FORMAL LANGUAGES AND AUTOMATA THEORY Module 3

Rijin IK

Assistant Professor Department of Computer Science and Engineering Vimal Jyothi Engineering College Chemperi

October 9, 2023

Rijin IK (VJEC) CST 301 M3 October 9, 2023 1/5

Outline

- Course Outcomes
- Myhill-Nerode Relations (MNR)
 - Conversion of DFA to MNR
 - Conversion of MNR to DFA
- Myhill-Nerode Theorem (MNT)
- 4 Context Free Grammars
 - Proving correctness of CFGs
- Derivation Trees and ambiguity
 - Derivation Trees (or) Parse tree:
- 6 Chomsky Normal Form(CNF)
- Greibach Normal Form(GNF)

2/57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

Course Outcomes

After the completion of the course the student will be able to

- Classify a given formal language into Regular, Context-Free, Context Sensitive, Recursive or Recursively Enumerable. [Cognitive knowledge level: Understand]
- Explain a formal representation of a given regular language as a finite state automaton, regular grammar, regular expression and Myhill-Nerode relation. [Cognitive knowledge level: Understand]
- Oesign a Pushdown Automaton and a Context-Free Grammar for a given context-free language. [Cognitive knowledge level: Apply]
- Design Turing machines as language acceptors or transducers.
 [Cognitive knowledge level: Apply]
- Explain the notion of decidability. [Cognitive knowledge level: Understand]

Myhill-Nerode Relations (MNR)

Equivalence relation

• Let $R \subseteq \Sigma^*$ be a regular set, and let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for R with no inaccessible states. The automaton M induces an Equivalence relation \equiv_M on Σ^* defined by

$$x \equiv_{M} y \stackrel{def}{\Longleftrightarrow} \hat{\delta}(q_{0}, x) = \hat{\delta}(q_{0}, y).$$

[Equivalence relation→ it is reflexive, symmetric, and transitive]

- Reflexive
 - $\forall_x \in \Sigma^*, \hat{\delta}(q_0, x) = \hat{\delta}(q_0, x)$
 - Symmetric
 - $x \equiv_M y \implies \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y) \implies \hat{\delta}(q_0, y) = \hat{\delta}(q_0, x) \implies y \equiv_M x$
 - Transitive
 - suppose $x \equiv_M y$ and $y \equiv_M z \implies x \equiv_M z$

Myhill-Nerode Relations (MNR)

Myhill-Nerode Relations (MNR)

- The Myhill-Nerode relation for a regular set $R \subseteq \Sigma^*$ is an equivalence relation \equiv on Σ^* that satisfies three key properties:
 - **1** It is a right congruence: for any $x, y \in \Sigma^*$ and $a \in \Sigma$,
 - $x \equiv_m y \implies xa \equiv_m ya$;
 - 2 It refines L(M): for any $x, y \in \Sigma *$
 - $x \equiv_m y \implies (x \in L(M) \Leftrightarrow y \in L(M));$
 - i.e whenever x&y are related either x&y are in the language or both x&y are not in the language.
 - It is of finite index; that is, it has only finitely many equivalence classes.
 - This is beause there is exactly one equivalence class $x \in \Sigma^* | \hat{\delta}(q_0, x) = q$ corresponding to each state q of M.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 5 / 57

Myhill-Nerode Relations (MNR)

Formal definition of Myhill-Nerod Relation (MN relation)

Let L be a language over an alphabet set Σ . Then, an MN relation \equiv is an equivalence relation on Σ^* , which is a right congruence of finite index refining L.

Example:

- $L = x \in \{a^* | 3 \text{ divides } |x|\}$
- $x \equiv y \Leftrightarrow |x| \mod 3 = |y| \mod 3$. Equivalence classes are:
 - $\bullet \ [\epsilon] = \{a^i | i \mod 3 = 0\}$
 - $[a] = \{a^i | i \mod 3 = 1\}$
 - $[a^2] = \{a^i | i \mod 3 = 2\}$

6 / 57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

Conversion of DFA to MNR

Lemma

If a language L is regular, then there is a Myhill-Nerode relation on Σ^{\ast} with respect to L

Proof

L is Regular $\implies \exists$ a DFA M such that L=L(M)

