Two-Link Manipulator

2DOF ABB IRB 910SC (SCARA)

Content

Technologies

Forward /Inverse Kinematics 2.

3. **Differential Kinematics**

Dynamics: Euler-Lagrange Equation

5. **Motion Planning**

| Slide 2/28

Technologies

Technologies

Python version 3:

Numpy (Array computing Lib.)

Mataplotlib (Visualization Lib.)

| Slide 4/ 28

Forward /Inverse Kinematics

Forward/Inverse Kinematics Demonstration

Forward Kinematics

$$(\theta_1, \theta_2) \to (x, y)$$

Inverse Kinematics

$$(\theta_1, \theta_2) \leftarrow (x, y)$$

Forward Kinematics

- a) DH Parameters Table?
- b) Position of the x_1, y_1 and x, y?

Forward Kinematics

a) DH Parameters – Table?

Link	a_i	α_i	d_i	$ heta_i$
1	$a_1 = L_1$	0	0	$ heta_1$
2	$a_2 = L_2$	0	0	θ_2

| Slide 8/28

Forward Kinematics

b) Position of the x_1, y_1 and x, y?

$$x_1 = L_1 cos\theta_1$$
$$y_1 = L_1 sin\theta_1$$

$$x = L_1 cos\theta_1 + L_2 cos(\theta_1 + \theta_2)$$

$$y = L_1 sin\theta_1 + L_2 sin(\theta_1 + \theta_2)$$

Work Envelope

| Slide 10/28

a) Rotation of the θ_1 , θ_2 ?

| Slide 11/28

$$L = \sqrt{x^2 + y^2}$$

$$\theta_1 = \gamma - \beta$$

$$\theta_2 = \pi - \alpha$$

Law of cosines (Cosine Theorem)

$$L^2 = L_1^2 + L_2^2 - 2L_1L_2\cos\alpha$$

$$L_2^2 = L_1^2 + L^2 - 2L_1 L \cos\beta$$

$$\cos \alpha = \frac{L_1^2 + L_2^2 - L_2^2}{2L_1L_2}$$

$$\cos \beta = \frac{L_1^2 + L^2 - L_2^2}{2L_1L}$$

| Slide 12/28

$$R_{2DOF} \begin{cases} \theta_1 = \gamma - \beta \\ \theta_2 = \pi - \alpha \end{cases}$$

Inverse Trigonometric Functions

$$\theta_1 = arctan \frac{y}{x} - arccos \frac{L_1^2 + L^2 - L_2^2}{2L_1L}$$

$$\theta_2 = \pi - \arccos \frac{L_1^2 + L_2^2 - L^2}{2L_1 L_2}$$

$$cfg_1\begin{cases} \theta_1 = \gamma - \beta \\ \theta_2 = \pi - \alpha \end{cases}$$

$$cfg_2 \begin{cases} \theta_1 = \gamma + \beta \\ \theta_2 = \alpha - \pi \end{cases}$$

The number of solutions depends on the number of joints in the manipulator.

Differential Kinematics

Differential Kinematics

Forward Kinematics

$$x = L_1 cos\theta_1 + L_2 cos(\theta_1 + \theta_2)$$

$$y = L_1 sin\theta_1 + L_2 sin(\theta_1 + \theta_2)$$

Jacobian Matrix

$$\begin{bmatrix} p\dot{x} \\ p\dot{y} \end{bmatrix} = J(\theta_1, \theta_2) \begin{bmatrix} \dot{\theta_1} \\ \dot{\theta_2} \end{bmatrix}$$

Differential Kinematics

Jacobian Matrix

$$\begin{bmatrix} p\dot{x} \\ p\dot{y} \end{bmatrix} = J(\theta_1, \theta_2) \begin{bmatrix} \dot{\theta_1} \\ \dot{\theta_2} \end{bmatrix} =$$

$$= \begin{bmatrix} -L_1 sin\theta_1 - L_2 sin(\theta_1 + \theta_2) & -L_2 sin(\theta_1 + \theta_2) \\ L_1 cos\theta_1 + L_2 cos(\theta_1 + \theta_2) & L_2 cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

Singular Jacobian

$$\det \begin{pmatrix} \begin{bmatrix} -L_1 sin\theta_1 - L_2 sin(\theta_1 + \theta_2) & -L_2 sin(\theta_1 + \theta_2) \\ L_1 cos\theta_1 + L_2 cos(\theta_1 + \theta_2) & L_2 cos(\theta_1 + \theta_2) \end{bmatrix} \end{pmatrix} = 0$$

