



## ОГЛАВЛЕНИЕ

| crp.                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. ПАРАЛЛЕЛЬНОСТЬ ПРЯМЫХ. АКСИОМЫ       3                                                                                                       |
| 2. УГЛЫ. БИССЕКТРИСА УГЛА                                                                                                                       |
| 3. ВИДЫ ТРЕУГОЛЬНИКОВ. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ                                                                                              |
| И УГЛАМИ ТРЕУГОЛЬНИКА                                                                                                                           |
| 4. ПЛОЩАДЬ ТРЕУГОЛЬНИКА. СВОЙСТВА РАВНОБЕДРЕННОГО<br>ТРЕУГОЛЬНИКА 6                                                                             |
| 5. ПРИЗНАКИ РАВЕНСТВА ТРЕУГОЛЬНИКОВ.       ПРИЗНАКИ ПОДОБИЯ         ТРЕУГОЛЬНИКОВ       7         6. ЗАМЕЧАТЕЛЬНЫЕ ЛИНИИ В ТРЕУГОЛЬНИКЕ       8 |
| 7. ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. ОСНОВНЫЕ СООТНОШЕНИЯ 9                                                                                            |
| 8. СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА. ПРИЗНАКИ                                                                                               |
| РАВЕНСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ                                                                                                           |
| 9. ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА НЕКОТОРЫХ УГЛОВ.<br>ЧЕТЫРЕХУГОЛЬНИКИ                                                                    |
| 10. СВОЙСТВА И ПРИЗНАКИ ПАРАЛЛЕЛОГРАММА                                                                                                         |
| 11. ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ                                                                                                                |
| 12. ТРАПЕЦИЯ                                                                                                                                    |
| 13. ОКРУЖНОСТЬ. ВПИСАННЫЙ УГОЛ                                                                                                                  |
| 14. СВОЙСТВА ОКРУЖНОСТИ И ЕЕ ЭЛЕМЕНТОВ                                                                                                          |
| 15. СВОЙСТВА КАСАТЕЛЬНЫХ И СЕКУЩИХ    17                                                                                                        |
| 16. ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ                                                                                                            |
| 17. ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ                                                                                                                   |
| 18. ПРЯМОУГОЛЬНАЯ СИСТЕМА КООРДИНАТ. ВЕКТОРЫ 20                                                                                                 |

## Справочник по геометрии 7-9

#### ПАРАЛЛЕЛЬНОСТЬ

Прямые a и b пересечены секущей c

∠1 и ∠2; ∠3 и ∠4 – накрест лежащие углы

 $\angle 1$  и  $\angle 8$ ;  $\angle 3$  и  $\angle 5$  - соответственные углы

∠2 и ∠7; ∠4 и ∠6 - соответственные углы

∠1 и ∠ 3; ∠2 и ∠4 - односторонние углы



#### Признаки параллельности прямых

$$\angle 1 = \angle 2 \Rightarrow a \parallel b$$

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

$$\angle 1 = \angle 8 \Rightarrow a \parallel b$$

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

$$\angle 1 + \angle 3 = 180^{\circ} \Rightarrow a \parallel b$$

Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

$$a \parallel b, a \parallel c \Rightarrow c \parallel b$$
  $a \perp b, a \perp c \Rightarrow c \parallel b$ 

# Свойства углов при параллельных прямых

$$a \parallel b \Rightarrow \angle 1 = \angle 2$$

Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

$$a \parallel b \Rightarrow \angle 1 = \angle 8$$

Если две параллельные прямые пересечены секущей, то соответственные углы равны.

$$a \parallel b \Rightarrow \angle 1 + \angle 3 = 180^{\circ}$$

Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна **180°**.

## НЕКОТОРЫЕ АКСИОМЫ ПЛАНИМЕТРИИ

Через любые две различные точки проходит прямая, и притом только одна.



$$A \in a \quad B \in a$$

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.



