Heterogeneity and Sorting

Atsushi Yamagishi

October 18, 2024

Heterogeneous workers and sorting

- When workers are heterogeneous, **geographical sorting** might happen
 - People of similar type tend to locate in the same location
 - "Type" can be defined in many ways: education, income, race, age etc....
 - "Birds of the feather flock together"
- lacktriangle Common definition of sorting: compared to the national average share of type X people, some locations have the substantially larger share than the national average and other locations have the lower share
 - This situation is also called segregation
- I first briefly discuss classic theories of sorting
 - Tiebout (1956 JPE)
 - Schelling (1969 AER; 1971 Journal of Mathematical Sociology)
 - Cutler, Glaeser, Vigdor (1999, JPE)
- I then introduce a simple model of sorting to discuss sources of residential sorting
 - Following Diamond and Gaubert (2022 Annual Review of Economics, Section 3)
- I also discuss empirical evidence of sorting along the way

Tiebout (1956 JPE)

- Lays out the so-called "Tiebout hypothesis"
- Suppose there are two types of workers: A and B
 - Worker A enjoys public school quality
 - Worker B do not enjoy public school quality
- There are two locations: a and b. Each location decides on school quality while imposing local taxes
 - Workers can choose between these two locations
- Tiebout hypothesis: The equilibrium outcome involves sorting:
 - Every type A worker lives in location a, and location a provides the best school quality for worker type A.
 - Every type B worker lives in location b, and location a provides the best school quality for worker type B.
- This equilibrium outcome is *efficient*
 - Workers "vote with their feet" about school quality
 - Called "Tiebout Sorting"

Schelling (1969 AER; 1971 JMS)

- Analyzes the cause of sorting by race
 - Such sorting is often called "segregation."
- A simple model demonstrating that even a small preferences for living together with the same race leads to extreme sorting by race
- \blacksquare A worker with race x is happy if more than 5 of their 10 nearest neighbors are of the same race
 - They are happy to live in a mixed neighborhood, but they have some preferences for the same race.
- If they are unhappy, they reallocate to a random location in a city
- The analysis is based on a simulation
 - QuantEcon provides a simple simulation code in Python¹

https://intro.quantecon.org/schelling.html

Schelling (1969 AER; 1971 JMS)

■ Start with a perfectly mixed situation

Schelling (1969 AER; 1971 JMS)

- But things quickly converge to extreme sorting by race
- Here, everyone is "happy" and people no longer move

Cutler, Glaeser, Vigdor (1999 JPE)

- Tiebout and Schelling implicitly assume that people do not actively exclude certain types of people
 - Discrimination may prevent some people from living in certain locations, which naturally leads to a sorted outcome
- Cutler, Glaeser, Vigdor considers the possibility of "collective exclusion"
 - Whites may exclude blacks by discrimination in the housing market, violence, bullying etc.
- If blacks are discriminated against, they may pay higher housing prices in equilibrium than whites
 - Intuitively, the blacks are willing to avoid pay money for moving away from whites and avoiding discrimination
- In the mid-twintieth century, blacks clustered in certain locations ("ghettos") and indeed paid more housing costs than whites → consistent with collective exclusion
- By 1990, whites now pay more for housing
 - Consistent with "white flight": whites pay money to avoid living with blacks
- See Boustan (2013 wp) for more discussions

Is sorting good or bad?

- Often, sorting (or segregation) is seen as a "bad" phenomenon
 - A more mixed situation is often considered as "desirable"
 - For instance, the segregation of the blacks in certain area ("Ghettos") is considered as a bad situation in light of racial equity
- But this is not obvious at all!
- Both Tiebout and Schelling suggest that sorting may be good in terms of everyone's welfare
 - Different people have difference preferences, and sorting is a way to respect such heterogeneous preferences
- Reasons to still dislike sorting
 - Maybe we should not judge the social welfare based on discriminatory preferences
 - Whites may dislike blacks and Asians. But should we satisfy such preferences?
 - We care regional inequality itself, above and beyond the individual-level inequality
 - See Gaubert, Kline, Yagan (2020 AER R&R)
 - There could be negative externality associated with sorting
 - For instance, sorting of the rich and the poor may lead to bad performances of children (e.g., Chetty et al. 2016 AER; 2022 Nature).