Lagrange Method

$$\tau_i = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_i} \right) - \left(\frac{\partial \mathcal{L}}{\partial \theta_i} \right)$$

$$\mathcal{L} = T - U$$

$$\mathcal{L}(\theta, \dot{\theta}) = T(\theta, \dot{\theta}) - U(\theta)$$

$$\tau = M(\theta)\ddot{\theta} + b(\theta, \dot{\theta}) + g(\theta)$$

$$x_{m_1} = l_{g_1} \cos(\theta_1)$$
 $\dot{x}_{m_1} = -l_{g_1} \dot{\theta}_1 \sin(\theta_1)$
 $y_{m_1} = l_{g_1} \sin(\theta_1)$ $\dot{y}_{m_1} = l_{g_1} \dot{\theta}_1 \cos(\theta_1)$

$$x_{m_2} = L_1 \cos(\theta_1) + l_{g_2} \cos(\theta_1 + \theta_2)$$

$$y_{m_2} = L_1 \sin(\theta_1) + l_{g_2} \sin(\theta_1 + \theta_2)$$

$$\dot{x}_{m_2} = -L_1 \dot{\theta}_1 \sin(\theta_1) - l_{g_2} (\dot{\theta}_1 + \dot{\theta}_2) \sin(\theta_1 + \theta_2)$$

$$\dot{y}_{m_2} = L_1 \dot{\theta}_1 \cos(\theta_1) + l_{g_2} (\dot{\theta}_1 + \dot{\theta}_2) \cos(\theta_1 + \theta_2)$$

Kinetic energy

$$T_1 = \frac{1}{2} m_1 (\dot{x}_{m_1}^2 + \dot{y}_{m_1}^2) + \frac{1}{2} I_1 \dot{\theta}_1^2$$

$$T_2 = \frac{1}{2} m_2 (\dot{x}_{m_2}^2 + \dot{y}_{m_2}^2) + \frac{1}{2} I_2 (\dot{\theta}_1 + \dot{\theta}_2)^2$$

Potential energy

$$U_{1} = m_{1}l_{g_{1}}gsin(\theta_{1})$$

$$U_{2} = m_{2}g(L_{1}sin(\theta_{1}) + l_{g_{2}}sin(\theta_{1} + \theta_{2}))$$

Torque equation

$$\mathcal{L} = T - U$$

$$\tau_i = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_i} \right) - \left(\frac{\partial \mathcal{L}}{\partial \theta_i} \right)$$

$$\mathcal{L} = (T_1 + T_2) - (U_1 + U_1)$$

$$\tau = [\tau_1; \tau_2]^T, \theta = [\theta_1; \theta_2]^T$$

Torque equations can then be split up into the form of the general equation. The different parameters can be extracted from this, by isolating the angular acceleration, velocities and positions.

$$\tau = M(\theta)\ddot{\theta} + b(\theta, \dot{\theta}) + g(\theta)$$

$$M(\theta) = \begin{bmatrix} I_1 + I_2 + m_1 l_{g_1}^2 + m_2 (L_1^2 + l_{g_2}^2 + 2L_1 l_{g_2} + 2L_1 l_{g_2} \cos(\theta_2)) & I_2 + m_2 (l_{g_2}^2 + L_1 l_{g_2} \cos(\theta_2)) \\ I_2 + m_2 (l_{g_2}^2 + L_1 l_{g_2} \cos(\theta_2)) & I_2 + m_2 l_{g_2}^2 \end{bmatrix}$$

$$b(\theta, \dot{\theta}) = \begin{bmatrix} -m_2 L_1 l_{g_2} \dot{\theta}_2 (2\dot{\theta}_1 + \dot{\theta}_2) \sin(\theta_2) \\ m_2 L_1 l_{g_2} \dot{\theta}_1^2 \sin(\theta_2) \end{bmatrix}$$

$$g(\theta) = \begin{bmatrix} m_1 g l_{g_1} \cos(\theta_1) + m_2 g (L_1 \cos(\theta_1) + l_{g_2} \cos(\theta_1 + \theta_2)) \\ m_2 g l_{g_2} \cos(\theta_1 + \theta_2) \end{bmatrix}$$

Motion equation

$$\tau = M(\theta)\ddot{\theta} + b(\theta,\dot{\theta}) + g(\theta)$$

$$\ddot{\theta} = M(\theta)^{-1} \left(-b(\theta, \dot{\theta}) - g(\theta) + \tau \right)$$

Ordinary Differential Equations (ODE)

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{\theta} \\ M(\theta)^{-1} \left(-b(\theta, \dot{\theta}) - g(\theta) + \tau \right) \end{bmatrix}$$

Motion Planning

Joint-Space (Joint Interpolation)

Operational-Space (Cartesian-Space) Linear Interpolation

