#### 1

# Energetikai minőségtanúsítvány összesítő

Épület: Lakás

1212 Budapest

Bajcsy-Zsilinszky utca 57.

Hrsz: 208394/8

Épületrész (lakás): 4. emelet, 17 ajtó

Hrsz: 208394/8/A/17

Megrendelő: Cserhalmi György István és Tulipán Katalin Judit

1212 Budapest, Bajcsy-Zsilinszky utca 57, 4/17

Tanúsító: Varenke Gergő Miklós

7633 Pécs, Esztergár Lajos utca 1/b, 2. emelet, 4. ajtó

regisztrációs szám: TÉ 02-51519

info@emernok.hu

Az épület(rész) fajlagos primer energiafogyasztása:

Követelményérték (viszonyítási alap):

Az épület(rész) energetikai jellemzője a követelményértékre vonatkoztatva:

## Energetikai minőség szerinti besorolás:

173.1 kWh/m<sup>2</sup>a 100.0 kWh/m<sup>2</sup>a 173.1 %

EE (Átlagosnál jobb)



A tanúsítás oka: pályázathoz Épület védettsége: Nem védett Az épület építési ideje 1969.

Az épület utolsó jelentős felújításának ideje 2016.

Épület fűtött szintjeinek száma: 5

A tanúsítvány az egyszerűsített számítási módszerrel készült.

Tanúsítvány azonosító tanúsítónál: EM-223617

Kelt: 2018.01.09. Aláírás





### Szerkezet típusok:

| Ablak  | (147/174) |
|--------|-----------|
| ADJUIN |           |

Típusa: ablak (külső, fa vagy PVC)
x méret: 1.47 m
y méret: 1.74 m
Hőátbocsátási tényező: 0.80 W/m²K
Megengedett értéke: 1.15 W/m²K

A hőátbocsátási tényező megfelelő.

Üvegezési arány: 75 %
Üvegezés g értéke: 0.783
Éjszaka társított szerkezet hőv. ellen.: 0.120 m²K/W
Árnyékolás módja nyáron: belső
Árnyékolás naptényezője nyáron: 0.450

#### Ablak (152/175)

Típusa: ablak (külső, fa vagy PVC)
x méret: 1.52 m
y méret: 1.75 m
Hőátbocsátási tényező: 0.80 W/m²K
Megengedett értéke: 1.15 W/m²K

A hőátbocsátási tényező megfelelő.

Üvegezési arány:

Övegezés g értéke:

Üvegezés g értéke:

Éjszaka társított szerkezet hőv. ellen.:

Árnyékolás módja nyáron:

Árnyékolás naptényezője nyáron:

0.450

#### Ablak (87/174)

Típusa: ablak (külső, fa vagy PVC)
x méret: 0.87 m
y méret: 1.74 m
Hőátbocsátási tényező: 0.80 W/m²K
Megengedett értéke: 1.15 W/m²K

A hőátbocsátási tényező megfelelő.

Üvegezési arány: 66 % Üvegezés g értéke: 0.783 Éjszaka társított szerkezet hőv. ellen.: 0.120 m<sup>2</sup>K/W

Árnyékolás módja nyáron: belső Árnyékolás naptényezője nyáron: 0.450

Ablak (89/164)

Típusa: ablak (külső, fa vagy PVC)
x méret: 0.89 m
y méret: 1.64 m
Hőátbocsátási tényező: 0.80 W/m²K
Megengedett értéke: 1.15 W/m²K

A hőátbocsátási tényező megfelelő.

Üvegezési arány:

Övegezés g értéke:

Üvegezés g értéke:

Éjszaka társított szerkezet hőv. ellen.:

Árnyékolás módja nyáron:

Árnyékolás naptényezője nyáron:

0.450



#### Bejárati ajtó (82/208)

Típusa: ajtó (belső, fűtetlen tér felé)
x méret: 0.82 m
y méret: 2.08 m
Hőátbocsátási tényező: 1.30 W/m²K
Megengedett értéke: 1.45 W/m²K

#### A hőátbocsátási tényező megfelelő.

#### Erkélyajtó (85/274)

Típusa: üvegezett ajtó (külső, fa vagy PVC)
x méret:
y méret:
Hőátbocsátási tényező:
Megengedett értéke:
0.80 W/m²K
1.15 W/m²K

#### A hőátbocsátási tényező megfelelő.

Üvegezési arány:

Üvegezés g értéke:

Üvegezés g értéke:

Éjszaka társított szerkezet hőv. ellen.:

Árnyékolás módja nyáron:

