复变函数基础知识(中)

留数定理

Def. 亚纯函数 f 在 z_0 处的留数即 f 在 z_0 处 Laurant 展开的 z^{-1} 项系数.

Example. 对 n 阶简单奇点 z_0 , 留数为 $\dfrac{1}{(n-1)!}\lim_{z\to z_0}\dfrac{\mathrm{d}^{n-1}}{\mathrm{d}z^{n-1}}[(z-z_0)^nf(z)].$

Example. 若奇点 z_0 处 $\lim_{z\to z_0}(z-z_0)f(z)$ 存在,则 z_0 为一阶奇点,极限为留数.

Thm. (留数定理) 若 U 为开区域, $\gamma \subset U$ 为分段可微曲线. 取 z_0 为 γ 围成区域内部的一点,则任意 $f \in \operatorname{Mer}(U) \cap \operatorname{Hol}(U \setminus \{z_0\})$ 在 z_0 处留数为

$$I(\gamma,z_0)^{-1}\cdotrac{1}{2\pi i}\oint_{\gamma}f(z)\mathrm{d}z$$

Def. \mathbb{H} 为上半平面 $\{z \in \mathbb{C} \mid \operatorname{Im}(z) \geq 0\}$.

Example. $f \in \operatorname{Hol}(\mathbb{H})$, 且 $\lim_{z \to \infty} z f(z) = 0$, 则 f 在 \mathbb{H} 上的留数和等于

$$rac{1}{2\pi i}\int_{\mathbb{R}}f(x)\mathrm{d}x.$$

Proof. 由于 $\lim_{z\to\infty}zf(z)=0$,故 f(1/z)/z 在 $z\to0$ 时有可去奇点,从而存在 $R_0>0$ 使得 f(z) 在 $|z|>R_0$ 时无奇点. 取下图所示的围道

显然 $\oint_{\gamma} f(z) dz$ 在 $R > R_0$ 时不变, 而 $R \to \infty$ 时有

$$\int_{\gamma_R} f = \int_0^\pi f(Re^{i heta}) Rie^{i heta} \mathrm{d} heta o 0.$$

从而 f 在 Π 上的留数和等于 $\int_{\mathbb{R}} f$.

Example. $n \in \mathbb{Z}_{\geq 1}$ 时,

$$\int_{\mathbb{R}} rac{\mathrm{d}x}{x^{2n}+1} = 2\pi i \sum_{k=1}^n \prod_{1 \leq m \leq 2n, m
eq k} rac{1}{e^{2\pi k/n} - e^{2\pi m/n}}.$$

Theorem. (Jordan) f 在 \mathbb{H} 连续. 若 $\lim_{z\to\infty} f(z) = 0$ 时, 则

$$\lim_{R o\infty}\int_{\gamma_R}e^{ilpha z}f(z)\mathrm{d}z=0,\quadorall lpha>0.$$

其中 γ_R 取法同上例.

Proof. 此处要求 f 连续即可, 从而是简单的数学分析内容.

Col. $f\in \mathrm{Mer}(\mathbb{H})$, $\lim_{z o\infty}f(z)=0$, 则对任意 lpha>0, f 在 \mathbb{H} 上留数和为

$$\frac{1}{2\pi i} \int_{\mathbb{R}} e^{i\alpha x} f(x) \mathrm{d}x.$$

Example. 对任意 $\alpha > 0$,

$$\int_{\mathbb{R}} rac{\cos lpha x}{1+x^2} \mathrm{d}x = \mathrm{Re}igg[2\pi i \cdot rac{e^{ilpha \cdot z_0}}{z_0+i} igg]_{z_0=i} = \pi \cdot e^{-lpha}.$$

Lemma. 在简单奇点的小邻域内, 绕奇点 θ 度的积分值近似为留数的 $i\theta$ 倍.

Example.
$$\int_0^\infty \frac{\ln x}{(1+x^2)^2} \mathrm{d}x = -\frac{\pi}{4}.$$

Proof. 取如下围道, $\rho \ll 1$, $R \gg 1$.

