

CS120: Computer Networks

Lecture 27. Network Security 1

Zhice Yang

How to Secure the Internet?

What is Network Security

- Confidentiality
 - To encrypt messages so as to prevent an adversary from understanding the message contents
- Integrity
 - To prevent an adversary from modifying the message contents.
- Availability
 - services must be accessible and available to users
- Authentication
 - To confirm identity of each other
- Timeliness
 - To identify delayed messages

Guarantee	Primitive
Confidentiality	Encryption
Integrity	Hash
Authentication	Signatures

Security Risks in Networks

- Eavesdrop
- Injection
- Impersonation
 - can fake (spoof) source address in packet (or any field in packet)
- Hijacking
 - "take over" ongoing connection by removing sender or receiver, inserting himself in place
- Denial of Service (DoS):
 - prevent service from being used by others (e.g., by overloading resources)

• ...

What is Network Security

≻Confidentiality

 To encrypt messages so as to prevent an adversary from understanding the message contents

Integrity

 To prevent an adversary from modifying the message contents.

Availability

services must be accessible and available to users

Authentication

• To confirm identity of each other

Timeliness

To identify delayed messages

Guarantee	Primitive
Confidentiality	Encryption
Integrity	MAC
Authentication	Signatures

Cipher

• Cipher: the Cryptographic Algorithm for Encryption or Decryption

HELLO

ABCDEFGHIJKLMNOPQRSTUVWXYZ

RSTUVWXYZABCDEFGHIJKLMNOPQ

Cipher

- Ciphers are normally parameterized by keys
 - Message: x
 - Key: k1, k2
 - Encryption function: y=En(x, k1)
 - Decryption function: x=De(y, k2)
- Key is the secret
 - The encryption function and decryption function are public known

Cipher as a Secret?

Obtain the secret by unlocking the block

Not Scalable Not secure after the cipher is cracked

The mechanism of the locker is public known, but the key unknown

- Examples:
 - Advanced Encryption Standard (AES)
 - Block size: 4*4 = 16 Byte (128 bit)
 - Operation: a permutation of the 128 bits according to the key
 - key size: 128, 192, 256 bit
 - https://aesencryption.net/

- Ciphers are under various attacks
 - e.g., word frequency, known plaintext, etc.
- Cipher designs
 - Prevent attackers from knowing key even the attacker knows plaintext
 - Initialization Vector (IV)
 - Cipher Block Chaining to prevent same output under same input

- Examples:
 - Advanced Encryption Standard (AES)
 - Block size: 4*4 = 16 Byte (128 bit)
 - Operation: a permutation of the 128 bits according to the key
 - key size: 128, 192, 256 bit
 - https://aesencryption.net/
 - Operation Mode
 - e.g., AES-CTR
 - Initialization Vector (IV)
 - Block chaining
 - e.g., Counter (CTR) and Cypher Block Chaining (CBC)

- Problem
 - Sender and receiver have to share the secret key
 - Q: how to agree on the key in first place (particularly if never "met")?
- This problem haven't been solved until very recently (70s)
 - -> Public-Key Cipher

- If the message is encrypted with the public key
 - The message can only be decrypted with the paired private key

For key sharing: the public key can be released to everyone!

Requirements:

- 1 need $K_B^+(.)$ and $K_B^-(.)$ such that $K_B^-(m) = m$
- 2 given public key K_B^+ , it should be impossible to compute private key K_B^-

- Example:
 - RSA (Rivest, Shamir, Adelson algorithm)
 - Elliptic Curve Cryptography

What is Network Security

- Confidentiality
 - To encrypt messages so as to prevent an adversary from understanding the message contents
- Integrity
 - To prevent an adversary from modifying the message contents.
- Availability
 - services must be accessible and available to users
- **≻** Authentication
 - To confirm identity of each other
- Timeliness
 - To identify delayed messages

Guarantee	Primitive
Confidentiality	Encryption
Integrity	MAC
Authentication	Signatures

Goal: Bob wants Alice to "prove" her identity to him

- Solution v1
 - Alice says "I am Alice" and sends her encrypted secret password to "prove" it.
 - Problem: replay

- Solution v2
 - + challenge with a nonce
 - Need symmetric key

- If the message is encrypted with the <u>private</u> key
 - The message can only be decrypted with the paired <u>public</u> key

- Solution v3
 - Change to public cypher
 - Fact:

$$K_{\underline{B}}(K_{\underline{B}}(m)) = m = K_{\underline{B}}(K_{\underline{B}}(m))$$

use public key first, followed by private key use private key first, followed by public key

result is the same!

