Leveraging Classic and Modern Learning Techniques for Heart Disease Prediction from Heart Sound Data

Team Cookie Monsters

Md. Asif Haider

Md. Azizur Rahman Anik

CSE-18, BUET

Introduction

- BioMed Datathon by
 - BME-BUET
 - Aurora Consulting

 Multiple heart abnormalities prediction from multiple heart sound recordings

- Multi label classification task
 - Aortic Stenosis (AS)
 - Aortic Regurgitation (AR)
 - Mitral Regurgitation (MR)
 - Mitral Stenosis (MS)
 - Normal (N)

Motivation

- Heart related conditions have been on an alarming rise globally
- Accurate diagnosis and early intervention is important!
- Data is not so abundant in these cases
- Efficient use of **limited data** is crucial
- Automation is the key!
- Where humans fail, **artificial intelligence** can come to the rescue
- Machine learning
 - Given the input and output, finds the representative function
- Deep learning
 - Complex neural network representation mimicking how human brains learn

Input Dataset

BUET Multi-Disease Heart Sound Dataset (BMD-HS)

 (20 healthy + 20 x 4 disease) sample patient x (4 locations x 2 postures) heart sound = 800+ audio recordings

- Train set size
 - 59 patients
 - o 8 recording each
 - 472 audio files

- Test set size
 - 49 patients
 - 8 recording each
 - o 392 audio files

Exploratory Data Analysis

- Python Numpy, Pandas, Seaborn package
 - Missing value check
 - Unique value check
 - Label distribution check
 - Metadata check

Loading Audio File

- Python Librosa package
- Wave -> Vector representation
 - Shape (80000, 1)
 - Sampling rate 4KHz
 - o **Length** 20 seconds

Machine Learning Approach

- Decision Tree
- Random Forest
- Extreme Gradient Boost (XGBoost)
- Multi Layer Perceptron

Feature Extraction

- Time Domain Features (basic temporal contents)
 - Zero Crossing Rate
 - Sign changing rate
 - Energy
 - Amplitude
 - Root Mean Square (Average Power)
 - o Tempo Beats Per Minute
 - Beat rate
- Frequency Domain Features (rich spectral contents)
 - Spectral Centroid
 - Center of mass/brightness
 - Spectral Roll-off
 - Energy level
 - Spectral Bandwidth
 - Width of frequency band
 - Spectral Contrast
 - Difference in peak and valley amplitude
 - Spectral Flatness
 - Noisiness
 - Mel Frequency Cepstral Coefficients (MFCC)
 - Power level at log mel scale
 - Chroma*
 - Energy distribution across pitch levels
 - Harmonics and Tonnetz*
 - Overtone series of base frequency
 - Perceptual*
 - Loudness, roughness, sharpness

Feature Selection

- Python Scikit-learn package
 - Mutual Information Classifier
 - Selects top features based on Information Gain

Features

Mutual Information of the Features for AR

Mutual Information

Features

Mutual Information of the Features for MR

Mutual Information of the Features for MS

Features

Features

Feature Selection

- Python Scikit-learn package
 - Mutual Information Classifier
 - Selects top features based on Information Gain
- 3 Time Domain Features
 - Zero crossing rate
 - Energy
 - Amplitude
- 4 Frequency Domain Features (After STFT, short time fourier transform)
 - Spectral centroid
 - Spectral roll-off
 - Mel frequency cepstral coefficients
 - Chroma

Data Preprocessing Pipeline

- Imbalance Handling
- Augmentation
- Segmentation
- Normalization
 - StandardScaler
- Train Validation Split
 - o 80-20 split
- Cross Validation
 - Leave one out (LOOCV)
 - K-fold (K=5)
- Machine Learning Model
- Feature Importance Check
- Again Machine Learning Model

Data Imbalance: Label-wise Resampling

- Handling imbalance on original data
 - Resampled to maintain a 90% ratio between label 1 and label 0
 - Augmentation and Segmentation on the resampled data

Data Augmentation

- Pitch Shifting
 - Shifting up and down
- Time Stretching
 - Expansion and Compression
- Adding Noise
 - With factors 0.01 and 0.05
- Increased size after augmenting
 - 413 (7x of the original data)

Data Segmentation

- 4 segments each of 5 second length for every recording entry in each patient sample
- Segmentation on original data
 - o Increased size: **236 samples**
- Segmentation on augmented data
 - o Increased size : **1652 samples**
- Segmentation on augmented and resampled data to handle imbalance
 - o Increased size: **55160 samples**

