Principal Component Analysis

From riches to rags

PCA Example

Step 1: Standardization of features (independent variables only)

Step 2: Calculate Covariance Matrix

Step 3: Compute Eigen Values & Eigen Vectors of Covariance Matrix
Then Assign the Principal Components Accordingly

Step 4: Keep Important PCs and discard less significant ones

Step 5: Create Final Dataset

Suppose below is our data:

X	Y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
I	1.1
1.5	1.6
1.1	0.9

We now wish to do a PCA on this one and see if we can reduce it to lower dimension.

Note: Here for the sake of simplicity we took 2 dimensions (features). However if there are more dimensions, then we follow the same approach that we will see now.

Step 1: Standardize your data.

Make sure you do this step as it is a good practice. However if your data are already in good scales then you may skip it.

X	Y
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

Here, our data is already in good scale (X and Y) hence we skip this step.

Step 2: Calculate co-variance matrix

The covariance matrix for our data will be like

$$C = \frac{cov(x, x) cov(x, y)}{cov(y, x)}$$

Note: We have only 2D data, hence the covariance matrix is 2x2. If we have N-D data, then our covariance matrix will be nxn

e.g. Covariance for 3D data will be like:

cov(x,x)	cov(x,y)	cov(x,z)
cov(y,x)	cov(y,y)	cov(y,z)
cov(z,x)	cov(z,y)	cov(z,z)

Step 2: Calculate co-variance matrix

The covariance matrix for our data will be like

$$C = \frac{cov(x, x) cov(x, y)}{cov(y, x)}$$

Covariance Formula is:

$$Cov(x,y) = \frac{\sum_{(x_i - \overline{x})(y_i - y)}{N-1}$$

Step 2: Calculate co-variance matrix

The covariance matrix for our data will be like

c -	cov(x, x)	cov(x, y)
C =	cov(y, x)	cov(y, y)

After applying the formula, we get our covariance matrix

0.6165	0.6154
0.6154	0.7165

Step 3: Compute Eigen Values & Eigen Vectors

To get the **Eigen values**, we have to solve for the determinants of :

 $\mathbf{C} - \lambda \mathbf{I} = 0$

Where,

C = Covariance Matrix

 λ = Constant/Eigen value

I = Identity Matrix

Thus

0.6165	0.6154	1	- 1	0	= 0
0.6154	0.7165	- /	0	I	– 0

0.6165 - λ	0.6154	_ ^
0.6154	0.7165 - λ	– 0

Step 3: Compute Eigen Values & Eigen Vectors

Eventually we get the equation: $(0.6165-\lambda) * (0.7165-\lambda) - 0.6154 * 0.6154 = 0$

We will get a quadratic equation here, Which means it has 2 roots.

After solving, we get the roots as:

$$\lambda_1 = 0.4908 \& \lambda_2 = 1.2480$$

Hence our eigen values are:

$$\lambda_1 = 0.4908 \& \lambda_2 = 1.2480$$

Step 3: Compute Eigen Values & Eigen Vectors

To get the **Eigen vectors**, we have to solve for the determinants of :

$$AX = 0$$

0.6165 - λ	0.6154	X_{i}	_
0.6154	0.7165 - λ	Y_{i}	_

We need to solve for both Eigen Values:

$$\lambda_1 = 0.4908 \& \lambda_2 = 1.2480$$

Step 3: Compute Eigen Values & Eigen Vectors

Solving for:

$$\lambda_1 = 0.4908$$

0.6165 – 0.4908	0.6154
0.6154	0.7165 - 0.4908

Hence, we get

$$0.1257 \times_{1} + 0.6154 Y_{1} = 0$$

$$0.6154 \times_{1} + 0.2257 Y_{1} = 0$$

Solving above equation we get Eigen vector v_1 for $\lambda_1 = 0.4908$

$$V_1 = \frac{-0.735}{0.677}$$

Step 3: Compute Eigen Values & Eigen Vectors

Solving for:

$$\lambda_2 = 1.2840$$

0.6165 – 1.2840	0.6154
0.6154	0.7165 – 1.2840

$$\frac{X_2}{Y_2} = 0$$

Solving above equation: we get Eigen vector v_2 for $\lambda_2 = 1.2840$

$$v_2 = \frac{-6.77}{-0.735}$$

Step 3: Compute Eigen Values & Eigen Vectors

Assigning Principal Components

Here,

$$\lambda_2$$
 (1.2480) < λ_1 (0.4908)

Hence,

 λ_2 is our Principal Component I (PCI) λ_1 is our Principal Component 2 (PC2)

Corresponding values will be our Eigen vectors:

٧l	v2
- 0.735	-0.677
0.677	-0.735

Step 4: Keep Important Components

Here,

We keep all the components

Step 5: Create final dataset

Final Dataset = $(FeatureVector)^T$ – $(Standardize Data)^T$

where

T = Transpose

Feature Vector = Vector(Dataframe) you get having the PCs' in it (PC1 & PC2 here)

