É muito comum a necessidade de descrever uma série temporal (Y_t) como uma combinação (linear) de variáveis explanatórias (x_{t1}, ..., x_{tp});

$$Y_t = \beta_0 + \beta_1 X_{t1} + ... + \beta_p X_{tp} + E_t$$

em que as variáveis explanatórias podem ser verdadeiras covariáveis, ou até mesmo tendências lineares e efeitos sazonais.

Fonte: www.pixabay.com

- ★ Uma grande vantagem da regressão de séries temporais é que ela é <u>válida para</u> <u>séries não-estacionárias</u>, seja variável resposta, seja variável preditora.
- ★ O erro E_t deve ser independente das variáveis explanatórias, mas <u>pode exibir</u> correlação serial (!).
- ★ Quando há erros correlacionados, o Método dos Mínimos Quadrados (Ordinários) ou OLS, amplamente utilizado para estimar os parâmentros β_j da regressão, não é mais eficiente, ou seja, <u>existem melhores estimadores (!)</u>, para tanto iremos utilizar o Método dos Mínimos Quadrados Generalizados ou GLS

Fonte: www.pixabay.com

★ Como fazer?

- 1. Primeiro, vamos assumir que os erros não são correlacionados;
- 2. Depois, estimamos os parâmetros β_i da regressão por meio do OLS;
- 3. Em seguida, faremos o diagnóstico do erros, calculando a função de autocorrelação e a função de autocorrelação parcial;
- 4. Se os erros encontrados por OLS possuírem correlação; devemos estimar os parâmetros β_i da regressão por meio dø GLS.

*	Variáveis defasadas são possíveis, e.g. x _{(t-1)p} ? Sim! Mas existem métodos melhores, como os modelos baseados em correlações cruzadas.
	como os modelos baseados em correlações erazadas.