1 Claims (Amended) 2 1. (currently amended) A method for making a laminate structure comprised of 3 two sheets of base metals comprising the steps of: 4 (a) presenting a first sheet of a base metal having a coated surface with a 5 first alloyable metal deposited thereon, said base metal and said first 6 alloyable metal each having a melting point; 7 (b) presenting a second sheet of a base metal having a coated surface with 8 said first alloyable metal deposited thereon, said base metal and said 9 second first alloyable metal each having a melting point; 10 (c) placing a sheet of a second alloyable metal between said coated 11 surface of said first and second sheets of base metal to form an 12 unconsolidated structure; then 13 (d) applying a first pressure to said first and second sheets of base metal to 14 compress said sheet of second alloyable metal disposed therebetween; 15 (e) heating the compressed structure to a phase transition temperature that 16 is below said melting points of said base metal and said first and 17 second alloyable metals; 18 (f) maintaining the compressed structure at the said phase transition 19 temperature to form a laminate structure; then 20 (g) cooling the laminate structure. 21 2. (currently amended) A method for making a metallic bond between two or 22 more dissimilar base metals comprising the steps of:

1	(a) pro	esenting a first base metal member having a coated surface with a
2	firs	st alloyable metal deposited thereon, said first base metal and said
3	firs	st alloyable metal having respective melting points;
4	(b) pro	esenting a second base metal member that comprises a second base
5	me	etal that is different than said first base metal, said second base metal
6	me	ember having a coated surface with said first alloyable metal
7	dej	posited thereon, said second base metal having a melting point;
8	(c) pla	acing a sheet of a second alloyable metal between said coated
9	sur	face of said first and second base metal members to form an
10	une	consolidated structure; then
11	(d) ap	plying a first pressure to said first and second base metal members
12	to	compress said sheet of second alloyable metal disposed
13	the	erebetween;
14	(e) hea	ating the compressed structure to a phase transition temperature,
15	wh	erein said phase transition temperature is less than said melting
16	poi	int of said first and second base metals and said alloyable metal;
17	(f) ma	intaining the compressed structure at the said phase transition
18	ten	nperature to form an alloy comprising said first and second alloyable
19	me	etals between said first and second base metal members; then
20	(g) co	oling the compressed structure, said alloy thereafter forming a
21	me	etallic bond between said first and second base metal members.

1	3. (currently amended) A method for making a metallic bond between two
2	dissimilar metals comprising the steps of:
3	(a) presenting a first base metal member having a melting point and
4	coated surface with a first alloyable metal having a melting point
5	deposited thereon;
6	(b) presenting a second base metal member that comprises a second base
7	metal that is different than said first base metal, said second base metal
8	being comprised of an alloyable metal and having a melting point;
9	(c) placing the said coated surface of said first base metal in contact with
10	said second base metal to form an unconsolidated structure; then
11	(d) forming a compressed structure by applying a first pressure to said
12	first and second base metal members to ensure contact between the
13	alloyable metal consituents;
14	(e) heating the compressed structure to a phase transition temperature that
15	is less than said melting point of said first base metal and said second
16	base metal;
17	(f) maintaining the compressed structure at the phase transition
18	temperature to form an alloy comprising said first and second alloyable
19	metals at the interface between said first and second base metal
20	members; then
21	(g) cooling the compressed structure, said alloy thereafter forming a
22	metallic bond between said first and second base metal members.

4. (original) The method for making a laminate structure comprised of two sheets of base metals in accordance with Claim 1 wherein said first and second base metals are selected from the group consisting of Fe, Steel, Stainless Steel, Ni, Ti, Al, Mg, Cu, Au, Ag, Pt, Pd, W, Sn, Zn, In, Pb and alloys thereof.
5. (original) The method for making a laminate structure comprised of two sheets of base metals in accordance with Claim 2 wherein said first and second base metals are selected from the group consisting of Iron and Iron Alloys, Steel Alloys, Stainless Steel Alloys, Nickel and Ni Alloys, Ti and Ti Alloys, Al and Al Alloys, Mg and Mg Alloys, Cu and Cu Alloys, Au, Ag, Pt, Pd, W, Sn, Zn, In, Pb and alloys thereof.