Transfert d'énergie électrique par induction

Applications

Environnement

Santé / Sécurité

Plan:

- I. Méthodes du transfert sans fil.
- II. Phénomène d'induction.
- III. Choix du couplage des circuits.
- IV. Effet de la distance entre les bobines.
- V. Effet du désalignement axial.
- VI. Effet du désalignement angulaire.
- VII.Conclusion.

Transfert sans fil:

Champ utilisé:

Puissance transmissible:

Distance de transmission:

Sécurité:

Couplage inductif:

Magnétique

Faible / Moyenne

Faible / Moyenne

Élevée

Rayonnement:

Électrique

Moyenne / Grande

Moyenne / Grande

Dangereux

Rendement?

Couplage des circuits:

- Non résonant
- Résonant

Position des bobines:

- Distance entre bobines
- Désalignement axial
- Désalignement angulaire

Phénomène d'induction :

<u>Loide M axw ell-Faraday</u>: $\overrightarrow{rot}(\overrightarrow{E}) = -\frac{dB}{dt}$

Induction de Neum man : $e = -\frac{d\vec{B}}{dt} \times d\vec{S}$

Choix du couplage:

1) Couplage non résonant:

1- Modéle théorique:

$$i(t)=I_0\cos mt$$

$$\overrightarrow{B} \equiv \frac{\mu N1. i(t). a^2}{2(d^2 + a^2)^{3/2}} \overrightarrow{e_z}$$

$$\varphi = \int \vec{B} \cdot d\vec{S} = \pi B N_2 b^2$$

$$e(t) = -\frac{d\varphi}{dt} = \frac{\pi \mu N 1.N 2.I a^2 b^2 m \sin mt}{2(d^2 + a^2)^{3/2}}$$

$$\langle \mathbf{P_1} \rangle = \frac{R_1 I_0^2}{2}$$

$$\langle \mathbf{P_2} \rangle = \langle \mathbf{e}^2(\mathbf{t}) \rangle / R_2$$

$$= \frac{\pi^2 I^2 \mu^2 N 1^2 N 2^2 a^4 b^4 m^2}{2}$$

$$r = \frac{\langle P_2 \rangle}{\langle P_1 \rangle} = \frac{\pi^2 \mu^2 N 1^2 . N 2^2 . a^4 . b^4 m^2}{4R_1 R_2 . (d^2 + a^2)^{\frac{3}{2}}}$$

 $8R_2.(d^2+a^2)\bar{2}$

Commentaires:

2- Montage éxperimental:

$$\begin{cases} \langle P_1 \rangle = \frac{E^2}{R} \\ \langle P_2 \rangle = \frac{u_L^2}{R} \end{cases}$$
Freque

$$Pour: \Phi E = 3V$$

 $d = 0cm$

Frequence:	valeur de u_L :
100 Hz	25 mV
200 Hz	300 mV
500 Hz	380 mV
1000 Hz	475 mV
1500 Hz	420 mV
6000 Hz	375 mV

Théoriquement : $\mathbf{r}(\omega) = \mathbf{C} \cdot \omega^2$

Le modéle théorique est valable seulement pour les basses fréquences

2) Couplage résonant:

C1

Modéle théorique:

dt

dt

1

Donc:
$$\begin{array}{ccc}
Q^{2} q \mathbf{\hat{1}} + & + \alpha q_{2} \mathbf{\hat{1}} & \stackrel{E}{=} \emptyset \\
q \mathbf{\hat{1}} & + \alpha q \mathbf{\hat{1}} & \stackrel{E}{=} \emptyset \\
& + \omega 0^{2} \cdot q \mathbf{2} = \mathbf{0}
\end{array}$$

$$\frac{q^2}{\overline{E}} = -\frac{\frac{\alpha \omega}{2}}{\omega 0^4 - 2\omega^2 \omega 0^2 + (1 - \alpha^2)\omega^4}$$

Exploitation du résultat:

A basses et à hautes fréquences : ce rapport tend vers 0

$$\omega 0^{4} - 2\omega^{2}\omega 0^{2} + (1 - \alpha^{2})\omega^{4} = 0$$

$$\omega^{2} = \frac{\omega^{0^{2} \pm \alpha}\omega^{0^{2}}}{1 - \alpha^{2}}$$

$$\omega_{1,2} = \frac{\omega^{0}}{\sqrt{1 \pm \alpha}}$$

• $\frac{q^2}{\overline{E}}(m_1)$ et $\frac{q^2}{\overline{E}}(m_2)$ tendent vers linfin i

Allure:

Commentaires:

- 2 pulsations de résonnance:
 ω1 et ω2.
- Si $\alpha \ll 1$: $\omega 1 \approx \omega 2 \approx \omega 0$
 - Présence des résistances
 résonnance finie.

Montage experimental:

Experimentalement: *E.11*

$$\langle P1 \rangle = \frac{E.I1}{2}$$
 $\langle P2 \rangle = \frac{U.I2}{2}$

<i>Pour</i> : ቀ	E =	= 3 <i>V</i>
Pour:	$\psi d =$	0cm

Pour: Φ^{C}	=	300 <i>nF</i>
I_{\cdot}		36mH

	fréquence(Hz)	tension(V)	rendement
	500	0.3	0.01
	700	0.5	0.015
	1000	0.7	0.02
	1400	1.9	0.15
	1540	5.4	0.23
7	1600	3	0.2
	1800	1	0.07
	2500	0.4	0.05

Rendement en fonction de fréquence:

Remarques:

$$f_{r\'esonance} pprox 1540 \, Hz$$
 $f_0 = rac{1}{2\pi\sqrt{LC}} pprox 1531 \, Hz$

Donc $m_{r\acute{e}sonance} \approx m_0$

Comparaison:

Cas résonnant et non résonnant:

Position des 2 bobines:

1. Effet de la distance entres bobines sur le rendement:

Montage experimental:

Résultats: (Pour f = 1.1 KHz)

Distance verticale(c m):	valeur de $U_L(mV)$:
0	450
1	300
2	250
3	225
4	180
5	150
6	125
8	95
10	80

Comentaire:

- Petites distances : décroissance rapide
- Grandes distances: décroissance lente

2. Effet du désalignement axial sur le rendement:

Montage experimental:

Pour d= 5 cm

Pour d= 0 cm

désalignement(cm):	tension de sortie(mV):	désalignement(cm):	tension de sortie(mV):
0	175	0	450
1	145	1	350
2	90	2	200
3	75	3	100
5	70	5	55
8	55	8	40
10	30	10	20

Comparaison:

Commentaires:

Décroissance plus rapide lorsque d = 0 cm

3. Effet du désalignement angulaire sur le rendement:

Montage experimental:

E = 3 Vd = 5 cm

Désalignement angulaire :	tension de sortie:
0 degrés	165
30 degrés	170
50 degrés	150
70 degrés	140

Effet du désalignement angulaire sur le rendement:

Commentaire:

Pas de grande variation dans le désalignement angulaire

Conclusion:

- Un couplage résonant permet un rendement meilleur face à celui non résonant.
- L'augmentation de la distance verticale diminue le rendement.
- Le désalignement axial diminue <u>fortement</u> le rendement
- .
- Le désalignement angulaire n'influence pas largemen le rendement.

Merci pour votre attention