Lecture 1c. Linear Algebra Review

COMP90051 Statistical Machine Learning

Sem2 2020 Lecturer: Ben Rubinstein

This lecture

- About COMP90051
- Review: Probability theory
- Review: Linear algebra
- Review: Sequences and limits

Vectors

Link between geometric and algebraic interpretation of ML methods

What are vectors?

Suppose $u = [u_1, u_2]'$. What does u really represent?

Ordered set of numbers $\{u_1, u_2\}$

Cartesian coordinates of a point

A direction u_2

Dot product: Algebraic definition

- Given two m-dimensional vectors ${\bf u}$ and ${\bf v}$, their dot product is ${\bf u}\cdot{\bf v}\equiv{\bf u}'{\bf v}\equiv\sum_{i=1}^m u_iv_i$
 - * E.g., weighted sum of terms is a dot product x'w
- If k is a scalar, a, b, c are vectors then

$$(k\mathbf{a})'\mathbf{b} = k(\mathbf{a}'\mathbf{b}) = \mathbf{a}'(k\mathbf{b})$$
$$\mathbf{a}'(\mathbf{b} + \mathbf{c}) = \mathbf{a}'\mathbf{b} + \mathbf{a}'\mathbf{c}$$

Dot product: Geometric definition

- Given two m-dimensional Euclidean vectors u and v, their dot product is $u \cdot v \equiv u'v \equiv ||u|| ||v|| \cos \theta$
 - * $\|u\|$, $\|v\|$ are L_2 norms for u,v also written as $\|u\|_2$
 - * θ is the angle between the vectors

The scalar projection of \boldsymbol{u} onto \boldsymbol{v} is given by $u_{\boldsymbol{v}} = \|\boldsymbol{u}\|\cos\theta$

Thus dot product is $u'v = u_v ||v|| = v_u ||u||$

Geometric properties of the dot product

- If the two vectors are orthogonal then $m{u}'m{v}=0$
- If the two vectors are parallel then $m{u}'m{v} = \|m{u}\|\|m{v}\|$, if they are anti-parallel then $m{u}'m{v} = -\|m{u}\|\|m{v}\|$
- $u'u=\|u\|^2$, so $\|u\|=\sqrt{u_1^2+\cdots+u_m^2}$ defines the Euclidean vector length

Hyperplanes and normal vectors

- A <u>hyperplane</u> defined by parameters w and b is a set of points x that satisfy x'w + b = 0
- In 2D, a hyperplane is a line: a line is a set of points that satisfy $w_1x_1 + w_2x_2 + b = 0$

A <u>normal vector</u> for a hyperplane is a vector perpendicular to that hyperplane

Hyperplanes and normal vectors

- Consider a hyperplane defined by parameters w and
 b. Note that w is itself a vector
- Lemma: Vector w is normal to the hyperplane
- Proof sketch:
 - * Choose any two points u and v on the hyperplane. Note that vector (u-v) lies on the hyperplane
 - * Consider dot product $(\boldsymbol{u} \boldsymbol{v})'\boldsymbol{w} = \boldsymbol{u}'\boldsymbol{w} \boldsymbol{v}'\boldsymbol{w}$ = $(\boldsymbol{u}'\boldsymbol{w} + b) - (\boldsymbol{v}'\boldsymbol{w} + b) = 0$
 - * Thus (u v) lies on the hyperplane, but is perpendicular to w, and so w is a vector normal

Example in 2D

- Consider a line defined by w_1 , w_2 and b
- Vector $\mathbf{w} = [w_1, w_2]'$ is a normal vector

L_1 and L_2 norms

- Throughout the subject we will often encounter norms that are functions $\mathbb{R}^n \to \mathbb{R}$ of a particular form
 - Intuitively, norms measure lengths of vectors in some sense
 - Often component of objectives or stopping criteria in optimisation-for-ML
- More specifically, we will often use the L_2 norm (aka Euclidean distance)

$$\|\boldsymbol{a}\| = \|\boldsymbol{a}\|_2 \equiv \sqrt{a_1^2 + \dots + a_n^2}$$

And also the L₁ norm (aka absolute norm or Manhattan distance)

$$\|\boldsymbol{a}\|_1 \equiv |a_1| + \dots + |a_n|$$

Vector Spaces and Bases

Useful in interpreting matrices and some algorithms like PCA

Linear combinations, Independence

- For formal definition of vector spaces:
 https://en.wikipedia.org/wiki/Vector space#Definition
- A linear combination of vectors $v_1, \ldots, v_k \in V$ some vector space, is a new vector $\sum_{i=1}^k a_i v_i$ for some scalars a_1, \ldots, a_k
- A set of vectors $\{v_1, \dots, v_k\} \subseteq V$ is called linearly dependent if one element v_j can be written as a linear combination of the other elements
- A set that isn't linearly dependent is linearly independent

Spans, Bases

- The span of vectors $v_1, \dots, v_k \in V$ is the set of all obtainable linear combinations (ranging over all scalar coefficients) of the vectors
- A set of vectors $\{v_1, \dots, v_k\} \subseteq V$ is called a basis for a vector subspace $V' \subseteq V$ if
 - 1. The set is linearly independent; and
 - 2. Every $v \in V'$ is a linear combination of the set.
- An orthonormal basis is a basis in which each
 - Pair of basis vectors are orthogonal (zero dot prod); and
 - Basis vector has norm equal to 1.

Matrices

Some useful facts for ML

Basic matrices

- See more: https://en.wikipedia.org/wiki/Matrix (mathematics)
 - Including matrix-matrix and matrix-vector products
- A rectangular array, often denoted by upper-case, with two indices first for row, second for column
- Square matrix has equal dimensions (numbers of rows and columns)
- Matrix transpose A' or A^T of m by n matrix A is an n by m matrix with entries $A'_{ij} = A_{ji}$
- A square matrix A with A=A' is called symmetric
- The (square) identity matrix I has 1 on the diagonal, 0 off-diagonal
- Matrix inverse A⁻¹ of square matrix A (if it exists) satisfies A⁻¹A=I

Matrix eigenspectrum

- Scalar, vector pair (λ, v) are called an eigenvalueeigenvector pair of a square matrix **A** if $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$
 - Intuition: matrix A doesn't rotate v it just stretches it
 - Intuition: the eigenvalue represents stretching factor
- In general eigenvalues may be zero, negative or even complex (imaginary) – we'll only encounter reals

Spectra of common matrices

- Eigenvalues of symmetric matrices are always real (no imaginary component)
- A matrix with linear dependent columns has some zero eigenvalues (called rank deficient) → no matrix inverse exists

Positive (semi)definite matrices

- A symmetric square matrix **A** is called positive semidefinite if for all vectors **v** we have $\mathbf{v}'\mathbf{A}\mathbf{v} \geq 0$.
 - Then A has non-negative eigenvalues
 - * For example, any $\mathbf{A} = \mathbf{X}'\mathbf{X}$ since: $\mathbf{v}'\mathbf{X}'\mathbf{X}\mathbf{v} = \|\mathbf{X}\mathbf{v}\|^2 \ge 0$
- Further if $\mathbf{v'Av} > 0$ holds as a strict inequality then **A** is called positive definite
 - * Then A has (strictly) positive eigenvalues

Summary

- Vectors: Vector spaces, dot products, independence, hyperplanes
- Matrices: Eigenvalues, positive semidefinite matrices

Next time: Sequences and limits review/primer