多様体論 定義命題集

v.2.5

mapsto

2024年2月25日

本稿について

本稿では、幾何学の重要な研究対象である多様体を定義し、多様体論序論としての一つの重要な結果であるStokesの定理を目標として、様々な話題を網羅することを目的として進める。多様体論は、参考書や個人ごとに流儀や議論の順序が異なり、初学者にとって混乱の要因となる。本稿では、そうした差異を極力カバーすることを目指す。一方、筆者の能力不足ではあるものの、多様体論は厳密な証明が大変な命題が非常に多いため、潔く証明をすべて省略し、定義や命題、例などを多く挙げるように努める。証明は各自考えたり、参考書を見たりするなどして確認してほしい。前提として、集合・写像の基礎、位相空間論、多変数関数の微積分、線形代数学、常微分方程式論の、いずれも初歩の知識があるとよい。本稿により生じた不利益は一切の責任を負わない。

本稿の注意点

- 集合は断らない限り空でないとする.
- 自然数全体の集合を $\mathbb{N} := \{1, 2, \ldots\}, \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ とする.
- ▼ (□), ℝ, ℂ をそれぞれ整数, 有理数, 実数, 複素数全体の集合とする.
- $G = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, x \in G$ について、 $G_{>x} := \{y \in G \mid y > x\}$ とする. $G_{<x}, G_{<x}, G_{>x}$ も同様.
- $A \subset B$ は A = B の場合を含む.
- $n \in \mathbb{N}$ について、 \mathbb{R}^n は断らない限り Euclid 空間、すなわち標準的な距離が定義されているとする。位相空間と考えるときは、通常の距離から定まる位相が定義されているとする。

目 次

1	多様体の定義			
	1.1	C^r 級多様体の定義 \ldots	3	
	1.2	C^r 級多様体の例 \ldots	5	
	1.3	多様体の構成	9	
	1.4	第2可算公理と多様体	11	
2	多様体間の写像			
	2.1	C^s 級写像 \ldots	15	
	2.2	C^r 級写像の例 \ldots	17	
	2.3	C^r 級微分構造 \ldots	17	
	2.4	1の分割	19	
3	接ベクトル空間 19			
	3.1	接ベクトル空間	19	
	3.2	C^r 級写像の微分 \ldots	19	
	3.3	接ベクトル東	19	
4	はめ込みと埋め込み 19			
	4.1	陰関数定理と逆関数定理	19	
	4.2	はめ込みと埋め込み	19	
	4.3	正則点と臨界点	19	
	4.4	埋め込み定理	19	
	4.5	Sard の定理	19	
5	べク	トル場	19	
	5.1	ベクトル場	19	
	5.2	積分曲線	19	
	5.3	Lie 微分	19	
6	微分形式 20			
	6.1	1次微分形式	20	
	6.2	k 次微分形式	20	
7	Stokes の定理			
	7.1	外微分	20	
	7.2	Stokes の定理	20	
8	Lie 群			
	8.1	Lie 群	20	
	8.2	Lie 環	20	
9	Rie	nann 多様体	20	
	9.1	Riemann 多様体	20	

1 多様体の定義

1.1 C^r 級多様体の定義

定義 1.1.1. $n \in \mathbb{N}$, M を位相空間, U を M の開集合, V を \mathbb{R}^n の開集合, $\varphi: U \to V$ を同相写像とする. このとき,

- (1) 対 (U,φ) を M の n 次元座標近傍 (coordinate neighborhood),または M の n 次元チャート (chart) という.
- (2) M のチャート (U,φ) に対し、 φ を U 上の局所座標系 (local coordinate system) という.
- (3) $p \in M$ に対し, $p \in U$ を満たす M のチャート (U, φ) を p の n 次元座標近傍,または p の n 次元チャートという.
- (4) $p \in M$ のチャート (U, φ) に対し,

$$\varphi(p) = (x_1(p), \dots, x_n(p)) \in V$$

をpの (U,φ) に関する**局所座標**(local coordinate)という.

