qpp 0.1

Generated by Doxygen 1.8.5

Thu May 15 2014 17:24:43

Contents

1	Nam	nespace	Index													1
	1.1	Names	pace List				 			1						
2	Hier	archical	Index													3
	2.1	Class I	Hierarchy				 	3								
3	Clas	ss Index														5
	3.1	Class I	ist				 	5								
4	File	Index														7
	4.1	File Lis	t				 		7							
5	Nam	nespace	Documer	ntatio	n											9
	5.1	qpp Na	ımespace	Refe	rence		 	9								
		5.1.1	Function	Docu	umenta	tion	 	13								
			5.1.1.1	abs	m		 	13								
			5.1.1.2	adjo	oint .		 		14							
			5.1.1.3	anti	comm		 		14							
			5.1.1.4	cha	nnel .		 		14							
			5.1.1.5	cha	nnel .		 	15								
			5.1.1.6	cho	i		 		15							
			5.1.1.7	cho	i2kraus	s	 		16							
			5.1.1.8	com	nm .		 		16							
			5.1.1.9	com	npperm	١	 		17							
			5.1.1.10	con	jugate		 		17							
			5.1.1.11	cos	m		 	17								
			5.1.1.12	cwis	se		 	18								
			5.1.1.13	det			 	18								
			5.1.1.14	disp)		 	18								
			5.1.1.15	disp)		 		18							
			5.1.1.16	disp)		 	18								
			5.1.1.17	disp)		 	18								
			5.1.1.18	disc	oln .		 	19								

iv CONTENTS

displn	19
displn	19
displn	20
entanglement	20
evals	21
evects	21
expandout	22
expm	22
funm	22
gconcurrence	23
grams	24
grams	24
grams	24
hevals	25
hevects	25
inverse	25
invperm	26
kron	27
kronpow	27
load	27
loadMATLABmatrix	27
loadMATLABmatrix	27
loadMATLABmatrix	27
logdet	28
logm	28
mket	28
mket	29
mket	29
multiidx2n	29
n2multiidx	30
norm	30
powm	30
prj	31
ptrace	32
ptrace1	33
ptrace2	33
ptranspose	34
	displn

CONTENTS

5.1.1.59	qmutualinfo	35
5.1.1.60	rand	35
5.1.1.61	rand	35
5.1.1.62	rand	35
5.1.1.63	rand	36
5.1.1.64	randH	36
5.1.1.65	randint	36
5.1.1.66	randket	37
5.1.1.67	randkraus	37
5.1.1.68	randn	37
5.1.1.69	randn	37
5.1.1.70	randn	37
5.1.1.71	randn	38
5.1.1.72	randperm	38
5.1.1.73	randrho	38
5.1.1.74	randU	38
5.1.1.75	randV	39
5.1.1.76	renyi	39
5.1.1.77	renyi_inf	39
5.1.1.78	reshape	40
5.1.1.79	save	40
5.1.1.80	saveMATLABmatrix	40
5.1.1.81	saveMATLABmatrix	40
5.1.1.82	saveMATLABmatrix	40
5.1.1.83	schmidtcoeff	41
5.1.1.84	schmidtprob	41
5.1.1.85	schmidtU	42
5.1.1.86	schmidtV	42
5.1.1.87	shannon	43
5.1.1.88	sinm	43
5.1.1.89	spectralpowm	43
5.1.1.90	sqrtm	44
5.1.1.91	sum	44
5.1.1.92	super	44
5.1.1.93	syspermute	45
5.1.1.94	trace	45
5.1.1.95	transpose	46
5.1.1.96	tsallis	46
Variable I	Documentation	46
5.1.2.1	gt	46

5.1.2

vi CONTENTS

		5.1.2.2	rdevs	40	6
		5.1.2.3	st	40	6
5.2	qpp::ct	Namespa	ace Reference	40	6
	5.2.1	Function	Documentation	4	7
		5.2.1.1	omega	4	7
	5.2.2	Variable	Documentation	4	7
		5.2.2.1	chop	4	7
		5.2.2.2	ee	4	7
		5.2.2.3	eps	4	7
		5.2.2.4	ii	4	7
		5.2.2.5	maxn	4	7
		5.2.2.6	pi	4	7
5.3	qpp::in	ternal Nar	mespace Reference	4	7
	5.3.1	Function	Documentation	48	8
		5.3.1.1	_check_col_vector	48	8
		5.3.1.2	_check_dims	48	8
		5.3.1.3	_check_dims_match_cvect	48	8
		5.3.1.4	_check_dims_match_mat	48	8
		5.3.1.5	_check_dims_match_rvect	48	8
		5.3.1.6	_check_eq_dims	48	8
		5.3.1.7	_check_nonzero_size	48	8
		5.3.1.8	_check_perm	48	8
		5.3.1.9	_check_row_vector	48	8
		5.3.1.10	_check_square_mat	48	8
		5.3.1.11	_check_subsys_match_dims	48	8
		5.3.1.12	_check_vector	48	8
		5.3.1.13	_kron2	48	8
		5.3.1.14	_multiidx2n	49	9
		5.3.1.15	_n2multiidx	49	9
		5.3.1.16	variadic_vector_emplace	49	9
		5.3.1.17	variadic_vector_emplace	49	9
5.4	qpp::ty	pes Name	espace Reference	49	9
	5.4.1	Typedef	Documentation	49	9
		5.4.1.1	bra	49	9
		5.4.1.2	cmat	49	9
		5.4.1.3	cplx	49	9
		5.4.1.4	dmat	49	9
		5.4.1.5	DynMat	49	9
		5.4.1.6	ket	49	9

CONTENTS vii

6	Clas	s Docu	nentation 5	51
	6.1	qpp::D	screteDistribution Class Reference	51
		6.1.1	Constructor & Destructor Documentation	51
			6.1.1.1 Discrete Distribution	51
			6.1.1.2 Discrete Distribution	51
			6.1.1.3 Discrete Distribution	51
		6.1.2	Member Function Documentation	51
			6.1.2.1 probabilities	51
			6.1.2.2 sample	52
		6.1.3	Member Data Documentation	52
			6.1.3.1 _d	52
	6.2	qpp::D	screteDistributionAbsSquare Class Reference	52
		6.2.1	Constructor & Destructor Documentation	52
			6.2.1.1 DiscreteDistributionAbsSquare	53
			6.2.1.2 DiscreteDistributionAbsSquare	53
			6.2.1.3 DiscreteDistributionAbsSquare	53
			6.2.1.4 DiscreteDistributionAbsSquare	54
		6.2.2	Member Function Documentation	54
			6.2.2.1 cplx2weights	54
			6.2.2.2 probabilities	54
			6.2.2.3 sample	54
		6.2.3	Member Data Documentation	54
			6.2.3.1 _d	54
	6.3	qpp::E	ception Class Reference	54
		6.3.1	Member Enumeration Documentation	56
			6.3.1.1 Type	56
		6.3.2	Constructor & Destructor Documentation	57
			6.3.2.1 Exception	57
			6.3.2.2 Exception	57
			6.3.2.3 ~Exception	57
		6.3.3	Member Function Documentation	57
			6.3.3.1 _construct_exception_msg	57
			6.3.3.2 what	57
		6.3.4	Member Data Documentation	57
			6.3.4.1 _custom	57
			6.3.4.2 _msg	57
			6.3.4.3 _type	57
			6.3.4.4 _where	57
	6.4	qpp::G	ates Class Reference	58
		6.4.1	Constructor & Destructor Documentation	59

