**Es 1**Programma che legge due numeri naturali A e B da input e calcola in output il loro minimo Considerate anche la variante del programma nel caso di registri che possono contenere solo numeri maggiori o uguali a zero.

| N istruzione | Istruzione | Commenti                                                     |
|--------------|------------|--------------------------------------------------------------|
| 1            | READ 1     | Leggi il primo input in R1                                   |
| 2            | READ 2     | Leggi il secondo input in R2                                 |
| 3            | LOAD 2     | Carica R2 su ACC                                             |
| 4            | JGTZ 6     | Controlla che il valore sia > 0;<br>nel caso contrario, stop |
| 5            | HALT       |                                                              |
| 6            | LOAD 1     | Carica R1 su ACC                                             |
| 7            | JGTZ 9     | Controlla che il valore sia > 0;<br>nel caso contrario, stop |
| 8            | HALT       |                                                              |
| 9            | SUB 2      | R2-R1 eseguito sull'ACC                                      |
| 10           | JGTZ 13    | Se R2-R1 > 0, vai a 13                                       |
| 11           | WRITE 1    | Stampa valore di R1                                          |
| 12           | HALT       |                                                              |
| 13           | WRITE 2    | Stampa valore di R2                                          |
| 14           | HALT       |                                                              |

Es 2
Programma che legge un numero naturale N maggiore o uguale a 0 e quindi calcola il minimo di N valori letti da input.

Nota: Il numero 0 in input serve ad uscire dal programma.

| N istruzione | Istruzione | Commenti                                 |
|--------------|------------|------------------------------------------|
| 1            | READ 1     | Leggi primo input in R1                  |
| 2            | LOAD 1     | Carica su ACC il valore di R1            |
| 3            | JZERO 11   | Se ACC==0, termina                       |
| 4            | JGTZ 6     | Se ACC>0, vai a 6                        |
| 5            | HALT       | Se ACC<0, termina                        |
| 6            | SUB 2      | R2-R1 eseguito sull'ACC                  |
| 7            | JGTZ 10    | se R2-R1>0 (ovvero R2>R1),<br>vai a 10.  |
| 8            | LOAD 1     | Se R1>R2, ricarica R1 su<br>ACC          |
| 9            | STORE 2    | e salvalo in R2                          |
| 10           | JUMP 1     | Ritorna a 1 (ovvero ricomincia il ciclo) |
| 11           | WRITE 2    | Stampa il valore minimo                  |
| 12           | HALT       | STOP                                     |

## Es 3

Programma che eseguire le stesse operazioni del programma 2 memorizzando però prima gli N valori letti in input in N registri distinti (supponete di avere sempre abbastanza registri per ogni N) e, in una seconda fase effettuando il calcolo del valore minimo usandi i dati operazioni sui dati nei registri attraverso l'accumulatore (suggerimento: usate operatore \*R che opera sul registro con indirizzo contenuto in R).

## Nota:

- R1 = registro contatore
- R2 = registro dove caricare temporaneamente gli input

Ciclo numero 1: salva tutti ali N input su N registri a partire dal 3° compreso

| N Istruzione | Istruzione | Commenti                                                     |
|--------------|------------|--------------------------------------------------------------|
| 1            | ADD=3      | Inizializza ACC con "3"                                      |
| 2            | STORE 1    | Salva valore di ACC su R1                                    |
| 3            | READ *1    | Leggi input e salva il valore<br>sul RN (N= valore R1)       |
| 4            | LOAD *1    | e sull'ACC                                                   |
| 5            | JZERO 9    | Se input==0, inizia il<br>controllo del numero minore<br>a 9 |
| 6            | LOAD 1     | Carica su ACC il contatore<br>(R1)                           |
| 7            | ADD=1      | Aggiungi 1 all'ACC<br>(R1+1)                                 |
| 8            | JUMP 2     | e ricomincia il ciclo di<br>lettura degli input              |

# Inizializzazione di R2 con il valore dell'ultimo registro disponibile

| 9  | LOAD 1  | Carica il numero dell'ultimo<br>registro+1 su ACC                            |
|----|---------|------------------------------------------------------------------------------|
| 10 | SUB=1   | Rimuovi 1 al ACC per avere il numero dell'ultimo registro                    |
| 11 | STORE 2 | Salva temporaneamente il<br>numero del registro a cui<br>puntare (Num) su R2 |
| 12 | LOAD *2 | Carica su ACC il valore del<br>registro Num (ovvero l'ultimo<br>disponibile) |
| 13 | STORE 2 | Salva il valore su R2                                                        |

