பல்தேர்வு விடைகள்

1	3	11	5	21	4	31	5	41	2
2	2	12	5	22	3	32	2	42	3
3	5	13	1	23	5	33	2	43	4
4	4	14	5	24	4	34	2	44	2
5	5	15	3	25	3	35	4	45	3
6	2	16	5	26	1	36	4	46	4
7	4	17	5	27	5	37	3	47	4
8	4	18	4	28	4	38	4	48	4
9	2	19	3	29	3	39	4	49	3
10	5	20	Open	30	4	40	2	50	4

பகுதி $\mathbf{H}(\mathbf{A})$ - அமைப்புக்கட்டுரை

1.

- a) (i) முறுக்குதிறள், முறுகாலி குறித்த விசையுடன் சுரையாணிகளை இறுக்குதல்
 - (ii) உணர் மானி இடைவெளிகளை அளத்தல்
 - b) (i) தோள்க் கையுறை, காலணி, கறுப்புக் கண்ணாடி, பருத்தி உடை

- (ii) இறப்பர் சப்பாத்து, கையுறை, தலைக்கவசம்
- (iii) சப்பாத்து, கையுறை, தலைக்கவசம், மேலங்கி
- (iv) தலைக்கவசம், கையுறை, முகமூடி, காலுறை
- c) 1. சுழலும் பற்பொறி
 - 2. தீ அபாயம் ஏற்படும் பகுதி
 - 3. இயங்கும் சுழலி பகுதி
 - 4. முன்னால் தடைகள்
 - 5. கதிரியக்கப் பகுதி
- d) (i) 1. துருப்பிடிக்கப்படமாட்டாது, தகடாக்கக் கூடியது.
 - 2. கம்பியாக்கக் கூடியது
 - 3. மின் கடத்து திறன் கூடியது.
 - 4. தீந்தைப்பூச்சாக்க கூடியது.

3. 1) பங்களிப்பு

(3 marks)

2) பங்களிப்பு விற்பனை வீதம்

=40%

$$=rac{$$
பங்களிப்பு $}{$ விந்பனை $} ext{ X 100}$ $=rac{8}{20} ext{ X 100}$

(3 marks)

3) 40000/= இலாபம் உழைப்பதற்கான விற்பனை அலகு

$$=\frac{2000000+40000}{8}$$
$$=\frac{240000}{8}$$

(3 marks)

4) இலாப நட்டமற்ற புள்ளியில் விற்பனைப் பெறுமதி
$$= \frac{\text{நிலையான கிரயம்}}{\text{அலகு பங்களிப்பு}} \, X \, \text{விற்பனை} \\ = \frac{200000}{\text{N}} \, \text{X} \, 20$$

$$=\frac{200000}{8} \times 20$$

= 25000 X 20 = 500000/=

(3 marks)

5) இலாப நட்டமற்ற புள்ளியில் விற்பனை அலகு நிலையான கிரயம் — அலகு பங்களிப்பு

=
$$\frac{200000}{8}$$
= 25000 அலகுகள்

= 650000/=

(3 marks)

6) ரூபா 60000 இலாபம் உழைப்பதற்கு விற்பனை மட்டம்

$$=\frac{\text{ јі момитм мітрий + аздітитіт за мітрий }}{\text{ шті матрий + аздітитіт за мітрий }} X 100$$
 $=(\frac{200000+60000}{8}) X 20$
 $=\frac{200000}{8}$
 $=32500 X 20$

(5 marks)

(Total 20 marks)

4. (a) Diesel tank -> Feed pump -> Filter -> Injection pump -> Injector -> Combustion chamber டிசல் தாங்கி -> ஊட்டல் பம்பி -> வடிப்பான் -> உட்பாச்சிப் பம்பி -> உட்பாச்சி -> தகன அறை

(b)

