<u>רגרסיה ומודלים סטטיסטיים- תרגיל 0- רשות</u>

מרחבים ותתי מרחבים:

4.13. Show that the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$, $u_3 = (1, 5, 8)$ span \mathbb{R}^3 .

We need to show that an arbitrary vector v = (a, b, c) in \mathbb{R}^3 is a linear combination of u_1 , u_2 , u_3 . Set $v = xu_1 + yu_2 + zu_3$; that is, set

$$(a,b,c) = x(1,1,1) + y(1,2,3) + z(1,5,8) = (x+y+z, x+2y+5z, x+3y+8z)$$

Form the equivalent system and reduce it to echelon form:

$$x + y + z = a$$
 $x + y + z = a$ $x + y + z = a$ $x + 2y + 5z = b$ or $y + 4z = b - a$ or $y + 4z = b - a$ $z + 3y + 8z = c$ $2y + 7c = c - a$ $-z = c - 2b + a$

The above system is in echelon form and is consistent; in fact,

$$x = -a + 5b - 3c$$
, $y = 3a - 7b + 4c$, $z = a + 2b - c$

is a solution. Thus, u_1 , u_2 , u_3 span \mathbb{R}^3 .

4.12. Prove Theorem 4.3: The intersection of any number of subspaces of V is a subspace of V.

Let $\{W_i: i \in I\}$ be a collection of subspaces of V and let $W = \cap (W_i: i \in I)$. Because each W_i is a subspace of V, we have $0 \in W_i$, for every $i \in I$. Hence, $0 \in W$. Suppose $u, v \in W$. Then $u, v \in W_i$, for every $i \in I$. Because each W_i is a subspace, $au + bv \in W_i$, for every $i \in I$. Hence, $au + bv \in W$. Thus, W is a subspace of V.

המרחב המשלים האורתוגונלי:

7.11. Let W be the subspace of \mathbb{R}^5 spanned by u=(1,2,3,-1,2) and v=(2,4,7,2,-1). Find a basis of the orthogonal complement W^{\perp} of W.

We seek all vectors w = (x, y, z, s, t) such that

$$\langle w, u \rangle = x + 2y + 3z - s + 2t = 0$$

 $\langle w, v \rangle = 2x + 4y + 7z + 2s - t = 0$

Eliminating x from the second equation, we find the equivalent system

$$x + 2y + 3z - s + 2t = 0$$

$$z + 4s - 5t = 0$$

The free variables are y, s, and t. Therefore,

- (1) Set y = -1, s = 0, t = 0 to obtain the solution $w_1 = (2, -1, 0, 0, 0)$.
- (2) Set y = 0, s = 1, t = 0 to find the solution $w_2 = (13, 0, -4, 1, 0)$.
- (3) Set y = 0, s = 0, t = 1 to obtain the solution $w_3 = (-17, 0, 5, 0, 1)$.

The set $\{w_1, w_2, w_3\}$ is a basis of W^{\perp} .

PROBLEM 4. Let U and W be subspaces of a finite dimensional inner product space V. Show that

(1)
$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$

Suppose $x \in (U+W)^{\perp}$, i.e., x is orthogonal to any vector in U+V. Since $u \in U$ also belongs to U+V, x must be orthogonal to any $u \in U$. Similarly, it must be orthogonal to any $v \in V$. Hence $x \in U^{\perp}$ and $x \in V^{\perp}$, or, equivalently, $x \in U^{\perp} \cap V^{\perp}$.

Conversely, suppose $x \in U^{\perp} \cap V^{\perp}$. Then x is orthogonal to any $u \in U$ and any $v \in V$. But then x is orthogonal to u + v, that is,

$$\langle x, u + v \rangle = \langle x, u \rangle + \langle x, v \rangle = 0 + 0 = 0.$$

Thus $x \in (U+W)^{\perp}$.

(2)
$$(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$$

Denote $A:=(U\cap W)^{\perp}$ and $B=U^{\perp}+W^{\perp}$. Then by the previous question

$$B^{\perp} = (U^{\perp} + W^{\perp})^{\perp} = U \cap W = A^{\perp}$$

and hence B = A.

5.10. Suppose $F: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by F(x, y, z) = (x + y + z, 2x - 3y + 4z). Show that F is linear.

