

MLGIG Team - Time Series Approaches

Thach Le Nguyen Postdoctoral Researcher

VistaMilk International Workshop on Spectroscopy and Chemometrics 2021

FUNDED BY:

About me

- 2019 Now : Postdoc Researcher with VistaMilk
- 2015 2019: PhD, Computer Science, University College Dublin, Ireland
- 2012 2014: MSc, Media Informatic, University of Trento (Italy), RWTH Aachen University (Germany)
- 2005-2010: BSc, Computer Science, HCM University of Technology, Vietnam

Time Series Approaches

Take into account the sequential order of waves

This approach has been successful in the classification domain. (http://www.timeseriesclassification.com/dataset.php)

ROCKET Time Series Classifier/ Regressor

Angus Dempster, Francois Petitjean, and Geoffrey I Webb - ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels - Data Mining and Knowledge Discovery / arXiv:1910.13051

- State-of-the-art time series classifier in terms of both speed and accuracy.
- Applicable to regression problems.
- Key idea: Extract features from time series using random convolution kernels + off-the-shelf ML (RidgeCV)

ROCKET Time Series Classifier/ Regressor

Angus Dempster, Francois Petitjean, and Geoffrey I Webb - ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels - Data Mining and Knowledge Discovery / arXiv:1910.13051

- State-of-the-art time series classifier in terms of both speed and accuracy.
- Applicable to regression problems.
- Key idea: Extract features from time series using random convolution kernels + off-the-shelf ML (RidgeCV)

ROCKET Time Series Classifier/ Regressor

Angus Dempster, Francois Petitjean, and Geoffrey I Webb - ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels - Data Mining and Knowledge Discovery / arXiv:1910.13051

- State-of-the-art time series classifier in terms of both speed and accuracy.
- Applicable to regression problems.
- Key ideas: Extract features from time series using random convolution kernels + off-the-shelf ML (RidgeCV)

Max pooling feature: maximum value (6.5)

PPV feature: the positive ratio (4/7)

Ensemble of ROCKETS

- Our approach to improve ROCKET: Train individual ROCKET models on different intervals of the time series data.
- Aggregate the predictions of individual models

Ensemble of ROCKETS

- Train individual ROCKET models on different intervals of the time series data.
- Aggregate the predictions of individual models.
- We have explored some ensemble strategies:
 - Average of the predictions (simplest).
 - Cross validation to rank individual models.
 - Bagging (train each individual model with a subset of the training data)
 - Stacking (train a meta-regressor on top of the ensemble).
 - AdaBoost

Results

Method	Kappa-RMSECV	Micelle-RMSECV	Ph-RMSECV
LASSO(normalize=True)	1.5117	56.7817	0.1188
RidgeCV-tabular	1.1697	57.1684	0.0821
MiniROCKET	1.1863	60.4678	0.0811
EnsembleMiniROCKET-Avg	1.1740	58.3019	0.0768
EnsembleMiniROCKET-CV	1.1648	56.8801	0.0737

- The results are comparable if not slightly better than the tabular approaches.
- Ensemble seems to help here. However, it needs to be done carefully.
- It is still unclear to us whether the time series approaches are suitable for this particular problem.

Local Explanation with MrSQM

- Trait: kappa_casein
- Intercept: 4.0386
- Red increases the target value (positive coefficient), while blue decreases it (negative coefficient).

Local Explanation with MrSQM

- Trait: Casein_micelle_size
- Intercept: 186.907
- Red increases the target value while blue decreases it.

Local Explanation with MrSQM

- Trait: Native_Ph
- Intercept: 6.69
- Red increases the target value while blue decreases it.