I.O – Intake valve Open

I.C – Intake valve Close

E.O – Exhaust valve Open

E.C – Exhaust valve Closed

↓ - Ignition

S – Suction stroke

C – Compression stroke

P – Power stroke

E – Exhaust stroke

(c) Fixed Caliper

இங்கு caliper நிலையானதாக காணப்படும்

இரண்டு பக்கத்திலும் pistonகள் காணப்படும்

விசை இரு பக்கமும் பிரயோகிக்கப்பட்டு disc ஆனது அழுத்தப்படும்

Floating Caliper

இங்கு caliper அசையக்கூடியவாறு காணப்படும் ஒரு பக்கத்தில் மாத்திரம் piston காணப்படும் விசையானது ஒரு பக்கத்தில் பிரயோகிக்கப்பட்டு disc ஆனது அழுத்தப்படும்

பகுதி $\mathbf{II}(\mathbf{B})$ - கட்டுரை

- 5. (i) a) 1. கட்டடத்தின் அமைப்பு
 2. மண்ணின் தாங்கு திறன்
 - b) சுமையை ரந்து நிலத்துக்குப் பரப்புதல் மட்ட மண் தளத்தை தருதல் புறத் தாக்கல்களில் இருந்து சுவரை பாதுகாத்தல் மண்ணின் சீரற்ற இறக்கத்தை சமப்படுத்துதல்
 - (ii) a) கொங்கநீற் உறுப்பின் மேற்பரப்புக்கும் உருக் கம்பிகளுக்கும் இடைப்பட்ட தூரம்/வெளி b) துருப்பிடியாமை, விலகாமை, வெப்பம், ஈரம் சென்றடையாமல் தடுத்தல்

- (iv) ஒரு கொங்கறீற் தகடுகளுக்கு மீள்வலுவூட்டிகளை பிரயோகிக்கும் போது இழுவைத் தகைப்பும், நெருக்கல் தகைப்பும் பற்றி ஒரு வளையை போன்று கருதுதல் வேண்டும். தகடுகளின் பரப்பளவு அதிகரிக்கும் போதும் தகடுகளின் தடிப்பு குறைவடைவதன் காரணமாக அதில் ஏற்படும் தொய்வு தகைப்புகளுக்கு தாக்குப்பிடிக்கும் ஆற்றல் கொங்கறீற்றிடம் உள்ளது.
- (v) 1. காற்று வால்வு: குழாய்கள் வெறுமையாக இருக்கும் போது காற்றை நிரப்பியும், நீரினால் நிறையும் போது மேலதிக காற்றை வெளியேற்றவும்
 - 2. கான்னுழி பொறி: குளியல் அறையில் இருந்து வரும் கழிவு நீரை வெளியே அனுப்புவதற்கு

