18-661 Introduction to Machine Learning

Linear Regression - II

Fall 2020

ECE - Carnegie Mellon University

Today's Class: Practical Issues with Using Linear Regression and How to Address Them

Outline

- 1. Review of Linear Regression
- 2. Gradient Descent Methods
- 3. Feature Scaling
- 4. Ridge regression
- 5. Non-linear Basis Functions
- 6. Overfitting

Review of Linear Regression

Example: Predicting house prices

 $\mathsf{Sale}\ \mathsf{price} \approx \mathsf{price_per_sqft}\ \times\ \mathsf{square_footage}\ +\ \mathsf{fixed_expense}$

Minimize squared errors

Our model:

Sale_price =

 $\label{eq:price_per_sqft} price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff \\ \hline \textit{Training data:} \\$

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107 ²
1100	312K	350K	38K	38 ²
5500	2,600K	2,600K	0	0
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Aim:

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the unexplainable_stuff is minimized.

Linear regression

Setup:

- Input: $\mathbf{x} \in \mathbb{R}^D$ (covariates, predictors, features, etc)
- **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \mathbf{x} \to y$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^\top \mathbf{x}$.
 - $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_D]^{\top}$: weights, parameters, or parameter vector
 - w₀ is called bias.
 - Sometimes, we also call $\mathbf{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^{\top}$ parameters.
- Training data: $\mathcal{D} = \{(\mathbf{x}_n, y_n), n = 1, 2, \dots, N\}$

Minimize the Residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n=1}^{N} [y_n - (w_0 + \sum_{d=1}^{D} w_d x_{nd})]^2$$

4

Residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Figure 1: RSS is the sum of squares of the dotted lines

Figure 2: Adjust (w_0, w_1) to reduce RSS

Figure 3: RSS minimized at (w_o^*, w_1^*)

Residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Stationary points:

Take derivative with respect to parameters and set it to zero

$$\frac{\partial RSS(\mathbf{w})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0,$$

$$\frac{\partial RSS(\mathbf{w})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0.$$

7

$$\frac{\partial RSS(\mathbf{w})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$
$$\frac{\partial RSS(\mathbf{w})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get the "Normal Equations":

$$\sum y_n = Nw_0 + w_1 \sum x_n$$
$$\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2$$

Solving the system we obtain the least squares coefficient estimates:

$$w_1 = \frac{\sum (x_n - \bar{x})(y_n - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 and $w_0 = \bar{y} - w_1 \bar{x}$

where
$$\bar{x} = \frac{1}{N} \sum_{n} x_n$$
 and $\bar{y} = \frac{1}{N} \sum_{n} y_n$.

8

Least Mean Squares when x is D-dimensional

RSS(w) in matrix form:

$$RSS(\mathbf{w}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \mathbf{w}^{\top} \mathbf{x}_n]^2,$$

where we have redefined some variables (by augmenting)

$$\mathbf{x} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_D]^\top, \quad \mathbf{w} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_D]^\top$$

Design matrix and target vector:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_N^\top \end{pmatrix} \in \mathbb{R}^{N \times (D+1)}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N$$

Compact expression:

$$RSS(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + \text{const}$$

Example: $RSS(\mathbf{w})$ in compact form

sqft (1000's)	bedrooms	bathrooms	sale price (100k)
1	2	1	2
2	2	2	3.5
1.5	3	2	3
2.5	4	2.5	4.5

Design matrix and target vector:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_N^\top \end{pmatrix} \in \mathbb{R}^{N \times (D+1)}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N$$

. Compact expression:

$$RSS(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + const$$

Example: $RSS(\mathbf{w})$ in compact form

sqft (1000's)	bedrooms	bathrooms	sale price (100k)
1	2	1	2
2	2	2	3.5
1.5	3	2	3
2.5	4	2.5	4.5

Design matrix and target vector:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1}^{\top} \\ \mathbf{x}_{2}^{\top} \\ \vdots \\ \mathbf{x}_{N}^{\top} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 1.5 & 3 & 2 \\ 1 & 2.5 & 4 & 2.5 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

