

Scaling of Performance in Liquid Propellant Rocket Engine Combustors

July 23, 2008

James Hulka

Jacobs Engineering, ESTS Group NASA MSFC, Huntsville, AL USA

JPC July 2008

1

What is Scaling?

- "The ability to develop new combustion devices with predictable performance on the basis of test experience with old devices."
- Can be used to develop combustion devices of any thrust size from any thrust size
 - Applied mostly to increase thrust
- Objective is to use scaling as a development tool
 - Move injector design from an "art" to a "science"

Why is Scaling Important?

- Provides guidance and validation to the combustor design and development
 - Develop full-size designs that are closer to success more quickly
 - Validate key requirements earlier in the development process
- May allow use of smaller and lower flow rate hardware during development
 - Reduce costs for manufacturing development hardware
 - Reduce iterations of full-size hardware
 - Reduce development testing costs
 - (-) Smaller, lower flow rate test facilities
 - (-) Less propellant consumption, fewer test personnel
 - (+?) Higher pressure test facilities
 - Increase reliability with more thorough evaluation of margins

JPC July 2008

3

Is There a Scaling "Holy Grail"?

- Is there a development scaling methodology for combustion devices that offers:
 - 1. Reduced size and lower flow rate than original
 - 2. Lower pressure than original
 - 3. Easily and inexpensively producible
 - 4. Complete validation for performance, combustion stability, heat transfer, and ignition

JACOBS ESTS Group

JPC July 2008

4

Exact Combustion Similarity

- All processes occur in identical fashion, even though they occur with different scales
 - Flow paths
 - Flame patterns
 - Locations and time histories of specie generation
 - Locations and time histories of heat release
 - Contours of temperature, pressure, and velocity
- Focus on <u>steady internal aerothermochemistry</u>
- Note that unsteady flows are not expected to have the same scaling rules

JPC July 2008

5

Similarity Parameters from Mass, Momentum, and Energy Equations for Exact Combustion Similarity

Reynolds No. =
$$Re = \frac{\rho vL}{\mu}$$

Schmidt No. =
$$Sc = \frac{\mu}{\rho D}$$

Prandtl No. =
$$Pr = \frac{c_p \mu}{k}$$

Mach No. =
$$M = \left(\frac{\rho v^2}{\gamma p}\right)^{1/2}$$

Froude No. =
$$Fr = \frac{v^2}{g_a L}$$

$$\Phi = \frac{1/2v^2}{(c_n/\gamma)T}$$

Specific Heat Ratio =
$$\gamma = \frac{c_p}{c_v}$$

First Damköhler Group =
$$Da, i = \frac{L}{v\tau_i}$$

Third Damköhler Group =
$$Da$$
, $iii = \frac{q'L}{vc_pT\tau_i}$

Defined by Penner, 1955

Constant properties will result in competition between *Re* and *Da,i*

Reynolds No. =
$$Re = \frac{\rho vL}{\mu}$$
 • ρ , μ , D , c_p , k = constant Schmidt No. = $Sc = \frac{\mu}{\rho D}$

Prandtl No. = $Pr = \frac{c_p \mu}{k}$

First Damköhler Group = Da , $i = \frac{L}{v\tau_i}$

JACOBS ESTS Group

JPC July 2008

Third Damköhler Group = $Da, iii = \frac{q'L}{vc_nT\tau_i} = Da, i*\frac{q'L}{c_nT}$

7

Scaling Between Large & Small → Penner-Tsien Rule & Constant Pressure

• Properties = Constant (μ, ρ, D, c_p, k)

$$Sc = \frac{\mu}{\rho D} = \text{Constant}$$
 $Pr = \frac{c_p \mu}{k} = \text{Constant}$

•
$$Re = \frac{\rho vL}{\mu} = \text{Constant}$$

$$vL\Big|_{\text{subscale}} = vL\Big|_{\text{fullscale}} \longrightarrow \left(\frac{v_S}{v_F}\right)\left(\frac{L_S}{L_F}\right) = 1$$

•
$$Da, i = \text{Constant}$$

$$\frac{L}{v\tau_i} \bigg|_{\text{subscale}} = \frac{L}{v\tau_i} \bigg|_{\text{fullscale}} = \left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)^2$$

Penner's Conclusions

- Penner concluded control of chemical conversion rate is obtained by artificial modification of droplet size
 - Variation of surface tension by, e.g., surface active agents
- Successful scaling probably accomplished only for bipropellants with greatly different volatilities
- Engine development involves testing small scale injectors with high injection velocities and fine sprays for the less volatile propellant
 - Injector dimensions scale same as chamber dimensions

JPC July 2008

.

