An Analysis of a Double Pendulum System

1. Introduction

In this project, I examined the motion of a double pendulum by solving the *Euler-Lagrange* equations of the system numerically. I inspected several initial value problems and analyzed the impact of changing parameters and the limitations of *scipy.odeint*'s solver with this particular system. The main point of the project was to improve my coding with *Python* by solving the ordinary differential equations that I found with *Lagrange*'s method. I took the opportunity to learn how to plot the motion and how to stitch together an animation with *ffmpeg*. I finished my project by improving my non-existant knowledge of *LaTex*. I will go through the derivation of the equations of motion for the system and then explain my code and how it works (code will be provided along the way.)

2. Derivation

The kinetic and potential energy of the system must be found first so that a Lagrangian can be defined and the equations of motion can be found. The first thing to do is to draw a picture,

Figure 1: A double pendulum set-up.

It is now easy to define our coordinates of this system as,

$$x_1 = l_1 sin\theta_1 \tag{1}$$

$$y_1 = -l_1 cos\theta_1 \tag{2}$$

$$x_2 = l_1 sin\theta_1 + l_2 sin\theta_2 \tag{3}$$

$$y_2 = -l_1 cos\theta_1 - l_2 cos\theta_2 \tag{4}$$

We now must differentiate these coordinates to prepare for the kinetic energy component of the Lagrangian.

$$\dot{x}_1 = l_1 \dot{\theta}_1 cos\theta_1 \tag{5}$$

$$\dot{y}_1 = l_1 \dot{\theta}_1 \sin \theta_1 \tag{6}$$

$$\dot{x}_2 = l_1 \dot{\theta}_1 \cos \theta_1 + l_2 \dot{\theta}_2 \cos \theta_2 \tag{7}$$

$$\dot{y}_2 = l_1 \dot{\theta}_1 \sin \theta_1 + l_2 \dot{\theta}_2 \sin \theta_2 \tag{8}$$

Now, it is easy to form the Lagrangian,

$$L = T - V \tag{9}$$

$$L = \frac{1}{2}m_1(\dot{x}_1^2 + y_1^2) + \frac{1}{2}m_2(\dot{x}_2^2 + y_2^2) - m_1gy_1 - m_2gy_2$$
 (10)

and therefore simplifying and putting in terms of one coordinate,

$$L = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2[l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2)] + (m_1 + m_2)gl_1\cos\theta_1 + m_2gl_2\cos\theta_2$$
(11)

Now the equations of motion are found using Euler-Lagrange's equations. θ_1 and θ_2 respectively,

For
$$\theta_1$$
: $0 = (m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_1 - \theta_2) + m_2l_2\dot{\theta}_2^2\sin(\theta_1 - \theta_2) + (m_1 + m_2)g\sin\theta_1$ (12)

For
$$\theta_2$$
: $0 = m_2 l_2 \ddot{\theta}_2 + m_2 l_1 \ddot{\theta}_1 \cos(\theta_1 - \theta_2) - m_2 l_1 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + m_2 g \sin\theta_2$ (13)

These equations of motion are not analytically solvable (to my knowledge.) However, these equations are second order ordinary differential equations and can easily be converted into a system of first order differential equations with the trick that we learned from Mike Gussert.

3. Numerical Solution

If we use the trick that we learned for transforming second order ordinary differential equations into first order ones,

$$\ddot{\theta}_1 = \dot{z}_1 \text{ and } \ddot{\theta}_2 = \dot{z}_2$$
 (14)

Solving for \dot{z}_1 and \dot{z}_2 ,

$$\dot{z}_{1} = \frac{m_{2}gsin\theta_{2}cos(\theta_{1} - \theta_{2}) - m_{2}sin(\theta_{1} - \theta_{2}(l_{1}z_{1}^{2}cos(\theta_{1} - \theta_{2}) + l_{2}z_{2}^{2}) - (m_{1} + m_{2})gsin_{1}}{l_{1}(m_{1} + m_{2}sin^{2}(\theta_{1} - \theta_{2}))}$$

$$\dot{z}_{2} = \frac{(m_{1} + m_{2})(l_{1}z_{1}^{2}sin(\theta_{1} - \theta_{2}) - gsin\theta_{2} + gsin\theta_{1}cos(\theta_{1} - \theta_{2})) + m_{2}l_{2}z_{2}^{2}sin(\theta_{1} - \theta_{2})cos(\theta_{1} - \theta_{2})}{l_{2}(m_{1} + m_{2}sin^{2}(\theta_{1} - \theta_{2}))}$$

$$(15)$$

We now have a system of first order ordinary differential equations that can be solved with one of *Python's* ordinary differential equation integral solvers, in this case, *integrate.odeint*.

