(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. Januar 2001 (11.01.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/02295 A2

(51) Internationale Patentklassifikation⁷: 31/08, B01J 20/20 C01B 31/10,

(21) Internationales Aktenzeichen:

PCT/DE00/02209

(22) Internationales Anmeldedatum:

1. Juli 2000 (01.07.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 199 30 732.6

5. Juli 1999 (05.07.1999) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HELSA-WERKE HELMUT SANDLER GMBH & CO. KG [DE/DE]; Bayreuther Strasse 11, D-95482 Gefrees (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HESCHEL, Wolfgang [DE/DE]; Anton-Günther-Strasse 36, 09599 Freiberg (DE). MÜLLER, Dirk [DE/DE]; Doktor-Rudolf-Friedrichs-Strasse 33, 08141 Reinsdorf (DE). KEIBEL, Thorsten [DE/DE]; Gottersdorf 14, 95213 Münchberg (DE). KOLINKE, Marten [DE/DE]; Ziolkowskistrasse 16, 09599 Freiberg (DE).

- (74) Anwalt: PÖHLAU, Claus; Louis, Pöhlau, Lohrentz & Segeth, Postfach 30 55, 90014 Nürnberg (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR THE CONTROLLED PRODUCTION OF SPHERICAL ACTIVATED CARBON
- (54) Bezeichnung: VERFAHREN ZUR GESTEUERTEN HERSTELLUNG VON KUGELAKTIVKOHLE

(57) Abstract: The invention relates to a method for producing spherical activated carbon from divinyl-benzene or styrene-divinyl-benzene polymer-based polymers in gel or macroporous form, by sulfonating the polymer with sulfuric acid and stirring the reaction material at a sulfonating temperature of 200 to 250 °C, for 20 to 90 minutes. The ratio H2SO4:polymer, calculated as pure substances, is 1.4:1 to 3:1 at the beginning of the sulfonation. The heating rate until the sulfonating temperature is reached is 5 to 20 K/min. The sulfonated polymer is then cooled to a temperature of < 50 °C and pyrolised by heating the product to a temperature of 250 °C with a heating rate of 5 to 15 K/min. The temperature is maintained at 250 °C for 30 minutes. The product is then further heated to 330 °C with a heating rate of 2 to 10 K/min, and subsequently to a temperature of 750 to 900 °C with a heating rate of 50 K/min. The product is maintained at the maximum temperature for 5 to 10 minutes.

(57) Zusammenfassung: Vorgeschlagen wird ein Verfahren zur Herstellung von Kugelaktivkohle aus gelförmigen oder makroporösen Polymeren auf der Basis von Divinylbenzol- oder Styrol-Divinylbenzol-Polymeren durch Sulfonierung des Polymers mit Schwefelsäure unter Agitation des Reaktionsguts bei einer Sulfonierungstemperatur von 200 bis 250 °C für eine Dauer von 20 bis 90 Minuten, wobei das als reine Stoffe berechnete Verhältnis von H2SO4:Polymer zu Beginn der Sulfonierung im Bereich von 1,4:1 bis 3:1 liegt und die Aufheizrate bis zum Erreichen der Sulfonierungstemperatur im Bereich von 5 bis 20 K/Min. liegt und Abkühlen des sulfonierten Polymers auf eine Temperatur von < 50 °C und Pyrolisieren des sulfonierten Polymers durch Aufheizen des Produkts auf eine Temperatur von 250 °C mit einer Aufheizrate von 5 bis 15 K/Min. und 30 Min. Halten bei 250 °C, weiteres Aufheizen bis auf 330 °C mit einer Aufheizrate von 2 bis 10 K/Min. und anschließendem weiteren Aufheizen bis zu einer Temperatur von 750 bis 900 °C mit einer Aufheizrate von 50 K/Min. und Halten auf der maximal erreichten Temperatur für 5 bis 10 Minuten.

BEST AVAILABLE COPY

(

Verfahren zur gesteuerten Herstellung von Kugelaktivkohle

10

Die vorliegende Erfindung betrifft die gesteuerte Herstellung von Kugelaktivkohle, insbesondere die gesteuerte Herstellung von Kugelaktivkohle aus gelförmigen oder makroporösen Polymeren.

5

Aufgrund der vergleichsweise großen Oberfläche von Aktivkohle und der daraus resultierenden großen Adsorptionskapazität, wird Aktivkohle seit langer Zeit in den verschiedenen Bereichen für Reinigungsaufgaben eingesetzt. Aktivkohle findet dabei auf vielen unterschiedlichen Gebieten Einsatz, wie der Reinigung von Rauchgasen oder der Reinigung von Flüssigkeiten, wobei die Aktivkohle im letztgenannten Fall häufig auch als Filtrationshilfsmittel eingesetzt wird.

20

25

In jüngerer Zeit werden immer mehr Aktivkohlen mit besonderen, maßgeschneiderten Eigenschaften gefordert. Dies gilt insbesondere auf dem Gebiet der Kfz-Innenraumluftfilter, die ein hohes Adsorptionsvermögen bei oftmals sehr geringen Abmessungen zeigen sollen. Weiterhin sind Spezialfilter zu nennen, die für ganz besondere Einsatzzwecke geschaffen und zum Teil nur für die Adsorption eines bestimmten Stoffes vorgesehen sind.

30

35

Haupteinsatzgebiet für die Verwendung kohlenstoffhaltiger Adsorbenzien ist seit Jahrzehnten die Luft- und Gasreinigung sowie die Gastrennung. Derartige Adsorptionsmittel haben aufgrund zahlreicher Variationen ein breites Einsatzspektrum. Außer der herkömmlichen Nutzung von Aktivkohle im Schüttbett oder in der Wirbelschicht haben sich in den letzten 20 Jahren Filtersysteme auf dem Markt etabliert, bei denen die Adsorbenzien auf textile Träger, auf PU-

BNSDOCID: <WO_____0102295A2_I_>

Schaum, Metall oder ähnlichem aufgebracht sind. Anwendungen in Schutzanzügen oder als Aktivkohlefilter für die Fahrgastzelle in Fahrzeugen sind in den letzten Jahren entstanden.

ABC-Schutzanzüge bestehen dabei im wesentlichen aus einem textilen Oberstoff, der mit einem Aktivkohlefiltermaterial verbunden wird. Als Filter kommen kugelförmige Adsorbenzien in Frage, die als Monoschicht auf einem textilen Träger fixiert sind. Pulveraktivkohle auf feinporigem Polyurethanschaum oder reine Aktivkohlegewebe finden ebenfalls Verwendung. Diese Materialien, bei denen es sich zumindest teilweise um Verbundmaterialien handelt, werden zu entsprechenden Anzügen konfektioniert, die im Einsatzfall als Schutzkleidung über die permanent getragene Kleidung gezogen werden. Außer derartigen Schutzbekleidungen sind auch einlagige Filterverbunde bekannt, die als Unterbekleidung im Anzug tragbar sind.

Das Einsatzgebiet für Filtersysteme in Kraftfahrzeugen zum Schutz der Fahrgäste vor schädlichen Emissionen und zur Komfortverbesserung hat in den vergangenen Jahren eine dynamische Entwicklung durchlaufen, so daß auf dem europäischen Markt heute ca. 80 % aller Nutzfahrzeuge mit einem Partikelfilter ausgerüstet sind.

25 Hierbei finden zunehmend sogenannte Kombinationsfilter Einsatz, die aus einem Verbund von textilem Partikelfilter und Aktivkohlemedium bestehen. Weil, wie bereits erwähnt, das Bauvolumen häufig sehr stark begrenzt ist, ergeben sich zum Teil extreme Anforderungen hinsichtlich Strömungswiderstand, Partikelabscheideleistung und Adsorptionsvermögen.

