

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

PatentschriftDE 199 10 023 C 2

② Aktenzeichen:

199 10 023.3-31

Anmeldetag:

8. 3.1999 14. 9.2000

Offenlegungstag:Veröffentlichungstag

cer Patenterteilung: 18. 7 2062

(ii) Int. CL5

H 04 L 29/06

H 04 L 12/46 G 06 F 13/42

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhöben werden

(® Patentinhaber:

Rohde & Schwarz GmbH & Cc. KG, 81671 Minchan, DE

(3) Vartratar:

Mitscherlich & Partner, Patent- und Rechtsanwälle, 80331 München

@ Erlinder:

Stias, Peter, 80333 München, DE; Kellarar, Wolfgang, 82256 Fürstenfeldbruck, DE; Zurek-Terhardt, Guänther, 15537 Erkner, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

C8 36 359 A2

TANNENBAUM, ANDREW, S.: Computer-Netzwerke,

2-te Auft., 1990, Wolfram's Fachverlay, ISBN 3-925328-79-3, S. 518 524;

(3) System zur Datenübertragung von einem Anbieter zu einem Benutzer

System zur Datenübertragung von direm nach dem 102/IP-Protokoll arbeitenden Anbister (Al zu einem nach dem 102/IP-Protokoll arbeitenden Benutzer (B) über eine Ubertragungsstrecke (M), dadurch gekennzeichnet, daß eid Endgeräte ICI. C2) der Übertragungsstrecke IVI jeweils so ausgehilder sind, daß das mit dem Anbieter (Al verbundene Endgerät (E2) für den Anbieter (Al das TCP/IP-Protokol) des Benutzers (B) erzeugt und das mit dem Benutzer (B) verbundene Endgerät (E2) der Übertragungsstrecke (V) für den Benutzer (B) das TCP/IP-Protokol des Anbieters (A) erzeugt.

Deschreibung

[0001] Die Erfordung gehr aus und hetrifft ein System zur Datenüberungung von einem racht dem TCF/IP-Protokoll abeitenden Arbieter zu einem einerfells nach dem TCP/IP-Protokoll arbeitenden Benntzer über eine Überhagungs atreike lauf Oberbegriff des Hülpfanspruches.

[0002] Zur schneiber Datenthartragung beispielsweise im Internet wird im häufigsten das international genomme TCF/IP-Profskell benofel, wie es heispielsweise beschrieben at in dem Buch "Internetworking With TCF/IP" von Dougha E. Comer, Profice Hall, Englewood Cliffs, New Jersey 37(32), oder in dem Buch "Computer-Networke" von Andrew S. Tanenbatan, Wolfram's Fachverlag, 2. Auflage, 1500, Sette 28, 29, 518–524, ISBN 3-925023-79-3. If [0003] Die meisten Endgerfüe der Anbieter (Server) und Benntzet (Client) solchas Datenubertragungsstrecken sind daher mit einer Software zur Übertragung der Daten nach diesem fCP/IP-Profokell ausgestantet. Die zu übertragenden Daten werden heim Hemitzer eur eus TCP/IP-Profokoll aufgesotzt und konnen so gesiehert zu den Anbietern übertragenden werden.

[filli04] Die EP 0826 359 A2 höfenhart eine Versichtung und em Verfahren, die es ennoglichen TCP/IP-Verbindungen absoluctisweise über Übertragungsnetzwerke zu führen. 😕 die in der Nerzwerksehicht (Schieht 3 des OSI-Referezmodels auch Vermittlungschicht genannt) das ATM-Protokoll (Asynchronous Transfer Mode-Protocol) verwenden, wobei die notwendige Wegelenkung durch eine entsprechende A hessbestimming mit Hilfe spezieller Server vergenom- 30 men wird. Auch bier erfolgt die Sieherung der Datenübertragung durch Austauschen von Bestätigungsmeldungen (Acknowledge) vom Beautzer zum Anbieter. Damit kann vom A drieter erkanut werden, ah die Daten kerrekt zum Bemsger übertragen worden sind. Auch werden auf diese Weise 35 Staumgen und Smekungen im Datenfluß auf der Überträgrangistræcke arkannt und die Senderate des Auhieters entsprechend angepalle. Wegen des Austausches der Bestätigungs neldungen sind zur Datenübertragung nur Übertragrangsstrecken geeigent, die in beiden Richtungen eine Das 40 tenubenragung emböglichen. Andererseits gibt es schon Uhertragungsstrecken, die aus anderen Grunden eine gestcharte Datenithertragung ermiglichen und dafür nicht unbedingt eine Datenübertragung nach dem TCP/IP-Prusakall

