Final_Project_Clean

Yuka, Adela, Jack

2022-04-30

1. The statement of the problem

NBA players are on average the highest-paid athletes in the world, according to Statista.com. The NBA players get paid an average salary of around 7.5 million. The median salary is about 3.8 million. The highest salary in the NBA for the 2016-2017 season is about 25 million, including superstar LeBron James from Cleveland Cavaliers.

Oftentimes sports players would seem to have major contracts with really high annual salaries (some people would even think they should not get paid so much).

Since of one our group members is a super fan of the NBA, he believes that those basketball players are paid by their season total performance. However, other members in our group think otherwise.

Through this project, we want to find out whether the NBA players and their season total performance have a strong positive correlation.

For this project, we would use the 2016-2017 season total performance and actual salaries to create a prediction model. Then, we fit the 2017-2018 season total performance to the prediction model, see the difference between the salaries we expected during 2017-2018 season and the actual salaries in 2017-2018.

Purpose:

- 1. Discover which predictors variables are critical to the salaries of the NBA players
- 2. Use a multiple regression model to predict NBA players' salaries
- 3. Examine the difference between the predicted salaries and actual salaries

2. Data Section

Data source

Our season total performance and salary data sets were collected from Basketball Reference (https://www.basketball-reference.com/)

Processing the data

1. Data set:

Combines NBA player performance and salary data by using player ID and team. During the regular season, some of the players will change their team, so they have two different performances and salaries.

2. Data cleaning:

We combined three datasets (NBA player salaries summary 1985-2018, season performance for both 2016-2017 and 2017-2018) from Basketball Reference. We joined the data sets based on the playerID and their team

names. Originally, the data set has a total of 34 variables, including 6 categorical variables, and 28 continuous variables.

In the first step of data cleaning, we removed 20 variables that seem to be either duplicated or are a combination of other variables. (i.e. trb = orb + drb). Later, we dropped the person who has the total performances as they transferred the teams during the season in order to focus on their performance.

3. Model Building Process

```
NBA <- read_csv("NBA.csv")</pre>
## Rows: 418 Columns: 35
## -- Column specification -----
## Delimiter: ","
## chr (6): player, player_id, trans_team, pos, tm, name
## dbl (29): rk, age, g, gs, mp, fg, fga, fg%, 3p, 3pa, 3p%, 2p, 2pa, 2p%, efg%...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(NBA, 5)
## # A tibble: 5 x 35
##
        rk player
                     player_id trans_team pos
                                                    age tm
                                                                                     fg
                                                                   g
                                                                        gs
##
     <dbl> <chr>
                      <chr>>
                                <chr>
                                            <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1
         1 Alex Abr~ abrinalO1 none
                                            SG
                                                     23 OKC
                                                                  68
                                                                            1055
                                                                                    134
                                                                         6
         2 Quincy A~ acyqu01
                                trans
                                           PF
                                                     26 DAL
                                                                   6
                                                                         0
                                                                              48
                                                                                      5
         2 Quincy A~ acyqu01
                                                                  32
                                                                                     65
## 3
                                trans
                                           PF
                                                     26 BRK
                                                                         1
                                                                             510
## 4
         3 Steven A~ adamsst01 none
                                            С
                                                     23 OKC
                                                                  80
                                                                        80
                                                                            2389
                                                                                    374
         4 Arron Af~ afflaar01 none
                                            SG
                                                     31 SAC
                                                                  61
                                                                        45
                                                                            1580
                                                                                    185
     ... with 24 more variables: fga <dbl>, `fg%` <dbl>, `3p` <dbl>, `3pa` <dbl>,
       `3p%` <dbl>, `2p` <dbl>, `2pa` <dbl>, `2p%` <dbl>, `efg%` <dbl>, ft <dbl>,
## #
## #
       fta <dbl>, `ft%` <dbl>, orb <dbl>, drb <dbl>, trb <dbl>, ast <dbl>,
## #
       stl <dbl>, blk <dbl>, tov <dbl>, pf <dbl>, pts <dbl>, name <chr>,
       `16_17_salary` <dbl>, `17_18salary` <dbl>
## #
```

