

รายงาน

เรื่อง การสร้างโมเดลพยากรณ์ ชุดข้อมูลหุ้น Waste Management Inc (WM) ย้อนหลัง 10ปี

เสนอ

ผศ.ดร. กนกกรรณ์ สิ้โรจนาประภา

จัดทำโดย

นายภาณุภณ	สิริวรพาส	65050689
นายศิรชัช	เมธาศิลวัต	65050866
นายสรวิชญ์	หงษ์เกิด	65050895
นายอภิสิทธิ์	เยียระยงค์	65050989

รายงานนี้เป็นส่วนหนึ่งของวิชา TIME SERIES AND FORECASTING

ภาคเรียนที่ 1 ปีการศึกษา 2567

สาขาวิชาสถิติประยุกต์และการวิเคราะห์ข้อมูล คณะวิทยาศาตร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

สารบัญ

1.ขั้นตอนจัดเตรียมข้อมูล Waste Management Inc (WM)	1
2.การทดสอบแนวโน้ม อิทธิพลของฤดูกาลและ สเตชันนารี	2
2.1 Testing of Normality : Reject H_0 จึงสรุปได้ว่า อนุกรมเวลาไม่มีการแจกแจงปรกติ	
2.2 Testing for Trend : Reject ${\sf H_0}$ จึงสรุปได้ว่า อนุกรมเวลาราคาหุ้นของ WM มีแนวโน้ม	
2.3 Testing for Seasonal : Failed to Reject H_0 จึงสรุปได้ว่า อนุกรมเวลาไม่มีอิทธิพล	
ฤดูกาลเข้ามา เกี่ยวข้อง	
2.4 Testing for Stationary : Reject H₀ จึงสรุปได้ว่า ข้อมูลอนุกรมเวลาไม่เป็น Stationary	
3วิธีบ็อกซ์และเจนกินส์ (Box-Jenkins)	4
3.1 Autocorrelation Function : Lag มีการลดลงอย่างช้าๆหมายถึงข้อมูลอาจจะมีแนวโน้มหรือฤดูกา	เล
3.2 Partial Autocorrelations : Lag ที่ 1 มีค่าสูงกว่าขอบเขตความเชื่อมั่นและมีความสัมพันธ์โดยตรงก	าับ
ค่าในอดีต	
4.การขจัดข้อมูลที่ไม่สเตชันนารีด้วยการหาผลต่าง (Difference) 1 ครั้ง	5
5.ผลทดสอบโมเดล	6
6.1 ARAIMA (1,1,1): AIC P =1 = 66.98190, AIC P = 2 = 68.98190, MSE = 37.5446	
6. ทำการเปรียบเทียบทั้ง 8 Model	7
7.วิธีปรับให้เรียบเอ็กซ์โปเนนเซียลแบบดับเบิ้ล (Double Exponential Smoothing)	7
୦ ଅଟେ ମଦ	0

1.ขั้นตอนจัดเตรียมข้อมูล Waste Management Inc (WM)

Reference from: https://www.investing.com/equities/waste-managemnt-historical-data

การทำนายข้อมูล Waste Management หรือ หุ้น WM เป็นกลยุทธ์อย่างนึงที่ช่วยให้เราคาดการณ์ราคาของหุ้นในวันถัดไปได้ ทำ ให้สามารถซื้อหรือขายหุ้นในราคาที่เหมาะสม โดยเราต้องคำนึงถึงปัจจัยอย่างอื่นร่วมด้วยเช่นกัน อย่างสภาพเศรษฐกิจในธุรกิจ ข้อมูลที่นำมามีทั้งหมด 2517 record และมี 7 columns ได้แก่

- 1. Date(วันที่) 3. Open(ราคาเปิดของหุ้น) 5. Low(ราคาหุ้นที่ต่ำที่สุด) 7. Change %(อัตราการเปลี่ยนแปลง)
- 2. Price(ราคาหุ้น) 4. High(ราคาหุ้นที่สูงที่สุด) 6. Vol.(จำนวนหุ้นที่ซื้อขาย)

