Jong Park 10/17/2018 CS 472 – Computer Architecture HW2

1. Suppose the existence of a direct-mapped cache design with a 32-bit address. Assume that each address maps to a single byte. Assume the cache scheme uses the following breakdown of the address bits:

Tag	Index	Offset	
31-9 (23bits)	8-5 (4bits)	4-0 (5bits)	

a) What is the cache block size (in words)?

$$5 \text{ offsets} = \frac{2^5 \text{ bytes}}{\text{block}} * \frac{\text{words}}{4 \text{ bytes}} = \frac{32}{4} \text{ words} = 8 \text{words/ block}$$

b) How many entries does the cache have?

c) Including space for the valid bits, tags, and actual block data, how many bits would be required to actually implement this hypothetical cache?

Total Cache size = (# of Rows) *(valid bit + tag bits + data bits)
$$Cache = 16*(1+23+32 \, bytes*(\frac{8 \, bits}{1 \, byte})) = \textbf{4,480 bits}$$

2. Using the cache design from problem 1, assume the following byte-addressed cache references are recorded. Assume that the cache is initially empty.

Also assume that accesses occurred from left to right (e.g. address 0 was requested, then address 4, followed by address 16, etc).

Byte Address											
0	4	16	132	232	160	1024	30	140	3100	180	2180

a) What was the number of cache hits?

Address (binary)	Address Bloc	k address	Index (mo	d16) Hit/Miss	
0000 00000	0	0	0	Miss	
0000 00100	4	0	0	Hit	
0000 10000	16	0	0	Hit	4 Hits.
0100 00100	132	4	4	Miss	11165
0111 01000	232	7	7	Miss	
0101 00000	160	5	5	Miss	
10 0000 00000	1024	32	0	Miss*	
0000 11110	30	0	0	Miss*	(= 11. 1. 0. 1
0100 01100	140	4	4	Hit	(Bold indicates final state
110 0000 11100	3100	96	0	Miss*	of the index)
0101 10100	180	5	5	Hit	
100 0100 00100	2180	68	4	Miss*	
			* means rep	laced	

b) Create a table to show the final state of the cache including the value of each Index, Valid bit,

Index	Valid	Tag (leading 0's not shown)	Data (address in decimal)
0000 (0)	Y	110	Mem[96]
0001 (1)	N		
0010 (2)	N		
0011 (3)	N		
0100 (4)	Y	100	Mem[68]
0101 (5)	Y	0	Mem[180]
0110 (6)	N		
0111 (7)	Y	0	Mem[232]
1000 (8)	N		
1001 (9)	N		
1010 (10)	N		
1011 (11)	N		
1100 (12)	N		
1101 (13)	N		
1110 (14)	N		
1111 (15)	N		

3. Suppose the existence of a different direct-mapped cache design with a 32-bit address. Assume that each address maps to a single byte. Assume this cache scheme uses the following breakdown of the address bits:

Tag	Index	Offset
31-6	5-3	2-0
(26bits)	(3bits)	(3bits)

a) What is the cache block size (in words)?
$$3 \text{ offsets} = \frac{2^3 \text{ bytes}}{\text{block}} * \frac{\text{words}}{4 \text{ bytes}} = \frac{8}{4} \text{ words} = 2 \text{ words}$$

b) How many entries does this cache have?

$$3 Index = 2^3 rows = 8 rows of index 8 rows * 8 bytes = 64 bytes$$

c) Including space for the valid bits, tags, and actual block data, how many bits would be required to actually implement this hypothetical cache?

Total Cache size = (# of Rows) *(valid bit + tag bits + data bits)
$$Cache = 8*(1+26+\frac{8 \text{ bytes per block}}{8 \text{ bits}}) = 728 \text{bits}$$

- 4. Again assuming an initially empty cache, repeat the steps described in problem 2.
 - a) What was the number of cache hits?

Address (binary)	Address	Block #	Index (mod8)	H/M	
000 000 000	0	0	0	Miss	
000 000 100	4	0	0	Hit	1 Hit.
000 010 000	16	2	2	Miss	
010 000 100	132	16	0	Miss*	
011 101 000	232	29	5	Miss	
010 100 000	160	20	4	Miss	
10000 000 000	1024	128	0	Miss*	
000 011 110	30	3	3	Miss	
010 001 100	140	17	1	Miss	
110000 011 100	3100	387	3	Miss*	(Dold in digrates final state of the index)
010 110 100	180	22	6	Miss	(Bold indicates final state of the index)
100010 000 100	2180	272	0	Miss*	
			* means replaced	b	

b) Create a table to show the final state of the cache including the value of each Index, Valid bit, and Tag.

Index	Valid	Tag (leading 0's not shown)	Data (address in decimal)
0000 (0)	Y	100010	Mem[272]
0001 (1)	N		
0010 (2)	Y	0	Mem[16]
0011 (3)	Y	110000	Mem[387]
0100 (4)	Y	10	Mem[160]
0101 (5)	Y	11	Mem[232]
0110 (6)	Y	10	Mem[180]
0111 (7)	N		
1000 (8)	N		