R.E.C.A.R

Recursive Explore and Check Abstraction Refinement

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and <u>Valentin Montmirail</u>

CRIL-CNRS UMR 8188, F62300 Lens, France

Séminaire CRIL - Lens - September 14th 2017

Abstraction: Idea & Motivation

Comes from: Mathematical Modeling

- Works for theoretical problems
- But what about practice?

Introduction: Abstraction via SAT

Modeling: Propositional Formula

► For many **NP** problems: Encoding into SAT

Is it always a good idea?

SAT solver

- Extremely efficient software
- ▶ Based on CDCL approach [SS99, MMZ⁺01]
- ► One of the current best is: Glucose [ES03a, AS09] ©
- ▶ Able to solve efficiently problems with $\approx 10^8$ variables/clauses

SAT solver: Features

- Answer SAT and a model when the formula is satisfiable
- Answer UNSAT:
 - with a proof of unsatisfiability if asked [Gel02]
 - A unsatisfiable core if asked [ES03a]
- Can work in an incremental way [ES03b, ES03a, ALS13]
- Can work under assumptions [ES03a]

Unsatisfiable core

Basically the "reason" why a formula is UNSAT (subset of clauses)

SAT solver: One limitation

- What happen when the encoding of the problem is too big?
- Could be solved 'easily' but will not because of memory...

HCP via SAT: does not scale

- ► Ex. The Hamiltonian Cycle Problem (HCP)
- ► HCP: O(n³) clauses [Pre03]
- Transitive relations for any three nodes
- ▶ HCP via SAT: hard to solve HCP of over 1000 nodes
- ► HCP solver 'LKH' scales up to 10,000 nodes

We need a SAT solver in a more complex procedure...

SAT solver: how to solve HCP efficiently?

V is a set of *n* nodes, *A* is a set of vertexes, and G = (V,A) is a digraph. $x_{ij} = 1 \leftrightarrow (i,j) \in A$ is used in a solution cycle.

$$\sum_{\substack{(i,j)\in A}} x_{ij} = 1 \qquad \qquad \text{for each i} = 1, \dots, n \text{ (out-degree)}$$

$$\sum_{\substack{(i,j)\in A}} x_{ij} = 1 \qquad \qquad \text{for each j} = 1, \dots, n \text{ (in-degree)}$$

$$\sum_{\substack{(i,j)\in S}} x_{ij} \leq |S| - 1 \qquad S \subset V, 2 \leq |S| \leq n - 2 \text{ (connectivity)}$$

- in/out-degree constraints ensure that in/out-degrees are respectively exact one for each node in solution cycles
- connectivity constraint prohibits the formulation of sub-cycles

SAT solver: how to solve HCP efficiently?

- With only in/out-degree constraints, we have cycles but they may not be connected (Case A)
- With all constraints, we can find a Hamiltonian cycle (Case B)

HCP via SAT: no need to generate connectivity constraints

- Refine overall constraints by adding blocking clauses generated from counter examples [SLR+14].
- We can get lucky and find a Hamiltonian Cycle quickly

Blocking Clauses

$$C_1 \neg x_{12} \lor \neg x_{23} \lor \neg x_{37} \lor \neg x_{78} \lor \neg x_{81}$$

 $C'_1 \neg x_{87} \lor \neg x_{73} \lor \neg x_{32} \lor \neg x_{21} \lor \neg x_{18}$

$$C_2 \neg x_{46} \lor \neg x_{65} \lor \neg x_{54}$$

$$C_2' \neg x_{45} \lor \neg x_{56} \lor \neg x_{64}$$

HCP via SAT: no need to generate connectivity constraints

- Refine overall constraints by adding blocking clauses generated from counter examples [SLR+14].
- We can get lucky and find a Hamiltonian Cycle quickly

