Problemas de decisión para lenguajes de contexto libre Algoritmo CYK

En Acrobat, pulsa Ctrl + L para presentación

Problemas de decisión para GCL

• Problema de infinitud. Dada una gramática G, resolver la pregunta ¿es L(G) infinito?

$$S \rightarrow AB$$
 $A \rightarrow BC \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow a$

El lenguaje generado por la gramática es {ab,aaa,bab,baaa, aaab,aaaaa} que es finito

Problemas de decisión para GCL

• Problema de infinitud. Dada una gramática G, resolver la pregunta ¿es L(G) infinito?

$$S \rightarrow BA \mid BC$$

$$A \rightarrow SC$$

$$B \rightarrow a$$

$$C \rightarrow b$$

El lenguaje generado por la gramática es infinito

Problemas de decisión para GCL

• Problema de infinitud. Dada una gramática G, resolver la pregunta ces L(G) infinito?

Si el diagrama de transición tiene un ciclo, el lenguaje es infinito

Problemas de decisión para GCL

• Problema de la pertenencia. Dada una gramática G y una cadena $w \in \Sigma^*$, $\dot{c}w \in L(G)$?

$$S \rightarrow AB$$

$$A \rightarrow BC \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow a$$

¿La cadena baaa se genera por la gramática?

Problemas de decisión para GCL

• Problema de la pertenencia. Dada una gramática G y una cadena $w \in \Sigma^*$, $\dot{c}w \in L(G)$?

Buscar en todas las derivaciones posibles de G. Es muy ineficiente

Algoritmo CYK (Cocke, Younger, Kasami)

Resuelve el problema de la pertenencia utilizando un algoritmo de programación dinámica

Algoritmo CYK (Cocke, Younger, Kasami)

- Suponga que $w=a_1a_2...a_n$ es la cadena a probar
- Se construye una matriz triangular inferior de nxn
- La gramática debe estar en FNC

The CYK Algorithm

function CYK (word w, rules P) returns table X

```
for i := 1 to LENGTH(w) do
  X[i, i] := \{A \mid A \rightarrow w_i \in P \}
for k := 2 to LENGTH(w) do
  for i := 1 to LENGTH(w) do
       i := i+k-1
       for k := i \text{ to } j - 1 \text{ do}
          X[i,i] := X[i,i] \cup \{A \mid A \rightarrow BC \in P,
                B \in X[i,k], C \in table[k+1,i]
If the start symbol S \in X[0,n] then w \in L(G)
```

Algoritmo CYK (Cocke, Younger, Kasami)

La matriz es del tamaño de la cadena sobre la cual se quiere probar pertenencia

Algoritmo CYK (Cocke, Younger, Kasami)

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	а	b	α
Cada X _{ij} resuelve un				

subproblema particular

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

V				
X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	a	a	b	a

Resuelve el problema de saber si la subcadena a₂..a₄ es generada por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	{B}	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	å	a	Ь	a

Partiendo de B se puede generar aab $B \rightarrow CC \rightarrow CAB \rightarrow CAb \rightarrow aAb \rightarrow aab$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	α	a	b	a

Resuelve el problema de saber si la subcadena $a_3..a_4$ es generada por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	(S,C)	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	α	Ь	α

Partiendo de S o C se puede generar **ab** $S \rightarrow \underline{A}B \rightarrow a\underline{B} \rightarrow ab$ $C \rightarrow AB \rightarrow aB \rightarrow ab$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba

 a_3a_4

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	a	a	b	α

Resuelve el problema de saber si la subcadena $a_1..a_3$ es generada por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba
$$a_1..a_3$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	α	α	b	a

No hay forma de generar la subcadena baa

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba
$$a_1..a_3$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	a	α	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

w=baaba

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	a	b	a

Resuelve el problema de saber si la subcadena a_3a_3 , es decir, el símbolo en la posición 3 se puede generar por la gramática

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

baaba a₃a₃

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	{A,C}	X ₄₄	X ₅₅
b	а	a	b	a

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

w=baaba

Partiendo de A o C se puede generar a

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

¿Qué casilla tiene la solución al problema de saber si w es generada por la gramática?

