SCEPTRE Vs Seurat CHIP-seq Analysis

2023-03-20

```
#load required packages. Sometimes need to redownload ondisc
library(biomaRt)
library(plyranges)
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##
       colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##
       get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##
       match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##
       Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
##
       table, tapply, union, unique, unsplit, which.max, which.min
## Loading required package: IRanges
## Loading required package: S4Vectors
## Loading required package: stats4
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
       expand.grid, I, unname
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Attaching package: 'plyranges'
```

```
## The following object is masked from 'package: IRanges':
##
       slice
##
## The following object is masked from 'package:biomaRt':
##
##
       select
## The following object is masked from 'package:stats':
##
##
       filter
library(GenomicRanges)
library(genomation)
## Loading required package: grid
## Warning: replacing previous import 'Biostrings::pattern' by 'grid::pattern'
## when loading 'genomation'
#devtools::install_qithub('timothy-barry/ondisc')
library(ondisc)
library(sceptre3)
library(BH)
library(varhandle)
##
## Attaching package: 'varhandle'
## The following object is masked from 'package:S4Vectors':
##
##
       unfactor
library(kableExtra)
library(rjson)
library(ggplot2)
```

Goal

The goal of this report is to compare the genes that are found to be significantly affected by IRF1 perturbation via Seurat and SCEPTRE to CHIPseq data.

Read in Promoter Data

```
#read in papalexi data
LOCAL_SCEPTRE2_DATA_DIR <-.get_config_path("LOCAL_SCEPTRE2_DATA_DIR")</pre>
papalexi dir <- pasteO(LOCAL SCEPTRE2 DATA DIR, "data/papalexi/eccite screen/")</pre>
# gene info
gene_odm_fp <- paste0(papalexi_dir, "gene/matrix.odm")</pre>
gene_metadata_fp <- paste0(papalexi_dir, "gene/metadata_qc.rds")</pre>
gene_odm <- read_odm(odm_fp = gene_odm_fp, metadata_fp = gene_metadata_fp)</pre>
#get TSS for each gene
ensembl <- useEnsembl(host = 'https://grch37.ensembl.org',biomart = "genes",</pre>
                       dataset = "hsapiens_gene_ensembl")
A = getBM(attributes=c("hgnc_symbol", "chromosome_name", "start_position",
                        "end_position", "strand"),
          filters=c('hgnc_symbol'),
          value = gene_odm |> get_feature_ids(), mart=ensembl) |>
  filter(chromosome_name %in% c(1:22, "X", "Y"))
#qet start and end site depending on whether the strand is postive or negative
TSS_start = rep(NA,nrow(A))
TSS_{end} = rep(NA, nrow(A))
for(j in c(1:nrow(A))){
  #if strand positive, use [start-500, start]
  if(A$strand[j]==1){
    TSS_end[j] = A$start_position[j]
    TSS_start[j] = A$start_position[j]-500
  }else{
    #if strand negative use [end, end + 500]
    TSS_start[j] = A$end_position[j]
    TSS_{end}[j] = A\end_{position}[j] + 500
 }
}
#add to A matrix
A$TSS start = TSS start
A$TSS_end = TSS_end
#add chr to chromosome name
A$chromosome_name = paste0("chr", A$chromosome_name)
#use A to make a promoter granges object
promoters <- GRanges(</pre>
 seqnames = A$chromosome_name,
 ranges = IRanges(start = A$TSS start, end = A$TSS end),
 TF = A$hgnc symbol)
```

Read in CHIPseq Data and Join the Datasets

[1] "The number of promoters that overlap with Chipseq peaks is 1644"

