Taylor Series

Mitaxi Mehta Lecture 6 In the last class we saw that a function can be approximated by a straight line in the neighborhood of a point.

- In the last class we saw that a function can be approximated by a straight line in the neighborhood of a point.
- This straight line is the tangent to that point to the curve of the function.

 This approximation is not very good as one moves away from the point.

- This approximation is not very good as one moves away from the point.
- Can we make a better approximation by using the information of the second derivative at the point?

- This approximation is not very good as one moves away from the point.
- Can we make a better approximation by using the information of the second derivative at the point?
- For most of the functions, the answer is yes.

Taylor approximation

 The method of Taylor approximation assumes that the given function can be approximated by a polynomial of degree n.

Taylor approximation

- The method of Taylor approximation assumes that the given function can be approximated by a polynomial of degree n.
- Provided a given function f(x) is known at a specific point x = a and all the derivatives of f(x) up to n^{th} derivative are known at that point.

Taylor approximation

- The method of Taylor approximation assumes that the given function can be approximated by a polynomial of degree n.
- Provided a given function f(x) is known at a specific point x = a and all the derivatives of f(x) up to n^{th} derivative are known at that point.
- We shall assume that the function can be approximated by a polynomial of degree n,

$$P_n(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + ... + c_n(x-a)^n$$

• What happens when n = 1?

- What happens when n = 1?
- The function is f(x) we know its value at f(x = a) = f(a) and its first derivative at x = a, f'(a).

- What happens when n = 1?
- The function is f(x) we know its value at f(x = a) = f(a) and its first derivative at x = a, f'(a).
- That means we may be able to approximate it by

$$P_1(x) = c_0 + c_1(x - a)$$

If P₁(a) = f(a) and P'₁(a) = f'(a) can you find the values of c₀ and c₁? • Insisting that $P_1(a) = f(a)$ gives,

$$P_1(x = a) = c_0 + c_1(a - a) = f(a)$$

Hence $c_0 = f(a)$.

• Insisting that $P_1(a) = f(a)$ gives,

$$P_1(x = a) = c_0 + c_1(a - a) = f(a)$$

Hence $c_0 = f(a)$.

• Using $P'_1(x)|_{x=a} = f'(a)$, yields $c_1 = f'(a)$

• $c_0 = f(a)$ and $c_1 = f'(a)$ thus

$$P_1(x) = f(a) + f'(a)(x - a)$$

• $c_0 = f(a)$ and $c_1 = f'(a)$ thus

$$P_1(x) = f(a) + f'(a)(x - a)$$

• This is the same as the function approximation we talked about in the last class, provided we write $\Delta x = (x - a)$.

• $c_0 = f(a)$ and $c_1 = f'(a)$ thus

$$P_1(x) = f(a) + f'(a)(x - a)$$

- This is the same as the function approximation we talked about in the last class, provided we write $\Delta x = (x a)$.
- Note that this is also the equation of the tangent at point x = a.

• Suppose we want to approximate a function f(x).

- Suppose we want to approximate a function f(x).
- We know f(a), f'(a) and f''(a).

- Suppose we want to approximate a function f(x).
- We know f(a), f'(a) and f''(a).
- Assuming a quadratic polynomial of the form

$$P_2(x) = c_0 + c_1(x-a) + c_2(x-a)^2$$

find the values of c_0 , c_1 and c_2

 Hence the second degree Taylor approximation about x = a is,

$$P_2(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

• What would an nth degree Taylor approximation look like ?

• the kth coefficient has the form,

$$c_k = \frac{f^{(k)}(a)}{k!}$$
 for $0 \le k \le n$.

• the *k*th coefficient has the form,

$$c_k = \frac{f^{(k)}(a)}{k!}$$
 for $0 \le k \le n$.

Note: $f^{(k)}(a)$ is k^{th} derivative of f evaluated at a, $f^k(a)$ is $(f(a))^k$.

The polynomial has the form

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

• Find the third degree approximation of $\sin x$ about x = 0.

- Find the third degree approximation of $\sin x$ about x = 0.
- Find the fourth degree approximation of $\cos x$ about x = 0

- Find the third degree approximation of $\sin x$ about x = 0.
- Find the fourth degree approximation of $\cos x$ about x = 0
- Find the third degree approximation of $\sin x$ about $x = \pi/2$.