	Α	В	С	D	Е	F	G
1	Date	Price	Open	High	Low	Vol.	Change %
2	1/2/2014	44.2	44.79	44.8	44.1	1.51M	-1.49%
3	1/3/2014	44.19	44.25	44.46	44	1.46M	-0.02%
4	1/6/2014	43.76	44.38	44.39	43.71	1.91M	-0.97%
5	1/7/2014	44.08	44.04	44.18	43.84	2.14M	0.73%
6	1/8/2014	43.99	44.09	44.14		1.76M	-0.20%
7	1/9/2014	43.73	44.1	44.17	43.6	1.64M	-0.59%
8	1/10/2014	43.61	44.06	44.14	43.43	2.02M	-0.27%
9	1/13/2014	43.03	43.34	43.47		2.47M	-1.33%
10	1/14/2014	43.3	43.09	43.42	43.05	1.79M	0.63%
11	1/15/2014	43.19	43.44	43.48		1.83M	-0.25%
12	1/16/2014	42.86	43.11	43.19	42.75	2.19M	-0.76%
13	1/17/2014	43.12	42.96	43.33	42.84	2.45M	0.61%
14	1/21/2014	42.91	43.41	43.45		1.95M	-0.49%
15	1/22/2014	42.75	43.04	43.05		1.74M	-0.37%
16	1/23/2014	42.31	42.49	42.51		3.06M	-1.03%
17	1/24/2014	41.64	42.05			3.04M	-1.58%
18	1/27/2014	41.54	41.61	41.84		2.46M	-0.24%
19	1/28/2014	41.44	41.63	41.78		2.14M	-0.24%
20	1/29/2014	41.07	41.15	41.46	40.86	3.04M	-0.89%
21	1/30/2014	41.79	41.37			1.86M	1.75%
22	1/31/2014	41.78	41.34			2.75M	-0.02%
23	2/3/2014	41	41.72	41.86	40.89	3.10M	-1.87%

จากนั้นทำการแปลงข้อมูลจากรายวัน เป็นไตรมาส โดยใช้ Pivot Table จะได้ตัวแปร **t** ที่เป็นเวลาทั้งหมด 40 ไตรมาส และตัวแปร **Yt** คือ ราคาปิดเฉลี่ยของหุ้น โดยเราจะใช้ตัวแปรสองตัวนี้ในการทำนายข้อมูล

	Year Averag	ge of Price		2018	86.76	t	Yt	t	
	2014	45.02	Qtr1		85.8				
Qtr1		41.9	Qtr2		82.8	1	41.9	21	
Qtr2		43.5	Qtr3		88.67	2	43.5	22	
Qtr3		45.8	Qtr4	2019	89.79 109.09	3	45.8	23	
Qtr4		48.69	Qtr1	2019	97.58	4	48.69		
Qu'i	2015	51.6	Qtr2		108.5			24	
Qtr1	2013	53.2	Qtr3		116.78	5	53.2	25	
Qtr2		50.28	Qtr4		112.93	6	50.28	26	
Qtr3		49.83	01.4	2020	110.71	7	49.83	27	
Qtr4		53.13	Qtr1 Qtr2		114.7 100.97	8	53.13	28	
	2016	62.03	Qtr3		110.51	9	55.2	29	
Qtr1		55.2	Qtr4	2024	116.61	10	60.42	30	
Qtr2		60.42	Qtr1	2021	141.69 116.88	11	65.38		
Qtr3		65.38	Qtr2		138.24			31	
Qtr4		66.88	Qtr3		149.65	12	66.88	32	
	2017	75.41	Qtr4		160.79	13	71.36	33	
Qtr1		71.36	01.4	2022	158.61	14	72.81	34	
Qtr2		72.81	Qtr1 Qtr2		151.6 156.63	15	75.99	35	
Qtr3	75.99	Qtr3		165.07	16	81.4	36		
Qtr4		81.4	Qtr4		160.91	17	85.8		
	2018	86.76		2023	162.01			37	
Qtr1		85.8	Qtr1		153.16	18	82.8	38	
Qtr2		82.8	Qtr2 Qtr3		165.32 161.81	19	88.67	39	
Qtr3		88.67	Qtr4		167.68	20	89.79	40	
Qtr4		89.79	Grand	Total	100.24			-	

2.การทดสอบแนวโน้ม อิทธิพลของฤดูกาลและ สเตชันนารี

(Trend Seasonal and Stationary Analysis)

Testing of Normality (ทดสอบการแจกแจงปรกติ)

