Elektromagnetik Alanlara Giriş - EHB212 Bahar 2020-2021

Dersi veren: Prof. Dr. Ali Yapar Dersin yardımcısı: Araş. Gör. Furkan Şahin Son Teslim Tarihi: 23.03.2021

- 1. $\vec{A}=2\vec{e}_x+3\vec{e}_y-\vec{e}_z,\ \vec{B}=-3\vec{e}_x+2\vec{e}_y+\vec{e}_z,\ \vec{C}=\vec{e}_x+\vec{e}_y+\vec{e}_z$ ve $\vec{D}=\vec{e}_x-2\vec{e}_y-\vec{e}_z$ vektörleri
 - (a) $\vec{A} \cdot \vec{B}$ islemini hesaplayınız.
 - (b) $\vec{A} \times \vec{B}$ işlemini hesaplayınız.
 - (c) \vec{A} vektörünün \vec{B} yönündeki bileşenini bulunuz.
 - (d) \vec{B} vektörünün \vec{A} yönündeki bileşenini bulunuz.
 - (e) \vec{C} vektörü \vec{A} ve \vec{B} vektörlerinin lineer kombinasyonu olarak yazılabilir mi?
 - (f) \vec{D} vektörü \vec{A} , \vec{B} ve \vec{C} vektörlerinin lineer kombinasyonu olarak yazılabilir mi?
 - (g) $\vec{A} \times \vec{B} \times \vec{C} = \vec{B}(\vec{A}.\vec{C}) \vec{C}(\vec{A}.\vec{B})$ esitliğini gösteriniz.
- 2. Aşağıda verilen yüzeylerin normal vektörlerini bulunuz.

(a)
$$z = 0$$

1. Ödev

(b)
$$x + y + z = 1$$
 (c) $x^2 + y^2 = 1$

(c)
$$x^2 + y^2 = 1$$

(d)
$$x^2 + y^2 + z^2 = 1$$

(e)
$$\rho = 1$$

(f)
$$r = 1$$

3. Aşağıdaki eğrilerin teğetlerini bulunuz.

(a)
$$y = x, x > 0, z = 0$$

(b)
$$y = x^2, x \in (-\infty, \infty), z = 0$$

(c)
$$x^2 + y^2 = 1$$
, $z = 1$

(d)
$$x=2\cos(t), y=2\sin(t), z=t, t \in [0, \infty)$$

4. Aşağıda verilmiş olan \vec{A} vektörleri ve C eğrileri $\int_C \vec{A} \, d\vec{\ell}$ için hesaplayınız. Not: Kapalı eğrilerde yön ayrıca belirtilmediği sürece saatin dönüş yönünün tersini (counterclockwise) baz alınız. Diğer integrallerde integralin başlangıç ve bitiş noktalarını keyfi olarak secebilirsiniz.

(a)
$$\vec{A} = x\vec{e_x} + y\vec{e_y}, \ C: \{y = x, z = 0, x \in (0, 1)\}$$

(b)
$$\vec{A} = y\vec{e_x} - x\vec{e_y}, \ C : \{x^2 + y^2 = 1, z = 0\}$$

(c)
$$\vec{A} = x\vec{e}_x + y\vec{e}_y$$
, $C : \{x^2 + y^2 = 1, z = 0\}$

(d)
$$\vec{A} = \frac{\vec{e}_x + \vec{e}_y}{x^2 + y^2}, \ C : \{y = x, z = 0, x \in (0, \infty)\}$$

(e)
$$\vec{A} = \frac{\vec{e}_x + \vec{e}_y}{x^2 + y^2}$$
, $C : \{y = 0, z = 0, x \in (0, \infty)\}$

(f)
$$\vec{A} = \frac{\vec{e}_x + \vec{e}_y}{x^2 + y^2}$$
, $C : \{x = 0, z = 0, y \in (0, \infty)\}$

(g)
$$\vec{A} = \frac{-y\vec{e}_x + x\vec{e}_y}{x^2 + y^2}$$
, $C: \{x^2 + y^2 = 1, z = 1\}$

