فرآیندهای تصادفی در بیوانفورماتیک

نیم سال دوم ۱ ۰ ـ ۰ . ۰ استاد: محمد حسین رهبان امیر حسین عاملی و سپیده عبداللهی بررسی و بازبینی: مهران حسین زاده

دانشگاه صنعتی شریف دانشکدهی مهندسی کامپیوتر

فرایندهای تولد و مرگ و مدلهای همهگیری مهلت ارسال: ۲۴ فروردین

تمرين چهارم

- مهلت ارسال پاسخ تا ساعت ۵۹ ۲۳:۵۹ روز مشخص شده است.
- در طول ترم امکان ارسال با تاخیر تمرینها بدون کسر نمره تا سقف ۱۰ روز (تا سقف ۳ روز برای هر تمرین) وجود دارد.
 محل بارگزاری جواب تمرینها بعد از ۵ روز بسته خواهد شد و پس از گذشت این مدت، پاسخهای ارسال شده پذیرفته نخواهند شد.
 نخواهند شد. همچنین، به ازای هر روز تأخیر غیر مجاز ۱۰ درصد از نمره تمرین به صورت ساعتی کسر خواهد شد.
- همکاری و همفکری شما در انجام تمرین مانعی ندارد اما پاسخ ارسالی هر کس حتما باید توسط خود او نوشته شده باشد.
- در صورت همفکری و یا استفاده از هر منابع خارج درسی، نام همفکران و آدرس منابع مورد استفاده برای حل سوال مورد نظر را ذکر کنید.
 - لطفا تصویری واضح از پاسخ سوالات نظری بارگذاری کنید. در غیر این صورت پاسخ شما تصحیح نخواهد شد.
- پاسخ تمامی سوالات (تئوری و عملی) را در یک فایل فشرده به صورت [StudentId] _[lastName] را در یک فایل فشرده به صورت [StudentId] نامگذاری کرده و ارسال کنید.

سوالات نظری (۷۵ نمره)

۱. قمارباز بازنده (۱۵ نمره)

حالت تغییر یافته مسئله Gambler's ruin را به این صورت در نظر بگیرید که در هر حالت علاوه بر احتمالات p+q+r=1 مساوی می شود و پول قمارباز تغییری نمیکند. برای این بازی موارد زیر را حساب کنید:

- رآ) احتمال اتمام بازی با سرمایه اولیه k < N که 0 < k < N می باشد.
- (-) مقدار متوسطی زمانی که kزم است که با شروع با سرمایه اولیه k بازی به اتمام برسد.
- (7) در حالتی که احتمال (7) و (7) برابر باشند دو مورد بالا را بدست آورده و نتیجه حاصله را تحلیل کنید.

۲. قدمزنی تصادفی (۱۰ نمره)

یک قدم زنی تصادفی را به این صورت در نظر بگیرید که دارای حالتهای $\{0,1,\ldots,N\}$ میباشد که حالت یک گره جذب کننده میباشد و حالت 0 یک گره بازتابنده (Reflecting) به این صورت میباشد که با احتمال q در همان گره میماند و با احتمال p به گره بعدی (۱) میرود. بقیه گرهها مشابه حالت Ruin میباشد.

- (آ) احتمال رسیدن به گره N را با شروع از حالت k < N که N ،بدست آورید.
- به خانه p=q مقدار متوسطی زمانی که لازم است که با شروع از حالت k که p=q مقدار p=q به خانه p=q برسید را بدست آورید.

۳. فرایند تولد و مرگ (۲۰ نمره)

یک فرایند تولد و مرگ را در نظر بگیرید که برای $i=1,\ldots,N-1$ داشته باشیم $b_i=ib$ و برای که فرایند تولد و مرگ را در نظر بگیرید که متغیرهای $i=1,\ldots,N$ که متغیرهای $i=1,\ldots,N$ میانگین جمعیت بعد از i=1 واحد زمانی به صورت زیر محاسبه می شود:

$$\mu\left(n\right) = \sum_{i=0}^{N} i p_i\left(n\right)$$

(آ) رابطه زیر را اثبات کنید:

$$\mu(n+1) = (1+b-d)\mu(n) - dNp_N(n)$$

b < d که کا رابطه بازگشتی بالا یک کران بالا برای $\mu\left(n\right)$ بدست آورید و حد $\mu\left(n\right)$ را در حالتی که است باشد بدست آورید.