viii CONTENTS

		6.4.1.1 Gates	
		6.4.1.2 Gates	59
		6.4.1.3 ~Gates	59
	6.4.2	Member Function Documentation	59
		6.4.2.1 apply	59
		6.4.2.2 CTRL	60
		6.4.2.3 Fd	60
		6.4.2.4 getInstance	60
		6.4.2.5 ld	60
		6.4.2.6 operator=	60
		6.4.2.7 Rn	60
		6.4.2.8 Xd	61
		6.4.2.9 Zd	61
	6.4.3	Member Data Documentation	61
		6.4.3.1 CNOTab	61
		6.4.3.2 CNOTba	61
		6.4.3.3 CZ	61
		6.4.3.4 FRED	61
		6.4.3.5 H	61
		6.4.3.6 ld2	61
		6.4.3.7 S	61
		6.4.3.8 SWAP	61
		6.4.3.9 T	61
		6.4.3.10 TOF	61
		6.4.3.11 X	61
		6.4.3.12 Y	62
		6.4.3.13 Z	62
6.5	qpp::No	ormalDistribution Class Reference	62
	6.5.1	Constructor & Destructor Documentation	62
		6.5.1.1 NormalDistribution	62
	6.5.2	Member Function Documentation	62
		6.5.2.1 sample	62
	6.5.3	Member Data Documentation	62
		6.5.3.1 _d	62
6.6	qpp::Qı	udit Class Reference	63
	6.6.1	Constructor & Destructor Documentation	63
		6.6.1.1 Qudit	63
		6.6.1.2 ~Qudit	63
	6.6.2	Member Function Documentation	63
		6.6.2.1 getD	63

CONTENTS

		6.6.2.2	getRho	63
		6.6.2.3	measure	64
		6.6.2.4	measure	64
	6.6.3	Member	Data Documentation	64
		6.6.3.1	_D	64
		6.6.3.2	_rho	64
6.7	qpp::R	andomDev	vices Class Reference	65
	6.7.1	Construc	ctor & Destructor Documentation	65
		6.7.1.1	RandomDevices	65
		6.7.1.2	RandomDevices	65
		6.7.1.3	\sim RandomDevices	65
	6.7.2	Member	Function Documentation	65
		6.7.2.1	getInstance	65
		6.7.2.2	operator=	65
	6.7.3	Member	Data Documentation	65
		6.7.3.1	_rd	65
		6.7.3.2	_rng	65
6.8	qpp::St	tates Clas	s Reference	65
	6.8.1	Construc	ctor & Destructor Documentation	66
		6.8.1.1	States	66
		6.8.1.2	States	66
		6.8.1.3	~States	66
	6.8.2	Member	Function Documentation	66
		6.8.2.1	getInstance	66
		6.8.2.2	operator=	67
	6.8.3	Member	Data Documentation	67
		6.8.3.1	b00	67
		6.8.3.2	b01	67
		6.8.3.3	b10	67
		6.8.3.4	b11	67
		6.8.3.5	GHZ	67
		6.8.3.6	pb00	67
		6.8.3.7	pb01	67
		6.8.3.8	pb10	67
		6.8.3.9	pb11	67
		6.8.3.10	pGHZ	67
		6.8.3.11	pW	67
		6.8.3.12	px0	67
		6.8.3.13	px1	67
		6.8.3.14	py0	67

CONTENTS

		6.8.3.15 py1
		6.8.3.16 pz0
		6.8.3.17 pz1
		6.8.3.18 W
		6.8.3.19 x0
		6.8.3.20 x1
		6.8.3.21 y0
		6.8.3.22 y1
		6.8.3.23 z0
		6.8.3.24 z1
6.9	qpp::Ti	mer Class Reference
	6.9.1	Constructor & Destructor Documentation
		6.9.1.1 Timer
		6.9.1.2 ~Timer
	6.9.2	Member Function Documentation
		6.9.2.1 seconds
		6.9.2.2 tic
		6.9.2.3 toc
	6.9.3	Friends And Related Function Documentation
		6.9.3.1 operator<<
	6.9.4	Member Data Documentation
		6.9.4.1 _end
		6.9.4.2 _start
6.10	qpp::Ui	niformRealDistribution Class Reference
	6.10.1	Constructor & Destructor Documentation
		6.10.1.1 UniformRealDistribution
	6.10.2	Member Function Documentation
		6.10.2.1 sample
	6.10.3	Member Data Documentation
		6.10.3.1 _d
File	Docume	entation 71
7.1		v/channels.h File Reference
7.2		v/classes/exception.h File Reference
7.3		e/classes/gates.h File Reference
7.4		/classes/qudit.h File Reference
7.5		v/classes/randevs.h File Reference
7.6		/classes/stat.h File Reference
7.7		v/classes/states.h File Reference
7.8		/classes/timer.h File Reference

7

CONTENTS xi

7.9	include/constants.h File Reference	79
7.10	include/entanglement.h File Reference	81
7.11	include/entropies.h File Reference	82
7.12	include/functions.h File Reference	83
7.13	include/internal.h File Reference	86
7.14	include/io.h File Reference	88
7.15	include/matlab.h File Reference	89
7.16	include/qpp.h File Reference	90
7.17	include/random.h File Reference	91
7.18	include/types.h File Reference	93

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp	 						-															9
qpp::ct	 																					46
qpp::internal	 																					47
qpp::types .	 																					49

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

:::DiscreteDistribution	51
::DiscreteDistributionAbsSquare	52
eption	
qpp::Exception	54
::Gates	58
::NormalDistribution	62
::Qudit	63
::RandomDevices	65
o::States	
o::Timer	68
::UniformRealDistribution	68

Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::DiscreteDistribution	51
qpp::DiscreteDistributionAbsSquare	52
qpp::Exception	54
qpp::Gates	58
qpp::NormalDistribution	62
qpp::Qudit	
qpp::RandomDevices	
qpp::States	
qpp::Timer	
qpp::UniformRealDistribution	68

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

include/channels.h
include/constants.h
include/entanglement.h
include/entropies.h
include/functions.h
include/internal.h
include/io.h
include/matlab.h
include/qpp.h
include/random.h
include/types.h
include/classes/exception.h
include/classes/gates.h
include/classes/qudit.h
include/classes/randevs.h
include/classes/stat.h
include/classes/states.h
include/classes/timer.h

8 File Index

Chapter 5

Namespace Documentation

5.1 qpp Namespace Reference

Namespaces

- ct
- · internal
- types

Classes

- class Exception
- · class Gates
- class Qudit
- class RandomDevices
- class NormalDistribution
- · class UniformRealDistribution
- · class DiscreteDistribution
- · class DiscreteDistributionAbsSquare
- · class States
- class Timer

