Final Assessment 1

Kaviyadevi(20106064)

In [1]: #importing libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [2]: #importing dataset
 data1=pd.read_csv(r"C:\Users\user\Downloads\madrid_2015.csv")
 data1

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	s
0	2015- 10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN	280
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	280
2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1	280
3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN	280
4	2015- 10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN	280
210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN	280
210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN	280
210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN	280
210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN	280
210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN	280

210096 rows × 14 columns

localhost:8888/notebooks/madrid_2015.ipynb

```
In [3]: data1.info()
```

```
RangeIndex: 210096 entries, 0 to 210095
Data columns (total 14 columns):
     Column
              Non-Null Count
 #
                              Dtype
     -----
              -----
                               ----
 0
     date
              210096 non-null object
                              float64
 1
    BEN
              51039 non-null
 2
    CO
              86827 non-null
                              float64
                              float64
 3
    EBE
              50962 non-null
 4
    NMHC
              25756 non-null
                              float64
 5
    NO
              208805 non-null float64
              208805 non-null
 6
    NO_2
                              float64
 7
    0_3
              121574 non-null
                              float64
 8
    PM10
              102745 non-null
                              float64
 9
    PM25
              48798 non-null
                              float64
 10 SO_2
              86898 non-null
                              float64
                              float64
 11 TCH
              25756 non-null
 12 TOL
              50626 non-null
                              float64
 13
    station 210096 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 22.4+ MB
```

<class 'pandas.core.frame.DataFrame'>

In [4]: data=data1.head(50000)

In [5]: #filling null values
 df=data.fillna(0)
 df

Out[5]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	sta
0	2015- 10-01 01:00:00	0.0	0.8	0.0	0.00	90.0	82.0	0.0	0.0	0.0	10.0	0.00	0.0	2807!
1	2015- 10-01 01:00:00	2.0	8.0	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	2807!
2	2015- 10-01 01:00:00	3.1	0.0	1.8	0.00	29.0	97.0	0.0	0.0	0.0	0.0	0.00	7.1	2807
3	2015- 10-01 01:00:00	0.0	0.6	0.0	0.00	30.0	103.0	2.0	0.0	0.0	0.0	0.00	0.0	2807!
4	2015- 10-01 01:00:00	0.0	0.0	0.0	0.00	95.0	96.0	2.0	0.0	0.0	9.0	0.00	0.0	2807!
49995	2015- 08-26 20:00:00	0.0	0.2	0.0	0.00	1.0	22.0	107.0	0.0	0.0	0.0	0.00	0.0	2807!
49996	2015- 08-26 20:00:00	0.0	0.0	0.0	0.00	4.0	23.0	100.0	0.0	0.0	4.0	0.00	0.0	2807!
49997	2015- 08-26 20:00:00	0.2	0.2	0.1	0.00	1.0	24.0	96.0	20.0	0.0	2.0	0.00	0.7	2807!
49998	2015- 08-26 20:00:00	0.1	0.2	0.1	0.06	1.0	3.0	118.0	20.0	8.0	2.0	1.20	0.1	2807!
49999	2015- 08-26 20:00:00	0.0	0.0	0.0	0.00	2.0	14.0	105.0	0.0	0.0	0.0	0.00	0.0	2807!

50000 rows × 14 columns

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x2360c2d7c70>


```
In [8]: sns.distplot(data['NMHC'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='NMHC', ylabel='Density'>

MODEL BUILDING

1.Linear Regression

```
In [11]: #split the dataset into trainning and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [12]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[12]: LinearRegression()

```
In [13]: print(lr.intercept_)
      [-14236.08851565]
```

```
In [14]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[14]: <matplotlib.collections.PathCollection at 0x23622de4be0>


```
In [15]: print(lr.score(x_test,y_test))
```

0.7026892511305912

2. Ridge Regression

```
In [16]: from sklearn.linear_model import Ridge
In [17]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=10)

```
In [18]: rr.score(x_test,y_test)
Out[18]: 0.7026632140767994
```

3.Lasso Regression

```
In [19]: from sklearn.linear_model import Lasso
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
In [21]: la.score(x_test,y_test)
Out[21]: -7.728655678551632e-06
```