Consider a binary relation \equiv_M on Σ^* induced by $M = (Q, \Sigma, \delta, q_0, F)$, defined as

$$\forall_{x,y} \in \Sigma^*, x \equiv_M y \Leftrightarrow \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$$

we proved that \equiv_M is an MN relation

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

7 / 57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

Conversion of DFA to MNR

Q:Show the equivalence classes of Myhill Nerod relation for the language $L = \{x \in \{a\}^* | 3 \text{ divides } |x|\}.$

Soln:

DFA for the above language

The DFA has 3 states. so MNR partions the Σ^* into 3 classes:

•
$$C_1 = \{x \in \Sigma^* | \hat{\delta}(q_0, x) = q_0\} [q_0] = \{a^i | i \mod 3 = 0\}$$

• $c_1 = \{\epsilon, a^3, a^6, ...\}$

•
$$C_2 = \{x \in \Sigma^* | \hat{\delta}(q_0, x) = q_1\} [q_1] = \{a^i | i \mod 3 = 1\}$$

•
$$c_2 = \{a^1, a^4\}$$

•
$$C_3 = \{x \in \Sigma^* | \hat{\delta}(q_0, x) = q_2\} [q_2] = \{a^i | i \mod 3 = 2\}$$

•
$$c_3 = \{a^2, a^5\}$$

Conversion of MNR to DFA

Conversion of MNR to DFA

• Given an MN relation \equiv for a Language L over an alphabet set Σ , one can automatically construct a DFA $M_{\equiv}=(Q,\Sigma,\delta,q_0,F)$, such that $L(M_{\equiv})=L$.

$$Q=\{[x] | x \in \Sigma^*\}$$
 set of all equivalent class $q_0=[\epsilon]$ $\delta([x],a)=[xa]$ $F=\{[x] | x \in L\}$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 9 / 57

Conversion of MNR to DFA

Example: Consider the MN relation represented by the following equivalence classes for the language : $L = \{x \in \{a\}^* | 3 \text{ divides } |x|\}$. Equivalence classes are:

- $\bullet \ [\epsilon] = \{a^i | i \mod 3 = 0\}$
- $[a] = \{a^i | i \mod 3 = 1\}$
- $[a^2] = \{a^i | i \mod 3 = 2\}$

$$Q = \{[x] | x \in \Sigma^*\}$$

$$q_0 = [\epsilon]$$

$$\delta([x], a) = [xa]$$

$$F = \{[x] | x \in L\}$$

10 / 57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

The Myhill-Nerode Theorem

- Let $R \subseteq \Sigma^*$. The following statements are equivalent:
 - R is regular;
 - There exists a Myhill-Nerode relation for R:
 - **3** The relation \equiv_R is of finite index.

11 / 57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

Applications of MNT

- Proving whether a language is regular or not.
- It can be also used to find the minimal number of states in a Deterministic Finite Automata (DFA).

Rijin IK (VJEC) CST 301 M3 October 9, 2023 12 / 57

Example: Is the following language regular

$$L = \{x \in \{a, b\}^* | \text{number of a in x is odd} \}$$

SIn:

- It is enough to prove that \equiv_L is of finite index
- Recall that: $\forall_{x,y} \in \Sigma^*, x \equiv_L y \text{ iff } \forall_z \in \Sigma^*, (xz \in L \Leftrightarrow yz \in L)$
- Equivalence classes of \equiv_L :
 - Suppose $x, y, z \in \{a, b\}^*$ such that number of a in x is even and number of a in y is even:
 - Case 1: number of a in z is odd
 - \implies number of a in (xz) is odd and number of a in (yz) is odd
 - \implies $xz \in L$ and $yz \in L$
 - Case 2: number of a in z is even
 - ⇒ number of a in (xz) is even and number of a in (yz) is even
 - \implies $xz \notin L$ and $yz \notin L$

so the equivalent class is $[\epsilon] = \{x \in \{a,b\}^* | \text{number of a in z is even} \}_{a \in \mathbb{R}^n}$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 13 / 57

SIn cont..:

- Suppose $x, y, z \in \{a, b\}^*$ such that number of a in x is odd and number of a in y is odd:
- Case 1: number of a in z is odd
 - \implies number of a in (xz) is even and number of a in (yz) is even
 - \implies $xz \notin L$ and $yz \notin L$
- Case 2: number of a in z is even
 - \implies number of a in (xz) is odd and number of a in (yz) is odd
 - \implies $xz \in L$ and $yz \in L$

so the equivalent clas is $[a] = \{x \in \{a, b\}^* | \text{number of a in z is odd} \}$

Equivalence classes of \equiv_L :

- $[a] = \{x \in \{a, b\}^* | \text{number of a in z is odd} \}$

Thus \equiv_L is of finite index and hence the language is regular \bigcirc

Rijin IK (VJEC) CST 301 M3 October 9, 2023 14 / 57

Context Free Grammars

- Context-free grammars (CFGs) are used to describe context-free languages.
- A context-free grammar is a set of recursive rules used to generate patterns of strings.
- A context-free grammar can describe all regular languages and more, but they cannot describe all possible languages.
 - i.e It is more powerfull than Regular grammar
- Widely used in Programming Languages-syntax, parsing.

15 / 57

Applications of Context Free Grammar (CFG)

- For defining programming languages
- For parsing the program by constructing syntax tree
- For translation of programming languages
- For describing arithmetic expressions
- For construction of compilers
- Document Type Definition in XML is a Context Free Grammars which describes the HTML tags and the rules to use the tags in a nested fashion.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 16 / 57

Formal definition of Context Free Grammars

- A context-free grammar (CFG) is denoted G = (V, T, P, S), where
 - V and T are finite sets of variables and terminals, respectively.
 - ullet P is a finite set of productions; each production is of the form A
 ightarrow lpha,
 - where A is a variable and α is a string of symbols from $(V \cup T)^*$.
 - S is a special variable called the start symbol.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 17 / 57

Language generated by CFG

- The notation $S \stackrel{*}{\Longrightarrow} w$ represents the fact that we can derive the string w from the start symbol of the grammar G in zero or more steps
- The language generated by G [denoted L(G)] is $\{w \mid w \text{ is } inT^* \text{ and } S \overset{*}{\Longrightarrow} w\}$. That is, a string is in L(G) if:
 - The string consists solely of terminals.
 - The string can be derived from S.
- *A language A is said to be a context free language if there exsits a context free grammar G such that A = L(G)
- *The production rules are context-independent, meaning the replacement of non-terminal symbols can occur without regard to the surrounding context.

C language is an example for Context Free Language.

Example:

• Write CFG for the language $L = \{a^n b^n | n \ge 1\}$

$$L = \{ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb,$$

 $G = (\{S\}, \{a, b\}, P, S)$

P:

$$\begin{array}{ccc} S & \rightarrow & aSb|ab \\ & (Or) & & \\ S & \rightarrow & aSB \\ S & \rightarrow & aB \\ B & \rightarrow & b \end{array}$$

Proving correctness of CFGs

- $L \subseteq L(G)$: Every string in L can be generated by G.
- $L(G) \subseteq L$: G only generate strings of L.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 20 / 57

Example:

$$G = (V, \Sigma, S, P)$$

 $V = \{S\}$
 $\Sigma = \{0, 1\}$
 $S = S$
 $P = \{S \rightarrow 0S1|S1|\epsilon\}$
or
 $G : S \rightarrow 0S1|S1|\epsilon$

$$L(G) = L$$
 where $L = \{0^i 1^j | | i \le j\}$ prove $L(G) = L$?

Rijin IK (VJEC) CST 301 M3 October 9, 2023 21 / 57

Proof: Need to show that $L \subseteq L(G)$ and $L(G) \subseteq L$.

 \Rightarrow Suppose $x \in L$. Must show x can be generated by G.

Proof by induction on the length of x, |x|.

Basis:

• |x| = 0. Then $x = \epsilon$ and $S \to \epsilon$ is a rule in G.

Induction Hypothesis:

- Suppose all words in L shorter than x can be generated in the grammar and that $x \notin \epsilon$.
- Need to show x can also be generated.

