Vecteurs de Witt et correspondance de basculement pour les anneaux perfectoïdes entiers

— GdT Cohomolgie prismatique —

David Kern

Laboratoire Angevin de REcherche en MAthématiques

9 mai 2019

Plan

- Propriétés arithmétiques des vecteurs de Witt
 - Λ-anneaux
 - Vecteurs de Witt

- Basculement des anneaux perfectoïdes
 - Basculement et vecteurs de Witt
 - Anneaux perfectoïdes entiers

Sommaire - Section 1 : Propriétés arithmétiques des vecteurs de Witt

- Propriétés arithmétiques des vecteurs de Witt
 - Λ-anneaux
 - Vecteurs de Witt

- Basculement des anneaux perfectoïdes
 - Basculement et vecteurs de Witt
 - Anneaux perfectoïdes entiers

Sommaire - Section 1 : Propriétés arithmétiques des vecteurs de Witt

- Propriétés arithmétiques des vecteurs de Witt
 - ◆ Λ-anneaux
 - Vecteurs de Witt
- Basculement des anneaux perfectoïdes

Définition

- ▶ Un pré- λ -anneau est un anneau A muni d'endomorphismes d'ensembles $\lambda^i \colon A \to A$ pour $i \ge 0$ tels que $\lambda^0(a) = 1$ pour tout a.
- ▶ Un morphisme $(A, \lambda_A^i) \to (B, \lambda_B^i)$ est $f: A \to B$ commutant avec $\lambda^i: f\lambda_A^i = \lambda_B^i f$.

Définition

- ▶ Un pré- λ -anneau est un anneau A muni d'endomorphismes d'ensembles $\lambda^i \colon A \to A$ pour $i \ge 0$ tels que $\lambda^0(a) = 1$ pour tout a.
- ▶ Un morphisme $(A, \lambda_A^i) \to (B, \lambda_B^i)$ est $f: A \to B$ commutant avec $\lambda^i: f\lambda_A^i = \lambda_B^i f$.

Séries formelles à terme constant unitaire

$$\Lambda(A)=1+tA\llbracket t
rbracket =\left\{P(t)=\sum_{i\geq 0}a_it^i\mid a_i\in A, a_0=1
ight\}$$
, groupe abélien par $imes$.

Définition

- Un pré- λ -anneau est un anneau A muni d'endomorphismes d'ensembles $\lambda^i \colon A \to A$ pour $i \ge 0$ tels que $\lambda^0(a) = 1$ pour tout a.
- ▶ Un morphisme $(A, \lambda_A^i) \to (B, \lambda_B^i)$ est $f: A \to B$ commutant avec $\lambda^i: f\lambda_A^i = \lambda_B^i f$.

Séries formelles à terme constant unitaire

$$\Lambda(A)=1+tA\llbracket t
rbracket =\left\{P(t)=\sum_{i\geq 0}a_it^i\mid a_i\in A,a_0=1
ight\}$$
, groupe abélien par $imes$.

Si on interprète les a_i comme les fonctions symétriques $a_i = \sum_{j_1 \leq \cdots \leq j_i} \xi_{j_1} \cdots \xi_{j_i}$ en des variables

$$\xi_j$$
, on a l'expansion en série $P(t) = \prod_{i=1}^{\infty} (1 - t\xi_i)^{-1}$. \leadsto Produit

Définition

- Un pré- λ -anneau est un anneau A muni d'endomorphismes d'ensembles $\lambda^i \colon A \to A$ pour $i \ge 0$ tels que $\lambda^0(a) = 1$ pour tout a.
- ▶ Un morphisme $(A, \lambda_A^i) \to (B, \lambda_B^i)$ est $f: A \to B$ commutant avec $\lambda^i: f\lambda_A^i = \lambda_B^i f$.

Séries formelles à terme constant unitaire

$$\Lambda(A)=1+tA\llbracket t
rbracket =\left\{P(t)=\sum_{i\geq 0}a_it^i\mid a_i\in A,a_0=1
ight\}$$
, groupe abélien par $imes$.

Si on interprète les a_i comme les fonctions symétriques $a_i = \sum_{j_1 < \cdots < j_t} \xi_{j_1} \cdots \xi_{j_t}$ en des variables

$$\xi_j$$
, on a l'expansion en série $P(t) = \prod_{i=1}^{\infty} (1 - t\xi_i)^{-1}$. \leadsto Produit

Alors
$$\lambda^n(P(t)) := \prod_{i_1 < \dots < i_n} \frac{1}{1 - t\xi_{i_1} \cdots \xi_{i_n}}$$
.

Λ -anneaux

$$\mathsf{Si}\ (A,\lambda^i)\ \mathsf{est}\ \mathsf{un}\ \mathsf{pr\'e}\text{-}\Lambda\text{-anneau, on pose}\ \lambda_t(a) = \sum_{i \geq 0} \lambda^i(a) t^i \in \mathsf{1} + t A[\![t]\!] \subset A[\![t]\!].$$

La catégorie des Λ -anneaux est la sous-catégorie pleine des pré- Λ -anneaux (A, λ^i) tels que $\lambda^1 = \operatorname{id}$ et que $A \to \Lambda(A), a \mapsto \lambda_{-t}(a)^{-1}$ soit un morphisme de pré- Λ -anneaux.

