Aufgabe 2: Genom-Sequenz von Human T-cell leukemia virus type I (NC 001436)

Ersten 100 Basen:

Aufgabe 3: ersten 30 Aminosäuren des 1. 5'3' Frames

5'-MQLAHILQPIRQAFPQCTILQYMDDILLAS -3'

- a) Warum ist die Suche in Aminosäurensequenzen der Suche in Genomsequenzen vorzuziehen? Für die 20 Aminosäuren gibt es 64 verschiedene Codons. Falls nur die Ähnlichkeit des Proteins von interesse ist, beziehungsweise es um die konservierte Natur von funktionell relevanten Motifen geht ist deshalb die Aminosäurensequenz vorzuziehen. So geht unnötige Komplexität verloren (Kürzere Sequenzen und Verlust der potenziell verschiendenen Codons) und man vergleicht nur Elemente die besonders konverviert sind (aufgrund des Selektionsdrucks). Es ist sinnvoll die DNA-Sequenzen zu vergleichen wenn man z.b. Evolutionäre Distanzen (Abstammungen) bestimmen möchte, da hier auch Mutation in Sequenzen interessant sind die keinen Selektionsdruck erfahren.
- b) Warum ist es sinnvoll alle 6 möglichen Übersetzungs-Frames durchzusuchen? Solange nicht bekannt ist welcher Reading Frame im Organismus der tatsächlich expremierte ist (oder hauptsächlich exprimierte) sollten alle Reading Frames geprüft werden, so dass man sicher sein kann den korrekten gepüft zu haben.

Aufgabe 4: Motive in Sequenz

Es konnten Integrase_Zn (Integrase Zinc binding domain), Rnase_H, RVT_1 (Reverse transcriptase (RNA-dependent DNA polymerase)), IN_DBD_C (Integrase DNA binding domain), rve (Integrase core domain) domainen gefunden werden.

	Family			Ind. E-	Cond. E-	
Family id	Accession	Clan	Bit Score	value	value	Description
rve	PF00665.25	CL0219	94.55	4.30E-27	1.30E-30	Integrase core domain
IN_DBD_C	PF00552.20	-	70.29	5.60E-20	1.70E-23	Integrase DNA binding domain
RVT_1	PF00078.26	CL0027	44.24	1.40E-11	4.20E-15	Reverse transcriptase (RNA-dependent DNA polymerase)
RNase_H	PF00075.23	CL0219	43.18	4.00E-11	1.20E-14	RNase H
Integrase_Zn	PF02022.18	-	38.68	6.50E-10	2.00E-13	Integrase Zinc binding domain

Integrase core domain:

Die E-Werte liegen alle zwischen 10⁻¹⁰ und 10⁻⁵⁰ welches darauf hindeutet, dass die Sequenz sehr ähnlich zu den Logos ist. Dabei nimmt die Ähnlichkeit zwischen Sequenz und Logo von rve zu IN_DBD_C zu RVT_1 zu RNase_H zu Integrase_Zn ab.

Aufgabe 5: Erneute durchführung mit C9orf78 (Homo Sapiens)

Ersten 100 Basen:

Sbjct 62

ersten 30 Aminosäuren des 1. 5'3' Frames:

5'-MPVVRKIFRRRGDSESEEDEQDSEEVRLK-3'

Es konnte Hep_59 (Hepatocellular carcinoma-associated antigen 59) als Motif gefunden werden.

Family id	Family Accession	Clan	Bit Score	Ind. E-value	Cond. E-value	Description
						Hepatocellular carcinoma-associated antigen
Hep_59	PF07052.10	-	103.68	7.70E-30	4.60E-34	59

s<mark>f</mark>saetnrrdedad<mark>m</mark>mk<mark>yl</mark>ete<mark>l</mark>kkrkgi------veheeQkvkpknaedClyelpenIrvssakkteemLsnQmLsg<mark>ipev</mark>dlgidakIk<mark>n</mark>IIstedakarL r<mark>f</mark>tketgkrdvdkh<mark>m</mark>ek<mark>yl</mark>eee<mark>L</mark>akrkgkskqeqdeeeekeseassksedaedelyelpehlkvsskeeeeealsnqmlgg<mark>I</mark>pevdlgieaklk<mark>n</mark>ieetekakrkl

Erstellt mit https://www.genome.jp/tools/motif/

übereinstimmende Aminosäuren: Hoch konservierte AAs

Sequence ID: Query_35643 Length: 106 Number of Matches: 1

Score	Expect	Method	Identities	Positives	Gaps
93.2 bits(230)	3e-31	Compositional matrix adjust.	58/105(55%)	71/105(67%)	9/105(8%)

Query 2 FSAETNRRDEDADMMKYIETELKKRKG------IVEHEEQKVKPKNAEDCLYELPEN 52 F+ ET +RD D M KYIE EL KRKG + E K ++AED LYELPE+ Sbjct 2 FTKETGKRDVDKHMEKYIEEELAKRKGKSKQEQDEEEEKESEASSKSEDAEDELYELPEH 61

Query 53 IRVSSAKKTEEMLSNQMLSGIPEVDLGIDAKIKNIISTEDAKARL 97 ++VSS ++ EE LSNQML GIPEVDLGI+AK+KNI TE AK +L

LKVSSKEEEEEALSNÕMLGGIPEVDLGIEAKLKNIEETEKAKRKL

https://blast.ncbi.nlm.nih.gov/Blast.cgi 1 Blast von Logosequenz (jeweils AA mit höchster relative Entropie) und übereinstimmender Sequenz von C9orf78

Der Sequenzabschnitt von C9orf78 in dem Hep_59 gefunden wurde stimmt zu einem hohen Grad mit der Logosequenz von HEP_59 überein. So ist der Sequenzabschnitt in allen hoch konservierten Aminosäuren identisch und stimmt insgesammt zu 55% mit der Logosequenz überein. Der größte Unterschied kommt von einer Lücke in der Sequenz von C9orf78 mit einer Länge von 9 Aminosäuren. Der Domain-E-Wert von $4.6*10^{34}$ gibt weiter an das die Sequenz in C9orf78 und die des HEP_59 Motifs eng miteinander verwandt sind.