(1006) Es ist daher Aufgabe der Erfindung, ein Datenübertragungssystem zu schaffen, hei dem die Aubieter (Servici) und Remitzer (Client) die Dizten nach dem fibliehen TCP/IP-Protokoll verarbeiten, dahei Jedoch Übertragungsstrocken bem ist werden, die eine nach dem TCP/IP Protokoll gesicherte Detenübertragung nicht nötig haben oder auf denen eine solche gesicherte Datenübertragung nicht möglich ist. [0006] Diese Aufgabe wird ausgehend von einem System laut Oberbegriff des Hauptanspruches durch dessen kennzeichnende Merkmale gelöst. Vorteilhafte Weiterbildungen ist ergenen sich aus den Unteranspruchen

[0007] Germil der Erhndung können zur Dasanthertragung zwar beim Anbeier und beim Benatzer handelsübliche Geräte mit einer Datenaufbeietung nach dem TCP/IP-Pretikoll beimtzt werden, tretzdem kann als Fermübertragungstrecke eine solche henatzt werden, die für eine Übertragungstrecke eine solche henatzt werden, die für eine Übertragungstrecke eine midrekhonale Übertragungstrecke, eine Übertragungstrecke, geringer Randbreite, ein verbindungson enfeitete Netz wie Telefan der eine beziglich der Übertragungstrecken ausgenetzt wer den, ein von sich aus henats eine gesichten Distribution zu

gung mit geringer Febierwahrscheinlichkeit ermöglichen und sus diesen. Grunde keine misätzliche Datensicherung nach dem TCP/IP-Protokoli benötigen.

[9008] Die Erfindung wird im Folgenden anhand einer sichematischen Zeichnung an einem Ausführungsbeispiel nüher erläuten.

10009] Die Aigna zu grein erlindung sgemäßes System zur Datenübertragung von einem Anbieter A zu einem Bemutzer B, die beide einen nach dem TCP/IP-Protokolf arheitenden B Rechtier zur Aufbereitung der zu übertragenden Daten aufweisen. Die so nach dem TCF/IP-Protokolf im Anbieter A zufbereiteten Daten werden nun meht unmittelbar wie hister üblich über eine bidirektionale Verbindungsstrecke zum Benutzer B übertragen und der Benutzer B sendet auch nicht iber die gleiche hidirektionale Verbindungsstrecke die Desätigungsmehlungen direkt zurück zum Anbieter A, sondern die Verbindung zwischen Anbieter und Benutzer wird auf zwei nach unterschiedlichen Prinzipien arbeitentie Verbardungen aufgeteilt. Die Endgeräte (Router) E1 und E2 der eigendlichen Fennübentragungsstrecke V sind an ausgebildet.

das Ende der TCP/IP-Verbindung des Benutzers B verhält. Das Eudgerät E1 enthält also beispielsweise einen Rechner, in welchem der Protokollteil der Software des Benutzers B abgespeichert ist. Das Endgerät E1 erzeugt also für den Aubieter A die Bestätigengsmehlungen (Acknowledge) meh dem TCP/IP Protokoll. Zu diesem Zweck ist entweder das Endgerät E1 unmittelbar im Endgerät des Aubieters A integriet oder Endgerät E1 und Arbieter A sind über ein thlüches Nahwerbindungsnetzwerk LAN1 (Lokal arra Network) eder ein Weitverkehrsnetzwerk, bespielsweise das Internet, mitenander verbunden.

daß sich das Endgerät El gegenüber dem Anhierer A wie

[0010] In analoger Weise enthalt das Endgerät E2 der Verbindungsstrecke V. das entweder wieder unmittelbar im Endgerat des Benutzers B integriert ist oder über ein Nahverbindungsnetzwerk LAN2 oder Weitverkehrstietzwerk nit dem Benutzer B verbunden ist, die Software aach dem TCE/IP-Protokoll, so daß sich dieus Endgerät E2 wie der Beginn der TCP/IP Verbindung des Anbieters A verhält und die Bestatigungsmeldungen des Benutzers verarbeitet.

