STA 235H - Difference-in-Differences

Fall 2021

McCombs School of Business, UT Austin

Another identification strategy

• We have seen:

RCTs

Selection on observables

Natural experiments

Difference-in-Differences

Two wrongs make a right

Raising the minimum wage

What happens if we raise the minimum wage

Economic theory says there should be fewer jobs

New Jersey in 1992

\$4.25 → **\$5.05**

Before vs After

Avg. # of jobs per fast food restaurant in NJ

New Jersey_{before} = 20.44

New Jersey_{after} = 21.03

 Δ = 0.59

Is this a causal effect?

Treatment vs Control

Avg. # of jobs per fast food restaurant

Pennsylvania_{after} = 21.17

New Jersey_{after} = 21.03

 $\Delta = -0.14$

Is this a causal effect?

Problems

Before vs After

Only looking at the treatment group

Impossible to separate changes because of treatment or time

Treatment vs Control

Only looking at post-treatment values

Impossible to separate changes because of treatment or differences in growth

Difference-in-Differences

The idea of a DD analysis is to take the within-unit growth...

	Pre mean Post mea		(post - pre)
Control	A (never treated)	B (never treated)	B - A
Treatment	C (not yet treated)	D (treated)	D-C

 \triangle (post – pre) = within-unit growth

Difference-in-Differences

... and the across-group growth...

	Pre mean	Post mean	(post - pre)
Control	A (never treated)	B (never treated)	
Treatment	C (not yet treated)	D (treated)	
(treatment - control)	C-A	D - B	

 \triangle (treatment – control) = across-group growth

Difference-in-Differences

... and combine them!

	Pre mean	Post mean	(post - pre)
Control	A (never treated)	B (never treated)	B - A
Treatment	C (not yet treated)	D (treated)	D-C
(treatment - control)	C - A	D - B	(D - C) - (B - A) or (D - B) - (C - A)

 \triangle within units $^- \triangle$ across groups = Difference-in-differences = causal effect!

Coming back to New Jersey

	Pre mean	Post mean	(post - pre)
Pennsylvania	23.33 A	21.17	-2.16 B - A
New Jersey	20.44	21.03	0.59 D - C
<u>(NJ - PA)</u>	-2.89 C - A	-0.14 D - B	(0.59) - (-2.16) = 2.76

How does it look in a plot?

Difference-in-Differences in practice

• There's no need to manually estimate all group means..

We can use regressions!

• If the two dimensions for our DD are time and treatment.

$$Y_i = eta_0 + eta_1 Treat_i + eta_2 Post_i + eta_3 Treat_i imes Post_i + arepsilon_i$$

where Treat = 1 for the treatment group, and Post = 1 for the after period.

Can you identify the different coefficients?

Difference-in-Differences in practice

• There's no need to manually estimate all group means...

We can use regressions!

• If the two dimensions for our DD are time and treatment.

$$Y_i = eta_0 + eta_1 Treat_i + eta_2 Post_i + eta_3 Treat_i imes Post_i + arepsilon_i$$

where Treat = 1 for the treatment group, and Post = 1 for the after period.

 β_3 is the causal effect!

Diff-in-Diff Assumptions

Assumptions

Parallel Trends

In the absence of the intervention, treatment and control group would have changed in the same way

Robustness Check

Parallel Trends

Check by pretending the treatment happened earlier; if there's an effect, there's likely an underlying trend

Let's look at an example

Look at what T.S. made me do

• Like in the JITT, we will have data for Taylor Swift's popularity in the past 12 months.

Staggered treatment adoption

- We have three groups:
 - West Coast: Received the album early because of a glitch.
 - Non west-coast: Received the album a bit later.
 - Weird: Two fictional states that are not connected to the US (independent), and do not get Taylor Swift.
- What are the two dimensions we will leverage here?

Let's go to R

Takeaway points

- There are other ways to estimate causal effects beyond randomization
- Always be careful of the assumptions.
 - Run robustness checks!
- Don't confuse assignment mechanisms with identification assumptions
 - Note: Assignment mechanisms might make our identification assumption credible, but they are not the same thing!

References

- Angrist, J. and S. Pischke. (2015). "Mastering Metrics". Chapter 5.
- Baker, A. (2019). "Difference-in-Differences Methodology".
- Callaway, B. and P. Sant'Anna (2020). "Difference-in-Differences with multiple time periods". *Journal of Econometrics*.
- Heiss, A. (2020). "Program Evaluation for Public Policy". Class 8-9: Diff-in-diff I and II, Course at BYU.