

HYDROCARBONS

Objectives

After studying this unit, you will be able to

- name hydrocarbons according to IUPAC system of nomenclature;
- recognise and write structures of isomers of alkanes, alkenes, alkynes and aromatic hydrocarbons;
- learn about various methods of preparation of hydrocarbons;
- distinguish between alkanes, alkenes, alkynes and aromatic hydrocarbons on the basis of physical and chemical properties;
- draw and differentiate between various conformations of ethane;
- appreciate the role of hydrocarbons as sources of energy and for other industrial applications;
- predict the formation of the addition products of unsymmetrical alkenes and alkynes on the basis of electronic mechanism;
- comprehend the structure of benzene, explain aromaticity and understand mechanism of electrophilic substitution reactions of benzene;
- predict the directive influence of substituents in monosubstituted benzene ring;
- learn about carcinogenicity and toxicity.

Hydrocarbons are the important sources of energy.

The term 'hydrocarbon' is self-explanatory which means compounds of carbon and hydrogen only. Hydrocarbons play a key role in our daily life. You must be familiar with the terms 'LPG' and 'CNG' used as fuels. LPG is the abbreviated form of liquified petroleum gas whereas CNG stands for compressed natural gas. Another term 'LNG' (liquified natural gas) is also in news these days. This is also a fuel and is obtained by liquifaction of natural gas. Petrol, diesel and kerosene oil are obtained by the fractional distillation of petroleum found under the earth's crust. Coal gas is obtained by the destructive distillation of coal. Natural gas is found in upper strata during drilling of oil wells. The gas after compression is known as compressed natural gas. LPG is used as a domestic fuel with the least pollution. Kerosene oil is also used as a domestic fuel but it causes some pollution. Automobiles need fuels like petrol, diesel and CNG. Petrol and CNG operated automobiles cause less pollution. All these fuels contain mixture of hydrocarbons, which are sources of energy. Hydrocarbons are also used for the manufacture of polymers like polythene, polypropene, polystyrene etc. Higher hydrocarbons are used as solvents for paints. They are also used as the starting materials for manufacture of many dyes and drugs. Thus, you can well understand the importance of hydrocarbons in your daily life. In this unit, you will learn more about hydrocarbons.

9.1 CLASSIFICATION

Hydrocarbons are of different types. Depending upon the types of carbon-carbon bonds present, they can be classified into three main categories – (i) saturated 296 CHEMISTRY

(ii) unsaturated and (iii) aromatic hydrocarbons. Saturated hydrocarbons contain carbon-carbon and carbon-hydrogen single bonds. If different carbon atoms are joined together to form open chain of carbon atoms with single bonds, they are termed as alkanes as you have already studied in Unit 8. On the other hand, if carbon atoms form a closed chain or a ring, they are termed as cycloalkanes. Unsaturated hydrocarbons contain carbon-carbon multiple bonds double bonds, triple bonds or both. Aromatic hydrocarbons are a special type of cyclic compounds. You can construct a large number of models of such molecules of both types (open chain and close chain) keeping in mind that carbon is tetravalent and hydrogen is monovalent. For making models of alkanes, you can use toothpicks for bonds and plasticine balls for atoms. For alkenes, alkynes and aromatic hydrocarbons, spring models can be constructed.

9.2 ALKANES

As already mentioned, alkanes are saturated open chain hydrocarbons containing carbon - carbon single bonds. Methane (CH₄) is the first member of this family. Methane is a gas found in coal mines and marshy places. If you replace one hydrogen atom of methane by carbon and join the required number of hydrogens to satisfy the tetravalence of the other carbon atom, what do you get? You get C₂H₆. This hydrocarbon with molecular formula C₂H₆ is known as ethane. Thus you can consider C_2H_6 as derived from CH_4 by replacing one hydrogen atom by -CH₃ group. Go on constructing alkanes by doing this theoretical exercise i.e., replacing hydrogen atom by -CH₃ group. The next molecules will be C_3H_8 , C_4H_{10} ...

$$\begin{array}{c|c} H & H & H \\ - & | & | \\ H - C - H \xrightarrow{replace \ any \ H \ by \ - \ CH_3} \end{array} \\ + H - C - C - H \ or \ C_2 H_0 \\ - & | & | & | \\ H & H & H \end{array}$$

These hydrocarbons are inert under normal conditions as they do not react with acids, bases and other reagents. Hence, they were earlier known as paraffins (*latin*: parum, little; affinis, affinity). Can you think

of the general formula for alkane family or **homologous series**? If we examine the formula of different alkanes we find that the general formula for alkanes is C_nH_{2n+2} . It represents any particular homologue when n is given appropriate value. Can you recall the structure of methane? According to VSEPR theory (Unit 4), methane has a tetrahedral structure (Fig. 9.1), in which carbon atom lies at the centre and the four hydrogen atoms lie at the four corners of a regular tetrahedron. All H-C-H bond angles are of 109.5 .

Fig. 9.1 Structure of methane

In alkanes, tetrahedra are joined together in which C-C and C-H bond lengths are 154 pm and 112 pm respectively (Unit 8). You have already read that C-C and C-H σ bonds are formed by head-on overlapping of sp^3 hybrid orbitals of carbon and 1s orbitals of hydrogen atoms.

9.2.1 Nomenclature and Isomerism

You have already read about nomenclature of different classes of organic compounds in Unit 8. Nomenclature and isomerism in alkanes can further be understood with the help of a few more examples. Common names are given in parenthesis. First three alkanes – methane, ethane and propane have only one structure but higher alkanes can have more than one structure. Let us write structures for C_4H_{10} . Four carbon atoms of C_4H_{10} can be joined either in a continuous chain or with a branched chain in the following two ways :

Butane (n- butane), (b.p. 273 K)