

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 3

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Χρωματισμοί κορυφών και ακμών

1.6 Έστω G γράφημα όπου $\Delta(G) \leq 3$. Δείξτε ότι το G είναι 4-ακμοχρωματίσιμο.

Θα δείξουμε ότι γραμμικό γράφημα L(G) του G είναι 4 χρωματίσιμο.

Από το Θεώρημα Brooks έχουμε ότι το L(G) θα είναι $\Delta(L(G))$ -χρωματίσιμο εκτός αν είναι περιττός κύκλος ή κλίκα όπου σε αυτή την περίπτωση θα είναι $(\Delta(L(G))+1)$ -χρωματίσιμο.

Αν το L(G) είναι περιττός χύχλος τότε θα είναι 3-χρωματίσιμο.

Αν είναι κλίκα με 3 ή λιγότερες κορυφές τότε προφανώς είναι 3-χρωματίσιμο ενώ αν είναι κλίκα με τουλάχιστον 4 κορυφές τότε περιέχει το K_4 ως υπογράφημα όμως αυτό δεν γίνεται σύμφωνα με το Λ ήμμα 2.

Επομένως το L(G) θα είναι $\Delta(L(G))$ -χρωματίσιμο και από την Παρατήρηση $\ref{eq:continuous}$ συμπεραίνουμε ότι θα είναι $\ref{eq:continuous}$ 4-χρωματίσιμο.

Λήμμα 1.
$$Aν K_4 \subseteq L(G)$$
 τότε $\Delta(G) \ge 4$.

Απόδειξη. Έστω e_1, e_2, e_3, e_4 οι ακμές του G που στο L(G) είναι κορυφές 4-κλίκας. Αυτό σημαίνει ότι κάθε ζεύγος e_i, e_j θα πρέπει να έχει κοινό άκρο.

Έστω $e_1=\{u,v\}$ και χωρίς βλάβη της γενικότητας έστω $e_2=\{u,w\}$. Αν η e_3 έχει κοινό άκρο με την e_1 την κορυφή v, τότε αναγκαστικά $e_3=\{v,w\}$ ώστε να έχει κοινό άκρο και με την e_3 . Σε αυτή την περίπτωση όμως η e_4 δεν μπορεί να έχει κοινό άκρο και με τις 3 προηγούμενες ακμές.

Άρα η e_3 έχει κοινό άκρο με την e_1 το u, δηλαδή $e_3=\{u,x\}$ για κάποια κορυφή x (διαφορετική από τις $\{u,v,w\}$).

Τέλος, η e_4 θα πρέπει να έχει κοινό άκρο με όλες τις υπόλοιπες και αυτό μπορεί να συμβεί μόνο αν $e_4 = \{u, y\}$ για κάποια νέα κορυφή y.

Συνεπώς
$$\Delta(G) \geq d(u) = 4$$
.

Παρατήρηση 2. $A\nu \Delta(G) \leq 3$ τότε $\Delta(L(G)) \leq 4$.

Απόδειξη. Έστω ότι υπήρχε αχμή $e=\{u,v\}\in E(G)$ η οποία να έχει κοινό άχρο με τουλάχιστον 5 άλλες αχμές στο G. Αυτό σημαίνει ότι σε ένα από τα άχρα της e, έστω στο u, θα προσπίπτουν τουλάχιστον 3 από αυτές τις 5 αχμες και έτσι η u θα έχει βαθμό τουλάχιστον 4 το οποίο είναι άτοπο.

1.7 Δ είξτε ότι υπάρχει c τέτοιο ώστε κάθε ένωση δύο επίπεδων γραφημάτων να έχει χρωματικό αριθμό το πολύ c.

Λήμμα 3.
$$A \nu G = G_1 \cup G_2$$
 τότε $\chi(G) \leq \chi(G_1) \cdot \chi(G_2)$.

Απόδειξη. Έστω $\chi(G_1)=k, \chi(G_2)=l$ και $\chi_{G_1}:V(G_1)\to [k], \chi_{G_2}:V(G_2)\to [l]$ οι συναρτήσεις χρωματισμού του καθενός.

Επεκτείνουμε τις παραπάνω συναρτήσεις ως εξής:

$$\overline{\chi_{G_i}}(u) = \left\{ \begin{array}{cc} \chi_{G_i}(u) &, \ u \in V(G_i) \\ 1 &, \ \text{διαφορετικά} \end{array} \right.$$

Ορίζουμε το σύνολο $S=\{(x,y)\mid x\in A,y\in B\}$ και χρωματίζουμε το G με χρώματα από το S ως εξής:

$$\chi_G(u) = (\overline{\chi_{G_1}}(u), \overline{\chi_{G_2}}(u))$$

Ο παραπάνω είναι έγχυρος χρωματισμός αφού αν $\chi_G(u)=\chi_G(v)$ τότε $\overline{\chi_{G_i}}(u)=\overline{\chi_{G_i}}(v)$ για i=1,2 επομένως $\{u,v\}\notin E(G_i)$ και έτσι $\{u,v\}\notin E(G)$.

$$'$$
Aρα $\chi(G) \leq |S| = \chi(G_1) \cdot \chi(G_2)$.

