

# Text to Speech Synthesis

Presented by: Yassine ibork

Supervised by: Dr. Kshirsagar Shruti

# What is text to speech?

Text-to-Speech (TTS) is a technology that converts written text into spoken words. It allows computers and devices to generate human-like speech, enabling users to listen to written content instead of reading it.



# Use Cases of Text-to-Speech







**Navigation Systems** 



E-Learning





#### TODAY'S AGENDA

- TERMINOLOGIES OF TTS SYSTEMS
- HOW DOES TTS WORK?
- EVOLUTION OF TEXT TO SPEECH SYSTEMS
- EXPLORING TTS SOLUTIONS: ON-PREMISES VS.
  CLOUD
- HANDS-ON DEMO
- CONCLUSION



# I. Terminologies of TTS systems

#### Phoneme

The smallest unit of sound in a language that distinguishes one word from another (e.g., the "b" in "bat").

#### Prosody

Refers to the rhythm, stress, and intonation of speech, which helps convey emotions and natural flow.

#### Mel-Spectrogram

A visual representation of sound, showing the distribution of energy across different frequencies over time, used by TTS systems to convert text into speech.

#### II. How does TTS work?

Text-to-Speech (TTS) systems convert written text into human-like speech using a multi-step process. This involves:



# Preprocessor

#### Tokenization

Breaks the input text into smaller units, like words or sentences.

#### Phoneme Conversion

Converts text into phonemes based on pronunciation (e.g., "hello" becomes HH AH0 L OW1).

#### **Phoneme Duration**

Calculates the time each phoneme takes in the audio, affecting the speech's pacing.





#### Phoneme Input

The encoder receives phonemes (linguistic features) as input.

#### **Feature Extraction**

Latent

feature

Transforms phonemes into ndimensional embeddings, capturing essential speech features.

#### Latent Features

Pitch/

Energy/

Duration

Pitch/

Energy/ Duration Operation

(Addition/ Concatenation)

These embeddings, known as latent features, are crucial for predicting prosody (pitch, energy, duration) and improving the naturalness of speech.

# Decoder

#### Latent Feature Input

The decoder takes the latent features generated by the encoder.

#### Mel-Spectrogram Generation

It converts these features into a melspectrogram, representing the frequency and amplitude of the speech signal over time.



# Vocoder

It transforms the acoustic features (Mel-spectrogram) into a waveform output (audio). This can be achieved using a mathematical model like **Griffin Lim**, or by training a neural network to map Mel-spectrograms to waveforms. In practice, learning-based methods generally outperform the Griffin Lim model.



# III. Evolution of text to speech systems

(1) Rule-based Systems

(2) Concatenative TTS

(3) Statistical Parametric TTS

 $\left(\begin{array}{c}4\end{array}\right)$  Neural TTS

# Rule-based Systems

- A rule-based Text-to-Speech (TTS) system is a traditional method for converting written text into spoken language using predefined linguistic and phonetic rules.
  - Lexical Rules: Identify the structure of the text.
  - Linguistic Units: Convert the text into fundamental speech units.
  - Phonetic Rules: Apply the pronunciation rules to convert linguistic units into phonetic forms.
  - Prosodic Data: Add intonation, rhythm, and stress to generate natural-sounding speech.

phonetic and lexical rules.



## Limitations of rule based tts

- <u>Robotic or Monotone Output</u>: Rule-based TTS systems produce sound that lacks emotional expressiveness, making them sound robotic.
- **High Manual Effort:** Rule-based systems require linguists and engineers to manually craft rules for pronunciation, grammar, prosody, and sentence structure.
- Scalability Challenges: Scaling rule-based systems to support multiple languages, accents, or styles requires significant manual intervention, leading to scalability issues.

# Concatenative TTS

- Concatenative Text-to-Speech (TTS) is a method of speech synthesis that constructs speech by selecting and concatenating pre-recorded segments of human speech (e.g., phonemes, diphones, syllables).
- By using actual recordings of human speech, concatenative TTS systems produce much more natural-sounding output compared to rule-based systems, which rely on generated waveforms or acoustic models.



#### Statistical Parametric TTS

- Parameter Modeling: The core of this approach is modeling speech parameters (pitch, spectral features, duration) using statistical techniques. This allows for more flexible speech generation compared to concatenative methods.
- Training from Dataset: The system learns from a training dataset of recorded speech, typically from a single speaker. This enables it to capture the characteristics of natural speech.
- Statistical Models: It uses statistical models (like **Hidden Markov** Models in early versions) to represent sounds or phonemes as probability distributions over speech features. This probabilistic approach allows for smoother transitions between sounds.
- Flexibility: Unlike concatenative TTS, this approach can potentially generate speech for any text input, even if specific word combinations weren't in the training data.



### Neural TTS

- Utilizes deep learning models to directly generate waveforms from text.
- Significantly improves naturalness, expressiveness, and flexibility, resulting in human-like voices.
- Examples: Tacotron, WaveNet.

# IV. Exploring TTS Solutions: On-Premises vs. Cloud

- 1. On-Premises TTS: Leveraging Pre-trained Models
   Control and Privacy: Implement TTS locally, ensuring full control over data.
  - Pre-trained Models: Use libraries like SpeechBrain for quick setup and high-quality speech synthesis without extensive ML knowledge.
- 2. TTS as a Service: Cloud Providers
  - Google Cloud Text-to-Speech:
    - Multiple voice options and language support.
    - Easy API integration for applications.
  - Amazon Polly:
    - Natural-sounding voices with real-time synthesis.
       Integrates seamlessly with other AWS services.





# Hands-On Demo 10 5

Code Available at: https://github.com/yibork/spoken-language-processing-tts-presentation

#### IV. Conclusion

Text-to-Speech systems have evolved from rule-based approaches to advanced neural architectures, providing more natural and expressive speech. Neural TTS, with its deep learning capabilities, has revolutionized speech synthesis, enabling customizable voices, real-time generation, and significant improvements in quality and flexibility for various applications.

# References

- A review-based study on different Text-to-Speech technologies
- Text To Speech for Bangla Language using Festival