Scaling Between Large & Small \rightarrow Crocco & Pressure Dependence $\tau \sim p^{-m}$

•
$$Re = \frac{\rho vL}{\mu} = \text{Constant}, \text{ and } \rho \sim p$$

$$pvL\Big|_{\text{subscale}} = pvL\Big|_{\text{fullscale}} \left(\frac{p_S}{p_F}\right)\left(\frac{v_S}{v_F}\right)\left(\frac{L_S}{L_F}\right) = 1$$

•
$$Da, i = \text{Constant}$$

$$\frac{L}{v\tau_i}\Big|_{\text{subscale}} = \frac{L}{v\tau_i}\Big|_{\text{fullscale}}$$

$$\frac{\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)^{2m/(m+1)}}{\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right)} = \left(\frac{L_S}{L_F}\right)^{2m/(m+1)}$$

• Note that
$$\left(\frac{v_S}{v_F}\right) = \left(\frac{L_S}{L_F}\right)^{(1-m)/(1+m)}$$
 and $\left(\frac{d_S}{d_F}\right) = \left(\frac{L_S}{L_F}\right)^{m/(m+1)}$

Crocco's Conclusions

- Control of chemical conversion rate is obtained by control of pressure
- Engine development involves testing small scale injectors with high pressures
 - Injector dimensions are *not* scaled the same as chamber dimensions

JPC July 2008

11

Conclusions From Early Scaling Studies

- Similarity of some of the parameters resulted in difficult design situations
 - Penner-Tsien: small injectors with increased pressure drops in chambers with distorted contraction ratios, uncertain requirements for t
 - Crocco: small injectors at higher chamber pressures with distorted injector dimensions, uncertain requirements for τ

Scaling with Constant Element Dimensions – Typical Chamber Configurations Used Today

M Differences in Short and Long Barrel Chambers

Hewitt d/V for Scaling

• Injector characteristic d/V is fixed to chamber diameter

$$\left(\frac{d_S}{d_F}\right)\left(\frac{v_F}{v_S}\right) = \left(\frac{D_{c,S}}{D_{c,F}}\right)$$

15

Scaling the Combustion Chamber with Geometric Photoscaling

Re-evaluate the Required Similarity Groups Example: Primary Atomization

Significant Reduction of Scales Does Not Change Primary Atomization Regimes

JACOBS ESTS Group

JPC July 2008

17

Historical Examples

- M-1
 - 6670 kN thrust (1.5 Mlbf)
 - 100:1 ratio between fullscale and subscale thrust
- Space Shuttle Orbital Maneuvering System
 - 26.7 kN (6 Klbf)
 - 6:1 and 10:1 ratios between fullscale and subscale thrust
- NASA Lewis Research Center Thrust/Element
 - 50:1 ratio between thrust/element in constant chamber diameter

JPC July 2008

19

M-1 Thrust Chamber

- Thrust = 6670 kN (1,500 Klbf)
- LO₂/LH₂ Propellants
- Pc ~ 6.9 MPa (1000 psia)
- Upper stage concept considered for Apollo and other missions
- Terminated in advanced component development

M-1 Main Injector

JACOBS ESTS Group

JPC July 2008

21

M-1 Fullscale Combustor

JACOBS ESTS Group

Comparison of M-1 Fullscale and Subscale Thrust Chambers

Comparison of M-1 Subscale to Fullscale Performance

M-1 Performance Comparisons

- Measured total $\eta_{C*} \sim 96.0 \%$ (or total loss $\Delta \eta_{C*} \sim 4.0 \%$)
- Core efficiency based on subscale chamber
 - Core $\eta_{C*} \sim 99.3$ %, or $\Delta \eta_{C*} \sim 0.7$ %
 - No barrier cooling
 - Small maldistribution losses in small hardware
 - Face coolant distribution same in subscale and fullscale
- **Intentional Maldistributions**
 - $\Delta\eta_{C^*} \sim 1.8$ % due to redistributing fuel for wall and baffle surface cooling
 - $\Delta\eta_{C^*}\!\sim\!0.6\%\text{-}0.8\%$ due to altering single element oxidizer flow for baffle surface cooling
- M variations between subscale and fullscale $\Delta \eta_{C*} \sim 0.3 \%$
- Total accounted $\Delta \eta_{C*} \sim 3.4\%$ -3.6% out of 4.0 %
 - Not yet considered unintentional maldistributions which can be quite large for very large diameter injectors

