Álgebra Conmutativa Computacional

F. J. Lobillo

2022/2023

Índice general

1.	Anillos e Ideales	4
	1.1. Anillos conmutativos	4
	1.2. Subanillos e ideales	7
	1.3. Morfismos de anillos	11
	1.4. Anillo de fracciones	13
	Ejercicios sobre Anillos	16
2.	Sistemas de Ecuaciones y Variedades Afines	18
	2.1. Polinomios en varias variables	18
	2.2. Órdenes admisibles	23
	2.3. Propiedades de los polinomios	26
	2.4. Espacio afín y ecuaciones polinómicas	28
	2.5. Variedades afines	32
		34
	Ejercicios sobre Sistemas de ecuaciones y variedades afines .	36
3.	Bases de Gröbner y Algoritmos Básicos	39
	3.1. Ideales en \mathbb{N}^n	39
	3.2. División en $\mathbb{F}[x_1,\ldots,x_n]$	40
	3.3. Bases de Gröbner y Teorema de la base de Hilbert	45
	3.4. Algoritmo de Buchberger	47

		Aplicación: Sistema de Posicionamiento Global (GPS)	55
	Ejer	cicios sobre Bases de Gröbner y Algoritmos Básicos	58
4.	Elin	ninación e Implicitación	62
	4.1.	Órdenes de eliminación	62
		Eliminación de variables	63
	4.3.	Implicitación (cuerpo infinito)	67
		Implicitación (cuerpo finito)	74
	Ejer	cicios sobre Eliminación e Implicitación	75
5.		iedades Irreducibles y Descomposición	77
	5.1.	Teorema de los ceros de Hilbert	77
	5.2.	Radical de un ideal	81
		Cocientes de ideales y saturación	84
	5.4.	Variedades irreducibles	88
	5.5.	Descomposición de variedades	91
	5.6.	Descomposición primaria de ideales	93
	Ejer	cicios sobre Variedades Irreducibles y Descomposición .	96
6.	Din	nensión	101
	6.1.	Dimensión de Krull	101
	6.2.	Dimensión de un ideal en \mathbb{N}^n	102
	6.3.	Función de Hilbert de un ideal	107
	6.4.	Dependencia entera	108
	6.5.	Teoremas de Cohen y Seidenberg	112
	6.6.	Independencia algebraica y función de Hilbert	114
		Normalización de Noether	
		Dimensión de Krull e independencia algebraica	
	Ejer	cicios sobre Dimensión	127
		DILIC WILLIAM	

Capítulo 4

Eliminación e Implicitación

4 1

Órdenes de eliminación

Dado $0 \le l \le n$, denotamos por $\mathbb{N}_l^n = \{\alpha \in \mathbb{N}^n \mid \alpha_i = 0, 1 \le i \le l\}$. Es inmediato que $\mathbb{N}_l^n \cong \mathbb{N}^{n-l}$.

Lema 4.1. Sea M un ideal en \mathbb{N}^n generado por A. Entonces $M \cap \mathbb{N}^n_l$ es un ideal en \mathbb{N}^{n-l} generado por $A \cap \mathbb{N}^n_l$.

 $\begin{array}{l} \textit{Demostraci\'on}. \text{ Es inmediato comprobar que } M \cap \mathbb{N}_l^n \text{ es un ideal en } \mathbb{N}^{n-l} \text{ via la identificaci\'on can\'onica } \mathbb{N}_l^n \cong \mathbb{N}^{n-l}. \text{ Por otra parte, sea } \gamma \in M \cap \mathbb{N}_l^n \text{ y sea } \alpha \in A \text{ tal que } \gamma = \alpha + \beta. \text{ Sea } 1 \leq i \leq l. \text{ Como } \alpha_i + \beta_i = \gamma_i = 0, \text{ tenemos que } \alpha_i = \beta_i = 0, \text{ por lo que } \alpha \in A \cap \mathbb{N}_l^n \text{ y } \beta \in \mathbb{N}_l^n. \text{ Esto demuestra que } M \cap \mathbb{N}_l^n \text{ est\'a generado por } A \cap \mathbb{N}_l^n. \end{array}$

Definición 4.2. Sea \leq un orden admisible en \mathbb{N}^n . Decimos que \leq es un orden de l-eliminación si para cualesquiera $\alpha, \beta \in \mathbb{N}^n$, $\alpha \in \mathbb{N}^n_l$ y $\beta \leq \alpha$ implican $\beta \in \mathbb{N}^n_l$.

Ejemplo 4.3. El orden LEX es un orden de l-eliminación para cualquier $0 \le l \le n$.

4.2

Ejemplo 4.4. Supongamos que disponemos de dos ordenes admisibles \leq_1 en \mathbb{N}^l y \leq_2 en \mathbb{N}^{n-l} . Dado un elemento $\alpha \in \mathbb{N}^n$, podemos escribirlo como $\alpha = (\alpha_l, \alpha_{n-l})$ con $\alpha_l \in \mathbb{N}^l$ y $\alpha_{n-l} \in \mathbb{N}^{n-l}$. Observemos que $\alpha \in \mathbb{N}^n$ si y solo si $\alpha_l = 0$. Definimos \leq en \mathbb{N}^n mediante

$$\alpha \leq \beta \iff \begin{cases}
\alpha_l <_1 \beta_l & \text{o} \\
\alpha_l = \beta_l \text{ y } \alpha_{n-l} \leq_2 \beta_{n-l}
\end{cases}$$

Dejo como ejercicio comprobar que \leq es un orden de l-eliminación.

Eliminación de variables

Teorema 4.5. Sea $I \leq \mathbb{F}[x_1,\ldots,x_n]$ un ideal no nulo y sea \leq un orden de l-eliminación. Si G es una base de Gröbner para I, entonces $G \cap \mathbb{F}[x_{l+1},\ldots,x_n]$ es una base de Gröbner para $I \cap \mathbb{F}[x_{l+1},\ldots,x_n]$.

Demostración. Observemos que si $f \in \mathbb{F}[x_1, \ldots, x_n]$ y $\exp(f) \in \mathbb{N}_l^n$, al ser el orden de eliminación, $\operatorname{supp}(f) \subseteq \mathbb{N}_l^n$, por lo que concluimos que $f \in \mathbb{F}[x_{l+1}, \ldots, x_n]$, es decir, $f \in \mathbb{F}[x_{l+1}, \ldots, x_n]$ si solo si $\exp(f) \in \mathbb{N}_l^n$. En consecuencia

$$\exp(F) \cap \mathbb{N}_{l}^{n} = \exp(F \cap \mathbb{F}[x_{l+1}, \dots, x_{n}])$$
 (4.1)

para cualquier subconjunto no vacío $F \subseteq \mathbb{F}[x_1,\ldots,x_n]$. Sea G una base de Gröbner para I. Por el Lema 4.1, $\exp(G) \cap \mathbb{N}_l^n$ genera $\exp(I) \cap \mathbb{N}_l^n$, y dado que

$$\exp(I)\cap \mathbb{N}_l^n=\exp\left(I\cap \mathbb{F}[x_{l+1},\ldots,x_n]
ight)$$

у

$$\exp(G) \cap \mathbb{N}_l^n = \exp(G \cap \mathbb{F}[x_{l+1}, \dots, x_n])$$

por (4.1), tenemos que el ideal $\exp(I \cap \mathbb{F}[x_{l+1},\ldots,x_n]) \subseteq \mathbb{N}_l^n$ está generado por $\exp(G \cap \mathbb{F}[x_{l+1},\ldots,x_n])$, es decir $G \cap \mathbb{F}[x_{l+1},\ldots,x_n]$ es una base de Gröbner para $I \cap \mathbb{F}[x_{l+1},\ldots,x_n]$.

Como consecuencia del Teorema 4.5 disponemos de un algoritmo para calcular el ideal de eliminación de un ideal I dado mediante un conjunto de generadores F. El proceso es el siguiente:

- (I) Fijamos el orden LEX en \mathbb{N}^n . Cualquier otro orden de l-eliminación jugaría el mismo efecto.
- (II) Calculamos, mediante el algoritmo de Buchberger, una base de Gröbner (reducida) G para I a partir de F.
- (III) Calculamos $G \cap \mathbb{F}[x_{l+1}, \ldots, x_n]$.

Ejemplo 4.6. Sea

$$I = \langle -x^2y - y^3 - x^2 + xy + y, x^2y - y^3 - xy - y^2 + y \rangle$$

 $\subseteq \mathbb{F}_3[x, y].$

Si calculamos la base de Gröbner reducida para I obtenemos

$$\left\{ x^{2}-y^{3}+y^{2}+y,xy-y^{4}-y^{3}-y^{2}-y,y^{7}-y^{6}+y^{3}+y
ight\} ,$$

por lo que $I \cap \mathbb{F}_3[y] = \langle y^7 - y^6 + y^3 + y \rangle$.

En adelante presentaremos más aplicaciones de la eliminación, pero vamos en un primer momento a dar una de las más sencillas y directas. Sean $I_1 = \langle F_1 \rangle$ y $I_2 = \langle F_2 \rangle$. Recordemos que

$$I_1 + I_2 = \langle F_1 \cup F_2 \rangle$$

у

$$I_1I_2 = \langle f_1f_2 \mid f_1 \in F_1, f_2 \in F_2 \rangle,$$

pero no hemos podido dar un método para calcular $I_1 \cap I_2$.

Lema 4.7. Sea A un anillo y sea $a \in A$. La aplicación

$$egin{aligned} \phi_a:A[x] &
ightarrow A \ \sum_i a_i x^i &
ightarrow \sum_i a_i a^i \end{aligned}$$

es un morfismo de anillos tal que $\phi_a(b) = b$ para todo $b \in A$.

Demostración. Consecuencia inmediata del Teorema 2.5.

Teorema 4.8. Sean $I = \langle F \rangle, J = \langle G \rangle \leq \mathbb{F}[x_1, \dots, x_n]$ y sea

$$H = \langle tF, (1-t)G \rangle \leq \mathbb{F}[t, x_1, \dots, x_n].$$

Entonces $I \cap J = H \cap \mathbb{F}[x_1, \ldots, x_n]$.

Demostración. Sean $F=\{f_1,\ldots,f_s\}$ y $G=\{g_1,\ldots,g_t\}$. Si $f\in I\cap J$,

$$f=tf+(1-t)f=\sum_i th_if_i+\sum_j (1-t)m_jg_j\in H,$$

por lo que tenemos que $f\in H\cap \mathbb{F}[x_1,\ldots,x_n]$, es decir, tenemos la primera inclusión $I\cap J\subseteq H\cap \mathbb{F}[x_1,\ldots,x_n]$. Supongamos ahora que $f\in H\cap \mathbb{F}[x_1,\ldots,x_n]$. Necesariamente

$$f = \sum_i p_i t f_i + \sum_j q_j (1-t) g_j$$

donde $p_i, q_j \in \mathbb{F}[t, x_1, \dots, x_n]$. Sea

$$\phi_0: \mathbb{F}[t,x_1,\ldots,x_n] o \mathbb{F}[x_1,\ldots,x_n]$$

el morfismo de anillos que evalúa la t en 0 descrito en el Lema 4.7 donde $A=\mathbb{F}[x_1,\ldots,x_n]$. Por una parte, $\phi_0(f)=f$ porque $f\in\mathbb{F}[x_1,\ldots,x_n]$. Por otra parte,

$$\phi_0(f) = \phi_0\left(\sum_i p_i t f_i + \sum_j q_j (1-t) g_j
ight) = \sum_j \phi_0(q_j) g_j$$

porque ϕ_0 es morfismo de anillos y $g_1,\ldots,g_t\in\mathbb{F}[x_1,\ldots,x_n]$, luego $f\in J$. Evaluando en t=1 obtenemos análogamente que $f\in I$, por lo que $f\in I\cap J$ y $H\cap\mathbb{F}[x_1,\ldots,x_n]\subseteq I\cap J$.

El Teorema 4.8 permite diseñar un algoritmo para calcular un conjunto de generadores de $I \cap J$ a partir de conjuntos de generadores $F = \{f_1, \ldots, f_s\}$ y $G = \{g_1, \ldots, g_s\}$ de I y J respectivamente.

- (I) En $\mathbb{F}[t, x_1, \dots, x_n]$ consideramos el orden LEX (o cualquier otro de 1-eliminación).
- (II) Calculamos una base de Gröbner G_H para el ideal

$$H = \langle tf_1, \ldots, tf_s, (1-t)g_1, \ldots, (1-t)g_t \rangle.$$

(III) Un conjunto de generadores de $I\cap J$ es $G_H\cap \mathbb{F}[x_1,\ldots,x_n]$.

Ejemplo 4.9. En $\mathbb{F}_3[x,y]$ consideramos los ideales

$$I = \langle -x^3 - xy^2, -xy^2 - y^3 + x^2 \rangle$$

у

$$J = \langle y^2 - x + y + 1, x^2 + xy + y^2 + x, xy - y^2 - y \rangle$$

4.3

Una base de Gröbner para

$$egin{aligned} H &= \langle t(-x^3-xy^2),\ &t(-xy^2-y^3+x^2),\ &(1-t)(y^2-x+y+1),\ &(1-t)(x^2+xy+y^2+x),\ &(1-t)(xy-y^2-y)
angle \end{aligned}$$

es

$$\{t-1,x^2-y^5-y^3,xy^2-y^5,y^7+y^6-y^5\},$$

por lo que

$$I \cap J = \langle x^2 - y^5 - y^3, xy^2 - y^5, y^7 + y^6 - y^5 \rangle.$$

Implicitación (cuerpo infinito)

Lema 4.10. Sea $I \leq \mathbb{F}[x_1, \ldots, x_n]$ un ideal no nulo, y sea $I_l = I \cap \mathbb{F}[x_{l+1}, \ldots, x_n]$. Sea $\pi_l : \mathbb{F}^n \to \mathbb{F}^{n-l}$ la proyección canónica en las últimas n-l posiciones. Entonces

$$\pi_l(\mathbf{V}(I)) \subset \mathbf{V}(I_l)$$
.

Demostración. Sea $(a_1, \ldots, a_n) \in \mathbf{V}(I)$. Dado un polinomio $f \in I_l = I \cap \mathbb{F}[x_{l+1}, \ldots, x_n]$, como $f \in \mathbb{F}[x_{l+1}, \ldots, x_n]$,

$$f(a_1,\ldots,a_n) = f(a_{l+1},\ldots,a_n) = f(\pi_l(a_1,\ldots,a_n)).$$

Por otra parte, como $f \in I$,

$$f(a_1,\ldots,a_n)=0.$$

Por tanto $\pi_l(a_1,\ldots,a_n) \in \mathbf{V}(I_l)$.

El problema de la implicitación consiste en encontrar la variedad algebraica asociada a ecuaciones paramétricas. Concretamente, sean

$$f_1,\ldots,f_n,q_1,\ldots,q_n\in\mathbb{F}[t_1,\ldots,t_r]$$

y sea $W = \mathbf{V}(q_1 \cdots q_n)$. Las evaluaciones de los polinomios permiten definir una aplicación

$$egin{aligned} \phi: \mathbb{F}^r \setminus W &
ightarrow \mathbb{F}^n \ (a_1,\ldots,a_r) &\mapsto \left(rac{f_1(a_1,...,a_r)}{q_1(a_1,...,a_r)},\ldots,rac{f_n(a_1,...,a_r)}{q_n(a_1,...,a_r)}
ight) \end{aligned}$$

El problema que nos vamos a plantear es calcular la menor variedad que contiene a $im(\phi)$.

En primer lugar supondremos que la parametrización es polinomial, es decir, $q_1 = \cdots = q_n = 1$.

Teorema 4.11 (Implicitación polinomial). Sea $\mathbb F$ un cuerpo infinito. Sean $f_1, \ldots, f_n \in \mathbb F[t_1, \ldots, t_r]$ y sea

$$\phi: \mathbb{F}^r o \mathbb{F}^n \ (a_1, \ldots, a_r) \mapsto (f_1(a_1, \ldots, a_r), \ldots, f_n(a_1, \ldots, a_r))$$
 .

Sea $I = \langle x_1 - f_1, \dots, x_n - f_n \rangle \subseteq \mathbb{F}[t_1, \dots, t_r, x_1, \dots, x_n]$ y sea $J = I \cap \mathbb{F}[x_1, \dots, x_n]$ el ideal de r-eliminación. Entonces $\mathbf{V}(J)$ es la menor variedad que contiene a $\phi(\mathbb{F}^r)$.

Demostración. Vamos a demostrar que $\mathbf{I}(\phi(\mathbb{F}^r))=J$, lo que en virtud de la Proposición 2.29 demuestra el teorema. Sea

$$V = \mathbf{V}(x_1 - f_1, \dots, x_n - f_n) \subseteq \mathbb{F}^{r+n}$$

Es inmediato comprobar que

$$(a_1,\ldots,a_r,b_1,\ldots,b_n)\in V\iff b_i=f_i(a_1,\ldots,a_r), 1\leq i\leq n,$$

por lo que $\phi(\mathbb{F}^r)=\pi_r(V)$. Por el Lema 4.10, $\phi(\mathbb{F}^r)=\pi_r(V)\subseteq \mathbf{V}(J)$, lo que implica que $\mathbf{I}(\phi(\mathbb{F}^r))\supseteq \mathbf{I}(\mathbf{V}(J))\supseteq J$. Para ver la inclusión contraria, sea $h\in \mathbf{I}(\phi(\mathbb{F}^r))\subseteq \mathbb{F}[x_1,\ldots,x_n]$. Reordenando las variables como $\mathbb{F}[x_1,\ldots,x_n,t_1,\ldots,t_r]$ consideramos el orden Lex en \mathbb{N}^{n+r} y dividimos $h=h(x_1,\ldots,x_n)$ entre la lista $[x_1-f_1,\ldots,x_n-f_n]$, para obtener

$$h = q_1(x_1 - f_1) + \cdots + q_n(x_n - f_n) + \rho(t_1, \dots, t_r)$$

dado que $\operatorname{lt}(x_i-f_i)=x_i$ para todo $1\leq i\leq n$. Como $(a_1,\ldots,a_r)\in\mathbb{F}^r$, evaluamos la ecuación anterior en $(b_1,\ldots,b_n,a_1,\ldots a_r)$ con $b_i=f_i(a_1,\ldots,a_r)$, tenemos que

$$0 = h(f_1(a_1, \ldots, a_r), \ldots, f_n(a_1, \ldots, a_r))$$

porque $h \in \mathbf{I}(\phi(\mathbb{F}^r))$ y

$$h(f_1(a_1,\ldots,a_r),\ldots,f_n(a_1,\ldots,a_r))=\rho(a_1,\ldots,a_r)$$

ya que $b_i-f_i(a_1,\ldots,a_r)=0$. Por la Proposición 2.17, $\rho=0$, por lo que

$$h \in \langle x_1 - f_1, \ldots, x_n - f_n \rangle = I.$$

Dado que $h \in \mathbb{F}[x_1, \dots, x_n]$, concluimos que $h \in J = I \cap \mathbb{F}[x_1, \dots, x_n]$, lo que termina la demostración.

En el caso de parametrización polinomial, hemos reducido el problema de la implicitación a un problema de eliminación, lo que podemos resolver mediante el uso de bases de Gröbner.

Ejemplo 4.12. En $\mathbb{Q}[u,v]$ consideramos los polinomios

$$f_x = u^2 - v^2, f_y = u^2 + v^2 + v, f_z = -uv + u + v$$

que nos definen una parametrización polinomial

$$\phi: \mathbb{Q}^2 \to \mathbb{Q}^3$$
.

Una base de Gröbner del ideal

$$I = \langle x - u^2 + v^2, y - u^2 - v^2 - v, z + uv - u - v \rangle$$

 $\subset \mathbb{Q}[u, v, x, y, z]$

con respecto al orden LEX es

$$\left\{ u^2 + \frac{1}{2}v - \frac{1}{2}x - \frac{1}{2}y, \\ uv - u - v + z, \\ ux - uy + 3u - 2vz + 2v - x + y - 3z, \\ uz - u - \frac{1}{4}vy + vz - \frac{9}{16}v \\ - \frac{1}{8}x^2 - \frac{1}{16}x + \frac{1}{8}y^2 - \frac{7}{16}y - \frac{1}{2}z^2 + z, v^2 + \frac{1}{2}v + \frac{1}{2}x - \frac{1}{2}y, \\ vx + \frac{3}{2}vy - 2vz + \frac{5}{8}v + \frac{1}{4}x^2 - \frac{3}{8}x - \frac{1}{4}y^2 - \frac{5}{8}y + z^2, \\ vy^2 - \frac{24}{5}vyz + \frac{13}{10}vy + \frac{32}{5}vz^2 - \frac{22}{5}vz + \frac{17}{16}v - \frac{1}{5}x^3 + \frac{3}{10}x^2y \\ - \frac{2}{5}x^2z - \frac{19}{40}x^2 + \frac{1}{5}xy^2 - \frac{3}{4}xy - \frac{4}{5}xz^2 + \frac{19}{5}xz - \frac{179}{80}x - \frac{3}{10}y^3 \\ + \frac{2}{5}y^2z + \frac{33}{40}y^2 + \frac{6}{5}yz^2 - \frac{11}{5}yz - \frac{17}{16}y - \frac{8}{5}z^3 + \frac{33}{10}z^2, \\ x^4 + 3x^3 - 2x^2y^2 + 8x^2y + 8x^2z^2 - 28x^2z + 14x^2 - xy^2 \\ - 16xyz + 22xy + 12xz^2 - 26xz + 5x + y^4 - 10y^3 - 8y^2z^2 \\ + 44y^2z - 64yz^2 + 10yz + 16z^4 + 16z^3 - 5z^2 \right\},$$

por lo que la menor variedad que contiene a $im(\phi)$ es

$$egin{align*} \mathbf{V} ig(x^4 + 3x^3 - 2x^2y^2 + 8x^2y + 8x^2z^2 - 28x^2z + 14x^2 - xy^2 \ - 16xyz + 22xy + 12xz^2 - 26xz + 5x + y^4 - 10y^3 - 8y^2z^2 \ + 44y^2z - 64yz^2 + 10yz + 16z^4 + 16z^3 - 5z^2 ig). \end{split}$$

Una vez analizado el caso polinomial, pasamos al caso racional. La clave es añadir una ecuación que recoja el "quitar denominadores".

Teorema 4.13 (Implicitación racional). Sea \mathbb{F} un cuerpo infinito y sean $f_1, \ldots, f_n, q_1, \ldots, q_n \in \mathbb{F}[t_1, \ldots, t_r], W = \mathbf{V}(q_1 \cdots q_n)$ y

$$egin{aligned} \phi: \mathbb{F}^r \setminus W &
ightarrow \mathbb{F}^n \ (a_1,\ldots,a_r) &\mapsto \left(rac{f_1(a_1,\ldots,a_r)}{q_1(a_1,\ldots,a_r)},\ldots,rac{f_n(a_1,\ldots,a_r)}{q_n(a_1,\ldots,a_r)}
ight). \end{aligned}$$

Sea $I = \langle q_1x_1 - f_1, \ldots, q_nx_n - f_n, 1 - q_1 \cdots q_ny \rangle$ ideal en el anillo de polinomios $\mathbb{F}[y, t_1, \ldots, t_r, x_1, \ldots, x_n]$ y sea $J = I \cap \mathbb{F}[x_1, \ldots, x_n]$ el ideal de 1 + r-eliminación. Entonces $\mathbf{V}(J)$ es la menor variedad que contiene a $\phi(\mathbb{F}^r \setminus W)$.

Demostración. Como en el caso polinomial vamos a demostrar que $J = \mathbf{I}(\phi(\mathbb{F}^r \setminus W))$, lo que en virtud de la Proposición 2.29 demuestra el teorema.

Sea

$$V=\mathbf{V}\left(q_1x_1-f_1,\ldots,q_nx_n-f_n,1-q_1\cdots q_ny
ight)\subseteq \mathbb{F}^{1+r+n}$$

y sea $(a_0, a_1, \ldots, a_r, b_1, \ldots, b_n) \in V$. Dado que

$$a_0q_1(a_1,\ldots,a_r)\cdots q_n(a_1,\ldots,a_r)-1=0,$$

tenemos que $(a_1,\ldots,a_r)\notin W$, es decir $q_i(a_1,\ldots,a_r)\neq 0$ para cada $1\leq i\leq n$. Como además se verifica que $q_i(a_1,\ldots,a_r)b_i=f_i(a_1,\ldots,a_r)$ para cada $1\leq i\leq n$, deducimos que

$$b_i = \frac{f_i(a_1,...,a_r)}{q_i(a_1,...,a_r)}, \ 1 \le i \le n,$$

por lo que $\phi(\mathbb{F}^r \setminus W) = \pi_{1+r}(V)$. Como consecuencia del Lema 4.10, $\pi_{1+r}(V) \subseteq \mathbf{V}(J)$, lo que implica que

$$\mathbf{I}(\phi(\mathbb{F}^r\setminus W))\supseteq \mathbf{I}(\mathbf{V}(J))\supseteq J.$$

Para ver la inclusión contraria, sea $h \in \mathbf{I}(\phi(\mathbb{F}^r \setminus W))$. Sea N el mayor grado de una variable en $h = \sum_{\alpha} c_{\alpha} X^{\alpha}$, es decir, $\alpha_i \leq N$ para todo $\alpha \in \operatorname{supp}(h)$ y todo $1 \leq i \leq n$. Por simplicidad, llamemos $q = q_1 \cdots q_n$, por lo que $W = \mathbf{V}(q)$. Tenemos que

$$q^N h = \sum_{\alpha} c_{\alpha} q_{\alpha} (q_1 x_1)^{\alpha_1} \cdots (q_n x_n)^{\alpha_n}$$

donde $q_{\alpha} = \prod_{i=1}^{n} q_i^{N-\alpha_i}$. Sea

$$H(z_1,\ldots,z_n,t_1,\ldots,t_r)=\sum_{\alpha}c_{\alpha}q_{\alpha}z_1^{\alpha_1}\cdots z_n^{\alpha_n}$$

Consideremos en $\mathbb{F}[z_1,\ldots,z_n,t_1,\ldots,t_r]$ el orden LEX y dividamos H por $[z_1-f_1,\ldots,z_n-f_n]$. Tenemos por tanto que

$$H = h_1(z_1 - f_1) + \cdots + h_n(z_n - f_n) + \rho$$

donde $ho\in\mathbb{F}[t_1,\ldots,t_r].$ Evaluando en la ecuación anterior cada z_i por $q_ix_i,$ tenemos que

$$q^N h = p_1(q_1x_1 - f_1) + \cdots + p_n(q_nx_n - f_n) + \rho.$$

Sea $(a_1,\ldots,a_r)\in\mathbb{F}^r\backslash W$. Como $q(a_1,\ldots,a_r)\neq 0$, para cada $1\leq i\leq n$ $q_i(a_1,\ldots,a_r)\neq 0$. Podemos, por tanto, definir $b_i=\frac{f_i(a_1,\ldots,a_r)}{q_i(a_1,\ldots,a_r)}$ para cada índice $1\leq i\leq n$. Por una parte

$$(q^N h)(a_1,\ldots,a_r,b_1,\ldots,b_n) = q(a_1,\ldots,a_r)^N h(b_1,\ldots,b_n) = 0$$

porque $(b_1,\ldots,b_n)\in\phi(\mathbb{F}^r\setminus W)$ y $h\in\mathbf{I}(\phi(\mathbb{F}^r\setminus W))$. Por otra

$$\left(\sum_{i=1}^n p_i(q_ix_i-f_i)+
ho\right)(a_1,\ldots,a_r,b_1,\ldots,b_n)=
ho(a_1,\ldots,a_r),$$

lo que implica que $\rho(a_1,\ldots,a_r)=0$ para cualquier $(a_1,\ldots,a_r)\in \mathbb{F}^r\setminus W$. Esto implica que

$$(q
ho)(a_1,\ldots a_r)=0$$

para todo $(a_1,\ldots,a_r)\in\mathbb{F}^r$. Por la Proposición 2.17, $q\rho=0$, lo que implica que $\rho=0$ ya que $q\neq 0$. Por tanto

$$q^N y^N h = p_1 y^N (q_1 x_1 - f_1) + \cdots + p_n y^N (q_n x_n - f_n).$$

Como, además,

$$h = q^N y^N h + (1 - (qy)^N) h = q^N y^N h + \left(\sum_{j=1}^{N-1} (qy)^i\right) (1 - qy) h,$$

tenemos que $h \in \langle q_1x_1 - f_1, \ldots, q_nx_n - f_n, 1 - qy \rangle = I$. Dado que inicialmente $h \in \mathbb{F}[x_1, \ldots, x_n]$, tenemos que $h \in J$. Con esto demostramos que

$$\mathbf{I}(\phi(\mathbb{F}^r \setminus W)) \subseteq J,$$

lo que termina la demostración.

Ejemplo 4.14. Vamos a comprobar la parametrización racional de la circunferencia. Para ello sea

$$\phi: \mathbb{Q} \to \mathbb{Q}^2$$

$$t \mapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right).$$

Sea

$$I = \langle (1+t^2)x - (1-t^2), (1+t^2)y - 2t, 1 - (1+t^2)^2u \rangle \subseteq \mathbb{Q}[u, t, x, y].$$

Una base de Gröbner para I es

$$\left\{u-\frac{1}{2}x+\frac{1}{4}y^2-\frac{1}{2},tx+t-y,ty+x-1,x^2+y^2-1\right\},$$

por lo que la menor variedad que contiene a $im(\phi)$ es

$$\mathbf{V}(I\cap \mathbb{Q}[x,y])=\mathbf{V}(\langle x^2+y^2-1
angle).$$

Implicitación (cuerpo finito)

4.4

Para cuerpos finitos, debemos primeramente observar que basta con estudiar parametrizaciones polimoniales por la Proposición 2.19.

Teorema 4.15 (Implicitación polinomial). Sea \mathbb{F}_q un cuerpo con q elementos. Sean $f_1, \ldots, f_n \in \mathbb{F}_q[t_1, \ldots, t_r]$ y sea

$$egin{aligned} \phi: \mathbb{F}_q^r &
ightarrow \mathbb{F}_q^n \ (a_1,\ldots,a_r) &\mapsto (f_1(a_1,\ldots,a_r),\ldots,f_n(a_1,\ldots,a_r)) \,. \end{aligned}$$

Sea $I = \langle x_1 - f_1, \dots, x_n - f_n, t_1^q - t_1, \dots, t_r^q - t_r \rangle$, un ideal en el anillo $\mathbb{F}_q[t_1, \dots, t_r, x_1, \dots, x_n]$, y sea $J = I \cap \mathbb{F}_q[x_1, \dots, x_n]$ el ideal de r-eliminación. Entonces $\mathbf{V}(J)$ es la menor variedad que contiene a $\phi(\mathbb{F}_q^r)$.

Demostración. La demostración es análoga a la del Teorema 4.11, empleando la Proposición 3.7 y la Proposición 2.21 en lugar de la 2.17. □

F. J. Lobillo

Ejercicios sobre Eliminación e Implicitación

Ejercicio 4.1. Dada la variedad afín definida por las ecuaciones

$$x^2 + 2y^2 = 3$$
$$x^2 + xy + y^2 = 3$$

calcula $I \cap \mathbb{F}[x]$ y $I \cap \mathbb{F}[y]$ donde I es el ideal que define la variedad. Haz el ejercicio para diferentes cuerpos.

Ejercicio 4.2. Calcula los ideales de eliminación I_1 e I_2 para el ideal en $\mathbb{F}[x,y,z]$ correspondiente a las ecuaciones

$$x^{2} + y^{2} + z^{2} = 4$$
$$x^{2} + 2y^{2} = 5$$
$$xz = 1$$

Haz el ejercicio utilizando varios cuerpos.

Ejercicio 4.3. Sea \leq un orden admisible en \mathbb{N}^n . Definimos para $l \leq n$ el orden

$$\alpha \leq_l \beta \iff \begin{cases}
\alpha_1 + \dots + \alpha_l < \beta_1 + \dots + \beta_l \\
\alpha_1 + \dots + \alpha_l = \beta_1 + \dots + \beta_l \text{ y } \alpha \leq \beta.
\end{cases}$$

Demuestra que \leq_l es un orden de l-eliminación.

Ejercicio 4.4. Sea

$$I = \langle t^2 + x^2 + y^2 + z^2, t^2 + 2x^2 - xy - z^2, t + y^3 - z^3 \rangle$$

 $\subseteq \mathbb{F}[t, x, y, z].$

Calcula la base de Gröbner reducida G de $I \cap \mathbb{F}[x,y,z]$ con respecto al orden DEGREVLEX. Comprueba que $G \cup \{t+y^3-z^3\}$ es una base de Gröbner para I con respecto al orden $(\leq_{\mathtt{DEGREVLEX}})_1$ definido en el Ejercicio 4.3.

Ejercicio 4.5. Sea \mathbb{F} un cuerpo de característica cero. Calcula la variedad cuyas ecuaciones paramétricas vienen dadas por

$$x = t$$
,
 $y = t^2$,
 $z = t^3$

Describe el subconjunto de \mathbb{F}^3 formado por la unión de las rectas tangentes a los puntos de la variedad anterior mediante ecuaciones paramétricas y calcula la menor variedad que las contiene.

Ejercicio 4.6. Calcula la menor variedad que contiene al subconjunto de \mathbb{C}^3 definido por

$$x = uv,$$

$$y = uv^2,$$

$$z = u^2$$

Comprueba que hay puntos en la variedad que no están en la imagen de las ecuaciones paramétricas.

Ejercicio 4.7. El paraguas de Whitney es la superficie definida paramétricamente por

$$x = uv,$$

 $y = v,$
 $z = u^2.$

Encuentra la menor variedad que contiene al paraguas de Whitney. Estudia si el paraguas de Whitney coincide con su variedad o está estrictamente contenido. Comprueba que los parámetros u,v no están determinados por x,y,z, es decir, hay puntos correspondientes a más de una pareja de valores de los parámetros.

Ejercicio 4.8. Sea $\mathbb F$ un cuerpo infinito. Sea $W=\mathbf V(q_1\cdots q_n)\subseteq \mathbb F,$ y

$$\phi: \mathbb{F} \setminus W o \mathbb{F}^n$$
 $a \mapsto \left(rac{f_1(a)}{q_1(a)}, \ldots, rac{f_n(a)}{q_n(a)}
ight)$

donde $f_i(t)$ y $q_i(t)$ son primos relativos para cada $1 \leq i \leq n$. Sea $I = \langle q_1x_1 - f_1, \ldots, q_nx_n - f_n \rangle \subseteq \mathbb{F}[t, x_1, \ldots, x_n]$. Demuestra que $\mathbf{V}(I_1)$ es la menor variedad afín que contiene a $\mathrm{im}(\phi)$.

Ejercicio 4.9. Folium de Descartes. Encuentra la menor variedad asociada a las ecuaciones paramétricas

$$x = \frac{3t}{1+t^3},$$
 $y = \frac{3t^2}{1+t^3}.$

¿Existen puntos en la variedad no parametrizables sobre $\mathbb R$ o $\mathbb C$?.

Ejercicio 4.10. Demuestra el Teorema 4.15.

Bibliografía

- Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases. A Computational Approach to Commutative Algebra. Number 141 in Graduate Texts in Mathematics. Springer Science+Business Media, 1993.
- [2] David A. Cox, John Little, and Donald O'Shea. *Ideals, Varieties, and Algorithms*. Undergraduate Text in Mathematics. Springer, fourth edition, 2015.
- [3] Ernst Kunz. Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, 1985.
- [4] Serge Lang. *Undergraduate Algebra*. Undergraduate Text in Mathematics. Springer, second edition, 1990.