Matching Networks for One Shot Learning

References:

Vinyals O, Blundell C, Lillicrap T, et al. Matching Networks for One Shot Learning[J]. 2016.

Download: https://arxiv.org/abs/1606.04080

Outline

- Background
- Introduction
 - Introduce to One Shot Learning
 - Introduce to MANN
- Model
 - Motivation
 - Matching Networks
 - Backpropagation
- Experiments
- Summary

One-shot learning with Matching Networks

- Background
- Introduction
 - Introduce to One Shot Learning
 - Introduce to MANN
- Model
 - Motivation
 - Matching Networks
 - Backpropagation
- Experiments
- Summary

Background

Learning from a few examples: remains challenge

new data: models must relearn parameters

Memory-augmented neural network has the ability to make accurate predictions after only a few samples

One-shot learning with Matching Networks

- Background
- Introduction
 - Introduce to One Shot Learning
 - Introduce to MANN
- Model
 - Motivation
 - Matching Networks
 - Backpropagation
- Experiments
- Summary

Introduction

- Introduce to One Shot Learning
 - What is one-shot learning?
 - Why do we need one-shot learning?

Introduce to Neural Turing Machine(NTM)

超星思维 Nova Mind

What is one-shot learning?

- Machine Learning Principle: Test and Train conditions Must Match
- Separate labels for training and testing testing phase are not used in training phase !!!

超星思维 Nova Mind

Why do we need one-shot learning?

Problems: can not get enough training data

few data for training/testing?

超星思维 Nova Mind

Menory will upgate with traning

Input image

One-shot learning with Matching Networks

- Background
- Introduction
 - Introduce to One Shot Learning
 - Introduce to MANN
- Model
 - Motivation
 - Matching Networks
 - Backpropagation
- Experiments
- Summary

Model: Matching Networks

- Motivation:
 - Few data for traning
 - Model should be update all the time
 - Non-parametric models performance depends on the chosen metric
- Model Matching Networks(non-parametric components)

超星思维 Nova Mind

S:Support set

超星思维 Nova Mind

超星思维 Nova Mind

g': Neural network

Input: image size=28*28 Batch size:32

Model:

VGG model

Output:

64*1 vector

VGG model please reference: https://arxiv.org/abs/1409.1556

Input: g'

Output: $\vec{h}_i, \vec{c}_i, \bar{h}_i, \vec{c}_i$

$$\vec{h}_i, \vec{c}_i = LSTM(g'(x_i), \vec{h}_{i-1}, \vec{c}_{i-1})$$

$$\bar{h}_i, \bar{c}_i = LSTM(g'(x_i), \bar{h}_{i+1}, \bar{c}_{i+1})$$

LSTM DEMO : x = g'

$$i_t = \sigma(W_{x_i}X_t + W_{hi}h_{t-1} + b_i)$$
 $f_t = \sigma(W_{x_f}X_t + W_{hf}h_{t-1} + b_f)$

$$o_t = \sigma(W_{x_0}x_t + W_{h_0}h_{t-1} + b_o)$$
 $g_t = \tanh(W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t} \qquad h_{t} = o_{t} \odot \tanh(c_{t})$$

Write operation

Calculate the relevance:

$$a(f(\hat{x}), g(x_i)) = soft \max(f(\hat{x}), g(x_i)) = \frac{e^{c(f(\hat{x})g(x_i))}}{\sum_{j=1}^{k} e^{c(f(\hat{x})g(x_j))}}$$

r (read)is a sum of g weighted according to the relevance to h

$$\hat{h}_{1}, c_{1} = LSTM(f'(\hat{x}), [h_{0}, r_{0}], c_{0}) \\
h_{1} = \hat{h}_{1} + f'(\hat{x}) \qquad \longrightarrow a(h_{1}, g(x_{i})) \longrightarrow r_{1} = \sum_{i=1}^{|S|} a(h_{1}, g(x_{i}))g(x_{i})$$

Matching Networks without Istm

Backpropagation

To form an "episode" to compute gradients and update our model:

L:Data set

S:Support set (sample from L)

 $S \sim L, B \sim L$

B:Bath (sample from L)

 $\hat{x}(image), \hat{y}(label)$ is one input of model

 $\hat{x}, \hat{y} \sim B$

 θ is the weight

Conditional Probability:

$$P(\hat{y} | \hat{x}, S) = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

$$\theta = \arg\max_{\theta} E_{L \sim T}[E_{S \sim L, B \sim L}[\sum_{(\mathbf{x}, \mathbf{y}) \in \mathbf{B}} \log P_{\theta}(\mathbf{y} \mid \mathbf{x}, S)]]$$

We learning the mapping function P of model!

