Here is your lexicon:

walks :=	$\lambda x.walk'x:$	et
loves :=	$\lambda x \lambda y.love'xy:$	e(et)
reads :=	$\lambda x \lambda y.read'xy::$	e(et)
John :=	j'::	e
Mary :=	m'::	e
woman :=	$\lambda x.woman'x:$	et
book :=	$\lambda x.book'x:$	et
blue :=	$\lambda p \lambda x.blue' x \wedge p x ::$	et(et)
is :=	? ::	?
no:=	$\lambda p \lambda q. \neg (\exists x. px \land qx) ::$	et(ett)
a :=	$\lambda p \lambda q . \exists x. px \wedge qx ::$	et(ett)
every :=	$\lambda p\lambda q. orall x. px ightarrow qx::$	et(ett)
$QOBJ :=_{LEX}$? ::	?

Q 1.

The lexicon has only subject position interpretations for the quantifiers *a*, *every*, and *no*. You are required to write a lexical rule as a lambda term (see *QOBJ*) that applies to quantifier interpretations to turn them to object position interpretations. With this in place, you should be able to derive the menaing of sentences like:

(1) (John (reads (every book)))

Derive the meaning of:

Q 3.

The interpretation for the adjective *blue* is suitable for its attributive use only. By this lexicon, we assume that this is its basic interpretation. Propose an interpretation for the copula *is*, so that you can derive the meaning of sentences like the following:

(3) ((No book) (is blue)).

Please submit all your answers in Lambda Calculator.