TYPES			
$f: \mathbb{R} \to \mathbb{R}$			
types ensure p	rograms have	e desirable	proposited
	memory orasi	space	of all possible program
type system can be overly conservative			
Type checking	program type T	P cheek	p has typeT?
Type inference		on P info	> Phas type T?
	Y i	nnabiis)'
	1	R	Yac R

2 calc subset 50 succ O, isteron, pred n, tru, fls
if the t, clse t2,
Boden operational semantics = B reduction xs define sementics pred 0 -> 0 iszero O -> true istero (succ n) -> false pred (succ n) -> n

pred (succ n) -> n

if true then t, else tz -> t,

if false then t, else tz -> tz

if t_1 then t_2 else t_3 \longrightarrow if t_1' then t_2 else t_3

$$\frac{t \longrightarrow t'}{succ \ t \longrightarrow succ \ t'}$$

O: Nat

true: Bool

false: Bool

Typing ruler

isterot: Bool

Tiscero

 $\frac{t_1: Bool}{if t_1 + then t_2 else t_3 \in T}$

teNat Tsrcc succt ENat t E Nat Tpred

pred t & Nat A term t is typable / well-typed if there is a type T sit t:T

A typing Melation is the smallest binary orelation between terms and typer satisfying our rules.

BC

DE Nate

Base are

DE Nat

DE Nat

DE Nat

if iszero O + Nen O else (pred O): Nat

pred (f (me))

Theorem (Uniqueness) Each term t has at most 1 type Proof Base cases O ENOUT, fre Bool, Feder & Bool Hypothesis any term of sive < n has at most I type Inductive step take term of size n+1 assume term has type T case 1 succ t, ET t, has at most I yer t, ENat t, has at most 1

succ t, ET 00 T= Nat

tieBool tritzet

if ti, ther trebe to E T

Safety = Progress + preservation

= Soundness

well-typed terms don't get strick'

Progress: A well-typed term is not shock

(either it is a value or can go one

more otep of evaluation)

Preservation, if a well-typed term takes a

step of evaluation then the result

is well-typed

Thm (Progress)

Soppose tET. Then either t is a value or t->t'

Thm (Preservation)

if tET and t->t', t'ET

Proof of preservation LET

Base case ruler

t: true or false or 0

theorem holds vacuously becase t/st'

1 nduction

tieBool treT tret Tig

Case 1 ti= the

t'= tz

and we know tzET so t'ET

Case 2 ti=false t'=t3 we know to ET so t'ET

case 3 t, -> t/ By inductive hypothesis t/EBool

this means

if the then (succ 1) else tove E Nat

if me the t, else to ET

if then t, else tr