辞書選択のための高速な貪欲アルゴリズム

藤井海斗 (東京大学 D2)

(相馬輔(東京大学)との共同研究)

OPTA つくば合宿 2018/6/10

目次

1 問題設定

2 提案アルゴリズム

3 実験

辞書とは

辞書とは

辞書

現実の信号が少数のパターンでできているなら、

"よい"辞書によって信号のスパース表現が得られる

パッチ

辞書の元(アトム)のスパース結合

$$= 0.2$$
 $+ 0.2$ $+ 0.3$ $+ 0.3$

$$= 0.5$$
 $+ 0.5$ $+ 0.1$

辞書

:

辞書

ほとんどのパッチは辞書の元のスパース結合で表現できる

応用:画像復元

画像の失われた画素を復元する問題

Д Д Д

辞書作成への3つのアプローチ

既存の辞書を使う

信号処理の研究で考案された 既存の辞書を使う

<mark>欠点</mark> データに合わせられない

辞書学習

与えられたデータから 辞書を学習する

欠点 難しい非凸最適化

辞書選択 [Krause-Cevher'10]

既存の辞書の和集合から 要素を選択して辞書を作る

既存の辞書の和集合 V

選択された辞書 *X* ⊆ *V* s.t. |*X*| ≤ *k*

パッチ \mathbf{y}_t のためのアトム集合 $Z_t \subseteq X$ s.t. $|Z_t| \leq s$

既存の辞書の和集合 V

パッチ \mathbf{y}_t のためのアトム集合 $Z_t \subseteq X$ s.t. $|Z_t| \leq s$

既存の辞書の和集合 V

アトム集合 Z_t を横に並べた行列

$$f_t(Z_t) \stackrel{\triangle}{=} \|\mathbf{y}_t\|_2^2 - \min_{\mathbf{w}} \|\mathbf{y}_t - \mathbf{D}_{Z_t}\mathbf{w}\|_2^2$$

アトムの集合 Z_t によって y_t をどれだけうまく表現できるか

Minimize
$$_{X\subseteq V}$$
 $\sum_{t=1}^{T} \max_{\substack{Z_t\subseteq X\colon |Z_t|\leq s}} f_t(Z_t)$ subject to $|X|\leq k$ パッチ \mathbf{y}_t の \mathbf{Z} パース表現のための \mathbf{Z} アトム集合 \mathbf{Z}_t を選択

辞書作成への3つのアプローチ

既存の辞書を使う

信号処理の研究で考案された

既存の辞書を使う

欠点 データに合わせられない

辞書学習

与えられたデータから 辞書を学習する

欠点 難しい非凸最適化

辞書選択 [Krause-Cevher'10]

既存の辞書の和集合から 要素を選択して辞書を作る

辞書選択に対する既存アルゴリズム

アルゴリズム	理論保証	実験的な 出力の質	計算時間
Modular Approximation	0	×	0
OMP evaluation	×	0	×

本研究の貢献

辞書選択のための実用的なアルゴリズムは存在しなかった

辞書学習に匹敵する良質な辞書を

大幅に高速に出力するアルゴリズムを提案

そのほかの貢献

- より複雑な疎性制約に対するアルゴリズムを提案
- 辞書選択をオンライン設定へと拡張

目次

1 問題設定

2 提案アルゴリズム

3 実験

二段階劣モジュラ最大化のための

Replacement Greedy [Stan+'17]

辞書選択

既存の基底

辞書選択

既存の基底

k = 5, s = 3, T = 4

$$k = 5, s = 3, T = 4$$

$$k = 5$$
, $s = 3$, $T = 4$

$$k = 5, s = 3, T = 4$$

$$k = 5$$
, $s = 3$, $T = 4$

$$k = 5$$
, $s = 3$, $T = 4$

$$k = 5$$
, $s = 3$, $T = 4$

$$k = 5, s = 3, T = 4$$

$$k = 5, s = 3, T = 4$$

$$k = 5$$
, $s = 3$, $T = 4$

Replacement Greedy

$$\underset{v \in V}{\operatorname{argmax}} \sum_{t=1}^{T} \max \left\{ 0, \max_{u_t \in \mathcal{I}_t} f_t (Z_t - u_t + v) \right\}$$
目的関数値を愚直に評価 **単**以

