Álgebra Linear - Lista de Exercícios 5

Luís Felipe Marques

Agosto de 2022

1. Explique porque essas afirmações são falsas

- (a) A solução completa é qualquer combinação linear de x_p e x_n .
- (b) O sistema Ax = b tem no máximo uma solução particular.
- (c) Se A é inversível, não existe nenhuma solução x_n no núcleo.

Resolução:

- (a) No sistema $A\mathbf{x} = \mathbf{b}$, caso $\mathbf{b} \neq \mathbf{0}$, já não será verdade a afirmação. Tome, por exemplo, a compinção linear $\mathbf{x}_q = 3\mathbf{x}_p + \mathbf{x}_n$. Assim, $A\mathbf{x}_q = 3A\mathbf{x}_p + A\mathbf{x}_n = 3\mathbf{b} \neq \mathbf{b}$. Ou seja, essa combinação linear não é solução, como queríamos demonstrar.
- (b) Se $\mathbf{x_b}$ é solução particular de $A\mathbf{x} = \mathbf{b}$, então todo elemento de $\mathbf{x_b} + N(A)$ é também solução particular.
- (c) $\mathbf{x} = \mathbf{0}$ é sempre solução de $A\mathbf{x} = \mathbf{0}$.

2. Sejam

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} e c = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Use a eliminação de Gauss-Jordan para reduzir as matrizes $\begin{bmatrix} U & 0 \end{bmatrix}$ e $\begin{bmatrix} U & c \end{bmatrix}$ para $\begin{bmatrix} R & 0 \end{bmatrix}$ e $\begin{bmatrix} R & d \end{bmatrix}$. Resolva Rx = 0 e Rx = d.

Resolução:

Fazendo a eliminação de Gauss-Jordan:

$$\begin{bmatrix} 1 & 2 & 3 & & 5 \\ 0 & 0 & 4 & & 8 \end{bmatrix} \xrightarrow{L_1 - 3/4L_2} \begin{bmatrix} 1 & 2 & 0 & & -1 \\ 0 & 0 & 4 & & 8 \end{bmatrix} \xrightarrow{L_2/4} \begin{bmatrix} 1 & 2 & 0 & & -1 \\ 0 & 0 & 1 & & 2 \end{bmatrix} = \begin{bmatrix} R & d \end{bmatrix}$$

Assim, podemos notar que apenas a segunda coluna de R é livre, o que implica que o núcleo de U possui o vetor (a,1,b), onde $\begin{cases} a+2=0 \\ b=0 \end{cases} \iff \begin{cases} a=-2 \\ b=0 \end{cases} \Rightarrow N(U) = \operatorname{span}\{(-2,1,0)\}, \text{ que são as soluções de } Rx=0.$

Para solucionar, Rx = d, selecionamos uma solução particular (c, 1, d). Daí, $\begin{cases} c + 2 = -1 \\ d = 2 \end{cases}$ \iff $\begin{cases} c = -3 \\ d = 2 \end{cases}$, o que implica que as soluções da equação são da forma $(-3, 1, 2) + x_n$, sendo x_n elemento qualquer de N(R) = N(U).

3. Suponha que Ax = b e Cx = b tenham as mesmas soluções (completas) para todo b. Podemos concluir que A = C?

Resolução:

Sim, A = C.

Para provar, tome \mathbf{x}' qualquer. Assim, $A\mathbf{x}' = \mathbf{b}'$ para um certo \mathbf{b}' . Pela suposição do problema, \mathbf{x}' é também solução de $C\mathbf{x} = \mathbf{b}'$, ou seja, $C\mathbf{x}' = \mathbf{b}'$. Assim, $A\mathbf{x}' - C\mathbf{x}' = \mathbf{b}' - \mathbf{b}' = 0 \Rightarrow (A - C)\mathbf{x}' = 0$ para \mathbf{x}' qualquer, e, portanto, $N(A - C) = \mathbb{R}^n \Rightarrow (A - C) = \mathbf{0}_{n \times n}$, pelo Teorema do Posto. Portanto, A = C.