JPC July 2008

25

NASA LeRC Thrust/Element Studies

- Thrust = 67 kN(15 Klbf)
- LO₂/LH₂ propellants
- Pc ~ 2.1 MPa (300 psia)
- Part of extensive injector research program in the U.S. during the 1960s

NASA LeRC Thrust/Element Performance

	Thrust per element TIE,		
	lb.	(4)	
O	20	(89)	
	50	(222)	Retyp
4		(445)	
0	200	(890)	
V	572	(2542)	
	1000	(4448)	
	L'= 30.5 cr	n (12")	

JPC July 2008

27

Coarse Elements are Vaporization-limited

JACOBS ESTS Group

Summary – Scaling with Constant Element Size

- Element dimensions kept approximately constant while chamber dimensions (diameter and length scales) are changed
 - Keeps element combustion characteristics similar
 - Violates combustor scaling rules where $L \sim \tau$
 - Injector retains \sim constant τ 's
 - Performance can scale well
 - Maintain constant *M* in chamber, or ensure reaction completed in barrel
 - Maintain performance subelements
 - Heat transfer scaling has issues
 - · Outer row wall spacings not the same
 - Injector Re are similar
 - Combustion stability not scaled well
 - · Elements subjected to higher frequency chamber resonances

JPC July 2008

29

Summary – Scaling with Geometric Photoscaling

- Element dimensions change proportionally with chamber diameter
 - Some relationships between chamber and element retained
 - Violates scaling rules where element Re = constant
 - Performance scaling uncertain
 - Heat transfer scaling uncertain
 - Outer row element spacings similar
 - Injector Re not the same
 - Combustion stability can scale well
 - Hewitt d/V characteristic is maintained

Understanding Scaling in the Future?

- Continue to "mine" the historical data base to help define the scaling relationships
 - History provides a wealth of scaling information thousands of thousands of tests with thousands of combustors!
 - Don't let this expensive progress go to waste
- Establish scaling relationships for all important individual processes in LPRE
 - Research activities in injection, primary atomization, secondary atomization, vaporization, mixing, reaction
 - Include scaling studies in your physics-based activities
- Use combustion Computational Fluid Dynamics (CFD) analyses to perform scaling "numerical experiments"

JPC July 2008

31

Backup Slides

Objectives

- · Re-introduce to you the concept of scaling
- Describe the scaling research conducted in the 1950s and early 1960s, and present some of their conclusions
- Narrow the focus to scaling for performance of combustion devices for liquid propellant rocket engines
- Present some results of subscale to fullscale performance from historical programs

JPC July 2008

33 .

Scaling H-1 to F-1

JACOBS ESTS Group

Scaling H-1 to F-1 – Why didn't it work?

farshall Space Flight Center

- $\eta C^* = 97.3\% \blacktriangleleft$ $\eta C^* = 93.8\%$
- Dch = 53.1 cm ← \rightarrow • Dch = 99.6 cm
- L' = 79.2 cm
- L' = 101.6 cm
- L* = 121.9 cm
- L* = 121.9 cm
- Pc = 4.85 MPa
- Pc = 7.76 MPa
- Fsl = 912 kN ←
- \rightarrow Fsl = 6770 kN
- 365 ox, 612 fuel 714 ox, 702 fuel

