Complex Analysis: Homework 14

Peter Kagey

April 25, 2018

Problem 2. (page 227)

Show that the functions z^n , n a nonnegative integer, form a normal family in |z| < 1, also in |z| > 1, but not in any region that contains a point on the unit circle.

Proof.

By Arzela's theorem, it is enough to show that for $\Omega_{<} = \{z : |z| < 1\}$ and $\Omega_{>} = \{z : |z| > 1\}$, (i) \mathfrak{F} is equicontinuous on every compact set $E \subset \Omega$, and (ii) for any $z \in \Omega$ and $f \in \mathfrak{F}$, f(z) lies in some compact subset of \mathbb{C} ; and that at least one of these hypothesis fails when Ω contains a point z such that |z| = 1.

Equicontinuity of \mathfrak{F} on $\Omega_{<}$.

Suppose that E is a compact subset of $\Omega_{<}$. There exists some closed ball $\overline{B_r}(0)$ of radius r < 1 centered at zero around E. Then given some $\varepsilon > 0$, we can construct a δ such that $|z^n - z_0^n| < \epsilon$ whenever $|z - z_0| < \delta$. Notice that

$$|z^{n} - z_{0}^{n}| = \left| (z - z_{0}) \sum_{k=0}^{n-1} z^{k} z_{0}^{n-1-k} \right|$$

$$\leq |z - z_{0}| \left| \sum_{k=0}^{n-1} r^{n-1} \right|$$

$$= |z - z_{0}| \cdot \underbrace{nr^{n-1}}_{\to 0}$$

$$\leq |z - z_{0}| \cdot \max_{n} (nr^{n-1})$$

where $\max_{n} (nr^{n-1}) < \infty$. Thus taking

$$\delta < \frac{\varepsilon}{\max\left(nr^{n-1}\right)}$$

is sufficient.

Boundedness of \mathfrak{F} on $\Omega_{<}$.

It is easy enough to see that $f(z) \in \overline{B_r}(0)$ for all $f \in \mathfrak{F}$:

$$|f(z)| = |z^n| = |z|^n \le r^n \le r.$$

Theorem 17 on $\Omega_{>}$.

Theorem 17 says that \mathfrak{F} is normal in the classical sense if and only if

$$\rho(f_n) = \frac{2n|z|^{n-1}}{1+|z|^{2n}}$$

is locally bounded. Suppose that $z \in E$, a compact subset of $\Omega_{>}$, which is to say that there exists some r

such that |z| > r for all $z \in E$. Then we have the bound

$$\rho(f_n) = \frac{2n|z|^{n-1}}{1+|z|^{2n}}$$

$$< \frac{2n|z|^{n-1}}{|z|^{2n}}$$

$$= \frac{2n}{|z|^{n+1}}$$

$$\leq \frac{2n}{r^{n+1}}$$

$$\leq \max_{n} \frac{2n}{r^{n+1}} < \infty$$

which is bounded since r > 1.

Theorem 17 on |z|=1.

This follows from the above argument. When |z| = 1, we have

$$\rho(f_n) = \frac{2n}{1+1} = n,$$

which is unbounded. Thus by the "only if" of Theorem 17, $\mathfrak F$ is not normal on on any compact set that intersects the boundary of the unit disk.

Problem 3. (page 227)

If f(z) is analytic in the whole plane, show that the family \mathfrak{F} formed by all functions f(kz) with constant $k \in \mathbb{R}$ is normal in the annulus $r_1 < |z| < r_2$ if and only if f is a polynomial.

Proof.

Because f is entire, we can write

$$f(z) = \sum_{j=0}^{\infty} a_j z^j$$
 and $f(kz) = \sum_{j=0}^{\infty} a_j k^j z^j$.

 (\Longrightarrow)

By contrapositive, assume that f is not a polynomial, which is to say that $f(z) = a_0 + a_1 z + \ldots$ with infinitely many nonzero coefficients. By Theorem 17 it is enough to check that

$$\rho(f_k) = \frac{2|f_k'(z)|}{1 + |f(kz)|^2} = \frac{2\left|\sum_{j=1}^{\infty} j a_j k^j z^{j-1}\right|}{1 + \left|\sum_{j=0}^{\infty} a_j (kz)^j\right|^2}$$

is not locally bounded, which is to say, it can be made arbitrarily large on some compact set.