Backpropagation

$$\theta = \arg \max_{\theta} \sum_{(x,y) \in B} \log P_{\theta}(y \mid x, S) = -\arg \min Costfunction$$

$$Cost = \sum_{(x,y)\in B} \log P(\hat{y} \mid \hat{x}, S)$$

$$P(\hat{y} | \hat{x}, S) = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

For every $\hat{x}, \hat{y} \sim B$

$$E_{\hat{x},\hat{y}} = \log P(\hat{y} \mid \hat{x}, S)$$

$$\frac{\partial E}{\partial W}|_{\theta=-W} = \frac{1}{P} \frac{\partial P}{\partial W} = \frac{1}{P} \frac{\partial}{\partial W} (a(\hat{x}, x_1) y_1 + \cdots + a(\hat{x}, x_k) y_k)$$

$$= \frac{1}{P} (\frac{\partial a(\hat{x}, x_1)}{\partial W_1} y_1 + \cdots + \frac{\partial a(\hat{x}, x_k)}{\partial W_k} y_k)$$

Forward propagation

$$a(f(\hat{\mathbf{x}}), g(x_i)) = \frac{e^{f(\hat{\mathbf{x}})g(x_i)}}{\sum_{j=1}^k e^{f(\hat{\mathbf{x}})g(x_j)}}$$

Backpropagation

$$\frac{\partial a(f(\mathbf{x}), g(\mathbf{x}_{i}))}{\partial W_{i}} = \frac{\partial \frac{e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{i})}}{\sum_{j=1}^{k} e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{j})}}}{\partial W_{i}}$$

$$= \frac{(e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{i})})' \sum_{j=1}^{k} e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{j})} - e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{i})} (\sum_{j=1}^{k} e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{j})})'}{(\sum_{j=1}^{k} e^{f(\hat{\mathbf{x}})g(\mathbf{x}_{j})})^{2}}$$

$$\frac{\partial e^{f(\hat{\mathbf{x}})g(\mathbf{x}_i)}}{\partial W} = e^{f(\hat{\mathbf{x}})g(\mathbf{x}_i)} \frac{\partial (f(\hat{\mathbf{x}})g(\mathbf{x}_i))}{\partial W}
= e^{f(\hat{\mathbf{x}})g(\mathbf{x}_i)} (\frac{\partial (f(\hat{\mathbf{x}}))}{\partial W} g(\mathbf{x}_i) + \frac{\partial (g(\mathbf{x}_i))}{\partial W} f(\hat{\mathbf{x}}))$$

Forward propagation

$$h_k = LSTM(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1}) + f'(\hat{x})$$

$$\frac{\partial h_k}{\partial W} = \frac{\partial \hat{h}_k}{\partial W} + \frac{\partial f'(\hat{x})}{\partial W}$$

$$\frac{\partial f'(\hat{\mathbf{x}})}{\partial W} \doteq \frac{\partial g'(x)}{\partial W}$$

Forward propagation

$$\hat{h}_{k}, c_{k} = LSTM(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1})$$

$$i_{k} = \sigma(W_{xi}f' + W_{hi}h_{k-1} + W_{ri}r_{k-1} + b_{i})$$

$$f_{k} = \sigma(W_{xf}f' + W_{hf}h_{k-1} + W_{rf}r_{k-1} + b_{f})$$

$$o_{k} = \sigma(W_{xo}f' + W_{ho}h_{k-1} + W_{ri}r_{k-1} + b_{o})$$

$$g_{k} = \tanh(W_{xc}f' + W_{hc}h_{k-1} + W_{ri}r_{k-1} + b_{c})$$

$$c_{k} = f_{k} \odot c_{k-1} + i_{k} \odot g_{k}$$

$$h_{k} = o_{k} \odot \tanh(c_{k})$$
LSTM Unit

$$\delta h^{t} = \frac{\delta LSTM}{\delta W}$$

$$\delta o^{t} = \delta h^{t} \odot \tanh(c^{t})$$

$$\delta c^{t} = \delta h^{t} \odot o^{t} \odot (1 - \tanh^{2}(c^{t})) + \delta c^{t+1} \odot f^{t+1}$$

$$\delta i^{t} = \delta c^{t} \odot g^{t} \qquad \delta f^{t} = \delta c^{t} \odot c^{t-1}$$

$$\delta g^{t} = \delta c^{t} \odot i^{t} \qquad \delta c^{t-1} = \delta c^{t} \odot f^{t}$$

$$\delta \hat{i}^{t} = \delta i^{t} \odot i^{t} \odot (1 - i^{t})$$

$$\delta \hat{g}^{t} = \delta g^{t} \odot (1 - \tanh^{2}(\hat{g}_{t}))$$

Forward propagation

$$\hat{h}_{k}, c_{k} = LSTM(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1})$$

