Basic Graph Algorithms

Depth First Search and Its Applications

What is graphs?

Large Graphs in Real World

Facebook friends

Airlines

We can have directions!

Discussions

- In a directed graph
 - Arc (u, v) means we can only go from u to v.
- In an undirected graph
 - Edge (u, v) means we can go from u to v or go from v to u.
- Undirected graph & directed graph
 - Undirected graph is a SPECIAL directed graph
 - edge $(u, v) \rightarrow arc (u, v) & (v, u)$
- How many arcs at most in an undirected graph?
 - -G(V,E)
 - $0 \le |E| \le |V|(|V| 1) = O(|V|^2)$

How to store a graph?

- Adjacency Matrix
- Adjacency List

Adjacency Matrix

Space: $O(|V|^2)$

• $|V| \times |V|$ matrix (2d array)

$$\bullet \ A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

	1	2	3	4
1	0	0	0	0
2	1	0	1	0
3	0	0	0	0
4	1	0	1	0

Adjacency List

Space: O(|V| + |E|)

- Linked list adj[u] for each $u \in V$
- The list contains all u's neighbor.

	1	2	3	4
1	0	0	0	0
2	1 —	Û	→ 1	0
3	0	0	0	0
4	1	O	→ 1	0

Adjacency List

Space: O(|V| + |E|)

- Linked list adj[u] for each $u \in V$
- Node
 - v: the vertex
 - next
- Example
- *adj*[1]
- adj[2] 1 \longrightarrow 3 \longrightarrow \
- *adj*[3] /
- adj[4] 1 \longrightarrow 3 \longrightarrow \

How to program?

- Input: The graph size |V| and |E|, and |E| arcs.
- Output: The Adjacent Matrix or List

Create the Adjacent List

```
For each (u, v) \in E

node \leftarrow new \ Node

node. v \leftarrow v

node. next \leftarrow adj[u]

adj[u] = node
```

Basic Graph Properties

- Reachability
 - Can we go from u to v?
 - Is v the friend of the friend of the friend of v?
 - Can we travel from city u to v?
- Connected Components
 - Undirected version
 - A maximal subgraph that each two vertices are reachable.
 - A group of people who know each others
 - Directed version?

Reachability problem

- Input: A graph G(V,E), represented by an Adjacent List, and a vertex u.
- Output: The set of vertices u can reach.

Observations

- Basic observation:
 - If v is in the Adjacent List (neighbor set) of u?
 - -v is reachable.
- Advanced observation:
 - If v is reachable
 - Vertices in v's Adjacent List (neighbor set) is also reachable.

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!

- Explore & Explore
 - Explore from u
 - If v is in the Adjacent List of u
 - Continue to explore from v
- Have a try!
- Problem: Cycle!
 - $-1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- Solution
 - Mark a vertex when we reach it
 - Do not explore marked vertices

Exploring Algorithm

- After explore(v)
- The marked vertices can be reached.
- It is a connected component that contains v!
- What if we want to know all?
 - We want to know all connected components.
 - We want to search all the graph.

```
Function explore(v)

marked[v] \leftarrow true

for each (u, v) \in E

if marked[u] = false

explore(u)
```

Depth-First Search

- What is DFS?
 - Explore & Explore
- Questions
 - How to loop all $(u, v) \in E$?
 - What is the running time of DFS?

```
Function explore(v)

marked[v] \leftarrow true

for each (u, v) \in E

if marked[u] = false

explore(u)
```

```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

Running Time of DFS

- Questions
 - What is the running time of DFS?
 - Seems $O(|V|^2)$?

```
Function explore(v)
marked[v] \leftarrow true
for each(u, v) \in E

if marked[u] = false
explore(u)
```

```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

At most |V| times.

Running Time of DFS

Running Time of DFS

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

How we DFS an undirected graph?

Function explore(v) $marked[v] \leftarrow true$ for each $(u, v) \in E$ if marked[u] = falseexplore(u)

Function dfs(G)for each $v \in V$ if marked[v] = falseexplore(v)

DFS in undirected graphs

How we DFS an undirected graph?

