DEFINITION OF THE HOMOLOGY COBORDISM INVARIANTS

LECTURE: JACKSON VAN DYKE

The point of today will be to see that SWFH^{Pin(2)} (Y, \mathbb{F}) gives rise to some $\beta: \Theta_3^H \to \mathbb{Z}$. Recall Θ_3^H is the homology cobordism group consisting of Y^3 oriented $\mathbb{Z}HS^3$ (integral homology three spheres). The upshot will be that β satisfies:

(1)
$$\beta(-Y) = -\beta(Y) \qquad \qquad \mu(Y) = \beta(Y) \pmod{2}$$

where μ is the Rokhlin homomorphism, so the SES:

(2)
$$0 \to \ker \mu \to \Theta_3^H \to \mathbb{Z}/2\mathbb{Z} \to 0$$

does not split.

1. The module structure on equivariant homology

Let G be a Lie group acting on a space X. The Borel homology is

$$H_*^G(X) = H_*(X \times_G EG)$$

where EG is the universal bundle. This is a module over $H_G^*(\operatorname{pt}) = H^*(BG)$. For us $G = \operatorname{Pin}(2)$, and we want to get our hands on

$$(4) H^* (B \operatorname{Pin} (2), \mathbb{F}) .$$

Recall Pin (2) = $S^1 \cup jS^1 \subset \mathbb{H}$. Also recall SU (2) is isomorphic to the unit elements of \mathbb{H} , so it is diffeomorphic to S^3 . This means we get a fibration:

where i is the inclusion and ψ is the Hopf fibration follows by the involution on S^2 . In such a setting, we get another fibration¹

(6)
$$\mathbb{RP}^2 \longrightarrow B \operatorname{Pin}(2)$$

$$\downarrow \\ B \operatorname{SU}(2) = \mathbb{HP}^{\infty}$$

where \mathbb{HP}^{∞} is the infinite-dimensional quaternionic projective space.

Now we calculate $H^*\left(B\operatorname{Pin}\left(2\right),\mathbb{F}\right)$ using a Leray-Serre spectral sequence. Recall that this is

(7)
$$E_2^{p,q} = H^p\left(B\operatorname{SU}(2), H^q\left(\mathbb{RP}^2\right)\right) \Rightarrow H^{p+q}\left(B\operatorname{Pin}(2)\right).$$

Date: October 18, 2019.

¹Explicitly this is given by the inclusion of orbits. See Peter May's response to this post on MathOverflow.

We know that the cohomology of \mathbb{RP}^2 in degree 0, 1, and 2 is given by

$$\mathbb{F} \stackrel{q}{\longrightarrow} \mathbb{F} \stackrel{q}{\longrightarrow} \mathbb{F}$$

We also know that the cohomology of $B SU(2) = \mathbb{HP}^{\infty}$ looks like

$$\mathbb{F} \stackrel{v}{0} \stackrel{v}{0}$$

The spectral sequence associated to the fibration has no room for higher differentials, so the cohomology groups of $B \operatorname{Pin}(2)$ look like:

$$\mathbb{F} \stackrel{v}{\underbrace{q}} \mathbb{F} \stackrel{v}{\underbrace{q}} \mathbb{F} \stackrel{v}{\underbrace{0}} \mathbb{F} \stackrel{v}{\underbrace{q}} \mathbb{F} \stackrel{v}{\underbrace{0}} \dots \dots$$

The multiplicative property of a spectral sequence gives a ring isomorphism

(11)
$$H^* (B \operatorname{Pin} (2), \mathbb{F}) \cong \mathbb{F} [q, v] / (q^3)$$

where deg(v) = 4, deg(q) = 1.

Therefore for X with a Pin (2)-action, its Borel homology has an action by the ring above, with q and v decreasing the grading by 1 and 4 respectively.

2. Three infinite towers

Let $(I_{\lambda}^{\mu})^{S^1}$ denote the fixed points set of I_{λ}^{μ} under the action of the subgroup $S^1 \subset \text{Pin}(2)$. These fixed points pick up the part of the flow that live in the reducible locus, i.e. $\{(a,\varphi)\,\varphi=0\}$.² As it turns out:

$$(12) \qquad \qquad (I_{\lambda}^{\mu})^{S^1} = S^{\dim V_{\lambda}^0} .$$

Since we defined

(13)
$$SWF(Y) = \Sigma^{\mathbb{H}n(Y,g)/4} \Sigma^{-V_{\lambda}^{0}} I_{\lambda}^{\mu}$$

we get that

(14)
$$(SWF(Y))^{S^1} = S^{n(Y,g)}$$
.

We should think of SWF (Y) as being made up of a reducible part $S^{n(Y,g)}$ and some free cells as the irreducible part. I.e. If we mod out by the sphere we get a free Pin (2) action.

The Pin (2)-equivariant Seiberg-Witten Floer homology

(15)
$$SWFH_{*}^{Pin(2)}(SWF(Y); \mathbb{F}) = \tilde{H}_{*}^{Pin(2)}(SWF(Y); \mathbb{F})$$

is a module over $\mathbb{F}\left[q,v\right]/\left(q^3\right)$ where $\mathbb{F}=\mathbb{Z}/2\mathbb{Z}$.

