■ NetApp

쉘프 SANtricity 11.6

NetApp February 12, 2024

This PDF was generated from https://docs.netapp.com/ko-kr/e-series-santricity-116/sm-hardware/hardware-page-overview.html on February 12, 2024. Always check docs.netapp.com for the latest.

목차

쉘프	
개념	
방법	;
FAQ 를 참조하십시오	

쉘프

개념

하드웨어 페이지 개요

하드웨어 페이지에서는 스토리지 시스템의 물리적 구성 요소를 그래픽으로 보여 줍니다. 여기에서 구성 요소 상태를 확인하고 이러한 구성 요소와 관련된 일부 기능을 수행할 수 있습니다.

쉘프

쉘프는 스토리지 어레이(컨트롤러, 전원/팬 캐니스터 및 드라이브)용 하드웨어를 포함하는 구성 요소입니다. 쉘프는 다음과 같은 두 가지 유형이 있습니다.

- * 컨트롤러 쉘프 * 드라이브. 전원/팬 캐니스터 및 컨트롤러를 포함합니다.
- * 드라이브 쉘프 * (또는 * 확장 쉘프 *) 드라이브, 전원/팬 캐니스터, 2개의 I/O 모듈(IOM)이 포함됩니다. ESM(환경 서비스 모듈(ESM)에는 드라이브 쉘프를 컨트롤러 쉘프에 연결하는 SAS 포트가 포함되어 있습니다.

쉘프는 최대 12, 24 또는 60개의 드라이브를 수용할 수 있도록 3가지 크기로 제공됩니다. 각 쉘프는 컨트롤러 펌웨어에 의해 할당된 ID 번호를 포함합니다. 쉘프 보기의 좌측 상단에 ID가 나타납니다.

하드웨어 페이지의 쉘프 보기에는 앞면 또는 뒷면 구성 요소가 표시됩니다. Shelf View 오른쪽 상단에서 * Show Back of Shelf * 또는 * Show Front of Shelf * 를 선택하여 두 뷰 간에 전환할 수 있습니다. 페이지 하단에서 * Show all front * 또는 * Show all back * 을 선택할 수도 있습니다. 전면 및 후면 뷰는 다음을 나타냅니다.

- * 전면 구성요소 * 드라이브 및 빈 드라이브 베이.
- * 후면 구성요소 * 컨트롤러, 전원/팬 캐니스터(컨트롤러 쉘프용) 또는 IOM 및 전원/팬 캐니스터(드라이브 쉘프용)

쉘프와 관련하여 다음 기능을 수행할 수 있습니다.

- 선반 위치 표시등을 켜서 캐비닛이나 랙에서 선반의 물리적 위치를 찾을 수 있도록 합니다.
- 쉘프 보기의 좌측 상단에 표시된 ID 번호를 변경합니다.
- 설치된 드라이브 유형 및 일련 번호와 같은 쉘프 설정을 확인합니다.
- 스토리지 배열의 물리적 레이아웃과 일치하도록 쉘프 보기를 위 또는 아래로 이동합니다.

컨트롤러

컨트롤러는 스토리지 배열 및 관리 기능을 구현하는 결합된 하드웨어 및 펌웨어입니다. 여기에는 캐시 메모리, 드라이브 지원 및 호스트 인터페이스 지원이 포함됩니다.

컨트롤러와 관련된 다음 기능을 수행할 수 있습니다.

- IP 주소 및 속도에 대한 관리 포트를 구성합니다.
- iSCSI 호스트 접속을 구성합니다(iSCSI 호스트가 있는 경우).
- NTP(Network Time Protocol) 서버 및 DNS(Domain Name System) 서버를 구성합니다.

- 컨트롤러 상태 및 설정을 봅니다.
- 로컬 영역 네트워크 외부의 사용자가 SSH 세션을 시작하고 컨트롤러의 설정을 변경할 수 있도록 합니다.
- 컨트롤러를 오프라인, 온라인 또는 서비스 모드로 전환합니다.

드라이브

스토리지 어레이에는 HDD(하드 디스크 드라이브) 또는 SSD(Solid State Drive)가 포함될 수 있습니다. 쉘프 크기에 따라 최대 12, 24 또는 60개의 드라이브를 쉘프에 설치할 수 있습니다.