30

35

10

Das Aktivkohlevolumen der Kombinationsfilter und die daraus resultierende Adsorptionskapazität ist relativ gering. Das Porengefüge der Aktivkohle ist jedoch so beschaffen, daß auch im niedrigen Partialdruckbereich (< 100 ppm) eine gute Adsorptionskinetik gegeben ist. Kombinationsfilter können daher hervorragend für die Reduzierung von kurzzeitigen Konzentrationsspitzen verwendet werden, d.h.

für die Glättung. Eine wesentliche Komfortverbesserung wird erreicht, indem geruchsintensive Komponenten des Zuluftstroms unter den Geruchsschwellenwert gesenkt werden. Als Leitsubstanzen zur Bestimmung derartiger Aktivkohle- bzw. Filtereigenschaften werden n-Butan, Toluol, Schwefeldioxid und Stickoxid verwendet.

10

Bereits heute finden in verschiedenen Fahrzeugtypen der gehobenen Mittel- und der Oberklasse sogenannte Aktivkohlematrixfilter Einsatz, die über ein wesentlich höheres Aktivkohlevolumen verfügen. Diese sogenannten "extended bed"-Filter besitzen eine zu klassischen Schüttbettfiltern vergleichbare

- Adsorptionscharakteristik, jedoch mit stark reduziertem Strömungswiderstand.

 Dieser Effekt wird erreicht, indem auf den Trägerwänden eines offenporigen
 Polyurethanschaums Aktivkohle fixiert wird. Wenn eine Kugelgleichkornschüttung
 im Sinne einer Zufallspackung über ein Aktivkohlevolumen von ca. 62,5 % und ein
 sich daraus ergebendes Lückenvolumen von 37,5 % verfügt, ergeben sich für
- Matrixfilter Werte von 35 bis 40 %. Es ist daher offensichtlich, daß zum Erreichen der Schüttbettadsorptionscharakteristik (kein Sofortdurchbruch und lange Durchbruchszeit mit anschließend steilem Anstieg der Durchbruchskurve) eine gezielte Auswahl der Aktivkohle vorgenommen werden muß.
- Aufgrund der gestiegenen Anforderungen an die Eigenschaften derartiger Aktivkohlen ist verständlich, daß derartige Aktivkohlen nicht mehr mit den herkömmlichen Verfahren zur Herstellung von Aktivkohle auf einfache Weise herstellbar sind. Im Stand der Technik gibt es seit geraumer Zeit vereinzelte Versuche zur gezielten und gegebenenfalls gesteuerten Herstellung von

30 Aktivkohlen.

In diesem Zusammenhang ist z.B. die EP 0 326 271 B1 zu nennen, aus der die Herstellung von Aktivkohle, insbesondere aus Styrol-Divinylbenzol-Copolymeren bekannt ist. Bei dem offenbarten Verfahren wird das Copolymer zuerst mit einem großen Überschuß an rauchender Schwefelsäure oder Oleum für einen längeren

Zeitraum behandelt. Nach erfolgter Sulfonierung wird das polysulfonierte Copolymer zur Entfernung von überschüssiger Säure aufwendig gewaschen und nachfolgend getrocknet. Dieses Verfahren ist aufgrund des hohen Schwefelsäureeinsatzes und des energetisch aufwendigen Trocknungsschritts sowie im Hinblick auf die entstehenden Prozeßabwässer äußerst unwirtschaftlich.

10

15

20

25

35

Aus der WO 96/21616 ist ein Verfahren bekannt, bei dem ein Styrol-Divinylbenzol-Copolymer mit 5 bis 50 Gew.% Schwefelsäure bei einer Temperatur bis zu 750 °C verschwelt bzw. pyrolisiert wird. Aufgrund der bereits für eine Monosulfonierung der aromatischen Kerne unzureichenden Schwefelsäuremenge erfolgt ein vergleichsweise hoher Masseverlust während der Pyrolyse. Auch dieses Verfahren ist aufgrund des genannten Masseverlusts nicht wirtschaftlich durchzuführen.

Aus der DE 197 52 593.8, die auf denselben Anmelder wie die vorliegende Erfindung zurückgeht, ist bereits ein Verfahren zur Herstellung von Aktivkohle aus Polymeren mit aromatischen Kernen bekannt, bei dem das eingesetzte Polymer mit konzentrierter Schwefelsäure sulfoniert, abfiltriert, pyrolisiert und aktiviert wird. Obwohl die vorgenannte Patentanmeldung bereits einen erheblichen Fortschritt gegenüber den zuvor genannten Druckschriften darstellt, weil das offenbarte Verfahren eine Steuerung der Aktivkohleeigenschaften, insbesondere der Porengröße und Porengrößenverteilung, durch Veränderung der einzelnen Verfahrensparameter ermöglicht, besteht weiterhin Bedarf an weiteren maßgeschneiderten Aktivkohlen mit ganz individuellen Eigenschaften und auch an der Verbreiterung der Rohstoffbasis.

Es ist daher Aufgabe der vorliegenden Erfindung zumindest ein weiteres Verfahren zur gesteuerten Herstellung von Aktivkohle anzugeben, das wenigstens einen Teil der aus dem Stand der Technik bekannten Nachteile vermeidet.

Diese Aufgabe wird vorliegend durch ein Verfahren mit den Verfahrensschritten des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen dieses Verfahrens sind

15

20

25

30

35

5 Gegenstand der Unteransprüche.

Das erfindungsgemäße Verfahren ermöglicht zusätzlich zum Einsatz von Styrol-Divinylbenzol-Polymeren vorteilhafterweise den Einsatz von Divinylbenzol-Polymeren zur Herstellung von Aktivkohle, wodurch hinsichtlich des Ausgangsmaterials für die Herstellung spezieller Aktivkohlen die Basis verbreitert wird und auch Aktivkohlen mit veränderten Eigenschaften erhalten werden.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt in der Straffung des Gesamtverfahrens, wobei insbesondere auch eine Aktivierung nur bei einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens vorgesehen ist.

Die Sulfonierung des Ausgangspolymers ist in Bezug auf die Eigenschaften des Endprodukts, d.h. der Anzahl und Verteilung der Poren in der Aktivkohle nach ihrer Größe sowie in Bezug auf das gesamte Porenvolumen von besonderer Bedeutung. Hierbei beruht die vorliegende Erfindung zum Teil auf der Erkenntnis, daß ein hoher Schwefelgehalt im Koksgerüst besonders vorteilhaft ist.

Es ist allgemein bekannt, daß die Sulfonierung von Polymeren zu unschmelzbaren Produkten führt. Überraschend wurde jedoch weiterhin herausgefunden, daß eine Erhöhung des Schwefelgehalts besondere Vorteile hinsichtlich der erhältlichen Porenstruktur zur Folge hat. Der in dem Koksgerüst enthaltene Schwefel wird nämlich bei der Pyrolyse und/oder der gegebenenfalls stattfindenden Aktivierung aus dem Koksgerüst herausgelöst und bildet "Fehlstellen" in der Form von Mikroporen. Der in Form von Sulfon- oder Schwefelsäuregruppen in das Ausgangspolymer eingebrachte Schwefel ist somit von wesentlicher Bedeutung für die relevanten Merkmale des Endprodukts.

Für den Mechanismus wird derzeit davon ausgegangen, daß die Sulfonierung bereits bei relativ niedrigen Temperaturen beginnt, wobei bei Temperaturen bis etwa 200 °C fast ausschließlich die Bildung von Sulfonsäuregruppen durch

elektrophile Substitution an den im Polymer enthaltenen aromatischen Kernen erfolgt. Bei Temperaturen über 200 °C erfolgt dann bevorzugt die Bildung von Sulfongruppen, was einer Vernetzung eines bereits durch eine Sulfonsäuregruppe substituierten aromatischen Kerns mit einem weiteren aromatischen Kern über dieselbe Sulfogruppe unter Abspaltung von Wasser entspricht.

