Fundamental Limits of Coded Caching: From Uncoded Prefetching to Coded Prefetching

Kai Zhang and Chao Tian

Texas A&M University

ISIT 2018

Caching and Its Applications

A natural data management strategy

- Prefetching data to local/fast memory space;
- Single user setting, e.g. RAM in computers, on-CPU caches;
- Multiple user setting, e.g. networked system.

Caching and Its Applications

A natural data management strategy

- Prefetching data to local/fast memory space;
- Single user setting, e.g. RAM in computers, on-CPU caches;
- Multiple user setting, e.g. networked system.

Caching and Its Applications

A natural data management strategy

- Prefetching data to local/fast memory space;
- Single user setting, e.g. RAM in computers, on-CPU caches;
- Multiple user setting, e.g. networked system.

An Information-theoretic Formulation

Proposed by Maddah-Ali & Niesen¹

- *N* files of same size, *K* users, each with local cache of size *M*;
- Prefetching phase: users fill cache before knowing requests;
- Delivery phase: server multicasts information.

¹Maddah-Ali & Niesen, "Fundamental limits of caching," TIT-14.

An Information-theoretic Formulation

Proposed by Maddah-Ali & Niesen¹

- N files of same size, K users, each with local cache of size M;
- Prefetching phase: users fill cache before knowing requests;
- Delivery phase: server multicasts information.

¹Maddah-Ali & Niesen, "Fundamental limits of caching," TIT-14.

Maddah-Ali-Niesen scheme: uncoded prefetching

- Partition each file into $\binom{K}{t}$ segments;
- Each user allocated $\binom{K-1}{t-1}$ uncoded segments.

Example ((N, K)	= (3,	4), t =	= 2:					
User 1	A ₁₂	A ₁₃	A_{14}	B_{12}	B_{13}	B_{14}	C_{12}	C_{13}	C_{14}
User 2	A_{12}	A_{23}	A_{24}	B_{12}	B_{23}	B_{24}	C_{12}	C_{23}	C_{24}
User 3	A_{13}	A_{23}	A ₃₄	B_{13}	B_{23}	B_{34}	C_{13}	C_{23}	C_{34}
User 4	A_{14}	A_{24}	A ₃₄	B_{14}	B_{24}	B_{34}	C_{14}	C_{24}	C_{34}

Maddah-Ali-Niesen scheme: uncoded prefetching

- Partition each file into $\binom{K}{t}$ segments;
- Each user allocated $\binom{K-1}{t-1}$ uncoded segments.

Example	(<i>N</i> ,	K) =	= (3,4), =	t = 2:
---------	--------------	------	------------	--------

User 1	A ₁₂	A_{13}	A ₁₄	B_{12}	B ₁₃	B ₁₄	C ₁₂	C ₁₃	C_{14}
User 2	A ₁₂	A_{23}	A_{24}	B_{12}	B_{23}	B ₂₄	C_{12}	C_{23}	C_{24}
User 3	A ₁₃	A_{23}	A ₃₄	B_{13}	B_{23}	B ₃₄	C_{13}	C_{23}	C_{34}
User 4	A ₁₄	A_{24}	A ₃₄	B ₁₄	B_{24}	B ₃₄	C_{14}	C_{24}	C_{34}

Delivery phase: multicast information to fulfill all requests

- Enumerate all (t+1)-user set \mathcal{B} ;
- Each set \mathcal{B} determines a transmission;
- Each transmission contains only one missing symbol for a user.

Example
$$(N, K) = (3, 4), t = 2$$
, demand (A, A, B, C)

$$\mathcal{B} = \{1, 2, 3\} : A_{23} + A_{13} + B_{12};$$

$$\mathcal{B} = \{1, 2, 4\} : A_{24} + A_{14} + C_{12};$$

$$\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13};$$

$$\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23}.$$

¹Yu et al. "The exact rate-memory tradeoff for caching with uncoded prefetching," TIT-17.

Delivery phase: multicast information to fulfill all requests

- Enumerate all (t+1)-user set \mathcal{B} ;
- Each set B determines a transmission;
- Each transmission contains only one missing symbol for a user.

Example
$$(N, K) = (3, 4), t = 2$$
, demand (A, A, B, C)

$$\mathcal{B} = \{1, 2, 3\} : A_{23} + A_{13} + B_{12};$$

$$\mathcal{B} = \{1, 2, 4\} : A_{24} + A_{14} + C_{12};$$

$$\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13};$$

$$\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23}.$$

¹Yu et al. "The exact rate-memory tradeoff for caching with uncoded prefetching," TIT-17.

