MEGAN R. EBERS

mebers@uw.edu | linkedin.com/in/meganebers | meganebers.github.io

Postdoctoral scholar in Applied Mathematics interested in machine learning for extracting actionable insight from real-world data. My unique interdisciplinary experience has equipped me to bridge the gap between theoretical modeling and practical applications for personalized health technologies.

RESEARCH INTERESTS

- Machine learning, sparse sensing, data-driven model discovery, dynamical systems, time series, signal processing
- Applications in engineering and physical sciences; human mobility, health, and accessibility; wearable technology

EDUCATION

University of Washington, Seattle, WA

PhD, Mechanical Engineering MS, Applied Mathematics MS, Mechanical Engineering August 2023 June 2022 June 2022

Colorado School of Mines, Golden, CO

May 2018

BS, Mechanical Engineering, minor in Biomechanical Engineering, magna cum laude

PROFESSIONAL EXPERIENCE

Postdoctoral Scholar, University of Washington Department of Applied Mathematics Supported by the National Science Foundation's AI Institute in Dynamic Systems

Sept 2023 - present

Data-driven and reduced order modeling of complex dynamical systems

- Creating a real-time reduced-order framework for modeling dynamic systems with control in the low-data regime (<10^2), while providing stable and robust uncertainty quantification
- Expanding and expediting sparse mobile sensing at scale ($\sim 10^6$) for complex systems (e.g., natural disaster monitoring, acoustic object detection, etc) using low-rank embedding ($\sim 10^3$) for non-stationary data

Graduate research assistant, University of Washington Department of Mechanical Engineering Co-advised by Dr. Katherine M. Steele and Dr. J. Nathan Kutz

Aug 2018 - Aug 2023

Theoretical foundation of discrepancy modeling for dynamical systems

- Developed a hybrid (mechanism + data) modeling framework to learn missing physics, model systematic residuals, and disambiguate between deterministic and random effects in dynamical systems
- Automated the process of learning better models using data-driven model discovery (SINDy, DMD, Gaussian processes, feed-forward neural networks) for digital twins, improved control algorithms, and scientific discovery

Scientific machine learning to isolate individual responses to assistive technology

- Enabled researchers and engineers to personalize device design using an individual's physiological data (N=15)
- Applied neural network-based discrepancy modeling to isolate the response dynamics governing biomechanical changes in walking with ankle exoskeletons

Sparse sensing of complex dynamical systems with mobile sensors

- Multimodal reconstruction of high-dimensional complex systems that require mobile sensing, such as for personalized human movement tracking, fluid dynamics, and climate modeling
- Leveraged the time histories of mobile sensor for full-state estimation using time-delay embedded sensor trajectories with shallow recurrent (LSTM) decoder networks

Machine learning and systems pharmacology intern, Genentech Research & Early Development June 2022 – Oct 2022

- Collaborated with Translational Systems Pharmacology to recommend which preclinical drugs may succeed in clinical trials
- Developed a domain-specific deep learning framework combining neural ODEs and shallow decoders to model sparse and irregular time series in low data regime

SKILLS

Python (numpy, scipy, pandas, scikit-learn), PyTorch, CUDA, HPC, MATLAB, Github, LaTeX, data visualization, data preparation, machine learning, mathematical modeling and simulation, pattern recognition, reduced-order modeling

MEGAN R. EBERS

AWARDS AND HONORS

National Science Foundation Graduate Research Fellow

Sept 2019 - Aug 2022

University of Washington Graduate School Research Top Scholar Fellowship

Sept 2018 - June 2019

PEER-REVIEWED JOURNAL ARTICLES

- P4. <u>Ebers MR</u>, Williams JP, Steele KM, Kutz JN. *Leveraging arbitrary mobile sensor trajectories with shallow recurrent decoder networks for full-state reconstruction.* (Submitted to IEEE Sensors: <u>arXiv:2307.11793</u>)
- P3. **Ebers MR**, Rosenberg MC, Kutz JN, Steele KM. *A machine learning approach to quantify complex changes in gait with ankle exoskeletons*. (Published in the Journal of Biomechanics)
- P2. Kutz JN, Bramburger J, **Ebers MR**, Koch J, Rahman A. *Universal Dynamics of Damped-Driven Systems: The Logistic Map as a Normal Form for Energy Balance.* (Submitted to Reviews of Modern Physics: <u>arXiv:2211.11748</u>)
- P1. <u>Ebers MR</u>, Steele KM, Kutz JN. *Discrepancy Modeling Framework: Learning missing physics, modeling systematic errors, and disambiguating between deterministic and random effects* (<u>Published in the SIAM Journal on Applied Dynamical Systems</u>)

PEER-REVIEWED CONFERENCE ABSTRACTS

2	2023	SIAM Conference on Applications of Dynamical Systems Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
2	2022	Northwest Biomechanics Symposium Do in silico MTU dynamics improve predictions of AFO responses?
2	2022	AI for Dynamic Systems workshop Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
2	2021	Dynamic Walking (virtual) Discrepancy Modeling of Ankle Exoskeleton Walking Can Improve Response Predictions
2	2020	American Society of Biomechanics (virtual) Biomechanically-Constrained Machine Learning for the Identification of Mechanistic Discrepancies
2	2020	Dynamic Walking (virtual) Discrepancy Modeling in Bipedal Dynamics
2	2018	International Society of Biomechanics Do Simulated Synergies Accurately Represent Muscle Coordination?
2	2018	Northwest Biomechanics Symposium Evaluating Altered Muscle Synergies Following Surgical Intervention in Cerebral Palsy Using Matrix Factorization Algorithms
	2017	Rocky Mountain American Society of Biomechanics The Design and Validation of a Passive Foot Prosthesis with Adjustable Plantarflexion
TITT	TALLIZE	

INVITED TALKS

- T5. UW eScience Data Science Seminar series, Mobile Sensing with Shallow Recurrent Decoder Networks. January 2024 (video)
- T4. SIAM Conference on Applications of Dynamical Systems, Minisymposium on Hybrid Modeling. May 2023
- T3. Institute for Human and Machine Cognition, Machine Learning for Dynamical Models of Human Movement. April 2023
- T2. Women in Data Science conference, Stanford University. March 2023
- T1. Colorado School of Mines Computational Biomechanics lecture, virtual. April 2021