AC-3 and DTS

Prof. Dr.-Ing G. Schuller

Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany

Dolby Digital

- Dolby Digital (AC-3) was first commercially used in 1992
- Multi-channel digital audio for 35mm movie film material alongside the (optical) analog audio channel
- Perceptual coding with block length of 256 samples
- Additionally it is used in:
 - Laser Disc
 - ATSC High Definition Digital Television (HDTV)
 - DVB/ATSC Standard Definition Digital Television (SDTV)
 - DVD-Video/Audio
 - Internet-, Cable-, Satellite broadcasting
- For 5.1-channel audio, the bit stream is packed in the AES-EBU transmission format.
- Bit stream defined in ATSC "Digital Audio Compression Standard, Revision B": Doc. A/52B from June 2005; also E-AC3 included

Dolby Digital embedded in a piece of film

Ŀ

Dolby AC-3 (1)

- Predecessors:
 - Dolby AC-1: low-cost, based on delta modulation
 - Dolby AC-2: transform based codec
- Lossy coder that uses psychoacoustics
- Special Features:
 - Use of a Variable Frequency Resolution Spectral Envelope
 - Hybrid Backward/Forward Adaptive Bit Allocation
- Primarily developed for multi-channel format for HDTV
- Based on ITU-R BS.775 that showed that 5 + 1 channels are enough for new digital audio system of movies (based on an analog Split-Surround-Format from 1979)

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage

Dolby AC-3 (2)

- There is an useable data rate of 320kbps on 35mm movie film such that:
 - Audio compression must be used for 5.1 channel audio
 - The peak bit rate can not surpass 320kbps
- First film with AC-3: Star Trek VI (Dec. 1991)
- Transform:
 - Fielder windowing (aka KBD-Window)
 - Window length 512 Samples (10.66ms@48kHz) with 50% overlap: 256 Spectral values
 - Oddly Stacked Time-Domain Alias-Cancellation Filter Bank from Princen and Bradley
 - With signal transients (attacks) block switching is used to half the block length.
 - Frequency resolution: 93,75 Hz
 - No "Critical Bands" like in MP3

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage

Dolby AC-3: Forward Adaptive Bit

Allocation

Encoder

Decoder

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage

Dolby AC-3: Backward Adaptive Bit

Allocation

Encoder

Decoder

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage

Dolby AC-3: Hybrid Backward/Forward ABA

Encoder

Decoder

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage

 $Prof.\ Dr.-lng.\ K.\ Brandenburg,\ bdg@idmt.fraunhofer.de\ Prof.\ Dr.-lng.\ G.\ Schuller,\ shl@idmt.fraunhofer.de\ Prof.\ Br.-lng.\ Br$

Dolby AC-3: Encoder

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Source: Advanced Television Systems Committee: "Digital Audio Compression Standard (AC-3)", Nov. 94

Dolby AC-3: Decoder

Source: Advanced Television Systems Committee: "Digital Audio Compression Standard (AC-3)", Nov. 94

Dolby AC-3: Spectral Envelope (1)

Spectral Envelope Coding, D15 Mode, Triangle Signal

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage"

13

Dolby AC-3: Spectral Envelope (2)

Spectral Envelope Coding, D25 Mode, Triangle Signal

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage"

Dolby AC-3: Bit Allocation

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage"

15

Dolby Digital Setup

Source: Dolby Labs, Internet

Dolby Digital Enhancement for 6.1-channel audio

Source: Dolby Labs, "AC-3: Flexible Perceptual Coding for Audio Transmission and Storage"

Dolby Digital Plus (E-AC-3, Enhanced AC-3): Main features

- greater range of data rates: 32kbps 6.144
 Mbps, fine-grain data rate resolution
- 13.1 channel support
- High resolution hybrid filter bank (AC-3 filter combined with 2nd stage DCT -> 1536 coeffs or subbands)
- New quantization tools
- Improved channel coupling (similar to BCC)
- Spectral extension tool (similar to SBR)
- Transient pre-noise processing
- Based on AC-3: low-loss and low-complexity conversion from E-AC-3 to AC-3

Source: L.D. Fielder et al., "Introduction to Dolby Digital Plus, an Enhancemnet to the Dolby Digital Coding System", 117th AES Convention

E-AC-3: Decoder setup example

Enhancemnet to the Dolby Digital Coding System", 117th AES Convention

E-AC-3: Adaptive Hybrid Transform (AHT)

