Common statistical tests as Bayesian models

Most common statistical tests are linear models

. . .

Common statistical tests as Bayesian models

Most common statistical tests are linear models

. .

- Possible to extend, e.g., with group specific variances and and different distributions such t- or Poisson distribution
 - and go beyond named tests

Common statistical tests as Bayesian models

Most common statistical tests are linear models

. . .

- Possible to extend, e.g., with group specific variances and and different distributions such t- or Poisson distribution
 - and go beyond named tests
- See longer list and illustrations (with 1m) at https://lindeloev.github.io/tests-as-linear/ and with rstanarm in Regression and other stories

 Frequentist approach can be used to to make estimates and confidence intervals, but for some reason null hypothesis testing has had a very big role

- Frequentist approach can be used to to make estimates and confidence intervals, but for some reason null hypothesis testing has had a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information

- Frequentist approach can be used to make estimates and confidence intervals, but for some reason null hypothesis testing has had a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information
 - some Bayesians are also into null hypothesis testing

- Frequentist approach can be used to make estimates and confidence intervals, but for some reason null hypothesis testing has had a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information
 - some Bayesians are also into null hypothesis testing
- Frequentist null hypothesis testing
 - asks what if data is generated from the smaller model
 - doesn't tell whether the more complex model is good enough

- Frequentist approach can be used to make estimates and confidence intervals, but for some reason null hypothesis testing has had a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information
 - some Bayesians are also into null hypothesis testing
- Frequentist null hypothesis testing
 - asks what if data is generated from the smaller model
 - doesn't tell whether the more complex model is good enough
- Some frequentists are now advocating looking at intervals and equivalence testing

- Instead of hypothesis testing, report full posterior and
 - compare to expert information
 - combine with utility/cost function

- Instead of hypothesis testing, report full posterior
 - for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

- Instead of hypothesis testing, report full posterior
 - for continuous posterior we could compute the probability that we know the sign of the effect

- Instead of hypothesis testing, report full posterior
 - for continuous posterior some people compare whether posterior interval includes null case

- Equivalence testing (region of practical equivalence)
 - what is the probability that the effect is closer than ϵ to null, where ϵ is based on what is practically useful effect size

- Equivalence testing (region of practical equivalence)
 - some people combine posterior interval and region of practical equivalence

- Instead of hypothesis testing, report full posterior
 - for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

- Instead of hypothesis testing, report full posterior
 - for continuous posterior we could compute the probability that we know the sign of the effect

- Instead of hypothesis testing, report full posterior
 - for continuous posterior some people compare whether posterior interval includes null case

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Instead of hypothesis testing, report full posterior
 - for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

- Instead of hypothesis testing, report full posterior
 - for continuous posterior we could compute the probability that we know the sign of the effect

- Instead of hypothesis testing, report full posterior
 - for continuous posterior some people compare whether posterior interval includes null case

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Bayes factor
 - null model has, e.g., the treatment effect fixed to 0
 - assumes that there is non-zero probability that the treatment effect can be exactly zero (point mass)
 - requires posterior inference for the null model, too

- Bayes factor
 - null model has, e.g., the treatment effect fixed to 0
 - assumes that there is non-zero probability that the treatment effect can be exactly zero (point mass)
 - requires posterior inference for the null model, too

with bridgesampling package, see also BDA3 13.10

- Bayes factor
 - null model has, e.g., the treatment effect fixed to 0
 - assumes that there is non-zero probability that the treatment effect can be exactly zero (point mass)
 - requires posterior inference for the null model, too

- Bayes factor
 - sensitive to the prior choice even when the posterior is not

with bridgesampling package, see also BDA3 13.10

- Predictive performance
 - is there difference in predictive performance with, e.g., treatment effect fixed to zero or unknown treatment effect
 - requires posterior inference for the null model or projection from the full to null
 - looking at the posterior is better if parameters are independent

- Predictive performance
 - is there difference in predictive performance with, e.g., treatment effect fixed to zero or unknown treatment effect
 - requires posterior inference for the null model or projection from the full to null
 - looking at the posterior is better if parameters are independent

In the beta blockers example

 Leave-one-person-out works, but is less efficient than looking at the posterior (see https://avehtari.github.io/modelselection/betablockers.html)

Simulation experiment

Simulation experiment

Simulation experiment

Hypothesis testing and posterior dependencies

Looking at the marginal posterior $p(\beta < 0)$ can be misleading when there are many parameters

Marginal posteriors of coefficients

11/14

Hypothesis testing and posterior dependencies

Looking at the marginal posterior(s) can be misleading when there are many parameters

Bivariate marginal of weight and height

Hypothesis testing and posterior dependencies

In bodyfat example, starting from full model

- BF in favor of removing weight (p=0.92)
- LOO in favor of removing weight (p=0.99)

In bodyfat example, starting from model y \sim abdomen

- BF in favor of adding weight (p=1.0)
- LOO in favor of adding weight (p=1.0)

Variable selection

More elaborate approaches are needed for variable selection

Projection predictive variable selection selects the minimal set of variables with similar predictive performance as the full model