Λ -anneaux

$$\text{Si } (A,\lambda^i) \text{ est un pr\'e-Λ-anneau, on pose } \lambda_t(a) = \sum_{i \geq 0} \lambda^i(a) t^i \in 1 + t A[\![t]\!] \subset A[\![t]\!].$$

La catégorie des Λ -anneaux est la sous-catégorie pleine des pré- Λ -anneaux (A, λ^i) tels que $\lambda^1 = \operatorname{id}$ et que $A \to \Lambda(A), a \mapsto \lambda_{-t}(a)^{-1}$ soit un morphisme de pré- Λ -anneaux.

Description explicite

Il existe des polynômes symétriques universels P_n et $P_{n,m}$ tels que

- $\lambda^0 = 1$ et $\lambda^1 = id$, et $\lambda^n(1) = 0$ pour n > 1,
- $\lambda^n(r+s) = \sum_{k=0}^n \lambda^k(r) \lambda^n(s),$
- $\lambda^m \circ \lambda^n(r) = P_{m,n}(\lambda^1(r), \cdots, \lambda^{mn}(r)).$

 $ightharpoonup \Lambda(A)$ est bien un Λ -anneau pour tout anneau A

- $ightharpoonup \Lambda(A)$ est bien un Λ -anneau pour tout anneau A
- ightharpoonup Si (\mathfrak{A},\otimes) est une catégorie abélienne monoïdale, le groupe de Grothendieck

$$K_0(\mathfrak{A}) = \mathbb{Z}[\operatorname{Obj}(\mathfrak{A})] / ([F] = [F'] + [F''] \iff \exists \ 0 \to F' \rightarrowtail F \twoheadrightarrow F'' \to 0)$$

est un anneau, commutatif si (\mathfrak{A},\otimes) est tressée. Si le tressage est une structure symétrique, alors $K_0(\mathfrak{A})$ est un Λ -anneau avec $\lambda^m([F]) = [\bigwedge^m F]$

- $ightharpoonup \Lambda(A)$ est bien un Λ -anneau pour tout anneau A
- ightharpoonup Si (\mathfrak{A},\otimes) est une catégorie abélienne monoïdale, le groupe de Grothendieck

$$K_0(\mathfrak{A}) = \mathbb{Z}[\operatorname{Obj}(\mathfrak{A})] / ([F] = [F'] + [F''] \iff \exists \ 0 \to F' \rightarrowtail F \twoheadrightarrow F'' \to 0)$$

est un anneau, commutatif si (\mathfrak{A},\otimes) est tressée. Si le tressage est une structure symétrique, alors $K_0(\mathfrak{A})$ est un Λ -anneau avec $\lambda^m([F]) = [\bigwedge^m F]$

L'anneau des fonctions symétriques $\mathbb{Z}[\xi_1, \xi_2, \ldots] = \varprojlim_n \mathbb{Z}[\xi_1, \ldots, \xi_n]^{\mathbb{S}_n}$, avec $\lambda^n(\xi_1) = \xi_n$, est le λ -anneau librement engendré par un élément ξ_1 .

- $ightharpoonup \Lambda(A)$ est bien un Λ -anneau pour tout anneau A
- ightharpoonup Si (\mathfrak{A},\otimes) est une catégorie abélienne monoïdale, le groupe de Grothendieck

$$K_0(\mathfrak{A}) = \mathbb{Z}[\operatorname{Obj}(\mathfrak{A})] / ([F] = [F'] + [F''] \iff \exists \ 0 \to F' \rightarrowtail F \twoheadrightarrow F'' \to 0)$$

est un anneau, commutatif si (\mathfrak{A}, \otimes) est tressée. Si le tressage est une structure symétrique, alors $K_0(\mathfrak{A})$ est un Λ -anneau avec $\lambda^m([F]) = [\bigwedge^m F]$

- L'anneau des fonctions symétriques $\mathbb{Z}[\xi_1, \xi_2, \ldots] = \varprojlim_n \mathbb{Z}[\xi_1, \ldots, \xi_n]^{\mathbb{S}_n}$, avec $\lambda^n(\xi_1) = \xi_n$, est le λ -anneau librement engendré par un élément ξ_1 .
- $ightharpoonup \mathbb{Z}$ admet une unique structure de λ -anneau $\lambda^i(n) = \binom{n}{i}$ (i.e. $\lambda_t(n) = (1+t)^n$). En outre, tout λ -anneau est de caractéristique 0 et contient \mathbb{Z} comme sous- λ -anneau.

Soit p un nombre premier, fixé pour toujours.

Soit *p* un nombre premier, fixé pour toujours.

Un Λ -anneau p-typique est un anneau A muni d'un endomorphisme $F_p: A \to A$ relevant le Frobenius modulo $p: F_p(a) \equiv a^p \mod (p)$.

Soit *p* un nombre premier, fixé pour toujours.

Un Λ -anneau p-typique est un anneau A muni d'un endomorphisme $F_p: A \to A$ relevant le Frobenius modulo $p: F_p(a) \equiv a^p \mod (p)$.

Proposition

Un anneau A sans torsion est muni d'une structure de Λ -anneau si et seulement si il est muni d'une structure de Λ -anneau q-typique pour tout nombre premier q, les relèvements de Frobenius commutant entre eux.

Soit *p* un nombre premier, fixé pour toujours.

