

Immunization Uptake in Bugoye, Uganda and Its Association with Vaccine Beliefs and Caregiver Experiences

Consulting Experience

Consulting Process

- De-identified dataset, data dictionary, and study protocol were shared via Sharepoint.
- We had a meeting with them via Zoom three times in total and sent regular emails.

Consulting Process (pt. 2)

- We did not encounter any obstacles in the consulting process.
 - Our collaborators were receptive to our work and were always responsive.
 - They answered our questions during meetings and were always available via email.
 - As a group, we were provided enough information from our collaborators to tackle the project independently.
 - We were open to their feedback as we shared our progress.
- Statistical obstacles that we discussed with our collaborators:
 - How to deal with imbalanced data
 - How to deal with the missing values in the dataset
- Things we would have done differently:
 - More regular Zoom meetings
 - More sharing of analyses

Aims and Approach

Background

- **Phenomenon**: In 2016, a national health survey reported that only **55%** of young children (12–23 months) in Uganda received all basic vaccinations.
- **Hypothesis:** Areas with limited access to immunization services predict lower childhood vaccine uptake compared to areas with full access.
- Study Information:
 - Location: Bugoye sub-county, Uganda
 - Study Type: Cross-sectional (from 2021-01-20 to 2021-04-30)
 - Target Population: Children ages 12–23 months
 - Objective: Explore social determinants (e.g., caregiver attitudes and beliefs) linked to vaccination coverage in a rural, under-resourced area.

Data Structure

	Variables	Definitions	Descriptiv	e Statistics
Outcome, No. (%)	Fully vaccinated (vacc_full)	If child received all eight vaccines (tuberculosis, polio, pentadose1, pentadose2, pentadose3, rotavirus1, rotavirus2, and measles) or not according to vaccine card and/or self-report	Yes No Missing	1381 (81.8) 230 (13.6) 78 (4.6)
Exposures, Median (sd) [range]	Beliefs score (beliefs1)	Aggregation of caregiver responses to 10 vaccine belief questions (higher score indicates more positive beliefs)	8 (1.25)	[2.5, 10]
	Experience score (exp1)	Aggregation of caregiver responses to 14 vaccine experience questions (higher score indicates more positive experience)	11 (1.21)	[7.0, 14]
Covariates	Possible confounders	7 caregiver demographics (e.g. educational attainment, marital status), 3 biological measures (e.g. child age, mid-upper arm circumference), 5 childbirth measures (e.g. bednet use, inpatient status), and 1 variable on where most vaccines were received		

Specific Aims

To explore associations between caregiver beliefs and experiences and fully vaccinated children (ages 12-23 months) in Bugoye, Uganda, after adjusting for confounders.

Primary Hypothesis: Positive caregiver beliefs and experiences are associated with fully vaccinated children, after adjusting for household demographic factors and clinic center.

Secondary Hypothesis: Positive caregiver beliefs and experiences are associated with increased uptake of specific vaccines (e.g., Measles) and vaccine card availability, after adjusting for household demographic factors and clinic center.

Methods

- Exploratory Data Analysis
 - Descriptive statistics for variables related to the main outcome and exposures
 - Correlation analysis between the main outcome and exposures
 - Complete case analysis to handle missing data
- Final Analysis
 - Weighted logistic regression to handle the imbalanced outcome
- Two strategies for measuring main exposures
 - Use an aggregated "score" for beliefs and experiences
 - Use multiple disaggregated belief and experience indicator variables

Belief Question Examples	Experience Question Examples
Children get more vaccinations than are good for them. (vacc_more)	Do you know of someone in your family or community who had either polio, pneumonia, measles or whooping cough? (exp_seen)
Many of the illness which vaccinations prevent are severe. (vacc_severe)	Have you ever delayed having your child get a vaccination for reasons other than illness or allergy? (exp_delay)
When a parent refuses to vaccinate a child, it harms the entire community through risk of disease. (vacc_refuse)	Are you able to discuss any concerns you have about vaccinations with your child's healthcare provider? (exp_concern)

Exploratory Data Analysis

EDA Results

Continuous

Boxplots of Predictors by Vaccination Status

Correlation Matrix for Continuous Variables

• Binary:

Phi Coefficient: Binary variables	
association with Vaccination Status	
bednet	0.150
caregiver_sex	-0.080
inpatient	0.055
child_sex	-0.028
hbv_res	0.023
hbv_test	0.020
dbs	-0.010

• Ordinal:

Kendall's Tau: Ordinal Variables Association with	
Vaccination Status (*** p<0.001, **p<0.01, *p<0.05)	
exp_delay1	0.165***
exp_seen	0.106***
exp_concern	0.097***
vacc_refuse	0.097***
vacc_more1	-0.071**
vacc_severe	0.067**
exp_access	0.066**
exp_defer	0.065**
birthplace	0.013

• Multi-level:

Cramér's V: Nominal Variables Association with	
Vaccination Status	
relationship	0.159
education	0.097
marital	0.09
vacc_where	0.09
birthplace2	0.033
mauc_color	0.027
birth_status	0.02

Distribution of Beliefs Score and Experience Score Across Nominal Variables Beliefs1 Beliefs1 Beliefs1 Beliefs1 10 10 10 10 8 8 8 8 Vaccination Location Relationship Education Marital Government Health Centre 3 Mother No No Married Government Health Centre 2 Father Primary Single Private Health Centre Grandparent 6 Secondary Divorced Aunt or Uncle By Immunization Program College Widowed Other Other 4 Exp1 Exp1 Exp1 Exp1 14 14 14 14 12 12 12 12 Vaccination Location Relationship Education Marital Government Health Centre 3 Mother No
Primary
Secondary Married Government Health Centre 2 Father Single Private Health Centre Grandparent 10 10 10 10 Aunt or Uncle By Immunization Program College Widowed Other Other 8