. Compact expression:

$$RSS(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2} = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + \text{const}$$

Three Optimization Methods

Want to Minimize

$$\textit{RSS}(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + \text{const}$$

- Least-Squares Solution; taking the derivative and setting it to zero
- Batch Gradient Descent
- Stochastic Gradient Descent

Least-Squares Solution

Compact expression

$$RSS(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + \text{const}$$

Gradients of Linear and Quadratic Functions

- $\nabla_{\mathbf{x}}(\mathbf{b}^{\top}\mathbf{x}) = \mathbf{b}$
- $\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = 2\mathbf{A}\mathbf{x}$ (symmetric \mathbf{A})

Normal equation

$$\nabla_{\mathbf{w}} RSS(\mathbf{w}) = 2\mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\top} \mathbf{y} = 0$$

This leads to the least-mean-squares (LMS) solution

$$\mathbf{w}^{LMS} = \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{X}^{ op}\mathbf{y}$$

Gradient Descent Methods

Outline

Review of Linear Regression

Gradient Descent Methods

Feature Scaling

Ridge regression

Non-linear Basis Functions

Overfitting

Three Optimization Methods

Want to Minimize

$$\textit{RSS}(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + const$$

- Least-Squares Solution; taking the derivative and setting it to zero
- Batch Gradient Descent
- Stochastic Gradient Descent

Computational complexity

Bottleneck of computing the solution?

$$\mathbf{w} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}$$

How many operations do we need?

- $O(ND^2)$ for matrix multiplication $\mathbf{X}^{\top}\mathbf{X}$
- $O(D^3)$ (e.g., using Gauss-Jordan elimination) or $O(D^{2.373})$ (recent theoretical advances) for matrix inversion of $\mathbf{X}^{\top}\mathbf{X}$
- O(ND) for matrix multiplication $\mathbf{X}^{\top}\mathbf{y}$
- $O(D^2)$ for $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ times $\mathbf{X}^{\top}\mathbf{y}$

$$O(ND^2) + O(D^3)$$
 – Impractical for very large D or N

Alternative method: Batch Gradient Descent

(Batch) Gradient descent

- Initialize **w** to $\mathbf{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - 1. Compute the gradient $\nabla RSS(\mathbf{w}) = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w}^{(t)} \mathbf{y})$
 - 2. Update the parameters $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla RSS(\mathbf{w})$
 - $3. t \leftarrow t + 1$

What is the complexity of each iteration? O(ND)

Why would this work?

If gradient descent converges, it will converge to the same solution as using matrix inversion.

This is because RSS(w) is a convex function in its parameters w

Hessian of RSS

$$RSS(w) = w^{\top} \mathbf{X}^{\top} \mathbf{X} w - 2 (\mathbf{X}^{\top} \mathbf{y})^{\top} w + \text{const}$$
$$\Rightarrow \frac{\partial^{2} RSS(w)}{\partial w w^{\top}} = 2 \mathbf{X}^{\top} \mathbf{X}$$

 $\mathbf{X}^{\top}\mathbf{X}$ is positive semidefinite, because for any \mathbf{v}

$$\boldsymbol{v}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{v} = \|\boldsymbol{X}^{\top}\boldsymbol{v}\|_{2}^{2} \geq 0$$

Three Optimization Methods

Want to Minimize

$$\textit{RSS}(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \left\{\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w} - 2\left(\mathbf{X}^{\top}\mathbf{y}\right)^{\top}\mathbf{w}\right\} + const$$

- Least-Squares Solution; taking the derivative and setting it to zero
- Batch Gradient Descent
- Stochastic Gradient Descent

Stochastic gradient descent (SGD)

Widrow-Hoff rule: update parameters using one example at a time

- Initialize **w** to some $\mathbf{w}^{(0)}$; set t=0; choose $\eta>0$
- Loop until convergence
 - 1. random choose a training a sample x_t
 - 2. Compute its contribution to the gradient

$$\mathbf{g}_t = (\mathbf{x}_t^{\top} \mathbf{w}^{(t)} - y_t) \mathbf{x}_t$$

3. Update the parameters

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{g}_t$$

4. $t \leftarrow t + 1$

How does the complexity per iteration compare with gradient descent?

