Q2) Weighted Least Squares Regression Consider linear regression and let $C_1,...,C_n$ be known weights. Determine the Solution of W_i of C_i (C_i (C_i - W^T xi-b).

Express your solution in terms of the matrix $C = d_i ag(c_1,...,c_n)$ and an appropriate data matrix Xdata matrix X. We first need to reduce the problem to ordinary least squares. Therefore, we must sinst eliminate b-> E c; (y; -wTx; -b)2 we first take the Portal derivative with respect to 6 and $\frac{2}{26} \sum_{i=1}^{6} c_{i} (y_{i} - w^{T} x_{i} - b)^{2} = 0 \implies 2 \sum_{i=1}^{6} c_{i} (y_{i} - w^{T} x_{i} - b) = 0 \implies 2 \sum_{$ =) & ci(5; -wTxi-6) =0 => & cis; -wTxi-6) =0 => => \$\frac{2}{5} \cigit{c}_i \gamma_i = b\frac{2}{5} \cigit{c}_i \gamma_i = b\frac{2} \cigit{c}_i \gamma_i = b\frac{2}{5} \cigit{c}_i \gamm =7 yc = & ci yi & Xc = & cixi So we have => => b=5c-wtxc We can now plug this back into our original equation: 2 Ci(Ji-wtxi-Jc+wtxc) => 2 Ci(Ji-Jc+wt(xc-xi)) => 7 = c, (y; -5c - W(xi-Xc)) We then define g; = y; -5c and $\tilde{\chi}_i = \chi_i - \tilde{\chi}_c$. We therefore have $\tilde{\xi}_i = \zeta_i (\tilde{y}_i - w \tilde{\chi}_i)^2$ This is now reduced to the ordinary least squares.

We then represent as matrix sorm as $\frac{2}{5}$ ci $(\tilde{g}_1 - w^T\tilde{x}_i)^2$ to get $C(\tilde{g} - w^T\tilde{x}_i)^2$, we then take the L2 norm to get =) $C(\tilde{g} - w^T\tilde{x}_i)^2$ we then expand the square to get =) $(\tilde{Y} - \tilde{x}w)^TC(\tilde{Y} - \tilde{x}w) = 0$ =) $\tilde{Y}^TC\tilde{Y} - \tilde{Y}^TC\tilde{x}w - w^T\tilde{x}^TC\tilde{y} + w^T\tilde{x}^TC\tilde{x}w = 0$ We then take the VL(w) and set it equal to zero $VL(w) = \frac{2}{Jw}\tilde{Y}^TC\tilde{Y} - \frac{2}{Jw}\tilde{x}^TC\tilde{x}w + \frac{2}{Jw}w^T\tilde{x}^TC\tilde{x}w = 0$ =) $2(x^TC\tilde{x} - x^TC\tilde{y}) = 0$ =) $x^TC\tilde{x} = x^TC\tilde{y} = 0$ =)