RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number: 09|94|,095Source: 01PEDate Processed by STIC: 11/29|2005

ENTERED

OIPE

RAW SEQUENCE LISTING DATE: 11/29/2005 PATENT APPLICATION: US/09/941,095 TIME: 15:58:42

Input Set : N:\Crf3\RULE60\09941095.raw Output Set: N:\CRF4\11292005\1941095.raw

SEQUENCE LISTING

```
1 (1) GENERAL INFORMATION:
             (i) APPLICANT: BROW, MARY ANN D.
      2
      3
                            LYAMICHEV, VICTOR I.
      4
                             OLIVE, DAVID M.
      5
            (ii) TITLE OF INVENTION: RAPID DETECTION AND IDENTIFICATION OF
      6
                                      PATHOGENS
      7
           (iii) NUMBER OF SEQUENCES: 165
            (iv) CORRESPONDENCE ADDRESS:
      8
      9
                   (A) ADDRESSEE: MEDLEN & CARROLL
     10
                   (B) STREET: 220 MONTGOMERY STREET, SUITE 2200
     11
                  (C) CITY: SAN FRANCISCO
                   (D) STATE: CALIFORNIA
     12
     13
                   (E) COUNTRY: UNITED STATES OF AMERICA
     14
                  (F) ZIP: 94104
            (v) COMPUTER READABLE FORM:
     15
     16
                  (A) MEDIUM TYPE: Floppy disk
                   (B) COMPUTER: IBM PC compatible
     17
     18
                  (C) OPERATING SYSTEM: PC-DOS/MS-DOS
     19
                  (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
     20
            (vi) CURRENT APPLICATION DATA:
C--> 21
                  (A) APPLICATION NUMBER: US/09/941,095
C--> 22
                  (B) FILING DATE: 28-Aug-2001
W--> 27
                  (C) CLASSIFICATION:
     24
           (vii) PRIOR APPLICATION DATA:
     25
                  (A) APPLICATION NUMBER: US/09/941,193
     26
                  (B) FILING DATE: 28-Aug-2001
     28
          (viii) ATTORNEY/AGENT INFORMATION:
     29
                  (A) NAME: CARROLL, PETER G.
                  (B) REGISTRATION NUMBER: 32,837
     30
                  (C) REFERENCE/DOCKET NUMBER: FORS-01756
     31
            (ix) TELECOMMUNICATION INFORMATION:
     32
                  (A) TELEPHONE: (415) 705-8410
     33
                  (B) TELEFAX: (415) 397-8338
     35 (2) INFORMATION FOR SEQ ID NO: 1:
             (i) SEQUENCE CHARACTERISTICS:
     36
                  (A) LENGTH: 2506 base pairs
     37
    38
                  (B) TYPE: nucleic acid
                  (C) STRANDEDNESS: double
    39
                  (D) TOPOLOGY: linear
     40
            (ii) MOLECULE TYPE: DNA (genomic)
     41
    42
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
    43
            ATGAGGGGA TGCTGCCCCT CTTTGAGCCC AAGGGCCGGG TCCTCCTGGT GGACGGCCAC
```

