Содержание

1.	Статистическое определение вероятности	3
	Пространство элементарных исходов. Случайные события	3
	Вероятность	4
	Построение модели случайных явлений	5
	Свойства вероятности	6
	Аксиома непрерывности	7
	Условная вероятность	9
	Полная группа событий	10
	Серия испытаний Бернулли	13
	Наиболее вероятное число успехов	14
	Статистическое понятие вероятности	16
	Закон больших чисел Бернулли	16
	Схема испытаний и соответствующее распределение	17
	І. Схема Бернулли	17
	II. Схема до первого успешного испытания	17
	III. Схема испытаний с несколькими исходами	18
	IV. Урновая схема	19
	V. Схема Пуассона. Теорема Пуассона для схемы Бернулли	20
	Случайные величины	21
	Основные типы распределения	22
	Дискретная случайная величина	22
	Числовые характеристики дискретных случайных величин	22
	I. Математическое ожидание (среднее значение, полезность)	22
	II. Дисперсия	23
	III. Среднее квадратическое отклонение	23
	Свойства матожидания и дисперсии	24
	Другие числовые характеристики	25
	Стандартное дискретное распределение	26
	I. Распределение Бернулли	26
	II. Биномиальное распределение	27
	III. Геометрическое распределение	27
	IV. Распределение Пуассона	
	Задача о разорении игрока	
	Случайное блуждание на прямой	
	Функция распределения	

Свойства функции распределения	31				
Абсолютно непрерывное распределение	33				
Свойства плотности и функции распределения абсолютно непрерывного распре-					
деления	33				
Числовые характеристики	34				
Другие числовые характеристики	34				
Сингулярное распределение	35				

В теории вероятности обычно изучают случайные события

Обычно наука занимается закономерностями, но так как в случайных экспериментах нет закономерностей, теория вероятности занимается поисков закономерности в сериях случайных экспериментах

Итак, в XVI веке начали с экспериментов бросков монеты:

число бросков	число гербов	частота
4040	2048	0.5069
12000	6019	0.5016
24000	12012	0.5005

Как можно видеть, частота стремится к 0.5 - появляется статистическая закономерность

1. Статистическое определение вероятности

Пусть проводится n реальных экспериментов, при которых событие A появилось n_A раз Отношение $\frac{n_A}{n}$ называется частотой события A

Эксперименты показывают, что при увеличении числа n частота стабилизируется у некоторого числа, при котором мы понимаем статистическую вероятность: $P(A) \approx \frac{n_A}{n}$ при $n \to \infty$

Пространство элементарных исходов. Случайные события

Def. Пространством элементарных исходов Ω называется множество, содержащее все возможные исходы экспериментов, из которых при испытании происходит ровно один. Элементы этого множества называются элементарными исходами и обозначаются ω

Def. Случайными событиями называется подмножество $A \subset \Omega$. События A наступают, если произошел один из элементарных исходов из множества A

Ex. 1. Бросок монеты:
$$\Omega = \{\Gamma, P\}, A = \{\Gamma\}$$
 - выпал герб

$$Ex.\ 2.$$
 Игральная кость: $\Omega = \{1, 2, 3, 4, 5, 6\},\ A = \{$ выпало четное число $\} = \{2, 4, 6\}$

Ех. 3. Монета бросается дважды.

- а) Учитываем порядок: $\Omega = \{\Gamma\Gamma, PP, P\Gamma, \Gamma P\}$
- а) Не учитываем порядок: $\Omega = \{\Gamma\Gamma, \operatorname{PP}, \Gamma\operatorname{P}\}$

$$Ex.\ 4.\$$
Кубик дважды: $\Omega = \{\langle i,j\rangle \mid 1 \leq i,j \leq 6\}$ $A = \{$ разность $\vdots \ 3\} = \{\langle 1,4\rangle; \langle 4,1\rangle; \langle 2,5\rangle; \langle 5,2\rangle; \dots \}$

 $\mathit{Ex.}\ 5.\$ Монета бросается до первого герба: $\Omega = \{\Gamma, \mathsf{P}\Gamma, \mathsf{P}\mathsf{P}\Gamma, \dots\}$ - счетно-бесконечное множество

Ex. 6. Монета бросается на плоскость: $\Omega = \{\langle x,y \rangle \mid x,y \in \mathbb{R}, \langle x,y \rangle$ - центр монеты $\}$ - несчетное число исходов

Операции над событиями

 Ω - достоверные события (наступают всегда)

Ø - невозможное события (никогда не наступает, так как не содержит ни одного элем. исхода) Введем операции:

- **Def. 1.** Суммой A + B называется событие, состоящее в том, что произошло события A или событие B (хотя бы одно из них)
- **Def. 2.** Произведением $A \cdot B$ называется событие, состоящее в том, что произошло событие A и событие B (оба из них)

 $Nota.\ A_1+A_2+\cdots+A_n+\ldots$ - произошло хотя бы одно из этих событий

 $A_1 \cdot A_2 \cdot \cdots \cdot A_n \cdot \ldots$ - произошли все эти события

Def. 3. Противоположным A событием называется событие \overline{A} , состоящее в том, что событие A не произошло

Nota. $\overline{A} = A$

- **Def. 4.** Дополнение (разность) $A \setminus B$ называется событие $A \cdot \overline{B}$
- **Def. 5.** События A и B называются несовместными, если их произведение пустое множество (не могут произойти одновременно при одной эксперименте)
- **Def. 6.** События A влечет события B, если $A \subset B$ (если наступает A, то наступит B)

Вероятность

Мы хотим присвоить какую-то числовую характеристику к каждому событию, отражающее его частоту наступления: $0 \le P(A) \le 1$ - вероятность наступления события A

Классическое определение вероятности

Пусть пространство случайных событий Ω содержит конечное число равновозможных исходов, тогда применимо классическое определение вероятности

Def. $P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$, где n - число всех возможных исходов, m - число благоприятных исходов

В частности, если $\Omega = n$ и A_i - элем. исх., то $P(A_i) = \frac{1}{n}$ Свойства:

Своиства.

 $1) \ 0 \le P(A) \le 1$

- 2) P(A) = 1 (m = n)
- 3) $P(\emptyset) = 0$ (m = 0)
- 4) Если события A и B несовместны, то P(A+B) = P(A) + P(B)

Геометрическое определение вероятности (граф де Бюффон)

Пусть $\Omega \subset \mathbb{R}^n$ - замкнутая ограниченная область

 $\mu(\Omega)$ - мера Ω в \mathbb{R}^n (например, длина отрезка, площадь области на плоскости, объем тела в пространстве)

В эту область наугад бросаем точку. «Наугад» означает, что вероятность попадания в A зависит только от меры A и не зависит от ее расположения

В этом случае применимо геометрическое определение вероятности

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

 $Ex.\ 1.$ Монета диаметром в 6 см бросается на пол, вымощенной квадратной плиткой со стороной 20 см, какова вероятность, что монета окажется целиком внутри одной плитки

$$\mu(\Omega) = 20^2 = 400$$

$$\mu(A) = (20 - 3 - 3)^2 = 196$$

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{196}{400} = 0.49$$

 $Ex.\ 2.\$ Задача Бюффона об игле: пусть пол вымощен ламинатом, 2l - ширина доски, на пол бросается игла длины, равной ширине доски, найти вероятность того, что игла пересечет стык доски

Определим положение иглы координатами центра и углом, между иглой и стыком доски, причем можно считать, что эти величины независимы

 $\exists x \in [0;1]$ - расстояние от центра до ближайшего края, $\varphi \in [0;\pi]$ - угол

$$\Omega = [0;1] \times [0;\pi]$$

Событие A (пересечет стык) наступает, если $x \leq l \sin \varphi$

$$P(A) = \frac{S(A)}{S(\Omega)}$$

$$S(\Omega) = \pi \hat{l}$$

$$S(A) = \int_{0}^{\pi} l \sin \varphi d\varphi = -l \cos \varphi \Big|_{0}^{\pi} = -l(-1 - 1) = 2l$$

$$P(A) = \frac{2l}{\pi l} = \frac{2}{\pi}$$

Построение модели случайных явлений

1. Задаем пространство элементарных исходов Ω

- 2. **Def.** Система \mathcal{F} подмножеств Ω называется σ -алгеброй событий, если:
 - 1) $\Omega \in \mathcal{F}$;
 - 2) $A \in \mathcal{F} \Longrightarrow \overline{A} \in \mathcal{F}$;
 - 3) $A_1, A_2, \dots, A_n, \dots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Свойства:

(a) $\emptyset \in \mathcal{F}$, tak kak $\Omega \in \mathcal{F} \Longrightarrow \overline{\Omega} = \emptyset \in \mathcal{F}$

(b)
$$A_1, A_2, \dots \in \mathcal{F} \Longrightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$$

$$\square \quad A_1, A_2, \dots \in \mathcal{F} \Longrightarrow \overline{A}_1, \overline{A}_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} \overline{A}_i \in \mathcal{F} \Longrightarrow \overline{\bigcup_{i=1}^{\infty} \overline{A}_i} = \bigcap_{i=1}^{\infty} A_i \in \mathcal{F} \quad \square$$

(c) $A, B \in \mathcal{F} \Longrightarrow A \setminus B \in \mathcal{F}$

$$\Box \quad A, B \in \mathcal{F} \Longrightarrow A, \overline{B} \in \mathcal{F} \Longrightarrow A \setminus B = A \cdot \overline{B} \in \mathcal{F} \quad \Box$$

