Approved For Release STAT 2009/08/31:

CIA-RDP88-00904R000100130

Approved For Release

2009/08/31:

CIA-RDP88-00904R000100130

Вторая Международная конференция Организации Объединенных Нации по применению атомной энергии в мирных целях

A/CONF/15/P**2912**USDR
ORIGINAL: RUBBIAN

Не подлежит оглашению до официального сообщения на Конференции

ВЛИАНИЕ РИССОЕРСТИ МИМРООРГАНИСТИОВ НА ПОРЯС., ЕГЕ И ВИДЕЛЕНИЕ СОСФОРА И СЕРИ КОРНИКИ СЕЛИЦЕВ ДРЕВЕСИИХ РАСТЕНИЯ

А.П.Ахромейко, В.А. Шестакова

Вопрос о взаимоотношениях ризосферной микрорлоры с высшики растениями давно уже привлекает внимание многих исследователей. Особенно много работ опубликовано в последние годы (1-17).

К сожалению, в литературе по этому вопросу имеется мало данных, относящихся к древесным растениям. Нередко встречаются споуные, противоречивые взгляды на роль микрорлоры в питании растений.

Метод меченых атомов открывает новые возможности в изучении взаимоотношений между минрофлорой и растениями.

- В данной работе с помощью меченых атомов изучалось:
- Влияние ризосферных микроорганизмов на поглощение фосфора корнями сеянцев древесных растений.
- 2. Использование сеянцами древесних растений фосфора, поглощенного микроорганизмами.
- 3. Влияние ризосферных микроорганизмов на корневые выделения сеянцев древесных растений.
- 4. Блияние корневых выделений сеянцев древесних растекий на развитие ризосферных микроорганизмов.

Методика исследований

Большая часть опытов была проведена в вегетационных сосудах (песчаные и водные культуры), некоторые исследования были проведены в полевой обстановке на подзолистой легкосуглинистой почет

25 YEAR RE-REVIEW

В несок и воду вносилась смесь Гельригеля из расчета С,5 норми. В один сосуд высаживалось по 6 проросткев дуба (микотрофием ное растение) или ясеня зеленого (немикотрофное). Влажность песка в течение всего опыта поддерживалась на уровне 60% от полной влатоемкости. Водние культури искусственно вэрировались. Опити проводились в нестерильных условиях. В часть сосудов вносилась водная взвесь бактерий, виделенних из ризосферы дуба: Расифомопая fluorescena, гае ифэмопая тамбобластег, изотобласте спрососсим.

Как показали предвирительные исследования, эти бактерии хорошо приживались в ризосфере сеянцев не только дуба, но и ясеня. Контрольные сосуды не обогащались бактериями.

При изучении влияния микроорганизмов на поглощение фосфора сеянцами древесных растений, в вегетационные сосуды вносился в качестве метки раствор $N_{\rm QH_2P}^{32}{}^{0}{}_{4}$, радиоактивность которого составляла 2,0 μ c на 1 кг песка.

В опытах по изучению корневых выделений растворы радиоактивных изотопов фосфора и серы—в большинстве случаев—наносились на листья. Удельная активность р.створов составляла 20 µс/мл.

Радиоактивность исследуемых объектов определялась с помощью счетчика Гейгера-Мюллера.

В отдельных опытох проводилось определение содержания общего фосфора в растениях химическим методом.

Учет микрофлоры на поверхности физиологически активных корней, в песке и в водной среде проводился обычным методом последовательных разведений (на мясо-пептонном агаре, сусло-агаре и среде Федорова).

I.Влияние ризосферных микроорганизмов на поглощение фосфора корнями сеянцев древесных растении

В результате проведения нескольких серий опытов с помощью радиоактивного фосфора было установлено, что обогащение песчаной среды ризосферными бактериями ослабляет поглощение фосфора сеянцоми дуба и ясеня зеленого.

Сказанное илластрируется кривыми, приведенными на рис. 1, из ознакомления с которыми видно, что в условиях данного опыта поглощение фосфора селнцами дуба при искусственном обогащении песка ризосферными бактериями значительно отстает от контроля. И только через два месяца оно выравнивается в обогащенных и не-

обогащенных Сактериями сосудах. Подобние же результати били получены и в опите с ясенем зеленим.

Для расшифровки этого явления был проведен более краткосрочный опыт с учетом общего количества микроорганизмов, содержания редиоактивного фосфора в сеянцах и в отцентрифугированном оседке водной вытяжки из песка, содержащим мельчайшие илистие частицы, бактериальные клетки, гифы и споры грибов.

