SEQUENCE LISTING

SEQ ID NO:1

Mouse SSG amino acid sequence

5 MGELPFLSPEGARGPHINRGSLSSLEQGSVTGTEARHSLGVLHVSYSVSNRVGPWWNIKS
CQQKWDRQILKDVSLYIESGQIMCILGSSGSGKTTLLDAISGRLRRTGTLEGEVFVNGCE
LRRDQFQDCFSYVLQSDVFLSSLTVRETLRYTAMLALCRSSADFYNKKVEAVMTELSLSH
VADQMIGSYNFGGISSGERRRVSIAAQLLQDPKVMMLDEPTTGLDCMTANQIVLLLAELA
RRDRIVIVTIHQPRSELFQHFDKIAILTYGELVFCGTPEEMLGFFNNCGYPCPEHSNPFD

10 FYMDLTSVDTQSREREIETYKRVQMLECAFKESDIYHKILENIERARYLKTLPMVPFKTK
DPPGMFGKLGVLLRRVTRNLMRNKQAVIMRLVQNLIMGLFLIFYLLRVQNNTLKGAVQDR
VGLLYQLVGATPYTGMLNAVNLFPMLRAVSDQESQDGLYHKWQMLLAYVLHVLPFSVIAT
VIFSSVCYWTLGLYPEVARFGYFSAALLAPHLIGEFLTLVLLGIVQNPNIVNSIVALLSI
SGLLIGSGFIRNIQEMPIPLKILGYFTFQKYCCEILVVNEFYGLNFTCGGSNTSMLNHPM

15 CAITQGVQFIEKTCPGATSRFTANFLILYGFIPALVILGIVIFKVRDYLISR

SEQ ID NO:2

Mouse SSG nucleotide sequence

20 GGGACAGGCCACTAGAAAATTCACTTGCATTTGCTTCCTGCTAGCCATGGGTGAGCTGCC CTTTCTGAGTCCAGAGGGAGCCAGAGGGCCTCACATCAACAGAGGGTCTCTGAGCTCCCT GGAGCAAGGTTCGGTCACGGGCACAGAGGCTCGGCACAGCTTAGGTGTCCTGCATGTGTC CTACAGCGTCAGCAACCGTGTCGGGCCTTGGTGGAACATCAAATCATGCCAGCAGAAGTG GGACAGGCAAATCCTCAAAGATGTCTCCTTGTACATCGAGAGTGGCCAGATTATGTGCAT 25 $\tt CTTAGGCAGCTCAGGGGAAGACCACGCTGCTGGACGCCATCTCCGGGAGGCTGCG$ GCGCACTGGGACCCTGGAAGGGGAGGTGTTTGTGAATGGCTGCGAGCTGCGCAGGGACCA GTTCCAAGACTGCTTCTCCTACGTCCTGCAGAGCGACGTTTTTCTGAGCAGCCTCACTGT GCGCGAGACGTTGCGATACACAGCGATGCTGGCCCTCTGCCGCAGCTCCGCGGACTTCTA CAACAAGAAGGTAGAGGCAGTCATGACAGAGCTGAGCCTGAGCCACGTGGCGGACCAAAT 30 GATTGGCAGCTATAATTTTGGGGGAATTTCCAGTGGCGAGCGGCGCCGAGTTTCCATCGC AGCCCAACTCCTTCAGGACCCCAAGGTCATGATGCTAGATGAGCCAACCACAGGACTGGA CTGCATGACTGCAAATCAAATTGTCCTTCTCTTGGCTGAGCTGGCTCGCAGGGACCGAAT TGTGATTGTCACCATCCACCAGCCTCGCTCTGAGCTCTTCCAACACTTCGACAAAATTGC CATCCTGACTTACGGAGAGTTGGTGTTCTTGTGGCACCCCAGAGGAGATGCTTGGCTTCTT

