GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 15, 2005, 06:25:17; Search time 6778 Seconds

(without alignments)

13028.785 Million cell updates/sec

Title: US-10-017-867A-281

Perfect score: 2320

Sequence: 1 agggtcccttagccgggcgc.....tctctccccaacctcactaa 2320

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 34239544 seqs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1500 summaries

Database: EST:*

1: gb est1:*

2: gb est2:*

3: gb htc:*

4: qb est3:*

5: qb est4:*

6: gb est5:*

7: gb_est6:*

8: gb_gss1:*

9: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		₹				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
-	1180.4	50.9	1182	 9	AY404343	AY404343 Homo sapi
				_		•
2	912.2	39.3	2197	3	AK050128	AK050128 Mus muscu
3	857.4	37.0	1180	9	AY404344	AY404344 Pan trogl
4	853.2	36.8	879	5	BQ216829	BQ216829 AGENCOURT
5	754	32.5	759	7	CN396938	CN396938 170004177
6	738	31.8	916	6	CD050395	CD050395 AGENCOURT
7	733.8	31.6	1185	9	AY404345	AY404345 Mus muscu
8	731.6	31.5	1353	3	AK041045	AK041045 Mus muscu

		•							
	9	522.4	22.5	978	4	BI102968		BT102968	602888578
	10	506.4	21.8	510	7	CN396939			170005999
	11	490.6	21.1	717	7	CR769328	•		DKFZp4690
	12	488.6	21.1	761	4	BI559553			603252894
			20.0	694	2	AW173071			xj82g11.x
		457.6	19.7	659	6	CB435346			615435 MA
•				1723	3				Mus muscu
	15	452.6	19.5		3 7	AK052644			DKFZp469C
	16	452.2	19.5	771		CR767782			-
	17	450	19.4	724	6	CB952493			AGENCOURT
	18	444.4	19.2	481	6	CB158774			K-EST0218
	2 19	442	19.1	583	1	AI694348			wd45g04.x
	20	437.8	18.9	462	5	BX109306			BX109306
(21	435.8	18.8	439	1	AA633698			ag87a11.s
	22	431.6	18.6	899	4	BI246549			602958449
	23	430	18.5	430	1	AI917116			ts52a02.x
	24	422	18.2	422	1	AI580389			tm42f08.x
(25	417	18.0	1055	1	AI654867			wb65c12.x
	26	415.8	17.9	660	2	BB221592			BB221592
(27	410./2	17.7	478	1	AI015041			ov51a05.s
	28	407.8	17.6	585	7	CR770709			DKFZp469J
	29	406.4	17.5	901	4	BI827790			603075472
	30	404.8	17.4	1021	7	CK231266			ILLUMIGEN
(31	400	17.2	543	2	AW236852			xm49h11.x
	32	398.4	17.2	552	7	CV029784			8702 Full
	33	396.4	17.1	721	4	BG972539			602841125
(34	393.4	17.0	470	1	AA974327			oq10g06.s
	35	389	16.8	531	8	AQ386013			RPCI11-14
	36	388.6	16.8	449	1	AI217703			qh15e09.x
	37	387.8	16.7	738	6	CB954127			AGENCOURT
	38	386.6	16.7	751	8	AQ748070			HS_5538_A
	39	384.8	16.6	886	4	BI101074			602886333
•	c 40	384.6	16.6	454	1	AA970255			op64h06.s
	41	384.4	16.6	751	6	CB952810			AGENCOURT
	42	384.2	16.6	582	5	BP274546			BP274546
	43	380.8	16.4	578	5	BP275078			BP275078
	c 44	380.4	16.4	580	6	CB423692			597208 MA
(c 45	376.8	16.2	566	6	CB433850			610302 MA
	46	. 375	16.2	460	7	R19994			g38h02.r1
	47	374.2	16.1	759	4	BG971626			602840706
•	48	372.4	16.1	565	4	BI538734		BI538734	434264 MA
	49	370.4	16.0	910	4	BI099853	1		602884666
	50	368.4	15.9	763	6	CD241803			AGENCOURT
	. 51	365.4	15.8	419	7	CR740722			CR740722
•	c 52	364.6	15.7	619	9	CE584093			tigr-gss-
	53	361.6	15.6	1193	4	BI102573		BI102573	602889579
•	c 54	357	15.4	363	7	Z39483		Z39483 H	SC1BC022 n
	55	354.4	15.3	360	5	BP431975		BP431975	BP431975
•	c 56	346.8	14.9	357	1	AA747964		AA747964	nx79a08.s
•	57	341	14.7	880	4	BI143297		BI143297	602907843
	58	339.2	14.6	1082	3	BC024453		BC024453	Mus muscu
•	c 59	336.2	14.5	363	2	BF510946		BF510946	UI-H-BI4-
	60	335	14.4	908	2	BF788011		BF788011	602113215
	61	334.4	14.4	342	5	BP431877		BP431877	BP431877
	62	3318	14.3	349	7	F06529		F06529 H	SC1BC021 n
	63	330.2	14.2	538	4	BG971731		BG971731	602838268
	64	329.6	14.2	776	4	BI220321		BI220321	602935611
	65	329	14.2	956	2	BF784727		BF784727	602111365
			•					•	

66	323	13.9	785	2	BF780827	BF780827 60210571
c 67	317	13.7	706	9	CE140389	CE140389 tigr-gss
68	314.8	13.6	772	4	BI099719	BI099719 60288458
69	314.6	13.6	769	2	AW044731	AW044731 um13h02.
c. 70	314.4	13.6	436	8	AQ476159	AQ476159 CITBI-E1
71	308.4	13.3	875	2	BF788790	BF788790 60210719
72	305.6	13.2	786	6	CB953250	CB953250 AGENCOUR
73	304.2	13.1	890	4	BI101705	BI101705 60288753
c 74	303	13.1	799	7	CK848020	CK848020 970722 M
75	301.2	13.0	777	4	BG972946	BG972946 60284067
76	298.6	12.9	711	2	BF785562	BF785562 60211234
77	298.6	12.9	965	2	BF789220	BF789220 60210511
78	298.4	12.9	755	4	BI220886	BI220886 60293743
- 79	296.4	12.8	878	2	BF782452	BF782452 60210616
c 80	296	12.8	455	2	AW380602	AW380602 RC2-HT02
81	294.6	12.7	453	1	AA245657	AA245657 mx03a05.
82	293.4	12.6	459	5	BX951484	BX951484 DKFZp781
83	293	12.6	913	4	BG972966	BG972966 60284077
84	292.2	12.6	1452	2	BF782437	BF782437 60210614
c 85	290.2	12.5	429	2	AW236558	AW236558 xm47g07.
86	288.6	12.4	776	2	BF781397	BF781397 60210458
87	288.2	12.4	713	4	BI327590	BI327590 60297977
88	286.4	12.3	555	5	BP332215	BP332215 BP332215
89	284	12.2	551	2	BF785590	BF785590 60211237
90	282.2	12.2	488	6	CB433209	CB433209 609534 M
91	277.8	12.0	788	2	BF781367	BF781367 60210454
92	277.6	12.0	863	7	CF218052	CF218052 AGENCOUR
93	275.6	11.9	699	2	AW319008	AW319008 un10f04.
94	275.2	11.9	735	4	BI332326	BI332326 60298351
95	273.4	11.8	371	2	BE843851	BE843851 RC0-TN00
96	273.3	11.8	696	2	BB653699	BB653699 BB653699
97	271.8	11.7	766	6	CB600123	CB600123 AGENCOUR
98	271	11.7	904	2	BF780781	BF780781 60210305
99	270.4	11.7	654	2	AW318818	AW318818 un07h11.
100	268	11.6	695	2	BB598307	BB598307 BB598307
101	267.8	11.5	1027	4	BG969791	BG969791 60283870
102	267.4	11.5	668	2	BB660895	BB660895 BB660895
103	266.6	11.5	758	4	BI332502	BI332502 60298131
103	264.4	11.4	782	4	BG972529	BG972529 60284111
104	261.8	11.3	602	6	CB601068	CB601068 AGENCOUR
105	261.6	11.3	380	7	CR746104	CR746104 CR746104
100	259.8	11.3	701	2	BF787378	BF787378 60211377
107	258.8	11.2	812	4	BG969879	BG969879 60283882
108	255.2	11.2	399	1	AA245658	AA245658 mx03a06.
c 110	253.2	11.0	328	1	AA243636 AI671780	AZ43636 MXUSAU6. AI671780 wa05h05.
c. 111	254.6	11.0	331	1	AI613123	A16/1/60 Wa05h05. A1613123 ty71h04.
c. 111 c 112			331			
	254.6	11.0		1	AI 672388	AI672388 ty64f01.
113	254	10.9	916	2	BF687218	BF687218 60210224
c 114	253	10.9	923	5	BX694171	BX694171 BX694171
c 115	252.6	10.9	920	5	BX701766	BX701766 BX701766
c 116	251.4	10.8	922	5	BX701212	BX701212 BX701212
117	247.8	10.7	647	2	BB637357	BB637357 BB637357
c 118	247.8	10.7	922	5	BX686029	BX686029 BX686029
119	246.8	10.6	581	1	AI528034	AI528034 uj39b11.
120	246.8	10.6	593	1	AI526529	AI526529 uj39e10.
c 121	246.6	10.6	345	2	AW779709	AW779709 hn84f05.
122	246.6	10.6	383	5	BX955526	BX955526 DKFZp781

	123	246.2	10.6	878	4	BG973007	BG973007 602841631
	124	244.2	10.5	47.3	2	BF659710	BF659710 maa23c04.
	c 125	243.8	10.5	919	5	BX698025	BX698025 BX698025
	126	239.4	10.3	651	1	AI527981	AI527981 uj38e11.y
	127	236.8	10.2	551	1	AI876961	AI876961 uj36h03.y
	128	236.4	10.2	550	1	AI526647	AI526647 uj41b09.y
	129	236	10.2	581	7	CF171593	CF171593 B0844F01-
	130	235.4	10.1	726	6	CB600351	CB600351 AGENCOURT
	131	233	10.0	534	1	AI787373	
	c 132	231.2	10.0	891	5	BX687753	BX687753 BX687753
	c 133	230.8	9.9	347	1	AI767712	AI767712 wh38h05.x
	134	228.8	9.9	533	1	AI875380	
	135	228.4	9.8	549	1	AI050425	AI050425 uc86b01.y
	c 136	227.2	9.8	288	2	AW235540	
	137	227.2	9.8	867	2	BF785547	BF785547 602112327
	138	226.8	9.8	469	2	AW610950	,
	139	225.2	9.7	531	4	BI463768	_
	c 140	225.2	9.7	891	5	BX699365	
	141	224.8	9.7	925	2	BF781667	BF781667 602104385
	142	222.6	9.6	887	2	BF785369	BF785369 602111710
	143	222.4	9.6	562	1	AI746748	AI746748 ul07a01.y
	144	222.2	9.6	536	1	AI787361	AI787361 uj31a06.y
	145	220	9.5	524	1	AI876741	AI876741 uj35c01.y
•	146	218.6	9.4	536	2	AW226792	AW226792 um62c04.y
	147	217.8	9.4	638	4	BI100051	BI100051 602885109
•	148	217.6	9.4	517	5	BX512263	BX512263 BX512263
	149	216.6	9.3	533	1	AI747909	
	150	216.6	9.3	555	2	AW107039	-
	151	216.6	9.3	649	2	BF788330	
	c 152	216.4	9.3	291	1	AI521956	
	153	215	9.3	407	6	CB434861	CB434861 611551 MA
	154	214	9.2	715	4	BG971579	BG971579 602840635
	c 155	213.8	9.2	813	5	BX693887	BX693887 BX693887
	156	213	9.2	546	2	AW475287	AW475287 un63h08.y
	c 157	212.2	9.1	793	7	CF219588	CF219588 AGENCOURT
	c 158	211.8	9.1	796	7	CF218053	CF218053 AGENCOURT
	159	211.4	9.1	769	2	BF782853	BF782853 602107722
	160	210.6	9.1	611	1	AL794601	AL794601 AL794601
	161	208.8	9.0	515	2	BF532434	BF532434 602074477
	162	208.4	9.0	1349	2	BF686940	BF686940 602102714
	163	207.8	9.0	968	2	BF780880	BF780880 602105777
	164	206.8	8.9	931	7	CF238676	CF238676 AGENCOURT
	165	204.6	8.8	661	6	BY732658	BY732658 BY732658
	166	202.4	8.7	489	5	BX522348	BX522348 BX522348
	c 167	197	8.5	253	1	AI373521	AI373521 qz46f08.x
	c 168	197	. 8.5	253	1	AI492912	AI492912 qz42f01.x
	169	191.6	8.3	833	2	BF786313	BF786313 602112827
	170	191.4	8.2	508	1	AL803540	AL803540 AL803540
	c 171	191.4	8.2	721	4	BJ640903	BJ640903 BJ640903
	172	187.6	8.1	958	2	BF782294	BF782294 602106080
	173	187.2	8.1	488	2	AW105948	AW105948 um20c05.y
	174	186.8	8.1	752	6	CB601161	CB601161 AGENCOURT
	175	186	8.0	470	2	AW319385	AW319385 un15f02.y
	176	184.6	8.0	1783	3	CR636858	CR636858 Tetraodon
	c 177	183.2	7.9	361	1	AA730192	AA730192 nw41a02.s
	178	183.2	7.9	375	1	AA715548	AA715548 nv53g11.r
	179	183	7.9	758	4	BG969488	BG969488 602837021

	. <u>i.</u>							
180	179.8	7.8	478	1	AI874790			ul28b05.y
181	179.4	7.7	389	5	BY105462			BY105462 .
182	179	7.7	820	7	CF222788			AGENCOURT
c 183	177.8	7.7	676	4	ВЈ641175			BJ641175
c 184	173.4	7.5	606	9	CE149561			tigr-gss-
c 185	172.2	7.4	603	9	CE843398			tigr-gss-
c 186	171.8	7.4	599	1	AA758115			ah68d01.s
187	168.8	7.3	420	2	BB846612	BB8	46612	BB846612
188	168.8	7.3	831	7	CF219551			AGENCOURT
c 189	168.4	7.3	673	1	AI746432			u107a01.x
190	168.2	7.2	443	1	AI182048			ud73d07.y
191	167.4	7.2	209	7	CR746121			CR746121
192	166.6	7.2	463	1	AI931234	AI9	31234	ul58e10.y
c 193	164	7.1	791	7	CF219552	CF2	19552	AGENCOURT
194	163.6	7.1	882	7	CF239400			AGENCOURT
195	159.6	6.9	706	7	CN059643	CN0	59643	Salamande
c 196	159.2	6.9	301	1	AI891486	AI8	91486	ul59b08.x
197	158.6	6.8	896	6	CA973829	CA9	73829	AGENCOURT
198	158.4	6.8	542	4	BI218377			602937760
199	158.4	6.8	594	8	AZ519016	AZ5	19016	RPCI-11-6
200	156.8	6.8	464	8	AQ199079	AQ1	99079	RPCI11-67
201	156.2	6.7	771	7	CF222154	CF2	22154	AGENCOURT
202	155.8	6.7	426	1	AI529289	AI5	29289	ui61f12.y
203	153	6.6	434	2	BB847184	BB8	47184	BB847184
204	152.4	6.6	428	2	BB847987	BB8	47987	BB847987
205	151.6	6.5	936	6	CA980884	· CA9	80884	AGENCOURT
206	151.4	6.5	387	1	AA105944	AA1	05944	ml80g04.r
207	151	6.5	1946	3	AK050435	AK0	50435	Mus muscu
c 208	150	6.5	607	4	BJ631992	вј6	31992	BJ631992
209	149.4	6.4	2573	3	AK004971	AK0	04971	Mus muscu
210	148.2	6.4	438	2	BB848332	BB8	48332	BB848332
211	147.8	6.4	1581	9	AY418358	AY4	18358	Mus muscu
212	147.6	6.4	426	2	BB847742	BB8	47742	BB847742
213	147.6	6.4	858	7	CN986339	CN9	86339	61948 125
c 214	147	6.3	651	5	BQ388289	BQ3	88289	NISC_mn28
215	146.4	6.3	827	7	CF219587	CF2	19587	AGENCOURT
216	146.2	6.3	426	2	BB846847	BB8	46847	BB846847
217	145.8	6.3	418	5	BY006680	BY0	06680	BY006680
218	145.6	6.3	838	5	BU899699	BU8	99699	AGENCOURT
219	144.8	6.2	424	2	BB848230	BB8	48230	BB848230
220	144.6	6.2	429	2	BB847232	BB8	47232	BB847232
221	144.2	6.2	493	1	AI746700	AI7	46700	u106d06.y
c 222	144.2	6.2	644	4	BJ098498	вјо	98498	BJ098498
223	143.6	6.2	437	1	AI891771	AI8	91771	ul59b08.y
c 224	143.4	6.2	1108	7	CO645645	C06	45645	ILLUMIGEN
225	142	6.1	438	2	BB847387	BB8	47387	BB847387
226	141.4	6.1	430	1	AL778797	AL7	78797	AL778797
227	140.8	6.1	369	2	BB843421	BB8	43421	BB843421
228	140.6	6.1	933	7	C0775326			ILLUMIGEN
229	140.2	6.0	1896	3	AK002736	AK0	02736	Mus muscu
230	138.8	6.0	418	2	BB847984			BB847984
231	138.6	6.0	362	2	BB847614			BB847614
232	138.6	6.0	370	2	BB843440			BB843440
233	138.2	6.0	528	1	AI876859			uj35a11.y
234	137.8	5.9	1892	3	AK034801			Mus muscu
235	137.4	5.9	257.5	3	BC048920			Mus muscu
236	136	5.9	960	5	BQ713091			AGENCOURT
						_		

						·
237	133.8	5.8	2895	3	AK083294	AK083294 Mus muscu
. 238	132.6	5.7	825	5	BP443785	BP443785 BP443785
239	132	5.7	1118	7	CK028589	CK028589 AGENCOURT
240	131.6	5.7	1642	6	CD013996	CD013996 90117309
241	131.4	5.7	927	5	BQ925596	BQ925596 AGENCOURT
242	130.8	5.6	1004	5	BQ942104	BQ942104 AGENCOURT
243	130.4	5.6	718	4	BJ038707	ВЈ038707 ВЈ038707
244	130.2	5.6	928	7	CK871071	CK871071 AGENCOURT
245	130	5.6	821	7	CK953540	CK953540 4093245 B
246	129.8	5.6	420	5	BY006031	BY006031 BY006031
247	129.8	5.6	432	2	BB846687	BB846687 BB846687
c 248	129.4	5.6	740	4	BJ640531	BJ640531 BJ640531
249	129.2	5.6	424	2	BB846725	BB846725 BB846725
250	129.2	5.6	599	4	BI387131	BI387131 BFL26 001
251	129.2	5.6	631	4	BI387132	BI387132 BFL26 001
252	129	5.6	818	2	BF687167	BF687167 60210 2 982
253	128.2	5.5	1581	9	AY418356	AY418356 Homo sapi
254	127.4	5.5	425	2	BB844689	BB844689 BB844689
255	127.2	5.5	383	5	BY005749	BY005749 BY005749
256	127.2	5.5	415	2	BB847175	BB847175 BB847175
257	124.8	5.4	430	5	BY006688	BY006688 BY006688
258	124.8	5.4	1023	6	CD013994	CD013994 90130114
259	124.8	5.4	1336	6	CD013995	CD013995 90130122
260	124.6	5.4	735	7	CK949530	CK949530 4074896 B
261	124	5.3	1783	3	AK050327	AK050327 Mus muscu
262	123.6	5.3	338	2	BB846932	BB846932 BB846932
263	123	5.3	930	5	BQ934372	BQ934372 AGENCOURT
264	123	5.3	1957	3	CR671108	CR671108 Tetraodon
265	122.8	5.3	423	5	BY006690	BY006690 BY006690
266	122.6	5.3	825	5	BU240452	BU240452 603323679
267	122.4	5.3	830	6	CA493727	CA493727 AGENCOURT
268	122	5.3	977	7	CO579097	CO579097 ILLUMIGEN
c 269	121.6	5.2	527	8	AQ993185	AQ993185 RPCI-23-3
c 270	121.6	5.2	694	8	AZ085726	AZ085726 RPCI-23-6
271	121.6	5.2	810	7	CO574370	CO574370 AGENCOURT
272	121.6	5.2	843	7	CO558457	CO558457 AGENCOURT
c 273	121.2	5.2	567	4	BI443347	BI443347 dai90a05.
274	121	5.2	340	2	BB846937	BB846937 BB846937
c 275	120.8	5.2	405	1	AI433413	AI433413 ti65c03.x
276	120.8	5.2	2099	3	AK008601	AK008601 Mus muscu
277	120.4	5.2	596	1	AL781524	AL781524 AL781524
278	120.4	5.2	651	1	AA255327	AA255327 mz84f10.r
279	119.8	5.2	1130	3	CR646329	CR646329 Tetraodon
c 280	119.6	5.2	594	9	FR0049565	AL605374 Fugu rubr
281	119.2	5.1	737	7	CO562727	CO562727 AGENCOURT
282	119	5.1	795	5	BX880311	BX8.80311 BX880311
283	119	5.1	835	7	CO573273	CO573273 AGENCOURT
284	119	5.1	882	4	BI144244	BI144244 602907984
285	118.8	5.1	494	1	AI785732	AI785732 uj37h01.y
286	118.8	5.1	629	5	BP138260	BP138260 BP138260
c 287	118	5.1	148	2	BF089587	BF089587 CM2-HT094
288	117.6	5.1	2450	3	BC011409	BC011409 Homo sapi
289	117.4	5.1	768	5	BX876854	BX876854 BX876854
c 290	117.2	5.1	1067	9	CNS05HQH	AL337922 Tetraodon
291	116.6	5.0	738	6	CB418995	CB418995 591831 MA
292	115.4	5.0	619	9	FR0007657	Z91467 F.rubripes BG969620 602836951
293	115.4	5.0	962	4	BG969620	166020700 07050490

	294	115	5.0	615	1	AL803499		AL803499	AL803499	
	295	115	5.0	1030	5	BQ714919.		BQ714919	AGENCOURT	
	296	114.4	4.9	704	6	CB518006		CB518006	ssalrgb53	
	297	114	4.9	2079	6	CD013998		CD013998	90117389	
	298	113.8	4.9	634	6	CB955397		CB955397	AGENCOURT	
	299	113.8	4.9	1005	4	BG167171			602344696	
	300	113.4	4.9	618	1	AL787677		AL787677		
	301	113.4	4.9	633	1	AL789572		AL789572		
	302	113.4	4.9	759	4	BJ730921		BJ730921		
	303	113	4.9	677	7	CK981590			4114067 B	
	304	113	4.9	1570	3	CR646752			Tetraodon	
	305	112.8	4.9	685	4	BJ495916			BJ495916	
	306	112.4	4.8	774	7	CO423341			GGEZHT100	
	307	111.6	4.8	513	2	BF105272			601822259	
	308	111.4	4.8	606	6	CB581397			AMGNNUC:C	
	309	111.4	4.8	2394	3	BC043491			Homo sapi	
C	310	111	4.8	1126	7	CO645680			ILLUMIGEN	
Ū	311	110.8	4.8	605	6	CB581581			AMGNNUC: N	
	312	110.6	4.8	977	4	BI331895			602982580	
	313	110.4	4.8	691	8	AZ614547			1M0443J19	
	314	110.4	4.8	1770	3	CR644097			Tetraodon	
	315	109.4	4.7	510	6	CB286305			CMD34 E11	
	316	109.2	4.7	410	2	AW226896			um63b09.y	
	317	109.2	4.7	848	7	CN986271			61879 125	
	318	108.4	4.7	867	7	CN172607			AGENCOURT	
	319	107.8	4.6	514	6	CB286306			CMD34 E12	
	320	107.4	4.6	673	6	CA042007			ssalplnb5	
	321	107.2	4.6	685	5	BU136075			603124201	
	322	107.2	4.6	839	7	CF249906			esa006_a0	
C	323	107.2	4.6	861	7	CN159685			948778 MA	
Ŭ	324	107.2	4.6	970	5	BU122351			603146762	
	325	107.2	4.6	988	5	BU122681			603149059	
C	326	106.8	4.6	584	1	AL793872		AL793872		
	327	106.2	4.6	840	4	BJ746350			BJ746350	
J	328	106.2	4.6	888	9	AY418357			Pan trogl	
	329	106	4.6	674	7	CK948396			4073279 B	
С	330	105.8	4.6	580	8	AQ059652			CIT-HSP-2	
_	331	105.4	4.5	751	5	BP452350			BP452350	
	332	104.8	4.5	700	6	CB497940			omykrbhb0	
	333	104.6	4.5	383	2	AW107617			u193c02.y	
	334	104.6	4.5	653	6	CD309485			StrPu691.	
	335	104.4	4.5	677	7	CK956169			4096235 B	
	336	103.8	4.5	835	4	BI757311			603029525	
	337	103.6	4.5	613	1	AL679732	,	AL679732		
	338	103.4	4.5	652	6	CA343408			673504 NC	
c	339	102.8	4.4	1188		CD505366			CDA73-C09	
_	340	102.6	4.4	651	4	BJ094864		BJ094864		
С	341	102	4.4	673	4	BJ640772			BJ640772	
	342	101.8	4.4	310	5	BX636608			BX636608	
	343	101.8	4.4	701	1	AL133897			DKFZp761K	
	344	101.6	4.4	492	4	BG970195			602839368	
	345	101.6	4.4	2202	3	AK002629			Mus muscu	
	346	101.4	4.4	781	1	AI529761			ui82b06.y	
	347	101	4.4	652	4	BJ624350			BJ624350	
	348	101	4.4	879	7	CO774398			ILLUMIGEN	
	349	101	4.4	1101	9	CNS059KU	q		Tetraodon	
	350	100.8	4.3	315	1	AA104237			mp01b01.r	
					_			,		

~

351	100.8	4.3	588	5	BP448488			BP448488	
352	100.8	4.3	615	5	BP449052		BP449052	BP449052	
353	100.8	4.3	794	4	BG575052		BG575052	602598159	
354	100.8	4.3	913	7	CO579137		CO579137	ILLUMIGEN	
355	100	4.3	974	7	CO579983		CO579983	ILLUMIGEN	
356	100	4.3	996	5	BQ714776		B0714776	AGENCOURT	
357	99	4.3	617	4	BJ615347			BJ615347	
358	98.6	4.2	708	4	BJ731220			BJ731220	
359	98.6	4.2	708	7	CV527312			CS GIL 14	
360	98.6	4.2	750	5	BP448650			BP448650	
361	98.6	4.2	1022	5	BM925650			AGENCOURT	
362	98.4	4.2	564	6	CA347839			679020 NC	
363	98.4	4.2	2306	3	BC012716			Mus muscu	
364	98.2	4.2	759	4	BI330877			602981265	
365	98.2	4.2	790	7	CO555662			AGENCOURT	
c 366	98.2	4.2	808	4	BJ716530			BJ716530	
	98.2	4.2	834	4				BJ746664	
c 367					BJ746664			BB667498	
368	97.8	4.2	710	2	BB667498				
c 369	97.6	4.2	761	1	AI118428			ue40e09.x	
370	97.4	4.2	656	5	BQ388290			NISC_mn28	
371	97.4	4.2	728	6	CD493117			CDA03-C12	
372	97.4	4.2	807	5	BU901536			AGENCOURT	
373	97.4	4.2	921	7	CN065626			D15_Ag2_p	
374	97.2	4.2	697	2	BB667336			BB667336	
375	97.2	4.2	697	4	BG747143			602704364	
376	97	4.2	874	7	CN985398			58371_126	
377	96.6	4.2	581	1	AL791968			AL791968	
c 378	96.6	4.2	639	2	BF322562			maa28e12.	
379	96.4	4.2	654	4	BJ060547			BJ060547	
c 380	96.4	4.2	861	7	CK974452			4105352 B	
381	96.4	4.2	871	5	BQ900474			AGENCOURT	
382	96.4	4.2	913	5	BQ714368			AGENCOURT	
383	96.4	4.2	938	5	BQ942682			AGENCOURT	
384	96	4.1	643	7	CV222277			Le_mx0_58	
c 385 [·]		4.1	896	7	CN159120			948155 MA	
386	95.6	4.1	603	6	CB163625			K-EST0224	
387	95.6	4.1	662	1	AL792519			AL792519	
388	95.6	4.1	665	1	AL638480		AL638480	AL638480	
389	95.4	4.1	573	1	AL789331		AL789331	AL789331	
390	95.4	4.1	1131	2	BF687385		BF687385	602102551	
391	95.2	4.1	611	7	CF250034		CF250034	esa007_f0	
392	95.2	4.1	1005	2	BE870911		BE870911	601448862	
393	95	4.1	430	2	BB847324		BB847324	BB847324	
c 394	95	4.1	739	7	co387359		CO387359	AGENCOURT	
395	94.8	4.1	557	2	AW318536		AW318536	um98f10.y	
396	94.6	4.1	573	7	CO298247	- و د محمد	CO298247	EK172617.	
c 397	94.6	4.1	598	1	AI303476			ui71e01.x	
c 398	94.4	4.1	555	·1	AI265736			uj05f12.x	
399	94.4	4.1	934	2	BF786200			602110490	
400	94.2	4.1	415	1	AI959352			fd08e07.y	
401	94.2	4.1	561	7	CN227962			RJB035D05	
401	94.2	4.1	582	6	CA386855			668573 NC	
403	94.2	4.1	650	7	CV041502			4139371 B	
403	94.2	4.1	666	6	CA348546			679900 NC	
404	94.2	4.1	668	6	CA340340 CA349227			619554 NC	
405	94.2	4.1	415	5	BY006441			BY006441	
				2	BB844926			BB844926	
407	93.8	4.0	424	2	00044920		00044926	0044920	

	400	00 0	4 0	E E 4	^	DE013305	DE011	295 123199 MA
	408	93.8	4.0	554	2	BE013295		
•	409	93.8	4.0	1192	2	BF789664		664 602105279 .
	410	93.6	4.0	718	5	BX876842	BX876	842 BX876842
	411	93.6	4.0	724	5	BX875102	BX875	102 BX875102
	412	93.6	4.0	755	5	BX889578	BX889	578 BX889578
	413	93.6	4.0	759	5	BX885634		634 BX885634
	414	93	4.0	690	8	AZ614319		319 1M0443N05
	c 415	93	4.0	728	7	CN585956		956 USDA-FP_1
	416	93	4.0	746	2	BF688309		309 602185172
	. с 417	93	4.0	822	7	CN761092		.092 ID0AAA2BE
	418	92.8	4.0	581	5	BP275541		541 BP275541
	419	92.8	4.0	753	7	CK029964	CK029	964 AGENCOURT
	420	92.8	4.0	777	7	CO573842	CO573	842 AGENCOURT
	421	92.6	4.0	547	7	CR751755		.755 DKFZp469C
	c 422	92.6	4.0	774	7	CF343072		072 AGENCOURT
	423	92.4	4.0	616		CB163341		341 K-EST0224
	424	91.6	3.9	356		BY005600		600 BY005600
	425	91.6	3.9	776	4	BI103442		442 602888971
	426	91.2	3.9	572	2	AW917402		402 EST348706
	427 .	91.2	3.9	722	6	CB951410		.410 AGENCOURT .
	428	91	3.9	535	1	AL911920	AL911	.920 AL911920
	c 429	91	3.9	551	4	BJ021349	ВJ021	349 BJ021349
	430	91	3.9	606	4	BJ009417		417 BJ009417
	c 431	91	3.9	674		BJ020682		0682 BJ020682
	c 431		3.9	687		BJ019313		313 BJ019313
		91						
	c 433	91	3.9	733		BJ516248		5248 BJ516248
	c 434	91	3.9	753		BJ518554		554 BJ518554
	c 435	91	3.9	756	4	ВЈ533312		312 BJ533312
	436	90.8	3.9	667	7	CK947903	CK947	903 4072727 B
	437	90.8	3.9	670	7	CN793669	CN793	669 4128731 B
	438	90.8	3.9	732	7	CK967438	СК967	438 4082607 B
	439	90.6	3.9	599	4	BJ493042	ВЈ493	042 BJ493042
	440	90.6	3.9	616		BJ501742		.742 BJ501742
	441	90.6	3.9	910	7	CN992653		653 70709 125
		90.4	3.9	732		CNS08LE2		142 Single re
	c 442							_
	c 443	90.2	3.9	811	6	CD632277		2277 56066634J
	c 444	90	3.9	643	1	AI785430		6430 uj42b06.x
	c 445	90	3.9	725		BJ518275		275 BJ518275
	446	89.8	3.9	958		BG167110		110 602344612
	c 447	89.8	3.9	1125	9	CNS03SJZ	AL258	632 Tetraodon
	448	89.6	3.9	969	4	BG291839	BG291	.839 602386068
	449	89.4	3.9	904	5	BU121683	BU12:	.683 603145755
	450	89.4	3.9	905	7	CN173591	CN173	3591 AGENCOURT
	c 451	89.2	3.8	674	7	CO704930		1930 DG32-292d
	c 451	89	3.8	127	2	BF514925		1925 UI-H-BW1-
								5923 .17.0004245
	453	88.8	3 . 8	624	7	CN275923		
	454	88.8	3.8	975	2	BF533975		3975 602075137
	c 455	88.4	3.8	602	3	CNS08M60		3148 Single re
	456	88.2	3.8	398	5	BY006400	BY00	5400 BY006400
	c 457	88.2	3.8	823	2	BF689099	BF689	099 602185172
	458	88.2	3.8	831	6	CD105882	CD10	882 AGENCOURT
	459	88	4 3.8	812	4	BI221130		130 602939634
	460	87.8	3.8	618	9	FR0007653		3 F.rubripes
	461	87.8	3.8	891	4	BG189133		0133 RST8173 A
	462	87.4	3.8	510	5	BX483530		3530 DKFZp686C
	463	87.4	3.8	1201	9	CNS015XW		5046 Drosophil
	464	87.2	3.8	579	5	BP277054		7054 BP277054
							,	
						•		

	465	87	3.8	812	5	BU364284		603584620
-	466	86.8	3.7	. 447	5	BX618498	. BX618498	BX618498
(c 467	86.8	3.7	615	7	CK133545	CK133545	RE29447.3
	468	86.4	3.7	830	4	BG195984	BG195984	RST15067
	469	86.2	3.7	550	1	AI097692		ue35b11.y
,	2 470	86.2	3.7	658	6	CB503528		ssalmge50
`	471	86	3.7	794	4	BI328333		602985653
	= 472	85.6	3.7	548	7	C0698361		DG32-135b
(2 473	85.4	3.7	618	9	FR0049525		Fugu rubr
	474	85.2	3.7	529	6	CB224174		1JEJ32C4
	475	85	3.7	1044	9	CNS044X4		Tetraodon
(: 476	84.8	3.7	659	7	CK132607		RE03265.3
	477	84.6	3.6	688	7	CK977467		4108686 B
	478	84.4	3.6	416	7	CF919654		Bflor531.
	479	84.4	3.6	455	4	BI387360	BI387360	BFL26_002
	480	84.4	3.6	551	4	BI442788	BI442788	dai90a05.
	481	84.4	3.6	702	5	BU038648	BU038648	DH02E04 H
	482	84.2	3.6	581	5	BP360001	BP360001	BP360001
	483	84.2	3.6	788	5	BX624452		BX624452
	484	84	3.6	303	7	CR738701		CR738701
,	2 485	84	3.6	607	7	CK132585		RE02574.3
`	486	83.8	3.6	428	5	BY006488		BY006488
					5			BX624575
	487	83.6	3.6	840		BX624575		
•	488	83.2	3.6	708	5	BQ202033		UI-R-EB1-
	489	83	3.6	660	6	CD703965		EST20492
	490	83	3.6	1068	5	BU145928		AGENCOURT
	491	82.6	3.6	728	4	BG569536		602588811
	492	82.4	3.6	736	7	СК950173		4075687 B
	493	82.2	3.5	625	7	CK951591		4090903 B
	494	82.2	3.5	1016	9	CNS03VYT	AL263054	Tetraodon
	495	81.6	3.5	666	4	BG971005	BG971005	602840033
	496	81.4	3.5	557	2	BF080461	BF080461	231360 MA
	c 497	81.2	3.5	656	2	AW338024	AW338024	xw65c05.x
	c 498	81.2	3.5	1080	9	CNS03FCV	AL241528	Tetraodon
	499	81	3.5	551	6	CD331938		StrPu537.
	500	81	3.5	638	7	СК950104		4075303 B
	501	80.8	3.5	789	7	C0808016		AGENCOURT
	502	80.4	3.5	863	7	CK974673		4105736 B
	503	80.2	3.5	1100	5	BQ278891		AGENCOURT
						-		
	504	79.6	3.4	578	7	CK888307		SGP149514
	505	79.4	3.4	696	4	BG971909		602841666
	506	79.4	3.4	886	4	BG402016		602466734
	507	79.2	3.4	651	7	CO259652		4131159 B
	508	79.2	3.4	842	7	CO246322		AGENCOURT
•	c 509	79	3.4	514	1	AI132717		ue33h09.x
	510	79	3.4	707	7	CO641589		USDA-FP_1
	511	78.8	3.4	452	4	BM090021	BM090021	503910 MA
	512	78.8	3.4	642	6	CB155303	CB155303	K-EST0213
	513	78.8	3.4	759	7	CN275924	CN275924	170006008
	514	78.6	3.4	328	5	BY005676		BY005676
	515	78.6	3.4	823	4	BG193837		RST12973
	516	78	3.4	801	4	BG212458		RST32045
	517	77.8	3.4	449	2	BF080415		231292 MA
	c 518	77.8	3.4	614	6	CB169862		KSV603161
,	519	77.6	3.3	441	9	CNSO7H5L		Anopheles
	c 520			589	1			ui87q04.x
		77.6	3.3			AI256545		
1	c 521	77.6	3.3	592	7	CK131146	CK131146	GH06505.3

522	77.2	3.3	425	4	BJ624661	BJ624661	BJ624661
523	77	3.3	1297	3.	AK078371		Mus muscu
c 524	76.6	3.3	538	6	CD336301		StrPu537.
c 525	76.6	3.3	616	4	вј507779		вј507779
526	76.6	3.3	1107	5	BM924331		AGENCOURT
527	75.8	3.3	1118	2	BF582087		602099271
52 <i>1</i> 528	75.6	3.3	414	7	CO994585		UMC-pd12
c 529	75.6	3.3	584	4	BJ023549		BJ023549
530	75.6	3.3	652	4	BJ705583		BJ705583
531	75.6	3.3	739	7	CO047895		Lr AT1CF
532	75.4	3.2	935	4	BG427877		602501564
533	75.4	3.2	792	2	BF786091		602110662
534	75.2	3.2	1110	2	BF533824	•	602075352
535	75.2	3.2	568	1	AA212451		mw76g12.r
536	75 75	3.2	648	7	CN983881		52591 126
c 537	75 75	3.2	732	4	BJ743004		BJ743004
538	74.8	3.2	616	1	AA255225		mz85d04.r
539	74.6	3.2	494	4	BJ623942		BJ623942
540	74.6	3.2	557		CB157680		K-EST0216
541	74.6	3.2	770	4	BG201991		RST21337
542	74.2	3.2	694	1	AU129743		AU129743
543	74.2	3.2	782	4	BG167429		602342703
544	74.2	3.2	812	1	AI663013		uj69f10.y
c 545	74.2	3.2	915	3	CNS08R35		Single re
546	. 74	3.2	582	1	AA075453		zm87e07.r
547	73.8	3.2	778	7	CF250901		esa018 e0
548	73.6	3.2	136	1	AA073542		mm94b03.r
549	73.2	3.2	508	2	BF383473		602045154
550	73.2	3.2	599	4	BJ488432		BJ488432
551	73.2	3.2	751	7	CR769273		DKFZp469I
552	73	3.1	533	2	BF131143		601819955
553	73	3.1	573	6	CB161428		K-EST0221
554	73	3.1	837	7	CN763566		IDOAAA7BG
c 555	73	3.1	980	1	AI256260		ui96h12.x
c 556	72.8	3.1		2	AW604423		RC3-CT025
c 557	72.8	3.1	662	7	CK948186		4072991 B
558	72.8	3.1	723	4	BG424452		602447772
c 559	72.6	3.1	565	7	CO328600		EK291003.
560	72.6	3.1	741	7	CR559577		DKFZp459B
561	72.4	3.1	584	6	CB586065		AMGNNUC: N
562	72.4	3.1	935	2	BF234991	BF234991	602027544
563	72.2	3.1	765	7	СК959288	СК959288	4100123 B
c 564	72.2	3.1	781	4	BJ748442	ВJ748442	BJ748442
565	72	3.1	361	5	BY082449	BY082449	BY082449
566	72	3.1	554	5	BP243787	BP243787	BP243787
56.7	72	3.1	560	5	BX485008	BX485008	DKFZp686G
568	72	3.1	670	7	CO641121	CO641121	USDA-FP 1
569	72	3.1	775	4	BI144659	BI144659	602909950
570	71.8	3.1	935	2	BF532873	BF532873	602074982
c 571	71.8	3.1	1028	9	CNS046W3	AL277212	Tetraodon
572	71.6	3.1	729	5	BQ179273	BQ179273	UI-M-EWO-
573	71.6	3.1	793	7	CF662633		CcLL03a11
574	71.4	3.1	690	6	CB467191		732919 MA
c 575	71	3.1	430	4	BI451798	BI451798	TY14E03 h
576	71	3.1	725	7	CK349802		hggfha18B
577	70.8	3.1	629	4	BM791817		K-EST0071
c 578	70.6	3.0	512	1	AI265232	AI265232	ui97d02.x

579	70.4	3.0	680	5	BX889196	BX889196 BX889196
580	70.4	3.0	871	7	CN972726	CN972726 20223_124
581	70.4	3.0	944	9	CG770584	CG770584 TcB41.1 E
582	70	3.0	689	4	BM642521	BM642521 170006873
583	70	3.0	733	7	CO561098	CO561098 AGENCOURT
584	69.8	3.0	547	7	CR763995	CR763995 DKFZp469L
585	69.8	3.0	688	4	BG286763	BG286763 602382611
586	69.6	3.0	353	5	BY005597	BY005597 BY005597
c 587	69.6	3.0	484	1	AI265260	AI265260 ui97f08.x
588	69.6	3.0	698	7	CK450042	CK450042 893658 MA
589	69.4	3.0	563	4	BM624521	BM624521 170006874
590	69.4	3.0	722	5	BX879296	BX879296 BX879296
c 591	69.4	3.0	1199	6	CD503770	CD503770 CDA64-C01
592	69.2	3.0	789	7	CO558955	CO558955 AGENCOURT
c 593	69	3.0	315	5	BY356244	BY356244 BY356244
c 594	69	3.0	517	1	AI118387	AI118387 ue36a02.x
c 595	68.8	3.0	498	1	AI118135	AI118135 ue34c01.x
596	68.8	3.0	515	2	BB283598	BB283598 BB283598
c 597	68.8	3.0	669	4	BG203058	BG203058 RST22427
598		3.0	441	4	BG876589	BG876589 QV1-DT006
599	68.6	3.0	614	4	BM607789	BM607789 170006870
600	68.6	3.0	837	7	CN976403	CN976403 26464 125
601	68.6	3.0	847	4	BG400151	BG400151 602440934
602	68.6	3.0	855	7	CN977220	CN977220 27419 125
603	68.4	2.9	446	1	AL694265	$AL694265 AL694\overline{2}65$
604	68.2	2.9	428	8	AQ194654	AQ194654 RPCI11-48
c 605	68.2	2.9	480	1	AI787349	AI787349 uj66f05.x
c 606	68.2	2.9	666	7	CK838901	CK838901 UI-R-ACO-
607	68	2.9	445	7	CN750793	CN750793 ApDT-XXVI
608	68	2.9	510	1	AI386060	AI386060 mm15f04.y
609	67.8	2.9	512	6	CA380373	CA380373 659644 NC
610	67.8	2.9	563	7	CK349927	CK349927 hggfha20A
611	67.6	2.9	470	2	BB747310	BB747310 BB747310
c 612	67.6	2.9	672	6	CA331021	CA331021 hab31b10.
613	67.6	2.9	792	7	CO573111	CO573111 AGENCOURT
c 614	67.2	2.9	588	6	CB505187	CB505187 ssalmge50
615	67	2.9	400	7	CN976669	CN976669 26779_125
c 616	67	2.9	692	9	AG078157	AG078157 Pan trogl
617	67	2.9		7	CK474315	CK474315 AGENCOURT
c 618	66.6	2.9	535	7	CO284467	CO284467 EK166132.
619	66.6	2.9	616	2	AW701598	AW701598 uq88b10.y
620	66.6	2.9	631	4	BJ004103	BJ004103 BJ004103
621	66.6	2.9	742	6	CB952913	CB952913 AGENCOURT
622	66.6	2.9	821	6	CB200045	CB200045 AGENCOURT
623	66.4	2.9	571	1	AU243299	AU243299 AU243299
624	66.2	2.9		7	CO261693	CO261693 4134046 B
625	66	2.8	611	6	CA968819	CA968819 CcLL03a08
626	66	2.8	1447	7	CV200634	CV200634 km06e10.y
c 627	65.6	2.8	618	9	FR0007644	Z91454 F.rubripes
628	65.6	2.8	901	7	CN501635	CN501635 AGENCOURT
c 629	65.4	2.8	344	1	AJ283854	AJ283854 4A3B-AAG-
c 630	65.4	2.8	697	2	AW942728	AW942728 LD25345.3
631	65.4	2.8	805	5	BU124084	BU124084 603147892
632	65.4	2.8	829	2	BF782818	BF782818 602107680
633	65.2	2.8	632	4	BJ528642	BJ528642 BJ528642
634	65.2	2.8	762	1	AA717701	AA717701 vp94g02.r
635	65.2	2.8	903	7	CN157171	CN157171 945851 MA

С	636	65	2.8	572	7	СК604711	CK604711 UT01394.3
	637	65	2.8	939	5	BQ922613	BQ922613 AGENCOURT .
	638	65	2.8	1109	6	CD505365	CD505365 CDA73-C09
	639	64.8	2.8	196	1	AI317676	AI317676 uj22c05.y
	640	64.8	2.8	458	7	CO265158	CO265158 EK141664.
	641	64.8	2.8	650	6	CD596098	CD596098 RK100A2F1
	642	64.8	2.8	713	6	CA347838	CA347838 679019 NC
	643	64.8	2.8	815	1	AA986709	AA986709 uc80d04.x
	644	64.6	2.8	759	4	ВJ728374	BJ728374 BJ728374
	645	64.4	2.8	492	1	AA493091	AA493091 vi7lh01.r
	646	64.4	2.8	647	1	AA880242	AA880242 vv98g03.r
	647	64.2	2.8	854	4	BI147191	BI147191 602913291
	648	64	2.8	463	1	AA895843	AA895843 vy34h02.r
	649	64	2.8	469	6	CB147253	CB147253 K-EST0203
					1	AA985955	AA985955 uc72h01.x
	650	64	2.8	489			AL785003 AL785003
	651	64	2.8	512	1	AL785003	CO696892 DG32-1041
	652	64	2.8	547		. CO696892	
	653	63.8	2.8	721	7	CK663177	CK663177 A296 Symb
	654	63.8	2.8	891	4	BG426822	BG426822 602493003
	655	63.8	2.8	966	2	BF027320	BF027320 601671692
	656	63.6	2.7	705	6	CB165252	CB165252 ZDW602600
	657	63.6	2.7	789	7	CN174688	CN174688 AGENCOURT
	658	63.4	2.7	1716	6	CD013997	CD013997 90117357
		63.2	2.7	364	5	BX872852	BX872852 BX872852
	660	63.2	2.7	729	7	CO570100	CO570100 AGENCOURT
	661	63.2	2.7	950	7	CO582747	CO582747 ILLUMIGEN
	662	63	2.7	1267	4	BG210359	BG210359 RST29896
	663	62.8	2.7	556	2	BE026512	BE026512 db27e05.x
	664	62.8	2.7	731	7	CV434524	CV434524 CS_hyp_35
	665	62.6	2.7	346	4	BM030341	BM030341 488958 MA
	666	62.6	2.7	494	8	AQ620313	AQ620313 HS_5180_B
	667	62.6	2.7	569	6	CA342060	CA342060 671852 NC
	668	62.4	2.7	638	4	BM649075	BM649075 170006873
	669	62.4	2.7	807	7	CK030429	CK030429 AGENCOURT
	670	62.4	2.7	886	2	BF788242	BF788242 602113469
	671	62.4	2.7	980	4	BG179775	BG179775 602328862
	672	62	2.7	352	9	FR0049577	AL605386 Fugu rubr
	673	62	2.7	605	9	FR0007158	Z90968 F.rubripes
	674	62	2.7	624	4	BG302826	BG302826 fl39e03.x
	675	62	2.7	952	5	BU122907	BU122907 603147125
	676	61.8	2.7	630	6	CB577476	CB577476 AMGNNUC:U
	677	61.8	2.7	631	7	CK132736	CK132736 RE07815.3
	678	61.8	2.7	888	6	CD759765	CD759765 AGENCOURT
	679	61.6	2.7	504	7	CO262072	CO262072 EK084327.
	680	61.6	2.7	613	1	AA647358	AA647358 vp88c04.r
	681	61.6	2.7	619	9	FR0007662.	Z91472 F.rubripes
	682	61.4	2.6	483	9	CL583901	CL583901 OBBa007
	683	61.4	2.6	684	6	CD341703	CD341703 StrPu536.
	684	61.4	2.6	852	6	CA976637	CA976637 AGENCOURT
	685	61.2	2.6	368	5	BU473251	BU473251 603760179
	686	61.2	2.6	596	9	FR0049628	AL605437 Fugu rubr
	687	61.2	2.6	623	7	CK517693	CK517693 rswjb0_00
	688	61	2.6	415	9	FR0014950	AL006159 F.rubripe
	689	61	2.6	739	4	BG195983	BG195983 RST15066
	690	61	2.6	1071	5	BU525573	BU525573 AGENCOURT
	691	60.8	2.6	638	4	BI103514	BI103514 602889055
С	692	60.8	2.6	675	4	BJ136139	вЈ136139 вЈ136139

				-	_		07650466 00 777 4 67
	c 693	60.8	2.6	738	6	CB659466	CB659466 OSJNEc16H
•	694	60.8	2.6	806	1	AI048638	AI048638 ud64c07.y
	c 695	60.8	2.6	829	6	CB666604	CB666604 OSJNEd13J
	696	60.6	2.6	491	4	BG427032	BG427032 602493934
	c 697	60.6	2.6	590	4	BJ142883	BJ142883 BJ142883
•	698	60.6	2.6	641	7	CF254125	CF254125 mdvn112_a
	c 699	60.6	2.6	714	9	AG578491	AG578491 Mus muscu
	c 700	60.6	2.6	728	4	BJ139199	BJ139199 BJ139199
	c 701	60.6	2.6	732	7	CV516957	CV516957 0048P0018
	702	60.4	2.6	312	9	FR0015816	AL007022 F.rubripe
	703	60.4	2.6	581	1	AA473690	AA473690 vg89c08.r
	c 704	60.4	2.6	638	7	CK940315	CK940315 4113683 B
		60.4	2.6	638	7	CK955845	CK955845 4095851 B
	c 706	60.2	2.6	811	8	BZ267251	BZ267251 CH230-262
	707	60	2.6	495	1	AA674349	AA674349 vp98h05.r
	708	60	2.6	784	9	CL311817	CL311817 286867_LB
	709	59.8	2.6	497	1	AJ683303	AJ683303 AJ683303
	710	59.8	2.6	546	1	AA575452	AA575452 vl90b05.r
	711	59.8	2.6	552	1	AI286386	AI286386 ui75g08.y
	712	59.8	2.6	728	7	CO641072	CO641072 USDA-FP_1
	713	59.6	2.6	379	1	AV683166	AV683166 AV683166
	714	59.6	2.6	399	7	T62130	T62130 yc66e11.rl
	715	59.6	2.6	997	9	CNS005TE	AL060767 Drosophil
	c 716	59.4	2.6	605	7	CK604610	CK604610 UT01321.3
	c 717	59.4	2.6	650	9	CL196913	CL196913 104_423_1
	718	59.4	2.6	681	7	CN790431	CN790431 4125029 B
	c 719	59.4	2.6	815	9	CG231386	CG231386 OGWGN83TH
	c 720	59.4	2.6	835	9	CG281350	CG281350 OGYAI36TV
	721	59	2.5	634	4	BG642104	BG642104 pgllc.pk0
	c 722	59	2.5	643	7	CK977010	СК977010 4108302 В
	c 723	59	2.5	699	8	AZ947666	AZ947666 2M0210N24
	c 724	59	2.5	717	4	BJ147817	BJ147817 BJ147817
	725	59	2.5	853	2	BF232793	BF232793 602023393
	726	59	2.5	952	2	BF232705	BF232705 602023293
	727	58.8	2.5	522	7	CR771627	CR771627 DKFZp469F
	728	58.8	2.5	542	4	BJ520742	BJ520742 BJ520742
	c 729	58.6	2.5	82	1	AA974589	AA974589 op28h10.s
	c 730	58.6	2.5	481	1		AI668249 605018G07
	731	58.6	2.5	484	5	BQ666537	BQ666537 pb43b12.y
	c 732	58.6	2.5	493	1	AI664846	AI664846 605002D07
	c 733	58.6	2.5	522	1	AI759125	AI759125 605085D09
	c 734	58.6	2.5	528	6	CA401029	CA401029 EL01N0413
	c 735	58.6	2.5	569	6	CA399837	CA399837 EL01N0326
	c 736	58.6	2.5	572	6	CA404541	CA404541 EL01N0519
	737	58.6	2.5	618	2	AW065890	AW065890 687002E04
	c 738	58.6	2.5	621	9	CG303576	СG303576 ОG0ВG09ТН
	c 739	58.6	2.5	630	6	CA404340	CA404340 EL01N0515
	c 740	58.6	2.5	656	6	CD446879	CD446879 EL01T0208
	c 741	58.6	2.5	667	6	CA403669	CA403669 EL01N0505
	c 742	58.6	2.5	683	4	BJ816482	BJ816482 BJ816482
	743	58.6	2.5	685	9	CG296824	CG296824 OGWKC02TV
	c 744	58.6	2.5	720	6	CA399209	CA399209 EL01N0315
	c 745	58.6	2.5	720	6	CA401228	CA401228 EL01N0416
	c 746	58.6	2.5	731	6	CA403005	CA403005 EL01N0445
	c 747	58.6	2.5	749	3	AY112099	AY112099 Zea mays
	c 748	58.6	2.5	758	6	CB653386	CB653386 OSJNEc04F
	c 749	58.6	2.5	769	6	CD446561	CD446561 EL01T0203

c 750	58.6	2.5	785	6	CD446551		CD446551	EL01T0203
c 751	58.6	2.5	787	8	BZ637786		BZ637786	OGCBL09TM
c 752	58.6	2.5	799	9	CC724533		CC724533	OGWIZ79TV
c 753	58.6	2.5	820	6	CD437268		CD437268	EL01N0371
754	58.6	2.5	829	9	CG083392		CG083392	PUILH08TD
c 755	58.6	2.5	876	6	CD441044		CD441044	EL01N0551
.756	58.4	2.5	942	7	CN990976		CN990976	67253 125
c 757	58.2	2.5	704	1	AU213104		AU213104	AU213104
758	58.2	2.5	1465	6	CD013999			90117633
7 59	58	2.5	523	1	AA511527			vj28d05.r
760	58	2.5	566	5	BP221553			BP221553
c 761	58	2.5	842	7	CO161727			FLD1 30 F
c 762	58	2.5	851	7	CO161650			FLD1 30 F
c 763	57.8	2.5	461	1	AI256492			ui87a02.x
c 764	57.6	2.5	355	9	CC465888			ZMMBBc039
765	57.6	2.5	391	4	BG186196			RST5044 A
c 766	57.6	2.5	578	9	CG301141			OGXCC14TH
767	57.6	2.5	686	6	CD444925			EL01N0445
768	57.6	2.5	823	4	BI332351			602983540
769	57.4	2.5	628	1	AV657530			AV657530
c 770	57.2	2.5	346	8	BZ348795			hp61d04.g
c 771	57.2	2.5	538	1	AL915629			AL915629
772	57.2	2.5	558	ī	AU201532			AU201532
773	57.2	2.5	624	2	BE238993			MD0649 Me
774	57.2	2.5	629	7	CK498980			rswbb0 00
775	57	2.5	437	7	CF919695			Bflor531.
c 776	57	2.5	447	6	CD441431			EL01N0556
c 777	5 <i>7</i>	2.5	700	4	BJ148891			BJ148891
778	• 57	2.5	1101	9	CNS00KFD			Drosophil
779	56.8	2.4	440	2	BB745467		BB745467	
780	56.8	2.4	445	7	CN955753			3252 104-
781	56.8	2.4	601	7	CO637012			USDA-FP 1
782	56.8	2.4	674	8	BZ328006			id33g10.g
c 783	56.8	2.4	807	8	BZ220205			CH230-360
784	56.8	2.4	837	9	CC659620			OGXAA96TV
c 785	56.8	2.4	880	9	CC616166			OGLCB41TH
786	56.8	2.4	1024	3	AY107409			Zea mays
c 787	56.6	2.4	583	1	AI876537			uj59f11.x
788	56.6		624		CC386454			PUHPE49TD
c 789	56.6	2.4	628	8	CC386449			PUHPE49TB
790	56.6	2.4	872	7	CN582253			USDA-FP 1
791	56.4	2.4	632	6	CD748367			rw36d05.y
c 792	56.4	2.4	732	4	BJ816728			BJ816728
c 793	56.4	2.4	743	4	BJ816263			BJ816263
c 794	56.4	2.4	749	4	BJ152595			BJ152595
c 795	56.4	2.4	7,6,8.	4	BJ779102	•		BJ779102
c 796	56.4	2.4	775	4	BJ149607			BJ149607
c 797	56.4	2.4	777	4	BJ129204			BJ129204
798	56.4	2.4	814	4	BG428781			602500860
c 799	56.2	. 2.4	426	7	CO308066			EK256548.
c 800	56.2	2.4	629	6	CB494209			omykrbhb0
c 801	56.2	2.4	793	4	BJ149397			BJ149397
802	56.2	2.4	809	4	BG971667			602840766
803	56.2	2.4	1101	9	CNS000WU			Drosophil
804	56	2.4	436	7	CN3000W0			EK263564.
805	56	2.4	488	3	AY432118			Aedes aeg
c 806	56	2.4	504	ა 9	CG801172			1118018D0
C 300	30	۷.4	304	9	CGUUIIIZ		CG0011/2	TTT0010D0

807	56	2.4	568	5	BP213630			BP213630
c 808	56	2.4		4	вJ776790		. ВЈ776790	
c 809	56	2.4	785	9	CC659613			OGXAA96TH
810	56	2.4	900	5	BU123073			603149488
811	55.8	2.4	221	2	BB561857			BB561857
812	55.8	2.4	316	7	CK942201			4065834 B
c 813	55.8	2.4	619	9	FR0015790			F.rubripe
c 814	55.8	2.4	704	1	AI529566			ui82b06.x
815	55.8	2.4	1012	9	CNS0050V			Drosophil
816	55.8	2.4	1266	9	CL962544			OsIFCC007
817	55.6	2.4	353	2	AW424655			707020Н03
c 818	55.6	2.4	454	4	ВЈ817721			BJ817721
819	55.6	2.4	521	4	BM130311			pb29d12.y
820	55.6	2.4	525	2	BE138067			ug48a07.y
821	55.6	2.4	583	5	BX765624			BX765624
822	55.6	2.4	633	5	BQ588578			E012562-0
c 823	55.6	2.4	716	1	AU216588		AU216588	
824	55.6	2.4	753	4	BI143423			602907790
825	55.6	2.4	813	6	CA480775			AGENCOURT
826	55.6	2.4	984	9	CNS006LF		AL065715	Drosophil
827	55.6	2.4	1009	9	CNS007PY			Drosophil
c 828	55.4	2.4	309	9	CL583240			OBBa004
829	55.4	.2.4	548	7	CK886207			SGP166618
c 830	55.4	2.4	675	4	BG320141			Zm03_05c0
c 831	55.2	2.4	592	7	CO184970			EC29003.3
832	55.2	2.4	713	7	CO638381			USDA-FP_1
833	55.2	2.4	845	6	CA481394		CA481394	AGENCOURT
834	54.8	2.4	507	6.	CB164110			K-EST0225
835	54.8	2.4	570	5	BP257713		BP257713	BP257713
c 836	54.8	2.4	573	9	FR0049536		AL605345	Fugu rubr
c 837	54.8	2.4	619	9	FR0015778		AL006985	F.rubripe
c 838	54.8	2.4	734	4	BJ794516		BJ794516	BJ794516
839	54.6	2.4	584	1	AI987137		AI987137	rs22b08.y
840	54.6	2.4	603	5	BX499005		BX499005	DKFZp779A
841	54.6	2.4	619	6	CA100959		CA100959	SCCCFL100
842	54.6	2.4	644	5	BQ578506			WHE0304_F
843	54.6	2.4	739	4	BG969762		BG969762	602837258
844	54.4	2.3	464	6	CB953456		CB953456	AGENCOURT
845	54.4	2.3	542	8	BH778649		BH778649	fzmb013f0
c 846	54.4	2.3	604	5	BU0509.66			1111036G0
847	54.4	2.3	661	7	CF623828			zmrws05_0
848	54.4	2.3	662	7	СК827797			zmrws05_0
849	54.4	2.3	737	9	CG370415		CG370415	OGWIZ79TH
850	54.2	2.3	372	1	AA675719			MBAFCW4A0
c 851	54.2	2.3	574	4	BJ538530			BJ538530
852	54.2	2.3	576	4	BJ525957	10 To 100 1 Hore	BJ525957	
853	54.2	2.3	628	2	BF787599			602114528
854	54.2	2.3	1194	7	CV186196		CV186196	
855	54	2.3	427	7	CO285751			EK060617.
856	54	2.3	463	6	CD915387			G550.125P
857	54	2.3	580	5	BP215685			BP215685
c 858	54	2.3	916	7	CV280250			WS0135.B2
c 859	53.8	2.3	527	6	CA405139			EL01N0529
860	53.8	2.3	593	4	BM143646			saj47a09.
c 861	53.8	2.3	825	7	CO981254			GM89010B2
c 862	53.6	2.3	446	2	AW113351		AW113351	MC798 mou
c 863	53.6	2.3	635	1	AU219747		AU219747	AU219747

	c 864	53.6	2.3	816	7	CR530976	CR530976 CR530976
	c 865	53.6	2.3.	836	1	AI529553	AI529553 ui82a02.x
	866	53.6	2.3	888	6	CA975538	CA975538 AGENCOURT
	867	53.6	2.3	954	7	CO580598	CO580598 ILLUMIGEN
	c 868	53.6	2.3	1014	9	CNS05PJQ	AL348047 Tetraodon
	c 869	53.4	2.3	253	2	AW531318	AW531318 UI-R-C4-a
	c 870	53.4	2.3	360	9	FR0015823	AL007029 F.rubripe
	871	53.4	2.3	574	7	CN133765	CN133765 OX1_18_E0
	872	53.4	2.3	629	6	CB927938	CB927938 ABA1_35_B
	873	53.4	2.3	687	1	AU055875	AU055875 AU055875
	874	53.4	2.3	733	9	CR501049	CR501049 Medicago
	875	53.4	2.3	736	9	CR500903	CR500903 Medicago
	c 876	53.4	2.3	784	7	CK265007	CK265007 EST711085
	877	53.4	2.3	820	4	BG577461	BG577461 R77 MPI2-
	878	53.4	2.3	822	9	CR500725	CR500725 Medicago
	c 879	53.4	2.3	875	9	CC692091	CC692091 OGLBU37TH
	880	53.4	2.3	875	9	CC692097	CC692097 OGLBU37TV
	881	53.4	2.3	945	4	BG167885	BG167885 602339857
	c 882	53.2	2.3	552	2	AW351201	AW351201 GM210011A
	c 883	53.2	2.3	552	6	CB399450	CB399450 OSTR221F2
	c 884	53.2	2.3	552	6	CB399482	CB399482 OSTR221F2
•	c 885	53.2	2.3	700	2	BE190894	BE190894 sn80c04.y
	c 886	53.2	2.3	738	4	BJ775701	вј775701 вј775701
	887			743	2	BF236932	BF236932 602026557
		53.2	2.3				·
	c 888	53.2	2.3	769	4	BJ791007	BJ791007 BJ791007
	889	53.2	2.3	873	7.		CN167653 AGENCOURT
	890	53.2	2.3	914	7	CO645579	CO645579 ILLUMIGEN
	c 891	53	2.3	467	1	AI665286	AI665286 605009C03
	892	53	2.3	602	6	CA248078	CA248078 SCCCAM109
	893	53	2.3	603	9	FR0007962	Z91772 F.rubripes
	894	53	2.3	614	6	CA242675	CA242675 SCSFFL309
	c 895	53	2.3	925	7	CN761277	CN761277 IDOAAA2DE
	896	52.8	2.3	447	5	BU039808	BU039808 PP_LEa000
	897	52.8	2.3	499	4	BI610180	BI610180 RH15147.5
	898	52.8	2.3	514	5	вм952830	BM952830 952059E04
	899	52.8	2.3	652	8	AZ945505	AZ945505 2M0206H23
	c 900	52.8	2.3	672	4	BJ135701	BJ135701 BJ135701
	c 901	52.8	2.3	755	4	вJ809035	BJ809035 BJ809035
	c 902	52.6	2.3.	573	8	AZ831866	AZ831866 2M0111C19
	903	52.6	2.3		9	FR0007177	Z90987 F.rubripes
·	904	52.6	2.3	992	9	CNS038FN	AL232556 Tetraodon
,	c 905	52.4	2.3	464	9	CC693642	CC693642 OGUGK52TH
	906	52.4	2.3	504	6	CA700350	CA700350 wkmlc.pk0
	907	52.4	2.3	519	6	CA627167	CA627167 wlln.pk15
	c 908	52.4	2.3	528	7	CV051393	CV051393 EST 10848
	909	52.4	2.3	544	6	CA621946	CA621946 wlln.pk00
	910	52.4	2.3	545	5		BQ483975 WHE3515 A
						BQ483975	
	c 911	52.4	2.3	551	9	CG233803	CG233803 OGVCV89TH
	912	52.4	2.3	573	7	CV053322	CV053322 EST 12770
	913	52.4	2.3	593	7	CV053078	CV053078 EST 12526
	914	52.4	2.3	619	9	FR0007182	Z90992 F.rubripes
	c 915	52.4	2.3	623	9	CNS03MFA	AL250687 Tetraodon
	c 916	52.4	2.3	638	7	CV051636	CV051636 EST 11091
	c 917	52.4	2.3	666	1	AI158921	AI158921 uf05c02.x
	c 918	52.2	2.3	443	8	CC029515	CC029515 3591_1_11
	c 919	52.2	2.3	658	7	CO210550	CO210550 WS00918.B
	920	52	2.2	272	9	CL175246	CL175246 104_380_1
							

