

# Πανεπιστήμιο Δυτικής Αττικής Σχολή Μηχανικών Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών

Εργαστήριο Σχεδίαση Ψηφιακών Συστημάτων Τμήμα 1 Άσκηση 1

> Αναστασία Αλμπάνη Ice19390009

## 1. Τριπλός πολυπλέκτης 2-σε-1

Το κύκλωμα υλοποιείται στο αρχείο mux\_double\_2to1.vhd και το testbench στο αρχείο test\_double\_2to1.vhd. Ο τριπλός πολυπλέκτης 2-σε-1 έχει την ίδια λειτουργία με τον πολυπλέκτη 2-σε-1 με την διαφορά ότι δέχεται εισόδους με τρία bit αντί για ένα. Δέχεται δύο εισόδους a, b με τρία bit και μία είσοδο s με ένα bit η οποία ανάλογα με την τιμή της θα καθοριστεί η έξοδος d με τρία bit. Αν η είσοδος s είναι 1 τότε η έξοδος d θα έχει τις τιμές της εισόδου a, αλλιώς θα έχει τις τιμές της εισόδου b.

Οπότε για τις ακόλουθες τιμές των s, a, b η έξοδος d θα είναι:

| S | а   | b   | d   |
|---|-----|-----|-----|
| 0 | 001 | 010 | 010 |
| 0 | 010 | 100 | 100 |
| 0 | 111 | 011 | 011 |
| 0 | 101 | 111 | 111 |
| 1 | 010 | 001 | 010 |
| 1 | 000 | 101 | 000 |
| 1 | 101 | 010 | 101 |
| 1 | 111 | 101 | 111 |

Χρησιμοποιώντας το testbench τα σήματα A1, B1, c1, s1 αντιστοιχούν στις θύρες a, b, d, s του πολυπλέκτη.

| /A1 | 001 | 001 | 010 | 111 | 101 | 010 | 000 | 101 | 111 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| /B1 | 010 | 010 | 100 | 011 | 111 | 001 | 101 | 010 | 101 |
| /c1 | 010 | 010 | 100 | 011 | 111 | 010 | 000 | 101 | 111 |
| /s1 | 0   | L   |     |     |     |     |     |     |     |

## 2. Πολυπλέκτης 4-σε-1

Το κύκλωμα υλοποιείται στο αρχείο mux\_4to1.vhd και το testbench στο αρχείο test\_ mux\_4to1.vhd. Ο πολυπλέκτης 4-σε-1 δέχεται μία είσοδο a με τέσσερα bit και μία είσοδο s με δύο bit η οποία ανάλογα την τιμή της η έξοδος d με ένα bit παίρνει την τιμή ενός ψηφίου από την είσοδο.

Ακολουθεί πίνακας αληθείας ο οποίος περιγράφει την συμπεριφορά του κυκλώματος:

| s2 | s1 | d  |
|----|----|----|
| 0  | 0  | a1 |
| 0  | 1  | a2 |
| 1  | 0  | a3 |
| 1  | 1  | a4 |

Για τους ακόλουθους συνδυασμούς εισόδων υπολογίζεται η έξοδος d:

| a    | S  | d |
|------|----|---|
| 0000 | 00 | 0 |
| 0101 | 01 | 0 |
| 1010 | 10 | 0 |
| 1100 | 11 | 1 |

Χρησιμοποιώντας το testbench τα σήματα A1, s1, d1 αντιστοιχούν στις θύρες a, s, d του πολυπλέκτη.

| Ά1 | 0000 | 0000 | 0101 | 1010 | 1100 |
|----|------|------|------|------|------|
| s1 | 00   | 00   | 01   | 10   | 11   |
| d1 | 0    |      |      |      |      |

## 3. Αποκωδικοποιητής 2-σε-4

Το κύκλωμα υλοποιείται στο αρχείο dec2to4.vhd και το testbench στο αρχείο test\_dec2to4.vhd. Ο αποκωδικοποιητής 2-σε-4 δέχεται μία είσοδο a με δύο bit και ανάλογα με τον συνδυασμό τιμών της ορίζεται η έξοδος d με τέσσερα bit.