[0011] Zwischen Auhieter A und Endgerat E1 werden die Daten also nach dem TCP/IP-Protokoll übertragen und zwischen diesen werden auch die Hestätigungsmeldungen übertagen, das Gleiche gilt zwischen Endgerat E2 und Benutzer B. Auf der eigentlichen Verbindungsstreche V erfolgt die Datenübertragung jedoch nicht mehr nach dem TCP/IP Protoroll. Die am Endgerät El empfangenen TCP/IP-Pakete, in denen die Informationen zum Verhindungsaufbau, zur Datenübertragung und dem Verbindungsabbau enthalten und. werden ungesichert oder durch ein ider Übertragungsstrecke V angepaßtes) proprietäres Sicherungsverfahren über die Übertragungsstrecke V übertragen. Bei Empfang der TCP/IP-Pakete in dem Endgern E2 wird die gewinsente Verhindung zum Benutzer aufgebaut, dann der Datentransfor entsprechand garegalt und die Verbindung schließlich wieder abgehaut. A und B brauchen hierbei im allgemeiner, keine Kenatnis über das Vorhanderbein von EI und E2 bzw der Besonderheit der Übertragungsstrecke V zu haben, aus ibmr Sicht sind sie viehnelt direkt mittels einer durchgangigen, auf dem TCP/IF Protokoll hasierenden Verhändung ne emander verbunden.

[0012] Als Fernverbindungsstreiche V kann beispielsweise eine Übertragungsstreiche benutzt werden, die von sich aus bereits eine gesicherte Datenübertragung mit geringer Feblerwährschenlichkeit ermöglicht, für die allei eine zusätzliehe Datensicherung nach TCF/IP Presideall nient mehr mitig
mit over eine Übertragungsstreiche, die eine vorgegebene
Mindestbandbreite bietet, für die also eine Budregelung mit

rlem TCP/IP-Protokoll nicht mehr nödig ist.

[0015] Die Verbindungsstreche V kann auch eine solche mit geringer Bandhreite sein, da auf ihr ja Venie Bestingungsmeldungen übertragen werder, müssen. Auch eine Übenzagung auf einem verbindongsorientierten Netz, beispielsweise auf Telefoalcituagen, ist moglich, ebenab eine Übertragung auf einer nur umdirektionelen Übertragungsstrecke, du hier ja keine Bestatigungsmeldungen zurückübertragen werden mussen. Als unidirektionale Übertragungsstræke eignet sich berspielsweise ein mich dem DV3- in T Prinzip arbeitender Rundfunksender mit zugehorigen Rundfunkempfängern, in gleicher Weise ist als Übertragengastrecke V eine solche mit stark asymmetrischen Elgenschaften godigner, also eine Chertragungsstrecke, die bezüglich der Bandbreite der Datenübertragung sich in den 13 Übertragungsrichtungen stark unterscheidet, wie dies beispielsweise bei ADSL (Asymmetrie Digital Subscriber Line! der Fall ist. Auch kann eine Kombination zweier verschiedener Übertragungsstrecken für Hin- und Rückrich tung emgesetzt werden, beispielsweise die Kombination 20 von DVB-T in Hinrichtung mit dem GSM-Mobilfunktietz in Ruckrichtung

[0014] Bei Benutzung einer für sich bereits gesicherten Datenubenragungsstrecke mit geringer Bandbreite besitzt das er findungsgenräße System den Vorteil des geringen ver- 25 walrungsmifwandes (Overhead) auf dem eigenilichen Übertragungsabschnitt, da keine Ruckbestetigungsmeldungen ipentrigen werden, wie dies beispielsweise für ein nach dem ISON-Prinzip arheatendes verhindung sorientiertes Netz gilt. The eigenfliche Übertzgungsstrecke wird nicht mehrfach 30 mit Paketen helastet, die in nachtolgenden Abschnitten verlotengehen und vom Benutzer neu angefordert werden missen. Pakete, die in vorhergehenden Abschnitten verlorengegangen sind, können hereits vom Endgerät El neu heim Aubieter angestordert werden. Die eigentliche Übertragungs- 35 strecke V wird nicht mit den Neuansforderungen befastet. Bei Unterbrechung im Datenfluß kann die Verhindung zwischenzeitlich abgebaut werden, ohne daß die nach dem ICPIP-Protokoll arbeitenden Verbindungen heeinträchtigt werden. Mittels entsprechend großer Puffer in den Endgerä- 40 ten El und E2 können die zu übertragenden Daten seimell vom Anbieter zum Endgerät El übertragen werden und dort zwischengespeichert werden. Diedurch können Datenflußstrickungen und Unterbrechungen dareh verlorengegangene Darenpakete gopuffert und für die schmalhandige Übertra- 45 gungsstrecke ausgeglichen werden.

