





# Honors Linear Algebra

# MATH0540

# PROFESSOR MELODY CHAN

Brown University



EDITED BY
RICHARD TANG







# Contents

| 1 | Fundamentals of Linear Algebra   |        |                             |    |  |
|---|----------------------------------|--------|-----------------------------|----|--|
|   | 1.1                              | Sets . |                             | 2  |  |
|   |                                  | 1.1.1  | Set Builder notation        | 2  |  |
|   |                                  | 1.1.2  | Cartesian Products          | 3  |  |
|   |                                  | 1.1.3  | Functions                   | 4  |  |
|   | 1.2                              | Fields |                             | 4  |  |
|   | 1.3                              | Vector | r Spaces                    | 6  |  |
|   |                                  | 1.3.1  | Properties of Vector Spaces | 8  |  |
|   | 1.4                              | Subspa | aces                        | 9  |  |
|   |                                  | 1.4.1  | Sums of Subspaces           | 10 |  |
|   |                                  | 1.4.2  | Direct Sums                 | 11 |  |
| 2 | Finite-Dimensional Vector Spaces |        |                             |    |  |
|   | 2.1                              | Span a | and Linear Independence     | 12 |  |
|   |                                  | 2.1.1  | Linear Independence         | 13 |  |
|   | 2.2                              | Bases  |                             | 15 |  |
| 3 | Linear Maps 1                    |        |                             |    |  |
|   | 3.1                              | Linear | Maps                        | 16 |  |

# Fundamentals of Linear Algebra

# §1.1 Sets

Sets serve as a fundamental construct in higher-level mathematics. We start with a brief introduction to set theory.

#### Definition 1.1.1: Sets

A **set** is a collection of elements.

- 1.  $x \in X$  means x is an element of X.
- 2.  $x \notin \text{means } x \text{ is not an element of } X$ .
- 3.  $X \subset Y$  means X is a subset of Y (i.e.  $\forall x \in X, x \in Y$ .)
- $4. \ X = Y \iff X \subset Y \land Y \subset X.$
- 5.  $A \cap B := \{x \mid x \in A \land x \in B\}$  means set intersection.
- 6.  $A \cup B := \{x \mid x \in A \lor x \in B\}$  means set union.
- 7.  $A \setminus B := \{x \mid x \in A \land x \not\in B\}$  means set difference.

#### Example 1. Let

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, \ldots\}.$$

denote the set of integers, and let

$$\mathbb{Z}^+ = \{0, 1, \ldots\}.$$

denote the set of positive integers.

#### §1.1.1 Set Builder notation

Sets may be defined formally with set-builder notation:

$$X = \{ \ expression \ | \ rule \}.$$

**Example 2.** 1. Let E represent the set of all even numbers. This set is expressed

$$E = \{ n \in \mathbb{Q} \mid \exists k \in \mathbb{Z} \ s.t. \ n = 2k \}.$$

2. Let A represent the set of real numbers whose squares are rational numbers:

$$A = \{ a \in \mathbb{R} \mid a^2 \in \mathbb{Q} \}.$$

#### §1.1.2 Cartesian Products

#### Definition 1.1.2: Ordered Tuples

An **ordered pair** is defined (x, y). An *n*-**ordered tuple** is an ordered list of n items

$$(x_1,\ldots,x_n)$$
.

#### **Definition 1.1.3: Cartesian Products**

Let A, B be sets. The **cartesian product**  $A \times B$  is defined

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

Similarly, define the n-fold cartesian product

$$A^n := A \times A \times \cdots \times A.$$

**Example 3.**  $\mathbb{R}^2$  and  $\mathbb{R}^3$  are examples of commonly known Cartesian products, which represent the 2D- and 3D-plane respectively.

**Example 4.**  $\mathbb{R}^n$  is a first example of a vector space. Let  $n \in \mathbb{Z}^+ \cup \{0\}$ :

1. (Addition in  $\mathbb{R}^n$ ) We define an addition operation on  $\mathbb{R}^n$  by adding coordinatewise

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

2. (Scaling) Given  $(x_1, \ldots, x_n) \in \mathbb{R}^n, \lambda \in \mathbb{R}$ , we define

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

**Remark 1.**  $\mathbb{R}_0 = \{0\}.$ 

#### §1.1.3 Functions

Let A, B be sets. Informally, a function  $f: A \to B$  deterministically returns an element  $b \in B$  for each  $a \in A$ . We write f(a) = b.

