Quantum Chosen-Ciphertext Attacks against Feistal Ciphers

Eleena Gupta

Indian Institute of Science, Bangalore

April 28, 2023

Feistal Cipher

Feistal network is a Block Cipher with

- Input: n bit state divided into two n/2 bit halves, a_i and b_i .
- Key scheduling algorithm: From secret key K of I-bits derive I'-bit "subkeys" $K_1, K_2, ..., K_r$ for r rounds.
- Round function: defined for each subkey:

$$F_{K_i}: \{0,1\}^{n/2} \times \{0,1\}^{l'} \to \{0,1\}^{n/2}$$

The state is updated iteratively in each round as

$$b_{i+1} \leftarrow a_i \oplus F_{K_i}(b_i), \qquad a_{i+1} \leftarrow b_i$$

This is Feistal-F construction.

Feistal Cipher

 F_{K_i} is a PRF which requires significant implementation costs. More practical versions are where each subkey $K_i \in \{0,1\}^{n/2}$, and F_{K_i} is defined as

• Feistal-KF: $F_{K_i}(b_i) := F(K_i \oplus b_i)$, where F is a public function (not a PRF), and

$$b_{i+1} \leftarrow a_i \oplus F(K_i \oplus b_i), \qquad a_{i+1} \leftarrow b_i$$

• Feistal-FK: $F_{K_i}(b_i) := F(b_i) \oplus K_i$,

$$b_{i+1} \leftarrow a_i \oplus F(b_i) \oplus K_i, \qquad a_{i+1} \leftarrow b_i$$

Feistel-F

Feistel-KF

Feistel-FK

Classical Attacks

When F_{K_i} is a PRF, there exists efficient attacks against:

- 2-round Feistal Cipher against chosen-plaintext attacks (CPA).
- 3-round Feistal Cipher against chosen-ciphertext attacks (CCA).

Classical Attacks

When F_{K_i} is a PRF, there exists efficient attacks against:

- 2-round Feistal Cipher against chosen-plaintext attacks (CPA).
- 3-round Feistal Cipher against chosen-ciphertext attacks (CCA).

3-round and 4-round Feistel ciphers are PRPs up to $O(2^{n/4})$ queries against CPAs and CCAs, respectively, hence secure.

Security changes under quantum attacks where superposition queries can be made.

Quantum Attacks

- Grover's key search : $O(\sqrt{n})$ for an n bit key
- Simon's Algorithm: detects a secret cycle-period in polynomial time of the output size.
 - Distinguisher: distinguish Feistel-cipher from a random permutation or the right key from the wrong key guesses.
 - Key recovery: cycle-period used for key recovery.

Simon's Algorithm

Problem statement Given a periodic function $f:\{0,1\}^n \to \{0,1\}^n$ with period $s \in \{0,1\}^n \setminus \{0^n\}$ such that for any $x \in \{0,1\}^n$, we have $f(x \oplus s) = f(x)$. Find the period s.

• Assume that Simon's algorithm has access to the quantum oracle U_f which is defined as:

$$U_f|x\rangle|z\rangle = |x\rangle|z \oplus f(x)\rangle$$

- Use a circuit $S_f = (H^{\otimes n} \otimes I_n) \cdot U_f \cdot (H^{\otimes n} \otimes I_n)$ to compute vectors y_i orthogonal to s i.e. $y \cdot s = 0 \pmod{2}$
- It solves the problem using *one* oracle query, and $O(n^2)$ other operations.

Against the 3-round Feistal Cipher

Let FP_3 be the encryption algorithm with F_{K_i} as random permutations P_i .

Input : $(a, b) \in (\{0, 1\}^{n/2})^2$ Output : $(c, d) \in (\{0, 1\}^{n/2})^2$

$$c = b \oplus P_2(a \oplus P_1(b))$$

$$d = a \oplus P_1(b) \oplus P_3(b \oplus P_2(a \oplus P_1(b)))$$

Against the 3-round Feistal Cipher

Let the plaintext $(a,b)=(x,\alpha_\beta)$ where , $\beta\in\{0,1\}$ and $x,\alpha_0,\alpha_1\in\{0,1\}^{n/2}$.

$$c \oplus \alpha_{\beta} = P_2(x \oplus P_1(\alpha_{\beta}))$$

Against the 3-round Feistal Cipher

Let the plaintext $(a,b)=(x,\alpha_\beta)$ where , $\beta\in\{0,1\}$ and $x,\alpha_0,\alpha_1\in\{0,1\}^{n/2}$.

$$c \oplus \alpha_{\beta} = P_2(x \oplus P_1(\alpha_{\beta}))$$

Construct a function as:

$$f^{\mathcal{O}}: \{0,1\} \times \{0,1\}^{n/2} \to \{0,1\}^{n/2}, \quad (\beta||x) \mapsto c \oplus \alpha_{\beta},$$

If \mathcal{O} is FP3, then,

$$f^{\mathcal{O}}(\beta||x) = P_2(x \oplus P_1(\alpha_{\beta}))$$

with a period $s = 1 || (P_1(\alpha_0) \oplus P_1(\alpha_1)).$

Against the 3-round Feistal Cipher

Apply Simon's algorithm to $f^{\mathcal{O}}$ and recover the period s.

