

SÍLABO MECÁNICA DE MATERIALES

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-II1.3 Código de la asignatura : 09139405050

1.4Ciclo: V1.5Créditos: 051.6Horas semanales totales: 10

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 6 (T=4, P=0, L=2)

1.6.2. Horas no lectivas : 4

1.7 Condición de la asignatura : Obligatoria

1.8 Requisito (s) : 09008604040 Materiales de Ingeniería

09017703030 Diseño Industrial por Computador

1.9 Docente : Ing. Luis Carlos A. Rojas Torres

II. SUMILLA

El curso de Mecánica de Materiales es un curso teórico, práctico que busca unir los campos de la estática (ecuaciones de equilibrio) y la resistencia de materiales (ecuaciones constitutivas). El propósito del curso es determinar las fuerzas actuantes y los esfuerzos en el interior de los elementos y como estos dependiendo del tipo de material llevan deformaciones que en los casos más críticos podrían provocar la falla.

El desarrollo del curso comprende las siguientes unidades:

I. Leyes de Newton aplicadas a partículas y a cuerpo rígido.

II. Introducción al análisis estructural.

III. Esfuerzo y deformación.

IV. Mecánica de los sólidos deformables.

V. Diseño de elementos estructurales.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Expresar la fuerza y la posición en forma vectorial cartesiana y explicar cómo determinar la magnitud y el sentido del vector.
- Comprender el concepto de diagrama de cuerpo libre para una partícula.
- Mostrar cómo resolver problemas de equilibrio de partículas usando las ecuaciones de equilibrio.
- Analizar y calcular el momento de una fuerza en un espacio bi y tridimensional.
- Utilizar un método para definir el momento de una fuerza con respecto a un eje específico.
- Determinar las resultantes de sistemas de fuerzas no concurrentes

3.2 Componentes

Capacidades

- o Integra y valora los conceptos de la matemática vectorial a la solución de problemas reales.
- Utiliza software para la solución de sistemas de ecuaciones.
- o Puede interpretar estructuras cotidianas como puentes y andamios.
- Entiende la importancia de diferentes modelos o abstracciones para resolver problemas e. g. concepto de partícula y cuerpo libre.

Contenidos actitudinales

- o Aplica los conocimientos impartidos en clase en el análisis de estructuras en el laboratorio.
- Aplica conceptos del cálculo integral para obtener propiedades de diferentes estructuras.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : LEYES DE NEWTON APLICADAS A PARTICULAS Y A CUERPO RÍGIDO

CAPACIDAD: Integra y valora los conceptos de la matemática vectorial a la solución de problemas reales

SEMANA		CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS
				L	T.I.
1	Primera sesión: Matemática vectorial: definición de vectores y representación gráfica. Vector unitario. Vector opuesto. Suma, Resta, Producto Escalar y Vectorial. Segunda Sesión: Representación de una fuerza mediante vectores. Fuerzas y su línea de acción. Fuerzas equivalentes Equilibrio de una partícula en el espacio. Ejercicios de Aplicación	Desarrolla los conceptos básicos y necesarios para el buen desempeño del curso. Entender los diferentes modelos jerárquicos que existen para un mismo problema. Aplicar el concepto de partícula y cuando debe ser utilizado. Aplica para 2 y 3 dimensiones las leyes del equilibrio.	Lectivas (L): Introducción al tema - 2 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h	6	4
			Trabajo Independiente (T.I): Resolución tareas - 2h Trabajo Aplicativo - 2 h		
2	Primera sesión: Momento de una fuerza (formulación escalar y vectorial) El principio de momentos. Momento de una fuerza sobre un eje. Segunda sesión: Ejercicios de Aplicación.	Significado matemático y físico de los productos vectorial y escalar. Aplicación del producto vectorial para el cálculo de momento en dos y tres dimensiones.	Lectivas (L): Desarrollo del tema – 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
3	Primera sesión: Momento de un Par. Simplificación de un sistema fuerza-momento. Reducción de una carga distribuida a fuerzas y momentos. Segunda sesión: Ejercicios de Aplicación.	Comprensión del uso de ejes para transmisión de momentos. Capacidad para simplificar sistemas de fuerzas en varias dimensiones.	Lectivas (L): Desarrollo del tema – 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
4	Primera sesión: Condiciones para el equilibrio del cuerpo rígido. Diagramas de Cuerpo Libre (D.C.L). Condiciones de Equilibrio. Miembros de 2 y 3 fuerzas. Segunda sesión: Ejercicios de Aplicación.	Reconoce sistemas similares de fuerzas y momentos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD II: INTRODUCCIÓN AL ANÁLISIS ESTRUCTURAL. ESFUERZO Y DEFORMACIÓN.

