Divertor detachment stability and dynamics

Joe Allen, JOA509

2nd July 2016

Abstract

Do I need an abstract? Well, if I do then it will go here, spread over both columns.

1 Introduction

2 Background

Brief overview of the importance of detachment for ITER and future tokamaks. - Current material limit - Divertor geometries (conventional, super-X, snow-flake) -

3 Experimental Design

SOL1D was installed on the remote server and some test simulations run to achieve a basic understanding of the set-up and outputs. The first aim was to ascertain an acceptable grid resolution to use, as a compromise is required concerning accuracy of results and time taken to run a simulation. SOL1D performs 1-dimensional simulations and the y-axis was chosen as the simulation axis.

See figure 1 for a nice graph.

Following SOL1D simulations, 2D simulations followed, with the initial goal being to compare results to the 1D case.

4 Results and Analysis

5 Conclusion

References

[1] Ben Dudson et al. ().

Figure 1: Comparison of $T_{upstream}$ and T_{target} at varying set $n_{e\ upstream}$ for different y-axis resolutions in SOL1D