Read in Seurat and SCEPTRE Results

```
#read in sceptre and seurat analysis data
sceptre_path = pasteO(data.dir,
                      'sceptre_full_mrna_results_with_effect_size.rds')
seurat_path = pasteO(data.dir,
                     'seurat_all_perturbations_results.rds')
#read in sceptre and seurat results
sceptre = readRDS(sceptre_path)
seurat = readRDS(seurat_path)
#adjust pvalues according to BH
sceptre$p_value_adj = sceptre$p_value
for(val in unique(sceptre$grna group)){
  ind = which(sceptre$grna group == val)
  sceptre$p_value_adj[ind] = p.adjust(sceptre$p_value[ind], method = "BH")
for(j in c(1:length(seurat))){
  seurat[[j]]$p_val_adj = p.adjust(seurat[[j]]$p_val,method = "BH")
}
```

Filter to Get IRF1 Results

```
#get sceptre and seurat IRF1 results
PRTB = 'IRF1'
sceptre_prtb = subset(sceptre,grna_group == PRTB)
seurat_prtb = seurat[[PRTB]]
```

Compare Significant Genes to CHIPseq Results

```
alpha = 0.05
#get all significant genes from each method
sceptre_sig = unfactor(sceptre_prtb$response_id[sceptre_prtb$p_value_adj < alpha])
seurat_sig = rownames(seurat_prtb)[seurat_prtb$p_val_adj < alpha]
#get true positive sets
sceptre_true = sceptre_sig[sceptre_sig %in% overlap_genes]
seurat_true = seurat_sig[seurat_sig %in% overlap_genes]</pre>
```

Table 1: SCEPTRE Vs Seurat:IRF1 Perturbation True Positives

	Total Positive Genes	Unique to SCEPTRE	Unique to Seurat	Shared
True Positives	1644	66	44	160

```
#get number of shared and unique true postives
shared true = sceptre true[sceptre true %in% seurat true]
sceptre true unique = sceptre true[(sceptre true %in% seurat true) == F]
seurat_true_unique = seurat_true[(seurat_true %in% sceptre_true) == F]
#qet sensitivity
sceptre_sensitivity = length(sceptre_true)/length(overlap_genes)
seurat_sensitivity = length(seurat_true)/length(overlap_genes)
#qet false positive sets
sceptre_false = sceptre_sig[sceptre_sig %in% null_genes]
seurat_false = seurat_sig[seurat_sig %in% null_genes]
#get number of shared and unique false postives
shared_false = sceptre_false[sceptre_false %in% seurat_false]
sceptre_false_unique = sceptre_false[(sceptre_false %in% seurat_false) == F]
seurat_false_unique = seurat_false[(seurat_false %in% sceptre_false) == F]
#qet specificity
sceptre_specificity = 1-length(sceptre_false)/length(null_genes)
seurat_specificity = 1-length(seurat_false)/length(null_genes)
```

True Positive Table

Table 2: SCEPTRE Vs Seurat:IRF1 Perturbation False Positives

	Total Null Genes	Unique to SCEPTRE	Unique to Seurat	Shared
False Positives	11483	433	258	1341

True Positive Table

Table 3: SCEPTRE Vs Seurat:IRF1 Perturbation Sensitivity and Specificity

	Sensitivity	Specificity
SCEPTRE Seurat	0.1374696 0.1240876	$0.8455108 \\ 0.8607507$

Sensitivity Specificity Table

Table 4: SCEPTRE Vs Seurat:IRF1 Perturbation CHIPseq and Reference Agreement

	Unique to CHIPseq	Unique to Reference	Shared
IRF1 Targets	491	345	9

Get Top Genes by Score

```
TF = direct_effects$TF
scores = direct_effects$score
top_genes = sort(TF[order(scores, decreasing = T)][1:500])
```

Read in Reference Dataset For IRF1 TF Targets

```
data.dir = paste0(code_dir,"/sceptre2-manuscript/writeups/papalexi_analysis/")
targets.dir = paste0(data.dir,'IRF1_targets.json')
prtb_targets = fromJSON(file = targets.dir)
targets = c()
for(j in c(1:length(prtb_targets$associations))){
   targets = c(targets,prtb_targets$associations[[j]]$gene$symbol)
}
targets = targets[(targets%in%sceptre_prtb$response_id)]
null_targets =sceptre_prtb$response_id[(sceptre_prtb$response_id%in%targets)==F]
```

