

(12Bit DAC) I2C 转 4-20mA

DAC (Digital to Analog Convertor)

Datasheet

特性

- 将I2C信号输入,线性转换成4-20mA/0-20mA的模拟 电流输出。
- 具有输出开路报警功能。
- 输入信号范围12Bit, 0x000-0xFFF
- 输入I2C信号高电平: 2.7V-5V
- 输出电压线性度误差: 0.1%
- 电源电压: 18V 36V
- 功耗: <5mA
- 启动时间: <2ms
- 工作温度: -40°C to 125°C

描述

GP8302是一个I2C信号转模拟信号转换器,即DAC,此芯片可以将12Bit数字量0x000-0xFFF线性转换成4-20mA模拟电流,并且输出电流线性度为0.1%。

注意:

请确实当前DATASHEET为官网下载最新版本。

应用

- 0/4-20mA变送器
- PLC
- 工业控制
- 传感器

1. 管脚定义

表-A 管脚分布

管脚名称	管脚功能		
SLCK	I2C 接口时钟信号		
SDA	I2C 接口数据信号		
VCC	电源		
GND	地		
V5V	内部 LDO,5V 输出,需要外接 1uF 电容		
IOUT	模拟电流输出,4-20mA/0-20mA 输出口		
SET	满幅电流调节,满幅电流为 IOUT=5V*10/Rset		
Alarm	输出开路报警,低电平表示输出开路,开漏输出		

2. 绝对最大额定参数

工业操作温度: -40℃至125℃ 储存温度: -50℃至125℃ 输入电压: -0.3 v VCC + 0.3 v

最大电压: 36v ESD保护: > 2000 v

*超过"绝对最大额定值"中列出的参数值可能会造成永久性损坏设备。不保证器件在超出规范中列出的条件下操作。长时间暴露于极端条件下可能影响设备可靠性或功能。

3. 典型应用

3.1基本功能

输出电流IOUT=DATA/0xFFF*50V*/Rset,DATA为I2C输入到芯片的数据。如果Rset选择为2K,则全程范围内可以输出电流为0-25mA,则可以通过两点校准获得精准的4-20mA信号。如果Rset选择为2.5K,则全程范围内可以输出电流为0-20mA。

本应用需要加散热保护电路,如下图中,输出信号IOUT的电压与VCC的压差被PMOS限制在10V左右,当输出 20mA电流时所消耗的功耗接近0.2W,可以有效的限制GP8302的耗散功率,尤其是在负载电阻较小的时候。

系统的散热通过外接PMOS承担推荐使用SOP8封装的GL14P04-8,至少需要SOT89的封装。

MCU 与 GP8302 的连接方式:

3.2操作方法

3.2.1 Start、Stop条件、有效数据、数据变换格式

3.2.2 ACK 格式

3.2.3 设置下图中红色配置位,将 12bit DATA 数据分为 DATA Low 和 DATA High 写入,DATA Low 为低 Byte,DATA High 为高 Byte,并且 无视 DATA Low 的低 4 位。如果是 0-20mA 模式,则输出相对应的电流为: IOUT=DATA/0xFFF*20mA。

3.2.4 GP8302 支持将电压数据保存在芯片内,保证掉电启动后依然能处于相应的电压输出状态。

通过发送下图所示数据,可以实现写入的数据固化到芯片内部。

4. 功能描述

GP8302是一款高性能DAC芯片,数字量以I2C协议信号的方式输入到芯片中。通过在SET与GND间接入2K欧姆电阻,并根据需求接入负载电阻,便可以通过IOUT口输出0-25mA电流。电流大小为: IOUT=25mA*DATA/0xFFF。

同时芯片的ALARM脚可以对输出开路进行报警,如果ALARM为拉低输出,则说明输出开路。

5. 表-B 交流特性

符号	描述	最小	默认	最大	单位
f _{sclk}	I2C 时钟频率			400K	Hz

6. 表-C 直流特性

符号	描述	测试条件	最小	典型	最大	单位
VCC*1	电源电压		18	24	36	V
ICC	电源功耗	VCC @24V 空载		2	5	mA
IOUT	输出电流	Rset=2K	0		25	mA
ΔIOUT*2	输出电压误差	与 IOUT 输出范围的比例		0.1		%
Lout	输出线性度			0.1		%
Tco	温度系数				50	PPM/℃
Rmax	最大负载电阻	VCC=24V			650	Ω

^{*1:} 电源电压的选择直接影响输出电流负载能力,一般建议使用24V供电。

^{*2:} 出厂精度0.2%,需要通过两点校准的方式获取0.1%的输出误差。

7. 订购须知

封装	工作温度	电源	温度系数	订购码
ESOP8	-40℃-125℃	18V-36V	50PPM	GP8302-TC50-EH

8

8. 封装信息

е.

SIDE VIEW

-D

(计量单位:毫米)

注意:

此图仅供一般参考。有关合适的尺寸,公差, 基准等,请参阅 JEDEC 图纸 MS-012

符号	最小值	正常值	最大值	
A1	0.10	ı	0.25	
А	1.35	ı	1.75	
b	0.31	_	0.51	
С	0.17	_	0.25	
D	4.80	-	5.05	
D1	3.1		3.5	
E1	3.81	-	3.99	
E2	2.20		2.60	
E	5.79	_	6.20	
е	1.27 BSC			