**Example 5.** The function  $f: \mathbb{R} \to \mathbb{R}$  given by  $f(x) = x^2$  maps  $\mathbb{R}$  to the subset

$$S \subset \mathbb{R} = \{(x, x^2) \mid x \in \mathbb{R}\}.$$

#### **Definition 1.1.4: Functions**

Let A, B be sets. A function  $f: A \to B$  is a subset  $G_f \subset A \times B$  such that for all  $a \in A$ , there exists at most one  $b \in B$  s.t.  $(a, b) \in G_f$ . We write f(a) = b when  $(a, b) \in G_f$ .

#### **Definition 1.1.5: Codomain**

Given a function  $f: A \to B$ , A is the **domain** of f, and B is the **codomain** or **target** of f. Let the **range** of f be defined as

$$\{b \in B \mid f(a) = b, a \in A\}.$$

The range is the subset of B. Importantly, the number of elements in the range of f cannot be larger than the number of elements in A, as each f(a) maps to at most one  $b \in B$ .

#### Definition 1.1.6: Bijectivity

Let  $f: A \to B$  be a function.

- 1. f is **injective**, or an **injection**, if  $a_1, a_2 \in A$  and  $f(a_1) = f(a_2)$  implies  $a_1 = a_2$ .
- 2. f is **surjective**, or a **surjection**, if for any  $b \in B$ , there exists an  $a \in A$  such that f(a) = b. Equivalently, the range is the whole codomain.
- 3. f is **bijective**, or a **bijection**, if it is both injective and surjective. Equivalently, for every  $b \in B$ , there is a unique  $a \in A$  such that f(a) = b.

# §1.2 Fields

Roughly speaking, a **field** is a set, together with operations addition and multiplication. Vector spaces may be defined *over* fields.

#### Definition 1.2.1: Fields

A field is a set  $\mathbb{F}$  containing elements named 0 and 1, together with binary operations + and  $\cdot$  satisfying, for all  $a, b, c \in \mathbb{F}$ :

- commutativity:  $a + b = b + a, a \cdot b = b \cdot a$
- associativity: a + (b + c) = (a + b) + c,  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- identities:  $0 + a = a, 1 \cdot a = a$
- additive inverse: For any  $a \in \mathbb{F}$ , there exists a  $b \in \mathbb{F}$  such that a + b = 0. We denote this b = -a
- multiplicative inverse: For any  $a \in \mathbb{F}$ ,  $a \neq 0$ , there exists a  $b \in \mathbb{F}$  such that ab = 1.
- distributivity:  $a \cdot (b+c) = a \cdot b + a \cdot c$ .

**Example 6.**  $\mathbb{R}^+ \setminus \{0\}$  is **not** a field under  $+, \cdot$ .

**Example 7.** (Finite Fields) Let p prime (e.g. p = 5). Define

$$\mathbb{F}_p = \{0, \dots, p-1\},\$$

with binary operations  $+_p$ ,  $\cdot_p$  given by addition and multiplication modulo p. We claim (without proof) that  $\mathbb{F}_p$  is a field.

**Example 8.** Let  $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ . Elements of  $\mathbb{C}$  are called **complex numbers**. Formally, a complex number is an ordered pair (a,b),  $a,b \in \mathbb{R}$ . We define addition as

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

and multiplication as

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

Showing  $\mathbb{C}$  is a field is left as an exercise for the reader.

#### Proposition 1.2.1: $\mathbb{C}$ Multiplicative Inverse

For every  $\alpha \in \mathbb{C} \setminus \{0\}$ , there exists  $\beta \in \mathbb{C}$  with  $\alpha \cdot \beta = 1$ .

**Proof.** Given  $\alpha \in \mathbb{C} \setminus \{0\}$ , let us write  $\alpha = a + bi$ . Then not both a, b = 0. Let  $\beta = \frac{a}{a^2 + b^2} + -\frac{b}{a^2 + b^2}i$ . Then  $\alpha\beta = (a + bi)\left(\frac{a}{a^2 + b^2} + -\frac{b}{a^2 + b^2}\right) = 1$ . Thus  $\forall \alpha \in \mathbb{C} \setminus \{0\}, \exists \beta \in \mathbb{C} \text{ s.t. } \alpha \cdot \beta = 1$ .

 $\mathbb{R}^n$  and  $\mathbb{C}^n$  are specific examples of fields, but by no means the only ones (for instance,  $\mathbb{F}^2$  with addition and multiplication modulo 2 is a field). Fields serve as the underlying set of numbers and operations that vector spaces are built on. In this course, we focus primarily on  $\mathbb{R}$  and  $\mathbb{C}$ ; but many of the definitions, theorems, and proofs work interchangeably with abstract fields.

