Projet Circuits Intégrés Radiofréquence Conception d'un LNA à 2.45 GHz en Technologie 0.35 μm AMS

Mohamed Hage Hassan Clément Cheung

12 Décembre 2017

Table des matières

Introduction				
1	Conception du LNA - Partie théorique			
	1.1	Calcul de la charge	3	
	1.2	Dimensionnement du transistor et calcul du réseau d'entrée	3	
2	Partie pratique			
	2.1	Simulation DC du transistor seul	4	
	2.2	Adaptation de la partie réelle de l'impédance d'entrée	5	
	2.3	Polarisation	8	
	2.4	Gain		
	2.5	Adaptation de la partie imaginaire de l'impédance d'entrée du LNA		
	2.6	Facteur de bruit		
Conclusion				
Références				

Introduction

L'amplificateur faible bruit constitue un élément essentiel dans de nombreuses architectures de recepteurs RF : il constitue normalement le premier bloc dans la chaîne de réception et doit se caractériser par un faible "Noise Figure", ainsi qu'une linéarité importante et une tolérance vis-à-vis de la puissance des signaux parasites de fortes puissance en entrée.

On étudie donc la topologie cascode du LNA qui est consiérée l'une des meilleurs par rapport au compromis entre une faible tension Vdd, stabilité et le facteur de bruit NF. L'étude sera menée sur la bonne adaptation du montage en entrée et sortie, augmentation du gain ainsi que la réduction de facteur de bruit.

1 Conception du LNA - Partie théorique

On essaye de concevoir l'amplificateur faible bruit (figure. 1)

Figure 1: Schéma de l'amplificateur faible bruit[1]

Le schéma comporte :

- 1. Circuit de polarisation du transistor M_1 pour avoir I_{DS0} voulu
- 2. Inductance de chock L_i pour adapter l'impédance d'entrée.
- 3. Étage cascode avec l'adaptation pour augmenter le gain du LNA ainsi de réduire l'effet Miller due à la capacité C_{gd} du transistor M_1 .
- 4. Circuit résonant parallèle RLC pour adapter l'impédance en sortie.

Le LNA doit respecter un cahier de charge bien défini :

- Gv = 20(26db), F = 1.5(1.76db), IIP3 = -10dbm
- $F_0 = 2.45GHz$
- $\gamma = 0.82$
- $C_{ox} = 5 \times 10^{-3} pF/\mu m^2$, $k_n = 80 \mu A/V^2$
- Courant de polarisation : $I_{DS0} = 1.5mA$
- Capacité en sortie $C_L = 1pF$
- $Q_e = 2$

1.1 Calcul de la charge

On cherche L_L pour résoner à 2.45GHz : Pour un circuit RLC parallèle, la fréquence de résonance est donnée par :

$$\omega_0 = \frac{1}{\sqrt{L_L C_L}} \implies L_L = \frac{1}{(2\pi F_0)^2 C_L}$$

Pour $F_0 = 2.45GHz$ et $C_L = 1pF$, on a $L_L = 4.21nH$.

Calcul de g_m :

Connaissant L_L et le facteur de bruit F, on cherche à retrouver la transductance g_m :

$$F = 1 + \frac{\gamma}{50gm} \frac{1}{Q_e^2}$$

$$\implies gm = \frac{\gamma}{50(F-1)Q_e^2}$$

Ce qui nous donne $g_m = 8.2 \times 10^{-3} \Omega^{-1}$, pour $Q_e = 2$, F = 1.5 et $\gamma = 0.82$.

Calcul de R_L :

Pour $G_v = 20$, $g_m = 8.2 \times 10^{-3} \Omega^{-1}$, et $Q_e = 2$, on a :

$$G_v = g_m R_L Q_e \implies R_L = \frac{G_v}{g_m Q_e} = 1.219 k\Omega$$

1.2 Dimensionnement du transistor et calcul du réseau d'entrée

Capacité totale C_i // C_{gs} :

Le coefficient de qualité Q_e pour un circuit RC série :

$$Q_e = \frac{||X||}{R} \qquad X = \frac{1}{\omega_0 C_{tot}}$$

$$\implies C_{tot} = \frac{1}{\omega_0 Q_e 50} = 0.64 pF$$

Pour la partie suivante, on ne considère que le transistor M_1 :

La transductance g_m d'un MOSFET séxprime par :

$$g_m = 2\sqrt{K_n \left(\frac{W}{L}\right)_{(M_1)} I_{DS0}}$$

$$\implies \left(\frac{W}{L}\right)_{(M_1)} = \frac{g_m^2}{4k_n I_{DS0}} = 140.08$$

Pour la technologie AMS 0.35 μ m, où $L=L_{min}=0.35\mu m$, on retrouve $W=49.02\mu m$.