Induction Step: since $x \in L, x = 0^i 1^j$

- Case 1: i = 0 so $x = 1^j = 1^{j-1}1$
 - Since $1^{j-1} \in L$ and $|1^{j-1}| < |x|, S \stackrel{*}{\Longrightarrow} 1^{j-1}$ by the I.H.
 - Then use rule $S \to S1$ followed by the derivation $S \stackrel{\times}{\Rightarrow} 1^{j-1}$ to construct x.
 - Therefore, $x \in L(G)$

Proof cont..

- Case 2: $i \neq 0$ so $x = 0^i 1^j$
 - Then $x' = 0^{i-1}1^{j-1} \in L$ since $i 1 \le j 1$.
 - |x'| < |x| so by the I.H., $x' \in L(G)$ and $S \stackrel{*}{\Rightarrow} 0^{i-1}1^{j-1}$
 - Then use rule $S \to 0S1$ followed by the derivation $S \stackrel{*}{\Rightarrow} 0^{i-1}1^{j-1}$ to construct x.
 - Thus $S \stackrel{*}{\Rightarrow} x$ so $x \in L(G)$.

 \Leftarrow Must show if $x \in L(G)$ the $x \in L$.

Proof by induction on k, the number of steps in x's derivation.

Basis:

• 1 step $(S \Rightarrow \epsilon)$: Then $x = \epsilon$ and $x \in L$.

Induction Hypothesis:

- ullet Assume every word in L(G) with a shorter derivation than x is in L.
- Either x = 0w1 or x = w1 where $w \in L(G)$ and w can be derived from S in less than k steps;
 - i.e. $S \stackrel{\langle k \rangle}{\Longrightarrow} w$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 23 / 57

Proof cont...

- By I.H. we know $w \in L$ so it has at least as many 1's as 0's
- Then by applying either $S \to 0S1$ or $S \to S1$ followed by the derivation $S \stackrel{*}{\Rightarrow}$ w we obtain x in the form $0^i 1^j$ where we are only increasing the difference of 1's to 0's so $i \le j$ and $x \in L$.

Therefore, $L(G) \subseteq L$ and $L \subseteq L(G)$ so L = L(G).

Rijin IK (VJEC) CST 301 M3 October 9, 2023 24 / 57

Derivation Trees and ambiguity

ϵ -Productions

• A production of the form $A \to \epsilon$, where A is a variable, is called a null production or ϵ -Productions

Unit Productions

- A production of the form $A \rightarrow B$ whose right-hand side consists of a single variable is called a unit production.
- All other productions, including those of the form $A \to a$ and ϵ -productions, are nonunit productions.

Recursive Productions

- If a production's left side occurs in right side
- $S \rightarrow aS$ (Directly recursive)
- $S \rightarrow aA$, $A \rightarrow b|bS$ (indirectly recursive)

→ □ → → □ → → □ → ○ ○ ○ ○

Derivation Trees and ambiguity

Derivation

- Derivation is the process of applying productions repeatedly to expand non-terminals in terms of terminals or non-terminals, until there are no more non-terminals.
- A derivation can be either Leftmost derivation or Right most derivation.

Leftmost derivation

- If at each step in a derivation a production is applied to the leftmost variable, then the derivation is said to be leftmost.
- Example:
 - Consider the grammar $G = (\{S, A\}, \{a, b\}, P, S)$, where P consists of

$$S \rightarrow aAS|a$$

$$A \rightarrow SbA|SS|ba$$

The corresponding rightmost derivation is

$$S \implies aAS \implies aSbAS \implies aabbaS \implies aabbaa.$$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 26 / 57

Derivation Trees and ambiguity

Rightmost derivation:

- A derivation in which the rightmost variable is replaced at each step is said to be rightmost.
- Example:
 - Consider the grammar $G = (\{S, A\}, \{a, b\}, P, S)$, where P consists of

$$egin{array}{lll} S &
ightarrow & aAS|a \ A &
ightarrow & SbA|SS|ba \end{array}$$

The corresponding rightmost derivation is

$$S \implies aAS \implies aAa \implies aSbAa \implies aSbbaa \implies aabbaa.$$

*Note: "If w is in L(G) for CFG G, then w has at least one parse tree, and corresponding to a particular parse tree, w has a unique leftmost and a unique rightmost derivation."