Functions

- types::cmat super (const std::vector< types::cmat > &Ks)
- types::cmat choi (const std::vector< types::cmat > &Ks)
- std::vector < types::cmat > choi2kraus (const types::cmat &A)
- template<typename Derived >
 types::cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks)
- template<typename Derived >
 types::cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks,
 const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- $\begin{tabular}{ll} \bullet & template < typename \ Derived > \\ types::cmat \ schmidtcoeff \ (const \ Eigen::MatrixBase < Derived > \&A, \ const \ std::vector < size_t > \&dims) \\ \end{tabular}$
- $\label{lem:policy} \begin{array}{ll} \bullet & \mathsf{template} < \mathsf{typename\ Derived} > \\ & \mathsf{types} :: \mathsf{cmat\ schmidtU}\ (\mathsf{const\ Eigen} :: \mathsf{MatrixBase} < \mathsf{Derived} > \& \mathsf{A}, \ \mathsf{const\ std} :: \mathsf{vector} < \ \mathsf{size_t} > \& \mathsf{dims}) \end{array}$
- template<typename Derived >
 types::cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

```
    template<typename Derived >

  types::cmat schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &dims)
• template<typename Derived >
  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

    template<typename Derived >

  double gconcurrence (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double shannon (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi_inf (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys, const
  std::vector< size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > transpose (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > conjugate (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > adjoint (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > inverse (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
 template<typename Derived >
  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double norm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::dmat hevals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat hevects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

    template<typename Derived >

  types::cmat sqrtm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat absm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat expm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >
```

types::cmat logm (const Eigen::MatrixBase< Derived > &A)

```
• template<typename Derived >
  types::cmat sinm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat cosm (const Eigen::MatrixBase< Derived > &A)
template<typename Derived >
  types::cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const
  typename Derived::Scalar &))
template<typename T >
  types::DynMat< typename T::Scalar > kron (const T &head)
template<typename T, typename... Args>
  types::DynMat< typename T::Scalar > kron (const T &head, const Args &...tail)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kron (const std::vector < Derived > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kron (const std::initializer_list< Derived > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kronpow (const Eigen::MatrixBase < Derived > &A, size_t n)
\bullet \ \ \text{template}{<} \text{typename Derived} >
  types::DynMat< typename
  Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, size t rows, size t cols)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > syspermute (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &perm,
  const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace1 (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace2 (const Eigen::MatrixBase < Derived > &A, const std::vector < size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys,
  const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptranspose (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &sub-
  sys, const std::vector< size t > &dims)
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > prj (const Eigen::MatrixBase < Derived > &V)
```

• template<typename Derived > types::DynMat< typename Derived::Scalar > expandout (const Eigen::MatrixBase < Derived > &A, size t pos, const std::vector < size t > &dims) $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$ types::DynMat< typename Derived::Scalar > grams (const std::vector < Derived > &Vs) template<typename Derived > types::DynMat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &Vs) • template<typename Derived > types::DynMat< typename Derived::Scalar > grams (const Eigen::MatrixBase < Derived > &A) std::vector< size t > n2multiidx (size t n, const std::vector< size t > &dims) size_t multiidx2n (const std::vector < size_t > &midx, const std::vector < size_t > &dims) types::ket mket (const std::vector< size_t > &mask) types::ket mket (const std::vector < size t > &mask, const std::vector < size t > &dims) types::ket mket (const std::vector< size_t > &mask, size_t d) std::vector< size t > invperm (const std::vector< size t > &perm) • std::vector< size_t > compperm (const std::vector< size_t > &perm, const std::vector< size_t > &sigma) template<typename T > void disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) template<typename T > void displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) template<typename T > void disp (const T *x, const size t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) • template<typename T > void displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std-::string &end="]", std::ostream &os=std::cout) • template<typename Derived > void disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void displn (const Eigen::MatrixBase < Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) void disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) void displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname) template<typename Derived > types::DynMat< typename Derived::Scalar > load (const std::string &fname) $\bullet \ \ \text{template}{<} \text{typename Derived} >$ Derived loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<> types::dmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) • template<> types::cmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<typename Derived > void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat file, const std-::string &var name, const std::string &mode) template<>

void saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > &A, const std::string &mat_file,

const std::string &var_name, const std::string &mode)

- template<>
 void saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file,
 const std::string &var_name, const std::string &mode)
- template<typename Derived >

Derived rand (size_t rows, size_t cols, double a=0, double b=1)

template<>

types::dmat rand (size t rows, size t cols, double a, double b)

template<>

types::cmat rand (size_t rows, size_t cols, double a, double b)

- double rand (double a=0, double b=1)
- long long randint (long long a, long long b)
- template<typename Derived >

Derived randn (size_t rows, size_t cols, double mean=0, double sigma=1)

template<>

types::dmat randn (size t rows, size t cols, double mean, double sigma)

template<>

types::cmat randn (size t rows, size t cols, double mean, double sigma)

- double randn (double mean=0, double sigma=1)
- types::cmat randU (size_t D)
- types::cmat randV (size_t Din, size_t Dout)
- std::vector< types::cmat > randkraus (size_t n, size_t D)
- types::cmat randH (size_t D)
- types::ket randket (size t D)
- types::cmat randrho (size_t D)
- std::vector< size_t > randperm (size_t n)

Variables

- RandomDevices & rdevs = RandomDevices::getInstance()
- const Gates & gt = Gates::getInstance()
- const States & st = States::getInstance()

5.1.1 Function Documentation

5.1.1.1 template<typename Derived > types::cmat qpp::absm (const Eigen::MatrixBase< Derived > & A)

5.1.1.2 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.3 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Here is the call graph for this function:

5.1.1.4 template<typename Derived > types::cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< types::cmat > & Ks)

5.1.1.5 template<typename Derived > types::cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< types::cmat > & Ks, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.6 types::cmat qpp::choi (const std::vector < types::cmat > & Ks)

5.1.1.7 std::vector<types::cmat> qpp::choi2kraus (const types::cmat & A)

Here is the call graph for this function:

5.1.1.8 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::comm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

5.1.1.9 std::vector<size_t> qpp::compperm (const std::vector< size_t> & perm, const std::vector< size_t> & sigma)

Here is the call graph for this function:

5.1.1.10 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.11 template < typename Derived > types::cmat qpp::cosm (const Eigen::MatrixBase < Derived > & A)

5.1.1.12 template < typename OutputScalar , typename Derived > types::DynMat < OutputScalar > qpp::cwise (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Here is the call graph for this function:

5.1.1.13 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

- 5.1.1.14 template<typename T > void qpp::disp (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.15 template < typename T > void qpp::disp (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.16 template < typename Derived > void qpp::disp (const Eigen::MatrixBase < Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)
- 5.1.1.17 void qpp::disp (const types::cplx c, double chop = ct : :chop, std::ostream & os = std: :cout)

5.1.1.18 template<typename T > void qpp::displn (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.19 template < typename T > void qpp::displn (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.20 template<typename Derived > void qpp::displn (const Eigen::MatrixBase< Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)

5.1.1.21 void qpp::displn (const types::cplx c, double chop = ct : :chop, std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.22 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.23 template < typename Derived > types::cmat qpp::evals (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.24 template < typename Derived > types::cmat qpp::evects (const Eigen::MatrixBase < Derived > & A)

5.1.1.25 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::expandout (const Eigen::MatrixBase< Derived > & A, size_t pos, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.26 template<typename Derived > types::cmat qpp::expm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.27 template<typename Derived > types::cmat qpp::funm (const Eigen::MatrixBase< Derived > & A, types::cplx(*)(const types::cplx &) f)

Parameters

Α	input matrix
f	function pointer

Returns

types::cmat

Here is the call graph for this function:

5.1.1.28 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

5.1.1.29 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const std::vector < Derived > & Vs)

Here is the call graph for this function:

5.1.1.30 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const std::initializer_list < Derived > & Vs)

Here is the call graph for this function:

