Turing Machines

Design a TM for each of the following languages

1.
$$L = \{a^nb^n \mid n \ge 0\}$$

Let $w = aaabbb$

We define a TM which converts the given string to a smaller one such that it accepts the smaller string only if the initial string is valid.

It can be done by converting w = aaabbb to w = aabb by removing the first 'a' and the last 'b'. We continue this process and the string is accepted if $w = \varepsilon$ at the end.

$$\begin{split} M &= (Q, \Sigma, \pmb{\tau}, \delta, \, q_0, \, B, \, F \} \\ Q &= \{q_0, \, q_1, \, q_2, \, q_3, \, q_4\}, \, \Sigma = \{a, \, b\}, \, \pmb{\tau} = \{a, \, b, \, B\}, \, F = \{q_4\} \\ q_0 \text{ is start state, } B \text{ is Blank tape symbol} \end{split}$$

δ	a	b	В
\rightarrow q $_0$	(q_1, B, R)	-	(q4, B, R)
qı	(q_1, a, R)	(q_1, b, R)	(q_2, B, L)
q ₂	-	(q ₃ , B, L)	-
q3	(q ₃ , a, L)	(q_3, b, L)	(q_0, B, R)
*q4	-	-	-

ID for w = aaabbb

2. $L = \{a^n b^n c^n \mid n \ge 1\}$

$$\begin{split} M &= (Q, \Sigma, \tau, \delta, \, q_0, \, B, \, F \} \\ Q &= \{q_0, \, q_1, \, q_2, \, q_3, \, q_4, \, q_5, \, q_6, \, q_7 \}, \, \Sigma = \{a, \, b\}, \, \tau = \{a, \, b, \, B, \, X, \, Y \}, \, F = \{q_7\} \\ q_0 \text{ is start state, } B \text{ is Blank tape symbol} \end{split}$$

δ	a	b	c	X	Y	В
\rightarrow q $_0$	(q_1, B, R)	-	-	(q_6, B, R)	-	-
qı	(q_1, a, R)	(q_3, X, R)	-	(q_2, X, R)	-	-
q ₂	-	(q_3, X, R)	-	(q_2, X, R)	-	-
q ₃	-	(q_3, b, R)	(q_5, Y, L)	ı	(q_4, Y, R)	-
q4	-	-	(q_5, Y, L)	-	(q_4, Y, R)	-
q ₅	(q ₅ , a, L)	(q_5, b, L)	-	(q_5, X, L)	(q_5, Y, L)	(q_0, B, R)
q ₆	-	-	-	(q_6, B, R)	(q_6, B, R)	(q_7, B, R)
* q 7	-	-	-	-	-	-

ID for w = aabbcc

 $Bq_0aabbcc \vdash Bq_1abbcc \vdash aq_1bbcc \vdash aXq_3bcc \vdash aXbq_3cc \vdash aXq_5bYc \vdash aq_5XbYc \vdash Bq_5aXbYc \vdash Bq_5BaXbYc \vdash Bq_0aXbYc \vdash Bq_1XbYc \vdash Xq_2bYc \vdash XXq_3Yc \vdash XXYq_4c \vdash XXq_5YY \vdash Xq_5XYY \vdash Bq_5XXYY \vdash Bq_5BXXY \vdash Bq_0XXYY \vdash Bq_6XYY \vdash Bq_6YY \vdash Bq_6Y \vdash Bq_6B \vdash Bq_7B$

3.
$$L = \{ww^r \mid w \in \{a, b\}\}$$

$$\begin{split} M &= (Q, \Sigma, \pmb{\tau}, \delta, \, q_0, \, B, \, F \} \\ Q &= \{q_0, \, q_1, \, q_2, \, q_3, \, q_4, \, q_5, \, q_6 \}, \, \Sigma = \{a, \, b\}, \, \pmb{\tau} = \{a, \, b, \, B\}, \, F = \{q_6\} \\ q_0 \text{ is start state, } B \text{ is Blank tape symbol} \end{split}$$

δ	a	b	В
\rightarrow q $_0$	(q_1, B, R)	(q_3, B, R)	(q_6, B, R)
q1	(q_1, a, R)	(q_1, b, R)	(q_2, B, L)
q ₂	(q_5, B, L)	-	-
q3	(q ₃ , a, R)	(q_3, b, R)	(q ₄ , B, L)
q ₄	-	(q5, B, L)	-
q5	(q ₅ , a, L)	(q_5, b, L)	(q_0, B, R)
* q 6	-	-	-

Let w = abaaba

4.
$$L = \{0^n 1^{n+m} 0^m \mid m, n \ge 1\}$$

Let
$$w = 001110$$

We will now look at 2 ways of solving this problem.

