Lycée Berthollet MPSI² 2023-24

Exercices sur les espaces préhilbertiens réels

Produit scalaire

Exercice 1 Soit E un \mathbb{R} -espace vectoriel de dimension 3 et e une base de E. On considère l'application de $E \times E$ vers \mathbb{R} définie par :

$$\Phi(x,y) = ax_1y_1 + 2x_1y_2 + bx_2y_1 + 2x_2y_2 + x_1y_3 + x_3y_1 + x_3y_3,$$

où on note (x_1, x_2, x_3) (resp. (y_1, y_2, y_3)) les coordonnées de x (resp. y) dans la base e.

1. Pour quelles valeurs de a et b l'application Φ est-elle bilinéaire symétrique?

On considère dorénavant des valeurs de a et b telles que ce soit le cas.

2. Trouver des scalaires α , β , γ tels que

$$\forall x \in E$$
, $\Phi(x,x) = \alpha x_1^2 + \beta (x_1 + x_2)^2 + \gamma (x_1 + x_3)^2$.

- 3. Pour quelles valeurs de a et b l'application Φ est-elle un produit scalaire?
- 4. Exprimer $\Phi(x,y)$ à l'aide des coefficients α,β,γ et déterminer une base Φ -orthonormale sans utiliser le procédé de Gram-Schmidt.

Cauchy-Schwarz

Exercice 2 Soient $A, B \in \mathcal{S}_n(\mathbb{R})$. Montrer que $(\operatorname{tr}(AB + BA))^2 \leq 4\operatorname{tr}(A^2)\operatorname{tr}(B^2)$.

Exercice 3 Soient a > 0 un réel et f une fonction de classe C^1 sur [0, a] telle que f(0) = 0.

- 1. Exprimer la fonction f à l'aide d'une intégrale et en déduire l'inégalité $\int_0^a f^2 \le \frac{a^2}{2} \int_0^a (f')^2$.
- **2.** On cherche ici à améliorer l'inégalité précédente. Pour $c \in]0, \frac{\pi}{2a}[$, on considère la fonction g_c définie pour $t \in [0,a]$ par $g_c(t) = c \tan(c(a-t))$.
 - a. Remarquer que g_c vérifie une équation différentielle simple.
 - b. En considérant $\int_0^a (f'-fg_c)^2$, montrer que $\int_0^a f^2 \le \frac{4a^2}{\pi^2} \int_0^a (f')^2$.

Gram-Schmidt

Exercice 4 Dans l'espace \mathbb{R}^4 euclidien usuel, trouver une BON de l'hyperplan vectoriel d'équation 2x + 3y + 4z + 5t = 0.

Déterminant de Gram

Exercice 5 On se place dans un espace vectoriel euclidien E de dimendion n et on pose, pour $p \le n$ et $x = (x_i)_{i=1}^p \in E^p$, $Gram(x) = \det \left((< x_i, x_j >)_{(i,j) \in [\![1,p]\!]^2} \right)$.

- 1. Montrer que $Gram(x) \ge 0$ avec égalité si et seulement si la famille x est liée. On pourra exprimer Gram(x) à l'aide de la matrice M de x dans une BON d'un sous-espace judicieux de dimension p.
- 2. Soit $e = (e_i)_{i=1}^p$ une famille libre telle que $\forall i \in [[1, p]], x_i \in \text{Vect}(e)$. Montrer que $Gram(x) = (\det_e(x))^2 Gram(e)$.
- 3. Si F = Vect(e) et $a \in E$, montrer que

$$d(a,F)^2 = \frac{Gram(e_1,e_2,\ldots,e_p,a)}{Gram(e_1,e_2,\ldots,e_p)}.$$

Dimension infinie

Exercice 6 Soit (P_n) une suite de polynômes réels orthogonaux pour le produit scalaire L^2 sur [0,1] $(\langle P,Q\rangle = \int_0^1 P(x)Q(x)dx)$ et tels que $(\forall n\in\mathbb{N},\mathrm{d}^\circ(P_n)=n)$. Montrer que les polynômes P_n sont scindés sur \mathbb{R} , à racines simples et comprises dans l'intervalle]0,1[. Indication : montrer que P_n est orthogonal à $\mathbb{R}_{n-1}[X]$ puis raisonner par l'absurde.

"Isométries"

Exercice 7 Soient E et F deux espaces préhilbertiens réels, et $f: E \to F$ une application telle que :

- f(E) soit un sous-espace vectoriel de F;
- f(0) = 0;
- $-- \forall x, y \in E, \|f(x) f(y)\|_F = \|x y\|_F.$
- 1. Montrer que $\forall x, y \in E, \langle f(x), f(y) \rangle_F = \langle x, y \rangle_E$.
- 2. Montrer que f est linéaire.

Géométrie dans \mathbb{R}^3

Exercice 8 Dans un espace euclidien de dimension 3 muni d'une BON, calculer la distance entre w(1,1,1) et le plan \mathcal{P} engendré par u(1,-1,2) et v(-1,2,1).

Exercice 9 Dans le plan \mathbb{R}^2 euclidien usuel, trouver toutes les droites passant par le point P(4,1) et tangentes au cercle de centre A(2,3) et de rayon 1.

Exercice 10 Dans un espace euclidien de dimension 3 muni d'une BON, calculer la distance entre v(1,2,3) et la droite \mathcal{D} de représentation cartésienne :

$$\begin{cases} x + y + z = 0 \\ 2x - y + 3z = 0 \end{cases}.$$

Exercice 11 Dans un espace euclidien de dimension 3 muni d'une BON, déterminer une représentation cartésienne de \mathcal{D}' projetée orthogonale de la droite \mathcal{D} de représentation cartésienne :

$$\begin{cases} x = z \\ y = z \end{cases}$$

sur le plan \mathcal{P} d'équation x + 2y - 3z = 0.

Exercice 12 Dans un espace vectoriel euclidien de dimension 3 muni d'une base orthonormée e, que dire de $f \in \mathcal{L}(E)$ telle que

$$\operatorname{Mat}_{e}(f) = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
?

Exercice 13 Dans un espace vectoriel euclidien de dimension 3 muni d'une base orthonormée B, soit H un hyperplan d'équation ax + by + cz = 0 (a, b et c non tous nuls). Quelle est la matrice de la symétrie par rapport à H et parallèlement à H^{\perp} dans la base B?

2