드라이브와 관련된 다음 기능을 수행할 수 있습니다.

- 드라이브 로케이터 표시등을 켜서 쉘프에 있는 드라이브의 물리적 위치를 찾을 수 있습니다.
- 드라이브 상태 및 설정을 봅니다.
- 드라이브를 다시 할당하고(장애가 발생한 드라이브를 할당되지 않은 드라이브로 논리적으로 교체) 필요한 경우 드라이브를 수동으로 재구성합니다.
- 드라이브를 수동으로 실패하여 교체할 수 있습니다. (드라이브에 결함이 있으면 드라이브를 교체하기 전에 드라이브의 내용을 복사할 수 있습니다.)
- 핫 스페어 할당 또는 할당 취소
- 보안 지원 드라이브를 지웁니다.

하드웨어 용어

스토리지 어레이에 하드웨어 조건이 적용되는 방법에 대해 알아보십시오.

구성 요소	설명
스토리지 시스템	스토리지 어레이에는 쉘프, 컨트롤러, 드라이브, 소프트웨어 및 펌웨어가 포함되어 있습니다.
쉘 프	쉘프는 캐비닛 또는 랙에 설치된 엔클로저입니다. 여기에는 스토리지 어레이의 하드웨어 구성 요소가 포함됩니다. 쉘프는 컨트롤러 쉘프와 드라이브 쉘프의 두 가지 유형이 있습니다. 컨트롤러 쉘프는 컨트롤러와 드라이브를 포함합니다. 드라이브 쉘프는 입/출력 모듈(IOM) 및 드라이브를 포함합니다.
컨트롤러	컨트롤러는 보드, 펌웨어 및 소프트웨어로 구성됩니다. 드라이브를 제어하고 System Manager 기능을 구현합니다.
드라이브	드라이브는 물리적 데이터 저장 매체를 제공하는 전자기 기계 장치 또는 솔리드 스테이트 메모리 장치입니다.
베이	베이는 드라이브 또는 다른 구성 요소가 설치된 쉘프의 슬롯입니다.

구성 요소	설명	
드라이브 쉘프	확장 쉘프라고도 하는 드라이브 쉘프에는 드라이브 세트 및 IOXM(입출력 모듈) 2개가 포함됩니다. IOM에는 드라이브 쉘프를 컨트롤러 쉘프 또는 다른 드라이브 쉘프에 연결하는 SAS 포트가 포함되어 있습니다. EF600 스토리지 시스템에는 드라이브 쉘프를 사용할 수 없습니다.	
컨트롤러 쉘프	컨트롤러 쉘프는 드라이브 세트 및 하나 이상의 컨트롤러 캐니스터를 포함합니다. 컨트롤러 캐니스터에는 컨트롤러, 호스트 인터페이스 카드(HIC) 및 배터리가 들어 있습니다.	
전원/팬 캐니스터	전원/팬 캐니스터는 선반으로 미끄러지는 어셈블리입니다. 여기에는 전원 공급 장치 및 내장형 팬이 포함됩니다.	
IOM(ESM)	IOM은 드라이브 쉘프를 컨트롤러 쉘프에 연결하기 위한 SAS 포트가 포함된 입력/출력 모듈입니다.	
SFP	SFP는 SFP(Small Form-factor Pluggable) 트랜시버입니다.	

방법

하드웨어 구성 요소 보기

하드웨어 페이지에서는 부품을 쉽게 찾을 수 있는 정렬 및 필터링 기능을 제공합니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 다음 표에 설명된 기능을 사용하여 하드웨어 구성 요소를 봅니다.

기능	설명
전면 및 후면 선반 보기	전면 및 후면 선반 보기 사이를 전환하려면 맨 오른쪽에서 * Show back of shelf * 또는 * Show front of shelf * 를 선택합니다(현재 보기에 따라 표시되는 링크). 전면보기에는 드라이브 및 비어 있는 드라이브 베이가 표시됩니다. 후면 뷰에는 컨트롤러및 ESM(IOM) 모듈, 전원/팬 캐니스터 또는 빈 컨트롤러 베이가 표시됩니다. 페이지하단에서 * Show all front * 또는 * Show all back * 을 선택할 수도 있습니다.

