Beyond Simple Parallelism

Siyuan Dong, Haotian Gong, Zheng Li, Zhongwei Xu

ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning

Motivation: Challenges Faced by Large Model Training

GPU Memory Wall

10T params: 8K V100 GPUs Model size keeps growing

Model Code Refactoring Need to rewrite the model using 3D parallelism

Possible Solution: Leverage Non-GPU Memory

Modern clusters have heterogeneous memory systems.

GPU memory only comprises a small fraction

Leverages GPU/CPU/NVMe memory

1T params on a single node

Memory available on a Single DGX-2 Node

Memory Hierarchy of DGX-2/2H System (16V100 GPUs)

Possible Solution: Leverage Non-GPU Memory

Modern clusters have heterogeneous memory systems.

GPU memory only comprises a small fraction

Leverages GPU/CPU/NVMe memory

1T params on a single node

How to leverage non-GPU memory?

Memory available on a Single DGX-2 Node

Memory Hierarchy of NVIDIA T4 GPU

How to leverage non-GPU memory?

Directly applying existing parallel training technology?
Data Parallelism: Replication causes memory explosion
Tensor-Slicing: Does not scale beyond a single node
Pipeline-Parallelism: Requires significant code refactoring

Zero Redundancy Optimizer (ZeRO)?

- Efficiently scale across nodes trillions of parameters
- No model code refactoring necessary

Zero Redundancy Optimizer (ZeRO)

ZeRO is a memory efficient form of DP Each GPU stores a mutually exclusive subset of the parameters

Broadcast parameters from owner to all the GPUs as needed

Original DP Training

GPU Interconnect

Layer 1

GPU₁

Layer 2

GPU 2

Layer 0

GPU 0

ZeRO with CPU/NVMe Offloading

Offload model states to CPU/NVMe (store in CPU/NVMe and send to GPU when needed)

Broadcast and reduce as ZeRO

Efficiency analysis to deal with possible bandwidth issues.

$$efficiency = \frac{compute_time}{compute_time+communication_time}$$

$$compute_time = \frac{total_computation}{peak_{tp}} \text{ (Peak tput)}$$

$$arithmetic intensity \quad ait = \frac{total_computation}{total_data_movement}$$

$$communication_time = \frac{total_data_movement}{bw}$$

$$= \frac{total_computation}{ait \times bw}$$

Measuring the Training Efficiency

Offload model states to CPU/NVMe (store in CPU/NVMe and send to GPU when needed)

Efficiency analysis to deal with possible bandwidth issues.

$$efficiency = \frac{compute_time}{compute_time + communication_time}$$

Bandwidth-Centric Partitioning

Broadcast

Each parameter is owned by a data parallel process, the parameter must be moved to the GPU memory before the broadcast. Only a single PCIe can be active for this process.

Partitioning + Allgather (ZeRO-Infinity)

All PCIe links are active in parallel, each bringing in a portion of the parameter.

Partitioning + Allgather

ZeRO with CPU/NVMe Offloading

Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

$$efficiency = \frac{ait \times bw}{ait \times bw + peak_{tp}}$$
 batch size (bsz) hidden dimension (hd)

Arithmetic intensity depends on the data types (e.g. parameters, gradients, optimizer states or activation checkpoints)

ZeRO-Infinity System Overview

A heterogeneous system that leverages GPU, CPU, and NVMe memory to allow for unprecedented model scale on limited resources without requiring model code refactoring

Based on Zero Redundancy Optimizer (ZeRO)

Training Demo: Forward: Parameters

Layer 1 Parameters

13

Training Demo: Forward: Parameters

Layer 1 Parameters

Training Demo: Forward: Allgather of Parameters

Training Demo: Forward: Compute Activations

Training Demo: Forward: Compute Activations

Training Demo: Forward: Compute Activations

Training Demo: Backward: Allgather of Parameters

Training Demo: Backward: Allgather of Parameters

Training Demo: Optimizer Step: Params & Gradients to CPU

Training Demo: Optimizer Step: Params & Gradients to CPU

Training Demo: Optimizer Step: Update Params

Training Demo: Optimizer Step: Params to NVMe

Training Demo: Optimizer Step: Params to NVMe

Design for Unprecedented Scale

ZeRO with Simple CPU/NVMe Offloading

Optimizer states to NVMe
Activation memory to CPU memory
Parameters and gradients stay in GPU memory

ZeRO-Infinity

Infinity Offload Engine for Model States

The infinity offload engine can offload all of the partitioned model states to CPU or NVMe memory, or keep them on the GPU based on the memory requirements.