•								
921	52	2.2	343	4	BG182337			RST1203 A
922	52	2.2	536	7	CF349411	-	CF349411	
923	52	2.2	582	5	BP217111		BP217111	
924	52	2.2	631	6	CA111498			SCAGLB107
c 925	52	2.2	703	5	BQ475642			cicindela
c 926	52	2.2	721	5	BQ262583			fz84d12.x
927	52	2.2	803	1	AJ006537		AJ006537	
c 928	51.8	2.2	496	1	AI855338			603014F06
929	51.8	2.2	508	1	AI614365			vi71h01.y
c 930 931	51.8 51.8	2.2	511 543	7	CO528524 CB339758			3530_1_18 CA23EI03I
c 932	51.8	2.2 2.2	543 574	6 6	CB339756 CB339351			CA23E1031
c 933	51.8	2.2	610	4	BI542629			949020C07
c 934	51.8	2.2	616	7	CO517693			3530 1 11
c 935	51.8	2.2	659	7	CF630818			zmrws48 0
936	51.8	2.2	687	6	CB250778			75 Aedes
c 937	51.8	2.2	690	7	CF243936			3530 1 25
938	51.8	2.2	695	7	CK962027			4076 3 6 3 B
939	51.8	2.2	724	9	CL154714		CL154714	104 340 1
940	51.8	2.2	748	6	CB954704		CB954704	AGENCOURT
c 941	51.8	2.2	768	6	CB631476		CB631476	OSIIEb09A
942	51.8	2.2	798	5	BM948419			UI-M-EG0p
c 943	51.8	2.2	822	7	CF633893			zmrww00_0
944	51.8	2.2	827	7	CK370475			zmrww005_
945	51.8	2.2	840	6	CB631477			OSIIEb09A
c 946	51.8	2.2	892	4	BG208263		BG208263	
947	51.8	2.2	893	6	CA076965			SCQGAM104
948	51.8	2.2	949	3	AY105440		AY105440	_
c 949	51.8	2.2	1049	2	BE573200 CL965868			601332887
950 c 951	51.8 51.6	.2.2 2.2	1419 335	9 8	CC040482			OsIFCC012 3591 1 13
c 952	51.6	2.2	440	8	CC040462 CC040369			3591_1_13
953	51.6	2.2	442	7	CN956527		CN956527	4027 5001
c 954	51.6	2.2	454	8	CC040451			3591 1 13
c 955	51.6	2.2	461	8	CC042725			3591 1 15
c 956	51.6	2.2	545	6	CB505278			ssalmgd50
c 957	51.6	2.2	572	2	AW471171			xu08h02.x
958	51.6	2.2	633	2	BF028687		BF028687	601763929
c 959	51.6	2.2	667	7	CO519314		CO519314	3530_1_12
c 960	51.6	2.2	671	4	BJ146707			BJ146707
961	51.6	2.2	728	4	BI102440			602889631
c 962	51.6	2.2	729	9	CG436794			OGVGU72TH
c 963	51.6	2.2	777	9	CG267261			OGWHF51TH
964	51.6	2.2	781	6	CB683695			OSJNEf12G
c 965	51.6	2.2	834	7	CF634127			zmrww00_0
966	51.6	2.2	854		AL931420			AL931420
с 967 968	51.6 51.6	2.2	899 1031	9 6	CC618081 CA139432			OGLAX62TH SCEQRT209
969	51.4	2.2	494	9	CL572955			OB Ba001
970	51.4	2.2	568	6	CD433794			EL01N0315
c 971	51.4	2.2	649	8	BZ726909			OGECF17TC
972	51.4	2.2	654	7	CN150564			WOUND1 70
973	51.4	2.2	666	5	BQ753201			WHE4124 C
c 974	51.4	2.2	673	4	BJ783526			BJ783526
975	51.4	2.2	673	9	CL537275			OB Ba004
976	51.4	2.2	679	6	CA073196			SCEPAM105
c 977	51.4	2.2	690	1	AU216711			AU216711

	c 978	51.4	2.2	702	4	вJ788990	BJ788990	BJ788990
	979	51.4	2.2	707	8	BZ726916	BZ726916	OGECF17TM
	c 980	51.4	2.2	708	4	BJ133121	BJ133121	BJ133121
	c 981	51.4	2.2	709	4	BJ818107	BJ818107	BJ818107
	c 982	51.4	2.2	763	6	CA135704	CA135704	SCJLRT102
	c 983	51.4	2.2	799	6	CD871509		AZO2.118G
	984	51.4	2.2	919	9	CG445266		OGTBF39TV
	985	51.4	2.2	1127	7	СК028276		AGENCOURT
	986	51.2	2.2	532	9	CC733695		OGUCO18TH
	987	51.2	2.2	539	6	CD750145		rv07c03.y
	c 988	51.2	2.2	562	9	CC733706		OGUCO18TV
	989	51.2	2.2	565	5	BX676981	BX676981	
	990	51.2	2.2	582	7	CO997967		pam01-15m
	991	51.2	2.2	707	7	C0070063		GR Ea260
	c 992	51.2	2.2	784	7	CO070062		GR Ea260
	c 993	51.2	2.2	790	7	CO084607		GR Ea01F
	994	51.2	2.2	793	9	CG205456		PUIAU44TD
	c 995	51.2	2.2	1031	9	CC730025		OGUDN62TV
	996	51.2	2.2	1458	9	CL982528		OsIFSC048
	997	51	2.2	430	5	BP940165	BP940165	
	998	51	2.2	586	9	FR0007952	Z91762 F.	
	c 999	51	2.2	596	5	BP036706	BP036706	
	c1000	51	2.2	608	6	CB637106		OSJNEa03E
	1001	51	2.2	717	1	AF527714	AF527714	
	c1001	51	2.2	750	6	CB646078		OSJNEb08E
	c1002	51	2.2	768	6	CB655823		OSJNEc09J
•	c1003	51	2.2	769	6	CB680689		OSJNEf05N
	c1004	51	2.2	807	6	CB679495		OSJNETOSK OSJNETOSB
	c1005	51	2.2	809	6	CB679818		OSJNE103B
	1007	51	2.2	810	6	CB680688		OSJNETOSM OSJNEf05N
	c1007	51	2.2	812	6	CB671618		OSJNEE05E
·	1009	51	2.2	821	6	CB655822		OSJNEc09J
	c1010	51	2.2	829	6	CB666716		OSJNEd13L
	1011	50.8	2.2	265	7	CV052826		EST 12274
	c1011	50.8	2.2	494	7	CV032828 CV047765		EST 13082
	1013	50.8	2.2	551	6	CA041628		ssalplnb5
	c1014	50.8	2.2	578	7	CO698343		DG32-134j
	1015	50.8	2.2	580	5	BP276996	BP276996	
	1015	50.8	2.2	582	5	BP270998	BP270998	
	1017	50.8	2.2	609	6	CD224613		CCC1 35 F
	c1017	50.8	2.2	647	4	BM269408		MEST409-F
	c1018	50.8	2.2	750	6	CB823924	CB823924	
		50.8	2.2	790	6		CB822697	
	c1020 c1021	50.8	2.2	806	6	CB822697 CB822464	CB822464	
,			2.2			BZ652248		
	c1022	50.8 50.8	2.2	896 932	8 7			OGCBT21TM
	c1023 1024	50.8		932 971	9.	CV245243 CG030644		WS0256.B2 PUIEZ35TD
			2.2	516				
	c1025	50.6	2.2		6	CA721277		wdk9n.pk0
	c1026	50.6	2.2	537 539	6	CD453688		WHE0840_E
	1027	50.6	2.2	539 564	7	CK893654		SGP153746
	c1028	50.6	2.2	564	4	BJ595115		BJ595115
	1029	50.6	2.2	754 760	5	BQ752889		WHE4120_D
	1030	50.6	2.2	769	9	CE543749		tigr-gss-
	1031	50.6	2.2	784	9	CG103720		PUFQS48TD
	c1032	50.6	2.2	828	6	CB621476		OSIIEa07G
	c1033	50.6	2.2	909	7	CO235179		WS0263.B2
	1034	50.6	2.2	1758	9	CL977417	СБ9//417	OsIFCC030

•

	1035	50.4	2.2	404	4	BG730140		BG730140	de10c06.y	
	c1036	50.4	2.2	461	1	AI527401		AI527401	uj46c05.x	_
	1037	50.4	2.2	463	5	BU046782			PP LEa002	
	1038	50.4	2.2	493	2	BE363468			WS1 63 B0	
	c1039	50.4	2.2	494	6	CA403476			EL01N0502	
	c1040	50.4	2.2	576	7	CF472330			RTDS1 9 E	
	c1041	50.4	2.2	590	9	CL190425			104 408 1	
	1042	50.4	2.2	591	6	CB927803			ABA1 34 B	
				628		BE356265			DG1 123 A	
	1043	50.4	2.2		2 7					
	1044	50.4	2.2	629		CV095362			FAMU_USDA	
	1045	50.4	2.2	641	6	CB925748			ABA1_23_C	
	1046	50.4	2.2	677	4	BM645987			170006873	
	1047	50.4	2.2	680	2	BE126076			DG1_65_E0	
	1048	50.4	2.2	681	4	BM300075			MCR054H06	
	1049	50.4	2.2	682	2	BE362888			DG1_90_B1	
	c1050	50.4	2.2	692	9	CL193419			104_417_1	
	c1051	50.4	2.2	700	9	CL185025			104_398_1	
-	1052	50.4	2.2	766	7	CN139110	*		OX1_16_B1	
	c1053	50.4	2.2	819	7	CF472392			RTDS1_9_E	
	1054	50.4	2.2	858	7	CO162822			FLD1_37_F	
	1055	50.4	2.2	1479	9	CL966467			OsIFCC039	•
	1056	50.4	2.2	1482	9	CL966466			OsIFCC039	
	1057	50.4	2.2	1536	9	CL949054		CL949054	OsIFSB003	
	1058	50.2	2.2	476	6	CA117818			SCBGLR104	
	c1059	50.2	2.2	505	9	CG782598			1123051B1	
	c1060	50.2	2.2	523	7	CO110296			GREb004	
	c1061	50.2	2.2	523	7	CO131794			GR_Eb44E	
	1062	50.2	2.2	530	2	AW677595			DG1_8_E07	
	1063	50.2	2.2	583	7	CR529808		CR529808		
	1064	50.2	2.2	614	2	BF144793			601791473	
	c1065	50.2	2.2	665	4	BJ275225		BJ275225		
	1066	50.2	2.2	673	4	BM639164			170006875	
	c1067	50.2	2.2	680	6	CB680895			OSJNEf06G	
	1068	50.2	2.2	688	2	BE403580			WHE0434_C	
	c1069	50.2	2.2	696	7	CR529807			CR529807	
	c1070	50.2	2.2	736	6	CB650859			OSJNEb15I	
	c1071	50.2	2.2	736	9	CW516566	•		OPBa004	
	c1072	50.2	2.2	745	6	CB677705			OSJNEe14P	
	1073	50.2			5	BX617512			BX617512	
	c1074	50.2	2.2	755	6	CB643719		CB643719	OSJNEb04J	
	c1075	50.2	2.2	755	6	CB643721		CB643721	OSJNEb04J	
	c1076	50.2	2.2	765	6	CB651523		CB651523	OSJNEb16I	
	c1077	50.2	2.2	771	6	CB668190		CB668190	OSJNEd150	
	c1078	50.2	2.2	778	6	CB643291		CB643291	OSJNEb030	
	c1079	50.2	2.2	785	6	CB657829		CB657829	OSJNEc13H	
	c1080	50.2	2.2	800	6	CB643653		CB643653	OSJNEb04H	
	1081	50.2	2.2	811	6	CB657828		CB657828	OSJNEc13H	
	1082	50	2.2	488	5	BU047265		BU047265	PP_LEa002	
	c1083	50	2.2	543	7	CO120590		CO120590	GR_Eb024	
	c1084	50	2.2	675	8	BZ655726		BZ655726	OGCCX27TM	
	c1085	50	2.2	718	4	BJ295169		BJ295169	BJ295169	
	c1086	50	2.2	755	7	CO119232		CO119232	GR_Eb022	
	c1087	50	2.2	767	7	CO117573		CO117573	GR_Eb01H	
	c1088	50	2.2	819	9	CC609436		CC609436	OGWEC21TH	
	c1089	50	2.2	860	9	CG332048		CG332048	OG3CV53TH	
	c1090	50	2.2	862	9	CC660585		CC660585	OGUHJ18TH	
	1091	49.8	2.1	401	4	BI610047		BI610047	RH14915.5	

	1092	49.8	2.1	405	2	BB846514		BB846514 BB846514
	10.93	49.8	2.1	407	2.	BB738955		_ BB738955 BB738955
	c1094	49.8	2.1	509	6	CA400504		CA400504 EL01N0405
	c1095	49.8	2.1	549	6			CA404237 EL01N0514
	1096	49.8	2.1	552	7			CF427347 PH1_1_C12
	c1097	49.8	2.1	567	6	CB397962		CB397962 OSTR196G9
	c1098	49.8	2.1	567	6	CB398012		CB398012 OSTR196G9
	c1099	49.8	2.1	604	9	CL159037		CL159037 104_348_1
	1100	49.8	2.1	617	8	вн801909		BH801909 1008122A0
	1101	49.8	2.1	641	6	CD233295		CD233295 SS1_13_C0
	c1102	49.8	2.1	656	7	CO105005		CO105005 GREb003
	1103	49.8	2.1	659	9	CL187944		CL187944 104_404_1
	1104	49.8	2.1	677	4	BI600040		BI600040 603251425
	1105	49.8	2.1	684	7			CN149641 WOUND1_64
	1106	49.8	2.1	706	7			CN145147 WOUND1_27
	c1107	49.8	2.1	721	9	CL187943		CL187943 104_404_1
	c1108	49.8	2.1	752	4			BJ783202 BJ783202
	c1109	49.8	2.1	759	9	CG345428		CG345428 OGYBX66TH
	1110	49.8 49.8	2.1	760 833	9 7	CG213435 CO078974		CG213435 OGXCM76TV CO078974 GR Ea41I
	c1111 c1112	49.8	2.1 2.1	839	9	CG213425		CG213425 OGXCM76TH
	1113	49.8	2.1	842	э 7			CO364746 RTK1 21 C
	1113	49.8	2.1	849	7			CO364666 RTK1 21 C
	1114	49.8	2.1	879	7			CO127109 GR Eb11I
	1116	49.8	2.1	907	7	CO070408		C0070408 GR Ea27G
	c1117	49.8	2.1	938	7	CV236386		CV236386 WS01223.B
	1118	49.6	2.1		6	CA695039		CA695039 wlmk4.pk0
	1119	49.6	2.1	418	5	BQ768447		BQ768447 EBro08 SQ
	1120	49.6	2.1	503	6	CA625114		CA625114 wlln.pk01
	1121	49.6	2.1	509	2	BF786568		BF786568 602108517
	c1122	49.6	2.1	559	6			CB398029 OSTR197A7
	c1123	49.6	2.1	559	6	CB398045		CB398045 OSTR197A7
	c1124	49.6	2.1	633	4	BJ147155		BJ147155 BJ147155
	1125	49.6	2.1	642	9	CL952976		CL952976 OsIRUA004
	1126	49.6	2.1		7			CV091309 NA1809 cD
	c1127	49.6	2.1	685	4			ВЈ781077 ВЈ781077
	1128	49.6	2.1	701	7			CR526982 CR526982
		49.6				BX617038		BX617038 BX617038
	c1130	49.6	2.1	714	7	CO119668		CO119668 GREb022
	1131	49.6	2.1	715	4	BM575036		BM575036 170006589
	c1132	49.6	2.1	764	9	CG369437		CG369437 OGYAP21TH
	1133	49.6	2.1	798	9	CG369451		CG369451 OGYAP21TV
	1134	49.6	2.1	803	2	BF788917		BF788917 602104648
	1135	49.6	2.1	829	3	AY109290		AY109290 Zea mays
	1136	49.6	2.1	860	6	CA495127		CA495127 AGENCOURT
-11 Make at an -	c1137	49.6	2.1	904	9	CC703914 BM419334	100 m m	CC703914 OGUBW44TV
	1138	49.4 49.4	2.1	551 622	4			BM419334 R012D09 O CA265117 SCRFRT305
	1139		2.1		6	CA265117		CA273035 SCEORT3C0
	1140 1141	49.4 49.4	2.1 2.1	626 650	6 7	CA273035 CO816664		CO816664 FA SEa000
	c1141	49.4	2.1	736	6	CB619162		CB619162 OSIIEa03I
	c1142	49.4	2.1	754	6	CB619162 CB619200		CB619162 OSIIE4031 CB619200 OSIIE403J
	c1143	49.4	2.1	734 784	7	CD013200 CO113301		C0113301 GR Eb013
	c1144	49.4	2.1	791	7	CO113301		CO113301 GR_ED013 CO118073 GR Eb020
	1146	49.4	2.1	793	7	CO113073		CO118073 GRED020 CO112194 GR Eb004
	c1147	49.4	2.1	793	9	CG351341		CG351341 OGXAK06TH
	1148	49.2	2.1	410	2	BB743553		BB743553 BB743553
	2210		~ • .		-	: 10000		13000 22. 13000

1149	49.2	2.1	670	1	AJ774738		A.T774738	AJ774738
c1150	49.2	2.1	696	9	CC701513			OGULT75TV
c1151	49.2	2.1	742	8	CC378191	•		PUHSJ65TB
c1152	49.2	2.1	752	6	CB661740			OSJNEd05A
1153	49.2	2.1	764	9	BX989346			Reverse s
c1154	49.2		774	8	BZ727921			OGFCT54TM
c1155	49.2	2.1	799	8	CC339126			OGOBC85TH
1156	49.2	2.1	826	9	CG318335			OG0FG24TH
c1157	49.2	2.1	850	9	CG318346			OG0FG24TV
c1158	49.2	2.1	858	7	CO518703			3530 1 12
c1159	49.2	2.1	903	9	CG243251			OGWBC25TH
c1160	49.2	2.1	916	9	CC658647			OGTAL07TC
c1161	49.2	2.1	923	9	CC726252			OGUGI94TV
1162	49.2	2.1	934		AI064363			GH04745.5
c1163	49.2	2.1	981	2	AW940177			GH04745.3
1164	49	2.1	372	2	BE425760			WHE0316 C
1165	49	2.1	505	7	CO266931			EK147954.
c1166	49	2.1	550	1	AU246308			AU246308
1167	49	2.1	655	6	CB970156			CAB10003
1168	49	2.1	676	4	BJ071376			BJ071376
c1169	49	2.1	760	6	CB620857			OSIIEa06F
c1170	49	2.1	768	6	CB970233			CAB10003
1171	49	2.1	866	6	CA481981			AGENCOURT
1172	49	2.1	874	8	CC113815			NDL.34M4.
c1173	48.8	2.1	413	7	CF649328			3530 1 68
1174	48.8	2.1	456	8	BZ534563			OGALJ03TM
c1175	48.8	2.1	539	8	BZ534560			OGALJ03TC
1176	48.8	2.1	570	5	BP274123			BP274123
1177	48.8	2.1	601	7	CV511561			kc43h09.y
c1178	48.8	2.1	610	5	BX559661			BX559661
c1179	48.8	2.1	645	9	CC608615			OGUAR12TV
1180	48.8	2.1	723	7	CO363008		CO363008	RTK1 7 C0
1181	48.8	2.1	734	7	CV031446		CV031446	RTNACL1 1
1182	48.8	2.1	740	9	CC608604		CC608604	OGUAR12TH
c1183	48.8	2.1	788	9	CC647080		CC647080	OGNAF05TH
c1184	48.8	2.1	804	7	CO526636		CO526636	3530 1 17
c1185	48.8	2.1	805	8	BZ642226		BZ642226	OGAPA15TM
c1186	48.8	2.1	828	7	CO367803		CO367803	RTK1_36_E
c1187	48.8	2.1	. 862	9	CC660737		CC660737	OGLBT68TH
c1188	48.8	2.1	904	8	CC326984		CC326984	OGIAX93TV
1189	48.6	2.1	393	9	CL948532		CL948532	OsIFSB005
1190	48.6	2.1	527	4	BG052249			RHIZ2_12_
c1191	48.6	2.1	532	5	BQ662175	•	BQ662175	HR01004u
1192	48.6	2.1	654	6	CA258723			SCBGRT301
c1193	48.6	2.1	685	7	CF179609			814592 MA
c1194	48.6	2.1	770	7	CR279298			CR279298
1195	48.6	2.1	782	2	BF256192			HVSMEf000
1196	48.6	2.1	883	7	CN019919			AGENCOURT
1197	48.4	2.1	339	7	L33533			NAESTF166
c1198	48.4	2.1	396	5	BQ540829		-	ps73a11.y
c1199	48.4	2.1	566	7	CF630060			zmrws48_0
1200	48.4	2.1	579	9	CG118934			PUIKV67TD
c1201	48.4	2.1	627	7	CO518792			3530_1_12
c1202	48.4	2.1	631	1	AI711635			605058E04
c1203	48.4	2.1	631	7	CO518008			3530_1_11
c1204	48.4	2.1	638	6	CD721212			VVB180H10
c1205	48.4	2.1	639	6	CD719709		CD719709	VVB164B11

c1206	48.4	2.1	644	6	CD719870		CD719870	VVB166A11	
c1207	48.4	2.1	663	7	CF630588		CF630588	zmrws48 0	
c1208	48.4	2.1	673	6	CD406404		CD406404	$Gm ck31\overline{2}3$	
c1209	48.4	2.1	675	7	CO521120		CO521120	$35\overline{3}0 \ 1 \ 13$	
c1210	48.4	2.1	681	6	CD007604		CD007604	VVB073C12	
c1211	48.4	2.1	681	6	CD713102		CD713102	VVB186C04	
c1212	48.4	2.1	683	6	CD011026		CD011026	VVB118D02	
c1213	48.4	2.1	687	6	CA202090		CA202090	SCSBFL104	
c1214	48.4	2.1	715	4	BI967364	,	BI967364	GM830001B	
c1215	48.4	2.1	720	8	BZ688359		BZ688359	OGDAD91TC	
c1216	48.4	2.1	731	9	CC607404		CC607404	OGUFB75TH	
1217	48.4	2.1	751	9	CG306324	•	CG306324	OG0GP22TH	
c1218	48.4	2.1	753	8	BZ544993		BZ544993	OGAJC02TC	
c1219	48.4	2.1	754	9	CC691465		CC691465	OGWDL65TH	
c1220	48.4	2.1	809	9	CG298983		CG298983	OGYBC45TV	
1221	48.4	2.1	836	9	CG211806			OG0AC10TH	
1222		2.1	844	2	BE055475	_	BE055475	GA Ea003	
c1223		2.1	861	7	CO238672			WS00722.B	
1224	48.4	2.1	876	7	CO070998		CO070998	GR Ea28G	
c1225	48.4	2.1	877	9	CG240612			OGWAM46TV	
c1226	48.4	2.1 .	896	9	CG211814		CG211814	OG0AC10TV	
c1227	48.4	2.1	905	6	CD436944		CD436944	EL01N0365	
1228	48.4	2.1	1027	9	CNS02KWD		AL202054	Tetraodon	
1229	48.4	2.1	1101	9	CNS00BJK		AL057258	Drosophil	
1230	48.4	2.1	1204	3	AY108318			Zea mays	
1231	48.2	2.1	344	9	CE594014			tigr-gss-	
c1232	48.2	2.1	459	7	CN072090	•		1021025E0	
1233	48.2	2.1	494	6	CA255455		CA255455	SCEPFL417	
1234	48.2	2.1	623	5	BQ854360		BQ854360	QGB23A16.	
c1235	48.2	2.1	640	5	BQ408246		BQ408246	GA Ed000	
1236	48.2	2.1	640	7	CF426997		CF426997	PH1 3 C05	
1237	48.2	2.1	832	9	CG344045		CG344045	OGYAM82TV	
1238	48.2	2.1	838	9	CG051217		CG051217	PUIAX51TD	
c1239	48.2	2.1	844	9	CC619390		CC619390	OGUED54TV	
1240	48.2	2.1	846	9	CC638581		CC638581	OGVBC68TH	
c1241	48.2	2.1	940	9	CC638593		CC638593	OGVBC68TV	
1242	48.2	2.1	1088	6	CA275165			SCBFSD103	
1243	48	2.1	. 385	2	BE406114			WHE0404_c	
c1244	48	2.1	446	8	AZ047464		AZ047464	nbeb0094M	
c1245	48	2.1	471	8	AQ866659			nbeb0028P	
1246	48	2.1	492	2	BE357084			DG1_146_G	
c1247	48	2.1	601	7	CN444082			Mdfw2001b	
1248	48	2.1	609	9	CE605792			tigr-gss-	
1249	48	2.1	637	6	CD229006			CCC1_11_D	
125,0	48	2.1	666	6	CD204458			HS1_8_D09	
c1251	48	2.1	672		CL389659			RPCI44_28	
c1252	48	2.1	677	8	AZ131490			OSJNBb011	
1253	48	2.1	692	7	CF434115			NIT1_32_A	
c1254	48	2.1	728	7	CV234524			WS01215.B	
c1255	. 48	2.1	769	6	CD866162			AZ02.102L	
1256	48	2.1	1560	9	CL967117			OsIFCC014	
c1257	47.8	2.1	524	7	CO236941			WS0071.B2	
1258	4.7.8	2.1	534	8	BZ530624			OGALL21TC	
c1259	47.8	2.1	575	4	BJ130201			BJ130201	
c1260	47.8	2.1	586	1	AU217077			AU217077	
c1261	47.8	2.1	619	4	BJ140963			BJ140963	
c1262	47.8	2.1	635	4	BJ136724		BJ136724	BJ136724	

.. .

	1060	47.0	0 1	670	7	CE207007			GE207007	DEDD1 10
	1263	47.8	2.1	679	7					RTDR1_10_
	1264	.47.8	2.1	683 713	6.					SCEQSD107
	c1265	47.8	2.1	713	4	BJ132415 CC612397				BJ132415
	c1266	47.8	2.1	719	9					OGUCA43TV
	1267	47.8	2.1	728	6	CA265146	•			SCRFRT305
	c1268	47.8	2.1	729	6	CB619164				OSIIEa03I
	1269	47.8	2.1	732	7	CF385981		•		RTDR1_7_E
	1270	47.8	2.1	801	7	CF667004				RTCNT1_27
	1271	47.8	2.1	814	9					OGWGN76TH
	1272	47.8	2.1	820	7					NDL1_30_E
	c1273	47.8	2.1	826	8	BZ530629				OGALL21TM
	c1274	47.8	2.1	833	8	BZ643693				OGCCE77TC
	c1275	47.8	2.1	834	7					RTNACL1_3
	1276	47.8	2.1	862	9					OGWIR47TV
	1277	47.8	2.1	897	9	CG170061				PUIGK25TB
	c1278	47.8	2.1	912	9	CG208280				OGWGN76TV
	1279	47.8	2.1	939	9	CG308245				OGVEF29TV
	1280	47.8	2.1	972	9	CC630422				OGLBS29TV
	c1281	47.8	2.1	1101	9	CNS000D1				Drosophil
	1282	47.8	2.1	1458	9	CL973238				OsIFCC042
	1283	47.8	2.1	1476	9	CL959864	•			OsIFCC036
	c1284	47.6	2.1	574	7					UA14CPH12
	c1285	47.6	2.1	615	6	CB872218				HC07A12y
	1286	47.6	2.1	644	6	CD235990				SS1_25_B0
	c1287	47.6	2.1	674	9	CL169524				104_368_1 104_415_1
	1288	47.6	2.1	674 704	9 7					RTDS1 1 H
	1289	47.6	2.1	704	4	BI968444				GM830005A
	c1290	47.6	2.1 2.1	717		BJ284242				BJ284242
	c1291 1292	47.6 47.6	2.1	870	4 9					OsIFCC044
	c1293	47.6	2.1	910	9 7					WS02518.B
	1293	47.6	2.1	367	1	AV693675				AV693675
	1295	47.4	2.0	367	1	AV694797				AV694797
	1295	47.4	2.0	367	1					AV696603
	1297	47.4	2.0	367	1					AV696605
	1298	47.4	2.0	367	1					AV697866
	1299	47.4	2.0	367	1	AV698780				AV698780
	1300	47.4	2.0	367	1	AV698800				AV698800
	c1301	47.4	2.0	452	6	CB684060				OSJNEf13D
	c1302	47.4	2.0	536	6	CB394655				OSTR141F1
	1303	47.4	2.0	556	2	BF080514				231438 MA
	c1304	47.4	2.0	592	6	CA134676				SCJFRT106
	c1305	47.4	2.0	694	6	CB664715				OSJNEd10J
	c1306	47.4	2.0	753	6	CB684061				OSJNEf13D
	c1307	47.4	2.0	820	9	CC604209				OGUEL94TH
	c1308	47.4	2.0	905	9	CG308237		ran fulls		OGVEF29TH
	1309	47.4	2.0	1473	9	CL973231				OsIFCC042
	c1310	47.2	2.0	396	8	AQ843589				nbxb0024I
	c1311	47.2	2.0	445	8	AQ868140				nbeb0021H
	1312	47.2	2.0	585	5	BQ702373			BQ702373	NXSI 127
	1313	47.2	2.0	634	7	CF471631				RTDS1 4 B
	1314	47.2	2.0	641	7	CF471539				RTDS1 4 B
	c1315	47.2	2.0	661	1	AI402259				GH11333.3
	1316	47.2	2.0	681	7	CN127822				RHOH1 25
	c1317	47.2	2.0	692	7	CF397219				RTDS3 2 G
	1318	47.2	2.0	723	7	CF478552				RTWW3 20
	1319	47.2	2.0	787	9	CG210062				OGWGK05TH
•										

<i>.•</i>										
	c1320	47.2	2.0	800	6	CB971452		CB971452	CAB10005	
	. 1321	47.2	2,0	.801	7				AGENCOURT	
	c1322		2.0	905	9	CG210073			OGWGK05TV	
	1323		2.0	1092	9	CNS020K7			Tetraodon	
	1324	47.2	2.0	1101	9	CNS0039G			Drosophil	
	c1325	47	2.0	216	6	CD944291			RDF 6 Gen	
	1326	47	2.0	216	6				RET 82 Ge	
	c1327	47	2.0	216	6				SCZ 156 G	
	1328	47	2.0	216	6			CF064465		
	1329	47	2.0	388	5			BX283268		
	1330	47	2.0	447	1		•		vp25h12.r	
	1331	47	2.0	489	9	CL973113			OsIFCC042	
	1332	47	2.0	570	7				3530 1 19	
	c1333	47	2.0	581	5	BQ535603		BQ535603	STEM2 16	
	c1334	47	2.0	588	4				fu05h10.x	
	c1335	47	2.0	598	1	AI964683		AI964683	603021F04	
	c1336	47	2.0	598	6	CD453448		CD453448	WHE0752 C	
	1337	47	2.0	610	7	CF638057		CF638057	zmrww00_0	
	1338	47	2.0	660	6	CB953865		CB953865	AGENCOURT	
	1339	47	2.0	664	2	BF787075		BF787075	602108610	
	1340	47	2.0	664	6	CA256133			SCJLFL418	
	1341	47	2.0	731	6	CA137836		CA137836	SCCCRT200	
	c1342	47	2.0	776	9	CG949887		CG949887	MBEGH16TF	
	c1343	47	2.0	782	7				F066P42.3	
	1344	47	2.0	820	9				OG3AP40TV	
	c1345	47	2.0	882	9				OG3AP40TH	
	c1346	47	2.0	896	9	CG455252			PUFXJ44TB	
	c1347	47	2.0	981	9	CG297863			OG5CX89TC	
		46.8	2.0	327	2	BE355206			DG1_10_G0	
			2.0	387	4	BM158616		BM158616		
	1350	46.8	2.0	429	2	BE355032			DG1_10_A0	
	c1351		2.0	446	9	CL585002			OBBa007	
	c1352	46.8	2.0	504	9		•		104_362_1	
	1353	46.8	2.0	515		CA733021			wlp1c.pk0	
	c1354	46.8	2.0	537		CB394617			OSTR140G4	
		46.8	2.0		7				RTDR3_15_	
	1356	46.8	2.0	569	7				PH1_19_F0	
	1357	46.8	2.0	575	5	BU100894		BJ521530	WHE3359_B	
	1358 c1359	46.8 46.8	2.0 2.0	578 590	4 6	BJ521530 CD289695			StrPu691.	
	1360	46.8	2.0	597	2	BE593270			WS1 99 F1	
	c1361	46.8	2.0	619	4	BJ239537		BJ239537		
	c1362	46.8	2.0	629	7	CO083786			GR Ea49A	
	c1363	46.8	2.0	697	1	AU210371		AU210371		
	c1364	46.8	2.0	714	6	CA398399			EL01N0303	
	c1365	46.8		720	7	CO112193			GR Eb004	
	1366	46.8	2.0	752	7	CN142613			WOUND1 11	
	1367	46.8	2.0	758	7	CF666932			RTCNT1 27	
	1368	46.8	2.0	778	7	CF393653			RTDR3 15	
	c1369	46.8	2.0	807	9	CG317189			OGXDU28TH	
	c1370	46.8	2.0	865	9	CG350507			OG3AM53TV	
	1371	46.8	2.0	908	7	CO645622			ILLUMIGEN	
	1372	46.8	2.0	936	7	CN324479			AGENCOURT	
	1373	46.6	2.0	409	4	BG241163			OV1 39 A0	
	1374	46.6	2.0	566	2	BF789422			602103472	
	1375	46.6	2.0	584	2	BE364586			PI1 15 G0	
	1376	46.6	2.0	601	2	BF785829			$602\overline{1}12\overline{4}53$	

1377	46.6	2.0	606	5	BX628417	BX62841	7 BX628417
	46.6	2.0	609	1	AI790589	AI79058	9 ul03h02.x
1379	46.6	2.0	627	5	BQ864555	BQ86455	5 QGC27A13.
1380	46.6	2.0	635	5	BU692265	BU69226	5 JM01037H1
c1381	46.6	2.0	649	7	CV523852		2 Mdlv2 401
1382	46.6	2.0	672	7	CF403057		7 RTWW1 24
1383	46.6	2.0	680	7	CF402964		4 RTWW1 24
1384	46.6	2.0	694	4	BI507584		4 BB170013B
c1385	46.6	2.0	700	6	CD876252		2 AZO3.109B
1386	46.6	2.0	826	9	CG312200		0 OGWKS36TV
c1387	46.6	2.0	930	9	CNS01367		7 Drosophil
c1388	46.6	2.0	932	7	CO214524		4 WS00928.B
1389	46.6	2.0	966	4	BG430589		9 602502243
1390	46.6	2.0	1416	3	AY110944		4 Zea mays
c1391	46.4	2.0	226	9	FR0014931		0 F.rubripe
1392	46.4	2.0	405	5	BQ702864		4 NXSI 133
1393	46.4	2.0	406	7	CN445015		5 Mdfw2001b
c1394	46.4	2.0	415	7	CV235889		9 WS01221.B
1395	46.4	2.0	476	2	BE358440		0 DG1 29 G1
c1396	46.4	2.0	486	8	AQ860883		3 nbeb0015L
1397	46.4	2.0	507	2	BE940767	-	7 900014 Av
1398	46.4	2.0	521	6	CA615835		5 wrl.pk169
1399	46.4	2.0	542	4	BI801893		3 H064C08 E
1400	46.4	2.0	549	4	BJ281677		7 BJ281677
1401	46.4	2.0	556	6	CB259745		5 25-E9602-
c1402	46.4	2.0	564	7	CV233345		5 WS01210.B
c1403	46.4	2.0	579	1	AV831789		9 AV831789
1404	46.4	2.0	583	4	BG410775		5 EM1 25 F0
c1405	46.4	2.0	601	7	CV233333		3 WS0121.B2
1406	46.4	2.0	604	5	BU038781		1 DH08c09 H
1407	46.4	2.0	628	6	CA076768		8 SCMCAM110
1408	46.4	2.0	634	2	BE405606		6 WHE1209 C
1409	46.4	2.0	656	5	BQ743938		8 WHE4109 H
1410	46.4	2.0	662	5	BQ578302		2 WHE0301 D
c1411	46.4	2.0	680	6	CD373574		4 WHE0425 A
c1412	46.4	2.0	697	1	AV784375		5 AV784375
1413	46.4	2.0	723	6	CD865781		1 AZO2.101M
c1414	46.4	2.0	809	6	CB645026		6 OSJNEb06H
1415	46.4	2.0	812	4	BG401258		8 602465359
1416	46.4	2.0	817	7	CN520132		2 GQ0106.B3
c1417	46.4	2.0	838	7	CV236341		1 WS01223.B
c1418	46.4	2.0	848	7	CV282585		5 WS0185.B2
c1419	46.4	2.0	883	7	CV236193		3 WS01223.B
1420	46.4	2.0	1204	9	CNS016E2		8 Drosophil
1421	46.4	2.0		3	CNS0A460		5 Arabidops
1422	46.4	2.0	1523	3	CNS.OA40Y		7 Arabidops
1423	46.2	2.0	164	7	T69701		yc44h12.r1
1424	46.2	2.0	286	8	BZ729579		9 OGEDD27TC
1425	46.2	2.0	330	2	BE187215		5 NXNV 160
1426	46.2	2,.0	489	9	CL953951	CL95395	1 OsIRUA005
1427	46.2	2.0	514	5	BU990882		2 HD05F08r
c1428	46.2	2.0	519	5	BQ112112		2 EST597688
1429	46.2	2.0	532	6	CB175070		0 pk79e02.y
1430	46.2	2.0	532	8	BZ716462		2 OGEBF10TM
1431	46.2	2.0	533	2	BE187204		4 NXNV 160
1432	46.2	2.0	539	9	CC604739		9 OGUJE18TV
c1433	46.2	2.0	568	8	AQ966294		4 LERIJ28TR
				-	~		

				_			
1434	46.2	2.0	587				893 AG-ND-180
c1435	46.2 46.2	2.0	598		CR501961		961 Medicago .
1436			611		AQ966292		292 LERIJ28TF
1437	46.2	2.0	634		CA013515		515 HT08L06r
c1438	46.2	2.0	643	2	-		243 NF093A08S
c1439	46.2	2.0	651	1			784 AV927784
c1440	46.2	2.0	655	7			672 WS0097.B2
1441	46.2	2.0	658	5	-		465 GA <u>E</u> d008
c1442	46.2	2.0	666	7	CO252782		782 WS00817.B
c1443	46.2	2.0	669	1	AV929760		760 AV929760
c1444	46.2	2.0	678	9	CC604731	CC604	731 OGUJE18TH
1445	46.2	2.0	687	5	BX255181	BX255	181 BX255181
1446	46.2	2.0	697	8	BZ726996	BZ726	996 OGEDC39TC
c1447	46.2	2.0	800	8	BZ714225	BZ714	225 OGEBF10TC
c1448	46.2	2.0	824	8	CC333249	CC333	249 OGPAH57TH
c1449	46.2	2.0	841	8	BZ727000	BZ727	000 OGEDC39TM
1450	46.2	2.0	865	7	CR285323	CR285	323 CR285323
c1451	46.2	2.0	870	2			954 GA Eb002
	46.2	2.0	950	9			186 MBELH04TF
1453	46.2	2.0	1548		CL963779		779 OsIFCC038
c1454	46	2.0	428		CA930524		524 MTU4CA.P2
c1455	46	2.0	428		CA930625		625 MTU4CA.P2
1456	46	2.0	534		AJ771629		629 AJ771629
1457	46	2.0	588	2			331 EST0099 T
c1458	46	2.0	627	4			096 baa15d04.
1459	46	2.0	647	6			503 CCC1 8 D1
1460	46	2.0	664		CD715895		895 VVB218C02
c1461	46	2.0	736		CB647590		590 OSJNEb10J
c1462	46	2.0	740		CO091033		033 GR EallF
1463	46	2.0	756		AI048859		859 uc84d10.y
1464	46	2.0	1047	9			291 Drosophil
1465	46	2.0	1557	9			520 OsIFCC040
1466	46	2.0	1686	9			247 OsJRUA000
	45.8	2.0	413	5			380 JM01040A0
	45.8	2.0	423	3 7			977 CR530977
c1469	45.8	2.0	521		CB395081		081 OSTR148F3
1470	45.8	2.0	544		CD698487		487 EST15010
	45.8				BE149486		486 RC1-HT025
							246 BOGUG40TF
1472	45.8 45.8	2.0 2.0	609 693	8 9	BH560246		906 OR BBa014
c1473			703				983 170006874
1474	45.8	2.0		4			333 AJ433333
1475	45.8	2.0	739 771	1 9	AJ433333 CC604218		218 OGUEL94TV
1476	45.8	2.0		2	BF621553		553 HVSMEa001
1477	45.8 45.8	2.0	797				413 OGULA96TH
c1478		2.0	830	9			
1479	45.8	2.0	1395	9			517 OsIFCC023 867 OsIFCC036
1480	45.8	2.0	1491	9			107 ro65h11.y
1481	45.6	2.0	514	4	BI748107		-
1482	45.6	2.0	516	6	CA259478		478 SCPIRT302
1483	45.6	2.0	531	2	AW923519		519 DG1_52_C1
c1484	45.6	2.0	554	6	CA143029		029 SCQSRT203
c1485	45.6	2.0	604	1	AU222394		394 AU222394
c1486	45.6	2.0	649	7	CO238128		128 WS0074.B2
c1487	45.6	2.0	654	9	CL147747		747 104_327_1
1488	45.6	2.0	687	2	BB667752		752 BB667752
c1489	45.6	2.0	713	9			416 OGVEA82TH
1490	45.6	2.0	715	7	CF474429	CF474	429 RTWW2_20_

c1491	45.6	2.0	724	4	ВJ785285	ВЈ785285 ВЈ785285
c1492,	45.6	2.0	751	7	CO240679 · .	. CO240679 WS0076.B2
1493	45.6	2.0	759	7	CF472572	CF472572 RTDS1 10
1494	45.6	2.0	769	7	CF396075	CF396075 RTDS2 13
c1495	45.6	2.0	792	8	BZ712515	BZ712515 OGEAZ73TC
c1496	45.6	2.0	802	4	BJ786742	BJ786742 BJ786742
1497	45.6	2.0	817	7	CN763120	CN763120 ID0AAA6AF
c1498	45.6	2.0	827	8	BZ724654	BZ724654 OGFAB52TM
c1499	45.4	2.0	494	2	BE186818	BE186818 946012G11
c1500	45.4	2.0	499	9	CL593846	CL593846 OBBa005
					ALIGNMENTS	
DEGULE 1						

```
RESULT 1
AY404343
                                                                   GSS 12-DEC-2003
LOCUS
            AY404343
                                     1182 bp
                                                 DNA
                                                          linear
DEFINITION
            Homo sapiens HCM1859 gene, VIRTUAL TRANSCRIPT, partial sequence,
            genomic survey sequence.
            AY404343
ACCESSION
            AY404343.1 GI:39760320
VERSION
KEYWORDS
            GSS.
            Homo sapiens (human)
SOURCE
  ORGANISM
            Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
               (bases 1 to 1182)
            Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
  AUTHORS
            Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
            Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
            Adams, M.D. and Cargill, M.
  TITLE
            Inferring nonneutral evolution from human-chimp-mouse orthologous
            gene trios
  JOURNAL
            Science 302 (5652), 1960-1963 (2003)
   PUBMED
            14671302
REFERENCE
                (bases 1 to 1182)
            2
            Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
  AUTHORS
            Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
            Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
            Adams, M.D. and Cargill, M.
  TITLE
            Direct Submission
            Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive,
  JOURNAL
            Rockville, MD 20850, USA
COMMENT
            This sequence was made by sequencing genomic exons and ordering
            them based on alignment.
FEATURES
                      Location/Qualifiers
                      1. .1182
     source
                      /organism="Homo sapiens"
                      /mol type="genomic DNA"
                      /db xref="taxon:9606"
                      <1. .>1182
     gene
                      /locus tag="HCM1859"
ORIGIN
```

Query Match 50.9%; Score 1180.4; DB 9; Length 1182; Best Local Similarity 99.9%; Pred. No. 0;

Matches	118	1; Conservative	0;	Mismatches	1;	Indels	0;	Gaps	0;
Qу	458	ATGGATTCCTTAAAGAATG							517
Db	1	ATGGATTCCTTAAAGAATG							60
Qу	518	CCTTTCCTGATTGCTGAGA							577
Db	61	CCTTTCCTGATTGCTGAGA							120
Qу	578	GGCTCTTTGGAATTTGGGC							637
Db	121	GGCTCTTTGGAATTTGGGC							180
Qy	638	CTGACTGATCACATGGACT							697
Db	181								240
Qy	698	TGCAGGAGGCAACAGCACA							757
Db	241	TGCAGGAGGCAACAGCACA							300
Qу	758	GAAGGCTCTAGGCCAGTTT							817
Db	301	GAAGGCTCTAGGCCAGTTT							360
QУ	818	TCTGACTTTGCCTTTGATT							877
Db	361	TCTGACTTTGCCTTTGATT							420
Qy	878	TTGATGGAAAAACCTATTA							937
Db	421	TTGATGGAAAAACCTATTA							480
Qy	938	GGGGACTCTGGTTTTGTCC							997
Db	481	GGGGACTCTGGTTTTGTCC							540
Qy	998	GAAATCTTCAAGGAGATGA							1057
Db	541	GAAATCTTCAAGGAGATGA							600
Qу	1058	TGTCAGTGTTCTCATTGGC							1117
Db	601	TGTCAGTGTTCTCATTGGC							660
Qу	1118	TGGCTTCCTCAGAGTGACC							1177
Db	661	TGGCTTCCTCAGAGTGACC							720
Qу	1178	GGGCAGAATAGCATAATGG							1237
Db	721	GGGCAGAATAGCATAATGG							780
Qу	1238	TTTGGAGACCAGCCTGAAA							1297
Db	781	TTTGGAGACCAGCCTGAAA							840

```
1298 CAGTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGAC 1357
Qу
            841 CAGTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGAC 900
Db
Qy
       1358 AAGAGATACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGC 1417
            Db
        901 AAGAGATACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGC 960
       Qу
            961 CCCACACAGGGGTGGGTGGGTTGACCACGTCCTCCAGACAGGGGGCGCGACGCAC 1020
Db
       1478 CTCAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTG 1537
Qу
            1021 CTCAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGCTCGACGTTTTTGTG 1080
Db
       1538 TTTCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCT 1597
Qy
            1081 TTTCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCT 1140
Db
       1598 GTCTGGTGGCTGCGTGGGGCCAGAAAGGTGAAGGAGACATAA 1639
Qy
            Db
       1141 GTCTGGTGGCTGCGTGGGGCCAGAAAGGTGAAGGAGACATAA 1182
RESULT 2
AK050128
                              2197 bp
                                       mRNA
                                              linear
                                                      HTC 03-APR-2004
LOCUS
          AK050128
DEFINITION
          Mus musculus adult male liver tumor cDNA, RIKEN full-length
          enriched library, clone:C730018P11 product:hypothetical
          UDP-glucoronosyl and UDP-glucosyl transferase containing protein,
          full insert sequence.
ACCESSION
          AK050128
VERSION
          AK050128.1 GI:26340835
KEYWORDS
          HTC; CAP trapper.
SOURCE
          Mus musculus (house mouse)
 ORGANISM
          Mus musculus
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
          1
 AUTHORS
          Carninci, P. and Hayashizaki, Y.
          High-efficiency full-length cDNA cloning
 TITLE
          Meth. Enzymol. 303, 19-44 (1999)
 JOURNAL
 MEDLINE
          99279253
  PUBMED
          10349636
REFERENCE
 AUTHORS
          Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
          Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
          Normalization and subtraction of cap-trapper-selected cDNAs to
 TITLE
          prepare full-length cDNA libraries for rapid discovery of new genes
 JOURNAL
          Genome Res. 10 (10), 1617-1630 (2000)
 MEDLINE
          20499374
  PUBMED
          11042159
REFERENCE
 AUTHORS
          Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
          Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
```

```
Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
            Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
            Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
            Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
            RIKEN integrated sequence analysis (RISA) system--384-format
  TITLE
            sequencing pipeline with 384 multicapillary sequencer
            Genome Res. 10 (11), 1757-1771 (2000)
  JOURNAL
 MEDLINE
            20530913
            11076861
   PUBMED
REFERENCE
            4
  AUTHORS
            The RIKEN Genome Exploration Research Group Phase II Team and the
            FANTOM Consortium.
  TITLE
            Functional annotation of a full-length mouse cDNA collection
            Nature 409, 685-690 (2001)
  JOURNAL
REFERENCE
            The FANTOM Consortium and the RIKEN Genome Exploration Research
  AUTHORS
            Group Phase I & II Team.
            Analysis of the mouse transcriptome based on functional annotation
  TITLE
            of 60,770 full-length cDNAs
            Nature 420, 563-573 (2002)
  JOURNAL
                (bases 1 to 2197)
REFERENCE
            Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P.,
  AUTHORS
            Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W.,
            Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T.,
            Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T.,
            Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M.,
            Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M.,
            Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N.,
            Okazaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N.,
            Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T.,
            Sogabe, Y., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S.,
            Takeda, Y., Tanaka, T., Tomaru, A., Toya, T., Yasunishi, A.,
            Muramatsu, M. and Hayashizaki, Y.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of
            Physical and Chemical Research (RIKEN), Laboratory for Genome
            Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
            RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
            Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.jp,
            URL: http://genome.gsc.riken.jp/, Tel:81-45-503-9222,
            Fax: 81-45-503-9216)
COMMENT
            cDNA library was prepared and sequenced in Mouse Genome
            Encyclopedia Project of Genome Exploration Research Group in Riken
            Genomic Sciences Center and Genome Science Laboratory in RIKEN.
            Division of Experimental Animal Research in Riken contributed to ......
            prepare mouse tissues.
            Tissue was provided by William A. Held, Roswell Park Cancer
            Institute, Department of Molecular and Cellular Biology, Elm and
            Carlton Streets, Buffalo, NY 14263, whose assistance we gratefully
            acknowledge.
            Please visit our web site for further details.
            URL:http://genome.gsc.riken.jp/
            URL: http://fantom.gsc.riken.jp/.
FEATURES
                      Location/Qualifiers
                      1. .2197
     source
                      /organism="Mus musculus"
```

Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,

```
/mol type="mRNA"
                  /strain="C57BL/6J"
                  /db xref="FANTOM DB:C730018P11"
                  /db xref="taxon:10090"
                  /clone="C730018P11"
                  /sex="male"
                  /cell type="tumor"
                  /tissue type="liver"
                  /clone lib="RIKEN full-length enriched mouse cDNA library"
                  /dev stage="adult"
    CDS
                  99. .1670
                  /note="unnamed protein product; hypothetical
                  UDP-glucoronosyl and UDP-glucosyl transferase containing
                  protein (InterPro|IPR002213, evidence: InterPro)
                  putative"
                  /codon start=1
                  /protein id="BAC34080.1"
                  /db xref="GI:26340836"
                  /translation="MAAHRRWLLMSFLFLEVILLEAAKILTISTLSASHYIVISRVSQ
                  VLHEGGHNVTKLLYESANIPDFRKEKPSYOVINWRPPEDOEKKFADLRHRLTEEITYG
                  RSKHHTLLKIHQYFGDLCSQLLSRKDIMDFLKNENFDLVLLDSMDLCSLLIVEKLGKR
                  FVSFLPFQFSYMDFGLPSAPLSYAPVYGSGLTDQMDFWGRVKNFLMFLDFSMKQREIL
                  SQYDSTIQEHFVEGSQPVLSDLLLKAELWFVNSDFALDFARPLFPNTVYVGGLLDKPV
                  QPIPQDLENFISQFGDSGFVLVALGSIVSMIQSKEIIKEMNSAFAHLPQGVLWTCKTS
                  HWPKDVSLAPNVKIMDWLPQTDLLAHPSIRLFVTHGGMNSVMEAVHHGVPMVGIPFFF
                  DQPENMVRVEAKNLGVSIQLQTLKAESFALTMKKIIEDKRYKSAAMASKIIRHSHPLT
                  PAORLLGWIDHILQTGGAAHLKPYAFQQPWHEQYMLDVFLFLLGLMLGTLWLSVKVLV
                  AVTRYLSIATKVKEA"
                  2178. .2183
    polyA_signal
                  /note="putative"
                  2197
    polyA_site
                  /note="putative"
ORIGIN
 Query Match
                      39.3%; Score 912.2; DB 3;
 Best Local Similarity 73.0%; Pred. No. 2.8e-247;
 Matches 1201; Conservative
                            0; Mismatches 438;
                                                                  2;
                                                            Gaps
                                               Indels
          1 AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
            - 1
                                               1
                                                  1 1111 1
         32 AGGGTCCCTTAGTGGGGCACAGCTCTTTAGGTGTGCAACCTGTGTCAGGGCTCCACATAT 91
         92 TCTACAGATGGCAGCACATCGGCGTTGGCTTCTCATGAGCTTCCTTTTCCTTGAGGTTAT 151
        121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180
                  152 TCTCTTGGAGGCTGCAAAAATCCTGACTATATCTACACTGAGTGCAAGCCATTATATAGT 211
        181 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 240
            212 GATAAGCCGTGTGTCGCAAGTTCTTCATGAAGGTGGCCACAATGTGACCAAACTTCTTTA 271
        241 CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAG 300
```

272 TGAAA---GTGCTAATATCCCAGATTTTAGAAAGGAAAAACCATCATATCAAGTTATTAA 328

Qу

Db

Qу

Db

Qу

Db

Qу

Db

Qу

Db

Qy ·	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGGA	360	
Db	329	TTGGCGTCCACCTGAAGATCAGGAAAAGAAATTTGCTGATCTTAGGCATCGACTTACAGA	388	
Qу	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420	
Db	389	AGAAATAACTTATGGCAGGTCCAAACATCACACCCTTCTAAAGATCCATCAATACTTTGG	448	
Qy	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480	
Db	449	GGACTTATGCAGTCAATTATTAAGCAGAAAGGACATCATGGACTTCTTAAAAAATGAGAA	508	
Qу	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540	
Db	509	CTTTGACCTAGTACTTCTTGATTCAATGGATCTCTGTTCTTTGCTAATTGTTGAAAAGCT	568	
Qу	541	TGGGAAGCCATTTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC	600	
Db	569	TGGGAAACGATTTGTGTCCTTTCTTCCCTTTCAATTTAGCTATATGGACTTTGGGTTACC	628	
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	657	
Db	629	AAGCGCCCCTTGTCCTATGCTCCAGTGTATGGTTCTGGTCTAACTGACCAAATGGACTT	688	
QУ	658	CTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACAT	717	
Db	689	CTGGGGCCGAGTGAAGAACTTTCTGATGTTCCTTGATTTCTCCATGAAGCAAAGGGAAAT	748	
Qу	718	GCAGTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTT	777	
Db	749	CCTTTCTCAGTATGACAGCACTATCCAGGAGCATTTTGTGGAAGGCTCTCAGCCAGTGTT	808	
Qу	778	GTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTT	837	
Db	809	GTCTGACCTTCTACTGAAAGCTGAGCTGTGGTTTGTCAACTCTGACTTTGCTTTGGATTT	868	
Qу	838	TGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAA	897	
Db	869	TGCTCGTCCCCTGTTTCCCAACACAGTCTATGTGGGAGGTTTACTGGACAAACCTGTTCA	928	
QУ	898	ACCAGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCT	957	
Db	929	${\tt GCCAATACCCCAAGACTTGGAGAATTTTATCTCTCAGTTTGGAGACTCAGGTTTTGTCCT}$	988	
Qу	958	TGTGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAA	101	7
Db	989	TGTGGCCCTGGGCTCTATAGTGAGCATGATTCAGTCCAAGGAAATTATTAAGGAGATGAA	1048	3
Qy	1018	CAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCC	107	7
Db	1049	CAGTGCCTTTGCTCACCTCCCTCAAGGGGTGCTATGGACATGTAAGACTTCTCATTGGCC	1108	3
Qу	1078	CAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCT	113	7
Db	1109	CAAAGATGTCAGTTTGGCCCCAAATGTCAAAATCATGGATTGGCTTCCACAGACTGACCT	1168	8

 Qy Db	1138 CCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGA 1197
Qy	1198 GGCCATCCAGCATGGTGGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAA 1257
Db	1229 GGCTGTCCATCATGGAGTACCCATGGTGGGGATTCCATTTTTTTT
Qy	1258 CATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGC 1317
Db	1289 CATGGTCCGAGTAGAAGCAAAGAACCTTGGTGTTTCTATTCAGCTACAGACGCTCAAGGC 1348
Qy	1318 AGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGC 1377
Db	1349 AGAGTCATTTGCGCTCACCATGAAAAAAATCATAGAAGACAAGAGGTACAAGTCTGCAGC 1408
Qу	1378 AGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGG 1437
Db	1409 AATGGCCTCCAAGATTATCAGGCACTCCCACCCACTGACCCCTGCCCAGAGGCTTTTGGG 1468
Qу	1438 CTGGATTGACCACGTCCTCCAGACAGGGGGGCGCGCCCCCCAAGCCCTATGTCTTTCA 1497
Db	1469 CTGGATAGATCATATCTTGCAGACAGGGGGTGCAGCACATCTCAAGCCATATGCTTTCCA 1528
Qу	1498 GCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCT 1557
Db	1529 GCAGCCATGGCATGAGCAGTACATGCTTGATGTCTTCTCTCTTTCTCCTAGGGCTCATGCT 1588
Qy Db	1558 GGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGC 1617
	1618 CAGAAAGGTGAAGGAGACATAAGGC 1642
Qy Db	
RESULT 3	
AY404344 LOCUS DEFINITIO	AY404344 1180 bp DNA linear GSS 12-DEC-2003 DN Pan troglodytes HCM1859 gene, VIRTUAL TRANSCRIPT, partial sequence, genomic survey sequence.
ACCESSION	AY404344
VERSION KEYWORDS	AY404344.1 GI:39760321 GSS.
SOURCE	Pan troglodytes (chimpanzee)
ORGANIS	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
REFERENCE	Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Pan. I (bases 1 to 1180)
AUTHORS	Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A., Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
TITLE	Adams, M.D. and Cargill, M. Inferring nonneutral evolution from human-chimp-mouse orthologous
JOURNAI	gene trios Science 302 (5652), 1960-1963 (2003)

```
14671302
  PURMED
         2 (bases 1 to 1180)
REFERENCE
 AUTHORS
         Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
         Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
         Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
         Adams, M.D. and Cargill, M.
 TITLE
         Direct Submission
 JOURNAL
         Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive,
         Rockville, MD 20850, USA
COMMENT
         This sequence was made by sequencing genomic exons and ordering
         them based on alignment.
                 Location/Qualifiers
FEATURES
                 1. .1180
   source
                 /organism="Pan troglodytes"
                 /mol type="genomic DNA"
                 /db xref="taxon:9598"
                 <1. .>1180
    gene
                 /locus tag="HCM1859"
ORIGIN
                     37.0%; Score 857.4; DB 9; Length 1180;
 Query Match
                     73.0%; Pred. No. 8.5e-232;
 Best Local Similarity
                          0; Mismatches 319;
 Matches 861; Conservative
                                            Indels
                                                        Gaps
        460 GGATTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCC 519
Qy
           1 GGATTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCC 60
Db
        520 TTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGG 579
Qу
           61 TTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGG 120
Db
        580 CTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCT 639
Qу
           121 CTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCT 180
Db
        640 GACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTG 699
Qу
           181 GACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTG 240
Db
        700 CAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAAGGAACATTTCACAGA 759
Qу
           241 CAGGAGGCAATGGGACATGCAGTCTACATTTGACAACACCATCAAGGAGCATTTCCCAGA 300
Db
        760 AGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTC 819
Qу
           301 AGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTGGTNNNTTAACTC 360
Db
        820 TGACTTTGCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTT 879
Qy
               11111111111111
           \mathbf{I}
Db
        880 GATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGG 939
Qy
        Db
        940 GGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGA 999
Qу
```

Db	481	инииниинииниинииниининиинининининининини	540
Qу	1000	AATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTG	1059
Db	541	инииниинииниинииниининининининининининин	600
Qу	1060	${\tt TCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTG}$	1119
Db	601	инииниинииниинииниининиинининининининини	660
Qу	1120	GCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGG	1179
Db	661	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	720
Qу	1180	GCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTT	1239
Db	721		780
Qу	1240	TGGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCA	1299
Db	781	TGGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCA	840
Qу	1300	GTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAA	1359
Db	841	GTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAA	900
Qу	1360	GAGATACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCC	1419
Db	901	GAGATACAAGTCCGCGGCAGTGGCCAGTGTCATCCTGCGCTCCCACCCNNNNAGCCC	960
QУ	1420	CACACAGCGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGCGCGACGCACCT	1479
Db	961	CACACAGCGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGCGCGACGCACCT	1020
Qу	1480	CAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTT	1539
Db	1021	CAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGCTCGACGTTTTTGTGTT	1080
Qу	1540	TCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGT	1599
Db	1081	TCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGT	1140
Qу	1600	CTGGTGGCTGCGTGGGGCCAGAAAGGTGAAGGAGACATAA 1639	
Db	1141	CTGGTGGCTGCGTGGGGCCAGAAAGGTGAAGGAGACATAA 1180	instruction

RESULT 4 BQ216829

LOCUS BQ216829 879 bp mRNA linear EST 02-MAY-2002 DEFINITION AGENCOURT_7594754 NIH_MGC_92 Homo sapiens cDNA clone IMAGE:6043558 5', mRNA sequence.

