Nomenclatura

$V[m^3]$	Volumen	W[kgf]	Peso
$\mu [Pa \cdot s]$	Viscosidad absoluta	$v\left[m^2/s\right]$	Viscosidad cinemática
$\sigma [N/m]$	Tensión superficial	\overline{GM}	Altura metacéntrica
G	Centro de gravedad	C	Centro de presión
	Densidad	$ ho_{rel}$	Densidad relativa
$\tau \left[N/m^2 \right]$	Esfuerzo de corte		Aceleración de la gravedad
W[kgf]	Peso	$\gamma \left[kgf/m^3 \right]$	Peso específico
$J[m^4]$	Segundo momento	$\overline{J}\left[m^4\right]$	Segundo momento respecto a G

Conversión de unidades

Presión

Temperatura $K = {}^{\circ}C + 273,15$ ${}^{\circ}R = {}^{\circ}F + 459,67$

UNIDAD 1
CONCEPTOS GENERALES

Presión

 $P_{absoluta} = P_{atmosf\acute{e}rica} + P_{manom\acute{e}trica}$

 $P_{man}(+)$ Presión manométrica

 $P_{man}(-)$ Vacío

Densidad y peso específico

$$\rho_{rel} = \frac{\rho}{\rho_{H_2O}}$$

$$\gamma = \frac{W}{V} = \frac{mg}{V} = \rho g$$

Viscosidad

$$\tau = \mu \frac{du}{dy}$$
 $v = \frac{\mu}{\delta}$
Fluido newtoniano $\mu = cte$
Fluido ideal $\mu = 0$

Tensión superficial

No sé que pingo poner acá help...

Capilaridad

 $h = \frac{4\sigma\cos\beta}{\alpha D}$

También pensaba poner la ecuación de los gases y algo de ese estilo que vimos en termo... pero no sé, qué opinan ustedes?

UNIDAD 2 ESTÁTICA DE LOS FLUIDOS

Fluidos en reposo

$$dp = -\gamma dz$$

Agregar algo de manómetros estaría bien?

Flotabilidad

 $F_B = \gamma V$ En equilibrio F = Wagreguen si falta...

Fuerzas sobre áreas planas

Magnitud de F
$$F = \gamma \bar{h} A$$

 $= P_C A$
Punto de aplicación de F $y_P = \bar{y} + \frac{\bar{J}}{A\bar{y}}$
 $C: (x_P, y_P)$ $x_P = \bar{x} + \frac{\bar{J}_{xy}}{A\bar{y}}$

Estabilidad

$$\overline{GM} = \frac{J_O}{V} - \overline{CG}$$
 agreguen si falta...