Árnyékolás naptényezője nyáron:

0.450

#### Külső fal b.XPS

Típusa: külső fal  $0.72 \text{ W/m}^2\text{K}$ Rétegtervi hőátbocsátási tényező:  $0.24 \text{ W/m}^2\text{K}$ Megengedett értéke: A rétegtervi hőátbocsátási tényező NEM MEGFELELŐ! Hőátbocsátási tényezőt módosító tag: 20 %  $0.87 \text{ W/m}^2\text{K}$ Eredő hőátbocsátási tényező:  $462 \text{ kg/m}^2$ Fajlagos tömeg: Fajlagos hőtároló tömeg:  $9 \text{ kg/m}^2$ Hőátadási tényező kívül:  $24.00 \text{ W/m}^2\text{K}$ Hőátadási tényező belül:  $8.00 \text{ W/m}^2\text{K}$ 



| Rétegek belülről kifelé<br>Réteg | No | d    | λ      | к | R          | δ     | $R_{\rm v}$ | μ   | c        | ρ                    |
|----------------------------------|----|------|--------|---|------------|-------|-------------|-----|----------|----------------------|
| megnevezés                       | -  | [cm] | [W/mK] | - | $[m^2K/W]$ |       | [m²         | -   | [kJ/kgK] | [kg/m <sup>3</sup> ] |
| Vakolat                          | 1  | 0,2  | 0,99   |   | -          | 0,02  | 0,1         | -   | 0,88     | 1800                 |
| Ragasztó                         | 2  | 0,3  | 0,93   |   | _          | 0,022 | 0,13636     | -   | 0,88     | 1800                 |
| XPS                              | 3  | 2    | 0,035  |   | - 0,57143  | _     | 10,8        | 100 | 1,4      | -                    |
| Ragasztó                         | 4  | 0,3  | 0,93   |   | =          | 0,022 | 0,13636     | -   | 0,88     | 1800                 |
| Beltéri vakolat                  | 5  | 1,5  | 0,93   |   | =          | 0,022 | 0,68182     | -   | 0,88     | 1800                 |
| Ég.tégla falazat                 | 6  | 30   | 0,5    |   | - 0,6      | 0,046 | 6,5217      | -   | 0,88     | 1280                 |
| Kültéri vakolat                  | 7  | 2    | 0,93   |   | -          | 0,022 | 0,90909     | -   | 0,88     | 1800                 |

Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ



#### Külső fal Isotex



| Rétegek belülről kifelé | N.T. | 1    | 3      |   | D          | 9     | D          |   |          |                      |
|-------------------------|------|------|--------|---|------------|-------|------------|---|----------|----------------------|
| Réteg                   | No   | a    | Λ      | κ | K          | o     | $R_{ m v}$ | μ | c        | ρ                    |
| megnevezés              | -    | [cm] | [W/mK] | - | $[m^2K/W]$ |       | [m²        | - | [kJ/kgK] | [kg/m <sup>3</sup> ] |
| Isotex lap              | 1    | 1,2  | 0,05   |   | - 0,24     | 0,012 | 1          | - | 1,88     | 240                  |
| Beltéri vakolat         | 2    | 1,5  | 0,93   |   | -          | 0,022 | 0,68182    | - | 0,88     | 1800                 |
| Ég.tégla falazat        | 3    | 30   | 0,5    |   | - 0,6      | 0,046 | 6,5217     | - | 0,88     | 1280                 |
| Kültéri vakolat         | 4    | 2    | 0,93   |   | -          | 0,022 | 0,90909    | - | 0,88     | 1800                 |

400 200

2 3 4 5

8 9 10

11 12 13 14 15 16 17 18 19 20

Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ

#### Külső fal k.XPS

Típusa: külső fal 2 200 Rétegtervi hőátbocsátási tényező:  $0.72 \text{ W/m}^2\text{K}$ 2 000 Megengedett értéke:  $0.24 \text{ W/m}^2\text{K}$ A rétegtervi hőátbocsátási tényező NEM MEGFELELŐ! Hőátbocsátási tényezőt módosító tag: 20 % E 1600 Eredő hőátbocsátási tényező:  $0.87 \text{ W/m}^2\text{K}$ iš Ē 1400 Fajlagos tömeg:  $462 \text{ kg/m}^2$ 1 200 1 200 1 000 Fajlagos hőtároló tömeg:  $113 \text{ kg/m}^2$ Hőátadási tényező kívül:  $24.00 \text{ W/m}^2\text{K}$ Hőátadási tényező belül:  $8.00 \text{ W/m}^2\text{K}$ 800 600