10

5

Bei einer weiteren Temperaturerhöhung, die grundsätzlich möglich ist, tritt die Wirkung von heißer Schwefelsäure als Oxidationsmittel immer stärker in den Vordergrund, weshalb eine Temperaturerhöhung auf über 300 °C eine stark verminderte Ausbeute an sulfoniertem Produkt zur Folge hat.

15

20

Eine besondere Verfahrensmaßnahme im Rahmen der vorliegenden Erfindung ist die Durchführung der Sulfonierung des Polymers mit Schwefelsäure unter Agitation des Reaktionsguts. Hierbei ist festzustellen, daß eine stationäre Sulfonierung nur zu einem Sinterprodukt führt, das für keines der angestrebten Einsatzgebiete verwendbar ist. Erst, wenn eine ausreichende Durchmischung des Reaktionsguts erfolgt, wird ein rieselfähiges Sulfonierungsprodukt erhalten.

25

Selbstverständlich spielt auch das Aufheizregime bei der Sulfonierung eine entscheidende Rolle, wobei die Produktqualitäten auch durch diesen Faktor beeinflußbar sind. Es ist daher erforderlich eine Aufheizrate im Bereich von 5 bis 20 Kelvin zu wählen, um das Reaktionsgut auf Sulfonierungstemperatur zu bringen. Bei einer Aufheizrate unter 5 K./Min. verlängert sich der Verfahrensabschnitt des Aufheizens und der Sulfonierung unnötig. Bei einer Aufheizrate von mehr als 20 K./Min. kann es durchaus zu lokalen Überhitzungen kommen, die negative Einflüsse auf das Endprodukt haben, da hierdurch insbesondere die Sinterneigung des Ausgangspolymers vergrößert wird.

30

35

Eine weitere Möglichkeit zur Beeinflussung des Endprodukts liegt in der Variation des Verhältnisses von H2SO4 zu eingesetztem Polymer. Dieses Verhältnis, berechnet als Verhältnis der reinen Stoffe, beträgt erfindungsgemäß 1,4:1 bis 3:1.

- Die als Sulfonierungsmittel eingesetzte Schwefelsäure liegt somit grundsätzlich im Überschuß vor, wobei es möglich war eine Beschränkung auf den maximal dreifachen Überschuß zu erzielen. Hierdurch wird der übermäßige Einsatz an Schwefelsäure beschränkt, was die Wirtschaftlichkeit des Verfahrens weiter erhöht.
- Nach Abschluß der Sulfonierung mit Schwefelsäure läßt man das Reaktionsgut auf eine Temperatur von < 50 °C abkühlen. Nachfolgend wird das sulfonierte Polymer durch Aufheizen des Produkts auf eine Temperatur von 250 °C mit einer Aufheizrate von 5 bis 15 K./Min. und 30 Min. Halten bei 250 °C, weiteres Aufheizen bis auf 330 °C mit einer Aufheizrate von 2 bis 10 K/Min. und anschließendem weiteren Aufheizen bis zu einer Temperatur von 750 bis 900 °C mit einer Aufheizrate von 30 bis 50 K/Min. und Halten auf der maximal erreichten Temperatur für 5 bis 10 Minuten pyrolisiert.
- Polymer gemeinsam in einem Reaktionsbehälter vorgelegt und dann auf Sulfonierungstemperatur aufgeheizt werden. In einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens wird jedoch die Schwefelsäure zunächst vorgelegt und auf Sulfonierungstemperatur aufgeheizt. Im Anschluß daran wird das zu sulfonierende Polymer zugegeben. Da die Temperatur im Reaktionsgefäß durch den Polymereintrag absinkt, wird erneut bis zum Erreichen der Sulfonierungstemperatur im Reaktionsgefäß aufgeheizt, wobei die Aufheizrate ebenfalls im Bereich von 5 bis 20 K/Min. liegt.
 - Die Sulfonierung wird bevorzugt für 20 bis 40 Minuten durchgeführt, wobei in einer besonderen Verfahrensvariante die Sulfonierung unter Unterdruck erfolgt. Der Unterdruck im Reaktionsgefäß ist dabei so bemessen, daß die Druckdifferenz zur Umgebung etwa 50 bis 550 mbar beträgt.
- Insbesondere durch Anlegen von Unterdruck läßt sich die Reaktionszeit vorteilhafterweise auf 20 bis 40 Minuten beschränken, da bei der Sulfonierung als

Reaktionsprodukt gebildetes Wasser aus dem Gleichgewicht entfernt und somit die weitere Sulfonierung begünstigt wird.

Überraschenderweise ist bei der Sulfonierung von gelförmigen oder makroporösen Polymeren auch ein Einsatz von verdünnter Schwefelsäure als Sulfonierungsmittel möglich. Grundsätzlich ist es bei dem erfindungsgemäßen Verfahren daher möglich Schwefelsäure mit einer Konzentration von etwa 54 bis 96 Gew.-% H₂SO4 als Sulfonierungsmittel einzusetzen. Beim Einsatz von verdünnter Schwefelsäure als Sulfonierungsmittel ist eine Verfahrensführung in Kombination mit der Durchführung der Sulfonierung unter vermindertem Druck besonders bevorzugt.

15

20

25

30

35

10

Von besonderer Bedeutung zum Erhalt eines nicht-gesinterten und rieselfähigen Produkts ist bei der Sulfonierung femer, daß das Reaktionsgut ausreichend bewegt und durchmischt wird, weil andernfalls, möglicherweise aufgrund lokaler Überhitzungen, die Sinterneigung des Ausgangspolymers deutlich zunimmt. Es ist dabei besonders bevorzugt, wenn das Reaktionsgut durch Rotation des Reaktionsbehälters bewegt wird. Gegenüber der Verwendung eines mit einer Rühreinrichtung versehenen starren Reaktionsbehälters ist die Durchführung der Sulfonierung in einem rotierenden Reaktionsbehälter dahingehend vorteilhaft, daß die Rieselfähigkeit des Sulfonierungsprodukts besser gewahrt bleibt. Als Grund hierfür wird angenommen, daß die mechanische und unter Umständen auch thermische Belastung des Ausgangspolymers in einem rotierenden Reaktionsgefäß geringer ist.

Die Pyrolyse in Verfahrensschritt b) erfolgt im allgemeinen unter einer Stickstoffatmosphäre. In einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt die Pyrolyse in einer aus Stickstoff und Wasserdampf zusammengesetzten Atmosphäre, die in einer weiteren Fortbildung zusätzlich noch Kohlendioxid enthält. Je nach vorheriger Verfahrensführung bei der Sulfonierung, d.h. z.B., wenn die Sulfonierung unter normalem Druck durchgeführt wurde, muß der Wasseranteil der Pyrolyseatmosphäre nicht unbedingt von außen zudosiert

werden sondern wird durch den Wassergehalt des sulfonierten Polymers mit eingebracht. Selbstverständlich ist aber auch eine Zudosierung von Wasserdampf in die Pyrolyseatmosphäre möglich.

Dadurch, daß die Pyrolyseatmosphäre neben Stickstoff noch Wasserstoff und/oder Kohlendioxid enthält, kann vorteilhafterweise auf eine besondere Aktivierung verzichtet werden. Hierdurch ist eine Verfahrensverkürzung und besonders eine hohe Energieeinsparung möglich. Andererseits ist durch eine weitere Aktivierung eine zusätzliche Anpassung der Adsorptionseigenschaften der hergestellten Kugelaktivkohle an die voraussichtlichen Anforderungen des Einsatzgebietes möglich.

Die Zusammensetzung der Aktivierungsatmosphäre oder spezielle Aktivierungsverfahren, wie z. B. Imprägnierungen mit Salzlösungen, sind dem Fachmann grundsätzlich geläufig und werden je nach Anforderung gewählt.

20

10

15

Zur weiteren Erläuterung der vorliegenden Erfindung dienen die nachfolgenden Ausführungsbeispiele, aus denen auch weitere Vorteile der Erfindung ersichtlich werden.

