

AENG 576 – Modeling and Control of Battery Systems

Final Project Presentation

STATE OF CHARGE ESTIMATION USING KALMAN FILTER

Fall 2023 Team Members :

Abhishek Borde Prem Kumar R N

Presentation Outline

- Project motivation and goal
- Background of NMC Battery
- Battery Plant Model
 - Electrical Equivalent circuit model of NMC Battery(OCV-R-2RC)
- Overview of Simulink Model
- Observer Design
 - Kalman Filter Algorithm
 - Extended Kalman Filter Model (OCV-R-RC)
 - Linear Kalman Filter Model (OCV-R-RC)
 - Joint Extended Kalman Filter Model (OCV-R-RC)
- Dual Extended Kalman Filter Parameter Estimation
- Results and Observations

Project Motivation and Goal

MOTIVATION

- Accurate State of Charge (SoC) estimation is critical for battery management systems, particularly in electric vehicles, to optimize battery performance, extend battery life, and ensure safe operation.
- Kalman filters have emerged as a reliable and efficient method for SoC estimation, especially for complex battery chemistries, and have gained increasing attention in the literature.

GOALS

- Estimate the current demand of a Tesla Model X vehicle, based on two driving cycles (UDDS and US06), using AVL Cruise software and the Quasistatic battery model.
- Estimate the battery's SoC level using various Kalman filters and input parameters, assuming full battery charge at the start.
- Determine the accuracy of SoC estimation by comparing the results with experimental values, which can help in the development of efficient battery management systems for electric vehicles.
- Evaluate the performance of various Kalman filter types for SoC estimation, offering insights for future research on battery chemistries and driving cycles.

Background of NMC Battery

- NMC (Lithium Nickel Manganese Cobalt Oxide) batteries are commonly used in electric vehicles due to their high energy density, power capability, and long cycle life.
- NMC Battery uses combination of nickel, manganese, and cobalt as cathode materials, which provide several advantages over other battery chemistries.
- The optimal performance and lifespan of an NMC battery, accurate estimation of its State of Charge (SoC) is crucial.
- Various methods can be used to estimate the SoC of an NMC battery, including Coulomb counting, model-based estimation, and Kalman filters.
- The development of accurate SoC estimation techniques for NMC batteries is of great importance in the field of battery management systems.

Background of NMC Battery

First-Order Model Parameters	5°	15°	25°	45°	
Cnom (Ah)	17.17	19.24	20	21.6	
$R_i(\Omega)$	0.007	0.0047	0.003	0.0019	
$R_{df}(\Omega)$	0.0042	0.0018	0.00065	0.00054	
τ_{df} (s)	21	19.3	16.5	15.2	
·					

The extracted parameters of the battery model of the charge at different temperatures.

- The Thevenin first-order model has parameters Ri, Rd f, and τdf.
- These parameters are approximated to constant values as their observed variation is not extremely considerable.
- Simplifying the model in this way makes it easier to use online and for eventual implementation.
- Charge parameters were extracted at different temperatures and are available in a table (which was not included in the question).

Capacitance calculation:-

$$\tau_{df} = 4 * R_{df}C$$

$$C = \frac{\tau_{df}}{4 * R_{df}}$$

$$C = 6346.15 F$$

In Battery plant model we are not using Thermal Model ; keeping the temperature as 25°C constant.

AVL Cruise software

The current demand was calculated from AVL Cruise software by importing specifications such as

- Vehicle mass and road load based data
- Front and rear motor torque characteristics
- battery (1 module specs 232 Ah, 21.96V) data

The model was run for the UDDS and US06 driving cycles with a 200-second pause between each cycle. The cycles were run

Voltage, Current, Charge and SOC

Simulink model

Overall Simulink Model

Simulink model

Plant Model

Simulink model

Kalman Filters – Linear, Extended & Joint estimation

Battery Plant Model

Electrical Equivalent circuit model of NMC Battery(OCV-R-2RC)