CAATAACTGTGGTTACCCCTGTCCTGAACATTCCAATCCCTTTGATTTTTACATGGACTT GACATCAGTGGACACCCAAAGCAGAGAGCGGGAAATAGAAACGTACAAGCGAGTACAGAT GCTGGAATGTGCCTTCAAGGAATCTGACATCTATCACAAAATTCTGGAGAACATTGAAAG AGCACGATACCTGAAAACCTTACCCATGGTTCCTTTCAAAACAAAAGATCCTCCTGGGAT GTTCGGCAAGCTTGGTGTCCTGCTGAGGCGAGTAACAAGAAACTTAATGAGGAATAAGCA GGCAGTGATTATGCGTCTCGTTCAGAATCTGATCATGGGCCTCTTCCTCATTTTCTACCT TCTCCGCGTCCAGAACACACGCTAAAGGGCGCTGTGCAGGACCGCGTGGGGCTGCTCTA TCAGCTTGTGGGTGCCACCCCATACACCGGCATGCTCAATGCTGTGAATCTGTTTCCCAT GCTGAGAGCCGTCAGCGACCAGGAGAGTCAGGATGGCCTGTATCATAAGTGGCAGATGCT GCTCGCCTACGTGCTACACGTCCTCCCCTTCAGCGTCATCGCCACGGTCATTTTCAGCAG TGTGTGTTATTGGACTCTGGGCTTGTATCCTGAAGTTGCCAGATTTGGATATTTCTCTGC TGCTCTTTTGGCCCCTCACTTAATTGGAGAATTTCTAACACTTGTGCTGCTTGGTATAGT $\tt CCAAAACCCTAATATTGTCAACAGTATAGTGGCTCTGCTCAGCATCTCTGGGCTGCTTAT$ TGGATCTGGATTTATCAGAAACATACAAGAAATGCCCATTCCTTTAAAAATCCTGGGTTA TTTTACATTCCAAAAATACTGTTGTGAGATTCTCGTGGTCAATGAGTTTTACGGCCTGAA CTTCACTTGTGGTGGATCCAACACCTCTATGCTAAATCACCCGATGTGCGCCATCACCCA ${\tt AGGGGTCCAGTTCATCGAGAAAACCTGCCCAGGTGCTACATCCAGATTCACGGCAAACTT}$ CCTCATCTTATATGGGTTTATCCCAGCTCTGGTCATCCTAGGAATAGTGATTTTTAAAGT CACGCCCACTGTGGAGCACAGAGAAGTACTGTCTTCAACCATCAGGATTCCATCTGCGAC $\tt CCTTGTGTCTGACCCTTGTGTCTATCCGGAGCCCCAAGGGCAACGAGAACTCACAGCCCT$ $\tt CTGCTATTCCAGCTTGTGGGGCAATGTGGTGCTTGGACATTGTGACTGAACTGGTCCAAT$ AATGTAAATAATAATTCATAAACCTACAGGACATT

25

30

10

15

20

SEQ ID NO:3

Human SSG amino acid sequence

MGDLSSLTPGGSMGLQVNRGSQSSLEGAPATAPEPHSLGILHASYSVSHRVRPWWDITSC
RQQWTRQILKDVSLYVESGQIMCILGSSGSGKTTLLDAMSGRLGRAGTFLGEVYVNGRAL
RREQFQDCFSYVLQSDTLLSSLTVRETLHYTALLAIRRGNPGSFQKKVEAVMAELSLSHV
ADRLIGNYSLGGISTGERRRVSIAAQLLQDPKVMLFDEPTTGLDCMTANQIVVLLVELAR
RNRIVVLTIHQPRSELFQLFDKIAILSFGELIFCGTPAEMLDFFNDCGYPCPEHSNPFDF
YMDLTSVDTQSKEREIETSKRVQMIESAYKKSAICHKTLKNIERMKHLKTLPMVPFKTKD

SPGVFSKLGVLLRRVTRNLVRNKLAVITRLLQNLIMGLFLLFFVLRVRSNVLKGAIQDRV
GLLYQFVGATPYTGMLNAVNLFPVLRAVSDQESQDGLYQKWQMMLAYALHVLPFSVVATM
IFSSVCYWTLGLHPEVARFGYFSAALLAPHLIGEFLTLVLLGIVQNPNIVNSVVALLSIA
GVLVGSGFLRNIQEMPIPFKIISYFTFQKYCSEILVVNEFYGLNFTCGSSNVSVTTNPMC
AFTOGIOFIEKTCPGATSRFTMNFLILYSFIPALVILGIVVFKIRDHLISR

