Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 034

email: schulz@ira.uka.de

Akzeptoren \leftrightarrow Reguläre Ausdrücke

Regulärer Ausdruck für L(A)?

_

Akzeptoren \leftrightarrow Reguläre Ausdrücke

1.
$$F = \{z_0\} \Rightarrow R = (R')*$$

1.
$$F = \{z_0\} \Rightarrow R = (R')*$$

 R^\prime beschreibt alle Wege von 0 nach 0, die nur über 1 und 2 gehen.

Akzeptoren \leftrightarrow Reguläre Ausdrücke

2. Erstes Zeichen $a \rightarrow 1$. Zustand 1

2. Erstes Zeichen $a \rightarrow 1$. Zustand 1

Danach beliebig oft zwischen 1 und 2 hin und her $\rightarrow (ab)*$

2. Erstes Zeichen $a \rightarrow 1$. Zustand 1

Danach beliebig oft zwischen 1 und 2 hin und her $\to (ab)*$ Dann mit b oder aa zurück nach 0.

3. Erstes Zeichen $b \rightarrow 1$. Zustand 2

Danach beliebig oft zwischen 2 und 1 hin und her \to (ba)* Dann mit a oder bb zurück nach 0.

4. Zusammensetzen: $R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$

Rückwärts: $R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$

Akzeptor konstruieren.

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$$

Akzeptor konstruieren.

1. R = (R')*, also ist Anfangszustand akzeptierend.

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$$

Akzeptor konstruieren.

2. Mit a lande ich in anderem Zustand.

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$$

Akzeptor konstruieren.

3. Mit ab komme ich in Zustand 1 zurück, also Zwischenzustand 2 einfügen.

Rückwärts:
$$R = (a(ab)*(b \mid aa) \mid b(ba)*(a \mid bb))*$$

Akzeptor konstruieren.

4. Nach 0 komme ich danach mit b oder aa (über gleichen Zwischenzustand).

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb)) *$$

Akzeptor konstruieren.

5. Mit b als erstem Zeichen komme ich in neuen Zustand.

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid \mathbf{b}(ba) * (a \mid bb))*$$

Akzeptor konstruieren.

6. Mit ba komme ich nach 3 zurück über Zustand 4.

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb)) *$$

Akzeptor konstruieren.

7. Mit a oder bb komme ich nach 0 zurück.

Akzeptor konstruieren: Jeder Zustand entspricht

"Menge an Stellen im Regulären Ausdruck, an denen man bei Zusammensetzung von \boldsymbol{w} sein kann."

$$R = (aab \mid ab)*$$
 $z_0 = Anfang$

 $z_1 = f(z_0, a) =$ Erstes oder Drittes a

 $z_2 = f(z_1, a) =$ Zweites a

. . .

Idee für reguläre Ausdrücke:

Zustände des Akzeptors durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

Idee für reguläre Ausdrücke:

Zustände des Akzeptors durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

 R_{ij}^0 sind alle einfach.

Idee für reguläre Ausdrücke:

Zustände des Akzeptors durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

 R_{ij}^{k+1} : Gehe von i nach k über Zustände aus \mathbb{G}_k . Gehe beliebig oft von k nach k über Zustände aus \mathbb{G}_k . Gehe von k nach j über Zustände aus \mathbb{G}_k .

Oder gehe direkt von i nach j über Zustände aus \mathbb{G}_k .

Idee für reguläre Ausdrücke:

Zustände des Akzeptors von 0 bis n-1 durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

$$R_{ij}^{k+1} = R_{ik}^k(R_{kk}^k) * R_{kj}^k \mid R_{ij}^k$$

Sei 0 Anfangszustand und j_0, \ldots, j_m akzeptierende Zustände.

Dann ist
$$R = R_{0j_0}^n | \dots | R_{0j_m}^n$$
.

Nach Vorlesung:

Akzeptor $\overset{Warshall}{\to}$ Regulärer Ausdruck $\overset{induktiv}{\to}$ RLG

Geht das auch einfacher?

$$A = (Z, z_0, X, f, F).$$

Idee 1: $G = (Z, X, z_0, P)$ so dass gilt:

$$z_0 \Rightarrow^* wz \iff f^*(z_0, w) = z.$$

$$A = (Z, z_0, X, f, F).$$

Idee 1: $G = (Z, X, z_0, P)$ so dass gilt:

$$z_0 \Rightarrow^* wz \iff f^*(z_0, w) = z.$$

Also: $z_0 \Rightarrow^* wz \Rightarrow wxf(z,x)$ muss Ableitung sein.

$$A = (Z, z_0, X, f, F).$$

Idee 1: $G = (Z, X, z_0, P)$ so dass gilt:

$$z_0 \Rightarrow^* wz \iff f^*(z_0, w) = z.$$

Also: $z_0 \Rightarrow^* wz \Rightarrow wxf(z,x)$ muss Ableitung sein, also $\forall z \in Z \forall x \in X : z \to xf(z,x)$ muss Produktion sein.

$$A = (Z, z_0, X, f, F).$$

Idee 2: Ableitung $z_0 \Rightarrow^* wz$ soll mit w enden **können**, falls $z \in F$ gilt.

$$A = (Z, z_0, X, f, F).$$

Idee 2: Ableitung $z_0 \Rightarrow^* wz$ soll mit w enden **können**, falls $z \in F$ gilt.

Also $z_0 \Rightarrow^* wz \Rightarrow w$ soll möglich sein, wenn $z \in F$ gilt.

$$A = (Z, z_0, X, f, F).$$

Idee 2: Ableitung $z_0 \Rightarrow^* wz$ soll mit w enden **können**, falls $z \in F$ gilt.

