Zeichnen mit LATEX

Inhaltsverzeichnis

1	Pake	ete, Optionen und Bibliotheken	1				
2	Umg	gebungen und Zeichenbefehle	1				
	2.1	Die tikzpicture-Umgebung	1				
	2.2	Die scope-Umgebung	2				
	2.3	Das tikz-Makro	2				
3	Koo	rdinaten	2				
	3.1	Zweidimensionale kartesische Koordinaten	2				
	3.2	Dreidimensionale kartesische Koordinaten	2				
	3.3	Polarkoordinaten	2				
	3.4	Benannte Punkte	3				
	3.5	Verschiebungen	3				
	3.6	Absolute und relative Koordinaten	3				
4	Pfade						
	4.1	Polygonzüge	4				
	4.2	Geschlossene Pfade	4				
	4.3	Kreisbögen	5				
	4.4	Bézierkurven	5				
	4.5	Verbindungen mit to[out, in]	6				
	4.6	Verbindungen mit plot	6				
	4.7	Gitternetze	6				
	4.8	Flächen mit even odd rule	6				
5	Pfadmodifikationen						
	5.1	line width	7				
	5.2	draw	7				
	5.3	line cap	7				
	5.4	line join	7				
	5.5	rounded corners	7				
	5.6	shorten	8				
	5.7	style	8				
	5.8	dash pattern	8				
	5.9	Pfeilspitzen	8				
	5.10	Dekorationen	9				
6	Beschriftung 1						
	6.1	Text innerhalb eines Pfades	10				
	6.2	Text als eigenständiges Objekt	11				
7	Füll	muster	14				

8	Clipping 8.1 Clipping mit einfachen Pfaden	15 15 15
9	Rastergrafik	16
10	Schleifen	16
11	Einfache Berechnung von Koordinaten 11.1 Der partway und distance modifier	17 17 17
12	Schnittpunkte bestimmen12.1 Schnittpunkt zweier Geraden bestimmen12.2 Schnittpunkte beliebiger Pfade bestimmen	18 18 18
13	Rechnen mit dem Paket fp 13.1 Beispiel: Höhen- und Kathetensatz	19 20
14	Eigene Makros14.1 Abstand zwischen zwei Punkten berechnen	21 21 22 23 23 23 24
15	Maßeinheiten	24
16	Farben 16.1 Die dvipsnames vordefinierter Farben	25 25 25
17	Octave 17.1 Die Wertepaare für plot direkt ausgeben	

1 Pakete, Optionen und Bibliotheken

```
% Vorlage und globale Optionen
\documentclass
 draft
            = true,
 fontsize = 11pt,
 parskip = half-,
          = Opt,
 BCOR
           = 10,
 dvipsnames % vermeidet 'option clash' mit xcolor
{scrartcl}
% Standardpakete
\usepackage{fixltx2e}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[ngerman]{babel}
% Zusatzpakete
\usepackage{fp}
\usepackage{graphicx}
\usepackage{ifthen}
\usepackage{tikz}
\usepackage{xcolor}
% TikZ-Bibliotheken (alphabetisch)
\usetikzlibrary{arrows, calc, decorations.pathmorphing,
                decorations.pathreplacing, decorations.shapes,
                decorations.text, intersections, patterns, shapes}
```

2 Umgebungen und Zeichenbefehle

2.1 Die tikzpicture-Umgebung

```
% die tikzpicture-Umgebung enthaelt die Zeichenbefehle
\begin{tikzpicture}
    % hier wird der Rand eines Rechtecks gezeichnet:
    \draw[line width=1pt] (0, 0) rectangle (3, 2);
\end{tikzpicture}

% die tikzpicture-Umgebung enthaelt die Zeichenbefehle
\begin{tikzpicture}
    % hier wird die Flaeche eines Rechtecks ausgefuellt:
    \fill[fill=LimeGreen] (0, 0) rectangle (3, 2);
\end{tikzpicture}
```

2.2 Die scope-Umgebung

2.3 Das tikz-Makro

```
% wenn die Zeichnung nur aus einem einzigen Pfad besteht,
% kann man sie mit \tikz auch direkt in den Text einfuegen
direkt \tikz \fill (0, 0) rectangle (1em, 1ex); im Text
```

direkt im Text

3 Koordinaten

3.1 Zweidimensionale kartesische Koordinaten

```
\begin{tikzpicture}
    % Kartesische Koordinaten in der gewohnten Form: (x, y)
    \draw (0, 0) -- (3, 0) -- (3, 1.5) -- cycle;
\end{tikzpicture}
```


3.2 Dreidimensionale kartesische Koordinaten

```
\begin\{tikzpicture\}

\[ \text{Kartesische Koordinaten in der Form: (x, y, z)} \\ \draw[->] (0, 0, 0) -- (1, 0, 0) \node[right] \ \\ \draw[->] (0, 0, 0) -- (0, 1, 0) \node[above] \ \\ \draw[->] (0, 0, 0) -- (0, 0, 1) \node[below left]\{\$z\}; \\ \end\{\tikzpicture\} \]
```