Listing 1: Constants are defined and the differential equations of the system are solved.

```
import sys
   import numpy as np
   from scipy.integrate import odeint
   import matplotlib.pyplot as plt
5
   from matplotlib.patches import Circle
6
7
   L1 = 1
8
   L2 = 1
   m1 = 1
   m2 = 1
10
11
   q = 9.8
12
   def ODE(y, t, L1, L2, m1, m2):
13
14
      y = theta1, z1, theta2, z2
15
16
        cos = np.cos(theta1—theta2)
17
        sin = np.sin(theta1—theta2)
18
19
        thetaldot = z1
        z1dot = (m2*g*np.sin(theta2)*cos - m2*sin*(L1*z1**2*cos + L2*z2**2) -
                 (m1+m2)*g*np.sin(theta1)) / L1 / (m1 + m2*sin**2)
21
22
        theta2dot = z2
23
        z2dot = ((m1+m2)*(L1*z1**2*sin - g*np.sin(theta2) + g*np.sin(theta1)*cos) +
24
                 m2*L2*z2**2*sin*cos) / L2 / (m1 + m2*sin**2)
25
        return thetaldot, zldot, theta2dot, z2dot
26
27
   tmax = 25
   dt = 0.008
   t = np.arange(0, tmax+dt, dt)
```

```
30

31  y0 = np.array([3*np.pi/7, 5, 3*np.pi/4, 0])

32  y = odeint(ODE, y0, t, args=(L1, L2, m1, m2))

33  theta1, theta2 = y[:,0], y[:,2]
```

This was the first differential equation I have solved numerically. Going through the lines of code, I started off by importing the libraries needed and defining the constants in the equation: lengths of strings, gravity, and masses of bobs. I couldn't get Mike Gussert's Runge-Kutta 4 (RK4) example to work because I'm not sufficiently talented with scientific Python.

However, I instead defined a function for the specific set of differential equations that I found while studying the Langrangian of the system. Then, I defined a range of values corresponding to time-steps. I was unsure about how to define a vector of these numerical steps that I could input into my equation solver. I ended up utilizing a numpy function called numpy arange. This built in function takes an interval and returns a evenly spaced values in between (a convenient way to save work and lines of code compared to using a for-loop.) I took the t vector and plugged it back into my function for the motion. I also defined a y_0 array which corresponds to initial conditions for θ_{1_i} , ω_{1_i} , θ_{2_i} , and ω_{2_i} , respectively. The code took these initial values and evolved with the equations of motion. Finally, the last line of code in this uses slicing an array to define θ_1 and θ_2 as, respectively, the most left column and third column of my y array. These θ arrays were used to plot the movies that I am attaching with this paper. The time-step array allowed the code to run 300 times and to take snapshots at every equally spaced point.

The equations of motion were solved with the *scipy.integrate.odeint* function. The *odeint* function takes the time and system of equations as arguments and solves them using *lsoda* a *FORTRAN* differential equation solving program. Because I could not understand how to implement my own RK4 methods, I needed to know the limitations of this method. Before I began solving my equations I analyzed them for singularities (regular or irregular). Luckily, there were no singular points that would make a *stiff* solver like *odeint* fail. learned that there is a new *scipy* function called *scipy.integrate.solve_ivp* that is recommended by the library's authors for future use. At first, I was discouraged that I could not write my own ODE solver, but after attending Wolfgang Bangerth's talk, I realized that using and building off of other's code is encouraged and necessary, as an amateur coder.

4. Analysis

My code created 300 .jpeg frames which I then needed to stitch together. I could have used an automatic program, like *Quicktime*, but this being a numerical project, I decided to use a command line tool, *ffmpeg*. *ffmpeg* is a versatile open-source tool that converts, stitches, and plays almost every type of multimedia format.

Figure 2: An example frame before being processed with ffmpeg.

I ran my program four times with different initial conditions and made a movie for each result. The four initial value problems had varying masses, lengths of strings, and initial velocities (the movies are labeled with their values.) The plotting that I used for each frame was borrowed from a common scipy method that appends a small motion blur tail on each bob. When these tails are merged together into an animation, it creates a fantastic sense of movement. I had some issues with energy conservation at the long timescales that I was observing the system. Because the solver uses numerical methods, there is an accumulation of error after each step. For some initial values, the system had a large energy drift where it would either stop completely or spiral out of control in a negative energy feedback loop. I avoided this problem by choosing small initial angular velocities and similar masses for each bob. I am unsure how to fix this issue completely. I would have to research further where the energy drift was coming from and how to eliminate it.

5. Conclusion

This task took countless hours of research into numerical methods, arrays, *Python's* differential equation solving methods, indexing, syntax errors, and logistical issues. I took out most of the *Python* books currently at the CSU library and I plan on continuing to read them over Christmas break. It helped me learn about different ways to look at computational problems and I hope to continue my research and to explore methods to solve partial differential equations. I believe the importance of visualisation of data with numerical methods (like making animations) will benefit my research at CSU and I hope to use it for scientific outreach in

the future. This project enabled me to visualize one of our class and homework problems and helped cement a Lagrangian mechanics problem in my brain. This is also the first *LaTex* code that I have written. I learned how to make lists, organize sections, insert images, format code, and write equations. I think it will be useful for future paper submissions, grant proposals, and whenever I need to include equations with a document.

6. Acknowledgements

I'd like to thank you John (and the CSU faculty!) for encouraging my class to pursue learning numerical methods. I am absolutely certain that this will help me with my research and finding a job in the field when I graduate. I have always wanted to learn more but I needed a little push.