Learning Sample-Specific Models with Low-Rank Personalized Regression

Personalized regression enables sample-specific pan-cancer analysis

Benjamin Lengerich, Bryon Aragam, Eric P. Xing

Carnegie Mellon University, University of Chicago

Motivation

Adapting to heterogeneity in complex data to infer individual-level effects

No need for the model be complex: simple linear and logistic regression models will suffice

A tradeoff between effect complexity and effect personalization

Universal effect \leftrightarrow Personalized effect Complex model \leftrightarrow Simple model

Traditional model v.s. Personalized model

```
n samples: (X^{(i)}, Y^{(i)})

Predictors: X^{(i)} \in \mathbb{R}^p

Response: Y^{(i)}

Traditional model: Y^{(i)} = f(X^{(i)}; \theta)

Personalized model: Y^{(i)} = f(X^{(i)}; \theta^{(i)})
```

- Multiple simple models for each individual are estimated jointly with a single objective function
- Without additional constraints, this model is overparametrized
- Definitely over-fitted, but still fixable

Learning sample-specific models

$$Y^{(i)} = f(X^{(i)}, \theta^{(i)}) + w^{(i)}$$
 (1)

The key is to choose a solution $\theta^{(i)}$ that simultaneously leads to good generalization and accurate inferences about the *i*-th sample.

- a low-rank latent representation of $\theta^{(i)}$
- a novel regularization scheme.

Low-rank representation

Ideas of dictionary learning: good-behaved personalized modeling has a sparse representation

Low rank:
$$\Omega = [\theta^{(1)}|...|\theta^{(n)}] \in \mathbb{R}^{p \times n}$$
 $i.e.$ $\theta^{(i)} = Q^T Z^{(i)}$ Loadings: $Z^{(i)} \in \mathbb{R}^q$; $Z \in \mathbb{R}^{q \times n}$ Dictionary: $Q \in \mathbb{R}^{q \times p}$ Low rank: $\Omega = Q^T Z$

Special form of sparse dictionary learning aka sparse coding

- Sparse coding is a representation learning method which aims at finding a sparse representation of the input data
- In the form of a linear combination of basic elements as well as those basic elements themselves
- These elements are called atoms and they compose a dictionary.

The choice of q is determined by the user's desired latent dimensionality;

for $q \ll p$, using only $\Theta(q(n+p))$ instead of $\Theta(np)$ of a full-rank solution can improve computational and statistical efficiency.

With $\theta^{(i)} = Q^T Z^{(i)}$, lower rank formulation enables to use L_2 distance in Z to restrict Euclidean distances between the $\theta^{(i)}$

$$\|\theta^{(i)} - \theta^{(j)}\| \le \sqrt{p} \|Z^{(i)} - Z^{(j)}\|$$
 (2)

- ullet Sparsity in heta can be realized by sparsity in Z, Q
- The low-rank formulation constrains the number of personalized sparsity patterns, by changing the latent dimensionality *q*.

Distance-matching

Regularize the parameters $\theta^{(i)}$ by requiring that similarity in θ corresponds to similarity in U,

- i.e. $\|\theta^{(i)} \theta^{(j)}\| \approx \rho(U^{(i)}, U^{(i)})$
- ullet The U(i) represent exogenous variables that we do not wish to directly model.

Distance-matching regularization (DMR)

Adapt a distance-matching regularization (DMR) scheme to penalize the squared difference in implied distances.

The covariate distances are modeled as a weighted sum.

$$\rho_{\phi}(u,v) = \sum_{l=1}^{k} \phi_{l} d_{l}(u_{l},v_{l}), \ \phi_{l} \geq 0$$
 (3)

Each $d_I(I = 1, ..., k)$ is a metric for a covariate;

 ϕ is a positive (non-negative) vector represents a linear transformation into latent distance function;

Distance Matching Regularized Loss

Main idea: Distance between sample parameters should be similar to distance between sample covariates, as well as the distance between latent variable ${\it U}$

In order for
$$\|\theta^{(i)} - \theta^{(j)}\| \approx \rho_{\phi}(U^{(i)}, U^{(j)})$$
, it is suffices to require $\|Z^{(i)} - Z^{(j)}\| \approx \rho_{\phi}(U^{(i)}, U^{(j)})$

Then we can define the distance-matching regularizer:

$$D_{\gamma}^{(i)}(d_{\beta},d_{U}) = \frac{\gamma}{2} \sum_{j \in B_{r}(i)} \left(\rho_{\phi}(U^{(i)},U^{(j)}) - \|Z^{(i)},Z^{(j)}\|_{2} \right)^{2}$$
(4)

$$B_r(i) = \{i : ||Z^{(i)} - Z^{(j)}||^2 < r\}$$

The hyperparameter γ trades off sensitivity to prediction of the response variable against sensitivity to covariate structure

