The suite contains the folder Paper_programfiles which contains the following three folders:

- (1) common.
- (2) Daubechies_periodic.
- (3) Daubechies_nonperiodic.

The Matlab files in the folder named 'common' are required for the execution of the Matlab functions present in both the folders 'Daubechies_nonperiodic' and 'Daubechies_periodic'. Add this folder in the directory of your Matlab using setpath.

Summary of the Matlab files in the folder 'common':

- (1) cascade.m: ϕ and ψ at dyadic rationals.
- (2) dstmat.m: Discrete scaling function transformation matrix.
- (3) dst.m: Discrete scaling function transformation.
- (4) idst.m: Inverse discrete scaling function transformation.
- (5) moments.m: Moments of scaling function $\phi(x)$.
- (6) tmoments.m: Moments of translates of scaling function.
- (7) conn.m: Connection coefficients.

The folder 'Daubechies_periodic' contains two folders:

- (1) Daub_per_Gal.
- (2) Dau_per_Collo.

Summary of the Matlab files in the folder Daub_per_Gal:

- (1) gal_difmatrix_periodic.m: Differentiation matrix.
- (2) gal_diff_periodic: Differentiation of the function.

Summary of the Matlab files in the folder Daub_per_Collo:

- (1) cascade_der.m: $\phi^{(d)}$ and $\psi^{(d)}$ at dyadic rationals.
- (2) collo_difmatrix_periodic.m: Differentiation matrix.
- (3) collo_diff_periodic.m: Differentiation of the function.

Summary of the Matlab files in the folder Daubechies_nonperiodic:

- (1) L_daubfilt.m: Left hand low pass filter coefficients.
- (2) R_daubfilt.m: Right hand low pass filter coefficients.
- (3) L_alpha.m and R_alpha.m: $\alpha_{m,i}^L$ and $\alpha_{m,i}^R$ respectively.
- (4) L_firstsum_alpha.m and R_firstsum_alpha.m: Called by L_alpha.m and R_alpha respectively.
- (5) L_phi.m: and R_phi.m: $\phi_k^L(x)$ and $\phi_k^R(x)$ for $x \neq 0$ respectively.
- (6) L_firstsum_phi.m and R_firstsum_phi.m: Called by L_phi.m and R_phi.m respectively.
- (7) L_phi_origin.m and R_phi_origin.m: $\phi_k^L(0)$, $\rho_{k,k}^L$ and $\phi_k^R(0)$, $\rho_{k,k}^L$ respectively.
- (8) L_ro.m and R_ro.m: $\rho_{k,p}^L$ and $\rho_{k,p}^R$.
- (9) L_partialsum_ro.m and R_partialsum_ro.m: Called by L_ro.m and R_ro.m.
- (10) gal_difmatrix_nonper.m: Differentiation projection matrix.
- (11) L_moments.m and R_moments.m: Moments of left hand side and right hand side boundary functions respectively.
- (12) LR_partial_mom: Called by L_moments.m and R_moments.m.
- (13) dstmat_nonper.m: Quadrature matrix.
- (14) gal_diff_nonper.m: Differentiation matrix.

There are two Matlab files 'test_J.m' and 'test_D.m' present in the directory Paper_programfiles\Daubechies_periodic\Daub_per_Gal

The function 'test_J.m' will ask for the period of the function, order of differentiation and the function to be differentiated and will return a graph showing the convergence with respect to J. Similarly 'test_D.m' will show the convergence with respect to D.