## §1.3 Vector Spaces

Vector spaces serve as the fundamental abstract structure of linear algebra. All future topics will build on vector spaces. Roughly, a vector space V is a set of **vectors** with an addition operation and scalar multiplication, where scalars are drawn from a field  $\mathbb{F}$ . We now formalize this definition.

#### Definition 1.3.1: Vector Spaces

Given a field  $\mathbb{F}$ , A vector space over  $\mathbb{F}$ , denoted  $V_{\mathbb{F}}$ , is a set V, together with vector addition on V

$$+: V \times V \longrightarrow V$$

and scalar multiplication on V

$$\cdot : \mathbb{F} \times V \longrightarrow V$$

satisfying the following properties:

- (additive associativity) For all  $u, v, w \in V$ , u + (v + w) = (u + v) + w.
- (additive identity) There exists an element  $0 \in V$  such that v+0=0+v=0.
- (additive inverse) For all  $v \in V$ , there exists  $w \in V$  such that v+w=w+v=0. We denote w=-v.
- (additive commutativity) For all  $v, w \in V$ , v + w = w + v.
- (scalar multiplicative associativity) For all  $\alpha, \beta \in \mathbb{F}, v \in V, \alpha(\beta v) = (\alpha \beta)v$ .
- (scalar multiplicative identity) There exists an element  $1 \in \mathbb{F}$  such that 1v = v for all  $v \in V$ .
- (Distributive Law I) For every  $\alpha \in \mathbb{F}$ ,  $v, w \in V$ ,  $a \cdot (v + w) = a \cdot v + a \cdot w$ .
- (Distributive Law II) For every  $\alpha, \beta \in \mathbb{F}, v \in V, (\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$ .

We call elements of  $\mathbb{F}$  scalars, and elements of V vectors, or points.

**Example 9.** We say V is a vector space over  $\mathbb{F}$ . A vector space over  $\mathbb{R}$  is called a **real** vector space, and a vector space over  $\mathbb{C}$  is called a **complex vector space**.

Example 10. Let  $\mathbb{F}$  be a field.

1. For some integers  $n \geq 0$ ,  $\mathbb{F}^n = \{(a_1, \dots, a_n) \mid a_i \in \mathbb{F}\}$  with vector addition defined

$$(a_1,\ldots,a_n)+(b_1,\ldots,b_n)=(a_1+b_1,\ldots,a_n+b_n)$$

and scalar multiplication defined

$$\lambda \cdot (v_1, v_2, \dots, v_n) = (\lambda v_1, \lambda v_2, \dots, \lambda v_n).$$

Note that  $F^0 = \{0\}.$ 

- 2.  $\mathbb{F}^{\infty} = P\{(a_1, a_2, a_3, ...) \mid a_j \in \mathbb{F}, j \in \mathbb{N}\}$  with vector addition and scalar multiplication defined similarly.
- 3. Let S be any set; consider  $\{g: S \to \mathbb{F}\}$  be the set of functions from S to  $\mathbb{F}$ . Given  $f, g: S \to \mathbb{F}$ ,  $\lambda \in \mathbb{F}$ , define vector addition  $(f+g): S \to \mathbb{F}$  as

$$(f+g)(x) = f(x) + g(x)$$

and scalar multiplication  $\lambda f: S \to \mathbb{F}$  as

$$(\lambda f)(x) = \lambda f(x).$$

Perhaps counterintuitively, example 3 subsumes example 1! For example, let  $S = \{1, 2, ..., n\}$ , and let  $\mathbb{R}^{\{1,...,n\}}$  be the set of all functions from  $\{1, ..., n\} \to \mathbb{R}$ . One such f may be

$$f: \{1, \dots, n\} \longrightarrow \mathbb{R}$$
  
 $x \longmapsto f(x) = x^2 - 3.$ 

But f can also be thought of as an n-tuple. For instance, with n=3, we can define a function

$$f = (-2, 1, 6) \in \mathbb{R}^3$$
.

This is equivalent to f(1) = -2, f(2) = 1, f(3) = 6. Similarly, if  $f(x) = e^x$ , then  $f \in \mathbb{R}^{\{1,2,3\}} = (e, e^2, e^3) \in \mathbb{R}^3$ , since f(1) = e,  $f(2) = e^2$ ,  $f(3) = e^3$ .