기능	설명	
드라이브 보기 필터	스토리지 배열에 다른 유형의 물리적 및 논리적 속성이 있는 드라이브가 포함된 경우 Hardware(하드웨어) 페이지에는 드라이브 보기 필터가 포함됩니다. 이러한 필터 필드를 사용하면 페이지에 표시되는 드라이브 유형을 제한하여 특정 드라이브를 빠르게 찾을 수 있습니다. Show drives that are * 에서 왼쪽에 있는 필터 필드 (기본적으로 * any drive type * 표시)를 클릭하여 물리적 속성(예: 용량 및 속도)의 드롭다운 목록을 표시합니다. 오른쪽에 있는 필터 필드를 클릭하면(기본적으로 스토리지 배열의 * 아무 곳이나 표시) 논리적 속성(예: 볼륨 그룹 할당)의 드롭다운 목록이 표시됩니다. 이러한 필터를 함께 또는 별도로 사용할 수 있습니다.	
	않습니다. 드라이브가 모두 동일한 논리 위치에 있는 경우 오른쪽에 있는 스토리지 배열 * 필드의 * 아무 곳이나 나타나지 않습니다.	
범례	구성 요소는 특정 색상으로 표시되어 해당 역할 상태를 나타냅니다. 이러한 상태에 대한 설명을 확장하고 축소하려면 * 범례 * 를 클릭합니다.	
상태 아이콘 세부 정보를 표시합니다	상태 표시기에는 가용성 상태에 대한 텍스트 설명이 포함될 수 있습니다. 이 상태 텍스트를 표시하거나 숨기려면 * 상태 아이콘 세부 정보 표시 * 를 클릭합니다.	
쉘프/쉘프 아이콘	각 쉘프 뷰에는 속성 및 상태와 함께 관련 명령 목록이 제공됩니다. 명령 드롭다운 목록을 보려면 * Shelf * 를 클릭합니다. 상단에 있는 아이콘 중 하나를 선택하여 컨트롤러, IOM(ESM), 전원 공급 장치, 팬, 온도, 배터리 및 SFP.	
쉘프 주문	하드웨어 페이지에서 쉘프를 재정렬할 수 있습니다. 각 쉘프 보기의 오른쪽 위에 있는 위/아래 화살표를 사용하여 쉘프의 위/아래 순서를 변경합니다.	

부품 상태를 표시하거나 숨깁니다

드라이브, 컨트롤러, 팬 및 전원 공급 장치의 상태 설명을 표시할 수 있습니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 후면 또는 전면 구성요소 보기:
 - · 컨트롤러 및 전원/팬 캐니스터 구성 요소를 볼 수 있지만 드라이브가 표시되면 * 쉘프 뒷면 표시 * 를 클릭합니다.
 - 드라이브를 볼 수 있지만 컨트롤러 및 전원/팬 캐니스터 구성 요소가 표시되면 * 쉘프 전면 표시 * 를 클릭합니다.
- 3. 팝업 상태 설명을 보거나 숨기려면:
 - · 상태 아이콘에 대한 팝업 설명을 보려면 쉘프 보기의 오른쪽 위에 있는 * 상태 아이콘 세부 정보 표시 * 를 클릭합니다(확인란을 선택).
 - ∘ 팝업 설명을 숨기려면 * 상태 아이콘 세부 정보 표시 * 를 다시 클릭합니다(확인란 선택 취소).
- 4. 전체 상태 세부 정보를 보려면 쉘프 보기에서 구성 요소를 선택한 다음 * 설정 보기 * 를 선택합니다.
- 5. 색상이 지정된 구성 요소에 대한 설명을 보려면 * 범례 * 를 선택합니다.

전면과 후면 보기 사이를 전환합니다

하드웨어 페이지에는 쉘프의 앞면 또는 뒷면 보기가 표시될 수 있습니다.

이 작업에 대해

후면 뷰에는 컨트롤러/IOM 및 전원 팬 캐니스터가 표시됩니다. 전면 보기에는 드라이브가 표시됩니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 그래픽에 드라이브가 표시되면 * 쉘프 뒷면 표시 * 를 클릭합니다.
 - 그래픽이 변경되어 드라이브 대신 컨트롤러가 표시됩니다.
- 3. 그래픽에 컨트롤러가 표시되면 * 쉘프 전면 표시 * 를 클릭합니다.
 - 그래픽이 변경되어 컨트롤러 대신 드라이브가 표시됩니다.
- 4. * 선택 사항: * 페이지 하단에 있는 * 모든 앞면 표시 * 또는 * 모든 뒷면 표시 * 를 선택할 수 있습니다.

