- ©Jan Schmidt 2011
 Katedra číslicového návrhu
 Fakulta informačních technologií
 České vysoké učení technické v Praze
- Zimní semestr 2013/14

MI-PAA 3. Třídy P a NP

- Model výpočtu: Turingův stroj
- · Rozhodovací problémy: třídy P a NP

Složitost problémů

problémy neúnosné nadpolynomiální, tj. nadpolynomiálně velký stavový prostor ani to ne

únosné – polynomiální

P

existuje únosně dlouhá cesta prostorem konfigurací k řešení – když víme kudy jít

P problémy: vždycky víme kudy jít ⇒ ⇒ jsou NP NP

... měření složitosti

BI-ZDM 0

MI-PAA 1

- Jak měřit velikost instance?
 - hrubá míra: počet prvků instance (uzlů, čísel, prvků množiny)
 - jemná míra: počet bitů, nutných k zakódování instance
- · Jak měřit čas výpočtu?
 - počet "typických operací"
 - počet kroků jednotného výpočetního modelu

P

VÝPOČETNÍ MODELY A TŘÍDA P

Turingův stroj

BI-AAG 13

Turingův stroj

· Program:

- množina Γ symbolů pásky, symbol $b \in \Gamma$
- $\Sigma \subset \Gamma$ množina vstupních symbolů, $b \notin \Sigma$
- množina stavů Q, počáteční stav $q_0 \in Q$, koncové stavy $q_{\text{ANO}}, q_{\text{NE}} \in Q$
- přechodová funkce δ: $(Q-\{q_{ANO}, q_{NE}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{-1, +1\}$
- · Inicializace: stav q_0 , políčko 1 pásky
- · Konec: $q_{ANO, q_{NE}}$
- Výpočet: $(q \in Q, s \in \Gamma) \rightarrow (q', s', \Delta)$

stav čtený symbol nový stav zapsaný symbol

pohyb pásky

Řešení problému deterministickým Turingovým strojem BI-AAG 13

- · Definice: řešení problému Turingovým strojem
- Program M pro deterministický Turingův stroj řeší rozhodovací problém Π, jestliže se výpočet zastaví po konečném počtu kroků pro každou instanci problému Π.
- Program M pro deterministický Turingův stroj řeší rozhodovací problém Π v čase t, jestliže se výpočet zastaví po t krocích pro každou instanci problému Π.
- · Program *M* pro deterministický Turingův stroj <u>řeší</u> rozhodovací problém Π s pamětí *m*, jestliže počet použitých políček je nejvýše *m* pro každou instanci problému Π.

Kódování instance

- Vstup Turingova stroje:
 řetěz q* symbolů q∈Γ
- Výstup: "ano", jestliže q* kóduje instanci problému, která má řešení
- · ... lze mluvit o P-jazycích, NP-jazycích, jazyce TSP, jazyce SAT ...
- · abeceda / nezávisí na instanci

- MI-PAA 1
- způsob kódování instance neovlivní čas výpočtu více než polynomiálně
- · je možné použít nějakého binárního kódování
- → problém je podmnožina {0,1}*
 (charakterizován podmnožinou) {0,1}*

Příklad: kódování grafu G=(V, E)

|X| ... počet prvků množiny X

- matice sousednosti:
 |V|² bitů
- incidenční matice: $|V||E| = O(|V|^3)$ bitů
- seznam hran jako dvojic indexů uzlů: $O(|E|\log |V|) = O(|V|^2 \log |V|)$ bitů
- schválnost patologický případ matice sousednosti a za ní 2ⁿ nul

Třída P

Definice: třída P

Rozhodovací problém <u>patří do třídy P</u>, jestliže pro něj existuje program pro deterministický Turingův stroj, který jej řeší v čase $O(n^k)$, kde n je velikost instance a k konečné číslo.

PSPACE:

v paměti $O(n^k)$, kde n je velikost instance a k konečné číslo.

• EXPTIME:

v čase $O(2^{P(n)})$, kde P(n) je polynom ve velikosti instance n.

NON-DETERMINISTICALLY POLYNOMIAL

NP

NEDETERMINISTICKY POLYNOMIÁLNÍ

Nedeterministický Turingův stroj

MI-CPX 3

- Program: ...přechodová <u>relace</u> $\delta \subset (Q-\{q_{ANO}, q_{NE}\}) \times \Gamma \times Q \times \Gamma \times \{-1, +1\}$
- · Výpočet: $(q \in Q, s \in \Gamma) \rightarrow \{(q', s', \Delta)\}$
- Představa: v každém kroku se stroj naklonuje a každá kopie vykoná jeden konkrétní možný krok
- Představa: jedna z kopií vykoná onu únosně dlouhou cestu stavovým prostorem, pokud tato cesta existuje, tj. pokud instance má řešení
- Jiná možnost: v každém kroku si vybereme jednu možnost, náhodou je to vždycky ta "správná"

