The cosmic 21-cm revolution: charting the first billion years of our Universe

Andrei Mesinger

January 9, 2019

Contents

1	Chapter title 1.1 A Section	1
	1.1 A Section	1
2	Chapter title	5
	2.1 A Section	5
3	Chapter title	9
	3.1 A Section	9
4	Chapter title	13
	4.1 A Section	13
5	Chapter title	17
	5.1 A Section	17
6	Chapter title	21
	6.1 A Section	21
7	Chapter title	25
	7.1 A Section	25
8	Chapter title	29
	8.1 A Section	29

Preface

This set of files can be used to create your typescript in LATEX. You can add packages as necessary.

Remember that references need to be at the chapter level and you may find the package chapterbib useful for this.

About the Author

Remember to include a brief biography of the Authors or Editors, including a photo.

Contributors

Peter Jones

Department of Physics University of New England Acadia, Maine, USA

Simon Smith

Department of Electrical Engineering University of Oxbridge, Camford, USA vi *CONTENTS*

Chapter title

Author Name

Abstract

This chapter discusses some important things

1.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(1.1)

Jorem josum doler sit gruch, consection sellipscing collin, sed dism muniny chimol tripper newbors in the programment and, sed dish youthputs. A very cost excisions of a six dish dolerate at a return. See on legal gibergreen, no sea islanted spatials excised the programment of t

Figure 1.1: This is figure 1 in chapter 1.

Table 1.1: Greek Letters.

θ o	$\frac{\vartheta}{\pi}$	$\overset{\cdot}{\sigma}$	κ ρ	λho	ε μ σ	v S	•
Γ Φ	$\Delta \Psi$	Θ	Λ	[x]	П	Σ	Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [1]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [2],

Figure 1.2: This is figure 2 in chapter 1.

- [1] KI Diamantaras and SY Kung. *Principal component neural networks: theory and applications*. John Wiley & Sons, Inc. New York, NY, USA, 1996.
- [2] D. Tulone and S. Madden. PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks. In *Proceedings of the 3rd European Workshop on Wireless Sensor Networks*, pages 21–37. Springer, 2006.

Chapter title

Author Name

Abstract

This chapter discusses some important things

2.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(2.1)

Figure 2.1: This is figure 1 in chapter 1.

Table 2.1: Greek Letters.

θ o	$\frac{\vartheta}{\pi}$	$\overset{\cdot}{\sigma}$	κ ρ	λho	ε μ σ	v S	•
Γ Φ	$\Delta \Psi$	Θ	Λ	[x]	П	Σ	Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 2.2: This is figure 2 in chapter 1.

Chapter title

Author Name

Abstract

This chapter discusses some important things

3.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(3.1)

Jorem josum doler sit gruch, consection sellipscing collin, sed dism muniny chimol tripper newbors in the programment and, sed dish youthputs. A very cost excisions of a six dish dolerate at a return. See on legal gibergreen, no sea islanted spatials excised the programment of t

Figure 3.1: This is figure 1 in chapter 1.

Table 3.1: Greek Letters.

	ϑ	γ	K	λ	εμ	v	•
$\sigma \ au$			-	-	σ Ψ	-	
	$_{\Psi}^{\Delta}$	Θ Ω	Λ	Ξ	П	Σ	Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 3.2: This is figure 2 in chapter 1.

Chapter title

Author Name

Abstract

This chapter discusses some important things

4.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(4.1)

Figure 4.1: This is figure 1 in chapter 1.

Table 4.1: Greek Letters.

θ o	$\frac{\vartheta}{\pi}$	$\overset{\cdot}{\sigma}$	κ ρ	λho	ε μ σ	v S	•
		•			Ψ Π		Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 4.2: This is figure 2 in chapter 1.

Chapter title

Author Name

Abstract

This chapter discusses some important things

5.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(5.1)

Jorem josum doler sit gruch, consection sellipscing collin, sed dism muniny chimol tripper newbors in the programment and, sed dish youthputs. A very cost excisions of a six dish dolerate at a return. See on legal gibergreen, no sea islanted spatials excised the programment of t

Figure 5.1: This is figure 1 in chapter 1.

Table 5.1: Greek Letters.