1

4. Ache o maior número possível de vetores linearmente independentes dentre os vetores:

$$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} e \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Resolução:

Façamos dos vetores colunas de uma matriz e façamos sua redução:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix} \xrightarrow{L_2 + L_1} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix} \xrightarrow{L_3 + L_2} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix} \xrightarrow{L_4 + L_3} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_2 - L_3} \xrightarrow{L_2 - L_3} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 - L_2} \begin{bmatrix} 1 & 0 & 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 - L_2} \xrightarrow{\begin{bmatrix} 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}} \xrightarrow{L_1 - L_2}$$

Como a matriz reduzida tem três colunas com pivô, 3 é o número máximo de vetores L.I. dentre os vetores dados.

5. Ache uma base para o plano x - 2y + 3z = 0 em \mathbb{R}^3 . Encontre então uma base para a interseção desse plano com o plano xy. Ache ainda uma base para todos os vetores perpendiculares a esse plano.

Resolução:

Como se trata de um plano, precisamos apenas de dois elementos para a base. Assim, (1,2,1) e (-1,1,1), duas soluções linearmente independentes, são o bastante para gerar o plano. Base: $\{(1,2,1),(-1,1,1)\}$.

A interseção do plano x-2y+3z=0 com z=0 é equivalente à reta $\begin{cases} x-2y=0\\ z=0 \end{cases}$, que pode ser gerada pela base $\{(2,1,0)\}$. Base: $\{(2,1,0)\}$.

Para os vetores perpendiculares ao plano, já temos o vetor diretor (1, -2, 3), que já gera todos os seus múltiplos, também perpendiculares ao plano dado. Base: (1, -2, 3).

6. Ache (na sua forma mais simples) a matriz que é o produto das matrizes de posto 1 $\mathbf{u}\mathbf{v}^T$ e $\mathbf{w}\mathbf{z}^T$? Qual seu posto?

Resolução:

Sejam $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{z}$ iguais a $(u_1, \dots, u_n), (v_1, \dots, v_m), (w_1, \dots, w_m)$ e (z_1, \dots, z_p) respectivamente. Daí:

2

$$\mathbf{u}\mathbf{v}^{T} = \begin{bmatrix} \mathbf{u}_{1}\mathbf{v}^{T} & - \\ - & \vdots & - \\ - & u_{n}\mathbf{v}^{T} & - \end{bmatrix}$$

$$\mathbf{w}\mathbf{z}^{T} = \begin{bmatrix} | & | & | \\ z_{1}\mathbf{w} & \cdots & z_{p}\mathbf{w} \\ | & | & | \end{bmatrix}$$

$$\therefore \mathbf{u}\mathbf{v}^{T}\mathbf{w}\mathbf{z}^{T} = \begin{bmatrix} u_{1}z_{1}\mathbf{v}^{T}\mathbf{w} & \cdots & u_{1}z_{p}\mathbf{v}^{T}\mathbf{w} \\ \vdots & \ddots & \vdots \\ u_{n}z_{1}\mathbf{v}^{T}\mathbf{w} & \cdots & u_{n}z_{p}\mathbf{v}^{T}\mathbf{w} \end{bmatrix}$$

$$= \mathbf{v}^{T}\mathbf{w} \begin{bmatrix} u_{1}z_{1} & \cdots & u_{1}z_{p} \\ \vdots & \ddots & \vdots \\ u_{n}z_{1} & \cdots & u_{n}z_{p} \end{bmatrix}$$

$$= (\mathbf{v} \cdot \mathbf{w})\mathbf{u}\mathbf{z}^{T}$$

Assim, a matriz resultante é múltipla da matriz de posto 1 \mathbf{uz}^T , o que torna a matriz resultante também de posto 1.

7. Suponha que a coluna j de B é uma combinação linear das colunas anteriores de B. Mostre que a coluna j de AB é uma combinação linear das colunas anteriores de AB. Conclua que posto $(AB) \leq \text{posto}(B)$.

