Chapitre 2 : Fonctions mesurables

Prof. ZEROUKI Ibtissem

January 28, 2021

Contents

1	Fon	ctions mesurables.	2
	1.1	Fonctions mesurables	2
	1.2	Opération stables pour la mesurabilité	3
	1.3	Limite de fonctions mesurables	4
	1.4	Fonctions étagées	7

1. Fonctions mesurables.

Introduction.

Les fonctions mesurables sont les fonctions de bases en théorie de la mesure. Il s'agit de fonctions qui se comportent convenablement par rapport à des tribus sur les espaces sur lesquelles elles sont définies. La notion de la mesurabilité est extrêmement flexible et se conserve par la plupart des opérations usuelles sur les fonctions.

1.1. Fonctions mesurables.

Définition 1.1.1. Soient (X, \mathcal{A}) et (Y, \mathcal{B}) deux espases mesurables. Une fonction $f: X \to Y$ est dite " (Y, \mathcal{B}) -mesurable" (ou simplement mesurable) si et seulement si $\forall B \in \mathcal{B}$ $f^{-1}(B) \in \mathcal{A}$.

Remarque 1.1.2. ♦ Cette définition est à comparer avec la définition de la continuité : L'image réciproque d'un ouvert est un ouvert.

- \blacklozenge Quand Y est un espace topologique et que rien n'est précisé, on prendra la tribu de Borel $\mathcal{B}(Y)$.
- ♦ Dans le contexte probabiliste, les fonctions mesurables s'appellent les "variables aléatoires", dans ce cas on note $(X, \mathcal{A}, \mu) = (\Omega, \mathcal{F}, \Pr)$ et $X : (\Omega, \mathcal{F}, \Pr) \to \mathbb{R}$ mesurable s'appelle une variable aléatoire.

Proposition 1.1.3. La fonction indicatrice $(\mathbf{1}_A)$, où $A \subset X$ est mesurable de (X, \mathcal{A}) dans \mathbb{R} , si et seulement si $A \in \mathcal{A}$ (on dit que l'ensemble A est **mesurable**).

Démonstration. On suppose que $A \in \mathcal{A}$. Soit $B \in \mathcal{B}(\mathbb{R})$, alors

$$(\mathbf{1}_A)^{-1}(B) = \{x \in X \text{ tel que } \mathbf{1}_A(x) \in B\}.$$

- ♦ Si $\{0,1\}$ \subset $(\mathbf{1}_A)^{-1}(B)$ alors $(\mathbf{1}_A)^{-1}(B) = X \in \mathcal{A}$.
- ♦ Si $1 \in (\mathbf{1}_A)^{-1}(B)$ mais $0 \notin (\mathbf{1}_A)^{-1}(B)$, alors $(\mathbf{1}_A)^{-1}(B) = A \in \mathcal{A}$.

- \blacklozenge Si $0 \in (\mathbf{1}_A)^{-1}(B)$ mais $1 \notin (\mathbf{1}_A)^{-1}(B)$, alors $(\mathbf{1}_A)^{-1}(B) = \emptyset \in \mathcal{A}$.
- \bullet Si 0 et $1 \notin (\mathbf{1}_A)^{-1}(B)$, alors $(\mathbf{1}_A)^{-1}(B) = \emptyset \in \mathcal{A}$.

Donc la fonction $\mathbf{1}_A$ est mesurable.

Réciproquement, si on suppose que la fonction $\mathbf{1}_A$ est mesurable alors

$$A = (\mathbf{1}_A)^{-1} (\{1\}) \in \mathcal{A}.$$

Notation 1.1.4. On notera $\mathcal{F}(\mathcal{A}, \mathcal{B})$ l'ensemble des fonctions mesurables de (X, \mathcal{A}) vers (Y, \mathcal{B}) .

1.2. Opération stables pour la mesurabilité.

Proposition 1.2.1. Soit \mathcal{E} une famille de parties de F et $\mathcal{B} = \sigma(\mathcal{E})$. Alors la fonction $f: (E, \mathcal{A}) \to (F, \mathcal{B})$ est mesurable si et seulement si $f^{-1}(B) \in \mathcal{A}$ pour tout $B \in \mathcal{E}$.

