Bài tập Điều khiển quá trình Chủ đề Mô hình hóa lý thuyết

Sưu tầm: Thi Minh Nhựt Email: thiminhnhut@gmail.com

Thời gian: Ngày 25 tháng 9 năm 2017

1 Bài tập 1

Giả thiết Cho hệ thống như hình 1: Bình chứa thứ nhất có tiết diện là A_1 và bình chứa thứ hai có tiết diện là A_2 . Các lưu lượng ra Q_b và Q_c được xác định như sau: $Q_b = C_{db}a_b\sqrt{2g(H_1 - H_2)}$ và $Q_c = C_{dc}a_c\sqrt{2gH_2}$

Hình 1: Hệ thống 2 bình chứa

Yêu cầu

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
- b. Viết phương trình mô tả quan hệ giữa các biến.
- c. Tuyến tính hóa mô hình tại điểm làm việc cân bằng.
- d. Tìm hàm truyền $G(s) = \frac{H_2(s)}{Q_i(s)}$

Bài giải

- a. Xác đinh các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
 - Biến vào: Q_i, Q_b, Q_c .
 - Biến ra: H_1, H_2 .
 - Biến điều khiển: Q_b, Q_c .
 - Biến cần điều khiển: H_1, H_2 .
 - Biến nhiễu: Q_i .
- b. Viết phương trình mô tả quan hệ giữa các biến.
 - Phương trình cho bình chứa 1:
 - Bình chứa 1:

$$\frac{dV_1}{dt} = Q_i - Q_b \Longleftrightarrow \frac{d(A_1 H_1)}{dt} = Q_i - Q_b \Longleftrightarrow \frac{dH_1}{dt} = \frac{1}{A_1} (Q_i - Q_b) \tag{1}$$

– Thay $Q_b = C_{db}a_b\sqrt{2g(H_1 - H_2)}$ vào (1), ta có:

$$\frac{dH_1}{dt} = \frac{1}{A_1} \left(Q_i - Q_b \right) = \frac{1}{A_1} \left[Q_i - C_{db} a_b \sqrt{2g(H_1 - H_2)} \right] \tag{2}$$

- Phương trình cho bình chứa 2:
 - Bình chứa 2:

$$\frac{dV_2}{dt} = Q_b - Q_c \Longleftrightarrow \frac{d(A_2 H_2)}{dt} = Q_b - Q_c \Longleftrightarrow \frac{dH_2}{dt} = \frac{1}{A_2} (Q_b - Q_c)$$
 (3)

– Thay $Q_b = C_{db} a_b \sqrt{2g(H_1 - H_2)}$ và $Q_c = C_{dc} a_c \sqrt{2gH_2}$ vào (3), ta có:

$$\frac{dH_2}{dt} = \frac{1}{A_2} \left(Q_b - Q_c \right) = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 - H_2)} - C_{dc} a_c \sqrt{2gH_2} \right] \tag{4}$$

• Kết luận, hệ phương trình mô tả quá trình:

$$\begin{cases}
\frac{dH_1}{dt} = \frac{1}{A_1} \left[Q_i - C_{db} a_b \sqrt{2g(H_1 - H_2)} \right] \\
\frac{dH_2}{dt} = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 - H_2)} - C_{dc} a_c \sqrt{2gH_2} \right]
\end{cases} (5)$$

- c. Tuyến tính hóa mô hình tại điểm làm việc cân bằng.
 - \bullet Gọi $\left(\overline{Q_i},\overline{H_1},\overline{H_2}\right)$ là điểm làm việc cân bằng của hệ thống gồm 2 bình chứa.
 - Gọi $Q_i = \overline{Q_i} + \Delta Q_i, H_1 = \overline{H_1} + \Delta H_1, H_2 = \overline{H_2} + \Delta H_2.$
 - Đặt $f(Q_i, H_1, H_2) = \dot{H_1} = \frac{1}{A_1} \left[Q_i C_{db} a_b \sqrt{2g(H_1 H_2)} \right]$
 - Tại điểm làm việc cân bằng $(\overline{Q}_i, \overline{H}_1, \overline{H}_2)$ thì

$$f\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right) = 0 \Longleftrightarrow \frac{1}{A_1} \left[\overline{Q_i} - C_{db}a_b\sqrt{2g(\overline{H_1} - \overline{H_2})}\right] = 0$$
 (6)

– Khai triển Taylor cho
$$f(Q_i, H_1, H_2) = \dot{H_1} = \frac{1}{A_1} \left[Q_i - C_{db} a_b \sqrt{2g(H_1 - H_2)} \right]$$
, ta có:

$$\dot{H}_1 = \Delta H_1 = f\left(\overline{Q_i} + \Delta Q_i, \overline{H_1} + \Delta H_1, \overline{H_2} + \Delta H_2\right) \tag{7}$$

$$\approx \underbrace{f\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)}_{0} + \frac{\partial f}{\partial Q_i} \Big|_{\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)} \Delta Q_i + \frac{\partial f}{\partial H_1} \Big|_{\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)} \Delta H_1 \qquad (8)$$

$$\approx \frac{1}{A_1} \left[\Delta Q_i - \frac{2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 \right]$$
 (9)

$$\approx \frac{1}{A_1} \left[\Delta Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 \right]$$
 (10)

