$_{ m QCM}^{ m Algo}$

- 1. Un sous-graphe G' de G=<S,A> est défini par?
 - (a) $\langle S, A' \rangle$ avec $A' \subseteq A$
 - (b) $\langle S', A \rangle$ avec $S' \subseteq S$
 - (c) <A,S>
- 2. Dans un graphe orienté, s'il existe un circuit $x \leadsto x$ passant par tous les sommets, le graphe est ?
 - (a) complet
 - (b) transitif
 - (c) connexe
 - (d) fortement connexe
- 3. Un graphe orienté de n sommets peut être fortement connexe à partir de ?
 - (a) n-1 arcs
 - (b) n arcs
 - (c) n+1 arcs
- 4. Deux sommets x et y d'un graphe orienté sont dits adjacents si?
 - (a) il existe un arc $x \rightarrow y$ ou un arc $y \rightarrow x$
 - (b) il existe un arc $x \rightarrow y$ et un arc $y \rightarrow x$
 - (c) il existe un chemin x→y ou un chemin y→x
 - (d) il existe un chemin x→y et un chemin y→x
- 5. Une chaîne qui ne contient pas plusieurs fois un même sommet est?
 - (a) élémentaire
 - (b) optimal
 - (c) plus court
 - (d) un chemin
- 6. Dans la forêt couvrante associée au parcours en profondeur d'un graphe orienté G, les arcs $x \rightarrow y$ tels que x est le père de y sont appelés?
 - (a) Arcs couvrants
 - (b) Arcs en arrière
 - (c) Arcs en Avant
 - (d) Arcs croisés
- 7. Soit un graphe G connexe, sa fermeture transitive est?
 - (a) Un sous-graphe
 - (b) Un graphe partiel
 - (c) Un graphe complet

- 8. L'algorithme de Warshall est utilisable sur?
 - (a) Les graphes orientés statiques
 - (b) Les graphes non orientés statiques
 - (c) Les graphes orientés évolutifs
 - (d) Les graphes non orientés évolutifs
- 9. Supposons que Pref[i] retourne le Numéro d'ordre préfixe de rencontre d'un sommet i. Lors du parcours en profondeur d'un graphe orienté G, les arcs x→y tels que pref[y] est inférieur à Pref[x] dans la forêt sont appelés?
 - (a) Arcs couvrants
 - (b) Arcs en arrière
 - (c) Arcs en Avant
 - (d) Arcs croisés
- 10. Calculer la fermeture transitive d'un graphe sert à?
 - (a) Déterminer si un graphe est connexe
 - (b) Déterminer les composantes connexes d'un graphe non orienté
 - (c) Déterminer si un graphe est complet

QCM N°9

lundi 25 janvier 2016

Question 11

Soit (u_n) une suite réelle telle que $\forall n \in \mathbb{N} \quad \exists K \in \mathbb{R} \quad |u_n| \leqslant K$. Alors

- a. (u_n) est bornée
- b. (u_n) converge
- c. rien de ce qui précède

Question 12

- a. Toute suite réelle croissante et minorée converge
- b. Toute suite réelle décroissante et non minorée tend vers $-\infty$
- c. Toute suite réelle décroissante et minorée converge
- d. Toute suite réelle croissante et non majorée tend vers $+\infty$
- e. rien de ce qui précède

Question 13

- a. Si (u_n) est une suite réelle convergeant vers $\ell \in \mathbb{R}$, alors toute suite extraite de (u_n) converge vers ℓ
 - b. De toute suite réelle majorée, on peut extraire une sous-suite convergente
 - c. rien de ce qui précède

Question 14

Soit (u_n) une suite géométrique de raison 2 avec $u_5 = 7$. Alors

- a. $u_n = 7.2^n$
- b. $u_n = 7.2^{n-6}$
- c. $u_n = 7.2^{n-4}$
- d. $u_n = 7.2^{n-5}$
- e. rien de ce qui précède

Question 15

Au voisinage de $+\infty$, on a

a.
$$\cos\left(\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{6n^3} + \frac{1}{120n^5} + o\left(\frac{1}{n^5}\right)$$

b.
$$\cos\left(\frac{1}{n}\right) = 1 - \frac{1}{2n^2} + \frac{1}{24n^4} + o\left(\frac{1}{n^4}\right)$$

$$c. \cos\left(\frac{1}{n}\right) = 1 - \frac{1}{2n^2} + \frac{1}{24n^4} + o\left(\frac{1}{n^5}\right)$$

d.
$$\cos\left(\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{6n^3} + \frac{1}{120n^5} + o\left(\frac{1}{n^6}\right)$$

e. rien de ce qui précède

Question 16

 $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ ssi

a. P_A est scindé dans \mathbb{R} et $\forall \lambda \in \operatorname{Sp}_{\mathbb{R}}(A)$, $\dim(E_{\lambda}) = m(\lambda)$

