

Trees

LillAnne Jackson

- Binary Tree implementation
- 2. Tree Traversal

The ADT Binary Tree: Basic Operations of the ADT Binary Tree

The operations available for a particular ADT binary tree depend on the type of binary tree being implemented

Traversals of a Binary Tree

- A traversal algorithm for a binary tree visits each node in the tree
- Recursive traversal algorithms
 - Preorder traversal
 - Inorder traversal
 - Postorder traversal
- Traversal is O(n)

© 2006 Pearson Addison-Wesley. All rights reserved II A-3

Traversal of a Binary Tree

Figure 11-10

Traversals of a binary tree: a) preorder; b) inorder; c) postorder

© 2006 Pearson Addison-Wesley. All rights reserved II A-4

Binary Search Tree

A binary tree that has the following properties for each node, n

- n's value is greater than all values in its left subtree T
- n's value is less than all values in its right subtree T_R
- Both T_L and T_R are binary search trees

BST Creation Example

Create a BST with the following Data:

1. 4, 2, 1, 3, 6, 5, 7, 8

2. 1, 2, 3, 4, 6, 5, 7, 8

The ADT Binary Search Tree

- Operations of the ADT binary search tree
 - Insert a new item into a binary search tree
 - Delete the item with a given search key from a binary search tree
 - Retrieve the item with a given search key from a binary search tree
 - Traverse the items in a binary search tree in preorder, inorder, or postorder

Algorithms for the Operations of the ADT Binary Search Tree

- Since the binary search tree is recursive in nature, it is natural to formulate recursive algorithms for its operations
- A search algorithm
 - search(bst, searchKey)
 - Searches the binary search tree bst for the item whose search key is searchKey

© 2006 Pearson Addison-Wesley. All rights reserved 11 B-8

Algorithms for the Operations of the ADT Binary Search Tree: Insertion

- insertItem(treeNode, newItem)
 - Inserts newItem into the binary search tree of which treeNode is the root

Figure 11-23a and 11-23b

a) Insertion into an empty tree; b) search terminates at a leaf

© 2006 Pearson Addison-Wesley. All rights reserved

11 B-9

Algorithms for the Operations of the ADT Binary Search Tree: Insertion

Figure 11-23c

c) insertion at a leaf

(c)

© 2006 Pearson Addison-Wesley. All rights reserved

Algorithms for the Operations of the ADT Binary Search Tree: Deletion

- Steps for deletion
 - Use the search algorithm to locate the item with the specified key
 - If the item is found, remove the item from the tree
- Three possible cases for node N containing the item to be deleted
 - N is a leaf
 - N has only one child
 - N has two children

© 2006 Pearson Addison-Wesley. All rights reserved 11 B-11

Algorithms for the Operations of the ADT Binary Search Tree: Deletion

- Strategies for deleting node N
 - If N is a leaf
 - Set the reference in N's parent to null
 - If N has only one child
 - Let N's parent adopt N's child
 - If N has two children
 - ${}^{\bullet}$ Locate another node M that is easier to remove from the tree than the node N
 - Copy the item that is in M to N
 - Remove the node M from the tree

Algorithms for the Operations of the ADT Binary Search Tree: Retrieval

- Retrieval operation can be implemented by refining the search algorithm
 - Return the item with the desired search key if it exists
 - Otherwise, return a null reference

© 2006 Pearson Addison-Wesley. All rights reserved 11 B-13

Algorithms for the Operations of the ADT Binary Search Tree: Traversal

- Traversals for a binary search tree are the same as the traversals for a binary tree
- Theorem II-I

The inorder traversal of a binary search tree T will visit its nodes in sorted search-key order

© 2006 Pearson Addison-Wesley. All rights reserved 11 B-14

The Efficiency of Binary Search Tree Operations

- The maximum number of comparisons for a retrieval, insertion, or deletion is the height of the tree
- The maximum and minimum heights of a binary search tree
 - n is the maximum height of a binary tree with n nodes

© 2006 Pearson Addison-Wesley. All rights reserved

Figure 11-30
A maximum-height binary tree with seven nodes

The Efficiency of Binary Search Tree Operations

Theorem 11-2

A full binary tree of height $h \ge 0$ has $2^h - 1$ nodes

Theorem 11-3

The maximum number of nodes that a binary tree of height h can have is $2^h - 1$

Figure 11-32
Counting the nodes in a full binary tree of height *h*

© 2006 Pearson Addison-Wesley. All rights reserved

The Efficiency of Binary Search Tree Operations

Theorem II-4

The minimum height of a binary tree with n nodes is $\lceil \log_2(n+1) \rceil$

 The height of a particular binary search tree depends on the order in which insertion and deletion operations are performed

Operation	Average case	Worst ca
Retrieval	O(log n)	O(n)
Insertion	O(log n)	O(n)
Deletion	O(log n)	O(n)
Traversal	O(n)	O(n)

Figure 11-34

The order of the retrieval, insertion, deletion, and traversal operations for the reference-based implementation of the ADT binary search tree

© 2006 Pearson Addison-Wesley. All rights reserved

II B-17