1.3 Méthodes itératives

plus le rayon spectral est proche de 0 plus la methode iterative est rapide

1.3.1 Rappel

Définition 1.3.1. (Normes vectorielles)

Une norme vectorielle sur R^n est une application notée $\|.\|$ définis de R^n dans R^+ ;

$$\|.\|: R^n \longrightarrow R^+$$

$$X \to \|X\|$$

et possédant les propriétés suivantes :

- 1. $||X|| = 0 \Leftrightarrow X = 0$.
- 2. $\|\lambda X\| = |\lambda| \|X\|, \forall \lambda \in R, \forall X \in R^n$.
- 3. $||X + Y|| \le ||X|| + ||Y||, \forall X, Y \in \mathbb{R}^n$.

Définition 1.3.2. (Normes vectorielles usuelles)

- 1. $||.||_1 = \sum_{i=1}^n |x_i|$ appelée norme L_1 .
- 2. $\|.\|_{\infty} = Max_{1 \leq i \leq n} |x_i|$ appelée norme L_{∞} .
- 3. $\|.\|_2 = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$ appelée norme L_2 ou norme euclidienne.

Définition 1.3.3. Une norme vectorielle matricielle est une application de $M_n(R)$ l'algèbre des matrices d'ordre n dans R^+ , notée $\|.\|$ et possédant les propriétés suivantes :

- 1. $||A|| = 0 \Leftrightarrow A = 0$.
- 2. $\|\lambda A\| = |\lambda| \|A\|, \forall \lambda \in R, \forall A \in M_n(R)$.
- 3. $||A + B|| \le ||A|| + ||B||, \forall A, B \in M^n(R)$.

Définition 1.3.4. (Norme subordonnée)

Soit ||.|| une norme vectorielle, A une matrice de dimension $m \times n$ et $X \in \mathbb{R}^n$. La norme matricielle subordonnée à une norme vectorielle ||.|| est définis par

$$||A|| = max_{X \neq 0} \frac{||AX||}{||X||}$$

On notera par $\|A\|_p$ la norme de A subordonnée à une norme vectorielle $\|.\|_p$.

On peut écrire la norme de A subordonnée à une norme vectorielle $\|.\|_p$ comme suit :

$$||A|| = \max_{X \neq 0} \frac{||AX||}{||X||} = \max_{X \neq 0} ||(\frac{1}{||X||})Ax|| = \max_{X \neq 0} ||A(\frac{X}{||X||})||$$

D'où

$$||A|| = max_{||X||=1} ||AX||$$

Théorème 1.3.1. (Norme matricielle subordonnée à une norme vectorielle usuelle) Soit $A = (a_{ij}) \in M_n(R)$, les normes sont

- 1. $||.||_1 = Max_{1 \le j \le n} (\sum_{i=1}^n |a_{ij}|).$
- 2. $\|.\|_{\infty} = Max_{1 \le i \le n} (\sum_{j=1}^{n} |a_{ij}|).$
- 3. $\|.\|_2 = \sqrt{\rho(A^T A)}$.

 $Où \rho(A)$ représente le rayon spectral d'une matrice A qui est définie par

$$\rho(A) = \max\{|\lambda|/\lambda \ valeur \ propre \ de \ A\}$$

 $D\'{e}monstration.$

1.3.2 Méthode général

Définition 1.3.5. On appelle méthode itérative de résolution du système linéaire 1.1 une méthode qui construit une suite $(x_{(k)})_{k\in\mathbb{N}}$; où l'itéré $x_{(k)}$ est calculé à partir des itérés x_0,\dots,x_{k-1} censée converger vers x solution de 1.1.

On dit qu'une méthode itérative est convergente si pour tout choix initial $x_0 \in \mathbb{R}^n$, on a :

$$x_k \to x \text{ quand } k \to +\infty$$

Principe

Ecrivons la matrice A sous la forme A = M - N où M est inversible, alors

$$AX = b \Leftrightarrow (M-N)X = b \Leftrightarrow MX = NX + b$$

$$\updownarrow$$

$$X = M^{-1}NX + M^{-1}b$$

On définit alors la suite récurrente de vecteurs $(X^{(k)})_{k\in\mathbb{N}}$ appelée aussi processus itératif de la manière suivante :

$$X^{(k+1)} = M^{-1}NX^{(k)} + M^{-1}b X^{(0)} \in \mathbb{R}^n (1.4)$$

 $M^{-1}N$ est appelée matrice d'itération et elle est souvent notée B.

