Summary of Halmos' Naive Set Theory

Robin Adams

August 21, 2023

Contents

1	Primitive Terms and Axioms	2
2	The Subset Relation	3
3	Comprehension Notation	4
4	Unordered Pairs	5
5	Unions	6
6	Intersections	8
7	Unordered Triples	10
8	Relative Complements	11
9	Symmetric Difference	14
10	Power Sets	15
11	Ordered Pairs	17
12	Relations	19
13	Functions	21

Primitive Terms and Axioms

Let there be sets. We assume that everything is a set.

Let there be a binary relation of membership, \in . If $x \in A$ we say that x belongs to A, x is an element of A, or x is contained in A. If this does not hold we write $x \notin A$.

Axiom 1.1 (Axiom of Extensionality). Two sets are equal if and only if they have the same elements.

Axiom 1.2 (Axiom of Comprehension, Aussonderungsaxiom). To every set A and to every condition S(x) there corresponds a set B whose elements are exactly those elements x of A for which S(x) holds.

Axiom 1.3. A set exists.

Axiom 1.4 (Axiom of Pairing). For any two sets, there exists a set that they both belong to.

Axiom 1.5 (Union Axiom). For every set A, there exists a set that contains all the elements that belong to at least one element of A.

Definition 1.6 (Subset). Let A and B be sets. We say that A is a *subset* of B, or B includes A, and write $A \subseteq B$ or $B \supseteq A$, iff every element of A is an element of B.

Axiom 1.7 (Power Set Axiom). For any set A, there exists a set that contains all the subsets of A.

The Subset Relation

Theorem 2.1. For any set A, we have $A \subseteq A$.

PROOF: Every element of A is an element of A. \square

Theorem 2.2. For any sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

PROOF: If every element of A is an element of B, and every element of B is an element of C, then every element of A is an element of C. \Box

Theorem 2.3. For any sets A and B, if $A \subseteq B$ and $B \subseteq A$ then A = B.

PROOF: If every element of A is an element of B, and every element of B is an element of A, then A and B have the same elements, and therefore are equal by the Axiom of Extensionality. \square

Definition 2.4 (Proper Subset). Let A and B be sets. We say that A is a *proper* subset of B, or B properly includes A, and write $A \subseteq B$ or $B \supseteq A$, iff $A \subseteq B$ and $A \neq B$.

Comprehension Notation

Definition 3.1. Given a set A and a condition S(x), we write $\{x \in A : S(x)\}$ for the set whose elements are exactly those elements x of A for which S(x) holds.

PROOF: This exists by the Axiom of Comprehension and is unique by the Axiom of Extensionality. \Box

Theorem 3.2. There is no set that contains every set.

```
Proof:
```

```
\(\frac{1}{1}\)1. Let: A be a set.

Prove: There exists a set B such that B \notin A.
\(\frac{1}{2}\)2. Let: B = \{x \in A : x \notin x\}
\(\frac{1}{3}\)3. If B \in A then we have B \in B if and only if B \notin B.
\(\frac{1}{4}\)4. B \notin A
```

Unordered Pairs

Theorem 4.1. There exists a set with no elements.
PROOF: Pick a set A by Axiom 1.3. Then the set $\{x \in A : x \neq x\}$ has no elements. \square
Definition 4.2 (Empty Set). The <i>empty set</i> \emptyset is the set with no elements.
Theorem 4.3. For any set A we have $\emptyset \subset A$.
Proof: Vacuous.
Definition 4.4 ((Unordered) Pair). For any sets a and b , the (unordered) pair $\{a,b\}$ is the set whose elements are just a and b .
Proof: This exists by the Axioms of Pairing and Comprehension, and is unique by the Axiom of Extensionality. \Box
Definition 4.5 (Singleton). For any set a , the $singleton \{a\}$ is defined to be $\{a,a\}$.

Unions

Definition 5.1 (Union). For any set C, the *union* of C, $\bigcup C$, is the set whose elements are the elements of the elements of C.

We write $\bigcup_{X \in \mathcal{A}} t[X]$ for $\bigcup \{t[X] \mid X \in \mathcal{A}\}.$

PROOF: This exists by the Union Axiom and Comprehension Axiom, and is unique by the Axiom of Extensionality. \Box

Proposition 5.2.

$$\bigcup \emptyset = \emptyset$$

PROOF: There is no set that is an element of an element of \emptyset . \square

Proposition 5.3. For any set A, we have $\bigcup \{A\} = A$.

