Training Private Deep Learning Model with DPSGD

Tianhao Wang, Silin Zou, Litao ——
Yan, Ruoxi Yang

 (ε, δ) -Differential Privacy: The distribution of the output M(D) on database D is (nearly) the same as M(D'):

allows for a small probability of failure

1. [1607.00133] Deep Learning with Differential Privacy

DPSGD Algorithm

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L, gradient norm bound C.

Initialize θ_0 randomly

for
$$t \in [T]$$
 do

Take a random sample L_t with sampling probability L/N

Compute gradient

For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$

Clip gradient

$$\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$$

Add noise

$$\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$$

Descent

$$\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$$

Output θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

[1607.00133] Deep Learning with Differential Privacy

Data

Source: Public Use Microdata Sample (PUMS)

https://www.census.gov/programs-surveys/acs/data/pums.html

Features: Sex, Married, Collegedegree, Employed, Millitary Service, US Citizen, etc.

Objective: Train a classifier to predict the unemployment rate without exposing sensitive information.

	sex	married	black	asian	collegedegree	employed	militaryservice	uscitizen	disability	englishability	blackfemale
0	1	1	0	0	0	1	0	1	0	1	0
1	1	1	0	0	0	0	0	1	0	1	0
2	0	1	0	0	0	0	1	1	0	1	0
3	0	0	0	0	0	0	0	1	1	1	0
4	0	1	0	0	0	0	0	1	0	1	0

Credit: https://sophieyanzhao.github.io/model