θ o	$\frac{\vartheta}{\pi}$	$\overset{\cdot}{\sigma}$	κ ρ	λho	ε μ σ	v S	•
		•			Ψ Π		Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 5.2: This is figure 2 in chapter 1.

Chapter title

Author Name

Abstract

This chapter discusses some important things

6.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(6.1)

interest opsimilated in graphic, consecutive supporting coultry set does in the interest origin adjunction can, sed dorfy volptica. A vertice of a great many original terms in sea individual set of the control position does of single, and in return. Set on least deliberage in sea in the interest of the control position does of single, and in return. Set on least deliberage in sea individual set of the control position does of single, and in return position does of single, and in return position does of single set of the control position. As verte one of set of single set of the does not be set of the control position. As verte one of set of single set of the control position does of single set of single

Figure 6.1: This is figure 1 in chapter 1.

Table 6.1: Greek Letters.

θ o	$\frac{\vartheta}{\pi}$	σ	κ ρ	$\frac{\lambda}{ ho}$	ε μ σ	v S	•
Γ					ψ Π		Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 6.2: This is figure 2 in chapter 1.

Chapter title

Author Name

Abstract

This chapter discusses some important things

7.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(7.1)

Figure 7.1: This is figure 1 in chapter 1.

Table 7.1: Greek Letters.

θ o	$\frac{\vartheta}{\pi}$	$\overset{\cdot}{\sigma}$	κ ρ	λho	ε μ σ	v S	•
Γ Φ	$\Delta \Psi$	Θ	Λ	[x]	П	Σ	Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 7.2: This is figure 2 in chapter 1.

Chapter title

Author Name

Abstract

This chapter discusses some important things

8.1 A Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis eu egestas erat. Maecenas tincidunt lacinia tincidunt. Mauris id lectus nec neque feugiat condimentum vitae at diam. In vel orci nunc, non commodo mauris. Vivamus ipsum enim, vulputate quis pharetra non, molestie quis felis. Vivamus porttitor placerat turpis at accumsan. Nunc tortor velit, faucibus a rhoncus nec, blandit non elit. Nam consectetur lectus eu nisi blandit dapibus rhoncus dui tempus. Mauris fermentum dolor vel ipsum vulputate sit amet ultricies tortor lacinia. Donec ut nibh erat. Morbi nec mi ante. Integer nec vestibulum diam. Donec tincidunt pellentesque quam, ut interdum mauris venenatis condimentum. Nam condimentum, augue in aliquet gravida, neque dui elementum eros, id semper eros purus sed felis. Curabitur in justo sit amet sapien ultrices hendrerit at quis nibh. Quisque iaculis pulvinar tincidunt.

$$C(12) = \left[\overrightarrow{\pi} \cdot \overrightarrow{\phi}(x+r)\right]$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \int_r^L \frac{x dx}{x^2} + \cdots$$

$$\approx 1 - \operatorname{const} \frac{r^2}{L^2} \ln \frac{x dx}{x^2} + \cdots$$
(8.1)

interest opsimilated in graphic, consecutive supporting coultry set does in the interest origin adjunction can, sed dorfy volptica. A vertice of a great many original terms in sea individual set of the control position does of single, and in return. Set on least deliberage in sea in the interest of the control position does of single, and in return. Set on least deliberage in sea individual set of the control position does of single, and in return position does of single, and in return position does of single set of the control position. As verte one of set of single set of the does not be set of the control position. As verte one of set of single set of the control position does of single set of single

Figure 8.1: This is figure 1 in chapter 1.

Table 8.1: Greek Letters.

	ϑ	γ	K	λ	εμ	v	•
$\sigma \ au$			-	-	σ Ψ	-	
	$_{\Psi}^{\Delta}$	Θ Ω	Λ	Ξ	П	Σ	Υ

elit. Mauris faucibus lacus eget est mollis auctor. Donec at nibh ligula, et posuere massa. Phasellus quis leo diam [?]. Donec aliquam blandit risus, eu venenatis ante euismod eu. Curabitur cursus justo id arcu condimentum feugiat. Integer sapien urna, vulputate et adipiscing nec, convallis et justo. Suspendisse in ipsum at felis ornare interdum [?],

Figure 8.2: This is figure 2 in chapter 1.