Xgboost Classification Algorithm:

Dataset:

Salary	Cred	1	Approv	al (15-	oya बन 🖘 🖘	beglios boto	harg
Z= 50K	В		0	- 1 5	3-PF =		
<= 50K	G	(,	on pan	113.()	2 77		
<= 50K	લ		-	_			3000
>50K	В	1.1.	0	<u>^ </u>			
> 50 K	G	19121850	· 1	P-16) Fd	Solary	Degree	G X
>50K	2	362-	- (2,9 <i>€</i> . →	ਐਰਵ	BE	
<= 50K	N	3 K	0	33 -	FOK	em	

Steps:

3tep1: Construct a Base model

20 K

Step 2: Construct a decision tree with root mod node.

2514

Step 3: calculate Similarity weight

$$8W = 5.00 = \frac{5 (Residuals)^2}{5 Prc(1-Prc)}$$

I it is also eximise a flow in the first

pre = preobability

100 = 3 of 4(0)

Afternative Turnston?

Step 4: Calculate gain.

Step 1: Construct a base mode whose output probability will be 0.5 or the output of the base model will be 0.

Step 2: Construct a dT with most mode.

Dataset:

			414
Salarcy	Creedit	Approval (Yi)	P1 (41-0.2)
	В	O 705 <	-0.5
<=50K	G	1	0.5
<= 50K	G	1	0.5
> 50 K	B	0	-0.2
> 50K	G	1	0.5
>50K	N	1	0.5
<= 50K	N	0	-0.5

Step 2° Construct a dT with roof node

Base | Salary, |
$$750|L$$
 $V = 0.5$
 $V = 0.5, 0.5$
 $V = 0.5, 0.5$
 $V = 0.33$
 $V = 0.5 = 0.5 = 0.33$

Grain =
$$0 + 0.33 - 0.14 = 0.19$$

suppose we would use decision true on credit column and get a better gain. So, we will use that decision Tree instant to go further.

Now, we are assuming that we have get better gain on salary column

For text data,
$$[< = 50K, B] \rightarrow$$

Output = $\sqrt{(0 + \alpha(1))}$
 $= \sqrt{0 + 0.1}$
 $= \sqrt{1 + e^{-0.1}}$
 $= 0.52 \Rightarrow \text{if Threshold} = 0.6 [Set by Dormain expent]}$
 $= 0.52 < 0.6$
 $= 0.52 < 0.6$

Xapoost Summony &

Bone Model
$$\rightarrow \alpha_1 \qquad \rightarrow \alpha_2 \qquad \rightarrow \cdots \qquad + \alpha_m \qquad \rightarrow$$

19 no bonno Th desorters

Xaboost Regnescon:

Dataset

Eap	Gap	Salary	
2	Yen	40K	
2'5	yen	42K	
3	No	52K	
4	No	60 K	
4'5	You	62K	
		52K (Mean)

The formula of calculating similarity weight is a bit different than classification.

Steps:

1 Create a bane model. Bane model output will be the mean of the target feature.

gain from 12t dT - 65'5+28'5-0'16
= 98:34

gain from the 2nd dT split = Suppose 99

So, we will proceed of further with the greatest gain split which is but dt split.

52K

N 02

of enade a base model. Done model output will be the man of the forget feature.

Base
$$\longrightarrow$$
 [Exp]

Model \longrightarrow [Sup]

 \longrightarrow [Gap]

 \longrightarrow [Gap]

Another, new data -> (2.7, No)

output
$$\rightarrow 51 + d\left(\frac{1+9}{2}\right)$$

 $\rightarrow 51 + 0.1(5)$
 $\rightarrow 51.5$

for, \(\gamma_{21}, \gamma_{2}, \text{A}\) we will get another prediction \(\text{y}\) using which we will make DT of the based on \(\text{R3} \) \(\text{Far}\) \(\text{Par}\) and \(\text{Par}\) and \(\text{Par}\) \ for, {21, 22, 23} we will get another prediction I using which we will make R3, then we will make DT Split based on RB {24,22, R3} It will continue till the no munumber of decision there we have chosen

Base bearing a chart - 1990 . T. Do 51

11 ple 300 11-0- c tolotha

talo (ay fee) ald com allow

A other race diche as (27, 19)

(= 1) > + 12 ~ legto