PROOF: For any x, we have x is an element of an element of $\{A\}$ if and only if x is an element of A. \square

Definition 5.4. We write $A \cup B$ for $\bigcup \{A, B\}$.

Proposition 5.5. For any set A, we have $A \cup \emptyset = A$.

PROOF: $x \in A \cup \emptyset$ iff $x \in A$ or $x \in \emptyset$, iff $x \in A$. \square

Proposition 5.6 (Commutativity). For any sets A and B, we have $A \cup B = B \cup A$.

PROOF: $x \in A \cup B$ iff $x \in A$ or $x \in B$, iff $x \in B$ or $x \in A$, iff $x \in B \cup A$. \square

Proposition 5.7 (Associativity). For any sets A, B and C, we have $A \cup (B \cup C) = (A \cup B) \cup C$.

PROOF: Each is the set of all x such that $x \in A$ or $x \in B$ or $x \in C$. \square

Proposition 5.8 (Idempotence). For any set A, we have $A \cup A = A$.

PROOF: $x \in A$ or $x \in A$ is equivalent to $x \in A$. \square

Proposition 5.9. For any sets A and B, we have $A \subseteq B$ if and only if $A \cup B = B$.

PROOF: For any x, the statement "if $x \in A$ then $x \in B$ " is equivalent to " $x \in A$ or $x \in B$ if and only if $x \in B$ ". \square

Proposition 5.10. For any sets a and b, we have $\{a\} \cup \{b\} = \{a,b\}$.

Proof: Immediate from definitions. \Box

Intersections

Definition 6.1 (Intersection). For any sets A and B, the intersection $A \cap B$ is defined to be $\{x \in A : x \in B\}$.

Proposition 6.2. For any set A, we have $A \cap \emptyset = \emptyset$.

PROOF: There is no x such that $x \in A$ and $x \in \emptyset$. \square

Proposition 6.3. For any sets A and B, we have

$$A \cap B = B \cap A$$
.

PROOF: $x \in A$ and $x \in B$ if and only if $x \in B$ and $x \in A$. \square

Proposition 6.4. For any sets A, B and C, we have

$$A \cap (B \cap C) = (A \cap B) \cap C$$
.

PROOF: Each is the set of all x such that $x \in A$ and $x \in B$ and $x \in C$. \square

Proposition 6.5. For any set A, we have

$$A \cap A = A$$
 .

PROOF: We have $x \in A$ and $x \in A$ if and only if $x \in A$. \square

Proposition 6.6. For any sets A and B, we have $A \subseteq B$ if and only if $A \cap B = A$.

PROOF: For any x, the statement "if $x \in A$ then $x \in B$ " is equivalent to " $x \in A$ and $x \in B$ if and only if $x \in A$ ". \square

Proposition 6.7 (Distributive Law). For any sets A, B and C, we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

PROOF:

$$x \in A \land (x \in B \lor x \in C) \Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C)$$
.

Proposition 6.8 (Distributive Law). For any sets A, B and C, we have

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof:

$$x \in A \lor (x \in B \land x \in C) \Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C)$$
.

Proposition 6.9. For any sets A, B and C, we have $C \subseteq A$ if and only if $(A \cap B) \cup C = A \cap (B \cup C)$.

PROOF: The statement "if $x \in C$ then $x \in A$ " is equivalent to the statement " $((x \in A \land x \in B) \lor x \in C) \Leftrightarrow (x \in A \land (x \in B \lor x \in C))$ ". \square

Definition 6.10 (Disjoint). Two sets A and B are disjoint if and only if $A \cap B = \emptyset$.

Definition 6.11 (Pairwise Disjoint). Let A be a set. We say the elements of A are *pairwise disjoint* if and only if, for all $x, y \in A$, if $x \cap y \neq \emptyset$ then x = y.

Definition 6.12 (Intersection). For any nonempty set \mathcal{C} , the *intersection* of \mathcal{C} , $\bigcap \mathcal{C}$, is the set that contains exactly those sets that belong to every element of \mathcal{C} .