In other words, every n-tuple  $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$  could be represented as a function  $f: \{1, 2, ..., n\} \to \mathbb{R}$ , where  $f(1) = x_1, f(2) = x_2, ..., f(n) = x_n$ . The key insight here is that **the function** f **is the** n-**tuple**; the one function  $f(x) = e^x$  is equivalent to the n-tuple  $(e, e^2, ..., e^n)$ .

From this, we get that the set of functions  $\mathbb{R}^{\{1,\dots,n\}} = \mathbb{R}^n$ , the set of *n*-tuples.

**Remark 2.** Reinterpret  $\mathbb{F}^0 = \{functions \ f : \varnothing \longrightarrow \mathbb{F}\}$ . How many functions are there from  $\varnothing \longrightarrow \mathbb{F}$ ?
One function  $\varnothing = \varnothing \times \mathbb{F}$ .

**Example 11.** The set of continuous functions  $f : \mathbb{R} \to \mathbb{R}$  forms a vector space over  $\mathbb{R}$ . In particular, the sum of two continuous functions is continuous; and  $a \cdot f$  is continuous for any  $a \in \mathbb{R}$ , and f continuous.

But what about fields over fields? Are these vector spaces?

**Example 12.** Let  $\mathbb{K}$  be a field, and say  $\mathbb{F} \subseteq \mathbb{K}$  ( $\mathbb{F}$  is a subfield of  $\mathbb{K}$ ). Then  $\mathbb{K}$  is a vector space over  $\mathbb{F}$ , with addition defined as in  $\mathbb{K}$ , and with scalar multiplication defined

$$\lambda \cdot x = \lambda x$$
, where  $\lambda \in \mathbb{F}, x \in \mathbb{K}$ .

Thus  $\mathbb{C}$  is a real vector space (this is why we draw the complex plane like  $\mathbb{R}^2$ !).

#### §1.3.1 Properties of Vector Spaces

We now observe some fascinating properties of vector spaces. Let V be a vector space over a field  $\mathbb{F}$ .

#### Proposition 1.3.1: Unique Additive Identity

V has a unique additive identity.

**Proof.** Suppose  $e, e' \in V$  are both additive identities. Then

$$e = e + e'$$
$$= e'.$$

Thus e = e'.

#### Proposition 1.3.2: Unique Additive Inverse

Every vector  $v \in V$  has a unique additive inverse.

**Proof.** Let  $v \in V$ , and suppose  $w, w' \in V$  are both additive inverses of v. Then

$$0 = v + w$$

$$w' = (w + v) + w'$$

$$w' = w + (v + w')$$

$$w' = w + 0$$

$$w' = w.$$

Thus w = w'.

Let us also define a notion of subtraction: we say v - w = v + (-w).

#### Proposition 1.3.3: -v

For any  $v \in V$ ,

$$-v = (-1) \cdot v.$$

**Proof.** Let  $v, -v \in V$  where -v is the inverse of v. Then

$$v + (-1) \cdot v = 1v + (-1) \cdot v = (1 + -1) \cdot v = 0 \cdot v = 0.$$

Since every  $v \in V$  has a unique additive inverse,  $-v = (-1) \cdot v$ .

#### Proposition 1.3.4: 0 Times a Vector

For every  $v \in V$ , 0v = 0.

**Proof.** For  $v \in V$ , we have

$$0v = (0+0)v = 0v + 0v.$$

Adding the additive inverse of 0v to both sides, we get 0v = 0.

#### Proposition 1.3.5: Scalar Times 0

For every  $a \in \mathbb{F}$ ,  $a\mathbf{0} = \mathbf{0}$ .

**Proof.** For  $a \in \mathbb{F}$ , we have

$$a\mathbf{0} = a(\mathbf{0} + \mathbf{0}) = a\mathbf{0} + a\mathbf{0}.$$

Adding the additive inverse to both sides yields  $a\mathbf{0} = \mathbf{0}$ .

## §1.4 Subspaces

Subspaces can greatly expand our examples of vector spaces.

#### Definition 1.4.1: Subspaces

A subset  $U \subseteq V$  is a **subspace** (or a **linear subspace**) of V if U is also a vector space.

U is a subspace of V if and only if

- 1.  $0 \in U$ .
- 2. For all  $u, w \in U$ ,  $u + w \in U$ .
- 3. For all  $u \in U$ ,  $\lambda \in \mathbb{F}$ ,  $\lambda \cdot u \in U$ .