Οπότε για τις ακόλουθες τιμές του a η έξοδος d θα είναι:

| a  | d    |
|----|------|
| 00 | 1000 |
| 01 | 0100 |
| 10 | 0010 |
| 11 | 0001 |

Χρησιμοποιώντας το testbench τα σήματα A1, d1 αντιστοιχούν στις θύρες a, d του αποκωδικοποιητή.

| a | 00   | 00   | 01   | 10   | 11   |  |
|---|------|------|------|------|------|--|
|   |      |      |      |      |      |  |
| d | 1000 | 1000 | 0100 | 0010 | 0001 |  |

## 4. Αποκωδικοποιητής 2-σε-4 με επίτρεψη

Το κύκλωμα υλοποιείται στο αρχείο dec\_2to4.vhd και το testbench στο αρχείο test\_dec\_2to4.vhd. Ο αποκωδικοποιητής 2-σε-4 με επίτρεψη έχει παρόμοια λειτουργία με τον αποκωδικοποιητή χωρίς επίτρεψη. Η διαφορά τους είναι ότι ο αποκωδικοποιητής με επίτρεψη έχει μία επιπλέον είσοδο en με ένα bit η οποία ανάλογα την τιμή της ελέγχεται η λειτουργία του κυκλώματος. Αν έχει είσοδο 0 τότε δεν λειτουργεί το κύκλωμα και όλες οι έξοδοι d θα είναι 0, αλλιώς αν έχει είσοδο 1 τότε το κύκλωμα λειτουργεί κανονικά όπως ο αποκωδικοποιητής χωρίς επίτρεψη.

Οπότε για τις ακόλουθες τιμές των a, en η έξοδος d θα είναι:

| a  | en | d    |
|----|----|------|
| 00 | 0  | 0000 |
| 01 | 0  | 0000 |
| 10 | 0  | 0000 |
| 11 | 0  | 0000 |
| 00 | 1  | 1000 |
| 01 | 1  | 0100 |
| 10 | 1  | 0010 |
| 11 | 1  | 0001 |

Χρησιμοποιώντας το testbench τα σήματα A1, e1, d1 αντιστοιχούν στις θύρες a, en, d του αποκωδικοποιητή.

| Α1 | 00   | 00   | 01 | 10 | 11 | 00   | 01   | 10   | 11   |
|----|------|------|----|----|----|------|------|------|------|
| e1 | 0    | L    |    |    |    |      |      |      |      |
| d1 | 0000 | 0000 |    |    |    | 1000 | 0100 | 0010 | 0001 |

#### 5. Αποκωδικοποιητής 4-σε-16

Το κύκλωμα υλοποιείται στο αρχείο dec\_4to16.vhd και το testbench στο αρχείο test\_dec\_4to16.vhd. Ο αποκωδικοποιητής 4-σε-16 ενσωματώνει πέντε αποκωδικοποιητές 2-σε-4. Οι τέσσερις πρώτοι αποκωδικοποιητές u4 έως u1 έχουν ως εισόδους τα δύο λιγότερο σημαντικά bit a(1), a(2) της εισόδου του 4-σε-16 και οι έξοδοι d(4 downto 1) τους οι οποίες έχουν τέσσερα bit αντιστοιχούν στις εξόδους d(16 downto 0) του 4-σε16. Ο αποκωδικοποιητής u0 έχει ως εισόδους τα δύο πιο σημαντικά bit a(3), a(4) της εισόδου του 4-σε-16 και οι έξοδοι του u0 συνδέονται με τα enable των υπόλοιπων 2-σε-4. Το enable του u0 θέτεται σε 1 για να βρίσκεται ο αποκωδικοποιητής 4-σε-16 σε συνεχή λειτουργία.

