Choice Models in Operations

Lecture 1. : Preference Theory

Instructor: Srikanth Jagabathula Scribe: Sherry Wang

1 Notation

Table 1: Notation		
Calliquaphic symbols	Sets	$\mathcal{X}, \mathcal{N}, \mathcal{M}$
Sans seril font	Random variables	U,X,Y
Capital letter	Matrices	A, B
Greek and small letters	cardinality, indexing	i,j,m,n

2 Preference Theory

 \mathcal{N} : universe of n items

 $2^{\mathcal{N}}$: power set of \mathcal{N} , the set of collection of all subsets of \mathcal{N} .

2.1 Choice rule

Definition 1 A function C: from $2^{\mathcal{N}}$ to $2^{\mathcal{N}}$, s.t. $C(\mathcal{B}) \subseteq \mathcal{B}, \forall \mathcal{B} \in 2^{\mathcal{N}}$. If $x \in C(\mathcal{B})$, then we say that "x is chosen from \mathcal{B} ". If $y \in \mathcal{B}$, then we say that "y could have been chosen from \mathcal{B} "

In classical economics, \mathcal{B} is often called "budget set". In operation and marketing, \mathcal{B} is an "offer set" or "choice set".

Remarks:

- 1. $C(\mathcal{B})$ doesn't have to be a singleton.
- 2. $C(\mathcal{B})$ may be empty.
- 3. If $C(\mathcal{B}) \neq \phi, \forall \mathcal{B} \in 2^{\mathcal{N}}$, then C(.) is "decisive".
- 4. C(.) is a singleton $\forall \mathcal{B}$, then C(.) is "univalent".

2.2 Preference rule

Definition 2 We define a weak preference \succeq of a customer over the set \mathcal{N} as follows: $x \succeq y \iff x$ is at least as good as y. "Making elements of \mathcal{N} comparable to each other"

Definition 3 We say that x is strictly preferred to y if $x \succeq y$ but $y \npreceq x$.

We make 2 assumptions:

- 1. Completeness: A weak preference \succeq is complete iff $\forall x, y \in \mathcal{N}$ we have either $x \succeq y$ or $y \succeq x$, or both.
- 2. Transitivity: A preference relation is transitive if whenever $x \succeq y$ and $y \succeq z$ then $x \succeq z, \forall x, y, z \in \mathcal{N}$

Representation: we can represent a rational preference relation as a graph with the items as nodes and a directed edge from x to y iff $x \succeq y$.

In this graph, you can cycle among all the products. Kahneman and Tversky Eg: Participants want to buy \$125 stereo and \$15 calculator.

Q1: You learn that there is a \$5 discount on calculator at another store. Will you go to the other store?

Q2: You learn that there is a \$5 discount on stereo at another store. Will you go to the other store?

Q3: Both are out of stock. You are offered a \$5 discount to go to the other store. Do you care which item is discounted?

Most people say YES to Q1, NO to Q2, INDIFFERENT to Q3.

x: travel to the other store for discount on calculator.

y: travel to the other store for discount on stereo.

z: stay at the store.

Q1: YES implies $x \succ z$

Q2: NO implies $z \succ y$

By rationality, $x \succ y$

Q3: INDIFFERENCE implies $x \sim y$

Definition 4 Every preference relation \succeq that is rational induces a choice rule: $C(\mathcal{B};\succeq) = \{x \in \mathcal{B} | x \succeq y, \forall y \in \mathcal{B}\}$

Remarks:

- 1. $C(\mathcal{B}; \succeq)$ may contain more than one element.
- 2. $C(\mathcal{B}; \succeq)$ may be empty, only if the sets are infinite. e.g. \succeq is \geq , let $\mathcal{N} = R$, $\mathcal{B} = [0, 1)$, then $\{x \in \mathcal{B} : x \succeq y, \forall y \in \mathcal{B}\} = \phi$ If \mathcal{N} is finite, then $C(\mathcal{B}; \succeq)$ is always nonempty.

Definition 5 HARP: Houthaker's Axiom of Revealed Preference

A choice function satisfies HARP if whenever $x, y \in A \cap B$ and $x \in C(A), y \in C(B)$, then we must have $x \in C(B), y \in C(A)$

Theorem 1 C(.) is non empty and satisfies HARP iff \exists a complete and transitive \succeq s.t. $C(\mathcal{B}) = C(\mathcal{B}; \succeq), \forall \mathcal{B}$

 $Proof: \longleftarrow$

We first prove that C(.) is not empty.

We use induction on the size of \mathcal{B} to prove that $C(\mathcal{B})$ is not empty.

