Ellenállás, kondenzátor és tekercs soros kapcsolása

Az átmeneti jelenségek vizsgálatakor – soros RL- és soros RC-körben – egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a kondenzátoron pedig a feszültség késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük meg az 1. és a 2. ábrán. Lényegében viszonyítás kérdése, de lássuk meg, ez azt jelenti, hogy a valós terhelésen (ellenálláson) eső feszültséghez képest a kondenzátoron 90 fokot késik, a tekercsen pedig 90 fokot siet a feszültség.

1. ábra Soros RL- és soros RC-kör, mint négypólus – kapcsolási rajzok

2. ábra Soros RL- és soros RC-kör fázorábrája

Készítette: Mike Gábor

A forrásfeszültség: $U_0 = \sqrt{U_R^2 + U_C^2}$

A forrásfeszültség: $U_0 = \sqrt{U_R^2 + U_C^2}$

Az ellenállás feszültsége a forrásfeszültség koszinuszos vetülete: $U_R = U_0 \cdot \cos \varphi$

Az ellenállás feszültsége a forrásfeszültség koszinuszos vetülete: $U_{\scriptscriptstyle R} = U_0 \cdot \cos \varphi$

Ebből $\cos \varphi = \frac{U_R}{U_{\hat{n}}}$

Ebből
$$\cos \varphi = \frac{U_R}{U_0}$$

Így a valós feszültség és a forrásfeszültség által bezárt szög: $\varphi = \arccos(\frac{U_R}{U_L})$

Így a valós feszültség és a forrásfeszültség által bezárt szög: $\varphi = \arccos(\frac{U_R}{U_0})$

Tekintettel arra, hogy soros körökről van szó, megállapítható, hogy közös az áram. Noha a soros egyenáramú köröknél megtanultuk, hogy Kirchhoff II. törvénye (huroktörvény) szerint a részfeszültségek összege egyenlő a forrás feszültségével, itt ez nem járható számítási mód, a valós ellenálláson és a reaktanciákon eső feszültségek által bezárt szög(ek) miatt. Tehát a Pythagoras-tétel alkalmazása válik szükségessé.

Az 1. ábra szerinti soros köröket egyesítsük úgy, ahogy azt a 3. ábra mutatja! Az így kialakított kapcsolást soros RLC-körnek nevezzük. Az kapott kapcsolás fázorábrája is a 3. ábra szerinti. Vegyük észre: a tekercsen eső feszültség (U_L) 90 fokot siet, a kondenzátoron mérhető feszültség (U_C) pedig 90 fokot késik a valós ellenálláson eső feszültséghez (U_R) képes, így a feszültségfázorok egymáshoz képest mindig 180 fokot zárnak be. A képzetes rész nagyságát tehát a két feszültségfázor különbsége adja. Amennyiben a feszültség-fázorábra komponenseit elosztjuk az egyetlen közös komponenssel, vagyis az árammal, akkor az impedancia-fázorábrát kapjuk eredményül, mely arányos a feszültségfázorábrával.

3. ábra Soros RLC-kör és fázorábrája

Készítette: Mike Gábor

A feszültség-fázorábra összefüggései:

Az impedancia-fázorábra összefüggései:

$$U_0 = \sqrt{U_R^2 + (U_L - U_C)^2}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$U_R = U_0 \cdot \cos \varphi$$

$$R = Z \cdot \cos \varphi$$

$$\cos \varphi = \frac{U_R}{U_0} \implies \varphi = \arccos(\frac{U_R}{U_0})$$

$$\cos \varphi = \frac{R}{Z} \implies \varphi = \arccos(\frac{R}{Z})$$

Ismétlő fogalmak:

- ellenállás: az impedancia valós része;
- a kondenzátor kapacitív látszólagos ellenállása: kapacitív reaktancia, kapacitancia, az impedancia képzetes része: $|X_C| = \frac{1}{\omega \cdot C}$;
- a tekercs induktív látszólagos ellenállása: induktív reaktancia, induktancia, az impedancia képzetes része: $|X_C| = \frac{1}{\omega \cdot C}$;
- impedancia: komplex ellenállás, amely valós ellenállásból és látszólagos ellenállásból tevődik össze.

Tanulmányaink folyamán láttuk, hogy mind a kapacitív, mind pedig az induktív reaktancia frekvenciafüggő.

Kapacitív reaktancia: $X_C = \frac{1}{\omega \cdot C} = \frac{1}{2 \cdot \pi \cdot f \cdot C}$, valamint frekvenciafüggése: $X_C \sim \frac{1}{f}$.