b. A admet n valeurs propres distinctes

c. il existe $P \in \mathcal{M}_n(\mathbb{R})$ inversible telle que $P^{-1}AP$ est diagonale

d. rien de ce qui précède

Question 17

Soit (u_n) une suite réelle. (u_n) est majorée si

a.
$$\forall n \in \mathbb{N} \quad \exists M \in \mathbb{R} \quad u_n \leqslant M$$

$$b. \exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad u_n \leqslant M$$

c. rien de ce qui précède

Question 18

Soit (u_n) la suite définie par $u_0=42$ et pour tout $n\in\mathbb{N},\,u_{n+1}=2u_n-3$. Alors

a. la suite (v_n) définie par $v_n = u_n + 3$ est géométrique

b. la suite (v_n) définie par $v_n = u_n - 3$ est géométrique

c. la suite (v_n) définie par $v_n=u_n+3$ est arithmétique

d. la suite (v_n) définie par $v_n = u_n - 3$ est arithmétique

Question 19

Soit (u_n) définie pour tout $n \ge 1$ par $u_n = \frac{(-1)^n}{n^2}$. Alors (u_n) est bornée.

b. faux

Question 20

Soit $A \in \mathcal{M}_n(\mathbb{R})$ non inversible. Alors

a.
$$\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$$

b.
$$1 \notin \mathrm{Sp}_{\mathbb{R}}(A)$$

c.
$$1 \in \mathrm{Sp}_{\mathbb{R}}(A)$$

$$d. 0 \in \mathrm{Sp}_{\mathbb{R}}(A)$$

e. rien de ce qui précède

Choose the sentence that best communicates the situation in the sentence given.

- 21. I didn't feel well last night, so I didn't do any homework.
 - a. If I had felt better, I would do it.
 - b. If I felt better, I would have done it.
 - c. If I had fell better, I would have done it.
 - d. If I had felt better, I would have done it.
- 22. If sales don't increase by the end of the month, we ____ have to change the advertising campaign.
 - a. will
 - b. would
 - c. should
 - d. are going
- 23. I didn't know the party was very far away so I walked but...
 - a. If I had known it was so far, I would have taken my car.
 - b. If had known it was so much far, I would have taken my car.
 - c. If had knew it was so far, I would have taken my car.
 - d. If had known it was so far, I would had taken my car.
- 24. I didn't think Neil Young needed my help for his concert, so I didn't bring my guitar.
 - a. If I've thought that Neil needed my help, I would have brought my guitar.
 - b. If I'd thought that Neil needed my help, I would had brought my guitar.
 - [c.] If I'd thought that Neil needed my help, I would have brought my guitar.
 - d. If I'd thought that Neil needed my help, would have brung my guitar.
- 25. John would like to help Jenny move house today, but he has to study for a math test.
 - a. If John didn't have to study, he would helped Jenny move house.
 - b. If John didn't have to study, he would help Jenny move house.
 - c. If John had not the math test, he would helped Jenny move house.
 - d. If John helped Jenny, he failed the math test.
- 26. You want to phone John but you don't have his number. Which sentence expresses this situation?
 - a. If I have John's number, I will call him.
 - b. If I call John, I will have his number.
 - c. If I had John's number, I would call him.
 - d. If I had had John's number, I would have called him.
- 27. Choose the sentence with **no** mistakes.
 - [a.] If I were rich, I would buy a new car.
 - b. If I were rich, I would have buy a new car.
 - c. If I was rich, I would bought a new car.
 - d. If I were rich, I will buy a new car.
- 28. Choose the sentence with **no** mistakes.
 - [a.] If I hadn't been away for years, I would not have noticed the changes in my town.
 - b. If I had been away for years, I would have notice the change s in my town.
 - c. If I am away for years, I would have noticed the changes in my town.
 - d. If I would not been away for years, I would not notice many things had changed in my town.
- 29. Choose the sentence with **no** mistakes.
 - a. If I go anywhere in the world, I would go to Bali.
 - b. If I can go anywhere in the world, I would go to Bali.
 - c. If I went anywhere in the world, I am going to Bali.
 - d. If I could go anywhere in the world, I would go to Bali.
- 30. (At the airport.) We will upgrade some passengers to first class if the flight...
 - a. won't be full.
 - b. will be full.
 - c. is full.
 - d. is not full.