Για τις ακόλουθες τιμές του a η έξοδος d θα είναι:

| a    | d                   |
|------|---------------------|
| 0000 | 1000 0000 0000 0000 |
| 0001 | 0100 0000 0000 0000 |
| 0010 | 0010 0000 0000 0000 |
| 0011 | 0001 0000 0000 0000 |
| 0100 | 0000 1000 0000 0000 |
| 0101 | 0000 0100 0000 0000 |
| 0110 | 0000 0010 0000 0000 |
| 0111 | 0000 0001 0000 0000 |
| 1000 | 0000 0000 1000 0000 |
| 1001 | 0000 0000 0100 0000 |
| 1010 | 0000 0000 0010 0000 |
| 1011 | 0000 0000 0001 0000 |
| 1100 | 0000 0000 0000 1000 |
| 1101 | 0000 0000 0000 0100 |
| 1110 | 0000 0000 0000 0010 |
| 1111 | 0000 0000 0000 0001 |

Χρησιμοποιώντας το testbench τα σήματα A1, d1 αντιστοιχούν στις θύρες a, d του αποκωδικοποιητή.

| Α1 | 0000              | 0000             | 0001              | 0010               | 0011                  |
|----|-------------------|------------------|-------------------|--------------------|-----------------------|
| d1 | 10000000000000000 | 1000000000000000 | 0100000000000000  | 0010000000000000   | 0001000000000000      |
| Α1 | 0100              | 0100             | 0101              | 0110               | 0111                  |
| d1 | 0000100000000000  | 0000100000000000 | 0000010000000000  | 0000001000000000   | 0000000 100000000     |
| Α1 | 1000              | 1000             | 1001              | 1010               | 1011                  |
| d1 | 0000000010000000  | 0000000010000000 | 0000000001000000  | 0000000000100000   | 0000000000010000      |
| A1 | 1100              | 1100             | 1101              | 1110               | 1111                  |
| d1 | 0000000000001000  | 0000000000001000 | 00000000000000100 | 000000000000000010 | 000000000000000000001 |

## 6. Ημιαθροιστής

Το κύκλωμα υλοποιείται στο αρχείο half\_adder.vhd και το testbench στο αρχείο test\_half\_adder.vhd. Ο ημιαθροιστής δέχεται δύο εισόδους A, B με ένα bit και αναθέτει ανάλογα τις τιμές του τις εξόδους S, C με ένα bit. Αν μόνο μία από τις δύο εξόδους έχει τιμή 1 τότε η έξοδος sum S θα έχει τιμή 1 αλλιώς θα έχει τιμή 0. Αν και οι δύο έξοδοι έχουν τιμή 1 τότε η έξοδος carry C θα έχει τιμή 1 αλλιώς θα έχει τιμή 0.

Για τις ακόλουθες τιμές των Α, Β οι έξοδοι C, S θα είναι:

| А | В | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Χρησιμοποιώντας το testbench τα σήματα A1, B1, S1, C1 αντιστοιχούν στις θύρες A, B, S, C του ημιαθροιστή.



## 7. Πλήρης αθροιστής

Το κύκλωμα υλοποιείται στο αρχείο full\_adder.vhd και το testbench στο αρχείο test\_full\_adder.vhd. Ο πλήρης αθροιστής ενσωματώνει δύο ημιαθροιστές. Ο πρώτος ημιαθροιστής ha1 δέχεται στις εισόδους A, B του τις εισόδους A, B του πλήρη αθροιστή και η έξοδος S του ha1 (σήμα s1) συνδέεται με την είσοδο A του δεύτερου ημιαθροιστή ha2. Η δεύτερη είσοδος B του ha2 συνδέεται με την είσοδο Cin του πλήρη αθροιστή και η έξοδος S του ha2 συνδέεται με την τελική έξοδο S του πλήρη αθροιστή. Η έξοδος Cout του πλήρη αθροιστή είναι η πράξη or των εξόδων C των ha1 (σήμα co1) και ha2 (σήμα co2).

Για τις ακόλουθες τιμές των Α, Β, Cin οι έξοδοι Cout, S θα είναι:

| Α | В | Cin | Cout | S |
|---|---|-----|------|---|
| 0 | 0 | 0   | 0    | 0 |
| 0 | 0 | 1   | 0    | 1 |
| 0 | 1 | 0   | 0    | 1 |
| 0 | 1 | 1   | 1    | 0 |
| 1 | 0 | 0   | 0    | 1 |
| 1 | 0 | 1   | 1    | 0 |
| 1 | 1 | 0   | 1    | 0 |
| 1 | 1 | 1   | 1    | 1 |

Χρησιμοποιώντας το testbench τα σήματα a1, v1, ci1, s1, co1 αντιστοιχούν στις θύρες A, B, Cin, S, Cout του πλήρη αθροιστή.