Ex. 1. $\mathcal{F} = \{\emptyset, \Omega\}$

Ex. 2. $\mathcal{F} = \{\emptyset, \Omega, A, \overline{A}\}$

- $Ex.\ 3.\ \mathbf{Def.}\$ Борелевская σ -алгебра $\mathcal{B}(\mathbb{R})$ минимальная σ -алгебра, содержащая все возможные интервалы на прямой
- 3. **Def.** $\supset \Omega$ пространство элементарных исходов, \mathcal{F} его σ -алгебра событий. *Вероятностью* на (Ω, \mathcal{F}) называется функция $P: \mathcal{F} \to \mathbb{R}$ со свойствами:
 - (a) $P(A) \ge 0$ $\forall A \in \mathcal{F}$ (неотрицательность)
 - (b) Если $A_1, A_2, \ldots, A_n, \cdots \in \mathcal{F}$ несовместное, то $P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (свойство счетной аддитивности)
 - (c) $P(\Omega) = 1$ (условие нормированности)

Def. Из этого тройка (Ω, \mathcal{F}, P) называется вероятностным пространством

Свойства вероятности

- 1. Так как \varnothing и Ω несовместные, то $1 = P(\Omega) = P(\Omega + \varnothing) = 1 + P(\varnothing) \Longrightarrow P(\varnothing) = 0$
- 2. Формула обратной вероятности: $P(A) = 1 P(\overline{A})$

$$\square$$
 A и \overline{A} - несовместные и $A+\overline{A}=\Omega \Longrightarrow P(A+\overline{A})=P(\Omega)=1$ \square

 $3. \ P(A) = 1 - P(\overline{A}) \le 1$

Аксиома непрерывности

Пусть имеется убывающая цепочка событий $A_1\supset A_2\supset A_3\supset\cdots\supset A_n\supset\ldots$ и $\bigcap_{i=1}^n A_i=\emptyset$

Тогда $P(A_n) \underset{n \to \infty}{\longrightarrow} 0$

При непрерывном изменении области $A \subset \Omega \subset \mathbb{R}^n$ соответствующая вероятность P(A) также должна изменятся непрерывно

Тh. Аксиома непрерывности следует из аксиомы счетной аддитивности

П Ясно, что
$$A_n = \sum_{i=n}^{\infty} A_i \overline{A}_{i+1} + \prod_{i=n}^{\infty} A_i$$
 $\prod_{i=n}^{\infty} A_i = A_n \cdot \prod_{i=n+1}^{\infty} A_i = \prod_{i=1}^{n} \cdot \prod_{i=n+1}^{\infty} A_i = \prod_{i=1}^{\infty} = \emptyset \Longrightarrow A_n = \sum_{i=n}^{\infty} A_n \overline{A}_{n+1}$ и так как эти события несовместны, то по свойству счетной аддитивности $P(A_n) = \sum_{i=n}^{\infty} P(A_i \overline{A}_{i+1})$ - это остаток (хвост) сходящегося ряда $P(A_1) = \sum_{i=1}^{\infty} P(A_i \overline{A}_{i+1}) = \sum_{i=1}^{n-1} P(A_i \overline{A}_{i+1}) + P(A_n)$ и $P(A_n) \xrightarrow[n \to \infty]{} 0$ по необходимому признаку сходимости

Nota. Аксиому счетной аддитивности можно вывести из конечной аддитивности и аксиомы счетной непрерывности

Свойства операций сложения и умножения

- 1. Свойство дистрибутивности: $A \cdot (B+C) = AB + AC$
- 2. Формула сложения: если A и B несовместны, то P(A+B) = P(A) + P(B)
- 3. Формула сложения вероятностей: P(A+B) = P(A) + P(B) P(AB)

Ех. Из колоды в 36 карт достали одну карту. Какова вероятность того, что будет дама или пика

Пусть Д - дама, П - пика,
$$P(Д + \Pi) = P(Д) + P(\Pi) - P(Д\Pi) = \frac{4}{36} + \frac{9}{36} - \frac{1}{36} = \frac{1}{3}$$
 Формула сложения при $N=3$: $P(A_1+A_2+A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_2A_3) - P(A_1A_2) + P(A_1A_2A_3)$

Общий случай:
$$P(A_1+A_2+\cdots+A_n)=\sum_{i=1}^n P(A_i)-\sum_{i< j} P(A_iA_j)+\sum_{i< j< k} P(A_iA_jA_k)+(-1)^{n-1}\cdot P(A_1A_2\ldots A_n)$$
 - формула включения и исключения

 $Ex. \ n$ писем случайно раскладывается по n конвертам. Найти вероятность того, что хотя бы одно письмо окажется в своем конверте

 $\exists A_i$ - *i*-ое письмо в своем конверте

$$P(A_i) = \frac{1}{n}; P(A_i A_j) = \frac{1}{A_n^2}; P(A_i A_j A_k) = \frac{1}{A_n^3}; P(A_1 A_2 \dots A_n) = \frac{1}{n!}$$
 Слагаемых вида A_i - n штук; $A_i A_j$ - C_n^2 ; $A_i A_j A_k$ - C_n^3 ; $A_1 A_2 \dots A_n$ - 1 штука
$$P(A) = P(A_1 + A_2 + \dots + A_n) = n \cdot \frac{1}{n} - C_n^2 \frac{1}{A_n^2} + C_n^3 \frac{1}{A_n^3} - \dots + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

$$P(A) = P(A_1 + A_2 + \dots + A_n) = n \cdot \frac{1}{n} - C_n^2 \frac{1}{A_n^2} + C_n^3 \frac{1}{A_n^3} - \dots + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

Так как
$$e^{-1} = 1 - 1 + \frac{1}{2} - \frac{1}{3!} + \dots$$
, то при $n \to \infty$ $P(A) \underset{n \to \infty}{\longrightarrow} 1 - e^{-1} \approx 0.63$

Независимые события

Под независимыми событиями логично подразумевать события, не связанные причинноследственной связью (то есть когда факт наступления одного не влияет на оценку вероятности другого)

$$\exists |\Omega| = n; |A| = m_1; |B| = m_2$$

Проведем пару независимых испытаний. Тогда получаем пространство элементарных исходов $\Omega \times \Omega$ и $|\Omega \times \Omega| = n^2$

По основному принципу комбинаторики $|A \cdot B| = m_1 \cdot m_2$

$$P(AB) = \frac{|A \cdot B|}{|\Omega \times \Omega|} = \frac{m_1 m_2}{n^2} = P(A) \cdot P(B)$$

Def. События A и B называются независимыми, если $P(A \cdot B) = P(A) \cdot P(B)$

Lab. $\exists P(A), P(B) \neq 0$, доказать, что если A и B несовместны, то они зависимы

Свойство: Если A и B независимы, то независимы \overline{A} и \overline{B} , A и \overline{B} , \overline{A} и B

Доказательство:
$$A = A \cdot (B + \overline{B}) = AB + A\overline{B}$$
 - несовместные события $\Longrightarrow P(A) = P(AB) + P(A\overline{B}) \Longrightarrow$ $P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A) \cdot P(B) = P(A)(1 - P(B)) = P(A)P(\overline{B}) \Longrightarrow$ независимы

Def. События $A_1, A_2, \ldots A_n$ - независимы в совокупности, если для любого набора i_1, i_2, \ldots, i_k ($2 \le i_1 \le i_2 \le i_3 \le i_4 \le i_4$). $k \leq n$) $P(A_{i_1} \cdot A_{i_2} \cdot \cdots \cdot A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \cdots \cdot P(A_{i_k})$

Nota. Из независимости в совокупности при k=2 получаем попарную независимость. Обратное утверждение неверно

Ex. (С. Бериштейн)

Пусть имеется правильный тетраэдр, одна грань окрашена в красный, вторая в синий, третья в зеленый, а четвертая во все эти три цвета.

Подбросили тетраэдр, $\exists A$ - грань, которая содержит красный цвет, B - синий, C - зеленый. $P(A) = P(B) = P(C) = \frac{2}{4} = \frac{1}{2}$

Так как
$$P(AB) = P(AC) = P(BC) = \frac{1}{4}$$

$$P(AB) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(B)$$
 - попарная независимость

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C)$$
 - но вот независимость в совокупности не соблюдается

Ех. (Шевалье де Мере, Паскаль, Ферма, $\approx 1650 \text{ г.}$)

Какова вероятность того, что при 4 бросании кости выпадет одна шестерка

 A_1 - при первом броске шестерка, A_2 - при втором, A_3 - при третьем, A_4 - при четвертом

В - выпала хотя бы одна шестерка при 4 бросках

 $B = A_1 + A_2 + A_3 + A_4$ - совместные события, но независимые

Найдем обратную вероятность: \overline{B} - ни разу не выпала шестерка

$$\overline{B} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} \cdot \overline{A_4}$$

$$P(\overline{A_1}) = P(\overline{A_2}) = P(\overline{A_3}) = P(\overline{A_4}) = \frac{5}{6}$$

$$\overline{B} = P(\overline{A_1})P(\overline{A_2})P(\overline{A_3})P(\overline{A_4}) = \left(\frac{5}{6}\right)^4 \approx 0.482$$

$$P(B) = 1 - P(\overline{B}) \approx 0.52$$

Условная вероятность

Условная вероятность P(A|B) (или $P_B(A)$) - вероятность события A, вычисленная в предположении, что событие В уже произошло

Ех. Бросается кость один раз, известно, что выпало больше 3 очков. Найти вероятность того, что выпало четное число очков

A - выпало четное число очков

В - выпало больше трех очков

$$\Omega = \{1, 2, 3, 4, 5, 6\}; |\Omega| = 6; A = \{2, 4, 6\}; B = \{4, 5, 6\}$$

$$P(A|B) = \frac{2}{3} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{P(AB)}{P(B)}$$

Интерпретация с помощью геометрической вероятности: $P(A|B) = \frac{S_{AB}}{S_B} = \frac{\frac{S_{AB}}{S_{\Omega}}}{\frac{S_B}{S_{\Omega}}}$

$$P(A|B) = \frac{S_{AB}}{S_B} = \frac{\frac{S_{AB}}{S_{\Omega}}}{\frac{S_B}{S_{\Omega}}}$$

 $\mathbf{Def.}$ Условной вероятностью события A при условии, что имело место событие B, называется величина $P(A|B) = \frac{P(AB)}{P(B)}$

Ех. Известно, что среди населения 1% воров. В комнате, где находилось 10 гостей, у хозяина пропал кошелек. Какова вероятность того, что произвольный гость является вором.