ACCESSION BQ216829

VERSION BQ216829.1 GI:20398229

KEYWORDS EST.

SOURCE Homo sapiens (human)

```
ORGANISM Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
          1 (bases 1 to 879)
REFERENCE
          NIH-MGC http://mgc.nci.nih.gov/.
 AUTHORS
          National Institutes of Health, Mammalian Gene Collection (MGC)
 TITLE
 JOURNAL.
          Unpublished (1999)
COMMENT
          Contact: Robert Strausberg, Ph.D.
          Email: cgapbs-r@mail.nih.gov
          Tissue Procurement: ATCC
           cDNA Library Preparation: Life Technologies, Inc.
           cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
           DNA Sequencing by: Agencourt Bioscience Corporation
           Clone distribution: MGC clone distribution information can be
          found through the I.M.A.G.E. Consortium/LLNL at:
          http://image.llnl.gov
          Plate: LLAM13284 row: 1 column: 23
          High quality sequence start: 17
          High quality sequence stop: 671.
FEATURES
                  Location/Qualifiers
                  1. .879
    source
                  /organism="Homo sapiens"
                  /mol type="mRNA"
                  /db xref="taxon:9606"
                  /clone="IMAGE:6043558"
                  /tissue type="embryonal carcinoma, cell line"
                  /lab host="DH10B (phage-resistant)"
                  /clone lib="NIH MGC 92"
                  /note="Organ: testis; Vector: pCMV-SPORT6; Site_1: NotI;
                  Site 2: SalI; Cloned unidirectionally; oligo-dT primed.
                  Average insert size 2.5 kb. Library enriched for
                  full-length clones and constructed by Life Technologies.
                  Note: this is a NIH MGC Library."
ORIGIN
 Query Match
                      36.8%; Score 853.2; DB 5; Length 879;
 Best Local Similarity 99.0%; Pred. No. 1.2e-230;
 Matches 869; Conservative
                          0; Mismatches
                                           8;
                                                Indels
        780 CTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTG 839
Qу
            1 CTCATCTTCTACTGAAAGCAGAGATGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTG . 60
Db
        840 CTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAAC 899
Qу
            61 CTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAAC 120
Db
        900 CAGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTG 959
Qу
            121 CAGTACCACAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTG 180
Db
        960 TGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACA 1019
Qy
            181 TGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCTGGAAATCTTCAAGGAGATGAACA 240
Db
        1020 ATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCA 1079
Qy
```

....

Db	241	ATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCA 300
Qy	1080	AAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCC 1139
Db	301	AAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCC 360
Qу	1140	TGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGG 1199
Db	361	TGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGG 420
Qy	1200	CCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACA 1259
Db	421	CCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACA 480
Qу	1260	TGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAG 1319
Db	481	TGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAG 540
Qу	1320	AGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAG 1379
Db	541	AGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAG 600
Qy	1380	TGGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCT 1439
Db	601	TGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCT 660
Qy	1440	GGATTGACCACGTCCTCCAGACAGGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGC 1499
Db	661	GGATTGACCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGC 720
Qу	1500	AGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGG 1559
Db	721	AGCCCTGGCATGAGCAGTACCTGCTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGG 780
Qу	1560	GGACTCTATGGCTTTGT-GGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCC 1618
Db	781	GGACTCTATGGCTTTGTGGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCTTGGGGCC 840
Qу	1619	AGAAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTG 1656
Db	841	ACAAAGGGGAAGGACCTAAAGCCAGGTGCACCCTTG 878
RESULT 5 CN396938 LOCUS DEFINITE ACCESSIO VERSION KEYWORDS SOURCE ORGANI	ON 1 N C E H	N396938 759 bp mRNA linear. EST 16-MAY-2004 7000417785787 GRN_EB Homo sapiens cDNA 5', mRNA sequence. N396938 N396938.1 GI:47384533 ST. omo sapiens (human)
REFERENC AUTHOR	E 1 S B	ukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; ammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

Li, Y., Xu, C., Fang, R., Guegler, K., Rao, M.S., Mandalam, R.,

```
Lebkowski, J and Stanton, L.W.
 TITLE
        Transcriptome characterization elucidates signaling networks that
        control human ES cell growth and differentiation
        Nat. Biotechnol. 22 (6), 707-716 (2004)
 JOURNAL
COMMENT
        Contact: Brandenberger R
        Regenerative Medicine
        Geron Corporation
        230 Constitution Drive, Menlo Park, CA 94025, USA
        Tel: 650 473 8658
        Fax: 650 473 7760
        Email: rbrandenberger@geron.com
        Insert Length: 759
                        Std Error: 0.00.
FEATURES
               Location/Qualifiers
               1. .759
   source
               /organism="Homo sapiens"
               /mol type="mRNA"
               /db xref="taxon:9606"
               /tissue type="embryonic stem cells, embryoid bodies
               derived from H1, H7 and H9 cells"
               /clone lib="GRN EB"
               /note="oligo dT primed, full-length enriched cDNA library
               from embryoid body outgrowths derived from hES cell lines
               H1 (p32), H7 (p29), and H9 (p26) maintained in feeder-free
               conditions."
ORIGIN
 Query Match
                   32.5%; Score 754; DB 7; Length 759;
 Best Local Similarity
                  100.0%; Pred. No. 1.9e-202;
                        0; Mismatches
 Matches 754; Conservative
                                      0;
                                        Indels
                                                0:
                                                   Gaps
                                                         0:
Qу
        1 AGGGTCCCTTAGCCGGGCGCAGGCGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
          6 AGGGTCCCTTAGCCGGGCGCAGGCGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 65
Db
        Qу
          Db
       121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180
Qу
          126 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 185
Db
       181 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 240
QУ
          Db
       186 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 245
       241 CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAG 300
Qу
          Db
       246 CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG 305
Qу
       301 TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGTGGA 360
          Db
       361 AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC 420
Qу
          366 AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC 425
Db
```

Qy 42	21 GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA 480
Db 42	
Qy 48	31 CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT 540
Db 48	
Qy 54	11 TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC 600
Db 54	
Qy 60	1 AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA
Db 60	
Qy 66	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA 720
Db 66	
Qy 72	21 GTCTACATTTGACAACACCATCAAGGAACATTTC 754
_	
DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL	AGENCOURT_13977999 NIH_MGC_173 Homo sapiens cDNA 5', mRNA sequence. CD050395 CD050395.1 GI:30487290 EST. Homo sapiens (human) Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 916) NIH-MGC http://mgc.nci.nih.gov/. National Institutes of Health, Mammalian Gene Collection (MGC) Unpublished (1999)
COMMENT	Contact: Robert Strausberg, Ph.D. Email: cgapbs-r@mail.nih.gov Tissue Procurement: Dr. Jamie Thompson, University of WI cDNA Library Preparation: Gina Zastrow-Hayes cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Agencourt Bioscience Corporation Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Plate: NDKM37 row: m column: 04 High quality sequence start: 12 High quality sequence stop: 721.
FEATURES	Location/Qualifiers
source	<pre>1916 /organism="Homo sapiens"</pre>

/db_xref="taxon:9606"
/tissue_type="embryonic trophoblasts, made from WA01 stem
cells"
/lab_host="DH10B TonA"
/clone_lib="NIH_MGC_173"
/note="Vector: pDONR201; Site_1: attP2; Site_2: attP1;
LIBR_PRIMING - oligo dT; METHOD - full-length enriched;
LIBR_PROVIDER - Bradfield"

ORIGIN

Query M Best Lo Matches	cal :	31.8%; Score 738; DB 6; Length 916; Similarity 95.0%; Pred. No. 7.2e-198; 5; Conservative 0; Mismatches 36; Indels 6; Gaps	3;
Qу	1	AGGGTCCCTTAGCCGGGCGCAGGCGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA	60
Db	54		113
QУ	61	AGTGAGCATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	120
Db	114		173
Qу	121	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT	180
Db	174	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT	233
Qу	181	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	240
Db	234	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	293
Qу	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAG	300
Db	294	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAG	353
Qу	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTGGA	360
Db	354	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTGGA	413
Qу	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	414	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	473
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db	474	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	533
Qу		CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Db	534	CTTCGACAT-GTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	592
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	600
Db	593	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	652
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Db	653	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGATCACATGGACTTCTG	712

```
661 GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA 720
Qy \cdot \cdot
             713 GGGCCGAGTGAAGAATTTTCTGATNGTCTTTAGTTTCTGCAGGAAGCAACAGCACATGCA 772
Db
Qy
         721 GTCTACATTTGACAACACCATCAAGGAACA--TTTCACAGAAGGCTCTAGGCCAGTTTTG 778
             773 GTCTACATTTGACAACACCATCCAAGGACATTTTTCACAGAGGGCTCTAGGGCCAGTTTT 832
Db
         779 TCTC---ATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTT 832
Qу
                   Db
         833 GTCCTCAATCTTCTACTGAAAAGCAAAAGTTGGTGGGTTCATTTAACCTCTGGACTT 889
RESULT 7
AY404345
LOCUS
           AY404345
                                  1185 bp
                                            DNA
                                                    linear
                                                            GSS 12-DEC-2003
DEFINITION Mus musculus HCM1859 qene, VIRTUAL TRANSCRIPT, partial sequence,
           genomic survey sequence.
           AY404345
ACCESSION
VERSION
           AY404345.1 GI:39760322
KEYWORDS
           GSS.
SOURCE
           Mus musculus (house mouse)
  ORGANISM Mus musculus
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
           1 (bases 1 to 1185)
 AUTHORS
           Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
           Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
           Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
           Adams, M.D. and Cargill, M.
           Inferring nonneutral evolution from human-chimp-mouse orthologous
  TITLE
           gene trios
           Science 302 (5652), 1960-1963 (2003)
  JOURNAL
   PUBMED
           14671302
REFERENCE
           2 (bases 1 to 1185)
           Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
 AUTHORS
           Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
           Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
           Adams, M.D. and Cargill, M.
           Direct Submission
  TITLE
           Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive,
  JOURNAL
           Rockville, MD 20850, USA
           This sequence was made by sequencing genomic exons and ordering
COMMENT
           them based on alignment.
FEATURES
                    Location/Qualifiers
                                                                             45-1215
    source
                    1. .1185
                    /organism="Mus musculus"
                    /mol type="genomic DNA"
                    /db xref="taxon:10090"
                    <1. .>1185
    gene
                    /locus tag="HCM1859"
ORIGIN
                         31.6%; Score 733.8; DB 9; Length 1185;
  Query Match
  Best Local Similarity 76.8%; Pred. No. 1.3e-196;
  Matches 910; Conservative 0; Mismatches 272; Indels
                                                              3;
                                                                  Gaps
                                                                         1;
```

	Qу	458	ATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACTTTTGACTACTGT	.517
	Db	1	ATGGACTTCTTAAAAAATGAGAACTTTGACCTAGTACTTCTTGATTCAATGGATCTCTGT	60
	Qу	518	CCTTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTC	577
	Db	61	TCTTTGCTAATTGTTGAAAAGCTTGGGAAACGATTTGTGTCCTTTCTTCCCTTTCAATTT	120
	Qу	578	GGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTATTCCGTTCC	634
	Db	121	AGCTATATGGACTTTGGGTTACCAAGCGCCCCCTTGTCCTATGCTCCAGTGTATGGTTCT	180
	Qу	635	TTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGT	694
	Db	181	GGTCTAACTGACCAAATGGACTTCTGGGGCCGAGTGAAGAACTTTCTGATGTTCCTTGAT	240
	Qу	695	TTCTGCAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAAGGAACATTTC	754
	Db	241	TTCTCCATGAAGCAAAGGGAAATCCTTTCTCAGTATGACAGCACTATCCAGGAGCATTTT	300
	QУ	755	ACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATT	814
	Db	301	${\tt GTGGAAGGCTCTCAGCCAGTGTTGTCTGACCTTCTACTGAAAGCTGAGCTGTGGTTTGTC}.$	360
	QУ	815	AACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGA	874
	Db	361	AACTCTGACTTTGCTTTTGCTCGTCCCCTGTTTCCCAACACAGTCTATGTGGGA	420
	QУ	875	GGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGCCAAG	934
	Db	421	GGTTTACTGGACAAACCTGTTCAGCCAATACCCCAAGACTTGGAGAATTTTATCTCTCAG	480
	Qy	935	TTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGAAT	994
	Db	481	TTTGGAGACTCAGGTTTTGTCCTTGTGGCCCTGGGCTCTATAGTGAGCATGATTCAGTCC	540
•	Qy	995	CCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGG	1054
	Db	541	AAGGAAATTATTAAGGAGATGAACAGTGCCTTTGCTCACCTCCCTC	600
	Qy	1055	AAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTG	1114
	Db		ACATGTAAGACTTCTCATTGGCCCAAAGATGTCAGTTTGGCCCCAAATGTCAAAATCATG	
à angrass	Qу	1115	GACTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCAC	1174
	Db _	661	GATTGGCTTCCACAGACTGACCTTCTAGCTCACCCTAGCATTCGTCTGTTTGTCACTCAT	720
	Qу		GGCGGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGATCCCT	
	Db	721	GGAGGGATGAACAGTGTGATGGAGGCTGTCCATCATGGAGTACCCATGGTGGGGATTCCA	780
	Qу	1235	CTCTTTGGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCT	1294
	Db	781	TTTTTTTTTTTCACCAACCTGAAAACATGGTCCGAGTAGAAGCAAAGAACCTTGGTGTTTCT	840

```
1295 ATTCAGTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAA 1354
Qy
            841 ATTCAGCTACAGACGCTCAAGGCAGAGTCATTTGCGCTCACCATGAAAAAAATCATAGAA 900
Db
        1355 GACAAGAGATACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTC 1414
Qу
            Db
Qу
        1415 AGCCCCACACAGGGGTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGGCGCGACG 1474
            961 ACCCCTGCCCAGAGGCTTTTGGGCTGGATAGATCATATCTTGCAGACAGGGGGTGCAGCA 1020
Db
        1475 CACCTCAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTT 1534
Qу
            1021 CATCTCAAGCCATATGCTTTCCAGCAGCCATGGCATGAGCAGTACATGCTTGATGTCTTC 1080
Db
        1535 GTGTTTCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATG 1594
Qу
             _ | | | | | | | |
        1081 CTCTTTCTCCTAGGGCTCATGCTGGGTACTTTGTGGCTTAGTGTAAAGGTTCTTGTTGCT 1140
Db
        1595 GCTGTCTGGTGGCTGCGTGGGCCAGAAAGGTGAAGGAGACATAA 1639
Qу
                 1141 GTAACCAGGTATCTGAGTATAGCAACGAAGGTCAAGGAGGCATAA 1185
Db
RESULT 8
AK041045
LOCUS
          AK041045
                               1353 bp
                                         mRNA
                                                linear
                                                        HTC 03-APR-2004
          Mus musculus adult male aorta and vein cDNA, RIKEN full-length
DEFINITION
          enriched library, clone:A530069C13 product:hypothetical
          UDP-glucoronosyl and UDP-glucosyl transferase containing protein,
          full insert sequence.
ACCESSION
          AK041045
          AK041045.1 GI:26334156
VERSION
KEYWORDS
          HTC; CAP trapper.
SOURCE
          Mus musculus (house mouse)
          Mus musculus
  ORGANISM
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
          Carninci, P. and Hayashizaki, Y.
  AUTHORS
  TITLE
          High-efficiency full-length cDNA cloning
          Meth. Enzymol. 303, 19-44 (1999)
  JOURNAL
          99279253
  MEDLINE
          10349636
   PUBMED
REFERENCE
          Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
  AUTHORS
           Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
          Normalization and subtraction of cap-trapper-selected cDNAs to
  TITLE
          prepare full-length cDNA libraries for rapid discovery of new genes
  JOURNAL
           Genome Res. 10 (10), 1617-1630 (2000)
           20499374
  MEDLINE
   PUBMED
           11042159
REFERENCE
           3
           Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
  AUTHORS
           Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
           Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
```

```
Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
            Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
            Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
            Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
            RIKEN integrated sequence analysis (RISA) system--384-format
 TITLE
            sequencing pipeline with 384 multicapillary sequencer
            Genome Res. 10 (11), 1757-1771 (2000)
  JOURNAL
 MEDLINE
            20530913
   PUBMED
            11076861
REFERENCE
            4
            The RIKEN Genome Exploration Research Group Phase II Team and the
 AUTHORS
            FANTOM Consortium.
 TITLE
            Functional annotation of a full-length mouse cDNA collection
  JOURNAL
            Nature 409, 685-690 (2001)
REFERENCE
 AUTHORS
            The FANTOM Consortium and the RIKEN Genome Exploration Research
            Group Phase I & II Team.
 TITLE
            Analysis of the mouse transcriptome based on functional annotation
            of 60,770 full-length cDNAs
  JOURNAL
            Nature 420, 563-573 (2002)
REFERENCE
                (bases 1 to 1353)
            Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P.,
 AUTHORS
            Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W.,
            Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T.,
            Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T.,
            Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M.,
            Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M.,
            Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N.,
            Okazaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N.,
            Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T.,
            Sogabe, Y., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S.,
            Takeda, Y., Tanaka, T., Tomaru, A., Toya, T., Yasunishi, A.,
            Muramatsu, M. and Hayashizaki, Y.
            Direct Submission
 TITLE
  JOURNAL
            Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of
            Physical and Chemical Research (RIKEN), Laboratory for Genome
            Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
            RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
            Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.jp,
            URL: http://genome.gsc.riken.jp/, Tel:81-45-503-9222,
            Fax:81-45-503-9216)
COMMENT
            cDNA library was prepared and sequenced in Mouse Genome
            Encyclopedia Project of Genome Exploration Research Group in Riken
            Genomic Sciences Center and Genome Science Laboratory in RIKEN.
            Division of Experimental Animal Research in Riken contributed to
            prepare mouse tissues.
            Please visit our web site for further details.
            URL:http://genome.gsc.riken.jp/
            URL: http://fantom.gsc.riken.jp/.
FEATURES
                      Location/Qualifiers
                      1. .1353
     source
                      /organism="Mus musculus"
                      /mol type="mRNA"
                      /strain="C57BL/6J"
                      /db xref="FANTOM DB:A530069C13"
                      /db xref="taxon:10090"
                      /clone="A530069C13"
```

/sex="male" /tissue type="aorta and vein" /clone lib="RIKEN full-length enriched mouse cDNA library" /dev stage="adult" CDS 83. .991 /note="unnamed protein product; hypothetical UDP-glucoronosyl and UDP-glucosyl transferase containing protein (InterPro|IPR002213, evidence: InterPro) putative" /codon start=1 /protein id="BAC30796.1" /db xref="GI:26334157" translation="MAAHRRWLLMSFLFLEVILLEAAKILTISTLSASHYIVISRVSQ/ VLHEGGHNVTKLLYESANIPDFRKEKPSYQVINWRPPEDQEKKFADLRHRLTEEITYG RSKHHTLLKIHOYFGDLCSOLLSRKDIMDFLKNENFDLVLLDSMDLCSLLIVEKLGKR FVSFLPFQFSYMDFGLPSAPLSYAPVYGSGLTDQMDFWGRVKNFLMFLDFSMKQREIL SQYDSTIQEHFVEGSQPVLSDLLLKAELWFVNSDFALDFARPLFPNTVYVGGYWTNLF SQYPKTWRILSLSLETQVLSLWPWAL" ORIGIN Query Match 31.5%; Score 731.6; DB 3; Length 1353; 73.1%; Pred. No. 5.6e-196; Best Local Similarity Matches 981; Conservative 0; Mismatches 354; Indels 1 AGGGTCCCTTAGCCGGGCGCAGGCGCGCGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60 Qу ļ 1 16 AGGGTCCCTTAGTGGGGCACAGCTCTTTAGGTGTGCAACCTGTGTCAGGGCTCCACATAT 75 Db Qу 76 TCTACAGATGGCAGCACATCGGCGTTGGCTTCTCATGAGCTTCCTTTTCCTTGAGGTTAT 135 Db 121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180 Qу 136 TCTCTTGGAGGCTGCAAAAATCCTGACTATATCTACACTGAGTGCAAGCCATTATATAGT 195 Db 181 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 240 Qy , 196 GATAAGCCGTGTGTCGCAAGTTCTTCATGAAGGTGGCCACAATGTGACCAAACTTCTTTA 255 Db 241 CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG 300 Qy

256 TGAAA---GTGCTAATATCCCAGATTTTAGAAAGGAAAAACCATCATATCAAGTTATTAA 312

301 TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGTGGA 360

313 TTGGCGTCCACCTGAAGATCAGGAAAAGAAATTTGCTGATCTTAGGCATCGACTTACAGA 372

361 AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC 420

373 AGAAATAACTTATGGCAGGTCCAAACATCACACCCTTCTAAAGATCCATCAATACTTTGG 432

421 GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA 480

433 GGACTTATGCAGTCAATTATTAAGCAGAAAGGACATCATGGACTTCTTAAAAAATGAGAA 492

481 CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT 540

1

1...

 $\mathbf{11}$

11

-111

11111

11111

Db

Qу

Db

Qу

Db

Qу

Db

Qy

Db	493	CTTTGACCTAGTACTTCTTGATTCAATGGATCTCTGTTCTTTGCTAATTGTTGAAAAGCT	552
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	600
Db	553	TGGGAAACGATTTGTGTCCTTTCTTCCCTTTCAATTTAGCTATATGGACTTTGGGTTACC	612
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	657
Db -	613	AAGCGCCCCTTGTCCTATGCTCCAGTGTATGGTTCTGGTCTAACTGACCAAATGGACTT	672
Qу	658	CTGGGGCCGAGTGAAGAATTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACAT	717
Db	673	CTGGGGCCGAGTGAAGAACTTTCTGATGTTCCTTGATTTCTCCATGAAGCAAAGGGAAAT	732
Qу	718	GCAGTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTT	777
Db	733	CCTTTCTCAGTATGACAGCACTATCCAGGAGCATTTTGTGGAAGGCTCTCAGCCAGTGTT	792
Qу	778	GTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTT	837
Db	793	GTCTGACCTTCTACTGAAAGCTGAGCTGTGGTTTGTCAACTCTGACTTTGCTTTGGATTT	852
Qу	838	TGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAA	897
Db	853	TGCTCGTCCCCTGTTTCCCAACACAGTCTATGTGGGAGG-TTACTGGACAAACCTGTTCA	911
Qу	898	ACCAGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCT	957
Db	912	GCCAATACCCCAAGACTTGGAGAATTTTATCTCTCAGTTTGGAGACTCAGGTTTTGTCCT	971
Qу	958	TGTGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAA	1017
Db	972	${\tt TGTGGCCCTGGGCTCTATAGTGAGCATGATTCAGTCCAAGGAAATTATTAAGGAGATGAA}$	1031
Qу	1018	CAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCC	1077
Db	1032	CAGTGCCTTTGCTCACCTCCCTCAAGGGGTGCTATGGACATGTAAGACTTCTCATTGGCC	1091
Qу	1078	CAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCT	1137
Db	1092	CAAAGATGTCAGTTTGGCCCCAAATGTCAAAATCATGGATTGGCTTCCACAGACTGACCT	1151
Qу	1138	CCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGA	1197
Db	1152	TCTAGCTCACCCTAGCATTCGTCTGTTTGTCACTCATGGAGGGATGAACAGTGTGATGGA	1211
Qу	1198	GGCCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTTGGAGACCAGCCTGAAAA	1257
Db	1212	GGCTGTCCATCATGGAGTACCCATGGTGGGGATTCCATTTTTTTT	1271
Qу	1258	CATGGTCCGAGTAGAAGCCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGC	1317
Db	1272	CATGGTCCGAGTAGAAGCAAAGAACCTTGGTGTTTCTATTCAGCTACAGACGCTCAAGGC	1331
Qу	1318	AGAGACATTGGCTCTTAAGATG 1339	

```
RESULT 9
BI102968
LOCUS
           BI102968
                                   978 bp
                                             mRNA
                                                    linear
                                                             EST 26-JUN-2001
DEFINITION
           602888578F1 NCI CGAP Kid14 Mus musculus cDNA clone IMAGE:5043978
           5', mRNA sequence.
ACCESSION
           BI102968
VERSION
           BI102968.1 GI:14553861
           EST.
KEYWORDS
SOURCE
           Mus musculus (house mouse)
  ORGANISM Mus musculus
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
           1 (bases 1 to 978)
REFERENCE
           NIH-MGC http://mgc.nci.nih.gov/.
 AUTHORS
           National Institutes of Health, Mammalian Gene Collection (MGC)
 TITLE
  JOURNAL
           Unpublished (1999)
COMMENT
           Contact: Robert Strausberg, Ph.D.
           Email: cgapbs-r@mail.nih.gov
           Tissue Procurement: Jeffrey E. Green, M.D.
            cDNA Library Preparation: Life Technologies, Inc.
            cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
            DNA Sequencing by: Incyte Genomics, Inc.
            Clone distribution: MGC clone distribution information can be
           found through the I.M.A.G.E. Consortium/LLNL at:
           http://image.llnl.gov
           Plate: LLAM11120 row: k column: 19
           High quality sequence stop: 812.
FEATURES
                    Location/Qualifiers
                    1. .978
    source
                    /organism="Mus musculus"
                    /mol type="mRNA"
                    /strain="FVB/N"
                    /db xref="taxon:10090"
                    /clone="IMAGE:5043978"
                    /lab host="DH10B (T1 phage-resistant)"
                    /clone lib="NCI CGAP Kid14"
                    /note="Organ: kidney; Vector: pCMV-SPORT6; Site 1: NotI;
                    Site 2: SalI; Cloned unidirectionally. Primer: Oligo dT.
                    Average insert size 1.75 kb. Constructed by Life
                    Technologies. Note: this is a NCI CGAP Library. | "
ORIGIN
  Query Match
                         22.5%; Score 522..4; DB 4;
                                                    Length 978;
  Best Local Similarity
                        77.7%; Pred. No. 1.6e-136;
 Matches 682; Conservative
                               0; Mismatches 191;
                                                              5; Gaps
                                                                          4;
                                                    Indels
         644 GATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGG 703
Qу
             1 GACCAAATGGACTTTTGGGGCCGAGTGAAGAACATTCTGATGTTCTTTCATTTCACCAAG 60
Db
         704 AGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGC 763
Qу
                              1 11 1 1 1111
Db
          61 AAGCGAAGGGACATCTTTTCTCAATATGGCAATACTGTCCAGGAGCATTTTGCGGAAGGC 120
```

Qy Db		TCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGAC	
Qу	824	TTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATG	883
Db	181	TTTGCCTTGGATTTTGCTCGTCCCCTGTTTCCCAACACAGTCTATGTGGGAGGTTTACTG	240
Qу	884	GAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGAC	943
Db	241	GACAAACCTGTTCAGCCAATACCCCAAGACTTGGAGGATTTTATCTCTCAGTTTGGAGAC	300
Qу	944	TCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATC	1003
Db	301	TCAGGTTTTGTCCTTGTGGCCCTGGACTCTGTAGTGAGCATGATTCAGTCCAAGGAAATT	360
Qу		TTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAG	
Db .		ATTAAGGAGATGAACAGTGCCTTTGCTCACCTCCCTCAAGGGGTGCTATGGACATGTAAG	
Qу		TGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTT	
Db		AGTTCTCATTGGCCCAAAGATGTCAGTTTGGCCCCAAATGTCAAAATCATGGATTGGCTT	
Qy Db		CCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAG	
ДУ		AATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGA	
Db			
Qy	1244	GACCAGCCTGAAAACATGGTCCGAGTAGAAGCCCAAAAAGTTTGGTGTTTCTATTCAGTTA	1303
Db	601		660
Qу	1304	AAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGA	1363
Db	661		720
Qу	1364	TACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACA	1423
Db	721		777
Qу		CAGCGGCTGGTGGGCTGGATTGACCACGTC-CTCCAGACAGGGGGCGCGCGCCCCCCAA	1482
Db		CAGAGGCTTGTGGGCTGGATTGATCACATCTTTGCAGACAGGGGGTGCAGCCCATCTCAA	837
Qy	1483	GCCCTATGTCTT-TCAGCAGCCCTGGCATGAGCAGTAC 1519	
Db	838	AGCATATGGCTTCCCAGCAGGCTTGGCATAACGAGTAC 875	

RESULT 10 CN396939

LOCUS CN396939 510 bp mRNA linear EST 16-MAY-2004 DEFINITION 17000599940872 GRN_PRENEU Homo sapiens cDNA 5', mRNA sequence.

```
ACCESSION
          CN396939.1 GI:47384534
VERSION ·
KEYWORDS
SOURCE
          Homo sapiens (human)
 ORGANISM
          Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
             (bases 1 to 510)
 AUTHORS
          Brandenberger, R., Wei, H., Zhang, S., Lei, S., Murage, J., Fisk, G.J.,
          Li, Y., Xu, C., Fang, R., Guegler, K., Rao, M.S., Mandalam, R.,
          Lebkowski, J and Stanton, L.W.
 TITLE
          Transcriptome characterization elucidates signaling networks that
          control human ES cell growth and differentiation
          Nat. Biotechnol. 22 (6), 707-716 (2004)
 JOURNAL
          Contact: Brandenberger R
COMMENT
          Regenerative Medicine
          Geron Corporation
          230 Constitution Drive, Menlo Park, CA 94025, USA
          Tel: 650 473 8658
          Fax: 650 473 7760
          Email: rbrandenberger@geron.com
          Insert Length: 510
                             Std Error: 0.00.
FEATURES
                   Location/Qualifiers
    source .
                   1. .510
                   /organism="Homo sapiens"
                   /mol type="mRNA"
                   /db xref="taxon:9606"
                   /tissue type="embryonic stem cell, retinoic acid and
                   mitogen-treated hES cell line H7"
                   /clone lib="GRN PRENEU"
                   /note="oligo dT primed, full-length enriched cDNA library
                   from hES cell line H7 (p29) maintained in feeder-free
                   conditions. Embryoid bodies were generated in the presence
                   of all-trans retinoic and mitogens."
ORIGIN
                       21.8%; Score 506.4; DB 7;
                                                 Length 510;
 Query Match
 Best Local Similarity 99.8%; Pred. No. 4.5e-132;
 Matches 507; Conservative
                              0; Mismatches
                                              1;
                                                 Indels
                                                              Gaps
                                                                      0;
        1109 ATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTC 1168
Qу
            3 ATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTC 62
       1169 ACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGG 1228
Qу
             63 ACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGG 122
Db
        1229 ATCCCTCTCTTTGGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGT 1288
Qу
             Db
         123 ATCCCTCTCTTTGGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGT 182
        1289 GTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATC 1348
Qу
             183 GTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATC 242
Db
        1349 ATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCAC 1408
Qy
```

CN396939

Db 24	43 ATGGAAGACAAGAGATACAAGT©CGCGGCAGTGGCCAGTGTCATCCTGCGCTCCCAC 302						
Qy 140	O9 CCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGC 1468						
Db 30	O3 CCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGC 362						
Qy 146	69 GCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGAC 1528						
Db 36	63 GCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGCTCGAC 422						
Qy 152	29 GTTTTTGTGTTTCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTG 1588						
Db 42	23 GTTTTTGTGTTTCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTG 482						
Qy 158	B9 GGCATGGCTGTCTGGTGGCTGCGTGGGG 1616						
Db 48	33 GGCATGGCTGTCTGGTGGCTGCGTGGGG 510						
RESULT 11							
CR769328							
LOCUS DEFINITION	CR769328 717 bp mRNA linear EST 23-SEP-2004 DKFZp46900528_rl 469 (synonym: pkidl) Pongo pygmaeus cDNA clone DKFZp46900528 5', mRNA sequence.						
ACCESSION	CR769328						
VERSION	CR769328.1 GI:52613343						
KEYWORDS	EST.						
SOURCE ORGANISM	Pongo pygmaeus (orangutan) Pongo pygmaeus						
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Pongo.						
REFERENCE AUTHORS	1 (bases 1 to 717) Ottenwaelder, B., Obermaier, B., Deutschenbaur, S., Schaipp, A.,						
	Mewes, H.W., Weil, B., Amid, C., Osanger, A., Fobo, G., Han, M. and Wiemann, S.						
TITLE	Pongo pygmaeus mRNA (Ottenwaelder, B., Obermaier, B., Deutschenbaur, S., et al.)						
JOURNAL COMMENT	Unpublished (2004) Contact: MIPS						
•	MIPS						
	Ingolstaedter Landstr.1, D-85764 Neuherberg, Germany This is the 5' sequence of the clone insert. Clone from S. Wiemann, Molecular Genome Analysis, German Cancer Research Center (DKFZ);						
ii e	Email s.wiemann@dkfz-heidelberg.de; sequenced by Medigenomix (Martinsried/Germany) within the cDNA_sequencing consortium of the						
	German Genome Project. This clone (DKFZp46900528) is available at						
	the RZPD Deutsches Ressourcenzentrum fuer Genomforschung GmbH in Berlin, Germany. Please contact RZPD for ordering:						
	http://www.rzpd.de/cgi-bin/products/cl.cgi?CloneID=DKFZp46900528 Further information about the clone and the sequencing project is						
	available at http://mips.gsf.de/projects/cdna/.						
FEATURES	Location/Qualifiers						
source	1717						
	<pre>/organism="Pongo pygmaeus" /mol type="mRNA"</pre>						
	/mor_type= mdvA /db xref="taxon:9600"						
	-						

```
/clone="DKFZp46900528"
                /tissue type="kidney"
                /dev stage="adult"
                /lab host="DH10B"
                /clone lib="469 (synonym: pkid1)"
                /note="Vector: pSport1 Sfi; Site 1: SfilA; Site 2: SfilB"
ORIGIN
 Query Match
                    21.1%; Score 490.6; DB 7;
                                          Length 717;
 Best Local Similarity 83.1%; Pred. No. 1.6e-127;
 Matches 593; Conservative
                         0; Mismatches 117;
                                          Indels
                                                     Gaps
                                                           3;
        43 ATCCGCGGCTTCCGTAGAAGTGAGCATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTT 102
Qу
          4 ATCCGCGGCTTTTGTGGAAGTGAGCATGGCTGGCAGCGGGTGCTGCTTCTAGTGGCCTT 63
Db
       103 CCTTCTCCCTGGGGTCCTGCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGG 162
Qy
                64 CCTTCTTTCTGGGGTCCTGCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACACTGGG 123
Db
       163 TGGAAGCCATTATCTACTGATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAA 222
Qу
          124 TGGAAGCCATTACCTACTGTTGGACCGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAA 183
Db
       223 TGTCACCATGCTTAACCACAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAA 282
Qу
          184 TGTGACTATGCTTCATCAGAGTGGAAAGTTTTTAATCCCAGATATTAAAGAGGAGGAAAA 243
Db
       283 ATCATATCAAGTTATCAGTTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAG 342
Qy
          244 ATCATACCAAGTTATCAGGTGGTTTTCACCTGAAGATTATCAAAAAAAGAATTAAGAAGCA 303
Db
       343 TTTTGATTTCTTGGAAGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAA 402
Qу
                     304 TTTCGATAGTTACATAGAAACAGCATTGGATGGCAGAAAAGAATTTGAAGTCTTTGTAAA 363
Db
       403 TGTTCTAGAATACTTGGCGTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGA 462
Qу
                   364 GCTAATGGAAATATTTGGGACTCAATGTAGTTATTTGCTAAGCAGAAAGGATATAATGGA 423
Db
       463 TTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTT 522
Qу
          424 TTCCTTAAAGAATGAAAACTTTGATCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTT 483
Db
       523 CCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTC 582
Qy
          484 CCTGATTGCTGAGAAGCTTGTGAAACCATTTGTGGCCATTCTTCCCACCACATTCGGCTC 543
Db
       583 TTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGAC 642
Qy
          544 TTTGGATTTTGGGCTACCAAGCCCCTTGTCTTATGTTCCAGTATTCCATTCCTTGCTGAC 603
Db
       643 TGATCACATGGACTTCT-GGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCA 701
Qу
           604 TGATCACATGGACTTCTGGGGGCCGAGTGAAGAATTTTCTGATGNTCTTTAGTTTCTCCA 663
Db
       702 GGAGGC--AACAGCACATGCAGTCTACATTT-GACAACACCATCAAGGAACATT 752
Qy
```

664 GGAGCCCNATGGGGACATGCAGTCTACATTTGGACAACNCCNTCAAGGAGCATT 717 Db RESULT 12 BI559553 LOCUS BI559553 761 bp mRNA linear EST 05-SEP-2001 603252894F1 NIH MGC 97 Homo sapiens cDNA clone IMAGE:5295502 5', DEFINITION mRNA sequence. ACCESSION BI559553 BI559553.1 GI:15446867 VERSION KEYWORDS EST. SOURCE Homo sapiens (human) ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 761) NIH-MGC http://mgc.nci.nih.gov/. AUTHORS National Institutes of Health, Mammalian Gene Collection (MGC) TITLE Unpublished (1999) JOURNAL COMMENT Contact: Robert Strausberg, Ph.D. Email: cgapbs-r@mail.nih.gov Tissue Procurement: Miklos Palkovits, M.D., Ph.D. cDNA Library Preparation: Michael J. Brownstein (NHGRI), Shiraki Toshiyuki and Piero Carninci (RIKEN) cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Incyte Genomics, Inc. Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Plate: LLAM11747 row: k column: 23 High quality sequence stop: 726. **FEATURES** Location/Qualifiers 1. .761 source /organism="Homo sapiens" /mol type="mRNA" /db xref="taxon:9606" /clone="IMAGE: 5295502" /lab host="DH10B" /clone lib="NIH MGC 97" /note="Organ: testis; Vector: pBluescriptR (modified pBluescript KS+); Site 1: BamHI; Site 2: SalI-XhoI (gtcgag); Oligo-dT primed using primer 5'-TTTTTTTTTTTTTTTVN-3', size-selected for average insert size 2.2 kb and normalized to ROT 5. This is a primary library enriched for full-length clones and constructed using the Cap-trapper method (Carninci, in preparation). Library constructed by M. Brownstein (NIMH/NHGRI, National Institutes of Health). Note: this is a NIH MGC Library."

ORIGIN

```
Query Match
                       21.1%; Score 488.6; DB 4;
                                                  Length 761;
                      80.7%; Pred. No. 6.1e-127;
Best Local Similarity
Matches 608; Conservative 0; Mismatches 139;
                                                                       3;
                                                  Indels
                                                            6;
                                                                Gaps
```

Db		6		65
Qу		68	ATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	127
Db		66	ATGGTTGGGCAGCGGGTGCTTCTAGTGGCCTTCCTTCTTCTGGGGTCCTGCTCTCA	125
Qу		128	GAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGAC	187
Db		126	GAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGAC	185
Qу		188	CGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGA	247
Db		186	CGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGGA	245
Qу		248	GGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCTT	307
Db		246	AAGTTTTGGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTTT	305
Qу		308	GCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	367
Db		306	TCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGCA	365
Qу		368	TTAGGTGGCAGAGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAG	427
Db		366	TTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCAA	425
Qу		428	TGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGAC	487
Db		426	TGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTATGAT	485
Qу		488	ATGGTGATAGTTGAA-ACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAA	546
Db		486	CTGGTATTTGTTGAACGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAA	545
Qу		547	GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACCAATCCC	606
Db		546	ACCATTGTGGCCATTCTTCCCACCACATTCGGCTCTATGGATTTGGGGCTACCAAGCCC	605
Qу		607	CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACT-GATCACATGGACTTCTGGGGCC	665
Db.		606	CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGGATCACATGGACTTCTGGGGCC	665
Qу	•	666	GAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAG	721
Db	likkin ny	666	GAGTGAAGAAATTTCTTGATGTCTTTTAGTTTCCTCCAAGGAGCCCAATGGGACATGCAG	725
Qу		722	TCTACATTTGACAACACCATCAAGGAACATTTC 754	
Db		726	TCTACAATTTGACAACACATCAAGGAGCATTTC 758	

RESULT 13 AW173071/c

LOCUS AW173071 694 bp mRNA linear EST 16-NOV-1999
DEFINITION xj82gll.xl Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone
IMAGE:2663780 3' similar to SW:CGT_RAT Q09426

```
2-HYDROXYACYLSPHINGOSINE 1-BETA-GALACTOSYLTRANSFERASE PRECURSOR ;,
           mRNA sequence.
ACCESSION
           AW173071
           AW173071.1 GI:6439019
VERSION
           EST.
KEYWORDS
SOURCE
           Homo sapiens (human)
 ORGANISM
           Homo sapiens
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
              (bases 1 to 694)
           NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap.
 AUTHORS
 TITLE
           National Cancer Institute, Cancer Genome Anatomy Project (CGAP),
           Tumor Gene Index
  JOURNAL
           Unpublished (1997)
           Contact: Robert Strausberg, Ph.D.
COMMENT
           Email: cgapbs-r@mail.nih.gov
           This clone is available royalty-free through LLNL; contact the
           IMAGE Consortium (info@image.llnl.gov) for further information.
           Seg primer: -40UP from Gibco
           High quality sequence stop: 412.
                    Location/Qualifiers
FEATURES
                    1. .694
    source
                    /organism="Homo sapiens"
                    /mol type="mRNA"
                    /db xref="taxon:9606"
                    /clone="IMAGE:2663780"
                    /lab host="DH10B"
                    /clone lib="Soares NFL T GBC S1"
                    /note="Organ: pooled; Vector: pT7T3D-Pac (Pharmacia) with
                    a modified polylinker; Site 1: Not I; Site 2: Eco RI;
                    Equal amounts of plasmid DNA from three normalized
                    libraries (fetal lung NbHL19W, testis NHT, and B-cell
                    NCI CGAP GCB1) were mixed, and ss circles were made in
                    vitro. Following HAP purification, this DNA was used as
                    tracer in a subtractive hybridization reaction. The driver
                    was PCR-amplified cDNAs from pools of 5,000 clones made
                    from the same 3 libraries. The pools consisted of
                    I.M.A.G.E. clones 297480-302087, 682632-687239,
                    726408-728711, and 729096-731399. Subtraction by Bento
                    Soares and M. Fatima Bonaldo.
ORIGIN
                         20.0%; Score 463.6; DB 2;
                                                    Length 694;
  Query Match
                        83.5%; Pred. No. 7.7e-120;
  Best Local Similarity
                               0; Mismatches 105;
 Matches 537; Conservative
                                                    Indels
                                                              1;
                                                                  Gaps
         268 TAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCTTGCACCTGAAGATCATCAAAG 327
Qу
                                                1 11
                         \mathbf{I}
                                643 TATAAAGAGAAGCAAAATTCATACAGGTATCCGGGTGGTTTTCACCTAAGATCATCAAAA 584
Db
         328 AGAATTTAAAAAGAGTTTTGATTTCTTTCTGGAAGAAACTTTAGGTGGCAGAGGAAAATT 387
Qу
             583 AGAA-TTAAGAAGCATTTTGATAGCTACATAGAAACAGCATTGGATGGCAGAAAAGAATC 525
Db
         388 TGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTCATTTTTTAAATAG 447
Qу
                  11 11
```

524 TGAAGCCCTTGTANAGCTAATGGAAATATTTGGGACTCAATGTAGTTATTTGCTAAGCAG 465

Db

Qу	448	AAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACTTT 507
Db	464	
Qу	508	TGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTTTC 567
Db	404	TGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAAACCATTTGTGGCCATTCTTCC 345
Qy	568	CACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTATT 627
Db	344	CACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCCCTTGTCTTATGTTCCAGTATT 285
Qу	628	CCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTT 687
Db	284	CCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTT 225
Qу	688	CTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAAGGA 747
Db	224	CTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTACATTTGACAACACCATCAAGGA 165
Qy	-748	ACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTG 807
Db	164	GCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTG 105
Qу	808	GTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTA 867
Db	104	GTTTGTTAACTCTGATTTTGCCTTGATTTTGCCCGGCCCCTGCTTCCCAACACTGTTTA 45
Qy	868	TGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAA 910
Db	44	TATTGGAGGCTTGATGGAAAACCTATTAAACCAGTACCACAA 2
RESULT 14 CB435346/ LOCUS DEFINITIO ACCESSION VERSION KEYWORDS SOURCE ORGANIS REFERENCE AUTHORS TITLE JOURNAL COMMENT	C CE N 61 CE ES BC M BC EN Ma BC Ur CC US	659 bp mRNA linear EST 25-MAR-2003 65435 MARC 6BOV Bos taurus cDNA 3', mRNA sequence. 6435346 6435346.1 GI:29216283 6T. 6S taurus (cow) 6S taurus 6karyota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 6mmalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; 6vinae; Bos. 6bases 1 to 659) 6mith, T.P.L., Roberts, A.J., Echternkamp, S.E., Chitko-McKown, C.G., 6cay, J.E. and Keele, J.W. 6cond set of bovine ESTs from pooled-tissue normalized libraries 6cond set of bovine ESTs from pooled-tissue normalized libraries 6cond set of Smith TPL 6cond Smith TPL 6c
	Τe	D Box 166, Clay Center, NE 68933-0166, USA el: 402 762 4366 ax: 402 762 4390
		and I am with Commit I make used a man

Email: smith@email.marc.usda.gov

```
trimmed with the aid of the trim alt option. Vector identified with
         cross match v0.990329.
         Plate: FQY8035 row: J column: 24
         Seq primer: TAGAAGGCACAGTCGAGG.
FEATURES
                Location/Oualifiers
                1. .659
    source
                /organism="Bos taurus"
                /mol type="mRNA"
                /db xref="taxon:9913"
                /tissue type="pooled"
                /lab host="DH10B"
                /clone lib="MARC 6BOV"
                /note="Vector: pcDNA3.1; Site 1: EcoRI; Site_2: NotI;
                Library made with RNA pooled from multiple tissues
                including liver, lung, hypothalamus, pituitary, and
                placenta/endometrium."
ORIGIN
                    19.7%; Score 457.6; DB 6;
 Query Match
                                           Length 659;
                    81.1%; Pred. No. 3.8e-118;
 Best Local Similarity
                          0; Mismatches 124;
 Matches 532; Conservative
                                                             0;
                                           Indels
                                                       Gaps
        446 AGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACT 505
Qу
           658 AGAAAGGATGTCATGAAGTCTTTAAAGAATGAGAACTTCGACCTGGTGATAGTGGAAATG 599
Db
        506 TTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTT 565
Qу
           598 TTTGACTACTGTCCTTTCTTGGTTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTC 539
Db
        566 TCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTA 625
Qу
             538 CCTTCCGCACTGGCCACCGTGGACTTTGGGCTACCAAGCCCTCTGTCTTATGTGCCAGTG 479
Db
        626 TTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATG 685
Qу
                478 TTCTACTCCTTGTTAACGGACCAGATGGACTTCTGGGGCCGAGTAAAGAACTTCCTGATG 419
Db
        686 TTCTTTAGTTTCTGCAGGAGGCAACAGCACTGCAGTCTACATTTGACAACACCATCAAG 745
Qу
                  418 TTCTTTGAGTTCTTCAAGAAGCAGTGGAAAATCCAGTCTGCATATGATGACACCATCAAG 359
Db
        746 GAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTG 805
Qy
           358 GAGCATTTCCCGGACGACTCTAGGCCAGTTTTGTCTCATCTTCTAACAAAAGCAGAGCTG 299
Db
        806 TGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTT 865
Qy
                298 TGGTTTGTTAACACCGACTTTGCCTTTGATTTTGCTCAGCCCCTGCTTCCCAACACTGTG 239
Db
        866 TATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTC 925
Qу
           238 TGTATTGGAGGTTTAATGTCCAAACCTGTTAAACCAGTACCACAAGAATTTGAGAATTTC 179
Db
        926 ATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACC 985
Qy
```

Single pass sequencing. Bases called with phred v0.020425.c and

```
178 ATCACCAAATTTGGAGACTCTGGTTTTGTCCTTGTAAGCCTGGGGTCCATGGTGAGTTTC 119
Db
          986 TGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGG 1045
Qу
                                                 1 11 1 111111111
Db
          118 ATTCGGTCCCAGGAGGTTCTCAAAGAGATGAATGCTGCCTTTGCTCATCTCCCTCAAGGG 59
         1046 GTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAA 1101
Qу
              Db
           58 GTGATATGGAAGTATAATCCTTCTCATTGGCCCAAAGACATCAAATTGGCCCCAAA 3
RESULT 15
AK052644
                                    1723 bp
                                               mRNA
                                                                HTC 03-APR-2004
LOCUS
            AK052644
                                                       linear
            Mus musculus 0 day neonate kidney cDNA, RIKEN full-length enriched
DEFINITION
            library, clone: D630011D02 product: hypothetical UDP-glucoronosyl and
            UDP-glucosyl transferase containing protein, full insert sequence.
            AK052644
ACCESSION
            AK052644.1 GI:26095303
VERSION
KEYWORDS
            HTC; CAP trapper.
            Mus musculus (house mouse)
SOURCE
  ORGANISM
           Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
  AUTHORS
            Carninci, P. and Hayashizaki, Y.
  TITLE
            High-efficiency full-length cDNA cloning
  JOURNAL
            Meth. Enzymol. 303, 19-44 (1999)
  MEDLINE
            99279253
            10349636
   PUBMED
REFERENCE
  AUTHORS
            Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
            Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
  TITLE
            Normalization and subtraction of cap-trapper-selected cDNAs to
            prepare full-length cDNA libraries for rapid discovery of new genes
  JOURNAL
            Genome Res. 10 (10), 1617-1630 (2000)
  MEDLINE
            20499374
   PUBMED
            11042159
REFERENCE
            3
            Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
  AUTHORS
            Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
            Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
            Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
            Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
            Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
            Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
                                                                                  ALC: YES
  TITLE
            RIKEN integrated sequence analysis (RISA) system--384-format
            sequencing pipeline with 384 multicapillary sequencer
  JOURNAL
            Genome Res. 10 (11), 1757-1771 (2000)
            20530913
  MEDLINE
            11076861
   PUBMED
REFERENCE
            4
  AUTHORS
            The RIKEN Genome Exploration Research Group Phase II Team and the
            FANTOM Consortium.
            Functional annotation of a full-length mouse cDNA collection
  TITLE
  JOURNAL
            Nature 409, 685-690 (2001)
REFERENCE
```

```
The FANTOM Consortium and the RIKEN Genome Exploration Research
            Group Phase I & II Team.
  TITLE
            Analysis of the mouse transcriptome based on functional annotation
            of 60,770 full-length cDNAs
  JOURNAL
            Nature 420, 563-573 (2002)
              (bases 1 to 1723)
REFERENCE
            Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P.,
  AUTHORS
            Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W.,
            Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T.,
            Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T.,
            Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M.,
            Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M.,
            Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N.,
            Okazaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N.,
            Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T.,
            Sogabe, Y., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S.,
            Takeda, Y., Tanaka, T., Tomaru, A., Toya, T., Yasunishi, A.,
            Muramatsu, M. and Hayashizaki, Y.
            Direct Submission
  TITLE
  JOURNAL
            Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of
            Physical and Chemical Research (RIKEN), Laboratory for Genome
            Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
            RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
            Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.jp,
            URL: http://genome.gsc.riken.jp/, Tel:81-45-503-9222,
            Fax:81-45-503-9216)
COMMENT
            cDNA library was prepared and sequenced in Mouse Genome
            Encyclopedia Project of Genome Exploration Research Group in Riken
            Genomic Sciences Center and Genome Science Laboratory in RIKEN.
            Division of Experimental Animal Research in Riken contributed to
            prepare mouse tissues.
            Please visit our web site for further details.
            URL:http://genome.gsc.riken.jp/
            URL: http://fantom.gsc.riken.jp/.
FEATURES
                     Location/Qualifiers
     source
                     1. .1723
                     /organism="Mus musculus"
                     /mol type="mRNA"
                     /strain="C57BL/6J"
                     /db xref="FANTOM DB:D630011D02"
                     /db xref="taxon:10090"
                     /clone="D630011D02"
                     /tissue type="kidney"
                     /clone lib="RIKEN full-length enriched mouse cDNA library"
                     /dev stage="0 day neonate"
    misc feature
                     1. .1723
                     /note="hypothetical UDP-glucoronosyl and UDP-glucosyl
                     transferase containing protein (InterPro|IPR002213,
                     evidence: InterPro)"
ORIGIN
                          19.5%; Score 452.6; DB 3;
  Query Match
                                                       Length 1723;
                          69.1%; Pred. No. 1.5e-116;
  Best Local Similarity
 Matches 649; Conservative
                                 0; Mismatches 284;
                                                                              2;
                                                       Indels
                                                                      Gaps
            1 AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
Qv
              1
                                                       1 11111
```

AUTHORS

....

Db	41	${\tt AGGGTCCCTTAGTGGGGCACAGCTCTTTAGGTGTGCAACCTGTGTCAGGGCTCCACATAT}$	100
Qy	61	AGTGAGCATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	120
Db	101		160
Qу	121	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT	180
Db	161	TCTCTTGGAGGCTGCAAAAATCCTGACTATATCTACACTGAGTGCAAGCCATTATATAGT	220
Qу	181	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	240
Db	221	GATAAGCCGTGTGTCGCAAGTTCTTCATGAAGGTGGCCACAATGTGACCAAACTTCTTTA	280
Qу	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	300
Db	281	TGAAAGTGCTAATATCCCAGATTTTAGAAAGGAAAAACCATCATATCAAGTTATTAA	337
Qу	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	360
Db	338	TTGGCGTCCACCTGAAGATCAGGAAAAGAAATTTGCTGATCTTAGGCATCGACTTACAGA	397
Qy	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	398	AGAAATAACTTATGGCAGGTCCAAACATCACACCCTTCTAAAGATCCATCAATACTTTGG	457
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db	458	GGACTTATGCAGTCAATTATTAAGCAGAAAGGACATCATGGACTTCTTAAAAAAATGAGAA	517
Qу	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Db	518	CTTTGACCTAGTACTTCTTGATTCAATGGATCTCTGTTCTTTGCTAATTGTTGAAAAGCT	577
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC	600
Db	578	TGGGAAACGATTTGTGTCCTTTCTTCCCTTTCAATTTAGCTATATGGACTTTGGGTTACC	637
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	657
Db	638	AAGCGCCCCTTGTCCTATGCTCCAGTGTATGGTTCTGGTCTAACTGACCAAATGGACTT	697
Qу	658	CTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACAT	717
Db .	698	CTGGGGCCGAGTGAAGAACTTTCTGATGTTCCTTGATTTCTCCATGAAGCAAAGGGAAAT	757
Qу	718	GCAGTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTT	777
Db	758	CCTTTCTCAGTATGACAGCACTATCCAGGAGCATTTTGTGGAAGGCTCTCAGCCAGTGTT	817
Qy	778	GTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTT	837
Db	818	GTCTGACCTTCTACTGAAAGCTGAGCTGTGGTTTGTCAACTCTGACTTTGCTTTGGATTT	877
Qу	838	TGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAA	897
Db	878	TGCTCGTCCCCTGTTTCCCAACACAGTCTATGTGGGAGGTTTACTGGACAAACCTGTTCA	937

Qу	898	ACCA	STACCA	ACAAGAC'	TTGGAG.	AACTTC	ATTGCC	AGTT	936
		111		1111	11	Π	-		
Db	938	GCCA	ATACCO	CAAGTA	AGTGAC.	AAATTA	GCTCTCA	CTTT	976

Search completed: February 15, 2005, 09:44:23 Job time: 6858 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 15, 2005, 06:26:17; Search time 9715 Seconds

(without alignments)

11571.395 Million cell updates/sec

Title: US-10-017-867A-281

Perfect score: 2320

Sequence: 1 agggtcccttagccgggcgc.....tctctccccaacctcactaa 2320

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 4708233 seqs, 24227607955 residues

Total number of hits satisfying chosen parameters: 9416466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1500 summaries

Database : GenEmbl:*

1: gb ba:*

2: gb htg:*

3: gb_in:*

4: gb_om:*

5: gb_ov:*

6: gb_pat:*

7: gb_ph:*

8: gb_pl:*

9: gb_pr:*

10: gb ro:*

11: gb_sts:*

12: gb_sy:*

13: gb_un:*

14: gb_vi:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	2320	100.0	2320	6	AX697213	AX697213 Sequence
2	2320	100.0	2320	9	AY358416	AY358416 Homo sapi
3	2310.2	99.6	2341	6	AX136141	AX136141 Sequence

	4	2310.2	99.6	2341	6	BD123523	BD123523 Secretory
	5	2310.2	99.6	2341	9	AK075383	AK075383 Homo sapi
	6	2102.8	90.6	2944	6	AX548037	AX548037 Sequence
	7	1578.8	68.1	2263	6	AX958403	AX958403 Sequence
	8	1281.6	55.2	2082	6	AX359921	AX359921 Sequence
	9	1281.6	55.2	2797	6	AX155211	AX155211 Sequence
	10	1281.6	55.2	2823	6	AX714604	
	11						AX714604 Sequence
		1281.6	55.2	2823	9	AK057066	AK057066 Homo sapi
	12	1280.6	55.2	2759	9	BC068446	BC068446 Homo sapi
	13	1280	55.2	2086	6	AX327327	AX327327 Sequence
	14	1212	52.2	1572	6	AX359923	AX359923 Sequence
	15	1147.8	49.5	2426	6	AR541778	AR541778 Sequence
С	16	957.6	41.3	88948	2	AC008947	AC008947 Homo sapi
	17	957.6		179513	9	AC016612	AC016612 Homo sapi
	18	944.8	40.7	1569	6	AX155213	AX155213 Sequence
	19	912.4	39.3	2210	10	AK128903	AK128903 Mus muscu
	20	912.2	39.3	2192	10	BC034837	BC034837 Mus muscu
	21	912.2	39.3	2196	10	BC022134	BC022134 Mus muscu
	22	910.8	39.3	2212	6	AX155214	AX155214 Sequence
	23	909.2	39.2	2228	10	BC025940	BC025940 Mus muscu
	24	905.8	39.0	1836	6	CQ726650	CQ726650 Sequence
	25	789	34.0	1569	6	AX155216	AX155216 Sequence
	26	595.4	25.7	148069	2	AC025476	AC025476 Homo sapi
	27	595.2	25.7	770	6	AX136483	AX136483 Sequence
	28	595.2	25.7	770	6	BD123723	BD123723 Secretory
	29	593.4	25.6	1842	6	AX747286	AX747286 Sequence
	30	593.4	25.6	1842	9	AK091977	AK091977 Homo sapi
	31	592.2	25.5	102255	2	AC026735	AC026735 Homo sapi
	32	575.4	24.8	5002	6	CQ842882	CQ842882 Sequence
	33	575.4	24.8	5002	9	AK125803	AK125803 Homo sapi
	34	573.6	24.7	125145	2	AC022136	AC022136 Homo sapi
	35	573.4	24.7	3108	9	BC035012	BC035012 Homo sapi
С	36	538.8	23.2	148069	2	AC025476	AC025476 Homo sapi
С	37	538.4	23.2	594	6	AX136632	AX136632 Sequence
С	38	538.4	23.2	594	6	BD123872	BD123872 Secretory
	39	471.2	20.3	1885	5	BC076709	BC076709 Xenopus t
	40	468.6	20.2	1835	5	CR760227	CR760227 Xenopus t
	41	444.8	19.2	88948	2	AC008947	AC008947 Homo sapi
	42	434.2	18.7	1839	5	BC082844	BC082844 Xenopus 1
	43	433.6		105885	9	AC008860	AC008860 Homo sapi
С	44	320.6		156499	2	AC132893	AC132893 Mus muscu
	45	308.2		251769	2	AC117913	AC117913 Rattus no
	46	308		156499	2	AC132893	AC132893 Mus muscu
С	47	245.2		211178	10	AC139209	AC139209 Mus muscu
c	48	239.2		125145	2	AC022136	AC022136 Homo sapi
c	49	239.2		165304	9	AC112204	AC112204 Homo sapi
c	50	238.8	10.3	507	6	CQ337751	CQ337751 Sequence
c	51	220	9.5	277	6	CQ350335	CQ350335 Sequence
Ŭ	52	174	7.5	1879	5	AF129809	AF129809 Gallus ga
	53	167.2	7.2	3598	10	AK128994	AK128994 Mus muscu
	54	167.2	7.2	4185	10	RNU07683	U07683 Rattus norv
	55	165.6	7.1	2633	10	RATCERUDPG	
	56	163.6	7.1	2308	6	AX305987	AX305987 Sequence
	57	164	7.1	2308	10	MMGCGTEX	X92122 M.musculus
	58	164	7.1	3439	10	BC016885	BC016885 Mus muscu
	59	161.2	6.9	1593	4	AY135176	AY135176 Canis fam
	60	159.8	6.9	1609	4	AF129810	AF129810 Bos tauru
	00	100.0	0.9	1000	•		711127010 DOS CAUIU

	61	158	6.8	291	6	CQ740738	CQ740738 Sequence
	62	156.8	6.8	464	11	G60984	G60984 SHGC-84035
С	63	156.8	6.8	69315	5	AL935277	AL935277 Zebrafish
	64	156.4	6.7	1671	4	RABUGT2BB	L01082 Oryctolagus
	65	156.2	6.7	239559	2	AC095531	AC095531 Rattus no
	66	152.6	6.6	1662	9	AF294902	AF294902 Macaca mu
	67	152.6	6.6	1753	9	AF016310	AF016310 Macaca fa
	68	152	6.6	1768	9	AF112113	AF112113 Macaca fa
	69	151.8	6.5	1832	4	RABUGT2BA	L01081 Oryctolagus
	70	151	6.5	2560	10	BC027200	BC027200 Mus muscu
	71	148.4	6.4	2897	4	RABUGT2BC	L01083 Oryctolagus
	72	148.2	6.4	2108	9	AF112112	AF112112 Macaca fa
	73	148	6.4	1716	10	RNUDPGT	Y00156 Rat mRNA fo
	74	148	6.4	1819	10	RATGRT	M31109 Rat UDP-glu
	7 5	148	6.4	2547	10	AF175221	AF175221 Cavia por
С	76	147.2		169025	2	CR545478	CR545478 Danio rer
С	77	147.2		179798	5	BX284110	BX284110 Zebrafish
	78	146.6	6.3	1825	10	AB034987	AB034987 Cavia por
	79	145.2	6.3	1961	6	AX401727	AX401727 Sequence
	80	145.2	6.3	1961	10	RATUDPGTP	M13506 Rat liver U
	81	144.8	6.2	2520	10	AB034988	AB034988 Cavia por
	82	144.6	6.2	1662	9	AF294901	AF294901 Macaca mu
•	83	144.2	6.2	1584	6	AX497165	AX497165 Sequence
	84	144.2	6.2	2786	9	AK025587	AK025587 Homo sapi
	85	144.2	6.2	3006	6	AX497163	AX497163 Sequence
	86	143.2	6.2	1636	6	AX327326	AX327326 Sequence
	87	143.2	6.2	1647	9	AY542891	AY542891 Homo sapi
	88	143.2	6.2	2759	6	AX395164	AX395164 Sequence
	89	143.2	6.2	2966	6	AR447660	AR447660 Sequence
	90	143.2	6.2	2974	6	AX376454	AX376454 Sequence
	91	143.2	6.2	2974	9	AY358727	AY358727 Homo sapi
	92 93	143	6.2	2648	9	MFU91582	U91582 Macaca fasc
		142	6.1 6.1	1858	10	RATUDPA	M33746 Rat UDP glu
	94 95	141.8 141.8	6.1	336	6	AX307956	AX307956 Sequence
	96	141.8	6.1	1915 1947	9 10	AF401657	AF401657 Macaca fa U27518 Rattus norv
	97	141.0	6.1	1648	10	RNU27518 BC028262	BC028262 Mus muscu
	98	140.2	6.0	2595	10	BC058786	BC058786 Mus muscu
	99	140.2	6.0	2634	6	AX827435	AX827435 Sequence
	100	140	6.0	2634		RATUDPGTR	J02589 Rattus norv
	101	139.8	6.0	1584	10	AF184901	AF184901 Mus muscu
	102	139.8	6.0	1639	6	AX548042	AX548042 Sequence
	103	139.8	6.0	2585	10	BC048926	BC048926 Mus muscu
	104	139.8		125523	5	BX248385	BX248385 Zebrafish
	105	139.6	6.0	1896	10	BC078782	BC078782 Rattus no
	106	139.4	6.0	1858	10	MMUDPGT	X06358 Mouse mRNA
	107	139.4	6.0		10	BC019487	BC019487 Mus muscu
	108	139.2	6.0	1855	6	CQ812293	CQ812293 Sequence
	109	139.2	6.0	1855	6	CQ870648	CQ870648 Sequence
	110	139.2	6.0	1855	6	AX336329	AX336329 Sequence
	111	139.2	6.0	1855	6	AX336696	AX336696 Sequence
;	112	139.2	6.0	1855	6	AX409473	AX409473 Sequence
	113	139.2	6.0	1855	9	HUMUDPGTA	J05428 Human 3,4-c
:	114	137.8	5.9	1831.	10	RRUGTGENE	X57565 Rattus norv
	115	137.8	5.9	1891	10	BC057169	
	116	137.8	5.9	1895	10	BC069923	BC069923 Mus muscu
:	117	137.8	5.9	1903	10	BC015272	BC015272 Mus muscu

