

RFID based Attendance Monitoring System

Academy of Technology

Department of Applied Electronics and Instrumentation Engineering

Project Guide: Mr. Hiranmoy Mandal

Presented By:

Snehasish Malik (11), Bratati Rout (43), Ahana Das (57),

Debapriya Bose (41), Hirak Das (36), Soumalya Sen (10).

TOPICS

Literature Survey

Study & Findings

It was found that most organisations uses manual attendance monitoring and many models exists which aim to monitor attendance using RFID technology. The various models are:

- Simple attendance logging after verification using only RFID cards.
- Logging and monitoring attendance after connecting the RFID reader directly into a server.
- Use of GSM to inform parents about the student's attendance.
- Cloud storage and SD card options for backup.

Inference

- No methods were used to provide data security.
- Logging multiple attendances simultaneously was not possible.
- Uses limited infrastructure for covering a very large area.

Objective

Our aim is to provide a model that:

- is completely automatic,
- is able to log multiple attendance simultaneously,
- does not require any manual effort.
- helps in monitoring attendance seamlessly.
- is not limited by infrastructure.

INTRODUCTION

/OT

Proposed system

- Δ Automates the attendance taking process.
- ∆ Reduces time and increases efficiency.
- Δ Enforces Security.

Δ Scalable, easy to manage and easy to monitor.

Importance of the method

- ☐ Methods will be implemented to tackle proxy/false attendance.
- (LoRa is used to connect multiple SUs to a single MCU, irrespective of the number of SUs). Greater area of connectivity.
- □ (Due to the implementation of multiple SUs, the model is able to handle greater volume of data in less time.) Handles greater volume of data. Enhanced efficiency.
- Easily detects failure, at any level and in any case.

THEORY

Technology Used

- RC522 RFID reader is used for reading information from the RFID tags/cards.
- Arduino Uno or Nano is used as the microcontroller.
- □ LoRa is used as the communication layer and protocol.
- LCD is used to display the necessary information for visual aid.

Arduino

Provides an Unique ID.

Open-source in hardware and software and Inexpensive.

- Line of Sight not required.
- Does not require an external programmer.
- Contactless information sharing.

 Arduino IDE is supported in almost every OS.
- Battery-less operation.

- Ease of Programming.
- Can detect through obstacles.
- A very large and growing community.

LoRa Lora

- Operates on 433MHz band.
- Provides deep indoor coverage.
- □ Low-power.
- Low-cost. One unit costs around ₹450.

- It is a 16x2 LCD.
- Provides visual info.
- ☐ Uses I2C protocol.
- Depicts status of the process.

WORKING

Reading info from the RFID Card

© COM5	
Starting the RFID Reader 234420852 234420852	
✓ Autoscroll Show timestamp	

Picture showing the RFID reader detecting and printing the Tag value.

Communicating using LoRa

The LoRa module is used to send and receive data packets to and from end nodes. The same is shown below:

```
COM4

LoRa Sender

Sending packet: 0

Sending packet: 1

Sending packet: 2

Sending packet: 3

Sending packet: 4

Sending packet: 5

Sending packet: 5

Sending packet: 7

Sending packet: 8

Sending packet: 9

Sending packet: 10
```

Figure showing LoRa sending data packets

```
COM3
LoRa Receiver
Received packet 'hello beta 1' with RSSI -121
Received packet 'hello alpha 32' with RSSI -121
Received packet 'hello beta 2' with RSSI -121
Received packet 'hello alpha 33' with RSSI -122
Received packet 'hello beta 3' with RSSI -121
Received packet 'hello alpha 34' with RSSI -121
Received packet 'hello beta 4' with RSSI -122
Received packet 'hello alpha 35' with RSSI -122
Received packet 'hello beta 5' with RSSI -122
Received packet 'hello alpha 36' with RSSI -122
Received packet 'hello beta 6' with RSSI -121
Received packet 'hello alpha 37' with RSSI -122
Received packet 'hello beta 7' with RSSI -121
Received packet 'hello alpha 38' with RSSI -122
Received packet 'hello beta 8' with RSSI -121
Received packet 'hello alpha 39' with RSSI -122
Received packet 'hello beta 9' with RSSI -121
Received packet 'hello alpha 40' with RSSI -122
```

Figure showing LoRa receiving data packets

Customising the

LCD

We are able to customise the LCD based on our needs like:

- Displaying a Welcome message.
- ☐ Status of the process.
- Necessary numbers and values.

Master Control Unit

- □ The Master Control Unit will have an Arduino Uno, RC522 reader module, LoRa Ra-02 module and I2C LCD module.
- The Master Control unit is responsible for the whole process.
- The Master Control Unit is capable of showing the vital information at that time.
- The task performed by MCU is explained in the next slide.

Process

- The teacher starts the MCU.
- The teacher is greeted.
- All the SUs will be activated.
- All the students data is collected and stored in the respective database.
- The attendance is confirmed and the process ends.

Student Control Unit

☐ The Student Unit mainly comprises the Arduino Nano, RC522 RFID reader module and Ra-02 LoRa module.

□ This is done to collect the Information from the student's ID card when taking the attendance and to transmit that information to the Master Control Unit for further processing.

Process

- Student places the ID card
- Transmits the data to the MCU
- MCU sends back the confirmation
- Attendance process ends

Simultaneous Working of MCU and SU

Pictorial Representation:

Video Representation:

Video Representation :

Database Table

St_ID	St_Name	EI_801	EI_801_Total	EI_802	EI_802_Total
1701258826	Ahana Das	7	8	7	9
169310111	Bratati Rout	8	8	9	9
18920922752	Debapriya Bose	6	8	7	9
18694347	Hirak Das	8	8	8	9
234420852	Snehasish Malik	6	8	7	9
12312017354	Soumalya Sen	8	8	9	9

Flowchart of the process

CONCLUSION

- ♦ Saves time.
- Reduces errors.
- Less human effort.

Advantageous

- Digitalization of data.
- ♦ Low response time.
- Simultaneous registering of attendance.

Low Cost

- Most of the components and software are open-source.
- Relatively cheaper than other comparable/similar technologies available.

Low maintenance

- ♦ Battery operated.
- Very low power consuming components and techniques.

Better Operability

- ♦ Simple Interface.
- Easy to use & operate.
- Abstract design.

Future Scope

- Adopt in other organisation to cater their needs.
- Include parts to enhance or change certain requirements.

References

- □ Gatsheni, B.N., R.B. Kuriakose, and F. Aghdasi. Automating student class attendance register using radio frequency identification in South Africa, in Mechatronics, ICM2007
 4th IEEE International Conference in 2007.
- Mahyidin, M.F. Student Attendance Using RFID System 2008; Available from:
 http://umpir.ump.edu.my.
- T. S. Lim, S.C. Sim, M. M Mansor. RFID Based Attendance System. 2009 IEEE
 Symposium on Industrial Electronics and Applications (ISIEA 2009), Kuala Lumpur,
 Malaysia, October 4-6, 2009.

THANK YOU 😂