쉨프의 보기 순서를 변경합니다

캐비닛에 있는 쉘프의 물리적 순서에 맞게 하드웨어 페이지에 표시되는 쉘프 순서를 변경할 수 있습니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 쉘프 보기의 오른쪽 위에서 위쪽 또는 아래쪽 화살표를 선택하여 * 하드웨어 * 페이지에 표시된 쉘프의 순서를 다시 정렬합니다.

선반 로케이터 조명을 켭니다

하드웨어 페이지에 표시된 쉘프의 물리적 위치를 찾으려면 쉘프 로케이터 표시등을 켜면 됩니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 컨트롤러 쉘프 또는 드라이브 쉘프의 드롭다운 목록을 선택한 다음 * 로케이터 표시등 켜기 * 를 선택합니다. 선반의 로케이터 표시등이 켜집니다.
- 3. 쉘프를 물리적으로 찾았으면 대화 상자로 돌아가서 * Turn off * 를 선택합니다.

쉘프 ID를 변경합니다

쉘프 ID는 스토리지 어레이의 쉘프를 고유하게 식별하는 번호입니다. 각 쉘프 보기의 왼쪽 상단에서 00 또는 01로 시작하여 연속 번호가 지정됩니다.

이 작업에 대해

컨트롤러 펌웨어가 쉘프 ID를 자동으로 할당하지만, 다른 주문 스키마를 만들려면 해당 번호를 변경할 수 있습니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 컨트롤러 쉘프 또는 드라이브 쉘프의 드롭다운 목록을 선택한 다음 * ID 변경 * 을 선택합니다.
- 3. [셸프 ID 변경] * 대화 상자에서 드롭다운 목록을 선택하여 사용 가능한 번호를 표시합니다.
 - 이 대화 상자에는 현재 활성 쉘프에 할당된 ID가 표시되지 않습니다.
- 4. 사용 가능한 번호를 선택한 다음 * 저장 * 을 클릭합니다.

선택한 번호에 따라 하드웨어 페이지에서 쉘프 주문을 재정렬할 수 있습니다. 필요한 경우 각 쉘프 오른쪽 상단의 위쪽/아래쪽 화살표를 사용하여 순서를 재조정할 수 있습니다.

쉘프 구성요소 상태 및 설정을 확인합니다

하드웨어 페이지에서는 전원 공급 장치, 팬 및 배터리를 포함한 쉘프 구성 요소의 상태와 설정을 제공합니다.

이 작업에 대해

사용 가능한 구성 요소는 쉘프 유형에 따라 다릅니다.

- * 드라이브 쉘프 * 단일 쉘프에 드라이브 세트, 전원/팬 캐니스터, I/O 모듈(IOM) 및 기타 지원 구성 요소가 포함되어 있습니다.
- * * 컨트롤러 쉘프 * 단일 쉘프에 드라이브 세트, 하나 또는 두 개의 컨트롤러 캐니스터, 전원/팬 캐니스터 및 기타지원 구성 요소가 포함됩니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 컨트롤러 쉘프 또는 드라이브 쉘프의 드롭다운 목록을 선택한 다음 * 설정 보기 * 를 선택합니다.

쉘프 구성요소 설정 대화 상자가 열리고 쉘프 구성요소와 관련된 상태와 설정을 보여주는 탭이 표시됩니다. 선택한 쉘프의 유형에 따라 테이블에 설명된 일부 탭이 나타나지 않을 수 있습니다.

