Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of the claims in the application:

Listing of Claims:

1. (Currently Amended) A liquid vegetable oil composition, comprising:

at least about 88 weight percent, based on the total weight of the oil composition, of an interesterified liquid structured lipid component that displays a solids fat content that is substantially liquid at 10°C, said interesterified liquid structured lipid component being an all-vegetable component;

said liquid structured lipid component is a <u>randomization</u> reaction product <u>by</u> <u>which fatty acid moieties are interchanged</u> of an interesterification reactant charge, said reactant charge having between about 30 and about 60 weight percent, based upon the total weight of the charge, of a medium chain vegetable triglyceride, reacted with between about 40 and about 70 weight percent, based upon the total weight of the charge, of a long chain domestic vegetable oil triglyceride having fatty acid chains of at least C16 in length, the randomization reaction product having interchanged fatty acid moieties that vary randomly from glycerol structure to glycerol structure:

said medium chain triglyceride is selected from the group consisting of caprylic triglyceride, capric triglyceride, and combinations thereof, and wherein said domestic oil is selected from the group consisting of soybean oil, corn oil, cottonseed oil, canola oil, olive oil, peanut oil, safflower oil, sunflower oil, oil from grain plants, and combinations thereof;

between about 2 and about 12 weight percent, based on the total weight of the oil composition, of a phytosterol ester component;

said liquid structured lipid component has a Brookfield viscosity at 20°C of between about 20 and about 52 centipoise and a smoke point of at least about 195°C (at least about 383°F); and

said vegetable oil composition of liquid structured lipid and phytosterol ester component is a liquid oil composition that reduces cholesterol adsorption in individuals.

- 2. (Original) The composition in accordance with claim 1, wherein said structured lipid component comprises at least about 90 weight percent of the oil composition, and said phytosterol ester component comprises up to about 10 weight percent of the oil composition, both based upon the total weight of the oil composition.
- 3. (Original) The composition in accordance with claim 1, wherein said structured lipid component comprises at least about 92 weight percent of the oil composition, based upon the total weight of the oil composition.
- 4. (Original) The composition in accordance with claim 1, wherein said structured lipid component comprises up to about 96 weight percent of the oil composition, based upon the total weight of the oil composition.
- 5. (Original) The composition in accordance with claim 1, wherein said structured lipid component comprises between about 92 and about 94 weight percent of the oil composition, based upon the total weight of the oil composition.
- 6. (Cancelled)
- 7. (Cancelled)
- 8. (Original) The composition in accordance with claim 1, wherein said medium chain triglyceride amount is between about 35 and about 55 weight percent of the interesterification charge, and the amount of the domestic oil is between about 45 and about 65 weight percent of the charge.
- 9. (Previously Presented) The composition in accordance with claim 1, further including an edible carrier component administered to an individual at a level of at least about 0.4 grams of said oil composition per kilogram of body weight per day.

10. (Cancelled)

- 11. (Original) The composition in accordance with claim 1, wherein said structured lipid component has a smoke point of at least about 205°C (greater than about 400°F).
- 12. (Original) The composition in accordance with claim 1, wherein said phytosterol ester component has no greater than about 20% by weight, based upon the total weight of the phytosterol ester component, of a phytosterol.
- 13. (Original) The composition in accordance with claim 1, wherein said oil composition reduces total cholesterol adsorption in individuals.
- 14. (Cancelled)
- 15. (Previously Presented) The composition in accordance with claim 1, wherein said liquid oil composition is a clear liquid and remains a clear liquid for at least about six months of storage at about 21°C.
- 16. (Original) The composition in accordance with claim 1, wherein said oil composition has sensory attributes which are not significantly different from, or are significantly superior to, corresponding sensory properties of canola oils which do not have a phytosterol component.
- 17. (Original) The composition in accordance with claim 1, wherein said oil composition has sensory attributes which are not significantly different from, or are significantly superior to, corresponding sensory properties of olive oils which do not have a phytosterol component.
- 18. (Cancelled)
- 19. (Cancelled)

- 20. (Previously Presented) The composition in accordance with claim 1, wherein said structured lipid component and said phytosterol ester component provide an oil composition which has a Brookfield viscosity at 20°C of between about 20 and about 52 centipoise.
- 21. (Previously Presented) The composition in accordance with claim 1, wherein said structured lipid component comprises at least about 88 weight percent of the oil composition, based upon the total weight of the oil composition.
- 22. (Previously Presented) The composition in accordance with claim 1, wherein said structured lipid component comprises up to about 98 weight percent of the oil composition, based upon the total weight of the oil composition.
- 23. (Previously Presented) The composition in accordance with claim 1, wherein said structured lipid component of the composition comprises between about 90 and about 96 weight percent of the composition, based upon the total weight of the oil composition.
- 24. (Original) The composition in accordance with claim 20, wherein said structured lipid component comprises between about 92 and about 94 weight percent of the composition, based upon the total weight of the oil composition.
- 25. (Original) The composition in accordance with claim 20, wherein said medium chain triglyceride amount is between about 35 and about 55 weight percent of the interesterification charge, and the amount of the domestic oil is between about 45 and about 65 weight percent of the charge.
- 26. (Cancelled)
- 27. (Original) The composition in accordance with claim 20, wherein said structured lipid has a smoke point of at least about 205°C (greater than about 400°F).