Démonstration. Par définition, si f est mesurable $\Leftrightarrow f^{-1}[\mathcal{B}] \subset \mathcal{A}$, mais $\mathcal{B} = \sigma(\mathcal{E})$ alors

$$f^{-1}\left[\mathcal{B}\right] = f^{-1}\left[\sigma\left(\mathcal{E}\right)\right] = \sigma\left(f^{-1}\left[\mathcal{E}\right]\right) \Leftrightarrow \sigma\left(f^{-1}\left[\mathcal{E}\right]\right) \subset \mathcal{A} \Leftrightarrow f^{-1}\left[\mathcal{E}\right] \subset \mathcal{A}.$$

Corollaire 1.2.2. Une fonction continue de (E, \mathcal{T}) dans (F, \mathcal{T}') , qui sont deux espaces topologiques, est mesurable pour les tribus boréliennes de $\mathcal{B}(E)$ et $\mathcal{B}(F)$ associées à E et F.

Proposition 1.2.3. Soit $f:(E,\mathcal{A})\to (F,\mathcal{B})$ et $g:(F,\mathcal{B})\to (G,\mathcal{G})$ dux fonctions mesurables, alors la fonction $g\circ f:f:(E,\mathcal{A})\to (G,\mathcal{G})$ est aussi mesurable.

Définition 1.2.4. Soit $f:(E, \mathcal{A}, \mu) \to (F, \mathcal{B})$ une fonction mesurable. On définit sur (F, \mathcal{B}) la "mesure image de f" notée μf^{-1} ou μ_f , par $\mu_f(B) = \mu(f^{-1}(B))$, pour tout $B \in \mathcal{B}$.

1.3. Limite de fonctions mesurables.

On considère les ensembles $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ et $\overline{\mathbb{R}}_+ = [0, +\infty] = [0, +\infty[\cup \{+\infty\}]$. Les boréliens associés à ces ensembles sont respectivement engendrés par $\{]a, +\infty], a \in \mathbb{R}\}$ et $\{]a, +\infty], a \in \mathbb{R}_+\}$. On adopte les règles de calculs suivantes.

Proposition 1.3.1. Soient a et $b \in \overline{\mathbb{R}}$, on a

$$a \times b = ab \text{ si } a \text{ et } b \notin \{-\infty, +\infty\}.$$

$$a \times (+\infty) = \begin{cases} +\infty : \text{ si } a > 0 \\ -\infty : \text{ si } a < 0 \\ 0 : \text{ si } a = 0. \end{cases}$$

$$(+\infty) \times (-\infty) = -\infty$$
, $(+\infty) \times (+\infty) = +\infty$, $(+\infty) + (+\infty) = +\infty$ et $(-\infty) + (-\infty) = -\infty$.

L'opération $(+\infty) + (-\infty)$ n'a pas de sens.

Définition 1.3.2. \circledast Soit $\{a_n\}_{n\geq 0} \subset \overline{\mathbb{R}}$, on définit $\overline{\lim}_n a_n = \limsup_n a_n$ et $\underline{\lim}_n a_n = \liminf_n a_n$ par

$$\limsup_{n} a_{n} = \inf_{n} \left(\sup_{k \geq n} a_{k} \right) \quad et \liminf_{n} a_{n} = \sup_{n} \left(\inf_{k \geq n} a_{k} \right).$$

Si la suite $\{a_n\}_{n>0}$ converge dans $\overline{\mathbb{R}}$, alors

$$\limsup_{n} a_n = \liminf_{n} a_n.$$

 \circledast Soit $\{f_n\}_{n\geq 0}$ une suite de fonctions définies d'un ensemble quelconque non vide E vers \mathbb{R} . On définit les fonctions $\sup_n f_n$ et $\inf_n f_n$ à valeurs dans $\overline{\mathbb{R}}$ par

$$\left[\sup_{n} f_{n}\right](x) = \sup_{n} \left[f_{n}(x)\right] \quad et \quad \left[\inf_{n} f_{n}\right](x) = \inf_{n} \left[f_{n}(x)\right].$$

De même, on définit les fonction $\limsup_n f_n$ et $\liminf_n f_n$ à valeurs dans $\overline{\mathbb{R}}$ par

$$\left[\limsup_{n} f_{n}\right](x) = \lim_{n} \sup_{n} \left[f_{n}(x)\right] \quad et \quad \left[\liminf_{n} f_{n}\right](x) = \lim_{n} \inf\left[f_{n}(x)\right].$$

La limite simple de la suite $\{f_n\}_n$, lorsqu'elle existe, est notée par $\lim_{n\to+\infty} f_n(x)$ ou bien $\lim_{n\to+\infty} f_n$ et elle est telle que

$$\lim_{n \to +\infty} f_n(x) = \left[\limsup_n f_n \right](x) = \left[\liminf_n f_n \right](x), \text{ pour tout } x \in \overline{\mathbb{R}}.$$

Proposition 1.3.3. Soit $\{f_n\}_{n\geq 0}$ une suite de fonctions mesurables définies de l'espace mesurable: (E, \mathcal{A}) vers $\overline{\mathbb{R}}$, alors les fonctions $\sup_n f_n$ et $\lim_n \inf_n f_n \in \mathbb{N}$ sont aussi mesurables.