Un Λ -anneau p-typique est un anneau A muni d'un endomorphisme $F_p: A \to A$ relevant le Frobenius modulo $p: F_p(a) \equiv a^p \mod (p)$.

Proposition

Un anneau A sans torsion est muni d'une structure de Λ -anneau si et seulement si il est muni d'une structure de Λ -anneau q-typique pour tout nombre premier q, les relèvements de Frobenius commutant entre eux.

Dans $K(\mathfrak{A})$, le Frobenius est donné par les opérations d'Adams

De façon générale, les Frobenius F_q d'un λ -anneau sont donnés par $\sum_{n\geq 1}F_n(a)t^n=-trac{\mathrm{d}}{\mathrm{d}t}\log(\lambda_{-t}(a)).$

Sommaire - Section 1 : Propriétés arithmétiques des vecteurs de Witt

- Propriétés arithmétiques des vecteurs de Witt
 - Λ-anneaux
 - Vecteurs de Witt
- Basculement des anneaux perfectoïdes

Construction

Remarque : Nous allons construire un adjoint à droite au foncteur d'oubli $\lambda-\mathfrak{Ann}\to\mathfrak{Ann}$. Pour les applications arithmétiques, il est utile de considérer une construction plus générale.

Définition

 $\emptyset \neq S \subseteq \mathbb{N}$ est **stable par diviseurs** si $\forall n \in S$, tous les diviseurs propres de n sont dans S.

Construction

Remarque : Nous allons construire un adjoint à droite au foncteur d'oubli $\lambda-\mathfrak{Ann}\to\mathfrak{Ann}$. Pour les applications arithmétiques, il est utile de considérer une construction plus générale.

Définition

 $\emptyset \neq S \subseteq \mathbb{N}$ est **stable par diviseurs** si $\forall n \in S$, tous les diviseurs propres de n sont dans S.

- ▶ Soit *A* un anneau. Pour tout *S* stable par diviseurs, on écrit $W_S(A) = A^S$.
- ▶ Aussi W(A) pour $S = \mathbb{N}$ et $W_p(A)$ pour $S = \{1, p, p^2, \ldots\}$

Construction

Remarque : Nous allons construire un adjoint à droite au foncteur d'oubli $\lambda-\mathfrak{Ann}\to\mathfrak{Ann}$. Pour les applications arithmétiques, il est utile de considérer une construction plus générale.

Définition

 $\emptyset \neq S \subseteq \mathbb{N}$ est **stable par diviseurs** si $\forall n \in S$, tous les diviseurs propres de n sont dans S.

- ▶ Soit *A* un anneau. Pour tout *S* stable par diviseurs, on écrit $W_S(A) = A^S$.
- ▶ Aussi W(A) pour $S = \mathbb{N}$ et $W_p(A)$ pour $S = \{1, p, p^2, \ldots\}$

La *n*-ième application fantôme est

$$\mathcal{Q}_n \colon W_S(A) \to A, (a_\ell)_{\ell \in S} \mapsto \sum_{d \mid n} d \cdot a_d^{\frac{n}{d}}.$$

Anneaux de vecteurs de Witt

Lemme

Il existe une unique structure d'anneau sur $W_S(A)$ telle que l'application fantôme $\mathcal{L} = (\mathcal{L}_n)_{n \in S} \colon W_S(A) \to A^S$ soit un morphisme d'anneaux (naturel en A).

On appelle l'anneau $W_S(A)$ ainsi construit l'anneau des S-vecteurs de Witt sur A. Si $S = \mathbb{N}$, on parle d'anneau des **grands vecteurs de Witt**, et si $S = (1, p, p^2, \dots)$, $W_p(A)$ est l'anneau des **vecteurs de Witt** p-**typiques**.

Remarque 1 : On détermine en fait un foncteur W_S : $\mathfrak{Ann} \to \mathfrak{Ann}$.

Anneaux de vecteurs de Witt

Lemme

Il existe une unique structure d'anneau sur $W_S(A)$ telle que l'application fantôme $\mathcal{L} = (\mathcal{L}_n)_{n \in S} \colon W_S(A) \to A^S$ soit un morphisme d'anneaux (naturel en A).

On appelle l'anneau $W_S(A)$ ainsi construit l'anneau des S-vecteurs de Witt sur A. Si $S = \mathbb{N}$, on parle d'anneau des **grands vecteurs de Witt**, et si $S = (1, p, p^2, \dots)$, $W_p(A)$ est l'anneau des **vecteurs de Witt** p-**typiques**.

Remarque 1 : On détermine en fait un foncteur W_S : $\mathfrak{Ann} \to \mathfrak{Ann}$.

Remarque 2 : On considère souvent les troncations $W_S^{< n}(A) = W_{\{\ell \in S \mid \ell < n\}}$ de longueur $\#\{\ell \in S \mid \ell < n\}$, avec $W_S(A) = \varprojlim_{n \in S} W_S^{< n}(A)$.

On a un isomorphisme d'anneaux $W(A) \simeq \Lambda(A) = 1 + tA[t]$

Cas *p*-typique des anneaux parfaits

 $W_p(\mathbb{F}_p) = \mathbb{Z}_p$ est l'anneau des nombres p-adiques.

Soit A une \mathbb{F}_p -algèbre parfaite. Alors W_p est une \mathbb{Z}_p -algèbre libre sans p-torsion complète pour la topologie p-adique, et $W_p(A)/(p^r) = W_p^{< p^r}(A)$: en particulier $W_p(A)/(p) = A$.