Function explore(v) $marked[v] \leftarrow true$ for each $(u, v) \in E$ if marked[u] = falseexplore(u)

Function dfs(G)for each $v \in V$ if marked[v] = falseexplore(v)

DFS in undirected graphs

How we DFS an undirected graph?


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

Discussion

- How many connected components?
 - How to prove your solution?

Function explore(v) $marked[v] \leftarrow true$ for each $(u, v) \in E$ if marked[u] = falseexplore(u)

Function dfs(G)for each $v \in V$ if marked[v] = falseexplore(v)

Discussion

- How many connected components?
 - How to prove your solution?

Function explore(v) $marked[v] \leftarrow true$ for each $(u, v) \in E$ if marked[u] = falseexplore(u)

Function dfs(G)for each $v \in V$ if marked[v] = falseexplore(v)

Times of "explore" = number of connected components

Simply get all the connected components!

Why it is correct?

DFS is more powerful than you think!

Let us discuss some properties of DFS.

DFS Tree (One Connected Component)

- Show the relationship among vertices
 - Root: the first explored vertex
 - If we explore v from u, then v is u's child.

Function explore(v) $marked[v] \leftarrow true$ for each $(u, v) \in E$ if marked[u] = falseexplore(u)

Why it is a tree?

DFS Tree (One Connected Component)

- Show the relationship among vertices
 - Root: the first explored vertex
 - If we explore v from u, then v is u's child.

- Kind of edges
 - Tree edges
 - Back edges

Why we introduce the DFS tree?

- Do we have cycles in an undirected graph?
- What is a cycle?
 - -(a,b),(b,c),(c,d),...,(z,a)
- Observation
 - There must be a marked vertex a.
 - -(z,a) should be a back edge.
- T: DFS tree of G
- **Conjecture:** T has back edges $\leftarrow \rightarrow G$ has cycles
- How to prove it?

Proof of The Conjecture

- Conjecture: T has back edges $\longleftrightarrow G$ has cycles
- Proof
- \rightarrow : If T has a back edge, then G has a cycle.
 - Can we point out a cycle based on this back edge?
- \leftarrow : If G has a cycle, then T has a back edge.
 - Can we point out one back edge in the cycle?

Conclusion

- On undirected graphs, DFS can:
 - Find v's connected component.
 - Find all connected components.
 - Detect whether the graph contains cycles.
- Let us move to directed graphs!

What is the difference?

Answer: verbatim, but with directions.


```
Function dfs(G)

for each v \in V

if marked[v] = false

explore(v)
```

What about DFS trees?

- Kind of edges
 - Tree edges
 - Back edges

What about DFS trees?

- Kind of edges
 - Tree edges
 - Forward edges
 - Back edges
 - Cross edges

Application: Topological Ordering

A pre-requisite requirements graph

- We want to find an order to finish these course.
- Can we find an order in any given graph?

Application: Topological Ordering

A pre-requisite requirements graph

- We want to find an order to finish these course.
- Can we find an order in any given graph?

Application: Topological Ordering

A pre-requisite requirements graph

- We want to find an order to finish these course.
- Can we find an order in any given graph?

Why we can not find an order?

A directed Cycle

- 1 -> 3 -> 4 -> 1
- Contradiction!
- What if there is no cycle?
- Directed Acyclic Graph (DAG)
 - a directed graph that does not contain any cycle.

- Is DAG equals to a topological order?
- Known: not DAG -> no order
- Unknown: DAG -> an order
- How to prove?
- Construct a topological ordering for every DAG.
- Design an algorithm do topological ordering for DAG.

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
- Proof
 - Start from *v*
 - Does v has outgoing edges?
 - Yes: go to next v'
 - No: we are ok
 - Fact: we do not have cycles
 - → we can not go back
 - → we must stop at a tail.

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
 - Tail can be the last one in the topological order.
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the tail in the graph.
 - Repeat...

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
 - Tail can be the last one in the topological order.
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the tail in the graph.
 - Repeat...

	A STATE OF THE PARTY OF THE PAR	4 4 5 4 5 5 5
	4	

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
 - Tail can be the last one in the topological order.
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the tail in the graph.
 - Repeat...