#### 8. Αθροιστής 4 bit

Το κύκλωμα υλοποιείται στο αρχείο adder4.vhd και το testbench στο αρχείο test\_ adder4.vhd. Ο αθροιστής 4 bit ενσωματώνει τέσσερις πλήρης αθροιστές οι οποίοι έχουν υλοποιηθεί στο αρχείο adder4\_fa.vhd με τύπο port std\_logic. Οι τέσσερις πλήρης αθροιστές fa1 έως fa4 δέχονται στις εισόδους τους a, b τις εισόδους X, Y (X(3 downto 0) και Y(3 downto 0)) του αθροιστή 4 bit και οι 1-bit έξοδοι τους s αντιστοιχούν στην έξοδο S του αθροιστή 4 bit. Η είσοδος cin του πρώτου πλήρη αθροιστή fa1 συνδέεται με την είσοδο Cin του αθροιστή 4 bit και η έξοδος cout (σήμα co1(0)) του fa1 συνδέεται με την είσοδο Cin του fa2. Η έξοδος Cout (σήμα co1(1)) του fa2 συνδέεται με την είσοδο Cin του fa3 και η έξοδος Cout (σήμα s1(2)) του fa3 συνδέεται με την είσοδο Cin του fa4. Τέλος η έξοδος Cout (σήμα s1(3)) του fa4 συνδέεται με την έξοδο Cout του αθροιστή 4 bit.

Για τους ακόλουθους συνδυασμούς των Α, Β, Cin οι έξοδοι Cout, S θα είναι:

| А    | В    | Cin | Cout | S    |
|------|------|-----|------|------|
| 0000 | 0000 | 0   | 0    | 0000 |
| 1111 | 1111 | 0   | 1    | 1110 |
| 1111 | 1111 | 1   | 1    | 1111 |

Χρησιμοποιώντας το testbench τα σήματα A, B, s1, ci1, co1 αντιστοιχούν στις θύρες A, B, S, Cin, Cout του αθροιστή 4 bit.

| Д    | 0000 | 0000 | 1111 |   |     |  |
|------|------|------|------|---|-----|--|
| В    | 0000 | 0000 | 1111 |   |     |  |
| s1   | 0000 | 0000 | 1110 | 1 | 111 |  |
| ci1  | 0    |      |      |   |     |  |
| co 1 | 0    |      |      |   |     |  |

Ακολουθεί έλεγχος του κυκλώματος με πράξεις πρόσθεσης των αριθμών:

Για A = +3 = 0011, B = +5 = 0101 και Cin = 0 το κύκλωμα έχει εξόδους:

| 'A   | 0011 | 0011 |  |
|------|------|------|--|
| В    | 0101 | 0101 |  |
| /s1  | 1000 | 1000 |  |
| ⁄ci1 | 0    |      |  |
| co1  | 0    |      |  |

Παρατηρούμε ότι Cout = 0 και S = 1000 = 8, δηλαδή η πρόσθεση των δύο θετικών αριθμών έδωσε θετικό αριθμό και carry = 0.

Για X = -A = 1110, B = +3 = 0011 και Cin = 0 το κύκλωμα έχει εξόδους:

| Ά   | 1110 | 1110 |  |
|-----|------|------|--|
| В   | 0011 | 0011 |  |
| s1  | 0001 | 0001 |  |
| ci1 | 0    |      |  |
| co1 | 1    |      |  |

Παρατηρούμε ότι Cout = 1, S = 0001 = 1, δηλαδή η πρόσθεση του ενός αρνητικού αριθμού με ένα μεγαλύτερο θετικό έδωσε θετικό αριθμό και carry = 1.

Για A = -8 = 1000, B = +7 = 0111 και Cin = 0 το κύκλωμα έχει εξόδους:

| /A   | 1000 |   | 1000 |  |
|------|------|---|------|--|
| /B   | 0111 | i | 0111 |  |
| /s1  | 1111 |   | 1111 |  |
| /ci1 | 0    |   |      |  |
| /co1 | 0    |   |      |  |

Παρατηρούμε ότι Cout = 0, S = 1111 = 15, δηλαδή η πρόσθεση του -8 ο οποίος έχει την ίδια τιμή με το 8 έδωσε λάθος αποτέλεσμα και carry = 0.