- Solution v3
 - Change to public cypher

Bob computes

$$K_A^+(K_A^-(R)) = R$$

and knows only Alice could have the private key, that encrypted R such that

$$K_A^+(K_A^-(R)) = R$$

- Solution v3
 - Still has a flaw: man in the middle!

Trudy recovers Bob's m:

$$m = K_A (K_A (m)) - K_A (m)$$

and she and Bob meet a week later in person and discuss m, not knowing Trudy knows m

Bob sends a personal message, m to Alice

What is Network Security

- Confidentiality
 - To encrypt messages so as to prevent an adversary from understanding the message contents

≻Integrity

- To prevent an adversary from modifying the message contents.
- Availability
 - services must be accessible and available to users
- Authentication
 - To confirm identity of each other
- Timeliness
 - To identify delayed messages

Guarantee	Primitive
Confidentiality	Encryption
Integrity	MAC
Authentication	Signatures

Data Integrity: Checksum

Checksum can be replicated

Cryptographic Hash

- Cryptographic Hash
 - Example
 - MD5
 - SHA
- HMAC
 - Hash Massage Authentication Code
 - Use Cryptographic Hash Function to generate integrity and authentication check for the message.
- Digital Signature
 - Fixed-length, easy- to-compute digital "fingerprint"
 - Apply hash function H to m, get fixed size message digest, H(m)
 - use private key to sign the hash

Digital Signature

Bob sends digitally signed message:

Alice verifies signature, integrity of digitally signed message:

Key Predistribution

- Distribute through Offline Channel
 - Not scalable

Endorsement

Step 1. Verify Each Other Offline; Exchange Public Keys

Step 3. Verify Each Other Offline; Exchange Public Keys

Step 2. Certifies Public Keys

Step 4. Certifies Public Keys from Others

- Certificate Authority (CA)
 - Preinstall trusted public keys
- Web of Trust
 - Collect public keys from known people

Public-Key Certification Authorities (CA)

- Certification authority (CA): binds public key to particular entity E
- Entity (person, website, router) registers its public key, provides "proof of identity" to CA
 - CA creates certificate binding identity E to E's public key
 - Certificate containing E's public key digitally signed by CA: CA says "this is E's public key"

Public-Key Certification Authorities (CA)

- When Alice wants Bob's public key:
 - gets Bob's certificate (from Bob or elsewhere)
 - apply CA's public key to Bob's certificate, get Bob's public key

Certificate

Contains

- The identity of the entity being certified
- The public key of the entity being certified
- The identity of the signer
- The digital signature of the signer
- A digital signature algorithm identifier (which cryptographic hash and which cipher)

Certificate Authority (CA)

Demo

- Certificate Authority (CA)
 - certmgr.msc
 - https://www.sinorailca.com/

Symmetric-Key Predistribution

- Through Trust Server
- Through Public-Key Predistribution

Diffie-Hellman Key Exchange

- Generate shared key without key predistribution
 - a is the secret of A
 - b is the secret of B
 - g and p are public known
 - g^ab mod p is the shared key

Diffie-Hellman Key Exchange

- Man in the middle attack
 - A cannot authenticate he is talking with B
- Diffie-Hellman Key Exchange is not secure without authentication

Reference

- Textbook 8.1, 8.2, 8.3
- Some slides are adapted from http://www-net.cs.umass.edu/kurose_ross/ppt.htm by Kurose Ross