Hjälpmedel: bifogat formelblad

Tele: Milena Anguelova

0762-721860

Lärares närvaro i sal: 9.30 och 11.30

Tentamen i MVE 015 Analys i en variabel I, 5 p, 05 12 12, kl 8.30–12.30.

1. Beräkna

(a)
$$\int \frac{\sin x}{3 + \sin^2 x} dx$$
 (b) $\int_1^\infty \frac{\arctan t}{t^2} dt$ om den konvergerar.

Motivera i (b) annars att den divergerar.

3p+4p

2. Lös differentialekvationerna

(a)
$$(1+x^2)y' - x\sqrt{y} = 0$$
, $y(0) = 1$ (b) $y'' - 2y' + y = x$, $y(0) = 0$, $y'(0) = -1$.

3p+4p

3. Bestäm Taylorpolynomet av ordning 3 kring x = 4 till

$$f(x) = \frac{1}{1+x}.$$

6p

- 4. Avgör om $f(x) = e^{x^4} 1 x^2 \sin(x^2)$ har ett lokalt maximum eller minimum (eller ingetdera) i x = 0.
- 5. Motivera att serien

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{3(2k+1)2^{2k+1}}$$

är konvergent och uttryck dess summa med hjälp av elementära funktioner. Är serien absolutkonvergent? Motivera!

6p

6. Strömmen y(t) i en elektrisk krets vid pålagd spänning f(t) löser ekvationen

$$y'(t) + 4y(t) + 5 \int_0^t y(\xi) d\xi = f(t),$$

när $t \ge 0$. Man vet att y(0) = f(0) = 0. Bestäm Laplacetransformen $\tilde{y}(s)$ till y med hjälp av Laplacetransformen för f(t). Vad är y(t) om $f(t) = u(t-1)e^{1-t}$?

6p

2p

7. I uppgiften förutsätts en deriverbar parametriserad kurva (x(t), y(t)) vara given.

- (a) Vad menas med farten till den parametriserade kurvan när $t = t_0$.
- (b) Hur beräknas (generellt) längden av kurvan när $a \le t \le b$?

2p

(c) Beräkna längden av kurvan (t^2, t^3) när 0 < t < 1.

2p

8. Visa att en absolutkonvergent serie är konvergent.

6р

Förslag till lösningar kommer att finnas på kursens webbsida

http://www.math.chalmers.se/Math/Grundutb/CTH/mve015/0506/

Betygsgränser: 20p för trea, 30p för fyra och 40p för femma (inklusive bonus från laborationer i MATLAB).

JAS

FORMELBLAD PÅ BAKSIDAN!

Formelblad

Trigonometriska formler

$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y \qquad \sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y \qquad \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$$

$$\cos x \cdot \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y)) \qquad \sin x \cdot \cos y = \frac{1}{2}(\sin(x+y) + \sin(x-y)) \qquad \cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin x \cdot \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)) \qquad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

Maclaurinserier

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{k}}{k!} + \dots \quad \text{för alla } x$$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k}}{2k!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{k} \frac{x^{2k}}{(2k)!} + \dots \quad \text{för alla } x$$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} = \frac{x^{1}}{1!} - \frac{x^{3}}{3!} + \dots + (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + \dots \quad \text{för alla } x$$

$$\ln(1+x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{k+1}}{k+1} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{k} \frac{x^{k}}{k} + \dots \quad \text{när } |x| < 1$$

$$\arctan x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1} = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + (-1)^{k} \frac{x^{2k+1}}{2k+1} + \dots \quad \text{när } |x| < 1$$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^{k} = 1 + \alpha x + {\alpha \choose 2} x^{2} + \dots + {\alpha \choose k} x^{k} + \dots \quad \text{när } |x| < 1$$

Lapalcetransformen

Räkneregler Transformer

$\int f(t)$	$ ilde{f}(s)$	f(t)	$\tilde{f}(s)$
f'(t)	$s\tilde{f}(s) - f(0)$	1	$\left \frac{1}{s} \right $
$f^{(n)}(t)$	$s^{n}\tilde{f}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{n-2}(0) - f^{n-1}(0)$	t^n	$\left \frac{n!}{s^{n+1}} \right $
$t^n f(t)$	$(-1)^n \tilde{f}^{(n)}(s)$	e^{at}	$\left \frac{1}{s-a} \right $
(f*g)(t)	$ ilde{f}(s) ilde{g}(s)$	$\cos bt$	$\frac{s}{s^2 + b^2}$
f(t+p) = f(t) för alla t	$\frac{1}{1 - e^{-ps}} \int_0^p f(t)e^{-st} dt$	$\sin bt$	$\left \begin{array}{c} b \\ \hline b \\ \hline s^2 + b^2 \end{array} \right $
$u(t-a)f(t-a) \operatorname{där} a > 0$	$e^{-as}\tilde{f}(s)$		
$e^{at}f(t)$	$ ilde{f}(s-a) $		