Indian Institute of Technology Kharagpur QUESTION-CUM-ANSWERSCRIPT Stamp/Signature of the Invigilator SEMESTER (Autumn / Spring) MID-SEMESTER / END-SEMESTER EXAMINATION Name Section Roll Number **Subject Name** Science of Living Systems **Subject Number** В S 2 0 0 **Additional Sheets** Department/Centre/School **School of Bioscience**

Important Instructions and Guidelines for Students

- 1. You must occupy your seat as per the Examination Schedule/Sitting Plan.
- 2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.
- 3. Loose papers, class notes, books or any such materials must not be in your possession; even if they are irrelevant to the subject you are taking examination.
- 4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by the paper-setter.
- 5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, the exchange of these items or any other papers (including question papers) is not permitted.
- 6. Write on both sides of the answer-script and do not tear off any page. Use last page(s) of the answer-script for rough work. Report to the invigilator if the answer-script has torn or distorted page(s).
- 7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the desk for checking by the invigilator.
- 8. You may leave the Examination Hall for wash room or for drinking water for a very short period. Record your absence from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited inside the Examination Hall.
- 9. Do not leave the Examination Hall without submitting your answer-script to the invigilator. In any case, you are not allowed to take away the answer-script with you. After the completion of the examination, do not leave your seat until the invigilators collect all the answer-scripts.
- 10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or exchanging information with others or any such attempt will be treated as 'unfair means'. Don't adopt unfair means and also don't indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be Filled by the Examiner

Question Number | Module-1 | Module-2 | Module 3 & 4 | Total

Marks Obtained | Signature of the Examiner | Signature of the Scrutineer

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- §1. Mid-Autumn semester of "Science of Living Systems (BS20001)" consists of UNIT-1. Students have to answer all the questions in the corresponding question paper-cum answer script in 2 hrs time.
- §2. No query will be entertained regarding the questions during examination.
- §3. No separate answer script is permissible.
- §4. Tick the correct answer for the multiple choice questions.
- §5. For descriptive or quantitative questions, write the answer in the space provided below the question.
- §6. There is no negative marking.

MARKS OBTAINED

Module-1	Module-2	Module3 & 4	TOTAL
Signature	Signature		Signature

Indian Institute of Technology Kharagpur

Mid-Autumn semester examination 2015

Subject: Science of living system (BS20001)

NAME:	Roll #
-------	--------

<u>Module-1</u>

Answer all questions (13 x 0.5 + 1 = 7.5)

- 1. E. coli chromosomal DNA is
 - (A) Double stranded, circular and right handed
 - (B) Double stranded, linear and right handed
 - (C) Single stranded, circular and right handed
 - (D) Double stranded, circular and left handed
- 2. Enzyme (P) helps to unwind double stranded DNA and enzyme (Q) helps to remove superhelical structure of DNA. What are 'P" and 'Q' enzymes /
 - (A) P= Topoisomerase, Q=helicase
 - (B) P= DNA polymerase, Q= Helicase
 - (C) P= Helicase,
- Q= Topoisomerase
- (D) P=Phosphatase,
- O= Helicase
- 3. The diameter of B-form of DNA is (P) and the distance between two adjacent bases in any of the DNA strands is (R). What are the correct values of 'P' and 'R'?
 - (A) P=2.0 nm, R= 0.34 nm
 - (B) P=20 nm, R= 3.4 nm
 - (C) P=2.0 mm, R= 0.34 mm
 - (D) P=2.0 nm, R=R=3.4 nm
- 4. Most of the DNA replication is
 - (A) Conservative and bi-directional process
 - (B) Semi-conservative and bi-directional process
 - (C) Dispersive and unidirectional process
 - (D) None of the above
- 5. The linkage between sugar and base is called
 - (A) Phosphodiester (B) Glycosidic (C) Hydrogen bond (D) Vander-Wall
- 6. Melting of DNA at high temperature means
 - (A) Cleavage of DNA into nucleotides
 - (B) Separation of base from the sugar
 - (C) Separation of phosphate from the sugar
 - (D) Separation of two strands of DNA

8.	Central Dogma of	molecular Biolo	gy is		
	(A) DNA→RN	A→Protein	(B) [)NA→Protein→	RNA
	(C) RNA→DN		(D) 1	None of the Abov	/e
9.	Which of the follow	ving would not o	occur during co	mplementary ba	se pairing?
	(A) A-T	(B) U-G			
10.	First protein that b	inds to the E. co	oli origin durir	ng initiation of re	plication is
			oisomerase		
11.	` '	size DNA from	5' to 3' directi		se III .
	• /	5' exonuclease	=		
	` '	nd the double st			
	(D) It cannot in	itiate but can ad	ld nucleotide at	3'OH ofprimer	:
12.	How many DNA n	nolecules are pro	esent in one no	rmal human son	natic cell?
13.	Name the enzyme v	vhich synthesize	es RNA primer	during DNA re	olication.

