Topic: Riemann sums, right endpoints

Question: Use Riemann Sums and right endpoints to approximate the integral.

$$\int_0^2 x^2 \ dx$$

when n = 3

Answer choices:

A
$$-\frac{56}{9}$$

$$\mathsf{B} \qquad \frac{56}{9}$$

$$-\frac{112}{27}$$

$$D \qquad \frac{112}{27}$$

Solution: D

The Riemann sum is a tool we can use to approximate the area under a function over a set interval $a \le x \le b$.

We'll divide the area into rectangles and then sum the areas of all of the rectangles in order to get an approximation of area. The greater the number of rectangles, the more accurate the approximation will be. Of course, if we use an infinite number of rectangles, taking the limit as $n \to \infty$ of the sum of the area of each rectangle, then we'd be taking the integral and calculating exact area.

When we approximate area with Riemann sums we consider the area above the x-axis to be positive, and the area below the x-axis to be negative. If our final result is positive, it tells us that there's more area above the x-axis than below it. On the other hand, if our final result is negative, it means that there's more area below the x-axis than above it.

The Riemann sum formula is

$$R_n = \sum_{i=1}^n f(x_i) \Delta x$$

where $\Delta x = (b-a)/n$ and Δx is the width of each rectangle, and where n is the number of rectangles we're using to approximate area. If we expand the Riemann sum, we get the formula

$$R_n = \Delta x [f(x_1) + f(x_2) + \dots + f(x_n)]$$

Our plan is to solve for Δx , divide the interval into even segments that are each Δx wide, and then use an endpoint of each segment as the values of

 x_n . When we're using a Riemann sum to approximate area, we can choose the left endpoints, right endpoints, or midpoints of our rectangles.

Plugging the interval and the value of n we've been given into the formula for Δx , we get

$$\Delta x = \frac{b - a}{n}$$

$$\Delta x = \frac{2 - 0}{3}$$

$$\Delta x = \frac{2}{3}$$

Since the interval is [0,2], we know that $x_0 = 0$ and that $x_n = 2$. Using $\Delta x = 2/3$ to find the subintervals, we get

$$x_0 = 0$$

$$x_1 = 0 + \frac{2}{3}$$

$$x_1 = \frac{2}{3}$$

$$x_2 = \frac{2}{3} + \frac{2}{3}$$

$$x_2 = \frac{4}{3}$$

$$x_3 = \frac{4}{3} + \frac{2}{3} \qquad \qquad x_3 = \frac{6}{3}$$

$$x_3 = \frac{6}{3}$$

$$x_3 = 2$$

Since we're using right endpoints, we'll use all but $x_0 = 0$, since this is a left endpoint. Plugging all of this into our Riemann sum formula, remembering that $f(x) = x^2$, we get

$$R_3 = \frac{2}{3} \left[f(x_1) + f(x_2) + f(x_3) \right]$$

$$R_3 = \frac{2}{3} \left[f\left(\frac{2}{3}\right) + f\left(\frac{4}{3}\right) + f(2) \right]$$

$$R_3 = \frac{2}{3} \left[\left(\frac{2}{3} \right)^2 + \left(\frac{4}{3} \right)^2 + (2)^2 \right]$$

$$R_3 = \frac{2}{3} \left(\frac{4}{9} + \frac{16}{9} + 4 \right)$$

$$R_3 = \frac{112}{27}$$

Topic: Riemann sums, right endpoints

Question: Use Riemann Sums and right endpoints to approximate the integral.

$$\int_{-2}^{2} x^2 - 2 \ dx$$

when n = 4

Answer choices:

$$A$$
 -2

B
$$-1$$

Solution: A

The Riemann sum is a tool we can use to approximate the area under a function over a set interval $a \le x \le b$.

We'll divide the area into rectangles and then sum the areas of all of the rectangles in order to get an approximation of area. The greater the number of rectangles, the more accurate the approximation will be. Of course, if we use an infinite number of rectangles, taking the limit as $n \to \infty$ of the sum of the area of each rectangle, then we'd be taking the integral and calculating exact area.

When we approximate area with Riemann sums we consider the area above the x-axis to be positive, and the area below the x-axis to be negative. If our final result is positive, it tells us that there's more area above the x-axis than below it. On the other hand, if our final result is negative, it means that there's more area below the x-axis than above it.