- Based on AC-3 MDCT (256 coeffs or subbands, KBD window with alpha factor 5.0) for easy interoperability, filter length N=512
- 2nd stage DCT Type 2 with M=6 subbands, resulting in 1536 coeffs or subbands
- → higher frequency resolution for stationary signals

$$X(k,m) = \sum_{n=0}^{N-1} x(n+m\frac{N}{2}) \cdot w(n) \cos \left(\frac{2\pi(k+\frac{1}{2}) \cdot (n+\frac{N}{4}+\frac{1}{2})}{N} \right)$$

k... MDCT frequency index \rightarrow k = 0,..., N/2 -1

n... MDCT sample index

m... MDCT blockindex \rightarrow m = 0,..., L-1; L: total number of Blocks

$$X^{AHT}(kM+l) = \frac{\sqrt{2}}{M} C_{l} \sum_{m=0}^{M-1} X(k,m) \cdot \cos \left(\frac{(2m+1)l\pi}{2M} \right)$$

I... DCT-II frequency index \rightarrow I = 0,..., M-1 $C_l = \begin{cases} 1/2 \\ 1/2 \end{cases}$

 $C_{l} = \begin{bmatrix} 1/\sqrt{2} & l = 0 \\ 1 & l \neq 0 \end{bmatrix}$

Source: L.D. Fielder et al., "Introduction to Dolby Digital Plus, Enhancemnet to the Dolby Digital Coding System", 117th AE

E-AC-3: Spectral Extension Tool

- Parametric description of high frequency region of the high frequency subband coeffs, which then are transmitted as this parametric description
- Spectral extension bands approx. match Critical Bands
- For each band an energy ratio and a noise blending parameter is calculated

E-AC-3: Spectral Extension (1)

Fig 1: Original Spectrum

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Fig 3: Decoder: Noise spectrum multiplied by blending function

Fig 2: Decoder: Translation

Fig 4: Decoder: Translated spectrum, multiplied by inverse blending function

TECHNISCHE UNIVERSITÄT
ILMENAU

E-AC-3: Spectral Extension (2)

Fig 5: Decoder: Blended spectrum (blending of noise and translated spectrum)

Fig 6: Decoder: Final spectrum, multiplication by transmitted energy ratios

E-AC-3: Enhanced Coupling

Source: L.D. Fielder et al., "Introduction to Dolby Digital Plus, an Enhancemnet to the Dolby Digital Coding System", 117th AES Convention

E-AC-3: Transient Pre-Noise Processing

- reduces pre-echo artifacts with a timedomain strategy
- a time-scaled part of the signal substitutes quantization noise just before a transient

Source: L.D. Fielder et al., "Introduction to Dolby Digital Plus, an Enhancemnet to the Dolby Digital Coding System", 117th AES Convention

DTS

DTS: Coherent Acoustics coding or Digital Surround®

- Intended for entertainment and professional use
- Optional coding scheme for DVD
- Part of the Blue Ray audio standard
- Audio data rates from 8 to 512 kbit/s/channel
- Sampling rates up to 192 kHz / 24 bit
- 5.1 core coder with up to 1536 kbit/s

DTS: Encoder overview

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

 Two main stages: polyphase filtering and subband-ADPCM

DTS: Polyphase Filter Bank

- 32 subbands
- Frames of 256, 512, 1024, 2048 or 4096 samples
- Long frames mainly used for low bit rates (coding efficiency)
- Two filter banks: perfect reconstruction (high bit rates) and near-perfect reconstruction (lower bit rates)

Туре	Taps	Transitional bandwidth [Hz]	Stop-band rejection [dB]	Ultimate Rejection [dB]	Reconstruction resolution [dB]
NPR	512	300	110	120	90
PR	512	350	85	90	145

Example: Polyphase filter banks at 48

kHz

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

DTS: Subband Adaptive DPCM

- Reduce sample-to-sample correlation within each subband
- Disengageable within each subband, if simple PCM renders better results
- Forward prediction based on LPC analysis

DTS: Subband Adaptive PCM (block diagram)

TECHNISCHE UNIVERSITÄT

ILMENAU

DTS: Quantization and Bit Allocation

- 28 different mid-tread quantizers up to 16,777,216 levels
- Psychoacoustically controlled
- Optional table-based entropy coding at low bit rates

DTS: Quantization and Bit Allocation (block diagram)

DTS: Example for the use of the extension audio data

DTS-ES: discrete 6.1 multi channel coding

- 5.1 channel DTS core + additional Center Surround channel
- Additional channel is transmitted using Extension Audio Data
- Backwards compatible to 5.1 DTS core coder
- Three possible decoder setups possible:
 - 5.1 decoding with phantom source
 - Matrix decoding of Center Surround Channel
 - Discrete 6.1 decoding by evaluating Extension Audio Data

