Isotropy, Gaussian vector, spherical measure and concentration

Dimitri Meunier

13/04/2021

- Theorem 3.1.1: Concentration of the norm + deviation interpretation
- Definition of two first moments for vectors
- Isotropy and characterisation of isotropy
- Exercise 3.3.1: the spherically distributed random variable is isotropic

1 Random Vectors

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and (E, \mathcal{E}) a measurable space. Recall that a random variable is a measurable function $X : (\Omega, \mathcal{A}) \to (E, \mathcal{E})$. The distribution of X denoted \mathbb{P}_X is the probability measure on (E, \mathcal{E}) defined for all $A \in \mathcal{A}$ by $\mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A))$ (P_X is the push-forward measure of \mathbb{P} through X).

If (E, \mathcal{E}) is $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, X is a **real** random variable and if (E, \mathcal{E}) is $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, X is a **real random vector**. In the latter case, we denote by X_i , $i = 1, \ldots, d$ its coordinates, they are real random variables with distribution $\mathbb{P}_{X_i} = \pi_{\#}^i \mathbb{P}_X$ where π^i is the projection along axis i and # denotes the push-forward operator.

+ Lp spaces, and Lebesgue measure

2 Gaussian vectors

Recall univariate density and univariate characteristic function. Recall characteristic function for vector and characterisaion. Independence.

Definition 1. Let $X : (\Omega, \mathcal{A}, \mathbb{P}) \to \mathbb{R}^d$ be a random vector. X is a **Gaussian** vector if for all $\theta \in \mathbb{R}^d$, $\langle X, \theta \rangle$ has a univariate normal distribution.

From this definition we see that if X is a vector of independent univariate Gaussian variables, X is a Gaussian vector (use the characteristic function). Secondly, if X is a Gaussian vector, for all $B \in \mathbb{R}^{r \times d}$ and $b \in R^r$, Y = BX + b is also a Gaussian vector. Indeed for all $\theta \in \mathbb{R}^r$, $\langle Y, \theta \rangle = \langle X, B^T \theta \rangle + \langle \theta, b \rangle$ follows a univariate normal distribusion.

Theorem 1. A random vector $X : \Omega \to \mathbb{R}^d$ is Gaussian if and only if, there exists a vector $\mu \in \mathbb{R}^d$ and a symmetric matrice $K \in \mathbb{R}^{d \times d}$ such that,

$$\Phi_X(\theta) = \exp\left(-i\mu \cdot \theta - \frac{1}{2}\theta^t K\theta\right)$$

Furthermore, μ and K are the expectation and covariance of X. + name distribution

Proof. Let X be a Gaussian vector, we first notice that for all $i=1,\ldots,d$, $X_i \in \mathcal{L}^p(\mathbb{R})$ $(1 \leq p < +\infty)$. Indeed $X_i = \langle X, e_i \rangle$ follows a univariate normal distribution. Therefore the expectation $\mu := \mathbb{E}[X]$ and covariance $K := \mathbb{E}[(X-m)(X-m)^T]$ exist. Let us fix $\theta \in \mathbb{R}^d$, we know that $Y := \langle X, \theta \rangle \sim \mathcal{N}(\mu^T \theta, \theta^T K \theta)$. Therefore,

$$\Phi_X(\theta) = \Phi_Y(1) = e^{i\theta^t \mu - \theta^T K\theta/2}.$$

Definition 2 (Standard normal random vector). X is called a **standard Gaussian** vector on \mathbb{R}^d if its coordinates are i.i.d with distribution $\mathcal{N}(0,1)$. We denote the distribution of X, $\mathcal{N}_d(0,I_d)$. + moments 1 and 2 + they characterise the law.

Recall that the density function of the univariate standard normal distribution on \mathbb{R} is $f(x) = (2\pi)^{-\frac{1}{2}}e^{-\frac{1}{2}x^2}$. Therefore, the density function of $X \sim \mathcal{N}_d(0, I_d)$ is, for all $x \in \mathbb{R}^d$,

$$f(x) = (2\pi)^{-\frac{d}{2}} e^{-\frac{1}{2}||x||_2^2}$$

Proposition 1. If X is a Gaussian vector, its coordinates are independent if and only if the covariance if diagonal.