Data Preprocessing Pipeline

- Imbalance Handling
- Augmentation
- Segmentation
- Normalization
 - StandardScaler
- Train Validation Split
 - o 80-20 split
- Cross Validation
 - Leave one out (LOOCV)
 - K-fold (K=5)
- Machine Learning Model
- Feature Importance Check
- Again Machine Learning Model

Primary Results

ML Model	Public macro F1 Score	Private macro F1 Score
MLP	0.3294	0.305
XGBoost	0.4176	0.4425
Random Forest	0.3259	0.4732
Decision Tree	0.4988	0.5138

Towards Deep Learning

Audio Spectrogram Transformer (AST) vs CNN based models

- Some local developments
 - MD-CardioNet : BUET EEE and CSE
 - LSTM (RNN) based cardiovascular disease classifier
 - SpectNet: BUET BME
 - Uses CNN based feature extraction beforehand to detect heart anomaly

- Audio Spectrogram Transformer achieves state-of-the-art audio classification task performance
- In 2021, by MIT CSAILs
- Audio Spectrogram Transformer Paper

Spectrogram

- 2D representation of audio signals
- X axis -> Time
- Y axis -> Frequency
- Color intensity -> amplitude/energy for a particular frequency in particular time
- Single image from audio, containing rich temporal and spectral information

Transformer

- Large scale deep neural network with self attention mechanism
- Started with Natural Language Processing (NLP) domain
- Currently achieves state of the art results in almost every domains including Vision [Vision Transformers]
- The more data, the better
- Audio Spectrogram Transformer (AST) applies a Vision Transformer (ViT) to audio by turning audio into spectrogram image
- Parameter initialization from ImageNet

Huggingface: Everything Here All At Once

- The global hub of
 - Pretrained and Finetuned model checkpoints
 - Suitable tokenizers
 - Automatic Feature Extractor
 - Extracts mel spectrogram features and converts to corresponding image/ vector
 - Well written Pipeline and Trainer functions

AST Workflow

- Resampled audio to 16 KHz (accepted by AST)
- Feature Extractor, Tokenizer and Model checkpoint loading
- Audio vector -> Image vector transformation
- Loss: Binary cross entropy
- Metric: Macro averaged F1 score
- Hyperparameters:
 - Learning rate: 5e-04
 - Warmup ratio: 0.1
 - o Batch size: 4
 - Training epochs: 20
- 8 different trainers for 8 different audio records
- Finally predictions with weighted majority voting based on evaluation macro F1 score

Plots

Final Results

Model	Public F1	Private F1	ICBHI Score
AST	0.6346	0.4976	0.6483
Decision Tree (7 Features)	0.4988	0.5138	0.5945

```
# calculate the specificity
specificity = (CAS+CAR+CMS+CMR)/(CAS+CAR+CMS+CMR+NAS+NAR+NMS+NMR)
print('Specificity:', specificity)

# calculate the sensitivity
sensitivity = CN/NN
print('Sensitivity:', sensitivity)

# calculate the icbhi score
icbhi_score = (specificity + sensitivity) / 2
print('ICBHI Score:', icbhi_score)
```

Platforms and Resources

- ML on CPU
 - o Core i5 @ 1.00 x 8 GHz
- DL on GPU
 - o RTX 5000 (16 x 4 GB VRAM)
- Model, Tutorial and Plot
 - Huggingface
 - Wandb.ai
- Dataset, Testing and Submission
 - > Kaggle

Metadata Insights

- Age
- Gender
 - Male
 - Female
- Smoker
 - Yes
 - o No
- Lives in
 - Rural
 - Urban

• The distributions of Age over all the disease labels follow approximately a normal distribution

- AR significantly found in males
- Smokers are more prone to be victim

- AS significantly found in males
- Smokers are more prone to be victim

- MR is equally found in Females
- Non smokers also suffer this

- MS is slightly more found in Females
- Non smokers also suffer this
- Significant difference observed for MS disease for living area. R has much higher count than U

Moving Forward

- Possible trial setting
 - Combining all recordings instead of tackling separately
 - Initial weights from more relevant fine tuned tasks like ICBHI respiratory challenge
 - Different model hyperparameters

Larger, more robust dataset

Thank you!

Any questions or suggestions welcomed