| Rétegek belülről kifelé<br>Réteg | No | d    | λ      | κ | R          | δ     | $R_{v}$ | μ   | c        | ρ          |
|----------------------------------|----|------|--------|---|------------|-------|---------|-----|----------|------------|
| megnevezés                       | -  | [cm] | [W/mK] | - | $[m^2K/W]$ |       | [m²a ˈ  | -   | [kJ/kgK] | $[kg/m^3]$ |
| Beltéri vakolat                  | 1  | 1,5  | 0,93   |   | -          | 0,022 | 0,68182 | -   | 0,88     | 1800       |
| Ég.tégla falazat                 | 2  | 30   | 0,5    |   | - 0,6      | 0,046 | 6,5217  | -   | 0,88     | 1280       |
| Kültéri vakolat                  | 3  | 2    | 0,93   |   | -          | 0,022 | 0,90909 | -   | 0,88     | 1800       |
| Ragasztó                         | 4  | 0,3  | 0,93   |   | -          | 0,022 | 0,13636 | -   | 0,88     | 1800       |
| XPS                              | 5  | 2    | 0,035  |   | - 0,57143  | -     | 10,8    | 100 | 1,4      | -          |
| Ragasztó                         | 6  | 0,3  | 0,93   |   | -          | 0,022 | 0,13636 | -   | 0,88     | 1800       |
| Vakolat                          | 7  | 0,2  | 0,99   |   | -          | 0,02  | 0,1     | -   | 0,88     | 1800       |

Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ

#### Lapostető Rockwool

Típusa: tető 2 200 y méret: 1 m  $0.46 \text{ W/m}^{2}\text{K}$ 2 000 Rétegtervi hőátbocsátási tényező:  $0.17 \text{ W/m}^2\text{K}$ Megengedett értéke: 1 800 A rétegtervi hőátbocsátási tényező NEM MEGFELELŐ 15 % 0.53 W/m<sup>2</sup>K Hőátbocsátási tényezőt módosító tag: Ĕ 1 400 Eredő hőátbocsátási tényező: 1 200 2 1 200 3 1 000 912 kg/m<sup>2</sup>  $12 \text{ kg/m}^2$ Fajlagos tömeg: Fajlagos hőtároló tömeg:  $24.00 \text{ W/m}^2\text{K}$ Hőátadási tényező kívül: Parciális 800 Hőátadási tényező belül:  $10.00 \text{ W/m}^2\text{K}$ 600



| Rétegek belülről kifelé<br>Réteg | No | d    | λ      | κ | R          | δ     | $R_{v}$ | μ | c        | ρ          |
|----------------------------------|----|------|--------|---|------------|-------|---------|---|----------|------------|
| megnevezés                       | -  | [cm] | [W/mK] | - | $[m^2K/W]$ |       | [m²     | - | [kJ/kgK] | $[kg/m^3]$ |
| Gipszlap                         | 1  | 1,2  | 0,24   |   | - 0,05     | 0,036 | 0,33333 | - | 0,84     | 1000       |
| Hőtükör                          | 2  | 0,1  | 0,2    |   | - 0,005    | -     | 539,99  |   | -        | -          |
| Tartóváz / Rockwool              | 3  | 5    | 0,039  |   | - 1,2821   | -     | 0,26999 | 1 | 0,84     | 28         |
| Beltéri vakolat                  | 4  | 1    | 0,93   |   | =          | 0,022 | 0,45455 | - | 0,88     | 1800       |
| Teherhordó födém                 | 5  | 25   | 1,55   |   | - 0,16129  | 0,008 | 31,25   | - | 0,84     | 2400       |
| Könnyűbeton lejtésben            | 6  | 12   | 0,56   |   | - 0,21429  | 0,024 | 5       | - | 0,88     | 1400       |
| Kőszivacslap                     | 7  | 8    | 0,35   |   | - 0,22857  | 0,032 | 2,5     | - | 0,88     | 1100       |
| Homokterítés                     | 8  | 1    | 0,58   |   | =          | 0,044 | 0,22727 | - | 0,84     | 1600       |
| Vízszigetelés                    | 9  | 0,8  | 0,12   |   | -          | -     | 432     | - | -        | 1100       |



Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ Egyensúlyi állapotban páralecsapódás van, de a diffúziós időszak alatt nem tud kialakulni (feltöltési idő: 10008 nap). Az izotermával nem rendelkező rétegek figyelmen kívül lettek hagyva, a tényleges feltöltési idő hosszabb a számítottnál. 6. (Könnyűbeton lejtésben)75%-NÁL MAGASABB a relatív páratartalom! A vizsgálathoz KELLENEK a szorpciós izoterma ADATOK!