Από το θεώρημα των 4 χρωμάτων έχουμε ότι αν G_1, G_2 επίπεδα γραφήματα τότε $\chi(G_1), \chi(G_2) \le 4$ επομένως από το Λήμμα $3: \chi(G_1 \cup G_2) \le 16$.

2 Διαπεράσεις

2.1 (*) Για ποιά k και l το γράφημα $G_{k,l}=P_l^{[k]}$ είναι Χαμιλτονιανό;

Για k=1, κανένα από τα P_l με $l\geq 1$ δεν είναι Χαμιλτονιανό.

Για $k \geq 2$, θα δείξουμε ότι για κάθε $l \geq 1$ το $P_l^{[k]}$ είναι Χαμιλτονιανό.

Παρατήρηση 4. Το $P_l^{[2]} = P_l \times P_l$ είναι ισόμορφο με την (l+1,l+1)-σχάρα η οποία είναι Χαμιλτονιανό γράφημα για κάθε $l \ge 1$ (διαπερνάμε όλες τις κορυφές της πρώτης στήλης από πάνω προς τα κάτω, της δεύτερης στήλης από κάτω προς τα πάνω κ.ο.κ.).

Λήμμα 5. Αν G είναι Χαμιλτονιανό τότε το $G \times P_k$ είναι επίσης Χαμιλτονιανό.

Απόδειξη. Το γράφημα $G \times P_k$ είναι ουσιαστικά το G όπου κάθε κορυφή του έχει αντικατασταθεί από ένα μονοπάτι P_k (και έχουν προστεθεί οι κατάλληλες ακμές μεταξύ κορυφών των μονοπατιών).

Ας πάρουμε ένα κύκλο Hamilton του G:

$$u_1 \to \ldots \to u_n \to u_1$$

Αυτός μπορεί να μετασχηματιστεί απευθείας σε κύκλο Hamilton του $G \times P_k$ ως εξής:

$$(u_1^1 \to \ldots \to u_1^k) \to \ldots \to (u_n^1 \to \ldots \to u_n^k) \to u_1^1$$

όπου στο παραπάνω u_i^j είναι η j-οστή κορυφή του μονοπατιού το οποίο έχει αντικαταστήσει την κορυφή u_i του G στον $G\times P_k$.

Από το Λήμμα 5 και την Παρατήρηση 4 έχουμε επαγωγικά ότι για κάθε $k\geq 2$ το $P_l^{[k]}$ είναι Χαμιλτονιανό για οποιδήποτε $l\geq 1$.

2.7 (*) Έστω G συνεκτικό γράφημα τέτοιο ώστε το συμπλήρωμά του να είναι ατρίγωνο. Δ είξτε ότι το G έχει Χαμιλτονιανό μονοπάτι

Έστω το μέγιστο μονοπάτι στο γράφημα. Αν όλες οι κορυφές είναι πάνω σε αυτό το μονοπάτι, έχουμε τελειώσει. Διαφορετικά, υπάρχει μια κορυφή u που είναι έξω από το μονοπάτι. Η u δεν μπορεί να έχει ακμή προς κάποιο από τα δύο άκρα του μονοπατιού, αφού τότε θα είχαμε άτοπο στη μεγιστότητα του μονοπατιού. Επειδή όμως το συμπλήρωμα είναι ατρίγωνο, θα πρέπει να υπάρχει ακμή μεταξύ των δύο ακρών του μονοπατιού, έχουμε δηλαδή έναν κύκλο C. Τώρα, επειδή το γράφημα είναι συνεκτικό, θα υπάρχει ακμή από κάποια κορυφή v εκτός του κύκλου

προς κάποια κορυφή του κύκλου. Αυτό όμως σημαίνει ότι υπάρχει μεγαλύτερο μονοπάτι από αυτό που υποθέσαμε ως μέγιστο, άτοπο. Άρα το G έχει Χαμιλτονιανό μονοπάτι.

2.10 (*) Αν το γράφημα G είναι Χαμιλτονιανό και $S\subseteq V(G)$, τότε το πλήθος των συνεκτικών συνιστωσών του $G\backslash S$ είναι το πολύ |S|.

