Математический анализ 1.

Направление 38.03.01 Экономика

Семинар 7. Непрерывность (продолжение) и производные.

- 1. Приведите пример функции f, определенной на некотором сегменте [a,b] (a < b), непрерывной во всех точках [a,b], за исключением одной точки $c \in (a,b)$ и такой, что:
 - (1) функция f не ограничена на [a,b], f(a) < 0, f(b) > 0, но уравнение f(x) = 0 не имеет корней на [a,b];
 - (2) функция f ограничена на [a, b], но не достигает на [a, b] ни своей нижней, ни своей верхней граней;
 - (3) функция f разрывна в точке c, но ограничена на [a,b], достигает на [a,b] свои нижнюю и верхнюю грани, а также принимает на [a,b] все промежуточные значения между своими минимумом и максимумом.
- 2. Приведите пример функции f, определенной и непрерывной на некотором полусегменте (a,b] и такой, что:
 - (1) функция f не ограничена на (a, b] ни сверху, ни снизу;
 - (2) функция f ограничена на (a,b], но не достигает на (a,b] ни своей нижней, ни своей верхней граней;
 - (3) функция f ограничена и не постоянна на (a,b], достигает на (a,b] свои нижнюю и верхнюю грани, а также принимает на (a,b] все промежуточные значения между своими минимумом и максимумом.
- 3. Пусть функция $\varphi(x)$ определена в некоторой окрестности нуля. Какое дополнительное условие на функцию $\varphi(x)$ равносильно тому, что функция $f(x) = x\varphi(x)$ дифференцируема в нуле? Чему при этом равна производная функции f(x) в нуле?
- 4. Докажите, что если функция $\varphi(x)$ определена и ограничена в окрестности нуля, то функция $f(x) = x^2 \varphi(x)$ дифференцируема в нуле. Чему равна производная f'(0)?
- 5. Использовав таблицу производных, найдите производную и дифференциал функции f(x):

(1)
$$f(x) = \frac{\sin(2x)}{x} + \frac{x}{\cos(3x)}$$
; (2) $f(x) = \sin^3(\sqrt[3]{x})$; (3) $f(x) = \log_{\sqrt{e^x}} 4$;

(4)
$$f(x) = x^x$$
; (5) $f(x) = \arctan x$; (6) $f(x) = \sqrt[\sin x]{2}$;

(7)
$$f(x) = \frac{\sqrt[5]{x^2}\ln(\cos x)}{e^{x^2}\sin(4x)}$$
 (используйте логарифмическую производную);

(8) $f(x) = (\sin x)^{\cos x}$ (используйте логарифмическую производную);

(9)
$$f(x) = \arcsin \frac{x-1}{x+1}$$
; (10) $f(x) = \arctan \sqrt{x^2+1}$; (11) $f(x) = \ln(x+\sqrt{x^2+1})$;

(12)
$$f(x) = x|x|$$
; (13) $f(x) = x^{e^x}$.

6. Использовав логарифмическую производную, вычислите производную функции

$$f(x) = \frac{1+x-x^2}{1-x+x^2}$$
 в точках $x_0 = 0$ и $x_1 = 1$.

7. Использовав логарифмическую производную, найдите производную функции:

(1)
$$f(x) = \frac{x^2 \sin(2x)}{(\ln x) \arcsin x}$$
; (2) $f(x) = (\cos(2x))^{\ln x}$.

- 8. Найдите эластичность функции $f(x) = x^5 e^{2x}$ при x = 1.
- 9. Найдите эластичность функции f(x) (с использованием определения и свойств эластичности):
 - (1) $f(x) = x^5$; (2) $f(x) = x^a$, $a \in \mathbb{R}$; (3) $f(x) = a^x$, a > 0; (4) $f(x) = x^x$;

(5)
$$f(x) = \frac{x^{0.3} \ln x}{e^x (1+x)}$$
; (6) $f(x) = (\sin x)^{\cos x}$; (7) $f(x) = (x^3+1)^{10}$; (8) $f(x) = \frac{x-1}{x^5+1}$;

- (9) $f(x) = e^x \ln(2023x)$.
- 10. Воспользовавшись тем, что эластичность функции сама является функцией, найдите эластичность эластичности функции $f(x) = 5x^2$. Обсудите экономический смысл эластичности эластичности функции.
- 11. Функция y(x) задана неявно уравнением $y^3 + x^2y 3x = 7$ и условием y(1) = 2. Найдите производную функции y(x) при x = 1.
- 12. Функция y(x) задана неявно уравнением $y^2 + \ln(x + y + 1) x = 2$ и условием y(2) = -2. Найдите эластичность функции y(x) в точке x = 2.
- 13. Найдите производную функции y(x), заданной неявно уравнением:

(1)
$$y^5 + y^3 + y - x = 0$$
; (2) $5x^2 + 9y^2 + 18y - 30x + 9 = 0$ $(y > -1)$.

14. Запишите уравнение касательной к графику функции f в заданной точке x_0 :

(1)
$$f(x) = x^3 - x + 1$$
, $x_0 = 1$; (2) $f(x) = \sin(3x)$, $x_0 = \frac{\pi}{4}$; (3) $f(x) = \cos(2x)$, $x_0 = \frac{\pi}{4}$;

(4)
$$y = \ln \frac{x^2 - 2x + 1}{x^2 + x + 1}$$
, $x_0 = 0$; (5) $y = \sqrt[3]{x - 1}$, $x_0 = 1$;

(6)
$$x^2 + y^2 - 2x + 6y = 0, y > -3, x_0 = 0.$$

15. Запишите уравнение касательной к кривой γ в точке A:

(1)
$$\gamma: x^2 + y^2 = 1$$
, $A(\frac{3}{5}, -\frac{4}{5})$ if $A(\frac{3}{5}, \frac{4}{5})$; (2) $\gamma: x^3 - 2x^2y + xy^2 - x + y = 0$, $A(1, 0)$;

(3)
$$\gamma: x^y = y^x$$
, $A(2,4)$; (4) $\gamma: 2x + 2y = 3\sin(\pi xy)$, $A(\frac{1}{2}, 1)$;

- (5) $\gamma : x^3 + xy + y^3 = 3$ в точке A(1,1).
- 16. Функция g(x) в некоторой окрестности точки $x_0=7$ является обратной к функции $f(x)=x^3+3x^2-x+4$ (заметьте, что f(1)=7). Найдите производную g'(7).
- 17. Пусть цена на определенный товар составляет p у.е. за единицу, а спрос на него составляет q единиц, где p и q связаны формулой $q^2+3pq=22$.
 - (1) Найдите эластичность спроса на этот товар.
 - (2) При цене на товар в 3 у.е. является ли спрос эластичным, неэластичным или имеет единичную эластичность?

- 18. Пусть спрос q на определенный товар в зависимости от его цены p составляет q(p) = b ap, где a, b положительные постоянные и $0 \le p \le \frac{b}{a}$.
 - (1) Выразите эластичность спроса как функцию от p.
 - (2) Покажите, что единичная эластичность спроса достигается в середине $p_* = \frac{b}{2a}$ сегмента $\left[0, \frac{b}{a}\right]$.
 - (3) При каких значениях p спрос эластичен? При каких неэластичен?
- 19. Пусть спрос q на определенный товар в зависимости от его цены p составляет $q(p)=\frac{a}{p^m}$, где a и m положительные постоянные. Покажите, что эластичность спроса равна m при всех значениях p. Дайте интерпретацию этого результата в зависимости от m.