Optimisation de la configuration d'une pièce lors de l'évacuation d'une foule

Introduction:

Modèles macroscopiques:

- \rightarrow Dynamique des fluides : gaz, hydraulique
- → Débit de piétons

Modèles microscopiques:

- \rightarrow Interactions en forces
- → Automates cellulaires
- \rightarrow Flots de gradient

Plan:

- 1. Modélisation par automates cellulaires
- 2. Modélisation par flots de gradient
- 3. Résultats et comparaisons
- 4. Annexes

Modélisation par automates cellulaires

Mise en place du modèle :

	A							Η	_
A	0	1	0	1	1	0	0	0	0
В	1	0	1	1	1	1	0	0	0
C	0	1	0	0	1	1	0	0	0
D	1	1	0	0	1	0	1	1	0
Ε	1	1	1	1	0	1	1	1	1
F	0	1	1	0	1	0	0	1	1
G	0	0	0	1	1	0	0	1	0
Η	0	0	0	1	1	1	1	0	1
I	0	0	0	0	1	1	0	1	0

2	2	2	3	4
1	1	2	3	4
0	1	2	3	4
1	1	2	3	4
2	2	2	3	4

2	2	3	4	5
1		თ	4	5
0		4	4	5
1		3	4	5
2	2	3	4	5

Pour chaque individu on détermine les cases qui lui sont accessibles :

$M_{-1,-1}$	$M_{-1,0}$	$M_{-1,1}$
$M_{0,-1}$	$M_{0,0}$	$M_{0,1}$
$M_{1,-1}$	$M_{1,0}$	$M_{1,1}$

Si la case [k,l] est une case accessible à l'individu [i,j] alors :

$$P([i,j] \rightarrow [k,l]) = \frac{Edist([i,j] \rightarrow [k,l])}{\sum_{[m,n]accessibles} Edist([i,j] \rightarrow [m,n])}$$

$$Edist([i,j] \to [k,l]) = exp(K * (dist([i,j]) - dist([k,l]))$$

Avec K > 0, une constante de réglage

Exemple:

1	1	2
0	1	2
1	1	2

0.134	0.134	0.081
0.221		0.081
0.134	0.134	0.081

0.085	0.085	0.011
0.626		0.011
0.085	0.085	0.011

0.017	0.017	0.0
0.931		0.0
0.017	0.017	0.0

0.001	0.001	0.0
0.996		0.0
0.001	0.001	0.0

K = 0.5

K=2

K=4

K=7

Réglage de K :

Exploitation de 2 vidéos :

1 : Peu de panique

2 : Beaucoup de panique

Source : Université de Navarre (Espagne)

Réglage de K:

Exploitation de 2 vidéos :

0.085	0.085	0.011
0.626		0.011
0.085	0.085	0.011

Peu de panique : $K \in [3,4]$

Beaucoup de panique : $K \in [0.5, 1.5]$

On prendra: K = 2

Modélisation par flots de gradient

Mise en place du modèle :

Mise en place du modèle :

Déplacement sur les zones autorisées : dans la pièce et en dehors des obstacles

→ Projection de la vitesse en cas de collision avec un bord (mur ou obstacle)

Condition de non chevauchement : 2 individus ne doivent pas se chevaucher

→ Projection de la vitesse en cas de collision avec un individu

Résultats et comparaisons

Dimensionnement du modèle d'automates cellulaires :

Pièce de 25 m²

Dimensionnement du modèle de flots de gradient :

50 cm

Pièce de 25 m²

Exemple d'évacuation simple avec le modèle d'automates cellulaires :

Sans obstacle:

Population initiale: 20 individus 23/33

Exemple d'évacuation simple avec le modèle d'automates cellulaires :

Avec obstacle:

Population initiale: 20 individus

Itérations en fonction de la population initiale pour le modèle d'automates cellulaires :

Exemple d'évacuation simple avec le modèle de flots de gradient :

Sans obstacle:

I = 40

I = 80

Population initiale: 40 individus

Exemple d'évacuation simple avec le modèle de flots de gradient :

Avec obstacle:

Population initiale: 40 individus

Itérations et pourcentage de blocage en fonction de la population initiale pour le modèle de flots de gradient sans obstacle :

Itérations en fonction de la population initiale pour le modèle de flots de gradient :

Pourcentage d'erreur en fonction de la population initiale pour le modèle de flots de gradient :

Ordre de grandeur du temps d'évacuation avec les 2 modèles :

Exploitation des 2 vidéos :

- Temps de sortie avec peu de panique : 35s
- Temps de sortie avec beaucoup de panique : 43s
- On choisira Texp = 40s

Adaptation au premier modèle :

- Itérations moyenne sans obstacle : 19
 - \rightarrow 1 itération \simeq 2.10 secondes

Adaptation au second modèle:

- Itérations moyenne avec obstacle 8 : 300
 - $\rightarrow 1$ itération $\simeq 0.13$ secondes

Temps de sortie en fonction de la population initiale :

Flot de gradients

Conclusion

Annexes