Patentansprüche

(System var Dalenüberungung von einem nach dem 50 TCP/IP-Protokoll arbeitenden Anhieter (A) zu einem nach dem TCP/IP-Protokoll arbeitenden Benutzer (B) niber eine Übertragungsstrecke (V), dadurch gekennzeichnet, daß die hindgeräte (E). E2) der Übertragungsstrecke (V) jeweils so ausgebildet sind, daß das mit dem Anhieter (A) verbundene Endgerät (E1) für den Anhieter (A) verbundene Endgerät (E1) für den Anhieter (A) das TCP/IP-Protokoll des Benutzers (B) erzeugt und das mit dem Benutzer (B) verbundene Benutzer (B) das TCP/IP-Protokoll des Anhieters (A) orsangt

 System nach Anspruch I, dadurch gekennzeichnet, daß der TCP/IP-Protokulten jeweils als Sortware in den Endgerach (E1, E2) der Übertragungsstrecke (V) entgegeben ist.

 System nach Anspruch 1 oder 2. dadurch gekennzeichnet, daß Anbieter und zugehodges Fortgerät (Et) für Verhindungsstrenke (V) serwie Bedutzer und zugehönges Bodgurit (F2) jeweils eine Gerateemheit bil-Ien.

4. System nach Anspruch I oder 2. darlumb gekennreichnet, daß Anbieter (A) mit dem zugehörigen Endgerät (EI) und Benutzer (B) mit dem zugehörigen Endgerät (E2) der Verbindungsytrecke über eine TCIVIPtungliche Nahr oder Fernverbindung, insbesondere dis Internet, miteinander verbinden sind.

 Nystem nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Verwendung einer Übertragungsstrecke (V) zur gesicherten Datenübeπragung auf geringer Fehrerwahrssamnlichkeit.

 System nach einem der verhergehenden Ansprüche, gekennzeichnet durch die Verwendung einer Übertragungsstrecke (V) von geringer Bandhreite.

 System main einem der vorhergehenden Amsprünbe, gekennzeichnet durch die Verwendung eines verbindungsoriennerten Natzes, insbesondere eines Teileibnnutzes, als Verhandungsstrecke (V).

 System nach einem der verhergehenden Anspräche, gekennzeichnet durch die Verwendung einer untidireknonalen Datenübertragungsstrecke (V).

 System nach einem ihr vorhergehenden Anspriiche, gekentzeichnet durch die Verwendung einer bezuglich der Datenilbertragungsrichtung sturk gaymmetrischen III. er tragungsstrecke, insbesondere eine ADSL-Verbindung.

 System nach einem der virchergehenden Ansprüche, gekenizeichnet durch die Verwendung zweier verschiedener Übertragungsstrecken für die Hin- und Rückrichtung.

Hierzu I Seitein) Zeichnungen

. . .

Nonverey Int, CL¹⁷ Voröffentlichengstag: DE 199 10 023 62 H 04 L 29/06 18. Juli 2002

