

/	What values does the variable out take if the following lines of code are run:	1/1
	<pre>X=np.array([[1,0,1],[2,2,2]]) out=X[0:2,2] out</pre>	
•	array([1, 2])	~
0	array([1, 1])	
0	array([1, 0])	
/	What is an important difference between lists and tuples?	1/1
0	Tuples can only have integers	
0	List and tuples are the same	
0	List can't contain strings	
•	Lists are mutable tuples are not	✓
~	How would you select the columns with the headers: "artist, length and genre" from the dataframe df and assign them to the variable y	1/1
•	y = df[['artist', 'length', 'genre']]	/
0	y = df[['artist'], ['length'], ['genre']]	
_	y = df['artist', 'length', 'genre']	

	pandas dataframe, area_df, with a transparency value of 0.35?	
	<pre>import matplotlib.pyplot as plt transparency = 0.35 area_df.plot(kind='area', alpha=transparency, figsize=(20, 10)) plt.title('Plot Title') plt.ylabel('Vertical Axis Label') plt.xlabel('Horizontal Axis Label') plt.show()</pre>	
0	False	
•	True	<
Doğ	ru cevap	
•	False	
~	The easiest way to create a waffle chart in Python is using the Python package, PyWaffle.	1/1
0	False	
•	True	/
		1 /1
~	Stamen Terrain is the right tile style of Folium maps for visualizing and exploring river meanders and coastal zones of a given geographical area.	1/1
/		1/1

Which of the code below will create the following scatter plot, given the 0/1 pandas dataframe, df_total? (Note: Forget about the title and labels. Focus on the plot function only.)

<pre>1 ax = area_df.plot(kind='area', figsize=(20, 10)) 2 3 ax.title('Plot Title') 4 ax.ylabel('Vertical Axis Label') 5 ax.xlabel('Horizontal Axis Label')</pre>	
○ False	
True	×
Doğru cevap	
False	
Using the notebook backend, you cannot modify a figure after it is rendered.	1/1
O True	
False	~
✓ Data visualizations are used to (check all that apply):	1/1
Support recommendations to different stakeholders	~
Perform data analytics and build predictive models	
Explore a given data set	~
Train and test a machine learning algorithm	
Share unbiased representation of data	~
✓ Area plots are stacked by default.	1/1
O False	

✓ A waffle chart is a great way to visualize data in relation to a whole, or to 1/1 highlight progress against a given threshold.	
True	
O False	
Which approach can be used to calculate dissimilarity of objects in clustering? (Check all that apply))/1
Euclidian distance	•
None	
Minkowski distance	
Cosine similarity	•
Doğru cevap	
Minkowski distance	
Euclidian distance	
Cosine similarity	
✓ Which of the following is an application of clustering? (Check all that apply)	/1
Customer segmentation	
Sales prediction	
Price estimation	
Customer churn prediction	

~	Assume you have independent (features) and dependent (target or label) 1/1
	columns as X and Y. Your task is to build a model and make predictions
	(by using Logistic Regression in this case). To achieve this task, you must
	perform normalization, train/test splitting, training and predicting steps.
	Given the options below (A-D), which one is the best solution which
	combines those options the right way?
A)	<pre>scaler = StandardScaler() normalized_X = pd.DataFrame(scaler.fit_transform(X), columns = X.columns) x_train, x_test, y_train, y_test = train_test_split(normalized_X, Y, test_size=0.30, random_state=42) LR = LogisticRegression(C=0.01, solver='liblinear').fit(x_train, y_train) y_test_pred = LR.predict(x_test)</pre>
B)	<pre>x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=42)</pre>
ы	scaler = StandardScaler() normalized_x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x_train.columns)
	<pre>normalized_x_test = pd.DataFrame(scaler.fit_transform(x_test), columns = x_test.columns) LR = LogisticRegression(C=0.01, solver='liblinear').fit(normalized_x_train, y_train) y_test_pred = LR.predict(normalized_x_test)</pre>
C)	<pre>x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=42) scaler = StandardScaler() scaler = StandardScaler()</pre>
	<pre>normalized_x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x_train.columns) normalized_x_test = pd.DataFrame(scaler.transform(x_test), columns = x_test.columns) LR = LogisticRegression(C=0.01, solver='liblinear').fit(normalized_x_train, y_train) y_test_pred = LR.predict(x_test)</pre>
D)	<pre>x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=42)</pre>
	<pre>scaler = StandardScaler() normalized_x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x_train.columns) normalized_x_test = pd.DataFrame(scaler.transform(x_test), columns = x_test.columns) LR = LogisticRegression(C=0.01, solver='liblinear').fit(normalized_x_train, y_train) y_test_pred = LR.predict(normalized_x_test)</pre>
9	
0) A
0	В
0	C
•	D ✓

~	Multiple Linear Regression is appropriate for:	1/1
•	Predicting tomorrow's rainfall amount based on the wind speed and temperature	✓
0	Predicting whether a drug is effective for a patient based on her characteristics	
0	None	
0	Predicting the sales amount based on month	
~	Which one IS NOT a sample of classification problem? (Check all that apply)	1/1
~	To predict the amount of money a customer will spend in one year	✓
	To predict whether a customer responds to a particular advertising campaign or n	ot
	To predict whether a customer switches to another provider/band	
	To predict the category to which a customer belongs to	

	Although the analytics approach is the second stage of the data science methodology, it is still independent of the business understanding stage	
0	False	~
0	True	
~	Establishing a clearly defined question starts with understanding the goal of the person asking the question.	1/1
0	False	
•	True	~
•	The data science methodology is highly iterative, ensuring the refinement at each stage in the game. False	0/1 X
0	True	
Doğ	ru cevap	
•	True	
	Before the model is evaluated and the data scientist is confident it will	1/1
~	work, it is deployed and put to the ultimate test.	
•	work, it is deployed and put to the ultimate test. False	✓

✓ In the case study (mentioned in the lecture), the target variable was congestive heart failure (CHF) with 45 days following discharge from CHF hospitalization.	1/1
False	✓
O True	
Congestive heart failure patients with other significant medical conditions were included in the study in order to increase the sample size of the patients included in the study. Note: Give your answer based on the scenario mentioned in the lecture.	1/1
O True	
False	~
✓ When collecting data, it is alright to defer decisions about unavailable data, and attempt to acquire it at a later stage.	1/1
O False	
True	✓
✓ The data preparation stage is the least time-consuming phase of a data science project, typically taking between 5 to 10 percent of the overall project time.	a 1/1
O True	
False	✓

✓ What is the correct use of the "train_test_split" function such that 90% of 1/1 the data samples will be utilized for training, the parameter "random_state" is set to zero, and the input variables for the features and targets are x_data, y_data respectively.
<pre>train_test_split(x_data, y_data, test_size=0.9, random_state=0) train_test_split(x_data, y_data, test=0.9, random_state=0) train_test_split(x_data, y_data, test=0.1, random_state=0) train_test_split(x_data, y_data, test_size=0.1, random_state=0)</pre>
✓ What is correlation? 1/1 O It measures causal relationships between variables
■ It measures to what extent different variables are independent
✓ If X is a dataframe with 100 rows and 5 columns, and y is the target with 1/1 100 samples, and assuming all the relevant libraries and data have been imported, and the following line of code has been executed. How many samples does yhat contain?
<pre>1 LR = LinearRegression() 2 3 LR.fit(X, y) 4 5 yhat = LR.predict(X)</pre>
 5 500