• O(ND) for gradient descent versus O(D) for SGD

SGD versus Batch GD

Stochastic Gradient Descent

Gradient Descent

- ullet SGD reduces per-iteration complexity from $O({\rm ND})$ to $O({\rm D})$
- But it is noisier and can take longer to converge

Example: Comparing the Three Methods

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

Example: Least Squares Solution

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

The w_0 and w_1 that minimize this are given by:

$$\mathbf{w}^{LMS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1.5 & 2.5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1.5 \\ 1 & 2.5 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1.5 & 2.5 \end{bmatrix} \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

Example: Least Squares Solution

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

The w_0 and w_1 that minimize this are given by:

$$\mathbf{w}^{LMS} = (\mathbf{X}^{\top}\mathbf{X})^{-1} \mathbf{X}^{\top}\mathbf{y}$$

$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1.5 & 2.5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1.5 \\ 1 & 2.5 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1.5 & 2.5 \end{bmatrix} \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

$$\begin{vmatrix} w_0 \\ w_1 \end{vmatrix} = \begin{vmatrix} 0.45 \\ 1.6 \end{vmatrix}$$
 Minimum RSS is $RSS^* = ||\mathbf{X}\mathbf{w}^{LMS} - \mathbf{y}||_2^2 = 0.2236$

Example: Batch Gradient Descent

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{w}^{(t)} - \mathbf{y} \right)$$

Larger η gives faster convergence

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{w}^{(t)} - \mathbf{y} \right)$$

But too large η makes GD unstable

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{w}^{(t)} - \mathbf{y} \right)$$

Example: Stochastic Gradient Descent

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \left(\mathbf{x}_t^{\top} \mathbf{w}^{(t)} - \mathbf{y} \right) \mathbf{x}_t$$

Larger η gives faster convergence

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \left(\mathbf{x}_t^{\top} \mathbf{w}^{(t)} - \mathbf{y} \right) \mathbf{x}_t$$

But too large η makes SGD unstable

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \left(\mathbf{x}_t^{\top} \mathbf{w}^{(t)} - \mathbf{y} \right) \mathbf{x}_t$$

How to Choose Learning Rate η in practice?

- Try 0.0001, 0.001, 0.01, 0.1 etc. on a validation dataset (more on this later) and choose the one that gives fastest, stable convergence
- Reduce η by a constant factor (eg. 10) when learning saturates so that we can reach closer to the true minimum.
- More advanced learning rate schedules such as AdaGrad, Adam, AdaDelta are used in practice.

Summary of Gradient Descent Methods

- Batch gradient descent computes the exact gradient.
- Stochastic gradient descent approximates the gradient with a single data point; its expectation equals the true gradient.
- Mini-batch variant: set the batch size to trade-off between accuracy of estimating gradient and computational cost
- Similar ideas extend to other ML optimization problems.

Feature Scaling

Outline

Review of Linear Regression

Gradient Descent Methods

Feature Scaling

Ridge regression

Non-linear Basis Functions

Overfitting

Batch Gradient Descent: Scaled Features

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}) = \mathbf{w}^{(t)} - \eta \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{w}^{(t)} - \mathbf{y} \right)$$

Batch Gradient Descent: Without Feature Scaling

sqft	sale price
1000	200,000
2000	350,000
1500	300,000
2500	450,000

- Least-squares solution is $(w_0^*, w_1^*) = (45000, 160)$
- $\nabla RSS(\mathbf{w}^{(t)}) = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w}^{(t)} \mathbf{y})$ becomes HUGE, causing instability
- \bullet We need a tiny η to compensate, but this leads to slow convergence

Batch Gradient Descent: Without Feature Scaling

sqft	sale price
1000	200,000
2000	350,000
1500	300,000
2500	450,000

- Least-squares solution is $(w_0^*, w_1^*) = (45000, 160)$
- $\nabla RSS(w)$ becomes HUGE, causing instability
- \bullet We need a tiny η to compensate, but this leads to slow convergence

How to Scale Features?

