T. Rogy & A. Boissier

Deep Learning for Computer Vision

August 31, 2021

- 1 Motivation (in English)
- 2 Problems and Implementations
- 3 Results & Figures
- 4 Conclusion and room for improvement

- 1 Motivation (in English)
- 2 Problems and Implementations
- 3 Results & Figures
- 4 Conclusion and room for improvement

The shipping industry and innovations

- 1960s : Shipping has become the main driving force for international commerce
- Example of innovations in the shipping sector: containers (1950s, Malcom McLean), Liquified Natural Gas (LNG) carriers (1959) ...

Figure 1: International freight transport

Blind spot: data analytics and computer vision, still underexploited

Ships have become the center for economic, geopolitical and environmental tensions, which have contributed to increase:

- crimes targetting ships (e.g : international piracy)
- crimes committed by ships (e.g : used oil spills, drug smuggling ...)

Figure 2: Examples of crimes related to shipping traffic

→ Need for a way to quickly monitor and detect ships through satellite imagery (ship surveillance)

Why this challenge?

Huge added value in fast and reliable ship monitoring
Airbus is one of the leading actors in the ship surveillance industry

Figure 3: Wanted image segmentation model

<u>Goal</u>: produce an efficient image segmentation model to create bounding boxes around detected ships

Methodology and Metrics

Figure 4: Final model

T. Rogy & A. Boissier Airbus Ship Detection Challenge

- Motivation (in English)
- 2 Problems and Implementations

- Results & Figures
- 4 Conclusion and room for improvement

Jeu de données

Images:

- images satellites issues de l'océanographie (pleine mer, ports)
- ≈ 200 000 images (70 % unique)
- 2000 images corrompues (e.g lignes bleues ou vertes)

Run-Length Encoding (RLE):

- Encodage pour la compression de données
- Encode le nombre de pixels " actifs " se suivant

- Motivation (in English)
- 2 Problems and Implementations Problématiques
- Results & Figures
- 4 Conclusion and room for improvement

- 1 Jeu de données non équilibré en défaveur de la classe intéressante (bateaux)
- 2 Jeu de données très lourd (> 29 GB) : API de kaggle incontournable ...
- 3 Traitement des données : corruption + bateaux/images identiques (\rightarrow overfit ?)

- 1 Pas créé pour la collaboration en temps réel (\rightarrow colab ?)
- Problémes liés à l'utilisation d'une IDE free (limitation GPU, RAM ...)

RuntimeError: CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 15.90 GiB total capacity 1 GiB already allocated; 129.75 MiB free; 15.01 GiB reserved in total by PyTorch)

Figure 6: Erreur lié à la limitation de RAM de kaggle model.summary()

- Motivation (in English)
- Problems and Implementations Problématiques Building blocks principaux
- 3 Results & Figures
- 4 Conclusion and room for improvement

Data Cleaning

Sélectionner uniquement les images contenant des bateaux

Comment ? RLE

Pourquoi ? "Ne contiennent pas d'informations sur ce qu'est un bateau"

Figure 7: Data Cleaning

Architecture pour la segmentation

Nombreux candidats pour les architectures de semgentation

Historical use case proche du notre - 2015, Freidburg University

Figure 8: Historical use case du U-Net

ightarrow choisir le U-Net le plus simple et améliorer de manière incrémentale

Essais empiriques sur la structure du réseau montrent que :

- 1 La structure initiale répond plutôt bien au problème
- 2 Intéressant de complexifier la structure mais attention car augmenter le nombre de blocs "up" ou "down" peut affecter la performance + le temps d'entrainement
- 3 Finalement: ajout de 3 blocs up et down + modification structure interne des blocs

```
Frainable params: 31,390,721
                                                                     Frainable params: 81,829,857
                                                                     Won-trainable params: 0
Forward/backward pass size (MB): 8905.50
                                                                     Forward/backward pass size (MB): 2027.95
Params size (MB): 119.75
                                                                     Params size (MB): 312.16
```

Figure 9: Comparaison des paramètres du réseau initial (gauche) vs réseau amélioré droite

Choix d'une fonction de loss

$$Dice = \frac{2|X \cap Y|}{|X| + |Y|}$$

$$Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

$$BCEDice(w) = -\frac{1}{N} \sum_{n=1}^{N} [y_n \log \hat{y}_n + (1 - y_n) \log (1 - \hat{y}_n)]$$

Certaines loss génèrent des meilleures formes de bateaux, mais obligent la création de formes plus homogènes, rendant leur séparation plus difficile. Les loss basées sur les BCE aboutit à des formes moins bonnes, mais une meilleure chance de séparation.

- Motivation (in English)
- 2 Problems and Implementations
- 3 Results & Figures
 Building blocks
 Convergence and overfitting issues
- 4 Conclusion and room for improvement

- 1 Motivation (in English)
- 2 Problems and Implementations
- 3 Results & Figures Building blocks Convergence and overfitting issues
- 4 Conclusion and room for improvement

Rendements décroissants :

- croissance du score qui diminue
- score sur le ladder public et privé décroit même après la 6ème époch

Figure 10: Influence du nombre d'épochs sur les résultats finaux

Architecture du réseau

"Convergence" plus tôt d'une époch par rapport à notre modèle \rightarrow performance satisfaisante.

Figure 11: Comparaison de la loss des réseaux : préntrainé *vs.* notre architecture

Quant à la comparaison U-net vs U-net amélioré, la loss décroit elle aussi plus rapidement sur le U-net amélioré sans overfitting

Augmentation d'image

Gain de performance très léger :

- pas d'augmentation de la taille du jeu de données
- modifications (trop) légères pour pouvoir traiter des situations variées ?

Figure 12: Impact de l'augmentation sur le score final

- Motivation (in English)
- 2 Problems and Implementations
- Results & Figures
 Building blocks
 Convergence and overfitting issues
- 4 Conclusion and room for improvement

Comportement des loss:

- Descente rapide de la loss de train sur la premiére epoch
- Stagnation des loss après la 2nde époch

Figure 13: Graphique de la loss sur 7 épochs

Overfitting

Motivation (in English)

Figure 14: Graphique de la loss sur 7 épochs

Submission and Description	Private Score	Public Score
submission-4.csv	0.64755	0.39322
18 minutes and by Theophile Porty		

Figure 15: Après 6 epochs, le score décroit à la fois sur le ladder publique et privé

- Motivation (in English)
- 2 Problems and Implementations
- Results & Figures
- 4 Conclusion and room for improvement

Conclusion

Application pure et simple des méthodes du cours ne fonctionnait pas : il a fallu trouver d'autres architectures pour la ségmentation

Le U-Net a été un candidat idéal : même si son implémentation est plus complexe (blocks ups *vs* down), ses performances sur ce problème sont satisfaisantes :

- 42,4 % sur le leaderboard publique
- > 69,9 % sur le leaderboard privé

Figure 16: Architecture du U-Net

Room for improvement

- Bibliothèques complémentaires pour contrôler nos hyperparamètres
- Réseau pré-entraîné sur jeu de données plus généraliste qu ' ImageNet
- 3 Variation du learning rate
- 4 Architecture différente (eg : Mask R-CNN)

Room for improvement (2)

- Post-traitement des résultats : "rectangularisation" + séparation
- 2 "Stacker" avec un classifieur ships/no ships pour éviter les Faux Positifs ("wave glare")

Figure 17: Wave glare is a common cause of False positives