#### УГЛЫ

| Острый угол       | Тупой угол       | Прямой угол              | Развернутый угол             |
|-------------------|------------------|--------------------------|------------------------------|
| меньше прямого    | больше прямого   |                          |                              |
| -                 | -                |                          |                              |
| угла              | угла             | <br> h                   | A                            |
|                   |                  |                          | 0                            |
| C                 | \ a              |                          | M                            |
|                   |                  | <u> </u>                 |                              |
| D A               | b                |                          |                              |
|                   |                  | $\angle hk = 90^{\circ}$ | ∠AOM = <b>180</b> °          |
| ∠CDA< 90°         | 90° < ∠ab < 180° |                          |                              |
|                   |                  |                          |                              |
| Смеули            | ье углы          |                          | <u> </u>                     |
| СМСЖН             | ore Alling       | ADC                      | CDD                          |
|                   | / C              | ZABC NZ                  | . CBD — смежные углы         |
|                   |                  |                          |                              |
| A                 | B D              | ∠ABC + ∠                 | $CCBD = 180^{\circ}$         |
| A                 | В П              | Сумма смежных            | к углов рав <b>на 180</b> °. |
|                   |                  | J                        | <i>y</i> 1                   |
|                   |                  |                          |                              |
| D от тууча т      |                  | 4 A O D 4                | COD                          |
| Вертикальные углы |                  | ZAUB II Z                | COD — вертикальные           |
|                   | _                |                          |                              |
| B C               |                  | ∠AOB                     | = ∠COD                       |
|                   |                  | Вертикальн               | ые углы равны.               |
| 0                 |                  | •                        | •                            |
| A                 | D                |                          |                              |
|                   |                  |                          |                              |

## БИССЕКТРИСА УГЛА



#### ВИДЫ ТРЕУГОЛЬНИКОВ

| Треугольник                                | Разносторонний              | Равнобедренный    | Равносторонний                             |
|--------------------------------------------|-----------------------------|-------------------|--------------------------------------------|
| Остроугольный (все углы острые)            |                             |                   | B<br>A<br>C                                |
|                                            | все стороны разной<br>длины | две стороны равны | все стороны равны                          |
| Прямоугольный (один из углов – прямой)     |                             |                   | ∠ A= ∠B=∠C=60° $P = 3a, где$               |
| Тупоугольный<br>(один из углов –<br>тупой) |                             |                   | <i>а</i> - сторона,<br><i>P</i> - периметр |

#### СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА



**Сумма углов** треугольника равна  $180^{\circ}$ .  $\angle A + \angle B + \angle C = 180^{\circ}$ 

Свойство внешнего угла: ∠ АСК = ∠ А + ∠В

#### Неравенство треугольника

a < b+c b < a+c c < a+b

Каждая сторона треугольника меньше суммы двух других сторон.

$$a > b$$
 -  $c$ ,  $c \partial e$   $b > c$ 

# **Теорема о соотношениях между сторонами и** углами треугольника

$$b > c \Rightarrow \angle B > \angle C$$
  $u$   $\angle B > \angle C \Rightarrow b > c$ 

В треугольнике против большей стороны лежит больший угол.

Против большего угла лежит большая сторона.

#### Теорема синусов

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

где  $\mathbf{R} - \mathbf{p}$ адиус описанной окружности.

Стороны треугольника пропорциональны синусам противолежащих углов.

#### Теорема косинусов

$$c^2 = a^2 + b^2 - 2ab \cos C$$

$$a^2 = c^2 + b^2 - 2bc \cos A$$

$$b^2 = c^2 + a^2 - 2 ac \cos B$$

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

#### ПЛОЩАДЬ ТРЕУГОЛЬНИКА



Площадь треугольника равна половине произведения его стороны на высоту к этой стороне:  $S = \frac{1}{2}ah$ 

Другие формулы:

$$S = \frac{1}{2}ab\sin\mathbf{C} = \frac{1}{2}ac\sin\mathbf{B} = \frac{1}{2}cb\sin\mathbf{A}$$

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
, где  $p = \frac{a+b+c}{2}$  - полупериметр

$$S = \mathbf{p}r$$
,

где *r*- радиус вписанной в треугольник окружности

где R – радиус описанной окружности

### СВОЙСТВА РАВНОБЕДРЕНННОГО ТРЕУГОЛЬНИКА

В равнобедренном треугольнике углы при основании равны



АС – основание АВ и ВС – боковые стороны Биссектриса, проведенная к основанию, является медианой и высотой



ВК – биссектриса ВК - медиана ВК - высота

#### РАВНЫЕ И ПОДОБНЫЕ ТРЕУГОЛЬНИКИ

 $\triangle ABC = \triangle A_1 B_1 C_1$ , значит,  $AB = \mathbf{A_1}\mathbf{B_1}$   $CB = \mathbf{C_1}\mathbf{B_1}$   $CA = \mathbf{C_1}\mathbf{A_1}$  $\angle A = \angle A_1$   $\angle B = \angle B_1$   $\angle C = \angle C_1$ .