35

40

45

50

Description

- The invention arises from and relates to a system for data transfer from a server operating to the TCP/IP protocol to a client who is also operating to the TCP/IP protocol via a transfer line in accordance with the preamble of the main claim.
- For a rapid data transfer, for example in the Internet, the internationally standardised TCP/IP protocol is the most frequently used one, as it is described e.g. in the book "Internetworking With TCP/IP" by Douglas E. Comer, Prentice Hall, Englewood Cliffs, New Jersey 07632, or in the book "Computer-Netzwerke" by Andrew S Tanenbaum, Wolfram's Fachverlag, 2nd edition, 1990, p. 28, 29, 518 524, ISBN 3-925328-79-3.
- Most routers of the servers and clients of such data transfer lines are therefore equipped with a software for transmitting data in accordance with this TCP/IP protocol. The data to be transmitted are placed onto the TCP/IP protocol at the client's and can this be securely transmitted to the servers.
- EP 0836 359 A2 discloses an apparatus and a method which allow to route TCP/IP connections sectionwise via transfer networks which use the ATM protocol (Asynchronous Transfer Mode-Protocol) in the network layer (layer 3 of the OSI reference model) with the necessary routing being performed by a corresponding address determination by means of special servers. In this case, too, the safeguarding of the data transfer is achieved by exchanging acknowledgments between client and server. The server can thereby detect whether the data has been correctly transferred to the client. In this manner, jams and interruptions in the data flow on the transfer line can be detected, and the server's transfer rate adapted accordingly. Because of the exchange of acknowledgments only transfer lines which enable a data transfer in both directions are suited for data transfer. On the other hand, there already exist transfer lines which, for other reasons, enable a secure data transfer, and therefore do not necessarily require a data transfer to the TCP/IP protocol.
 - It is therefore the object of the invention to create a data transfer system wherein the servers and clients process the data in accordance with the usual TCP/IP protocol, whereby, however, transfer lines are used which do not need a safeguarded data transfer to the TCP/IP protocol, or via which such a safeguarded data transfer is not possible.
 - This object is solved on the basis of a system according to the preamble clause of the main claim and its characterising limitations. Advantageous developments are derived form the dependent claims.
 - According to the invention commercially available devices with data preparation to the TCP/IP protocol can be employed at the server's and at the client's, nevertheless, a transfer line can be used as data communication line which is not suited for the transfer to the TCP/IP protocol, for example, a uni-directional transfer line, a transfer line of narrow bandwidth, a connection-oriented network such as the telephone network, or a transfer line which is pronouncedly asymmetric with respect to the transfer direction. Moreover, transfer lines can be employed which intrinsically enable a safeguarded data transfer with a low error probability and for this reason do not require an additional data safeguarding to the TCP/IP protocol.

- 2 -

Rohde ... 199 10 023.3

5

10

15

20

25

30

35

45

50

N-6773

The invention will be described in the following in more detail by way of an embodiment with reference to a schematic drawing.

The figure shows an inventive system for data transfer from a server A to a client B, both of which comprising a computer which operates to the TCP/IP protocol for the preparation of the data to be transferred. The data which has been prepared to the TCP/IP protocol in this manner in the server are now no longer immediately transferred to the client B via a bi-directional transfer line as has been standard practice, and the client B does also no longer return the acknowledgments directly to the server via the same bi-directional transfer line, but the connection between server and client is divided into two connections operating to two different principles. The routers E1 and E2 of the actual transfer line V are designed in such a manner that the router E1 behaves relative to the server A as does the end of the TCP/IP connection of the client B. The router E1 thus comprises e.g. a computer in which the protocol portion of the software of the client B is stored. The router E1 thus generates the acknowledgments to the TCP/IP protocol for the server A. For this purpose, either the router E1 is immediately integrated in the router of the server A, or the router E1 and the server A are connected with each other via a standard local area network (LAN1) or a wide area network, e.g. the Internet.

In a similar manner the router E2 of the transfer line V, which is either again immediately integrated in the router of the client B or connected with the client B via a local area network LAN2 or a wide area network, comprises the software to the TCP/IP protocol, so that this router E2 behaves like the start of the TCP/IP connection of the server A and processes the acknowledgments of the client.

Between server A and router E1 the data is thus transferred to the TCP/IP protocol, and between these, the acknowledgments are also transferred; the same applies between router E1 and client B. In the actual transfer line V, however, the data transfer does is longer performed to the TCP/IP protocol. The TCP/IP packets received at the router E1, which include the information for the connection buildup, the data transfer, and the connection release are transferred unsecured or by a proprietary safeguarding method (adapted to the transfer line V) via the transfer line V. Upon receipt of the TCP/IP packets in the router E2, the desired connection to the client is built up, then the data transfer correspondingly controlled, and ultimately, the connection is released again. Generally, A and B need not know about the existence of E1 and E2 or of the peculiarity of the transfer line V; rather, from their point of view they are immediately connected with each other by means of a continuous connection based on the TCP/IP protocol.