We write $\bigcap_{X \in \mathcal{A}} t[X]$ for $\bigcap \{t[X] \mid X \in \mathcal{A}\}.$

Proof:

- $\langle 1 \rangle 1$. Let: C be a nonempty set.
- $\langle 1 \rangle 2$. There exists a set I whose elements are exactly the sets that belong to every element of C.

PROOF: Pick $A \in \mathcal{C}$, and take $I = \{x \in A : \forall X \in \mathcal{C}.x \in X\}$.

 $\langle 1 \rangle 3$. For any sets $I,\ J,$ if the elements of I and J are exactly the sets that belong to every element of $\mathcal C$ then I=J.

Proof: Axiom of Extensionality. \Box

9

Unordered Triples

Definition 7.1 ((Unordered) Triple). Given sets a_1, \ldots, a_n , define the (unordered) n-tuple $\{a_1, \ldots, a_n\}$ to be

$$\{a_1,\ldots,a_n\} := \{a_1\} \cup \cdots \cup \{a_n\}$$
.

Relative Complements

Definition 8.1 (Relative Complement). For any sets A and B, the difference or relative complement A-B is defined to be

$$A - B := \{ x \in A : x \notin B \} .$$

Proposition 8.2. For any sets A and E, we have $A \subseteq E$ if and only if

$$E - (E - A) = A$$

Proof:

 $\langle 1 \rangle 1$. Let: A and E be sets.

 $\langle 1 \rangle 2$. If $A \subseteq E$ then E - (E - A) = A

 $\langle 2 \rangle 1$. Assume: $A \subseteq E$

 $\langle 2 \rangle 2$. $E - (E - A) \subseteq A$

PROOF: If $x \in E$ and $x \notin E - A$ then $x \in A$.

 $\langle 2 \rangle 3$. $A \subseteq E - (E - A)$

PROOF: If $x \in A$ then $x \in E$ and $x \notin E - A$.

 $\langle 1 \rangle 3$. If E - (E - A) = A then $A \subseteq E$.

PROOF: Since $E - (E - A) \subseteq E$.

П

Proposition 8.3. For any set E we have

$$E - \emptyset = E$$

PROOF: $x \in E$ if and only if $x \in E$ and $x \notin \emptyset$. \square

Proposition 8.4. For any set E we have

$$E - E = \emptyset$$
 .

PROOF: There is no x such that $x \in E$ and $x \notin E$. \square

Proposition 8.5. For any sets A and E, we have

$$A \cap (E - A) = \emptyset$$
.

PROOF: There is no x such that $x \in A$ and $x \in E - A$. \square

Proposition 8.6. Let A and E be sets. Then $A \subseteq E$ if and only if

$$A \cup (E - A) = E$$
.

Proof:

- $\langle 1 \rangle 1$. Let: A and E be sets.
- $\langle 1 \rangle 2$. If $A \subseteq E$ then $A \cup (E A) = E$.
 - $\langle 2 \rangle 1$. Assume: $A \subseteq E$
 - $\langle 2 \rangle 2$. $A \cup (E A) \subseteq E$

PROOF: If $x \in A$ or $x \in E - A$ then $x \in E$.

 $\langle 2 \rangle 3. \ E \subseteq A \cup (E - A)$

PROOF: If $x \in E$ then either $x \in A$ or $x \notin A$. In the latter case, $x \in E - A$.

 $\langle 1 \rangle 3$. If $A \cup (E - A) = E$ then $A \subseteq E$

PROOF: Since $A \subseteq A \cup (E - A)$.

Proposition 8.7. Let A, B and E be sets. Then:

- 1. If $A \subseteq B$ then $E B \subseteq E A$.
- 2. If $A \subseteq E$ and $E B \subseteq E A$ then $A \subseteq B$.

PROOF:

- $\langle 1 \rangle 1$. Let: A, B and E be sets.
- $\langle 1 \rangle 2$. If $A \subseteq B$ then $E B \subseteq E A$.

PROOF: If $A \subseteq B$, $x \in E$ and $x \notin B$, then we have $x \in E$ and $x \notin A$.

