#### Tribhuvan University

#### **Institute of Science and Technology**

2065

 $\Diamond$ 

Bachelor Level/First Year/ Second Semester/ Science Computer Science and Information Technology (MTH.155 – Linear Algebra)

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

#### Attempt all questions:

Group A 
$$(10 \times 2 = 20)$$

Full Marks: 80

Pass Marks: 32

Time: 3hours

- 1. Illustrate by an example that a system of linear equations has either equations has either exactly one solution or infinitely many solutions.
- 2. When is a linear transformation invertible?
- 3. Solve the system

$$3x_1 + 4x_2 = 3, 5x_1 + 6x_2 = 7$$
 by using the inverse of the matrix  $A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$ .

- 4. State the numerical importance of determinant calculation by row operation.
- 5. State Cramer's rule for an invertible n x n matrix A and vector  $b \in R^n$  to solve the system Ax = b. Is this method efficient from computational point of view?

6. Determine if 
$$\{v_1, v_2 v_3\}$$
 is basis for  $\mathbb{R}^3$ , where  $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ ,  $v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ .

7. Determine if 
$$W = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$$
 is a Nul(A) for  $A = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix}$ .

- 8. Show that 7 is an eigen value of  $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ .
- 9. If  $S = \{u_1, \dots, u_p\}$  is an orthogonal set of nonzero vectors in  $\mathbb{R}^2$ , show S is linearly independent and hence is a basis for the subspace spanned by S.

1CSc. MTH. 155-2065 \$\Display\$

10. Let 
$$W = span\{x_1, x_2\}$$
 where  $x_1 = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$  and  $x_2 = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$ . Their construct orthogonal basis for W.

$$Group B (5 x 4 = 20)$$

11. Determine if the given set is linearly dependent:

a) 
$$\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}$$
,  $\begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}$ ,  $\begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$ ,  $\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$   
b)  $\begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}$ ,  $\begin{bmatrix} 3 \\ -6 \\ -9 \\ 15 \end{bmatrix}$ 

12. Find the 3 x 3 matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90°, and finally a translation that adds (-0.5, 2) to each point of a figure.

#### OR

Describe the Leontief Input-Output model for certain economy and derive formula for (I-C)<sup>-1</sup>, where symbols have their usual meanings.

- 13. Find the coordinate vector  $[X]_B$  of a x relative to the given basis  $B = \{b_1, b_2\}$ , where  $b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ ,  $b_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ ,  $x = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ .
- 14. Let  $A = \begin{bmatrix} 4 & -8 \\ 4 & 8 \end{bmatrix}$ ,  $b_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ ,  $b_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and basis  $B = \{b_1, b_2\}$ . Find the B-matrix for the transformation  $x \to Ax$  with  $P = \{b_1, b_2\}$ .
- 15. Let u and v be non-zero vectors in  $\mathbb{R}^3$  and the angle between them be  $\phi$ . Then prove that  $u.v = ||u|| ||v|| \cos \emptyset$ , where the symbols have their usual meanings.

$$\frac{\text{Group C}}{\text{Constant}} \tag{5 x 8 = 40}$$

16. Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. Then T is one-to-one if and only if the equation T(x) = 0 has only the trivial solution, prove the statement.

Let 
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
,  $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ ,  $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ ,  $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$  and define  $T: \mathbb{R}^2 \to \mathbb{R}^3$  by  $T(x) = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ 

Ax. Then

- a) Find T(u)
- b) Find an  $x \in \mathbb{R}^2$  whose image under T is b.
- c) Is there more than one x whose image under T is b?
- d) Determine if c is the range of T.

17. Compute the multiplication of partitioned matrices for

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ \frac{1}{0} & 5 & -2 & 3 & -1 \\ 0 & 4 & -2 & 7 & -1 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ \frac{-3}{0} & \frac{7}{0} \\ 5 & 2 \end{bmatrix}.$$

- 18. What do you mean by change of basis in R<sup>n</sup>? Let  $b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ ,  $b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$ ,  $c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$ ,  $c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$ , and consider the bases for R<sup>2</sup> given by  $B = \{b_1, b_2\}$  and  $C = \{c_1, c_2\}$ .
  - a) Find the change of coordinate matrix from C to B.
  - b) Find the change of coordinate matrix from B to C.

