

Exercise 13A

Question 17:

Let each side of the cube be a cm

Then, the lateral surface area of the cube = (4a2) cm2

∴
$$4a^2 = 900$$

⇒ $a^2 = \frac{900}{4} = 225$
∴ $a = \sqrt{225} = 15 \text{ cm}$

∴ Volume of the cube =
$$a^3$$

= $(15)^3$ = $(15 \times 15 \times 15)$ cm³
= 3375 cm³.

Question 18:

Volume of the cube =512 cm³

[Volume =
$$a^3$$
]

 \therefore Each edge of the cube = $\sqrt[3]{512} = 8$ cm.

: Surface area of cube =
$$6a^2$$

= $6 \times (8)^2 \text{ cm}^2$
= $(6 \times 64) \text{ cm}^2$
= 384 cm^2

Question 19:

Volume of the new cube =
$$[(3)^3 + (4)^3 + (5)^3]$$
 cm
= $(27 + 64 + 125)$ cm²
= 216 cm²
Now edge of this cube = a cm
And, a³ = 216
 \therefore a = 6 cm
Lateral surface area of the new cube = $4a^2$ cm².
= $4 \times (6)^2$ cm²

 $= (4 \times 36) \text{ cm}^2$ $= 144 \text{ cm}^2$

 \therefore The lateral surface area of the new cube formed =144 cm².

Question 20:

1 hectare =
$$10000 \text{ m}^2$$

Area = 2 hectares = $2 \times 10000 \text{ m}^2$

Depth of the ground = 5 cm =
$$\frac{5}{100}$$
 m

Volume of water = (area x depth)
=
$$\left(2 \times 10000 \times \frac{5}{100}\right) \text{m}^3$$

$$= 1000 \, \text{m}^3$$

∴ Volume of water that falls =1000 m³

********* END *******