Volume Integrals

Just like with Area, the volume can be calculated by summing the volumes of infinitesimally small cubes. Each cube has a tiny length in the x, y and z directions. For example:

construct a small

cube isside the larger cube.

This cube has sides, 8x 8y and 82making the volume of the cube: 8V = 8x8y82

for the volume of the large cube, we need to sum up all the volumes of the smaller cubes from:

or in the range 0 to L.

y is the range o to L.

2 in the range 0 to L.

So total volume = ΣSV which can be written in integral form as:

$$V = \iiint 8x8y8z$$

This is a triple integral. It doesn't matter which order you evaluate the integrals in:

 $V = [x]_0^L [y]_0^L [z]_0^L = \frac{3}{L}$ which is the volume of a cube:

3-0 Polar Coordinates

In problems with spherical symmetry, it is easier to use spherical polar coordinates:

In this system, the limits are: $0 \le r < \infty$ $0 \le \theta \le \pi$ $0 \le \varphi \le 2\pi$

Note that Θ is only between O and π because angles higher than this can be obtained by altering Ψ instead.

Vow imagine that I reaches the surface of a sphere centred on the origin. To find the volume of the sphere:

Consider a small cube inside the sphere: $\frac{1}{150}$ rsino sq The volume of this cube is $5V = r^2 \sin \theta \sin \theta \cos \theta$ So the volume of the sphere is:

$$V = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \left[-\omega_{5} O \right]_{0}^{\pi}$$

$$= \left[\frac{c_{5}}{3} \right]_{0}^{R} \left[\varphi \right]_{0}^{2\pi} \left[-\omega_{5} O \right]_{0}^{\pi}$$

$$= \frac{u}{3} \pi R^{3}$$

$$\vdots$$