Результаты этого учета, проведенного через 31 день после закладки опыта, приводятся в таблице 1.

Таблица 1 Влияние бактерий на поглощение фосфора сеянцами дуба и ясеня

Порода	Вариант опыта	Общее колич. микро-	Содержание Р ³² в сеянцах и в осадже из песка (тыс.имп/мин/г сухого вещества)					
		организ. в песке	Листья	Ство-	Корн	Oca-		
		(млн/л)		лики	голтст. (до 1 мм)	тонкие (от 1 мм)	ДОК ИЗ .46СКа	
Дуб	Контроль	21	5,1	6,7	6,5	17,0	16,8	
	Внесены бактерии	3200	3,9	3,2	4,4	12,3	33,9	
	Контроль	17	24,8	10,6	23,3	85,3	14,8	
Ясень	Внесены бактерии	1120	16,8	9,0	22,2	60,2	53,8	

Из приведенных данных видно, что в обогащенных бактериями сосудах общее количество микроорганизмов и количество радиоактивного фосфора в осадке из песка было значительно больше, чем в контрольных сосудах. В то же время, содержание радиоактивного фосфора в сеянцах из обогащенных зосудов значительно отставало от контроля.

Проведенные исследования подтверждают факт биологического связывания фосфора при интенсивном развитии микроорганизмов.

Фосфора, поглощенного микроорганизмами

С целью выяснения сроков и степени перехода в усвояемое со-

стояние поглощенного микроорганизмами фосфора, были проведены исследования в посчаных культурах с сеянцами дуба и ясеня.

Опыты проводились в зимний период (в лабораторных условиях) и в летний (в вегетационном домике).

В песок вносилась водная взвесь дающих большую биомассу почвенных дрожжей из рода тольна, выращенных на сусло-агаре, содержащем радиоактивный фосфор (2 µс/мл).

В контрольные сосуды вносился радиоактивный фосфор в виде раствора $NaH_2P^{32}O_4$. Радиоактивность раствора и взвеси дрожжей составляла 480 тнс. имп/мин/сосуд.

Результати первого зимнего опита, приведенные в табл. 2, показивают, что фосфор, входящий в состав микробных клеток, через 65 дней был поглощен сеянцами дуба, хотя и в меньшем количестве, чем фосфор, внесенный в сосуды в виде раствора $NaH_2P^{32}O_4$.

По количеству же общего фосфора опытине сеянцы мало чем отличались от контрольных. Объясняется это, очевидно, тем, что сеянцы дуба в начале своего развития используют фосфор, главным образом, из желудей.

Отмечено небольшое повышение сухого веса сеянцев в варианте с внесением дрожжевой массы, которое может быть объяснено положительным в чиннием на их рост продуктов распада и продуктов жизнедеятельности дрожжей (витамины, ауксины, аминокислоты).

Таблица 2 Поглощение сеянцами дуба фосфора, входящего в состав дрожжевых клеток

Форма вне- сенного в сосуды р32	Общее колич. микрооргониз. (млн/г)		Adc. cymof sec 10	Содержа в сеянца (имн/	a X	Содержание Р ₂ 0 ₅ в сеянцах (мг)		
	в на песке корнях		Pacte- Huff (r)	на 1г сухого вещества		на 1 г сухого вещества		
			(1)	надзем. массы	корней	на дзем. массы	корнея	
Раствор Уан-Р ³² Од (контроль)	3,2	17,0	6,5	164	358	4,58	5 ,3 0	
Дрожжевая масса	3,6	40,3	7,8	110	86	4,54	4,41	

Второй зимний опыт был проведен по той же схеме, но каждый вариант его включал обогащение песка бактериями (Arot shacter chrococcum— и Расидомовая fluoreacena),что привело к ослаблению поглощения радиоактивного фосфора сеянцами дуба, особенно заметное при внесении его в виде дрожжевой массы.

Летние опыты проводились в песчаных культурах с ссянцами дуба и ясеня. Во все сосуды вносилась водная взвесь радиоактивных почвенных дрожжей, активность которой составляла 180 тыс. имп/мин сосуд.

часть сосудов обогащалась взвесью бактерий (Preudomonas radiobacter, Рисиdomonas fluorescens, Anotobacter chroscoccum), остальные (контрольные) не обогащались.

Один опыт заканчивался через 10 дней, другой - через 20 дней после внесения взвеси дрожжей.

Приведенные в таблице 3 данные показывают, что уже на 10-й день опыта радиоактивный фосфор, поглощенный дрожжевыми клетками, становится доступным для растений. На 20-й день количество поглощенного сеянцами фосфора возросло, примерно, в 2-3 раза.