Second order model equation

i.
$$SOC(t) = SOC(0) + 1/C_{actual} \left(\int_0^t \eta_i I(t) dt \right)$$

iii.
$$u_{2,j+1} = \exp\left(-\frac{\Delta t}{R_2C_2}\right)u_{2,j} + R_2\left[1 - \exp\left(-\frac{\Delta t}{R_2C_2}\right)\right]I_j$$

iv.
$$V_j = OCV - R_0 I_j - u_{1,j} - u_{2,j}$$

- U1 and U2 represent voltage across RC1 and RC2
- Vj represent terminal voltage of Battery
- R1C1 AND R2C2 parameters across RC1 and RC2 circuit
- R0 represent initial resistant of Battery

Linearization and Observability check

Linearization of OCV-SOC Relationship

<u>Linear relation between OCV and SOC and calculated the parameters of the curve by using single</u>

polynomial function.

By using polyfit linearized the graph such that:

$$\frac{dOCV}{dz} = \alpha x + \beta$$

$$a = 0.7160$$

$$\beta = 3.3503$$

Observability check

Observability refers to the ability to understand the internal states of the model based on its output or behavior.

- A model is to be observable if the rank of observability matrix equals the n of the matrix.
- O(A,C) = [C; CA; CA^2; CA^3 CA^n]
- It is observed that the rank of the observability matrix and the n of the matrix are equal, and it is good to design an observer to estimate the internal states of the battery.

Kalman filter Algorithm

I. Extended Kalman Filter Model (OCV-R-RC)

- i. Step1 State-prediction Time Update: $\hat{x}_{\bar{k}} = A_{k-1} + \hat{x}_{k-1}^+ + B_{k-1}U_{k-1}$
- ii. Step2 Error-Covariance Time Update: $P_1 = A_{k-1}P_{k-1}^+A_{k-1}^T + \Sigma_{\omega}$
- iii. Step 3 Output Prediction: $\hat{y}_k = C_k \hat{x}_k^- + D_k U_k$
- iv. Step 4 Kalman Gain Computation: $k_k = P_k^- * C_k^T \left[C_k P_{\bar{k}} C_k^T + \Sigma_v \right]^{-1}$
- v. Step 5 State-estimate Measurement Update: $\hat{x}_k^+ = \hat{x}_{\bar{k}} + k_k[y_k \hat{y}_k]$
- vi. Step 6 Error-covariance Measurement Update: $P_k^+ = [I k_k C_k] P_k^-$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & e \frac{-\Delta t}{R_1 \cdot C_1} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \frac{-1}{(3600 * C)} \\ R_1 * \left(1 - e\left(\frac{-\Delta t}{R_1 * C_1}\right)\right) \end{bmatrix}$$

•
$$C = [0.7160 - 1]$$

I. Extended Kalman Filter Model (OCV-R-RC) - Results

SOC and Vt comparison with experimental data

Kalman filter Algorithm

II. Linear Kalman Filter Model (OCV-R-RC)

- i. Step1 State-prediction Time Update: $\hat{x}_{\bar{k}} = A_{k-1} + \hat{x}_{k-1}^+ + B_{k-1}U_{k-1}$
- ii. Step2 Error-Covariance Time Update: $P_1 = A_{k-1}P_{k-1}^+A_{k-1}^T + \Sigma_{\omega}$
- iii. Step 3 Output Prediction: $\hat{y}_k = C_k \hat{x}_k^- + D_k U_k$
- iv. Step 4 Kalman Gain Computation: $k_k = P_k^- * C_k^T igl[C_k P_{ar{k}} C_k^T + \Sigma_{ar{
 u}} igr]^{-1}$
- v. Step 5 State-estimate Measurement Update: $\hat{x}_k^+ = \hat{x}_{\bar{k}} + k_k[y_k \hat{y}_k]$
- vi. Step 6 Error-covariance Measurement Update: $P_k^+ = [I k_k C_k] P_k^-$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{-\Delta t}{R_1 * C_1} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \frac{-\Delta t}{(3600 * C)} \\ \frac{-\Delta t}{C_1} \end{bmatrix}$$