탭을 클릭합니다	설명	
쉘프	 Shelf 탭에는 다음 속성이 표시됩니다. * Shelf ID * — 스토리지 배열의 셸프를 고유하게 식별합니다. 컨트롤러 펌웨어가 이 번호를 할당하지만 * 메뉴:쉘프 [ID 변경] * 을 선택하여 변경할 수 있습니다. * 쉘프 경로 이중화 * — 쉘프와 컨트롤러 간 연결에 대체 방법이 있는지 (예) 여부를 지정합니다(아니요). * 현재 드라이브 유형 * — 드라이브에 내장된 기술 유형(예: 보안 기능이 있는 SAS 드라이브)을 표시합니다. 드라이브 유형이 두 개 이상인 경우 두 기술이 모두 표시됩니다. * 일련 번호 * — 쉘프의 일련 번호를 표시합니다. 	
IOM(ESM)	ESM(ESM) 탭에는 환경 서비스 모듈(ESM)이라고도 하는 입력/출력 모듈(IOM)의 상태가 표시됩니다. 드라이브 쉘프에 있는 구성 요소의 상태를 모니터링하고 드라이브 트레이와 컨트롤러 사이의 연결 지점 역할을 합니다. 상태는 Optimal(최적), Failed(실패), Optimal(최적)(미스와이어) 또는 Uncertified(미인증)일 수 있습니다. 기타 정보에는 펌웨어 버전 및 구성설정 버전이 포함됩니다. 최대 및 현재 데이터 속도와 카드 통신 상태(예 또는 아니요)를 보려면 * 더 많은 설정 표시 * 를 선택합니다. IOM 아이콘을 선택하여 이 상태를 볼 수도 있습니다 ♣️, Shelf 드롭다운 목록 옆에.	
전원 공급 장치	전원 공급 장치 탭에는 전원 공급 장치 캐니스터 및 전원 공급 장치 자체의 상태가 표시됩니다. 상태는 최적, 실패, 제거 또는 알 수 없음일 수 있습니다. 전원 공급 장치의 부품 번호도 표시됩니다. 전원 공급 장치 아이콘을 선택하여 이 상태를 볼 수도 있습니다 , Shelf 드롭다운 목록 옆에.	
팬	Fans(팬) 탭에는 팬 캐니스터 및 팬 자체의 상태가 표시됩니다. 상태는 최적, 실패, 제거 또는 알 수 없음일 수 있습니다. 팬 아이콘을 선택하여 이 상태를 볼 수도 있습니다 《 Shelf 드롭다운 목록 옆에.	

탭을 클릭합니다	설명	
온도	온도 탭에는 센서, 컨트롤러, 전원/팬 캐니스터 등 쉘프 구성요소의 온도 상태가 표시됩니다. 상태는 최적, 공칭 온도 초과, 최대 온도 초과 또는 알 수 없음일 수 있습니다.	
	Shelf 드롭다운 목록 옆에.	
배터리	배터리 탭에는 컨트롤러 배터리의 상태가 표시됩니다. 상태는 최적, 실패, 제거 또는 알 수 없음일 수 있습니다. 기타 정보에는 배터리 사용 기간, 교체시까지 남은 일 수, 학습 주기 및 학습 사이클 사이의 주 등이 포함됩니다.	
SFP	SFP 탭에는 컨트롤러에 있는 SFP(Small Form-factor Pluggable) 트랜시버의 상태가 표시됩니다. 상태는 최적, 실패 또는 알 수 없음일 수 있습니다. 부품 번호, 일련 번호 및 SFP 공급업체를 보려면 * 더 많은 설정 표시 * 를 선택합니다.	
	SFP 아이콘을 선택하여 이 상태를 볼 수도 있습니다 Ⅲ , Shelf 드롭다운 목록 옆에.	

3. 닫기 * 를 클릭합니다.

배터리 학습 주기를 업데이트합니다

학습 사이클은 스마트 배터리 게이지를 보정하기 위한 자동 사이클입니다. 이 주기는 8주 간격 (컨트롤러당)으로 같은 요일 및 시간에 자동으로 시작되도록 예약됩니다. 다른 일정을 설정하려면 학습 주기를 조정할 수 있습니다.

이 작업에 대해

학습 사이클을 업데이트하면 두 컨트롤러 배터리가 모두 영향을 받습니다.

단계

- 1. 하드웨어 * 를 선택합니다.
- 2. 컨트롤러 쉘프의 드롭다운 목록을 선택한 다음 * 설정 보기 * 를 선택합니다.
- 3. 배터리 * 탭을 선택합니다.
- 4. 배터리 학습 사이클 업데이트 * 를 선택합니다.