Обогащение песка ризосферными бактериями и в этом случае снижало поглощение радиоактивного фосфора сеянцами.

На основании полученных данных можно сказать, что биологичесжи связанный фосфор сравнительно быстро освобождается из микробных жлеток в доступной для растений форме.

Таблица З Поглощение сеянцами дуба и ясеня фосфора, входящего в состав дрожжевых клеток

Порода	Рариант	Общее мов (1	количест илн/г)	в 1 сеянце					
		в пе	в песке		на корнях		(NMU/NNH)		
		через через 10 дней 20 дней		через 10 дней	через 20 дней	через 10 дней	через 20 дней		
	Радиоактив. дрож.масса	27	33	300	1245	368	950		
Дуб	To ze + darrepuu	24	209	310	2200	316	818		
G	Радиоактив. др ож.ма сса	15	38	160	480	157	644		
Ясень	То же + бактерии	105	305	230	1634	118	466		

Влияние ризосферных микроорганизмов на корневне выделения сеянцев древесных растений

0 наличии корневых выделений у рассений в литературе имеется много указаний (18-22).

Одним из авторов еще в 1936 г. (19) для сельскохозяйственных растений было установлено, что корневие выделения являются нормальной физиологической функцией, которой свойственны сезонные колебания и суточная ритмичность.

В 1953 г. доказано наличие суточного ритма корневых выделений у древесных растений (22).

С целью изучения влияния ризосферных микроорганизмов на интенсивность корневых выделений сеянцев древесных растений, в 1954г. были проведены вегетационные опыты с сеянцами дуба и ясеня в песчаных культурах.

Часть сосудов обогащалась взвесью азотобактера, который хорошо развивался в ризосфере дуба и ясеня, особенно в песчаных культурах.

Радиоактивный фосфор наносился на листья сеянцев в виде раствора $\mathcal{N}_{\mathbf{a}_2} \mathbf{P}^{32} \mathbf{o_4}$. Через 5 дней после этого опыты заканчивались.

Из приведенных в таблице 4 данных видно, что даже в краткосрочном опыте в песчаную среду через корни выделялось значительное количество радиоактивного фосфора, причем в опыте с сеянцами ясеня активность осадка из песка была почти вдвое больше, чем в опыте с сеянцами дуба. Возможно, что это связано с микотрофностью последнего.

Обогащение песка а зотобактером способствовало интенсивному развитию других микроорганизмов и почти в трк раза увеличило ко-личество выделенного корнями радиоактивного фосфора.

2372

Таблица 4 Влияние азотобактера на виделение фосфора корнями сеянцев дуба и ясеня

Порода Вариант		Количество микроорганизмов на корнях (млн/л)		Содержа тыс.имп	ние Р ³² /мин	Абсолютно сухой вес одного сеян- ца	
		общее	азото- бактер	в ство- ликах и корних 1 раст.	в / г осидка из песка	вг	в %
Ayo 1	Без обога- щения оактериям	10	_	62,2	11,2	3,92	100
	Внесен. азотобак. Без обога-	25	0,20	44,0	41,4	4,46	113
Ясень	шения оактерия м	8		107,0	24,7	3,91	100
	Внесен	102	0,17	92,0	78,9	4,95	126

Отмечено, что вес сеянцев в обогащенных азотобактером сосудах был на 13% (дуб) и 26% (ясень) ычше, чем в контрольных.

В опитах, проведенных в водных культурах, сеянцы дуба и ясеня поглощали радиоактивный фосфор корнями из водной среды в течение пяти дней. Затем сеянцы переносились в новые колбы без Р³². Предварительно корни сеянцев тщательно отмывались фосфатным буфером от радиоактивного фосфора, адсорбированного на их поверхности.

Часть коло обогащалась азотобактером. Анализы проводились через 1,3 и 5 дней.

Результаты опыта показывают, что параллельно увеличению количества микроорганизмов наблюдалось накопление в водной среде радиоактивного фосфора, выделенного корнями растений (Рис. 2).

Результати исследований позволяют предполагать, что связанний клетками бактерий фосфор оставался в песке и в водной среде, не попадая за истежший отрезок времени обратно в растения в процессе обмена со средой, как это могло быть в контрольных сосудах, где микроорганизмов было значительно меньше.