Replacement OMP

$$\underset{v \in V}{\operatorname{argmax}} \sum_{t=1}^{T} \max \left\{ 0, \frac{1}{\Sigma_{2}^{2}} \left(\mathbf{a}_{v}^{\mathsf{T}} \hat{\mathbf{y}}_{t} \right)^{2} - \min_{u_{t} \in \mathcal{I}_{t}} (\mathbf{w}_{t}^{*})_{u_{t}}^{2} \right\}$$
 ($\hat{\mathbf{y}}_{t}$ 残差、 \mathbf{w}_{t}^{*} 最適おもみベクトル)

目的関数値を近似的に評価 → 速い

$$k = 5$$
, $s = 3$, $T = 4$

$$k = 5$$
, $s = 3$, $T = 4$

$$k = 5$$
, $s = 3$, $T = 4$

Replacement Greedy と Replacement OMP

$$k = 5$$
, $s = 3$, $T = 4$

Replacement Greedy と Replacement OMP

$$k = 5$$
, $s = 3$, $T = 4$

理論的な結果

定理

Replacement Greedy は $O(s^2dknT)$ 時間、

Replacement OMP は O((n+ds)kT) 時間で、

ともに
$$\left(\frac{\sigma_{2s}^2}{\Sigma_2^2}\right)^2 \left(1 - \exp\left(-\frac{\Sigma_2^2}{\sigma_{2s}^2}\right)\right)$$
 近似

$$\Sigma_{s} \stackrel{\triangle}{=} \max_{Z \subseteq V: |Z| \le s} \sigma_{\max}(\mathbf{D}_{Z})$$

$$\sigma_{s} \stackrel{\triangle}{=} \min_{Z \subseteq V: |Z| \le s} \sigma_{\min}(\mathbf{D}_{Z})$$

$$\sigma_{\rm s} \stackrel{\triangle}{=} \min_{{\bf z} \in {\cal Z}_{\rm min}} \sigma_{\rm min}({\bf D}_{\rm Z})$$

s 列の列部分行列の最大特異値

s 列の列部分行列の最小特異値

アルゴリズムのまとめ

アルゴリズム	近似比	計算時間	
Modular Approximation	$\frac{\sigma_s^2}{\Sigma_s^2} \left(1 - \frac{1}{e} \right)$	O((k+d)nT)	
OMP evaluation	O(1/k)	O(sdk²nT)	
Replacement Greedy	$\frac{\sigma_{2s}^4}{\Sigma_2^4} \left(1 - \exp\left(-\frac{\Sigma_2^2}{\sigma_{2s}^2}\right) \right)$	O(s²dknT)	
Replacement OMP	$\frac{\sigma_{2s}^4}{\Sigma_2^4} \left(1 - \exp\left(-\frac{\Sigma_2^2}{\sigma_{2s}^2}\right) \right)$	O((n+ds)kT)	

目次

1 問題設定

2 提案アルゴリズム

3 実験

実験設定

データセット (すべてのパッチは8×8 pixel)

人工データ:

ランダムに決めた真の辞書からランダムに生成

実データ

VOC2006 image dataset からランダムに抽出

台集合

DCT、ウェーブレット(Haar, Db4, coiflet)

パラメータ T = 100 or 1000、s = 5、試行 20 回の平均

実験結果:辞書選択の既存法と比較(人工データ)

Replacement OMP は OMP Evaluation より高速 かつ Modular Approximation よりよい解を出力

実験結果:辞書選択の既存法と比較(実データ)