A model of skill sorting: Diamond and Gaubert (2022 ARE)

- There are two types of workers: Skilled ($\theta = S$) and Unskilled ($\theta = U$).
- Similar to Redding (2016 JIE), a worker of type θ has Cobb-Douglas utility:

$$u_i^{\theta}(\omega) = A_i^{\theta}(c_i^{\theta})^{1-\alpha^{\theta}}(h_i^{\theta})^{\alpha^{\theta}}\epsilon_i^{\theta}(\omega)$$

- A_i^{θ} is the amenity, which can be type-specific.
- c_i is numeraire goods consumption and h_i is the housing consumption
- α^{θ} is the spending share of land for housing.
 - $\alpha^U > \dot{\alpha}^S$ to respect the data that the poor spend more share of their income on housing.
- ullet $\epsilon_i^{ heta}(\omega)$ is the Frechet idiosyncratic taste shock with the dispersion parameter $\kappa^{ heta}.$
- Maximizing this under the budget constraint $c_i + r_i h_i = w_i^{\theta}$, the indirect utility is

$$v_i^{\theta}(\omega) = \frac{A_i^{\theta} w_i^{\theta}}{(r_i)^{\alpha^{\theta}}} \epsilon_i^{\theta}(\omega)$$

Location choice probability and welfare

■ Due to the Frechet idiosyncratic shock, the location choice probability is

$$\lambda_i^{ heta} = rac{\mathcal{L}_i^{ heta}}{ar{\mathcal{L}}^{ heta}} = rac{\left(rac{\mathcal{A}_i^{ heta} w_i^{ heta}}{r_i^{ heta^{ heta}}}
ight)^{\kappa^{ heta}}}{\sum_j \left(rac{\mathcal{A}_j^{ heta} w_j^{ heta}}{r_i^{ heta^{ heta}}}
ight)^{\kappa^{ heta}}}$$

- lacksquare Note that the migration elasticity $\kappa^{ heta}$ is different across types
- The expected welfare of type θ :

$$\mathcal{W}^{ heta} = \Gamma\left(rac{\kappa^{ heta}-1}{\kappa^{ heta}}
ight) \left[\sum_{k} \left(rac{A^{ heta}_{j}\,w^{ heta}_{j}}{r^{\kappa^{ heta}}_{j}}
ight)^{\kappa^{ heta}}
ight]^{1/\kappa^{ heta}}$$

Production

■ Production function of the free-trade numeraire goods is of the CES type:

$$Y_i = \left[(z_i^U) (L_i^U)^{\frac{\rho-1}{\rho}} + (z_i^S) (L_i^S)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

- z_i^U and z_i^S reflect local productivity (can be exogenous or endogenous)
- By solving firms' cost minimization problem, the relative labor demand satisfies the following:

$$\ln\left(\frac{L_i^S}{L_i^U}\right) = \ln\left(\frac{z_i^S}{z_i^U}\right) - \rho\left(\frac{w_i^S}{w_i^U}\right)$$

Amenities and housing

■ Amenities can be exogenous or endogenous:

$$A_i^{\theta} = A^{\theta}(\bar{A}_i, L_i^U, L_i^S)$$

■ Housing supply is the upward-sloping curve:

$$H_i = \bar{H}r_i^{\eta_i}$$
,

where η_i represents the local housing supply elasticity

Sources of sorting

- Let Δ_{ij} denote the difference between locations i and j: $\Delta_{ij}x = x_i x_j$
- $\Delta_{ij} \ln(\frac{L^S}{L^U}) \neq 0$ represents sorting
 - The share of the high-skilled is higher in one location than in another location
- By the tedious rearrangement of the location choice probability, we get the following decomposition formula of the sources of sorting

$$\begin{split} \Delta_{ij} \ln \left(\frac{L^S}{L^U} \right) &= \underbrace{\frac{\tilde{\kappa}^S}{\rho} \Delta_{ij} \ln \left(\frac{z^S}{z^U} \right)}_{\text{Productivity}} + \underbrace{\tilde{\kappa}^S \Delta_{ij} \ln \left(\frac{A^S}{A^U} \right)}_{\text{Amenities}} \\ &+ \underbrace{\tilde{\kappa}^S (\alpha^U - \alpha^S) \Delta_{ij} \ln r}_{\text{Housing cost}} + \underbrace{\frac{\tilde{\kappa}^S}{\kappa^U} (1 - \frac{\kappa^U}{\kappa^S}) \Delta_{ij} \ln L^U}_{\text{Heterogeneous migration elasticities}} \end{split}$$

