# 1 Real Estate ROI Analysis- Time Series Modeling

# 1.1 Project Overview

This project will look into a Real Estate database to find valuable information about the value of homes and return on investment. My company, Xabios data international, has been hired to determine the change of prices in this market over time and to determine which areas have the most potential to increase. Thus, this project is aimed at two very targeted goal using Time Series Modeling:

Jupyter Notebook A brief note on this Jupyter notebook. This notebook presents story line following this structure:

· Part 1: Overview, Business Understanding & Objective

Part 2 : EDAPart 3 : ModelingPart 4 : Conclusion

# 1.2 Business Understanding

As important as current prices are to Real Estate companies, so it is the ability to know where prices will go higher in the future to make investement decisions. The key metric of leaving knowing how much money will an investment property return is known as Return on Investment or "ROI" as it is commonly abbreviated and known in finance. From a business perspective, the business would like to understand exactly what factors and zip codes contribute to ROI, and most importantly, post identification of those factors, define precise strategic initiatives to aim funds disbursement for the purchase of Real Estate property. This project, therefore aims to help the business first in identifying the past, how prices change over time in the zone in which this analysis occurs, and in turn, build time-series models that can help the business predict future value of property, so that in fact strategic business initiatives can be outlined for solution.

# 1.2.1 Business Modeling Objectives

- 1. Understand Real Estate Prices how they have changed overtime
- 2. Find out Real Estate Areas of Growth Measured by ROI

# 1.2.2 Important Data Modeling Success Considerations

We are conducting a Time Series Analysis over the Zillow Home Value Index (ZHVI):A data set that tracks a sample of real estate prices over time. In particular, a time series allows one to see what factors influence certain variables from period to period. Time series analysis can be useful to see how a given asset, in this case Real Estate, or economic variable, in this case ROI, changes over time.

# 1.3 EDA - Loading, Modifying and Understanding DataSet

```
In [1]:
            import pandas as pd
            from pandas import Series
            import seaborn as sns
            import matplotlib as mpl
            import matplotlib.pyplot as plt
            import plotly.express as px
            import plotly.io as pio
         9
         10
            %matplotlib inline
In [2]:
         1
           #Loading data
           df= pd.read csv ('zillow data.csv')
In [3]:
           #Seeing the shape of the
           df.shape
Out[3]: (14723, 272)
In [4]:
            #Finding more key information of the data set
In [5]:
           df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 14723 entries, 0 to 14722
        Columns: 272 entries, RegionID to 2018-04
        dtypes: float64(219), int64(49), object(4)
        memory usage: 30.6+ MB
```

#### Out[6]:

|   | RegionID | RegionName | City     | State | Metro                    | CountyName | SizeRank | 1996-04  | 1996-05  |   |
|---|----------|------------|----------|-------|--------------------------|------------|----------|----------|----------|---|
| 0 | 84654    | 60657      | Chicago  | IL    | Chicago                  | Cook       | 1        | 334200.0 | 335400.0 | 3 |
| 1 | 90668    | 75070      | McKinney | TX    | Dallas-<br>Fort<br>Worth | Collin     | 2        | 235700.0 | 236900.0 | 2 |
| 2 | 91982    | 77494      | Katy     | TX    | Houston                  | Harris     | 3        | 210400.0 | 212200.0 | 2 |
| 3 | 84616    | 60614      | Chicago  | IL    | Chicago                  | Cook       | 4        | 498100.0 | 500900.0 | 5 |
| 4 | 93144    | 79936      | El Paso  | TX    | El Paso                  | El Paso    | 5        | 77300.0  | 77300.0  |   |

5 rows × 272 columns

Basically, this is a national database, that's showing us there are 14,723 ZIP codes in total. We'd need to focus on one market area specifically. For the purpose of forecasting within that market.

#### 1.3.0.1 Selecting Market: State(s) & Indexing Columns

Focusing on getting an understanding of the Connecticut market zip codes since it is an area of interest to my client, and area of investment preference

Number of CT zip codes: 124

#### Out[10]:

|   | Zipcode | Metro        | SizeRank | 1996-04  | 1996-05  | 1996-06  | 1996-07  | 1996-08  | 1996-09  | 1996-1 |
|---|---------|--------------|----------|----------|----------|----------|----------|----------|----------|--------|
| 0 | 6010    | Hartford     | 113      | 120300.0 | 120000.0 | 119800.0 | 119400.0 | 119100.0 | 118800.0 | 118600 |
| 1 | 6516    | New<br>Haven | 417      | 96500.0  | 96300.0  | 96100.0  | 95900.0  | 95600.0  | 95300.0  | 95000  |
| 2 | 6511    | New<br>Haven | 546      | 89800.0  | 90000.0  | 90200.0  | 90300.0  | 90500.0  | 90700.0  | 90800  |
| 3 | 6810    | Stamford     | 685      | 151100.0 | 150700.0 | 150200.0 | 149700.0 | 149100.0 | 148600.0 | 148200 |
| 4 | 6492    | New<br>Haven | 899      | 146800.0 | 146600.0 | 146300.0 | 146100.0 | 145900.0 | 145700.0 | 145600 |

5 rows × 268 columns

# 1.3.1 Obtaining Return on Investment (ROI)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 124 entries, 0 to 123

Columns: 270 entries, Zipcode to ROI\_3yr
dtypes: float64(221), int64(48), object(1)

memory usage: 261.7+ KB

#### Out[12]:

|   | Zipcode | Metro        | SizeRank | 1996-04  | 1996-05  | 1996-06  | 1996-07  | 1996-08  | 1996-09  | 1996-1 |
|---|---------|--------------|----------|----------|----------|----------|----------|----------|----------|--------|
| 0 | 6010    | Hartford     | 113      | 120300.0 | 120000.0 | 119800.0 | 119400.0 | 119100.0 | 118800.0 | 118600 |
| 1 | 6516    | New<br>Haven | 417      | 96500.0  | 96300.0  | 96100.0  | 95900.0  | 95600.0  | 95300.0  | 95000  |
| 2 | 6511    | New<br>Haven | 546      | 89800.0  | 90000.0  | 90200.0  | 90300.0  | 90500.0  | 90700.0  | 90800  |
| 3 | 6810    | Stamford     | 685      | 151100.0 | 150700.0 | 150200.0 | 149700.0 | 149100.0 | 148600.0 | 148200 |
| 4 | 6492    | New<br>Haven | 899      | 146800.0 | 146600.0 | 146300.0 | 146100.0 | 145900.0 | 145700.0 | 145600 |

5 rows × 270 columns

The formatted shape of this data set needs to be re-formatted to follow a long format, where the 268 columns are rows, and the rows are columns. We do this by re-shaping.

# 1.3.2 Reshaping data set to Long Format calling it :melted\_df

```
In [13]:
          1
             def melt data(df):
           2
                 melted = pd.melt(df, id_vars=['Zipcode', 'Metro', 'SizeRank', 'ROI_
           3
                 melted['Date'] = pd.to_datetime(melted['Date'], infer_datetime_form
           4
                 melted = melted.dropna(subset=['value'])
           5
                 return melted
           6
           7
             #passing the melt data transformaiton into the dataset
In [14]:
             melted_df=melt_data(df_ct)
           2
```

## 1.3.2.1 melted\_df (Long Format) view :

## Out[15]:

|   | Zipcode | Metro     | SizeRank | ROI_5yr | ROI_3yr | Date       | value    |
|---|---------|-----------|----------|---------|---------|------------|----------|
| 0 | 6010    | Hartford  | 113      | 0.1063  | 0.0982  | 1996-04-01 | 120300.0 |
| 1 | 6516    | New Haven | 417      | 0.0752  | 0.0970  | 1996-04-01 | 96500.0  |
| 2 | 6511    | New Haven | 546      | 0.1462  | 0.1839  | 1996-04-01 | 89800.0  |
| 3 | 6810    | Stamford  | 685      | 0.2219  | 0.1839  | 1996-04-01 | 151100.0 |
| 4 | 6492    | New Haven | 899      | 0.1182  | 0.0410  | 1996-04-01 | 146800.0 |

The melted\_df is a much better looking data set with ROI on a per Zip Code basis. However we want to look at its information and types of data that define the columns, and perhaps modify the setting a new index given that we are workin with a Time-Series analysis. So I'll do this next.