 $\label{eq:continuity} \text{Induktív reaktancia: } X_L = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L \;, \qquad \text{valamint frekvenciafüggése: } X_C \sim f \;.$

Amennyiben tehát egy adott soros RLC-kapcsolás esetén változtatjuk a frekvenciát, úgy a reaktanciák értéke is változik, ezzel a rajtuk mérhető feszültség is, valamint a bezárt szög is. Mindennek ismeretében belátható, hogy bizonyos frekvenciákon az induktív reaktancia a domináns, míg más frekvenciákon a kapacitív dominancia a jellemző:

<u>4. ábra</u> induktív [a) és b)], valamint kapacitív [c) és d)] dominancia az impedanciában

Összefoglalva az eddig látottakat:

Induktív dominanciáról beszélünk, ha:

- $X_L X_C > 0$;
- $U_L U_C > 0$;
- φ>0

Kapacitív dominanciáról beszélünk, ha:

- $X_L X_C < 0$;
- $U_L U_C < 0$;
- φ<0

Nézzünk egy számpéldát!

Állítsunk össze egy soros RLC-kört, a következő értékek és adatok mellett!

$$R=100 \,\Omega\;;\; L=1 \,H\;;\; C=5 \,\mu\, F\;;\; U_0=230 \,V\;;\; f=50 \, \frac{1}{\rm s}$$

Számítsuk ki a következőket!

Induktív reaktancia: $X_L = ?$;

Kapacitív reaktancia: $X_C = ?$;

Eredő reaktancia: X = ?;

Impedancia: Z=?;

Áramerősség: I=?;

A tekercsen eső feszültség: $U_L=?$;

A kondenzátoron eső feszültség: $U_C=?$

Az ellenálláson eső feszültség: $U_R=?$;

A forrásfeszültség ellenőrzése: $U_0=?$

A fázisszög: φ=?

4. ábra a feladat kapcsolási rajza

Induktiv reaktancia:
$$X_L = \omega L = 2\pi f L = 2\pi \cdot 50 \frac{1}{s} \cdot 1 H = 2\pi \cdot 50 \frac{1}{s} \cdot 1 \frac{Vs}{A} = 100\pi \frac{V}{A} = 314,16 \Omega$$

Kapacitív reaktancia:
$$X_L = \frac{1}{\omega C} = \frac{1}{2\pi f C} = \frac{1}{2\pi \cdot 50 \frac{1}{s} \cdot 5\mu F} = \frac{1}{2\pi \cdot 50 \frac{1}{s} \cdot 5 \cdot 10^{-6} \frac{As}{V}} = \frac{10^6}{500\pi} \frac{V}{A} = 636,62 \Omega$$

Az eredő reaktancia:
$$X = X_L - X_C = 314,16 \Omega - 636,62 \Omega = -322,46 \Omega$$
 => kapacitív jellegű

Fontos megállni ezen a helyen! Mint ismeretes negatív ellenállás nem létezik, a negatív előjel általában jelölhet csökkenő változást, vagy – mint ahogy esetünkben – azt mutatja meg, hogy a kapott eredő reaktancia kapacitív jellegű.

Az impedancia:
$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + X^2} = \sqrt{100 \Omega^2 + (-322,46 \Omega)^2} = \sqrt{10000 \Omega^2 + 103980,45 \Omega^2} = \sqrt{113980,46 \Omega^2} = 337,61 \Omega$$

Az áramerősség: $I = \frac{U_0}{Z} = \frac{230 \text{ V}}{337.61 \Omega} = 0,68126 \text{ A} = 681,25 \text{ mA}$

A tekercsen eső feszültség: $U_L = X_L \cdot I = 314,16 \Omega \cdot 681,25 \cdot 10^{-3} A = 214,02 V$

A kondenzátoron eső feszültség: $U_L = X_C \cdot I = 314,16 \,\Omega \cdot 681,25 \cdot 10^{-3} A = 433,70 V$

Az ellenálláson eső feszültség: $U_R = R \cdot I = 100 \,\Omega \cdot 681,25 \cdot 10^{-3} A = 68,13 V$

A forrásfeszültség ellenőrzése: $U_0 = \sqrt{U_R^2 + (U_L - U_C)^2} = \sqrt{68,13 V^2 + (214,02 V - 433,70 V)^2} = 230 V$

 $A \cos \varphi$ (a feszültség-fázorábrából): $\cos \varphi = \frac{U_R}{U_0} = \frac{68,13 V}{230 V} = 0,296$

 $A \cos \varphi$ (az impedancia-fázorábrából): $\cos \varphi = \frac{R}{Z} = \frac{100 \,\Omega}{337,61 \,\Omega} = 0,296$

A fázisszög: $\varphi = \arccos(0,296) = (-)72,77^\circ = \lambda$ Lássuk meg: azért negatív a szög értéke, mert kapacitív az impedancia, vagyis a kapacitív jellegnek megfelelően valóban késés van.

