Announcements

- EXAMs will be returned??
- Homework for tomorrow...

Ch. 29: CQ 1, Probs. 2, 4, & 35

□ Office hours...

MW 10-11 am TR 9-10 am F 12-1 pm

■ Tutorial Learning Center (TLC) hours:

MTWR 8-6 pm F 8-11 am, 2-5 pm Su 1-5 pm

Chapter 29

Potential & Field

(Connecting Potential and Field & Sources of Electric Potential)

29.1: Connecting Potential & Field

29.1: Connecting Potential & Field

29.1: Connecting Potential & Field

- □ *Electric potential* and *electric field* are NOT two distinct entities!
 - But rather two different representations of how source charges alter space around them.

29.1:

Connecting Potential & Field

- □ *Electric potential* and *electric field* are NOT two distinct entities!
 - But rather two different representations of how source charges alter space around them.

$$\Delta V = -\int_{i}^{f} \vec{E} \cdot d\vec{s}$$

- □ Graphically:
 - $\Delta V = negative$ of the area under the E vs. s curve between $s_i \& s_f$

Ex. 29.1: Finding the Potential

The figure below is a graph of E_x , the x-component of the electric field, versus position along the x-axis.

Find and graph V(x). Choose V = oV at x = om.

Ex. 29.1: Finding the Potential

The figure below is a graph of E_x , the x-component of the electric field, versus position along the x-axis.

Find and graph V(x). Choose V = oV at x = om.

Quiz Question 1

This is a graph of the *x*-component of the electric field along the *x*-axis. Choose the potential to be zero at the origin.

What is the potential at x = 1m?

- 1. 2000V
- 2. 1000V
- 3. oV
- 4. -1000V
- 5. -2000V

Connecting *V* & *E* for a point charge...

i.e. Use the E-field of a point charge to find its electric potential..

Ex. 29.2: The potential of a parallel-plate capacitor

Find the electric potential inside the capacitor. Let V=oV at the negative plate.

29.2:

Sources of Electric Potential

A separation of charge creates an electric potential difference!

Ways to separate charge:

- 1. Rub feet on carpet
- 2. Van de Graaff generator
- 3. Batteries

Batteries and emf

- Batteries use chemical reactions to "lift" positive charges to the positive terminal.
 - Battery provides the energy to do the work required.
 - □ The emf of the battery is the *work done per charge*.

$$\Delta V_{bat} = \frac{W_{chem}}{q} = \mathcal{E}$$

(ideal battery)

 \square where ΔV_{bat} is the terminal voltage.

gains energy $\Delta U = q \Delta V_{\text{bat}}$.

negative side to the positive side. Charge q