AUG 30 1954 RECTO

CONFIDENTIAL

Classification Classification CopyCancelled RM SE54H06

Restriction/Classification Cancelled



# RESEARCH MEMORANDUM

for the

Bureau of Aeronautics, Department of the Navy

PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE

171-A2 (X-26) TURBOJET ENGINE

By James W. Useller and William E. Mallett

Lewis Flight Propulsion Laboratory Cleveland, Ohio

Restriction/
This material contains informs Classification of the explorage laws, Title 18, Cancelled manner to unauthorized person is

he United States within the meaning ission or revelation of which in any

# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

AUG 27 (9)

To be recorded to the Cass of the National Advisory Campaign

CONFIDENTIAL

Samuel LE



# FORWARD

To permit expeditious transmittal of performance data to those concerned, figures and a tabulation of "Preliminary Data" are presented herein. Preliminary Data are test data that have not received the complete analysis and extensive cross-checking normally given a set of NACA data before release.



ŧ

# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

# RESEARCH MEMORANDUM

for the

Bureau of Aeronautics, Department of the Navy

PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE

J71-A2 (X-26) TURBOJET ENGINE

By James W. Useller and William E. Mallett

#### SUMMARY

An investigation of the performance of the J71-A2 (X-26) turbojet engine and control system was conducted in an NACA Lewis laboratory altitude test chamber. Data were obtained for a range of altitudes from 20,000 to 58,000 feet at a flight Mach number of 0.9 and for several flight Mach numbers at an altitude of 45,000 feet. Data approximating sea-level operation are also included. Engine component performance data are presented in addition to windmilling, exhaust-nozzle, and ejector performance.

#### INTRODUCTION

At the request of the Bureau of Aeronautics, Department of the Navy, an exploratory investigation of the performance of the J71-A2 turbojet engine was made in an altitude test chamber at the NACA Lewis laboratory. The data reported herein were obtained using an engine control system to control the fuel flow and exhaust-nozzle area.

The engine performance was obtained for a range of engine rotor speeds for a series of altitudes from 20,000 to 58,000 feet at a flight Mach number of 0.9 and at several flight Mach numbers at an altitude of 45,000. Engine performance was also obtained at conditions approximating sea-level operation. All operation was within the schedule of engine speeds and exhaust-gas temperatures imposed by the control system. Engine-component performance data are also presented in addition to windmilling, exhaust-nozzle, and ejector performance data.

#### APPARATUS AND PROCEDURE

Engine. - The J71-A2 (X-26) turbojet engine (fig. 1) has a bifurcated inlet, a 16-stage axial-flow compressor, a cannular-type combustor with 10 circular inner liners, a three-stage turbine, an afterburner, and a variable-area iris-type exhaust nozzle provided with an ejector. The engine has a military thrust rating (nonafterburning) of 10,200 pounds during operation at 6100 rpm and a turbine discharge gas temperature of 1210° F at sea-level, zero-ram conditions.

To facilitate acceleration in the engine-speed range below 85 percent of rated speed, the engine is equipped with two-position compressor inlet guide vanes and four air-bleed ports at the compressor discharge. The guide vanes are closed and the bleed ports are open up to 85 percent of rated rotor speed. At higher rotor speeds, the ports are closed and the guide vanes assume their normal position.

The engine is equipped with an ejector. The ejector inlet operated at altitude ambient pressure and no outside air flow was provided.

<u>Instrumentation</u>. - Instrumentation for measuring temperatures and pressures was installed at various stations throughout the engine as shown in figure 2. The table accompanying figure 2 indicates the number and type of measurements obtained. Air flow to the engine was measured by means of a 27-inch-throat-diameter venturi section upstream of the engine inlet.

Installation. - The engine was mounted on a thrust-measuring platform in an altitude test chamber. Engine-inlet temperatures and pressures were regulated to simulate altitude flight conditions and the engine
exhaust operated at the simulated altitude pressure. A photograph of the
engine installed in the test chamber is shown in figure 1.