A - гость является вором P(A) = 0.01

В - пропал кошелек (хотя бы один вор среди гостей есть)

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(AB)}{1 - P(\overline{B})} = \frac{P(A)}{1 - 0.99^{10}} = \frac{0.01}{1 - 0.99^{10}} = 0.105$$

Формула умножения:

В качестве следствия условной вероятности получаем:

$$P(A|B) = \frac{P(AB)}{P(B)} \Longrightarrow P(AB) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$$

Общий случай:

$$P(A_1A_2A_3...A_n) = P(A_1)P(A_2|A_1)P(P_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})$$

База индукции P(AB) = P(B)P(A|B)

Шаг индукции: пусть верно при n-1:

$$P(A_1A_2A_3...A_{n-1}) = P(A_1)P(A_2|A_1)P(P_3|A_1A_2)...P(A_n|A_1A_2...A_{n-2})$$

$$P(A_1A_2A_3...A_n) = P(A_1A_2A_3...A_{n-1}) \cdot P(A_n|A_1A_2...A_{n-1}) =$$

$$P(A_1)P(A_2|A_1)P(P_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1})$$

Ex. Студент выучил 1 билет из n, в группе n студентов. Каким по очереди ему нужно зайти, чтобы вероятность сдать экзамен была наибольшей

Пусть A_i - билет, вытянутый на i-ом шаге $(1 \le i \le n)$

A - студент сдал экзамен

$$P(A) = P(\overline{A_1} \cdot \overline{A_2} \cdot \dots \cdot \overline{A_{i-1}} \cdot A_i) = \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \dots \cdot \frac{n-(i-1)}{n-(i-2)} \cdot \frac{1}{n-(i-1)} = \frac{1}{n}$$

Полная группа событий

Def. События $H_1, H_2, \ldots, H_n, \ldots$ образуют полную группу событий, если они попарно несовместны и содержат все возможные элементарные исходы

$$H_i \cap H_j = \emptyset \ \forall i, j$$

$$\bigcup_{i=1}^{\infty} H_i = \Omega$$

Следствие:
$$\sum_{i=1}^{\infty} P(H_i) = 1$$

Th. Формула полной вероятности. $\exists H_1, H_2, \dots, H_n, \dots$ - полная группа событий. Тогда $P(A) = \sum_{i=1}^{\infty} P(H_i) P(A|H_i)$

$$\Box
P(A) = P(\Omega A) = P((H_1 + H_2 + H_3 + \dots)A) = P(H_1 A + H_2 A + H_3 A + \dots) = [H_i \cdot A \cdot H_j \cdot A = \emptyset \cdot A] = P(H_1 A) + P(H_2 A) + \dots = P(H_1) P(A|H_1) + P(H_2) P(A|H_2) + \dots$$

Th. Формула Байеса. $\exists H_1, H_2, \dots, H_n$ - полная группа событий, и известно, что событие Aуже произошло

Тогда
$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

$$P(H_k|A) = \frac{P(H_kA)}{P(A)} = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

Ех. 1. В первой коробке 4 белых и 2 черных шара, во второй 1 белый и 2 черных. Из первой коробки во вторую переложили 2 шара, затем из второй коробки достали шар. Какова вероятность того, что он оказался белым

 $\exists H_1$ - переложили 2 белых H_2 - 2 черных

 H_3 - разного цвета

$$A$$
 - из второй коробки достали белый шар $P(H_1) = \frac{4}{6} \cdot \frac{3}{5} = \frac{6}{15}$ $P(H_2) = \frac{2}{6} \cdot \frac{1}{5} = \frac{1}{15}$ $P(H_3) = \frac{4}{6} \cdot \frac{2}{5} + \frac{2}{6} \cdot \frac{4}{5} = \frac{4}{15} + \frac{4}{15} = \frac{8}{15}$

$$P(A) = P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) + P(H_3) \cdot P(A|H_3) = \frac{6}{15} \cdot \frac{3}{5} + \frac{1}{15} \cdot \frac{1}{5} + \frac{8}{15} \cdot \frac{2}{5} = \frac{18}{75} + \frac{1}{75} + \frac{16}{75} = \frac{35}{75} = \frac{7}{15}$$

Ех. 2. Вероятность попадания первого стрелка в цель 0.9, а второго 0.3. Наугад вызванный стрелок попал в цель. Какова вероятность того, что это бы первый стрелок?

 H_1 - вызван первый стрелок

 H_2 - вызван второй стрелок

А - стрелок попал

$$P(H_1) = P(H_2) = \frac{1}{2}$$

 $P(A|H_1) = 0.9$ $P(A|H_2) = 0.3$

$$P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(H_1)P(A|H_1) + P(H_2)|P(A|H_2)} = \frac{\frac{1}{2}0.9}{\frac{1}{2}0.9 + \frac{1}{2}0.3} = \frac{9}{9+3} = 0.75$$

Ex. 3. По статистике раком болеет <math>1% населения. Тест дает правильный результат в 99%случаев. Тест оказался положительный. Найти вероятность того, что человек болен.

 H_1 - человек болен

 H_2 - человек здоров

А - анализ положительный

$$P(H_1) = 0.01$$

$$P(H_2) = 0.99$$

$$P(A|H_1) = 0.99$$

$$P(A|H_2) = 0.01$$

$$P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(H_1)P(A|H_1) + P(H_2)P(A|H_2)} = \frac{0.01 + 0.99}{0.01 \cdot 0.99 + 0.99 \cdot 0.01} = \frac{1}{2} = 0.5$$
 Допустим, что второй независимый с первым анализ также оказался положительным. Найти

вероятность того, что человек болен.

$$P(H_1) = 0.01 P(H_2) = 0.99$$

$$P(AA|H_1) = 0.99^2 P(AA|H_2) = 0.01^2$$

$$P(H_1|AA) = \frac{0.01 + 0.99^2}{0.01 \cdot 0.99^2 + 0.99 \cdot 0.01^2} = \frac{0.99}{0.99 + 0.01} = 0.99$$

Интуитивно вероятность $\frac{1}{2}$ может поддаваться непониманию, однако можно рассуждать так: пусть в городе живут $100\overline{0}$ человек, из них 100 болеют, а у 99 из них положительный анализ; у других 9900 положительный анализ всего лишь у 99, отсюда выходит $\frac{1}{2}$

Ех. 4. В телевизионной студии 3 двери одну из 3 дверей, после чего ведущий открывает одну из двух оставшихся дверей и показывает, что там приза нет 🏎 После чего предлагает игроку поменять свой выбор. Стоит ли игроку соглашаться?

 H_1 - игрок угадал

 H_2 - игрок не угадал

$$A$$
 - ведущий открыл дверь без приза $P(H_1)=rac{1}{3}$ $P(H_2)=rac{2}{3}$ $P(A|H_1)=1$ $P(A|H_2)=rac{1}{2}$

$$P(A|H_1) = 1$$
 $P(A|H_2) = \frac{1}{2}$

$$P(H_1|A) = \frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{1}{2}} = \frac{1}{2}$$

Но это неправильно, так как действия ведущего неслучайны - он всегда откроет дверь без приза

В этом случае, если мы гипотетически выберем 300 дверей, в 100 случаях мы отгадаем, ведущий откроет любую дверь без приза; но в 200 случаях мы не отгадаем, ведущий откроет вторую дверь без приза, и в этом случае мы сможем поменяться на дверь с призом, отсюда шанс $\frac{2}{3}$, если мы поменяем свой выбор

Ex. 5. Вероятность того, что в семье с детьми ровно k детей, равна $\frac{1}{2^k}$, $k=1,2,\ldots$ Какова вероятность того, что в семье один мальчик, если известно, что нет девочки? Рождения мальчиков и девочек равновероятны.

$$H_i$$
 - в семье i детей $(1 \le i < \infty)$ $P(H_i) = \frac{1}{2^i}$ A - в семье нет девочки $P(A|H_1) = \frac{1}{2}$ $P(A|H_2) = \frac{1}{4}$ $P(A|H_i) = \frac{1}{2^i}$ $P(H_1|A) = \frac{\frac{1}{2^i}}{\sum_{i=1}^{\infty} \frac{1}{2^i} \cdot \frac{1}{2^i}} = \frac{\frac{1}{4}}{\frac{1}{4-1}} = \frac{3}{4} = 0.75$

Серия испытаний Бернулли

Схемой Бернулли - называется серия одинаковых независимых экспериментов, каждый из которых имеет 2 исхода: произошло интересующее нас событие или нет

p = p(A) - вероятность успеха при одном испытании

q = 1 - p - вероятность неудачи

 $\boldsymbol{v_n}$ - число успехов в серии из \boldsymbol{n} испытаний

$$p(v_n = k) = p_n(k)$$

Из этого получаем формулу Бернулли:

Th. Вероятность того, что при n испытаниях произойдет ровно k успехов, равна $p_n(k) = C_n^k p^k q^{n-k}$

П

Рассмотрим один из элементарных исходов, благоприятных данному событию:

 $A_n = \underbrace{\text{УУУ} \dots \text{УН} \dots \text{HHH}}_{}$ - k успехов, n-k неудачи

$$p(\mathcal{Y}) = p, p(\mathcal{H}) = q^{n-k}$$

Так как испытания независимы, то $p(A_n) = p^k q^{n-k}$

Остальные элементарные исходы имеют ту же вероятность, перебираем все расстановки исходов, получаем C_n^k , в итоге, получаем формулу Бернулли

