Homework 5

CMPS130 Computational Models, Spring 2015

1.29

a.

Proof by Contradiction: Assuming that $A_1 = \{0^n \ 1^n \ 2^n \mid n \ge 0\}$ is regular, then the pumping lemma holds. Therefore, there exists a pumping length p, such that any string longer than p can be pumped. The string $s = 0^p \ 1^p \ 2^p$ is in A_1 and longer than p, therefore it can be split into xyz such that $xy^iz \in A_1$. If y contains only 0's, 1's or 2's, then xyyz does not have an equal number of 0's, 1's and 2. If y contains more than one kind of symbol (e.g. 01), then the symbols in yy will not be grouped together anymore (e.g. 0101), so xyyz cannot have the form $0^n \ 1^n \ 2^n$.

Due to these contradictions, the pumping lemma does not hold for A_1 , so it is not regular.

b.

Proof by Contradiction: Assuming that $A_2 = \{www \mid w \in \{a,b\}^*\}$ is regular, then the pumping lemma holds. Therefore, there exists a pumping length p, such that any string longer than p can be pumped. The string $s = a b^p a b^p a b^p is in <math>A_2$ and longer than p, therefore it can be split into xyz such that $|xy| \le p$, |y| > 0 and $xy^iz \in A_2$. Since $|xy| \le p$ and the a are always p symbols apart, y can have at most one a. If y contains exactly one a's, then xyyz has exactly four a's, so it cannot have the form www anymore. If y contains no a's, then xyyz contains three a's but one of these will be followed by more b's than the other two a's, since |y| > 0, so xyyz cannot have the form www.

Due to these contradictions, the pumping lemma does not hold for A_2 , so it is not regular.

c.

Proof by Contradiction: Assuming that $A_3 = \{a^{2^n} \mid n \geq 0\}$ is regular, then the pumping lemma holds. Therefore, there exists a pumping length $p \geq 1$, such that any string longer than p can be pumped. The string $s = a^{2^p}$ is in A_2 and $\forall p \geq 1$. $2^p > p$, so s is longer than p, and therefore can be split into xyz such that $|xy| \leq p$, |y| > 0 and $xy^iz \in A_2$. From |y| > 0 follows that xyyz is longer than a^{2^p} . Similarly, from $|xy| \leq p$ and $2^p > p$ follows that $|y| < 2^p$, so the string xyyz is shorter than $a^{2^p+2^p} = a^{2^{p+1}}$, so xyyz cannot have the form a^{2^n} .

Due to these contradictions, the pumping lemma does not hold for A_3 , so it is not regular.

1.30

The "proof" considers $s = 0^p 1^p = xyz$. If y contains only 0's, then xyyz will be of the form $0^{p+|y|}1^p$ and similarly if y contains only 1's, then xyyz will be of the form $0^p 1^{p+|y|}$. However, both of these strings are in the language 0^*1^* which does not require an equal number of 0's and 1's, therefore there is no contradiction.

1.42

The shuffle *S* of two regular languages *A* and *B* is also regular.

$$S(A,B) = \{a_1b_1a_2b_2...a_kb_k \mid a_1a_2...a_k \in A \land b_1b_2...b_k \in B \land a_i \in \Sigma^*\}$$

For all regular languages A and B, we can show that S(A,B) is also regular by constructing an NFA that accepts the language S(A,B). Since A and B are regular languages, we can assume there are DFAs $D_A = (Q_A, \Sigma_A, \delta_A, q_{A,0}, F_A)$ and $D_B = (Q_B, \Sigma_B, \delta_B, q_{B,0}, F_B)$.

$$N = (Q, \Sigma, \delta, q_0, F) \qquad \Sigma = \Sigma_A \cup \Sigma_B \qquad \delta(\langle q_A, q_B, A \rangle, s) = \{\langle \delta_A(q_A, s), q_B, A \rangle\}$$

$$Q = Q_A \times Q_B \times \{A, B\} \qquad \delta(\langle q_A, q_B, B \rangle, s) = \{\langle q_A, \delta_B(q_B, s), B \rangle\}$$

$$q_0 = \langle q_{A,0}, q_{B,0}, A \rangle \qquad \delta(\langle q_A, q_B, B \rangle, \epsilon) = \{\langle q_A, q_B, B \rangle\}$$

$$F = \{\langle q_a, q_b, A \rangle \mid q_a \in F_A \land q_b \in F_B\} \qquad \delta(\langle q_A, q_B, B \rangle, \epsilon) = \{\langle q_A, q_B, A \rangle\}$$

The NFA N keeps track of the DFA state in D_A , the DFA state in D_B and whether the next symbol is expected to be for D_A or D_B . Here, $< q_a, q_b, M >$ denotes the tuple of state $q_a \in Q_A$, $q_b \in Q_B$ and $M \in \{A, B\}$. The language described by the DFA D is regular but we still need to show that it actually accepts the shuffle S(A, B) for each regular language A and B.

Proof.