Démonstration. On démontre ce résultat pour la fonction sup f_n . Comme $\mathcal{B}\left(\overline{\mathbb{R}}\right) = \sigma\left(\{]a, +\infty]\}\right)$, alors en utilisant **La proposition** 2.2.1, il nous suffit de montrer que $\left[\sup_n f_n\right]^{-1}(]a, +\infty]$) $\in \mathcal{A}$, pour tout $a \in \mathbb{R}$ pour avoir le résultat voulu.

$$\left[\sup_{n} f_{n}\right]^{-1} (]a, +\infty]) = \left\{x \in E, : \left(\sup_{n} f_{n}\right)(x) \in]a, +\infty]\right\}$$

$$= \left\{x \in E, : \left(\sup_{n} f_{n}\right)(x) > a\right\}$$

$$= \left\{x \in E : \exists n \in \mathbb{N} \text{ ou } f_{n}(x) > a\right\}$$

$$= \bigcup_{n \geq 0} \left\{x \in E, : f_{n}(x) > a\right\}$$

$$= \bigcup_{n \geq 0} f_{n}^{-1} (]a, +\infty]) \in \mathcal{A}.$$

Doù le résultat voulu. ■

Remarque 1.3.4. Ce raisonnement s'adapte facilement pour l'inf f_n .

Proposition 1.3.5. Soit (X, \mathcal{A}) un espace mesuré. Si $f_n : (X, \mathcal{A}) \to \overline{\mathbb{R}}$ (où $[0, +\infty]$); pour tout $n \in \mathbb{N}$, sont des fonctions mesurables, alors $\limsup_n f_n$ et $\liminf_n f_n$ sont mesurables.

Démonstration. On sait que

$$\limsup_{n} f_{n} = \inf_{n} \left(\sup_{k \geq n} f_{k} \right),$$

alors en posant $g_n = \sup_{k \ge n} f_k$, on obtient

$$\limsup_{n} f_n = \inf_{n} g_n.$$

De même, on obtient la mesurabilité de $\liminf_n f_n = \sup_n \left(\inf_{k \ge n} f_k\right)$, en utilisant le même raisonnement.

Théorème 1.3.6. Soit $\{f_n\}_{n\geq 0}$ une suite de fonctions mesurables sur (X, \mathcal{A}) dans un espace métrique (E, d). Si cette suite converge simplement vers une fonction f, alors cette dernière est mesurable à valeurs dans E.

Remarque 1.3.7. ★ C'est un résultat très agréable si on le compare avec le résultat analogue pour la continuité, où on a besoin de la convergence uniforme pour que la continuité se garde à la limite.

 \star Si $E = \overline{\mathbb{R}}$ ou $\overline{\mathbb{R}}^+$, le résultat est déduit de la proposition précédente.

Théorème 1.3.8. Soient $\{f_n\}_{n\geq 0}$ une suite de fonctions mesurables sur (X, \mathcal{A}) et $A = \{x \in X \text{ tel que } \{f_n(x)\}_{n\geq 0} \text{ converge dans } \overline{\mathbb{R}}\}$. Alors $A \in \mathcal{A}$ et si \mathcal{C} désigne la tribu trace de \mathcal{A} sur A la fonction

$$f = \lim_{n \to +\infty} f_n : (A, \mathcal{C}) \longrightarrow (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$$

est mesurable.

Rappelons que la mesurabilité de A n'est pas nécessaire pour définir la tribu trace \mathcal{C} . Néaumoins, pour tout borélien B de $\overline{\mathbb{R}}$, $f^{-1}(B) = A \cap (f^{\uparrow})^{-1}(B) \in \mathcal{C}$, où $f^{\uparrow} = \limsup f_n$. En effet

$$f^{-1}(B) = \{x \in X \text{ tel que } f^{\uparrow}(x) = f^{\downarrow}(x) \text{ et } f^{\uparrow}(x) \in B\}. \in \mathcal{C}$$

Définition 1.3.9. (Convergence p.p.) Soit $\{f_n\}_{n\geq 0}$ une suite de fonctions mesurables sur (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$. On dit que cette suite converge μ -presque partout, (ou bien presque partout) et on note μ -p.p., s'il existe $X' \in \mathcal{A}$ avec $\mu(X') = \mu(X)$ (ou bien $\mu(X^c) = 0$) telle que $\lim_{n \to +\infty} f_n(x)$ existe en tous point $x \in X'$. La fonction $f: (X, \mathcal{A}) \longrightarrow \overline{\mathbb{R}}$ définie par

$$f(x) = \begin{cases} \lim_{n \to +\infty} f_n(x) : x \in X' \\ \alpha \text{ (Cte)} : \text{sinon} \end{cases}$$

est mesurable.