- 3. இடைமநித்தல் பொறி: வீட்டுக் கழிவுகளை பொதுக்கானுடன் சேர்ப்பதற்கு முன், வீட்டுக் கழிகானில் பொருத்துவதால் பொதுக்காணியில் உள்ள மணம் உள்வராது. வீட்டுக்கானில் உள்ள தடைசெய்யக்கூடிய பொருட்களை இப்பொறி தடுத்து நிறுத்தும். அமுக்கத் தொட்டிக்கு கழிகான் செல்லும் பொது இடைமறித்தற் பொறி பயன்படும். மணம் திரும்பி வராமல் இருப்பதற்கு.
- 4. நீர்மானி: நீர் மானி பொருத்துவதன் மூலம் நீர்ப் பாவனையாளர் நீரை கட்டுப்பாட்டுடன் பயன்படுத்துவார். வீண் விரயம் குறையும். நீர்மானி மூலம் பயன்படும் நீர் கணக்கிடப்பட்டு வரி அறுவிடப்படும்.
- 5. குண்டு வால்வு: நீர் விநியோகத்தை வழங்கி கட்டுப்படுத்தும் வால்வு. அலகுத் தொட்டி, உயர்மட்ட நீர்த் தாங்கி, நிலக்கீழ் வாங்கு தொட்டியில் பயன்படும்.
- (vi) கொங்கிறீற்று கொண்டு செல்லல்: முதலாம் அளவு காலத்துக்கு முன் கொண்டு செல்லப்பட வேண்டும், தள்ளு வண்டி, கொங்கிறீற் காவு வண்டி, உயர்த்து வாளி, தாச்சி, குழாய்கள் போன்றவற்றில் கொங்கிறீற்றை கொண்டு செல்லலாம்.
 - இறுக்குதல்: கொங்கிறீற் இடப்படும் பொழுது இறுக்கப்படல் முக்கியமாகும். கொங்கிறீற் இறுக்கப்படுவதால் கொங்கிறீற்றிலுள்ள வளி வெளியேற்றப்பட்டு தேன் கூட்டு வெளிகள் ஏற்படாமல் செய்யலாம். இதற்கு தகுந்த அதிரிகள் பயன்படுத்தப்படலாம்.
- (vii) a) கொங்கிறீற்றை தனதுமுதிர்வு காலம் வரை ஈரமான நிலையில் வைத்திருத்தல் முதிர்வித்தல் எனப்படும்.
 - b) கொங்கறீற்றி மேற்பரப்பு காய்ந்து போக உட்பரப்பில் ஈரம் காணப்படும். இதனால் கொங்கிறீற்றில் நடுக்கம் ஏற்பட்டு மெற்பரப்புகளில் வெடிப்புகள் ஏற்படலாம்
- (viii) a) சாதாரண கொங்கிறீற் நெருக்கல் விசையை தாங்கக் கூடியது. ஆனால் இழுவைத்தகைப்பை தாங்கிக்கொள்வதில்லை. இதற்காக கொங்கிறீற்றிற்கு கம்பிகள் மூலம் வலுவூட்டப்படும்.
 - b) வெடிப்புகள் ஏற்படலாம்
- (ix) a) நீர் அடைப்பு பொறிகள் பயன்னடுவதால் துர்நாற்றம் மணம் போன்றன உள்வராது, பூச்சிகள் கிருமிகள் போன்றன உள்வராது. நீர் இருப்பதால் பார்ப்பதந்த சுகாதாரமான முறையுண்டு.
 - b) பொறிகளில் நீர் அடைப்பு அற்றுப்போகும் சந்தர்ப்பங்கள் ஆவன: நீண்ட காலம் பயன்படுத்தாமல் இருப்பின்

பொறிகளில் உடைப்பு ஏற்படின் பொறிகள் நீரை உற்ஞ்சுமாயின்

6.

T	D	S	Description and Work		
			1. 112.5+1800+225+1800+112.5 = 4050 4050 X 2 = 8100		
			சுவர் 1125+2000+112.5 = 2225 2225 X 3 = 6675		
			மொத்தம்: 8100+6675 = 14775		
			(a) அத்திவார அகழ்வு 0.3 m அகலத்துக்கு குறையாமலும் 1 m ஆழத்துக்கு மேற்படாமலும் அகழ்தல்		

14.02	அகழ்வு
0.75	மொத்தம் 14775
0.60	கழி "T" சந்தி 2 ¹ / ₂ 750 750
	 மொத்தம் 14775-750 = 14025
	அகலம் = 750
	ஆழம் = 600
14.77	(b) DPC மட்டம் வரை கண்டகல் வேலை
0.77	350 அஅ அகல கண்டகல் அத்திவாரம் 1:5 வருமாறு மணல் 150 — 225 கற்களால்
	 மொத்தம் 14775
	கழி "T" சந்தி 2 1/2 350 350
	மொத்தம் 14775-350 = 14425
	உயரம் 600-125 = 475
	DPC மட்டம் 300
	மொத்தம் 475+300 = 775
	3. தள கொங்கிறிற்
1.87	1 : 2 ½ :5 (25) கீலம், மணல், கொங்கிறிற் 12.5 அஅ தடிப்பு
1.67	அறை நீளம் 2000
	கூட்டல் 225
	மொத்தம் 2000+225 = 2225
 	
	மொத்தம் 2225-350 = 1875
	அகலம் 1800
	180+225 = 2025
14.55	கழி 2 1/2 350 350
2.70	மொத்தம் 2025+350 = 1675
	4. 225 அஅ ஆங்கிலக்கட்டு கூரைமட்டம் வரை 1:5
	சீ.மணல் மொத்தம் 14775 கழி 2 1/2 225 225
	கழ 2 1/2 223 223 மொத்தம் 14775+225 = 14550
 	உயரம் 2700
0.90	கழிக
1.95	D 200X1950
0.60	EC 600Y450
0.60 0.45	FC 600X450