4. Elastic Net Regression

5.Logistic Regression

```
In [26]: from sklearn.linear_model import LogisticRegression
In [27]: feature_matrix = df1.iloc[:,0:11]
target_vector = df1.iloc[:,-1]
```

```
In [28]: feature matrix.shape
Out[28]: (50000, 11)
In [29]: |target_vector.shape
Out[29]: (50000,)
In [30]: from sklearn.preprocessing import StandardScaler
In [31]: fs=StandardScaler().fit_transform(feature_matrix)
In [32]: logr = LogisticRegression()
         logr.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:76
         3: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-
         learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regressi
         on (https://scikit-learn.org/stable/modules/linear model.html#logistic-regressi
         on)
           n_iter_i = _check_optimize_result(
Out[32]: LogisticRegression()
In [33]: | observation=[[1,2,3,4,5,6,7,8,9,10,11]]
In [34]:
         prediction=logr.predict(observation)
         print(prediction)
         [28079008]
In [35]: logr.classes_
Out[35]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
               dtype=int64)
In [36]: logr.score(fs,target_vector)
Out[36]: 0.7093
```

6.Random Forest

```
In [37]: df1=df[['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25',
         x=df1[['C0','NMHC', 'NO_2', 'O_3', 'PM10','SO_2', 'TCH', 'TOL']]
         y=df1['station']
In [38]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [39]: | from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[39]: RandomForestClassifier()
         parameters = \{'max depth': [1,2,3,4,5],
In [40]:
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]}
In [41]: from sklearn.model selection import GridSearchCV
         grid search = GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring='ac
         grid search.fit(x train,y train)
Out[41]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [42]: grid_search.best_score_
Out[42]: 0.69300000000000001
In [43]: rfc best = grid search.best estimator
```

In [45]: from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
 plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)

Out[45]: [Text(2155.909090909091, 1993.2, 'SO_2 <= 0.5\ngini = 0.958\nsamples = 22041</pre> \nvalue = \[1426, 1462, 1485, 1443, 1471, 1471, 1438, 1469, 1458\n1447, 1458, 1409, 1471, 1512, 1447, 1527, 1526, 1391\n1420, 1445, 1452, 1423, 1479, 147 0]'), Text(1192.09090909090, 1630.8000000000002, 'CO <= 0.05\ngini = 0.929\nsampl es = 12926\nvalue = [5, 16, 1485, 1443, 7, 4, 1, 1469, 59, 15, 3\n1409, 7, 15 12, 1447, 1527, 1526, 1391, 1420, 1445, 2\n1423, 1479, 1470]'), Text(760.90909090909, 1268.4, '0 3 <= 0.5\ngini = 0.91\nsamples = 10202\nv alue = $[4, 14, 1485, 10, 7, 0, 1, 1469, 2, 15, 3, 28 \n7, 1512, 1447, 1527, 15]$ 26, 1391, 1420, 8, 1, 1423\n1479, 1470]'), Text(405.8181818181818, 906.0, 'PM10 <= 0.5\ngini = 0.807\nsamples = 4715\nv alue = [4, 14, 1485, 6, 7, 0, 1, 3, 2, 15, 3, 25, 7\n1512, 1447, 1, 1526, 3, 1420, 3, 1, 18, 9, 12]'), Text(202.90909090909, 543.59999999999, 'TOL <= 0.2\ngini = 0.201\nsample $s = 1055 \setminus value = [4, 14, 1485, 6, 7, 0, 0, 3, 2, 11, 0, 25, 0 \setminus value = [4, 14, 1485, 6, 7, 0, 0, 0, 3, 2, 11, 0, 25, 0]$ 0, 3, 4, 3, 0, 18, 9, 1]'), Text(101.45454545454545, 181.1999999999999, 'gini = 0.896\nsamples = 132\nv alue = $[4, 12, 42, 6, 7, 0, 0, 3, 2, 11, 0, 25, 0 \ n15, 21, 1, 30, 3, 1, 3, 0,]$ 18, 9, 1]'),

Results

1.Linear regression: 0.7026892511305912

2.Ridge regression: 0.7026632140767994

3.Lasso regression: -7.728655678551632e-06

4. Elasticnet regression: -7.728655678551632e-06

5.Logistic regresssion: 0.7093

6.Random forest regression: 0.6930000000000001

Hence Logistic regression gives high accuracy for the madrid 2013 model.