 $M^{-1}b$ est appelée vecteur itéré il et il est souvent noté c.

 $X^{(0)}$ est appelée vecteur initial.

Question : La suite ?? converge t-elle vers la solution X^* du système AX = b.

Théorème 1.3.2. (Convergence de la suite $(X^{(n)})$)

Soit A et $M \in M_n(IR)$ des matrices inversibles. Soit $X^{(0)}$ donné et soit $X_{k \in N}^{(k)}$ la suite définie par ??.

- 1. Condition nécessaire et suffisante de convergence La suite $X_{k\in\mathbb{N}}^{(k)}$ converge, quel que soit $X^{(0)}$, vers X^* si et seulement si $\rho(B) < 1$.
- 2. Condition suffisante de convergence La suite $X_{k \in \mathbb{N}}^{(k)}$ converge, quel que soit $X^{(0)}$, s' il existe une norme subordonnée telle que $\|B\| < 1$. De plus l'erreur d'approximation commise lors du calcul de la k^{eme} itération est donnée par :

$$E_{(k)} = \|X^{(k)} - X\|_{i} \le \begin{cases} \frac{\|.\|_{i}}{1 - \|.\|_{i}} \|X^{(k)} - X^{(k-1)}\| & erreur \ pas \ \grave{a} \ pas \\ \frac{(\|.\|)_{i}^{(k)}}{1 - \|.\|_{i}} \|X^{(1)} - X^{(0)}\| & erreur \ \grave{a} \ priori \end{cases}$$

 $D\acute{e}monstration.$

Remarque 1.3.1. 1. Dans le cas où les normes $\|.\|_i$ pour $i = 1, 2, \infty$ est ≥ 1 on ne peut rien dire sur la convergence du processus et on doit calculer $\rho(B)$ et de voir si ce nombre est < 1 ou > 1.

2. Si ρ(B) = 1 on dit que le processus ne converge pas quelque soit la condition initiale. Mais il se peut que quand ρ(B) ≥ 1 qu'il existe un choix convenable de X⁽⁰⁾, pour lequel le processus converge (convergence locale) vers la solution exacte du système.

Exemple 1.3.1. (Exercice 1 Série 2)

Soit le système

$$(S) = \begin{cases} 10x_1 & -2x_2 & = 8 \\ -6x_1 & +11x_2 & -5x_3 & = 0 \\ & -7x_2 & +9x_3 & = 2 \end{cases}$$

1. Écrire le processus itératif associé à la décomposition $A = A_1 - A_2$ où $A_1 = 10I_3$. Calculer $X^{(2)}$ à partir de $X^{(0)} = 0$ et étudier la convergence du processus.

Solution

$$(S) \Leftrightarrow \left(\begin{array}{ccc} 10 & -2 & 0 \\ -6 & 11 & -5 \\ 0 & -7 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 8 \\ 0 \\ 2 \end{array}\right)$$

On pose $A = A_1 - A_2 \Rightarrow A_2 = A_1 - A = 10I - A$ d'où

$$\left(\begin{array}{ccc}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10
\end{array}\right) - \left(\begin{array}{ccc}
10 & -2 & 0 \\
-6 & 11 & -5 \\
0 & -7 & 9
\end{array}\right) = \left(\begin{array}{ccc}
0 & 2 & 0 \\
6 & -1 & 5 \\
0 & 7 & 1
\end{array}\right)$$

Le processus itératif associé à cette décomposition est donné par :

 $AX = b \Leftrightarrow (A_1 - A_2)X = b \Leftrightarrow A_1X - A_2X = b \Rightarrow A_1X = A_2X + b \ (ou\ A_2X = A_1X - b) \ car\ les\ deux\ matrices$ sont inversibles.

