HW05: Teorema Pumping, Grammar Reguler dan Grammar CF (V-4) Teori Bahasa dan Automata, Fasilkom UI

Batas Waktu Pengumpulan 18 Maret 2023, Jam 23.59, Waktu Server Aren

Bagian A. Regular Grammar (RG)

Buatlah grammar reguler untuk menghasilkan bahasa-bahasa reguler berikut (anda akan mendapatkan 1 soal dari 1-10):

- 01. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring babaaabb atau bbababbb} \}$
- 02. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring babaabbb atau bbaabaab }}$
- 03. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring abaabbba atau babaaaab }}$
- 04. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring ababaabb atau bbbaaaba }}$
- 05. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring baaabbab atau bbabaaba }}$
- 06. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring baaababb atau bbababab} \}$
- 07. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring abababaa atau bbabbaba }}$
- 08. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring ababbaab atau bbabaabb} \}$
- 09. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring baaabbaa atau bbaabbba }}$
- 10. $\{w \in \{a,b\}^* : w \text{ tidak dimulai oleh aaa, tidak diakhiri oleh abba, dan tapi dalam } w \text{ terdapat substring aababbab atau abbabaab }}$

Penjelasan: Grammar ditulis dengan JFlap dengan memilih menu "Grammar". Dalam JFlap, start symbol adalah LHS dari **rule pertama**. Huruf besar adalah non-terminal sementara huruf kecil adalah terminal. Ingat bahwa lambang ε (string kosong) dalam materi kuliah, dalam JFlap menggunakan lambang λ . Untuk mengetikkan λ pada RHS rule adalah dengan langsung tekan [Enter].

Bagian B. Context Free Grammar (CFG)

Buatlah CFG untuk menghasilkan bahasa-bahasa berikut (anda akan mendapatkan tugas 2 soal, satu dari 1-8, dan satu dari 11-18):

```
01. { a^{i}b^{j}c^{k}d^{m} : (3j \le i \le 5j) \land (k < m) \land (i, j, k, m \ge 0) }

02. { a^{i}b^{j}c^{k}d^{m} : (3i \le j \le 5i) \land (k > m) \land (i, j, k, m \ge 0) }

03. { a^{i}b^{j}c^{k}d^{m} : (3k \le j \le 5k) \land (i < m) \land (i, j, k, m \ge 0) }

04. { a^{i}b^{j}c^{k}d^{m} : (3j \le k \le 5j) \land (i > m) \land (i, j, k, m \ge 0) }

05. { a^{i}b^{j}c^{k}d^{m} : (3m \le k \le 5m) \land (i < j) \land (i, j, k, m \ge 0) }
```

```
06. { a^{i}b^{j}c^{k}d^{m} : (3k \le m \le 5k) \land (i > j) \land (i, j, k, m \ge 0) }
07. { a^{i}b^{j}c^{k}d^{m} : (3m \le i \le 5m) \land (j < k) \land (i, j, k, m \ge 0) }
08. { a^{i}b^{j}c^{k}d^{m} : (3i \le m \le 5i) \land (j > k) \land (i, j, k, m \ge 0) }
11. {a^{i}b^{j}c^{k}d^{m} : 2i + j = k + 3m; i, j, k, m \ge 0 }
12. {a^{i}b^{j}c^{k}d^{m} : 2i + j = 3k + m; i, j, k, m \ge 0 }
13. {a^{i}b^{j}c^{k}d^{m} : i + 2j = k + 3m; i, j, k, m \ge 0 }
14. {a^{i}b^{j}c^{k}d^{m} : i + 2j = 3k + m; i, j, k, m \ge 0 }
15. {a^{i}b^{j}c^{k}d^{m} : 2i + m = j + 3k; i, j, k, m \ge 0 }
16. {a^{i}b^{j}c^{k}d^{m} : 2i + m = 3j + k; i, j, k, m \ge 0 }
17. {a^{i}b^{j}c^{k}d^{m} : i + 2m = j + 3k; i, j, k, m \ge 0 }
18. {a^{i}b^{j}c^{k}d^{m} : i + 2m = 3j + k; i, j, k, m \ge 0 }
```

Petunjuk: sama dengan petunjuk di bagian A.