5.1.1.31 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > & A)

5.1.1.32 template < typename Derived > types::dmat qpp::hevals (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.33 template<typename Derived > types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.34 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase < Derived > & A)

5.1.1.35 std::vector<size_t> qpp::invperm (const std::vector< size_t > & perm)

Here is the call graph for this function:

- $5.1.1.36 \quad template < typename \ T > types:: DynMat < typename \ T:: Scalar > qpp:: kron \ (\ const \ T \ \& \ \textit{head} \)$
- 5.1.1.37 template<typename T , typename... Args> types::DynMat<typename T::Scalar> qpp::kron (const T & head, const Args &... tail)

Here is the call graph for this function:

5.1.1.38 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kron (const std::vector< Derived > & As)

Here is the call graph for this function:

5.1.1.40 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kronpow (const Eigen::MatrixBase< Derived > & A, size_t n)

- $5.1.1.41 \quad template < typename \ Derived > types:: DynMat < typename \ Derived:: Scalar > qpp:: load (\ const \ std:: string \ \& \ \textit{fname}$)
- 5.1.1.42 template < typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file , const std::string & var_name)
- 5.1.1.43 template<> types::dmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 5.1.1.44 template<> types::cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)

5.1.1.45 template < typename Derived > Derived::Scalar qpp::logdet (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.46 template<typename Derived > types::cmat qpp::logm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.47 types::ket qpp::mket (const std::vector < size_t > & mask)

 $\textbf{5.1.1.48} \quad \textbf{types::ket qpp::mket (const std::vector < size_t > \& \textit{mask, const std::vector} < size_t > \& \textit{dims }) \\$

Here is the call graph for this function:

5.1.1.49 types::ket qpp::mket (const std::vector < size_t > & mask, size_t d)

Here is the call graph for this function:

5.1.1.50 size_t qpp::multiidx2n (const std::vector< size_t > & midx, const std::vector< size_t > & dims)

5.1.1.51 std::vector<size_t> qpp::n2multiidx (size_t n, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.52 template<typename Derived > double qpp::norm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.53 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::powm (const Eigen::MatrixBase< Derived > & A, size_t n)

5.1.1.54 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::prj (const Eigen::MatrixBase < Derived > & V)

5.1.1.55 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.56 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace1 (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.57 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace2 (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

5.1.1.58 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.59 template < typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & subsys, const std::vector < size_t > & dims)

- 5.1.1.60 template < typename Derived > Derived qpp::rand (size_t rows, size_t cols, double a = 0, double b = 1)
- 5.1.1.61 template <> types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- 5.1.1.62 template <> types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)

5.1.1.63 double qpp::rand (double a = 0, double b = 1)

Here is the call graph for this function:

5.1.1.64 types::cmat qpp::randH (size_t D)

Here is the call graph for this function:

5.1.1.65 long long qpp::randint (long long a, long long b)

5.1.1.66 types::ket qpp::randket (size_t D)

Here is the call graph for this function:

5.1.1.67 std::vector<types::cmat> qpp::randkraus (size_t n, size_t D)

Here is the call graph for this function:

- 5.1.1.68 template<typename Derived > Derived qpp::randn (size_t rows, size_t cols, double mean = 0, double sigma = 1)
- 5.1.1.69 template <> types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)

Here is the call graph for this function:

5.1.1.70 template<> types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)

5.1.1.71 double qpp::randn (double mean = 0, double sigma = 1)

Here is the call graph for this function:

5.1.1.72 std::vector<size_t> qpp::randperm (size_t n)

Here is the call graph for this function:

5.1.1.73 types::cmat qpp::randrho (size_t D)

Here is the call graph for this function:

5.1.1.74 types::cmat qpp::randU (size_t D)

5.1.1.75 types::cmat qpp::randV (size_t Din, size_t Dout)

Here is the call graph for this function:

5.1.1.76 template < typename Derived > double qpp::renyi (const double alpha, const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

$5.1.1.77 \quad template < type name \ Derived > double \ qpp::renyi_inf \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$

5.1.1.78 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, size_t rows, size_t cols)

Here is the call graph for this function:

- 5.1.1.79 template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > & A, const std::string & fname)
- 5.1.1.80 template < typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase < Derived > & A, const std::string & mat_file, const std::string & mode)
- 5.1.1.81 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.1.82 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

5.1.1.83 template<typename Derived > types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.84 template < typename Derived > types::cmat qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.85 template < typename Derived > types::cmat qpp::schmidtU (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.86 template < typename Derived > types::cmat qpp::schmidtV (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.87 template < typename Derived > double qpp::shannon (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.88 template<typename Derived > types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.89 template < typename Derived > types::cmat qpp::spectralpowm (const Eigen::MatrixBase < Derived > & A, const types::cplx z)

5.1.1.90 template<typename Derived > types::cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.91 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.92 types::cmat qpp::super (const std::vector< types::cmat > & Ks)

5.1.1.93 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::syspermute (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & perm, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.94 template < typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase < Derived > & A)

5.1.1.95 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.96 template < typename Derived > double qpp::tsallis (const double alpha, const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

- 5.1.2 Variable Documentation
- 5.1.2.1 const Gates& qpp::gt = Gates::getInstance()
- 5.1.2.2 RandomDevices& qpp::rdevs = RandomDevices::getInstance()
- 5.1.2.3 const States& qpp::st = States::getInstance()

5.2 qpp::ct Namespace Reference

Functions

std::complex< double > omega (size_t D)

Variables

• const double chop = 1e-10

```
 const double eps = 1e-12

    • const size_t maxn = 64

 const std::complex < double > ii = { 0, 1 }

    const double pi = 3.141592653589793238462643383279502884

    const double ee = 2.718281828459045235360287471352662497

5.2.1 Function Documentation
5.2.1.1 std::complex<double> qpp::ct::omega ( size_t D )
```

5.2.2 Variable Documentation

```
5.2.2.1 const double qpp::ct::chop = 1e-10
```

- 5.2.2.2 const double qpp::ct::ee = 2.718281828459045235360287471352662497
- 5.2.2.3 const double qpp::ct::eps = 1e-12
- 5.2.2.4 const std::complex < double > qpp::ct::ii = { 0, 1 }
- 5.2.2.5 const size_t qpp::ct::maxn = 64
- 5.2.2.6 const double qpp::ct::pi = 3.141592653589793238462643383279502884

5.3 gpp::internal Namespace Reference

Functions

```
• void _n2multiidx (size_t n, size_t numdims, const size_t *dims, size_t *result)
• size t multiidx2n (const size t *midx, size t numdims, const size t *dims)

    template<typename Derived >

  bool <u>_check_square_mat</u> (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  bool <u>_check_vector</u> (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  bool <u>_check_row_vector</u> (const Eigen::MatrixBase< Derived > &A)
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)
• template<typename T >
  bool check nonzero size (const T &x)

    bool check dims (const std::vector < size t > &dims)

    template<typename Derived >

  bool <u>_check_dims_match_mat</u> (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  bool _check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived >
  &V)

    template<typename Derived >

  bool _check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived >
  &V)

    bool check eq dims (const std::vector < size t > &dims, size t dim)
```

bool _check_subsys_match_dims (const std::vector < size_t > &subsys, const std::vector < size_t > &dims)

bool <u>_check_perm</u> (const std::vector< size_t > &perm)

