

(11)Publication number:

10-108682

(43)Date of publication of application: 28.04.1998

(51)Int.CI.

C12N 15/09 CO7H 21/04 C12N C12N 9/88 C12P 7/62 // (C12N 1/21 C12R 1:05) (C12N 9/88 C12R 1:05 (C12P 7/62 C12R

(21)Application number: 09-199979

(71)Applicant:

RIKAGAKU KENKYUSHO

(22)Date of filing:

25.07.1997

(72)Inventor:

FUKUI TOSHIAKI DOI YOSHIHARU

(30)Priority

Priority number: 08214509

Priority date: 14.08.1996

Priority country: JP

(54) POLYESTER POLYMERASE GENE AND PRODUCTION OF POLYESTER

PROBLEM TO BE SOLVED: To obtain a new gene for producing a transformant useful for producing a copolymer of a 3-hydroxyalkanoic acid, etc., comprising a gene coding a polypeptide which contains a specific amino acid sequence and brings about polyester polymerization activity.

SOLUTION: This new polyester polymerase gene codes a polypeptide containing an amino acid sequence of formula I or a seqeunce which is deficient in or replaced with one or several amino acids or to which one or several amino acids are added in the amino aid sequence and bringing about polyester polymerization activity and is useful for producing a poly (3-hydroxybutylate-3- hydroxyhexanoate) random copolymer which is a copolymer of an 3- hydroxyalkanoic acid of formula II (R is H or a 1-4C alkyl) and is excellent in biodegradability and biocompatibility. The gene is obtained by cloning a chromosome DNA library prepared from a chromosome DNA of Aeromonas caviae A FA440 strain by the use of a probe.

Nos Ald Lips Alla Gla Sin Gla dra 761 Alla CIGNAL Lets Gla

Fre Ala Arg Var Fre Sin Gin Gly 265 570 Val org let 4st Pro Tel The Ale Cus 3rt Top Clu Gli Aso

П

LEGAL STATUS

[Date of request for examination]

26.07.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3062459

[Date of registration]

28.04.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-108682

(43)公開日 平成10年(1998) 4月28日

(51) Int.Cl. ⁶	識別記号		FΙ		
C 1 2 N 15/09	ZNA		C 1 2 N 15/00	ZNAA	
C 0 7 H 21/04			C 0 7 H 21/04	В	
C 1 2 N 1/21			C 1 2 N 1/21		
9/88			9/88		
C 1 2 P 7/62			C 1 2 P 7/62		
		審査請求	未請求 請求項の数12 OI	. (全 25 頁)	最終頁に続く
(21)出願番号	特顯平9-199979		(71)出願人 000006792		
(22)出願日	平成9年(1997)7月25日			所 市広沢 2 番 1 号	
(31)優先権主張番号	特魔平8-214509		(72)発明者 福居 俊昭 埼玉県和光	市広況2番1号	強化学研究所

(72)発明者 土肥 義治

埼玉県和光市広沢2番1号 理化学研究所

内

(74)代理人 弁理士 平木 祐輔 (外1名)

(54) 【発明の名称】 ポリエステル重合酵素遺伝子及びポリエステルの製造方法

(57) 【要約】

(32)優先日

(33)優先権主張国

【課題】 ポリエステル重合酵素遺伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体及びポリエステルの製造方法の提供。

平8 (1996) 8 月14日

日本(JP)

【解決手段】 配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含み、ポリエステル重合活性をもたらすポリペプチドをコードするポリエステル重合酵素遺伝子、該ポリエステル重合酵素遺伝子、該ポリエステル重合酵素遺伝子を、該遺伝子の上流及び下流に存在するオープンリーディングフレームのいずれか一方とを含む遺伝子発現カセット、前記ポリエステル合成酵素遺伝子又は遺伝子発現カセットを含む組換えベクター、該組換えベクターによって形質転換された形質転換体、該形質転換体を培地に培養し、得られる培養物からポリエステルを採取することを特徴とするポリエステルの製造方法。

【特許請求の範囲】

【請求項1】 配列番号2で表されるアミノ酸配列又は 該アミノ酸配列において1若しくは数個のアミノ酸が欠 失、置換若しくは付加された配列を含み、ポリエステル 重合活性をもたらすポリペプチドをコードするポリエス テル重合酵素遺伝子。

【請求項2】 配列番号1で表される塩基配列を含むポリエステル重合酵素遺伝子。

【請求項3】 請求項1又は2記載のポリエステル重合 酵素遺伝子と、該遺伝子の上流及び下流に存在するオー プンリーディングフレームのいずれか一方とを含む遺伝 子発現力セット。

【請求項4】 ポリエステル重合酵素遺伝子の上流に存在するオープンリーディングフレームが、配列番号4で表されるアミノ酸配列をコードするDNAを含むものである請求項3記載の遺伝子発現力セット。

【請求項5】 ポリエステル重合酵素遺伝子の上流に存在するオープンリーディングフレームが、配列番号3で表される塩基配列を含むものである請求項3記載の遺伝子発現力セット。

【請求項6】 ポリエステル重合酵素遺伝子の下流に存在するオープンリーディングフレームが、配列番号6で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含み、エノイルーCoAヒドラターゼ活性をもたらすポリペプチドをコードするDNAを含むものである請求項3記載の遺伝子発現カセット。

【請求項7】 ポリエステル重合酵素遺伝子の下流に存在するオープンリーディングフレームが、配列番号5で表される塩基配列を含むものである請求項3記載の遺伝子発現力セット。

【請求項8】 請求項1若しくは2記載のポリエステル合成酵素遺伝子又は請求項3~7のいずれか1項に記載の遺伝子発現カセットを含む組換えベクター。

【請求項9】 請求項8記載の組換えベクターによって 形質転換された形質転換体。

【請求項10】 請求項9記載の形質転換体を培地に培養し、得られる培養物からポリエステルを採取することを特徴とするポリエステルの製造方法。

【請求項11】 ポリエステルが、次式 I: 【化1】

(Rは水素原子又は炭素数1~4のアルキル基を表す。)で示される3-ヒドロキシアルカン酸の共重合体である請求項10記載のポリエステルの製造方法。

【請求項12】 ポリエステルが、ポリ (3-ヒドロキシブチレート-3-ヒドロキシヘキサノエート) ランダム共重合体である請求項10記載のポリエステルの製造

方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリエステル重合 酵素遺伝子、該遺伝子を含む組換えベクター、該組換え ベクターを含む形質転換体及び該形質転換体を用いたポ リエステルの製造方法に関する。

[0002]

【従来の技術】数多くの微生物は、ポリー3ーヒドロキシブチレート (P(3HB)) を生合成し、エネルギーの貯蔵物質として体内に微粒子状で蓄えることが知られている。微生物体内から抽出した P(3HB) は、180℃程度に融解温度をもつ熱可塑性高分子であり、優れた生分解性と生体適合性を示すことから、環境を保全する"グリーン"プラスチックとして注目されている。また、 P(3HB) は各種の微生物を用いて糖や植物油などの再生可能炭素資源から合成できる"グリーン"プラスチックである。しかしながら、P(3HB)は、高結晶性高分子のために耐衝撃性が劣るという物性上の問題があり、実用化が見送られてきた。

【0003】近年、3-ヒドロキシブチレート(3HB) と 3-ヒドロキシヘキサノエート(3HH) との2成分共重合 ポリエステル P(3HB-co-3HH) およびその製造法につい て、研究、開発がなされ、たとえば、特開平5-93049号 公報および特開平7-265065号公報にそれぞれ記載されて いる。これらの公報の P(3HB-co-3HH) 共重合体の製造 法は、土より単離したアエロモナス・キャビエ(Aeromo nas caviae)を用いてオレイン酸やオリーブオイルから 発酵生産するものである。発酵生産した P(3HB-co-3HH) 共重合体は、3HHユニット分率の増加とともに結晶化度 が低下するために、柔軟な高分子材料となり、熱安定性 や成形性にも優れ、強い糸や透明でしなやかなフィルム にも加工できることが明らかにされている (Y. Doi. S. Kitamura, H. Abe, Macromolecules 28, 4822-4823 (1 995))。しかしながら、特開平5-93049号公報および特 開平7-265065号公報に記載の製造方法では、ポリエステ ル収率(乾燥微生物体内のポリエステル含有量)が低い ため、P(3HB-co-3HH) 共重合ポリエステルを高収率で生 産する方法の開発が望まれていた。

[0004]

【発明が解決しようとする課題】本発明は、ポリエステル重合酵素遺伝子、該遺伝子を含む組換えベクター、該組換えベクターによって形質転換された形質転換体及び該形質転換体を用いたポリエステルの製造方法を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明者は、上記課題に 基づいて鋭意研究を行った結果、ポリエステル重合酵素 の遺伝子をクローニングし、さらにポリエステル重合酵 素遺伝子に付随する上流及び下流のオープンリーディン グフレームのいずれか一方又は両方を欠失させることに よりポリエステルを高収率で生産することに成功し、本 発明を完成するに至った。

【0006】すなわち、本発明は、配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含み、ポリエステル重合活性をもたらすポリペプチドをコードするポリエステル重合酵素遺伝子である。該遺伝子としては、例えば配列番号1で表される塩基配列を含むものが挙げられる。

【0007】さらに、本発明は、前記ポリエステル重合 酵素遺伝子と、該遺伝子の上流及び下流に存在するオープンリーディングフレームのいずれか一方とを含む遺伝子発現カセットである。該遺伝子発現カセットにおいて、ポリエステル重合酵素遺伝子の上流に存在するオープンリーディングフレームとしては、配列番号4で表されるアミノ酸配列をコードするDNAを含むもの(例えば配列番号3)が挙げられ、ポリエステル重合酵素遺伝子の下流に存在するオープンリーディングフレームとしては、配列番号6で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含み、エノイルーCoAヒドラターゼ活性をもたらすポリペプチドをコードするDNAを含むもの(例えば配列番号5)が挙げられる。

【0008】ここで、本発明のポリエステル重合酵素遺伝子は、配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1個若しくは数個のアミノ酸に欠失、置換、付加等の変異が生じても、当該アミノ酸配列を有するポリペプチドがポリエステル重合活性を有する限り、そのポリペプチドをコードするDNAも本発明の遺伝子に含まれる。例えば、配列番号2で表されるアミノ酸配列の第1番目のメチオニンが欠失したものをコードするDNAも、本発明の遺伝子に含まれる。

【0009】さらに、本発明は、前記ポリエステル重合 酵素遺伝子又は前記遺伝子発現カセットを含む組換えベ クターである。さらに、本発明は、前記組換えベクター によって形質転換された形質転換体である。

【0010】さらに、本発明は、前記形質転換体を培地に培養し、得られる培養物からポリエステルを採取することを特徴とするポリエステルの製造方法である。ポリエステルとしては、例えば、次式 I:

[0011] [化2]

【0012】 (Rは水素原子又は炭素数1~4のアルキル基を表す。) で示される3-ヒドロキシアルカン酸の共重合体(例えば、ポリ(3-ヒドロキシブチレート-3-ヒドロキシヘキサノエート) ランダム共重合体) が

挙げられる。以下、本発明を詳細に説明する。 【0013】

【発明の実施の形態】

(1) ポリエステル重合酵素遺伝子のクローニング本発明のポリエステル重合酵素遺伝子は、アエロモナス属に属する微生物の菌体から分離される。まず、ポリエステル重合酵素遺伝子を有する菌株から染色体DNAを作製する。菌株としては、例えばアエロモナス・キャビエ(Aeromonas caviae)が挙げられる。

【0014】染色体DNAの調製は公知の方法を用いることができる。例えば、アエロモナス・キャビエをLB培地で培養した後、臭化へキサデシルトリメチルアンモニウム法(Currnt Protocols in Molecular Biology,1巻, 2.4.3 頁, John Wiley &;Sons 出版, 1994年)等により染色体DNAを調製する。

【0015】上記の手法により得られたDNAを適当な制限酵素(例えばSau3AI、BamHI、BglII等)で部分分解した後、アルカリホスファターゼ処理を行い、DNA断片を脱リン酸化する。これを制限酵素(例えばBamHI、BglII等)で切断したベクターとライゲーションを行い、ライブラリーを作成する。

【0016】ベクターには、宿主微生物で自律的に増殖し得るファージ又はプラスミドが使用される。ファージベクターとしては、例えばEMBL3、M13、入gt11等が挙げられ、プラスミドベクターとしては、例えばpBR322、pUC18、pBluescript II (STRATAGENE社製)等が挙げられる。さらに、大腸菌やバチルス・ブレビスなどの2種以上の宿主微生物で自律的増殖が可能なベクターのほか、各種のシャトルベクターを使用することもできる。このようなベクターについても、前記制限酵素で切断し、その断片を得ることができる。

