Relatorio 3 - MAF 261 - Estatística Experimental

Guilherme Fernandes - 3398, Júlia Letícia - 3732, Victor Hugo - 351005/07/2022

Contents

1	Rela	atório 3	1
	1.1	Introdução	1
	1.2	Base de Dados	1
	1.3	Objetivos	2
	1.4	Objetivo 1	2
	1.5	Objetivo 2	8
	1.6	Objetivo 3	10
	1.7	Conclusão	11

1 Relatório 3

1.1 Introdução

Um grupo de engenheiros agrônomos testaram 4 diferentes tipos de fertilizante em áreas com plantação de feijão e mediram a produção em quilogramas. Ainda, anotaram se houve ataque de pragas ou não.

1.2 Base de Dados

ID	Producao	Praga	Fertilizante
1	388	1	A
2	454	0	A
3	812	0	A
4	514	1	A
5	526	0	A
6	843	0	A

1.2.1 Sumário

ID: ID da área plantada; Producao: Quantidade da produção em relação a área $i \in ID$; Praga: 0 quando não houver presença de praga na área $i \in ID$; Fertilizante: Qual tipo de fertilizante utilizado na área $i \in ID$;

1.3 Objetivos

Temos como objetivo descobrir se algum fertilizante é melhor para a produção (1), se algum fertilizante causa menos pragas (2) e se as pragas afetam a produção de cada tipo de fertilizante (3).

1.4 Objetivo 1

1.4.1 Descritiva da produção em relação aos tipos de Fertilizante

Fertilizante	Mediana	Média	Mínimo	Máximo	Desvio Padrão	Variância
A	520.0	589.50	388	843	191.03	36492.70
В	941.5	938.33	697	1195	180.86	32711.07
\mathbf{C}	251.0	250.50	55	557	180.21	32475.50
D	379.5	406.00	286	640	131.67	17336.40

Podemos observar que B visualmente é superior que os outros, agora iremos analisar estatisticamente.

1.4.2 ANOVA

```
## Pertilizante 3 1576427 525476 17.66 7.66e-06 ***
## Residuals 20 595078 29754
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
```

A um nível de significância de 5% foi possível ver que a produção é diferente em relação aos fertilizantes. Dessa forma vamos testar os pressupostos e depois encontrar onde está a diferença.

Visualmente não é possível observar algum padrão, logo temos que são dados aleatórios.

[1] 16 11

A um ponto somente fora do envelope, para isso vamos utilizar o teste de Shapiro-Wilks.

```
##
## Shapiro-Wilk normality test
##
## data: fit$residuals
## W = 0.93551, p-value = 0.1295
```

Assumimos então que os resíduos são normais ao nível de significância de 5%.

Iremos utilizar o Teste de Bartlett para testar a Homoscedasticidade.

```
##
## Bartlett test of homogeneity of variances
##
## data: Producao by Fertilizante
## Bartlett's K-squared = 0.70949, df = 3, p-value = 0.871
```

Dessa forma assumimos que a variância é igual para os 4 tipos de fertilizantes em um nível de significância de 5%.

Tukey multiple comparisons of means

```
##
       95% family-wise confidence level
##
## Fit: aov(formula = Producao ~ Fertilizante, data = base)
##
## $Fertilizante
##
            diff
                        lwr
                                          p adj
## B-A 348.8333
                   70.09003
                             627.5766 0.0110653
## C-A -339.0000 -617.74330
                             -60.2567 0.0137652
## D-A -183.5000 -462.24330
                              95.2433 0.2836445
## C-B -687.8333 -966.57663 -409.0900 0.0000059
## D-B -532.3333 -811.07663 -253.5900 0.0001702
## D-C 155.5000 -123.24330 434.2433 0.4218483
```

Através do teste de tukey acima, a um nível de significância de 5% encontramos quê:

$$A \neq B, A \neq C, B \neq C, B \neq D$$

Como B é diferente estatisticamente de todos e possui a maior media de Produção, podemos concluir que o Fertilizante B é o melhor dentre todos.

1.5 Objetivo 2

1.5.1 Quantidade de Praga em relação ao Fertilizante

1.5.2 Proporção de Praga em relação ao Fertilizante

Visualmente não há diferença na presença de Praga nos diferentes tipos de Fertilizante.

1.5.3 ANOVA

```
##
## Call:
## glm(formula = Praga ~ Fertilizante, family = binomial(), data = base)
##
## Deviance Residuals:
##
       Min
                 1Q
                                   3Q
                      Median
                                           Max
## -1.1774 -0.9005 -0.9005
                               1.2536
                                         1.4823
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -6.931e-01
                             8.660e-01
                                        -0.800
                                                  0.423
                  6.931e-01
                                         0.582
                                                  0.560
## FertilizanteB
                             1.190e+00
## FertilizanteC
                  7.612e-16
                             1.225e+00
                                         0.000
                                                   1.000
                  8.158e-16 1.225e+00
                                         0.000
## FertilizanteD
                                                   1.000
##
## (Dispersion parameter for binomial family taken to be 1)
##
                                     degrees of freedom
##
       Null deviance: 31.755 on 23
## Residual deviance: 31.232 on 20 degrees of freedom
## AIC: 39.232
##
```

Number of Fisher Scoring iterations: 4

Primeiramente foi feita uma regressão logística, onde em nenhum tratamento foi encontrada uma diferença significativa ao nível de significância de 5%.

```
## Analysis of Deviance Table
## Model: binomial, link: logit
## Response: Praga
##
## Terms added sequentially (first to last)
##
##
##
                Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                   23
                                           31.755
                                           31.232
## Fertilizante 3 0.52276
                                   20
                                                    0.9139
```

Foi feita uma anova e constatamos que não há diferença estatística a um nível de significância de 5%, ou seja, nenhum Fertilizante causa menos Praga.

1.6 Objetivo 3

1.6.1 Produção em relação a Praga e aos tipos de Fertilizante

Fertilizante	Praga	Mediana	Média	Mínimo	Máximo	Desvio Padrão	Variância
A	0	669.0	658.75	454	843	197.47	38992.92
A	1	451.0	451.00	388	514	89.10	7938.00
В	0	861.0	866.67	697	1042	172.57	29780.33
В	1	1022.0	1010.00	813	1195	191.28	36589.00
\mathbf{C}	0	155.5	166.50	55	300	114.51	13113.67
\mathbf{C}	1	418.5	418.50	280	557	195.87	38364.50
D	0	405.0	436.25	295	640	151.24	22873.58
D	1	345.5	345.50	286	405	84.15	7080.50


```
##
                         Sum Sq Mean Sq F value
                                                    Pr(>F)
                         1576427
                                  525476
                                          20.453 1.01e-05 ***
## Fertilizante
                            4256
                                    4256
                                            0.166
                                                     0.689
## Praga
## Fertilizante:Praga
                       3
                          179760
                                   59920
                                            2.332
                                                     0.113
## Residuals
                      16
                          411062
                                   25691
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Como o P Valor do Fertilizante:Praga não foi significativo, temos que a Praga não influencia a Produção de cada Fertilizante. Não iremos aprofundar pois será o tema da próxima aula.

1.7 Conclusão

Concluímos que o melhor fertilizante é o B, pois tem a maior produção, também concluímos que nenhum fertilizante causa menos pragas do que os demais.