Non-Functional Properties

Prof. Sven Apel

Universität des Saarlandes

Part I

Motivation and Overview

Our view so far:

Reusable / Feature model configurable code Domain Engineering Database Base Access Write Unix Win Read Application Engineering Unix Software Win Txn Read Software Ø Write Feature selection Variant generator Software variant

Our view so far:

Reusable / Feature model configurable code Domain Engineering Where does the feature selection come from? Application Engineering Unix Software Win Txn Read 区 Write eature selection Variant generator Software variant

From Requirements to Configurations

Partial feature selection

Non-Functional Requirements

Memory consumption

• • •

Definition(s)

Also known as *quality attributes*

Over 25 definitions

In general:

Any property of a product that is not related with functionality represents a non-functional property.

Often there are *trade-offs* between properties!

Categorization

Quantitative

Response time (performance), throughput, etc.

Energy- and memory consumption

Measurable properties, metric scale

→ Easy to evaluate

Qualitative

Extensibility

Error freeness

Robustness

Security

→ No direct measurement (often, no suitable metric)

Incorporating Non-Functional Properties

Practical Relevance

What is the binary footprint of a variant for a given feature selection?

What is the best feature selection to minimize memory consumption?

What are the performance critical features?

Practical Relevance

Best configuration is 480 times better than worst configuration

Only by tweaking 2 of 200 options of Apache Storm led to 100% change in latency

Overview

Configuration space $|C| = \mathcal{O}(2^{|F|})$

Performance model

\wedge

1. Measurement

Goal: Measure non-functional properties, e.g., via sampling (select a minimal, representative set of configurations) **Challenges:** Size of configuration space, constraints, interactions

Key domains: Combinatorial testing, artificial intelligence, search-based software engineering, design of experiments

2. Learning a model

Goal: Learn a model accurately describing performance of all configurations

Challenges: Dimensionality of the learning problem,

interactions

Key domains: machine learning, statistics

4. Comprehension

Goal: Explainable machine learning with white-box models

Challenges: Trade-off between explainability and accuracy

Key domains: machine learning,

software analysis, testing

$$c_i = \{\ldots\}$$

$$\vdots \vdots \vdots$$

$$c_k = \{\ldots\}$$

3. Optimization

Goal: Finding optimal configurations in a single or multi-objective scenario

Challenges: Size of configuration space, constraints, interactions, lack of ground truth

Key domains: search-based software engineering, meta-heuristics, machine learning, artificial intelligence, mathematical optimization

System understanding

Optimal configuration(s)

Predictive Modeling / Machine Learning

Linear regression (Least-square, Lasso, Ridge, ...)

Regression trees (CART, Random Forests, ...)

Support vector machines

Neural networks

. . .

Part II

Learning Influence Models

Linear Regression

Linear Regression

Model structure:

Single observation: (y, \mathbf{x}) (one sample)

All observations: (\mathbf{y}, X) (whole sample)

1. Sampling observations: Influences and errors are unknown!

Linear Regression

Observations:

Optimization:

$$(\mathbf{y}, X)$$
 \longrightarrow min $\boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon} = (\mathbf{y} - X\boldsymbol{\beta})^T (\mathbf{y} - X\boldsymbol{\beta})$

Predictor (performance model):

$$\Pi(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Example model:

$$\Pi((x_1, x_2)) = 15 - 8.9 x_1 + 154 x_2$$

2.Learning a predictor:

Minimizing the overall error when assigning influences

Performance is non-linear!


```
x264
    --no-progress

--rc-lookahead 60
    --ref 9
    -o trailer_480p24.x264
    trailer_2k_480p24.y4m
```

661s

```
x264
    --no-progress
    --no-asm
    --rc-lookahead 60
    --ref 9
    -o trailer_480p24.x264
    trailer_2k_480p24.y4m
```

551s (-110s)

```
x264 --quiet
--no-progress

--rc-lookahead 60
--ref 9
-o trailer_480p24.x264
trailer_2k_480p24.y4m
```

487s (-174s)

```
x264 --quiet
--no-progress
--no-asm
--rc-lookahead 60
--ref 9
-o trailer_480p24.x264
trailer_2k_480p24.y4m
```

324s (-337s)