3.3 Polarkoordinaten

3.4 Benannte Punkte

```
\begin{tikzpicture}
  % mit '\coordinate' koennen Punkte benannt werden
\coordinate (A) at (0, 0);
\coordinate (B) at (3, 0);
\coordinate (C) at (3, 2);
  % die Namen ersetzen dann die Koordinaten
\draw (A) -- (B) -- (C) -- cycle;
\end{tikzpicture}
```


3.5 Verschiebungen

```
\begin{tikzpicture}
  % mit '\coordinate' koennen Punkte benannt werden
  \coordinate (A) at (1, 2);
  % Verschiebungen koennen mit kartesischen und mit
  % Polarkoordinaten definiert werden
  \coordinate (B) at ([shift={(2, -1)}]A);
  \coordinate (C) at ([shift={(270:3)}]A);
  % die Namen ersetzen dann die Koordinaten
  \draw (A) -- (B) -- (C) -- cycle;
  \end{tikzpicture}
```


3.6 Absolute und relative Koordinaten


```
\begin{tikzpicture}
\fill (0, 0) circle[radius=1pt] node[below]{A};
% absolute Koordinaten
\draw (0, 0) -- (1, 1) -- (0, 1) -- (1, 0);
\begin{scope} [xshift=3cm]
  \fill (0, 0) circle[radius=1pt] node[below]{B};
% relative Koordinaten ohne Verschiebung des Bezugspunktes
  \draw (0, 0) -- (1, 1) -- +(0, 1) -- +(1, 0);
\end{scope}
\begin{scope} [xshift=6cm]
  \fill (0, 0) circle[radius=1pt] node[below]{C};
% relative Koordinaten mit Verschiebung des Bezugspunktes
  \draw (0, 0) -- (1, 1) -- ++(0, 1) -- ++(1, 0);
\end{scope}
\end{tikzpicture}
```

4 Pfade

4.1 Polygonzüge

\end{tikzpicture}

```
\begin{tikzpicture}
  % gradlinige Verbindung der gegebenen Koordinaten
  draw (0, 0) -- (1, 1) -- (2, 0) -- (1, 0) -- (2, 1);
\end{tikzpicture}
\begin{tikzpicture}
  % gradlinige Verbindung der gegebenen Koordinaten, aber
  % parallel zu den Koordinatenachsen:
  % erst vertikal dann horizontal
  draw (0, 0) - (3, 2);
\end{tikzpicture}
\begin{tikzpicture}
  % gradlinige Verbindung der gegebenen Koordinaten, aber
  % parallel zu den Koordinatenachsen:
  % erst horizontal dann vertikal
  draw (0, 0) - (3, 2);
\end{tikzpicture}
4.2 Geschlossene Pfade
\begin{tikzpicture}
  % Kreis mit Radius 8mm um den Mittelpunkt (0, 0)
  \draw (0, 0) circle[radius=8mm];
\end{tikzpicture}
\begin{tikzpicture}
  % Ellipse mit dem Mittelpunkt (0, 0)
  % grosse Halbachse: 16mm (in x-Richtung)
  % kleine Halbachse: 8mm (in y-Richtung)
  \draw (0, 0) circle[x radius=16mm, y radius=8mm];
\end{tikzpicture}
\begin{tikzpicture}
  % zwei Eckpunkte definieren ein Rechteck
  % links unten: (0, 0)
  % rechts oben: (3, 2)
  \draw (0, 0) rectangle (3, 2);
\end{tikzpicture}
\begin{tikzpicture}
  % cycle erzeugt einen geschlossenen Pfad, indem
  % eine Verbindung mit dem Anfang hergestellt wird
  \draw (0, 0) -| (3, 2) -- cycle;
```

4.3 Kreisbögen

```
\begin{tikzpicture}
  \fill (0, 0) circle[radius=1pt];
% vier aneinadergesetzte Halbkreise
  \draw (6mm, 6mm)
        arc[start angle=0, end angle=180, radius=6mm]
        arc[start angle=90, end angle=270, radius=6mm]
        arc[start angle=180, end angle=360, radius=6mm]
        arc[start angle=270, end angle=450, radius=6mm]
        -- cycle;
\end{tikzpicture}
```


4.4 Bézierkurven

4.5 Verbindungen mit to [out, in]

4.6 Verbindungen mit plot

```
% coordinates {...} legt die zu verbindenden Punkte fest
\draw plot[smooth] coordinates
{
    (-1.5, 2.25)    (-1.4, 1.96)    (-1.3, 1.69)    (-1.2, 1.44)
    (-1.1, 1.21)    (-1.0, 1.00)    (-0.9, 0.81)    (-0.8, 0.64)
    ...
    ( 0.5, 0.25)    ( 0.6, 0.36)    ( 0.7, 0.49)    ( 0.8, 0.64)
    ( 0.9, 0.81)    ( 1.0, 1.00)    ( 1.1, 1.21)    ( 1.2, 1.44)
    ( 1.3, 1.69)    ( 1.4, 1.96)    ( 1.5, 2.25)
};
```


4.7 Gitternetze

. . .

```
\begin{tikzpicture}
    % ein Gitternetz mit verschiedenen Schrittweiten
    \draw (0, 0) grid[xstep=3mm, ystep=2mm] (3, 1);
\end{tikzpicture}
```