- $\int_{\gamma_{
 ho}}^{r}
 ightarrow 0$,因为 $\lim_{r
 ightarrow 0} r \ln r = 0$.
 $\int_{
 ho}^{R} f(z) \mathrm{d}z =: I_1$.

$$\bullet \quad \textstyle \int_{-R}^{\rho} f(z) \mathrm{d}z =: I_2.$$

若区域包含原点,则 \ln 无法全局定义. 此处可以在上半平面的内部定义 $\ln(-1) = \pi i$. 从而

$$I_1 + I_2 = 2 \int_0^\infty rac{\ln x}{(1+x^2)^2} \mathrm{d}x - i\pi \int_0^\infty rac{1}{(1+x^2)^2} \mathrm{d}x.$$

而f在闭路内的留数为二重奇点i处的留数,计算得

$$\lim_{z o i}rac{\mathrm{d}}{\mathrm{d}z}[(z-i)^2f(z)]=rac{\pi}{8}+rac{i}{4}.$$

因此, $I_1=rac{1}{2}\mathrm{Re}[2\pi i\cdot(\pi/8+i/4)]=-\pi/4.$

Example.
$$\int_0^\infty \sin(x^2) \mathrm{d}x = \int_0^\infty \cos(x^2) \mathrm{d}x = \sqrt{\pi/8}.$$

Gauss 积分:
$$\int_{\mathbb{R}} e^{-x^2} = \sqrt{\pi}$$
.

Proof. 取 $f(z) = e^{iz^2} \in \operatorname{Hol}(\mathbb{C})$. 取围道

从而 γ_1 上的积分值等于 γ_R 与 γ_2 上积分值之和的相反数.

$$\int_{\gamma_2}f=-\int_0^\infty e^{-t^2+\pi i/4}\mathrm{d}t=-\left[(\sqrt{\pi/8}+i\sqrt{\pi/8})
ight].$$

而 γ_R 上积分值趋于 0. 综上,

$$egin{aligned} &\int_0^\infty \sin(x^2) \mathrm{d}x = -\mathrm{Im} \int_{\gamma_2} f \ &= \int_0^\infty \cos(x^2) \mathrm{d}x = -\mathrm{Re} \int_{\gamma_2}^\infty f = \sqrt{\pi/8}. \end{aligned}$$

Example.
$$\int_0^\infty rac{x^{p-1}}{(1+x)^m} \mathrm{d}x = rac{\pi}{\sin p\pi} \cdot \prod_{j=1}^{m-1} (1-p/j), m \in \mathbb{Z}_{\geq 1}, p \in (0,m) \setminus \mathbb{Z}.$$

Proof. 取 $f(z) = \frac{e^{(p-1)\log z}}{(1+z)^m}$. 由于 $e^{(p-1)\log z}$ 在 $p \notin \mathbb{Z}$ 时为多值函数,下考虑单值化区域.

- 外圈 γ_R 与内圈 γ_ρ 之积分值趋于 0.
- 留数为 $\frac{1}{(m-1)!} \prod_{j=1}^{m-1} (p-j)$.
- γ_+ 与 γ_- 足够靠近实轴时, $-e^{2p\pi i}\int_{\gamma_+}f=\int_{\gamma_-}f.$

从而

$$\int_0^\infty rac{x^{p-1}}{(1+x)^m} \mathrm{d}x = rac{2\pi i}{1-e^{2p\pi i}} \cdot rac{1}{(m-1)!} \prod_{j=1}^{m-1} (p-j).$$

Example.
$$\int_{\mathbb{R}} \frac{x}{\sinh x} \mathrm{d}x = \frac{\pi^2}{2}$$
.

Proof. 所有简单奇点为 $i\pi\mathbb{Z}\setminus\{0\}$, 阶数均为 1. 点 $i\pi n$ 处的留数为 $i\pi n$. 取围道如下

- $R \to \infty$ 时, γ_{\pm} 积分为 0.
- γ_{ρ} 处积分为 $i\theta$ 倍留数, 即 $-\pi^2$.

根据留数定理,同时令 $R \to \infty$, $\rho \to 0$, 得

$$\int_{\mathbb{R}} rac{x}{\sinh x} \mathrm{d}x - \pi^2 - \int_{\mathbb{R}} rac{x + i\pi}{\sinh(x + i\pi)} \mathrm{d}x = 0.$$

注意到 $\sinh(x+i\pi)=-\sinh(x)$, 取实部即得证.

Example.

$$\int_{[0,2\pi]} \frac{\mathrm{d}\theta}{3 + \cos\theta + 2\sin\theta} = \oint_{S^1} \frac{\frac{1}{iz} \mathrm{d}z}{3 + \frac{z + z^{-1}}{2} + \frac{z - z^{-1}}{2}}$$

$$= \frac{10}{i + 2} \oint_{S^1} \frac{\mathrm{d}z}{(5z + 1 + 2i)(z + 1 + 2i)}$$

$$= 2\pi i \cdot \frac{10}{i + 2} \cdot \frac{1}{\frac{-(1+2i)}{5} + 1 + 2i}$$

$$= \pi.$$

最后一步是因为 S^1 围成区域内的奇点仅有-(1+2i)/5.

