

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Bibliographic Information**Preparation of 4-(trifluoromethylmercapto)- and 4-(trifluoromethylsulfonyl)phenols.**

Marhold, Albrecht; Bielefeldt, Dietmar; Baasner, Bernd; Schaller, Klaus. (Bayer A.-G., Germany). Ger. Offen. (1990). 8 pp. CODEN: GWXXBX DE 3836149 A1 19900510 Patent written in German. Application: DE 88-3836149 19881024. CAN 113:190908 AN 1990:590908 CAPLUS (Copyright 2004 ACS on SciFinder (R))

Patent Family Information

<u>Patent No.</u>	<u>Kind</u>	<u>Date</u>	<u>Application</u>
<u>No.</u>	<u>Date</u>		
DE 3836149	A1	19900510	DE
1988-3836149	19881024		
EP 370219	A1	19900530	EP
1989-118836	19891011		
R: DE, FR, GB, IT			

Priority Application

DE 1988-3836149 19881024
 (OTRBU) XMAIE 38A9 2INT

Abstract

The title compds. [I; R1, R2 = halo, H, alkyl, (substituted) alkoxy, alkylthio; n = 0, 2], useful as intermediates for agrochem. fungicides, were prep'd. A mixt. of 2,3-dimethylphenol and TiCl₄ in CH₂Cl₂ was treated with F₃CSCl at 20° and then stirred 3 h to give mercaptophenol II.

THIS PAGE BLANK (USPTO)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer:

0 370 219
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89118836.9

(51) Int. Cl. 5: C07C 323/20, C07C 319/14,
C07C 317/22, C07C 315/02

(22) Anmeldetag: 11.10.89

(30) Priorität: 24.10.88 DE 3836149

Carl-Duisberg-Strasse 329

(43) Veröffentlichungstag der Anmeldung:
30.05.90 Patentblatt 90/22

D-5090 Leverkusen 1(DE)

(84) Benannte Vertragsstaaten:
DE FR GB IT

Erfinder: Blelefeldt, Dietmar, Dr.

(71) Anmelder: BAYER AG

Beuthener Strasse 13

D-5090 Leverkusen 1 Bayerwerk(DE)

D-4030 Ratingen 6(DE)

(72) Erfinder: Marhold, Albrecht, Dr.

Erfinder: Baasner, Bernd, Dr.

Wagner-Strasse 83

D-5060 Bergisch Gladbach 2(DE)

Erfinder: Schaller, Klaus, Dr.

Am Sonnenschein 38

D-5600 Wuppertal 1(DE)

(54) Neue 4-Trifluormethylmercaptophenole und Ihre Herstellung.

(57) 4-Trifluormethylmercapto-phenole der Formel

(I)

und 4-Trifluormethylsulfonyl-phenole der Formel (III)

(III),

EP 0 370 219 A1

in denen

R₁ und R₂ die in der Beschreibung angegebene Bedeutung haben und ein Verfahren zu deren Herstellung

EP 0 370 219 A1

aus den entsprechenden Phenolen durch Umsetzung mit Trifluormethylsulfenchlorid und gegebenenfalls anschließender Oxidation.

Neue 4-Trifluormethylmercapto-phenole und Ihre Herstellung

Einige wenige 4-Trifluormethylmercapto-phenole sind bekannt. Beispielsweise kann man gemäß der DE-AS 12 57 784 3-Methyl-4-trifluormethylmercaptophenol herstellen, indem man einen Kohlensäure- oder Chlorkohlensäureester, dessen Alkoholteil aus einer 3-Methyl-4-trichlormethyl-mercapto-phenol-Gruppe besteht, mit Fluorwasserstoff umsetzt und anschließend alkalisch verseift.

5 Es wurden nun 4-Trifluormethylmercapto-phenole der Formel (I) gefunden

10

15

in der

R₁ und R₂ unabhängig voneinander jeweils für C₁- bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁-bis C₄-Alkylothio und/oder Halogen oder

R₁ für Wasserstoff und

20 R₂ für C₂- bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁- bis C₄-Alkylothio oder Fluor stehen.

Als Substituenten bei gegebenenfalls substituiertem C₁-bis C₄-Alkoxy und bei gegebenenfalls substituiertem C₁-bis C₄-Alkylothio kommen bevorzugt Halogene, insbesondere Fluor in Frage.