	118	137	5.9	2125	5	BC078212	BC078212 Danio rer
	119	136.8	5.9	1846	10	RNUDPGTR	X03478 Rat liver m
	120	136.4	5.9	1692	9	BC075069	BC075069 Homo sapi
	121	136.4	5.9	1844	10	RNU06273	U06273 Rattus norv
	122		5.9		6		
		136.4		2107		AR168316	AR168316 Sequence
	123	136.4	5.9	2107	9	HSU59209	U59209 Homo sapien
	124	136.4	5.9	2172	6	CQ850790	CQ850790 Sequence
	125	136.4	5.9	2172	9	AK127970	AK127970 Homo sapi
	126	136.4	5.9	2448	6	AX335823	AX335823 Sequence
	127	136.4	5.9	2448	6	AX770547	AX770547 Sequence
	128	136.4	5.9	2448	9	HSU30930	U30930 Human UDP-G
	129	136	5.9	1766	9	BC030974	BC030974 Homo sapi
	130	136	5.9	1854	6	BD229166	BD229166 Genotype
	131	136	5.9	1854	6	AR349418	AR349418 Sequence
	132	133.8	5.8	1650	6	BD260955	BD260955 Carbohydr
	133	133.8	5.8	1650	6	AX040087	AX040087 Sequence
	134	133.8	5.8	1894	9	HSU62899	U62899 Human ceram
	135	133.6	5.8	1976	5	BX936208	BX936208 Gallus ga
	136	133.4	5.8	1760	6	CQ727328	CQ727328 Sequence
	137	133.4	5.8	1766	9	HSA6054	AJ006054 Homo sapi
	138	132	5.7	1614	6	AX958396	-
							AX958396 Sequence
	139	131.8	5.7	1851	9	AF177272	AF177272 Homo sapi
	140	131.8	5.7	2093	5	BC076044	BC076044 Danio rer
	141	131.6	5.7	1846	10	RNU06274	U06274 Rattus norv
	142	131.6	5.7	2079	9	HSAJ5162	AJ005162 Homo sapi
	143	131.6	5.7	2092	6	BD229135	BD229135 Genotype
	144	131.6	5.7	2092	6	AR349387	AR349387 Sequence
	145	131.6	5.7	2129	9	BC026264	BC026264 Homo sapi
	146	130.6	5.6	1649	9	BC069441	BC069441 Homo sapi
	147	130.6	5.6	2818	4	OCU72742	U72742 Oryctolagus
	148	130.0	5.6	2010	9	AF064200	
							AF064200 Homo sapi
	149	130	5.6	2123	6	AX410640	AX410640 Sequence
	150	130	5.6	2123	9	HSU06641	U06641 Human UDP g
	151	129	5.6	1722	9	AF016492	AF016492 Homo sapi
	152	129	5.6	2799	6	AX411112	AX411112 Sequence
	153	129	5.6	2799	9	HSUGT2BIO	X63359 H.sapiens U
	154	128.6	5.5	1500	9	AF177274	AF177274 Homo sapi
	155	128.4	5.5	1976	6	BD229238	BD229238 Genotype
	156	128.4	5.5	1976	6	AR349490	AR349490 Sequence
	157	128.4	5.5	2075	9	AF072223	AF072223 Macaca fa
	158	128.4	5.5	2090	6	AX410646	
	159						AX410646 Sequence
		128.4	5.5	2090	9	HSU08854	U08854 Human UDP g
	160	128.4	5.5	2091	9	AF081793	AF081793 Homo sapi
	161	128.4	5.5	2092	9	AF548389	AF548389 Homo sapi
	162	128.4	5.5	2114	9	AF180322	AF180322 Homo sapi
	163	12,8,2	5.5	1822	5	BC075289	BC075289 Xenopus t
	164	128.2	5.5	3062	10	BC028826	BC028826 Mus muscu
	165	127.6	5.5	1413	6	AR208679	AR208679 Sequence
•	166	127.6	5.5	1413	6	AR490895	AR490895 Sequence
	167	125.2	5.4	2093	6	AX411198	AX411198 Sequence
							-
	168	125.2	5.4	2093	9	HSUDPGT .	Y00317 Human mRNA
	169	124.8	5.4	2816	4	AF039138	AF039138 Felis cat
	170	124.8	5.4	2821	4	AF039137	AF039137 Felis cat
	171	123.8	5.3	1895	5	BC075892	BC075892 Danio rer
	172	122.4	5.3	2103	10	BC025795	BC025795 Mus muscu
	173	121.6	5.2	1602	9	AF360121	AF360121 Macaca mu
	174	121.6	5.2	2349	4	AB010872	AB010872 Felis cat
		-					

175	120.8	5.2 1590	4	AF011902	AF011902 Oryctolag
176	120.6	5.2 1224	6	AX958404	AX958404 Sequence
177	120	5.2 1647	9	AF104339	AF104339 Macaca fa
178	119.6	5.2 1587	4	CFA290948	AJ290948 Canis fam
179	119.6	5.2 2342	9	AY435136	AY435136 Homo sapi
180	119.6	5.2 2351	6	CQ720471	CQ720471 Sequence
181	119.6	5.2 2351	6	AX706961	AX706961 Sequence
182	119.6	5.2 2351	6	AX707891	AX707891 Sequence
183	119.6	5.2 2351	9	HUMHUGBR1	M57899 Human bilir
184	119.2	5.1 1621	9	AF104338	AF104338 Macaca fa
185	119	5.1 1961	5	BC055635	BC055635 Danio rer
186	118.8	5.1 2396	9	AF104336	AF104336 Macaca fa
187	117.6	5.1 2339	9	AY435141	AY435141 Homo sapi
188	117.6	5.1 2440	9	AF104337	AF104337 Macaca fa
189	116.8	5.0 1602	9	AY029169	AY029169 Macaca mu
190	116.2	5.0 2196	10		AY227201 Mus muscu
191	116	5.0 2388	9	BC019861	BC019861 Homo sapi
192	115.8	5.0 2422	6	AX336711	AX336711 Sequence
193	115.8	5.0 2422	6	AX409459	AX409459 Sequence
194	115.8	5.0 2422	9	HUMUGT1FA	J04093 Homo sapien
195	114.6	4.9 2216	10		AY435129 Rattus no
196	114.4	4.9 2345	9	AY435138	AY435125 Raccus No
197	114.4	4.9 2345	9	AY435140	777425140 77
198	114.2	4.9 2333	9	AY435140	AY435140 Homo sapi AY435142 Homo sapi
199	113.2	4.9 2392	9	S55985	S55985 Homo sapien
200	112.8	4.9 2345	9	AY435139	AY435139 Homo sapi
201	112.8	4.9 2368	9	HUMHUGBR2	M57951 Human bilir
202 .		4.9 1593	9	HSU89508	U89508 Human UDP-g
202	112.6	4.9 2003	9	AK025403	AK025403 Homo sapi
203	112.6	4.9 2333	9	AY435137	AX423403 Homo sapi
205	112.6	4.9 2390	9	BC069210	BC069210 Homo sapi
206	112.6	4.9 2423	9	BC020971	BC020971 Homo sapi
207	111.8	4.8 1590	4	AB008677	AB008677 Bos tauru
208	111.8	4.8 2219	10		AY435131 Rattus no
209	111.4	4.8 2320	6	AX286762	AX286762 Sequence
210	111.4	4.8 2320	6	AX286764	AX286764 Sequence
211	111.4	4.8 2320	6	AX356964	AX356964 Sequence
212	111.4	4.8 2320	9	AF056188	AF056188 Homo sapi
213	111.4	4.8 2333	9	AY435144	AY435144 Homo sapi
214	111.4	4.8 2405	9	BC058844	BC058844 Homo sapi
215	111.4	4.8 2585	6	CQ796153	CQ796153 Sequence
216	111.4	4.8 2585	6	CQ796154	CQ796154 Sequence
217	111.4	4.8 2585	6	CQ796155	CQ796155 Sequence
218	111	4.8 1593	9	AF030310	AF030310 Homo sapi
219	111	4.8 1593	9	HSU89507	U89507 Human UDP-g
220	111	4.8 2333	9	AY435143	AY435143 Homosapi
221	111	4.8 2363	9	AF462267	AF462267 Homo sapi
222	111	4.8 2394	9	AF462268	AF462268 Homo sapi
223	109.8	4.7 2216	10		-
223	109.8	4.7 2216	10		AY435135 Rattus no AF461735 Rattus no
224	109.6	4.7 2241	5	PPL249081	AF461735 Rattus no AJ249081 Pleuronec
225	109.6	4.7 1033	3 4	AB018477	
227			10		, AB018477 Ovis arie
227	109.6 109.2	4.7 211178 4.7 241472	5		AC139209 Mus muscu
c 229		4.7 241472	2	BX005027	BX005027 Zebrafish
c 230	108.8		2	AC127462	AC127462 Danio rer
231	108.8 108.4	4.7 247221 4.7 2284	10	BX470211 AF461736	BX470211 Danio rer
231	100.4	7.1 2204	10	WEART 120	AF461736 Rattus no

232	108.2	4.7 2194	10 MUSUGTBR	L02333 Murine bili
233	108.2	4.7 2215	10 S64760	S64760 UGTBr1=UDP-
234	108.2	4.7 2224	10 AY227194	AY227194 Mus muscu
235	108	4.7 2190	10 AY227200	AY227200 Mus muscu
236	108	4.7 2203	10 BC019434	BC019434 Mus muscu
237	108	4.7 2215	10 AK128918	AK128918 Mus muscu
238	106.8	4.6 2231	10 AY435128	AY435128 Rattus no
239	106.8	4.6 2239		
				U20551 Rattus norv
240	106.6	4.6 2219	10 AY435134	AY435134 Rattus no
241	106.6	4.6 2225	10 AY435130	AY435130 Rattus no
242	106.6	4.6 2282	10 AF461738	AF461738 Rattus no
243	106.6	4.6 2285	10 BC078732	BC078732 Rattus no
244	105.4	4.5 2194	10 AB094481	AB094481 Mus muscu
245	105.4	4.5 2203	10 AY227196	AY227196 Mus muscu
246	105.2	4.5 1968	5 PPUGTMRN	X74116 P.platessa
247	105	4.5 1765	10 RATUDPGTA	M34007 Rat bilirub
248	104.8	4.5 2155	10 MUSUGTP	L27122 Mus musculu
249	104.8	4.5 2236	5 AB120133	AB120133 Pleuronec
250	104	4.5 151144	5 BX323575	BX323575 Zebrafish
251	103.8	4.5 2219	10 AY435132	AY435132 Rattus no
252	103.8	4.5 2297	10 AF461734	AF461734 Rattus no
253	103.4	4.5 2037	4 OCU09101	U09101 Oryctolagus
254	103.2	4.4 2193	10 AY227199	AY227199 Mus muscu
255	101.6	4.4 1584	6 CQ586740	CQ586740 Sequence
256	101.6	4.4 1602	10 D87866	
257	101.6	4.4 1619	3 AY070934	D87866 Mus musculu
258	101.6			AY070934 Drosophil
				AY227195 Mus muscu
c 259	101.6	4.4 3650	6 CQ586739	CQ586739 Sequence
c 260	101.6	4.4 164386	3 AC006491	AC006491 Drosophil
c 261	101.6	4.4 210298	3 AE003690	AE003690 Drosophil
262	100.8	4.3 2332	4 AB018478	AB018478 Ovis arie
263	100	4.3 1634	10 MMU09930	U09930 Mus musculu
c 264	100	4.3 24145	2 AC014455	AC014455 Drosophil
265	98.8	4.3 1212	6 CQ597654	CQ597654 Sequence
266	98.8	4.3 1704	6 CQ600372	CQ600372 Sequence
267	98.8	4.3 1980	3 BT006007	BT006007 Drosophil
268	98.8	4.3 1987	3 AY060891	AY060891 Drosophil
c 269	98.8	4.3 3212	6 CQ597653	CQ597653 Sequence
270	98.8	4.3 4357	6 CQ600371	CQ600371 Sequence
271	98.8	4.3 24145	2 AC014455	AC014455 Drosophil
272	98.8	4.3 164386	3 AC006491	AC006491 Drosophil
273	98.8	4.3 210298	3 AE003690	AE003690 Drosophil
274	98.4	4.2 2290	10 BC026561	BC026561 Mus muscu
275	98.4	4.2 2303	10 BC069940	BC069940 Mus muscu
276	97.6	4.2 1458	6 CQ590931	CQ590931 Sequence
277	97.6	4.2 3458	6CQ590930	CQ590930 Sequence
278	97.6	4.2 37688	2 AL513222	AL513222 Drosophil
279	97.6	4.2 37688	3 DMCEG0003	AL031863 Drosophil
280	97.6	4.2 95850	2 AC020063	_
				AC020063 Drosophil
281	97.6	4.2 154985	3 AC004641	AC004641 Drosophil
c 282	97.6	4.2 160338	3 AC099021	AC099021 Drosophil
c 283	97.6	4.2 272948	3 AE003805	AE003805 Drosophil
284	97	4.2 1593	10 D83796	D83796 Rat UGT1 mR
285	97	4.2 2216	10 AY435133	AY435133 Rattus no
286	97	4.2 2343	10 AF461737	AF461737 Rattus no
287	96.8	4.2 1596	10 D87867	D87867 Mus musculu
288	96.8	4.2 2265	10 AY227197	AY227197 Mus muscu

289	96.8	4.2 2300	10 MMU16818	U16818 Mus musculu
290	96.8	4.2 120848	2 AC007801	AC007801 Drosophil
291	95.6	4.1 735	6 AR252918	AR252918 Sequence
292	95.4	4.1 1927	10 RATUDPGT	J02612 Rat UDP-glu
293	95.2	4.1 2248	10 AY227198	AY227198 Mus muscu
c 294	94.6	4.1 168062	2 AC012857	AC012857 Drosophil
295	94.6	4.1 172479	3 AC006590	AC006590 Drosophil
296	94.6	4.1 260027	3 AE003659	AE003659 Drosophil
297	94	4.1 2055	4 OCU09030	. U09030 Oryctolagus
298	93.4	4.0 1560	6 CQ586749	CQ586749 Sequence
c 299	93.4	4.0 3828	6 CQ586748	CQ586748 Sequence
300	93	4.0 1652	6 CQ580647	CQ580647 Sequence
301	93	4.0 1766	3 AY070917	AY070917 Drosophil
c 302	93	4.0 3991	6 CQ580646	CQ580646 Sequence
c 303	93	4.0 14112	6 CQ592361	CQ592361 Sequence
c 304	93	4.0 19914	2 AC018009	AC018009 Drosophil
305	93	4.0 177339	3 AC008231	AC008231 Drosophil
c 306	93	4.0 305150	3 AE003453	AE003453 Drosophil
307	92.8	4.0 662	6 AX525627	AX525627 Sequence
308	91.8	4.0 642	6 AX526169	AX526169 Sequence
309	91.6	3.9 662	6 AX525915	AX525915 Sequence
310 311	91.2 91	3.9 1662	9 BC053576	BC053576 Homo sapi
312	91	3.9 1648 3.9 1692	6 CQ609717 3 AY118747	CQ609717 Sequence
313	88.8	3.8 1673	3 AY071256	AY118747 Drosophil AY071256 Drosophil
c 314	88.8	3.8 5278	6 CQ611354	CQ611354 Sequence
c 314	88.8	3.8 77707	2 AC014787	AC014787 Drosophil
c 316	88.8	3.8 177480	3 AC008287	AC008287 Drosophil
c 317	88.8	3.8 225974	3 AE003778	AE003778 Drosophil
318	88.2			J05132 Rat 3-methy
		3.0 /404	TO RATIO	
		3.8 2484 3.8 1595	10 RATUGT 6 CO586224	-
319	87.4	3.8 1595	6 CQ586224	CQ586224 Sequence
319 320	87.4 86.2	3.8 1595 3.7 874	6 CQ586224 6 AX421573	CQ586224 Sequence AX421573 Sequence
319 320 321	87.4 86.2 85.2	3.8 1595 3.7 874 3.7 3716	6 CQ586224 6 AX421573 6 CQ614606	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence
319 320 321 322	87.4 86.2	3.8 1595 3.7 874 3.7 3716 3.6 1572	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence
319 320 321	87.4 86.2 85.2 82.6 82.6	3.8 1595 3.7 874 3.7 3716 3.6 1572	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence
319 320 321 322 323	87.4 86.2 85.2 82.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil
319 320 321 322 323 324	87.4 86.2 85.2 82.6 82.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence
319 320 321 322 323 324 c 325	87.4 86.2 85.2 82.6 82.6 82.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil
319 320 321 322 323 324 c 325 326	87.4 86.2 85.2 82.6 82.6 82.6 82.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil
319 320 321 322 323 324 c 325 326 327	87.4 86.2 85.2 82.6 82.6 82.6 82.6 82.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330	87.4 86.2 85.2 82.6 82.6 82.6 82.6 82.6 80.8	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331	87.4 86.2 85.2 82.6 82.6 82.6 82.6 82.6 80.8 80.8	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332	87.4 86.2 85.2 82.6 82.6 82.6 82.6 82.6 80.8 80.8	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333	87.4 86.2 85.2 82.6 82.6 82.6 82.6 82.6 80.8 80.8 80.8	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613313	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613313 3 AC018479	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence AC018479 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8 80.6 80.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 174677 3.5 193248	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613313 3 AC018479 3 AC007752	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8 80.6 80.6 80.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677 3.5 193248 3.5 221239	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613313 3 AC018479 3 AC007752 3 AE003697	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil AE003697 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8 80.6 80.6 80.6	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677 3.5 193248 3.5 221239 3.5 324288	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613314 7 CQ613313 7 AC018479 7 AC017336	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil AE003697 Drosophil AE003697 Drosophil
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8 80.6 80.6 80.6 80	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677 3.5 193248 3.5 221239 3.5 324288 3.4 170142	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613314 6 CQ613313 3 AC018479 3 AC01752 3 AE003697 2 AC017336 9 AP002383	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AC03734 Drosophil CQ613314 Sequence CQ613313 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil AE003697 Drosophil AC017336 Drosophil AC017336 Drosophil AP002383 Homo sapi
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338 339 340	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8 80.6 80.6 80.6 80	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 174677 3.5 193248 3.5 221239 3.5 324288 3.4 170142 3.4 174742	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613313 3 AC018479 3 AC01752 3 AE003697 2 AC017336 9 AP002383 2 AC016896	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil AE003734 Sequence CQ613314 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil AE003697 Drosophil AC017336 Drosophil AC017336 Drosophil AP002383 Homo sapi AC016896 Homo sapi
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338 339 340 341	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.8 80.6 80.6 80.6 80	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 174677 3.5 193248 3.5 221239 3.5 324288 3.4 170142 3.4 174742 3.4 195466	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613314 6 CQ613313 3 AC018479 3 AC007752 3 AE003697 2 AC017336 9 AP002383 2 AC016896 2 AC032024	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil AE003697 Drosophil AC017336 Drosophil AC017336 Drosophil AC017336 Drosophil AP002383 Homo sapi AC016896 Homo sapi
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338 339 340 341 342	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.6 80.6 80.6 80.6 80	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677 3.5 193248 3.5 221239 3.5 324288 3.4 170142 3.4 174742 3.4 195466 3.4 1413	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613314 6 CQ613314 7 AC018479 7 AC007752 7 AC017336 7 AP002383 7 AC016896 7 AC016896 7 AC032024 7 AC0611790	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence CQ613313 Sequence AC018479 Drosophil AE003697 Drosophil AE003697 Drosophil AC017336 Drosophil AP002383 Homo sapi AC016896 Homo sapi AC032024 Homo sapi CQ611790 Sequence
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338 339 340 341 342 343	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.6 80.6 80.6 80.6 80	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677 3.5 193248 3.5 221239 3.5 324288 3.4 170142 3.4 174742 3.4 195466 3.4 1413 3.4 2820	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613314 6 CQ613313 3 AC018479 3 AC007752 3 AE003697 2 AC017336 9 AP002383 2 AC016896 2 AC032024 6 CQ611790 6 CQ611355	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence CQ613313 Sequence AC018479 Drosophil AC007752 Drosophil AE003697 Drosophil AE003697 Drosophil AC017336 Drosophil AC016896 Homo sapi AC032024 Homo sapi CQ611790 Sequence CQ611355 Sequence
319 320 321 322 323 324 c 325 326 327 c 328 c 329 c 330 331 c 332 333 334 335 336 337 c 338 339 340 341 342	87.4 86.2 85.2 82.6 82.6 82.6 82.6 80.8 80.8 80.8 80.6 80.6 80.6 80.6 80	3.8 1595 3.7 874 3.7 3716 3.6 1572 3.6 3572 3.6 60144 3.6 91685 3.6 175413 3.6 262525 3.5 4016 3.5 163325 3.5 167475 3.5 220936 3.5 241480 3.5 1593 3.5 3659 3.5 174677 3.5 193248 3.5 221239 3.5 324288 3.4 170142 3.4 174742 3.4 195466 3.4 1413	6 CQ586224 6 AX421573 6 CQ614606 6 CQ612552 6 CQ612551 2 AC019798 2 AC005121 3 AC093097 3 AE003652 6 CQ586223 3 AC008309 3 AC016132 2 AC020256 3 AE003734 6 CQ613314 6 CQ613314 6 CQ613314 6 CQ613314 7 AC018479 7 AC007752 7 AC017336 7 AP002383 7 AC016896 7 AC016896 7 AC032024 7 AC0611790	CQ586224 Sequence AX421573 Sequence CQ614606 Sequence CQ612552 Sequence CQ612551 Sequence AC019798 Drosophil AC005121 Drosophil AC093097 Drosophil AE003652 Drosophil CQ586223 Sequence AC008309 Drosophil AC016132 Drosophil AC016132 Drosophil AC020256 Drosophil AE003734 Drosophil CQ613314 Sequence CQ613313 Sequence CQ613313 Sequence AC018479 Drosophil AE003697 Drosophil AE003697 Drosophil AC017336 Drosophil AP002383 Homo sapi AC016896 Homo sapi AC032024 Homo sapi CQ611790 Sequence

	346	78.8	3.4	1988	3	AY069392	3V060303 Dmass-h-11
							AY069392 Drosophil
	347	78.8	3.4	2437	3	AY071467	AY071467 Drosophil
	348	78.6	3.4	678	6	AX526170	AX526170 Sequence
	c 349	78.6	3.4	235952	2	AC110101	AC110101 Rattus no
	c 350	78.6	3.4	256974	2	AC095475	AC095475 Rattus no
	c 351	78	3.4	195466	2	AC032024	AC032024 Homo sapi
	352	77.8	3.4	5205	6	CQ609716	CQ609716 Sequence
	c 353	77.8		128469	2	AC020029	AC020029 Drosophil
	354	77.8		172061	3	AC009203	
	355	77.8		232737			AC009203 Drosophil
					3	AE003660	AE003660 Drosophil
	356	77.2	3.3	189	6	CQ740741	CQ740741 Sequence
	357	77 ·	3.3	1352	10	MMGCGTEX1	X92123 M.musculus
	358	77	3.3	2023	10	MMCGT2	U48892 Mus musculu
	359	77		202752	2	AC111106	AC111106 Mus muscu
	360	76.6	3.3	696	6	CQ734321	CQ734321 Sequence
	361	76.4	3.3	169056	2	CR381587	CR381587 Danio rer
	362	74.6	3.2	603	6	AX401758	AX401758 Sequence
	363	74.6	3.2	603	10	S56937	S56937 3-methylcho
	364	74	3.2	582	6	CQ458675	CQ458675 Sequence
	365	73.8	3.2	4389	2	AC014898	AC014898 Drosophil
	c 366	73.8		171334	3	AC007477	AC007477 Drosophil
					_		-
	c 367	73.8		196516	3	AC013450	AC013450 Drosophil
	368	73.8		280240	3	AE003786	AE003786 Drosophil
	c 369	73.2		237028	2	BX000470	BX000470 Danio rer
	370	72.2	3.1	1443	9	HSCGT01	U31353 Human UDP-G
	371	72.2	3.1	149028	9	AC122938	AC122938 Homo sapi
	372	72 ·	3.1	293	6	CQ427045	CQ427045 Sequence
	373	72	3.1	439	6	CQ417459	CQ417459 Sequence
	374	71.2	3.1	1681	3	AF324465	AF324465 Bombyx mo
	375	70.8	3.1	601	6	AX401757	AX401757 Sequence
	376	70.8	3.1	601	10	S56936	S56936 bilirubin-s
	377	70.2		246176	2	AC114845	
	378	69.4	3.0	1680	6		AC114845 Rattus no
						CQ586665	CQ586665 Sequence
	379	69.4	3.0	1781	3	AY051661	AY051661 Drosophil
	380	69.4	3.0	1782	6	CQ586689	CQ586689 Sequence
	c 381	69.4	3.0	3741	6	CQ586664	CQ586664 Sequence
	c 382	69.4	3.0	3849	6	CQ586688	CQ586688 Sequence
,	c 383	69.4	3.0	30221	2	AC014454	AC014454 Drosophil
	c 384	69.4	3.0	165136	3	AC007645	AC007645 Drosophil
	385	69.2	3.0	1491	6	CQ581757	CQ581757 Sequence
	386	69.2	3.0	3784	6	CQ581756	CQ581756 Sequence
	c 387	68.6	3.0	3595	6	CQ613379	CQ613379 Sequence
	c 388	68.6		174677	3	AC018479	AC018479 Drosophil
	c 389	68.6		193248	3	AC007752	AC007752 Drosophil
	c 390	68.6					<u>-</u>
				221239	3	AE003697	AE003697 Drosophil
	c 391	68.6			2	AC131807	AC131807 Rattus no
•	392	68.6		324288	2	AC017336	AC017336 Drosophil
	393	68.2	2.9	769	6	AR497103	AR497103 Sequence
	394	68.2	2.9	769	6	AR512385	AR512385 Sequence
	395	68	2.9	1539	6	CQ613380	CQ613380 Sequence
	396	67.8	2.9	2972	14	AF373031	AF373031 Epinotia
	c 397	67.4		224097	2 ·	AC117901	AC117901 Rattus no
	c 398	67.4		251769	2	AC117913	AC117913 Rattus no
	399	66.6	2.9	1793	3	AF116555	AF116555 Drosophil
	400	66.4	2.9	11728	10	RATUDPGV	M74439 Rattus norv
	c 401	66.4		138578	2	AC141352	AC141352 Rattus no
·	402			146839	2		
	402	66.4	2.9	140033	2	AC142006	AC142006 Rattus no

403	66.2	2.9 193	1 6	CQ609720	CQ609720	Sequence
404	66.2	2.9 195	2 3	AY051629		Drosophil
405	66	2.8 118		CQ597045		Sequence
c 406	66	2.8 318		CQ597044		Sequence
407	66	2.8 4200		AC018022		Drosophil
c 408	66	2.8 16292		AC008236		Drosophil
c 409	66	2.8 21025		AE003743		
410	65.8	2.8 167				Drosophil
				CQ598692		Sequence
411	65.8	2.8 194		AY070939		Drosophil
412	65.8	2.8 375		CQ598691		Sequence
c 413	65.8	2.8 17036		AC009250		Drosophil
414	65.6	2.8 17981		AC139345		Papio anu
415	65.4	2.8 148		CQ597786		Sequence
416	65.4	2.8 158		CQ609723		Sequence
417	65.4	2.8 192	0 3	AY069532	AY069532	Drosophil
418	65.4	2.8 197	7 6	CQ729719	CQ729719	Sequence
419	65.4	2.8 361	3 6	CQ594473	CQ594473	Sequence
420	65.4	2.8 408	2 6	CQ597785		Sequence
421	65.4	2.8 408	2 6	CQ609722		Sequence
422	65.4	2.8 16777	7 3	AC009204		Drosophil
423	64.8	2.8 221				Rat UDP glu
424	64.8	2.8 15043				l Rattus no
c 425	64.8	2.8 15043				Rattus no
c 426	64.8	2.8 24617		AC114845		Rattus no
427	64.8	2.8 24672		AC131807		Rattus no
c 428	64.6	2.8 136		AR508827		Sequence
429	64.6	2.8 162		CQ593769		Sequence
c 430	64.6	2.8 368		CQ593768		
431	63.8					Sequence
431	63.8			CQ071564		Sequence
		2.8 50		CQ102164		Sequence
433	63.8	2.8 50		CQ141114		Sequence
434	63.8	2.8 50		CQ176767		Sequence
435	63.8	2.8 50		CQ224383		Sequence
436	63.8	2.8 50		CQ262401		Sequence
437	63.8	2.8 50		CQ336589		Sequence
438	63.8	2.8 68		BD229133		Genotype
439	63.8	2.8 68		AR349385		Sequence
440	63.8	2.8 152		CQ592386	CQ592386	Sequence
441	63.8	2.8 357		CQ592385	CQ592385	Sequence
c 442	63.8	2.8 2731		AF135416	AF135416	Homo sapi
c 443	63.8	2.8 10334	3 9	AC108078	AC108078	Homo sapi
c 444	63.8	2.8 13823	2 2	AC012582	AC012582	Homo sapi
c 445	63.8	2.8 22607	7 2	AC013296	AC013296	Homo sapi
446	63.6	2.7 14529	9 5	BX005348	BX005348	Zebrafish
447	63.6	2.7 22923	7 5	BX323548		Zebrafish
448	63.6	2.7 23819	5 2	CR790368	CR790368	Danio rer
449	63.4	2.7 136		AY529122		Homo sapi
450	63.4	2.7 175		AY071432		Drosophil
451	63.4	2.7 2100		AX395166		Sequence
c 452	63.4	2.7 13296		AC017518		Drosophil
453	63.4	2.7 14630		CR388385		Homo sapi
454	63.4	2.7 17372		AC009351		Drosophil
455	63.4	2.7 21799		AC009331 AC021146		_
456	63.4					Homo sapi
457		2.7 28009		AE003613		Drosophil
	63.2	2.7 104		CQ733586		Sequence
458	62.6	2.7 52				Mus musculu
459	62.6	2.7 15622	5 2	AC115007	AC115007	Mus muscu
	•					

	460	62.6	2.7	205079	10	AC118544		AC118544 Mus muscu
	461	62.6		240490	2	AC100269		AC100269 Mus muscu
	462	62.4	2.7	391	6	BD237020		BD237020 Compounds
	463	62.4	2.7	391	6	AR225420		AR225420 Sequence
	464	62.4	2.7	391	6	AR562843		AR562843 Sequence
	465	62.4	2.7	391	6	AX321490		AX321490 Sequence
	466	62.2	2.7	1443	6	CQ595215		CQ595215 Sequence
	467	62.2	2.7	1591	6	BD229170		BD229170 Genotype
	468	62.2	2.7	1591	6	AR349422		AR349422 Sequence
	c 469	62.2	2.7	3495	6	CQ595214		CQ595214 Sequence
	c 470	62.2	2.7	34551	2	AC017171		AC017171 Drosophil
	c 471	62.2	2.7	78938	3	AC002503		AC002503 Drosophil
	472	62.2	2.7		9	AC107401		AC107401 Homo sapi
	473	62.2		156578	9	AC111000		AC111000 Homo sapi
	c 474	62.2		174735	3	AC006402		AC006402 Drosophil
	c 475	62.2		182901	3	AC093198		AC093198 Drosophil
	c 476	62.2		318278	3	AE003666		AE003666 Drosophil
	477	62 63	2.7	1543	9	AF177273		AF177273 Homo sapi
	478 479	62 62	2.7	2301 209071	10 3	RNU75903		U75903 Rattus norv
	480	61.8	2.7	1527	о 6	AC005285 CQ580845		AC005285 Drosophil CQ580845 Sequence
	481	61.8	2.7	1757	3	AY128460	•	AY128460 Drosophil
	c 482	61.8	2.7	4647	6	CQ580844		CQ580844 Sequence
	c 483	61.8	2.7	78277	2	AC020206		AC020206 Drosophil
	484	61.8	2.7	81677	3	AC004377		AC004377 Drosophil
	c 485	61.8		169534	3	AC008350	•	AC008350 Drosophil
	c 486	61.8		302225	3	AE003458		AE003458 Drosophil
	487	61.6	2.7	29546	3	AY246561		AY246561 Branchios
	c 488	61.4	2.6	3679	6	CQ593771		CQ593771 Sequence
	489	61	2.6	851	11	BV017252		BV017252 S212P6006
	490	60.8	2.6	1692	8	AK109806		AK109806 Oryza sat
	c 491	60.8		141545	8	OSJN00221		AL663019 Oryza sat
	c 492	60.6	2.6	43323	9	AC114797		AC114797 Homo sapi
	493	60.4	2.6	1500	6	CQ614607		CQ614607 Sequence
	494	60	2.6	220	6	CQ080780		CQ080780 Sequence
	495	60	2.6	220	6	CQ115243		CQ115243 Sequence
	496	60	2.6	220	6	CQ154074		CQ154074 Sequence
	497	60 60	2.6	220	6	CQ186655		CQ186655 Sequence
	498 499	60 60	2.6 2.6	220 220	6 6	CQ237309 CQ274933		CQ237309 Sequence
	500	60	2.6	220	6	CQ349280		CQ274933 Sequence CQ349280 Sequence
	501	60	2.6	402	10	MMGCGTEX4		X92126 M.musculus
	502	59.6	2.6	1668	6	CQ586722		CQ586722 Sequence
	503	59.6	2.6	1676	3	AY051442		AY051442 Drosophil
	c 504	59.6	2.6	3740	6	CQ586721		CQ586721 Sequence
ipmars.	c 505	59.6		110907	14		ۇ ئىدە ئاسى ئا	AY229987 Cryptophl
	506	59.4	2.6	1606	6	AX675577		AX675577 Sequence
	507	59.4	2.6	1606	6	AX921811		AX921811 Sequence
	508	59.4	2.6	176321	2	BX942829		BX942829 Danio rer
	509	59.4		186564	10	AC119816		AC119816 Mus muscu
	510	59.2	2.6	427	9	HSCGT04		U31861 Human UDP-g
	c 511	59	2.5	589	6	CQ225338		CQ225338 Sequence
•	c 512	59	2.5	589	6	CQ263337	•	CQ263337 Sequence
	513	59		103343	9	AC108078		AC108078 Homo sapi
	c 514	59		217991	9	AC021146	•	AC021146 Homo sapi
	515	58.6	2.5	1648	8	AK064151		AK064151 Oryza sat
	516	58.6	2.5	141040	.8	AP004382		AP004382 Oryza sat

							•
				•			
	517	58	2.5 609	10	RATUD2A07		M35083 Rat UDP glu
	518	.58	2.5 1704	3	AF116554		AF116554 Drosophil
	519	58	2.5 247575	2	AC125632	-	AC125632 Rattus no
	520	57.8	2.5 2108	14	l LOGVEGT		Y08294 Lacanobia o
	c 521	57.8	2.5 145253	10	AC138173		AC138173 Mus muscu
•	c 522	57.8	2.5 186564	10	AC119816		AC119816 Mus muscu
	c 523	57.4	2.5 831	6	AR524865		AR524865 Sequence
	524	57.4	2.5 2036	6	CQ581913		CQ581913 Sequence
	525	57.4	2.5 4386		CQ581912		CQ581912 Sequence
	c 526	57.4	2.5 63705		AF135419		AF135419 sHomo sap
	527	57.4	2.5 67568		AC020378		AC020378 Drosophil
	c 528	57.4	2.5 123406		AC120508		AC120508 Oryza sat
	529	57.4	2.5 148977		AC114786		AC114786 Homo sapi
	530	57.2	2.5 149712		AC140853		AC140853 Canis fam
	c 531	57.2	2.5 149712		AC140853		AC140853 Canis fam
	532	57.2	2.5 161844	2	AC147451		AC147451 Otolemur
	c 533	57.2	2.5 208667				AC101835 Mus muscu
	534	57	2.5 1665		AB009370		AB009370 Vigna mun
	535	56.8	2.4 1416		MZEIAGLU		L34847 Zea mays IA
	536	56.8	2.4 1731		AR260578		AR260578 Sequence
	537	56.8	2.4 161046				AF081810 Lymantria
	538	56.8	2.4 183755		AC146742		AC146742 Papio anu
	c 539	56.8	2.4 183807		AC091778		AC091778 Papio anu
	c 540 c 541	56.6 56.6	2.4 52742 2.4 96776		AC147071		AC147071 Homo sapi
	542	56.6	2.4 165501		AC134921 AC147569		AC134921 Homo sapi AC147569 Homo sapi
	c 543	56.6	2.4 183301		AC147055		AC147369 Homo sapi
	544	56.6	2.4 232016		AC147033 AC148029		AC147033 Homo sapi
	545	56.2	2.4 252010		AR509041		AR509041 Sequence
	546	56.2	2.4 983		AR284336		AR284336 Sequence
	547	56.2	2.4 4966		CQ609719		CQ609719 Sequence
	c 548	56.2	2.4 160256		CR753888		CR753888 Danio rer
	549	56.2	2.4 183498	5	BX072578		BX072578 Zebrafish
	c 550	56	2.4 183498		BX072578		BX072578 Zebrafish
	551	55.8	2.4 350		AX887421		AX887421 Sequence
	552	55.8	2.4 350		BD027031	•	BD027031 Sequence
	c 553	55.6	2.4 106525	9	AC093720		AC093720 Homo sapi
	554	55.6	2.4 147009	2	AC108490		AC108490 Homo sapi
	555	55.6	2.4 153296	9	AC147070		AC147070 Homo sapi
	556	55.6	2.4 155175	2	AC147064		AC147064 Homo sapi
	557	55.6	2.4 181117	9	AC019173		AC019173 Homo sapi
	c 558	55.4	2.4 590				BV100588 RPAMMSEQ0
	c 559 ·	55.2	2.4 203		CQ238174		CQ238174 Sequence
	c 560	55.2	2.4 203		CQ275780		CQ275780 Sequence
	561	55	2.4 1602		BD229242		BD229242 Genotype
	562	55	2.4 1602		AR349494	property faces (AR349494 Sequence
	563	55	2.4 106525		AC093720		AC093720 Homo sapi
	564	54.6	2.4 848		CQ722622		CQ722622 Sequence
	565	54.4	2.3 5122				AY250076 Spodopter
	566	54.4	2.3 6120		AF331855		AF331855 Zea mays
	567	54.2	2.3 1933		AK130038		AK130038 Homo sapi
	c 568 569	54.2 54	2.3 3642 2.3 245842		CQ611789		CQ611789 Sequence
	570	53.8	2.3 245842		AC106307 AC012582		AC106307 Rattus no
	c 571	53.8	2.3 138232		AC012582 AC093829		AC012582 Homo sapi AC093829 Homo sapi
	572	53.8	2.3 109403		AC134364		AC134364 Rattus no
	c 573	53.8	2.3 231284		AC095374		AC095374 Rattus no
	2 3 / 3	55.0	2.0 201201	ے	.10070374		ACCOUNT RACEUS IIO

574	53.6	2.3 1536	8	AB027454	AB027454 Petunia x
c 575	53.4	2.3 . 583	11	BV100584	BV100584 RPAMMSEQ0
c 576	53.4	2.3 583	11	BV163609	BV163609 RPAMMSEQ0
577	53.4	2.3 784	6	AX356966	AX356966 Sequence
578	53.4	2.3 784	9	HUMUGT02	M84123 Human UDP-g
579	53.4	2.3 1620	6	CQ593772	CQ593772 Sequence
580	53.4	2.3 16944	9	AY603772	AY603772 Homo sapi
c 581	53.4	2.3 23787	8	AP005917	AP005917 Oryza sat
c 582	53.4	2.3 68770	9	AC006985	AC006985 Homo sapi
c 583	53.4	2.3 176619	2	AC026497	AC026497 Homo sapi
584	53.4	2.3 198872	9	AF297093	AF297093 Homo sapi
585	53.2	2.3 1730	8	AB070746	AB070746 Vigna ang
586	53	2.3 1813	8	AY257207	AY257207 Ipomoea t
587	52.8	2.3 125020	9	AF429315	AF429315 Homo sapi
c 588	52.6	2.3 82746	1	AF453501	AF453501 Actinosyn
589	52.4	2.3 209586	2	AC148497	AC148497 Otolemur
590	52	2.2 707	6	CQ492835	CQ492835 Sequence
591	52	2.2 90972	8	AP006584	AP006584 Oryza sat
c 592	52	2.2 122193	2	AP006053	AP006053 Oryza sat
593	51.8	2.2 1584	8	AB103471	AB103471 Aralia co
c 594	51.6	2.2 576	11	BV163611	BV163611 RPAMMSEQ0
595	51.6	2.2 1594	8	AB191247	AB191247 Dianthus
596	51.6	2.2 105931	2	AC005427	AC005427 Drosophil
c 597	51.6	2.2 176321	2	BX942829	BX942829 Danio rer
598	51.4	2.2 1490	8	AY257208	AY257208 Ipomoea n
599	51.4	2.2 1786	8	AB038248	AB038248 Ipomoea b
c 600	51.4	2.2 94516	8	AP004526	AP004526 Lotus cor
601	51	2.2 1378	8	AB070743	AB070743 Vigna ang
c 602	51	2.2 1640	8	AK099344	AK099344 Oryza sat
603	51	2.2 1686	8	AK106005	AK106005 Oryza sat
604	51	2.2 1709	8	AK105785	AK105785 Oryza sat
c 605	51	2.2 1747	8	AK064324	AK064324 Oryza sat
c 606	51	2.2 1790	8	AK101518	AK101518 Oryza sat
607	51	2.2 1862	8	AK100744	AK100744 Oryza sat
608	51	2.2 124591	8	AC118347	AC118347 Oryza sat
c 609	51	2.2 146154	2	AP004400	AP004400 Oryza sat
c 610	51	2.2 156069	8	AC136842	AC136842 Oryza sat
611	51	2.2 183095	8	AP005186	AP005186 Oryza sat
612	50.8	2.2 1545	8	AB191245	AB191245 Dianthus
c 613	50.8	2.2 8596	14		AF527603 Spodopter
c 614	50.8	2.2 38383	3	CEF35H8	Z36752 Caenorhabdi
c 615	50.8	2.2 146839	2	AC142006	AC142006 Rattus no
c 616	50.6	2.2 1105	8	AK060146	AK060146 Oryza sat
c 617	50.6	2.2 124366	8	AC131374	AC131374 Oryza sat
c 618	50.6	2.2 300029	8	AE017077	AE017077 Oryza sat
619	50.4	2.2 1391	6	CQ774188	CQ77.4.188 Sequence
620	50.4	2.2 1494	6	AX652909	AX652909 Sequence
621	50.4	2.2 1733	8	AK106250	AK106250 Oryza sat
622	50.4	2.2 1795	8	AK066593	AK066593 Oryza sat
623	50.4	2.2 1999	6	AX756082	AX756082 Sequence
624	50.4	2.2 1999	8	AK066469	AK066469 Oryza sat
625	50.4	2.2 131616	6	CQ774045	CQ774045 Sequence
c 626	50.4	2.2 131680	14		AY522332 Agrotis s
c 627	50.4	2.2 147472	8	AP003974	AP003974 Oryza sat
c 628	50.4	2.2 147739	8	AP005915	AP005915 Oryza sat
629	50.2	2.2 1577	8	AK107669	AK107669 Oryza sat
630	50.2	2.2 1662	8	AB070754	AB070754 Vigna ang

						•
621	50.2	2.2 1843	۰	AV065110	•	NV065112 0
631 632	50.2		8	AK065112		AK065112 Oryza sat
		2.2 58309	8	AP006173		AP006173 Oryza sat
c 633	50.2	2.2 185449	8	AC123526		AC123526 Oryza sat
634	49.8	2.1 1086	8	AY257215		AY257215 Ipomoea a
635	49.8	2.1 6322	8	AF331854		AF331854 Zea mays
c 636	49.8	2.1 140023	4	AC093453		AC093453 Canis fam
637	49.6	2.1 563	6	CQ505416		CQ505416 Sequence
638	49.4	2.1 1578	6	E12713		E12713 Solanum mel
639	49.4	2.1 1578	8	SMGT		X77369 S.melongena
c 640	49.4	2.1 2850	14			X99073 Spodoptera
641	49.2	2.1 656	6	AX201693		AX201693 Sequence
642	49.2	2.1 657	6	AR307005		AR307005 Sequence
643	49.2	2.1 657	6	AX154755		AX154755 Sequence
644	49.2	2.1 1109	3	AY069046		AY069046 Drosophil
645	49.2	2.1 1530	6	CQ612555		CQ612555 Sequence
646	49.2	2.1 1752	6	CQ600621		CQ600621 Sequence
647	49.2	2.1 3679	6	CQ612554		CQ612554 Sequence
c 648	49.2	2.1 5189	14	SLAJ3131		AJ003131 Spodopter
649	49	2.1 501	6	CQ475453		CQ475453 Sequence
650	49	2.1 18314	3	AF125959		AF125959 Caenorhab
651	49	2.1 158826	8	AP003607		AP003607 Oryza sat
c 652	49	2.1 175667	8	AC119147		AC119147 Genomic s
c 653	49	2.1 189057	2	BX957337	•	BX957337 Danio rer
654	48.8	2.1 1141	6	AX083744		AX083744 Sequence
655	48.8	2.1 1496	8	AY262037		AY262037 Crocus sa
656	48.8	2.1 1689	14			U04321 Lymantria d
c 657	48.6	2.1 666	6	AX660993	•	AX660993 Sequence
658	48.6	2.1 1001	6	AR284354		AR284354 Sequence
659	48.6	2.1 1501	8	AK059016		AK059016 Oryza sat
660	48.6	2.1 1684	8	AB070755		AB070755 Vigna ang
c 661	48.6	2.1 2000	6	AX655393		AX655393 Sequence
662	48.6	2.1 2031	8	AK067710		AK067710 Oryza sat
663	48.4	2.1 789	6	AX660822		AX660822 Sequence
664	48.4	2.1 1437	6	AX505505		AX505505 Sequence
665	48.4	2.1 1455	6	AX654659		AX654659 Sequence
666	48.4	2.1 1464	8	BT015770		BT015770 Arabidops
667 668	48.4 48.4	2.1 1724 2.1 1727	8	AY049277		AY049277 Arabidops
	48.4		8	AK071819		AK071819 Oryza sat
669 670		2.1 1781	14			U41999 Mamestra br
c 671	48.4 48.4	2.1 2396 2.1 84196	6	E25788		E25788 Ecdysteroid
c 672	48.4		8	ATT3A5		AL132979 Arabidops
c 673	48.4	2.1 89469	8	ATF18B3		AL049862 Arabidops
674		2.1 110086	8	AP003373		AP003373 Oryza sat
675	48.4	2.1 153656	14			AF539999 Mamestra
676	48.4	2.1 155060	14			U59461 Mamestra co
677	48.2 48.2	2.1	8	AY257209 AY257206		AY257209 Ipomoeap
c 678	48.2	2.1 206924	8 10			AY257206 Ipomoea h
679	40.2	2.1 200924	8	AC087780 AY087431		AC087780 Mus muscu
680	48	2.1 1889	5	PPL249082		AY087431 Arabidops
c 681	48	2.1 130037	8			AD004193 Oruga sat
c 682.			14	AP004192		AP004192 Oryza sat
c 683	48 48	2.1 139342 2.1 160215	10			AF325155 Spodopter
684	48 48	2.1 160215	8			AC092531 Rattus no
685				AP005515		AP005515 Oryza sat
c 686	48	2.1 185139 2.1 251485	8 2	AP004348 AC107287		AP004348 Oryza sat AC107287 Rattus no
c 687	48	2.1 251485	10			
C 001	48	2.1 230334	ΤÜ	AC120322		AC120922 Rattus no

688	47.8	2.1 1138	6	AX432482	AX432482 Sequence
689	47.8	2.1 1785	8	AK105261	AK105261 Oryza sat
690	47.8	2.1 1896	8	AK101659	AK101659 Oryza sat
691	47.8	2.1 1896	8	AK103824	AK103824 Oryza sat
692	47.8	2.1 110000	1	AE017333_08	Continuation (9 of
693	47.8	2.1 110000	1	CP000002_08	Continuation (9 of
694	47.8	2.1 146154	2	AP004400	AP004400 Oryza sat
c 695	47.8	2.1 183095	8	AP005186	AP005186 Oryza sat
696	47.6	2.1 1925	14	SLNPVEGT	X84701 Spodoptera
697	47.4	2.0 1410	6	AX653349	AX653349 Sequence
698	47.4	2.0 1729	8	AK060965	AK060965 Oryza sat
699	47.4	2.0 135323	8	CNS08CBQ	AL928753 Oryza sat
700	47.2	2.0 1609	8	AB070757	AB070757 Vigna ang
c 701	47	2.0 137678	8	AP005183	` AP005183 Oryza sat
c 702	47	2.0 138653	8	AP005178	AP005178 Oryza sat
703	46.8	2.0 998	8	AJ619862	AJ619862 Arabidops
704	46.8	2.0 998	8	AJ619867	AJ619867 Arabidops
705	46.8	2.0 998	8	AJ619868	AJ619868 Arabidops
706	46.8	2.0 998	8	AJ619875	AJ619875 Arabidops
707	46.8	2.0 998	8	AJ619876	AJ619876 Arabidops
708	46.8	2.0 998	8	AJ619877	AJ619877 Arabidops
709	46.8	2.0 998	8	AJ619878	AJ619878 Arabidops
710	46.8	2.0 1000	8	AJ619869	AJ619869 Arabidops
711	46.8	2.0 1000	8	AJ619870	AJ619870 Arabidops
712	46.8	2.0 1000	8	AJ619871	AJ619871 Arabidops
713	46.8	2.0 1000	8	AJ619872	AJ619872 Arabidops
714	46.8	2.0 1000	8	AJ619873	AJ619873 Arabidops
715	46.8	2.0 1000	8	AJ619879	AJ619879 Arabidops
716	46.8	2.0 1000	8	AJ619880	AJ619880 Arabidops
717	46.8	2.0 1002	8	AJ619874	AJ619874 Arabidops
718	46.8	2.0 158482	14	AY126275	AY126275 Mamestra
719	46.6	2.0 1494	8	AF028237	AF028237 Ipomoea p
720	46.6	2.0 2531	8	ZMMC2BZ1	X13501 Maize (Bz-M
721	46.6	2.0 2919	8	ZMMCCBZ1	X13500 Zea mays (B
722	46.6	2.0 4294	8	AY191009	AY191009 Zea mays
723	46.6	2.0 5772	8	AF355378	AF355378 Zea mays
724	46.6	2.0 41355	3	U42832	U42832 Caenorhabdi
725	46.6	2.0 106186	8	AF448416	AF448416 Zea mays
726	46.6	2.0 146949	2	AL360003	AL360003 Homo sapi
727	46.6	2.0 150771	9	AL392106	AL392106 Human DNA
728	46.6	2.0 226001	8	AF391808	AF391808 Zea mays
c 729	46.6	2.0 236362	2	AC006724	AC006724 Caenorhab
730	46.4	2.0 470	11	BX322426	BX322426 Arabidops
731	46.4 46.4	2.0 1440	6	AX211632	AX211632 Sequence
c 732		2.0 1440	6	AX211634	AX211634 Sequence
733	46.4	2.0 1440	_	.AX505385	AX505385 Sequence
734	46.4	2.0 1471	8	AY142676	AY142676 Arabidops
735 736	46.4	2.0 1599	8	AK065987	AK065987 Oryza sat
	46.4	2.0 1615 2.0 1621	8	AY074339	AY074339 Arabidops
737 738	46.4 46.4		8	AY057646	AY057646 Arabidops
738 739			8	AK105912	AK105912 Oryza sat
c 740	46.4 46.4		8	AK119544	AK119544 Oryza sat
741	46.4 46.4		8	AY099833	AY099833 Arabidops
741	46.4	2.0 1683 2.0 138141	8 8	AK106006 AP005190	AK106006 Oryza sat
c 743	46.4	2.0 138141	8	AP005190 AP005185	AP005190 Oryza sat
c 743	46.4	2.0 100334	8		AP005185 Oryza sat
C /44	40.4	2.0 13/419	o	ATCHRIV41	AL161541 Arabidops

С	745	46.4		205065	8	ATFCA4	Z97339 Arabidopsis
С	746	46.4		250029	3	AE014820	AE014820 Plasmodiu
С	747	46.4		287560	1	AE017274	AE017274 Bacillus
	748 -	46.2	2.0	467	11	BV008367	BV008367 MASC_STS1
С	749	46.2	2.0	490	6	CQ431226	CQ431226 Sequence
	750	46.2	2.0	1458	6	AX654445	AX654445 Sequence
	751	46.2	2.0	1464	6	AX653704	AX653704 Sequence
С	752	46.2	2.0	1638	8	AK105478	AK105478 Oryza sat
	753	46.2	2.0	1663	8	AK062590	AK062590 Oryza sat
	754	46.2	2.0	1914	8	AK068586	AK068586 Oryza sat
С	755	46.2		134534	2	AP004327	AP004327 Oryza sat
	756	46.2		140769	8	AP003508	AP003508 Oryza sat
	757	46.2		141036	2	AP003941	AP003941 Oryza sat
c	758	46.2		150455	8	AP004571	AP004571 Oryza sat
c	759	46.2		162520	8	AP005913	AP005913 Oryza sat
c	760	46.2		165630	8	AP003913 AP003617	AP003617 Oryza sat
С	761	46.2		166005	. 8	AC120506	
_	762			194284	5		AC120506 Oryza sat
C		46.2			_	AL954329	AL954329 Zebrafish
	763	46	2.0	1259	8	MECGT6	X77463 M.esculenta
	764	46	2.0	1477	6	CQ595878	CQ595878 Sequence
	765	46	2.0	1553	8	AK060228	AK060228 Oryza sat
	766	46	2.0	1680	8	AK069049	AK069049 Oryza sat
С	767	46	2.0	1852	8	AK105674	AK105674 Oryza sat
	768	46	2.0	3528	6	CQ595877	CQ595877 Sequence
	769	46	2.0	20493	2	AC014076	AC014076 Drosophil
С	770	46		138141	8	AP005190	AP005190 Oryza sat
	771	46		148780	3	AC008326	AC008326 Drosophil
	772	46		156983	8	OSJN00212	AL663014 Oryza sat
	773	46		164263	8	AP005515	AP005515 Oryza sat
С	774	46		168759	8	AC079887	AC079887 Oryza sat
	775	46	2.0	267997	3	AE003616	AE003616 Drosophil
	776	45.8	2.0	1395	6	AX654788	AX654788 Sequence
	777	45.8	2.0	1783	8	AK108674	AK108674 Oryza sat
	778	45.8	2.0	5908	1	AF147704	AF147704 Streptomy
	779	45.8	2.0	13511	6	AX345183	AX345183 Sequence
	780	45.8	2.0	18585	6	AX281498	AX281498 Sequence
С	781	45.8	2.0	138155	2	AC151564	AC151564 Dasypus n
С	782	45.8	2.0	191765	8	AC129717	AC129717 Oryza sat
	783	45.6	2.0	1510	8	AK121682	AK121682 Oryza sat
	784	45.6	2.0	1639	8	AK105398	AK105398 Oryza sat
С	785	45.6	2.0	1689	8	AK063307	AK063307 Oryza sat
	786	45.6	2.0	1750	8	AK119905	AK119905 Oryza sat
	787	45.6	2.0	32784	3	CEF08G5	Z70682 Caenorhabdi
C	788	45.6	2.0	97352	8	AC091670	AC091670 Oryza sat
·	789	45.6		133889	8	AC133334	AC133334 Oryza sat
	790	45.4	2.0	1688	8	AK107291	AK107291 Oryza sat
	791	45.4	2.0	1706	. 8	AK072018	AK107291 Olyza sat AK072018 Oryza sat
	792	45.4		105227	8	AP005296	
	793			119926			AP005296 Oryza sat
		45.4		135611	8	AP003705	AP003705 Oryza sat
	794	45.4			14	AF169823	AF169823 Spodopter
_	795	45.4		137967	2	AC093094	AC093094 Oryza sat
С	796	45.4		165307	2	AC123749	AC123749 Mus muscu
	797	45.2	1.9	994	8	AJ619855	AJ619855 Arabidops
	798	45.2	1.9	994	8	AJ619856	AJ619856 Arabidops
	799	45.2	1.9	1383	6	AX653292	AX653292 Sequence
	800	45.2	1.9	1452	6	AX653929	AX653929 Sequence
С	801	45.2	1.9	1463	8	AK108695	AK108695 Oryza sat

	802	45.2	1.9	1549	6	AX660242		AX660242 Sequence
	803	45.2	1.9	1603	8	AK107156		AK107156 Oryza sat
	804	45.2	1.9	1736	8	BT009372		BT009372 Triticum
	805	45.2	1.9	1809	8	AK103303		AK103303 Oryza sat
	806	45.2	1.9	2000		AX656006		AX656006 Sequence
	c 807	45.2		157987		AP003560		AP003560 Oryza sat
	808	45.2		163095	8	AP002523		AP002523 Oryza sat
	809	45	1.9	45	6	AX697217		AX697217 Sequence
	810	45	1.9	955	8	AB012115		AB012115 Vigna mun
	811	45	1.9	1521	8	AY167672	•	AY167672 Zea mays
	812	45	1.9	1521	8	AY167673		AY167673 Zea mays
	813	45	1.9	1521	8	AY167675		AY167675 Zea mays
	814	45	1.9	1521	8	AY167676		AY167676 Zea mays
	815	45	1.9	1521	8	AY167679		AY167679 Zea mays
	816	45	1.9	1536	6	E49073		E49073 UDP-D-Gluco
	817	45	1.9	1561	8	AB191249		AB191249 Dianthus .
	818	45	1.9	1575	8	AB002818		AB002818 Perilla f
	819	45	1.9	1573	8	ZMW22BZ1		
	820		1.9					X13502 Maize (Bz-W
		45		1732	6	E49068		E49068 UDP-D-Gluco
	821	45	1.9	1732	8	AB033758		AB033758 Citrus un
	822	45	1.9	2908	8	ZMBZW22		X07937 Maize Bz-W2
	823	45	1.9	3181		ZMBZR		X07941 Maize bronz
	c 824	45	1.9	37329		U97009		U97009 Caenorhabdi
	825	45		103960		ATAC011664		AC011664 Arabidops
	826	45		147472		AP003974		AP003974 Oryza sat
	c 827	45		149227	2	AC146976		AC146976 Zea mays
	c 828	45		179810	9	AC139345		AC139345 Papio anu
	c 829	45		288479	2	AC146814		AC146814 Zea mays
	c 830	44.8	1.9	774	6	BD019848		BD019848 Novel gen
	c 831	44.8	1.9	774	6	BD099786		BD099786 Novel gen
	832	44.8	1.9	858	10			D38067 Rattus norv
	833	44.8	1.9	995	8	AJ619882		AJ619882 Arabidops
	834	44.8	1.9	995	8	AJ619883		AJ619883 Arabidops
	835	44.8	1.9	1362	6	AX412617		AX412617 Sequence
	836	44.8	1.9	1362	6	AX507722		AX507722 Sequence
	837	44.8	1.9	1362	6	AX589823		AX589823 Sequence
	838	44.8	1.9	1362	6	AX652007		AX652007 Sequence
	839	44.8	1.9	1521	8	AK110892		AK110892 Oryza sat
	840	44.8	1.9					AF303396 Phaseolus
	c 841	44.8	1.9			AC024876		AC024876 Caenorhab
	c 842	44.8	1.9		9	AC068888		AC068888 Homo sapi
	c 843	44.8		103223	8	AC007153		AC007153 Arabidops
	844	44.8		110000	2	AC109940_0		AC109940 Rattus no
	845	44.8		192969		AC150463		AC150463 Callithri
•	846	44.8		221618	10	AC092530		AC092530 Rattus no
	c. 847	44.8	1.9	224007	2	AC111764	ين حدية عن عتر	AC111764 Rattus no
	c 848 .	44.8	1.9	298804	2	AC006911		AC006911 Caenorhab
	849	44.8	1.9	299081	2	AC006892		AC006892 Caenorhab
	850	44.6	1.9	762	6	BD224494		BD224494 Materials
	851	44.6	1.9	762	6	AR216544		AR216544 Sequence
	c 852	44.6	1.9	1141	6	AX083744		AX083744 Sequence
	853	44.6	1.9	1558	8	AB070748		AB070748 Vigna ang
	854	44.6	1.9	1662	8	AK064105		AK064105 Oryza sat
	855	44.6	1.9	2591	8	AK106639		AK106639 Oryza sat
	856	44.6		110000	1	AE017263 2		Continuation (3 of
	c 857	44.6		_	8	AP005012		AP005012 Oryza sat
	858	44.6		287476	1	AE017271		AE017271 Bacillus
		-		-		-		

٥٢	0 44 4	1.0	1175	_	20074400	77074400 7
85		1.9	1175	8	AB074489	AB074489 Malus x d
86		1.9	54025	8	AP006525	AP006525 Oryza sat
86		1.9	1666	8	AK106038	AK106038 Oryza sat
c 86			133427	2	AC134521	AC134521 Medicago
c 86			144271	8	AC098682	AC098682 Genomic s
86			302524	8	AE017075	AE017075 Oryza sat
86		1.9	1895	8	AK108846	AK108846 Oryza sat
86		1.9	3986	8	AY490797	AY490797 Helianthu
86		1.9	4556	9	AF153832S3	AF153834 Homo sapi
c 86			144392	9	HS67K17	AL023584 Human DNA
86			148762	8	AP002843	AP002843 Oryza sat
c 87			172752	2	AC116496	AC116496 Mus muscu
87			236164	2	AC113057	AC113057 Mus muscu
87		1.9	432	6	A63526	A63526 Sequence 7
87		1.9	1152	6	AX653506	AX653506 Sequence
87		1.9	1482	6	AX653177	AX653177 Sequence
87		1.9	1654	8	AK121725	AK121725 Oryza sat
87		1.9	1660	8	AB070745	AB070745 Vigna ang
87		1.9	1726	8	AK064395	AK064395 Oryza sat
87		1.9	1798	8	AY663785	AY663785 Fragaria
87		1.9		8	AY171598	AY171598 Fragaria
88		1.9	37845	3	CEF01D4	Z81054 Caenorhabdi
c 88		1.9	46394	3	CBRG17D06	AC084511 Caenorhab
88			134534	2	AP004327	AP004327 Oryza sat
88			141036	2	AP003941	AP003941 Oryza sat
88			165630	8	AP003617	AP003617 Oryza sat
c 88			182870	3	AC116960	AC116960 Dictyoste
88			184645	2	AC108395	AC108395 Mus muscu
88			349954	6	AX196297	AX196297 Sequence
88 88		1.9	617	12		AY199453 Arabidops
. 89		1.9	993	8	AJ619881	AJ619881 Arabidops
. 89		1.9	993 993	8 8	AJ619884	AJ619884 Arabidops
89		1.9 1.9	993	-	AJ619885	AJ619885 Arabidops
89		1.9		8	AJ619857	AJ619857 Arabidops
89		1.9	994 994	8 8	AJ619858	AJ619858 Arabidops
89		1.9	994	8	AJ619859	AJ619859 Arabidops
89		1.9	994	8	AJ619860 AJ619861	AJ619860 Arabidops
89			994	8	AJ619863	AJ619861 Arabidops
89		1.9	994	8	AJ619864	AJ619863 Arabidops AJ619864 Arabidops
-89		1.9	994	8	AJ619865	AJ619865 Arabidops
90		1.9	994	8	AJ619866	AJ619866 Arabidops
90		1.9	1001	6	AR284363	AR284363 Sequence
90		1.9	1001	6	AR284364	AR284364 Sequence
. 90		1.9	1001	6	AR284365	AR284365 Sequence
90		1.9	1001	6	AR284367	AR284367 Sequence
90		1.9	1021	6	BD229240	BD229240 Genotype
90		1.9	1021	6	AR349492	AR349492 Sequence
90		1.9	1073	8	MECGT2	X77461 M.esculenta
90		1.9	1350	6	AX412670	AX412670 Sequence
90		1.9	1350	6	AX507107	AX507107 Sequence
91		1.9	1350	6	AX651538	AX651538 Sequence
91		1.9	1350	8	BT010327	BT010327 Arabidops
91		1.9	1437	6	CQ759478	CQ759478 Sequence
91		1.9	1437	6	AX211615	AX211615 Sequence
91		1.9	1527	8	AY087340	AY087340 Arabidops
91		1.9	1565	8	AY087866	AY087846 Arabidops AY087866 Arabidops
		1.3		-	111111	THOU, OUG THEMPTOODS