 $F/E = 2.5 \text{ kN} \leftarrow$

 \rightarrow • F/E = 9.5 kN

JPC July 2008

35

H-1 Baffle Compartment is Smaller than F-1 Baffle Compartment

Seven Similarity Parameters for Non-Reacting Flow Processes

Reynolds No. =
$$Re = \frac{\rho vL}{\mu}$$

Schmidt No. =
$$Sc = \frac{\mu}{\rho D}$$

Prandtl No. =
$$Pr = \frac{c_p \mu}{k}$$

Mach No. =
$$M = \left(\frac{\rho v^2}{\gamma p}\right)^{1/2}$$

Froude No. =
$$Fr = \frac{v^2}{g_a L}$$

Reacting FIG.
$$\Phi = \frac{1/2v^2}{(c_p/\gamma)T}$$

Specific Heat Ratio =
$$\gamma = \frac{c_p}{c_v}$$

First Damköhler Group =
$$Da, i = \frac{L}{v\tau_i}$$

Third Damköhler Group =
$$Da$$
, $iii = \frac{q'L}{vc_pT\tau_i}$

JPC July 2008

37

Two Similarity Parameters for **Reacting Flow Processes**

Reynolds No. =
$$Re = \frac{\rho vL}{\mu}$$

Schmidt No. =
$$Sc = \frac{\mu}{\rho D}$$

Prandtl No. =
$$Pr = \frac{c_p \mu}{k}$$

Mach No. =
$$M = \left(\frac{\rho v^2}{\gamma p}\right)^{1/2}$$

Froude No. =
$$Fr = \frac{v^2}{g_a L}$$

$$\Phi = \frac{1/2v^2}{(c_n/\gamma)T}$$

Specific Heat Ratio =
$$\gamma = \frac{c_p}{c_v}$$

First Damköhler Group – $Da_i = \frac{1}{v\tau_i}$

Third Damköhler Group = Da, $iii = \frac{q'L}{vc T \tau}$

Reduced Set from Penner

Reynolds No. =
$$Re = \frac{\rho vL}{\mu}$$

Schmidt No. =
$$Sc = \frac{\mu}{\rho D}$$

Prandtl No. =
$$Pr = \frac{c_p \mu}{k}$$

- Homogeneous Flow
- Low Velocity
- No Significant External Forces

First Damköhler Group =
$$Da, i = \frac{L}{v\tau_i}$$

Third Damköhler Group =
$$Da$$
, $iii = \frac{q'L}{vc_pT\tau_i}$

JPC July 2008

39

Heat Transfer to the Chamber Walls

• Re and Pr are fixed

Reynolds No. =
$$Re = \frac{\rho vL}{\mu}$$

Prandtl No. =
$$Pr = \frac{c_p \mu}{k}$$

• Therefore Nusselt number Nu is fixed

Nusselt No. = $Nu \sim \text{Constant} * Re^{x} Pr^{y}$

• Therefore, heat transfer characteristics are scaled properly since *Re* and *Pr* are scaled properly

Typical Timescales from SP-194

COMPARISON OF CHARACTERISTIC TIMES

TIME LAG CORRELATION: T ~ D"/ME P.

m=及(IMPINGING JETS)

MED (CHARIAL)

DYKEMA ANALYSIS: F- D.P.

STRAHLE ANALYSIS: ton = PC+ RL

HEIDMANN-WIEBER ANALYSIS: T - RL /ME PE

DROP SIZE (INGEBO): RL ~ DE /VE (APPROX.)

0.1 < k < 0.5

JAC LESTS Group

JPC July 2008

41

The Meaning of
$$\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)^2$$

- At constant chamber pressure and temperature, as the length scales are reduced, the chemical conversion times must be reduced as the *square* of the length scales
 - For example, as $L_S = \frac{1}{2} L_F$ (half geometric scale) then $\tau_{i,S} = \frac{1}{2} \tau_{i,F}$ (chemical times quartered)
- Note that because of *Re*=constant, then

as $L_S = \frac{1}{2} L_F$ (half geometric scale) then $v_S = 2 v_F$ (velocities doubled)

The Meaning of
$$\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)^2$$
, cont.

- Note that injector orifice diameter = scale ratio
- Thus if $L_S = \frac{1}{2} L_F$, then $d_S = \frac{1}{2} d_F$ and $A_S = \frac{1}{4} A_F$, $v_S = 2 v_F$
 - Element flow continuity $m_S = (\rho_F)(\frac{1}{4}A_F)(2v_F) = \frac{1}{2}m_F$
 - Note that with geometric half-size element, $m_S = \frac{1}{4} m_F$
 - Element pressure drop $\Delta P_S \sim \rho_S v_S^2 \sim \rho_F 4 v_F^2 \sim 4 \Delta P_F$
- Therefore, through a half-sized element, have to *increase* the flowrate to achieve 4 times ΔP
 - High velocity sprays with enhanced atomization
 - Note that Re are still matched
 - How are flow rates doubled but chamber pressures constant?
 - M not constant change chamber contraction ratio
- But is $\tau_{i,S} = \frac{1}{4} \tau_{i,F}$ as required? Not clear...

JPC July 2008

43

The Meaning of $\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)^{2m/(m+1)}$

• For m = 1 (i.e., $\tau \sim 1/p$, from Crocco)

$$\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)$$

- As the length scales are reduced, the chemical conversion times must be reduced proportionally
- For example, as $L_S = \frac{1}{2} L_F$ (half geometric scale) then $\tau_{iS} = \frac{1}{2} \tau_{iF}$
- However, the chamber pressure is <u>increased</u>, in this case, since $(p_S/p_F)^m = (\tau_{iF}/\tau_{iS})$,

or
$$p_S = 2 p_F$$

- Also, $v_S = v_F$, or M = constant

The Meaning of
$$\left(\frac{\tau_{i,S}}{\tau_{i,F}}\right) = \left(\frac{L_S}{L_F}\right)^{2m/(m+1)}$$
, cont.

