# Physical Design





### Physical Design

How do we organize a "real" collection of data

Last few lectures: Single data type, simple list

data = ['red', 'blue', 'red', 'red']

This lecture: Collection of "records"

| Car_id | Make   | Model   |
|--------|--------|---------|
| I      | Toyota | Camry   |
| 2      | Ford   | Fusion  |
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |



## **CHIDATA** Schematic of Computer Storage



Disk: SSD, HDD



## **Schematic of Computer Storage**





## **Schematic of Computer Storage**





## Data Must Move For Analysis





## Physical Design Objective

Organize data so you avoid moving data that you don't need.



Think about data as stored in blocks



#### Store data as a collection of "records"

| Car_id | Make   | Model   |
|--------|--------|---------|
|        | Toyota | Camry   |
| 2      | Ford   | Fusion  |
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |

### Disk: SSD, HDD

#### **Block I**

| Car_id | Make   | Model  |
|--------|--------|--------|
| I      | Toyota | Camry  |
| 2      | Ford   | Fusion |

Min: 1, Max: 2

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |

Min: 3, Max: 4



Task: read record with id 2

I/O Cost: Size of a block

Disk: SSD, HDD

#### **Block I**

| Car_id | Make   | Model  |
|--------|--------|--------|
| 1      | Toyota | Camry  |
| 2      | Ford   | Fusion |

Min: 1, Max: 2

#### **Block 2**

| Car_id | Ma re              | Model   |
|--------|--------------------|---------|
| 3      | Toyo               | Corolla |
| 4      | H <sub>2</sub> ida | Civic   |

Min: 3, Max: 4



Task: count records with make = 'Toyota'

I/O Cost: Size of all blocks

Disk: SSD, HDD

#### **Block I**

| Car_id | Make   | Model  |
|--------|--------|--------|
| 1      | Toyota | Camry  |
| 2      | Ford   | Fusion |

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |



Task: read record with id 2

I/O Cost: Size of a block

Pretty much as good as it gets

Task: count records with make = 'Toyota'

I/O Cost: Size of all blocks

Hmm.....



### Sort the data on "Make"

| Car_id | Make   | Model   |
|--------|--------|---------|
| 2      | Ford   | Fusion  |
| 4      | Honda  | Civic   |
| I      | Toyota | Camry   |
| 3      | Toyota | Corolla |

•

### Disk: SSD, HDD

#### **Block I**

| Car_id | Make   | Model  |
|--------|--------|--------|
| 2      | Fore   | Fusion |
| 4      | H' nda | Civic  |

Min: Ford, Max: Honda

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| Ι      | Toyota | Camry   |
| 3      | Toyota | Corolla |



## Let's try that again

Task: count records with make = 'Toyota'

| Car_id | Make   | Model   |
|--------|--------|---------|
| 2      | Ford   | Fusion  |
| 4      | Honda  | Civic   |
| I      | Toyota | Camry   |
| 3      | Toyota | Corolla |

### Disk: SSD, HDD

#### **Block I**

| Car_id | Make  | Model  |
|--------|-------|--------|
| 2      | For   | Fusion |
| 4      | ⊬onda | Civic  |

Min: Ford, Max: Honda

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| 1      | Toyota | Camry   |
| 3      | Toyota | Corolla |



### Uh-oh!

### Task: read record with id 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| 2      | Ford   | Fusion  |
| 4      | Honda  | Civic   |
| I      | Toyota | Camry   |
| 3      | Toyota | Corolla |

### Disk: SSD, HDD

#### **Block I**

| Car_id | Make  | Model  |
|--------|-------|--------|
| 2      | Ford  | Fusion |
| 4      | Honda | Civic  |

Min: Ford, Max: Honda

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| 1      | Toyota | Camry   |
| 3      | Toyota | Corolla |



### Sort on "Make"

Task: read record with id 2

I/O Cost: Size of all blocks (expected to see half blocks)

Hmm....

Task: count records with make = 'Toyota'

I/O Cost: Size of all blocks that contain Toyota

Pretty much as good as it gets



### Row-Oriented Layouts

Blocks are collections of roughly the same amount of records

Sorting allows us to filter on particular attributes: need to select these before hand.



### Insertions

### Sort the data on "Make"

| Car_id | Make   | Model   |
|--------|--------|---------|
| 2      | Ford   | Fusion  |
| 4      | Honda  | Civic   |
| I      | Toyota | Camry   |
| 3      | Toyota | Corolla |
| 5      | Ford   | Escape  |

### Disk: SSD, HDD

#### **Block I**

| Car_id | Make  | Model  |
|--------|-------|--------|
| 2      | Ford  | Fusion |
| 4      | Honda | Civic  |

Min: Ford, Max: Honda

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| I      | Toyota | Camry   |
| 3      | Toyota | Corolla |



### Insertions

### Sort the data on "Make"

| Car_id | Make   | Model   |
|--------|--------|---------|
| 2      | Ford   | Fusion  |
| 4      | Honda  | Civic   |
| ı      | Toyota | Camry   |
| 3      | Toyota | Corolla |
| 5      | Ford   | Escape  |

### Disk: SSD, HDD

#### **Block I**

| Car_id | Make | Model  |
|--------|------|--------|
| 2      | Ford | Fusion |
| 5      | Ford | Fusion |

Min: Ford, Max: Ford

#### Block 2

| Car_id | Make   | Model |
|--------|--------|-------|
| 4      | Honda  | Civic |
| 1      | Toyota | Camry |

Min: Honda, Max: Toyota

#### **Block 3**

| Car_id | Make   | Model   |
|--------|--------|---------|
| 3      | Toyota | Corolla |



### Row-Oriented Layouts

Blocks are collections of roughly the same amount of records

Sorting allows us to filter on particular attributes: need to select these before hand.

Sorting: insertions are bad\*

\* appends are ok (know all new records are >= max val).



### An Alternate Approach?

Task: count records with make = 'Toyota'

| Car_id | Make   | Model   |
|--------|--------|---------|
| I      | Toyota | Camry   |
| 2      | Ford   | Fusion  |
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |

Disk: SSD, HDD

#### **Block I**

| Car_id | Make   | Model  |
|--------|--------|--------|
| 1      | Toyota | Camry  |
| 2      | Ford   | Fusion |

#### Block 2

| Car_id | Make   | Model   |
|--------|--------|---------|
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |



### An Alternate Approach?

Task: count records with make = 'Toyota'



Note: Each block contains 4 strings



## Columnar Storage

Task: count records with make = 'Toyota'

| Car_id | Make   | Model   |
|--------|--------|---------|
| I      | Toyota | Camry   |
| 2      | Ford   | Fusion  |
| 3      | Toyota | Corolla |
| 4      | Honda  | Civic   |

| Disk: SSD, HDD Block I | Block 2 |
|------------------------|---------|
| Make                   | Model   |
| Toyota                 | Camry   |
| Ford                   | Fusion  |
| Toyota                 | Corolla |
| Honda                  | Civic   |



### Columnar Storage

Task: count records with make = 'Toyota'

I/O Cost: Size of all "Make" blocks

| Disk: SSD, HDD B | lock I    | Block 2 |
|------------------|-----------|---------|
|                  | Make      | Model   |
|                  | Toyota    | Camry   |
| <u> </u>         | Ford Ford | Fusion  |
|                  | Toyota    | Corolla |
| <u> </u>         | Honda     | Civic   |

Can dictionary encode and compress each block to fit more!



## Agressive Compression

### **Dictionary Encoding**



Task: count records with make = 'Toyota'

Task: count records with make = '00'

Can fit much more relevant data (effectively) in one block.



### Columnar Storage

Task: read record with id 2

I/O Cost: Size of all blocks



Makes sense when you are interested in slicing or aggregating along columns!



### Column-Oriented Layouts

Blocks are collections of columns of data

Efficient aggregation along certain columns

Enables aggressive compression (similar to our previous lectures)



## Physical Design Objective

Organize data so you avoid moving data that you don't need.



Disk: SSD, HDD

Many modern systems use a hybrid of row and columnar storage



### Evaluation Metrics

Workload: Which filters are fast? Which are slow?

Storage size: How big is the stored data?

**Maintenance:** How much effort does it take to support insertions or updates to the data?