RAW SEQUENCE LISTING DATE: 11/29/2005
PATENT APPLICATION: US/09/941,095
TIME: 15:58:42

```
44
        CACCTGGCCT ACCGCACCTT CCACGCCCTG AAGGGCCTCA CCACCAGCCG GGGGGAGCCG
                                                                               120
45
        GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTCAAGGA GGACGGGGAC
                                                                               180
46
        GCGGTGATCG TGGTCTTTGA CGCCAAGGCC CCCTCCTTCC GCCACGAGGC CTACGGGGGG
                                                                               240
        TACAAGGCGG GCCGGGCCCC CACGCCGGAG GACTTTCCCC GGCAACTCGC CCTCATCAAG
47
                                                                               300
48
        GAGCTGGTGG ACCTCCTGGG GCTGGCGGC CTCGAGGTCC CGGGCTACGA GGCGGACGAC
                                                                               360
        GTCCTGGCCA GCCTGGCCAA GAAGGCGGAA AAGGAGGGCT ACGAGGTCCG CATCCTCACC
49
                                                                               420
        GCCGACAAAG ACCTTTACCA GCTCCTTTCC GACCGCATCC ACGTCCTCCA CCCCGAGGGG
50
                                                                               480
        TACCTCATCA CCCCGGCCTG GCTTTGGGAA AAGTACGGCC TGAGGCCCGA CCAGTGGGCC
51
                                                                               540
        GACTACCGGG CCCTGACCGG GGACGAGTCC GACAACCTTC CCGGGGTCAA GGGCATCGGG
52
                                                                               600
53
        GAGAAGACGG CGAGGAAGCT TCTGGAGGAG TGGGGGGAGCC TGGAAGCCCT CCTCAAGAAC
                                                                               660
        CTGGACCGGC TGAAGCCCGC CATCCGGGAG AAGATCCTGG CCCACATGGA CGATCTGAAG
54
                                                                               720
55
        CTCTCCTGGG ACCTGCCCAA GGTGCGCACC GACCTGCCCC TGGAGGTGGA CTTCGCCAAA
                                                                               780
56
        AGGCGGAGC CCGACCGGA GAGGCTTAGG GCCTTTCTGG AGAGGCTTGA GTTTGGCAGC
                                                                               840
57
        CTCCTCCACG AGTTCGGCCT TCTGGAAAGC CCCAAGGCCC TGGAGGAGGC CCCCTGGCCC
                                                                               900
58
        CCGCCGGAAG GGGCCTTCGT GGGCTTTGTG CTTTCCCGCA AGGAGCCCAT GTGGGCCGAT
                                                                               960
59
        CTTCTGGCCC TGGCCGCCGC CAGGGGGGGC CGGGTCCACC GGGCCCCCGA GCCTTATAAA
60
        GCCCTCAGGG ACCTGAAGGA GGCGCGGGG CTTCTCGCCA AAGACCTGAG CGTTCTGGCC
                                                                              1080
61
        CTGAGGGAAG GCCTTGGCCT CCCGCCCGGC GACGACCCCA TGCTCCTCGC CTACCTCCTG
                                                                              1140
        GACCCTTCCA ACACCACCC CGAGGGGGTG GCCCGGCGCT ACGGCGGGGA GTGGACGGAG
62
                                                                              1200
        GAGGCGGGG AGCGGGCCGC CCTTTCCGAG AGGCTCTTCG CCAACCTGTG GGGGAGGCTT
63
                                                                              1260
        GAGGGGGAGG AGAGGCTCCT TTGGCTTTAC CGGGAGGTGG AGAGGCCCCT TTCCGCTGTC
64
                                                                              1320
65