Min-max normalization

$$x'_d = \frac{x_d - \min_n(x_d)}{\max_n x_d - \min_n x_d}$$

The min and max are taken over the possible values $x_d^{(1)}, \dots x_d^{(N)}$ of x_d in the dataset. This will result in all scaled features $0 \le x_d \le 1$

Mean normalization

$$x'_d = \frac{x_d - \operatorname{avg}(x_d)}{\max_n x_d - \min_n x_d}$$

This will result in all scaled features $-1 \le x_d \le 1$

Labels $y^{(1)}, \dots y^{(N)}$ should be similarly re-scaled Several other methods: eg. dividing by standard deviation (Z-score normalization)

Ridge regression

Outline

Review of Linear Regression

Gradient Descent Methods

Feature Scaling

Ridge regression

Non-linear Basis Functions

Overfitting

What if X^TX is not invertible?

$$\mathbf{w}^{LMS} = \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{X}^{ op}\mathbf{y}$$

Why might this happen?

- Answer 1: N < D. Not enough data to estimate all parameters.
 X^TX is not full-rank
- Answer 2: Columns of X are not linearly independent, e.g., some features are linear functions of other features. In this case, solution is not unique. Examples:
 - A feature is a re-scaled version of another, for example, having two features correspond to length in meters and feet respectively
 - Same feature is repeated twice could happen when there are many features
 - A feature has the same value for all data points
 - Sum of two features is equal to a third feature

Example: Matrix X^TX is not invertible

sqft (1000's)	bathrooms	sale price (100k)
1	2	2
2	2	3.5
1.5	2	3
2.5	2	4.5

Design matrix and target vector:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 1.5 & 2 \\ 1 & 2.5 & 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

The 'bathrooms' feature is redundant, so we don't need w_2

$$y = w_0 + w_1x_1 + w_2x_2$$

= $w_0 + w_1x_1 + w_2 \times 2$, since x_2 is always 2!
= $w_{0,eff} + w_1x_1$, where $w_{0,eff} = (w_0 + 2w_2)$

What does the RSS loss function look like?

• When $\mathbf{X}^{\top}\mathbf{X}$ is not invertible, the RSS objective function has a ridge, that is, the minimum is a line instead of a single point

In our example, this line is $w_{0,eff} = (w_0 + 2w_2)$

How do you fix this issue?

sqft (1000's)	bathrooms	sale price (100k)
1	2	2
2	2	3.5
1.5	2	3
2.5	2	4.5

- Manually remove redundant features
- But this can be tedious and non-trivial, especially when a feature is a linear combination of several other features

Need a general way that doesn't require manual feature engineering SOLUTION: Ridge Regression

Ridge regression

Intuition: what does a non-invertible $\mathbf{X}^{\top}\mathbf{X}$ mean? Consider the SVD of this matrix:

$$m{\mathcal{X}}^{ op}m{\mathcal{X}} = m{V} \left[egin{array}{cccccc} \lambda_1 & 0 & 0 & \cdots & 0 \ 0 & \lambda_2 & 0 & \cdots & 0 \ 0 & \cdots & \cdots & \cdots & 0 \ 0 & \cdots & \cdots & \lambda_r & 0 \ 0 & \cdots & \cdots & 0 & 0 \end{array}
ight] m{V}^{ op}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0$ and r < D. We will have a divide by zero issue when computing $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$

Fix the problem: ensure all singular values are non-zero:

$$\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I} = \mathbf{V} \operatorname{diag}(\lambda_1 + \lambda, \lambda_2 + \lambda, \cdots, \lambda) \mathbf{V}^{\top}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix.

