2021-2 MATLAB 3주차

그래프

Curriculum

- 1. 소개 및 기본 사용법
- 2. 벡터, 행렬
- 3. 그래프
- 4. 제어문(조건문, 반복문)
- 5. 함수, 방정식
- 6. 미분방정식
- 7. 제어공학 기초

plot

✓ 2차원 선 플롯

✓ plot(X, Y, ···): Vector/Matrix, X의 크기와 Y의 크기가 같아야 함

✓ plot(Y, ···): Vector/Matrix/복소수

✓ line, axis, hold

plot(...)

✓ plot(X, Y, LineSpec)

- ✓ LineSpec에 들어갈 수 있는 항목 : 선스타일, 마커, 색 ex) plot(X, Y, 'o')
- ✔ 여러 개의 그래프를 그릴 때에는 hold on 추가
- ✔ 다음 페이지에 LineSpec에 해당하는 항목들을 정리

LineSpec

선 스타일	설명
-	실선
	파선
:	점선
	일점 쇄선

마커	설명
'o'	원
'+'	플러스 기호
**	별표
1.1	점
'x'	십자
'_'	가로선
11.	세로선
's'	정사각형
'd'	다이아몬드
141	위쪽 방향 삼각형
'v'	아래쪽 방향 삼각형
'>'	오른쪽 방향 삼각형
'<'	왼쪽 방향 삼각형
'p'	펜타그램
'h'	헥사그램

색	설명
у	노란색
m	자홍색
С	녹청색
r	빨간색
g	녹색
b	파란색
W	흰색
k	검은색

이름-값 쌍의 인수

ex) plot(X, Y, 'Marker', 'o', 'MarkerFaceColor', 'red')

- 1. LineStyle 선 스타일 (default '-')
- 2. LineWidth 선 너비 (default 0.5)
- 3. Marker 마커 기호 (default 'none')
- 4. MarkerIndices 마커를 표시할 데이터 점의 인덱스
- 5. MarkerEdgeColor 마커 윤곽선 색
- 6. MarkerFaceColor 마커 채우기 색 (default 'none')
- 7. MarkerSize 마케 크기 (default 6)

<u>axis</u>

축 간격, 범위 등을 조절하는 함수

- ✓ axis([0 2*pi -1.5 1.5]): $0 \le x \le 2\pi$, $-1.5 \le y \le 1.5$
- ✓ axis equal: 축 간격이 동일해짐
- ✓ axis square: 축 길이가 동일해짐

기타 다른 함수들

- ✔ line(X, Y): 기본적으로 plot과 매우 유사, hold on 필요 없음
- ✓ subplot(m,n,p): $m \times n$ 개의 그래프 중 p 번째
- ✓ title(titletext): 그래프에 제목 추가
- ✔ xlabel(txt), ylabel(txt): 축 이름 추가
- ✓ legend(label1, ···, labeln): 범례

예제1

 $y = \sin x$ 를 30도 만큼 회전한 그래프를 그리시오.

예제1

 $-5 \le x \le 5$ (n = 1000) 에서 sigmoid g(x) 함수의 그래프를 그리시오.

$$g(x) = \frac{1}{1 + \exp(-x)}$$

<u>예제2</u>

 $G(s) = \frac{1+sT_2}{1+sT_1}$, $T_1 = 10$, $T_2 = 5$ 의 Nyquist plot을 그려라.

Nyquist plot: $s=j\omega\left(j=\sqrt{-1}\right)$ 일 때, G를 복소평면에 나타낸 것

 $-\infty \le \omega \le \infty$ 범위에서 그려야 하지만, 여기서는 $-10 \le \omega \le 10$ (n = 2000)

예제3

DH parameter를 사용하여 로봇의 모습을 구현하시오.

 T_n^m : n번째 joint 좌표(m번째 joint 좌표계에 대해서, m=0 이면 원점)

$$T(x,y,z) = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
: Olsing:

$$R(\theta) = egin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \ \sin \theta & \cos \theta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$
: 회전행렬

<u>예제3</u>

팔길이
$$a_1 = 15, a_2 = 15$$
 팔의 각도 $\theta_1 = 45^\circ, \theta_2 = -30^\circ$
$$T_1^0 = R(\theta)T(a_1, 0, 0), \qquad T_2^1 = R(\theta)T(a_2, 0, 0), \qquad T_2^0 = T_1^0T_2^1$$

 T_1^0 에서 1행 4열 값이 joint1의 x좌표, 2행 4열 값이 joint1의 y좌표이고, T_2^0 에서 1행 4열 값이 joint2의 x좌표, 2행 4열 값이 joint2의 y좌표이다.