25

30

Beispiele

Makroporöses und gelförmiges Polymer als Ausgangsmaterial für die Sulfonierung

Für die Sulfonierversuche wurden ein makroporöses Polymer eingesetzt, im Handel z.B. unter der Bezeichnung "LEWATIT" als reines Dinvinylbenzolpolymer erhältlich, und ein gelförmiges Polymer, im Handel als Styroldivinylbenzolpolymer unter der Bezeichnung "LEWAPOL" mit variierendem Divinylbenzol(DVB)gehalt erhällich.

35 40 g des Polymers werden mit der entsprechend dem Einsatzverhältnis

25

35

berechneten Menge H₂SO₄ (96 Gew.-%) in ein Reaktionsgefäß von 0,5 I Fassungsvermögen eingebracht und durch Drehen des Reaktionsgefäßes vermischt. Das Reaktionsgefäß rotiert mit 30 Umdrehungen/Min. um seine Längsachse, die mit 30 ° gegen die Horizontale geneigt ist. Das Reaktionsgefäß wird durch einen feststehenden elektrischen Ofen allseitig beheizt. Durch Einstellen eines bestimmten Aufheizmodus läßt sich das gewünschte Temperaturregime in der Reaktionsmasse realisieren.

Der während der Sulfonierung freigesetzte Reaktionswasserdampf wird über eine Pumpe (z.B. Wasserstrahlpumpe) aus dem Reaktionsgefäß abgeführt.

Nach der jeweiligen Sulfonierzeit wird die Heizung abgeschaltet und die Reaktionsmischung auf Raumtemperatur abkühlen gelassen, wobei das Reaktionsgefäß weiterhin rotiert.

Das rieselfähige, sulfonierte Produkt wird anschließend in einer ruhenden Schüttschicht entsprechend den Vorgabewerten in einer N₂-Atmosphäre verkokt.

Der auf Raumtemperatur abgekühlte Koks wird im Anschluß daran in einer fluidisierten Schicht bis zum gewünschten Abbrand aktiviert. Alternativ kann die Aktivierung des sulfonierten Produkts bei der Pyrolyse und ohne Zwischenabkühlung erfolgen.

Ergebnisse

Bei Verwendung eines makroporösen Poylmers werden unter sonst gleichen Bedingungen bei der Sulfonierung, Verkokung und Aktivierung im Vergleich zu einem gelförmigen Polymer mesoporenreiche Aktivate erhalten (Beispiele 3 und 6). Die Porengrößen wurden dabei wie folgt festgelegt:

Mikroporen: < 7,6 nm

(

5

20

25

Mesoporen:

7,6 bis 50 nm

Makroporen:

> 50 nm.

Im übrigen wurde zur Bestimmung der Porenvolumina und sonstiger Meßwerte auf Verfahren zurückgegriffen, wie sie bereits in der DE 197 52 93.8 der Anmelderin offenbart sind.

Über das Masseneinsatzverhältnis Schwefelsäure zu makroporöses Polymer läßt sich zusätzlich Einfluß auf den Makroporenanteil (absolut unprozentual) nehmen (Beispiele 1 bis 4).

Als Vergleichsbeispiel zeigt Beispiel 5, daß ein Masseneinsatzverhältnis von 1:1 eine signifikante Abnahme der Koks- und Aktivatausbeute sowie der volumenbezogenen BET-Oberfläche zur Folge hat.

Die Sulfonierung wird außer durch die Verfahrensbedingungen Aufheizrate, Temperatur und Haltezeit noch vom Reaktortyp und der Art des mechanischen Energieeintrags beeinflußt. Es wurden daher Sulfonierreaktionen in einem feststehenden Reaktionsgefäß ohne mechanische Rührer sowie ein geneigtes, rotierendes Reaktionsgefäß mit und ohne Hubelementen an der Innenwand für entsprechende Versuche eingesetzt.

Bei der erstgenannten Variante wird das Polymer in den feststehenden
Reaktionskolben geschüttet und mit der entsprechenden Menge Schwefelsäure in
Kontakt gebracht. Die Reaktionsmischung wird mit einem mechanischen Rührer
homogenisiert. Dies gelingt jedoch nur solange die Mischung als Suspension
vorliegt. Sobald der Sulfonierprozess einsetzt, d.h. der Flüssigkeitsanteil
zurückgeht, kommt die Durchmischung zum Erliegen. Im weiteren Verlauf der
Sulfonierung findet keine Produktbewegung mehr statt. Im Verlauf der Sulfonierung

findet weiterhin eine starke Versinterung statt und es kann kein rieselfähiges Reaktionsprodukt erhalten werden.

Bei der Variante mit dem bewegten Reaktionsgefäß ist dieses etwa unter einem Winkel von 30 bis 45 ° gegen die Horizontale geneigt angeordnet und rotiert um seine Längsachse mit 1 bis 30 Umdrehungen/Min.. An der Innenwand des Reaktiongefäßes können sich Einbauten befinden, die in der Art von Hubschaufeln die Durchmischung fördern. Hierdurch wird die in einem bestimmten Reaktionsstadium eintretende zeitweise Verfestigung des Reaktionsproduktes, die auch als Kuchenbildung bekannt ist, vermieden und der Wasserdampf wird gleichmäßig aus der abreagierenden Reaktionsmischung abgeführt. Die sich aus dieser Gestaltung des Reaktors ergebenden Vorteile sind zum einen ein rieselfähiges Sulfonierungsprodukt und eine erhebliche Einsparung an Schwefelsäure, da, im Vergleich zum feststehenden Reaktor, eine deutlich geringere Schwefelsäuremenge zu einer entsprechenden Sulfonierung ausreicht.

20

25

10

15

Im Vergleich zu einem im wesentlichen horizontal gelagerten Drehrohr ist die Ausnutzung des Reaktionsraumes beim geneigten Rekator um mehr als das Doppelte besser, da Füllungsgrade bis 60 % möglich sind. Es hat sich überraschenderweise gezeigt, daß die für den geneigten Reaktor typischen Mischbewegungen, bei denen die radiale Gutbewegung durch Abrollen an der Reaktorwand durch eine Gutbewegung in achsialer Richtung überlagert wird, die Homogenisierung der Reaktionsmischung fördern auf diese Weise die Reaktionszeit verkürzen und somit zur Energieeinsparung beitragen.

Ab Ausführungsbeispiel 11 wurde ein Reaktionsgefäß mit 2 Liter Fassungsvermögen benutzt, in das 300 g des jeweiligen Polymers eingebracht wurden.

Wie aus den Beispielen 37 bis 40 zu entnehmen ist, hat das Anlegen eines Unterdrucks keinen unmittelbares Einfluß auf die Koksausbeute und die

20

Porenstruktur des Kokses. Bei einem ausreichenden Unterdruck, d. h. bei einem Differenzdruck von wenigstens 50 mbar geht das Reaktionsprodukt jedoch eher in den rieselfähigen Zustand über, was sich insgesamt günstig hinsichtlich der Durchmischung des Reaktionsguts und der Verkürzung der Prozeßzeit auswirkt. Zu starke Unterdrücke, d. h. bei Differenzdrücken ab etwa 550 bis 700 mbar, führen zu Schwefelsäureverlusten infolge teilweiser Verdampfung und sind daher ebenfalls zu vermeiden.

Überraschenderweise hat sich weiterhin gezeigt, daß auch eine verdünnte Schwefelsäure einsetzbar ist. Insbesondere wurde festgestellt, daß Schwefelsäure mit einer Konzentration im Bereich von 54 bis 96 Gew.% H2SO4 keinen Einfluß auf die Koksausbeute sowie die Aktivatqualität hat, soweit die anderen Bedingungen gleich gehalten werden. Dies ist den Beispielen 20 bis 32 und Beispiel 42 zu entnehmen, wobei weiterhin festzustellen ist, daß bei Einsatz einer verdünnten Schwerfelsäure eine Verlängerung der Sulfonierdauer erforderlich sein kann.

