T P 8. Ejercicio adicional campo conservativo

Dado el campo vectorial $\vec{F}_{(x,y)} = (4 \ x - 3 \ y^2, \ y^2 - 6 \ x \ y)$, y la curva $\mathcal C$ de ecuación paramétrica $\vec{\alpha}(t) = (cos^3(t), sen^3(t))$, con $0 \le t \le \pi/2$, indicar en qué sentido debe recorrerse la curva dada, de modo que la integral de línea de \vec{F} sobre dicha curva, sea positiva.

Res: $\vec{F} \in C^1$ en \mathbb{R}^2 , veamos si \vec{F} es un campo gradiente:

$$P(x,y) = 4 x - 3 y^{2}$$
 $P_{y} = -6 y$
 $Q(x,y) = y^{2} - 6 x y$ $Q_{x} = -6 y$

cómo $P_y = Q_x$, existe z = g(x, y) tal que $\vec{F} = \nabla g$, esto es

$$\vec{F}(x,y) = (P(x,y), Q(x,y)) = \nabla g(x,y) = \left(\frac{\partial g(x,y)}{\partial x}, \frac{\partial g(x,y)}{\partial y}\right)$$

Búsqueda de g

$$g(x,y) = \int P(x,y)dx = \int (4x - 3y^2) dx + h(y) = 2x^2 - 3xy^2 + h(y)$$
$$\frac{\partial g(x,y)}{\partial y} = \frac{\partial}{\partial y} (2x^2 - 3xy^2 + h(y)) = -6xy + h'(y) = Q(x,y)$$

cómo $Q(x, y) = y^2 - 6xy$, resulta $h'(y) = y^2$, entonces $h(y) = \frac{y^3}{3} + k$

Finalmente la función potencial es:

$$g(x,y) = 2x^2 - 3xy^2 + \frac{y^3}{3} + k$$

Se calculará la integral de línea desde el extremo inicial de la curva dada, esto es,

 $\vec{\alpha}(0) = (1,0) = A$ hasta el extremo final, es decir, $\vec{\alpha}(\pi/2) = (0,1) = B$.

$$\int_{(1,\overline{0}),(\overline{0},1)} P(x,y) \, dx + Q(x,y) \, dy = g(0,1) - g(1,0) = \frac{1}{3} - 2 = -\frac{5}{3}$$

cómo el resultado obtenido es negativo, la curva dada debe recorrerse desde (0,1) hasta (1,0), es decir, en sentido contrario al de la parametrización dada.