FIRST MIDTERM PRACTICE PROBLEMS MATH 185, SECTION 2

(1) Prove that

$$\left|\frac{5z-i}{5+iz}\right| = 1 \text{ if } |z| = 1.$$

(2) Let $\Omega \subseteq \mathbb{C}$ be an open and connected subset of \mathbb{C} , and let $f \colon \Omega \to \mathbb{C}$ be a holomorphic function. Suppose that there is a curve $\gamma \subseteq \Omega$ such that f is constant on γ . Prove that f is constant in Ω .

(3) Compute

$$\int_{\gamma_2(0)} \frac{\cos(\pi z)}{z^2 - 1},$$

where $\gamma_2(0)$ is the circle of radius two centered at $0 \in \mathbb{C}$, oriented positively.

(4) Compute

$$\int_{\gamma_1(0)} \frac{e^z}{z},$$

where $\gamma_1(0)$ is the circle of radius two centered at $0 \in \mathbb{C}$, oriented positively.

(5) Prove that the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$f(z) = \frac{z}{1 + |z|}$$

is not holomorphic at any point $z_0 \in \mathbb{C}$.

(6) Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Assume that there exists a nonempty open subset $\Omega \subseteq \mathbb{C}$ such that $f(z) \notin \Omega$ for any $z \in \mathbb{C}$. Prove that f is a constant function.

(7) Let $f(z) = z^2$.

(a) Calculate $\int_0^{2\pi} f(2+e^{it})dt$, and confirm that it is non-zero.

(b) Does Cauchy's theorem imply $\int_{\gamma_1(2)} f(z)dz = 0$? (Here $\gamma_1(2)$ is the circle of radius one centered at $2 \in \mathbb{C}$, oriented positively.) Explain the seeming discrepancy with part (a).

(8) Let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic function on the unit disk. Suppose that

$$|f(z)| \le \frac{1}{1 - |z|}$$
 for any $|z| < 1$.

Prove that

$$|f^{(n)}(0)| \le (n+1)! \left(1 + \frac{1}{n}\right)^n$$
 for all $n \ge 1$.

(9) Prove that if a power series $\sum a_n z^n$ converges to some function $f: \mathbb{C} \to \mathbb{C}$ uniformly in \mathbb{C} , then $a_n = 0$ for all but finitely many n, hence f must be a polynomial.