In den nachfolgenden Tabellen 1 und 2 sind jeweils die Ergebnisse der Versuche zur Herstellung von Kugelaktivkohle aufgeführt.

Suffonierung BEDINGUNGEN

	Sulfonie	Salfontermoshedinganger	insen					Verkokung				Minister	
			p										
	Sprot	Speol-Rahstoff	H2504: Capalymer	mer	*Diff zu Unge	omgadruck (bar	5	-	-	-		-	
	m 11.00	n. m. Dieta Comitions	M. marine and d.	Cultoniere	Tinterdereit*	Autherung	Halletei	Temperatur	Aufheizung	Haltezeit	Snükus	Temperatur	Abbrand
:Jea			and the second	Temmeratur P.C.	Thart	(Kimin)	fmini	1,01	[K/min]	0000000		1ºC1	[55]
Ŀ	100	moknonorös	1.7	200		200	98	750	50	5	NZ	096	62,8
- '	80	ma kroporos	1.5	200		200	06	750	- 20	2	N2	096	57,8
1 10	_	makroporös	2:1	200		200	8	750	50	S	N2	960	50,3
3	13	so redomina	1:F	200		200	30	750	.50	. \$	Z	096	72,7
v	_	makronorës	1:1	200		200	30	750	90	5	ZZ	096	65,3
	2.3	pelformip	2:1	200		200	8	750	50	5	NZ	096	54,9
_		gelförmig	2:1	200		200	30	750	50	\$	N2	096	60,2
		0											
00	80	gelförmig	2:1	200		200	15	750	20	: S	N2	096	60,4
+	_	makroporös	2:1	200		15	81	750	50	5	N2	960	59,7
2	3.		2:1	200		200	30	750			N2	096	57,5
=			2:1	208		17	01	750	20	8	NZ	880	41,7
12	8	gelförmig	1.9:1	210		16	- 10	750	20	. 2	N2	006	50,3
13	တ	gelförmig	1,8:1	212		16	10	750	20	5	N2	920	57,5
14	8	gelförmig	1,7:1	218		91	10	750	20	~ 2	N2	940	62,6
15	œ	gelförmig	1,5:1	218		17	10	750	20	5	N2	•	,
10	7,5	gelformig	1,3:1	218		10	0	750	20	S	N2		
17	7,5	gelförmig	1:1	215		9,5	0	750	20	5	N2	•	
18		gelförmig	1:5'0	gestuft				gestuft				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
19	8	gelförmig	0,1:1	gestuft				gestuft	100% versintert			•	•
20	ଃ ା	gelformig	2:1	240		11	91	750	20	. S	N2	096	30,7
21	7,5	gelförmig	2:1	228		8'9	0	750	20	S	N2	880	37,7
22	7,5	gelformig	2:1	117		8	35	750	20	5	N2	880	39,9
23	7,5	gelförmig	2:1	203		10	40	750	20	5	N2	880	40,2
24	7,5	gelförmig	2:1	196		7	0	750	20	. S	N2	880	43,6
25	7,5	gelförmig	2:1	190		6	0	750	20	5	N2	880	39
79	. 8	gelförmig	2:1	199		9	33	750	20		N2		
27	∞	gelförmig	2:1	235		10,5	41	750	20	5	N2	880	40,7
28	. 8	·	2:1	263		11	40	750	20	. 5	N2	. 880	34,7

Sulfonierung BEDINGUNGEN

Abbrand 48,6 43,6 40,9 100 47,2 41,3 38,8 37,7 38,6 44.8 35,9 36,7 40,7 45,7 35 31 Тетрегашт Aktivierung : 3 960 880 880 880 .088 960 088 960 13.1 880 960 996 880 880 880 960 2 2 2 Z Ž Š N2 N2 Z Z Z Z Z NZ Z Ž Z 'n S S 'n v 'n 25 25 30 S S S 'n 0 0 9 0 5 9 20 bis 750°C 6,8 bis 140°C 4,5 bis 185°C 1,5 bis 200°C 50 bis 750°C 6,8 bis 140°C 4,5 bis 185°C 1,5 his 200°C 20 bis 750°C 10 bis 250°C 5 bis 330°C 20 20 20 50 50 2 8 . 50 20 20 20 Verkokang 750 750 750 750 750 750 750 750 750 750 750 200 750 140 185 200 750 750 330 750 750 140 185 Halterest 0 0 25 34 34 8 4 14 0 25 0 4 0 • 0 0 Aufheizung Kmm 8,5 21 6 5,5 9 5,9 ಁ 6 2 2 2 9 6 9 0 Unterdrauk* gestuft 0,04 0.1 ુ 5 0,7 279 288 220 208 212 212 212 212 233 227 218 258 238 212 220 198 230 H2SO4 : Copolimer Massentati 2.1 verhällnis 3,5:1 2,5:1 7:1 1;9;1 1,9,1 1,6:1 2:1 2,5:1 1,6:1 2:1 2:1 2:1 2:1 2:1 Sulfankrungshedingungen makroporös gelförmig gelformig gelförmig gelförmig gelförmig gelförmig gelformig gelformig gelförmig gelförmig gelförmig gelformig gelförmig gelförmig gelförmig gelformig Straktor Styral-Robatelf @ D1B 8 8 œ 7,5 7,5 7,5 **&** 100 7,5 7,5 4 œ œ 00 30 34 35 32 37 4 4 5 33 38 39 \$ 44 29 45 36 31

Tabelle.

(Fortsetzung)

Tabelle 2

Sulfonierungsergebnisse

Kokseigenschaften	enschaften	· Een						Aktiv	kohleen	Aktirkohleeigenschaften	ften			
وماهم والام الماريخ والماريخ	وماهم والام الماريخ والماريخ	triber, mi 1941 i ft flejten die	triber, mi 1941 i ft flejten die	į	A. A.	intauth.	i and the state of	Contact of		***************************************	الم تأسيد دسيد بيون		L	
Proce Vine Vine Vine	GI (max /me /mic	Vone Vone Voni	ne /mi: 1889 (44.0%)		bee.	מאכנ	0/24/k	(3/cm3/6)	The Kraes (marks)	Vuna Vune (umits) (umits)	(mm)	(Erming)	(2) (2) (2) (2) (2) (2) (2) (2)	CATUOL (WATCH)
413 143 111 159	143 111 159	143 111 159	111 159		1	32,0	0,370		1484	524	276	685		729
172	29 172	172		159		37,4	0,418	0,646	1093	191	569	663	1912	799
258 12	12 129	129		118		44,2	0,511	0,843	737	29	981	522	1589	812
142	142 118	118	<u></u>	141		23,9	0,329	0,432	1901	881	358	662	1965	969
324 31	31 146	146		147		22,8	192'0	619'0	1170	10	401	00%	1931	504
Н	40 19	19		104	1	43,4	0,500	0,882	119	31	47	009	1762	188
94,9 188 47 16 125	47 16	16		125		37,8	0,481	162'0	805	65	74	999	1897	912
			-		1									
60 12	60 12	12	4	<u>=</u>	. !	31,4	0,391	0,871	689	89	75	546	1603	627
269 9 148	9 . 148	. 148		=13	1	36,2	0,428	999'0	1050	31	322	697	1868	800
285 18 124	18 124	124	\dashv	143		37,9	0,448	0,705	980	41	258	089	1848	828
	13 10	01		151		55,4	0,636	1,040	478	15	29	434	1276	812
	17 11	- 11		159		48,2	0,580	0,949	280	2	46	528	1475	856
168 10	10 7	7		151	1	40,8	965'0	888'0 .	655	6 :	7.5	574	1631	877
. 7 14	. 7 14	14		141	1	32,6	0,498	0,818	763	=	21	631	1748	871
159 7	7 7	7	_	145	1									
4 10	4 10	10		153										
190 9 13	9 13	13	_	168		•								
228 40	40 13	13		176										
273 64 23	64 23	. 23		187										
150 4 8	~	∞		138		70,5	0,720	1,175	348	3	81	327	850	612
166 0,5 8,6	0,5 8,6	9,8	\dashv	157		59,65	0,674	1,076	447	8	56	413	1182	707
172 . 4 8	. 4	œ	\dashv	09j		56,7	0,650	1,049	466	. 9	. 34	426	1235	803
156 6 9	6 9	6	4	<u>=</u>		55,3	0,655	1,062	453	10	31	412	1220	265
156 9 9	. 6	6	4	.138		57,7	0,601	1,027	486	11	36	439	1219	733
163 11	11 23	23 ·		128		58,5	169'0	1,046	200	=	35	454	1204	760
. 175 23 9	23 9	6		144						L				
92,7 152 2 9 141	2 9	6	H	14[ŀ					
146 8	8 13	13		125					-					
94,2 152 3 8 140	3 8	æ		140	,									
	8 15	15		124										
91 9	91 9	16		116										
124 11	11 17	\dashv	\dashv	97										