Bagian C. Chomsksy Normal Form

Konversi CFG di bawah ini ke dalam bentuk normal Chomsky (CNF).

```
1. S \rightarrow ABC / SE
                                                                                                          3. S \rightarrow SHL \mid KLML
       A \rightarrow aC / BEF
                                                                                                                  H \rightarrow ccbHaab \mid aHb
       B \rightarrow bBB \mid \varepsilon \mid A
                                                                                                                  J \rightarrow KaHb \mid JS \mid \varepsilon
       C \rightarrow Ac \mid \varepsilon
                                                                                                                  K \to aM \mid \varepsilon
       D \rightarrow aBc \mid \varepsilon
                                                                                                                  L \to \varepsilon \mid K
       E \rightarrow aEbb
                                                                                                                  M \rightarrow P \mid Kc
       F \rightarrow aAa \mid Ccc \mid \varepsilon
                                                                                                                  P \rightarrow bb
2. S \rightarrow aKLa \mid SP
                                                                                                          4. S \rightarrow AaB \mid CCCb
       K \rightarrow Na \mid bM \mid L \mid \varepsilon
                                                                                                                  A \rightarrow aaBa \mid CDA \mid aa
       L \rightarrow cL \mid aPb \mid \varepsilon
                                                                                                                  B \rightarrow ACDS
       M \to Kb
                                                                                                                  C \rightarrow Ca \mid Db \mid D \mid \varepsilon
       N \rightarrow aK
                                                                                                                  D \rightarrow ccDa
       P \rightarrow LabP
                                                                                                                  E \rightarrow ABaab
       Q \rightarrow aaKbaL \mid \varepsilon
                                                                                                                  E \rightarrow CAD
```

Petunjuk: Jawaban anda ditulis sebagai jawaban Essay pada lembar jawaban yang disediakan. Tahapan yang dilakukan adalah menghilangkan: (1) non-productive rule, (2) uncreachable rule, (3) e-rule, (4) unit-rule, (5) mixed-production rule, dan (6) long-RHS. Pada setiap tahap tuliskan hanya rule yang dihapuskan dan rule yang ditambahkan, kecuali hasil akhirnya semua rule (lengkap). Khususnya pada (3) sebutkan juga nonterminal yang menjadi nullables.

Bagian D. Teorema Pumping Pada Bahasa Reguler

Dengan teorema Pumping, buktikanlah Bahasa-bahasa berikut ini BUKAN bahas reguler. Untuk "mereduksi" masalah pembuktian yang anda hadapi, anda boleh memanfaatkan sifat closure Bahasa regular (Note: jelaskan pada jawaban anda tsb. sifat closure apa dan direduksi menjadi pembuktian bahasa apa).

- 1. $\{w \in \{a, b\}^* \mid (|w| \text{ bilangan genap}) \land (|w| > 2) \land (\text{pasangan karakter di tengah sama dengan dua karakter terakhir}\}$
- 2. $\{wbv : (w,v \in \{a,b\}^*) \land (3.|w| = |v|)\}$
- 3. $\{vbw : w, v \in \{a,b\}^* \land (v \text{ suffix dari } w)\}$
- 4. $\{w \in \{a,b\}^* : jika karakter pertama w adalah a maka <math>\#_a(w) > \#_b(w)\}$
- 5. { $a^i b^j c^k$: $(j + k) \ge i \ge 0$ }
- 6. $\{a^nb^m: n+3 \ge 2m\}$.
- 7. $\{a^ib^jc^kd^p : \text{dengan } i, j, k, p \ge 0, \text{ dan } i + p = j + k\}.$
- 8. $\{vw : (w \in \{a,b\}^*) \land (v^R \text{ prefix dari } w) \land (2.|v| \ge |w|)\}.$

Petunjuk: Jawaban anda ditulis sebagai jawaban Essay pada lembar jawaban yang disediakan.

