Question: Use BLAST (https://www.ncbi.nlm.nih.gov/blast/) to reproduce this experiment. Submit the" dinosaur DNA" sequence provided by the file dino1.fasta to a nucleotide-nucleotide BLAST (blastn) search. Identify and shortly describe any actual organisms in the top ten.

To answer the above question, we need to take a look at the "Taxonomy reports" of this BLAST result. Based on the acquired result from BLAST, the number of hits and organisms for artificial sequences are 74 and 73, respectively. (see figure 1)

Figure 1 (Taxonomy Report)

The number of identified actual organisms from this BLAST result is two. To be more specified that, one is "Escherichia coli" and another is "Francisella tularensis". Both are belonging to the domain of "Bacteria" and the phylum of "Proteobacteria". As well, they are in the same "Gammaproteobacteria".

For "Escherichia coli", its heterotypic synonym is "Bacterium coli commune" and common name is "E. coli". It is under the order of "Enterobacterales" and the family of "Enterobacteriaceae". E. coli are a large and having various group of bacteria. Majority species are harmless, some of them will be responsible for causing some sickness such as diarrhea. E. coli normally lives in the intestines of humans and animals, as well as, could be found in the environment, and foods.

Another one is "Francisella tularensis" which has the order of "Thiotrichales" and the family of "Franchisellaceae". It is known as one of the most infectious pathogens and causing lethal disease, tularemia or "rabbit fever" that is transmissible to humans. There are several ways humans could be infected with the disease – tick and deer fly bites, skin contact with infected animals, contaminated water drinking, contaminated aerosols/dust, laboratory accident. Also, it uses a way of bioterrorism.

Question: Once again, invoke nucleotide-nucleotide BLAST (blastn) with the second "dinosaur DNA" sequence provided by the file dino2.fasta. Identify all organisms of the top ten matches. Are either of these organisms related to dinosaurs?

To identify all organisms of the top ten matches, in the "Organisms Report", the list of identified organisms can be determined including all the title list of "Description" except "sus scrofa (pig) and synthetic construct. For instance, the first three titles of the list, Xenopus laevis (African clawed frog), Strigops habroptila (Kakapo), and Parus major (Great Tit) are identified organisms. Again, in the last three titles; synthetic construct, Bubalus bubalis (water buffalo), and Nomascus leucogenys (northern white-cheeked gibbon), the one with the title of "synthetic construct" is not the one of the actual organisms. Otherwise, Bubalus bubalis and Nomascus leucogenys are actual organisms.

From various resources including Wikipedia, many researchers agree birds are treated as the only animal species that have descended from the dinosaurs. In addition, researchers state that there may be a possibility of relating to some species such as turtles, crocodiles, lizards, and snakes. The reason is that the dinosaurs are in the reptile group. As well, after searched on the internet, more current existing species such as shark, bony fish, are related to the dinosaurs.

https://www.cbc.ca/kidscbc2/the-feed/5-animals-with-prehistoric-ancestors

https://www.newsweek.com/400-million-year-old-ancestor-dinosaurs-humans-and-bony-fish-discovered-954474

Based on the information (figure 2, Organisms Report), it may be confirmed that the following organisms, Strigops habroptila (Kakapo), Parus major (Great Tits), Pseudopodoces humilis (Tibetan ground-tit), Lonchura striata domestica (Bengalese finch), Taeniopygia guttata (zebra finch), Camarhynchus parvulus, Chrysemys picta belli (western painted turtle), Columba livia (rock pigeon), Ficedula albicollis (collared flycatcher), Cyanistes caeruleus (blue tit), Alligator mississippiensis (American alligator), Alligator sinesis (Chinese alligator), Callorhinchus milii (elephant shark), Xiphophorus couchianus (Monterry platyfish), Globicephala melas (long-finned pilot whale), Delphinapterus leucas (beluga whale), Physeter catodon (sperm whale), Orcinus orca (killer whale), Chelonia mydas (Green sea turtle), Lipotes vexillifer (Yangtze River dolphin), Poecilia Formosa (Amazon molly), Poecilia latipinna (sailfin molly), Betta splendens (Siamese fighting fish), Salarias fasciatus (jeweled blenny), Lepisosteus oculatus (spotted gar), Numida Meleagris (helmeted guineafowl).

