This week on the problem set you will get practice thinking about potential functions and calculating line integrals.

Homework: The homework will be due on Wednesday 27 May. It will consist of questions 3, 4 and 5 below. *Numbers in parentheses indicate the question has been taken from the textbook:

J. Rogawski, C. Adams, Calculus, Multivariable, 3rd Ed., W. H. Freeman & Company,

and refer to the section and question number in the textbook.

- 1. (Section 17.4) 2, 3, 5, 8, 9, 10, 13, 14, 17, 18, 27, 30, 34, 37, 40, 41*, 46* 48*. (questions are the same in previous versions)
- 2. (Section 17.5) 1, 6, 7, 12, 17, 18, 21, 22, 31*, 35. (questions are the same in previous versions)
- 3. Consider the line segment (x,0,0) where $x \in [-1,1]$ in \mathbb{R}^3 . Imagine this line segment moving up with its centre on the z-axis, rotating parallel to the xy-plane at constant speed. It completes one full revolution when it gets to $z = 2\pi$. What surface area is swept out by the rotating line segment? You may wish to use the fact that

$$\frac{d}{dt}\left(t\sqrt{1+t^2} + \sinh^{-1}(t)\right) = 2\sqrt{1+t^2}$$

and that \sinh^{-1} is an odd function and $\sinh(1) = \ln(1 + \sqrt{2})$.

- 4. The velocity vector field of a fluid is given by $\mathbf{F}(x,y,z) = \frac{\langle x,y,z\rangle}{x^2+y^2+z^2}$ measured in meters per second. What is the volume of fluid flowing each second through the open cylinder of radius 1 and height 1 centered along the z-axis, i.e. the cylinder $C = \{(x,y,z) : x^2+y^2=1,0z\leq 1\}$?
- 5. Let $\mathbf{F}\left\langle y(ye^{x+y^2}-1)+x^2,2y(1+y^2)e^{x+y^2}+x\right\rangle$ and let \mathcal{C} be the portion of $y=1-x^2$ oriented left to right.
 - (a) Parameterise C and write $\int_C \mathbf{F} \cdot d\mathbf{r}$ as a single integral. Do not try and evaluate.
 - (b) Now let \mathcal{L} be the straight line from (-1,0) to (1,0) oriented left to right and let \mathcal{D} be the region bounded by the x-axis and \mathcal{C} . Use Green's theorem to relate the integrals of \mathbf{F} over \mathcal{C} and \mathcal{L} to an integral over \mathcal{D} . Use this to evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.
 - (c) Path (almost)-independence for non-conservative vector fields. More generally, suppose C_1 and C_2 are two oriented curves with the same endpoints, and \mathbf{F} is a vector field that is defined everywhere on the region \mathcal{D} between C_1 and C_2 . If \mathbf{F} is conservative we know that $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 0$. If \mathbf{F} is not conservative, what is

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}?$$

*The questions marked with an asterisk are more difficult or are of a form that would not appear on an exam. Nonetheless they are worth thinking about as they often test understanding at a deeper conceptual level.