Blocking Clauses

$$C_{1} \neg x_{12} \lor \neg x_{23} \lor \neg x_{37} \lor \neg x_{78} \lor \neg x_{81}
C'_{1} \neg x_{87} \lor \neg x_{73} \lor \neg x_{32} \lor \neg x_{21} \lor \neg x_{18}
C_{2} \neg x_{46} \lor \neg x_{65} \lor \neg x_{54}
C'_{2} \neg x_{45} \lor \neg x_{56} \lor \neg x_{64}$$

This idea of going step by step and refining each step is called:

CEGAR: CounterExample Guided Abstraction Refinement

CounterExample Guided Abstraction Refinement

CEGAR: CounterExample Guided Abstraction Refinement To solve a problem, we may need to consider only a small part of it [CGJ⁺03]

- ▶ To abstract problems: hoping it will be easier to solve
- Two variants of abstraction:
 - Under-abstraction: abstraction has more solutions
 - Over-abstraction: abstraction has less solutions
- ► CEGAR-over: CEGAR approach using over-abstractions
- ► CEGAR-under: CEGAR approach using under-abstractions

CEGAR using under-abstractions

Example

SAT problem, by increasing step by step, the number of clauses

Example

Planification problem, by increasing step by step, the horizon

Advantages

- ▶ If problem mainly satisfiable: CEGAR-over
- ► If problem mainly unsatisfiable: CEGAR-under
- ► Everytime check improves, CEGAR improves
- Many applications already use CEGAR

Drawbacks

- ▶ Not efficient when 50/50 chances of being SAT/UNSAT
- Not efficient when we need many refinement steps

Recursive Explore and Check Abstraction Refinement

Recursive Explore and Check Abstraction Refinement

- Called RECAR [LLdLM17]
- Inspired by CEGAR [CGJ⁺03]
- Rely on 5 very important assumptions

RECAR Assumptions

- Function 'check' is sound, complete and terminates
- 2. $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- 3. $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi.$
- 4. isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- 5. $\exists n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false.

 $\exists n \in \mathbb{N} \text{ s.t. } RC(under^n(\phi), under^{n+1}(\phi)) \text{ is false.}$

RC function

- 'true' if we can do a recursive call, 'false' otherwise
- ▶ It compares $under^{i}(\phi)$ and $under^{i+1}(\phi)$
- It checks if $under^{i+1}(\phi)$ will be "easier to solve" than $under^{i}(\phi)$

Recursive Explore and Check Abstraction Refinement

Recursive Explore and Check Abstraction Refinement

RECAR

- 2 levels of abstractions
 - ▶ One at the Oracle level (check(ψ))
 - One at the Domain level (recursive call)
- Efficient even when 50/50 chance of being SAT/UNSAT
- Everytime check improves, RECAR improves
- The return of the recursive call can reduce the number of refinement
- ► Totally generic, can change SAT solver → FO solver?

RECAR for Modal Logic K

- ► Modal Logic K is **PSPACE**-complete [Lad77, Hal95]
- What is Modal Logic K?
- How we over-approximate a formula φ?
- ▶ How we under-approximate a formula ϕ ?
- Is it competitive against a CEGAR approach?
- Is it competitive against the state-of-the-art approaches?

Preliminaries: Modal Logic

Modal Logic = Propositional Logic + □ and ♦

Modal Logic

- $ightharpoonup \Box \phi$ means ϕ is necessarily true
- $\diamond \phi$ means ϕ is possibly true

$$\Diamond \phi \leftrightarrow \neg \Box \neg \phi$$

$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

Preliminaries: Kripke Structure

P finite non-empty set of propositional variables

Kripke Structure [Kri59]

 $M = \langle W, R, V \rangle$ with:

- W, a non-empty set of possible worlds
- R, a binary relation on W
- ▶ V, a function that associate to each $p \in \mathbb{P}$, the set of possible worlds where p is true

Pointed Kripke Structure: $\langle \mathcal{K}, w \rangle$

- ▶ K: Kripke Structure
- w: a possible world in W

Preliminaries: Satisfaction Relation

Definition (Satisfaction Relation)