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

w=baaba

Algoritmo CYK (Cocke, Younger, Kasami)

Partiendo de S,A o C se puede generar baaba

Algoritmo CYK (Cocke, Younger, Kasami)

{S,A,C}					$S \rightarrow AB \mid BC$
X ₁₄	X ₂₅				A→BA a
X ₁₃	X ₂₄	X ₃₅			B <i>→CC</i> b
X ₁₂	X ₂₃	X ₃₄	X ₄₅		C→AB a
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅	w=baaba
b	а	а	b	a	w-Daaba

Cuando $S \in X_{1n}$ se dice que w se puede generar por la gramática

Algoritmo CYK (Cocke, Younger, Kasami)

	X ₁₅					$S \rightarrow AB \mid BC$
	X ₁₄	X ₂₅				$A \rightarrow BA \mid a$
	X ₁₃	X ₂₄	X ₃₅			$B \rightarrow CC \mid b$
(X ₁₂	X ₂₃	X ₃₄	X ₄₅		C→AB a
	X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅	w=baaba
	b	a	√ a	Ь	a	W-Daaba

Para calcular estas casillas se inspecciona de forma directa sobre la gramática la ocurrencia de cada símbolo

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	ă.	а	b	α .

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

w=baaba

Algoritmo CYK (Cocke, Younger, Kasami)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

$$a_2a_2 y a_3a_4 a_2a_3 y a_4a_4$$

$$b$$
 a a b a
 a_2a_2 a_3a_4

b a a b a
$$a_2a_3$$
 a_4a_4

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

a₂..a₄ se puede generar por medio de:

$$\rightarrow$$
 $a_2a_2 y a_3a_4$
 $a_2a_3 y a_4a_4$

$$b$$
 a a b a
 a_2a_2 a_3a_4

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

En la tabla, ¿qué casillas representan las cadenas a₂a₂ y a₃a₄?

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$a_2a_2 y a_3a_4 a_2a_3 y a_4a_4$$

$$\mathbf{b}$$
 \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} $\mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_4$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

a₂..a₄ se puede generar por medio de:

$$a_2a_2 y a_3a_4$$
 $\rightarrow a_2a_3 y a_4a_4$

a₂a₂ y a₃a₄ En la tabla, ¿qué \rightarrow a_2a_3 y a_4a_4 | casillas representan las cadenas a_2a_3 y a_4a_4 ?

b a a b a
$$a_2a_3$$
 a_4a_4

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = b \mid a \mid b$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	ă _.	а	b	a

$$a_2a_2 y a_3a_4 a_2a_3 y a_4a_4$$

$$b$$
 a a b a a_2a_2 a_3a_4

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

b a a b a
$$a_2a_3$$
 a_4a_4

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$\mathbf{b}$$
 \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} $\mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_4$

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$a_2a_2 y a_3a_4$$

 $a_2a_3 y a_4a_4$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

b a a b a
$$a_2a_3$$
 a_4a_4

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X _{2.2}	X ₃₃	X ₄₄	X ₅₅
b	a	a	b	a

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

w=baaba

Liste las posibles formas de generar a₂..a₅

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	ă,	α	b	, a ,

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$a_2 a_2 y a_3 a_5$$

 $a_2 a_3 y a_4 a_5$
 $a_2 a_4 y a_5 a_5$

$$a$$
 a b a a_2a_3 a_4a_5

$$a$$
 a b a

$$a_2a_4$$
 a_5a_5

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$\rightarrow$$
 $a_2a_2 y a_3a_5$
 $a_2a_3 y a_4a_5$
 $a_2a_4 y a_5a_5$

b a a b a
$$a_2a_4$$
 a_5a_5

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
			h	0

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$a_2a_2 y a_3a_5$$

 $a_2a_3 y a_4a_5$
 $a_2a_4 y a_5a_5$

b a a b a
$$a_2a_4$$
 a_5a_5

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$a_2 a_2 y a_3 a_5$$
 $a_2 a_3 y a_4 a_5$
 $a_2 a_4 y a_5 a_5$

$$b$$
 a a b a a_2a_2 a_3a_5

$$a$$
 a b a

$$a_2a_4$$

$$a_5a_5$$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b			b	<u> </u>

X ₁₅						
X ₁₄	X ₂₅					
X ₁₃	X ₂₄	X ₃₅				
X ₁₂	X ₂₃	X ₃₄	X ₄₅			
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅		
b	а	а	b	α		
X	X _{ii} ={A A→a _i está en <i>G</i> }					

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	a

 $X_{ii} = \{A \mid A \rightarrow a_i \text{ está en } G\}$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	α	b	a

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Para calcular un valor X_{ij} se recorre sobre la columna hacia arriba al tiempo que baja en diagonal. Por ejemplo, para calcular X_{25} , se calcula: X_{22} , X_{35} , X_{23} , X_{45} , X_{24} , X_{55}

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	α	α	b	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