25 Soweit R₁ und R₂ Halogen betreffen kommen Fluor, Chlor, Brom und/oder Iod in Frage.

Vorzugsweise stehen R₁ und R₂ unabhängig voneinander jeweils für Methyl, Ethyl, Isopropyl, Methoxy, Fluormethoxy, Fluorethoxy, Fluorpropoxy, Fluorbutoxy, Fluormethylthio, Fluorethylthio, Fluorpropylthio, Fluorbutylthio, Fluor, Chlor oder Brom oder

30 R₁ für Wasserstoff und R₂ für Ethyl, Isopropyl, Methoxy, Fluormethoxy, Fluorethoxy, Fluorpropoxy, Fluorbutoxy, Fluormethylthio, Fluorethylthio, Fluorpropylthio, Fluorbutylthio, Fluor, Chlor oder Brom, C₁- bis C₄-Alkyl steht vorzugsweise für Methyl, Ethyl oder Isopropyl, C₂- bis C₄-Alkyl vorzugsweise für Ethyl oder Isopropyl. Gegebenenfalls substituiertes C₁- bis C₄-Alkoxy steht vorzugsweise für Methoxy, Difluormethoxy, Difluorchlormethoxy, Trifluormethoxy, Trifluorethoxy, Tetrafluorethoxy, Trifluorchlorethoxy, Hexafluorpropoxy oder Hexafluorbutoxy.

35 Gegebenenfalls substituiertes C₁- bis C₄-Alkylothio steht vorzugsweise für Difluormethylthio, Difluorchlor-methylthio, Trifluormethylthio, Trifluorethylthio, Tetrafluorethylthio, Trifluorchlorehylthio, Hexafluorpropylthio oder Hexafluorbutylthio.

Halogen steht vorzugsweise für Fluor, Chlor oder Brom.

40 R₁ und R₂ können am aromatischen Ring beliebige Positionen einnehmen, d.h. bei R₁ in 2-Position kann R₂ in 3-, 5- oder 6-Position vorliegen und bei R₁ in 3-Position kann R₂ in 2-, 5- und 6-Position vorliegen. Die möglichen Isomeren, bei denen sich R₁ in 4- oder 5-Position befindet sind identisch mit den vorgenannten.

Besonders bevorzugte, von der Formel (I) umfaßte Einzelverbindungen enthalten folgende Reste R₁ und R₂ in den jeweils angegebenen Positionen:

45 R₁ = 3-H, R₂ = 1-Ethyl; R₁ = 3-H, R₂ = 2-Isopropyl; R₁ = 3-H, R₂ = 2-Methoxy; R₁ = R₂ = 2,6-Dimethyl; R₁ = R₂ = 2,3-Dimethyl; R₁ = R₂ = 3,5-Dimethyl; R₁ = R₂ = 2,5-Dimethyl; R₁ = 2-Methyl, R₂ = 5-Chlor; R₁ = 2-Methyl, R₂ = 3-Chlor; R₁ = 2-Ethyl, R₂ = 3-Methyl; R₁ = 2-Ethyl, R₂ = 3-Fluor; R₁ = 2-Methyl, R₂ = 3-Fluor; R₁ = 2-Methyl, R₂ = 6-Fluor; R₁ = 2-Methyl, R₂ = 5-Fluor; R₁ = 3-Methyl, R₂ = 6-Chlor und R₁ = 2-Methyl, R₂ = 6-Chlor.

50 Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung von Verbindungen der Formel (I), das dadurch gekennzeichnet ist, daß man ein Phenol der Formel (II)

5

in der

 R_1 und R_2 die bei Formel (I) angegebene Bedeutung haben

10 mit Trifluormethylsulfenchlorid umsetzt.

Die erfindungsgemäße Umsetzung zur Herstellung von Verbindungen der Formel (I) kann bei Normaldruck, erhöhtem Druck oder erniedrigtem Druck durchgeführt werden. Vorzugsweise arbeitet man bei Normaldruck.