Prenons par exemple $A_1X = A_2X + b \Leftrightarrow X = (A_1)^{-1}A_2X + (A_1)^{-1}b$.

On lui associe le processus itératif suivant :

$$X^{(k+1)} = (A_1)^{-1}A_2X^{(k)} + (A_1)^{-1}b$$

D'où

$$\begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & 0 \\ 6 & -1 & 5 \\ 0 & 7 & 1 \end{pmatrix} \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{pmatrix} + \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix}^{-1} \begin{pmatrix} 8 \\ 0 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{-1}{10} & \frac{1}{2} \\ 0 & \frac{1}{10} & \frac{1}{10} \end{pmatrix} \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{pmatrix} + \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{1}{5} \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x_1^{(k+1)} = & \frac{1}{5}x_2^{(k)} & +\frac{4}{5} \\ x_2^{(k+1)} = & \frac{3}{5}x_1^{(k)} - & \frac{1}{10}x_2^{(k)} & +\frac{1}{2}x_3^{(n)} \\ x_3^{(k+1)} = & \frac{7}{10}x_2^{(k)} + & \frac{1}{10}x_3^{(k)} & +\frac{1}{5} \end{cases}$$

$$X^{(1)} = (A_1)^{-1}b = \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{1}{5} \end{pmatrix}$$

$$X^{(2)} = \begin{pmatrix} 0 & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{-1}{10} & \frac{1}{2} \\ 0 & \frac{7}{10} & \frac{1}{10} \end{pmatrix} \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{1}{5} \end{pmatrix} + \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{4}{5} \\ \frac{29}{50} \\ \frac{11}{50} \end{pmatrix}$$

$$X^{(3)} = \begin{pmatrix} 0 & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{-1}{10} & \frac{1}{2} \\ 0 & \frac{7}{10} & \frac{1}{10} \end{pmatrix} \begin{pmatrix} \frac{4}{5} \\ \frac{29}{50} \\ \frac{11}{50} \end{pmatrix} + \begin{pmatrix} \frac{4}{5} \\ 0 \\ \frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{229}{250} \\ \frac{133}{250} \\ \frac{150}{250} \end{pmatrix}$$

Étude de la convergence du processus

On a d'après le théorème 1.3.2 une condition suffisante de convergence donnée par $\|A_1^{-1}A_2\| < 1$ car $\rho(A_1^{-1}A_2) \leqslant 1$ $||A_1^{-1}A_2||$, donc

Pour
$$B = A_1^{-1} A_2 \begin{pmatrix} 0 & \frac{1}{5} & 0\\ \frac{3}{5} & \frac{-1}{10} & \frac{1}{2}\\ 0 & \frac{7}{10} & \frac{1}{10} \end{pmatrix}$$

 $||B||_1 = max(\frac{3}{5}, 1, \frac{6}{10}) = 1$ on ne peut rien dire. $||B||_{\infty} = max(\frac{1}{5}, \frac{12}{10}, \frac{8}{10}) > 1$. $||B||_2 = \sqrt{\rho(B^T B)}$ (à éviter de la calculer puisque ce n'est qu'une condition suffisante de convergence)

Passant à la condition nécessaire et suffisante qui consiste à calculer le rayon spectral de $B, \rho(B) =$ $\max_i \{|\lambda_i|\}$ où λ_i est une valeur propre B. (les λ_i représentent les racines de l'équation $\det(B) = 0$).

$$B = \begin{pmatrix} 0 & \frac{1}{5} & 0\\ \frac{3}{5} & \frac{1}{10} & \frac{1}{2}\\ 0 & \frac{\prime}{10} & \frac{1}{10} \end{pmatrix}$$

Le polynôme caractéristique de B est : $P_B(x) = -X^3 + \frac{12}{25}X - \frac{3}{250}$, on va localiser les racines dans des intervalles séparées puis trouver leurs maximums.

