Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

- Optimization via separation of constraints,
- The ellipsoid method,
- The equivalence between optimization and separation.

2 Strong cutting planes and separation problems

Consinder a linear program of the form

$$\max \quad c^{\top} x$$
s.t. $Ax \leq b$

$$\alpha^{\top} x \leq \beta \quad \text{for } (\alpha, \beta) \in \mathcal{F}$$

$$x \in \mathbb{R}^d$$

$$(LP(\mathcal{F}))$$

Here, the first set of constraints is given by $Ax \leq b$, while we have additional constraints that correspond to the family \mathcal{F} . We may apply the row generation framework to $(LP(\mathcal{F}))$ by sequentially generating inequalities from the family \mathcal{F} .

Example 24.1. For the maximum weight matching problem, we have the following formulation.

$$\max \sum_{e \in E} w_e x_e$$
s.t.
$$\sum_{e \in \delta(v)} x_e \le 1, \quad v \in V$$

$$\sum_{e \in E(S)} x_e \le \frac{|S| - 1}{2}, \quad S \subseteq V \text{ odd}$$

$$0 \le x_e \le 1 \quad e \in E$$

Here, the family of odd set inequalities

$$\sum_{e \in E(S)} x_e \le \frac{|S| - 1}{2} \quad S \subseteq V \text{ odd}$$

correspond to the family \mathcal{F} .

Example 24.2. For the traveling salesman problem, we consider the following linear program.

$$\min \quad \sum_{e \in E} w_e x_e$$
 s.t.
$$\sum_{e \in \delta(v)} x_e = 2, \quad v \in V$$

$$0 \le x_e \le 1, \quad e \in E$$

Then we may generate subtour elimination inequalities, comb inequalities, path inequalities, clique inequalities, and ladder inequalities, etc.

The row generation framework proceeds as follows.

• Initialization

 $\mathcal{F}_0 = \emptyset$ and set t = 1.

- For t = 1, ..., T, we repeat the following procedure.
 - (1) Solve the linear program

$$\max \quad c^{\top} x$$
s.t. $Ax \leq b$

$$\alpha^{\top} x \leq \beta \quad \text{for } (\alpha, \beta) \in \mathcal{F}_{t-1}$$

$$x \in \mathbb{R}^d.$$

and let x^t denote an optimal solution.

- (2) If $\alpha^{\top} x^t \leq \beta$ for all \mathcal{F} , then x^t is optimal to $(\underline{LP}(\mathcal{F}))$.
- (3) Let $\mathcal{F}_t = \mathcal{F}_{t-1} \cup \{(\alpha^t, \beta^t)\}$ for some $(\alpha^t, \beta^t) \in \mathcal{F}$ such that $\alpha^{t \top} x^t > \beta^t$.
- (4) Set $t \leftarrow t + 1$.

To run the procedure (2), we need to solve the so-called **separation problem** for \mathcal{F} . The problem is given as follows.

Given a point $\bar{x} \in \mathbb{R}^d$ and a family \mathcal{F} of linear inequalities, (i) show that \bar{x} satisfies all inequalities in \mathcal{F} , or (ii) find $(\alpha, \beta) \in \mathcal{F}$ such that $\alpha^{\top} \bar{x} > \beta$.

The important result for today is the following theorem.

Theorem 24.3. The separation problem for \mathcal{F} can be solved in polynomial time if and only if the optimization problem $(LP(\mathcal{F}))$ can be solved in polynomial time.

This result is referred to as the equivalence between optimization and separation.

3 Ellipsoid algorithm and its consequences in combinatorial optimization

In this section, we introduce the ellipsoid algorithm. The problem that we consider is as follows.

Given a polyhedron $P = \{x \in \mathbb{R}^d : Ax \leq b\}$, (1) conclude that the interior of P is empty, or (2) find a point \bar{x} contained in the interior of P.

This is a variant of the **feasibility problem**. The basic outline of the ellipsoid algorithm for the feasibility problem is as follows.

