Całość chce przeanalizować za pomocą Qiime2 i DADA2

Użyłem takich dwóch tabel do analizy

sample_data.tsv	sample_metadata.tsv			
Sample-id forward-absolute-filepath	Standardowe reverse-absolute-filepath /media/Datal/Bartosz_Fotchki_16S_	Standardow(Standa 1 sample-id group 2 A10 A 3 A12 A 4 A1 A 5 A2 A 6 a3 A 7 a4 A 8 a5 A 9 a6 A 10 a7 A 11 a8 A 12 B10 B 13 B12 B 14 b1 B 15 b2 B 16 b3 B 17 b4 B 18 b5 B 19 b6 B 20 b7 B 21 b8 B		

Wyłączyłem Undetermined_S0_L001_R1_001.fastq.gz i
Undetermined_S0_L001_R2_001.fastq.gz
W pierwszej analizie wziąłem wszystko i te pliki wyraźnie odstawały, np. pod kątem liczby odczytów

Jak rozumiem mamy tutaj do czynenia z paired ends i próbami po demultiplexingu, więc można od razu przejść do wycinania odczytów o słabej jakości (adapterów w oparciu o fastąc nie zauważyłem).

Generalnie wydaje mi się, że w tym miejscu powinienem zwrócić uwagę na jeszcze jakieś rzeczy, np. dowiedzieć się czy są primery i jakie mają sekwencje, ale nie wiem jak to zrobić.

```
qiime tools import \
    --type 'SampleData[PairedEndSequencesWithQuality]' \
    --input-path sample_data.tsv \
    --output-path paired-end-demux.qza \
    --input-format PairedEndFastqManifestPhred33V2

qiime demux summarize \
    --i-data paired-end-demux.qza \
    --o-visualization demux.qzv
```

Jak rozumiem taka liczba odczytów jak poniżej jest wystarczająca. Gdyby minimum był w okolicach 10k to dopiero wtedy należy się martwić, szczególnie jeśli interesuje nas wykrycie bakterii, które występują w nieznacznych ilościach.

Zastanawiam się jednak, czy na podstawie poniższych barplotów nie należy rozważyć wyłączenia trzech prób, które odstają pod kątem liczby odczytów.

Demultiplexed sequence counts summary

	forward reads	reverse reads
Minimum	62533	62533
Median	146838.0	146838.0
Mean	144384.888889	144384.888889
Maximum	177675	177675
Total	11695176	11695176

Forward Reads Frequency Histogram

Reverse Reads Frequency Histogram

Forward i reverse przyciąłem na pozycjach 20 i 250.

Przypuszczam jednak, że z lewej strony można niczego nie przycinać. Czy takie przycinanie na oko jest wystarczajaco dobre? Wiem, że są programy, które automatycznie dobierają parametry (np. FIGARO) ale jeszcze niczego takiego nie testowałem


```
--o-table table.qza \
--o-denoising-stats dadastats.qza

qiime metadata tabulate \
--m-input-file dadastats.qza \
--o-visualization denoising-stats.qzv

qiime feature-table summarize \
--i-table table.qza \
--o-visualization table.qzv \
--m-sample-metadata-file sample_metadata.tsv

qiime feature-table tabulate-seqs \
--i-data rep-seqs.qza \
--o-visualization rep-seqs.qzv
```

Mam wrażenie, że trochę za mało zostało tych odczytów i te procenty powinny się wahać w okolicach 80%

sample-id	input 1	filtered umeric 11	percentage of input passed filter	denoised umeric 1	merged and the state of the sta	percentage of input merged	non-chimeric	percentage of input non-chimeric
A1	147724	99580	67.41	98555	94281	63.82	91412	61.88
A10	146503	97930	66.85	96880	93020	63.49	89436	61.05
A12	147396	101960	69.17	101250	97873	66.4	92630	62.84
A2	142939	94507	66.12	93429	88654	62.02	85922	60.11
a3	156229	103715	66.39	102554	96474	61.75	93657	59.95
a4	131957	89786	68.04	88858	84535	64.06	82233	62.32
a5	145324	100749	69.33	99911	96099	66.13	90692	62.41
a6	116879	81152	69.43	80515	77380	66.21	72430	61.97
a7	148766	97614	65.62	96545	92087	61.9	88410	59.43
a8	130887	86846	66.35	85998	82018	62.66	79654	60.86

Table summary

Metric	Sample
Number of samples	81
Number of features	1,952
Total frequency	7,069,637

Frequency per sample

	Frequency
Minimum frequency	22,120.0
1st quartile	79,617.0
Median frequency	88,774.0
3rd quartile	94,906.0
Maximum frequency	111,247.0
Mean frequency	87,279.46913580247

Frequency per sample detail (csv | html)