Έστω ότι το πλήθος των συνεχτικών συνιστωσών c μπορεί να είναι μεγαλύτερο του |S|. Για κάθε συνεχτική συνιστώσα του $G\backslash S$, οι αχμές που βγαίνουν στο αρχικό γράφημα από τις κορυφές της συνδέονται μόνο με το S. Για να υπάρχει χύκλος Hamilton, πρέπει να υπάρχουν τουλάχιστον 2 τέτοιες αχμές για κάθε συνιστώσα στον χύκλο Hamilton (σε διαφορετική περίπτωση θα είχαμε γέφυρα). Σε κάθε αχμή από κάποια συνιστώσα του $G\backslash S$ προς το S αντιστοιχεί και μια κορυφή του S και επειδή στον χύκλο Hamilton όλες οι κορυφές έχουν βαθμό S, κάθε κορυφή μπορεί να αντιστοιχεί σε το πολύ S συνεχτικές συνιστώσες. Αυτό σημαίνει ότι $|S| \geq \frac{2\cdot c}{S} > |S|$, άτοπο. Άρα ισχύει το ζητούμενο.

2.11 (*) Ένα τριγωνοποιημένο επίπεδο γράφημα έχει χρωματικό αριθμό 3 αν και μόνο αν είναι γράφημα Euler.

Θα θεωρήσουμε ότι το γράφημα περιέχει τουλάχιστον 3 κορυφές αφού διαφορετικά η πρόταση είναι τετριμμένη.

Δείχνουμε τις δύο κατευθύνσεις της εκφώνησης ως εξής:

 (\Rightarrow) Έστω (προς απαγωγή σε άτοπο) ότι το G (με $n(G) \geq 3$) τριγωνοποιημένο επίπεδο γράφημα το οποίο είναι 3-χρωματίσιμο αλλά $\delta \varepsilon \nu$ είναι γράφημα Euler.

Το G θα πρέπει να περιέχει τουλάχιστον μία χορυφή περιττού βαθμού, έστω $u \in V(G)$. Η u δεν μπορεί να έχει βαθμό 1 γιατί διαφορετικά θα βρίσκεται στο σύνορο μίας μόνο όψης f η οποία όμως θα πρέπει να έχει στο σύνορό της τουλάχιστον άλλες 2 χορυφές. Έστω v, w αυτές οι χορυφές και χωρίς βλάβη της γενικότητας έστω v η γειτονική της u. Τότε όμως μπορούμε να προσθέσουμε την αχμή $\{w, u\}$ και το γράφημα να παραμείνει επίπεδο. Αυτό είναι άτοπο γιατί το γράφημα είναι τριγωνοποιημένο, δηλαδή η προσθήκη μιας αχμής δεν θα έπρεπε να είναι εφικτή.

Συνεπώς $d(u) \geq 3$. Έστω $[v_0,v_1,\ldots,v_{k-1}]$ οι γειτονικές κορυφές τις u σε ορολογιακή διάταξη όπως εμφανίζονται στην επίπεδη εμβάπτιση του G. Αφού το γράφημα είναι τριγωνοποιημένο θα πρέπει να υπάρχουν οι ακμές $\{v_i,v_{(i+1)\mod k}\}$ για κάθε $i=0,\ldots,k-1$.

Άρα η γειτονιά της u ενάγει περιττό κύκλο και αυτό σημαίνει ότι χρειάζονται τουλάχιστον 4 χρώματα για το χρωματισμό της u και της γειτονιάς της. Άτοπο.

 (\Leftarrow) Έστω τριγωνοποιημένο επίπεδο γράφημα G με $n(G) \geq 3$ το οποίο είναι γράφημα Euler αλλά $\delta \varepsilon \nu$ είναι 3-χρωματίσιμο.

Από την εικασία του Hadwinger για k=4, έχουμε ότι $K_4 \leq G$, δηλαδή υπάρχει μια ακολουθία συνθλίψεων ακμών μετά από την οποία το γράφημα G' που απομένει περιέχει 4-κλίκα.

Κάθε κορυφή του G έχει άρτιο βαθμό (ως γράφημα Euler) και έτσι το ίδιο θα ισχύει και για κάθε γράφημα που προκύπτει από συνθλίψεις ακμών του G. Συνεπώς το G' θα είναι γράφημα Euler.

Έστω x, y, z, w οι κορυφές τις 4-κλίκας του G'.

TODO: ... test

3 Επίπεδα γραφήματα

4 Τέλεια γραφήματα

5 Μερικές διατάξεις

5.5 (*) Δείξτε ότι για κάθε k, η κλάση των γραφημάτων με $vc(G) \le k$ είναι καλώς μερικώς διατεταγμένη ως προς υπογραφήματα.