14. Which protein binds to Ter site to terminate E. coli DNA replication?

(D) AAUAAA

(C) Ori C

7. DNA replication in E. coli begins from

(B) TATAAT

(A) AUG

BS- Module-2

Answer all questions (15 x $0.5 = 7$.	Answer	all o	iuestions	(15 x	0.5	= 7.5
--	--------	-------	-----------	-------	-----	-------

1. The enzyme required	for transcription is		
a) Restriction enzymes	b) DNA polymerase	c) RNA polymerase	d) RNAase
2. Transcription is the t	ransfer of genetic inform		
a) DNA to RNA	b) tRNA to mF	RNA c) DNA to mR	NA d) mRNA to tRNA
3. RNA required for the	protein synthesis		
a) mRNA	b) tRNA	c) rRNA	d) siRNA
4. A promoter site on D	NA		
a) Initiates transcription	n	b) Regulates termination	on
c) Codes for RNA	d) Tra	nscribes repressor	
5. Sigma factor is comp	onent of		
a) DNA ligase	b) DNA polymerase	c) RNA polymerase	d) endonuclease
6. What is the main fun	ction of tRNA in relatio	n to protein synthesis?	
a) Inhibits protein synth	nesis	b) Pro	of reading
c) Identifies amino acid	s and transport them to	ribosomes	d) all of these
7. RNA polymerase (O	choa 1953) has polypep	tide chains	
a) 2	b) 3 c) 4	d) 5	
8. Which site of tRNA	molecule hydrogen bond	ds to a mRNA molecule?	•
a) Codon		b) Anticodon	
c) 5'ends of the tRNA i	nolecule d) 3'er	nds of the tRNA molecul	e
9. The DNA chain actir	ng as template for RNA	synthesis has the followi	ng order of bases, AGCTTCGA.
What will be the order	of bases in mRNA?		
a) TCGAAGCT	b) UGCUAGCT	c) TCGAUCGU	d) UCGAAGCU
10. What role does mes	senger RNA play in the	synthesis of proteins?	
a) it catalyses the proce	ess b) it pr	rovides the genetic bluep	rint for the protein
c) it translates the gene	tic code to a specific an	nino acid	
d) it modifies messeng	er RNA molecules prior	to protein synthesis	
11. On which of the fol	lowing molecules would	d you find a codon?	
a) messenger RNA	b) ribosomal RNA	c) transfer RNA	d) small nuclear RNA
12. Which one of the fo	llowing is the initiator of	codon of the peptide chai	in?
a) Throoping	b) leucine a) more	taina d) mathionina	

13. The complex of RNA polymerase, DNA template and new RNA transcript is called					
a) transcription bubble	b) replication bubble	lication bubble			
c) a translation bubble	d) none of these				
14. Rho-dependent termination	n of transcription in E. c	coli ·			
a) requires ATP		b) requires about 50 nucleotides of			
uncomplexed mRNA					
c) both (a) and (b)	d) r	emoves mRNA and holoenzyme from the DNA			
15. The function of the sigma	factor of RNA polymer	rase is to			
a) assure that transcription beg	ins at the proper point	b) assure that transcription ends at the proper			
c) assure that translation begin point	s at the proper point	d) assure that translation ends at the proper			

