Learning Random Matrix Approximations of String Theory: Kähler Metrics

James Halverson and Cody Long

Department of Physics, Northeastern University Boston, MA 02115, USA

Abstract

We do lots of interesting things.

Contents

1	Introduction	2
2	Methods	2
	2.1 Optimization of Bergman Metrics	2
	2.1.1 A brief review of Bergman metrics	2
	2.2 New Ensembles from Generative Adversarial Networks	3
3	Kähler metrics at fixed Picard Number	3
	$3.1 h^{11} = 10 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3
	3.2 $h^{11} = 16$	3
4	Interpolation and Extrapolation in Picard Number	3
5	Discussion	3

1 Introduction

2 Methods

2.1 Optimization of Bergman Metrics

2.1.1 A brief review of Bergman metrics

In the same way that many functions can be well-approximated by a Taylor series, one might hope to find a universal class of metrics that converge to the metrics of interest. For Kähler metrics, the class of Bergman metrics serve this purpose. It was shown by (Tian-Yau-Zelditch) that a Bergman metric can provide an arbitrarily good approximation to a given Kähler metric, in a fixed Kähler class. To review, let us consider a compact Kähler manifold M with an effective line bundle L, such that L^k is ample for some k > 0. We consider a basis of sections of L^k of the form $s^{\alpha}(z^i)$, where the z^i are projective coordinates on M. The Kähler potential for the Bergman metric takes the form

$$k = \log(s_{\alpha} P_{\alpha\bar{\beta}} \bar{s}_{\bar{\beta}}), \qquad (1)$$

where the matrix P is positive-definite, and therefore can be written as $P = A^{\dagger}A$.

- 2.2 New Ensembles from Generative Adversarial Networks
- 3 Kähler metrics at fixed Picard Number
- **3.1** $h^{11} = 10$
- **3.2** $h^{11} = 16$
- 4 Interpolation and Extrapolation in Picard Number
- 5 Discussion