For example for simple linear relationship both under L2 norm

$$D_{\gamma}^{(i)}(d_{\beta}, d_{U}) = \frac{\gamma}{2} \sum_{j \neq i} \left(d_{\theta}(\theta^{(i)}, \theta^{(j)}) - d_{Z}(Z^{(i)}, Z^{(j)}) \right)^{2} = \frac{\gamma}{2} \sum_{j \neq i} \left(\|\theta^{(i)}, \theta^{(j)}\|_{2}^{2} - \|Z^{(i)}, Z^{(j)}\|_{2}^{2} \right)^{2}$$

Personalized Regression

Seeking a model for inference, not necessarily for accurate predictive models Seeking relatively simple personalized effects not universal effects covariate data as informative of each sample Here is the $\ell(x, y, \theta)$ is the loss function we want to minimize

$$\mathcal{L}^{(i)}(Z, Q, \phi) = \ell(X^{(i)}, Y^{(i)}, Q^T Z^{(i)}) + \psi_{\lambda}(Q^T Z^{(i)}) + D_{\gamma}^{(i)}(Z, \phi)$$
(5)

- where ψ_{λ} is a regularization such as L_1 penalty
- $lackbox{0} D_{\gamma}^{(i)}$ is the distance-matching regularization defined in Eq.(4)

Where we learn Ω and ϕ by minimizing the following objective:

$$\mathcal{L}(Z, Q, \phi) = \sum_{i=1}^{n} \mathcal{L}^{(i)}(Z, Q, \phi) + \nu \|\phi - 1\|_{2}^{2}$$
 (6)

- where $v\|\phi-1\|_2^2$ regularize the distance function ho_ϕ with strength set v
- again, $\Omega = Q^T Z$

Algorithm

- The objective function is optimized with sub-gradient descent.
- Initialize Σ by setting $\theta^{(i)}$ $N(\hat{\theta}, \varepsilon I)$ for population model such as lasso and elastic net.
- Initialize Z and Q by PCA factorization.
- Each personalized estimator is endowed with a personalized learning rate $\alpha_t^{(i)} = \alpha_t/||\hat{\theta}_t^{(i)} \hat{\theta}^{(pop)}||_{\infty}$.
- This learning rate scales the global learning rate α_t according to how far the estimator has traveled.
- This scheme ensures that the personalized coefficients' center of mass stays close to the initial $\hat{\theta}^{(pop)}$ despite unconstrained $\theta^{(i)}$.

Algorithm

Algorithm 1 Personalized Estimation

```
Require: \widehat{\theta}^{pop}, \lambda, \gamma, v, \alpha, c
   1: \theta^{(1)}, \dots, \theta^{(n)} \leftarrow \widehat{\theta}^{pop}
  2: \Omega \leftarrow [\theta^{(1)}|\dots|\theta^{(n)}]
  3: Z, Q \leftarrow PCA(\Omega)
  4: \phi \leftarrow \mathbf{1}
  5: \alpha \leftarrow \alpha_0
  6: do 7: \widetilde{Z},\widetilde{Q},\widetilde{\phi}\leftarrow Z,Q,\phi
   8: \phi \leftarrow \phi - \alpha \frac{\partial}{\partial \phi} \mathcal{L}(\widetilde{Z}, \widetilde{Q}, \widetilde{\phi}; \lambda, \gamma, v)
             Z^{(i)} \leftarrow Z^{(i)} - \frac{\alpha}{\|a(i)\| \widehat{\rho}_{\text{pop}}\|} \left[ \frac{\partial}{\partial Z^{(i)}} \sum_{i=1}^{n} D_{\gamma}^{(i)}(\widetilde{Z}, \widetilde{\phi}) + \right]
  9:
                                \widetilde{Q}(\partial \ell(X^{(i)}, Y^{(i)}, \theta^{(i)}) + \partial \psi_{\lambda}(\theta^{(i)}))] \quad \forall i \in [1, \dots, n]
               Q \leftarrow Q - \alpha \left[ \frac{\partial}{\partial O} \sum_{i=1}^{n} D_{\gamma}^{(i)}(\widetilde{Z}, \widetilde{\phi}) + \sum_{i=1}^{n} \widetilde{Z}^{(i)} \left( \partial \ell(X^{(i)}, Y^{(i)}, \theta^{(i)})^{T} + \partial \psi_{\lambda}(\theta^{(i)})^{T} \right) \right]
10:
11:
           \theta^{(i)} \leftarrow Q^T Z^{(i)} \quad \forall i \in [1, \dots, n]
 12:
            \Omega \leftarrow [\theta^{(1)}|\dots|\theta^{(n)}]
13:
 14: while not converged
 15: return \Omega, Z, Q, \phi
```

