第三章 时序电路的分析与设计

- 3.2 同步时序电路的分析与设计
- 3.2.2 同步时序电路的设计
- 3.2.2.1 建立原始状态图(表)
- 3.2.2.2 状态化简
- 3.2.2.2.1 完全给定同步时序电路状态表的化简
- 3.2.2.2.2 不完全给定同步时序电路状态表的化简
- 3.2.2.3 状态分配 ABCD 是准来的 分配二백刻
- 3.2.2.3.1 状态编码的一般问题 与难 戏剧优件
- 3.2.2.3.2 相邻状态分配法
- 3.2.2.4 触发器类型的选择及激励函数和输出函数的确定
- 3.2.2.4.1 触发器类型的选择 フノブド / かん怎の送り
- 3.2.2.4.2 激励函数和输出函数的确定
- 3.2.2.5 设计举例

第三章 时序电路的分析与设计

设计过程

- 3.2 同步时序电路的分析与设计
 - 3.2.2 同步时序电路的设计Synchronous circuit Design 电路分析与设计的比较

逻辑电路图

分析过程

逻辑表达式

二进制状态表

状态表

状态图

功能特性描述

6、讨论

5、画出逻辑电路图

- 4、选择触发器,确定激励函数 和输出函数
- 3、状态分配求得二进制状态表
- 2、状态化简求得最简状态表
- 1、建立原始状态图和状态表

3.2.2.1 建立原始状态图(表) Sequence recognizer State Diagram(Table)

2一个古1字

- 建立原始状态表的关键是确定以下三个问题:
 - 1、所描述的电路应包括多少状态?
 - 2、状态之间的转换关系如何?
 - 3、输出情况如何?
- 设计要求: 只求正确,不求最简。 7 确保逻辑功能的正确性。
- 设计方法: 直接构图(表)法
 - 1、起点——假设一个初态;
 - 2、输入信号为 n,则每个状态发出 2n 条带箭头线;
 - 3、直到不再有新的状态出现。

例1 设计一个五进制可逆计数器。当输入 x 为 0 时, 加 1 计数; x 为 1 时, 减 1 计数。

1、画出原始状态图

Mealy 还是Moore 都河以 2、写出原始状态表

	那么什么是 Mealy/Moore					
S_0	1/0	yX	0	1		
$0/1 \qquad 0/0$		S_0	$S_1/0$	S ₄ /1		
S_4	S_1	S_1	S ₂ /0	$S_0/0$		
		S ₂	$S_3/0$	S ₁ /0		
1/0 0/0	0/0	S_3	S ₄ /0	S ₂ /0		
S_3 \leftarrow S_2		S_4	$S_0/1$	S ₃ /0		
0/0		写00	,01,1	0,11.		
1/0						

设计一个"1101"序列检测器。当输入 x 连续出 例 2 现 "1101" (或在出现 "1101"后, x 一直保持为 1)时,输出 Z=1; 否则 Z=0。 了一状态.

川い有談

1、画出原始状态图 车加出与状态有关 1170 川也行

 S_{110}/C

Moore型

2、写出原始状态表

yX	0	1	Z
S_0	S_0	S_1	0
S_1	S_0	S ₁₁	0
S ₁₁	S ₁₁₀	S ₁₁	0
S ₁₁₀	Solve	Sun	FLE
S ₁₁₀₁	S	7470116	4

5个、3个触数器

例 2 设计一个 "1101"序列检测器。当输入 x 连续出现 "1101" (或在出现 "1101"后, x 一重保持为1)时, 输出 Z=1; 否则 Z=0。

1、画出原始状态图

2、写出原始状态表

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	S ₁₁ /0
S ₁₁	$S_{110}/0$	S ₁₁ /0
S ₁₁₀	$S_0/0$	$S_{1101}/1$
S ₁₁₀₁	$S_0/0$	S ₁₁₀₁ /1

政守逻辑电路

3、化简原始状态表

由于S₁₁₀和S₁₁₀₁的次态完全一样,则可以合并。

此为 Mealy型电路设计。试比较前述的Moore型电路设计。

y	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	S ₁₁ /0
S ₁₁	$S_{110}/0$	S ₁₁ /0
S ₁₁₀	$S_0/0$	S ₁₁₀ /1

Mealy型

yX	0	1	Z
S_0	$\mathbf{S_0}$	S_1	0
S_1	S_0	S ₁₁	0
S ₁₁	S ₁₁₀	S ₁₁	0
S ₁₁₀	S_0	S ₁₁₀₁	0
S ₁₁₀₁	S_0	S ₁₁₀₁	1

Moore型

例 3 设计一个8421码序列检测器。输入 x 为串行输入8421码, 先输入高位, 后输入低位, 每4位一组进行检测。当输入为8421码时, 输出 Z = 1; 否则 Z = 0。

例 4 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z。如果 x 连续两次输入同样的值时,输出 z=1, 并且在此之后如果 y 输入一直保持为 1, 则输出 z 保持为 1; 否则,输出 z=0。 不文 6 26

这个状态图是可以化简的。

 S_{00} 和 S_{0} 、 S_{11} 和 S_{1} 的所有输出有向线是一样的,即次态相同。

将 S_{00} 和 S'_{0} 、 S_{11} 和 S'_{1} 分别合并成为一个状态,即状态化简。

2、原始状态表

SXY	00	01	10	11	Z
S_{I}	S_0	S_0	S_1	S_1	0
S_0	S_{00}	S_{00}	S_1	S_1	0
S_1	S_0	S_0	S ₁₁	S ₁₁	0
S_{00}	S_{00}	S ₀₀	S_1	S ₁₁	1
S ₁₁	S_0	S ₀₀	S ₁₁	S ₁₁	1

- 总结建立原始状态图/表
 - 问题:

有多少个状态,状态之间的转换关系如何?

- 方法: 直接构图法, 只求逻辑正确,不求最简。
- 例子
- 作业

3.2.2.2 状态化简 Simplification the States

- 3.2.2.2.1 完全给定同步时序电路状态表的化简 State Reducant in Completely Specified Circuits 1、等效的概念 コガモー 計
 - (1) 状态等效(State Equivalence)

设: S_1 和 S_2 是完全给定时序电路 M_1 和 M_2 (M_1 和 M_2 可以是同一个电路)的两个状态,作为初态同时加入任意输入序列,所产生的输出序列完全一致,则状态 S_1 和 S_2 是等效(或等价)的,称 S_1 和 S_2 是等效对,记为 (S_1 , S_2)。等效状态可以合并为一个状态。

即: $(S_1, S_2) \rightarrow S$

(2) 等效的传递性 Transitivity

如果有状态 S_1 和 S_2 等效,状态 S_2 和 S_3 等效,则状态 S_1 和 S_3 也等效,记为:

$$(S_1, S_2), (S_2, S_3) \rightarrow (S_1, S_3)$$

(3) 等效类 Equivalence Partition

所含状态都可以相互构成等效对的等效状态的集合, 称为等效类。

即:
$$(S_1, S_2, S_3) \rightarrow (S_1, S_2)(S_2, S_3)(S_1, S_3)$$

 $(S_1, S_2)(S_2, S_3)(S_1, S_3) \rightarrow (S_1, S_2, S_3)$

(4) 最大等效类

在一个原始状态表中,不能被其他等效类所包含的等效类称为最大等效类。

等效对的判断标准

条件1: 它们的输出完全相同identical outputs。

条件2: 它们的次态满足下列条件之一:

- ①次态相同
- ②次态交错
- ③次态维持
- ④ 后续状态等效
- ⑤次态循环

等效关系判断条件的说明

① 次态相同

② 次态交错

等效关系判断条件的说明

③ 次态维持

等效关系判断条件的说明

图中次态的等效依赖关系

2、利用隐含表进行状态化简

例 化简下图所示的原始状态表 人口 水气

yx	00	01	10	11	
A	D /0	D /0	F/0	A/0	
В	C /1	D /0	E /1	F/0	不行
C	C /1	D /0	E/1	A /0	1.0
D	D /0	B /0	A /0	F/0	THE
E	C /1	F/0	E/1	A/0	DF新
F	D/0	D /0	A /0	F/0	
G	G /0	G /0	A/0	A/0	
Н	B/1	D /0	E/1	A/0	

 y^{n+1}/z

(2)	进行	顺序	七较 A	yX	00	01	10	11		
			输出不	同		A	D/0	D /0	F/0	A/0
B	X					В	C/1	D /0	E/1	F/0
)						C	C /1	D /0	E/1	A /0
C						D	D /0	B /0	A /0	F/0
D						E	C/1	F/0	E/1	A/0
						F	D /0	D /0	A/0	F/0
E						G	G/0	G /0	A/0	A/0
F						H	B/1	D /0	E/1	A /0
Ľ										
G										- 1
TT										- 1
H										
	A	В	C	D	E	F	G			3

(4) 列出最大等效类

由关联比较得到如下

等效对: **与(A,F)** (B,C) 合

(C,H)

X (B,C), (B,H), (C,H) \rightarrow (B,C,H)

因而得到两个最大等效类: (A,F) 和 (B,C,H)

重新命名状态名

没什么道义。

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'				
C'				
D'				
E'				

yX	00	01	10	11
A	D /0	D /0	F/0	A /0
В	C /1	D /0	E/1	F/0
C	C/1	D /0	E/1	A/0
D	D /0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
F	D /0	D /0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D /0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0
C'				
D'				
E'				

yX	00	01	10	11
A	D /0	D /0	F/0	A /0
В	C/1	D /0	E/1	F/0
C	C/1	D /0	E/1	A/0
D	D /0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
\mathbf{F}	D /0	D /0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D /0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0
C'	C'/0	B'/0	A'/0	A'/0
D'				
E'				

yX	00	01	10	11
A	D /0	D /0	F/0	A/0
В	C /1	D /0	E/1	F/0
C	C /1	D /0	E/1	A /0
D	D /0	B/0	A /0	F/0
E	C/1	F/0	E/1	A /0
F	D /0	D /0	A /0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D /0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0
C'	C'/0	B'/0	A'/0	A'/0
D'	B'/1	A'/0	D'/1	A'/0
E'				

yX	00	01	10	11
A	D /0	D /0	F/0	A/0
В	C /1	D /0	E/1	F/0
C	C/1	D /0	E/1	A/0
D	D /0	B/0	A /0	F/0
E	C/1	F/0	E/1	A /0
F	D /0	D /0	A /0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D /0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B '	B'/1	C'/0	D' /1	A'/0
C'	C'/0	B'/0	A'/0	A'/0
D'	B'/1	A'/0	D' /1	A'/0
E'	E'/0	E'/0	A'/0	A'/0

yX	00	01	10	11
A	D /0	D /0	F/0	A /0
В	C /1	D /0	E/1	F/0
C	C/1	D /0	E/1	A/0
D	D /0	B/0	A /0	F/0
E	C/1	F/0	E/1	A/0
F	D /0	D /0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D /0	E/1	A/0