Définition 1.3.10. Soient f et $g:(X,\mathcal{A},\mu) \longrightarrow \overline{\mathbb{R}}$ deux fonctions mesurables. On dit que f et g sont μ -p.p. égale si et seulement si

$$\mu(\{x \in X \text{ telle que } |f(x) - g(x)| > 0\}) = 0.$$

On écrit dans ce cas que $f =_{\mu} g$.

Définition 1.3.11. Soient $\{f_n\}_{n\geq 0}$ et f des fonctions mesurables sur (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$. On dit que la suite $\{f_n\}_{n\geq 0}$ converge en mesure vers f si, pour tout $\varepsilon > 0$ on a

$$\lim_{n \to +\infty} \mu\left(\left\{x \in X \text{ telle que } |f_n(x) - f(x)| > \varepsilon\right\}\right) = 0.$$

Remarque 1.3.12. "Ces définitions restent valables si on remplace $\overline{\mathbb{R}}$ par un espace métrique (E, d), $\mathcal{B}(\overline{\mathbb{R}})$ par $\mathcal{B}(E)$ et |. - .| par d(., .).

Théorème 1.3.13. Soit (X, \mathcal{A}, μ) un espace mesuré telle que μ est une mesure finie. Soient $f_n: (X, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$ des fonctions mesurables qui convergent μ -p.p. sur X vers f, alors $\forall \varepsilon > 0, \exists A_{\varepsilon} \in \mathcal{A}$ telle que $\mu(A_{\varepsilon}) < \varepsilon$ et $\{f_n\}_{n \geq 0}$ converge uniformément sur A_{ε}^c .

Théorème 1.3.14. Soit (X, \mathcal{A}, μ) un espace mesuré.

- 1) Si μ est une mesure finie, la convergence μ -p.p. d'une suite $\{f_n\}_{n\geq 0}$ de fonctions mesurables vers une fonction mesurable f de (X, \mathcal{A}) dans $\overline{\mathbb{R}}$, entraine la convergence en mesure de f_n vers f.
- 2) Réciproquement, la convergence en mesure d'une suite de fonctions mesurables $\{f_n\}_{n\geq 0}$ de (X,\mathcal{A}) dans $\overline{\mathbb{R}}$, vers une fonction mesurable f entraine l'existence d'une sous suite $\{f_{n_k}\}_{k>0}$ qui converge μ -p.p. vers f.

1.4. Fonctions étagées.

Définition 1.4.1. Une "fonction numérique" mesurable est une application mesurable de (X, A) dans $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$.

Définition 1.4.2. Une fonction $f:(X, \mathcal{A}, \mu) \longrightarrow \mathbb{R}_+$ est dite "fonction étagée positive" si c'est une combinaison linéaire finie à coefficients positifs de fonctions indicatrices $\mathbf{1}_{A_i}$, pour des ensembles mesurables A_i deux à deux disjoints, i. e.

$$f(x) = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{1}_{A_i}(x); \quad \alpha_i \in \mathbb{R}_+ \text{ et } \{A_i\}_{i=1}^n \subset \mathcal{A}$$

avec $A_i \cap A_j = \emptyset$, pour $i \neq j$.

Remarque 1.4.3. \blacklozenge Cette définition ressemble à celle d'une fonction en escalier, mais c'est plus général, car pour une fonction en escalier $X = \mathbb{R}$ et les A_i ; pour $i = 1, 2, \dots, n$, doivent être des intervalles de \mathbb{R} , alors qu'ici, il s'agit d'ensembles mesurables d'un quelconque ensemble X.

- ♦ Une fonction étagée est mesurable car, c'est une combinaison linéaire finie de fonctions mesurables.
- ♦ Une fonction étagée prend un nombre fini de valeurs.
- ♦ Si les α_i , pour $i = 1, 2, \dots, n$, sont les valeurs possibles pour une fonction étagée f, où $A_i = f^{-1}(\{\alpha_i\})$, qui est mesurable. On écrit dans ce cas que

$$f(x) = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{1}_{f^{-1}(\{\alpha_i\})}(x).$$

Proposition 1.4.4. Toute fonction mesurable à valeurs dans \mathbb{R}_+ , (ou généralement dans \mathbb{R}^k) est une limite simple d'une suite de fonctions étagées croissante (resp. suite de fonctions étagées.).

Remarque 1.4.5. Ce résultat va nous permettre de définir l'"intégrale d'une fonction mesurable" à partir de celle des fonctions étagées.