Sentential Form:

- A sentential form is any string consisting of non-terminals and/or terminals that is derived from a start symbol.
- A string of terminals and variables α is called a sentential form if $S \stackrel{*}{\Rightarrow} \alpha$

Example:

• Consider the grammar $G = (\{S,A\}, \{a,b\}, P, S)$, where P consists of

$$S \rightarrow aAS|a$$

 $A \rightarrow SbA|SS|ba$

• The corresponding rightmost derivation is $S \implies aAS \implies aAa \implies aSbAa \implies aSbbaa \implies aabbaa.$

 $S \stackrel{*}{\Rightarrow} aAa$, $S \stackrel{*}{\Rightarrow} aSbAa$, $S \stackrel{*}{\Rightarrow} aSbbaa$, $S \stackrel{*}{\Rightarrow} aabbaa$. are Sentential Form

Rijin IK (VJEC) CST 301 M3 October 9, 2023 28 / 57

Derivation Trees (or) Parse tree:

Derivation Trees (or) Parse tree:

- The derivations in a CFG can be represented using trees. Such trees representing derivations are called derivation trees.
- Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree for G if:
 - **1** Every vertex has a label, which is a symbol of $V \cup T \cup \{\epsilon\}$.
 - 2 The label of the root is S(start symbol).
 - 3 If a vertex is interior and has label A, then A must be in V.
 - ① If n has label A and vertices $n_1, n_2, n_3, ..., n_k$ are the sons of vertex n, in order from the left, with labels $X_1, X_2, ..., X_k$, respectively, then $A \to X_1 X_2 ... X_k$ must be a production in P.
 - **1** If vertex n has label ϵ , then n is a leaf and is the only son of its father.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 29 / 57

Derivation Trees (or) Parse tree:

Consider the grammar $G = (\{S, A\}, \{a, b\}, P, S)$, where P consists of

$$S \rightarrow aAS|a$$

 $A \rightarrow SbA|SS|ba$

Construct a derivation tree for the string "aabbaa"

Figure: Derivation tree

 $S \Longrightarrow aAS \Longrightarrow aSbAS \Longrightarrow aabAS \Longrightarrow aabbaS \Longrightarrow aabbaa$. **Yield of a Tree:**The final string obtained by concatenating the labels of the leaves of the tree from left to right, ignoring the Nulls (eg:-aabbaa)

Rijin IK (VJEC) CST 301 M3 October 9, 2023 30 / 57

Ambiguity in context free grammars:

Ambiguity in context free grammars:

• A context-free grammar G is said to be ambiguous if it has two parse trees for some word.

(or)

 A word which has more than one leftmost derivation or more than one rightmost derivation is said to be ambiguous.

*Note: A CFL for which every CFG is ambiguous is said to be an inherently ambiguous CFL

31 / 57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

Ambiguity in context free grammars:

Example:

• $G = (\{S\}, \{a, b, +, *\}, P.S)$, where P consists of $S \to S + S|S * S|a|b$ We have two derivation trees for a + a * b

Figure: Two derivation trees for a + a * b

Reduction of context free grammar

- We must eliminate useless symbol
 - Eliminate non generating symbols
 - Eliminate non reachable symbols
- **2** We must eliminate ϵ -production
- We must eliminate Unit production

Eliminating useless symbol

- Those variables or terminals that do not appears in any derivation of a terminal string from the start symbol
- \bullet A symbol γ in CFG is usefull if and ony if
 - $\gamma \stackrel{*}{\Rightarrow} w$ where $w \in L(G)$ and $w \in T^*$ that is γ leads to a string of terminals. Here γ is said to be generating.
 - ② If there is a derivation $S \stackrel{*}{\Rightarrow} \alpha \gamma \beta \stackrel{*}{\Rightarrow} w$ and $w \in L(G)$, for some α and β then γ is said to be reachable.
- So first eliminate symbols that are not generating and then eliminate those symbols are not reachable.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 34 / 57

Useful symbol

- A symbol X in a CFG $G = \{V, T, P, S\}$ is called useful if there exist a derviation of a terminal string from S where X appears somewhere, else it is called useless.
 - A symbol X is called generating if some terminal string can be dervied from X.
 - A symbol X is called reachable if it can be reached from S.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 35 / 57

Example:

$$S \rightarrow AB/a$$

 $A \rightarrow b$

Solution:

