1 Modelo Nash: Análisis Dinámico

1.1 Variables de Estado

Las siguientes variables aparecen con rezago:

- y(t-1)
- r(t-1)
- g(t-1)
- a(t-1)
- $c^*(t-1)$
- $\xi_{\pi}(t-1)$
- $\xi_r(t-1)$
- $\xi_g(t-1)$
- r(t-2)

Variables forward-looking:

- y(t+1)
- $\pi(t+1)$
- b(t+1)
- g(t+1)

Variables estáticas:

• r^{nat}

1.2 Valores en Estado Estacionario

Variable	Valor
\overline{y}	0.522114
π	-0.0573607
b	-93.3927
r	-0.0573607
g	0.507831
r^{nat}	0
a	0
c^*	0
ξ_{π}	0
ξ_r	0
$\dot{\xi}_g$	0

Table 1: Resultados del Estado Estacionario

1.3 Autovalores

Módulo	Real	Imaginario
3.623e-17	-3.623e-17	0
0.2704	0.2064	0.1747
0.2704	0.2064	-0.1747
0.3838	0.3838	0
0.5	0.5	0
0.5	0.5	0
0.5	0.5	0
0.5	0.5	0
0.7	0.7	0
1.01	1.01	0
2.631	2.631	0
3.737	2.907	2.348
3.737	2.907	-2.348

Table 2: Autovalores del Sistema

1.4 Descomposición de Varianza (%)

Variable	$arepsilon_a$	$arepsilon_{c^*}$	$arepsilon_{\pi}$	$arepsilon_r$	ε_g
\overline{y}	0.11	0.00	11.60	0.30	87.99
π	3.54	0.03	7.64	87.68	1.09
b	0.34	0.00	62.81	5.47	31.38
r^{nat}	99.04	0.96	0.00	0.00	0.00
r	23.44	0.23	60.19	15.15	1.00
g	0.66	0.01	75.85	1.88	21.60

Table 3: Descomposición de Varianza

1.5 Matriz de Correlaciones

Variables	y	π	b	r^{nat}	r	g
\overline{y}	1.0000	-0.0273	-0.2366	0.0203	-0.3283	0.1291
π	-0.0273	1.0000	0.3188	-0.0332	0.2290	-0.2217
b	-0.2366	0.3188	1.0000	0.0084	-0.4678	-0.9837
r^{nat}	0.0203	-0.0332	0.0084	1.0000	0.4605	-0.0508
r	-0.3283	0.2290	-0.4678	0.4605	1.0000	0.5563
g	0.1291	-0.2217	-0.9837	-0.0508	0.5563	1.0000

Table 4: Matriz de Correlaciones

1.6 Coeficientes de Autocorrelación

Variable	Orden 1	Orden 2	Orden 3	Orden 4	Orden 5
\overline{y}	0.7207	0.4415	0.2511	0.1372	0.0731
π	0.5488	0.3705	0.2641	0.1874	0.1317
b	0.6073	0.3322	0.1760	0.0930	0.0496
r^{nat}	0.5000	0.2500	0.1250	0.0625	0.0312
r	0.7425	0.4403	0.2414	0.1317	0.0740
g	0.6164	0.3363	0.1755	0.0906	0.0468

Table 5: Coeficientes de Autocorrelación

Table 6: MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

	Vario	$ables$ ε^a	ε^c ε^π ε^r	ε^g	
$arepsilon^a$	$0.0\overline{62500}$	0.000000	0.000000	0.0000000	0.000000
$arepsilon^c$	0.000000	0.490000	0.000000	0.000000	0.000000
$arepsilon^{\pi}$	0.000000	0.000000	0.160000	0.000000	0.000000
$arepsilon^r$	0.000000	0.000000	0.000000	0.360000	0.000000
$arepsilon^g$	0.000000	0.000000	0.000000	0.000000	0.250000

