

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

600/3634

10

PCT/GB 00/03634

88811

22 SEPTEMBER 2000
INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

4

REC'D 13 NOV 2000

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

Andrew Gersley

23 October 2000

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

24 SEP 1999

 Cardiff Road
 Newport
 Gwent NP9 1RH

1. Your reference

24 SEP 1999
P.Q. 30,689

2. Patent application number

*(The Patent Office will fill in this part)***9922516.1**24SEP99 E478959-1 D02747
P01/7700 0.00 - 9922516.13. Full name, address and postcode of the or of each applicant (*underline all surnames*)
 Thorn Secure Science Limited
 Rutland House
 Hargreaves Road
 Groundwell Industrial Estate
 Swindon
 Wiltshire
 SN2 5AZ
 England
Patents ADP number (*if you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

69466700

4. Title of the invention

A METHOD OF MANUFACTURING FLEXIBLE MAGNETIC TAPE

5. Name of your agent (*if you have one*)

QED I.P. Services Limited

 "Address for service" in the United Kingdom
 to which all correspondence should be sent
(including the postcode)

 Dawley Road
 Hayes
 Middlesex
 UB3 1HH
 England

764L17

Patents ADP number (*if you know it*)
 6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

Country

Priority application number
*(if you know it)*Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)
 8. Is a statement of inventorship and of right to grant of a patent required in support of this request? *(Answer 'Yes' if:*

Yes

- any applicant named in part 3 is not an inventor, or
- there is an inventor who is not named as an applicant, or

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form	-
Description	8
Claim(s)	3
Abstract	1
Drawing(s)	4

10. If you are also filing any of the following, state how many against each item.

Priority documents	-
Translations of priority documents	-
Statement of inventorship and right to grant of a patent (<i>Patents Form 7/77</i>)	-
Request for preliminary examination and search (<i>Patents Form 9/77</i>)	1
Request for substantive examination (<i>Patents Form 10/77</i>)	-
Any other documents (<i>please specify</i>)	-

11.

I/We request the grant of a patent on the basis of this application.

Signature

Date

23/9/99

12. Name and daytime telephone number of person to contact in the United Kingdom

Dr A C Sharp, 0181 848 6490

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

A METHOD OF MANUFACTURING FLEXIBLE MAGNETIC TAPE

This invention relates to a method of manufacturing flexible magnetic tape
5 having a permanently structured magnetic characteristic which varies from place
to place in two different directions in the plane of the tape.

A known method of manufacturing permanently structured magnetic tape is described in US 4,023,204, and is shown schematically in Figure 1. A flexible substrate such as a polyester film (1) is coated with a liquid slurry having
10 anisotropic magnetic particles (such as for example acicular ferric oxide particles) (2) which have a generally random orientation. The coated substrate is moved in the direction of the arrow (3) past a first permanent magnet (4), which makes an oblique angle with the direction of motion of the substrate. This causes the particles (2) to become aligned as shown in area 5. The coated substrate continues
15 to move in the direction of the arrow (3) past a further magnet (6), which is an electromagnet, and thus can generate a controllably variable magnetic field. This magnet is arranged to make an oblique angle with the direction of the first magnet. By switching the strength of the magnetic field being generated by the further magnet, the particles (2) become aligned as shown in area 7. The slurry is
20 then solidified to fix the particles in place in the orientation shown in area 7. With this arrangement it will be noted that the magnetic properties of the coating are constant across the width of the substrate (8), but change in the direction of motion of the substrate (3). The substrate 1 is subsequently slit along its length (i.e. direction of arrow 3) to provide thin lengths of magnetic tape.

25 In a modification of the above method, data can be coded in direction 8 across the tape by substituting a segmented magnet with a plurality of independently controllable write heads for the electromagnet 6. This can provide the advantage that after slitting the substrate, each length of tape can have different data. This method is reasonably satisfactory for making permanently
30 structured magnetic tape for use on ISO781X cards, where the width of tape reels

required lie between 11 and 15 mm. Typically, 15 independent channels are created simultaneously across the substrate, each one 11 - 15 mm wide.

However, the method is unsuitable for manufacturing narrow tapes of the order of 1 or 2 mm across as might be embedded into banknotes, because of the lateral spreading of the magnetic field from each head of the further magnet. The method also has the disadvantage that many independent channel driver circuits are required, one for each write head. To make 1 mm wide threads, the required number of channels will increase by an order of magnitude (for example from 15 to 150). The cost of providing so many circuits, and checking the calibration of each one periodically, becomes increasingly high for narrow threads. It is an object of the present invention to mitigate the above disadvantages.