ทำการทดสอบการแจกแจงแบบปกติ โดยจะใช้วิธีแอนเดอร์สัน-ดาร์ลิ่ง (Anderson-Darling: AD) เนื่องจากจำนวนข้อมูลที่นำมา ทดสอบ มีจำนวนน้อยกว่าหรือเท่ากับ 50 ตัว

Anderson Daring test

สมมติฐานการทดสอบ

H₀: อนุกรมเวลามีการแจกแจงปรกติ

 ${\sf H_1}$: อนุกรมเวลาไม่มีมีการแจกแจงปรกติ

```
Anderson-Darling normality test
data: z
A = 1.0371, p-value = 0.008866
```

Run ผลลัพธ์ด้วยโปรแกรม R

สรุปผลการทดสอบสมมุติฐาน

Reject H_0 เมื่อค่า Sig. หรือค่า p-value ของการทดสอบน้อยกว่าระดับนัยสำคัญ 0.05 จึงสรุปได้ว่า อนุกรมเวลาราคา ปิดเฉลี่ยของหุ้น WM ไม่มีการแจกแจงปรกติ โดยจะใช้วิธีการทดสอบในกลุ่มทดสอบแบบไม่ใช้พารามิเตอร์ (Non-parametric Test)

• Testing for Trend (ทดสอบแนวโน้มแบบไม่ใช้พารามิเตอร์)

ใช้วิธีทดสอบของ Daniel's Test เนื่องจากเป็นการทดสอบแนวโน้มแบบไม่ใช้พารามิเตอร์

Daniel's Test

สมมติฐานการทดสอบ

 ${\sf H}_{{\sf 0}}$: อนุกรมเวลาราคาหุ้นปิดเฉลี่ยของ WM ไม่มีแนวโน้ม

 H_1 : อนุกรมเวลาราคาหุ้นปิดเฉลี่ยของ WM มีแนวโน้ม

```
Spearman's rank correlation rho

data: dataframe$y and dataframe$Trend
S = 110, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.9896811
```

Run ผลลัพธ์ด้วยโปรแกรม R

สรุปผลการทดสอบสมมุติฐาน

Reject H_0 เมื่อค่า Sig. หรือค่า p-value ของการทดสอบน้อยกว่าระดับนัยสำคัญ 0.05 จึงสรุปได้ว่า อนุกรมเวลาราคา ปิดเฉลี่ยของหุ้น WM มีแนวโน้ม

• Testing for Seasonal (ทดสอบฤดูกาลแบบไม่ใช้พารามิเตอร์)

ใช้วิธีทดสอบของ Kruskal-Wallis test เนื่องจากเป็นการทดสอบฤดูกาลแบบไม่ใช้พารามิเตอร์

Kruskal-Wallis test

สมมติฐานการทดสอบ

H_o : อนุกรมเวลาไม่มีอิทธิพลฤดูกาลเข้ามาเกี่ยวข้อง

 H_1 : อนุกรมเวลามีอิทธิพลฤดูกาลเข้ามาเกี่ยวข้อง

```
Kruskal-Wallis rank sum test
data: detrend by Seasonal
Kruskal-Wallis chi-squared =
2.0751, df = 3, p-value = 0.557
```

Run ผลลัพธ์ด้วยโปรแกรม R

สรุปผลการทดสอบสมมุติฐาน

Failed to Reject H₀ เมื่อค่า Sig. หรือค่า p-value ของการทดสอบมากกว่ากว่าระดับนัยสำคัญ 0.05 จึงสรุปได้ว่า อนุกรมเวลาราคาปิดเฉลี่ยของหุ้น WM ไม่มีอิทธิพลฤดูกาลเข้ามาเกี่ยวข้อง

Testing for Stationary (ทดสอบ Stationary)

ทำการทดสอบข้อมูลสเตชันนารี (Stationary) ด้วยวิธีการทดสอบของ KPSS test

KPSS test

สมมติฐานการทดสอบ

 H_0 : ข้อมูลอนุกรมเวลาเป็น Stationary

H₁ : ข้อมูลอนุกรมเวลาไม่เป็น Stationary

Run ผลลัพธ์ด้วยโปรแกรม R

สรุปผลการทดสอบสมมุติฐาน

Reject H₀ เนื่องจากค่าสถิติทดสอบ 1.0755 มากกว่าค่าบริเวณวิกฤตที่ 0.463 เมื่อกำหนดระดับนัยสำคัญ 0.05 จึงถือว่า ค่าสถิติทดสอบอยู่ในบริเวณวิกฤต สรุปได้ว่า ข้อมูลอนุกรมเวลาไม่เป็น Stationary