Frequency per feature

	Frequency
Minimum frequency	1.0
1st quartile	8.0
Median frequency	77.0
3rd quartile	660.0
Maximum frequency	327,927.0
Mean frequency	3.621.7402663934427

Sequence Leng	th Statistic	S					Seven-Number	Summary of S	equence l	Lengths				
Download sequence-leng	gth statistics as a	TSV					Download seven-number	summary as a TSV						
Sequence Count	Min Leng	th	Max Length	Mean Length	Range	Standard Deviation	Percentile:	296	996	25%	50%	7596	91%	98%
1952	272		437	406.3	165	10.69	Length* (nts):	399	400	400	402	419	421	425
							*Values rounded down to ne	earest whole number.						
Sequence Table														
•		atabase, cl	ick the sequence and t	then click the View report to	utton on the resu	Iting page.								
Download your sequence						31 3								
Nick on a Column header t														
		Sequence												
Feature ID		Length	Sequence											
b00a2611a89f9b584f640c	dd873f32010	120	GGAATATTGGTCAAT	GGGCGATGGCCTGAACCAG	CAAGTAGCGTGA	AGGATGAAGGTTCTATGGATTGTAAA	CTTCTTTTATAAAGGAATAAAGTGAGGCA	CGTGTGCCTTTTTGTATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTI
7b865e5faff9350082fece8	3ac01787a2	120	GGAATATTGGTCAAT	GGGCGAGAGCCTGAACCAG	CAAGTAGCGTGA	AGGATGACTGCCCTATGGGTTGTAAA	CTTCTTTTATAAAGGAATAAAGTCGGGTA	TGGATACCCGTTTGCATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
527243fcc4bc104918ab91	12d2653e020	103	GGAATATTGCACAAT	GGGGGAAACCCTGATGCAG	CAACGCCGCGTGA	AGGAAGACGGTTTTCGGATTGTAAAC	TTCTTTTCTTAGTGAAGAAACAAATGACG	GTAGCTAAGGAATAAGCA	TCGGCTAACTAC	GTGCCAGCAGCCG	GCGGTAATACGTAG	GATGCGAGCGTTA	TCCGGATTTACTGG	GTGTAAAGGGAG
a7f318369a46065ae032d	lddf5502a890	120	GGAATATTGGTCAAT	GGGCGAGAGCCTGAACCAG	CAAGTAGCGTGA	AGGATGACTGCCCTATGGGTTGTAAA	CTTCTTTTATAAAGGAATAAAGTCGGGTA	TGTATACCCGTTTGCATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	IGCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
6174afb7991fc60d133643	39ae545b673	119	GGAATATTGGTCAAT	GGGCGAGAGCCTGAACCAG	CAAGTCGCGTGA	GGGAAGACGGTCCTATGGATTGTAAA	CCTCTTTTGCCGGGGAGCAAAGAGCGGTA	CGTGTACCGCGCCGAGAG	TACCCGGAGAAA	AAAGCATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATGCGAGCG	TTATCCGGATTT
f1fb4c263704d6a492ca96	67dd383a64	100	GGGATATTGCACAAT	GGGGGAACCCTGATGCAG	GACGCCGCGTGG	GTGAAGAAGCGCTCCGGCGCGTAAAG	CCCTGTCAGCAGGGAAGAAGGTGACGGTA	CCTGACCAAGAAGCCCCG	GCTAACTACGTG	CCAGCAGCCGCGG	GTAATACGTAGGGG	GCAAGCGTTATCC	GGATTTACTGGGTG	TAAAGGGGGCGC
d38d4706c512115fa8f1a5	576c268c65c 4	120	GGAATATTGGTCAAT	GGGCGAGAGCCTGAACCAG	CAAGTCGCGTGA	AGGATGAAGGATCTATGGTTTGTAAA	CTTCTTTTATATGGGAATAAAGTGAGGAA	CGTGTTCCTTTTTGTATG	TACCATATGAAT	TAAGCATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATGCGAGCG	TTATCCGGATTT
6e77c78161a2866f2e578	4627b21f3f7	120	GGAATATTGGTCAAT	GGACGCAAGTCTGAACCAG	CATGCCGCGTGC	AGGAAGACGGCTCTATGAGTTGTAAA	CTGCTTTTGTATTAGGGTAAACTCAGGTA	CGTGTACCTGACTGAAAG	TATAATACGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCAAGCG	TTATCCGGATTT