Regularized least square (ridge regression)

Solution

$$\boldsymbol{w} = \left(\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

This is equivalent to adding an extra term to RSS(w)

$$\frac{1}{2} \left\{ \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \left(\mathbf{X}^{\top} \mathbf{y} \right)^{\top} \mathbf{w} \right\} + \underbrace{\frac{1}{2} \lambda \|\mathbf{w}\|_{2}^{2}}_{\text{regularization}}$$

Benefits

- Numerically more stable, invertible matrix
- Force w to be small
- Prevent overfitting more on this later

Applying this to our example

sqft (1000's)	bathrooms	sale price (100k)
1	2	2
2	2	3.5
1.5	2	3
2.5	2	4.5

The 'bathrooms' feature is redundant, so we don't need w_2

$$y = w_0 + w_1 x_1 + w_2 x_2$$

= $w_0 + w_1 x_1 + w_2 \times 2$, since x_2 is always 2!
= $w_{0,eff} + w_1 x_1$, where $w_{0,eff} = (w_0 + 2w_2)$
= $0.45 + 1.6x_1$ Should get this

Applying this to our example

The 'bathrooms' feature is redundant, so we don't need w_2

$$y = w_0 + w_1x_1 + w_2x_2$$

= $w_0 + w_1x_1 + w_2 \times 2$, since x_2 is always 2!
= $w_{0,eff} + w_1x_1$, where $w_{0,eff} = (w_0 + 2w_2)$
= $0.45 + 1.6x_1$ Should get this

Compute the solution for $\lambda = 0.5$

$$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{y}$$
$$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 0.208 \\ 1.247 \\ 0.4166 \end{bmatrix}$$

How does λ affect the solution?

$$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \left(\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^\top \boldsymbol{y}$$

Let us plot $w_o' = w_0 + 2w_2$ and w_1 for different $\lambda \in [0.01, 20]$

Setting small λ gives almost the least-squares solution, but it can cause numerical instability in the inversion

How to choose λ ?

λ is referred as *hyperparameter*

- Associated with the estimation method, not the dataset
- In contrast w is the parameter vector
- Use validation set or cross-validation to find good choice of λ (more on this in the next lecture)

Why is it called Ridge Regression?

- When $\mathbf{X}^{\top}\mathbf{X}$ is not invertible, the RSS objective function has a ridge, that is, the minimum is a line instead of a single point
- Adding the regularizer term $\frac{1}{2}\lambda\|w\|_2^2$ yields a unique minimum, thus avoiding instability in matrix inversion

Probabilistic Interpretation of Ridge Regression

Add a term to the objective function.

 Choose the parameters to not just minimize risk, but avoid being too large.

$$\frac{1}{2} \left\{ \boldsymbol{w}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} - 2 \left(\boldsymbol{X}^{\top} \boldsymbol{y} \right)^{\top} \boldsymbol{w} \right\} + \frac{1}{2} \lambda \| \boldsymbol{w} \|_{2}^{2}$$

Probabilistic interpretation: Place a prior on our weights

- Interpret w as a random variable
- Assume that each w_d is centered around zero
- ullet Use observed data ${\mathcal D}$ to update our prior belief on ${oldsymbol w}$

Gaussian priors lead to ridge regression.

Review: Probabilistic interpretation of Linear Regression

Linear Regression model: $Y = \mathbf{w}^{\top} \mathbf{X} + \eta$

$$\eta \sim \textit{N}(0, \sigma_0^2)$$
 is a Gaussian random variable and $Y \sim \textit{N}({\pmb w}^{\top}{\pmb X}, \sigma_0^2)$

Frequentist interpretation: We assume that \boldsymbol{w} is fixed.

The likelihood function maps parameters to probabilities

$$L: \boldsymbol{w}, \sigma_0^2 \mapsto p(\mathcal{D}|\boldsymbol{w}, \sigma_0^2) = p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}, \sigma_0^2) = \prod_n p(y_n|\boldsymbol{x}_n, \boldsymbol{w}, \sigma_0^2)$$

 Maximizing the likelihood with respect to w minimizes the RSS and yields the LMS solution:

$$\mathbf{w}^{\mathrm{LMS}} = \mathbf{w}^{\mathrm{ML}} = \operatorname{arg\,max}_{\mathbf{w}} L(\mathbf{w}, \sigma_0^2)$$