SEQ ID NO:4

Human SSG nucleotide sequence

10

15

20

25

30

GTCAGGTGGAGCAGGCAGGCAGTCTGCCACGGGCTCCCCAACTGAAGCCACTCTGGGGA GGGTCCGGCCACCAGAAATTTGCCCAGCTTTGCTGCCTGTTGGCCATGGGTGACCTCTC ATCTTTGACCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCT GGAGGGGGCTCCTGCCACCGCCCCGGAGCCTCACAGCCTGGGCATCCTCCATGCCTCCTA CAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGGGCAGATCATGTGCATCCT AGGAAGCTCAGGCTCCGGGAAAACCACGCTGCTGGACGCCATGTCCGGGAGGCTGGGGCG CGCGGGGACCTTCCTGGGGGAGGTGTATGTGAACGGCCGGGCGCTGCGCCGGGAGCAGTT CCAGGACTGCTTCTCCTACGTCCTGCAGAGCGACACCCTGCTGAGCAGCCTCACCGTGCG CGAGACGCTGCACTACACCGCGCTGCTGGCCATCCGCCGCGGCAATCCCGGCTCCTTCCA GAAGAAGGTGGAGGCCGTCATGGCAGAGCTGAGTCTGAGCCATGTGGCAGACCGACTGAT TGGCAACTACAGCTTGGGGGGCATTTCCACGGGTGAGCGCGCCCGGGTCTCCATCGCAGC $\tt CCAGCTGCTCCAGGATCCTAAGGTCATGCTGTTTGATGAGCCAACCACAGGCCTGGACTG$ CATGACTGCTAATCAGATTGTCGTCCTCCTGGTGGAACTGGCTCGCAGGAACCGAATTGT GGTTCTCACCATTCACCAGCCCCGTTCTGAGCTTTTTCAGCTCTTTGACAAAATTGCCAT $\tt CCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCAGCGGAAATGCTTGATTTCTTCAA$ TGACTGCGGTTACCCTTGTCCTGAACATTCAAACCCTTTTGACTTCTATATGGACCTGAC GTCAGTGGATACCCAAAGCAAGGAACGGGAAATAGAAACCTCCAAGAGAGTCCAGATGAT AGAATCTGCCTACAAGAAATCAGCAATTTGTCATAAAACTTTGAAGAATATTGAAAGAAT GAAACACCTGAAAACGTTACCAATGGTTCCTTTCAAAACCAAAGATTCTCCTGGAGTTTT $\tt CTCTAAACTGGGTGTTCTCCTGAGGAGAGTGACAAGAAACTTGGTGAGAAATAAGCTGGC$ AGTGATTACGCGTCTCCTTCAGAATCTGATCATGGGTTTGTTCCTCCTTTTTCTTCGTTCT GCGGGTCCGAAGCAATGTGCTAAAGGGTGCTATCCAGGACCGCGTAGGTCTCCTTTACCA GTTTGTGGGCGCCACCCCGTACACAGGCATGCTGAACGCTGTGAATCTGTTTCCCGTGCT

GCGAGCTGTCAGCGACCAGGAGAGTCAGGACGGCCTCTACCAGAAGTGGCAGATGATGCT GGCCTATGCACTGCACGTCCTCCCCTTCAGCGTTGTTGCCACCATGATTTTCAGCAGTGT GTGCTACTGGACGCTGGGCTTACATCCTGAGGTTGCCCGATTTGGATATTTTTCTGCTGC TCTCTTGGCCCCCACTTAATTGGTGAATTTCTAACTCTTGTGCTACTTGGTATCGTCCA 5 AAATCCAAATATAGTCAACAGTGTAGTGGCTCTGCTGTCCATTGCGGGGGTGCTTGTTGG ATCTGGATTCCTCAGAAACATACAAGAAATGCCCATTCCTTTTAAAATCATCAGTTATTT TACATTCCAAAAATATTGCAGTGAGATTCTTGTAGTCAATGAGTTCTACGGACTGAATTT CACTTGTGGCAGCTCAAATGTTTCTGTGACAACTAATCCAATGTGTGCCTTCACTCAAGG AATTCAATTCATTGAGAAAACCTGCCCAGGTGCAACATCTAGATTCACAATGAACTTTCT 10 GATTTTGTATTCATTTATTCCAGCTCTTGTCATCCTAGGAATAGTTGTTTTCAAAATAAG GGATCATCTCATTAGCAGGTAGTGAAAGCCATGGCTGGGAAAATGGAAGTGAAGCTGCCG GACATCTCAAGTCTTTTAACCATTAAGACTCCATTTGTGCCTCTTGGATCCAAGCAGGCC TTGAATGCAATGGAAGTGGTTTATAGTCCCTTGCTCTTACAACTTGCAGGGACATGTGGT 15 TATTTGGAAATTGTGACTGAGCGGACCCAAGAATGTAAATATTCATAAACCTATGGG

SEQ ID NO:5

SSG signature sequence 1

20

AALLAPHLIGEFLTLVLL

SEQ ID NO:6

25 SSG signature sequence 2

FIPALVILGIV

SEQ ID NO:7

30 Exon 1 of hSSG

GTCAGGTGGAGCAGGCAGGCAGTCTGCCACGGGCTCCCCAACTGAAGCCACTCTGGGGA GGGTCCGGCCACCAGAAAATTTGCCCAGCTTTGCTGCCTGTTGGCCATGGGTGACCTCTC ATCTTTGACCCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCT GGAGGGGGCTCCTGCCACCGCCCCGGAGCCTCACAGCCTGGGCATCCTCCATGCCTCCTA CAGCGTCAG