Data Set - salary with 14 predictors variables

The predictor variables include 2 categorical variables and 12 continuous variables.

```
## # A tibble: 5 x 15
                                `3p` `3p%`
                                             `2p` `2p%` `ft%`
                                                                                     blk
##
     trans_team pos
                        `fg%`
                                                                  trb
                                                                        ast
                                                                               stl
##
                 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                             <dbl>
                                                                                   <dbl>
     <chr>
                                                                      <dbl>
                        0.393
                                  94 0.381
                                               40 0.426 0.898
                                                                   86
                                                                         40
                                                                                37
## 1 none
                 SG
                                                                                        8
                        0.294
## 2 trans
                 PF
                                   1 0.143
                                                4 0.4
                                                         0.667
                                                                    8
                                                                          0
                                                                                 0
                                                                                        0
## 3 trans
                 PF
                        0.425
                                  36 0.434
                                               29 0.414 0.754
                                                                  107
                                                                         18
                                                                                14
                                                                                       15
## 4 none
                 C
                        0.571
                                   0 0
                                              374 0.572 0.611
                                                                  613
                                                                         86
                                                                                89
                                                                                       78
                                              123 0.457 0.892
                                                                  125
## 5 none
                 SG
                        0.44
                                  62 0.411
                                                                                        6
## # ... with 3 more variables: tov <dbl>, pts <dbl>, `16_17_salary` <dbl>
```

Correlation Analysis

Based on the correlation plot, we can see the strongest linear relationship occurs between salary and points, although there could be a bit of a curvi-linear relationship. 3p, 2p, trb, ast, stl, tov have strong relationships as well.

Checking Y Predictable

Distribution of 2016-2017 Salary

According to the histogram plot, we can see that the plot is right-skewed. To remedy the issue, we transformed the salary by taking logs.

Log Salary for Better Prediction

```
original_data %>%
  mutate(lnsalary = log(`16_17_salary`)) ->
  original_data

qplot(data = original_data, x = lnsalary, geom = "histogram",
    bins = 20, color = I("black"), fill = I("blue"),
    main = "Distribution of ln(2016-2017 Salary)")
```

Distribution of In(2016–2017 Salary)

Distribution of 2016–2017 Salary

Examining the histogram of log salary, we see possibly a very slight left skew, but it is closer to symmetric than without transform salary. According to the box plt, there are some of the outlines.