- $w \in S(A, B) \Rightarrow \hat{\delta}(q_0, w) \in F$. Given a word $w = a_1b_1a_2b_2...a_kb_k$, the NFA will update q_A based on δ_A and q_B based on δ_B . Because $a_1a_2..a_k \in A$, it follows that $\hat{\delta}(q_{A,0}, a_1a_2..a_k) \in F_A$ and, $\hat{\delta}(q_{B,0}, b_1b_2..b_k) \in F_B$, therefore $\hat{\delta}(q_0, w) \in F$.
- $\hat{\delta}(q_0, w) \in F \Rightarrow w \in S(A, B)$. Given a word $w = a_1b_1a_2b_2...a_kb_k$ such that the NFA reaches an accepting state, all the symbols that updated the component q_A of the state in N form the word $a_1a_2...a_k$ which is in A and similarly $b_1b_2...b_k \in B$, so $w \in S(A, B)$.

1.46

a.

The class of regular languages is closed under intersection, therefore it is sufficient to show that $\{0^n1^m0^n \mid m, n \ge 0\} \cap 0^*10^0 = \{0^n10^n \mid n \ge 0\}$ is not regular, to follow that $\{0^n1^m0^n \mid m, n \ge 0\}$ cannot be regular.

Proof by Contradiction: Assuming that $\{0^n 1^m 0^n \mid m, n \ge 0\}$ is regular, then the pumping lemma holds. Therefore, there exists a pumping length $p \ge 1$, such that any string longer than p can

be pumped. The string $s=0^p10^p$ is longer than p, and therefore can be split into xyz such that $|xy| \le p$, |y| > 0 and xy^iz is in the language. Since $|xy| \le p$, both x and y cannot contain any 1's, so xyyz will have the form $0^{p+|y|}10^p$ and is therefore not in the language. Due to these contradictions, the pumping lemma does not hold for $\{0^n1^m0^n \mid m,n \ge 0\}$, so it is not regular and therefore $\{0^n1^m0^n \mid m,n \ge 0\}$ cannot be regular.

b.

The class of regular languages is closed under intersection and complement and we know that $\{0^n1^n \mid n \geq 0\} = \overline{\{0^n1^m \mid n \neq m\}} \cap 0^*1^*$ is not regular. Therefore, $\{0^n1^m \mid n \neq m\}$ cannot be regular.

c.

The class of regular languages is closed under intersection and complement and we know (from **a.**) that $\{0^n1^m0^n \mid m,n \geq 0\} = \{w \mid w \in \{0,1\}^* \text{ is not a palindrome}\} \cap 0^*1^*0^*$ is not regular. Therefore, $\{w \mid w \in \{0,1\}^* \text{ is not a palindrome}\}$ also cannot be regular.

d.

Proof by Contradiction: Assuming that $\{wtw \mid w, t \in \{0,1\}^+\}$ is regular, then the pumping lemma holds. Therefore, there exists a pumping length $p \ge 1$, such that any string longer than p can be pumped. The string $s = 0^p 10^p 1$ is longer than p, and therefore can be split into xyz such that $|xy| \le p$, |y| > 0 and xy^iz is in the language. Since $|xy| \le p$, both x and y cannot contain any 1's, so xyyz will have the form $0^{p+|y|}10^p 1$ and is therefore not in the language. Due to these contradictions, the pumping lemma does not hold and therefore $\{wtw \mid w, t \in \{0,1\}^+\}$ cannot be regular.

1.47

Proof by Contradiction: Assuming that $Y = \{x_1 \# x_2 ... \# x_k \mid k \geq 0 \land \forall i \neq j. \ x_i \neq x_j\}$ is regular. Since the class of regular languages is closed under complement, $\overline{Y} = \{x_1 \# x_2 ... \# x_k \mid k \geq 0 \land \exists i, j.i \neq j \land x_i = x_j\}$ will also be regular and thus the pumping lemma holds. This means there exists a pumping length $p \geq 1$, such that any string longer than p can be pumped. The string $s = 1^p \# 1^p$ is in \overline{Y} and longer than p, and therefore can be split into xyz such that $|xy| \leq p$, |y| > 0 and $xy^iz \in Y$.

Due to $|xy| \le p$, y cannot contain the # symbol which is at the p+1'th position in the string. Therefore the string xyyz will have the form $1^{p+|y|}$ #1 p which does not repeat a sequence will therefore not be in \overline{Y} .

Due to these contradictions, the pumping lemma does not hold for *Y*, so it is not regular.

1.55

e.

Minimum pumping length p = 2. For strings of length 2 (01), 4 (0101), etc. you can always pump a 01 group. For pumping length 1, however, you would have to pump a single symbol, so either 0 or 1 which would result in sequences of 0's or 1's which are not in the language.

f.

Minimum pumping length p=1. There are no words of length 1 or more, so the pumping lemma is trivially true as there are no such strings cannot be pumped.

i.

Minimum pumping length p=5. There are no words of length 5 or more, so the pumping lemma is trivially true as there are no such strings cannot be pumped. For values below 5, pumping with xyyyyyz would always result strings that are longer than 5 and therefore not in the language.

j.

Minimum pumping length p=1. For any string of length 1 or more, it is possible to split s=xyz into $x=\epsilon$, $y=w_0$, $z=w_1w_2\dots$ and any $xy^iz=w_0^iw_1w_2\dots$ will always be in the language.