SEMICONDUCTOR INTEGRATED CIRCUIT

Patent number:

JP5259893

Publication date:

1993-10-08

Inventor:

FURUKI KATSUYA

Applicant:

NEC CORP

Classification:

- International:

H03K19/096

- european:

Application number:

JP19910056867 19910320

Priority number(s):

Abstract of JP5259893

PURPOSE:To attain high circuit integration and to quicken the operation by allowing a CMOS dynamic semiconductor integrated circuit to prevent malfunction due to a leak current and malfunction in the cascode connection even without an inverter. CONSTITUTION: The circuit is provided with MOS transistors(TRs) 2, 3 whose gates and drains are in cross connection for an output latch and with MOS TRs 4, 5 for output precharge. Since the MOS TR 1 is turned off, the MOS TRs 4, 5 are turned on when a clock signal CLK is at a low level, outputs Q, inverse of Q are precharged to a high level. When the clock signal CLK changes to a high level, the MOS TR 1 is turned on and the MOS TRs 4, 5 are turned off. In this case, one of MOS TR groups makes the output and a GND potential conductive to set an output potential to a low level depending on the state of input signals IN and inverse of IN.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-259893

(43)公開日 平成5年(1993)10月8日

(51)Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示簡所

H 0 3 K 19/096

B 8941-5 J

審査請求 未請求 請求項の数2(全 10 頁)

(21)出願番号

特願平3-56867

(22)出願日

平成3年(1991)3月20日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 古木 勝也

東京都港区芝五丁目7番1号日本電気株式

会社内

(74)代理人 弁理士 熊谷 雄太郎

(54) 【発明の名称 】 半導体集積回路

(57)【要約】

[目的] CMOSダイナミック半導体集積回路において、インバータなしでも、リーク電流による誤動作及びカスコード接続したときの誤動作を防止し、高集積化、動作の高速化を計る。

[構成] 出力のラッチ用としてMOSトランジスタ2、3を各ゲート、ドレインをたすきがけに接続して設けると共に、出力のプリチャージ用としてMOSトランジスタ4、5を設ける。クロック信号CLKが"Low"レベルのときにはMOSトランジスタ1は"OFF"、MOSトランジスタ4、5は"ON"となるので、出力Q、-Qは"High"レベルにプリチャージされる。クロック信号CLKが"High"レベルに変化すると、MOSトランジスタ1は"ON"、MOSトランジスタ4、5は"OFF"となる。この時、入力信号IN、-INの状態により、MOSトランジスタ群の一方は出力とGND電位間を導通状態にし、出力電位を"Low"レベルにする。

1,6,7:第1の**部面形**のMOSトランジスタ 2,3,4,5:第2の**時形**のMOSトランジスタ 8 a,8 b:第1の**等電形**のMOSトランジスタ群

【特許請求の範囲】

【請求項1】 ソース電極が第1の基準電位に接続され ゲート電極が動作状態を制御するクロック信号に接続さ れる第1の導電形の第1のMOSトランジスタと、ソー ス電極が第2の基準電位に接続されゲート電極が第1の 出力電位を出力する第1の出力端子に接続されドレイン 電極が前記第1の出力電位と論理的に反対の第2の出力 電位を出力する第2の出力端子に接続される第2の導電 形の第2のMOSトランジスタと、ソース電極が前記第 2の基準電位に接続されゲート電極が前記第2の出力端 子に接続されドレイン電極が前記第1の出力電位に接続 される第2の導電形の第3のMOSトランジスタと、ソ - ス電極が前記第2の基準電位に接続されゲート電極が 前記クロック信号に接続されドレイン電極が前記第2の 出力端子に接続される第2の導電形の第4のMOSトラ ンジスタと、ソース電極が前記第2の基準電位に接続さ れゲート電極が前記クロック信号に接続されドレイン電 極が前記第1の出力端子に接続される第2の導電形の第 5のMOSトランジスタと、前記第1のMOSトランジ スタのドレイン電極と前記第2の出力端子との間に配置 されゲート電極が第1の入力信号群に接続される第1の 導電形の第6のMOSトランジスタを少なくとも1個含 み前記第6のMOSトランジスタのソース電極またはド レイン電極が直並列接続されている第1のMOSトラン ジスタ群と、前記第1のMOSトランジスタのドレイン 電極と前記第1の出力端子との間に配置されゲート電極 が前記第1の入力信号群と論理的に反対の第2の入力信 号群に接続される第1の導電形の第7のMOSトランジ スタを少なくとも1個含み前記第7のMOSトランジス タのソース電極またはドレイン電極が直並列に接続され ている第2のMOSトランジスタ群とを備えることを特 徴とする半導体集積回路。