The relation ⊨ between Kripke Structures and formulae is recursively defined as follows:

$$\langle \mathcal{K}, w \rangle \models p \qquad \text{iff} \qquad w \in V(p)$$

$$\langle \mathcal{K}, w \rangle \models \neg \phi \qquad \text{iff} \qquad \langle \mathcal{K}, w \rangle \not\models \phi$$

$$\langle \mathcal{K}, w \rangle \models \phi_1 \land \phi_2 \qquad \text{iff} \qquad \langle \mathcal{K}, w \rangle \models \phi_1 \text{ and } \langle \mathcal{K}, w \rangle \models \phi_2$$

$$\langle \mathcal{K}, w \rangle \models \phi_1 \lor \phi_2 \qquad \text{iff} \qquad \langle \mathcal{K}, w \rangle \models \phi_1 \text{ or } \langle \mathcal{K}, w \rangle \models \phi_2$$

$$\langle \mathcal{K}, w \rangle \models \Box \phi \qquad \text{iff} \qquad (w, w') \in R \text{ implies } \langle \mathcal{K}, w' \rangle \models \phi$$

$$\langle \mathcal{K}, w \rangle \models \Diamond \phi \qquad \text{iff} \qquad (w, w') \in R \text{ and } \langle \mathcal{K}, w' \rangle \models \phi$$

 ${\mathcal K}$ that satisfied a formula ϕ will be called "Kripke model of ϕ "

Preliminaries: Example of a Kripke Structure

$$\checkmark \phi_1 = \Box(\bullet)$$

$$\times \phi_2 = \Box \diamondsuit (\bullet)$$

$$\checkmark \phi_3 = \diamondsuit(\bullet \land \diamondsuit \neg \bullet)$$

$$\checkmark \phi_4 = (\bullet \lor \bullet \lor \bullet)$$

$$\times \phi_5 = \Diamond \Diamond (\bullet \land \Box \neg \bullet)$$

Figure: Example ${\mathcal K}$

MoSaiC

MoSaiC

- Open-Source Modal Logic K solver
- Uses Glucose as internal SAT solver
- Uses a RECAR approach

MoSaiC

- Open-Source Modal Logic K solver
- Uses Glucose as internal SAT solver
- Uses a RECAR approach

RECAR Assumptions: Reminder

- √1 Function 'check' is sound, complete and terminates
- ?2 $isSAT(\hat{\phi})$ implies $isSAT(refine(\hat{\phi}))$
- ?3 $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
 - 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
 - **5** ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

 ϕ always in NNF and over (ϕ, i) in CNF thanks to Tseitin

$$\operatorname{over}(\phi, n) = \operatorname{over}'(\phi, 0, n)$$

$$\operatorname{over}'(p_k, i, n) = p_{k,i} \quad \operatorname{over}'(\neg p_k, i, n) = \neg p_{k,i}$$

$$\operatorname{over}'(\Box \phi, i, n) = \bigwedge_{j=0}^{n} (r_{i,j} \to \operatorname{over}'(\phi, j, n))$$

$$\operatorname{over}'(\diamondsuit \phi, i, n) = \bigvee_{i=0}^{n} (r_{i,j} \land \operatorname{over}'(\phi, j, n))$$

- \triangleright $p_{k,i}$ means p_k is true in the world w_i
- $ightharpoonup r_{i,j}$ means that there is a relation between worlds w_i and w_j

RECAR Assumptions: Reminder

- √1 Function 'check' is sound, complete and terminates
- \checkmark 2 $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- $\sqrt{3} \ \exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
- ?4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- ?5 ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

Let's take an example, with χ huge but satisfiable...

