LP14 : Etude thermodynamique d'un système constitué par un corps pur sous plusieurs phases (L2)

Prérequis

- Potentiels thermodynamiques
- fonctions caractéristiques
- lecture des diagrammes de phase

Idées directrices à faire passer

- l'étude des potentiels thermodynamique est centrale
- une transition de phase est associée à des discontinuités de grandeurs thermodynamiques
- notion de chaleur latente et ODG pour les transitions d'ordre 1

Commentaires du jury

- L'étude doit être fondée sur l'utilisation des potentiels thermodynamiques. Attention aux lecons de choses sur les transitions bizarres...
- Comprendre l'intérêt de l'enthalpie libre
- les potentiels thermodynamiques servent à prédire l'état d'équilibre mais aussi les conditions d'évolution du système
- des expériences simples et illustratives sont attendues

Bibliographie

- [1] Thermodynamique, Diu, Hermann (en particulier pour la partie III)
- [2] Thermodynamique, Choimet, Précis Bréal (toujours aussi clair)
- [3] Cap Prépa physique PCSI, Pearson (pour une définition)

manipulation : Avant le début de l'exposé, lancer la manipulation de surfusion de l'eau Introduction :

Manipulation : Isothermes de SF6 (à faire en direct). Illustre les motivations de la leçon (lors d'une compression à $T = C^{ste}$: compression gaz / équilibre liquide/gaz / compression liquide). On cherche alors à interpréter l'ensemble de ces phénomènes.

I Evolution et équilibre d'un corps pur sous deux phases

à partir de la page 48

1 Choix du potentiel thermodynamique [2]

- on reprend l'exemple d'intro (SF6)
- introduire variables internes et paramètres de contrôle du problème
- justifier le choix du potentiel thermodynamique adapté (G ici)

2 Condition d'évolution et d'équilibre [2]

- exprimer alors G (en supposant l'équilibre de P et T effectué)
- trouver le sens d'évolution, les conditions d'équilibre (tracer les courbes $G_{tot} = f(x_1)$
- interpréter en terme de compétition énergie/entropie (pas de réf.?)
- application à l'équilibre L/V. lien entre variation de P et de G autour de l'équilibre
- cas du corps pur sous 3 phases : unicité du couple (T_t, P_t)

3 Enthalpie de changement d'état [3]

- expérimentalement, on constate qu'il y a échange d'énergie avec l'univers pour modifier x_1
- on note $L_{1\rightarrow 2}$ cette différence
- donner la définition en h puis en s (facile car transition de phase est réversible)
- donner des ODG, c'est beaucoup et il faut le dire!!
- on peut donner l'intérêt de cette chaleur latente dans un cycle frigorifique par exemple. comparaison du débit de fluide nécessaire avec un sans transition de phase

II Interprétation des diagrammes de phase

1 Formule de Clapeyron [2]

- faire la démo
- application aux patins à glace, au ski, à l'expérience de regel... (pas de réf.) Dans tous ces cas, on montre que la surpression ne peut pas expliquer la fusion de la glace à par exemple −10°C. Cette interprétation est donc erronée

2 **Diagramme** (P, T) **[2]**

- définition du diagramme (on trace les états d'équilibre diphasique)
- Construction du diagramme à l'aide de la relation de Clapeyron (pente des droites en particulier)
- introduire le point triple et le point critique

3 Diagramme (P, V) [1]

- diagramme (P, V) complet avec les 3 phases
- redonner les points particuliers (critique et triple)
- citer le théorème des moments (la petite démonstration est dans le Diu clairement)

III Transition de phase du premier ordre : l'apport des potentiels thermodynamiques

Motivation : interpréter l'expérience de surfusion de l'eau lancée en début d'exposé

1 Choix et expression du potentiel thermodynamique [1]

- on a fixé (P,T), on utilise donc G
- la physique statistique, ou des lois phénoménologiques permettent de proposer une expression de G (avec selon les cas, une expression commune ou une expression différente pour chaque phase)
- dans tous les cas, le potentiel G représenté représente un système monophasé

2 Transition du premier ordre, coexistence de deux phases [1]

- on définit alors clairement une transition du premier ordre : existence d'un couple (P,T) pour lequel il existe deux minimums globaux de même valeur
- montrer alors qu'une coexistence entre les deux phases est possible

3 tracé d'une isotherme [1]

3.1 Evolution du potentiel avec P, états stables et métastables

- on montre l'évolution de G avec P
- on obtient alors la brisure de l'équilibre diphasé en modifiant la pression (mais il existe encore deux minimums : un global et un local)
- si on poursuit la variation de pression, il existe une pression p_{lim} pour laquelle le minimum local disparait. Il n'existe alors plus qu'un minimum global unique

- tant qu'il existe un minimum local, des branches métastables peuvent exister
- 3.2 Tracé de l'isotherme (avec branches de métastabilité)
 - faire alors un transparent (regarder dans la banque) mettant en lien les variations de G à température fixée avec
 P et le tracé d'une isotherme d'Andrews avec ses branches métastables

Conclusion

- retour sur les points clés (condition d'équilibre et d'évolution donnée par le potentiel thermodynamique adapté
- rappeler les ODG gigantesques des chaleurs latentes de transition de phase
- ouverture : existence de transition de phase d'ordre élevée (juste quelques mots sur la classification de Landau à partir de la continuité du paramètre d'ordre. réf. [1])

\mathbf{Q}/\mathbf{R}

- 1. 3 états de l'eau. En existe-il d'autres?
- 2. $\chi_T \to \infty$ et les fluctuations de densité sont-elles liées?
- 3. Sur un diagramme (P,T), où a-t-on $\chi_T \to \infty$?
- 4. La courbe de sublimation passe-elle par (0,0) dans le diagramme (P,T)?
- 5. Fournit-on un travail lors des changements de phase?
- 6. Démontrer le théorème des moments chimiques
- 7. Pourquoi la densité de la glace est-elle plus faible que celle de l'eau?
- 8. Pourquoi un changement d'état est-il un processus réversible?
- 9. Pourquoi le volume massique d'une phase condensé est-il inférieur à celui de la phase vapeur?
- 10. Qu'est-ce qui différencie le solide du liquide alors?
- 11. Que vaut la chaleur latente de vaporisation de l'eau?
- 12. Peut-on retrouver théoriquement les isothermes d'Andrews?
- 13. Exemples de transition du second ordre
- 14. Evaluer la température à l'intérieure d'un autocuiseur
- 15. Relation entre ΔH_{fus} , ΔH_{vap} et ΔH_{cond}