CAPACIDAD: Utiliza software para la solución de sistemas de ecuaciones.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.
5	Primera sesión: Armaduras simples. El método de los nodos. Elementos de fuerza cero. El método de las secciones. Segunda sesión: Ejercicios de Aplicación.	Discierne cuando utilizar el modelo partícula y cuerpo rigido para diferentes problemas. Reconoce las diferentes condiciones a las que se encuentra un cuerpo en dos dimensiones. Analiza el equilibrio de fuerzas y momentos en cuerpos bidimensionales.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
6	Primera sesión: Centro Gravedad y Centroide de un cuerpo. Momento de Inercia de Áreas. Teorema de los Ejes Paralelos. Segunda sesión: Ejercicios de Aplicación.	Reconoce casos especiales o particulares en estructuras. Reconoce las diferentes condiciones a las que se encuentra un cuerpo en tres dimensiones. Analiza el equilibrio de fuerzas y momentos en cuerpos tridimensionales.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	- 6	4
7	Primera sesión: Resultantes internas debido a cargas. Esfuerzo, Esfuerzo normal en una barra cargada axialmente, Esfuerzo cortante promedio. Diseño orientado a máximo esfuerzo permitido. Desplazamiento y Deformaciones. Curvas esfuerzo deformación típicas. Segunda sesión: Ejercicios de Aplicación.	Calcula las propiedades geométricas de cuerpos bidimensionales. Aplica los conocimientos previos para calcular carga distribuida y punto de aplicación en vigas.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	_ 6	4
8	Primera sesión Examen parcial Segunda sesión Revisión del examen parcial				
9	Primera sesión Principio de Saint-Venant's. Deformación elástica de un miembro cargado axialmente. Principio de Superposición. Miembros estáticamente indeterminados. Esfuerzos térmicos. Segunda sesión Ejercicios de Aplicación.	Calcula las propiedades geométricas de cuerpos bidimensionales. Aplica los conocimientos previos para calcular carga distribuida y punto de aplicación en vigas.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	- 6	4

UNIDAD III: MECÁNICA DE LOS SÓLIDOS DEFORMABLES.

CAPACIDAD: Puede interpretar estructuras cotidianas como puentes y andamios.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
10	Primera sesión: Deformación torcional de un eje circular. La fórmula de torsión. Transmisión de potencia. Ángulo de giro. Miembros cargados por torsión estáticamente	Calcula las propiedades geométricas de cuerpos tridimensionales. Aplica los conceptos de carga distribuida para el calculo de fuerzas debido a la presión del agua.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h	6	4
10	indeterminados. Segunda sesión: Ejercicios de Aplicación.		Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
11	Primera sesión: Diagramas de fuerza cortante y momento flector. Métodos analítico y gráfico Segunda sesión: Ejercicios de Aplicación.	Aplica diferentes métodos de análisis para diferentes tipos de cargas aplicadas a estructuras. Aplica métodos de solución para sistemas de ecuaciones aplicado a estructuras.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
12	Primera sesión: Flexión de miembros rectos. La fórmula de la deflexión. Flexión de elementos curvos. Segunda sesión: Ejercicios de Aplicación.	Capacidad de diseñar sus propios mecanismos para diferentes necesidades.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
13	Primera sesión: La curva elástica. Pendiente y desplazamiento vertical mediante integración. Método de la superposición. Segunda sesión: Ejercicios de Aplicación.	Calcula y proyecta vigas para resistir la carga transversal requerida.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD IV: DISEÑO DE ELEMENTOS ESTRUCTURALES.

CAPACIDAD: Entiende la importancia de diferentes modelos o abstracciones para resolver problemas e. g. concepto de partícula y cuerpo libre.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS	
DEWIANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	L	T.I
11	Primera sesión: Transformaciones de esfuerzo plano. Ecuaciones generales de transformacion de esfuerzo plano. Esfuerzo por carga transversal. Esfuerzos principales y Esfuerzo cortante máximo. Segunda sesión: Ejercicios de Aplicación.	Teniendo ya los conceptos teóricos de la mecánica aplicada, puede mediante software facilitar el proceso de análisis mediante la automatización de cálculos repetitivos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h	_ 6	4
14			Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
	Primera sesión: Bases para el diseño de ejes. Bases para el diseño de vigas. Segunda sesión: Ejercicios de Aplicación.	Teniendo ya los conceptos teóricos de la mecánica aplicada, puede mediante software facilitar el proceso de análisis mediante la automatización de cálculos repetitivos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h	6	4
15			Trabajo Independiente (T.I):Resolución tareas - 2 hTrabajo Aplicativo - 2 h		
16	Examen final				
17	Entrega de promedios finales y acta del curso.				

V. ESTRATEGIAS METODOLÓGICAS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones, videos de estructuras, libros en formato digital.

Medios: uso de la red social como foro de preguntas y solución de dudas durante las horas no lectivas.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final se obtiene del modo siguiente:

PF = (PE+EP+EF)/3 PE = 0.6*PPR+0.4*PL PPR = (P1+P2)/2 PL = (Lb1+Lb2+Lb3)/3

Donde:

PF = Promedio Final

EP = Examen Parcial

EF = Examen Final

PE = Promedio de Evaluaciones = 0.6*PPR + 0.4*PL

PPR = Promedio de Practicas = (P1+P2)/2

PL = Promedio de ensayos de laboratorios = (Lb1 + Lb2 + Lb3)/3

VIII. FUENTES DE CONSULTA

7.1 Bibliográficas

- · Hibbeler, R. C. (2014): Estática. 13ava Edición: Pearson.
- Beer, F., Johnston, E. & Eisenberg, E. (2013). Mecánica Vectorial para Ingenieros Estática. 10ma.ed. McGraw-Hill. México, D.F.
- · Hibbeler, R. C. (2017) Mecanica de Materiales. 9na Edición: Pearson.
- · Beer, F., Johnston, R. & DeWolf, J. (2013). Mecánica de Materiales. 6ta. ed. México, D.F.: McGraw-Hill.
- Beer, F., Johnston, R. & DeWolf, J. (2016). Mechanics of Materials. 7th. ed. EEUU, N.Y.: McGraw-Hill.

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	R
(g)	Habilidad para comunicarse con efectividad	R
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	R
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	K
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K