On
$$a P_B(x) = -X^3 + \frac{12}{25}X - \frac{3}{250} \Rightarrow P'(x) = -3X^2 + \frac{12}{25}.$$

 $P(1) = -0.532, P(-1) = 0.508, P(\frac{2}{5}) = 0.116 \text{ et } P(\frac{-2}{5}) = -0.14.$

D'où On présente le tableau de variation du polynôme P.

On remarque que P(x) = 0 admet trois racines réelles dans l'intervalle]-1,1[et donc toutes les valeurs propres de la matrice B sont dans]-1,1[d'où $\rho(B)=\max(|\lambda_i)|<1.$ D'où la convergence du processus itératif : $X^{(k+1)} = BX^{(k)} + c$.

IMPORTANT: Si on prend cette fois:
$$X = A_2^{-1}A_1X + A_2^{-1}b$$
. On trouve $B = A_2^{-1}A_1 = \begin{pmatrix} 30 & \frac{5}{3} & \frac{-25}{3} \\ 5 & 0 & 0 \\ -35 & 0 & 10 \end{pmatrix}$

Le rayon spectral de la matrice B, $\rho(B) = 39.94$ donc pas de convergence de ce processus.

Conclusion: Pour une même décomposition de la matrice en question on peut avoir ou ne pas avoir la convergence de la suite considérée.

1.3.3 Méthode de Jacobi

C'est une méthode itérative qui correspond à la décomposition

$$A = D - (E + F)$$
 autrement dit $M = D$ et $N = E + F$

 $O\dot{u}$

D est une matrice diagonale telle que la diagonale de D est égale à la diagonale de A : $D_{ii} = A_{ii}, \forall 1 \leq i \leq n$.

E est une matrice triangulaire inférieur telle que : $-E_{ij} = A_{ij}, \forall i > j$ et $E_{ii} = 0$.

F est une matrice triangulaire supérieur telle que : $-F_{ij} = A_{ij}, \forall i < j$ et $F_{ii} = 0$. Alors

$$AX = b \Leftrightarrow D - (E + F)X = b \Rightarrow X = D^{-1}(E + F)X + D^{-1}b$$

D'où le processus itératif correspondant est : $X^{(k+1)} = D^{-1}(E+F)X^{(k)} + D^{-1}b$.

La matrice B se présente sous la forme : B =

$$C \ se \ pr\'esente \ sous \ la \ forme \ C = \left(\begin{array}{c} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{array} \right)$$

Exemple 1.3.2. (Exercice 1 série 2)

2- Écrire les itérations de Jacobi. Calculer $X^{(2)}$ partant de $X^{(0)} = 0$ et étudier la convergence.

$$B = D^{-1}(E+F) \begin{cases} = \begin{array}{cc} -a_{ij} & i \neq j \\ 0 & i = j \end{array} \Leftrightarrow B = \begin{pmatrix} 0 & \frac{1}{5} & 0 \\ \frac{6}{11} & 0 & \frac{5}{11} \\ 0 & \frac{7}{9} & 0 \end{pmatrix} \end{cases}$$

Et

$$\begin{split} C &= D^{-1}b = \begin{array}{c} \frac{-a_{ij}}{a_{ii}} \\ 0 \\ i &= j \end{array} \Leftrightarrow C = \left(\begin{array}{c} \frac{4}{5} \\ 0 \\ 2 \\ \overline{9} \end{array} \right) \\ Pour \ X^{(0)} &= \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \ on \ a \ X^{(1)} = \left(\begin{array}{c} \frac{4}{5} \\ 0 \\ 2 \\ \overline{9} \end{array} \right) \\ Et \ X^{(2)} &= BX^{(1)} + C = \left(\begin{array}{c} 0 & \frac{1}{5} & 0 \\ \frac{6}{11} & 0 & \frac{5}{11} \\ 0 & \frac{7}{9} & 0 \end{array} \right) \left(\begin{array}{c} \frac{4}{5} \\ 0 \\ \frac{2}{9} \end{array} \right) + \left(\begin{array}{c} \frac{4}{5} \\ 0 \\ \frac{2}{9} \end{array} \right) = \left(\begin{array}{c} \frac{4}{55} \\ \frac{266}{495} \\ \frac{2}{9} \end{array} \right) \end{split}$$