OR

Define vector spaces, subspaces, basis of vector space with suitable examples. What do you mean by linearly independent set and linearly dependent set of vectors?

- 19. Diagonalize the matrix  $A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$ , if possible.
- 20. Find the equation  $y = \beta_0 + \beta_1 x$  of the least squares line that best fits the data points (2, 1), (5, 2), (7, 3), (8, 3). What do you mean by least squares lines?

#### Tribhuvan University

#### **Institute of Science and Technology**

2066

 $\Diamond$ 

Bachelor Level/First Year/ Second Semester/ Science Computer Science and Information Technology (MTH.155 – Linear Algebra)

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

#### Attempt all questions:

**Group A**  $(10 \times 2 = 20)$ 

Full Marks: 80

Pass Marks: 32

Time: 3hours

- 1. When is system of linear equation consistent or inconsistent?
- 2. Write numerical importance of partitioning matrices.
- 3. How do you distinguish singular and non-singular matrices?
- 4. If A and B are n x n matrices, then verify with an example that det(AB) = det(A)det(B).
- 5. Calculate the area of the parallelogram determined by the columns of

$$A = \begin{bmatrix} 2 & 6 \\ 5 & 1 \end{bmatrix}.$$

- 6. Determine if  $w = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$  is Nul(A), where,  $A = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix}$ .
- 7. Determine if  $\{v_1, v_2, v_3\}$  is a basis for  $\lambda^3$ , where  $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ ,  $v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ .
- 8. Find the characteristic polynomial for the eigen values of the matrix  $\begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$ .
- 9. Let  $\vec{v} = (1, -2, 2, 0)$ . Find a unit vector  $\vec{u}$  in the same direction as  $\vec{v}$ .
- 10. Let  $\{u_1, \dots, u_p\}$  be an orthogonal basis for a subspace W of  $\mathbb{R}^n$ . Then prove that for each  $y \in W$ , the weights in  $y = c_1 u_1 + \dots + c_p u_p$  are given by

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \qquad (j = 1, \dots, p)$$

 $\underline{\text{Group B}} \tag{5 x 4 = 20}$ 

- 11. Prove that any set  $\{v_1, \dots, v_p\}$  in  $\mathbb{R}^n$  is linearly dependent if p > n.
- 12. Consider the Leontief input output model equation x = cx + d, where the consumption matrix is

$$C = \begin{bmatrix} .50 & .40 & .20 \\ .20 & .30 & .10 \\ .10 & .10 & .30 \end{bmatrix}.$$

Suppose the final demand is 50 units of manufacturing, 30 units of agriculture, 20 units for services. Find the production level x that will satisfy the demand.

13. What do you mean by basis of a vector space? Find the basis for the row space of

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

OR

State and prove the unique representation theorem for coordinate systems.

- 14. What do you mean by eigen values, eigen vectors and characteristic polynomial of a matrix? Explain with suitable examples.
- 15. Define the Gram-Schmidt process. Let W=span $\{x_1, x_2\}$ , where  $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ ,  $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ . Then construct an orthogonal basis  $\{v_1, v_2\}$  for w.

$$\frac{\text{Group C}}{\text{C}} \qquad (5 \text{ x 8} = 40)$$

16. Given the matrix

$$\begin{bmatrix} 0 & 3 & -6 & 6 & -5 \\ 3 & -7 & 8 & -5 & 9 \\ 3 & -9 & 12 & -9 & 15 \end{bmatrix},$$

discuss the for word phase and backward phase of the row reduction algorithm.

17. Find the inverse of  $\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$ , if it exists, by using elementary row reduce the augmented matrix.

- 18. What do you mean by change of basis in  $R^n$ ? Let  $b_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$ ,  $b_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$ ,  $c_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ ,  $c_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ , and consider the bases for  $R^2$  given by  $B = \{b_1, b_2\}$  and  $C = \{c_1, c_2\}$ . Find the change of coordinates matrix from B to C.
- 19. Diagonalize the matrix  $\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$ , if possible

OR

Find the eigen value of  $A = \begin{bmatrix} 0.50 & -0.60 \\ 0.75 & 1.1 \end{bmatrix}$ , and find a basis for each eigen space.