Connaissant W, c'est possible de calculer la capacité parasite C_{gs} entre la source et le gate.

$$C_{gs} = \frac{1}{2}C_{ox}WL = 42.89fF$$

Calcul de C_i , L_S :

Sachant que C_{tot} de l'entrée est formée par C_i et la capacité parasite C_{gs} , on a :

$$C_i = C_{tot} - C_{gs} = 0.64 \times 10^{-12} - 42.89 \times 10^{-15} = 0.597 \times 10^{-12} pF$$

En se basant sur [2], on sait que l'élement L_S du circuit d'adaptation en entrée doit être adapté à 50Ω :

$$L_S \omega_T = 50 \implies L_S = \frac{50}{\omega_T} = \frac{50}{(g_m)_{M_1}} C_{gs} = 0.26nH$$

Calcul de la tension de dépassage V_{OD} , L_i :

La transductance du MOSFET possède plusieurs expressions :

$$g_m = 2\sqrt{K_n \left(\frac{W}{L}\right)_{(M_1)} I_{DS0}} = \frac{2I_{DS0}}{V_{gs} - V_t}$$

On peut remonter à la tension de dépassage : $V_{OD} = V_{gs} - V_{/t}$:

$$V_{gs} - V_t = \frac{2I_{DS0}}{g_m} = 0.36V$$

Pour L_i , on a

$$\omega_0 = \frac{1}{\sqrt{(L_g + L_s)C_{gs}}} \implies L_g + L_S = \frac{1}{\omega_0^2 C_{gs}}$$

Ce qui nous donne:

$$L_i = L_g = \frac{1}{\omega_0^2 C_{gs}} - L_S = 98.2nH$$

2 Partie pratique

2.1 Simulation DC du transistor seul

On fait la simulation DC du transistor tout seul, cela nous donne :

Figure 2: Schéma et Simulation du circuit $I_{DS} = f(V_{gs})$

On fait une simulation en faisant varier (sweep) le paramètre V_{gs} afin de trouver I_{ds0} répondant au cahier des charges. On trouve que pour $I_{DS0} = 1.5mA$ indiqué dans le cahier de charge, on prend $V_{gs} = 871.25mV$.

En effectuant une impression des résultats pour les valeurs de la simulation DC (operating point) :

- $V_{gs} = 0.861V$
- $V_t = 0.5563V$
- $V_{OD} = V_{gs} V_t = 0.308V$
- $g_m = 7.796m\Omega$
- $I_{ds} = 1.5mA$
- $C_{qs} = 46.37nF$

2.2 Adaptation de la partie réelle de l'impédance d'entrée

On réalise le schéma suivant pour vérifier l'adaptation en entrée :

Figure 3: Schéma de l'amplificateur faible bruit pour l'adaptation en entrée

On effectue une simulation SP en entrée en insérant un port, et on cherche à trouver les paramètres S_{11} en Z-Smith, DB20 et $Re\{Z_{11}\}$.

Figure 4: Abaque de Smith pour \mathcal{S}_{11} en entrée

L'adaptation en entrée n'est pas réalisée, on a $Im\{Zin\}$ non null et $Re\{Zin\}$ différent de 50Ω .

Figure 5: S_{11} en DB20 et $Re\{Z_{11}\}$ respectivement

On peut voir qu'il faut modifier la valeur de L_S pour établir la bonne adaptation. En effectuant une simulation paramétrique avec L_S en paramètre pour arriver à $Re\{Z_{11}\}=50\Omega$ en entrée, on a :

Figure 6: Simulation pour arriver à $Re\{Z_{11}=50\Omega\}$ en entrée

Ce qui nous donne $L_S=3.6461nH$ pour une bonne adaptation.