$$\begin{split} \|B\|_{\infty} &= \max(\frac{1}{5},\frac{\tilde{6}}{11}+\frac{5}{11},\frac{7}{9}) = 1 \ on \ ne \ peut \ rien \ sur \ la \ convergence. \\ \|B\|_{1} &= \max(\frac{6}{11},\frac{1}{5}+\frac{7}{9},\frac{5}{11}) = \frac{44}{45} < 1 \ ce \ qui \ donne \ la \ convergence \ du \ processus \ de \ Jacobi. \end{split}$$

1.3.4 Méthode de Gauss Seidel

C'est une méthode itérative qui correspond à la décomposition

$$A = ((D - E) - F)$$
 autrement dit $M = (D - E)$ et $N = F$

D'où le processus itératif correspondant est : $X^{(k+1)} = (D-E)^{-1}FX^{(k)} + (D-E)^{-1}b$. Autrement dit

$$(D-E)^{-1}X^{(k+1)} = FX^{(k)} + b$$

On a alors

$$\begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} X_1^{(k+1)} \\ X_2^{(k+1)} \\ \vdots \\ X_n^{(k+1)} \end{pmatrix} = \begin{pmatrix} 0 & -a_{12} & -a_{13} & \cdots & -a_{1n} \\ 0 & 0 & -a_{23} & \cdots & -a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1n} \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$\begin{pmatrix} a_{11}X_1^{(k+1)} = & -a_{12}X_2^{(k)} - & a_{13}X_3^{(k)} - & \cdots - & a_{1n}X_k^{(n)} + & b_1 \\ a_{21}X_1^{(k+1)} + & a_{22}X_2^{(k+1)} = & -a_{23}X_3^{(k)} - & \cdots - & a_{2n}X_k^{(n)} + & b_2 \\ a_{31}X_1^{(k+1)} + & a_{32}X_2^{(k+1)} + & a_{33}X_3^{(n)} = & -\cdots & a_{3n}X_k^{(n)} + & b_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}X_1^{(k+1)} + & a_{n2}X_2^{(k)} + & a_{n3}X_3^{(k)} + & \cdots + & a_{nn}X_n^{(k)} = & b_n \end{pmatrix}$$
 Ce qui implique :

$$\left\{ \begin{array}{llll} X_1^{(k+1)} = & \frac{-a_{12}}{a_{11}} x_2^{(k)} & -\frac{a_{13}}{a_{11}} x_3^{(k)} & -\cdots & -\frac{a_{1n}}{a_{11}} x_n^{(k)} & +\frac{b_1}{a_{11}} \\ X_2^{(n+1)} = & \frac{-a_{21}}{a_{22}} x_1^{(k+1)} & -\frac{a_{23}}{a_{22}} x_3^{(k)} & -\cdots & -\frac{a_{2n}}{a_{2n}} x_n^{(k)} & +\frac{b_2}{a_{22}} \\ X_3^{(k+1)} = & \frac{-a_{31}}{a_{33}} x_1^{(k+1)} & -\frac{a_{32}}{a_{33}} x_2^{(k+1)} & -\cdots & -\frac{a_{3n}}{a_{33}} x_n^{(k)} & +\frac{b_2}{a_{33}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ X_n^{(n+1)} = & \frac{-a_{n1}}{a_{nn}} x_1^{(k+1)} & -\frac{a_{n2}}{a_{nn}} x_2^{(k+1)} & -\cdots & -\frac{a_{nn-1}}{a_{nn}} x_{n-1}^{(k+1)} & +\frac{b_n}{a_{nn}} \end{array} \right.$$

Remarque 1.3.2. Le processus de Gauss Seidel se déduit du processus de Jacobi de la manière suivante :

- 1. Pour le calcul de $X_1^{(k+1)}$ c'est la même formule que Jacobi.
- 2. Pour le calcul de $X_2^{(k+1)}$ on reprend la formule que Jacobi et on remplace $X_1^{(k)}$ par $X_1^{(k+1)}$ calculé juste avant.