Ех. Вероятность попадания стрелка при одном выстреле - 0.8. Какова вероятность того, что

из пяти выстрелов точными будут три

$$n = 5$$
 $p = 0.8$ $q = 1 - p = 0.2$ $k = 3$
 $p_5(3) = C_5^3 p^3 q^2 = 0.2048$

Наиболее вероятное число успехов

Выясним, при каком значении k вероятность предшествующего числа успехов k-1 будет не более, чем вероятность k успехов

$$\begin{split} p_n(k-1) &\leq p_n(k) \\ C_n^{k-1} p^{k-1} q^{n-k+1} &\leq C_n^k p^k q^{n-k} \\ \frac{n!}{(k-1)!(n-k+1)!} q &\leq \frac{n!}{(k)!(n-k)!} p^k \\ \frac{q}{(k-1)!(n-k+1)!} &\leq \frac{p}{(k)!(n-k)!} \\ \frac{q}{n-k+1} &\leq \frac{p}{k} \\ k(1-p) &\leq p(n-k+1) \\ k &\leq np+p \end{split}$$

Отсюда $np + p - 1 \le k \le np + p$

Рассмотрим 3 ситуации:

- 1) np целое, тогда np+p нецелое, и k=np наиболее вероятное
- 2) np+p- нецелое, тогда $k=\lfloor np+p\rfloor$
- 3) np+p целое, тогда np+p-1 целое, и 2 наиболее вероятных числа успеха

Геометрическая интерпретация:

При увеличении числа n точки превращаются в кривую Гаусса

При увеличении числа испытаний n формула Бернулли вырождается в следующие асимптотические формы (применяем, если требуется найти вероятность точного числа успеха)

1) локальная формула Муавра-Лапласа

$$p_n(k) \underset{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{npq}} \varphi(x)$$
, где $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ - функция гаусса $x = \frac{k-np}{\sqrt{npq}}$

Свойства $\varphi(x)$:

- 1. $\varphi(x) = \varphi(-x)$ функция четная
- 2. при x > 5 $\varphi(x) \approx 0$
- 2) Интегральная формула Муавра-Лапласа (если требуется найти вероятность того, что число успехов в данном диапазоне)

$$p_n(k_1 \le k \le k_2) \xrightarrow[n \to \infty]{} \Phi(x_2) - \Phi(x_1)$$
, где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz$ - функция Лапласа $x_1 = \frac{k_1 - np}{\sqrt{npq}}$ - отклонение от левой границы, $x_2 = \frac{k_2 - np}{\sqrt{npq}}$ - отклонение от правой Свойства $\Phi(x)$

- 1. $\Phi(-x) = -\Phi(x)$ функция нечетная
- 2. при x > 5 $\Phi(x) \approx 0.5$

Nota. Эти формулы обычно можно применять при $n \ge 100$ и $0.1 \le p \le 0.9$

Nota. В некоторых источниках под функцией Лапласа подразумевают другую функцию: $F_0(x) =$ $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^{2}}{2}}dt$ - стандартное отклонение. Эта функция отличается от $F_{0}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{0}e^{-\frac{t^{2}}{2}}dt$ + $\Phi(x) = \frac{1}{2} + \Phi(x)$ Так как $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ - интеграл Пуасона

Ех. Вероятность попадания стрелка в цель 0.8, стрелок сделал 400 выстрелов. Найти вероятность того, что:

- а) произошло ровно 330 попаданий

б) произошло от 312 до 336 попаданий a)
$$x=\frac{k-np}{\sqrt{npq}}=\frac{330-400\cdot0.8}{\sqrt{400\cdot0.8\cdot0.2}}=\frac{330-320}{8}=1.25$$

$$p_{400}(330)\approx\frac{1}{\sqrt{npq}}\varphi(1.25)=\frac{1}{8}\varphi(1.25)\approx\frac{1}{8}\cdot0.1826\approx0.0228$$

$$p_{400}(330) \approx \frac{1}{\sqrt{npq}} \varphi(1.25) = \frac{1}{8} \varphi(1.25) \approx \frac{1}{8} \cdot 0.1826 \approx 0.0228$$

6)
$$x_1 = \frac{312 - 320}{8} = -1, \ x_2 = \frac{336 - 320}{8} = 2$$

$$p_{400}(312 \le k \le 336) \approx \Phi(2) - \Phi(-1) = \Phi(2) + \Phi(1) \approx 0.4772 + 0.3413 = 0.8185$$

Статистическое понятие вероятности

Пусть проводим n реальных экспериментов, n_A - число появления события A, $\frac{n_A}{n}$ - относительная частота события A.

Эксперименты с монетой показали, что при больших $n, \frac{n_A}{n} \approx p(A)$ - явление стабилизации Вероятность отклонения относительной частоты от вероятности события

n - число испытаний, $p=p(A), \frac{n_A}{n}$ - экспериментальная частота

$$p\left(\left|\frac{n_A}{n}-p\right| \le \varepsilon\right) = p\left(-\varepsilon \le \frac{n_A}{n}-p \le \varepsilon\right) = p(-n\varepsilon \le n_A-np \le n\varepsilon) = p(np-n\varepsilon \le n_A \le n\varepsilon + np) \underset{n\to\infty}{\longrightarrow} \left[\text{по } \right.$$
 интегральной формуле Лапласа] $\underset{n\to\infty}{\longrightarrow} \Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) - \Phi\left(-\frac{n\varepsilon}{\sqrt{npq}}\right)$

$$\begin{split} &= \Phi\left(\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right) - \Phi\left(-\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right) \\ &= 2\Phi\left(\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right) \end{split}$$

Итак, получили, что нужная нам вероятность $p\left(\left|\frac{n_A}{n}-p\right|\leq \varepsilon\right)\approx 2\Phi\left(\frac{\sqrt{n}\varepsilon}{\sqrt{pq}}\right)$

Закон больших чисел Бернулли

Итак,
$$p\left(|\frac{n_A}{n}-p|\leq\varepsilon\right)\underset{n\to\infty}{\longrightarrow}2\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right)$$
 при $n\to\infty$, $\sqrt{n}\to\infty$, $\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\to\infty$, $\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right)\to0.5$, $p\left(|\frac{n_A}{n}-p|\leq\varepsilon\right)\to2\cdot0.5=1$ - закон больших чисел показывает, что вероятность попадания относительной частоты в ε -трубу вероятность события приближается к 1 $\lim_{n\to\infty}p\left(|\frac{n_A}{n}-p|\leq\varepsilon\right)=1$ или $\frac{n_A}{n}\underset{n\to\infty}{\longrightarrow}p$ - сходимость по вероятности

Ex. Для оценки доли p курящих людей берется выборка объема n, и делается оценка доли курящих людей по формуле $p^* = \frac{n_A}{n}$. Каким должен быть объем n, чтобы с вероятностью $\gamma = 0.95$ данная оценка отличалась от истинного значения не более, чем на $\varepsilon = 0.01$ По формуле вероятности отклонения частоты от вероятности $p(|p^* - p| \le \varepsilon) = p\left(|\frac{n_A}{n} - p| \le \varepsilon\right) \approx$

$$2\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right) = 0.95$$

$$\Phi\left(\frac{\varepsilon}{\sqrt{pq}}\sqrt{n}\right) = 0.475$$

$$\frac{\varepsilon}{\sqrt{pq}}\sqrt{n} = 1.96$$

$$\frac{1}{\sqrt{pq}}\sqrt{n} = 196$$

$$\frac{n}{pq} = 38416$$

$$n \ge 38416pq$$

В самое худшей ситуации $pq \le 0.5^2 = \frac{1}{4}$ $n \ge \frac{38416}{4} = 9604$

Схема испытаний и соответствующее распределение

Введем обозначения:

п - число испытаний

р - вероятность успеха при одном испытании

q = 1 - p - вероятность неудачи

І. Схема Бернулли

 $\exists v_n$ - число успехов в серии из n испытаний

$$P_n(v_n = k) = C_n^k p^k q^{n-k}, \qquad k = 0, 1, ..., n$$

Def. Соответствие $k \to C_n^k p^k q^{n-k}$, k = 0, ..., n называется биномиальным распределением (обозначается $B_{n,p}$ или B(n,p))

II. Схема до первого успешного испытания

Пусть проводится бесконечная серия испытаний, которая заканчивается после первого успешного испытания под номером τ

Th.
$$P(\tau = k) = q^{k-1}p$$
, $k = 1, 2, ...$

$$P(\tau = k) = P(\underbrace{\mathbf{H} \dots \mathbf{H} \mathbf{Y}}) = q^{k-1} p$$

Def. Соответствие $k \to q^{k-1}p, k \in \mathbb{N}$ называется геометрическим распределение вероятности (обозначается G_p или G(p))

Nota. Геометрическое распределение обладает свойством нестарения или свойством отсутствия последействия

Th.
$$\exists P(\tau = k) = q^{k-1}p, k \in \mathbb{N}$$
. Тогда $\forall n, k \ge 0$ $P(\tau > n + k \mid \tau > n) = P(\tau > k)$

П Заметим, что
$$P(\tau > m) = q^m$$
, первые m - неудачи
$$P(\tau > n+k|\tau > n) = \frac{P(\tau > n+k,\tau > n)}{P(\tau > n)} = \frac{P(\tau > n+k)}{P(\tau > n)} = \frac{q^{n+k}}{q^n} = q^k$$

 $Nota.\ P(\tau = n + k \mid \tau > n) = p(\tau = k)$ - Lab. доказать

III. Схема испытаний с несколькими исходами

Пусть при n независимых испытаний могут произойти m исходов (несовместных) p_i - вероятность i-ого исхода при одном испытании

Th. Вероятность того, что при n испытаниях первый исход появится n_1 раз, второй - n_2 раз, m-ый - n_m $(\sum_{i=1}^m n_i = n)$ равно

$$P_n(n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \dots n_m!} p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$$

При m = 2 получаем формулу Бернулли

Рассмотрим следующий благоприятный исход, обозначим A_1

 $A_{1} = \underbrace{11 \dots 122 \dots 2}_{n_{1}} \dots \underbrace{mm \dots m}_{n_{m}}$ $p(A_{1}) = p_{1}^{n_{1}} p_{2}^{n_{2}} \dots p_{m}^{n_{m}}$

Все остальные благоприятные исходы имеют ту же вероятность и отличаются лишь расположением i-ых исходов на n позициях, получаем мультиномиальную теорему: n!

