

conversely, any equation of the form ax + by + cz = d is the equation of a plane.

 E_{x} : 1x + 2y + 3z = 6.

P (6,0,0) o (0,3,0) on plane because they satisfy the equation.

P(x,y,3) on plane QP = (-6,3,0) is or tho gonal to (1,2,3)

In general, $\overrightarrow{QP} = \langle x, y-3, z \rangle$ is orthograph to $\langle 1, 2, 3 \rangle$ be cause $\langle 1, 2, 3 \rangle \cdot \langle x, y-3, z \rangle$ = x + 2y - 6 + 3z = 0.

Equation of a line $\vec{r}(t) = (a_1b_1c_1)$ $(x_0 + a_1, y_1 + b_1, y_2 + c_1)$ $\vec{r}(t) = (x_0, y_0, y_0, y_0)$ $+t(a_1b_1c_2)$ (x_0, y_0, y_0) (x_0, y_0, y_0)

to the standard of the standa

axt by t ct = d

plane w/ norma/

vector (a, b, ct.

$$2x + 3y - z = 5$$

 $z = 2x + 3y - 5$
 $f(x,y) = 2x + 3y - 5$

The plane

3(x,y,z): 2x+3y-2=53 is the graph of the hunction N=(2,3,-1)

Ex: Find an equation of the plane that contains P(1, -2, 0),

a (3, 1, 4), and R(0, -1, 2).

We have a point on plane; need a normal vector in to the plane.

reform \vec{n} is orthogonal to both $\vec{p}\vec{q}$ and $\vec{p}\vec{p}\vec{q}$ = $\langle 2, 3, 47 \rangle$ and $\vec{p}\vec{q} = \langle -1, 1, 2 \rangle$,

We can take
$$\vec{R}$$
 to be $\vec{PQ} \times \vec{PR}$.
 $\vec{PQ} \times \vec{PR} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \end{vmatrix} = \hat{i}(2) - \hat{j}(8) + \hat{k}(5)$

$$= \langle 2, -8, 5 \rangle = \vec{N}$$

Equation of the plane;

$$(2,8,5) \cdot (x-1, y+2, 2) = 0$$

 $(2,x-1) - (y+2) + 52 = 0$
 $(2x-1) - (y+2) + 52 = 0$
 $(2x-2-8y-16+52=0)$
 $(2x-8y+52=18)$

Line

Plane

in 2D in 3D
$$y=mx+b$$
 \longrightarrow $z=kx+ly+m$ $ax+by=c$ \longrightarrow $ax+by+cz=d$ $y-y_{-}=m(x-x_{0})$

 $m(x-x_{0}) - (y-y_{0}) = 0 \iff a(x-x_{0}) + b(y-y_{0}) = 0$ $a(x-x_{0}) + b(y-y_{0}) = 0$ $+((y-y_{0})) = 0$