Replacement OMP は OMP Evaluation より高速 かつ Modular Approximation よりよい解を出力

実験結果:辞書学習の手法と比較(人工データ)

提案手法(Replacement OMP とその亜種)は 辞書学習(MOD、*k*-SVD)より高速に遜色ない解を出力

実験結果:辞書学習の手法と比較(実データ)

提案手法(Replacement OMP とその<u>亜種</u>)は 辞書学習(MOD、*k-*SVD)より高速に遜色ない解を出力

アルゴリズムのまとめ

アルゴリズム	理論保証	実験的な 出力の質	計算時間
Modular Approximation	0	×	0
OMP evaluation	×	0	×
Replacement Greedy	0	0	×
Replacement OMP	0	0	0

本研究の貢献

辞書選択のための実用的なアルゴリズムは存在しなかった

辞書学習に匹敵する良質な辞書を

大幅に高速に出力するアルゴリズムを提案

そのほかの貢献

- より複雑な疎性制約に対するアルゴリズムを提案
- 辞書選択をオンライン設定へと拡張

目次

- 4 参考文献
- 5 既存研究について
- 6 提案アルゴリズムについて
- 7 より複雑な疎性制約
- 8 オンライン設定への拡張

参考文献(1)

- E. Balkanski, B. Mirzasoleiman, A. Krause, and Y. Singer.
 Learning sparse combinatorial representations via two-stage submodular maximization. In ICML 2016, pp. 2207-2216.
- V. Cevher and A. Krause. Greedy dictionary selection for sparse representation. IEEE Journal of Selected Topics in Signal Processing, 5(5), pp. 979–988, 2011.
- A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In ICML 2011, pp. 1057–1064.

参考文献(2)

- E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban.
 Restricted Strong Convexity Implies Weak Submodularity. In Annals of Statistics, 2018.
- A. Krause and V. Cevher. Submodular dictionary selection for sparse representation. In ICML 2010, pp. 567–574.
- B. Natarajan. Sparse approximation solutions to linear systems.
 SIAM Journal on Computing, 24, pp. 227–234, 1995.
- S. Stan, M. Zadimoghaddam, A. Krause and A. Karbasi.
 Probabilistic submodular maximization in sub-linear time. In ICML 2017, pp. 3241–3250.

3/ 39

目次

- 4 参考文献
- 5 既存研究について
- 6 提案アルゴリズムについて
- 7 より複雑な疎性制約
- 8 オンライン設定への拡張

信号処理の知見を利用

信号処理の研究で開発された辞書を利用する

例)離散コサイン変換(DCT)、ウェーブレット、…

離散コサイン変換のサイズ8×8の基底

辞書学習

データから辞書を学習する

入力

- $\{\mathbf{y}_1, \dots, \mathbf{y}_T\} \subset \mathbb{R}^d$ データ点(パッチ)の集合
- S スパース性のパラメータ
- k 辞書サイズの制約

辞書

ほとんどのパッチは辞書の元のスパース結合で表現できる

辞書学習

データから辞書を学習する問題

Minimize_{**D**}
$$\sum_{t=1}^{T} \min_{\mathbf{w}_{t}: ||\mathbf{w}_{t}||_{0} \leq s} ||\mathbf{y}_{t} - \mathbf{D}\mathbf{w}_{t}||_{2}^{2}$$
 subject to $\mathbf{D} \in \mathbb{R}^{d \times k}$

辞書学習

データから辞書を学習する問題

Minimize_{**D**}
$$\sum_{t=1}^{T} \min_{\mathbf{w}_{t}: ||\mathbf{w}_{t}||_{0} \leq s} ||\mathbf{y}_{t} - \mathbf{D}\mathbf{w}_{t}||_{2}^{2}$$
 subject to $\mathbf{D} \in \mathbb{R}^{d \times k}$