【0017】DNA断片とベクター断片とを連結させるには、公知のDNAリガーゼを用いる。そして、DNA断片とベクター断片とをアニーリングさせた後連結させ、組換えベクターを作成する。

【0018】宿主微生物に組換えベクターを導入するには、公知の方法により行うことができる。例えば、宿主微生物が大腸菌の場合はカルシウム法(Lederberg, E. M. etal., J. Bacteriol. 119, 1072 (1974))やエレクトロポレーション法(Current Protocols in Molecular Biology, 1巻, 1.8.4 頁, 1994年)を採用することができ、宿主微生物がファージDNAの場合はインビトロ・パッケージング法(Current Protocols in Molecular Biology, 1巻, 5.7.1 頁, 1994年)等を採用することができる。本発明では、インビトロ・パッケージング用キット(Gigapack II;STRATAGENE 社製等)を用いることもできる。

【0019】次に、アエロモナス・キャビエのポリエステル重合酵素遺伝子を含むDNA断片を得るためのプローブを調製する。ポリエステル重合酵素のアミノ酸配列

については、既に何種類かのものが知られている(Peoples, O.P. and Sinskey, A.J., J.Biol.Chem., 264, 15 293 (1989); Huisman, G.W. et al., J.Biol.Chem., 26 6, 2191 (1991); Pieper, U. et al., FEMS Microbiol.Lett., 96, 73(1992)他)。そこで、これらのアミノ酸配列のうち、保存されている2つの領域を選択し、それをコードする核酸塩基配列を推定してオリゴヌクレオチドを設計する。これらオリゴヌクレオチドとしては、例えば5'-CC(C/G)CC(C/G)TGGATCAA(T/C)AAGT(T/A)(T/C)TA(T/C)ATC-3'(配列番号7)、及び5'-(G/C)AGCCA(G/C)GC(G/C)GTCCA(A/G)TC(G/C)GGCCACCA-3'(配列番号8)で表される2種類のオリゴヌクレオチドが挙げられるがこれらに限定されるものではない。

【0020】これらのオリゴヌクレオチドをプライマーとし、アエロモナス・キャピエの染色体DNAを鋳型としてポリメラーゼ連鎖反応(PCR; Molecular Cloning, 2巻, 14.2頁, 1989年)を行う。そして、PCRによりポリエステル重合酵素遺伝子を部分的に増幅する。

【0021】次に、この部分増幅断片を適当な試薬を用いて標識し、前記染色体DNAライブラリーからコロニーハイブリダイゼーションを行う(Currnt Protocols in Molecular Biology,1巻,6.0.3 頁,1994年)。

【0022】コロニーハイブリダイゼーションによりスクリーニングされた大腸菌からアルカリ法 (Currnt Protocols in Molecular Biology,1巻,1.6.1頁,1994年)によってプラスミドを回収することにより、ポリエステル重合酵素遺伝子を含むDNA断片が得られる。

【0023】上記DNA断片の塩基配列の決定は、公知方法、例えばサンガー法(Molecular Cloning,2巻,13.3頁,1989年)等によって行うことができ、塩基配列自動分析装置、例えば373A・DNAシークエンサー(Applied Biosystems社)等を用いて行うことができる。

【0024】配列番号1に本発明のポリエステル重合酵素遺伝子の塩基配列を、配列番号2に該遺伝子によりコードされるアミノ酸配列を示すが、当該アミノ酸配列を有するポリペプチドがポリエステル重合活性をもたらす限り、アミノ酸のいくつかについて欠失、置換、付加等の変異があってもよい。また、本発明の遺伝子は、配列番号2で表されるアミノ酸をコードする塩基配列をもつもののほか、縮重コドンにおいてのみ異なる同一のポリペプチドをコードする縮重異性体をも包含するものである。

【0025】なお、上記欠失等の変異は、公知の部位突然変異誘発方法(Current Protocols in Molecular Bio logy 1巻, 8.1.1 頁, 1994年)により誘発することができる。上記手法により塩基配列が決定された後は、化学合成によって、又は染色体DNAを鋳型としたPCR法によって、あるいは該塩基配列を有するDNA断片をプローブとしてハイブリダイズさせることにより、本発明の遺伝子を得ることができる。

【0026】(2) 形質転換体の作製

本発明の形質転換体は、本発明の組み換えベクターを、該組み換えベクターを作製する際に用いた発現ベクターに適合する宿主中に導入することにより得られる。宿主としては、目的とする遺伝子を発現できるものであれば特に限定されず、例えば、アルカリゲネス属に属する微生物、シュードモナス属に属する微生物、バチルス属に属する微生物等の細菌、サッカロミセス属、カンジダ属等の酵母、COS細胞、CHO細胞等の動物細胞などが挙げられる。

【0027】アルカリゲネス属に属する微生物、シュードモナス属に属する微生物等の細菌を宿主として用いる場合は、本発明の組換え体DNAが該宿主中で自立複製可能であると同時に、プロモーター、本発明のDNA、転写終結配列を含む構成であることが好ましい。発現ベクターとしては、広範囲の宿主において複製・保持されるRK2複製起点を有するpLA2917(ATCC 37355)、あるいはRSF1010複製起点を有するpJRD215(ATCC 37533)等が挙げられる。

【0028】プロモーターとしては、宿主中で発現できるものであればいずれを用いてもよい。例えば、trpプロモーター、lacプロモーター、 P_L プロモーター、 P_R プロモーター、trpプロモーター、trpプロモーター、trpプロモーター、trpプロモーター、trp が等に由来するプロモーターが用いられる。細菌への組み換え体DNAの導入方法としては、例えばカルシウムイオンを用いる方法(Current Protocols in Molecular Biology, trp1.8.1頁,trp1.994年)、trp1.8.1頁,trp2.3 (Current Protocols in Molecular Biology, trp1.8.4 頁,trp1.994年)等が挙げられる。

【0029】酵母を宿主として用いる場合は、発現ベクターとして、例えばYEp13、YCp50等が挙げられる。プロモーターとしては、例えばgal 1 プロモーター、gal 10プロモーター等が挙げられる。酵母への組換え体DNAの導入方法としては、例えばエレクトロポレーション法 (Methods. Enzymol., 194, 182-187(1990))、スフェロプラスト法 (Proc. Natl. Acad. Sci. USA, 84, 1929-1933(1978))、酢酸リチウム法 (J. Bacteriol., 153, 163-168(1983))等が挙げられる。

【0030】動物細胞を宿主として用いる場合は、発現ベクターとして例えばpcDNAI、pcDNAI/Amp(インビトロジェン社)等が用いられる。動物細胞への組換え体DNAの導入方法としては、例えば、エレクトロポレーション法、リン酸カルシウム法等が挙げられる。

【0031】ここで、前記のようにして決定された塩基配列は、ポリエステル重合酵素遺伝子のほかに、ぞの上流及び下流にポリエステル生合成に関与する遺伝子のオープンリーディングフレームが複数含まれている。すなわち、ポリエステル重合酵素遺伝子は、単一のプロモーター領域の支配下に少なくとも2個のORFとともにオペロンを形成している。

【0032】ポリエステル重合酵素遺伝子の上流に位置するORFを以下「ORF1」といい、下流に位置するORFを以下「ORF3」という。ORF1は、菌体内ポリエステルの蓄積に関与する遺伝子又はポリエステル生合成系遺伝子のものと思われる。また、ORF3は、ポリエステル生合成に関与するエノイルーCoAヒドラターゼ(特に(R)ー特異的エノイルーCoAヒドラターゼ)をコードする遺伝子のものであることを明らかにした。

【0033】本発明では、図1に示すように、発現制御領域(図1(1) において「-35/-10」と表示)、ポリエステル重合酵素遺伝子、ORF1及びORF3を含むEcoRI断片をクローニングした(図1(1))。この断片をEE32とする。

【0034】次に、EE32においてORF1又はORF3のいずれか一方又は両方を欠失させた断片(遺伝子発現カセット)を作製し、このカセットを宿主に導入することにより、ポリエステルを効率よく生産することができる形質転換体を得ることができる。

【0035】EE32中、発現制御領域とOFR1の翻訳開始領域との間、及びOFR1の翻訳停止領域とポリエステル重合酵素遺伝子の翻訳開始領域との間にそれぞれ制限酵素BglII 部位を導入し、BglII によりORF1を欠失させる(図1(2))。これと同様にして、ポリエステル重合酵素遺伝子の翻訳停止領域とORF3との間に制限酵素BamHI領域を挿入し、BamHI処理によりORF3を欠失させる(図1(3))。

【0036】ORF1及びORF3の両者を欠失させるには、EE32について、上記ORF1及びORF3を欠失させる操作を両方行えばよい(図1(4))。なお、制限酵素部位は、合成オリゴヌクレオチドを用いた部位特異的変異法(Currnt Protocols in Molecular Biology, 1巻, 8.1.1 頁, 1994年)によって導入することができる。

【0037】このようにして得られたそれぞれの遺伝子発現カセットを、前記発現可能なプラスミド(例えばpJRD215 (ATCC 37533))に挿入し、得られた組換えベクターを用いて、アルカリゲネス・ユートロファス (Alcali genes eutrophus)・PHB-4 株 (DSM541) (ポリエステル合成能欠損株)を形質転換する。形質転換法としては、例えば塩化カルシウム法、塩化ルビジウム法、低pH法、インビトロ・パッケージングによる方法、接合伝達法等が挙げられる。

ポリエステルの製造は、本発明の形質転換体を培地で培養し、培養菌体又は培養物中に本発明のポリエステルを生成蓄積させ、該培養菌体又は培養物から該ポリエステルを採取することにより行われる。本発明の形質転換体

【0038】(3) ポリエステルの製造

ルを採取することにより行われる。本発明の形質転換体 を培地で培養する方法は、宿主の培養に用いられる通常 の方法に従って行われる。 【0039】アルカリゲネス属に属する微生物又はシュードモナス属に属する微生物等の細菌を宿主として得られた形質転換体を培養する培地としては、微生物が資化し得る炭素源を与え、窒素源、無機塩類及び有機栄養源のうちのいずれかを制限した培地、例えば窒素源を0.01~0.1%に制限した培地が挙げられる。

【0040】炭素源は微生物の増殖に必要であり、かつ、ポリエステル合成の原料となるものであり、その例としては、例えばグルコース、フラクトース、スクロース、マルトース等の炭水化物が挙げられる。また、炭素数2以上の油脂関連物質を炭素源とすることもできる。炭素数2以上の油脂関連物質としては、コーン油、ヤラワー油、サフラワー油、オリーブ油、ヤシ油、パーム油、ナタネ油、魚油、鯨油、豚油又は牛油などの天然油脂、酢酸、プロピオン酸、ブタン酸、ペキン酸、オレイン酸、オクタン酸、デカン酸、ラウリン酸、オレイン酸、パルミチン酸、リノレン酸、リノール酸若しくはミリスチン酸等の脂肪酸又はこれら脂肪酸のエステル、オクタノール、ラウリルアルコール、オレイルアルコール若しくはパルミチルアルコール等又はこれらアルコールのエステル等が挙げられる。

【0041】窒素源としては、例えばアンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス、コーンスティープリカー等が挙げられる。無機物としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。

【0042】培養は、通常振盪培養などの好気的条件下、25~37℃で発現誘導後24時間以上(例えば1~7日)行う。培養中は、カナマイシン、アンピシリン、テトラサイクリン等の抗生物質を培地に添加してもよい。そして、培養することによりポリエステルを菌体内に蓄積させ、その後、このポリエステルを回収する。

【0043】誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養する場合は、インデューサーを培地に添加することもできる。例えば、イソプロピルーβ-D-チオガラクトピラノシド(IPTG)、インドールアクリル酸(IAA) 等を培地に添加することができる

【0044】動物細胞を宿主として得られた形質転換体を培養する培地としては、例えばRPMI-1640、DMEM培地又はこれらの培地にウシ胎児血清を添加した培地が用いられる。培養は、通常5%CO2存在下、30~37℃で14~28日間行う。培養中はカナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

【0045】本発明において、ポリエステルの精製は例えば以下のように行うことができる。培養液から遠心分離によって形質転換体を集め、蒸留水で洗浄した後、乾燥させる。その後、クロロホルムに乾燥形質転換体を懸

(6)

