

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH / JOACHIM SAUER

KLAUSUR 1140 AUTOMATENTHEORIE UND FORMALE SPRACHEN

QUARTAL: Q2/2014

Name des Prüflir	ngs:	Matrikelnummer:	Zenturie:
Dauer: 90 Min. Hilfsmittel: Bemerkungen:	Infoblatt zur Kla	Deckblatt und Infoblatt: 8 usur (siehe letzte Seite) en Sie Ihr Klausurheft zu Beg	
		usur sind 45 Punkte ausreich	end.
	Punkte für Aufg		von 10
	Aufgabe 1 Aufgabe 2		von 24
	Aufgabe 2 Aufgabe 3		von 32
	Aufgabe 4		von 24
	Insgesamt		von 90
Datum:	Note:	Ergänzungsr	orüfung:
Unterschrift:			
Termin für Klausı	ureinsicht:	Ort:	

Aufgabe 1: Wortmengen und Wortfunktionen (jeweils 2 Pkt.)

a)	Aus welchen	<u>drei</u>	Bestand	teilen i	st ein	Wort	w ein	er forn	nalen	Sprache	\mathbf{L}
	aufgebaut?										

b) Erläutern Sie den Begriff <u>Kleene-Stern-Produkt</u> in 1-2 Sätzen und erklären Sie den Ausdruck <u>Plus-Hülle</u> des Kleene-Stern-Produkts.

c) Was bedeutet es, wenn eine formale Sprache *L* <u>präfixfrei</u> ist? Geben Sie ein Beispiel für eine <u>präfixfreie Sprache</u> an.

d)	Erläutern Sie den Ausdruck Potenz eines Zeichens a / eines Wortes w . Welcher Potenz ist das <u>leere Wort</u> zuzuordnen?
e)	Was versteht man allgemein unter einer <u>formalen Sprache</u> ? Vergleichen Sie formale Sprachen mit natürlichen Sprachen.

Aufgabe 2: Deterministische Endliche Automaten

a) Durch welche Eigenschaften zeichnet sich ein endlicher Automat aus? (2 Pkt.)

b) Gegeben sind die Sprachen

$$\begin{split} L_1 &= \{w \in \Sigma^* | w = uvk, u \in \{aa, bb\}^+, v \in \{01, 10, 11, 00\}, k = d^i e^j\}, \\ &\quad i, j \geq 0, i \ modulo \ 2 = 0, j \ modulo \ 3 = 0 \quad \text{ und} \end{split}$$

$$L_2 &= \{w \in \Sigma^* | w = uv, u \in \{ac, bd\}^*, v \in \{g\}^+\}. \end{split}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> DEA A_3 , der ausschließlich die Sprache $L_3 = L_1 {}^{\circ} L_2$ akzeptiert. Geben Sie die graphische Repräsentation mit markierten akzeptierenden Zuständen und die formale Beschreibung von A_3 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_3 kann verzichtet werden. (14 Pkt.)

- c) Erläutern Sie den Begriff Mealy-Maschine anhand einer Skizze. Die dargestellte Mealy-Maschine soll fünf Zustände beinhalten. Geben Sie die formale Beschreibung der Mealy-Maschine mit Erläuterung der enthaltenen Mengen an (unter Bezug auf Ihre Skizze). Wodurch unterscheidet sich die Mealy-Maschine von der Moore-Maschine?
 - (8 Punkte)

Aufgabe 3: Nichtdeterministische Endliche Automaten

a) Gegeben ist die Sprache

$$L_4 = \{ w \in \Sigma^* | w = uvkl, u \in \{a, b, c\}^*, v \in \{bbb, ccc\}^+, k \in \{f, g\}^+, l \in \{gg\}^+ \cup \{f\} \}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> NEA A_4 , der ausschließlich diese Sprache akzeptiert. Die graphische Repräsentation genügt; auf eine formale Beschreibung kann verzichtet werden. (10 Punkte)

b) Gegeben ist folgender graphisch dargestellter NEA A_5 .

Transformieren Sie A_5 in einen äquivalenten DEA DEA_5 . Benutzen Sie für die Transformation den tabellarischen Ansatz (Hinweis: Auf eine mengenwertige Darstellung kann in der Tabelle verzichtet werden). Geben Sie die formale Beschreibung von DEA_5 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_5 und eine grafische Darstellung des konstruierten DEA kann verzichtet werden. (12 Pkt.)

c)) Gegeben ist das Wort $w_1=000b1aaab$. Erläutern Sie die Vera Wortes durch den ursprünglichen NEA A_5 aus Aufgabe 3b) mithilt Schemas und markieren Sie akzeptierende Zustände und Sackga	fe des Trellis-
d)) Skizzieren Sie einen Automaten, der nur das leere Wort akzepti Sie den Begriff Epsilon-Zykel anhand einer Skizze. (4 Punkte)	ert. Erläutern

Aufgabe 4: Grammatiken

Kreuzen Sie für jede Aussage an, ob sie wahr oder falsch ist. (2 Pkt. für jedes richtige Kreuz. 2 Pkt. Abzug für jedes falsche Kreuz.)

	wahr	falsch
Typ 3-Sprachen sind abgeschlossen gegenüber der		
Konkatenation.		
Typ 3-Sprachen sind abgeschlossen gegenüber der		
Vereinigung.		
Zu jeder regulären Sprache kann ein Epsilon-Automat		
konstruiert werden, der sie akzeptiert.		
Jede kontextfreie Sprache kann mit regulären Ausdrücken		
beschrieben werden.		
Eine Grammatik ist mehrdeutig, wenn mit ihr mehr als ein Wort		
erzeugt werden kann.		
Zu jeder kontextfreien Sprache kann ein Kellerautomat		
konstruiert werden, der sie akzeptiert.		
Die durch die Chomsky-Hierarchie klassifizierten Grammatiken		
erzeugen disjunkte Klassen von Sprachen.		
Das Äquivalenzproblem ist für Typ 2-Sprachen lösbar.		
Das Wortproblem ist für Typ 1-Sprachen lösbar.		
Die Sprache $L_6 = \{ w \in \Sigma^* w = \{a, b\}^+ \circ c^i \circ b^j \circ \{0, 1\}^* \}, i, j \ge 1$		
ist vom Typ 3.		
Die Sprache $L_7 = \{ w \in \Sigma^* w = a^i b^i c^i d^i \}, i \ge 1 \text{ ist vom Typ 2.}$		
Mr. I. D I		
Mit dem Pumping-Lemma für reguläre Sprachen lässt sich		
zeigen, dass eine Sprache nicht regulär ist.		