Remark

- 目的関数値の評価は NP 困難 [Natarajan'95]
- 最も一般的なアプローチは ℓ_0 ノルムの ℓ_1 ノルムへの 緩和だが、緩和しても非凸

貪欲法

空集合から始めて、各ステップ増分最大の要素を追加

集合関数の最大化

-集合関数 f: 2^V → ℝ>0

Maximize f(S)

subject to $|S| \le k$ 要素数の制約

- 1: $X \leftarrow \emptyset$.
- 2: **for** |X| < k **do**
- 3: $v^* \in \operatorname{argmax} \{ f(X + v) \mid v \in V \}$
- $X \leftarrow X + v^*$

最小化問題から最大化問題へ

Minimize_{$$X \subseteq V$$}
$$\sum_{t=1}^{T} \min_{\mathbf{w}: \|\mathbf{w}\|_{0} \le s} \|\mathbf{y}_{t} - \mathbf{A}_{X}\mathbf{w}\|_{2}^{2}$$
subject to $|X| \le k$

$$\begin{aligned} & \text{Maximize}_{X \subseteq V} & & \sum_{t=1}^{T} \left\{ \|\mathbf{y}_{t}\|_{2}^{2} - \min_{\mathbf{w}: \|\mathbf{w}\|_{0} \le s} \|\mathbf{y}_{t} - \mathbf{A}_{X}\mathbf{w}\|_{2}^{2} \right\} \\ & \text{subject to} & & |X| \le k \end{aligned}$$

🔆 近似比の意味では、これらの問題は等価でない

二段階最適化問題としての辞書選択

$$\begin{aligned} & \text{Maximize}_{X\subseteq V} \quad \sum_{t=1}^{T} \left\{ \|\mathbf{y}_{t}\|_{2}^{2} - \min_{\mathbf{w}: \|\mathbf{w}\|_{0} \leq s} \|\mathbf{y}_{t} - \mathbf{A}_{X}\mathbf{w}\|_{2}^{2} \right\} \\ & \text{subject to} \quad |X| \leq k \\ & \qquad \qquad \int_{t(Z_{t})} \left\| \|\mathbf{y}_{t}\|_{2}^{2} - \min_{\mathbf{w}} \|\mathbf{y}_{t} - \mathbf{A}_{Z_{t}}\mathbf{w}\|_{2}^{2} \\ & \qquad \qquad \int_{t=1}^{T} \max_{Z_{t} \subseteq X: \ |Z_{t}| \leq s} f_{t}(Z_{t}) \\ & \text{subject to} \quad |X| \leq k \end{aligned}$$

台集合に関する仮定

- **A** の各列の正規化を仮定($\forall i \in V$ について $\|\mathbf{a}_i\|_2 = 1$)
- $\bullet \ \Sigma_s \stackrel{\triangle}{=} \max_{Z \subseteq V: \ |Z| \le s} \sigma_{\max}(\mathbf{D}_Z)$

s 列の列部分行列の最大特異値

$$\sigma_{s} \stackrel{\triangle}{=} \min_{Z \subseteq V: |Z| \leq s} \sigma_{\min}(\mathbf{D}_{Z})$$

s 列の列部分行列の最小特異値

既存手法 1:Modular Approximation

[Krause-Cevher'10, Das-Kempe'11]

モジュラ関数(線形関数)を用いて目的関数を近似

Maximize
$$_{X\subseteq V}$$
 $h(X) = \sum_{t=1}^{T} \max_{Z_t \subseteq X: |Z_t| \le s} f_t(Z_t)$

$$\tilde{f}_t(Z_t) = \sum_{i \in \mathcal{I}_t} f_t(\{i\})$$
 線形近似

Maximize $_{X\subseteq V}$ $\tilde{h}(X) = \sum_{t=1}^{T} \max_{Z_t \subseteq X: |Z_t| \le s} \tilde{f}_t(Z_t)$

既存手法 1:Modular Approximation

[Krause-Cevher'10, Das-Kempe'11]