3. Pour le calcul de $X_3^{(k+1)}$ on reprend la formule que Jacobi et on remplace $X_1^{(k)}$ et $X_2^{(k)}$ par $X_1^{(k+1)}$ et $X_2^{(k+1)}$ calculé juste avant.

Et ainsi de suite Pour le calcul de $X_n^{(k+1)}$ on reprend la formule que Jacobi et on remplace $X_1^{(k)}$... $X_{n-1}^{(k)}$ par $X_1^{(k+1)}$... $X_{n-1}^{(k+1)}$ calculé juste avant.

Exemple 1.3.3. (exercice 1 série 2)

3- Écrire les itérations de Gauss Seidel. Calculer $X^{(2)}$ et étudier la convergence.

Solution

 $Le\ \overline{proces}sus\ de\ Gauss\ Seidel: X^{(k+1)} = BX^{(k)} + C\ o\grave{u}$

$$\begin{split} \mathbf{B} &= \begin{pmatrix} 10 & -2 & 0 \\ -6 & 11 & -5 \\ 0 & -7 & 9 \end{pmatrix} = \underbrace{\begin{pmatrix} 10 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 9 \end{pmatrix}}_{D} - \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 6 & 0 & 0 \\ 0 & 7 & 0 \end{pmatrix}}_{E} - \underbrace{\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix}}_{F} \\ B &= (D - E)^{-1}F = \begin{pmatrix} 10 & 0 & 0 \\ -6 & 11 & 0 \\ 0 & -7 & 9 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{10} & 0 & 0 \\ \frac{3}{55} & \frac{1}{11} & 0 \\ \frac{7}{165} & \frac{7}{99} & \frac{1}{9} \end{pmatrix} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 0 & \frac{1}{5} & 0 \\ \frac{6}{55} & \frac{5}{11} \\ 0 & \frac{14}{165} & \frac{35}{99} \end{pmatrix} \end{split}$$

$$C = (D - E)^{-1}b = \begin{pmatrix} \frac{1}{10} & 0 & 0 \\ \frac{3}{55} & \frac{1}{11} & 0 \\ \frac{7}{165} & \frac{7}{99} & \frac{1}{9} \end{pmatrix} \begin{pmatrix} 8 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{4}{55} \\ \frac{24}{555} \\ \frac{278}{495} \end{pmatrix}.$$

$$Pour X^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ on a } X^{(1)} = BX^{(0)} + C = (D - E)^{-1}b = \begin{pmatrix} \frac{4}{5} \\ \frac{24}{555} \\ \frac{278}{495} \end{pmatrix}$$

$$X^{(2)} = BX^{(1)} + C = (D - E)^{-1}X_{(1)} + (D - E)^{-1}b = \begin{pmatrix} \frac{244}{2755} \\ \frac{20126}{27225} \\ \frac{20126}{27225} \\ 0.73925 \\ 0.79719 \end{pmatrix}$$

Pour la convergence

$$\begin{split} \|B\|_{\infty} &= \max(\frac{1}{5}, \frac{6}{55} + \frac{5}{11}, \frac{14}{165} + \frac{35}{99}) = \frac{31}{55} = 0.56364 < 1. \\ \|B\|_{1} &= \max(0, \frac{1}{5} + \frac{6}{55} + \frac{14}{165}, \frac{5}{11} + \frac{35}{99}) = \frac{80}{99} = 0.8080 < 1. \end{split}$$

la condition suffisante est vérifié donc le processus converge.