Performance is non-linear!


```
x264 --quiet
x264
     --no-progress
                                                  --no-progress
     --rc-lookahead 60
                                                  --rc-lookahead 60
    --ref 9
                                                  --ref 9
     -o trailer 480p24.x264
                                                  -o trailer 480p24.x264
     trailer 2k 480p24.y4m
                                                 trailer 2k 480p24.y4m
                                                   487s (-174s)
          661s
                Influences of individual features
                 do not add up in combination!
x264
                                                  --no-progress
     --no-progress
      -no-asm
                                                  --no-asm
     --rc-lookahead 60
                                                  --rc-lookahead 60
     --ref 9
                                                  --ref 9
     -o trailer 480p24.x264
                                                  -o trailer 480p24.x264
     trailer 2k 480p24.y4m
                                                 trailer 2k 480p24.y4m
     551s (-110s)
                                                   324s (-337s)
```

Feature Selection

We cannot include all possible combinations of features as distinct variables!

$$y_i = \beta_0 + \beta_1 \mathbf{x}_{i1} + \ldots + \beta_p \mathbf{x}_{ip} + \varepsilon_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$$

Features & interactions

$$I^{(1)} = \mathcal{O}(|F|)$$

$$I^{(2)} = \mathcal{O}(|F|^2)$$

Which features to select and how?

All feature combinations:
$$I^* = \mathcal{O}(2^{|F|})$$

$$I^* = \mathcal{O}(2^{|F|})$$

Features

$$X_a = \begin{pmatrix} 1 & 0 & 0 & 20 & 0 \\ 0 & 1 & 1 & 50 & 16 \\ 1 & 0 & 1 & 100 & 32 \\ 1 & 1 & 0 & 50 & 32 \\ 1 & 1 & 1 & 20 & 32 \\ 0 & 0 & 0 & 100 & 0 \\ 1 & 1 & 1 & 100 & 16 \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} 833 \\ 411 \\ 290 \\ 799 \\ 753 \\ 514 \\ 416 \end{pmatrix}$$

$$\beta_a = (102.4 84.3 54.1 5.4 1.3)$$

$$\overline{\varepsilon}_a = 41\%$$

Interactions

		ı	Cat	ures	1110	.Crac	.0113	
	\frac{1}{2}		>					
	/1	0	0	20	0	0	0	0
	0	1	1	50	16	0	0	800
	1	0	1	100	32	0	0	0
$X_b =$	1	1	0	50	32	1	0	1600
	1	1	1	20	32	1	1	640
	0	0	0	100	0	0	0	0
	$\sqrt{1}$	1	1	100	16	1	1	1600

Features

$$\mathbf{y} = \begin{pmatrix} 833 \\ 411 \\ 290 \\ 799 \\ 753 \\ 514 \\ 416 \end{pmatrix}$$

$$\boldsymbol{\beta}_a = (102.4 \ 84.3 \ 54.1 \ 5.4 \ 1.3)$$

 $\boldsymbol{\beta}_b = (132.3 \ 81.3 \ 56.6 \ 3.5 \ 1.9 \ 14.1 \ 5.4 \ 2.4)$

$$\overline{\varepsilon}_a = 41\%$$

$$\overline{\varepsilon}_b = 25\%$$

	Features						erac	ctions	Functions		
	•		>				2		2	log	
	/1	0	0	20	0	0	0	0	400	-	
	0	1	1	50	16	0	0	800	2500	1.2	
	1	0	1	100	32	0	0	0	10^{4}	0.9	
$X_c =$	1	1	0	50	32	1	0	1600	2500	1.5	
	1	1	1	20	32	1	1	640	400	1.5	
	0	0	0	100	0	0	0	0	10^{4}	_	
	$\sqrt{1}$	1	1	100	16	1	1	1600	10^{4}	1.2	

$$\mathbf{y} = \begin{pmatrix} 833 \\ 411 \\ 290 \\ 799 \\ 753 \\ 514 \\ 416 \end{pmatrix}$$

$$\beta_a = (102.4 \ 84.3 \ 54.1 \ 5.4 \ 1.3)$$

$$\beta_b = (132.3 \ 81.3 \ 56.6 \ 3.5 \ 1.9 \ 14.1 \ 5.4 \ 2.4)$$

$$\beta_c = (130.3 \ 83.5 \ 54.2 \ 0.01 \ 0 \ 14.1 \ 5.4 \ 1.4 \ 2.1 \ 8.8)$$

$$\overline{\varepsilon}_a = 41\%$$

$$\overline{\varepsilon}_b = 25\%$$

$$\overline{\varepsilon}_c = 7.4\%$$

		Features						ctions	Func	Functions		
	•		>		Ξ				2	log		
	/1	0	0	20	0	0	0	0	400	-		
	0	1	1	50	16	0	0	800	2500	1.2		
	1	0	1	100	32	0	0	0	10^{4}	0.9		
$X_c =$	1	1	0	50	32	1	0	1600	2500	1.5		
	1	1	1	20	32	1	1	640	400	1.5		
	0	0	0	100	0	0	0	0	10^{4}	_		
	$\sqrt{1}$	1	1	100	16	1	1	1600	10^4	1.2		