The Riemann sum formula is

$$R_n = \sum_{i=1}^n f(x_i) \Delta x$$

where $\Delta x = (b-a)/n$ and Δx is the width of each rectangle, and where n is the number of rectangles we're using to approximate area. If we expand the Riemann sum, we get the formula

$$R_n = \Delta x [f(x_1) + f(x_2) + \dots + f(x_n)]$$

Our plan is to solve for Δx , divide the interval into even segments that are each Δx wide, and then use an endpoint of each segment as the values of

 x_n . When we're using a Riemann sum to approximate area, we can choose the left endpoints, right endpoints, or midpoints of our rectangles.

Plugging the interval and the value of n we've been given into the formula for Δx , we get

$$\Delta x = \frac{b - a}{n}$$

$$\Delta x = \frac{2 - (-2)}{4}$$

$$\Delta x = 1$$

Since the interval is [-2,2], we know that $x_0 = -2$ and that $x_n = 2$. Using $\Delta x = 1$ to find the subintervals, we get

$$x_0 = -2$$

$$x_1 = -2 + 1$$
 $x_1 = -1$

$$x_2 = -1 + 1$$
 $x_2 = 0$

$$x_3 = 0 + 1$$
 $x_3 = 1$

$$x_4 = 1 + 1$$
 $x_4 = 2$

Since we're using right endpoints, we'll use all but $x_0 = -2$, since this is a left endpoint. Plugging all of this into our Riemann sum formula, remembering that $f(x) = x^2 - 2$, we get

$$R_4 = 1 \left[f(x_1) + f(x_2) + f(x_3) + f(x_4) \right]$$

$$R_4 = 1 \left[f(-1) + f(0) + f(1) + f(2) \right]$$

$$R_4 = 1 \left[\left((-1)^2 - 2 \right) + \left((0)^2 - 2 \right) + \left((1)^2 - 2 \right) + \left((2)^2 - 2 \right) \right]$$

$$R_4 = 1 - 2 + 0 - 2 + 1 - 2 + 4 - 2$$

$$R_4 = -2$$

Topic: Riemann sums, right endpoints

Question: Approximate the area under the curve using a right rectangular approximation method, and four equal subintervals.

$$f(x) = \frac{x^2 + 7x - 3}{x + 1}$$

on the interval [2,14]

Answer choices:

- A 131.25
- B 58.15
- C 174.45
- D 152.85

Solution: C

The term rectangular approximation method means we will approximate the area under the curve using rectangles. We calculate the area of each rectangle by multiplying the height of the rectangle (the function value) times the width of the rectangle (the length of the subinterval).

Because we are using a right rectangular approximation method, we will find the height of the rectangle by calculating the function value at the right endpoint of each subinterval.

The four equal subintervals in the interval [2,14] are [2,5], [5,8], [8,11], and [11,14]. Each subinterval is 3 units wide. We will calculate the function values at 5, 8, 11 and 14. Then, we will multiply each of these values by 3, the width of each subinterval to find the area of that rectangle.

$$f(5) = \frac{(5)^2 + 7(5) - 3}{5 + 1} = \frac{25 + 35 - 3}{6} = \frac{19}{2} = 9.5$$

Area: $9.5 \times 3 = 28.5$

$$f(8) = \frac{(8)^2 + 7(8) - 3}{8 + 1} = \frac{64 + 56 - 3}{9} = \frac{117}{9} = 13$$

Area: $13 \times 3 = 39$

$$f(11) = \frac{(11)^2 + 7(11) - 3}{11 + 1} = \frac{121 + 77 - 3}{12} = \frac{195}{12} = \frac{65}{4} = 16.25$$

Area: $16.25 \times 3 = 48.75$

$$f(14) = \frac{(14)^2 + 7(14) - 3}{14 + 1} = \frac{196 + 98 - 3}{15} = \frac{291}{15} = \frac{97}{5} = 19.4$$

Area: $19.4 \times 3 = 58.2$

Now we know the area of each rectangle with the function value at the right endpoints of the subintervals. Add the areas together.

$$28.5 + 39 + 48.75 + 58.2 = 174.45$$

