ME 200 – Thermodynamics, L. Liebenberg

Name: Joseph Specht Net-ID: jspecht3

Quiz 5 (Total: 40 points)

Due back on Wed. Feb. 22 at 10 p.m., in Canvas

- Assignments will only be graded if the honor code statement is completed and signed.
- Save your entire assignment as <u>one</u> **PDF** document and upload it in the appropriate assignment folder on Canvas.

Honor Code Statement

ME 200, Quiz 5

Being a student of high standards, I pledge to embody the principles of *academic integrity*.

This quiz is my own work. I did not seek (or get) outside help or collaboration with any of the questions and their solutions. I did not post any of the questions on an electronic platform (like Chegg) nor did I solicit answers or solutions from any electronic platform (like Chegg). I also did not offer my solutions or answers to any other student.

I understand that this quiz is "open book" and "open notes" which means that I was permitted to use my prescribed textbook and lecture notes when addressing any of the questions. I have properly cited any other resources, with full cognizance of the regulations pertaining to plagiarism, copyright infringement, academic cheating, etc., as stipulated in the Student Code.

I acknowledge that academic violations will be dealt with according to the UIUC Student Code, Article 1, Part 4.

Student's signature:

Student's Name: Joseph Specht

Net-ID: jspecht3

Date: 2/21/23

A citybus engine has the following characteristics:

Engine displacement: 12.9 liters 6 cylinders, in-line placement;

Fuel: Diesel

Compression ratio: 18.5:1

Cut-off ratio: 2.5

The engine's inlet conditions are 20°C and 1 bar

Maximum engine pressure: 5 MPa

Using an ideal air-standard Diesel cycle, calculate the following and remember to show all your calculations:

- a. the temperature and pressure at state points 1, 2, 3, and 4. (15)
- b. the heat and work transferred in each of the four processes. (20)
- c. The cycle's thermal efficiency.

 $\eta = 55.9\%(5)$

12.9-liter DAF diesel engine, courtesy of *DAF/Paccar Trucks* https://www.dafcomponents.com/en/products/paccar-daf-engines

Summarize your calculated values of temperature, pressure, heat, work, and change in internal energy. (-5 points if tables are not completed.)

Process	q (kJ/kg)	w (kJ/kg)	$\Delta u \text{ (kJ/kg)}$
1-2	0	-422.35	422.35
2 – 3	1344.22	344.15	1000.07
3 – 4	0	829.80	-829.80
4-1	-592.62	0	-592.62
Cycle:	$q_{\text{net}} = 751.6$	$w_{\text{net}} = 751.6$	0

State point	T(K)	p (kPa)
1	293 (given)	100 (given)
2	799.42	5000 (given)
3	1998.55	5000 (given)
4	1003.58	338.95

Adiabatic $(q = 0)$	Isochoric (#=constant)	Isobaric (p = constant)	Isothermal $(T = constant)$
$\left(\frac{pv}{T}\right)_1 = \left(\frac{pv}{T}\right)_2$	$\left(\frac{pf}{T}\right)_1 = \left(\frac{pf}{T}\right)_2$	$\left(\frac{2v}{T}\right)_1 = \left(\frac{2v}{T}\right)_2$	$ \left(\frac{pv}{7} \right)_1 = \left(\frac{pv}{7} \right)_2 $
$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\gamma - 1}$			
$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\gamma}$			
$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$			
First Law for a closed cycle:	First Law for a closed cycle:	First Law for a closed cycle:	First Law for a closed cycle:
$\Delta u = \int -w$	$\Delta u = q - w = q - p \mathcal{N}$	$\Delta u = q - w = q - p \Delta v$	$\Delta u = q - w = q - p \Delta v$
$\therefore w = -\Delta u \equiv -c_v \Delta T$	$\therefore q = \Delta u \equiv c_v \Delta T$	$\therefore q = \Delta u + p \Delta v$	$\equiv c$ $= 0$
		but $\Delta h = \Delta u + p \Delta v$	$\therefore q = w \equiv p \Delta v$
		$\therefore q = \Delta h \equiv c_p \Delta T$	
First Law for an open cycle:	First Law for an open cycle:	First Law for an open cycle:	First Law for an open cycle:
$\Delta h = \int -w$	$\Delta h = q - w = q - p \mathscr{M}$	$\Delta h = q - w = q - p \ \Delta v \equiv c_p \ \Delta T$	$\Delta h = q - w = q - p \ \Delta v \equiv c_{\sigma} M$
$\therefore w = -\Delta h \equiv -c_{\sigma} \Delta T$	$\therefore q = \Delta h \equiv c_p \Delta T$		$\therefore q = w \equiv p \Delta v$