That is, addition and scalar multiplication are **closed** in U, and the identity element exists.

We see that these three properties are enough for U to satisfy the six properties of vector spaces: associativity, commutativity, and distributivity are automatically satisfied, as they hold on the larger space V (and so also hold on the subspace U); addition and scalar multiplication make sense in U, and the additive identity exists; the third condition guarantees the additive inverse (-v = -1v).

## **Example 13.** What are the subspaces of $\mathbb{R}^2$ and $\mathbb{R}^3$ ?

Solution: It turns out that there are only three valid types of subspaces of  $\mathbb{R}^2$ :

1. The zero vector  $\mathbf{0} = (0,0)$ .

- 2. All lines through the origin  $(y = \alpha x)$ .
- 3.  $\mathbb{R}^2$  itself.

Similarly, there are only four valid types of subspaces of  $\mathbb{R}^2$ :

- 1. The zero vector  $\mathbf{0} = (0, 0, 0)$ .
- 2. All lines through through the origin.
- 3. All planes through the origin.
- 4.  $\mathbb{R}^3$  itself.

Let us now do a rough sketch of a proof that the list of subspaces of  $\mathbb{R}^2$  is complete.

**Proof.** Let W be a subspace of  $R^2$ . If W has no nonzero vectors, then  $W = \{0\}$ . If W has a non-zero vector  $v \in V \setminus \{0\}$ , then W must contain the line through v passing through v.

Moreover, if W contains some  $w \in V$  not on the line, we have the ability to "turn" the coordinate plane, such that any  $u \in V$  can be formed by  $\alpha v + \beta w$ .

#### §1.4.1 Sums of Subspaces

With vector spaces, we are primarily only interested in subspaces, not arbitrary subsets. Thus, the notion of the sum of subspaces is useful.

#### Definition 1.4.2: Sum of Subsets

Suppose  $U_1, \ldots, U_m$  are subsets of V. The **sum** of  $U_1, \ldots, U_m$ , denoted  $U_1 + \ldots + U_m$ , is the set of all possible sums of elements of  $U_1, \ldots, U_m$ . Precisely,

$$U_1 + \ldots + U_m = \{u_1 + \ldots + u_m \mid u_1 \in U_1, \ldots, u_m \in U_m\}.$$

**Example 14.** Suppose  $V = \mathbb{R}^3$ . Let  $U_1 = \{(x,0,0) \in \mathbb{R}^3 \mid x \in \mathbb{R}\}$  be the subspace containing elements with only x components, and  $U_2 = \{(0,y,0) \in \mathbb{R}^3 \mid y \in \mathbb{R}\}$  be the subspace containing elements with only y components. Then

$$U_1 + U_2 = \{(x, y, 0)\mathbb{R}^3 \mid x, y \in \mathbb{R}\},\$$

or the xy-plane.

Are these sums of subspaces actually subspaces themselves? Indeed, it is the smallest subspace containing all of the individual subspaces.

#### Proposition 1.4.1: Sum of Subspaces

Suppose  $U_1, \ldots, U_m$  are subspaces of V. Then  $U_1 + \ldots + U_m$  is the smallest subspace of V containing  $U_1, \ldots, U_m$ .

**Proof.** Clearly,  $0 \in U_1 + \ldots + U_m$  and addition and scalar multiplication in  $U_1 + \ldots + U_m$  is closed. Thus  $U_1 + \ldots + U_m$  is a subspace of V.

To show that it is the smallest, observe first that  $U_1, \ldots, U_m$  are all contained in  $U_1 + \ldots + U_m$  (for  $U_j$ , simply set  $u_i = 0$  for any  $i \neq j$ ). Additionally, every subspace of V containing  $U_1, \ldots, U_m$  contains  $U_1 + \ldots + U_m$  as well, since subspaces must contain all finite sums of their elements (in this case,  $u_i \in U_i$ ). Thus, since  $U_1 + \ldots + U_m$  contains every individual subspace, and any subspace containing  $U_1, \ldots, U_m$  also contains  $U_1 + \ldots + U_m$ , we have that  $U_1 + \ldots + U_m$  is the smallest subspace containing  $U_1, \ldots, U_m$ .

#### §1.4.2 Direct Sums

Suppose  $U_1, \ldots, U_m$  are subspaces of V. Every element of  $U_1 + \ldots + U_m$  can be written as

$$u_1 + \ldots + u_m$$

where each  $u_j$  is in  $U_j$ . Like the concept of injectivity, we are interested in the case when each vector in  $U_1 + \ldots + U_m$  can only be written in one way. We call these **direct sums**.

