数字逻辑实验报告

——智慧消防物联网虚拟仿真系统

学号: 2112060 姓名: 孙蕗 时间: 2022.9.26

一. 实验截图

实验分数:96

二. 实验心得体会

通过此次实验,熟悉了物联网的基本组成,理解感知层、传输层、应用层的功能并建立起整个物联网系统设计的概念。

了解多种无线传感器的工作原理、传感器节点的组成与功能,能够在虚拟环境中,利用传感器、处理器、通信模组等多类型虚拟硬件,自主设计多种智能无线传感节点。

掌握 NB-IoT、Lora、Zigbee 无线网络通信技术以及典型应用; 针对不同应用场景和组网需求,设置虚拟中继路由和云服务器,构建 智慧消防物联网系统。通过多类型无线传感节点的自由部署,仿真多 种组网方式。

基于虚拟仿真平台进行虚拟消防演练,学习消防常识。

三. 对比分析 NB-IOT, LORA, Zigbee 无线网络技术的优缺点,说明在智慧消防领域中,不同设备的应用场景不同,如何选择最优的方案。

(一) 优缺点

1. LORA

优点:

(1) 远距离

灵敏度-148dBm,通讯距离可达几千米

(2) 低功耗

Aloha 方法有数据时才连接, 电池可工作几年

(3) 节点多

组网方式灵活,可以连接多个节点

(4) 抗干扰能力强

对同频干扰及各种噪声具有极强的抑制能力,减少误码率

(5) 安全

采用 AES128 加密

缺点:

- (1) 速度慢
- (2) 不可接入互联网
- 2. NB-IOT

优点:

- (1) 远距离(10km)
- (2) 低功耗

在针对许多使用电池供电的设备和局面,NB-IoT 的低功耗特性能够保证设备续航时间,从几个月大幅提升到几年,因此大大降低了频繁更换电池带来的不便。

- (3) 可接入互联网
- (4) 移动性强,室内覆盖性强

NB-IoT的覆盖能力是LTE的100倍。这样不但能够满足地广人稀地区的大范围覆盖需求,同样适用于对深度覆盖有要求的地下应用。

(5) 成本低廉

由于选取授权频段上的蜂窝网络技能,NB-IoT 无需重新建网,射频和天线也基本上都能够复用。再加上 NB-IoT 低功耗、低带宽和低速率的特性,同样降低了芯片和模组成本

(6) 强链接

在同一基站的情况下,NB-IoT 可以比现有无线技术提供 50-100 倍的接入数。一个扇区能够支持 10 万个连接,支持低延时敏感度、超低的设备成本、低设备功耗和优化的网络架构。

缺点:

(1) 数据传输少

基于低功耗,导致 NB-IoT 只能传输少了数据

(2) 通信成本高

除了 NB-IoT 通信模块的价格之外,运营商还将收取运营费用

- (3) 高密度网络不适合使用中央管理模式,一个单元可以支持 100,000 个 NB-IoT 终端访问,轮训增加系统负担。
 - 3. Zigbee

优点:

(1) 低速低耗电、低成本。

ZigBee 工作在 250kbps 的通讯速率,满足低速率传输数据的应用需求。

(2) 低耗电

ZigBee 技术采用多种节电工作模式,例如短传输时延节省电能降低功耗。

(3) 低成本

通过大幅度的简化协议,降低了 ZigBee 协议对通信控制器的要求,其数据传输速率低且协议简单,大大降低了成本。且 ZigBee 通讯不需要任何花费,为整个项目节省大量的费用支出。

- (4) 自组网
- (5) 安全,数据传输可靠

在数据传输过程中提供了三级安全性。第一级实际是无安全方式,对于某种应用,如果安全并不重要或者上层已经提供了足够的安全保护,器件就可以选择这种方式来转移数据。对于第二级的安全级别,器件可以使用接入控制清单(ACL)来防止非法器件来获取数据,在这一级不采取加密措施。第三级安全级别在数据传输过程中,采用 AES 的对称密码。AES 可以用来保护数据净荷和防止攻击者冒充合法用户。

ZigBee 的媒质传入控制层(MAC层)采用 talk-when-ready 的碰撞避免机制。在这种完全确认的数据传输机制下,当有数据传送需求时则立刻发送,发送的每个数据分组都必须等待接收方的确认消息,并

进行确认信息回复。若没有得到确认信息的回复就表示发生了冲突,将重传一次。采用这种方法可以提高系统信息传送的可靠性。

缺点:

- (1) 不可接入互联网
- (2) 短距离 (10到100米)

传输范围一般介于 10~100m 之间, 在增加 RF 发射功率后, 亦可增加到 1-3km

	NB-IoT	LoRa	ZigBee
组网方式	基于现有窝蜂组网	基于LoRa网关	基于ZigBee网关
网络部署	节点	节点 + 网关 (网关需要考虑 位置等,要求高)	节点+网关
传输距离	远距离(可达10km以上)	远距离(城市2km、郊区可达 15km)	短距离(10米到100米)
单网接入数量	约20万	理论可到6万,一般都是500 ~ 5000	理论6万多,一般200 [~] 500个
电池续航	理论10年/AA电池	理论10年/AA电池	理论2年/AA电池
成本(美金)	模组约5~10\$ 未来目标降到 1\$	模组约5\$	模组约1 [~] 2\$
频段	License频段、运营商频段	unlicense频段(433、868、 915MHz等)	unlicense频段2.4G
传输速度	理论 160kbp~250kbp。实 际小于100kpb	0.3 [~] 50kpb	理论 160kbp [~] 250kbp。实际小 于100kpb
网络延迟	2s-10s	TBD	不到1s
适合领域	户外场景、LPWAN 、大面积传感器应用	户外场景、LPWAN、大面积传感器、可搭私有网络、蜂窝网络覆盖不到地方	户内场景比较多 小范围传感器应用 可搭私有网络
联网所需时间	3秒		30毫秒

(二) 应用场景

- 1. NB-IOT 应用场景
- (1)可接入互联网,可以实现消防设施实时的远程管理,节省人力物力。
- (2) 在地下停车场,矿区等信号相对不好的危险场所也可以使用。
- (3)低功耗,电池续航能力强,不需要经常充电,使用方便, 管理方便。
 - 2. LORA 应用场景
- (1) LORA 更加灵活,不依赖运营商的网络,在没有运营商信号 覆盖的偏远地区与极端环境下,LORA 依然可以部署使用。
- (2) LORA 安全性更高,更加私密,数据不经过运营商,更加私密。

- 3. Zigbee 应用场景
 - (1) 短距离通信效率高,信息传递更快。
- (2) 低功耗, 电池续航能力强, 不需要经常充电, 使用方便, 管理方便。
- (3) Zigbee 不依赖运营商的网络,在没有运营商信号覆盖的偏远地区与极端环境下,也依然可以部署使用。
 - (4) 信息传递更加安全,可靠性高。