IoT systems

- IoT system applications
- IoT system architectures

IoT system applications

- Soft real-time networked embedded system.
 - Input devices: tags, sensors, etc.
 - Output devices: motor controllers, displays, etc.
- Examples:
 - Computer-readable identification code for objects.
 - Appliances controlled by cell phone interface.
 - Sensor network with analytics.

Devices

- People:
 - Implanted devices in the body.
 - Wearable devices on the body.
 - Environmental devices outside the body.

- Objects:
 - Interior: temperature sensor, etc.
 - Exterior: RFID, etc.
 - Environmental: camera, motion sensor, etc.

RFID

- RFID tag can provide object ID (Electronic Product Code, etc.), other information.
- Many tags are read-only, some are writable.
- Two types of tags:
 - Passive transmits only when it receives a request.
 - Active tag both transmits independently and responds to requests.
- Passive may also be used to refer to tags with no internal power source.
- RFID tags may operate in several different bands and at different ranges.

IoT system architectures

- Edge: I/O devices.
- Cloud: centralized processing.
- Smart appliance = connected appliance + network + UI.

IoT system architectures, cont'd.

Monitoring system = sensors + network + database + dashboard.

IoT system architectures, etc.

Control system = sensors + database + controller + actuator.

IoT systems

- OSI model for networks.
- Internet protocol.
- IoT networking concepts.
- Example networks:
 - Classic Bluetooth, Bluetooth Low Energy.
 - 802.15.4 and Zigbee.
 - Wi-Fi.

Network abstractions

- International Standards Organization (ISO) developed the Open Systems Interconnection (OSI) model to describe networks:
 - 7-layer model.
- Provides a standard way to classify network components and operations.

OSI model

application	end-use interface	
presentation	data format	
session	application dialog control	
transport	connections	
network	end-to-end service	
data link	reliable data transport	
physical	mechanical, electrical	

OSI layers

- Physical: connectors, bit formats, etc.
- Data link: error detection and control across a single link (single hop).
- Network: end-to-end multi-hop data communication.
- Transport: provides connections; may optimize network resources.
- Session: services for end-user applications: data grouping, checkpointing, etc.
- Presentation: data formats, transformation services.
- Application: interface between network and end-user programs

PHY

MAC

Transport

APP

PHY and MAC

- PHY = physical layer.
 - Circuitry to transmit and receive bits.
- MAC = media access control.
 - Provides link-level services.

Internet Protocol

- Internet = network of networks.
 - Transports data from one network to another.
- The Internet uses Internet Protocol (IP).
 - Isolated networks can also use IP.

max 65,535 bytes

Version	Header length	Service type	Total length		
Identification		Flags	Fragment offset		
Time	to live	Protocol	Header checksum		
Source address					
Destination address					
Options and padding					
Data Data					

IP routing

- IP routing is best effort---no guarantees of packet delivery.
- Build other services on top of IP:
 - Use handshakes to verify delivery of packet.
 - Network routers can enforce quality-of-service.

Internet services

- Domain name service (DNS):
 - Map names onto IP addresses.
- File transfer (FTP):
 - Move files from machine to machine.
- Terminal sessions:
 - Telnet provides terminal-style access.
- Web (HTTP):
 - Built on top of FTP.
- Email (SMTP):
 - Built on top of FTP.

Host-to-host service

- Hides some details of IP:
 - Break host communication into IP packets at source.
 - Reassemble packets at destination.
 - Use handshake to ensure packets arrive, retransmit if necessary.
- Transmission Control Protocol (TCP):
 - Connection-oriented service.
- User Datagram Protocol (UDP):
 - Datagram service.
 - Datagram is modeled after telegram.

FTP HTTP SMTP

Transmission Control Protocol

Simple Network
Management Protocol

User Datagram Protocol

Internet Protocol

IoT networking concepts

- Edge device may not run IP protocol.
 - IP connection may be provided by hub or gateway.
 - Non-IP networks are known as edge networks.
- Ad hoc network is self-organized--not set up by system administrator.
- Ad hoc network services:
 - Authentication of eligibility to join network.
 - Authorization for access to given pieces of information on the network.
 - Encryption and decryption.

Network topologies

Routing

- Routing discovery determines routes between source/destination pairs.
- Routing is driven by routing tables at the nodes.

QoS

- Many networks support synchronous and asynchronous communication.
 - Asynchronous: data records, etc.
 - Synchronous: voice, etc.
- Quality-of-service (QoS): bandwidth and periodicity characteristics.
- Admission control ensures that network can handle the QoS demands of a request.

Synchronization and beacons

- Many network operations require nodes to be synchronized.
- Synchronization can be performed using beacon.
 - Beacon transmission marks the beginning of a communications interval.

Computers as Components 5e © 2022 Marilyn Wolf

Communcations energy

- Communications energy is a large part of node energy consumption.
- Comm energy consumption depends on many factors and parameters.
 - Generally evaluated for a set of use cases.
- We can use power state machine to model communications energy cost.