A fázisszög másképpen is kiszámítható. A Z impedancia meredeksége:

$$m = \tan(\varphi) = \frac{X}{R} = \frac{-322,16 \Omega}{100 \Omega} = -3,2216$$
 ebből $\varphi = \arctan(-3,2216) = -72,77^{\circ}$

5. ábra a kidolgozott feladat fázorábrái

Állítsuk össze a feladat kapcsolási rajzát a <u>TINA-TI</u> áramkörszimulátor segítségével, majd végezzük el AC analízisét!

7. ábra a kidolgozott feladat szimulációs mérése

A szimulációs mérés eredményeit lehetőségünk van összehasonlítani a számításainkkal.

Villamos jellemzők	Számított adatok	Szimulációs adatok
Induktív reaktancia: X _L	$314,16\Omega$	-
Kapacitív reaktancia: X_C	$636,62\Omega$	_
Eredő reaktancia: X	$-322,46\Omega$	-
Impedancia: Z	337,61Ω	-
Áramerősség: I	681,25 <i>mA</i>	681,26 mA
A tekercsen eső feszültség: U_L	214,02 <i>V</i>	214,02 <i>V</i>
A kondenzátoron eső feszültség: U_C	433,70 V	433,70 V
Az ellenálláson eső feszültség: U_R	68,13 <i>V</i>	68,13 <i>V</i>
A forrásfeszültség ellenőrzése: U_0	230 V	_
A fázisszög, U_0 és U_R által bezárt szög: φ	-72,77°	(-)72,77°
U_0 és U_C által bezárt szög	_	(-) 17,23°
U_0 és U_L által bezárt szög	_	162,77°
U_L és U_C által bezárt szög	_	180°

Jól látható az adatokból, hogy a két reaktancia feszültsége (és vele együtt maguk a reaktanciák is) merev kapcsolatban vannak egymással (180 fok).

Soros RLC-rezgőkör

Láthattuk, hogy létezik olyan soros RLC-kör, amelyik kapacitív jellegű, s van, amelyik induktív jelleget mutat, a domináns reaktancia függvényében. Joggal tehetjük fel a kérdést: mi van akkor, ha a két reaktancia azonos nagyságú? Ez az állapot csak egy frekvencián következik be. Azt az állapotot, ahol a két reaktancia nagysága – és vele együtt a két reaktancián eső feszültség nagysága – megegyezik, rezonancia-frekvenciának nevezzük.

A rezonancia-frekvencia meghatározásának kiinduló tétele tehát a reaktanciák nagyságának azonossága:

$$X_L = X_C$$
 /helyettesítsünk be!
$$\omega L = \frac{1}{\omega C}$$
 /rendezzük át az egyenletet $\omega - ra$!
$$\omega^2 = \frac{1}{LC}$$
 \Longrightarrow
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

rezonancia-frekvencia:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 ez a Thomson-képlet.

Mivel $X_L = X_C$, ezért belátható, hogy $X = X_L - X_C = 0$. Ha eredő reaktancia nulla, akkor az $Z = \sqrt{R^2 + (X_L - X_C)^2}$ képlet értelmében: Z = R. Amennyiben az impedancia megegyezik az ellenállás értékével, fázistolásról sem beszélhetünk, vagyis $\varphi = 0$, $\cos \varphi = 1$. Természetesen hasonlóképpen alakul a helyzet a feszültségek esetében is.

Mivel a reaktanciákon eső feszültség nagysága egyezik meg a soros rezonancia-frekvencián, ezért feszültségrezonanciáról beszélünk. A soros rezonancián a legnagyobb lesz a soros RLC-kör árama, hiszen az impedancia eléri a minimumát. Ekkor $I_{f_0} = \frac{U_0}{Z} = \frac{U_0}{R}$.

7. ábra a feszültség- és impedancia-fázorábra a rezonancia-frekvencián

Nézzünk egy számpéldát a soros feszültségrezonanciára! Keressük meg az előző példánk rezonancia-frekvenciáját!

Állítsunk össze egy soros RLC-kört, a következő értékek és adatok mellett!

