Homework. November - December.

✓ Send 1 .pdf file to the homework@merkulov.top

Deadline: 23:59, 14th of December

General optimization problems

1. Give an explicit solution of the following LP.

$$c^ op x o \min_{x \in \mathbb{R}^n}$$
s.t. $Ax = b$

2. Give an explicit solution of the following LP.

$$egin{aligned} c^ op x & o \min_{x \in \mathbb{R}^n} \ ext{s.t.} \ 1^ op x &= 1, \ x \succeq 0 \end{aligned}$$

This problem can be considered as a simplest portfolio optimization problem.

3. Give an explicit solution of the following LP.

$$c^ op x o \min_{x \in \mathbb{R}^3} \ ext{s.t.} \ 1^ op x = lpha, \ 0 \preceq x \preceq 1,$$

where α is an integer between 0 and n. What happens if α is not an integer (but satisfies $0 \leq \alpha \leq n$)? What if we change the equality to an inequality $1^{\top}x \leq \alpha$?

4. Give an explicit solution of the following QP.

$$c^ op x o \min_{x \in \mathbb{R}^n} \ ext{s.t.} \ x^ op Ax \le 1,$$

where $A\in\mathbb{S}^n_{++},c
eq 0$. What is the solution if the problem is not convex $(A
otin\mathbb{S}^n_{++})$ (Hint: consider eigendecomposition of the matrix: $A=Q\mathbf{diag}(\lambda)Q^{ op}=\sum\limits_{i=1}^n\lambda_iq_iq_i^{ op}$) and different cases of $\lambda > 0, \lambda = 0, \lambda < 0$?

5. Give an explicit solution of the following QP.

$$egin{aligned} c^{ op}x & \min \ & ext{s.t.} \ (x-x_c)^{ op}A(x-x_c) \leq 1, \end{aligned}$$

where $A \in \mathbb{S}^n_{++}, c
eq 0, x_c \in \mathbb{R}^n$.

6. Give an explicit solution of the following QP.

$$x^ op Bx o \min_{x \in \mathbb{R}^n} \ ext{s.t.} \ x^ op Ax \le 1,$$

where $A \in \mathbb{S}^n_{++}, B \in \mathbb{S}^n_{+}$.

7. Consider the equality constrained least-squares problem

$$\|Ax-b\|_2^2 o \min_{x \in \mathbb{R}^n}$$

s.t.
$$Cx = d$$
.

where $A\in\mathbb{R}^{m imes n}$ with $\mathbf{rank}A=n$, and $C\in\mathbb{C}^{k imes n}$ with $\mathbf{rank}C=k$. Give the KKT conditions, and derive expressions for the primal solution x^* and the dual solution λ^* .

8. Derive the KKT conditions for the problem

$$\mathbf{tr} \ X - \log \det X o \min_{x \in \mathbb{S}^n_{++}}$$
s.t. $Xs = y$,

s.t.
$$Xs = y$$
,

where $y \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ are given with $y^{ op}s = 1$. Verify that the optimal solution is given by

$$X^* = I + yy^ op - rac{1}{s^ op s} ss^ op$$

9. Supporting hyperplane interpretation of KKT conditions. Consider a **convex** problem with no equality constraints

$$egin{aligned} f_0(x) &
ightarrow \min \ & ext{s.t.} \ f_i(x) \leq 0, \quad i = [1,m] \end{aligned}$$

Assume, that $\exists x^* \in \mathbb{R}^n, \mu^* \in \mathbb{R}^m$ satisfy the KKT conditions

$$abla_x L(x^*, \mu^*) =
abla f_0(x^*) + \sum_{i=1}^m \mu_i^*
abla f_i(x^*) = 0$$
 $\mu_i^* \ge 0, \quad i = [1, m]$
 $\mu_i^* f_i(x^*) = 0, \quad i = [1, m]$
 $f_i(x^*) < 0, \quad i = [1, m]$

Show that

$$abla f_0(x^*)^ op (x-x^*) \geq 0$$

for all feasible \boldsymbol{x} . In other words the KKT conditions imply the simple optimality criterion or $\nabla f_0(x^*)$ defines a supporting hyperplane to the feasible set at x^*

Duality

1. Express the dual problem of

$$c^ op x o \min_{x \in \mathbb{R}} \ ext{s.t.} \ f(x) \leq 0$$

with $c \neq 0$, in terms of the conjugate function f^* . Explain why the problem you give is convex. We do not assume f is convex.

2. **Minimum volume covering ellipsoid.** Let we have the primal problem:

$$egin{aligned} \ln \det & X^{-1}
ightarrow \min_{X \in \mathbb{S}^n_{++}} \ ext{s.t.} \ a_i^ op X a_i \leq 1, i = 1, \ldots, m \end{aligned}$$

- 1. Find Lagrangian of the primal problem
- 2. Find the dual function
- 3. Write down the dual problem
- 4. Check whether problem holds strong duality or not
- 5. Write down the solution of the dual problem
- 3. A penalty method for equality constraints. We consider the problem minimize

$$f_0(x) o \min_{x \in \mathbb{R}^n} \ ext{s.t. } Ax = b,$$

where $f_0(x):\mathbb{R}^n\to\mathbb{R}$ is convex and differentiable, and $\alpha\in\mathbb{R}^{m\times n}$ with $\mathbf{rank}A=m$. In a quadratic penalty method, we form an auxiliary function

$$\phi(x) = f_0(x) + \alpha ||Ax - b||_2^2,$$

where $\alpha>0$ is a parameter. This auxiliary function consists of the objective plus the penalty term $\alpha\|Ax-b\|_2^2$. The idea is that a minimizer of the auxiliary function, \tilde{x} , should be an approximate solution of the original problem. Intuition suggests that the larger the penalty weight α , the better the approximation \tilde{x} to a solution of the original problem. Suppose \tilde{x} is a minimizer of $\phi(x)$. Show how to find, from \tilde{x} , a dual feasible point for the original problem. Find the corresponding lower bound on the optimal value of the original problem.

4. Analytic centering. Derive a dual problem for

$$-\sum_{i=1}^m \log(b_i - a_i^ op x) o \min_{x \in \mathbb{R}^n}$$

with domain $\{x|a_i^{\top}x < b_i, i=[1,m]\}$. First introduce new variables y_i and equality constraints $y_i = b_i - a_i^{\top}x$. (The solution of this problem is called the analytic center of the linear inequalities $a_i^{\top}x \leq b_i, i=[1,m]$. Analytic centers have geometric applications, and play an important role in barrier methods.) with domain $\{x|a_i^{\top}x < b_i, i=[1,m]\}$. First introduce new variables y_i and equality constraints $y_i = b_i - a_i^{\top}x$. (The solution of this problem is called the analytic center of the linear inequalities $a_i^{\top}x \leq b_i, i=[1,m]$. Analytic centers have geometric applications, and play an important role in barrier methods.)