        CTGGCCCACA TGGAGGCCAC GGGGGTGCGC CTGGACGTGG CCTATCTCAG GGCCTTGTCC
                                                                              1380
66
        CTGGAGGTGG CCGAGGAGAT CGCCCGCCTC GAGGCCGAGG TCTTCCGCCT GGCCGGCCAC
                                                                              1440
67
        CCCTTCAACC TCAACTCCCG GGACCAGCTG GAAAGGGTCC TCTTTGACGA GCTAGGGCTT
                                                                             . 1500
        CCCGCCATCG GCAAGACGGA GAAGACCGGC AAGCGCTCCA CCAGCGCCGC CGTCCTGGAG
68
                                                                              1560
69
        GCCCTCCGCG AGGCCCACCC CATCGTGGAG AAGATCCTGC AGTACCGGGA GCTCACCAAG
                                                                              1620
70
        CTGAAGAGCA CCTACATTGA CCCCTTGCCG GACCTCATCC ACCCCAGGAC GGGCCGCCTC
                                                                              1680
        CACACCCGCT TCAACCAGAC GGCCACGGCC ACGGGCAGGC TAAGTAGCTC CGATCCCAAC
71
                                                                              1740
        CTCCAGAACA TCCCCGTCCG CACCCCGCTT GGGCAGAGGA TCCGCCGGGC CTTCATCGCC
72
                                                                              1800
73
        GAGGAGGGT GGCTATTGGT GGCCCTGGAC TATAGCCAGA TAGAGCTCAG GGTGCTGGCC
                                                                              1860
74
        CACCTCTCCG GCGACGAGAA CCTGATCCGG GTCTTCCAGG AGGGGCGGGA CATCCACACG
                                                                              1920
75
        GAGACCGCCA GCTGGATGTT CGGCGTCCCC CGGGAGGCCG TGGACCCCCT GATGCGCCGG
        GCGGCCAAGA CCATCAACTT CGGGGTCCTC TACGGCATGT CGGCCCACCG CCTCTCCCAG
76
                                                                              2040
        GAGCTAGCCA TCCCTTACGA GGAGGCCCAG GCCTTCATTG AGCGCTACTT TCAGAGCTTC
77
                                                                              2100
78
        CCCAAGGTGC GGGCCTGGAT TGAGAAGACC CTGGAGGAGG GCAGGAGGCG GGGGTACGTG
                                                                              2160
79
        GAGACCCTCT TCGGCCGCCG CCGCTACGTG CCAGACCTAG AGGCCCGGGT GAAGAGCGTG
                                                                              2220
80
        CGGGAGGCGG CCGAGCGCAT GGCCTTCAAC ATGCCCGTCC AGGGCACCGC CGCCGACCTC
                                                                              2280
81
        ATGAAGCTGG CTATGGTGAA GCTCTTCCCC AGGCTGGAGG AAATGGGGGC CAGGATGCTC
                                                                              2340
82
        CTTCAGGTCC ACGACGAGCT GGTCCTCGAG GCCCCAAAAG AGAGGGCGGA GGCCGTGGCC
                                                                              2400
83
        CGGCTGGCCA AGGAGGTCAT GGAGGGGGTG TATCCCCTGG CCGTGCCCCT GGAGGTGGAG
                                                                              2460
        GTGGGGATAG GGGAGGACTG GCTCTCCGCC AAGGAGTGAT ACCACC
                                                                              2506
86 (2) INFORMATION FOR SEQ ID NO: 2:
        (i) SEQUENCE CHARACTERISTICS:
87
88
             (A) LENGTH: 2496 base pairs
             (B) TYPE: nucleic acid
89
90
             (C) STRANDEDNESS: double
91
             (D) TOPOLOGY: linear
92
       (ii) MOLECULE TYPE: DNA (genomic)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
93
```

