Perfilometría 3D por triangulación láser

Andrés Troiano 7 de mayo de 2021

Departamento de Física FCEyN, UBA

Lugar de trabajo: CINI, Tenaris Siderca

Director: Martín Argañaraz Codirector: Nicolás Bonadeo

Motivación

- · Pasantía en Tenaris Siderca
- · Equipo óptico de ensayos no destructivos
- · Mide defectos en la superficie del tubo
- · Se desea que además pueda medir el diámetro
- · Problemas en el pegado de las distintas cámaras
- · Antecedentes de mapeo punto a punto

Introducción

Escaneo tridimensional - Aplicaciones

- · Control de procesos
- · Ingeniería inversa
- · Ingeniería civil
- Salud
- · Arqueología
- · Estudios forenses

Visión general de distintas técnicas

- · Triangulación
- · Tiempo de vuelo (TOF)
- Franjas

Control de calidad en productos tubulares

- · Diámetros entre 140 mm y 244 mm
- Defectos entre 300 μ m y 600 μ m

Métodos de calibración - Modelo de la cámara

$$x_{pantalla} = f_X \left(\frac{X}{Z} + c_X \right) \tag{1}$$

$$y_{pantalla} = f_y \left(\frac{Y}{Z} + c_y \right) \tag{2}$$

5

Determinación de los parámetros

- · 4 parámetros de la cámara
- · 5 parámetros de distorsión
- · Estructura con puntos identificables: tablero de ajedrez
- · Cada vista proporciona 8 ecuaciones al costo de 6 incógnitas
- \cdot En la práctica, al menos 10 vistas de un tablero de 7 imes 8
- · Implementado en librerías como OpenCV

Motivación del trabajo

- · En Tenaris se utilizó este método
- Fue exitoso para medir defectos
- · Falló para medir diámetros
- · Hay antecedentes de mapeo punto a punto
- \cdot Precisión requerida: 100 μ m

Montaje experimental

Montaje experimental

Montaje experimental

- 2 láseres, 660 nm, 20° de apertura, 390 mm distancia focal (Osela Streamline, Coherent Stingray)
- Cámaras Automation Technology C2-2040, 2048 × 1088
- · Lentes Spacecom Pyxis 12
- · Filtros pasabanda Midopt BP660 (640-680 nm)

Posicionadores lineales

- · Posicionadores lineales Newport
- · 600 mm de rango
- Precisión de 1.25 μ m

Brazo 1

11

Brazo 2

Vista completa

Modo "centro de gravedad" (CoG)

$$y_{CG} = y_{L} + \frac{\sum_{y=y_{L}}^{y_{R}} y(I_{y} - I_{0})}{\sum_{y=y_{I}}^{y_{R}} (I_{y} - I_{0})}$$
(3)

Modos MAX y TRSH

Pruebas preliminares

Caracterización del error de los posicionadores

Calibración con aguja

1 pixel pprox 250 $\mu \mathrm{m}$

⇒ incerteza ≈ 1 mm

Patrón trapezoidal

Calibración con patrón trapezoidal

Montaje del trapecio

Algoritmo para encontrar esquinas

- 1. Tomar el perfil que está en el centro del barrido
- 2. Ordenamiento por cercanía

Algoritmo para encontrar esquinas

- 3. El usuario señala una esquina
- 4. El algoritmo encuentra la esquina

Algoritmo para encontrar esquinas - cont.

5. Comparación con la esquina ya encontrada

Algoritmo para encontrar esquinas - cont.

Algoritmo para encontrar esquinas - cont.

6. A partir de 10 esquinas, estimación mediante polinomio hasta terminar

Procesamiento completo

Visualización del mapa

Algoritmo de calibración

Ajuste del mapa por polinomios de grado 4 (de milímetros a pixels):

$$X_{px} = p_4(X_{mm}, Y_{mm}) \tag{4}$$

$$y_{px} = q_4(x_{mm}, y_{mm}) \tag{5}$$

Inversión de los polinomios para ir de pixels a milímetros:

$$x_{mm} = p_4^{-1}(x_{px}, y_{px}) (6)$$

$$y_{mm} = q_4^{-1}(x_{px}, y_{px}) (7)$$

Ajuste por polinomios - Descarte de puntos

- · Desviación estándar mayor a 0.4 en los ajustes de las rectas
- · Rectas de menos de 100 puntos

Ajuste de los mapas por polinomios

Descarte de puntos alejados a más de 3 desviaciones estándar

Residuos del ajuste de los mapas

Determinación de las zonas de validez

- · Únicamente la región calibrada
- · 70° centrales
- ±40 mm respecto de la distancia de trabajo

Referencia mutua de las cámaras

Detección de la misma esquina

Medición del offset en cada punto

Medición de diámetros

Resultados - Trapecio

Error de medición - Trapecio

Diámetro (mm)	Error C1 (μ m)	Error C2 (μm)	Error ambas $(\mu \mathrm{m})$
139.707	-245	-5	-147
168.310	-172	186	-168
177.805	-166	204	-157

Error de Taubin

- · Círculo matemático de 178 mm de diámetro
- \cdot Error normal de 100 μ m de ancho en x e y
- · Se midió el diámetro
- · Se repitió 1000 veces
- · Se promedió el error

Error de Taubin - resultados

Se repitió para distintos ángulos de apertura, entre 20° y 360°

Para aperturas como las utilizadas en este trabajo, el error introducido por Taubin es inferior a los 2 μ m

Patrón hexagonal

Calibración con patrón hexagonal

Calibración con patrón hexagonal - cont.