According to the present invention there is provided a method of manufacturing flexible magnetic tape as defined in the claims. This method is advantageous for manufacturing magnetic security elements having a width of 2 mm or less, but can be employed to make any width of tape.

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings, in which:-

20 Figure 1 shows a prior art method of manufacturing a flexible magnetic tape,
Figures 2, 3 and 4 show a method according to the present invention,
Figure 5 shows a typical signal from a magnetic record carrier according to the invention,
Figure 6 shows a document having a magnetic record carrier, according to the
25 present invention, embedded in it,
Figure 7 shows a cross-section of a flexible magnetic tape according to the invention, and
Figure 8 shows a cross section of a further flexible magnetic tape according to the invention.

Figure 2 shows a flexible substrate such as a polyester film (1), which is coated with a liquid slurry having anisotropic magnetic particles (such as for example acicular ferric oxide particles) (2) which have a generally random orientation. The coated substrate is moved in the direction of the arrow (3) past a first electromagnet (10), which makes an oblique angle with the direction of motion of the substrate and which can generate a controllably variable magnetic field. This causes the particles (2) to become aligned as shown in areas 11, or to remain randomly oriented as shown in area 12. The coated substrate continues to move in the direction of the arrow (3) past a further magnet (6), which is also an electromagnet, and thus can also generate a controllably variable magnetic field. This magnet is arranged to make an oblique angle with the direction of the first magnet. By switching the strength of the magnetic field being generated by the further magnet, the particles (2) become aligned as shown in area 7. The slurry is then solidified to fix the particles in place in the orientations shown. The substrate 1 is subsequently slit along its length (i.e. direction of arrow 3) to provide thin lengths of magnetic tape.

The oblique angle between the direction of orientation of the particles controlled by the respective electromagnets is preferably chosen so that both orientations can be sensed by the same read head. Figure 3 shows the same 20 magnetic tape as Figure 2, but with the particle orientations removed to improve clarity. Figure 4 shows the same tape with differently oriented areas having different hatching. The horizontal banding in Figure 4 made by the further magnet is superimposed on the diagonal banding made by the first magnet.

The essential feature of the present invention is to provide a detectable 25 modulation of a detectable characteristic in two different directions making an oblique angle with one another. The oblique angle is chosen such that both modulations can be sensed by the same magnetic read head. In the above described embodiment this is achieved by patterning a single layer of magnetic particles using a pair of electromagnets having variable field strengths. There are, 30 however, alternative ways of producing a modulation detectable by a magnetic read head. For example, the slurry may be coated onto a flexible substrate which

has previously been provided with diagonal metal stripes using selective deposition or deposition and selective removal. Such metal stripes preferably have a thickness in the range 5 to 15 microns. The second electromagnet is then used to orient the magnetic particles in the slurry as before. The metal stripes can 5 lie either on the same side of the substrate as the magnetic particles or on the opposite side. As an alternative, the striped metal layer may be deposited onto the solidified slurry layer after the solidification has taken place, so that there is less thickness modulation in the magnetic layer. This arrangement is shown in cross section in Figure 8, where the layer 17 is a patterned metal layer, and layer 16 is 10 the layer of solidified slurry including the magnetic particles.

In the case of metal stripes, an active read head can detect increased eddy currents in the presence of one of the metal stripes, and so can produce a signal in response to the presence or absence of metal, as well as a signal in response to the magnetic characteristics.

15 A further way of producing a detectable modulation would be to print the substrate under the slurry with a striped non-magnetic insulative layer (15). In this case the read head would detect variations in the thickness of the layer (16) including the magnetic particles, as the slurry would provide a flat surface but the underlying topography would cause variations in magnetic layer thickness. This 20 arrangement is shown schematically in Figure 7.

As mentioned previously, the horizontal banding in Figure 4 made by the further magnet is superimposed on the diagonal banding made by the first magnet (or other modulation means). When the second magnet is switched on, it may orient the particles sufficiently strongly that they retain no memory of the 25 action of the first magnet. This is shown by the uniform horizontal bands in Figure 4, where the second magnet is on (20, 21). However, in regions where the second magnet was switched off, there will be an orientation providing a memory of the action of the first magnet. This is shown by the diagonal bands in the regions of Figure 4 where the second magnet is switched off (22, 23). The 30 remaining regions (24, 25) in Figure 4, which have no hatching, indicate regions where the magnetic particles have not been aligned - i.e. regions which have

experienced both magnets in the off state. Although there are three distinct states shown in Figure 4, if it was possible to distinguish two states within regions 20 and 21 (i.e. if the regions were able to retain a memory of the condition of the first magnetic field), then 4 distinct and separately detectable regions would exist. The
5 presence of 4 distinct regions is probably easiest to achieve by using an underlying diagonal modulation in a metallic or non-magnetic layer, rather than the two magnetic modulations of Figure 4. It should be borne in mind that regions 24 and 25 do not have to have a completely random orientation, nor do the other regions 20, 21, 22, 23 need to be perfectly oriented. The states just need to provide
10 measurably different respective signals in the read head in use.