1.35	2410
0.15	0 1 000 450 1250
	நீளம் 900+450 = 1350
-	உயரம் 150 mm

7. (i) பகுதி Aயின் 300 mm + 40 mm பகுதிகளை அளந்து குறித்தல் (இதற்கு உருக்கு அடிமட்டம், வரையூசியை பயன்படுத்தல்)

பகுதி A,B ஆகியவற்றில் உள்ள 5 துவாரம் அனைத்தையும் இட வேண்டிய பகுதிகளை இனங்கண்டு குறித்த மையத்தை மையக் குற்றியால் பதித்தல்

பகுதி A,B ஆகிய துண்டுகளை உலோகம் அரியும் உபகரணத்தின் உதவியுடன் வெட்டி எடுத்தல் அரம் மூலம் பகுதிகளை சுத்தம்செய்தல்

- (ii) துளைகள் அமைய இடங்களை இனங்கண்டு குறித்துக் கொள்ளல் மையக் குற்றியின் உதவியுடன் துளைகளின் மையத்தை தயார் செய்தல் A பகுதியின் இரண்டு துளைகளையும் R5 அளவு முறுக்குத் துளை அலகின் உதவியுடன் துளையிடல் B பகுதியின் 2 துளைகளையும் R3 அலகின் உதவியுடன் துளையிடல்
- (iii) மின்வில் உருக்கிணைத்தல் / அசற்றலின் உருக்கிணைத்தல் (பொருத்தமானவாறு விளக்கியெழுதுதல் வேண்டும்)
- (iv) கையுறை, தலைக்கவசம், கண்ணாடி என்பவற்றை அணிந்து வேலையை மேற்கொள்ளல்
- 8. (a) பெற்றோல், டீசல் என்பவற்றிற்கான சுய எரித்தல் ஆனது டீசலிலேயே விரைவில் ஏற்படுகிறது.

 Diesel Engine களில் அமுக்க அடிப்பு காரணமாக டீசல் ஆனது சுயமாகவே எரிகின்றது இதனால் டீசல்

 Engine களில் தீப்பொறி செருகியானது பயன்படுத்தப்படுவது இல்லை.

Petrol Engine களில் அமுக்க அடிப்பின் அமுக்கமானது சுய எரிபற்றலிற்கு போதாமல் இருப்பதால் எரிதலை இலகுபடுத்துவதற்காக தீப்பொறி செருகியானது பயன்படுத்தப்பட்டு தீப்பொறி ஆனது வழங்கப்படுகின்றது.

(b) இயந்திரத்தின் தகன அறையில் வெப்பநிலை ஆனது மிக அதிகமாகும் போது NO_2 வாயுவானது உருவாகின்றது. கிட்டத்தட்ட தகன அறையின் வெப்பநிலை $1500^{0}\mathrm{C}$ ஜ விட அதிகம் ஆகும் போது NO_2 உருவாகின்றது.

இதனை கட்டுப்படுத்துவதற்கு EGR தொழில்நுட்பமானது பயன்படுத்தப்படுகிறது.

EGR (Exhaust Gas Recirculation)

தகன அறையில் வெப்பநிலையானது மிக அதிகமாகி NO_2 வாயு உருவாகும் போது வெளியேற்றல் தொகுதியில் இருந்து Exhust Gas (புகை) அனது EGR value இன் ஊடாக உள்ளீட்டு குழாய்க்கு அனுப்பப்படுகிறது இதனால் புகையிலுள்ள காபன் துணிக்கைகள் உள்ளீட்டு அடிப்பின் போது தகன அறையை சென்றடைந்து தகன அறையின் வெப்பநிலையை குறைக்கின்றன. இதனால் NO_2 வாயுவானது உருவாகுதல் கட்டுப்படுத்தப்படுகிறது.