Prediction

- Given a test point (X, U), averaging the model parameters of the k_n nearest training points based on distance ρ_{ϕ}
- Increasing k_n drives the test models toward the population model to control overfitting
- Intentionally avoided using X to select θ so that interpretation of θ is not confounded by X

$$\theta = \frac{1}{k_n} \sum_{i=1}^{k_n} \theta^{(\eta(\rho_{\phi}, U))[j]}; \ \eta(\rho_{\phi}, U) = \operatorname{argsort}_{a \leq i \leq n} \rho_{\phi}(U, U^{(i)})$$
 (7.a)

Results

- Performance of personalized regression will be tested through simulation study.
- Fix $X \in \mathbb{R}^{N \times P}$, generate sample-specific $\beta^{(i)}$ Unif (0,1), and $Y^{(i)} \in (0,1)$.
- Covariates $U^{(i)}$ are generated by projecting $\beta^{(j)}$ into K < P dimension with mult-dimensional scaling.
- covariates that are related to the personalized regression coefficients in a highly nonlinear, nonparametric manner.
- Set K = 10, K = 3.

Model	Train error (%)	Test error (%)
Population	6.9	6.8
Tissue-population	6.5	6.8
Mixture	6.7	6.8
VC	7.5	8.7
LMM	7.0	7.1
Personalized	6.3	6.7

Simulation

Sample-specific pan-cancer analysis

They also use gene expression (RNA-Seq) quantification data from The Cancer Genome Atlas (TCGA).

- This dataset compiles data from 37 projects spanning 36 disease types in 28 primary sites.
- After pruning for missing values, this dataset contains 9663 profiles for 8944 case and 719 matched control samples
- This resulting in P = 4123 features when an intercept term is added.
- They divide this set into 75% training data and 25% testing.

PR has good variable selections

PR has good variable selections

Table 3. Enrichment analysis of complete variable rankings

Model	Biological process	P-value
Population	mRNA processing	2.06e-8
	DNA metabolic process	3.18e-6
	Organelle organization	3.86e-2
Tissue-Population	mRNA processing	3.09e-9
	Metabolic process	3.26e-5
	Transcription, DNA-dependent	9.61e-5
	DNA metabolic process	5.9e-3
Mixture	mRNA processing	1.45e-8
	DNA Metabolic process	1.96e-5
	Transcription, DNA-dependent	2.62e-4
	Organelle organization	7.32e-3
VC	None	NA
LMM	DNA metabolic process	2.02e-2
Personalized	mRNA processing	5.83e-6
	Metabolic process	1.1e-3
	DNA metabolic process	3.15e-2

Here is the result of RNA-seq data

Cancer is a highly personalized problem

Pancreas

Fig. 6. tSNE projection of personalized regression parameters learned from a pan-cancer dataset. Each point represents a single sample with color indicating primary tumor site and marker type indicating case/control status of the patient. Labelled points indicate the centroids of clusters analyzed in Table 4

The clusters have biological and clinical meanings

Table 4. Enrichment analysis of tumor clusters

Cluster	Biological process	P-value
1	Symbiont process	2.62e-3
	Regulation of cellular catabolic process	1.96e-2
	Protein modification process	3.43e-2
2	DNA repair	3.21e-12
	RNA splicing, via transesterification	3.64e-7
	Reactions with bulged adenosine as nucleophile	
	DNA replication	1.00e-6
3	Symbiont process	1.4e-3
	Antigen processing and presentation of peptide antigen	1.06e-2
	Antigen processing and presentation of exogenous antigen	1.08e-2
4	DNA metabolic process	3.83e-8
	DNA repair	1.68e-6
	Regulation of cellular macromolecule biosynthetic process	5.06e-6
5	Plasma membrane bounded cell projection morphogenesis	1.45e-2
	Neuron projection development	3.02e-2
6	mRNA catabolic process	8.78e-4
	Gene expression	6.02e-4
	Macromolecule biosynthetic process	3.32e-2
7	None	N/A
8	Generation of precursor metabolites and energy	4.75e-5
	Oxidation-reduction process	4.52e-5
	Citrate metabolic process	9.84e-3
9	DNA metabolic process	3.96e-10
	Cellular response to DNA damage stimulus	5.57e-9
	Protein complex subunit organization	1.41e-4
10	DNA metabolic process	7.15e-8
	ncRNA metabolic process	1.33e-4

Discussion

- The Generalization Problem? Sensitive to outliers?
- Is it really interpreting as its claimed to be? Confounding and Collinearity?
- Tuning the parameters $\lambda, \gamma. v, c, \alpha$?
- Why PCA? How Kernel PCA? ?