•
$$C = [0.7160 - 1]$$

D = -R0

II. Linear Kalman Filter Model (OCV-R-RC) - Results

SOC and Vt comparison with experimental data

Kalman filter Algorithm

II. 3-state Joint Extended Kalman Filter Model (OCV-R-RC)

- i. State predication Time Update $\hat{x}_{a,k} = \overline{A}_{a,k-1}\hat{x}_{a,k-1}^+ + \overline{B}_{a,k-1}u_{k-1}$
- ii. Error- Covariance Time Update $P_k^- = \overline{A}_{a,k-1}P_{k-1}^+\overline{A}_{a,k-1}^T + \Sigma_\omega$
- iii. Output Prediction $\hat{y}_k = f(\hat{x}_{a,k}, \mu_k)$
- iv. Kalman Gain Computation $K_k = P_k^- C_{a,k}^{x-T} \left[C_{a,K}^x P_k^- C_{a,k}^{x-T} + \Sigma_v \right]^{-1}$
- v. State-estimation Measurement Update $\hat{x}_{a,k}^+ = \hat{x}_{a,k} + K_k[y_k \hat{y}_k]$
- vi. Error-covariance Measurement Update $P_k^+ = \begin{bmatrix} I K_k \ C_{a,k}^x \end{bmatrix} P_k^-$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e\left(\frac{-\Delta t}{(R_1 * c_1)}\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \frac{-1}{(3600 * c)} \\ R_1 * \left(1 - e \left(\frac{-\Delta t}{(R_1 * c_1)} \right) \right) \end{bmatrix}$$

•
$$C = \begin{bmatrix} 0.7160 - 1 & -U_{input} \end{bmatrix}$$

III. 3-state Joint Extended Kalman Filter Model (OCV-R-RC) - Results

SOC and Vt comparison with experimental data

RO Estimation using 3 state Joint extended Kalman filter

Kalman filter Algorithm

III. 5-state Joint Extended Kalman Filter Model (OCV-R-RC)

- i. State predication Time Update $\hat{x}_{a,k} = \overline{A}_{a,k-1}\hat{x}_{a,k-1}^+ + \overline{B}_{a,k-1}u_{k-1}$
- ii. Error- Covariance Time Update $P_k^- = \overline{A}_{a,k-1}P_{k-1}^+ \overline{A}_{a,k-1}^T + \Sigma_{\omega}$
- iii. Output Prediction $\hat{y}_k = f(\hat{x}_{a,k}, \mu_k)$
- iv. Kalman Gain Computation $K_k = P_k^- C_{a,k}^{x-T} \left[C_{a,K}^x P_k^- C_{a,k}^{x-T} + \Sigma_v \right]^{-1}$
- v. State-estimation Measurement Update $\hat{x}_{a,k}^+ = \hat{x}_{a,k} + K_k[y_k \hat{y}_k]$
- vi. Error-covariance Measurement Update $P_k^+ = \left[I K_k \ C_{a,k}^x \right] P_k^-$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & e\left(\frac{-\Delta t}{(R_1 * c_1)}\right) & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \frac{-1}{(3600*c)} \\ R_1 * \left(1 - e \left(\frac{-\Delta t}{(R_1*c_1)} \right) \right) \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

•
$$C = [0.7160 - 1 \quad C\theta]$$

$$\begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & d\theta \Big|_{x_{k} = \hat{x}_{k}^{-}, \theta = \hat{\theta}_{k}^{-}} \Rightarrow \left[-I_{\text{b},k} - e^{\frac{\Delta t}{R_{l}C_{l}}} \frac{\Delta t}{R_{l}^{2}C_{l}} V_{\text{l},k-1} - \left(1 - e^{\frac{\Delta t}{R_{l}C_{l}}} - R_{l}e^{\frac{\Delta t}{R_{l}C_{l}}} \frac{\Delta t}{R_{l}^{2}C_{l}} \right) I_{\text{b},k-1} \\ - e^{\frac{\Delta t}{R_{l}C_{l}}} \frac{\Delta t}{R_{l}C_{l}^{2}} V_{\text{l},k-1} + R_{l}e^{\frac{\Delta t}{R_{l}C_{l}}} \frac{\Delta t}{R_{l}C_{l}^{2}} I_{\text{b},k-1} \right] \end{array}$$

