BABEŞ-BOLYAI UNIVERSITY OF CLUJ-NAPOCA FACULTY OF MATHEMATICS AND INFORMATICS SPECIALIZATION: COMPUTER SCIENCE

Diploma Thesis

Critical node detection problem in complex networks

Abstract

EZ AZ OLDAL NEM RÉSZE A DOLGOZATNAK!

Ezt az angol kivonatot külön lapra kell nyomtatni és alá kell írni!

A DOLGOZATTAL EGYÜTT KELL BEADNI!

Kötelező befejezés:

This work is the result of my own activity. I have neither given nor received unauthorized assistance on this work.

2020 BÉCZI ELIÉZER

ADVISOR: ASSIST PROF. DR. GASKÓ NOÉMI Babeş-Bolyai University of Cluj-Napoca Faculty of Mathematics and Informatics Specialization: Computer Science

Diploma Thesis

Critical node detection problem in complex networks

ADVISOR: STUDENT:
ASSIST PROF. DR. GASKÓ NOÉMI BÉCZI ELIÉZER

Universitatea Babeş-Bolyai, Cluj-Napoca Facultatea de Matematică și Informatică Specializarea Informatică

Lucrare de licență Titlu lucrare licență

CONDUCĂTOR ȘTIINȚIFIC: LECTOR DR. GASKÓ NOÉMI ABSOLVENT: BÉCZI ELIÉZER

Babeş-Bolyai Tudományegyetem Kolozsvár Matematika és Informatika Kar Informatika Szak

Szakdolgozat

Kritikus csomópontok meghatározása komplex hálózatokban

TÉMAVEZETŐ:

Szerző:

DR. GASKÓ NOÉMI, EGYETEMI ADJUNKTUS BÉCZI ELIÉZER

Tartalomjegyzék

1.	Bevezető	3
	1.1. Áttekintés	
	Egycélú CNDP	4
	2.1. Páronkénti konnektivitás	4
	2.2.1. Általánosan	
	2.3. Genetikus algoritmus	5
	2.3.1. Általánosan	6
3.	Kétcélú CNDP	Ç

1. fejezet

Bevezető

1.1. Áttekintés

Hálózatok terén nem minden csomópont egyforma fontosságú. A kulcsfontosságú csomópontok keresésével hálózatokban széles körben foglalkoznak, különösképpen olyan csomópontok esetén, melyek a hálózat konnektivitásához köthetők. Ezeket a csomópontokat általában úgy nevezzük, hogy Kritikus Csomópontok.

Kritikus Csomópontok Meghatározásának Problémája (CNDP) egy optimalizációs feladat, amely egy olyan csoport csomópont megkereséséből áll, melyek törlése maximálisan rontja a hálózat konnektivitását bizonyos predefiniált konnektivitási metrikák szerint.

A CNDP számos alkalmazási területtel rendelkezik. Például, közösségi hálók nagy befolyással bíró egyedeinek azonosítása, komputációs biológiában kapcsolatok definiálására jelút vagy fehérje-fehérje kölcsönhatás hálózatokban, smart grid sebezhetőségének vizsgálata, egyének meghatározása védőoltással való ellátásra vagy karanténba való zárásra egy fertőzés terjedésének gátlása érdekében.

A CNDP egy \mathcal{NP} -teljes feladat. Adva van egy G=(V,E) gráf, ahol |V|=n a csomópontok száma, és |E|=m pedig az élek száma. A feladat k kritikus csomópont meghatározása, amelyek törlése a bemeneti gráfból minimalizálja a hálózat páronkénti konnektivitását. Az alapján, hogy mit értünk egy hálózat konnektivitása alatt, a CNDP-nak van egycélú illetve többcélú megfogalmazása is.

1.2. Hozzájárulásaink

Ebben a dolgozatban többek között egy bi-objektív megfogalmazásával fogunk foglalkozni a CNDP-nak. Standard evolúciós algoritmusokat fogunk összehasonlítani egymással különböző szintetikus bemenetekre, illetve való világból inspirált bemenetekre, ugyanakkor célunk egy új hibrid algoritmus fejlesztése, melynek eredményei összehasonlíthatók a standard algoritmusok eredményeivel.

Az algoritmusokat Python-ban fogjuk bemutatni, és a NetworkX könyvtárat [Hagberg et al., 2008] fogjuk használni ahhoz, hogy gráfokat tudjunk manipulálni.

Benchmark tesztelés végett egy olyan gráfhalmazt fogunk használni, amelyben 4 alapvető típus jelenik meg, mindegyik a maga jellegzetességeivel.

