Name:

Physics 51 Homework #18 November 14, 2016

38-P5*, 35-E12, 35-P1, 35-E9

38-P5* A cube of edge a has its edges parallel to the x, y, and z axes of a rectangular coordinate system. A uniform electric field $\vec{\mathbf{E}}$ is parallel to the y axis and a uniform magnetic field $\vec{\mathbf{B}}$ is parallel to the x axis. Calculate

- (a) the rate at which, according to the Poynting vector point of view, energy may be said to pass through each face of the cube and
- (b) the net rate at which the energy stored in the cube may be said to change.

35-E12 The dipole moment associated with an atom of iron in an iron bar is $2.22 \,\mu_{\rm B}$. Assume that all the atoms in the bar, which is $4.86 \,\rm cm$ long and has a cross-sectional area of $1.31 \,\rm cm^2$, have their dipole moments aligned.

- (a) What is the dipole moment of the bar?
- (b) What torque must be exerted to hold this magnet at right angles to an external field of $1.53\,\mathrm{T}$?

35-P1 A thin, plastic disk of radius R has a charge q uniformly distributed over its surface. If the disk rotates at an angular frequency ω about its axis, show that magnetic dipole moment of the disk is

$$\mu = \frac{\omega q R^2}{4}.$$

(Hint: The rotating disk is equivalent to an array of current loops.)

35-E9 In the lowest energy state of the hydrogen atom, the most probable distance between the single orbiting electron and the central proton is 5.29×10^{-11} m. Calculate

- (a) the electric field and
- (b) the magnetic field

set up by the proton at this distance, measured along the proton's axis of spin. See Table 35-1 for the magnetic moment of the proton.