#### **Definition 1.4.3: Direct Sum**

Suppose  $U_1, \ldots, U_m$  are subspaces of V. The sum  $U_1 + \ldots + U_m$  is a **direct sum** if each element of  $U_1 + \ldots + U_m$  can be written in only one way as a sum  $u_1 + \ldots + u_m$ , where  $u_j \in U_j$ . We denote this sum

$$U_1 \oplus \ldots \oplus U_m$$
.

Two theorems are useful in determining if a sum of subspaces is a direct sum. Their proofs are left as an exercise for the reader.

#### Theorem 1.4.1: Condition for a Direct Sum

Suppose  $U_1, \ldots, U_m$  are subspaces of V. Then  $U_1 + \ldots + U_m$  is a direct sum if and only if the only way to write

$$0 = u_1 + \ldots + u_m$$

is by setting each  $u_j = 0$ .

**Proof.** One direction is easy. To show the other direction, assume there are multiple ways to write a vector v, and perform arithmetic 0 = v - v to arrive at  $u_i = 0$ .

#### Theorem 1.4.2: Direct Sum of Two Subspaces

Suppose U, W are subspaces of V. Then U + W is a direct sum if and only if  $U \cap W = \{0\}$ .

**Proof.** If we know direct sum, then there is only one way to write 0 = v + -v ( $v \in U \cap W$ ). For the other direction, try writing 0 = u + w for some  $u \in U$ ,  $w \in W$ , and showing that u = w = 0 necessarily.

# Finite-Dimensional Vector Spaces

## §2.1 Span and Linear Independence

Suppose a friend imagines a subspace  $W \subseteq \mathbb{R}^3$ . You know that  $(1,0,0), (0,1,0) \in W$ . What else do you know must be in W? Well, first,  $\mathbf{0} = (0,0,0) \in W$  by definition. But moreover, anything in the form  $\{(a,b,0) \mid a,b \in \mathbb{R}\}$  (the xy-plane) must be in W, since any point on the plane can be made by  $\alpha \cdot a + \beta \cdot b$  (we will later see that (1,0) and (0,1) are **basis vectors** of  $\mathbb{R}^2$ ).

#### Definition 2.1.1: Linear Combination and Span

A linear combination of a list of vectors  $v_1, \ldots, v_n \in V$  is a vector of the form

$$\lambda_1 v_1 + \ldots + \lambda_n v_n$$
, where  $\lambda_i \in \mathbb{F}$ .

The **span** (or **linear span**) of  $v_1, \ldots, v_n$ , is the set of all linear combinations of  $v_1, \ldots, v_n$ :

$$\operatorname{span}(v_1, \dots, v_n) = \{a_1 v_1 + \dots + a_m v_m \mid a_i \in \mathbb{F}\}.$$

The span of no vectors is  $\{0\}$ .

#### Proposition 2.1.1: Span is Smallest Subspace

The span of  $v_1, \ldots, v_m$  is the smallest subspace of V containing  $v_1, \ldots, v_m$ . Precisely:

- 1.  $\operatorname{span}(v_1,\ldots,v_m)$  is a subspace of V.
- 2. Any subspace W of V containing  $v_1, \ldots, v_m$  also contains span $(v_1, \ldots, v_m)$ .

**Proof.** Let  $v_1, \ldots, v_m$  be a list of vectors in V.

 $\operatorname{span}(v_1,\ldots,v_m)$  is clearly a subspace of V: achieve  $\mathbf{0} \in \operatorname{span}(v_1,\ldots,v_m)$  by setting each  $a_j = 0$ , and since  $a_j + b_j$ ,  $\lambda a_j \in \mathbb{F}$ ,  $\operatorname{span}(v_1,\ldots,v_m)$  is closed under addition and scalar multiplication.

Now, we show that  $\operatorname{span}(v_1,\ldots,v_m)$  is the smallest subspace containing  $v_1,\ldots,v_m$ . Every vector  $v_j$  is a linear combination of  $v_1,\ldots,v_m$  (take, for  $i\neq j,\ a_i=0$ ); thus  $\operatorname{span}(v_1,\ldots,v_m)$  contains each  $v_j$ . Additionally, every subspace U of V that contains each  $v_j\in U$  is closed under addition and scalar multiplication, so U contains every linear combination of  $v_1,\ldots,v_m$ ; thus U contains  $\operatorname{span}(v_1,\ldots,v_m)$ . So, since  $\operatorname{span}(v_1,\ldots,v_m)$ 

contains every vector  $v_j$ , and any subspace U of V that contains every vector  $v_j$  also contains  $\operatorname{span}(v_1,\ldots,v_m)$ , the span is the smallest subspace containing every  $v_j$ .

