URG04 使用说明

林靖宇 linjy02@hotmail.com 2019年9月27日

1. 概述

本模块用于控制二维激光扫描仪(URG-04LX-UG01)和读取扫描数据。

模块分为 C++版(URG04Kit_x64.dll)和 C#版(URG04Control.dll,需要 C++版模块URG04Kit x64.dll)。

2. C++编程

用 C++编程时注意设置项目属性,包括引用包含文件 URG04Kit.hpp 和库文件 URG04Kit x64.dll,设置系统路径指向 dll 文件。

首先应用程序可以调用静态函数 SearchURG04Device()搜索安装激光扫描仪的端口。 拔插设备后需要再次调用此函数更新端口列表。调用此函数后就可以调用静态函数 GetURG04Total()和 GetURG04Port()获取设备总数、端口号和设备名称。如果知道扫描仪 所在端口,可省去此步骤。

然后步骤如下:

- ①创建一个 URG04Device 对象。
- ②调用 StartScan()选择设备端口并启动激光扫描仪。调用用 Close()关闭启动的激光扫描仪。URG04Device 对象结束时自动关闭启动的激光扫描仪。
- (3)调用 ReadScanAngle()读取测距数据对应的扫描角数组。扫描角数组是不变的。
- (4)定时(周期 100ms)调用 ReadRange()读取测距数据及其时戳。
- ⑤如果需要,可以调用 SetDataLog()启动记录测距数据,log 文件为 urgRange.txt;可以调用静态函数 RangeToMap()将测距数据转换为二维地图。

URG04Device 的成员函数说明见表 1。

表 1 URG04Device 的 C++函数说明

函数 类别	函数原型	说明
设备	static int	功能: 查询连接的激光扫描仪。
查询	SearchURG04Device()	返回值:系统中激光扫描仪的数量。
函数		说明: 拔插设备后需要再次调用此函数。有可能误将其它
		USB 设备识别为激光扫描仪。

1	static show*	功能: 读取激光扫描仪的名称和串口号。调用
	static char*	
	GetURG04Port(int idx, int&	SearchURG04Device()后有效。
	ComNo)	输入: idx - 激光扫描仪的序号。
		输出: ComNo - 串口端口号 (即 COMx 中的 x)。无效串口
		的端口号为-1。
		返回值: 名称字符串指针。NULL 表示序号超过设备总数。
	static int GetURG04Total()	功能: 获得系统中激光扫描仪的总数。如果未调用过
		SearchURG04Device()则返回-1。无激光扫描仪则返回 0。
设备	int StartScan(int ComNo)	功能:启动指定串口上的 URG 激光扫描仪。成功后持续采
管理		集测距数据,每组数据采集时间为 100ms。用 ReadRange()
函数		可以随时读取测距数据。
		输入: ComNo - 激光扫描仪的串口号。
		输出: 无。
		返回值:1表示成功启动激光扫描仪。0表示非激光扫描
		仪。
	void Close()	功能:关闭 URG 激光扫描仪,停止采集测距数据。
	void close()	说明: URG04Device 对象结束时自动调用此函数。
数据	int ReadScanAngle(double*	功能:读取测距数据对应的扫描角(rad)及其数量
表 取 数 取	theta);	szTheta。如果 theta 为 NULL 则仅返回扫描角的数量
	tileta),	
函数		szTheta。
		输入: theta[] - 扫描角缓冲区,大小为 szTheta。
		输出: theta[] - 扫描角数组。
		返回值:扫描角的数量 szTheta (即测距数据的数量),等
		效于扫描的范围。
		说明:扫描仪将一周(360°)分为 1024 步,因此扫描角
		的单位为 360°/1024=0.3516°。扫描仪左右对称扫描。
		定义扫描仪正前方的扫描角为0,逆时针方向为正向。因
		此 szTheta=0 是最右边,szTheta/2-1 是正前方,szTheta-1
		是最左边。
	int ReadRange(double*	功能:读取测距数据(m)及其时戳和数量 szRange。如果
	range, int* timeStamp,	缓冲区为 NULL 则不返回相应数据。
	double* range0 = NULL, int*	输入: range[], range0[] - 测距数据缓冲区,大小为
	timeStamp0 = NULL)	szRange。timeStamp, timeStamp0 - 用于获取时戳。
		输出: range[], range0[] - 最新与上次的测距数据,每个扫
		描角对应一个距离值。*timeStamp, *timeStamp0 - 测距数
		据的时戳。
		返回值:测距数据的数量 szRange,等于扫描角的数量。
		说明:扫描仪将一周(360°)分为 1024 步,因此扫描角
		的单位为 360°/1024=0.3516°。扫描仪左右对称扫描。
		定义正前方的扫描角为 0, 逆时针方向为正向。因此
		szRange=0 是最右边,szRange/2 是正前方,szRange-1 是最
		左边。
设备	int IsActive()	功能:判断设备是否启动,即关联的串口对象是否打开。
信息		返回值:返回1表示已启动,0表示已关闭。
IH 100		~ — ш, ~ — муч. —/H./4/ ∨ муч. —/XI4/°