3.2.2.2.2 不完全给定同步时序电路状态表的化简

State Reduction in Incompletely Specified Circuits 复杂 C 写确定。

1. 不完全给定*Incompletely Specified States*的概念 如图所示,次态或输出中包含有无关项(d)。

yX	0	1
A	A /0	D/d
В	A /0	D /0
C	A /0	D /1
D	A/0	C /1

2. 相容的概念

(1) 状态相容 State Compatibility

设: S_1 和 S_2 是不完全给定时序电路 M_1 和 M_2 (M_1 和 M_2 可以是同一个电路)的两个状态,作为初态同时加入预定的允许输入序列(除最后一个次态外,其他次态都是确定的),所产生的输出序列一致(认为确定的输出与对应的不确定输出相同),则状态 S_1 和 S_2 是相容对。

记为: (S₁, S₂)。

yX	0	1
A	A/0	D/d
B	A /0	D /0
C	A /0	D /1
D	A/0	C /1

(2) 状态相容无传递性

如左图中,(A, B)、(A, C)相容, 但(B, C)不相容

 y
 X
 0
 1

 A
 A/0
 D/d

 B
 A/0
 D/0

 C
 A/0
 D/1

 D
 A/0
 C/1

(3) 相容类

两两相容的状态的集合称为相容类。

不是找这个

(4) 最大相容类 Maximal Compatibles 不能被其他相容类所包含的相容类。

相容对的判别标准:

条件一:它们的输出相同;

条件二:它们的次态必须满足下列情况之一:

- ①次态相同
- ②次态交错
- ③次态维持
- ④ 后续状态等效
- ⑤ 次态循环

注意: 一方给定,一方不给定的次态均当作相同。

例化简不完全给定状态表。

右表中的相容对为:

(A,B), (A,C), (A,D), (C,D) CD. 比·祥 两种相容 字

y	0	1
A	A /0	D/d
В	A /0	D /0
C	A/0	D /1
D	A/0	C /1
$\mathbf{v}^{\mathbf{n+1/2}}$		

状态合并图Merger Diagrams

将所有相容对填入合并图,

可以得到两个最大相容类为:

$$(A,B)$$
, (A,C,D)

3. 最小化状态表 Reduced State Table

- (1) 覆盖性 Coverd:能包含霍部的原始状态。
- (2) 闭合性 Closure: 任一个相容类的次态应属于该集内的一个相容类。
- (3) 最小化:选择满足"覆盖"和"闭合"的相容类且数目最少。

4. 不完全给定状态表的化简过程

- (1) 利用隐含表寻找相容对
- (2) 用合并图确定最大相容类
- (3) 采用覆盖闭合表进行相容类集的选择,建立最小化 状态表

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A /0	C /1

В				
C				
D				
E				
	A	В	C	D

 y^{n+1}/z

5一>4.173一个解发器

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A /0	C /1

\mathbf{v}^{n+}	$-1/_{2}$
y	- L

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A /0	C /1

v n-	1/7	
J		_

yX	0	1	В	AC			
A	A/d	d/d		A D			
В	C /1	B /0	C	AD			1
C	D /0	d/1	D	1			
D	d/d	B/d	E				
E	A/0	C /1			D		
			•	A	B	C	D

 y^{n+1}/z

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A/0	C /1

 y^{n+1}/z

В	AC			
C	AD			
D	$\sqrt{}$			
E	1			
	A	В	C	D

首选:新屿 炒选·OJ/字研纸

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A /0	C /1

v ⁿ	+1	1-
y		

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A /0	C /1

v ⁿ	+1	1-
y		

yx	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A /0	C /1

yn	+1	/	7
J		/	

例1 化简如图所示的原始状态表。

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A/0	C /1

 $y^{n+1}/2$

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A/0	C /1

	. 4	,
v ⁿ		
V		
lacksquare		

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A/0	C /1

\mathbf{y}^{l}	$n \perp$.1	/_	
$\sqrt{1}$	ш		/'	7
. У			/ 4	
ullet				

В	AC			
C	AD	×		
D	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
E	√	X	AD	₿ C
	A	R	C	D

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A/0	C /1

 y^{n+1}/z

C AD X

X

E

AD BX

 $\mathbf{C} = \mathbf{D}$

对软作易的。

有搭围

(1) 利用隐含表寻找相容对: 个全一客架

(A,B),(A,C),(A,D),(A,E),(B,D),(C,D),(C,E)

yx	0	1
A	A/d	d/d
B	C /1	B /0
C	D /0	d/1
D	d/d	B/d
E	A /0	C /1

相 容		三	夏盖	级食			
类	A	В	C	D	E	X = 0	X = 1
ABD	A	В		D		AC	В
ACD	A		C	D		AD	В
ACE	A		C		E	AD	C

 y^{n+1}/z

覆盖闭合表

选择最小化:

(ABD) (ACE)

(2) 用合并图确定最大相容类:

(A,B,D),(A,C,D),(A,C,E)

B'

(3) 作出最小化状态表:

yX	0	1		
A	A/d	d/d		
B	C /1	B /0		
C	D /0	d /1		
D	d/d	B/d		
E	A/0	C /1		
$\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$				

相		1	夏盖		闭合		
容类	A	В	C	D	E	X = 0	X = 1
ABD	A	В		D		AC	В
ACD	A		C	D		AD	В
ACE	A		C		E	AD	C

覆盖闭合表

最小化状态表

yX	0	1
A'	B' /1	A'/0
B'		

(3) 作出最小化状态表:

yx	0	1			
A	A/d	d/d			
B	C /1	B /0			
C	D /0	d/1			
D	d/d	B/d			
E	A/0	C /1			
$\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$					

相容		1	夏盖		闭合		
~类(A	B	C	D	E	X = 0	X = 1
ABD	A	В		D		AC.	B
ACD	A		C	D		AD	B
ACE	A		C		E	AD	C

覆盖闭合表

最小化状态表

yX	0	1
A'	B' /1	A'/0
B'	A'/0	B'/1

yX	0	1
A	D/d	A/d
В	E /0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 $y^{n+1/2}$

例2 化简如图所示的原始状态表。

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d
		_ · ·

 $y^{n+1/2}$

yX	0	1	В	DE			
A	D/d	A/d		A D			
В	E/0	A/d	C	AB			1
C	D /0	B/1	D	AC CD			
D	C/d	C/d	E	CD			
E	C /1	B/d	שנ				
y^{n+1}/z				A	В	C	D

yX	0	1	В	DE			
A	D/d	A/d		4 D			
В	E/0	A/d	$\left \begin{array}{c} \mathbf{C} \end{array} \right $	AB			
C	D /0	B/1	D	AC CD			
D	C/d	C/d		AB			
E	C /1	B/d	E	CD			
v^{n+1}/z				A	B	C	D

ELL LICENSTANCES COLORS

例2 化简如图所示的原始状态表。

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C /1	B/d
	m. I	1 /

 $y^{n+1/2}$

yX	0	1
A	D/d	A/d
В	E /0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 $y^{n+1/2}$

B	DE			
C	AB	AB DE		
D	AC CD	AC CE		
E	AB CD			
	A	B	C	D

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC		
D	C/d	C/d		CD AB	CE		
E	C /1	B/d	<u> </u>	CD	X		
	y ⁿ⁺	$1/\mathbf{Z}$		A	В	C	D

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d
		4 1

 $y^{n+1/2}$

B	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×		
	A	B	C	D

CED ALL CED FEB ANNUAL

例2 化简如图所示的原始状态表。

yX	0	1
A	D/d	A/d
В	E /0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 $y^{n+1/2}$

ED L. CONTRACTOR

例2 化简如图所示的原始状态表。

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CF		
E	C /1	B/d	E	CD	X	X	BC
	v ⁿ⁺	1/ Z		A	В	C	D

如果2个d.见一认为是一样的 0与a. 认为不是一样的

的中部部也是

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	ВС
	A	B	C	D

D	AC CD AB	AC CE	BC	D.C.
E		X	×	BC
	A	B	C	D

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	ВС
	A	В	C	D

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	BC
	A	B	C	D

例2 化简如图所示的原始状态表。

	CD	X	×	BC
E	\mathbf{AB}			
D	CD	CE	BC	
	AC	AC	DC	
	AD	DE		
C	AB	AB		
В	DE			

例2 化简如图所示的原始状态表。

例2 化简如图所示的原始状态表。

(1) 利用隐含表找出相容对:

(A,B),(A,C),(A,D),(A,E),(B,C),(C,D),(D,E)

(2) 用合并图确定最大相容类:

(A,B,C),(A,C,D),(A,D,E) 相反

y	$\binom{0}{0}$	1
A	D/d	A/d
B	E/0	A/d
C	D/0	B /1
D	C/	C/d
E	C/1	B/d

 $y^{n+1/2}$

去A.1.3.

相容类	那愛殿 2个					がる場合		
类	A	В	J	A	E	X	$\dot{=} 0$	X = 1
ABC	A	В	C			A	DE	AB
ACD	漸		C	D			D	ABC
XDE				D	E	X	eti)	ABC
						X	T. /	

覆盖闭合表一

选择最小化:

(ABC) (ACD) (ADE)

1 1

A'

B'

C'

(2) 用合并图确定最大相容类:

(A,B,C),(A,C,D),(A,D,E)

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 y^{n+1}/Z

最小化状态表

yX	0	1
A'	C'/0	A'/1
B'		
C'		

 V^{n+1}/Z

选择最小化:

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 y^{n+1}/z

最小化状态表

yX	0	1
A'	C'/0	A'/1
B'	B'/0	A'/1
C'		

 v^{n+1}/z

选择最小化:

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 y^{n+1}/Z

最小化状态表

yX	0	1
A'	C'/0	A' /1
B'	B'/0	A'/1
C'	B'/1	A'/d

 V^{n+1}/Z

选择最小化:

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C /1	B/d

 y^{n+1}/z

选择最小化:

相容类		1	夏盖		闭合		
学	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
DE				D	E	C	BC

覆盖闭合表二

最小化状态表

yx	0	1
A'	B'/0	A'/1
B'		

 y^{n+1}/Z

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 y^{n+1}/z

选择最小化:

A' B'

相容类	覆盖				闭	合	
类	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
DE				D	E	C	BC

覆盖闭合表二

最小化状态表

yX	0	1
A'	B' /0	A' /1
B'	A'/1	A'/d

步强与 定 Vn+1/Z

· 总结状态化简 隔几年有

- 化简的目的
- 完全给定电路的状态化简
 - 寻求最大等效类——等效的概念(输出+次态)
 - 方法: 判断等效(用隐含表) 得到最大等效类(用等效的传递性)
- 不完全给定电路的状态化简
 - 寻求合适的相容类——相容的概念(输出+次态)
 - ·方法: 判断相容(用隐含表) 得到最大相容类(用合并图) 选择最小化设计的合适的相容类(用覆盖 闭合表)

作业

3.2.2.3 状态分配 State Assignment

状态分配就是给最小化状态表中的每个字母状态 指定一个二进制代码来表示,又称为状态编码。

状态分配将影响到所设计的同步时序电路的复杂 程度和使用器件的多少。

3.2.2.3.1 状态编码的一般问题

1. 状态个数和触发器个数的关系

设状态个数为n,触发器个数为K,应满足下列关系:

 $2^{K} \ge n > 2^{K-1}$ 或 $K = \lfloor \log_2 n \rfloor$

则n、K之间

式中: $[\log_2 n]$ 为不小于 $\log_2 n$ 的最小整数。

例某时序电路的状态表。

$S = X_1 X_2$	00	01	11	10
A	A	В	D	C
В	C	D	В	A
C	В	A	C	D
D	D	C	A	В

状态表

两种状态分配方案的比较:

y_2	0	1
0	A	C
1	В	D

y_2	0	1
0	A	В
1	D	C

影响影然的

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	01	11	10
B 01	10	11	01	00
D 11	11	10	00	01
C 10	01	00	10	11

作文学 1 n+1 y₂ n+1

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

y₁ n+1 y₂ n+1

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

 y_1y_2 x_1x_2

24 FM

0	0	1	1
1	1	0	0
1	1	0	0
0	0	1	1

 \mathbf{D}_1

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	0 1	1 1	1 0
B 01	1 0	1 1	0 1	00
D 11	1 1	10	00	0 1
C 10	01	00	10	1 1

 $y_1^{n+1} y_2^{n+1}$

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

 $y_1 \stackrel{n+1}{y_2} y_2 \stackrel{n+1}{y_1}$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_2 \mathbf{y}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

y_1y_2 x_1x_2

0	0	1	1
1	1	0	0
1	1	0	0
0	0	1	1

0	1	1	0
0	1	1	0
1	0	0	1
1	0	0	1

 $\mathbf{D_1}$ $\mathbf{D_2}$

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	01	11	1 0
B 01	1 0	11	01	00
D 11	11	1 0	00	01
C 10	01	00	1 0	1 1

 $y_1^{n+1} y_2^{n+1}$

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

 $y_1 \xrightarrow{n+1} y_2 \xrightarrow{n+1}$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_2 \mathbf{y}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

方案2的激励函数表达式

$$D_1 = x_1 x_2 y_1 + \overline{x}_1 x_2 \overline{y}_1 + x_1 \overline{x}_2 \overline{y}_1 + x_1 x_2 y_1$$
$$= x_1 \oplus x_2 \oplus y_1$$

 \mathbf{D}_1

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	1 0	0 1	1 1
D 01	01	1 1	00	1 0
C 11	1 0	00	1 1	01
B 10	11	01	10	00

 $y_1^{n+1}y_2^{n+1}$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_2 \mathbf{y}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

方案2的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}_1} \overline{\mathbf{x}_2} \mathbf{y}_1 + \overline{\mathbf{x}_1} \mathbf{x}_2 \overline{\mathbf{y}_1} + \mathbf{x}_1 \overline{\mathbf{x}_2} \overline{\mathbf{y}_1} + \mathbf{x}_1 \mathbf{x}_2 \mathbf{y}_1$$

$$= \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \mathbf{y}_1$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_1 \overline{\mathbf{y}}_1 \mathbf{y}_2 + \overline{\mathbf{x}}_1 \mathbf{y}_1 \overline{\mathbf{y}}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_1 \overline{\mathbf{y}}_2 + \mathbf{x}_1 \mathbf{y}_1 \mathbf{y}_2$$

$$= \mathbf{x}_1 \oplus \mathbf{y}_1 \oplus \mathbf{y}_2$$

y_1y_2 x_1x_2

0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

0	0	1	1
1	1	0	0
0	0	1	1
1	1	0	0

 \mathbf{D}_1

 D_2

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

 $y_1 \stackrel{n+1}{y_2} y_2 \stackrel{n+1}{y_1}$

状态分配方案总数 Total Number of State Assibnment

如果触发器个数为 K,则每一状态的二进制码的位数为K,K个变量有 2^K 种组合,用 2^K 种组合来对 n个状态进行分配时就有 N_A 种分配方案:

$$N_A = \frac{2^{K!}}{(2^K - n)!}$$

在上式中, 当 K = 3, n = 5, 则 $N_A = 3720$ (方案)

又如上例中,K=2,n=4, $N_A=24$ (方案)

具体如下页所示。

24种方	京取 0	$\frac{\mathbf{n} = 4}{0 \text{ pl } 1}$, K = 10 的什	2全部	部状态	分配	方案		
	方案	-1	2	3	4	5	6	7	8
第	A	00	10	01	11 10 株	00 10	01	10	11
<u> </u>	В	01	11	W60×	T 10 %	10	11	00	01
组	C	11	01	10	00	11	10	01	00
	D	10	00	11	01	01	00	11	10
	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
<u> </u>	В	11	01	10	00	11	10	01	00
组	C	01	11	00	10	10	11	00	01
	D	10	00	11	01	01	00	11	10
	方案	1	2	3	4	国态证	6	7	8
第	A	00	10	01	11	100°25'	01	10	11
=	В	10	00	11	01	01	00	11	10
组	C	01	11	00	10	10	11	00	01
	D	11	01	10	00	11	10	01	00
状 态	变 量	y ₁ y ₀	$\overline{y}_1 y_0$	$y_1\overline{y_0}$	$\overline{y}_1\overline{y}_0$	y ₀ y ₁	$y_0 \overline{y_1}$	$\overline{\mathbf{y}_0}\mathbf{y}_1$	$\overline{y_0}\overline{y_1}$

n=4,K=2全部状态分配方案

	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
<u> </u>	В	01	11	00		- <i>-</i>	4 74 2: 3	00	01
组	C	11	01	10		的方案 写组的		01	00
	D	10	00	11	农中身		刀糸3	11	10
	方案	1	2	3	$\mathbf{y_1}$	y ₀ 0	1	7	8
第	A	00	10	01	0	A	C	10	11
<u> </u>	В	11	01	10	1	В	D	01	00
组	C	01	11	00			D	00	01
	D	10	00	11		方案1		11	10
	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
Ξ	В	10	00	11	01	01	00	11	10
组	C	01	11	00	10	10	11	00	01
	D	11	01	10	00	11	10	01	00
状 态	变 量	$y_1 y_0$	$\overline{y}_1 y_0$	$y_1\overline{y_0}$	$\overline{y}_1\overline{y}_0$	y ₀ y ₁	$y_0 \overline{y_1}$	$\overline{y_0}$ y_1	$\overline{y_0}\overline{y_1}$

	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
<u> </u>	В	01	11	00	10	10	11	00	01
组	C	11	01	10	00	11	10	01	00
	D	10	00	11	01	01	00	11	10
	方案	1	2	3	上例中	的方案2	2 对应着	7	8
第	A	00	10	01	表中第	一组的	方案5	10	11
<u> </u>	В	11	01	10		0	1	01	00
组	C	01	11	00	$\mathbf{y_1}$	0	1	00	01
	D	10	00	11	0	A	В	11	10
	方案	1	2	3	1	D	\mathbf{C}	7	8
第	A	00	10	01		方案2		10	11
Ξ	В	10	00	11				11	10
组	C	01	11	00	10	10	11	00	01
	D	11	01	10	00	11	10	01	00
状 态	变 量	$y_1 y_0$	$\overline{y}_1 y_0$	$y_1 \overline{y_0}$	$\overline{y_1}\overline{y_0}$	y ₀ y ₁	$y_0 \overline{y_1}$	$\overline{y_0}$ y_1	$\overline{y_0}\overline{y_1}$

n=4,K=2全部状态分配方案

	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
<u> </u>	В	01			1. 04	工 上→ / →	i l a de o		:-1
组	C	11	}	头际。 案是完全	上, 24 <u></u>	种 <i>力条</i>	仅有 3	一种分型 4一个人-	
	D	10		系定元: 每一					
	方案	1		门的主				TEXIC	
第	A	00				, , ,		* 本相 * * * * * * * * * * * * *	,
<u> </u>	В	11		心里,	-1.2	开朱山。	、D 妆 な な オ	3	•
组	C	01		AB.		Arı		A	
	D	10							
	方案	1	B	D	C	,I) E	3	\mathcal{C}
第	A	00				R			
\equiv	В	10							
组	C	01	第	一组	5	 第二组		第三	
	D	11	U1	10	UU	11	10	V1	UU .
状 态	变 量	$\mathbf{y_1}\mathbf{y_0}$	$\overline{y}_1 y_0$	$y_1\overline{y_0}$	$\overline{y_1}\overline{y_0}$	y ₀ y ₁	$y_0 \overline{y_1}$	$\overline{y_0}$ y_1	$\overline{y_0}\overline{y_1}$

真正独立的状态分配方案总数 Unique State Assibnment

如果触发器个数为 K, 有 2^K 种二进制组合,用来对 n 个状态进行分配时就有 N 种独立的分配方案:

$$N = \frac{(2^{K} - 1)!}{(2^{K} - n)! K!}$$

状态分配数 Number of State Assignments

n	K	N_A	N	n	K	N_A	N
2	1	2	1	7	3	40320	840
3	2	24	3	8	3	40320	840
4	2	24	3	9	4	4.15×10^9	10810800
5	3	6720	74\3 140	10	4	2.91×10^{10}	75675600
6	3	20160	420				

3.2.2.3.2 相邻状态分配法 State Assignment Rules

目的: 寻找次佳状态分配 不占 太多分, 有思想

(不是最佳状态分配 Optimal State Assigment)

思路: 尽可能使次态和输出函数在卡诺图上"1"单元的分布为相邻,以便形成较大的卡诺图,从而得到最简的次态和输出函数表达式。 定列 第一起

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	01	11	1 0
B 01	10	11	01	00
D 11	11	10	00	01
C 10	01	00	10	11

 $y_1^{n+1}y_2^{n+1}$

次态的 1 靠拢, 控制函数的 1 就靠拢

y_1y_2	X ₁ X
	0

0	0	1	1
1	1	0	0
1	1	0	0
0	0	1	1

0	1	1	0
0	1	1	0
1	0	0	1
1	0	0	1

 \mathbf{D}_1

 $\mathbf{D_2}$

3.2.2.3.2 相邻状态分配法 State Assignment Rules

方法: 第一步

由如下三个主要规则找出状态之间的相邻关系:

规则 I: 在相同输入条件下,次态相同,现态相邻。

规则 II: 在相邻的输入条件下,同一现态,次态相邻。

规则III:输出完全相同,现态相邻。

第二步

给各状态分配二进制编码的步骤如下:

- 1、找出状态表中出现最多的次态 S_i^{n+1} 所对应的现态 S_i ,并令 S_i 的二进制编码全为 0。
- 2、按第一步已确定出的状态相邻关系给其它状态分配二进制编码。

相邻状态分配法的改善效果计算:

规则I: 在相同输入条件下, 次态相同, 现态相邻。

采用规则 I, 可以改善次态函数卡诺图上列向 1单元(或 0单元)的相邻情况。

在有 K个变量(触发器)的情况下,如果满足规则1一次,则可保证 K个次态函数卡诺图中各有一对1单元(或0单元)列向相邻。

若满足R次意味着可保证次态函数卡诺图上有K×R对

"1"或"0"相邻,记为:

$y_1y_2y_3$	00	01	11	10
A 000	001 /1	100 /0	010 /0	011 /1
D 001	001 /1	001 /0	000 /0	000 /1
C 011	010 /0	001 /0	000 /0	011 /1
B 010	011 /0	011 /1	001 /0	010 /0
E 100	011 /1	001 /1	010 /0	100 /0

规则Ⅱ: 在相邻的输入条件下,同一现态,次态相邻。

采用<mark>规则Ⅱ</mark>,可以改善次态函数卡诺图上**行向**1单元(或 0 单元)的相邻情况。

在有 K个变量(触发器)的情况下,如果满足规则 II 一次,则可保证 (K-1) 个次态函数卡诺图中各有一对 1 单元(或 0 单元)行向相邻。

若满足 m 次意味着可保证次态函数卡诺图上有(K -1)

×m 对 "1"或 "0"相邻,记为:

改善效果 II = (K -1)	$\times m$
一位不好可。	K

$y_1y_2y_3$	00	01	11	10
A 000	001 /1	0.070	010 /0	011 /1
D 001	001 /1	001 /0	000 /0	000 /1
C 011	010 /0	001 /0	000 /0	011 /1
B 010	011 /0	011 /1	001 /0	010 /0
E 100	011 /1	001 /1	010 /0	100 /0

规则III:输出完全相同,现态相邻。

采用规则 □ ,可以改善输出函数卡诺图上列向 1单元(或 0单元)的相邻情况。

在有p个输入组合、q个输出的情况下,如果满足规则 一次,则可保证q个输出函数卡诺图中各有p对 1 单元(或 0 单元)列向相邻。

若满足l次意味着可保证输出函数卡诺图上有 $(p \times q) \times l$ 对 "1"或 "0"相邻,记为:

改善效果 III = $(p \times q) \times l$

$y_1y_2y_3$	00	01	11	10
A 000	001 /1	100 / 0	010 / 0	011 / 1
D 001	001 / 1	001 / 0	000 /0	000 /1
C 011	010 /0	001 /0	000 /0	011 /1
B 010	011 /0	011 /1	001 /0	010 /0
E 100	011 /1	001 /1	010 /0	100 /0

满足状态 S_1 、 S_2 相邻要求的总改善效果为:

 E_{S1S2} = 改善效果 I + 改善效果 II + 改善效果 III = K×R + (K-1) × m + (p×q) × l

住最高用作

例1 完成如图所示状态表的状态分配。

状态表中有4个状态,则状态变量数 $K = 2 (y = y_1 y_0.)$;输入组合数p = 2;输出组合数q = 1。则状态对相邻要求的总改**治**望 善效果为: C.C **第** $E_{S1S2} = K \times R + (K-1) \times m + (p \times q) \times l.$ **这**

X	0	1
A	C /0	D /0
B	C /0	A /0
C	B /0	D /0
D	A /0	B /1

①根据规则I: $R_{AB} = 1$, $R_{AC} = 1$

②根据规则II: $m_{CD} = 1$, $m_{AC} = 1$

 $m_{\rm BD} = 1$, $m_{\rm AB} = 1$

③根据规则III: $l_{AB}=1$, $l_{AC}=1$ $l_{BC}=1$

例1 完成如图所示状态表的状态分配。

优先满足总改善效果大的状态对 的相邻要求:

y_0	0	1			
0	A	C			
1	В	D			
状态分配					

y	U	1
A	C /0	D /0
В	C /0	A /0
C	B /0	D /0
D	A /0	B/1
	y^{n+1}/Z	

y_1y_0 X	0	1
A 00	10/0	11/0
B 01	10/0	00/0
D 11	00/0	01/1
C 10	01/0	11/0

$$E_{AB} = 2R_{AB} + m_{AB} + 2l_{AB} = 5$$
 $E_{AC} = 2R_{AC} + m_{AC} + 2l_{AC} = 5$
 $E_{CD} = m_{CD} = 1$
 $E_{BD} = m_{BD} = 1$
 $E_{BC} = 2l_{BC} = 2$

二进制状态表 **y**₁ⁿ⁺¹ **y**₀ⁿ⁺¹ /**Z**

例2 完成如图所示状态表的状态分配。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E /0	A /0	A /0

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A/0	A/0

K=3, p=4, q=1 $\exists x_2x_1=11$ 时,次态均 为 A ,输出均为 0 ,则对规 则 I 、 III 而言,可以不参 加讨论。

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A/0
D	B/1	A/0	A /0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

当 x_2x_1 =11时,次态均为 A,输出均为 0,则对规则 I、 III 而言,可以不参加讨论。

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;

A:
$$m_{AC} = 2$$
; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;

C:
$$m_{CB} = 1$$
, $m_{AB} = 1$, $m_{AC} = 1$;

D:
$$m_{AB} = 1$$
, $m_{AD} = 1$, $m_{BD} = 1$;

E:
$$m_{AE}=2$$
;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A/0	A /0
D	B /1	A /0	A/0	D /1
E	E/0	E/0	A/0	A/0

 $\therefore m_{AC} = 4$

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{CB} = 1$, $m_{AB} = 1$, $m_{AC} = 1$;
D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A/0	A /0
D	B /1	A /0	A/0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{CB} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
∴ $m_{AC} = 4$, $m_{AB} = 2$

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B/1	A/0	A /0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{CB} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
∴ $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A/0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{CB} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
∴ $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B/1	A/0	A/0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{BC} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
∴ $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A/0
D	B /1	A/0	A /0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{BC} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
∴ $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A/0	D /1
E	E/0	E/0	A/0	A/0

$$K=3, p=4, q=1$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$; $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E/0	E/0	A /0	A/0

$$K=3, p=4, q=1$$

当 x_2x_1 =11时,次态均为 A,输出均为 0,则对规则 I、 III 而言,可以不参加讨论。

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
 $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$;
 $I_{AC} = 1$, $I_{AE} = 1$, $I_{CE} = 1$, $I_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A/0
D	B/1	A/0	A /0	D /1
E	E/0	E/0	A/0	A/0

$$\mathbf{E}_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$
$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$
$$= 7$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
 $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$;
 $L_{AC} = 1$, $L_{AE} = 1$, $L_{CE} = 1$, $L_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E/0	E/0	A /0	A/0

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
 $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$;
 $L_{AC} = 1$, $L_{AE} = 1$, $L_{CE} = 1$, $L_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E /0	E /0	A /0	A/0

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

$$= 4$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$; $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$; $l_{AC} = 1$, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C/0	B /0	A /0	A/0
D	B /1	A/0	A/0	D /1
E	E /0	E /0	A /0	A /0

$$\mathbf{E}_{AE} = 11$$

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

$$= 4$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
$$m_{AC} = 4$$
, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$;
$$l_{AC} = 1$$
, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A /0	A /0

$$E_{AE} = 11$$
, $E_{BC} = 4$

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

$$= 4$$

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$; $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$; $l_{AC} = 1$, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E /0	E /0	A /0	A /0

$$E_{AE} = 11, E_{BC} = 4$$

 $E_{BD} = 14$

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

$$= 4$$

总改善效果为:
$$\mathbb{E}_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$; $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$; $l_{AC} = 1$, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E/0	E/0	A /0	A /0

$$E_{AE} = 11$$
, $E_{BC} = 4$
 $E_{BD} = 14$, $E_{CE} = 7$

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

总改善效果为:
$$\mathbb{E}_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

= $3R + 2m + 4l$

则:
$$R_{AB} = 1$$
, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$; $m_{AC} = 4$, $m_{AB} = 2$, $m_{AD} = 2$, $m_{AE} = 2$, $m_{BC} = 2$, $m_{BD} = 2$; $-l_{AC} = 1$, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

= 4

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E/0	E/0	A /0	A/0

B –	– D
\mathbf{A} –	$-\mathbf{E}$
\mathbf{C}	

y_1	0	1
00	A	C
01	В	
11	D	
10	E	

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

$$= 4$$

$$E_{AE} = 11$$

$$E_{BC} = 4$$

$$E_{BD} = 14$$

$$E_{CE} = 7$$

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A/0	A/0

B — D	y_1	0	1
	00	A	C
A — E	01	В	
\mathbf{C}	11	D	
	10	E	
一日 元	146		

$y x_2 x_1$	00	01	11	10
A 000	100/0	100/0	000/0	000/0
B 001	001/1	100/0	000/0	011/1
D 011	001/1	000/0	000/0	011/1
E 010	010/0	010/0	000/0	000/0
C 100	100/0	001/0	000/0	000/0

$y x_2 x_1$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A/0	A /0
D	B /1	A/0	A/0	D /1
E	E/0	E/0	A/0	A /0

① 根据规则I: 状态相邻关系如绿线所示。

$y x_2 x_1$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A/0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A/0	A/0

① 根据规则I: 状态相邻关系如绿线所示。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A /0	D /1
E	E/0	E/0	A/0	A /0

① 根据规则I: 状态相邻关系如绿线所示。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A/0	A/0

- ① 根据规则I: 状态相邻关系如绿线所示。
- ② 根据规则II: 状态相邻关系如黄线所示。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D/1
C	C /0	B /0	A /0	A /0
D	B /1	A /0	A /0	D /1
E	E/0	E/0	A/0	A /0

- ① 根据规则I: 状态相邻关系如绿线所示。
- ② 根据规则II: 状态相邻关系如黄线所示。

$y x_2 x_1$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A/0	D /1
C	C/0	B /0	A /0	A /0
D	B/1	A/0	A/0	D/1
E	E/0	E /0	A /0	A/0

- ① 根据规则I: 状态相邻关系如绿线所示。
- ② 根据规则II: 状态相邻关系如黄线所示。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C / 0	C / 0	A / 0	A / 0
B	B /1	C /0	A/0	D /1
C	C / 0	B / 0	A/ 0	A / 0
D	B /1	A /0	A /0	D /1
E	E / 0	E / 0	A/ 0	A / 0

- ① 根据规则I: 状态相邻关系如绿线所示。
- ② 根据规则II: 状态相邻关系如黄线所示。
- ③ 根据规则III: 状态相邻关系如白线所示。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A /0
В	B / 1	C / 0	A/ 0	D / 1
C	C /0	B /0	A /0	A /0
D	B / 1	A/ 0	A/ 0	D / 1
E	E/0	E/0	A/0	A/0

- ① 根据规则I: 状态相邻关系如绿线所示。
- ② 根据规则II: 状态相邻关系如黄线所示。
- ③ 根据规则III: 状态相邻关系如白线所示。

$y x_2 x_1$	00	01	11	10
A	C /0	C /0	A /0	A /0
В	B /1	C /0	A /0	D /1
C	C /0	B /0	A /0	A /0
D	B /1	A/0	A/0	D /1
E	E/0	E/0	A /0	A /0

y_1	0	1
00	A	C
01	В	
11	D	
10	E	

不好的

- ① 根据规则I: 状态相邻关系如绿线所示。
- ②根据规则II: 状态相邻关系如黄线所示。
- ③ 根据规则III: 状态相邻关系如白线所示。

优先选择较密切的相邻关系,即两者之间连线较多的。 如<mark>粗线</mark>所示。

- · 总结关于状态分配 今尾 > 0.1至距台
 - -目的
 - 思路: 研究状态之间的相邻关系 化筒
 - -方法名称: 相邻状态分配法
 - 步骤:
 - 根据3个规则判断相邻状态
 - 计算相邻状态的改善效果
 - 根据改善效果的结果确定分配方案
 - 加权的精确计算 vs 简易的粗略估算
 - -注意本节重点强调这里的思想,3个规则,改善效果计算公式