3.วิธีบ็อกซ์และเจนกินส์ (Box-Jenkins)

ตรวจสอบ Stationary ของข้อมูลอนุกรมเวลาจาก ACF และ PACF

Autocorrelation Funtion

จะสังเกตได้ว่า Lag มีการลดลงอย่างช้าๆ นั่นหมายความว่าข้อมูลมีแนวโน้ม

Partial Autocorrelations

Partial Autocorrelations

Lag	PACF	T
1	0.927915	5.87
2	-0.013012	-0.08
3	-0.087452	-0.55
4	0.025839	0.16
5	-0.077917	-0.49
6	-0.107917	-0.68
7	-0.002817	-0.02
8	-0.030772	-0.19
9	-0.198923	-1.26
10	0.018062	0.11

ค่า PACF ที่ Lag 1 มีค่าสูงและเกินขอบเขตความเชื่อมั่น หมายความว่า ค่าปัจจุบันมีความสัมพันธ์โดยตรงกับค่าในอดีตที่อยู่ใกล้ที่สุดอย่างมีนัยสำคัญ
PACF นี้บ่งชี้ถึงอนุกรมเวลาว่ามีความสัมพันธ์โดยตรงกับค่าในอดีตที่อยู่ใกล้ที่สุดเป็นหลักและมีความสัมพันธ์ดังกล่าว ลดลงอย่างรวดเร็วเมื่อเวลาผ่านไป
ในแต่ละไตรมาส

4.การขจัดข้อมูลที่ไม่สเตชันนารีด้วยการหาผลต่าง (Difference) 1 ครั้ง

Autocorrelation Funtion

Autocorrelations

Lag	ACF	Т	LBQ
1	-0.086169	-0.54	0.31
2	-0.012664	-0.08	0.32
3	-0.032479	-0.20	0.37
4	-0.142340	-0.88	1.29
5	-0.217397	-1.32	3.51
6	-0.164822	-0.96	4.83
7	-0.011158	-0.06	4.84
8	0.230673	1.31	7.58
9	-0.051066	-0.28	7.72
10	0.038847	0.21	7.80

Autocorrelation Function เมื่อหาผลต่าง 1 ครั้ง ทำให้ค่า Lag ลดลงอย่างรวดเร็วและค่า Lag อยู่ในขอบเขตความเชื่อมั่นทุก Lag

• Partial Autocorrelations

Partial Autocorrelations

Lag	PACF	Т
1	-0.086169	-0.54
2	-0.020240	-0.13
3	-0.035615	-0.22
4	-0.149947	-0.94
5	-0.253127	-1.58
6	-0.248092	-1.55
7	-0.119905	-0.75
8	0.165013	1.03
9	-0.099886	-0.62
10	-0.117328	-0.73

Partail Autocorrelation Function เมื่อหาผลต่าง 1 ครั้ง ทำให้ค่า Lag ลดลงอย่างรวดเร็วและค่า Lag อยู่ในขอบเขตความ เชื่อมั่นทุก Lag

5.ผลทดสอบโมเดล

ในขั้นตอนถัดไปจะเป็นการพยากรณ์อนุกรมเวลา (Time Series) ด้วย AutoRegressive Intergrated Moving Average (ARIMA) โดยจะหา Model ที่ดีที่สุด โดยจะแสดง Model ที่ให้ค่า **Mean Square Error** และค่า **AIC** ที่น้อยที่สุด และผ่าน assumption เบื้องต้นมาแล้ว

ARAMA (1,1,1)

Final Estimates of Parameters

Type	Coef	SE Coef	T-Value	P-Value
AR 1	0.693	0.189	3.67	0.001
MA 1	0.969	0.145	6.71	0.000
Constant	1.0499	0.0573	18.33	0.000

Differencing: 1 regular difference

Number of observations: Original series 40, after differencing 39

Residual Sums of Squares

DF	SS	MS
36	1351 60	37 5446

Back forecasts excluded

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	8.90	14.12	15.88	*
DF	9	21	33	*
P-Value	0.447	0.864	0.995	*