$$\hat{i}_{k} = W_{xi}f' + W_{hi}h_{k-1} + W_{ri}r_{k-1} + b_{i}$$

$$\hat{f}_{k} = W_{xf}f' + W_{hf}h_{k-1} + W_{rf}r_{k-1} + b_{f}$$

$$\hat{o}_{k} = W_{xo}f' + W_{ho}h_{k-1} + W_{ri}r_{k-1} + b_{o}$$

$$\hat{g}_{k} = W_{xc}f' + W_{hc}h_{k-1} + W_{ri}r_{k-1} + b_{c}$$

Backpropagation

Layers t:

$$\delta \hat{o}^t = \delta o^t \odot o^t \odot (1 - o^t)$$
$$\tanh'(\hat{g}^t) = 1 - \tanh^2(\hat{g}^t)$$

$$\delta z^t = [\delta \, \hat{\mathbf{g}}^t, \delta \hat{i}^t, \delta \, \hat{f}^t, \delta \hat{o}^t]$$

for simple:we can make:

$$z^{t} = \begin{bmatrix} \hat{g}^{t} \\ \hat{i}^{t} \\ \hat{f}^{t} \\ \hat{o}^{t} \end{bmatrix} = \begin{bmatrix} W_{gx} W_{gh} W_{gr} \\ W_{ix} W_{ih} W_{ir} \\ W_{fx} W_{fh} W_{fr} \\ W_{ox} W_{oh} W_{oi} \end{bmatrix} \begin{bmatrix} x_{t} \\ h_{t-1} \\ r_{t-1} \end{bmatrix} + \begin{bmatrix} b_{g} \\ b_{i} \\ b_{f} \\ b_{o} \end{bmatrix}$$

Forward propagation

$$\hat{h}_{k}, c_{k} = LSTM(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1})$$

$$\hat{i}_{k} = W_{xi}f' + W_{hi}h_{k-1} + W_{ri}r_{k-1} + b_{i}$$

$$\hat{f}_{k} = W_{xf}f' + W_{hf}h_{k-1} + W_{rf}r_{k-1} + b_{f}$$

$$\hat{o}_{k} = W_{xo}f' + W_{ho}h_{k-1} + W_{ri}r_{k-1} + b_{o}$$

$$\hat{g}_{k} = W_{xc}f' + W_{hc}h_{k-1} + W_{ri}r_{k-1} + b_{c}$$

Backpropagation

Layers t:

$$z^{t} = \begin{bmatrix} \hat{g}^{t} \\ \hat{i}^{t} \\ \hat{f}^{t} \\ \hat{o}^{t} \end{bmatrix} = \begin{bmatrix} W_{gx} W_{gh} W_{gr} \\ W_{ix} W_{ih} W_{ir} \\ W_{fx} W_{fh} W_{fr} \\ W_{ox} W_{oh} W_{oi} \end{bmatrix} \begin{bmatrix} x_{t} \\ h_{t-1} \\ r_{t-1} \end{bmatrix} + \begin{bmatrix} b_{g} \\ b_{i} \\ b_{f} \\ b_{o} \end{bmatrix}$$

$$z^{t} = W \bullet I^{t} + B$$

$$\delta W^{t} = \delta z^{t} \cdot (I^{t})^{T} \quad \delta I^{t} = \delta z^{t} \cdot W^{t} = \begin{bmatrix} \delta x^{t} \\ \delta h^{t-1} \\ \delta r^{t-1} \end{bmatrix}$$

$$\delta B^{t} = \delta z^{t} = \begin{bmatrix} \delta b_{g}^{t} \\ \delta b_{i}^{t} \\ \delta b_{f}^{t} \\ \delta b_{o}^{t} \end{bmatrix}$$

Forward propagation

$$\hat{h}_{k}, c_{k} = LSTM(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1})$$

$$\hat{i}_{k} = W_{xi}f' + W_{hi}h_{k-1} + W_{ri}r_{k-1} + b_{i}$$

$$\hat{f}_{k} = W_{xf}f' + W_{hf}h_{k-1} + W_{rf}r_{k-1} + b_{f}$$

$$\hat{o}_{k} = W_{xo}f' + W_{ho}h_{k-1} + W_{ri}r_{k-1} + b_{o}$$

$$\hat{g}_{k} = W_{xc}f' + W_{hc}h_{k-1} + W_{ri}r_{k-1} + b_{c}$$

Backpropagation

Layers t:

$$z^t = W \bullet I^t + B$$

$$\delta W_{gx} = \delta \hat{g}^t \cdot x^t \qquad \delta W_{ix} = \delta \hat{i}^t \cdot x^t$$

$$\delta W_{gh} = \delta \hat{g}^t \cdot h^{t-1} \qquad \delta W_{ih} = \delta \hat{i}^t \cdot h^{t-1}$$