- Randomly choose $\beta \in \{0,1\}$ and $z \in \{0,1\}^{n/2}$,
- Compute $f^{\mathcal{O}}(\beta||z)$ and $f^{\mathcal{O}}((\beta||z) \oplus s)$,
- If both are equal then output, " \mathcal{O} is FP3."
- Else, O is Π.

If $\mathcal O$ is Π , Simon's algorithm return some random string s', and the probability of $f^{\mathcal O}(\beta||z)$ and $f^{\mathcal O}((\beta||z)\oplus s)$ is about $2^{-n/2}$. Therefore, we can distinguish correctly in O(n) queries.

Against the Fiestal-KF Construction

This is a Quantum chosen-plaintext attack combining 3-round Feistal Cipher quantum distinguisher with the Grover search.

Attack Idea: Given the quantum encryption oracle of the *r*-round Feistal-KF construction, run the following procedures,

Against the Fiestal-KF Construction

Fig. 5. Construction of \mathcal{E} in the key recovery attack against the r-round Feistel-KF construction. The ciphertext corresponds to the output of the 3-round Feistel-KF construction which takes (K_{r-2}, K_{r-1}, K_r) as subkeys and (x, α_{β}) as input.

Against the Fiestal-KF Construction

- **1** Implement a quantum circuit \mathcal{E} :
 - Input: subkeys of the first (r-3) rounds and intermediate state value after the first (r-3) rounds
 - Decrypt first (r-3) rounds and compute the plaintext.
 - query the plaintext to the encryption oracle (corresponds to the 3-round Fesital-KF)
 - return oracle output
- ② Guess the first (r-3) rounds subkeys, (Grover). For each guess check its correctness as,
- **3** Apply the 3-round distinguisher to \mathcal{E} .
 - **1** Distinguisher \rightarrow Random permutation \implies wrong guess.
 - Otherwise, the guess is correct.

Against the Fiestal-KF Construction

Attack complexity:

- Length of first (r-3) round subkeys is ((r-3)n/2),
- Grover search in time $O(\sqrt{2^{(r-3)n/2}})$,
- 3-round distinguisher runs in time O(n) for each guess.
- Net running time of attack is $O(\sqrt{2^{(r-3)n/2}}) \times O(poly(n)) = \tilde{O}(2^{(r-3)n/4})$

Dimension of the space spanned by the vectors y_1, y_2 .. (obtained using S_f) is

- at most |s| 1 if f has non-zero period s,
- else, can reach |s| with high probability.

Hence, distinguish f without computing actual period s.

Distinguisher: Let $\mathcal{O}:\{0,1\}^n \to \{0,1\}^n$ be either an encryption scheme E_K or a random permutation Π . The goal is to distinguish whether $\mathcal{O}=E_K$ or $\mathcal{O}=\Pi$.

Distinguisher Algorithm

Construct a function $f^{\pi}: \{0,1\}^{I} \rightarrow \{0,1\}^{m}, \ \pi \in \textit{Perm}(n)$

- has a classical algorithm \mathcal{A} which computes $f^{\pi}(x)$ in time O(poly(l,m)).
- For the encryption scheme E_K , f^{E_K} has a period $s \in \{0,1\}^I$ depending on K.
- We expect f^{Π} has no period with high probability.

Algorithm 1 Distinguisher without recovering the period

- 1. Prepare an empty set \mathcal{Y} .
- 2. For $1 \le i \le \eta$, do:
- 3. Measure the first ℓ qubits of $S_{f^{\mathcal{O}}} | 0^{\ell+m} \rangle$ and add the obtained vector y to \mathcal{Y} .
- End For
- 5. Calculate the dimension d of the vector space spanned by \mathcal{Y} .
- 6. If $d = \ell$, then output "O is Π ." If $d < \ell$, output "O is E_K ."

Distinguisher Success Probability

A parameter ϵ_f^π to capture the bias of the distribution of y under the condition that random permutation Π matches a fixed permutation π ,

$$\epsilon_f^\pi = max_t Pr[f^\pi(x) = f^\pi(x \oplus t)]$$

it is small if π is chosen uniformly at random.

A set of irregular permutations is defined for $0 \leq \delta < 1$ as

$$irr_f^{\delta} = \{\pi \in Perm(n) | \epsilon_f^{\pi} > 1 - \delta\}$$

The distinguisher failure probability is small if $Pr_{\Pi}[\Pi \in irr_f^{\delta}]$ is sufficiently small.

Distinguisher Success Probability

A parameter ϵ_f^π to capture the bias of the distribution of y under the condition that random permutation Π matches a fixed permutation π ,

$$\epsilon_f^\pi = max_t Pr[f^\pi(x) = f^\pi(x \oplus t)]$$

it is small if π is chosen uniformly at random.

A set of irregular permutations is defined for $0 \leq \delta < 1$ as

$$irr_f^{\delta} = \{\pi \in Perm(n) | \epsilon_f^{\pi} > 1 - \delta\}$$

The distinguisher failure probability is small if $Pr_{\Pi}[\Pi \in irr_f^{\delta}]$ is sufficiently small.

Theorem: For $O(\eta)$ quantum queries by the distinguisher, it distinguishes E_K from Π with probability at least

$$1-2^I/e^{\delta\eta/2}-Pr_{\Pi}[\Pi\in irr_f^{\delta}].$$

Thank You!