- 7. (Kőszivacslap)75%-NÁL MAGASABB a relatív páratartalom! A vizsgálathoz KELLENEK a szorpciós izoterma ADATOK!
- 8. (Homokterítés)75%-NÁL MAGASABB a relatív páratartalom! A vizsgálathoz KELLENEK a szorpciós izoterma ADATOK!

#### Lépcsőházi fal

Típusa: belső fal (fűtetlen tér felé)

Rétegtervi hőátbocsátási tényező:

Megengedett értéke:

1.13 W/m²K

0.26 W/m²K

A rétegtervi hőátbocsátási tényező NEM MEGFELELŐ!

Hőátbocsátási tényezőt módosító tag: 5% Eredő hőátbocsátási tényező:  $1.19~W/m^2K$  Fajlagos tömeg:  $438~kg/m^2$  Fajlagos hőtároló tömeg:  $113/113~kg/m^2$  Hőátadási tényező kívül:  $8.00~W/m^2K$  Hőátadási tényező belül:  $8.00~W/m^2K$ 

Rétegek belülről kifelé

| Réteg            | No | d    | λ      | κ | R          | δ     | $R_{\rm v}$ | μ | c        | ρ          |
|------------------|----|------|--------|---|------------|-------|-------------|---|----------|------------|
| megnevezés       | -  | [cm] | [W/mK] | - | $[m^2K/W]$ |       | [m²         | - | [kJ/kgK] | $[kg/m^3]$ |
| Beltéri vakolat  | 1  | 1,5  | 0,93   |   | -          | 0,022 | 0,68182     | - | 0,88     | 1800       |
| Ég.tégla falazat | 2  | 30   | 0,5    |   | - 0,6      | 0,046 | 6,5217      | - | 0,88     | 1280       |
| Beltéri vakolat  | 3  | 1,5  | 0,93   |   | _          | 0,022 | 0,68182     | _ | 0,88     | 1800       |

#### Határoló szerkezetek:

| Szerkezet megnevezés   | tájolás | Hajlásszög | U          | A       | Ψ      | L   | AU*+L  | $A_{\ddot{u}}$ | $Q_{sd0}$ |
|------------------------|---------|------------|------------|---------|--------|-----|--------|----------------|-----------|
|                        |         | [°]        | $[W/m^2K]$ | $[m^2]$ | [W/mK] | [m] | [W/K]  | $[m^2]$        | [kWh/a]   |
| Külső fal Isotex       | K       | függőleges | 1,149      | 9,6     | _      | -   | 11,019 | -              | -         |
| Külső fal b.XPS        | K       | függőleges | 0,867      | 8,1     | -      | -   | 7,0194 | -              | -         |
| Ablak (87/174)         | K       | függőleges | 0,8        | 1,5     | -      | -   | 1,158  | 1,0            | 156,5     |
| Ablak (89/164)         | K       | függőleges | 0,8        | 1,5     | -      | -   | 1,1165 | 1,0            | 150,9     |
| Külső fal Isotex       | D       | függőleges | 1,149      | 7,3     | -      | -   | 8,3948 | -              | -         |
| Külső fal k.XPS        | D       | függőleges | 0,867      | 4,9     | -      | -   | 4,2266 | -              | -         |
| Ablak (147/174)        | D       | függőleges | 0,8        | 2,6     | -      | -   | 1,9566 | 1,9            | 600,9     |
| Ablak (152/175)        | D       | függőleges | 0,8        | 2,7     | -      | -   | 2,0348 | 2,0            | 633,2     |
| Erkélyajtó (85/274)    | D       | függőleges | 0,8        | 2,3     | _      | -   | 1,7816 | 1,6            | 503,4     |
| Külső fal k.XPS        | NY      | függőleges | 0,867      | 2,8     | _      | -   | 2,4231 | -              | _         |
| Lapostető Rockwool     |         | vízszintes | 0,528      | 51,0    | _      | -   | 26,907 | -              | _         |
| Lépcsőházi fal         |         |            | 1,19       | 3,6     | _      | -   | 2,5971 | -              | _         |
| Bejárati ajtó (82/208) |         |            | 1,3        | 1,7     | -      | =   | 1,3304 | -              | _         |



