

KDIGO 2012 CLINICAL PRACTICE GUIDELINE FOR THE EVALUATION AND MANAGEMENT OF CHRONIC KIDNEY DISEASE

Supplemental Tables January 2013

ONLINE SUPPLEMENTAL TABLES

Supplemental Table 1. Search Strategy

- 1. exp kidney glomerulus/
- 2. exp kidney disease/
- 3. exp kidney function tests/
- 4. exp renal replacement therapy/
- 5. exp kidney transplantation/
- 6. exp kidney, artificial/
- 7. renal.af. or renal.tw.
- 8. kidney.af. or kidney.tw.
- 9. or/1-8
- 10. limit 9 to humans
- 11. limit 9 to (guideline or meta analysis or practice guideline
- or "review")
- 12. 10 not 11
- 13. glomerular filtration rate.af. or glomerular filtration rate.tw.
- 14. gfr.af.
- 15. exp kidney function tests/
- 16. serum creatin\$.af. or serum creatin\$.tw.
- 17. creatin\$.af. or creatin.tw.
- 18. cystat\$.af. or cystat\$.tw.
- 19. or/13-18
- 20. predict\$.af.
- 21. formula.af.
- 22. equation.af.
- 23. exp regression analysis/ or regression analysis.mp.
- 24. 20 or 21 or 22 or 23
- 25. 12 and 19 and 24
- 26. limit 25 to yr="1999-2011"

Reprinted with permission from Earley A, Miskulin D, Lamb EJ, et al. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012; 156: 785-795.

CKD-Allopurinol

- 1. randomized controlled trial.pt.
- 2. controlled clinical trial.pt.
- 3. randomized controlled trials/
- 4. Random Allocation/
- 5. Double-blind Method/
- 6. Single-Blind Method/
- 7. clinical trial.pt.
- 8. Clinical Trials.mp. or exp Clinical Trials/
- 9. (clinic\$ adj25 trial\$).tw.
- 10. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj (mask\$ or blind\$)).tw.
- 11. Placebos/
- 12. placebo\$.tw.
- 13. random\$.tw.
- 14. trial\$.tw.
- 15. (randomized control trial or clinical control trial).sd.
- 16. (latin adj square).tw.
- 17. Comparative Study.tw. or Comparative Study.pt.
- 18. exp Evaluation studies/
- 19. Follow-Up Studies/
- 20. Prospective Studies/
- 21. (control\$ or prospectiv\$ or volunteer\$).tw.
- 22. Cross-Over Studies/
- 23. or/1-22
- 24. exp kidney glomerulus/
- 25. exp kidney diseases/
- 26. exp kidney function tests/
- 27. exp renal replacement therapy/
- 28. exp kidney transplantation/
- 29. exp kidney, artificial/
- 30. exp ultrafiltration/
- 31. exp sorption, detoxification/
- 32. renal.af. or renal.tw.
- 33. nephro\$.af. or nephro\$.tw.
- 34. kidney.af. or kidney.tw.
- 35. ur?emia.af. or ur?emia.tw.
- 36. h?emodialysis.af. or h?emodialysis.tw.
- 37. (hemofiltr\$ or haemofiltr\$).af. or (hemofiltr\$ or haemofiltr\$).tw.
- 38. or/24-37
- 39. allopurinol.af. or allopurinol.tw.
- 40. 38 and 39
- 41. 23 and 40
- 42. limit 41 to humans

