Lecture 3

- 1. Newton's method
- 2. Exponential family
- 3. Generalized Linear Models (GLM)
- 4. Generative learning algorithm

1 Newton's method

Newton's method is an algorithm that help to solve an equation $f(\theta) = 0$.

We start from some random $\theta^{(0)}$, by definition:

$$f'(\theta^{(0)}) = \frac{f(\theta^{(0)})}{\Delta},$$

which implies that $\Delta = \frac{f(\theta^{(0)})}{f'(\theta^{(0)})}$. Then

$$\theta^{(1)} = \theta^{(0)} - \frac{f(\theta^{(0)})}{f'(\theta^{(0)})}$$

or, in general,

$$\theta^{(t+1)} = \theta^{(t)} - \frac{f(\theta^{(t)})}{f'(\theta^{(t)})}.$$

To maximize likelihood $l(\theta)$ we find θ such that $l'(\theta) = 0$, then one iteration of the Newton's methods is written as

$$\theta^{(t+1)} = \theta^{(t)} - \frac{l'(\theta^{(t)})}{l''(\theta^{(t)})}.$$

This algorithm has a quadratic convergence. It means that error decreasing as square after each iteration. For example, in linear regression we need just 3 iterations to find the parameters with very good accuracy.

When the problem is to find several parameters, one iteration of the Newton's methods can be written as a vector equation:

$$\theta^{(t+1)} = \theta^{(t)} - H^{-1} \nabla_{\theta} l,$$

where θ is a vector and H is the Hessian matrix:

$$H_{ij} = \frac{\partial^2 l}{\partial \theta_i \partial \theta_j}.$$

Notice that if we want to minimize something (instead of maximization) the algorithm does not change.

2 Exponential family

In this section we generalise the ideas of linear and logistic regressions. Before we considered two cases:

- $y \in \mathbb{R} \Rightarrow$ Gaussian distribution $N(\mu, \sigma^2) \Rightarrow$ linear regression
- $y \in \{0, 1\} \Rightarrow$ Bernoulli distribution with parameter φ such that $p(y = 1|\varphi) = \varphi \Rightarrow$ logistic regression

We will show that in both cases we deal with particular cases of general class of exponential family distributions:

$$p(y \mid \eta) = b(y) \exp \left(\eta^T T(y) - a(\eta)\right),$$

where η is a natural parameter, T(y) is a sufficient statistics (in many cases T(y) = y).

For different choices of a, b and T we will have different distributions:

1. Bernoulli distribution with φ : $p(y=1 \mid \varphi) = \varphi$. Then

$$p(y \mid \varphi) = \varphi^{y}(1 - \varphi)^{1-y} = \exp\left(\ln\left(\varphi^{y}(1 - \varphi)^{1-y}\right)\right) =$$

$$= \exp\left(y\ln\varphi + (1 - y)\ln(1 - \varphi)\right) = \exp\left(\ln\frac{\varphi}{1 - \varphi}y + \ln(1 - \varphi)\right).$$

By introducing the notations $\eta = \ln \frac{\varphi}{1 - \varphi}$, T(y) = y, $-a(\eta) = \ln(1 - \varphi)$, b(y) = 1, we obtain the exponential family formula. Notice that we can find

$$\varphi = \frac{1}{1 + e^{-\eta}},$$

then $a(\eta) = \ln(1 + e^{\eta}).$

2. Gaussian distribution $N(\mu, \sigma^2)$. For simplicity we set $\sigma^2 = 1$. Then

$$p(y \mid \mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y-\mu)^2\right) = \dots =$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right) \exp\left(\mu y - \frac{1}{2}\mu^2\right).$$

By introducing the notations $b(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)$, $\eta = \mu$, T(y) = y, $a(\eta) = \frac{1}{2}\eta^2$, we obtain the exponential family formula.

3 Generalized Linear Models (GLM)

The Generalized Linear Models use the exponential family distributions to build different algorithms in one general framework. Assuming some distribution for the output y we obtain the form for the hypothesis $h_{\theta}(x)$ and find the parameters by finding the maximum of log-likelihood. We assume the following:

- $y \mid x; \theta \sim \text{ExpFamily}(\eta)$
- given x our goal is to output E[T(y) | x], in other words,

$$h(x) = E[T(y) \mid x]$$

• $\eta = \theta^T x$ (in more general case if $\eta \in \mathbb{R}^k$, then $\eta_i = \theta_i^T x$)

Examples of GLM:

1. Bernoulli distribution

- $y \mid x; \theta \sim \text{ExpFamily}(\eta)$
- for fixed x and θ , the algorithm output is

$$h_{\theta}(x) = E[y \mid x; \theta] = p(y = 1 \mid x; \theta) = \varphi = \frac{1}{1 + e^{-\eta}} = \frac{1}{1 + e^{-\theta^T x}}$$

Definition.