RAW SEQUENCE LISTING DATE: 11/29/2005
PATENT APPLICATION: US/09/941,095 TIME: 15:58:42

```
ATGGCGATGC TTCCCCTCTT TGAGCCCAAA GGCCGCGTGC TCCTGGTGGA CGGCCACCAC
94
                                                                              60
95
        CTGGCCTACC GCACCTTCTT TGCCCTCAAG GGCCTCACCA CCAGCCGCGG CGAACCCGTT
                                                                             120
        CAGGCGGTCT ACGGCTTCGC CAAAAGCCTC CTCAAGGCCC TGAAGGAGGA CGGGGACGTG
96
                                                                             180
        GTGGTGGTGG TCTTTGACGC CAAGGCCCCC TCCTTCCGCC ACGAGGCCTA CGAGGCCTAC
97
                                                                             240
98
       AAGGCGGGCC GGGCCCCCAC CCCGGAGGAC TTTCCCCGGC AGCTGGCCCT CATCAAGGAG
                                                                             300
        TTGGTGGACC TCCTAGGCCT TGTGCGGCTG GAGGTTCCCG GCTTTGAGGC GGACGACGTG
99
                                                                             360
        CTGGCCACCC TGGCCAAGCG GGCGGAAAAG GAGGGGTACG AGGTGCGCAT CCTCACTGCC
100
                                                                              420
101
        GACCGCGACC TCTACCAGCT CCTTTCGGAG CGCATCGCCA TCCTCCACCC TGAGGGGTAC
                                                                              480
102
        CTGATCACCC CGGCGTGGCT TTACGAGAAG TACGGCCTGC GCCCGGAGCA GTGGGTGGAC
                                                                              540
103
         TACCGGGCCC TGGCGGGGA CCCCTCGGAT AACATCCCCG GGGTGAAGGG CATCGGGGAG
                                                                              600
         AAGACCGCCC AGAGGCTCAT CCGCGAGTGG GGGAGCCTGG AAAACCTCTT CCAGCACCTG
104
                                                                              660
105
         GACCAGGTGA AGCCCTCCTT GCGGGAGAAG CTCCAGGCGG GCATGGAGGC CCTGGCCCTT
                                                                              720
         TCCCGGAAGC TTTCCCAGGT GCACACTGAC CTGCCCCTGG AGGTGGACTT CGGGAGGCGC
106
                                                                              780
107
         CGCACACCCA ACCTGGAGGG TCTGCGGGCT TTTTTGGAGC GGTTGGAGTT TGGAAGCCTC
                                                                              840
108
         CTCCACGAGT TCGGCCTCCT GGAGGGGCCG AAGGCGGCAG AGGAGGCCCC CTGGCCCCCT
                                                                              900
109
         960
         CTGGCCCTGG CTGGGGCGTG GGAGGGGCGC CTCCATCGGG CACAAGACCC CCTTAGGGGC
110
                                                                             1020
         CTGAGGGACC TTAAGGGGGT GCGGGGAATC CTGGCCAAGG ACCTGGCGGT TTTGGCCCTG
111
                                                                             1080
112
        CGGGAGGCC TGGACCTCTT CCCAGAGGAC GACCCCATGC TCCTGGCCTA CCTTCTGGAC
                                                                             1140
         CCCTCCAACA CCACCCTGA GGGGGTGGCC CGGCGTTACG GGGGGGAGTG GACGGAGGAT
113
                                                                             1200
         GCGGGGGAGA GGGCCCTCCT GGCCGAGCGC CTCTTCCAGA CCCTAAAGGA GCGCCTTAAG
114
                                                                             1260
115
         GGAGAAGAAC GCCTGCTTTG GCTTTACGAG GAGGTGGAGA AGCCGCTTTC CCGGGTGTTG