2. fejezet

Egycélú CNDP

2.1. Páronkénti konnektivitás

Egycélú CNDP esetén a kihívás abban áll, hogy találjunk egy olyan konnektivitási metrikát, amely alkalmazási területtől függően megfelelően leírja egy gráf összefüggőségét. S-el fogjuk jelölni a törlendő csomópontok halmazát, míg azf(S) jóság függvény fogja jellemezni a $G[V\setminus S]$ feszített részgráf összefüggőségét. Ha H-val jelöljük a $G[V\setminus S]$ feszített részgráf összefüggő komponenseinek a halmazát, akkor a jóságfüggvény a következő képlettel írható le:

$$f(S) = \sum_{h \in H} \frac{|h| \cdot (|h| - 1)}{2},\tag{2.1}$$

amelyet az irodalom [Aringhieri et al., 2016; Ventresca, 2012] úgy tart számon, hogy **páronkénti konnektivitás**. Tehát a feladat a 2.1 függvénynek a minimalizálása:

$$\min_{S \subset V} f(S). \tag{2.2}$$

A 2.1 fitness függvény implementációját a 2.1 kódrészlet szemlélteti Python-ban. A továbbiakban tárgyalt 3 algoritmus ezt a fitness függvényt fogja használni.

Listing 2.1. Páronkénti konnektivitás

2.2. Mohó algoritmus

2.2.1. Általánosan

Egy mohó algoritmus egy egyszerű és intuitív algoritmus, amely gyakran használt optimalizációs feladatok megoldására. Az algoritmus helyi optimumok megvalósításával próbálja megtalálni a globális

optimumot.

Habár a mohó algoritmusok jól működnek bizonyos feladatok esetében, mint pl. Dijkstra-algoritmus, amely egy csomópontból kiindulva meghatározza a legrövidebb utakat, vagy Huffman-kódolás, amely adattömörítésre szolgál, de sok esetben nem eredményeznek optimális megoldást. Ez annak köszönhető, hogy míg a mohó algoritmus függhet az előző lépések választásától, addig a jövőben meghozott döntésektől független.

Az algoritmus minden lépésben mohón választ, folyamatosan lebontva a feladatot kisebb feladattá. Más szavakkal, a mohó algoritmus soha nem gondolja újra választásait.

2.2.2. Saját mohó algoritmus

A CNDP esetén a mohó algoritmust a 2.2 kódrészlet szemlélteti.

Listing 2.2. Saját mohó algoritmus

```
def greedy_cnp(G, k):
    S = networkx.algorithms.approximation.min_weighted_vertex_cover(G)

while len(S) > k:
    B = objective_function.minimize_pairwise_connectivity(G, S)
    i = random.choice(B)
    S.discard(i)

return S
```

A mohó algoritmus kiindul a gráf csúcslefedéséből. 1 Ez lesz a kezdeti S megoldásunk. A maradék csomópontok $V\setminus S$ a gráf maximális független csúcshalmazát 2 MIS alkotják. Mivel majdnem biztos, hogy |S|>k, ezért mohón elkezdünk kivenni csomópontokat S-ból, majd ezeket hozzáadni MIS-hoz, amíg |S|>k. A hozzáadott csomópont az lesz, amelyiket ha visszatesszük az eredeti gráfba, akkor a minimum értéket téríti vissza a páronkénti konnektivitásra a keletkezett gráfban.

Mivel több olyan csomópont lehet, amelyeket ha visszateszünk az eredeti gráfba, akkor ugyanazt a minimális értéket adják vissza a páronkénti konnektivitásra, ezért ezeket eltároljuk a B halmazban, és minden lépésben random módon határozzuk meg, hogy melyik kerüljön vissza a *MIS*-ba.

Ezzel az eljárással garantáljuk, hogy a mohó algoritmusunk különböző megoldásokat fog adni többszöri futtatások esetén.

2.3. Genetikus algoritmus

2.3.1. Általánosan

A genetikus algoritmus a metaheurisztikák osztályába tartozik, és a természetes kiválasztódás inspirálta. Egy globális optimalizáló, amely gyakran használt optimalizációs és keresési problémák esetében, ahol a sok lehetséges megoldás közül a legjobbat kell megkeresni. Azt hogy egy megoldás mennyire jó, a fitness függvény mondja meg.

^{1.} Angolul: vertex cover.

^{2.} Angolul: maximal independent set.

A genetikus algoritmus mindig egy populációnyi megoldással dolgozik. A populációba egyedek tartoznak, amelyek egyenként egy-egy megoldásai a feladatnak. Az algoritmus minden iterációban egy új populációt állít elő az aktuális populációból úgy, hogy a szelekciós operátor által kiválasztott legrátermettebb szülőkön alkalmazza a rekombinációs és mutációs operátorokat.