– Thay $\Delta Q_i = Q_i$ và $\Delta H_1 = H_1$, ta có:

$$\frac{dH_1}{dt} = \frac{1}{A_1} \left[Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1 \right]$$
(11)

- Đặt $g(Q_i, H_1, H_2) = \dot{H}_2 = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 H_2)} C_{dc} a_c \sqrt{2gH_2} \right]$
 - Tại điểm làm việc cân bằng $(\overline{Q_i}, \overline{H_1}, \overline{H_2})$ thì:

$$g\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right) = 0 \Longleftrightarrow \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(\overline{H_1} - \overline{H_2})} - C_{dc} a_c \sqrt{2g\overline{H2}} \right] = 0 \tag{12}$$

– Khai triển Taylor cho $g(Q_i, H_1, H_2) = \dot{H}_2 = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 - H_2)} - C_{dc} a_c \sqrt{2gH_2} \right],$ ta có:

$$\dot{H}_2 = \Delta H_2 = g\left(\overline{Q}_i + \Delta Q_i, \overline{H}_1 + \Delta H_1, \overline{H}_2 + \Delta H_2\right) \tag{13}$$

$$\approx \underbrace{g\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)}_{0} + \frac{\partial g}{\partial H_1} \bigg|_{\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)} \Delta H_1 + \frac{\partial g}{\partial H_2} \bigg|_{\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)} \Delta H_2 \tag{14}$$

$$\approx \frac{1}{A_2} \left[\frac{2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 + \frac{-2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 - \frac{2gC_{dc}a_c}{2\sqrt{2g\overline{H_2}}} \Delta H_2 \right]$$

$$\tag{15}$$

$$\approx \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \Delta H_2 \right]$$
(16)

– Thay $\Delta H_1 = H_1$ và $\Delta H_2 = H_2,$ ta có:

$$\frac{dH_2}{dt} = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} H_2 \right]$$
(17)

• Kết luận, phương trình tuyến tính hóa của mô hình tại điểm làm việc cân bằng $(\overline{Q_i}, \overline{H_1}, \overline{H_2})$:

$$\begin{cases}
\frac{dH_1}{dt} = \frac{1}{A_1} \left[Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1 \right] \\
\frac{dH_2}{dt} = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} H_2 \right]
\end{cases} (18)$$

d. Tìm hàm truyền $G(s) = \frac{H_2(s)}{Q_i(s)}$

• Ta có:
$$\frac{dH_1}{dt} = \frac{1}{A_1} \left[Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1 \right], \text{ thực hiện biến đổi Laplace 2 vế của phương}$$

trình ta có:

$$sH_1(s) = \frac{1}{A_1} \left[Q_i(s) - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1(s) \right]$$
 (19)

$$\iff sA_1H_1(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_1(s) = Q_i(s)$$
(20)

$$\iff \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] H_1(s) = Q_i(s)$$
 (21)

$$\iff H_1(s) = \frac{Q_i(s)}{sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}}$$
(22)

• Ta có:
$$\frac{dH_2}{dt} = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} H_2 \right], \text{ thực hiện biến đổi Laplace 2 vế của phương trình ta có:}$$

$$sH_2(s) = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1(s) - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s) - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} H_2(s) \right]$$
(23)

$$\iff sA_2H_2(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_2(s) + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}}H_2(s) = \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_1(s) \tag{24}$$

$$\iff \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s) = \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1(s)$$
 (25)

$$\iff \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s) = \frac{gC_{db}a_bQ_i(s)}{\sqrt{2g(\overline{H_1} - \overline{H_2})} \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right]}$$

$$(26)$$

$$\iff \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s) = \frac{gC_{db}a_bQ_i(s)}{sA_1\sqrt{2g(\overline{H_1} - \overline{H_2})} + gC_{db}a_b}$$
(27)

$$\iff \frac{H_2(s)}{Q_i(s)} = \frac{gC_{db}a_b}{\left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}}\right] \left[sA_1\sqrt{2g(\overline{H_1} - \overline{H_2})} + gC_{db}a_b\right]}$$
(28)

$$\bullet \text{ K\'et lu\^an: } G(s) = \frac{H_2(s)}{Q_i(s)} = \frac{gC_{db}a_b}{\left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}}\right] \left[sA_1\sqrt{2g(\overline{H_1} - \overline{H_2})} + gC_{db}a_b\right]}$$

2 Bài tập 2

Giả thiết Cho hệ thống như hình 2: Các lưu lượng ra q_1 và q_0 được xác định như sau: $q_1 = \frac{h_1 - h_2}{R_1}$ và $q_0 = \frac{h_2}{R_2}$

Hình 2: Hệ thống 2 bình chứa

Yêu cầu

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
- b. Viết phương trình mô tả quan hệ giữa các biến.
- c. Tuyến tính hóa mô hình tại điểm làm việc cân bằng.
- d. Tìm hàm truyền $G(s) = \frac{H_2(s)}{Q_{in}(s)}$