Original Model(only continuous variables)

```
original_data %>%
  select(-`16_17_salary`, -pos , -trans_team) ->
  new_og_data
og_model <- lm(lnsalary ~ ., data = new_og_data)</pre>
mult_og <- tidy(og_model)</pre>
mult_og
## # A tibble: 13 x 5
##
      term
                   estimate std.error statistic p.value
##
      <chr>
                                <dbl>
                                           <dbl>
                      <dbl>
                                                    <dbl>
   1 (Intercept) 13.0
                             0.509
                                         25.6
                                                 9.64e-87
                                          4.29
                                                 2.19e- 5
    2 `fg%`
                    6.46
                             1.50
##
##
    3 `3p`
                    0.0111
                             0.00406
                                          2.74
                                                 6.46e- 3
##
                   -0.0287
                                         -0.0600 9.52e- 1
   4 `3p%`
                             0.479
   5 `2p`
##
                   0.00425
                             0.00292
                                         1.46
                                                 1.46e- 1
    6 `2p%`
                   -5.02
                             1.18
                                         -4.24
                                                 2.79e- 5
##
##
    7 `ft%`
                    0.400
                             0.504
                                          0.793 4.28e- 1
                   0.00241 0.000644
                                                 2.00e- 4
##
    8 trb
                                         3.75
                   0.00133
                             0.00105
                                                 2.03e- 1
    9 ast
                                         1.27
## 10 stl
                   0.00191
                             0.00318
                                         0.602 5.48e- 1
## 11 blk
                   -0.00397 0.00314
                                         -1.27
                                                 2.07e- 1
```

```
## 12 tov
                   -0.00240 0.00309
                                          -0.776 4.38e- 1
## 13 pts
                   -0.00109 0.00116
                                          -0.940 3.48e- 1
  • Fitted model: ln(salary) = 13.05 + 6.5 \cdot fg + 0.01 \cdot 3p - 0.028 \cdot 3p + 0.004 \cdot 2p - 5.02 \cdot 2p + 0.39 \cdot ft +
     0.0024 \cdot trb + 0.0013 \cdot ast + 0.0019 \cdot stl
g_mult_og <- broom::glance(og_model)</pre>
g_mult_og
## # A tibble: 1 x 12
##
     r.squared adj.r.squared sigma statistic p.value
                                                              df logLik
                                                                           AIC
                                                                                  BIC
##
                         <dbl> <dbl>
                                          <dbl>
                                                    <dbl> <dbl>
                                                                  <dbl> <dbl> <dbl>
                         0.410 1.10
## 1
         0.427
                                           25.1 5.40e-42
                                                              12 -627. 1283. 1339.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
og anova <- lb anovat lm(og model, reg collapse = TRUE)
og_anova
##
         Source Df
                            SS
                                       MS
                                                  F
## 1 Regression 12 366.3515 30.529290 25.11287 5.396828e-42
          Error 405 492.3517 1.215683
## 2
                                                 NA
                                                               NA
## 3
          Total 417 858.7032 2.059240
                                                 NA
                                                               NA
vif(og_model)
        `fg%`
                      `3p`
                                 `3p%`
                                              `2p`
                                                         2p%
##
                                                                     `ft%`
                                                                                   trb
               17.304773
##
     5.212855
                             1.377049
                                        58.726716
                                                     4.390578
                                                                 1.318019
                                                                             5.222122
##
           ast
                       stl
                                  blk
                                               tov
                                                           pts
```

According to the VIF, it shows our original model isn't good enought to be our final model. Some of the variables are more than 5.

12.541091 107.912304

All Subset Models

6.799010

3.645980

2.771145

##

```
all_subsets_model <- ols_step_all_possible(og_model)
plot(all_subsets_model)</pre>
```


• Based on the R^2_{adj} , Mallow's cp, and AIC criteria, we would choose the model that contains all 5 variables (Model 793). Model 793 has 5 variables, Cp = 6.09, AIC = 1275.92, $R^2\{adj\} = 0.41$.

