AULA DE LABORATÓRIO DE CIRCUITOS DIGITAIS DISPLAYS DE 7 SEGMENTOS

Prof. João Perea Martins

Dep. de Computação. FC-UNESP

Email: joao.perea@unesp.br

1) Apresentação

Nessa aula de laboratório o aluno irá aprender dois tópicos, que são como conectar um display de 7 que são uma interface homem-máquina para visualização de números. Existem outros tipos como display de cristal líquido (LCD) que permite mostrar números e letras, e ainda tem a vantagem de ser mais econômico. O display de 7 segmentos mostra apenas números e gasta mais energia que o display de cristal líquido, porém ele tem a vantagem de ter uma intensidade de brilho maior e poder ser visto a maiores distâncias.

2) A Estrutura do Display de 7 Segmentos

A figura abaixo mostra um display de 7 segmentos (traços). Note que ele tem 10 pinos, e os pinos 3 e 8 são ligados ao Vcc ou à terra, conforme o tipo **Anodo Comum** ou **Catodo Comum**. Cada segmento também tem um nome representados por letras 'a', 'b', ... 'g'.

Figura 1. O display de 7 segmentos

3) DECODIFICADOR DE 7 SEGMENTOS

Os números binários são frequentemente organizados no formato BCD e assim cada digito é representado por um conjunto de 4 bits. Isso facilita bastante o projeto e a organização dos dados, todavia precisamos de uma maneira de representar esses dados no formato decimal para que o usuário entenda. Assim eles têm que ser transformados de BCD para um formato decimal entendível, o que é feito por um componente chamado "Decodificador BCD x 7 Segmentos", que intuitivamente nos permite imaginá-lo como um chip que tem uma entrada BCD e na sua saída ele tem 7 pinos que serão conectados a um display que irá mostrar o número que está na entrada do chip. A figura 1 mostra essa estrutura

Figura 1. Estrutura de um sistema BCD-&segmentos com display

Existem diferentes chips que exer4cem a função BCD x Segmentos e todos tem uma operação parecida, porém neste trabalho vamos usar o 4511. A figura 2 mostra o Cl 4511 e também mostra o display de 7 segmentos que já foi estudado, enquanto que a Figura 2A mostra a tabela verdade de sua operação, conforme o manual.

Figura 2. O CI 4511 e o display de 7 segmentos

Figura 2A mostra a tabela verdade de sua operação, conforme o manual.

1) ANÁLISE DOS PINOS DO DISPLAY DE 7 SEGMENTOS

A figura abaixo mostra um display de 7 segmentos (traços), onde cada segmento é diretamente associado a um pino externo do display. Usando um, simples reitor podemos definir a relação entre cada segmento e o seu respectivo pino externo. Note que cada segmento é um LED e é necessário um resistor para evitar danos ao mesmo.

Figura. O display de 7 segmentos - Cátodo Comum

Monte o circuito da figura no simulador Tinkercad. Atenção, escolha "Comum Catódica" para o display" (veja o quadro azul abaixo) e preencha a tabela 1 com a relação entre segmentos e os pinos externos.

Tabela 1. Relação entre pino e segmento

Pino do display	Segmento Ativado
1	
2	
4	
5	
6	
7	
9	
10	

2) DECOFICADOR BCD X 7 SEGMENTOS

A figura 3 abaixo mostra o circuito eletrônico do experimento a ser realizado com o CI 4511 e um display (catodo comum).

Figura. O circuito eletrônico.

2.1) Monte o Circuito da figura acima no simulador Tinkercad e insira um print da montagem. O circuito deverá usar uma chave DIP de 4 posições para definir o valor as entradas D0, D1, D2 e D3.

2.2) Simule e análise o circuito e preencha a tabela 2.1

Tabela 2.1. Relação entre entrada (BCD) e saída

			CAÍDA		
ENTRADA (BCD)			SAÍDA		
D	С	В	Α	Valor	Valor mostrado
D3	D2	D1	D0	Numérico da	no Display
				entrada BCD	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	12	
1	1	0	1	13	
1	1	1	0	14	
1	1	1	1	15	

2.3) Simule e análise o circuito montado de acordo com os dados da Tabela 2.2 "Pinos de Controle". Existem 3 itens par serem analisados. Coloque um valor qualquer na entrada BCD e então explique o que acontece.

Tabela 2.2 Pinos de Controle

Item	Pino 5 (LE)	Pino 4 (BL)	Pino	Explicação
A)	1	1	1	
В)	0	1	0	
C)	0	0	1	