Forecasts from period 40

	95% Limits				
Period	Forecast	Lower	Upper	Actual	
41	170.944	158.932	182.956		
42	174.256	159.426	189.086		
43	177.603	161.451	193.755		
44	180.973	164.122	197.825		

PACF of Residuals for Closing Average(Yt)

จากการ Run ผลลัพธ์ด้วย Minitab จะสรุปผลเบื้องต้นได้ว่า

- 1. ตัวแปร AR 1 และ MA 1 มีค่า P-Value ที่น้อยกว่า 0.005 จึง Reject H_0 สรุปได้ว่าตัวแปรตัวนี้เป็นตัวแปรที่เหมาะสม
- 2. มีค่า Mean Square Residual อยู่ที่ 37.5446
- 3. ในการทดสอบ Seasonal จะเห็นได้ว่า Lag ที่ 12, 24, 36 มีค่า P-Value ที่มากกว่า0.05 จึง Failed to Reject H_0 สรุป ได้ว่าอนุกรมเวลาไม่มี Seasonal
- 4. ค่า ACF และ PACF ของ Residual อยู่ภายในขอบเขตที่ระดับนัยสำคัญ 0.05 จึงสรุปได้ว่าโมเดลตัวนี้สามารถใช้ได้
- 5. โดยสามารถพยากรณ์ราคาหุ้นของ Quarter ที่ 41 ได้ 170.944 และอยู่ในช่วง (158.932, 182.956) ที่ระดับความ เชื่อมั่น 95%

6.ทำการเปรียบเทียบทั้ง 8 Model

	p = 1	p = 2	
Model	AIC	AIC	MSE
ARIMA(0,1,1)	69.097	71.097	42.405
ARIMA(1,1,1)	66.982	68.982	37.545
ARIMA(0,1,2)	69.555	71.555	43.539
ARIMA(1,1,0)	69.102	71.102	42.418
ARIMA(2,1,0)	69.571	71.571	43.579
ARIMA(1,1,2)	67.986	69.986	39.780
ARIMA(2,1,1)	67.987	69.987	39.782
ARIMA(2,1,2)	68.006	70.006	39.825

p คือ ช่วงเวลาล่วงหน้า p ค่าเวลา (ไตรมาส)

จากการเปรียบเทียบทั้ง 8 Model จะสังเกตเห็นได้ว่า ARIMA(1,1,1) จะให้ค่า AIC และ MSE ที่ต่ำที่สุด

7.วิธีปรับให้เรียบเอ็กซ์โปเนนเซียลแบบดับเบิ้ล (Double Exponential Smoothing)

เนื่องจากข้อมูลอนุกรมเวลามีแนวโน้มแต่ไม่มีอิทธิพลของฤดูกาล จึงเลือกใช้ Double Exponential Smoothing

กำหนดให้ alpha = 0.3 และ beta = 0.1 จะได้ผลลัพธ์ MSE = 63.6871

8.สรุปผล

จากการทดสอบ ARIMA ที่มี 8 Model และทดสอบ Double Exponential Smoothing โดยจะใช้ค่า MSE มาเปรียบเทียบโดยใช้ ค่าที่น้อยที่สุด โดยจะเปรียบเทียบระหว่าง ARIMA(1,1,1) และ DES

ARIMA(1,1,1): MSE = 37.545

DES: MSE = 63.6871

เมื่อทำการเปรียบเทียบ Model ทั้งสองตัว จะสรุปได้ว่า ARIMA(1,1,1) เป็นโมเดลที่ดีที่สุด เนื่องจากมีค่า MSE ต่ำที่สุด โดยเราสามารถพยากรณ์ล่วงหน้าได้ตามผลลัพธ์ที่แสดงดังต่อไปนี้

Forecasts from period 40

Period	95% Limits			
	Forecast	Lower	Upper	Actual
41	170.944	158.932	182.956	
42	174.256	159.426	189.086	
43	177.603	161.451	193.755	
44	180.973	164.122	197.825	

ARIMA(1,1,1)

เราจึงใช้วิธีทดสอบ Box-Jenkins ที่เป็น Model ARIMA(1,1,1) ในการทำนายราคาปิดเฉลี่ยของหุ้น เพื่อให้เราทราบได้ว่า ในแต่ละช่วงไตรมาสช่วงไหนที่เหมาะกับการซื้อมากที่สุด หรือควรขายหุ้นที่สุด