Also $z_0 \Rightarrow^* wz \Rightarrow w$ soll möglich sein, wenn $z \in F$ gilt.

Also $z \to \epsilon$ soll Produktion sein, falls $z \in F$ gilt.

$$A = (Z, z_0, X, f, F).$$

Also:
$$G = (Z, X, z_0, P)$$
 mit
$$P = \{z \to x f(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$$

$$A = (Z, z_0, X, f, F).$$

Also:
$$G = (Z, X, z_0, P)$$
 mit $P = \{z \to x f(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$

Dann gilt:

$$w \in L(G) \iff z_0 \Rightarrow^* w \iff \exists z \in F : z_0 \Rightarrow^* wz \iff f^*(z_0, w) \in F \iff w \in L(A)$$

$$A = (Z, z_0, X, f, F).$$

Also:
$$G = (Z, X, z_0, P)$$
 mit
$$P = \{z \to x f(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$$

Noch einfacher?

$$A = (Z, z_0, X, f, F).$$

Also:
$$G = (Z, X, z_0, P)$$
 mit $P = \{z \to x f(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$

Müllzustände J führen dazu, dass aus wJ kein Wort $w' \in X^*$ abgeleitet werden kann

→ Produktionen mit Müllzuständen auf der rechten Seite können gelöscht werden.

Strukturelle Induktion - Wörter

Induktionsanfang: Zeige: X gilt für $w = \epsilon$.

Induktionsvoraussetzung: Schreibe: X gilt für beliebiges, aber festes $w \in A^*$.

Induktionsschritt: Schreibe: Sei $x \in A$ beliebig.

Zeige: Dann gilt X auch für wx.

Strukturelle Induktion - Strukturen

Es gibt atomare Elemente und Operationen, die aus maximal k Elementen ein größeres Element "zusammensetzen".

Induktionsanfang: Zeige: X gilt für **alle** atomaren Elemente.

Induktionsvoraussetzung: Schreibe: X gilt für beliebige, aber feste Elemente e_1, \ldots, e_k .

Induktionsschritt: Zeige für **jede** Operation \circ mit $j \leq k$ Argumenten:

Dann gilt X auch für $\circ(e_1, e_2, \dots e_j)$.

 G_1 sei RLG für R_1 , G_2 sei RLG für R_2 .

Konstruiere RLG H_1 für $(R_1 \mid R_2)$ (siehe Vorlesung)

Konstruiere RLG H_2 für (R_1R_2)

Konstruiere RLG H_3 für (R_1*)

$$G_1 = (N_1, T_1, S_1, P_1), G_2 = (N_2, T_2, S_2, P_2) \text{ mit } N_1 \cap N_2 = \emptyset.$$

Konstruiere RLG H_2 für (R_1R_2)

Idee: Wenn Wort aus $L(G_1)$ zu Ende, hänge S_2 an.

$$G_1 = (N_1, T_1, S_1, P_1), G_2 = (N_2, T_2, S_2, P_2) \text{ mit } N_1 \cap N_2 = \emptyset.$$

Konstruiere RLG H_2 für (R_1R_2)

Es gelte $P_1 = Q_1 \cup Q_2$ mit $\forall X \in N_1 \forall w \in T_1^*$:

$$X \to w \in P_1 \iff X \to w \in Q_2.$$

$$H_2 = (N_1 \cup N_2, T_1 \cup T_2, S_1, Q_1 \cup \{X \to wS_2 \mid X \to w \in Q_2\} \cup P_2).$$

$$G_1 = (N_1, T_1, S_1, P_1).$$

Konstruiere RLG H_3 für (R_1*)

Idee: Wenn Wort zu Ende, hänge wieder Startsymbol an; Startsymbol kann zu ϵ werden.

$$G_1 = (N_1, T_1, S_1, P_1).$$

Konstruiere RLG H_3 für (R_1*)

$$P_1 = Q_1 \cup Q_2 \text{ mit } \forall X \in N_1 \forall w \in T_1^*$$
:

$$X \to w \in P_1 \iff X \to w \in Q_2.$$

$$H_3 = (N_1, T_1, S_1, \{S_1 \to \epsilon\} \cup Q_1 \cup \{X \to wS_1 \mid X \to w \in Q_2\})$$

Problem: R = ((ab) * aa)

$$G = (\{S\}, \{a, b\}, S, \{S \rightarrow abS \mid aa\})$$

$$H_3 = (\{S\}, \{a, b\}, S, \{S \to abS \mid aaS \mid \epsilon\})$$

Problem:
$$R = ((ab) * aa)$$

$$G = (\{S\}, \{a, b\}, S, \{S \to abS \mid aa\})$$

$$H_3 = (\{S\}, \{a, b\}, S, \{S \to abS \mid aaS \mid \epsilon\})$$

$$ab \in L(H_3), ab \notin \langle R* \rangle$$

Regulärer Ausdruck \rightarrow RLG

$$G_1 = (N_1, T_1, S_1, P_1).$$

Konstruiere RLG H_3 für (R_1*)

Idee: Neues Startsymbol S', das nicht in N_1 liegt.

Wenn Wort zu Ende, hänge wieder S' an; S' kann zu ϵ oder S_1 werden.

$$G_1 = (N_1, T_1, S_1, P_1).$$

Konstruiere RLG H_3 für (R_1*)

Es gelte $S' \notin N_1$ und $P_1 = Q_1 \cup Q_2$ mit $\forall X \in N_1 \forall w \in T_1^*$:

$$X \to w \in P_1 \iff X \to w \in Q_2.$$

$$H_3 = (N_1 \cup \{S'\}, T_1, S', \{S' \to \epsilon \mid S_1\} \cup Q_1 \cup \{X \to wS' \mid X \to w \in Q_2\})$$