補題 1
$$\frac{1}{\sum_{s}^{2}}h(X) \leq \tilde{h}(X) \leq \frac{1}{\sigma_{s}^{2}}h(X)$$

補題 2

 \tilde{h} は単調劣モジュラ

定理 [Das-Kempe'11]

Modular Approximation は $\frac{\sigma_s^2}{\Sigma^2} \left(1 - \frac{1}{e}\right)$ 近似

MA はアトムのあいだの相関を無視しているため、 実用的な性能はあまりよくない

Orthogonal Matching Pursuit

スパース線形回帰に対する貪欲法の一種

$$\begin{aligned} \text{Maximize}_{Z\subseteq X} \quad f(Z) &= \|\mathbf{y}\|_2^2 - \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{A}_{Z_t}\mathbf{w}\|_2^2 \\ \text{subject to} \quad |Z| &\leq s \end{aligned}$$

Orthogonal Matching Pursuit

For
$$i = 1, \dots, s$$
:
$$\mathbf{w}_{Z}^{*} \in \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{A}_{Z}\mathbf{w}\|_{2}^{2}$$

$$Z \leftarrow Z + v \text{ where } v \in \underset{v \in V}{\operatorname{argmax}} \left| \mathbf{a}_{v}^{\top} (\mathbf{y} - \mathbf{D}_{Z}\mathbf{w}_{Z}^{*}) \right|$$

既存手法 2:OMP evaluation

[Krause-Cevher'10, Das-Kempe'11]

目的関数値を OMP で近似的に計算

$$Maximize_{X\subseteq V} \quad h(X) = \sum_{t=1}^{T} \max_{Z_t \subseteq X: |Z_t| \le s} f_t(Z_t)$$

 $Z_t^{X,\mathsf{OMP}} f_t$ を目的関数、X を台集合としたときの

OMP の解

Maximize_{$$X \subseteq V$$} $\tilde{h}(X) = \sum_{t=1}^{T} f_t(Z_t^{X,OMP})$

既存手法 2:OMP evaluation

[Krause-Cevher'10, Das-Kempe'11]

目的関数値を OMP で近似的に計算

定理 [Das-Kempe'11]

OMP evaluation は
$$\dfrac{\sigma_s^2}{\Sigma_s^2}\cdot\dfrac{1-\exp(-p\sigma_s^2)}{k-kp\sigma_s^2+1}$$
 近似ただし、 $p=(1-\exp(-\sigma_{2s}^4))/\Sigma_s^2$

💸 この近似比は Modular Approximation より大幅に悪い

目次

- 4 参考文献
- 5 既存研究について
- 6 提案アルゴリズムについて
- 7 より複雑な疎性制約
- 8 オンライン設定への拡張

二段階劣モジュラ最大化

Maximize
$$X \subseteq V$$

$$\sum_{t=1}^{T} \max_{Z_t \subseteq X: |Z_t| \le s} f_t(Z_t)$$
 subject to $|X| \le k$

- ullet $f_t(Z) = \|\mathbf{y}_t\|_2^2 \min_{\mathbf{w}} \|\mathbf{y}_t \mathbf{A}_Z \mathbf{w}\|_2^2$ 劣モジュラでない
 - 辞書選択
- *f_t* が単調劣モジュラ
 - **二段階劣モジュラ最大化** [Balkanski+'16]

Replacement Greedy [Stan+'17] は二段階劣モジュラ最大化 のためのアルゴリズムとして提案された 1

Replacement Greedy

$$\text{Maximize}_{X\subseteq V} \sum_{t=1}^{I} \max_{Z_t\subseteq X: |Z_t|\leq s} f_t(Z_t) \text{ subj. to } |X|\leq k$$

- **①** 初期化 $X := \emptyset, Z_t := \emptyset (\forall t \in [T])$
- 2 s+1 ステップ目から k ステップ目

$$\underset{v \in V}{\operatorname{argmax}} \sum_{t=1}^{J} \max \left\{ 0, \underset{u_t \in Z_t}{\operatorname{max}} f_t (Z_t - u_t + v) \right\}$$
 を X に追加し、各 Z_t に置換を適用