#### 1.3.2.2 Analyzing melted\_df

dtype: int64

```
In [17]:
            #Looking at the information
          2 melted df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 32860 entries, 0 to 32859
         Data columns (total 7 columns):
             Column
                       Non-Null Count Dtype
          0
            Zipcode
                       32860 non-null int64
                       32860 non-null object
          1
             Metro
             SizeRank 32860 non-null int64
          2
             ROI 5yr 32860 non-null float64
          3
                       32860 non-null float64
          4
             ROI 3yr
          5
                       32860 non-null datetime64[ns]
             Date
          6
                       32860 non-null float64
             value
         dtypes: datetime64[ns](1), float64(3), int64(2), object(1)
        memory usage: 2.0+ MB
```

### 1.3.2.3 Modifying melted\_df for Time-Series Analysis

I now have changed the ZIP Code to a string type, made sure that the Date format is correct and have set Date as index.

## Looking at Trends: Home value in the last 10 years

The 2008 crash dropped the values of home until 2013, when it started to pick up

```
In [20]: 1 monthly_data = melted_df.resample('MS').mean()['value']
2 monthly_data.plot()
3 plt.title('Typical Home Value by Month')
4 plt.ylabel('Value in US Dollars ($)')
5 plt.show()
```



The Date index view and Trend Chart above gives insight into the data set and allows me to make choices on how is it going to be treated. First, we understand that this data set values are given from 1996 through 2018. Second, it shows an abrupt decline in prices in 2008. The abrupt decline can be explained by prices by the financial collapse that occurred nationally affecting CT obviously in 2008. Therefore, my focus on the analysis and modeling will be from 2008 through 2018 best ZIP Codes as determined by ROI.

## 1.3.2.4 Modifying data set for analysis (based on findings explained above)

#### The Melted\_df will now hold values for the past 10 years

Now, I'll refrom melted\_df to show the house prices for the past 10 years, and modify a few minor things in order to view my new data set, finally visualizing and ranking areas or ZIP Codes in preparation for modeling techniques.

Resampling technique is used to gather more information about a sample. Retaking a sample or resampling often improves the overall accuracy and estimates any uncertainty within this picked population.

```
In [23]:
             #looking at the melted data set that now will have information on CT ZI
           2 melted_df.info()
           3 melted_df.head()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 15376 entries, 2008-01-01 to 2018-04-01
         Data columns (total 6 columns):
                        Non-Null Count Dtype
              Column
                         _____
          0
              Zipcode
                        15376 non-null object
                        15376 non-null object
          1
              Metro
              SizeRank 15376 non-null int64
          2
          3
              ROI 5yr
                        15376 non-null float64
                        15376 non-null float64
          4
              ROI_3yr
              value
                        15376 non-null float64
         dtypes: float64(3), int64(1), object(2)
         memory usage: 840.9+ KB
Out[23]:
                             Metro SizeRank ROI_5yr ROI_3yr
                   Zipcode
                                                           value
              Date
          2008-01-01
                     6010
                            Hartford
                                       113
                                            0.1063
                                                   0.0982 219300.0
```

### 1.3.2.5 Stats and Data Visualization

We have 5 different areas by Metro area. I have grouped them and this will help visualize data set



<Figure size 432x288 with 0 Axes>

Top 3 with higuest mean values are Stamford, Torrington, and Hartford

## Out[28]:

|       | SizeRank     | ROI_5yr     | ROI_3yr     | value        |
|-------|--------------|-------------|-------------|--------------|
| count | 1984.000000  | 1984.000000 | 1984.000000 | 1.984000e+03 |
| mean  | 5395.500000  | 0.117881    | 0.068744    | 5.050442e+05 |
| std   | 2786.125208  | 0.108130    | 0.120613    | 3.820920e+05 |
| min   | 685.000000   | -0.019200   | -0.076400   | 1.185000e+05 |
| 25%   | 3724.750000  | 0.040875    | -0.000250   | 2.750750e+05 |
| 50%   | 5896.500000  | 0.090450    | 0.030600    | 3.450000e+05 |
| 75%   | 6677.500000  | 0.155375    | 0.109650    | 7.189750e+05 |
| max   | 11245.000000 | 0.320200    | 0.316600    | 1.746000e+06 |

## Out[29]:

|       | SizeRank     | ROI_5yr     | ROI_3yr     | value         |
|-------|--------------|-------------|-------------|---------------|
| count | 2480.000000  | 2480.000000 | 2480.000000 | 2480.000000   |
| mean  | 11759.300000 | 0.150080    | 0.112490    | 331128.870968 |
| std   | 2795.020029  | 0.099232    | 0.067996    | 123206.641312 |
| min   | 3789.000000  | 0.015000    | 0.021000    | 135800.000000 |
| 25%   | 10302.250000 | 0.077700    | 0.062300    | 245900.000000 |
| 50%   | 13041.500000 | 0.146900    | 0.090500    | 307450.000000 |
| 75%   | 13663.000000 | 0.190975    | 0.168325    | 409825.000000 |
| max   | 14552.000000 | 0.415800    | 0.248700    | 737800.000000 |

#### Out[30]:

|       | SizeRank     | ROI_5yr     | ROI_3yr     | value         |
|-------|--------------|-------------|-------------|---------------|
| count | 4340.000000  | 4340.000000 | 4340.000000 | 4340.000000   |
| mean  | 7921.885714  | 0.059234    | 0.071354    | 242469.493088 |
| std   | 3897.308858  | 0.046046    | 0.042045    | 65698.245634  |
| min   | 113.000000   | -0.081200   | -0.039600   | 103300.000000 |
| 25%   | 4011.000000  | 0.033900    | 0.040000    | 197475.000000 |
| 50%   | 8085.000000  | 0.063500    | 0.064900    | 242400.000000 |
| 75%   | 10809.000000 | 0.084400    | 0.096500    | 277900.000000 |
| max   | 14655.000000 | 0.155800    | 0.158000    | 460500.000000 |

#### Note on Polulation Density as Size Rank

Looking at the population density

```
In [31]:
             melted df.SizeRank.unique()
Out[31]: array([
                   113,
                                  546,
                                                  899,
                                                        1145,
                                                                1332,
                                                                       1362,
                                                                               1599,
                           417,
                                          685,
                  1901,
                          2093,
                                 2192,
                                         2301,
                                                2390,
                                                        2497,
                                                                3051,
                                                                       3245,
                                                                               3281,
                  3368,
                          3532,
                                 3565,
                                         3581,
                                                3696,
                                                        3760,
                                                                3778,
                                                                       3789,
                                                                               3978,
                  4011,
                          4230,
                                 4324,
                                         4531,
                                                4587,
                                                        4674,
                                                                4717,
                                                                       5580,
                                                                               5624,
                                                5941,
                  5687,
                          5756,
                                 5852,
                                         5870,
                                                        6037,
                                                                6063,
                                                                       6084,
                                                                               6176,
                                                6591,
                  6270,
                          6288,
                                 6329,
                                         6424,
                                                        6599,
                                                                6813,
                                                                       6913,
                                                                               7022,
                  7031,
                          7144,
                                 7259,
                                         7317,
                                                7382,
                                                        7471,
                                                                7496,
                                                                       7595,
                                                                               7704,
                  7741,
                          7890,
                                 8085,
                                                8425,
                                                        8427,
                                                                       8601,
                                         8368,
                                                                8584,
                                                                               8943,
                          9136,
                                                9298,
                  9032,
                                 9160,
                                         9275,
                                                        9457,
                                                                9577,
                                                                       9681,
                                                                               9715,
                  9788,
                                 9903,
                                         9977, 10164, 10281, 10446, 10463, 10591,
                          9871,
                 10651, 10663, 10786, 10809, 10893, 11245, 11629, 11907, 11929,
                 12034, 12184, 12310, 12406, 12469, 12556, 12817, 12967, 13018,
                 13065, 13214, 13215, 13266, 13465, 13564, 13567, 13646, 13714,
                 13908, 13927, 14096, 14356, 14477, 14552, 14655])
```

It is noted that the areas range between mid high and low densily populated.