Θα υποθέσουμε το αντίθετο, δηλαδή ότι υπάρχει άπειρη αντιαλυσίδα γραφημάτων με $vc(G) \le k$, κανένα ζευγάρι από τα οποία δεν είναι υπογράφημα του άλλου. Τότε προφανώς θα υπάρχει k, για το οποίο υπάρχει άπειρη αντιαλυσίδα με vc(G) = k. Έστω S το σύνολο της κάλυψης (|S| = k) και $T = V(G)\backslash S$. Επίσης επειδή οι διαφορετικοί συνδυασμοί ακμών μεταξύ των κορυφών του S είναι $2^{\binom{k}{2}}$, δηλαδή πεπερασμένοι, θα υπάρχει ένας από αυτούς, τον οποίο αν σταθεροποιήσουμε θα υπάρχει άπειρη αντιαλυσίδα. Κάθε στοιχείο του T συνδέεται με ένα υποσύνολο των στοιχείων του S. Διαμερίζουμε το σύνολο T με βάση με ποιο υποσύνολο του S είναι συνδεδεμένο με ακμή. Αυτό διαμερίζει το T σε 2^k-1 σύνολα. Θα αναπαραστήσουμε τα πλήθη αυτών των συνόλων με ένα σημείο στο \mathbb{N}^{2^k-1} . Συγκεκριμένα, η i-οστή συντεταγμένη αυτού του σημείου ισούται με το πλήθος των κόμβων που βρίσκονται στο i-οστό σύνολο της διαμέρισης. Αν όλες οι συντεταγμένες ενός σημείου είναι μικρότερες ή ίσες από αυτές ενός άλλου σημείου, τότε είναι εμφανές ότι το πρώτο γράφημα είναι υπογράφημα του δεύτερου. Αν ορίσουμε λοιπόν τη σχέση μερικής διάταξης $(x_1, x_2, ..., x_m) \le (y_1, y_2, ..., y_m) \Leftrightarrow \forall i \in [1, m] x_i \le y_i$. Θα αποδείξουμε ότι δεν υπάρχει άπειρη αντιαλυσίδα ως προς αυτή τη σχέση, άρα η αρχική μας υπόθεση είναι άτοπη.

Για να το αποδείξουμε αυτό για κάθε διάσταση, θεωρούμε την ελάχιστη διάσταση d για την οποία υπάρχει άπειρη αντιαλυσίδα. Δεν μπορεί να είναι d=1 αφού όλοι οι φυσικοί είναι συγκρίσιμοι μεταξύ τους. Έστω τώρα ότι d>1. Θεωρούμε ένα στοιχείο $(x_1,x_2,...,x_d)$ της αντιαλυσίδας. Για κάθε άλλο στοιχείο $(y_1,y_2,...,y_d)$, θα πρέπει να υπάρχει $i\in[1,d]$ έτσι ώστε $y_i< x_i$, διότι αλλιώς αυτά τα δύο στοιχεία θα είναι συγκρίσιμα. Αφού η αντιαλυσίδα είναι άπειρη και οι διαστάσεις πεπερασμένες, θα υπάρχει $i\in[1,d]$ έτσι ώστε να υπάρχει άπειρη αντιαλυσίδα με $y_i< x_i$ για κάθε στοιχείο της αλυσίδας. Επειδή όμως το x_i είναι πεπερασμένο, υπάρχουν πεπερασμένα τέτοια διαφορετικά y_i , και άρα θα υπάρχει άπειρη αντιαλυσίδα έτσι ώστε όλα τα στοιχεία της να έχουν την ίδια i-οστή συντεταγμένη. Τότε, όμως, αν αγνοήσουμε την i-οστή συντεταγμένη, έχουμε βρει μια άπειρη αντιαλυσίδα στις d-1 διαστάσεις. Αυτό είναι άτοπο, αφού έχουμε θεωρήσει το d ως ελάχιστο αντιπαράδειγμα.

5.6 (*) Δείξτε ότι, για κάθε k, κάθε γράφημα στο σύνολο παρεμπόδισης ελασσόνων της κλάσης $C_k = \{G|vc(G) \leq k\}$ έχει $O(k^2)$ κορυφές.

Αρχεί να δείξουμε ότι κάθε γράφημα G με vc(G)>k έχει ως ελάσσον ένα H με vc(H)>k και $O(k^2)$ κορυφές. Στην πραγματικότητα θα δείξουμε ότι περιέχει σαν εναγόμενο υπογράφημα ένα τέτοιο γράφημα. Έστω γράφημα G με vc(G)>k και έστω S το σύνολο που πραγματοποιεί την κάλυψη (|S|=vc(G)). Επίσης θεωρούμε τη διαμέριση του S σε δύο σύνολα S και S και S και εστε οι κορυφές του S να είναι αυτές που έχουν τουλάχιστον S το προς το S το υπόλοιπες. Διακρίνουμε τρεις περιπτώσεις:

• a. Αν έχουμε ότι $|A| \ge k+1$, τότε διαγράφουμε οποιεσδήποτε |A| - (k+1) χορυφές του A, όλες τις χορυφές του B, χαθώς και όλες τις χορυφές του $V(G)\backslash S$ που έγιναν απομονωμένες. Στη συνέχεια, για κάθε χορυφή στο A, μαρχάρουμε οποιουσδήποτε k+1 γείτονες στο $V(G)\backslash S$. Αν χάποια χορυφή του $V(G)\backslash S$ δεν έχει μαρχαριστεί, διαγράφεται και αυτή. Στο γράφημα G' που έχει προχύψει, έχουμε χάλυψη με k+1

κορυφές χρησιμοποιώντας όλα τα στοιχεία του A. Αν δεν χρησιμοποιήσουμε έστω και ένα στοιχείο του A, θα πρέπει να είναι στο σύνολο της κάλυψης οι k+1 γείτονες που έχει στο $V(G)\backslash S$. Άρα έχουμε vc(G')>k.