Cas *p*-typique des anneaux parfaits

 $W_p(\mathbb{F}_p)=\mathbb{Z}_p$ est l'anneau des nombres p-adiques.

Soit A une \mathbb{F}_p -algèbre parfaite. Alors W_p est une \mathbb{Z}_p -algèbre libre sans p-torsion complète pour la topologie p-adique, et $W_p(A)/(p^r) = W_p^{< p^r}(A)$: en particulier $W_p(A)/(p) = A$.

Relèvement de Teichmüller

Pour un anneau A quelconque, $A\ni a\mapsto [a]=(a,0,0,\cdots)\in W_p(A)$ est un morphisme de monoïdes multiplicatifs.

Remarque : Dans $W_p(A)$, les composantes fantômes ont la forme

$$\mathcal{D}_{p^n}(a_0, a_1, \cdots) = \sum_{i=0}^n p^i a_i^{p^{n-i}} = a_0^{p^n} + p a_1^{p^{n-1}} + p^2 a_2^{p^{n-2}} + \cdots$$

Si A est une \mathbb{F}_p -algèbre, on a $\sum_{i\geq 0} [a_i] p^i = (a_0, a_1^p, a_2^{p^2}, \dots)$, donc si A est parfait tout élément de $W_p(A)$ s'écrit de façon unique $\sum_{i\geq 0} [a_i] p^i$ pour des $a_i \in A$.

Structure de λ -anneau sur les grands vecteurs de Witt

Morphismes de Frobenius

Pour tout $n \in \mathbb{N}$ tel que $nS \subset S$, il existe une unique transformation naturelle $\Phi_n \colon W_S \Rightarrow W_S$ telle que $\mathcal{Q}_m(\Phi_n(w)) = \mathcal{Q}_{mn}(w)$ pour tous $w \in W_S(A)$ et $m \in S$.

En particulier, dans $W_{
ho}(A)$ pour $A/\mathbb{F}_{
ho}$ parfaite, on a $\Phi_{
ho}([a])=[a]^p$

Remarque : Le Frobenius est en fait défini comme transformations $\Phi_n^r \colon W_S^{\leq r} \to W_S^{< r}$.

Grands vecteurs de Witt

Lorsque $S=\mathbb{N}$, et $W_{\mathbb{N}}(A)=W(A)\simeq\Lambda(A)$, Φ_n s'identifie à la norme

$$N_{A[\![t]\!]/A[\![t^n]\!]} \colon A[\![t]\!] \to A[\![t]\!], i.e. \Phi_n(f)(t^n) = N_{A[\![t]\!]/A[\![t^n]\!]}(f)(t) \text{ pour } f(t) \in \Lambda(A).$$

En effet, $N_{A[t]/A[t^n]}(1-at) = \det((-)\cdot(1-at)) = 1-a^nt^n$.

Ainsi $W_p(A)$ est un λ -anneau p-typique, et $W(A) \simeq \Lambda(A)$ est un λ -anneau.

Propriétés universelles : (co)liberté et représentabilité

Proposition

- 1. Le foncteur $W = \Lambda$: $\mathfrak{Ann} \to \lambda \mathfrak{Ann}$ est adjoint à droite du foncteur d'oubli.
- 2. L'adjonction est comonadique, *i.e.* induit une équivalence de catégories entre les λ -anneaux et les cogèbres sur la comonade W.

Proposition

Le foncteur W est coreprésentable par $\mathbb{Z}[\xi_1, \xi_2, \dots]$; en particulier c'est un schéma en anneaux affine sur Spec \mathbb{Z} .

Corollaire

Le foncteur d'oubli $\lambda-\mathfrak{Ann}\to\mathfrak{Ann}$ admet également un adjoint à gauche (donné par tenseur avec la pléthore $\mathbb{Z}[\xi_1,\xi_2,\ldots]$).

Sommaire - Section 2 : Basculement des anneaux perfectoïdes

- Propriétés arithmétiques des vecteurs de Witten
 - \(\Lambda\)-anneaux
 - Vecteurs de Witt

- Basculement des anneaux perfectoïdes
 - Basculement et vecteurs de Witt
 - Anneaux perfectoïdes entiers

Sommaire - Section 2 : Basculement des anneaux perfectoïdes

- Propriétés arithmétiques des vecteurs de Witt
- 2 Basculement des anneaux perfectoïdes
 - Basculement et vecteurs de Witt
 - Anneaux perfectoïdes entiers

Basculement et débasculements

Soit A un anneau. Son p-basculé A^{\flat} est la perfection de A/(p), soit $A^{\flat} = \varprojlim_{x \mapsto x^p} A/(p)$.

Remarque 1 : Un élément s'écrit (b_0, b_1, \ldots) , $b_i \in A/(p)$, où $b_{i+1}^p = b_i$.

Remarque 2 : $\lim_{b \to \infty} A$ est un monoïde (multiplicatif), isomorphe à A^{\flat} .

Basculement et débasculements

Soit A un anneau. Son p-basculé A^{\flat} est la perfection de A/(p), soit $A^{\flat} = \varprojlim_{x \mapsto x^p} A/(p)$.

Remarque 1 : Un élément s'écrit (b_0, b_1, \ldots) , $b_i \in A/(p)$, où $b_{i+1}^p = b_i$.