Delivery phase: multicast information to fulfill all requests

- Enumerate all (t+1)-user set \mathcal{B} ;
- Each set \mathcal{B} determines a transmission;
- Each transmission contains only one missing symbol for a user.

Example
$$(N, K) = (3, 4), t = 2$$
, demand (A, A, B, C)

$$\mathcal{B} = \{1, 2, 3\} : A_{23} + A_{13} + B_{12};$$

$$\mathcal{B} = \{1, 2, 4\} : A_{24} + A_{14} + C_{12};$$

$$\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13};$$

$$\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23}.$$

Yu et al. "The exact rate-memory tradeoff for caching with uncoded prefetching," TIT-17.

Delivery phase: multicast information to fulfill all requests

- Enumerate all (t+1)-user set \mathcal{B} ;
- Each set \mathcal{B} determines a transmission;
- Each transmission contains only one missing symbol for a user.

Example
$$(N, K) = (3, 4), t = 2$$
, demand (A, A, B, C)

$$\mathcal{B} = \{1, 2, 3\} : A_{23} + A_{13} + B_{12};$$

$$\mathcal{B} = \{1, 2, 4\} : A_{24} + A_{14} + C_{12};$$

$$\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13};$$

$$\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23}.$$

 $^{^{}m I}$ Yu et al. "The exact rate-memory tradeoff for caching with uncoded prefetching," TIT-17.

Delivery phase: multicast information to fulfill all requests

- Enumerate all (t+1)-user set \mathcal{B} ;
- Each set \mathcal{B} determines a transmission;
- Each transmission contains only one missing symbol for a user.

Example
$$(N, K) = (3, 4), t = 2$$
, demand (A, A, B, C)

$$\mathcal{B} = \{1, 2, 3\} : A_{23} + A_{13} + B_{12};$$

$$\mathcal{B} = \{1, 2, 4\} : A_{24} + A_{14} + C_{12};$$

$$\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13};$$

$$\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23}.$$

¹Yu et al. "The exact rate-memory tradeoff for caching with uncoded prefetching," TIT-17.

T. and Chen¹ proposed a scheme using coded prefetching

- Partition each file into $\binom{K}{t}$ segments;
- User encodes allocated file segments using rank metric code;
- The parity symbols are stored.

Delivery phase uses MDS code

- Cached contents ⊥ delivered transmissions;
- Each transmission contains segments from only one file.

Example:
$$(N, K) = (3, 4)$$
, demand = (A,A,B,C) , transmits:

$$A_{34},\ B_{12},\ B_{14},\ B_{24},\ C_{12},\ C_{13},\ C_{23},\ A_{13}+A_{23},\ A_{14}+A_{24}$$

¹T.&Chen, "Caching and delivery via interference elimination," TIT-18.

T. and Chen¹ proposed a scheme using coded prefetching

- Partition each file into $\binom{K}{t}$ segments;
- User encodes allocated file segments using rank metric code;
- The parity symbols are stored.

Delivery phase uses MDS code

- Cached contents ⊥ delivered transmissions;
- Each transmission contains segments from only one file.

Example: (N, K) = (3, 4), demand = (A,A,B,C), transmits:

$$A_{34},\ B_{12},\ B_{14},\ B_{24},\ C_{12},\ C_{13},\ C_{23},\ A_{13}+A_{23},\ A_{14}+A_{24}$$

¹T.&Chen, "Caching and delivery via interference elimination," TIT-18.

T. and Chen¹ proposed a scheme using coded prefetching

- Partition each file into $\binom{K}{t}$ segments;
- User encodes allocated file segments using rank metric code;
- The parity symbols are stored.

Delivery phase uses MDS code

- Cached contents ⊥ delivered transmissions;
- Each transmission contains segments from only one file.

Example: (N, K) = (3, 4), demand = (A,A,B,C), transmits:

 $A_{34},\ B_{12},\ B_{14},\ B_{24},\ C_{12},\ C_{13},\ C_{23},\ A_{13}+A_{23},\ A_{14}+A_{24}$

¹T.&Chen, "Caching and delivery via interference elimination," TIT-18.

T. and Chen¹ proposed a scheme using coded prefetching

- Partition each file into $\binom{K}{t}$ segments;
- User encodes allocated file segments using rank metric code;
- The parity symbols are stored.

Delivery phase uses MDS code

- Cached contents ⊥ delivered transmissions;
- Each transmission contains segments from only one file.

Example: (N, K) = (3, 4), demand = (A,A,B,C), transmits:

$$A_{34},\ B_{12},\ B_{14},\ B_{24},\ C_{12},\ C_{13},\ C_{23},\ A_{13}+A_{23},\ A_{14}+A_{24}$$

¹T.&Chen, "Caching and delivery via interference elimination," TIT-18.