- c. Σε αυτή την περίπτωση έχουμε $|A| \leq k$ και $|S| = \omega(k)$ (άρα και $|B| = \omega(k)$). Τώρα, όπως και στα προηγούμενα, μαρκάρουμε για κάθε στοιχείο του A, οποιουσδήποτε k+1 γείτονές του στο $V(G)\backslash S$. Στη συνέχεια διαλέγουμε οποιεσδήποτε k+1 κορυφές από το B, μαρκάρουμε όλους τους γείτονες κάθε μίας στο $V(G)\backslash S$ και σβήνουμε όλες τις υπόλοιπες κορυφές του B, φτιάχνοντας έτσι ένα νέο σύνολο B'. Τέλος, σβήνουμε όλες τις κορυφές του $V(G)\backslash S$ που δεν έχουν μαρκαριστεί ή είναι απομονωμένες. Είναι προφανές ότι έχουμε καταλήξει σε ένα γράφημα G' με $O(k^2)$ κορυφές. Όλα τα στοιχεία του A θα ανήκουν στο σύνολο κάλυψης, και τα υπόλοιπα που θα ανήκουν στο σύνολο κάλυψης δεν μπορεί να είναι λιγότερα από B', καθώς καμία από τις κορυφές του $V(G)\backslash S$ που έχουν σβηστεί δεν έχει ακμή προς το B'. Συνεπώς έχουμε $vc(G') \geq |A| + |B'| > k$.

Σε κάθε περίπτωση, λοιπόν, ένα γράφημα G με vc(G) > k έχει εναγόμενο υπογράφημα H με vc(H) > k και $O(k^2)$ κορυφές, και άρα το ζητούμενο έχει αποδειχθεί.

6 k-δέντρα

6.2 Καλούμε μερικό k-δέντρο κάθε υπογράφημα k-δέντρου. Δείξτε ότι το $K_{r,r}$ είναι μερικό r-δέντρο αλλά δεν είναι μερικό (k-1)-δέντρο.

Το $K_{r,r}$ είναι μεριχό k-δέντρο αφού μπορούμε να το παράγουμε ως εξής:

Ξεκινάμε με το K_{r+1} και διαλέγουμε μία κορυφή του την οποία αναθέτουμε στο σύνολο X και τις υπόλοιπες τις αναθέτουμε στο σύνολο Y. Το Y είναι μια r-κλίκα επομένως μπορούμε να τοποθετήσουμε r-1 νέες κορυφές στο X κάθε μία από τις οποίες τις συνδέουμε με όλες τις κορυφές του Y.

Τώρα αφαιρούμε όλες τις αχμές μεταξύ χορυφών του Y και αυτό που μένει είναι το $K_{r,r}$.

Έστω τώρα ότι το $K_{r,r}$ ήταν μεριχό (r-1)-δέντρο. Τότε θα πρέπει να περιέχει μια χορυφή u με d(u) < r (η τελευταία χορυφή που προσθέσαμε χατα της χατασχευή του (r-1)-δέντρου είχε βαθμό r-1). Αυτό όμως είναι άτοπο γιατί όλες οι χορυφές του $K_{r,r}$ έχουν βαθμό ίσο με r.

6.4 (*) Αν ένα χορδικό γράφημα είναι επίπεδο, τότε θα είναι και μερικό 3-δέντρο.

Γνωρίζουμε ότι ένα γράφημα έχει δενδροπλάτος k αν και μόνο αν η μεγαλύτερη κλίκα της χορδικής κλειστότητάς του είναι k+1. Εφόσον έχουμε χορδικό γράφημα, αυτό ταυτίζεται με την χορδική του κλειστότητα, και μάλιστα εφόσον είναι επίπεδο, δεν μπορεί να έχει κλίκα μεγαλύτερη του 4. Αυτό σημαίνει ότι το δενδροπλάτος του είναι το πολύ 3, δηλαδή θα είναι μερικό 3-δέντρο.

6.5 Δείξτε ότι ο τρισδιάστατος υπερκύβος είναι μερικό 3-δέντρο.

Στο παρακάτω σχήμα απεικονίζεται μία χορδική κλειστότητα του τρισδιάστατου κύβου, η οποία εύκολα φαίνεται ότι είναι επίπεδο γράφημα. Συνεπώς, από την άσκηση 6.4, ο τρισδιάστατος υπερκύβος είναι μερικό 3-δέντρο.

