Exercice 004 - Solution

GSF-6053

Hiver 2025

Énoncé

Questions

- i. Montrez que le R^2 de la régression de Y sur X est égal au carré de la corrélation échantillonnale entre X et Y. C'est-à-dire, montrez que $R^2=r_{XY}^2$.
- ii. Montrez que le \mathbb{R}^2 de la régression de Y sur X est le même que le \mathbb{R}^2 de la régression de X sur Y.
- iii. Montrez que $\hat{\beta}_1 = r_{XY} \left(\frac{s_Y}{s_X} \right)$, où r_{XY} est la corrélation échantillonnale entre X et Y, et s_X et s_Y sont les écarts-types échantillonnaux de X et Y.

Solutions

i. La relation entre R^2 et la corrélation r_{XY} peut être démontrée en utilisant la définition de R^2 comme le ratio de la variance expliquée par la régression par rapport à la variance totale de Y. La corrélation échantillonnale r_{XY} est définie comme :

$$r_{XY} = \frac{\text{Cov}(X, Y)}{s_X s_Y}$$

Il peut être montré que R^2 , qui mesure la proportion de la variance expliquée par la régression, est égal à r_{XY}^2 , le carré de la corrélation échantillonnale entre X et Y.

- ii. Le R^2 de la régression de Y sur X est équivalent au R^2 de la régression de X sur Y car ces deux régressions impliquent la même relation linéaire entre les deux variables, ce qui signifie que la proportion de variance expliquée est la même dans les deux cas. En effet, dans les deux régressions, la corrélation r_{XY} entre X et Y est la même, donc R^2 est identique.
- iii. La pente $\hat{\beta}_1$ de la régression de Y sur X est donnée par :

$$\hat{\beta}_1 = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}$$

En utilisant la définition de la covariance et en exprimant les termes en fonction de la corrélation r_{XY} , de l'écart-type de X (noté s_X) et de l'écart-type de Y (noté s_Y), on obtient :

$$\hat{\beta}_1 = r_{XY} \left(\frac{s_Y}{s_X} \right)$$