Procedure. - Steady-state, nonafterburning engine performance was obtained at the following simulated flight conditions for a range of engine rotor speeds from 4200 to the maximum permitted by the J71-A2 (X-26) engine control system:

| Altitude,                                               | Flight                                |  |  |  |  |  |  |  |
|---------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| ft                                                      | Mach number                           |  |  |  |  |  |  |  |
| 3,000<br>20,000<br>35,000<br>45,000<br>50,000<br>58,000 | 0.4<br>.9<br>.9<br>.9, 1.2, 1.3<br>.9 |  |  |  |  |  |  |  |

The engine control system was used throughout this investigation to establish engine speed and exhaust-gas temperature. The control varied the engine speed through fuel-flow adjustment and the exhaust-gas temperature by exhaust-nozzle area adjustment according to a predetermined schedule established by the manufacturer.

The fuel used throughout this investigation conformed to the specifications for MIL-F-5624a, grade JP-4, and had a lower heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.171.

A list of the symbols used herein is contained in the appendix and a tabulation of the data obtained is presented in table I.

#### DATA PRESENTATION

# Engine Performance

The engine performance characteristics of the J71-A2 (X-26) turbojet engine operating without the afterburner were determined for a range of altitudes from 20,000 to 58,000 feet at a flight Mach number of 0.9 and are presented in figure 3 as a function of engine rotor speed. Data obtained at conditions approximating sea-level operation (altitude of 3000 ft at a flight Mach number of 0.4) have been included for comparative purposes. Data are also shown for engine control throttle settings greater than standard (90°) in order to determine if the control will maintain engine operation at the 90° rated performance condition. data have been adjusted to NACA standard altitude conditions of pressure and temperature for the flight conditions indicated to eliminate small deviations in setting test conditions. The use of the variable-area exhaust nozzle precluded generalization of these data at sea-level, static conditions, and the fact the engine control operation was based on actual rotor speed made it desirable to consider the performance as a function of the actual rotor speed at altitude.

It will be noted that no engine performance data were obtained at rated speed and exhaust-gas temperature. The engine control system limited operation to the speeds and temperatures shown in the figures presenting performance data.

The effect of varying flight Mach number on the normal engine performance is shown in figure 4 for flight Mach numbers from 0.9 to 1.3 during operation at an altitude of 45,000 feet.

# Component Performance

The performance of the major engine components is presented in figure 5 for a range of altitudes and a flight Mach number of 0.9. The

compressor and combustor performance have been corrected to sea-level conditions to permit generalization of the data. The turbine performance was corrected to standard pressure and temperature conditions at the turbine inlet.

The variation of the exhaust-nozzle area as governed by the engine control system is shown in figure 6. The engine configuration investigated included the afterburner (inoperative) and the ejector. No outside air flow was supplied to the ejector, but it was allowed to ingest air at the altitude ambient pressure conditions. The quantity of ejector air flow as determined during nonafterburning operation is shown in figure 7. The fraction of the compressor air flow that was diverted from the engine by the compressor discharge bleeds when the bleed ports were open (below rotor speeds of 5170 rpm) is shown in figure 8. The windmilling speeds of the engine at each of several flight Mach numbers up to 1.0 are shown in figure 9 for three altitudes.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 19, 1954

#### APPENDIX - SYMBOLS

The following symbols are used on the table and the figures:

A area, sq ft

F<sub>j</sub> jet thrust, lb

F<sub>n</sub> net thrust, lb

Mach number

N engine rotor speed, rpm

P total pressure, lb/sq ft

sfc specific fuel consumption, lb/(hr)(lb)

T total temperature, OR

W<sub>a</sub> air flow, lb/sec

Wf fuel flow, lb/hr

Wg weight flow, lb/sec

 $\beta \qquad \text{correction factor for variation of specific heats, } \frac{\gamma^*}{\gamma} = \frac{\left(\frac{\gamma+1}{2}\right)^{\gamma}}{\left(\frac{\gamma^*+1}{2}\right)^{\gamma^*}}$ 

 $\boldsymbol{\delta}_{\mathbf{a}}$  ratio of total pressure to NACA standard static pressure at indicated flight condition

 $\delta_{\text{s.l.}}$  ratio of total pressure to static sea-level pressure, P/2116

η efficiency, percent

 $\theta_{\mathbf{a}}$  ratio of total temperature to NACA standard static temperature at indicated flight condition

 $\theta_{\rm s.l.}$  ratio of total temperature to static sea-level temperature, T/519