Reduce Model based on All Subset Models Method

```
reduce <- NBA %>%
  mutate(lnsalary = log(`16 17 salary`)) %>%
  select(lnsalary, fg%, 3p, 2p, 2p, trb, pos, trans_team)
reducemodel <- lm(lnsalary ~`fg%' + `3p' + `2p'+`2p%'+ trb , data = new_og_data)</pre>
reduce_model_t <- tidy(reducemodel)</pre>
reduce_model_t
## # A tibble: 6 x 5
##
     term
                 estimate std.error statistic
                                                  p.value
##
     <chr>
                     <dbl>
                               <dbl>
                                         <dbl>
## 1 (Intercept) 13.4
                            0.320
                                         42.0 7.68e-151
## 2 `fg%`
                            1.46
                                          4.32 1.92e- 5
                  6.31
## 3 `3p`
                  0.00857 0.00114
                                          7.51 3.76e- 13
## 4 `2p`
                  0.00172 0.000687
                                          2.50 1.29e- 2
## 5 `2p%`
                 -5.04
                            1.16
                                         -4.34 1.76e- 5
## 6 trb
                  0.00183 0.000479
                                          3.81 1.58e-
*Reduce model: ln(salary) = 13.441 + 6.308 \cdot fg + 0.009 \cdot 3p + 0.002 \cdot 2p - 5.039 \cdot 2p + 0.002 \cdot trb
reduce_model_g <- broom::glance(reducemodel)</pre>
reduce_model_g
## # A tibble: 1 x 12
     r.squared adj.r.squared sigma statistic p.value
                                                           df logLik
                                                                        AIC
                                                                              BIC
                        <dbl> <dbl>
                                        <dbl>
                                                  <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
         0.417
                        0.410 1.10
                                         58.8 3.76e-46
                                                            5 -631. 1276. 1304.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
reduce_model_a <- lb_anovat_lm(reducemodel)</pre>
reduce_model_a
                                                F
         Source Df
                           SS
                                     MS
                 5 357.7327 71.546533 58.84013 3.755897e-46
## 1 Regression
          Error 412 500.9705 1.215948
                                               NΑ
          Total 417 858.7032 2.059240
                                                            NA
tidy(reducemodel, conf.int = "TRUE", conf.level = 0.98)
## # A tibble: 6 x 7
##
     term
                 estimate std.error statistic
                                                  p.value conf.low conf.high
##
     <chr>
                               <dbl>
                                         <dbl>
                                                               <dbl>
                                                                         <dbl>
                     <dbl>
                                                    <dbl>
## 1 (Intercept) 13.4
                            0.320
                                         42.0 7.68e-151 12.7
                                                                      14.2
## 2 `fg%`
                                          4.32 1.92e- 5 2.90
                  6.31
                            1.46
                                                                       9.71
## 3 `3p`
                                          7.51 3.76e- 13 0.00590
                  0.00857 0.00114
                                                                       0.0112
## 4 `2p`
                  0.00172 0.000687
                                          2.50 1.29e- 2 0.000112
                                                                       0.00332
## 5 `2p%`
                 -5.04
                            1.16
                                         -4.34 1.76e- 5 -7.75
                                                                      -2.33
## 6 trb
                  0.00183 0.000479
                                          3.81 1.58e- 4 0.000707
                                                                       0.00294
vif(reducemodel)
                 `3p`
                          `2p`
                                  `2p%`
      `fg%`
```

4.896551 1.364878 3.252252 4.211965 2.888815

According to the VIF, it shows our original model is good enough to be our final model, all of the variables

are less than 5.

Adding Dummy Variables - Insalary with 5 continuous predictors variables

We want to figure out will the position they play and transfer to different teams during the regular season influence their salaries?