濁し、加熱することによってポリエステルを抽出する。 なお、濾過によって残渣を取り除く。このクロロホルム 溶液にメタノールを加えてポリエステルを沈殿させる。 濾過や遠心分離によって上澄み液を除去した後、乾燥し て精製ポリエステルを得る。

【0046】得られたポリエステルが目的のものであることの確認は、通常の方法、例えばガスクロマトグラフ法、核磁気共鳴法等により行う。本発明の遺伝子はアエロモナス・キャピエから単離したポリエステル重合酵素をコードする遺伝子を含んでいる。この重合酵素は、次式I:

[0047] [化3]

【0048】(Rは水素原子又は炭素数1~4のアルキル基を表す。)で示される3-ヒドロキシアルカン酸をモノマーユニットとした共重合体(ポリエステル)を合成することが可能である。上記共重合体としては、例えばポリ(3-ヒドロキシブチレート-3-ヒドロキシへキサノエート)ランダム共重合体(P(3HB-co-3HH))等が挙げられ、前記重合酵素遺伝子を導入した形質転換体はP(3HB-co-3HH)を極めて高効率で生産する能力を示す。

【0049】従来では、ポリー3-ヒドロキシブチレート(P(3HB)) あるいはポリ(3-ヒドロキシブチレート-3-ヒドロキシバリレート) ランダム共重合体(P(3HB-co-3HV)) の製造法について研究、開発がなされきたが、これらのポリエステルは高結晶性高分子のために耐衝撃性が劣るという物性上の問題がある。

【0050】炭素数6の3-ヒドロキシヘキサノエートをポリマー鎖に導入することによって結晶化度が低下するため、ポリエステルは柔軟な高分子材料となり、熱安定性や成形性にも優れるが、アエロモナス・キャビエを用いた従来のP(3HB-co-3HH)製造法(特開平5-93049号公報および特開平7-265065号公報)では、ポリエステルの収率が低い。

【0051】これに対し、本発明ではP(3HB-co-3HH) 共重合ポリエステルを高収率で生産することができる。上記手法により目的とするポリエステルを大量に得ることができるため、これを用いて生分解性の糸やフィルム、各種容器等の素材として利用することができる。また、本発明の遺伝子を用いてP(3HB-co-3HH) 共重合ポリエステル高生産株を育種することもできる。

[0052]

【実施例】以下、実施例により本発明をさらに具体的に 説明する。但し、本発明は、これら実施例にその技術的 範囲を限定するものではない。

〔実施例1〕アエロモナス・キャピエのポリエステル重

合酵素遺伝子のクローニング

最初に、アエロモナス・キャビエの染色体DNAライブ ラリーを作製した。

【0053】アエロモナス・キャビエFA440株を10 0ml のLB培地(1%イーストエキス、0.5%トリプトン、0.5%塩化ナトリウム、0.1%グルコース、pH7.5)中、30℃で終夜培養した後、臭化ヘキサデシルトリメチルアンモニウム法(Currnt Protocols in Molecular Biology,1巻, 2.4.3.頁, 1994年; John Wiley &; Sons

出版)により染色体DNAを得た。

【0054】得られた染色体DNAを制限酵素Sau3AIで部分分解した。またベクタープラスミドについては、コスミドベクターであるpLA2917(ATCC37355)を使用した。このプラスミドを制限酵素BglIIで切断し、脱リン酸化処理 (Molecular Cloning,1巻,5.7.2 頁,1989年;Cold Spring Harbar Laboratory 出版)を施した後、DNAリガーゼを用いて染色体DNA部分分解断片と連結させた。

【0055】この連結DNA断片を用いたインビトロ・パッケージング法 (Currnt Protocols in Molecular Bi ology,1巻,5.7.2 頁,1994年) によって大腸菌S17-1 株を形質転換し、アエロモナス・キャビエ染色体DNAライブラリーを得た。

【0056】次に、アエロモナス・キャビエのポリエステル重合酵素遺伝子を含むDNA断片を得るためのプローブを調製した。これまでに知られている数種のポリエステル重合酵素のアミノ酸配列でよく保存されている2つの領域を選択し、それをコードする核酸塩基配列を推定して5'-CC(C/G)CC(C/G)TGGATCAA(T/C)AAGT(T/A)(T/C)TA(T/C)ATC-3'(配列番号7)、及び5'-(G/C)AGCCA(G/C)GC(G/C)GTCCA(A/G)TC(G/C)GGCCACCA-3'(配列番号8)で表される2種類のオリゴヌクレオチドを合成した。

【0057】これらのオリゴヌクレオチドをプライマーとし、アエロモナス・キャピエの染色体DNAを鋳型としたPCR法によってポリエステル重合酵素遺伝子を部分増幅した。PCRは、94℃で30秒、50℃で30秒及び72℃で60秒の反応を1サイクルとしてこれを30サイクル行った。この部分増幅断片をDIG DNA 標識キット(ベーリンガーマンハイム社製)によってジゴキシゲニン標識し、プローブとした。

【0058】得られたプローブを用いてアエロモナス・キャビ工染色体DNAライブラリーからコロニーハイブリダイゼーション法によってポリエステル重合酵素遺伝子を含むプラスミドを有する大腸菌を単離した。この大腸菌からアルカリ法によってプラスミドを回収することでポリエステル重合酵素遺伝子を含むDNA断片を得た。この断片のBgIII-EcoRI 断片についてサンガー法によって塩基配列を決定した。その結果、配列番号9又は10で表される3.2kbp断片の塩基配列が決定された。

【0059】さらに、この塩基配列について相同性検索を行った結果、この3.2kbpの塩基配列の中には、配列番号1で表される塩基配列(1785bp)を含むポリエステル重合酵素遺伝子を同定することができた。なお、本発明においては、本発明のポリエステル重合酵素遺伝子によりコードされるタンパク質が、ポリエステル重合の遺伝子発現機能を有する限り、当該遺伝子の塩基配列に欠失、置換、付加等の変異が生じてもよい。

【0060】また、配列番号9又は10で表される塩基配 列を有する断片において、上記1785bpの塩基配列の下流 に存在する405bp の遺伝子(ORF3)及び転写終結領 域、並びに上流に存在する354bp の遺伝子(ORF1) 及び発現調節領域を同定した。ORF1の塩基配列を配 列番号3、ORF1によりコードされるアミノ酸配列を 配列番号4に、ORF3の塩基配列を配列番号5、OR F3によりコードされるアミノ酸配列を配列番号6に示 す。ここで、ORF3はポリエステル生合成に関与する エノイルーCoAヒドラターゼをコードする遺伝子のも のである。そして、ORF3によりコードされるアミノ 酸を有するポリペプチドがエノイルーCoAヒドラター ゼ活性、特に(R)-特異的エノイルーCoAヒドラタ ーゼ活性をもたらす限り、当該アミノ酸配列において、 1個又は数個のアミノ酸に欠失、置換、付加等の変異が 生じてもよい。また、配列番号9及び10で表される塩基 配列において、発現調節領域は第1~383 番目であり、 転写終結領域は第3010~3187番目である。

【0061】〔実施例2〕アルカリゲネス・ユートロファス形質転換体の作製

実施例1で同定された発現調節領域、ORF1、ポリエステル重合酵素遺伝子、ORF3及び転写終結領域を含むBglII-EcoRI 断片のBglII部位をEcoRIリンカーを用いてEcoRI部位とし、3.2kbpのEcoRI-EcoRI断片(EE32 断片)を得た。これをアルカリゲネス属に属する微生物中で発現可能なプラスミドpJRD215(ATCC37533)に挿入し、得られた組換えプラスミドでアルカリゲネス・ユートロファスPHB-4 株 (DSM541)(ポリエステル合成能欠損株)を接合伝達法によって形質転換した。

【0062】すなわち、まず、この組換えプラスミドを用いて大腸菌S17-1 株を塩化カルシウム法によって形質転換した。この組換え大腸菌とアルカリゲネス・ユートロファスPHB-4 株をLB培地1.5ml 中、30℃で終夜培養し、それぞれの培養液0.1mlを混合し、30℃で4時間培養した。この菌体混合液をMBF寒天培地(0.9 %リン酸ニナトリウム、0.15%リン酸ーカリウム、0.05%塩化アンモニウム、0.5 %フルクトース、1.5 %寒天、0.3mg/mlカナマイシン)に塗布し、30℃で5日間培養した。【0063】組換え大腸菌中のプラスミドがアルカリゲ

ネス・ユートロファスPHB-4 株に伝達されるとカナマイシン耐性を示すことから、MBF寒天培地上で増殖したコロニーはアルカリゲネス・ユートロファス形質転換体

である。この中から1個のコロニーを単離し、アルカリゲネス・ユートロファスAC32株(以下、AC32株と呼ぶ)を得た。なお、AC32株は、工業技術院生命工学工業技術研究所に、FERM P-15786として寄託されている。

【0064】さらに合成オリゴヌクレオチドを用いた部位特異的変異法(Currnt Protocolsin Molecular Biology,1巻,8.1.1 頁,1994年)によってEE32断片中のORF1遺伝子の前後にそれぞれ制限酵素BgIII 部位を導入し、BgIII-BgIII 断片を欠失させることによってORF1遺伝子が欠失した断片を作製し、プラスミドpJRD215 に挿入した。この組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4 株を形質転換した。得られた形質転換体を、以下AC321株と呼ぶ。

【0065】同様に、部位特異的変異法によってEE32断片中のORF3遺伝子の前後にそれぞれ制限酵素BamHI部位を導入し、BamHI-BamHI断片を欠失させることによってORF3遺伝子が欠失した断片を作製し、プラスミドpJRD215に挿入した。この組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4株を形質転換した。得られた形質転換体を、以下AC323株と呼ぶ。

【0066】同様に、EE32断片中のORF1遺伝子の前後にそれぞれ制限酵素BglII部位を、ORF3遺伝子の前後にそれぞれ制限酵素BamHI部位を導入し、BglII-BglII断片およびBamHI-BamHI断片を欠失させることによってORF1遺伝子およびORF3遺伝子が共に欠失した断片を作製し、プラスミドpJRD215に挿入した。この組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4株を形質転換した。得られた形質転換体を、以下AC3213株と呼ぶ。

【0067】さらに、EE32断片を鋳型とし、PCR法によってポリエステル重合酵素遺伝子を増幅し、得られた増幅断片を、公知であるアルカリゲネス・ユートロファス由来ポリエステル合成系遺伝子の発現調節領域と転写終結領域との間に挿入した。PCRは、5'-AGTTCCCGCCTCGGGTGGGTGAA-3'(配列番号11)および5'-GGCATATGCGCTCATGCGGCGTCCT-3'(配列番号12)をプライマーとして、94℃で30秒、55℃で30秒及び72℃で60秒の反応を1サイクルとしてこれを30サイクル行った。

【0068】このDNA断片をプラスミドpJRD215 に挿入し、得られた組換えプラスミドを用いて、上述の接合 伝達法によってアルカリゲネス・ユートロファスPHB-4 株を形質転換した。得られた形質転換体を、以下AC29株と呼ぶ。

【0069】 〔実施例3〕 アルカリゲネス ユートロファス形質転換体によるポリエステル合成 アルカリゲネス・ユートロファスH16株、PHB-4 株、AC32株、AC321株、AC323株、AC321株、AC3213株、AC29株を、それぞれ、95mlのMB培地(0.9%リン酸ニナトリウム、0.15%リン酸ーカリウム、0.05%塩化アンモニウム)に1mlの1%オクタン酸ナトリウムを加えた培地に植菌し、坂口フラスコ中、30℃で培養した。AC32株、AC321株、AC323株、AC3213株及びAC29株についてはカナマイシンを0.2g/Lの濃度で含有させた。12時間、24時間、36時間及び48時間経過後にそれぞれ1mlの1%オクタン酸ナトリウムを添加しつつ(オクタン酸ナトリウムの総添加量0.5g)、72時間培養した。

【0070】H16株、及びAC3213株については上述のMB培地に1%オリーブ油、パーム油、コーン油、あるいはオレイン酸を加えた培地に植菌し、坂口フラスコ中、30℃で72時間培養した。なお、AC3213株を培養する際には、培地にカナマイシンを0.2g/Lの濃度で含有させた。

【0071】H16株、AC32株、AC321株、AC323株、AC321株、AC323株、AC3213株については上述のMB培地に1mlの1%へプタン酸ナトリウムを加えた培地に植菌し、坂口フラスコ中、30℃で培養した。なお、AC32株、AC321株、AC323株、及びAC3213株

