

Do captions in different languages produce different images?: Efficiently training Multilingual Diffusion

Aadit Deshpande, Liam Walker, Sreenidhi Ganachari

Dataset and Code:

https://github.com/Aadit3003/genai-multilingual-tti

Text-to-Image Challenges

- Existing T2I diffusion models are often limited to English, restricting accessibility and global adoption.
- Our implementation of AltDiffusion integrates a multilingual text encoder and fine-tuned U-net into a pre trained English Stable diffusion model to support multiple languages.

Golden eagle **soaring** over snowy peaks

Stage1: **Teacher Learning** (Text Encoder)

Multilingual Training

Stage2: Concept Alignment (U-Net with LoRA)

Stage 1: Teacher Learning Enhance language capability of

- Teacher-Learning (25k FR/DE

Stage 2: Concept Alignment Align U-Net with new encoder embeddings

- Add Adapters to U-Net
- Inject LoRA trainable matrices: in the U-Net: K, Q, V, Out_Proj
- Fine-tune with LoRA rank 4
- 15000 train steps on Train Set (6k) with EN/DE/FR

CLIPText Encoder CLIP ViT-H/14 model

- sentences with parallel EN transl.)
- Minimize MSE Loss
- Freeze the Text Encoder, VAE

Qualitative Analysis

Complex Subordinate **Clauses:** Subordinate clauses (blue christmas sweater, near the fireplace) are hard for SD2.1 to combine, especially in French

Stable

Diffusion 2.1

Multilingual Diffusion

Prompt - A majestic Bengal tiger with vibrant orange fur, **stalking**

through a lush tropical rainforest dappled with sunlight

Information

Loss:

For French

and German,

SD2.1

Experiments and Results

Evaluation Dataset Creation

- Subset of WIT Dataset
- Wikipedia-based Image Text
- 3 languages: English (EN), French (FR), German (DE)
- Filtering Steps for high quality
- Word Count, Image Size
- CLIP Scores >= 20
- Train/Test Splits: 6k vs 1.5k

Evaluate Diffusion Models

- Cascading Monolingual
 - NLLB-200 (translate) then
 - Stable Diffusion 2.1 (generate)
- End-to-end FT Multilingual
- 512x512 inference resolution
- Classifier-free Guidance Scale 7.5 (50 DDIM steps)

NLLB-200 + Stable Diffusion v2.1

Language	FID(↓)	IS(↑)
EN 💨	1.08	11.33
DE 🛑	1.16	11.45
FR ()	1.30	11.17

Our Multilingual Diffusion

Language	FID(↓)	IS(↑)
EN 🙀	0.99	11.72
DE 🛑	1.04	12.42
FR ()	0.95	11.63

Conclusion

- Our multilingual end-to-end model outperforms vanilla Stable Diffusion in FID and IS score across FR and DE, while **still improving on EN**.
- Our method better captures nuances likely to be "lost in translation"

References

- Ye, Fulong, et al. "Altdiffusion: A multilingual text-to-image diffusion model." *Proceedings of the AAAI* Conference on Artificial Intelligence. Vol. 38. No. 7. 2024.
- Carlsson, Fredrik, et al. "Cross-lingual and multilingual clip." Proceedings of the thirteenth language resources and evaluation conference. 2022.