Let $A = [a_1, a_2, \dots, a_n]$ be a list of n distinct elements in sorted (ascending) order. Given any of the n! permutations of this list, a sorting algorithm must be able to output precisely the one order in which the elements are sorted.

- 1. We build a decision tree with nodes corresponding to the comparisons made by the algorithm. Does each input have a different decision tree associated with it? How about the various comparison based sorting algorithms?
- 2. Let *v* be a leaf in the decision tree of a sorting algorithm. The nodes along a root-to-leaf path represent the comparisons performed to sort an input, with sufficient information to perform the sorting obtained by the time we reach the leaf node.
 - If the inputs corresponding to two permutations $\sigma(A)$ and $\sigma'(A)$ get sorted by following the paths from the root to v, then show that $\sigma(A) = \sigma'(A)$.
 - Conclude that the decision tree has n! leaf nodes.
- 3. Show that a binary tree with n! nodes has height at least $\Omega(\log(n!))$.
- 4. Show that $\log(n!) = \Theta(n \log n)$. Note that to show a tight bound, you need to show both the upper and the lower bounds.