【請求項2】 前記第4、第5のMOSトランジスタを、第2の導電形のMOSトランジスタの代わりに第1の導電形のMOSトランジスタにしたことを更に特徴とする半導体集積回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体集積回路に関し、 特に、CMOSダイナミック半導体集積回路に関する。 【0002】

【従来の技術】従来の半導体集積回路は、図3に示すように動作状態を制御するクロック信号が入力されるNMOSトランジスタ9、2個のPMOSトランジスタ10a、10b、入力信号により論理を決定するNMOSトランジスタ群11a、11b、2個のインバータ12a、12b、ダイナミックノードのリーク電流による誤動作防止のための2個のPMOSトランジスタ13a、13bを有している(カスコード・ボルテージ・スイッチ・ロジック:ア・ディファレンシャルCMOSロジッ

ク・ファミリ (Cascode Voltage Swith Logic: A Differential Logic Family, ISSCC'84, P16~17)

【0003】クロック信号CLKが"Low"レベルのときにはNMOSトランジスタ9は"OFF"、PMOSトランジスタ10a、10bは"ON"状態のために、ノードN1、N2は"High"レベルにプリチャージされる。このとき出力Q、出力Qの反転出力ーQはインパータ12a、12bにより"Low"レベルに変化する。クロック信号CLKが"High"レベルに変化すると、NMOSトランジスタ9は"ON"、PMOSトランジスタ10a、10bは"OFF"になる。このとき、入力信号の論理レベルにしたがい、NMOSトランジスタ群11a、11bにより、ノードN1、N2の一方は"Low"レベルとなる。

【0004】ここでノードN1が"High"レベルを 保持し、ノードN2が"Low"レベルに変化したとす ると、インバータ12bにより反転出力ーQは"High"レベルに変化する。出力Qは"Low"レベルのま まである。ここでノードN1はPMOSトランジスタ1 3aが"ON"のために、リーク電流などによる電位低 下を防止されている。

【0005】次に以上説明した半導体集積回路をカスコ ード接続した場合を考える。クロック信号が"Low" レベルのときには上述したように、出力Q、-Qは"L ow"レベルになっている。従って、この出力を入力し ている次段の各NMOSトランジスタ群11a、11b は全て"OFF"状態である。クロック信号が"Hig h"レベルに変化し、前段の論理動作が終了し、出力レ ベルが決定するとNMOSトランジスタ群の11a、1 1 b の一方は"ON"に変化し、論理動作を開始する。 【0006】ここでインバータ12a、12bがない場 合を考える。クロック信号が"Low"レベルのときに は次段の各NMOSトランジスタ群11a、11bは "ON"状態である。ここでクロック信号が"Hig h"レベルに変化すると、各段の出力Q、-Qはそれぞ れ"Low"レベルへの変化を開始する。この後、前段 の出力レベルが決定し、NMOSトランジスタ群11 a、11bの一方が"OFF"状態になったとしても、 出力Q、-Qは"Low"レベルのままとなり、誤動作 することになる。

【0007】つまりインバータ12a、12bは誤動作防止、リーク電流防止のために必要である。

[0008]

【発明が解決しようとする課題】従来の半導体集積回路では、カスケード接続するときの誤動作防止、リーク電流による誤動作防止のために、インバータを必要とする。従って、カスケード接続したときに動作速度が遅くなること及びトランジスタ数が増加するという課題があ

った。

【0009】本発明は従来の上記実情に鑑みてなされた ものであり、従って本発明の目的は、従来の技術に内在 する上記課題を解決することを可能とした新規な半導体 集積回路を提供することにある。

[0010]