Two Quite Different Schemes

Uncode prefetching:

- Binary code
- Simple combinatorics
- Better at high memory regime

Coded prefetching:

- Non-binary code
- MDS and rank metric codes
- Better at low memory regime

Are there any connections?

Two Quite Different Schemes

Uncode prefetching:

- Binary code
- Simple combinatorics
- Better at high memory regime

Coded prefetching:

- Non-binary code
- MDS and rank metric codes
- Better at low memory regime

Are there any connections?

A Hidden Connection

Putting them side-by-side

Maddah-Ali Niesen scheme transmits 4 symbols:

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34} + B_{14} + C_{13}, \quad A_{34} + B_{24} + C_{23}$
 $\downarrow \downarrow$

Tian-Chen scheme transmits 9 symbols:

$$A_{23} + A_{13}$$
, B_{12} , $A_{24} + A_{14}$, C_{12}
 A_{34} , B_{14} , C_{13} , B_{24} , C_{23}

Question: Will other decomposition give better performance?

A Hidden Connection

Putting them side-by-side

• Maddah-Ali Niesen scheme transmits 4 symbols:

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34} + B_{14} + C_{13}, \quad A_{34} + B_{24} + C_{23}$
 $\downarrow \downarrow$

Tian-Chen scheme transmits 9 symbols:

$$A_{23} + A_{13}$$
, B_{12} , $A_{24} + A_{14}$, C_{12}
 A_{34} , B_{14} , C_{13} , B_{24} , C_{23}

Question: Will other decomposition give better performance?

Yes! A New Scheme for (N, K) = (3, 4)

A partial decomposition scheme (N, K) = (3, 4), t = 2,

Demand (A,A,B,C), transmits

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 A_{34} , $B_{14} + C_{13}$, $B_{24} + C_{23}$

i.e. only the last two transmissions, file A is decomposed out.

Demand (A,A,B,B), transmits

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + B_{12}$$

 $A_{34}, \quad B_{14} + B_{13}, \quad B_{24} + B_{23}$

•

Performance of the New Scheme

• Produces $(M,R) = (\frac{4}{3}, \frac{5}{6})$: a new corner point and optimal.

The General Idea

We know the extremes:

- No decomposition: Maddah-Ali-Niesen's (Yu's) transmissions;
- Full decomposition: Tian-Chen's transmissions.

Partial decomposition of Maddah-Ali-Niesen transmissions:

- No. of transmissions will increase;
- No. of cached linear combinations can decrease (how much?);
- Code design: need to guarantee decodability for all demands.

Question: how to best decompose the transmissions?

The General Idea

We know the extremes:

- No decomposition: Maddah-Ali-Niesen's (Yu's) transmissions;
- Full decomposition: Tian-Chen's transmissions.

Partial decomposition of Maddah-Ali-Niesen transmissions:

- No. of transmissions will increase:
- No. of cached linear combinations can decrease (how much?);
- Code design: need to guarantee decodability for all demands.

Question: how to best decompose the transmissions?

The General Idea

We know the extremes:

- No decomposition: Maddah-Ali-Niesen's (Yu's) transmissions;
- Full decomposition: Tian-Chen's transmissions.

Partial decomposition of Maddah-Ali-Niesen transmissions:

- No. of transmissions will increase;
- No. of cached linear combinations can decrease (how much?);
- Code design: need to guarantee decodability for all demands.

Question: how to best decompose the transmissions?

Transmission Types

Transmission type: a new notion

- Defined as $\boldsymbol{t} = (t_1, \dots, t_N)$;
- t_n : number of users requesting file W_n ;
- Each t is associated with one or more transmissions.

Example:
$$(N, K) = (3, 4), t = 2, \mathbf{d} = (A, A, B, C)$$

$$A_{23} + A_{13} + B_{12}, \quad \mathbf{t} = (2, 1, 0)$$

$$A_{24} + A_{14} + C_{12}, \quad \mathbf{t} = (2, 0, 1)$$

$$A_{34} + B_{14} + C_{13}$$

$$A_{34} + B_{24} + C_{23}$$
 $\mathbf{t} = (1, 1, 1)$

Decomposing a Transmission Type

Transmissions of the same type are decomposed the same way:

Example: Two transmissions of the same type

$$A_{34} + B_{14} + C_{13}, A_{34} + B_{24} + C_{23}.$$

• Full decomposition pattern $\{\{A\},\{B\},\{C\}\}$:

$$A_{34},\ B_{14},\ C_{13};\quad A_{34},\ B_{24},\ C_{23}.$$

• A partial decomposition pattern $\{\{A,C\},\{B\}\}$:

$$A_{34} + C_{13}$$
, B_{14} ; $A_{34} + C_{23}$, B_{24} .

