Team Project Part 1

Lan Haixiang

May 11, 2020

Contents

1	background knowledge			
		Decision Tree		
	1.2	Entropy	2	
	1.3	Conditional Entropy	2	
		Information Gain		
		Information Gain Ratio		
	1.6	Gini Index	3	
2	Get	Access to Data	3	
3 Build a Decition Tree			4	
	3.1	Feature Choice	4	

1 background knowledge

1.1 Decision Tree

Decision tree has advantages:

- Simple Idea: IF...THEN...
- It can deal with high dimension data and winnow importan variables.
- The results are easy to understand.
- Quick calculation
- Ideal correctness

CART decision tree is called Classification and Regression tree. When the dataset is of continuous type, the tree can be a Regression Tree. We can predict the value by the expected value of leaf nodes. When dataset is of discrete type, we can regard it as a Classification Tree. The tree **is a binary tree**. One feature can be used many times. Every non-leaf node can only extend to two children.

1.2 Entropy

Definition: the degree of disorder or randomness in the system. Suppose X is a discrete random variable, the pmf:

$$P(X = X_i) = p_i, i = 1, 2, \dots, n$$

then the entropy of RV X is:

$$H(X) = -\sum_{i=1}^{n} p_i log_2 p_i$$

The more the entropy is, the unceritainty the RV is.

1.3 Conditional Entropy

In the given condition of X, the conditional entropy of RV Y H(Y|X) is defined as:

$$H(Y|X) = \sum_{i=1}^{n} p_i H(Y|X = X_i)$$

In the equation, $p_i = P(X = X_i)$

1.4 Information Gain

Definition: Information gain is the reduction in entropy or surprise by transforming a dataset and is often used in training decision trees. Information gain is calculated by comparing the entropy of the dataset before and after a transformation.

The information gain that the feature A contribuites to dataset D is called

$$g(D, A) = H(D) - H(D|A)$$

For the dataset D, we need to calculate the information regarding to each feature and each feature value, and choose the largest one, which is the best.

Suppose a training dataset D, the capacity is |D|, has k categories C_k , $|C_k|$ is the sample number of C_k . Suppose one feature A has n values a_1, a_2, \ldots, a_n We can divide D into n subsets $D_1, D_2, \ldots, D_n, |D_i|$ is the sample number of D_i . We denote D_{ik} as a subset of D_i which belong to C_k , $|D_{ik}|$ is the sample number of D_{ik} . We then calculate the information gain as follows:

1. calculate

$$H(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} log_2 \frac{|C_k|}{|D|}$$

.

2. calculate the conditional entropy of feature A contributing to D

$$H(D|A) = \sum_{i=1}^{n} \frac{|D_i|}{|D|} \sum_{k=1}^{K} \frac{|D_{ik}|}{|D_i|} log_2 \frac{|D_{ik}|}{|D_i|}$$

3. calculate information gain

$$g(D, A) = H(D) - H(D|A)$$

1.5 Information Gain Ratio

Sometimes we may choose improperly a feature that has too much values. Such situation makes no sense. We must correct it using information gain ratio.

$$g_R(D, A) = \frac{g(D, A)}{H_A(D)}$$

$$H_A(D) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} log_2 \frac{|D_i|}{|D|}$$

1.6 Gini Index

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

In the equation, p_i is the probability of class C_i in D

For a discrete variable, we need to calculate the weight sum of each zone's impurity, As the following:

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2)$$

For a continuous variable, we can set a dividing point to get the same goal.

Our goal is to make the weight sum as small as possible by choose the best feature and the best feature value.

2 Get Access to Data

Use numpy module to transform csv file into ndarray class.

3 Build a Decition Tree

- Starting from root node, calculate the possible **information gain/information gain ratio/gini index** regarding each feature and value. Choose the best information gain/ratio/gini index. Construct different child nodes according to the feature and value.
- Use recursion to the child node and build the tree.
- Until all the labels are the same after selection.

3.1 Feature Choice

The most popular methods are:

- ID3: Depend on information gain
- CD4.5: Depend on information gain ratio
- CART: Depend on Gini Index when it is Classification Tree, on MSE when it is Regression Tree.