函数	int GetActiveURGComNo()	功能:获得启动的设备的串口端口号。返回-1表示未启动。
	void SetDataLog(int bLog);	功能:访问数据记录状态。log 文件为 urgRange.txt。
	int GetDataLog();	
辅助	static void	功能:将测距数据转换为二维地图。
函数	RangeToMap(unsigned char	输入: map[mapRow][mapCol] - 二维地图缓冲区。r_front -
	*map, int mapRow, int	地图中心到地图顶部正中的物理距离(m),用于尺度变
	mapCol, double r_front,	换。steering - 转向角(弧度),地图正上方为 0(北),逆
	double steering, double*	时针为正,顺时针为负。range[szRange] - 用 ReadRange()
	range, int szRange = -1,	读取的测距数据或经过处理的测距数据(m)。szRange=-1
	double stepAngle = -1)	表示用系统缺省值。stepAngle - 扫描角步长(弧度)。
		stepAngle=-1 表示用系统缺省值。
		输出: map - 二维地图,像素逐行排列,每个像素取值 0
		表示阻塞,OxFF 表示无遮挡。
		说明:扫描仪位于地图中心,r_front 对应半个地图
		(mapRow/2)的距离。调用 ReadScanAngle()可以获得
		szRange 值,并且相邻的扫描角之差就是 stepAngle。

3. C#编程

用 C#编程时需要引用 URG04Control.dll, 命名空间为 URG04Driver, 并需要 URG04Kit x64.dll。

URG04Control.dll 包含以下两个类,均可独立使用:

- 1) URG04SetupControl: URG04 激光扫描仪管理控件。
- 2) URG04Device: 实现 URG04 激光扫描仪的基本访问功能。用户需要设计控制界面。

3.1. URG04SetupControl

URG04SetupControl 提供控制界面和数据访问功能,控制界面见图 1。

图 1 URG04SetupControl 界面

URG04SetupControl 使用方法如下:

- ①在窗体中添加一个 URG04SetupControl 控件(例如 urgSetup1)。
- ②调用 urgSetup1.InitializeControl()初始化控件。
- ③用户在"设备端口"列表中选择设备,点击"启动"使设备开始工作,点击"关闭"停止设备。启动的设备才能输出测距数据。如果插入了新设备,点击"搜索端口"刷新设备列表。如果需要,选中"记录数据"启动记录测距数据,log 文件为 urgRange.txt。
- 4)读取数据:
- ▶ 数组 urgSetup1.theta 存储测距数据对应的扫描角。

- ▶ 定时(周期 100ms)调用 urgSetup1.urg04Device.ReadRange()读取测距数据及时戳(参阅 URG04Device)。
- ➤ 如果在主窗体中添加一个 Timer 控件 (例如 timer1) 定时读取测距数据,则应设置 urgSetup1.data_timer = timer1, 这样点击 "启动"和"关闭"也同时启动和停止定 时器 timer1。
- ⑤如果需要,调用 URG04Device.RangeToMap()将测距数据转换为二维地图,再调用 URG04Device.MapToBmp()转换为灰度图以便显示(参阅 URG04Device)。
- ⑥可以访问以下属性: urg04Device 是设备对象(参阅 URG04Device),theta 是扫描角数组,nRange 是扫描角数组长度,即一组测距数据长度,urg04_port 是安装激光扫描仪的端口号列表。

3.2. URG04Device

URG04Device 不包含用户界面,提供设备控制和数据访问的全部功能。

首先应用程序可以调用静态函数 URG04Device.SearchURG04Device()搜索安装激光扫描仪的端口。拔插设备后需要再次调用此函数更新端口列表。调用此函数后就可以调用静态函数 URG04Device.GetURG04Total()和 URG04Device.GetURG04Port()获取设备总数、端口号和设备名称。如果知道扫描仪所在端口,可省去此步骤。

然后步骤如下:

- ①创建一个 URG04Device 对象。
- ②用 StartScan()选择设备端口并启动激光扫描仪,用 Close()关闭激光扫描仪(对象结束时自动关闭)。属性 ScannerActive 判断设备是否启动。属性 ActiveURGPort 是当前启动的设备的端口号,属性 URGPort 是当前启动或刚关闭的设备的端口号。
- ③用 ReadScanAngle()/ReadScanAngleDeg()获取扫描角数组以及数组大小。扫描角数组是不变的。
- (4)定时(周期 100ms)调用 ReadRange()读取测距数据及其时戳。数据未进行处理。
- ⑤如果需要,设置属性 Log 为 ture 记录数据, log 文件为 urgRange.txt; 用 RangeToMap() 将测距数据转换为二维地图,再用 MapToBmp()转换为灰度图以便显示。