                                                                             1320
116
        GCCCGGATGG AGGCCACGGG GGTCCGGCTG GACGTGGCCT ACCTCCAGGC CCTCTCCCTG
                                                                             1380
117
        GAGGTGGAGG CGGAGGTGCG CCAGCTGGAG GAGGAGGTCT TCCGCCTGGC CGGCCACCCC
                                                                             1440
118
        TTCAACCTCA ACTCCCGCGA CCAGCTGGAG CGGGTGCTCT TTGACGAGCT GGGCCTGCCT
                                                                             1500
119
        GCCATCGGCA AGACGGAGAA GACGGGGAAA CGCTCCACCA GCGCTGCCGT GCTGGAGGCC
                                                                             1560
120
        CTGCGAGAGG CCCACCCCAT CGTGGACCGC ATCCTGCAGT ACCGGGAGCT CACCAAGCTC
                                                                             1620
121
        AAGAACACCT ACATAGACCC CCTGCCCGCC CTGGTCCACC CCAAGACCGG CCGGCTCCAC
                                                                             1680
122
        ACCCGCTTCA ACCAGACGGC CACCGCCACG GGCAGGCTTT CCAGCTCCGA CCCCAACCTG
                                                                             1740
123
        CAGAACATCC CCGTGCGCAC CCCTCTGGGC CAGCGCATCC GCCGAGCCTT CGTGGCCGAG
                                                                             1800
124
        GAGGGCTGGG TGCTGGTGGT CTTGGACTAC AGCCAGATTG AGCTTCGGGT CCTGGCCCAC
125
        CTCTCCGGGG ACGAGAACCT GATCCGGGTC TTTCAGGAGG GGAGGGACAT CCACACCCAG
126
        ACCGCCAGCT GGATGTTCGG CGTTTCCCCC GAAGGGGTAG ACCCTCTGAT GCGCCGGGCG
                                                                             1980
        GCCAAGACCA TCAACTTCGG GGTGCTCTAC GGCATGTCCG CCCACCGCCT CTCCGGGGAG
127
                                                                             2040
128
        CTTTCCATCC CCTACGAGGA GGCGGTGGCC TTCATTGAGC GCTACTTCCA GAGCTACCCC
                                                                             2100
129
        AAGGTGCGGG CCTGGATTGA GGGGACCCTC GAGGAGGGCC GCCGGCGGGG GTATGTGGAG
                                                                             2160
130
        ACCCTCTTCG GCCGCCGGCG CTATGTGCCC GACCTCAACG CCCGGGTGAA GAGCGTGCGC
                                                                             2220
131
        GAGGCGGCGG AGCGCATGGC CTTCAACATG CCGGTCCAGG GCACCGCCGC CGACCTCATG
                                                                             2280
        AAGCTGGCCA TGGTGCGGCT TTTCCCCCGG CTTCAGGAAC TGGGGGCGAG GATGCTTTTG
132
                                                                             2340
133
        CAGGTGCACG ACGAGCTGGT CCTCGAGGCC CCCAAGGACC GGGCGGAGAG GGTAGCCGCT
                                                                             2400
134
        TTGGCCAAGG AGGTCATGGA GGGGGTCTGG CCCCTGCAGG TGCCCCTGGA GGTGGAGGTG
                                                                             2460
135
        GGCCTGGGGG AGGACTGGCT CTCCGCCAAG GAGTAG
                                                                             2496
137 (2) INFORMATION FOR SEQ ID NO: 3:
        (i) SEQUENCE CHARACTERISTICS:
138
139
              (A) LENGTH: 2504 base pairs
140
              (B) TYPE: nucleic acid
141
              (C) STRANDEDNESS: double
142
              (D) TOPOLOGY: linear
143 (ii) MOLECULE TYPE: DNA (genomic)
```