Base case: Suppose $\mathcal{B} = x$, then $C(\mathcal{B}) = x$, which is not empty.

Inductive hypothesis: Suppose HARP is true for any \mathcal{B} of size at most n.

Now we show the result for sets of size n + 1.

For any set \mathcal{A} of size n+1, we claim that $C(\mathcal{A})=C(\mathcal{A};\succeq)$

 $\mathcal{A} = \{x\} \cup \mathcal{B} \text{ for some } x \notin \mathcal{B} \text{ and } \mathcal{B}s.t.|\mathcal{B}| = n$

By inductive hypothesis, we know that $C(\mathcal{B}) \neq \phi$

Suppose $y \in C(\mathcal{B})$, because \succeq is complete, one of the following must be true.

- 1. $x \succeq y$: By transitivity, we must have that $x \succeq z, \forall z \in \mathcal{B}$, so $x \in C(\mathcal{A})$.
- 2. $y \succeq x$: Then $y \in C(\mathcal{A})$ by definition.

It thus follows by induction that $C(\mathcal{B}) = C(\mathcal{B}; \succeq) \neq \phi$.

Then we agree that C(.) must satisfy HARP.

 \Longrightarrow

If C(.) is non-empty and HARP, we need to show \exists a complete and transitive \succeq s.t. $C(\mathcal{B}) = C(\mathcal{B}; \succeq), \forall \mathcal{B}$.

First, we construct a preference relation \succeq as follows:

 $x \succeq y$ whenever \exists a subset \mathcal{B} s.t. $x, y \in \mathcal{B}$ and $x \in C(\mathcal{B})$.

First we need to show \succeq is complete.

Consider $\mathcal{B} = \{x, y\}$. Since C(.) is non-empty, one of the following must be true:

- $x \in C(\{x,y\}) \Rightarrow x \succeq y$
- $y \in C(\{x,y\}) \Rightarrow y \succeq x$
- $x, y \in C(\{x, y\}) \Rightarrow y \succeq x, x \succeq y$

In all cases, we have $y \succeq x$ or $x \succeq y$, so \succeq is complete.

Then we need to show \succeq is transitive: we need to show that if $x \succeq y$ and $y \succeq z$, then $x \succeq z$. By definition of \succeq , we know that $\exists \mathcal{A}_1$ and \mathcal{A}_2 s.t.

 $x, y \in \mathcal{A}_1 \text{ and } x \in C(\mathcal{A}_1)$

 $y, z \in \mathcal{A}_2$ and $y \in C(\mathcal{A}_2)$

Let's consider $\mathcal{B} = \{x, y, z\}$, there are three cases.

- 1. $x \in C(\mathcal{B})$, then by definition, $x \succeq z$
- 2. $y \in C(\mathcal{B})$. Now note that $x, y \in \mathcal{A}_1 \cap \mathcal{B}, x \in C(\mathcal{A}_1), y \in C(\mathcal{B})$, by HARP, $x \in C(\mathcal{B}) \Longrightarrow x \succeq z$
- 3. $z \in C(\mathcal{B})$ Note that $y, z \in \mathcal{A}_2 \cap \mathcal{B}$ and $y \in C(\mathcal{A}_2), z \in C(\mathcal{B})$. By HARP, $y \in C(\mathcal{B})$. And then it reduced to 2.

Then we need to show $C(.) = C(.; \succeq)$

- 1. $C(\mathcal{B}) \subseteq C(\mathcal{B}; \succeq), \forall \mathcal{B}$ $x \in C(\mathcal{B}), \text{ by definition of } \succeq, x \succeq y, \forall y \in \mathcal{B}. \text{ By definition of } C(.; \succeq), x \in C(\mathcal{B}; \succeq)$
- 2. $C(\mathcal{B}) \supseteq C(\mathcal{B};\succeq), \forall \mathcal{B}$ $x \in C(\mathcal{B};\succeq)$ Consider an element $y \in C(\mathcal{B})$. Such a y exists because $C(\mathcal{B}) \neq \phi$ Because $x \in C(\mathcal{B};\succeq) \Longrightarrow x \succeq y$. Since $x \succeq y$, \exists a set \mathcal{A} s.t. $x \in C(\mathcal{A})$ and $x,y \in \mathcal{A}$ Because $y \in C(\mathcal{B})$, we have that $x,y \in \mathcal{A} \cap \mathcal{B}, x \in C(\mathcal{A}), y \in C(\mathcal{B})$, by HARP, $x \in C(\mathcal{B})$.

It thus follows that $C(\mathcal{B}) = C(\mathcal{B}; \succeq), \forall \mathcal{B}$