を培養する際には、培地にカナマイシンを0.2g/Lの濃度で含有させた。12時間、24時間、36時間及び48時間経過後にそれぞれ1mlの1%ヘプタン酸ナトリウムを添加しつつ(ヘプタン酸ナトリウムの総添加量0.5g)、72時間培養した。

【0072】培養後、遠心分離によって菌体を回収し、蒸留水で洗浄後、凍結乾燥し、乾燥菌体重量を測定した。乾燥菌体10~30mgに2mlの硫酸ーメタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱することにより、菌体内ポリエステル分解物のメチルエステルを得た。これに1mlの蒸留水を添加して激しく撹拌した。静置して二層に分離させた後、下層の有機層を取り出し、その組成をキャピラリーガスクロマトグラフィーによって分析した。ガスクロマトグラフィーによって分析した。ガスクロマトグラフは島津製作所製GC-14A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。温度条件は、初発温度100℃から8℃/分の速度で昇温した。得

られた結果を表1、表2、および表3に示す。

[0073]

【表1】

表1 オクタン酸を炭素源としたポリエステル合成

		TO ESONOSE O TES	. , . , , ,	H/94
使用菌株	乾燥菌体重量(g/1)	ポリエステル含量 (<u>重量</u> %)	ポリエスラ 3 H B (モル	3HH
H16 PHB-4 AC32 AC321 AC323 AC3213 AC29	3.00 0.80 0.99 2.85 2.85 3.64 3.20	86 0 33 92 92 96 94	100 - 78 87 88 88 85 92	0 - 23 13 12 15 8

3HB: 3-ヒドロキシブチレート、3HH: :3-ヒドロキシヘキサノエート

[0074]

【表2】 表2 植物油またはオレイン酸を炭素源としたポリエステル合成

使用菌	朱 炭素源	乾燥菌体重量 (g/l)	ポリエステル含量 (重量%)	ポリエスラ 3HB (モル	
Н16	オリーブ? コーン油 パーム油 オレイン間	3.57 4.13	79 81 79 82	100 100 100 100	0 0 0
AC3213	3 オリーブ液 コーン油 パーム油 オレイン酸	3.60 3.58	76 77 81 70	96 95 96 96	4 5 4 4

3HB: 3-ヒドロキシブチレート、3HH: 3-ヒドロキシヘキサノエート

[0075]

【表3】

表3 ヘプタン酸を炭素源としたポリエステル合成

使用菌株	乾燥菌体重量 (g/l)	ポリエステル含量 (重量%)	ポリ 3 H B	リエステ り 3HV (モル%)	V組成 3HHp
H16 AC32 AC321 AC323 AC3213	2.50 0.77 1.67 1.27 2.76	60 7 55 40 67	50 30 46 48 44	50 67 52 45 48	0 5 2 7 8

3HB : 3-ヒドロキシブチレート、3HV : 3-ヒドロキシバリレート 3Hhp: 3-ヒドロキシヘプタノエート

【0076】オクタン酸を炭素源とした場合、表1に示すようにアルカリゲネス・ユートロファス野生株であるH16株ではポリ(3ーヒドロキシプチレート)ホモポリマーを合成する。これはH16株の有するポリエステル重合酵素は炭素数6の3HH(3ーヒドロキシヘキサノエート)を基質としないためである。そのポリエステル合成能欠損株であるPHB-4株では変異処理によってポリエステル重合酵素が欠損しているため、ポリエステルを蓄積しない。PHB-4株にアエロモナス・キャビエ由来のポリエステル重合酵素遺伝子を含むEE32断片を導入したAC32株では3HH(3ーヒドロキシヘキサノエート)分率22モル%のポリ(3ーヒドロキシブチレート-3ヒドロキシヘキサノエート)ランダム共重合体(P(3HB-co-3HH))を乾燥菌体重量あたり33重量%蓄積した。

【0077】さらに、AC321株、AC323株、AC321株、AC3213株では3HH分率12~15モル%のP(3HB-co-3HH)を92~96重量%蓄積し、ORF1遺伝子、ORF3遺伝子、あるいはその両方を欠失させることでポリエステル収率が著しく改善された。

【0078】また、導入したポリエステル重合酵素遺伝子の発現調節領域および転写終結領域をアルカリゲネス・ユートロファス由来のものに置換したAC29株でも、94重量%のP(3HB-co-3HH)を蓄積し、由来の異なる発現調節領域および転写終結領域を使用してもポリエステル収率が著しく改善された。

【0079】最もポリエステル収率の高いAC3213株をオリーブ油、コーン油、パーム油を炭素源として培養したところ、表2に示すように3HH分率4~5モル%のP(3HB-co-3HH)を76~81重量%蓄積した。植物油に最も多く含まれる脂肪酸成分であるオレイン酸を炭素源としても3HH分率4モル%のP(3HB-co-3HH)を70重量%で蓄積した。野性株であるH16株はこの条件下でポリ(3ーヒドロキシブチレート)ホモポリマーのみを合成した。

【0080】なお、アエロモナス・キャビエFA440株では、パルミチン酸を炭素源として8重量%のP(3HB-co-3HH)を蓄積することが報告されている(特開平7-265065号公報)。本発明においてはオクタン酸を炭素源として96重量%のP(3HB-co-3HH)が、また極めて安価である植物油を炭素源として76~81重量%のP(3HB-c

o-3 HH)が蓄積されることから、公報記載の方法と 比較すると、本実施例で使用した形質転換体による P (3 HB -c o-3 HH)合成法は極めて優れた方法で あると言える。

【0081】ヘプタン酸を炭素源とした場合、表2に示すようにアルカリゲネス・ユートロファス野生株であるH16株ではポリ(3ーヒドロキシブチレートー3ーヒドロキシバリレート)共重合体(P(3HB-co-3HV))を合成する。これはH16株の有するポリエステル重合酵素は炭素数7の3HHp(3ーヒドロキシヘプタノエート)を基質としないためである。PHB-4株にアエロモナス・キャビエ由来のポリエステル重合酵素遺伝子を含むEE32断片を導入したAC32株では3HHp分率5モル%のポリ(3ーヒドロキシブチレートー3ーヒドロキシバリレートー3ーヒドロキシベプタノエート)三元共重合体(P(3HB-co-3HV-co-3HHp))を乾燥菌体重量あたり7重量%蓄積した。

【0082】 さらに、AC321株、AC323株、AC321株、AC323株、AC321 株では3HHp分率 $2\sim8$ モル%oP(3HB-co-3HV-co-3HHp)を $40\sim67$ 重量%蓄積し、ORF1 遺伝子、ORF3 遺伝子、あるいはその両方を欠失させることでポリエステル収率が著しく改善された(表3)。

【0083】これらの結果から、アエロモナス・キャビ エ由来のポリエステル重合酵素は炭素数4~7の3-ヒド ロキシアルカン酸をモノマーユニットとする共重合ポリ エステルを合成することができると言える。

【0084】〔実施例4〕ORF3の機能同定 EE32断片を鋳型として、PCR法によってORF3 遺伝子を増幅し、発現プラスミドPET-3a(ノバジェン社製)のT7プロモーター下流に挿入した。PCRは5'-GCCATATGAGCGCACAATCCCTGGAAGTAG-3'(配列番号13)および5'-CTGGGATCCGCCGGTGCTTAAGGCAGCTTG-3'(配列番号14)をプライマーとして、95℃で60秒、68℃で30秒の反応を1サイクルとして25サイクル行った。得られたプラスミドを用いて大腸菌BL21(DE3)株(ノバジェン社製)を形質転換した。得られた形質転換体を以下、NB3株とする。

【0085】NB3株を100mlのLB培地で30℃、4時間培養し、イソプロピルチオガラクトピラノシド(IPTG)を最終濃度0.4 mMとなるように添加して発現を誘導し、さらに30℃で2時間培養した。菌体を遠心分離によ

って回収した後、超音波破砕、遠心分離によって可溶性 タンパク画分を得た。表4に示すように、発現プラスミ ドを導入した菌体の可溶性画分には高いエノイルーCo Aヒドラターゼ活性が検出された。

[0086]

【表4】

表4 可溶性タンパク画分のエノイルーC o Aヒドラターゼ比活性 (ユニット/喊タンパク)

大腸菌BL21(DE3) 株/PET-3a 大腸菌NB3 株

1700

【0087】エノイルーCoAヒドラターゼ活性はクロトニルーCoA(シグマ社製)を基質とし(濃度0.25m M)、2重結合の水和に伴う吸光度変化(263nm)を測定することにより求めた。一方、ORF3遺伝子を挿入していないコントロールプラスミドPET-3aを導入した大腸菌株では活性はまったく検出されなかった。

【0088】そこで、エノイルーCoAヒドラターゼタンパクの精製を行った。NB3株の可溶性タンパク画分をQーセファロース陰イオン交換カラム(ファルマシア

社製)に負荷し、塩化ナトリウム濃度勾配 (0 Mから1 M)によってタンパクを溶出させ、エノイルーCoAヒドラターゼ活性画分を回収した。活性画分のドデシル硫酸ナトリウムーポリアクリルアミドゲル電気泳動分析から、図2に示すように電気泳動的に均一であることがわかった。また表5に示すように比活性を約3倍に向上させることができた。

[0089]

【表 5】

表5 エノイルーCoAヒドラターゼ比活性

ターゼ比活性 (ユニット/〒タンパク)

大陽菌NB3株可溶性タンパク画分 陰イオン交換カラム溶出画分

1700 5100

【0090】得られた精製エノイルーCoAヒドラター・ゼタンパクのN末端アミノ酸配列を決定したところ、表6に示すように開始コドンであるMet 以外のアミノ酸配列は、ORF3遺伝子の塩基配列から推定したアミノ酸

配列と一致した。

[0091]

【表 6】

表6 アミノ酸配列の比較

精製エノイル-CoAヒドラターゼ Nー末端アミノ酸配列: ORF3塩基配列から の推定アミノ酸配列:

SAQSLEVQQKARLSKRFGAA (配列番号15)

MSAQSLEVGQKARLSKRFGAA (配列番号16)

【0092】このことから、ORF3がエノイルーCoAヒドラターゼをコードしていることが確認できた。Metは翻訳後修飾によって脱離したものと考えられる。また、ORF3にコードされるエノイルーCoAヒドラターゼの立体特異性について以下のように検討した。

【0093】活性測定の反応溶液に(S)-3-ヒドロキシブチリルーCoAデヒドロゲナーゼ(シグマ社製)(最終濃度0.2 ユニット/ml)と酸化型ニコチンアミドアデニンジヌクレオチド(NAD+)(最終濃度0.5mM)を添加すると、エノイルーCoAヒドラターゼの特異性が(S)-体特異的であれば、生成した(S)-3-ヒドロキシブチリルーCoAはデヒドロゲナーゼの作用によってアセトアセチルーCoAに酸化される。それ

に伴ってNAD+は還元されてNADHが生成し、340nm に特異的な吸収を生じる。逆にエノイルーCoAヒドラターゼが(R) - 体特異的であれば、NADHは生成しない。

【0094】表7に示すように、ORF3にコードされるエノイルーCoAヒドラターゼを用いた場合では、340nm の吸光度変化はエノイルーCoAヒドラターゼ無添加の場合とほとんど同じであったが、市販の(S) -特異的エノイルーCoAヒドラターゼ(シグマ社製)を用いた場合では、NADHの生成に伴う吸光度変化が見られた。

[0095]

【表7】

表7 1分後の340nm における吸光度変化

エノイル-CoAヒドラターゼ無添加 0.045 ORF3由来エノイル-CoAヒドラターゼ 0.047 (S)-体特異的エノイル-CoAヒドラターゼ 0.146 (シグマ社製)

【0096】この結果から、精製エノイルーCoAヒドラターゼは(R)-体特異的であることが明らかとなった。従って、ORF3は(R)-体特異的エノイルーC

oAヒドラターゼをコードしていることが分かった。 【0097】

【発明の効果】本発明により、ポリエステル重合酵素遺

伝子、該遺伝子を含む組換えベクター、該組換えベクタ ーを含む形質転換体及びポリエステルの製造方法が提供 される。本発明の遺伝子は、炭素数4~7の3-ヒドロキ シアルカン酸をモノマーユニットとする共重合ポリエス テルを合成することが可能なポリエステル重合酵素をコ ードしている点で、また、本発明の製造方法は、熱安定 性や成形性に優れた生分解性プラスチックであるP(3HBco-3HH) を効率よく合成可能である点で有用である。