RAW SEQUENCE LISTING DATE: 11/29/2005
PATENT APPLICATION: US/09/941,095 TIME: 15:58:42

144	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
145	ATGGAGGCGA TGCTTCCGCT CTTTGAACCC AAAGGCC	CGGG TCCTCCTGGT GGACGGCCAC 60
146	CACCTGGCCT ACCGCACCTT CTTCGCCCTG AAGGGCC	
147	GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCA	
148	AAGGCCGTCT TCGTGGTCTT TGACGCCAAG GCCCCCT	
149	GCCTACAAGG CGGGGAGGGC CCCGACCCCC GAGGACT	
150	AAGGAGCTGG TGGACCTCCT GGGGTTTACC CGCCTCG	
151	GACGTTCTCG CCACCCTGGC CAAGAAGGCG GAAAAGG	
152	ACCGCCGACC GCGACCTCTA CCAACTCGTC TCCGACC	
153	GGCCACCTCA TCACCCCGGA GTGGCTTTGG GAGAAGT	
154	GTGGACTTCC GCGCCCTCGT GGGGGACCCC TCCGACA	
155	GGGGAGAAGA CCGCCCTCAA GCTCCTCAAG GAGTGGG	
156	AACCTGGACC GGGTAAAGCC AGAAAACGTC CGGGAGA	
157	CTCAGGCTCT CCTTGGAGCT CTCCCGGGTG CGCACCG	
158	GCCCAGGGGC GGGAGCCCGA CCGGGAGGGG CTTAGGG	
159	GGCAGCCTCC TCCACGAGTT CGGCCTCCTG GAGGCCC	
160	TGGCCCCGC CGGAAGGGGC CTTCGTGGGC TTCGTCC	
161	GCGGAGCTTA AAGCCCTGGC CGCCTGCAGG GACGGCC	
162	TTGGCGGGC TAAAGGACCT CAAGGAGGTC CGGGGCC	
163	TTGGCCTCGA GGGAGGGGCT AGACCTCGTG CCCGGGG	
164	CTCCTGGACC CCTCCAACAC CACCCCCGAG GGGGTGG	
165	ACGGAGGACG CCGCCCACCG GGCCCTCCTC TCGGAGA	
166	CGCCTCGAGG GGGAGGAGAA GCTCCTTTGG CTCTACC	
167	CGGGTCCTGG CCCACATGGA GGCCACCGGG GTACGGC	
168	CTTTCCCTGG AGCTTGCGGA GGAGATCCGC CGCCTCG	SAGG AGGAGGTCTT CCGCTTGGCG 1440
169	GGCCACCCCT TCAACCTCAA CTCCCGGGAC CAGCTGG	
170	AGGCTTCCCG CCTTGGGGAA GACGCAAAAG ACAGGCA	AGC GCTCCACCAG CGCCGCGGTG 1560
171	CTGGAGGCCC TACGGGAGGC CCACCCCATC GTGGAGA	
172	ACCAAGCTCA AGAACACCTA CGTGGACCCC CTCCCAA	
173	CGCCTCCACA CCCGCTTCAA CCAGACGGCC ACGGCCA	
174	CCCAACCTGC AGAACATCCC CGTCCGCACC CCCTTGG	
175	GTGGCCGAGG CGGGTTGGGC GTTGGTGGCC CTGGACT	TATA GCCAGATAGA GCTCCGCGTC 1860
176	CTCGCCCACC TCTCCGGGGA CGAAAACCTG ATCAGGG	TCT TCCAGGAGGG GAAGGACATC 1920
177	CACACCCAGA CCGCAAGCTG GATGTTCGGC GTCCCCC	CGG AGGCCGTGGA CCCCCTGATG 1980
178	CGCCGGCGG CCAAGACGGT GAACTTCGGC GTCCTCT	ACG GCATGTCCGC CCATAGGCTC 2040
179	TCCCAGGAGC TTGCCATCCC CTACGAGGAG GCGGTGG	CCT TTATAGAGGC TACTTCCAAA 2100
180	GCTTCCCCAA GGTGCGGGCC TGGATAGAAA AGACCCT	GGA GGAGGGAGG AAGCGGGGCT 2160
181	ACGTGGAAAC CCTCTTCGGA AGAAGGCGCT ACGTGCC	CGA CCTCAACGCC CGGGTGAAGA 2220
182	GCGTCAGGGA GGCCGCGGAG CGCATGGCCT TCAACAT	GCC CGTCCAGGGC ACCGCCGCCG 2280
183	ACCTCATGAA GCTCGCCATG GTGAAGCTCT TCCCCCG	CCT CCGGGAGATG GGGGCCCGCA 2340
184	TGCTCCTCCA GGTCCACGAC GAGCTCCTCC TGGAGGC	
185	TGGCGGCTTT GGCCAAGGAG GCCATGGAGA AGGCCTA	TCC CCTCGCCGTG CCCCTGGAGG 2460
186	TGGAGGTGGG GATGGGGAG GACTGGCTTT CCGCCAA	GGG TTAG 2504
188 ((2) INFORMATION FOR SEQ ID NO: 4:	
189	(i) SEQUENCE CHARACTERISTICS:	
190	(A) LENGTH: 832 amino acids	
191	(B) TYPE: amino acid	
192	(C) STRANDEDNESS: single	
193	(D) TOPOLOGY: linear	

