

Model Optimization and Tuning Phase Template

Date	11 July 2024
Team ID	SWTID1720096271
Project Title	Machine learning approach for Predicting the price of natural gas
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree Regressor	max_depth, min_samples_split, min_samples_leaf	# District the model model is Socialistic endagement() # Soften the Socialistic endagement prid # Soften the Socialistic endagement prid # Soften the Socialistic (1, 5, 1, 10); * Soften the Soften (1, 5, 1, 10); * Soften prid annual # Softe
SVR	c, epsilon, kernel	From Chinese respect to the continuency of the second continuency of the second continuency of the continuen

Random Forest	n_estimators, max_depth, min_samples_split,	Some dilaters, assemble support benderleverlappersone de stayler for melle (**Capitals**, benderleverlappersone*) de stayler in the lamourementes prid **Capitals**, benderleverlappersone*) **Capitals**, benderleverlappersone **
Regressor	min_samples_leaf	A distant poly common of the c

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric
Decision Tree Regressor	# Train and evaluate Decision Tree Regressor dt_model.fit(c_train) pt_pred_dt of t_model.fit(c_train) pt_pred_dt of t_model.pred[c_train) pt_pred_dt of t_model.pred[c_train] pt_pred_dt of t_model.pred[c_train] pt_pred_dt, squaredifalse) Baseline RMSE for Decision Tree: 0.0 20540231956418322	# Perform hyperprometer tuning and evolution # Decision from Repressor proving (1, 5, 7, 18), ***lat.maples.puls** (1, 5, 5, 18), ***lat.maples.puls** (1, 1, 2, 5) **pil.maples.puls** (1, 1, 2, 5) *
SVR	# Track and evaluate SVR svr_model.fit(x_train, y_train) svr_model.fit(x_train, y_train) svr_model.fit(x_train, y_train) baseline_svr = mean_squared_evror(y_test, y_pred_svr, squared:False) Baseline RMSE for SVR: 0.128735588 75775146	soc serious ((*c; [0.1, 1, 10, 100]) (*c; [0.1, 1, 10, 100]) (*c; [0.1, 1, 10, 100]) (*c; [0.1, 1, 10]) (*c; [0.1, 1, 10]) (*c; [0.1, 1, 10]) (*c; [0.1,
Random Forest Regressor	# Train and evaluate Random Forest Regressor rf_model.fric(t_train,train) r_med_rf = f_model.predict(t_test) baseline_rf = mean_squared_error(y_test,pred_rf, _squared=false) Baseline RMSE for Random Forest: 0. 01611641473655759	**Sundar Formet Repressor perma_grid_rf = {

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	I chose the Decision Tree Regressor for predicting natural gas prices because
	it handles non-linear relationships well, is easy to interpret, and requires
DesicionTreeRegres	minimal data preprocessing. Its ability to model complex patterns in data and
sor	provide clear visualizations makes it a suitable choice for this regression task.