Methodology

Social Emotion

- Extract Social Emotion from the comments of a news piece and then aggregate them as the whole representation.
- Given a set of comments of a news piece: $\mathcal{M} = [\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_{L_{\mathcal{M}}}]$
- As for \mathcal{M}_i , can get $emo_{\mathcal{M}_i}$, then stack the transposed emotion vector of every comment to obtain the whole emotion vector of comments $\widehat{emo_{\mathcal{M}}}$.

$$\widehat{emo}_{\mathcal{M}}^{\mathsf{T}} = emo_{\mathcal{M}_1}^{\mathsf{T}} \oplus emo_{\mathcal{M}_2}^{\mathsf{T}} \oplus \cdots \oplus emo_{\mathcal{M}_{L_{\mathcal{M}}}}^{\mathsf{T}}$$

Methodology

Social Emotion

 $emo_{\mathcal{M}} = emo_{\mathcal{M}}^{mean} \oplus emo_{\mathcal{M}}^{max}$

- After getting $\widehat{emo}_{\mathcal{M}}$, consider two aggregators to generate the social emotion of the whole comment list:
 - Mean pooling for representing the average emotional signals
 - $emo_{\mathcal{M}}^{mean} = mean(\widehat{emo_{\mathcal{M}}})$
 - Max pooling for capturing the extreme emotional signals
 - $emo_{\mathcal{M}}^{max} = max(\widehat{emo_{\mathcal{M}}})$
- Then concatenate them as Social Emotion: $emo_{\mathscr{M}} = emo_{\mathscr{M}}^{mean} \oplus emo_{\mathscr{M}}^{max}$