 $\overline{n_1!n_2!\dots n_m!}$

В итоге получаем требуемую формулу

Ех. Два одинаковых сильных шахматиста играют шесть партий

Вероятность ничьи в партии - 0.5. Какова вероятность того, что второй игрок выиграет две партии, а еще три сведет к ничьей

1-ый исход - выиграл 1 игрок

2-ой исход - выиграл 2 игрок

3-ий исход - ничья

n = 6; $p_3 = 0.5;$ $p_1 = p_2 = \frac{1 - p_3}{2} = 0.25$

$$P_6(1;2;3) = \frac{6!}{1!2!3!} \left(\frac{1}{4}\right)^1 \left(\frac{1}{4}\right)^2 \left(\frac{1}{2}\right)^3 = \frac{4 \cdot 5 \cdot 6}{2} \frac{1}{2^9} \approx 0.12$$

IV. Урновая схема

В урне N шаров, из которых K шаров белые, N-K - черные

Из урны вынимаем (без учета порядка) n шаров. Найти вероятность, что из них k белых

а) Схема с возвратом (после каждого раза кладем шар обратно). В этом случае вероятность вынуть белый шар одинакова и равна $\frac{K}{N}$. Получаем схему Бернулли: $P_n(k) = C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k}$

б) Схема без возврата - вынутый шар мы выбрасываем

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}$$

Def. Соответствие $k \to \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}, k = 0, \dots, n$ называется гипергеометрическим распределением

Nota. Если $K,N\to\infty$ так, что $\frac{K}{N}\approx p$ (не меняется), а n и k зафиксировать, то после выбора n шаров пропорции состава шаров не сильно изменятся, поэтому логично предположить, что гипергеометрическое распределение будет сходиться к биномиальному

Th. Если $K, N \to \infty$ таким образом, что $\frac{K}{N} \to p \in (0; 1)$, а n и $0 \le k \le n$ фиксированы, то вероятность при гипергеометрическом распределении будет стремиться к биномиальному:

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \to C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k}$$

Воспользуемся леммой: $C_n^k \sim \frac{n^k}{k!}$ при $n \to \infty$ и фиксированном k Доказательство леммы: $C_n^k = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{n^k} \frac{n^k}{k!} = 1\left(1-\frac{1}{n}\right)\dots\left(1-\frac{k-1}{n}\right)\frac{n^k}{k!} \sim \frac{n^k}{k!}$

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \sim \frac{K^k}{k!} \frac{(N-K)^{n-k}}{N^n} \frac{n!}{N^n} = \frac{n!}{k!} \frac{(N-K)^{n-k}}{N^n} \frac{K^k}{N^n} = C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k} \rightarrow C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k}$$

V. Схема Пуассона. Теорема Пуассона для схемы Бернулли

Nota. Если вероятность успеха p в схеме Бернулли мала или близка к 1, то предельная формула Лапласа при недостаточно большом числе испытаний дает достаточно большую погрешность. В этой ситуации следует использовать формулу Пуасоона (формула редких событий) Схема: вероятность числа успеха при одном испытании p_n зависит от числа испытаний n, причем таким образом, что $np_n \approx \lambda = const$

 λ - интенсивность появления редких событий в единицу времени в потоке испытаний

Th. 1. (формула Пуассона) Пусть $n \to \infty, p_n \to 0$ таким образом, что $np_n \to \lambda = const > 0$ Тогда вероятность k успехов при n испытаниях: $P_n(k) = C_n^k p_n^k (1-p_n)^{n-k} \underset{n \to \infty}{\longrightarrow} = \frac{\lambda^k}{k!} e^{-\lambda}$

Обозначим
$$\lambda_n = np_n$$
. Тогда $p_n = \frac{\lambda_n}{n}$ и
$$P_n(k) = C_n^k \left(\frac{\lambda_n}{n}\right)^k \left(1 - \frac{\lambda_n}{n}\right)^{n-k} \xrightarrow[n \to \infty]{} \frac{n^k \frac{\lambda_n^k}{n^k} \left(1 - \frac{\lambda_n}{n}\right)^n \left(1 - \frac{\lambda_n}{n}\right)^n} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n}$$

Th. 2. (оценка погрешности в формуле Пуассона) Пусть v_n - число успехов при n испытаниях в схеме Бернулли

p - вероятность успеха при одном испытании, $\lambda = np, \, A \subset \{0,1,\dots,n\}$ - произвольное подмножество чисел

Тогда
$$|P_n(v_n \in A) - \sum_{k \in A} \frac{\lambda^k}{k!} e^{-\lambda}| \le \min(p, np^2) = \min(p, p\lambda)$$
 (без доказательства)

Def. Соответствие $k \to \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, \dots$ называется распределением Пуассона с параметром $\lambda > 0$ (обозначается Π_{λ})

Ex. Прибор состоит из 1000 элементов, вероятность отказа каждого элемента равна 0.001. Какова вероятность отказа больше двух элементов

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

$$n = 1000, p = 0.001, \lambda = 1$$

$$P_n(k>2) = 1 - P_n(k \le 2) = 1 - P(0) - P(1) - P(2) \approx 1 - \left(\frac{1^0}{0!}e^{-1} + \frac{1^1}{1!}e^{-1} + \frac{1^2}{2!}e^{-1}\right) = 1 - \left(1 + 1 + \frac{1}{2}\right)e^{-1} \approx 0.0803$$

Случайные величины

Примеры случайных величин:

 $Ex.\ 1.$ Бросаем кость, может выпасть 6 граней, здесь случайная величина ξ - число выпавших очков

 $\mathit{Ex. 2. \xi}$ - время работы микросхемы, в этом случае время может быть:

- а) дискретным $\xi \in \{0, 1, 2, \dots\}$
- б) непрерывным ξ ∈ [0; ∞)

Ex. 3. Температура за окном: $\xi \in (-50, +50)$

Def. На вероятностном пространстве (Ω, \mathcal{F}, p) функция $\xi: \Omega \to \mathbb{R}$ называется \mathcal{F} -измеримой, если $\forall x \in \mathbb{R} \{\omega \in \Omega \mid \xi(\omega) < x\} \in \mathcal{F}$ (то есть $\xi^{-1}(y) \in \mathcal{F}$, где $y \in (-\infty; x)$)

Def. Случайной величиной, заданной на вероятностном пространстве (Ω, \mathcal{F}, p) , называется \mathcal{F} -измеримая функция $\xi: \Omega \to \mathbb{R}$, которая сопоставляет каждому элементарному исходу некоторое вещественное число

Nota. Не все функции являются \mathcal{F} -измеримыми

Ex. Кость: $\Omega = \{1, 2, 3, 4, 5, 6\}; \mathcal{F} = \{\emptyset, \Omega, \{2, 4, 6\}, \{1, 3, 5\}\}$

Пусть $\xi(\omega)=i$ - число выпавших очков. Тогда при $x=4:\{\omega\in\Omega\mid\xi(\omega)<4\}=\{1,2,3\}\notin\mathcal{F}\Longrightarrow$ случайная величина не является \mathcal{F} -измеримой

В данном случае следует сделать ξ таким, что $\xi(2) = \xi(4) = \xi(6) = 1$, $\xi(1) = \xi(3) = \xi(5) = 0$

Nota. Смысл измеримости: если задана случайная величина ξ , то мы можем задать вероятность попадания случайной величины в интервал $(-\infty; x)$: $p(\xi \in (-\infty; x)) = p(\{\omega \in \Omega \mid \xi(\omega) < x\})$

А из интервалов $(-\infty; x)$ с помощью операций пересечения, объединения и дополнения можно получить все другие интервалы (включая точки) и также приписать им вероятности

Из матанализа известно, что мера из интервалов однозначно продолжается до меры на всей Борелевской σ -алгебры на $\mathbb R$ и, таким образом, с помощью случайной величины каждому Борелевскому множеству B также приписывается вероятность $p(\xi \in B)$

Итак, пусть ξ задана на вероятностном пространстве (Ω, \mathcal{F}, p) , с помощью нее получаем новой вероятностное пространство $(\mathbb{R}, \mathcal{B}(\mathbb{R}), p_{\xi})$

Получая новое вероятностное пространство, мы упрощаем и формализуем работу, так как можем не учитывать природу и структуру исходного пространства

Def. Функция $p(B), B \in \mathcal{B}(\mathbb{R})$, ставящая в соответствие каждому Борелевскому множеству вероятность, называется распределением случайной величины ξ

Основные типы распределения

- а) Дискретное
- b) Абсолютно непрерывное
- с) Сингулярное
- d) Смешанное

Дискретная случайная величина

Def. Случайная величина ξ имеет дискретное рапределение, если она принимает не более, чем счетное число значений. То есть существует конечный или счетный набор чисел $\{x_1, x_2, \ldots, x_n, \ldots\}$ такой, что $p(\xi = x_i) = p_i > 0$ и $\sum_{i=0}^{\infty} p_i = 1$

Таким образом, дискретная случайная величина (ДСВ) задается законом распределения: доска

$$(\sum_{i=0}^{\infty} p_i = 1$$
 - условие нормировки)

 $\mathit{Ex.}\ 1.\ \mathrm{кость},\ \xi(\omega)=i$ - число выпавших очков

Ex. 2. все распределения из предыдущих лекций (биномиальное, геометрическое, гипергеометрическое, Пуассона)