理論的な結果

定理

Replacement Greedy は
$$O(s^2dknT)$$
 時間で $\dfrac{\sigma_{2s}^2}{\Sigma_2^2} \left(1-\exp\left(-\dfrac{\Sigma_2}{\sigma_{2s}}\right)\right)$ 近似解を出力

Modular Approximation の近似比 $\frac{\sigma_s^2}{\Sigma^2} \left(1 - \frac{1}{e}\right)$ との 比較は困難

Replacement Greedy + OMP = ?

OMP のアイデアを用いて Replacement Greedy を高速化

Forward Regression vs. OMP

$$\max_{Z \subseteq X} f(Z) = \|\mathbf{y}\|_{2}^{2} - \min_{\mathbf{w}} \|\mathbf{y} - \mathbf{A}_{Z_{t}}\mathbf{w}\|_{2}^{2} \text{ s.t. } |Z| \le s$$

FR 各ステップで
$$\underset{v \in V}{\operatorname{argmax}} f(Z + v)$$
 を Z に追加

定理 [Das-Kempe'11, Elenberg+'18]

これらのアルゴリズムはともに $(1-\exp(-\sigma_s^2))$ 近似

Replacement OMP(最初の S ステップ)

Replacement Greedy

$$\underset{v \in V}{\operatorname{argmax}} \sum_{t=1}^{T} f_t(Z_t + v)$$
 を $X \geq Z_t(\forall t)$ に追加

Replacement OMP

$$\frac{\operatorname{argmax} \sum_{t=1}^{r} (\mathbf{a}_{v}^{\mathsf{T}} \hat{\mathbf{y}}_{t})^{2} & \text{ } & \text$$

Replacement OMP(s+1ステップ目以降)

Replacement Greedy

$$\displaystyle \operatorname*{argmax} \sum_{v \in V}^T \max \left\{ 0, \max_{u_t \in \mathcal{Z}_t} f_t (Z_t - u_t + v) \right\}$$
 を X に追加し、各 Z_t に置換を適用

Replacement OMP

$$\underset{v \in V}{\operatorname{argmax}} \sum_{t=1}^{T} \max \left\{ 0, \frac{1}{\Sigma_{2}^{2}} \left(\mathbf{a}_{v}^{\mathsf{T}} \hat{\mathbf{y}}_{t} \right)^{2} - \min_{u_{t} \in \mathcal{I}_{t}} (\mathbf{w}_{t}^{*})_{u_{t}}^{2} \right\}$$
を
$$X に追加し、各 Z_{t} に置換を適用$$
$$\left(\hat{\mathbf{y}}_{t} \stackrel{\triangle}{=} \mathbf{y}_{t} - \mathbf{A}_{Z_{t}} \mathbf{w}_{t}^{*}, \mathbf{w}_{t}^{*} \in \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{y}_{t} - \mathbf{A}_{Z_{t}} \mathbf{w}\|_{2}^{2} \right)$$

Replacement OMP のための事前計算

Replacement OMP の実行時に Σ₂ の値が必要

解決策 $\mathbf{1}$ Σ_2 の値を事前に計算しておく

$$\Sigma_2 = \max_{Z \subseteq V: \ |Z| \le 2} \sigma_{\mathsf{max}}(\mathbf{D}_Z) = 1 + \max_{i \ne j} \left| \mathbf{a}_i^{\mathsf{T}} \mathbf{a}_j \right|$$
は $O(n^2d)$ 時間で計算可能

解決策 2 Σ₂ の代わりに上界 2 を使う

 $\Sigma_2 \leq 2$ は各列が正規化された任意の **A** について成立

近似比は
$$\frac{\sigma_{2s}^2}{4} \left(1 - \exp\left(-\frac{2}{\sigma_{2s}} \right) \right)$$