20. Find a least-square solution for Ax = b with  $A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}$ ,  $b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$ . What do you mean by least squares problems?

OR

Define a least-squares solution of Ax = b, prove that the set of least squares solutions of Ax = b coincides with the non-empty set of solutions of the normal equations  $A^{T}Ax = A^{T}b$ .

2067

Bachelor Level/First Year/Second Semester/Science

Computer Science and Information Technology (MTH 155)

Pass Marks: 32 (Linear Algebra) Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable.

The figures in the margin indicate full marks.

#### Attempt all questions:

Group A (10x2=20)

Full Marks: 80

- 1. Illustrate by an example that a system of linear equations has either no solution or exactly one solution.
- 2. Define singular and nonsingular matrices.
- 3. Using the Invertible matrix Theorem or otherwise, show that

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

is invertible.

- 4. What is numerical drawback of the direct calculation of the determinants?
- 5. Verify with an example that det(AB) = det(A) det(B) for any n x n matrices A and B.
- 6. Find a matrix A such that w = col(A).

$$w = \left\{ \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} : a, b \in R \right\}.$$

- 7. Define subspace of a vector with an example.
- 8. Are the vectors;

$$u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$
 and  $v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$  eigen vectors of  $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ ?

- 9. Find the distance between vectors  $\mathbf{u} = (7,1)$  and  $\mathbf{v} = (3,2)$ . Define the distance between two vectors in  $\mathbb{R}^n$ .
- 10. Let w = span  $\{x_1, x_2\}$ , where  $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ ,  $x_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ .

Then construct orthogonal basis for w.

$$Group B (5x4=20)$$

11. If a set  $s = \{v_1, v_2, \dots, v_p\}$  in  $\mathbb{R}^n$  contains the zero vector, then prove that the set is linearly dependent. Determine if the set

$$\begin{bmatrix} 2\\3\\5 \end{bmatrix}, \quad \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 1\\1\\8 \end{bmatrix}$$

is linearly dependent.

12. Given the Leontief input-output model x = Cx + d, where the symbols have their usual meanings, consider any economy whose consumption matrix is given by

$$C = \begin{bmatrix} .50 & .40 & .20 \\ .20 & .30 & .10 \\ .10 & .10 & .30 \end{bmatrix}$$

Suppose the final demand is 50 units for manufacturing 30 units for agriculture, 20 units for services. Find the production level x that will satisfy this demand.

- 13. Define rank of a matrix and state Rank Theorem. If A is a 7 x 9 matrix with a two-dimensional null space, find the rank of A.
- 14. Determine the eigen values and eigen vectors of  $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$  in complex numbers.

OR

Let 
$$A = \begin{bmatrix} 4 & -9 \\ 4 & 8 \end{bmatrix}$$
,  $b_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ ,  $b_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and basis  $B = \{b_1, b_2\}$ .

Find the B-matrix for the transformation  $x \rightarrow x$  with  $P = [b_1, b_2]$ .

- 15. Let u and v be nonzero vectors in  $R^2$  and the angle between them be  $\theta$  then prove that  $u.v = ||u|| \, ||v|| \cos \theta$ , where the symbols have their usual meanings.
- 16. Determine if the following homogeneous system has a nontrivial solution. Then describe the solution set.

$$3x_1 + 5x_2 - 4x_3 = 0$$
,  $-3x_1 - 2x_2 + 4x_3 = 0$ ,  $6x_1 + x_2 - 8x_3 = 0$ .

17. An n x n matrix A is invertible if and only if A is row equivalent to  $I_n$ , and in this case, any sequence of elementary row operations that reduces A to  $I_n$  also transform  $I_{n \times m}$  into  $A^{-1}$ .

Use this statement to find the inverse of the matrix  $=\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ , if exists.

