WUOLAH

Seminario 1.pdf

Seminarios

- 1° Tecnología y Organización de los Computadores
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

SEMINARIO 1

1. Decimal a Binario

a) 26,1875)₁₀

Parte entera: 11010 Parte fraccionaria: 0011

Solución: 11010,0011)₂

b) 125,42)₁₀

Parte entera: 1111101 Parte fraccionaria: 011010

Solución: 1111101,011010)₂

2. Binario a Decimal

a) $0,10100)_2$

Parte entera: 0 Parte fraccionaria: 625

Solución: 0,625)₁₀

b) 11001,110)₂

Parte entera: 25 Parte fraccionaria: 75

Solución: 25,75)₁₀

3. Hexadecimal a Binario

A798C,1E) $_{16}$

Parte entera: 1010 0111 1000 1100 Parte fraccionaria: 0001 1110

Solución: 1010 0111 1000 1100, 0001 1110)₂

4. Binario a Hexadecimal

111111111011111000010)2

Parte entera: 7FBC2

Solución: 7FBC2)₁₆

COMPLUTENSI

CEFA°

MÁSTER UNIVERSITARIO EN FINANZAS

¿Quieres alcanzar el éxito profesional?

5. Hexadecimal a Decimal

3B5E,34)₁₆

Parte entera: 15198 Parte fraccionaria: 203125

Solución: 15198,203125)₁₀

6. Decimal a Hexadecimal

314,22)10

Parte entera: 13A Parte fraccionaria: 38

Solución: 13A,38)₁₆

7. BCD a Decimal

0011 1000 0111, 1001 0010)_{BCD}

Parte entera: 38792 Parte fraccionaria: 92

Solución: 38792,92)₁₀

8. Decimal a BCD

745,2345)10

Parte entera: 0111 0100 0101 Parte fraccionaria: 0010 0011 0100 0101

Solución: 0111 0100 0101, 0010 0011 0100 0101)_{BCD}

WUOLAH

Seminario 2.pdf

Seminarios

- 1° Tecnología y Organización de los Computadores
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

SEMINARIO 2

1. ¿Qué tamaño ocuparía un archivo de sonido de 2,5 Mbytes si se utilizase un algoritmo básico compresión MP3? (Ayuda: compresión típica MP3 12:1)

$$f_c = \underline{C_a} \qquad \qquad C_d = \underline{C_a} \qquad \qquad C_d = \underline{2'5 \ MB} = 0'2083 \ MB$$

$$C_d \qquad \qquad f_c \qquad \qquad 12$$

Solución: 0'2083 MB

2. Un fichero de texto en ASCII Latín 1 ocupa 1 MB.¿Qué tamaño ocuparía si se pasara a un fichero de texto UNICODE?

1 MB Latin-1 ·
$$\underline{1 \text{ carácter}}$$
 · $\underline{16 \text{ bits UNICODE}}$ = 2 MB 8 bits Latin-1 1 carácter

Solución: 2 MB

3. Un computador recibe de un terminal los siguientes caracteres ASCII, que contienen un bit de paridad (criterio impar):

$$9A \rightarrow 1001\ 1010 \rightarrow par$$

$$4C \rightarrow 0100 \ 1100 \rightarrow impar$$

$$67 \rightarrow 0110\ 0111 \rightarrow impar$$

$$CB \rightarrow 1100\ 1011 \rightarrow impar$$

$$6C \rightarrow 0110 \ 1100 \rightarrow par$$

$$C9 \rightarrow 1100\ 1001 \rightarrow par$$

4. ¿Qué tiempo de música en calidad TDT estéreo y sin comprimir se puede almacenar en un CD-ROM de 650 MB?

$$R_{bps} = f_s \cdot N \cdot n.^o$$
 canales

$$R_{bps} = 48 \cdot 1000 \cdot 2 \cdot 2 = 192000 \text{ Bytes/s}$$

$$\frac{192000 \text{ Bytes}}{1 \text{ s}} \cdot \frac{1 \text{ MB}}{2^{20} \text{ B}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 10'986 \text{ MB/min}$$

650 MB
$$\cdot \frac{1 \text{ min}}{10'986 \text{ MB}} = 59'16 \text{ min}$$

Solución: 59'16 min

MÁSTER UNIVERSITARIO EN FINANZAS

¿Quieres alcanzar el éxito profesional?

600 MB
$$\cdot$$
 2^{20} B \cdot 1 imagen 1 pixel = 266'67 imágenes 1 MB \cdot (1024 \cdot 768)px \cdot 3 B

Solución: 266 imágenes

WUOLAH

Seminario 3.pdf

Seminarios

- 1° Tecnología y Organización de los Computadores
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

SEMINARIO 4

Obtener las expresiones booleanas como términos producto de los cubos que se representan en los mapas de Karnaugh, que se muestran en las siguientes figuras.

Solución: ABD Solución: ABD

Solución: BCD Solución: BCD

CUNEF POSTGRADO

La formación que necesitas para tu **futuro profesional.**

⇒ FINANZAS

→ DERECHO

⇒ DATA SCIENCE

Infórmate sobre nuestros programas de becas y financiación preferente.

iabierto PROCESO DE ADMISIÓN!

lámanos y te nformamos!

Ancir Salazar: 34 659 917 91 ancir.salazar @cunef.edu

-34 680 927 727 luzmaria.vela @cunef.edu

www.cunef.edu

Solución: ABC Solución: BCD

Solución: BD Solución: BD

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Solución: BD Solución: BD

Solución: AD Solución: AC

Solución: CD Solución: AB

Solución: \overline{C} Solución: B

Sewinario 5

fix. y, ε ω = Σω (3, 4, 5, 7, 11, 15) × y ε ω f 0 0 0 0 0

0 0 1 0

F = ABC + CD

Usando NOR -2 Usardo NAND-2 Redience NOT x-[] >-x x-[] x (merror) Z-X *D-D-Ny X-D-Ny AND - 2 Z-XY OR -2 X-X-Y X-IDO-XX Z = X+Y Funcion NOR a porter de sub puertos NAND-2 PEab Función NAND a portor de esta puertos NOR - 2 9=10+6 Función XOR a partir de ada puertos NAND - 2 P = ab + ab Función XOR a porter de solo puertos NOR-2 9=10+B(0+B)

Planta No. 2 - Eul 1235 7 - 0110, 112, 13, 14, 19

NO					
			XOO		
12					1
			1	1	1
		1	0	0	
		1	0	1	1
8	00011	1	1		0
00 7 00 9	0		1	1	1
8			0	0	0
9	1		0	1	
N	1			0	
0	1	0)	1	H
		1	0	0	H
В	1)	0)	
C	1	1	1	0	-
D	1	1	1	1	H

200-0

P = AO + BC + CO