| Épület tömeg besoro                                                              | lása: könnyű (mt <= 400 kg/m2) |                                                       |  |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|--|--|--|--|--|
| ε:                                                                               | 0.50                           | (Sugárzás hasznosítási tényező)                       |  |  |  |  |  |
| A:                                                                               | 99.5 m <sup>2</sup>            | (Fűtött épület(rész) térfogatot határoló összfelület) |  |  |  |  |  |
| V:                                                                               | 139.6 m <sup>3</sup>           | (Fűtött épület(rész) térfogat)                        |  |  |  |  |  |
| A/V:                                                                             | $0.712 \text{ m}^2/\text{m}^3$ | (Épületrész alapján számított felület-térfogat arány) |  |  |  |  |  |
| A/V:                                                                             | $0.493 \text{ m}^2/\text{m}^3$ | (Épületre felvett felület-térfogat arány)             |  |  |  |  |  |
| $Q_{sd}+Q_{sid}$ :                                                               | (588 + 0) * 0,5 = 294  kWh/a   | (Sugárzási hőnyereség)                                |  |  |  |  |  |
| $\Sigma AU + \Sigma \Psi$ :                                                      | 72.0 W/K                       |                                                       |  |  |  |  |  |
| $q = [\Sigma AU + \Sigma \Psi - (Q_{sd} + Q_{sid})/72]/V = (72 - 294/72)/139,63$ |                                |                                                       |  |  |  |  |  |
| q:                                                                               | $0.487 \text{ W/m}^3\text{K}$  | (Számított fajlagos hőveszteségtényező)               |  |  |  |  |  |
| q <sub>max</sub> :                                                               | $0.273 \text{ W/m}^3\text{K}$  | (Megengedett fajlagos hőveszteségtényező)             |  |  |  |  |  |

Az épület fajlagos hőveszteségtényezője NEM FELEL MEG!  $q_{max,opf} \hspace{1.5cm} \textbf{0.212} \hspace{0.2cm} \textbf{W/m}^{3}\textbf{K} \hspace{0.2cm} \text{(Költségoptimalizált megengedett fajlagos hőveszteségtényező)}$ q<sub>max,opt</sub>;

Az épület fajlagos hőveszteségtényezője a költségoptimalizált követelményszintnek NEM FELEL MEG!

## Energia igény tervezési adatok

Épület(rész) jellege: Lakóépület

| A <sub>N</sub> :      | $51.0 \text{ m}^2$              | (Fűtött alapterület)                                       |
|-----------------------|---------------------------------|------------------------------------------------------------|
| n:                    | 0.50 1/h                        | (Átlagos légcsereszám a fűtési idényben)                   |
| σ:                    | 0.90                            | (Szakaszos üzem korrekciós szorzó)                         |
| $Q_{sd}+Q_{sid}$ :    | (0.16 + 0) * 0.5 = 0.08  kW     | (Sugárzási nyereség)                                       |
| q <sub>b</sub> :      | $5.00 \text{ W/m}^2$            | (Belső hőnyereség átlagos értéke)                          |
| $E_{vil,n}$ :         | $0.00 \text{ kWh/m}^2 \text{a}$ | (Világítás fajlagos éves nettó energia igénye)             |
| q <sub>HMV</sub> :    | 30.00 kWh/m <sup>2</sup> a      | (Használati melegvíz fajlagos éves nettó hőenergia igénye) |
| n <sub>nyár</sub> :   | 9.00 1/h                        | (Légcsereszám a nyári idényben)                            |
| Q <sub>sdnyár</sub> : | 0,4 kW                          | (Sugárzási nyereség)                                       |

## Fajlagos értékekből számolt igények

| •                                                               | _ <b>.</b>                    |                                                     |
|-----------------------------------------------------------------|-------------------------------|-----------------------------------------------------|
| $Q_b = \Sigma A_N q_b$ :                                        | 255 W                         | (Belső hőnyereségek összege)                        |
| $Q_{b,\varepsilon} = \Sigma A_N q_b \varepsilon$ :              | 127 W                         | (Belső hőnyereségek összege a hasznosítással)       |
| $\Sigma E_{vil,n} = \Sigma A_N E_{vil,n}$ :                     | 0 kWh/a                       | (Világítás éves nettó energia igénye)               |
| $Q_{HMV} = \Sigma A_N q_{HMV}$ :                                | 1529 kWh/a                    | (Használati melegvíz éves nettó hőenergia igénye)   |
| $V_{\text{átl}} = \Sigma V n$ :                                 | $0.0 \text{ m}^3/\text{h}$    | (Átlagos levegő térfogatáram a fűtési idényben)     |
| $V_{LT} = \Sigma V n_{LT} * Z_{LT} / Z_F:$                      | $69.8 \text{ m}^3/\text{h}$   | (Levegő térfogatáram a használati időben)           |
| $V_{inf} = \Sigma V n_{inf}^* (1-Z_{LT}/Z_F)$ :                 | $19.5 \text{ m}^3/\text{h}$   | (Levegő térfogatáram a használati időn kívül)       |
| $V_{dt} = \Sigma (V_{\acute{a}tl} + V_{LT}(1-\eta) + V_{inf}):$ | $4.9 \text{ m}^3/\text{h}$    | (Légmennyiség a téli egyensúlyi hőm. különbséghez.) |
| $V_{nv\acute{a}r} = \Sigma V n_{nv\acute{a}r}$ :                | $1256.7 \text{ m}^3/\text{h}$ | (Levegő térfogatáram nyáron)                        |