- $\langle 1 \rangle 3$. If $A \subseteq E$ and $E B \subseteq E A$ then $A \subseteq B$.
 - $\langle 2 \rangle 1$. Assume: $A \subseteq E$
 - $\langle 2 \rangle 2$. Assume: $E B \subseteq E A$
 - $\langle 2 \rangle 3$. Let: $x \in A$
 - $\langle 2 \rangle 4. \ x \in E$
 - $\langle 2 \rangle 5. \ x \notin E A$
 - $\langle 2 \rangle 6. \ x \notin E B$
- $\langle 2 \rangle 7. \ x \in B$

П

Example 8.8. We cannot remove the hypothesis $A \subseteq E$ in item 2 above. Let $E = \emptyset$, $A = \{\emptyset\}$ and $B = \emptyset$. Then $E - B = E - A = \emptyset$ but $A \not\subseteq B$.

Proposition 8.9 (De Morgan's Law). For any sets A, B and E, we have $E - (A \cup B) = (E - A) \cap (E - B)$.

PROOF: $(x \in E \land \neg (x \in A \lor x \in B)) \Leftrightarrow (x \in E \land x \notin A \land x \in E \land x \notin B)$. \square

Proposition 8.10 (De Morgan's Law). For any sets A, B and E, we have $E - (A \cap B) = (E - A) \cup (E - B)$.

PROOF: $(x \in E \lor \neg (x \in A \land x \in B)) \Leftrightarrow (x \in E \land x \notin A) \lor (x \in E \land x \notin B)$. \square

Proposition 8.11. For any sets A, B and E, if $A \subseteq E$ then

$$A - B = A \cap (E - B) .$$

PROOF: If $A \subseteq E$ then we have $(x \in A \land x \notin B) \Leftrightarrow (x \in A \land x \in E \land x \notin B)$. \square

Proposition 8.12. For any sets A and B, we have $A \subseteq B$ if and only if $A - B = \emptyset$.

PROOF: Both are equivalent to the statement that there is no x such that $x \in A$ and $x \notin B$. \square

Proposition 8.13. For any sets A and B, we have

$$A - (A - B) = A \cap B .$$

PROOF: $(x \in A \land \neg (x \in A \land x \notin B)) \Leftrightarrow x \in A \land x \in B$. \square

Proposition 8.14. For any sets A, B and C, we have

$$A \cap (B - C) = (A \cap B) - (A \cap C) .$$

PROOF: $(x \in A \land x \in B \land x \notin C) \Leftrightarrow (x \in A \land x \in B \land \neg (x \in A \land x \in C))$.

Proposition 8.15. For any sets A, B, C and E, if $(A \cap B) - C \subseteq E$ then we have

$$A\cap B\subseteq (A\cap C)\cup (B\cap (E-C))$$
 .

PROOF:

 $\langle 1 \rangle 1$. Let: $x \in A \cap B$

PROVE: $x \in (A \cap C) \cup (B \cap (E - C))$

 $\langle 1 \rangle 2$. Case: $x \in C$

PROOF: Then $x \in A \cap C$.

 $\langle 1 \rangle 3$. Case: $x \notin C$

PROOF: Then $x \in E$ and so $x \in B \cap (E - C)$.

П

Proposition 8.16. For any sets A, B, C and E, we have

$$(A \cup C) \cap (B \cup (E - C)) \subseteq A \cup B$$
.

PROOF: The statement $(x \in A \lor x \in C) \land (x \in B \lor (x \in E \land x \notin C))$ implies $x \in A \lor x \in B$. \square

Proposition 8.17 (De Morgan's Law). Let E be a set and C a nonempty set. Then

$$E - \bigcup \mathcal{C} = \bigcap_{X \in \mathcal{C}} (E - X) .$$

Proof: Easy. \square

Proposition 8.18 (De Morgan's Law). Let E be a set and C a nonempty set. Then

$$E - \bigcap \mathcal{C} = \bigcup_{X \in \mathcal{C}} (E - X)$$
.

Proof: Easy.

Symmetric Difference

Definition 9.1 (Symmetric Difference). For any sets A and B, the *symmetric difference* A+B is defined to be

$$A+B:=(A-B)\cup(B-A).$$

Proposition 9.2. For any sets A and B, we have

$$A + B = B + A$$

PROOF: From the commutativity of union. \Box

Proposition 9.3. For any sets A, B and C, we have

$$A + (B + C) = (A + B) + C$$
.