18. What do you mean by basis change? Consider two bases  $B = \{b_1, b_2\}$  and  $c = \{c_1, c_2\}$  for a vector space V, such that  $b_1 = 4c_1 + c_2$  and  $b_2 = 6c_1 + c_2$ . Suppose  $[x]_B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$  i.e.,  $x = 3b_1 + b_2$ . Find  $[x]_C$ .

OR

Define basis of a subspace of a vector space.

Let 
$$v_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
,  $v_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$ ,  $v_3 = \begin{bmatrix} 6 \\ 16 \\ -5 \end{bmatrix}$ , where  $v_3 = 5v_1 + 3v_2$ , and let  $H = \text{span}\{v_1, v_2, v_3\}$ .

Show that span  $\{v_1, v_2, v_3\} = \text{span}\{v_1, v_2\}$  and find a basis for the subspace H.

- 19. Diagonalize the matrix  $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$ , if possible.
- 20. What do you mean by least-squares lines? Find the equation  $y = \beta_0 + \beta_1 x$  of the least-squares line that fits the data points (2, 1), (5, 2), (7, 3), (8, 3).

OR

Find the least-squares solution of Ax = b for

$$= \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}, \ b = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}.$$

During our semester **csitnepal.com** don't allow us to download so we have collect it from seniors as a hard copy and scan it as jpg format so we had upload it......

#### **Prepared By ASCOL CSIT 2070**

### Year 2068

### Attempt all question:

 $\underline{\text{Group A}} \tag{10 \times 2 = 20}$ 

- Write down the conditions for consistent of non-homogenous system of linear equations.
- 2. What is meant by independent of vectors?
- What is normal form of a matrix?
- Define nonsingular linear transformation with suitable example.
- 5. Consider the matrix  $A = \begin{pmatrix} 2 & 5 \\ 1 & 7 \end{pmatrix}$  as a linear mapping. Write the corresponding co-ordinate equations.
- 6. State the numerical importance of determinant calculation by row operation.
- Show that {(1,1), (-1,0)} form a bias for R<sup>2</sup>.
- 8. Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be a linear transformation defined by T(x, y) = (x + y, y). Find Ker T.
- 9. If  $\lambda$  is an eigen values of matrix A, find the eigen values of  $A^{-1}$ .
- Let u = (1,2,-1,3) and v = (3,0,2,-2). Compute the inner product (u, u + v).

Group B 
$$(5 \times 4 = 20)$$

- 11. Determine whether the following vectors in R2 are linearly dependent:
  - a. (1,0,1), (1,1,0), (-1,0,-1),
  - b. (2,1,1), (3, -2,2), (-1,2,-1).
- Investigate and interpret geometrically the transformation of the unit square whose vertices are O(0,0,1), A(1,0,1), B(0,1,1) and C(1,1,1) effected by the 3 × 3 matrix:

#### Prepared By ASCOL CSIT 2070 (2068 part 2)

Is the set of vectors  $\{(1,0,1),(0,1,0),(-1,0,1)\}$  orthrogonal? Obtain the corresponding orthonormal set in  $\mathbb{R}^{3}$ .

- In the vector space R<sup>2</sup>, express the given vector (1,2) as a linear combination of the vectors (1,-1) and (0,1)
- Find the matrix representation of the linear transformation T: R<sup>2</sup> → R<sup>2</sup> defined by T(x,y) = (x, x + 2y) relative to the basis (1,0) and (1,1)
- Let u and v be nonzero vector in R<sup>n</sup> and the angle between them be θ. Then prove that

$$u.v = ||u|| ||v|| \cos \theta$$

Where the symbol have their usual meanings.

 $(5 \times 8 = 40)$ 

16. Test for consistency and solve:

$$2x - 3y + 7z = 5$$

$$3x + y - 3z = 13$$

$$2x + 19y - 47z = 32$$

- Let U and V be vector spaces over a field and assume that dim U=dim V. If  $T: U \to V$  is a linear transformation, then prove that the following are equivalent;
  - T is invertable
  - T is one-one and onto, and 11.
  - T is non-singular 111.

OR

Verify that the set of matrices of the form  $\begin{bmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{22} & a_{22} \end{bmatrix}$  is a subspace of the vector space of 3×3 matrices.