Now we have a localization theorem in equivariant cohomology which tells us that

(16)
$$V^{-1}\tilde{H}_{\text{Pin}(2)}^{*}\left(\text{SWF}(Y);\mathbb{F}\right) = V^{-1}\tilde{H}_{\text{Pin}(2)}^{*}\left(S^{n(Y,g)};\mathbb{F}\right) .$$

Note that

(17)
$$\tilde{H}_{\operatorname{Pin}(2)}^{*}\left(S^{n(Y,g)};\mathbb{F}\right) = H^{*-n(Y,g)}\left(B\operatorname{Pin}\left(2\right);\mathbb{F}\right).$$

Now we interpret this localization theorem as concerning Borel homology rather than cohomology. Since we work over \mathbb{F} , the Borel homology is just the dual space to the cohomology

²Recall $a \in \Omega^1(Y, i\mathbb{R})$ and $\varphi \in \Gamma(\mathbb{S})$ is a section of our spin bundle.

in each grading. Furthermore, we can recover the module action on Borel homology from the one on Borel cohomology. The upshot is that $SWFH_*^{Pin(2)}$ is the homology of a complex (the equivariant cellular complex of the Conley index) of the form:

The finite part can be any finite dimensional vector space, with some v and q actions. There can be various other differentials both inside it and relating to the infinite towers. The important part is that there are always three infinite v towers in the complex, and they produce three infinite towers in homology. These towers correspond to the S^1 -fixed point set of SWF (Y), and the finite part comes from the cells with a free Pin (2) action.

The upshot is that since $(SWF(Y))^{S^1} = S^{n(Y,g)}$ and $n(Y,g) \equiv 2\mu \pmod{4}$, we have:

- All elements in the first tower are in degree $2\mu \pmod{4}$,
- all elements in the second tower are in degree $2\mu + 1 \pmod{4}$, and
- all elements in the third tower are in degree $2\mu + 2 \pmod{4}$.

3. Definition of the invariants

Write $A, B, C \in \mathbb{Z}$ for the lowest degrees of each infinite v-tower in homology. Now define the following:

The point is that:

(20)
$$A$$
, $B-1$, $C-2$, $\equiv 2\mu \pmod{4}$

so therefore

(21)
$$\alpha, \beta, \gamma \equiv \mu \pmod{2}.$$

Note that the module structure requires

$$(22) \alpha > \beta > \gamma .$$

4. Descent to homology cobordism

All we need to do now is check that α , β , and γ descend to maps $\Theta_3^H \to \mathbb{Z}$. This will use the construction of cobordism maps on Seiber-Witten Floer spectra.

Let W^4 be a smooth oriented Spin (4) cobordism with $b_1(W) = 0$, and with $\partial W = (-Y_0) \cup Y_1$. (We really just care about when W is a homology cobordism between homology three spheres.) We can consider the Seiberg-Witten equations on W, and do a finite-dimensional approximation to the solution space in the same way that we did in three dimensions. This gets more complicated...

In the end we get a stable equivariant map between two suspension spectra

(23)
$$\Psi_W: \Sigma^{m\mathbb{H}} \operatorname{SWF}(Y_0) \to \Sigma^{n\tilde{\mathbb{R}}} \operatorname{SWF}(Y_1) .$$

(Recall $\tilde{\mathbb{R}}$ is the rep where S^1 acts trivially, and j acts by multiplication by -1.) In particular:

(24)
$$m = \frac{-\sigma(W)}{8} = \operatorname{ind} \mathcal{D}$$
 $n = b_2^+(W) = \operatorname{ind} (d^+)$.

In the case that W is a smooth oriented homology cobordism between homology spheres, there is a unique Spin (4) structure, $b_1(W) = 0$, and n = m = 0. Let F_W be the homomorphism induced on Pin (2)-equivariant homology by the map Ψ_W .

It follows from equivariant localization that in degree $k \gg 0$, the map F_W is an isomorphism. Further F_W is a module map, so we have a commutative diagram

(25)
$$\begin{array}{ccc}
\mathbb{F} & \xrightarrow{F_W} \mathbb{F} \\
\downarrow^v & \downarrow_v \\
\mathbb{F} & \xrightarrow{F_W} \mathbb{F}
\end{array}$$

Because of the module structure, we cannot have $\alpha(Y_1) < \alpha(Y_0)$, and likewise for β and γ . In conclusion,

(26)
$$\alpha\left(Y_{1}\right) \geq \alpha\left(Y_{0}\right)$$
 $\beta\left(Y_{1}\right) \geq \beta\left(Y_{0}\right)$ $\gamma\left(Y_{1}\right) \geq \gamma\left(Y_{0}\right)$.

Now we can simply repeat the entire argument with reversed orientation and reversed direction of W. Therefore we get

(27)
$$\alpha(Y_1) \le \alpha(Y_0) \qquad \beta(Y_1) \le \beta(Y_0) \qquad \gamma(Y_1) \le \gamma(Y_0) ,$$

and therefore we have equalities. Therefore α , β , and γ all descend to maps

$$\Theta_3^H \to \mathbb{Z} \ .$$