3.2.2.4 触发器类型的选择 及激励函数和输出函数的确定

3.2.2.4.1 触发器类型的选择

3.2.2.4.2 激励函数和输出函数的确定

原始状态图、状态表

状态化简

最简状态表

状态分配

二进制状态表

选触发器类型

(选触发器激励表)

激励函数表达式

输出函数表达式

$y_1y_0 = x$	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表

1、用D触发器

y_1y_0 x	0	1
00	10/0	1 1/0
01	10/0	00/0
11	00/0	0 1/1
10	01/0	11/0

二进制状态表

Q	Q Q ⁿ⁺¹	
0	0	0
0	1	1
1	0	0
1	1	1

激励表

1、用D触发器

53KJ, K, J, K, Z

$$D_1 = \overline{x} \bullet \overline{y}_1 + x \bullet \overline{y}_0$$

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表

Q Qn+1		D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	
激励表			

1、用D触发器

$$D_1 = \overline{x} \bullet \overline{y}_1 + x \bullet \overline{y}_0$$

$$D_0 = x \bullet y_1 + x \bullet \overline{y}_0 + y_1 \bullet \overline{y}_0$$

y_1y_0 x	0	1
00	10/0	11/ <mark>0</mark>
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表

1、用D触发器

$$D_{1} = \overline{x} \cdot \overline{y}_{1} + x \cdot \overline{y}_{0}$$

$$D_{0} = x \cdot y_{1} + x \cdot \overline{y}_{0} + y_{1} \cdot \overline{y}_{0}$$

$$Z = x \cdot y_{1} \cdot y_{0}$$

2、用JK触发器

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
	01/0	1 /0

Q Qn+1		J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

二进制状态表

激励表

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表

				E 01	44/13/12	
Q	2 n+1	J				
0	0	0	d	不同	论.	011
0	1	1	d	/		011
1	0	d	1			
1	1	d	0		/ \	

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1	
00	1		00	d		00			00			
01	1		01	d		01			01			
11	d		11	1		11			11			
10	d		10	1		10			10			
	J	1		K	1		\mathbf{J}_0				K_0	

2、用其純炭器

y iyo x	0	1
00	10/0 /	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	1/0

Q	2 n+1	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

$$J_1 = \overline{x} + \overline{y}_0$$

$$K_1 = \overline{x} + y_0$$

二进制状态表

y_1y_0	6	/o 1	y_1y_0	A	1	y ₁ y ₀ X	0	1	y_1y_0 0	1
00	1	1	10/2 00	d	d	00			00	
01	1	0	01	d	d	01			01	
11	d	d	8 11	1	1	11			11	
10	d	d	l 10	1	0	10			10	
	J	1		K	1		J_0)		\mathbf{K}_{0}

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

Q	2 n+1	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

$$J_1 = \overline{x} + \overline{y}_0$$
$$K_1 = \overline{x} + y_0$$

二进制状态表

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	1	1	00	d	d	00	0		00	d	
01	1	0	01	d	d	01	d		01	1	
11	d	d	11	1	1	11	d		11	1	
10	d	d	10	1	0	10	1		10	d	
	J	. 1		K			J_0)]	K_0

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

Q Q ⁿ⁺¹	J	K
0 0	0	d
0 1	1	d
1 0	d	1
1 1	d	0

激励表

$\mathbf{J}_1 = \overline{\mathbf{x}} + \overline{\mathbf{y}}_0$	$J_0 = x + y_1$
$\mathbf{K}_1 = \overline{\mathbf{x}} + \mathbf{y}_0$	$K_0 = \overline{x} + \overline{y}$

 \mathbf{K}_{0}

二进制状态表 10

0	1
1	1
1	0
d	d
d	d
	1 1 d

(1
d	d
d	d
1	1
1	0

 K_1

y_1y_0	0/	1
00	0	1
01	d	d
11	d	d
10	1	1

 J_0

0/	1	y_1y_0	\ 0	1
0	1	00	d	d
d	d	01	1	1
d	d	11	1	0
1	1	10	d	d

At Qo mil

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	1	1	00	d	d	00	0	1	00	d	d	00	0	0
01	1	0	01	d	d	01	d	d	01	1	1	01	0	0
11	d	d	11	1	1	11	d	d	11	1	0	11	0	1
10	d	d	10	1	0	10	1	1	10	d	d	10	0	0
	J	1		K	1		\mathbf{J}_0]	K_0		7	

y_1y_0 x	0	1
_00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

Q	2 n+1	T
0	0	0
0	1	1
1	0	1
1	1	0

二进制状态表

激励表

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	1 1/0

Q	2n+1	T
0	0	0
0	1	1
1	0	1
1	1	0

$$T_1 = \overline{x \cdot y_1 \cdot \overline{y}_0 + x \cdot \overline{y}_1 \cdot y_0}$$

二进制状态表

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	1	1	00			00		
01	1	0	01			01		
11	1	1	11			11		
10	1	0	10			10		
	7			T	0		Z	

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

Q Qn+1		T
0	0	0
0	1	1
1	0	1
1	1	0

$$T_{1} = \overline{\mathbf{x} \cdot \mathbf{y}_{1} \cdot \overline{\mathbf{y}}_{0} + \mathbf{x} \cdot \overline{\mathbf{y}}_{1} \cdot \mathbf{y}_{0}}$$

$$T_{0} = \overline{\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}_{1} \cdot \overline{\mathbf{y}}_{0} + \mathbf{x} \cdot \mathbf{y}_{1} \cdot \mathbf{y}_{0}}$$

二进制状态表

激励表

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	1	1	00	0	1	00		
01	1	0	01	1	1	01		
11	1	1	11	1	0	11		
10	1	0	10	1	1	10		
	7	-1		T	0		Z	

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表

01
 10/0
 00/0

 11
 00/0
 01/1

 10
 01/0
 11/0

$$Z = x \cdot y_1 \cdot y_0$$

$$Z = x \cdot y_1 \cdot y_0$$

 $T_1 = x \cdot y_1 \cdot \overline{y}_0 + x \cdot \overline{y}_1 \cdot y_0$

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	1	1	00	0	1	00	0	0
01	1	0	01	1	1	01	0	0
11	1	1	11	1	0	11	0	1
10	1	0	10	1	1	10	0	0
	7	1		T	0		Z	

3.2.2.5 设计举例

例1 设计一个"1111"序列检测器。当连续收到四个(或四个以上)"1"后,电路输出 Z=1; 否则,输出 Z=0。

2、写出原始状态表 1、画出原始状态图 Moore (Solo) Mealy. X 1/0 0 S_0 $S_0/0$ $S_1/0$ S_0 0/0 1/0 0/0 $S_2/0$ S_1 $S_0/0$ 0/0 S_2 $S_0/0$ $S_3/0$ S_2 S_4 S_3 $S_0/0$ $S_4/1$ 1/0 1/1 S_4 $S_0/0$ $S_4/1$

隐含表 S_1, S_2 S_1 S_2 S_1,S_3 S_3 S_4 S_0 S_1 S_2 S_3

2、写出原始状态表

yx	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	$S_2/0$
S_2	$S_0/0$	S ₃ /0
S_3	$S_0/0$	S ₄ /1
S ₄	$S_0/0$	S ₄ /1

3	、隐含	表		
S_1	S_1, S_2			
S ₂	S_1,S_3	S_2,S_3		
S_3	×	×		
S_4	×	×		
	So	Sı	Sa	Sa

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	S ₂ /0
S_2	$S_0/0$	S ₃ /0
S_3	$S_0/0$	S ₄ /1
S_4	S ₀ /0	S ₄ /1

2、写出原始状态表

3、隐含表

 S_1 S_1, S_2

 S_2 S_1,S_3 S_2,S_3

 S_3 \times \times \times

 S_4 \times \times \times

 S_0 S_1

 S_2 S_3

2、写出原始状态表

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	S ₂ /0
S_2	$S_0/0$	S ₃ /0
S_3	$S_0/0$	S ₄ /1
S ₄	$S_0/0$	S ₄ /1

3	、隐含	表		2
S_1	S_1,S_2			
S_2	S_1,S_3	S_2,S_3		
S_3	×	×	×	
S_4	×	×	×	$\sqrt{}$
	S_0	S_1	S_2	S_3

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	$S_2/0$
S ₂	$S_0/0$	S ₃ /0
S_3	$S_0/0$	S ₄ /1
S_4	S ₀ /0	S ₄ /1

写出原始状态表

2、写出原始状态表 隐含表 S_1 $S_1 S_2$ S_2 S_1 , S_3 S_2 , S_3 X S_3 X S_4 S_0 S_3 S_1 最大等效类及命名 (S_3,S_4) B

X 0 S_0 $S_0/0$ $S_1/0$ $S_2/0$ $S_0/0$ S_1 S_2 $S_0/0$ $S_3/0$ $S_4/1$ S_3 $S_0/0$ $S_4/1$ S_4 $S_0/0$

yX	0	1
A	A /0	B /0
В	A/0	C /0
C	A/0	D /0
D	A /0	D /1

6、状态分配

A B

$$R_{\rm CD} = 1$$

C ---- D

yX	0	1
A	A /0	B /0
В	A /0	C /0
C	A /0	D /0
D	A /0	D /1

6、状态分配

$$R_{\text{CD}} = 1$$
 $m_{\text{AB}} = 1, m_{\text{AC}} = 1, m_{\text{AD}} = 2$

yX	0	1
A	A/0	B /0
В	A/0	C /0
C	A/0	D /0
D	A/0	D/1

北京逻辑电路

6、状态分配

次态中 D出现的较多, 故使AD相邻,D=10

$$E_{BC} = 2R_{BC} + m_{BC} + 2l_{BC} = 2$$

 $E_{CD} = 2R_{CD} + m_{CD} + 2l_{CD} = 2$

$$y_0^{y_1} \ 0 \ 1$$
0 A D
1 B C

$$R_{\rm CD} = 1$$

$$m_{AB} = 1, m_{AC} = 1, m_{AD} = 2$$

$$l_{AB} = 1$$
, $l_{AC} = 1$, $l_{BC} = 1$

$$E_{AB} = 2R_{AB} + m_{AB} + 2l_{AB} = 3$$

$$\mathbf{E}_{\mathrm{AC}} = 2R_{\mathrm{AC}} + m_{AC} + 2l_{\mathrm{AC}} = 3$$

$$E_{AD} = 2R_{AD} + m_{AD} + 2l_{AD} = 2$$

yX	0	1
A	A/0	B / 0
В	A/0	C /0
C	A/0	D /0
D	A /0	D /1

6、状态分配

y_1y_0	X	0	1
A	00	00/0	01/0
B	01	00/0	11/0
C	11	00/0	10/0
D	10	00/0	10/1

二进制状态表

y_0	0	1
0	A	D
1	В	C

y	0	1
A	A/0	B / 0
В	A/0	C /0
C	A/0	D /0
D	A/0	D /1

7、求激励函数和输出函数的表达式

y_1y_0	X	0	1
A	00	00/0	01/0
B	01	00/0	11/0
C	11	00/0	10/0
D	10	00/0	10/1

浸卮 T. D.Jk 互转

D Q QM T. 表

二进制状态表

Q	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

JKQQn1 T *

7、求激励函数和输出函数的表达式

y_1y_0	0	1
A 00	00/0	0 1/0
B 01	00/0	1 1/0
C 11	00/0	10/0
D 10	00/0	10/1

 $D_1 = x \bullet y_1 + x \bullet y_0$

二进制状态表

Q	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

$y_1y_0^X$	0	1
00	0	0
01	0	1
11	0	1
10	0	1
	\mathbf{D}_1	

、求激励函数和输出函数的表达式

y_1y_0	0	1
A 00	00/0	01/0
B 01	00/0	11/0
C 11	00/0	10/0
D 10	00/0	10/1

$$D_1 = \mathbf{x} \cdot \mathbf{y}_1 + \mathbf{x} \cdot \mathbf{y}_0$$
$$D_0 = \mathbf{x} \cdot \overline{\mathbf{y}}_1$$