Relevant Information For all Processes:

This is taken from Table A-20. The assumed temperature is 900*K

- $-c_v = .834$
- $c_p = 1.121$
- k = 1.344

1-2: Adiabatic Compression

- Compression Ratio = $18.5:1 = V_1 / V_2$
- Initial Temp = 20*C = 293*K
- Initial Pressure = $P_1 = 1$ bar = 100 kPa
- Max Pressure = $P_2 = 5 \text{ MPa} = 5000 \text{ kPa}$
- $V_1 = 12.9$ Litres

Since this is an adiabatic process,

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{k-1} = T_2 = T_1 * (18.5)^{.344} = 293K * 2.665 = 799.42K$$

Since this is a adiabatic process in a closed cycle, q=0 and...

$$w = -\Delta u = -c_v * \Delta T = -.834 * (799.42 - 293) = -422.35 \frac{kJ}{kg}$$

This also means that $\Delta u = -w = -422.35 \text{ kJ/kg}$

2-3: Constant Pressure Heat Injection

- Max Pressure =
$$P_2 = P_3 = 50$$
 bar = 5000 kPa

- Cut-off Ratio =
$$V_2 / V_3 = 2.5$$

Since this is a constant pressure process...

$$\frac{v_2}{T_2} = \frac{v_3}{T_3} = T_3 = \frac{v_3}{v_2} * T_2 = 2.5 * T_2 = 2.5 * 799.42K = 1998.55K$$

We also know that in a closed system with constant pressure, so

$$q = \Delta h = c_p * \Delta T = 1.121 \frac{kJ}{kg * K} * (1998.55K - 799.42K) = 1344.22 \frac{kJ}{kg}$$

From the first law, we know that $w = q - \Delta u$, so

$$w = q - c_p * \Delta T = 1344.22 \frac{kJ}{kg} - .834 \frac{kJ}{kg * K} (1998.55K - 799.42K) = 344.15 \frac{kJ}{kg}$$
$$u = q - w = 1000.07 \frac{kJ}{kg}$$

3-4: Adiabatic Expansion

-
$$P_4 / P_3 = (P_4 / P_2) / (P_3 / P_2) = Compression Ratio / Cut-Off Ratio = 7.4$$

-
$$P_3 / P_4 = 1 / 7.4 = .135$$

-
$$P_3 = Max Pressure = 50 bar$$

-
$$V_4 = V_1 = 12.9$$
 Litres

We know this is an adiabatic process, so we can use the equations,

$$p_4 = p_3 * (.135)^k = 5000kPa * (.135)^{1.344} = 338.95kPa$$

 $T_4 = T_3 * (.135)^{k-1} = 1998.55K * (.135)^{.344} = 1003.58K$

Since this is an adiabatic process,

$$\Delta u = -w = c_v * \Delta T = .834 \frac{kJ}{kg * K} * (1003.58K - 1998.55K) = -829.80 \frac{kJ}{kg}$$
$$\therefore w = 829.80 \frac{kJ}{kg}$$

We also know that work is $-\Delta u$, $\Delta u = -829.80 \text{ kJ/kg}$

4-1: Constant Volume Heat Rejection

-
$$V_1 = V_4 = 12.9$$
 Liters

Since the volume is the same, we know work is 0.

$$\Delta u = q = c_v \Delta T = .834 \frac{kJ}{kg * K} (293K - 1003.58K) = -592.62 \frac{kJ}{kg}$$

To find η , we apply the following formula,

$$\eta = \frac{w_{\text{net}}}{q_{in}} * 100 = \frac{751.6}{1344.22} * 100 = 55.9\%$$