۴. فرآیند تولد و مرگ پیوسته (۱۵ نمره)

. در این مسئله نرخ تولد و مرگ را در جمعیتی با اندازه n با μ_n و شان می دهیم

الف)

سه عبارت زیر را برحسب Δt و یارامترهای مسئله بیابید؛

$$\mathbb{P}\{X_{t+\Delta t} = n | X_t = n\} \;,\; \mathbb{P}\{X_{t+\Delta t} = n+1 | X_t = n\} \;,\; \mathbb{P}\{X_{t+\Delta t} = n-1 | X_t = n\}$$

(مرتبه Δt را طوری در نظر بگیریم که جمع سه عبارت بالا برابر با یک شود.)

ب)

 $P_n(t)$ باشد، $P_n(t) = \mathbb{P}\{X_t = n\}$ را بیابید.

پ)

برای این که زنجیرهای بازگشتی مثبت باشد، باید به ازای همهی حالتهای m داشته باشیم؛

$$\lim_{t \to \infty} \mathbb{P}\{X_t = n | X_0 = m\} = \pi(n)$$

را برحسب $\pi(0)$ بیابید. $\pi(n)$

ه زوج یا فرد! (۱۵ نمره)

معادلات زیر را در نظر بگیرید؛

$$\mathbb{P}\{$$
فرد $X_t = t, t + \Delta t$ اتفاقی در بازه ازه $X_t = \lambda_o \Delta t + O(\Delta t)$

$$\mathbb{P}\{$$
زوج $X_t=t,t+\Delta t$ اتفاقی در بازه $X_t=t,t+\Delta t$ بیفتد $\{X_t=t,t+\Delta t\}$

که Δt مقداری بسیار کم است و از $O(\Delta t)$ در مقابل Δt میتوان صرف نظر کرد. اگر $O(\Delta t)$ باشد، دو عبارت زیر را حساب کنید؛ $\mathbb{P}\{X_t=1, X_t=1, X_t$

سوالات نظری و عملی (۲۵ نمره)

دینامیکهای پخش بیماری (۲۵ نمره)

در این سوال قصد بررسی دو مدل SIR و SIS را داریم. برای راحتی به جای بررسی جمعیت گروههای مستعد، ناقل و بهبود یافته، از نسبت جمعیت آنها به جمعیت کل استفاده کنید، یا به عبارتی جمعیت کل را برابر ۱ در نظر بگیرید.

الف)

در مدل SIR با تبدیل $\frac{dS}{dt}$ به $\frac{dS}{dt}$ ، روابط تغییرات جمعیت دو گروه مستعد و بیمار را برحسب زمان بیابید. آیا با معادلات به دست آمده می توانید سرنوشت همه گیری را پیشبینی کنید؟

ب

با انتخاب دو مقدار دلخواه eta و γ نشان دهید معادلات به دست آمده در بخش قبل با حل عددی سازگاری دارند.

پ)

در مدل SIR با $I_0=0.1$ (کسر افراد بیمار در لحظه اول) و $0.2=\gamma$ ، β را به گونهای تغییر دهید که مقدار SIR با SIR با SIR و رکسر افراد بهبود یافته در پایان دینامیک SIR را یافته و $\frac{\beta}{\gamma}$ در بازه SIR برحسب $\frac{\beta}{\gamma}$ را رسم کنید. نمودار حاصل را به صورت خلاصه تفسیر کنید.

ت)

در مدل SIS به ازای مقادیر متفاوت I_0 و مقادیر دلخواه β و γ ، سرنوشت دینامیک را با استفاده از شبیهسازی بررسی کنید. از نتایج به دست آمده چه نتیجهای میگیرید؟ آیا میتوان با استفاده از معادلات هم به همین نتایج رسید؟