- template<typename Derived1, typename Derived2 >
 types::DynMat< typename
 Derived1::Scalar > _kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)
- template<typename T > void variadic vector emplace (std::vector< T > &)
- template<typename T, typename First, typename... Args>
 void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

5.3.1 Function Documentation

- 5.3.1.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.2 bool qpp::internal::_check_dims (const std::vector < size_t > & dims)
- 5.3.1.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 5.3.1.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.6 bool qpp::internal::_check_eq_dims (const std::vector < size_t > & dims, size_t dim)
- 5.3.1.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 5.3.1.8 bool qpp::internal::_check_perm (const std::vector < size_t > & perm)
- 5.3.1.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.10 template<typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > & A)
- 5.3.1.11 bool qpp::internal::_check_subsys_match_dims (const std::vector < size_t > & subsys, const std::vector < size_t > & dims)
- 5.3.1.12 template < typename Derived > bool qpp::internal::_check_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.13 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

- 5.3.1.14 size_t qpp::internal::_multiidx2n (const size_t * midx, size_t numdims, const size_t * dims)
- 5.3.1.15 void qpp::internal::_n2multiidx (size_t n, size_t n
- 5.3.1.16 template < typename T > void qpp::internal::variadic_vector_emplace (std::vector < T > &)
- 5.3.1.17 template < typename T , typename First , typename... Args > void qpp::internal::variadic_vector_emplace (std::vector < T > & v, First && first, Args &&... args)

Here is the call graph for this function:

5.4 qpp::types Namespace Reference

Typedefs

- using cplx = std::complex< double >
- using cmat = Eigen::MatrixXcd
- using dmat = Eigen::MatrixXd
- using ket = Eigen::Matrix < cplx, Eigen::Dynamic, 1 >
- using bra = Eigen::Matrix < cplx, 1, Eigen::Dynamic >
- template<typename Scalar >
 using DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >

5.4.1 Typedef Documentation

- 5.4.1.1 using qpp::types::bra = typedef Eigen::Matrix < cplx, 1, Eigen::Dynamic >
- 5.4.1.2 using qpp::types::cmat = typedef Eigen::MatrixXcd
- 5.4.1.3 using qpp::types::cplx = typedef std::complex < double >
- 5.4.1.4 using qpp::types::dmat = typedef Eigen::MatrixXd
- 5.4.1.5 template<typename Scalar > using qpp::types::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
- 5.4.1.6 using qpp::types::ket = typedef Eigen::Matrix < cplx, Eigen::Dynamic, 1>

Names	pace	Docu	ment	tation

Chapter 6

Class Documentation

6.1 qpp::DiscreteDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- template<typename InputIterator > DiscreteDistribution (InputIterator first, InputIterator last)
- DiscreteDistribution (std::initializer_list< double > weights)
- Discrete Distribution (std::vector< double > weights)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Attributes

```
std::discrete_distributionsize_t > _d
```

6.1.1 Constructor & Destructor Documentation

- 6.1.1.1 template<typename InputIterator > qpp::DiscreteDistribution::DiscreteDistribution (InputIterator first, InputIterator last) [inline]
- **6.1.1.2** qpp::DiscreteDistribution::DiscreteDistribution (std::initializer_list < double > weights) [inline]
- 6.1.1.3 qpp::DiscreteDistribution::DiscreteDistribution (std::vector< double > weights) [inline]

6.1.2 Member Function Documentation

6.1.2.1 std::vector<double> qpp::DiscreteDistribution::probabilities () [inline]

52 Class Documentation

6.1.2.2 size_t qpp::DiscreteDistribution::sample() [inline]

Here is the call graph for this function:

6.1.3 Member Data Documentation

6.1.3.1 std::discrete_distribution<**size_t**> **qpp::DiscreteDistribution::_d** [protected]

The documentation for this class was generated from the following file:

· include/classes/stat.h

6.2 qpp::DiscreteDistributionAbsSquare Class Reference

#include <stat.h>

Public Member Functions

- template<typename InputIterator > DiscreteDistributionAbsSquare (InputIterator first, InputIterator last)
- DiscreteDistributionAbsSquare (std::initializer_list< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (std::vector< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (const types::cmat &V)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Member Functions

template<typename InputIterator >
 std::vector< double > cplx2weights (InputIterator first, InputIterator last)

Protected Attributes

std::discrete_distribution < size_t > _d

6.2.1 Constructor & Destructor Documentation

6.2.1.1 template<typename InputIterator > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (InputIterator *first*, InputIterator *last*) [inline]

Here is the call graph for this function:

6.2.1.2 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare(std::initializer_list< types::cplx > amplitudes) [inline]

Here is the call graph for this function:

6.2.1.3 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (std::vector< types::cplx > amplitudes) [inline]

54 Class Documentation

6.2.1.4 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (const types::cmat & V) [inline]

Here is the call graph for this function:

6.2.2 Member Function Documentation

- **6.2.2.2** std::vector<double> qpp::DiscreteDistributionAbsSquare::probabilities() [inline]
- $\textbf{6.2.2.3} \quad \textbf{size_t qpp::DiscreteDistributionAbsSquare::sample ()} \quad \texttt{[inline]}$

Here is the call graph for this function:

6.2.3 Member Data Documentation

6.2.3.1 std::discrete_distribution<size_t> qpp::DiscreteDistributionAbsSquare::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.3 qpp::Exception Class Reference

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_CV-ECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::DIMS_INVALID, Type::DIMS_NOT_EQUAL, Type::DIMS_MISMATCH_MATRIX,

Type::DIMS_MISMATCH_CVECTOR, Type::DIMS_MISMATCH_RVECTOR, Type::DIMS_MISMATCH_VECTOR, Type::SUBSYS_MISMATCH_DIMS,

Type::PERM_INVALID, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT_BIPARTITE, Type::OUT_OF_RANGE, Type::TYPE_MISMATCH, Type::UNDEFINED_TYPE, Type::CUSTOM_EXCEPTION }

Public Member Functions

- Exception (const std::string &where, const Type &type)
- Exception (const std::string &where, const std::string &custom)
- virtual const char * what () const noexceptoverride
- virtual ∼Exception () noexcept

56 Class Documentation

Private Member Functions

• std::string _construct_exception_msg ()

Private Attributes

```
• std::string _where
```

- std::string _msg
- Type _type
- std::string <u>_custom</u>

6.3.1 Member Enumeration Documentation

6.3.1.1 enum qpp::Exception::Type [strong]

Enumerator

UNKNOWN_EXCEPTION

ZERO_SIZE

MATRIX_NOT_SQUARE

MATRIX_NOT_CVECTOR

MATRIX_NOT_RVECTOR

MATRIX_NOT_VECTOR

MATRIX_NOT_SQUARE_OR_CVECTOR

MATRIX_NOT_SQUARE_OR_RVECTOR

MATRIX_NOT_SQUARE_OR_VECTOR

DIMS_INVALID

DIMS_NOT_EQUAL

DIMS_MISMATCH_MATRIX

DIMS_MISMATCH_CVECTOR

DIMS_MISMATCH_RVECTOR

DIMS_MISMATCH_VECTOR

SUBSYS_MISMATCH_DIMS

PERM_INVALID

NOT_QUBIT_GATE

 NOT_QUBIT_SUBSYS

NOT_BIPARTITE

OUT_OF_RANGE

TYPE_MISMATCH

 ${\it UNDEFINED_TYPE}$

CUSTOM_EXCEPTION

6.3.2 Constructor & Destructor Documentation

6.3.2.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Here is the call graph for this function:

6.3.2.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Here is the call graph for this function:

- **6.3.2.3 virtual qpp::Exception::**~Exception() [inline], [virtual], [noexcept]
- 6.3.3 Member Function Documentation
- **6.3.3.1 std::string qpp::Exception::_construct_exception_msg()** [inline], [private]
- 6.3.3.2 virtual const char* qpp::Exception::what() const [inline], [override], [virtual], [noexcept]
- 6.3.4 Member Data Documentation
- **6.3.4.1 std::string qpp::Exception::_custom** [private]
- **6.3.4.2 std::string qpp::Exception::_msg** [private]
- **6.3.4.3 Type qpp::Exception::_type** [private]
- **6.3.4.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

58 Class Documentation

6.4 qpp::Gates Class Reference

```
#include <gates.h>
```

Public Member Functions

- Gates (const Gates &)=delete
- Gates & operator= (const Gates &)=delete
- virtual ∼Gates ()=default
- types::cmat Rn (double theta, std::vector< double > n) const
- types::cmat Zd (size_t D) const
- types::cmat Fd (size_t D) const
- types::cmat Xd (size_t D) const
- template<typename Derived = Eigen::MatrixXcd>
 Derived Id (size_t D) const
- template<typename Derived1 , typename Derived2 >

```
types::DynMat< typename
```

Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< size_t > &subsys, const std::vector< size_t > &dims) const

 template<typename Derived > types::DynMat< typename

Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &ctrl, const std::vector< size_t > &subsys, size_t n, size_t d=2) const

Static Public Member Functions

• static const Gates & getInstance ()

Public Attributes

- types::cmat Id2
- types::cmat H
- types::cmat X
- types::cmat Y
- types::cmat Z
- types::cmat S
- types::cmat T
- types::cmat CNOTab
- types::cmat CZ
- types::cmat CNOTba
- types::cmat SWAP
- types::cmat TOF
- types::cmat FRED

Private Member Functions

• Gates ()

6.4.1 Constructor & Destructor Documentation

- 6.4.1.1 qpp::Gates::Gates() [inline], [private]
 6.4.1.2 qpp::Gates::Gates(const Gates &) [delete]
- **6.4.1.3 virtual qpp::Gates::∼Gates()** [virtual], [default]

6.4.2 Member Function Documentation

6.4.2.1 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::Gates::apply (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims) const [inline]

60 Class Documentation

6.4.2.2 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::Gates::CTRL (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & ctrl, const std::vector< size_t > & subsys, size_t n, size_t d = 2) const [inline]

Here is the call graph for this function:

6.4.2.3 types::cmat qpp::Gates::Fd (size_t D) const [inline]

- $\textbf{6.4.2.4} \quad \textbf{static const Gates\& qpp::Gates::getInstance()} \quad \texttt{[inline],[static]}$
- 6.4.2.5 template<typename Derived = Eigen::MatrixXcd> Derived qpp::Gates::Id (size_t D) const [inline]
- 6.4.2.6 Gates& qpp::Gates::operator=(const Gates &) [delete]
- 6.4.2.7 types::cmat qpp::Gates::Rn (double theta, std::vector < double > n) const [inline]

6.4.2.8 types::cmat qpp::Gates::Xd (size_t D) const [inline]

Here is the call graph for this function:

6.4.2.9 types::cmat qpp::Gates::Zd(size_t D)const [inline]

Here is the call graph for this function:

- 6.4.3 Member Data Documentation
- 6.4.3.1 types::cmat qpp::Gates::CNOTab
- 6.4.3.2 types::cmat qpp::Gates::CNOTba
- 6.4.3.3 types::cmat qpp::Gates::CZ
- 6.4.3.4 types::cmat qpp::Gates::FRED
- 6.4.3.5 types::cmat qpp::Gates::H
- 6.4.3.6 types::cmat qpp::Gates::ld2
- 6.4.3.7 types::cmat qpp::Gates::S
- 6.4.3.8 types::cmat qpp::Gates::SWAP
- 6.4.3.9 types::cmat qpp::Gates::T
- 6.4.3.10 types::cmat qpp::Gates::TOF
- 6.4.3.11 types::cmat qpp::Gates::X

62 Class Documentation

```
6.4.3.12 types::cmat qpp::Gates::Y
```

6.4.3.13 types::cmat qpp::Gates::Z

The documentation for this class was generated from the following file:

• include/classes/gates.h

6.5 qpp::NormalDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- NormalDistribution (double mean=0, double sigma=1)
- double sample ()

Protected Attributes

· std::normal_distribution_d

6.5.1 Constructor & Destructor Documentation

6.5.1.1 qpp::NormalDistribution::NormalDistribution (double mean = 0, double sigma = 1) [inline]

6.5.2 Member Function Documentation

6.5.2.1 double qpp::NormalDistribution::sample() [inline]

Here is the call graph for this function:

6.5.3 Member Data Documentation

6.5.3.1 std::normal_distribution qpp::NormalDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.6 qpp::Qudit Class Reference

```
#include <qudit.h>
```

Public Member Functions

- Qudit (const types::cmat &rho=States::getInstance().pz0)
- size_t measure (const types::cmat &U, bool destructive=false)
- size_t measure (bool destructive=false)
- types::cmat getRho () const
- size_t getD () const
- virtual \sim Qudit ()=default

Private Attributes

- · types::cmat _rho
- size_t _D

6.6.1 Constructor & Destructor Documentation

6.6.1.1 qpp::Qudit::Qudit (const types::cmat & rho = States::getInstance () .pz0) [inline]

Here is the call graph for this function:

- 6.6.1.2 virtual qpp::Qudit::~Qudit() [virtual], [default]
- 6.6.2 Member Function Documentation
- 6.6.2.1 size_t qpp::Qudit::getD()const [inline]
- **6.6.2.2 types::cmat qpp::Qudit::getRho() const** [inline]

64 Class Documentation

6.6.2.3 size_t qpp::Qudit::measure (const types::cmat & U, bool destructive = false) [inline]

Here is the call graph for this function:

6.6.2.4 size_t qpp::Qudit::measure(bool destructive = false) [inline]

Here is the call graph for this function:

6.6.3 Member Data Documentation

6.6.3.1 size_t qpp::Qudit::_D [private]

6.6.3.2 types::cmat qpp::Qudit::_rho [private]

The documentation for this class was generated from the following file:

• include/classes/qudit.h

6.7 qpp::RandomDevices Class Reference

```
#include <randevs.h>
```

Public Member Functions

- RandomDevices (const RandomDevices &)=delete
- RandomDevices & operator= (const RandomDevices &)=delete
- virtual ∼RandomDevices ()=default

Static Public Member Functions

• static RandomDevices & getInstance ()

Public Attributes

- std::random device rd
- std::mt19937 _rng

Private Member Functions

· RandomDevices ()

6.7.1 Constructor & Destructor Documentation

```
6.7.1.1 qpp::RandomDevices::RandomDevices() [inline], [private]
```

6.7.1.2 qpp::RandomDevices::RandomDevices (const RandomDevices &) [delete]

 $\textbf{6.7.1.3} \quad \textbf{virtual qpp::RandomDevices::} \sim \textbf{RandomDevices()} \quad [\texttt{virtual}], \texttt{[default]}$