Worst case for CEGAR using our 'over' function

Modern SAT solvers returns 'the reason' why a formula with n worlds is unsatisfiable ($core = \{s_1, s_2\}$)

We want to cut what is not part of the 'unsatisfiability' $(s_i \notin core)$

We just create $\check{\phi}$ smaller than ϕ and easier to solve. The function RC from RECAR just says here: did we cut something ?


```
under(p, core) = p
under(\neg p, core) = \neg p
under(\Box \phi, core) = \Box(under(\phi, core))
under(\Diamond \phi, core) = \Diamond (under(\phi, core))
under((\phi \land \psi), core) = under(\phi, core) \land under(\psi, core)
\mathsf{under}((\psi \lor \chi), \mathit{core}) = egin{cases} \mathsf{under}(\chi, \mathit{core}) & \mathsf{if} \ \psi = \neg s_i, s_i \in \mathit{core} \\ \top & \mathsf{if} \ \psi = \neg s_i, s_i \notin \mathit{core} \\ (\mathsf{under}(\psi, \mathit{core}) & \mathsf{vunder}(\chi, \mathit{core})) & \mathsf{otherwise} \end{cases}
```

Unsatisfiable-cores: To create our under-approximations

RECAR Assumptions: Reminder

- √1 Function 'check' is sound, complete and terminates
- \checkmark 2 $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- $\sqrt{3} \ \exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
- \checkmark 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- $\sqrt{5}$ ∃n ∈ N s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: RECAR for Modal Logic K

MoSaiC: RECAR for Modal Logic K

Abstractions according to complexity

► **PSPACE**: RECAR

► **NP**: CEGAR (over/under)

What is next?

- ► RECAR for QBF (**PSPACE**)?
- ► RECAR for other modal logic?

Sum-up of complexities in modal logics

NP	
K5	
K45	
KB45	
KD5	
KD45	
KT5	

PSPACE
K
KT
KT4
KB
KD4
KD
K4
KDB
KBT

R.E.C.A.R

Recursive Explore and Check Abstraction Refinement

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and <u>Valentin Montmirail</u>

CRIL-CNRS UMR 8188, F62300 Lens, France

Séminaire CRIL - Lens - September 14th 2017

Explication on Cactus-Plot

Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose for incremental SAT solving with assumptions: Application to MUS extraction. In *Proc. of SAT'13*, pages 309–317, 2013.

Gilles Audemard and Laurent Simon.

Predicting learnt clauses quality in modern SAT solvers.

In *Proc. of IJCAl'09*, pages 399–404, 2009.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of the ACM, 50(5):752–794, 2003.

Niklas Eén and Niklas Sörensson.

An extensible sat-solver.

In *Proc. of SAT'03*, pages 502–518, 2003.

Niklas Eén and Niklas Sörensson.

Temporal induction by incremental SAT solving.

Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

Allen Van Gelder.

Extracting (easily) checkable proofs from a satisfiability solver that employs both preorder and postorder resolution. In International Symposium on Artificial Intelligence and

Mathematics, 2002.

Bibliography III

Joseph Y. Halpern.

The Effect of Bounding the Number of Primitive Propositions and the Depth of Nesting on the Complexity of Modal Logic. *Artificial Intelligence*, 75(2):361–372, 1995.

Saul Kripke.

A completeness theorem in modal logic.

J. Symb. Log., 24(1):1-14, 1959.

Richard E. Ladner.

The Computational Complexity of Provability in Systems of Modal Propositional Logic.

SIAM J. Comput., 6(3):467-480, 1977.

Bibliography IV

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail.

A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem.

In Proc. of IJCAI'17, 2017.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In Proc. of DAC'01, pages 530-535, 2001.

Steven David Prestwich. SAT problems with chains of dependent variables. Discrete Applied Mathematics, 130(2):329–350, 2003.

Bibliography V

Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, and Naoyuki Tamura.

Incremental sat-based method with native boolean cardinality handling for the hamiltonian cycle problem.

In *Proc of JELIA'14*, pages 684–693, 2014.

João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

