Adaptively Tuned Particle Swarm Optimization for Spatial Design

Matthew Simpson

Department of Statistics, University of Missouri SAS Institute, Inc.

August 3, 2016

Joint work with Christopher Wikle and Scott H. Holan

Research supported by the NSF-Census Research Network

Overview of the Talk

- What is particle swarm optimization (PSO)?(Blum and Li, 2008; Clerc, 2010, 2012)
- New adaptively-tuned PSO algorithms.
- Using (adaptively-tuned) PSO for spatial design.
- Example adding to an existing monitoring network.

Particle Swarm Optimization — Intuition

Mimic animal flocking behavior. (Animation Here)

Particle Swarm Optimization

Goal: minimize some objective function $Q(\theta): \mathbb{R}^D \to \mathbb{R}$.

Populate Θ with *n* particles. Define particle *i* in period *k* by:

- $\theta_i(k) \in \mathbb{R}^D$; a location
- $\mathbf{v}_i(k) \in \mathbb{R}^D$; a velocity
- $\mathbf{p}_i(k) \in \mathbb{R}^D$; a personal best location $\mathbf{g}_i(k) \in \mathbb{R}^D$.
- a neighborhood (group) best location

Particle Swarm Optimization

Goal: minimize some objective function $Q(\theta): \mathbb{R}^D \to \mathbb{R}$.

Populate Θ with n particles. Define particle i in period k by:

a location

 $\theta_i(k) \in \mathbb{R}^D$;

a velocity

 $\mathbf{v}_i(k) \in \mathbb{R}^D$;

a personal best location

- $\mathbf{p}_i(k) \in \mathbb{R}^D$;
- a neighborhood (group) best location
- $\mathbf{g}_i(k) \in \mathbb{R}^D$.

Basic PSO: update particle i from k to k + 1 via:

• For
$$j = 1, 2, ..., D$$
:

$$\begin{aligned} v_{ij}(k+1) &= \omega v_{ij}(k) + \mathrm{U}(0,\phi_1) \times \{p_{ij}(k) - \theta_{ij}(k)\} \\ &+ \mathrm{U}(0,\phi_2) \times \{g_{ij}(k) - \theta_{ij}(k)\} \\ &= \mathsf{inertia} + \mathsf{cognitive} + \mathsf{social}, \\ \theta_{ii}(k+1) &= \theta_{ii}(k) + v_{ii}(k+1), \end{aligned}$$

Then update personal and group best locations.

PSO — Parameters

Inertia parameter: ω .

Controls the particle's tendency to keep moving in the same direction.

Cognitive correction factor: ϕ_1 .

Controls the particle's tendency to move toward its personal best.

Social correction factor: ϕ_2 .

Controls the particle's tendency to move toward its neighborhood best.

Default choices:

- \bullet $\omega = 0.7298$, $\phi_1 = \phi_2 = 1.496$ (Clerc and Kennedy, 2002).
- $\omega = 1/(2 \ln 2) \approx 0.721$, $\phi_1 = \phi_2 = 1/2 + \ln 2 \approx 1.193$ (Clerc, 2006).

PSO — Neighborhood Topologies

Sometimes it is useful to restrict the flow of information across the swarm — e.g. complicated objective functions with many local optima.

Particles are only informed by their neighbors.

PSO — Neighborhood Topologies

Sometimes it is useful to restrict the flow of information across the swarm — e.g. complicated objective functions with many local optima.

Particles are only informed by their neighbors.

Easy to visualize example: Ring-k neighborhood topology.

Each particle is informed by k neighbors to the left and k to the right.

Stochastic Star Topology, and Other Bells and Whistles

We use the stochastic star neighborhood topology (Miranda et al., 2008).

- Each particle informs itself and m random particles.
 - \rightarrow sampled with replacement once during initialization.
- On average each particle is informed by *m* particles.
- A small number of particles will be informed by many particles.

Stochastic Star Topology, and Other Bells and Whistles

We use the stochastic star neighborhood topology (Miranda et al., 2008).

- Each particle informs itself and *m* random particles.
 - \rightarrow sampled with replacement once during initialization.
- On average each particle is informed by m particles.
- A small number of particles will be informed by many particles.

Many variants available (Clerc, 2012), (Simpson et al., 2017, appendix).

- Handling search space constraints.
- Coordinate free velocity updates.
- Parallelization.
- Asynchronous updates.
- Redraw neighborhoods.

Bare Bones PSO (BBPSO)

Developed by Kennedy (2003).

Strips out the velocity term:

$$heta_{ij}(k+1) \sim \mathrm{N}\left(rac{p_{ij}(k) + g_{ij}(k)}{2}, |p_{ij}(k) - g_{ij}(k)|^2
ight).$$

Mimics the behavior of standard PSO.

Easier to analyze, but tends to perform worse.