Verify Cayley-Hamilton Theorem for matrix:

$$A = \begin{bmatrix} 6 & 2 & -1 \\ -6 & -1 & 2 \\ 7 & 2 & -2 \end{bmatrix}$$

 $A = \begin{bmatrix} 6 & 2 & -1 \\ -6 & -1 & 2 \\ 7 & 2 & -2 \end{bmatrix}$ 19. Diagonalize the matrix  $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$ 

Compute the multiplication of partitioned matrices for

$$A = \begin{bmatrix} 1 & 2 & 4 & 6 & 7 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 2 & 3 & 6 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 - 12 \\ 2 & 3 & 1 \\ 1 & 4 & 5 \\ 2 & 2 & 0 \\ 0 & 7 & 6 \end{bmatrix}$$

20. Find the equation  $y = \beta_0 + \beta_1 x$  for the least squares line that best fits the data points (2, 0), (3, 4), (4, 10), (5, 16).



Bachelor Level / First Year/ Second Semester/ Science Computer Science and Information Technology (MTH. 155) (Linear Algebra)

Full Marks: 80 Pass Marks: 32 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

#### Attempt all questions:

Group A (10x2=20)

1. What do you mean by linearly independent set and linearly dependent set of vectors?

2. Verify that 
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 is an eigen values of  $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ .

- 3 What do you mean by consistent equations? Give suitable examples.
- 4. What do you mean by change of basis in R<sup>n</sup>?
- 5. Find the dimension of the vector space spanned by (1, 1, 0) and (0, 1, 0).

6. Solve the system 
$$3x_1 + 4x_2 = 3$$
,  $5x_1 + 6x_2 = 7$  by using the inverse of the matrix  $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$ .

- 7. When is a linear transformation invertable?
- 8. Find the rank of AB where

$$A = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
 and  $B = [145]$ 

- 9. Define Kernel and image of linear transformation.
- 10. What is meant by Discrete dynamical system? Give suitable example.

Group B (5x4=20)

- 11. Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be the linear transformation defined by T(x, y, z) = (x, y, x 2y). Find a basis and dimension of (a) Ker T (b) Im T.
- 12 Show that the following sets of vectors are linearly independent: (1,1,2), (3,1,2), (0,1,4).

IOST, TU

#### **ASCOL CSIT 2070 Batch**

- 13. Find the matrix representation of the linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by T(x, y) = (x + 2y) relative to the standard basis.
- 14. Is the set of vectors {(1, 0, 1), (0, 1, 0), (-1, 0, 1)} orthogonal? Obtain the corresponding orthonormal set in  $\mathbb{R}^3$ .
- 15. Let the four vertices O(0, 0), A(1, 0), B(0, 1) and C(1, 1) of a unit square be represented

by 
$$2 \times 4$$
 matrix :  $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ . Inverstigate and interpret geometrically the effect of

pre-multiplication f this matrix by the  $2 \times 2$  matrix:  $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$ .

OR

State and prove orthogonality property for any two non-zero vectors in  $\mathbb{R}^n$ .

Group C (5x8=40)

16 Find a matrix A whose inverse in

$$A^{-1} = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}$$

17 Test the consistency and slove:

$$x + y + z = 4$$

$$x + 2y + 2z = 2$$

$$2x + 2y + z = 5$$

OR

Verify Cayley Hamilton theorem for a matrix 
$$A = \begin{bmatrix} 6 & 2 & -1 \\ -6 & -1 & 2 \\ 7 & 2 & -2 \end{bmatrix}$$
.

18. The set of matrices of the form

$$\begin{bmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix}$$

is a subspace of the vector space of  $3 \times 3$  matrices. Verify it.

19. Let V and W be vector spaces over a field F of real numbers. Let dim V = n and dim W = m. Let  $\{e_1, e_2, ..., e_n\}$  be a basis of V and  $\{f_1, f_2, ..., f_m\}$  be a basis of W. Then, prove that each linear transformation T:  $V \to W$  can be represented by an  $m \times n$  matrix A with elements from F such that

where 
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and  $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$ 

are column matrices of coordinates of  $v \in V$  relative to its basis and coordinates of  $w \in W$  relative to its basis, respectively.

