

Stadien graficul functiei f (a) f([-3,27)=f([-3,-17)vf((-1,2))vf(?24)= = [1,5]v(0,4]v?49=(0,5]

 $f'([0,2]) = [-\frac{7}{2}, \frac{5}{2}] \cup [\sqrt{2}, 2)$ $[2x+7=0 \Rightarrow x=\frac{7}{2}]$ $[2x+7=0 \Rightarrow x=\frac{7}{2}]$ $-x^{2}+4=2 \Rightarrow x^{2}=2 \Rightarrow x=\sqrt{2}$ $x \in (-1,2)$

(b) $f(0) = f(2) = 4 \implies f \text{ on } e \text{ mijechva}$ In $f = f((-\infty, -1)) \cup f(-1, 2) \cup f((2, \infty)) =$ $= (-\infty, 5) \cup (0, 4) \cup (4, \infty) = (-\infty, +\infty) = \mathbb{R} \text{ redect}$ f = ste mijechive

(°) O dregte faraleta en Ox toué graficul function of in cel mult 3 princte,

y = c ou $c \in (3,4]$. Deci pentru $y \in (3,4]$ multimea $f^{-1}(3yy)$ are exact 3 elemente. **Exercițiul 2:** Fie $D = \mathbb{R} \setminus \{0,1\}$ și G grupul funcțiilor bijective de la D în D (operația considerată este compunerea uzuală a funcțiilor).

- (a) Arătați că $f_1(x) = \frac{1}{x}$ și $f_2(x) = \frac{1}{1-x}$ sunt elemente ale grupului G și calculați-le ordinele. (1,25 puncte)
- (b) Arătați că subgrupul lui G generat de f_1 și f_2 are 6 elemente. (1,25 puncte)

Rezolvare:

a) Observăm că $\frac{1}{x} = 1 \iff x = 1$ și că $\frac{1}{x} \neq 0$ pentru orice $x \in D$, deci $f_1 : D \to D$ este bine definită. De asemenea, $\frac{1}{1-x} \neq 0$ pentru orice $x \in D$ și $\frac{1}{1-x} = 1 \iff x = 0$, deci și $f_2 : D \to D$ este bine definită. (0,25)

Injectivitatea lui f_1 : Fie $x, y \in D$ astfel încât $f_1(x) = f_1(y)$, deci $\frac{1}{x} = \frac{1}{y}$, de unde rezultă că x = y.

Surjectivitatea lui f_1 : Fie $y \in D$. Atunci $\frac{1}{y} \in D$ de asemenea și $f_1(\frac{1}{y}) = y$. (0,25)

Alternativ, putem observa că f_1 este propria sa inversă.

Injectivitatea lui f_2 : Fie $x, y \in D$ astfel încât $\frac{1}{1-x} = \frac{1}{1-y}$, de unde rezultă că x = y.

Surjectivitatea lui f_2 : Fie $y \in D$. Observăm în acest caz că $\frac{y-1}{y} \in D$ și $f_2(\frac{y-1}{y}) = y$. (0,25)

Prin calcul vedem că $f_1 \circ f_1(x) = x$, $f_2 \circ f_2(x) = \frac{x-1}{x}$, $f_2 \circ f_2 \circ f_2(x) = x$, deci f_1 are ordinul 2, iar f_2 ordinul 3. (0,5)

b) Notăm cu H subgrupul din cerință. Folosind calculele precedente putem vedea că $f_0(x)=x,\,f_3(x)=\frac{x-1}{x}$ aparțin de asemenea lui H. Mai avem:

$$f_4(x) = f_1 \circ f_2(x) = 1 - x$$

 $f_5(x) = f_1 \circ f_3(x) = \frac{x}{x - 1}$

(0,5)

Am găsit până acum exact 6 membri ai lui H. Vom face tabla operației pentru ei:

	f_0	f_1	f_2	f_3	f_4	f_5
	f_0 f_1 f_2					
f_1	f_1	f_0	f_4	f_5	f_2	f_3
f_2	f_2	f_5	f_3	f_0	f_1	f_4
f_3	f_3	f_4	f_0	f_2	f_5	f_1
f_4	f_4	f_3	f_5	f_1	f_0	f_2
f_5	$\left egin{array}{c} f_3 \\ f_4 \\ f_5 \end{array} \right $	f_2	f_1	f_4	f_3	f_0

de unde putem observa că aceste 6 elemente sunt într-adevăr toți membrii subgrupului $H.\ (0,75)$

Exercitiul 3: Se consideră permutarea:

- (a) Descompuneți permutarea σ în cicli disjuncți. (0,75 puncte)
- (b) Calculați σ^{2023} și ordinul permutării σ . (0,75 puncte)
- (c) Rezolvați ecuația $\tau^3 = \sigma$ în S_{15} . (1 punct)

