1. Objectives

☐ Bookmark this page

Linear Classification and Generalization

At the end of this lecture, you will be able to

- · understanding optimization view of learning
- apply optimization algorithms such as gradient descent, stochastic gradient descent, and quadratic program

Distance from a line to a point in terms of components

1.0/1 point (graded)

In a 2 dimensional space, a line L is given by L: ax+by+c=0, and a point P is given by $P=(x_0,y_0)$. What is d, the shortest distance between L and P? Express d in terms of a,b,c,x_0,y_0 .

$$(a*x_0 + b * y_0 + c)/sqrt(a/$$

 \checkmark Answer: abs(a*x_0 + b*y_0 +c) / sqrt(a^2 + b^2)

$$\frac{a\cdot x_0+b\cdot y_0+c}{\sqrt{a^2+b^2}}$$

STANDARD NOTATION

Solution:

Use the projection equation. Here θ is [a,b], θ_0 is c and the point is $[x_0,y_0]$.

Show answer

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Remember that the objective

$$J\left(heta, heta_0
ight) = rac{1}{n}\sum_{i=1}^n \operatorname{Loss}_h\left(y^{(i)}\left(heta\cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2}\mid\mid heta\mid\mid^2.$$

In the picture below, what happens to d, the distance between the decision boundary and the margin boundary, as we increase λ ?

 \bigcirc d decreases

 \bigcirc d converges to λ

Hint: You can answer with your intuition in this question. To see whether d converges to λ , think of a simple setting where we are working in 1 dimension with just two points with labels $x_1=-1, x_2=2, y_1=-1, y_2=1$ and assume that λ is large enough where it dominates the loss function and pushes θ close enough to 0 where all points are margin violators.

Solution:

Increasing λ means we put more weight on maximizing the margin. Thus d increases. It is not true that d always converges to λ as λ increases. Here is a counter example: Consider a simple setting where we are working in 1 dimension with just two points with labels $x_1=-1, x_2=2, y_1=-1, y_2=1$ and assume that λ is large enough where it dominates the loss function and pushes θ close enough to 0 where all points are margin violators.

$$egin{aligned} J &=& rac{1}{2}[(1- heta+ heta_0)+(1-2 heta- heta_0)]+rac{\lambda}{2} heta^2 \ &=& rac{2-3 heta}{2}+rac{\lambda}{2} heta^2. \end{aligned}$$

Solve this explicitly by taking $\dfrac{\partial J}{\partial heta} = 0$:

$$rac{-3}{2} + \lambda heta \ = \ 0$$
 $heta \ = \ rac{3}{2\lambda}$ $d \ = \ rac{1}{ heta} = \ rac{2}{3}\lambda.$

Show answer

Assume $\theta \in \mathbb{R}$. Our goal is to find θ that minimizes

$$J\left(heta, heta_0
ight) = rac{1}{n}\sum_{i=1}^n \operatorname{Loss}_h\left(y^{(i)}\left(heta\cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2}\mid\mid heta\mid\mid^2$$

through gradient descent. In other words, we will

- 1. Start heta at an arbitrary location: $heta \leftarrow heta_{start}$
- 2. Update θ repeatedly with $\theta \leftarrow \theta \eta \frac{\partial J(\theta, \theta_0)}{\partial \theta}$ until θ does not change significantly

In the 2 dimensional space below, we start our gradient descent at θ_{start} . What is the direction θ moves to in its first update?

away from the origin
o towards the origin
upwards
Odownwards
What happens if we increase the stepsize η ?
the magnitude of change in each update gets larger
the magnitude of change in each update gets smaller
✓

Solution:

Gradient descent makes θ move to opposite direction of the gradient. Thus it will move towards the origin at θ_{start} . Also, increasing the stepsize makes the update happen in greater magnitude.

As we saw in the lecture above,

$$J\left(\theta,\theta_{0}\right)=\frac{1}{n}\sum_{i=1}^{n}\operatorname{Loss}_{h}\left(y^{\left(i\right)}\left(\theta\cdot x^{\left(i\right)}+\theta_{0}\right)\right)+\frac{\lambda}{2}\left|\left|\left|\theta\right|\right|^{2}=\frac{1}{n}\sum_{i=1}^{n}\left[\operatorname{Loss}_{h}\left(y^{\left(i\right)}\left(\theta\cdot x^{\left(i\right)}+\theta_{0}\right)\right)+\frac{\lambda}{2}\left|\left|\left|\theta\right|\right|^{2}\right]$$

With stochastic gradient descent, we choose $i \in ig\{1,\dots,nig\}$ at random and update heta such that

$$heta \leftarrow heta - \eta
abla_{ heta} igl[\operatorname{Loss}_h \left(y^{(i)} \left(heta \cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2} \left| \left| heta \left|
ight|^2
ight]$$

