1.

	Expected NPV					
Project	(in \$000s)	Year 1	Year 2	Year 3	Year 4	Year 5
1	\$141	\$75	\$25	\$20	\$15	\$10
2	\$187	\$90	\$35	\$0	\$0	\$30
3	\$121	\$60	\$15	\$15	\$15	\$15
4	\$83	\$30	\$20	\$10	\$5	\$5
5	\$265	\$100	\$25	\$20	\$20	\$20
6	\$127	\$50	\$20	\$10	\$30	\$40

The company currently has \$250,000 available to invest in new projects. It has budgeted \$75,000 for continued support for these projects in year 2 and \$50,000 per year for years 3, 4, and 5. If the investment amount is less than 250,000, this amount will be added into the next year's support budget. Since projects 2 and 3 are contradictory projects, both cannot be in the portfolio at the same time. But 2 and 4 are complementary projects, and if one exists, the other should also be in the portfolio. Which projects should be selected to maximize the total NPV (Use Python or Excel Solver)