배터리 학습 주기 업데이트 대화 상자가 열립니다.

- 5. 드롭다운 목록에서 새 요일 및 시간을 선택합니다.
- 6. 저장 * 을 클릭합니다.

FAQ 를 참조하십시오

선반 손실 방지 및 서랍 손실 방지란 무엇입니까?

쉘프 손실 보호 및 드로어 손실 보호는 단일 쉘프 또는 드로어에 장애가 발생해도 데이터 액세스를 유지할 수 있는 풀 및 볼륨 그룹의 속성입니다.

선반 손실 방지

쉘프는 드라이브 또는 드라이브와 컨트롤러를 포함합니다. 쉘프 손실 방지: 단일 드라이브 쉘프로 통신이 두절되는 경우 풀 또는 볼륨 그룹의 볼륨에서 데이터에 액세스할 수 있습니다. 예를 들어, 통신 장애가 발생할 경우 드라이브 쉘프에 대한 전원 공급이 중단되거나 두 I/O 모듈(IOM)이 모두 실패할 수 있습니다.

풀 또는 볼륨 그룹에서 드라이브가 이미 장애가 발생한 경우에는 쉘프 손실 보호가 보장되지 않습니다. 이 경우, 드라이브 쉘프와 풀 또는 볼륨 그룹의 다른 드라이브에 액세스하지 못하면 데이터가 손실됩니다.

쉘프 손실 방지 기준은 다음 표에 설명된 보호 방법에 따라 다릅니다.

레벨	셸프 손실 방지 기준	필요한 최소 쉘프 수입니다
수영장	풀은 5개 이상의 쉘프의 드라이브를 포함해야 하며 각 쉘프에 동일한 수의 드라이브가 있어야 합니다. 셸프 손실 보호는 고용량 셸프에는 적용되지 않습니다. 시스템에 고용량 셸프가 포함되어 있는 경우 문서함 손실 보호 를 참조하십시오.	5
RAID 6	볼륨 그룹은 단일 쉘프에 드라이브를 2개 이상 포함하지 않습니다.	3
RAID 3 또는 RAID 5	볼륨 그룹의 각 드라이브는 별도의 쉘프에 있습니다.	3
RAID 1	RAID 1 쌍의 각 드라이브는 별도의 쉘프에 있어야 합니다.	2
RAID 0	선반 손실 보호를 달성할 수 없습니다.	해당 없음

서랍 손실 방지

드라이브 액세스를 위해 서랍식 용지함은 셸프의 구획 중 하나입니다. 고용량 쉘프에만 서랍이 있습니다. 드로어 손실 보호는 단일 드로어와의 통신이 완전히 손실되는 경우 풀 또는 볼륨 그룹의 볼륨에 있는 데이터에 액세스할 수 있도록 보장합니다. 통신 손실의 예로는 드로어에 대한 전원 손실 또는 드로어 내 내부 구성 요소의 고장이 있습니다.

풀 또는 볼륨 그룹에서 드라이브에 장애가 이미 발생한 경우에는 드로어 손실 보호가 보장되지 않습니다. 이 경우 드로어(풀 또는 볼륨 그룹의 다른 드라이브)에 액세스하지 못하게 되면 데이터가 손실됩니다.

드로어 손실 방지 기준은 다음 표에 설명된 보호 방법에 따라 다릅니다.

레벨	서랍 손실 방지 기준	필요한 최소 드로어 수입니다
수영장	풀 후보는 모든 드로어의 드라이브를 포함해야 하며 각 드로어에 동일한 수의 드라이브가 있어야 합니다. 풀에는 5개 이상의 서랍에서 나온 드라이브가 포함되어야 하며 각 드로어에 동일한 수의 드라이브가 있어야 합니다. 60-드라이브 쉘프는 15, 20, 25, 30, 35, 40, 45, 50, 55 또는 60개 드라이브. 초기 생성 후 풀에 5의 배수로 증분을 추가할 수 있습니다.	5
RAID 6	볼륨 그룹은 단일 드로어에 2개 이상의 드라이브를 포함하지 않습니다.	3
RAID 3 또는 RAID 5	볼륨 그룹의 각 드라이브는 별도의 드로어에 있습니다.	3
RAID 1	미러링된 쌍의 각 드라이브는 별도의 드로어에 위치해야 합니다.	2
RAID 0	문서함 손실 방지를 달성할 수 없습니다.	해당 없음

배터리 학습 사이클이란 무엇입니까?

