M13.6. 1 punkt Załóżmy, że wszystkie wartości własne λ_i macierzy $A \in \mathbb{R}^{n \times n}$ są rzeczywiste i spełniają nierówności

$$0 < \alpha \leqslant \lambda_i \leqslant \beta$$
 $(i = 1, 2, \dots, n).$

Wykazać, że metoda iteracyjna Richardsona

$$x^{(k+1)} = (I - \tau A)x^{(k)} + \tau b$$
 $(k \ge 0),$

zastosowana do rozwiązania układu równań liniowych Ax = b, jest zbieżna, jeśli $0 < \tau < 2/\beta$.

$$\chi^{(k+1)} = (I - JA)\chi^{(k)} + Jb$$
 macieiz iteracji
 $\chi = \chi^{(k+1)} = (I - JA)\chi^{(k)} + Jb$ macieiz iteracji
 $\chi = \chi^{(k+1)} = (I - JA)\chi^{(k)} + Jb$ macieiz iteracji
 $\chi = \chi^{(k+1)} = (I - JA)\chi^{(k)} + Jb$ macieiz iteracji
 $\chi = \chi^{(k+1)} = \chi^{(k)} = \chi^{(k)} + \chi^{(k)} = \chi^{($

(wtedy metoda iteracyjna zbieżna)