Adaptively Tuned BBPSO

Add flexibility to the scale parameter:

$$heta_{ij}(k+1) \sim \mathrm{T}_{df}\left(rac{p_{ij}(k) + g_{ij}(k)}{2}, \sigma^2(k)|p_{ij}(k) - g_{ij}(k)|^2
ight).$$

with e.g. df = 1 by default.

- Larger $\sigma^2(k)$: more exploration.
- Smaller $\sigma^2(k)$: more exploitation.

How to choose $\sigma^2(k)$'s progression?

Adaptively Tuned BBPSO

Add flexibility to the scale parameter:

$$heta_{ij}(k+1) \sim \mathrm{T}_{df}\left(rac{p_{ij}(k) + g_{ij}(k)}{2}, \sigma^2(k)|p_{ij}(k) - g_{ij}(k)|^2
ight).$$

with e.g. df = 1 by default.

- Larger $\sigma^2(k)$: more exploration.
- Smaller $\sigma^2(k)$: more exploitation.

How to choose $\sigma^2(k)$'s progression?

Analogy with adaptively tuned random walk Metropolis. (Andrieu and Thoms, 2008)

Define the improvement rate of the swarm in period k:

$$R(k) =$$
 proportion of particles that improved on their personal best last period.

Define the improvement rate of the swarm in period k:

$$R(k) =$$
 proportion of particles that improved on their personal best last period.

Let R^* denote a target improvement rate, and c denote an adjustment factor.

Update $\sigma^2(k)$ via:

$$\log \sigma^2(k+1) = \log \sigma^2(k) + c\{R(k+1) - R^*\}$$

Define the improvement rate of the swarm in period k:

$$R(k) =$$
 proportion of particles that improved on their personal best last period.

Let R^* denote a target improvement rate, and c denote an adjustment factor.

Update $\sigma^2(k)$ via:

$$\log \sigma^2(k+1) = \log \sigma^2(k) + c\{R(k+1) - R^*\}$$

Larger c, faster changes to $\sigma^2(k)$.

Define the improvement rate of the swarm in period k:

$$R(k) =$$
 proportion of particles that improved on their personal best last period.

Let R^* denote a target improvement rate, and c denote an adjustment factor.

Update $\sigma^2(k)$ via:

$$\log \sigma^2(k+1) = \log \sigma^2(k) + c\{R(k+1) - R^*\}$$

Larger c, faster changes to $\sigma^2(k)$.

Defaults: $R^* \in [0.3, 0.5]$, c = 0.1.

In PSO larger $\omega \implies$ more exploration, smaller $\omega \implies$ more exploitation.

In PSO larger $\omega \implies$ more exploration, smaller $\omega \implies$ more exploitation.

Idea: slowly decrease $\omega(k)$ over time (Eberhart and Shi, 2000) (DI-PSO).

Hard to set appropriately for any given problem.

In PSO larger $\omega \implies$ more exploration, smaller $\omega \implies$ more exploitation.

Idea: slowly decrease $\omega(k)$ over time (Eberhart and Shi, 2000) (DI-PSO).

Hard to set appropriately for any given problem.

AT-PSO: tune $\omega(k)$ just like $\sigma^2(k)$ in AT-BBPSO.

$$\log \omega(k+1) = \log \omega(k) + c\{R(k+1) - R^*\}.$$

In PSO larger $\omega \implies$ more exploration, smaller $\omega \implies$ more exploitation.

Idea: slowly decrease $\omega(k)$ over time (Eberhart and Shi, 2000) (DI-PSO).

Hard to set appropriately for any given problem.

AT-PSO: tune $\omega(k)$ just like $\sigma^2(k)$ in AT-BBPSO.

$$\log \omega(k+1) = \log \omega(k) + c\{R(k+1) - R^*\}.$$

Defaults: $R^* \in [0.3, 0.5]$, c = 0.1.

In PSO larger $\omega \implies$ more exploration, smaller $\omega \implies$ more exploitation.

Idea: slowly decrease $\omega(k)$ over time (Eberhart and Shi, 2000) (DI-PSO).

Hard to set appropriately for any given problem.

AT-PSO: tune $\omega(k)$ just like $\sigma^2(k)$ in AT-BBPSO.

$$\log \omega(k+1) = \log \omega(k) + c\{R(k+1) - R^*\}.$$

Defaults: $R^* \in [0.3, 0.5]$, c = 0.1.

Similar PSO algorithm in spirit: Zhang et al. (2003).

- ω is constant while ϕ_1 and ϕ_2 vary across time and particle.
- Harder to have intuition for choosing how ϕ_1 and ϕ_2 adapt.

• AT-BBPSO's scale progressions are all remarkably similar.

- AT-BBPSO's scale progressions are all remarkably similar.
- Often AT-BBPSO's scale initially increases $\sigma^2(k)$ above 1, then starts decaying to zero initial burst of exploration.