Table For Overlap Of Gene Sets

Compare Significant Gene Sets to Reference Data

```
alpha = 0.05
#qet all significant genes from each method
sceptre_sig = unfactor(sceptre_prtb$response_id[sceptre_prtb$p_value_adj < alpha])</pre>
seurat sig = rownames(seurat prtb)[seurat prtb$p val adj < alpha]</pre>
#get true positive sets
sceptre_true = sceptre_sig[sceptre_sig %in% targets]
seurat_true = seurat_sig[seurat_sig %in% targets]
#get number of shared and unique true postives
shared_true = sceptre_true[sceptre_true %in% seurat_true]
sceptre_true_unique = sceptre_true[(sceptre_true %in% seurat_true) == F]
seurat_true_unique = seurat_true[(seurat_true %in% sceptre_true) == F]
#qet sensitivity
sceptre_sensitivity = length(sceptre_true)/length(targets)
seurat_sensitivity = length(seurat_true)/length(targets)
#qet false positive sets
sceptre_false = sceptre_sig[sceptre_sig %in% null_targets]
seurat_false = seurat_sig[seurat_sig %in% null_targets]
#get number of shared and unique false postives
shared false = sceptre false[sceptre false %in% seurat false]
sceptre_false_unique = sceptre_false[(sceptre_false %in% seurat_false) == F]
seurat false unique = seurat false[(seurat false %in% sceptre false) == F]
#get specificity
sceptre specificity = 1-length(sceptre false)/length(null targets)
seurat_specificity = 1-length(seurat_false)/length(null_targets)
```

True Positive Table

Table 5: SCEPTRE Vs Seurat:IRF1 Perturbation Reference Target True Positives

	Total Positive Genes	Unique to SCEPTRE	Unique to Seurat	Shared
True Positives	354	11	7	98

Table 6: SCEPTRE Vs Seurat:IRF1 Perturbation Reference Target False Positives

	Total Null Genes	Unique to SCEPTRE	Unique to Seurat	Shared
False Positives	13658	507	301	1465

False Positive Table

Table 7: SCEPTRE Vs Seurat:IRF1 Perturbation Reference Target Sensitivity and Specificity

	Sensitivity	Specificity
SCEPTRE Seurat	$\begin{array}{c} 0.3079096 \\ 0.2966102 \end{array}$	$\begin{array}{c} 0.8556158 \\ 0.8706985 \end{array}$

Sensitivity and Specificity Table

Bonus: Pvalue Scatterplot

```
sceptre_genes = unfactor(sceptre_prtb$response_id)
seurat_pvals = log(seurat_prtb[sceptre_genes,]$p_val,10)
sceptre_pvals = log(sceptre_prtb$p_value,10)
```

Warning: NaNs produced

```
#remove those with sceptre pval = 0
sceptre_0 = which(is.na(sceptre_pvals) == T)
sceptre_pvals = sceptre_pvals[-sceptre_0]
seurat_pvals = seurat_pvals[-sceptre_0]
```

```
#volcano plot
ggplot(Pval,aes(x = seuratP,y = sceptreP)) + geom_point() +
    ggtitle('Identity Plot of CUL3 Pvalues: SCEPTRE vs Unfiltered Seurat') +
    labs(y = 'Sceptre Pvalues',x = 'Seurat Pvalues')+
    geom_abline(slope=1, intercept = 0,color = 'red')+
    geom_vline(xintercept = log(0.05,10),color = 'red')+
    geom_hline(yintercept = log(0.05,10), color = 'red')
```

Identity Plot of CUL3 Pvalues: SCEPTRE vs Unfiltered Seurat

