Note: Divide data into training (70%) and Testing (30%)

Q.1 Use the following dataset for analysis:

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

Use data augumentation techniques for the given dataset.

Train the model using DenseNet, LeNet, AlexNet.

22MCA0028	
22MCA0039	
22MCA0043	
22MCA0047	
22MCA0053	

Q.2 Use the following dataset for analysis:

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

Use data augumentation techniques for the given dataset.

Train the model using ResNet-18, VGGNet, EfficientNet and VGG-16.

22MCA0056	
22MCA0061	
22MCA0062	
22MCA0065	
22MCA0073	

Q.3 Use the following datasets:

https://www.kaggle.com/datasets/muratkokludataset/rice-image-dataset/code

Train the model using LeNet, DenseNet, EfficientNet and VGG-16.

22MCA0077	
22MCA0087	
22MCA0104	
22MCA0108	
22MCA0119	

Q.4 Use the following datasets:

https://www.kaggle.com/datasets/muratkokludataset/rice-image-dataset/code

Train the model using AlexNet, ResNet and VGGNet.

22MCA0121

22MCA0133
22MCA0139
22MCA0153
22MCA0162

Q.5 Use the following datasets:

https://www.kaggle.com/datasets/meetnagadia/apple-stock-price-from-19802021

Apply LSTM, Bi-LSTM, Stacked LSTM

22MCA0165
22MCA0167
22MCA0169
22MCA0171
22MCA0173

Q.6 Use the following datasets:

https://www.kaggle.com/datasets/meetnagadia/apple-stock-price-from-19802021

Apply Multiplicative LSTM, Bidirectional GRU, RNN.

22MCA0185
22MCA0193
22MCA0194
22MCA0196
22MCA0197

Q.7 Use the following datasets:

 $\underline{https://www.kaggle.com/datasets/meetnagadia/stock-price-of-top-10-smartphone-company-20162021}$

Apply LSTM, Bidirectional GRU, RNN.

22MCA0198	
22MCA0199	
22MCA0200	
22MCA0204	
22MCA0208	

Q. 8 Use the following datasets:

 $\underline{https://www.kaggle.com/datasets/meetnagadia/stock-price-of-top-10-smartphone-company-\underline{20162021}}$

Apply Bi-LSTM, Stacked LSTM, Multiplicative LSTM

22MCA0218	
22MCA0224	
22MCA0226	
22MCA0228	
22MCA0230	

Q.9 Use the following datasets:

https://www.kaggle.com/datasets/meetnagadia/walmart-stock-price-from-19722022

Apply LSTM, Bi-LSTM and RNN.

	,
22MCA0239	
22MCA0240	
22MCA0245	
22MCA0263	
22MCA0264	

Q.10 Use the following datasets:

https://www.kaggle.com/datasets/meetnagadia/walmart-stock-price-from-19722022

Apply Stacked LSTM, Multiplicative LSTM, Bidirectional GRU.

22MCA0266
22MCA0275
22MCA0276
22MCA0285
22MCA0289

Q.11 Use the following datasets

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

Train the model using LeNet, EfficientNet and VGG-16.

22MCA0294
22MCA0304
22MCA0306
22MCA0330
22MCA0331

Q.12 Use the following datasets

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

Train the model using AlexNet, ResNet, VGGNet.

22MCA0333	
22MCA0344	

22MCA0346
22MCA0353
22MCA0362

Q.13 Use following datasets:

https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city

Apply LSTM, Bidirectional GRU, RNN.

11 7	
22MCA0363	
22MCA0364	
22MCA0366	
22MCA0368	
22MCA0393	

Q.14 Use following datasets:

https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city

Apply Bi-LSTM, Stacked LSTM, Multiplicative LSTM.

22MCA0397	
22MCA0401	
22MCA0407	
22MCA0414	
22MCA0419	