BCEAO - 20 AU 25 JANVIER 2019

1 - R et JDemetra+

DOMINIQUE LADIRAY ET ALAIN QUARTIER-LA-TENTE (dominique.ladiray@insee.fr et alain.quartier@yahoo.fr)

Sommaire

- 1. Le JWSACruncher
- 1.1 Introduction
- 1.2 Lancement du cruncher depuis R
- 2. Lancer JDemetra+ depuis R

Le JWSACruncher

Objectifs du cruncher : mettre à jour un workspace de JDemetra+ et exporter les résultats à partir de la console (en *batch*), sans devoir ouvrir JDemetra+ : très utile pour la production. Quelques liens :

- pour télécharger le cruncher https://github.com/jdemetra/jwsacruncher/releases.
- l'aide associée au cruncher https://github.com/jdemetra/jwsacruncher/wiki.
- configuration du cruncher une version portable de Java : https://github.com/AQLT/JDCruncheR/wiki/Installation-et-configuration-de-JDemetra--et-du-cruncher.

Le cruncher

Pour lancer le cruncher de JDemetra+ il faut :

- le cruncher;
- un fichier contenant les paramètres sur la méthode de rafraîchissement à utilisée pour mettre à jour le workspace et sur les paramètres d'export;
- un workspace valide de JDemetra+.

Installation du package

Le package rjwsacruncher est une interface autour du JWSACruncher.

Il est disponible sur le CRAN a une page GitHub associée : ${\tt https://github.com/AQLT/rjwsacruncher}.$

```
install.packages("rjwsacruncher")
```

Utilisation de rjwsacruncher (1/3)

Une vignette décrit plus précisément la procédure pour utiliser le cruncher à partir du package :

browseVignettes("rjwsacruncher")

Pour charger le package :

library(rjwsacruncher)

Utilisation de rjwsacruncher (2/3)

Trois options vont être utiles : default_matrix_item (diagnostics à exporter), default_tsmatrix_series (séries temporelles à exporter) et cruncher_bin_directory (chemin vers le cruncher).

Pour afficher les valeurs :

```
getOption("default_matrix_item")
getOption("default_tsmatrix_series")
getOption("cruncher_bin_directory")
```

Utiliser la fonction options () pour les modifier. Par exemple :

Utilisation de rjwsacruncher (3/3)

Une fois les trois options précédentes validées le plus simple est d'utiliser la fonction cruncher_and_param() :

Pour voir l'aide associée à une fonction, utiliser help() ou ? :

```
?cruncher_and_param
help(cruncher_and_param)
```

→ Dans le TP le cruncher sera lancé en créant un fichier de paramètres

Sommaire

1. Le JWSACruncher

- 2. Lancer JDemetra+ depuis R
- 2.1 Current status
- 2.2 RegARIMA: exemples
- 2.3 CVS-CJO: exemples
- 2.4 Manipuler des workspaces
- 2.5 Réduire le temps de calcul
- 2.6 Autour de RJDemetra

RJDemetra est un package qui permet de lancer les routines de JDemetra+ depuis R

: https://github.com/jdemetra/rjdemetra

Page web: https://jdemetra.github.io/rjdemetra/

Pour l'installer :

install.packages("RJDemetra")

- \rightarrow Peut être utilisé pour développer de nouveaux outils pour aider la production
- \to II faut Java 8 ou plus pour l'utiliser. En cas de problème d'installation : <code>https://github.com/jdemetra/rjdemetra/wiki/Installation-manual</code>

Current status

- RegARIMA, TRAMO-SEATS et X-13-ARIMA :
 - o spécifications prédéfinies et personnalisées
 - o classes S3 avec des méthodes plot, summary, print
- Manipulation de workspaces JD+ :
 - Import de workspaces to avec le modèle CVS
 - Export des modèles R créé par RJDemetra
- Contient une base de données (ipi_c_eu): les IPI dans l'industrie manufacturière dans l'UE

RegARIMA: exemples (1/4)

```
library(RJDemetra)
ipch benin <- ipch benin[,"ensemble"]</pre>
regarima model <- regarima x13(ipch benin, spec = "RG4c")
regarima model
## y = regression model + arima (0, 1, 0, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##
            Estimate Std. Error
## BTheta(1) -0.9145
                          0.036
##
##
              Estimate Std. Error
## LS (1-2012) 4.379
                            0.824
## AO (4-2015) -2.747
                            0.587
## AD (6-2009) -2.322
                            0.582
##
##
## Residual standard error: 0.8265 on 237 degrees of freedom
```

