ESTRATEGIAS DÉ PROGRAMACIÓN (SEGUNDA PARTE) CONTINUACIÓN

Programación 3
Javier Miranda

Escuela de Ingeniería Informática Universidad de Las Palmas de Gran Canaria

Estrategias básicas de programación

- Fuerza bruta
- Vuelta atrás (backtracking)
- Greedy
- Divide y vencerás
 - Reduce y vencerás
 - Programación Dinámica

Programación Dinámica

- Es una técnica inventada por el matemático norteamericano Richard Bellman en los años 50 para resolver problemas de optimización.
- ¿ Cuando debemos utilizarla?

Cuando el problema tiene <u>subproblemas</u> que se <u>solapan</u>, ya que en este caso la estrategia **Divide y Vencerás** genera algoritmos **poco eficientes**.

https://en.wikipedia.org/wiki/Richard_E._Bellman https://en.wikipedia.org/wiki/Dynamic_programming

Ejemplo 1: Fibonacci

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$

Ejemplo 1: Fibonacci

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$

Calculando Fibonacci recursivamente repetimos muchos cálculos. La programación dinámica evita repetirlos!.

Ejemplo 2: Coeficiente Binomial

$$comb(n,m) = {n \choose m} = {n-1 \choose m-1} + {n-1 \choose m}, m \le n$$

with comb(n,0) = comb(n,n) = 1

https://en.wikipedia.org/wiki/Binomial_coefficient

Programación Dinámica

٠¿ Qué ?

 Técnica que combina soluciones de subproblemas para resolver problemas mayores de forma <u>eficiente</u>

·¿ Cómo?

 Guardando las soluciones de los subproblemas y reutilizándolas para evitar repetir cálculos al resolver problemas mayores

Implementación de Programación Dinámica

Memoization

 Se utiliza cuando el problema se resuelve recursivamente (top-down)

Tabulation

 Se utiliza cuando el problema se resuelve comenzando por los sub-problemas (bottom-up)

El objetivo de ambas técnicas es el mismo: almacenar y reutilizar las soluciones de los subproblemas

https://en.wikipedia.org/wiki/Memoization

$$t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}$$
 $n \ge 2$
 $t_0 = 0$ $t_1 = 1$

Ecuación de recurrencia de Fibonacci

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

Versión Recursiva

$$t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}$$
 $n \ge 2$
 $t_0 = 0$ $t_1 = 1$

def Fib(n):

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

```
mem = {}  # Diccionario

def memFib(n):
    key = n
    if key not in mem:
        if n<2:
            r = n
        else:
            r = memFib(n-1)+memFib(n-2)

        mem[key] = r
    return mem[key]</pre>
```

Versión implementada en Python con memoization

return memFib(n)

```
t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}   n \ge 2

t_0 = 0  t_1 = 1
```

```
public int Fibonacci(int n) {
    HashMap<Integer, Integer> dict
    = new HashMap<>();
    return memFib(n, dict);
}
```

```
private int memFib
    (int n, HashMap<Integer, Integer> dict)
    if (dict.containsKey(n)) {
     return dict.get(n);
    int result;
   if (n < 2)
     result = n;
    else
     result = memFib(n-1, dict) + memFib(n-2, dic);
    dict.put(n, result);
    return result:
```

Versión implementada en Java con memoization

$$t_n = f(t_{n-1}, t_{n-2}) = t_{n-1} + t_{n-2}$$
 $n \ge 2$
 $t_0 = 0$ $t_1 = 1$

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

```
def Fib(n):
    if n < 2:
        return n
    else:
        table = [] # Lista

        table.append(0)
        table.append(1)

        for j in range(2,n+1):
            table.append(table[j-2] + table[j-1])
        return table[n]</pre>
```

Versión implementada en Python con tabulation

¡Cuidado!

 Lo que identifica a una técnica como memoization o como tabulation es el tipo de recorrido (recursivo o top-down, frente a iterativo o bottom-up), no el tipo de memoria utilizada en la programación

```
def Fib(n):
                                                def Fib(n):
                                                   if n < 2^{-1}
  mem = \{\}
                    # Diccionario
                                                     return n
  def memFib(n):
                                                   else:
    key = n
                                                     table = []
                                                                     # Lista
    if key not in mem:
       if n<2:
                                                     table.append(0)
                                                     table.append(1)
          r = n
       else:
                                                     for j in range(2,n+1):
          r = memFib(n-1)+memFib(n-2)
                                                       table.append(table[j-2] + table[j-1])
          # Ilamadas recursivas!
                                                     return table[n]
       mem[key] = r
    return mem[key]
  return memFib(n)
```

Memoization: Top-down (recursivo)

Tabulation: Bottom-Up (iterativo)

Requisitos para Programación Dinámica

1. Subestructura Optima

- La solución optima del problema se puede construir a partir de soluciones óptimas de los subproblemas
- Ejemplo: Camino más corto

Sin embargo, el camino más largo no cumple la propiedad de subestructura óptima (no se resuelve con programación dinámica)

Requisitos para Programación Dinámica

1. Subestructura Optima

 La solución optima del problema se puede construir a partir de soluciones óptimas de los subproblemas

2. Subproblemas Solapados

 Las soluciones de los subproblemas se reutilizan varias veces para resolver problemas mayores

Rendimiento

- En general tabulation es más eficiente que memoization
 - Porque no tiene llamadas recursivas

n =	2	3	4	5	10	20	40
Recursive	1	3	5	9	109	13529	204668309
Iterative	1	1	1	1	1	1	1
Memo	1	3	5	7	17	37	77

Número de llamadas a la función para calcular Fibonacci

- Pero en problemas grandes puede ser mejor memoization
 - Porque no necesita calcular TODOS los elementos

Resumen