**∆АВС** подобен  $∧ A_1B_1C_1$ , значит,  $\angle A = \angle A_1$   $\angle B = \angle B_1$   $\angle C = \angle C_1$ 

$$A = \angle A_1 \qquad \angle B = \angle B_1 \qquad \angle C = \angle C$$

$$\frac{AB}{A_1B_1} = \frac{AC}{A_1C_1} = \frac{BC}{B_1C_1}$$





**Равные углы** лежат напротив равных сторон

**Равные углы** лежат напротив сходственных сторон

#### ПРИЗНАКИ РАВЕНСТВА ТРЕУГОЛЬНИКОВ

По двум сторонам и углу между ними



$$AB = A_1B_1$$
  $CB = C_1B_1$   $\angle B = \angle B_1$   
 $\triangle ABC = \triangle A_1B_1C_1$ 

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

По стороне и двум прилежащим углам



$$AC=A_1C_1$$
  $\angle A = \angle A_1$   $\angle C = \angle C_1$   
 $\triangle ABC = \triangle A_1B_1C_1$ 

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

По трем сторонам



$$AB = A_1B_1 \quad CB = C_1B_1 \quad AC = A_1C_1$$
$$\Delta ABC = \Delta A_1B_1C_1$$

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

#### ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ

По двум углам





$$\angle$$
 A =  $\angle$ A<sub>1</sub>  $\angle$  B =  $\angle$ B<sub>1</sub>  
 $\triangle$ ABC подобен  $\triangle$  A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

По двум сходственным сторонам и углу между ними



∆АВС подобен ΔА₁В₁С₁

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

По трем сходственным сторонам



Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

#### ЗАМЕЧАТЕЛЬНЫЕ ЛИНИИ В ТРЕУГОЛЬНИКЕ



АМ – медиана в **∆** АВС точка М – середина ВС



#### Свойство медиан

$$CO:OP = AO:OM = BO:OK = 2:1$$

Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1.

$$AM = m = \frac{\sqrt{2b^2 + 2c^2 - a^2}}{2}$$

формула для вычисления медианы



#### AH – высота **∧АВС**

АН - перпендикуляр, опущенный из точки А на прямую ВС

#### Свойство высот

Высоты треугольника пересекаются в одной точке треугольника.

$$C \xrightarrow{m} E \xrightarrow{n} B$$

$$\angle 1 = \angle 2$$
 ( $\angle CAE = \angle BAE$ )

#### Свойства биссектрисы треугольника

Биссектрисы треугольника пересекаются в одной точке (центре вписанной окружности).

Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

$$\frac{a}{b} = \frac{n}{m}$$





Прямая a- серединный перпендикуляр  $O \in a \quad OC = OB \quad a \perp BC$ 

#### Свойство серединных перпендикуляров

Серединные перпендикуляры пересекаются в одной точке (центре описанной окружности)

 $MN- cредняя \ линия \ {\color{red} \Delta ABC}$  точка M - середина AB, N – середина BC

#### Свойство средней линии треугольника

$$MN \parallel AC; \quad MN = \frac{1}{2}AC$$

Средняя линия параллельна одной из сторон и равна её половине.

## ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

| Основные соотношения в прямоугольном треугольнике                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| C b h a a c a B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Теорема Пифагора $c^2 = a^2 + b^2$ Квадрат гипотенузы равен сумме квадратов катетов. | Пропорциональные отрезки $h^2 = a_c b_c$ $a^2 = a_c c$ $b^2 = b_c c$ $h = \frac{ab}{c}$ |  |
| B c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СИНУС<br>Отношение<br>противолежащего катета к<br>гипотенузе                         | $\sin \alpha = \frac{a}{c}$                                                             |  |
| $ \begin{array}{cccc}  & \alpha \\  & C \\  & C \end{array} $ $ \begin{array}{ccccc}  & \alpha \\  & A \end{array} $ $ \begin{array}{ccccc}  & A \\  & A \\ $ | КОСИНУС<br>Отношение прилежащего<br>катета к гипотенузе                              | $\cos \alpha = \frac{b}{c}$                                                             |  |
| c = AB – гипотенуза<br>a = BC – катет,<br>противолежащий к α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ТАНГЕНС<br>Отношение<br>противолежащего катета к<br>прилежащему                      | $tg \alpha = \frac{a}{b}$                                                               |  |
| b = AC – катет, прилежащий к углу α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | КОТАНГЕНС<br>Отношение прилежащего<br>катета к противолежащему                       | $\operatorname{ctg} \alpha = \frac{b}{a}$                                               |  |

