• Lower bounds on sorting by comparison

• Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 1

compare them, then sorting must take $\Omega(N \lg N)$.

- ullet Basic idea: there are N! possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do N! different combinations of datamoving operations.
- ullet Therefore, there must be N! possible combinations of outcomes of all the if-tests in your program, since those determine what move gets moved where (we're assuming that comparisons are 2-way).

Decision Tree leight \propto Sorting time

possible different outcomes for κ it-tests is 2^k .

- \bullet Thus, need enough tests so that $2^k \geq N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$\begin{split} N! \; &\in \; \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right), \\ \lg(N!) \; &\in \; 1/2(\lg 2\pi + \lg N) + N \lg N - N \lg e + \lg \left(1 + \Theta\left(\frac{1}{N}\right)\right) \\ &= \; \Theta(N \lg N) \end{split}$$

ullet This tells us that k, the worst-case number of tests needed to sort ${\cal N}$ items by comparison sorting, is in $\Omega(N \lg N)$: there must be cases where we need (some multiple of) $N \lg N$ comparisons to sort N things.

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 3

- ullet For example, how can we sort a set of Ninteger keys whose values range from 0 to kN, for some small constant k?
- ullet One technique: put the integers into N buckets, with an integer p going to bucket $\lfloor p/k \rfloor$.
- ullet At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- E.g., k = 2, N = 10:

Start:

14 3 10 13 4 2 19 17 0 In buckets: | 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |

• Now insertion sort is fast. Putting in buckets takes time $\Theta(N)$, and insertion sort takes $\Theta(kN)$. When k is fixed (constant), we have sorting in time $\Theta(N)$.

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 4

<1,<2, etc.

- ullet If $M_p=$ #items with value < p, then in sorted order, the $j^{\dagger h}$ item with value p must be item $\#M_p + j$.
- Gives another linear-time algorithm.

tnis example

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys < each value...
- ... which tells us where to put each key: CS61B: Lecture #28 6 Last modified: Thu Oct 25 20:46:10 2018

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 5

• Can use distribution counting for each digit.

- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 28

each step separate

• But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
⋆ bat, be, bet / cat, cad, con, can / let / set	1
bat / * be, bet / cat, cad, con, can / let / set	2
bat / be / bet / * cat, cad, con, can / let / set	1
bat / be / bet / * cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 29

size от тпе кеу аата.

- Have measured other sorts as function of #records.
- How to compare?
- \bullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- \bullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- \bullet So $N\lg N$ comparisons really means $N(\lg N)^2$ operations.
- While radix sort would take $B = N \lg N$ time with minimal-length keys.
- On the other hand, must work to get good constant factors with radix sort.

Last modified: Thu Oct 25 20:46:10 2018

CS61B: Lecture #28 30

read in inorder.	where k is maximum amount data is displaced from final position.
 Need balance to really use for sorting [next topic]. 	- Good for small datasets or almost ordered data sets.
• Given balance, same performance as heap-	• Quicksort: $\Theta(N \lg N)$ with good constant fac-
sort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives	tor if data is not pathological. Worst case $O(N^2)$.
$\Theta(N + N \lg N) = \Theta(N \lg N)$	$ullet$ Merge sort: $\Theta(N\lg N)$ guaranteed. Good
	for external sorting. Heapsort, treesort with guaranteed balance:
	$\Theta(N\lg N)$ guaranteed.
	$ullet$ Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.
Last modified: Thu Oct 25 20:46:10 2018	Last modified: Thu Oct 25 20:46:10 2018