

)ATA		
	99	88
How would you organise	100	88
the data?	82	89
	95	90
	78	92
	86	92
	88	94
	90	82
	82	86
	84	89
Adkins Matchett & Toy 2008 - 2014 2		AdkinsMatchett&To

SORTING THE LIST

- We can describe the data set better if we know the difference between the highest and lowest point
- We call this the range

© Adkins Matchett & Toy 2008 - 2014

3

RANGE		
	78	89
The range is	82	89
between 78 and	82	90
100	82	90
	84	92
	86	92
	86	94
	88	95
	88	99
	88	100
© Adkins Matchett & Toy 2008 - 2014	4	AdkinsMatchett&Toy AWilmington Company

FREQUENCY

We can summarise the data by calculating the number records within a number range:

Range	Frequency	
80	1	
85	4	
90	9	
95	4	
100	2	

© Adkins Matchett & Toy 2008 - 2014

AdkinsMatchett&Toy

RELATIVE FREQUENCY

 Relative frequency is the frequency as a percentage of the total observations

F	Range	Frequency	Relative frequency
	80	1	5%
	85	4	20%
	90	9	45%
	95	4	20%
	100	2	10%
	Total	20	
			11.

© Adkins Matchett & Toy 2008 - 2014

SUMMATION NOTATION

• The sum of the measurements whose typical member is χ_1 , beginning with the number χ_1 and ending with the number χ_n

$$\sum_{i=1}^{6} \chi_{i}$$

$$1 + 2 + 3 + 4 + 5 + 6 = 21$$

 $\chi_1 + \chi_2 + \chi_3 + \chi_4 + \chi_5 + \chi_6 = 21$

© Adkins Matchett & Toy 2008 - 2014

CENTRAL TENDENCY

- Central tendency measures the tendency of the data set to cluster or centre around a numerical value
- Popular examples include
 - Mean
 - Median

© Adkins Matchett & Toy 2008 - 2014

9

MEAN

The sum of the measurements divided by the number of the measurements

Find the mean of the following numbers:

$$\frac{\sum_{i=1}^{6} \chi_i}{6} = mean$$

© Adkins Matchett & Toy 2008 - 2014

AdkinsMatchett&Toy

AWilmington Company

MEDIAN

- The median of a data set is the middle number when the measurements are arranged in an ascending or descending order
- Use when looking at large data sets
- When you have an even number average to two central numbers

Find the median of the following: 3, 5, 2, 5, 6, 3

© Adkins Matchett & Toy 2008 - 2014

11

STANDARD DEVIATION

- Measuring central tendency is incomplete without looking at the spread of the data set
- Look at the following two histograms

Which gives you the most reliable prediction?

12

© Adkins Matchett & Toy 2008 - 2014

AdkinsMatchett&Toy

STANDARD DEVIATION

The following two data sets have the same mean

```
2, 3, 4, 5, 6 mean = 4
3, 4, 4, 4, 5 mean = 4
```

Calculate each number's deviation from the mean

© Adkins Matchett & Toy 2008 - 2014

13

STANDARD DEVIATION

Deviation from the mean

Data set 1 2 3 4 5 6
Mean 4 4 4 4
Deviation -2 -1 0 1 2

Data set 2 3 4 4 4 5 Mean 4 4 4 4 4 Deviation -1 0 0 0 1

14

The sum of the deviations is equal

© Adkins Matchett & Toy 2008 - 2014

AdkinsMatchett&Toy

A SINGLE MEASURE OF DEVIATION

We can't take the mean	
of the differences – that	N
would add up to zero	Г
Instead we can take	

 Instead we can take differences and square them

Data set 1	2	3	4	5	6
Mean	4	4	4	4	4
Deviation	-2	-1	0	1	2
Squared deviation	4	1	0	1	4
Data set 2	3	4	4	4	5
Mean	4	4	4	4	4
Deviation	-1	0	0	0	1
Squared deviation	1	0	0	0	1
Adking Matchatt SToy					

© Adkins Matchett & Toy 2008 - 2014

15

SAMPLE VARIANCE

 Now calculate the sample variance by dividing by the number of data points minus 1 (a statistical adjustment for samples)

$$(4 + 1 + 0 + 1 + 4) \div (5-1) = 2.5$$

Data set 2

$$(1 + 0 + 0 + 0 + 1) \div (5-1) = 0.5$$

© Adkins Matchett & Toy 2008 - 2014

16

AT LAST... THE STANDARD DEVIATION

Take the positive square root of the sample deviance:

Data set 1

$$\sqrt{2.5} = 1.58$$

Data set 2

$$\sqrt{0.5} = 0.71$$

© Adkins Matchett & Toy 2008 - 2014

STANDARD DEVIATION SHORTCUT

Here is a full formula for the standard deviation

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}_i}{\mathbf{n}}$$

Standard deviation
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

© Adkins Matchett & Toy 2008 - 2014

AdkinsMatchett&Toy

Population measurements NORMAL DISTRIBUTION In many situations in life (the stock market, population height etc) the relative frequency distribution is mound shaped and symmetric: A Normal distribution Population measurements

CALCULATING

- Now we can calculate the range of measurements within certain standard deviations of the mean (assuming a normal distribution)
- 2. If the mean height of the male population is 5.9 ft and the standard deviation is 0.5 feet
- 3. Then 68% of the population would be between 5.9 0.5 = 5.4 and 5.9 + 0.5 = 6.4 in height

© Adkins Matchett & Toy 2008 - 2014

21

Z SCORES

 Another measure of relative standing are z scores which use the mean and standard deviation

 The z score measures the number of standard deviations from the mean

22

© Adkins Matchett & Toy 2008 - 2014

AdkinsMatchett&Toy

Z SCORE EXAMPLE

- 1,000 financial analysts have a mean income of 60,000.
- The standard deviation is 10,000
- If Jane Flight's income is 65,000 how does she compare with the mean?

$$(65,000 - 60,000) \div 10,000 = 0.5$$

Jane is 0.5 standard deviations above the mean

© Adkins Matchett & Toy 2008 - 2014

23

IF THE DISTRIBUTION IS NORMAL

- Approximately 68% of financial analysts will have a z score between -1 and 1
- Approximately 95% of financial analysts will have a z score between -2 and 2
- Approximately 99.7% of financial analysts will have a z score between -3 and 3

© Adkins Matchett & Toy 2008 - 2014

APPLICATION

- Assume the mean stock market return is 12% and its relative frequency distribution is normal
- What is the probability of a gain of over 32% in one year? Assume the market's standard deviation is 20%

© Adkins Matchett & Toy 2008 - 2014

25

APPLICATION

1. Calculate the z score:

$$\frac{32\% - 12\%}{20\%} = 1$$

- 2. Therefore a 32% gain is 1 standard deviation from the mean
- 3. Assuming a normal distribution there is a 16% chance of the stock market giving you a gain of 32% or higher in one year

© Adkins Matchett & Toy 2008 - 2014

26

