Project II: Alzheimer's Disease diagnosis using patient's gene expression profile

- Feature engineering using MapReduce
- Clustering (Spark)
- Classification (Spark)

• Dataset:

```
ROSMAP_RNASeq_entrez.csv

ROSMAP_RNASeq_disease_label.csv

patients.csv (optional, additional features of patients)
```

Part I: Feature Engineering

Clusters

C1: id1, id10, id512

C2: id2, id38

••••

ROSMAP

patient	diagnosis	id1	id2	
p1	1	g(p1,id1)	g(p1,id2)	
p2	3	g(p2,id1)	g(p2,id2)	

MapReduce

patient	diagnosis	C1	C2	
p1	1	g(p1,C1)	g(p1,C2)	
p2	3	g(p2,C1)	g(p2,C2)	

$$g(pi, Cj) = \sum_{id_k \in Cj} g(pi, id_k)$$

Part I: Feature Engineering

patient	diagnosis	C1	C2	
p1	1	g(p1,C1)	g(p1,C2)	
p2	3	g(p2,C1)	g(p2,C2)	

C1	C2	 Cm
t1	t2	tm

The Data Are In HDFS!

patient	diagnosis	id1	id2	:	
p1	1	g(p1,id1)	g(p1,id2)		
p2	3	g(p2,id1)	g(p2,id2)		
•••	•••	•••	•••	:	

Single processor

p1, diag: 1, id2, g(p1, id2) p2, diag: 3, id2, g(p2, id2)

HDFS

Algorithm design and pseudo codes

Part II: Machine Learning

- Use Spark MLlib
- (Clustering) Cluster genes into clusters based on gene expression profile
- (Classification)Predict the diagnosis of patients based on their gene expression profile.

Project 2: Part II

- Select top-K clusters as features
- Select a classification algorithm (e.g. Decision Tree, Random Forest) from *Spark Mlib* to train a classification model to predict if a patient has Alzheimer's disease.
- Carry out 3-fold cross-validation

Project II

- Rubric
 - MapReduce Algorithm Design (40 points)
 - Correctness
 - Efficiency
 - Implementation (40 points local + 20 extra) on Amazon EC2)
 - Correctness and efficiency of MapReduce algorithm
 - · Usability of your program
 - Written report (20 points)
 - Must present during your project review!
 - Including the following sections
 - Author list
 - Introduction
 - The problem you will solve
 - Methods
 - Detailed description of your algorithm design
 - Detailed description on how to run your program (both local and Amazon)
 - Results
 - Top 10 ranked gene clusters with means and std for AD and NCI, and t-test scores
 - Estimated time complexity vs. number of nodes
 - Discussion
 - The pros and cons of your design
 - Conclusion