

Analyse et management des risques industriels

Généralités

• S-1:?

Analyse et management des risques industriels

- 1. Théorie pour les explosions (VCE)
- 2. Théorie de la dispersion atmosphérique

Analyse et management des risques industriels

- 1. Théorie pour les explosions (VCE)
- 2. Théorie de la dispersion atmosphérique

Conditions de base à un VCE

- 1. Composé inflammable
- 2. Formation d'un nuage avant allumage
 - Si NON: feu de torche -> flux radiatif
- 3. Conditions d'inflammation réunies
- 4. Conditions de propagation de flammes réunies (turbulence)
 - Si NON: flash fire (combustion) -> flux radiatif

Entrainement positif

- Conditions de propagation de flammes réunies (turbulence)
 - Pas de turbulence (flash fire)
 - > Turbulences faibles : déflagration
 - Source : rejet, obstacles
 - Turbulences fortes : détonation

Modèles

- > Simples (semi-empiriques)
- > « Intégral »

Equivalent TNT

- Relation Masse équiv TNT et Energie nuage
- Lien statistique (accidents observés)
- Effets proches surestimés
- Uniquement surpression : pas de durée et de forme de l'onde
- Très simple à utiliser

Modèle Multi-Energies

- Définition de sous-unités (partiellement obstruées ou confinées)
- > Traitement de sous-unités indépendamment
- Surpression, durée, forme

Modèle Multi-Energies

Equivalent TNT

On définit l'équivalent TNT d'un produit comme la masse de TNT (trinitrotoluène) dont l'explosion provoquerait le même champ lointain de surpression que l'explosion d'un kilogramme de ce produit.

Equivalent TNT

$$Q_{TNT} = \alpha_e \times \frac{Q_f \times E_{mf}}{E_{mTNT}} = \alpha_m \times Q_f$$
 (kg)

in which:

α_{e}	=	TNT equivalency based on energy	[-]
α_{m}	=	TNT equivalency based on mass	[-]
E_{mf}	=	Combustion energy of fuel per unit mass	[J·kg ⁻¹]
E_{mTNT}	=	TNT blast energy per unit mass	[J·kg ⁻¹]
Q_f	=	Mass of fuel involved	[kg]
Q_{TNT}	=	Equivalent mass of TNT	[kg]

Equivalent TNT

$$Q_{TNT} = \alpha_e \times \frac{Q_f \times E_{mf}}{E_{mTNT}}$$

Valeur max (alpha=1, hydrocarbure 46 900 kJ/kg, TNT: 4 690 kJ/kg)

soit 10 kg de TNT pour 1 kg d'hydrocarbures.

 <u>théorique et maximaliste</u> (pas de prise en compte de la production de flux thermiques)

Equivalent TNT

- « alpha énergie »
 - Statistiquement (Lanoy) = 10 %
 - Brasie & Simpson 2 à 5 %

Valeur pratique : 1 kg de TNT pour 1 kg d'hydrocarbures

Equivalent TNT

Equivalent TNT

$$L = C \cdot P^{0,33}$$

où

- L est le rayon concerné en mètres
- C la constante relative au type de dégâts étudié
- P la masse de TNT équivalente à la quantité d'hydrocarbure stockée en kilogrammes

Equivalent TNT

С	DEGATS AUX PERSONNES	DEGATS AUX CONSTRUCTIONS
5	Lésions mortelles dans plus de 50% des cas par : - onde de choc - éclats - effondrement des constructions	Dégâts très importants gros œuvre approchant la destruction totale
8	Lésions graves pouvant être mortelles par : - éclats ou débris - projection par onde de choc des personnes sur des surfaces dures possibilité de lésion aux tympans par onde de choc	
15	Lésions par : - éclats ou débris - projection par onde de choc des personnes sur des surfaces anguleuses. Possibilité de surdité temporaire par onde de choc	Dégâts moyens (toiture, intérieur) dont le coût de réparation est 10% du coût du neuf
22	Possibilités de lésions par : - éclats ou débris - bris de verre	Dégâts légers (portes, fenêtres)
44	Très faibles possibilités de lésions légères par : - éclats ou débris - bris de verre	Dégâts très légers (rupture de vitres de grandes dimensions)

Analyse et management des risques industriels

- 1. Théorie pour les explosions (VCE)
- 2. Théorie de la dispersion atmosphérique

Conditions de dispersion atmosphérique :

- > les conditions de rejet
 - nature du produit,
 - mode d'émission continu ou instantané, réactivité du composé,
 - présence de particules solides,
 - vitesse initiale
- > les conditions météorologiques (champ de vent, de température, turbulences atmosphériques...)
- > l'environnement (nature du sol, présence d'obstacles, topographie...).

Modèles gaussien

$$C(x,y,z;H) = \frac{Q}{2\Pi u \sigma_y \sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \left\{ \exp\left[-\frac{(z-H)^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(z+H)^2}{2\sigma_z^2}\right] \right\}$$

- Modèles « intégral »
 - > EFFECTS (TNO)
 - > PHAST (DNV)

$$C(x,y,0;H) = \frac{Q}{\Pi u \sigma_y \sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{H^2}{2\sigma_z^2}\right]$$

- Modèle gaussien
- Hypothèses de base
 - émissions continues, ce qui permet de négliger la diffusion dans l'axe du panache;
 - conservation de la masse par réflexion complète du panache par le sol;
 - > vitesse et direction de vent constantes dans tout le domaine.

- Modèle gaussien
- Turbulence atmosphérique

Classes de Pasquill

Vitesse du vent à 10 m	JOUR		NUIT		
	Rayonn	ement solaire	incident	Nébolusité	
[m/s]	Fort	Modéré	Faible	4/8 – 7/8	<3/8
< 2	А	A-B	В	F	F
2 - 3	A-B	В	С	E	F
3 – 5	В	B-C	С	D	E
5 - 6	С	C-D	D	D	D
>6	С	D	D	D	D

A: très instable

B : instable

C : peu instable

D: neutre

E : stable

F: très stable

- Modèle gaussien
- Classes de Pasquill

$$\sigma = a \cdot x^b + c$$

Stabilité atmosphérique (Pasquill)	а	b	С
А	0,215	0,858	
В	0,155	0,889	
С	0,105	0,903	0
D	0,068	0,908	0
Е	0,05	0,914	
F	0,034	0,908	

Tableau 4: Coefficients relatifs à σ_v

Stabilité atmosphérique (Pasquill)	а	b	С
А	0,467	1,89	0,01
В	0,103	1,11	0
С	0,066	0,915	0
D	0,0315	0,822	0
E si x < 1 km	0,0232	0,745	0
E si x > 1 km	0,148	0,15	-0,126
F si x < 1 km	0,0144	0,727	0
F si x > 1 km	0,0312	0,306	-0,017

Tableau 5 : Coefficients relatifs à σ_z

- Modèle gaussien
- Avantages
 - Faibles puissances de calcul ;
- Inconvénients
 - Valable pour des vitesses initiales quasi nulles
 - Fortes hypothèses simplificatrices (obstacles : relief ou bâtiment);
 - Validité : 100 m à 10 km
 - Uniquement pour gaz neutre densité proche air donc peu efficace pour les gaz chauds ou froids et les particules

- Modèle gaussien
- Adaptation possibles pour :
 - > Surélévation du panache
 - Prise en compte partiellement le relief, les bâtiments, l'occupation du sol (rugosité)
 - Réflexion sur couches limites
 - Obstacles proches
 - Dépôts