9.1 Điều khiển động cơ điện

TS Nguyễn Hồng Quang

Electrical Engineering

1

9.1 Đối tượng

- Động cơ điện 1 chiều loại nam châm vĩnh cửu có chổi than
- Có công suất nhỏ, điện áp < 24VDC và dòng điện nhỏ hơn 10A
- Động cơ bước (step motor) công suất nhỏ (dòng điện < 10A)
- Sơ lược về động cơ điện 1 chiều không chổi than (brushless DC motor)

Electrical Engineering

9.1.1 Phương trình cơ bản

$$T = K_T I_A \phi \qquad \qquad I_A = \frac{V_{\rm ln} - {\rm EMF}}{R_A}$$

$$\mathsf{EMF} = K_E \phi S$$

Electrical Engineering

5

9.1.2 Các mạch điều khiển cơ bản

- Sử dụng mạch tương tự
- Sử dụng mạch số theo PMW

8

Electrical Engineering

9.1.2 Sử dụng khuyếch đại thuật toán công suất

Electrical Engineering

7

9.1.2 Sơ đồ điều khiển cầu chữ H

Electrical Engineering

9.1.2 Bảng chân lý

Bảng chân lý				
High Left	High Right	Low Left	Low Right	Mô tả
On	Off	Off	On	Motor chạy thuận
Off	On	On	Off	Motor chạy ngược
On	On	Off	Off	Motor dừng hoặc giảm tốc
Off	Off	On	On	Motor dừng hoặc giảm tốc

Electrical Engineering

9

9.1.2 Sử dụng relay điều khiển

Electrical Engineering

9.1.3 Sử dụng L293D

- L293D là mạch cầu H đôi cho điều khiển DC motor
- L293D dòng trung bình 600mA và chịu tải tới 1.2A.
- Điode bảo vệ tích hợp sẵn trong mạch
- Điện áp làm việc từ 4.5V to 36V

Electrical Engineering

9.1.3 Ví dụ phần mềm ;L293D A - Positive of Motor equ P2.0 L293D_A equ P2.1 L293D_B ;L293D B - Negative of Motor L293D_E equ P2.2 ;L293D E - Enable pin of IC org OH Main: acall rotate f ;Rotate motor forward acall delay ;Let the motor rotate acall break ;Stop the motor ;Wait for some time acall delay ;Rotate motor backward acall rotate_b acall delay ;Let the motor rotate acall break ;Stop the motor acall delay ;Wait for some time **sjmp** Main ;Do this in loop 14 Electrical Engineering

```
9.1.3 Ví dụ (tiếp)
   rotate_f:
            ;Make Positive of motor 1
                                ; Make negative of motor 0
            setb
                  L293D_E
                                ; Enable to run the motor
            ret
                                ;Return from routine
   rotate_b:
            clr
                  L293D A
                                ;Make positive of motor 0
            setb L293D B
                                ;Make negative of motor 1
            setb L293D E
                                ; Enable to run the motor
                                ;Return from routine
            ret
   break:
            _{
m clr}
                  L293D_A
                                ;Make Positive of motor 0
            _{
m clr}
                  L293D_B
                                ;Make negative of motor 0
                  L293D_E
            clr
                                ;Disable the o/p
                                ;Return from routine
            ret
   delay:
                                ;Some Delay
                  r7,#20H
            mov
   back:
                  r6, #FFH
            mov
                  r5,#FFH
   back1:
            mov
   here:
            djnz r5, here
            djnz r6, back1
            djnz r7, back
Electrical Engineering
```


9.1.4 Ví dụ sử dụng 8051

```
PWMPIN EQU P1.0 ; PWM output pin

PWM_SETUP:

MOV TMOD, #02H ; Timer0 in Mode 2

MOV R7, #160 ; Set pulse width control

SETB EA ; Enable Interrupts

SETB TR0 ; Start Timer

RET
```


Electrical Engineering

17

9.1.4 Ví dụ (tiếp)

```
TIMER O INTERRUPT:
        JB FO, HIGH_DONE
LOW DONE:
                                  ; cycle so Jump to HIGH DONE
                                  ; Make F0=1 to indicate start of high
         SETB FO
                                 ; Make PWM output pin High
        SETB PWMPIN
MOV THO, R7
                                 ; Load high byte of timer with R7 ; (pulse width control value)
        CLR TF0
                                  ; Clear the Timer O interrupt flag
         RETI
                                  ; Return from Interrupt to where
HIGH DONE:
                              ; Make F0=0 to indicate start of low ; Make PWM output pin low
         CLR F0
        CLR FU
CLR PWMPIN
MOV A, #0FFH
                                  ; Move FFH (255) to A
         CLR C
         SUBB A, R7
                                   ; Subtract R7 from A. A = 255 - R7.
                                   ; the value loaded into THO + R7 = 255
        MOV THO, A
        CLR TF0
                                   ; Clear the Timer O interrupt flag
         RETI
```

d along the same

Electrical Engineering

9.1.6 Các tham số cần đo trong mạch vòng kín

- Dòng điện
- Tốc độ động cơ
- Vị trí động cơ

Electrical Engineering

9.1.6 Các phương pháp đo dòng điện DC motor

- Đo dùng điện trở shunt
- Đo cách ly sử dụng opto-coupler
- Đo sử dụng hiệu ứng Hall

Electrical Engineering

2:

9.1.7 Mạch PID số

$$\frac{u}{e}(s) = H(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$u(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\sigma) d\sigma + T_d \frac{de(t)}{dt} \right)$$

$$\int_0^t e(\sigma) d\sigma \approx T \sum_{k=0}^n e(k) \qquad \frac{de(t)}{dt} \approx \frac{e(n) - e(n-1)}{T} \qquad t = nT$$

$$u(n) = K_p e(n) + K_i \sum_{i=1}^{n} e(k) + K_d (e(n) - e(n-1))$$

Electrical Engineering