[0098] 【配列表】

配列番号:1

配列の長さ:1785

配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:genomic DNA

配列	IJ:															
ATG	AGC	CAA	CCA	TCT	TAT	GGC	CCG	CTG	TTC	GAG	GCC	CTG	GCC	CAC	TAC	48
Met	Ser	Gln	Pro	Ser	Tyr	Gly	Pro	Leu	Phe	Glu	Ala	Leu	Ala	His	Tyr	
1				5					10					15		
AAT	GAC	AAG	CTG	CTG	GCC	ATG	GCC	AAG	GCC	CAG	ACA	GAG	CGC	ACC	GCC	96
Asn	Asp	Lys	Leu	Leu	Ala	Met	Ala	Lys	Ala	Gln	Thr	Glu	Arg	Thr	Ala	
			20					25					30			
CAG	GCG	CTG	CTG	CAG	ACC	AAT	CTG	GAC	GAT	CTG	GGC	CAG	GTG	CTG	GAG	144
Gln	Ala	Leu	Leu	Gln	Thr	Asn	Leu	Asp	Asp	Leu	Gly	Gln	Val	Leu	Glu	
		35					40					45				
CAG	GGC	AGC	CAG	CAA	CCC	TGG	CAG	CTG	ATC	CAG	GCC	CAG	ATG	AAC	TGG	192
Gln	Gly	Ser	Gln	Gln	Pro	Trp	Gln	Leu	He	Gln	Ala	Gln	Me t	Asn	Trp	
	50					55					60					
TGG	CAG	GAT	CAG	CTC	AAG	CTG	ATG	CAG	CAC	ACC	CTG	CTC	AAA	AGC	GCA	240
	Gln	Asp	Gln	Leu	Lys	Leu	Met	Gln	His	Thr	Leu	Leu	Lys	Ser	Ala	
65					70					75					80	
					CCG											288
Gly	Gln	Pro	Ser		Pro	Val	He	Thr	Pro	Glu	Arg	Ser	Asp	Arg	Arg	
				85					90					95		
					TGG											336
Phe	Lys	Ala		Ala	Trp	Ser	Glu		Pro	He	Tyr	Asp	Tyr	Leu	Lys	
			100					105					110			
					ACC											384
Gln	Ser		Leu	Leu	Thr	Ala		His	Leu	Leu	Ala		Val	Asp	Ala	
0.00	0.4.0	115	ama	000			120					125				
					CAG											432
Leu		Gly	vai	Pro	Gln		Ser	Arg	Glu	Arg		Arg	Phe	Phe	Thr	
000	130	T. C	OTIO		000	135	000	000	400		140	000	000	400		
					GCC											480
		ТУГ	vai	ASII	Ala	мет	Ala	Pro	Ser		Pne	Leu	Ala	Inr		
145		ርጥር	ርጥር	AAC	150	ACC	OTO	CAC	TOO	155	000	CAC		OTTO	160	500
_					CTG											528
PTO	Giu	reu	reu		Leu	1111	reu	GIU		ASP	GIY	GIN	ASI		vai	
ccc	CCA	CTC	rcc	165	TTG	ccc	CAC	CAT	170	CAC	ccc	۸۵۲	ccc	175	CAC	576
					Leu											576
лıg	GIY	rea	180	LCU	Leu	ніа	Giu	185	reu	Giu	AIg	361	190	ASP	GIII	
ርፐር	AAC	ΔΤΩ		CTC	ACC	CAC	CAA		ccc	ፐፐር	CAC	ርፐር		ccc	САТ	624
					Thr											024
LCU	11311	195	ыg	neu	1111	nsp	200	361	ліа	1 116	oru	205	GIY	Λιβ	νsħ	
CTG	GCC		ACC	CCC	GGC	CCC		СТС	CAC	ւնւ	ACC		ርፐር	ТАТ	CAC	672
					Gly											012
Dou	u	LCU	1111	110	Ory	nı g	141	v a 1	0111	AI B	1 11 1	014	LCU	1 % 1	ain	

	910					015					000					
СТС	210	CAC	TAC	ACC	ccc	215	ACC	CAC	ACC	СТС	220			COT	CTC	700
				AGC												720
225	116	GIII	1 9 1	Ser	230	1111	1111	GIU	1111	235	GIY	Lys	Inr	PFO		
	ΑТА	CTC	ccc	ссс		ATC	AAC	AAC	TAC		ATC.	ATC.	CAC	ATC	240	700
																768
Leu	116	Vai	rio	Pro	rne	116	ASII	Lys		Iyr	He	met	ASD		Arg	
ccc	CAC	AAC	ፐርር	245	ርፕር	ccc	ፐርር	CTC	250	ccc	CAC	ccc	CAC	255	СТА	016
				CTG												816
PIO	GIII	ASII	260	Leu	Vai	Ala	ttb		vai	AIA	GIII	ыу		ınr	vai	
TTC	ለጥር	ATC		ፐርር	ccc	AAC	ccc	265	CTC	ccc	CAC	ccc	270	ATO	CAT	0.04
				TGG												864
riie	meı		ser	Trp	Arg	ASII		ыу	vai	АТа	GIH		GIII	116	ASP	
CTC	CAC	275	TAC	СТС	CTC	ር A T	280	CTC	ATC	ccc	ccc	285 CTC	CAC	ccc	СТС	010
				GTG												912
Leu	290	ASP	1 9 1	Val		295	GIY	vai	116	Ala		Leu	ASP	GIY	vai	
CAC		ccc	ACC	GGC			CAC	CTC	CAC	CCC	300	ccc	TAC	TCC	ATC	0.00
																960
305	nia	Ald	1111	Gly	310	AIG	GIU	vai	піз	315	116	ыу	Iyi	Cys		
	ccc	۸۵۲	ccc	CTG		CTC	ccc	ATC	ccc		· CTC	ccc	CCC	CCC	320	1000
				Leu												1008
Gry	GIY	1111	міа	325	361	Leu	міа	Met	330	пр	rea	Ala	Ala	335	AIg	
CAC	۸۸۲	CAC	ccc	-	ccc	ACC	ccc	ACC		ፐፐር	ACT	۸۵۲	СТС		GAC ·	1056
				Val												1056
OIII	Lys	GIII	340	vai	лıg	1111	міа	345	ren	rne	1111	1111	350	Leu	мър	
TTC	ፐርር	CAG		GGG	CAC	CTT	ccc		ፐፐር	ATC	CAC	CAC		ATC	ΑΤΑ	1104
				Gly												1104
THE	JCI	355	110	GIY	Giu	LCu	360	116	THE	116	1113	365	110	116	116	
GCG	ccc		CAC	GCG	САА	ΔΔΤ		ccc	ΔAC	ccc	ATC		CAC	ccc	ccc	1152
				Ala												1102
71. u	370	LCu	oru	<i>1</i> 11 a	UIII	375	oru	Mid	LJS	Uly	380	MC t	пор	Oly	мg	
CAG		ccc	стс	TCC	ፐፐር		ርፕር	СТС	ccc	CAC		ACC	CTC	тΔС	TCC	1200
				Ser												1200
385	200			001	390	001	Deu	Dou	6	395	71311	001	LCu	. , .	400	-
	TAC	TAC	ATC	GAC		TAC	СТС	AAG	GGT		AGC	CCG	GTG	GCC		1248
				Asp												1210
	-,-	-,-		405		-,-	200	2,0	410	V				415	1110	
GAT	CTG	CTG	CAC	TGG	AAC	AGC	GAC	AGC	-	AAT	GTG	GCG	GGC		ACC	1296
				Trp												1200
			420					425					430	_, _		
CAC	AAC	AGC		CTG	CGC	CGT	СТС		CTG	GAG	AAC	CAG		GTG	AAG	1344
				Leu												
		435			·	Ū	440	•				445			_,_	
GGG	GAG		AAG	ATC	CGC	AAC	ACC	CGC	ATC	GAT	СТС	GGC	AAG	GTG	AAG	1392
				Ile												
	450				_	455		,		-	460	-	*		-	
ACC	ССТ	GTG	CTG	CTG	GTG	TCG	GCG	GTG	GAC	GAT	CAC	ATC	GCC	СТС	TGG	1440
Thr	Pro	Val	Leu	Leu	Val	Ser	Ala	Val	Asp	Asp	His	He	Ala	Leu	Тгр	
465					470					475					480	
CAG	GGC	ACC	TGG	CAG	GGC	ATG	AAG	CTG	TTT	GGC	GGG	GAG	CAG	CGC	TTC	1488

Gl	n G	lу	Thr	Trp		Gly	Met	Lys	Leu		Gly	Gly	Glu	Gln	Arg	Phe	
					485					490					495		
CT	C C	TG	GCG	GAG	TCC	GGC	CAC	ATC	GCC	GGC	ATC	ATC	AAC	CCG	CCG	GCC	1536
Le	u L	eu	Ala	Glu	Ser	Gly	His	Ile	Ala	Gly	Ile	He	Asn	${\tt Pro}$	${\tt Pro}$	Ala	
				500					505					510			
GC	C A	AC	AAG	TAC	GGC	TTC	TGG	CAC	AAC	GGG	GCC	GAG	GCC	GAG	AGC	CCG	1584
Αl	a A	sn	Lys	Tyr	Gly	Phe	Trp	His	Asn	Gly	Ala	Glu	Ala	Glu	Ser	Pro	
			515					520					525				
GA	G A	GC	TGG	CTG	GCA	GGG	GCG	ACG	CAC	CAG	GGC	GGC	TCC	TGG	TGG	CCC	1632
Gl	u S	er	Trp	Leu	Ala	Gly	Ala	Thr	His	Gln	Gly	Gly	Ser	Trp	Trp	Pro	
	5	30					535					540					
GA	G A	TG	ATG	GGC	TTT	ATC	CAG	AAC	CGT	GAC	GAA	GGG	TCA	GAG	CCC	GTC	1680
Gl	u M	et	Met	Gly	Phe	Ile	Gln	Asn	Arg	Asp	Glu	Gly	Ser	Glu	Pro	Val	
54						550					555					560	
CC	C G	CG	CGG	GTC	CCG	GAG	GAA	GGG	CTG	GCC	CCC	GCC	CCC	GGC	CAC	TAT	1728
											Pro						
					565			•		570					575	- • -	
GT	C A	AG	GTG	CGG		AAC	CCC	GTG	TTT	GCC	TGC	CCA	ACA	GAG	GAG	GAC	1776
											Cys						
		• -		580					585		•,•			590	0.4	ПОР	
GC	C G	CA	TGA						300					350			1785
	a A		. 0/1														1100
111	. 11	ı u															

【0099】配列番号:2

配列の長さ:594 配列の型:アミノ酸

配列の種類: タンパク質

トポロジー:直鎖状

配列:

Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr 10 Asn Asp Lys Leu Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala 25 Gln Ala Leu Leu Gln Thr Asn Leu Asp Asp Leu Gly Gln Val Leu Glu 40 Gln Gly Ser Gln Gln Pro Trp Gln Leu Ile Gln Ala Gln Met Asn Trp Trp Gln Asp Gln Leu Lys Leu Met Gln His Thr Leu Leu Lys Ser Ala 70 75 Gly Gln Pro Ser Glu Pro Val Ile Thr Pro Glu Arg Ser Asp Arg Arg Phe Lys Ala Glu Ala Trp Ser Glu Gln Pro Ile Tyr Asp Tyr Leu Lys 105 Gln Ser Tyr Leu Leu Thr Ala Arg His Leu Leu Ala Ser Val Asp Ala 120 125 Leu Glu Gly Val Pro Gln Lys Ser Arg Glu Arg Leu Arg Phe Phe Thr 135 140 Arg Gln Tyr Val Asn Ala Met Ala Pro Ser Asn Phe Leu Ala Thr Asn 150 155 160 Pro Glu Leu Leu Lys Leu Thr Leu Glu Ser Asp Gly Gln Asn Leu Val 165 170 Arg Gly Leu Ala Leu Leu Ala Glu Asp Leu Glu Arg Ser Ala Asp Gln 180 185 190