4.8 Flächen mit even odd rule

5 Pfadmodifikationen

5.1 line width

```
% ein ziemlich dicker Strich
\draw[line width=5mm] (0, 0) -- (3, 0);
```

5.2 draw

```
% ein dicker, roter Strich \draw[line width=5mm, draw=RubineRed] (0, 0) -- (3, 0);
```

5.3 line cap

```
% abgerundete Enden
\draw[line width=5mm, line cap=round] (0, 0) -- (3, 0);

% ueberstehende rechteckige Enden (default)
\draw[line width=5mm, line cap=rect] (0, 0) -- (3, 0);

% buendige rechteckige Enden
\draw[line width=5mm, line cap=butt] (0, 0) -- (3, 0);
```

5.4 line join

```
% spitze Ecken (default)
\draw[line join=miter] (0, 0) -- (2, 0.3) -- (0, 0.6);

% abgerundete Ecken
\draw[line join=round] (0, 0) -- (2, 0.3) -- (0, 0.6);

% abgeflachte Ecken
\draw[line join=bevel] (0, 0) -- (2, 0.3) -- (0, 0.6);
```

5.5 rounded corners

```
\begin{tikzpicture}
    % abgerundete Ecken
    \draw[rounded corners=2mm] plot coordinates
    {
        (0, 0) (2, 0) (0, 2)
        (2, 2) (1, 4) (0, 2)
        (0, 0) (2, 2) (2, 0)
    };
\end{tikzpicture}
```


5.6 shorten

```
% verkuerzte Strecken
\draw[shorten <=1mm, shorten >=5mm] (0, 0) -- (3, 0);
```

5.7 style

```
% eine gepunktete Linie
                                                                  ......
\draw[style=dotted] (0, 0) -- (3, 0);
% gepunktet mit groesseren Abstaenden
                                                                  . . . . . . . . . . . . . . . . . . .
\draw[style=loosely dotted] (0, 0) -- (3, 0);
% gepunktet mit kleineren Abstaenden
\draw[style=densely dotted] (0, 0) -- (3, 0);
% eine gestrichelte Linie
\draw[style=dashed] (0, 0) -- (3, 0);
% gestrichelt mit groesseren Abstaenden
                                                                  _ _ _ _ _ _ _ _ _ _ _
\draw[style=loosely dashed] (0, 0) -- (3, 0);
% gestrichelt mit kleineren Abstaenden
                                                                  _____
\draw[style=densely dashed] (0, 0) -- (3, 0);
```

5.8 dash pattern

5.9 Pfeilspitzen

```
\draw[->] (0, 0) -- (3, 0);

\draw[<-] (0, 0) -- (3, 0);

\draw[<->] (0, 0) -- (3, 0);

\draw[<->>] (0, 0) -- (3, 0);

\draw[|-|] (0, 0) -- (3, 0);

\draw[|<->|, >=latex] (0, 0) -- (3, 0);
```

```
\draw[<->, >=stealth] (0, 0) -- (3, 0);
\draw[<<->>, >=to reversed] (0, 0) -- (3, 0);
\draw[<<->>, >=stealth reversed] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{arrows}
\draw[o-o] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{arrows}
\draw[(-)] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{arrows}
\draw[[-{]}] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{arrows}
\draw[<->, >=diamond] (0, 0) -- (3, 0);
5.10 Dekorationen
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=bent] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=bumps] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=coil] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=random steps] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=saw] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=snake] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathmorphing}
\draw[decorate, decoration=zigzag] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathreplacing}
\draw[decorate, decoration=border] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathreplacing}
\draw[decorate, decoration=brace] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathreplacing}
                                                                    - - - | | | | | |
\draw[decorate, decoration={expanding waves, angle=10}]
     (0, 0) -- (3, 0);
```

```
% benoetigt \usetikzlibrary{decorations.pathreplacing}
                                                                11111111
\draw[decorate, decoration=ticks] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.pathreplacing}
                                                                   1 1 1 1 1 1 1 1
\draw[decorate, decoration=waves] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.shapes}
\draw[decorate, decoration=crosses] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.shapes}
\draw[decorate, decoration=shape backgrounds]
                                                                000000000000
     (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.shapes}
\draw[decorate, decoration=triangles] (0, 0) -- (3, 0);
% benoetigt \usetikzlibrary{decorations.text}
                                                                 z sahijkinnopqr
\draw[decorate, decoration={text along path,
                           text={abcdefghijklmnopqr}}]
     (0, 0) .. controls (1, 2) and (1, 0) .. (3, 0);
```