Řešení problému **ne**deterministickým Turingovým strojem

 Definice: řešení problému nedeterministickým Turingovým strojem

Nechť Π_{ANO} je množina instancí problému Π , které mají výstup ANO. Program M pro nedeterministický Turingův stroj <u>řeší rozhodovací problém Π v čase t, jestliže se výpočet zastaví po t krocích pro každou instanci $I \in \Pi_{\text{ANO}}$ problému Π .</u>

Vlastnosti

- Nic se neříká o instancích Π_{NE}. Pokud hledáme únosně dlouhou cestu k řešení, na Π_{NE} nemá význam.
- Věta
 (výpočetní mohutnost nedeterminismu):
 Jestliže nedeterministický Turingův stroj řeší problém Π v čase T(n),
 pak deterministický Turingův stroj řeší Π v čase 2^{O(T(n))}.

Třída NP

- Definice: třída NP
 Rozhodovací problém Π patří do třídy NP, jestliže pro něj existuje program pro nedeterministický Turingův stroj, který každou instanci
 I∈ Π_{ANO} problému Π řeší v čase O(n^k), kde n je délka vstupních dat a k konečné číslo.
- Definice: třída NP Rozhodovací problém Π patří do třídy NP, jestliže pro každou instanci I∈ Π_{ANO} problému existuje konfigurace Y taková, že kontrola, zda Y je řešením, patří do P. V této souvislosti nazýváme Y certifikátem.

omezující podmínky lze vyhodnotit v polynomiálním čase

Příklad: Hamiltonova kružnice v grafu (HC), nedeterministický algoritmus

- 1. Nechť podgraf G' = (V', E') je tvořen libovolným uzlem V původního grafu G = (V, E).
- V každém kroku, nechť každá "kopie" algoritmu přidá jednu (různou) hranu e ∈ E-E', e = (u,v) takovou, že u ∈ V', v ∉ V', stupeň u=1 uzel v.
- 3. Není-li to možné, příslušná "kopie" končí.
- 4. Jestliže přidaná hrana utvoří z G'
 - 1. kružnici kratší než |V|, příslušná "kopie" končí.
 - 2. kružnici délky | V|, algoritmus vydá výstup "ano".

Nedeterministický algoritmus, poznámky

- Jestliže graf obsahuje Hamiltonovu kružnici, po |V | krocích je nalezena.
- Existuje nedeterministický algoritmus řešící problém HC ⇒ HC patří do NP
- V tomto případě máme štěstí pokud Hamiltonovu kružnici nenajdeme po |V| krocích, pak neexistuje.
 Obecně tomu tak není

Nedeterministický Turingův stroj – představa, která vychází z kontroly řešení

- nejjednodušší případ "stroje s orákulem"
- obecně: když mám pomocný prostředek nebo podprogram určité výkonnosti, jaká složitost zbývá?

Příklad: Hamiltonova kružnice v grafu – polynomiální kontrola

- Konfigurace: podgraf G' = (V', E') původního grafu G=(V,E).
- Certifikát: podgraf G' = (V', E'), o kterém se tvrdí, že je to Hamiltonova kružnice
- · Kontrola:
 - | **V**| uzlů ... **O**(| **V** |)
 - E'⊂ E ... O(|V|)
 - žádný uzel dvakrát (|V| čítačů) ... O(|V|)
- Existuje deterministický algoritmus kontrolující certifikát HC

 HC patří do NP

Vztah tříd P a NP

funkce je zvláštním případem relace

deterministický automat je zvláštním případem nedeterministického automatu

deterministický
Turingův stroj je
zvláštním případem
nedeterministického
Turingova stroje

 $P \subseteq NP$

instance *l∈ Π_{ANO}* jsou podmnožinou všech instancí

Vztah tříd P a NP

- možná, že P = NP:
 na každý NP-problém existuje
 polynomiální algoritmus,
 ale my o něm nevíme
- ale jsou příznaky, že P⊂NP
- jeden z hlavních příznaků: viz příště

Když trochu "otočíme" NP problém...

Je dán graf G=(V,E). Je tento graf <u>prost</u> Hamitonových kružnic?

Je dána Booleovská formule F(X) n proměnných $X = (x_1, x_2, ... x_n)$. Je tato formule <u>nesplnitelná</u>?

Příklad:

 $F(X) = 1 \dots \text{ vstup } X \text{ způsobuje}$ chybnou funkci programu $\forall X, F(X) = 0 \dots \text{ mám pokoj}$

NP nefunguje! Kde mám certifikát u instancí Π_{ANO} ?

Komplement: co je to "otočit" problém, třídu

- Připomeneme: instance je charakterizována řetězem q^* symbolů $q \in \Gamma$, kde Γ je například $\{0,1\}$
- Problém Π je charakterizován množinou řetězů, které kódují instance s výstupem ANO, tedy podmnožinou množiny $\{q^*\}$.
- Problém komplementární k problému Π je charakterizován doplňkem této podmnožiny do $\{q^*\}$.
- · Doplněk vytvoříme De Mogranovým pravidlem
- Ke každé třídě X problémů lze zkonstruovat třídu co-X jako množinu problémů komplementárních ke všem problémům z X.