5 **SEQ ID NO:8**

Exon 2 of hSSG

 ${\tt CCACCGCGTGAGGCCCTGGTGGGACATCACATCTTGCCGGCAGCAGTGGACCAGGCAGAT}\\ {\tt CCTCAAAGATGTCTCCTTGTACGTGGAGAGCGGGCAGATCATGTGCATCCTAGGAAGCTC}\\$

10 AG

SEQ ID NO:9

Exon 3 of hSSG

15 GCTCCGGGAAAACCACGCTGCTGGACGCCATGTCCGGGAGGCTGGGGCGCGGGGACCT
TCCTGGGGGAGGTGTATGTGAACGGCCGGGCGCTGCGCCGGGAGCAGTTCCAGGACTGCT
TCTCCTACGTCCTGCAG

SEQ ID NO:10

20 Exon 4 of hSSG

AGCGACACCCTGCTGAGCAGCCTCACCGTGCGCGAGACGCTGCACTACACCGCGCTGCTG
GCCATCCGCCGCGCGCAATCCCGGCTCCTTCCAGAAGAAGGTGG

25 **SEQ ID NO:11**

30

Exon 5 of hSSG

AGGCCGTCATGGCAGAGCTGAGTCTGAGCCATGTGGCAGCCGACTGATTGGCAACTACA GCTTGGGGGGCATTTCCACGGGTGAGCGGCGCGGGTCTCCATCGCAGCCCAGCTGCTCC AGGATCCTA

SEQ ID NO:12

Exon 6 of hSSG

10

AGGTCATGCTGTTTGATGAGCCAACCACAGGCCTGGACTGCATGACTGCTAATCAGATTG
TCGTCCTCCTGGTGGAACTGGCTCGCAGGAACCGAATTGTGGTTCTCACCATTCACCAGC
CCCGTTCTGAGCTTTTTCAG

5 **SEQ ID NO:13**

Exon 7 of hSSG

CTCTTTGACAAAATTGCCATCCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCAGCG
GAAATGCTTGATTTCTTCAATGACTGCGGTTACCCTTGTCCTGAACATTCAAACCCTTTT
GACTTCTATA

SEQ ID NO:14

Exon 8 of hSSG

15 TGGACCTGACGTCAGTGGATACCCAAAGCAAGGAACGGGAAATAGAAACCTCCAAGAGAG
TCCAGATGATAGAATCTGCCTACAAGAAATCAGCAATTTGTCATAAAACTTTGAAGAATA
TTGAAAGAATGAAACACCTGAAAACGTTACCAATGGTTCCTTTCAAAACCAAAGATTCTC
CTGGAGTTTTCTCTAAACTGGGTGTTCTCCTGAG

20 **SEQ ID NO:15**

Exon 9 of hSSG

GAGAGTGACAAGAAACTTGGTGAGAAATAAGCTGGCAGTGATTACGCGTCTCCTTCAGAA

TCTGATCATGGGTTTGTTCCTCCTTTTCTTCGTTCTGCGGGTCCGAAGCAATGTGCTAAA

25 GGGTGCTATCCAGGACCGCGTAGGTCTCCTTTACCAGTTTGTGGGCGCCCACCCCGTACAC

AGGCATGCTGAACGCTGTGAATCTGT

SEQ ID NO:16

Exon 10 of hSSG

30

 $\label{thm:condition} \textbf{TTCCCGTGCTGCGAGCTGTCAGCGACCAGGAGGTCAGGACGGCCTCTACCAGAAGTGGC} \\ \textbf{AGATGATGCTGGCCTATGCACTGCACGTCCTCCCCTTCAGCGTTGTTGCCACCATGATTT} \\ \textbf{TCAGCAGTGTGTGCTACTG} \\$

20

25

SEQ ID NO:17

Exon 11 of hSSG

GACGCTGGGCTTACATCCTGAGGTTGCCCGATTTGGATATTTTTCTGCTGCTCTCTTGGC

5 CCCCCACTTAATTGGTGAATTTCTAACTCTTGTGCTACTTGGTATCGTCCAAAATCCAAA
TATAGTCAACAGTGTAGTGGCTCTGCTGTCCATTGCGGGGGTGCTTGTTGGATCTGGATT
CCTCAG

SEQ ID NO:18

10 Exon 12 of hSSG

AAACATACAAGAAATGCCCATTCCTTTTAAAATCATCAGTTATTTTACATTCCAAAAATA
TTGCAGTGAGATTCTTGTAGTCAATGAGTTCTACGGACTGAATTTCACTTGTG

15 **SEQ ID NO:19**

Exon 13 of hSSG