Ex. 3. индикатор события *A*:
$$I_A(\omega) = \begin{cases} 0, & ω ∉ A - \text{событие } A \text{ не происходит} \\ 1, & ω ∈ A - \text{событие } A \text{ происходит} \end{cases}$$

Числовые характеристики дискретных случайных величин

І. Математическое ожидание (среднее значение, полезность)

Def. Математическим ожиданием $E\xi$ случайной величины ξ называется число

$$E\xi = \sum_{i=1}^{\infty} x_i p_i$$

при условии, что данный ряд сходится абсолютно

Nota. Если $E\xi = \sum_{i=1}^{\infty} x_i p_i = \infty$, то говорят, что матожидание не существует

При условной сходимости ряда при перестановке членов сумма изменяется, поэтому необходима абсолютная

Физический смысл: Среднее значение - число, вокруг которого группируются значения случайной величины, центр тяжести точек x_i с весами p_i

Статистический смысл: среднее арифметическое наблюдаемых значений случайной величины при большом числе реальных экспериментов

II. Дисперсия

Def. Дисперсией $D\xi$ случайной величины ξ называют среднее квадратов ее отклонения от математического ожидания:

$$D\xi = E(\xi - E\xi)^2$$
 или $D\xi = \sum_{i=0}^{\infty} (x_i - E\xi)^2 p_i$ при условии, что данный ряд сходится

В противном случае говорится, что дисперсии не существует

Nota. Дисперсию обычно удобно считать по формуле $D\xi = E\xi^2 - (E\xi)^2 = \sum_{i=1}^n x_i^2 p_i - E\xi^2$

Смысл - квадрат среднего разброса (рассеивания) значения случайной величины относительно ее математического ожидания

III. Среднее квадратическое отклонение

Def. Среднее квадратическое отклонение (СКО) σ_{ξ} называется величина $\sigma_{\xi} = \sqrt{D\xi}$ Смысл - средний разброс

$$\frac{\xi \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{p \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6}}$$
 $E\xi = \sum_{i=1}^{6} x_i p_i = 3.5$ (в данном случае ср. арифм.)
$$D\xi = \sum_{i=1}^{6} (x_i - E\xi)^2 p_i = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} - 3.5^2 = \frac{35}{12}$$
 $\sigma_{\xi} = \sqrt{D\xi} \approx 1.79$

$$Ex.\ \mathcal{Z}.\$$
Индикатор события $A:\ I_A(\omega)= egin{cases} 0, \omega \not\in A \ - \ \text{событие } A \ \text{не происходит} \\ 1, \omega \in A \ - \ \text{событие } A \ \text{происходит} \\ \hline \frac{\xi}{p} & 1-P(A) & P(A) \\ E\xi = 0 \cdot (1-P(A))+1 \cdot P(A) = P(A) \\ D\xi = 0^2 \cdot (1-P(A))+1^2P(A)-P(A)^2 = P(A)(1-P(A)) = pq \\ \sigma_{\xi} = \sqrt{pq} \end{cases}$

Свойства матожидания и дисперсии

Th. 1. Случайная величина ξ имеет вырожденное распределение, если $\xi(\omega)=\mathrm{const}\ \forall \omega\in\Omega$

$$\begin{array}{c|c}
\xi & C \\
\hline
p & 1 \\
E\xi = C & D\xi = 0
\end{array}$$

Th. 2. Свойство сдвига:
$$E(\xi + C) = E\xi + C; D(\xi + C) = D\xi$$

Th. 3. Свойство растяжения:

$$E(C\xi) = CE\xi$$
$$D(C\xi) = C^2D\xi$$

Lab. 2-3 доказать

Th. 4. $E(\xi + \eta) = E\xi + E\eta$ (из третьего свойства матожидание - линейная функция)

Def. Дискретные случайные величины ξ и η независимы, если $p(\xi = x_i, \eta = y_i) = p(\xi = x_i) \cdot p(\eta = y_i) \ \forall i, j$

То есть случайные величины принимают свои величины независимо друг от друга

Th. 5. Если случайные свойства ξ и η независимы, то $E(\xi\eta) = E\xi \cdot E\eta$; обратное неверно

$$\Box
E(\xi\eta) = \sum_{i,j} x_i y_i p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j y_j p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j y_j p(\xi = x_i) p(\eta = y_j) = \sum_i x_i p(\xi = x_i) \sum_j y_j p(\eta = y_j) = E\xi \cdot E\eta$$

Th. 6.
$$D\xi = E\xi^2 - (E\xi)^2$$

$$\Box
D\xi = E(\xi - E\xi)^2 = E(\xi^2 - 2\xi E\xi + (E\xi)^2) = E\xi^2 - 2E\xi E\xi + E((E\xi)^2) = E\xi^2 - 2(E\xi)^2 + (E\xi)^2 = E\xi^2 - (E\xi)^2$$

Def. $D(\xi + \eta) = D\xi + D\eta + 2\text{cov}(\xi, \eta)$, где $\text{cov}(\xi, \eta) = E(\xi\eta) - E\xi E\eta$ - ковариация случайных величин (равна 0 при независимых величинах) - индикатор наличия связи между случайными величинами

$$\Box$$

$$D(\xi + \eta) = E(\xi + \eta)^{2} - (E(\xi + \eta))^{2} = E\xi^{2} + 2E\xi E\eta + E\eta^{2} - (E\xi + E\eta)^{2} = E\xi^{2} + E\eta^{2} + 2E(\xi\eta) - (E\xi)^{2} - (E\eta)^{2} - 2E\xi E\eta = D\xi + D\eta + 2\text{cov}(\xi, \eta)$$

Th. 7. Если случайные величины ξ и η независимы, то $D(\xi + \eta) = D\xi + D\eta$

$$\square$$
 Если ξ и η независимы, то $\mathrm{cov}(\xi,\eta)=0$ и $D(\xi+\eta)=D\xi+D\eta$ \square

Th. 8. Общая формула дисперсии суммы:
$$D(\xi_1 + \xi_2 + \dots + \xi_n) = \sum_{i=1}^n D\xi_i + 2\sum_{i,j(i\neq j)} \text{cov}(\xi_i, \xi_j)$$

Другие числовые характеристики

Моменты старших порядков

а) $m_k = E \xi^k$ - момент k-ого порядка случайной величины ξ

б) $\mu_k = E(\xi - E\xi)^k$ - центральный момент k-ого порядка

 $E\xi=m_1$ - момент первого порядка

 $E\xi^2=m_2$ - момент второго порядка

 $D\xi = E(\xi - E\xi)^2$ - центральный момент второго порядка

Nota. Центральные моменты можно выразить через обычный момент:

$$\mu_2 = D\xi = E\xi^2 - (E\xi)^2 = m_2^2 - m_1^2$$

$$\mu_3 = m_3 - 3m_2m_1 + 2m^3$$

$$\mu_4 = m_4 - 4m_3m_2 + 6m_2m_1^2 - 3m_1^4$$

Ex. Разберем задачу Бюффона с точки зрения матожидания (для простоты l - ширина доски): пусть p(A) - пересечет стык, $\xi = I_A$ - число пересечений. Тогда матожидание $E\xi = EI_A = P(A)$ Заметим, что при изменении длины иглы с l до 2l матожидание пересекаемых стыков увеличивается в два раза. Помимо этого можно составить из k игл ломаную, матожидание стыков которой будет равно $kE\xi$

Заметим, что такое работает и в обратную сторону: при уменьшении иглы в k раз матожидание равно $\frac{E\xi}{k}$

Теперь сделаем замкнутый многоугольник из игл, получим, что матожидание в таком случае $P\frac{E\xi}{I}$, где P - периметр

В пределе строим круг диаметра l - он всегда пересечет линии стыка 2 раза, значит матожидание $E_o = P_o \frac{E\xi}{l} = 2$

Длина окружность $P_o=\pi l$, получаем $E\xi=\frac{2l}{P_o}=\frac{2l}{\pi l}=\frac{2}{\pi}$

Стандартное дискретное распределение

І. Распределение Бернулли

Распределение Бернулли B_p (с параметром 0)

 ξ - число успехов при одном испытании, p - вероятность успеха при одном испытании

$$\begin{array}{c|cccc} \xi & 0 & 1 \\ \hline p & 1 - P(A) & P(A) \end{array}$$

Матожидание: $E\xi = p$

Дисперсия: $D\xi = p(1-p) = pq$

Ex. Индикатор события $I_A \in \mathcal{B}_p$ как раз имеет распределение Бернулли, где p = P(A)

II. Биномиальное распределение

Биномиальное распределение $B_{n,p}$ (с параметрами n,p)

 ξ - число успехов в серии из n испытаний, p - вероятность успеха при одном испытании $p(\xi = k) = C_n^k p^k q^{n-k}, \ k = 0, 1, \dots, n \Longleftrightarrow \xi \in B_{n,p}$

Заметим, что $\xi=\xi_1+\xi_2+\cdots+\xi_n$, где $\xi_i\in B_p$ - число успехов при i-ой испытании

$$E\xi_i = p;$$
 $D\xi = pq$

$$E\xi = E\xi_1 + \dots + E\xi_n = p + \dots + p = \boxed{np}$$

$$D\xi = D\xi_1 + \dots + D\xi_n = pq + \dots + p\overline{q} = \boxed{npq}$$

III. Геометрическое распределение

Геометрическое распределение G_p (с параметром p)