916 43.6 1.9 1582 8 AY062483 AY062483 AZABİdOPS 0 917 43.6 1.9 19734 8 ACOU2333 ACOU2333 Arabidops 918 43.6 1.9 101036 8 ACOU2333 ACOU2333 Arabidops 919 43.6 1.9 110036 8 ACI42095 ACI42095 McL16667 Arabidops 919 43.6 1.9 1203301 2 ACI47067 ACI47067 HOMO sapi 921 43.4 1.9 29 8 AK059765 AK059765 Oryza sat 922 43.4 1.9 1521 8 AY167674 AY167674 Zea mays 924 43.4 1.9 1521 8 AY167677 AY167674 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167676 Zea mays 926 43.4 1.9 1521 8 AY167678 AY167676 Zea mays 927 43.4 1.9 1521 8 AX167678 AY167678 Zea mays 928 43.4 1.9 1521 8 AX167678 AY167678 Zea mays 929 43.4 1.9 1621 8 AK100189 AX100312 Oryza sat 929 43.4 1.9 1621 8 AX100189 AX100310 Oryza sat 929 43.4 1.9 148191 8 OSJN00067 AX160660 Oryza sat 930 43.4 1.9 148191 8 OSJN00067 AX160600 Oryza sat 931 43.4 1.9 148191 8 OSJN00067 AX160600 Oryza sat 932 43.4 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 933 43.4 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 934 43.4 1.9 157452 2 ACI8780 ACOU370 AY191010 Zea mays 935 43.2 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 936 43.2 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 937 43.2 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 938 43.4 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 939 43.2 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 940 43.2 1.9 157452 2 ACI8780 ACOU370 AP04230 Oryza sat 951 43.2 1.9 157452 ACOU370 AR00397 Oryza sat 952 43.1 1.9 157452 ACOU370 AR00397 Oryza sat 953 43.2 1.9 15745 8 AR003997 AR00397 Oryza sat 954 43.2 1.9 1000 6 AR284366 AR08432 Oryza sat 955 43.2 1.9 1000 6 AR284366 AR08432 Oryza sat 957 43.2 1.9 1000 6 AR284366 AR08432 Oryza sat 958 43.2 1.9 1000 6 AR344574 AR003754 Oryza sat 959 43.2 1.9 1000 6 AR344574 AR003754 Oryza sat 950 43.2 1.9 1000 6 AR344570 AR003997 Oryza sat 950 43.2 1.9 1000 6 AR344570 AR003997 Oryza sat 951 43.1 1.9 15748 8 AR003754 AR003999 MASC STS1 950 43.1 1.9 1400 8 AR003999 AR003999 MASC STS1 950 43.1 1.9 1400 8 AR003999 AR003999 MASC STS1 950 43.1 1.9 1400 8 AR003999 AR003999 AR34559 Sequence 960 42.8 1.8 160099 14 AR003999 A							
c 917 43.6 1.9 98734 8 ACO02333 ACA002233 Arabidops 918 43.6 1.9 10035 8 ATF116 AL161667 Arabidops 919 43.6 1.9 10036 8 AC142095 AC142095 Medicago c 920 43.6 1.9 203301 2 AC147067 AC147067 Homo sapi 921 43.4 1.9 203301 2 AC147067 AC147067 Homo sapi 921 43.4 1.9 1529 8 AK059765 AK059765 Oryza sat 922 43.4 1.9 1521 8 AY167674 AY167677 Zea mays 924 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167677 Zea mays 926 43.4 1.9 1604 8 AK106312 AK106312 Oryza sat 927 43.4 1.9 1621 8 AX106312 AK106312 Oryza sat 929 43.4 1.9 121 8 AY167678 AY167678 Zea mays 928 43.4 1.9 4296 8 AK068604 AK068604 Oryza sat 929 43.4 1.9 14283 2 AC149822 AC149822 Zea mays 930 43.4 1.9 141283 2 AC149822 AC149822 Zea mays 931 43.4 1.9 141283 2 AC149822 AC149822 Zea mays 931 43.4 1.9 141283 2 AC149822 AC149822 Zea mays 933 43.4 1.9 154752 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 154032 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 1001 6 AR26866 AR26866 AR26866 Oryza sat 937 43.2 1.9 1502 6 AX47024 AX068362 Oryza sat 937 43.2 1.9 1502 6 AX068362 AP004263 Oryza sat 937 43.2 1.9 1502 6 AX068362 AR068362 Oryza sat 937 43.2 1.9 1209 6 AX068362 AR068362 Oryza sat 937 43.2 1.9 1209 6 AX068362 AR068362 Oryza sat 937 43.2 1.9 1209 6 AX068362 AR068362 Oryza sat 937 43.2 1.9 1209 6 AX068362 AR068362 Oryza sat 940 43.2 1.9 1209 6 AX06836 AR068362 Oryza sat 941 43.2 1.9 1209 6 AX06836 AR06836 AR264369 Oryza sat 941 43.2 1.9 1209 6 AX06836 AR06836 AR264369 Oryza sat 941 43.2 1.9 1209 6 AX06836 AR06836 AR264369 Oryza sat 941 43.2 1.9 1209 6 AX06836 AR06836 AR264369 Oryza sat 941 43.2 1.9 1209 6 AX06836 AR06836 AR264369 Oryza sat 942 43.2 1.9 1209 6 AX06836 AR06836 AR264369 Oryza sat 944 43.2 1.9 1209 6 AX06836 AR06836 AR26436 Oryza sat 944 43.2 1.9 1209 6 AX06836 AR06836 AR26436 Oryza sat 944 43.2 1.9 1209 6 AX06836 AR06836 AR26436 Oryza sat 944 43.2 1.9 1209 6 AX06836 AR06836 AR26436 Oryza sat 944 43.2 1.9 1209 6 AX06836 AR06836 AR26436 AR26436 AR26436 AR26436 AR26436 AR26436 AR26436 AR		916	43 6	1 9 1582	Я	AY062483	AV062483 Arabidons
918 43.6 1.9 1036 8 ATFILI6 AL161667 Arabidops 919 43.6 1.9 11036 8 AC142095 Medicago c 920 43.6 1.9 11036 8 AC142095 AC142095 Medicago c 920 43.6 1.9 11036 8 AC142095 AC142095 Medicago c 921 43.4 1.9 9299 8 AK059765 AK059765 Oryza sat 922 43.4 1.9 1521 8 AY167677 AY167674 Zea mays 924 43.4 1.9 1521 8 AY167677 AY167674 Zea mays 924 43.4 1.9 1521 8 AY167677 AY167678 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 927 43.4 1.9 1621 8 AY106312 AK106312 Oryza sat 928 43.4 1.9 1621 8 AY106189 AK100189 Oryza sat 928 43.4 1.9 1404 8 AK106312 Oryza sat 928 43.4 1.9 1404 8 AY191010 AY191010 Zea mays 930 43.4 1.9 14049 8 AP004340 AR068604 Oryza sat 932 43.4 1.9 14049 8 AP004340 AP004340 Oryza sat 932 43.4 1.9 14049 8 AP004340 AP004340 Oryza sat 933 43.4 1.9 14049 8 AP004340 AP004340 AP004340 Oryza sat 933 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 163032 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 15303 8 AR068362 AR068362 Oryza sat 937 43.2 1.9 1001 6 AR284366 AR284366 Sequence 2 938 43.2 1.9 1346 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 19329 6 AX47024 AX347024 SAX347024 Sequence 0 938 43.2 1.9 19329 6 AX003997 AP003970 AP003970 Oryza sat 0 941 43.2 1.9 128955 8 AP003754 AP003970 AP003970 Oryza sat 0 941 43.2 1.9 146951 8 AP003970 AP003970 Oryza sat 0 944 43.2 1.9 128955 8 AP0033754 AP003970 Oryza sat 0 944 43.2 1.9 149980 6 AX344570 AP003970 Oryza sat 0 944 43.2 1.9 149980 6 AX344570 AP003970 Oryza sat 0 945 43.2 1.9 349980 6 AX344570 AP003970 AP003970 Oryza sat 0 946 43.2 1.9 349980 6 AX344570 AX344570 AX344571 Sequence 0 953 43.2 1.9 349980 6 AX344570 AX344570 AX344571 Sequence 0 953 43.2 1.9 349980 6 AX344570 AX344571 AX344571 Sequence 0 953 43.1 1.9 1406 AP003990 AR34570 AP003970 Oryza sat 0 946 42.8 1.8 14076 6 AR66985 AR06985 AR069878 Sequence 0 953 43.1 1.9 14090 1 AR069878 AR069878 AR069878 Sequence 0 953 43.1 1.9 14000 1 AR069878 AR069878 AR069878 Sequence 0 953 43.1 1.9 14000 1 AR06							
c 920 43.6 1.9 10036 8 AC142095 AC142095 Medicago c 920 43.6 1.9 203301 2 AC147067 AC147067 AC147067 Mos sapi 921 43.4 1.9 329 8 AK059765 AK059765 Oryza sat 922 43.4 1.9 1321 8 AY167674 AY167677 Zea mays 923 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 926 43.4 1.9 1604 8 AK106312 AK106312 Oryza sat 927 43.4 1.9 1604 8 AK106312 AK106312 Oryza sat 927 43.4 1.9 1621 8 AY167678 Zea mays 926 43.4 1.9 1621 8 AK100189 AK100189 Oryza sat 929 43.4 1.9 4296 8 AK068604 AK068604 Oryza sat 929 43.4 1.9 1896 8 AY191010 AY191010 Zea mays 930 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 923 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 932 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 932 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 933 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 934 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 934 43.4 1.9 18491 8 OSN00067 AL606602 Oryza sat 935 43.2 1.9 1001 6 AK284366 AR284366 Sequence 936 43.2 1.9 10329 6 AX347024 AX347024 Sequence 936 43.2 1.9 10329 6 AX347024 AX347024 Sequence 936 43.2 1.9 10329 6 AX347024 AX347024 Sequence 938 43.2 1.9 10329 6 AX347024 AX347024 Sequence 939 43.2 1.9 10329 6 AX347024 AX347024 Sequence 939 43.2 1.9 10329 6 AX347024 AX347024 Sequence 941 43.2 1.9 12695 8 AV003997 AP003397 Oryza sat 944 43.2 1.9 12695 8 AV003997 AP003397 Oryza sat 944 43.2 1.9 12695 8 AV003997 AP003397 Oryza sat 944 43.2 1.9 127248 8 AP003754 AP003754 Oryza sat 944 43.2 1.9 127248 8 AP003754 AP003750 Oryza sat 949 43.2 1.9 139390 6 AX344570 AP003370 Oryza sat 940 43.2 1.9 139390 6 AX344570 AP003370 Oryza sat 940 43.2 1.9 349990 6 AX344570 AX344571 AX344571 Sequence 954 43.2 1.9 349990 6 AX344570 AX344571 AX344571 Sequence 954 43.1 1.9 1300 6 AX660985 AX660985 Sequence 960 42.8 1.8 139 39 30 6 AX660985 AX660985 Sequence 960 42.8 1.8 13699 9 AX008505 AX660985 S	•				-		•
c 920 43.6 1.9 203301 2 AC147067 AC147067 Homo sapi 921 43.4 1.9 929 8 AK059765 AK059765 Cyra sat 922 43.4 1.9 1521 8 AY167674 AY167674 Zea mays 924 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167678 AY167678 Zea mays 926 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1604 8 AK106312 AK106189 Cyra sat 927 43.4 1.9 1621 8 AK106312 AK106189 Orya sat 928 43.4 1.9 1621 8 AK106189 AK100189 Orya sat 929 43.4 1.9 14283 2 AC149822 AY191010 AY191010 Zea mays 930 43.4 1.9 14483 2 AC149822 AC149822 Zea mays 931 43.4 1.9 148191 8 OSNN00067 AL606602 Orya sat 2 C 933 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 15323 6 AX347024 AX47024 Sequence 936 43.2 1.9 1001 6 AR284366 AR284366 AR284366 Sequence 936 43.2 1.9 10329 6 AX347024 AX347024 Sequence 0 938 43.2 1.9 10329 6 AX347024 AX47024 Sequence 0 938 43.2 1.9 103234 2 AP004380 A200379 Oryas sat 0 939 43.2 1.9 10329 6 AX347024 AX47024 Sequence 0 938 43.2 1.9 103234 2 AP003397 AP003797 Oryas sat 0 940 43.2 1.9 129955 8 AP003754 AP003754 Oryas sat 0 941 43.2 1.9 14040 8 AP004380 AP004263 AP004263 AP004263 AP004263 AP004263 AP004263 AP004263 AP004263 AP004264 AY347024 Sequence 0 940 43.2 1.9 149980 6 AX344570 AP003754 Oryas sat 0 941 43.2 1.9 149980 6 AX344570 AP003754 Oryas sat 0 944 43.2 1.9 149980 6 AX344570 AP003754 Oryas sat 0 944 43.2 1.9 149980 6 AX344570 AP003754 Oryas sat 0 944 43.2 1.9 349980 6 AX344570 AX344570 AX344571 AX344571 Sequence 0 951 43 1.9 14980 6 AX344570 AX344571 AX344571 Sequence 0 951 43 1.9 14980 6 AX344570 AX344570 AX344571 AX344571 Sequence 0 951 43 1.9 14908 6 AX666985 AX66698							-
921 43.4 1.9 929 8 AKO59765 AKO59765 Oryza sat 922 43.4 1.9 1521 8 AY167674 AY167674 Zea mays 924 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1621 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1621 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1621 8 AY167678 AY167678 Zea mays 927 43.4 1.9 1621 8 AY167678 AY167678 Zea mays 928 43.4 1.9 14283 Zea AZ1929 AY19101 AY191010 Zea mays 930 43.4 1.9 14483 Zea AZ1922 AZ149822 AZ149822 Zea Mays 931 43.4 1.9 149049 8 AY191010 AY191010 Zea mays 932 43.4 1.9 149049 8 AP004340 AY004340 Oryza sat 929 AY14 Zea AZ149822 Zea Mays 932 AY14 Zea AZ149822 Zea AZ149824 Zea AZ149828 Zea AZ149824 Zea AZ149824 Zea AZ149824 Zea AZ149824 Zea AZ149824 Zea AZ149824 Zea AZ							
922 43.4 1.9 1359 6 AX654630 AX654630 Sequence 923 43.4 1.9 1521 8 AY167674 AY167672 Zea mays 924 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1604 8 AX106312 AX105120 Cyrza sat 927 43.4 1.9 1621 8 AX106312 AX105180 Cyrza sat 928 43.4 1.9 1621 8 AX106189 AX10189 Cyrza sat 929 43.4 1.9 14283 2 AC149822 AY191010 AY191010 Zea mays 930 43.4 1.9 14283 2 AC149822 AY191010 AY191010 Zea mays 931 43.4 1.9 148191 8 CSJN00067 AL606602 Cyrza sat 929 43.4 1.9 149194 8 AP004340 AP004340 Cyrza sat 932 43.4 1.9 157452 2 AC087800 AP004340 OY2a sat 933 43.4 1.9 157452 2 AC087800 AP004340 OY2a sat 933 43.4 1.9 157452 2 AC087800 AP004340 OY2a sat 933 43.4 1.9 157452 2 AC087800 AP004340 OY2a sat 933 43.4 1.9 157452 2 AC087800 AP004365 AP004365 GEQUENCE 936 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 10329 6 AX066362 AX066362 Cyrza sat 937 43.2 1.9 10329 6 AX074724 AX347024 AX34							
923 43.4 1.9 1521 8 AY167674 AY167674 Zea mays 925 43.4 1.9 1521 8 AY167677 AY167677 Zea mays 925 43.4 1.9 1521 8 AY167678 AY167677 AY167677 Zea mays 926 43.4 1.9 1521 8 AY167678 AY167678 Zea mays 926 43.4 1.9 1621 8 AY160782 AK106312 Oryza sat AY167678 Zea mays 927 43.4 1.9 1621 8 AK100189 AK100189 Oryza sat 928 43.4 1.9 4296 8 AK068604 AK068604 Oryza sat 929 43.4 1.9 18867 8 AY191010 AY191010 Zea mays 930 43.4 1.9 114283 2 AC149822 AC149822 Cea mays 931 43.4 1.9 149049 8 AF004340 AF004340 Oryza sat 932 43.4 1.9 149049 8 AF004340 AF004340 Oryza sat 932 43.4 1.9 15452 2 AC087800 AF004080 Mis muscu 934 43.4 1.9 163032 8 AF004263 AF004263 Oryza sat 935 43.2 1.9 1001 6 AF284366 AF284366 Sequence 936 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence 938 43.2 1.9 14040 8 AF004340 AF003997 Oryza sat 940 43.2 1.9 14040 8 AF004382 AF003997 Oryza sat 0.940 43.2 1.9 14040 8 AF004382 AF003997 Oryza sat 0.941 43.2 1.9 14040 8 AF004382 AF003997 Oryza sat 0.941 43.2 1.9 14040 8 AF003754 AF003754 AF003397 Oryza sat 0.941 43.2 1.9 15468 8 AF003480 AF00380 Oryza sat 0.943 43.2 1.9 14040 8 AF003480 AF00380 Oryza sat 0.943 43.2 1.9 157248 8 AF003476 AF003470 Oryza sat 0.943 43.2 1.9 14040 8 AF003480 AF00380 Oryza sat 0.943 43.2 1.9 1408518 8 AF0034300 AF00380 Oryza sat 0.943 43.2 1.9 1408980 6 AX344570 AX344570 AX344570 AX344570 AX344574 Sequence 0.954 43.2 1.9 349980 6 AX344579 AX344579 AX344574 Sequence 0.955 43 1.9 349980 6 AX344579 AX344579 AX344574 AX344574 Sequence 0.955 43 1.9 349980 6 AX344579 AX344579 AX344579 Sequence 0.955 43 1.9 349980 6 AX344579							
924							
925 43.4 1.9 1521 8 AY167678 AX167678 2ea mays 926 43.4 1.9 1604 8 AK106312 AK106312 Oryza sat 927 43.4 1.9 1621 8 AK106189 AK106189 Oryza sat 928 43.4 1.9 4296 8 AK068604 AK068604 Oryza sat 929 43.4 1.9 14283 2 AK190110 AY191010 Zea mays 930 43.4 1.9 14283 2 AC149822 AC149822 Cac mays 931 43.4 1.9 148191 8 OSJN00067 AL666602 Oryza sat 929 43.4 1.9 149049 8 AV191010 AY191010 Zea mays 931 43.4 1.9 15032 8 AF004340 AF004340 Oryza sat 0.93 43.4 1.9 15052 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 15052 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 15052 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 1506 8 AK066362 AK066362 Oryza sat 935 43.2 1.9 1001 6 AK284366 AR284366 ORYZA SAT 937 43.2 1.9 10329 6 AX347024 AX347024 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Oryza sat 0.93 43.2 1.9 10329 6 AX347024 AX347024 Oryza sat 0.94 43.2 1.9 103294 2 AF003997 AF003997 Oryza sat 0.94 43.2 1.9 128955 8 AF004362 AF006432 Oryza sat 0.94 43.2 1.9 141040 8 AF004382 AF004390 Oryza sat 0.94 43.2 1.9 140040 8 AF004382 AF004300 Oryza sat 0.94 43.2 1.9 15228 8 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 15228 8 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 152288 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 152288 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004342 AF003754 AF003754 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 8 AF004382 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 AF004300 AF004300 Oryza sat 0.94 43.2 1.9 140940 AF004300 AF004300 Oryza sat 0.94 43 43.2 1.9 140940 AF004300 AF004300 Oryza sat 0.94 43 43.2 1.9 140940 AF004300 AF004300 AF004300 Oryza sat 0.94 43 43 43 43 4349980 AF00434473 AF00434473 AF00434473 AF00434							
926					8		
927					8		
928					_	•	AK106312 Oryza sat
929 43.4 1.9 8867 8 AY191010 AY191010 Zea mays 930 43.4 1.9 14283 2 AC149822 AC149822 Zea mays 931 43.4 1.9 148191 8 05JN00067 AL606602 Oryza sat 932 43.4 1.9 149049 8 AP004340 AP004340 Oryza sat c 933 43.4 1.9 157452 2 AC0878800 AC087800 Ms muscu 934 43.4 1.9 163032 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 43154 3 U55369 U55369 Caenorhabdi c 939 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat c 940 43.2 1.9 14024 8 AP004382 AP004382 Oryza sat c 941 43.2 1.9 14040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 140951 8 AP003754 AP003754 Oryza sat c 942 43.2 1.9 140951 8 AP003270 AP003397 Oryza sat c 942 43.2 1.9 140951 8 AP003270 AP003397 Oryza sat c 944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 946 43.2 1.9 229569 2 AC107424 AC013296 Homo sapi 947 43.2 1.9 349980 6 AX344570 AX34570 Sequence 948 43.2 1.9 349980 6 AX344570 AX34570 Sequence 949 43.2 1.9 349980 6 AX344570 AX34570 Sequence 940 43.2 1.9 349980 6 AX344570 AX34570 Sequence 941 43.2 1.9 349980 6 AX344570 AX34570 Sequence 942 43.2 1.9 349980 6 AX344570 AX34577 Sequence 943 43.2 1.9 349980 6 AX344570 AX34570 Sequence 944 43.2 1.9 349980 6 AX344570 AX34570 Sequence 950 43.2 1.9 349980 6 AX344570 AX34570 Sequence 951 43 1.9 340 8 AV027263 AY027263 Arabidops 952 43 1.9 34980 6 AX344570 AX344570 Sequence 953 43 1.9 1400 8 AP103437 AX34577 Sequence 954 43 1.9 1400 8 AP103437 AX34577 Sequence 955 43 1.9 1400 8 AP103437 AX34577 Sequence 956 43 1.9 1400 8 AP103437 AF133417 AR13417 AR11carsi 962 42.8 1.8 161658 AX666985 AX660985 Sequence 960 42.8 1.8 161658 P AX668878 AX668878 Oryza sat 962 42.8 1.8 161658 P AX668878 AX668878 Oryza sat 968 42.8 1.8 161658 P AX668878 AX668878 Oryza Sat 968 42.8 1.8 161658 P AX668575 AX666275 Sequence 969 42.8 1.8 161658 P AX666275 AX66275 Sequence 970 42.6 1.							
930 43.4 1.9 114283 2 AC149822 AC149822 Zea mays 931 43.4 1.9 148191 8 OSJN00067 AL606602 Oryza sat 932 43.4 1.9 148191 8 OSJN00067 AL606602 Oryza sat 933 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 150332 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 1002 6 AX347024 AX347024 Sequence 938 43.2 1.9 10329 6 AX347024 AX347024 Sequence 938 43.2 1.9 10323 4 AP003997 AP003997 Oryza sat 937 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat 940 43.2 1.9 128955 8 AP003754 AP003754 Oryza sat 940 43.2 1.9 14040 8 AP004382 AP004382 Oryza sat 941 43.2 1.9 14040 8 AP004382 AP004382 Oryza sat 941 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat 943 43.2 1.9 157248 8 AP003270 AP003270 Oryza sat 944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi 946 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi 947 43.2 1.9 349980 6 AX344570 AX344570 Sequence 948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344571 AX344571 Sequence 940 43.2 1.9 349980 6 AX344571 AX344571 Sequence 941 43.2 1.9 349980 6 AX344571 AX344571 Sequence 942 43.1 1.9 340 8 AV027263 AV027263 AX344570 Sequence 943 1.9 340 8 AV027263 AV027263 AX344571 Sequence 949 43.2 1.9 349980 6 AX344571 AX344571 Sequence 950 43.1 1.9 1300 1 AB017180 09 Continuation (10 o 958 43 1.9 1400 1 AB017180 09 Continuation (10 o 958 43 1.9 14306 AF503433 AF503433 Sorghum b 957 42.8 1.8 14976 6 AX653505 AX660985 Sequence 960 42.8 1.8 1597 8 AX668878 AF503433 Sorghum b 959 42.8 1.8 161658 9 AC006505 Homo sapi 967 42.8 1.8 161658 9 AC006505 AC06505 Homo sapi 968 42.8 1.8 161658 9 AC006505 AC06505 Homo sapi 968 42.8 1.8 161658 9 AC006505 AC066305 Homo sapi 969 42.8 1.8 161658 9 AC006505 AC066305 Homo sapi 969 42.8 1.8 161658 9 AC006505 AC066505 Homo sapi 960 42.8 1.8 161658 9 AC006505 AC066505 Homo sapi 960 42.8 1.8 161658 9 AC06627					8	AK068604	
931 43.4 1.9 148191 8 0.5N00067 AL606602 Oryza sat 932 43.4 1.9 149049 8 AP004340 AP004340 Oryza sat c 933 43.4 1.9 157452 2 ACO87800 ACO87800 Mus muscu 934 43.4 1.9 157452 2 ACO87800 ACO87800 Mus muscu 934 43.4 1.9 163032 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 1001 6 AR284366 AR284366 EQUENCE 936 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat c 940 43.2 1.9 128955 8 AP003755 AP003754 Oryza sat c 941 43.2 1.9 14040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 141040 8 AP004382 AP004382 Oryza sat c 944 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 229569 2 ACI07424 ACI07424 Homo sapi 945 43.2 1.9 229569 2 ACI07424 ACI07424 Homo sapi c 946 43.2 1.9 349980 6 AX344570 AX344576 Sequence 948 43.2 1.9 349980 6 AX344570 AX344573 Sequence 949 43.2 1.9 349980 6 AX344570 AX344573 Sequence 949 43.2 1.9 349980 6 AX344570 AX344573 Sequence 950 43.2 1.9 349980 6 AX344573 AX344573 Sequence 951 43 1.9 349980 6 AX344574 AX344574 Sequence 953 43 1.9 349980 6 AX344574 AX344573 Sequence 954 43 1.9 349980 6 AX344574 AX344573 Sequence 955 43 1.9 349980 6 AX344574 AX344577 Sequence 955 43 1.9 349980 6 AX344574 AX344577 Sequence 956 43 1.9 1350 6 C0759477 C0759477 Sequence 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 1404 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF65095 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 962 42.8 1.8 168753 9 AC006701 AC005505 Homo sapi 967 42.8 1.8 168753 9 AC006505 AC008505 Homo sapi 968 42.8 1.8 168558 9 AC008505 AC008505 Homo sapi 969 42.8 1.8 168589 9 AC008505 AC008505 Homo sapi 969 42.8 1.8 168568 9 AC00667					8	AY191010	
932 43.4 1.9 149049 8 AP004340 AP004340 Oryza sat c 933 43.4 1.9 157452 2 ACO87800 ACO87800 Mus muscu 934 43.4 1.9 163032 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 1546 8 AX068362 AX068362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 103234 2 AP003997 APP003997 Oryza sat 2 AP003997 AP003997 Oryza sat 2 AP003999 AP004382 Oryza sat 2 AP003999 AP004390 Oryza sat 3 AP004390 Oryza Sat 2 AP004382 AP004390 Oryza Sat 2 AP004382 AP004382 AP004382 Oryza sat 2 AP003999 AP004390 Oryza Sat 2 AP004382 AP004382 AP004382 Oryza Sat 2 AP004382 AP		930	43.4	1.9 114283	2	AC149822	AC149822 Zea mays
c 933		. 931	43.4	1.9 148191	8	OSJN00067	AL606602 Oryza sat
c 933 43.4 1.9 157452 2 AC087800 AC087800 Mus muscu 934 43.4 1.9 163032 8 AP004263 AP004263 Oryza sat 935 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 10329 6 AX068362 AK068362 Oryza sat 938 43.2 1.9 10329 6 AX07024 AX347024 Sequence c 938 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat c 940 43.2 1.9 128955 8 AP003754 AP003997 Oryza sat c 941 43.2 1.9 14040 8 AP004382 AP004382 Oryza sat c 941 43.2 1.9 146951 8 AP0033270 AP003270 Oryza sat c 942 43.2 1.9 146951 8 AP0033270 AP003270 Oryza sat c 943 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 229569 2 AC107424 AC101217 AC011217 Rattus no 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 349980 6 AX344569 AX344569 Sequence 948 43.2 1.9 349980 6 AX344570 AX344573 Sequence 948 43.2 1.9 349980 6 AX344570 AX344573 Sequence 948 43.2 1.9 349980 6 AX344571 AX344573 Sequence 949 43.2 1.9 349980 6 AX344574 AX344573 Sequence 950 43.2 1.9 349980 6 AX344574 AX344573 Sequence 951 43 1.9 349980 6 AX344574 AX344573 Sequence 952 43 1.9 349980 6 AX344574 AX344573 Sequence 953 43 1.9 34980 6 AX344574 AX344573 Sequence 954 43 1.9 349980 6 AX344574 AX344573 Sequence 955 43 1.9 349980 6 AX344574 AX344573 Sequence 955 43 1.9 349980 6 AX344574 AX344574 Sequence 955 43 1.9 349980 6 AX344574 AX344574 Sequence 956 43 1.9 34980 6 AX344574 AX344574 AX344574 Sequence 957 43 1.9 349980 6 AX344574 AX344574 AX344573 Sequence 958 43 1.9 1400 8 AF190634 AX660985 Sequence 958 43 1.9 1400 8 AF190634 AX660985 Sequence 958 43 1.9 142376 8 AX5660985 AX660985 Sequence 960 42.8 1.8 1819 8 AF004333 AF067615 Caenorhab 959 42.8 1.8 1819 8 AF190634 AF190634 AX663878 Oryza sat 961 42.8 1.8 1819 8 AF190634 AX663505 AX66878 Oryza sat 962 42.8 1.8 1819 8 AF190634 AX663505 AX66878 Oryza sat 963 42.8 1.8 1816853 9 AX663505 AX66878 Oryza sat 964 42.8 1.8 1816853 9 AX608505 AX66858 Momo sapi 965 42.8 1.8 1816858 9 AX608505 AX66858 Momo sapi 966 42.8 1.8 16858 9 AX666275 AX766275 Sequence 969 42.8 1.8 168568 9 AX608505 AX666575 AX7		932	43.4	1.9 149049	8	AP004340	AP004340 Oryza sat
935 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 43154 3 U55369 U55369 Caenorhabdi c 939 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat c 940 43.2 1.9 128955 8 AP003754 AP003754 Oryza sat c 941 43.2 1.9 141040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat c 943 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 25077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344570 Sequence 948 43.2 1.9 349980 6 AX344573 AX344573 Sequence 949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 949 43.2 1.9 349980 6 AX344574 AX344574 Sequence 951 43 1.9 3498 AX027263 AX660985 AX660985 Sequence 0 951 43 1.9 3498 AX027263 AX660985 AX660985 Sequence 0 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 0 954 43 1.9 1350 6 CQ759477 CQ759477 Sequence 0 955 43 1.9 1400 1 AE017180_09 Continuation (10 o 0 958 43 1.9 1400 1 AE017180_09 Continuation (10 o 0 958 43 1.9 1400 1 AE017180_09 Continuation (10 o 0 958 43 1.9 142376 8 AF03433 AF503433 Sorghum b 0 959 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 16675 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 Homo sapi 0 960 42.8 1.8 166753 9 AC006120 Homo sapi 0 960 42.8 1.8 166753 9 AC006120 Homo sapi 0 960 42.8 1.8 166753 9 AC006120 Homo sapi		c 933	43.4	1.9 157452	2	AC087800	
935 43.2 1.9 1001 6 AR284366 AR284366 Sequence 936 43.2 1.9 1546 8 AK068362 AK068362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 43154 3 U55369 U55369 Caenorhabdi c 939 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat c 940 43.2 1.9 128955 8 AP003754 AP003754 Oryza sat c 941 43.2 1.9 141040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat c 943 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 25077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344570 Sequence 948 43.2 1.9 349980 6 AX344573 AX344573 Sequence 949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 949 43.2 1.9 349980 6 AX344574 AX344574 Sequence 951 43 1.9 3498 AX027263 AX660985 AX660985 Sequence 0 951 43 1.9 3498 AX027263 AX660985 AX660985 Sequence 0 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 0 954 43 1.9 1350 6 CQ759477 CQ759477 Sequence 0 955 43 1.9 1400 1 AE017180_09 Continuation (10 o 0 958 43 1.9 1400 1 AE017180_09 Continuation (10 o 0 958 43 1.9 1400 1 AE017180_09 Continuation (10 o 0 958 43 1.9 142376 8 AF03433 AF503433 Sorghum b 0 959 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 0 960 42.8 1.8 16675 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 Homo sapi 0 960 42.8 1.8 161658 9 AC006120 Homo sapi 0 960 42.8 1.8 166753 9 AC006120 Homo sapi 0 960 42.8 1.8 166753 9 AC006120 Homo sapi 0 960 42.8 1.8 166753 9 AC006120 Homo sapi		934	43.4	1.9 163032	8	AP004263	AP004263 Oryza sat
936 43.2 1.9 1546 8 AXO668362 AXO66362 Oryza sat 937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 10329 4 3U55369 U55369 Ceanorhabdi c 939 43.2 1.9 103234 2 APO03997 APO03997 Oryza sat c 940 43.2 1.9 128955 8 APO03754 APO03754 Oryza sat c 941 43.2 1.9 141040 8 APO04382 APO04332 Oryza sat c 942 43.2 1.9 141040 8 APO04382 APO04332 Oryza sat c 943 43.2 1.9 157248 8 APO04330 APO04300 Oryza sat 944 43.2 1.9 226077 2 ACO13296 ACO13296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344570 AX344570 Sequence 948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 949 43.2 1.9 349980 6 AX344573 AX344574 Sequence 950 43.2 1.9 349980 6 AX344573 AX344574 Sequence 0551 43 1.9 3498 8 AX022263 AY027263 Arabidops 952 43 1.9 3498 8 AX022263 AY027263 Arabidops 952 43 1.9 3498 8 AX020263 AY027263 ARA60985 Sequence 0 951 43 1.9 349 88 AX020263 AY027263 ARA60985 Sequence 0 953 43 1.9 469 11 BV009002 BV009002 MASC STS1 0 954 43 1.9 1350 6 CQ759477 CQ759477 Sequence 0 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 0 958 43 1.9 1400 8 AF190634 AF190634 Nicotiana 0 957 43 1.9 1400 1 AB017180 09 Continuation (10 o 0 958 43 1.9 14236 8 AX068988 AX6608878 Oryza sat 0 960 42.8 1.8 1819 8 AF117267 AF117267 Malus dom 0 964 42.8 1.8 1597 8 AX068878 AX668878 Oryza sat 0 965 42.8 1.8 1819 8 AF107267 AF117267 Malus dom 0 968 42.8 1.8 13689 9 AC010588 AC010588 Homo sapi 0 969 42.8 1.8 13689 9 AC010588 AC010588 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 969 42.8 1.8 161658 9 AC006505 AC006505 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 0 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi		935		1.9 1001	6	AR284366	
937 43.2 1.9 10329 6 AX347024 AX347024 Sequence c 938 43.2 1.9 43154 3 U55369 U55369 Caenorhabdi c 939 43.2 1.9 103234 2 AP003397 AP003397 Oryza sat c 940 43.2 1.9 128955 8 AP003754 AP003754 Oryza sat c 941 43.2 1.9 141040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat c 943 43.2 1.9 157248 8 AP004380 AP004300 Oryza sat 944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344569 Sequence 948 43.2 1.9 349980 6 AX344569 AX344570 Sequence 949 43.2 1.9 349980 6 AX344570 AX344573 Sequence 949 43.2 1.9 349980 6 AX344573 AX344574 Sequence 950 43.2 1.9 349980 6 AX344574 AX344574 Sequence 951 43 1.9 349980 6 AX344574 AX344574 Sequence 952 43 1.9 349980 6 AX344574 AX344574 Sequence 953 43 1.9 349 6 AX660985 AX660985 Sequence c 953 43 1.9 393 6 AX660985 AX660985 Sequence 953 43 1.9 350 6 AX660985 AX660985 Sequence 954 43 1.9 350 6 AX60985 AX660985 Sequence 956 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 1408 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 1408 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF0067615 Caenorhab C 964 42.8 1.8 181687 9 AX6638505 AX668878 Oryza sat 961 42.8 1.8 181687 9 AX6638505 AX668878 Oryza sat 961 42.8 1.8 181689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC006505 AC06505 Homo sapi 969 42.8 1.8 161658 9 AC006505 AC065100 Homo sapi 969 42.8 1.8 161658 9 AC006505 AC066120 Homo sapi 969 42.8 1.8 161658 9 AC006505 AC066120 Homo sapi 969 42.8 1.8 161658 9 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AC066755 Sequence		936	43.2	1.9 1546	8		-
c 938		937			6		
c 939 43.2 1.9 103234 2 AP003997 AP003997 Oryza sat c 940 43.2 1.9 128955 8 AP003754 AP003754 Oryza sat c 941 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat c 942 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat c 943 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi 945 43.2 1.9 295131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344570 Sequence 948 43.2 1.9 349980 6 AX344574 AX344573 Sequence 949 43.2 1.9 349980 6 AX344574 AX344574 Sequence 950 43.2 1.9 349980 6 AX660985 AX660985 Sequence 951 43 1.9 349980 6 AX660985 AX660985 Sequence 951 43 1.9 349980 6 AX660985 AX660985 Sequence 953					3		-
c 940 43.2 1.9 128955 8 AP003754 AP003754 Oryza sat c 941 43.2 1.9 141040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat c 943 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 225569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344570 Sequence 948 43.2 1.9 349980 6 AX344570 AX344573 Sequence 949 43.2 1.9 349980 6 AX344574 AX344573 Sequence 950 43.2 1.9 349980 6 AX660985 AX660985 Sequence c 951 43 1.9 349 8 AY027263 AY027263 Arabidops 952 43 1.9 319 18 BV009902 BV09002 BV09002 e 953 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
c 941 43.2 1.9 141040 8 AP004382 AP004382 Oryza sat c 942 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat c 943 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 944 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC117217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344570 Sequence 948 43.2 1.9 349980 6 AX344570 AX344573 Sequence 949 43.2 1.9 349980 6 AX344574 AX34573 Sequence 950 43.1 1.9 34980 6 AX344574 AX34573 Sequence 951 43 1.9 34980 6 AX344574 AX34573 Sequence 951 43 1.9<							
C 942 43.2 1.9 146951 8 AP003270 AP003270 Oryza sat C 943 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi C 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344570 AX344569 Sequence 948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344570 AX344573 Sequence 950 43.2 1.9 349980 6 AX344573 AX344574 Sequence 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 349980 6 AX660985 AX660985 Sequence C 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence C 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 C 954 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1408 AF190634 AF190634 AF190634 Nicotiana 957 43 1.9 14000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX668878 AX668878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF30686878 Homo sapi 966 42.8 1.8 131689 AC016585 AC016585 Homo sapi 967 42.8 1.8 131689 AC016585 AC016585 Homo sapi 967 42.8 1.8 131689 AC016585 AC016586 Homo sapi 968 42.8 1.8 136859 AC016580 AC016586 Homo sapi 968 42.8 1.8 136859 AC016586 AC016586 Homo sapi 969 42.8 1.8 136859 AC016586 AC016586 Homo sapi 969 42.8 1.8 166589 AC016586 AC016586 AC016546 AC766275 AC766275 Sequence							
c 943 43.2 1.9 157248 8 AP004300 AP004300 Oryza sat 944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 249980 6 AX344569 AX344569 Sequence 948 43.2 1.9 349980 6 AX344573 AX344573 Sequence 949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 950 43.2 1.9 349980 6 AX344573 AX344573 Sequence 950 43.2 1.9 349980 6 AX344573 AX344573 Sequence 951 43 1.9 349980 6 AX344574 AX344573 Sequence 951 43 1.9 349980 6 AX344574 AX344573 Sequence 951 43 1.9 349980 6 AX660985 AX660985 Sequence 951 43 1.9 393 6 AX660985 AX660985 AX660985 Sequence					-		
944 43.2 1.9 226077 2 AC013296 AC013296 Homo sapi 945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344569 Sequence 948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344573 AX344570 Sequence 950 43.2 1.9 349980 6 AX344574 AX344573 Sequence 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence C 953 43 1.9 469 11 BV009002 BV009002 MASC STS1 C 954 43 1.9 519 11 BV008995 BV008995 MASC STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 14000 1 AE017180 09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX668878 AK06878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 AK068878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 963 42.8 1.8 16875 14 AF313417 AF133417 ANTICCATS1 966 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 964 42.8 1.8 18198 AF117267 AF117267 Malus dom c 963 42.8 1.8 18198 AF117267 AF117267 AF117267 Malus dom c 964 42.8 1.8 18198 AF117267 AF117267 AF117267 Malus dom 6 964 42.8 1.8 181689 9 AC010588 AC010588 Homo sapi 6 964 42.8 1.8 161658 9 AC008505 AC08505 Homo sapi 6 968 42.8 1.8 161658 9 AC008505 AC08505 Homo sapi 6 968 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi 6 969 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi 6 969 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi 6 969 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi 6 969 42.8 1.8 168753 9 AC006505 AC008505 Homo sapi 6 969 42.8 1.8 168753 9 AC008505 AC008505 Homo sapi 6 969 42.8 1.8 168753 9 AC006505 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PF1291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
945 43.2 1.9 229569 2 AC107424 AC107424 Homo sapi c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344569 Sequence 948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344574 AX344573 Sequence 950 43.2 1.9 349980 6 AX344574 AX344573 Sequence c 951 43 1.9 349980 6 AX366985 AX660985 Sequence c 953 43 1.9 393 6 AX660985 AX660985 Sequence c 953 43 1.9 469 11 BV000902 BV009002 MASC_STS1 c 954 43 1.9 1350 6 CQ759477 CQ759477 Sequence 955 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8							_
c 946 43.2 1.9 251131 2 AC111217 AC111217 Rattus no 947 43.2 1.9 349980 6 AX344569 AX344570 AX344570 Sequence 948 43.2 1.9 349980 6 AX344573 AX344573 Sequence 950 43.2 1.9 349980 6 AX344574 AX344574 Sequence 951 43 1.9 340 8 AY027263 AY027263 AY060985 Sequence 952 43 1.9 393 6 AX660985 AX660985 Sequence 953 43 1.9 393 6 AX660985 AX660985 Sequence 954 43 1.9 519 11 BV009002 BV009002 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 CQ759477 Sequence 956 43 1.9 1400 8 AF190634							
947 43.2 1.9 349980 6 AX344569 AX344569 Sequence 948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 950 43.2 1.9 349980 6 AX344574 AX344573 Sequence 951 43 1.9 34980 6 AX344574 AX344573 Sequence 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX668878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 AF1313417 ARF313417 ARF313417 ARF313417 ARF313417 ARF313417 AF17267 Malus dom 0 963 42.8 1.8 1819 8 AF117267 AF117267 Malus dom 0 964 42.8 1.8 10999 14 AF270937 AF270937 Plutella 0 965 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 131689 9 AC008505 AC008505 Homo sapi 968 42.8 1.8 166753 9 AC008505 AC008505 Homo sapi 969 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi 0 968 42.8 1.8 168753 9 AC006120 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
948 43.2 1.9 349980 6 AX344570 AX344570 Sequence 949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 950 43.2 1.9 349980 6 AX344574 AX344574 Sequence 951 43 1.9 34980 6 AX344574 AX344574 Sequence 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX663878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 Articarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom 964 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab 966 42.8 1.8 124526 8 AC146585 AC14585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC010588 AC010588 Homo sapi 968 42.8 1.8 168753 9 AC010588 AC008505 Homo sapi 969 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi 960 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi 960 42.8 1.8 168753 9 AC006275 AX766275 Sequence							
949 43.2 1.9 349980 6 AX344573 AX344573 Sequence 950 43.2 1.9 349980 6 AX344574 AX344574 Sequence c 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence c 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 c 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AX068878 AX608878 Oryza sat 961 42.8 1.8 1597 8 AX068878 AK068878 Oryza sat 961 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 1597 8 AF117267 AF117267 Malus dom c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 131689 9 AC010588 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 161658 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 1848 5 FFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
950 43.2 1.9 34980 6 AX344574 AX344574 Sequence c 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence c 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 c 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AX668878 Oryza sat 961 42.8 1.8 1.8 1.637 14 AF313417 AF313417 Anticarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 131689 9 AC010588 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC146585 Medicago 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
c 951 43 1.9 340 8 AY027263 AY027263 Arabidops 952 43 1.9 393 6 AX660985 AX660985 Sequence c 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 c 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 14000 1 AE017180_09 Continuation (10 o 958 43 1.9 140376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 15				•			
952 43 1.9 393 6 AX660985 AX660985 Sequence c 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 c 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi c 968 42.8 1.8 168753 9 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
c 953 43 1.9 469 11 BV009002 BV009002 MASC_STS1 c 954 43 1.9 519 11 BV008995 BV008995 MASC_STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat AK068878 AK068878 Oryza sat AF313417 AF313417 AF313417 Anticarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom AF067615 Caenorhab C 963 42.8 1.8 100999 14 AF270937							
c 954 43 1.9 519 11 BV008995 BV008995 MASC STS1 955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 Anticarsi 962 42.8 1.8 1819 8 AF17267 AF1067615 Caenorhab c 963 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 100999 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
955 43 1.9 1350 6 CQ759477 CQ759477 Sequence 956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 Articarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 168753 9 AC006120 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
956 43 1.9 1440 8 AF190634 AF190634 Nicotiana 957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 Anticarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
957 43 1.9 110000 1 AE017180_09 Continuation (10 o 958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 Articarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
958 43 1.9 142376 8 AF503433 AF503433 Sorghum b 959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 AF313417 AF117267 Malus dom 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
959 42.8 1.8 1476 6 AX653505 AX653505 Sequence 960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 Anticarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 Sequence						_	
960 42.8 1.8 1597 8 AK068878 AK068878 Oryza sat 961 42.8 1.8 1637 14 AF313417 AF313417 AF313417 Anticarsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
961 42.8 1.8 1637 14 AF313417 AF313417 AF313417 AF11carsi 962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 Sequence							-
962 42.8 1.8 1819 8 AF117267 AF117267 Malus dom c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							-
c 963 42.8 1.8 35033 3 AF067615 AF067615 Caenorhab c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							•
c 964 42.8 1.8 100999 14 AF270937 AF270937 Plutella c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence	•						
c 965 42.8 1.8 124526 8 AC146585 AC146585 Medicago 966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
966 42.8 1.8 131689 9 AC010588 AC010588 Homo sapi 967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
967 42.8 1.8 161658 9 AC008505 AC008505 Homo sapi c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
c 968 42.8 1.8 168753 9 AC006120 AC006120 Homo sapi c 969 42.8 1.8 276829 2 AC006741 AC006741 Caenorhab 970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
c 96942.81.8 2768292 AC006741AC006741 Caenorhab97042.61.8 4325 PFL291986AJ291986 Platichth97142.61.8 13686 AX766275AX766275 Sequence							-
970 42.6 1.8 432 5 PFL291986 AJ291986 Platichth 971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							-
971 42.6 1.8 1368 6 AX766275 AX766275 Sequence							
912 42.6 1.8 1760 8 AKU99049 AKU99049 Oryza sat							
		912	42.6	1.8 1/60	ď	ANU99U49	AKU99U49 Oryza sat

	42.6	1.8 1761	8 AK066462	7KUCC163 0x111
973		1.0 1/01	0 ANUUU402	AK066462 Oryza sat
974	42.6	1.8 2025	6 AR152488	AR152488 Sequence
975	42.6	1.8 2025	6 BD005789	BD005789 Biologica
976	42.6	1.8 2025	14 HZU89958	U89958 Helicoverpa
977	42.6	1.8 2505	14 AF503939	AF503939 Helicover
978	42.6	1.8 27908	3 CET04H1	Z78200 Caenorhabdi
979	42.6	1.8 31495	14 AF275264	AF275264 Helicover
c 980	42.6	1.8 84203	8 AC005106	AC005106 Genomic s
c 981	42.6	1.8 87577	2 BX640459	BX640459 Danio rer
982	42.6	1.8 114078	2 BX640498	BX640498 Danio rer
c 983	42.6	1.8 121889	5 BX255952	BX255952 Zebrafish
c 984	42.6	1.8 122128	8 CNSO7YPV	AL731761 Oryza sat
985	42.6	1.8 130759	14 AF303045	AF303045 Helicover
986	42.6	1.8 130869	14 AF334030	AF334030 Helicover
987	42.6	1.8 131403	14 AF271059	AF271059 Heliocove
c 988	42.6	1.8 158158	8 AC146522	AC146522 Oryza sat
989	42.6	1.8 195190	2 AC110843	AC110843 Rattus no
c 990	42.6	1.8 246998	2 CR450707	CR450707 Danio rer
991	42.6	1.8 250621	2 CR792433	CR792433 Danio rer
992	42.4	1.8 121	6 AX266625	AX266625 Sequence
c 993	42.4	1.8 121	6 AX266626	AX266626 Sequence
994	42.4	1.8 1410	6 AX211623	AX211623 Sequence
c 995	42.4	1.8 1410	6 AX211625	AX211625 Sequence
996	42.4	1.8 1410	6 AX720222	AX720222 Sequence
997	42.4	1.8 1410	6 AX766274	AX720222 Sequence AX766274 Sequence
998	42.4	1.8 1410	8 AY078051	AX700274 Sequence AY078051 Arabidops
999	42.4	1.8 1428	6 AX507686	AX507686 Sequence
1000	42.4	1.8 1428	8 BT012573	BT012573 Arabidops
1000	42.4	1.8 1430	6 AX211635	
c1001	42.4	1.8 1430	6 AX211637	AX211635 Sequence
1003	42.4	1.8 1437	8 AY663786	AX211637 Sequence
1003	42.4	1.8 1560	6 AX412846	AY663786 Fragaria
1004	42.4	1.8 1563	6 AX654346	AX412846 Sequence
1005	42.4	1.8 1592	8 AF196777	AX654346 Sequence
1000	42.4	1.8 1597	8 AF367358	AF196777 Arabidops
1007	42.4	1.8 1705		AF367358 Arabidops
1008	42.4			AK099145 Oryza sat
1009	42.4	1.8 1719 1.8 1776	8 AK070110 8 AK059031	AK070110 Oryza sat
				AK059031 Oryza sat
1011	42.4 42.4	1.8 2000	6 AX655393	AX655393 Sequence
1012 c1013		1.8 91841 1.8 126497	10 AL606971	AL606971 Mouse DNA
	42.4		9 AC019044	AC019044 Homo sapi
c1014	42.4	1.8 130779	8 OSJN00283	AL731638 Oryza sat
c1015	42.4	1.8 141883	8 OSJN00271	AL731626 Oryza sat
c1016	42.4	1.8 148191	8 OSJN00067	AL606602 Oryza sat
.c1017	42.4	1.8 156649	8 AC144738	AC144738 Oryza sat
c1018	42.4	1.8 157648	2BX901886	BX901886 Danio rer
c1019	42.4	1.8 164896	2 CR762432	CR762432 Danio rer
1020	42.4	1.8 168759	8 AC079887	AC079887 Oryza sat
1021	42.4	1.8 180557	9 AC007250	AC007250 Homo sapi
c1022	42.4	1.8 197061	10 AL606914	AL606914 Mouse DNA
1023	42.4	1.8 301450	1 AP003185	AP003185 Clostridi
c1024	42.2	1.8 708	5 AF352753	AF352753 Oncorhync
1025	42.2	1.8 1734	8 AK060513	AK060513 Oryza sat
1026	42.2	1.8 2438	8 AF426026	AF426026 Piromyces
1027	42.2	1.8 11319	1 AE010792	AE010792 Methanosa
1028	42.2	1.8 40862	6 AX346975	AX346975 Sequence
1029	42.2	1.8 70746	2 AC150844	AC150844 Medicago

	c1030	42.2	1.8 75840	8	AF527807	AF527807 Sorghum b
	1031	42.2	1.8 117124	8	AP006360	AP006360 Lotus cor
	c1031	42.2	1.8 165501	2	AC147569	AC147569 Homo sapi
	1032	42.2	1.8 191821	9		-
	1033	42.2	1.8 191821	6	AC022616	AC022616 Homo sapi
		42		-	AR496501	AR496501 Sequence
	1035		1.8 408	6	AR511783	AR511783 Sequence
	1036	42	1.8 1521		AY048771	AY048771 Bombyx mc
	1037	42	1.8 1800		AR362648	AR362648 Sequence
	1038	42	1.8 2793		AR027919	AR027919 Sequence
	1039	42	1.8 2793		163351	I63351 Sequence 5
	1040	42	1.8 2793	14		M22619 Autographa
	1041	42	1.8 14613	14	NPHCUECDYS	M96361 Autographa
	c1042	42	1.8 40324	6	AX458634	AX458634 Sequence
	1043	42	1.8 50000	6	BD187788	BD187788 A virus i
	c1044	42	1.8 67884	2	AC115103	AC115103 Homo sapi
	1045	42	1.8.117951	9	AC023049	AC023049 Homo sapi
	c1046	42	1.8 119217	14	AF499596	AF499596 Phthorima
	1047	42	1.8 128413	14	NPHT3COMP	L33180 Bombyx mori
	1048	42	1.8 133894	6	A48542	A48542 Sequence 1
	1049	42	1.8 133894	14	L22858	L22858 Autographa
	1050	42	1.8 149955	14	AY077832	AY077832 Sheeppox
	1051	42	1.8 150158	8.	AC136905	AC136905 Oryza sat
	1052	42.	1.8 154298	8	AP003504	AP003504 Oryza sat
	1053	42	1.8 156514	8	AP003514	AP003514 Oryza sat
	1054	42	1.8 174183	2	AC149689	AC149689 Bos tauru
	1055	42	1.8 174500	8	AP004738	AP004738 Oryza sat
	1056	42	1.8 182726	2	AC084436	AC084436 Homo sapi
	1057	42	1.8 185592	10	AL773522	AL773522 Mouse DNA
	1058	42	1.8 320135	2	AC151850	AC151850 Takifugu
	c1059	41.8	1.8 424	6	AR495496	AR495496 Sequence
	c1060	41.8	1.8 424	6	AR510778	AR510778 Sequence
	1061	41.8	1.8 1218	6	CQ801246	CQ801246 Sequence
,	1062	41.8	1.8 1457	8	AF127218	AF127218 Forsythia
	1063	41.8	1.8 1470	6	CQ804574	CQ804574 Sequence
	1064	41.8	1.8 1470	8	BT008765	BT008765 Arabidops
	1065	41.8	1.8 1605	8	AY081339	AY081339 Arabidops
	1066	41.8	1.8 2043	8	AB013598	AB013598 Verbena h
	1067	41.8	1.8 2326	8	HVBRNZ1H	X15694 Barley bron
	1068	41.8	1.8 6174	6	CQ801273	CQ801273 Sequence
	1069	41.8	1.8 10325	6	CQ801245	CQ801245 Sequence
	1070	41.8	1.8 12134	6	CQ801279	CQ801279 Sequence
	c1071	41.8	1.8 50436		AL391258	AL391258 Human DNA
	1072	41.8	1.8 57121	2	AC084255	AC084255 Homo sapi
	1073	41.8	1.8 82139	3	AC115684	AC115684 Dictyoste
	c1074	41.8	1.8 97681	9	AL138931	AL138931 Human DNA
	1075	41.8	1.8 107200	8	AC006551	AC006551 Arabidops
•1	1075	41.8	1.8 109873	8	AP003872	AP003872 Oryza sat
•	c1077	41.8	1.8 115248	5		
					BX255908	BX255908 Zebrafish
	c1078	41.8	1.8 131158	14	AY327402	AY327402 Choriston
	1079	41.8	1.8 148544	8	AP004636	AP004636 Oryza sat
	c1080	41.8	1.8 177320	2	AL356777	AL356777 Homo sapi
	c1081	41.8	1.8 192867	9	AL358815	AL358815 Human DNA
	1082	41.8	1.8 194693	2	CR753837	CR753837 Danio rer
	c1083	41.8	1.8 233688	2	BX571949	BX571949 Danio rer
	1084	41.6	1.8 466	6	AR495991	AR495991 Sequence
	1085	41.6	1.8 466		AR511273	AR511273 Sequence
	1086	41.6	1.8 700	8	AY201033	AY201033 Arabidops

1087	41.6	1.8 132	3 6	AX653753		AX653753 Sequence
1088	41.6	1.8 148	8 0	AK118988		AK118988 Arabidops
1089	41.6	1.8 723	8 6	AX345350		AX345350 Sequence
1090	41.6	1.8 10351	.7 8	AC073395		AC073395 Arabidops
1091	41.6	1.8 11729		AC008153		AC008153 Arabidops
1092	41.6	1.8 12528		AC144345		AC144345 Medicago
c1093	41.6			AC115599		AC115599 Dictyoste
1094	41.6	1.8 16762		AC092570		AC092570 Homo sapi
c1095	41.6	1.8 19767				AC087801 Mus muscu
1096	41.6	1.8 20794				AC123945 Mus muscu
1097	41.6	1.8 21145				AL928926 Mouse DNA
c1098	41.6	1.8 21929		AC141471		AC141471 Mus muscu
1099	41.4	1.8 28		NTA538414		AJ538414 Nicotiana
1100	41.4	1.8 46		BV008994		BV008994 MASC STS1
1101	41.4	1.8 52				
1101	41.4			BT005494	•	BV009008 MASC_STS1
	41.4					BT005494 Arabidops
1103		1.8 143		AX211619	•	AX211619 Sequence
1104	41.4	1.8 150		AY084687		AY084687 Arabidops
1105	41.4	1.8 158		AK071127		AK071127 Oryza sat
1106	41.4	1.8 161		BT004159		BT004159 Arabidops
1107	41.4	1.8 3732		U97009		U97009 Caenorhabdi
1108	41.4	1.8 3895		CEAC3		Z71177 Caenorhabdi
1109	41.4	1.8 4570		AC099412		AC099412 Homo sapi
1110	41.4	1.8 4586		AC145456		AC145456 Cicer ari
c1111	41.4	1.8 7512		AB025604		AB025604 Arabidops
1112	41.4	1.8 13887		AP005659		AP005659 Oryza sat
1113	41.4	1.8 14598		AC024059		AC024059 Homo sapi
c1114	41.4	1.8 16158		AC090179		AC090179 Homo sapi
c1115	41.4	1.8 18199		AC068322		AC068322 Homo sapi
1116	41.4	1.8 19580		AC027243		AC027243 Homo sapi
c1117	41.4	1.8 21525		AC105505		AC105505 Rattus no
1118	41.4	1.8 23688		AC125831		AC125831 Rattus no
1119	41.4	1.8 24848		AC095253		AC095253 Rattus no
1120	41.2	1.8 137		CQ805414		CQ805414 Sequence
1121	41.2	1.8 137	4 6	AX506881		AX506881 Sequence
1122	41.2	1.8 137	4 6	AX651852		AX651852 Sequence
1123	41.2	1.8 140	5 8	AY117218		AY117218 Arabidops
1124	41.2	1.8 161	.7 8	AY056277		AY056277 Arabidops
1125	41.2	1.8 173	2 8	AK099055		AK099055 Oryza sat
1126	41.2	1.8 178	5 8	AK071953		AK071953 Oryza sat
1127	41.2	1.8 468	6 6	AX654735		AX654735 Sequence
1128	41.2	1.8 782	9 6	AX251889		AX251889 Sequence
1129	41.2	1.8 782	9 6	AX344283		AX344283 Sequence
1130	41.2	1.8 782		AX346007		AX346007 Sequence
1131	41.2	1.8 782		AX348698		AX348698 Sequence
1132 منحد	41.2	1.8 1071		AX345795	Bioleti d	AX345795 Sequence
c1133	41.2	1.8 1428		AF439352	•	AF439352 Choriston
1134	41.2	1.8 2476		CET07C5		Z50006 Caenorhabdi
c1135	41.2	1.8 10066		AC006533		AC006533 Arabidops
c1136	41.2	1.8 11206		AC109596		AC109596 Oryza sat
c1137	41.2	1.8 12413		AC016335		AC016335 Homo sapi
1138	41.2	1.8 12875		AC013587		AC013587 Homo sapi
1139	41.2	1.8 12956		AC087302	•	AC013307 Homo sapi
c1140	41.2	1.8 13335		AC108499	•	AC108499 Oryza sat
c1140	41.2	1.8 13871			·	AL929416 Mouse DNA
1142		1.8 15989		AL929416 AP004864		
1142	41.2 41.2	1.8 16162		AP004864 AP001493		AP0014864 Oryza sat
1142	41.2	1.0 10102	7 4	AF 001433		AP001493 Homo sapi

	c1144	41.2	1.8	167580	2	AC146124	AC146124 Pan trogl
•	c1145	41.2	1.8	167932	2	AC068133	AC068133 Homo sapi
	c1146	41.2	1.8	170270	2	AP001548	AP001548 Homo sapi
	1147	41.2	1.8	170413	2	AC090405	AC090405 Homo sapi
	c1148	41.2	1.8	172655	2	AC104203	AC104203 Mus muscu
	c1149	41.2	1.8	174463	5	BX511007	BX511007 Zebrafish
	1150	41.2		174645	9	AC091111	AC091111 Homo sapi
	1151	41.2		175850	2	AP001399	AP001399 Homo sapi
	1152	41.2		180915	8	GTAJ10592	AJ010592 Guillardi
	1153	41.2		186150	2	AP001544	AP001544 Homo sapi
	1154	41.2		188800	2	AC015846	AC015846 Homo sapi
	c1155	41.2		194487	2	AP002896	AP002896 Homo sapi
	c1156	41.2		202699	2	BS000628	BS000628 Pan trogl
	c1157	41.2		204120	8	AY661659	AY661659 Sorghum b
	1158	41.2		204340	9	AC091103	AC091103 Homo sapi
	1159	41.2		209710	9	CNS01DXF	AL139296 Human chr
	1160	41.2		230714	9	AC147345	AC147345 Pan trogl
	1161	41.2		271793	2	BX572620	BX572620 Danio rer
	c1162	41.2		291421	2	AC132939	AC132939 Mus muscu
	1163	41	1.8	1423	8	AY519364	AY519364 Citrus si
	1164	41	1.8	1479	6	AX653930	AX653930 Sequence
	1165	41	1.8	2000	6	AX656007	AX656007 Sequence
	1166	41	1.8	2111	14	AF000009	AF000009 Heliothis
	c1167	41		110000	2	CR388160 1	Continuation (2 of
	c1168	41		135507	9	AL590733	AL590733 Human DNA
	1169	41		146885	2	BX957322	BX957322 Danio rer
	1170	41		159419	5	AC144823	AC144823 Danio rer
	c1171	41		162134	2	AC022478	AC022478 Homo sapi
	1172	41		172614	9	AL929302	AL929302 Human DNA
	1173	41		173411	9	AC092754	AC092754 Homo sapi
	1174	41		176202	9	CNS05TF3	AL359951 Human chr
	1175	41		187429	9	AC092755	AC092755 Homo sapi
	c1176	41		208770	2	CR388155	CR388155 Danio rer
	1177	41		216567	2	BX927074	BX927074 Danio rer
	1178	41		229637		CR556716	CR556716 Danio rer
	1179	40.8	1.8	1361	8	AB070749	AB070749 Vigna ang
	1180	40.8	1.8	1398	6	AX653340	AX653340 Sequence
	1181	40.8	1.8	1415	8	MECGT1	X77459 M.esculenta
	c1182	40.8	1.8	1581	8	AK120020	AK120020 Oryza sat
	1183	40.8	1.8	1586	8	AK064270	AK064270 Oryza sat
	1184	40.8	1.8	1656	8	AK068040	AK068040 Oryza sat
	c1185	40.8	1.8	1706	8	AK108055	AK108055 Oryza sat
	1186	40.8	1.8	1962	8	AK063325	AK063325 Oryza sat
	c1187	40.8	1.8	7554	3	AY160096	AY160096 Dictyoste
	c1188	40.8	1.8	16841	9	AB044136	AB044136 Homo sapi
	1189	4.0.8	1.8	36846	2	AC149390	AC149390 Phakopsor
	c1190	40.8	1.8	59940	2	AC024414	AC024414 Homo sapi
	1191	40.8	1.8	70204	9	AC010737	AC010737 Homo sapi
	1192	40.8	1.8	77204	8	AB046438	AB046438 Arabidops
	c1193	40.8	1.8	84705	3	CEY48E1B	Z93393 Caenorhabdi
	1194	40.8	1.8	97352	8	AC091670	AC091670 Oryza sat
	1195	40.8		102230	8	AP004045	AP004045 Oryza sat
	c1196	40.8		121501	8	AC069557	AC069557 Genomic S
	1197	40.8		132558	3	AC025716	AC025716 Caenorhab
	c1198	40.8		133476	9	AC008804	AC008804 Homo sapi
	c1199	40.8		133889	8	AC133334	AC133334 Oryza sat
	c1200	40.8		149972	2	AC101817	AC101817 Mus muscu
					-	· ·	Alabara Alabara