Since some players had transferred teams during the season, we decided to create a dummy variable for transfer team or not (0=did not transfer, 1=transferred). We also created dummy variables for their positions to predict salary based on the position they played (c = center, pf = power forward, sf = small forward, pg = point guard, and sg = shooting guard; 0 = did not play in position, 1 = played in that position).

```
results <- dummy_cols(.data = reduce, select_columns = c("pos","trans_team"))
results %>%
  select(pos, pos_C, pos_PF, pos_PG, pos_SF, pos_SG, trans_team, trans_team_none,
         trans_team_trans) %>%
 head(6)
## # A tibble: 6 x 9
           pos_C pos_PF pos_PG pos_SF pos_SG trans_team trans_team_none
##
     <chr> <int> <int> <int>
                                 <int> <int> <chr>
                                                                      <int>
## 1 SG
               0
                       0
                              0
                                      0
                                             1 none
                                                                          1
## 2 PF
               0
                              0
                                      0
                                             0 trans
                                                                          Λ
                       1
                              0
                                                                          0
## 3 PF
               0
                       1
                                      0
                                             0 trans
## 4 C
                       0
                              0
                                      0
                                                                          1
                1
                                             0 none
                       0
                              0
                                      0
## 5 SG
               0
                                             1 none
                                                                          1
## 6 C
               1
                       0
                              0
                                      0
                                             0 none
                                                                          1
## # ... with 1 more variable: trans_team_trans <int>
newresult <- dummy_cols(.data = reduce, select_columns = c("pos","trans_team"),</pre>
                         remove_selected_columns = TRUE)
rename(.data = newresult, trans = trans_team_trans) -> newdummy
dummy model <- lm(lnsalary ~ ., data = newdummy)</pre>
dumtidyout <- tidy(dummy model)</pre>
dumglout <- glance(dummy model)</pre>
dumtidyout
```

```
## # A tibble: 13 x 5
##
                      estimate std.error statistic
      term
                                                      p.value
##
      <chr>
                         <dbl>
                                   <dbl>
                                             <dbl>
                                                        <dbl>
##
   1 (Intercept)
                      12.3
                                0.399
                                             30.7
                                                    3.76e-108
##
   2 `fg%`
                       6.36
                                1.50
                                              4.24
                                                    2.72e- 5
##
   3 `3p`
                       0.00867 0.00119
                                              7.26
                                                    1.99e- 12
##
   4 `2p`
                       0.00178 0.000696
                                              2.56
                                                    1.07e-
  5 `2p%`
##
                      -4.95
                                1.16
                                             -4.26
                                                    2.56e-
                                                            5
##
                       0.00132 0.000525
                                              2.51
                                                    1.26e-
  6 trb
                                                    2.27e-
##
  7 pos_C
                       0.274
                                0.226
                                              1.21
                                                            1
##
                       0.451
                                0.173
                                              2.60 9.56e-
   8 pos PF
## 9 pos_PG
                       0.313
                                0.157
                                              1.99 4.71e-
                                                            2
## 10 pos SF
                       0.516
                                0.168
                                              3.07 2.27e- 3
## 11 pos SG
                      NA
                                             NA
                                                   NA
                               NA
```

```
## 12 trans_team_none 0.955
                                 0.225
                                               4.25 2.65e- 5
## 13 trans
                      NA
                                NΑ
                                              NΑ
                                                     NΑ
dumglout
## # A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value
                                                           df logLik
                                                                      AIC
##
                        <dbl> <dbl>
                                        <dbl>
                                                  <dbl> <dbl>
                                                               <dbl> <dbl> <dbl>
## 1
         0.459
                       0.446 1.07
                                         34.5 1.86e-48
                                                           10 -615. 1255. 1303.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
dummy_a <- lb_anovat_lm(dummy_model, reg_collapse = FALSE)</pre>
dummy a
                                                              F
##
               Source Df
                                    SS
                                                MS
## 1
                 `fg%`
                        1 45.7115354
                                        45.7115354
                                                    40.0336807 6.589589e-10
## 2
                 `3p`
                        1 181.4834296 181.4834296 158.9412740 5.413203e-31
                 `2p`
## 3
                        1 89.2304456
                                        89.2304456
                                                    78.1470834 2.918848e-17
                `2p%`
## 4
                        1 23.6276402 23.6276402 20.6928382 7.125296e-06
## 5
                 trb
                        1 17.6796146 17.6796146 15.4836201 9.784910e-05
                            0.1990211
                                                      0.1743006 6.765379e-01
## 6
                pos_C
                                         0.1990211
                        1
## 7
               pos_PF
                        1
                            1.8985145
                                         1.8985145
                                                      1.6626990 1.979716e-01
## 8
                                        0.3603853
                                                     0.3156217 5.745600e-01
               pos_PG
                        1
                            0.3603853
                        1 13.1593822 13.1593822 11.5248482 7.541662e-04
               pos_SF
                        1 20.6296784 20.6296784 18.0672548 2.646649e-05
## 10 trans_team_none
## 11
                Error 407 464.7235673
                                         1.1418269
                                                             NΑ
                                                                           NΑ
## 12
                Total 417 858.7032143
                                                                           NΑ
                                         2.0592403
                                                             NA
  • Reduce model: ln(salary) = 12.277 + 6.357 \cdot fg + 0.009 \cdot 3p + 0.002 \cdot 2p - 4.949 \cdot 2p + 0.001 \cdot trb + 0.274
     \cdot posC + 0.451 \cdot pos_PF + 0.313 \cdot posPG + 0.516 \cdot posSF + 0.955 \cdot transteamnone
Comparing models
dumglout #dummy models
## # A tibble: 1 x 12
     r.squared adj.r.squared sigma statistic p.value
                                                           df logLik
                       <dbl> <dbl>
                                                  <dbl> <dbl> <dbl> <dbl> <dbl> <
##
         <dbl>
                                        <dbl>
         0.459
                        0.446 1.07
                                         34.5 1.86e-48
                                                           10 -615. 1255. 1303.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
g_mult_og #full model wihtout dummy
## # A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value
                                                           df logLik
                                                                        AIC
         <dbl>
                       <dbl> <dbl>
                                        <dbl>
                                                 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
         0.427
                       0.410 1.10
                                         25.1 5.40e-42
                                                           12 -627. 1283. 1339.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
reduce_model_g # reduce model
## # A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value
                                                           df logLik
                                                                        AIC
                        <dbl> <dbl>
         <dbl>
                                        <dbl>
                                                  <dbl> <dbl> <dbl> <dbl> <dbl> <
         0.417
                        0.410 1.10
                                         58.8 3.76e-46
                                                            5 -631. 1276. 1304.
```