6 Beschriftung

6.1 Text innerhalb eines Pfades

```
\begin{tikzpicture}
  % 'node' fuegt einen Text in einen Pfad ein
  \draw (0, 0) node{A} -- node{B} (2, 0) node{C};
\end{tikzpicture}
\begin{tikzpicture}
 % der Text laesst sich orthogonal verschieben
  \draw (0, 0) node[left] {A}
             node[above]{B}
              node[below]{C}
       (2, 0) node[right]{D};
\end{tikzpicture}
\begin{tikzpicture}
 \% die Kombination verschiebt diagonal
  \draw (0, 0) node[above left] {A}
              node[below left] {B}
        (2, 0) node[above right] {C}
              node[below right] {D};
\end{tikzpicture}
```

```
\begin{tikzpicture}
 \% die Distanz kann auch angegeben werden
                                                                           В
 \draw (0, 0) node[left]
                             {A}
              node[above=5mm]{B}
                                                                                 – D
              node[below=5mm]{C}
        (2, 0) node[right] {D};
                                                                           \mathbf{C}
\end{tikzpicture}
\begin{tikzpicture}
 % die Option 'shift' mit Polarkoordinaten
 \draw (0, 0) -- (2, 0) node[shift={( 80:5mm)}] {A}
                         node[shift={( 40:5mm)}] {B}
                         node[shift={( 0:5mm)}] {C}
                         node[shift={(320:5mm)}] {D}
                         node[shift={(280:5mm)}] {E};
\end{tikzpicture}
\begin{tikzpicture}
                                                                    1359
 % die Option 'pos' verschiebt die Position der
 % Beschriftung entlang des gegebenen Pfades
                                                                                  0°
 \draw (0, 0) arc[start angle=0, end angle=270, radius=1]
       node[pos=0.0, shift={( 0:3mm)}] {$0^{\circ}$}
       node[pos=0.5, shift={(135:3mm)}] {$135^{\circ}$}
       node[pos=1.0, shift={(270:3mm)}] {$270^{\circ}};
                                                                         270°
\end{tikzpicture}
```

6.2 Text als eigenständiges Objekt

```
\begin{tikzpicture}
                                                                                 (2,1)
 % mit '\node' kann man Text an beliebige Stellen setzen
 \node at (0, 0) {$(0,0)$};
 \node at (2, 1) {$(2,1)$};
                                                                    (0,0)
\end{tikzpicture}
\begin{tikzpicture}
 % mit 'shape' kann man 'Knoten' grafisch gestalten
 \node[shape=rectangle, fill=Green] at (0, 0) {$(0,0)$};
 \node[shape=circle,
                        draw=Black] at (2, 1) {$(2,1)$};
                                                                    (0,0)
\end{tikzpicture}
\begin{tikzpicture}
 % ellipse benoetigt \usetikzlibrary{shapes}
                                                                          IAT<sub>E</sub>X
 \node[shape=ellipse, fill=Cerulean, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}
 % trapezium benoetigt \usetikzlibrary{shapes}
 \node[shape=trapezium, fill=Cerulean, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
```

```
\begin{tikzpicture}
 % diamond benoetigt \usetikzlibrary{shapes}
 \node[shape=diamond, fill=Cerulean,
                                                                          LATEX
        shape aspect=2, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}
 % semicircle benoetigt \usetikzlibrary{shapes}
 \node[shape=semicircle, fill=Cerulean, draw=Black]
                                                                          LATEX
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}
 % isosceles triangle benoetigt \usetikzlibrary{shapes}
                                                                        LATEX
 \node[shape=isosceles triangle, fill=Cerulean, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}
 % kite benoetigt \usetikzlibrary{shapes}
 % \rotatebox benoetigt \usepackage{graphicx}
 \node[shape=kite, fill=Cerulean, draw=Black]
       at (0, 0) {\rotatebox{90}{\LaTeX}};
\end{tikzpicture}
\begin{tikzpicture}
 % dart benoetigt \usetikzlibrary{shapes}
 \node[shape=dart, fill=Cerulean, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}[line width=1pt]
 % circular sector benoetigt \usetikzlibrary{shapes}
 \node[shape=circular sector, fill=Cerulean, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}
 % cylinder benoetigt \usetikzlibrary{shapes}
 \node[shape=cylinder, fill=Cerulean, draw=Black]
       at (0, 0) {\LaTeX};
\end{tikzpicture}
\begin{tikzpicture}
 % Knoten koennen benannt werden
 \label{lipse} $$ \c [shape=ellipse, draw=Black] (A) at (0, 0) {$(0,0)$}; $$
 \node[shape=ellipse, draw=Black] (B) at (2, 1) {$(2,1)$};
 % aus den Namen lassen sich Koordinaten bilden
                                                                    (0,0)
 \draw (A.0) to[out=0, in=180] (B.180);
\end{tikzpicture}
```

```
% die Abstaende zwischen Text und Rechteck
                                                                 Donald E. Knuth
\node[inner sep=3mm] at (0, 0) {Donald E. Knuth};
% die horizontalen Abstaende zwischen Text und Rechteck
                                                                 Donald E. Knuth
\node[inner xsep=3mm] at (0, 0) {Donald E. Knuth};
% die vertikalen Abstaende zwischen Text und Rechteck
                                                                 Donald E. Knuth
\node[inner ysep=3mm] at (0, 0) {Donald E. Knuth};
% aeussere Abstaende beeinflussen die 'anchor'-Positionen
\node[outer sep=3mm] (A) at (0, 0) {Donald E. Knuth};
                                                                  Donald E. Knuth
% Referenzpunkt markieren
\fill (A.north west) circle[radius=1pt];
% aeussere Abstaende beeinflussen die 'anchor'-Positionen
\node[outer xsep=3mm] (A) at (0, 0) {Donald E. Knuth};
                                                                  Donald E. Knuth
% Referenzpunkt markieren
\fill (A.north west) circle[radius=1pt];
% aeussere Abstaende beeinflussen die 'anchor'-Positionen
\node[outer ysep=3mm] (A) at (0, 0) {Donald E. Knuth};
                                                                Donald E. Knuth
% Referenzpunkt markieren
\fill (A.north west) circle[radius=1pt];
% Mindestbreite der 'shape'
                                                                 Donald E. Knuth
\node[minimum width=4cm] at (0, 0) {Donald E. Knuth};
% Mindesthoehe der 'shape'
                                                                 Donald E. Knuth
\node[minimum height=1cm] at (0, 0) {Donald E. Knuth};
% Ausrichtung von mehrzeiligem Text
                                                                     Donald E.
\node[align=left] at (0, 0) {Donald E.\\Knuth};
                                                                     Knuth
                                                                     Donald E.
% Ausrichtung von mehrzeiligem Text
\node[align=center] at (0, 0) {Donald E.\\Knuth};
                                                                      Knuth
                                                                     Donald E.
% Ausrichtung von mehrzeiligem Text
\node[align=right] at (0, 0) {Donald E.\\Knuth};
                                                                        Knuth
                                                                  Donald E.
% Breite des Textbereichs
\node[text width=25mm] at (0, 0) {Donald E. Knuth};
                                                                  Knuth
% Hoehe der Textzeile
                                                                 Donald E. Knuth
\node[text height=3ex] at (0, 0) {Donald E. Knuth};
                                                                 Donald E. Knuth
% Tiefe der Textzeile
\node[text depth=3ex] at (0, 0) {Donald E. Knuth};
```