Pour la méthode de Gauss Seidel, quel est le nombre d'itération à partir du quel on a $||X^{(k)} - X||_{\infty} \le 10^{-2}$.

$$\frac{(\|.\|)_{\infty}^{(k)}}{1 - \|.\|_{\infty}} \|X^{(1)} - X^{(0)}\|_{\infty} < \varepsilon$$

$$\Leftrightarrow (\|.\|)_{\infty}^{(k)} < \frac{(1 - \|.\|_{\infty}).\varepsilon}{\|X^{(1)} - X^{(0)}\|_{\infty}}$$

$$\Leftrightarrow k(\ln(\|.\|)^{(k)}) < \ln(\frac{(1 - \|.\|_{\infty}).\varepsilon}{\|X^{(1)} - X^{(0)}\|_{\infty}})$$

$$\Leftrightarrow k > \frac{\ln(\frac{(1 - \|.\|_{\infty}).\varepsilon}{\|X^{(1)} - X^{(0)}\|_{\infty}})}{\ln(\|.\|)^{(k)}}$$

On a $k \in N$ car $\|.\|_{\infty} < 1 \Rightarrow ln(\|.\|_{\infty}) < 0$.

$$\Leftrightarrow k = E \left\lceil \frac{ln(\frac{(1 - \|.\|_{\infty}).\varepsilon}{\|X^{(1)} - X^{(0)}\|_{\infty}})}{ln(\|.\|)^{(k)}} \right\rceil + 1. \text{ Où } E \text{ est la partie entière.}$$

On
$$a \|X^{(1)} - X^{(0)}\|_{\infty} = \|\begin{pmatrix} \frac{4}{5} \\ \frac{24}{55} \\ \frac{278}{248} \end{pmatrix}\| = \frac{4}{5} et \|B\|_{\infty} = \frac{31}{55}, \ \varepsilon = 10^{-2}$$
On trouve $k > 9.0893$ donc $k = 10$.

D'autres conditions suffisantes de convergence des méthodes de Jacobi et Gauss Seidel

Définition 1.3.6. On dit qu'une matrice A est diagonale dominante stricte si et seulement si

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$$

Proposition 1.3.1. Pour que le processus de Jacobi et de Gauss Seidel converge $\forall X^{(0)} \in \mathbb{R}^n$ il suffit que la matrice A soit à diagonale dominante stricte.

Proposition 1.3.2. Si A est symétrique définie positive, alors le processus itératif de Gauss-Seidel converge $X^{(0)} \in \mathbb{R}^n$

Remarque 1.3.3. 1. S'il existe $i \in [1, n]$ tel que $a_{ii} = 0$, on procède à une permutation de ligne sur A (et sur b).

- 2. En général, la convergence de l'une de ces méthodes n'implique pas la convergence de l'autre.
- 3. Plus que $\rho(B) << 1$, plus que la convergence du processus itératif vers la solution exacte du système AX = b est plus rapide.

Exemple 1.3.4. Soit le système
$$AX = b$$
 où $A = \begin{pmatrix} -5 & 3 & 1 \\ -2 & 8 & 5 \\ 4 & -1 & 6 \end{pmatrix}$ et $b = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

Le processus itératif de jacobi qui lui est associé est : $X^{(n+1)} = BX^{(n)} + c$, $X^{(0)} \in R^3$

On
$$a B = \begin{pmatrix} 0 & \frac{3}{5} & \frac{1}{5} \\ \frac{1}{4} & 0 & \frac{-5}{8} \\ \frac{-2}{3} & \frac{1}{6} & 0 \end{pmatrix} et c = \begin{pmatrix} \frac{-3}{5} \\ \frac{1}{4} \\ \frac{1}{6} \end{pmatrix}$$

La matrice A est à diagonale dominante stricte (DDS) car on :

$$\left\{ \begin{array}{ll} |-5| > & |3| + & |1| \\ |8| > & |-2| + & |5| \\ |6| > & |4| + & |-1| \end{array} \right.$$

Alors le processus de Jacobi converge $\forall X^{(0)} \in \mathbb{R}^3$.

Comparaison entre les deux méthodes

La méthode de Gauss Seidel est meilleure par rapport à la méthode de Jacobi car elle prend moins d'espace mémoire dans la machine ; à la première itération on remplace $X_1^{(n)}$ par la nouvelle composante $X_1^{(n+1)}$ et donc à la $i^{\text{ième}}$ itération on remplacera $X_i^{(n)}$ par la nouvelle composante $X_i^{(n+1)}$, ce qui nécessite n place mémoire ; quand la méthode de Jacobi nécessite 2n places.