	STATE OF THE STATE OF	
	2	4

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
 - Tail can be the last one in the topological order.
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the tail in the graph.
 - Repeat...

	60000000000000000000000000000000000000	
3	2	4

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
 - Tail can be the last one in the topological order.
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the tail in the graph.
 - Repeat...

	MELECULAR CHESICAL LICENTING, COMPANY	
2		4
	2	2

- Observation
 - DAG must have a tail.
 - Tail: vertices that do not have outgoing edges.
 - Tail can be the last one in the topological order.
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the tail in the graph.
 - Repeat...

	MELECULAR CHESICAL LICENTING, COMPANY	
2		4
	2	2

Correctness: Is the order feasible?

Running Time?

- Conclusion
 - We can find a feasible topological order for DAG.
 - DAG ←→ A topological order
- Algorithm
 - Find a tail.
 - Put it to be the last one in the topological order.
 - Remove the **tail** in the graph.
 - Repeat...
- Running Time
 - |V| rounds
 - Find a tail: O(|V|)
 - Remove a tail & update: O(|V|)
 - Total: $o(|V|^2)$

Can we do better?

Improve it by DFS

DFS tree for a DAG

- Kind of edges
 - Tree edges
 - Forward edges
 - Back edges
 - Cross edges

Improve it by DFS

- Observation
 - We do not have back edges in DAG.

- Kind of edges
 - Tree edges
 - Forward edges
 - Back edges
 - Cross edges

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time ← 0

Function explore(v)

start[v] \leftarrow time

time + +

marked[v] \leftarrow true

for each (v, u) \in E

if marked[u] = false

explore(u)

finish[v] \leftarrow time

time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0

Function explore(v)

start[v] \leftarrow time

time + +

marked[v] \leftarrow true

for each (v, u) \in E

if marked[u] = false

explore(u)

finish[v] \leftarrow time

time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function \ explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for \ each \ (v, u) \in E
if \ marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

- Run DFS first!
- Record the start time and finish time.


```
time \leftarrow 0
Function explore(v)
start[v] \leftarrow time
time + +
marked[v] \leftarrow true
for each (v, u) \in E
if marked[u] = false
explore(u)
finish[v] \leftarrow time
time + +
```

Discussion

- We need repeat finding a tail.
- Who must be a tail in DFS?

Discussion

- We need repeat finding a tail.
- After removing the g, who mut be a tail?

Discussion

- We need repeat finding a tail.
- Who must be a tail when we do it again?

Conjecture

- We can select the vertex with the earliest finish time to be the tail.
- Algorithm: sort vertices by descending order of finish time.

Prove the conjecture

- Claim: no arc (u, v), if finish[v] > finish[u].
- Proof:
 - If (u, v) exists,
 - Can (u, v) be a tree edge?
 - Can (u, v) be a forward edge?
 - Can (u, v) be a cross edge?

Prove the conjecture

- Claim: no arc (u, v), if finish[v] > finish[u].
- Proof:
 - If (u, v) exists,
 - Can (u, v) be a tree edge?
 - Can (u, v) be a forward edge?
 - Can (u, v) be a cross edge?
 - Can (u, v) be a back edge?

Prove the conjecture

• Claim: no arc (u, v), if finish[v] > finish[u].

- If (u, v) exists,
- Can (u, v) be a tree edge?
- Can (u, v) be a forward edge?
- Can (u, v) be a cross edge?
- Can (u, v) be a back edge?
- Corollary: the descending order
 of finish time is a topological order.
- Question: running time?

Running Time

- $O(|V|\log|V| + |E| + |V|)$?
 - Run **DFS** with **finish time**
 - **Sort** the finish time
 - Output the topological order

Running Time

- $O(|V|\log|V| + |E| + |V|)$?
 - Run DFS with finish time
 - **Sort** the finish time
 - Output the topological order
- Smarter implementation
 - During the **DFS**,
 - When we **finish** a vertex,
 - Append it to the topological order!
 - It follows the order of finish time!
- O(|V| + |E|)?

Connectivity in Directed Graphs

Recall

- Connect Component(CC) in undirected graphs
- DFS can directly find CC in undirected graphs.
- How to define CC in directed graphs?