OR

Compute the multiplication of partitioned matrices for

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & 4 & -2 & 7 & -1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ -1 & 3 \\ 5 & 2 \end{bmatrix}.$$

20. Find the equation  $y = a_0 + a_1 x$  for the least squares line that best fits the data points (2, 1), (5, 2), (7, 3), (8, 3).



Bachelor Level / First Year /Second Semester/Science Computer Science and Information Technology (MTH. 155 – Linear Algebra) Full Marks: 80 Pass Marks: 32 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

#### Attempt all questions:

 $(10 \times 2 = 20)$ 

- 1. Why the system  $x_1 3x_2 = 4$ ;  $-3x_1 + 9x_2 = 8$  is inconsistent? Give the graphical representation?
- 2. Define linear combination of vectors. If  $v_1$ ,  $v_2$ ,  $v_3$  are vectors, write the linear combination of  $3v_1 5v_2 + 7v_3$  as a matrix times a vector.

3. Is 
$$\begin{pmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{pmatrix}$$
 invertible matrix?

- 4. Define invertible linear transformation.
- 5. Let S be the parallelogram determined by the rectors  $b_1 = (1, 3)$  and  $b_2 = (5, 1)$  and let

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$
. Compute the area of the image S under the mapping  $x \to Ax$ .

- 6. Define vector space.
- 7. Show that the entries in the vector x = (1, 6) are the co-ordinates of x relative to the standard basis  $(e_1, e_2)$ .

8. Is 
$$\lambda = -2$$
 an eigen value of  $\begin{pmatrix} 7 & 3 \\ 3 & -1 \end{pmatrix}$ ?

- 9. Find the inner product of (1, 2, 3) and (2, 3, 4).
- 10. Compute the norm between the vectors 4 = (7, 1) and v = (3, 2).

IOST,TU

11. A linear transformation T:  $\mathbb{R}^2 \to \mathbb{R}^2$  is defined by

$$T(x) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}.$$

Find the image under T of  $u = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ ,  $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$  and  $u + v = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ .

- 12. If  $A = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$  and  $x = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$  compute  $(Ax)^T$ ,  $x^T A^T$  and  $xx^T$ . Can you compute  $x^T A^T$ ?
- 13. If  $b_1 = (2, 1)$ ,  $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ ,  $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$  and  $B = \{b_1, b_2\}$ , find the co-ordinate vector  $[x]_B$  of x relative to B.
- 14. Find the eigen values of  $A = \begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix}$ .
- 15. Show that  $\{v_1, v_2, v_3\}$  is an orthogonal set, where  $v_1 = (3, 1, 1), v_2 = (-1, 2, 1), v_3 = (-1/2, -2, 7/2).$

16. Let a<sub>1</sub> = (1, 2, -5), a<sub>2</sub> = (2, 5, 6) and b = (7, 4, -3). Determine whether b can be generated as a linear combination of a<sub>1</sub> and a<sub>2</sub>. That is, determine whether x<sub>1</sub> and x<sub>2</sub> exist such that

$$x_1 a_1 + x_2 a_2 = b$$

has solution, find it.

OR

Determine if the following system is consistent

$$x_2-4x_3=8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$5x_1 - 8x_2 + 7x_3 = 1$$
.

17. Compute the multiplication of partitioned matrices for

$$A = \begin{bmatrix} 1 & -3 & 2 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & 4 & -2 & 7 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ -1 & 3 \\ 5 & 2 \end{bmatrix}.$$

- 18. Let  $b_1 = (1, 0, 3)$ ,  $b_2 = (2, 1, 8)$ ,  $b_3 = (1, -1, 2)$  and x = (3, -5, 4). Does  $B = \{b_1, b_2, b_3\}$  form a basis? Find  $[x]_B$ , for x.
- 19. Diagonalize the matrix, if possible

$$A = \begin{bmatrix} -1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}.$$

20. When two vectors u and v are orthogonal? If u and v are vectors, prove that  $[\operatorname{dist}(u, -v)]^2 = [\operatorname{dist}(u, v)]^2$  iff  $u \cdot v = 0$ .