Leu	Asn	I le 195	Arg	Leu	Thr	Asp	Glu 200	Ser	Ala	Phe	Glu	Leu 205	Gly	Arg	Asp
Leu	Ala 210	Leu	Thr	Pro	Gly	Arg 215	Val	Val	Gln	Arg	Thr 220	Glu	Leu	Tyr	Glu
Leu 225	He	Gln	Tyr	Ser	Pro 230	Thr	Thr	Glu	Thr	Val 235	Gly	Lys	Thr	Pro	Val 240
Leu	He	Val	Pro	Pro 245	Phe	Ile	Asn	Lys	Tyr 250	Tyr	Ile	Met	Asp	Me t 255	Arg
Pro	Gln	Asn	Ser 260	Leu	Val	Ala	Trp	Leu 265	Val	Ala	Gln	Gly	Gln 270	Thr	Val
Phe	Met	Ile 275	Ser	Trp	Arg	Asn	Pro 280	Gly	Val	Ala	Gln	Ala 285	Gln	Ile	Asp
Leu	Asp 290	Asp	Tyr	Val	Val	Asp 295	Gly	Val	Ile	Ala	Ala 300	Leu	Asp	Gly	Val
Gl u 305	Ala	Ala	Thr	Gly	Glu 310	Arg	Glu	Val	His	Gly 315	Ile	Gly	Tyr	Cys	Ile 320
Gly	Gly	Thr	Ala	Leu 325	Ser	Leu	Ala	Met	Gly 330	Trp	Leu	Ala	Ala	Arg 335	Arg
Gln	Lys	Gln	Arg 340	Val	Arg	Thr	Ala	Thr 345	Leu	Phe	Thr	Thr	Leu 350	Leu	Asp
Phe	Ser	Gln 355	Pro	Gly	Glu	Leu	Gly 360	Ile	Phe	He	His	Glu 365	Pro	Ile	He
Ala	Ala 370	Leu	Glu	Ala	Gln	As n 375	Glu	Ala	Lys	Gly	Ile 380	Met	Asp	Gly	Arg
Gl n 385	Leu	Ala	Val	Ser	Phe 390	Ser	Leu	Leu	Arg	Glu 395	Asn	Ser	Leu	Tyr	Trp 400
Asn	Tyr	Tyr	He	Asp 405	Ser	Tyr	Leu	Lys	Gly 410	Gln	Ser	Pro	Val	Ala 415	Phe
Asp	Leu	Leu	His 420	Trp	Asn	Ser	Asp	Ser 425	Thr	Asn	Val	Ala	Gly 430	Lys	Thr
His	Asn	Ser 435	Leu	Leu	Arg	Arg	Leu 440	Tyr	Leu	Glu	Asn	Gln 445	Leu	Val	Lys
Gly	Glu 450	Leu	Lys	Ile	Arg	Asn 455	Thr	Arg	He	Asp	Leu 460	Gly	Lys	Val	Lys
465			Leu		470					475					480
			Trp	485					490		,			495	
Leu	Leu	Ala	G1 u 500	Ser	Gly	His	He	Ala 505	Gly	Ile	He	Asn	Pro 510	Pro	Ala
		515	Tyr				520					525			
	530		Leu			535					540				
545			Gly		550					555					560
			Val	565					570					575	
Val	Lys	Val	Arg 580	Leu	Asn	Pro	Val	Phe 585	Ala	Cys	Pro	Thr	Glu 590	Glu	Asp

Ala Ala

【0100】配列番号:3

配列の長さ:354 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:genomic DNA

配列:

ATG ATG AAT ATG GAC GTG ATC AAG AGC TTT ACC GAG CAG ATG CAA GGC Met Met Asn Met Asp Val Ile Lys Ser Phe Thr Glu Gln Met Gln Gly 1 5 10 TTC GCC GCC CCC CTC ACC CGC TAC AAC CAG CTG CTG GCC AGC AAC ATC Phe Ala Ala Pro Leu Thr Arg Tyr Asn Gln Leu Leu Ala Ser Asn Ile 20 25 3 0 GAA CAG CTG ACC CGG TTG CAG CTG GCC TCC GCC AAC GCC TAC GCC GAA 144 Glu Gln Leu Thr Arg Leu Gln Leu Ala Ala Asn Ala Tyr Ala Glu 3 5 40 45 CTG GGC CTC AAC CAG TTG CAG GCC GTG AGC AAG GTG CAG GAC ACC CAG Leu Gly Leu Asn Gln Leu Gln Ala Val Ser Lys Val Gln Asp Thr Gln 5 0 5 5 60 AGC CTG GCG GCC CTG GGC ACA GTG CAA CTG GAG ACC GCC AGC CAG CTC 240 Ser Leu Ala Ala Leu Gly Thr Val Gln Leu Glu Thr Ala Ser Gln Leu 6 5 7.0 7 5 8 0 TCCCGC CAG ATG CTG GAT GAC ATC CAG AAG CTG AGC GCC CTC GGC CAG 288 Ser Arg Gln Met Leu Asp Asp Ile Gln Lys Leu Ser Ala Gly Gln Leu 8 5 9 0 9 5 TTC AAG GAA GAG CTG GAT GTC CTG CAG ACC GCA GAC GGC ATC AAG AAA 3 3 6 Gln Phe Lys Glu Glu Leu Asp Val Leu Thr Ala Asp Gly Ile Lys Lys 100 105 1 1 0 AGC ACG GGC AAG GCC TGA354 Ser Thr Gly Lys Ala 115

【0101】配列番号:4 配列の長さ:117 トポロジー:直鎖状 配列の種類:タンパク質

配列の型:アミノ酸

配列:								
Me t	Met	Asn	Met	Δen	V a 1	Ile	Lve	Ser
Phe	Thr	Glu		Met		Gly	Lуз	361
1	1 11 1	Giu	GIII	ме t 5	GIII	Gly		
1 0				J	1 5			
Phe	Ala	A 1 a	Dro	Ι ο 11		Λ - ~	Т	1 0 0
			Pro	Leu	Thr		Туг	ASII
Gln	Leu	Leu	Ala	Ser	Asn	Ile		0.5
			2 0	2.0				2 5
C 1	C 1 =	T	Th =	3 0	T	C 1 -	T	A 1 -
Glu		Leu			Leu		Leu	Ala
Ser	Ala	Asn	Ага	Туг	Ala	Glu	4.0	
		3 5	4.5				4 0	
τ	C 1	•	45	0.1	-	6 1		
Leu	Gly		Asn		Leu		Ala	Val
Ser		Val	Gln	Asp	Thr	Gln		
	5 0	2.5				5 5		
	_	6 0		_				
Ser	Leu				Gly		Val	Gln
Leu	Glu	Thr	Ala	Ser	Gln	Leu		
6 5					7 0			
_	7 5					8 0		
Ser	Arg	Gln		Leu	Asp	Asp	Ile	Gln
Lуs	Leu	Ser	Ala	Leu	Gly	Gln		
				8 5				
9 0					9 5			
Gln	Рhе	Lуs	Glu	Glu	Leu	Asp	Val	Leu
Thr	Ala	Asp	Gly	Ile	Lуs	Lуs		
			100					105
				1 1 0				
Ser	Thr	Gly	Lуs	Ala				
		1 1 5						
【0102】配列番号:5				錐	[の数:二	本鎖		
配列の長さ:405				+	ポロジー	- : 直鎖状	5	
配列の型:核酸				Ē	列の種類	: genom	ic DNA	

配列の種類:genomic DNA

配列: ATG AGC GCA CAA TCC CTG GAA GTA GGC CAG AAG GCC CGT CTC AGC AAG 48 Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys 1 5 10 1 5 CGG TTC GGG GCG GCG GAG GTA GCC GCC TTC GCC GCG CTC TCG GAG GAC 96 Arg Phe Gly Ala Ala Glu Val Ala Ala Phe Ala Ala Leu Ser Glu Asp 2 0 2 5 3 0 TTC AAC CCC CTG CAC CTG GAC CCG GCC TTC GCC GCC ACC ACG GCG TTC 144

Phe Asn Pro Leu His Leu Asp Pro Ala

Рhе	Ala	Ala	Thr	Thr	Ala	Рhе	
		3 5					40
			4 5				
GAG	CGG	CCC	ATA	GTC	CAC	GGC	ATG CTG
СТС	GCC	AGC	CTC	TTC	TCC	GGG	192
Glu	Arg	Pro	lle	Val	His	Gly	Met Leu
Leu	Ala	Ser	Leu	Рhе	Ser	Gly	
	5 0					5 5	
		6 0					
CTG	CTG	GGC	CAG	CAG	TTG	CCG	GGC AAG
GGG	AGC	ATC	TAT	CTG	GGT	CAA	2 4 0
Leu	Leu	Gly	Gln	Gln	Leu	Pro	Gly Lys
Gly	Ser	Ιlе	Туr	Leu	Gly	Gln	
6 5					7 0		
	7 5					8 0	
AGC	CTC	AGC	TTC	AAG	CTG	CCG	GTC TTT
GTC	GGG	GAC	GAG	GTG	ACG	GCC	288
Ser	Leu	Ser	Рhе	Lуs	Leu	Pro	Val Phe
Val	Gly	Asp	Glu	Val	Thr	Ala	
·	•			8 5			
9 0					9 5		
GAG	GTG	GAG	GTG	ACC	GCC	CTT	CGC GAG
GAC	AAG	CCC	ATC	GCC	ACC	CTG	3 3 6
Glu	Val	Glu	V a 1	Thr	Ala	Leu	Arg Glu
Asp	Lуs	Pro	Ile	Ala	Thr	Leu	
			100				105
				1 1 0			•
ACC	ACC	CGC	ATC	TTC	ACC	CAA	GGC GGC
GCC	CTC	GCC	GTG	ACG	GGG	GAA	3 8 4
Thr	Thr	Arg	Ιlе	Рhе	Thr	Gln	Gly Gly
Ala	Leu	Ala	Val	Thr	Gly	Glu	
·		1 1 5					1 2 0
			1 2 5				
GCC	GTG	GTC	AAG	CTG	CCT	TAA	
							405
Ala	Val	Val	Lуs	Leu	Pro		
·	1 3 0						
【0103】配列番号:6				1	ポロジー	-:直鎖状	2
配列の長さ:134				香	別の種類	頁: タンハ	ペク質
配列の型:アミノ酸							
配列:							
Me t	Ser						Val Gly
Gln	Lуs	Ala	Arg	Leu	Ser	Lуs	
1				5			
1 0					1 5		
Arg	Phe	Gly	Ala	Ala	Glu	Val	Ala Ala

30 Phe Asn Pro Leu His Leu Asp Pro Ala

2 5

Phe Ala Ala Leu Ser Glu Asp 20 Phe Ala Ala Thr Thr Ala Phe

	rne	Ага		1 11 1	1 11 1	Ala	rne	4.0	
			3 5					4 0	
				4 5					
	Glu	Arg	Pro		Val	His	Gly	Met	Leu
	Leu	Ala	Ser	Leu	Рhе	Ser	Gly		•
		5 0					5 5		
			6.0						
	Leu	Leu	Gly	Gln	Gln	Leu	Pro	Gly	Lys
	Gly	Ser	Ιle		Leu	Gly			
	6 5			-		7 0			
		7 5					8 0		
	Ser	Leu	Ser	Рhе	Tws	Leu		Val	Phe
	Val		Asp		Val		Ala	v a i	Inc
	v a i	Oly	Азр	Giu	85	1 11 1	Ala		
	9 0				0 0	0.5			
		37 - 1	C 1	37 - 1		9 5	T		0.1
			Glu		Thr	Ala	Leu	Arg	Glu
	Asp	Lys	Pro	Ile	Ala	Thr	Leu		
				100					1 0 5
					1 1 0				
	Thr	Thr	Arg	Ile	Рhе	Thr	Gln	Gly	Gly
	Ala	Leu	Ala	Val	Thr	Gly	Glu		
			1 1 5					120	
				1 2 5					
	Ala	Val	Val	Lys	Leu	Pro			
		1 3 0							
【0104】配列番	号:7			•	3	賞の数:−	-本鎖		
配列の長さ:27					ŀ	・ポロジー	- : 直鎖#	4	
配列の型:核酸					酉	己列の種類	頁:他の核	酸(合成	DNA)
	配列:								
	CCSCCST	GGA TCAA	YAAGTW Y	TAYATC					27
【0105】配列番	号:8				釗	貨の数:−	-本鎖		
配列の長さ:27						ポロジー		ξ .	•
配列の型:核酸						己列の種類			DNA)
	配列:				_				•
		GCS GTCC	ARTCSG (CCACCA					27
【0106】配列番	号:9	ν.			ř	尼列の特徴	ģ.		
配列の長さ:318	7					特徴を表す		DS	
配列の型:核酸					-	· 在位置:	• - •	-	
鎖の数:二本鎖						・ は は は は き 後 を 表す			
トポロジー:直鎖状						テエロ盟:		,	
配列の種類: genomi					1.	, 14,146 •	30020	• •	
HON TO SEE THE PARTY BOTTOM	配列:								
		GAC CGGG	атаста а	CCTGGGCCA	A CGCCG	CCAC CCC	CACCCCC	GACCAACC	GA 60
•				ATCGGGATT(
				ACCCCCCCC					-