Sources of sorting 1: Productivity

$$\underbrace{\frac{\tilde{\kappa}^S}{\rho} \Delta_{ij} \ln \left(\frac{z^S}{z^U} \right)}_{\text{Productivity}}$$

- When the comparative productivity of the skilled $(\frac{z^S}{z^U})$ is higher in location i than j, then location i has higher share of the skilled workers
 - Note that the improvement of the skilled productivity in all locations does not induce the sorting
- Empirical evidence: agglomeration forces in productivity work stronger for the higher-skilled workers (Baum-Snow, et al. 2018 AEJ Applied)
 - So larger cities tend to have higher $\frac{Z^S}{Z^U} \to \text{sorting of the skilled into larger cities}$

Sources of sorting 2: Amenities

■ To fix ideas, suppose that A_i^{θ} is written as the product of common amenity level times type-specific preferences:

$$A^{\theta} = A_i^{\gamma_A^{\theta}}$$

■ Then, the amenity term is rewritten as

$$\underbrace{\tilde{\kappa}^{\mathcal{S}} \Delta_{ij} \ln \left(\frac{A^{\mathcal{S}}}{A^{U}} \right)}_{\text{Amenities}} = \tilde{\kappa}^{\mathcal{S}} \Delta_{ij} (\gamma_{A}^{\mathcal{S}} - \gamma_{A}^{U}) \Delta_{ij} A.$$

That is, if preferences for amenities are stronger for the skilled, the higher amenity level induces sorting of the skilled (and vice versa)

- Empirical evidence:
 - Albouy et al (2016 JAERE): college-educated households are willing to pay more for good weather
 - Diamond (2016 AER): Sorting of the skilled induces the provision of amenities that the skilled like (e.g., museums, shopping environments), and it amplifies sorting.

Sources of sorting 3: Housing costs

$$\underbrace{\tilde{\kappa}^S(\alpha^U - \alpha^S)\Delta_{ij}\ln r}_{\text{Housing cost}}$$

- Since the poorer people spend more share of their income on housing, higher housing costs tend to induce the sorting of the skilled.
 - $\alpha^U \alpha^S > 0$
- Empirical evidence:
 - Rosenthal (2014 AER): The poorer indeed spend more share of their income for housing.
 - Gyourko, Mayer, Sinai (2013 AEJ Policy): Cities with inelastic land supply experienced the appreciation of housing costs, and it displaced low-income households.

Sources of sorting 4: Heterogeneous migration elasticity

$$\underbrace{\frac{\tilde{\kappa}^S}{\kappa^U}(1-\frac{\kappa^U}{\kappa^S})\Delta_{ij}\ln L^U}_{\text{Heterogeneous migration elasticities}}$$

- A bit hard to establish formally, but the coefficient $\frac{\kappa^S}{\kappa^U}(1-\frac{\kappa^U}{\kappa^S})$ roughly captures the migration elasticity of the skilled relative to the unskilled
 - Can be rewritten as $\frac{\rho}{\kappa^S + \rho} (\kappa^S / \kappa^U 1)$
- Intuitively, $\Delta_{ij} \ln L^U$ represents how attractive location i is relative to j
 - Measured by how popular location *i* is among the unskilled.
- If the location i offers higher utility $\Delta_{ij} \ln L^U > 0$ and the skilled are more responsive to this positive utility difference, then location i has more skilled workforce
- Empirical evidence
 - The mobility of the high-skilled is higher (e.g., Diamond 2016; Kaplan and Schulhofer-Wohl 2017 IER)