El recorrido de la matriz se debe hacer por filas, de abajo a arriba

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	a	b	a

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

w=baaba

 a_1a_2 se puede generar solo por medio de: a_1a_1 y a_2a_2

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

 $X_{12}=X_{11}X_{22}=\{B\}\{A,C\}=\{BA,BC\}$. Se busca en G una producción que genera BA o BC

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

{5,A}, esto indica que la cadena ba se puede generar a través de:

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	X ₂₃	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{23}=X_{22}X_{33}=\{A,C\}\{A,C\}=\{AA,AC,CA,CC\}$. Se busca en G una producción que genere AA,AC,CA o CC. {B}

	1			
X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	X ₃₄	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	Ь	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	X ₄₅	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	α	a	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{34}=X_{33}X_{44}=\{A,C\}\{B\}=\{AB,CB\}$. Se busca en G una producción que genere AB o CB. $\{S,C\}$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	Ь	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{45}=X_{44}X_{55}=\{B\}\{A,C\}=\{BA,BC\}$. Se busca en G una producción que genere BA o BC. $\{S,A\}$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	а

 $X_{13} = X_{11}X_{23}$ ó $X_{12}X_{33}$

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baaba$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	α

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{13}=X_{11}X_{23}\cup X_{12}X_{33}=\{B\}\{B\}\cup\{S,A\}\{A,C\}=\{BB,SA,SC,AA,AC\}$ Se busca en G la producción

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{13}=X_{11}X_{23}\cup X_{12}X_{33}=\{B\}\{B\}\cup\{S,A\}\{A,C\}=\{BB,SA,SC,AA,AC\}$ Se busca en G la producción. \varnothing

X ₁₅				
X ₁₄	X ₂₅			
Ø	X ₂₄	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	α

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	{B}	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	α	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

 $X_{24}=X_{22}X_{34}\cup X_{23}X_{44}=\{A,C\}\{S,C\}\cup \{B\}\{B\}=\{AS,AC,CS,CC,BB\}$ Se busca en G la producción. $\{B\}$

Algoritmo CYK (Cocke, Younger, Kasami)

X ₁₅				
X ₁₄	X ₂₅			
Ø	{B}	X ₃₅		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	α	b	a

w=baaba

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

Complete la matriz

{S,A,C}				
Ø	{S,A,C}			
Ø	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	α

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algoritmo CYK (Cocke, Younger, Kasami)

{S,A,C}				
Ø	{S,A,C}			
Ø	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	Ь	α

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

w=baaba

Como $S \in X_{15}$ se dice que $w \in L$

Comprobar si w=abb∈L

X ₁₃		
X ₁₂	X ₂₃	
X ₁₁	X ₂₂	X ₃₃
a	b	b

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = abb$

Comprobar si w=abb∈L

Ø		
{S,C}	Ø	
{A,C}	{B}	{B}
a	b	b

Como S∉X₁₃ se dice que w∉L

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Comprobar si w=aaba∈L

X ₁₄			
X ₁₃	X ₂₄		
X ₁₂	X ₂₃	X ₃₄	
X ₁₁	X ₂₂	X ₃₃	X ₄₄
α	α	Ь	α

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = aaba$

Comprobar si w=aaba∈L

{A,C}	{A,C}	{B}	{A,C}
	(4 (2)	נחו	(4 (2)
{B}	{S,C}	{S,A}	
{B}	{B}		
{S,C,A}			

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = aaba$

Comprobar si w=aaba∈L

{S,C,A}			
{B}	{B}		
{B}	{S,C}	{S,A}	
{A,C}	{A,C}	{B}	{A,C}
•	0	h	

Como $S \in X_{14}$ se dice que $w \in L$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Comprobar si w=baba∈L

Ь	α	Ь	α
X ₁₁	X ₂₂	X ₃₃	X ₄₄
X ₁₂	X ₂₃	X ₃₄	
X ₁₃	X ₂₄		
X ₁₄			

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = baba$

Comprobar si w=baba∈L

{B}			
{S,C}	{B}		
{S,A}	{S,C}	{S,A}	
{B}	{A,C}	{B}	{A,C}
b	a	Ь	α

Como S∉X₁₄ se dice que w∉L

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Comprobar si w=abaa∈L

a	b	a	a
X ₁₁	X ₂₂	X ₃₃	X ₄₄
X ₁₂	X ₂₃	X ₃₄	
X ₁₃	X ₂₄		
X ₁₄			

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 $w = abaa$

Comprobar si w=abaa∈L

a	Ь	a	a
{A,C}	{B}	{A,C}	{A,C}
{S,C}	{S,A}	{B}	
{B}	Ø		
{S,A}			

Como $S \in X_{14}$ se dice que $w \in L$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$