What is $\nabla_{\theta} \left[\operatorname{Loss}_h \left(y^{(i)} \left(\theta \cdot x^{(i)} + \theta_0 \right) \right) \right]$ if $\operatorname{Loss}_h \left(y^{(i)} \left(\theta \cdot x^{(i)} + \theta_0 \right) \right) > 0$?

$$\bigcirc\, y^{(i)} x^{(i)}$$

$$\bigcirc -y^{(i)}x^{(i)}$$

$$\bigcirc$$
 0

$$\bigcirc \lambda \theta$$

$$\bigcirc -\lambda \theta$$

Solution:

If $\operatorname{Loss}_h\left(y^{(i)}\left(\theta\cdot x^{(i)}+ heta_0
ight)
ight)>0$,

$$\operatorname{Loss}_h(y^{(i)}(\theta \cdot x^{(i)} + \theta_0)) = 1 - y^{(i)}(\theta \cdot x^{(i)} + \theta_0)$$

. Thus

$$\nabla_{\theta} \operatorname{Loss}_{h} \left(y^{(i)} \left(\theta \cdot x^{(i)} + \theta_{0} \right) \right) = -y^{(i)} x^{(i)}$$

.

Show answer

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

Comparison with Perceptron

1/1 point (graded)

Observing the update step of SGD,

$$heta \leftarrow heta - \eta
abla_{ heta} igl[\operatorname{Loss}_h \left(y^{(i)} \left(heta \cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2} \mid\mid heta \mid\mid^2 igr]$$

Which of the following is true?

- \bigcirc As in perceptron, heta is not updated when there is no mistake
- $igoreal{igoreal}$ Differently from perceptron, heta is updated even when there is no mistake

Solution:

We can see from

$$heta \leftarrow \left\{ egin{aligned} (1 - \lambda \eta) \, heta & ext{if Loss} = 0 \ (1 - \lambda \eta) \, heta + \eta y^{(i)} x^{(i)} & ext{if Loss} > 0 \end{aligned}
ight.$$

that θ is updated even when the sum of losses is 0. This is different from perceptron.

 \bigcirc There is exactly one $(heta, heta_0)$ that satisfies $y^{(i)}\,(heta\cdot x^{(i)}+ heta_0)>=1$ for $i=1,\dots n$.

 \bigcirc There are more than one, but finite number of $(heta, heta_0)$ that satisfy $y^{(i)}$ $(heta\cdot x^{(i)}+ heta_0)>=1$ for $i=1,\dots n$.

Solution:

Without any additional constraint, because θ and θ_0 are continuous, there are numerously many (θ, θ_0) that satisfy the zero-error case.

Show answer

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

The realizable case 2

Remember the objective function

$$J\left(heta, heta_0
ight) = rac{1}{n}\sum_{i=1}^n \operatorname{Loss}_h\left(y^{(i)}\left(heta\cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2}\left|\left| heta\left|
ight|^2$$

In the realizable case, we can always find (θ, θ_0) such that the sum of the hinge losses is 0. In this case, what does the objective function J reduce to?

$$\bigcirc rac{1}{n} \sum_{i=1}^n \operatorname{Loss}_h \left(y^{(i)} \left(heta \cdot x^{(i)} + heta_0
ight)
ight)$$

$$igcirc$$
 $\frac{1}{n}\sum_{i=1}^n \operatorname{Loss}_h\left(y^{(i)}\left(heta\cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2}\mid\mid heta\mid\mid^2$

Solution:

In the realizable case, we can always find a decision boundary such that the first term of $J\left(\theta,\theta_{0}\right)$ is 0. Thus $J\left(\theta,\theta_{0}\right)$ reduces to $\frac{\lambda}{2}\mid\mid\theta\mid\mid^{2}$. Our goal is to find θ that minimizes J anyways, so J reduces to $\frac{1}{2}\mid\mid\theta\mid\mid^{2}$

Support Vectors

0/1 point (graded)

Support vectors refer to points that are exactly on the margin boundary. Which of the following is true? Choose all those apply.

 $oxedsymbol{oxed}$ If we remove one point that is not a support vector, we will get a different $heta, heta_0$

 \square If we remove one point that is a support vector, we will get the same $heta, heta_0$

 \checkmark If we remove one point that is not a support vector, we will get the same $heta, heta_0$

Solution:

Support vectors determine the exact solution θ , θ_0 that minimizes $J(\theta, \theta_0)$. Thus removing/changing all of them changes the θ , θ_0 . On the other hand, any training example that is not a support vector has no influence on θ , θ_0 . Thus removing/changing them does not affect θ , θ_0 .

Show answer