URG04Device 的成员函数说明见表 2。

表 2 URG04Device 的 C#函数说明

类别	方法 / 属性	说明
设备	static int	功能: 查询连接的激光扫描仪。
查询	SearchURG04Device()	返回值:系统中激光扫描仪的数量。
		说明: 拔插设备后需要再次调用此函数。有可能误将其它
		USB 设备识别为激光扫描仪。

	static string	功能: 读取激光扫描仪的名称和串口号。调用
	GetURG04Port(int idx, out int	SearchURG04Device()后有效。
	ComNo)	输入: idx - 激光扫描仪的序号。
	,	输出: ComNo - 串口端口号 (即 COMx 中的 x)。无效串口
		的端口号为- 1 。
		返回值:名称字符串指针。NULL表示序号超过设备总数。
	static int GetURG04Total()	功能:获得系统中激光扫描仪的总数。如果未调用过
	V	SearchURG04Device()则返回-1。无激光扫描仪则返回 0。
设备	int StartScan(int ComNo)	功能: 启动指定串口上的 URG 激光扫描仪。成功后持续采
管理		集测距数据,每组数据采集时间为 100ms。用 ReadRange()
		可以随时读取测距数据。
		输入: ComNo - 激光扫描仪的串口号。
		输出:无。
		返回值:1表示成功启动激光扫描仪。0表示非激光扫描
		仪。
	void Close()	功能:关闭 URG 激光扫描仪,停止采集测距数据。
		说明: URG04Device 对象结束时自动调用此函数。
数据	int ReadScanAngle (double[]	功能:读取测距数据对应的扫描角(rad/deg)及其数量
获取	theta)	szTheta。如果 theta 为 NULL 则仅返回扫描角的数量
	int ReadScanAngleDeg	szTheta。
	(double[] thetaDeg)	输出: theta - 扫描角数组。
		返回值: 扫描角的数量(即测距数据的数量),等效于扫
		描的范围。
		说明:扫描仪将一周(360°)分为1024步,因此扫描角
		的单位为 360°/1024=0.3516°。扫描仪左右对称扫描。
		定义扫描仪正前方的扫描角为0,逆时针方向为正向。因
		此 szTheta=0 是最右边,szTheta/2-1 是正前方,szTheta-1
		是最左边。
	int ReadRange(double[]	功能: 读取测距数据(m)及其时戳和数量 szRange。如果
	range, ref int timeStamp,	缓冲区为 NULL 则不返回相应数据。
	double[] range0, ref int	输出: range, range0 - 最新与上次的测距数据,每个扫描
	timeStamp0)	角对应一个距离值。timeStamp, timeStamp0 - 测距数据的
		时戳。
		返回值: 测距数据的数量,等于扫描角的数量。
		说明:扫描仪将一周(360°)分为 1024 步,因此扫描角
		的单位为 360°/1024=0.3516°。扫描仪左右对称扫描。
		定义正前方的扫描角为 0,逆时针方向为正向。因此
		szRange=0 是最右边,szRange/2 是正前方,szRange-1 是最
ルタ	had Cooman Astiris	左边。
设备信息	bool ScannerActive	功能:判断设备是否启动,即关联的串口对象是否打开。
信息	int ActiveURGPort	功能:启动的设备的端口号。-1 表示设备关闭。
	int URGPort	功能: 当前或之前启动的设备的端口号。-1 表示未曾启动。
	bool Log	功能:访问数据记录状态。log 文件为 urgRange.txt。

辅助	static void RangeToMap	功能:将测距数据转换为二维地图。
函数	(byte[,] map, double r_front,	输入:map -空二维地图数组,大小为 width*height。
	double steering, double[]	r_front - 地图中心到地图顶部正中的物理距离(m),用于
	range, double stepAngle)	尺度变换。steering - 转向角(弧度),地图正上方为 0
		(北),逆时针为正,顺时针为负。range - 用 ReadRange()
		读取的测距数据(m)。stepAngle - 扫描角步长(弧度)。,
		缺省值为 2*3.1415927/1024。
		输出: map - 填充的二维地图, 像素逐行排列, 每个像素
		取值 0 表示阻塞,0xFF 表示无遮挡。。
		说明:扫描仪位于地图中心,r_front 对应半个地图
		(mapRow/2)的距离。调用 ReadScanAngle()可以获得
		szRange 值,并且相邻的扫描角之差就是 stepAngle。
	static Bitmap MapToBmp	功能:将二维地图转换为 BMP 图像。
	(byte[,] map)	输入: map - 填充的二维地图, 像素逐行排列, 每个像素
		取值 0 表示阻塞,0xFF 表示无遮挡。
		返回值: 二维地图灰度图像。
	static double RoundedAngle	功能:角度规整为(-pi pi]。
	(double theta)	
	static double	功能: 角度规整为(-180.0 180.0]
	RoundedAngleDeg (double	
	theta)	