5. Aşağıda kartezyen, silindirik ve küresel koordinatlarda çeşitli vektörler verilmiştir. Verilen vektörleri ifade edildiği koordinat sisteminin dışındaki diğer iki koordinat sisteminde ifade ediniz. Örneğin kartezyen koordinat sisteminde verilmiş olan $x \vec{e}_x + y \vec{e}_y + z \vec{e}_z$ vektörünün silindirik koordinatlardaki ifadesi $\rho \vec{e}_{\rho} + z \vec{e}_z$ ve küresel koordinatlardaki ifadesi $r \vec{e}_r$ şeklindedir.

(a)
$$\vec{A}(x, y, z) = \vec{e}_x$$

(b)
$$\vec{A}(x,y,z) = \vec{e}_y$$
 (c) $\vec{A}(x,y,z) = \vec{e}_z$

(c)
$$\vec{A}(x, y, z) = \vec{e}_z$$

(d)
$$\vec{A}(\rho,\phi,z)=\vec{e}_{\rho}$$
 (e) $\vec{A}(\rho,\phi,z)=\vec{e}_{\phi}$ (f) $\vec{A}(r,\theta,\phi)=\vec{e}_{r}$

(e)
$$\vec{A}(\rho, \phi, z) = \vec{e}_{\sigma}$$

(f)
$$\vec{A}(r,\theta,\phi) = \vec{e_r}$$

(g)
$$\vec{A}(r,\theta,\phi) = \vec{e}_{\theta}$$

(h)
$$\vec{A}(x, y, z) = y\vec{e}_x - x\vec{e}_y$$

$$({\rm g}) \, \vec{A}(r,\theta,\phi) = \vec{e_{\theta}} \qquad \qquad ({\rm h}) \, \vec{A}(x,y,z) = y \vec{e_{x}} - x \vec{e_{y}} \qquad ({\rm i}) \, \, \vec{A}(x,y,z) = \frac{\vec{e_{x}} + \vec{e_{y}}}{x^{2} + y^{2}}$$

(j)
$$\vec{A}(x,y,z) = \frac{-y\vec{e_x} + x\vec{e_y}}{x^2 + y^2}$$
 (k) $\vec{A}(\rho,\phi,z) = \frac{1}{\rho}\vec{e_\rho}$ (l) $\vec{A}(r,\theta,\phi) = \frac{1}{r^2}\vec{e_\theta}$

(k)
$$\vec{A}(\rho, \phi, z) = \frac{1}{\rho} \vec{e}_{\rho}$$

(l)
$$\vec{A}(r,\theta,\phi) = \frac{1}{r^2}\vec{e}_{\theta}$$

- 6. ∇ yardımıyla tanımlanmış olan çeşitli vektörel diferansiyel operatörlere ilişkin olarak aşağıdaki problemleri çözünüz.
 - (a) Aşağıdaki özdeşliklerin doğru olduğunu gösteriniz.

(i) div rot
$$\vec{A} = 0$$

(ii) rot grad
$$f = 0$$

(iii) div grad
$$f = \nabla^2 f = \Delta f$$
, (Δ : Laplace Operatörü)

(iv)
$$\operatorname{grad}(fg) = g \operatorname{grad}(f) + f \operatorname{grad}(g)$$

(v)
$$\operatorname{div}(f\vec{A}) = f \operatorname{div} \vec{A} + \operatorname{grad}(f) \cdot \vec{A}$$

(vi)
$$\operatorname{rot}(f\vec{A}) = f \operatorname{rot} \vec{A} + \operatorname{grad}(f) \times \operatorname{rot} \vec{A}$$

(vii)
$$\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \cdot \operatorname{rot} \vec{A} - \vec{A} \cdot \operatorname{rot} \vec{B}$$

(viii) rot rot
$$\vec{A} = \operatorname{grad}\operatorname{div} \vec{A} - \Delta \vec{A}$$

(b) Aşağıdaki fonksiyonların gradyanını ($\nabla f = \operatorname{grad} f$) hesaplayınız.