【課題を解決するための手段】上記目的を達成するため に、本発明に係る半導体集積回路は、ソース電極がGN D電位に接続されゲート電極が動作状態を制御するクロ ック信号に接続される第1の導電形の第1のMOSトラ ンジスタと、ソース電極がVnn電位に接続されゲート電 極が第1の出力電位を出力する第1の出力端子に接続さ れドレイン電極が第1の出力電位と論理的に反対の第2 の出力電位を出力する第2の出力端子に接続される第2 の導電形の第2のMOSトランジスタと、ソース電極が Vpm電位に接続されゲート電極が第2の出力端子に接続 されドレイン電極が第1の出力電位に接続される第2の 導電形の第3のMOSトランジスタと、ソース電極がV pp電位に接続されゲート電極がクロック信号に接続され ドレイン電極が第2の出力端子に接続される第2の導電 形の第4のMOSトランジスタと、ソース電極がV_{np}電 位に接続されゲート電極がクロック信号に接続されドレ イン電極が第1の出力端子に接続される第2の導電形の 第5のMOSトランジスタと、第1のMOSトランジス タのドレイン電極と第2の出力端子との間に配置されゲ - ト電極が第1の入力信号群に接続される第1の導電形 の第6のMOSトランジスタを少なくとも1個含み第6 のMOSトランジスタのソース電極またはドレイン電極 が直並列接続されている第1のMOSトランジスタ群 と、第1のMOSトランジスタのドレイン電極と第1の^ 出力端子との間に配置されゲート電極が第1の入力信号 群と論理的に反対の第2の入力信号群に接続される第1 の導電形の第7のMOSトランジスタを少なくとも1個 含み第7のMOSトランジスタのソース電極またはドレ イン電極が直並列に接続されている第2のMOSトラン ジスタ群とを備えて構成される。

[0011]

【実施例】次に、本発明をその好ましい一実施例について図面を参照して具体的に説明する。

【0012】図1は本発明による第1の実施例を示す回路構成図である。

【0013】図1を参照するに、1は第1のMOSトランジスタ、2は第2のMOSトランジスタ、3は第3のMOSトランジスタ、4は第4のMOSトランジスタ、5は第5のMOSトランジスタ、6は第6のMOSトランジスタ、7は第7のMOSトランジスタ、8a、8bはMOSトランジスタ群をそれぞれ示す。第2、第3のMOSトランジスタ2、3は出力のラッチ用のものであり、それぞれ各ゲートとドレインがたすきがけに接続されている。第4、第5のMOSトランジスタ4、5は出

力のプリチャージ用として使用される。

【0014】クロック信号CLKが"Low"レベルの時には第1のMOSトランジスタ1は"OFF"、第4、第5のMOSトランジスタ4、5は"ON"となるので、出力Q、一Qは"High"レベルにプリチャージされる。クロック信号CLKが"High"レベルに変化すると、第1のMOSトランジスタは"ON"、第4、第5のMOSトランジスタ4、5は"OFF"となる。この時、入力信号IN、一INの状態により、MOSトランジスタ群の一方は出力とGND電位間を導通状態にし、出力電位を"Low"レベルにする。

【0015】この一連の動作を図2のタイミングチャートに示す。ここで、クロック信号が"High"レベルになり、出力Qが"Low"レベルに変化し、出力-Qが"High"レベルを保持する場合を考える。

【0016】第2のMOSトランジスタ2のゲート電極は出力Qで"Low"レベルのために、"ON"となり、出力-Qを"High"レベルに保つ。このために、リーク電流による誤動作を防止することが出来る。

【0017】図1に示された第1の実施例の変形として、第4、第5のMOSトランジスタ4、5をPチャネル型からNチャネル型トランジスタに変更することができる。

【0018】次に本発明の半導体集積回路をカスケード接続した場合を考える。クロック信号CLKが"Low"レベルのときには、入力信号は前段の出力Q、一Qが"High"レベルのために、全て"High"レベルで、MOSトランジスタ群8a、8bは"ON"状態である。クロック信号CLKが"High"レベルに変化すると、出力Q、一Qはそれぞれ"Low"レベルへの変化を開始する。ただし、クロック信号CLK及び入力信号が全て"High"レベルのときに、出力Q、一Qのレベルは、第1、第2、第3のMOSトランジスタ 1、2、3及びMOSトランジスタ群8a、8bの抵抗比で決定されるレベルとなるので、"High"レベルと"Low"レベルとの中間のレベルまでしか低下しない。

