Joint Distributions DRV [0,1] $[X_1,X_2]$ Ventos

(1)

2-D vandom Veelor

Univariate — Single variable

Bivariate — Two variables Gover one

gnl				P(>	(=0)	
	ż	0		2] 3	P(X,=i)
	n D	10/220	40/220	30/220	4/220	84/220
		30/220	60/220	18/220	O	108/220
۳	2	15/2-20		0	0	27/220
	3	1/220		0	0	1/220
	P(X2=j)	56/220	112/220 1	48/2207	4/220	

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$$

 $f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & 0 < x < \emptyset, 0 < y < \infty \\ 0 & \text{otherwise} \end{cases}$ (F) P{x>1, y<1} $\begin{cases}
2e^{-x}e^{-2y} dxdy \\
2e^{-x}e^{-2y} dxdy
\end{cases}$ $\begin{cases}
2e^{-x}e^{-2y} dxdy \\
2e^{-x} dx
\end{cases}$ $\begin{cases}
2e^{-x} dx
\end{cases}$ $\begin{cases}
2e^{-x} dx
\end{cases}$ $\begin{cases}
2e^{-x} dx
\end{cases}$

$$= 2 \int_{0}^{1} \left[\int_{1}^{\infty} e^{-x} dx \right] e^{-2y} dy$$

$$= 2 \int_{0}^{1} \left[e^{-2y} dy \right] = \frac{1}{e} \left(1 - \frac{1}{e^{2}} \right)$$

$$P(X > 1, Y < 1) = P(X > 1) \text{ and } Y < 1$$

 $\int \int f(x,y) dxdy$ $\int \int f(x,y) dx dy$ 2 1

$$f(x,y) = \begin{cases} 6x & o(x < y < y) & o(x < y < y) \\ o & \text{otherwise} & x < y < y \end{cases}$$

$$= \begin{cases} f(x,y) & dy & x < y < y < y \\ x & dy \end{cases}$$

$$= \begin{cases} 6x & dy & p(x < a) = \begin{cases} 6a(1-a) & -a \\ dx & dx \end{cases}$$

$$= 6x(1-x) & -a & dx \end{cases}$$

 $f_{2}(y) = \int_{0}^{y} f(x,y) dx$ $= \int_{0}^{y} 6x dx = (3x^{2})_{0}^{y}$ $= 3y^{2}.$

$$P(X_{1}=1, X_{2}=2, X_{3}=0)$$

$$= P(X_{1}=1) P(X_{2}=2) P(X_{3}=0)$$

$$= 0.2 \times 0.1 \times 0.3$$

$$= 0.006$$

 $X f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$ Y f(y) = { e-y y >0 Mervie Verify X and Y are independent $f(x,y) = \begin{cases} e^{-kx+y} & x>0, y>0 \\ 0 & \text{Mons} \end{cases}$ indefendent.