6.7.2 Member Function Documentation

6.7.2.1 static RandomDevices& qpp::RandomDevices::getInstance() [inline], [static]

6.7.2.2 RandomDevices& qpp::RandomDevices::operator= (const RandomDevices &) [delete]

6.7.3 Member Data Documentation

6.7.3.1 std::random_device qpp::RandomDevices::_rd

6.7.3.2 std::mt19937 qpp::RandomDevices::_rng

The documentation for this class was generated from the following file:

• include/classes/randevs.h

6.8 qpp::States Class Reference

```
#include <states.h>
```

66 Class Documentation

Public Member Functions

- States (const States &)=delete
- States & operator= (const States &)=delete
- virtual ∼States ()=default

Static Public Member Functions

• static const States & getInstance ()

Public Attributes

- types::ket x0
- types::ket x1
- types::ket y0
- types::ket y1
- types::ket z0
- types::ket z1
- types::cmat px0
- types::cmat px1
- types::cmat py0
- types::cmat py1
- types::cmat pz0
- types::cmat pz1
- types::ket b00
- types::ket b01
- types::ket b10
- types::ket b11
- types::cmat pb00
- types::cmat pb01
- types::cmat pb10
- types::cmat pb11
- types::ket GHZ
- types::ket W
- types::cmat pGHZ
- types::cmat pW

Private Member Functions

• States ()

6.8.1 Constructor & Destructor Documentation

```
6.8.1.1 qpp::States::States( ) [inline], [private]
```

- **6.8.1.2** qpp::States::States (const States &) [delete]
- **6.8.1.3 virtual qpp::States::∼States()** [virtual], [default]
- 6.8.2 Member Function Documentation
- **6.8.2.1** static const States& qpp::States::getInstance() [inline], [static]

6.8.2.2	States& qpp::States::operator=(const States &) [delete]
6.8.3	Member Data Documentation
6.8.3.1	types::ket qpp::States::b00
6.8.3.2	types::ket qpp::States::b01
6.8.3.3	types::ket qpp::States::b10
6.8.3.4	types::ket qpp::States::b11
6.8.3.5	types::ket qpp::States::GHZ
6.8.3.6	types::cmat qpp::States::pb00
6.8.3.7	types::cmat qpp::States::pb01
6.8.3.8	types::cmat qpp::States::pb10
6.8.3.9	types::cmat qpp::States::pb11
6.8.3.10	types::cmat qpp::States::pGHZ
6.8.3.11	types::cmat qpp::States::pW
6.8.3.12	types::cmat qpp::States::px0
6.8.3.13	types::cmat qpp::States::px1
6.8.3.14	types::cmat qpp::States::py0
6.8.3.15	types::cmat qpp::States::py1
6.8.3.16	types::cmat qpp::States::pz0
6.8.3.17	types::cmat qpp::States::pz1
6.8.3.18	types::ket qpp::States::W
6.8.3.19	types::ket qpp::States::x0
6.8.3.20	types::ket qpp::States::x1
6.8.3.21	types::ket qpp::States::y0
6.8.3.22	types::ket qpp::States::y1
6.8.3.23	types::ket qpp::States::z0
6.8.3.24	types::ket qpp::States::z1

The documentation for this class was generated from the following file:

• include/classes/states.h

68 Class Documentation

6.9 qpp::Timer Class Reference

```
#include <timer.h>
```

Public Member Functions

- Timer ()
- void tic ()
- void toc ()
- double seconds () const
- virtual ∼Timer ()=default

Protected Attributes

- std::chrono::steady_clock::time_point _start
- std::chrono::steady clock::time point end

Friends

std::ostream & operator<< (std::ostream &os, const Timer &rhs)

6.9.1 Constructor & Destructor Documentation

```
6.9.1.1 qpp::Timer::Timer( ) [inline]
6.9.1.2 virtual qpp::Timer::~Timer( ) [virtual], [default]
```

6.9.2 Member Function Documentation

```
6.9.2.1 double qpp::Timer::seconds( )const [inline]
```

```
6.9.2.2 void qpp::Timer::tic( ) [inline]
```

6.9.2.3 void qpp::Timer::toc() [inline]

6.9.3 Friends And Related Function Documentation

```
6.9.3.1 std::ostream& operator<< ( std::ostream & os, const Timer & rhs ) [friend]
```

6.9.4 Member Data Documentation

```
6.9.4.1 std::chrono::steady_clock::time_point qpp::Timer::_end [protected]
```

```
6.9.4.2 std::chrono::steady_clock::time_point qpp::Timer::_start [protected]
```

The documentation for this class was generated from the following file:

• include/classes/timer.h

6.10 qpp::UniformRealDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- UniformRealDistribution (double a=0, double b=1)
- double sample ()

Protected Attributes

• std::uniform_real_distribution_d

6.10.1 Constructor & Destructor Documentation

6.10.1.1 qpp::UniformRealDistribution::UniformRealDistribution (double a = 0, double b = 1) [inline]

6.10.2 Member Function Documentation

6.10.2.1 double qpp::UniformRealDistribution::sample() [inline]

Here is the call graph for this function:

6.10.3 Member Data Documentation

6.10.3.1 std::uniform_real_distribution qpp::UniformRealDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

70 **Class Documentation**

Chapter 7

File Documentation

7.1 include/channels.h File Reference

```
#include <algorithm>
#include <cmath>
#include <vector>
#include "constants.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for channels.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- types::cmat qpp::super (const std::vector< types::cmat > &Ks)
- types::cmat qpp::choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > qpp::choi2kraus (const types::cmat &A)
- template<typename Derived >
 types::cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks)
- template<typename Derived >
 types::cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks,
 const std::vector< size_t > &subsys, const std::vector< size_t > &dims)

7.2 include/classes/exception.h File Reference

```
#include <stdexcept>
#include <string>
Include dependency graph for exception.h:
```


This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Exception

Namespaces

• qpp

7.3 include/classes/gates.h File Reference

```
#include <algorithm>
#include <type_traits>
#include "constants.h"
#include "functions.h"
#include "exception.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for gates.h:

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Gates

Namespaces

• qpp

7.4 include/classes/qudit.h File Reference

```
#include "exception.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/gates.h"
#include "classes/stat.h"
#include dependency graph for qudit.h:
```


This graph shows which files directly or indirectly include this file:

Classes

class qpp::Qudit

Namespaces

qpp

7.5 include/classes/randevs.h File Reference

#include <cstdlib>
#include <random>
Include dependency graph for randevs.h:

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::RandomDevices

Namespaces

• qpp

7.6 include/classes/stat.h File Reference

```
#include <algorithm>
#include <functional>
#include "exception.h"
#include "internal.h"
#include "randevs.h"
#include "types.h"
```

Include dependency graph for stat.h:

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::NormalDistribution
- class qpp::UniformRealDistribution
- class qpp::DiscreteDistribution
- class qpp::DiscreteDistributionAbsSquare

Namespaces

• qpp

7.7 include/classes/states.h File Reference

#include <cmath>

```
#include "constants.h"
#include "types.h"
Include dependency graph for states.h:
```


This graph shows which files directly or indirectly include this file:

Classes

• class qpp::States

Namespaces

qpp

7.8 include/classes/timer.h File Reference

#include <chrono>
#include <ostream>

Include dependency graph for timer.h:

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Timer

Namespaces

• qpp

7.9 include/constants.h File Reference

#include <complex>

Include dependency graph for constants.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::ct

