Numerical Inverse Kinematics

Reading: Modern Robotics 6.2

This Lecture

- How can we use the Jacobian pseudoinverse to get inverse kinematics?
- Can we develop a numerical algorithm for inverse kinematics?
- When does our algorithm fail?

$$\dot{\theta} = J^+V + (I - J^+J)b$$

With this pseudoinverse, we can convert a twist V into a joint velocity $\dot{\theta}$

$$\dot{\theta} = J^+ V$$

$$V = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\dot{\theta} = J^+ V$$

$$\dot{\theta} = J^+ V$$

$$\dot{\theta} = J^+ V$$

Applying to inverse kinematics:

Given a desired T_d and our current T, we first need a twist V that moves from T towards T_d

2 Convert T_d to X_d

For any transformation matrix T, there exists a screw axis S and scalar θ so that:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = e^{[S]\theta}$$

3 Subtract to get *V*

2 Convert T_d to X_d

For any transformation matrix T, there exists a screw axis S and scalar θ so that:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = e^{[S]\theta}$$

In other words, there is a matrix logarithm that takes us from T to $S\theta$:

$$\log T \to S\theta$$

Convert T_d to X_d

For any transformation matrix T, there exists a screw axis S and scalar θ so that:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = e^{[S]\theta}$$

We are going to cover a version of this that is compatible with geometric twists, i.e., velocity of {b} expressed in {s}. This is so we get a V that works with our geometric Jacobian.

2 Convert T_d to X_d

3 Subtract to get *V*

For any transformation matrix T, there exists a screw axis S and scalar θ so that:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = e^{[S]\theta}$$

In the special case where R = I:

$$\log T = \begin{bmatrix} 0 \\ p \end{bmatrix}$$

Convert T_d to X_d

3 Subtract to get *V*

For any transformation matrix T, there exists a screw axis S and scalar θ so that:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = e^{[S]\theta}$$

Otherwise find the axis-angle for R:

$$\log T = \begin{bmatrix} \widehat{\omega}\theta \\ p \end{bmatrix}, \qquad R = e^{[\widehat{\omega}]\theta}$$

Convert
$$T_d$$
 to X_d

$$\log T = X = \begin{bmatrix} \omega_{x1} \\ \omega_{y1} \\ \omega_{z1} \\ p_{y1} \\ p_{z1} \end{bmatrix}$$

$$\log T_d = X_d = \begin{bmatrix} \omega_{x2} \\ \omega_{y2} \\ \omega_{z2} \\ p_{x2} \\ p_{y2} \end{bmatrix}$$

$$V = X_d - X$$

 $X_d \leftarrow \log T_d$

Map the desired transformation to 6×1 *vector (previous slides)*

$$X_d \leftarrow \log T_d$$
$$\theta \leftarrow \theta_0$$
$$X \leftarrow \log T(\theta)$$

Choose a random initial value for θ . This is your first guess at the inverse kinematics solution. Then use forward kinematics to get $T(\theta)$, and map to X

$$X_d \leftarrow \log T_d$$
$$\theta \leftarrow \theta_0$$
$$X \leftarrow \log T(\theta)$$

while
$$||X_d - X|| > \varepsilon$$

While the 6×1 representation of $T(\theta)$ does not match the 6×1 representation of T_d

$$X_d \leftarrow \log T_d$$
$$\theta \leftarrow \theta_0$$
$$X \leftarrow \log T(\theta)$$

while
$$||X_d - X|| > \varepsilon$$

 $V \leftarrow X_d - X$

Get a twist moving from T towards T_d

$$X_d \leftarrow \log T_d$$

$$\theta \leftarrow \theta_0$$

$$X \leftarrow \log T(\theta)$$
while $||X_d - X|| > \varepsilon$

$$V \leftarrow X_d - X$$

$$\Delta \theta = J^+ V + (I - J^+ J)b$$

Use pseudoinverse to map twist V to a change in θ . Should be the geometric Jacobian because of how we defined V. If you have a redundant robot, you can use the null space as well.

$$\theta \leftarrow \theta_0$$
 $X \leftarrow \log T(\theta)$

while $||X_d - X|| > \varepsilon$
 $V \leftarrow X_d - X$

$$\Delta \theta = J^+ V + (I - J^+ J)b$$
 $\theta \leftarrow \theta + \alpha \Delta \theta$

 $X_d \leftarrow \log T_d$

Increment your guess of the inverse kinematics solution. Here α is a small positive number of your choice.

$$\theta \leftarrow \theta_0$$

$$X \leftarrow \log T(\theta)$$
while $||X_d - X|| > \varepsilon$

$$V \leftarrow X_d - X$$

$$\Delta \theta = J^+ V + (I - J^+ J)b$$

$$\theta \leftarrow \theta + \alpha \Delta \theta$$

$$X \leftarrow T(\theta)$$

 $X_d \leftarrow \log T_d$

Use forward kinematics to find the new end-effector position.

4-DoF redundant robot moving in a plane.

Given a desired end-effector pose, can we get joint positions?

What joint position gives us:

$$T_{sb} = \begin{bmatrix} \text{rotz} \begin{pmatrix} pi \\ 4 \end{pmatrix} & 2 \\ 0 & 1 \end{bmatrix}$$

Initial:
$$\theta_0 = \begin{bmatrix} 1.4590 \\ 1.1472 \\ 0.7675 \\ 0.9087 \end{bmatrix}$$
 Final: $\theta = \begin{bmatrix} -0.480 \\ 1.310 \\ 0.998 \\ -0.985 \end{bmatrix}$

What joint position gives us:

$$T_{sb} = \begin{bmatrix} \text{rotz} \begin{pmatrix} pi \\ 4 \end{pmatrix} & 2 \\ 0 & 1 \end{bmatrix}$$

Initial:
$$\theta_0 = \begin{bmatrix} -0.214 \\ -1.133 \\ -0.167 \\ -1.027 \end{bmatrix}$$
 Final: $\theta = \begin{bmatrix} -1.460 \\ -0.357 \\ -1.819 \\ -4.746 \end{bmatrix}$

What joint position gives us:

$$T_{sb} = \begin{bmatrix} & 4 \\ I & 0 \\ & 0 \\ 0 & 1 \end{bmatrix}$$

We know the answer is $\theta = 0$. But why is our algorithm jumping around?

$$\dot{\theta} = J^+V + (I - J^+J)b$$

Remember that $J^+ = J^T (JJ^T)^{-1}$ At **singularities** the rank of J decreases, so the rank of JJ^T also decreases Hence, $(JJ^T)^{-1} \to \infty$ as the robot approaches singularities

This Lecture

- How can we use the Jacobian pseudoinverse to get inverse kinematics?
- Can we develop a numerical algorithm for inverse kinematics?
- When does our algorithm fail?

Next Lecture

- So far we've talked about position and velocity...
 - ...what about forces and torques?