Carnegie Mellon University

Visual Inspection for Aircraft & Power Lines

Chang Gao & Anshuman Majumdar

Master of Science in Computer Vision, CMU

Summary

Motivation

Automate asset inspection with sensor data

Problem

Powerline inspection & aircraft defect detection

Solution

Semantic segmentation & object detection

First Semester: Powerline Inspection

Green = Power lines

Red = Trees

Black = Houses

Blue & Black = Ground

3D Semantic Segmentation Results

New task: Aircraft Defect Detection

Sample defect images with bounding boxes

Aircraft Defect Detection

- 1. Problem overview
- 2. Dataset study
- 3. Proposed approaches
- 4. Experimental results
- 5. Conclusion

Problem Overview

For airplane companies and airport managers

- Planes need to be inspected before taking off
- It takes a long time and many workers

Proposed solution

- Just let drones fly around and take pictures
- Perform defect detection on these pictures

We now have the dataset collected from pictures taken around planes

Dataset

Dataset

Key findings		

Approach: Object Detection

Why object detection?

- Bounding boxes already provided as ground-truth
- Direct approach to solve the problem

What type of object detection?

- Speed & Feasibility to train and evaluate -> one stage over two stage
- Variant ratio of bounding box sizes -> anchor-free models

Literature Review

Object detection roadgraph

CornerNet Architecture

Corner Pooling Module

Bounding Box Prediction Module (Top-left branch)

Qualitative Examples on MSCOCO

Improvements from CornerNet:

- Center pooling module: inherits the functionality of Rol pooling
- Cascade corner pooling: perceives internal information

CenterNet Architecture

Similar to CornerNet, a pair of detected corners and the similar embeddings are used to detect a potential bounding box. Then the detected center keypoints are used to determine the final bounding boxes.

University

Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." ICCV 2019.

Center pooling & cascade corner pooling module

Center Pooling

Corner Pooling

Cascade Corner Pooling

Quantitative Results on MSCOCO (Apr 2019)

		Average Precision
Two-stage Models	Mask R-CNN	39.8
	PANet (SOTA)	47.4
One-stage Models	RetinaNet800	39.1
	CornerNet	42.1
	CornerNet-Saccade	43.2
	CenterNet-104	47.0

Network Training & Evaluation

- We use CenterNet-52 as our network structure (52-layer Hourglass Network)
- Multi-scale training
- batch size of 4 on each of 2 Nyidia 1080 Ti GPUs
- 4K as training set and 1K as evaluation set

Training set (NMS threshold = 50%, proposal confidence = 30%):

- mAP = 92.2301%
- Foreground overall recall [1] = 97.7200%
- Foreground overall precision [2] = 71.7203%
- CenterNet-52 successfully converged on the training set

^[1] A ground-truth bounding box is considered recalled if it is predicted as any foreground class.

^[2] A predicted bounding box is considered correct if any foreground ground-truth bounding box overlaps it larger than a threshold (default is 50%).

^{*} We also define image level recall and precision in following slides, which denotes an image as positive if there is at least a bounding box provided or predicted.

Validation set (NMS threshold = 50%, proposal confidence = 30%):

- mAP = 18.1666%
- Foreground overall recall = 49.3571%
- Foreground overall precision = 49.3860%
- Severe overfitting effect observed!

Validation set (NMS threshold = 50%, proposal confidence = 30%):

- Class-wise confusion matrix
- Findings: P/R among each class is good, P/R against background is terrible

Why overfitting is so severe?

Ground-truth Predicted

Carnegie Mellon University

Why overfitting is so severe?

- 1. Ground-truth labels are actually ill-posed
 - Possible solution: Lower overlapping threshold
 - With overlapping threshold changed from 50% to 30%.
 - o mAP = 18.1666% -> 25.6855%
 - Foreground overall recall = 49.3571% -> 55.8153%
 - Foreground overall precision = 49.3860% -> 55.7909%

Why overfitting is so severe?

- 2. Too few training data (only ~4000 images)
 - It is really hard to train a supervised detection model given limited data
 - We apply anti-overfitting techniques, including
 - random rescaling, random cropping, color jittering
 - 2. gaussian bump of corner/center ground-truth
 - 3. class-balanced weights for losses [1]
 - 4. download similar images online

Download similar images online

- Search for images with captions "airplane close up", "aircraft zoom in", etc.
- We tried our best and downloaded ~1500 images, yet not many of them are in the same domain as the provided dataset, and some of them look completely different

Download similar images online

- Add around online 700 images to the training set, with no ground truth bounding boxes
- Add around online 700 images to the test set, with no ground truth bounding boxes

Why overfitting is so severe?

- 2. Apply more data augmentation techniques:
 - o mAP: 25.6855% -> 26.4279%
 - Adding online data is the main contributor
 - To consider the online data, we also evaluated image-level recall and precision
 - On the test set with both original and online images
 - Image-level recall = 96.5368%
 - Image-level precision = 95.0554%
 - Although the domain is likely different, we perform fairly good on detecting whether a region has defects or not

Why overfitting is so severe?

- 3. Model complexity is too high
 - Reduce channel sizes and layers
 - Apply dropouts
 - Result: None of these methods work, probably because given too few images, we do not have enough features to learn

More Qualitative Examples

Conclusion

- 1. On a new image domain with limited data, our detection model performs fare on detecting bounding boxes and performs well on detecting image-level defects
- 2. The provided data is ill-posed and is hard to learn itself, and we sometimes perform better than the labeler
- 3. In future, one could possibly use weakly-supervised methods to perform segmentation instead of bounding box detections to reduce the ambiguity in the labels

