1996 年全国硕士研究生招生考试试题

(试卷 Ⅲ)

一、填空题(本题共5小题,每小题3分,满分15分)

(1)
$$\mathfrak{P} y = (x + e^{-\frac{x}{2}})^{\frac{2}{3}}, \mathfrak{M} y' \Big|_{x=0} = \underline{\qquad}.$$

$$(2) \int_{1}^{1} (x + \sqrt{1 - x^2})^2 dx = \underline{\qquad}.$$

(3) 微分方程 y'' + 2y' + 5y = 0 的通解为_____.

$$(4) \lim_{x \to \infty} x \left[\sin \ln \left(1 + \frac{3}{x} \right) - \sin \ln \left(1 + \frac{1}{x} \right) \right] = \underline{\qquad}.$$

(5) 由曲线 $y = x + \frac{1}{x}$, x = 2 及 y = 2 所围图形的面积 $S = ____$.

二、选择题(本题共5小题,每小题3分,满分15分)

(1) 设当 $x \to 0$ 时, $e^x - (ax^2 + bx + 1)$ 是比 x^2 高阶的无穷小,则()

$$(A)a = \frac{1}{2}, b = 1.$$
 $(B)a = 1, b = 1.$ $(C)a = -\frac{1}{2}, b = -1.$ $(D)a = -1, b = 1.$

- (2) 设函数 f(x) 在区间($-\delta$, δ) 内有定义,若当 $x \in (-\delta$, δ) 时,恒有 $|f(x)| \le x^2$,则 x = 0 必是 f(x) 的(
 - (A) 间断点.

(B) 连续而不可导的点.

(C) 可导的点,且f'(0) = 0.

(D) 可导的点,且 $f'(0) \neq 0$.

- (3) 设f(x) 处处可导,则()

 - (B) $\stackrel{\text{def}}{=} \lim_{x \to -\infty} f'(x) = -\infty$,必有 $\lim_{x \to -\infty} f(x) = -\infty$.

 - (D) 当 $\lim_{x \to +\infty} f'(x) = +\infty$,必有 $\lim_{x \to +\infty} f(x) = +\infty$.
- (4) 在区间($-\infty$, $+\infty$) 内,方程 $|x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} \cos x = 0$ ()
 - (A) 无实根.

(B) 有且仅有一个实根.

(C) 有且仅有两个实根.

- (D) 有无穷多个实根.
- (5) 设 f(x), g(x) 在区间[a,b] 上连续,且 g(x) < f(x) < m(m 为常数),由曲线 y = g(x), y = f(x), x = a 及 x = b 所围平面图形绕直线 y = m 旋转而成的旋转体体积为(

$$(A) \int_a^b \pi [2m - f(x) + g(x)] [f(x) - g(x)] dx.$$

$$(B) \int_a^b \pi [2m - f(x) - g(x)] [f(x) - g(x)] dx.$$

$$(C) \int_a^b \pi [m - f(x) + g(x)] [f(x) - g(x)] dx.$$

$$(D) \int_a^b \pi [m - f(x) - g(x)] [f(x) - g(x)] dx.$$

历年考研数学真题解析及复习思路(数学二)

三、(本题共6小题,每小题5分,满分30分)

(1) 计算
$$\int_0^{\ln 2} \sqrt{1 - e^{-2x}} dx$$
.

$$(2) \ \ \ \ \ \ \ \frac{\mathrm{d}x}{1 + \sin x}$$

(3) 设
$$\begin{cases} x = \int_0^t f(u^2) du, \\ y = [f(t^2)]^2, \end{cases}$$
 具有二阶导数,且 $f(u) \neq 0$,求 $\frac{d^2 y}{dx^2}$.

- (4) 求函数 $f(x) = \frac{1-x}{1+x}$ 在点 x = 0 处带拉格朗日型余项的 n 阶泰勒展开式.
- (5) 求微分方程 $y'' + y' = x^2$ 的通解.
- (6) 设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成 α 角 $\left(0 < \alpha < \frac{\pi}{2}\right)$ 的平面截此柱体,得一楔形体 (如图),求此楔形体的体积 V.

四、(本题满分8分)

计算不定积分 $\int \frac{\arctan x}{x^2(1+x^2)} dx$.

五、(本题满分8分)

设函数
$$f(x) = \begin{cases} 1 - 2x^2, & x < -1, \\ x^3, & -1 \le x \le 2, \\ 12x - 16, & x > 2. \end{cases}$$

- (1) 写出 f(x) 的反函数 g(x) 的表达式;
- (2)g(x) 是否有间断点、不可导点,若有,指出这些点.

六、(本题满分8分)

设函数 y = y(x) 由方程 $2y^3 - 2y^2 + 2xy - x^2 = 1$ 所确定,试求 y = y(x) 的驻点,并判别它是否为极值点.

七、(本题满分8分)

设 f(x) 在区间 [a,b] 上具有二阶导数,且 f(a)=f(b)=0, f'(a)f'(b)>0. 证明:存在 $\xi\in(a,b)$ 和 $\eta\in(a,b)$,使 $f(\xi)=0$ 及 $f''(\eta)=0$.

八、(本题满分8分)

设f(x) 为连续函数,

- (1) 求初值问题 $\begin{cases} y' + ay = f(x), \\ y \Big|_{x=0} \end{cases}$ 的解 y(x),其中 a 是正常数;
- (2) 若 $|f(x)| \le k(k$ 为常数),证明:当 $x \ge 0$ 时,有 $|y(x)| \le \frac{k}{a}(1 e^{-ax})$.

20