IE 7275 Data Mining in Engineering Homework 2

Deadline: 10/14/2021

Note:

- o Submit all necessary files along with your solution sheets on Canvas.
- You use Python or equivalent programming language only.

Problem 1 (Classification via Bayes' Classifier) [10 points]

Given the dataset in Table 1, build a <u>naïve Bayes classifier</u> to classify the new point (T, F, 7). Show all steps in your calculation. Hint: independency between variables.

\mathbf{x}_i	a_1	a_2	a_3	Class
\mathbf{x}_1	T	T	5.0	Y
x ₂	T	T	7.0	Y
X 3	T	$\boldsymbol{\mathit{F}}$	8.0	N
X 4	F	$\boldsymbol{\mathit{F}}$	3.0	Y
X 5	\boldsymbol{F}	T	7.0	N
x ₆	\boldsymbol{F}	T	4.0	N
X 7	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	5.0	N
x ₈	T	$\boldsymbol{\mathit{F}}$	6.0	Y
X 9	\boldsymbol{F}	T	1.0	N

Problem 2 (Bayes and KNN Classification) [25 points]

- (a) Consider the admission dataset (training and testing subtest), build <u>a naïve Bayes classifier</u> with the training dataset (assuming data are normally distributed), and then make a prediction for testing dataset. Construct two confusion matrices for training and testing datasets and compute *accuracy*.
- (b) Build <u>a KNN classifier</u> with the training dataset, and then make a prediction for testing dataset. Construct two confusion matrices for training and testing datasets and compute *accuracy*. Specify *k* and distance measurement used in your classifier.
- (c) Compare the results between parts (a) and (b).

Problem 3 (KNN Classification) [15 points]

See Problem 7.3 in the textbook: Predicting Housing Median Price

Problem 4 (Bayes Classification) [15 points]

See Problem 8.1 in the textbook: Personal Loan Acceptance The dataset contains 1500 applications.

Problem 5 (Performance Evaluation) [10 points]

See Problem 5.6 in the textbook.

Problem 6 (Performance Evaluation) [10 points]

See Problem 5.7 in the textbook.

Problem 7 (Performance Evaluation for Bayes Classification) [15 points]

Implement a Bayes Classification for the dataset RidingMowers. The probability for target class "owner" is computed as follows: $P(C_{owner}|X)/P(C_{owner}|X) + P(C_{owner}|X)$ construct a ROC curve by considering cut-off values $\{0, 0.25, 0.5, 0.75, 1\}$ and compute the AUC.