Remarque 2 : $\lim_{x \to x^n} A$ est un monoïde (multiplicatif), isomorphe à A^{\flat} .

Définition

L'application de **débasculement** $(-)^{\sharp} \colon A^{\flat} \to A$ est donnée par $\varprojlim_{x \mapsto x^n} A \ni (a_0, a_1, \dots) \mapsto a_0$, ou

$$\varprojlim_{x \mapsto x^n} A/(p) \ni (b_0, b_1, \dots) \mapsto \lim_{n \to \infty} \widetilde{b_n}^{p^n} \text{ pour des relèvements } \widetilde{b_n} \in A \text{ des } b_n \in A/(p).$$

C'est un morphisme de monoïdes multiplicatifs, et un morphisme d'anneaux mod p.

Le foncteur $(-)^{\flat}$ est adjoint à droite de $W_p : \mathbb{F}_p - \mathfrak{Alg}^{parf} \to \mathbb{Z}_p - \mathfrak{Alg}^{p-adiques}$.

L'application de Fontaine

Soit A un anneau ϖ -adiquement complet pour un $\varpi \in A$ divisant p. On note $\varphi \colon A/(p) \to A/(p)$ le Frobenius, et $\varphi^r \colon W_p^{< p^r}(A^{\flat}) \to W_p^{< p^r}(A^{\flat})$. L'anneau des périodes infinitésimales est $\mathbb{A}_{\inf}(A) \coloneqq W_p(A^{\flat})$.

L'application de Fontaine

Soit A un anneau ϖ -adiquement complet pour un $\varpi \in A$ divisant p. On note $\varphi \colon A/(p) \to A/(p)$ le Frobenius, et $\varphi^r \colon W_p^{< p^r}(A^{\flat}) \to W_p^{< p^r}(A^{\flat})$. L'anneau des périodes infinitésimales est $\mathbb{A}_{\inf}(A) \coloneqq W_p(A^{\flat})$.

Lemme

Isomorphismes

$$W_p(A^{\flat}) \stackrel{\simeq}{\longleftarrow_{\phi^{\infty}}} \varprojlim_{r,\Phi_p^{<\rho^r}} W_p^{<\rho^r}(A^{\flat}) \simeq \varprojlim_{r,\Phi_p^{<\rho^r}} W_p^{<\rho^r}(A),$$

où φ^{∞} est induit par les φ^r , et le second induit par $A^{\flat} \simeq \varprojlim_{\varpi} A/(\varpi) \simeq \varprojlim_{\varpi} A$.

L'application de Fontaine

Soit A un anneau ϖ -adiquement complet pour un $\varpi \in A$ divisant p. On note $\varphi \colon A/(p) \to A/(p)$ le Frobenius, et $\varphi^r \colon W_p^{< p^r}(A^\flat) \to W_p^{< p^r}(A^\flat)$. L'anneau des périodes infinitésimales est $\mathbb{A}_{\inf}(A) \coloneqq W_p(A^\flat)$.

Lemme

Isomorphismes

$$W_p(A^{\flat}) \stackrel{\simeq}{\underset{r,\Phi_p^{< p^r}}{\longleftarrow}} \varprojlim_{r,\Phi_p^{< p^r}} W_p^{< p^r}(A^{\flat}) \simeq \varprojlim_{r,\Phi_p^{< p^r}} W_p^{< p^r}(A),$$

où φ^{∞} est induit par les φ^r , et le second induit par $A^{\flat} \simeq \varprojlim_{\varphi} A/(\varpi) \simeq \varprojlim_{\varphi} A$.

On définit les applications de Fontaine $\widetilde{\theta_r}$: $\mathbb{A}_{inf}(A) \to W_p^{< p^r}(A)$ comme les composées de l'isomorphisme avec la projection appropriée, et $\theta_r = \varphi^r \circ \widetilde{\theta_r}$.

$$\theta \coloneqq \theta_1 \colon W_p(A^{\flat}) \to A, \sum_{i \ge 0} [b_i] p^i \mapsto \sum_{i \ge 0} b_i^{\sharp} p^i$$
 est la co-unité de l'adjonction.

Classification des débasculements d'algèbres parfaites

Définition

Un **débasculement** d'une \mathbb{F}_p -algèbre parfaite A est une \mathbb{Z}_p -algèbre p-adique A^{\sharp} avec un isomorphisme $A \simeq (A^{\sharp})^{\flat}$.

Classification des débasculements d'algèbres parfaites

Définition

Un **débasculement** d'une \mathbb{F}_p -algèbre parfaite A est une \mathbb{Z}_p -algèbre p-adique A^{\sharp} avec un isomorphisme $A \simeq (A^{\sharp})^{\flat}$.

Un vecteur de Witt $\sum [\alpha_i] p^i \in W_p(A) = \mathbb{A}_{inf}(A^{\sharp})$ est **primitif de degré** 1 si $\alpha_1 \in A^{\times}$.

Théorème

L'application de Fontaine θ : $W_p(A) = \mathbb{A}_{\inf}(A^{\sharp}) \to A^{\sharp}$ est surjective, et son noyau est un idéal principal engendré par un élément primitif de degré 1.

Classification des débasculements d'algèbres parfaites

Définition

Un **débasculement** d'une \mathbb{F}_p -algèbre parfaite A est une \mathbb{Z}_p -algèbre p-adique A^{\sharp} avec un isomorphisme $A \simeq (A^{\sharp})^{\flat}$.

