Unidad 4

Construcción de Bases de Datos Relacionales

Etapa de Identificación

Etapa de Identificación

- Identificar las entidades dentro del sistema
 - Entidades fuertes y entidades débiles
- Identificar y describir los atributos de cada entidad.
 - Dominio, univaluados o multivaluados, compuestos o simples, primitivos o derivados

Llaves y Relaciones

- Determinar las claves primarias de las entidades
- Establecer las relaciones entre entidades y obtener su cardinalidad

Etapa de Normalización

Proceso de Normalización

- Normalizar una base es aplicar una serie de reglas a las relaciones del modelo al momento de pasarlo al modelo
- Las bases de datos relacionales se normalizan para:
 - Evitar la redundancia de los datos
 - Evitar problemas de actualización de los datos en las tablas
 - Proteger la integridad de los datos
 - Facilitar el manejo de la información

Formas Normales

• Existen varias reglas de normalización, conocidas como Formas Normales, se considera que una Base de Datos está normalizada si todas sus tablas se encuentran normalizadas

• Se considera que una Tabla está normalizada si cumple al menos con las tres primeras formas normales

Primera Forma Normal

- Cada atributo debe tener un nombre único
- No deben existir tuplas repetidas
- Para que una base de datos sea 1FN, es decir, que cumpla la primera forma normal, cada columna debe ser atómica
- No se tienen grupos de datos repetidos
- Debe existir una llave primaria

Columnas Atómicas

• Atómica significa "indivisible", es decir, cada atributo debe contener un único valor del dominio

• Los atributos, en cada tabla de una base de datos 1FN, no pueden tener listas o arreglos de valores, ya sean del mismo dominio o de dominios diferentes

Aplicando la Primera Forma Normal

• Aplicar la primera forma normal es muy simple, bastará con dividir cada columna no atómica en tantas columnas atómicas como sea necesario, particularmente en aquellos atributos que puedan ser multivaluados

Datos Atómicos - Primera Forma Normal

Nombre	Licenciatura	Matrícula	Uea	Clave

Nombre	Paterno	Materno	Licenciatura	Matrícula	Uea	Clave

Segunda Forma Normal

- Debe estar en Primera Forma Normal
- Cada columna de la Tabla debe depender de la Llave Primaria
- Se busca evitar la Dependencia Parcial, en donde un valor puede ser identificado sin tener dependencia de la llave primaria de la tabla

Dependencia Funcional

- Se dice que Y tiene una Dependencia Funcional de X (X determina aY) si para cada valor de X existe un solo valor de Y
- Esto significa que si se conoce un determinado valor de X, puede conocerse un cierto valor de Y

Aplicando la Segunda Forma Normal

- Solo se debe almacenar información sobre un tipo de entidad, los atributos que no aporten nada a la relación deben pasarse a otra entidad y por lo tanto a otra tabla de manera atómica
- Se debe crear otra tabla que contenga los grupos de datos que se repiten y relacionarlos a través de una llave con su correspondiente valor en otra tabla

Segunda Forma Normal

Nombre	Paterno	Materno	Licenciatura	Coordinador	Matrícula	Uea	Clave

Nombre	Paterno	Materno	Licenciatura	Coordinador	Matrícula (PK)

Clave (PK)	uea

Tercera Forma Normal

- Debe estar en la Segunda Forma Normal
- Los campos no primarios dependen de la clave primaria
- Se debe eliminar la Dependencia Transitiva

Dependencia Transitiva

• Uno o mas atributos están ligados directamente a un atributo que no es llave primaria y estos se estarán repitiendo a lo largo de las tuplas

Aplicando la Tercera Forma Normal

• Pasar los atributos dependientes junto con una copia del atributo del que dependen a otra tabla

Ejemplo

Nombre	Paterno	Materno	Licenciatura	Coordinador	Matrícula (PK)

Clave (PK)	Uea

Nombre	Paterno	Materno	Licenciatura	Matrícula (PK)

Clave (PK)	Uea

Clave (PK)	Licenciatura	Coordinador

Claves para la Normalización

- Primera Forma Normal
 - Atributos Atómicos
 - Grupos de atributos no repetidos
 - Llaves Primarias en las tablas
- Segunda Forma Normal
 - Atributos de una sola entidad
 - Los atributos dependen de la llave primaria
- Tercera Forma Normal
 - No hay atributos que dependan de un atributo que es una llave no primaria

Forma Normal de Boyce y Codd (FNBC)

- La Forma Normal de Boyce Codd (FNBC) es una variante de la Tercera Forma Normal
- Una relación está en FNBC si cualquier atributo sólo facilita información sobre claves candidatas, y no sobre atributos que no formen parte de ninguna clave candidata
- No deben existir relaciones entre atributos fuera de las claves candidatas

Ejemplo

Nombre	Paterno	Materno	Licenciatura	Coordinador	Matrícula (PK)

Clave (PK)	Uea

Nombre	Paterno	Materno	Licenciatura	Matrícula (PK)

Clave (PK)	Uea

Clave (PK)	Licenciatura	Coordinador

Ejemplo

- En este caso, licenciatura y coordinador solo proporcionan información entre ellos y ninguno es una llave candidata
- Por ésta razón, la información se separa y se maneja en una tabla diferente

Cuarta Forma Normal

- La cuarta Forma Normal tiene como objetivo eliminar las Dependencias Multivaluadas
- Una dependencia Multivaluada es en donde existen dos o mas relaciones de muchos a muchos lo que provoca redundancia de información

Ejemplo

id_candidato	nombre	paterno	materno	idioma	computo

id_candidato	nombre	paterno	materno

id_candidato	idioma

id_candidato	computo

Ejemplo

- En este caso, el tener toda la información de "idioma" y "computo" genera redundancia, además de que son elementos Multivaluados dependientes de id_candidato
- Por ésta razón, se crea una nueva tabla para cada uno de éstos atributos que los relacione con el cliente.

Quinta Forma Normal

- La Quinta Forma Normal se aplica principalmente en la Proyección y en la Unión
- Su objetivo es reducir la redundancia y la complejidad de tablas
- En ocasiones puede generar que se creen muchas tablas, lo que complica el manejo de las mismas

Proyección

• La Quinta Forma Normal se aplica en forma de proyección para reducir la complejidad de una tabla

matricula	nombre	apellido_p	apellido_m	licenciatura	lugar_nac	direccion_actual	genero	edo_civil	fecha_nac

matricula	nombre	apellido_p	apellido_m	licenciatura

matricula	lugar_nac	direccion_actual	genero	edo_civil	fecha_nac

Unión

• La Quinta Forma Normal permite dividir tablas una vez que se considera la unión de las mismas

Profesor	Unidad

Curso	Unidad

Ejemplo Unión

- El dividir las tablas, permitirá eliminar información redundante
- Sin embargo ésta división puede ocasionar una complejidad mayor al momento de realizar consultas

Construcción del Modelo E/R

Pasando del Modelo a las Tablas

- Identificar llaves Primarias (PK)
- Relaciones y llaves Foráneas (FK)
- Identificar atributos faltantes
- Normalización
- Diagrama E-R (Tablas)
- Diccionario de Datos/Restricciones

Diagrama E-R y Verificación

- Diagrama E–R
 - Representar gráficamente el modelo obtenido
- Verificación.
 - Eliminar relaciones redundantes, eliminar o añadir entidades, eliminar o añadir atributos de una entidad