CPU Offload for Activations

Offload activation memory (activation checkpoints) to CPU memory when necessary.

Memory-centric Tiling for Working Memory

Represent the large linear operator as a mathematically equivalent sequence of smaller linear operators consisting of tiles of parameters from the original operator, and executes them sequentially.

Design for Unprecedented Scale

Infinity Offload Engine for Model States

The infinity offload engine can offload all of the partitioned model states to CPU or NVMe memory, or keep them on the GPU based on the memory requirements.

Design for Unprecedented Scale

Memory-centric Tiling for Working Memory

Represent the large linear operator as a mathematically equivalent sequence of

smaller linear operators consisting of tiles of parameters from the original operator, and executes them sequentially.

Memory-centric tiling

This method works by:

- Breaking down large operators into smaller, sequential tiles.
- Executing these tiles one at a time.
- Leveraging ZeRO-3's data fetch and release pattern.

ZeRO-Infinity: Memory-Centric Tiling

Memory Usage: Reduced by ~75%

Bandwidth Centric Partitioning

This method works by:

- Single parameter partitioned across all data-parallel processes, uses allgather
- Bandwidth scales linearly with number of nodes
- Provides heterogeneous memory bandwidth far exceeding training efficiency needs
- Each link brings in 1/dp of the parameter at one time

Bandwidth Centric Partitioning

AllGather operation: each rank receives the aggregation of data from all ranks in the order of the ranks.

Overlapping Centric

This method works by:

- Single parameter partitioned across all data-parallel processes, uses allgather
- Bandwidth scales linearly with number of nodes
- Provides heterogeneous memory bandwidth far exceeding training efficiency needs
- Each link brings in 1/dp of the parameter at one time

Overlapping Centric

This method works by:

- Single parameter partitioned across all data-parallel processes, uses allgather
- Bandwidth scales linearly with number of nodes
- Provides heterogeneous memory bandwidth far exceeding training efficiency needs
- Each link brings in 1/dp of the parameter at one time

Ease Of Use

 Automated data movement: The system automatically gathers necessary parameters before they are needed for use.

 Automated parameter partitioning: When certain parameters are no longer needed, the system automatically partitions them and may offload them to CPU or NVMe.

 Automated model partitioning during initialization: This allows for the initialization of large models, even if they cannot fit entirely into a single GPU or CPU memory.

Evaluation

Massive model scale

Excellent Efficiency

Super-linear Scalability

Impact of system features on model scale and performance

Offload

nication overlap.

(c) ZeRO-Infinity vs ZeRO (d) Speedup from commu- (e) Overhead of offloading activation chkpt to CPU.

Democratizing Large Model Training

Reducing Activation Recomputation in Large Transformer Models

Activation Memory

Activations: "Intermediate results" of a layer after applying the activation functions

- Why do we want to keep them after the forward pass?
- For large models, they take up a lot of memory.

Required memory with tensor parallelism (n=8) + pipeline parallelism enabled

Potential solutions

Increase tensor parallelism degree

- Using checkpointing + recomputing
 - Only store the activations of certain key layers (checkpoints).
 - Recompute the forward pass results during the backward pass.

Key Contributions

- 1. Parallelizing the tensors better (sequence parallelism)
 - Enhanced **scalability**

- Finding a good balance between re-computation and keeping the activations in memory
 - **Guidelines** for tradeoff

- Each transformer unit has an attention block, a MLP block, and 2 layer-norm operators.
- Activation memory per layer = sbh(34+5as/h) bytes

$$11sbh + 5as^2b + 19sbh + 4sbh$$

Parameter	Description			
s	Sequence Length			
b	Micro-batch Size			
h	Hidden Dimension Size			
a	Number of Attention Heads			
L	Number of Transformer Layers			

 $L \qquad \text{Number of Transformer Layers}$ Table 1: Model Parameters for Transformer-based Model

- Each transformer unit has an attention block, a MLP block, and 2 layer-norm operators.
- Activation memory per layer = sbh(34+5as/h) bytes

$$11sbh + 5as^2b + 19sbh + 4sbh$$

Parameter	Description			
s	Sequence Length			
b	Micro-batch Size			
h	Hidden Dimension Size			
a	Number of Attention Heads			
L	Number of Transformer Layers			

Table 1: Model Parameters for Transformer-based Model

- Each transformer unit has an attention block, a MLP block, and 2 layer-norm operators.
- Activation memory per layer = sbh(34+5as/h) bytes

$$11sbh + 5as^2b + 19sbh + 4sbh$$

Parameter	Description			
s	Sequence Length			
b	Micro-batch Size			
h	Hidden Dimension Size			
a	Number of Attention Heads			
L	Number of Transformer Layers			

