CS 321 HW 4 - 25 points

1. (9 pts) Give context-free grammars that generate the following languages.

a. L1 = { $w \in \{0, 1\}$ * | w contains at least three 1s }

Let the Grammar G = (V, \sum, P, S) , where

$$V = {S, A}$$

$$\Sigma = \{ 0,1 \}$$

Productions P:

$$A \rightarrow 0A \mid 1A \mid \lambda$$

b. L2 = $\{ w \in \{0, 1\}^* | w = w^R \text{ and } |w| \text{ is even } \}$

Let the Grammar $G - (V, \Sigma, P, S)$, where

$$V = \{S\}$$

$$\Sigma = \{ 0,1 \}$$

Productions P:

$$S \rightarrow OSO \mid 1S1 \mid \lambda$$

c. L3 = { $a^i b^j c^k$ | i, j, k \geq 0, and i = j or i = k

Let the Grammar $G - (V, \Sigma, P, S)$, where

$$V = {S, A, C, T, B}$$

$$\Sigma = \{ a,b,c \}$$

Productions P:

A -> aAb
$$\mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

2. (5 pts) Consider the following grammar G = ({S, A}, {a, b}, S, P} where P is defined below

S -> SS | AAA |
$$\lambda$$

a. Give a left-most derivation for the string abbaba.

b. Show that the grammar is ambiguous by exhibiting two distinct derivation trees for some terminal string.

Lets consider the string abbaba, it has 2 left most derivation

Leftmost derivation 1:

Leftmost derivation 2:

String = abbaba can also derived by the below in left most derivation

Therefore, this grammar is ambiguous.

3. (3 pts) Find an s-grammar for $L = \{a^nb^{n+1}: n >= 1\}$.

Let the Grammar G = (V, Σ, P, S) , where

$$V = {S, A, B}$$

$$\Sigma = \{a,b\}$$

Productions P:

S -> aAB

4. (4 pts) Let L = {
$$a^nb^{n+1} : n \ge 0$$
 }

a. Show that L² is a context-free language.

To show L^2 is a context free language, we can define a context free grammar as below :

Let the Grammar G = (V, \sum, P, S) , where

$$V = {S, A}$$

$$\Sigma = \{ a,b \}$$

Productions P:

S -> AA

 $A \rightarrow aAb \mid \lambda$

b. Show that L* is a context-free language.

To show L* is a context free language, we can define a context free grammar as below :

Let the Grammar G = (V, \sum, P, S) , where

$$V = {S, A}$$

$$\Sigma = \{ a,b \}$$

Productions P:

$$S \rightarrow AA \mid \lambda$$

$$A \rightarrow aAb \mid \lambda$$

Also, according to the closure properties of context free languages, they are closed under Kleen star.

Thus L* is context free.

5. (4 pts) Prove that context-free languages are closed under star-closure (*).

Let the Language be represented by

$$L = \{ a^n b^n \mid n > = 0 \}$$

If L is context free, then L* is also context free

$$L^* = \{ a^n b^n \mid n > = 0 \}^*$$

Let the Grammar for L be $G - (V, \Sigma, P, S)$

The grammar for L* can be derived by adding a new start symbol S₁ and the following productions

$$S_1 \rightarrow SS_1 \mid \lambda$$

The rightmost derivation from S_1 generates a sequence of zero or more S's, each of which generates some string in L. Therefore, CFL is closed under Kleene Closure.