 ξ - номер 1-ого успешного испытания в бесконечной серии

$$p(\xi = k) = q^{k-1}p, \ k = 1, 2, 3, \dots \Longleftrightarrow \xi \in G_p$$

Матожидание
$$E\xi = \sum_{k=1}^{\infty} kp(\xi = k) = \sum_{k=1}^{\infty} kq^{k-1}p = p\sum_{k=1}^{\infty} kq^{k-1} = p\sum_{k=1}^{\infty} (q^k)' = p\left(\sum_{k=1}^{\infty} (q^k)\right)' = p\left(\frac{1}{1-q}\right)' = \frac{p}{p^2} = \frac{1}{p}$$

$$E\xi^2 = \sum_{k=1}^{\infty} k^2 q_{k-1}p = p\sum_{k=1}^{\infty} k(k-1)q^{k-1} = pq\sum_{k=1}^{\infty} k(k-1)q^{k-2} + E\xi = pq(\sum_{k=1}^{\infty} q^k)'' + \frac{1}{p} = pq\left(\frac{1}{1-q}\right)'' + \frac{1}{p} = 2pq\frac{1}{(1-q)^3} + \frac{1}{p} = 2pq\frac{1}{p^3} + \frac{1}{p} = \frac{2q}{p^2} + \frac{1}{p}$$

$$D\xi = E\xi^2 - (E\xi)^2 = \frac{2q}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{q}{p^2}$$

IV. Распределение Пуассона

Распределение Пуассона Π_{λ} (с параметром $\lambda > 0$)

Def. Случайная величина ξ имеет распределение Пуассона с параметром $\lambda > 0$, если $p(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, 2, \dots$

Покажем корректность определения - докажем, что сумма нижней строки равна 1:

Ποκαπέκη κορρεκτήσετε οπρέχετεπμα – χοκαπέκη, 4το сумма παπίτε ετροκά μαβία τι
$$\sum_{k=0}^{\infty} p_k = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda_k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

$$E\xi = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda = np$$

$$E\xi^2 = \sum_{k=0}^{\infty} k^2 \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^k}{k!} + e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} = \lambda^2 e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda^2 e^{-\lambda} e^{\lambda} + \lambda e^{-\lambda} e^{\lambda} = \lambda^2 + \lambda$$

$$D\xi = E\xi^2 - (E\xi)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Задача о разорении игрока

Постановка задачи: играют 2 игрока, вероятность выигрыша первого игрока в одной игре равна p, q = 1 - p - вероятность его проигрыша (выигрыш второго)

В каждой игре разыгрывается 1 биткоин. Капитал первого игрока - k биткоинов, m-kбиткоинов - капитал второго

Найти вероятность разорения первого игрока

Траектория капитала первого игрока будет выглядить как-то так:

Пусть r_k - интересующая нас вероятность разорение игрока при капитале k (то есть достижения оси абсцисс на графике)

$$r_k = p \cdot r_{k+1} + q r_{k-1}$$

$$pr_{k+1}-r_k+(1-p)r_{k-1}=0, \quad r_0=1, r_m=0$$

$$p\lambda^2 - \lambda + (1 - p) = 0$$

$$D = 1 - 4p(1-p) = 4p^2 - 4p + 1 = (2p-1)^2$$

1 \pm (2p-1) \quad 2 - 2p \quad a

$$D = 1 - 4p(1 - p) = 4p^{2} - 4p + 1 = (2p - 1)^{2}$$
$$\lambda_{1,2} = \frac{1 \pm (2p - 1)}{2p}; \quad \lambda_{1} = 1; \lambda_{2} = \frac{2 - 2p}{2p} = \frac{q}{p}$$

Обозначим
$$\lambda = \frac{q}{p}$$

Рассмотрим два случая:

•
$$p \neq \frac{1}{2}$$

Тогда общее решение: $r_k = C_1 \lambda_1^k + C_2 \lambda_2^k = C_1 + C_2 \lambda^k$

Найдем частное решение:

$$\begin{cases} 1 = C_1 + C_2 \\ 0 = C_1 + C_2 \lambda^m \end{cases} \iff \begin{cases} C_1 = 1 - C_2 \\ 1 - C_2 + C_2 \lambda_m = 0 \end{cases} \iff \begin{cases} C_1 = 1 - C_2 \\ C_2 (1 - \lambda_m) = 1 \end{cases} \iff \begin{cases} C_1 = 1 - \frac{1}{1 - \lambda^m} = \frac{-\lambda^m}{1 - \lambda^m} \\ C_2 = \frac{1}{1 - \lambda^m} \end{cases}$$

Посмотрим, что будет происходит при бесконечной игре (то есть когда $m \to \infty$ - капитал неограничен)

 $1)\ p < q$, то есть $\lambda > 1$. Тогда $\lambda^m \to \infty$, $r_k = \frac{\lambda^k - \lambda^m}{1 - \lambda^m} = \frac{\frac{\lambda^k}{\lambda_m} - 1}{\frac{1}{1m} - 1} \xrightarrow[n \to \infty]{} 1$ - то есть первый игрок гарантированно разорится

2)
$$p > q$$
, то есть $\lambda < 1$. Тогда $\lambda^m \to 0$, $r_k = \frac{\lambda^k - \lambda^m}{1 - \lambda^m} \xrightarrow[n \to \infty]{} \lambda^k$ - то есть $r_k = \left(\frac{q}{p}\right)^k$

•
$$p = \frac{1}{2} \Longrightarrow D = 0$$

Тогда $\lambda_1 = \lambda_2 = 1$

Общее решение: $r_k = C_1 \lambda^k + C_2 k \lambda_k = C_1 + C_2 k$

Частное решение:

$$\begin{cases} 1 = C_1 \\ 0 = C_1 + C_2 m \end{cases} \iff \begin{cases} 1 = C_1 \\ -1 = C_2 m \end{cases} \iff \begin{cases} 1 = C_1 \\ C_2 = -\frac{1}{m} \end{cases}$$

При бесконечной игре:

 $r_k = 1 - \frac{k}{m} \xrightarrow[m \to \infty]{} 1$ - то есть при равной игре игрок неминуемо разорится

Случайное блуждание на прямой

Пусть в начальный момент времени находимся в начале координат. С вероятностью р идем на единицу вправо, с вероятностью q - влево

При $p = \frac{1}{2}$ мы рано или поздно попадем в любую точку числовой прямой

Можно привести аналогию с орлянкой: рано или поздно каждый игрок будет при сколь угодно большом выигрыше

Посмотрим на орлянку как на распределение Бернулли:

$$\begin{array}{c|cccc} \xi & -1 & 1 \\ \hline p & \frac{1}{2} & \frac{1}{2} \end{array}$$

$$E\xi = 0; \quad D\xi = 1$$

Пусть ξ - выигрыш первого после n игр.

$$E\xi = \sum_{i=1}^{n} E\xi_i = 0$$

$$D\xi = \sum_{i=1}^{n} D\xi_i = n$$

 $\sigma_{\xi} = \sqrt{n}$ - среднее квадратическое отклонение

Это означает, что при большом n CKO поглотит всю числовую прямую

$$\frac{S_n}{n} \to E\xi$$

Закон больших чисел в этой ситуации говорит, что точка останется у 0, однако в то же время она может оказаться на любой точке на числовой прямой

 $\mathit{Ex.}\ \Pi$ о n конвертам случайным образом раскладывается m писем. Случайная величина $\mathit{\xi}$ число писем в своих конвертах

 $\Box A_i$ - число i письма в своем конверте, $\xi_i = I_A = \begin{cases} 0, & i\text{-ое письмо в не своем конверте} \\ 1, & i\text{-ое письмо в своем конверте} \end{cases}$

$$\xi = \sum_{i=1}^{n} \xi_i$$

$$E\xi_i = P(A_i) = \frac{1}{n}$$

$$D\xi_i = pq = \frac{1}{n}(1 - \frac{1}{n}) = \frac{n-1}{n^2}$$

 $E\xi = \sum_{i=1}^{n} E\xi_{i} = 1\frac{1}{n} = 1$ - в среднем будет одно письмо в своем конверте

$$D\xi = D(\xi_1 + \dots + \xi_n) = \sum_{i=1}^n D\xi_i + 2\sum_{i < j} \text{cov}(\xi_i, \xi_j)$$

Найдем ковариацию:

Наидем ковариацию:
$$cov(\xi_i, \xi_j) = E\xi_i \xi_j - E\xi_i E\xi_j = \frac{1}{n(n-1)} - \frac{1}{n} \frac{1}{n} = \frac{n - (n-1)}{n^2(n-1)} = \frac{1}{n^2(n-1)}$$

Заметим, что для любых i,j,i < j: $\xi_i \xi_j = \begin{cases} 0, & \text{если хотя бы одно не в своем} \\ 1, & \text{если оба в своем} \end{cases}$

То есть $\xi_i \xi_j \in B_p$ и $E \xi_i \xi_j = P(\text{оба письма в своих}) = \frac{1}{n(n-1)}$

Получаем:
$$D\xi = n\frac{n-1}{n^2} + 2\frac{n(n-1)}{2}\frac{1}{n^2(n-1)} = \frac{n-1}{n} + \frac{1}{n} = 1$$

Функция распределения

Def. Функция распределения $F_{\xi}(x)$ случайной величины ξ называется функция $F_{\xi}(x) = P(\xi < x)$ F(x) - вероятность попадания в этот интервал

Ex.
$$\xi \in B_p$$
 $\frac{\xi \mid 0 \mid 1}{p \mid 1-p \mid p}$ $F_{\xi}(x) = \begin{cases} 0 & x \le 0, \\ 1-p & 0 < x \le 1, \\ 1 & x > 1 \end{cases}$

Свойства функции распределения

- 1) F(x) ограничена $0 \le F(x) \le 1$
- 2) F(x) неубывающая функция: $x_1 < x_2 \Longrightarrow F(x_1) \le F(x_2)$

$$x_1 < x_2 \Longrightarrow \{\xi < x_1\} \subset \{\xi < x_2\} \Longrightarrow p(\xi < x_1) \le p(\xi < x_2), \text{ то есть } F(x_1) \le F(x_2)$$

