به نام خدا

الگوريتم Timsort

مهدى حقوردي

فهرست مطالب

مقدمه و معرفي

تاريخچه

چرا تیمسورت؟

مقدمه و معرفى

مقدمه و معرفي

- در دنیای علوم کامپیوتر، مرتبسازی یک عملیات اساسی با کاربردهای بیشمار است.
- در میان انبوهی از الگوریتمهای مرتبسازی، یکی از الگوریتمها به دلیل کارایی، تطبیقپذیری و طراحی زیبا متمایز شده است: الگوریتم تیمسورت 1 .
 - این الگوریتم که توسط تیم پیترز 2 برای زبان برنامه نویسی پایتون 3 توسعه یافته است، به سنگ بنای پیادهسازی مرتبسازی در زبانها و محیطهای مختلف برنامهنویسی تبدیل شده است.
- تركیب منحصر به فرد مرتبسازی ادغامی 4 و مرتبسازی درجی 5 به همراه بهینهسازیهای مخصوص روی هر الگوریتم و بهینهسازیهای تطبیقی، تیمسورت را به یكی از پیچیدهترین و كاربریترین الگوریتمهای مرتبسازی موجود تبدیل كرده است.

¹ Timsort

² Tim Peters

³ Python programming language

⁴ Merge sort

⁵ Insertion sort

تاريخچه

- الگوریتم تیمسورت، در سال ۲۰۰۲ توسعه یافت.
- تيم پيترز اين الگوريتم را اينگونه توصيف ميكند:

"A non-recursive adaptive stable natural merges ort / binary insertion sort hybrid algorithm"

- این الگوریتم از Python 2.3 تا حدود بیست سال، الگوریتم استاندارد مرتبسازی در پایتون بود و از نسخهی 3.11.1 به دلیل تغییراتی که در سیاستهای ادغام آن بوجود آمد، الگورتیمی به اسم Powersort بر پایهی تیمسورت، جایگزین آن شد.
- الگوريتم تيمسورت در Swift ،V8 ،GNU Octave ،Android ،Java SE 7 و Rust پيادهسازی شده است.

- چرا non-recursive?

به طبق گفته ی تیم پیترز: «به طور خلاصه، روتین اصلی یک بار از سمت چپ تا راست، آرایه را طی، Run ها 2 را شناسایی و هوشمندانه آنها را با هم ادغام میکند.»

- چرا adaptive؟

چون این الگوریتم با توجه به طول و ترتیبهای از قبل موجود در آرایه، و همچنین بر اساس اندازهی Runهای پیدا شده، تصمیماتی میگیرد تا از الگوریتم بهتری برای آن موقعیت استفاده کند.

– چرا stable؟

چُون این الگوریتم، ترتیب عناصر یکسان در آرایهی اولیه را حفظ میکند. برای مثال اگر لیستی از این اسامی داشته باشیم: [peach, straw, apple, spork] و آنرا بخواهیم بر اساس حرف اول کلمات مرتب کنیم، چنین چیزی می گیریم: [apple, peach, straw, spork] اگر دقت کنید در لیست اولیه، straw قبل از spork آمده بود و در لیست مرتب شده هم همین ترتیب حفظ شد. به این نگهداری ترتیب پایداری الگوریتم مرتبسازی می گویند.

در ادامه مفهوم Run توضیح داده می شود. 2

- چرا hybrid؟ چون این الگوریتم از ترکیب دو الگوریتم merge sort و binary insertion sort برای مرتب سازی استفاده میکند. چرا تیمسورت؟

- پیچیدگی زمانی الگوریتم تیمسورت با الگوریتمهای Quick sort ، Merge sort برابری میکند و برابر (O(nlgn) است.
- اما این تحلیل کلی یک سری جزئیات راجع به پیچیدگی زمانی الگوریتم را پنهان میکند که آن پیچیدگی یک $(c_f.nlgn)$ constant factor
 - برای مثال در الگوریتم Quick sort انتخاب مقدار right ،left و right است و در اهای کوچک سرعت را پایین می آورد.
- در الگوریتم Merge sort هم ما فضایی به اندازه ی n+m برای ادغام کردن آرایهها آن هم به صورت بازگشتی و تعداد زیاد نیاز دارد. همچنین این الگوریتم یک الگوریتم بازگشتی ست و درخت بازگشتی و یک system stack برای اجرا نیاز دارد.
- بخاطر جابجاییهایی در الگوریتم Heap sort انجام میشود، Locality of Reference در آن نقض شده و پیشبینیهای پردازنده برای کش کردن دادهها را تضعیف میکند.

چرا تیمسورت؟

پس اگر بتوانیم این constant factor را کاهش دهیم می توانیم سرعت بیشتری از O(nlgn) بگیریم.