

Tarea 1

23 de Agosto 2023

 2^{0} semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías
 Diego Pérez - 22203583

Problema 1

(a) Sea $P(n) = 2! \cdot 4! \cdot \cdots \cdot (2n)!$ y $Q(n) = ((n+1)!)^n$. Usaremos principio de inducción para demostrar $P(n) \geq Q(n)$ para todo $n \geq 1$.

<u>CB</u>: Sea n = 1, este n cumple ya que P(1) = Q(1) = 2.

<u>HI:</u> Supongamos que $n \in \mathbb{N}$ satisface $P(n) \geq Q(n)$.

TI: Se tiene:

$$P(n+1) = P(n) \cdot (2n+2)! \stackrel{HI}{\geq} Q(n) \cdot (2n+2)! = Q(n) \cdot (n+1)! \prod_{k=n+2}^{2n+2} k \geq Q(n) \cdot (n+1)! \cdot (n+2)^{n+1}$$

Donde el último término es Q(n+1) ya que

$$Q(n) \cdot (n+1)! \cdot (n+2)^{n+1} = ((n+1)!)^{n+1} \cdot (n+2)^{n+1} = ((n+2)!)^{n+1} = Q(n+1)$$

Se concluye por inducción lo pedido.

(b) Nuevamente usaremos inducción.

<u>CB</u>: Tomamos n = 0 y n = 1, que claramente cumplen ya que $s_0 = 5^0 - 1$ y $s_1 = 5^1 - 1$.

<u>HI</u>: Supongamos que $n \in \mathbb{N}$ satisface $s_n = 5^n - 1$ y $s_{n-1} = 5^{n-1} - 1$.

TI: se tiene:

$$s_{n+1} = 6s_n - 5s_{n-1} = 6 \cdot 5^n - 6 - 5 \cdot 5^{n-1} + 5 = 5^{n+1} - 1$$

Por lo que n+1 tambien cumple la propiedad pedida. Se concluye por inducción. \blacksquare

Problema 2

Usaremos inducción estructural

<u>CB</u>: Tomamos el árbol •. Este elemento cumple lo pedido ya que $|\bullet|=1\leq 2^{0+1}-1=2^{h(\bullet)+1}-1$

<u>HI</u>: Supongamos que los áboles t_1 y t_2 satisfacen $|t_1| \le 2^{1+h(t_1)} - 1$ y $|t_2| \le 2^{1+h(t_2)} - 1$

<u>TI:</u> Para poder concluír por inducción, basta demostrar que la desigualdad del enunciado se satisface para $t = \bullet(t_1, t_2)$. Digamos sin pérdida de generalidad que $h(t_1) \ge h(t_2)$, por lo que $h(t) = 1 + h(t_1)$. Tenemos:

$$|t| = 1 + |t_1| + |t_2| \stackrel{HI}{\leq} 2^{h(t_1)+1} + 2^{h(t_2)+1} - 1 \le 2 \cdot 2^{h(t_1)+1} - 1 = 2^{h(t)+1} - 1$$

Por lo que la desigualdad pedida se cumple para el árbol t. Concluímos por inducción estructural.