Documentation: DESeq2 Differential Expression Analysis Output Table

The output table from DESeq2 provides detailed information about differentially expressed genes (DEGs) based on the statistical analysis of RNA-seq data. Below is an explanation of the key columns in the output table:

Key Columns in the DESeq2 Output Table (<u>LogRatios_*.tsv</u> and its subset <u>SignifDiffExpr_*.tsv</u> in which are only the genes that have adjusted p-value <0.05)

1. baseMean:

- Description: The average normalized counts across all samples, representing the overall expression level of the gene.
- Use: Helps identify highly or lowly expressed genes.
- Consider genes with BaseMean <50 as genes with low expression

log2FoldChange:

- Description: The log2-transformed fold change in expression between two conditions (e.g., treatment vs. control).
- Use: Indicates the magnitude and direction of change:
 - Positive values: Upregulation in the treatment group.
 - **Negative values**: Downregulation in the treatment group.

3. **1fcSE**:

- **Description**: The standard error of the log2FoldChange.
- **Use**: Provides an estimate of the uncertainty in the fold change.

4. stat:

- Description: The Wald test statistic, calculated as log2FoldChange / lfcSE.
- Use: Used to compute the p-value.

5. pvalue:

- Description: The raw p-value from the Wald test, indicating the statistical significance of the differential expression.
- **Use**: Identifies statistically significant DEGs (typically < 0.05).

6. **padj**:

- Description: The adjusted p-value (e.g., Benjamini-Hochberg correction) to control for multiple testing.
- **Use**: Reduces false positives; commonly used threshold is padj < 0.05.

7. gene (optional):

- **Description**: The gene identifier (e.g., gene name, Ensembl ID, or other annotation).
- Use: Links DEGs to their functional annotation.

How to Interpret the Output

- **Significant DEGs**: Genes with padj < 0.05 are considered significant.
- **Upregulated Genes**: Genes with log2FoldChange > 0 and padj < 0.05.
- **Downregulated Genes**: Genes with log2FoldChange < 0 and padj < 0.05.
- Low-Expression Genes: Genes with low baseMean values (50-100) may be filtered out as they are less reliable.

Example Output Table

gene	baseMean	log2FoldChange	IfcSE	stat	pvalue	padj
GeneA	500.12	2.34	0.15	15.60	1.2e-10	3.6e-08
GeneB	300.45	-1.78	0.20	-8.90	5.7e-07	1.2e-05
GeneC	50.23	0.45	0.30	1.50	0.13	0.25

Documentation: Functional enrichment with Webgestalt

https://www.webgestalt.org/

Overrepresentation analysis

For Overrepresentation analysis, you click on the "Over Representation Analysis" as it was done below, select organism and database (most common: *geneontology -> Biological Processes nonredundant*)

In the **input ID list** box you add the **column of the gene symbols** in the **SignifDiffExpr_*.tsv** file.

ATTENTION!!! Unless otherwise specified, you select the genome protein_coding genes at "Select Reference Set".

GSEA

For Gene set Enrichment analysis, you click on the "GeneSet Enrichment Analysis" as it was done below, select organism and database (most common: *geneontology -> Biological Processes nonredundant*).

Instructions for Preparing the Input File:

- Open the LogRatios_*.tsv File:
 - Use Excel or Google Sheets (recommended, especially if the log2FoldChange values appear unusual, e.g., with multiple dots like -3.989.094.943).

2. Sort the Data:

 Sort the log2FoldChange column in descending order, from the most positive to the most negative values.

3. Prepare the Input for WebGestalt:

- Use the gene name and log2FoldChange columns from the LogRatios_*.tsv file as the input for WebGestalt.
- o Ensure the format matches the example shown in the figure below.

Documentation: Additional files and explanations

Results folder contains:

Dea (differential expression analysis)

- LogRatios and SignifDiffExpr files: These files contain the results of differential
 expression analysis from DESeq2 for each comparison described above. The filenames
 indicate the reference condition—for example, SignifDiffExpr_CON_PAT.tsv means that
 a gene with a positive log2 fold change (log2FC) is upregulated in the Control sample
 group.
- **Table_input_gene_counts.tsv**: This file contains the raw gene count data used as input for DESeq2. The counts for each sample were generated using the *featureCounts* function from the Subread tool.
- **library_normalized_gene_counts.tsv**: This file contains gene count data normalized using DESeg2's size factors to account for differences in library sizes.
- Plots:
 - PCA_plot of the samples
 - Volcanoplot of DEGs (differentially expressed genes) for every comparison
 - Heatmap of DEGs for every comparison (verify the sample grouping in the dendrogram!)
 - plots_deg folder: violin plot for every DEGs, viewed for all the sample groups

Report_align_count.html to visualize the general statistics of the mapped reads (% Aligned, %aAssigned to feature)

Considerations for experimental validations of your DEGs

- Prioritize DEGs with higher fold changes: Small log2 fold changes (log2FC) may not be reliably detected by qPCR. Consider validating genes with log2FC > 1.
- Consider expression levels: Genes with very low expression across conditions (e.g., BaseMean < 100) may be more prone to variability and harder to validate.
- **Check for biological relevance**: Select DEGs based on functional significance, pathway involvement, or known associations with the phenotype of interest.