The usual approach:

$$M = (Q, \Sigma, \tau, \delta, q_0, B, F)$$

$$Q = \{q_0,\,q_1,\,q_2,\,q_3,\,q_4,\,q_5,\,q_6,\,q_7\},\, \Sigma = \{0,\,1\},\, \boldsymbol{\tau} = \{0,\,1,\,X,\,Y,\,B\},\, F = \{q_7\}$$

q₀ is start state, B is Blank tape symbol

δ	0	1	X	Y	В
\rightarrow q $_0$	(q_1, X, R)	-	-	(q_3, Y, R)	-
qı	$(q_1, 0, R)$	(q_2, Y, L)	-	(q_1, Y, R)	-
q ₂	$(q_2, 0, L)$	-	(q_0, X, R)	(q_2, Y, L)	-
q3	-	(q_4, Y, R)	(q_6, X, R)	(q_3, Y, R)	-
q ₄	(q5, X, L)	(q4, 1, R)	(q4, X, R)	-	-
q5	-	$(q_5, 1, L)$	(q_5, X, L)	(q_3, Y, R)	-
q 6	-	-	(q_6, X, R)	-	(q_7, B, R)
*q7	-	-	-	-	-

Let w = 001110

 $Bq_0001110 \vdash Xq_101110 \vdash X0q_11110 \vdash Xq_20Y110 \vdash Bq_2X0Y110 \vdash Xq_00Y110$

 $\vdash XXq_1Y110 \vdash XXq_1Y110 \vdash XXYq_1110 \vdash XXq_2YY10 \vdash Xq_2XYY10 \vdash$

 $XXq_0YY10 \vdash XXYq_3Y10 \vdash XXYYq_310 \vdash XXYYYq_40 \vdash XXYYq_5YX \vdash$

 $XXYYYq_3X \vdash XXYYYXq_6B \vdash XXYYYXBq_7B$

Optimized approach:

$$001110 \rightarrow 0110 \rightarrow 10 \rightarrow \epsilon$$

If the string begins with 01, replace both of them by blank and move to a different state which accepts strings of the form $1^{m}0^{m}$.

If it begins with 00, replace both of them by blank and change the first 1 to 0. It is equivalent to removing a 0 and a 1. i. e. 00011110 = BB001110.

Repeat the same for the other half.

This method can be tweaked easily to work for cases where m, n = 0.

$$M = (Q, \Sigma, \tau, \delta, q_0, B, F)$$

$$Q = \{q_0,\,q_1,\,q_2,\,q_3,\,q_4,\,q_5,\,q_6,\,q_7,\,q_8,\,q_9\},\, \Sigma = \{0,\,1\},\, \boldsymbol{\tau} = \{0,\,1,\,B\},\, F = \{q_9\}$$

δ	0	1	В
\rightarrow q $_0$	(q_1, B, R)	-	-
q1	(q_2, B, R)	(q_4, B, R)	-
q ₂	$(q_2, 0, R)$	$(q_3, 0, L)$	-
q3	$(q_3, 0, L)$	-	(q_0, B, R)
q ₄	-	(q5, B, R)	-
q5	(q_8, B, R)	(q_6, B, R)	-
q ₆	(q ₇ , 1, L)	$(q_6, 1, R)$	-
q 7	-	$(q_7, 1, L)$	(q_4, B, R)
q8	-	-	(q9, B, R)
* q 9	-	-	-

Let w = 00011111100

 $Bq_000011111100 \vdash BBq_10011111100 \vdash BBBq_2011111100 \vdash BBB0q_211111100 \vdash$

BBBq300111100 \(\bar{B}Bq3B00111100 \) \(\bar{B}q_000111100 \) \(\bar{B}q_10111100 \) \(\bar{B}q_10111100 \)

 $Bq_2111100 \vdash Bq_3011100 \vdash Bq_3B011100 \vdash Bq_0011100 \vdash Bq_111100 \vdash Bq_41100$

 $\vdash BBq_5100 \vdash BBBq_600 \vdash BBBq_7B10 \vdash Bq_410 \vdash Bq_50 \vdash Bq_8B \vdash Bq_9B$

It is clear that this approach is faster since the ID is smaller for a longer string.

5.
$$L = \{w \mid n_a(w) = n_b(w)\}$$

$$M = (Q, \Sigma, \boldsymbol{\tau}, \delta, \, q_0, \, B, \, F \}$$

$$Q = \{q_0,\,q_1,\,q_2,\,q_3,\,q_4,\,q_5\},\, \Sigma = \{a,\,b\},\, \boldsymbol{\tau} = \{a,\,b,\,X,\,Y,\,B\},\, F = \{q_5\}$$

 q_0 is start state, B is Blank tape symbol

δ	a	b	X	Y	В
\rightarrow q $_0$	(q_1, X, R)	(q_0, b, R)	(q_0, X, R)	(q_0, Y, R)	(q ₄ , B, L)
q1	(q ₁ , a, R)	(q_1, b, R)	(q_1, X, R)	(q_1, Y, R)	(q_2, B, L)
q ₂	(q ₂ , a, L)	(q_3, Y, L)	(q_2, X, L)	(q_2, Y, L)	-
q3	(q_3, a, L)	(q_3, b, L)	(q_3, X, L)	(q_3, Y, L)	(q_0, B, R)
q4	-	-	(q ₄ , B, L)	(q ₄ , B, L)	(q_5, B, R)
*q5	-	-	-	-	-