Y ratio of specific heats

# Subscripts:

- a altitude
- b combustor
- c compressor
- s.l. sea level
- t turbine
- O free stream
- 2 compressor inlet
- 3 compressor discharge
- 4 turbine inlet
- 5 turbine discharge
- 9 exhaust-nozzle inlet

# Superscript:

\* NACA standard sea-level condition

| Run                        | Altitude,<br>ft                                | Flight<br>Mach<br>number,<br>M <sub>O</sub> | Exhaust-<br>nozzle<br>area,<br>sq ft    | Engine<br>speed,<br>N,<br>rpm        | Throttle<br>angle,<br>deg       | Engine-<br>inlet<br>total<br>pressure,<br>P2,<br>lb/sq ft | Engine-<br>inlet<br>total<br>temper-<br>ature,<br>T2,<br>OR | Compressor-<br>outlet<br>total<br>pressure,<br>P3,<br>lb/sq ft | Compressor-<br>outlet<br>total<br>temperature,<br>T3,<br>oR | Turbine- inlet total pressure, P4, lb/sq ft    | inlet<br>temper-                     | Turbine-<br>outlet<br>total<br>pressure,<br>P <sub>5</sub> ,<br>lb/sq ft | Turbine-<br>outlet<br>total<br>temper-<br>ature,<br>(Mfg),<br>T5,<br>oR | Nozzle-<br>outlet<br>pressure,<br>Pg,<br>lb/sq ft | Nozzle-<br>outlet<br>temper-<br>ature,<br>Tg,<br>oR | Engine<br>air flow,<br>Wa,<br>lb/sec           | Bleed<br>air flow,<br>Wa, bleed,<br>lb/sec | Overboard<br>air flow,<br>Wa, overboard,<br>lb/sec | Engine<br>fuel flow,<br>W <sub>f</sub> ,<br>lb/hr | Jet<br>thrust,<br>F <sub>J</sub> ,<br>1b | Net<br>thrust,<br>Fn,<br>1b            | Corrected engine speed, N N/√8s.1.   | Corrected sir flow, Waves.1., bs.1.            |
|----------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5      | 3000<br>3000<br>3000<br>3000<br>3000           | 0.363<br>.387<br>.391<br>.376               | 2.74<br>2.74<br>2.85<br>3.19<br>3.73    | 6045<br>5903<br>5729<br>5551<br>5319 | 97<br>(a)                       | 2069<br>2079<br>2084<br>2087<br>2083                      | 510<br>510<br>511<br>511<br>512                             | 16,328<br>15,592<br>14,347<br>12,960<br>11,407                 | 999<br>981<br>954<br>923<br>890                             | 15,657<br>14,942<br>13,717<br>12,541<br>10,854 | 2042<br>1939<br>1765<br>1568<br>1388 | 4783<br>4507<br>3987<br>3321<br>2785                                     | 1657<br>1574<br>1416<br>1202<br>1052                                    | 4535<br>4265<br>3761<br>3095<br>2560              | 1608<br>1517<br>1368<br>1175<br>1027                | 156.16<br>151.70<br>146.28<br>139.97<br>129.94 | 1.68<br>1.65<br>0<br>1.68                  | 2.78<br>2.75<br>2.69<br>2.58<br>2.34               | 8150<br>7455<br>6100<br>4500<br>3265              | 9626<br>8787<br>7600<br>5546<br>3700     | 7591<br>6791<br>5656<br>3739<br>2032   | 6074<br>5931<br>5751<br>5578<br>5340 | 158.98<br>153.69<br>147.89<br>141.25<br>131.50 |
| 6<br>7<br>8<br>9<br>10     | 3000<br>3000<br>3000<br>3000<br>3000           | 0.374<br>.372<br>.376<br>.376<br>.376       | 4.42<br>4.42<br>4.42<br>4.42<br>4.42    | 5314<br>5002<br>4643<br>4260<br>3563 | (a)                             | 2089<br>2092<br>2099<br>2089<br>2089                      | 512<br>513<br>513<br>514<br>515                             | 9698<br>8626<br>7344<br>6139<br>4443                           | 848<br>821<br>784<br>747<br>692                             | 9170<br>8159<br>6950<br>5834<br>4267           | 1417<br>1332<br>1289<br>1263<br>1178 | 2337<br>2247<br>2160<br>2083<br>2022                                     | 1090<br>1037<br>1033<br>1049<br>1039                                    | 2148<br>2102<br>2051<br>2010<br>1971              | 1046<br>1001<br>994<br>1012<br>1008                 | 121.86<br>110.98<br>96.79<br>82.32<br>53.26    | 13.77<br>12.61<br>10.80<br>9.19            | 2.04<br>1.87<br>1.69<br>1.47<br>1.11               | 3000<br>2563<br>2159<br>1846<br>1261              | 1793<br>1496<br>1001<br>794<br>486       | 241<br>89<br>-242<br>-261<br>-224      | 5335<br>5022<br>4661<br>4277<br>3573 | 122.96<br>111.98<br>97.47<br>82.65<br>53.42    |