Module -3 and Module -4

Answe	r all the questio	ons		$(30 \times 0.5) = 3$	15	
1. Length of an alpha-helix along its helical axis with 30 amino acid residues is:						
A) 4:	5 Å	B) 300 Å	C) 30 Å	D) 450 Å		
2. Whic	h one is positive	ely charged ami	no acid:			
A) A	rg	B) Ala	C) Thr	D) Trp		
3. Huma	an plasma retino	ol binding protei	n binds			
A) C	a	B) Na ⁺	C) Vitamin A	D) Vitamin (
4. The d	lirection vector	of the dipole me	oment of a peption	le unit forming an α-he	lical is along:	
A) N	to C terminus		B) C to N term	inus		
C) P	erpendicular to	helical axis	D) None of the	above	·	
5. In sic	kle cell anemia	which of the fo	llowing mutation	takes place in normal	hemoglobin molecule	
A) G	LU to VAL	B) VA	L to GLU			
C) G	LU to GLY	D) VA	L to GLN			
6. Prote	in synthesis is d	lone by				
	A) Proteasome	B)Rib	osome C)Spli	ceosome D) N	ucleosome	
	ha helices are fo Ramachandran			tive residues all having	the phi,psi angle pair in	
A)	-60° & -50°	B) -80	° & -60°	C) -60° & -80°	D) -30° & -30°	
8.		ollowing amino	acid residues ha	ve two covalent linkage	es with the backbone and	
	iin atoms. Gly	B) Ala	ı	C) Pro	D) Phe	
	Arrange the fol	lowing amino a B) V		their decreasing size C) ILE	D) ARG	
1 0. 1	f a protein cont	ains 450 amino	acid residues, ho	ow many peptide bonds	will be there	

	11.	Write down the quaternary stru	ecture of a protein with two p	olypeptide chains
	12.	In a helical wheel each residue	can be plotted every	degree around a spiral path
	13.	Most commonly observed alpha	a helices are	handed
	14.	What is the quaternary structure	of hemoglobin?	
	15.	Define the chemical nature of po	eptide bond.	
16	. In a Lo as	ck and Key model of enzyme ac	tion, the part of the enzyme t	hat recognizes the substrate is known
	(a) Enz	yme-substrate complex	(b) Product-substrate compl	lex
	(c) Acti	ve site	(d) Inactive site	
17.	An enzo	yme exhibiting Michaelis-Menton Michaeli	n kinetics has a velocity of 'n is required to triple the velo	0.2 V _{max} ' at a substrate concentration ocity?
	(a) 6 ml	M (b) 8 mM (c) 10 r	mM (d) 12 mM	
18.	quarter.	resence of catalytic enzyme in a Find the ratio of reaction rate fo 4 SI unit)	particular reaction lowers do r catalyzed to uncatalyzed re	wn the activation barrier by a action at room temperature (Given,
19.	(a) Lar	ient enzyme has ge K _{cat} and Large K _M all K _{cat} and Large K _M	(b)Large K _{cat} and Sn (d) Small K _{cat} and Si	

20. A protein consists of 101 amino acids and each residue can have 3 different conformations. This protein fold into single native state. Find the change in the conformational entropy (at 27 °C) of this protein

21. Estimate the catalytic efficiency (in M-1 s-1) of an enzyme whose turn over number is 1.5 x 10⁶/s from the Lineweaver-Burk Plot between 1/[V] and 1/[S] (symbols has their usual meaning)

22. Estimate the iso-electric point of an amino acid having pK₁ =1.88, pK_R =3.65, pK₂ =9.6

- 23. Which one is 'protein misfolding' disease
 - (a) Alzheimer
- (b) Tuberculosis
- (c) Pneumonia
- (d) Hepatitis

- 24. Peptide bond is formed between
 - (a) Purine and Pyrimidine bases
 - (b) Carbon and Oxygen of different amino acid
 - (c) Carbon and Oxygen of same amino acid
 - (d) α -carboxyl group of one amino acid and α -amino group of another amino acid

			·	
25.	At what temperature the	enzymatic reaction velo	city is maximal	·
26.	Write any two different	experimental techniques	by which structure of pro	otein can be study
27.	Tryptophan an amino a	cid absorb light of wavel	ength (in A ⁰)	
28.	Ramachandran Plot tell (a) Structure of Vitamir (b) Structure of Carboh (c) Conformation of DN (d) Conformation of arr	s ydrate NA		
29.	Which one is very simil	lar to CPU of a computer	which does all calculation	ons in a human body
	(a) Vitamins	(b) Proteins	(c) DNAs	(d) RNA
30.	The maximum activity (a) Starting of a re (b) at low concents (c) When all enzyr (d) When only 1/e	action ation of substrate nes are combined with s	ubstrate mes combined with subst	rate

.

•