Let \mathcal{C} be abelian, remind $s\mathcal{C}$ – simplicial objects in \mathcal{C} , $C_*(\mathcal{C})$ – chain complexes over \mathcal{C} .

Definition 1 (s-morphism). $X_{\bullet}, Y_{\bullet} \in s\mathcal{C}$. For a simplicial set $K \in s\mathrm{Set}$ a map which associates $F(\sigma): X_n \to Y_n$ to any $\sigma \in K_n$ is called s-morphism (denote $F: K \times X_{\bullet} \to Y_{\bullet}$) if for any $\alpha: [m] \to [n]$ in Δ we have $F(K(\alpha)(\sigma)) \circ X(\alpha) = Y(\alpha)F(\sigma)$.

Observe that when X_{\bullet}, Y_{\bullet} are in sSet then s-morphisms are simplicial maps $K_{\bullet} \times X_{\bullet} \to Y_{\bullet}$.

Example 2. If $K = \Delta[0]$, then s-morphism is just a simplicial morphism $X_{\bullet} \to Y_{\bullet}$.

Example 3. If $K = \Delta[1]$ then s-morphism is called a homotopy between F(0) and F(1).

Remark 4. $T: \mathcal{C} \to \mathcal{C}'$ functor induces $T: s\mathcal{C} \to s\mathcal{C}'$, if $X_{\bullet} \in s\mathcal{C}$, then $T(X)_n = T(X_n), T(X)(\alpha) = T(X(\alpha))$,

Definition 5. If F is an s-morphism $F: K_{\bullet} \times X_{\bullet} \to Y_{\bullet}$, then it defines $TF: K_{\bullet} \times T(X_{\bullet}) \to T(Y_{\bullet})$ defined by $TF(\sigma) = T(F(\sigma))$.

Remark 6. Any functor $T: \mathcal{C} \to \mathcal{C}'$ sends homotopic maps to homotopic ones.

Definition 7. Let C be abelian, then there are functors

$$s\mathcal{C} \stackrel{N}{\rightleftharpoons} C_*(\mathcal{C})$$

defined as follows.

Normalization N is defined, for $X_{\bullet} \in s\mathcal{C}$, as

$$N(X)_n = \bigcap_{i=1}^n \ker(d_i : X_n \to X_{n-1})$$

 $(e.g. \ker(X_n \xrightarrow{\prod d_i} \prod X_{n-1}), with$

$$d: N(X)_n \to N(X)_{n-1}$$

induced by d_0 .

K is defined in such a way. If $\alpha : [n] \to [q]$, then $d(\alpha) = n$ and $r(\alpha) = q$. Notice for any α there is unique $\alpha = \varepsilon \circ \eta$, where ε is an injection and η is a surjection. For $C \in C_*(\mathcal{C})$, take

$$K(C)_n = \bigoplus_{\eta: d(\eta)=n} C_{r(\eta)},$$

Now for $\alpha:[m] \to [n]$ define

$$KC(\alpha): K(C)_n \to K(C)_m$$

on every $C_{r(\eta)}$ in such a way: $\eta \alpha = \varepsilon' \eta'$, let $KC(\alpha)$ map $C_{r(\eta)}$ into $C_{r(\eta')}$ via the formula

$$K(\eta, \alpha) = \begin{cases} \operatorname{id}_{C_{r(\eta)}} & \text{for } \varepsilon' = \operatorname{id}_{[r(\eta)]} \\ d : C_{r(\eta)} \to C_{r(\eta)-1} = C_{r(\eta')} & \text{for } \varepsilon' = \varepsilon^0 \\ 0 & \text{otherwise} \end{cases}.$$

Remark 8. Observe that if $f: C \to D$ in $C_*(\mathcal{C})$, then the induced map $KC \to KD$ is simplicial.

Theorem 9 (Dold-Kan). The functors N and K give an equivalence of sC and $C_*(C)$.

Remark 10. It was somehow convenient to define, for $X \in s\mathcal{C}$, $\bar{X} \in s\mathcal{C}$ via $\bar{X}_n = \ker(d_{n+1} : X_{n+1} \to X_n)$.

Lemma 11. Let $f: X_{\bullet} \to Y_{\bullet}$ be a simplicial morphism which satisfies $(Nf)_i$ is mono(epi) for $i \leq n$. Then $f_n: X_n \to Y_n$ is mono(epi) for $i \leq n$.