On reffectue une simulation pour S_{11} en entrée pour Z-smith, DB20 et $Re\{Z_{11}\}$:

Figure 7: Abaque de Smith pour \mathcal{S}_{11} en entrée pour une bonne adaptation

Figure 8: S_{11} en DB20 et $Re\{Z_{11}\}$ respectivement, en établissant l'adaptation en entrée

2.3 Polarisation

On ajoute le transistor $M_3,\,R_{pol}$ ainsi que R_{RF} :

Figure 9: Schéma de l'amplificateur faible bruit avec une polarisation non idéale

Pour garder la même valeur de $V_{OD}=0.861V$, on effectue une simulation paramétrique pour la valeur de R_{pol} , et en regarde la tension à l'entrée de M_1 :

Figure 10: Simulation en prenant R_{pol} en paramètre

On retrouve $R_{pol}=1.833k\Omega$ pour $V_{OD}=0.861V$. Note sur R_{Rf} : La résistance remplace une inductance de choke sachant qu'on n'a pas de courant qui passe au niveau des transistors M_1 et M_3 donc on peut mettre une résistance (pas de chute de tension).

L'ajout d'un circuit de polarisation a l'effet de modifier l'adaptation en entrée : il faut remodifier L_S pour adapter aux changements :

En reffectuant les simulation de S_{11} en entrée, on peut bien vérifier l'adaptation selon les anciennes valeurs : $db_{20}(S_{11}) = -7.5db$ et $Re\{S_{11}\} = 50\Omega$.

Figure 11: Valeurs de S_{11} et $Re\{S_{11}\}$ pour une simulation en prenant L_S en paramètre

On retrouve une nouvelle valeur de L_S : $L_S = 3.842nH$.

2.4 Gain

En effectue une simulation SP selon 2 ports, pour s'en faire, on ajoute un port à la sortie du LNA:

Figure 12: Schéma de l'amplificateur faible bruit complet avec un port en sortie

On effectue une simulation en cherchant S_{21} :

Figure 13: Simulation SP de $db_{20}(S_{21})$ en sortie du LNA

On voit qu'il y a un décalage en fréquence. Celui-ci est due à la valeur de L_L . On cherche L_L pour obtenir une adaptation maximale, en effectuant un sweep sur ses valeurs.

Figure 14: Simulation SP de $db_{20}(S_{21})$ en fonction d'une variation ${\cal L}_L$

Avec cette valeur de $L_L=3.9706nH,$ on arrive à retrouver le S_{21} max :

Figure 15: Simulation SP de $db_{20}(S_{21})$ pour une bonne valeur de \mathcal{L}_L

Calcul de la valeur de $G_v(dB)$

On a :

$$S_{21} = \frac{\sqrt{\frac{V_{out}^2}{R_{out}}}}{\sqrt{\frac{V_{in}^2}{R_{in}}}} = \frac{V_{out}}{V_{in}} \frac{\sqrt{\frac{1}{R_{out}}}}{\sqrt{\frac{1}{R_{in}}}} = \frac{V_{out}}{V_{in}} \sqrt{\frac{R_{in}}{R_{out}}}$$

$$\implies 20log(S_{21}) = 20log(G_v) + 20log\bigg(\bigg(\frac{R_{in}}{R_{out}}\bigg)^{0.5}\bigg)$$

d'ou

$$G_v\big|_{db} = S_{21}\big|_{db} - 10log\bigg(\frac{R_{in}}{R_{out}}\bigg)$$

ou même :

$$G_v\big|_{db} = S_{21}\big|_{db} + 10log\bigg(\frac{R_{out}}{R_{in}}\bigg)$$

On arrive à obtenir : $G_v\big|_{db}=22.5dB\implies$ On a une différence de 26-22.5=3.45db

Figure 16: Simulation SP de db_{20} (G_T) et (G_P)

On peut retrouver les expressions de G_T et G_P :

$$Gp = \frac{P_L}{P_{in}} = \frac{|S_{21}|^2 (1 - |\Gamma_L|^2)}{(1 - S_{22}\Gamma_L)^2 (1 - |\Gamma_{in}|^2)}$$

et:

$$G_T \ = \ \frac{P_L}{P_{av}} \ = \ \frac{|S_{21}|^2 \left(1 - |\Gamma_L|^2\right) \left(1 - |\Gamma_S|^2\right)}{|1 - \Gamma_{in} \Gamma_S|^2 |1 - S_{22} \Gamma_L|^2}$$

Quand on est bien adapté en entrée et en sortie, on retrouve $G_T=G_P.$

Figure 17: Vérification du gain en par une simulation transiant

Pour la simulation transitoire, on met une tension d'entrée $V_{in}=0.1V$ de fréquence f=2.45GHz. On a selon fig. 17 , Vout=1.3V. Ce qui implique que :

$$G_V = \frac{V_{out}}{V_{in}} = \frac{1.3}{0.1} = 13$$

d'ou $G_V = 20log(13) = 22.5dB$.