#### Fűtés éves nettó hőenergia igényének meghatározása

$$\Delta t_b = (Q_{sd} + Q_{sid} + Q_{b,e}) / (\Sigma AU + \Sigma \Psi + 0.35 V_{dt}) + 2$$
  
 $\Delta t_b = (79 + 127.4) / (72 + 0.35 * 4.88706) + 2 = 4.8 ^{\circ}C$ 

t<sub>i</sub>: 20.0 °C (Átlagos belső hőmérséklet)

H: 72000 hK/a (Fűtési hőfokhíd)
Z<sub>E</sub>: 4400 h/a (Fűtési idény hossza)

 $Q_F = H[Vq + 0.35\Sigma V_{inf,F}]\sigma - P_{LT,F}Z_F - Z_FQ_{b,\varepsilon}$ 

 $Q_F = 72 * (139,63 * 0,487 + 0,35 * 3,4) * 0,9 - 0 * 4,4 - 4,4 * 127,4 = 3,923 MWh/a$ 

**q<sub>E</sub>:** 76.99 kWh/m<sup>2</sup>a (Fűtés éves fajlagos nettó hőenergia igénye)

0,03613 MWh/a

q<sub>LT,h</sub>:

**0.71** kWh/m<sup>2</sup>a (A légtechnikai rendszer éves fajlagos nettó hőenergia igénye)

#### Nyári túlmelegedés kockázatának ellenőrzése

$$\Delta t_{bny\acute{a}r} = \left(Q_{sdny\acute{a}r} + Q_{b}\right) / \left(\Sigma AU + \Sigma \Psi + 0.35 V_{ny\acute{a}r}\right)$$

 $\Delta t_{\text{bnyár}} = (397 + 254.8) / (72 + 0.35 * 1256.67) = 1.3 \text{ °C}$ 

Δt<sub>bnyármax</sub>: 2.0 °C (A nyári felmelegedés elfogadható értéke)

A nyári felmelegedés elfogadható mértékű.

#### Fűtési rendszer

 $A_{N}$ : 51.0 m<sup>2</sup> (a rendszer alapterülete)

q: 76.99 kWh/m²a (a fűtés fajlagos nettó hőenergia igénye)

Elektromos infrapanel

 $e_{f}$ : 2.50 (elektromos áram)

e<sub>sus</sub>: 0.10

C<sub>k</sub>: 1.00 (a hőtermelő teljesítménytényezője)

 $q_{k,y}$ : 0.00 kWh/m<sup>2</sup>a (segédenergia igény)

Hősugárzó szabályozó termosztáttal

q<sub>f,h</sub>: 0.70 kWh/m<sup>2</sup>a (a teljesítmény és a hőigény illesztésének pontatlansága miatti veszteség)

Elosztási veszteség nincs

 $q_{f,v}$ : 0.00 kWh/m<sup>2</sup>a (az elosztóvezetékek fajlagos vesztesége)

Keringtetési energia igény nincs

E<sub>FSz</sub>: 0.00 kWh/m<sup>2</sup>a (a keringtetés fajlagos energia igénye)

Tárolási veszteség nincs

q<sub>f.</sub>; 0.00 kWh/m²a (a hőtárolás fajlagos vesztesége és segédenergia igénye)

 $E_{FT}$ : 0.00 kWh/m<sup>2</sup>a

$$E_F = (q_f + q_{f,h} + q_{f,v} + q_{f,t}) \Sigma (C_k \alpha_k e_f) + (E_{FSZ} + E_{FT} + q_{k,v}) e_v$$

$$E_{\rm F} = (76.99 + 0.7 + 0 + 0) * 2.5 + (0 + 0 + 0) * 2.5 = 194.23 \text{ kWh/m}^2 \text{a}$$

$$E_{F sus} = (q_f + q_{f,h} + q_{f,v} + q_{f,t}) \Sigma (C_k \alpha_k e_{f sus}) + (E_{FSz} + E_{FT} + q_{k,v}) e_{v sus}$$

$$E_{F \text{ sus}} = (76.99 + 0.7 + 0 + 0) * 0.1 + (0 + 0 + 0) * 0.1 = 7.77 \text{ kWh/m}^2 \text{a}$$