# Ciclo numero 2: trova il valore minimo

| Cicio numero 2: trova | II VAIOIC IIIIIIIIIO |                                                                                                                                                      |
|-----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14                    | LOAD 1               | Carica il numero dell'ultimo<br>registro+1 su ACC                                                                                                    |
| 15                    | SUB=1                | Rimuovi 1 al ACC per avere il numero dell'ultimo registro                                                                                            |
| 16                    | STORE 1              | Salva il valore di ACC su R1                                                                                                                         |
| 17                    | SUB=3                | Rimuovi 3 al ACC                                                                                                                                     |
| 18                    | JZERO 25             | per controllare se si è<br>arrivati all'ultimo registro che<br>contiene input (ovvero R3).<br>Nel caso, stampa il val min e<br>termina il programma. |
| 19                    | LOAD *1              | Sovrascrivi ACC con il<br>valore di RN<br>(N= valore R1)                                                                                             |
| 20                    | SUB 2                | ACC-R2                                                                                                                                               |
| 21                    | JGTZ 14              | e RN-R2>0 (== RN > R2)<br>ricomincia il ciclo                                                                                                        |
| 22                    | LOAD *1              | Se RN < R2 bisogna<br>salvarlo e sovrascrivere R2,<br>quindi carica il valore RN su<br>ACC                                                           |
| 23                    | STORE 2              | Salva il valore di ACC su R2                                                                                                                         |
| 24                    | JUMP 14              | Ricomincia il ciclo                                                                                                                                  |
| 25                    | WRITE 2              | Stampa il valore minimo<br>(salvato su R2)                                                                                                           |
| 26                    | HALT                 | STOP                                                                                                                                                 |

## Circuiti combinatori

Si vuole costruire un dispositivo elettronico con tre ingressi (i0, i1, i2) e 7 output (a,b,c,d,e,f,g) per controllare un display a led costituito da 7 segmenti (identificati dalle lettere a,b,c,...g) come nella figura a destra. (Nota: consideriamo solo 3 ingressi per semplificare l'esercizio)



Es 1

Costruire la tabella di verità (ovvero la funzione Booleana) per fare in modo che prendendo in ingresso la codifica binaria su 3 bit (con in 0 cifra meno significativa) di una cifra da 0 a 7 vengano messi a 1 i segnali in uscita per visualizzare correttamente la cifra sul display. Nota: 6 e 9 con 3 segmenti orizzontali.

| (N) <sub>10</sub> | i1 | i2 | i3 | а | b | С | d | е | f | g |
|-------------------|----|----|----|---|---|---|---|---|---|---|
| 0                 | 0  | 0  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1                 | 0  | 0  | 1  | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 2                 | 0  | 1  | 0  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 3                 | 0  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 4                 | 1  | 0  | 0  | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 5                 | 1  | 0  | 1  | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 6                 | 1  | 1  | 0  | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 7                 | 1  | 1  | 1  | 1 | 1 | 1 | 0 | 0 | 0 | 0 |

Es 2

Calcolare la forma normale disgiuntiva (somma di prodotti) e congiuntiva (prodotto di somme) per ogni uscita (ovvero segmento) a,b,c...g.

Guardando la tabella di verità dell'esercizio 1, possiamo prendere i valori positivi (1) dalle colonne a...g per ottenere la formula di ogni uscita espressa come una somma di prodotti; prendendo i valori falsi (0) dalla tabella, otteniamo la formula di ogni uscita espressa come un prodotto di somme:

• a:  

$$\circ \quad a = \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$$

$$\circ \quad a = (\overline{i1}+\overline{i2}+\overline{i3})*(\overline{i1}+\overline{i2}+\overline{i3})$$

• b:

• b = 
$$\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$$

• c:

• c =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• d =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• e:

• c =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• f:

• f =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• f =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• g:

• g =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• g:

• g =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• g:

• g =  $\overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3} + \overline{i1}*\overline{i2}*\overline{i3}$ 

• g:

Es 3

Applicare il metodo delle mappe di Karnaugh ad ogni formula ottenuta per le varie uscite per minimizzare il numero di porte logiche.

**A:** 
$$\overline{i3} * \overline{i1} + i2 + i3 * i1$$

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 1  | 1  | 1  | 0  |
| 1            | 0  | 1  | 1  | 1  |

**B**: 
$$\overline{i1}$$
 + i3 \* i2 +  $\overline{i3}$  \*  $\overline{i2}$ 

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 1  | 1  | 0  | 1  |
| 1            | 1  | 1  | 1  | 0  |

|    |    |   |    |   | -          |
|----|----|---|----|---|------------|
| C: | i1 | + | i3 | + | <i>i</i> 2 |

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 1  | 0  | 1  | 1  |
| 1            | 1  | 1  | 1  | 1  |

**D**: 
$$\overline{i3} * \overline{i1} + \overline{i1} * i2 + i3 * i1 * \overline{i2} + \overline{i3} * i2$$

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 1  | 1  | 1  | 0  |
| 1            | 0  | 1  | 0  | 1  |

**E:**  $\overline{i3} * \overline{i1} + i2 * \overline{i3}$ 

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 1  | 1  | 1  | 0  |
| 1            | 0  | 0  | 0  | 0  |

**F**: 
$$\overline{i3} * \overline{i2} + i1 * \overline{i2} + i1 * \overline{i3}$$

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 1  | 0  | 1  | 1  |
| 1            | 0  | 0  | 0  | 1  |

**G**: 
$$\overline{i3}$$
 \* i2 + i1 \*  $\overline{i2}$  + i1 \*  $\overline{i3}$ 

| i1, i2<br>i3 | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 0            | 0  | 1  | 1  | 1  |
| 1            | 0  | 1  | 0  | 1  |

Es 4:

Disegnare il circuito risultante (solo AND, OR e NOT) che mette in relazione i 3 ingressi e le 7 uscite