#### Definition 2.1.2: Spanning a Vector Space

If span $(v_1, \ldots, v_m) = V$ , then  $v_1, \ldots, v_m$  spans V, and  $v_1, \ldots, v_m$  are a spanning set.

We now make one of the key definitions of linear algebra.

#### Definition 2.1.3: Finite Dimensional Vector Spaces

If V is spanned by a finite list of vectors  $v_1, \ldots, v_m$  then V is finite-dimensional.

If V is not finite-dimensional, then V is **infinite-dimensional**.

**Example 15.** Let  $\mathcal{P}(\mathbb{F})$  be the set (indeed, vector space) of polynomials over a field  $\mathbb{F}$ . Show  $\mathcal{P}(\mathbb{F})$  is infinite-dimensional.

Solution: Let  $p \in \mathcal{P}(\mathbb{F})$ , and let m denote the highest degree polynomial in  $\mathcal{P}(\mathbb{F})$ . Then p has at most degree m; thus a polynomial  $p^{m+1}$  is not spanned by any list of vectors in  $\mathcal{P}(\mathbb{F})$ ; thus  $\mathcal{P}(\mathbb{F})$  is finite-dimensional.

#### §2.1.1 Linear Independence

As with sums/direct sums, we are interested if a vector has a unique linear combination; that is, given a list  $v_1, \ldots, v_m \in V$ , and  $v \in \text{span}(v_1, \ldots, v_m)$ , are there unique  $a_1, \ldots, a_m \in \mathbb{F}$  such that

$$v = a_1 v_1 + \ldots + a_m v_m?$$

In other words, is there only one way to create a certain vector given a span? Suppose there's more than one way; then there exists  $b_1, \ldots, b_m \in \mathbb{F}$  such that

$$v = b_1 v_1 + \ldots + b_m v_m;$$

then

$$0 = (a_1 - b_1)v_1 + \ldots + (a_m b_m)v_m.$$

If the only way to do this is the obvious way, where  $a_i - b_i = 0$ , then the representation is unique. We call this **linear independence**.

#### Definition 2.1.4: Linear Independence

A list of vectors  $v_1, \ldots, v_m \in V$  is **linearly independent** if the only choice of  $a_1, \ldots, a_m \in \mathbb{F}$  that makes  $a_1v_1 + \ldots + a_mv_m$  equal 0 is  $a_i = 0$ .

A list of vectors in V is **linearly dependent** if it is not linearly independent.

That is, there exist non-zero  $a_i \in \mathbb{F}$  such that

$$0 = \sum_{i=1}^{m} a_i v_i.$$

An empty list of vectors () is linearly independent.

**Example 16.** 1. A list of one vector  $v \in V$  is linearly independent if and only if v is non-zero.

- 2. A list of two vectors  $v1, v_2 \in V$  is linearly independent if and only if one vector is not a scalar combination of the other vector; that is,  $v_1 \neq \lambda v_2$  for some  $\lambda \in \mathbb{F}$ .
- 3. (1,0,0),  $(0,1,0) \in \mathbb{R}^3$  is linearly independent.
- 4.  $(1,-1,0),(-1,0,1),(0,1,-1) \in \mathbb{R}^3$  is linearly dependent. In particular,  $(1,-1,0)+(-1,0,1)+(0,1,-1)=\mathbf{0}$ . Alternatively, we can write (-1,0,1) as a linear combination of the other two:

$$(-1,0,1) = -1 \cdot (1,-1,0) - (0,1,-1).$$

Intuitively, a list of vectors is linearly independent if none of its vectors are a linear combination of the other vectors; each vector is "independent" of the other vectors. In other words, a vector is linearly independent if it is not in the span of the other vectors. This gives rise to an important lemma, and theorem.

#### Lemma 2.1.1: Linear Dependence Lemma

Suppose that  $v_1, \ldots, v_m \in V$  is a linearly dependent list of vectors. Then there exists some  $j \in \{1, \ldots, m\}$  such that:

- 1.  $v_i \in \text{span}(v_1, ..., v_{i-1})$
- 2. If the  $j^{th}$  term is removed from the list, the span of the remaining vectors  $v_1, \ldots, \hat{v_j}^a, \ldots, v_m$  equals  $\mathrm{span}(v_1, \ldots, v_m)$ .