Un vecteur de Witt $\sum [\alpha_i] p^i \in W_p(A) = \mathbb{A}_{inf}(A^{\sharp})$ est **primitif de degré** 1 si $\alpha_1 \in A^{\times}$.

Théorème

L'application de Fontaine θ : $W_p(A) = \mathbb{A}_{inf}(A^{\sharp}) \to A^{\sharp}$ est surjective, et son noyau est un idéal principal engendré par un élément primitif de degré 1.

Si $\alpha \in W_p(A)$ est primitif de degré 1, alors $W_p(A)/(\alpha)$ est un débasculé de A, par

$$A \xrightarrow{\simeq} (W_p(A)/(\alpha))^{\flat}, a \mapsto ([a^{1/p^n}] \mod \alpha)_n.$$

Classification des débasculements d'algèbres parfaites

Définition

Un **débasculement** d'une \mathbb{F}_p -algèbre parfaite A est une \mathbb{Z}_p -algèbre p-adique A^{\sharp} avec un isomorphisme $A \simeq (A^{\sharp})^{\flat}$.

Un vecteur de Witt $\sum [\alpha_i] p^i \in W_p(A) = \mathbb{A}_{inf}(A^{\sharp})$ est **primitif de degré** 1 si $\alpha_1 \in A^{\times}$.

Théorème

L'application de Fontaine θ : $W_p(A) = \mathbb{A}_{\inf}(A^{\sharp}) \to A^{\sharp}$ est surjective, et son noyau est un idéal principal engendré par un élément primitif de degré 1.

Si $\alpha \in W_p(A)$ est primitif de degré 1, alors $W_p(A)/(\alpha)$ est un débasculé de A, par $A \xrightarrow{\simeq} (W_p(A)/(\alpha))^{\flat}$, $a \mapsto ([a^{1/p^n}] \mod \alpha)_p$.

Corollaire

Correspondance biunivoque {débasculés de A}/(\simeq) $\xrightarrow{\simeq}$ {primitifs de degré 1}/ $W_p(A)^{\times}$.

Sommaire - Section 2 : Basculement des anneaux perfectoïdes

- Propriétés arithmétiques des vecteurs de Witt
- 2 Basculement des anneaux perfectoïdes
 - Basculement et vecteurs de Witt
 - Anneaux perfectoïdes entiers

Définition

Un anneau p-perfectoïde entier est un anneau topologique A dans lequel il existe un non diviseur de zéro ϖ tel que

- ▶ $p \in (\varpi^p) = \varpi^p A$ (i.e. ϖ^p divise p)
- ▶ la topologie sur A est la topologie ϖ -adique, et A est complet (i.e. $A \simeq \varprojlim_n A/(\varpi^n)$)
- ▶ le Frobenius $A/(\varpi) \to A/(\varpi^p)$, $a \mapsto a^p$ est un isomorphisme.

On appelle un tel ϖ une **pseudo-uniformisante perfectoïde** (ou p.u.p.) de A.

Définition

Un anneau p-perfectoïde entier est un anneau topologique A dans lequel il existe un non diviseur de zéro ϖ tel que

- ▶ $p \in (\varpi^p) = \varpi^p A$ (i.e. ϖ^p divise p)
- ▶ la topologie sur A est la topologie ϖ -adique, et A est complet (i.e. $A \simeq \varprojlim_n A/(\varpi^n)$)
- ▶ le Frobenius $A/(\varpi) \to A/(\varpi^p)$, $a \mapsto a^p$ est un isomorphisme.

On appelle un tel ϖ une **pseudo-uniformisante perfectoïde** (ou p.u.p.) de A.

Exemples

- ▶ Les complétions p-adiques de $\mathbb{Z}_p[p^{1/p^{\infty}}]$ et de $\mathbb{Z}_p[\zeta_{p^{\infty}}]$, avec p.u.p. $p^{1/p}$ et $(\zeta_{p^2}-1)$.
- ▶ Si A perfectoïde entier avec p.u.p. ϖ , $A\langle T^{1/p^{\infty}}\rangle$ complétion ϖ -adique de $\bigcup_{n\geq 1}A[T^{1/p^n}]$.

Propriétés de perfection des anneaux perfectoïdes

Soit A un anneau topologique complet de caractéristique p. Alors A est p-perfectoïde entier ssi il est parfait et sa topologie est ϖ -adique pour un non-diviseur de zéro $\varpi \in A$.

Proposition

Soit A un anneau p-perfectoïde entier et ϖ une p.u.p.

- ▶ Tout élément de $A/(p\varpi)$ est une racine p-ième.
- ► En multipliant ϖ par une unité $u \in A^{\times}$, on peut s'assurer que la p.u.p. admet un système de racines p^n -ièmes $\varpi^{1/p^n} \in A$, $n \ge 1$.

Corollaire

Pour tout anneau perfectoïde entier A avec p.u.p. ϖ , la \mathbb{F}_p -algèbre parfaite A^{\flat} contient un élément $\varpi^{\flat} := (\varpi, \varpi^{1/p}, \varpi^{1/p^2}, \dots)$, quitte à multiplier ϖ par une unité au préalable.

