Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization Dongze Lian^{1*}. Jing Li^{1*}. Jia Zheng¹. Weixin Luo^{1,2}. Shenghua Gao¹

Dongze Lian^{1*}, Jing Li^{1*}, Jia Zheng¹, Weixin Luo^{1,2}, Shenghua Gao¹

¹ShanghaiTech University ²Yoke Intelligence

LONG BEACH CALIFORNIA June 16-20, 2019

Introduction:

- > Crowd counting: Estimate the number of persons in images or videos.
- Recent methods: density map regression (cannot give the position of heads)
- Ours: revisiting detection-based method.

> Challenges:

- Underestimation: the number of detected heads is much smaller than the total number of heads [1] (especially for tiny heads);
- ground-truth annotation: heavy workload than point annotation.

> Contributions:

- A regression guided detection network (RDNet) for RGB-D crowd counting and localization;
- Depth-adaptive kernel for density map generation, depth-anchor for anchor initialization, Depth-based bounding boxes ground-truth generation for training [figure (b)];
- A large-scale RGB-D crowd counting dataset (ShanghaiTechRGBD);
- Our method can be easily extended to RGB based counting and localization.

Our approach:

Density map regression module:

Fixed-kernel density map:

$$\mathcal{D}(x) = \sum_{i=1}^{N} \delta(x - x_i) * G_{\sigma}(x).$$

• Depth-adaptive density map:

$$\frac{r}{R} = \frac{s_2}{s_1} = \frac{f}{d}$$

$$\sigma = \beta r = \beta \frac{Rf}{d} = \beta \frac{\gamma}{d}.$$

> Detection module:

- Density map guided classification:
- Decoding layer l ($l=1,\ldots,L$), head size $[r_1,r_2]$, corresponding depth $d \in [\frac{\gamma}{r_2},\frac{\gamma}{r_1}]$
- Masked density map: $D_l^A = D^A \odot M_l$
- Depth-aware anchor: $H(m,n)=rac{\gamma}{d(m,n)}$ for anchor initialization.
- Generation of bounding box for training:
- Bounding boxes: $\mathcal{B} = \{b_1, ..., b_N\}$ for N heads. Head width: $w_i = \frac{\gamma}{d_i}$,

> Network architecture:

Dataset:

> Our ShanghaiTechRGBD dataset:

- 2,193 images with 144,512 annotated head counts;
- 1,193 images for training.

Table 1. Comparisons of ShanghaiTechRGBD with some existing datasets: **Num** is the number of images; **Max** is the maximal crowd count within one image; **Min** is the minimal crowd count; **Ave** is the average crowd count; **Total** is total number of labeled heads.

	Dataset		Resolution	Num	Max	Min	Ave	Total	Modality
	CBSR [36]	Dataset 1	240×320	2834	7	0	1.6	4,541	Depth
		Dataset 2	240×320	1500	7	0	1	1,553	RGB + depth
	MICC [1] ShanghaiTechRGBD		480×640	3358	11	0	5.32	17,630	RGB + depth
			1080×1920	2193	234	6	65.9	144,512	RGB + depth
	·	·	·	•	•	•	•	•	•

Experiments:

> Counting and localization:

- AP_det for head detection evaluation [2];
- AP_loc for localization evaluation [3].

if dist $\leq \theta$

> Visualization:

> Reference:

[1] Jiang Liu, Chenqiang Gao, Deyu Meng, and Alexander G Hauptmann. Decidenet: Counting varying density crowds through attention guided detection and density estimation, in CVPR 2018.

[2] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal Loss for Dense Object Detection. In ICCV, 2017.

[3] Haroon Idrees, Muhmmad Tayyab, Kishan Athrey, Dong Zhang, Somaya Al-Maadeed, Nasir Rajpoot, and Mubarak Shah. Composition loss for counting, density map estimation and localization in dense crowds. In ECCV 2018.

Code & dataset