A partir de la esquina se encuentran las coordenadas del centro.

Referencia mutua de las cámaras

Determinación del desplazamiento entre cámaras

Desplazamiento de una de las cámaras

Medición usando el hexágono - Resultados

Error de medición - Hexágono

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas $(\mu ext{m})$
139.707	-1	-36	-85
168.310	-166	89	-122
177.805	142	49	-82

Patrón "corona"

Calibración con patrón "corona"

- · Problema: montar este sistema en planta es muy difícil
- Situación ideal: tener un patrón con suficientes esquinas para poder calibrar con una sola imagen

Cuántas esquinas hacen falta?

Calibración con patrón "corona"

Paso (mm)	Cant. de puntos C1	Cant. de puntos C2	Error en <i>x</i> C1 (μm)	Error en y C1 (μ m)	Error en x C2 (μ m)	Error en <i>y</i> C2 (μm)
5	395	417	9	11	16	7
10	100	104	10	11	17	8
15	47	50	11	12	20	10
20	28	27	12	13	40	13
25	26	17	ND	ND	ND	ND

Hacen falta al menos 27 puntos.

Calibración con patrón "corona" - cont.

Dos caminos posibles:

- 1. Diseñar un patrón con 26 esquinas, lo suficientemente grandes, y que no se hagan sombra
- 2. Reducir la cantidad de parámetros del modelo

Mientras se avanzaba en el primer camino, se estudió el patrón "corona":

Patrón "corona"

- · 6 radios
- 15 esquinas c/u (90 en total)
- Superficie rugosa \Rightarrow barrido en z

Determinación de las esquinas

Calibración con "corona" - Resultados

Error de medición - Corona

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas $(\mu \mathrm{m})$
139.707	-306	94	-71
168.310	ND	ND	ND
177.805	ND	ND	ND

El radio del patrón no fue lo suficientemente grande.

Discusión

Repaso de los resultados

Error de medición - Trapecio

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas (μm)
139.707	-245	-5	-147
168.310	-172	186	-168
177.805	-166	204	-157

Error de medición - Hexágono

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas (μ m)
139.707	-1	-36	-85
168.310	-166	89	-122
177.805	142	49	-82

Error de medición - Corona

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas (μ m)
139.707	-306	94	-71

Observaciones

- · Ventajas del hexágono/corona
- · Componente de error sistemático
- · Ventajas del trapecio
- · Falta cuantificar la incerteza
- El error observado no se justifica con las fuentes conocidas

Fuentes de error conocidas

- · Error en la determinación de la esquina (no se lo puede aislar)
- Error al usar la calibración (\approx 15 μ m)
- Error en la determinación del offset entre cámaras (\approx 30 μ m)
- Error introducido por Taubin (\approx 2 μ m)

No alcanzan a justificar los pprox 150 μ m de error observado

Error al usar la calibración

Diferencia entre el polinomio que mejor ajusta el mapeo, y los datos (desviación estándar)

Error de calibración

Calibración	C1 x (µm)	C1 y (µm)	C2 x (µm)	C2 y (µm)
Trapecio	11	12	15	8
Hexágono	8	10	11	6
Corona	11	16	22	9

Aporta \approx 15 $\mu \mathrm{m}$

Error en la determinación del offset

Error de offset

Calibración $x (\mu m)$ $y (\mu m)$ Trapecio 33 27

Hexágono 24 13

33

Corona

27

Aporta \approx 30 $\mu \mathrm{m}$

Posibles causas de error sistemático

- 1. Haber descartado puntos en los bordes del barrido
- 2. Haber ajustado las caras de la esquina por rectas en el espacio de pixels

Sin descartar puntos

Sin descartar puntos - resultados

Error de medición - Trapecio (sin descartar puntos)

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas (μm)
139.707	-191	96	-108
168.310	-146	239	-135
177.805	-152	234	-129

Error de medición - Hexágono (sin descartar puntos

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas (μ m)
139.707	23	11	-77
168.310	-152	-86	-125
177.805	149	25	-88

Error de medición - Corona (sin descartar puntos

Diámetro (mm)	Error C1 (μm)	Error C2 (μm)	Error ambas (μm)
139.707	-327	216	-23

Ajustando la esquina por curvas

- · Ajustar las caras de la esquina por curvas en lugar de rectas
- · No produjo una diferencia significativa
- Un paso más: combinar las dos propuestas anteriores. Tampoco produjo diferencias significativas
- El error se redujo a 135 μ m
- Es necesario medir el error sistemático (excede los plazos de este trabajo)