28. (Cancelled)

29. (Previously Presented) The composition in accordance with claim 20, wherein said medium chain triglyceride amount is up to about 60 weight percent of the interesterification charge, and the amount of the domestic oil is at least about 40 weight percent of the charge.

Claims 30 to 36. (Cancelled)

37. (Currently Amended) A method for making a health and nutrition promoting liquid vegetable oil composition, comprising:

providing a medium chain vegetable oil;

providing domestic vegetable oil triglyceride having carbon chain lengths of between C16 and C22;

introducing a reactant charge to a reaction location, the reactant charge including between about 30 and about 60 weight percent of the medium chain vegetable oil triacylglyceride and between about 40 and about 70 weight percent of said domestic vegetable oil triglyceride, based upon the total weight of the reactant charge, said medium chain triglyceride is selected from the group consisting of caprylic triglyceride, capric triglyceride, and combinations thereof, and wherein said domestic oil is selected from the group consisting of soybean oil, corn oil, cottonseed oil, canola oil, olive oil, peanut oil, safflower oil, sunflower oil, oil from grain plants, and combinations thereof;

interesterifing by randomization that interchanges fatty acid moieties of said reactant charge into an interesterified liquid structured lipid component that is a randomization reaction product having interchanged fatty acid moieties that vary randomly from glycerol structure to glycerol structure, is an all-vegetable component and displays a solids fat content that is substantially liquid at 10°C; and

combining said all-vegetable interesterified liquid structured lipid component with a phytosterol ester component to provide an oil composition which is consumable by an individual and which promotes health and nutrition of that individual by reducing LDL

cholesterol adsorption by the individual, said combining being such that the oil composition is a liquid oil composition that has a Brookfield viscosity at 20°C of between about 20 and about 52 centipoise has a smoke point of at least about 195°C (at least about 383°F), and contains at least about 88 weight percent structured lipid component and between about 2 and about 10 weight percent phytosterol ester component, based on the total weight of the oil composition.

- 38. (Cancelled)
- 39. (Cancelled)
- 40. (Currently Amended) A method for using a medium chain triglyceride in a health and nutrition promoting liquid oil composition, comprising:

providing a medium chain vegetable oil triglyceride;

providing domestic vegetable oil triglyceride having carbon chain lengths of between C16 and C22;

introducing a reactant charge to a reaction location, the reactant charge including between about 30 and about 60 weight percent of the medium chain vegetable oil triglyceride and between about 40 and about 70 weight percent of said domestic vegetable oil triglyceride, based upon the total weight of the reactant charge, said medium chain triglyceride is selected from the group consisting of caprylic triglyceride, capric triglyceride, and combinations thereof, and wherein said domestic oil is selected from the group consisting of soybean oil, corn oil, cottonseed oil, canola oil, olive oil, peanut oil, safflower oil, sunflower oil, oil from grain plants, and combinations thereof;

interesterifing by randomization that interchanges fatty acid moieties of said reactant charge into an interesterified liquid structured lipid component that is a randomization reaction product having interchanged fatty acid moieties that vary randomly from glycerol structure to glycerol structure, is an all-vegetable component and displays a solids fat content that is substantially liquid at 10°C;

combining said all-vegetable interesterified liquid structured lipid component with a phytosterol ester component to provide a health and nutrition promoting composition

that is a liquid oil composition having between about 2 and about 12 weight percent of the phytosterol ester component, having a single point of at least about 195°C (at least about 383°F), and having a Brookfield viscosity at 20°C of between about 20 and about 52 centipoise; and

administering the composition to an individual in order to promote the health and nutrition of that individual by reducing LDL cholesterol adsorption by the individual.

- 41. (Previously Presented) The method in accordance with claim 40, wherein said liquid oil composition has a smoke point of at least about 205°C (greater than about 400°F).
- 42. (Cancelled)
- 43. (Previously Presented) The method in accordance with claim 40, comprising combining at least about 88 weight percent of the structured lipid component, based upon the total weight of the composition, with the phytosterol ester component.
- 44. (Original) The method in accordance with claim 40, comprising combining at least about 90 weight percent of the structured lipid component and up to about 10 weight percent of the phytosterol component, both based upon the total weight of the oil composition.
- 45. (cancelled)
- 46. (Original) The method in accordance with claim 40, wherein said administering is at a level of at least about 0.4 grams of said oil composition per kilogram of body weight of the individual.
- 47. (Original) The method in accordance with claim 40, wherein said oil composition is a clear liquid and remains a clear liquid for at least about six months of storage at about 21°C.

48. (Original) The method in accordance with claim 40, wherein said oil composition has sensory attributes which are not significantly different from, or are significantly superior to, corresponding sensory properties of canola oils or olive oils which do not have a phytosterol component.