined model inherits both forces so can lead to profile for b_t^*
 - hump-shaped: if LBD-HK motives weaker than uncertainty at low levels of experience (σ_{θ}^2 large, σ_{ζ}^2 small, T large)
 - $\circ\;$ u-shaped: if LBD-HK motives stronger than uncertainty at low levels of experience
- Based on these arguments, prove model identified
 - \circ key intuition: equilibrium b_t^* provides known mapping btw PP and worker preference/HK parameters (as we saw)

Estimates of Model on Firm-Level Data From BGH

- With fixed δ : we estimate 9 remaining parameters $(\sigma_{\theta}^2, \sigma_{\zeta}^2, \sigma_{\varepsilon}^2, \gamma_1, \gamma_2, \lambda, r)$ by MD targeting 120 moments
- Corresponding to w variance, cumulative w growth and b_t^* over first 40 years of experience

- As apparent from figure: model closely matches all these dimensions of data (very precisely)
- Based on estimates: can decompose estimated b_t^* into the five components isolated earlier

Decompose Estimated Piece Rate at Each Experience

Into components due to: static piece rate, CC, insurance, HK social and HK private return

Find key components: HK social and insurance vs. uncertainty about θ_t (figure: remaining negligible)

Decompose Estimated Piece Rate at Each Experience

Into components due to: static piece rate, CC, insurance, HK social and HK private return

HK social, which is large and positive, important to account for hump shape of piece rates

Decompose Estimated Piece Rate at Each Experience

Into components due to: static piece rate, CC, insurance, HK social and HK private return

Insurance against uncertainty about θ_t , which is fairly large and negative term, explains low level

- A robust findings of different parameterizations of our model (e.g. imposing fast or slow learning)
 - o output shocks must be large relative to uncertainty about ability for b_t^* and variance of w to be \downarrow later in life
 - $\circ \text{ as apparent from } \operatorname{Var}[w_{it}] = \sigma_{\theta}^2 + t\sigma_{\zeta}^2 \sigma_{t}^2 + (b_{t}^*)^2(\sigma_{t}^2 + \sigma_{\varepsilon}^2) \text{ (hump shape of } b_{t}^* \text{ translates into one for } \operatorname{Var}[w_{it}])$

- A robust findings of different parameterizations of our model (e.g. imposing fast or slow learning)
 - o output shocks must be large relative to uncertainty about ability for b_t^* and variance of w to be \downarrow later in life
 - $\circ \ \ \text{as apparent from } \mathrm{Var}[w_{it}] = \sigma_{\theta}^2 + t\sigma_{\zeta}^2 \sigma_{t}^2 + (b_{t}^*)^2(\sigma_{t}^2 + \sigma_{\varepsilon}^2) \ (\text{hump shape of } b_{t}^* \ \text{translates into one for } \mathrm{Var}[w_{it}])$
 - * this explains why remaining terms are small: CC incentives and static piece rate $b_t^0 = 1/[1 + r(\sigma_t^2 + \sigma_\varepsilon^2)]$
 - * and so is private marginal return to HK (since \propto to CC incentives and piece rates)

- A robust findings of different parameterizations of our model (e.g. imposing fast or slow learning)
 - o output shocks must be large relative to uncertainty about ability for b_t^* and variance of w to be \downarrow later in life
 - $\circ \ \ \text{as apparent from } \mathrm{Var}[w_{it}] = \sigma_{\theta}^2 + t\sigma_{\zeta}^2 \sigma_{t}^2 + (b_{t}^*)^2(\sigma_{t}^2 + \sigma_{\varepsilon}^2) \ (\text{hump shape of } b_{t}^* \ \text{translates into one for } \mathrm{Var}[w_{it}])$
 - * this explains why remaining terms are small: CC incentives and static piece rate $b_t^0 = 1/[1 + r(\sigma_t^2 + \sigma_\varepsilon^2)]$
 - * and so is private marginal return to HK (since \propto to CC incentives and piece rates)

• Although absolute risk aversion moderate and σ_{θ}^2 not too large: insurance against ability risk large

- A robust findings of different parameterizations of our model (e.g. imposing fast or slow learning)
 - o output shocks must be large relative to uncertainty about ability for b_t^* and variance of w to be \downarrow later in life
 - $\circ \ \ \text{as apparent from } \mathrm{Var}[w_{it}] = \sigma_{\theta}^2 + t\sigma_{\zeta}^2 \sigma_{t}^2 + (b_{t}^*)^2 (\sigma_{t}^2 + \sigma_{\varepsilon}^2) \ (\text{hump shape of } b_{t}^* \ \text{translates into one for } \mathrm{Var}[w_{it}])$
 - * this explains why remaining terms are small: CC incentives and static piece rate $b_t^0 = 1/[1+r(\sigma_t^2+\sigma_\varepsilon^2)]$
 - * and so is private marginal return to HK (since \propto to CC incentives and piece rates)

• Although absolute risk aversion moderate and σ_{θ}^2 not too large: insurance against ability risk large. Why?