Proof. Indeed from the theroem, if K is diagonal the characteristic function can be factorized which is a characterisation of independence.

Theorem 2. Let X be a Gaussian vector with mean μ and covariance K, then $X = K^{1/2}Z + \mu$. Where $Z \sim \mathcal{N}_d(0, I_d)$ and the equality holds in distribution.

Proof. K is a covariance which is a positive symmetric matrice, hence there exists an orthogonal matrice U and a diagonal matrice D (with nonnegative diagonal elements) such that $K = UDU^T$. Recall that $K^{1/2} := UD^{1/2}U^T$, the definition makes sense since $U^T = U^{-1}$, $K^{1/2}K^{1/2} = K$.

Z is a Gaussian vector and we have seen that any affine transormation of a Gaussian vector is a Gaussian vector therefore $Y:=K^{1/2}Z+\mu$ is a Gaussian vector. Since $\mathbb{E}[Y]=K^{1/2}\mathbb{E}[Z]+\mu=\mu$ and $\mathbb{V}[Y]=K^{1/2}\mathbb{V}[Z])K^{1/2}=K$. \square

Remark. Isak: define moments of vector and Lp space for vectors (equivalence with each coordinates in standard Lp). Cartesian norm.

Proposition 2. If X is a Gaussian vector with mean μ and variance K we use the notation $X \sim \mathcal{N}(\mu, K)$. X admits a density if and only if K is invertible. Its density is,

$$f(x) = |2\pi K|^{-\frac{1}{2}} e^{-\frac{1}{2}||x-\mu||_{K^{-1}}^2}$$

+ Mahanobis distance.

Proof. Apply a change of variable to the density of the standard Gaussian density. $\hfill\Box$

3 Spherical Measure and Normal distribution

+ define group O(n). $S^{d-1} = \{x \mid ||x|| = 1\}$. Goals:

- define a measure ω_d on $(S^{d-1}, \mathcal{B}(S^{d-1}))$ that is invariant to rotations in order to have a canonical "Lebesgue" space $(S^{d-1}, \mathcal{B}(S^{d-1}), \omega_d)$ on the sphere.
- introduce the change of variable in polar coordinates

Similarly to the Lebesgue measure on \mathbb{R}^d being the unique (up to constants) translation-invariant measure on \mathbb{R}^d , ω_d is the unique (up to constants) measure on S^{d-1} rotation-invariant.

Definition 3. If $A \in \mathcal{B}(S^{d-1})$, we define $\Gamma(A)$ the Borel set of \mathbb{R}^d defined by

$$\Gamma(A) = \{rx; r \in [0, 1] \text{ and } x \in A\}$$

For all $A \in \mathcal{B}(S^{d-1})$, the measure,

$$\omega_d(A) = d\lambda_d(\Gamma(A))$$

is called the spherical measure.

Theorem 3. ω_d is invariant to isometries and for any measurable function $f: \mathbb{R}^d \to \mathbb{R}_+$,

$$\int_{\mathbb{R}^d} f(x) dx = \int_{S^{d-1}} \left(\int_0^\infty f(r\gamma) r^{d-1} dr \right) d\omega_d(\gamma)$$

Proposition 3. The volume of the d-dimensional ball $B^d = \{x \mid ||x|| \le 1\}$ is $\frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)}$

Proof. It is an application of Fubini theorem.

Therefore, $\omega_d(S^{d-1}) = d\lambda_d(B^d) = d\frac{\pi^{d/2}}{\Gamma(\frac{d}{2}+1)} = \frac{2\pi^{d/2}}{\Gamma(\frac{d}{2})}$, and the uniform probability on the sphere is,

$$\sigma_d(A) := \frac{\Gamma\left(\frac{d}{2} + 1\right)}{\pi^{d/2}} \lambda_d(\{rx : 0 \le r \le 1, x \in A\}) \tag{1}$$

Remark. If f is radial, i.e. $f: \mathbb{R}^d \to \mathbb{R}_+$ and there exists $g: \mathbb{R} \to \mathbb{R}_+$ such that f(x) = g(||x||) for all $x \in \mathbb{R}^d$ then the change of variable formula leads to,

$$\int_{\mathbb{R}^d} f(x)dx = \omega_d(S^{d-1}) \int_0^\infty g(r)r^{d-1}dr \tag{2}$$

Proposition 4. The measure σ_d is the unique probability measure on the sphere S^{d-1} invariant to the action of vectorial isometries.