$$\delta W_{gr} = \delta \hat{g}^t \cdot r^{t-1} \qquad \delta W_{ir} = \delta \hat{i}^t \cdot r^{t-1}$$

$$\delta W_{fx} = \delta \hat{f}^t \cdot x^t \qquad \delta W_{ox} = \delta \hat{o}^t \cdot x^t$$

$$\delta W_{fh} = \delta \hat{f}^t \cdot h^{t-1} \qquad \delta W_{oh} = \delta \hat{o}^t \cdot h^{t-1}$$

$$\delta W_{fr} = \delta \hat{f}^t \cdot r^{t-1} \qquad \delta W_{or} = \delta \hat{o}^t \cdot r^{t-1}$$

Forward propagation

$$g(\mathbf{x}_i, \mathbf{S}) = \vec{h}_i + \vec{h}_i + g'(\mathbf{x}_i)$$

$$\vec{h}_i, \vec{c}_i = LSTM(g'(x_i), \vec{h}_{i-1}, \vec{c}_{i-1})$$

$$\vec{h}_i, \vec{c}_i = LSTM(g'(x_i), \vec{h}_{i+1}, \vec{c}_{i+1})$$

Backpropagation

$$\delta g = \delta \vec{h}_i + \delta \vec{h}_i + \delta g'$$

$$\delta \vec{h}_i \doteq \delta \vec{h}_i = \delta(\text{LSTM})$$

The same as above

Forward propagation

Backpropagation

Input:g'

cnn demo

$$\delta_k = \delta g'$$

Forward propagation

cnn demo

$$u^l = W^l f(u^{l-1}) + b^l$$

$$f'(u^{l}) = \left(\frac{1}{1 + e^{-u^{l}}}\right)'$$

$$= \frac{1}{1 + e^{-u^{l}}} \left(1 - \frac{1}{1 + e^{-u^{l}}}\right)$$

$$= f(u^{l})(1 - f(u^{l}))$$

$$\delta u^l = \delta_k^l$$

Forward propagation

cnn demo

$$\delta_{i}^{l-1} = \sum_{k=1}^{c_{l}} (\delta_{k}^{l-1}) = \sum_{k=1}^{c_{l}} \frac{\partial u_{i}^{l}}{\partial u_{i}^{l-1}}$$

$$= \frac{\partial}{\partial u_{i}^{l-1}} \sum_{k=1}^{c_{l}} (Wf + b)$$

$$= \sum_{k=1}^{c_{l}} \delta_{k}^{l} W_{ik}^{l} f'(u_{i}^{l-1})$$

$$\delta^{l-1} = (W^l)^T \delta^l \cdot * f'(u^{l-1})$$

Forward propagation

cnn demo

$$b = b - \alpha \frac{\partial}{\partial b} J(W, b) = b - \alpha * \delta^{l}$$

$$W = W - \alpha \frac{\partial}{\partial W} J(W, b)$$

$$\frac{\partial u}{\partial W_{ik}} = \delta_{k}^{l} * f(u_{i}^{l-1})$$

$$W = W - \alpha * \delta_k^l * f(u_i^{l-1})$$

One-shot learning with Matching Networks

- Background
- Introduction
 - Introduce to One Shot Learning
 - Introduce to MANN
- Model
 - Motivation
 - Matching Networks
 - Backpropagation
- Experiments
- Summary

Data: Omniglot

Omniglot consists of 1623 characters from 50 different alphabets. Each of these was hand drawn by 20 different people. The large number of classes (characters) with relatively few data per class(20), makes this an ideal data set for testing small-scale one-shot classification.

Download:https://github.com/brendenlake/omniglot

Example:

Experiments

5-way, 5-shot learning

Traning data set:

X

β

Y

8

٤

Test data set:

K

μ

5

0

 Π

Experiments

Results

Test the relationship between accurancy and the number of bath.

Simulation environment:

- Python 3.5
- Tensorflow-1.0

Traning Input:

Five classes image of Omniglot

Output:

Accurancy of test bath

Time:total_train_batches

Experiments

Results

Test the accurancy of one-shot model.

Simulation environment:

- Python 3.5
- Tensorflow-1.0

Test Input:

Another five classes image of Omniglot

Output:

Accurancy of test bath

One-shot learning with Matching Networks

- Background
- Introduction
 - Introduce to One Shot Learning
 - Introduce to MANN
- Model
 - Motivation
 - Matching Networks
 - Backpropagation
- Experiments
- Summary

Summary

- One-shot learning learns the mapping function between input image and memory
- One-shot learning search the memory information for traning
- Matching Network has non-parametric structure, thus has ability to acquisition of new examples rapidly

超星思维 Nova Mind 25 June 2017 52