3) $p(\alpha \le \xi < \beta) = F(\beta) - F(\alpha)$

$$p(\xi < \beta) = p(\xi < \alpha) + p(\alpha \le \xi < \beta) \Longrightarrow F(\beta) = F(\alpha) + p(\alpha \le \xi < \beta)$$

Nota. Функция распределения F(x) - вероятность попадания в интервал ($-\infty$; x). Так как Борелевская σ -алгебра порождается такими интервалами, то распределение полностью задается этой функцией

4)
$$\lim_{x \to -\infty} F(x) = 0$$
; $\lim_{x \to +\infty} F(x) = 1$

Так как F(x) монотонна и ограничена, то эти пределы существуют. Поэтому достаточно доказать эти пределы для некоторой последовательности $x_n \to \pm \infty$

 $\exists A_n = \{n-1 \leq \xi < n, n \in v\}$ - несовместные события, так как $\mathbb{R} = \bigcup_{n=-\infty}^{\infty} A_n$, то по аксиоме

счетной аддитивности, вероятность $p(\xi \in \mathbb{R}) = 1 = \sum_{n=-\infty}^{\infty} P(A_n) = \lim_{N \to \infty} \sum_{n=-N}^{N} p(n-1 \le \xi < n) = \sum_{n=-\infty}^{\infty} P(A_n)$

$$\lim_{N\to\infty}\sum_{n=-N}^{N}(F(n)-F(n-1))=\lim_{N\to\infty}(F(N)-F(-N-1))=\lim_{N\to\infty}F(N)-\lim_{N\to\infty}F(N)=1$$
 $\Longrightarrow \lim_{N\to\infty}F(N)=1+\lim_{N\to\infty}F(N)$ Так как $\lim_{N\to\infty}F(N)\leq 1$ и $\lim_{N\to\infty}F(N)\geq 0$, то $\lim_{N\to\infty}F(N)=1$ и $\lim_{N\to\infty}=0$

5) F(x) непрерывна слева: $F(x_0 - 0) = F(x_0)$

Этот предел существует в силу монотонности и ограниченности функции, поэтому рассмотрим последовательность событий $B_n = \{x_0 - \frac{1}{n} \le \xi < x_0, n \in \mathbf{Z}\}$

Так как
$$B_1 \supset B_2 \supset \cdots \supset B_n \supset \ldots$$
 и $\bigcap_{n=1}^{\infty} B_n = \emptyset$

То по аксиоме непрерывности $p(B_n) \to 0$

$$P(B_n) = F(x_0) - F(x_0 - \frac{1}{n}) \to 0$$

$$F(x_0 - \frac{1}{n}) \to F(x_0)$$

$$\lim_{x \to x_0 - 0} F(x) = F(x_0)$$

6) Скачок в точке x_0 равен вероятности попадания в данную точку: $F(x_0+0)-F(x_0)=p(\xi=x_0)$ или $F(x_0+0)=p(\xi=x_0)+p(\xi< x_0)=p(\xi\leq x_0)$

Этот предел существует в силу монотонности и ограниченности функции, поэтому рассмотрим последовательность событий $C_n = \{x_0 \le \xi < x_0 + \frac{1}{n}, n \in \mathbb{Z}\}$

Так как
$$C_1 \supset C_2 \supset \cdots \supset C_n \supset \ldots$$
 и $\bigcap_{n=1}^{\infty} C_n = \emptyset$

То по аксиоме непрерывности
$$p(C_n) \to 0$$

 $P(C_n) = F(x_0 + \frac{1}{n}) - F(x_0) \to 0$

$$p(x_0 \le \xi < x_0 + \frac{n}{n}) + p(\xi = x_0) \to p(\xi = x_0)$$

$$F(x_0 + \frac{1}{n}) - F(x_0) \to p(\xi = x_0)$$

$$F(x_0 + 0) - F(x_0) \to p(\xi = x_0)$$

$$F(x_0 + 0) - F(x_0) \rightarrow p(\xi = x_0)$$

- 7) Если функция распределения непрерывна в точке $x = x_0$, то очевидно, что вероятность попадания в эту точка $p(\xi = x_0) = 0$ (следствие из 6 пункта)
- 8) Если F(x) непрерывна $\forall x \in \mathbb{R}$, то $p(\alpha \le \xi < \beta) = p(\alpha < \xi \le \beta) = p(\alpha \le \xi \le \beta) = p(\alpha < \xi \le \beta) = p(\alpha \le \xi \le \beta) = p(\alpha \le$ $F(\beta) - F(\alpha)$

Th. Случайная величина ξ имеет дискретное распределение тогда и только тогда, когда ее функция распределения имеет ступенчатый вид

Абсолютно непрерывное распределение

Def. Случайная величина ξ имеет абсолютно непрерывное распределение, если существует $f_{\xi}(x)$ такая, что $\forall B \in \mathcal{B}(\mathbb{R})$ $p(\xi \in B) = \int_{\mathbb{R}} f_{\xi}(x) dx$

Функция f_{ξ} называется плотностью распределения случайной величины

(в определении использует интеграл Лебега, так как В может быть не просто интервалом на \mathbb{R})

Свойства плотности и функции распределения абсолютно непрерывного распределения

- 1) Вероятносто-геометрический смысл плотности: $p(\alpha \le \xi < \beta) = \int_{-\infty}^{\beta} f_{\xi}(x) dx$
- 2) Условие нормировки: $\int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1$

Из определения, если $B = \mathbb{R}$

3)
$$F_{\xi}(x) = \int_B f_{\xi}(x) dx$$

Если
$$B=(-\infty;x),$$
 то $F_{\xi}(x)=p(\xi\in(-\infty;x))=\int_{-\infty}^{x}f_{\xi}(x)dx$

4) $F_{\xi}(x)$ непрерывна

Из свойства непрерывности интеграла с верхним переменным пределом

5) $F_{\xi}(x)$ дифференцируема почти везде и $f_{\xi}(x) = F'_{\xi}(x)$ для почти всех x

По теореме Барроу

- 6) $f_{\xi}(x) \geq 0$ по определению и как производная неубывающей $F_{\xi}(x)$
- 7) $p(\xi = x) = 0 \ \forall x \in \mathbb{R}$ так как $F_{\xi}(x)$ непрерывна
- 8) $p(\alpha \leq \xi < \beta) = p(\alpha < \xi < \beta) = p(\alpha \leq \xi \leq \beta) = p(\alpha < \xi \leq \beta) = F(\beta) F(\alpha)$
- 9) **Th.** Если $f(x) \le 0$ и $\int_{-\infty}^{\infty} f(x) dx$ (выполнены свойства 2 и 6), то f(x) плотность некоторого распределения

Числовые характеристики

Def. Математическим ожиданием $E\xi$ случайной абсолютно непрерывной величины ξ называется величина $E\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$ при условии, что данный интеграл сходится абсолютно, то есть $\int_{-\infty}^{\infty} |x| f_{\xi}(x) dx < \infty$

Def. Дисперсией $D\xi$ случайной величины ξ называется величина $D\xi = E(\xi - E\xi)^2 = \int_{-\infty}^{\infty} (x - E\xi)^2 f_{\xi}(x) dx$ при условии, что данный интеграл сходится Nota. Вычислять удобно по формуле $D\xi = E\xi^2 - (E\xi)^2 = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx - (E\xi)^2$

Def. Среднее квадратическое отклонение $\sigma_{\xi} = \sqrt{D\xi}$ определяется, как корень дисперсии Смысл этих величин такой же, как и при дискретном распределении. Также свойства аналогичны тем, что и при дискретном распределении

Другие числовые характеристики

$$m_k = E\xi^k = \int_{-\infty}^{\infty} x^k f_\xi(x) dx$$
 - момент k -ого порядка
$$\mu_k = E(\xi - E\xi)^k = \int_{-\infty}^{\infty} (x - E\xi)^k f_\xi(x) dx$$
 - центральный момент k -ого порядка

Def. Медианой Me абсолютно непрерывной случайной величины ξ называется значение случайной величины ξ , такое что $p(\xi < Me) = p(\xi > Me) = \frac{1}{2}$

 $\mathbf{Def.}$ Модой Mo случайной величины ξ называется точка локального максимума плотности

Сингулярное распределение

Def. Случайная величина ξ имеет случайное распределение, если $\exists B$ - Борелевское множество с нулевой мерой Лебега $\lambda(B)=0$, такое что $p(\xi\in B)\in 1$, но $P(\xi=x)=0 \ \forall x\in B$

Nota. Такое Борелевское множество состоит из несчетного множества точек, так как в протичном случае по аксиоме счетной аддитивности $p(\xi \in B) = 0$. То есть при сингулярном распределении случайная величина ξ распределена на несчетном множестве меры 0 *Nota.* Так как $p(\xi = x) = 0 \ \forall x, F_{\xi}$ непрерывна.

Ex. Сингулярное распределение получим, если возьмем случайную величину, функция распределения которой - лестница Кантора

$$F_{\xi}(x) = \begin{cases} 0 & x \le 0, \\ \frac{1}{2}F(3x) & 0 < x \le \frac{1}{3}, \\ \frac{1}{2} & \frac{1}{3} < x \le \frac{2}{3}, \\ \frac{1}{2} + \frac{1}{2}F(3x - 2) & \frac{2}{3} < x \le 1, \\ 1 & x > 1 \end{cases}$$

Th. Лебега.

 $\Box F_{\xi}(x)$ - функция распределения ξ . Тогда $F_{\xi}(x)=p_1F_1(x)+p_2F_2(x)+p_3F_3(x)$, где $p_1+p_2+p_3=1$

 F_1 - функция дискретного распределения

 ${\it F}_2$ - функция абсолютно непрерывного распределения

 ${\it F}_{
m 3}$ - функция сингулярного распределения

То есть существуют только дискретное, абсолютно непрерывное, сингулярное распределения и их смеси