7 Füllmuster

```
\draw[pattern=horizontal lines,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=vertical lines,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=north east lines,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=north west lines,
      pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=grid,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=crosshatch,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=dots,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=crosshatch dots,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=bricks,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=fivepointed stars,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
\draw[pattern=sixpointed stars,
     pattern color=Black!50!White]
                                                                     *****
      (0, 0) rectangle (3, 1);
\draw[pattern=checkerboard,
     pattern color=Black!50!White]
      (0, 0) rectangle (3, 1);
```

8 Clipping

8.1 Clipping mit einfachen Pfaden

```
\begin{tikzpicture}
\begin{scope}
    % Rechteck ueber der rechten Haelfte des Kreises
    \clip (0, -1) rectangle (1, 1);
    % den Teil des Kreises ausfuellen, der im
    % Clipping-Bereich liegt
    \fill[fill=LimeGreen] (0, 0) circle[radius=1];
\end{scope}
    % den Rand des Kreises zeichnen
    \draw (0, 0) circle[radius=1];
\end{tikzpicture}
```



```
\begin{tikzpicture}
\begin{scope}
    % Durchschnitt zweier Clipping-Bereiche
    \clip (-5mm, 0) circle[radius=1cm];
    \clip (5mm, 0) circle[radius=1cm];
    % Flaeche im Clipping-Bereich ausfuellen
    \fill[fill=LimeGreen] (0, 0) circle[radius=1cm];
    \end{scope}
    % Kreisraender zeichnen
    \draw (-5mm, 0) circle[radius=1cm];
    \draw ( 5mm, 0) circle[radius=1cm];
    \end{tikzpicture}
```


8.2 Clipping mit even odd rule

```
\begin{tikzpicture}
 % die Optionen 'even odd rule' kann dem clip-Befehl
 % nicht direkt uebergeben werden
 \begin{scope}[even odd rule]
   % linker Kreisring als Clipping-Bereich
   \clip (-5mm, 0) circle[radius=8mm]
          (-5mm, 0) circle[radius=12mm];
   % rechten Kreisring ausfuellen
   \fill[fill=LimeGreen]
         (5mm, 0) circle[radius=8mm]
         (5mm, 0) circle[radius=12mm];
 \end{scope}
 % Raender der Kreisringe zeichnen
 \draw (-5mm, 0) circle[radius=8mm]
        (-5mm, 0) circle[radius=12mm];
 \draw ( 5mm, 0) circle[radius=8mm]
        ( 5mm, 0) circle[radius=12mm];
\end{tikzpicture}
```


9 Rastergrafik

```
\begin{tikzpicture}
 \% die Datei 'rastergrafik.png' laden und unter dem Namen
 % 'einbild' fuer spaetere Verwendung verfuegbar machen
  \pgfdeclareimage[interpolate=true, width=4cm]
                 {einbild}{rastergrafik.png};
  % Bild mit der unteren linken Ecke an der Position
  % (0, 0) einfuegen
  \pgftext[bottom, left, at=\pgfpoint{0cm}{0cm}]
          {\pgfuseimage{einbild}};
 % Text einfuegen
  \node[above right, text=White, font=\sffamily]
       (A) at (0, 0) {Auge};
 % weissen Pfeil zeichnen
  \draw[line width=0.8pt, ->, >=stealth, White]
       (A) to[out=90, in=180] (1.35, 3.25);
\end{tikzpicture}
```


