Worksheet - 3b

Angel Janica Marie De Jesus

2022-11-11

##1. A.Write the codes.

6

```
Respondents <- c(seq(1,20))
Sex <- c(2,2,1,2,2,2,2,2,2,2,1,2,2,2,2,2,2,1,2)
FathersOccupation <- c(1,3,3,3,1,2,3,1,1,1,3,2,1,3,3,1,3,1,2,1)
PersonsAtHome <- c(5,7,3,8,5,9,6,7,8,4,7,5,4,7,8,8,3,11,7,6)
SiblingsAtSchool <- c(6,4,4,1,2,1,5,3,1,2,3,2,5,5,2,1,2,5,3,2)
TypesOfHouses <- c(1,2,3,1,1,3,3,1,2,3,2,3,2,3,3,3,3,3,3,2)

df <- data.frame(Respondents, Sex, FathersOccupation, PersonsAtHome, SiblingsAtSchool, TypesOfHouses)
print (df)
```

##		${\tt Respondents}$	Sex	${\tt FathersOccupation}$		SiblingsAtSchool
##	1	1	2	1	5	6
##	2	2	2	3	7	4
##	3	3	1	3	3	4
##	4	4	2	3	8	1
##	5	5	2	1	5	2
##	6	6	2	2	9	1
##	7	7	2	3	6	5
##	8	8	2	1	7	3
##	9	9	2	1	8	1
##	10	10	2	1	4	2
##	11	11	1	3	7	3
##	12	12	2	2	5	2
##	13	13	2	1	4	5
##	14	14	2	3	7	5
##	15	15	2	3	8	2
##	16	16	2	1	8	1
##	17	17	2	3	3	2
##	18	18	2	1	11	5
##	19	19	1	2	7	3
##	20	20	2	1	6	2
##		TypesOfHouses				
##	1		1			
##	2		2			
##	3		3			
##	4		1			
##	5		1			

```
## 7
                    3
## 8
                    1
## 9
                    2
                    3
## 10
## 11
                    2
## 12
                    3
## 13
                    2
                    2
## 14
## 15
                    3
                    3
## 16
## 17
                    3
                    3
## 18
                    3
## 19
                    2
## 20
```

names(df)

```
## [1] "Respondents" "Sex" "FathersOccupation"
## [4] "PersonsAtHome" "SiblingsAtSchool" "TypesOfHouses"
```

##B. Describe the data: ##The data given are the respondents information according to sex, parent occupation, people at home, siblings at school and the type of houses.

##Get the structure or the summary of the data

summary(df)

```
##
     Respondents
                          Sex
                                     FathersOccupation PersonsAtHome
           : 1.00
                                             :1.00
   Min.
                     Min.
                            :1.00
                                     Min.
                                                        Min.
                                                                : 3.0
    1st Qu.: 5.75
                                                        1st Qu.: 5.0
##
                     1st Qu.:2.00
                                     1st Qu.:1.00
##
   Median :10.50
                     Median:2.00
                                     Median:2.00
                                                        Median: 7.0
##
   Mean
           :10.50
                                                                : 6.4
                     Mean
                             :1.85
                                     Mean
                                            :1.95
                                                        Mean
##
    3rd Qu.:15.25
                     3rd Qu.:2.00
                                     3rd Qu.:3.00
                                                        3rd Qu.: 8.0
##
  {\tt Max.}
           :20.00
                     Max.
                             :2.00
                                     Max.
                                            :3.00
                                                        Max.
                                                                :11.0
##
    SiblingsAtSchool TypesOfHouses
##
   Min.
           :1.00
                      Min.
                              :1.0
                      1st Qu.:2.0
##
   1st Qu.:2.00
##
   Median:2.50
                      Median:2.5
##
   Mean
           :2.95
                      Mean
                              :2.3
    3rd Qu.:4.25
                      3rd Qu.:3.0
           :6.00
##
    Max.
                              :3.0
                      Max.
```

##C. Is the mean number of siblings attending is 5?

mean(SiblingsAtSchool)

[1] 2.95

##No

##d. Extract the 1st two rows and then all the columns using the subsetting functions. Write the codes and its output.

```
sbst1 \leftarrow df[c(1,2),c(1:6)]
sbst1
```

##e. Extract 3rd and 5th row with 2nd and 4th column. Write the codes and its result.

```
sbst2 \leftarrow df[c(3,5),c(2,4)]

sbst2
```

```
## Sex PersonsAtHome
## 3 1 3
## 5 2 5
```

##f. Select the variable types of houses then store the vector that results as types houses. Write the codes.

```
types_houses <- (df$'Types Of Houses')
types_houses</pre>
```

NULL

##g. Select only all Males respondent that their father occupation was farmer. Write the codes and its output.

```
Male <- subset(df,Sex == '1' & FathersOccupation == '1')
Male</pre>
```

```
## [1] Respondents Sex FathersOccupation PersonsAtHome
## [5] SiblingsAtSchool TypesOfHouses
## <0 rows> (or 0-length row.names)
```

```
MaleFarm <- Male[c(2:3)]
MaleFarm</pre>
```

```
## [1] Sex FathersOccupation
## <0 rows> (or 0-length row.names)
```

##h. Select only all females respondent that have greater than or equal to 5 number of siblings attending school. Write the codes and its outputs.

```
Female <- subset(df,Sex == '2' & SiblingsAtSchool >= '5')
Female
```

```
##
      Respondents Sex FathersOccupation PersonsAtHome SiblingsAtSchool
## 1
                     2
                                                        5
                 1
                                         1
## 7
                 7
                     2
                                         3
                                                        6
                                                                          5
                     2
                                                        4
                                                                          5
                                         1
## 13
                13
## 14
                14
                     2
                                         3
                                                        7
                                                                          5
                     2
                                                                          5
## 18
                18
                                         1
                                                       11
##
      TypesOfHouses
## 1
## 7
                   3
                   2
## 13
## 14
                   2
                   3
## 18
FemaleSib <- Female[c(2,5)]</pre>
FemaleSib
##
      Sex SiblingsAtSchool
## 1
## 7
        2
                           5
## 13
        2
                           5
                           5
## 14
        2
## 18
                           5
##2. Write a R program to create an empty data frame. Using the following codes:
df = data.frame(Ints=integer(),
                 Doubles=double(), Characters=character(),
                 Logicals=logical(),
                 Factors=factor(),
                 stringsAsFactors=FALSE)
print("Structure of the empty dataframe:")
## [1] "Structure of the empty dataframe:"
print(str(df))
                     0 obs. of 5 variables:
  'data.frame':
##
##
    $ Ints
                 : int
    $ Doubles
##
                 : num
##
    $ Characters: chr
    $ Logicals : logi
```

##a. Describe the results : data frame has 5 variables which are the Ints,Doubles,Characters,Logical and Factors. But the result on the tables has no data available since there is no inputted data on each variable.

\$ Factors

NULL

: Factor w/ 0 levels:

##3.Interpret the graph: The graph is titled as Figure 1: Sentiments of Tweets per day - Donald trump. The x = Day of Date / Sentiments consisting of dates from July 14, 15, 17,18, 20, 21, 2020. The y = Count of Sheet1 from 0 to 4000. The graph used is a bar graph consisting of 3 sentiments(Negative, Neutral and Positive). A legend is placed at the upper right corner indicating specific colors of every sentiments such as Negative = Red, Neutral= yellow and positive = blue.