Les suites

1^{re} Spécialité mathématiques Algèbre - Cours

Généralités

1. Introduction

Définitions :

Une suite numérique u est une fonction $u:n\mapsto u(n)$ définie pour tout entier naturel n (ou tout entier naturel $n \geq k$, k étant un entier naturel).

- u(n) ou u_n s'appelle le terme de rang n (ou le terme général de la suite). u désigne la suite elle-même, elle peut être noté aussi (u_n) . n est l'indice (ou le rang). u_{n-1} est le terme précédant u_n . u_{n+1} est le terme suivant u_n .

 - u_0 (ou parfois u_1) est le terme initial (ou le premier terme).

2. Différents modes de génération d'une suite

Définition :

Une suite est définie de façon explicite lorsqu'on peut calculer n'importe quel terme de la suite directement en fonction de n

Soit la suite u définie par $u_n=12+2n$ pour tout entier naturel.

On calcule ses premiers termes :

$$u_0 = 12 + 2 \times 0 = 12$$
 $u_3 = 12 + 2 \times 3 = 18$
 $u_1 = 12 + 2 \times 1 = 14$ $u_4 = 12 + 2 \times 4 = 20$
 $u_2 = 12 + 2 \times 2 = 16$ $u_5 = 12 + 2 \times 5 = 22$

Définition:

Lorsqu'une suite est définie par la donnée de son premier terme et d'une relation qui permet de calculer chaque terme en fonction du terme précédent, on dit que la suite est définie par récurrence. On donne l'expression de u_{n+1} en fonction de u_n .

Cette relation s'appelle relation (ou formule) de récurrence.

Exemple:

Soit
$$F$$
 la suite définie par
$$\left\{ \begin{array}{ll} F_0=0\\ F_1=1\\ F_{n+1}=F_{n-1}+F_{n-2} \end{array} \right.$$
 pour tout $n\geq 2$.

Cette suite s'appelle la suite de Fibonacci. Elle est définie par une relation de récurrence d'ordre 2, c'est à dire que chaque terme de la suite est la somme des deux termes qui le précèdent.

$$F_2 = 1 + 0 = 1$$
 $F_4 = 2 + 1 = 3$ $F_6 = 5 + 3 = 8$ $F_8 = 13 + 8 = 21$ $F_3 = 1 + 1 = 2$ $F_5 = 3 + 2 = 5$ $F_7 = 8 + 5 = 13$ $F_9 = 21 + 13 = 34$

3. Représentation graphique d'un suite

Une suite u peut être représentée :

- ullet en plaçant les points de coordonnées (n,u_n) dans un repère (on appelle cet ensemble nuage de points).
- en plaçant les réels $u_0, u_1, u_2 \dots$ sur une droite graduée.

Exemple:

On représente la suite u définie pour tout entier naturel n par $u_n=n^2-4n+2$.

On a $u_0 = 2$, $u_1 = -1$, $u_2 = -2$, $u_3 = -1$ et $u_4 = 2$.

4. Sens de variation d'une suite

Définition:

Soit une suite u définie sur \mathbb{N} .

- Dire que u est strictement croissante signifie que pour tout $n\in\mathbb{N}$, on a $u_{n+1}>u_n$.
- Dire que u est strictement décroissante signifie que pour tout $n \in \mathbb{N}$, on a $u_{n+1} < u_n$.
- Dire que u est constante signifie que pour tout $n \in \mathbb{N}$, on a $u_{n+1} = u_n$.

Remarques:

- Lorsqu'une suite est croissante ou décroissantes, on dit qu'elle est monotone.
- Pour étudier le sens de variation d'une suite, on peut :
 - 1. calculer la différence $u_{n+1} u_n$ et étudier son signe.
 - 2. pour une suite positive, calculer le quotient $\frac{u_{n+1}}{u_n}$ et étudier sa position par rapport à 1.
 - 3. pour une suite définie de façon explicite par $u_n = f(n)$, utiliser le sens de variation de f.

Exemple:

Soit u définie par $u_n = \frac{1}{3^n}$ pour tout $n \in \mathbb{N}$.

Pour tout $n \in \mathbb{N}$, $u_n > 0$ donc on utilise la deuxième méthode.

On calcule
$$\frac{u_{n+1}}{u_n} = \frac{\frac{1}{3^{n+1}}}{\frac{1}{3^n}} = \frac{1}{3^{n+1}} \times \frac{3^n}{1} = \underbrace{\frac{3^n}{3^{n+1}}}_{n+1 \text{ fois}} = \underbrace{\frac{3 \times 3 \times ... \times 3 \times 1}{3 \times 3 \times ... \times 3 \times 3}}_{n+1 \text{ fois}} = \frac{1}{3}$$

II. Suites arithmétiques et géométriques

1. Suites arithmétiques

Définition:

On dit que la suite u est arithmétique si, à partir de son premier terme, chaque terme est obtenu en ajoutant au précédent un même nombre appelé raison.

Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + r$

Remarque: Une suite est arithmétique si $u_{n+1} - u_n = r$ pour tout $n \in \mathbb{N}$.

Propriété (formule explicite):

Soit u une suite arithmétique de raison r.

Alors, pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$.

Plus généralement, pour tout entier n et p, $u_n=u_p+(n-p)r$

Théorème (sens de variation) :

Soit u une suite arithmétique de raison r.

- Si r > 0, la suite u est strictement croissante.
- ullet Si r < 0, la suite u est strictement décroissante.
- Si r=0, la suite u est constante.

Propriété (représentation graphique) :

La représentation graphique d'une suite arithmétique est un nuage de points situé sur une droite d'équation $y=u_0+xr$.

Exemple:

On représente la suite arithmétique de premier terme $u_0=1$ et de raison r=2 :

Théorème (calculs de sommes de termes consécutifs) :

Soit n un entier naturel non nul.

Alors la somme des n premiers termes non nuls est $1+2+3+...+n=\frac{n(n+1)}{2}$.

Exemple:

On calcule
$$S=1+2+3+\cdots+1$$
 000
$$=\frac{1\ 000(1\ 000+1)}{2}$$

$$=500\ 500$$

2. Suites géométriques

Définition :

On dit que la suite u est géométrique si, à partir de son premier terme, chaque terme est obtenu en multipliant le précédent par un même nombre appelé raison.

Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n \times q$

 $\mbox{\bf Remarque}: \mbox{ Une suite est g\'eom\'etrique si } \frac{u_{n+1}}{u_n} = q \mbox{ pour tout } n \in \mathbb{N}.$

Propriété (formule explicite) :

Soit u une suite géométrique de raison q.

Alors, pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$.

Plus généralement, pour tout entier n et p, $u_n = u_p \times q^{n-p}$

Théorème (sens de variation) :

Soit u une suite géométrique de raison q et de premier terme u_0 strictement positif.

- Si q>1, la suite u est strictement croissante.
- Si q=1, la suite u est constante, égal à u_0 .
- ullet Si 0 < q < 1, la suite u est strictement décroissante.
- Si q=0, la suite u est constante égale à 0, à partir du rang 1.
- Si q < 0, la suite u n'est ni croissante ni décroissante.

Propriété (représentation graphique) :

La représentation graphique d'une suite géométrique est un nuage de points situé sur la courbe d'une fonction exponentielle.

Exemple:

On représente la suite géométrique de premier terme $u_0=1$ et de raison q=1,5 :

Théorème (calculs de sommes de termes consécutifs) :

Soit n un entier naturel non nul et q un réel différent de 1.

Alors
$$1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$
.

Exemple:

On calcule
$$S=1+2+2^2+2^3+\cdots+2^{10}$$

$$=\frac{1-2^{11}}{1-2}$$

$$=2\ 047$$

III. Comportement d'une suite à l'infini

S'intéresser à la limite d'une suite, c'est étudier le comportement des termes u_n quand on donne des valeurs à n aussi grandes que l'on veut, ce qui se dit aussi : « quand n tend vers l'infini ».

On s'intéresse aux suite u, v, w, x et t définies pour tout entier naturel n par :

$$u_n = \frac{1}{n}$$
 $v_n = \frac{4n-5}{2n+3}$ $w_n = n^2$ $x_n = 16-2n^2$ $t_n = (-1)^n$

Limite finie

• On écrit $\lim_{n\to +\infty}u_n=0$ ce qui signifie que u_n peut être aussi proche de 0 que l'on veut, pourvue que n soit assez grand.

On le note : $\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \quad \forall n > n_0, |u_n| < \epsilon$

• On écrit $\lim_{n\to +\infty}v_n=2$ ce qui signifie que v_n peut être aussi proche de 2 que l'on veut, pourvue que n soit assez grand.

On le note : $\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \quad \forall n > n_0, |v_n - 2| < \epsilon$

Limite infinie

• On écrit $\lim_{n \to +\infty} w_n = +\infty$ ce qui signifie que w_n peut être aussi grand que l'on veut, pourvue que n soit assez grand.

On le note : $\forall A>0, \exists n_0\in\mathbb{N} \quad \forall n>n_0, w_n>A$

• On écrit $\lim_{n \to +\infty} x_n = -\infty$ ce qui signifie que w_n peut être aussi petit que l'on veut, pourvue que n soit assez grand.

On le note : $\forall A > 0, \exists n_0 \in \mathbb{N} \quad \forall n > n_0, x_n < A$

Pas de limite

• La suite (t_n) n'a pas de limite car $t_n=(-1)^n=\left\{egin{array}{l} 1 \ {
m si} \ n \ {
m est} \ {
m pair} \\ -1 \ {
m si} \ n \ {
m est} \ {
m impair} \end{array}. \right.$