(i)
$$f(x, y, z) = x + y + z$$

(ii)
$$f(x, y, z) = x^2 + y^2 + z^2$$

(iii)
$$f(x, y, z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

(iv)
$$f(\rho, \phi, z) = \frac{\cos \phi}{\rho}$$

(v)
$$f(r, \theta, \phi) = \frac{1}{r}$$

(c) Aşağıdaki vektörel alanların diverjansını $(\nabla . \vec{A} = \operatorname{div} \vec{A})$ ve rotasyonelini $(\nabla \times \vec{A} = \operatorname{rot} \vec{A})$ hesaplayınız.

(i)
$$\vec{A}(x, y, z) = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$$

(ii)
$$\vec{A}(x, y, z) = x^2 \vec{e}_x + y^2 \vec{e}_y + z^2 \vec{e}_z$$

(iii)
$$\vec{A}(x,y,z) = \frac{\vec{e_x} + \vec{e_y} + \vec{e_z}}{\sqrt{x^2 + y^2 + z^2}}$$

(iv)
$$\vec{A}(x, y, z) = \frac{\vec{e_x} + \vec{e_y} + \vec{e_z}}{x^2 + y^2 + z^2}$$

(v)
$$\vec{A}(x, y, z) = \frac{-y\vec{e}_x + x\vec{e}_y}{x^2 + y^2}$$

(vi)
$$\vec{A}(\rho,\phi,z) = \frac{1}{\rho}\vec{e}_{\rho}$$

(vii)
$$\vec{A}(r,\theta,\phi) = \frac{1}{r^2} \vec{e_{\theta}}$$

(viii)
$$\vec{A}(r,\theta,\phi) = \frac{1}{r}\vec{e}_{\phi}$$

- 7. Aşağıdaki problemleri çözünüz.
 - (a) Aşağıda belirtilen vektörler için verilen hacimler (V) ve bu hacimleri kuşatan yüzeyleri dikkate alarak Gauss (Diverjans) Teoremini gerçekleyiniz.

(i)
$$\vec{A}(x, y, z) = y\vec{e}_x - x\vec{e}_y$$
, $V:\{(x, y, z)|x \in (0, 1), y \in (0, 1), z \in (0, 1)\}$

(ii)
$$\vec{A}(x,y,z) = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$$
, $V:\{(x,y,z)|x\in(0,1),y\in(0,1),z\in(0,1)\}$

(iii)
$$\vec{A}(x, y, z) = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$$
, $V:\{(x, y, z)|x^2 + y^2 + z^2 < 1\}$

(iv)
$$\vec{A}(x,y,z) = x^2 \vec{e}_x + y^2 \vec{e}_y + z^2 \vec{e}_z$$
, $V:\{(x,y,z)|x^2 + y^2 + z^2 < 1\}$

(v)
$$\vec{A}(\rho, \phi, z) = \frac{1}{\rho} \vec{e}_{\rho}, \ V: \{(\rho, \phi, z) | \rho \in (0, 1), \phi \in (0, 2\pi), z \in (-1, 1)\}$$

(vi)
$$\vec{A}(r,\theta,\phi) = \frac{1}{r^2}\vec{e_r}, \ V:\{(x,y,z)|x^2+y^2+z^2<1\}$$

(b) Aşağıda belirtilen vektörler için verilen yüzeyler S ve bu yüzeyleri kuşatan C eğrilerini dikkate alarak Stokes Teoremini gerçekleyiniz.

(i)
$$\vec{A}(x,y,z) = y\vec{e}_x - x\vec{e}_y$$
, $S:\{(x,y,z)|x^2 + y^2 + z^2 = 1, z \ge 0\}$

(ii) $\vec{A}(\rho,\phi,z)=\rho\cos(\phi)\vec{e}_{\rho}+\rho\sin(\phi)\vec{e}_{\phi}$ olmak üzere Stokes Teoremini aşağıda verilen şekle göre doğrulayınız.