#### 1.3.2.6 Top Zip Codes Mean Value of Homes View

Now that we know the top areas by mean, we will look at the ZIP Codes themselves and determine which are exactly the best by looking at the average mean price

```
#group zip code
In [32]:
           2
             zipcode group= melted_df.groupby('Zipcode')
          3
           4
             #top 10 values
           5
             zip_mean= zipcode_group.value.mean()
             zip_mean= zip_mean.sort_values(ascending=False).head(10)
             zip mean.plot.barh(color='blue')
          8
             plt.title('Top 10 Zipcodes \n Highest Mean Value 2008-2018')
             plt.ylabel('Value in Millions of Dollars ($)')
         10
             plt.show()
         11
            plt.savefig('Zipcodes')
```



<Figure size 432x288 with 0 Axes>

Out[33]:

|            | Zipcode | Metro    | SizeRank | ROI_5yr | ROI_3yr | value     |
|------------|---------|----------|----------|---------|---------|-----------|
| Date       |         |          |          |         |         |           |
| 2008-01-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1746000.0 |
| 2008-02-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1736100.0 |
| 2008-03-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1729800.0 |
| 2008-04-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1728700.0 |
| 2008-05-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1727600.0 |
|            |         |          |          |         |         |           |
| 2017-12-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1355500.0 |
| 2018-01-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1361600.0 |
| 2018-02-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1374500.0 |
| 2018-03-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1381400.0 |
| 2018-04-01 | 6840    | Stamford | 5941     | -0.0012 | -0.0764 | 1379900.0 |

124 rows × 6 columns

### Out[34]:

|            | Zipcode | Metro    | SizeRank | ROI_5yr | ROI_3yr | value     |
|------------|---------|----------|----------|---------|---------|-----------|
| Date       |         |          |          |         |         |           |
| 2008-01-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1401500.0 |
| 2008-02-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1399200.0 |
| 2008-03-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1395800.0 |
| 2008-04-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1392500.0 |
| 2008-05-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1391200.0 |
| •••        |         |          |          |         |         |           |
| 2017-12-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1375600.0 |
| 2018-01-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1374700.0 |
| 2018-02-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1379100.0 |
| 2018-03-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1385800.0 |
| 2018-04-01 | 6820    | Stamford | 6037     | 0.1149  | 0.0045  | 1388100.0 |

124 rows × 6 columns

```
In [35]:
               #further understanding the values in this data set
              melted df.value.describe()
            2
Out[35]: count
                     1.537600e+04
          mean
                     2.802331e+05
                     1.840456e+05
          std
          min
                     8.010000e+04
          25%
                     1.838000e+05
          50%
                     2.419000e+05
          75%
                     3.145250e+05
          max
                     1.746000e+06
          Name: value, dtype: float64
          The Max value of all time and the Min Value of all times are:
In [36]:
               melted_df.loc[melted_df['value'] == 1746000]
Out[36]:
                     Zipcode
                                Metro SizeRank ROI_5yr ROI_3yr
                                                                  value
                Date
           2008-01-01
                        6840 Stamford
                                               -0.0012
                                                       -0.0764 1746000.0
                                          5941
In [37]:
               melted_df.loc[melted_df['value']== 80100]
Out[37]:
                     Zipcode
                                 Metro SizeRank ROI 5yr ROI 3yr
                                                                  value
                Date
           2015-04-01
                        6706 New Haven
                                           7317
                                                  0.0274
                                                         0.3196 80100.0
```

# 1.3.3 Understanding 5 yr. ROI Homes & the Top 10% in this category

```
In [38]:
              #There are 15,736 homes, we'll look at the top 10% in this set
           2
              melted df['ROI 5yr'].describe()
           3
Out[38]: count
                   15376.000000
         mean
                       0.098785
         std
                       0.076585
         min
                      -0.081200
         25%
                       0.051025
         50%
                       0.090000
         75%
                       0.130150
                       0.415800
         max
         Name: ROI 5yr, dtype: float64
```

```
In [39]:
           1
              #getting the quantile .90 for the top 10%
           2
           3
              #first getting 90% of these homes or the .90 quantile
           4
              ninety perc_ROI_5yr = melted_df['ROI_5yr'].quantile(q=0.90)
           5
              #Now deriving the top 10% by taking the values greater than that 90th p
              top 10 percent = melted df.loc[melted df['ROI 5yr']>=ninety perc ROI 5y
              #looking at the first 10 values of the top 10% with best 5yr ROI
In [40]:
              top_10_percent.head(5)
Out[40]:
                     Zipcode
                                Metro SizeRank ROI_5yr ROI_3yr
                                                                value
               Date
           2008-01-01
                       6810
                              Stamford
                                          685
                                                0.2219
                                                       0.1839 321900.0
                       6606
                              Stamford
                                         1332
                                                0.3202
                                                       0.2165 252300.0
           2008-01-01
           2008-01-01
                       6513 New Haven
                                         2301
                                                0.2725
                                                       0.1802 187600.0
           2008-01-01
                       6604
                              Stamford
                                         3778
                                                0.3141
                                                       0.3166 274700.0
                                                       0.3111 216600.0
           2008-01-01
                       6610
                              Stamford
                                         4717
                                                0.2999
In [41]:
              top_10_percent.info()
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 1612 entries, 2008-01-01 to 2018-04-01
          Data columns (total 6 columns):
                          Non-Null Count Dtype
               Column
```

```
_____
    Zipcode
             1612 non-null
                            object
    Metro
                            object
1
             1612 non-null
2
    SizeRank 1612 non-null
                            int64
3
    ROI 5yr
             1612 non-null
                            float64
             1612 non-null float64
4
    ROI 3yr
5
    value
             1612 non-null
                            float64
dtypes: float64(3), int64(1), object(2)
memory usage: 88.2+ KB
```

1,612 homes are in that 10% with the best ROI. Doing the same for the 3 yrs ROI

# 1.3.4 Top 10% Zip Codes 3 yr. ROI

In [43]:

#looking at the first 10 values of the top 10% with best 3yr ROI

```
2 top 10 percent 3yr.info()
 3 top_10_percent_3yr.head(5)
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1612 entries, 2008-01-01 to 2018-04-01
Data columns (total 6 columns):
              Non-Null Count Dtype
 #
    Column
              _____
___
              1612 non-null
 0
    Zipcode
                             object
 1
    Metro
              1612 non-null
                             object
    SizeRank 1612 non-null
                             int64
 2
    ROI 5yr
              1612 non-null float64
 3
              1612 non-null float64
    ROI_3yr
 5
    value
              1612 non-null float64
dtypes: float64(3), int64(1), object(2)
memory usage: 88.2+ KB
```

#### Out[43]:

|            | Zipcode | Metro      | SizeRank | ROI_5yr | ROI_3yr | value    |
|------------|---------|------------|----------|---------|---------|----------|
| Date       |         |            |          |         |         |          |
| 2008-01-01 | 6606    | Stamford   | 1332     | 0.3202  | 0.2165  | 252300.0 |
| 2008-01-01 | 6705    | New Haven  | 3696     | 0.0056  | 0.1964  | 152500.0 |
| 2008-01-01 | 6604    | Stamford   | 3778     | 0.3141  | 0.3166  | 274700.0 |
| 2008-01-01 | 6610    | Stamford   | 4717     | 0.2999  | 0.3111  | 216600.0 |
| 2008-01-01 | 6351    | New London | 6591     | 0.1183  | 0.2234  | 217300.0 |

# 1.3.5 Data Set Prepared For Modeling

I'll therefore use the top 10% ROI ZIP Codes for in the past 3yrs, create a new data set called "df", store it and use it for ARIMA Modeling preditions.

value

#### Out[44]:

|            | poodo |        | <u>.</u> | value    |
|------------|-------|--------|----------|----------|
| Date       |       |        |          |          |
| 2008-01-01 | 6606  | 0.3202 | 0.2165   | 252300.0 |
| 2008-01-01 | 6705  | 0.0056 | 0.1964   | 152500.0 |
| 2008-01-01 | 6604  | 0.3141 | 0.3166   | 274700.0 |
| 2008-01-01 | 6610  | 0.2999 | 0.3111   | 216600.0 |
| 2008-01-01 | 6351  | 0.1183 | 0.2234   | 217300.0 |

Zipcode ROI 5vr ROI 3vr



# 1 ARIMA CODING

I'll be implementing and autoregressive integrated moving average model. An autoregressive integrated moving average mode, or ARIMA, is a statistical analysis model that uses time series data to either better understand the data set or to predict future trends. A statistical model is autoregressive if it predicts future values based on past values. I'll load the libraries and start the process of modeling. I'll build a base model and a second model choosing a best model. As the objective is to find the ZIP Codes in a particular market that predict the best ROI.