二进制状态表

Q	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

激励表

野中超龍电路

y_1y_0	0	1	y_1y_0	0	1
00	0	0	00	0	1
01	0	1	01	0	1
11	0	1	11	0	0
10	0	1	10	0	0
	Γ)1		I	

Ì	×	
t	Į	
ļ		尹
١	Ţ	
ŧ	Ŀ	:1
L	E	3
٤		4
f	£	J
ſ		
۱	ı	9
Ĺ	3	7
Į	J.	

OF L

y_1y_0	X	0	1
A	00	00/0	01/0
В	01	00/0	11/0
C	11	00/0	10/0
D	10	00/0	10/1

$$D_1 = \mathbf{x} \cdot \mathbf{y}_1 + \mathbf{x} \cdot \mathbf{y}_0$$

$$D_0 = \mathbf{x} \cdot \overline{\mathbf{y}}_1$$

$$Z = \mathbf{x} \cdot \mathbf{y}_1 \cdot \overline{\mathbf{y}}_0$$

二进制状态表

"1111"序列检测器逻辑电路图

因为卡诺图中没有无关项d出现,因此不会出现挂起现象。

例2 用JK触发器设计一个六进制可逆计数器。当 x = 1 时,加1计数;当 x = 0 时,减1计数。

分别用二进制 000~101表示 六进制中的 6 个状态。

d

d

d

d

 K_2

$y_2y_1y_0$ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000

d

d

 $\mathbf{K_1}$

d

d

d

 $\mathbf{K_0}$

二进制状态表

Q Q^{n+1}	J K
0 0	0 d
0 1	1 d
1 0	d 1
1 1	d 0

例2 用JK触发器设计一个六进制 可逆计数器。当 x = 1 时, 加1计数; 当 x = 0 时, 减1

 y_1y_0

Do

11

个分别用二进

制中的6个状态

11 10

		4
	010	001
the district of the second of	011	010
性制 000~101表示六进	100	011
	1 01	100
y_1y_0 y_1y_0		二进制
J 1 J U		
		$Q Q^{n+1}$

 $y_2y_1y_0$

000

001

 J_0

10 xy_2 y_1y_0 d d d d d

d

d

d

|状态表

0

401

000

001

010

011

100

101

000

Q	Qn+1	J K
0	0	0 d
0	15	1) d
1	0	d 1
1	1	d 0

例2 用JK触发器设计一个六进制可逆计数器。当 x = 1 时,加1计数; 当 x = 0 时,减1计数。

分别用二进制 000~101表示六进制中的 6 个状态。

J

 K_2

y ₂ y ₁ y ₀ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000

y_1y_0	y_2			
J 1J U	1	d	d	0
	0	d	d	0
	0	d	d	1
	0	d	d	0

 y_1y_0

xy ₂					
y ₁ y ₀	0	1	0	0	
	0	0	0	1	
	d	d	d	d	
2	d	d	d	d	

$Q Q^{n+1}$	J K
0 0	0 d
0 1	1 d
1 0	d 1
1 1	d 0

二进制状态表

X	y ₂				
	d	1	0	d	
	d	0	1	d	
	d	d	d	d	
	d	d	d	d	

X	y ₂			
yo	d	d	d	d
	d	d	d	d
	0	d	d	1
	1	d	d	0

V 1V U			
	d	d	
$\mathbf{K_1}$	d	d	

 $\mathbf{K_0}$

 xy_2

	V	VaVa	0	1
		1000	(1) 01	001
		001	000	010
56	7	010	001	011
		011	010	100
		100	011	101
		101	100	000

 $\mathbf{K_0}$

VIVO	y ₂		K			y ₂			
00	1	d	d	0	y_1y_0	0	1	0	0
	0	d	d	0	X	0	0	0	1
	0	d	d	1	1	d	d	d	d
	0_	d	ď	0	J_2	d	d	d	d
	,	此	, l	12.	Je	Kz	•		

y₁**y**₀

 $\mathbf{K_2}$

d

d

d

0

d

d

d

d

	d	d	d	d
J_1	1	d	d	1
y ₁ y ₀	Y ₂			7
	d	d	d	d
	d 1	d 1	d 1	d 1

	177		
	Q Qn+1	J K	\
	0 0	<u>6 d</u>	
	ÚZI	1 d	
	1 0	81	
1	1 1	<u>d</u> 0	/
7			_
	激质	边	

口进制状态表

d	1	0	d
d	0	1	d
d	d	d	d
d	d	d	d

 y_1y_0

$$J_2 = \mathbf{x} \cdot \mathbf{y}_1 \cdot \mathbf{y}_0 + \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}_1 \cdot \overline{\mathbf{y}}_0$$

$$J_1 = \mathbf{x} \cdot \overline{\mathbf{y}}_2 \cdot \mathbf{y}_0 + \overline{\mathbf{x}} \cdot \mathbf{y}_2 \cdot \overline{\mathbf{y}}_0$$

 y_1y_0

 K_1

$$\mathbf{K}_2 = \mathbf{x} \cdot \mathbf{y}_0 + \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}_1 \cdot \overline{\mathbf{y}}_0$$

$$K_2 = x \cdot y_0 + \overline{x} \cdot \overline{y}_1 \cdot \overline{y}_0$$
 $K_1 = x \cdot \overline{y}_2 \cdot y_0 + \overline{x} \cdot \overline{y}_0$

$$J_0 = 1$$

$$K_0 = 1$$

共10个门。

_J Z			
1	1	1	1
d	d	d	d
d	d	d	d
1	d	d	1

 xy_2 y_1y_0

歌字逻辑电路

d	1	0	d
d	0	1	d
d	d	d	d
d	d	d	d

 XY_2 **y**₁**y**₀ d d d d d d K_2

d	d	d	d
1	1	1	1
1	d	d	1
d	d	d	d

 $\mathbf{K_0}$

 J_0

六进制可逆计数器逻辑图

$y_2y_1y_0$ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000
110		
111		

二进制状态表

y₁**y**₀

1 1 d d
4 4
uu
d d
d 1
0
d d
1 1
d 1
d d
u u

$y_2y_1y_0$ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000
110	1	1
111	1	0

二进制状态表

y₁**y**₀

y 2													
1	d	d	0		0	1	0	0		1	1	1	1
0	d	d	0		0	0	0	1		d	d	d	d
0	d	d	1		d	d	d	d		d	d	d	d
0	d	d	0		d	d	d	d		1	d	d	1
	$/\mathbf{J}_2$	2				\mathbf{J}_1	l				J_0)	
ď	1	0	d		d	d	d	d		d	d	d	d
d	0	1	d		d	d	d	d		1	1	1	1
d	d	d	d		0	d	d	1		1	d	d	1
d	d	d	d		1	d	d	0		d	d	d	d
K ₂						K					K		
	0 0 0 d d d	1 d 0 d 0 d 0 d 1 d 0 d d d d d	1 d d 0 d d 0 d d 0 d d 0 d d 0 1 0 d 0 1 d 0 d d d d d	1 d d 0 0 d d 1 0 d d 0 Jay d 1 0 d d 0 1 d d d d d d d d d d d d d	1 d d 0 0 d d 0 0 d d 1 0 d d 0	1 d d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 d d 0 0 1 0 d d 0 0 0 0 d d 1 d d 0 d d 0 d d d 1 0 d d d d d 0 1 d d d d d d d d d d d d d d d d d d d d d d d d d	1 d d 0 0 1 0 0 d d 0 0 0 0 0 d d d d d d 1 0 d d d d d 1 0 d d d d d d 0 1 d d d d d d d d d d d d d d d d d d d d d d d d	1 d d 0 0 1 0 0 0 d d 0 0 0 0 1 0 d d d d d d d 0 d d d d d d d 0 d d d d d d d 0 d d d d d d d 0 d d d d d d d 0 d d d d d d d 0 d d d d d d d d 0 d d d d d d d d d 0 d	1 d d 0 1 0 0 0 d d 0 0 0 1 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d d d d 0 d d	1 d d 0 1 0 0 1 d	1 d d 0 1 0 0 1	1 d d 0 1 0 0 1

$y_2y_1y_0$ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000
110	10	11
111	11	01

二进制状态表

 y_1y_0

X	y 2												
)	1	d	d	0		0	1	0	0	1	1	1	1
	0	d	d	0		0	0	0	1	d	d	d	d
	0	d	d	1		d	d	d	d	d	d	d	d
	0	d	d	0		d	d	d	d	1	d	d	1
	J_2						\mathbf{J}_1	1			\mathbf{J}_{0})	
	d	1	0	d		d	d	d	d	d	d	d	d
	d d	1	0	d		d d	d	d d	d d	d 1			d 1
											d	d	
	d	0	1	d		d	d	d	d	1	d 1	d 1	1

$y_2y_1y_0$ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000
110	101	111
111	110	010

二进制状态表

 y_1y_0

X y 2													
1	d	d	0		0	1	0	0		1	1	1	1
0	d	d	0		0	0	0	1		d	d	d	d
0	d	d	1		d	d	d	d		d	d	d	d
0	d	d	0		d	d	d	d		1	d	d	1
	\mathbf{J}_2	2				\mathbf{J}_1	l				J_0)	
d	1	0	d		d	d	d	d		d	d	d	d
d	0	1	d		ď	d	d	d		1	1	1	1
d	d	d	d		0	d	d	1		1	d	d	1
d	d	d	d		1	d	d	0		d	d	d	d
	K	-2				K	•1				– K	-0	
			1			1							
	000			001			01	0					
1													
	101			100	_	0	01	1)	1				
	1	_	1			1		_	$\int 1$				
	0/			1	1								

