Trigonometric functions

Recall basic facts about sin, cos, and tan. Below, the graph of $y=\sin x$ is in red, $y=\cos x$ is in black.

Angular measurements are in radians: 2π radians = 360 degrees.

Trigonometric identities:
$$\sin^2\theta + \cos^2\theta = 1$$
,
$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
,
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
.

An important trigonometric limit:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1. \tag{1}$$

The proof uses the inequalities

$$\cos\theta < \frac{\sin\theta}{\theta} < 1$$

which can be proved by geometry of triangles.

Limit rules, the trigonometric identity $\cos^2\theta-1=-\sin^2\theta$, and (1) can then be used to prove

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0. \tag{2}$$

Now we can differentiate trigonometric functions.

$$\begin{split} \frac{d}{dx}(\sin x) &= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} \quad \text{(trig. identity)} \\ &= \lim_{h \to 0} \left(\frac{\sin x (\cos h - 1)}{h} + \cos x \frac{\sin h}{h} \right) \\ &= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \quad \text{(limit rules)} \\ &= \sin x \cdot 0 + \cos x \cdot 1 \quad \text{(limits (1), (2) above)} \\ &= \cos x \cdot \end{split}$$

This proves that

$$\frac{d}{dx}(\sin x) = \cos x.$$

Similarly we can prove that

$$\frac{d}{dx}(\cos x) = -\sin x.$$

Example. We differentiate $\tan x$, using the above and the quotient rule.

$$\frac{d}{dx}(\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right)$$

$$= \frac{\cos x \frac{d}{dx}(\sin x) - \sin x \frac{d}{dx}(\cos x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

 $f(x) = \frac{1}{\cos x}$ is called the secant function, $\sec x$. So $\frac{d}{dx}(\tan x) = \sec^2 x$.

Example. Differentiate $\sin 2x$.

Solution. $\sin 2x$ is a function of a function; \sin ['outside' function] of 2x ['inside' function]. Differentiate such composite functions by the *chain rule* (next topic).

For now, we use the trigonometric identity: $\sin 2x = 2\sin x\cos x$ (from $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$). So

$$\frac{d}{dx}(\sin 2x) = \frac{d}{dx}(2\sin x \cos x)$$

$$= 2\left(\frac{d}{dx}(\sin x)\cos x + \sin x \frac{d}{dx}(\cos x)\right)$$

$$= 2(\cos^2 x - \sin^2 x) = 2\cos 2x$$

because $\cos^2 x - \sin^2 x = \cos 2x$ (from the trigonometric identity $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$).

The chain rule

Let $f, g \colon \mathbb{R} \to \mathbb{R}$ be functions.

Then the *composite* of f with g, denoted $f \circ g$, is defined by

$$f \circ g(x) = f(g(x)).$$

Example. Let f(x) = x - 2, $g(x) = x^3$. Then $f(g(x)) = f(x^3) = x^3 - 2$. That is, $f \circ g(x) = x^3 - 2$.

However, $g \circ f(x) = g(x-2) = (x-2)^3$; so $f \circ g \neq g \circ f$.

Example. Let $f(x) = \sqrt{x}$, $g(x) = x^2 + 1$. Then $f \circ g(x) = \sqrt{x^2 + 1}$ and $g \circ f(x) = x + 1$.