Medicinal plants from Mexico used in the treatment of scorpion sting

M.C. Carrera-Fernández, M. Herrera-Martínez, A. Ordaz-Hernández, H.M. Arreaga-González

PII: S0041-0101(23)00158-7

DOI: https://doi.org/10.1016/j.toxicon.2023.107172

Reference: TOXCON 107172

To appear in: Toxicon

Received Date: 3 April 2023

Revised Date: 17 May 2023 Accepted Date: 18 May 2023

Please cite this article as: Carrera-Fernández, M.C., Herrera-Martínez, M., Ordaz-Hernández, A., Arreaga-González, H.M., Medicinal plants from Mexico used in the treatment of scorpion sting, *Toxicon* (2023), doi: https://doi.org/10.1016/j.toxicon.2023.107172.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.

Credit author statement

Ma. C. Carrera Fernández and M. Herrera Martínez: Conceptualization,
Investigation, Data curation, Writing-Original Draft preparation, Reviewing and
Editing; A. Ordaz Hernández and H. Arreaga González: Investigation, WritingOriginal Draft preparation, Reviewing and Editing.

- 1 Review Article
- 2 Medicinal plants from Mexico used in the treatment of scorpion sting
- 3 Carrera-Fernández M. C.¹, Herrera-Martínez M.^{*2}, Ordaz-Hernández A.², Arreaga-
- 4 González H. M.³
- ⁵ Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de
- 6 México/I.T. Tepic, Lagos del Country, Tepic 63175, Nayarit, México, MCCF:
- 7 macicarrerafe@ittepic.edu.mx
- ²Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán San
- 9 Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón,
- 10 Oaxaca, 68540, México. AOH: armandohdz@unca.edu.mx, MHM:
- 11 mayrahm@unca.edu.mx
- ³Laboratorio de Principios Bioactivos, Instituto de Agroindustrias, Universidad
- 13 Tecnológica de la Mixteca, Carretera a Acatlima Km 2.5, Huajuapan de León,
- Oaxaca, 69000, México. HMAG: arreaga gfb@gs.utm.mx
- 16 *Corresponding author:
- 17 Dr. Mayra Herrera-Martínez. Instituto de Farmacobiología, Universidad de la
- 18 Cañada, Carretera Teotitlán San Antonio Nanahuatipán Km 1.7 s/n., Paraje
- 19 Titlacuatitla, Teotitlán de Flores Magón, Oaxaca, 68540, México. E-mail:
- 20 mayrahm@unca.edu.mx Tel. (+52)236 372 07 12 Ext. 305

15

22

ABSTRACT

25

Scorpion sting envenomation is a major public health in Mexico. Rural communities 26 rarely have antivenoms in the health centers, therefore, the people commonly resort 27 28 to using medicinal plants to treat the symptoms of envenoming caused by scorpion venom, but this knowledge has not yet been reported in detail. In this review, we 29 carry out a review of the medicinal plants used in Mexico against scorpion stings. 30 PubMed, Google, Science Direct, and the Digital Library of Mexican Traditional 31 Medicine (DLMTM) were used to collect data. The results showed the use of at least 32 48 medicinal plants distributed in 26 families, where Fabaceae (14.6%), Lamiaceae 33 (10.4%), and Asteraceae (10.4%) have the maximum representation. The 34 application of leaves (32%) was preferred followed by roots (20%), stem (17.3 %), 35 36 flowers (16%), and bark (8%). In addition, the most common method of use to treat scorpion stings is decoction (32.5%). The oral and topical routes of administration 37 have similar percentages of use. In vitro and in vivo studies of Aristolochia elegans, 38 Bouvardia ternifolia, and Mimosa tenuiflora were found, which showed an 39 antagonistic effect on the contraction of the ileum caused by the venom of C. 40 41 limpidus, likewise, they increased the LD50 of said venom and even B. ternofila showed reduced albumin extravasation. 42 The results of these studies demonstrate the promising use of medicinal plants for 43 44 future pharmacological applications; nevertheless, validation, bioactive compound isolation and toxicity studies are necessary to support and improve therapeutics. 45

46

47

48

Keywords

Medicinal plants, Centruroides, antivenom activity, bioactive compound, Aristolochia

1. INTRODUCTION

49

Scorpions (class Arachnida, order Scorpiones) can survive in different terrestrial 50 environments; therefore, it did not take them long to adapt to places occupied by 51 52 humans (Stockmann, 2015). The constant interaction with people has caused an alarming increase in the number of cases of scorpion sting envenoming in various 53 regions of the world, especially in the northern Sahara, the southern and eastern 54 55 regions of Africa, the Middle East, South India, Mexico, Brazil, and the Amazonian basin area (Guyanas, Venezuela, and northern Brazil). According to some reports, 56 there are about 1.5 million cases of scorpion stings and 3,250 annual deaths 57 worldwide (Ahmadi et al., 2020; Chippaux & Goyffon, 2008). So far, 2, 716 species 58 of scorpion have been reported worldwide (Rein, 2022), but only 30 species are 59 responsible for the most deaths in the world: 29 of these species belong to the 60 Buthidae family and one to Scorpionidae family. The scorpions of the Buthidae family 61 are distributed mainly in the Near and Middle East (genera Leiurus), North Africa 62 (genera Androctonus and Buthus), South America (genera Tityus), North and 63 Central America (genera Centruroides), Asia (genera Mesobuthus) and, southern 64 Africa (*Parabuthus*) (Chippaux & Goyffon, 2008). 65 66 Mexico harbors about 294 species of scorpions distributed in eight families (Gonzalez-Santillan & Possani, 2018; Ureta et al., 2020). To date, Mexico is the 67 country with the greatest diversity of scorpions in the world; 21 of these species are 68 potentially dangerous to humans and belong to the genera Centruroides (Gonzalez-69 Santillan & Possani, 2018), especially, Centruroides noxius which contains the most 70 lethal venom against humans with an LD₅₀ of 2.5 µg per 20 g mouse (Riaño-Umbarila 71