另一种激励函数表达 式及电路状态图

$$J_{2} = x \cdot y_{1} \cdot y_{0} + \overline{x} \cdot \overline{y}_{1} \cdot \overline{y}_{0}$$

$$K_{2} = x \cdot y_{0} + \overline{x} \cdot \overline{y}_{0}$$

$$J_{1} = x \cdot \overline{y}_{2} \cdot y_{0} + \overline{x} \cdot y_{2} \cdot \overline{y}_{0}$$

$$K_{1} = K_{2}$$

	4	
$J_0 = 1$	$K_0 = 1$	共9个门

$y_2y_1y_0$ x	0	1
000	101	001
001	000	010
010	001	011
011	010	100
100	011	101
101	100	000
110	001	111
111	110	000

y ₂			
1	d	d	0
0	d	d	0
0	d	d	1
0	d	d	0
	\mathbf{J}_2	2	
d	1	0	d
d	0	1	d

0

101

 y_1y_0

d	1	0	d
d	0	1	d
d	d	d	d
d	d	d	d
	K		

二进制状态表

	d	d	d	d	d	d	
	d	d	d	d	1	d	
		\mathbf{J}_1	ı			J_0)
	d	d	d	d	d	d	
	d	d	d	d	1	1	
	0	d	d	1	1	d	
	1	d	d	0	d	d	
		K 0	1			K	(
1	11			110			
,	1	1	1	0	1 .		
	000			001	(01	
1		0	0		0		

100

d

d

d

d

d

d

另一个六进制可逆计数器逻辑图

例3 设计一个 n 位二进制串行乘法器。

该乘法器有一个输入端 X 及一个输出端 Z ,输入 X 是由低位开始的二进制串行序列信号,输出 Z 是另一个串行序列(由低位开始输出),且 Z=5X。

设计一个n位二进制串行乘法器。

C

该乘法器有一个输入端 X 及一个输出端 Z ,输入 X 是由低位 开始的二进制串行序列信号,输出Z是另一个串行序列加低位开

 \mathbf{Z}_{i-2} \mathbf{Z}_{i-1} \mathbf{Z}_{i} \mathbf{Z}_{i+1} \mathbf{Z}_{i+2}

 $\mathbf{Z}_{\mathbf{n}}$ $\mathbf{Z}_{\mathbf{n+1}}$ $\mathbf{Z}_{\mathbf{n+2}}$ $\mathbf{Z}_{\mathbf{n+3}}$

5x 串行乘法器的设计分析

$$Z_i = X_i \oplus X_{i-2} \oplus C_{i-1}$$
 $C_i = X_i X_{i-2} + X_i C_{i-1} + X_{i-2} C_{i-1}$

其中: X;为t;时刻的输入信号,

D位全加

 X_{i-2} 为 t_i 时刻前两个节拍的输入信号,

Cil为ti时刻前一个节拍的加法进位信号。

所以,电路应保存 t_i 前的 C_{i-1} 、 X_{i-2} 、 X_{i-1} 的值,

分别设置三个触发器: H 、 J 、 V

则当前输出 Z 及进位 C 的表达式:

$$Z = X \oplus J \oplus H$$

 $C = X \cdot J + X \cdot H + J \cdot H$

则当前输出 Z 及进位 C 的表达式:

$$Z = X \oplus J \oplus H$$

 $C = X \cdot J + X \cdot H + J \cdot H$

对应 H、J、V 的组合,电路 应具有 8种状态组合以表示 t_i 时刻 前 C_{i-1} 、 X_{i-2} 、 X_{i-1} 这三个值的情况。 设状态命名为 S_{HJV} ,其中

H: 前一节拍产生的进位值 C_{i-1}

J: 前两节拍的输入值 X_{i-2}

V: 前一节拍的输入值 X_{i-1}

S _{HJV} X	0	1
S_{000}		
S_{001}		
S ₀₁₀		
S_{011}		
S ₁₀₀		
S ₁₀₁		
S ₁₁₀		
S ₁₁₁		

则当前输出 Z 及进位 C 的表达式:

$$Z = X \oplus J \oplus H$$

$$\mathbf{C} = \mathbf{X} \cdot \mathbf{J} + \mathbf{X} \cdot \mathbf{H} + \mathbf{J} \cdot \mathbf{H}$$

对应 H、J、V 的组合,电路 应具有 8种状态组合以表示 t_i 时刻 C_{i-1} 、 X_{i-2} 、 X_{i-1} 这三个值的情况。 设状态命名为 S_{HJV} ,其中

H: 前一节拍产生的进位值 C_{i-1}

J: 前两节拍的输入值 X_{i-2}

V: 前一节拍的输入值 X_{i-1}

$\bigcirc X_{i} \to X_{i-1}(V)$

S _{HJV} X	0	1
S_{000}	$S_{??0}$	S _{??1}
S_{001}	S _{??0}	S _{??1}
S_{010}	S _{??0}	S _{??1}
S_{011}	S _{??0}	S _{??1}
S_{100}	S _{??0}	S _{??1}
S ₁₀₁	S _{??0}	S _{??1}
S ₁₁₀	S _{??0}	S _{??1}
S ₁₁₁	S _{??0}	S _{??1}

则当前输出 Z 及进位 C 的表达式:

$$Z = X \oplus J \oplus H$$

$$\mathbf{C} = \mathbf{X} \cdot \mathbf{J} + \mathbf{X} \cdot \mathbf{H} + \mathbf{J} \cdot \mathbf{H}$$

对应 H、J、V 的组合,电路 应具有 8种状态组合以表示 t_i 时刻 C_{i-1} 、 X_{i-2} 、 X_{i-1} 这三个值的情况。 设状态命名为 S_{HV} ,其中

H: 前一节拍产生的进位值 C_{i-1}

J: 前两节拍的输入值 X_{i-2}

V: 前一节拍的输入值 X_{i-1}

S _{HJV} X	0	1
S ₀₀₀	S _{?00}	S _{?01}
S ₀₀₁	S _{?10}	S _{?11}
S ₀₁₀	S _{?00}	S _{?01}
S ₀₁₁	S _{?10}	S _{?11}
S ₁₀₀	S _{?00}	S _{?01}
S ₁₀₁	S _{?10}	S _{?11}
S ₁₁₀	S _{?00}	S _{?01}
S ₁₁₁	S _{?10}	S _{?11}

则当前输出 Z 及进位 C 的表达式:

$$Z = X \oplus J \oplus H$$

 $C = X \cdot J + X \cdot H + J \cdot H$

对应 H、J、V 的组合,电路 应具有 8种状态组合以表示 t_i 时刻 C_{i-1} 、 X_{i-2} 、 X_{i-1} 这三个值的情况。 设状态命名为 S_{HJV} ,其中

H: 前一节拍产生的进位值 C_{i-1}

J: 前两节拍的输入值 X_{i-2}

V: 前一节拍的输入值 X_{i-1}

$\textcircled{3} X \oplus J \oplus H \rightarrow \mathbf{Z}$

S _{HJV} X	0	1
S ₀₀₀	S _{?00} /0	S _{?01} /1
S ₀₀₁	S _{?10} /0	S _{?11} /1
S ₀₁₀	S _{?00} /1	S _{?01} /0
S ₀₁₁	S _{?10} /1	S _{?11} /0
S ₁₀₀	S _{?00} /1	S _{?01} /0
S ₁₀₁	S _{?10} /1	S _{?11} /0
S ₁₁₀	S _{?00} /0	S _{?01} /1
S ₁₁₁	S _{?10} /0	S _{?11} /1

则当前输出 Z 及进位 C 的表达式:

$$Z = X \oplus J \oplus H$$

$$\mathbf{C} = \mathbf{X} \cdot \mathbf{J} + \mathbf{X} \cdot \mathbf{H} + \mathbf{J} \cdot \mathbf{H}$$

对应 H、J、V 的组合,电路 应具有 8种状态组合以表示 t_i 时刻 C_{i-1} 、 X_{i-2} 、 X_{i-1} 这三个值的情况。 设状态命名为 S_{HJV} ,其中

H: 前一节拍产生的进位值 C_{i-1}

J: 前两节拍的输入值 X_{i-2}

V: 前一节拍的输入值 X_{i-1}

4 XJ+XH+JH

 $\rightarrow C(H)$

lacksquare		
SHJV	0	1
S ₀₀₀	S ₀₀₀ /0	S ₀₀₁ /1
S_{001}	S ₀₁₀ /0	S ₀₁₁ /1
S ₀₁₀	S ₀₀₀ /1	S ₁₀₁ /0
S ₀₁₁	$S_{010}/1$	S ₁₁₁ /0
S ₁₀₀	S ₀₀₀ /1	S ₁₀₁ /0
S ₁₀₁	S ₀₁₀ /1	S ₁₁₁ /0
S ₁₁₀	S ₁₀₀ /0	S ₁₀₁ /1
S ₁₁₁	S ₁₁₀ /0	S ₁₁₁ /1

状态化简

最小化状态表

yX	0	1
A	A /0	B /1
В	C /0	D /1
C	A/1	D /0
D	C /1	E/0
E	B/0	E/1

$$S^{n+1}/Z$$

 $(S_{000}) \longrightarrow A$

 $(S_{001}, S_{110}) \longrightarrow B$

 $(S_{010},S_{100}) \longrightarrow C$

 $(S_{011},S_{101}) \longrightarrow D$

 $(S_{111}) \longrightarrow I$

原始状态表

S _{HJV} X	0	1
S_{000}	S ₀₀₀ /0	S ₀₀₁ /1
S_{001}	S ₀₁₀ /0	S ₀₁₁ /1
S_{010}	$S_{000}/1$	S ₁₀₁ /0
S_{011}	$S_{010}/1$	S ₁₁₁ /0
S ₁₀₀	S ₀₀₀ /1	S ₁₀₁ /0
S ₁₀₁	S ₀₁₀ /1	S ₁₁₁ /0
S ₁₁₀	S ₁₀₀ /0	S ₁₀₁ /1
S ₁₁₁	S ₁₁₀ /0	S ₁₁₁ /1
	. 1	