7 Άπειρα γραφήματα

7.3 (*) Χρησιμοποιώντας το λήμμα του Κőnig, αποδείξτε ότι αν το G είναι γράφημα όπου $|V(G)| = \aleph_0$ και κάθε υπογράφημά του είναι 3-γρωματίσιμο, τότε και το G είναι 3-γρωματίσιμο.

Έστω $V(G) = \{1, 2, ..., n, ...\}$. Συμβολίζουμε με G[k] το εναγόμεμο υπογράφημα του G με κορυφές τις $\{1, ..., k\}$.

Δημιουργούμε το εξής δέντρο T: Κάθε χόμβος του δέντρου εχτός της ρίζας αντιστοιχεί σε ένα έγχυρο 3-χρωματισμό του G[k] για χάποιο k. Συγχεχριμένα, η ρίζα έχει 3 παιδιά που αντιστοιχούν στους τρεις πιθανούς χρωματισμούς του G[1] χαι αν ένας χόμβος $u \in T$ αντιστοιχεί σε 3-χρωματισμό του G[k], τότε θεωρούμε το γράφημα $G[k+1] \supseteq G[k]$ χαθώς χαι χάθε 3-χρωματισμό του που συμφωνεί με το χρωματισμό του G[k]. Υπάρχουν 3 τέτοιοι χρωματισμοί (3 επιλογές για το χρώμα της νεας χορυφής). χαι ώς παιδία της u θέτουμε τους έγχυρους από αυτούς τους χρωματισμούς.

Παρατηρούμε ότι ένας κόμβος u βρίσκεται σε απόσταση r από τη ρίζα του T αν και μόνο αν το u αντιστοιχεί σε έγκυρο 3-χρωματισμό του G[r].

Για το γράφημα T γνωρίζουμε ότι κάθε κόμβος έχει πεπερασμένο βαθμό (το πολύ 4) και ότι έχει άπειρο πλήθος κόμβων γιατί σύμφωνα με την προηγούμενη παρατήρηση, αν το G[k] είναι 3-χρωματίσιμο θα πρέπει να υπάρχει τουλάχιστον μια κορυφή u που να αντιστοιχεί στο χρωματισμό του. Ξέρουμε όμως ότι όλα τα G[k] για $k \in \mathbb{N}$ είναι 3-χρωματίσιμα άρα θα πρέπει να υπάρχει τουλάχιστον μια κορυφή για κάθε τέτοιο k.

Από το λήμμα του Κőnig έχουμε λοιπόν ότι πρέπει να υπάρχει άπειρο μονοπάτι P που να ξεκινάει από τη ρίζα. Το μονοπάτι αυτό ορίζει έναν 3-χρωματισμό του G (το χρώμα μιας κορυφής $w \in V(G)$ είναι το χρώμα που του αναθέτει ο χρωματισμός του G[w] στο μονοπάτι P). Ο χρωματισμός αυτός είναι έγκυρος γιατί διαφορετικά, αν υπάρχουν κορυφές $u,v \in V(G)$ με $\{u,v\} \in E(G)$ και ίδιο χρώμα, τότε ο χρωματισμός του $G[\max(u,v)]$ στο μονοπάτι P δεν θα ήταν έγκυρος.

8 Κανονικά γραφήματα και Ταιριάσματα

8.2 (**) Δείξτε ότι κάθε συνεκτικό γράφημα με άρτιο αριθμό ακμών μπορεί να προσανατολιστεί έτσι ώστε κάθε κορυφή να έχει άρτιο εξώβαθμο. Χρησιμοποιώντας αυτό δείξτε ότι κάθε 3-κανονικό γράφημα με 4k κορυφές περιέχει ανεξάρτητο σύνολο με k κορυφές το οποίο αν αφαιρεθεί από το G δημιουργεί γράφημα του οποίου όλες οι συνεκτικές συνιστώσες είναι μονοκυκλικές

Απόδειξη. Αρχικά θα αποδείξουμε το πρώτο. Έστω ένας τυχαίος προσανατολισμός των ακμών του γραφήματος. Αυτός διαμερίζει τις κορυφές σε δύο σύνολα, το A που περιέχει τις κορυφές με άρτιο εξώβαθμο, και το B που περιέχει τις κορυφές με περιττό εξώβαθμο. Αν out_v είναι ο εξώβαθμος της κορυφής v και m το πλήθος των κορυφών του γραφήματος, γνωρίζουμε ότι $m = \sum_{v \in V} out_v = \sum_{v \in A} out_v + \sum_{v \in B} out_v$. Εφόσον το m και ο πρώτος όρος του δεύτερου μέλους είναι άρτιοι, έχουμε ότι και ο δεύτερος όρος του δεύτερου μέλους είναι άρτιος. Δεδομένου ότι για όλα τα $v \in B$ το out_v είναι περιττό, θα πρέπει το |B| να είναι άρτιο.