$$\mathbf{y} = \begin{pmatrix} 833 \\ 411 \\ 290 \\ 799 \\ 753 \\ 514 \\ 416 \end{pmatrix}$$

$$\boldsymbol{\beta}_a = (102.4 84.3 54.1 5.4 1.3)$$

$$\beta_b = (132.3 \ 81.3)$$

$$\beta_c = (130.3 \ 83.5)$$

Search for the best model in *multiple iterations* adding *more and more variables* of *increasing complexity*!

$$\overline{\varepsilon}_a = 41\%$$

$$\overline{\varepsilon}_b = 25\%$$

$$\overline{\varepsilon}_c = 7.4\%$$

Empirical Results

System	Domain	# Binary Opt.	# Numeric Opt.	# Constraints	# Configs
Dune MGS	Multi-Grid Solver	8	3	20	2 304
HIPAcc	Image Processing	31	2	416	13 485
HSMGP	Stencil-Grid Solver	11	3	45	3 456
JavaGC	Runtime Env.	12	23	4	10^{31}
SaC	Compiler	53	7	10	10^{23}
x264	Video Encoder	8	13	0	10^{27}

	Plackett-Burm	nan Design	Random Design				
System	Feature-wise	Pair-wise	Feature-wise	Pair-wise			
Dune MGS	8.8 %	8.3 %	20.1 %	22.1 %			
HIPAcc	13.8 %	10.7 %	14.2 %	13.9 %			
HSMGP	1.7 %	1.5 %	4.5 %	2.8 %			
JavaGC	21.9 %	18.8 %	31.3 %	24.6 %			
SaC	16.0 %	25.0 %	21.1 %	30.7 %			
x264	21.2 %	15.0 %	14.2 %	13.5 %			

Regression Trees (CART)

Running example:

Configuration		Features										Performance (s)					
\mathbf{x}_i	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	y_i
\mathbf{x}_1	1	1	0	1	1	1	1	0	1	0	0	1	1	0	0	1	651
\mathbf{x}_2	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	0	536
\mathbf{x}_3	1	1	1	1	0	0	0	0	1	1	0	0	1	0	0	1	581
\mathbf{x}_4	1	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	381
\mathbf{x}_5	1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	424
\mathbf{x}_6	1	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	615
\mathbf{x}_7	1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	477
\mathbf{x}_8	1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	263
\mathbf{x}_9	1	0	0	0	0	0	1	1	1	0	0	1	1	1	0	0	272
\mathbf{x}_{10}	1	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	247
\mathbf{x}_{11}	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	612
\mathbf{x}_{12}	1	0	1	1	1	0	0	0	1	0	0	1	1	0	1	0	510
\mathbf{x}_{13}	1	1	1	1	0	1	1	0	1	0	1	0	1	0	0	1	555
\mathbf{x}_{14}	1	1	0	0	1	0	1	1	1	0	0	1	1	1	0	0	264
\mathbf{x}_{15}	1	0	1	0	0	1	1	1	1	0	0	1	1	0	0	1	576
\mathbf{x}_{16}	1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	268

Regression Trees (CART)

Predicted value for any configuration selecting feature x_{14} and feature x_{7}

Empirical Results

	System	Domain	Lang.	LOC	P	N	M
1	APACHE	Web Server	С	230,277	192	9	29
2	LLVM	Compiler	C++	$47,\!549$	1,024	11	62
3	x264	Encoder	\mathbf{C}	45,743	$1,\!152$	16	81
4	Berkeley DB	Database	\mathbf{C}	219,811	$2,\!560$	18	139
5	Berkeley DB	Database	JAVA	$42,\!596$	400	26	48
6	SQLITE	Database	С	312,625	3,932,160	39	566

N = |F| M = Number of configurations required by pair-wise sampling

More Sampling & Learning Strategies

Learning strategies						
CART	Classification and Regression Tree					
kNN	k-Nearest-Neighbors Regression					
KRR	Kernel Ridge Regression					
MR	Multiple Linear Regression					
RF	Random Forest					
SVR	Support Vector Regression					