- (c) 1) Engineஇன் வினைத்திறன் குறைவடையும் அதாவது அமுக்கம் ஆனது Gas kit இனூடாக கசிவதால் Engine இன் வினைத்திறன் குறைவடையும்
 - 2) Engine இன் வெப்பநிலை அதிகமாகும். தகனத்தின் போது ஏற்படும் வெப்பம் Gas kit இன் உடைவு காரணமாக நீரிநிகு நேரடியாக கடத்தப்படும். இதனால் வெப்பநிலை அதிகமாகும்.
 - 3) Engine oil மட்டம் அதிகரிக்கும் Gas kit இன் உடைவு காரணமாக oil உடன் நீர் கலக்கப்பட்டு oil இன் மட்டமானது உயர்வடையும்

(d)

- முறுக்கத்தினை கூட்டி, குறைத்தல்
- வேகத்தினை கூட்டி, குறைத்தல்நு
- Engine ஆனது இயங்கிக்கொண்டிருக்கும் போது வாகனத்தை நிறுத்தி வைத்திருத்தல் (N-Position)
- வாகனத்தை பின்னோக்கி செலுத்த உதவுதல்
- கியர் ஆனது மாற்றப்படும் போது வேறு எண்ணிக்கையிலான பற்களைக் கொண்டு பற்சில்லுகள் தொடுகையுறுகின்றன. இதனால் கியர் விகிதம் ஆனது மாற்றம் அடைகின்றது இதன் போது வேகம் ஆனது அதிகரிக்கின்றது
- பல் எண்ணிக்கை அதிகமாக உள்ள பற்சில்லின் மூலம் பல் எண்ணிக்கை குறைந்த பற்சில்லானது சுற்றப்படும் போது வேக அதிகரிப்பு ஏற்படுகின்றது.
- (e) 1) Universal Joint (சர்வ முட்டு)

இது Propeller shaft இன் இரு மூலைகளிலும் காணப்படுகிறது. Engineன் சுழற்சியை கோணல்களில் முறித்து இறுதிச் செலுத்திக்கு வழங்குவதற்கு இது உதவுகிறது.

2) Sliding joint (வழக்கும் மூட்டு)

இது வாகனம் ஆனது மேடு பள்ளங்களில் பயணிக்கும் போது Propeller shaft இனை உடையாமல் பாதுகாக்கிறது. அதாவது, இச் சந்தர்ப்பங்களில் Sliding joint ஆனது தன்னுள் அசைந்து Propeller shaft இனை பாதுகாக்கிறது.

9. a) (i) 0V

(ii)
$$V_p = \sqrt{2} V_{rms}$$

= $\sqrt{2} x \frac{1}{2\sqrt{2}}$
= $0.5V$

(iii)
$$\frac{Vp}{Np} = \frac{Vs}{Ns}$$

$$V_{s} = \frac{N_{s}}{N_{p}} \times V_{p}$$
$$= \frac{500}{100} \times 0.5$$
$$= 2.5 V$$

- b) (i) 1. உயர் பெய்ப்புத்தடை கொண்டது
 - 2. தாழ் பயப்புத்தடை கொண்டது
 - 3. உயர் அழுத்தநயம் கொண்டது
 - 4. ஆடல் ஓட்ட, நேர் ஓட்ட அழுத்தவேறுபாட்டினை விரியலாக்கம் செய்யலாம்
 - 5. உயர் மீடிறன் வீச்சை விருத்தி செய்யலாம்.