CAGCGCGGCG CCGGTGCGGC GAGGGCGCGC CGGACCCAGT GCGTCACCTC TCGTCTGATC 180 CGCCTCCCTC GACGGGCGTC GCTGACAAAA AAATTCAAAC AGAAATTAAC ATTTATGTCA 240 TTTACACCAA ACCGCATTTG GTTGCAGAAT GCTCAAACGT GTGTTTGAAC AGAGCAAGCA 300 ACACGTAAAC AGGGATGACA TGCAGTACCC GTAAGAAGGG CCGATTGGCC CACAACAACA 360 CTGTTCTGCC GAACTGGAGA CCG ATG ATG AAT ATG GAC GTG ATC AAG AGC 410 Met Met Asn Met Asp Val Ile Lys Ser

TTT ACC GAG CAG ATG CAA GGC TTC GCC GCC CCC CTC ACC CGC TAC AAC Phe Thr Glu Gln Met Gln Gly Phe Ala Ala Pro Leu Thr Arg Tyr Asn 15 20 CAG CTG CTG GCC AGC AAC ATC GAA CAG CTG ACC CGG TTG CAG CTG GCC 506 Gln Leu Leu Ala Ser Asn Ile Glu Gln Leu Thr Arg Leu Gln Leu Ala TCC GCC AAC GCC TAC GCC GAA CTG GGC CTC AAC CAG TTG CAG GCC GTG 554 Ser Ala Asn Ala Tyr Ala Glu Leu Gly Leu Asn Gln Leu Gln Ala Val 50 AGC AAG GTG CAG GAC ACC CAG AGC CTG GCG GCC CTG GGC ACA GTG CAA 602 Ser Lys Val Gln Asp Thr Gln Ser Leu Ala Ala Leu Gly Thr Val Gln 60 65 CTG GAG ACC GCC AGC CAG CTC TCC CGC CAG ATG CTG GAT GAC ATC CAG 650 Leu Glu Thr Ala Ser Gln Leu Ser Arg Gln Met Leu Asp Asp Ile Gln 75 80 AAG CTG AGC GCC CTC GGC CAG CAG TTC AAG GAA GAG CTG GAT GTC CTG 698 Lys Leu Ser Ala Leu Gly Gln Gln Phe Lys Glu Glu Leu Asp Val Leu 90 95 100 105 ACC GCA GAC GGC ATC AAG AAA AGC ACG GGC AAG GCC TGATAACCCC 744 Thr Ala Asp Gly Ile Lys Lys Ser Thr Gly Lys Ala 110 115 TGGCTGCCCG TTCGGGCAGC CACATCTCCC CATGACTCGA CGCTACGGGC TAGTTCCCGC 804 CTCGGGTGTG GGTGAAGGAG AGCAC ATG AGC CAA CCA TCT TAT GGC CCG CTG 856 Met Ser Gln Pro Ser Tyr Gly Pro Leu TTC GAG GCC CTG GCC CAC TAC AAT GAC AAG CTG CTG GCC ATG GCC AAG 904 Phe Glu Ala Leu Ala His Tyr Asn Asp Lys Leu Leu Ala Met Ala Lys GCC CAG ACA GAG CGC ACC GCC CAG GCG CTG CTG CAG ACC AAT CTG GAC 952 Ala Gln Thr Glu Arg Thr Ala Gln Ala Leu Leu Gln Thr Asn Leu Asp 35 GAT CTG GGC CAG GTG CTG GAG CAG GGC AGC CAG CAA CCC TGG CAG CTG 1000 Asp Leu Gly Gln Val Leu Glu Gln Gly Ser Gln Gln Pro Trp Gln Leu 50 ATC CAG GCC CAG ATG AAC TGG TGG CAG GAT CAG CTC AAG CTG ATG CAG 1048 Ile Gln Ala Gln Met Asn Trp Trp Gln Asp Gln Leu Lys Leu Met Gln 65 CAC ACC CTG CTC AAA AGC GCA GGC CAG CCG AGC GAG CCG GTG ATC ACC 1096 His Thr Leu Leu Lys Ser Ala Gly Gln Pro Ser Glu Pro Val Ile Thr 75 CCG GAG CGC AGC GAT CGC CGC TTC AAG GCC GAG GCC TGG AGC GAA CAA 1144 Pro Glu Arg Ser Asp Arg Arg Phe Lys Ala Glu Ala Trp Ser Glu Gln 90 95 100 CCC ATC TAT GAC TAC CTC AAG CAG TCC TAC CTG CTC ACC GCC AGG CAC 1192 Pro Ile Tyr Asp Tyr Leu Lys Gln Ser Tyr Leu Leu Thr Ala Arg His 110 115 CTG CTG GCC TCG GTG GAT GCC CTG GAG GGC GTC CCC CAG AAG AGC CGG 1240 Leu Leu Ala Ser Val Asp Ala Leu Glu Gly Val Pro Gln Lys Ser Arg 125 130 135

特開平10-108682

GAG	CGG	CTG	CGT	TTC	TTC	ACC	CGC	CAG	TAC	GTC	AAC	GCC	ATG	GCC	CCC	1288
Glu	Arg	Leu	Arg	Phe	Phe	Thr	Arg	Gln	Tyr	Val	Asn	Ala	Met	Ala	Pro	
		140					145					150	•			
AGC	AAC	TTC	CTG	GCC	ACC	AAC	CCC	${\sf GAG}$	CTG	CTC	AAG	CTG	ACC	CTG	GAG -	1336
Ser	Asn	Phe	Leu	Ala	Thr	Asn	Pro	Glu	Leu	Leu	Lys	Leu	Thr	Leu	Glu	
	155					160					165					
TCC	GAC	GGC	CAG	AAC	CTG	GTG	CGC	GGA	CTG	GCC	CTC	TTG	GCC	GAG	GAT	1384
Ser	Asp	Gly	Gln	Asn	Leu	Val	Arg	Gly	Leu	Ala	Leu	Leu	Ala	Glu	Asp	
170					175					180					185	
CTG	GAG	CGC	AGC	GCC	GAT	CAG	CTC	AAC	ATC	CGC	CTG	ACC	GAC	GAA	TCC	1432
Leu	Glu	Arg	Ser	Ala	Asp	Gln	Leu	Asn	He	Arg	Leu	Thr	Asp	Glu	Ser	
				190					195					200		
GCC	TTC	GAG	CTC	GGG	CGG	GAT	CTG	GCC	CTG	ACC	CCG	GGC	CGG	GTG	GTG	1480
Ala	Phe	Glu		Gly	Arg	Asp	Leu	Ala	Leu	Thr	Pro	Gly	Arg	Val	Val	
			205					210					215			
														ACC		1528
Gln	Arg		Glu	Leu	Tyr	Glu		He	Gln	Tyr	Ser		Thr	Thr	Glu	
		220					225					230				
										•				AAC		1576
Thr		Gly	Lys	Thr	Pro		Leu	He	Val	Pro		Phe	He	Asn	Lys	
T. A. C.	235	A.T.C.	A.T.C.	040	4.00	240	000	040		T 00	245	000	000	maa	omo.	1001
														TGG		1624
	туг	116	мет	ASP		Arg	Pro	GIN	Asn		Leu	vai	Ala	Trp		
250	ccc	CAC	CCC	CAC	255	СТА	ፐፐ ር	ATC	ATC	260	TCC	ccc	440	ccc	265	1670
														CCG		1672
vai	міа	GIII	GIY	270	1111	vai	rne	MEL	275	ser	пр	Arg	ASII	Pro	Gly	
стс	CCC	CAC	CCC		ልፐር	САТ	CTC	CAC		TAC	CTC	CTC	CAT	280 GGC	ርፕር	1720
														Gly		1120
741	nia	UIII	285	0111	110	пър	LCu	290	лэр	1 9 1	741	vai	295	Uly	141	
ATC	GCC	GCC		GAC	GGC	GTG	GAG		GCC	ACC	GGC	GAG		GAG	стс	1768
														Glu		1100
		300			~.,		305				0.,	310	6	0.4		
CAC	GGC		GGC	TAC	TGC	ATC		GGC	ACC	GCC	CTG		СТС	GCC	ATG	1816
														Ala		
	315		•	•	·	320	-	·			325					
GGC	TGG	CTG	GCG	GCG	CGG	CGC	CAG	AAG	CAG	CGG		CGC	ACC	GCC	ACC	1864
Gly	Trp	Leu	Ala	Ala	Arg	Arg	Gln	Lys	Gln	Arg	Val	Arg	Thr	Ala	Thr	
330					335					340					345	
CTG	TTC	ACT	ACC	CTG	CTG	GAC	TTC	TCC	CAG	CCC	GGG	GAG	CTT	GGC	ATC	1912
Leu	Phe	Thr	Thr	Leu	Leu	Asp	Phe	Ser	Gln	Pro	Gly	Glu	Leu	Gly	Ile	
				350					355					360		
TTC	ATC	CAC	GAG	CCC	ATC	ATA	GCG	GCG	CTC	GAG	GCG	CAA	AAT	GAG	GCC	1960
Phe	He	His	Glu	Pro	He	He	Ala	Ala	Leu	Glu	Ala	Gln	Asn	Glu	Ala	
			365					370					375			
														CTG		2008
Lys	Gly		Met	Asp	Gly	Arg	Gln	Leu	Ala	Val	Ser	Phe	Ser	Leu	Leu	
		380					385					390				
														CTC		2056
Arg	Glu	Asn	Ser	Leu	Tyr	Trp	Asn	Tyr	Tyr	He	Asp	Ser	Tyr	Leu	Lys	

		395					400					405					
	GGT	CAG	AGC	CCG	GTG	GCC	TTC	GAT	CTG	CTG	CAC	TGG	AAC	AGC	GAC	AGC	2104
	Gly	Gln	Ser	Pro	Val	Ala	Phe	Asp	Leu	Leu	His	Trp	Asn	Ser	Asp	Ser	
	410					415					420					425	
	ACC	AAT	GTG	GCG	GGC	AAG	ACC	CAC	AAC	AGC	CTG	CTG	CGC	CGT	CTC	TAC	2152
	Thr	Asn	Val	Ala	Gly	Lys	Thr	His	Asn	Ser	Leu	Leu	Arg	Arg	Leu	Tyr	
					430					435					440		
	CTG	GAG	AAC	CAG	CTG	GTG	AAG	GGG	GAG	CTC	AAG	ATC	CGC	AAC	ACC	CGC	2200
	Leu	Glu	Asn	Gln	Leu	Val	Lys	Gly	Gl u	Leu	Lys	He	Arg	Asn	Thr	Arg	
				445					450				•	455			
	ATC	GAT	CTC	GGC	AAG	GTG	AAG	ACC	CCT	GTG	CTG	CTG	GTG	TCG	GCG	GTG	2248
	He	Asp	Leu	Gly	Lys	Val	Lys	Thr	Pro	Val	Leu	Leu	Val	Ser	Ala	Val	
			460					465					470				
	GAC	GAT	CAC	ATC	GCC	CTC	TGG	CAG	GGC	ACC	TGG	CAG	GGC	ATG	AAG	CTG	2296
	Asp		His	Ile	Ala	Leu	Trp	Gln	Gly	Thr	Trp	Gln	Gly	Met	Lys	Leu	
		475					480					485					
															ATC		2344
		Gly	Gly	Glu	Gln		Phe	Leu	Leu	Ala		Ser	Gly	His	He		
	490	4.00	4 m o			495	000				500					505	
															CAC		2392
	GIY	116	He	ASII			Ala	Ala	ASII		ıyr	GIY	Pne	Irp	His	Asn	
	ccc	CCC	CAC	ccc	510		ccc	CAC	ACC	515	CTC	CCA	ccc	ccc	520	CAC	9440
															ACG		2440
	Giy	піа	Giu	525	GIU	Sei	riu	GIU	530	пр	Leu	Ala	ыу	535	Thr	піѕ	
	CAG	CCC	ccc		TCC	TCC	ccc	CAC		ATC	ccc	ттт	ATC		AAC	ССТ	2488
															Asn		2400
	0111	0.,	540	501	пр	пр	110	545	me t	mc t	uly	THE	550	UIII	ASII	AI G	
	GAC	GAA		TCA	GAG	CCC	GTC		GCG	CGG	GTC	CCG		GAA	GGG	CTG	2536
															Gly		2000
	-	555	•				560					565					
	GCC	CCC	GCC	ccc	GGC	CAC	TAT	GTC	AAG	GTG	CGG	CTC	AAC	CCC	GTG	TTT	2584
	Ala	Pro	Ala	Pro	Gly	His	Tyr	Val	Lys	Val	Arg	Leu	Asn	Pro	Val	Phe	
	570					575					580					585	
	GCC	TGC	CCA	ACA	GAG	GAG	GAC	GCC	GCA	TGAG	GCGC/	ACA A	ATCC	CTGG	A A		2631
	Ala	Cys	Pro	Thr	Glu	Glu	Asp	Ala	Ala								
					590												
	GTAC	GCCA	AGA A	AGGCO	CCGT	CT CA	AGCA	AGCG(TT(CGGG(GCGG	CGG/	AGGT/	AGC (CGCC1	TTCGCC	2691
																ACGGCG	
																CTGGGC	
																CTGCCG	
																GACAAG	
																ACGGGG	
																GCCCC	
																GCCCA	
						JU IF	AAU I'(JUUTA	A AAA	1166(LUC	CCTC	JCCG"	IGT A	AGGC/	ATTCAT	
₽.	CUAU 号:		GAG (JAA I	ıC					Ъж	の粉	: =	木砂				3187
	勺. ?	ı U								朝		: —					