Basculés d'anneaux perfectoïdes entiers

Soit A un anneau perfectoïde entier avec p.u.p. ϖ . Alors : A^{\flat} est un anneau perfectoïde entier avec p.u.p. ϖ^{\flat} , et l'application de débasculement $(-)^{\sharp}$: $A^{\flat} \to A$ est continue.

Exemple d'une algèbre de polynômes perfectoïde

 $A\langle T^{1/p^{\infty}}\rangle^{\flat}$ contient $T^{\flat}\coloneqq (T,T^{1/p},\dots)$, et il y a un isomorphisme $A^{\flat}\langle U^{1/p^{\infty}}\rangle\stackrel{\cong}{\longrightarrow} A\langle T^{1/p^{\infty}}\rangle^{\flat}$ appliquant U sur T^{\flat} .

Basculés d'anneaux perfectoïdes entiers

Soit A un anneau perfectoïde entier avec p.u.p. ϖ . Alors : A^{\flat} est un anneau perfectoïde entier avec p.u.p. ϖ^{\flat} , et l'application de débasculement $(-)^{\sharp}$: $A^{\flat} \to A$ est continue.

Exemple d'une algèbre de polynômes perfectoïde

 $A\langle T^{1/p^{\infty}}\rangle^{\flat}$ contient $T^{\flat} \coloneqq (T, T^{1/p}, \dots)$, et il y a un isomorphisme $A^{\flat}\langle U^{1/p^{\infty}}\rangle \xrightarrow{\cong} A\langle T^{1/p^{\infty}}\rangle^{\flat}$ appliquant U sur T^{\flat} .

L'application de Fontaine

Un anneau A ϖ -adiquement complet pour un ϖ tel que $\varpi^p|p$ est perfectoïde ssi l'application de Fontaine $\theta\colon \mathbb{A}_{\inf(A)}=W(A^\flat)\to A$ est surjective et son noyau un idéal principal. Dans ce cas, le générateur de ker θ est primitif de degré 1.

Remarque : $\theta = \theta_1$ est surjective ssi θ_r : $\mathbb{A}_{inf}(A) \to W_p^{< p^r}(A)$ surjective $\forall r \geq 0$

Correspondance de basculement

Définition

Soit A un anneau perfectoïde avec p.u.p. ϖ . Une A-algèbre **perfectoïde** est une A-algèbre $A \to B$ telle qu'équiper B de la topologie induite (ϖB -adique) en fait un anneau perfectoïde entier.

Le foncteur

$$A-\mathfrak{Alg}^{\mathsf{perfd}} \ni B \mapsto B^{\flat} \in A^{\flat}-\mathfrak{Alg}^{\mathsf{perfd}}$$

est une équivalence de catégories, avec quasi-inverse

$$C \mapsto C^{\sharp} := W_p(C) \otimes_{\mathbb{A}_{\inf}(A)} A = W_p(C)/(\ker \theta).$$

L'équivalence se restreint à un isomorphisme de treillis entre les sous-algèbres perfectoïdes de A et celles de A^{\flat} .

1. Pour toute A-algèbre perfectoïde B, vérifier que $(B^{\flat})^{\sharp} = B$.

1. Pour toute A-algèbre perfectoïde B, vérifier que $(B^{\flat})^{\sharp}=B$. La commutativité du diagramme de naturalité pour θ

$$egin{aligned} B &\longleftarrow & A \ & \theta_B \ \end{pmatrix} & & & & & & & & & & & \\ \emptyset_B & & & & & & & & & & & \\ W_p(B^\flat) &= \mathbb{A}_{\inf}(B) &\longleftarrow & \mathbb{A}_{\inf}(A) & & & & & & & & \end{aligned}$$

implique que le générateur $\xi = (\xi_0, \xi_1, \dots)$ de ker θ_A est envoyé dans ker θ_B .

1. Pour toute A-algèbre perfectoïde B, vérifier que $(B^{\flat})^{\sharp} = B$. La commutativité du diagramme de naturalité pour θ

$$egin{aligned} B &\longleftarrow & A \ & \theta_B & & & & \uparrow \theta_A \ W_p(B^{\flat}) &= \mathbb{A}_{\mathsf{inf}}(B) &\longleftarrow & \mathbb{A}_{\mathsf{inf}}(A) \end{aligned}$$

implique que le générateur $\xi = (\xi_0, \xi_1, \dots)$ de $\ker \theta_A$ est envoyé dans $\ker \theta_B$. De même l'image de sa première composante de Witt ξ_1 est bien une unité (*i.e.* l'image de ξ est primitive de degré 1)

1. Pour toute A-algèbre perfectoïde B, vérifier que $(B^{\flat})^{\sharp} = B$. La commutativité du diagramme de naturalité pour θ

$$B \longleftarrow A$$
 $\theta_B \uparrow \qquad \qquad \uparrow \theta_A$
 $W_p(B^{\flat}) = \mathbb{A}_{\inf}(B) \longleftarrow \mathbb{A}_{\inf}(A)$

implique que le générateur $\xi=(\xi_0,\xi_1,\dots)$ de $\ker\theta_A$ est envoyé dans $\ker\theta_B$. De même l'image de sa première composante de Witt ξ_1 est bien une unité (*i.e.* l'image de ξ est primitive de degré 1), donc $\ker\theta_B=\xi\mathbb{A}_{\inf}(B)$ et la flèche canonique $\mathbb{A}_{\inf}(B)\otimes_{\mathbb{A}_{\inf}(A)}A \rightrightarrows (B^{\flat})^{\sharp}\to B$ est un isomorphisme.