PROOF: Each is the set of all x that belong to either exactly one or all three of $A,\,B$ and C. \Box

Proposition 9.4. For any set A, we have

$$A + \emptyset = A$$
.

Proof:

$$A + \emptyset = (A - \emptyset) \cup (\emptyset - A)$$
$$= A \cup \emptyset$$
$$= A$$

Proposition 9.5. For any set A we have

$$A + A = \emptyset$$
.

Proof:

$$A + A = (A - A) \cup (A - A)$$
$$= \emptyset \cup \emptyset$$
$$= \emptyset$$

Power Sets

Definition 10.1 (Power Set). For any set A, the *power set* of A, $\mathcal{P}A$, is the set whose elements are exactly the subsets of A.

PROOF: This exists by the Power Set Axiom and Axiom of Comprehension, and is unique by the Axiom of Extensionality. \Box

Proposition 10.2.

$$\mathcal{P}\emptyset = \{\emptyset\}$$

PROOF: The only subset of \emptyset is \emptyset .

Proposition 10.3. For any set a, we have

$$\mathcal{P}\{a\} = \{\emptyset, \{a\}\} .$$

PROOF: The only subsets of $\{a\}$ are \emptyset and $\{a\}$. \square

Proposition 10.4. For any sets a and b, we have

$$\mathcal{P}{a,b} = {\emptyset, \{a\}, \{b\}, \{a,b\}\}}$$
.

PROOF: The only subsets of $\{a,b\}$ are \emptyset , $\{a\}$, $\{b\}$ and $\{a,b\}$. \square

Proposition 10.5. For any nonempty set C we have

$$\bigcap_{X \in \mathcal{C}} \mathcal{P}X = \mathcal{P}\left(\bigcap \mathcal{C}\right) .$$

Proof:

$$x \in \bigcup_{X \in \mathcal{C}} \mathcal{P}X \Leftrightarrow \forall X \in \mathcal{C}.x \subseteq X$$
$$\Leftrightarrow \forall X \in \mathcal{C}.\forall y \in x.y \in X$$
$$\Leftrightarrow \forall y \in x.\forall X \in mathcalC.y \in X$$
$$\Leftrightarrow x \subseteq \bigcap \mathcal{C}$$

Proposition 10.6. For any set C we have

$$\bigcup_{X\in\mathcal{C}}\mathcal{P}X\subseteq\mathcal{P}\bigcup\mathcal{C}\ .$$

PROOF: If there exists $X \in \mathcal{C}$ such that $x \subseteq X$ then $x \subseteq \bigcup \mathcal{C}$. \square

Proposition 10.7. For any set E, we have

$$\bigcap \mathcal{P}E = \emptyset \ .$$

PROOF: Since $\emptyset \in \mathcal{P}E$. \square

Proposition 10.8. For any sets E and F, if $E \subseteq F$ then $\mathcal{P}E \subseteq \mathcal{P}F$.

PROOF: If $E \subseteq F$ and $X \subseteq E$ then $X \subseteq F$. \square

Ordered Pairs

Definition 11.1 (Ordered Pair). For any sets a and b, the *ordered pair* (a,b) is defined by

$$(a,b) := \{\{a\}, \{a,b\}\}$$
 .

Proposition 11.2. For any sets a, b, x and y, if (a,b) = (x,y) then a = x and b = y.

Proof:

- $\langle 1 \rangle 1$. Let: a, b, x and y be sets.
- $\langle 1 \rangle 2$. Assume: (a,b) = (x,y)
- $\langle 1 \rangle 3. \ a = x$

Proof: $\{a\} = \bigcap (a,b) = \bigcap (x,y) = \{x\}.$

- $\langle 1 \rangle 4. \ \{a,b\} = \{x,y\}$
- $\langle 1 \rangle$ 5. Case: a = b
 - $\langle 2 \rangle 1. \ x = y$

PROOF: Since $\{x, y\} = \{a, b\}$ is a singleton.

 $\langle 2 \rangle 2. \ b = y$

Proof: b = a = x = y

- $\langle 1 \rangle 6$. Case: $a \neq b$
 - $\langle 2 \rangle 1. \ x \neq y$

PROOF: Since $\{x, y\} = \{a, b\}$ is not a singleton.

