UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE INGENIERÍA MÉTODOS NUMÉRICOS

TALLER – "SOLUCIÓN DE ECUACIONES NO LINEALES"

1. Dibuje en cada una de las gráficas el comportamiento de los métodos indicados para encontrar la solución a f(x)=0.

a) Fig. 1. Newton-Raphson

b) Fig. 2. Método de la secante

c) Fig. 3. Método de la posición falsa

2. Dada la función $f(x)=\cos x - x$ que tiene un cero en $[0,\pi/2]$, encuentre el valor de p_1 dada la aproximación inicial $p_0 = \pi/4$:

$$p_1 =$$
______ $f(p_1) =$ _____

3. Emplee el método de la posición falsa o regula falsi para calcular los valores c_0 , c_1 , c_2 , c_3 en la resolución del polinomio $f(x) = x^3 + 2x^2 + 10x - 20$:

k	Extremo izquierdo,	Punto intermedio,	Extremo derecho,	Valor de la
	a_k	c_k	b_k	$función, f(c_k)$
0	1.30000		2.00000	
1				
2				
3				

4. Aplique el método de bisección o búsqueda binaria tomando como intervalo inicial [1.25, 1.375] para encontrar la raíz de la ecuación $x^3 + 4x^2 - 10 = 0$:

k	Extremo	Punto	Extremo	Valor de la
	izquierdo, a_k	intermedio, c_k	$derecho, b_k$	$función, f(c_k)$
0	1.25		1.375	
1				
2				
3				