1 Sistemas de numeración posicional

Un sistema de numeración posicional se caracteriza porque cada cifra representa a un valor relativo diferente, dependiendo de su valor absoluto y de su posición en una secuencia de dígitos. Esta característica le convierte en un sistema de numeración adecuado para realizar operaciones matemáticas por escrito, tales como: la suma, la resta, la multiplicación o la división.

Ejemplo:

En el Sistema Decimal, el número entero "cuatrocientos cuarenta y cuatro" se representa como **444**. Empezando por la izquierda, el primer 4 representa al "cuatrocientos" **(400)**, el segundo 4 representa al "cuarenta" **(40)** y el último 4 representa al "cuatro" **(4)**. En este caso, las tres cifras tienen como valor absoluto: el 4, y como valores relativos: el 400, el 40 y el 4.

444 = 400 + 40 + 4

2 Bases y sistemas de numeración

La base de un sistema de numeración posicional está determinada por el número de dígitos diferentes que se pueden utilizar para representar cada una de las cifras.

1.1 Decimal

El sistema decimal es el que usamos habitualmente. El conjunto de símbolos que se usa para representar las cantidades se denomina números árabes o guarismos.

Sus características son:

• Base del sistema: 10

• Cifras posibles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

1.2 Binario

El sistema binario es el que utilizan los ordenadores internamente para trabajar. Cada dígito binario se denomina bit y a un grupo de ocho dígitos se le denomina byte.

Sus características son:

Base del sistema: 2

• Cifras posibles: 0, 1.

1.3 Octal

El sistema octal se suele usar en informática porque la conversión de números entre octal y binario es muy sencilla, ya que cada dígito octal se corresponde directamente con 3 bits.

Sus características son:

Base del sistema: 8

• Cifras posibles: 0, 1, 2, 3, 4, 5, 6, 7.

1.4 Hexadecimal

El sistema hexadecimal se suele usar en informática porque la conversión de números entre hexadecimal y binario es muy sencilla, ya que cada dígito hexadecimal se corresponde directamente con 4 bits y dos dígitos hexadecimales se corresponden con un byte.

Sus características son:

• Base del sistema: 16

• Cifras posibles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

A continuación se muestra la tabla de equivalencia entre los números hexadecimales de un dígito y los números decimales:

Decimal	0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	