(ii)
$$Vo = -\frac{Rf}{Ri}V_{in}$$

= $-\frac{100k\Omega}{20k\Omega} \times 2.5V$
= $-12.5V$

செயற்பாட்டு விரியலாக்கியின் வழங்கல் அழுத்தம் $+\ 10V,\ -10V$ ஆகையால்

$$V_0 = -10V$$

[Note :- $V_{\rm in}$ = -2.5V பிரதியிட்டு +10V எடுக்கப்படலாம்.]

c) (i)
$$P = V^2/R$$

 $R = V^2/P$
 $= \frac{4 \times 4}{0.16}$
 $= 100\Omega$

- (ii) பாதுகாப்பாக இருக்கும் மின் கலத்திற்கு குறுக்கேயான அழுத்தம் 0.4V விட அதிகமான சேனர்ச் சேர்மானம் விடாது.
- (iii) 100Ω தடையினூடான மின்னோட்டம் ஓமின் விதிப்படி V = IR

$$I = \frac{V}{R} = \frac{6V}{100} = 0.06A$$

மின்குமிழினூடான மின்னோட்டம்

$$V = IR$$

$$I = \frac{V}{R} = \frac{4V}{100} = 0.04A$$

சேனரினூடான மின்னோட்டம் கேச்சோவின் 1ம் விதிப்படி

$$i_2 = 0.06 - 0.04 = 0.02A$$

- 10. a) (i) 1. மீளப் புதுப்பிக்கக் கூடிய சக்தி மூலம்
 - 2. சூழல் மாசடையாது
 - 3. மின் உந்பத்திக்கான நடைமுறைச் செலவு குறைவு
 - (ii) 1. காற்று தடைப்படின் மின் உற்பத்தி குறைவடையும்
 - 2. ஆரம்ப மூலதனச் செலவு அதிகம் (சூரிய கல உற்பத்தியிலும் பார்க்க)
 - (iii) A: அடித்தளம்
 - B: காற்றாடி
 - C: Gear Box
 - D: மின் பிறப்பாக்கி
 - E: Tower (தூண்)
 - b) (i) X_1 படிகூட்டு நிலைமாற்றி
 - star delta
 - X_2 படிகூட்டு நிலைமாற்றி
 - delta delta
 - X_3 படிகுறைப்பு நிலைமாற்றி
 - delta star

 I_2 – வழிமின்னோட்டம்

 I_{Ph} — அவத்தை மின்னோட்டம்

 V_L – வழி அழுத்தம்

 V_{Ph} – அவத்தை அழுத்தம்

$$\begin{split} V_L &= 400 \text{ V} \\ V_P &= \frac{V_L}{\sqrt{3}} \\ V_{Ph} &= \frac{400}{\sqrt{3}} = 230 \text{ V} \\ I_{Ph} &= \frac{V_{Ph}}{R} = \frac{230 \text{ V}}{100 \Omega} = 2.3 \text{ A} \end{split}$$

$$I_{Ph} = I_L = 2.3 A$$

$$\begin{split} P_{Total} &= \sqrt{3} \ V_L \ I_L \cos \Theta \\ &= \sqrt{3} \ X \ 400 \ X \ 23 \\ &= 1.6 \ kW \end{split} \tag{Cos} \Theta = 1 \label{eq:Cos}$$

$$\begin{split} V_L &= 400 \text{ V} \\ V_{Ph} &= V_L = 400 \text{ V} \\ I_{Ph} &= \frac{v_{Ph}}{R} = \frac{400}{200} = 2 \text{ A} \\ I_L &= \sqrt{3} \text{ I}_{Ph} \\ &= \sqrt{3} \text{ X 2A} \\ &= 3.464 \text{ A} \end{split}$$

$$\begin{split} P_{Total} &= \sqrt{3} \ V_L \ I_L \ cos\Theta \\ &= \sqrt{3} \ X \ 400 \ X \ 2\sqrt{3} \ X \ 1 \\ &= 2400 \ W \end{split}$$

(c) (i)
$$X_C = \frac{1}{2\pi f c}$$

= $\frac{1}{2 X \frac{22}{7} X 50 X \frac{70}{22} X 10^{-6}}$
= 1000Ω

(ii)
$$XL = 2\pi f L$$

= $2 X \frac{22}{7} X 50 X \frac{70}{22}$
= 1000Ω

(iv)
$$Z = \sqrt{R^2 + (X_L^2 - X_C^2)}$$

 $Z = \sqrt{100^2 + (1000^2 - 1000^2)}$
 $Z = 100 \Omega$
(v) $I = \frac{V_S}{Z} = \frac{230}{100} = 2.3 \text{ A}$