В суточных опытах, проведенных в водных культурах с сеянцами

дуба, на листья наносились растворы радиоактивных изотопов фосфора (ЛаН₂Р³²0₄) или серы (метионин). Часть сосудов обогащалась взвесью бактерий (азотобактер или Расидомоная radiobacter). Через каждые 6 часов в течение суток определялась активность и количество микроорганизмов в водной среде.

Результаты опытов приводятся на рис. З и 4.

Ход кривых показывает, что в течение суток наблюдались колебания в количестве корневых выделений и в развитии микроорганизмов, причем обогащение среды бактериями способствовало в большинстве случаев увеличению содержания в корневых выделениях радиоактивных изотопов фосфора и серы.

Необходимо отметить, что минимумы в содержании в водной среде корневых выделений и бактерий приходятся на ночные часы и совпадают с минимальными температурами воздуха.

IV. Влияние корневых выделений сеянцев древесных растений на развитие ризосферных микроорганизмов

В литературе имеется много указаний о положительном влиянии высших растений на развитие ризосферной микрофлоры (23-26).

Отмечено также, что корневые выделения древесных растений, являющиеся пищей для ризосферных микроорганизмов, способствуют их развитир.

В данной работе авторы пытались путем воздействия на корневые выделения проследить за размножением микроорганизмов в прикорневой зоне сеянцев ясеня.

Опыты проводились в песчаных культурах. В песок части сосудов вносилась водная взвесь азотобактера.

На листья сеянцев наносились следующие растворы: 1) МаН₂Р³²О₄, разведенний в 1,8%—ном растворе КН₂РО₄; 2) МаН₂Р³²О₄, разведенный в 1,8%—ном растворе глюкозы, удельная активность обоих растворов составляла 20 дс/мл. Контролем служили сосуды, в которых листья сеянцев смачивались водой. Анализы проводились через 10 и 3О дней после обработки листьев.

Результаты опытов приводятся в таблице 5. Из приведенных данных видно, что некорневая подкорыха сеянцев фосфором способствовала значительному росту числа микроорганизмов на корнях и в пес-

312

ке. Глюкоза оказала гораздо меньшее влияние на развитие микрофлоры. Слабов размножение микроорганизмов отмечено в сосудах без растерий.

Добавленный к растворам радиоактивный фосфор позволяет отме-

тить передвижение их по растению и выделению в песок.

Отмечено, что радиоактивный фосфор, нанессиный на листья сеянцев с раствором глюкозы, проник в корни в значительно меньшем количестве (почти в 5 раз), чем в смеси с КН2РО4.

Очевидно, глюкоза в значительной мере задерживается в листьях и стеблях, участвуя в синтетических процессах.

Аналогичные опиты проведенные в полевых условиях с сеянцами

дуба дали такие же результаты.

В итоге можно считать установленным, что интенсивная жизнедеятельность растений, ведущая к значительному выделению корнями
органических и минеральных веществ, способствует значительному
накоплению в ризосфере различных групп почвенных микроорганизмов,
вступающих в разнообразные и сложные взаимоотношения с высшими
растениями.

Таблица 5 Влияние корневых выделений сеянцев ясеня на развитие микрофлоры

Вариант		Объект	Количество микроорганизмо				
			общее (млн/г)		азотобактер [≇]		
			через 10 дней	через 30 дней	через 10 дней	через 30 дней	
	1	2	3	4	5	6	
Без вне- сения бактерий	Контроль с растериями КН ₂ РО ₄ + УаН ₂ Р ^{З2} О ₄	песок корни корни	0,9 16,0 15,0 18,6	0,4 47,2 27,4 62,0	-		
	Глюкоза + Л ан ₂ Р ³² О ₄ Контроль без	корн и	6,6 14,2	0,6	-	-	
	растений	песок	1,6	0,5	-	-	

*) Количество азотобажтера выражено в \$ обрастания частиц песка и кусочков тонких корней.

Выводы

Проведенные исследования позволяют сделать следующие выводы.

- 4. Интенсивное развитие микроорганизмов в ризос ере временно задерживает поступление фосфора в растения. Поглощенный микроор-ганизмами фосфор уже через 10 дней в значительной части становится доступным для растений.
- 2. Ризосферние микроорганизмы поглощают фосфорсодержение соединения, выделяющиеся корнями сеянцев дуба и ясеня, способствуя тем самым выделению новых количеств этих соединений в песчанию и водную среды.
- 3. Отмечен суточный ритм как в интенсивности корневых выделений растений, так и в развитии бактерий. Минимальные количества фосфора и серы, выделенные корнями сеянцев дуба и ясеня, а также наименьшее число живых клеток азотобактера обнаружены в ночные часы, когда температура воздуха была наименьшей.
- 4. Фосфорсодержащие корневые выделения сеянцев дуба способствурт интенсивному развитию микрофлоры в прикорневой зоне.