+ Link to the Haar measure

Proposition 5 (Exercise 3.3.7 Vershynin: sampling on the unit sphere with a Normal distribution). Let us write $X \sim N_d(0, I_d)$ in polar form as

$$X = r\theta$$

where $R = ||X||_2$ is the length and $S = X/||X||_2$ is the direction of X. Prove the following:

- 1. the length R and direction S are independent random variables
- 2. the direction S is uniformly distributed on the unit sphere S^{d-1}
- 3. (Bonus) the length R follows a generalized gamma distribution

Proof. We note ρ the density of $X \sim \mathcal{N}_d(0, I_d)$. We want to compute the distribution of R and S where $(R, S) = (\|X\|_2, X/\|X\|_2)$ is a random vector with values in $\mathbb{R} \times S^{d-1}$.

For all measurable function $h: \mathbb{R} \times S^{d-1} \to \mathbb{R}$ positive or bounded,

$$\mathbb{E}[h(R,S)] = \int_{\mathbb{R}^d} h(x/\|x\|, \|x\|) \rho(x) dx$$

$$= \int_{S^{d-1}} \left(\int_0^\infty h(\gamma, r) \rho(r\gamma) r^{d-1} dr \right) d\omega_d(\gamma)$$

$$= \int_{S^{d-1}} \left(\int_{\mathbb{R}} h(\gamma, r) \underbrace{\frac{e^{-r^2/2}}{(2\pi)^{d/2}} r^{d-1} 1_{r \ge 0}}_{=:g(\gamma, r)} dr \right) d\omega_d(\gamma)$$

$$(3)$$

g is the density of (R,S), we notice that $g(\gamma,r)$ is separable which implies the independence. Secondly g is constant in γ which implies that S is uniformly distributed on the sphere.

As a sanity check we can explicitely compute the constants (bonus). The part of the density that depends on r is $e^{-r^2/2}r^{d-1}1_{r\geq 0}$, it is the un-normalized density of a **generalized gamma distribution** $\Gamma(d,\sqrt{2},2)$. Therefore, R follows a $\Gamma(d,\sqrt{2},2)$ distribution and the normalized density function is,

$$f_{\gamma}(r) = e^{-(r/\sqrt{2})^2} r^{d-1} \frac{2}{\Gamma(d/2)2^{d/2}} 1_{r \ge 0}$$

Thus,

$$g(\gamma,r) = f_{\gamma}(r) \times \frac{\Gamma(d/2)2^{d/2}}{2(2\pi)^{d/2}} = f_{\gamma}(r) \times \frac{\Gamma(d/2)}{2\pi^{d/2}} = f_{\gamma}(r) \times \omega_d(S^{d-1})^{-1}$$

3.1 Gaussian concentration

Applying theorem 1 (Isak) to, $X \sim \mathcal{N}_d(0, I_d)$ we get, CONSTANTS (depends on d??)

$$\mathbb{P}\left\{\left|\|X\|_{2} - \sqrt{d}\right| \ge t\right\} \le 2\exp\left(-ct^{2}\right) \quad \text{ for all } t \ge 0 \tag{4}$$

Using the notations of the last section, it says that $R \approx \sqrt{d}$ with high probability. Morevover, $X = RS \approx \sqrt{n}S \sim Unif(\sqrt{n}S^{d-1})$. Say more?

4 Sub-Gaussian vectors

¹ without knowing the generalized gamma density function, the normalisation constant can be obtained from the gamma density function by applying the change of variable $\phi(x) = \sqrt{x}$