- AT-BBPSO's scale progressions are all remarkably similar.
- Often AT-BBPSO's scale initially increases $\sigma^2(k)$ above 1, then starts decaying to zero initial burst of exploration.
- DI-PSO's inertia has a nice smooth progression towards zero.

- AT-BBPSO's scale progressions are all remarkably similar.
- Often AT-BBPSO's scale initially increases $\sigma^2(k)$ above 1, then starts decaying to zero initial burst of exploration.
- DI-PSO's inertia has a nice smooth progression towards zero.
- AT-PSO's inertia typically bounces around a flat trendline.

- AT-BBPSO's scale progressions are all remarkably similar.
- Often AT-BBPSO's scale initially increases $\sigma^2(k)$ above 1, then starts decaying to zero initial burst of exploration.
- DI-PSO's inertia has a nice smooth progression towards zero.
- AT-PSO's inertia typically bounces around a flat trendline.
- AT-PSO's inertia crashes to zero when it converges (may be premature local convergence).

Tuning $\omega(k)/\sigma^2(k)$ allows the swarm to adjust the exploration / exploitation tradeoff based on local conditions.

- This has a tendency to speed up convergence.
- ...but convergence may be premature in multi-modal problems.

Tuning $\omega(k)/\sigma^2(k)$ allows the swarm to adjust the exploration / exploitation tradeoff based on local conditions.

- This has a tendency to speed up convergence.
- ...but convergence may be premature in multi-modal problems.

Overview of results from a simulation study with a variety of objective functions:

BBPSO tends to perform poorly, but AT-BBPSO performs quite well.

Tuning $\omega(k)/\sigma^2(k)$ allows the swarm to adjust the exploration / exploitation tradeoff based on local conditions.

- This has a tendency to speed up convergence.
- ...but convergence may be premature in multi-modal problems.

Overview of results from a simulation study with a variety of objective functions:

- BBPSO tends to perform poorly, but AT-BBPSO performs quite well.
- AT-BBPSO often the best for complex objective functions with many local optima.

Tuning $\omega(k)/\sigma^2(k)$ allows the swarm to adjust the exploration / exploitation tradeoff based on local conditions.

- This has a tendency to speed up convergence.
- ...but convergence may be premature in multi-modal problems.

Overview of results from a simulation study with a variety of objective functions:

- BBPSO tends to perform poorly, but AT-BBPSO performs quite well.
- AT-BBPSO often the best for complex objective functions with many local optima.
- AT-PSO performs better than PSO on "hard enough" problems...

Tuning $\omega(k)/\sigma^2(k)$ allows the swarm to adjust the exploration / exploitation tradeoff based on local conditions.

- This has a tendency to speed up convergence.
- ...but convergence may be premature in multi-modal problems.

Overview of results from a simulation study with a variety of objective functions:

- BBPSO tends to perform poorly, but AT-BBPSO performs quite well.
- AT-BBPSO often the best for complex objective functions with many local optima.
- AT-PSO performs better than PSO on "hard enough" problems...
- ...but has trouble with many local optima.

Thank you!

References I

- Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. *Statistics and Computing*, 18(4):343–373.
- Blum, C. and Li, X. (2008). Swarm intelligence in optimization. In Blum, C. and Merkle, D., editors, *Swarm Intelligence: Introduction and Applications*, pages 43–85. Springer-Verlag, Berlin.
- Clerc, M. (2006). Stagnation analysis in particle swarm optimisation or what happens when nothing happens. 17 pages. https://hal.archives-ouvertes.fr/hal-00122031.
- Clerc, M. (2010). Particle swarm optimization. John Wiley & Sons.
- Clerc, M. (2012). Standard particle swarm optimisation. 15 pages. https://hal.archives-ouvertes.fr/hal-00764996.
- Clerc, M. and Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimensional complex space. *Evolutionary Computation, IEEE Transactions on*, 6(1):58–73.

References II

- Eberhart, R. C. and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In *Evolutionary Computation, 2000. Proceedings of the 2000 Congress on*, volume 1, pages 84–88. IEEE.
- Kennedy, J. (2003). Bare bones particle swarms. In *Swarm Intelligence Symposium*, 2003. SIS '03. Proceedings of the 2003 IEEE, pages 80–87. IEEE.
- Miranda, V., Keko, H., and Duque, A. J. (2008). Stochastic star communication topology in evolutionary particle swarms (EPSO). *International journal of computational intelligence research*, 4(2):105–116.
- Simpson, M., Wikle, C. K., and Holan, S. H. (2017). Adaptively tuned particle swarm optimization with application to spatial design. *Stat*, 6(1):145–159.

References III

Zhang, W., Liu, Y., and Clerc, M. (2003). An adaptive PSO algorithm for reactive power optimization. In *IET Conference Proceedings*, pages 302–307. Institution of Engineering and Technology.