 $R=100 \Omega$; L=1 H; $C=5 \mu F$; $U_0=230 V$

Számítsuk ki a következőket!

Rezonancia-frekvencia: $f_0 = ?$

Induktív reaktancia: $X_L = ?$;

Kapacitív reaktancia: $X_C = ?$;

Eredő reaktancia: X = ?;

Impedancia: Z=?;

Áramerősség: I=?;

A tekercsen eső feszültség: $U_L=?$;

A kondenzátoron eső feszültség: U_c =?

Az ellenálláson eső feszültség: $U_R=?$;

A fázisszög: $\varphi = ?$

8. ábra a feladat kapcsolási rajza

$$\frac{1}{2\pi\sqrt{5}\cdot10^{-3}s} = \frac{10^3}{2\pi\sqrt{5}} \frac{1}{s} = \frac{\sqrt{5}\cdot100}{\pi} = 71,176 \frac{1}{s} = 71,176 Hz$$

Induktiv reaktancia:
$$X_L = \omega L = 2\pi f_0 L = 2\pi \cdot 71,176 \frac{1}{s} \cdot 1 H = 2\pi \cdot 71,176 \frac{1}{s} \cdot 1 \frac{Vs}{A} = 447,214 \Omega$$

Kapacitív reaktancia:
$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f_0 C} = \frac{1}{2\pi \cdot 71,176 \cdot 5\mu F} = \frac{1}{2\pi \cdot 71,176 \cdot 5\mu F}$$

$$= \frac{1}{2\pi \cdot 71,176 \frac{1}{s} \cdot 5 \cdot 10^{-6} \frac{As}{V} \mu F} = 447,214 \Omega$$

Készítette: Mike Gábor

Eredő reaktancia:
$$X = X_L - X_C = 447,214 \Omega - 447,214 \Omega = 0\Omega$$

Impedancia:
$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + 0^2} = \sqrt{R^2} = R$$

Áramerősség:
$$I = \frac{U}{Z} = \frac{U}{R} = \frac{230 \text{ V}}{100 \Omega} = 2,3 \text{ A}$$

A tekercsen eső feszültség: $U_L = X_L \cdot I = 447,214 \Omega \cdot 2,3 A = 1028,59 V$

A kondenzátoron eső feszültség:
$$U_C = X_C \cdot I = 447,214 \Omega \cdot 2,3 A = 1028,59 V$$

Tessék megfigyelni, hogy a tekercsen és a kondenzátoron igen nagy feszültségek alakulhatnak ki, miközben a forrás feszültsége töredéke eme feszültségeknek. A reaktanciákon eső feszültség nagysága nagyban függ az áramerősségtől, közvetve pedig a soros ellenállástól. $I = \frac{U}{Z} = \frac{U}{R}$.

Az ellenálláson eső feszültség: $U_R = R \cdot I = 100 \Omega \cdot 2,3 A = 230 V = U_0$

A fázisszög:
$$\varphi = \arccos(\frac{R}{Z})$$
, mivel $Z = R$, ezért $\varphi = \arccos(1) = 0^{\circ}$

Szimulációs ellenőrzés következzék. Állítsuk össze a feladat kapcsolási rajzát a <u>TINA-TI</u> áramkörszimulátor segítségével, majd végezzük el AC analízisét!

9. ábra

A szimulációs mérés eredményeit lehetőségünk van összehasonlítani a számításainkkal.

Villamos jellemzők	Számított adatok	Szimulációs adatok
Induktív reaktancia: X_L	447,214 Ω	_
Kapacitív reaktancia: X_C	$447,\!214\Omega$	_
Eredő reaktancia: X	0Ω	_
Impedancia: Z	100Ω	_
Áramerősség: I	2,3 <i>A</i>	2,3 <i>A</i>
A tekercsen eső feszültség: U_{L}	1028,59 V	1,03 <i>kV</i>
A kondenzátoron eső feszültség: $U_{\scriptscriptstyle C}$	1028,59 V	1,03 kV
Az ellenálláson eső feszültség: $U_{\scriptscriptstyle R}$	230 V	230 V
A forrásfeszültség ellenőrzése: U_{0}	230 V	_
A fázisszög, \boldsymbol{U}_0 és \boldsymbol{U}_R által bezárt szög: ϕ	0°	0°
${m U}_0$ és ${m U}_C$ által bezárt szög	-	-90°
$U_{\scriptscriptstyle 0}$ és $U_{\scriptscriptstyle L}$ által bezárt szög	-	90°
U_{L} és U_{C} által bezárt szög	-	180°