1. Pour toute A^{\flat} -algèbre perfectoïde C, vérifier que C^{\sharp} est une A-algèbre perfectoïde.

1. Pour toute A^{\flat} -algèbre perfectoïde C, vérifier que C^{\sharp} est une A-algèbre perfectoïde. Elle est ϖ -adiquement complète par propriété des anneaux de Witt. Pour la perfection mod ϖ^p , on remarque que $\xi \equiv p \mod [\varpi^{\flat}]^p$ donc

$$C^{\sharp}/\varpi C^{\sharp} := W_p(C)/\langle \xi, [\varpi^{\flat}] \rangle \simeq W_p(C)/\langle p, [\varpi^{\flat}] \rangle \simeq C/(\varpi^{\flat}),$$

1. Pour toute A^{\flat} -algèbre perfectoïde C, vérifier que C^{\sharp} est une A-algèbre perfectoïde. Elle est ϖ -adiquement complète par propriété des anneaux de Witt. Pour la perfection mod ϖ^p , on remarque que $\xi \equiv p \mod [\varpi^{\flat}]^p$ donc

$$C^{\sharp}/\varpi C^{\sharp} := W_p(C)/\langle \xi, [\varpi^{\flat}] \rangle \simeq W_p(C)/\langle p, [\varpi^{\flat}] \rangle \simeq C/(\varpi^{\flat}),$$

et comme ω^{\flat} est une p.u.p. de C on a

$$C/(\varpi^{\flat}) \xrightarrow{\simeq} C/((\varpi^{\flat})^p) \simeq W_p(C)/\langle p, [\varpi^{\flat}]^p \rangle \simeq W_p(C)/\langle \xi, [\varpi^{\flat}]^p \rangle \eqqcolon C^{\sharp}/\varpi^p C^{\sharp}$$

soit $C^{\sharp}/\varpi C^{\sharp} \xrightarrow{\simeq} C^{\sharp}/\varpi^p C^{\sharp}$.

1. Pour toute A^{\flat} -algèbre perfectoïde C, vérifier que C^{\sharp} est une A-algèbre perfectoïde. Elle est ϖ -adiquement complète par propriété des anneaux de Witt. Pour la perfection mod ϖ^p , on remarque que $\xi \equiv p \mod [\varpi^{\flat}]^p$ donc

$$C^{\sharp}/\varpi C^{\sharp} := W_p(C)/\langle \xi, [\varpi^{\flat}] \rangle \simeq W_p(C)/\langle p, [\varpi^{\flat}] \rangle \simeq C/(\varpi^{\flat}),$$

et comme ϖ^{\flat} est une p.u.p. de C on a

$$C/(\varpi^{\flat}) \xrightarrow{\simeq} C/((\varpi^{\flat})^p) \simeq W_p(C)/\langle p, [\varpi^{\flat}]^p \rangle \simeq W_p(C)/\langle \xi, [\varpi^{\flat}]^p \rangle \eqqcolon C^{\sharp}/\varpi^p C^{\sharp}$$

soit $C^{\sharp}/\varpi C^{\sharp} \xrightarrow{\simeq} C^{\sharp}/\varpi^p C^{\sharp}$.

2. Vérifier que $(C^{\sharp})^{\flat} = C$.

1. Pour toute A^{\flat} -algèbre perfectoïde C, vérifier que C^{\sharp} est une A-algèbre perfectoïde. Elle est ϖ -adiquement complète par propriété des anneaux de Witt. Pour la perfection mod ϖ^p , on remarque que $\xi \equiv p \mod [\varpi^{\flat}]^p$ donc

$$C^{\sharp}/\varpi C^{\sharp} := W_p(C)/\langle \xi, [\varpi^{\flat}] \rangle \simeq W_p(C)/\langle p, [\varpi^{\flat}] \rangle \simeq C/(\varpi^{\flat}),$$

et comme ϖ^{\flat} est une p.u.p. de C on a

$$C/(\varpi^{\flat}) \xrightarrow{\simeq} C/((\varpi^{\flat})^p) \simeq W_p(C)/\langle p, [\varpi^{\flat}]^p \rangle \simeq W_p(C)/\langle \xi, [\varpi^{\flat}]^p \rangle \eqqcolon C^{\sharp}/\varpi^p C^{\sharp}$$

soit $C^{\sharp}/\varpi C^{\sharp} \xrightarrow{\simeq} C^{\sharp}/\varpi^p C^{\sharp}$.

2. Vérifier que $(C^{\sharp})^{\flat} = C$. En passant à la limite, on obtient que $(C^{\sharp})^{\flat} \coloneqq \varprojlim_{x \mapsto x^p} C^{\sharp} / \varpi C^{\sharp} \simeq \varprojlim_{x \mapsto x^p} C / (\varpi^{\flat}) \eqqcolon C^{\flat}$, et C est parfaite $/\mathbb{F}_p$ donc $C^{\flat} = C$.

Références

- Bhargav Bhatt, Matthew Morrow et Peter Scholze, Integral p-adic Hodge theory
- Dori Bejleri, Perfectoid rings and Ainf
- Michiel Hazewinkel, Witt vectors
- Lars Hesselholt, Lecture notes on Witt vectors
- Matthew Morrow, Adic and perfectoid spaces (cours M2)