RegARIMA: exemples (2/4)

summary(regarima_model)

```
## y = regression model + arima (0, 1, 0, 0, 1, 1)
##
## Model: RegARIMA - X13
## Estimation span: from 1-1997 to 3-2018
## Log-transformation: no
## Regression model: no mean, no trading days effect, no leap year effect, no Ea
##
## Coefficients:
## ARTMA:
##
            Estimate Std. Error T-stat Pr(>|t|)
## BTheta(1) -0.9145
                     0.0355 -25.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Regression model:
##
              Estimate Std. Error T-stat Pr(>|t|)
## LS (1-2012) 4.3790 0.8241 5.314 2.43e-07 ***
## AO (4-2015) -2.7470 0.5869 -4.681 4.76e-06 ***
## AO (6-2009) -2.3224 0.5818 -3.992 8.71e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

RegARIMA: exemples (3/4)

layout(matrix(1:6, 3, 2));plot(regarima_model, ask = FALSE)

RegARIMA: exemples (4/4)

plot(regarima_model, which = 7)

CVS-CJO: exemples (1/8)

Un object SA est une list() de 5 éléments :

```
FA regarima (# X-13 and TRAMO-SEAT)

| regarima (# X-13 and TRAMO-SEAT)

| decomposition (# X-13 and TRAMO-SEAT)

| specification
| ...

| final
| series
| forecasts
| diagnostics
| variance_decomposition
| combined_test
| ...
| user_defined
```

CVS-CJO: exemples (2/8)

Possibilité de définir ses propres spécifications comme sous JD+ ou d'utiliser les spécifications prédéfinies :

CVS-CJO: exemples (3/8): decomposition

x13_mod\$decomposition

```
Monitoring and Quality Assessment Statistics:
##
##
        M stats
## M(1)
          1.817
## M(2) 0.142
## M(3)
       0.219
## M(4) 1.600
## M(5) 0.458
## M(6)
       0.199
## M(7)
       0.786
## M(8) 1.564
## M(9) 0.354
## M(10) 2.682
## M(11)
          2.620
## Q
          0.905
## Q-M2
          1.000
##
## Final filters:
## Seasonal filter:
                   3x5
## Trend filter: 13-Henderson
```

CVS-CJO: exemples (4/8): decomposition

ts_mod\$decomposition

```
## Model
## D : 1 - B - B^12 + B^13
## MA : 1 - 0.923007 B^12
##
##
## SA
## D : 1 - 2.000000 B + B^2
## MA : 1 - 0.993616 B + 0.000268 B^2
## Innovation variance: 0.9301857
##
## Trend
           D: 1 - 2.000000 B + B^2
## MA : 1 + 0.006654 B - 0.993346 B<sup>2</sup>
## Innovation variance: 0.2324235
##
## Seasonal
            D: 1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^{10} + B^{11}
           MA: 1 + 1.840644 + 2.192789 + 2.271402 + 3.271402 + 3.121758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3.421758 + 3
           Innovation variance: 0.002063135
##
## Irregular
```

CVS-CJO: exemples (5/8)

plot(x13_mod\$decomposition)

CVS-CJO: exemples (6/8)

 $x13_mod\$final$

```
## Last observed values
##
                         sa
## Apr 2017 101.8 100.85746 100.7578 0.9425435
                                                0.09963373
## May 2017 101.4 99.63078 100.6708 1.7692187 -1.04001487
## Jun 2017 101.0 99.89153 100.6970 1.1084675 -0.80548123
## Jul 2017 100.9 100.64861 100.9250 0.2513894 -0.27642041
## Aug 2017 100.6 101.58999 101.3019 -0.9899894 0.28805653
## Sep 2017 100.6 102.15194 101.6705 -1.5519386 0.48143928
## Oct 2017 100.8 101.99956 101.8910 -1.1995588 0.10858753
## Nov 2017 101.4 101.95044 101.8879 -0.5504364 0.06254215
## Dec 2017 101.3 101.67004 101.6865 -0.3700423 -0.01650179
  Jan 2018 101.3 101.08775 101.3844 0.2122531 -0.29663316
## Feb 2018 102.1 101.97830 101.0979 0.1217027
                                                0.88041793
## Mar 2018 101.2 100.80670 100.9083 0.3933017 -0.10164685
##
  Forecasts:
##
                y_f
                        sa_f
                               {	t t_f}
                                             s_f
                                                          i f
## Apr 2018 101.8030 100.8442 100.8714 0.9587153 -0.027176702
## May 2018 102.3456 100.6397 101.0182 1.7059430 -0.378560946
## Jun 2018 102.3288 101.2726 101.3284
                                       1.0561489 -0.055725767
## Jul 2018 102.0091 101.7807 101.7358
                                       0.2283849 0.044981509
```

CVS-CJO: exemples (7/8)

plot(x13_mod\$final, first_date = 2012, type_chart = "sa-trend")

1 - R et JDemetra+

CVS-CJO: exemples (8/8)

x13_mod\$diagnostics