Rezolvare:

- (a) $\sigma = (17315)(29)(4106814)(513)(1112)$ (0,75 puncte)
- (b) $\operatorname{ord}(\sigma) = \operatorname{cmmdc}(4, 2, 5, 2, 2) = 20 \ (0.25 \ \text{puncte})$

$$\sigma^{2023} = (\sigma^{20})^{101} \sigma^3 = \sigma^3 \ (0.25 \text{ puncte})$$

 $\sigma^3 = (1\ 15\ 3\ 7)(4\ 8\ 10\ 14\ 6)(5\ 13)(11\ 12)(2\ 9)\ \textcolor{red}{\text{(0,25 puncte)}}$

(c) Se face discuţie în funcţie de ciclii din descompunerea lui σ şi τ . Dacă în descompunerea lui τ în cicli disjuncţi apare un ciclu cu lungimea l=3k, unde $k \in \mathbb{N}^*$, atunci în $\tau^3 = \sigma$ apar 3 cicli de lungime k. Dacă în descompunerea lui τ în cicli disjuncţi apare un ciclu cu lungimea nedivizibilă cu 3, atunci în $\tau^3 = \sigma$ apare un ciclu de aceeaşi lungime. (0,25 puncte)

Cum în descompunerea lui σ apar 3 cicli de lungime 2, un ciclu de lungime 4 și unul de lungime 5, avem următoarele două cazuri:

- (i) În descompunerea lui τ apar: 3 cicli de lungime 2, un ciclu de lungime 4 și unul de lungime 5. În acest caz, avem o soluție unică, $\tau = (1\ 15\ 3\ 7)(4\ 6\ 14\ 10\ 8)(2\ 9)(5\ 13)(11\ 12)$. (0,25 puncte pentru rezolvarea completă)
- (ii) În descompunerea lui τ apar: un ciclu de lungime 6, un ciclu de lungime 4 și unul de lungime 5. În acest caz, avem 8 soluții distincte $\tau = (1\ 15\ 3\ 7)(4\ 6\ 14\ 10\ 8)c_i$, unde c_i sunt soluțiile ecuației $c^3 = (2\ 9)(5\ 13)(11\ 12)$. (0,5 puncte pentru rezolvarea completă)

Calcului ciclilor din descompunerea lui τ :

$$c^{3} = (1\ 7\ 3\ 15) \iff c = (1\ 15\ 3\ 7);$$

 $c^{3} = (4\ 10\ 6\ 8\ 14) \iff c = (4\ 6\ 14\ 10\ 8);$
 $c^{3} = (i\ j),\ i \neq j \iff c = (i\ j);$
 $c^{3} = (2\ 9)(5\ 13)(11\ 12).$ Avem 8 soluții:

- (1) $c_1 = (2 5 11 9 13 12)$
- (2) $c_2 = (2 \ 13 \ 11 \ 9 \ 5 \ 12)$
- (3) $c_3 = (2 5 12 9 13 11)$
- (4) $c_4 = (2\ 13\ 12\ 9\ 5\ 11)$
- (5) $c_5 = (2\ 11\ 5\ 9\ 12\ 13)$

- (6) $c_6 = (2\ 12\ 5\ 9\ 11\ 13)$
- (7) $c_7 = (2\ 11\ 13\ 9\ 12\ 5)$
- (8) $c_8 = (2\ 12\ 13\ 9\ 11\ 5)$

Exercițiul 4: Considerăm mulțimea $\mathbb{Z}[i\sqrt{2}] = \{a + bi\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

- (a) Arătați că $\mathbb{Z}[i\sqrt{2}]$ este un subinel în $(\mathbb{C},+,\cdot)$. (0,5 puncte)
- (b) Determinați mulțimea elementelor inversabile din inelul $\mathbb{Z}[i\sqrt{2}]$. (1 punct)
- (c) Fie $I=(1+i\sqrt{2})$ idealul generat de elementul $1+i\sqrt{2}$ în inelul $\mathbb{Z}[i\sqrt{2}]$. Dacă $a,b\in\mathbb{Z}$, arătați că $a+bi\sqrt{2}\in I\iff 3\mid a-b$ și demonstrați că are loc următorul izomorfism de inele:

$$\mathbb{Z}[i\sqrt{2}]/I \simeq \mathbb{Z}_3$$
 (1 punct)

Rezolvare:

(a) Observăm pentru început că $1 = 1 + 0 \cdot i\sqrt{2}$, deci $1 \in \mathbb{Z}[i\sqrt{2}]$. Fie $x, y \in \mathbb{Z}[i\sqrt{2}]$. Atunci $x = a + bi\sqrt{2}$ și $y = c + di\sqrt{2}$, cu $a, b, c, d \in \mathbb{Z}$.

$$x - y = (a - c) + (b - d)i\sqrt{2} \in \mathbb{Z}[i\sqrt{2}]$$
$$xy = (ac - 2bd) + (ad + bc)i\sqrt{2} \in \mathbb{Z}[i\sqrt{2}]$$

Prin urmare, $\mathbb{Z}[i\sqrt{2}]$ este un subinel în $(\mathbb{C}, +, \cdot)$.