In other words, removing the linearly dependent vector has no effect on the overall span of the vectors.

**Proof.** Because the list  $v_1, \ldots, v_m$  is linearly dependent, there exist  $a_1, \ldots, a_m \in \mathbb{F}$  not all 0 such that

$$a_1v_1 + \ldots + a_mv_m = 0.$$

Let j be the largest element of  $\{1,\ldots,m\}$  such that  $a_j \neq 0$ . Then

$$v_j = -\frac{a_1}{a_j}v_1 - \ldots - \frac{a_{j-1}}{a_j};$$

hence  $v_j$  is in the span of  $v_1, \ldots, v_{j-1}$ .

 $<sup>^{</sup>a}$ here, hat means "with  $v_{j}$  removed"

Now, suppose  $u \in \text{span}(v_1, \dots, v_m)$ . Then there exist  $b_1, \dots, b_m \in \mathbb{F}$  such that

$$u = b_1 v_1 + \ldots + b_m v_m.$$

If we replace  $v_j$  with 2.1.1, the resulting list consists only of  $v_1, \ldots, \hat{v_j}, \ldots, v_m$ ; thus we see that u is in the span of the list.

#### Theorem 2.1.1: Length of Linearly Independent List and Span

In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

**Proof.** Left as an exercise for the reader. Try starting with  $u_1, \ldots, u_m \in V$  a list of linearly independent vectors, and  $v_1, \ldots, v_n \in V$  a spanning list of V, and show that  $m \leq n$ . Use the Linear Dependence Lemma to iteratively add  $u_i$  and remove  $w_j$ ; eventually, we are left with a list with all  $u_i$ , and optionally some  $w_j$ .

Intuitively, every subspace of a finite-dimensional vector space is also finite-dimensional.

#### Proposition 2.1.2: Finite-Dimensional Subspaces

Every subspace of a finite-dimensional vector space is finite-dimensional.

### §2.2 Bases

## Chapter 3

# Linear Maps

# §3.1 Linear Maps

#### Definition 3.1.1: Linear Maps

Let V, W be vector spaces over a field  $\mathbb{F}$ . A function

$$T:V\longrightarrow W$$
 
$$v\longmapsto T(v)\in W.$$

is a **linear map** if it satisfies, given  $v_1, v_2 \in V$ ,  $\lambda \in \mathbb{F}$ :

- 1.  $T(v_1 + v_2) = T(v_1) + T(v_2) \in W$ .
- 2.  $T(\lambda v) = \lambda T(v)$ .

#### Proposition 3.1.1: Linear Maps Preserve 0

If  $T: V \to W$  is a linear map, then  $T(\mathbf{0}) = \mathbf{0}$ .

**Proof.** We have

$$T(0) = T(0+0)$$
  
=  $T(0) + T(0)$ .

Adding the additive inverse of T(0) to both sides, we have

$$0 = T(0)$$
.

#### Proposition 3.1.2: Combination of Linearity Properties

A function  $T:V\to W$  is linear if and only if

$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$$

for all  $v_1, v_2 \in V$ ,  $\alpha, \beta \in \mathbb{F}$ .

**Example 17.** Let V, W be any vector spaces over  $\mathbb{F}$ .

1. The zero map

$$0: V \longrightarrow W$$
$$v \longmapsto 0(v) = 0$$

is a linear map.

2. The identity map

$$\begin{split} I:V &\longrightarrow V \\ v &\longmapsto I(v) = v \end{split}$$

is a linear map.

3. Any linear map

$$T: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto T(x) = ax$$

 $is\ a\ linear\ map.$ 

## Proposition 3.1.3: Linear Maps in R

Let  $T: \mathbb{R} \to \mathbb{R}$  be a linear map. Then there is some  $a \in \mathbb{R}$  such that T(x) = ax for all  $x \in \mathbb{R}$ .

**Proof.** Let a = T(1). Then for any  $x \in \mathbb{R}$ ,

$$T(x) = T(x \cdot 1) = x \cdot T(1) = ax.$$

**Example 18.** Say  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is a linear map such that T(1,0) = (2,1) and T(0,1) = (1,-1). What else do we know?

- T(0,0) = (0,0)
- T(1,1) = T((1,0) + (0,1)) = (2,1) + (1,-1) = (3,0)
- T(2,0) = (4,2)