| 11<br>12<br>13<br>14<br>15 | 23,000<br>21,700<br>21,800<br>22,200<br>21,750 | 0.899<br>.890<br>.897<br>.908<br>.886       | 2.85<br>2.84<br>2.91<br>2.76<br>3.025   | 6102<br>6013<br>5889<br>5885<br>5707 | 107<br>104<br>(a)               | 1491<br>1496<br>1502<br>1498<br>1499                      | 537<br>523<br>523<br>514<br>515                             | 11,209<br>11,390<br>10,757<br>11,106<br>10,011                 | 1028<br>1008<br>990<br>985<br>951                           | 10,889<br>10,245<br>10,619<br>9527             | 1979<br>1861<br>1918<br>1639         | 3033<br>3243<br>2945<br>3169<br>2554                                     | 1585<br>1591<br>1476<br>1540<br>1268                                    | 2859<br>3057<br>2758<br>2979<br>2366              | 1533<br>1551<br>1440<br>1499<br>1239                | 107.79<br>109.72<br>106.87<br>108.66<br>104.44 | 0 0 0                                      | 2.18<br>1.92<br>2.01<br>1.86<br>1.65               | 5280<br>5500<br>4720<br>5180<br>3640              | 7257<br>7593<br>6950<br>7408<br>5900     | 4042<br>4418<br>3834<br>4235<br>2914   | 5976<br>5971<br>5848<br>5891<br>5707 | 156.17<br>156.23<br>151.63<br>153.35<br>147.47 |
| 16<br>17<br>18<br>19<br>20 | 21,800<br>21,900<br>23,000<br>23,000<br>21,900 | 0.897<br>.893<br>.896<br>.894<br>.896       | 3.12<br>3.505<br>4.42<br>4.42<br>4.47   | 5703<br>5530<br>5198<br>5192<br>5060 | (a)                             | 1502<br>1501<br>1507<br>1505<br>1508                      | 524<br>515<br>544<br>544<br>515                             | 9689<br>9011<br>6923<br>6039<br>6158                           | 957<br>921<br>896<br>865<br>827                             | 9227<br>8549<br>6557<br>5681<br>5785           | 1643<br>1454<br><br>1231             | 2446<br>2073<br>1461<br>1280<br>1330                                     | 1270<br>1083<br>919<br>953<br>903                                       | 2261<br>1819<br>1174<br>1055<br>1105              | 1241<br>1068<br>889<br>918<br>889                   | 101.64<br>99.85<br>80.34<br>75.85<br>81.63     | 0<br>0<br>.78<br>8.65<br>8.76              | 2.13<br>1.50<br>1.58<br>1.46<br>1.16               | 3545<br>2630<br>1456<br>1466<br>1431              | 5627<br>4538<br>1853<br>992<br>1580      | 2663<br>1668<br>-528<br>-1251<br>-772  | 5658<br>5536<br>5066<br>5060<br>5070 | 144.36<br>140.66<br>115.73<br>109.42<br>114.28 |
| 21<br>22<br>23<br>24<br>25 | 21,900<br>21,950<br>21,950<br>34,800<br>34,900 | 0.900<br>.902<br>.902<br>.894<br>.897       | 4.47<br>4.47<br>4.47<br>2.76<br>2.76    | 4980<br>4622<br>4296<br>6036<br>5980 | (a)                             | 1513<br>1514<br>1516<br>830<br>831                        | 514<br>515<br>514<br>460<br>452                             | 5946<br>4929<br>4142<br>7104<br>7134                           | 818<br>778<br>742<br>943<br>924                             | 5581<br>4611<br>3877<br>6815<br>6849           | 1200<br>1083<br>992<br>1954<br>1918  | 1288<br>1142<br>1051<br>2022<br>2052                                     | 884<br>796<br>743<br>1577<br>1576                                       | 1083<br>1016<br>983<br>1905<br>1943               | 871<br>791<br>737<br>1543<br>1505                   | 80.17<br>69.92<br>61.35<br>68.27<br>68.91      | 8.04<br>6.88<br>5.92<br>0                  | 1.17<br>1.04<br>.93<br>1.39<br>1.16                | 1329<br>897<br>643<br>3620<br>3640                | 1411<br>1024<br>661<br>4913<br>4935      | -906<br>-1002<br>-1112<br>3051<br>3065 | 4994<br>4631<br>4313<br>6377<br>6373 | 111.87<br>97.56<br>85.31<br>164.71<br>164.62   |