CKD-Acidosis

- 1. randomized controlled trial.pt.
- 2. controlled clinical trial.pt.
- 3. randomized controlled trials/
- 4. Random Allocation/
- 5. Double-blind Method/
- 6. Single-Blind Method/
- 7. clinical trial.pt.
- 8. Clinical Trials.mp. or exp Clinical Trials/
- 9. (clinic\$ adj25 trial\$).tw.
- 10. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj (mask\$ or blind\$)).tw.
- 11. Placebos/
- 12. placebo\$.tw.
- 13. random\$.tw.
- 14. trial\$.tw.
- 15. (randomized control trial or clinical control trial).sd.
- 16. (latin adj square).tw.
- 17. Comparative Study.tw. or Comparative Study.pt.
- 18. exp Evaluation studies/
- 19. Follow-Up Studies/
- 20. Prospective Studies/
- 21. (control\$ or prospectiv\$ or volunteer\$).tw.
- 22. Cross-Over Studies/
- 23. or/1-22
- 24. acidosis.mp. [mp=ti, ot, ab, nm, hw, kw, ui, an, sh]
- 25. metabolic acidosis.tw. or metabolic acidosis.af.
- 26. (acid-base\$ adj (balance\$ or equilibrium or imbalance or status)).tw. or (acid-base\$ adj (balance\$ or equilibrium or imbalance or status)).af.
- 27. or/24-26
- 28. bicarbonate\$.tw. or bicarbonate\$.af.
- 29. bicarbonate.mp. [mp=ti, ot, ab, nm, hw, kw, ui, an, sh]
- 30. or/28-29
- 31. 27 or 30
- 32. exp kidney diseases/
- 33. exp kidney glomerulus/
- 34. exp kidney function tests/
- 35. exp renal replacement therapy/
- 36. exp kidney transplantation/
- 37. exp kidney, artificial/
- 38. exp ultrafiltration/
- 39. exp sorption, detoxification/
- 40. renal.af. or renal.tw.
- 41. nephro\$.af. or nephro\$.tw.
- 42. kidney.af. or kidney.tw.
- 43. ur?emia.af. or ur?emia.tw.
- 44. h?emodialysis.af. or h?emodialysis.tw.
- 45. (hemofiltr\$ or haemofiltr\$).af. or (hemofiltr\$ or haemofiltr\$).tw.
- 46. or/32-45
- 47. 31 and 46
- 48. 47 and 23
- 49. Animals/ not humans.mp.
- 50. 48 not 49

CKD-Gadolinium and Nephrogenic Fibrosing Dermopathy

- 1. exp kidney glomerulus/
- 2. exp kidney disease/
- 3. exp kidney function tests/
- 4. exp renal replacement therapy/
- 5. exp kidney transplantation/
- 6. exp kidney, artificial/
- 7. exp ultrafiltration/
- 8. exp sorption, detoxification/
- 9. renal.af. or renal.tw.
- 10. nephro\$.af. or nephro\$.tw.
- 11. kidney.af. or kidney.tw.
- 12. ur?emia.af. or ur?emia.tw.
- 13. or/1-12
- 14. gadolinium.mp. [mp=ps, rs, ti, ot, ab, nm, hw, ui, an, tx, kw, sh, ct]
- 15. nephrogenic fibrosing dermopathy.mp. [mp=ps, rs, ti, ot, ab, nm, hw, ui, an, tx, kw, sh, ct]
- 16. 13 and 14 and 15

Protein Diet

- 1. exp kidney diseases/
- 2. exp kidney glomerulus/
- 3. exp kidney function tests/
- 4. kidney transplantation.mp. or exp kidney transplantation/
- 5. ((kidney or renal) adj (transplant\$ or recipient\$)).tw.
- 6. or/1-5
- 7. exp diet/
- 8. exp diet therapy/
- 9. exp diet, protein-restricted/
- 10. or/7-9
- 11.6 and 10
- 12. randomized controlled trial.pt.
- 13. controlled clinical trial.pt.
- 14. randomized controlled trials/
- 15. Random Allocation/
- 16. Double-blind Method/
- 17. Single-Blind Method/
- 18. clinical trial.pt.
- 19. Clinical Trials.mp. or exp Clinical Trials/
- 20. (clinic\$ adj25 trial\$).tw.
- 21. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj (mask\$ or blind\$)).tw.
- 22. Placebos/
- 23. placebo\$.tw.
- 24. random\$.tw.
- 25. trial\$.tw.
- 26. (randomized control trial or clinical control trial).sd.
- 27. (latin adj square).tw.
- 28. Comparative Study.tw. or Comparative Study.pt.
- 29. exp Evaluation studies/
- 30. Follow-Up Studies/
- 31. Prospective Studies/
- 32. (control\$ or prospectiv\$ or volunteer\$).tw.
- 33. Cross-Over Studies/
- 34. or/12-33
- 35. 11 and 34
- 36. Animals/ not humans.mp. [mp=ps, rs, ti, ot, ab, nm, hw, ui, tx, kw, ct]
- 37. 35 not 36
- 38. (guidelines or meta analysis or practice guideline or "review" or review).mp.
- 39. 37 not 38

Supplemental Table 2. Equations based on serum creatinine assays in adults that are not traceable to the standard reference material