【0107】配列番号:10

配列の長さ:3187 配列の型:核酸

トポロジー:直鎖状 配列の種類:genomic DNA

特徴を表す記号:CDS

存在位置:2611..3012

配列:

世列:
AGATCTGGAC CGGGGTGCTG GCCTGGGCCA CGCCGGCGAG GGCCAGCGCG GAGCAACCGA 60
GCAGCAGGGC GAGAGGTTTC ATCGGGATTC CTTGGCAGTC TGAATGACGT GCCAGCCTAT 120
CAGCGCGGCG CCGGTGCGGC GAGGGCCGCG CGGACCCAGT GCGTCACCTC TCGTCTGATC 180
CGCCTCCCTC GACGGGCGTC GCTGACAAAA AAATTCAAAC AGAAATTAAC ATTTATGTCA 240
TTTACACCAA ACCGCATTTG GTTGCAGAAT GCTCAAACGT GTGTTTGAAC AGAGCAAGCA 300
ACACGTAAAC AGGGATGACA TGCAGTACCC GTAAGAAGGG CCGATTGGCC CACAACAACA 360
CTGTTCTGCC GAACTGGAGA CCGATGATGA ATATGGACGT GATCAAGAGC TTTACCGAGC 420
AGATGCAAGG CTTCGCCGCC CCCCTCACCC GCTACAACCA GCTGCTGGCC AGCAACATCG 480
AACAGCTGAC CCGGTTGCAG CTGGCCTCCG CCAACGCCTA CGCCGAACTG GGCCTCAACC 540
AGTTGCAGGC CGTGAGCAAG GTGCAGGACA CCCAGAGCCT GGCGGCCCTG GGCACAGTGC 600
AACTGGAGAC CGCCAGCCAG CTCTCCCGCC AGATGCTGGA TGACATCCAG AAGCTGAGCG 660
CCCTCGGCCA GCAGTTCAAG GAAGAGCTGG ATGTCCTGAC CGCAGACGGC ATCAAGAAAA 720
GCACGGGCAA GGCCTGATAA CCCCTGGCTG CCCGTTCGGG CAGCCACATC TCCCCATGAC 780
TCGACGCTAC GGGCTAGTTC CCGCCTCGGG TGTGGGTGAA GGAGAGCACA TGAGCCAACC 840
ATCTTATGGC CCGCTGTTCG AGGCCCTGGC CCACTACAAT GACAAGCTGC TGGCCATGGC 900
CAAGGCCCAG ACAGAGCGCA CCGCCCAGGC GCTGCTGCAG ACCAATCTGG ACGATCTGGG 960
CCAGGTGCTG GAGCAGGGCA GCCAGCAACC CTGGCAGCTG ATCCAGGCCC AGATGAACTG 1020
GTGGCAGGAT CAGCTCAAGC TGATGCAGCA CACCCTGCTC AAAAGCGCAG GCCAGCCGAG 1080
CGAGCCGGTG ATCACCCCGG AGCGCAGCGA TCGCCGCTTC AAGGCCGAGG CCTGGAGCGA 1140
ACAACCCATC TATGACTACC TCAAGCAGTC CTACCTGCTC ACCGCCAGGC ACCTGCTGGC 1200
CTCGGTGGAT GCCCTGGAGG GCGTCCCCCA GAAGAGCCGG GAGCGGCTGC GTTTCTTCAC 1260
CCGCCAGTAC GTCAACGCCA TGGCCCCCAG CAACTTCCTG GCCACCAACC CCGAGCTGCT 1320
CAAGCTGACC CTGGAGTCCG ACGGCCAGAA CCTGGTGCGC GGACTGGCCC TCTTGGCCGA 1380
GGATCTGGAG CGCAGCGCCG ATCAGCTCAA CATCCGCCTG ACCGACGAAT CCGCCTTCGA 1440
GCTCGGGCGG GATCTGGCCC TGACCCCGGG CCGGGTGGTG CAGCGCACCG AGCTCTATGA 1500
GCTCATTCAG TACAGCCCGA CTACCGAGAC GGTGGGCAAG ACACCTGTGC TGATAGTGCC 1560
GCCCTTCATC AACAAGTACT ACATCATGGA CATGCGGCCC CAGAACTCCC TGGTCGCCTG 1620
GCTGGTCGCC CAGGGCCAGA CGGTATTCAT GATCTCCTGG CGCAACCCGG GCGTGGCCCA 1680
GGCCCAAATC GATCTCGACG ACTACGTGGT GGATGGCGTC ATCGCCGCCC TGGACGGCGT 1740
GGAGGCGGCC ACCGGCGAGC GGGAGGTGCA CGGCATCGGC TACTGCATCG GCGGCACCGC 1800
CCTGTCGCTC GCCATGGGCT GGCTGGCGGC GCGGCGCCAG AAGCAGCGGG TGCGCACCGC 1860
CACCCTGTTC ACTACCCTGC TGGACTTCTC CCAGCCCGGG GAGCTTGGCA TCTTCATCCA 1920
CGAGCCCATC ATAGCGGCGC TCGAGGCGCA AAATGAGGCC AAGGGCATCA TGGACGGGCG 1980
CCAGCTGGCG GTCTCCTTCA GCCTGCTGCG GGAGAACAGC CTCTACTGGA ACTACTACAT 2040
CGACAGCTAC CTCAAGGGTC AGAGCCCGGT GGCCTTCGAT CTGCTGCACT GGAACAGCGA 2100
CAGCACCAAT GTGGCGGGCA AGACCCACAA CAGCCTGCTG CGCCGTCTCT ACCTGGAGAA 2160
CCAGCTGGTG AAGGGGGAGC TCAAGATCCG CAACACCCGC ATCGATCTCG GCAAGGTGAA 2220
GACCCCTGTG CTGCTGGTGT CGGCGGTGGA CGATCACATC GCCCTCTGGC AGGGCACCTG 2280
GCAGGGCATG AAGCTGTTTG GCGGGGAGCA GCGCTTCCTC CTGGCGGAGT CCGGCCACAT 2340
CGCCGGCATC ATCAACCCGC CGGCCGCCAA CAAGTACGGC TTCTGGCACA ACGGGGCCGA 2400
GGCCGAGAGC CCGGAGAGCT GGCTGGCAGG GGCGACGCAC CAGGGCGGCT CCTGGTGGCC 2460
CGAGATGATG GGCTTTATCC AGAACCGTGA CGAAGGGTCA GAGCCCGTCC CCGCGGGGT 2520
CCCGGAGGAA GGGCTGGCCC CCGCCCCCGG CCACTATGTC AAGGTGCGGC TCAACCCCGT 2580
GTTTGCCTGC CCAACAGAGG AGGACGCCGC ATG AGC GCA CAA TCC CTG GAA GTA 2634
Met Ser Ala Gln Ser Leu Glu Val
1 5

	Gly			Ala	Arg	Leu		Lys	Arg	Phe	Gly			Glu	Val	Ala	
	CCC.	10		ccc	CTC	TCC	15	CAC	ተ ሞድ	***	ccc	20		CTC	CAC	ccc	0790
															GAC Asp		2730
	25	THE	ліа	Ala	LCu	30	oru	nsp	1 116	V2II	35	LCU	1113	Leu	nsp	40	
		TTC	GCC	GCC	ACC		GCG	TTC	GAG	CGG		ATA	GTC	CAC	GGC		2778
															Gly		2
					45					50					55		
	CTG	CTC	GCC	AGC	CTC	TTC	TCC	GGG	CTG	CTG	GGC	CAG	CAG	TTG	CCG	GGC	2826
	Leu	Leu	Ala	Ser	Leu	Phe	Ser	Gly	Leu	Leu	Gly	Gln	Gln	Leu	Pro	Gly	
				60					65					70			
															CCG		2874
	Lys	Gly	Ser 75	116	lyr	Leu	Gly		Ser	Leu	Ser	Phe		Leu	Pro	Val	
	ፐፐፐ	CTC		CAC	CAC	стс	ACC	60C	CAC	СТС	CAC	СТС	85 ACC	ccc	CTT	ccc	2922
															Leu		2322
		90	,				95				٠.٠	100	••••		Dou		
	GAG	GAC	AAG	CCC	ATC	GCC	ACC	CTG	ACC	ACC	CGC	ATC	TTC	ACC	CAA	GGC	2970
	Glu	Asp	Lys	Pro	Ile	Ala	Thr	Leu	Thr	Thr	Arg	Ile	Phe	Thr	Gln	Gly	
	105					110					115					120	
			CTC														3012
	Gly	Ala	Leu	Ala		Thr	Gly	Glu	Ala		Val	Lys	Leu	Pro			
	T 4 4 4	CCAC	000 /	ecce.	125		CACA	1 T C A C	3 000	130	2000	0000	2000	DO 4 7	pmomo	romana.	0050
																CCCCC	
															AATT(3187
【0108】配列番			11111	21100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		doce	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 000		の数				WII I (,	5101
配列の長さ:25														鎖状			
配列の型:核酸										配	列の	種類	: 他	の核	酸(合成D	NA)
	配歹	IJ:															
•			GCC 1	rcgg(GTGT(GG GT	rgaa										25
【0109】配列番	号:	1 2									の数						
配列の長さ:25														鎖状		~ ~~	
配列の型:核酸	配歹	11 ·								EC	タリクン	種類	: 10	の核	酸(合成D	NA)
		-	GCG (TCAT	րորո	C 67	гсст										25
【0110】配列番					. 5500					銷	の数	: -	本鎖	i			40
配列の長さ:30	-						•							鎖状			
配列の型:核酸										配	列の	種類	: 他	の核	酸(合成D	NA)
	配歹	IJ:															
			GAG (CGCAC	CAATO	CC CT	rgga/	AGTAC	3								30
【0111】配列番	号:	1 4									の数						
配列の長さ:30														鎖状		~ ~~ ~	
配列の型:核酸	配歹	11 •								質C	タリクン	種類	:他	の核	酸(合成D	NA)
		-	CCG (ეტიიი	የርርፐባ	ra ar	GCAC	CTTO	;		•						30
【0112】配列番					. 5511	110			•	ト	ポロ	ジー	: 直	鎖状			30
配列の長さ:20														プチ			
配列の型:アミノ酸																	
	配歹	IJ:															

Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys Arg 1 5 10 15

Phe Gly Ala Ala

20

【0113】配列番号:16

トポロジー:直鎖状 ・

配列の長さ:21

配列の種類:ペプチド

配列の型:アミノ酸

配列:

Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys

10 15

Arg Phe Gly Ala Ala

20

【図面の簡単な説明】

【図1】本発明の遺伝子の構築図である。

【図2】 SDS-ポリアクリルアミドゲル電気泳動の結

果を示す写真である。

【図1】

【図2】

2 M 1

94 kDa 67 kDa 43 kDa 30 kDa 21.1 kDa 14.4 kDa

識別記号

レーンM: 分子量マーカー レーン1: NB3株可溶性タンパク画分 レーン2: 陰イオン交換カラム溶出活性画分

フロントページの続き

(51) Int. Cl. 6 //(C 1 2 N 1/21 C 1 2 R 1:05) (C 1 2 N 9/88 C 1 2 R 1:05) (C 1 2 P 7/62 C 1 2 R 1:05)

FΙ