# 1.1 Loading data sets and libraries

```
In [1]:
          1
            #!pip install
            %store -r df
          2
            %matplotlib inline
In [2]:
            #importing libraries
          2 import pandas as pd
          3 import numpy as np
            import matplotlib as mpl
            import matplotlib.pyplot as plt
            import seaborn as sns
          7
            import numpy as np
          8
          9
            ## Project Notebook Settings
         10
         11
            pd.set_option('display.max_columns',0)
         12
         13
            import warnings
         14
            warnings.filterwarnings('ignore')
         15
         16 plt.style.use('seaborn-notebook')
In [3]:
          1
            #checking the data set
            df.head(5)
```

#### Out[3]:

|            | Zipcode | ROI_5yr | ROI_3yr | value    |
|------------|---------|---------|---------|----------|
| Date       |         |         |         |          |
| 2008-01-01 | 6606    | 0.3202  | 0.2165  | 252300.0 |
| 2008-01-01 | 6705    | 0.0056  | 0.1964  | 152500.0 |
| 2008-01-01 | 6604    | 0.3141  | 0.3166  | 274700.0 |
| 2008-01-01 | 6610    | 0.2999  | 0.3111  | 216600.0 |
| 2008-01-01 | 6351    | 0.1183  | 0.2234  | 217300.0 |

## 1.1.1 Time Series Process

The data set has to be prepared to for modeling. The correct process for managing Time Series correctly includes:

- 1. Grouping the data set and creating a Time Series (TS)
- 2. Converting to Pandas DataFrame and Visualization
- 3. Conceptual Soundness -Set up for Modeling (Understanding Time Series-ACF & PACF, Differencing & Decomposition)
- 4. Stats Models- Visualizing ACF & PACF
- 5. Stats Models- Differencing Detrending Transformation
- 6. Modeling Predictions and Results

## 1.1.2 1. Grouping the data set

```
In [4]:
         1 #Making a Zipcode list
           #taking the unique ZIP Code values and fitting them to the list
         3 zipcode_list = df['Zipcode'].unique().tolist()
In [5]:
           #Creating a TS (time series) dictionary and loop
         1
         2
           TS = \{\}
            for zipcode in zipcode list:
                temp df = df.groupby('Zipcode').get group(zipcode).sort index()['va
                TS[zipcode] = temp df #df.loc[district]
         5
            #Looking at the keys in the TS dictionary
In [6]:
            TS.keys()
Out[6]: dict_keys(['6606', '6705', '6604', '6610', '6351', '6706', '6359', '606
        9', '6330', '6039', '6235', '6068', '6796'])
           #Looking at ZIP Code 6706 in the dictionary now that ZIP Codes are grou
In [7]:
         2 #note that Date is index, group is the the ZIP Code by descending value
           TS['6706']
Out[7]: Date
        2008-01-01
                      152200.0
        2008-02-01
                      151200.0
        2008-03-01
                      150300.0
        2008-04-01
                      149600.0
        2008-05-01
                      149200.0
        2017-12-01
                      108900.0
        2018-01-01
                      109800.0
        2018-02-01
                      109500.0
        2018-03-01
                      109000.0
        2018-04-01
                      108600.0
        Name: value, Length: 124, dtype: float64
```

# 1.1.3 Converting (To Pandas DataFrame)

Now we are going to convert and visualize the TS dictionary created and put it into a Pandas DataFrame. The Pandas DataFrame for time series shows from 2008 through 2018 montly values under each of the ZIP Codes.

#### Out[8]:

|                | 6606     | 6705     | 6604     | 6610     | 6351     | 6706     | 6359     | 6069     | 6330     |                 |
|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|
| Date           |          |          |          |          |          |          |          |          |          |                 |
| 2008-<br>01-01 | 252300.0 | 152500.0 | 274700.0 | 216600.0 | 217300.0 | 152200.0 | 282100.0 | 436300.0 | 232100.0 | 53              |
| 2008-<br>02-01 | 249500.0 | 151300.0 | 271300.0 | 213100.0 | 214400.0 | 151200.0 | 282000.0 | 437000.0 | 230400.0 | 53 <sup>-</sup> |
| 2008-<br>03-01 | 247000.0 | 150200.0 | 268600.0 | 210100.0 | 212800.0 | 150300.0 | 282100.0 | 436300.0 | 228900.0 | 53              |
| 2008-<br>04-01 | 244700.0 | 149100.0 | 266600.0 | 207500.0 | 212100.0 | 149600.0 | 281600.0 | 434900.0 | 227800.0 | 53              |
| 2008-<br>05-01 | 242400.0 | 148100.0 | 264600.0 | 205100.0 | 211900.0 | 149200.0 | 280500.0 | 433700.0 | 226700.0 | 53(             |

## Visualizing individual ZIP Code

```
In [9]: 1 #Zip Code # 6706
2 zipcode = '6706'
```

Creating 'ts' data set containing 'ts\_df' which is the Pandas Data Frame of the timeseries



With the visualization above we can understand how home values in a ZIP Code have moved month over month and year over year. We are ready to navigate Time-Series deeper and set up for our predicting models.

# 1.1.4 Set up for Modeling - Conceptual Soundness

## 1.1.4.1 Understanding Time Series, Lags, Components, ACF & PACF

#### Components of Time-Series

Time Series have major components that can affect the lags or how the lags are shown, such as:

- Trend component.
- Seasonal component.
- · Cyclical component.
- · Irregular component.

To make sure that these don't affect the model, the goal is make the trend on these lags more even. In modeling I can then difference the trend or transform the trend to make the lags more even.

#### Lags

To understand Time-Series we are introduced first to the concept of lags. A lag is the period of time between one time series index and another one. A lag is value of time gap being considered.

A lag 1 autocorrelation is the correlation between values that are one time period apart. More generally, a lag k autocorrelation is the correlation between values that are k time periods apart. The number of lags is typically small of 1 or 2 lags. For the purpose of this project, given that this is montly data, my approach is 20 lags (usually the appropriate lags for monthly data is 6, 12 or 24 lags, depending on sufficient data points and for quarterly data, 1 to 8 lags). This concept will play a part in understanding the components of Time-Series.

Time series data can exhibit a variety of patterns, and it is often helpful to split a time series into the components explained above, each representing an underlying pattern category. To do this, we have to understand Auto Correlations and Partial Auto Correlations.

#### 1.1.4.2 ACF & PACF of Time-Series

ACF

Autocorrelation is a measure of how much the data sets at one point in time influences data sets at a later point in time- ACF seeks to identify how correlated the values in a time series are with each other.

The ACF starts at a lag of 0, which is the correlation of the time series with itself and therefore results in a correlation of 1. The ACF plots the correlation coefficient against the lag, which is measured in terms of a number of periods or units. In essence, its a measure of the link between the present and the past, therefore it helps us identify the moving average.

PACF

Partial Autocorrelation (PACF) is a measure, that can plot the partial correlation coefficients between the series and lags of itself. In general, the "partial" correlation between two variables is the amount of correlation between them, which is not explained by their mutual correlations with a specified set of other variables.

In general, the "partial" correlation between two variables is the amount of correlation between them which is not explained by their mutual correlations with a specified set of other variables. PACF therefore helps us identify the Auto regressive order. PACF measures directs effects a.k.a Auto Regressive.

#### WHAT IS THE DIFFERENCE BETWEEN ACF and PACF?

Partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags. It contrasts with the autocorrelation function, which does not control for other lags.

Both, ACF and PACF can provide valuable insights into the behaviour of time series data. They are often used to decide the number of Autoregressive (AR) and Moving Average (MA) lags for the ARIMA models. Moreover, they can also help detect any seasonality within the data. The correct application and interpretation are essential in extracting useful information from the ACF and PACF plots.

ACF and PACF can provide valuable insights into the behaviour of time series data. They are often used to decide the number of Autoregressive (AR) and Moving Average (MA) lags for the ARIMA models. Moreover, they can also help detect any seasonality within the data. The correct application and interpretation are essential in extracting useful information from the ACF and PACF plots.

### 1.1.4.3 STATS MODELS- Coding for ACF & PACF

First, we'll be importing libraries that will help up to this effect followed by plotting and visualization to understand the time-series data.

#### 1.1.4.4 Importing relevant libraries

```
In [11]:
             #For time series decomposition season decompose
           2 from statsmodels.tsa.seasonal import seasonal decompose
           3 #Statsmodels for plotting the acf and pacf
           4 from statsmodels.graphics.tsaplots import plot acf, plot pacf
             #Pandas plotting import
             from pandas.plotting import autocorrelation plot, lag plot
           7
             #Defining plot
             def plot acf pacf(ts, figsize=(10,8),lags=24):
           9
                 fig,ax = plt.subplots(nrows=3,
          10
          11
                                        figsize=figsize)
          12
                 ## Plot ts
          13
          14
                 ts.plot(ax=ax[0])
          15
          16
                 ## Plot acf, pavf
          17
                 plot_acf(ts,ax=ax[1],lags=lags)
          18
                 plot_pacf(ts, ax=ax[2],lags=lags)
          19
                 fig.tight_layout()
          20
                 fig.suptitle(f"Zipcode: {ts.name}",y=1.1,fontsize=20)
          21
          22
          23
                 for a in ax[1:]:
          24
                      a.xaxis.set major locator(mpl.ticker.MaxNLocator(min n ticks=la
          25
                     a.xaxis.grid()
          26
                 return fig,ax
```

#### 1.1.4.5 Plots ACF & PACF

My approach with annual data is 20 lags. The number of lags is typically small, 1 or 2 lags. For quarterly data, 1 to 8 lags is appropriate, and for monthly data, 6, 12 or 24 lags can be used given sufficient data points.