Tabelle 2

Fortsetzung

																					<u>. </u>
		BETING	(urran)	. 69/		=		1	703		701	202	180						77.8		
		357	[m,(3)	1277		1372		1523	1323		1209	1227	1777						1029		
	•	Zun.	16/1115	496		200		ž	Coc		419	CPP	474					•	350		
Hen		Vine	(Blume)	2		46		146	01.1		30	31	;						31		
Aktivkohleeisenvolatten	>		<u> </u>	^		12		200			00	15			ŀ		, in .		=		
kohleen	·	1885 35	C.imiz	326		558		760			457	487							392		
AKAN		Kohael (9/cm²)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,200		0,964		0.818			1,056	1.031							1,132		
		25.26. 25.26.	7 100	7,00,2		0,591		0,501		747.0	0,050	0,642							0,707		
	Albirotaus 6.	bos. Polunci	763	24,0		50,4		41,2		1 23	20,1	56,7							65,8		
			/8/9/		9.	149 0		195		137	7	147	157	145	143	146	144	5	₹ :	77	==
	1-728 parameter (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vine (may)	Ł			. 71		- 21	•	,			11	12	2	10	14		7	18	= = _
lten		\$ 22.2 2.22.2			-			6		3		2	~	9	9	13	12		٥	,	0,0
enscha		17.30 E	159		1,63	3		254		147	0,7	200	176	167	159	169	170	131			132
Kokseigenschaften	Coksamster	08. 186 mer (%)	96.9		DS A	7.7		89,7		95.6	סעע	2010	93,6	92,6	95,8	93,6	.96	101.2	00 1	2007	66,3
	9	9	33		94			9		35	36		5	38	39	ę	41	42	7		Į.

10

15

20

25

30

35

Da die Vernetzung der eingesetzten Styrol-Divinylbenzol-Polymere von Ihrem Vernetzungsgrad und somit von Ihrem Divinylbenzol-Gehalt abhängt, wurden weitere Untersuchungen hinsichtlich des Einflusses des Vernetzungsgrades in Bezug auf die Eigenschaften des Verfahrensprodukts durchgeführt.

Als Beispiele wurden Styrol-Divinylbenzol-Copolymere mit einem Divinylbenzol-Gehalt von 2 und 4 Gew.% sowie ein sogenanntes monodisperses Styrol-Divinylbenzol-Polymer mit einem Divinylbenzol-Gehalt von etwa 8 %, das mit einem Quellmittel versetzt war, untersucht, wobei die Haltezeit der Sulfonierung, d. h. die Reaktionsdauer und das Massenverhältnis von Schwefelsäure zu Polymer variiert wurden.

Grundsätzlich ist dabei als Ergebnis festzustellen, daß der Divinylbenzol-Gehalt im Bereich zwischen 2 und 8 Ggew.% keinen signifikanten Einfluß auf die Aktivatqualität und Ausbeute besitzt. Sowohl über die Sulfonierdauer als auch über den Säureanteil kann gezielt die Porenstruktur verändert werden. Bei kurzen Sulfonierzeiten und vergleichsweise niedrigen Säure-Polymer-Verhältnissen werden bei Einsatz von gelförmigem Styrol-Divinylbenzol-Polymer mikroporöse Aktivate mit einem erhöhten Makroporenvolumen erhalten. Durch Änderung dieser beiden Steuergrößen des Prozesses lassen sich Aktivkohlen mit einer gewollt unterschiedlichen Makroporenstruktur, aber annähernder Übereinstimmung der BET-Oberfläche und folglich entsprechender Adsorptionskapazität erzeugen. Über die Makroporenstruktur läßt sich die Adsorptionsgeschwindigkeit steuern. Bei der Sulfonisierung von makroporösem Polymer, d. h. von Divinylbenzol-Polymer, kann insbesondere das Mesoporenvolumen der herzustellenden Kugelaktivkohle eingestellt werden. Dabei liefert eine kurze Haltezeit von etwa 20 Min. bei der Sulfonierung extrem mesoporenreiche Kokse und Aktivate bei gleicher BET-Oberfläche, während eine lange Haltezeit von etwa 90 Min. den Mesoporenanteil bis auf 1/3 senkt.

15

20

25

30

35

10 Patentansprüche

- Verfahren zur Herstellung von Kugelaktivkohle aus gelförmigen oder makroporösen Polymeren auf der Basis von Divinylbenzol- oder Styrol-Divinylbenzol-Polymeren mit folgenden Verfahrensschritten:
 - a) Sulfonierung des Polymers mit Schwefelsäure unter Agitation des Reaktionsguts bei einer Sulfonierungstemperatur von 200 bis 250 °C für eine Dauer von 20 bis 90 Minuten, wobei das als reine Stoffe berechnete Verhältnis von H2SO4:Polymer zu Beginn der Sulfonierung im Bereich von 1,4:1 bis 3:1 liegt und die Aufheizrate bis zum Erreichen der Sulfonierungstemperatur im Bereich von 5 bis 20 K/Min. liegt,
 - b) Abkühlen des sulfonierten Polymers auf eine Temperatur von < 50 °C und Pyrolisieren des sulfonierten Polymers durch Aufheizen des Produkts auf eine Temperatur von 250 °C mit einer Aufheizrate von 5 bis 15 K/Min. und 30 Min. Halten bei 250 °C, weiteres Aufheizen bis auf 330 °C mit einer Aufheizrate von 2 bis 10 K/Min. und anschließendem weiteren Aufheizen bis zu

einer Temperatur von 750 bis 900 °C mit einer Aufheizrate von 50 K/Min. und Halten auf der maximal erreichten Temperatur für 5 bis 10 Minuten.

- Verfahren gemäß Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß in Schritt a) Schwefelsäure und Polymer zur Sulfonierung gemeinsam vorgelegt und auf Sulfonierungstemperatur aufgeheizt werden.
- 15 3. Verfahren gemäß Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 daß in Schritt a) die Schwefelsäure zunächst vorgelegt, auf
 Sulfonierungstemperatur aufgeheizt und das zu sulfonierende Polymer
 nachfolgend zugegeben wird.

- Verfahren gemäß einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet,
 daß die Sulfonierung für 20 bis 40 Minuten durchgeführt wird.
- Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sulfonierung unter Unterdruck erfolgt, insbesondere bei einer Druckdifferenz zur Umgebung von 50 bis 550 mbar.
- of the second of
- 7. Verfahren gemäß einem der vorhergehenden Ansprüche,

- dadurch gekennzeichnet,
 daß die Agitation des Reaktionsguts durch Bewegen, insbesondere Rotation
 des Reaktionsbehälters erfolgt.
- 8. Verfahren gemäß einem der vorhergehenden Ansprüche,
 da durch gekennzeichnet,
 daß die Pyrolyse in Schritt b) unter einer Stickstoffatomsphäre erfolgt.
 - 9. Verfahren gemäß einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß die Pyrolyse in Schritt b) unter einer aus Stickstoff und Wasserdampf zusammengesetzten Atmosphäre erfolgt.
- 10. Verfahren gemäß Anspruch 9,
 d a d u r c h g e k e n n z e i c h n e t,
 daß die Atmosphäre bei der Pyrolyse in Schritt b) weiterhin CO2 enthält.