OR

Find a least square solution of Ax = b for

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}.$$

\*

Bachelor Level / First Year /Second Semester/Science Computer Science and Information Technology (MTH. 155 – Linear Algebra)

Full Marks: 80 Pass Marks: 32 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

#### Attempt all questions:

Group A

 $(10 \times 2 = 20)$ 

1. What is a system of linear equations? When the system is consistent and inconsistent?

- 2. Define linearly dependent and independent vectors. If (1, 2) and (3, 6) are vectors then the vectors are linearly dependent or independent?
- 3. Define invertible matrix transformation.
- 4. Let S be the parallelogram determined by the vectors  $b_1 = (1, 3)$  and  $b_2 = (5, 1)$  and let  $A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$ . Compute the area of the image S under the mapping  $x \to Ax$ .

5. Show that the matrices 
$$A = \begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}$  do not commute.

6. Define vector space.

7 Determine if 
$$w = (1, 3, -4)$$
 is in Nul A, where  $\begin{pmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{pmatrix}$ .

8/1s u = (3, -2) is an eigen value of 
$$\begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$$
?

9 Find the inner product of (2, -5, -1) and (3, 2, -3).

19. Find the norm between the vectors  $\mathbf{u} = (1, 2, 3, 4)$  and  $\mathbf{v} = (0, 1, 2, 3)$ .

 $(5 \times 4 = 20)$ 

11 Let 
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
,  $u = (1, 0, -3)$  and  $v = (5, -1, 4)$ . If  $T : R^3 \to R^3$  defined by  $T(x) = Ax$ , find  $T(u)$  and  $T(v)$ .

IOST,TU

2CSc-155-2071

Let 
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ , show that  $\det(A + B) = \det A + \det B$  iff  $a + d = 0$ .

13. If  $v_1$  and  $v_2$  are the vectors of a vector space V and H = span  $\{v_1, v_2\}$ , then show that H is a

14. Find the eigen values of 
$$A = \begin{pmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{pmatrix}$$
.

15. Show that  $(v_1, v_2, v_3)$  is an orthogonal basis of  $\mathbb{R}^3$ , where

$$v_1 = \left(\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right), v_2 = \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), v_3 = \left(-\frac{1}{\sqrt{66}}, -\frac{4}{\sqrt{66}}, \frac{7}{\sqrt{66}}\right).$$

Find an orthogonal projection of y onto u, where y = (7, 6), u = (4, 2).

Group C  $(5 \times 8 = 40)$ 

16. Determine if the following system is inconsistent.

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$5x_1 - 8x_2 + 7x_3 = 1$$

OR

Let  $a_1 = (1, -2, -5)$ ,  $a_2 = (2, 5, 6)$  and b = (7, 4, -3), are the vectors. Determine whether b can be generated as a linear combination of  $a_1$  and  $a_2$ . That is determine whether  $x_1$  and  $x_2$  exist such that  $x_1 a_1 + x_2 a_2 = b$  has solution, find it.

17. If the consumption matrix C is

$$C = \begin{pmatrix} 0.5 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.1 \\ 0.1 & 01 & 0.3 \end{pmatrix}$$

and the final demand is 50 units for manufacturing, 30 units for agriculture and 20 units for services, find the production level x that will satisfy this demand.

Compute the multiplication of partitioned matrices for

$$A = \begin{pmatrix} 1 & -3 & 2 & | & 0 & -4 \\ 1 & 5 & -2 & | & 3 & -1 \\ \hline{0} & 4 & 2 & | & 7 & -1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ \hline{-1} & 3 \\ 5 & 2 \end{pmatrix}$$

115 5x 2

## 18. Let $b_1 = (1, 0, 0)$ , $b_2 = (-3, 4, 0)$ , $b_3 = (3, -6, 3)$ and x = (-8, 2, 3) then

- (a) Show that  $B = \{b_1, b_2, b_3\}$  is a basis of  $\mathbb{R}^3$ .
- (b) Find the change of co-ordinates matrix from B to the standard basis.
- (c) Find [x]<sub>B</sub>, for the given x.