15 Die erfindungsgemäße Umsetzung zur Herstellung von Verbindungen der Formel (I) kann beispielsweise bei Temperaturen im Bereich -20 bis +100 °C durchgeführt werden. Vorzugsweise arbeitet man bei Temperaturen im Bereich von 0 bis 60 °C.

20 Die Reaktionspartner können im Prinzip in beliebigen Mengenverhältnissen eingesetzt werden. Vorzugsweise setzt man auf 1 Mol Trifluormethylsulfenchlorid 1 bis 10 Mole des jeweiligen Phenols der Formel (II) ein. Besonders bevorzugt setzt man auf 1 Mol Trifluormethylsulfenchlorid 1,05 bis 8 Mole des jeweiligen Phenols der Formel (II) ein. Bei der Verwendung von Phenol im Überschuß kann man im allgemeinen einen quantitativen Verbrauch des Trifluormethylsulfenchlorids und eine Bildung von weniger Nebenprodukten erreichen.

25 Die erfindungsgemäße Umsetzung zur Herstellung von Verbindungen der Formel (I) kann in Anwesenheit oder Abwesenheit von Katalysatoren durchgeführt werden. Vorzugsweise arbeitet man in Gegenwart von Katalysatoren, weil dann im allgemeinen auch bei relativ niedrigen Temperaturen vorteilhaft gearbeitet werden kann. Als Katalysatoren kommen beispielsweise Lewis-Säuren oder Basen in Frage. Beispiele für Lewis-Säuren sind Eisentrichlorid, Titanetrachlorid, Bortrifluorid, Antimonpentachlorid und Aluminiumtrichlorid. Lewis-Säuren können z.B. in Mengen von 0,01 bis 0,2 Mol pro Mol Trifluormethylsulfenchlorid eingesetzt werden. Beispiele für Basen sind Alkalimetallcarbonate, Triphenylphosphin und tertiäre Stickstoffbasen. Bevorzugt sind tertiäre Amine wie Pyridin, Picolin, Triethylamin, 1,5-Diazabicyclo[4.3.0]-non-5-en und 1,8-Diazabicyclo[5.4.0]-undec-7-en. Basen können z.B. in gleicher oder höherer molarer Menge als Trifluormethylsulfenchlorid eingesetzt werden.

30 Die erfindungsgemäße Umsetzung zur Herstellung von Verbindungen der Formel (I) kann in Gegenwart oder Abwesenheit von Lösungsmitteln durchgeführt werden. Geeignete Lösungsmittel sind z.B. Ether oder Halogenalkane.

35 Phenole der Formel (II) sind bekannt und gut zugänglich. Trifluormethylsulfenchlorid ist ebenfalls bekannt und gut zugänglich.

Nach Durchführung der erfindungsgemäßen Umsetzung zur Herstellung von Verbindungen der Formel (I) erhält man häufig Reaktionsgemische, die neben dem gewünschten Produkt auch Bis-trifluormethylmercapto-phenole und gegebenenfalls unumgesetztes Ausgangsphenol enthalten und deshalb aufgearbeitet werden müssen. Die Auf trennung des Reaktionsgemisches ist in den meisten Fällen durch Destillation über eine Kolonne möglich, besonders dann, wenn wenig oder keine Bis-trifluormethylmercapto-phenole vorliegen. Teilweise kristallisiert eine Komponente, z.B. überschüssiges Ausgangsphenol oder das gebildete 4-Trifluormethylmercapto-phenol, auch aus den Reaktionsgemisch aus und kann dann durch Filtration abgetrennt werden.

40 Eine besondere Aufarbeitungsform des Reaktionsgemisches besteht darin, daß man zunächst gegebenenfalls vorhandene Lösungsmittel, Katalysatoren und/oder Hydrochloride von Basen abtrennt, z.B. durch Filtration und/oder einfache Destillation, und anschließend säulenchromatographisch an Kieselgel trennt. Als mobile Phase kann beispielsweise ein Kohlenwasserstoff, insbesondere Toluol, verwendet werden. Im allgemeinen fällt dann als erste Fraktion das Bis-trifluormethylmercapto-substituierte Phenol und als zweite Fraktion das 4-Trifluormethylmercapto-phenol der Formel (I) an. Letzteres kann man in reiner Form gewinnen, indem man die für die säulenchromatographische Trennung eingesetzte mobile Phase, z.B. Toluol, aus der entsprechenden Fraktion entfernt, z.B. durch Destillation.