Example.
$$\int_{-1}^1 rac{\mathrm{d}x}{(1+x)^{2/3}(1-x)^{1/3}} = rac{2\pi}{\sqrt{3}}.$$

Proof. 取单值化区域上的围道如下:

- $\lim_{z o\infty}zf(z)=e^{i\pi/3}$. 从而 $\oint_{\gamma_R}f o 2\pi ie^{i\pi/3}$.
- $\gamma_{
 ho_i}$ 处积分趋向 0.
 $\int_{\gamma_-} f = e^{2\pi i/3} \int_{\gamma_+} f$ (顺时针旋转 $2\pi/3$).

从而根据留数定理,原式等于

$$\int_{\gamma_+} f = rac{-2\pi i e^{i\pi/3}}{1+e^{2\pi i/3}} = rac{2\pi}{\sqrt{3}}.$$

Weierstrass 展开

Def. 称 f 为整函数, 若且仅若 $f \in \text{Hol}(\mathbb{C})$.

Def. 对 $p \in \mathbb{Z}_{\geq 1}$, 定义基本分解因子

$$E_p(z) = (1-z) \exp(z + z^2/2 + \cdots + z^p/p).$$

不妨记 $E_0(z) = 1 - z$.

Prop. $\exists c > 0, \forall p \in \mathbb{N}, \forall z \in B(0, 1/2),$ 则 $|1 - E_p(z)| \leq c|z|^{p+1}$.

Proof. 由 Taylor 展开知 $E_p(z) = \exp(-\sum_{n \geq p+1} z^n/n)$. 结论显然.

Thm. (Weierstrass) f 为整函数, f 在 \mathbb{C}^* 中的零点集 (将 k 重零点视作 k 个单零点) 为 $\{a_1, a_2, \cdots\}$. 0 处重数为 m, 则存在整函数 h 使得

$$f(z)=z^m\cdot e^{h(z)}\cdot\prod_{n\geq 1}E_{n-1}(z/a_n).$$

Proof. 考虑 $f \neq 0$, 则对任意 $z \in \mathbb{C}$, $S_z := \{n \mid z/a_n > 1/2\}$ 包含有限个点. 从而

$$\sum_{n \in S_c^c} |1 - E_{n-1}(z/a_n)| \leq c \sum_{n \in S_c^c} |z/a_n|^n \leq c \cdot \sum_{n \geq 1} rac{1}{2^n} = c.$$

因此 $P(z):=\prod_{n\geq 1}E_{n-1}(z/a_n)$ 在 $\mathbb C$ 上绝对收敛. 记 $\varphi(z):=\dfrac{f(z)}{P(z)z^m}$. 显然 $\varphi(z)$ 与 $1/\varphi(z)$ 在 $\mathbb C$ 上均全纯,从而

$$h(z)-C=\int_0^z arphi'(z)/arphi(z)\mathrm{d}z\in \mathrm{Hol}(\mathbb{R}).$$

可检验, $\varphi(z) \cdot e^{-h(z)}$ 的导数恒为 0. 其中 $C \in \text{Ln}(\varphi(0))$.

Col. 若序列 $\{a_n\}_{n\in\mathbb{Z}_{\geq 1}}\subset\mathbb{C}^*$ 不含聚点, $\{k_n\}\subset\mathbb{Z}$ 使得 $\sum_{n\geq 1}(r/|a_n|)^{k_n}$ 对一切 r>0 绝对收敛, 则存在整函数

$$z^m\cdot e^{h(z)}\prod_{n\geq 1}E_{k_n-1}(z/a_n).$$

Example. 取定 $k_n=2$, 可得 $\sin z=z\prod_{n>1}(1-z^2/n^2\pi^2)$.

Example. $\pi\cot(\pi z) = \sum_{n\in\mathbb{Z}} (z+n)^{-1}$.

Thm. (Mittag-Leffler) 记 $\{a_n\}_{n\geq 1}$ 为 $\mathbb C$ 上不含聚点的序列, 任取有理函数列

$$arphi_n:=\sum_{j=1}^{k_n}rac{c_{n,j}}{(z-a_n)^j},\quad c_{n,j}\in\mathbb{C}.$$

则存在亚纯函数 f 使得其简单奇点均在 $\{a_n\}$ 中,且在 a_n 处主部为 φ_n .

Proof.

由于 φ_n 在 $B(0, |a_n|/2)$ 上全纯, 存在 $s_n \in \mathbb{Z}_{\geq 0}$ 使得

$$\left|arphi_n - \sum_{k=0}^{s_n} rac{rac{\mathrm{d}arphi_n^k}{\mathrm{d}z^k}ig|_{z=0}}{k!} z^k
ight| < rac{1}{2^n}.$$

由于 $\lim_{n\to\infty}a_n=\infty$,从而可如上构造一列亚纯函数 f_n 使得其在任意包含原点的紧集上一致收敛.