10 Schleifen

11 Einfache Berechnung von Koordinaten

11.1 Der partway und distance modifier

```
\begin{tikzpicture}
  % zwei Punkte definieren
  \coordinate (A) at (1, 1);
  \coordinate (B) at (3, 2);
  % Punkte markieren
  \fill (A) circle[radius=1pt];
  \fill (B) circle[radius=1pt];
 % Punkte beschriften (distance modifier)
  \node at ($(A)!3mm!180:(B)$) {{\footnotesize$A$}};
  \node at ($(B)!3mm!180:(A)$) {{\footnotesize$B$}};
  % Punkte verbinden
  \draw (A) -- (B);
  % Kreis um A zeichnen mit der halben Strecke AB als Radius
  \draw (A) circle[radius={sqrt(5)/2}];
 % alle Winkel aus [30,330] in 30er Schritten
  \foreach \angle in {30,60,...,330}
    % Punkt auf dem Kreis berechnen (partway modifier)
    \coordinate (X) at ($(A)!0.5!\angle:(B)$);
    % Punkt X markieren
    \fill (X) circle[radius=1pt];
    % Punkt X beschriften (distance modifier)
    \node at ($(X)!5mm!180:(A)$)
             {{\footnotesize$\angle^{\circ}$}};
\end{tikzpicture}
```


11.2 Projektionen

```
\begin{tikzpicture}
 % Punkte definieren
 \coordinate (A) at (1, 1);
 \coordinate (B) at (3, 1);
 \coordinate (C) at (2, 2);
 % Punkt C auf AB projizieren
 \coordinate (D) at ($(A)!(C)!(B)$);
 % AB erst 90 Grad um A drehen und dann C projizieren
 \coordinate (E) at ($(A)!(C)!90:(B)$);
 % Punkte markieren und beschriften
 \fill (A) circle[radius=1pt] node[below] {A}
        (B) circle[radius=1pt] node[below] {B}
        (C) circle[radius=1pt] node[above] {C}
        (D) circle[radius=1pt] node[below] {D}
        (E) circle[radius=1pt] node[above] {E};
 % Punkte verbinden
 \draw (A) -- (B) (C) -- (D) (C) -- (E);
\end{tikzpicture}
```


12 Schnittpunkte bestimmen

12.1 Schnittpunkt zweier Geraden bestimmen

```
\begin{tikzpicture}
  \coordinate (A) at (0, 0);
  \coordinate (B) at (2, 1);
  \coordinate (C) at ([shift={(270:1cm)}]A);
  \coordinate (D) at ([shift={(135:1cm)}]B);
  \% Schnittpunkt berechnen
  \coordinate (S) at (intersection of A--B and C--D);
  \% Punkte verbinden
  \draw (A) node[left]{$A$} -- (B) node[right]{$B$}
        (C) node[left]{$C$} -- (D) node[right]{$D$};
  \% Punkte markieren
  \fill (A) circle[radius=1pt] (B) circle[radius=1pt]
        (C) circle[radius=1pt] node[below right] {$S$};
  \end{tikzpicture}
```


12.2 Schnittpunkte beliebiger Pfade bestimmen

```
\begin{tikzpicture}
    % zuerst muessen den zu schneidenden Pfaden
    % Namen zugewiesen werden
    \draw[name path=kreisA] (0, 0) circle[radius=1];
    \draw[name path=kreisB] (1, 0) circle[radius=1];
    % mit \path findet die Berechnung statt, aber
    % es wird nichts gezeichnet
    \path[name intersections={of=kreisA and kreisB}];
    % 'name intersections' benennt die Schnittpunkte alle
    % nach dem Schema 'intersection-i'
    \fill (intersection-1) circle[radius=1pt] node[above]{1};
    \fill (intersection-2) circle[radius=1pt] node[below]{2};
\end{tikzpicture}
```


13 Rechnen mit dem Paket fp

```
% Konstanten
\FPe
                         % 2.718281828459045235
\FPpi
                         % 3.141592653589793238
% Zuweisungen
\FPset \{\x\}{2}
                         % x := 2
\FPset
         \{v\}\{2.5\}
                         % v := 2.5
% unaere Operationen
\FPabs \{\abla \}\{\x\}
                         % a := abs(x)
\FPneg
         \{a\}\{x\}
                         % a := -x
% binaere Operationen
\\FPadd \{\a\}\{\x\}\{\y\} \ \% \ a := x + y
\mathbb{L}^{\mathbb{P}_{u}} {\{a\}}{\{x\}}{\{y\}}  % a := x - y
\FPmul \{\a\}\{\x\}\{\y\}\ \%\ a := x * y
\\FPdiv \{\a\}\{\x\}\{\y\}\ % a := x / y
\\FPmin \{\a\}\{\x\}\{\y\} % a := min(x,y)
         {\a}_{\x} {\y}  % a := max(x,y)
\FPmax
% Nachkommastellen
\FPround {\a}{\x}{\y} % a := x auf y Nachkommastellen gerundet
\FPtrunc \{\a\}\{\x\}\{\y\} % a := x nach y Nachkommastellen abgeschnitten
                         % a := x nur mit signifikanten Nachkommastellen
\FPclip \{\a\}\{\x\}
% Potenzen und Wurzeln
         {a}{x}{y} % a := x^y
\FPpow
\\FProot {\a}{\x}{\y} \% a := x^{(1/y)}
% Trigonometrische Funktionen
\FPsin \{\a\}{\x} % a := sin(x)
\FPcos
         \{a}{x}
                       % a := cos(x)
                       % a := tan(x)
\FPtan
         \{a}{x}
                       % a := cot(x)
\FPcot
         \{a\}\{x\}
\\\FParcsin{\a}{\x} \\\ a := \arccos(\x) \\\FParccos{\a}{\x} \\\ x \\ a := \arccos(\x) \\\
\FParctan{\a}{\x}
                       % a := arctan(x)
\\\FParccot{\a}{\x} \% a := arccot(x)
% Exponential- und Logarithmusfunktion
\FPexp
         \{a\}\{x\}
                         % a := exp(x)
\FPln
          \{ a \} \{ x \}
                         % a := ln(x)
% Fallunterscheidungen
\FPiflt \{\x\}\{\y\} ... \else ... \fi % ist (x < y)?
\\FPifeq \{\x\}\{\y\} \ldots \\ext{else} \ldots \\fi \% ist (x = y) ?
\FPifgt {\x}{\y} ... \else ... \fi  % ist (x > y) ?
\FPifint{\x} \ldots \else \ldots \fi \% ist x eine ganze Zahl?
```

13.1 Beispiel: Höhen- und Kathetensatz


```
\begin{tikzpicture}
 % Seitenlaengen
 \mathbf{FPset}\{a\}\{3\}
                          % a = 3
                          % b = 4
 \FPset{\b}{4}
 \FPset{\c}{5}
                          % c = 5
 % Kathetensatz: p
 \FPmul{\p}{\a}{\a}
                          % p = a * a
 \FPdiv{\p}{\p}{\c}
                          % p = p / c
 % Kathetensatz: q
 \FPmul{\q}{\b}{\b}
                          % q = b * b
 \FPdiv{\q}{\q}{\c}
                          % q = q / c
 % Hoehensatz: h
 \FPmul{\h}{\q}{\p}
                          % h = p * q
 \FProot{\h}{\h}{2}
                          % h = 2-te wurzel aus h
 % Koordinaten
 \coordinate (A) at (0, 0);
 \coordinate (B) at (\c, 0);
 \coordinate (C) at (\q, \h);
 % Dreieck zeichnen
 \draw[line width=1pt]
       (A) -- node[below]
                                {$c$}
       (B) -- node[above right] {\$a$}
       (C) -- node[above left] {$b$}
       (A);
 % Hoehe zeichnen
 \draw[line width=0.75pt]
       (C) -- node[below right] \{h\}\ (\q, 0);
 % Punkte zeichnen
 \fill (A) circle[radius=1pt] node[below left] {$A$};
 \fill (B) circle[radius=1pt] node[below right] {$B$};
 \fill (C) circle[radius=1pt] node[above=3pt]
                                                  {$C$};
\end{tikzpicture}
```

14 Eigene Makros

14.1 Abstand zwischen zwei Punkten berechnen

```
% shapedst
% \shapedst{A}{B}{\mydistance}
\newcommand{\shapedst}[3]
{%
 % define new macro if missing
 % get x-coordinate from vector
 \pgfextractx{\dimen0}{\pgfpointdiff{\pgfpointanchor{#1}{center}}%
                             {\pgfpointanchor{#2}{center}}}%
 % get y-coordinate from vector
 {\bf \{pgfpointanchor\{\#2\}\{center\}\}\}\%}
 % calculate length
 \pgfmathsetmacro{#3}{veclen(\the\dimen0,\the\dimen1)}%
 % add unit 'pt'
 \edef#3{#3pt}%
```

14.2 Richtung von einem zu einem anderen Punkt berechnen

14.3 Beispiel: Die Möndchen des Hippokrates (von Chios)


```
\newcommand{\moendchen}[2]
  \begin{scope}
    % Koordinaten der Eckpunkte
    \coordinate (A) at (-#1, 0);
    \coordinate (B) at ( #1, 0);
    \coordinate (C) at ($(0, 0)!#1!#2:(B)$);
    % Abstand und Richtung von B nach C
    \shapedir{B}{C}{\dirBC}
    \shapedst{B}{C}{\dstBC}
    % Abstand und Richtung von C nach A
    \shapedir{C}{A}{\dirCA}
    \shapedst{C}{A}{\dstCA}
    % Dreieck
    \filldraw[fill=OliveGreen] (A) -- (B) -- (C) -- cycle;
    % Moendchen ueber a
    \filldraw[fill=LimeGreen]
             (B) arc[start angle=0, end angle=#2, radius=#1]
                 arc[start angle=\dirBC, delta angle=-180, radius=\dstBC/2];
    % Moendchen ueber b
    \filldraw[fill=LimeGreen]
             (C) arc[start angle=#2, end angle=180, radius=#1]
                 arc[start angle=\dirCA, delta angle=-180, radius=\dstCA/2];
    % Eckpunkte
    \fill (A) circle[radius=1pt];
    \fill (B) circle[radius=1pt];
    \fill (C) circle[radius=1pt];
  \end{scope}
}
\begin{tikzpicture}
  \moendchen{20mm}{120}
  \begin{scope}[xshift=7cm]
    \moendchen{25mm}{80}
  \end{scope}
\end{tikzpicture}
```

14.4 Beschriftung einer Strecke auf der Mittelsenkrechten

14.5 Beschriftung eines Winkels auf der Winkelhalbierenden

```
% -----
% canode
% -----
%
% \canode{B}{A}{C}{4mm}{7mm}{$\alpha$}
%
\newcommand{\canode}[6]
{
\begin{scope}
\begin{scope}
\der Kreisbogen
\clip (#1) -- (#2) -- (#3) -- cycle;
\draw (#2) circle[radius=#5];
\end{scope}
\coordinate (tempnodeA) at ($(#2)!#4!(#1)$);
\coordinate (tempnodeB) at ($(#2)!#4!(#3)$);
\coordinate (tempnodeC) at ($(tempnodeA)!0.5!(tempnodeB)$);
\node at ($(#2)!#4!(tempnodeC)$) {#6};
\end{scope}
}
```

14.6 Das Paket geometry

```
% genaue Kontrolle ueber die Groesse der Seite und die Breite der Raender
\usepackage
[
    paperwidth = 76.3pt, % Hoehe der Seite
    paperheight = 87.2pt, % Breite der Seite
    top = Opt, % Rand oben
    left = Opt, % Rand links
    right = Opt, % Rand rechts
    bottom = Opt % Rand unten
]
{geometry}
```

14.7 Breite und Höhe einer Zeichnung ermitteln

```
% sizeof
% -----
%
% \sizeof{%
% \begin{tikzpicture}
% ... % \end{tikzpicture}}
\newcommand{\sizeof}[1]
{%
 \begingroup
  \school=\hbox{#1}%
  \endgroup
}
```

15 Maßeinheiten

Alle Koordinaten müssen im Intervall $[-16\,383, 16\,383]$ pt liegen $(\approx \pm 5,73\,\mathrm{m})$.

sp	scaled point	$65536\mathrm{sp} =$	1 pt		
pt	point	$1\mathrm{pt} pprox$	$0,\!35\mathrm{mm}$		
bp	big point	$1\mathrm{bp} pprox$	$1,\!004\mathrm{pt}$		
dd	didot point	$1\mathrm{dd} pprox$	$1{,}07\mathrm{pt}$		
mm	millimeter	$1\mathrm{mm}pprox$	$2,\!85\mathrm{pt}$		
рс	pica	$1\mathrm{pc} =$	$12\mathrm{pt}$		
СС	cicero	$1\mathrm{cc} pprox$	$12,\!84\mathrm{pt}$		
cm	centimeter	$1~{ m cm} pprox$	$28,\!45\mathrm{pt}$		
in	inch	$1 ext{in} pprox$	$72,\!27\mathrm{pt}$		
em	Breite eines großen M				
ex	Höhe eines kleinen x				

16 Farben

16.1 Die dvipsnames vordefinierter Farben

16.2 Eigene Farben definieren

```
% Farbe im RGB-System definieren [0, 255]
\definecolor{UniBlau}{RGB}{3, 3, 133}

% Mischung aus 80% LimeGreen und 20% Cyan
\colorlet{LimeGreenCyan}{LimeGreen!80!Cyan}
```

17 Octave

Octave dient zur numerischen Berechnung von Funktionswerten. Sobald man den Octave-Code in $\langle Dateiname.m \rangle$ gespeichert hat, kann man ihn wie folgt ausführen:

```
octave -q <Dateiname.m>
```

17.1 Die Wertepaare für plot direkt ausgeben

```
% LaTeX-Zeichenbefehl beginnen
printf("\\draw plot[smooth] coordinates {");
% Anzahl der berechneten Punkte
n = 0;
% Intervall und Schrittweite der x-Werte
for x = -1.5:0.1:1.5
  % Zeile nach 4 Punkten umbrechen und einruecken
  if (mod(n++, 4) == 0)
    printf("\n
  endif
  % Funktionswert berechnen: y = -x^2 + 2x + 1
  y = -x**2 + 2*x + 1;
  % Wertepaar '(x, y)' ausgeben
  printf(" (%4.1f, %5.2f)", x, y);
\quad \text{end} \quad
% LaTeX-Zeichenbefehl beenden
printf(" };\n");
```

17.2 Die Wertepaare für plot in eine Datei schreiben

```
% Datei 'f.xy' zum Schreiben oeffnen
FID = fopen("f.xy", "w");
% Intervall und Schrittweite der x-Werte
for x = -5:0.1:5
    % Funktionswert berechnen: y = -x^2 + 2x + 1
    y = -x**2 + 2*x + 1;
    % Wertepaar 'x y' ausgeben
    fprintf(FID, "%6.2f\t%6.2f\n", x, y);
end
% Datei schliessen
fclose(FID);
```