-				•
<u>oot</u>			<u>78</u>	
• <u>Gnathostomata</u>	<u>vertebrates</u>		<u>75</u>	
<u>Euteleostomi</u>	vertebrates		<u>74</u>	
<u>Tetrapoda</u>	<u>vertebrates</u>		<u>63</u>	
Xenopus	frogs & toads		<u>14</u>	
Xenopus laevis	frogs & toads	626	<u>12</u>	Xenopus laevis hits
Xenopus tropicalis	frogs & toads	383	2	Xenopus tropicalis hits
<u>Strigops habroptila</u>	<u>birds</u>	560	1	Strigops habroptila hits
<u>Parus major</u>	<u>birds</u>	483	2	Parus major hits
Pseudopodoces humilis	<u>birds</u>	451	2	Pseudopodoces humilis hits
Lonchura striata domestica	<u>birds</u>	368	1	Lonchura striata domestica hits
<u>Taeniopygia guttata</u>	<u>birds</u>	363	<u>1</u>	Taeniopygia guttata hits
Camarhynchus parvulus	<u>birds</u>	343	<u>1</u>	Camarhynchus parvulus hits
Chrysemys picta bellii	turtles	293	<u>3</u>	Chrysemys picta bellii hits
Columba livia	<u>birds</u>	285	1	Columba livia hits
Ficedula albicollis	birds	267	1	Ficedula albicollis hits
Cyanistes caeruleus	<u>birds</u>	254	1	Cyanistes caeruleus hits
Alligator mississippiensis	vertebrates	248	1	Alligator mississippiensis hits
Alligator sinensis	vertebrates	239	1	Alligator sinensis hits
Ornithorhynchus anatinus	monotremes	227	2	Ornithorhynchus anatinus hits
Globicephala melas	whales & dolphins	220	1	Globicephala melas hits
Delphinapterus leucas	whales & dolphins	220	2	Delphinapterus leucas hits
Physeter catodon	whales & dolphins	220	<u>2</u>	Physeter catodon hits
Orcinus orca	whales & dolphins	220	1	Orcinus orca hits
Chelonia mydas	turtles	218	1	Chelonia mydas hits
Lipotes vexillifer	whales & dolphins	215	1	Lipotes vexillifer hits
Sus scrofa	even-toed ungulates	210	<u>.</u> <u>3</u>	Sus scrofa hits
	even-toed ungulates	206	1	
Camelus dromedarius	even-toed ungulates	206	1	Camelus dromedarius hits
Camelus bactrianus		202		Camelus bactrianus hits
Ochotona princeps	rabbits & hares	199	1	Ochotona princeps hits
Bos indicus	even-toed ungulates		1	Bos indicus hits
Numida meleagris	<u>birds</u>	196	1	Numida meleagris hits
Monodelphis domestica	marsupials	196	4	Monodelphis domestica hits
Bos taurus	even-toed ungulates	195	2	Bos taurus hits
Bison bison bison	even-toed ungulates	195	1	Bison bison bison hits
<u>Capra hircus</u>	even-toed ungulates	193	1	Capra hircus hits
Pan troglodytes	<u>primates</u>	193	1	Pan troglodytes hits
Ceratotherium simum simum	odd-toed ungulates	193	2	Ceratotherium simum simum hits
Gorilla gorilla gorilla	<u>primates</u>	193	1	Gorilla gorilla hits
Pan paniscus	<u>primates</u>	193	1	Pan paniscus hits
Bubalus bubalis	even-toed ungulates	190	1	Bubalus bubalis hits
 Nomascus leucogenys 	primates	188	1	Nomascus leucogenys hits
Xiphophorus couchianus	bony fishes	230	2	Xiphophorus couchianus hits
Poecilia formosa	bony fishes	214	2	Poecilia formosa hits
Poecilia latipinna	bony fishes	214	2	Poecilia latipinna hits
Betta splendens	bony fishes	207	<u>1</u>	Betta splendens hits
Salarias fasciatus	bony fishes	204	2	Salarias fasciatus hits
Lepisosteus oculatus	bony fishes	203	2	Lepisosteus oculatus hits
Callorhinchus milii	chimaeras	239	<u>1</u>	Callorhinchus milii hits
synthetic construct	other sequences	193	<u>3</u>	synthetic construct hits

Figure 2 (Organisms Report)

Question: Afterwards, apply translated nucleotide vs. protein database BLAST (blastx) with the same sequence and the Swiss-Prot data base. Look at the amino acid sequence of the query sequence aligned to the best hit. What is the hidden message Dr. Boguski included in this sequence?

To look at the amino acid sequence to the best hits, we need to take the highest value of "Max Score" of the BLASTX result. The result represents that the query sequence written as a protein, which is using the 20 matched letters of amino acids. In figure 3, we can see the result of the matching sequence of amino acids from the database. To find the hidden message, dashes, where represent gaps, have to match their corresponding amino acid letter. Therefore, the result of a hidden message found is that "MARK WAS HERE NIH". "MARK" can be found in the second-row subject when you try to match its corresponding query sequence. Others are the same method as described for finding the "MARK".

erythroid transcription factor [Gallus gallus]

Sequence ID: NP 990795.1 Length: 304 Number of Matches: 1

▶ See 2 more title(s)

Range 1: 1 to 304 GenPept Graphics V Next Match A Previous Match										
Score		Expect	Method		Identities	Positives	Gaps	Frame		
348 Ь	its(893)	3e-114	Composition	al matrix adjust.	304/318(96%)	304/318(95%)	14/318(4%)	+1		
Query	121			eagaflglgggertea EAGAFLGLGGGERTEA			30			
Sbjct	1			EAGAFLGLGGGERTEA)			
Query	301	TPQW/PPA	TQMEPPHYLE1	lqpprgspphpssgpl LQPPRGSPPHPSSGPL	lplssgpppCEAREC	CVMARKNCGAT 48	30			
Sbjct	61	TPQWPPA	TÕMEPPHYLEL	LÕPPRGSPPHPSSGPL	LPLSSGPPPCEAREC	VNCGAT 1	16			
Query	481	ATPLWRRD	OGTGHYLCNWAS	ACGLYHRLNGQNRPLI ACGLYHRLNGQNRPLI	RPKKRLLVSKRAGT\ RPKKRLLVSKRAGT\	/CSHERENCQT 66	50			
Sbjct	117			ACGLYHRLNGQNRPLI			59			
Query	661			HACGLYYKLHQVNRPL ACGLYYKLHOVNRPL			10			
Sbjct	170			-ACGLYYKLHQVNRPL			26			
Query	841	ggnpsata GGNPSATA	ngggapmggggd NGGGAPMGGGGD	psmpppppppaaappQ PSMPPPPPPPAAAPPQ	SDALYALGPVVLSGI	HFLPfgnsggf 10	320			
Sbjct	227			PSMPPPPPPPAAAPPQ			36			
Query	1021	fgggaggY	TAPPGLSPQI TAPPGLSPOI	1074						
Sbjct	287		TAPPGLSPQI	304						

Figure 3

Related Information

<u>Gene</u> - associated gene details <u>Identical Proteins</u> - Identical proteins to NP_990795.1