- A robust findings of different parameterizations of our model (e.g. imposing fast or slow learning)
 - o output shocks must be large relative to uncertainty about ability for b_t^* and variance of w to be \downarrow later in life
 - $\circ \ \text{ as apparent from } \mathrm{Var}[w_{it}] = \sigma_{\theta}^2 + t\sigma_{\zeta}^2 \sigma_{t}^2 + (b_{t}^*)^2(\sigma_{t}^2 + \sigma_{\varepsilon}^2) \text{ (hump shape of } b_{t}^* \text{ translates into one for } \mathrm{Var}[w_{it}])$
 - * this explains why remaining terms are small: CC incentives and static piece rate $b_t^0 = 1/[1 + r(\sigma_t^2 + \sigma_\varepsilon^2)]$
 - * and so is private marginal return to HK (since \propto to CC incentives and piece rates)

- Although absolute risk aversion moderate and σ_{θ}^2 not too large: insurance against ability risk large. Why?
 - \circ contracts with v_t pay out more when y_t high (so news about θ_t are positive) and MU_C low
 - \circ thus exhibit *opposite covariance* structure of returns (btw y_t , current and future wages) than risk-averse investors desire
 - o low $b_t^*\downarrow$ ability risk by \downarrow correlation btw current and future w (insurance against life-cycle risk from uncer'y about θ_t)

Next: discuss role of performance incentives for wage growth ($w_t - w_1$ in thousands \$) and dispersion

What Accounts for Lifecycle Wage Growth?

As w growth is sum growth in HK and effort, can decompose in contribution of each: HK accounts for nearly all

Decomposition Masks Impact Effort on Human Capital

But effort has important indirect effect on w growth as active margin of investment in HK (find it of the LBD type)

One way to see how e_{2t} matters: assume firms restricted to offer contracts w/o variable pay

W/o p-incentives ($b_t^* = 0$): e_{2t} and k_t much lower would lead to $30\% \downarrow \text{growth}$ (see red vs. blue)

Decomposition Masks Impact Effort on Human Capital

But effort has important *indirect* effect on w growth as active margin of investment in HK (find it of the LBD type)

One way to see how e_{2t} matters: assume firms restricted to offer contracts w/o variable pay

So performance incentives matter for wage growth

Decomposition Masks Impact Effort on Human Capital

But effort has important *indirect* effect on w growth as active margin of investment in HK (find it of the LBD type)

One way to see how e_{2t} matters: assume firms restricted to offer contracts w/o variable pay

So performance incentives *matter* for wage growth. Do they matter for wage dispersion?

Although Small Variable Pay Also Key to Variance of Wages

Over lifecycle: as apparent from decomposing it into contribution of fixed and variable components of pay (figure)

Although Small Variable Pay Also Key to Variance of Wages

Indeed variance v_t alone (green) accounts for no less than 35% of variance w_t (blue) over first 20 years

How Important Is Ability Uncertainty for Wage Dispersion?

At the estimated equilibrium $\{b_t^*\}$: large fraction of w variance accounted by it $(\sigma_\theta^2 = \sigma_\zeta^2 = 0)$

But Lowering Ability Uncertainty Would Not Lower Wage Dispersion

Why? Workers demand less insurance so firms offer higher b_t^* : amplify risk leading to $much \uparrow$ variability (4 times)

What Do We Learn From This Experiment?

• But wage structure is itself determined by this heterogeneity

• In particular \downarrow it can actually lead to $\uparrow w$ dispersion by inducing firms to offer wages more sensitive to y_t

What Do We Learn From This Experiment?

• But wage structure is itself determined by this heterogeneity

• In particular \downarrow it can actually lead to $\uparrow w$ dispersion by inducing firms to offer wages more sensitive to y_t

Key idea: wage structure is important endogenous transmission mechanism of shocks to wages

• So far focused only on non-contractable effort

- So far focused only on non-contractable effort: once we allow for contractable effort
 - o the model better fits average wage growth with additional HK parameter γ_1 to match it
 - o but also find γ_2 is only slightly lower: incentives still matter to support HK process

- So far focused only on non-contractable effort: once we allow for contractable effort
 - \circ the model better fits average wage growth with additional HK parameter γ_1 to match it
 - o but also find γ_2 is *only slightly lower*: incentives still matter to support HK process

- We estimate that although effort paths implied by our model are eventually declining over time
 - $\circ~$ they are characterized by an \approx increasing degree of task complexity $(1+e_{2t}^*)/(1+e_{1t}^*)$
 - o this is consistent w/↑ importance of general manag't (complex tasks) vs. product/client act's (simple tasks) in BGH data
 - according to BGH' definition of complexity of tasks and their description of jobs' task content

- So far focused only on non-contractable effort: once we allow for contractable effort
 - \circ the model better fits average wage growth with additional HK parameter γ_1 to match it
 - o but also find γ_2 is *only slightly lower*: incentives still matter to support HK process

- We estimate that although effort paths implied by our model are eventually declining over time
 - $\circ~$ they are characterized by an \approx increasing degree of task complexity $(1+e_{2t}^*)/(1+e_{1t}^*)$
 - o this is consistent w/↑ importance of general manag't (complex tasks) vs. product/client act's (simple tasks) in BGH data
 - according to BGH' definition of complexity of tasks and their description of jobs' task content

• These results validate the incentives, human capital and uncertainty mechanisms at the heart of our model

Conclusion

- We have proposed new model of learning, HK and performance incentives to account for
 - o overall level of wages, their dispersion, their composition in terms of fixed and variable pay and dynamics
 - o which rationalizes puzzle that ratio of variable to total pay declines over second half of life cycle
- We have characterized optimal wage contract and based on this characterization
 - o isolated the distinct determinants of the level and experience profile of PP relative to total pay
 - \circ proved model identified just from panel data on w and their fixed or variable components
- Our estimation results show
 - o insurance against life-cycle wage risk arising from uncertainty about ability is main reason for low PP
 - o yet performance incentives key to dynamics of overall wages both directly and through impact on workers' HK process
- Hope first step toward richer models of incentives to interpret sources of dispersion in wages and its persistence