Communications power state machine example

step	state	time	energy
1	sleep	1 ms	1 nJ
2	idle	10 μs	0.5 nJ
3	receive	50 μs	1.25 µJ
4	transmit	50 μs	1.75 μJ
5	receive	50 μs	1.25 μJ
6	transmit	50 μs	1.75 μJ
			total = 6 µJ

Bluetooth

- Introduced in 1999, originally for telephony applications.
- Classic Bluetooth operates in instrumentation, scientific, and medical (ISM) band in the 2.4 GHz range.
- Bluetooth networks organized as piconet.
 - One master, several slaves.
 - Slave can be active or parked.
 - A device can be a slave on several networks simultaneously.

Bluetooth stack

- Transport protocol:
 - Radio, baseband layer, link manager, logical link control and adaptation protocol (L2CAP).
- Middleware:
 - RFCOMM for serial port, service discovery protocol, Internet Protocol, IrDA, etc.
- Applications.

Bluetooth protocol

- Every Bluetooth device has a 48-bit Bluetooth Device Address.
- Every device has a Bluetooth clock.
- Transmissions alternate between master and slave directions.
- Two types of packets:
 - Synchronous connection-oriented (SCO) packets for QoS-oriented traffic.
 - Asynchronous connectionless (ACL) packets for non-QoS traffic.
 - SCO traffic has higher priority than ACL packets.

Bluetooth Low Energy

- Designed for very low energy operation such as button-sized battery.
 - Goal: minimize radio on-time.
- Part of Bluetooth standard but deviates from Classic Bluetooth in several ways.
- Advertising transmissions can be used to broadcast, discover devices, etc.
- Connections can be established.
- Attribute Protocol Layer allows devices to create application-specific protocols.
- Generic Attribute Profile Layer (GATT) defines basic attributes for all BLUE devices.
- Pairing devices uses a short-term key to send a long-term key.
 - Bonding: storing long-term key in device database.
 - Optional data encryption using AES.

Computers as Components 5e © 2022 Marilyn Wolf

802.15.4 and ZigBee

- 802.15.4 defines MAC and PHY layers.
 - Supports full-function and reduced-function devices.
 - Either star or peer-to-peer topology.
 - Communciation performed using frames.
 - Optional superframe provides a beacon mechanism and QoS.
- ZigBee is a set of application-oriented standards.
 - NWK layer provides network services.
 - APL layer provides application-level services.
 - Supports many different topologies.

Wi-Fi

- Originally designed for portable and mobile applications.
 - Has been adapted for lower-energy operation.
- Supports ad hoc networking.
- Network provides a set of services:
 - Distribution of messages from one node to another.
 - Integration delivers messages from another network.
 - Association relates a station to an access point.

IoT systems

- Databases.
- Timewheels.
- Example: smart home.

Databases

- Database holds data about devices, helps to analyze data.
- Relational database management system:
 - Domain1 X domain2 X ... -> Range.
- Database organized into records or tuples:
 - Attribute: table column.
 - Record: table row.
- One column is the primary key---uniquely identifies a record.

Database example

devices

		,					
	name	id (primary key)		address		type	
_	door	234		10.113		binary	
record	refrigerator	4326		10.117		signal	
	table	213		11.039		MV	
	chair	4325		09.423 11.324		binary	
	faucet	2				signal	
devic							evice_data
	signature (primary ke	y)	device		time		value
	256423	256423		234		11:23:14	
	252456		4326		11:23:47		40
	663443		234		11:27:55		0

Computers as Components 5e © 2022 Marilyn Wolf

Schemas

- Schema: definition of tables in database.
- Eliminating redundant storage of data helps to ensure database consistency.
- Normal forms help eliminate redundancies and other problems:
 - First normal form: every cell contains a single value.
 - Second: First + values of cells in a record are unique to the key.
 - Third: Second + non-key columns are independent.

Queries

- Query: request for information from database.
- Structured query language (SQL) isolates user from details of schema.
 - Select from device_data where device = 234
- Join: combine information from more than one table.
- Projection: eliminate some columns.
- Restriction: eliminate some rows.

Schemaless databases

- Some simple data models do not have a schema.
 - Schemaless or noSQL.
- JSON is an example schemaless language.
 - Name/value pairs, ordered lists of values.
- Schemaless databases may be simpler to set up, harder to maintain.

Timewheels

- Used to manage timing of events in the system.
- Timewheel is a time-sorted set of events.
 - Event placed in proper spot in timewheel queue upon arrival.
 - When current time is equal to time of event at head, event is processed.

Timewheel data structure

Timewheel state diagram

Example: smart home

- Performs a variety of services:
 - Remote or automatic operation of lights and appliances.
 - Energy and water management.
 - Activity monitoring.
- Activity monitoring can help elderly, people with special needs:
 - Reports on daily activities.
 - Alerts for out-of-the-ordinary activity.
 - Recommendations.

Example smart home

- Cameras can identify resident and their activity.
- Faucet, door sensors can identify activity but not who performs the activity.

Use case: activity monitoring

Use case: light control

Smart home object diagram

