

Системный анализ процессов химической технологии

Лекция №9

Расчет реактора изомеризации легких бензиновых фракций

Вячеслав Алексеевич Чузлов, к.т.н., доцент ОХИ ИШПР

29 марта 2023 г.

Принципиальная схема

Кинетическая модель процесса изомеризации

Описание класса Flow

Атрибуты класса	Описание
mass_flow_rate: float	Массовый расход, кг / ч
mole_flow_rate: float	Мольный расход, кмоль / ч
volume_flow_rate: float	Объемный расход, м ³ / ч
mass_fractions: np.ndarray	Массовые доли
mole_fractions: np.ndarray	Мольные доли
molar_fractions: np.ndarray	Молярная концентрация, моль / л
volume_fractions: np.ndarray	Объемные доли
temperature: float	Температура потока, К
pressure: float	Давление потока, кПа
density: float	Плотность потока, г / см 3
ideal_gas_density: float	Плотность потока для идеального газа, кг / ${\sf M}^3$
average_mol_mass: float	Средняя молекулярная масса потока, г / моль
cp: float	Массовая теплоемкость потока, кДж / кг

Описание класса Flow

Атрибуты класса	Описание
<pre>definit(self, mass_flow_rate: float, mass_fractions: np.ndarray, temperature: float, pressure: float) -> None</pre>	Создает новый экземпляр класса Flow, заполняя все поля

Функции для пересчета составов

1. Пересчет массовых долей в молярные концентрации (моль / л):

$$c_i = rac{\omega_i \cdot
ho}{M_i}$$

где c_i – молярная концентрация i-го компонента (моль / л); ω_i – массовая доля i-го компонента; ρ – плотность потока для идеального газа (кг / м³); M_i – молярная масса i-го компонента; i – индекс компонента в системе.

2. Пересчет молярных концентраций в массовые доли:

$$ho = \sum_{i=1}^n c_i \cdot M_i \qquad \omega_i = rac{c_i \cdot M_i}{
ho}$$

где ω_i – массовая доля i-го компонента; c_i – молярная концентрация i-го компонента (моль / л); ρ – плотность потока для идеального газа (кг / м³); M_i – молярная масса i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

Функции для расчета плотности идеального газа

Расчет плотности идеального газа:

$$\rho = \frac{p \cdot M}{R \cdot T}$$

где ρ – плотность потока (кг / м 3); p – давление потока, кПа; M – средняя молекулярная масса потока, кг / моль; R – универсальная газовая постоянная, $8.314~\rm{Дж}$ / (моль · K); T – температура потока. К.

Описание класса Bed

Атрибуты класса	Описание
<pre>definit(</pre>	Конструктор класса, необходимо передать диаметр и высоту, диаметр и объем или высоту и объем полки
<pre>defrepr(self) -> str</pre>	Строковое представление объекта класса Bed
<pre>def calculate(self, kinetic_scheme: callable, feedstock: Flow, ea: np.ndarray, predexp: np.ndarray) -> Flow</pre>	Расчет системы дифференциальных уравнений изменения концентрации компонентов по времени

TOMSK TOMCKUЙ POLYTECHNIC TOMCKUЙ UNIVERSITY TOMCKUЙ TOMCKUЙ

Атрибуты класса	Описание
<pre>definit(self, *bed_params: dict) -> None</pre>	Конструктор класса, необходимо передать диаметр и высоту, диаметр и объем или высоту и объем для каждой полки в виде словаря
<pre>def calculate(self, kinetic_scheme: callable, feedstock: Flow, ea: np.ndarray = const.EA, predexp: np.ndarray = const.PREDEXP) -> Flow</pre>	Расчет системы дифференциальных уравнений изменения концентрации компонентов по времени для каждой полки катализатора
<pre>def performance(self) -> dict</pre>	Метод, возвращающий словарь с информацией об эффективности процесса изомеризации: выход изомеризата, выход изоалканов

Описание класса Reactor

- Обратная кинетическая задача была решена методом Нелдера-Мида с ограничением по минимальному значению констант: (0, None);
- Оптимизируемая функция:

$$error = \sum_{i=1}^{n} (c_i - c_{i,calc})^2$$

■ Значение error = 0.009515497205293953.

Контакты

Вячеслав Алексеевич Чузлов, к.т.н., доцент ОХИ ИШПР

Учебный корпус №2, ауд. 136chuva@tpu.ru

+7-962-782-66-15

Благодарю за внимание!

