Testy Funkcjonalne Rynek Nieruchomości w Wielkiej Brytanii

Wojciech Kosiuk Politechnika Warszawska Szymon Matuszewski Politechnika Warszawska

Michał Mazuryk Politechnika Warszawska

Listopad 2023

Spis treści

1	Test struktur Apache HBase	2
2	Test przetworzenia nowych kwartałów	3
3	Test przetwarzania Apache Spark	5

1 Test struktur Apache HBase

Cel: Test polega na sprawdzeniu czy założone struktury w Apache HBase są prawidłowe i posiadają odpowiednie rodziny kolumn.

Kroki:

- Uruchomienie HBase shell
- Wywołanie komendy 'describe' dla nazw tabel
- Weryfikacja z założeniami

```
hbase(main):024:0> describe 'price_data'
Table price_data is ENABLED
price_data
COLUMN FAMILIES DESCRIPTION
{\text{NAME} => 'location', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1'-
,\text{KEEP_DELETED_CELLS} => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => '
NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE =>
'65536', REPLICATION_SCOPE => '0'}

{\text{NAME} => 'property_details', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSION
S => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESS.
ION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOC
KSIZE => '65536', REPLICATION_SCOPE => '0'}

2 row(s)
Quota is disabled
Took 0.0271 seconds
```

Rysunek 1: Komenda 'describe' dla tabeli price data.

```
hbase(main):023:0> describe 'property_data'
Table property_data is ENABLED
property_data
COLUMN FAMILIES DESCRIPTION
{\text{NAME} => 'dates', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', K
EEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NON
E', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '6
5536', REPLICATION_SCOPE => '0'}

{\text{NAME} => 'location', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => '
NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}

{\text{NAME} => 'property_details', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSION S => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESS ION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}

3 row(s)
Quota is disabled
Took 0.0741 seconds
```

Rysunek 2: Komenda 'describe' dla tabeli price data.

Wynik: Zgadza się z założeniami, otrzymano rodziny 'location', 'property_details' dla 'price_data' oraz 'location', 'property_details', 'dates' dla 'property_data'.

2 Test przetworzenia nowych kwartałów

Cel: Test polega na dodaniu danych dotyczącego nowych kwartałów i zweryfikowania ich poprawnego przetworzenia przez proces.

Kroki:

- Dodanie do folderów wejściowych danych dotyczących nowych kwartałów (3 i 4 z roku 2018)
- Uruchomienie procesu w Apache NiFi
- Weryfikacja jego przejścia bez błędów
- Wybranie konkretnego wiersza dla wrzuconych nowych plików LDD i PP
- Wywołanie komendy 'get' w Apache HBase szukając odpowiedniego wiersza
- Sprawdzenie zapisu nowych plików w Apache Hadoop

Rysunek 3: Poprawnie przetworzony proces dla Property Data.

Rysunek 4: Poprawnie przetworzony proces dla Price Paid Data.

	Borough	Permission Status	No of Bedrooms	Unit Type	Residential Development Type	Primary Street Name	Post Code	Superseded date	Permission Date	Started Date	Completed date	Building height (maximum storeys)
0	Barking and Dagenham	Submitted	2.0	Flat Apartment or Maisonette	Extension to building for residential unit(s)	Becontree Avenue	RM8 3UH	NaN	13/08/2018	NaN	NaN	2.0
1	Barking and Dagenham	Started	2.0	Flat Apartment or Maisonette	New Residential Building	Rainham Road South	RM10 7XJ	NaN	09/07/2018	16/09/2019	NaN	2.0
2	Barking and Dagenham	Submitted	1.0	Flat Apartment or Maisonette	New Residential Building	Merrielands Crescent	RM9	NaN	22/08/2018	NaN	NaN	10.0
3	Barking and Dagenham	Submitted	1.0	Flat Apartment or Maisonette	New Residential Building	Merrielands Crescent	RM9	NaN	22/08/2018	NaN	NaN	10.0
4	Barking and Dagenham	Submitted	1.0	Flat Apartment or Maisonette	New Residential Building	Merrielands Crescent	RM9	NaN	22/08/2018	NaN	NaN	10.0

Rysunek 5: Fragment ramki z wybieranymi przez nas kolumnami z pliku LDD dotyczącego 3 kwartału 2018 roku. Sprawdzanym wierszem w HBase będzie ten o numerze 0.

```
'property_data', '13082018_Barking and Dagenham_1'
nbase(main):016:0* get
                     timestamp=2024-01-07T10:48:52.787, value=RM8 3UH
location:Post Code
location:Primary Str timestamp=2024-01-07T10:48:52.787,
                                                        value=Becontree Avenue
property_details:Bui timestamp=2024–01–07T10:48:52.993, value=2.0
lding height (maximu
m storeus:
property_details:No timestamp=2024-01-07T10:48:52.993, value=2.0
of Redrooms
property_details:Per timestamp=2024-01-07T10:48:52.993, value=Submitted
mission Status
property_details:Res timestamp=2024-01-07T10:48:52.993, value=Extension to bui
idential Development ding for residential unit(s)
 Tupe
property_details:Uni timestamp=2024–01–07T10:48:52.993, value=Flat Apartment o
  Type
                       Maisonette
```

