高等数学 II 2017-2018 学年(下) 姓名: 专业: 学号:

第 05 周作业

应于 19-04-2018 提交

练习 1. 求球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 在 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和 x = x = 0 和

练习 2. 分别求母线平行于 x 轴及 y 轴,而且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 & (1) \\ x^2 - y^2 + z^2 = 0 & (2) \end{cases}$ 的柱面。

练习 3. 化曲线的一般方程 $\begin{cases} x^2 + y^2 + z^2 = 9 \\ y = z \end{cases}$ 为参数方程。

练习 4. 填空

函数	定义域	类型(填: 闭集/开集,有界集/无界集,连通/不连通)
$z = \sqrt{x - \sqrt{y}}$	$D = \{(x, y) y \ge 0, x \ge 0 \pm x^2 \ge y\}$	
$z = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x-y}}$	$D = \{(x, y) x + y > 0 \perp x - y > 0\}$	

并分别画出上述两定义域 D,在图上标示哪部分是内点,哪部分是外点,哪部分是边界。

练习 5. 画出二元函数 $z=2-x^2-y^2$ 的函数图形,其中函数定义域为 $D=\{(x,y)|\,x^2+y^2\leq 1\}$ 。

练习 6. 设 E 是平面上一个点集,则平面上任意一点 P 只能是一下三种的一种: (1) E 的内点; (2) E 的外点; (3) E 的边界点。现假设点 Q 是 E 的聚点,则可以证明 Q 或者为 E 的内点,或者为 E 的边界点;也就是

但一般而言, {全体聚点} 未必与并集 {内点}∪{边界点} 相同。

以下是一个例子

假设点集 $E = \{(x, y) | (x - 2)^2 + (y - 2)^2 \le 0.7^2\} \cup \{(0.6, 0.8)\}$ (如下图)。填写(请填上 \checkmark 或 \times)

4 =		
3 -	P_2	
2 -	$lackbox{ullet} P_1$	
1 -	•	
	$P_3 (0.6, 0.8)$	
-1	1 2 3 4	
-1 -		

	内点	边界点	聚点
$P_1(1.61.8)$			
$P_2(2, 2.7)$			
$P_3(0.6, 0.8)$			

练习 7. 证明下列极限不存在

1.
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{\sqrt{x^2+y^2}}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

练习 8. 求下列函数的偏导数

(1) $s = \frac{u^2 + v^2}{uv}$; (2) $z = \sin(xy) + \cos^2(xy)$; (3) $z = (1 + xy)^y$; (4) $u = \arctan(x - y)^z$.

练习 9. 设 z=f(x,y), 计算 z 在某一点 (x_0,y_0) 处的偏导数 $\frac{\partial z}{\partial x}(x_0,y_0)$ 和 $\frac{\partial z}{\partial y}(x_0,y_0)$ 有两种方法:

- 1. 先求出偏导函数 $\frac{\partial f}{\partial x}(x,y)$ 及 $\frac{\partial f}{\partial y}(x,y)$, 再将 $(x,y)=(x_0,y_0)$ 代入偏导函数,计算该点处的偏导数值。
- 2. 直接利用定义

$$\frac{\partial z}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \frac{d}{dx} [f(x, y_0)] \Big|_{x = x_0},$$

$$\frac{\partial z}{\partial y}(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y} = \frac{d}{dy} [f(x_0, y)] \Big|_{y = y_0}.$$

现在设 $f(x, y) = x + (y - 1) \arcsin \sqrt{\frac{x}{y}}$, 利用上述两种方法分别求 $f_x(x, 1)$ 。

练习 10. 设
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
. 求 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.