(b) Fie $x = a + bi\sqrt{2} \in U(\mathbb{Z}[i\sqrt{2}])$. Atunci există $y = c + di\sqrt{2} \in \mathbb{Z}[i\sqrt{2}]$ astfel încât:

$$(a+bi\sqrt{2})(c+di\sqrt{2}) = 1$$

Trecând la modul obținem:

$$(a^2 + 2b^2)(c^2 + 2d^2) = 1$$

Cum $a,b,c,d\in\mathbb{Z}$, găsim b=0 și $a=\pm 1$. Remarcăm astfel că $U(\mathbb{Z}[i\sqrt{2}])=\{1,-1\}.$

(c) Demonstrăm implicația \Longrightarrow : Fie $a,b \in \mathbb{Z}$ astfel încât $a+bi\sqrt{2} \in I$. Atunci există $c,d \in \mathbb{Z}$ astfel încât $a+bi\sqrt{2}=(1+i\sqrt{2})(c+di\sqrt{2})$. Obținem

$$a = c - 2d$$
$$b = c + d$$

Prin urmare, a - b = -3d, deci $3 \mid a - b$.

Demonstrăm acum implicația \iff : Observăm pentru început că $3=(1+i\sqrt{2})(1-i\sqrt{2})$, deci $3\in I$. Așadar, $3s\in I$ pentru orice $s\in\mathbb{Z}$. Fie $a,b\in\mathbb{Z}$ astfel încât $3\mid a-b$. Atunci a=b+3r, cu $r\in\mathbb{Z}$ și deci

$$a + bi\sqrt{2} = 3r + b(1 + i\sqrt{2}) \in I$$

Considerăm $\varphi: \mathbb{Z}[i\sqrt{2}] \longrightarrow \mathbb{Z}_3$, definit prin $\varphi(a+bi\sqrt{2}) = \overline{a-b}$, $(\forall) \ a,b \in \mathbb{Z}$. Remarcăm că $\varphi(1) = \overline{1}$. Fie acum $a,b,c,d \in \mathbb{Z}$. Atunci

$$\varphi(a+bi\sqrt{2}+c+di\sqrt{2}) = \varphi(a+c+(b+d)i\sqrt{2}) =$$

$$= \overline{a+c-b-d} = \overline{a-b} + \overline{c-d} =$$

$$= \varphi(a+bi\sqrt{2}) + \varphi(c+di\sqrt{2})$$

și

$$\varphi((a+bi\sqrt{2})(c+di\sqrt{2})) = \varphi(ac-2bd+(ad+bc)i\sqrt{2}) =$$

$$= \overline{ac-2bd-ad-bc} = \overline{ac+bd-ad-bc} = \overline{(a-b)(c-d)} =$$

$$= \varphi(a+bi\sqrt{2}) \cdot \varphi(c+di\sqrt{2})$$

Așadar, φ este un morfism de inele. Este evident surjectiv. De asemenea, $\ker(\varphi) = I$ din cele de mai sus. Izomorfismul cerut se obține aplicând Teorema fundamentală de izomorfism pentru φ .

Barem Exercițiul 4:

(a) Verificarea faptului că $\mathbb{Z}[i\sqrt{2}]$ e subinel în \mathbb{C} :
$1 \in \mathbb{Z}[i\sqrt{2}]$
$x - y \in \mathbb{Z}[i\sqrt{2}], (\forall) \ x, y \in \mathbb{Z}[i\sqrt{2}] \dots 0, 2 \text{ pt}$
$xy \in \mathbb{Z}[i\sqrt{2}], (\forall) \ x, y \in \mathbb{Z}[i\sqrt{2}] \dots 0, 2 \text{ pt}$
(b) $U(\mathbb{Z}[i\sqrt{2}]) = \{1, -1\}$
(c) $a + bi\sqrt{2} \in I \implies 3 \mid a - b \dots 0,25 \text{ pt}$
$a + bi\sqrt{2} \in I \iff 3 \mid a - b \dots 0,25 \text{ pt}$
Se consideră $\varphi: \mathbb{Z}[i\sqrt{2}] \longrightarrow \mathbb{Z}_3, \ a + bi\sqrt{2} \longmapsto \overline{a-b}$
φ morfism surjectiv de inele, $\ker(\varphi) = I$, aplicarea T.F.I