72 et al., 2016). Species of medical importance are distributed mainly along the Pacific coast and the central region. 73 The incidence of scorpion stings envenoming in Mexico is of the highest in the world 74 with around 230 cases per 100,000 population, this implies that Mexican health 75 centers and hospitals treated nearly 300,000 stings per year, even so, more than 50 76 deaths are reported annually (Chippaux & Goyffon, 2008). 77 78 The highest incidence occurs in Mexican Central and Pacific (Fig. 1), especially, in the population that lives in peri-urban and rural areas. These people can come to 79 show symptoms of envenoming mild, moderate, or severe; in mild or moderate 80 envenoming occur local pain, profuse sweating, agitation, vomiting, tachycardia, and 81 hypertension, while in severe envenoming arrhythmia, pulmonary edema, coma, and 82 in the worst case, death within the first 24 hours of envenoming (Ahmadi et al., 2020). 83 The lethality of the scorpion venom is due to toxins that affect the normal functioning 84 of voltage-gated potassium (K+) and sodium channels (Na+) of excitable cells 85 (Valdez-Velazquez et al., 2018); also, to the presence of hydrolytic enzymes (serine 86 proteases, metalloproteases, cysteine proteases, phospholipases, hyaluronidases) 87 that facilitate the systemic distribution of the neurotoxins from the affected tissues to 88 89 the target organs. In the venom have also been detected protease inhibitors, defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily 90 CAP proteins, and insulin growth factor-binding proteins (IGFBPs), but their role 91 during the envenoming process is still unclear (Valdez-Velazquez et al., 2018). 92

Figure 1. States with a higher incidence of scorpion stings in Mexico. Scorpion images from Copyright 2023, Shutterstock.

The cases of severe envenoming are managed with antivenoms (whole IgG molecules, highly purified F(ab')2 fragments, or Fab fragments) and complementary pharmacologic therapy based on the envenoming symptomatology, which is related to the scorpion lethality, the amount of venom inoculated, as well as the size, weight, age, and health of the victim (Chippaux et al., 2020). The pharmacologic treatment can include the use of antiadrenergic drugs such as prazosin, analgesics, antipyretics, anesthetics, anticholinergics, or insulin.

Despite advances in the development of antivenoms, in Mexico there are still many deaths by scorpion sting envenoming in rural communities since health centers rarely have the antivenom, this has occasioned the population to resort to the use of medicinal plants to treat the symptoms of envenoming caused by the scorpion

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

venom. This therapeutic alternative has also been documented in other regions of the world as Egypt, Trinidad, Thailand, Jordan, India, Saudi Arabia, and the USA, even in these countries, in vitro and in vivo tests have been made to validate the antivenom properties of nine medicinal plants of family Aristolochia, Bouvardia, Barringtonia, Ambrosia, Vitex and others (Dey et al., 2013). Likewise, 68 plant species belonging to 37 families and 61 genera have been recorded in some rural communities of Pakistan, in this case, the families Solanaceae, Apocynaceae, Asteraceae, Cucurbitaceae, and Fabaceae were the most used in the treatment of scorpion stings (Shah, 2018). On the other hand, in Algerian Septentrional Sahara has been highlighted the use of the Asteraceae and Lamiaceae families between 53 plants belonging to 34 families (Telli et al., 2022). Mexico ranks fourth in the world and third in the American continent for the diversity of vascular plants with 22,969 species, of which 12,069 are endemic (Ulloa et al., 2017). It is estimated that the population uses 4,500 species for medicinal purposes and that only 3,000 of these species are registered in the herbarium of the Mexican Institute of Social Security (IMSS). Nevertheless, only 5% have pharmacological analysis (Rodríguez-Hernández et al., 2022). Therefore, many species of medicinal plants with antivenom properties within the diversity of Mexican plants have not been disclosed. This review describes the medicinal plants used in Mexico to treat the symptoms of intoxication by scorpion stings. In addition, the preparation methods, forms of application, and scientific studies using in vitro or in vivo models that support the antivenom properties of medicinal plants are mentioned. In the final part, some bioactive compounds and their possible mechanism of action are discussed.

2. METHODS

This research was carried out in PubMed, Google, and Science Direct using the keywords "Mexico, medicinal plants, scorpions, compound". Additionally, the Digital Library of Mexican Traditional Medicine (DLMTM) was reviewed. The selection of plants was focused on their use to treat scorpion stings. Specific searches were made to enlist medicinal plant constituents and their biological activity to support the anti-venom characteristics of medicinal plants of Mexico.

3. RESULTS AND DISCUSSION

3.1 Medicinal plants used in scorpion sting treatment

In Mexico, many medicinal plants are known to treat symptoms produced by scorpion stings, but the species with only vernacular names were not considered for this review. Most of the reports were found in the database of the DLMTM. 48 medicinal plants were found to be used at various places in this country and have been enlisted in alphabetical order by family, botanical and vernacular name, state where it is used, plant parts used, and route of administration (Table 1). Possibly this number is subestimated due many plants are not listed or identified or published, so, a greater multidisciplinary effort is required to record this ethnomedical knowledge.

Table 1. Medicinal plants used in the treatment of Scorpion stings in Mexico.

Family	Botanical name	Vernacular name	Place where it is used	Parts used	Mode of use	Route of administration	Reference
Acanthaceae	Elytraria imbricata (Vahl) Pers.	Anisillo		Aerial part	Drink the infusion	Oral	DLMTM, 2022
Amaranthaceae	Teloxys ambrosioides (L.) W.A. Weber	Epazote	North, center, and south of the Mexican Republic	Aerial part			DLMTM, 2022
Amaryllidaceae	Allium sativum L.	Ajo	Huasteca potosina and Papantla	Bulb	Cataplasm of Allium sativum with Oreganum vulgare and Nicotiana tabacum is placed in the affected area	Topical	DLMTM, 2022
Apocynaceae	Thevetia thevetioides (Kunth) K. Schum.	Yoyote	Michoacán	Seed	Cataplasm of ground seed with vaseline and apply it to the affected part	Topical	DLMTM, 2022

	Asclepias curassavica L.	Quiebra muelas	Puebla	Leaves	Cataplasm of crushed raw leaves are crushed and applied to the affected part.	Topical	DLMTM, 2022
Aristolochiaceae	Aristolochia argentea Ule ex O.C. Schmidt	Tlacopatli	Morelos	Stem	Drink the infusion or make a maceration and spread it on the affected part	Oral or topical	DLMTM, 2022
	Aristolochia elegans Mast.	Guaco	Morelos	Roots			Jimenez-Ferrer et al., 2005a
	Aristolochia grandiflora Sw.	Chompipe	México	Roots	Drink the decoction or infusion	Oral	Hutt & Houghton, 1998
Asteraceae	Cosmos sulphureus Cav	Chochopali	México	Flower	Decoction	Oral	Hutt & Houghton, 1998

	Matricaria recutita L.	Manzanilla	Michoacán	Aerial parts (Flowers)	Boil the plant or flowers in water and administer it orally or wash the affected area	Oral or topical	DLMTM, 2022
	Melampodium divaricatum (Rich.) DC.	Acahual amarillo	Nayarit	Complete plant	The plant in cooking and can be administered orally or locally	Oral or topical	DLMTM, 2022
	Lactuca sativa	Lechuga	México				DLMTM, 2022
	Sanvitalia procumbens Lam.	Ojo de gallo	México		Apply a cataplasm externally	Topical	DLMTM, 2022
Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth	Tronadora	North, center, and south of the Mexican Republic	Complete plant	The plant is prepared in decoction and infusion and is administered orally or locally	Oral or topical	DLMTM, 2022
Burseraceae	<i>Bursera odorata</i> Brandegee	Torote blanco	Baja California Sur	Resin	Apply the resin to the affected area	Topical	Dimayuga et al., 1987

Cactaceae	Lophophora williamsii (Lem. ex Salm-Dyck) J.M. Coult.	Peyote	Chihuahua and Nayarit	Aerial part		Oral or topical	DLMTM, 2022
Caricaceae	Carica papaya L.	Papaya	Guerrero	Leaves	Topical application of the maceration of the plant	Topical	DLMTM, 2022
Convolvulaceae	Ipomoea murucoides Roem. & Schult.	Cazahuate blanco	México and Morelos	Flower, leaves, stem and bark	Administer orally the decoction of the flower, leaf, stem and bark	Oral or topical	DLMTM, 2022
	Ipomoea arborescens (Humb. & Bonpl.) G. Don	Palo blanco	Guerrero	Bark	The bark is prepared in decoction together with other plants and applied locally	Topical	DLMTM, 2022
Cordiaceae	Cordia elaeagnoides DC.	Cueramo	Michoacán and Guerrero	Aerial part	Drink the infusion of the plant	Oral	DLMTM, 2022

Euphorbiaceae	Croton ciliatoglanduliferus Ortega	Duraznillo o mala mujer	México, Morelos and Guerrero	Complete plant (Sap)			DLMTM, 2022; Hutt & Houghton, 1998
	Euphorbia polycarpa Benth.	Golondrina	Baja California Sur	Aerial part	Wash the affected part with an infusion of the plant	Topical	Dimayuga et al., 1987
	Euphorbia prostrata Aiton	Hierba del soldado	Sonora, Nayarit, Ciudad de México, México, Michoacán, Puebla and Tlaxcala	Aerial part	Infusion	Oral	DLMTM, 2022
Fabaceae	Acacia cochliacantha Humb. & Bonpl. ex Willd.	Cubata	México	Leaves			DLMTM, 2022
	Acacia farnesiana (L.) Willd	Huizache	Nayarit and Guadalajara	Roots	Oral administration of the root infusion	Oral	DLMTM, 2022

	Acacia hindsii Benth		México	Stembark	Decoction	Oral	Hutt & Houghton, 1998
	Coursetia glandulosa A. Gray	Samota	Sonora				DLMTM, 2022
	Erythrina coralloides DC.	Colorín	Michoacán	Latex	Apply the latex on the affected area	Topical	DLMTM, 2022
	Leucaena doylei Britton & Rose	Guaje de campo	Guerrero	Bark	Decoction with the bark	Oral	DLMTM, 2022
	Parkinsonia praecox	Palo verde	Oaxaca	Bark	Drink the bark mixed with liquor or water	Oral	Rosas-López, 2016
Heliotropiaceae	Heliotropium angiospermum Murray	Cola de alacrán	South of the Mexican Republic				DLMTM, 2022
	Heliotropium curassavicum L. var. oculatum (Heller) I. M. Johnston ex Tidestrom.	Alacrancillo					DLMTM, 2022

Lamiaceae	Agastache mexicana (Kunth) Linton & Epling	Toronjil		Leaves	Drink the maceration of the leaves with wine or apply it on the affected area	Oral or topical	DLMTM, 2022
	Mentha piperita L.	Hierbabuena					DLMTM, 2022
	Ocimum basilicum L.	Albahacar	O'(©	Leaves	The leaves are crushed, and the paste is applied to the affected area.	Topical	DLMTM, 2022
	Vitex mollis Kunth	Capulincillo	México, Guerrero, Michoacán, Morelos and Sonora,	Leaves	Decoction of the leaves, although it can also be applied directly to the sting area	Topical	DLMTM, 2022
	Vitex pyramidata B. L. Rob.	Querenderenicua	Nayarit and Michoacán	Leaves	The leaves are cooked together with Vitex mollis and Psidium guajava, the resulting water is drunk frequently	Oral	DLMTM, 2022

Passifloraceae	Turnera diffusa Willd	Damiana	Baja California Sur	Branches and leaves	Decoction	Oral	DLMTM, 2022
Pinaceae	Pinus teocote Schltdl. & Cham.	Ocote	Guerrero	Aerial part	The boiled plant is applied to the sting area	Topical	DLMTM, 2022
Piperaceae	Piper auritum Kunth	Acoyo		Leaves	The decoction of the leaf is taken, sweetened with palo honey	Oral	DLMTM, 2022
Plumbaginaceae	Plumbago scandens L.	Cola de iguana	México	Stem and leaves	Stem and leaves are crushed and mixed, a poultice is made that is applied to the sting area	Topical	DLMTM, 2022

Rubiaceae	Bouvardia ternifolia (Cav.) Schltdl.	Trompetilla	Central area of the Mexican Republic	Stem and leaves	There are different forms of application, the first is to bathe with the infusion of stems and leaves, or maceration of the leaves and stems is also applied to the affected area	Topical	DLMTM, 2022
	Coffea arabica L.	Café	- 810				DLMTM, 2022
Rutaceae	Citrus aurantifolia Swingle	Limón	Morelos and Guerrero				DLMTM, 2022
Sapotaceae	<i>Manilkara zapota</i> (L.) P. Royen	Chicozapote		Bark			Khater et al., 2017
Solanaceae	Nicotiana tabacum L.	Tabaco	Huasteca potosina and Papantla	Leaves	Smoke it	Inhalation	DLMTM, 2022

3.2 Distribution of plants

Medicinal plants listed in this study are distributed at various places throughout Mexico (Fig. 2), mainly in Estado de Mexico, Guerrero, and Michoacan with 6-9 medicinal plants used against scorpion venom; Baja California Sur, Jalisco, Morelos, Nayarit, and Sonora have between 3-5 medicinal plants; while Chihuahua, Sinaloa, Durango, Zacatecas, Puebla, and Oaxaca use between 1-2 medicinal plants.

There are certain similarities between the number of medicinal plants registered against this affection (Fig. 2) and the incidence of this disease (Fig. 1). It is observed that in the states with the highest incidence of scorpion stings, there is also a greater number of medicinal plants, for example, Guerrero, Michoacán, Jalisco, Nayarit.

Figure 2. Distribution of plants used against scorpion stings. Plant images from Copyright 2023, Tropics.

3.3 Families more used in scorpion sting treatment

A list of 48 medicinal plants used in Mexico against scorpion stings were identified; they are distributed in 26 families, where Fabaceae (14.6%), Lamiaceae (10.4%), and Asteraceae (10.4%) have maximum representation (Fig. 3). Species from families Euphorbiaceae (6.3%), Aristolochiaceae (6.3%), Rubiaceae (4%), Heliotropiaceae (4%), Convolvulaceae (4%), Apocynaceae (4%) are also found (Fig. 3).

Figure 3. Botanical families used for the treatment of scorpion stings.

In a study carried out on Saudi medicinal plants, it was reported that the families Fabaceae (12%), Apocynaceae (11%), Amaranthaceae (9%) and Asteraceae (7%) harbor the largest number of species used against scorpion stings (Al-Asmari et al.,

189	2017). In other countries such as Pakistan, the plants of the Solanaceae family were						
190	the most used in the treatment of snakebites and scorpion stings (Shah, 2018).						
191	In our study Aristolochia (6.3%), Acacia (6.3%), Ipomoea (4.2%), Euphorbia (4.2%),						
192	Heliotropium (4.2%), and Vitex (4.2%) are the genera more used for the treatment						
193	of scorpion envenomation (Table 1). Hutt and Houghton (1998) reported that the						
194	genera Aristolochia, Euphorbia, and Solanum are the more used in the world for this						
195	affection. While Al-Asmari et al. (2017) reported the genera Amaranthus,						
196	Heliotropium, Ipomoea, Cyperus, and Euphorbia in Saudi Arabia.						
197	Coincidences in the same genera and families suggest the presence of bioactive						
198	compounds with the same therapeutic properties in the same taxonomic group, for						
199	example, Aristolochic acid, is a common constituent of genera Aristolochia that						
200	inhibits the activity of phospholipases (Hutt & Houghton, 1998), which are frequently						
201	found in different venoms.						
202							
203	3.4 Plant parts and mode of use						
204	Figure 4 shows that the leaves (32%) are the parts of the plants most used to treat						
205	the symptoms of scorpion sting envenoming. Followed by roots (20%), stem (17%),						
206	flowers (16%), and bark (8%). Other parts used are resin, latex, bulb, and branches						
207	(<2%).						
208	Al-Asmari et al. (2017) reported the use of different parts of the plants with similar						
209	results: leaves (41%), roots (19%), whole plant (14%) and seeds (9%), latex (4%),						
210	tannin (2%), rhizome (1%) or shoot (1%). Shan et al. (2018) observed the dominant						
211	plant part was the leaf (22%).						

According to mode of use of medicinal plants, the Mexican population mainly opts for the decoction (32%) and infusion (30%) methods, followed by cataplasm (25%) and maceration (13%) (Fig. 5). This trend could be because the first two methods are easier to perform and because the extracts could be used for both local and systemic application.

Figure 4. Parts of the plant used in the treatment of scorpion stings.

Figure 5. Most common modes of use of medicinal plants in the treatment of scorpion stings in Mexico.

Thus, the oral and topical routes of administration were the most common to treat the symptoms of scorpion sting envenomation (Fig. 6), both with similar percentages. In some regions of Pakistan, the cataplasm has become more popular than other application methods (Shah, 2018).

Medicinal plants used against scorpion stings may have analgesic, anti-inflammatory, and anti-pruritic effects (Hutt & Houghton, 1998), which can be local

or systemic depending on the route of administration.

Figure 6. Routes of administration of the medicinal plants used in Mexico for treat the scorpion stings.

3.5 Studies of antivenom activity with medicinal plants and their compound isolated

Medicinal plants have played a fundamental role in diverse cultures to mitigate the effects of the sting of scorpions. In the present work, we collected data from 48 medicinal plants belonging to 26 plant families used in Mexico for the treatment of scorpion stings. Nevertheless, we found a limited number of scientific studies focused on the pharmacology of these species. Only, *Aristolochia elegans*, *Bouvardia terniflora*, and *Mimosa tenuiflora* belonging to the families Aristolochiaceae, Fabaceae, and Rubiaceae have shown anti-venom properties in animal models (Table 2). In the extracts of these plants, a wide variety of compounds

245	have been found, mainly terpenes, alkaloids, alkenes, flavonoids, steroids, lignans,
246	polyphenols, and alcohols were found (Table 2).
247	In the scientific literature, there are many reports on the pharmacological properties
248	of the aforementioned compounds. Considering this, the medicinal plants can offer
249	palliative effects against the symptoms of scorpion sting envenomation, since
250	normally the effectiveness of plant extracts is lower than the commercial antivenoms
251	(Kale et al., 2013).
252	We can highlight the analgesic activity of aristoquinoline from A. elegans, an alkaloid
253	closely related to the antagonist activity in the nicotinic acetylcholine receptor
254	(nAChR) (Argade et al., 2021). Likewise, it highlights the anti-inflammatory potential
255	of Aristolactams and aristolochic acids (Desai et al., 2014), the potential of vanillin
256	for inhibiting the expression of proinflammatory cytokines (Wang et al., 2022), and
257	the anti-inflammatory activity of spiro-type steroids (Zhang et al., 2016). The family
258	of terpenes has analgesic (Zielińska-Błajet & Feder-Kubis, 2020), anti-inflammatory
259	(Lei et al., 2019), and antioxidants effects (Sharifi-Rad et al., 2018). These properties
260	can also justify the positive pharmacological action of the extracts of A. elegans
261	against scorpion sting envenomation.

Table 2. Anti-venom constituents from medicinal plants.

Family	Botanical name	Isolated compounds	Extract evaluated	Experimental unit	Biological effect	Reference
Aristolochiaceae	Aristolochia elegans Mast.	olochia elegans Alcohols Met	Methanolic and Hexanic extract	Guinea pig	The extracts (80 µg/mL) inhibited the contraction of the ileum by 70% when this response was induced by the venom of <i>C. limpidus.limpidus</i> .	El-Sebakhy et al., 2004; El-Sebakhy & Waterman, 1984; Jimenez-Ferrer et al., 2005a; Mix et al., 1982; Shi et al., 2004; Vila et al., 1997; Wu et al., 2000; Zamilpa et al., 2014
			Vall Lie	Mice	The metanolic extract increased the LD ₅₀ of <i>C. limpidus limpidus</i> venom from 0.750 mg/kg to 0.984 mg/kg while the hexanic extract increased the LD ₅₀ to 1.04 mg/kg.	Jimenez-Ferrer et al., 2005a
Rubiaceae	Bouvardia ternifolia (Cav.) Schltdl	Triterpenes Polifenols Coumarines Bicyclic hexapeptides	Methanol extract Hexane extract	BALB/c mouse Sprague- Dawley rats	Albumin extravasation wasreduced by 60% when induced by <i>C. limpidus</i> venom.	García-Morales et al., 2015; Jiménez- Ferrer et al., 2005a
				Mice	The metanolic extract increased the LD ₅₀ of <i>C. limpidus limpidus</i> venom from 0.750 mg/kg to 1.16 mg/kg while the hexanic extract increased the LD ₅₀ to 1.64 mg/kg.	Jimenez-Ferrer, 2005a; Jolad et al., 1977

				Guinea pig	The extracts (40 µg/mL) inhibited the contraction of the ileum by 70% when this response was induced by the venom of <i>C. limpidus limpidus</i> .	Jimenez-Ferrer, 2005a
Fabaceae	Mimosa tenuiflora	Phenoxychromones Alkaloids Saponins Steroids Alcohols Aromatics Amines	Aqueous extract	Male BALB/c mice	Reduction in leukocyte migration to the peritoneal cavity. Reduction in the level of proinflammatory cytokines IL-6, IL-12, IL-1β	Amariz et al., 2022; Gardner et al., 2014; León et al., 2004; Oliveira et al., 2014

On the other hand, the compounds identified in Bouvardia terniflora could be related to the decrease in mortality of mice affected by C. limpidus venom and to the inhibition of smooth muscle contraction in the ileum of guinea pigs (Jimenez-Ferrer et al., 2005). In a study was determined that methanolic and hexanic extracts from the roots of *B. terniflora* are responsible for the inhibition of albumin extravasation in rat pancreas caused by the C. limpidus venom. This secretagogue effect was verified by isolating pancreatic amylase in a dose-dependent manner after exposing the pancreas of mice to C. limpidus venom. The properties can be attributed to the presence triterpenes, polyphenols, coumarins and hexapeptide bicycles (García-Morales et al., 2015; Jiménez-Ferrer et al., 2005; Jolad et al., 1977). Finally, the aqueous extract of M. tenuiflora demonstrated a reduction in the migration of leukocytes to the peritoneal cavity, which reduced the levels of proinflammatory cytokines in mice inoculated intravenously with Tytius serrulatus venom. Of this plant species has been reported the presence of chromones, alkaloids, saponins, steroids, alcohols, and aromatic compounds (Amariz et al., 2022; Gardner et al., 2014; León et al., 2004). The compounds above mentioned presented a wide variety of pharmacological effects, however, cannot be considered antivenom, but the palliative effect against the main symptoms can be inferred against scorpion sting envenoming. On the other hand, the antivenom activity of a plant could be attributed to the mixture of active compounds; which can have a synergistic effect on different targets such as enzymes and receptors.

287

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

4. CONCLUSIONS

This review demonstrates that herbal remedies play an important role in scorpion sting treatment, especially in rural communities where health centers rarely have antivenom available. In such instances, herbal therapeutics seems to be a viable alternative. There is a need to create centers or organizations that cultivate medicinal plants with anti-venom properties to exploit the knowledge hidden in traditional medicine and preserve this knowledge for future generations. Evidently, to apply this knowledge, first one needs to isolate and characterize the active compounds. Extensive research on the mechanism of action of these compounds at the biochemical and molecular level is also required to demonstrate their prophylactic efficacy in *in vivo* and *in vitro* models. In addition, further studies are required focused on enhancing the action of antivenoms with a complementary therapy based on the use of plant extracts or pure compounds. It is also important to establish *in vitro* plant propagation methods to avoid overexploitation of medicinal plants.

Acknowledgements

This work was carried out thanks to funding provided by the National Science and Technology Council (CONACYT) with project No. CB-2017-2018-A1-S-55142.

REFERENCES

- Ahmadi, S., Knerr, J. M., Argemi, L., Bordon, K. C. F., Pucca, M. B., Cerni, F. A.,
- Arantes, E. C., Çalışkan, F., & Laustsen, A. H. (2020). Scorpion Venom:
- Detriments and Benefits. *Biomedicines*, 8(5), E118.
- 312 https://doi.org/10.3390/biomedicines8050118

313	Al-Asmari, A., Manthiri, R. A., Abdo, N., Al-Duaiji, F. A., & Khan, H. A. (2017).
314	Saudi medicinal plants for the treatment of scorpion sting envenomation.
315	Saudi Journal of Biological Sciences, 24(6), 1204–1211.
316	https://doi.org/10.1016/j.sjbs.2016.10.010
317	Amariz, I. A. e, Pereira, E. C. V., Alencar Filho, J. M. T. de, Silva, J. P. da, Souza,
318	N. A. C. de, de Oliveira, A. P., Rolim, L. A., & Pereira, R. N. (2022).
319	Chemical study of Mimosa tenuiflora barks. Natural Product Research,
320	36(7), 1893–1897. https://doi.org/10.1080/14786419.2020.1813135
321	Argade, M. D., Straub, C. J., Rusali, L. E., Santarsiero, B. D., & Riley, A. P. (2021)
322	Synthesis of Aristoquinoline Enantiomers and Their Evaluation at the $\alpha 3\beta 4$
323	Nicotinic Acetylcholine Receptor. Organic Letters, 23(20), 7693–7697.
324	https://doi.org/10.1021/acs.orglett.1c02057
325	Chippaux, JP., Celis, A., Boyer, L., & Alagón, A. (2020). Factors involved in the
326	resilience of incidence and decrease of mortality from scorpion stings in
327	Mexico. Toxicon, 188, 65–75. https://doi.org/10.1016/j.toxicon.2020.10.011
328	Chippaux, JP., & Goyffon, M. (2008). Epidemiology of scorpionism: A global
329	appraisal. Acta Tropica, 107(2), 71–79.
330	https://doi.org/10.1016/j.actatropica.2008.05.021
331	Desai, D. C., Jacob, J., Almeida, A., Kshirsagar, R., & Manju, S. L. (2014).
332	Isolation, structural elucidation and anti-inflammatory activity of astragalin, (
333	-)hinokinin, aristolactam I and aristolochic acids (I & II) from Aristolochia
334	indica. Natural Product Research, 28(17), 1413–1417.
335	https://doi.org/10.1080/14786419.2014.905563

336	Dey, A., Dey, A., & De, J. N. (2013). Scorpion anti-venom activity of botanicals: A
337	pharmacological approach. Pakistan Journal of Biological Sciences, 16(5),
338	201-207. https://doi.org/10.3923/pjbs.2013.201.207
339	Dimayuga, R. E., Murillo, R. F., & Pantoja, M. L. (1987). Traditional medicine of
340	Baja California Sur (Mexico) II. Journal of Ethnopharmacology, 20(3), 209-
341	222. https://doi.org/10.1016/0378-8741(87)90049-3
342	DLMTM. (2022). Atlas de las Plantas de la Medicina Tradicional Mexicana:
343	Biblioteca Digital de la Medicina Tradicional Mexicana.
344	http://www.medicinatradicionalmexicana.unam.mx/
345	El-Sebakhy, N., Richomme, P., Taaima, S., & Shamma, M. (2004, July 1). (-)-
346	Temuconine, a New Bisbenzylisoquinoline Alkaloid from Aristolochia
347	elegans (world). ACS Publications; American Chemical Society.
348	https://doi.org/10.1021/np50066a038
349	El-Sebakhy, N., & Waterman, P. G. (1984). (-)-(R,R)-7'-O-methylcuspidaline from
350	the leaves of Aristolochia elegans. Phytochemistry, 23(11), 2706–2707.
351	https://doi.org/10.1016/S0031-9422(00)84143-6
352	García-Morales, G., Huerta-Reyes, M., González-Cortazar, M., Zamilpa, A.,
353	Jiménez-Ferrer, E., Silva-García, R., Román-Ramos, R., & Aguilar-Rojas, A.
354	(2015). Anti-inflammatory, antioxidant and anti-acetylcholinesterase
355	activities of Bouvardia ternifolia: Potential implications in Alzheimer's
356	disease. Archives of Pharmacal Research, 38(7), 1369–1379.
357	https://doi.org/10.1007/s12272-015-0587-6
358	Gardner, D., Riet-Correa, F., Lemos, D., Welch, K., Pfister, J., & Panter, K. (2014).
359	Teratogenic Effects of Mimosa tenuiflora in a Rat Model and Possible Role

360	of N-Methyl- and N,N-Dimethyltryptamine. Journal of Agricultural and Food
361	Chemistry, 62(30), 7398-7401. https://doi.org/10.1021/jf5005176
362	González-Santillán, E., & Possani, L. D. (2018). North American scorpion species
363	of public health importance with a reappraisal of historical epidemiology.
364	Acta Tropica, 187, 264–274.
365	https://doi.org/10.1016/j.actatropica.2018.08.002
366	Hutt, M. J., & Houghton, P. J. (1998). A survey from the literature of plants used to
367	treat scorpion stings. Journal of Ethnopharmacology, 60(2), 97-110.
368	https://doi.org/10.1016/S0378-8741(97)00138-4
369	Jiménez-Ferrer, E., Reynosa-Zapata, I., Pérez-Torres, Y., & Tortoriello, J. (2005).
370	The secretagogue effect of the poison from Centruroides limpidus limpidus
371	on the pancreas of mice and the antagonistic action of the Bouvardia
372	ternifolia extract. Phytomedicine, 12(1), 65–71.
373	https://doi.org/10.1016/j.phymed.2004.05.001
374	Jimenez-Ferrer, J. E., Perez-Teran, Y. Y., Roman-Ramos, R., & Tortoriello, J.
375	(2005). Antitoxin activity of plants used in Mexican traditional medicine
376	against scorpion poisoning. Phytomedicine: International Journal of
377	Phytotherapy & Emp; Phytopharmacology, 12(1–2), 116–123.
378	Jolad, S., Hoffmann, J., Torrance, S., Wiedhopf, R., Cole, J., Azora, S., Bates, R.,
379	Gargiulo, R., & Kriek, G. (1977). Bouvardin and deoxybouvardin, antitumor
380	cyclic hexapeptides from Bouvardia ternifolia (Rubiaceae) Journal of the
381	American Chemical Society.
382	https://pubs.acs.org/doi/abs/10.1021/ja00466a043

383	Kale, R. S., Bahekar, S. E., Nagpure, S. R., & Salwe, K. J. (2013). Anti-scorpion
384	venom activity of Andrographis paniculata: A combined and comparative
385	study with anti-scorpion serum in mice. Ancient science of life, 32(3), 156-
386	160. https://doi.org/10.4103/0257-7941.122999
387	Khater, H., Govindarajan, M., & Benelli, G. (2017). Natural Remedies in the Fight
388	Against Parasites. BoD – Books on Demand.
389	Lei, Y., Fu, P., Jun, X., & Cheng, P. (2019). Pharmacological Properties of Geraniol
390	A Review. Planta Medica, 85(1), 48–55. https://doi.org/10.1055/a-0750-
391	6907
392	León, L., Maldonado, E., Cruz, A., & Ortega, A. (2004). Thieme E-Journals—Planta
393	Medica / Abstract. https://www.thieme-
394	connect.com/products/ejournals/abstract/10.1055/s-2004-827154
395	Mix, D., Guinaudeau, H., & Shamma, M. (1982). Los Ácidos Aristolóquicos y las
396	Aristolactamas Diario de Productos Naturales.
397	https://pubs.acs.org/doi/pdf/10.1021/np50024a001
398	Oliveira, M., Jeronimo, M., Torres, M., Morais, J., Silva, A., Vilarinho, D., Zucolotto,
399	S., & Fernandes, M. (2014). Neutralizing Effects of Mimosa tenuiflora
400	Extracts against Inflammation Caused by Tityus serrulatus Scorpion Venom.
401	https://www.hindawi.com/journals/bmri/2014/378235/
402	Rein, J. (2022). Los archivos de Scorpion—Página principal.
403	https://www.ntnu.no/ub/scorpion-files/
404	Riaño-Umbarila, L., Ledezma-Candanoza, L. M., Serrano-Posada, H., Fernández-
405	Taboada, G., Olamendi-Portugal, T., Rojas-Trejo, S., Gómez-Ramírez, I. V.,
406	Rudiño-Piñera, E., Possani, L. D., & Becerril, B. (2016). Optimal

407	Neutralization of Centruroides noxius venom is Understood through a
408	Structural Complex between Two Antibody Fragments and the Cn2 Toxin *.
409	Journal of Biological Chemistry, 291(4), 1619–1630.
410	https://doi.org/10.1074/jbc.M115.685297
411	Rodríguez-Hernández, A. A., Flores-Soria, F. G., Patiño-Rodríguez, O., &
412	Escobedo-Moratilla, A. (2022). Sanitary Registries and Popular Medicinal
413	Plants Used in Medicines and Herbal Remedies in Mexico (2001–2020): A
414	Review and Potential Perspectives. Horticulturae, 8(5), Article 5.
415	https://doi.org/10.3390/horticulturae8050377
416	Rosas-Lopez, E. (2016). Conocimiento etnofarmacobiologico de la región Cañada
417	Oaxaca.
418	https://www.academia.edu/23419688/Conocimiento_etnofarmacobiologico_
419	de_la_regi%C3%B3n_Ca%C3%B1ada_Oaxaca
420	Shah, A. (2018). An ethnobotanical survey of medicinal plants used for the
421	treatment of snakebite and scorpion sting among the people of Namal
422	Valley, Mianwali District, Punjab, Pakistan. Applied Ecology and
423	Environmental Research, 16(1), 111–143.
424	https://doi.org/10.15666/aeer/1601_111143
425	Sharifi-Rad, M., Varoni, E. M., Iriti, M., Martorell, M., Setzer, W. N., Del Mar
426	Contreras, M., Salehi, B., Soltani-Nejad, A., Rajabi, S., Tajbakhsh, M., &
427	Sharifi-Rad, J. (2018). Carvacrol and human health: A comprehensive
428	review. Phytotherapy Research: PTR, 32(9), 1675–1687.
429	https://doi.org/10.1002/ptr.6103

130	Sni, LS., Kuo, PC., Tsai, YL., Damu, A. G., & Wu, TS. (2004). The aikaloids
131	and other constituents from the root and stem of Aristolochia elegans.
132	Bioorganic & Medicinal Chemistry, 12(2), 439–446.
133	https://doi.org/10.1016/j.bmc.2003.10.031
134	Shutterstock. (2023, 17 de mayo).
135	https://www.shutterstock.com/es/search/centruroides-limpidus
136	Stockmann, R. (2015). Introduction to Scorpion Biology and Ecology. In P.
137	Gopalakrishnakone, L. D. Possani, E. F. Schwartz, & R. C. Rodríguez de la
138	Vega (Eds.), Scorpion Venoms (pp. 25-59). Springer Netherlands.
139	https://doi.org/10.1007/978-94-007-6404-0_14
140	Telli, A., Chedad, A., & Sadine, S. E. (2022). Ethnobotanical study of medicinal
141	plants used for scorpion sting envenoming treatments in Algerian
142	Septentrional Sahara. International Journal of Environmental Studies, 0(0),
143	1-23. https://doi.org/10.1080/00207233.2022.2055345
144	Tropicos. (2023, 17 de mayo). http://legacy.tropicos.org/ImageSearch.aspx
145	Ulloa, C., Acevedo, P., Beck, S., Belgrano, M., Bernal, R., Berry, P., Brako, L.,
146	Celis, M., & Davidse, G. (2017). An integrated assessment of the vascular
147	plant species of the Americas Science.
148	https://www.science.org/doi/abs/10.1126/science.aao0398
149	Ureta, C., González, E. J., Ramírez-Barrón, M., Contreras-Félix, G. A., &
450	Santibáñez-López, C. E. (2020). Climate change will have an important
451	impact on scorpion's fauna in its most diverse country, Mexico. Perspectives
152	in Ecology and Conservation, 18(2), 116–123.
4 53	https://doi.org/10.1016/j.pecon.2020.04.003

____ Journal Pre-proof

454	Valdez-Velázquez, L. L., Olamendi-Portugal, T., Restano-Cassulini, R., Zamudio,
455	F. Z., & Possani, L. D. (2018). Mass fingerprinting and electrophysiological
456	analysis of the venom from the scorpion Centruroides hirsutipalpus
457	(Scorpiones: Buthidae). Journal of Venomous Animals and Toxins Including
458	Tropical Diseases, 24, 17. https://doi.org/10.1186/s40409-018-0154-y
459	Vila, R., Mundina, M., Muschietti, L., Priestap, H. A., Bandoni, A. L., Adzet, T., &
460	Cañigueral, S. (1997). Volatile constituents of leaves, roots and stems from
461	Aristolochia elegans. Phytochemistry, 46(6), 1127–1129.
462	https://doi.org/10.1016/S0031-9422(97)00400-7
463	Wang, P., Li, C., Liao, G., Huang, Y., Lv, X., Liu, X., Chen, W., & Zhang, L. (2022).
464	Vanillin Attenuates Proinflammatory Factors in a tMCAO Mouse Model via
465	Inhibition of TLR4/NF-kB Signaling Pathway. Neuroscience, 491, 65–74.
466	https://doi.org/10.1016/j.neuroscience.2022.03.003
467	Wu, TS., Tsai, YL., Wu, PL., Lin, FW., & Lin, JK. (2000). Constituents from
468	the Leaves of Aristolochia elegans. Journal of Natural Products, 63(5), 692-
469	693. https://doi.org/10.1021/np990483o
470	Zamilpa, A., Abarca-Vargas, R., Ventura-Zapata, E., Osuna-Torres, L., Zavala, M.
471	A., Herrera-Ruiz, M., Jiménez-Ferrer, E., & González-Cortazar, M. (2014).
472	Neolignans from Aristolochia elegans as antagonists of the neurotropic
473	effect of scorpion venom. Journal of Ethnopharmacology, 157, 156-160.
474	https://doi.org/10.1016/j.jep.2014.08.045
475	Zhang, Y., Yu, HY., Chao, LP., Qu, L., Ruan, JY., Liu, YX., Dong, YZ., Han,
476	LF., & Wang, T. (2016). Anti-inflammatory steroids from the rhizomes of

477	Dioscorea septemloba Thunb. Steroids, 112, 95–102.
478	https://doi.org/10.1016/j.steroids.2016.05.007
479	Zielińska-Błajet, M., & Feder-Kubis, J. (2020). Monoterpenes and Their
480	Derivatives—Recent Development in Biological and Medical Applications.
481	International Journal of Molecular Sciences, 21(19), Article 19.
482	https://doi.org/10.3390/ijms21197078

Highlights

- Number of medicinal plants registered to treat scorpion stings is according to the incidence of this disease.
- ➤ A. elegans, B. ternifolia, and M. tenuiflora decreased proinflammatory cytokines and DL₅₀ of Centruroides sp.
- Triterpens, polyphenols, coumarins, and hexapeptide cycles of plants could be responsible for the antivenom effect.

Ethical Statement

There are no animal or human subjects in this article and informed consent is not applicable.

			_													
\Box	The	اء		مام مام	. ما الله مسم					:	£:	:		ا میں میں میں		مماناهم
Ш	rne	auti	nors	aecia	are tha	at they	nave no) KNOWI	i comi	peting	rinanciai	intere	ests or	personal	relation	isnips

Declaration of interests

that could have appeared to influence the work reported in this paper.

☑ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Mayra Herrera Martinez reports financial support was provided by National Council on Science and Technology. Mayra Herrera Martine reports a relationship with National Council on Science and Technology that includes: funding grants.