The Figures are not drawn to scale. In practice the data is binary and is encoded using the well known "F2F" convention. The bit length created by the second magnet is typically about 0.65 mm for a binary zero, and 2 x 0.325 mm for a binary one. The bit length created by the first magnet or other modulation
15 means may be of the order of 4 mm. Therefore the section of tape shown in Figure 4 is of the order of 2mm in the Y direction. The flexible substrate will typically be of the order of 15 cm across in the Y direction, and might be split into 125 threads 1.2 mm across in the Y direction, so that Figure 4 shows a portion of substrate slightly wider than the width of a finished thread in practice. The oblique angle of
20 the magnet will typically be 45 degrees with respect to the X direction, as in Figure 4. Thus in Figure 4 the X axis has been compressed by a factor of about 10, but the angle of the magnets has not been modified accordingly.

The modulation achieved by the first magnet will modulate the amplitude envelope of the signal due to the second magnet. In regions where there is no
25 orientation by the first magnet, the modulation provided by the second magnet will be reduced by about 20 percent. The exact amplitude modulation can be adjusted using the orientation angle, field strength, and spatial extent (head gap) of the first magnet.

In practice, a magnetic read head reading the data stored in a magnetic
30 record carrier according to the present invention will sense a signal similar to that shown in Figure 5. In this Figure, level 30 indicates the state in which the second

magnet was on during encoding (corresponding to areas 20 and 21), level 31 indicates the state in which the second magnet was off and the first magnet was on (corresponding to areas 22 and 23), and level 32 corresponds to the state in which both magnets were off (corresponding to areas 24 and 25).

5 After a magnetic tape according to the present invention has been made using the above method, typically 15 cms in width (i.e. the Y direction), it can be slit into 100 - 150 thin threads in the X direction. These can be embedded in documents, such as for example banknotes, in the same way as metal threads are sometimes embedded. Figure 6 shows a document (40) having a magnetic record 10 carrier in the form of a thin tape or thread (41) embedded in it using the windowing technique.

As an alternative to the above embodiment, it is possible to use three magnets. For example, the first magnet might comprise a "preliminary" permanent magnet oriented at 20 degrees to the X direction. The second magnet 15 might comprise an electromagnet similar to the first magnet described for the first embodiment above, this second magnet being arranged to encode data using a long bit period such as 4 mm and being oriented at 40 degrees to the X direction. The third magnet would then comprise a further electromagnet arranged to encode data using a shorter bit period, such as for example 0.7 mm. In this second 20 embodiment, the amplitude modulation is controlled by the angular difference between two regions having orientations at two different diagonal angles, namely 20 and 40 degrees in the present example. Modulation in the X direction will typically involve pulse width modulation such as F2F encoding. Such modulation can be discriminated from amplitude modulation as described above by 25 techniques known to persons skilled in the art.

The waveforms used in the diagonal modulation can conveniently be locked to the modulation used in the X direction. Such locking would enable the read system to compare the relative phases of the pulse width (X) modulation and the amplitude modulation. From the relative phase, the read system can compute 30 the value on the Y axis at which a given thin thread was originally manufactured

in the wide tape, and convert this to a measurement of position relative to a known absolute reference such as one edge of the substrate.

The concept of locking will be described further with reference to the first embodiment described above using two magnets. The oblique (first) magnet can 5 be locked to a signal divided down from the lower significance digits of the X modulation of the second magnet. In the case of a pre-patterned flexible substrate having diagonal strips of metal, the X modulation could be phase locked to one Y track reading the diagonal modulation. Such locking techniques are known to persons skilled in the art.

Referring to Figure 5, to find the value of X it is necessary to filter out the 10 low frequency changes in amplitude and focus upon the high frequency pulse width modulations. Conversely, to find value of Y, the high frequency modulations should be filtered out to allow the low frequency signal to be detected. The position in mm from one edge of the flexible substrate is found 15 using the phase shift between the Y and X modulated patterns. This involves comparing the measured phase shift with the known phase difference when Y=0 and the known angle of the diagonal modulation.

