

Выпускная квалификационная работа по курсу «Data Science»

Слушатель Андреева Елена Анатольевна

Этапы выполнения работы

- ◆Разведочный анализ данных
- ❖Предобработка данных
- ❖Разработка и обучение регрессионных моделей для прогнозирования «Модуль упругости при растяжении, ГПа» и «Прочность при растяжении, МПа»
- ❖Построение нейронной сети для рекомендации «Соотношение матрицанаполнитель»

Разведочный анализ данных

- описательная статистика данного датасета;
- визуальный анализ гистограмм;
- визуальный анализ диаграмм размаха («ящик с усами»);
- проверка нормальности распределения по критерию Пирсона;
- анализ попарных графиков рассеяния переменных;
- корреляционный анализ с целью поиска коэффициентов

Предобработка данных

Найдем выбросы.

Для поиска выбросов воспользуемся методом 3-х сигм.

```
count_3s = 0
count_iq = 0
for column in df1:
    d = df1.loc[:, [column]]
    # методом 3-х сигм
    zscore = (df1[column] - df1[column].mean()) / df1[column].std()
    d['3s'] = zscore.abs() > 3
    count_3s += d['3s'].sum()
print('Метод 3-х сигм, выбросов:', count_3s)
```

Метод 3-х сигм, выбросов: 24

```
# Удаляем выбросы в датасете с помощью метода трёх сигм outliers = pd.DataFrame(index=df1.index) # Создание пустого датафрей for column in df1: # запускаем цикл по каждому столбцу датафрема zscore = (df1[column] - df1[column].mean()) / df1[column].std() outliers[column] = (zscore.abs() > 3) #определяем выбросы с помо df1 = df1[outliers.sum(axis=1)==0] # фильтруем, оставляя только стро df1.shape (1000, 13)
```


Обучение моделей

Для прогнозирования модуля упругости при растяжении и прочности при растяжении были использованы следующие методы машинного обучения:

Модуля упругости при растяжении, ГПа

	RMSE	MAE	R2
Lasso	-0.021946	3.104460	2.512111
LinearRegression	-0.042239	3.135130	2.542403
Ridge	-0.036349	3.126259	2.533514
Decision Tree Regressor	-0.065842	3.170432	2.551608
Random Forest Regressor	-0.058812	3.159959	2.527859
ElasticNetCV	-0.021981	3.104512	2.510919
SVR	-0.062883	3.166028	2.556054
BayesianRidge	-0.021522	3.103815	2.510063
KernelRidge	-0.031442	3.118849	2.524650

Модель для расчёта прочности при растяжении, МПа

	R2	RMSE	MAE
Lasso	-0.019856	469.004096	365.853564
LinearRegression	-0.041048	473.851843	370.003339
Ridge	-0.034646	472.392702	368.940470
DecisionTreeRegressor	-0.025416	470.280839	369.984701
RandomForestRegressor	-0.037358	473.011207	372.443349
ElasticNetCV	-0.000928	464.631542	363.886617
SVR	-0.049553	475.783433	368.535000
Bayesian Ridge	-0.000928	464.631544	363.886619
KernelRidge	-0.010346	466.812301	364.936087

Нейронная сеть для рекомендации «Соотношение матрица-наполнитель»

Результаты работы нейронных сетей для предсказания "Соотношение матрица-наполнитель"

			R2	RMSE
MLPRegressor	без	подобранных	-0.037495	0.940855
гиперпараметров				
MLPRegressor	c	подобранными	-0.019444	0.932634
гиперпараметрами				
Последовательная нейросеть (Keras)		-0.064893	0.953197	
Последовательная	нейросе	еть (Keras) с	-0.085778	0.962499
callback				
Последовательная	нейросе	еть (Keras) с	-0.048021	0.945616
Dropout				

do.bmstu.ru