$$\begin{pmatrix}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{pmatrix}.$$

What is a least – squares solution? Find a least – squares solution of Ax = b, where

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 0 \\ 11 \end{pmatrix}.$$

x^x

Bachelor Level / First Year /Second Semester/Science Computer Science and Information Technology (MTH. 155) (Linear Algebra) Full Marks: 80 Pass Marks: 32 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

#### Attempt all questions:

Group A (10×2=20)

- 1. Define linear combination of vectors. When the vectors are linearly dependent and independent?
- 2. Define linear transformation between two vector spaces.
- 3. Show that the matrix  $\begin{bmatrix} 6 & -9 \\ 4 & 6 \end{bmatrix}$  is not invertible.
- 4. Define invertible matrix transformation.
- 5. Let S be the parallelogram determined by the vectors  $b_1 = (1, 3)$  and  $b_2 = (5, 1)$  and let  $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$ . Compute the area of the image S under the mapping  $x \to Ax$ .
- 6. Define subspace of a vector space.
- 7. If  $A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$  and let u = (5, 3, 2), then show that u is in the Nul A.
- 8. Is u = (6, -5) is an eigen vector of  $\begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$ ?
- 9. Find the unit vector u of v = (1, -2, 2, 0) along the direction of v.
- 10. Find the norm of vector v = (1, -2, 3, 0).

11. Let  $A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$  and define T:  $R^2 \to R^2$  by T (x) = Ax. Find the images under T of  $u = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$  and  $v = \begin{bmatrix} -4 \\ -1 \end{bmatrix}$  and  $u + v = \begin{bmatrix} 6 \\ -4 \end{bmatrix}$ .

12. Find the determinant of 
$$\begin{bmatrix} 1 & -3 & 1 & 2 \\ 2 & -5 & -1 & -2 \\ 0 & -4 & 5 & 1 \\ -3 & 10 & -6 & 8 \end{bmatrix}.$$

- 13. Show that the vectors (1, 0, 0), (1, 1, 0) and (1, 1, 1) are linearly independent.
- 14. Find the eigen values of  $A = \begin{pmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{pmatrix}$ .
  - 15. If  $v_1 = (3, 6, 0)$ ,  $v_2 = (0, 0, 2)$  are the orthogonal basis then find the orthonal basis of  $v_1$  and  $v_2$ .

OR

Find an orthogonal projection of y onto u, where y = (7, 6), u = (4, 2).

 $\frac{\text{Group C}}{}$  (5×8=40)

16. Determine if the following system is consistent, if consistent solve the system.

$$-2x_1 - 3x_2 + 4x_3 = 5$$
$$x_1 - 2x_3 = 4$$
$$x_1 + 3x_2 - x_3 = 2$$

OR

Let 
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
,  $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ ,  $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$  and define a transformation T:  $R^2$  by  $T(x) = Ax$ , so that  $T(x) = Ax = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ .

- a) Find T(u)
- b) Find x in R<sup>2</sup> whose image under T is b.
- 17. If the consumption matrix C is

$$C = \begin{pmatrix} 0.5 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.1 \\ 0.1 & 0.1 & 0.3 \end{pmatrix}$$

and the final demand is 50 units for manufacturing, 30 units for agriculture and 20 units for services, find the production level x that will satisfy this demand.

18. Let  $v_1 = (3, 6, 2)$ ,  $v_2 = (-1, 0, 1)$ , x = (3, 12, 7) and  $B = \{v_1, v_2\}$ . Then B is a basis for H = span  $\{v_1, v_2\}$ . Determine if x is in H, and if it is, find the co-ordinate vector of x relative to B.

CSc.155-2072\*

19. Diagonalize the matrix, if possible

$$\begin{pmatrix}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{pmatrix}.$$

Find the equation y = a<sub>0</sub> + a<sub>1</sub>x for the least squares line that best fits the data points (2, 1), (5, 2), (7, 3), (8, 3).

OR

When two vectors 4 and v are orthogonal? If u and v are vectors, prove that  $[dist (u, -v)^2 = [dist (u, v)]^2 \text{ iff } u.v = 0.$