```
Relative contribution of the components to the stationary
##
##
    portion of the variance in the original series,
    after the removal of the long term trend
##
##
    Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##
              Component
                25.022
##
    Cvcle
##
    Seasonal
               7.085
   Irregular 4.953
##
   TD & Hol.
              0.000
##
##
   Others
            64.807
##
    Total 101.868
##
##
    Combined test in the entire series
##
    Non parametric tests for stable seasonality
##
                                                            P.value
##
     Kruskall-Wallis test
                                                                   0
##
     Test for the presence of seasonality assuming stability
##
     Evolutive seasonality test
##
##
    Identifiable seasonality present
##
```

Exporter un workspace

Importer un workspace (1/3)

```
wk <- load_workspace("workspace.xml")</pre>
get ts(wk)
##
  $`MP-1`
   $`MP-1`$`SA with X13 model 1 `
##
                  Feb
                         Mar
                               Apr
                                      May
                                                    Jul
                                                                 Sep
                                                                        Oct
                                                                               Nov
           Jan
                                             Jun
                                                           Aug
                                                                                      Dec
##
   1997
          60.8
                60.5
                       61.3
                              62.4
                                     62.3
                                            62.0
                                                   61.8
                                                          61.5
                                                                61.1
                                                                       61.5
                                                                              62.4
                                                                                     63.2
                        65.7
                                            67.1
                                                   65.7
                                                                              65.1
                                                                                     66.8
   1998
          63.7
                 63.8
                              66.0
                                     66.3
                                                          64.9
                                                                64.3
                                                                       64.0
##
   1999
          66.1
                65.2
                       64.5
                              66.5
                                     66.7
                                            65.8
                                                   65.7
                                                          66.1
                                                                65.4
                                                                       64.9
                                                                              64.5
                                                                                     64.6
##
   2000
          64.7
                65.3
                        66.7
                              67.4
                                     68.1
                                            69.8
                                                   69.3
                                                          68.9
                                                                68.5
                                                                       69.6
                                                                              69.7
                                                                                     71.0
   2001
          69.5
                68.8
                        70.0
                              70.8
                                     71.9
                                            71.6
                                                   71.8
                                                          71.1
                                                                70.9
                                                                       71.0
                                                                              71.6
                                                                                     72.6
##
                                                   75.1
##
   2002
          71.3
                71.3
                       71.5
                              72.7
                                     72.5
                                            73.7
                                                          73.1
                                                                72.0
                                                                       72.3
                                                                              73.3
                                                                                     73.5
                       73.8
                                                   74.1
                                                          73.2
##
   2003
          73.4
                73.7
                              74.2
                                     74.3
                                            74.0
                                                                72.9
                                                                       73.8
                                                                              74.1
                                                                                     74.1
##
   2004
          74.3
                74.0
                       73.4
                              73.9
                                     74.4
                                            74.6
                                                   74.8
                                                          74.0
                                                                74.1
                                                                       74.2
                                                                              75.6
                                                                                     76.0
##
   2005
          76.1
                 76.2
                       77.9
                              77.9
                                     78.1
                                            78.7
                                                   79.5
                                                          79.3
                                                                79.5
                                                                       79.7
                                                                              79.5
                                                                                     78.9
##
   2006
          79.7
                80.7
                       81.1
                              81.9
                                     82.7
                                            82.0
                                                   80.6
                                                          79.9
                                                                82.0
                                                                       81.3
                                                                              81.8
                                                                                     83.0
##
   2007
          83.3
                82.1
                       81.9
                              81.5
                                     81.8
                                            83.3
                                                   82.1
                                                          80.7
                                                                81.7
                                                                       83.3
                                                                              84.4
                                                                                     83.2
##
   2008
          86.2
                 86.1
                       86.7
                              87.2
                                     87.9
                                            88.4
                                                   90.1
                                                          91.6
                                                                90.5
                                                                       91.2
                                                                              91.4
                                                                                     90.7
   2009
          89.9
                88.0
                       87.3
                              88.8
                                     90.4
                                            88.4
                                                   90.7
                                                          89.7
                                                                89.8
                                                                       89.9
                                                                              89.8
                                                                                     89.8
##
##
   2010
          89.7
                89.4
                       90.0
                              91.0
                                     91.6
                                            92.6
                                                   91.2
                                                          90.6
                                                                91.2
                                                                       92.1
                                                                              93.0
                                                                                     93.4
                       92.0
                              93.2
                                     93.8
                                            94.2
                                                   94.3
                                                                93.8
                                                                                     95.1
##
   2011
          94.3
                92.3
                                                          94.2
                                                                       94.1
                                                                              94.4
   2012
          99.8
                98.1
                       98.8
                              99.2
                                   100.5 100.6
                                                   99.9
                                                          99.6 100.7
                                                                      100.8
                                                                             101.9
                                                                                    101.6
##
   2013 101.5
               101.6 101.4 102.3 102.4 101.3 102.3 101.2 100.9
                                                                       99.7
                                                                              99.1
                                                                                     99.7
                                                                       29.
                                                                                     99.0
```

01 2

Importer un workspace (2/3)

Importer un workspace (3/3)