In [12]: 1 plot acf

plot\_acf\_pacf(ts,lags=20);

Zipcode: 6706



Next, Differencing- technique to transform time-series

# 1.1.5 Differencing Transformation

Differencing is a technique to transform a non-stationary time series into a stationary one. It involves subtracting the current value of the series from the previous one, or from a lagged value. It can be used to remove the series dependence on time like trends and seasonality. This is an important step in preparing the data used in ARIMA Modeling. To do this we can code a new plot showing the differencing applied. Let's also understand the sub-components of Auto Correlation and Partial Autocorrelation.

It can be used to remove the series dependence on time like trends and seasonality. This is an important step in preparing the data used in ARIMA Modeling. To do this we can code a new plot showing the differencing applied.

d= 1 below, is a parameter that refers to the number of differencing transformations required by the time series to get stationary. By making the time series stationary I have basically made the mean and variance constant over time. It is easier to predict when the series is stationary.

Zipcode: 6706



## Above we have detrended the series. I can now select parameters and run the first model.

Both of these functions (ACF and PACF) measure how correlated the data at time t is to its past values t-1,t-2,... There is one crucial difference, however. The ACF also measures indirect correlation up to the lag in question, while PCAF does not.

# 1.1.6 Modeling

I'll be doing 2 models, one with selected parameters (I'll explain those parameters), and the second one with parameters provided by the model finding best parameters.

#### 1.1.6.1 Selecting Parameters

ARIMA models are made up of three different parameters or terms:

- d: The degree of differencing. Is a parameter that refers to the number of differencing transformations required by the time series to get stationary.
- p: The order of the auto-regressive (AR) model (i.e., the number of lag observations). A time series is considered AR when previous values in the time series are very predictive of later values.
- q: The order of the moving average (MA) model. This is essentially the size of the "window" function over time series data.

## 1.1.7 Model 1

## Selecting parameters

#### Train Test Split

```
In [15]:
             #selecting a training size
           2
             train size = 0.8
           3
             #multiply train size by len of ts
           4
             split_idx = round(len(ts)* train_size)
           5
             split idx
           6
           7
             ## split train/test for train 80% and test 20%
             train = ts.iloc[:split idx]
           8
             test = ts.iloc[split_idx:]
          9
          10
          11
             ## Visualize split
          12 fig,ax= plt.subplots()
          13 kws = dict(ax=ax,marker='o')
             train.plot(**kws)
          14
          15
             test.plot(**kws)
          16
             ax.legend(bbox_to_anchor=[1,1])
          17
             plt.show()
```



Above, we see this ZIP Code's train test split

## Running Model on Statsmodels (SARIMAX)

SARIMAX, is an extension of the ARIMA class of models. ARIMA models compose 2 parts: the autoregressive term (AR) and the moving-average term (MA). AR views the value at one time just as a weighted sum of past values. The MA model takes that same value also as a weighted sum but of past residuals. Overall, ARIMA is a very good model. However, it cannot handle seasonality, thus SARIMAX is used in this model.

#### Applying SARIMAX Model to Train data

```
In [16]:  #Using SARIMAX because it is better to use on seasonal data
from statsmodels.tsa.statespace.sarimax import SARIMAX

## Baseline model from eye-balled params
model = SARIMAX(train,order=(p,d,q),).fit()
display(model.summary())
model.plot_diagnostics();
```

/Users/jonax/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/statsmodels/tsa/base/tsa\_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

```
self._init_dates(dates, freq)
```

/Users/jonax/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/sta tsmodels/tsa/base/tsa\_model.py:473: ValueWarning: No frequency informatio n was provided, so inferred frequency MS will be used.

```
self._init_dates(dates, freq)
```

#### SARIMAX Results

plt.show()

8

| Dep. Variable: | 6706             | No. Observations: | 99       |
|----------------|------------------|-------------------|----------|
| Model:         | SARIMAX(1, 1, 1) | Log Likelihood    | -833.096 |
| Date:          | Thu, 06 Jul 2023 | AIC               | 1672.192 |
| Time:          | 14:38:28         | BIC               | 1679.947 |
| Sample:        | 01-01-2008       | HQIC              | 1675.329 |
|                | - 03-01-2016     |                   |          |

Covariance Type: opg

|        | coef      | std err  | z        | P> z  | [0.025   | 0.975]   |
|--------|-----------|----------|----------|-------|----------|----------|
| ar.L1  | 0.9769    | 0.010    | 97.349   | 0.000 | 0.957    | 0.997    |
| ma.L1  | -0.9999   | 0.101    | -9.903   | 0.000 | -1.198   | -0.802   |
| sigma2 | 1.558e+06 | 6.13e-08 | 2.54e+13 | 0.000 | 1.56e+06 | 1.56e+06 |

Ljung-Box (L1) (Q): 74.21 Jarque-Bera (JB): 38.95

**Prob(Q):** 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 9.74 Skew: -0.95

Prob(H) (two-sided): 0.00 Kurtosis: 5.44

#### Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 1.99e+28. Standard errors may be unstable.



## **Understanding Charts Above**

· Quantile Plots:

Commonly known as Q-Q Plots, It helps answer the question: "if the set of observations approximately normally distributed?". It is a plot of the quantiles of the first data set against the quantiles of the second data set (Sample vs. Theoritical in this case). Shows you how reliable predictions are within standard deviations. Our Mean Price, is fairly good at predictions within value.

Histogram plus Estimated Density (KDE)

Undelying distribution for this data. Created bins for the data, and count the number of values creating a histogram. The KDE is the smooth out continous version of that data distribution. Allowing to estimate the probability density function. And the PDF, allows us to find the chances that the value of a random variable will occur within a range of values that you specify. More specifically, a PDF is a function where its integral for an interval provides the probability of a value occurring in that interval.

Correlogram

A correlogram is a plot of autocorrelations. In time series data, looking at correlations between succesive correlations over time, that are periods apart (it can be 1 period or several periods apart)/For example a data group or point that you observe a month ago or a point you observed

two months ago. The horizontal axis is the timeline. The blue shadows are the thresholds. The bars shadows are subcorrelations that are statistically significant, it is not 0 and they are

It answers the question: 1) Is that Data Random? It is when not all points are above threshold. 2) Is there a trend in the data? There will be a trend, when the autocorrelations coefficient do not fall below the critical upper limit (upper limit) at any lag. If there is a trend the data is not stationary.

```
In [17]: 1 #Checking for the len of test 2 len(test)
```

Out[17]: 25

#### Forecasting on Test Data

#### **Plotting Model 1**

```
In [20]:
           1
             #Defining Plot
           2
             def plot train test pred(train, test, pred df):
           3
                  fig,ax = plt.subplots()
           4
                  kws = dict(marker='o')
           5
                  ax.plot(train, label='Train', **kws)
           6
           7
                  ax.plot(test,label='Test',**kws)
           8
                  ax.plot(pred df['prediction'],label='prediction',ls='--',**kws)
           9
                  ax.fill_between(x=pred_df.index,y1=pred_df['lower'],y2=pred_df['upp
          10
          11
                  ax.legend(bbox to anchor=[1,1])
                  fig.tight_layout()
          12
                  return fig,ax
          13
```



#### 1.1.7.1 Conclusion on Model 1

A flat prediction line once we run the model. Let's update the parameters and find optimal parameters for prediction.

## 1.1.8 Model 2

#### Finding optimal parameters

I want to identify the optimal parameters for my model. Pmdarima's auto\_arima function is very useful when building an ARIMA model as it helps us identify the most optimal p,d,q parameters and return a fitted model.

```
In [22]: 1 #0!pip install pmdarima
In [23]: 1 #importing libraries
2 from pmdarima.arima import auto_arima
```

#### Applying to Train Data

#### SARIMAX Results

| Dep. Variable:   | У                | No. Observations: | 99       |
|------------------|------------------|-------------------|----------|
| Model:           | SARIMAX(0, 1, 0) | Log Likelihood    | -833.565 |
| Date:            | Thu, 06 Jul 2023 | AIC               | 1671.131 |
| Time:            | 14:38:35         | BIC               | 1676.301 |
| Sample:          | 01-01-2008       | HQIC              | 1673.222 |
|                  | - 03-01-2016     |                   |          |
| Covariance Type: | opg              |                   |          |

|           | coef      | std err | z      | P> z  | [0.025   | 0.975]   |
|-----------|-----------|---------|--------|-------|----------|----------|
| intercept | -581.6327 | 121.477 | -4.788 | 0.000 | -819.723 | -343.542 |
| sigma2    | 1.431e+06 | 1.6e+05 | 8.956  | 0.000 | 1.12e+06 | 1.74e+06 |

 Ljung-Box (L1) (Q):
 75.43
 Jarque-Bera (JB):
 7.58

 Prob(Q):
 0.00
 Prob(JB):
 0.02

 Heteroskedasticity (H):
 7.58
 Skew:
 -0.19

Prob(H) (two-sided): 0.00 Kurtosis: 4.31

## Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).