- Continuing for m=1 and $L_S = \frac{1}{2} L_F$,
 - then $d_S = \sqrt{\frac{1}{2}} d_F$ and $A_S = \frac{1}{2} A_F$, $v_S = v_F$
 - Element flow continuity $m_S = (\rho_F)(\frac{1}{2}A_F)(v_F) = \frac{1}{2}m_F$
 - Note that through half-size element, $m_S = \frac{1}{4} m_F$ normally
 - Element pressure drop $\Delta P_S \sim \rho_S v_S^2 \sim \rho_F v_F^2 \sim \Delta P_F$
- Therefore, element flowrate is doubled but element area is doubled so pressure drop is constant
 - Equal velocity sprays
 - Note that Re are still matched
- Also, is $\tau_{i,S} = \frac{1}{2} \tau_{i,F}$ as required?

JPC July 2008

45

Five Sub-Elements of Combustor Performance

- 1. Multi-element inefficiency of all core elements
- 2. Multi-element inefficiency of all barrier elements
- 3. Boundary losses
- 4. Unintentional maldistribution of mass and velocity across the injector face
- 5. Intentional maldistribution of mass and velocity across the injector face.

Multi-element Efficiencies of Core and Barrier are Comprised of Many Parts

- 1. Single element mixing inefficiency for each element type
- 2. Single element vaporization inefficiency for each element type
- 3. Inter-element mixing inefficiency
- 4. Inter-element vaporization inefficiency
- 5. Losses due to two-dimensional effects of the flowstream
- 6. Losses due to reaction kinetics
- 7. Losses due to the radiation energy from various combustion species

JPC July 2008

47

Boundary Losses

- Heat energy losses from the fluids to the injector and chamber walls
- Boundary layer losses (effect of wall boundaries on the flow streams)

Maldistribution Losses

Unintentional

- Non-uniform mass, velocity, and pressure distributions at the injector inlets
- Non-uniform mass, velocity, and pressure distributions from the injector manifolding
- Manufacturing tolerance variations on injector metering features

Intentional

- Fuel film coolant (FFC) injected into the chamber periphery
- Deliberate mass flow rate bias of various elements across the injector face (mixture ratio bias)
- Local element mass flow bias (e.g., off-set, angled or scarfed coaxial posts)
- Deliberate burning rate variations across the injector face, due to different elements used in the pattern

JPC July 2008

49

Scaling the Combustion Chamber – Nomenclature

Scaling with Constant Element Dimensions

NA SA Marshall Space Flight Cent

Scaling with Constant Element Dimensions – Maintain Constant Mach No.

II JACOBSESTS Group

Typical Subscale Chamber Configurations

Marshall Space Flight Center

3-D Chamber

- Subscale Chamber
- Full Scale Injection Elements
- Subscale Transverse Mode for Full Scale Transverse Mode

2D Chamber

- Chamber Width Mode to Simulate Full Scale Mode
- Full Scale Injection Elements
 Variable Width and No. of Elements
 to Simulate Different Full Scale

3-D Chamber

- Subscale Chamber
- · Subscale Injection Elements
- Subscale Transverse Mode for Full Scale Transverse

Transverse Excitation Chamber

- Pie Shape of Full Scale Chamber Diameter
- Full Scale injection Elements
- Throat at Centerline
- Two Dimensional Radial Flow

Longitudinal Chamber

- Subscale Chamber
- Full Scale Injection Elements
 Subscale Longitudinal Mode for Full Scale Transverse Mode

Wedge Chamber

- A Segment of Full Scale Chamber
- Full Scale Injector

JACOBS ESTS Group

JPC July 2008

53

Scaling with Constant Element Dimensions – Maintain Constant *M* Even for Single Element

Scaling with Photoscaled Element Dimensions

JACOBS ESTS Group

JPC July 2008

55

Geometric Photoscaling

Hewitt d/V for Scaling

JACOBS ESTS Group

JPC July 2008

57

Re-evaluate the Required Similarity Groups Example: Primary Atomization

JACOBS ESTS Group

NASA Sig

Significant Reduction of Scales Does Not Change Primary Atomization Regimes

M-1 Subscale Combustor

JPC July 2008

59

M-1 Subscale Main Injectors

M-1 Unielement Combustor

JACOBS ESTS Group

NASA LeRC Thrust/Element Studies

NASA LeRC Thrust/Element Injectors

89 N (20 lbf)/Element

4.4 kN (1000 lbf)/Element

JPC July 2008

63

NASA LeRC Thrust/Element Studies

JPC July 2008

65