Study, Year (Reference)	Equation Name	Expression	Formula
Cockcroft and Gault, 1976 ²	Cockcroft-Gault	CrCl in ml/min	(140 – age) × weight/(72 × SCr) × 0.85 (if female)
			SCr in mg/dl
Levey et al, 2006 ³	4-variable MDRD	GFR in ml/min per 1.73 m ²	$186 \times SCr^{-1.154} \times age^{-0.203} \times 0.742$ (if female)
		0	SCr in mg/dl
Levey et al, 1999 ⁴	6-variable MDRD	GFR in ml/min per 1.73 m ²	170 × SCr ^{-0.999} × age ^{-0.176} × 1.180 (if black) × 0.762 (if female) × BUN ^{-0.170} × albumin ^{0.318} SCr in mg/dl, BUN in mg/dl, and albumin in g/dl
Ma et al, 2006 ⁵	Chinese-modified MDRD	GFR in ml/min per 1.73 m ²	1.233 × 186 × SCr ^{-1.154} × age ^{-0.203} × (0.742 if female)
D 00046	0 1 5 5 5 5	OFD: 1/: 4.70 °	SCr in mg/dl
Rule et al, 2004 ⁶	Quadratic equation by Rule	GFR in ml/min per 1.73 m ²	exp[1.911 + (5.249/SCr) - (2.114/SCr²) - 0.00686 × age - 0.205 (if female)] SCr in mg/dl
Jelliffe, 1971 ⁷	Jelliffe, 1971	CrCl in ml/min	Men: (100/SCr) - 12
			Women: (80/SCr) – 7
			SCr in mg/dl
Jelliffe, 1973 ⁸	Jelliffe, 1973	CrCl in ml/min	[98 – 0.8 × (age – 20)] / SCr × (0.9 if female) SCr in mg/dl
Mawer et al, 19729	Mawer	CrCl in ml/min	Men: weight × [29.3 – (0.203 × age)] × [1 – (0.03 × SCr)] / (14.4 × SCr) × weight/70
			Women: weight × [25.3 – (0.175 × age)] × [1 – (0.03 × SCr)] / (14.4 × SCr) × weight/70
			SCr in mg/dl
Hull et al, 1981 ¹⁰	Hull	CrCl in ml/min	[(145 - age)/SCr - 3] × (weight/70) × 0.85 (if female); SCr in mg/dl
Gates, 1985 ¹¹	Gates	CrCl in ml/min	Men: $(89.4 \times SCr^{-1.2}) + [(55 - age) \times (0.447 \times SCr^{-1.1})]$
			Women: $(60 \times SCr^{-1.1}) + [(56 - age) \times (0.3 \times SCr^{-1.1})]$
			SCr in mg/dl
Bjornsson et al, 1983 ¹²	Bjornsson	CrCl in ml/min	Men: [27 – (0.173 × age)] × weight × 0.007/SCr
			Women: [25 – (0.175 × age)] × weight × 0.007/SCr]
Walas at al. 100213	\A/alaan	CED in relien	SCr in mg/dl
Walser et al, 1993 ¹³	Walser	GFR in ml/min	Men: 7.57/SCr – 0.103 × age) + (0.096 × weight) – 6.66
			Women: 6.05/SCr – (0.08 × age) + (0.08 × weight) – 4.81
Nankivell et al, 1995 ¹⁴	Nankivell	GFR in ml/min	SCr in µmol/l (6.7/SCr) + (weight/4) – (BUN/2) – (100/height²) + [35 (if male) or 25 (if female)]
ivalikiveli et al, 1995.	INAITRIVEII	GFK III IIII/IIIIII	(0.7/3Ct) + (weight/4) - (BON/2) - (100/height-) + [33 (if filate) of 23 (if female)] SCr in µmol/l and BUN in mmol/l
Imai et al, 2007 ¹⁵	JSN-CKDI	GFR in ml/min per 1.73 m ²	1.223 × 186 × SCr ^{-1.154} × age ^{-0.203} × 0.742 (if female)
iiiai ot ai, 2001	0014-01/DI	Of It in minimi per 1.73 in	SCr in mg/dl

BUN, blood urea nitrogen; CrCl, creatinine clearance; GFR, glomerular filtration rate; JSN-CKDI, Japanese Society of Nephrology-Chronic Kidney Disease Initiatives; MDRD, Modification of Diet in Renal Disease; SCr, serum creatinine.

Reprinted with permission from Earley A, Miskulin D, Lamb EJ, et al¹ Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012; 156: 785-795.