Ezen algoritmusok alapötlete az, hogy minden újabb generáció az előzőnél valamelyest rátermettebb egyedeket tartalmaz, és így a keresés folyamán egyre jobb megoldások születnek.

2.3.2. Saját genetikus algoritmus

A CNDP esetén a genetikus algoritmust a 2.3 kódrészlet szemlélteti.

Listing 2.3. Saját genetikus algoritmus

```
def genetic algorithm (G, k, N=100,
                              pi min=5, pi max=50, delta pi=5, alpha=0.2,
                              t_{max} = 10000):
       def fitness_function(S):
            subgraph = networkx.subgraph\_view(G,
                                                       filter node=lambda n: n not in S)
            metric = connectivity_metric.pairwise_connectivity(subgraph)
            commonalities = S.intersection (best S)
            return metric + gamma * len(commonalities)
       def my cmp(a, b):
            return fitness function(a) - fitness function(b)
16
       P = []
       pi = pi_min
       my key = functools.cmp to key(my cmp)
21
       while len(P) < N:
            P.append (generate_random_solution(G, k))
       best S = P[0].copy()
       gamma = update(G, best_S, P, alpha)
26
       best S fitness = fitness function (best S)
       while t < tmax:
            \begin{array}{lll} new\_P &=& new\_generation\left(k,\ N,\ P\right) \\ mutation\left(G,\ k,\ N,\ new\_P,\ pi\right) \end{array}
31
            P. extend (new P)
            P. sort (key=my_key)
            P = P[:N]
36
            \operatorname{curr} S = P[0]
            curr_S_fitness = fitness_function(curr_S)
            if curr_S_fitness < best_S_fitness:
    best_S = curr_S.copy()
    best_S_fitness = curr_S_fitness</pre>
41
                 pi = pi_min
                 pi = min(pi + delta_pi, pi_max)
46
            gamma = update(G, best S, P, alpha)
       return best S, best S fitness
```

Egy Genetikus Algoritmus (GA) standard algoritmikus keretrendszerét használjuk fel. Generálunk egy kezdeti populációt megoldásokkal. Utána keresztezzük őket, hogy új megoldásokat kapjunk, amelyeket pedig mutálunk. Ezután rendezzük a régi és új megoldásokat egy fitness függvény alapján, és létrehozunk egy új populációt eltávolítva a rossz megoldásokat. A folyamatot addig ismételjük, amíg az iterációk száma el nem ér egy felső korlátot. Az algoritmus végén visszatérítjük a legjobb megoldást.

Inicializáció

A kezdeti populáció egyedeit random generáljuk ki. Ez azt jelenti, hogy minden egyed kromoszómája egy k csomópontból álló részhalmaza lesz a bemeneti gráf csomóponthalmazának. Ezt szemlélteti a a 2.4 kódrészlet.

Listing 2.4. Random inicializáció

Egy új fitness függvényt vezetünk be egy-egy egyed jóságának felmérése végett. Ez abban tér el a 2.1 részben tárgyaltaktól, hogy nem csak a páronkénti konnektivitás mértékét vesszük figyelembe egy egyed esetén, hanem hogy az eddigi talált legjobb megoldástól mennyire tér el. Ezt a fitness függvényt a következő képlettel írjuk le:

$$g(S, S^*) = f(S) + \gamma \cdot |S \cap S^*|.$$
 (2.3)

A képletben szereplő S^* jelenti az eddig talált legjobb megoldást. A γ egy változó, amely abban segít, hogy fenntartsuk a változatosságot a populáció egyedei között, megbüntetve azokat, amelyek túl közel vannak a legjobbhoz. A γ változót minden iterációban a következő képlettel számoljuk újra:

$$\gamma = \frac{\alpha \cdot f(S)}{\langle |S \cap S^*| \rangle_{S \in P}},\tag{2.4}$$

ahol a nevező a populáció egyedeinek átlagos hasonlóságát jelenti a legjobb egyedhez.

A 2.4 képlet implementációját láthatjuk a a 2.5 kódrészletben.

Listing 2.5. γ inicializálása

Reprodukció

3. fejezet

Kétcélú CNDP

Irodalomjegyzék

- Aringhieri, R., Grosso, A., Hosteins, P., és Scatamacchia, R. A general evolutionary framework for different classes of critical node problems. *Engineering Applications of Artificial Intelligence*, 55: 128–145, 2016.
- Hagberg, A., Swart, P., és S Chult, D. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
- Ventresca, M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. *Computers & Operations Research*, 39(11):2763–2775, 2012.