 $\langle 2 \rangle 2. \ b = y$

PROOF: $\{b\} = \{a, b\} - \{a\} = \{x, y\} - \{x\} = \{y\}.$

Definition 11.3 (Cartesian Product). For any sets A and B, the Cartesian product $A \times B$ is

$$A \times B := \{ p \in \mathcal{PP}(A \cup B) : \exists a \in A.\exists b \in B.p = (a,b) \} .$$

Proposition 11.4. For any sets A, B and X, we have

$$(A \cup B) \times X = (A \times X) \cup (B \times X)$$
.

Proof: Easy.

Proposition 11.5. For any sets A, B, X and Y, we have

$$(A \cap B) \times (X \cap Y) = (A \times X) \cap (B \times Y) .$$

Proof: Easy. \square

Proposition 11.6. For any sets A, B and X, we have

$$(A - B) \times X = (A \times X) - (B \times X) .$$

Proof: Easy.

Proposition 11.7. For any sets A and B, we have $A \times B = \emptyset$ if and only if $A = \emptyset$ or $B = \emptyset$.

Proof: Easy. \square

Proposition 11.8. For any sets A, B, X and Y, if $A \subseteq X$ and $B \subseteq Y$ then $A \times B \subseteq X \times Y$. The converse holds assuming $A \neq \emptyset$ and $B \neq \emptyset$.

Proof: Easy. \square

Relations

Definition 12.1 (Relation). A *relation* is a set of ordered pairs.

If R is a relation, we write xRy for $(x,y) \in R$.

Given sets X and Y, a relation between X and Y is a subset of $X \times Y$.

Given a set X, a relation on X is a relation between X and X.

Definition 12.2 (Domain). The *domain* of a relation R is the set

$$\operatorname{dom} R := \{ x \in [\] [\] R : \exists y . (x, y) \in R \} \ .$$

Definition 12.3 (Range). The *range* of a relation R is the set

$$\operatorname{ran} R := \{ y \in \bigcup \bigcup R : \exists x . (x, y) \in R \} .$$

Definition 12.4 (Reflexive). Let R be a relation on X. Then R is *reflexive* iff, for all $x \in X$, we have xRx.

Definition 12.5 (Symmetric). Let R be a relation on X. Then R is *symmetric* iff, whenever xRy, then yRx.

Definition 12.6 (Transitive). Let R be a relation on X. Then R is transitive iff, whenever xRy and yRz, then xRz.

Definition 12.7 (Equivalence Relation). Let R be a relation on X. Then R is an *equivalence relation* iff it is reflexive, symmetric and transitive.

Definition 12.8 (Partition). Let X be a set. A partition of X is a pairwise disjoint set of nonempty subsets of X whose union is X.

Definition 12.9 (Equivalence Class). Let R be an equivalence relation on X. Let $x \in X$. The *equivalence class* of x with respect to R is

$$x/R := \{ y \in X : xRy \} .$$

We write X/R for the set of all equivalence classes with respect to R.

Definition 12.10 (Induced). Let P be a partition of X. The relation *induced* by P is X/P where x(X/P)y iff there exists $X \in P$ such that $x \in X$ and $y \in X$.

Theorem 12.11. Let R be an equivalence relation on X. Then X/R is a partition of X that induces the relation R.

Proof: Easy.

Theorem 12.12. Let P be a partition of X. Then X/P is an equivalence relation on X, and P = X/(X/P).

Proof: Easy. \square

Functions

Definition 13.1 (Function). Let X and Y be sets. A function, map, mapping, transformation or operator f from X to Y, $f: X \to Y$, is a relation f between X and Y such that, for all $x \in X$, there exists a unique $f(x) \in Y$, called the value of f at the argument x, such that $(x, f(x)) \in f$.

We write Y^X for the set of all functions from X to Y.

Definition 13.2 (Onto). Let $f: X \to Y$. We say f maps X onto Y iff ran f = Y.

Definition 13.3 (Image). Let $f: X \to Y$ and $A \subseteq X$. The *image* of A under f is

$$f(A) := \{ f(x) : x \in A \}$$
.