Supplemental Table 3. Equations based on serum cystatin C assays in adults that are not traceable to standard reference material

Equation name, reference	Formula
Perkins ¹⁶	100/(CysC)
MacIsaac ¹⁷	(86.7/CysC)-4.2
Stevens ¹⁸	177.6 x (SCr/88.4)-0.65 x CysC-0.57 x Age-0.20 x (0.82 if female)
Ma ¹⁹	169 x (SCr/88.4) ^{-0.608} x CysC ^{-0.63} x Age ^{-0.157} x (0.83 if female)
Filler ²⁰	91.62 x CysC ^{-1.123} (LogGFR)=1.962 + [1.123 x log(1/CysC]
Le Bricon ²¹	78/CysC + 4
Orebro-cyst ²²	100/CysC-14
Hoek ²³	80.35/CysC-4.32
Rule ²⁴	76.6 x CysC ^{-1.16}
Larsson ²⁵	77.24 X CysC-1.2623 (Dade Behring CysC calibration)
Grubb ²⁶	86.49 x CysC ^{-1.686} x 0.948 [if female]

References

- 1. Earley A, Miskulin D, Lamb EJ, et al. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. *Ann Intern Med* 2012; 156: 785-795, W-270, W-271, W-272, W-273, W-274, W-275, W-276, W-277, W-278.
- 2. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. *Nephron* 1976; 16: 31-41.
- 3. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. *Ann Intern Med* 2006; 145: 247-254.
- 4. Levey AS, Bosch JP, Lewis JB, *et al.* A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. *Ann Intern Med* 1999; 130: 461-470.
- 5. Ma YC, Zuo L, Chen JH, *et al.* Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. *Journal of the American Society of Nephrology : JASN* 2006; 17: 2937-2944.
- 6. Rule AD, Larson TS, Bergstralh EJ, *et al.* Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. *Ann Intern Med* 2004; 141: 929-937.
- 7. Jelliffe RW. Estimation of creatinine clearance when urine cannot be collected. *Lancet* 1971; 1: 975-976.
- 8. Jelliffe RW. Letter: Creatinine clearance: bedside estimate. *Ann Intern Med* 1973; 79: 604-605.
- 9. Mawer GE, Lucas SB, Knowles BR, *et al.* Computer-assisted prescribing of kanamycin for patients with renal insufficiency. *Lancet* 1972; 1: 12-15.
- 10. Hull JH, Hak LJ, Koch GG, *et al.* Influence of range of renal function and liver disease on predictability of creatinine clearance. *Clin Pharmacol Ther* 1981; 29: 516-521.
- 11. Gates GF. Creatinine clearance estimation from serum creatinine values: an analysis of three mathematical models of glomerular function. *Am J Kidney Dis* 1985; 5: 199-205.
- 12. Bjornsson TD, Cocchetto DM, McGowan FX, et al. Nomogram for estimating creatinine clearance. *Clin Pharmacokinet* 1983; 8: 365-369.
- 13. Walser M, Drew HH, Guldan JL. Prediction of glomerular filtration rate from serum creatinine concentration in advanced chronic renal failure. *Kidney Int* 1993; 44: 1145-1148.
- 14. Nankivell BJ, Gruenewald SM, Allen RD, et al. Predicting glomerular filtration rate after kidney transplantation. *Transplantation* 1995; 59: 1683-1689.
- 15. Imai E, Horio M, Nitta K, *et al.* Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. *Clin Exp Nephrol* 2007; 11: 41-50.
- 16. Perkins BA, Nelson RG, Ostrander BE, *et al.* Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. *J Am Soc Nephrol* 2005; 16: 1404-1412.
- 17. Macisaac RJ, Tsalamandris C, Thomas MC, *et al.* Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatinine-based methods. *Diabetologia* 2006; 49: 1686-1689.

- 18. Stevens LA, Coresh J, Schmid CH, *et al.* Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. *Am J Kidney Dis* 2008; 51: 395-406.
- 19. Ma YC, Zuo L, Chen JH, *et al.* Improved GFR estimation by combined creatinine and cystatin C measurements. *Kidney Int* 2007; 72: 1535-1542.
- 20. Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? *Pediatr Nephrol* 2003; 18: 981-985.
- 21. Le Bricon T, Thervet E, Froissart M, et al. Plasma cystatin C is superior to 24-h creatinine clearance and plasma creatinine for estimation of glomerular filtration rate 3 months after kidney transplantation. *Clin Chem* 2000; 46: 1206-1207.
- 22. Sjostrom P, Tidman M, Jones I. Determination of the production rate and non-renal clearance of cystatin C and estimation of the glomerular filtration rate from the serum concentration of cystatin C in humans. *Scand J Clin Lab Invest* 2005; 65: 111-124.
- 23. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. *Nephrol Dial Transplant* 2003; 18: 2024-2031.
- 24. Rule AD, Bergstralh EJ, Slezak JM, et al. Glomerular filtration rate estimated by cystatin C among different clinical presentations. *Kidney Int* 2006; 69: 399-405.
- 25. Larsson A, Malm J, Grubb A, *et al.* Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. *Scand J Clin Lab Invest* 2004; 64: 25-30.
- 26. Grubb A, Nyman U, Bjork J, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. *Clin Chem* 2005; 51: 1420-1431.