Learning Objectives

- After this segment, students will be able to
 - List limitations of traditional statistics for spatial data
 - Describe simple concepts in spatial statistics
 - Spatial auto-correlation
 - Spatial heterogeneity
 - Describe first law of Geography

Limitations of Traditional Statistics

- Classical Statistics
 - Data samples: independent and identically distributed (i.i.d.)
 - Simplifies mathematics underlying statistical methods, e.g., Linear Regression
- Spatial data samples are not independent
 - Spatial Autocorrelation metrics
 - distance-based (e.g., K-function), neighbor-based (e.g., Moran's I)
 - Spatial Cross-Correlation metrics
- Spatial Heterogeneity
 - Spatial data samples may not be identically distributed!
 - No two places on Earth are exactly alike!
- •

Spatial Statistics: An Overview

Point process

- Discrete points, e.g., locations of trees, accidents, crimes, ...
- Complete spatial randomness (CSR): Poisson process in space
- K-function: test of CSR

Geostatistics

- Continuous phenomena, e.g., rainfall, snow depth, ...
- Methods: Variogram measure how similarity decreases with distance
- Spatial interpolation, e.g., Kriging

Lattice-based statistics

- Polygonal aggregate data, e.g., census, disease rates, pixels in a raster
- Spatial Gaussian models, Markov Random Fields, Spatial Autoregressive Model

Spatial Autocorrelation (SA)

- First Law of Geography
 - All things are related, but nearby things are more related than distant things. [Tobler70]
- Spatial autocorrelation
 - Traditional i.i.d. assumption is not valid
 - Measures: K-function, Moran's I, Variogram, ...

Independent, Identically Distributed pixel property

Spatial Computing

Research Group

Vegetation Durability with SA

Spatial Autocorrelation: K-Function

- Purpose: Compare a point dataset with a complete spatial random (CSR) data
- Input: A set of points $K(h, data) = \lambda^{-1} E$ [number of events within distance h of an arbitrary event]
 - where λ is intensity of event
- Interpretation: Compare k(h, data) with K(h, CSR)
 - K(h, data) = k(h, CSR): Points are CSR
 - > means Points are clustered
 - < means Points are de-clustered

Cross-Correlation

Cross K-Function Definition

 $K_{ij}(h) = \lambda_j^{-1} E$ [number of type j event within distance h of a randomly chosen type i event]

- Cross K-function of some pair of spatial feature types
- Example
 - Which pairs are frequently co-located
 - Statistical significance

Recall Pattern Family 4: Co-locations

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types

Spatial Computing

Research Group

Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).

Illustration of Cross-Correlation

Illustration of Cross K-function for Example Data

Cross-K Function for Example Data

Spatial Heterogeneity

- "Second law of geography" [M. Goodchild, UCGIS 2003]
- Global model might be inconsistent with regional models
 - Spatial Simpson's Paradox
- May improve the effectiveness of SDM, show support regions of a pattern

Edge Effect

- Cropland on edges may not be classified as outliers
- No concept of spatial edges in classical data mining

Korea Dataset, Courtesy: Architecture Technology Corporation

Research Challenges of Spatial Statistics

State-of-the-art of Spatial Statistics

		Point Process	Lattice	Geostatistics
raster			$\sqrt{}$	$\sqrt{}$
Vector	Point	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	Line			$\sqrt{}$
	Polygon		√	$\sqrt{}$
graph				

Data Types and Statistical Models

- Research Needs
 - Correlating extended features, road, rivers, cropland
 - Spatio-temporal statistics
 - Spatial graphs, e.g., reports with street address

Research Group