Digital Signal Processing for Music

Part 10: Discretization, Part 2 - Quantization

Andrew Beck

Quantizer:

Continuous → Discrete (pre-defined set of allowed values)

- >> Quantization is non-linear
- >> Quanitzation is irreversible

- >> Number of quantization steps: $\mathcal{M}=16$
- >> Word Length (bits): $w = \log_2(\mathcal{M}) = 4 \mathrm{bit}$

Quanitzation: Word Length & Number of Steps

$oldsymbol{w}$	$\mathcal{M}=2^w$
1	2
2	4
4	16
8	256
12	4096
16	65536
20	1048576
24	16777216

Quantization Error: Definition

$$q(i) = x_{\mathrm{Q}}(i) - x(i)$$

What is the maximum amplitude of the quantization error?

Maximum Amplitude of Quantization Error

$$|q(i)| \leq rac{\Delta}{2}$$

What is the PDF of the quantization error?

PDF of Quantization Error

Assuming $\Delta \ll max(|x(i)|)$

PDF of Quantization Error

Assuming $\Delta \ll max(|x(i)|)$

It can be shown that the PDF of the quanitzation error depends (without derivation)

- >> on the variance of the input signal in relation to the step size
- >> on the **pdf of the input** signal
- \rightarrow will be uniform for large values of $\frac{\sigma_X}{\Delta}$

Figure 2.16 (a) PDF of quantization error for different standard deviations of a Gaussian PDF input. (b) Variance of quantization error for different standard deviations of a Gaussian PDF input.

How to computer the power W_{Q} of Quantization Error?

Computing power $W_{ m Q}$ of Quantization Error

From PDF:

$$egin{align} W_{\mathrm{Q}} &= \int\limits_{-rac{\Delta}{2}}^{rac{\Delta}{2}} q^2 \cdot p_{\mathrm{Q}}(q) \, dq \ &= rac{1}{\Delta} \int\limits_{-rac{\Delta}{2}}^{rac{\Delta}{2}} q^2 \, dq \ &= rac{1}{\Delta} igg[rac{1}{3}q^3igg]_{-rac{\Delta}{2}}^{rac{\Delta}{2}} \ &= rac{1}{3\Delta} igg(rac{\Delta^3}{8} + rac{\Delta^3}{8}igg) \ &= rac{\Delta^2}{12} \ \end{aligned}$$

Quantization Error of Full-Scale Sinusoidal

Audio Examples

Quality Assessment of a Quantizer: Signal-to-Noise Ratio (SNR)

>> Power of the signal in relation to power of the (quantization) noise.

$$SNR' = rac{ ext{signal energy}}{ ext{noise energy}} = rac{W_{ ext{S}}}{W_{ ext{Q}}}$$

>> Often in decibel

$$SNR = 10 \cdot \log_{10} \left(rac{W_{
m S}}{W_{
m Q}}
ight) ext{ [dB]}$$

- >>> SNR grows by:
 - >> Reducing the noise power
 - >> Increasing the signal power

Derive the SNR of quantized full-scale sinusoidal

$$SNR = 10 \cdot \log_{10} \left(rac{W_{
m S}}{W_{
m Q}}
ight) ext{[dB]}$$

Use
$$\sin^2(t)=rac{1-\cos(2t)}{2}$$

$$W_{
m S} = rac{A^2}{2} \; ext{ full-scale } W_{
m S} = rac{(\Delta \cdot 2^{w-1})^2}{2}$$

$$W_{
m Q}=rac{\Delta^2}{12}$$

$$rac{W_{\mathrm{S}}}{W_{\mathrm{O}}} = rac{3}{2} \cdot 2^{2w}$$

$$SNR = w \cdot 20 \log_{10}\left(2
ight) + 10 \cdot \log_{10}\left(rac{3}{2}
ight) ext{ [dB]}$$

Derive the SNR of full-scale square wave

$$SNR = 10 \cdot \log_{10} \left(rac{W_{
m S}}{W_{
m Q}}
ight) {
m [dB]}$$

$$W_{
m S} = A^2 \; ext{ full-scale } W_{
m S} = (\Delta \cdot 2^{w-1})^2$$

$$W_{
m Q}=rac{\Delta^2}{12}$$

$$rac{W_{
m S}}{W_{
m Q}}=3\cdot 2^{2w}$$

$$SNR = w \cdot 20 \log_{10}\left(2
ight) + 10 \cdot \log_{10}\left(3
ight) \left[\mathrm{dB}
ight]$$

Signal-to-Noise Ratio

$$SNR = 6.02 \cdot w + c_{
m S} \quad {
m [dB]}$$

- Every addtional bit adds ~6 dB SNR
- ightharpoonup Constant $C_{
 m S}$ depends on signal (scaling and PDF shape)

SNR for different input signal examples:

- >> Square wave (full scale): $C_{\rm S}=4.77{
 m dB}$
- \gt Sinusoidal wave (full scale): $C_{
 m S}=1.76{
 m dB}$
- $\gt\gt\gt$ Rectangular PDF (full scale): $C_{
 m S}=0{
 m dB}$
- \Rightarrow Gaussian PDF (full scale = $4\sigma_q$): $C_{
 m S} = -7.27 {
 m dB}$

Quantization: Word Length and SNR

w	Δ	Max. Amp	theo. SNR
8 (Int)	± 1	0255	≈48 dB
16 (Int)	± 1	$-32768 \dots 32767$	\approx 96 dB
20 (Int)	± 1	$-524288 \dots 524287$	pprox120 dB
24 (Int)	± 1	$-16777216\dots16777215$	\approx 144 dB
32 (Float)	$\pm 1.175 \cdot 10^{-38}$	$\pm 3.403 \cdot 10^{1038}$	1529 dB
64 (Float)	$\pm 2.225 \cdot 10^{-308}$	$\pm 1.798\cdot 10^{10308}$	12318 dB

SNR and Auditory Sensation Area

How many bits do we need?

How many bits do we need?

- To cover the whole range of hearing: 20-24 bit
- >>> Practically, a lower range is sufficientas the dynamic range of recordings has to be much lower
- >> In production with many processing and possible requantization steps, high resolution (if possible floating point) is recommended

SNR and Signal Scaling

Full Scale:

- >> Absolute maximum before clipping
- >> Usually 1 (in floating point systems)
- >> Marks O dbFS

>> Quantization is **non-linear** & **irreversible**

- >> Information is lost
- >> Error is introduced

>> Quantization error

- >> Power is determined by number of bits (word length)
- >> Is approxiamately white noise (float spectrum and uncorrelated to signal) when the signal power is much higher than the quantization step size
- >> Special severe case: clipping

>> SNR is used to assess quantizer quality

- >> Depends on both signal power and quant error power (ratio)
- >> Each additional bit gains 6 dB SNR
- >> Different signals with identical maximum amplitude yield different SNRs

>> Typical word lengths include

- >> 8 bit: Phone
- >> 16 bit: Consumer audio
- >> 24 bit and higher: Production audio