1312

Литература

- Т. Исакова А.А. "К вопросу о воздействии бактериориз на растения и об его сущности". Тр. ин-та физиол.раст., АН СССР, т.2, 1937
- 2. Красильников Н.А. "О влиянии микроорганизмов на рост растении". Микробиол., т.IX, в.4, 1940
- 3. Красильников Н.А. "О микробиологических процессих в ризосфере растения". Проблемы сов.почвовед., XI, 1940.
- 4. Красильников Н.А. "О взаимоотношении микроорганизмов почвы с растениями". Почвовед. № 3, 1944
- 5. Красильников Н.А. "Бактериальная масса ризосферы растения". Микробиол., т.XIII, № 4, 1944
- 6. Лысенко Т.Д. "О почвенном питании сельскохозяйственных растения". Газета "Известия", 27 сент., 1949
- 7. Gerresten F.C. "The influence of microorganisms on the phosphate intake by the plant". Plant a. Soil, v.1, p.51, 1948
- 8. Kramer P.G. and Wilbur K. "Absorbtion of radioactive phosphorus by mycorrhizae roots of Pine". Science, F.110, c.8-9,1949
- 9. Melin E. and Nilson H. "Transfer of radioactive phosphorus to Pine seedlings by means of mycorrhizae hyphne". Physiol. Plantarum, v. 3, F.1. 1950
- 10.Березова Е.Ф. "Взаимоотношения растений с микрофлорой почвы". Агробиол, # 5, 1950
- 11. Красильников Н.А. "Усвоение корнями растений продуктов жизнедеятельности микробов". ДАН СССР, т. XXIX, в. 5, 1951
- 12.Доросинский Л.М. "Корневое питание растений и микроорганизмы". Агробиол., № 2, 1951
- 13. Красильников Н.А. и Беззубенкова А.П. "Влияние бактерий на усвоение растениями органических веществ". ДАН СССР. т.101, # 6. 1955
- 14.Доросинский Л.М. и Ласарев Н.М. "Роль микроорганизмов в корневом питании растения". Изв. АН СССР, сер.биол., № 3, 1955
- 15. Красильников Н.А. и Котелев В.В. "Влияние почвенных фактерий на усвоение растениями соединений фосфора". ДАН СССР, т.410, # 5, 1956
- 16. Федоров М.В. и Пантош Д. "Физиологические особенности основных форм ризосферных бактерий яровой пшеницы". ДАН СССР, № 116, № 1, 1957

- 17. Шавловский Г.М. "Участие микроорганизмов ризосферы в снабжении растений органическими соединениями серы". ДАН СССР, т.XCI, № 5, 1953
- 18. Прянишников Д.Н. "Опыты с фосфатами, относящиеся к вопросу о корневых выделениях". Обилейный сборник, 1928
- 19. Ахромейко А.И. "О выделении корнями растений минеральных веществ". Изв. АН СССР, сер. биол. № 1, 1936
- 20. Мешков Н.В. "Корневие виделения висшего растения". Тр.Всес. конферен. по вопр. почв. микробиологии, 1952
- 21. Геллер И.А. "О корневых выделениях растения". ДАН СССР, т.ХСУ, # 5, 1954
- 22. Ахромейко А.И. и Журавлева М.В. "Поглощение минеральных питательных веществ корнями древесных растений". Применение изотопов при агрохимических и почвенных исследованиях, АН СССР, М., 1955
- 23. Starkey R. "Some influences of the development of higher plants upon the microorganisms in the soil". Soil. Sci., 5, c. 367, 1931
- 24. Красильников Н.А. "Влияние корневых выделения на развитие азотобактера и др. почвенных микробов". Микробиол., т.Ш, в.З, 1934
- 25. Мешков Н.В. "Вещества, активирующие рост микроорганизмов в корневых выделениях растений". Журн. общей биол., XIII, 1952
- 26. Rovira A.D. "Plant root excretion in relation to thrhizosphere effect". Plant a. Soil, v.7, M2.3.1956

Рис. 1. Влияние микроорганизмов на поглощение Р³² сеянцами дуба

Рис. 2. Влияние азотобактера на корневие виделения сеянцев дуба и ясеня

Рис. 3. Влияние азотобактера на суточный ход виделений сеян-

Температура возной орежи

Рис. 4. Влияние Pseudomonas radiobacter ход корневых виделений сеянцев дуба

на суточный