Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

Corso di Laurea in Informatica

Titolo della tesi

Tesi di laurea

RelatoreProf.Tullio Vardanega

> Laure and oRiccardo Montagnin

Anno Accademico 2016-2017

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage svolto presso l'azienda Ifin Sistemi s.r.l. Lo stage è stato svolto alla conclusione del percorso di studi della laurea triennale in Informatica, occupando circa trecentoventi ore divise in otto settimane. Lo scopo del progetto svolto è stato di effettuare uno studio di fattibilità per l'integrazione di una soluzione di database NoSQL nei prodotti dell'azienda. Lo studio di fattibilità ha comportato una fase di analisi delle varie soluzioni NoSQL esistenti sul mercato, una fase di analisi delle soluzioni attualmente adottate all'interno dei prodotti Ifin, ed infine una fase di valutazione pratica delle soluzioni individuate, con relativi benchmark per il confronto delle prestazioni ed un approfondimento sulle differenze di progettazione tra database relazionali classici e database NoSQL.

Life is really simple,	but we	insist o	n making it	complicated"
				— Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. NomeDelProfessore, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Luglio 2017

Riccardo Montagnin

Indice

1	Intr	roduzione	1
	1.1	L'azienda	1
	1.2	L'idea	1
	1.3	Organizzazione del testo	1
2	\mathbf{Pro}	ocessi e metodologie	3
	2.1	Processo sviluppo prodotto	3
3	Des	scrizione dello stage	5
	3.1	Introduzione al progetto	5
	3.2	Analisi preventiva dei rischi	5
	3.3	Requisiti e obiettivi	5
	3.4	Pianificazione	5
4	Ana	alisi dei requisiti	7
	4.1	Casi d'uso	7
	4.2	Tracciamento dei requisiti	8
5	Pro	egettazione e codifica	11
	5.1	Tecnologie e strumenti	11
	5.2	Ciclo di vita del software	11
	5.3	Progettazione	11
	5.4	Design Pattern utilizzati	11
	5.5	Codifica	11
6	\mathbf{Ver}	ifica e validazione	13
7	Cor	nclusioni	15
	7.1	Consuntivo finale	15
	7.2	Raggiungimento degli obiettivi	15
	7.3	Conoscenze acquisite	15
	7.4	Valutazione personale	15
\mathbf{A}	App	pendice A	17
A	croni	imi e abbreviazioni	19
\mathbf{G}^{1}	lossa	rio	21
Вi	bliog	grafia	23

Elenco delle figure

Elenco delle tabelle	
4.1 Tabella del tracciamento dei requisti funzionali	9

4.3 Tabella del tracciamento dei requisiti di vincolo

Introduzione

Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API).

Esempio di citazione in linea *Manifesto Agile*. URL: http://agilemanifesto.org/iso/it/.

Esempio di citazione nel pie' di pagina citazione 1

1.1 L'azienda

Descrizione dell'azienda.

1.2 L'idea

Introduzione all'idea dello stage.

1.3 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

¹Daniel T. Jones James P. Womack. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- *per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[\mathrm{g}]};$
- $\ast\,$ i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

Processi e metodologie

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'IDE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = funzionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia $2\,$

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Acronimi e abbreviazioni

 ${\bf API}$ Application Program Interface. 1

 \mathbf{UML} Unified Modeling Language. 7

Glossario

API in informatica con il termine Application Programming Interface API (ing. interfaccia di programmazione di un'applicazione) si indica ogni insieme di procedure disponibili al programmatore, di solito raggruppate a formare un set di strumenti specifici per l'espletamento di un determinato compito all'interno di un certo programma. La finalità è ottenere un'astrazione, di solito tra l'hardware e il programmatore o tra software a basso e quello ad alto livello semplificando così il lavoro di programmazione. 19

UML in ingegneria del software *UML*, *Unified Modeling Language* (ing. linguaggio di modellazione unificato) è un linguaggio di modellazione e specifica basato sul paradigma object-oriented. L'*UML* svolge un'importantissima funzione di "lingua franca" nella comunità della progettazione e programmazione a oggetti. Gran parte della letteratura di settore usa tale linguaggio per descrivere soluzioni analitiche e progettuali in modo sintetico e comprensibile a un vasto pubblico. 19

Bibliografia

Riferimenti bibliografici

James P. Womack, Daniel T. Jones. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010 (cit. a p. 1).

Siti web consultati

Manifesto Agile. URL: http://agilemanifesto.org/iso/it/ (cit. a p. 1).