45 Die vorliegende Erfindung betrifft weiterhin 4-Trifluormethylsulfonylphenole der Formel (III)

in der R₁ und R₂ die bei Formel (I) angegebenen Bedeutung haben. Auch die bevorzugten und besonders bevorzugten Bedeutungen von R₁ und R₂ in Formel (III) sind wie bei Formel (I) angegeben.

15 Schließlich betrifft die vorliegende Erfindung auch ein Verfahren zur Herstellung von 4-Fluormethylsulfonyl-phenolen der Formel (III). Dieses Verfahren ist dadurch gekennzeichnet, daß man ein 4-Trifluormethylmercapto-phenol der Formel (I) bei erhöhter Temperatur in Gegenwart einer Säure mit einem aktivierten Sauerstoff enthaltenden Oxidationsmittel oxidiert.

20 Für diese Oxidation sind beispielsweise Temperaturen im Bereich 50 bis 120 °C geeignet. Vorzugsweise arbeitet man bei 65 bis 100 °C.

Als Säuren kommen z.B. organische Säuren in Frage, wie gegebenenfalls durch Halogen substituierte aliphatische Carbonsäuren mit 1 bis 6 C-Atomen, aber auch Mineralsäuren wie Phosphorsäure oder Schwefelsäure. Bevorzugt sind Essigsäure, Propionsäure, Chloressigsäure und Trifluoressigsäure. Besonders bevorzugt ist Essigsäure.

25 Als aktivierte Sauerstoffe enthaltende Oxidationsmittel kommen beispielsweise Wasserstoffperoxid, Percarbonsäuren, Caro'sche Säure und deren Salze, Peroxodisulfat und molekularer Sauerstoff in Kombination mit Katalysatoren in Frage. Bevorzugt sind Wasserstoffperoxid, Caro'sche Säure und deren Salze, insbesondere Wasserstoffperoxid, welches beispielsweise in 10 bis 50 gew.-%iger wäßriger Lösung eingesetzt werden kann. Das jeweils eingesetzte Oxidationsmittel kann gegebenenfalls in Wasser und/oder einem organischen Lösungsmittel gelöst sein. Die eingesetzten aktiven Sauerstoff enthaltenden Oxidationsmittel müssen nicht unbedingt in der eingesetzten Form mit der Verbindung der Formel (I) reagieren, sondern sie können auch vor dieser Reaktion ganz oder teilweise in andere aktivierte Sauerstoff enthaltende Oxidationsmittel umgewandelt werden. Beispielsweise kann aus Wasserstoffperoxid und Schwefelsäure Caro'sche Säure oder aus Wasserstoffperoxid und Essigsäure Peressigsäure entstehen. Ebenso kann man das jeweils gewünschte aktivierte Sauerstoff enthaltende Oxidationsmittel auch erst in situ entstehen lassen, z.B. Caro'sche Säure aus Wasserstoffperoxid und Schwefelsäure.

Das Oxidationsmittel wird vorzugsweise in der stöchiometrisch erforderlichen Menge oder in einem Überschuß von bis zu 100 Mol-% eingesetzt.

40 Das erfindungsgemäße Verfahren zur Herstellung von 4-Trifluormethylsulfonyl-phenolen der Formel (III) kann in Anwesenheit oder Abwesenheit von Lösungsmitteln durchgeführt werden. Als Lösungsmittel sind Beispieleweise Ether, wie Dioxan oder Diglyme geeignet. Beim Arbeiten in Gegenwart organischer Säuren, insbesondere Essigsäure, kann die Säure auch als Lösungsmittel fungieren.

45 Die Aufarbeitung des Reaktionsgemisches kann beispielsweise so erfolgen, daß man eventuell vorhandenes Überschüssiges Oxidationsmittel zerstört und dann das 4-Trifluormethylsulfonyl-phenol der Form (III) durch Eingießen in Wasser ausfällt oder durch Abdestillieren von Lösungsmittel und/oder Säure zur Kristallisation bringt und abschließend jeweils filtriert.