12	01 40.8	3 1.8	153297	2	AC027558		AC027558 Homo sapi
. 12	02 40.8	3 1.8	178376	.8	AP005008		AP005008 Oryza sat
c12	03 40.8	3 1.8	190666	2	AY245865		AY245865 Homo sapi
12	04 40.8	3 1.8	198845	5	BX510333		BX510333 Zebrafish
12			203595	2	CR385054	•	CR385054 Danio rer
12			247275	10			AC100736 Mus muscu
c12			274626	2	AC006903		AC006903 Caenorhab
. 12			340801	2	AC006751		AC006751 Caenorhab
c12			348174	3	CR382399		CR382399 Plasmodiu
c12			349960	6	AX573241		AX573241 Sequence
12:				8	AB098614	•	-
12:				3	DDI012088		AB098614 Glycyrrhi
12:				э 9			AJ012088 Dictyoste
				-	AL356984		AL356984 Human DNA
c12:			110000	2	PFMAL13_04		Continuation (5 of
c12:			143291	9	HS163G9		AL008733 Human DNA
c12:			173223	9	AP003777		AP003777 Homo sapi
12:			214480	2	AC113517		AC113517 Mus muscu
12:			222186	2	AC120362		AC120362 Mus muscu
12:			257258	2	AC105322		AC105322 Mus muscu
12:			293431	2	PFMAL13P4		AL049181 Plasmodiu
12:			349980	6	AX344551		AX344551 Sequence
12:				3	MAU42338		U42338 Meloidogyne
12:				8	BT011794		BT011794 Arabidops
122				6	AX652925		AX652925 Sequence
122				6	AX766278		AX766278 Sequence
122				8	AK110876		AK110876 Oryza sat
122	27 40.4	1 1.7	1537	8	CAR400861		AJ400861 Cicer ari
122	28 40.4	1.7	1567	8	AY625694		AY625694 Oryza sat
122			1664	8	AK061830		AK061830 Oryza sat
123	30 40.4	1.7	1686	8	AK102335		AK102335 Oryza sat
123	31 40.4	1.7	1725	8	AK064351		AK064351 Oryza sat
123	32 40.4	1.7	1779	8	AK102415		AK102415 Oryza sat
c123	33 40.4	1.7	59793	8	AB025634		AB025634 Arabidops
123	34 40.4	1.7	110000	2	PFMAL8P1_11		Continuation (12 o
123	35 40.4	1.7	132254	3	AC116330		AC116330 Dictyoste
123	36 40.4	1.7	157987	8	AP003560		AP003560 Oryza sat
123	37 40.4	1.7	211799	2	AC138229		AC138229 Mus muscu
123	38 40.4	1.7	226627	2	AC134181		AC134181 Rattus no
c123	39 40.4		230926	2	AC114457		AC114457 Rattus no
124	40.4	1.7	348034	3	CR382400		CR382400 Plasmodiu
c124	41 40.2	2 1.7	366	1	AY430162		AY430162 Helicobac
c12	42 40.2	2 1.7	366	1	AY430163		AY430163 Helicobac
c12	40.2	2 1.7	366	1	AY430165		AY430165 Helicobac
c12	40.2	2 1.7		11	BV026811		BV026811 S212P6802
124	45 40.2	2 1.7	863	8	HVU496572		AJ496572 Hordeum v
124	46 40.2	2 1,7	1383	6	CQ806198		CQ806198 Sequence
124	40.2	2 1.7	1399	8	AY128739		AY128739 Arabidops
124	48 40.2	2 1.7	1402	8	AY133752		AY133752 Arabidops
124	49 40.2	2 1.7	1418	8	AY114654		AY114654 Arabidops
125				8	AY072325		AY072325 Arabidops
125				8	AY062589		AY062589 Arabidops
125				8	AY074526		AY074526 Arabidops
12				8	AK105783		AK105783 Oryza sat
12				8	AK105966		AK105966 Oryza sat
125				8	AK119530		AK119530 Oryza sat
125				3	AF025468		AF025468 Caenorhab
c12				9	AC114311		AC114311 Homo sapi
			20120	-			TIGET TO THE SUPE

c1258	40.2	1 7	98101	0	AMEQUAL O	NT 201141 North 2 days
				8	ATF2K13	AL391141 Arabidops
1259	40.2		104305	8	AC140022	AC140022 Medicago
1260	40.2		107014	8	OSJN00218	AL663021 Oryza sat
c1261	40.2	1.7	107014	8	OSJN00218	AL663021 Oryza sat
1262	40.2	1.7	108530	5	BX247884	BX247884 Zebrafish
1263	40.2	1.7	109918	9	AC114279	AC114279 Homo sapi
c1264	40.2		110000	2	AC115142 0	AC115142 Rattus no
c1265	40.2		123500	14	U53466	U53466 Cydia pomon
c1266	40.2		129563	8	OSJN00008	AL606443 Oryza sat
c1267	40.2		140691	9	AF159056	
1268	40.2					AF159056 Homo sapi
			143036	2	AC015498	AC015498 Homo sapi
c1269	40.2		143205	8	AC093018	AC093018 Oryza sat
1270	40.2		145427	5	BX276112	BX276112 Zebrafish
1271	40.2		149662	14	AY077834	AY077834 Sheeppox
1272	40.2	1.7	150057	14	AY077833	AY077833 Sheeppox
1273	40.2	1.7	152009	2	AC010802	AC010802 Homo sapi
c1274	40.2	1.7	156814	8	AP005004	AP005004 Oryza sat
1275	40.2	1.7	162281	9	AC105395	AC105395 Homo sapi
1276	40.2	1.7	171816	9	AC006033	AC006033 Homo sapi
1277	40.2		171926	2	AC144073	AC144073 Macaca mu
1278	40.2		173218	2	AP004686	AP004686 Oryza sat
1279	40.2		173219	2	BX897738	BX897738 Danio rer
c1280	40.2		189631	2	AC009920	AC009920 Homo sapi
c1281	40.2		191935	2	AC114747	
c1282	40.2					AC114747 Homo sapi
			198944	8	ATCHRIV38	AL161538 Arabidops
c1283	40.2		199138	2	CR450798	CR450798 Danio rer
c1284	40.2		200576	8	ATFCA0	Z97335 Arabidopsis
1285	40.2		203114	2	AC011818	AC011818 Homo sapi
c1286	40.2		229726	2	AC109699	AC109699 Rattus no
1287	40.2		235614	2	CR450721	CR450721 Danio rer
c1288	40.2		280915	2	AC112104	AC112104 Rattus no
1289	40.2	1.7	349980	6	AX344566	AX344566 Sequence
1290	40	1.7	1219	8	AK068336	AK068336 Oryza sat
1291	40	1.7	1350	6	AX653931	AX653931 Sequence
1292	40	1.7	1377	8	BT002638	BT002638 Arabidops
1293	40	1.7	1411	8	BT000356	BT000356 Arabidops
1294	40	1.7	1457	6	AX211618	AX211618 Sequence
1295	40	1.7	1562	8	AY120731	AY120731 Arabidops
1296	40	1.7	1572	8	AY048297	AY048297 Arabidops
1297	40	1.7	1661	8		
1298	40	1.7	1686		AK105967	AK105967 Oryza sat
1299	40			8	AK060997	AK060997 Oryza sat
		1.7	1696	8	AK103242	AK103242 Oryza sat
1300	40	1.7	1842	8	AK106302	AK106302 Oryza sat
c1301	40	1.7	2026	8	AK117305	AK117305 Arabidops
1302	40	1.7	6029	6	AX346895	AX346895 Sequence
. 1303	40	1.7	7631		AX345762	AX345762 Sequence
1304	40	1.7	8576	6	AX347130	AX347130 Sequence
1305	40	1.7	10716	6	AX346320	AX346320 Sequence
c1306	40	1.7	11985	9	BX322534	BX322534 Human DNA
1307	40	1.7	17389	6	AX346316	AX346316 Sequence
1308	40	1.7	27332	3	CER11A8	Z70310 Caenorhabdi
1309	40	1.7	34548	6	AX349036	AX349036 Sequence
1310	40	1.7	84985	1	SNA278573	AJ278573 Streptomy
1311	40	1.7	94555	9	AL589684	AL589684 Human DNA
1312	40	1.7	97033	2	AC015146	
c1313	40		100815	8		AC015146 Drosophil
1314					ATF12A12	AL133314 Arabidops
1314	40	1./	104071	2	AL162260	AL162260 Homo sapi

1315	40	1.7	110000	2	AC120698 0	AC120698 Rattus no
1316	40		110000	2	AC120698 1	Continuation (2 of
c1317	40		110000	2	BX276116 07	Continuation (8 of
c1318	40		110000	2	BX276116 08	Continuation (9 of
1319	40		110000	3	AC116984 1	Continuation (2 of
1320	40		143508	9	HSJ570L12	AL049589 Human DNA
1321	40		160366	3	AC069457	AC069457 Drosophil
1322	40		160776	2	AC137960	AC137960 Mus muscu
1323	40		168438	2		
					AC024632	AC024632 Homo sapi
1324	40		168953	9	AL360219	AL360219 Human DNA
c1325	40		178433	9	CNS01RHH	AL161752 Human chr
1326	40		180574	9	AC092807	AC092807 Homo sapi
1327	40		181927	3	AC010573	AC010573 Drosophil
c1328	40		182963	2	AC116815	AC116815 Mus muscu
c1329	40		184470	9	AL589823	AL589823 Human DNA
c1330	40		220897	2	AL954635	AL954635 Homo sapi
c1331	40		226142	2	AC126422	AC126422 Mus muscu
c1332	40		243348	2	AC150646	AC150646 Bos tauru
1333	40		246640	2	AC108286	AC108286 Rattus no
c1334	40		265352	2	AC095748	AC095748 Rattus no
1335	40		278708	3	AE003535	AE003535 Drosophil
c1336	40	1.7	300050	1	AP004171	AP004171 Mycoplasm
1337	40	1.7	349980	6	AX344552 ·	AX344552 Sequence
c1338	39.8	1.7	289	· 6	AR162089	AR162089 Sequence
c1339	39.8	1.7	289	6	AR166614	AR166614 Sequence
1340	39.8	1.7	993	8	MECGT7	X77464 M.esculenta
1341	39.8	1.7	1371	6	AX412848	AX412848 Sequence
1342	39.8	1.7	1371	6	AX506822	AX506822 Sequence
1343	39.8	1.7	1371	6	AX766276	AX766276 Sequence
1344	39.8	1.7	1371	8	BT000622	BT000622 Arabidops
1345	39.8	1.7	1371	8	BT005368	BT005368 Arabidops
1346	39.8	1.7	1407	6	AX653241	AX653241 Sequence
1347	39.8	1.7	1437	6	AX211638	AX211638 Sequence
c1348	39.8	1.7	1437	6	AX211640	AX211640 Sequence
1349	39.8	1.7	1451	6	AX211616	AX211616 Sequence
1350	39.8	1.7	1494	6	AX211622	AX211622 Sequence
1351	39.8	1.7	1498	8	BT002579	BT002579 Arabidops
1352	39.8	1.7	1516	8	AK118431	AK118431 Arabidops
1353	39.8	1.7	1559	8	AY125506	AY125506 Arabidops
1354	39.8	1.7	1687	8	AY062668	AY062668 Arabidops
c1355	39.8	1.7	1702	3	PFAHGPTA	M88110 Plasmodium
1356	39.8	1.7	2559	6	AX766273	AX766273 Sequence
1357	39.8	1.7	2817	14		AF052502 Epiphyas
c1358	39.8	1.7	11086	1	AE010596	AE010596 Fusobacte
1359 ·	39.8	1.7	60193	9	AL359705	AL359705 Human DNA
c1360	39.8	1.7	73184	2	AC0908.6.4	AC090864 Homo sapi
c1361	39.8	1.7	79991	2	AC108505	AC108505 Oryza sat
c1362	39.8	1.7	87637	9	AL390960	AL390960 Human DNA
c1363	39.8		104001	8	AC023628	AC023628 Arabidops
1364	39.8		107139	2	AL360223	AL360223 Homo sapi
1365	39.8		108881	8	AC002391	AC002391 Arabidops
1366	39.8		109659	2	AC151499	AC151499 Dasypus n
c1367	39.8		110000	2	AC116234 1	Continuation (2 of
1368	39.8		118584	14	AY043265	AY043265 Epiphyas
1369	39.8		124186	9	AL772392	AL772392 Human DNA
1370	39.8		144572	5	BX322794	BX322794 Zebrafish
1370	39.8		146782	2	AC127599	AC127599 Rattus no
10/1	. 33.0	1.7	170/02	<u>د</u>	1.012 (3)3	ACIZIOSS NACCUS IIO

			*				
c1372	39.8	1.7	153576	2	AC020572		AC020572 Homo sapi
1373	39.8		162605	2	AC068698		AC068698 Homo sapi
c1374	39.8		163088	9	AC097654		AC097654 Homo sapi
1375	39.8		163364	2	AC116241		AC116241 Rattus no
c1376	39.8		180005	2	AC136070		AC136070 Rattus no
c1377	39.8		187651	8	AC129718		AC129718 Oryza sat
c1378	39.8		189139	2	AC122947		AC122947 Rattus no
c1379	39.8		198635	2	AC121182		AC121182 Rattus no
1380	39.8		201427	2	AC127843		AC127843 Rattus no
c1381	39.8		213678	2	AC137173		AC137173 Rattus no
c1382	39.8		215675	2	AC123264		AC123264 Rattus no
c1383	39.8		220283	2	AC103391		AC103391 Mus muscu
c1384	39.8		221631	9	AC010867		AC010867 Homo sapi
c1385	39.8		224818	2	AC111839		AC111839 Rattus no
c1386	39.8		231770	2	AC109171		AC109171 Mus muscu
1387	39.8		238637	2	AC092254		AC092254 Mus muscu
1388	39.8		245515	2	AC151275		AC151275 Mus muscu
1389	39.8		245795	2	AC096419		AC096419 Rattus no
1390	39.8		249487	2	AC095161		AC095161 Rattus no
1391	39,8		250178	2	AC118121		AC118121 Rattus no
c1392	39.8		253188	2	AC098354		AC098354 Rattus no
1393	39.8		273729	2	AC106147		AC106147 Rattus no
c1394	39.8		277363	2	AC134745		AC134745 Rattus no
1395	39.8		286451	2	AC115130		AC115130 Rattus no
c1396	39.8		299467	2	AC120784	•	AC120784 Mus muscu
1397	39.6	1.7	1231	1	AY234840		AY234840 Staphyloc
1398	39.6	1.7	1368	14	AF166115		AF166115 Potato vi
1399	39.6	1.7	1387	8	AY117336		AY117336 Arabidops
1400	39.6	1.7	1419	6	AX653260		AX653260 Sequence
1401	39.6	1.7	1433	6	AX211617		AX211617 Sequence
1402	39.6	1.7	1443	14	PVYDNA0		Z50042 Potato viru
1403	39.6	1.7	1443	14	PVYDNA1		Z50041 Potato viru
1404	39.6	1.7	1443	14	PVYDNAONA		Z50043 Potato viru
1405	39.6	1.7	1596	8	AY084880		AY084880 Arabidops
1406	39.6	1.7	1689	8	AY080716		AY080716 Arabidops
1407	39.6	1.7	1980	14	BSU61154		U61154 Buzura supp
c1408	39.6	1.7	5858	3	AF350276		AF350276 Nephila m
1409	39.6	1.7	6104	6	AX346269		AX346269 Sequence
c1410	39.6	1.7	8004	6			CQ588884 Sequence
1411	39.6	1.7	8033	3	PPINMP		Y13117 Paramecium
c1412	39.6	1.7	8736	6	CQ588875		CQ588875 Sequence
1413	39.6	1.7	9958	3	AF246689		AF246689 Dictyoste
1414	39.6	1.7	12500	3	AF482381		AF482381 Dictyoste
1415	39.6	1.7	15052	1	AF055579		AF055579 Streptomy
c1416	39.6	1.7	34919	3	AF100663	•	AF100663 Caenorhab
c1417	39.6	1.7	37225	9	AC005954	mg/3+2*sam	AC005954 Homo sapi
1418	39.6	1.7	49817	2	AC013939		AC013939 Drosophil
1419	39.6	1.7	50937	6	AR159871		AR159871 Sequence
c1420	39.6	1.7	53920	9	AC116423	•	AC116423 Homo sapi
1421	39.6	1.7	71225	9	AL358196		AL358196 Human DNA
1422	39.6	1.7	74492	8	AY350713		AY350713 Capsella
c1423	39.6	1.7	83528	8	AP005695		AP005695 Oryza sat
c1424	39.6	1.7	85916	3	AC117080		AC117080 Dictyoste
c1425	39.6		103908	2	AC150245		AC150245 Medicago
c1426	39.6		128018	2	BX890615		BX890615 Danio rer
c1427	39.6		138158	5	BX005232		BX005232 Zebrafish
1428	39.6		139147	2	AC006725		AC006725 Caenorhab

•

c1429	39.6	1.7 1	48397	2	CR751563	CR751563 Danio rer	
1430	39.6	1.7 1	50876	2	AC108761	AC108761 Oryza sat	
1431	39.6	1.7 1	54082	2	AC108756	AC108756 Oryza sat	
c1432	39.6	1.7 1	54195	2	AC013641	AC013641 Homo sapi	
c1433	39.6	1.7 1	67195	3	AC007808	AC007808 Drosophil	
1434	39.6	1.7 1	70425	5	BX465867	BX465867 Zebrafish	
1435	39.6	1.7 1	79399	5	AL929338	AL929338 Zebrafish	
c1436	39.6	1.7 1	85672	2	BX640474	BX640474 Danio rer	
1437	39.6	1.7 1	87495	9	AC026887	AC026887 Homo sapi	
1438	39.6	1.7 1	88638	2	CR759889	CR759889 Danio rer	
1439	39.6	1.7 2	10700	2	AC103382	AC103382 Mus muscu	
1440	39.6	1.7 2	12134	2	AC024037	AC024037 Homo sapi	
1441	39.6	1.7 2	12499	2	CR626887	CR626887 Danio rer	
c1442	39.6	1.7 2	15210	2	CR749744	CR749744 Danio rer	
1443	39.6	1.7 2	19892	2	AC127200	AC127200 Rattus no	
1444	39.6	1.7 2	20817	2	AC113854	AC113854 Rattus no	
1445	39.6	1.7 2	26092	2	AC107090	AC107090 Rattus no	
c1446	39.6	1.7 2	33220	2	AC098058	AC098058 Rattus no	
1447	39.6	1.7 2	54633	2	CR762389	CR762389 Danio rer	
1448	39.6	1.7 2	54733	3	AC117075	AC117075 Dictyoste	
c1449	39.6	1.7 2	54961	3	AE003706	AE003706 Drosophil	
1450	39.6	1.7 2	69863	2	AC131017	AC131017 Rattus no	
1451	39.4	1.7	640	6	AX652149	AX652149 Sequence	
1452	39.4	1.7	1437	6	AX211602	AX211602 Sequence	
1453	39.4	1.7	1437	6	AX651766	AX651766 Sequence	
1454	39.4	1.7	1479	8	AB191246	AB191246 Dianthus	
1455	39.4	1.7	1918	8	AK102481	AK102481 Oryza sat	
c1456	39.4	1.7	1921	6	CQ577878	CQ577878 Sequence	
c1457	39.4	1.7	2055	8	AK106646	AK106646 Oryza sat	
c1458	39.4	1.7	2534	3	BT001649	BT001649 Drosophil	
1459	39.4	1.7	4141	6	CQ577877	CQ577877 Sequence	
1460	39.4	1.7	6636	6	AX344615	AX344615 Sequence	
1461	39.4	1.7	11155	6	AX345507	AX345507 Sequence	
c1462	39.4	1.7	38801	3	CEK09B11	Z83114 Caenorhabdi	
c1463	39.4	1.7	39329	9	AC004091	AC004091 Human Cos	
c1464	39.4	1.7	43644	9	AC004092	AC004092 Human Cos	
1465	39.4	1.7	47108	6	AX344507	AX344507 Sequence	
c1466	39.4	1.7	60220	, 3	AC115604	AC115604 Dictyoste	
c1467	39.4	1.7	74630	9	AL157903	AL157903 Human DNA	
c1468	39.4		87501	8	CR380951 6	Continuation (7 of	
c1469	39.4	1.7	99699	2	AC013845	AC013845 Drosophil	
c1470	39.4	1.7 1	17099	8	AP003572	AP003572 Oryza sat	
c1471	39.4	1.7 1	27131	8	AC146819	AC146819 Medicago	
c1472	39.4	1.7 1	28223	8	AP005643	AP005643 Oryza sat	
c1473	39.4	1.7 1	31734	2	CR792420	CR792420 Danio rer	
1474	39.4	1.7 1	36471	8	AP003622	AP003622 Oryza sat	
1475	39.4	1.7 1	38850	8	AC133341	AC133341 Medicago	
1476	39.4	1.7 1	40757	9	AL157778	AL157778 Human DNA	
c1477	39.4	1.7 1	44022	5	BX088594	BX088594 Zebrafish	
c1478	39.4	1.7 1		8	AP003217	AP003217 Oryza sat	
1479	39.4	1.7 1	47640	2	AP003542	AP003542 Oryza sat	
1480	39.4	1.7 1		8	AP005934	AP005934 Oryza sat	
c1481	39.4	1.7 1	60285	2	CR848001	CR848001 Danio rer	
1482	39.4	1.7 1		2	CR352217	CR352217 Danio rer	
1483	39.4	1.7 1		2	CR376767	CR376767 Danio rer	
1484	39.4	1.7 1		3	AC023706	AC023706 Drosophil	
c1485	39.4	1.7 1		8	AP003435	AP003435 Oryza sat	
						-	

1486	39.4	1.7 177743	9	AC105941	_	AC105941		-				
c1487	39.4	1.7 183648	3	AC117081	•	AC117081	Dictyos	te				
c1488	39.4	1.7 186739	9	AC072028		AC072028	Homo sa	pi				
1489	39.4	1.7 189441	2	AC022989		AC022989	Homo sa	pi				
c1490	39.4	1.7 190930	2	BX936353		BX936353	Danio r	er				
1491	39.4	1.7 191590	3	AC023722		AC023722	Drosoph	il				
c1492	39.4	1.7 192634	2	AC069466		AC069466	_					
	39.4	1.7 197419	8	ATCHRIV41		AL161541	Arabido	ps				
	39.4	1.7 198019	5	BX469910		BX469910		_				
	39.4	1.7 198946	10			AL844548						
	39.4	1.7 200252	8	ATFCA3		Z97338 Ar						
	39.4	1.7 205225	2	CR812896		CR812896						
	39.4	1.7 216131	5	BX005004		BX005004						
	39.4	1.7 224731										
				AC105545	AC105545 Rattus n AE014828 Plasmodi							
1500	39.4	1.7 273275	3	AE014828		AE014828	Plasmod	lıu				
				AT TONNENIE	.a							
				ALIGNMENT	S							
RESULT 1												
AX697213	311601	7010						0000				
LOCUS	AX69			2320 bp	DNA		02-APR-	2003				
DEFINITION		ence 281 from	Pat	tent WO007896	1. ,	,						
ACCESSION	AX69											
VERSION	AX69	7213.1 GI:29	4981	151								
KEYWORDS	•											
SOURCE	Homo	sapiens (hum	an)									
ORGANISM		sapiens										
	Euka	ryota; Metazo	a; (Chordata; Cra	niata; Ve	rtebrata; Eute	eleostom	u;				
						Hominidae; Hom						
REFERENCE	1											
AUTHORS	Ferr	ara,N., Stewa	rt,	Γ.A., William	s,P.M., B	aker, K.P., Des	novers,	L.,				
						Fong, S., Godo						
						s,D., Wood,W.I						
						y,M.A. and Wat		ĸ				
TITLE						d nucleic acid						
11100	the		Silici	morane porype	perdes an	d Hucherc acre	is encou	iriig				
JOURNAL	Pate	nt: WO 007896	1-A	281 28-DEC-2	000;							
•	Gene	ntech Inc. (U	S)									
FEATURES		Location		alifiers								
sourc	:e	12320	, 2									
	_		m="F	Homo sapiens"								
				inassigned DN								
				axon:9606"	A							
ORIGIN			— L	1X011. J000								
OKIGIN		Appropriate - 1					a month o					
Query Ma	tch	100	ne.	: Score 2320	; DB 6;	Length 2320;						
_						Length 2320;						
		ilarity 100				- 1 3 O	_	_				
Matches	2320;	Conservative		0; Mismatch	es 0;	Indels 0;	Gaps	0;				
0	1							60				
QУ						AGATCCGCGGCTTC		60				
_,												
Db	1 AG	GGTCCCTTAGCCG	GGC	GCAGGGCGCGCAG	CCCAGGCTG	AGATCCGCGGCTTC	CCGTAGA	60				
QУ						TTCCTTCTCCCTGG		120				
		1111111111111111										

AC105941 Homo sapi

39.4 1.7 177743 9 AC105941

1486

מט	91	AGTGAGCATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	120
Qy	121	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT	180
Db	121	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT	180
Qу	181	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	240
Db	181	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	240
Qу	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	300
Db	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	300
Qу	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	360
Db	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTGGA	360
Qy	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db .	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Qy	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Db	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC	600
Db	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	600
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Db	601	ÄATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Qу	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Db	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Qу	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Db	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Qу	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840 .
Db	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
Qу	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Db	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Qу	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
Db	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960

ر ده دې د

Qy	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1020
Db	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCTGCAAAGGAGATGAACAA	1020
Qу	1021	TGCCTTTGCTCACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080
Db	1021	TGCCTTTGCTCACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080
Qу	1081	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1140
Db	1081	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1140
Qу	1141	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1200
Db	1141	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1200
Qу	1201	CATCCAGCATGGTGGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACAT	1260
Db	1201	CATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACAT	1260
Qу	1261	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1320
Db	1261	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1320
Qу	1321	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1380
Db	1321	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1380
Qу	1381	GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1440
Db	1381	GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1440
Qу	1441	GATTGACCACGTCCTCCAGACAGGGGGGGGGGGGCGCACCTCAAGCCCTATGTCTTTCAGCA	1500
Db	1441	GATTGACCACGTCCTCCAGACAGGGGGGGGGGGGCGCACCTCAAGCCCTATGTCTTTCAGCA	1500
Qy	1501	GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1560
Db	1501	GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1560
Qу	1561	GACTCTATGGCTTTGTGGGAAGCTGCTGGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1620
Db	1561	GACTCTATGGCTTTGTGGGAAGCTGCTGGGGCCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1620
Qу	1,621	AAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1680
Db	1621	AAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1680
Qу	1681	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1740
Db	1681	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1740
Qу	1741	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1800
Db	1741	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1800

.

•

Qy Db		ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCTAGCAGAAATCTTTCCAGTCCT 1860										
Qy	186	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT 1920										
Db		CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT 1920										
Qу	192	L TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT										
Db	192	TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT										
Qу	198	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2040										
Db	1983	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2040										
Qу	204	TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2100										
Db	204	TGCCCCTACTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2100										
Qу	210	TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2160										
Db	210											
Qу	216	AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2220										
Db	216											
Qy	2221	CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280										
Db	2221	CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280										
QУ	2281	AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTCACTAA 2320										
Db	2281											
RESULT 2 AY358416 LOCUS DEFINITION ACCESSION VERSION	ON F N A	AY358416 2320 bp mRNA linear PRI 03-OCT-2003 Iomo sapiens clone DNA71169 glucuronosyltransferase (UNQ842) mRNA, complete cds. AY358416 AY358416.1 GI:37181956										
KEYWORDS SOURCE	I	CLI_CDNA. Iomo sapiens_(human)										
ORGANI	E	Iomo sapiens Cukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;										
REFERENC: AUTHOR	E 1 S C I I I	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 2320) Clark, H. F., Gurney, A. L., Abaya, E., Baker, K., Baldwin, D., Brush, J., Chen, J., Chow, B., Chui, C., Crowley, C., Currell, B., Deuel, B., Dowd, P., Eaton, D., Foster, J., Grimaldi, C., Gu, Q., Hass, P.E., Heldens, S., Huang, A., Kim, H.S., Klimowski, L., Jin, Y., Johnson, S., Lee, J., Lewis, L., Liao, D., Mark, M., Robbie, E., Sanchez, C., Schoenfeld, J., Seshagiri, S., Simmons, L., Singh, J., Smith, V., Stinson, J., Vagts, A., Vandlen, R., Watanabe, C., Wieand, D., Woods, K.,										

```
Xie, M.H., Yansura, D., Yi, S., Yu, G., Yuan, J., Zhang, M., Zhang, Z.,
            Goddard, A., Wood, W.I. and Godowski, P.
   TITLE
            The Secreted Protein Discovery Initiative (SPDI), a Large-Scale
            Effort to Identify Novel Human Secreted and Transmembrane Proteins:
            A Bioinformatics Assessment
            Genome Res. 13 (10), 2265-2270 (2003)
   JOURNAL
            12975309
    PUBMED
 REFERENCE
            2 (bases 1 to 2320)
            Clark, H.F.
   AUTHORS
   TITLE
            Direct Submission
            Submitted (01-AUG-2003) Department of Bioinformatics, Genentech,
   JOURNAL
            Inc., 1 DNA Way, South San Francisco, CA 94080, USA
 FEATURES
                   Location/Qualifiers
                   1. .2320
      source
                   /organism="Homo sapiens"
                   /mol type="mRNA"
                   /db xref="taxon:9606"
                   /clone="DNA71169"
                   1. .2320
      gene
                   /locus tag="UNQ842"
                   68. .1\overline{6}39
      CDS
                   /locus tag="UNQ842"
                   /note="PRO1780"
                   /codon start=1
                   /product="glucuronosyltransferase"
                   /protein id="AAQ88782.1"
                   /db xref="GI:37181957"
                   /translation="MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQ
                   ILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLG
                   GRGKFENLLNVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGK
                   PFVAILSTSFGSLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRROOHMO
                   STFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPI
                   KPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCS
                   HWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFG
                   DQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLS
                   PTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLTLGTLWLCGKLLG
                   MAVWWLRGARKVKET"
 ORIGIN
   Query Match
                        100.0%;
                               Score 2320; DB 9;
                                                Length 2320;
   Best Local Similarity
                       100.0%;
                               Pred. No. 0;
   Matches 2320; Conservative
                             0; Mismatches
                                             0;
                                                Indels
                                                         0;
                                                            Gaps
                                                                   0;
            1 AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
 Qy
             1 AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
.....Db
 Qу
           Db
 Qy
          121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180
             Db
          121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180
          181 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 240
 Qу
```

Db	181	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	240
Qy	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	300
Db	241		300
Qy	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGGA	360
Db	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	360
Qу	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	361		420
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db	421		480
Qy	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Db	481		540
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	600
Db	541		600
Qy	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Db	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Qу	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Db	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Qу	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Db	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Qy	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
Db	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
Qу	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Db		TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Qу		AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
Db	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
Qу	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1020
Db	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCTGGAAATCTTCAAGGAGATGAACAA	1020
Qу	1021	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080
Db	1021	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080

	Qу	081 AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT 114
	Db	081 AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT 114
	Qy	141 GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC 120
	Db	
	Qy	201 CATCCAGCATGGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACAT 126
	Db	201 CATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACAT 126
	Qу	261 GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA 132
	Db	261 GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA 132
	Qy	321 GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT 138
	Db	321 GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT 138
	Qy	381 GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG 144
	Db	381 GGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG 144
	Qy	441 GATTGACCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCA 150
•	Db	441 GATTGACCACGTCCTCCAGACAGGGGGGGGGCGCACCTCAAGCCCTATGTCTTTCAGCA 150
	Qy	501 GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG 156
	Db	501 GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGG 156
	Qy	561 GACTCTATGGCTTTGTGGGAAGCTGCTGGGGCATGGCTGTGTGGTGGCTGCGTGGGGCCAG 162
	Db	561 GACTCTATGGCTTTGTGGGAAGCTGCTGGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAG 162
	Qу	621 AAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG 168
	Db	621 AAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGGTCTGTTTGGTGGGCGATG 168
	Qу	681 TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT 174
	Db .	681 TCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT 174
	Qу	741 TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA 180
	Db	741 TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA 180
	Qу	801 ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCCAGAAATCTTTCCAGTCCT 186
	Db	801 ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCCAGAAATCTTTCCAGTCCT 186
	Qу	861 CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT 192
	Db	861 CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT 192

```
Qу
           Db
       1981 CGAATCACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2040
Qy
           1981 CGAATCACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2040
Db
       2041 TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2100
Qу
           2041 TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2100
Db
       2101 TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2160
Qу
          Db
       2101 TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2160
      2161 AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2220
Qу
           Db
       2161 AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2220
       2221 CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280
Qу
          2221 CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280
Db
      2281 AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTCACTAA 2320
Qу
           2281 AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTCACTAA 2320
Db
RESULT 3
AX136141
LOCUS
         AX136141
                           2341 bp
                                    DNA
                                          linear
                                                 PAT 30-MAY-2001
DEFINITION
         Sequence 63 from Patent EP1067182.
ACCESSION
         AX136141
VERSION
         AX136141.1 GI:14272549
KEYWORDS
SOURCE
         Homo sapiens (human)
 ORGANISM
         Homo sapiens
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
         Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
         1
 AUTHORS
         Ota, T., Isogai, T., Nishikawa, T., Kawai, Y., Sugiyama, T. and
         Hayashi, K.
 TITLE
         Secretory protein or membrane protein
 JOURNAL
         Patent: EP 1067182-A 63 10-JAN-2001;
         Helix Research Institute (JP)
                Location/Qualifiers
FEATURES
                1. .2341
   source
                /organism="Homo sapiens"
                /mol type="unassigned DNA"
                /db_xref="taxon:9606"
   CDS
                94. .1665
                /note="unnamed protein product"
                /codon start=1
                /protein id="CAC39713.1"
                /db xref="GI:14272550"
                /translation="MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQ
```

ILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLG GRGKFENLLNVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGK PFVAILSTSFGSLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQ STFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPI KPVPQDLENFIAKFEDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCS HWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFG DQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLS PTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLLDVFVFLLGLTLGTLWLCGKLLG MAVWWLRGARKVKET"

ORIGIN

Query Ma					99.			core			•	DB	6;	Le	ength	234	41;		
Best Lo				-			0;	red. Mi		o. (atch	-		3;	Inc	dels	(o;	Gaps	0;
								~~~		~~~	2000			~~				-	Ť
Qу	Т		GGTCC(																60
Db	27	AG	GGTCC	CTTAC	GCCG	GGC	GCA(	GGGC	GC	GCAC	GCCC	AGG	CTGA	\GA'I	CCGC	GGC	TTC	CGTAGA	86
Qy	61	AG	TGAGC	ATGG	CTGG	GCAG	GCG2	AGTO	CT:	гстт	CTA	GTG	GGCI	TCC	CTTCT	'CCC	rggo	GTCCT	120
Db	87		 TGAGC																146
Qу	121		TCTCAC																180
Db	147		TCTCAC																206
Qy	181	GA	TGGAC	CGGGT	TTTC	TCAG	AT'	гстт	'CA	AGAT	CAC	GGT	CATA	ATG	TCAC	CATO	GCTT	TAACCA	240
		-11	$\Pi\Pi\Pi\Pi$					1111	$\prod$	1111	Ш	$\Pi\Pi$	1111	111	1111			Ш	
Db	207	GA	TGGAC	JGGG'	TTC	TCAC	3A'1''.	I'CT'I	'CA	AGA'I	'CAC	GGT	CATA	ATC	TCAC	CATO	GCT'I	'AACCA	266
Qу	241		AAAGAG																300
Db	267		 AAAGAGA																326
Ov	301	Մա	GGCTTC	בראכנ	ጉጥር እ	, እርስባ	יראי	ר <i>ה</i> א זיי	A C 7	\ C	\ mmm	מממ	አአሮክ	CTT	ייייירי א	መመመረ	יתיתית	יכשככא	260
Qy	301																		360
Db	327	TT	GGCTT	CAC	CTGA	AGAT	'CA'	ГСАР	\AG	AGAZ	ATTT	AAA	AAGA	GTT	TTGA	TTTC	CTTT	CTGGA	386
Qу	361		AAACTI																420
Db	387		 AAACTT																446
-~																			
QУ	421		TGCAGT																480
Db	447		TGCAGT																506
Qy	481	СТ	TCGACA	ATGGT	rgat.	AGTT	'GA	AACT	TT	rgac	CTAC	TGT	CCTI	TCC	TGAT	TGCI	rgac	SAAGCT	540
Dh		-11	111111		HH		11	Ш		Ш	$\Box\Box$	111	1111	111	1111	1111	Ш	11111	
Db	507	CT	TCGACA	ATGG1	rgar.	AGT"I	·GA/	AACT	"T"T"	rGAC	TAC	TGT	CCTI	TCC	TGAT	TGCT	l'GA0	SAAGCT	566
Qу	541		GGAAGO																600
Db	567		 GGAAGO																626
Qy	601	ת ת	TCCCCI	ኮጥረ-ጥረ	יע יחיחי.	աշտո	יררי	ልሮጥኦ	י להילה ל	- الحات	ישיירי	ጥጥረ	רידור ז <i>י</i>	רייוי ר	: አጥ⁄ ካ	ሮአመረ	-CAC	יחייריייר	660
×.Y	001		111111																000

	מט	627	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	686
	Qу	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
	Db	687	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	746
	Qy	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
	Db	747	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	806
	Qу	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
	Db	807	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	866
	Qу	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
	Db	867	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	926
	QУ	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
	Db	927	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGAGGACTCTGGTTTTGTCCTTGT	986
	Qy	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1020
	Db	987	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1046
	Qу	1021	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080
	Db	1047	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1106
•	Qу		AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	
	Db	1107	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1166
	Qу	1141	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1200
•	Db	1167	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1226
	Qу	1201	CATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTTGGAGACCAGCCTGAAAACAT	1260
	Db	1227	CATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTTGGAGACCAGCCTGAAAACAT	1286
	ДУ		GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	
	Db		GGTCCGAGTAGAAGCCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	KadhayiPle I
	Qy		GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	
	Db		GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	
	Qy		GGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	
	Db		GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	
	Qy		GATTGACCACGTCCTCCAGACAGGGGGCGCGCCACCTCAAGCCCTATGTCTTTCAGCA	
	Db	1467	GATTGACCACGTCCTCCAGACAGGGGGGCGCGCCCCCCAAGCCCTATGTCTTTCAGCA	1526

	Qу	1501	GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1560
	Db	1527		1586
	Qy	1561	GACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1620
	Db	1587		1646
	Qy	1621	AAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1680
	Db	1647	AAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1706
	Qу	1681	TCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1740
	Db	1707	TCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGT	1766
	Qу	1741	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1800
	Db	1767	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1826
	Qy	1801	ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCAGAAATCTTTCCAGTCCT	1860
	Db	1827	ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCAGAATTCTTTCCAGTCCT	1886
	Qy	1861	CTTGTCCTCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT	1920
	Db	1887	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT	1946
•	Qy	1921	TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT	1980
	Db	1947	TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT	·2006
	Qу	1981	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC	2040
	Db	2007	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC	2066
	Qу	2041	TGCCCCTACTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT	2100
	Db	2067	TGCCCCTACTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT	2126
	Qу	2101	TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG	2160
	Db	2127	TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG	2186
	Qу	2161	AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA	2220
	Db	2187	AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA	2246
	QУ	2221	CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA	2280
	Db	2247	CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA	2306
	Qy	2281	AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTC 2315	
	Db	2307	AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTC 2341	

```
RESULT 4
BD123523
LOCUS
          BD123523
                                       DNA
                                                     PAT 18-SEP-2002
                              2341 bp
                                             linear
DEFINITION
         Secretory protein or membrane protein.
ACCESSION
         BD123523
VERSION
          BD123523.1 GI:23218468
         JP 2002017376-A/32.
KEYWORDS
SOURCE
         Homo sapiens (human)
 ORGANISM
         Homo sapiens
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
         Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
            (bases 1 to 2341)
 AUTHORS
         Ota, T., Isogai, T., Nishikawa, T., Kawai, Y., Sugiyama, T. and
         Hayashi, K.
 TITLE
         Secretory protein or membrane protein
 JOURNAL
         Patent: JP 2002017376-A 32 22-JAN-2002;
         HELIX RESEARCH INSTITUTE
COMMENT
         OS
             Homo sapiens (human)
         PN
              JP 2002017376-A/32
         PD
              22-JAN-2002
         PF
              07-JUL-2000 JP 2000253173
         PΙ
              TOSHIO OTA, TAKAO ISOGAI, TETSUO NISHIKAWA, YURI KAWAI, TOMOYASU
         PΙ
              SUGIYAMA,
             KOJI HAYASHI
         PΙ
         PC
         C12N15/09,C07K14/47,C07K16/18,C12N1/15,C12N1/19,C12N1/21,C12N5/ PC
          10,
             C12P21/02,C12Q1/68//C12P21/08,C12N15/00,C12N5/00 CC
         Secretory protein or membrane protein
                           Location/Qualifiers
         FH
             Kev
         FT
             CDS
                           (94)...(1662).
FEATURES
                 Location/Qualifiers
    source
                 1. .2341
                 /organism="Homo sapiens"
                 /mol type="genomic DNA"
                 /db xref="taxon:9606"
ORIGIN
 Query Match
                     99.6%; Score 2310.2; DB 6; Length 2341;
 Best Local Similarity
                     99.9%; Pred. No. 0;
 Matches 2312; Conservative
                           0; Mismatches
                                          3;
                                             Indels
                                                      0; Gaps
                                                                0;
         1 AGGGTCCCTTAGCCGGGCGCAGGCGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
Qу
           27 AGGGTCCCTTAGCCGGGCGCAGGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 86
Db
         Qу
           Db
         121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180
Qу
           Db
        147 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 206
Qу
        181 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 240
```

Db	207	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	266
Qу	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	300
Db	267	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	326
Qу	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	360
Db	327	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTGGA	386
Qу	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	387	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	446
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db	447	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	506
Qу	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Db	507	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	566
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	600
Db	. 567	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC	626
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Db .	627	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	686
Qу	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Db	687	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	746
Qу	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Db	747	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	806
Qу	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
Db	807	${\tt TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC}$	866
Qу	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Db	867	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	926
Qу	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
Db	927	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGAGGACTCTGGTTTTGTCCTTGT	986
Qу	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1020
Db	987	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1046
Qу		TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	
Db	1047	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1106

Qу	1081	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1140
Db	1107		1166
Qy	1141	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGC	1200
Db	1167	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGC	1226
Qy	1201	CATCCAGCATGGTGGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACAT	1260
Db	1227	CATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACAT	1286
Qу	1261	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1320
Db	1287	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1346
Qу	1321	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1380
Db	1347	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1406
Qу	1381	GGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1440
Db	1407	GGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1466
Qу	1441	GATTGACCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCA	1500
Db	1467	GATTGACCACGTCCTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCA	1526
Qy	1501	GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1560
Db	1527	GCCCTGGCATGAGCAGTACCTGCTCGACGTTTTTGTGTTTTCTGCTGGGGGCTCACTCTGGG	158.6
Qy	1561	GACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTGTGTG	1620
Db	1587	GACTCTATGGCTTTGTGGGAAGCTGCTGGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1646
Qy	1621	AAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1680
Db	1647	AAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1706
Qу	1681	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1740
Db	1707	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGT	1766
Qy .	1741	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1800
Db	1767	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1826
Qу	1801	ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCCAGAAATCTTTCCAGTCCT	1860
Db	1827	ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCAGAATTCTTTCCAGTCCT	1886
Qу	1861	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT	1920
Db	1887	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT	1946

Qy Db	1921 TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT
QУ	1981 CGAATCACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2040
Db	2007 CGAATCACCCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2066
Qy	2041 TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2100
Db	
Qy	2101 TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2160
Db	2127 TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2186
Qу	2161 AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2220
Db	
Qу	2221 CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280
Db	2247 CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2306
Qy	2281 AATAAAAGTTTACAGCGTTATCTCCCCCAACCTC 2315
Db	2307 AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTC 2341
RESULT 5 AK075383 LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANIS REFERENCE AUTHORS TITLE JOURNAL	AK075383  2341 bp mRNA linear PRI 03-SEP-2002  Homo sapiens cDNA PSEC0073 fis, clone NT2RP2002934, weakly similar to UDP-GLUCURONOSYLTRANSFERASE 2C1 MICROSOMAL (EC 2.4.1.17). AK075383  AK075383.1 GI:22761433 oligo capping; fis (full insert sequence). Homo sapiens (human)  M Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.  1 Ota,T., Nishikawa,T., Suzuki,Y., Kawai-Hio,Y., Hayashi,K., Ishii,S., Saito,K., Yamamoto,J., Wakamatsu,A., Nagai,T., Nakamura,Y., Nagahari,K., Sugano,S. and Isogai,T.
JOURNAI REFERENCE AUTHORS TITLE JOURNAI COMMENT	2 (bases 1 to 2341) Isogai, T. and Yamamoto, J. Direct Submission

```
of Tokyo, Laboratory of Genome Structure, Human Genome Center.
FEATURES
                Location/Qualifiers
                1. .2341
    source
                /organism="Homo sapiens"
                /mol type="mRNA"
                /db xref="taxon:9606"
                /clone="NT2RP2002934"
                /cell line="NT2"
                /cell type="teratocarcinoma"
                /clone lib="NT2RP2"
                /note="cloning vector: pME18SFL3~mRNA from NT2 neuronal
                precursor cells after 2-weeks retinoic acid (RA)
                induction"
   CDS
                94. .1665
                /note="unnamed protein product"
                /codon start=1
                /protein id="BAC11583.1"
                /db xref="GI:22761434"
                translation="MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSO/
                ILQDHGHNVTMLNHKRGPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLG
                GRGKFENLLNVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGK
                PFVAILSTSFGSLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRROOHMO
                STFDNTIKEHFTEGSRPVLSHLLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPI
                KPVPQDLENFIAKFEDSGFVLVTLGSMVNTCQNPEIFKEMNNAFAHLPOGVIWKCOCS
                HWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPMVGIPLFG
                DQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPLS
                PTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLLDVFVFLLGLTLGTLWLCGKLLG
                MAVWWLRGARKVKET"
ORIGIN
                    99.6%;
                          Score 2310.2; DB 9;
                                           Length 2341;
 Best Local Similarity
                    99.9%; Pred. No. 0;
 Matches 2312; Conservative
                         0; Mismatches
                                          Indels
                                       3;
                                                  0;
                                                     Gaps
         1 AGGGTCCCTTAGCCGGGCGCAGGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
Qу
           27 AGGGTCCCTTAGCCGGGCGCAGGCGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 86
Db
        Qу
           Db
        121 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 180
Qу
           Db
       147 GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT 206
       181 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 240
Qу
          207 GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA 266
Db
       241 CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAG 300
Qу
           Db
       267 CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAG 326
Qу
       301 TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGCA 360
           Db
```

Qу	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	387		446
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db	447		506
Qу	481	$\tt CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT$	540
Db	507		566
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	600
Db	567	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACC	626
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Db	627	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	686
Qу	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Db	687	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	746
Qу	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Db	747	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	806
QУ	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
Db	807	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	866
Qу	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Db	867	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	926
Qу	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
Db	927	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGAGGACTCTGGTTTTGTCCTTGT	986
Qу	961	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAA	1020
Db	987	GACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCTGCAAATCTTCAAGGAGATGAACAA	1046
Qу	1021	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080
Db	1047	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1106
Qу	1081	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1140
Db	1107	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1166
Qу	1141	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1200
Db	1167	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1226

- -

.

. .

Qу	1201	CATCCAGCATGGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACAT	1260
Db	1227	CATCCAGCATGGTGCCCATGGTGGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACAT	1286
Qy	1261	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1320
Db	1287		1346
Qу	1321	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1380
Db	1347		1406
Qу	1381	GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1440
Db	1407	GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1466
Qу	1441	GATTGACCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCA	1500
Db	1467		1526
Qу	1501	GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1560
Db	1527	GCCCTGGCATGAGCAGTACCTGCTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1586
QУ	1561	GACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGCCAG	1620
Db	1587	GACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1646
Qу	1621	AAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1680
Db	1647	AAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1706
Qу	1681	TCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1740
Db	1707	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1766
Qy	1741	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1800
Db	1767	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1826
Qу	1801	ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCTAGCAGAAATCTTTCCAGTCCT	1860
Db	1827	ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCTAGCAGAATTCTTTCCAGTCCT	1886
Qy	1861	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT	1920
Db	1887	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT	1946
Qy	1921	TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT	1980
Db .	1947	TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT	2006
Qу	1981	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC	2040
Db	2007	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC	2066
Qу	2041	TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT	2100

```
Db
       2067 TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2126
       2101 TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2160
Qу
           2127 TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2186
Db
       2161 AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2220
Qу
           Db
       2187 AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2246
       2221 CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280
Qy
           2247 CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2306
Dh
       2281 AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTC 2315
Qу
           Dh
       2307 AATAAAAGTTTACAGCGTTATCTCTCCCCAACCTC 2341
RESULT 6
AX548037
LOCUS
         AX548037
                             2944 bp
                                      DNA
                                            linear
                                                    PAT 26-NOV-2002
DEFINITION
         Sequence 13 from Patent WO02066654.
         AX548037
ACCESSION
         AX548037.1 GI:25813133
VERSION
KEYWORDS
SOURCE
         Homo sapiens (human)
         Homo sapiens
 ORGANISM
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
         Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
         Astromoff, A., Au-Young, J., Baughn, M.R., Ding, L., Duggan, B.M.,
         Forsythe, I.J., Gietzen, K.J., Griffin, J.A., Lee, E.A., Lu, Y.,
         Richardson, T.W., Ring, H.Z., Sanjanwala, M.M., Swarnakar, A.,
         Walia, N.K., Warren, B.A., Xu, Y., Yue, H. and Zebarjadian, Y.
 TITLE
         Drug metabolizing enzymes
 JOURNAL
         Patent: WO 02066654-A 13 29-AUG-2002;
         Incyte Genomics, Inc. (US)
FEATURES
                 Location/Oualifiers
                 1. .2944
    source
                 /organism="Homo sapiens"
                 /mol type="unassigned DNA"
                 /db xref="taxon:9606"
                 /note="Incyte ID No: 7486594CB1"
ORIGIN
          .....
 Query Match
                     90.6%; Score 2102.8; DB 6;
                                             Length 2944;
 Best Local Similarity
                     95.5%; Pred. No. 0;
 Matches 2216; Conservative
                          0: Mismatches
                                         2:
                                            Indels
                                                  102:
                                                              1:
                                                        Gaps
         1 AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 60
Qу
           204 AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGA 263
Db
        Qy
```

Db	264	AGTGAGCATGGCTGGGCAGTGCTTCTTCTAGTGGGCTTCCTTC	323
Qy	121	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACT	180
Db	324	GCTCTCAGAGGCTGCCAAAATCCTGACAATATCTACAGT	362
Qy	181	GATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCA	240
Db	363		362
Qу	241	CAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAG	300
Db	363		401
Qу	301	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTTC	360
Db	402	TTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTGGA	461
Qу	361	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	420
Db	462	AGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGC	521
Qу	421	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	480
Db	522	GTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAA	581
Qy .	481	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	540
Db	582	CTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCT	641
Qу	541	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC	600
Db	642	TGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACC	701
Qу	601	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	660
Db	702	AATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGA	761
Qу	661	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	720
Db .	762	GGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCA	821
Qу	721	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	780
Db	822	GTCTACATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTC	881
Qу	781	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	840
Db	882	TCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGC	941
Qy .	841	TCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACC	900
Db	942		1001
Qу	901	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	960
Db	1002	AGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGT	1061

QY .	901	GACCIIGGGCICCAIGGIGAACACCIGICAGAAICCIGGAAATCIICAAGGAGAIGAACAA	1020
Db	1062		1121
Qу	1021	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1080
Db	1122	TGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAA	1181
Qу	1081	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1140
Db	1182	AGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCT	1241
Qу	1141	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGC	1200
Db	1242	GGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGC	1301
Qу	1201	CATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACAT	1260
Db	1302	CATCCAGCATGGTGCCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACAT	1361
Qу	1261	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1320
Db	1362	GGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGA	1421
Qу	1321	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1380
Db	1422	GACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGT	1481
Qу	1381	GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1440
Db	1482	GGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTG	1541
Qу	1441	GATTGACCACGTCCTCCAGACAGGGGGGCGCGCGCCCTCAAGCCCTATGTCTTTCAGCA	1500
Db	1542	GATTGACCACGTCCTCCAGACAGGGGGGCGCGCCCCCCAAGCCCTATGTCTTTCAGCA	1601
Qу	1501	GCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1560
Db	1602	GCCCTGGCATGAGCAGTACCTGCTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGG	1661
Qу	1561	GACTCTATGGCTTTGTGGGAAGCTGCTGGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1620
Db	1662	GACTCTATGGCTTTGTGGGAAGCTGCTGGGCCATGGCTGTCTGGTGGCTGCGTGGGGCCAG	1721
Qу	1621	AAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1680
Db	1722	AAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATG	1781
Qу	1681	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1740
Db	1782	TCACCATTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGT	1841
Qу	1741	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1800
Db	1842	TATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGCTA	1901

Qу  Db		ATTTTGCTACAAATTCATCCTTACTAGCTCCTGCCTGCTAGCAGAAATCTTTCCAGTCCT 1860
Qy	1861	CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACT 1920
Db		
		TGGACCACTGACCCTCAGATTTCCAGCCTTAAAATCCACCTTCCTT
Qy Dh		
Db		
Qу		CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2040
Db	2082	CGAATCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCC 2141
QУ	2041	TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 21.00
Db	2142	TGCCCCTACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGT 2201
Qy	2101	TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2160
Db	2202	TTCTGTTTTGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAG 2261
Qy	2161	AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2220
Db	2262	AGTTCAGGGCCGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCA 2321
Qу	2221	CAGTGAGCTCCTTCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAA 2280
Db	2322	
Qу	2281	AATAAAAGTTTACAGCGTTATCTCCCCCAACCTCACTAA 2320
Db	2382	
RESULT 7 AX958403 LOCUS DEFINITI	A ON S	X958403 2263 bp DNA linear PAT 14-JAN-2004 equence 31 from Patent W00226988.
ACCESSIO VERSION	А	X958403 X958403.1 GI:40879361
KEYWORDS SOURCE		omo sapiens (human)
ORGANI		omo sapiens ukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
REFERENC AUTHOR TITLE	E 1	ammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
JOURNA	L P	atent: WO 0226988-A 31 04-APR-2002; ncyte Genomics, Inc. (US)
FEATURES		Location/Qualifiers
sou	rce	<pre>12263 /organism="Homo sapiens"</pre>
		<pre>/mol_type="unassigned DNA"</pre>

ORIGIN

	cal :	68.1%; Score 1578.8; DB 6; Length 2263; Similarity 92.6%; Pred. No. 0; 8; Conservative 0; Mismatches 132; Indels 0; Gaps	0;
Qy	7	CCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAGTGAG	66
Db	22	CCTTAGCCCGGCGCAGGCGCAGCCCAGGCTGAGATCCGCTGCTTCTGTGGAAGTGAG	81
Qy	67	CATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	126
Db	82	CATGGTTGGGCAGCGGGTGCTGCTTCTAGTGGCCTTCCTT	141
Qy	127	AGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA	186
Db	142	AGAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGA	201
Qу	187	CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAG	246
Db	202	CCGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGG	261
Qy	247	AGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCT	306
Db	262	AAAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTT	321
Qy	307	TGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	366
Db	322	TTCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGC	381
Qу		TTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCA	
Db		ATTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCA	
Qу		GTGCAGTCATTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGA	
Db		ATGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTATGA	
Qу	487	CATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAA	546
Db	502	TCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAA	561
Qу	547	GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCC	606
Db,		ACCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCC	
Qу		CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	
Db		CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	
Qу		AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTAC	
Db		AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTAC	
Qу	<b>7</b> 27	ATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	786

Db	742	ATTTGACAACACCATCAAGGAGCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	801
Qy	787	TCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACC	846
Db	802	TCTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCC	861
Qу	847	TCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	906
Db	862	CCTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	921
Qу	907	ACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTT	966
Db	922	ACAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTT	981
Qy	967	GGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT	1026
Db	982	TGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT	1041
Qу	1027	TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT	1086
Db	1042	TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT	1101
Qу	1087	CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1146
Db	1102	CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1161
Qу	1147	CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCA	1206
Db	1162	CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCA	1221
QУ	1207	GCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACATGGTCCG	1266
Db	1222	GCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACATGGTCCG	1281
QУ	1267	AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT	1326
Db	1282	AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT	1341
QУ	1327	GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC	1386
Db	1342	GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC	1401
Qу	1387	CAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGA	1446
Db			
Qу		CCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG	
Db		CCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG	
Qу		GCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGGGACTCT	
Db		GCATGAGCAGTACCTGCTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGGGACTCT	
Qу		ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGCCAGAAAGGT	•
Db	1582	ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAGAAAGGT	1641

•

.