2.5 Adaptation de la partie imaginaire de l'impédance d'entrée du LNA

On ajoute L_i et on effectue un sweep pour f=2.45GHz en fonction de la valeur de L_i pour obtenir une valeur où $G_T=G_P$:

Figure 18: Sweep des valeurs de L_i pour arriver à $G_T = G_P$

On retrouve $L_i = 2.7784nH$.

On vérifie ce résultat en fonction de la fréquence :

Figure 19: Simulation SP de G_T et G_P

On vérifie aussi la bonne adaptation (pour S_{11}) :

Figure 20: Simulation SP de G_T et G_P

Fonction de L_i : Li sert à adapter l'entrée en annulant la partie imaginaire de Zin. Par rapport au S_{11} : Si on est parfaitement adapté à 50Ω pour f=2.45GHz, S_{11} tends vers $-\infty$, il n'y a aucun retour d'onde, toute la puissance est transmise.

2.6 Facteur de bruit

Facteur du bruit :

Figure 21: Simulation en db_{10} du Noise factor

On retrouve que le facteur de bruit c'est NF=2.98dB pour f=2.45GHz. Point de compression à 1 db :

Figure 22: Simulation en db_{10} du point de compression 1db

On trouve qu'il faut redimensioner le transistor M_1 pour arriver à un NF réduit : \implies On augmente le W à $150~\mu m$.

il faut refaire une adaptation en entrée pour 1.76 dB (Sachant qu'on a augmenté le W). Pour $W=150\mu m,$ on retrouve $I_{DS0}=4.519mA$ Sachant que :

$$I_{DS} = \frac{1}{2} C_{ox} \mu_n \frac{W}{L} (V_{GS} - V_{Th})^2$$

$$\implies \text{Si } W' = 3W \implies I'_{DS0} = 3I_{DS0} = 3 \times 1.5 mA$$

Figure 23: Simulation du NF: On arrive à un NF réduit pour une fréquence plus basse

On effectue une simulation DC operating point pour retrouver la valeur de I_{DS} . On retrouve bien une valeur de I_{DS} anticipée.

qmoverid	5.192
i1	4.519r
i3	-4.519r
i4	0
ibd	0
ibs	0
ibulk	0
id	4.519n
ids	4.519n
iqb	0
iged	0
. *	_

Figure 24: Simulation DC

On refait une simulation SP pour vérifier le NF = 1.76dB ainsi que les gains GT et GP pour f = 2.45GHz. On retrouve qu'on est plus adapté en entrée pour une valeur différente de W : il faut refaire l'adaptation, en réglant L_i, L_S .

On passe à $L_i = 6.02nH$ pour annuler la partie imaginaire de l'impédance en entrée, $L_s = 1.68nH$, pour arriver à un $Re\{Z_e\} = 50$.

On arrive a une bonne adaptation ainsi qu'un Gain > 6db, mais on est décaler en fréquence, on fait une adaptation de L_L , en effectuant un sweep de L_L pour retrouver un max de $G_T \implies L_L = 3.8nH$.

Figure 25: Simulation

Conclusion

Ce TP de conception d'un LNA nous a permis de reprendre quelques éléments d'adaptation vus en TP1 tout en approfondissant l'étude avec des simulations plus avancées (harmonic balance, simulations de bruit) afin de déterminer le gain, le point de compression et le NF. Nous avons également pu observer les gains GT et GP afin de déterminer l'adaptation en entrée.

Pour la partie différentielle, nous avons polarisé les transistors mais nous n'avons pas pu simuler correctement tout le montage.

Références

- [1] Conception d'un LNA à 2.45 GHz en Technologie 0.35 μm AMS Énoncé de TP Institut Polytechnique de Grenoble Phelma
- [2] Radio Frequency Integrated Circuits Course
 Sylvain Bourdel, Florence Podevin, Institut Polytechnique de Grenoble Phelma
- [3] Conception d'un circuit en L à l'aide de l'abaque de Smith http://f5zv.pagesperso-orange.fr/RADIO/RM/RM23/RM23p/RM23p03.html
- [4] Design of Analog CMOS Integrated Circuits, 2nd Edition Behzad Razavi, McGraw-Hill Education
- [5] Conception de circuits intégrés analogique Laurent Aubard, Institut Polytechnique de Grenoble - Phelma