Theorem 24.4 (Kachyan). The ellipsoid algorithm (Algorithm 1) terminates with a correct answer if E_1 and T are properly chosen.

Algorithm 1 Ellipsoid algorithm

```
Initialize a polyhedron P = \{x \in \mathbb{R}^d : Ax \leq b\} and a sufficiently large ellipsoid E_1. for t = 1, \ldots, T do

if the center x^t of ellipsoid E_t is in the interior of P then

Stop and conclude that P contains x^t.

else

There exists some inequality \alpha^\top x \leq \beta in the system Ax \leq b such that \alpha^\top x^t \geq \beta.

Let E_{t+1} be the smallest ellipsoid containing E_t \cap \{x \in \mathbb{R}^d : \alpha^\top x \leq \beta\}.

t \to t+1.

end if

Conclude that the interior of P is empty.
```

In fact, Kachyan showed that one can choose E_1 and T so that their encoding sizes are polynomially bounded, in which case Algorithm 1 runs in polynomial time.

The important part is that the ellipsoid algorithm can be turned into a polynomial algorithm for the problem of optimizing a linear function over P. The idea is based on binary search. Basically, if we want to minimize a linear function $c^{\top}x$, then we consider

$$\left\{ x \in \mathbb{R}^d : \ Ax \le b, \ c^\top x \le v \right\}$$

for varying v.

Example 24.5. We think about the minimum weight st-cut problem in an undirected graph G = (V, E) with $s, t \in V$. Let \mathcal{F} be the family of all st-paths in G. Then the following linear program provides a valid formulation for the minimum st-cut problem.

$$\min \quad \sum_{e \in E} c_e x_e$$
s.t.
$$\sum_{e \in P} x_e \ge 1, \quad P \in \mathcal{F}$$

$$0 \le x_e \le 1, \quad e \in E.$$

Theorem 24.6 (Fulkerson). The polytope defined by

$$\left\{ x \in [0,1]^E : \sum_{e \in P} x_e \ge 1, \ P \in \mathcal{F} \right\}$$

is integral.

Then the separation problem for the family \mathcal{F} is equivalent to the shortest st-path problem where the edge weights are given by $x \in \mathbb{R}_+^E$.

Next we formally state the equivalence between optimization and separation. Let $P \subseteq \mathbb{R}^d$ be a rational polyhedron such that

$$P = \operatorname{conv}\{v^1, \dots, v^n\} + \operatorname{cone}\{r^1, \dots, r^\ell\}.$$

Then we say that $P \subseteq \mathbb{R}^d$ belongs to a **well-described family of rational polyhedra** if the length L of input needed to describe P satisfies $d \leq L$ and $\log D$ is bounded by a polynomial function of L, where D is the largest numerator or denominator of the rational vectors v^k, r^h for $k \in [n]$ and $h \in [\ell]$. Here, we care about the number D to bound the complexity of the ellipsoid method.

Example 24.7. Both $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ and $P_I = \{x \in \mathbb{Z}^d : Ax \leq b\}$ where A, b are rational are well-defined. In addition, the *st*-cut polytope of a graph G (Note that the input in this case is the graph G).

1. Separation Problem

Given a well-defined polyhedron $P \subseteq \mathbb{R}^d$ and $\bar{x} \in \mathbb{Q}^d$, either show that $\bar{x} \in P$ or find an inequality $\alpha^\top x \leq \beta$ satisfied by all $x \in P$ such that $\alpha^\top \bar{x} > \beta$.

2. Optimization Problem

Given a well-defined polyhedron $P \subseteq \mathbb{R}^d$ and $c \in \mathbb{Q}^d$, find x^* such that $c^\top x^* = \max\{c^\top x : x \in P\}$ or show that $P = \emptyset$ or find a direction z in which P is unbounded.

Theorem 24.8. For a well-defined polyhedron P, the separation can be solved in polynomial time if and only if the optimization problem can be solved in polynomial time.