Connect Components in Directed Graphs

- Is the component connected?
- It is weakly connected
 - A weak connected component
 - Undirected version is connected
- How to make it stronger?
- What do we mean strong?
 - Each pair (u, v)
 - u can reach v, v can reach u.

Connect Components in Directed Graphs

- Is the component connected?
- It is weakly connected
 - A weak connected component
 - Undirected version is connected
- How to make it stronger?
- What do we mean strong?
 - Each pair (u, v)
 - -u can reach v, v can reach u.
 - Called strongly connected

Strongly Connected Component (SCC)

• $C \subset V$ is a SCC

 $- \forall u, v \in V$, u can reach v, v can reach u.

- It is maximal.

Do SCCs Partition a graph?

CCs can partition a graph.

Claim

Want to prove

- Let $C_1, C_2, C_3, \dots, C_m$ be all SCCs of G(V, E),
- $C_1 \cup C_2 \cup C_3 \cup ... \cup C_m = V.$
- $\ \forall C_i \neq C_j, C_i \cap C_j = \emptyset.$

- Claim:

- For each vertex v
- There exists and only exists one C_i that contains v.

Proof

- \rightarrow : there exists a C_i contains v.
 - $\{v\}$ is strongly connected.
 - Keep explore $\{v\}$ until it is maximal.
 - It becomes a connected component.
- \leftarrow : only one C_i contains v.

One more property of strongly connected

Transitivity

- If a and b are strongly connected, and b and c are strongly connected, then a and c are strongly connected.

Proof

- We have path $a \rightarrow b$ and $b \rightarrow a$.
- We have path $b \rightarrow c$ and $c \rightarrow b$.
- So, we have path $a \rightarrow b \rightarrow c$.
- So, we have path $c \rightarrow b \rightarrow a$.

Corollary

- If a set C is strongly connected and b is strongly connected to $a \in C$, then $C \cup \{a\}$ is strongly connected.

Proof

- \rightarrow : there exists a C_i contains v.
 - $\{v\}$ is strongly connected.
 - Keep explore $\{v\}$ until it is maximal.
 - It becomes a connected component.
- \leftarrow : only one C_i contains v.
 - $\{1,2,v\}$ is strongly connected
 - $-\{v,3,4\}$ is strongly connected
 - $\{1,2,3,4,v\}$ is strongly connected
 - Contradiction!

The set of SCCs forms a Partition of V!

Can we use DFS to find SCCs?

A Simple Attempt

Start DFS from vertex 1.

A Simple Attempt

Start DFS from vertex 1.

A Simple Attempt

Start DFS from vertex 5.

No! We move across two SCCS!

What is the trouble?

Trouble: the outgoing edges

Question: can we handle it?

- Why start from 5 is bad?
- Why start from 1 is good?
- What kind of start points are good?

Question: can we handle it?

- Why start from 5 is bad?
- Why start from 1 is good?
- What kind of start points are good?
- It is good if we are in a SCC without outgoing edges.

Does such SCC exist?

- Move to a big picture
 - View SCCs as Super Nodes.
 - Vertices inside are somehow equivalent.
 - (C_i, C_j) exists \longleftrightarrow (u, v) exists $(u \in C_i, v \in C_j)$

Thinking: Why is good if we start from a vertex inside the tail SCC?

Does such SCC exist?

- Move to a big picture
 - Let SCCs be Super Nodes.
 - Vertices inside are somehow equivalent.
 - $-(C_i, C_j)$ exists \longleftrightarrow (u, v) exists $(u \in C_i, v \in C_j)$
- Questions
 - Can we find a **tail** SCC in the SCC Graph?
 - If we can not, what happens?
 - There is a cycle $C_1, C_2, ..., C_m$ forms a cycle.
 - $C_1 \cup C_2 ... \cup C_m$ is strongly connected.
 - They should be one SCC! Contradiction!
 - Corollary: the SCC Graph is a DAG!

A Better Attempt

- Follow the descending topological order to DFS vertices.
 - Explore from a vertices inside the tail SCC.
 - Form the SCC and remove it from the graph.
 - Repeat.....
- Puzzle
 - We want to know the tail SCC.
 - Then we choose a vertex inside.
 - We explore from the vertex and then we get the tail SCC.