| 26<br>27<br>28<br>29<br>30 | 34,900<br>34,900<br>34,900<br>34,800<br>34,900 | 0.897<br>.904<br>.897<br>.893<br>.896       | 2.86<br>2.84<br>3.04<br>3.07<br>3.46    | 5894<br>5854<br>5709<br>5701<br>5533 | (a)                             | 830<br>836<br>834<br>831<br>831                           | 458<br>456<br>456<br>462<br>460                             | 6764<br>6909<br>6398<br>6180<br>5761                           | 917<br>910<br>881<br>892<br>861                             | 6489<br>6620<br>6125<br>5911<br>5476           | 1807<br>1807<br>1636<br>1600<br>1454 | 1841<br>1987<br>1641<br>1558<br>1311                                     | 1441<br>1457<br>1270<br>1256<br>1092                                    | 1725<br>1677<br>1519<br>1435<br>1150              | 1411<br>1405<br>1243<br>1218<br>1074                | 67.75<br>68.30<br>66.57<br>65.35<br>63.60      | 0<br>0<br>-41<br>0                         | 1.41<br>1.15<br>1.00<br>1.36<br>1.29               | 3128<br>3210<br>2552<br>2404<br>1873              | 4567<br>4760<br>4006<br>3798<br>3116     | 2720<br>2890<br>2194<br>2017<br>1380   | 6247<br>6218<br>6064<br>6016<br>5852 | 162.94<br>162.74<br>158.99<br>157.68<br>153.08 |
| 31<br>32<br>33<br>34<br>35 | 34,800<br>34,800<br>34,800<br>34,800<br>35,000 | 0.896<br>.893<br>.899<br>.896               | 4.33<br>4.46<br>4.46<br>4.46<br>4.42    | 5195<br>5184<br>5089<br>4983<br>4962 | (a)                             | 836<br>837<br>838<br>838<br>837                           | 457<br>460<br>465<br>455<br>457                             | 4991<br>4060<br>3937<br>3800<br>4010                           | 813<br>777<br>776<br>751<br>761                             | 4741<br>3827<br>3696<br>3581<br>3781           | 1246<br>1181<br>1150<br>1108<br>1046 | 1069<br>844<br>827<br>787<br>837                                         | 921<br>928<br>888<br>868<br>763                                         | 808<br>658<br>652<br>634<br>372                   | 914<br>915<br>882<br>860<br>750                     | 59.39<br>51.65<br>52.34<br>51.45<br>50.78      | 0<br>5.56<br>5.04<br>5.25<br>0             | 1.16<br>.95<br>.62<br>.93                          | 1299<br>1128<br>1005<br>973<br>756                | 2042<br>1227<br>1128<br>1036<br>1262     | 427<br>-175<br>-309<br>-357<br>-137    | 5518<br>5494<br>5365<br>5311<br>5276 | 141.49<br>123.22<br>125.40<br>121.89<br>120.72 |
| 36<br>37<br>38<br>39<br>40 | 34,800<br>35,000<br>45,300<br>45,000<br>44,300 | 0.896<br>.904<br>.910<br>.907<br>.872       | 4.46<br>4.46<br>2.81<br>2.835<br>2.79   | 4728<br>4227<br>6039<br>6019<br>5998 | (a)<br>102<br>99<br>104         | 840<br>841<br>509<br>515<br>514                           | 460<br>451<br>457<br>462<br>456                             | 3361<br>2540<br>4425<br>4396<br>4454                           | 733<br>702<br>940<br>949<br>940                             | 3157<br>2376<br>4250<br>4216<br>4273           | 1038<br>915<br>1971<br>1986<br>2000  | 712<br>605<br>1231<br>1207<br>1266                                       | 809<br>700<br>1592<br>1601<br>1634                                      | 597<br>553<br>1153<br>1131<br>1196                | 804<br>696<br>1549<br>1559<br>1573                  | 47.23<br>38.95<br>42.17<br>42.10<br>42.16      | 4.69<br>3.64<br>0<br>0                     | 0.84<br>.65<br>.93<br>.74<br>.83                   | 760<br>447<br>2303<br>2281<br>2393                | 849<br>482<br>3070<br>3042<br>3008       | -438<br>-575<br>1923<br>1878<br>1888   | 5011<br>4530<br>6401<br>6352<br>6371 | 112.28<br>91.45<br>165.39<br>183.93<br>163.40  |