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. Januar 2001 (11.01.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/02295 A3

(51) Internationale Patentklassifikation?: 31/08, B01J 20/20

C01B 31/10,

(74) Anwalt: PÖHLAU, Claus; Louis, Pöhlau, Lohrentz &

(21) Internationales Aktenzeichen:

PCT/DE00/02209

(22) Internationales Anmeldedatum:

1. Juli 2000 (01.07.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: DE 199 30 732.6 5. Juli 1999 (05.07.1999)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HELSA-WERKE HELMUT SANDLER GMBH & CO. KG [DE/DE]; Bayreuther Strasse 11, D-95482 Gefrees (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HESCHEL, Wolfgang [DE/DE]; Anton-Günther-Strasse 36, Freiberg (DE). MÜLLER, Dirk [DE/DE]; Doktor-Rudolf-Friedrichs-Strasse 33, 08141 (DE). KEIBEL, Thorsten [DE/DE]; Gottersdorf 14, 95213 Münchberg (DE). KOLINKE, Marlen [DE/DE]; Ziolkowskistrasse 16, 09599 Freiberg (DE).

Segeth, Postfach 30 55, 90014 Nürnberg (DE). (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,

AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,

HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Veröffentlicht:

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts:

29. März 2001

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR THE CONTROLLED PRODUCTION OF SPHERICAL ACTIVATED CARBON

(54) Bezeichnung: VERFAHREN ZUR GESTEUERTEN HERSTELLUNG VON KUGELAKTIVKOHLE

(57) Abstract: The invention relates to a method for producing spherical activated carbon from divinyl-benzene or styrene-divinylbenzene polymer-based polymers in gel or macroporous form, by sulfonating the polymer with sulfuric acid and stirring the reaction material at a sulfonating temperature of 200 to 250 °C, for 20 to 90 minutes. The ratio H2SO4:polymer, calculated as pure substances, is 1.4:1 to 3:1 at the beginning of the sulfonation. The heating rate until the sulfonating temperature is reached is 5 to 20 K/min. The sulfonated polymer is then cooled to a temperature of < 50 °C and pyrolised by heating the product to a temperature of 250 °C with a heating rate of 5 to 15 K/min. The temperature is maintained at 250 °C for 30 minutes. The product is then further heated to 330 °C with a heating rate of 2 to 10 K/min, and subsequently to a temperature of 750 to 900 °C with a heating rate of 50 K/min. The product is maintained at the maximum temperature for 5 to 10 minutes.

(57) Zusammenfassung: Vorgeschlagen wird ein Verfahren zur Herstellung von Kugelaktivkohle aus gelförmigen oder makroporösen Polymeren auf der Basis von Divinylbenzol- oder Styrol-Divinylbenzol-Polymeren durch Sulfonierung des Polymers mit Schwefelsäure unter Agitation des Reaktionsguts bei einer Sulfonierungstemperatur von 200 bis 250 °C für eine Dauer von 20 bis 90 Minuten, wobei das als reine Stoffe berechnete Verhältnis von H2SO4:Polymer zu Beginn der Sulfonierung im Bereich von 1,4:1 bis 3:1 liegt und die Aufheizrate bis zum Erreichen der Sulfonierungstemperatur im Bereich von 5 bis 20 K/Min. liegt und Abkühlen des sulfonierten Polymers auf eine Temperatur von < 50 °C und Pyrolisieren des sulfonierten Polymers durch Aufheizen des Produkts auf eine Temperatur von 250 °C mit einer Aufheizrate von 5 bis 15 K/Min. und 30 Min. Halten bei 250 °C, weiteres Aufheizen bis auf 330 °C mit einer Aufheizrate von 2 bis 10 K/Min. und anschließendem weiteren Aufheizen bis zu einer Temperatur von 750 bis 900 °C mit einer Aufheizrate von 50 K/Min. und Halten auf der maximal erreichten Temperatur für 5 bis 10 Minuten.

Interns al Application No PCT/DE 00/02209

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C01B31/10 C01B31/08 B01J20/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, INSPEC, COMPENDEX, CHEM ABS Data, EPO-Internal

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 99 28234 A (HELSA WERKE HELMUT SANDLER GMBH) 10 June 1999 (1999-06-10) cited in the application the whole document	1-10
A	EP 0 814 056 A (BLUECHER GMBH) 29 December 1997 (1997-12-29) the whole document	1-10
Α	WO 96 21616 A (BLUECHER HASSO VON ;RUITER ERNEST DE (DE)) 18 July 1996 (1996-07-18) cited in the application the whole document	1-10
Α	FR 2 687 941 A (BLUECHER HASSO VON ;RUITER ERNEST DE (DE)) 3 September 1993 (1993-09-03) the whole document	1,9,10

X Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report $21/11/2000$
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Rigondaud, B

Form PCT/ISA/210 (second sheet) (July 1992)

Interr nal Application No PCT/DE 00/02209

 	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category "	Citation of document, with indication, where appropriate, of the relevant passages	Helevalk to Claim No.
A	GB 2 280 898 A (BLUECHER HASSO VON ;RUITER ERNEST DE (DE)) 15 February 1995 (1995-02-15) the whole document	1,9,10
А	EP 0 326 271 A (ROHM & HAAS) 2 August 1989 (1989-08-02) cited in the application the whole document	1,8-10
A	DATABASE WPI Section Ch, Week 199745 Derwent Publications Ltd., London, GB; Class A13, AN 1997-488132 XP002099118 & RU 2 077 479 C (EKOFOR STOCK CO), 20 April 1997 (1997-04-20) abstract	1,9
A	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ARTYUSHENKO, V. V. ET AL: "Activation of a styrene-divinylbenzene copolymer in a fluidized bed" retrieved from STN Database accession no. 110:76950 CA XP002040969 abstract & KHIM. TEKHNOL. (KIEV) (1988), (6), 45-51	1,9
A	FR 2 322 876 A (SUMITOMO CHEMICAL CO) 1 April 1977 (1977-04-01) the whole document	1
A	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MURAKAMI, YOSHIAKI ET AL: "Granular activated carbon" retrieved from STN Database accession no. 89:181873 CA XP002040874 abstract & JP 53 050088 A (SUMITOMO CHEMICAL CO., LTD., JAPAN) 8 May 1978 (1978-05-08)	

INTERNATIONAL SEARCH REPORT

Interr nal Application No PCT/DE 00/02209

C.(Continua	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Retevant to claim No.
A	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; OKIDO, SADAO ET AL: "Carbonization of synthetic resin" retrieved from STN Database accession no. 107:239318 CA XP002040873 abstract & JP 62 197308 A (JAPAN ORGANO CO., LTD., JAPAN; KURARAY CHEMICAL CO., LTD.) 1 September 1987 (1987-09-01)	1,8