#### Свойства прямоугольного треугольника

$$\angle A + \angle B = 90^{\circ}$$

Сумма острых углов в прямоугольном треугольнике равна 90°

$$\angle A = 30^{\circ} \Rightarrow a = \frac{1}{2}a$$

Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы

$$\angle A + \angle B = 90^{\circ}$$
  $\angle A = 30^{\circ} \Rightarrow a = \frac{1}{2}c$   $a = \frac{1}{2}c \Rightarrow \angle A = 30^{\circ}$ 

Если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°

$$m=\frac{1}{2}c=R$$

Медиана, проведенная к гипотенузе, равна её половине и является радиусом описанной окружности

#### Признаки равенства прямоугольных треугольников

По гипотенузе и катету



$$a = \mathbf{a_1} \quad c = \mathbf{c_1}$$

По катету и прилежащему острому углу



$$\angle A = \angle A_1$$
  $b = b_1$ 

По катету и противолежащему острому углу



$$\angle A = \angle A_1$$
  $a = a_1$ 

По гипотенузе и острому углу



$$\angle A = \angle A_1$$
  $c = c_1$ 

#### СООТНОШЕНИЯ МЕЖДУ ТРИГОНОМЕТРИЧЕСКИМИ ФУНКЦИЯМИ

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$tg \alpha ctg \alpha = 1$$

 $\sin^2 \alpha + \cos^2 \alpha = 1 - \text{ основное}$ тригонометрическое тождество

$$\sin (90 \, ^{\circ} - \alpha) = \cos \alpha$$

$$\cos (90 \, ^{\circ} - \alpha) = \sin \alpha$$

$$\sin (180 \, ^{\circ} - \alpha) = \sin \alpha$$

$$\cos (180 \, ^{\circ} - \alpha) = -\cos \alpha$$

формулы приведения

#### ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА НЕКОТОРЫХ УГЛОВ

| α             | 30°                  | 45°                  | 60°                  |
|---------------|----------------------|----------------------|----------------------|
| $\sin \alpha$ | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ |
| $\cos \alpha$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        |
| tg α          | $\frac{\sqrt{3}}{3}$ | 1                    | √3                   |

#### ЧЕТЫРЕХУГОЛЬНИКИ



$$S = rac{AC \cdot BD \cdot \sin \gamma}{2}$$
 AC, BD - диагонали

#### ПАРАЛЛЕЛОГРАММ



ABCD- параллелограмм

AB || CD BC || AD

Параллелограммом называется четырехугольник, у которого стороны попарно параллельны.

## СВОЙСТВА И ПРИЗНАКИ ПАРАЛЛЕЛОГРАММА



#### Свойства параллелограмма

1) AB=CD; BC=AD  $\angle A = \angle C; \angle B = \angle D$ 

В параллелограмме противоположные стороны и противоположные углы равны

- 2)  $AC \cap BD = O$ , AO = OC, BO = ODДиагонали параллелограмма делятся точкой пересечения пополам.
  - 3)  $\angle A + \angle B = 180^{\circ}$

В параллелограмме сумма углов, прилежащих к одной стороне, равна  $180^{0}$ 

$$d_1^2 + d_2^2 = a^2 + b^2 + c^2 + d^2$$
 где  $d_1 = AC$ ;  $d_2 = BD$  — диагонали;  $a = AD$ ;  $b = AB$ ;  $c = BC$ ;  $d = CD$  — стороны

5) P = 2(a + b) – периметр параллелограмма,

где a = AD; b = AB

#### Признаки параллелограмма

1)  $(AB \parallel CD; AB = CD) \Longrightarrow (ABCD$ параллелограмм)

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм.