- Identify nongenerating Symbol
- $S \rightarrow AB/a$ here B is nongenerating.
- The CFG become

$$S \rightarrow a$$

 $A \rightarrow b$

- A is non reachable
- The CFG become

October 9, 2023

36 / 57

Eliminate ϵ -production

- ullet ϵ -production are those productions that are of the form $X o \epsilon$ these are also called null production
- A variable that derive ϵ ($A \stackrel{*}{\Rightarrow} \epsilon$) then we say A is nullable
- IN CFG, if there is ϵ production we can remove it without changing the meaning of the grammar.
 - \bullet If $A \to \epsilon$ is a production to be eliminated then we look all production whose right side contain A
 - And replace each occurrence of A in each of these productions to obtain the non ϵ -Productions.
 - Now these resultant non ϵ -Production must be added to the grammar to keep the language generated the same.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 37 / 57

• Example:

$$S \rightarrow aA$$
 $A \rightarrow b|\epsilon$

- $A \rightarrow \epsilon$ is the ϵ -production
- \bullet Only one production ${\cal S} \to a A$ whose right side contain A , so replace A by ϵ
- we get $S \rightarrow a$
- add this new production to keep the language generated by this grammar same

$$S \rightarrow aA$$

 $S \rightarrow a$

$$A \rightarrow b$$

Eliminate Unit production

- A production i of the form $A \rightarrow B$ is called unit production
- It increase the cost of derivation in a grammar
- If there exist unit production in the grammar
 - Select a unit production $A \to B$ such that there exist a production $B \to \alpha$ where α is a terminal
 - ullet For every nonunitproduction B o lpha
 - Add production $A \to \alpha$ to the grammar
 - Eliminate $A \rightarrow B$ from the grammar

Example:

$$\begin{array}{cccc} S & \rightarrow & AB \\ A & \rightarrow & a \\ B & \rightarrow & C|b \\ C & \rightarrow & D \\ D & \rightarrow & E \\ E & \rightarrow & a \end{array}$$

Solution

Unit Productions are

$$\begin{array}{ccc} B & \rightarrow & C \\ C & \rightarrow & D \\ D & \rightarrow & E \end{array}$$

- Remove unit production $B \to C$ if there exists a production whose left side has C and right side contain a terminal but there is no such production in G,
- Similar things hold for production $C \rightarrow D$.
- Now we try to remove Unit production $D \to E$, because there is a production $E \to a$
- Eliminate $D \rightarrow E$ and introduce $D \rightarrow a$
- Grammar becomes

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow C|b$$

$$C \rightarrow D$$

$$D \rightarrow a$$

$$E \rightarrow a$$

• Now we can remove $C \to D$ by using $D \to a$

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow C|b$$

$$C \rightarrow a$$

$$D \rightarrow a$$

$$E \rightarrow a$$

Similarly remove $B \rightarrow C$ by using $C \rightarrow a$

$$\begin{array}{cccc} S & \rightarrow & AB \\ A & \rightarrow & a \\ B & \rightarrow & a|b \\ C & \rightarrow & a \\ D & \rightarrow & a \\ E & \rightarrow & a \end{array}$$

• $C \rightarrow a, D \rightarrow a, E \rightarrow a$ are useless symbols so the CFG become

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & a \\ B & \rightarrow & a|b \end{array}$$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 43 / 57

Chomsky Normal Form (CNF)

Chomsky Normal Form(CNF)

- Any context-free language without ϵ is generated by a grammar in which all productions are of the form $A \to BC$ or $A \to a$.
- Here, A, B, and C, are variables and a is a terminal.

Converting CFG into CNF

- Arrange that all bodies of length 2 or more consist only of variable
- 2 Break bodies of length ≥ 3 into cascade of productions each with a body consisting of two variables.

Chomsky Normal Form(CNF)

Steps for converting CFG into CNF **Step 2:**Simplify the grammar.

- **1** Eliminate ϵ -productions
- Eliminate unit productions
- Eliminate Useless symbols.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 45 / 57

Chomsky Normal Form (CNF)

Step 3:Eliminate terminals from RHS if they exist with other terminals or non-terminals.