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

. ormation on patent family members

Intern 1al Application No PCT/DE 00/02209

- Bat	ont document	—т	Publication		Patent family	Publication
	ent document in search report		date		member(s)	date
WO	9928234	A	10-06-1999	DE	19752593 A	01-07-1999
				AU	1750699 A	16-06-1999
				EP	1036034 A	20-09-2000
EP	0814056	Α	29-12-1997	DE	19625069 A	02-01-1998
		• •		JP	10072208 A	17-03-1998
				US	5977016 A	02-11-1999
	9621616	A	 18-07-1996	DE	19600237 A	18-07-1996
	3021010	• •		EP	0802882 A	29-10-1997
				JP	11501606 T	09-02-1999
 FR	2687941	Α	03-09-1993	CA	2090649 A,C	29-08-1993
• ••	2007541	••		DE	4304026 A	02-09-1993
				GB	2265143 A,B	22-09-1993
				IT	1264353 B	23-09-1996
				JP	2626956 B	02-07-1997
				JP	6092615 A	05-04-1994
				KR	125587 B	11-04-1998
GB	2280898	Α	15-02-1995	CA	2128979 A	13-02-1995
-	220007	•		FR	2708922 A	17-02-1995
				ΙT	MI941575 A,B	13-02-1995
				JP	7165407 A	27-06-1995
EP	0326271	Α	02-08-1989	US	4839331 A	13-06-1989
				AU	2879489 A	03-08-1989
				CA	1332167 A	27-09-1994
				CN	1035119 A,B	30-08-1989
				DE	68901464 D	17-06-1992
			,	JP	1308817 A	13-12-1989
				JP	2907288 B	21-06-1999
				NZ	227721 A	27-08-1991 18-09-1990
				US	4957897 A	18-09-1990
				US US	5104530 A 5094754 A	10-03-1992
	 2077479		20-04-1997	NONE		
FR	2322876	Α	01-04-1977	JP		08-03-1977 17-03-1977
			•	DE	2639852 A	20-09-1978
				GB	1525420 A	08-03-1977
				NL 	7609893 A 	00-03-1977
JP	53050088	Α	08-05-1978	NON	E 	
.1P	62197308	Α	01-09-1987	JP		07-07-1994
				JP	5069768 B	01-10-1993

Form PCT/ISA/210 (patent family annex) (July 1992)

Intern nales Aktenzeichen PCT/DE 00/02209

a. Klassifizierung des anmeldungsgegenstandes IPK 7 C01B31/10 C01B31/08 B01J20/20

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C01B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, PAJ, INSPEC, COMPENDEX, CHEM ABS Data, EPO-Internal

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 99 28234 A (HELSA WERKE HELMUT SANDLER GMBH) 10. Juni 1999 (1999-06-10) in der Anmeldung erwähnt das ganze Dokument	1-10
A	EP 0 814 056 A (BLUECHER GMBH) 29. Dezember 1997 (1997-12-29) das ganze Dokument	1-10
A	WO 96 21616 A (BLUECHER HASSO VON ;RUITER ERNEST DE (DE)) 18. Juli 1996 (1996-07-18) in der Anmeldung erwähnt das ganze Dokument	1-10
A	FR 2 687 941 A (BLUECHER HASSO VON ;RUITER ERNEST DE (DE)) 3. September 1993 (1993-09-03) das ganze Dokument	1,9,10
	-/	

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
\blacksquare	enthenmen

Siehe Anhang Patentfamilie X

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung veröffentlich ing vor beständer Tätigkeit berühend betrachtet kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

14. November 2000

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

21/11/2000

Bevollmächtigter Bediensteter

Rigondaud, B

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Internal ales Aktenzeichen PCT/DE 00/02209

_		PC1/DE 00/02209
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	nenden Teile Betr. Anspruch Nr.
Kategone°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	nenden Teile Beit. Alapiden Ni.
A	GB 2 280 898 A (BLUECHER HASSO VON ;RUITER ERNEST DE (DE)) 15. Februar 1995 (1995-02-15) das ganze Dokument	1,9,10
A	EP 0 326 271 A (ROHM & HAAS) 2. August 1989 (1989-08-02) in der Anmeldung erwähnt das ganze Dokument	1,8-10
Α	DATABASE WPI Section Ch, Week 199745 Derwent Publications Ltd., London, GB; Class Al3, AN 1997-488132 XP002099118 & RU 2 077 479 C (EKOFOR STOCK CO), 20. April 1997 (1997-04-20) Zusammenfassung	1,9
Α	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ARTYUSHENKO, V. V. ET AL: "Activation of a styrene-divinylbenzene copolymer in a fluidized bed" retrieved from STN Database accession no. 110:76950 CA XP002040969 Zusammenfassung & KHIM. TEKHNOL. (KIEV) (1988), (6), 45-51	1,9
A	FR 2 322 876 A (SUMITOMO CHEMICAL CO) 1. April 1977 (1977-04-01) das ganze Dokument	1
A	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MURAKAMI, YOSHIAKI ET AL: "Granular activated carbon" retrieved from STN Database accession no. 89:181873 CA XP002040874 Zusammenfassung & JP 53 050088 A (SUMITOMO CHEMICAL CO., LTD., JAPAN) 8. Mai 1978 (1978-05-08)	

III I ENNA HUNALEM MEUNEMUNENDEMIUN I

Interne sies Aktenzeichen
PCT/DE 00/02209

		00/02209
C.(Fortsetz Kategorie*	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; OKIDO, SADAO ET AL: "Carbonization of synthetic resin" retrieved from STN Database accession no. 107:239318 CA XP002040873 Zusammenfassung & JP 62 197308 A (JAPAN ORGANO CO., LTD., JAPAN;KURARAY CHEMICAL CO., LTD.) 1. September 1987 (1987-09-01)	1,8
	-	

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung. . die zur selben Patentfamilie gehören

Interne Nes Aktenzeichen
PCT/DE 00/02209

	lecherchenbericht irtes Patentdokum		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
ИΩ	9928234	Α	10-06-1999	DE 19752593 A	01-07-1999
N O	JJ20234	. ^	10 00 1333	AU 1750699 A	16-06-1999
				EP 1036034 A	20-09-2000
	0014056	^	29-12-1997	DE 19625069 A	02-01-1998
EF	0814056	Α	29-12-1997	JP 10072208 A	17-03-1998
					02-11-1999
				US 5977016 A	02-11-1999
WO	0621616	^	18-07-1996	DE 19600237 A	18-07-1996
	9621616	Α	16-07-1996	EP 0802882 A	29-10-1997
					09-02-1999
				JP 11501606 T	09-02-1999
FR	2687941	Α	03-09-1993	CA 2090649 A,C	29-08-1993
	200/941	А	03-03-1993	DE 4304026 A	02-09-1993
					22-09-1993
				GB 2265143 A,B	23-09-1996
	•			IT 1264353 B	
				JP 2626956 B	02-07-1997
				JP 6092615 A	05-04-1994
				KR 125587 B	11-04-1998
GB			15 02 1005	CA 2129070 A	13-02-1995
	2280898	Α	15-02-1995	CA 2128979 A	17-02-1995
				FR 2708922 A	
				IT MI941575 A,B	13-02-1995
				JP 7165407 A	27-06-1995
EP	0326271	Α	02-08-1989	US 4839331 A	13-06-1989
	0020271	•	02 00 1000	AU 2879489 A	03-08-1989
				CA 1332167 A	27-09-1994
				CN 1035119 A,B	30-08-1989
				DE 68901464 D	17-06-1992
				JP 1308817 A	13-12-1989
				JP 2907288 B	21-06-1999
					27-08-1991
				NZ 227721 A	18-09-1990
				US 4957897 A	
				US 5104530 A	14-04-1992
				US 5094754 A	10-03-1992
RU	2077479	С	20-04-1997	KEINE	
~~			01-04-1977	JP 52030799 A	08-03-1977
ŀК	2322876	A	01-04-19//	DE 2639852 A	17-03-1977
					20-09-1978
				GB 1525420 A	
				NL 7609893 A	08-03-1977
 JP	53050088	Α	08-05-1978	KEINE	
					07-07-1994
	53050088		08-05-1978 01-09-1987	KEINE JP 1857108 C JP 5069768 B	07-07-1994 01-10-1993

Formblatt PCT/ISA/210 (Anhang Patentlamilie)(Juli 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

9
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKÉWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
·

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.