```
compute(wk) # Important to get the Sa model
models <- get_model(wk) # A progress bar is printed by default
  Multiprocessing 1 on 1:
##
                                                                                  50%
# To extract only one model
mp <- get_object(wk, 1)</pre>
count (mp)
## [1] 2
sa2 <- get_object(mp,2)</pre>
get_name(sa2)
## [1] "SA with TramoSeats model 1"
```

mod <- get_model(wk, sa2)</pre>

0%

En manipulant les objets \leq objects (1/2)

Les fonctions de base peuvent être chronophages (calcul de tous les outpus)... Notamment lorsqu'on ne s'intéresse qu'à un seul paramètre (série désaisonnalisée, tendance, etc.)

 \rightarrow Solution : manipuler les objets Java : jx13, jtramoseats, jregarima, jregarima_x13, jregarima_tramoseats and get_jmodel

En manipulant les objets extstyle extstyle

Les fonctions de base peuvent être chronophages (calcul de tous les outpus)... Notamment lorsqu'on ne s'intéresse qu'à un seul paramètre (série désaisonnalisée, tendance, etc.)

 \rightarrow Solution : manipuler les objets Java : jx13, jtramoseats, jregarima, jregarima_x13, jregarima_tramoseats and get_jmodel

```
jx13_mod <- jx13(ipch_benin, x13_usr_spec)
# To get the available outputs:
tail(get_dictionary(jx13_mod), 2)

## [1] "diagnostics.msr-global" "diagnostics.msr(*)"
# To get an indicator:
get_indicators(jx13_mod, "diagnostics.ic-ratio")

## $ diagnostics.ic-ratio ## [1] 2.020626
# To get the previous R output
x13_mod <- jSA2R(jx13_mod)</pre>
```

Performance

Exemples d'utilisation de RJDemetra

- rjdqa (sur le CRAN) : package pour aider à évaluer la qualité de la désaisonnalisation (tableau de bord et bientôt tests de saisonnalité)
- https://github.com/AQLT/rjdqa
 - ggdemetra (sur le CRAN) : intégrer la désaisonnalisation à ggplot2
- https://github.com/AQLT/ggdemetra
 - rjdworkspace (en développement) : fonctions supplémentaires pour manipuler les workspaces
- https://github.com/AQLT/rjdworkspace
 - rjdmarkdown (en développement) : pour exporter directement les modèles en PDF/HTML
- https://github.com/AQLT/rjdmarkdown
 - Réalisations d'études : Ladiray D., Quartier-la-Tente A., "Du bon usage des modèles Reg-ARIMA en désaisonnalisation", JMS 2018

Travaux pratiques

Maintenant à vous de jouer!

Documents sous: https://github.com/AQLT/BCEAO_2020

Objectifs du TP:

- Prendre en main rjwsacruncher et mettre à jour son workspace
- Prendre en main RJDemetra : faire une désaisonnalisation sous R, changer la spécification, exporter et importer un workspace.