As the transfer line V e.g. a transfer line can be used which intrinsically already enables a safeguarded data transfer with a low error probability, i.e. for which an additional data safeguarding to the TCP/IP protocol is no longer required, or a transfer line which offers a pregiven minimum bandwidth, i.e. for which a flow control by means of the TCP/IP protocol is no longer necessary.

The transfer line V can also be a line of a narrow bandwidth because no acknowledgements have to be transferred on it. A transfer via a connection-oriented network, e.g. telephone lines, is also possible, as well as a transfer via an only unidirectional transfer line because no acknowledgments have to be returned. A broadcasting transmitter operating to the DVB-T principle with associated broadcasting receivers, for example, is suited as a unidirectional transfer line. Likewise, a transfer line V with pronouncedly asymmetric properties is suitable

Rohde ... 199 10 023.3

as a transfer line, i.e. a transfer line which greatly differs in the transfer directions with respect to the bandwidth of the data transfer, as this is the case, e.g. with ADSL (Asymmetric Digital Subscriber Line). It is also possible to employ a combination of two different transfer lines for the forward und return direction, e.g. the combination of DVB-T in the forward direction with the GSM mobile radio network in the return direction.

When using a data transfer line with a narrow bandwidth, which is already safeguarded, the inventive system offers the advantage of low overhead costs on the actual transfer section because no acknowledgments are transferred, as this applies, for example, to a connection-oriented network operating to the ISDN principle. The actual transfer line is not loaded several times with packets which are lost in downstream sections and must be requested anew by the client. Packets which have been lost in the upstream sections can already be requested anew by the router E1. The actual transfer line V is not loaded by the new requests. Upon interruptions in the data flow the connection can temporarily be released, without affecting the connections operating to the TCP/IP protocol. With the aid of correspondingly large buffers in the routers E1 and E2, the data to be transferred can rapidly be transferred from the server to the router E1 and buffered therein. This allows to buffer data flow jams and interruptions due to lost data packets and compensated for the narrow bandwidth transfer line.

5

10

15

5

15

20

35

Claims

- 1. A system for the data transfer from a server (A) operating to the TCP/IP protocol to a client (B) operating to the TCP/IP protocol via a transfer line (V), characterised in that the routers (E1, E2) each of the transfer line (V) are designed in such a manner that the router (E1) connected with the server (A) generates the TCP/IP protocol of the client (B) for the server (A), and the router (E2) of the transfer line (V) connected with the client (B) generates the TCP/IP protocol of the server (A) for the client (B).
- 10 2. The system according to Claim 1, characterised in that the TCP/IP protocol section is input as software in each of the routers (E1, E2) of the transfer line (V).
 - 3. The system according to Claim 1 or 2, characterised in that server and associated router (E1) of the transfer line (V) as well as client and associated router (E2) each form a device unit.
 - 4. The system according to Claim 1 or 2, characterised in that the server (A) with the associated router (E1) and the client (B) with the associated router (E2) of the transfer line are connected with each other via a TCP/IP-suitable short-distance or long-distance connection, in particular the Internet.
 - 5. The system according to one of the previous claims, characterised by the use of a transfer line (V) for the safeguarded data transfer with low error probability.
- 25 6. The system according to one of the previous claims, characterised by the use of a transfer line (V) of narrow bandwidth.
 - 7. The system according to one of the previous claims, characterised by the use of a connection-oriented network, in particular a telephone network, as the transfer line (V).
- 30 8. The system according to one of the previous claims, characterised by the use of a unidirectional data transfer line (V).
 - 9. The system according to one of the previous claims, characterised by the use of a pronouncedly asymmetric data transfer line with respect to the direction of data transfer, in particular an ADSL connection.
 - 10. The system according to one of the previous claims, characterised by the use of two different transfer lines for the forward and return direction.

System for Data Transfer from a Server to a Client

A system for the data transfer from a server (A) operating to the TCP/IP protocol to a client 5 (B) operating to the TCP/IP protocol via a transfer line (V), characterised in that the routers (E1, E2) each of the transfer line (V) are designed in such a manner that the router (E1) connected with the server (A) generates the TCP/IP protocol of the client (B) for the server (A), and the router (E2) of the transfer line (V) connected with the client (B) generates the TCP/IP protocol of the server (A) for the client (B). 10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.