Rysunek 6: Log z konsoli HBase w tabeli 'property_data' dotyczący wybranego wcześniej wiersza.

```
24819 {75050A85-D70B-9A88-E053-6804A8C02390},150000,2018-07-18 00:00,CV10 7EE,S,N,F,255,,CROFT ROAD,,NUNEATON,NUNEATON AND BEDWORTH,WARWICKSHIRE,A,A
24820 {75050A85-D70C-9A88-E053-6804A8C02390},366000,2018-08-10 00:00,CV21 4EG,T,N,F,41,,HIGH STREET,HILLMORTON,RUGBY,RUGBY,WARWICKSHIRE,A,A
24821 {75050A85-D70D-9A88-E053-6804A8C02390},375000,2018-07-20 00:00,B94 5RY,S,N,L,32,,MALTHOUSE LANE,EARLSWOOD,SOLIHULL,STRATFORD-ON-AVON,WARWICKSHIRE,A,A
```

Rysunek 7: Fragment ramki z pliku PP dotyczącego 3 kwartału 2018 roku, sprawdzanym wierszem w HBase będzie ten o numerze 24820.

```
OLUMN
                     CELL
location:Borough
                     timestamp=2024-01-07T11:34:05.229,
                                                         value=RUGBY
                     timestamp=2024-01-07T11:34:05.229,
                                                         value=WARWICKSHIRE
                                                         value=HILLMORTON
location:District
                     timestamp=2024-01-07T11:34:05.229,
                     timestamp=2024-01-07T11:34:05.229,
location:PostalCode
                                                         value=CV21 4EG
                     timestamp=2024-01-07T11:34:05.229,
                                                         value=HIGH STREET
location:Street
                     timestamp=2024-01-07T11:33:54.895,
property_details:Num
                                                         value=41
ber
property_details:Pri timestamp=2024-01-07T11:33:54.895, value=166000
```

Rysunek 8: Log z konsoli HBase w tabeli 'price_data' dotyczący wybranego wcześniej wiersza.

Wynik: Nowe kwartały zostały poprawnie przetworzone w NiFi. Przetworzone dane zostały dodane do HBase i HDFS. Wiersze zostały poprawnie zapisane w HBase, według struktury jaka oczekiwaliśmy.

3 Test przetwarzania Apache Spark

Cel: Aby sprawdzić poprawność przetwarzania danych w Apache Spark stworzyliśmy widoki danych, które następnie zapisaliśmy w systemie plików HDFS.

Kroki:

- Zagregowanie danych do odpowiednich tabel oraz ich złączenie.
- Sprawdzenie 20 wierszy z każdej tabeli (czy istnieja).
- Zapisanie widoku wsadowego w systemi HDFS.
- Sprawdzenie czy zapis się odbył

```
from pyspark.sql.functions import col, year, month, substring, expr, upper, mean, regexp_replace

df_ppd = df_ppd.filter(col("City") == "LONDON")

df_ldd = df_ldd.withColumn("Year", substring(col("DateOnly"), -4, 4).cast("int"))

df_ppd = df_ppd.withColumn("Month", expr("substring(DateOnly"), -4, 4).cast("int"))

df_ldd = df_ldd.withColumn("Month", expr("substring(DateOnly, length(DateOnly)-5, 2)").cast("int"))

df_ldd = df_ldd.withColumn("Month", expr("substring(DateOnly, length(DateOnly)-5, 2)").cast("int"))

df_ldd = df_ldd.withColumn("Day", expr("substring(DateOnly, length(DateOnly)-5, 2)").cast("int"))

df_ldd = df_ldd.withColumn("Borough", upper(col("Borough")))

numeric_columns_ldd = [col_name for col_name, col_type in df_ldd.dtypes if col_type in ['double', 'int']][:-4]

numeric_columns_pdd = [col_name for col_name, col_type in df_ppd.dtypes if col_type in ['double', 'int']][:-4]

df_ldd = df_ldd.ma.drop(subset=numeric_columns_ldd)

df_ppd = df_ppd.ma.drop(subset=numeric_columns_pdd)

df_ldd_mean_by = df_ldd.groupBy("Borough", "Year").agg("mean(col_name).alias(f"Mean_(col_name)") for col_name in numeric_columnd fl.ldd mean_my = df_ldd.dr.groupBy("Borough", "Year").agg("mean(col_name).alias(f"Mean_(col_name)") for col_name in numeric_columns_df_ppd_mean_my = df_ppd.groupBy("Year", "Month").agg("mean(col_name).alias(f"Mean_(col_name)") for col_name in numeric_columns_df_ppd_mean_my = df_ldd.mean_by.join(df_ppd_mean_my, ['Year', 'Month'), '!eft')

merged_by = df_ldd_mean_by.join(df_ppd_mean_my, ['Year', 'Month'), '!eft')

for col_name in merged_ym.columns:
    merged_ym = merged_ym.withColumnRenamed(col_name, col_name.replace(", "").replace("(", "").replace("", ""))
    merged_by = merged_by.volumns:
    merged_by = merged_by.volumns:
    merged_by = merged_by.volumns:
    merged_by = merged_by.volumnsen_mean_el(col_name, col_name.replace(", "").replace("(", "").replace("", ""))
    replace("", "").replace("(", "").replace("", ""))
```

Rysunek 9: Zrzut ekranu prezentujący kolejne etapy procesowania danych w Apache Spark w celu utworzenia zagregowanych tabel widokowych.

