1 Die Menge der natürlichen Zahlen

Für eine Menge M definiere $M^+ = M \cup \{M\}$.

1.1 Die Wohlordnung der natürlichen Zahlen

Für $n, m \in \mathbb{N}$ gilt n < m genau dann, wenn $n \in m$. Wir schreiben $n \leq m$ falls n < m oder n = m gilt. Die Relation \leq ist eine Wohlordnung: Für jede Teilmenge T von \mathbb{N} existiert ein kleinstes Element. Das heißt für jedes $T \subseteq \mathbb{N}$ gibt es ein Element $x \in T$, so dass es kein $y \in T$ gibt mit y < x. Wir bemerken, dass < und \leq binäre Relation auf \mathbb{N} sind, weshalb wir \leq als die Teilmenge von $\mathbb{N} \times \mathbb{N}$ betrachten, die alle geordneten Paare (m,n) enthält mit $n \leq m$.

1.2 Addition und Multiplikation

Die Addition ist eine Funktion $+ := \mathbb{N} \times \mathbb{N} \to \mathbb{N} (= \text{eine "zweistellige" Funktion auf } \mathbb{N})$ und wird wiefolgt induktiv definiert:

$$n + 0 := n$$

 $n + m^+ := (n + m)^+$

Auch die Multiplikation $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ kann mein induktiv definieren:

$$n \cdot 0 := 0$$
$$n \cdot m^+ := n \cdot m + n$$

Und zum Schluss betrachten wir noch die Exponentation $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit Hilfe der Multiplikation:

$$n^0 := 1$$
$$n^{m^+} := n^m n$$

1.3 Teilbarkeit und Primzahlen

Wir definieren auf \mathbb{N} die *Teilbarkeitsrelation*: für $a, b \in \mathbb{N}$ gelte $a \mid b(\text{sprich a } teilt \text{ b})$ genau dann, wenn es ein $k \in \mathbb{N}$ gibt mit $a \cdot k = b$. In diesem Fall heißt a *Teiler* von b.

Definition 1 Eine Zahl $p \in \mathbb{N}$ heißt Primzahl(oder prim), wenn sie größer als 1 ist und nur durch 1 und sich selbst teilbar ist. Ein Primteiler von n ist ein Teiler von n, der prim ist.

Satz 1 (Fundamentalsatz der Arithmetik). Jede natürliche Zahl n > 0 kann auf genau eine Weise als Produkt

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$$

geschrieben werden, wobei $k \in \mathbb{N}, p_1 < p_2 < ... < p_k$ Primzahlen, und $\alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{N}$ größer als 1 sind.

1.4 Der euklidische Algorithmus

Der euklidische Algorithmus ist ein effizientes Verfahren, um den größten gemeinsamen Teiler zweier Zahlen zu berechen.

Der größte gemeinsame Teiler von $a, b \in \mathbb{N}$ ist die größte natürliche Zahl d, die a und b teilt. Wir schreiben ggT(a, b) für diese Zahl d.

Lemma 1 (Division mit Rest). Seien $a, b \in \mathbb{Z}$ und b! = 0. Dann gibt es $q, r \in \mathbb{Z}$ mit a = qb + r und $0 \le r < |b|$.

Für die Zahl r aus dem Lemma schreiben wir auch amodb; was wir schon unter dem Rest aus der schriftlichen Division her kennen. Für $q \in \mathbb{Q}$ schreiben wir $\lfloor q \rfloor$ für die eindeutige größte Zahl $z \in \mathbb{Z}$ die kleiner ist als q. Dann gilt für $a,b \in \mathbb{N}$ und b! = 0 dass $a = |a \setminus b| + amodb$.

Lemma 2 Es seien $a, b \in \mathbb{N}$ mit b > 0. Dann gilt ggT(a, b) = ggT(b, amodb).

Dieses Lemma ist die zentrale Beobachtung für die Korrektheit für den euklidischen Algorithmus:

```
//Eingabe: m, n \in \mathbb{N} mit m \leq n
//Ausgabe: ggT(m, n).
Falls m \mid n
gebe m aus
ansonsten
gebe EUKLID(n \mod m, m) aus.
```

Gebe $(a'-b'|n \setminus m|, b')$ aus.

1.5 Erweiterter euklidischer Algorithmus

Durch eine kleiner Erweiterung kann der euklidische Algorithmus auch dazu verwendet werden, um für gegeben $m, n \in \mathbb{N}$ die Zahlen $a, b \in \mathbb{Z}$ aus dem Lemma von Bézout zu berechnen.

Lemma 3 Es seien $m, n \in \mathbb{N}$ nicht beide 0. Dann gibt es ganze Zahlen $a, b \in \mathbb{Z}$ mit ggT(m, n) = am + bn.

```
Erweiterter Algorithmus: 
//Der erweiterte euklidische Algorithmus E-EUKLID(m,n)
//Eingabe: m,n\in\mathbb{N} mit m\leq n.
//Ausgabe: a,b\in\mathbb{Z} so dass ggT(m,n)=am+bn
Falls m\mid n
gebe (1,0) aus.
ansonsten
Sei (b',a') die Ausgabe von E-EUKLID(n\mod m,m).
```

Lemma 4 (Lemma von Euklid). Teilt eine Primzahl das Produkt zweier natürlicher Zahlen, so auch mindestens einen der Faktoren.