- Consider a production in P,of the form $A \to X_1 X_2 X_3 X_m$ where $m \ge 2.$ If X_i is a terminal,
- Introduce a new variable Ca and a production $C_a \rightarrow a$.
- Then replace X_i by C_a .

Step 4:

- Consider a production $A \rightarrow B_1 B_2 B_3 B_m$ where $m \ge 3$,
- Create new variables D_1, D_2, D_{m-2} and replace $A \to B_1 B_2 B_3 ... B_m$ by the set of productions $\{A \to B_1 D_1, D_1 \to B_2 D_2, D_{m-3} \to B_m 2D_{m-2}, D_{m-2} \to B_{m-1} B_m\}$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 46 / 57

Chomsky Normal Form (CNF)

Example: Consider the grammar $(\{S, A, B\}, \{a, b\}, P, S)$ that has the productions:

$$\begin{array}{ccc} S & \rightarrow & bA|aB \\ A & \rightarrow & bAA|aS|a \\ B & \rightarrow & aBB|bS|b \end{array}$$

SIn:

Step 1: Simplify the grammar.

- The given grammar does not contain ϵ –productions, unit productions and useless symbols.
- It is in optimized form.

Chomsky Normal Form(CNF)

Step 2:

- The only productions already in proper form are $A \rightarrow a$ and $B \rightarrow b$.
- So we may begin by replacing terminals on the right by variables, except in the case of the productions $A \rightarrow a$ and $B \rightarrow b$.
- $S \to bA$ is replaced by $S \to C_bA$ and $C_b \to b$.
- Similarly, $A \to aS$ is replaced by $A \to C_aS$ and $C_a \to a$; $A \to bAA$ is replaced by $A \to C_bAA$; $S \to aB$ is replaced by $S \to C_aB$; $B \to bS$ is replaced by $B \to C_bS$, and $B \to aBB$ is replaced by $B \to C_aBB$.

Step 3:

• In the next stage, the production $A \to C_b A A$ is replaced by $A \to C_b D 1$ and $D 1 \to A A$, and the production $B \to C_a B B$ is replaced by $B \to C_a D 2$ and $D 2 \to B B$.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 48 / 57

Chomsky Normal Form(CNF)

The productions for the grammar in CNF are :

Rijin IK (VJEC) CST 301 M3 October 9, 2023 49 / 57

Normal Form

Left Recursion

- ullet A grammar which is of the form A o A lpha | eta
- To avoid left recursion

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A'$$

$$A' \rightarrow \epsilon$$

ullet After removing ϵ production the grammar become

$$\begin{array}{ccc} A & \to & \beta | \beta A' \\ A' & \to & \alpha | \alpha A' \end{array}$$

Greibach Normal Form(GNF)

- Every context free language L without ϵ can be generated by a grammar for which every production is of the form $A \to a\alpha$ or $A \to a$
- ullet Where A is a variable , a is a terminal and lpha is a string of variables.

To convert given grammar into GNF following Two lemma's are considered **Lemma1**:

- Define an A-production to be a production with variable A on the left.
- Let G = (V, T, P, S) be a CFG. Let $A \to \alpha_1 B \alpha_2$ be a production in P and $B \to \beta_1 |\beta_2| |\beta_r|$ be the set of all B-productions.
- Let G1 = (V, T, P1, S) be obtained from G by deleting the production $A \to \alpha_1 B \alpha_2$ from P and adding the productions $A \to \alpha_1 \beta_1 \alpha_2 |\alpha_1 \beta_2 \alpha_2| ... |\alpha_1 \beta_r \alpha_2$.
- Then L(G) = L(G1).

◆ロト ◆御ト ◆恵ト ◆恵ト ・恵 ・ 夕久○

Lemma2:

- Let G = (V, T, P, S) be a CFG. Let $A \to A\alpha_1|A\alpha_2|...|A\alpha_r$ be the set of A-productions for which A is the leftmost symbol of the right-hand side.
- Let $A \to \beta_1 |\beta_2| ... |\beta_s|$ be the remaining A-productions.
- Let $G1 = (V \cup \{B\}, T, P1, S)$ be the CFG formed by adding the variable B to V and replacing all the A-productions by the productions:

$$\left. egin{array}{lll} A
ightarrow & eta_i \ A
ightarrow & eta_i B \end{array}
ight. \left. egin{array}{lll} B
ightarrow & lpha_i \ B
ightarrow & lpha_i B \end{array}
ight. 1 \leq i \leq r$$

• Then L(G1) = L(G).

