eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

Jaehong Min, Chenxingyu Zhao, Ming Liu, Arvind Krishnamurthy USENIX OSDI'23.

2024. 11. 27

Presented by Jeyeon Lee jeyeonlee@dankook.ac.kr

ZNS SSD

- Divides the LBA space into fixed-sized zones
 - To provide 3 benefits
 - Smaller internal DRAM by maintaining coarse-grained mapping
 - Lower WAF and OP overhead by eliminating the device-side GC
 - I/O bandwidth isolation
 - But the zoned interface is static and inflexible

Figure 2: The number of zone with actual write activity when running the *fill-random* workload over the RocksDB. The storage backend is ZenFS. The maximum number of active zones is 16 (red line).

Performance Characterization

- Experimental Setup & System model
 - Logical zone: a group of physical zones

Device HW Parameters	Specification	
Capacity	3,816 GB	
Channels #	16 Channels	
NAND Dies #	128 Dies	
NAND Page Size	16 KB	
NAND Channel B/W	∼600 MB/s	
Physical Zone Size	96 MB	
Read B/W per Physical Zone	~200 MB/s	
Write B/W per Physical Zone	$\sim 40 \text{ MB/s}$	
Maximum Active Zones #	256	

Table 1: The commodity ZNS SSD specification.

Figure 3: System model, SW stack, and I/O path of a multi-tenant ZNS SSD deployment. RD/WR=Read/Write. The write cache flushes data to the NAND flash asynchronously. Zone resets are completed after invalidating the mapping layer, where NAND blocks are erased lazily.

Performance Characterization: Zone Striping

- Is applied to achieve higher throughput
 - Two configuration parameters
 - Stripe size: the size of unit in a stripe
 - Stripe width: the number of stripes(zones)

Stripe Size	Avg. Lat(us)	P99.9 Lat. (us)	B/W (MB/s)
4KB	64	76	59
8KB	71	84	108
16KB	88	103	175
32KB	163	269	190
64KB	314	619	198

Table 2: Read I/O average/P99.9 latency and bandwidth varying the stripe size on a physical zone.

Figure 4: Read bandwidth varying the stripe size for different types of zones.

Performance Characterization: Zone Allocation

- Should be locality-aware and parallelism-aware
 - Two types of inefficient placements
 - Channel-overlapped placement
 - Die-overlapped placement
 - → It's challenging to infer the zone's physical location

Figure 6: Read bandwidth under three channel overlapping (OL) allocations.

Performance Characterization: I/O Execution

- of Multi-tenants
 - Frag: a conv-SSD preconditioned by filling 70% with 128KB random writes
 - Zone A(qd 8, 2-zone), Zone B(qd 2, 8-zone)
 - Tenants: reader(128KB random), writer(sequential)
 - → Should employ a global congestion avoidance scheme

Figure 8: Read tail latency varying the write bandwidth (ZNS vs Conventional SSD)

Figure 9: Bandwidth under RD-RD and WR-WR congestion due to the die-collision.

eZNS: Enabling an Adaptive Zoned NS

- Overall system architecture
 - Zone Arbiter
 - HAL
 - Serial zone allocator
 - Zone ballooning
 - Zone I/O Scheduler
 - v-zone(a specialized logical zone)
 - Runtime hardware adaptiveness
 - Application elasticity
 - Tenant awareness

Figure 10: eZNS System Architecture.

Zone Ballooning

- Automatically scale the I/O striping configuration of v-zones
 - Overprovisioning
 - Essential group: a minimal number of physical zones for maximize SSD bandwidth
 - Spare group: max active zones # of zone in the essential group
 - Expanding
 - Local overdrive: expand stripe width through active zone history
 - Global overdrive: Reallocates spare zones across namespaces
 - Reclaiming
 - Migrate to a new stripe group with shrunk width
 - If a namespace presents no write I/Os

Figure 11: Example of eZNS *v-zone* structure.

Zone I/O Scheduler

- Maximize the overall device utilization
 - Congestion-avoid read scheduler(for read)
 - Detect congestion via latency
 - Congestion window (1 to 4 x stripe width)
 - Cache-aware write admission control(for write)
 - Write congestion happens globally
 - Token-based write admission

Algorithm 1 Zone I/O Scheduler

```
1: procedure READ COMPLETION()
         lat thresh \leftarrow 500us
         if io_lat > lat_thresh then
              cwnd = \max(1, cwnd \times \frac{lat\_threash}{2 \times io \ lat})
         else
                                                         \triangleright \alpha = additive factor
 5:
              cwnd = \min(stripe\_width \times 4, cwnd + \alpha \times \frac{io\_count}{cwnd})
 6:
 7: procedure Write Latency Monitor()
         On t every 10ms
 8:
         total\_lat = \sum_{active\ zone} per\_block\_lat
         total\_ios = \sum_{active\_zone} num\_ios
10:
         avg\_lat(t) = \frac{total\_lat}{total\_ios}
11:
         block\_admission\_rate = \frac{avg\_lat(t-1) + avg\_lat(t)}{2}
13: procedure Write Token Generator()
         On every 1ms
14:
15:
         for pending write zones do
              token += \frac{now-last\_refill}{block \ admission \ rate} \times stripe\_width
```

Evaluation

Zone Ballooning

- Configuration
 - 4 namespaces, each of which is allocated 32 essential and 32 spare zones (16 active zones)
 - NS 1,2,3: stop issuing writes from t=30s to t=80s

Figure 12: B/W comparison between an overdrived and three statically configured zones.

Figure 13: Performance variation of four namespaces with global overdrive under 100s.

Figure 14: The number of used spare zones of four namespaces under 100s.

Evaluation

Zone I/O Fairness

(a) Read-Read Fairness. (128KB Read. Zone A with (b) Write-Write Fairness. (Zone A for regular writers, (c) Read-Write Fairness. (Zone A for readers, Zone QD-1, and Zone B with QD-32)

B for the busy writer, and Zone C for regular writers)

Figure 15: Efficiency of eZNS on handling read-read, write-write, and read-write congestion. (CC=Congestion Control, AC=Admission Control)

- Zone A: (Stripe width: 2, QD 1, 32KB)
 Zone B: (Stripe width: 8, QD 32, 8KB)
- 2) Zone A: (Stripe width: 4, QD 1, 16KB) Zone B: (Stripe width: 8, QD 1, 8KB)
- 3) Zone A: (Stripe width: 1, QD 1, 128KB) Zone B: (Stripe width: 8, QD 1, 8KB)

- 1) Zone A: (Stripe width: 8, QD 1, 8KB, 5ms intervals)
 - Zone B: (Stripe width: 2, QD 1, 32KB)
- 2) Zone A: (Stripe width: 8, QD 1, 8KB)
 - Zone B: (Stripe width: 2, QD 1, 32KB)
- Zone A: (Stripe width: 8, QD 1, 8KB)
 Zone B: (Stripe width: 2, QD 1, 32KB)

No overlap die

Zone A: Read, Stripe width: 2, 128 KB

Zone B: Write, Stripe width: 2, 32KB

Zone C: Write, Stripe width: 8, 32KB, 5ms interval

Evaluation

Application: RocksDB

Figure 19: Read latency of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone.

Figure 20: Throughput of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone.

eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

Jaehong Min, Chenxingyu Zhao, Ming Liu, Arvind Krishnamurthy USENIX OSDI'23.

Thank You!

2024. 11. 27

Presented by Jeyeon Lee jeyeonlee@dankook.ac.kr