 S_{HJV}^{n+1}/z

yX	0	1
A	A /0	B /1
В	C /0	D /1
C	A /1	D /0
D	C /1	E /0
E	B/0	E/1

yX	0	1
A	A/0	B /1
В	C /0	D/1
C	A/1	D /0
D	C /1	E /0
E	B /0	E/1

yX	0	1
A	A/0	B /1
В	C/ <mark>0</mark>	D /1
C	A/1	D / 0
D	C /1	E/0
E	B/ <mark>0</mark>	E/1

$$K=3, p=2, q=1$$

$$E = KR + (K-1)m + pql$$

$$= 3R + 2m + 2l$$

$$E_{AB} = 3R_{AB} + 2m_{AB} + 2l_{AB} = 4$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 2l_{AC} = 3$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 2l_{AD} = 2$$

$$E_{AE} = 3R_{AE} + 2m_{AE} + 2l_{AE} = 2$$

$$E_{BC} = 3R_{BC} + 2m_{BC} + 2l_{BC} = 3$$

$$E_{BD} = 3R_{BD} + 2m_{BD} + 2l_{BD} = 3$$

$$E_{BE} = 3R_{BE} + 2m_{BE} + 2l_{BE} = 4$$

$$E_{CD} = 3R_{CD} + 2m_{CD} + 2l_{CD} = 4$$

 $E_{CE} = 3R_{CE} + 2m_{CE} + 2l_{CE} = 2$

 $E_{DE} = 3R_{DE} + 2m_{DE} + 2l_{DE} = 3$

政字逻辑电路

状态分配 最小化状态表

yX	0	1
A	A/0	B /1
В	C /0	D /1
C	A /1	D /0
D	C /1	E/0
E	B/0	E/1

K=3, p=2, q=1
$$E = KR + (K-1)m + pql$$

$$= 3R + 2m + 2l$$

$$\begin{split} E_{AB} &= 3R_{AB} + 2m_{AB} + 2l_{AB} = 4 \\ E_{AC} &= 3R_{AC} + 2m_{AC} + 2l_{AC} = 3 \\ E_{AD} &= 3R_{AD} + 2m_{AD} + 2l_{AD} = 2 \\ E_{AE} &= 3R_{AE} + 2m_{AE} + 2l_{AE} = 2 \\ E_{BC} &= 3R_{BC} + 2m_{BC} + 2l_{BC} = 3 \\ E_{BD} &= 3R_{BD} + 2m_{BD} + 2l_{BD} = 3 \\ E_{BE} &= 3R_{BE} + 2m_{BE} + 2l_{BE} = 4 \\ E_{CD} &= 3R_{CD} + 2m_{CD} + 2l_{CD} = 4 \\ E_{CE} &= 3R_{CE} + 2m_{CE} + 2l_{CE} = 2 \\ E_{DE} &= 3R_{DE} + 2m_{DE} + 2l_{DE} = 3 \end{split}$$

yX	0	1
A	A /0	B /1
В	C /0	D /1
C	A/1	D /0
D	C /1	E/0
E	B /0	E/1

二进制状态表

$y_2 y_1 y_0$	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

0

00 C A 01 B 11 \mathbf{E} **10** D

 $y_2^{n+1}y_1^{n+1}y_0^{n+1}/z$

二进制状态表

$y_2 y_1 y_0$	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

 y_1y_0

y_1y_0	\mathbf{y}_2		
n+1/7		7	

y_1y_0	\mathbf{y}_2			
J 13 0				

X	y_2		
,			

二进制状态表

$y_2 y_1 y_0$	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

y ₀ x	y_2			
		d	d	
		d	d	
		d	d	

7

y_1y_0	y ₂			
		d	d	
		d	d	
		4	4	

	-J Z			
J				
		d	d	
		d	d	
		d	d	

 XV_2

 y_1y_0

X	y_2			
		d	d	
		d	d	
		d	d	

 D_2

 D_1

 D_0

二进制状态表

y ₂ y ₁ y ₀ X	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

y_1y_0	y_2			
J 1 J 0	1			
		d	d	
		d	d	
		d	d	

y ₂ ⁿ⁺	$^{1}\mathbf{y_{1}}^{n+}$	$^{-1}\mathbf{y_0}^{n+}$	1/ Z
-------------------------------------	---------------------------	--------------------------	-------------

7

1			
	d	d	
	d	d	
	1	1 d	1 d d

d

J 2			
0			
	d	d	
	d	d	
	d	d	

 XV_2

 y_1y_0

X	y_2			
U	0			
		d	d	
		d	d	
		d	d	

 \mathbf{D}_2

 D_1

 \mathbf{D}_0

二进制状态表

y ₂ y ₁ y ₀ X	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

y_1y_0	y_2			
J 1 J 0	1	0		
	0	d	d	
	0	d	d	
	1	d	d	

 $y_2^{n+1}y_1^{n+1}y_0^{n+1}/z$

7

		X	V
		、 ∠ ▶	J 2
T	T 7		

1	1		
0	d	d	
0	d	d	
0	d	d	

 y_1y_0

\				
	0	0		
	0	d	d	
	0	d	d	
	0	d	d	

XY

0	0		
0	d	d	
1	d	d	
0	d	d	

 D_2

 \mathbf{D}_1

 \mathbf{D}_0

二进制状态表

$y_2 y_1 y_0$	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

y_1y_0	y_2			
7130	1	0	1	0
	0	d	d	1
	0	d	d	1
	1	d	d	0

 $y_2^{n+1}y_1^{n+1}y_0^{n+1}/z$

7

		X	Va
V ₁	Vo		<i>J</i> 2

1	1	0	0
0	d	d	0
0	d	d	0
0	d	d	0

 y_1y_0

0	0	0	1
0	d	d	1
0	d	d	1
0	d	d	1

Xy

\				
	0	0	1	0
	0	d	d	0
	1	d	d	1
	0	d	d	1

 D_2

 \mathbf{D}_1

 D_0

二进制状态表

$y_2 y_1 y_0$	0	1
C 000	100/1	010/0
B 001	000/0	010/1
D 010	000/1	011/0
E 011	001/0	011/1
A 100	100/0	001/1

y_1y_0	y_2			
J1J0 \	1	0	1	0
	0	d	d	1
	0	d	d	1
	1	d	d	0
			_	

y_1y_0	y 2			
J 1J 0	1	1	0	0
	0	А	Ч	0

1	1	0	0
0	d	d	0
0	d	d	0
0	d	d	0

y_1y_0	y ₂			
J 1J 0	0	0	0	1
	0	d	d	1
	0	d	d	1
	0	А	А	1

y_1y_0 xy_2						
J 1J 0	0	0	1	0		
	0	d	d	0		
	1	d	d	1		
	0	d	d	1		

$$D_{2} = \overline{x} \cdot \overline{y}_{1} \cdot \overline{y}_{0}$$

$$D_{1} = x \cdot \overline{y}_{2}$$

$$D_{0} = x \cdot y_{1} + y_{1} \cdot y_{0} + x \cdot y_{2}$$

$$Z = x \cdot y_{2} + x \cdot y_{0} + \overline{x} \cdot \overline{y}_{2} \cdot \overline{y}_{0}$$

y_1y_0	y_2				
J 1 J U	1	0	1	0	
	0	d	d	1	
	0	d	d	1	
	1	d	d	0	
	Z				

y_1y_0	y_2			
J 1 J U	1	1	0	0
	0	d	d	0
	0	d	d	0
	0	d	d	0

y_1y_0					
J 1J 0	0	0	0	1	
	0	d	d	1	
	0	d	d	1	
	0	d	d	1	

关于挂起现象的讨论

在状态分配中,有三个状态变量组合未使用,它们是101,

110 及 111 ,因此需验证有无挂起现象。 从卡诺图可以看出:

① 对状态101时, $x = 0 \rightarrow$ 次态000/z=0;

 $x = 1 \rightarrow 次态001/z=1$ 。

②对状态110时, $x = 0 \rightarrow$ 次态000/z = 0;

 $x = 1 \rightarrow 次态001/z=1$ 。

③对状态111时, $x = 0 \rightarrow$ 次态001/z=0;

 $x = 1 \rightarrow$ 次态001/z=1。

y_1y_0	y_0					
J 15 0	1	1	0	0		
	0	d	d	0		
	0	d	d	0		
D_2	0	d	d	0		

1
1
1
1

y_0	y_2			
<i>J</i> 0	1	0	1	0
	0	d	d	1
	0	d	d	1
	1	d	d	0
Z				

关于挂起现象的讨论

在状态分配中,有三个状态变量组 110 及 111 ,因此需验证有无挂起现象 从卡诺图可以看出:

① 对状态101时, $x = 0 \rightarrow$ 次态000/z=0;

 $x = 1 \rightarrow$ 次态001/z = 1。

②对状态110时, $x = 0 \rightarrow$ 次态000/z = 0;

 $x = 1 \rightarrow 次态001/z=1$ 。

③对状态111时, $x = 0 \rightarrow$ 次态001/z = 0;

 $x = 1 \rightarrow$ 次态001/z = 1。

$y_2 y_1 y_0 x$	0	1
101	000/0	001/1
110	000/0	001/1
111	001/0	001/1

0	d	d	1			
0	d	d	1			
1	d	d	0			

y_1y_0	\mathbf{y}_2			
J 1J 0	1	1	0	0
	0	d	d	0
	0	d	d	0
D_2	0	d	d	0

关于挂起现象的讨论

无挂起现象:

① 对状态101时,

$$x = 0 \rightarrow$$
次态 000 /z=0;

$$x = 1 \rightarrow$$
 次态 $001/z = 1$ 。

②对状态110时,

$$x = 0 \rightarrow$$
次态 000 /z=0;

$$x = 1 \rightarrow$$
次态 001 /z=1 。

③对状态111时,

$$x = 0 \rightarrow$$
次态 001 /z=0;

$$x = 1 \rightarrow$$
次态 001 /z=1。

二进制状态表

$y_2 y_1 y_0 x$	0	1
000	100/1	010/0
001	000/0	010/1
010	000/1	011/0
011	001/0	011/1
100	100/0	001/1
101	000/0	001/1
110	000/0	001/1
111	001/0	001/1

$$y_2^{n+1}y_1^{n+1}y_0^{n+1}/Z$$

状态图

二进制状态表

$y_2 y_1 y_0 x$	0	1
000	100/1	010/0
001	000/0	010/1
010	000/1	011/0
011	001/0	011/1
100	100/0	001/1
101	000/0	001/1
110	000/0	001/1
111	001/0	001/1

$$y_2^{n+1}y_1^{n+1}y_0^{n+1}/Z$$

功能设计方法: 串行乘法器(Z=5X)

试设计一个串行乘法器,具体要求如下:

设计一个n位串行乘法器,该乘法器有一个输入端x、一个输出端z和四个控制端 $K_3K_2K_1K_0$ 。输入x为由低位开始的二进制串行信号,输出z为另一个串行信号序列(也由低位开始输出),且z=kx。其中k为控制端信号 $K_3K_2K_1K_0$ 所构成的二进制代码数值(0 $< k \le 15$)。作业5.15

同步时序电路的设计

步骤1 建立原始状态图(表)——只求逻辑正确

步骤2 状态化简

完全给定同步时序电路状态表的化简 不完全给定同步时序电路状态表的化简

化简方法、步骤,所用工具

步骤3 状态分配

状态编码的一般问题

相邻状态分配法

三个规则、改善效果

步骤4 触发器类型的选择及激励函数和输出函数的确定

D、JK、T触发器的激励表

作业

同步时序电路的设计

步骤1 建立原始状态图(表)——只求逻辑正确

步骤2 状态化简

完全给定同步时序电路状态表的化简 不完全给定同步时序电路状态表的化简

化简方法、步骤,所用工具

步骤3 状态分配

状态编码的一般问题

相邻状态分配法

三个规则、改善效果

步骤4 触发器类型的选择及激励函数和输出函数的确定

D、JK、T触发器的激励表

作业

同步时序电路的设计

步骤1 建立原始状态图(表)——只求逻辑正确

步骤2 状态化简

完全给定同步时序电路状态表的化简 不完全给定同步时序电路状态表的化简

化简方法、步骤,所用工具

步骤3 状态分配

状态编码的一般问题

相邻状态分配法

三个规则、改善效果

步骤4 触发器类型的选择及激励函数和输出函数的确定

D、JK、T触发器的激励表

作业