アルゴリズムのまとめ

アルゴリズム	近似比	計算時間
Modular Approximation	$\frac{\sigma_s^2}{\Sigma_s^2} \left(1 - \frac{1}{e} \right)$	O((k+d)nT)
OMP evaluation	複雑	O(sdk²nT)
Replacement Greedy	$\frac{\sigma_{2s}^2}{\Sigma_2^2} \left(1 - \exp\left(-\frac{\Sigma_2}{\sigma_{2s}}\right) \right)$	O(s²dknT)
Replacement OMP	$\frac{\sigma_{2s}^2}{\Sigma_2^2} \left(1 - \exp\left(-\frac{\Sigma_2}{\sigma_{2s}} \right) \right)$	O((n+ds)kT)

目次

- 4 参考文献
- 5 既存研究について
- 6 提案アルゴリズムについて
- 7 より複雑な疎性制約
- 8 オンライン設定への拡張

いままでの疎性制約

各パッチに対して S 個まで選べる

29/39

動機

パッチによって線形表現に必要なアトム数が異なるのでは?

平均疎性制約 [Cevher-Krause'11]

元の制約に加えて、選べるアトム数の合計を 5′ 個までに制限

$$\sum_{t=1}^{T} |Z_t| \le s'$$

一般的な疎性制約のクラス

制約の複雑さを表すパラメータ / を導入

ある解から別の解へ、何回置換すれば移せるか

一般化 Replacement OMP

一般的な疎性制約のために Replacement OMP を一般化

定理

パラメータ
$$r$$
の疎性制約に対して、

パラメータ
$$r$$
の疎性制約に対して、Replacement OMP は $\frac{\sigma_{2s}^2}{\Sigma_2^2} \left(1 - \exp\left(-\frac{r}{k}\frac{\Sigma_2}{\sigma_{2s}}\right)\right)$ 近似

さまざまな疎性制約

疎性制約	r の 上界
元の制約	$r \le k$
マトロイドの直和	$r \le k$
平均疎性制約(全体のみ)	$r \le 2k - 1$
平均疎性制約	$r \le 3k - 1$

目次

- 4 参考文献
- 5 既存研究について
- 6 提案アルゴリズムについて
- 7 より複雑な疎性制約
- 8 オンライン設定への拡張

オンライン学習

さまざまなオンライン意思決定問題を含む枠組み

For $t = 1, \dots, T$:

- 1 学習者が行動 $X_t \in \mathcal{F}$ を決める
- 2 敵対者が目的関数 q_t を明らかにする
- 3 学習者が利得 $q_t(X_t)$ を受け取る

αリグレット

学習者が得た利得と、最適な固定戦略の利得の α 倍の差

$$\operatorname{regret}_{lpha}(T) \stackrel{\triangle}{=} \underset{X^* \in \mathcal{F}}{\operatorname{max}} \sum_{t=1}^T g_t(X^*) - \sum_{t=1}^T g_t(X_t)$$
 最適な固定戦略の利得 学習者の利得

※ α がオフライン設定の近似比に対応

オンライン辞書選択

データ点の列 y_1, \dots, y_T から辞書を学習

For $t = 1, \dots, T$:

- 1 学習者が辞書 A_{X_t} を決める
- $oldsymbol{2}$ 敵対者がデータ点 $oldsymbol{y}_t$ を明らかにする

理論的な結果

アルゴリズム	α
Online Modular Approximation	$\frac{\sigma_s^2}{\Sigma_s^2} \left(1 - \frac{1}{e} \right)$
Online Replacement Greedy Online Replacement OMP	$\frac{\sigma_{2s}^4}{\Sigma_2^4} \left(1 - \exp\left(-\frac{\Sigma_2^2}{\sigma_{2s}^2}\right) \right)$

定理

これらのアルゴリズムはそれぞれの lpha について

regret_{α}(T) $\leq k\sqrt{2T \ln n}$ を満たす