Joint Coding over Multiple Instances

We code across multiple (= r) code instances:

- Each instance is $N\binom{K}{t}$ segments from all files;
- Encoding are done jointly over multiple instances;
- Apply a decomposition pattern on some instances;
- Decoding are done jointly;
- Similar as "time-sharing", but not equivalent.

Benefit: reduce unevenness in users' useful transmission collection.

Joint Coding over Multiple Instances

We code across multiple (= r) code instances:

- Each instance is $N\binom{K}{t}$ segments from all files;
- Encoding are done jointly over multiple instances;
- Apply a decomposition pattern on some instances;
- Decoding are done jointly;
- Similar as "time-sharing", but not equivalent.

Benefit: reduce unevenness in users' useful transmission collection.

Joint Coding over Multiple Instances

We code across multiple (= r) code instances:

- Each instance is $N\binom{K}{t}$ segments from all files;
- Encoding are done jointly over multiple instances;
- Apply a decomposition pattern on some instances;
- Decoding are done jointly;
- Similar as "time-sharing", but not equivalent.

Benefit: reduce unevenness in users' useful transmission collection.

Revisiting the New Code Example

Example
$$(N, K) = (3, 4), t = 2, r = 6, demand d = $(A, A, B, B)$$$

• Pattern-1: on 3 instances, 6 transmissions each

$$\{\{A\}, \{B\}\}: A_{23} + A_{13}, B_{12}; A_{24} + A_{14}, B_{12}; \\ \{\{A\}, \{B\}\}: A_{34}, B_{14} + B_{13}; A_{34}, B_{24} + B_{23}.$$

Pattern-2: on 3 instances, 4 transmissions each

$$\{\{A, B\}\}\ : A_{23} + A_{13} + B_{12}; A_{24} + A_{14} + B_{12}; \\ \{\{A, B\}\}\} : A_{24} + A_{14} + B_{12}; A_{34} + B_{24} + B_{23}.$$

Revisiting the New Code Example

Demand	(A,A,B,C)	(A,A,B,B)		(A, A, A, B)		(A, A, A, A)	
Pattern	1	1	2	1	2	1	2
No. of transmissions	5	4	6	4	6	3	12
No. of Instances	6	3	3	3	3	5	1
Fraction	1	1/2	1/2	1/2	1/2	5/6	1/6

- Coding over r = 6 instances;
- The (M, R) pair $(\frac{4}{3}, \frac{5}{6})$ can be achieved by all demands.

A Linear Program

Compute optimal decomposition patterns by linear programming

$$\begin{split} &\sum_{\text{all } \mathcal{P}_{\boldsymbol{d}}^{(t)}} \boldsymbol{\alpha}_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} = 1, \quad \boldsymbol{d} \in \mathcal{D}, \\ &1 \geq \boldsymbol{\alpha}_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \geq 0, \quad \boldsymbol{d} \in \mathcal{D}, \quad \text{for all } \mathcal{P}_{\boldsymbol{d}}^{(t)}, \\ &\sum_{\text{all } \mathcal{P}_{\boldsymbol{d}}^{(t)}} \boldsymbol{\alpha}_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \boldsymbol{R}_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \leq \boldsymbol{R} \binom{K}{t}, \quad \boldsymbol{d} \in \mathcal{D}, \\ &\sum_{\text{all } \mathcal{P}_{\boldsymbol{d}}^{(t)}} \boldsymbol{\alpha}_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}} \boldsymbol{M}_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)},k} \leq \boldsymbol{M} \binom{K}{t}, \quad \boldsymbol{d} \in \mathcal{D}, k \in [1:K]. \end{split}$$

- Representing combinations of decomposition patterns $\mathcal{P}_{m{d}}^{(t)}$;
- Optimize over the proportions of the decomposition patterns;
- Find the best (M, R) achieved by all demands.

A New Information-Theoretic Inner Bound

A new information-theoretic inner-bound for caching system (N, K) = (4, 8)

Conclusion

Summary of this work

- A single scheme unifying two general classes of schemes;
- Yu scheme and Tian-Chen scheme are two extremes;
- Transmission type plays an important role;
- Performance improvement not large: intermediate M regime.

Future work

- The proposed scheme does not include Gómez-Vilardebó¹'s scheme: a more generalized code may exist?
- Simplify linear programming: identify and remove those "bad" decomposing patterns?

¹ J. Gómez-Vilardebó, "Fundamental limits of caching: Improved bounds with coded prefetching," arXiv:1612.09071. Dec. 2016.

