XIII Circuits à Courant Alternatif: Déphasage, Représentation de Fresnel, Phaseurs, et Réactance

XIII.1 Source de f.é.m. alternative

Exemple Centrale Électrique

Avec $v_{0R} = i_0 R$

XIII.2 Circuits AC simples

XIII.2.1 Circuits à une résistance

$$\begin{aligned} v_R &= v & \text{Kirchhoff} \\ v_R &= Ri & \text{Ohm} \\ \Rightarrow v &= Ri \\ &= \frac{v_{0R}}{R} \sin(\omega T + \varphi) \\ &= i_0 \sin(\omega t + \varphi) \end{aligned}$$

i et v_R ont la même fréquence $f=\frac{\omega}{2\pi}$ et sont en phase.

XIII.2.2 Circuits à un condensateur

$$v_{C} = v$$
 Kirchhoff
$$v_{C} = \frac{q}{C}$$
 Chap X
$$i = \frac{dq}{dt} \qquad q \to i$$

$$\Rightarrow dq = idt = i_{0} \sin(\omega t) dt$$

$$\Leftrightarrow q = \frac{-i_{0}}{\omega} \cos(\omega t) = \frac{i_{0}}{\omega} \sin(\omega t - \frac{\pi}{2})$$

$$\Rightarrow v = \frac{i_{0}}{\omega C} \sin(\omega t - \frac{\pi}{2}) = v_{0C} \sin(\omega t - \frac{\pi}{2})$$
 Avec
$$v_{0C} = \frac{i_{0}}{\omega C}$$

i et v_C ont la même fréquence $f=\frac{\omega}{2\pi}$ mais ne sont pas en phase. Il y a un déphasage de $\varphi=\frac{\pi}{2}.$ vC est en retard par rapport à i d'un angle $\frac{\pi}{2}$.

XIII.2.3 Circuits à un inducteur

Note – Loi de Lenz et Loi d'Ohm Une bobine s'oppose au passage du courant alternatif. Ce comportement est similaire à une résistance qui s'oppose au passage du courant continu.

Ohm :
$$V_A - V_B = RI$$

Lenz : $V_A - V_B = L\frac{di}{dt}$

$$v = L\omega i_0 \cos(\omega t)$$

$$= L\omega i_0 \sin(\omega t + \frac{\pi}{2})$$

$$= v_{0L} \sin(\omega t + \frac{\pi}{2})$$
Avec $v_{0L} = i_0 \omega L$

i et v_L ont la même fréquence $f=\frac{\omega}{2\pi}$ mais ne sont pas en phase. Il y a un déphasage de $\varphi=\frac{\pi}{2}.$ v_L devance i d'un angle $\frac{\pi}{2}$.

XIII.3 Circuit AC RLC en série

Circuit RLC Circuit comportant une résistance R, un inducteur L, et un capaciteur C en série.

Un même courant i circule dans le circuit.

$$i_R = i_C = i_L = i = i_0 \sin(\omega t)$$

D'où on trouve les tensions suivantes:

$$\begin{aligned} v_R &= Ri_0 \sin(\omega t) = v_{0R} \sin(\omega t) \\ v_C &= \frac{1}{\omega C} i_0 \sin(\omega t - \frac{\pi}{2}) = v_{0C} \sin(\omega t - \frac{\pi}{2}) \\ v_L &= \omega Li_0 \sin(\omega t + \frac{\pi}{2}) = v_{0L} \sin(\omega t + \frac{\pi}{2}) \end{aligned}$$

Par la loi des Mailles:

$$v_{\text{source}} = v_R + v_C + v_L$$

XIII.4 Représentation de Fresnel

Vecteur de Fresnel Une tension $v = v_0 \sin(\omega t + \varphi)$ est représentée dans le plan Oxy par un vecteur de longueur égale à l'amplitude de la tension v_0 faisant un angle $\omega t + \varphi$ avec l'axe Ox.

La tension intantanée est donnée par v_y :

$$v_y = v_0 \sin(\omega t + \varphi)$$

 $v_{
m source}$ devient une relation entre les composantes y des vecteurs représentant les trois différentes tensions instantanées:

$$v_y = V_{Ry} + V_{Cy} + v_{Ly}$$

Trouver la tension instantanée Revient à faire la somme des vecteurs v_R , v_C , et v_L et de projeter la résultante v_0 sur l'axe Oy.

Avec v_0 l'amplitude de v donnée par:

$$v_0 = \sqrt{(v_{0L} - v_{0C})^2 + v_{O_R}^2}$$

Et φ l'angle que v fait avec i donné par:

$$\cos \varphi = \frac{v_{0R}}{v_0}$$
 ou $\tan \varphi = \frac{v_{0L} - v_{0C}}{v_{0R}}$

XIII.5 Phaseurs

Représentation dans le plan complexe On représente la tension par un point complexe qui est l'extrémité du vecteur de Fresnel

$$z = x + jy$$
 où $j = \sqrt{-1}$

$$\Rightarrow z = v_0[\cos(\omega t + \varphi) + j\sin(\omega t + \varphi)]$$
$$= v_0 e^{j(\omega t + \varphi)} = v_0 e^{j\omega t} e^{j\varphi}$$

La tension instantanée est donnée par:

$$v = \Im\{v_0 e^{j(\omega t + \varphi)}\}\$$

Phaseur Dans la représentation de Fresnel, la relation de phase entre les différentes tensions reste constante. On peut donc travailler avec le phaseur \tilde{v} : un nombre complexe associé à une tension instantanée d'amplitude v_0 et de phase φ .

$$\tilde{v} = v_0 e^{j(\omega t + \varphi)}$$

XIII.5.1 Circuit RLC

On a les phaseurs suivants:

$$\tilde{v}_R = v_{0R} \qquad \text{car } \varphi = 0$$

$$\tilde{v}_C = v_{0C}e^{-j\frac{\pi}{2}} = -v_{0C}j \qquad \text{car } \varphi = \frac{-\pi}{2}$$

$$\tilde{v}_L = v_{0L}e^{j\frac{\pi}{2}} = v_{0L}j \qquad \text{car } \varphi = \frac{\pi}{2}$$

$$\Rightarrow \tilde{v} = \tilde{v}_R + \tilde{v}_C + \tilde{v}_L$$

$$= v_{0R} + (v_{0L} - v_{0C})j$$

On en déduit l'amplitude v_0 et la phase φ :

$$v_0 = |\tilde{v}| = \sqrt{v_{0R}^2 + (v_{0L} - v_{0C})^2}$$

 $\cos \varphi = \frac{\Re{\{\tilde{v}\}}}{|\tilde{v}|} = \frac{v_{0R}}{v_0}$

XIII.6 Réactance

XIII.6.1 Réactance Capacitive

Quantifie la manière dont un condensateur freine le courant. X_C exprimé en Ohm (Ω) .

$$X_C = \frac{v_{0C}}{i_0}$$

$$X_C = \frac{1}{\omega C}$$
 avec $i_0 = \omega C v_{0C}$

 X_C diminue lorsque ω augmente. Plus la fréquence est frande, moins les charges ont le temps de s'accumuler sur les armatures du condensateur, et moins ce dernier freine l'accès aux électrons.

Courant DC Pour un courant DC: $\omega = 0$. Ceci mène à une réactance capacitive qui tend vers $+\infty$.

XIII.6.2 Réactance Capacitive

Quantifie la manière dont un inducteur freine le courant. X_L exprimé en Ohm (Ω) .

$$X_C = \frac{v_{0L}}{i_0}$$

$$X_C = \omega L \quad \text{avec} \quad i_0 = \frac{v_{0L}}{\omega L}$$