Potential Confounding Variables

- Important Variables
 - O Based on EDA:

Relationship, main vaccination location, education Level, marital status, bed net, inpatient

○ In theory:

Distance to health care

- Prior knowledge, Chi-squared tests, Wilcoxon rank-sum tests, and Kruskal-Wallis tests were used
 - To check associations between each variable and outcome/exposures

Directed Acyclic Graph (DAG)

Final Analysis

Fully Vaccinated Status as the Outcome

- Imbalance in fully vaccinated status
 - 86% were fully vaccinated → normalized weight: 0.583
 - 14% were not fully vaccinated → normalized weight: 3.502

• Final model:

```
o logit(Pr(Vaccination Status<sub>i</sub> = 1)) = \beta_0 + \beta_1Beliefs Score<sub>i</sub> + \beta_2Experiences Score<sub>i</sub> + \sum_{j=0}^4 \beta_{3j} 1(Main Vaccination Location<sub>i</sub> = j) + \sum_{j=0}^3 \beta_{4j} 1(Education<sub>i</sub> = j) + \sum_{j=0}^3 \beta_{5j} 1(Marital Status<sub>i</sub> = j) + \sum_{j=0}^1 \beta_{6j} 1(Bed Net<sub>i</sub> = j) + \sum_{j=0}^1 \beta_{7j} 1(Inpatient<sub>i</sub> = j)
```

Model Performance

- Small VIFs (< 2) → no concerning multi collinearity
- Hosmer and Lemeshow goodness of fit (GOF) test: p-value= 0.5978
- → model fits the data well

Adjusted Odds Ratios and 95% Confidence Intervals

Variable Name	Variable Level	Adjusted Odds Ratio (aOR)	95% Confidence Interval	P-value
Beliefs Score		1.055	[0.937, 1.186]	0.374
Experiences Score		1.044	[0.923, 1.180]	0.488
Main Vaccination Location	Government Health Centre 3	0.097	[0.005, 0.461]	0.023
Main Vaccination Location	Government Health Centre 2	0.130	[0.007, 0.619]	0.047
Education Level	Secondary School	1.816	[1.082, 3.012]	0.022
Marital Status	Married	1.909	[1.027, 3.374]	0.032
Bed Net	Yes	3.016	[1.970, 4.562]	<0.001
Inpatient	Yes	1.562	[1.046, 2.396]	0.035

There were **no significant associations** between immunization status and beliefs or experiences related to vaccines, after adjusting for the confounding variables.

Impact of Individual Beliefs and Experiences

- Model for Individual Beliefs
 - vacc_full ~ belief_1 + belief_2 + ... + belief_10 + experience_score + vacc_where + education + marital + bednet + inpatient
- Model for Individual Experiences
 - vacc_full ~ experience_1 + experience_2 + ... + experience_14 + belief_score + vacc_where + education + marital + bednet + inpatient
- Significant beliefs/experiences:

Variable Name	aOR	95% CI
vacc_more	0.520	(0.367, 0.737)
vacc_severe	2.534	(1.479, 4.342)
vacc_refuse	1.984	(1.289, 3.052)
exp_seen	2.121	(1.449, 3.105)
exp_delay	0.337	(0.237, 0.478)
exp_concern	2.436	(1.293, 4.589)

• VIF scores all below 2, so collinearity is not an issue

Secondary Analysis: Measles Vaccine Model

- Firth logistic regression fitted due to extreme imbalance in data
 - 1414 vaccinated against measles (96.8%), 46 not vaccinated against measles (3.2%)
 - 14 parameters to be fitted in model (~3 unvaccinated per predictor)

Model

- measles ~ beliefs_score + experience_score + vacc_where + education+ marital+ bednet + inpatient
- Exposures: beliefs_score, experience_score
- Confounders: vacc_where, education, marital, bednet, inpatient
- Estimates and adjusted odds ratios (aOR)
 - Beliefs score association found to be significant (aOR: 0.54, 95% CI: [0.39, 0.73]), but experiences score association found to be insignificant (aOR: 1.10, 95%CI:[0.82, 1.48])
- Extreme imbalance in data limits conclusions that can be made

Secondary Analysis: Vaccine Card Outcome

- Logistic regression model fitted on factors associated with vaccine card availability
 - 67.5% had vaccine cards
 - 32.5% did not (self-reported vaccine status)

Results:

- Experience score was associated with vaccine card availability (aOR: 1.16, 95% CI: [1.06, 1.28]), but belief score was not.
- Bednet use, primary, secondary, university education, married status, and mother caregiver (vs. father, grandparent, aunt or uncle) were positively associated with vaccine card availability.

Conclusions

- No association found between fully vaccinated status and aggregated score for beliefs and experiences, after adjusting for confounders.
 - Bednet use, education level, and marital status, were related to both vaccinated status and card availability.
- However, some individual beliefs/experiences were associated with status
- About 82% of children (ages 12-23 months) living in Bugoye, Uganda were fully vaccinated in 2021, a significant improvement to the 55% national vaccination rate in 2016.
- Limitations: Recall and response bias (for those without a vaccine card), class imbalance

References

- Boyce RM, Delamater P, Muhindo R et al. Accessible metrics of access: Novel tools to measure immunization coverage in rural sub-Saharan Africa [version 1; peer review: 1 approved, 1 approved with reservations]. Gates Open Res 2019, 3:1540 (https://doi.org/10.12688/gatesopenres.13066.1)
- Uganda Bureau of Statistics (UBOS) and ICF. (2018). Uganda Demographic and Health Survey 2016. Kampala, Uganda and Rockville, Maryland, USA: UBOS and ICF.