PMT Additional Exercises (Week 9)

Nicholas Sim

November 30th, 2017

1 Induction

[Part of FTA] Prove (by induction) that every positive integer greater than 1 is a product of primes.

2 Discrete Structures: Selected questions

All questions are verbatim or adapted; sources indicated.

1. [2008 exam Q3d, 9 mins] Say that a binary relation $\sim \subset A \times A$ is combinative if it fulfils:

$$(\forall x, y, z)x \sim z \land y \sim z \Rightarrow y \sim x$$

Prove that if R is reflexive and combinative, then R is an equivalence relation.

- 2. [2007 exam Q2c, 6 mins] Given that R, S are transitive relations on a domain A, show that $R \cap S$ is also transitive.
- 3. [2015 Q1e(iii) and 2016 Q1c(iii), 3 mins] Let $f:A\to B, g:B\to C$ be (total) functions. Prove that if $g\circ f$ is surjective, then so is g.
- 4. [General, 4 mins] For each of the following functions, write down whether they are injective or surjective individually.
 - (a) $f: \mathbb{R} \to \mathbb{R}^+, f(x) = e^x$
 - (b) $f: [-1, 0.5) \to [-2, 0.25], f(x) = x x^2$
- 5. [Selected M1F (A. Corti), no more than 1 min each] True or false:
 - (a) Every subset $S \subset \mathbb{N}$ has a least element (under the ordering \leq).
 - (b) Let $f:A\to B$ be a function. $R=\{(a_1,a_2)\in A\times A: f(a_1)=f(a_2)\}$ is an equivalence relation on A.
 - (c) Let $f:A\to B$ be a function. Suppose that there is a function $g:B\to A$ such that $(\forall a\in A)g\circ f(a)=a$, and another function $h:B\to A$ with $(\forall b\in B)f\circ h(b)=b$. Then g=h.
 - (d) Let X be a finite set. The set of all functions $f: \mathbb{N} \to X$ is countable.
 - (e) Let X be a finite set. The set of all functions $f: X \to \mathbb{N}$ is countable.

3 Solutions to induction

Let P(k) denote that k is the product of primes. Use strong induction.

Base case: P(2) holds as 2 = 2 is the product of primes.

Inductive step: (I.H.) Suppose P(i) holds for all $i < k \in \mathbb{N}$. Want to show P(k).

Suppose $k \in \mathbb{N}$ is not prime (otherwise we get P(k) immediately). Then $k = a \times b$ for some a, b < k. But (by I.H.) P(a) and P(b) hold, so $a = p_1 \times \cdots \times p_i$ and $b = q_1 \times \cdots \times q_j$, where all p, q are prime.

So $k = p_1 \times \cdots \times p_i \times q_1 \times \cdots \times q_j$ and P(k) holds.

So P(n) holds for any $2 \le n \in \mathbb{N}$ by the principle of induction.

4 Solutions to revision

Note: there is a distinct possibility that any of the solutions may be incorrect or insufficient.

- 1. To show: R is an equivalence relation. We will call the combinative property (C).
 - (R) Reflexivity: given.
 - (S) Symmetry: Suppose aRb. We have bRb from reflexivity. Substituting b for z, a for x in (C), we have bRa.
 - (T) Transitivity: Suppose aRb, bRc. We want to show aRc. We have cRb by (S) on bRc, and aRb (given). Substituting c, a, b for x, y, z respectively in (C), we get aRc, as required.
- 2. R, S both subsets of $A \times A$. Transitivity means that $(\forall a, b, c \in A)$ $((a, b), (b, c) \in R \Rightarrow (a, c) \in R)$, and similarly for S. Now suppose $(a, b), (b, c) \in R \cap S$. Then $(a, b), (b, c) \in R$ and $(a, b), (b, c) \in S$. By transitivity, $(a, c) \in R$ and $(a, c) \in S$, and by definition of intersection, $(a, c) \in R \cap S$. So $R \cap S$ is also transitive.
- 3. Suppose $g \circ f$ is surjective. Then $(\forall c \in C)(\exists a \in A)g(f(a)) = c$ (*). To show: g is surjective, i.e. $(\forall c \in C)(\exists b \in B)g(b) = c$. But this is clear: we can set b = f(a), as existence is guaranteed by (*).
- 4. (a) $f: \mathbb{R} \to \mathbb{R}^+, f(x) = e^x$. Injective and surjective.
 - (b) $f: [-1, 0.5) \to [-2, 0.25], f(x) = x x^2$. Injective as monotonic increasing. Not surjective as 0.25 not mapped.
- 5. Informal (1 minute) 'proofs'
 - (a) False. \varnothing .
 - (b) True. Check R, S, T.
 - (c) True. Notice that $|B| \ge |A|$ as $g \circ f$ is the identity map. Likewise $|A| \ge |B|$. Now satisfy yourself that $g = f^{-1} = h$.
 - (d) False. Let $X = \{0, 1\}$. There is a bijection between the set of functions $f : \mathbb{N} \to X$ and the power set of \mathbb{N} .
 - (e) True. Let |X| = n. Easy proof by induction:

Base case: n = 1 trivial (as is n = 0)

Inductive step: Assume countably many $f:\{0,1,\cdots,k\}\to\mathbb{N}$, ordered f_0,f_1,\cdots . Now there are countably many choices for $f_i(k+1)$. The Cartesian product of two countable sets is also countable, and the result follows.