

Continuum mechanics and fluid-structure interaction problems: mathematical modelling and numerical approximation

Kinematics - part II

Luca Heltai < luca.heltai@sissa.it>

International School for Advanced Studies (www.sissa.it)
Mathematical Analysis, Modeling, and Applications (math.sissa.it)
Master in High Performance Computing (www.mhpc.it)
SISSA mathLab (math.sissa.it)
King Abdullah University of Science and Technology (kaust.edu.sa)

Record

Record

$$X = X^{d} G_{d}$$
 $X = X^{d} G_{d}$
 $X = X^{d} G_{d$

Polor dec. leoneur: 3! R, U, V s.t. F= RU = VR

$$U^2 = F^T F$$
, $V^2 = FF^T$ $U = \underbrace{\mathcal{L}}_{\mathcal{A}} \underbrace{\mathcal{D}}_{\mathcal{A}} \underbrace{$

$$C = F^{T}F = U^{2}$$

$$C_{AB} = (F^{T}F)_{AB}$$

$$Q_{A} = F G_{A}$$

$$Q_{A} = Q_{B} = Q_{AB} = (F_{GA}) \cdot (F_{GA})$$

$$= G_{A} \cdot (F^{T}F)_{AB}$$

$$= G_{A} \cdot$$

Crown - Lagrangian Strain:

$$E := \frac{1}{2} \left(C - I_{W} \right) = \frac{1}{2} \left(\underline{C} - \underline{C} \right) = \frac{1}{2} \left(g_{dp} - G_{dp} \right) \underline{C}^{q} \underline{G}^{p}$$

$$E := W \longrightarrow W$$

Euler - Almouri Strone: $\phi(x,t) := X + W(x,t)$ Deformation W: E(W) := [[Good W T + Good W] F = Iw + and W C=FTF = Iw + and W + (and W) + (and W) (and W) (and W) B = FFT = Iw + and W + (and W) T + (and W) (and W) $\underline{\underline{E}} := \mathcal{E}(W) + \frac{1}{2} \operatorname{Good}(W)^{\mathsf{T}}(\operatorname{Good} W)$ $\underline{e} := \varepsilon(W) + \frac{1}{2} (u \cdot d(W) (u \cdot dW)^{T}$ Two perspectives: fixed X & B, varying t 1. Lograngian: (capital cetter) 2. Eulerian Repusentation: fixed or in R atsomet, tree Be CRd 3! X6B s.t. $\varkappa = \phi(X,t)$ $\rightarrow X = \phi'(x,t)$ Let's comme that IZ C BE X t E [O,T] Il is a spatial control Volume. IS CIRd FIXED

1/2 ieu 52 is a sportial point (Euleriau) fixet in time

SCB + te GT) => Ite [aT] 3!X s.t $\chi = \phi (x,t)$

Field q au x Ex is au Eulerian field, or spatial field it describes physical proporties of whatever particle appears to be in a at time t.

- · Temperature fixed. 0: 52 -> PR It, it is the lemporature of the martorial point × that happens to be in $x = \phi(x,t)$ $\Rightarrow \Theta(\underline{X},t) = \mathcal{G}(\phi(x,t),t)$
 - Time derivantives at fixed Heterial particles are indicated colled Material time derivatives, and are indicated with "" dot notation
- . Time deriventives at fixed spatial point are colled time derivatives, and are indicated with "" prine notation or "?"

"Material velocity of particle X $\bullet \phi(x,t) := \frac{\partial \phi(x,t)}{\partial t} = O(x,t)$ "Moterial" acceleration of particle X $\phi(x,t) = \frac{\partial}{\partial t} U(x,t) = \frac{\partial^2 \varphi(x,t)}{\partial t^2}$ $U: B \times [0,1] \longrightarrow \mathbb{R}^d$ Eulerian velocity field. $M: \mathcal{I} \times [0,T] \longrightarrow \mathbb{R}^d$ $u(\phi(x,t),t) = \phi(x,t) = \frac{\partial}{\partial t}\phi(x,t) = U(x,t)$ $a\left(\phi(x,t),t\right) = \phi(x,t) = \frac{\partial}{\partial t}\phi(x,t) = A(x,t)$ $a \cdot \phi = \frac{d}{dt} \mu(\phi(x,t),t) = \frac{\partial}{\partial t} \mu(\phi(x,t),t) + \text{grod}(\mu) \cdot \mu$ $M = \frac{\partial \phi}{\partial t} \circ \phi^{-1} \qquad \alpha = \frac{\partial}{\partial t} \left(M \circ \phi \right) \circ \phi^{-1}$ ů := Zu + (grad u) u for sportial field P: 72 × (0,T) - IR $\varphi := \frac{\partial}{\partial t} \varphi + (\operatorname{grad} \varphi) \cdot \mu := \left[\frac{\partial}{\partial t} (\varphi \circ \varphi)\right] \circ \varphi^{-1}$ • $M := \phi \circ \phi^{-1} = 0 \circ \phi^{-1}$ M. Du $\circ \alpha := \mathcal{U} := \phi \circ \phi^{-1} = \frac{\partial}{\partial t} u + (grad u) u$ · a := A · 6

material time driventive God or & Good: 2 ϵ TB grad or V € // grad: $\mu: \mathcal{I} \times [0, 7] \longrightarrow \mathbb{R}^d$ i = 2 m + (Vm) M Theorem

J = J div(u) $\left(\int o \phi^{-1} \right) = \left(\int o \phi^{-1} \right) \operatorname{div}(n)$ $J \circ \phi = J$ Reynolds Transport Hierour Let 32(+) be a time dependent domain, with V(x,t) a spatial field desenting its velocity on the boundary: 352(t) moves with relocity v(x,t)Let $Q: \Sigma \times [0,T] \longrightarrow \mathbb{R}$ be a spatial field Let v(x,t): nound to $\widetilde{\mathcal{AE}}(t)$

$$\frac{d}{dt} \int_{\widetilde{\Omega}(t)} \varphi(x,t) dx = \int_{\widetilde{\Omega}(t)} \frac{\partial}{\partial t} \varphi(x,t) \sqrt{(x,t)} \sqrt{(x,t)} \cdot n(x,t) dx + \int_{\widetilde{\Omega}(t)} \varphi(x,t) \sqrt{(x,t)} \cdot n(x,t) dx$$

$$\widetilde{\Omega}(t) \qquad \qquad \widetilde{\Omega}(t)$$

Q.A.

$$\Theta(X,t)$$

$$\dot{\phi}(x,t) = 1 \, \underline{e}_{l}$$

$$\frac{\partial}{\partial t} \frac{\partial}{\partial t} (x,t) = 0 = 0$$

$$M(x,t) = 10$$

$$\mu\left(\phi(X,t),t\right)=O(X,t)=\dot{\phi}(X,t)=1e.$$

$$Q(x,t) = \Theta \circ \phi^{-1}$$

$$\theta(x,t) = \Theta \circ \phi^{-1}$$
 $\theta(\phi(x,t),t) = \Theta(x,t) = \Theta(x)$

$$\dot{\theta} = \partial_t \theta + \operatorname{grod} \theta \cdot \mu$$