Bayesian (Generalized) Linear Models Outline

Lona Koers

0. Abstract

- 1. Introduction
 - Motivation of bayesian GLMs: uncertainty quantification, regularization, incorporation of domain knowledge, small data sets
 - Current research and related work
 - Structure of the paper
- 2. Bayesian Linear Regression
 - 2.1 Model definition
 - Regular linear model
 - Bayesian linear model
 - 2.2 Prior choice
 - Uninformative priors (for β and σ^2 or just for σ^2)
 - Prior distributions for regularization
 - Motivation of regularization
 - Ridge regularization ← Gaussian prior
 - Focus: Lasso regularization

 ⇔ Laplace prior (and other methodes for real variable selection)
 - Other prior distributions and use-cases (i.e. heavy-tailed priors) (?)
 - 2.3 Bayesian inference with closed form priors
 - Posterior and marginal (parameter) distribution
 - Posterior predictive distribution
 - 2.5 Model evaluation (?)
- 3. Bayesian Generalised Linear Regression
 - 3.1 Extending linear regression (alternative: last subchapter after logistic regression)
 - Bayesian GLMs for any exponential family distribution
 - 3.2 (Binary) Logistic regression
 - Model definition
 - Parameter priors
 - 3.3. Inference methods
 - Laplace approximation
 - MCMC and Hamilton Monte Carlo
 - 3.4 Predictive posterior
 - Predictive posterior estimation
 - Model checking (?)

4. Simulation Study

- 4.1. Linear Regression (= Regression): prior choice for bayesian linear regression with (Lasso) regularization
- 4.2. Logistic Regression (= Classification)

5. Discussion

- When would the use of Bayesian regression be preferred over regular regression?
- $\bullet\,$ Alternatives for more complex problems: Hierarchical GLMs and GLMMs
- Are there Bayesian GAMs?
- 6. Conclusion and Outlook