머신 러닝을 이용한 단조공정에서의 피로수명 최적화 설계

연구 목표

- 머신 러닝과 유전 알고리즘을 이용한 금형 수명 최적화
- 단조공정 유한요소해석을 이용한 데이터 샘플링
- 인공신경망과 유전자 알고리즘을 이용한 최적화

연구 내용

• 문제 정의

3단 공정의 3번 금형에서 파손이	
발생, 파손 부근의 유효응력과 위치를	
파악하고 분석한 뒤 금형 형상의	
최적화를 이루는 설계변수를 설정	

유동응력식	$\bar{\sigma} = C(\bar{\varepsilon}, T) \dot{\bar{\varepsilon}}^m [\bar{\varepsilon}, T]$		
탄성계수	210Gpa		
프아송비	0.3		
밀도	7850kgm/m^3		
열팽창계수	0.000012		

• 최소 수명을 가지는 절점과 절점에서의 주요 응력 그래프

• S-N커브와 Goodman 선도-상수 보간

• 설계 변수 설정

연구 방법

- · RMSE로 비교 후 최적 hyperparameter 선택

인공신경망

구성

· 기계 학습 및 평가

· Latin Hypercube · ANN 생성 Sampling

• 최적의 hyper-parameter 탐색

Latin hypercube sampling으로 얻은 100개의 data 중 유한요소해석시 이상치를 제거한 82개의 data 선택

Train set: 50개, validation set: 14개 test set: 18개

성능 평가 : Latin hypercube sampling으로 얻은 500개의 Hyper-parameter 중 최적안

•머신 러닝과 해석값 비교

Data set	Train set	Validation set	Test set
RMSE	0.1477	0.1367	0.1850

• 모델별로 최적안 비교

모델별 금형 수명

	직진,턴	3단-3번 금형 예압 각도	2단-3번 금형 각도	금형 수명	수명증가율
초기 모델(해석)	턴	5°	40°	3.14e+06	-
GA_최적(ANN)	직진	2°	49.8°	4.28e+06	36.3%
검증 모델(해석)	직진	2°	49.8°	3.97e+06	26.4%

- -초기 모델에 비해서 GA_최적안이 36.3% 수명이 증가했음.
- -GA_최적안을 검증한 해석모델은 초기 모델에 비해 26.4% 증가했음.

결론

최적화

· 최적안의 가중치

· 유전 알고리즘(GA)

을 이용한 최적화

및 편향값 탐색

- 최적의 Hyper-parameter 탐색(설계 변수와 Data 선정)
- -Latin hypercube sampling을 사용하여 얻은 500개의 hyper-parameter조합 생성
- -Train set에 대해 최소의 RMSE값을 가지는 hyper-parameter 조합을 선택
- 머신 러닝의 성능평가(RMSE로 적합성 판정 및 학습)
- -같은 설계 변수에 대하여 머신 러닝으로 예측한 값과 유한 요소 해석값을 비교
- 인공신경망의 성능 검증: Test set의 RMSE가 0.18
- 머신 러닝과 유전 알고리즘을 이용한 최적화(최종 결론)
 - -학습시킨 머신 러닝을 메타 모델로 유전 알고리즘을 적용해 설계 변수 최적화 -초기 모델에 비해 GA_최적안은 36.3%, 이를 검증한 해석은 26.4% 수명이 증가 했음.

연구자 지도교수

이현준, 이도형, 조영우

정완진

서울과학기술대학교 기계디자인금형공학프로그램 소속