

Licence 2<sup>e</sup> année parcours Mathématiques Département de Mathématiques 2020--2021  $M44,~G\acute{\text{E}}\text{OM\'e}\text{TRIE}$ 

TD3: Angles

## Dans un triangle

## Exercice 1

Soient le triangle  $\triangle ABC$ , et trois points  $D \in [AC]$ ,  $E \in [BC]$ , et F tel que FA et FB soient les bisectrices (intérieures) de  $\angle DAE$  et  $\angle DBE$  respectivement. Montrer que :

$$\widehat{AFB} = \frac{\widehat{ADB} + \widehat{AEB}}{2}.$$

## Exercice 2

Soient un triangle  $\triangle ABC$  et point un point  $D \in [AC]$  tel que AB = AD. En sachant que  $\widehat{ABC} - \widehat{ACB} = 30^{\circ}$ , trouver  $\widehat{CBD}$ .

### Exercice 3

Soit un triangle  $\triangle ABC$ . La bissectrice intérieure de  $\angle A$ , et la bissectrice extérieure de  $\angle B$  se se coupent en D. La droite parallèle à (AB) passant par D coupe les droites (AC) et (BC) en L et M respectivement.

- a) En sachant que les côtés LA et MB du trapèze ABML sont respectivement de 5 et 7, trouvent la mesure de la petite base LM.
- b) En sachant que le triangle  $\triangle ABC$  est isocèle en C, trouvent la mesure de LM.

### Exercice 4

Soient un triangle  $\triangle ABC$  rectangle en C, H le pied de la hauteur issue de C et M le milieu de AB. Montrer que la bisectrice de  $\angle ACB$  est aussi bisectrice de  $\angle MCH$ . Est-ce encore vrai pour un triangle qui n'est pas rectangle en C?

### Exercice 5

Soit  $\triangle ABC$  un triangle et  $\mathcal{C}$  son cercle circonscrit, de centre O. Soit A' le point diamétralement opposé à A sur le cercle  $\mathcal{C}$ . La hauteur (AH) issue de A du triangle  $\triangle ABC$  recoupe le cercle  $\mathcal{C}$  au point D.

Montrer que la droite (DA') est parallèle à (BC).

### Exercice 6

Soit [AB] un segment et M, N deux points appartenant au cercle  $\mathcal{C}$  de diamètre [AB]. On suppose que les droites (MB) et (AN) (respectivement (NB) et (AM)) s'intersectent en P (respectivement en Q). Déterminer l'angle formé par les droites (AB) et (PQ).

#### Dans un cercle

## Exercice 7

Soit C un cercle de centre O. Soient B et C deux points de C, et A l'intersection des tangentes à C aux points B et C. On note E la projection orthogonale de C sur (OB).

Montrer que  $BE \times BO = AB \times CE$ .

### Exercice 8

Soit AB et CD deux cordes perpendiculaires qui se coupe en E. Montrer que la médiane issue de E dans AEC et la heuteur issue de E dans BED coïncident.

Formuler et démontrer une proposition réciproque.

## Exercice 9 (Puissance d'un point)

Soient M un point et  $\mathcal{C}$  un cercle. On considère une droite  $\mathcal{D}$  passant par P et qui rencontre  $\mathcal{C}$  en deux points (pas forcément distincts) S et T.

a) Montrer que la quantité  $\overline{MS} \times \overline{MT}$  ne dépend pas du choix de la droite  $\mathcal{D}$ .

Pour la suite on note cette quantité  $P_{\mathcal{C}}(M)$  et on l'appelle puissance de M par rapport à  $\mathcal{C}$ .

- b) Étant donné un cercle  $\mathcal{C}$ , déterminer le signe de  $P_{\mathcal{C}}(M)$  en fonction de la position de M.
- c) Montrer que l'ensemble des points à égale puissance par rapport à deux cercles non concentriques donnés est une droite (appelée *axe radical* de ces deux cercles).
- d) Déterminer l'axe radical dans le cas de deux cercles distincts qui s'intersectent.
- e) Quelle droite « connue » généralise l'axe radical.
- f) Étant donnés deux cercles non concentriques, construire à la règle et compas l'axe radical.

## Exercice 10

Soient A,B et P trois points distincts d'un cercle C. Montrer que la distance de P à (AB) est la moyenne géométrique des distances de P aux tangentes à C en A et B.

#### Exercice 11

Soient ABCD un carré de côté 1 inscrit dans un cercle et E un point de ce cercle. Cacluler  $EA^2 + EB^2 + EC^2 + ED^2$ .

Généraliser ce résultat pour un rectangle.

# Exercice 12 (Angle entre deux cercles)

Soient deux cercles  $C_1$  et  $C_2$  de centres respectifs  $O_1$  et  $O_2$  qui se rencontrent en un point S. On définit (la mesure de) l'angle entre  $C_1$  et  $C_2$  comme étant égale à  $\widehat{O_1MO_2}$ .

- a) Quelle est l'angle entre deux cercles tangents extérieurement?
- b) Quelle est l'angle entre deux cercles tangents intérieurement?
- c) Soient un cercle  $\mathcal{C}$  et un point M extérieur à  $\mathcal{C}$ . Montrer qu'il existe un cercle de centre M qui est orthogonal  $^1$  à  $\mathcal{C}$ .
- d) Étant donnés deux cercles, déterminer l'ensemble des centres des cercles orthogonaux à ces deux cercles.
- e) Étant donnés trois cercles en position générale, montrer qu'il existe un unique cercle qui est orthogonal aux trois.

<sup>1.</sup> Qui fait un angle de  $\pi/2$  avec  $\mathcal{C}$ .