Διαμερίζουμε τώρα το B σε ζεύγη (x_{2i-1},x_{2i}) για $i\in[1,\frac{|B|}{2}]$. Για κάθε ζεύγος βρίσκουμε ένα μονοπάτι (στο μη κατευθυνόμενο γράφημα) μεταξύ των x_{2i-1} και x_{2i} και για κάθε μία ακμή αυτού του μονοπατιού, αντιστρέφουμε την κατεύθυνσή της. Αυτό θα διατηρήσει τον εξώβαθμο mod2 όλων των κορυφών εκτός από τις x_{2i-1} και x_{2i} , οι οποίες πλέον θα έχουν άρτιο εξώβαθμο. Κάνοντας την παραπάνω διαδικασία για όλα τα $\frac{|B|}{2}$ ζευγάρια, κάθε κορυφή του γραφήματός μας έχει πλέον άρτιο εξώβαθμο.

Απόδειξη. Στη συνέχεια εφαρμόζουμε στο γράφημά μας τον προσανατολισμό του παραπάνω Λήμματος, οπότε κάθε κορυφή έχει εξώβαθμο 0 ή 2. Στην πραγματικότητα, επειδή το άθροισμα των εξώβαθμων είναι ίσο με το πλήθος των αχμών του γραφήματος και το τελευταίο είναι ίσο με $3\cdot 4k/2=6k$, θα έχουμε ότι υπάρχουν αχριβώς k χορυφές με εξώβαθμο 0 και αχριβώς 3k χορυφές με εξώβαθμο 2. Θεωρούμε ως ανεξάρτητο σύνολο το σύνολο των χορυφών με εξώβαθμο 0. Είναι προφανώς ανεξάρτητο, αφού αν υπήρχε αχμή μεταξύ αυτών των κορυφών, κάποια από τα δύο άκρα της θα είχε μη μηδενικό εξώβαθμο. Επιπλέον, το πλήθος των ακμών που θα έχει το γράφημα μετά τη διαγραφή του ανεξάρτητου συνόλου είναι 6k-3k=3k, αλλά και το πλήθος των κορυφών που θα μείνουν στο γράφημα είναι 4k-k=3k. Αυτό σημαίνει ότι η πυχνότητα του γραφήματος που απομένει είναι $1.\;\mathrm{A}$ ν αποδείξουμε ότι χαμία συνεχτιχή συνιστώσα δεν μπορεί να είναι δέντρο, τότε χάθε συνιστώσα θα έχει πυχνότητα τουλάχιστον 1, και άρα θα πρέπει κάθε συνιστώσα να έχει πυκνότητα ακριβώς 1, δηλαδή να είναι μονοχυχλιχή. Έστω τώρα ένας χόμ β ος u σε μια συνεχτιχή συνιστώσα S. Αφού χά θ ε χορυφή που δεν ανήχει στο ανεξάρτητο σύνολο έχει εξώβαθμο 2, θα έχει και εσώβαθμο 1. Αχολουθώντας από την u τις προσανατολισμένες αχμές χατά την αντίθετη χατεύθυνση, φτιάχνουμε μια αχολουθία χορυφών με μη μηδενιχό εξώβαθμο. Προφανώς αυτή η αχολουθία θα είναι πεπερασμένη και δεν γίνεται να περιέχει κάποιο κόμβο του ανεξάρτητου συνόλου, αφού αυτοί έχουν μηδενικό εξώβαθμο. Αυτό σημαίνει ότι η ακολουθία θα αρχίσει να επαναλαμβάνεται, άρα θα υπάρχει κύκλος. Συνεπώς κάθε συνεκτική συνιστώσα που προκύπτει μετά από τη διαγραφή του ανεξάρτητου συνόλου θα έχει πυκνότητα τουλάχιστον 1 και το ζητούμενο έχει αποδειχθεί.

8.4 (*) Βρείτε ένα γράφημα που να είναι ακμομεταβατικό αλλά όχι κορυφομεταβατικό και ένα γράφημα που να είναι κορυφομεταβατικό αλλά όχι ακμομεταβατικό.

Παρακάτω παρουσιάζονται τα 2 γραφήματα:

Το πρώτο είναι αχμομεταβατικό, αλλά όχι κορυφομεταβατικό, αφού δεν είναι κανονικό. Το δεύτερο είναι ουσιαστικά το τετράεδρο με κομμένες τις γωνίες, άρα εύκολα φαίνεται ότι είναι κορυφομεταβατικό. Δεν είναι όμως αχμομεταβατικό, αφού κάποιες αχμές ανήκουν σε τρίγωνο, ενώ άλλες όχι.

9 Διάφορα

9.7 (*) Ποιά είναι η συνεκτικότητα του υπερκύβου r διαστάσεων;

Θα δείξουμε με επαγωγή ότι $\kappa(Q_r) = r$.

Για r=1 το Q_1 περιέχει μόνο μία αχμή και είναι συνεκτικό.

Αν ο Q_{r-1} είναι (r-1)-συνεχτικός τότε θα δείξουμε ότι ο $Q_r = Q_{r-1} \times P_1$ είναι r-συνεχτικός.

