## Captures d'écran du code source

• Importer des bibliothèques qui on va travailler avec

## **Tunisian Vaccine**

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Importer de la base de données et afficher les 5 premières lignes



Supprimer les colonnes que nous n'en avons pas besoin et afficher la résultat

```
data= data.drop(['vaccine','source_url','location','total_boosters'], axis=1)
data.head(5)
```

|   | date       | total_vaccinations | people_vaccinated | people_fully_vaccinated |
|---|------------|--------------------|-------------------|-------------------------|
| 0 | 2021-03-12 | 0                  | 0                 | 0.0                     |
| 1 | 2021-03-13 | 743                | 743               | 0.0                     |
| 2 | 2021-03-14 | 2076               | 2076              | 0.0                     |
| 3 | 2021-03-15 | 2555               | 2555              | 0.0                     |
| 4 | 2021-03-19 | 6861               | 6861              | 0.0                     |

Afficher les données disparus (NULL)

```
data.isnull().sum()

date 0

total_vaccinations 0

people_vaccinated 0

people_fully_vaccinated 3

dtype: int64
```

 Replacer tous les cas nuls avec 0 pour éviter les problèmes dans la partie prédiction

```
data['people_fully_vaccinated'] = data['people_fully_vaccinated'].fillna(0)
data[data.isnull().any(axis=1)]
```

date total\_vaccinations people\_vaccinated people\_fully\_vaccinated

Afficher la description de notre dataset

```
data.describe()
        total_vaccinations people_vaccinated people_fully_vaccinated
 count
            2.270000e+02
                               2.270000e+02
                                                       2.270000e+02
                                                       1.997091e+06
 mean
            4.518149e+06
                               2.844926e+06
            3.938548e+06
                               2.340088e+06
                                                       1.986165e+06
   std
            0.000000e+00
                                                       0.000000e+00
                               0.000000e+00
  min
                               5.512720e+05
  25%
            8.204935e+05
                                                       2.487035e+05
  50%
            2.619884e+06
                               1.681477e+06
                                                       7.814830e+05
            8.599588e+06
                                                       4.140680e+06
  75%
                               5.355410e+06
            1.105785e+07
                               6.312309e+06
                                                       5.377874e+06
  max
```

- Afficher la corr de notre dataset
- Afficher le nombre du colonne et du ligne de notre dataset

```
data.corr()
```

|                         | total_vaccinations | people_vaccinated | people_fully_vaccinated |
|-------------------------|--------------------|-------------------|-------------------------|
| total_vaccinations      | 1.000000           | 0.995685          | 0.992193                |
| people_vaccinated       | 0.995685           | 1.000000          | 0.980617                |
| people_fully_vaccinated | 0.992193           | 0.980617          | 1.000000                |

```
data.shape
(227, 4)
```

• Importer bibliothèque scatter\_matrix et représenter la distribution des données

le6

people\_fully\_vaccinated

Afficher les informations et les types des colonnes

```
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 227 entries, 0 to 226
Data columns (total 4 columns):

# Column
Non-Null Count Dtype
-----
0 date 227 non-null object
1 total_vaccinations 227 non-null int64
2 people_vaccinated 227 non-null int64
3 people_fully_vaccinated 227 non-null float64
dtypes: float64(1), int64(2), object(1)
memory usage: 7.2+ KB
```

 Afficher une courbe du nombre des personnes vaccinés faible jusqu'au devient plus nombreux



Changer le type de date en numérique pour éviter les problèmes de train de model

## Parti Machine Learning

```
data['date'] = pd.to_numeric(data.date.str.replace('-',''))
data.head()
```

|   | date     | total_vaccinations | people_vaccinated | people_fully_vaccinated |
|---|----------|--------------------|-------------------|-------------------------|
| 0 | 20210312 | 0                  | 0                 | 0.0                     |
| 1 | 20210313 | 743                | 743               | 0.0                     |
| 2 | 20210314 | 2076               | 2076              | 0.0                     |
| 3 | 20210315 | 2555               | 2555              | 0.0                     |
| 4 | 20210319 | 6861               | 6861              | 0.0                     |
| 4 | 20210319 | 6861               | 6861              | 0.0                     |

Diviser notre dataset en deux parties x et y

```
x=data[['date','total_vaccinations']].values
y=data[['people_vaccinated']].values
```

Importer la bibliothèque sklearn et fit le dataset avec le model LinearRegression

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x,y)
LinearRegression()
```

Importer la bibliothèque train\_test\_split et fit un deuxième model de test avec le model LinearRegression

```
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
model2 = LinearRegression()
model2.fit(x_train,y_train)
LinearRegression()
```

Afficher le score du notre test dataset qui est égale a 98,99%

```
score=(model2.score(x test,y test))*100
score
```

98.99771293375608

• Pointer dans le modèle scatter un point que nous voulons savoir leur prédiction

```
plt.scatter(x[:,0],x[:,1])
plt.scatter(20211214,10292254,c='red')

<matplotlib.collections.PathCollection at 0x148e2ca60a0>

le7

10

08

06

04

02

00

400

600

800

1000

1200
+2,021e7
```

Faire la prédiction d'une random saisir (dans la future)

```
pred=model.predict([['20211214','10292254']])
print('La Résultat est:',int(pred))
La Résultat est: 6309914
```

Parti interface qui été créé avec Qt\_Designer

## Parti Interface

```
# importation des bibliothèques des tools QTWidgets
from PyQt5 import QtWidgets, uic
import sys
import webbrowser
# -----functions Front-----
def exit():
    Fen.destroy()
    Fen2.destrov()
def transfert():
    Fen2.show()
                 ------functions Back-----
     webbrowser.open_new('http://localhost:8888/notebooks/Desktop/WORK2/Projet_ML_MR_MED_Kharrat.ipynb')
def trait():
   d=Fen2.lineEdit.text()
   i=Fen2.lineEdit_2.text()
    rt=model.predict([[d,i]])
    Fen2.lineEdit_3.setText(str(int(rt)))
    rt2=11935764-rt
    Fen2.lineEdit_4.setText(str(int(rt2)))
App =QtWidgets.QApplication(sys.argv)
Fen=uic.loadUi('Front.ui')
Fen.show()
Fen.pushButton.clicked.connect(transfert)
Fen.pushButton_2.clicked.connect(exit)
# -----Back-----
Fen2=uic.loadUi('Back.ui')
Fen2.pushButton.clicked.connect(trait)
Fen2.pushButton_2.clicked.connect(lien)
Fen2.pushButton_3.clicked.connect(exit)
          ---Exécutér-
App.exec ()
sys.exit()
```