For the full model without dummy variables (12 variables) $R_{adj}^2 = 0.4096448$ For the reduced model (5

... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

variables) $R_{adj}^2 = 0.4095163$

For the reduce model including dummy variables (10 variables) $R_{adj}^2 = 0.4455106$

In terms of R_{adj}^2 , the reduce model including dummy variables does a better job fitting the data as it has the higher R_{adj}^2

Model Testing

Assumtion autoplot(dummy_model)

Based on the fitted residual plot, it seems some multi-linear regression assumptions are violated.

```
# Residual normality test
shapiro.test(dummy_model$residuals)
```

```
##
## Shapiro-Wilk normality test
##
## data: dummy_model$residuals
## W = 0.98822, p-value = 0.00187
```

According to the Shapiro-Wilk normality test with a test statistic of 0.99 and an associated p-value = 0.00187, since the p-value is below 0.05 which indicates the NBA Dummy data significantly deviate from a normal distribution.

```
# Residual independence test
durbinWatsonTest(dummy_model)
```

lag Autocorrelation D-W Statistic p-value

```
##
             0.09443852
                              1.80766
                                        0.042
  Alternative hypothesis: rho != 0
```

- H_0 = residual from the regression are not auto-correlated (autocorrelation coefficient, p=0)
- H_0 : Alter = residuals from the regression are auto-correlated (AC, p > 0)

According to the Durbin-Watson test with a test statistic of 1.81 and an associated p-value = 0.024, since the

```
test statistic fell into the range of 0 to 2, which indicates that that there is a positive autocorrelation.
# Residual variance homogeneity test
ncvTest(dummy_model)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 16.55129, Df = 1, p = 4.7352e-05
According to the non-constant variance score test with a chisquare 16.5513 and an associated p-value =
0.000047, which indicates that there has a heteroskedasticity issue.
# Testing for Non-Constant Variance Residual by using Breusch-Pagan
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
  The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
bptest(dummy model)
##
##
    studentized Breusch-Pagan test
##
```

data: dummy_model ## BP = 28.039, df = 10, p-value = 0.001779 Test: * $H_0: \gamma_1 = 0 * H_1: \gamma_1 \neq 0$

According to the Breusch-Pagan Test with a test statistic = 28.039 and an associated p-value = 0.0018, under the assumption that H_0 is true (variance of the disturbance terms is constant), it would be quite unlikely that we would observe a test statistic of our magnitude or larger.

Consequently, we can reject H_0 and conclude there is a sufficient statistical evidence to indicate that the variance is changing relative to the magnitude of Insalary, which means we need to take further procedure to fix the issues.