【0019】また入力信号が決定されれば一方のMOSトランジスタ群(例えば8a)が"OFF"状態になり、第2のMOSトランジスタ2により出力ーQは"High"レベルとなる。このとき第3のMOSトランジスタ3は"OFF"となるので出力Qは完全に"Low"レベルとなる。

【0020】図3は本発明による第2の実施例を示す回路構成図である。

【0021】図3を参照するに、参照符号1~8は図1に示した第1の実施例の参照符号1~8と同様のトランジスタであり、13a、13b、14は第1のMOSトランジスタ1と同じ導電形のMOSトランジスタである。クロック信号CLKが"Low"レベルのとき、M

OSトランジスタ14、第1のMOSトランジスタ1は "OFF"となり、出力Q、一Qは"High"レベルにプリチャージされる。クロック信号CLKが"High"レベルに変化すると、MOSトランジスタ1、14は"ON"となり、第2のMOSトランジスタ2とMOSトランジスタ13a、及び第3のMOSトランジスタ3とMOSトランジスタ13bはそれぞれ互いの出力を入力とするインバータとなる。従って、出力Q、一Qの一方が"Low"レベルに変化するのを高速に検出することができ、出力Q、一Qのレベルの確定が高速になる。

[0022]

【発明の効果】以上説明したように、本発明によれば、インバータなしでも、リーク電流による誤動作、カスケード接続したときの誤動作を防止することができ、高集積、高速化できるという効果が得られる。

【0023】従来の半導体集積回路ではN段カスケード接続された場合の遅延は1段の遅延をtpd1とするとtpd1×Nとなる。しかるに、本発明では、2段目以降は上述したように、クロック信号が"High"レベルになるとそれぞれ中間レベルへの動作を開始するために、1段目の遅延量をtpd2とすると、2段目以降の遅延量はtpd3(<tpd2)となる。したがって、N段の遅延量はtpd2+tpd3×(N-1)となる。本発明においてはtpd3<tpd>とtpd2<tpd1のために、従来より非常に高速である。

【図面の簡単な説明】

【図1】本発明による第1の実施例を示す回路構成図で

ある。

【図2】図1に示された第1の実施例のタイミングチャートである。

【図3】本発明による第2の実施例を示す回路構成図である。

【図4】従来におけるこの種の半導体集積回路の回路図である。

【符号の説明】

- 1…第1の導電形のMOSトランジスタ
- 2…第2の導電形のMOSトランジスタ
- 3…第2の導電形のMOSトランジスタ
- 4…第2の導電形のMOSトランジスタ
- 5…第2の導電形のMOSトランジスタ
- 6…第1の導電形のMOSトランジスタ
- 7…第1の導電形のMOSトランジスタ
- 8 a …第1の導電形のMOSトランジスタ群
- 8 b…第1の導電形のMOSトランジスタ群
- 9…NMOSトランジスタ
- 10a…PMOSトランジスタ
- 10b…PMOSトランジスタ
- 11a…NMOSトランジスタ群
- 11b…NMOSトランジスタ群
- 12a…インパータ
- 12b…インパータ
- 13a…MOSトランジスタ
- 13b…MOSトランジスタ
- 14…MOSトランジスタ

【図2】

1,6,7:第1の導電形のMOSトランジスタ 2,3,4,5:第2の導電形のMOSトランジスタ 8a,8b:第1の導電形のMOSトランジスタ群

【図3】

13a,13b,14:MOS トランジスタ

【図4】

9: NMOSトランジスタ

10a,10b,13a,13b : PMOSトランジスタ

11a,11b : NMOSトランジスタ群

12a,12b: インバータ

【手続補正書】

【提出日】平成5年3月8日

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図2】

【図1】

1,6,7:第1の**導電形**のMOSトランジスタ 2,3,4,5:第2の**導電形**のMOSトランジスタ 8a,8b:第1の**導電形**のMOSトランジスタ群

【図3】

13a,13b,14:MOSトランジスタ

【図4】

9: NMOSトランジスタ

10a,10b,13a,13b : PMOSトランジスタ

11a,11b : NMOSトランジスタ群

12a,12b: インパータ