| 41<br>42<br>43<br>44<br>45 | 45,300<br>45,300<br>45,200<br>45,300<br>45,200 | 0.910<br>.907<br>.904<br>.908<br>.915       | 2.74<br>2.96<br>3.48<br>4.33<br>4.47    | 5892<br>5712<br>5525<br>5179<br>5162 | (a)                             | 510<br>509<br>508<br>511<br>515                           | 456<br>455<br>454<br>453<br>453                             | 4331<br>3966<br>3601<br>3092<br>2517                           | 924<br>892<br>858<br>811<br>770                             | 4163<br>3807<br>3431<br>2940<br>2378           | 1954<br>1700<br>1489<br>1281<br>1285 | 1227<br>1026<br>814<br>639<br>530                                        | 1582<br>1348<br>1136<br>949<br>965                                      | 1156<br>947<br>715<br>481<br>408                  | 1542<br>1304<br>1107<br>936<br>942                  | 41.67<br>40.69<br>39.54<br>36.69<br>35.51      | 0<br>0<br>0<br>0<br>0<br>3.47              | 0.97<br>.91<br>.85<br>.76                          | 2270<br>1720<br>1251<br>854<br>765                | 3022<br>2550<br>1969<br>1272<br>753      | 1891<br>1434<br>895<br>267<br>-169     | 6259<br>6074<br>5881<br>5525<br>5513 | 162.76<br>159.07<br>153.94<br>142.41<br>128.92 |
| 46<br>47<br>48<br>49<br>50 | 45,100<br>45,100<br>44,250<br>44,250<br>44,250 | 1.207<br>1.206<br>1.178<br>1.175<br>1.178   | 2.79<br>2.91<br>3.04<br>3.51<br>4.33    | 5887<br>5796<br>5709<br>5523<br>5172 | (å)                             | 739<br>741<br>747<br>743<br>746                           | 511<br>511<br>511<br>510<br>510                             | 5585<br>5328<br>5058<br>4540<br>3787                           | 988<br>970<br>955<br>921<br>872                             | 5349<br>5089<br>4822<br>4311<br>3580           | 1964<br>1825<br>1715<br>1504<br>1273 | 1610<br>1434<br>1517<br>1039<br>791                                      | 1600<br>1457<br>1350<br>1129<br>935                                     | 1514<br>1334<br>1224<br>908<br>586                | 1542<br>1412<br>1311<br>1111<br>923                 | 53.52<br>52.77<br>51.70<br>49.77<br>44.62      | 0<br>0<br>0<br>0                           | 1.01<br>.95<br>.90<br>.85                          | 2765<br>2331<br>2008<br>1417<br>877               | 4088<br>3780<br>3464<br>2783<br>1764     | 2122<br>1843<br>1601<br>996<br>159     | 5910<br>5819<br>5731<br>5555<br>5202 | 152.63<br>150.12<br>145.89<br>140.92<br>125.81 |
| 81<br>52<br>53<br>54<br>55 | 44,600<br>44,800<br>44,600<br>44,800<br>44,600 | 1.291<br>1.294<br>1.291<br>1.296<br>1.290   | 2.760<br>2.74<br>2.810<br>3.00<br>3.475 | 5931<br>5889<br>5851<br>5709<br>5526 | (a)                             | 845<br>844<br>846<br>847<br>848                           | 508<br>509<br>509<br>509<br>509                             | 6479<br>6395<br>6250<br>5747<br>5142                           | 991<br>986<br>979<br>952<br>919                             | 6205<br>6133<br>5978<br>5477<br>4884           | 1993<br>1986<br>1911<br>1696<br>1492 | 1857<br>1834<br>1754<br>1473<br>1176                                     | 1606<br>1598<br>1523<br>1535<br>1123                                    | 1746<br>1726<br>1643<br>1369<br>1030              | 1566<br>1560<br>1492<br>1293<br>1103                | 62.22<br>61.42<br>61.17<br>59.44<br>56.63      | 0.25<br>0<br>.25<br>0                      | 1.16<br>1.28<br>1.12<br>1.16<br>1.09               | 3226<br>3170<br>2914<br>2261<br>1610              | 4896<br>4841<br>4649<br>4069<br>3255     | 2496<br>2467<br>2288<br>1768<br>1072   | 5972<br>5923<br>5885<br>5742<br>5564 | 154.74<br>153.11<br>152.11<br>147.64<br>140.34 |