Resolução:

Sejam A e B matrizes $n \times m$ e $m \times p$ respectivamente. Daí, podemos dizes que elas são da forma:

$$A = \begin{bmatrix} \mathbf{a}_{1}^{T} & \cdots \\ \vdots & \vdots \\ \mathbf{a}_{n}^{T} & \cdots \end{bmatrix}$$

$$B = \begin{bmatrix} | & | & | & | & | \\ \mathbf{b}_{1} & \cdots & \mathbf{b}_{j} & \cdots & \mathbf{b}_{p} \\ | & | & | & | & | \end{bmatrix}$$

$$\therefore AB = \begin{bmatrix} | & | & | & | & | \\ A\mathbf{b}_{1} & \cdots & A\mathbf{b}_{j} & \cdots & A\mathbf{b}_{p} \\ | & | & | & | & | \end{bmatrix}$$

Porém, se $\mathbf{b}_j = \sum_{i=1}^{j-1} \alpha_i \mathbf{b}_i$, então, pela linearidade de matrizes, $A\mathbf{b}_j = \sum_{i=1}^{j-1} \alpha_i A\mathbf{b}_i$, o que significa que a j-ésima coluna de AB é combinação linear das anteriores.

Então, se (p - posto(B)) columas de B podem ser expressas a partir de de columas anteriores de B, ao menos p - posto(B) columas de AB podem ser expressas da mesma forma com columas anteriores de AB. Logo, $\text{posto}(AB) \leq p - (p - \text{posto}(B)) \iff \text{posto}(AB) \leq \text{posto}(B)$.

8. O item anterior nos dá $posto(B^TA^T) \leq posto(A^T)$. É $possível concluir que <math>posto(AB) \leq posto(A)$?

Resolução:

Sim, é possível. Note que posto(X) corresponde tanto à quantidade de linhas linearmente independentes quanto à quantidade de colunas linearmente independentes de X. Assim, $posto(X) = posto(X^T)$. Portanto,

$$posto(AB) = posto(B^T A^T) \le posto(A^T) = posto(A)$$
$$\therefore posto(AB) \le posto(A)$$

9. Suponha que A e B são matrizes quadradas e AB = I. Prove que posto(A) = n. Conclua que B precisa ser a inversa (de ambos os lados) de A. Então, BA = I.

Resolução:

Primeiro, definiremos as inversas de uma matriz. Uma matriz $Y_{n\times n}$ é a inversa à esquerda de $X_{n\times n}$ se YX=I. Similarmente, Y é inversa à direita se XY=I.

Para matrizes $X_{n\times n}$ de posto n, é perceptível que existem matrizes de eliminação R e C tais que RX = I e XC = I. Assim, chamaremos essas matrizes, respectivamente, de inversas à esquerda e à direita canônicas da matrix X de posto n.

Provaremos agora um resultado importante:

$$\begin{cases} X^2 = X \\ XY = I \end{cases} \Rightarrow X = I$$

De fato, $X = XI = XXY = X^2Y = XY = I \Rightarrow X = I$.

Pelos itens anteriores, temos que $\begin{cases} \operatorname{posto}(AB) \leq \operatorname{posto}(A) \\ \operatorname{posto}(AB) \leq \operatorname{posto}(B) \end{cases}$. Porém, como $\operatorname{posto}(AB) = \operatorname{posto}(I) = \operatorname{posto}(AB)$

n, e $\begin{cases} \operatorname{posto}(A) \leq n \\ \operatorname{posto}(B) \leq n \end{cases}$ (o posto não ultrapassa a quantidade de colunas), temos que $\operatorname{posto}(A) = \operatorname{posto}(B) = n$.

Seja C_B a inversa à direita canônica de B. Note que $(BA)^2 = B(AB)A = BIA = BA$ e que $BABC_B = B(AB)C_B = BIC_B = BC_B = I$. Assim, pelo resultado já provado:

$$\begin{cases} (BA)^2 = BA \\ BA(BC_B) = I \end{cases} \Rightarrow BA = I$$

Além disso, podemos provar que B é igual às inversas canônicas já definidas:

$$C_A = IC_A = BAC_A = BI = B$$

 $R_A = R_AI = R_AAB = IB = B$

Portanto, A^{-1} tal que $A^{-1}A = I = AA^{-1}$ é único.

