Nome:	R.A.:
Trome.	

Prova (P1)

EE530 Eletrônica Básica, Turma A 19 de setembro de 2005

Atenção: Ao receber esta prova, coloque primeiramente seu nome e R.A.. Deixe um documento de identidade sobre a mesa.

Boa prova!

- 1) Um amplificador de transcondutância, tendo R_i = 2 k Ω , G_m = 40 mA/V e R_0 = 20 k Ω , tem aplicado à sua entrada uma fonte de sinal composta por uma fonte de tensão ideal em série com uma resistência de 2 k Ω . A saída deste amplificador está acoplada a uma carga composta por uma resistência 1 k Ω em paralelo com uma capacitância de 1 μ F.
- A) Calcule o ganho de tensão em corrente contínua. (1 ponto)
- B) Ache a frequência em que o ganho calculado no item A cai 3 dB. (1.5 ponto)

2) Considere o seguinte circuito:

- A) Calcule os resistores R_A , R_B e R_C de modo que os offsets sejam minimizados. (0.5 ponto)
- B) Calcule a expressão da saída v_0 em função de v_1, v_2 e v_3 . (1 ponto)
- C) Calcule a impedância de cada entrada e a impedância da saída. OBS: Considere o modelo modificado para o amp. op. (1 ponto)

3) Cada uma das figuras abaixo mostra a resposta em frequência de um circuito eletrônico distinto.

- A) Desenhe estes circuitos, utilizando para cada um deles apenas um amplificador operacional, um capacitor e um resistor. (1 ponto)
- B) Comente sobre uma aplicação prática para cada circuito. (0,5 ponto)
- C) Quais as alterações que você faria em cada circuito para eliminar o problema do ganho infinito em baixas freqüências e do ganho infinito em altas freqüências nos circuitos (a) e (b) respectivamente. Justifique. Indique nas figuras (a) e (b) o reflexo das alterações sugeridas. (1 ponto)

4) O ganho de um amplificador em malha aberta é descrito pela seguinte equação:

$$A = \frac{10^5}{\left(1 + \frac{jf}{10^5}\right)\left(1 + \frac{jf}{10^6}\right)\left(1 + \frac{jf}{10^7}\right)}$$

Se este circuito for realimentado negativamente, com realimentação independente da frequência, qual o menor valor de ganho de tensão em malha fechada que pode ser obtido com a margem de fase de 45°? (2,5 pontos)

Comparação das respostas em frequência

Respostas em freqüência das redes CTS

Modelo modificado do op amp

Resumo das características do amp. op. real em realimentação negativa

	Não inversor	Inversor
Ganho de tensão cc	$1 + R_F/R_A$	$-R_F/R_A$
A_0	$1 + (1 + R_F/R_A)/A$	$1 + (1 + R_F/R_A)/A$
Freqüência de corte	R_A	R_A f
f_q	$\frac{R_A}{R_A + R_F} f_t$	$\frac{1}{R_A + R_F} f_t$
Impedância de	$2R_{-}//\frac{R_iA}{R_i}$	
entrada	$2R_{cm} / \frac{R_i A}{1 + R_F}$	$R_{\scriptscriptstyle A}$
R_{in}	$1+\frac{1}{R_A}$	
Impedância de	n (n)	n (n)
saída	$\frac{R_o}{l} \left[1 + \frac{R_F}{R} \right]$	$\frac{K_o}{4}\left[1+\frac{R_F}{R}\right]$
R_{out}	$A \left(R_A \right)$	$A \left(R_A \right)$

Resposta em frequência de uma rede passa-baixas com três pólos distintos:

$$|A(f)| = \frac{|A_0|}{\sqrt{1 + \left(\frac{f}{f_{01}}\right)^2} \sqrt{1 + \left(\frac{f}{f_{02}}\right)^2} \sqrt{1 + \left(\frac{f}{f_{03}}\right)^2}} \qquad \text{Fase de } A(f) = -\tan^{-1}\left(\frac{f}{f_{01}}\right) - \tan^{-1}\left(\frac{f}{f_{02}}\right) - \tan^{-1}\left(\frac{f}{f_{03}}\right)$$

Fase de
$$A(f) = -\tan^{-1} \left(\frac{f}{f_{01}} \right) - \tan^{-1} \left(\frac{f}{f_{02}} \right) - \tan^{-1} \left(\frac{f}{f_{03}} \right)$$

Realimentação negativa

A função de transferência de malha fechada é dada por:

$$A_f(s) = \frac{A(s)}{1 + A(s)B(s)}$$

O produto A(s) B(s) é chamado ganho de malha

Visualização do critério de estabilidade usando as curvas do Bode para o ganho de malha

Sedra fig. 8.