A Better Attempt

- Follow the descending topological order to DFS vertices.
 - Explore from a vertices inside the tail SCC.
 - Form the SCC and remove it from the graph.
 - Repeat.....

Puzzle

- We want to know the tail SCC.
- Then we choose a vertex inside.
- We explore from the vertex and then we get the tail SCC.

Answer

 We have an AMAZING way to find one vertex surely inside the tail SCC.

- Recall the topological ordering
 - Tail vertex is the one with earliest finish time.
 - Can we apply it here?
 - Assume the DFS Start from 5!
 - Conjecture: tail vertex is in the tail SCC!

- Recall the topological ordering
 - Tail is the one with smallest finish time.
 - Can we apply it here?
 - Start from 5?
 - Conjecture: tail vertex is in the tail SCC!
- Problems
 - 8 is not in the Tail SCC.
 - We may have back edges.
 - 8 can still have a way to go out!

- Recall the topological ordering
 - Tail is the one with smallest finish time.
 - Can we apply it here?
 - Start from 5?
 - Conjecture: tail vertex is in the tail
 SCC!
- But
 - What does it mean if we finish the explore from 5?
 - It means we has discovered every vertices that 5 can reach!

- Recall the topological ordering
 - Tail is the one with smallest finish time.
 - Can we apply it here?
 - Start from 5?
 - Conjecture: tail vertex is in the tail SCC!
- But
 - What about the vertex with largest finish time?

- Naïve Idea: the SCC contains the largest finish time vertex must be the head SCC.
- Proof by Contradiction
 - Assume it is not true
 - *u* has the largest finish time.
 - v inside another SCC has a path to u.

Find contradiction!

- Assumption!
 - u has the largest finish time.
 - v inside another SCC has a path to u.
- Claim 1: v can not start earlier than u
 - Otherwise, u is in the subtree of v and v finish later.

Start earlier.

u should in the subtree of v!

Find contradiction!

- Assumption!
 - u has the largest finish time.
 - v inside another SCC has a path to u.
- Claim 1: v can not start earlier than u
 - Otherwise, u is in the subtree of v and v finish later.
- Claim 2: v can not be in another DFS tree.
 - Because v start later but finish earlier!
- Claim 3: v and u are strongly connected!
 - Contradiction!

Claim 2: u can reach v!

How to use this property?

- The amazing idea!
 - Find the vertex in the head SCC in the reverse graph!

How efficient you can do?

Realize the idea efficiently

Basic Plan

O(|E|)

1. Construct G^R

$$O(|V'| + |E'|)$$

- 2. DFS G^R with finish time.
- 3. Choose v with the largest finish time.

0(1)

- 4. Explore(v) in G.
- 5. When it returns, reached vertices form one SCC ($|V_1|$).
- 6. Remove them in both G and G^R .

$$\bullet \qquad |V| \leftarrow |V| - |V_1|$$

•
$$|E| \leftarrow |E| - |\Delta E|$$

7. Repeat from 2.

 $O(|\Delta E|)$

 $O(|V_1|)$

At most |V| rounds.

Realize the idea efficiently

Super Plan

- 1. DFS G^R and maintain a **sorted list** by the finish time.
- 2. DFS G by the **descending order** of the finish time.
 - 1. Keep explore vertices by the descending order.
 - 2. Do not start from a reached vertex.
- 3. Each explore() forms a SCC.

$$O(|V'| + |E'|)$$

Is it correct.

- It is not straightforward.
- The Claim we have: the SCC contains the largest finish time vertex must be the head SCC.
- Not enough!

The Correctness of The Super Plan

- Prove each start point we choose is in the head SCC among the remaining graph.
- A Generalize Lemma:
- If v can reach u in G^R , and they are from different SCCs, then we have finish[v] > finish[u].

Today's goal

- Learn DFS.
- Learn applications of DFS.
 - Connected Components
 - Cycle Check
 - Topological Order
 - Strongly Connected Components
- Learn to form a nice property of graphs.
 - Strongly Connected Components
- Learn to analyze the **correctness** of graph algorithms.