#### Melegvíz-termelő rendszer

 $A_{N}$ : 51.0 m<sup>2</sup> (a rendszer alapterülete)

q<sub>HMV</sub>: 30.00 kWh/m<sup>2</sup>a (a melegvíz készítés nettó energia igénye)

Elektromos fűtőpatron

e<sub>HMV</sub>: 2.50 (elektromos áram)

e<sub>sus</sub>: 0.10

C<sub>k</sub>: 1.00 (a hőtermelő teljesítménytényezője)

E<sub>k</sub>: 0.00 kWh/m<sup>2</sup>a (segédenergia igény)

Nincs elosztási veszteség

 $q_{HMV,v}$ : 0.00 % (a melegvíz elosztás fajlagos vesztesége)  $E_C$ : 0.00 kWh/m²a (a cirkulációs szivattyú fajlagos energia igénye)

Elhelyezés a fűtött térben, nappali árammal működő elektromos boyler

q<sub>HMV,t</sub>: 13.00 % (a melegvíz tárolás fajlagos vesztesége)

 $E_{HMV} = q_{HMV}(1 + q_{HMV,v}/100 + q_{HMV,v}/100)\Sigma(C_k\alpha_k e_{HMV}) + (E_C + E_k)e_v$ 

 $E_{HMV} = 30 * (1 + 0 + 0.13) * 2.5 + (0 + 0) * 2.5 = 84.75 \text{ kWh/m}^2 \text{a}$ 

 $E_{HMV\,sus} = q_{HMV}(1 + q_{HMV,v}/100 + q_{HMV,t}/100)\Sigma(C_k\alpha_k e_{HMV\,sus}) + (E_C + E_k)e_{v\,sus}$ 

 $E_{HMV sus} = 30 * (1 + 0 + 0.13) * 0.1 + (0 + 0) * 0.1 = 3.39 \text{ kWh/m}^2 \text{a}$ 

#### Légtechnikai rendszer

| A <sub>LT</sub> :     | $51.0 \text{ m}^2$ | (a rendszer alapterülete)   |                                                      |
|-----------------------|--------------------|-----------------------------|------------------------------------------------------|
| n <sub>LT</sub> :     |                    | 0.50 1/h                    | (Légcsereszám a használati időben)                   |
| $n_{inf}$             |                    | 2.00 1/h                    | (Légcsereszám a használati időn kívül)               |
| $V_{LT} = V_{n_{LT}}$ | :                  | $69.8 \text{ m}^3/\text{h}$ | (Levegő térfogatáram a használati időben)            |
| $\eta_r$ :            |                    | 93.0 %                      | (Légtechnikai rendszer hővisszanyerőjének hatásfoka) |
| $Z_{LTr}/Z_{F}$ :     |                    | 0.700                       | (Üzemidő arány (csak hővisszanyerő))                 |
| t <sub>bef</sub> :    |                    | 20.0 °C                     | (Beépített léghevítő befúvási hőmérséklete)          |
| $Z_{LTbef}/Z_{F}$ :   |                    | 0.300                       | (Üzemidő arány (léghevítővel))                       |
| 0 -0.25               | (1 n)(t)           | 1)7 /7 *7                   |                                                      |

 $Q_{LT,h} = 0.35 V_{LT} (1 - \eta_r) (t_{bef} - 4) Z_{LTbef} Z_F * Z_F$ 

 $Q_{LT,h} = 0.35 * 69.8 * (1 - 0.93) * (20 - 4) * 0.3 * 4.4 = 0.03613 \text{ MWh/a}$  $q_{LT,h}$ : 0.71 kWh/m<sup>2</sup>a (A légtechnikai rendszer éves fajlagos nettó hőenergia igénye)

Elektromos hősugárzó

e<sub>LT</sub>: 2.50 (elektromos áram)

 $e_{sus}$ : 0.10

C<sub>k</sub>: 1.00 (a hőtermelő teljesítménytényezője)

E<sub>L.T.k</sub>: 0.00 kWh/m<sup>2</sup>a (segédenergia igény)

20 °C feletti befúvási hőmérséklet, központi előszabályozás

 $f_{LT,sz}$ : 10.00 % (a teljesítmény és a hőigény illesztésének pontatlansága miatti veszteség)