Ο Q_r ως γνωστόν αποτελείται από δύο αντίγραφα A_1,A_2 του Q_{r-1} μαζί με τις ακμές που συνδέουν αντίστοιχες κορυφές μεταξύ τους. Στο εξής, αν έχουμε μια κορυφή $u\in V(A_1)$ θα συμβολίζουμε με u' την κορυφή του A_2 με την οποία συνδέεται η u στο Q_r .

Θα δείξουμε ότι για οποιεσδήποτε δύο κορυφές $u,v\in V(Q_r)$ υπάρχουν r εσωτερικώς διακεκριμένα μονοπάτια από την u στην v διακρίνοντας τις εξής περιπτώσεις:

- $u,v\in V(A_1)$ (αντίστοιχα και για το A_2). Από την $E.\Upsilon$. υπάρχουν r-1 εσωτερικώς διακεκριμένα μονοπάτια από την u στην v που χρησιμοποιούν μόνο ακμές μόνο από το A_1 . Επίσης υπάρχει τουλάχιστον ένα μονοπάτι P μεταξύ των u' και v' στο A_2 επομένως μπορούμε να δημιουργήσουμε το $P'=[u,u']\cup P\cup [v',v]$ που δεν έχει κοινές κορυφές με τα υπόλοιπα r-1 εκτός από τα άκρα.
- $u \in V(A_1)$ και $v \in V(A_2)$ (ή αντίστροφα).

Έστω P_i για $i=1,\ldots,r-1$ τα r-1 εσωτερικώς διακεκριμένα μονοπάτια μεταξύ των u και v στο A_1 και P_i' τα αντίστοιχα μονοπάτια στο A_2 . Συβολίζουμε με x_i τον προτελευταίο κόμβο του μονοπατιού P_i .

Με βάση τα μονοπάτια αυτά δημιουργούμε τα παρακάτω r εσωτερικώς διακεκριμένα μονοπάτια R_i :

$$R_{i} = \begin{cases} [u, u'] \cup P'_{1} &, i = 1\\ (P_{i} \setminus v) \cup [x_{i}, x'_{i}, v'] &, i = 2, \dots, r - 1\\ P_{1} \cup [v, v'] &, i = r \end{cases}$$

9.9 (*) Κάθε 3-συνεκτικό μη διμερές γράφημα έχει τουλάχιστον 4 περιττούς κύκλους.

Απόδειξη. Εφόσον το γράφημα δεν είναι διμερές, θα έχει περιττό χύχλο. Έστω ο ελάχιστος περιττός χύχλος. Προφανώς αυτός δεν θα έχει χορδές, αφού έτσι θα υπήρχε αχόμα μιχρότερος περιττός χύχλος (εφόσον χάθε χορδή χωρίζει τον χύχλο σε έναν άρτιο χαι έναν περιττό). Επιπλέον, θα υπάρχει χορυφή u εξωτεριχή του χύχλου C, αφού γνωρίζουμε ότι ο χύχλος δεν είναι 3-συνεχτιχό γράφημα. Από το Λήμμα 1, υπάρχουν 3 εσωτεριχώς διαχεχριμένα μονοπάτια από την u σε διαφορετιχές χορυφές του C. Έστω $u \equiv P_1^i, P_2^i..., P_{k_i}^i$ για $i \in [1,3]$ αυτά τα τρία μονοπάτια. Για χάθε ζεύγος αυτών, σχηματίζονται δύο χύχλοι. Χωρίς βλάβη της γενιχότητας για τα 1 χαι 2, αχολουθούμε το μονοπάτι P^1 , χινούμαστε πάνω στον χύχλο προς την χορυφή $P_{k_2}^2$ (έχουμε δύο τρόπους να το χάνουμε αυτό) χαι στη συνέχεια αχολουθούμε το μονοπάτι P^2 ανάποδα. Καθώς οι δύο εναλλαχτιχές διαδρομές πάνω στον χύχλο τον χαλύπτουν ολόχληρο, τα μήχη τους θα έχουν διαφορετιχό υπόλοιπο mod2, άρα τουλάχιστον ένας από τους δύο χύχλους που ορίσαμε θα είναι περιττός. Αυτό σημαίνει ότι για χάθε ζευγάρι μονοπατιών P^i, P^j έχουμε βρει έναν περιττό χύχλο. Αν σε αυτούς μετρήσουμε χαι τον C, έχουμε συνολιχά βρει 4 περιττός χύχλους.

Λήμμα 1:

Έστω k-συνεκτικό γράφημα, κύκλος C και κορυφή u που δεν ανήκει στον κύκλο. Τότε υπάρχουν $\min(|C|,k)$ εσωτερικώς διακεκριμένα μονοπάτια από την u προς διαφορετικές κορυφές του κύκλου C.

Aπόδειξη. Έχει αποδειχθεί στην πρώτη σειρά ασχήσεων. \Box