2)  $(AB = CD; BC = AD) \Longrightarrow (ABCD$ параллелограмм)

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм

3) (AO = OC; BO = OD,где  $O = AC \cap BD$ )  $\Longrightarrow$  (ABCDпараллелограмм)

Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник параллелограмм

### ПЛОЩАДЬ ПАРАЛЛЕЛОГРАММА

S = ah, где a = AD основание h = BH - высота

 $S = ab \cdot \sin \alpha$ . где a = AD, b = AB,  $\angle a = \angle BAD$ 

 $S = \frac{AC \cdot BD \cdot \sin \angle AOB}{AOB}$ 

 $S = 4 \cdot S_{\Lambda AOB}$ 

## ЧАСТНЫЕ СЛУЧАИ ПАРАЛЛЕЛОГРАММА

| Вид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Свойства                                                                                                                                                                                                | Формулы                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ABCD$ — прямоугольник — это параллелограмм, у которого все углы прямые $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$ В $d_1$ $d_2$ D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $m{d_1} = m{d_2}$ Диагонали прямоугольника равны.                                                                                                                                                       | $S=ab$ $S=ab$ $S=\frac{{d_1}^2\sin y}{2}-$ площадь $P=2(a+b)$ - периметр $d_1{}^2=a^2+b^2$ где $d_1,d_2-$ диагонали, $a,b-$ стороны прямоугольника                                |
| ABCD - ромб - это параллелограмм, у которого все стороны равны $AB = BC = CD = AD$ $B$ $AD$ | ∠1=∠2, ∠3=∠4,                                                                                                                                                                                           | $S = a^2 \sin \alpha$ $S = \frac{d_1 d_2}{2}$ - площадь $P = 4a$ - периметр $d_1^2 + d_2^2 = 4a^2$ где $d_1$ , $d_2$ - диагонали, $a$ - сторона ромба, $\alpha$ - угол ромба      |
| ABCD — квадрат - это прямоугольник, у которого все стороны равны $AB = BC = CD = AD$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $d_1 = d_2$ $d_1 \perp d_2$ Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам. $\angle A = \angle B = \angle C = \angle D = 90^\circ$ | $S=a^2-$ площадь $S=rac{{d_1}^2}{2}$ $S=rac{1}{2}Pr$ , где $r-$ радиус вписанной окружности $P=4a$ - периметр $d_1=a\sqrt{2}$ где $d_1, d_2$ - диагонали, $a-$ сторона квадрата |

#### ТРАПЕЦИЯ



#### ОКРУЖНОСТЬ

Окр. (O; r)

т. О – центр окружности

OK = OB = OA = r -радиус

AB = d -диаметр

b – касательная

АС – хорда

MN - секущая

АК - дуга окружности

$$d = 2r$$

 $C=2\pi r$  - длина окружности

$$C = \pi d$$

$$L = \frac{r \pi a}{180^\circ}$$
 - длина дуги



**АВ** - дуга окружности

∠AOB - центральный угол

$$\angle AOB = \widecheck{AB}$$

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается.

**∠**ACB – вписанный угол

$$\angle ACB = \frac{\overline{AB}}{2}$$

Вписанный угол измеряется половиной дуги, на которую опирается.

опирается.
$$\angle ACB = \frac{\angle AOB}{2}, \text{ если } \overrightarrow{AB} \text{ меньше}$$

полуокружности



Вписанные углы, опирающиеся на одну и ту же дугу, равны.



Вписанный угол, опирающийся на полуокружность – прямой.



#### ПЛОЩАДЬ



## СВОЙСТВА ОКРУЖНОСТИ И ЕЁ ЭЛЕМЕНТОВ



AT — касательная AB; AX — секущие  $AT^2 = AX \cdot AY$   $AT^2 = AB \cdot AC$ 



AM, AN – касательные M, N – точки касания AM = AN ∠1 = ∠2; ∠3 = ∠4

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.



#### ВПИСАННАЯ ОКРУЖНОСТЬ



В любой треугольник можно вписать окружность.

Её центр – точка пересечения биссектрис треугольника.

$$r = \frac{2S}{a+b+c}$$
 - радиус вписанной окружности

a, b, c — стороны треугольника S — площадь треугольника



В выпуклый четырехугольник можно вписать окружность, только если:

$$a + c = b + d$$
,

где a, b, c, d- стороны четырехугольника

#### ОПИСАННАЯ ОКРУЖНОСТЬ



Около любого треугольника можно описать окружность.