Welfare implications in a sorting model

- How can we evaluate the welfare of workers in a sorting model?
- Let \hat{x} be the change in the variable x over time. Then, the change in welfare of type θ is expressed as

$$egin{align*} \hat{W}^{ heta} &= rac{W^{ heta}_{t_2}}{W^{ heta}_{t_1}} = \left[\sum_k \left(rac{A^{ heta}_{jt_2}w^{ heta}_{jt_2}}{r^{lpha^{ heta}}_{jt_2}}
ight)^{\kappa^{ heta}} \left(W^{ heta}_{t_1}
ight)^{-\kappa^{ heta}}
ight]^{1/\kappa^{ heta}} \ &= \left[\sum_k rac{\left(rac{A^{ heta}_{jt_2}w^{ heta}_{jt_2}}{r^{lpha^{ heta}}_{jt_2}}
ight)^{\kappa^{ heta}}}{\left(rac{A^{ heta}_{jt_1}w^{ heta}_{jt_1}}{r^{lpha^{ heta}}_{it_1}}
ight)^{\kappa^{ heta}}} \left(W^{ heta}_{t_1}
ight)^{-\kappa^{ heta}}
ight]^{1/\kappa^{ heta}} \ &= \left[\sum_k \left(\hat{V}^{ heta}_k
ight)^{\kappa^{ heta}} \left(\lambda^{ heta}_{kt_1}
ight)
ight]^{1/\kappa^{ heta}}, \end{split}$$

where $V_k^{\theta} \equiv \frac{A_k^{\theta} w_k^{\theta}}{r_i^{q,\theta}}$ and $\lambda_{kt_1}^{\theta}$ is the choice probability of location k in period t_1 .

Welfare implications in a sorting model

 In particular, change in the skilled-unskilled relative welfare, a measure of inequality, can be written as follows

$$\frac{\hat{\mathcal{W}}^{\mathcal{S}}}{\hat{\mathcal{W}}^{\mathcal{U}}} = \frac{\left[\sum_{k} \left(\hat{V}_{k}^{\mathcal{S}}\right)^{\kappa^{\mathcal{S}}} \lambda_{kt_{1}}^{\theta}\right]^{1/\kappa^{\mathcal{S}}}}{\left[\sum_{k} \left(\hat{V}_{k}^{\mathcal{U}}\right)^{\kappa^{\mathcal{U}}} \lambda_{kt_{1}}^{\theta}\right]^{1/\kappa^{\mathcal{U}}}}$$

- Using this formula, we can understand how sorting, which accompanies changes in *A*, *w*, *r* affects inequality
- Results (see Diamond and Gaubert 2022 Section 4.1.2 and Diamond 2016 AER):
 - Wages induced inequality over the last 40 years of the US
 - Taking into account housing cost reduces inequality
 - Considering amenities magnifies inequality
- Caution: You should be careful about the utility function you use is adequate for measuring welfare (see slide page 7).

Some examples of sorting studies

- To fix ideas, I note a few examples (my favorites!) that include sorting
- Glaeser, Kahn, Rappaport (2008 JUE)
 - In standard monocentric city models, the rich are often predicted to live in the suburbs because they
 appreciate more housing space.
 - After arguing that this prediction does not seem to hold empirically
 - Instead, they argue that public transportation that is evaluated by the poor explains why the poor choose to live in the city center
 - See Tabuchi (2019 JUE) for a related analysis on the situation of Tokyo
- Heblich, Trew, Zylberberg (2021 JPE)
 - The poor sort into the east side of the city in the UK
 - Historically, these areas experienced severe pollution due to wind direction, and the poor chose to live there because they care less about pollution
 - Such sorting pattern continues even today, despite that pollution no longer exists
- Bayer, Ferreira, McMillan (2007 JPE)
 - Sorting across the school district borders. We have already seen this paper in the discrete choice lecture!

Taking stock

- Sorting of heterogeneous people into different locations
- We have first seen some classic studies about the mechanism behind sorting
- We have then seen a simple spatial model with heterogeneous types of workers
 - Implies a "decomposition formula" for sorting
- Discussed the four sources of sorting:
 - Productivity
 - Amenities
 - Housing costs
 - Heterogeneous migration elasticity