| 56<br>57<br>58<br>59<br>60 | 45,000<br>49,400<br>50,600<br>51,300<br>48,600 | 1.504<br>.874<br>.902<br>.959<br>.848       | 4.160<br>2.86<br>2.86<br>2.86<br>2.79   | 5283<br>6021<br>6018<br>6014<br>5993 | (a)<br>100<br>101<br>104<br>104 | 848<br>406<br>398<br>405<br>408                           | 510<br>456<br>458<br>457<br>456                             | 4512<br>3482<br>3449<br>3442<br>3548                           | 884<br>951<br>946<br>947<br>945                             | 4279<br>3338<br>3316<br>3292<br>3409           | 1327<br>2007<br>1982<br>2004<br>2034 | 950<br>963<br>933<br>948<br>1012                                         | 976<br>1608<br>1598<br>1612<br>1670                                     | 724<br>901<br>879<br>887<br>957                   | 963<br>1569<br>1553<br>1574<br>1606                 | 53.45<br>33.02<br>32.65<br>32.84<br>33.17      | 0 0                                        | 1.00<br>.68<br>.73<br>.72<br>.64                   | 1132<br>1826<br>1820<br>1830<br>1956              | 2427<br>2436<br>2376<br>2428<br>2374     | 349<br>1557<br>1480<br>1482<br>1514    | 5514<br>6396<br>6372<br>6381<br>6366 | 132.63<br>162.01<br>163.97<br>161.73<br>161.94 |
| 61<br>62<br>63<br>64<br>65 | 48,600<br>50,700<br>50,300<br>50,700<br>57,500 | 0.849<br>.907<br>.902<br>.902<br>.904       | 2.76<br>2.76<br>3.48<br>4.29<br>2.76    | 5894<br>5892<br>5526<br>5223<br>6005 | (a)                             | 408<br>397<br>399<br>398<br>289                           | 459<br>466<br>457<br>454<br>445                             | 3504<br>3348<br>2817<br>2451<br>2599                           | 933<br>939<br>867<br>820<br>940                             | 3365<br>3215<br>2686<br>2330<br>2496           | 1996<br>1961<br>1531<br>1327<br>2120 | 989<br>923<br>645<br>511<br>734                                          | 1621<br>1593<br>1171<br>990<br>1751                                     | 933<br>874<br>570<br>387<br>692                   | 1579<br>1545<br>1144<br>975<br>1694                 | 32.71<br>31.97<br>30.64<br>28.45<br>23.70      | 0 0 0                                      | 0.63<br>.75<br>.68<br>.59                          | 1862<br>1755<br>1029<br>730<br>1545               | 2333<br>2314<br>1567<br>1017<br>1801     | 1481<br>1427<br>729<br>241<br>1160     | 6240<br>6192<br>5863<br>5566<br>6457 | 160.22<br>162.15<br>153.14<br>141.94<br>161.40 |
| 66<br>67<br>68             | 56,600<br>56,600<br>56,600                     | 0.921<br>.940<br>.938                       | 2.76<br>2.84<br>3.04                    | 5978<br>5871<br>5701                 | 91<br>(a)                       | 305<br>310<br>312                                         | 458<br>458<br>459                                           | 2638<br>2568<br>2457                                           | 956<br>937<br>906                                           | 2533<br>2465<br>2352                           | 2126<br>1975<br>1768                 | 742<br>697<br>645                                                        | 1738<br>1600<br>1404                                                    | 702<br>655<br>598                                 | 1694<br>1557<br>1366                                | 24.38<br>24.41<br>24.09                        | 0                                          | 0.53<br>.48<br>.44                                 | 1545<br>1368<br>1104                              | 1808<br>1692<br>1553                     | 1129<br>999<br>869                     | 6336<br>6223<br>6036                 | 159.59<br>157.20<br>154.31                     |