Sampling strategies						
OW	Option-wise					
T*	T-wise					
NewOW	Negative Option-wise					
RB	Random (Binary)					
OFAT	One Factor At A Time					
BBD	Box-Behnken Design					
CCI	Central Composite Inscribed Design					
PBD	Plackett-Burman Design					
DOD	D-Optimal Design					
RN	Random (Numeric)					

Part III

Non-Functional Feature Interactions

Example

$$\frac{\prod \left(\bigcirc, \bigcirc, \bigcirc \right) = \bigcirc \left(\bigcirc \right) + \Delta \left(\bigcirc \right) + \Delta \left(\bigcirc \right)}{= 150s}$$

Example

П

Predicted performance

Measured performance

$$\Pi (\bigcirc, \bigcirc, \bigcirc) = \bigcirc(\bigcirc) + \Delta (\bigcirc) + \Delta (\bigcirc)$$

$$= 100s + 20s + 30s$$

$$= 150s$$

Feature interaction:

due to encrypting compressed data

Definition

$$f \notin c_{\min} \quad f' \notin c_{\min}$$

$$\text{selectable}(\Psi, f) \quad \text{selectable}(\Psi, f') \quad \text{selectable}(\Psi, f \land f')$$

$$\left| \left(\lozenge(c_{\min} \cup \{f\}) + \lozenge(c_{\min} \cup \{f'\}) \right) - \lozenge(c_{\min} \cup \{f, f'\}) \right| > \varepsilon$$

$$\text{interact}(f, f', \Psi)$$

 c_{\min} : Minimal configuration (minimal set of features)

Influence Models

Feature Interaction!

Performance Interactions

Performance Interactions

Two confirmed performance bugs in the LLVM extension Polly

Feature Interactions vs. Prediction Error

Comprehension

JUQUEEN – Jülich Blue Gene/Q (458.752 Cores, 5.9 Petaflops)

Matthias Bolten

Christian Engwer

$$rac{\partial u}{\partial t} - lpha \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2}
ight) = 0$$

Comprehension

Matthias Bolten

Christian Engwer

$$rac{\partial u}{\partial t} - lpha \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2}
ight) = 0$$

the road not taken

Two Roads Diverged In A Yellow Wood, And Sorry I Could Not Travel Both.

Perspectives

Properties & Distribution?

Correlation?

Prediction?

Literature

- T. Xu, et al.: Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software. Proceedings ESEC/FSE. 307-319, ACM, 2015
- N. Siegmund, et al.: *Performance-influence models for highly configurable systems*. Proceedings ESEC/FSE, 284-294, ACM, 2015
- J. Guo, et al.: *Data-efficient performance learning for configurable systems*. EMSE 23(3): 1826-1867, 2018
- C. Kaltenecker, et al. *The interplay of sampling and machine learning for software performance prediction*. IEEE Software, 2020
- S. Kolesnikov, et al.: *Tradeoffs in modeling performance of highly configurable software systems*. SoSyM 18(3): 2265-2283, 2019
- S. Apel, et al.: Exploring feature interactions in the wild: The new feature-interaction challenge. Proceedings FOSD, 1-8, ACM, 2013

Quiz

Model A:

```
1000-250 \cdot \mathsf{AccessLog} - 150 \cdot \mathsf{HostnameLookups}
```

Model B:

```
1000-250 \cdot \mathsf{AccessLog} - 150 \cdot \mathsf{HostnameLookups}
```

- $+100 \cdot AccessLog \cdot HostnameLookups$
- $+2 \cdot AccessLog \cdot EnableSendfile \cdot KeepAlive$
- $+1 \cdot \mathsf{EnableSendfile} \cdot \mathsf{FollowSymLinks} \cdot \mathsf{Handle}$

Calculate the predicted performance:

Configuration	Measured	Prediction (Model A)	Prediction (Model B)
AccessLog	750		
HostnameLookups	850		
AccessLog, HostnameLookups	600		
AccessLog, EnableSendfile, KeepAlive	750		
AccessLog, EnableSendfile, Handle	750		
AccessLog, EnableSendfile, FollowSymLinks, Handle	750		

Quiz

Calculate the predicted performance:

Configuration Prediction

$$\begin{array}{c}
 \neg x_3 \wedge \neg x_{14} \wedge x_{15} \\
 x_3 \wedge \neg x_7 \wedge \neg x_{14} \wedge \neg x_{15} \\
 x_7 \wedge x_{14} \wedge \neg x_{16} \\
 \mathbf{x}_4 \\
 \mathbf{x}_8 \\
 \mathbf{x}_{10}
 \end{array}$$