50 Es ist ausgeprochen überraschend, daß es erfindungsgemäß gelingt, 4-Trifluormethylsulfonyl-phenole mit guten Ausbeuten aus den entsprechenden Mercapto-phenolen zu erhalten, denn es sind eine ganze Reihe von Verfahren bekannt, bei denen aus Phenolen durch Oxidation mit Wasserstoffperoxid oder Persäuren die entsprechenden Chinone entstehen.

Die erfindungsgemäßen Verbindungen der Formeln (I) und (III) sind wertvolle Zwischenprodukte zur Herstellung von Produkten, die eine besonders gute Wirkung gegen pflanzenschädigende Pilze haben. Beispielsweise kann man die Verbindungen der Formeln (I) oder (III) mit im aromatischen Kern halogenierten Acetophenonen zu Verbindungen des Typs

umsetzen, diese an der CH₃-Gruppe halogenieren, und dann durch Umsetzung mit einem Thioharnstoffderivat des Typs

10

15

zu Verbindungen des Typs

20

25

umsetzen, die eine gute Wirkung gegen pflanzenschädigende Pilze haben. Die letztgenannten Verbindungen sind Gegenstand einer anderen eignen Patentanmeldung.

30

Beispiele:

Beispiele 1 bis 12:

35

Allgemeine Arbeitsvorschrift:

In 800 ml Di-tert.-butylether wurden 1,64 Mol Phenol der Formel (II) vorgelegt, 1,8 Mol Pyridin zugegeben und bei 20 °C 1,65 bis 1,70 Mol Trifluormethylsulfenchlorid eingeleitet. Dann wurde unter Röhren 4 Stunden auf 50 °C erwärmt. Danach wurde Stickstoff durch das Reaktionsgemisch geblasen (Gasableitung über einen mit wäßrigem Ammoniak gefüllten Wäscher). Danach wurde Pyridinhydrochlorid durch Filtration abgetrennt, leichtflüchtige Bestandteile (im wesentlichen Di-tert.-butylether) unter verminderter Druck abdestilliert und so rohes 4-Trifluormethylmercapto-phenol erhalten. Die Reinigung erfolgte durch Feindestillation oder durch Chromatographie, wobei die chromatographische Reinigung wie folgt durchgeführt wurde:

Eine Säule (lichte Weite 45 mm) wurde mit einer Aufschlämmung aus Kieselgel in Toluol bis zu einer Höhe von 40 cm gefüllt. Das rohe 4-Trifluormethylmercapto-phenol wurde in wenig Toluol gelöst in die Säule eingetragen. Danach wurde mit Toluol chromatographiert. Aus der jeweiligen 2. Fraktion wurde das Toluol unter verminderter Druck abdestilliert und so die 4-Trifluormethylmercaptophenole in reiner Form gewonnen.

Die im einzelnen durchgeführten Beispiele sind in Tabelle 1 zusammengefaßt.

55

Tabelle 1

Beispiel Nr.	Einsatzprodukt	gereinigtes Endprodukt	physikalische Daten des gereinigten Reaktionsprodukt (n.b. = nicht bestimmt)
1	A = C ₂ H ₅ ; B = C = D = Wasserstoff	97-98/10	1.5030 n.b.
2	A = CH(CH ₃) ₂ ; B = C = D = Wasserstoff	92-94/10	1.4955 n.b.
3	A = OCH ₃ ; B = C = D = Wasserstoff	94-96/12	1.5070 n.b.
4	A = D = CH ₃ ; B = C = Wasserstoff	122-124/22	n.b. 38-40
5	A = B = CH ₃ ; C = D = Wasserstoff	120-123/16	1.5174 n.b.
6	B = C = CH ₃ ; A = D = Wasserstoff	127-130/16	n.b. 68
7	A = CH ₃ ; B = Cl; C = D = Wasserstoff	125-128/16	n.b. 48-50*)
8	A = CH ₃ ; C = Cl; B = D = Wasserstoff	107-108/10	1.5280 n.b. *)
9	A = C = CH ₃ ; B = D = Wasserstoff	104-106/10	1.5090 n.b.
10	A = Cl; C=CH ₃ ; B = D = Wasserstoff	125 /14	1.5380 n.b.
11	A = C(CH ₃) ₃ ; B = C = D = Wasserstoff	110-112/10	1.4945 n.b.
12	A = C = D = Wasserstoff; B = F	72- 73/10	1.5045 n.b.