Trabajo futuro

Trabajo futuro

- · Determinar la incerteza de medición
- · Fabricar un patrón corona de mayor tamaño
- · Encontrar un modelo con menos coeficientes. Candidato: SVD
- · Utilizar coordenadas polares

Término	Coef. pol. x	Coef. pol. <i>y</i> C1	Coef. pol. <i>x</i>	Coef. pol. y
1	192.2	506.3	192.4	389.2
Χ	59	103.2	111.3	-3.5
χ^2	1.2	1.1	1.6	-0.9
У	108.5	-73.7	-11.2	-91.9
y^2	-21.8	14.9	2.6	15.9

Conclusiones

Conclusiones

- · Se calibró el sistema
- Se exploraron distintas variantes
- · El error observado fue cercano al buscado
- · Queda pendiente la determinación de la incerteza

Muchas gracias

Apéndice

Resumen

- · Se calibró un sistema de perfilometría 3D por triangulación láser
- Mapeo punto a punto del campo visible mediante un objeto de referencia
- · 3 objetos de referencia diferentes
- \cdot Error de 135 μ m

Modelos de distorsión de la lente - Radial

$$X_{corregido} = X \left(1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \right) \tag{8}$$

$$y_{corregido} = y \left(1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \right)$$
 (9)

Modelos de distorsión de la lente - Tangencial

$$x_{corregido} = x + 2p_1y + p_2(r^2 + 2x^2)$$
 (10)

$$y_{corregido} = y + p_1 (r^2 + 2y^2) + 2p_2 x$$
 (11)

Esquema de conexiones del brazo

Modo "FIR Peak"

Modo multi-pendiente

Aguja - Dispersión en cada coordenada

Algoritmo de Taubin

- · Métodos geométricos: más precisos, pero iterativos y lentos.
- Métodos algebraicos: simples, confiables, rápidos. Estimación inicial de los métodos iterativos. Pueden ser muy precisos.

Descripción algebraica del círculo:

$$A(x^{2} + y^{2}) + Bx + Cy + D = 0$$
 (12)

Algoritmo de Taubin - cont.

- (x_i, y_i) : i-ésimo punto observacional
- Definimos $z_i = x_i^2 + y_i^2$
- · Definimos:

$$A_0 = \frac{2\sqrt{\overline{z}}}{A}$$

Con \bar{z} valor medio de los z_i

· Definimos el vector de parámetros V:

$$V = \begin{pmatrix} A_0 \\ B \\ C \end{pmatrix}$$

Algoritmo de Taubin - cont.

• Definimos la matriz X_0 :

$$X_0 = \begin{pmatrix} \frac{z_1 - \overline{z}}{2\sqrt{\overline{z}}} & x_1 & y_1 \\ \vdots & \vdots & \vdots \\ \frac{z_n - \overline{z}}{2\sqrt{\overline{z}}} & x_n & y_n \end{pmatrix}$$

· El algoritmo de Taubin calcula el V óptimo minimizando:

$$\mathcal{F} = A_0^T \left(X_0^T X_0 \right) A_0 \tag{13}$$

Algoritmo de Taubin - cont.

- El mínimo de \mathcal{F} es el autovalor más pequeño de $X_0^T X_0$
- El autovalor se calcula como la raíz η del polinomio característico:

$$P(\eta) = c_3 \eta^3 + c_2 \eta^2 + c_1 \eta + c_0 \tag{14}$$

Cuyos coeficientes se definen:

$$\begin{split} c_3 &= 4\overline{z}, \\ c_2 &= -\overline{z}\overline{z} - 3\overline{z}^2 \\ c_1 &= \overline{z}(\overline{z}\overline{z} - \overline{z}^2) + 4\overline{z}(\overline{x}\overline{x}\overline{y}\overline{y} - \overline{x}\overline{y}^2) + \overline{x}\overline{z}^2 - \overline{y}\overline{z}^2 \\ c_0 &= \overline{x}\overline{z}^2\overline{y}\overline{y} + \overline{y}\overline{z}^2\overline{x}\overline{x} + 2\overline{x}\overline{z}\overline{y}\overline{z}\overline{x}\overline{y} - (\overline{x}\overline{x}\overline{y}\overline{y} - \overline{x}\overline{y}^2)(\overline{z}\overline{z} - \overline{z}^2) \end{split}$$

Fuentes de error - sin descartar puntos

Error de calibración - sin descartar puntos

Calibración	C1 x (µm)	C1 y (µm)	C2 x (µm)	C2 y (μm)
Trapecio	12	13	16	9
Hexágono	11	13	12	7
Corona	11	16	22	9

Error de offset - sin descartar puntos

* * *		•		
Calibración	χ (μm)	y (μm)		
Trapecio	27	19		
Hexágono	21	13		
Corona	27	19		