.

```
1627 GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATGTCACCA 1686
Qу
             1642 GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGGGCGATGTCACCA 1701
Db
        1687 TTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGTTATCTC 1746
Qу
             Db
        1702 TTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTCTAGTTATCTC 1761
Qу
        1747 CTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTT 1796
             Db
        1762 CTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACAT 1811
RESULT 8
AX359921
                                 2082 bp
LOCUS
           AX359921
                                           DNA
                                                           PAT 13-FEB-2002
                                                   linear
DEFINITION
           Sequence 1 from Patent W00202774.
           AX359921
ACCESSION
           AX359921.1 GI:18675563
VERSION
KEYWORDS
SOURCE
           Homo sapiens (human)
 ORGANISM Homo sapiens
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
           1
 AUTHORS
           Leiby, K.R., Cook, W.J. and Spaltmann, F.
           32626, a human udp-glycosyltransferase and uses thereof
 TITLE
 JOURNAL
           Patent: WO 0202774-A 1 10-JAN-2002;
           Millennium Pharmaceuticals, Inc. (US)
FEATURES
                   Location/Qualifiers
                   1. .2082
    source
                   /organism="Homo sapiens"
                   /mol type="unassigned DNA"
                   /db xref="taxon:9606"
                   145. .1716
    CDS
                   /note="unnamed protein product"
                   /codon start=1
                   /protein id="CAD23353.1"
                   /db xref="GI:18675564"
                   /translation="MVGQRVLLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSO
                   ILQEHGHNVTMLHQSGKFLIPDIKEEEKSYQVIRWFSPEDHQKRIKKHFDSYIETALD
                   GRKESEALVKLMEIFGTQCSYLLSRKDIMDSLKNENYDLVFVEAFDFCSFLIAEKLVK
                   PFVAILPTTFGSLDFGLPSPLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSOWDMO
                   STFDNTIKEHFPEGSRPVLSHLLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPI
                   KPVPQDLDNFIANFGDAGFVLVAFGSMLNTHQSQEVLKKMHNAFAHLPQGVIWTCQSS
                   HWPRDVHLATNVKIVDWLPQSDLLAHPSIRLFVTHGGQNSVMEAIRHGVPMVGLPVNG
                   DQHGNMVRVVAKNYGVSIRLNQVTADTLTLTMKQVIEDKRYKSAVVAASVILHSQPLS
                   PAORLVGWIDHILOTGGATHLKPYAFOOPWHEOYLIDVFVFLLGLTLGTMWLCGKLLG
                   VVARWLRGARKVKKT"
ORIGIN
                        55.2%; Score 1281.6; DB 6; Length 2082;
 Query Match
                               Pred. No. 0;
 Best Local Similarity
                        85.9%;
 Matches 1422; Conservative
                              0; Mismatches 234; Indels
                                                            0; Gaps
                                                                       0;
Qу
```

	Db .	84	CCTTAGCCCGGCGCAGGCGCAGCCCAGGCTGAGATCCGCTGCTTCTGTGGAAGTGAG	143
	Qу	67	CATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	126
	Db	144	CATGGTTGGGCAGCGGGTGCTTCTTCTAGTGGCCTTCCTT	203
	Qy	127	AGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA	186
	Db	204	AGAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGA	263
	Qу		CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAG	246
	Db		CCGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGG	323
	Qy	247	AGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCT	306
	Db	324		383
	Qу	307	TGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTTC	366
	Db	384		443
	Qу	367	TTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCA	426
	Db	444		503
	Qy	427	GTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGA	486
	Db	504		563
	QУ	487	CATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAA	546
	Db	564	TCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAA	623
	Qу	547	GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCC	606
	Db	624	ACCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCC	683
	Qу	607	CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	666
	Db	684	CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	743
	Qy,	667	AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTAC	726
M. Aúgler I.	Db	744		803
	Qу	727	ATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	786
	Db	804		863
	Qy	787	TCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACC	846
	Db	864	TCTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCC	923
	Qy	847	TCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	906

Db	924	CCTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	983
Qу	907	ACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTT	966
Db	984	ACAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTT	1043
Qу	967	GGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT	1026
Db	1044		1103
Qу	1027	TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT	1086
Db	1104	TGCCCACCTCCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGT	1163
Qу	1087	CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1146
Db	1164	TCATTTGGCCACAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1223
Qу	1147	CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCA	1206
Db	1224	CCCCAGCATCCGTCTTTTTGTCACTCATGGTGGGCAGAACAGCGTAATGGAGGCCATCCG	1283
Qу	1207	GCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACATGGTCCG	1266
Db	1284	TCATGGTGTGCCCATGGTGGGATTACCAGTCAATGGAGACCAGCATGGAAACATGGTCCG	1343
Qу	1267	AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT	1326
Db	1344	AGTAGTAGCCAAAAATTATGGTGTCTCTATCCGGTTGAATCAGGTCACAGCCGACACACT	1403
Qу	1327	GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC	1386
Db	1404	GACACTTACAATGAAACAAGTCATAGAAGACAAGAGGTACAAGTCGGCAGTGGTGGCAGC	1463
Qу	1387	CAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGA	1446
Db	1464	CAGTGTCATCCTGCACTCTCAGCCCCTGAGCCCCGCACAGCGGCTGGTGGGCTGGATCGA	1523
QУ	1447	CCACGTCCTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG	1506
Db	1524	CCACATCCTCCAGACTGGGGGAGCGACCCCCAAGCCCTATGCCTTCCAGCAGCCTTG	1583
Qу	1507	GCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGGGACTCT	1566
Db	1584	GCATGAGCAGTACCTCATTGATGTCTTTGTGTTTCTGCTGGGGCTCACTCTGGGCACTAT	1643
Qу	1567	ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAGAAAGGT	1626
Db	1644	GTGGCTTTGTGGGAAGCTGCTGGGTGTGGTGGCCAGGTGGCTGCGTGGGGCCAGGAAGGT	1703
Qу	1627	GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGG 1662	
Db	1704	GAAGAAGACATGAGGCTAGGTGTAGCCTTGGGTGAG 1739	

```
LOCUS
          AX155211
                               2797 bp
                                        DNA
                                               linear
                                                       PAT 22-JUN-2001
DEFINITION
          Sequence 1 from Patent W00138505.
ACCESSION
          AX155211
          AX155211.1 GI:14536690
VERSION
KEYWORDS
SOURCE
          Homo sapiens (human)
          Homo sapiens
 ORGANISM
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
          Adler, D.A., Dong, D.L., Pownder, S., Gao, Z. and Conklin, D.C.
 AUTHORS
          Secreted protein, zalpha37
 TITLE
 JOURNAL
          Patent: WO 0138505-A 1 31-MAY-2001;
          ZymoGenetics, Inc. (US)
FEATURES
                  Location/Qualifiers
                  1. .2797
    source
                  /organism="Homo sapiens"
                  /mol type="unassigned DNA"
                  /db xref="taxon:9606"
    CDS
                  119. .1690
                  /note="unnamed protein product"
                  /codon start=1
                  /protein id="CAC42674.1"
                  /db xref="GI:14536691"
                  translation="MVGQRVLLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSQ/
                  ILOEHGHNVTMLHOSGKFLIPDIKEEEKSYOVIRWFSPEDHOKRIKKHFDSYIETALD
                  GRKESEALVKLME1FGTQCSYLLSRKDIMDSLKNENYDLVFVEAFDFCSFL1AEKLVK
                  PFVAILPTTFGSLDFGLPSPLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSQWDMQ
                  STFDNTIKEHFPEGSRPVLSHLLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPI
                  KPVPODLDNFIANFGDAGFVLVAFGSMLNTHOSOEVLKKMHNAFAHLPOGVIWTCOSS
                  HWPRDVHLATNVKIVDWLPQSDLLAHPSIRLFVTHGGQNSVMEAIRHGVPMVGLPVNG
                  DQHGNMVRVVAKNYGVSIRLNQVTADTLTLTMKQVIEDKRYKSAVVAASVILHSQPLS
                  PAQRLVGWIDHILQTGGATHLKPYAFQQPWHEQYLIDVFVFLLGLTLGTMWLCGKLLG
                  VVARWLRGARKVKKT"
ORIGIN
                     55.2%;
                             Score 1281.6; DB 6;
                                                Length 2797;
 Best Local Similarity
                      85.9%; Pred. No. 0;
 Matches 1422; Conservative
                            0; Mismatches 234;
                                                                  0;
                                               Indels
                                                        0;
                                                           Gaps
          7 CCTTAGCCGGGCGCAGGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAGTGAG 66
Qу
            58 CCTTAGCCCGGCGCAGGCGCAGCCCAGGCTGAGATCCGCTGCTTCTGTGGAAGTGAG 117
Db
         Qу
            ┇╎╿┇╏<u>╶╿╏┧┞╏╏┉╬┇</u>╸╎╎╏┇╏╴╏╎┇┇╏╎┋╏╏┋┈╏╏╏╏╏╏╏╏╏
        Db
        127 AGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA 186
Qу
            178 AGAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGA 237
Db
Qу
        187 CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAG 246
            Db
        238 CCGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGG 297
```

247 AGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCT 306

Qу

Db	298	AAAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTT	357
Qy	307	TGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGTGGAAGAAAC	366
Db	358	TTCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGC	417
Qу	367	TTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCA	426
Db	418	ATTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCA	477
Qу	427	GTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGA	486
Db	478	ATGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTATGA	537
Qу	487	CATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAA	546
Db	538	TCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAA	597
Qу	547	GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACCAATCCC	606
Db	598	ACCATTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCC	657
Qу	607	CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	666
Db	658	CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	717
Qу	667	AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTAC	726
Db	718	AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTAC	777
Qу	727	ATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	786
Db	778	ATTTGACAÀCACCATCAAGGAGCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	837
Qу	787	TCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACC	846
Db		TCTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCC	
Qу		TCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	
Db		CCTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	
Qу		ACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTT	
Db		ACAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTT	
Qу		GGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT	
Db		TGGCTCCATGTTGAACACCCATCAGTCCCAGGAAGTCCTCAAGAAGATGCACAATGCCTT	
Qу		TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT	
Db		TGCCCACCTCCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGT	
Qy	1087	CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	

Db	1138	TCATTTGGCCACAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA 1197
QУ	1147	CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGCCATCCA 1206
Db	1198	CCCCAGCATCCGTCTTTTTGTCACTCATGGTGGGCAGAACAGCGTAATGGAGGCCATCCG 1257
Qу	1207	GCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACATGGTCCG 1266
Db	1258	TCATGGTGTGCCCATGGTGGGATTACCAGTCAATGGAGACCAGCATGGAAACATGGTCCG 1317
Qу	1267	AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT 1326
Db	1318	AGTAGTAGCCAAAAATTATGGTGTCTCTATCCGGTTGAATCAGGTCACAGCCGACACACT 1377
Qу	1327	GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC 1386
Db	1378	GACACTTACAATGAAACAAGTCATAGAAGACAAGAGGTACAAGTCGGCAGTGGTGGCAGC 1437
Qу	1387	CAGTGTCATCCTGCGCTCCCCCCCCCCCCCACACAGCGGCTGGTGGGCTGGATTGA 1446
Db	1438	
Qу	1447	CCACGTCCTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG 1506
Db	1498	
Qy	1507	GCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGGGACTCT 1566
Db	1558	GCATGAGCAGTACCTCATTGATGTCTTTGTGTTTCTGCTGGGGCTCACTCTGGGCACTAT 1617
QУ	1567	ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAGAAAGGT 1626
Db	1618	GTGGCTTTGTGGGAAGCTGCTGGGTGGTGGCCAGGTGGCTGCGTGGGGCCAGGAAGGT 1677
QУ	1627	GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGG 1662
Db	1678	GAAGAAGACATGAGGCTAGGCTTGGGTGAG 1713
RESULT 1 AX714604 LOCUS		X714604 2823 bp DNA linear PAT 15-APR-2003
DEFINITION ACCESSION	on s	X714604 2823 bp DNA linear PAT 15-APR-2003 equence 1288 from Patent EP1293569. X714604
VERSION	Α	X714604.1 GI:29889557
KEYWORDS SOURCE	Н	omo sapiens (human)
ORGANI	E	omo sapiens ukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
REFERENC		ammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
AUTHOR	Y T	sogai, T., Sugiyama, T., Otsuki, T., Wakamatsu, A., Sato, H., Ishii, S., amamoto, J.I., Isono, Y., Hio, Y., Otsuka, K., Nagai, K., Irie, R., amechika, I., Seki, N., Yoshikawa, T., Otsuka, M., Nagahari, K. and

TITLE Full-length cDNAs
JOURNAL Patent: EP 1293569-A 13

Masuho, Y.

JOURNAL Patent: EP 1293569-A 1288 19-MAR-2003;

Helix Research Institute (JP) ; Research Association for Biotechnology (JP)

**FEATURES** Location/Qualifiers

source

1. .2823

/organism="Homo sapiens" /mol_type="unassigned DNA" /db xref="taxon:9606"

ORIGIN

Query Match 55.2%; Score 1281.6; DB 6; Length 2823; Best Local Similarity 85.9%; Pred. No. 0; Matches 1422; Conservative 0; Mismatches 234; Indels 0; Gaps 0;

			-	
ς	Σy ·	7	CCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAGTGAG	66
I	Ob	97	CCTTAGCCCGGCGCAGGCGCAGCCCAGGCTGAGATCCGCTGCTTCTGTGGAAGTGAG	156
ς	ДУ	67	CATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	126
Ι	Ob	157	CATGGTTGGGCAGCGGGTGCTTCTAGTGGCCTTCCTTCTTTCT	216
ζ	Σλ	127	AGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA	186
Ι	Ob	217	AGAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGA	276
ζ	ΣУ	187	CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAG	246
Ι	Ob	277	$\tt CCGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGG$	336
ζ	ДÀ	247	AGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCT	306
Ι	Ob	337	AAAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTT	396
ζ	Σλ	307	TGCACCTGAAGATCATCAAAGAGAATTTAAAAAAGAGTTTTGATTTCTTTC	366
Ι	Ob	397	TTCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGC	456
Ç	Σλ	367	TTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCA	426
Ι	Ob	457	ATTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCA	516
Ç	ΣУ	427	GTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGA	486
Ι	Ob	517	ATGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTGTGA	576
(	<b>Σ</b> Υ	487	CATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGAT.TGCTGAGAAGCTTGGGAA	546
I	Ob	577	TCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAA	636
ζ	ΣУ	547	GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCC	606
I	Db	637	ACCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCC	696
(	Σλ	607	CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	666
1	Db	697	$\tt CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG$	756

QY	007 AGIGAAGATITICIGATGITCITIAGITICIGCAGGAGGCAACAGCACATGCAGTCTAC 726
Db	757 AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTAC 816
Qy	727 ATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCT 786
Db	817 ATTTGACAACACCATCAAGGAGCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCT 876
Qу	787 TCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACC 846
Db	877 TCTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTTGCCCGGCC 936
Qу	847 TCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC 906
Db	937 CCTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC 996
Qу	907 ACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTT 966
Db	997 ACAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTT 105
Qy	967 GGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT 102
Db	057 TGGCTCCATGTTGAACACCCATCAGTCCCAGGAAGTCCTCAAGAAGATGCACAATGCCTT 111
Qу	027 TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT 108
Db	117 TGCCCACCTCCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGT 117
Qу	087 CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA 114
Db	177 TCATTTGGCCACAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA 123
Qy	147 CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCA 120
Db	237 CCCCAGCATCCGTCTTTTTGTCACTCATGGTGGGCAGAACAGCGTAATGGAGACCATCCG 129
Qy	207 GCATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACATGGTCCG 126
Db	297 TCATGGTGTGCCCATGGTGGGATTACCAGTCAATGGAGACCAGCATGGAAACATGGTCCG 135
Qy	267 AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT 132
Db	357 AGTAGTAGCCAAAAATTATGGTGTCTCTATCCGGTTGAATCAGGTCACAGCCGACACACT 141
Qу	327 GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC 138
Db	417 GACACTTACAATGAAACAAGTCATAGAAGACAAGAGGTACAAGTCGGCAGTGGTGGCAGC 147
Qy	387 CAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGA 144
Db	477 CAGTGTCATCCTGCACTCTCAGCCCCTGAGCCCCGCACAGCGGCTGGTGGGCTGGATCGA 153
Qy	447 CCACGTCCTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG 150
Db	537 CCACATCCTCCAGACTGGGGGAGCGACGCACCTCAAGCCCTATGTCTTCCAGCAGCCTTG 159
Ov	507 GCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGGGACTCT 156

```
Db
         1597 GCATGAGCAGTACCTCATTGATGTCTTTGTGTTTCTGCTGGGGCTCACTCTGGGCACTAT 1656
         1567 ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTGGTGGCTGGGGCCAGAAAGGT 1626
Qу
               Db
         1657 GTGGCTTTGTGGGAAGCTGCTGGGTGGTGGCCAGGTGGCTGCGTGGGCCAGGAAGGT 1716
         1627 GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGG 1662
Qy
              1111 11111 1111 1111 1111 11111 1
Db
        1717 GAAGAAGACATGAGGCTAGGTGTAGCCTTGGGTGAG 1752
RESULT 11
AK057066
LOCUS
           AK057066
                                    2823 bp
                                            mRNA
                                                       linear
                                                               PRI 30-JAN-2004
           Homo sapiens cDNA FLJ32504 fis, clone SMINT1000016, weakly similar
DEFINITION
           to 2-HYDROXYACYLSPHINGOSINE 1-BETA-GALACTOSYLTRANSFERASE PRECURSOR
            (EC 2.4.1.45).
           AK057066
ACCESSION
           AK057066.1 GI:16552643
VERSION
KEYWORDS
           oligo capping; fis (full insert sequence).
SOURCE
           Homo sapiens (human)
           Homo sapiens
 ORGANISM
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
           1
           Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R.,
 AUTHORS
           Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., Kimura, K., Makita, H.,
           Sekine, M., Obayashi, M., Nishi, T., Shibahara, T., Tanaka, T.,
           Ishii, S., Yamamoto, J., Saito, K., Kawai, Y., Isono, Y., Nakamura, Y.,
           Nagahari, K., Murakami, K., Yasuda, T., Iwayanagi, T., Wagatsuma, M.,
           Shiratori, A., Sudo, H., Hosoiri, T., Kaku, Y., Kodaira, H., Kondo, H.,
           Sugawara, M., Takahashi, M., Kanda, K., Yokoi, T., Furuya, T.,
           Kikkawa, E., Omura, Y., Abe, K., Kamihara, K., Katsuta, N., Sato, K.,
           Tanikawa, M., Yamazaki, M., Ninomiya, K., Ishibashi, T., Yamashita, H.,
           Murakawa, K., 'Fujimori, K., Tanai, H., Kimata, M., Watanabe, M.,
           Hiraoka, S., Chiba, Y., Ishida, S., Ono, Y., Takiguchi, S., Watanabe, S.,
           Yosida, M., Hotuta, T., Kusano, J., Kanehori, K., Takahashi-Fujii, A.,
           Hara, H., Tanase, T., Nomura, Y., Togiya, S., Komai, F., Hara, R.,
           Takeuchi, K., Arita, M., Imose, N., Musashino, K., Yuuki, H., Oshima, A.,
           Sasaki, N., Aotsuka, S., Yoshikawa, Y., Matsunawa, H., Ichihara, T.,
           Shiohata, N., Sano, S., Moriya, S., Momiyama, H., Satoh, N., Takami, S.,
           Terashima, Y., Suzuki, O., Nakagawa, S., Senoh, A., Mizoguchi, H.,
           Goto, Y., Shimizu, F., Wakebe, H., Hishiqaki, H., Watanabe, T.,
```

Nakai, K., Yada, T., Nakamura, Y., Ohara, O., Isogai, T. and Sugano, S. TITLE Complete sequencing and characterization of 21,243 full-length human cDNAs

Sugiyama, A., Takemoto, M., Kawakami, B., Yamazaki, M., Watanabe, K., Kumagai, A., Itakura, S., Fukuzumi, Y., Fujimori, Y., Komiyama, M., Tashiro, H., Tanigami, A., Fujiwara, T., Ono, T., Yamada, K., Fujii, Y., Ozaki, K., Hirao, M., Ohmori, Y., Kawabata, A., Hikiji, T., Kobatake, N.,

Inagaki,H., Ikema,Y., Okamoto,S., Okitani,R., Kawakami,T.,
Noguchi,S., Itoh,T., Shigeta,K., Senba,T., Matsumura,K.,
Nakajima,Y., Mizuno,T., Morinaga,M., Sasaki,M., Togashi,T.,
Oyama,M., Hata,H., Watanabe,M., Komatsu,T., Mizushima-Sugano,J.,
Satoh,T., Shirai,Y., Takahashi,Y., Nakagawa,K., Okumura,K.,
Nagase,T., Nomura,N., Kikuchi,H., Masuho,Y., Yamashita,R.,

```
JOURNAL
            Nat. Genet. 36 (1), 40-45 (2004)
   PUBMED
            14702039
REFERENCE
            2
  AUTHORS
            Kawakami, B., Sugiyama, A., Takemoto, M., Sugiyama, T., Irie, R.,
            Otsuki, T., Sato, H., Wakamatsu, A., Ishii, S., Yamamoto, J., Isono, Y.,
            Kawai-Hio, Y., Saito, K., Nishikawa, T., Kimura, K., Yamashita, H.,
            Matsuo, K., Nakamura, Y., Sekine, M., Kikuchi, H., Kanda, K.,
            Wagatsuma, M., Murakawa, K., Kanehori, K., Takahashi-Fujii, A.,
            Oshima, A., Suzuki, Y., Sugano, S., Nagahari, K., Masuho, Y., Nagai, K.
            and Isogai, T.
            NEDO human cDNA sequencing project
  TITLE
  JOURNAL
            Unpublished
REFERENCE
               (bases 1 to 2823)
  AUTHORS
            Isogai, T., Otsuki, T. and Sugiyama, T.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (24-OCT-2001) Takao Isogai, Helix Research Institute,
            Genomics Laboratory; 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan
            (E-mail:genomics@hri.co.jp, Tel:81-438-52-3975, Fax:81-438-52-3986)
COMMENT
            NEDO human cDNA sequencing project supported by Ministry of
            Economy, Trade and Industry of Japan; cDNA full insert sequencing:
            Research Association for Biotechnology (RAB); cDNA library
            construction: Helix Research Institute (HRI) (supported by Japan
            Key Technology Center etc.); 5'- & 3'-end one pass sequencing: RAB,
            HRI, and Biotechnology Center, National Institute of Technology and
            Evaluation; clone selection for full insert sequencing: RAB and
            HRI.
FEATURES
                     Location/Qualifiers
                     1. .2823
     source
                     /organism="Homo sapiens"
                     /mol type="mRNA"
                     /db xref="taxon:9606"
                     /clone="SMINT1000016"
                     /tissue type="small intestine"
                     /clone lib="SMINT1"
                     /note="cloning vector: pME18SFL3"
     CDS
                     158. .1729
                     /note="unnamed protein product"
                     /codon start=1
                     /protein id="BAB71358.1"
                     /db xref="GI:16552644"
                     /translation="MVGQRVLLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSQ
                     ILQEHGHNVTMLHQSGKFLIPDIKEEEKSYQVIRWFSPEDHQKRIKKHFDSYIETALD
                     GRKESEALVKLMEIFGTQCSYLLSRKDIMDSLKNENCDLVFVEAFDFCSFLIAEKLVK
                     {\tt PFVAILPTTFGSLDFGLPSPLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSQWDMQ}
                     STFDNTIKEHFPEGSRPVLSHLLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPI
                     KPVPQDLDNFIANEGDAGFVLVAFGSMLNTHQSQEVLKKMHNAFAHLPQGVIWTCQSS
                     HWPRDVHLATNVKIVDWLPQSDLLAHPSIRLFVTHGGQNSVMETIRHGVPMVGLPVNG
                     DQHGNMVRVVAKNYGVSIRLNQVTADTLTLTMKQVIEDKRYKSAVVAASVILHSQPLS
                     PAQRLVGWIDHILQTGGATHLKPYVFQQPWHEQYLIDVFVFLLGLTLGTMWLCGKLLG
                     VVARWLRGARKVKKT"
ORIGIN
  Query Match
                           55.2%;
                                   Score 1281.6; DB 9;
                                                         Length 2823;
                          85.9%;
  Best Local Similarity
                                   Pred. No. 0;
  Matches 1422; Conservative
                                 0; Mismatches 234;
                                                        Indels
```

Db	97		156
Qу	67	CATGGCTGGGCAGCGAGTGCTTCTTCTAGTGGGCTTCCTTC	126
Db	157		216
Qу	127	AGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA	186
Db	217		276
Qу	187	CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAG	246
Db	277		336
Qу	247	AGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCT	306
Db	337	AAAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTT	396
Qy	307	TGCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	366
Db	397	TTCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGC	456
Qу	367	TTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCA	426
Db	457	ATTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCA	516
Qу	427	GTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGA	486
Db	517	ATGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTGTGA	576
Qy	487	CATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAA	546
Db	577	TCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAA	636
Qу	547	GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCC	606
Db	637	ACCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTTGGGCTACCAAGCCC	696
Qy	607	CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	666
Db	697	CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG	756
Qу	667	AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTAC	726
Db	757	AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTAC	816
Qу	727	ATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	786
Db	817	ATTTGACAACACCATCAAGGAGCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	876
Qy	787	TCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACC	846
Db	877	TCTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCC	936
Qу	847	TCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	906

Db	937	CCTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	996
Qy	907	ACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTT	966
Db	997	ACAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTT	1056
Qy	967	GGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT	1026
Db	1057	TGGCTCCATGTTGAACACCCATCAGTCCCAGGAAGTCCTCAAGAAGATGCACAATGCCTT	1116
QУ	1027	TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT	1086
Db	1117	TGCCCACCTCCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGT	1176
Qу	1087	CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1146
Db	1177	TCATTTGGCCACAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1236
QУ	1147	CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCA	1206
Db	1237	CCCCAGCATCCGTCTTTTTGTCACTCATGGTGGGCAGAACAGCGTAATGGAGACCATCCG	1296
Qy	1207	GCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACATGGTCCG	1266
Db	1297	TCATGGTGTGCCCATGGTGGGATTACCAGTCAATGGAGACCAGCATGGAAACATGGTCCG	1356
ДĀ	1267	AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT	1326
Db	1357	AGTAGTAGCCAAAAATTATGGTGTCTCTATCCGGTTGAATCAGGTCACAGCCGACACACT	1416
QУ		GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC	,
Db .	1417	GACACTTACAATGAAACAAGTCATAGAAGACAAGAGGTACAAGTCGGCAGTGGTGGCAGC	1476
QУ		CAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGA	
Db		CAGTGTCATCCTGCACTCTCAGCCCCTGAGCCCCGCACAGCGGCTGGTGGGCTGGATCGA	
Qу	1447	CCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG	1506
Db		CCACATCCTCCAGACTGGGGGAGCGACGCACCTCAAGCCCTATGTCTTCCAGCAGCCTTG	
Qу		GCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGGGACTCT	
Db		GCATGAGCAGTACCTCATTGATGTCTTTGTGTTTCTGCTGGGGGCTCACTCTGGGCACTAT	
Qу		ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTGTGGTGGCTGCGTGGGCCAGAAAGGT	
Db		GTGGCTTTGTGGGAAGCTGCTGGGTGTGGTGGCCAGGTGGCTGCGTGGGGCCAGGAAGGT	1716
QУ		GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGG 1662	
Db	1717	GAAGAAGACATGAGGCTAGGTGTAGCCTTGGGTGAG 1752	

```
LOCUS
            BC068446
                                     2759 bp
                                                 mRNA
                                                         linear
                                                                   PRI 30-JUN-2004
DEFINITION
            Homo sapiens hypothetical protein FLJ34658, mRNA (cDNA clone
            MGC:86988 IMAGE:5295502), complete cds.
            BC068446
ACCESSION
VERSION
            BC068446.1 GI:46250395
KEYWORDS
            MGC.
            Homo sapiens (human)
SOURCE
  ORGANISM
            Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
                (bases 1 to 2759)
            Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G.,
  AUTHORS
            Klausner, R.D., Collins, F.S., Wagner, L., Shenmen, C.M., Schuler, G.D.,
            Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, N.K.,
            Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F.,
            Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L.,
            Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L.,
            Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S.,
            Carninci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J.,
            Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J.,
            McKernan, K.J., Malek, J.A., Gunaratne, P.H., Richards, S.,
            Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W.,
            Villalon, D.K., Muzny, D.M., Sodergren, E.J., Lu, X., Gibbs, R.A.,
            Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S.,
            Sanchez, A., Whiting, M., Madan, A., Young, A.C., Shevchenko, Y.,
            Bouffard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D.,
            Dickson, M.C., Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M.,
            Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailus, D.E.,
            Schnerch, A., Schein, J.E., Jones, S.J. and Marra, M.A.
 TITLE
            Generation and initial analysis of more than 15,000 full-length
            human and mouse cDNA sequences
  JOURNAL
            Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002)
   PUBMED
            12477932
REFERENCE
          . 2
               (bases 1 to 2759)
            Strausberg, R.
 AUTHORS
            Direct Submission
 TITLE
  JOURNAL
            Submitted (02-APR-2004) National Institutes of Health, Mammalian
            Gene Collection (MGC), Cancer Genomics Office, National Cancer
            Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,
  REMARK
            NIH-MGC Project URL: http://mgc.nci.nih.gov
COMMENT
            Contact: MGC help desk
            Email: cgapbs-r@mail.nih.gov
            Tissue Procurement: Miklos Palkovits, M.D., Ph.D.
            cDNA Library Preparation: Michael J. Brownstein (NHGRI) & Shiraki
            Toshiyuki and Piero Carninci (RIKEN)
            cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
            DNA Sequencing by: Sequencing Group at the Stanford Human Genome
            Center, Stanford University School of Medicine, Stanford, CA 94305
            Web site:
                             http://www-shgc.stanford.edu
            Contact: (Dickson, Mark) mcd@paxil.stanford.edu
            Dickson, M., Schmutz, J., Grimwood, J., Rodriquez, A., and Myers,
            R. M.
```

Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Series: IRAK Plate: 168 Row: c Column: 18

```
This clone was selected for full length sequencing because it
                    passed the following selection criteria: matched mRNA gi: 24432082.
FEATURES
                                    Location/Qualifiers
                                     1. .2759
        source
                                     /organism="Homo sapiens"
                                     /mol type="mRNA"
                                     /db xref="taxon:9606"
                                     /clone="MGC:86988 IMAGE:5295502"
                                     /tissue type="Testis"
                                    /clone lib="NIH MGC 97"
                                     /lab host="DH10B"
                                     /note="Vector: pBluescript"
                                    1. .2759
        gene
                                     /gene="FLJ34658"
                                     /db xref="LocusID:133688"
        CDS
                                    61. .1632
                                    /gene="FLJ34658"
                                    /codon start=1
                                    /product="hypothetical protein FLJ34658"
                                    /protein id="AAH68446.1"
                                    /db xref="GI:46250396"
                                    /db xref="LocusID:133688"
                                    translation="MVGQRVLLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSQ/
                                    ILQEHGHNVTMLHQSGKFLIPDIKEEEKSYQVIRWFSPEDHQKRIKKHFDSYIETALD
                                    GRKESEALVKLMEIFGTQCSYLLSRKDIMDSLKNENYDLVFVEAFDFCSFLIAEKLVK
                                    PFVAILPTTFGSLDFGLPSPLSYVPVFPSLLTDHMDFWGRVKNFLMFFSFSRSQWDMQ
                                    STFDNTIKEHFPEGSRPVLSHLLKAELWFVNSDFAFDFARPLLPNTVYIGGLMEKPI
                                    KPVPQDLDNFIANFGDAGFVLVAFGSMLNTHQSQEVLKKMHNAFAHLPQGVIWTCQSS
                                    HWPRDVHLATNVKIVDWLPQSDLLAHPSIRLFVTHGGQNSVMEAIRHGVPMVGLPVNG
                                    DQHGNMVRVVAKNYGVSIRLNQVTADTLTLTMKQVIEDKRYKSAVVAASVILHSQPLS
                                    PAQRLVGWIDHILQTGGATHLKPYAFQQPWHEQYLIDVFVFLLGLTLGTMWLCGKLLG
                                    VVARWLRGARKVKKT"
ORIGIN
Query Match
                                             55.2%;
                                                           Score 1280.6; DB 9; Length 2759;
   Best Local Similarity
                                             85.9%;
                                                           Pred. No. 0;
   Matches 1421; Conservative
                                                               Mismatches
                                                         0;
                                                                                     234;
                                                                                                Indels
                                                                                                                  0;
                                                                                                                        Gaps
                                                                                                                                       0;
Qy
                    8 CTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAGTGAGC 67
                        Db
                    1 CTTAGCCCGGCGCAGGCGCAGCCCAGGCTGAGATCCGCTGCTTCTGTGGAAGTGAGC 60
                   Qу
                        Db
                   128 GAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGAC 187
Qу
                        Db
                 121 GAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGAC 180
                 188 CGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGA 247
Qу
                        181 CGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGGA 240
Db
Qy
                 248 GGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCTT 307
                                 111 | 11 | 1111 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
```

241 AAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTTT 300

Db

Qу	. 308	GCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTTC	367
Db	301	TCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGCA	360
Qy	368	TTAGGTGGCAGAGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAG	427
Db	361	TTGGATGGCAGAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCAA	420
Qу	428	TGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGAC	487
Db	421	TGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTATGAT	480
Qу	488	ATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAG	547
Db	481	$\tt CTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAAA$	540
Qу	548	CCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACCAATCCCC	607
Db	541	CCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTTGGATTTTTGGGCTACCAAGCCCC	600
Qу	608	TTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGA	667
Db	601	TTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGA	660
Qу	668	GTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACA	727
Db	661	GTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTACA	720
Qу		TTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTT	787
Db			780
Qγ		CTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCT	
Db		CTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCCC	
Qy 		CTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCA	
Db		CTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCA	
Qy 		CAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTG	
Db		CAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTTT	
Qу		GGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTTT	
Db		GGCTCCATGTTGAACACCCATCAGTCCCAGGAAGTCCTCAAGAAGATGCACAATGCCTTT	
Qγ		GCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGTC	
Db		GCCCACCTCCCTCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGTT	
Qy		CACCTGGCTGCAAATGTGAAAATTGTGGACTGCTTCCTCAGAGTGACCTCCTGGCTCAC	
Db	1081	CATTTGGCCACAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCAC	1140

Qy Db	•	CCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGCCATCCAG 1207
Qy	1208	CATGGTGTGCCCATGGTGGGGATCCCTCTCTTTGGAGACCAGCCTGAAAACATGGTCCGA 1267
Db		
Qу	1268	GTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATTG 1327
Db	1261	
Qу	1328	GCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGCC 1387
Db ·	1321	
Qу	1388	AGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGAC 1447
Db	1381	AGTGTCATCCTGCACTCTCAGCCCCTGAGCCCCGCACAGCGGCTGGTGGGCTGGATCGAC 1440
Qy	1448	CACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTGG 1507
Db	1441	
Qy	1508	CATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGGGACTCTA 1567
Db	1501	
Qy	1568	TGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAGAAAGGTG 1627
Db	1561	TGGCTTTGTGGGAAGCTGCTGGGTGTGGTGGCCAGGTGGCTGCGTGGGGCCAGGAAGGTG 1620
Qy	1628	AAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGG 1662
Db ·	1621	
RESULT 1	3	
AX327327 LOCUS		X327327 2086 bp DNA linear PAT 07-JAN-2002
DEFINITI		equence 12 from Patent WO0179468.
ACCESSIO VERSION		X327327 X327327.1 GI:18097873
KEYWORDS		
SOURCE ORGANI		omo sapiens (human)
	E	Cukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Iammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENC		
AUTHOR		Colicky, J.L., Hafalia, A., Burford, N., Ring, H.Z., Lal, P.,
	5	ribouley, C.M., Yao, M.G., Yue, H., Tang, Y.T., Patterson, C., Das, D., anjanwala, M.S., Gandhi, A.R., Reddy, R., Khan, F.A., Baughn, M.R.,
TITLE		Ramkumar,J., Griffin,J.A. and Au-Young,J. Orug metabolizing enzymes
JOURNA	T E	Patent: WO 0179468-A 12 25-OCT-2001;
FEATURES		ncyte Genomics, Inc. (US)  Location/Qualifiers

source 1. .2086

/organism="Homo sapiens"
/mol_type="unassigned DNA"
/db xref="taxon:9606"

/note="Incyte ID No: 2516747CB1"

ORIGIN

Query Match 55.2%; Score 1280; DB 6; Length 2086; Best Local Similarity 85.8%; Pred. No. 0; Matches 1421; Conservative 0; Mismatches 235; Indels Gaps 0; 7 CCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAGTGAG 66 Qу 59 CCTTAGCCCGGCGCAGGCGCAGCCCAGGCTGAGATCCGCTGCTTCTGTGGAAGTGAG 118 Db Qу Db 127 AGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA 186 Qу 179 AGAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGA 238 Db 187 CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAG 246 Qу 239 CCGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGG 298 Db Qу 247 AGGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCT 306 299 AAAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTT 358 Db Qу - 1.1 1 111 359 TTCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGC 418 Db 367 TTTAGGTGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCA 426 Qу 419 ATTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTTGGGACTCA 478 Db Qy 427 GTGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGA 486 479 ATGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTATGA 538 Db 487 CATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAA 546 Qy 539 TCTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTGCTGATTGCTGAGAAGCTTGTGAA 598 Db. Qу 547 GCCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCC 606 599 ACCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCC 658 Db 607 CTTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG 666 Qу Db 659 CTTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCG 718 667 AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTAC 726 Qу 

Db	/19	AGTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTAC	778
Qу	727	27 ATTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCAT	786
Db	779	ATTTGACAACACCATCAAGGAGCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCT	838
Qy	787	TCTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCTTTGATTTTGCTCGACC	846
Db	839	TCTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCC	898
Qу	847	TCTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	906
Db	899	CCTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACC	958
Qy	907	ACAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTT	966
Db	959	ACAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTT	1018
Qу	967	GGGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTT	1026
Db	1019	TGGCTCCATGTTGAACACCCATCAGTCCCAGGAAGTCCTCAAGAAGATGCACAATGCCTT	1078
Qу	1027	TGCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGT	1086
Db	1079	TGCCCACCTCCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGT	1138
Qу	1087	CCACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCA	1146
Db	1139	TCATTTGGCCACAAATGTGAAAATTGTGGACTGGCTTCCTCGGAGTGACCTCCTGGCTCA	1198
Qy	1147	CCCAAGCATCCGTCTGTTTGTCACCCACGGCGGGCAGAATAGCATAATGGAGGCCATCCA	1206
Db	1199	CCCCAGCATCCGTCTTTTTGTCACTCATGGTGGGCAGAACAGCGTAATGGAGGCCATCCG	1258
Qy	1207	GCATGGTGTGCCCATGGTGGGGATCCCTCTTTTGGAGACCAGCCTGAAAACATGGTCCG	1266
Db	1259	TCATGGTGTGCCCATGGTGGGATTACCAGTCAATGGAGACCAGCATGGAAACATGGTCCG	1318
Qy	1267	AGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATT	1326
Db	1319	AGTAGTAGCCAAAAATTATGGTGTCTCTATCCGGTTGAATCAGGTCACAGCCGACACACT	1378
Qу		GGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGC	1386
Db		GACACTTACAATGAAACAAGTCATAGAAGACAAGAGGTACAAGTCGGCAGTGGTGGCAGC	1438
Qу		CAGTGTCATCCTGCGCTCCCCCCCCCCCCCACACAGCGGCTGGTGGGCTGGATTGA	1446
Db	1439	CAGTGTCATCCTGCACTCTCAGCCCCTGAGCCCCGCACAGCGGCTGGTGGGCTGGATCGA	1498
Qу	1447	CCACGTCCTCCAGACAGGGGGGGGGCGCACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTG	1506
Db	1499	99 CCACATCCTCCAGACTGGGGGAGCGACGCACCTCAAGCCCTATGCCTTCCAGCAGCCT	1558
Qу	1507	GCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGCTCACTCTGGGGACTCT	1566
Db	1559	GCATGAGCAGTACCTCATTGATGTCTTTGTGTTTCTGCTGGGGCTCACTCTGGGCACTAT	1618

•

```
1567 ATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAGAAAGGT 1626
Qу
           1619 GTGGCTTTGTGGGAAGCTGCTGGGTGTGGCCAGGTGGCTGCGTGGGGCCAGGAAGGT 1678
Db
       1627 GAAGGAGACATAAGGCCAGGTGCAGCCTTGGCGGGG 1662
Qу
           Db
       1679 GAAGAAGACATGAGGCTAGGTGTAGCCTTGGGTGAG 1714
RESULT 14
AX359923
LOCUS
         AX359923
                            1572 bp
                                    DNA
                                          linear
                                                  PAT 13-FEB-2002
DEFINITION
         Sequence 3 from Patent WO0202774.
         AX359923
ACCESSION
VERSION
         AX359923.1 GI:18675565
KEYWORDS
SOURCE
         Homo sapiens (human)
 ORGANISM
         Homo sapiens
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
         Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
         Leiby, K.R., Cook, W.J. and Spaltmann, F.
 TITLE
         32626, a human udp-glycosyltransferase and uses thereof
         Patent: WO 0202774-A 3 10-JAN-2002;
 JOURNAL
         Millennium Pharmaceuticals, Inc. (US)
FEATURES
                Location/Oualifiers
                1. .1572
   source
                /organism="Homo sapiens"
                /mol type="unassigned DNA"
                /db xref="taxon:9606"
ORIGIN
 Query Match
                    52.2%; Score 1212; DB 6; Length 1572;
 Best Local Similarity
                    85.7%;
                          Pred. No. 1.8e-310;
 Matches 1347; Conservative
                         0; Mismatches 225;
                                          Indels
                                                  0;
                                                     Gaps
                                                            0;
Qу
        Db
       128 GAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGAC 187
Qу
          61 GAGGCTGCCAAAATCCTGACAATATCTACACTGGGTGGAAGCCATTACCTACTGTTGGAC 120
Db
       188 CGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGA 247
Qу
           121 CGGGTGTCTCAGATTCTTCAAGAGCATGGTCATAATGTGACTATGCTTCATCAGAGTGGA 180
Db
Qу
       248 GGTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCTT 307
              Db
       181 AAGTTTTTGATCCCAGATATTAAAGAGGAGGAAAAATCATACCAAGTTATCAGGTGGTTT 240
Qу
       308 GCACCTGAAGATCATCAAAGAGAATTTAAAAAGAGTTTTGATTTCTTGTGGAAGAAACT 367
           1 111 1 1
Db
       241 TCACCTGAAGATCATCAAAAAAGAATTAAGAAGCATTTTGATAGCTACATAGAAACAGCA 300
```

Qy		TTAGGTGGCAGAGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAG	
Db	301	TTGGATGGCAGAAAAGAATCTGAAGCCCTTGTAAAGCTAATGGAAATATTTGGGACTCAA	360
Qу	428	TGCAGTCATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGAC	487
Db	361	TGTAGTTATTTGCTAAGCAGAAAGGATATAATGGATTCCTTAAAGAATGAGAACTATGAT	420
Qy	488	ATGGTGATAGTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAG	547
Db	421	CTGGTATTTGTTGAAGCATTTGATTTCTGTTCTTTCCTGATTGCTGAGAAGCTTGTGAAA	480
Qy	548	CCATTTGTGGCCATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACCAATCCCC	607
Db	481	CCATTTGTGGCCATTCTTCCCACCACATTCGGCTCTTTGGATTTTGGGCTACCAAGCCCC	540
Qy	608	TTGTCTTATGTTCCAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGA	667
Db	541	TTGTCTTATGTTCCAGTATTCCCTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGA	600
Qу	668	GTGAAGAATTTTCTGATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACA	727
Db	601	GTGAAGAATTTTCTGATGTTCTTTAGTTTCTCCAGGAGCCAATGGGACATGCAGTCTACA	660
Qу	728	TTTGACAACACCATCAAGGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTT	787
Db	661	TTTGACAACACCATCAAGGAGCATTTCCCAGAAGGCTCTAGGCCAGTTTTGTCTCATCTT	720
Qу	788	CTACTGAAAGCAGAGTTGTGGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCT	847
Db	721	CTACTGAAAGCAGAGTTGTGGTTTGTTAACTCTGATTTTGCCTTTGATTTTGCCCGGCCC	780
Qу	848	CTGCTTCCCAACACTGTTTATGTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCA	907
Db	781	CTGCTTCCCAACACTGTTTATATTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCA	840
Qy	908	CAAGACTTGGAGAACTTCATTGCCAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTG	967
Db	841	CAAGACTTGGACAACTTCATTGCCAACTTTGGGGATGCAGGGTTTGTCCTTGTGGCCTTT	900
Qу	968	GGCTCCATGGTGAACACCTGTCAGAATCCGGAAATCTTCAAGGAGATGAACAATGCCTTT	10,27
Db	901	GGCTCCATGTTGAACACCCATCAGTCCCAGGAAGTCCTCAAGAAGATGCACAATGCCTTT	960
Qу	1028	GCTCACCTACCCCAAGGGGTGATATGGAAGTGTCAGTGTTCTCATTGGCCCAAAGATGTC	1087
Db .	961	GCCCACCTCCCTCAAGGAGTGATATGGACATGTCAGAGTTCTCATTGGCCCAGAGATGTT	1020
Qу	1088	CACCTGGCTGCAAATGTGAAAATTGTGGACTGGCTTCCTCAGAGTGACCTCCTGGCTCAC	1147
Db	1021		1080
Qy	1148	CCAAGCATCCGTCTGTTTGTCACCCACGGCGGCAGAATAGCATAATGGAGGCCATCCAG	1207
Db	1081	CCCAGCATCCGTCTTTTTGTCACTCATGGTGGGCAGAACAGCGTAATGGAGGCCATCCGT	1140
Ωv	1208	C A THE CONTROL OF	1267

```
1141 CATGGTGTGCCCATGGTGGGATTACCAGTCAATGGAGACCAGCATGGAAACATGGTCCGA 1200
Db
       1268 GTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTTAAAGAAGCTCAAGGCAGAGACATTG 1327
Qy
            1201 GTAGTAGCCAAAAATTATGGTGTCTCTATCCGGTTGAATCAGGTCACAGCCGACACACTG 1260
Db
       1328 GCTCTTAAGATGAAACAAATCATGGAAGACAAGAGATACAAGTCCGCGGCAGTGGCTGCC 1387
Qy
            Db
       1261 ACACTTACAATGAAACAAGTCATAGAAGACAAGAGGTACAAGTCGGCAGTGGTGGCAGCC 1320
       1388 AGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAGCGGCTGGTGGGCTGGATTGAC 1447
Qу
           Db
       1321 AGTGTCATCCTGCACTCTCAGCCCCTGAGCCCCGCACAGCGGCTGGTGGGCTGGATCGAC 1380
       1448 CACGTCCTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTATGTCTTTCAGCAGCCCTGG 1507
Qу
           Db
       1381 CACATCCTCCAGACTGGGGGAGCGACCTCAAGCCCTATGCCTTCCAGCAGCCTTGG 1440
       1508 CATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGGCTCACTCTGGGGACTCTA 1567
Qу
           1441 CATGAGCAGTACCTCATTGATGTCTTTGTGTTTCTGCTGGGGGCTCACTCTGGGCACTATG 1500
Db
       1568 TGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGTGGGGCCAGAAAGGTG 1627
Qу
            1501 TGGCTTTGTGGGAAGCTGCTGGGTGTGGCCAGGTGGCTGCGTGGGGCCAGGAAGGTG 1560
Db
Qу
       1628 AAGGAGACATAA 1639
           1561 AAGAAGACATGA 1572
Db
RESULT 15
AR541778
LOCUS
          AR541778
                              2426 bp
                                       DNA
                                              linear
                                                     PAT 08-OCT-2004
DEFINITION
          Sequence 26 from patent US 6743619.
ACCESSION
          AR541778
VERSION
          AR541778.1 GI:53933858
KEYWORDS
SOURCE
          Unknown.
 ORGANISM
         Unknown.
          Unclassified.
REFERENCE
            (bases 1 to 2426)
 AUTHORS
          Tang, Y.T., Zhou, P., Goodrich, R., Liu, C., Asundi, V., Ren, F.,
          Zhang, J., Zhao, Q.A., Yang, Y., Xue, A.J., Wehrman, T., Wang, J.-R.,
          Wang, D. and Drmanac, R.T.
 TITLE
          Nucleic acids and polypeptides
 JOURNAL
          Patent: US 6743619-A 26 01-JUN-2004;
FEATURES
                 Location/Qualifiers
                 1. .2426
    source
                 /organism="unknown"
                 /mol type="genomic DNA"
ORIGIN
 Query Match
                     49.5%; Score 1147.8; DB 6;
                                              Length 2426;
 Best Local Similarity
                     85.2%; Pred. No. 2.2e-293;
 Matches 1281; Conservative
                           0; Mismatches 222;
                                              Indels
                                                      0;
                                                                0;
```

Qу	.160	AGGTGGAAGCCATTATCTACTGATGGACCGGGTTTCTCAGATTCTTCAAGATCACGGTCA	219
Db	617	AGGTGGAAGCCATTACCTACTGTTGGACCGGGTGTCTCAGATTCTTCAAGAGCATGGTCA	676
Qу	220	TAATGTCACCATGCTTAACCACAAAAGAGGTCCTTTTATGCCAGATTTTAAAAAGGAAGA	279
Db	677	TAATGTGACTATGCTTCATCAGAGTGGAAAGTTTTTGATCCCAGATATTAAAGAGGAGGA	736
Qу	280	AAAATCATATCAAGTTATCAGTTGGCTTGCACCTGAAGATCATCAAAGAGAATTTAAAAA	339
Db	737	AAAATCATACCAAGTTATCAGGTGGTTTTCACCTGAAGATCATCAAAAAAGAATTAAGAA	796
Qу	340	GAGTTTTGATTTCTTGGAAGAAACTTTAGGTGGCAGAGGAAAATTTGAAAACTTATT	399
Db	797	GCATTTGATAGCTACATAGAAACAGCATTGGATGGCAGAAAAGAATCTGAAGCCCTTGT	856
Qу	400	AAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTCATTTTTTAAATAGAAAGGATATCAT	459
Db	857	AAAGCTAATGGAAATATTTGGGACTCAATGTAGTTATTTGCTAAGCAGAAAGGATATAAT	916
Qу	460	GGATTCCTTAAAGAATGAGAACTTCGACATGGTGATAGTTGAAACTTTTGACTACTGTCC	519
Db	917	GGATTCCTTAAAGAATGAGAACTATGATCTGGTATTTGTTGAAGCATTTGATTCTGTTC	976
Qу	520	TTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGCCATTCTTTCCACTTCATTCGG	579
Db	977	TTTCCTGATTGCTGAGAAGCTTGTGAAACCATTTGTGGCCATTCTTCCCACCACATTCGG	1036
Qу	580	CTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTCCAGTATTCCGTTCCTTGCT	639
Db	1037	CTCTTTGGATTTTGGGCTACCAAGCCCCTTGTCTTATGTTCCAGTATTCCCTTGCT	1096
Qу	640	GACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTG	699
Db	1097	GACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTGATGTTCTTTAGTTTCTC	1156
Qу	700	CAGGAGGCAACAGCACTGCAGTCTACATTTGACAACACCCATCAAGGAACATTTCACAGA	759
Db	1157	CAGGAGCCAATGGGACATGCAGTCTACATTTGACAACACCATCAAGGAGCATTTCCCAGA	1216
Qу	760	AGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTCATTAACTC	819
Db	1217	AGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGTGGTTTGTTAACTC	1276
₋ Qy	820	TGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTATGTTGGAGGCTT	879
Db	1277		1336
Qу	880	GATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGCCAAGTTTGG	939
Db	1337		1396
Qу	940	GGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGAATCCGGA	999
Db	1397		1456

Qу	1000	AATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGGAAGTG	1059
Db	1457	AGTCCTCAAGAAGATGCACAATGCCTTTGCCCACCTCCCTC	1516
Qу	1060	TCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGACTG	1119
Db	1517	TCAGAGTTCTCATTGGCCCAGAGATGTTCATTTGGCCACAAATGTGAAAATTGTGGACTG	1576
.QУ	1120	GCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCGG	1179
Db	1577	GCTTCCTCAGAGTGACCTCCTGGCTCACCCCAGCATCCGTCTTTTTGTCACTCATGGTGG	1636
Qy	1180	GCAGAATAGCATAATGGAGGCCATCCAGCATGGTGGCCCATGGTGGGGATCCCTCTT	1239
Db	1637	GCAGAACAGCGTAATGGAGGCCATCCGTCATGGTGTGCCCATGGTGGGATTACCAGTCAA	1696
Qy	1240	TGGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCCAAAAAGTTTGGTGTTTCTATTCA	1299
Db	1697	TGGAGACCAGCATGGAAACATGGTCCGAGTAGTAGCCAAAAATTATGGTGTCTCTATCCG	1756
Qу	1300	GTTAAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAA	1359
Db	1757	GTTGAATCAGGTCACAGCCGACACACTGACACTTACAATGAAACAAGTCATAGAAGACAA	1816
Qу	1360	GAGATACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCC	1419
Db	1817	GAGGTACAAGTCGGCAGTGGCAGCCAGTGTCATCCTGCACTCTCAGCCCCTGAGCCC	1876
Qу	1420	CACACAGCGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGCGCGACGCACCT	1479
Db	1877	CGCACAGCGGCTGGTGGGCTGGATCGACCACATCCTCCAGACTGGGGGAGCGACGCACCT	1936
QУ	1480	CAAGCCCTATGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTT	
Db	1937	CAAGCCCTATGCCTTCCAGCAGCCTTGGCATGAGCAGTACCTCATTGATGTCTTTGTGTT	-
Qy	1540	TCTGCTGGGGCTCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGT	1599
Db	1997	TCTGCTGGGGCTCACTCTGGGCACTATGTGGCTTTGTGGGAAGCTGCTGGGTGTGGC	2056
Qy	1600	CTGGTGGCTGCGTGGGGCCAGAAAGGTGAAGGAGACATAAGGCCAGGTGCAGCCTTGGCG	1659
Db	2057	CAGGTGGCTGCGTGGGCCAGGAAGGTGAAGACATGAGGCTAGGTGTAGCCTTGGGT	2116
Qy	1660	GGG 1662	
Db	2117	GAG 2119	Antonia (

Search completed: February 15, 2005, 12:26:38 Job time: 9804 secs

GenCore version 5.1.6

```
Run on:
                February 15, 2005, 06:36:42; Search time 1156 Seconds
                                           (without alignments)
                                           11880.450 Million cell updates/sec
               US-10-017-867A-281
Title:
Perfect score: 2320
Sequence:
               1 agggtcccttagccgggcgc.....tctctccccaacctcactaa 2320
Scoring table: IDENTITY NUC
               Gapop 10.0 , Gapext 1.0
                4390206 seqs, 2959870667 residues
Searched:
Total number of hits satisfying chosen parameters:
                                                        8780412
Minimum DB seg length: 0
Maximum DB seq length: 2000000000
Post-processing: Minimum Match 0%
                Maximum Match 100%
                Listing first 1500 summaries
                N Geneseq 16Dec04:*
Database :
                1: geneseqn1980s:*
                2: geneseqn1990s:*
                3: geneseqn2000s:*
                4: geneseqn2001as:*
                5: geneseqn2001bs:*
                6: geneseqn2002as:*
               7: geneseqn2002bs:*
               8: geneseqn2003as:*
               9: geneséqn2003bs:*
               10: geneseqn2003cs:*
               11: geneseqn2003ds:*
               12: geneseqn2004as:*
               13: genesegn2004bs:*
     Pred. No. is the number of results predicted by chance to have a
     score greater than or equal to the score of the result being printed,
     and is derived by analysis of the total score distribution.
                                    SUMMARIES
  No.
        Score Match Length DB ID
                                                           Description
RESULT 1
    AAC58107 standard; cDNA; 2320 BP.
    Human PRO1780 nucleotide sequence SEQ ID NO:12.
PN
    WO200053750-A1.
PD
     14-SEP-2000.
     (GETH ) GENENTECH INC.
  Query Match
                          100.0%; Score 2320; DB 3; Length 2320;
  Best Local Similarity
                         100.0%; Pred. No. 0;
RESULT 2
    AAA37101 standard; cDNA; 2320 BP.
    Human PRO1780 (UNQ842) cDNA sequence SEQ ID NO:281.
    WO200012708-A2.
PN
     09-MAR-2000.
PD
     (GETH ) GENENTECH INC.
  Query Match
                         100.0%; Score 2320; DB 3; Length 2320;
  Best Local Similarity
                         100.0%; Pred. No. 0;
RESULT 3
    AAF54401 standard; DNA; 2320 BP.
     Primer #82 used in the identification of proteins.
PN
    WO200078961-A1.
PD
     28-DEC-2000.
     (GETH ) GENENTECH INC.
```

```
Query Match
                        100.0%; Score 2320; DB 4; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
    ACD68440 standard; cDNA; 2320 BP.
    Novel human secreted and transmembrane protein PRO1780 cDNA.
    US2003073130-A1.
PD
    17-APR-2003.
    (GETH ) GENENTECH INC.
PA
  Ouerv Match
                        100.0%; Score 2320; DB 9; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 5
    ACH04542 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003044841-A1.
PD 06-MAR-2003.
    (GETH ) GENENTECH INC.
               100.0%; Score 2320; DB 9; Length 2320;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 6
    ACD68086 standard; cDNA; 2320 BP.
    Novel human secreted and transmembrane protein PRO1780 cDNA.
PN
    US2003073129-A1.
PD
   17-APR-2003.
PA (GETH ) GENENTECH INC.
                        100.0%; Score 2320; DB 9; Length 2320;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 7
    ADC18150 standard; cDNA; 2320 BP.
    Human PRO polynucleotide #80.
PN
    US2003064925-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
  Query Match 100.0%; Score 2320; DB 10; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 8
    ADD70796 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003099625-A1.
PD
   29-MAY-2003.
    (GETH ) GENENTECH INC.
                        100.0%; Score 2320; DB 10; Length 2320;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 9
    ADD39873 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN ___US2003083462-A1.
    01-MAY-2003.
    (GETH ) GENENTECH INC.
                  100.0%; Score 2320; DB 10; Length 2320;
 Ouerv Match
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 10
    ADD70319 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
    US2003054406-A1.
    20-MAR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                        100.0%; Score 2320; DB 10; Length 2320;
```

```
Best Local Similarity
                          100.0%; Pred. No. 0;
RESULT 11
     ADD38440 standard; cDNA; 2320 BP.
      Human cDNA encoding secreted/transmembrane protein PRO1780.
      US2003096955-A1.
 PΝ
     22-MAY-2003.
      (GETH ) GENENTECH INC.
 PA
   Query Match
                          100.0%; Score 2320; DB 10; Length 2320;
   Best Local Similarity 100.0%; Pred. No. 0;
 RESULT 12
     ADD39396 standard; cDNA; 2320 BP.
 DE
      Human cDNA encoding secreted/transmembrane protein PRO1780.
     US2003096954-A1.
 PN
      22-MAY-2003.
 PΠ
 PA
     (GETH ) GENENTECH INC.
   Query Match
                          100.0%; Score 2320; DB 10; Length 2320;
   Best Local Similarity
                         100.0%; Pred. No. 0;
 RESULT 13
     ADD38919 standard; cDNA; 2320 BP.
      Human cDNA encoding secreted/transmembrane protein PRO1780.
 PN
      US2003092061-A1.
 PD
      15-MAY-2003.
 PA
      (GETH ) GENENTECH INC.
   Query Match
                          100.0%; Score 2320; DB 10; Length 2320;
   Best Local Similarity 100.0%; Pred. No. 0;
 RESULT 14
     ADD40350 standard; cDNA; 2320 BP.
      Human cDNA encoding secreted/transmembrane protein PRO1780.
 PN
     US2003082627-A1.
     01-MAY-2003.
 PD
     (GETH ) GENENTECH INC.
                          100.0%; Score 2320; DB 10; Length 2320;
   Query Match
   Best Local Similarity 100.0%; Pred. No. 0;
 RESULT 15
     ADE50571 standard; cDNA; 2320 BP.
     Human cDNA encoding secreted/transmembrane protein PRO1780.
 PN
     US2003069179-A1.
 PD
      10-APR-2003.
      (GETH ) GENENTECH INC.
   Query Match
                          100.0%; Score 2320; DB 10; Length 2320;
   Best Local Similarity 100.0%; Pred. No. 0;
 RESULT 16
     ADE20183 standard; cDNA; 2320 BP.
     Human cDNA encoding secreted/transmembrane protein PRO1780.
 PN
     US2003092883-A1.
 PD
     15-MAY-20.03.
     (GETH ) GENENTECH INC.
                          100.0%; Score 2320; DB 10; Length 2320;
   Query Match
   Best Local Similarity 100.0%; Pred. No. 0;
 RESULT 17
     ADE50094 standard; cDNA; 2320 BP.
      Human cDNA encoding secreted/transmembrane protein PRO1780.
     US2003082626-A1.
 PD
      01-MAY-2003.
      (GETH ) GENENTECH INC.
   Query Match
                          100.0%; Score 2320; DB 10; Length 2320;
   Best Local Similarity 100.0%; Pred. No. 0;
```

```
RESULT 18
    ADE21652 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
    US2003082628-A1.
PN
    01-MAY-2003.
PA
     (GETH ) GENENTECH INC.
                         100.0%; Score 2320; DB 10; Length 2320;
 Query Match
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 19
    ADF30077 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
DΕ
    US2003204053-A1.
PN
PD
    30-OCT-2003.
    (GETH ) GENENTECH INC.
PΑ
                         100.0%; Score 2320; DB 10; Length 2320;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 20
    ADF55970 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003204054-A1.
    30-OCT-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                         100.0%; Score 2320; DB 10; Length 2320;
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 21
    ADH99474 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003065142-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                         100.0%; Score 2320; DB 10; Length 2320;
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 22
    ADE96654 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003195347-A1.
    16-OCT-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 23
    ADF25965 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003199675-A1.
PD
    23-OCT-2003.
    (GETH ) GENENTECH_INC.
 Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 24
    ADF24864 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
ΡN
    US2003198993-A1.
    23-OCT-2003.
    (GETH ) GENENTECH INC.
                        100.0%; Score 2320; DB 12; Length 2320;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0;
RESULT 25
```

```
ADF29600 standard; cDNA; 2320 BP.
ID
    Human cDNA encoding secreted/transmembrane protein PRO1780.
DE
PN
    US2003203401-A1.
     30-OCT-2003.
PD
     (GETH ) GENENTECH INC.
                         100.0%; Score 2320; DB 12; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 26
    ADE97131 standard; cDNA; 2320 BP.
     Human cDNA encoding secreted/transmembrane protein PRO1780.
    US2003195334-A1.
PN
PD
     16-OCT-2003.
     (GETH ) GENENTECH INC.
  Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 27
    ADH03169 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
    US2003216562-A1.
    20-NOV-2003.
PA
     (GETH ) GENENTECH INC.
  Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 28
    ADH04123 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PR01780.
PN
    US2003220471-A1.
    27-NOV-2003.
PD
     (GETH ) GENENTECH INC.
  Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 29
    ADH03646 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PRO1780.
PN
    US2003224478-A1.
PD
    04-DEC-2003.
     (GETH ) GENENTECH INC.
 Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
  Best Local Similarity 100.0%; Pred. No. 0;
RESULT 30
    ADH04600 standard; cDNA; 2320 BP.
DE
    Human cDNA encoding secreted/transmembrane protein PR01780.
PN
    US2004005626-A1.
PD
    08-JAN-2004.
     (GETH ) GENENTECH INC.
PA
  Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
 Best Local Similarity
                        100.0%; Pred. No. 0;
RESULT 31
    ADH61601 standard; cDNA; 2320 BP.
    Human cDNA encoding secreted/transmembrane protein PR01780.
PN
    US2004014130-A1.
PD
    22-JAN-2004.
    (GETH ) GENENTECH INC.
 Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
 Best Local Similarity
                         100.0%; Pred. No. 0;
RESULT 32
    ADL94800 standard; cDNA; 2320 BP.
```

```
Human cDNA encoding secreted/transmembrane protein PRO1780.
DE
PN
    US2004073015-A1.
PD
    15-APR-2004.
     (GETH ) GENENTECH INC.
PA
  Query Match
                         100.0%; Score 2320; DB 12; Length 2320;
  Best Local Similarity
                         100.0%; Pred. No. 0;
RESULT 33
    AAF93775 standard; cDNA; 2341 BP.
    Human cDNA encoding a membrane or secretory protein clone PSEC0073.
     EP1067182-A2.
PN
PD
    10-JAN-2001.
     (HELI-) HELIX RES INST.
 Query Match
                         99.6%; Score 2310.2; DB 5; Length 2341;
  Best Local Similarity 99.9%; Pred. No. 0;
RESULT 34
    AAL41485 standard; DNA; 2944 BP.
    Drug metabolising enzyme encoding DNA - 7486594CB1.
    WO200266654-A2.
PN
    29-AUG-2002.
     (INCY-) INCYTE GENOMICS INC.
 Query Match
                        90.6%; Score 2102.8; DB 6; Length 2944;
  Best Local Similarity 95.5%; Pred. No. 0;
RESULT 35
    AAS62475 standard; cDNA; 2074 BP.
DE
    cDNA sequence #262 encoding novel human secreted protein.
PN
    WO200177291-A2.
    18-OCT-2001.
PD
     (GEMY ) GENETICS INST INC.
PA
  Query Match
                         88.9%; Score 2063.4; DB 6; Length 2074;
  Best Local Similarity 99.7%; Pred. No. 0;
RESULT 36
    ADR19692 standard; DNA; 2263 BP.
    Human drug metabolising enzyme (DME)-13 gene sequence.
PN
    WO200226988-A2.
PD
    04-APR-2002.
PA
     (INCY-) INCYTE GENOMICS INC.
 Query Match
                         68.1%; Score 1578.8; DB 7; Length 2263;
 Best Local Similarity 92.6%; Pred. No. 0;
RESULT 37
    AAD06821 standard; cDNA; 2797 BP.
ID
DΕ
    Human secreted protein Zalpha37 cDNA.
PN
    WO200138505-A2.
PD
    31-MAY-2001.
    (ZYMO ) ZYMOGENETICS INC.
 Query Match
                         55.2%; Score 1281.6; DB 4; Length 2797;
 Best Local Similarity 85.9%; Pred. No., 0;
RESULT 38
    ADA53720 standard; cDNA; 2823 BP.
    Human coding sequence, SEQ ID 1288.
PN
    EP1293569-A2.
    19-MAR-2003.
PD
PA
     (HELI-) HELIX RES INST.
     (REAS-) RES ASSOC BIOTECHNOLOGY.
 Query Match
                         55.2%; Score 1281.6; DB 10; Length 2823;
 Best Local Similarity 85.9%; Pred. No. 0;
RESULT 39
    AAD24667 standard; cDNA; 2086 BP.
```

```
DE
    Human drug metabolising enzyme (DME)-2 cDNA.
PN
    WO2001.79468-A2.
PD
    25-OCT-2001.
     (INCY-) INCYTE GENOMICS INC.
PA
                         55.2%; Score 1280; DB 6; Length 2086;
 Query Match
 Best Local Similarity 85.8%; Pred. No. 0;
RESULT 40
    ABK90831 standard; cDNA; 1851 BP.
    cDNA encoding drug metabolising enzyme.
    US2002082194-A1.
PN
PD
    27-JUN-2002.
    (GUEG/) GUEGLER K.
PA
PA
    (WEBS/) WEBSTER M.
PA
    (YANC/) YAN C.
PA (DFRA/) DI FRANCESCO V.
    (BEAS/) BEASLEY E M.
 Query Match
                         54.8%; Score 1270.4; DB 6; Length 1851;
 Best Local Similarity 85.9%; Pred. No. 0;
RESULT 41
    ADN02571 standard; DNA; 2868 BP.
    Human hepatouracil dinucleotide glycosyltransferase 29.7 DNA.
DE
PN
    CN1393551-A.
    29-JAN-2003.
PD
     (BIOW-) BIOWINDOW GENE DEV INC SHANGHAI.
                         54.5%; Score 1264.8; DB 11; Length 2868;
 Query Match
 Best Local Similarity 85.6%; Pred. No. 0;
RESULT 42
    AAD25345 standard; cDNA; 2082 BP.
    Human UDP-glycosyltransferase, 32626 cDNA.
    WO200202774-A2.
PD
    10-JAN-2002.
PA
    (MILL-) MILLENNIUM PHARM INC.
                        54.2%; Score 1257.6; DB 6; Length 2082;
 Query Match
 Best Local Similarity 85.0%; Pred. No. 0;
RESULT 43
    ABL57726 standard; DNA; 1572 BP.
    Human sbg100540UDPGT gene #2.
    WO200222802-A1.
PD
    21-MAR-2002.
    (SMIK ) SMITHKLINE BEECHAM CORP.
PA
PA
     (SMIK ) SMITHKLINE BEECHAM PLC.
     (GLAX ) GLAXO GROUP LTD.
 Query Match
                         52.2%; Score 1212; DB 6; Length 1572;
 Best Local Similarity 85.7%; Pred. No. 0;
RESULT 44
    ADA21188 standard; cDNA; 2268 BP.
    Human secreted protein SECP-42 encoding cDNA SEQ ID NO:93.
    WO2003068943-A2.
PN
    21-AUG-2003.
     (INCY-) INCYTE GENOMICS INC.
 Query Match
                         49.5%; Score 1147.8; DB 9; Length 2268;
 Best Local Similarity 85.2%; Pred. No. 0;
    ABX70800 standard; cDNA; 2426 BP.
DE
    Novel human cDNA sequence #25.
    WO200281731-A2.
PN
    17-OCT-2002.
PΠ
```

```
PA
     (HYSE-) HYSEQ INC.
PA
     (GOOD/) GOODRICH R W.
  Query Match
                          49.5%; Score 1147.8; DB 8; Length 2426;
  Best Local Similarity
                         85.2%; Pred. No. 0;
RESULT 46
     ADQ75567 standard; cDNA; 2791 BP.
     Uridine diphosphate-galactosyl ceramide glucuronyl collagen transferase.
     CN1380409-A.
PN
     20-NOV-2002.
PD
     (SHAN-) SHANGHAI BIOWINDOW GENE DEV INC.
PA
                          49.5%; Score 1147.8; DB 11; Length 2791;
  Query Match
  Best Local Similarity 85.2%; Pred. No. 0;
RESULT 47
    ABL57725 standard; DNA; 1182 BP.
DE
    Human sbg100540UDPGT gene #1.
PN
    WO200222802-A1.
PD
    21-MAR-2002.
     (SMIK ) SMITHKLINE BEECHAM CORP.
PA
     (SMIK ) SMITHKLINE BEECHAM PLC.
     (GLAX ) GLAXO GROUP LTD.
 Query Match
                         41.2%; Score 956.4; DB 6; Length 1182;
  Best Local Similarity 88.1%; Pred. No. 4.4e-274;
RESULT 48
    AAD06822 standard; DNA; 1569 BP.
    Human secreted protein Zalpha37 degenerate coding sequence.
    WO200138505-A2.
PN
     31-MAY-2001.
PD
     (ZYMO) ZYMOGENETICS INC.
PA
 Query Match
                         40.7%; Score 944.8; DB 4; Length 1569;
  Best Local Similarity 52.4%; Pred. No. 1.5e-270;
RESULT 49
    AAD06823 standard; cDNA; 2212 BP.
    Mouse secreted protein Zalpha37 cDNA.
    WO200138505-A2.
    31-MAY-2001.
PΑ
    (ZYMO) ZYMOGENETICS INC.
 Query Match
                         39.3%; Score 910.8; DB 4; Length 2212;
 Best Local Similarity 73.0%; Pred. No. 2.8e-260;
RESULT 50
    AAS84832 standard; cDNA; 2721 BP.
    DNA encoding novel human diagnostic protein #20636.
PN
    WO200175067-A2.
    11-OCT-2001.
PD
    (HYSE-) HYSEQ INC.
  Query Match
                         34.9%; Score 808.8; DB 5; Length 2721;
 Best Local Similarity 95.8%; Pred. No. 9.2e-230;
RESULT 51
    AAD06824 standard; DNA; 1569 BP.
    Mouse secreted protein Zalpha37 degenerate coding sequence.
PN
    WO200138505-A2.
    31-MAY-2001.
PD
     (ZYMO ) ZYMOGENETICS INC.
 Query Match
                         34.0%; Score 789; DB 4; Length 1569;
 Best Local Similarity 47.8%; Pred. No. 5.2e-224;
RESULT 52
ID
    ABA09537 standard; cDNA; 1898 BP.
    Human PRO1780 homologue-encoding cDNA, SEQ ID NO:1313.
```

```
WO200157188-A2.
PN
     09-AUG-2001.
PD
     (HYSE-) HYSEQ INC.
PA
                          30.5%;
                                  Score 708.2; DB 4; Length 1898;
  Query Match
  Best Local Similarity
                          86.4%; Pred. No. 8e-200;
RESULT 53
    AAF93971 standard; DNA; 770 BP.
     Primer specific for DNA encoding secretory/membrane protein SEQ ID 405.
     EP1067182-A2.
PN
     10-JAN-2001.
PD
     (HELI-) HELIX RES INST.
                          25.7%; Score 595.2; DB 5; Length 770;
  Query Match
  Best Local Similarity
                         93.4%; Pred. No. 2.4e-166;
RESULT 54
    ADB62657 standard; cDNA; 1842 BP.
    Human cDNA encoding clone KIDNE20186170.
DF.
PN
     EP1308459-A2.
     07-MAY-2003.
     (HELI-) HELIX RES INST.
PA
     (REAS-) RES ASSOC BIOTECHNOLOGY.
                         25.6%; Score 593.4; DB 10; Length 1842;
  Query Match
  Best Local Similarity 85.6%; Pred. No. 1.5e-165;
RESULT 55
    ADQ64368 standard; cDNA; 5002 BP.
DE
    Novel human cDNA sequence #1529.
     EP1440981-A2.
PN
PD
     28-JUL-2004.
     (REAS-) RES ASSOC BIOTECHNOLOGY.
PA
  Query Match
                         24.8%; Score 575.4; DB 12; Length 5002;
  Best Local Similarity
                         85.3%; Pred. No. 6.9e-160;
RESULT 56
    AAF94120 standard; DNA; 594 BP.
     Primer specific for DNA encoding secretory/membrane protein SEQ ID 554.
PN
     EP1067182-A2.
     10-JAN-2001.
PD
     (HELI-) HELIX RES INST.
PA
  Query Match
                          23.2%; Score 538.4; DB 5; Length 594;
  Best Local Similarity
                         98.5%; Pred. No. 1.9e-149;
RESULT 57
    AAS81804 standard; cDNA; 2220 BP.
     DNA encoding novel human diagnostic protein #17608.
PN
    WO200175067-A2.
PD
    11-OCT-2001.
    (HYSE-) HYSEQ INC.
  Query Match
                          21.0%;
                                  Score 487.6; DB 5; Length 2220;
  Best Local Similarity 93.7%; Pred. No. 6.7e-134;
RESULT 58
    ADN39359 standard; cDNA; 923 BP.
DE
     Cancer/angiogenesis/fibrosis-related nucleic acid, SEQ ID NO:B43.
    WO2003042661-A2.
PN
PD
     22-MAY-2003.
     (EOSB-) EOS BIOTECHNOLOGY INC.
                          19.0%; Score 441; DB 11; Length 923;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 3.1e-120;
RESULT 59
ID
    ABK90832 standard; DNA; 42999 BP.
     Genomic DNA encoding drug metabolising enzyme.
```

```
US2002082194-A1.
PN
PD
    27-JUN-2002.
     (GUEG/) GUEGLER K.
PA
     (WEBS/) WEBSTER M.
PA
     (YANC/) YAN C.
PΑ
PA
     (DFRA/) DI FRANCESCO V.
PA
     (BEAS/) BEASLEY E M.
  Query Match
                          18.7%; Score 433.6; DB 6; Length 42999;
  Best Local Similarity 88.1%; Pred. No. 6.4e-117;
RESULT 60
    AAS81803 standard; cDNA; 659 BP.
     DNA encoding novel human diagnostic protein #17607.
PN
    WO200175067-A2.
    11-OCT-2001.
PD
     (HYSE-) HYSEQ INC.
  Query Match
                          17.2%; Score 399.6; DB 5; Length 659;
  Best Local Similarity
                         92.5%; Pred. No. 5.7e-108;
RESULT 61
    AAS41046 standard; cDNA; 923 BP.
     cDNA encoding novel human enzyme polypeptide #262.
    WO200155301-A2.
PN
PD
     02-AUG-2001.
     (HUMA-) HUMAN GENOME SCI INC.
  Query Match
                          13.8%; Score 319.6; DB 4; Length 923;
 Best Local Similarity 84.8%; Pred. No. 5.5e-84;
RESULT 62
    AAS41586 standard; cDNA; 981 BP.
    cDNA encoding novel human enzyme polypeptide #802.
PN
    WO200155301-A2.
    02-AUG-2001.
PD
     (HUMA-) HUMAN GENOME SCI INC.
 Query Match
                         13.8%; Score 319.4; DB 4; Length 981;
 Best Local Similarity 85.4%; Pred. No. 6.6e-84;
RESULT 63
    AAL01667 standard; cDNA; 981 BP.
    Human reproductive system related antigen cDNA SEQ ID NO: 1668.
DE
PN
    WQ200155320-A2.
PD
     02-AUG-2001.
     (HUMA-) HUMAN GENOME SCI INC.
 Query Match
                          13.8%; Score 319.4; DB 4; Length 981;
  Best Local Similarity 85.4%; Pred. No. 6.6e-84;
RESULT 64
    ADQ57767 standard; DNA; 582 BP.
    Novel canine microarray-related DNA sequence SeqID9069.
    WO2004063324-A2.
    29-JUL-2004.
PD
    (GENE-) GENE LOGIC INC.
PA (PFIZ ) PFIZER PROD INC.
 Query Match
                         13.6%; Score 314.8; DB 13; Length 582;
 Best Local Similarity
                         81.8%; Pred. No. 1.1e-82;
RESULT 65
    AAL05664 standard; DNA; 5973 BP.
    Human reproductive system related antigen DNA SEQ ID NO: 8352.
    WO200155320-A2.
PN
PD
     02-AUG-2001.
     (HUMA-) HUMAN GENOME SCI INC.
 Query Match
                         10.3%; Score 239.2; DB 4; Length 5973;
```

```
Best Local Similarity 86.0%; Pred. No. 2e-59;
RESULT 66
    AAK11854 standard; DNA; 507 BP.
    Human brain expressed single exon probe SEQ ID NO: 11845.
    WO200157275-A2.
PN
    09-AUG-2001.
PD
     (MOLE-) MOLECULAR DYNAMICS INC.
 Query Match
                         10.3%; Score 238.8; DB 4; Length 507;
 Best Local Similarity 86.3%; Pred. No. 5e-60;
RESULT 67
    AAL05663 standard; DNA; 2751 BP.
    Human reproductive system related antigen DNA SEQ ID NO: 8351.
PN
    WO200155320-A2.
PD
    02-AUG-2001.
PA
     (HUMA-) HUMAN GENOME SCI INC.
 Query Match
                         10.3%; Score 238.8; DB 4; Length 2751;
 Best Local Similarity
                        86.3%; Pred. No. 1.5e-59;
RESULT 68
    AAL05665 standard; DNA; 5974 BP.
    Human reproductive system related antigen DNA SEQ ID NO: 8353.
    WO200155320-A2.
PN
PD
    02-AUG-2001.
     (HUMA-) HUMAN GENOME SCI INC.
                         10.3%; Score 238.8; DB 4; Length 5974;
 Query Match
 Best Local Similarity 86.3%; Pred. No. 2.6e-59;
RESULT 69
    AAS84831 standard; cDNA; 1242 BP.
    DNA encoding novel human diagnostic protein #20635.
    WO200175067-A2.
PN
    11-OCT-2001.
PD
    (HYSE-) HYSEQ INC.
 Query Match
                          9.7%; Score 224; DB 5; Length 1242;
 Best Local Similarity 100.0%; Pred. No. 2.4e-55;
RESULT 70
    AAS82074 standard; cDNA; 1242 BP.
    DNA encoding novel human diagnostic protein #17878.
DΕ
    WO200175067-A2.
PN
    11-OCT-2001.
PD
     (HYSE-) HYSEQ INC.
 Query Match
                          9.7%; Score 224; DB 5; Length 1242;
 Best Local Similarity 100.0%; Pred. No. 2.4e-55;
RESULT 71
    AAK24438 standard; DNA; 277 BP.
    Human brain expressed single exon probe SEQ ID NO: 24429.
    WO200157275-A2.
    09-AUG-2001.
PD
    (MOLE-) MOLECULAR DYNAMICS INC.
PA
 Query Match
                         9.5%; Score 220; DB 4; Length 277;
 Best Local Similarity 87.3%; Pred. No. 1.4e-54;
RESULT 72
    ABI99695 standard; cDNA; 2308 BP.
    Mouse ischaemic condition related cDNA sequence SEQ ID NO:738.
    WO200188188-A2.
PD
    22-NOV-2001.
    (UYNI-) UNIV NIHON SCHOOL JURIDICAL PERSON.
 Query Match
                          7.1%; Score 164; DB 6; Length 2308;
 Best Local Similarity 47.5%; Pred. No. 3e-37;
```