Table 1: Model Parameters for Transformer-based Model

- Each transformer unit has an attention block, a MLP block, and 2 layer-norm operators.
- Activation memory per layer = sbh(34+5as/h) bytes

$$11sbh + 5as^2b + 19sbh + 4sbh$$

Parameter	Description			
s	Sequence Length			
b	Micro-batch Size			
h	Hidden Dimension Size			
a	Number of Attention Heads			
L	Number of Transformer Layers			

 $L \qquad \qquad \text{Number of Transformer Layers}$ Table 1: Model Parameters for Transformer-based Model

Transformers with Tensor Parallelism

 Not every layer is parallelized: passing through Layer Norm and Dropout require the entire activation matrix.

Communication Pattern

 Not every layer is parallelized: passing through Layer Norm and Dropout require the entire activation matrix.

	forward backward		
f	No-op	All-reduce	
f	All-reduce	No-op	55

Memory Consumption Calculation

• Previously: $sbh(34 + \frac{5as}{h})$ bytes in total for each layer without parallelization.

Memory Consumption Calculation

• Previously: $sbh(34 + \frac{5as}{h})$ bytes in total for each layer without parallelization.

Memory Consumption Calculation

- Previously: $sbh(34 + \frac{5as}{h})$ bytes in total for each layer without parallelization. With t-way tensor parallelism: $sbh(10 + \frac{24}{t} + \frac{5as}{ht})$ for each machine.

- How do we parallelize the layer-norm + dropout operators?
 - Without incurring additional communication cost

- How do we parallelize the layer-norm + dropout operators?
 - Without incurring additional communication cost
- Split the matrices

- The communication pattern needs to change
 - o Are we doing more work?

	forward	backward		
g	All-gather	Reduce-scatter		
g	Reduce-scatter	All-gather 61		

Recall: Previous Communication Pattern

 Passing through Layer Norm and Dropout require the entire activation matrix across all model shards.

	forward	backward		
f	No-op	All-reduce		
f	All-reduce	No-op 62	2	

- The communication pattern needs to change
 - o Are we doing more work?

Recall: All-reduce =

All-gather + Reduce Scatter!

	forward	backward		
g	All-gather	Reduce-scatter		
g	Reduce-scatter	All-gather 63		

$$sbh(10 + \frac{24}{t} + \frac{5as}{ht})$$

- The communication pattern needs to change
 - o Are we doing more work?

Recall: All-reduce =

All-gather + Reduce Scatter!

	forward	backward		
g	All-gather	Reduce-scatter		
g	Reduce-scatter	All-gather 64		

$$sbh(\frac{10}{t} + \frac{24}{t} + \frac{5as}{ht})$$

- The communication pattern needs to change
 - o Are we doing more work?

Recall: All-reduce =

All-gather + Reduce Scatter!

	forward	backward		
g	All-gather	Reduce-scatter		
g	Reduce-scatter	All-gather 65		

Idea: Sequential Parallelization

- Same communication volume
 - And still parallelize the layer-norm + dropout

$$Y = \text{LayerNorm}(X),$$
 $Z = \text{GeLU}(YA),$
 $W = ZB,$
 $V = \text{Dropout}(W),$

$$\begin{split} [Y_1^s,Y_2^s] &= \operatorname{LayerNorm}([X_1^s,X_2^s]), \\ Y &= g(Y_1^s,Y_2^s), \\ [Z_1^h,Z_2^h] &= [\operatorname{GeLU}(YA_1^c), \ \operatorname{GeLU}(YA_2^c)], \\ W_1 &= Z_1^h B_1^r \ \text{ and } \ W_2 = Z_2^h B_2^r, \\ [W_1^s,W_2^s] &= \bar{g}(W_1,W_2), \\ [V_1^s,V_2^s] &= [\operatorname{Dropout}(W_1^s), \ \operatorname{Dropout}(W_2^s)]. \end{split}$$

- Storing activations of all layers is memory-intensive.
- Use checkpoints to store output activations for specific layers.
- For other layers, recompute activations starting from the nearest checkpoint.

 We want to select the layers that takes up a lot of memory and not computationally expensive to recompute.