 $a_{\mathrm{Throttle}}$  setting angle less than 90°.



Figure 1. - J71-A2 turbojet engine installed in altitude test chamber.



Figure 2. - Schematic diagram of J71-A2 turbojet engine showing instrumentation stations.



Figure 3. - Variation of engine parameters with rotor speed for a range of altitudes. Flight Mach number, 0.9.



Figure 3. - Continued. Variation of engine parameters with rotor speed for a range of altitudes. Flight Mach number, 0.9.



(c) Exhuast-gas temperature.

Figure 3. - Continued. Variation of engine parameters with rotor speed for a range of altitudes. Flight Mach number, 0.9.



(d) Net thrust.

Figure 3. - Continued. Variation of engine parameters with rotor speed for a range of altitudes. Flight Mach number, 0.9.



(e) Specific fuel consumption.

Figure 3. - Concluded. Variation of engine parameters with rotor speed for a range of altitudes. Flight Mach number, 0.9.



Figure 4. - Variation of engine parameters with rotor speed for a range of flight Mach numbers. Altitude, 45,000 feet.



Figure 4. - Continued. Variation of engine parameters with rotor speed for a range of flight Mach numbers. Altitude, 45,000 feet.

(b) Fuel flow.



Figure 4. - Continued. Variation of engine parameters with rotor speed for a range of flight Mach numbers. Altitude, 45,000 feet.



Figure 4. - Continued. Variation of engine parameters with rotor speed for a range of flight Mach numbers. Altitude, 45,000 feet.



(e) Specific fuel consumption.

Figure 4. - Concluded. Variation of engine parameters with rotor speed for a range of flight Mach numbers. Altitude, 45,000 feet.



Figure 5. - Component performance characteristics for a range of corrected rotor speeds and altitude flight conditions. Flight Mach number, 0.9.



(b) Engine combustor.

Figure 5. - Continued. Component performance characteristics for a range of corrected rotor speeds and altitude flight conditions. Flight Mach number, 0.9.



Figure 5. - Concluded. Component performance characteristics for a range of corrected rotor speeds and altitude flight conditions. Flight Mach number, 0.9.





Figure 6. - Variation of exhaust-nozzle area with rotor speed as governed by X-26 engine control system for range of altitudes. Flight Mach number, 0.9.



Figure 7. - Ratio of ejector inducted air flow to engine air flow during nonafterburning operation of engine at various altitudes. Flight Mach number, 0.9.



Figure 8. - Ratio of compressor air flow bled from compressor with variation of rotor speed. Flight Mach number, 0.9.



Figure 9. - Corrected engine windmilling speed for a range of flight Mach numbers and altitudes.

# PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE

J71-A2 (X-26) TURBOJET ENGINE

James W. Useller

Aeronautical Research Scientist

Propulsion Systems

William E. Mallett

William E. Mallett Aeronautical Research Scientist Propulsion Systems

Approved:

H. Dean Wilsted

Aeronautical Research Scientist

Propulsion Systems

Bruce A. Lundin Chief

Engine Research Division

AL

Engines, Turbojet

3.1.3

Useller, James W., and Mallett, William E.

#### PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE

J71-A2 (X-26) TURBOJET ENGINE

### Abstract

Data were obtained in an altitude test chamber for a range of altitudes from 20,000 to 58,000 feet at a flight Mach number of 0.9, and for several flight Mach numbers at an altitude of 45,000 feet. Data approximating sea-level operation are also included. Engine component performance data are presented in addition to windmilling, exhaust-nozzle, and ejector performance.

3462