35

DTS-ES: Encoder block diagram and Bit Stream

Stream

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

DTS-HD

- DTS Digital Surround (DTS 5.1 core) mandatory for HD-DVD and Blu-Ray
- DTS-HD is optional for (HD-DVD outdated) Blu-Ray
- DTS-HD is a set of extensions to DTS core, encompassing DTS core, DTS-ES, Neo:6 and DTS 96/24
- Lossless audio coding possible

Ogg Vorbis

- Ogg project started 1993 to provide a licensefee free audio coder/decoder
- Ogg: file transport protocol
- Vorbis: audio coder
 - Psycho-acoustically controlled forward adaptive monolithic codec based on MDCT
 - Inherently variable bit rate coder
 - Provides no framing, synchronization or error protection by itself (therefore use Ogg for file transport, RTP for multicast)
 - Low-complexity decoder, but high memory usage due to non-static probability models
 - Huffman and VQ codebooks are transmitted within bit stream header

Windows Media Audio (WMA)

- Proprietary Audio Coder developed by Microsoft
- Collection of profiles for different applications:
 - WMA 9: most scenarios, backwards compatible to WMA 8, about 20% lower data rate, VBR possible
 - WMA 9 professional: 24 bit/96 kHz audio, 7.1 channels, 128-768 kbps, stereo downmix available
 - WMA 9 voice: speech content at low bit rates (<20 kbps)
 - WMA 9 lossless: compression depending on input audio, used for high-quality archiving purposes

WMA: main features

- MDCT (or MLT) based
- Multiple numbers of frequency lines (128, 256, 512, 1024, 2048)
- Sinusoidal shaped windows, transition windows and "bridge" windows ("soft" transition between long and short blocks)
- Uniform quantization within scale factor bands
- M/S coding frame-by-frame instead of scalefactor-band-wise
- Bit reservoir available (1-pass and 2-pass coding)

MPEG Spatial Audio Object Coding (SAOC)

Overview

- Concept
- MPEG Surround integration
- Advantages of SAOC
- Applications
- Conclusion

Concept: From MPEG Surround to SAOC (1)

Current Spatial Audio Coding: **Channel**-oriented (MPEG Surround)

Concept: From MPEG Surround to SAOC (2)

Object-oriented Spatial Audio Coding

- Processes object signals instead of channel signals
- Side Info: few kbit/s per audio object
- Mono or stereo downmix
- "Mixing"/rendering parameters vary according to user interaction

MPEG Surround integration/extension

MPEG SAOC decoder = MPEG SAOC Transcoder + MPEG Surround decoder

Advantages using MPEG SAOC (1)

Key features

- Highly efficient storage/transport of individual audio objects ..
- .. in a *backwards compatible* downmix
- User interactive rendering of the audio objects (e.g. move or amplify objects)
- Flexible rendering configurations (e.g. 2.0, 5.1, binaural, ..)

Advantages using MPEG SAOC (2)

Other features

- Low complexity decoding/rendering for a large number of objects compared with individually encoded and rendered objects
- Compatible with any core codec (for the downmix)
- Powerful rendering engine (= MPEG
 Surround) integrated, no additional solution required

Applications (1)

Examples

Main feature

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

Interactive Remix / Karaoke

- Suppress / attenuate instruments or vocals (Karaoke)
- Modify the original track to reflect current preference (e.g. "more drums & less strings" for a dance party)
- Choose between different vocal tracks ("female lead vocal vs. male lead vocal")
- Control the dialog/speech level in movies/news broadcasts for better speech intelligibility.
- Backwards compatibility

Applications (2)

Examples

- Gaming / Rich Media
 - Efficient and flexible audio transport in multi-player games or applications (e.g. Second Life)
 - Efficient storage together with flexible rendering of audio in small interactive games

Main feature

Storage/ Bitrate Efficiency

Applications (3)

Examples

Teleconferencing

- Mobile conference over headphones:
 Virtual 3D-audio line-up of communication partners all around the listener
- Conference setup with 2 or more loudspeakers: Spatial distribution of communication partners

Main feature

- Quality Improvement:
 - Increased speech intelligibility
 - Increased listening comfort

Conclusions SAOC

- Highly efficient transport/storage of audio objects and flexible/interactive audio scene rendering
- Backwards compatible downmix for reproduction on legacy devices
- Flexible rendering configurations
- Under standardization within MPEG
- Very interesting applications, e.g.:
 - Remixing/Karaoke
 - Gaming
 - Teleconferencing