In another alternative scheme, an arrangement of three magnets can be 20 used to impart a greater variation in modulation depth whilst imparting positional information in the y direction. In this scheme the first two magnets are the same as magnets 4 and 6 shown in the prior art scheme of Figure 1. The third magnet is aligned substantially parallel to the first, and is an electromagnet such that it can be switched intermittently to selectively re-orient some of the material 25 oriented by the second magnet. Applying a sufficiently strong field via this third magnet could reduce the modulation produced by the second magnet (6) to zero, as the particles would return to the position they were in after passing the first magnet. However, in practice this could destroy the data content in the x direction as well. Therefore, the use of the third magnet to reduce the modulation caused 30 by the second magnet to 50% to 20% in selected areas would be preferable. Although in the embodiment described here this third magnet was aligned

parallel to the first magnet, it is possible to align it at an oblique angle to both the first and second magnets to produce more complex modulation patterns. It is however doubtful that extra position information would be gained, and it would not be possible to read any significant thread width without overlapping several pattern domains within the reading head field. This last three magnet arrangement will involve the least disruption to an existing coating apparatus, as it would only require the addition of a third electromagnetic head plus a modulated power supply.

CLAIMS

1. A method of manufacturing flexible magnetic tape having a permanently structured magnetic characteristic which varies from place to place in two different directions in the plane of the tape, the method including:-
 - a) providing a flexible elongate substrate with a layer of material having a permanently structured magnetic characteristic which varies in first direction making an oblique angle relative to the longest dimension of the substrate,
 - b) coating the said substrate with a slurry comprising anisotropic magnetic particles;
 - c) moving the substrate and slurry coating relative to a first magnetic field having a field strength which varies with time in a second direction making an oblique angle with the first direction, thereby orienting the said particles on selected spaced areas of the substrate in a second direction making an oblique angle with the first direction;
 - d) solidifying the slurry to fix the said particles in place.
2. A method as claimed in claim 1 in which the layer of material having a permanently structured magnetic characteristic is replaced by a layer of a metal having a modulated thickness which varies in first direction making an oblique angle relative to the longest dimension of the substrate, the thickness modulations being detectable by an active magnetic read head.
3. A method as claimed in claim 2 in which the layer of a metal is deposited upon the solidified slurry layer, so that the thickness of the solidified slurry layer is substantially constant.
4. A method as claimed in claim 1 in which the layer of material having a permanently structured magnetic characteristic which varies in first

direction making an oblique angle relative to the longest dimension of the substrate comprises layer including magnetic particles, the layer having a modulated thickness.

5. A method as claimed in claim 4 in which the layer of material having a permanently structured magnetic characteristic and having a modulated thickness is deposited upon the solidified slurry layer, so that the thickness of the solidified slurry layer is substantially constant.
6. A method of manufacturing flexible magnetic tape having a permanently structured magnetic characteristic which varies from place to place in two different directions in the plane of the tape, the method including:-
 - a) coating a flexible substrate with a slurry comprising anisotropic magnetic particles;
 - b) moving the substrate and slurry coating relative to a first magnetic field, thereby orienting the said particles in a first direction;
 - c) subsequently moving the substrate and slurry coating relative to a second magnetic field having a field strength which varies with time in a second direction making an oblique angle with the first direction, thereby orienting the said particles on selected spaced areas of the substrate in a second direction making an oblique angle with the first direction;
 - d) solidifying the slurry to fix the said particles in place;
characterised in that the first magnetic field has a magnetic field strength which varies with time in said first direction, such that following step c) the said magnetic particles are selectively oriented in spaced areas in both said first and said further directions.
7. A method as claimed in claim 1 or claim 2 or claim 6, in which the substrate is subsequently slit along either said first or said second direction to provide a plurality of lengths of tape having respective permanently

structured magnetic patterns which vary in a single direction in the plane of the tape.

8. A magnetic record carrier comprising a length of tape made according to the method of any preceding claim.
9. A document or other article having a magnetic record carrier according to claim 8 attached to it or embedded in it.

ABSTRACT**A METHOD OF MANUFACTURING FLEXIBLE MAGNETIC TAPE**

5

A method of manufacturing flexible magnetic tape having a permanently structured magnetic characteristic which varies from place to place in two different directions in the plane of the tape, includes:- a) coating a flexible substrate with a slurry comprising anisotropic magnetic particles; b) moving the substrate and slurry coating relative to a first magnetic field having a field strength which varies with time in a first direction, thereby selectively orienting the said particles in areas spaced apart in a first direction; c) subsequently moving the substrate and slurry coating relative to a second magnetic field having a field strength which varies with time in a second direction making an oblique angle 10 with the first direction, such that the said magnetic particles are selectively oriented in spaced areas in both said first and said further directions, and d) solidifying the slurry to fix the said particles in place.

(Figure 2).

20

Fig 1 - Previously known art of making structured magnetic tape

214

Figure 2

314

Figure 3

Figure 4

414

Figure 5

Figure 6

Figure 7

Figure 8