Contents

_	Theorem 1.19 1.1 Wilson's Theorem 1.2 Factorization of the Norm	
2	Lemma 1.20	2
3	Lemma 1.25	2
	Selected Hints to Exercises 4.1 Ex 1.1 4.2 Ex 1.2 4.3 Ex 1.4	2

1 Theorem 1.19

$$(-1)^{2k} = ((-1)^2)^k = 1^k = 1$$

(2k)! has 2k terms, and can therefore be also written as

$$(2k)! = (-1)(-2)\cdots(-2k+1)(-2k)$$

Now finally note that $-a \equiv p - a \mod p$, and the expression becomes $(p-1)! \mod p$.

1.1 Wilson's Theorem

Wilson's theorem in short:

 \mathbb{Z}_p is a field so all $x \in \mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ is a unit $\implies \bar{2} \cdot \overline{p-2} = \bar{1}$

$$(p-1)! \equiv (p-1)(p-2)! \mod p$$

 $\equiv -1 \cdot 1 \mod p$

See also Pinter, 23G.

1.2 Factorization of the Norm

$$N: \mathbb{Z}[i] \to \mathbb{Z}$$

Since we have integer factorization in \mathbb{Z} , then we have $N(\alpha) \in \{1, p, p^2\}$.

$\overline{N(\alpha)}$	N(eta)	$\alpha = a + ib$	$\beta = c + id$	$\alpha \beta$	
1	p^2	1	p	p	
1	p^2	-1	-p	p	
1	p^2	i	-ip	p	
1	p^2	-i	ip	p	
p^2	1	p	1	p	
p^2	1	-p	-1	p	
p^2	1	-ip	i	p	
p^2	1	ip	-i	p	

We are writing p in an equivalent way using units with the norm function.

We proved in the previous paragraph that p is not prime. Since these factorizations above are just equivalent ways of representing p, that only leaves $N(\alpha) = N(\beta) = p$.

2 Lemma 1.20

We are doing the equivalent of round(a/b). The closest point in 2d will have distance less than $\frac{1}{\sqrt{2}}$. $N(x) = |x|^2$ are the same thing, except left is "norm" function and right is the "distance" function.

3 Lemma 1.25

The only units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$.

$$\alpha \mid (1+i)^2 \implies a = 1+i \text{ or } \alpha = (1+i)^2 \implies (1+i) \mid \alpha.$$

$$\alpha \mid y+i \text{ and } \alpha \mid y-i \implies \alpha \mid (y+i)(y-i) = x^3 \text{ but } (1+i) \mid \alpha \implies (1+i) \mid x^3 \text{ and } (1+i) \text{ is prime in } \mathbb{Z}[i] \text{ so } (1+i) \mid x.$$

4 Selected Hints to Exercises

4.1 Ex 1.1

 $N \equiv a \mod m$ where a is prime, means also $p \mid N \implies (p \mod m) \mid a$.

4.2 Ex 1.2

Remember that $\phi(p) = p - 1$.

4.3 Ex 1.4

$$q \ge 1 \implies r_1 = qr_2 + r_3 > r_2 + r_3$$

 $r_2 > r_3 \implies r_1 > r_3 + r_3$