Type *Markdown* and LaTeX:  $\alpha^2$ 

Date ranges (pd.date\_range) is like a "date ruler". You have a start and end time, the frequency of how I'd like to split the dates by.

```
In [26]:
             #showing the index of train data
             train.index
Out[26]: DatetimeIndex(['2008-01-01', '2008-02-01', '2008-03-01', '2008-04-01',
                         '2008-05-01', '2008-06-01', '2008-07-01', '2008-08-01'
                         '2008-09-01', '2008-10-01', '2008-11-01',
                                                                   '2008-12-01',
                         '2009-01-01', '2009-02-01', '2009-03-01', '2009-04-01',
                                       '2009-06-01', '2009-07-01', '2009-08-01'
                         '2009-05-01',
                         '2009-09-01', '2009-10-01', '2009-11-01', '2009-12-01',
                         '2010-01-01', '2010-02-01', '2010-03-01', '2010-04-01'
                         '2010-05-01', '2010-06-01', '2010-07-01', '2010-08-01',
                         '2010-09-01', '2010-10-01', '2010-11-01', '2010-12-01',
                         '2011-01-01', '2011-02-01', '2011-03-01',
                                                                   '2011-04-01'
                         '2011-05-01', '2011-06-01', '2011-07-01', '2011-08-01',
                         '2011-09-01', '2011-10-01', '2011-11-01', '2011-12-01'
                         '2012-01-01', '2012-02-01', '2012-03-01', '2012-04-01',
                         '2012-05-01', '2012-06-01', '2012-07-01', '2012-08-01'
                                       '2012-10-01', '2012-11-01',
                         '2012-09-01',
                                                                   '2012-12-01'
                         '2013-01-01', '2013-02-01', '2013-03-01', '2013-04-01',
                         '2013-05-01', '2013-06-01', '2013-07-01', '2013-08-01',
                         '2013-09-01', '2013-10-01', '2013-11-01', '2013-12-01',
                         '2014-01-01', '2014-02-01', '2014-03-01', '2014-04-01'
                                      '2014-06-01', '2014-07-01',
                         '2014-05-01',
                                                                   '2014-08-01'
                         '2014-09-01', '2014-10-01', '2014-11-01', '2014-12-01',
                         '2015-01-01', '2015-02-01', '2015-03-01', '2015-04-01',
                         '2015-05-01', '2015-06-01', '2015-07-01', '2015-08-01',
                                       '2015-10-01', '2015-11-01', '2015-12-01',
                         '2015-09-01',
                         '2016-01-01', '2016-02-01', '2016-03-01'],
                       dtype='datetime64[ns]', name='Date', freq=None)
```

```
In [27]:
             #predictive models mean
             pred mean,pred conf int = auto model.predict(return conf int=True)
           2
             pred mean
Out[27]: 2016-04-01
                        94618.367347
         2016-05-01
                        94036.734694
                        93455.102041
         2016-06-01
         2016-07-01
                        92873.469388
         2016-08-01
                        92291.836735
         2016-09-01
                        91710.204082
         2016-10-01
                        91128.571429
                        90546.938776
         2016-11-01
         2016-12-01
                        89965.306122
         2017-01-01
                        89383.673469
         Freq: MS, dtype: float64
```

## 1.1.8.1 GridSearch Hyperparameter

Grid search The traditional way of performing hyperparameter optimization has been grid search, or a parameter sweep, which is simply an exhaustive searching through a manually specified subset of the hyperparameter space of a learning algorithm. A grid search algorithm must be guided by some performance metric, typically measured by cross-validation on the training set or evaluation on a hold-out validation set.

```
In [28]:
           1
              #Grid Parameters
           2
             pred_df = pd.DataFrame({'pred':pred_mean,
           3
                                       'conf_int_lower':pred_conf_int[:,0],
           4
                                       'conf int upper':pred conf int[:,1]},
           5
                                       index= pd.date range(test.index[0],
           6
                                                                  periods=10,freq='M'))
           7
              # auto model.conf int()
             pred df
```

#### Out[28]:

|            | pred | conf_int_lower | conf_int_upper |
|------------|------|----------------|----------------|
| 2016-04-30 | NaN  | 92274.031616   | 96962.703077   |
| 2016-05-31 | NaN  | 90721.343309   | 97352.126079   |
| 2016-06-30 | NaN  | 89394.593446   | 97515.610636   |
| 2016-07-31 | NaN  | 88184.797927   | 97562.140849   |
| 2016-08-31 | NaN  | 87049.742679   | 97533.930790   |
| 2016-09-30 | NaN  | 85967.777756   | 97452.630407   |
| 2016-10-31 | NaN  | 84926.042096   | 97331.100761   |
| 2016-11-30 | NaN  | 83916.156006   | 97177.721545   |
| 2016-12-31 | NaN  | 82932.298931   | 96998.313314   |
| 2017-01-31 | NaN  | 81970.232961   | 96797.113978   |

```
In [29]:
           1 train.index[-1]
Out[29]: Timestamp('2016-03-01 00:00:00')
In [30]:
              auto_model.get_params()
Out[30]: {'maxiter': 50,
           'method': 'lbfgs',
           'order': (0, 1, 0),
           'out_of_sample_size': 0,
           'scoring': 'mse',
           'scoring_args': {},
           'seasonal_order': (0, 0, 0, 0),
           'start params': None,
           'suppress warnings': True,
           'trend': None,
           'with intercept': True}
          Mean Square Error (Test)
In [31]:
              from sklearn.metrics import mean squared error
              from math import sqrt
             auto_model = auto_arima(test, m=12)
In [32]:
In [33]:
           1 test.info()
          <class 'pandas.core.series.Series'>
          DatetimeIndex: 25 entries, 2016-04-01 to 2018-04-01
          Series name: 6706
         Non-Null Count Dtype
          _____
                          ____
          25 non-null
                           float64
         dtypes: float64(1)
         memory usage: 400.0 bytes
           1 #organize panda data frame into date range , with 25 periods, frequency
In [34]:
           2 pd.date range(test.index[0], periods=25,freq='M')
Out[34]: DatetimeIndex(['2016-04-30', '2016-05-31', '2016-06-30', '2016-07-31', '2016-08-31', '2016-09-30', '2016-10-31', '2016-11-30',
                          '2016-12-31', '2017-01-31', '2017-02-28', '2017-03-31',
                          '2017-04-30', '2017-05-31', '2017-06-30', '2017-07-31',
                          '2017-08-31', '2017-09-30', '2017-10-31', '2017-11-30',
                          '2017-12-31', '2018-01-31', '2018-02-28', '2018-03-31',
                          '2018-04-30'],
                         dtype='datetime64[ns]', freq='M')
```

```
In [35]:
            #showing test index
          2 test df = test.reset index()
          3 test_df= test_df.rename(columns= {'index': 'Date'})
            test_df.head()
          5 test_df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 25 entries, 0 to 24
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
                      25 non-null
                                      datetime64[ns]
              Date
                      25 non-null
          1
              6706
                                      float64
         dtypes: datetime64[ns](1), float64(1)
         memory usage: 528.0 bytes
In [36]:
             test.head()
Out[36]: Date
         2016-04-01
                       95400.0
         2016-05-01
                       95700.0
         2016-06-01
                       96800.0
         2016-07-01
                       98400.0
         2016-08-01
                       99700.0
         Name: 6706, dtype: float64
In [37]:
            test.index[-1]
Out[37]: Timestamp('2018-04-01 00:00:00')
```

In [38]: 1 test\_df.set\_index('Date')

Out[38]:

6706

| Date       |          |
|------------|----------|
| 2016-04-01 | 95400.0  |
| 2016-05-01 | 95700.0  |
| 2016-06-01 | 96800.0  |
| 2016-07-01 | 98400.0  |
| 2016-08-01 | 99700.0  |
| 2016-09-01 | 100500.0 |
| 2016-10-01 | 100300.0 |
| 2016-11-01 | 98300.0  |
| 2016-12-01 | 96400.0  |
| 2017-01-01 | 96700.0  |
| 2017-02-01 | 99500.0  |
| 2017-03-01 | 101900.0 |
| 2017-04-01 | 102800.0 |
| 2017-05-01 | 103000.0 |
| 2017-06-01 | 102900.0 |
| 2017-07-01 | 102600.0 |
| 2017-08-01 | 102700.0 |
| 2017-09-01 | 103600.0 |
| 2017-10-01 | 105100.0 |
| 2017-11-01 | 107200.0 |
| 2017-12-01 | 108900.0 |
| 2018-01-01 | 109800.0 |
| 2018-02-01 | 109500.0 |
| 2018-03-01 | 109000.0 |
| 2018-04-01 | 108600.0 |

```
In [39]: 1 #predictive models mean
2 pred_mean_test,pred_conf_int = auto_model.predict(return_conf_int=True)
3 pred_test_df= pred_mean_test.reset_index()
4 pred_test_df= pred_test_df.rename(columns= {'index': 'Date'})
5 pred_test_df= pred_test_df.rename(columns= {0: '6706'})
6 pred_test_df.head()
7
```

### Out[39]:

|   | Date       | 6706     |
|---|------------|----------|
| 0 | 2018-05-01 | 109150.0 |
| 1 | 2018-06-01 | 109700.0 |
| 2 | 2018-07-01 | 110250.0 |
| 3 | 2018-08-01 | 110800.0 |
| 4 | 2018-09-01 | 111350.0 |

```
In [40]: 1 print (pred_conf_int)
```

```
[[106855.22336598 111444.77663402]
[106454.69576155 112945.30423845]
[106275.33027786 114224.66972214]
[106210.44673196 115389.55326804]
[106218.72345316 116481.27654684]
[106278.96817299 117521.03182701]
[106378.59171195 118521.40828805]
[106509.39152311 119490.60847689]
[106665.67009795 120434.32990205]
[106843.27911517 121356.72088483]]
```

```
In [41]: 1 pred_test_df.set_index('Date')
```

### Out[41]:

### 6706

| Date       |          |  |  |  |  |
|------------|----------|--|--|--|--|
| 2018-05-01 | 109150.0 |  |  |  |  |
| 2018-06-01 | 109700.0 |  |  |  |  |
| 2018-07-01 | 110250.0 |  |  |  |  |
| 2018-08-01 | 110800.0 |  |  |  |  |
| 2018-09-01 | 111350.0 |  |  |  |  |
| 2018-10-01 | 111900.0 |  |  |  |  |
| 2018-11-01 | 112450.0 |  |  |  |  |
| 2018-12-01 | 113000.0 |  |  |  |  |
| 2019-01-01 | 113550.0 |  |  |  |  |
| 2019-02-01 | 114100.0 |  |  |  |  |

```
In [42]:
             pred_test_df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 10 entries, 0 to 9
          Data columns (total 2 columns):
               Column Non-Null Count Dtype
           0
               Date
                        10 non-null
                                         datetime64[ns]
               6706
           1
                        10 non-null
                                         float64
          dtypes: datetime64[ns](1), float64(1)
          memory usage: 288.0 bytes
              pd.date range(pred mean test.index[0], periods=25, freq='M')
In [43]:
Out[43]: DatetimeIndex(['2018-05-31', '2018-06-30', '2018-07-31', '2018-08-31',
                          '2018-09-30', '2018-10-31', '2018-11-30', '2018-12-31',
                          '2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
                          '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31',
                          '2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
                          '2020-05-31'],
                         dtype='datetime64[ns]', freq='M')
In [44]:
              test_df.merge(pred_test_df, how= 'outer', indicator= True)._merge.value
Out[44]: merge
          left only
                         25
          right only
                         10
          both
                          0
          Name: count, dtype: int64
In [45]:
           1 mse df= test df.merge(pred test df, how= 'outer', indicator= True)
```

In [46]: 1 mse\_df.set\_index ('Date')

# Out[46]:

|            | 6706     | _merge     |
|------------|----------|------------|
| Date       |          |            |
| 2016-04-01 | 95400.0  | left_only  |
| 2016-05-01 | 95700.0  | left_only  |
| 2016-06-01 | 96800.0  | left_only  |
| 2016-07-01 | 98400.0  | left_only  |
| 2016-08-01 | 99700.0  | left_only  |
| 2016-09-01 | 100500.0 | left_only  |
| 2016-10-01 | 100300.0 | left_only  |
| 2016-11-01 | 98300.0  | left_only  |
| 2016-12-01 | 96400.0  | left_only  |
| 2017-01-01 | 96700.0  | left_only  |
| 2017-02-01 | 99500.0  | left_only  |
| 2017-03-01 | 101900.0 | left_only  |
| 2017-04-01 | 102800.0 | left_only  |
| 2017-05-01 | 103000.0 | left_only  |
| 2017-06-01 | 102900.0 | left_only  |
| 2017-07-01 | 102600.0 | left_only  |
| 2017-08-01 | 102700.0 | left_only  |
| 2017-09-01 | 103600.0 | left_only  |
| 2017-10-01 | 105100.0 | left_only  |
| 2017-11-01 | 107200.0 | left_only  |
| 2017-12-01 | 108900.0 | left_only  |
| 2018-01-01 | 109800.0 | left_only  |
| 2018-02-01 | 109500.0 | left_only  |
| 2018-03-01 | 109000.0 | left_only  |
| 2018-04-01 | 108600.0 | left_only  |
| 2018-05-01 | 109150.0 | right_only |
| 2018-06-01 | 109700.0 | right_only |
| 2018-07-01 | 110250.0 | right_only |
| 2018-08-01 | 110800.0 | right_only |
| 2018-09-01 | 111350.0 | right_only |
| 2018-10-01 | 111900.0 | right_only |
| 2018-11-01 | 112450.0 | right_only |
| 2018-12-01 | 113000.0 | right_only |

```
6706 _merge
```

Date

```
2019-01-01 113550.0 right_only
          2019-02-01 114100.0 right_only
 In [ ]:
In [47]:
          1 #y forecasted = pred
                                            #what is this vector ?
           2 | #y truth = y['1998-01-01':] # What is this vector ?
          3 # Compute the mean square error
           4 #mse = ((y forecasted - y truth) ** 2).mean()
          5 #print('The Mean Squared Error of our forecasts is {}'.format(round(mse
In [48]:
          1 #calculating the MSE and RMSE
          2 expected = test df.tail(10)['6706'] # what is this vector value?
          3 forecast = pred_test_df ['6706']
           4 mean squared error (expected, forecast, squared= False)
Out[48]: 5148.422088368436
In [49]:
          1 #calculating the MSE and RMSE
          2 expected = test_df.tail(10)['6706'] # what is this vector value?
          3 forecast = pred test df ['6706']
          4 mse= mean squared error( expected, forecast)
          5 RMSE= sqrt (mse)
          6 print (RMSE)
         5148.422088368436
In [50]:
             y min=test df.min()['6706']
In [51]:
             y max=test df.max() ['6706']
In [52]:
            Norm_divide= y_max-y_min
          1 RMSE/Norm_divide
In [53]:
Out[53]: 0.3575293116922525
In [54]:
             #another way of finding rmse
          1
            #def find rmse(model, test=test):
          2
                  y hat = model.predict(type='levels')
          3
                  return np.sqrt(mean squared error(train data, y hat))
 In [ ]:
```

# 1.2 Best Model Plot

6706 No. Observations:

/Users/jonax/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/statsmodels/tsa/base/tsa\_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

```
self._init_dates(dates, freq)
```

/Users/jonax/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/statsmodels/tsa/base/tsa\_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

124

```
self._init_dates(dates, freq)
```

#### **SARIMAX Results**

Dep. Variable:

| Model:             | SAR            | IMAX(0,    | 1, 0)  | Log L    | ikelihoo      | od   | -1058.117 |
|--------------------|----------------|------------|--------|----------|---------------|------|-----------|
| Date:              | Thu            | , 06 Jul 2 | 2023   |          | A             | IC   | 2118.234  |
| Time:              |                | 14:3       | 8:44   |          | В             | IC   | 2121.046  |
| Sample:            |                | 01-01-2    | 2008   |          | HQ            | IC   | 2119.376  |
|                    | -              | 04-01-2    | 2018   |          |               |      |           |
| Covariance Type:   |                |            | opg    |          |               |      |           |
| coe                | ef             | std err    | z      | P> z     | [0.0]         | 25   | 0.975]    |
| sigma2 1.722e+0    | 6 1.8          | 85e+05     | 9.330  | 0.000    | 1.36e+        | 06   | 2.08e+06  |
| Ljung-Box (L1      | ) (Q):         | 90.11      | Jarque | e-Bera ( | <b>JB):</b> 3 | 3.49 |           |
| Pro                | b( <b>Q</b> ): | 0.00       |        | Prob(    | JB): C        | ).17 |           |
| Heteroskedasticity | / (H):         | 1.38       |        | Sk       | ew: -0        | ).12 |           |
| Prob(H) (two-si    | ded):          | 0.31       |        | Kurto    | sis: 3        | 3.79 |           |

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).