Её центр – точка пересечения серединных перпендикуляров к сторонам треугольника.

$$R = \frac{abc}{4S}$$
 - радиус описанной окружности

a, b, c — стороны треугольника S — площадь треугольника



Около выпуклого четырехугольника можно описать окружность, только если:

$$\angle A + \angle C = \angle B + \angle D = 180^{\circ}$$

#### ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ

*Правильным многоугольником* называется выпуклый многоугольник, у которого все углы равны и все стороны равны.







$$lpha_n = rac{n-2}{n} \cdot 180^{\circ} - \,$$
вычисление угла

многоугольника

$$a_n = 2R \sin \frac{180^{\circ}}{n}$$
 — сторона

многоугольника

$$S = \frac{1}{2} \cdot Pr$$
 - площадь

$$r = R \cos \frac{180^{\circ}}{n}$$

n — число сторон

*R* – радиус описанной окружности

r – радиус вписанной окружности

P – периметр

|            | треугольник                | квадрат                    | шестиугольник              |
|------------|----------------------------|----------------------------|----------------------------|
|            | α                          |                            | α                          |
| <b>∠</b> α | 60°                        | 90°                        | 120°                       |
| а          | $a_3 = R\sqrt{3}$          | $a_4 = R\sqrt{2}$          | $a_6 = R$                  |
| R          | $R = \frac{a_3}{\sqrt{3}}$ | $R = \frac{a_4}{\sqrt{2}}$ | $R=a_6$                    |
| r          | $r = \frac{1}{2}R$         | $r = \frac{\sqrt{2}}{2} R$ | $r = \frac{\sqrt{3}}{2} R$ |

## ПРЯМОУГОЛЬНАЯ СИСТЕМА КООРДИНАТ

| Расстояние между точками                                                                    | $A(x_1; y_1)$ и $B(x_2; y_2)$ $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                                                                   |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Координаты $(x; y)$ середины отрезка $AB$ с концами $A(x_1; y_1)$ и $B(x_2; y_2)$           | $x = \frac{x_1 + x_2}{2}; \qquad y = \frac{y_1 + y_2}{2}$                                                                                                   |
| Общее уравнение прямой, перпендикулярной вектору $\vec{n}$ {a; b}                           | ax + by + c = 0                                                                                                                                             |
| Уравнение окружности с радиусом<br>R и с центром в точке (x <sub>0</sub> ; y <sub>0</sub> ) | $(x-x_0)^2 + (y-y_0)^2 = R^2$                                                                                                                               |
| Если $A(x_1; y_1)$ и $B(x_2; y_2)$ , то координаты вектора $\overrightarrow{AB}$ :          | $\overrightarrow{AB} \{x_2-x_1; y_2-y_1\}$                                                                                                                  |
| Сложение векторов                                                                           | $\vec{a}\{a_1; a_2\} + \vec{b}\{b_1; b_2\} = \vec{c}\{a_1 + b_1; a_2 + b_2\}$ $\vec{a}\{a_1; a_2\} - \vec{b}\{b_1; b_2\} = \vec{c}\{a_1 - b_1; a_2 - b_2\}$ |
| Умножение вектора $\{a_1; a_2\}$ на число $\lambda$                                         | $\{\overline{a_1;a_2}\}\lambda = \{\overline{\lambda a_1;\lambda a_2}\}$                                                                                    |
| Скалярное произведение векторов: $\vec{a}$ и $\vec{b}$                                      | $ec{a}\cdotec{b}= ec{a} \cdot ec{b} \cdot\cosarphi$ где $arphi$ - угол между векторами $ec{a}$ и $ec{b}$                                                    |
| Скалярное произведение векторов                                                             | $ec{m{a}}\{a_1;a_2\}$ и $ec{m{b}}\{b_1;b_2\}$ $ec{m{a}}\cdotec{m{b}}=a_1b_1+a_2b_2$                                                                         |
| Косинус угла между векторами: $\vec{a}\{a_1; a_2\}$ и $\vec{b}\{b_1; b_2\}$                 | $\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{ \vec{a}  \cdot  \vec{b} } = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$        |
| Необходимое и достаточное условие перпендикулярности векторов                               | $ec{m{a}}\{a_1;a_2\} \perp ec{m{b}}\{b_1;b_2\}$ $ec{m{a}}\cdotec{m{b}}=0$ или $a_1b_1+a_2b_2=0$                                                             |

#### Литература:

- 1. Математика: Справ. Материалы: Кн. для учащихся, М.: Просвещение, 2001-416 с.
- 2. Геометрия. 7 9 классы: учеб. для общеобразоват. учреждений/ (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.). 20-е изд.- М.: Просвещение, 2010.- 384 с.

Справочник составили:

учителя математики

Есикова Л.И. и Ушакова М.Б.

МБОУ СОШ № 11 п. РАЯКОСКИ