(

Assume that f is a polynomial, $f(z) = a_0 + a_1 z + \ldots + a_n z^n$. By Theorem 17 it is enough to check that

$$\rho(f_k) = \frac{2|f_k'(z)|}{1 + |f(kz)|^2}$$

is locally bounded—which means that it is sufficient to check that $\rho(f)$ is totally bounded. In particular, look at the function g(z) = f(1/z)

$$\rho(g) = \frac{2\left|\sum_{j=1}^{n} \frac{ja_j}{z^{j-1}}\right|}{1 + \left|\sum_{j=0}^{n} \frac{a_j}{z^j}\right|^2}$$

Then multiplying the numerator and denominator by $|z|^{2n}$ yields

$$\rho(g) = \frac{2\left|\sum_{j=1}^{n} j a_j z^{n-j+1}\right|}{|z|^{2n} + \left|\sum_{j=0}^{n} a_j z^{n-j}\right|^2}$$

which is continuous in a delta ball around 0. So $|g(z)| \leq M$ for $z < \delta$, and $|f(z)| \leq M$ for $z > 1/\delta$. Since f is bounded for bounded z (in particular, $|z| \leq 1/\delta$), f is totally bounded, and so if f is a polynomial, then $\mathfrak{F} = \{f(kz)\}_{k \in \mathbb{C}}$ is a normal family.

Problem 1. (page 232)

If z_0 is real and Ω is symmetric with respect to the real axis, prove that f satisfies with the symmetry relation $f(\bar{z}) = \overline{f(z)}$ using the uniqueness condition in Theorem 1.

Proof.

First notice that the map $g(z) = \overline{f(\overline{z})}$ is holomorphic: write f(z) = u(x,y) + iv(x,y) so that g(z) = u(x,-y) - iv(x,-y). Since g is continuous (being the sum/composition of continuous functions), it only remains to check that the Cauchy-Riemann Equations are satisfied:

$$\frac{\partial}{\partial x} \left[u(x, -y) \right] = \frac{\partial u}{\partial x} (x, -y) \tag{1}$$

$$\frac{\partial}{\partial y} \left[u(x, -y) \right] = -\frac{\partial u}{\partial y} (x, -y) \tag{2}$$

$$\frac{\partial}{\partial x} \left[-v(x, -y) \right] = -\frac{\partial v}{\partial x}(x, -y) \tag{3}$$

$$\frac{\partial}{\partial y} \left[-v(x, -y) \right] = \frac{\partial v}{\partial y}(x, -y), \tag{4}$$

where the equality of (1) and (4) along with (2) and (3) follows by the Cauchy-Riemann Equations on f. Thus g is holomorphic.

Now it just needs to be shown that g is conformal. Notice that the above equations together with the knowledge that f is conformal show that the derivative of g never vanishes. Since g is the composition of a bijection on Ω , followed by f, followed by a bijection on \mathbb{D} , g is also a one-to-one surjection onto the disk.

Next, notice that g maps z_0 to zero: $g(z_0) = \overline{f(\overline{z_0})} = \overline{f(z_0)} = \overline{0} = 0$. Also the derivative at $g'(z_0)$ is positive because z_0 has imaginary part of zero:

$$g'(z_0) = g'(x_0 + 0i) = \frac{\partial u}{\partial x}(x_0, 0) = f'(z_0) > 0$$

Therefore Theorem 17 guarantees that g is identically f, and the symmetry relation follows.

$$f(z) = \overline{f(\bar{z})}$$
$$\overline{f(z)} = f(\bar{z}).$$

Problem 2. (page 232)

What is the corresponding conclusion if Ω is symmetric with respect to the point z_0 ?

Proof.

Suppose Ω is symmetric with respect to the point z_0 , that is (i) $f(z_0) = 0$ and (ii) if $z_1 \in \Omega$, then $z_0 - (z_1 - z_0) = 2z_0 - z_1 \in \Omega$. Denote this point by $\tilde{z_1}$.

Define $g: \Omega \to \mathbb{D}$ by $g(z) = -f(\tilde{z})$. Notice now that

1.
$$g(z_0) = -f(\widetilde{z_0}) = -f(z_0 - (z_0 - z_0)) = -f(z_0) = -0 = 0$$

- 2. The map g is conformal because it is the composition of conformal maps.
- 3. The derivative g' is positive at z_0

$$g'(z_0) = \frac{d}{dz} \left[-f(\hat{z}) \right]_{z=z_0} = -f'(\hat{z_0}) \frac{d}{dz} \left[2z_0 - z \right]_{z=z_0} = f'(\hat{z_0}) = f'(z_0) > 0.$$

Because f was the unique function with these properties, g(z) = f(z), so

$$f(\widetilde{z_1}) = -f(z_1).$$