As the results from several model testing, we can confirm there is some heteroskedascity issues with our residual and fitted value, as well as the residual normality.

Fixing Heteroskedasticity by Using WLS

Since the residual plot show that the error look like uneven distribution, it violates the assumption of homogeneity of variance. As the result, it has heterodasticity issue, so we solve this violation by using WLS.

```
refit <- lm(abs(residuals(dummy model)) ~ fitted(dummy model))</pre>
refit
```

##

```
## lm(formula = abs(residuals(dummy_model)) ~ fitted(dummy_model))
## Coefficients:
##
            (Intercept)
                         fitted(dummy_model)
##
                 2.5359
                                       -0.1131
wts <- 1 / fitted(refit)^2
Final Model
Test: H_0: \beta_1 = \beta_2 = ... = \beta_{10} = 0 H_1: \beta_i \neq 0 for some i = 1, 2, ... 10
lm_wls <- lm(lnsalary ~ ., data = newdummy, weights = wts)</pre>
tidy(lm_wls)
## # A tibble: 13 x 5
##
      term
                        estimate std.error statistic
                                                         p.value
##
                                                           <dbl>
      <chr>
                           <dbl>
                                      <dbl>
                                                 <dbl>
    1 (Intercept)
                                               28.3
                                                        4.65e-98
##
                        12.5
                                  0.442
##
    2 `fg%`
                        5.73
                                  1.60
                                                 3.58
                                                        3.89e- 4
##
                        0.00743
                                  0.00102
                                                7.30
                                                        1.55e-12
    3 `3p`
##
    4 `2p`
                        0.00168
                                  0.000588
                                                 2.86
                                                        4.52e- 3
    5 `2p%`
##
                        -4.65
                                  1.29
                                               -3.62
                                                        3.38e- 4
   6 trb
##
                        0.00122 0.000445
                                                2.74
                                                        6.44e- 3
##
   7 pos_C
                        0.198
                                  0.219
                                                0.906
                                                        3.66e- 1
                                                        1.61e- 2
##
    8 pos_PF
                        0.412
                                  0.170
                                                2.42
                                                        1.18e- 1
##
  9 pos_PG
                        0.241
                                  0.154
                                                1.57
## 10 pos_SF
                        0.424
                                  0.163
                                                2.60
                                                        9.77e- 3
## 11 pos SG
                                 NA
                                               NA
                                                       NA
## 12 trans_team_none
                                  0.266
                                                3.88
                                                        1.21e- 4
                        1.03
## 13 trans
                                 NΑ
                                               NA
                                                       NA
glance(lm_wls)
## # A tibble: 1 x 12
     r.squared adj.r.squared sigma statistic p.value
                                                                           AIC
                                                                                 BIC
                                                             df logLik
##
         <dbl>
                        <dbl> <dbl>
                                          <dbl>
                                                    <dbl> <dbl>
                                                                  <dbl> <dbl> <dbl>
## 1
         0.450
                        0.437 1.24
                                           33.3 4.20e-47
                                                              10 -606. 1236. 1284.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
final_model_a <- lb_anovat_lm(lm_wls)</pre>
final_model_a
         Source Df
                             SS
                                        MS
                                                 F
                      509.6673 50.966732 33.3337 4.198082e-47
## 1 Regression
                 10
                      622.2970
          Error 407
                                 1.528985
                                                 NA
                                                               NA
```

• Reduce model: $\widehat{ln(salary)} = 12.496 + 5.729 \cdot fg + 0.007 \cdot 3p + 0.002 \cdot 2p - 4.648 \cdot 2p + 0.001 \cdot trb + 0.198 \cdot posC + 0.412 \cdot posPF + 0.241 \cdot posPG + 0.424 \cdot posSF + 1.033 \cdot transteamnone$

NA

For the final model $R_{adj}^2 = 0.436743$.