### 1.2.1 Forecast

```
In [56]: 1 pred = best_model.get_forecast(steps=12)#start=test.index[0],end=test.i
2 pred_df = forecast_to_df(pred,zipcode)
3 display(plot_train_test_pred(train,test,pred_df));
4 plt.show()
```

(<Figure size 576x396 with 1 Axes>, <AxesSubplot:>)



# 1.2.1.1 Loop Best Model Forecast for the 13 best ROI ZIP Codes

```
In [57]:
           1 RESULTS = \{\}
           2
           3
             for zipcode in zipcode list:
           4
                  print(zipcode)
           5
           6
                  ## Make empty dict for ZIP data
           7
                  zipcode d = {}
           8
           9
                  ## Copy Time Series
          10
                  ts = ts df[zipcode].copy()
          11
          12
          13
                  ## Train Test Split Index
          14
                  train size = 0.8
                  split_idx = round(len(ts)* train_size)
          15
          16
          17
                  ## Split
          18
                  train = ts.iloc[:split_idx]
          19
                  test = ts.iloc[split_idx:]
          20
          21
          22
                  ## Get best params using auto arima
          23
                  gridsearch model = auto arima(ts,start p=0,start q=0)
          24
                  best model = SARIMAX(ts,order=gridsearch model.order,
          25
                                    seasonal order=gridsearch_model.seasonal order).fi
          26
          27
          28
          29
                  ## Get predictions
          30
                  pred = best model.get forecast(steps=36)#start=test.index[0],end=t
          31
                  pred df = forecast to df(pred, zipcode)
          32
          33
                  # RMSE Fitting into all ZIP Codes
          34
                  RMSE = mean squared error(ts.tail(36), pred df['prediction'], squar
          35
                  y min = ts.min()
          36
                  y max = ts.max()
          37
                  Norm_divide = y_max-y_min
          38
                  Norm = RMSE/Norm divide
          39
                  print (f'RMSE for this ZIP Code is {Norm}')
          40
          41
          42
                  ## Save info to dict
          43
                  zipcode_d['pred_df'] = pred_df
          44
                  zipcode d['model'] = best model
                  zipcode_d['train'] = train
          45
          46
                  zipcode d['test'] = test
          47
                  ## Display Results
          48
          49
                  display(best model.summary())
          50
                  plot train test pred(train, test, pred df)
          51
                  plt.xlabel('Year')
                  plt.ylabel('Value in US Dollars ($)')
          52
          53
                  plt.show()
          54
          55
                  ## Save district dict in RESULTS
          56
          57
                  RESULTS[zipcode] = zipcode d
```

58

print('---'\*20,end='\n\n')

6606

RMSE for this ZIP Code is 0.1587860300220871

/Users/jonax/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/statsmodels/tsa/base/tsa\_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

self.\_init\_dates(dates, freq)

/Users/jonax/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/statsmodels/tsa/base/tsa\_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

self.\_init\_dates(dates, freq)

SARIMAX Results

 Model:
 SARIMAX(0, 2, 0)
 Log Likelihood
 -981.444

 Date:
 Thu, 06 Jul 2023
 AIC
 1964.889

Time: 14:38:45 BIC 1967.693

# 1.3 Top 5 Zip Codes Recommendations

In [58]: 1 %store -r melted\_df

Zip Code 6069

```
In [59]: 1 melted_df.loc[melted_df['Zipcode']=='6069']
```

### Out[59]:

|            | Zipcode | Metro      | SizeRank | ROI_5yr | ROI_3yr | value    |
|------------|---------|------------|----------|---------|---------|----------|
| Date       |         |            |          |         |         |          |
| 2008-01-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 436300.0 |
| 2008-02-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 437000.0 |
| 2008-03-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 436300.0 |
| 2008-04-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 434900.0 |
| 2008-05-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 433700.0 |
|            |         |            |          |         |         |          |
| 2017-12-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 365800.0 |
| 2018-01-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 370900.0 |
| 2018-02-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 375900.0 |
| 2018-03-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 386500.0 |
| 2018-04-01 | 6069    | Torrington | 12310    | 0.2366  | 0.2412  | 397200.0 |
|            |         |            |          |         |         |          |

124 rows × 6 columns

# Zip Code 6610

In [60]: 1 melted\_df.loc[melted\_df['Zipcode']=='6610']

### Out[60]:

|            | Zipcode | Metro    | SizeRank | ROI_5yr | ROI_3yr | value    |
|------------|---------|----------|----------|---------|---------|----------|
| Date       |         |          |          |         |         |          |
| 2008-01-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 216600.0 |
| 2008-02-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 213100.0 |
| 2008-03-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 210100.0 |
| 2008-04-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 207500.0 |
| 2008-05-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 205100.0 |
|            |         |          |          |         |         |          |
| 2017-12-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 160400.0 |
| 2018-01-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 162200.0 |
| 2018-02-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 163900.0 |
| 2018-03-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 165900.0 |
| 2018-04-01 | 6610    | Stamford | 4717     | 0.2999  | 0.3111  | 167300.0 |

124 rows × 6 columns

# Zip Code 6330

In [61]: 1 melted\_df.loc[melted\_df['Zipcode']=='6330']

Out[61]:

|            | Zipcode | Metro      | SizeRank | ROI_5yr | ROI_3yr | value    |
|------------|---------|------------|----------|---------|---------|----------|
| Date       |         |            |          |         |         |          |
| 2008-01-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 232100.0 |
| 2008-02-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 230400.0 |
| 2008-03-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 228900.0 |
| 2008-04-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 227800.0 |
| 2008-05-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 226700.0 |
|            |         |            |          |         |         |          |
| 2017-12-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 194700.0 |
| 2018-01-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 195200.0 |
| 2018-02-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 195800.0 |
| 2018-03-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 197000.0 |
| 2018-04-01 | 6330    | New London | 12817    | 0.1107  | 0.2078  | 197600.0 |

124 rows × 6 columns

Zip Code 6039

In [62]: 1 melted\_df.loc[melted\_df['Zipcode']=='6039']

### Out[62]:

|            | Zipcode | Metro      | SizeRank | ROI_5yr | ROI_3yr | value    |
|------------|---------|------------|----------|---------|---------|----------|
| Date       |         |            |          |         |         |          |
| 2008-01-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 535900.0 |
| 2008-02-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 537700.0 |
| 2008-03-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 538100.0 |
| 2008-04-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 538300.0 |
| 2008-05-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 536700.0 |
|            |         |            |          |         |         |          |
| 2017-12-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 468200.0 |
| 2018-01-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 471500.0 |
| 2018-02-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 473700.0 |
| 2018-03-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 476000.0 |
| 2018-04-01 | 6039    | Torrington | 13065    | 0.3212  | 0.1861  | 480000.0 |

124 rows × 6 columns

# Zip Code 6058

In [63]: 1 melted\_df.loc[melted\_df['Zipcode']=='6058']

### Out[63]:

|            | Zipcode | Metro      | SizeRank | ROI_5yr | ROI_3yr | value    |
|------------|---------|------------|----------|---------|---------|----------|
| Date       |         |            |          |         |         |          |
| 2008-01-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 350900.0 |
| 2008-02-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 345200.0 |
| 2008-03-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 340000.0 |
| 2008-04-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 336800.0 |
| 2008-05-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 336500.0 |
|            |         |            |          |         |         |          |
| 2017-12-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 286500.0 |
| 2018-01-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 292100.0 |
| 2018-02-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 298900.0 |
| 2018-03-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 307700.0 |
| 2018-04-01 | 6058    | Torrington | 13564    | 0.4158  | 0.1849  | 314600.0 |

124 rows × 6 columns

# 2 Conclusion - Top 5 ZIP Codes

to Invest in these ZIP Codes due to Higher ROI

Highest projected ROI:

- 6069 = 24.12%,
- 6610 = 31%,
- 6330 = 21%,
- 6039 = 19%,
- 6058 = 19%.

```
In [ ]:
```

1