- Current memory overhead: sbh/t (34+5as/h) bytes
- For large models, 5as/h is larger than 34 and is the dominant factor.
- Activations corresponding to 5as/h are related to the attention operation, i.e., QK^T matrix multiply, softmax, softmax dropout, and attention over V

These operations are not flops heavy and recomputing them does not introduce much overhead for large models

Evaluations: setup

Platform

- All results are run with mixed precision on the Selene supercomputer
- Each cluster node has 8 NVIDIA 80GB A100 GPUs connected to each other by NVLink and NVSwitch.
- Each cluster node has 8 NVIDIA Mellanox 200Gbps HDR Infiniband Host Channel Adapters for application communication.

Evaluations: setup

- Workload
 - Sequence length is set to s = 2048 and vocabulary size is set to v = 51200.
 - No data parallelism is considered

Model	Attention	Hidden		Tensor	Pipeline	Number	Global	Micro
Size	Heads	Size	Layers	Parallel	Parallel	of	Batch	Batch
				Size	Size	GPUs	Size	Size
22B	64	6144	48	8	1	8	4	4
175B (GPT-3)	96	12288	96	8	8	64	64	1
530B (MT-NLG)	128	20480	105	8	35	280	280	1
1T	160	25600	128	8	64	512	512	1

Evaluations: setup

- Questions to be answered
 - Memory usage
 - Execution Time

Evaluations: Memory usage

Configuration	Activations Memory (bytes)
no parallelism	$sbh\left(34+5\frac{as}{h}\right)$
tensor parallel (baseline)	$sbh\left(10 + \frac{24}{t} + 5\frac{as}{ht}\right)$
tensor + sequence parallel	$sbh\left(\frac{34}{t} + 5\frac{as}{ht}\right)$
tensor parallel + selective activation recomputation	$sbh\left(10 + \frac{24}{t}\right)$
tensor parallel + sequence parallel + selective activation recomputation	$sbh(\frac{34}{t})$
full activation recomputation	sbh(2)

Evaluations: Memory usage

Percentage of required memory compared to the tensor-level parallel baseline.

Individually, both techniques cut the memory requirement nearly in half, and combined bringing the memory requirements to under 20%.

Evaluations: Execution Time per Transformer Layer

Experiment	Forward (ms)	Backward (ms)	Combined (ms)	Overhead (%)
Baseline no recompute	7.7	11.9	19.6	_
Sequence Parallelism	7.2	11.8 \ 7.6	19.0	-3%
Baseline with recompute	7.7	19.5	1.3 27.2	39%
Selective Recompute	7.7	13.2	20.9	7%
Selective + Sequence	7.2	13.1	20.3	4%

Time to complete the forward and backward pass of a single transformer layer of the 22B model.

- Sequence Parallelism reduces the time to compute the forward pass
- Selective Recompute reduces the time to compute the backward pass
- Combining SP and SR, the overhead drops just 4%

Evaluations: End-to-end iteration time

Model Size	Iteration Time	Throughput	
Model Size	Full Recompute	Present Work	Increase
22B	1.42	1.10	29.0%
175B	18.13	13.75	31.8%
530B	49.05	37.83	29.7%
1 T	94.42	71.49	32.1%

End-to-end iteration time.

between 29.0% and 32.1% improvement in the throughput

Thank you!

- Sequential parallelism reduces the activation memory per layer to: sbh/t(34+5as/h) bytes
- For large models, 5as/h is larger than 34 and is the dominant factor.
- Examples:
 - 5as/h=80 for GPT-3 (a=96, h=12288, s=2048)
 - 5as/h=64 for Megatron-530B (a=128, h=20480, s=2048)

Activations corresponding to 5as/h are related to the attention operation, i.e., QK^T matrix multiply, softmax, softmax dropout, and attention over V

 Checkpointing these activations reduces memory per layer to:
 34sbh/t bytes

- These operations are not flops heavy and recomputing them does not introduce overhead for large models where h>> s.
- Computational complexity: O(s²h)
 - QK^T matrix multiply: O(s²h)
 - \circ Softmax: $O(s^2)$
 - softmax dropout: O(s²)
 - o attention over V: O(s²h)

- Computational complexity of Linear layers: O(sh²)
- \bullet R^{s×h} × R^{h×h}

When h >> s, $O(sh^2) > O(s^2h)$

- Activations require a substantial amount of memory for large models
 - If we consider attention, MLP, and the layer-norms
 - Activation memory per layer = sbh(34+5as/h) bytes

With Tensor Parallelism

Activation memory per layer = sbh(10 + 24/t + 5as/ht) bytes

	forward	backward	1
f	No-op	All-reduce	
f	All-reduce	No-op	

Idea: Sequential Parallelization

	forward	backward
g	All-gather	Reduce-scatter
g	Reduce-scatter	All-gather

Memory: sbh(10/t + 24/t + 5as/ht)