Table 7: Parameter Values

	Par	rameter Value Description
θ	0.500	Calvo Probability
σ	1.000	Inverse EIS
α	0.430	Openness Degree
ϕ	1.000	Inverse Labor Supply Elasticity
β	0.990	Discount Factor
$ ho_{lpha}$	0.500	Productivity Shock Autocorrelation
$ ho_{c^*}$	0.500	Int. Consumption Shock Autocorrelation
$ ho_{\pi}$	0.500	Domestic Price Shock Autocorrelation
$ ho_r$	0.700	Interest Rate Shock Autocorrelation
$ ho_g$	0.500	Public Spending Shock Autocorrelation
γ_π	1.250	Monetary Authority Inflation Gap Response
ζ_{π}	0.250	Fiscal Authority Inflation Gap Response
γ_y	0.250	Monetary Authority Output Gap Response
ζ_y	1.250	Fiscal Authority Output Gap Response
γ_r	0.700	Interest Rate Smoothing
ζ_g	0.250	Government Spending Response
η	0.690	Domestic-Imported Goods Substitution Elasticity
v	1.000	Cross-Country Goods Substitution Elasticity
$ au_{ar{-}}$	0.033	Effective Income Tax Rate
$\frac{B}{V}$	0.530	Steady State Debt-GDP Ratio
$egin{array}{c} au & rac{ar{B}}{ar{Y}} \ rac{ar{C}}{ar{Y}} \ r^* \end{array}$	0.700	Steady State Consumption-GDP Ratio
r^*	0.000	Steady State Interest Rate

Table 8: COEFFICIENTS OF AUTOCORRELATION

	\overline{Or}	$\frac{1}{der}$ 1	2 3 4	5	
$ ilde{y}_t$	0.7207	0.4415	0.2511	0.1372	0.0731
π_t	0.5488	0.3705	0.2641	0.1874	0.1317
$egin{array}{l} \pi_t \ ilde{b}_t \end{array}$	0.6073	0.3322	0.1760	0.0930	0.0496
r^n	0.5000	0.2500	0.1250	0.0625	0.0312
r_t	0.7425	0.4403	0.2414	0.1317	0.0740
$ ilde{g}_t$	0.6164	0.3363	0.1755	0.0906	0.0468

Table 9: MATRIX OF CORRELATIONS

	Vari	$ables$ $ ilde{y}_t$	$\pi_t ilde{b}_t$	r^n r_t	$ ilde{g}_t$	
$ ilde{y}_t$	1.0000	-0.0273	-0.2366	0.0203	-0.3283	0.1291
π_t	-0.0273	1.0000	0.3188	-0.0332	0.2290	-0.2217
$egin{array}{l} \pi_t \ ilde{b}_t \end{array}$	-0.2366	0.3188	1.0000	0.0084	-0.4678	-0.9837
r^n	0.0203	-0.0332	0.0084	1.0000	0.4605	-0.0508
r_t	-0.3283	0.2290	-0.4678	0.4605	1.0000	0.5563
$ ilde{g}_t$	0.1291	-0.2217	-0.9837	-0.0508	0.5563	1.0000

Table 10: THEORETICAL MOMENTS

VARIABLE	MEAN	STD.DEV.	VARIANCE
$\overline{ ilde{y}_t}$	0.5221	0.1897	0.0360
$egin{array}{l} \pi_t \ ilde{b}_t \end{array}$	-0.0574	0.1745	0.0304
$ ilde{b}_t$	-93.3927	1.6338	2.6693
r^n	0.0000	0.1508	0.0227
r_t	-0.0574	0.1744	0.0304
$ ilde{g}_t$	0.5078	0.3781	0.1430

Table 11: VARIANCE DECOMPOSITION (in percent)

		ε^a ε^c	$arepsilon^\pi$ (ε^r ε^g	
\tilde{y}_t	0.11	0.00	11.60	0.30	87.99
π_t	3.54	0.03	7.64	87.68	1.09
\widetilde{b}_t	0.34	0.00	62.81	5.47	31.38
r^n	99.04	0.96	0.00	0.00	0.00
r_t	23.44	0.23	60.19	15.15	1.00
\tilde{g}_t	0.66	0.01	75.85	1.88	21.60

$$omega = \sigma \upsilon + (1 - \alpha) (\sigma \eta - 1)$$

$$sigma_alpha = \frac{\sigma}{1 + \alpha \ (omega - 1)}$$

$$lambda = \frac{(1 - \beta \theta) (1 - \theta)}{\theta}$$

 $kappa_upsilon = lambda (sigma_alpha + \phi)$

$$OMICRON_R_LAG1 = \frac{1 + \beta + sigma_alpha \ kappa_upsilon}{\beta}$$

$$OMICRON_R_LAG2 = \frac{(-1)}{\beta}$$

$$OMICRON_PI = \frac{kappa_upsilon \gamma_{\pi}}{sigma_alpha \gamma_{y}}$$

$$OMICRON_Y = \frac{\gamma_y}{sigma_alpha\,\gamma_r}$$

$$OMICRON_R_TAR = \frac{(-\left(sigma_alpha\,kappa_upsilon\right))}{\beta}$$

 $D = kappa_upsilon + sigma_alpha + \beta sigma_alpha$

$$PSI_G_PLUS = \frac{\beta \, sigma_alpha}{D}$$

$$PSI_G_LAG = \frac{sigma_alpha}{D}$$

$$PSI_Y_PLUS = \frac{\beta \, sigma_alpha \, \zeta_y}{D \, \zeta_a}$$

$$PSI_Y_0 = \frac{sigma_alpha \, \zeta_y \, (2+\beta)}{D \, \zeta_q}$$

$$PSI_Y_LAG = \frac{sigma_alpha \, \zeta_y}{D \, \zeta_g}$$

$$PSI_PI_PLUS = \frac{\beta \, sigma_alpha \, \zeta_{\pi} \, \left(sigma_alpha - kappa_upsilon \right)}{D \, \zeta_{g}}$$

