Data Mining

DATA PREPROCESSING

Prof. Dr. Hikmat Ullah Khan Department of Information Technology

UNIVERSITY OF SARGODAHA

Lesson from Holy Quran

Outline

- Introduction to Data Preprocessing
- Data Quality
- Steps of Data Preprocessing
 - Data cleaning
 - Data integration
 - Data reduction
 - Data transformation

Data Preprocessing

Data Quality

- Measures for data quality:
 - Accuracy: correct or wrong
 - **□ Completeness:** not recorded, unavailable, ...
 - **□ Consistency**: some updated/modified but some not.
 - Timeliness: timely update?
 - Believability: how trustable the data is?
 - Interpretability: how easily data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

■ Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases or files, diverse sources

Data reduction

- Dimensionality reduction
- Data compression

Data transformation

Normalization

Data Cleaning

- Data in the Real World Is Dirty: (More thanks to Social Web)
- Lots of potentially incorrect data, e.g., human or computer error, extraction error
 - incomplete: lacking attribute values,
 - e.g., Occupation="" (missing data)
 - noisy: containing noise, errors
 - e.g., Salary="-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

How to Handle Missing Data?

- Ignore the tuple:
 - usually done when class label is missing
- □ Fill in the missing value manually:
 - tedious + infeasible?
- Fill in it automatically with
 - A global constant : e.g., "unknown", a new class?!
 - The attribute mean
 - The attribute median value

How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - e.g., Bin ages of the students of undergraduate
 - smooth by bin means, smooth by bin median, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem (Name Disambiguation)
 - □ Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - Possible reasons:
 - different representations: Rs vs. US Dollars
 - different scales, e.g., metric vs. British units

Data Reduction Strategies

Data reduction:

- Obtain a reduced representation
- Produces the same (or almost the same)
- Why data reduction?
 - Huge volume (terabytes)
 - Complex data difficult to analysis
 - Time consuming -
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Feature subset selection algorithms
 - Info Gain
 - Principal Components Analysis (PCA)

Data Compression

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values
 s.t. each old value can be identified with one of the new values
- Methods
 - Attribute/feature construction
 - <u>Derived attributes</u> constructed from the given ones
 - E.g. Age as new attribute instead of Date of Birth
 - Normalization:
 - Scaled to fall within a smaller, specified range
 - min-max normalization

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

■ E.g., Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,600 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