III. 5 state Joint Extended Kalman Filter Model (OCV-R-RC) - Results

RO Estimation using 5 state Joint extended Kalman filter

C1 Estimation using 5 state Joint extended Kalman filter

R1 Estimation using 5 state Joint extended Kalman filter

III. 5 state Joint Extended Kalman Filter Model (OCV-R-RC) - Results

RMSE Calculation:

- SOC = 0.7154
- VT = 0.00215
- R0 = 0.7792
- R1 = 0.00064
- C1 = 106.27

SOC and Vt comparison with experimental data

Dual Kalman Filter for parameter estimation

- i. State predication Time Update
- ii. Error- Covariance Time Update
- iii. Output Prediction
- iv. Kalman Gain Computation
- v. State-estimation Measurement Update
- vi. Error-covariance Measurement Update

$$\hat{\theta} = \hat{\theta}_k^+ - 1$$

$$S_{\mathbf{k}}^{-} = S_{\mathbf{k}-1}^{+} + \Sigma_{r}$$

$$\hat{x}_k^- = \bar{A}_{k-1}\hat{x}_{k-1} + \bar{B}_k - \mu_{k-1}$$

$$P_1 = \bar{A}_{k-1} P_{k-1}^+ \bar{A}_{k-1}^T + \Sigma_w$$

$$\hat{y}_k = f(\hat{x}_{a,k}, \mu_k)$$

$$K_{k} = P_{k}^{-} C_{k}^{xT} \left[C_{k}^{x} P_{k}^{-} C_{k}^{xT} + \Sigma_{v} \right]^{-1}$$

$$\hat{\mathbf{x}}_{\mathbf{k}}^{+} = \hat{\mathbf{x}}_{\mathbf{k}} + \mathbf{K}_{\mathbf{k}}[\mathbf{y}_{\mathbf{k}} - \hat{\mathbf{y}}_{\mathbf{k}}]$$

$$P_k^+ = [I - K_k C_k^x] P_k^-$$

$$L_{k} = S_{k}^{-} C_{k}^{\theta^{T}} \left[C_{K}^{\theta} S_{k}^{-} C_{k}^{\theta^{T}} + \Sigma_{v} \right]^{-1}$$

$$\hat{\theta}_k^+ = \hat{\theta}_k + L_k[y_k - \hat{y}_k]$$

$$S_k^+ = \left[I - L_k \; C_k^\theta\right] S_k^-$$

State Matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & e \frac{-\Delta t}{R_1 * C_1} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \frac{-1}{(3600 * C)} \\ R_1 * \left(1 - e\left(\frac{-\Delta t}{R_1 * C_1}\right)\right) \end{bmatrix}$$

•
$$C = [0.7160 - 1]$$

Parameter Matrix

Dual Kalman Filter for parameter estimation

SOC and Vt comparison with experimental data

Observations

RMSE:

- Joint Estimation 5 states (Soc, Vt, R0, R1, C1):
- Since many unknown states, the result produces more RMSE values.
- C1 estimation didn't converge as expected
- Soc RMSE is high as it took much time to converge at the initialization point.
- Joint Estimation 3 states (Soc, Vt, R0): The results are more accurate with slightly low computational time.
- R0 & Soc results are good as compared to 5 state estimation
- Linear and Extended:
- Output voltage profiles are more likely same and SOC with good accuracy in Linear than extended.
- Soc values are expected to be poor when actual Soc are below 15 percentage and above 85 percentage of charge, as linearization was done.

RMSE	SOC	VT	RO	R1	C1
JOINT Extended KF 5 – state	0.715491239	0.002156926	0.77923902	0.000649979	106.2741516
JOINT Extended KF 3 – state	0.041269839	0.006695574	0.029687896		
Extended KF	0.043527	0.029787			
Linear KF	0.025347	0.030111			

Thank you!