	Siedepunkt °C/mbar	n _D ²⁰	Schmelz- punkt °C
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

In diesen Beispielen wurde das Produkt durch Chromatographie gereinigt, sonst wurden die Produkte durch Feindestillation gereinigt.

n.b. nicht bestimmt

*)

Beispiel 13:

5 4-Trifluormethylmercapto-2,3-dimethylphenol durch $TiCl_4$ -Katalyse.
In 500 ml Dichlormethan wurden 100 g 2,3-Dimethylphenol vorgelegt und 10 ml Titanetetrachlorid zugegeben. Dann leitete man 50 g Trifluormethylsulfenchlorid bei 20 °C ein und rührte 3 Stunden nach. Danach wurden 100 ml Wasser eingerührt, die Phasen getrennt und die organische Phase destilliert. Nach
10 einem Vorlauf, bestehend aus Dimethylphenol und Produkt, destillierten bei 85-88 °C/6mbar 68 g Produkt.

Beispiele 14 bis 17:

15 Allgemeine Arbeitsvorschrift:
In 80 ml Essigsäure wurden 0,08 Mol eines 4-Trifluormethylmercapto-phenols der Formel (I) vorgelegt, 35 g 35 %iges Wasserstoffperoxid zugetropft und das Gemisch für 3 Std. auf 90 °C erwärmt. Nach dem
20 Abkühlen wurde das Gemisch in 200 ml Wasser eingerührt und das ausgefallene Produkt filtriert.
Die im einzelnen durchgeführten Beispiele sind in Tabelle 2 zusammengefaßt.

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2

Beispiel Nr.	Einsatzprodukt	Reaktionsprodukt	Schmelzpunkt [°C]	Ausbeute [% d.Th.]
14	$\text{A} = \text{OCH}_3; \text{B} = \text{C} = \text{D} = \text{Wasserstoff}$		121	83
15	$\text{A} = \text{CH}_3; \text{C} = \text{Cl}; \text{B} = \text{D} = \text{Wasserstoff}$		111	91
16	$\text{A} = \text{B} = \text{CH}_3; \text{C} = \text{D} = \text{Wasserstoff}$		83	74
17	$\text{A} = \text{D} = \text{CH}_3; \text{B} = \text{C} = \text{Wasserstoff}$		151	94
18	$\text{B}, \text{D} = \text{CH}_3, \text{A}, \text{C} = \text{H}$		72 °C	34
19	$\text{A} = \text{Isopropyl}, \text{B}, \text{C}, \text{D} = \text{H}$		69-70 °C	78

1. 4-Trifluormethylmercapto-phenole der Formel (I)

in der

R₁ und R₂ unabhängig voneinander jeweils für C₁-bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁-bis C₄-Alkylthio und/oder Halogen oder

15 R₁ für Wasserstoff und

R₂ für C₂- bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁- bis C₄-Alkylthio oder Fluor

stehen.

20 2. 4-Trifluormethylmercapto-phenole gemäß Anspruch 1, dadurch gekennzeichnet, daß

R₁ und R₂ unabhängig voneinander jeweils für Methyl, Ethyl, Isopropyl, Methoxy, Fluormethoxy, Fluorethoxy, Fluorpropoxy, Fluorbutoxy, Fluormethylthio, Fluorethylthio, Fluorpropylthio, Fluorbutylthio, Fluor, Chlor oder brom steht.

25 3. Verfahren zur Herstellung von 4-Trifluormethylmercapto-phenolen der Formel (I)

25

in der

R₁ und R₂ unabhängig voneinander jeweils für C₁-bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁-bis C₄-Alkylthio und/oder Halogen oder

R₁ für Wasserstoff und

40 R₂ für C₂- bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁- bis C₄-Alkylthio oder Fluor stehen, dadurch gekennzeichnet, daß man ein Phenol der Formel (II)

45

in der

50 R₁ und R₂ die bei Formel (I) angegebene Bedeutung haben mit Trifluormethylsulfenchlorid umgesetzt.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man bei Temperaturen im Bereich -20 bis +100 °C arbeitet und man auf 1 Mol Trifluormethylsulfenchlorid 1 bis 10 Mole eines Phenols der Formel (II) einsetzt.