Q.C.M n°9 de Physique

- 31- Une onde stationnaire représente :
 - a) Une sommation de deux ondes régressives
 - b) Une sommation de deux ondes progressives
 - (c) Une sommation d'une onde régressive et d'une onde progressives
- 32- La valeur du nombre d'onde k d'une O.P.P.S dans l'air, de champ électrique :

$$\vec{E}(x, y, t) = E_0 \cos(10^6 (4x + 3y) - \omega t) \vec{e}_z$$
 est

- a) $k = 7.10^6 \, \text{rad.m}^{-1}$
- b) $k = 10^6 \, \text{rad.m}^{-1}$
- $k = 5.10^6 \, \text{rad.m}^{-1}$
 - d) $k = 25.10^6 \,\text{rad.m}^{-1}$
- R= V(4.106)2+(106×372 $= 44/16.10^{36} + 9.10^{36}$ = 725,1036 = 5,106
- 33- Une O.P.P.S de champ électrique $\vec{B}(z,t) = B_0 \cos(10^6 z \omega .t) \vec{e}_x$ se propage :
 - a) sur l'axe (Oz)
 - b) dans le plan (xoy)
 - c) dans le plan (xoz)
 - d) sur l'axe (Ox)
- 34-L'équation de Maxwell : $ro \ \vec{t} \ (\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$ s'écrit en notation complexe comme :

$$\vec{k} \wedge \vec{E} = \omega . \vec{B}$$

b)
$$i\vec{k} \wedge \vec{E} = \omega . \vec{B}$$

c)
$$i\vec{k} \wedge \vec{E} = -\omega . \vec{B}$$

35- Si le champ électrique d'une O.E.M.P.P.S qui se propage dans l'air est de la forme :

$$\vec{E}(x,t) = E_0 \cos(k.x - \omega t) \vec{e}_y$$
 alors le vecteur champ magnétique \vec{B} vérifiera :

- a) \vec{B} est porté par l'axe (Ox) vers les x < 0
- b) \vec{B} est porté par l'axe (Ox) vers les x >0
- c) \vec{B} est porté par l'axe (Oz) vers les z < 0
- d) \vec{B} est porté par l'axe (Oz) vers les z > 0

- 36- Une des propriétés d'ondes planes sinusoïdales dans l'air est donnée par :
 - a) (\vec{E}, \vec{k}) colinéaires et de même sens
 - b) $(\vec{B}, \vec{E}, \vec{k})$ trièdre direct
 - $(\vec{E}, \vec{B}, \vec{k})$ trièdre direct

37- Une onde électromagnétique progressive, plane et sinusoïdale a une fréquence f qui vérifie:

a)
$$f = \frac{c}{T}$$

c)
$$f = c.T$$

b)
$$f = \frac{k.c}{2\pi}$$

d)
$$f = \frac{2\pi}{T}$$

38- L'équation de D'alembert $\Delta \vec{B} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = \vec{0}$ s'écrit en notation complexe sous la forme:

a)
$$(-k^2 + i.\frac{\omega^2}{c^2}).\vec{B} = \vec{0}$$

b)
$$(-k^2 - \frac{\omega^2}{c^2}).\vec{B} = \vec{0}$$

$$(-k^2 + \frac{\omega^2}{c^2}).\vec{B} = \vec{0}$$

- 39- Le vecteur de Poynting \vec{S} donné par $\vec{S} = \frac{\vec{E} \wedge \vec{B}}{\mu}$ représente :
 - a) La puissance de rayonnement de l'onde.
 - b) La puissance surfacique de l'onde c) L'énergie de l'onde
- 40- Pour une OPPS qui se propage dans le milieu vide (ou air), le vecteur de Poynting \vec{S} donné par $\vec{S} = \frac{\vec{E} \wedge \vec{B}}{U}$ vérifie :
 - a) \vec{S} est colinéaire au vecteur d'onde \vec{k} b) \vec{S} est perpendiculaire à l'axe de propagation

 - c) \vec{S} est colinéaire au champ électrique \vec{E}

c. had used tod. did use to

Questions 41 à 50

a. b.	You introduce me to the chairperson because we have already met. must should do not have to are supposed to
b.	Though I have already told them once, please remind your colleagues in the NO SMOKING area. don't smoke not to smoke not smoking not smoke
a. b. c.	Mr. Wang wasn't home when I called this morning, but I contact him at his office this afternoon. was able to would have should have could not
a. b. c.	The accountant calculated the figures using the latest software release, but the total isn't correct. still anymore already yet
a. b. c.	Knowing that we would be hungry after skipping lunch, the director had her assistant sandwiches for the meeting. to order command ordering order
a. b. c.	Applicants' replies should be sent by fax, mail, email no later than three o'clock on Friday. but however or yet
a. b. c.	If Mr. Harrelson won a free trip anywhere, he to go to Brazil. could have chosen would choose will choose would chose
a. b. c.	Ms. Jimenez can afford to lend you the money, she won't do it unless you prove you can pay her back. Even though So However Therefore
a. b. c.	If the marketing team succeeds, they their profits by 20 %. will have increased would increase would have been increasing will increase
a.	Mr. Van Dyke play tennis, but now he does whenever his wife is away on business. never used to used to