d28457e5212cdfb10be4a	94691efdd61	\$19	GGAATATTGGTCAAT	GGGCGAGAGCCTGAACCAGG	CAAGTCGCGTGA	GGGAAGACGGTCCTATGGATTGTAAA	CCTCTTTTGCCGGGGAGCAAAGAGCGGCA	CGTGTGCCGCGCCGAGAG	TACCCGGAGAAA	AAGCATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATGCGAGCG	TTATCCGGATTT
863bb4ecd7466237ce3ad	19c9f7584bf2	120	GGAATATTGGTCAAT	GGGCGATGGCCTGAACCAG	CAAGTAGCGTGA	AGGATGAAGGTTCTATGGATTGTAAA	CTTCTTTTATAAAGGAATAAAGTGGGGCA	CGTGTGCCTTTTTGTATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
5c1fbdf5ff54c1109924b7e	136c089b0	120	GGAATATTGGTCAAT	GGACGGGAGTCTGAACCAGG	CAAGTAGCGTGA	AGGATGAAGGTTCTATGGATTGTAAA	CTTCTTTTATAAAGGAATAAAGTGGGGCA	CGTGTGCCTTTTTGTATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATTCGAGCG	TTATCCGGATTT
63094ae95c6a0687443c8	38e79e4da234	120	GGAATATTGGTCAAT	GGGCGAAGGCCTGAACCAGG	CAAGTAGCGTGA	AGGATGAAGGTTCTATGGATTGTAAA	CTTCTTTTATAAAGGAATAAAGTGAGGCA	CGTGTGCCTTTTTGTATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
8a11d6cab7c6932c404e5	54734d982ff2	120	GGAATATTGGTCAAT	GGACGAGAGTCTGAACCAGG	CAAGTAGCGTGA	AGGATGACTGCCCTATGGGTTGTAAA	CTTCTTTTATATGGGAATAAAGTGCAGTA	TGTATACTGTTTTGTATG	TACCATATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
8e4a7f0b1083e15fbe31a1	1ee62b4d5e0 4	120	GGAATATTGGTCAAT	GGGCGAAGGCCTGAACCAGG	CAAGTAGCGTGA	AGGATGAAGGTTCTATGGATTGTAAA	CTTCTTTTATAAAGGAATAAAGTGGGGCA	CGTGTGCCTTTTTGTATG	TACTTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
3752fb0ed9f09ad9bcf6e8	60a0543d01	100	GGAATATTGGGCAAT	GGAGGCAACTCTGACCCAGG	CATGCCGCGTGA	GTGAAGAAGGTTTTCGGATTGTAAAG	CTCTTTCGGATGTGACGATGATGACGGTA	IGCATCTAAAGAAGCCCCG	GCTAACTTCGTG	GCCAGCAGCCGCGG	GTAATACGAAGGGG	GCGAGCGTTGTTC	GGAATTACTGGGCG	TAAAGGGTGTGT
053339c8d82c891a55928	Badeb303ee1a	103	GGAATATTGGGCAAT	GGGCGCAAGCCTGACCCAGG	AACGCCGCGTGA	AGGAAGAAGGCTTTCGGGTTGTAAAC	TTCTTTTCTCAGGGACGAAGCAAGTGACG	GTACCTGAGGAATAAGCC	ACGGCTAACTAC	GTGCCAGCAGCCG	GCGGTAATACGTAG	GTGGCAAGCGTTA	TCCGGATTTACTGG	GTGTAAAGGGCG
66d2497029774ac97fad1	f4328b997ca	120	GGAATATTGGTCAAT	GGGCGTAAGCCTGAACCAGG	CAAGTCGCGTGA	GGGATGAAGGTTCTATGGATCGTAAA	CCTCTTTTATAAGGGAATAAAGTGCGGGA	CGTGTCCCGTTTTGTATG	TACCTTATGAAT	TAAGGATCGGCTAA	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATTT
4c5b965bc83a4ad8ace0b	4o2b7201b17	120	GGAATATTGGTCAAT	GGACGCGAGTCTGAACCAGG	CAAGTAGCGTGA	AGGATGACTGCCCTATGGGTTGTAAA	CTTCTTTTATATGGGAATAAAGTGGTCCA	COTOTOGACTTTTGTATO	ТАССАТАТБААТ	ΓΔΑΘΘΑΤΟΘΘΟΤΑΛ	ACTCCGTGCCAGCA	GCCGCGGTAATAC	GGAGGATCCGAGCG	TTATCCGGATT

Przypisanie wykrytych sekwencji do określonych taksonów na podstawie sekwencji referencyjnych (baza SILVA). Nie wiem jak ten etap poprawnie zdefiniować. Mamy AVS i przypisu

```
qiime tools import \
    --type FeatureData[Sequence] \
```

Używam gotowego klasyfikatora, które są wbudowane do giime

```
qiime feature-classifier classify-consensus-blast \
    --i-query rep-seqs.qza \
    --i-reference-taxonomy majority_taxonomy_7_levels.qza \
    --i-reference-reads 99_otus_16S.qza \
    --o-classification taxonomy \
    --p-perc-identity 0.90 \
    --p-maxaccepts 1
```

Nie wiem, czy powinienem coś odfiltrowywać. Używam tego na wszelki wypadek.

Budowanie drzew

Różnorodność alfa i beta

Alpha rarefaction