10. $(B\hat{o}nus)$ Dado um espaço vetorial real V, definimos o conjunto

$$V^* := \{ f : V \to \mathbb{R} \mid f \text{ \'e linear} \}.$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde E e F são espaços vetoriais, é dita linear se para todos \mathbf{v} , $\mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$ e $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaços dual de V.

- (a) Mostre que V^* é um espaço vetorial.
- (b) Agora, seja $V = \mathbb{R}^n$. Mostre que existe uma bijeção $\varphi : V^* \to V$ tal que, para toda $f \in V^*$ e para todo $\mathbf{v} \in V$, tenhamos

$$f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle.$$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

Em dimensão infinita, esse resultado é conhecido como Teorema da Representação de Riesz.

Resolução:

(a) Sejam $f, g \in V^*$. Definimos $(f+g)(\mathbf{v}) = f(\mathbf{v}) + g(\mathbf{v})$ e $(\alpha f)(\mathbf{v}) = \alpha f(\mathbf{v}) \ \forall \ \mathbf{v} \in V$. Sejam \mathbf{u}, \mathbf{v} vetores quaisquer de V. Veja que $(f+g)(\mathbf{u}+\mathbf{v}) = f(\mathbf{u}+\mathbf{v}) + g(\mathbf{u}+\mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v}) + g(\mathbf{u}) + g(\mathbf{v}) = (f+g)(\mathbf{u}) + (f+g)(\mathbf{v})$ e que $(f+g)(\alpha \mathbf{u}) = f(\alpha \mathbf{u}) + g(\alpha \mathbf{u}) = \alpha f(\mathbf{u}) + \alpha g(\mathbf{u}) = \alpha (f+g)(\mathbf{u})$, ou seja, $(f+g) \in V^*$. Além disso, $(\alpha f)(\mathbf{u} + \mathbf{v}) = \alpha f(\mathbf{u} + \mathbf{v}) = \alpha f(\mathbf{u}) + \alpha f(\mathbf{v}) = (\alpha f)(\mathbf{u}) + (\alpha f)(\mathbf{v})$ e $(\alpha f)(\beta \mathbf{u}) = \alpha f(\beta \mathbf{u}) = \alpha \beta f(\mathbf{u}) = \beta(\alpha f)(\mathbf{u}) \Rightarrow (\alpha f) \in V^*$. Logo, V^* é um espaço vetorial.

(b) Seja
$$\varphi: f \to \begin{bmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{bmatrix}$$
, sendo $\{e_1, \dots, e_n\}$ a base canônica de \mathbb{R}^n .

Digamos que **v** seja um vetor qualquer da forma $\sum_{i=1}^{n} \alpha_i e_i$.

Por um lado, $f(\mathbf{v}) = f(\sum \alpha_i e_i) = \sum \alpha_i f(e_i)$.

Por outro lado,
$$\langle \varphi(f), \mathbf{v} \rangle = \langle \begin{bmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{bmatrix}, \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \rangle = \sum_{i=1}^n \alpha_i f(e_i).$$

Assim, $f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle$ para a φ definida. Falta provar que φ é uma bijeção.

Para isso, basta notar que $\varphi(f) = \varphi(g)$ implica que, $\forall \mathbf{v} \in V$, $\langle \varphi(f), \mathbf{v} \rangle = \langle \varphi(g), \mathbf{v} \rangle \iff f(\mathbf{v}) = g(\mathbf{v}) \ \forall \mathbf{v} \in V$, ou seja, $f \in g$ são a mesma função linear. Isso prova que φ é injetiva.

Além disso, para $f(\sum \alpha_i e_i) = \sum x_i \alpha_i e_i$, temos $\varphi(f) = (x_1, x_2, x_3, \dots, x_n)$ para quaiquer x_i reais. Como podemos escolher x_i tais que $\varphi(f)$ seja qualquer vetor de \mathbb{R}^n , φ é sobrejetiva.

Dessa forma, φ é bijetiva.