-	ym.sh		
[Stage :	244:=		======> (49 + 1) / 50]
++-	+		+
Year M	onth	Mean_No_of_Bedrooms Mean_B	uilding_height_maximum_storeys Mean_Price
++-	+		
2015		2.2650602409638556	26.25602409638554 729797.3082631368
2017	3	2.264646464646465	8.4242424242424 953463.0840964591
2017	8	2.1725888324873095	7.535532994923858 864724.8906580016
2014	4	2.209621993127148	12.958762886597938 710839.173211237
2017	10	2.155313351498638	7.021798365122616 964845.0763555251
2018	10	2.175480769230769	6.211538461538462 898489.1211807354
2015	12	2.1358885017421603	11.80836236933798 928461.7741384221
2016	7	2.235135135135135	6.094594594594595 764402.6407185629
2016	11	2.2117903930131004	5.762008733624454 1028912.169087137
2018	1	2.232189973614776	5.071240105540897 1121058.1456367925
2018	3	2.1214470284237725	9.21188630490956 950243.6053100498
2014	10	2.3359375	7.234375 740799.172595719
2016	5	2.1991434689507496	9.222698072805139 834914.1343082115
2014	12	2.300324675324675	12.39935064935065 774059.3787325813
2018	8	2.164009111617312	14.98861047835991 921170.3014925373
2014	5	2.3353293413173652	8.95808383233533 715598.3746264196
2016	2	2.2880794701986753	5.447019867549669 730683.1640625
2017	7	2.1950549450549453	4.862637362637362 1083425.616948601
2014	1	2.2434210526315788	10.355263157894736 677154.1069452981
2014	8	2.340175953079179	10.222873900293255 747442.2702055759

Rysunek 10: Zrzut ekranu ze sprawdzeniem czy tabela 1 poprawnie się utworzyła.

erged_by.show()				€	-
Stage 245:=====		===> (3 + 1) / 4]			
Borough Year	Mean_No_of_Bedrooms Mea	n_Building_height_maximum_storeys	Mean_Price		
ENFIELD 2014	2.27027027027027	14.243243243243244	377910.940625		
HILLINGDON 2017	2.314814814814815	7.11111111111111	495000.0		
MERTON 2017	2.375		36466.2555066079		
WESTMINSTER 2018	2.207692307692308	8.138461538461538	null		
LAMBETH 2015	2.0		04497.8282076395		
	1.9426229508196722	7.475409836065574 9			
BROMLEY 2018		3.2857142857142856 41			
CITY OF LONDON 2016	2.2		596348.251028807		
	1.9627118644067796		30312.8342342342		
BEXLEY 2015	2.25		71562.4835164835		
WANDSWORTH 2015	2.2460526315789475		702075.705095057		
BRENT 2017			25372.9486143187		
BARKING AND DAGENHAM 2015		9.602409638554217	383500.0		
	2.2564102564102564	7.256410256410256 6			
BARKING AND DAGENHAM 2016		7.41666666666667	1430000.0		
CROYDON 2017	2.1325167037861914	4.271714922048997 38			
MERTON 2014	2.525		694368.585303186		
BEXLEY 2017	2.1288659793814433	2.6804123711340204 3			
BEXLEY 2014	2.240740740740741	3.277777777777777 23			
CROYDON 2015	2.153679653679654	4.571428571428571 33	3223.209380838331		

Rysunek 11: Zrzut ekranu ze sprawdzeniem czy tabela 2 poprawnie się utworzyła.

Writing batch views merged_ym.write.parquet('hdfs://localhost:8020/user/matuszewskis/project/PricePaidData/merged_year_month.parquet') merged_by.write.parquet('hdfs://localhost:8020/user/matuszewskis/project/PricePaidData/merged_borough_year.parquet')

Rysunek 12: Zrzut ekranu z zapisem do pliku wsadowego wywołany aby sprawdzić istnienie zapisu na HDFS.

```
Found 42 items

drwxr-xr-x - vagrant supergroup 0 2024-01-07 13:02 /user/matuszewskis/project/PricePaidData/merged_borough_year.parquet

drwxr-xr-x - vagrant supergroup 0 2024-01-07 13:02 /user/matuszewskis/project/PricePaidData/merged_year_month.parquet
```

Rysunek 13: Zrzut ekranu z logiem faktycznego zapisu widoków wsadowych na HDFS.

Wynik: Poprawnie dodano nowe pliki.