$$PSI_PI_0 = \frac{(sigma_alpha - kappa_upsilon) \ sigma_alpha \ \zeta_{\pi}}{D \ \zeta_{g}}$$

CONS

$$=\frac{\alpha \left(sigma_alpha\frac{\bar{C}}{\bar{Y}}-sigma_alpha-kappa_upsilon\frac{\bar{C}}{\bar{Y}}+sigma_alpha\tau-\frac{\bar{B}}{\bar{Y}}sigma_alpha^2+kappa_upsilon\frac{\bar{C}}{\bar{Y}}\right)}{D \zeta_a \beta \frac{\bar{B}}{\bar{B}}}$$

$$\pi_{tt} = \beta \, \pi_{tt+1} + kappa_upsilon \, \tilde{y}_{tt} - sigma_alpha \, \tilde{g}_{tt} + \xi_{\pi_t} \tag{1}$$

$$\tilde{y}_{tt} = \tilde{y}_{tt+1} - \frac{1}{sigma\ alpha} \left(r_{tt} - \pi_{tt+1} - r^n_{t} \right) - \left(\tilde{g}_{tt+1} - \tilde{g}_{tt} \right)$$
(2)

$$\tilde{b}_{tt+1} = r_{tt} - r^n_{t} + \frac{1}{\beta} \left(\tilde{b}_{tt} - \pi_{tt} + \tilde{g}_{tt} \frac{\frac{\bar{C}}{\bar{Y}}}{\frac{\bar{B}}{\bar{Y}}} + \tilde{y}_{tt} \frac{1 - \tau - \frac{\bar{C}}{\bar{Y}}}{\frac{\bar{B}}{\bar{Y}}} \right)$$
(3)

$$r_{tt} = OMICRON_R_LAG1 \, r_{tt-1} + OMICRON_R_LAG2 \, r_{tt-2} + \pi_{tt} \, OMICRON_PI \\ + \, \tilde{y}_{tt} \, OMICRON_Y + OMICRON_Y \, \tilde{y}_{tt-1} + OMICRON_R_TAR \, r^* + \xi_{rt}$$

$$\tilde{g}_{tt} = \tilde{g}_{tt+1} PSI_G_PLUS - CONS + PSI_G_LAG \tilde{g}_{tt-1} + \tilde{y}_{tt+1} PSI_Y_PLUS \\ - \tilde{y}_{tt} PSI_Y_0 + \tilde{y}_{tt-1} PSI_Y_LAG - \pi_{tt+1} PSI_PI_PLUS + \pi_{tt} PSI_PI_0 + \xi_{g_t}$$
 (5)

$$r^{n}_{t} = \frac{sigma_alpha (1 + \phi) (\rho_{\alpha} - 1)}{sigma \ alpha + \phi} a_{tt} + \frac{(omega - 1) \alpha \phi}{sigma \ alpha + \phi} (\rho_{c^{*}} - 1) c_{tt}^{*}$$

$$(6)$$

$$a_{tt} = \rho_{\alpha} a_{tt-1} + \varepsilon^{a}_{t} \tag{7}$$

$$c_{tt}^* = \rho_{c^*} c_{tt-1}^* + \varepsilon_t^c$$
 (8)

$$\xi_{\pi_t} = \rho_{\pi} \, \xi_{\pi_{t-1}} + \varepsilon^{\pi}_{t} \tag{9}$$

$$\xi_{rt} = \rho_r \, \xi_{rt-1} + \varepsilon^r_{\ t} \tag{10}$$

$$\xi_{g_t} = \rho_g \, \xi_{g_{t-1}} + \varepsilon^g_{\ t} \tag{11}$$

Figure 1: Impulse response functions (orthogonalized shock to ε^a).

Figure 2: Impulse response functions (orthogonalized shock to ε^c).

Figure 3: Impulse response functions (orthogonalized shock to ε^{π}).

Figure 4: Impulse response functions (orthogonalized shock to ε^r).

Figure 5: Impulse response functions (orthogonalized shock to ε^g).