....

```
RESULT 73
    ACN45084 standard; DNA; 49753 BP.
    Mouse genomic sequence mCG7831.
PN
    WO2003073826-A2.
     12-SEP-2003.
PD
     (SAGR-) SAGRES DISCOVERY.
PA
  Query Match
                          7.0%; Score 162.6; DB 11; Length 49753;
  Best Local Similarity
                         72.7%; Pred. No. 6e-36;
    ADB59021 standard; DNA; 1716 BP.
     Toxicity-related gene, SEQ ID 4047.
DE
PN
    WO2003064624-A2.
PD
     07-AUG-2003.
     (GENE-) GENE LOGIC INC.
PA
                           6.4%; Score 148; DB 10; Length 1716;
  Best Local Similarity
                         51.9%; Pred. No. 1.5e-32;
RESULT 75
    ADB53779 standard; DNA; 1716 BP.
     Primary rat hepatocyte toxicity modelling related gene SEQ ID NO:4321.
PN
    WO2003065993-A2.
PD
    14-AUG-2003.
     (GENE-) GENE LOGIC INC.
  Query Match
                           6.4%; Score 148; DB 10; Length 1716;
  Best Local Similarity 51.9%; Pred. No. 1.5e-32;
RESULT 76
    ADP73008 standard; DNA; 1716 BP.
    Renal toxin progression gene marker #1597.
PN
    WO2004048598-A2.
PD
    10-JUN-2004.
     (GENE-) GENE LOGIC INC.
PA
  Query Match
                           6.4%; Score 148; DB 12; Length 1716;
 Best Local Similarity
                         51.9%; Pred. No. 1.5e-32;
RESULT 77
    ADP72663 standard; DNA; 1819 BP.
    Renal toxin progression gene marker #1252.
PN
    WO2004048598-A2.
PD
    10-JUN-2004.
     (GENE-) GENE LOGIC INC.
                           6.4%; Score 148; DB 12; Length 1819;
 Query Match
 Best Local Similarity
                         51.9%; Pred. No. 1.5e-32;
RESULT 78
    ABK63496 standard; cDNA; 1961 BP.
    Rat sequence differentially expressed in response to a hepatotoxin #1403.
DE.
PN
    WO200210453-A2.
PD
    07-FEB-2002.
     (GENE-) GENE LOGIC INC.
  Query Match
                           6.3%; Score 145.2; DB 6; Length 1961;
 Best Local Similarity 49.4%; Pred. No. 1.1e-31;
RESULT 79
    ADB57963 standard; DNA; 1961 BP.
DE
    Toxicity-related gene, SEQ ID 2989.
PN
    WO2003064624-A2.
PD
    07-AUG-2003.
     (GENE-) GENE LOGIC INC.
  Query Match
                           6.3%; Score 145.2; DB 10; Length 1961;
  Best Local Similarity
                         49.4%; Pred. No. 1.1e-31;
RESULT 80
```

```
ABZ58827 standard; cDNA; 1584 BP.
ID
DE
    Human 32624 polypeptide coding sequence.
PN
    WO200226834-A2.
PD
     04-APR-2002.
     (MILL-) MILLENNIUM PHARM INC.
PA
                          6.2%; Score 144.2; DB 6; Length 1584;
  Best Local Similarity 48.4%; Pred. No. 1.9e-31;
RESULT 81
    ABZ58826 standard; cDNA; 2996 BP.
DE
     Human 32624 polypeptide encoding cDNA.
    WO200226834-A2.
PN
     04-APR-2002.
PD
     (MILL-) MILLENNIUM PHARM INC.
  Query Match
                          6.2%; Score 144.2; DB 6; Length 2996;
  Best Local Similarity
                         48.4%; Pred. No. 2.9e-31;
RESULT 82
    AAD24666 standard; cDNA; 1636 BP.
    Human drug metabolising enzyme (DME)-1 cDNA.
    WO200179468-A2.
    25-OCT-2001.
     (INCY-) INCYTE GENOMICS INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 6; Length 1636;
  Best Local Similarity
                        48.3%; Pred. No. 3.9e-31;
RESULT 83
    ADA11047 standard; cDNA; 1636 BP.
    Human cDNA differentially expressed in colon cancer #117.
DE
PN
    US2002160382-A1.
PD
     31-OCT-2002.
    (LASE/) LASEK A W.
PΑ
     (JONE/) JONES D A.
                           6.2%; Score 143.2; DB 9; Length 1636;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 3.9e-31;
RESULT 84
    ADS09871 standard; DNA; 2408 BP.
    Human therapeutic DNA - SEQ ID 108.
PN
    WO2004080148-A2.
PD
    23-SEP-2004.
PA
     (NUVE-) NUVELO INC.
  Query Match
                           6.2%; Score 143.2; DB 13; Length 2408;
  Best Local Similarity
                         48.3%; Pred. No. 5e-31;
RESULT 85
    ABK12422 standard; cDNA; 2759 BP.
DE
     cDNA encoding human drug-metabolising enzyme.
PN
    WO200218554-A2.
PD
    07-MAR-2002.
     (APPL=). APPLERA CORP.
  Query Match
                           6.2%; Score 143.2; DB 6; Length 2759;
  Best Local Similarity 48.3%; Pred. No. 5.5e-31;
RESULT 86
    ADA10915 standard; cDNA; 2966 BP.
    Human cDNA differentially expressed in colon cancer #22.
DE
PN
    US2002160382-A1.
     31-OCT-2002.
PA (LASE/) LASEK A W.
     (JONE/) JONES D A.
                          6.2%; Score 143.2; DB 9; Length 2966;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 87
    ADL12512 standard; cDNA; 2966 BP.
     Human steroid-induced C3A liver cell cDNA #241.
    US6673549-B1.
PN
     06-JAN-2004.
PD
PA
     (INCY-) INCYTE CORP.
  Query Match
                          6.2%; Score 143.2; DB 12; Length 2966;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 88
    AAS46185 standard; cDNA; 2974 BP.
    Human DNA encoding PRO polypeptide sequence #261.
PN
    WO200168848-A2.
PD
     20-SEP-2001.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 4; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 89
    ACA89635 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
PN
    US2003036141-A1.
    20-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 90
    ACA73645 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003036146-A1.
    20-FEB-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 91
    ACA05960 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003036162-A1.
    20-FEB-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 92
    ACA66794 standard; cDNA; 2974 BP.
    cDNA encoding human PRO protein #261.
PN
    US2003036137-A1.
PD
    20-FEB-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 93
    ACF20369 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEO ID NO:521.
PN
    US2003040063-A1.
    27-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 94
ID
    ACF19755 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
```

```
US2003040064-A1.
PN
    27-FEB-2003.
PΠ
                          6.2%; Score 143.2; DB 8; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 95
    ACD22043 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003027267-A1.
     06-FEB-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 96
    ACF13208 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003036160-A1.
PD
    20-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 97
    ACD25311 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003044925-A1.
    06-MAR-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 98
    ACF00360 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003054474-A1.
    20-MAR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 99
    ACA72417 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003032114-A1.
PN
    13-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 100
    ACD04941 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
    US2003032101-A1.
    13-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 101
    ACD18402 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003036124-A1.
PN
    20-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 102
ΙD
    ACD08409 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
```

```
US2003040054-A1.
PN
    27-FEB-2003.
PD
                           6.2%; Score 143.2; DB 8; Length 2974;
  Query Match
                          48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
RESULT 103
    ACA88843 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003036133-A1.
PN
     20-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 104
    ACA70285 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DF.
PΝ
    US2003036134-A1.
PD
    20-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 105
    ACD12507 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003022294-A1.
PN
     30-JAN-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
                          48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
RESULT 106
    ACC74422 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003027275-A1.
PN
     06-FEB-2003.
PD
  Query Match
                           6.2%;
                                 Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 107
    ACD16050 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003027324-A1.
     06-FEB-2003.
PD
  Query Match
                           6.2%;
                                 Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 108
    ACD25618 standard; cDNA; 2974 BP.
DE
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003036118-A1.
PN
     20-FEB-2003.
PD
     (GETH ) GENENTECH INC.
PΑ
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 109
    ACD18095 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003036123-A1.
PN
     20-FEB-2003.
PD
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 110
TD
    ACC88382 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
```

```
US2003036148-A1.
PN
     20-FEB-2003.
PD
                           6.2%; Score 143.2; DB 8; Length 2974;
  Query Match
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 111
    ACD21736 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
DE
     US2003040060-A1.
     27-FEB-2003.
PD
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 112
     ACD18803 standard; cDNA; 2974 BP.
DE
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
     US2003044916-A1.
PΠ
     06-MAR-2003.
  Ouerv Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 113
     ABX98413 standard; cDNA; 2974 BP.
DE
     Human cDNA encoding a secreted/transmembrane protein, SEQ ID 521.
     US2003036156-A1.
PN
     20-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 114
    ACD14164 standard; cDNA; 2974 BP.
     Human PRO polynucleotide #261.
PN
     US2003032117-A1.
     13-FEB-2003.
PD
  Query Match
                          6.2%;
                                 Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 115
    ACD09944 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
     US2003036128-A1.
PΠ
     20-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 116
     ACC88689 standard; cDNA; 2974 BP.
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003027266-A1.
     06-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 117
    ACD21429 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
    US2003054483-A1.
PN
PD
    20-MAR-2003.
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 8; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 118
TD
    ABX75801 standard; cDNA; 2974 BP.
     Human cDNA encoding secreted/transmembrane protein, PRO6239.
```

```
US2003022298-A1.
ΡN
PD
     30-JAN-2003.
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 119
    ABX98004 standard; cDNA; 2974 BP.
DE
    Human PRO polynucleotide #261.
    US2003032102-A1.
PN
PD
    13-FEB-2003.
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 120
    ACA97480 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
DE
PN
    US2003036117-A1.
    20-FEB-2003.
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 121
    ACA57943 standard; cDNA; 2974 BP.
    Human PRO6239 cDNA.
DE
    US2003036143-A1.
PN
    20-FEB-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 122
    ACD14471 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
    US2003032130-A1.
PN
PD
    13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 123
    ACC91254 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003032138-A1.
PD
    13-FEB-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 124
    ACC88996 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003036132-A1.
    20-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length, 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 125
    ACD07193 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
    US2003008353-A1.
PN
PD
    09-JAN-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 126
    ACA67644 standard; cDNA; 2974 BP.
```

```
Human PRO polynucleotide #261.
DE
    US2003017542-A1.
PN
     23-JAN-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 127
    ACC81699 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003032137-A1.
PN
    13-FEB-2003.
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 128
    ACC89303 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003027269-A1.
PD
     06-FEB-2003.
                          6.2%; Score 143.2; DB 8; Length 2974;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 129
    ACC86659 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID No:521.
PN
    US2003027268-A1.
    06-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 130
    ACC89917 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DΕ
PN
    US2003027274-A1.
    06-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 131
    ACC93096 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003032135-A1.
    13-FEB-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 132
    ACA72724 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
DE
PN
    US2003022295-A1.
    30-JAN-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 133
    ACA89242 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003022297-A1.
    30-JAN-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 134
    ACA69978 standard; cDNA; 2974 BP.
```

```
DE
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003032105-A1.
    13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 135
    ACA97121 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
DE
    US2003032123-A1.
PN
    13-FEB-2003.
PD
 Query Match
                                 Score 143.2; DB 8; Length 2974;
                          6.2%;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 136
    ACA91117 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003032108-A1.
PD 13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 137
    ACA70899 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003032111-A1.
PD
    13-FEB-2003.
 Query Match
                         . 6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 138
    ACA95409 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
   US2003032119-A1.
    13-FEB-2003.
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 139
    ACC86352 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003027263-A1.
PD
    06-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACC90224 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003027271-A1.
    06-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 141
    ACD12832 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003036125-A1.
    20-FEB-2003.
 Query Match
                          6.2%;
                                 Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 142
    ACF20062 standard; cDNA; 2974 BP.
```

```
Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
     US2003040068-A1.
PN
     27-FEB-2003.
PD
                                  Score 143.2; DB 8; Length 2974;
  Query Match
                           6.2%;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 143
    ABX77006 standard; cDNA; 2974 BP.
     Human PRO polynucleotide #261.
     US2003027280-A1.
PN
     06-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 144
    ACA73338 standard; cDNA; 2974 BP.
     Novel human secreted and transmembrane protein PRO6239 cDNA.
     US2003022300-A1.
PN
     30-JAN-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 145
    ACA68881 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003036136-A1.
PN
     20-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 146
    ACA74725 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
PN
    US2003036138-A1.
     20-FEB-2003.
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 147
    ACA70592 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003032109-A1.
     13-FEB-2003.
  Query Match
                                  Score 143.2; DB 8; Length 2974;
                           6.2%;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 148
    ACD14778 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
DE
    US2003040066-A1.
PN
     27-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%;
                                 Pred. No. 5.7e-31;
RESULT 149
    ACA68450 standard; cDNA; 2974 BP.
DE
    Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
    US2003032104-A1.
PD
     13-FEB-2003.
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 150
ID
    ABX98915 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
```

```
US2003036157-A1.
PN
PD
    20-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 151
    ACC81392 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003032120-A1.
PN
    13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 152
    ACA95716 standard; cDNA; 2974 BP.
DE
    Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
    US2003036155-A1.
    20-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 153
    ACD04634 standard; cDNA; 2974 BP.
DE
    Novel human secreted and transmembrane protein PRO6239 cDNA.
    US2003022296-A1.
PN
PD
    30-JAN-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 154
    ACC88075 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003027281-A1.
PD
    06-FEB-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 155
    ACF12737 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003040058-A1.
PD
    27-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 156
    ACA96452 standard; cDNA; 2974 BP.
DE
    Human PRO polynucleotide #261.
PN
    US2003017540-A1.
    23-JAN-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 157
    ACA65226 standard; cDNA; 2974 BP.
DE
    Human PRO polynucleotide #261.
    US2003032106-A1.
PN
PD
    13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 158
    ACA73952 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
```

```
US2003032129-A1.
PN
ΡŊ
     13-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 159
     ACA74364 standard; cDNA; 2974 BP.
     Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
     US2003032131-A1.
     13-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 160
     ACA96759 standard; cDNA; 2974 BP.
DE
     Human PRO polynucleotide #261.
PN
     US2003032103-A1.
PD
     13-FEB-2003.
  Query Match
                          6.2%;
                                  Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 161
    ACD10865 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
    US2003032107-A1.
PN
     13-FEB-2003.
PD
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 162
    ACC91561 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
ΡN
     US2003032139-A1.
     13-FEB-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 163
    ACD02896 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
PN
    US2003022301-A1.
PD
     30-JAN-2003.
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 164
    ACC87461 standard; cDNA; 2974 BP.
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003036165-A1.
PN
    20-FEB-2003.
PD
PA
     (GETH ) GENENTECH INC.
  Query Match
                     6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 165
    ACC86045 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003027262-A1.
     06-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 166
ID
    ACA65533 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
```

```
ΡN
     US2003032110-A1.
PD
     13-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 167
    ACA94350 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
    US2003036142-A1.
PN
     20-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 168
    ACA98094 standard; cDNA; 2974 BP.
DE
    Human PRO polynucleotide #261.
PN
    US2003036145-A1.
     20-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 169
    ACA91596 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
DE.
    US2003036154-A1.
PN
     20-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 170
    ACA90810 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
DE.
PN
    US2003036153-A1.
PD
    20-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 171
    ACD16357 standard; cDNA; 2974 BP.
DΕ
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003044931-A1.
PN
    06-MAR-2003.
PD
 Query Match
                           6.2%; Score 143.2; DB 8;
                                                       Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 172
    ACD17518 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003036150-A1.
    20-FEB-2003.
 Query Match
                           6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 173
    ACC92175 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003040069-A1.
PN
    27-FEB-2003.
PD
                           6.2%; Score 143.2; DB 8; Length 2974;
  Query Match
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 174
    ACA75032 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
PN
    US2003022293-A1.
```

```
30-JAN-2003.
PD
  Query Match
                         6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 175
    ACA91903 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
    US2003032128-A1.
PN
    13-FEB-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 176 .
    ACA71547 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003032116-A1.
    13-FEB-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 177
    ACC90947 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003032122-A1.
    13-FEB-2003.
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 178
    ACA65957 standard; cDNA; 2974 BP.
    cDNA encoding human PRO protein #261.
DE
PN
    US2003036139-A1.
    20-FEB-2003.
  Query Match
                         6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 179
    ACA95102 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003017541-A1.
PN
PD
    23-JAN-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 180
    ACD16664 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003017543-A1.
    23-JAN-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 181
    ACD15743 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003036152-A1.
PD
    20-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 8; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 182
    ABX16846 standard; cDNA; 2974 BP.
    Human cDNA encoding secreted/transmembrane protein #261.
PN
    US2002127584-A1.
PD 12-SEP-2002.
```

```
(GETH ) GENENTECH INC.
                                 Score 143.2; DB 8; Length 2974;
  Query Match
                           6.2%;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 183
    ACA97787 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
    US2003032115-A1.
PN
    13-FEB-2003.
PD
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 184
    ACA99236 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
    US2003032140-A1.
    13-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 185
    ACC91868 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003040076-A1.
    27-FEB-2003.
PD
     (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 186
    ACD11279 standard; cDNA; 2974 BP.
    Novel human secreted and transmembrane protein PRO6239 cDNA.
PN
   US2003008352-A1.
   09-JAN-2003.
PD
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 187
    ACD15129 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
    US2003044922-A1.
PN
     06-MAR-2003.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
                        48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
RESULT 188
    ACD11893 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003032118-A1.
    13-FEB-2003.
PD
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 189
    ACC96022 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003036135-A1.
ΡĎ
     20-FEB-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 190
ID
    ACF16585 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
```

```
PN
    US2003054455-A1.
PD 20-MAR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 191
    ACF02703 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEO ID NO:521.
PN
    US2003049741-A1.
    13-MAR-2003.
PD
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 192
    ACF03010 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003049743-A1.
PD
    13-MAR-2003.
PΑ
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 193
    ACF21597 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003049769-A1.
    13-MAR-2003.
PD
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 194
    ACF10281 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068743-A1.
    10-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 195
    ACF78174 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003054479-A1.
PD
    20-MAR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 196
    ACD46879 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068685-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 197
    ACD49642 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003068725-A1.
```

```
10-APR-2003.
PD
     (GETH ) GENENTECH INC.
PA
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 198
    ACF28409 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068752-A1.
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 199
    ACD89099 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068682-A1.
PD
   10-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 200
    ACD84494 standard; cDNA; 2974 BP.
DE
    Human PRO polynucleotide #261.
PN US2003068701-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 201
    ACD99268 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003068755-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 202
    ADA78273 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003073180-A1.
    17-APR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                        6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 203
    ACF49010 standard; cDNA; .. 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104539-A1.
PD
    05-JUN-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 204
    ACD09330 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003036131-A1.
    20-FEB-2003.
 Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
```

```
Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 205
    ACF12123 standard; cDNA; 2974 BP.
ID
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003040075-A1.
PD
    27-FEB-2003.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 206
    ACF41357 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003054459-A1.
PD
    20-MAR-2003.
    (GETH ) GENENTECH INC.
PΑ
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 207
    ACF15971 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003044930-A1.
    06-MAR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 208
    ACF16278 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003040071-A1.
PΝ
    27-FEB-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 209
    ACD32105 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003054471-A1.
    20-MAR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACF18913 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064452-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 211
    ACF09360 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068705-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 212
   ACF78481 standard; cDNA; 2974 BP.
```

```
DΕ
       Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
  PN
      US2003054473-A1.
  PD
       20-MAR-2003.
  PA
       (GETH ) GENENTECH INC.
                             6.2%; Score 143.2; DB 9; Length 2974;
    Query Match
    Best Local Similarity
                            48.3%; Pred. No. 5.7e-31;
  RESULT 213
      ACF52080 standard; cDNA; 2974 BP.
  DE
       Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
  PN
       US2003064440-A1.
       03-APR-2003.
  PD
    Query Match
                             6.2%; Score 143.2; DB 9; Length 2974;
    Best Local Similarity
                           48.3%; Pred. No. 5.7e-31;
  RESULT 214
      ACF26567 standard; cDNA; 2974 BP.
       Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
  PN
      US2003068704-A1.
      10-APR-2003.
  PD
  PA
       (GETH ) GENENTECH INC.
    Query Match
                             6.2%; Score 143.2; DB 9; Length 2974;
    Best Local Similarity
                            48.3%; Pred. No. 5.7e-31;
  RESULT 215
      ACF24360 standard; cDNA; 2974 BP.
      Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
      US2003068722-A1.
  PN
       10-APR-2003.
  PD
       (GETH ) GENENTECH INC.
    Query Match
                             6.2%; Score 143.2; DB 9; Length 2974;
    Best Local Similarity 48.3%; Pred. No. 5.7e-31;
  RESULT 216
      ACF63671 standard; cDNA; 2974 BP.
      Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
  PN
      US2003073183-A1.
      17-APR-2003.
  PD
       (GETH ) GENENTECH INC.
    Query Match
                            6.2%; Score 143.2; DB 9; Length 2974;
    Best Local Similarity 48.3%; Pred. No. 5.7e-31;
  RESULT 217
      ACF50545 standard; cDNA; 2974 BP.
      Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
  DE
      US2003104549-A1.
  PN
  PD
      05-JUN-2003.
       (GETH ) GENENTECH INC.
    Query Match
                             6.2%; Score 143.2; DB 9; Length 2974;
    Best Local Similarity
                            48.3%; Pred. No. 5.7e-31;
RESULT 218
      ACH08016 standard; cDNA; 2974 BP.
  DE
      Human secreted/transmembrane protein (PRO) cDNA #261.
  PN
      US2003049749-A1.
  PD
      13-MAR-2003.
       (GETH ) GENENTECH INC.
  PA
    Query Match
                            6.2%; Score 143.2; DB 9; Length 2974;
   Best Local Similarity 48.3%; Pred. No. 5.7e-31;
  RESULT 219
  ΙD
      ACF13822 standard; cDNA; 2974 BP.
  DE
      Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
  PN
      US2003064462-A1.
```

```
03-APR-2003.
PD
PA
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                       48.3%; Pred. No. 5.7e-31;
RESULT 220
    ACD41748 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003065159-A1.
PN
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
PΑ
                         6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 221
    ACF32161 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003064447-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 222
   ACF23439 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003073184-A1.
PN
    17-APR-2003.
PD
    (GETH ) GENENTECH INC.
PA
Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 223
   ACF40129 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003064463-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 224
   ACD45651 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003064451-A1.
PN
    03-APR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 225
    ACE53308 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068721-A1.
PN
    10-APR-2003.
    (GETH ) GENENTECH INC.
                         6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACF27488 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003068699-A1.
PD
    10-APR-2003.
```

```
PA
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 227
    ACF45326 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068707-A1.
PN
    10-APR-2003.
PD
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 228
    ACF29944 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003073175-A1.
PD 17-APR-2003.
     (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 229
    ACD90020 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003068695-A1.
    10-APR-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 230
    ACD84801 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
PN
    US2003068703-A1.
PD
    10-APR-2003.
PA
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 231
    ACD98961 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003068732-A1.
PN
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 232
    ACF77253 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.....
PN
    US2003082717-A1.
PD
    01-MAY-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 233
    ACF76946 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104548-A1.
PD
    05-JUN-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
```

```
Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 234
    ACF49931 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003104542-A1.
PN
    05-JUN-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 235
    ACF50238 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104543-A1.
    05-JUN-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 236
    ACD09637 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DF.
PN
    US2003036127-A1.
    20-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 237
    ACD08716 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
    US2003040061-A1.
PN
    27-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 238
    ACF12430 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003036130-A1.
PN
    20-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 239
    ACC94938 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003054468-A1.
    20-MAR-2003.
PD
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 240
    ACD22657 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003054470-A1.
    20-MAR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 241
    ACF15357 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DF.
PN
    US2003044917-A1.
PD
    06-MAR-2003.
```

```
Query Match
                            6.2%; Score 143.2; DB 9; Length 2974;
   Best Local Similarity - 48.3%; Pred. No. 5.7e-31;
     ACC97452 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
 PN
     US2003044929-A1.
      06-MAR-2003.
 PD
   Query Match
                            6.2%; Score 143.2; DB 9; Length 2974;
   Best Local Similarity 48.3%; Pred. No. 5.7e-31;
 RESULT 243
     ACC92482 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
 PΝ
     US2003059880-A1.
 PD
     27-MAR-2003.
      (GETH ) GENENTECH INC.
   Query Match
                            6.2%; Score 143.2; DB 9; Length 2974;
                           48.3%; Pred. No. 5.7e-31;
   Best Local Similarity
 RESULT 244
     ACF14129 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
     US2003064465-A1.
 PN
 PD
     03-APR-2003.
      (GETH ) GENENTECH INC.
 PA
                            6.2%; Score 143.2; DB 9; Length 2974;
   Query Match
                           48.3%; Pred. No. 5.7e-31;
   Best Local Similarity
 RESULT 245
     ACF14436 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
 PN
     US2003054478-A1.
     20-MAR-2003.
 PD
      (GETH ) GENENTECH INC.
  Query Match 6.2%; Score 143.2; DB 9; Length 2974; Best Local Similarity 48.3%; Pred. No. 5.7e-31;
 RESULT 246
     ACF09667 standard; cDNA; 2974 BP.
. DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
 PN
     US2003068718-A1.
     10-APR-2003.
 PD
      (GETH ) GENENTECH INC.
   Query Match
                            6.2%; Score 143.2; DB 9; Length 2974;
                           48.3%; Pred. No. 5.7e-31;
   Best Local Similarity
 RESULT 247
     ACD45958 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003064454-A1.
 PD
     03-APR-2003.
      (GETH ) GENENTECH INC.
 PA
                            6.2%; Score 143.2; DB 9; Length 2974;
   Query Match
   Best Local Similarity 48.3%; Pred. No. 5.7e-31;
 RESULT 248
     ACD48107 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003064461-A1.
 PD
      03-APR-2003.
      (GETH ) GENENTECH INC.
                            6.2%; Score 143.2; DB 9; Length 2974;
   Query Match
   Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 249
    ACD67838 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003068724-A1.
PN
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
                .
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACF25646 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068727-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 251
    ACF29330 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068772-A1.
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 252
    ACD85108 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003068714-A1.
PN
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 253
    ACD84187 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
PN
    US2003068758-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 254
    ACD88178 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003068776-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 255
    ACF30865 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003069407-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 256
```

```
ID
    ACF32468 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104555-A1.
PD
     05-JUN-2003.
     (GETH ) GENENTECH INC.
PA
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 257
    ACH12128 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
    US2003049768-A1.
PN
     13-MAR-2003.
PD
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 258
    ACH12435 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
PN
    US2003049771-A1.
    13-MAR-2003.
ΡD
     (GETH ) GENENTECH INC.
PΑ
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 259
    ACD40827 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003032134-A1.
     13-FEB-2003.
PD
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 260
    ACF18299 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003054481-A1.
PΠ
    20-MAR-2003.
PA
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 261
    ACF08746 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003049778-A1.
    13-MAR-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best. Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 262
    ACF31547 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
    US2003049782-A1.
PN
    13-MAR-2003.
PD
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 263
TD
    ACF52387 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
```

```
US2003054476-A1.
PN
PD · 20-MAR-2003.
    (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 264
    ACD50256 standard; cDNA; 2974 BP.
DE
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
     US2003068733-A1.
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
PA
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 265
    ACF38959 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003068692-A1.
     10-APR-2003.
PD
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 266
    ACF26874 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003068709-A1.
     10-APR-2003.
PD
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 267
    ACF24974 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003068716-A1.
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 268
    ACF46554 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DF.
    US2003068740-A1.
PN
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 269
    ACF28102 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068751-A1.
PD
     10-APR-2003.
PA
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 270
    ACD89406 standard; cDNA; 2974 BP.
ΤD
     Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
    US2003068684-A1.
```

```
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
PΑ
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 271
    ACF63978 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003073179-A1.
PN
    17-APR-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 272
    ACF60618 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
ΡN
    US2003087374-A1.
    08-MAY-2003.
PD
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 273
    ACH12742 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
PN
    US2003049773-A1.
PD
    13-MAR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 274
    ACH10165 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049777-A1.
    13-MAR-2003.
     (GETH ) GENENTECH INC.
                         6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 275
   ACD04020 standard; cDNA; 2974 BP.
DE
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003040055-A1.
    27-FEB-2003.
 Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 276
    ACD10558 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003036164-A1.
                         . ....
    20-FEB-2003.
PD
  Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 277
    ACF42585 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003054480-A1.
PD
    20-MAR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 278
    ACF18606 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003059885-A1.
PD
    27-MAR-2003.
PA
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 279
    ACF02396 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003049740-A1.
PΝ
PD
     13-MAR-2003.
     (GETH ) GENENTECH INC.
PA
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 280
    ACF21904 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003049770-A1.
PD
    13-MAR-2003.
     (GETH ) GENENTECH INC.
PA
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 281
    ACF10588 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003073169-A1.
    17-APR-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 282
    ACF34040 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064457-A1.
PD
    03-APR-2003.
     (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 283
    ACF45002 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068711-A1.
    10-APR-2003.
PD
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 284
    ACD90634 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049745-A1.
PD
    13-MAR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 285
    ACD91247 standard; cDNA; 2974 BP.
```

```
DE
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
     US2003049751-A1.
PD
     13-MAR-2003.
PΑ
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 286
     ACF30558 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003067478-A1.
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 287
     ACD87257 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003068773-A1.
PN
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 288
     ACF60311 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
     US2003073185-A1.
PN
PD
     17-APR-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 289
     ACF46861 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
     US2003087373-A1.
     08-MAY-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 290
     ACF75718 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
     US2003096353-A1.
PN
     22-MAY-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 291
     ADA80065 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
DE
     US2003073173-A1.
PN
PD
     17-APR-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 292
     ACF17378 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003054458-A1.
     20-MAR-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
```

```
Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 293
    ACF23132 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003059886-A1.
    27-MAR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 294
    ACF08132 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
ΡN
    US2003049758-A1.
PD
    13-MAR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 295
    ACF08439 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003049772-A1.
PD
    13-MAR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 296
    ACF40743 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064448-A1.
    03-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 297
    ACF53922 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064456-A1.
    03-APR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 298
    ACD47186 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003068693-A1.
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 299
    ACF48089 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068735-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 300
    ACF47475 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068753-A1.
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                       48.3%; Pred. No. 5.7e-31;
RESULT 301
    ACF46247 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068742-A1.
PN
    10-APR-2003.
PD
   (GETH ) GENENTECH INC.
                         6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 302
    ACD86336 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DF.
    US2003068756-A1.
PN
PD
    10-APR-2003.
   (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 303
    ACF52694 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003082715-A1.
    01-MAY-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 304
    ACF53001 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003082716-A1.
PN
PD
    01-MAY-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 305
    ACF64994 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068737-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 306
    ACF76639 standard; cDNA; 2974 BP.
DΕ
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104547-A1.
PD
    05-JUN-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 307
    ACF61539 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
```

```
US2003096359-A1.
PN
    22-MAY-2003.
PΠ
    (GETH ) GENENTECH INC.
PA
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 308
    ACF61846 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003100061-A1.
PN
    29-MAY-2003.
PD
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 309
    ACD30877 standard; cDNA; 2974 BP.
DE
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003032125-A1.
    13-FEB-2003.
 Query Match 6.2%; Score 143.2; DB 9; Length 2974; Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 310
    ACD31798 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003054454-A1.
PN
    20-MAR-2003.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 311
    ACD32719 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN US2003054477-A1.
PD 20-MAR-2003.
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 312
    ACF17685 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003054460-A1.
PD
    20-MAR-2003.
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 313
    ACF07518 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003049753-A1.
PD
    13-MAR-2003. ·
    (GETH ) GENENTECH INC.
PA
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 314
    ACF20676 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003049763-A1.
PD
    13-MAR-2003.
PA
     (GETH ) GENENTECH INC.
```

```
Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 315
    ACF21290 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003073172-A1.
    17-APR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACF20983 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003073172-A1.
PD
    17-APR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 317
    ACD47800 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068700-A1.
    10-APR-2003.
PA
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 318
    ACF47782 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEO ID NO:521.
PN
    US2003068736-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 319
    ACF53615 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068679-A1.
    10-APR-2003.
PD
PA
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 320
    ACD86950 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068767-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 321
    ACH05198 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003073182-A1.
PN
PD
    17-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 322
```

```
ACF44695 standard; cDNA; 2974 BP.
ID
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
     US2003104557-A1.
PN
     05-JUN-2003.
PD
PA
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 323
    ADA81792 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003092121-A1.
PN
PD
     15-MAY-2003.
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 324
    ACD22350 standard; cDNA; 2974 BP.
DF.
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
     US2003027276-A1.
     06-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 325
     ACD24697 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
DF.
     US2003044920-A1.
PN
     06-MAR-2003.
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 326
    ACD39900 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
     US2003027265-A1.
PN
     06-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%;
                                  Pred. No. 5.7e-31;
RESULT 327
    ACD40207 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
PN
     US2003054461-A1.
PD
     20-MAR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 328
    ACF13515 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064446-A1.
     03-APR-2003.
PD
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 329
    ACF03317 standard; cDNA; 2974 BP.
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003049744-A1.
PD
    13-MAR-2003.
```

```
(GETH ) GENENTECH INC.
PA
  Query Match
              .
                          6.2%; Score 143.2; DB 9; Length 2974; ·
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 330
    ACF78788 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003049783-A1.
    13-MAR-2003.
PD
    (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 331
    ACF11509 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003073171-A1.
    17-APR-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 332
    ACF50852 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003032121-A1.
PN
    13-FEB-2003.
PD
 Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 333
    ACF34347 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064458-A1.
PD 03-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 334
    ACD46572 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003064460-A1.
PD
    03-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
RESULT 335
    ACD48414 standard; cDNA; 2974 BP.
TD
   Human secreted/transmembrane protein (PRO) cDNA #261.
PN US2003064464-A1.
PD
    03-APR-2003.
PΑ
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 336
    ACF27795 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068702-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                         6.2%; Score 143.2; DB 9; Length 2974;
Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 337
    ACF24667 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068734-A1.
PN
    10-APR-2003.
PD
PA
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 338
    ACD85722 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068719-A1.
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
PΑ
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 339
    ACD90327 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003068729-A1.
    10-APR-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 340
    ACD83880 standard; cDNA; 2974 BP.
DE
    Human PRO polynucleotide #261.
    US2003068738-A1.
PN
    10-APR-2003.
PD
     (GETH ) GENENTECH INC.
PA
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 341
    ACF49317 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104540-A1.
PΠ
    05-JUN-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 342
    ACH07402 standard; cDNA; 2974 BP.
DE
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003049742-A1.
PN
PD
    13-MAR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 343
    ACH07709 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049747-A1.
    13-MAR-2003.
PD
    (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 344
    ACH08323 standard; cDNA; 2974 BP.
```

```
DE
        Human secreted/transmembrane protein (PRO) cDNA #261.
   PN
        US2003049750-A1.
   PD
        13-MAR-2003.
   PΑ
        (GETH ) GENENTECH INC.
                              6.2%; Score 143.2; DB 9; Length 2974;
     Query Match
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
   RESULT 345
        ACH11514 standard; cDNA; 2974 BP.
        cDNA encoding human PRO polypeptide #261.
        US2003049766-A1.
   PN
   PD
        13-MAR-2003.
        (GETH ) GENENTECH INC.
                              6.2%;
     Query Match
                                     Score 143.2; DB 9; Length 2974;
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
   RESULT 346
        ACH11821 standard; cDNA; 2974 BP.
        cDNA encoding human PRO polypeptide #261.
        US2003049767-A1.
   PN
        13-MAR-2003.
   PD
        (GETH ) GENENTECH INC.
     Query Match
                              6.2%;
                                     Score 143.2; DB 9; Length 2974;
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
   RESULT 347
        ACH10472 standard; cDNA; 2974 BP.
        Human secreted/transmembrane protein (PRO) cDNA #261.
        US2003049779-A1.
   PN
        13-MAR-2003.
   PD
        (GETH ) GENENTECH INC.
   PA
     Query Match
                              6.2%; Score 143.2; DB 9; Length 2974;
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
   RESULT 348
        ACF01475 standard; cDNA; 2974 BP.
        Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
        US2003040059-A1.
   PD
        27-FEB-2003.
     Query Match
                              6.2%; Score 143.2; DB 9; Length 2974;
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
   RESULT 349
        ACF41050 standard; cDNA; 2974 BP.
        Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
        US2003040078-A1.
   PN
   PD
        27-FEB-2003.
        (GETH ) GENENTECH INC.
   PA
     Query Match
                              6.2%; Score 143.2; DB 9; Length 2974;
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
RESULT 350
        ACD24390 standard; cDNA; 2974 BP.
        Human secreted/transmembrane protein (PRO) cDNA #261.
        US2003044918-A1.
   PD
        06-MAR-2003.
     Query Match
                              6.2%; Score 143.2; DB 9; Length 2974;
     Best Local Similarity
                             48.3%; Pred. No. 5.7e-31;
        ACD31491 standard; cDNA; 2974 BP.
        Human secreted/transmembrane protein (PRO) cDNA #261.
   PN
        US2003032132-A1.
        13-FEB-2003.
```

```
Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 352
    ACF17992 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003054462-A1.
PN
    20-MAR-2003.
PD
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 353
    ACF32775 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064445-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 354
    ACF40436 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PΝ
    US2003064449-A1.
    03-APR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 355
    ACF48396 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003064441-A1.
    03-APR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACF38345 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068696-A1.
PN
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 357
    ACF25281 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068712-A1.
    10-APR-2003.
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 358
    ACF27181 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068730-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 359
ID. ACF29637 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003073174-A1.
PD
    17-APR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
    ACD87871 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003068775-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 361
    ACF76332 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104545-A1.
PD
    05-JUN-2003.
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 362
    ACF49624 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003104541-A1.
PN
    05-JUN-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 363
    ACF44081 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104554-A1.
    05-JUN-2003.
PD
     (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 364
    ACH06426 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
PN
    US2003049762-A1.
PD
    13-MAR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 365
    ACH06733 standard; cDNA; 2974 BP.
DE
    cDNA encoding human PRO polypeptide #261.
    US2003049765-A1.
PN
PD
    13-MAR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 366
    ADA83590 standard; cDNA; 2974 BP.
ID
    Human secreted/transmembrane protein (PRO) cDNA #261.
```

```
PN
    US2003049752-A1.
PD
    13-MAR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 367
    ACC92789 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003032133-A1.
PD
    13-FEB-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 368
    ACC93403 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003032136-A1.
PD
    13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 9;
                                                      Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 369
    ACF19448 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003036129-A1.
    20-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 370
    ACD13139 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003040053-A1.
    27-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
                        48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 371
    ACF06597 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003040057-A1.
    27-FEB-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 372
    ACC94631 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003054467-A1.
PN
    20-MAR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 373
    ACC98059 standard; cDNA; 2974 BP.
DF.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003044932-A1.
    06-MAR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
                         48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 374
ID ACC94324 standard; cDNA; 2974 BP.
```

```
Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003027270-A1.
     06-FEB-2003.
PD
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 375
    ACF42278 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003054469-A1.
PN
    20-MAR-2003.
PD
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 376
    ACD31184 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003032126-A1.
PD
    13-FEB-2003.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 377
    ACD43213 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003054463-A1.
PN
    20-MAR-2003.
PD
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 378
    ACD43520 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
PN
    US2003054466-A1.
PD
    20-MAR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 379
    ACF15050 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003059879-A1.
PD
    27-MAR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 380
    ACF01782 standard; cDNA; 2974 BP...
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
    US2003049738-A1.
PN
    13-MAR-2003.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 381
    ACF31854 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE.
PN
    US2003064469-A1.
PD
     03-APR-2003.
PA
    (GETH ) GENENTECH INC.
```

```
Ouery Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 382
    ACD67531 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
     US2003064453-A1.
PN
     03-APR-2003.
PD
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 383
    ACD48721 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003064466-A1.
    03-APR-2003.
PD
     (GETH ) GENENTECH INC.
                                 Score 143.2; DB 9; Length 2974;
  Query Match
                          6.2%;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 384
    ACD49028 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003064468-A1.
PD
     03-APR-2003.
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 385
    ACF51466 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068760-A1.
    10-APR-2003.
PΠ
     (GETH ) GENENTECH INC.
PΑ
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 386
    ACF54229 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068769-A1.
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 387
    ACF25953 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003045700-A1.
PΝ
    06-MAR-2003.
PD
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 388
    ACF39266 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
     US2003068698-A1.
PN
PD
     10-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
```

```
Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 389
    ACF29023 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068759-A1.
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
 Ouery Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 390
    ACD90940 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049748-A1.
PD
    13-MAR-2003.
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 391
    ACD86643 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003068765-A1.
PD
    10-APR-2003.
PA
     (GETH ) GENENTECH INC.
                                 Score 143.2; DB 9; Length 2974;
 Query Match
                          6.2%;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 392
    ACH05505 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
PN
    US2003049754-A1.
    13-MAR-2003.
PD
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 393
    ACF65301 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068688-A1.
    10-APR-2003.
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 394
    ADB20633 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003082767-A1.
PD ..01-MAY-2003.
 Query Match
                          6.2%; Score 143.2; DB 9;
                                                      Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 395
    ACF43774 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003104552-A1.
    05-JUN-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 396
```

```
ID
    ACH09244 standard; cDNA; 2974 BP.
DE
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049774-A1.
    13-MAR-2003.
PD
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 397
    ACH09551 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE.
PN
    US2003049775-A1.
     13-MAR-2003.
PD
PΑ
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 398
    ADA78885 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003073181-A1.
PD
    17-APR-2003.
     (GETH ) GENENTECH INC.
PΑ
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 399
    ACF09974 standard; cDNA; 2974 BP.
DΕ
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068720-A1.
PN
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 400
    ACF51159 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068739-A1.
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 401
    ACF24053 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068763-A1.
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 402
    ACD88485 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068689-A1.
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                                 Score 143.2; DB 9; Length 2974;
                           6.2%;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 403
    ACH09858 standard; cDNA; 2974 BP.
```

```
DE
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049776-A1.
PD
     13-MAR-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 404
    ACH10779 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003049780-A1.
PD
     13-MAR-2003.
     (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 405
    ACD11586 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
PΝ
    US2003036126-A1.
     20-FEB-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 406
     ACC96636 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
     US2003044924-A1.
PN
     06-MAR-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 407
    ACC98666 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
ΡN
     US2003044927-A1.
PD
     06-MAR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 408
    ACF41971 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003040072-A1.
ΡN
     27-FEB-2003.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 409
    ACF16892 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003040073-A1.
                         m 21 6
     27-FEB-2003.
PD
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 410
    ACD32412 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003054475-A1.
PD
     20-MAR-2003.
    (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
```

```
RESULT 411
    ACD30570 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003032124-A1.
    13-FEB-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 412
    ACD41441 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003064467-A1.
PN
    03-APR-2003.
PD
     (GETH ) GENENTECH INC.
PA.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 413
    ACF07825 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003049759-A1.
PD
    13-MAR-2003.
    (GETH ) GENENTECH INC.
PA
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 414
    ACF31240 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064455-A1.
PD
    03-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 415
    ACF77560 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003054465-A1.
PN
    20-MAR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 416
    ACF11202 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003073170-A1.
PN
    17-APR-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 417
    ACF33082 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003073176-A1.
PN
PD
    17-APR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 418
    ACF26260 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
```

```
PN
    US2003068717-A1.
PD
   10-APR-2003.
    (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 419
    ACD83573 standard; cDNA; 2974 BP.
    Human PRO polynucleotide #261.
DE
    US2003068728-A1.
PN
    10-APR-2003.
PD
PA '(GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 420
    ACF23746 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068764-A1.
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 421
    ACF43160 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104550-A1.
PD
    05-JUN-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 422
    ACF43467 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003104551-A1.
PD 05-JUN-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 423
    ACH06119 standard; cDNA; 2974 BP.
    cDNA encoding human PRO polypeptide #261.
    US2003049761-A1.
PN
    13-MAR-2003.
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 424
    ACH08937 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003049757-A1.
PD
    13-MAR-2003.
PA
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 425
    ACC90531 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003027273-A1.
```

```
PD
    06-FEB-2003.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 426
    ACF10895 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003036119-A1.
PĎ
    20-FEB-2003.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 427
    ACC93710 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003036120-A1.
    20-FEB-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 428
    ACC96329 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003036161-A1.
PD
    20-FEB-2003.
PA
    (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 429
    ACD25004 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003044921-A1.
    06-MAR-2003.
PD
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 430
    ACF02089 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003049739-A1.
PD
    13-MAR-2003.
PA (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 431
    ACF22211 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003059882-A1.
PD
    27-MAR-2003.
PA (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 432
    ACF22825 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003059884-A1.
    27-MAR-2003.
    (GETH ) GENENTECH INC.
 Query Match 6.2%; Score 143.2; DB 9; Length 2974; Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 433
```

```
ID
    ACF09053 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068687-A1.
PΠ
    10-APR-2003.
     (GETH ) GENENTECH INC.
PA
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 434
    ACF33389 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
    US2003073186-A1.
PN
PD
     17-APR-2003.
     (GETH ) GENENTECH INC.
PA
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 435
    ACF54843 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003064443-A1.
PD
    03-APR-2003.
     (GETH ) GENENTECH INC.
PΑ
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
                        48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 436
    ACF48703 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003064444-A1.
PN
PD
    03-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 437
    ACD47493 standard; cDNA; 2974 BP.
DE
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068697-A1.
ΡD
    10-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                        48.3%; Pred. No. 5.7e-31;
RESULT 438
    ACD49335 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068710-A1.
PD
    10-APR-2003.
PA
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 439
    ACF38038 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068686-A1.
PN
PD
    10-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
 Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 440
    ACF30251 standard; cDNA; 2974 BP.
```

```
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003073178-A1.
PD
     17-APR-2003.
PA
     (GETH ) GENENTECH INC.
                                  Score 143.2; DB 9; Length 2974;
  Query Match
                           6.2%;
  Best Local Similarity
                          48.3%;
                                  Pred. No. 5.7e-31;
RESULT 441
     ACD87564 standard; cDNA; 2974 BP.
ID
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003068774-A1.
PN
     10-APR-2003.
PD
     (GETH ) GENENTECH INC.
PΑ
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 442
     ACF62153 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003104538-A1.
     05-JUN-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          .48.3%;
                                  Pred. No. 5.7e-31;
RESULT 443
     ACH11086 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003049781-A1.
PN
     13-MAR-2003.
PD
     (GETH ) GENENTECH INC.
                           6.2%;
  Query Match
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 444
    ACD10251 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
ΡN
     US2003036158-A1.
     20-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%;
                                  Pred. No. 5.7e-31;
RESULT 445
     ACD16976 standard; cDNA; 2974 BP.
     cDNA encoding human PRO polypeptide #261.
PN
     US2003036151-A1.
     20-FEB-2003.
PD
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 446
     ACC99273 standard; cDNA; 2974 BP.
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003040067-A1.
     27-FEB-2003.
PD
  Query Match .
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 447
     ACF00667 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003054456-A1.
     20-MAR-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
                          48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
```

```
RESULT 448
    ACD41134 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
    US2003054482-A1.
PN
PD
    20-MAR-2003.
PA
     (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 449
    ACF14743 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003054457-A1.
PN
PD
    20-MAR-2003.
    (GETH ) GENENTECH INC.
PA
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 450
    ACF22518 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003059883-A1.
PN
    27-MAR-2003.
PD
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
                        48.3%; Pred. No. 5.7e-31;
 Best Local Similarity
RESULT 451
    ACF79095 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
    US2003049764-A1.
PN
PD
    13-MAR-2003.
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 452
    ACF11816 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003073177-A1.
PD
    17-APR-2003.
    (GETH ) GENENTECH INC.
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
 Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 453
    ACF51773 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003064442-A1.
    03-APR-2003.
     (GETH ) GENENTECH INC.
                                 3: 65- -
                          6.2%; Score 143.2; DB 9; Length 2974;
 Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 454
    ACF33696 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003064450-A1.
PD
     03-APR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 455
```

```
ĎΕ
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003068731-A1.
PΠ
    10-APR-2003.
     (GETH ) GENENTECH INC.
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 456
    ACF37731 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068683-A1.
PN
     10-APR-2003.
  Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 457
    ACF28716 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068754-A1.
ΡN
    10-APR-2003.
     (GETH ) GENENTECH INC.
 Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 458
    ACD88792 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
DE
    US2003068681-A1.
PN
    10-APR-2003.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 459
    ACF75411 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
    US2003096351-A1.
    22-MAY-2003.
     (GETH ) GENENTECH INC.
 Query Match
                          6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 460
    ACF61232 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003096358-A1.
PN
    22-MAY-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 461
    ACF44388 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003104556-A1.
PD
     05-JUN-2003.
     (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 462
    ACH08630 standard; cDNA; 2974 BP.
    Human secreted/transmembrane protein (PRO) cDNA #261.
PN
    US2003049756-A1.
```

ID

ACD49949 standard; cDNA; 2974 BP.

```
PD
     13-MAR-2003.
PΑ
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 463
     ACC94017 standard; cDNA; 2974 BP.
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
     US2003036122-A1.
PN
PD
     20-FEB-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 464
     ACD21122 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
     US2003036121-A1.
PD
     20-FEB-2003.
PA
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 465
     ACF06904 standard; cDNA; 2974 BP.
DE
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003040065-A1.
PD
     27-FEB-2003.
  Query Match
                                  Score 143.2; DB 9; Length 2974;
                           6.2%;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 466
     ACD20815 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
DE
PN
     US2003044919-A1.
     06-MAR-2003.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
                          48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
RESULT 467
     ACD22964 standard; cDNA; 2974 BP.
DF.
     Human secreted/transmembrane protein (PRO) cDNA #261.
PN
     US2003040077-A1.
PD
     27-FEB-2003.
  Query Match
                           6.2%;
                                  Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 468
     ACF41664 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DE
PN
     US2003044928-A1.
     06-MAR-2003.
PD
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 469
     ACF07211 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003049746-A1.
ΡĎ
     13-MAR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                                  Score 143.2; DB 9; Length 2974;
                           6.2%;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 470
     ACF77867 standard; cDNA; 2974 BP.
```

1

```
DE Ì
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
     US2003054464-A1.
     20-MAR-2003.
PA (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                          48.3%; Pred. No. 5.7e-31;
RESULT 471
    ACD46265 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
     US2003064459-A1.
PN
PD
     03-APR-2003.
     (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Loçal Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 472
    ACF47168 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
DF.
PN
    US2003068757-A1.
    10-APR-2003.
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 473
    ACF54536 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
    US2003068723-A1.
PN
PD
     10-APR-2003.
    (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 474
    ACF45940 standard; cDNA; 2974 BP.
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068741-A1.
    10-APR-2003.
PD
    (GETH ) GENENTECH INC.
PA
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity
                         48.3%; Pred. No. 5.7e-31;
RESULT 475
    ACF45633 standard; cDNA; 2974 BP.
     Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068744-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
  Query Match
                           6.2%; Score 143.2; DB 9; Length 2974;
  Best Local Similarity 48.3%; Pred. No. 5.7e-31;
RESULT 476
    ACF38652 standard; cDNA; 2974 BP.
DE
    Human secreted polypeptide PRO6239-encoding cDNA, SEQ ID NO:521.
PN
    US2003068766-A1.
PD
    10-APR-2003.
    (GETH ) GENENTECH INC.
                           6.2%; Score 143.2; DB 9; Length 2974;
  Query Match
                          48.3%; Pred. No. 5.7e-31;
  Best Local Similarity
RESULT 477
ID
    ACD89713 standard; cDNA; 2974 BP.
     Human secreted/transmembrane protein (PRO) cDNA #261.
```