Probabilistic interpretation of Ridge Regression

Ridge Regression model: $Y = \mathbf{w}^{\top} \mathbf{X} + \eta$

- $Y \sim N(\mathbf{w}^{\top} \mathbf{X}, \sigma_0^2)$ is a Gaussian random variable (as before)
- $w_d \sim N(0, \sigma^2)$ are i.i.d. Gaussian random variables (unlike before)
- Note that all w_d share the same variance σ^2
- To find w given data \mathcal{D} , compute the posterior distribution of w:

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$

• Maximum a posterior (MAP) estimate:

$$\mathbf{w}^{\text{MAP}} = \operatorname{arg\,max}_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}) = \operatorname{arg\,max}_{\mathbf{w}} p(\mathcal{D}|\mathbf{w}) p(\mathbf{w})$$

Estimating w

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be i.i.d. with $y | \mathbf{w}, \mathbf{x} \sim N(\mathbf{w}^\top \mathbf{x}, \sigma_0^2)$; $w_d \sim N(0, \sigma^2)$.

Joint likelihood of data and parameters (given σ_0 , σ):

$$p(\mathcal{D}, \mathbf{w}) = p(\mathcal{D}|\mathbf{w})p(\mathbf{w}) = \prod_{n} p(y_n|\mathbf{x}_n, \mathbf{w}) \prod_{d} p(w_d)$$

Plugging in the Gaussian PDF, we get:

$$\log p(\mathcal{D}, \mathbf{w}) = \sum_{n} \log p(y_n | \mathbf{x}_n, \mathbf{w}) + \sum_{d} \log p(w_d)$$
$$= -\frac{\sum_{n} (\mathbf{w}^{\top} \mathbf{x}_n - y_n)^2}{2\sigma_0^2} - \sum_{d} \frac{1}{2\sigma^2} w_d^2 + \text{const}$$

MAP estimate: $\mathbf{w}^{\text{MAP}} = \arg\max_{\mathbf{w}} \log p(\mathcal{D}, \mathbf{w})$

$$\mathbf{w}^{\text{MAP}} = \operatorname{argmin}_{\mathbf{w}} \frac{\sum_{n} (\mathbf{w}^{\top} \mathbf{x}_{n} - y_{n})^{2}}{2\sigma_{0}^{2}} + \frac{1}{2\sigma^{2}} \|\mathbf{w}\|_{2}^{2}$$

Maximum a posterior (MAP) estimate

$$\mathcal{E}(\mathbf{w}) = \sum_{n} (\mathbf{w}^{\top} \mathbf{x}_{n} - y_{n})^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

where $\lambda > 0$ is used to denote σ_0^2/σ^2 . This extra term $\|\boldsymbol{w}\|_2^2$ is called regularization/regularizer and controls the magnitude of \boldsymbol{w} .

Intuitions

• If $\lambda \to +\infty$, then $\sigma_0^2 \gg \sigma^2$: the variance of noise is far greater than what our prior model can allow for \boldsymbol{w} . In this case, our prior model on \boldsymbol{w} will force \boldsymbol{w} to be close to zero. Numerically,

$$w^{ ext{map}} o 0$$

• If $\lambda \to 0$, then we trust our data more. Numerically,

$$\mathbf{w}^{\text{MAP}} o \mathbf{w}^{\text{LMS}} = \operatorname{argmin} \sum_{n} (\mathbf{w}^{\top} \mathbf{x}_{n} - y_{n})^{2}$$

Outline

- 1. Review of Linear Regression
- 2. Gradient Descent Methods
- 3. Feature Scaling
- 4. Ridge regression
- 5. Non-linear Basis Functions
- 6. Overfitting

Non-linear Basis Functions

Outline

Review of Linear Regression

Gradient Descent Methods

Feature Scaling

Ridge regression

Non-linear Basis Functions

Overfitting

Is a linear modeling assumption always a good idea?