We argue via matrices. Writing vectors as columns, the mapping F may be written in the form F(v) = Av, where $v = [x, y, z]^T$ and

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

Then, using properties of matrices, we have

$$F(v + w) = A(v + w) = Av + Aw = F(v) + F(w)$$

and

$$F(kv) = A(kv) = k(Av) = kF(v)$$

Thus, F is linear.

- **5.11.** Show that the following mappings are not linear:
 - (a) $F: \mathbf{R}^2 \to \mathbf{R}^2$ defined by F(x, y) = (xy, x)
 - (b) $F: \mathbf{R}^2 \to \mathbf{R}^3$ defined by F(x, y) = (x + 3, 2y, x + y)
 - (c) $F: \mathbf{R}^3 \to \mathbf{R}^2$ defined by F(x, y, z) = (|x|, y + z)
 - (a) Let v = (1,2) and w = (3,4); then v + w = (4,6). Also,

$$F(v) = (1(2), 1) = (2, 1)$$
 and $F(w) = (3(4), 3) = (12, 3)$

Hence.

$$F(v+w) = (4(6), 4) = (24, 6) \neq F(v) + F(w)$$

- (b) Because $F(0,0) = (3,0,0) \neq (0,0,0)$, F cannot be linear.
- (c) Let v = (1, 2, 3) and k = -3. Then kv = (-3, -6, -9). We have

$$F(v) = (1,5)$$
 and $kF(v) = -3(1,5) = (-3,-15)$.

Thus,

$$F(kv) = F(-3, -6, -9) = (3, -15) \neq kF(v)$$

Accordingly, F is not linear.

5.18. Consider the matrix mapping $A : \mathbb{R}^4 \to \mathbb{R}^3$, where $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$. Find a basis and the

dimension of (a) the image of A, (b) the kernel of A.

(a) The column space of A is equal to Im A. Now reduce A^T to echelon form:

$$A^{T} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 3 & 8 \\ 3 & 5 & 13 \\ 1 & -2 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & -3 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, $\{(1,1,3),(0,1,2)\}$ is a basis of Im A, and dim(Im A) = 2.

(b) Here Ker A is the solution space of the homogeneous system AX = 0, where $X = \{x, y, z, t\}^T$. Thus, reduce the matrix A of coefficients to echelon form:

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 2 & 4 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{array}{c} x + 2y + 3z + t = 0 \\ y + 2z - 3t = 0 \end{array}$$

The free variables are z and t. Thus, $\dim(\operatorname{Ker} A) = 2$.

- (i) Set z = 1, t = 0 to get the solution (1, -2, 1, 0).
- (ii) Set z = 0, t = 1 to get the solution (-7, 3, 0, 1).

Thus, (1, -2, 1, 0) and (-7, 3, 0, 1) form a basis for Ker A.

- (a) Im F is a subspace of U, (b) Ker F is a subspace of V.
- (a) Because F(0) = 0, we have $0 \in \text{Im } F$. Now suppose $u, u' \in \text{Im } F$ and $a, b \in K$. Because u and u' belong to the image of F, there exist vectors $v, v' \in V$ such that F(v) = u and F(v') = u'. Then

$$F(av + bv') = aF(v) + bF(v') = au + bu' \in \operatorname{Im} F$$

Thus, the image of F is a subspace of U.

(b) Because F(0) = 0, we have $0 \in \text{Ker } F$. Now suppose $v, w \in \text{Ker } F$ and $a, b \in K$. Because v and w belong to the kernel of F, F(v) = 0 and F(w) = 0. Thus,

$$F(av + bw) = aF(v) + bF(w) = a0 + b0 = 0 + 0 = 0$$
, and so $av + bw \in \text{Ker } F$

Thus, the kernel of F is a subspace of V.

וקטור קואורדינאטות:

- **4.62.** Find the coordinate vector of v = (a, b, c) in \mathbb{R}^3 relative to
 - (a) the usual basis $E = \{(1,0,0), (0,1,0), (0,0,1)\},\$
 - (b) the basis $S = \{u_1, u_2, u_3\} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}.$
 - (a) Relative to the usual basis E, the coordinates of $[v]_E$ are the same as v. That is, $[v]_E = [a, b, c]$.
 - (b) Set v as a linear combination of u_1 , u_2 , u_3 using unknown scalars x, y, z. This yields

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{or} \quad \begin{array}{c} x + y + z = a \\ x + y = b \\ x = c \end{array}$$

Solving the system yields x = c, y = b - c, z = a - b. Thus, $[v]_S = [c, b - c, a - b]$.

