Build/design a Turing machine (TM) that determines whether a given word contains at least one instance of the substring aab. If it does, then the TM should write a T on the tape after the input word.

States (Q): {qStart, qCheck1, qCheck2, qCheck3, $qWrite_T$, qAccept} Input Alphabet (Σ): {a,b}
Tape Alphabet (Γ): { $a,b,_,T$ }
Initial State (q_0): {qStart}
Accepting State (F): {qAccept}

Transition function (δ) :

 $\delta(qStart,a) = (qCheck1,a,R)$ $\delta(qStart,b) = (qStart,b,R)$ $\delta(qStart,_) = (qAccept,_,R)$ $\delta(qCheck1,a) = (qCheck2,a,R)$ $\delta(qCheck1,b) = (qStart,b,R)$ $\delta(qCheck1,_) = (qStart,_,R)$ $\delta(qCheck2,a) = (qCheck3,a,R)$ $\delta(qCheck2,b) = (qStart,b,R)$ $\delta(qCheck2,_) = (qStart,_,R)$ $\delta(qCheck3,b) = (qWrite_T,b,R)$ $\delta(qCheck3,a) = (qStart,a,R)$ $\delta(qCheck3,_) = (qStart,_,R)$ $\delta(qCheck3,_) = (qStart,_,R)$ $\delta(qCheck3,_) = (qStart,_,R)$ $\delta(qWrite_T,_) = (qWrite_T,T,R)$ $\delta(qWrite_T,_any) = (qWrite_T,same symbol,R)$

Build/design a TM that:

- \cdot accepts all words that start with an a, and ends with a b,
- \cdot loops forever on all words that start with a b, and
- · rejects all other words.

States (Q): $\{q_0, q_1, q_2, q_3, q_4, q_4, q_{loop}\}$

Input Alphabet (Σ) : {*a*, *b*} Tape Alphabet (Γ) : $\{a, b, _, \}$ Initial State (q_0) : $\{q_0\}$

Accepting State (F): $\{q_3\}$

Reject State: $\{q_{4}\}$

Transition function (δ) :

$$\delta(q_0, a) = (q_1, a, R)$$

$$\delta(q_0, b) = (q_{loop}, b, R)$$

$$\delta(q_0,) = (q_4, , R)$$

$$\delta(q_1, a) = (q_2, a, R)$$

$$\delta(q_1, b) = (q_2, b, R)$$

$$\delta(q_1, \underline{}) = (q_2, b, R)$$

$$\delta(q_1\,,_)=(q_4,_\,,R)$$

$$\delta(q_2, a) = (q_2, a, R)$$

$$\delta(q_2, b) = (q_2, b, R)$$

$$\delta(q_2, _-) = (q_3, _-, L)$$

$$\delta(q_{loop}\,,a)=(q_{loop},a\,,R)$$

$$\delta(q_{loop}, b) = (q_{loop}, b, R)$$

$$\delta(q_{loop}, _) = (q_{loop}, _, R)$$

$$\delta(q_3,b) = (q_{accept},b,N)$$

$$\delta(q_3, a) = (q_4, a, N)$$

Build a 2PDA that accepts the language $\{a^nb2^na^{n+1}b^n\mid n>0\}$.

States (Q): $\{q_0,q_1,q_2,q_3,q_f\}$ Alphabet (Σ): $\{a,b\}$ Stack Alphabet(Γ): $\{X,Y,\epsilon\}$

Initial State (q_0) : $\{q_0\}$ Accepting State (F): $\{q_f\}$

Transition function (δ) :

 q_0

$$\delta(q_0, a, \epsilon, \epsilon) = \{(q_0, X, \epsilon)\}$$

$$\delta(q_0, b, X, \epsilon) = \{(q_1, \epsilon, Y)\}$$

 q_1 $\delta(q_1, b, X, \epsilon) = \{(q_1, \epsilon, Y)\}$ $\delta(q_1, a, \epsilon, \epsilon) = \{(q_2, \epsilon, \epsilon)\}$

 q_2 $\delta(q_2, a, X, \epsilon) = \{(q_2, \epsilon, \epsilon)\}$ $\delta(q_2, b, \epsilon, Y) = \{(q_3, \epsilon, \epsilon)\}$

 q_3 $\delta(q_3, b, \epsilon, Y) = \{(q_3, \epsilon, \epsilon)\}$ $\delta(q_3, \epsilon, \epsilon, \epsilon) = \{(q_f, \epsilon, \epsilon)\}$

 q_f

Build a Turing Machine that:

- · accept even number of as,
- · loops forever if start with b, and
- · rejects all other words.

States (Q): $\{q_0, q_{even}, q_{odd}, q_{loop}, q_{reject}, q_{accept}\}$

Input Alphabet (Σ) : $\{a,b\}$ Tape Alphabet (Γ) : $\{a,b,_\}$ Start State (q_0) : $\{q_0\}$

Accepting State (F): {qAccept}

Transition function (δ) :

 $\delta(q_0, a) = (q_{odd}, \#, R)$

 $\delta(q_0, b) = (q_{loop}, b, R)$

 $\delta(q_0, \#) = (q_{even}, \#, S)$

 $\delta(q_{odd}, a) = (q_{even}, \#, R)$

 $\delta(q_{odd},\#) = (q_{reject},\#,S)$

 $\delta(q_{even}, a) = (q_{odd}, \#, R)$

 $\delta(q_{event}, \#) = (q_{accept}, \#, S)$

 $\delta(q_{loop}, b) = (q_{loop}, b, R)$

Convert the following TM into summary table and then into their code words in CWL. What is the language accepted by this TM.

CWL:

(Current State, Input Symbol, Write Symbol, Move Direction, Next State)

- 1. (START1, a, b, L, START1)
- 2. (START1, b, a, L, 3)
- 3. $(3, \Lambda, \Lambda, R, 3)$

Language Accepted:

- Accepts strings ending in b
- Non-empty

$$L = \{a^{n}b | \ge 0\}$$