

Loja 1

Produtos	Minas Gerais	Outros Estados	África
Roupas	50	65	122
Sapatos	22	32	85
Cama,			
mesa e			
banho	8	12	15
Roupas			
especiais	4	8	7

Loja 2

			100000000000000000000000000000000000000
	Minas	Outros	,
Produtos	Gerais	Estados	África
Roupas	58	25	50
Sapatos	26	16	0
Cama,			
mesa e			
banho	2	2,5	0
Roupas			
especiais	6	7	0

Loja 3

Produtos	Minas Gerais	Outros Estados	África
Roupas	32	12	0
Sapatos	28	14	0
Cama, mesa e banho	4	6	0
Roupas especiais	1,5	2	0

Observação: Valor das vendas mensais em milhões de reais.

Questionamentos

- Como foram organizadas as tabelas?
- As tabelas são formadas por linhas e colunas. O que representa cada linha e cada coluna?
- Analisando o item sapato, qual das lojas teve a maior arrecadação? Qual o volume total de vendas de sapatos da empresa, para Minas Gerais?

Continuação

Agora, supondo-se que as alíquotas de impostos para vendas dentro do Estado, fora do Estado e para exportação, no caso dos produtos desta loja, sejam respectivamente 18%, 12% e 0%, e que queiramos saber qual o volume total de impostos a ser pago, em relação às vendas de cada setor da empresa? Qual é o valor total de impostos pagos por esta empresa?

Definição:

Matrizes:

Conjunto de números organizados na forma de linhas e colunas.

Tipos de Matrizes

► <u>Matriz Quadrada:</u>

 $\acute{\text{E}}$ a matriz que apresenta o mesmo número de linhas e colunas.

$$X = \begin{pmatrix} 1 & 9 & 0 \\ 7 & 3 & 2 \\ 4 & 5 & 3 \end{pmatrix}$$

► <u>Matriz Diagonal:</u>

 $\acute{\text{E}}$ uma matriz quadrada cujo os elementos que não se encontram na diagonal principal são nulos

$$B_{3x3} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

Matriz Identidade:

Matriz quadrada onde os elementos que pertencem à diagonal principal são sempre iguais a 1 e os outros elementos são iguais a zero.

$$\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz Triangular Superior/Inferior:

Uma matriz de ondem n (quadrada) é triangular quando todos os elementos acima ou abaixo da diagonal principal são nulos.

$$\mathbf{B} = \begin{bmatrix} -7 & \sqrt{5} & 9 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{C} = \begin{bmatrix} 4 & 0 \\ 3 & -9 \end{bmatrix}$$

$$C = \begin{bmatrix} 4 & 0 \\ 3 & -2 \end{bmatrix}$$

Matriz Nula:

É uma matriz de qualquer ordem, sendo que todos os seus elementos são iguais a zero.

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Operações com Matrizes

Adição:

Dada duas matrizes, A e B, as duas de ordem m x n. Então, A + B = C, com C de ordem m x n \leftrightarrow A + B = C \leftrightarrow a_{ij} + b_{ij} = c_{ij}

Exemplo:

Subtração:

Dada duas matrizes, A e B, as duas de ordem m x n. Então A - B = C de ordem m x n \leftrightarrow A - B = C \leftrightarrow a_{ij} - b_{ij} = c_{ij}

Propriedades da adição de Matrizes

Considerando as matrizes A, B e C, são válidas as seguintes propriedades:

- ▶ (i) Comutativa : A + B = B + A
- ▶ (ii) Associativa : A + (B + C) = (A + B) + C
- (iii) Elemento Neutro : A + 0 = 0 + A = A
- (iv) Para cada matriz A, m x n, existe uma única matriz D, m x n tal que A + D = 0.
 Denotaremos D por A, e esta matriz recebe o nome de inversa aditiva ou negativa de A.

Multiplicação

Sendo A uma matriz do tipo m x n e B uma matriz do tipo n x p, define-se produto da matriz A pela matriz B a matriz C, do tipo m x p, tal que cada elemento de C (cij) satisfaz:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + (...) + a_{in}b_{nj}$$

Em outras palavras, cada elemento de C é calculado multiplicando-se ordenadamente os elementos da linha i da matriz A pelos elementos correspondentes da coluna j da matriz B e , a seguir, somando-se os produtos obtidos. Veja abaixo:

$$A.B = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$

$$A.B = \begin{bmatrix} 2.3 + 3.2 & 2.1 + 3.4 \\ 1.3 + 0.2 & 1.1 + 0.4 \\ 4.3 + 5.2 & 4.1 + 5.4 \end{bmatrix}$$

$$A.B = \begin{bmatrix} 12 & 14 \\ 3 & 1 \\ 22 & 24 \end{bmatrix}$$

$$A_{3 \times 2} \cdot B_{2 \times 2} = AB_{3 \times 2}$$

Propriedades da Multiplicação

Considerando as matrizes A, B e C, são válidas as seguintes propriedades:

- ▶ (i) Associativa : A . (B . C) = (A . B) . C
- ▶ (ii) Distributiva (à esquerda \ à direita): A. (B+C) = A.B+A.C

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

Potenciação de Matrizes

Dada uma matriz quadrada A e um número $k \in Z$ (conjunto dos números inteiros e positivos), definimos a k-ésima potência da matriz A como:

$$\mathbf{A}^k = \underbrace{\mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{\text{k vezes}}$$

<u>Definição</u>:

Sendo A uma matriz quadrada de ordem m, define-se:

 $A^0 = I \text{ m}$, sendo $A \neq 0$;

Propriedades da Potenciação

Sejam A e B matrizes quadradas e α e β inteiros não negativos, então:

- (i) $A^{\alpha}A^{\beta} = A^{\alpha+\beta}$
- (ii) (A $^{\alpha}$) $^{\beta}$ = A $^{\alpha\beta}$
- (iii) Se A e B comutam, ou seja, se AB = BA, então (AB) $^{\alpha}$ = A $^{\alpha}$ B $^{\alpha}$

Propriedades da multiplicação por um escalar

Sejam A e B matrizes de mesmo tamanho e r e s escalares:

- (i) r (sA) = (rs)A.
- ▶ (ii) (r+s) A = rA+sA.
- \blacktriangleright (iii) r (A + B) = rA + rB.
- ► (iv) A (r B) = r (AB) = (r A) B.

Matriz Transposta

Dada uma matriz A de ordem m x n, a matriz transposta dela será representada por A^t de ordem "invertida" n x m.

Essa ordem invertida significa que para transformarmos uma matriz em matriz transposta, basta trocar os elementos das linhas pelo das colunas e viceversa.

Exemplo:

Se A =
$$\begin{bmatrix} 2 & 3 & 0 \\ -1 & -2 & 1 \end{bmatrix}$$
, então A^t = $\begin{bmatrix} 2 & -1 \\ 3 & -2 \\ 0 & 1 \end{bmatrix}$

Propriedades da Transposição

- \blacktriangleright Considerando as matrizes A, B e a constante $\mbox{ K} \in \mbox{ IR},$ as seguintes propriedades são válidas:
- (i) (A^t) ^t = A
- ightharpoonup (ii) (A+B)^t = A^t + B^t
- $(iii) (k A)^t = k A^t$
- (iv) $(A , B)^t = B^t , A^t$