...dostaneme...

- NP problém: $\exists Y, R(I, Y)$
- co-NP problém: ∀Y, R'(I, Y)

komplement třídy NP: **třída co-NP**

- *l ...* instance
- Y ... konfigurace
- R(I, Y) ... omezující podmínky polynomiální složitost
- R'(I, Y) ... jejich komplement polynomiální složitost

Je dán graf G=(V,E). Platí pro každou kružnici Y, že prochází méně než |V| uzly?

Je dána Booleovská formule F(X) n proměnných $X = (x_1, x_2, ... x_n)$. Platí pro každé ohodnocení Y proměnných X, F(Y) = 0?

Problémy mimo NP: co-NP

- NP problémy:
 - Y je krátký svědek odpovědi ANO (certifikát)
 - Krátkého svědka odpovědi NE nemáme
- co-NP problémy:
 - Y, pro které neplatí R(I, Y), je krátkým svědkem odpovědi NE (protipříklad)
 - Krátkého svědka odpovědi ANO nemáme
- Svědkové odpovědi ANO
 - NP: ∃-certifikát (krátký)
 - co-NP: ∀-certifikát (dlouhý, ale krátký pro každou konfiguraci)
 - Nemůžeme-li žádat krátké vyhodnocení celého certifikátu, můžeme žádat aspoň krátké vyhodnocení pro každou konfiguraci

Třída P, NP, co-NP

- pokud je v P ... radši na to nemyslet
- pokud patří k nejtěžším v NP ... pak P=NP

Problémy potenciálně horší než NP

- · SAT: Booleovská formule F(X)n proměnných $X = (x_1, x_2, ..., x_n)$.
- $\exists Y, F(Y) = 1?$

QBF₂ nebo QSAT₂ Quantified Boolean Formula

- · Booleovská formule $F(X_1, X_2)$ 2n proměnných $X_1 = (x_1, x_2, \dots x_n)$, $X_2 = (x_{n+1}, x_{n+2}, \dots x_{2n})$
- $\exists Y_1, \forall Y_2, F(Y_1, Y_2) = 1$?

problém kontroly je v **co-NP** Dáno řešení Y_1 , kontrola: platí, že $\forall Y_2$, $F(Y_1, Y_2) = 1$?

Polynomiální hierarchie

obvykle se polynomiální hierarchie zavádí pomocí Turingových strojů s orákulem

> třída problémů, jejichž kontrola leží ve třídě komplementů předchozí třídy

> > třída problémů, jejichž kontrola leží v P a jejich komplementů

MI-CPX 6

třída P

pokud P ≠ NP a pokud polynomiální hierarchie někde nekončí

Problémy v Σ_k^P a v Π_k^P

- $\exists Y_1 \ \forall Y_2 \ \exists Y_3 \ \dots$, $F(Y_1, Y_2, Y_3, \dots) = 1$ je v Σ_k^P $\forall Y_1 \ \exists Y_2 \ \forall Y_3 \ \dots$, $F(Y_1, Y_2, Y_3, \dots) = 1$ je v Π_k^P
- · ... a nejsou níže, protože jsou v té třídě nejtěžší
- · ... a jak se to zjistí, příště

Čemu teď rozumíme

Modelování výpočtu deterministickým a nedeterministickým Turingovým strojem.

Význam kódování vstupní instance.

Vztah výpočetní mohutnosti determinismu a nedeterminismu.

Význam a definice třídy P

Význam třídy NP; její definice pomocí nedeterminismu a pomocí kontroly certifikátu.

Komplementace NP problému, význam certifikátu, význam a definice třídy co-NP.

Základní podoba polynomiální hierarchie.

Jaké pojmy k tomu potřebujeme

Turingův stroj deterministický, nedeterministický komplementární problém, třída certifikát, ∃-certifikát, ∀-certifikát třídy: P, NP, co-NP, PSPACE, EXPTIME, třídy polynomiální hierarchie

Třídy rozhodovacích problémů třída EXPTIME třída PSPACE deterministický polynomiální čas model výpočtú třída P kontrola certifikátu kódování polynomiální čas rozhodovací třída NP problémy komplement problému třída co-NP nedeterministický model výpočtu polynomiální kontrola hierarchie certifikátu

Třídy rozhodovacích problémů třída EXPTIME třída PSPACE deterministický polynomiální čas model výpočtú třída P kontrola certifikátu kódování polynomiální čas rozhodovací třída NP problémy komplement problému třída co-NP nedeterministický model výpočtu polynomiální kontrola hierarchie certifikátu 37

Třídy rozhodovacích problémů třída EXPTIME třída PSPACE deterministický polynomiální čas model výpočtú třída P kontrola certifikátu kódování polynomiální čas rozhodovací třída NP problémy komplement problému třída co-NP nedeterministický model výpočtu polynomiální kontrola hierarchie certifikátu