학습 사이클은 스마트 배터리 게이지를 보정하기 위한 자동 사이클입니다.

학습 사이클은 다음과 같은 단계로 구성됩니다.

- 제어된 배터리 방전
- 휴식 기간
- 충전

배터리는 사전 설정된 임계값으로 방전됩니다. 이 단계에서는 배터리 게이지가 보정됩니다.

런 사이클에는 다음 매개변수가 필요합니다.

- 완전히 충전된 배터리
- 과열된 배터리가 없습니다

이중 컨트롤러 시스템에 대한 학습 사이클이 동시에 발생합니다. 두 개 이상의 배터리 또는 배터리 셀 세트에서 백업 전원을 사용하는 컨트롤러의 경우 학습 사이클이 순차적으로 발생합니다.

학습 사이클은 일정한 간격으로, 동시에 같은 요일에 자동으로 시작되도록 예약됩니다. 주기 사이의 간격은 주 단위로

설명됩니다.

학습 사이클을 완료하는 데 몇 시간이 걸릴 수 있습니다.

저작권 정보

Copyright © 2024 NetApp, Inc. All Rights Reserved. 미국에서 인쇄됨 본 문서의 어떠한 부분도 저작권 소유자의 사전 서면 승인 없이는 어떠한 형식이나 수단(복사, 녹음, 녹화 또는 전자 검색 시스템에 저장하는 것을 비롯한 그래픽, 전자적 또는 기계적 방법)으로도 복제될 수 없습니다.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 '있는 그대로' 제공되며 상품성 및 특정 목적에의 적합성에 대한 명시적 또는 묵시적 보증을 포함하여(이에 제한되지 않음) 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용불능, 데이터 손실, 이익 손실, 영업 중단을 포함하여(이에 국한되지 않음), 이 소프트웨어의 사용으로 인해 발생하는 모든 직접 및 간접 손해, 우발적 손해, 특별 손해, 징벌적 손해, 결과적 손해의 발생에 대하여 그 발생 이유, 책임론, 계약여부, 엄격한 책임, 불법 행위(과실 또는 그렇지 않은 경우)와 관계없이 어떠한 책임도 지지 않으며, 이와 같은 손실의 발생 가능성이 통지되었다 하더라도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인 서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다. 본 제품의 사용 또는 구매의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도 제공하지 않습니다.

본 설명서에 설명된 제품은 하나 이상의 미국 특허, 해외 특허 또는 출원 중인 특허로 보호됩니다.

제한적 권리 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.227-7013(2014년 2월) 및 FAR 52.227-19(2007년 12월)의 기술 데이터-비상업적 품목에 대한 권리(Rights in Technical Data -Noncommercial Items) 조항의 하위 조항 (b)(3)에 설명된 제한사항이 적용됩니다.

여기에 포함된 데이터는 상업용 제품 및/또는 상업용 서비스(FAR 2.101에 정의)에 해당하며 NetApp, Inc.의 독점 자산입니다. 본 계약에 따라 제공되는 모든 NetApp 기술 데이터 및 컴퓨터 소프트웨어는 본질적으로 상업용이며 개인 비용만으로 개발되었습니다. 미국 정부는 데이터가 제공된 미국 계약과 관련하여 해당 계약을 지원하는 데에만 데이터에 대한 전 세계적으로 비독점적이고 양도할 수 없으며 재사용이 불가능하며 취소 불가능한 라이센스를 제한적으로 가집니다. 여기에 제공된 경우를 제외하고 NetApp, Inc.의 사전 서면 승인 없이는 이 데이터를 사용, 공개, 재생산, 수정, 수행 또는 표시할 수 없습니다. 미국 국방부에 대한 정부 라이센스는 DFARS 조항 252.227-7015(b)(2014년 2월)에 명시된 권한으로 제한됩니다.

상표 정보

NETAPP, NETAPP 로고 및 http://www.netapp.com/TM에 나열된 마크는 NetApp, Inc.의 상표입니다. 기타 회사 및 제품 이름은 해당 소유자의 상표일 수 있습니다.