Functions

• std::complex < double > qpp::ct::omega (size_t D)

Variables

- const double qpp::ct::chop = 1e-10
- const double qpp::ct::eps = 1e-12
- const size_t qpp::ct::maxn = 64
- const std::complex< double > qpp::ct::ii = { 0, 1 }
- const double qpp::ct::pi = 3.141592653589793238462643383279502884
- const double qpp::ct::ee = 2.718281828459045235360287471352662497

7.10 include/entanglement.h File Reference

```
#include <Eigen/SVD>
#include "entropies.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for entanglement.h:

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived >
 types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

- template<typename Derived >
 types::cmat qpp::schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &dims)
- template<typename Derived >
 double qpp::gconcurrence (const Eigen::MatrixBase< Derived > &A)

7.11 include/entropies.h File Reference

```
#include <cmath>
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "io.h"
```

Include dependency graph for entropies.h:

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename Derived >
 double qpp::shannon (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi_inf (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys,
 const std::vector< size_t > &dims)

7.12 include/functions.h File Reference

```
#include <algorithm>
#include <cmath>
#include <numeric>
#include <type_traits>
#include <vector>
#include "constants.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for functions.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
    template<typename Derived >
        types::DynMat< typename
        Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
```

- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::det (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 Derived::Scalar qpp::sum (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::norm (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::evals (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::dmat qpp::hevals (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 types::cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

```
• template<typename Derived >
  types::cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat <a href="mailto:qpp::logm">qpp::logm</a> (const Eigen::MatrixBase</a> Derived > &A)

    template<typename Derived >

  types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::powm (const Eigen::MatrixBase < Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, Output-
  Scalar(*f)(const typename Derived::Scalar &))
• template<typename T >
  types::DynMat< typename T::Scalar > qpp::kron (const T &head)
• template<typename T , typename... Args>
  types::DynMat< typename T::Scalar > qpp::kron (const T &head, const Args &...tail)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::kron (const std::initializer_list< Derived > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, size_t rows, size t cols)
\bullet \ \ \text{template}{<} \text{typename Derived} >
  types::DynMat< typename
  Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &perm, const std::vector < size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &sub-
  sys, const std::vector< size t > \&dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &subsys, const std::vector< size_t > &dims)
```

```
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase<
  Derived 2 > B
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::prj (const Eigen::MatrixBase < Derived > &V)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::expandout (const Eigen::MatrixBase < Derived > &A, size_t pos, const std::vector <
  size_t > &dims)
template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::grams (const std::vector < Derived > &Vs)
template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::grams (const std::initializer list< Derived > &Vs)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > &A)

    std::vector < size_t > app::n2multiidx (size_t n, const std::vector < size_t > dims)

    size_t qpp::multiidx2n (const std::vector < size_t > &midx, const std::vector < size_t > &dims)

    types::ket qpp::mket (const std::vector< size_t > &mask)

    types::ket qpp::mket (const std::vector < size_t > &mask, const std::vector < size_t > &dims)

    types::ket qpp::mket (const std::vector< size_t > &mask, size_t d)

    std::vector< size t > qpp::invperm (const std::vector< size t > &perm)

• std::vector< size_t > qpp::compperm (const std::vector< size_t > &perm, const std::vector< size_t >
  &sigma)
```

7.13 include/internal.h File Reference

```
#include <algorithm>
#include <iostream>
#include <type_traits>
#include <utility>
#include <vector>
#include "types.h"
#include "classes/exception.h"
#include "io.h"
```

Include dependency graph for internal.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::internal

Functions

- void qpp::internal:: n2multiidx (size t n, size t numdims, const size t *dims, size t *result)
- size_t qpp::internal::_multiidx2n (const size_t *midx, size_t numdims, const size_t *dims)
- template<typename Derived >
 bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename T >
 bool qpp::internal::_check_nonzero_size (const T &x)
- $\bullet \ \ bool \ qpp::internal::_check_dims \ (const \ std::vector < size_t > \&dims)\\$

```
    template<typename Derived >
        bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > &dims, const Eigen::MatrixBase
    Derived > &A)
```

- template<typename Derived >
 bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase <
 Derived > &V)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &V)
- bool qpp::internal::_check_eq_dims (const std::vector< size_t > &dims, size_t dim)
- bool qpp::internal::_check_subsys_match_dims (const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< size_t > &perm)
- template<typename Derived1 , typename Derived2 >
 types::DynMat< typename
 Derived1::Scalar > qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::Matrix-Base< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- template<typename T, typename First, typename... Args>
 void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

7.14 include/io.h File Reference

```
#include <algorithm>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <stdexcept>
#include <vector>
#include "types.h"
#include "classes/exception.h"
Include dependency graph for io.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename T >
 void qpp::disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]",
 std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::disp (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived > void qpp::displn (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
- void qpp::disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- void qpp::displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived > void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
- template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::load (const std::string &fname)

7.15 include/matlab.h File Reference

#include <Eigen/Dense>

```
#include <stdexcept>
#include <string>
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "mat.h"
#include "mex.h"
```

Include dependency graph for matlab.h:

Namespaces

qpp

Functions

- template<typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 types::dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 types::cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > &A, const std::string &mat file, const std::string &var name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

7.16 include/qpp.h File Reference

#include "channels.h"

```
#include "constants.h"
#include "entanglement.h"
#include "functions.h"
#include "io.h"
#include "random.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/gates.h"
#include "classes/randevs.h"
#include "classes/stat.h"
#include "classes/states.h"
#include "classes/states.h"
#include "classes/states.h"
#include "classes/states.h"
#include dependency graph for qpp.h:
```


Namespaces

• qpp

Variables

- RandomDevices & qpp::rdevs = RandomDevices::getInstance()
- const Gates & qpp::gt = Gates::getInstance()
- const States & qpp::st = States::getInstance()

7.17 include/random.h File Reference

```
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/randevs.h"
#include "classes/stat.h"
```

Include dependency graph for random.h:

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename Derived >
 Derived qpp::rand (size_t rows, size_t cols, double a=0, double b=1)
- template<>
 types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- template<>
 types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)
- double qpp::rand (double a=0, double b=1)
- long long qpp::randint (long long a, long long b)
- template<typename Derived >
 Derived qpp::randn (size_t rows, size_t cols, double mean=0, double sigma=1)
- template<>
 types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- template<>
 types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- double qpp::randn (double mean=0, double sigma=1)

- types::cmat qpp::randU (size_t D)
- types::cmat qpp::randV (size_t Din, size_t Dout)
- std::vector< types::cmat > qpp::randkraus (size_t n, size_t D)
- types::cmat qpp::randH (size_t D)
- types::ket qpp::randket (size_t D)
- types::cmat qpp::randrho (size_t D)
- std::vector< size_t > qpp::randperm (size_t n)

7.18 include/types.h File Reference

#include <Eigen/Dense>
#include <complex>
Include dependency graph for types.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::types

Typedefs

- using qpp::types::cplx = std::complex< double >
- using qpp::types::cmat = Eigen::MatrixXcd

- using qpp::types::dmat = Eigen::MatrixXd
- using qpp::types::ket = Eigen::Matrix< cplx, Eigen::Dynamic, 1 >
- using qpp::types::bra = Eigen::Matrix< cplx, 1, Eigen::Dynamic >
- template<typename Scalar >
 using qpp::types::DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >