CH 13 Congruence of Integers

mrevanishere

November 16, 2020

1 Congruence

DEFINITION: Let m be a pos int. For $a, b \in \mathbb{Z}$ if m divides b - a we write $a \equiv b \mod m$ and say a is congruent to b modulo m

Prop 13.1: Every int is congruent to exactly one of the numbers 0 to m-1 modulo m Prop 13.2: Let m be a pos int. The following are true, for all $a, b, c \in \mathbb{Z}$:

- (1) $a \equiv a \mod m$
- (2) if $a \equiv b \mod m$ then $b \equiv a \mod m$
- (3) if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$

2 Arithmetic with Congruences

Prop 13.3: Suppose $a \equiv b \mod m$ and $c \equiv d \mod m$. Then:

 $a + c \equiv b + d \mod m$ and $ac \equiv bd \mod m$.

Prop 13.4: If $a \equiv b \mod m$, and n is a pos int, then

 $a^n \equiv b^n \mod m$

Prop 13.5:

- (1) Let a and m be coprime integers. If $x, y \in \mathbb{Z}$ are such that $xa \equiv ya \mod m$, then $x \equiv y \mod m$
- (2) Let p be a prime, and let a be an int that is not divisible by p. If $x, y \in \mathbb{Z}$ are such that $xa \equiv ya \mod p$, then $x \equiv y \mod p$

3 Congruence Equations

 $ax \equiv b \mod m, x \in \mathbb{Z}$ is a linear congruence equation

Prop 13.6: The congruence equation $ax \equiv b \mod m$ has a solution $x \in \mathbb{Z}$ iff

hcf(a,m) divides b

${\bf 4} \quad {\bf The \ System} \ \mathbb{Z}_m$

"the integers modulo m". Examples $\,$