RAW SEQUENCE LISTING DATE: 11/29/2005
PATENT APPLICATION: US/09/941,095
TIME: 15:58:42

194	(ii)	MOLE	CULE	TYP	E: p:	rote	in										
195		SEQU						O ID	NO:	4:							
196											Pro	Lvs	Glv	Arg	Val	Leu	Leu
197		1	_	•		5					10	-1	2	5		15	
198		Val	Asp	Glv	His	His	Leu	Ala	Tvr	Ara		Phe	His	Ala	Leu	-	Gly
199				- 4	20				-1-	25					30	-1-	0-7
200		Leu	Thr	Thr	Ser	Arq	Glv	Glu	Pro		Gln	Ala	Val	Tvr		Phe	Ala
201				35		J	-,- 2		40					45	1		
202		Lys	Ser	Leu	Leu	Lys	Ala	Leu		Glu	Asp	Glv	Asp		Val	Ile	Val
203		•	50			•		55	_1 -			1	60				
204		Val	Phe	Asp	Ala	Lys	Ala	Pro	Ser	Phe	Arq	His	Glu	Ala	Tvr	Glv	Glv
205		65		-		-	70					75			4		80
206		Tyr	Lys	Ala	Gly	Arg	Ala	Pro	Thr	Pro	Glu	Asp	Phe	Pro	Arq	Gln	Leu
207						85					90	-			_	95	_
208		Ala	Leu	Ile	Lys	Glu	Leu	Val	Asp	Leu	Leu	Gly	Leu	Ala	Arg	Leu	Glu
209					100				_	105		-			110		
210		Val	Pro	Gly	Tyr	Glu	Ala	Asp	Asp	Val	Leu	Ala	Ser	Leu	Ala	Lys	Lys
211				115					120					125		_	-
212		Ala	Glu	Lys	Glu	Gly	Tyr	Glu	Val	Arg	Ile	Leu	Thr	Ala	Asp	Lys	Asp
213			130					135					140				
214		Leu	Tyr	Gln	Leu	Leu	Ser	Asp	Arg	Ile	His	Val	Leu	His	Pro	Glu	Gly
215		145					150					155					160
216		Tyr	Leu	Ile	Thr	Pro	Ala	\mathtt{Trp}	Leu	Trp	Glu	Lys	Tyr	Gly	Leu	Arg	Pro
217						165					170					175	
218		Asp	Gln	Trp	Ala	Asp	Tyr	Arg	Ala	Leu	Thr	Gly	Asp	Glu	Ser	Asp	Asn
219					180		_	_		185					190		
220		Leu	Pro	Gly	Val	Lys	Gly	Ile	_	Glu	Lys	Thr	Ala	_	Lys	Leu	Leu
221		~ 3	~1	195	~3	_	_	~-3	200	_	_	_	_	205	_	_	_
222		GIU		Trp	GIY	ser	ьeu		Ala	Leu	Leu	ьуs		Leu	Asp	Arg	Leu
223 224		T	210	7.7.	T1 -	3	~1	215	7 1.	•		***	220	_	_	_	_
224		шуs 225	PIO	Ala	тте	Arg		гуѕ	тте	Leu	Ата		мет	Asp	Asp	Leu	_
225		_	602	T	7 ~~	T 011	230	T	7707	7	mb	235	T	D	T	~ 1	240
227		ъец	ser	Trp	Asp	245	Ата	ьуs	vai	Arg		Asp	Leu	Pro	ьeu		vaı
228		Acn	Dhe	Ala	Tva		7~~	C1.,	Dro	7 an	250	C1	7~~	T 0	7	255	Dha
229		vob	FIIC	піа	260	Arg	Arg	Giu	PIO	265	Arg	Gru	Arg	теп	270	Ala	Pne
230		Len	Glu	Arg		Glu	Dhe	Gl v	Ser		T.011	Hic	Glu	Dhe		Lou	Leu
231		200	014	275	шси	OIG	1110	OLY	280	ыси	пец	1113	GIU	285	Gry	шец	Бец
232		Glu	Ser	Pro	Lvs	Δla	Len	Glu		Δla	Pro	Trn	Pro		Dro	Glu	Glv
233		0_0	290		270			295	014	7114	110	115	300	110	110	GIU	Gry
234		Ala		Val	Glv	Phe	Val		Ser	Ara	Lvs	Glu		Met	Trn	Δla	Δen
235		305					310			••••	_,_	315		ricc	шр	niu	320
236			Leu	Ala	Leu	Ala		Ala	Ara	Glv	Glv		Val	His	Ara	Δla	
237						325			5	1	330	9			5	335	
238		Glu	Pro	Tyr	Lvs		Leu	Arq	asa	Leu		Glu	Ala	Ara	Glv		Leu
239	•			4 -	340			ر		345				3	350		
240		Ala	Lys	Asp		Ser	Val	Leu	Ala		Arg	Glu	Glv	Leu		Leu	Pro
241			-	355					360		_		4	365	4		
242		Pro	Gly	Asp	Asp	Pro	Met	Leu	Leu	Ala	Tyr	Leu	Leu	Asp	Pro	Ser	Asn

RAW SEQUENCE LISTING ERROR SUMMARY DEPARTMENT APPLICATION: US/09/941,095

DATE: 11/29/2005 TIME: 15:58:43

Input Set : N:\Crf3\RULE60\09941095.raw
Output Set: N:\CRF4\11292005\1941095.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:7; N Pos. 4,5,181,182,190,366,617,628,685,714,722,738,784,1022,1029
Seq#:7; N Pos. 1038,1053,1098,1105,1206,1227,1244,1251,1252,1253,1350,1380
Seq#:7; N Pos. 1497,1530,1569,1572,1641,1653,1655,1770,1812,2319,2346,2396
Seq#:8; Xaa Pos.2,63,109,186,205,209,227,228,233,240,243,244,247,260,290
Seq#:8; Xaa Pos.329,336,340,368,414,417,418,431,551,605,773,794,798,823,833

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/941,095

DATE: 11/29/2005 TIME: 15:58:43

```
L:21 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]
L:22 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]
L:27 M:238 W: Alpha Fields not Ordered, Reordered [(C) CLASSIFICATION:] of (1)(vi)
L:722 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:0
L:728 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:48
L:734 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:96
L:744 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:176
L:746 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:192
L:748 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:208
L:750 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:224
L:752 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:240
L:754 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:256
L:758 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:288
L:762 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:320
L:764 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:336
L:766 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:352
L:772 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:400
L:774 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:416
L:790 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:544
L:796 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:592
L:818 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:768
L:820 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:784
L:824 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:816
L:826 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:832
```