Figure 4: Sale price can saturate as sq.footage increases

Figure 5: Temperature has cyclic variations over each year

General nonlinear basis functions

We can use a nonlinear mapping to a new feature vector:

$$\phi(\mathbf{x}): \mathbf{x} \in \mathbb{R}^D \to \mathbf{z} \in \mathbb{R}^M$$

- M is dimensionality of new features z (or $\phi(x)$)
- M could be greater than, less than, or equal to D

We can apply existing learning methods on the transformed data:

- linear methods: prediction is based on $\mathbf{w}^{\top}\phi(\mathbf{x})$
- other methods: nearest neighbors, decision trees, etc

Regression with nonlinear basis

Residual sum of squares

$$\sum_{n} [\mathbf{w}^{\top} \phi(\mathbf{x}_n) - y_n]^2$$

where $\mathbf{w} \in \mathbb{R}^{M}$, the same dimensionality as the transformed features $\phi(\mathbf{x})$.

The LMS solution can be formulated with the new design matrix

$$\mathbf{\Phi} = \begin{pmatrix} \phi(\mathbf{x}_1)^\top \\ \phi(\mathbf{x}_2)^\top \\ \vdots \\ \phi(\mathbf{x}_N)^\top \end{pmatrix} \in \mathbb{R}^{N \times M}, \quad \mathbf{w}^{\text{LMS}} = \left(\mathbf{\Phi}^\top \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^\top \mathbf{y}$$

Example: Lot of Flexibility in Designing New Features!

x_1 , Area (1k sqft)	x_1^2 , Area ²	Price (100k)
1	1	2
2	4	3.5
1.5	2.25	3
2.5	6.25	4.5

Figure 6: Add x_1^2 as a feature to allow us to fit quadratic, instead of linear functions of the house area x_1

Example: Lot of Flexibility in Designing New Features!

x_1 , front (100ft)	x ₂ depth (100ft)	$10x_1x_2$, Lot (1k sqft)	Price (100k)
0.5	0.5	2.5	2
0.5	1	5	3.5
0.8	1.5	12	3
1.0	1.5	15	4.5

Figure 7: Instead of having frontage and depth as two separate features, it may be better to consider the lot-area, which is equal to frontage×depth

Example with regression

Polynomial basis functions

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Fitting samples from a sine function:

underfitting since f(x) is too simple

Adding high-order terms

M=3

M=9: overfitting

More complex features lead to better results on the training data, but potentially worse results on new data, e.g., test data!

Overfitting

Outline

Review of Linear Regression

Gradient Descent Methods

Feature Scaling

Ridge regression

Non-linear Basis Functions

Overfitting

Overfitting

Parameters for higher-order polynomials are very large

	M=0	M = 1	M = 3	M = 9
- W ₀	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
W_2			-25.43	-5321.83
W_3			17.37	48568.31
W_4				-231639.30
W_5				640042.26
W_6				-1061800.52
W_7				1042400.18
W ₈				-557682.99
W9				125201.43

Overfitting can be quite disastrous

Fitting the housing price data with large M:

Predicted price goes to zero (and is ultimately negative) if you buy a big enough house!

This is called poor generalization/overfitting.

Detecting overfitting

Plot model complexity versus objective function:

- X axis: model complexity, e.g., M
- Y axis: error, e.g., RSS, RMS (square root of RSS), 0-1 loss

Compute the objective on a training and test dataset.

As a model increases in complexity:

- Training error keeps improving
- Test error may first improve but eventually will deteriorate

Dealing with overfitting

Try to use more training data

What if we do not have a lot of data?

Regularization methods

Intuition: Give preference to 'simpler' models

- How do we define a simple linear regression model $\mathbf{w}^{\top} \mathbf{x}$?
- Intuitively, the weights should not be "too large"

	M=0	M = 1	M = 3	M = 9
<i>w</i> ₀	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
W_2			-25.43	-5321.83
<i>W</i> ₃			17.37	48568.31
W_4				-231639.30
W_5				640042.26
W_6				-1061800.52
W ₇				1042400.18
<i>W</i> ₈				-557682.99
W ₉				125201.43

Next Class: Overfitting, Regularization and the Bias-variance trade-off