Total 417 1131.9643 2.714543

Test Statistic: * $F = \frac{MSR}{MSE} = 33.334$ * p-value < 0.00001

Conclusion. Given the test statistic F = 33.334 and its corresponding p-value < 0.00001. If none of the predictor variables were useful in explaining the variation we see in log salary, it would be almost impossible to observe a test statistic of our magnitude or greater.

Consequently, we will reject and conclude that there is overwhelming statistical evidence to indicate that at least one the predictor variables is useful in explaining the variation in log salary.

Assumtion autoplot(lm_wls) Normal Q-Q Residuals vs Fitted Standardized residuals 2 -2 Residuals 0 -16 . 12 Fitted values **Theoretical Quantiles** Residuals vs Leverage Scale-Location /IStandardized residuals Standardized Residuals 1.5 -82 0.5 3133 0.0 12 0.10 16 0.00 0.05 Fitted values Leverage # Residual normality test shapiro.test(lm_wls\$residuals) ## ## Shapiro-Wilk normality test ## data: lm_wls\$residuals ## W = 0.98346, p-value = 0.0001044 # Residual independence test durbinWatsonTest(lm_wls) ## lag Autocorrelation D-W Statistic p-value ## 0.09488015 1.80693 0.028 Alternative hypothesis: rho != 0 # Residual variance homogeneity test ncvTest(lm_wls) ## Non-constant Variance Score Test ## Variance formula: ~ fitted.values ## Chisquare = 0.8191605, Df = 1, p = 0.36543

The model has followed all assumptions except residual normality test.

Evaluate Forecast Model

```
test <- read csv("player17 18.csv")
## Rows: 605 Columns: 31
## -- Column specification
## Delimiter: ","
## chr (5): Player, player_id, trans_team, Pos, Tm
## dbl (26): Age, G, GS, MP, FG, FGA, FG%, 3P, 3PA, 3P%, 2P, 2PA, 2P%, eFG%, FT...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
names(test)[1:31] <- tolower(names(test)[1:31])</pre>
test_result <- dummy_cols(.data = test,</pre>
                           select_columns = c("pos", "trans_team"), remove_selected_columns = TRUE)
rename(.data = test_result, trans = trans_team_trans) -> test_dummy
# final reduce model
full_predict <- predict(lm_wls, newdata = test_dummy, interval = "confidence", level = 0.95)
## Warning in predict.lm(lm_wls, newdata = test_dummy, interval = "confidence", :
## prediction from a rank-deficient fit may be misleading
full_predict <- cbind(test_dummy, full_predict)</pre>
full predict1 <- full predict %>%
  left_join(NBA, by = c("player_id" = "player_id", "tm" = "tm")) %>%
  select(fit, `17_18salary`)
diff <- log(full predict1$`17 18salary`)-full predict1$fit</pre>
MAD <- mean(abs(diff), na.rm = TRUE)
MSE <- mean(diff^2,na.rm = TRUE)</pre>
```

We use a forecasting model to determine how well it does in producing accurate forecasts, not how well it fits the historical model. Measuring forecast accuracy, MAD=0.864, MSE=1.124.

From the result, both MAD and MSE are small and close to 0, actual values are very close to the predicted values. It means that the prediction model we done is working well.

4. Inferences Based on the Model

After we build the multiple regression model, we can predict NBA players' salaries. The model has followed all assumptions except residual normality test.

Furthermore, the difference between predicted and actual salaries is small, which means that our model is great for applying.

5. Further Directions

Since the data only offer the data that indicate players trans team during the regular season, isn't include off the season data that most of the palyers trans team time. For the further study, we recommend that add the resign the contrast or not, because the longer time interval model contrast effect maybe improve the results.

6. Group Work

Project Concept Contribution: Jack

Data collection: Adela Data cleaning: Yuka

Model Building Process: Yuka, Adela Analysis result: Yuka, Adela, Jack

PPT: Jack