 $V_{LT}$ : 69.8 m<sup>3</sup>/h (a levegő térfogatárama)

 $\Delta p_{LT}$ : 12 Pa (a rendszer áramlási ellenállása)  $\eta_{vent}$ : 55.0 % (a ventilátor összhatásfoka)

EM-223617 - Tervezett.wwp



Z<sub>a,LT</sub>: 4400 h (a légtechnikai rendszer egész évi működési ideje)

 $E_{vent} = V_{LT} \Delta p_{LT} / 3600 / \eta_{vent} Z_{a,LT} / 1000$ 

 $E_{vent}$  = 69,8 \* 12 / 3600 / 0,55 \* 4400 / 1000 = 1,862 kWh/a

Q<sub>LT v</sub>: 0,855 kWh/a (a levegő elosztás hővesztesége)

 $E_{L,T} = (q_{L,T,n}(1 + f_{L,T,sz}) + Q_{L,T,v}/A_N)\Sigma C_k \alpha_k e_{L,T} + [(E_{vent} + E_{L,T,s})/A_N + E_{L,T,k}Z_{L,T}/Z_F]e_v$ 

 $\mathbf{E_{I,T}} = (0.71 * (1+0.1) + 0.855 / 50.96) * 2.5 + ((1.862+0) / 50.96 + 0 * 0.3) * 2.5 = 2.08 \text{ kWh/m}^2 \text{a}$ 

 $E_{LT,sus} = (q_{LT,n}(1 + f_{LT,sz}) + Q_{LT,n}(A_N)\Sigma C_k \alpha_k e_{LT,sus} + [(E_{vent} + E_{LT,s})/A_N + E_{LT,k}Z_{LT}/Z_F]e_{v,sus}$ 

 $E_{1.T.sus} = (0.71 * (1 + 0.1) + 0.855 / 50.96) * 0.1 + ((1.862 + 0) / 50.96 + 0 * 0.3) * 0.1 = 0.08 \text{ kWh/m}^2 \text{a}$ 

Légcsatorna szakaszok:

5 120 20 1 0,8548

#### Nyereségáram forrás

Q<sub>+</sub>: 2200 kWh/a (éves energia nyereség) e<sub>+</sub>: 2.50 (elektromos áram)

 $e_{+-sus}$ : 1.00

 $E_{+-} = Q_{+-}e_{+-}/A_N = -2200 * 2.5 / 50.96 = -107.93 \text{ kWh/m}^2 \text{a}$ 

 $E_{+-SUS} = Q_{+-}e_{+-SUS}/A_N = 2200 * 1 / 50,96 = 43.17 \text{ kWh/m}^2 \text{ a}$ 

## Az épület(rész) összesített energetikai jellemzője

 $E_P = E_F + E_{HMV} + E_{vil} + E_{LT} + E_{hii} + E_{+-} = 194,23 + 84,75 + 0 + 2,08 + 0 + -107,93$ 

E<sub>p</sub>: 173.13 kWh/m<sup>2</sup>a (az összesített energetikai jellemző számított értéke)

E<sub>Pmax</sub>: 115.79 kWh/m<sup>2</sup>a (az összesített energetikai jellemző megengedett értéke)

E<sub>Pref</sub>: 100.00 kWh/m<sup>2</sup>a (az összesített energetikai jellemző referencia értéke)

 $\mathbf{E_{sus}} = \mathbf{E_{passz\acute{t}v}} + \mathbf{E_{F}}_{sus} + \mathbf{E_{HMV}}_{sus} + \mathbf{E_{vil}}_{sus} + \mathbf{E_{LT}}_{sus} + \mathbf{E_{h\H{u}}}_{sus} + \mathbf{E_{nyer}}_{sus}$ 

 $E_{\text{cus}} = 5.77 + 7.77 + 3.39 + 0 + 0.08 + 0 + 43.17 = 60.18 \text{ kWh/m}^2\text{a}$ 

 $MER = E_{sus} / E_{p} = 60,18 / 173,13 = 34.8 \%$  (Megújuló részarány)

Becsült éves fogyasztás energiahordozók szerint

Energiahordozó típusa F K Eprim  $E_{CO2}$  $e_{CO2}$ [MWh/a] [eFt/a] [-] [MWh/a] [g/kW [t/a] [/a]elektromos áram 3,53 2,50 8,82 1,29 3,53 MWh 365 Összesen 8,82 1,29

#### Egyéb megjegyzés:

Elméleti számítás a tervezett állapotra vonatkozólag.