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q @

Algorithm for converting a CFG into GNF

- **1** Remove Unit productions, useless symbols and ϵ -production, if any.
- For every terminal symbol introduce a new non terminal.
 - $A \rightarrow Ba$ become $A \rightarrow BC_a, C_a \rightarrow a$
- Introduce an order among nonterminals by renaming them.
- Using substitutions, rewrite productions (except Left Recursive) if required, to ensure that all productions of the form $X_i \to X_j \alpha$ satisfy the condition i < j
- Remove Left Recursions, if any.
- Remove unit productions, useless symbol if any added in step 4.
- Obtain the CFG in GNF by applying substitutions.

Rijin IK (VJEC) CST 301 M3 October 9, 2023 53 / 57

Example:Convert the following grammar into GNF

$$S \rightarrow AB|CC$$

$$C \rightarrow b|SC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

SIn:

- The given CFG is in CNF
- Renaming the nonterminals in G with index values
 - Replace, S with X_1 , A with X_2 , B with X_3 , C with X_4
- Equivalent CFG G'

$$X_1 \rightarrow X_2X_3|X_4X_4$$

 $X_4 \rightarrow b|X_1X_4$
 $X_2 \rightarrow a$
 $X_3 \rightarrow b$

Example cont..

- The production $X_4 \to X_1 X_4$ does not satisfy our requirement we need i < j
- Now, substitute the value of X_1 in X_4 we will get $X_4 \to X_2 X_3 X_4 | X_4 X_4 X_4$
- Substitute $X_2 o a$ into $X_4 o X_2 X_3 X_4$ then $X_4 o a X_3 X_4$
- The production $X_4 \rightarrow X_4 X_4 X_4$ is left recursive remove the leftrecursive
- the grammar become

$$\begin{array}{ccccc} X_1 & \to & X_2X_3|X_4X_4 \\ X_4 & \to & b|aX_3X_4|bX_5|aX_3X_4X_5 \\ X_2 & \to & a \\ X_3 & \to & b \\ X_5 & \to & X_4X_4|X_4X_5 \end{array}$$

Example cont..

Againg perform substitution then the grammar become

$$egin{array}{lcl} X_1 &
ightarrow & aX_3|X_4X_4 \ X_4 &
ightarrow & b|aX_3X_4|bX_5|aX_3X_4X_5 \ X_2 &
ightarrow & a \ X_3 &
ightarrow & b \ X_5 &
ightarrow & X_4X_4|X_4X_5 \ \end{array}$$

ullet Againg substitute the value of X_4 then the grammar become

$$X_1 \rightarrow aX_3|bX_4|aX_3X_4X_4|bX_5X_4|aX_3X_4X_5X_4$$

 $X_4 \rightarrow b|aX_3X_4|bX_5|aX_3X_4X_5$
 $X_2 \rightarrow a$
 $X_3 \rightarrow b$

56 / 57

Rijin IK (VJEC) CST 301 M3 October 9, 2023

Example cont..

ullet Againg substitute the value of X_4 then the grammar become

$$X_{1} \rightarrow aX_{3}|bX_{4}|aX_{3}X_{4}X_{4}|bX_{5}X_{4}|aX_{3}X_{4}X_{5}X_{4}$$
 $X_{4} \rightarrow b|aX_{3}X_{4}|bX_{5}|aX_{3}X_{4}X_{5}$
 $X_{2} \rightarrow a$
 $X_{3} \rightarrow b$
 $X_{5} \rightarrow bX_{4}|aX_{3}X_{4}X_{4}|bX_{5}X_{4}|aX_{3}X_{4}X_{5}X_{4}|$
 $bX_{4}X_{3}|aX_{3}X_{4}X_{4}|bX_{5}X_{4}|aX_{3}X_{4}X_{5}|aX_{3}X_{4}X_{5}X_{4}X_{5}$

Rijin IK (VJEC) CST 301 M3 October 9, 2023 57 / 57