 $g(\eta)=E[y\mid\eta]=\frac{1}{1+e^{-\eta}}\text{ is a canonical response function }g^{-1}\text{ is a canonical link function}$

2. Gaussian distribution

Exercise for the homework

3. Multinomial distribution: $y \in \{1, \dots, k\}$

Tumour size

Parameters $\varphi_1, \varphi_2, ..., \varphi_k$ are defined as $p(y=i) = \varphi_i$. Such formulation is redundant, because φ_k can be expressed as $\varphi_k = 1 - \varphi_1 - ... - \varphi_{k-1}$.

That is why we do not take φ_k as a parameter. We introduce function $T(y), y \in \{1, \ldots, k\}$ as follows:

$$T(1) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ T(2) = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, T(k-1) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

and

$$T(k) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, T(1), T(2), \dots, T(k) \in \mathbb{R}^{k-1}.$$

The indicator function $\mathbb{1}\{True\} = 1$, $\mathbb{1}\{False\} = 0$, for example, $\mathbb{1}\{2=3\} = 0$. Then $T(y)_i = \mathbb{1}\{y=i\}$. The distribution:

$$\begin{split} P(y) &= \varphi_1^{\mathbb{I}\{y=1\}} \cdot \varphi_2^{\mathbb{I}\{y=2\}} \cdot \ldots \cdot \varphi_k^{\mathbb{I}\{y=k\}} = \\ &= \varphi_1^{T(y)_1} \cdot \varphi_2^{T(y)_2} \cdot \ldots \cdot \varphi_{k-1}^{T(y)_{k-1}} \cdot \varphi_k^{-1} = \ldots = \\ &= b(y) \exp\left(\eta^T T(y) - a(\eta)\right), \end{split}$$

where

$$\eta = \begin{bmatrix} \ln(\varphi_1/\varphi_k) \\ \vdots \\ \ln(\varphi_{k-1}/\varphi_k) \end{bmatrix} \in \mathbb{R}^{k-1}, \ a(\eta) = -\ln \varphi_k, \ b(y) = 1.$$

We could solve these equations with respect to η and obtain

$$\varphi_i = \frac{e^{\eta_i}}{1 + \sum_{j=1}^{k-1} e^{\eta_j}} = \frac{e^{\theta_i^T x}}{1 + \sum_{j=1}^{k-1} e^{\theta_j^T x}}, i = 1 \dots k - 1.$$

The purpose of these transformation is to obtain the learning algorithm:

$$h_{\theta}(x) = E[T(y) \mid x; \theta] = E\begin{bmatrix} 1 \{ y = 1 \} \\ \vdots \\ 1 \{ y = k - 1 \} \end{bmatrix} = \begin{bmatrix} \frac{e^{\theta_1^T x}}{1 + \sum_{j=1}^{k-1} e^{\theta_j^T x}} \\ \vdots \\ \frac{e^{\theta_{k-1}^T x}}{1 + \sum_{j=1}^{k-1} e^{\theta_j^T x}} \end{bmatrix}$$

This algorithm is called **softmax regression** - generalisation of logistic regression for k classes. To fit the parameters for the given training set $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$, we find the likelihood in the form

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta) = \prod_{i=1}^{m} \varphi_1^{\mathbb{I}\{y^{(i)}=1\}} \cdot \varphi_2^{\mathbb{I}\{y^{(i)}=2\}} \cdot \dots \cdot \varphi_k^{\mathbb{I}\{y^{(i)}=k\}},$$

where
$$\varphi_1 = \frac{e^{\theta_1^T x}}{1 + \sum\limits_{i=1}^{k-1} e^{\theta_i^T x}}$$
. The last step will be to find the log-likelihood,

find the derivatives and use stochastic gradient descent to maximize the log-likelihood function with respect to parameters θ .

4 Generative learning algorithm

Tumour size

The logistic regression tries to find the straight line between two classes. This algorithm belongs to the class of **discriminative algorithms**. The idea of properties for discriminative algorithms is the following:

- learns $p(y \mid x)$
- or learns $h_{\theta}(x) \in \{0, 1\}$

Now we are going to talk about different approach. Assuming that we have two classes, we build two models: one - on positive examples only, the second - on negative examples only. When we get new sample we try to understand which model this sample match better and based on this matching we make a conclusion. This algorithm belongs to the class of **generative algorithms**. The idea of the generative algorithms is

- learn $p(x \mid y)$ and p(y)
- use Bayes rule to get $p(y = 1 \mid x) = \frac{p(x \mid y = 1)p(y)}{p(x)}$, where

$$p(x) = p(x \mid y = 0)p(y = 0) + p(x \mid y = 1)p(y = 1)$$