Multiphase Flows – WS 2022/23 Problem Session 10: Process Engineering Applications

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

Problem I: Sedimentation of Single Particles (I)

We investigate the sedimentation of single particles at different conditions.

- a) Compute the steady-state sedimentation velocity of a single particle with diameter $d_P = 0.02 \text{ mm}$ in water at 20 °C.
- b) Compute the steady-state sedimentation velocity of a single particle with diameter $d_P = 0.2 \text{ mm}$ in air at $1000 \, ^{\circ}\text{C}$.
- c) Compute the time after which an initially quiescent particle with diameter $d_P=0.02~\mathrm{mm}$ has reached 99 % of its steady-state sedimentation velocity in water at 20 °C. The acceleration factor for the accelerated liquid is $\alpha=0.5$.

Particle density:
$$\rho_P = 5200 \; \frac{\mathrm{kg}}{\mathrm{m}^3}$$

Properties of water (20 °C):
$$\rho_{W,20} = 998.2 \frac{\text{kg}}{\text{m}^3}$$
, $\eta_{W,20} = 1.004 \cdot 10^{-3} \frac{\text{kg}}{\text{m} \cdot \text{s}}$

Properties of air (1000 °C):
$$\rho_{A,1000} = 0.2733 \frac{\text{kg}}{\text{m}^3}$$
, $\eta_{A,1000} = 47.93 \cdot 10^{-6} \frac{\text{kg}}{\text{m} \cdot \text{s}}$

Problem 1: Sedimentation of Single Particles (2)

Use the following drag laws:

$$Re \le 0.1$$
: $C_D = \frac{24}{Re}$

$$0.1 < \text{Re} < 2 \cdot 10^3$$
: $C_D = \frac{24}{\text{Re}} + \frac{4}{\sqrt{\text{Re}}} + 0.4$

The acceleration factor α is defined as the ratio of the volume of accelerated water (around the particle) and the particle volume.

Particle Cloud Behavior

- In technical systems: particles often aggregate -> formation of particle clouds (PC)
 - → velocity smaller than velocity for single particle
 - → particles do not move any more in "pure" fluid, but in a medium with different properties due to the presence of a high particle number
- Particle volume concentration: $Z = \frac{\dot{V}_P}{\dot{V}_M} = \frac{\dot{V}_P}{\dot{V}_L + \dot{V}_P}$
- ➤ Cloud settling velocity [Richardson and Zaki]:

$$\frac{v_{\infty,PC}}{v_{\infty,SP}} = 1$$
, $Z < 0.001$

Problem 2: Sedimentation Velocity of Particle Cloud

We investigate the sedimentation of particles with diameter $d_P = 0.02$ mm. The stationary sedimentation velocity of the single particles in water has been determined as $v_{\infty,SP} = 9.123 \cdot 10^{-4} \, \frac{\rm m}{\rm s}$ in Problem 1.

Compute the particle cloud velocity of particles with this size assuming a particle mass concentration of $w_{\rm P}=10\%$ in the fluid.

Properties:
$$\rho_{\rm P}=5200\,{\rm kg\over m^3}$$
 , $\rho_{\rm W}=998.2\,{\rm kg\over m^3}$, $\eta_{\rm W}=1.004\cdot 10^{-3}\,{\rm kg\over m\cdot s}$

Problem 3: Sedimentation Velocity with Wall Impact

Determine the stationary sedimentation velocity $v_{\infty,P}$ for a spherical particle with diameter d_P in water in a cylindric vessel with diameter D.

Note that the velocity $v_{\infty,P}$ is influenced by the displaced fluid. Assume Stokes flow and a "piston profile" for the fluid velocity around the particle.

Properties:
$$\rho_P = 5200 \; \frac{\mathrm{kg}}{\mathrm{m}^3}$$
, $\rho_W = 998.2 \; \frac{\mathrm{kg}}{\mathrm{m}^3}$, $\eta_W = 1.004 \cdot 10^{-3} \; \frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}}$

Geometry: $d_P = 2 \text{ mm}$, D = 10 mm

Thank you for your attention

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

http://www.itv.rwth-aachen.de

