DAY 6

1. In figure,
$$\frac{QR}{QS} = \frac{QT}{PR}$$
 and $\angle 1 = \angle 2$, show that $\triangle PQS \sim \triangle TQR$

[Ex 6.3, Q4]

Sol:- Given:
$$\frac{QR}{QS} = \frac{QT}{PR} \dots \dots \dots i)$$

and
$$\angle 1 = \angle 2 \implies PR = PQ$$
 Put in i)

$$\mathrm{i)} \Rightarrow \frac{\mathrm{QR}}{\mathrm{QS}} = \frac{\mathrm{QT}}{\mathbf{PQ}}$$

In Δ TQR and Δ PQS, we've

(Here we have taken ΔTQR in first place)

$$\left\{ \text{as its sides } \frac{\mathbf{QR}}{\mathbf{QS}} = \frac{\mathbf{QT}}{\mathbf{PQ}} \text{ are in numerator } \right\}$$

$$\frac{QR}{QS} = \frac{QT}{PQ}$$

$$\angle Q = \angle Q$$
 (Common)

∴
$$\Delta$$
TQR ~ Δ PQS (AA Similarity)

2. CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, show that

$$ii) \frac{CD}{GH} = \frac{AC}{FG}$$

[Ex 6.3, Q10]

Sol:- Given $\triangle ABC \sim \triangle EFG$

$$\Rightarrow \angle A = \angle E, \angle B = \angle F, \angle C = \angle G \dots \dots i)$$

Now As CD and GH are angle bisectors of ∠ACB and ∠EGF

$$\therefore \quad \angle C = \angle G \qquad \Rightarrow \frac{1}{2} \angle C = \frac{1}{2} \angle G \qquad \Rightarrow \angle 1 = \angle 2$$

In Δ DCA and Δ HGF, we've

$$\angle A = \angle F$$
 (by i))

:. Their corresponding sides are in proportional

$$\Rightarrow \frac{AD}{HF} = \frac{CD}{GH} = \frac{AC}{GF}$$
From 2nd and last $\frac{CD}{GH} = \frac{AC}{GF}$

3. Two sides AB and BC and median AD of \triangle ABC are proportional to PQ and QR and median PM of another $\triangle PQR$. Prove that $\triangle ABC \sim \triangle PQR$. [Ex 6.3, Q12]

Sol :- Given : In two $\triangle ABC$ and $\triangle PQR$, $\frac{AB}{PQ} = \frac{AC}{QR} = \frac{AD}{PM} \dots \dots \dots i)$

and AD and PM are medians such that BD = DC and QM = MR

To prove $\triangle ABC \sim \triangle PQR$

Proof - Since AD and PM are medians such that BD = DCi.e.BC = 2BD and

$$QM = MR i.e. QR = 2QM$$

From i) and ii), we get
$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

$$\Rightarrow \Delta ABD \sim \Delta PQM$$
 (SSS Similarity)

$$\Rightarrow \angle B = \angle Q$$

Now In $\triangle ABC$ and $\triangle PQR$

$$\angle B = \angle Q$$

and $\frac{AB}{PQ} = \frac{BC}{QR}$ (Given)

∴ \triangle ABC ~ \triangle PQR (SAS Similarity)

4. In the figure, If $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$

[Ex 6.3, Q6]

Sol:- Given:
$$\triangle ABE \cong \triangle ACD$$

$$\Rightarrow$$
 AB = AC i)
and AE = AD or AD = AE ii)

(cpct of congruent triangles)

Divide ii) by i), we get

$$\frac{AD}{AB} = \frac{AE}{AC}$$

By converse of Thales Theorem, DE||BC

$$\Rightarrow$$
 $\angle ADE = \angle ABC$ (corresponding angles)

Now In \triangle ADE and \triangle ABC

$$\angle A = \angle A$$
 (common)

and
$$\angle ADE = \angle ABC$$

$$\therefore \triangle ADE \sim \triangle ABC$$
 (AA Similarity)

5. If AD and PM are medians of triangles ABC and PQR respectively where \triangle ABC \sim \triangle PQR, prove that $\frac{AB}{PO} = \frac{AD}{PM}$

Sol:- In two
$$\triangle ABC \sim \triangle PQR$$
 $\Rightarrow \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$

$$\angle A = \angle P, \angle B = \angle Q, \angle C = \angle R \dots \dots i)$$

and AD and PM are medians such that BD = DC and QM = MR

To prove
$$\frac{AB}{PQ} = \frac{AD}{PM}$$

Proof - Since AD and PM are medians such that BD = DC i. e. BC = 2BD and

$$QM = MR i.e. QR = 2QM$$

By i)
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{2BD}{2QM} = \frac{BD}{QM}$$

Now In $\triangle ABD$ and $\triangle PQM$

$$\angle B = \angle Q$$
 {By i)}
and $\frac{AB}{PQ} = \frac{BD}{QM}$

∴ Δ ABD ~ Δ PQM (SAS Similarity)

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

From 1st and last, we get
$$\frac{AB}{PQ} = \frac{AD}{PM}$$