מטריצה מייצגת העתקה:

6.2. Consider the following linear operator G on \mathbb{R}^2 and basis S:

$$G(x,y) = (2x - 7y, 4x + 3y)$$
 and $S = \{u_1, u_2\} = \{(1,3), (2,5)\}$

- (a) Find the matrix representation $[G]_S$ of G relative to S.
- (b) Verify $[G]_S[v]_S = [G(v)]_S$ for the vector v = (4, -3) in \mathbb{R}^2 .

First find the coordinates of an arbitrary vector v = (a, b) in \mathbf{R}^2 relative to the basis S. We have

$$\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad \text{and so} \quad \begin{aligned} x + 2y &= a \\ 3x + 5y &= b \end{aligned}$$

Solve for x and y in terms of a and b to get x = -5a + 2b, y = 3a - b. Thus,

$$(a,b) = (-5a+2b)u_1 + (3a-b)u_2$$
, and so $[v] = [-5a+2b, 3a-b]^T$

(a) Using the formula for (a, b) and G(x, y) = (2x - 7y, 4x + 3y), we have

$$\begin{array}{ll} G(u_1) = G(1,3) = (-19,13) = 121u_1 - 70u_2 \\ G(u_2) = G(2,5) = (-31,23) = 201u_1 - 116u_2 \end{array} \quad \text{and so} \quad \begin{bmatrix} G]_S = \begin{bmatrix} 121 & 201 \\ -70 & -116 \end{bmatrix}$$

(We emphasize that the coefficients of u_1 and u_2 are written as columns, not rows, in the matrix representation.)

(b) Use the formula $(a, b) = (-5a + 2b)u_1 + (3a - b)u_2$ to get

$$v = (4, -3) = -26u_1 + 15u_2$$

$$G(v) = G(4, -3) = (20, 7) = -131u_1 + 80u_2$$

Then $[v]_s = [-26, 15]^T$ and $[G(v)]_s = [-131, 80]^T$

Accordingly,

$$[G]_S[v]_S = \begin{bmatrix} 121 & 201 \\ -70 & -116 \end{bmatrix} \begin{bmatrix} -26 \\ 15 \end{bmatrix} = \begin{bmatrix} -131 \\ 80 \end{bmatrix} = [G(v)]_S$$

1. Let

$$\mathbf{A} = \left[\begin{array}{cc} 6.8 & 2.4 \\ 2.4 & 8.2 \end{array} \right]$$

Compute the spectral decomposition of A.

Solution:

First we will calculate the eigenvalues by solving the equation

$$|\mathbf{A} - \lambda I| = 0$$

$$\begin{vmatrix} 6.8 - \lambda & 2.4 \\ 2.4 & 8.2 - \lambda \end{vmatrix} = (6.8 - \lambda)(8.2 - \lambda) - 5.76 = 0$$
$$\Rightarrow \lambda^2 - 15\lambda + 50 = (\lambda - 5)(\lambda - 10) = 0$$
$$\Rightarrow \lambda_1 = 5, \lambda_2 = 10.$$

In order to find the corresponding eigenvectors we will solve the equation $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$ For $\lambda = 5$ we have

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1.8 & 2.4 \\ 2.4 & 3.2 \end{pmatrix}$$

The equation $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$ leads to the equation $3x_1 + 4x_2 = 0$, which is solved by

$$v_1 = \begin{pmatrix} 1 \\ -0.75 \end{pmatrix}$$

For $\lambda = 10$ we have

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} -3.2 & 2.4 \\ 2.4 & -1.8 \end{pmatrix}$$

The equation $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$ leads to the equation $4x_1 - 3x_2 = 0$, which is solved by

$$v_2 = \begin{pmatrix} 0.75 \\ 1 \end{pmatrix},$$

By normalizing to length 1 the vectors v_1, v_2 , we get

$$e_1 = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}, e_2 = \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}.$$

The spectral decomposition of ${\bf A}$ is thus

$$\mathbf{A} = U \Lambda U^T$$

where

$$U = \begin{pmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{pmatrix}$$

and

$$\Lambda = \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix}$$