CHAPITRE ECT2 – DOCUMENTS Bilan d'énergie lors d'une transformation d'un système thermodynamique

FIGURE 1 : Deux exemples de transformations thermodynamiques

Transformation	Variables internes (système)	Variables externes (milieu extérieur)
Isochore		
Isobare		
Isotherme		
Monobare		
Monotherme		

FIGURE 2: Nature des transformations thermodynamiques

> Exercice d'application 1

On considère une enceinte indéformable composée de deux compartiments séparés par une cloison étanche et mobile, contenant du gaz. Une cale bloque la cloison mobile. Toutes les parois sont diathermes. À partir de l'état d'équilibre initial, représenté à gauche sur la figure, on enlève la cale et on place l'enceinte dans un environnement à la température T_0 . Déterminer l'état d'équilibre final (à droite sur la figure).

> Exercice d'application 2

Deux moles de dioxygène, supposées parfaites, passent réversiblement d'un état d'équilibre A de paramètres thermodynamiques (P_A, V_A, T_A) à un état d'équilibre B de paramètres $(P_B = 3P_A, V_B, T_B = T_A)$.

- 1. Déterminer le volume final V_B .
- 2. Dans un diagramme de Clapeyron, tracer la trajectoire suivie lors des deux transformations suivantes, puis calculer le travail des forces pressantes en fonction de la température T_A :
 - (1): transformation isotherme de A à B
 - (2): transformation composée d'une isochore (A à C) puis d'une isobare (C à B).

Exercice d'application 3

Reprendre l'exercice d'application 2 et calculer le travail total sur le cycle ACBA puis sur le cycle ABCA.

Exercice d'application 4

Soit une mole de gaz parfait de température initiale T_0 et de capacités thermiques à volume constant C_V et à pression constante C_P . On chauffe le gaz grâce à une résistance R, parcourue par un courant I, pendant τ secondes.

- 1. Dans une première expérience, le gaz, de pression P_0 , est placé dans une enceinte adiabatique et rigide de volume V_0 . Déterminer la température finale T_f du gaz.
- 2. Dans une deuxième expérience, le gaz est placé dans une enceinte adiabatique horizontale de volume V_0 , fermée par un piston pouvant coulisser sans frottement. La pression de l'atmosphère est P_0 . Déterminer la température finale T_f du gaz.

Exercice d'application 5 : retour à la problématique

Une brique, initialement chauffée à la température T_0 , est placée dans une atmosphère plus fraîche, à la température constante T_{air} . On suppose qu'elle est posée sur le sol adiabatique et on note S la surface totale de la brique en contact avec l'air. On note R_{th} sa résistance thermique et C sa capacité thermique. Déterminer la loi d'évolution de la température T(t), supposée uniforme dans toute la brique.

	Solide / gaz	Solide / eau liquide
$h\left(\mathrm{W.K^{\scriptscriptstyle{-1}}.m^{\scriptscriptstyle{-2}}}\right)$ sans convection forcée	5 à 30	$4.10^2 \ { m a} \ 10^3$
$h\left(\mathrm{W.K^{-1}.m^{-2}}\right)$ avec convection forcée	$10~{\rm \grave{a}}~3.10^2$	$3.10^2~{\rm a}~12.10^3$

FIGURE 3 : Ordres de grandeur du coefficient de transfert thermique h

	Électricité	Thermique
Loi d'ohm		
Dérivation		
temporelle		

FIGURE 4 : Analogie thermoélectrique

Gaz parfait	C_{Vm}	C_{Pm}	γ	Conditions
GPM				
GPP				

FIGURE 5 : Capacités thermiques et coefficient γ d'un gaz parfait