55 5. Verfahren nach Ansprüchen 3 und 4, dadurch gekennzeichnet, daß man in Gegenwart von Katalysatoren arbeitet.

6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man in Gegenwart von Lewis-

Säuren arbeitet.

7. Verfahren nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man in Gegenwart von Basen arbeitet.

8. 4-Trifluormethylsulfonyl-phenole der Formel (III)

5

10

15

25

in der

R₁ und R₂ unabhängig voneinander jeweils für C₁-bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁-bis C₄-Alkylthio und/oder Halogen oder

20 R₁ für Wasserstoff und

R₂ für C₂- bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁- bis C₄-Alkylthio oder Fluor stehen.

25 9. Verfahren zur Herstellung von 4-Trifluormethylsulfonyl-phenolen der Formel (III)

30

35

40

in der

R₁ und R₂ unabhängig voneinander jeweils für C₁-bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁-bis C₄-Alkylthio und/oder Halogen oder

R₁ für Wasserstoff und

R₂ für C₂- bis C₄-Alkyl, gegebenenfalls substituiertes C₁- bis C₄-Alkoxy, gegebenenfalls substituiertes C₁- bis C₄-Alkylthio oder Fluor stehen,

45 dadurch gekennzeichnet, daß man ein 4-Trifluormethylmercapto-phenol der Formel (I)

50

55

in der R₁ und R₂ die gleiche Bedeutung haben wie in Formel (III), bei erhöhter Temperatur in Gegenwart einer Säure mit einem aktivierten Sauerstoff enthaltenden Oxidationsmittel oxidiert.

EP 0 370 219 A1

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man bei 50 bis 120 °C, in Gegenwart einer gegebenenfalls durch Halogen substituierten aliphatischen Carbonsäure mit 1 bis 6 C-Atomen und mit Wasserstoffperoxid, Percarbonsäuren, Caro'scher Säure oder deren Salze, Peroxodisulfaten oder molekularem Sauerstoff in Kombination mit Katalysatoren als Oxidationsmittel arbeitet.

5

10

15

20

25

30

35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER TEILRECHERCHENBERICHT,
der nach Regel 45 des Europäischen Patent-
übereinkommens für das weitere Verfahren als
europäischer Recherchenbericht gilt

Nummer der Anmeldung

EP 89 11 8836

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
X	EP-A-0 175 188 (NIHON TOKUSHU NOYAKU SEIZO) * Beispiel VIII-4 * --	1-2	C 07 C 323/20 C 07 C 319/14 C 07 C 317/22 C 07 C 315/02
A	DE-B-1 210 881 (BAYER) -----		

(07920) NHAGS BUAN 2147

RECHERCHIERTE SACHGEBiete (Int. Cl.4)

C 07 C 323/00
C 07 C 315/00
C 07 C 317/00

UNVOLLSTÄNDIGE RECHERCHE

Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung den Vorschriften des Europäischen Patentübereinkommens so wenig, daß es nicht möglich ist, auf der Grundlage einiger Patentansprüche sinnvolle Ermittlungen über den Stand der Technik durchzuführen.

Vollständig recherchierte Patentansprüche:

2

Unvollständig recherchierte Patentansprüche:

1, 3-10

Nicht recherchierte Patentansprüche:

Grund für die Beschränkung der Recherche:

Da in den Patentansprüchen das ungenugend beschreibende Satzteil "gegebenfalls substituierte" ohne nähere Angabe des Substituenten verwendet ist, ist eine vollständige Recherche unmöglich.

Recherchenort	Abschlußdatum der Recherche	Prüfer
Den Haag	22-01-1990	VAN GEYT
KATEGORIE DER GENANNTEN DOKUMENTEN		
X : von besonderer Bedeutung allein betrachtet		E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie		D : in der Anmeldung angeführtes Dokument
A : technologischer Hintergrund		L : aus andern Gründen angeführtes Dokument
O : nichtschriftliche Offenbarung		& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument
P : Zwischenliteratur		
T : der Erfindung zugrunde liegende Theorien oder Grundsätze		

THIS PAGE BLANK (USPTO)