(5) $i=1,\ldots,n$ に対し、局所座標における実数値関数

$$x_i: U \to \mathbb{R}, \ p \mapsto x_i(p)$$

をU上の座標関数 (coordinate function) という.

(6) M のチャート (U,φ) に対し、U 上の局所座標系 φ を、座標関数を用いて $\varphi = (x_1,\ldots,x_n)$ 、チャートを $(U;x_1,\ldots,x_n)$ と表すことがある.

注意 1.1.2. $\varphi(p)=(x_1,\ldots,x_n)$ と $\varphi=(x_1,\ldots,x_n)$ とでは、 (x_1,\ldots,x_n) の意味が異なることに十分注意する.

定義 1.1.3. M を位相空間とする. 任意の $p \in M$ に対し, p の n 次元チャート (U, φ) が存在するとき, M は n 次元局所 Euclid 空間 (locally Euclidian space) であるという.

系 1.1.4. *M* を位相空間とする.このとき,次は同値:

- (1) M は n 次元局所 Euclid 空間である.
- (2) ある M の n 次元チャート族 $\{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ が存在して, $\{U_{\lambda}\}_{\lambda \in \Lambda}$ は M の開被覆である. すなわち,

$$M = \bigcup_{\lambda \in \Lambda} U_{\lambda}.$$

定義 1.1.5. 系 1.1.4(2) を満たす M の n 次元チャート族 $\{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ を M の n 次元座標近傍系 (system of coordinate neighborhoods),または n 次元アトラス (atlas) という.

定義 1.1.6. 位相空間 M が次を満たすとき,M は n 次元位相多様体 (topological manifold) であるという:

(1) M は Hausdorff 空間である.

(2) M は n 次元局所 Euclid 空間である.

定義 1.1.7. M を位相空間, $(U,\varphi),(V,\psi)$ を, $U\cap V\neq\varnothing$ を満たす M の n 次元チャートとする. このとき、写像

$$\psi|_{U\cap V}\circ\varphi|_{U\cap V}^{-1}:\varphi(U\cap V)\to\psi(U\cap V)$$

を (U,φ) から (V,ψ) への座標変換 (coordinate transformation) という. $\varphi \coloneqq (x_1,\ldots,x_n),\psi \coloneqq (y_1,\ldots,y_n)$ であるとき,

$$\begin{cases} y_1 = y_1(x_1, \dots, x_n) \\ \vdots \\ y_n = y_n(x_1, \dots, x_n) \end{cases}$$

を $\psi|_{U\cap V}\circ \varphi|_{U\cap V}^{-1}$ の座標表示 (coordinate display) という. 以降, 座標変換 $\psi|_{U\cap V}\circ \varphi|_{U\cap V}^{-1}$ を省略して $\psi\circ \varphi^{-1}$ と表す.

注意 1.1.8. $\varphi(p)=(x_1,\ldots,x_n),\,\psi(p)=(y_1,\ldots,y_n)$ とする. $p=\varphi^{-1}(x_1,\ldots,x_n)$ であるから, $(\psi\circ\varphi^{-1})_i:\varphi(U\cap V)\to\mathbb{R}\,(i=1,\ldots,n)$ を用いて

$$(y_1, \ldots, y_n) = \psi \circ \varphi^{-1}(x_1, \ldots, x_n) = ((\psi \circ \varphi^{-1})_1(x_1, \ldots, x_n), \ldots, (\psi \circ \varphi^{-1})_n(x_1, \ldots, x_n))$$

となる. すなわち, 座標表示は $((\psi \circ \varphi^{-1})_1, \dots, (\psi \circ \varphi^{-1})_n)$ を省略して $(y_1, \dots, y_n) = \psi$ と表記すると宣言している.

定義 1.1.9. M を位相空間, $r \in \mathbb{N}_0 \cup \{\infty\}$ とする. M の n 次元アトラス $\mathcal{S} := \{(U_\lambda, \varphi_\lambda)\}_{\lambda \in \Lambda}$ が次を満たすとき,対 (M, \mathcal{S}) を n 次元 C^r 級微分可能多様体 (differentiable manifold of class C^r) という:

- (1) M は n 次元位相多様体である.
- (2) $U_{\lambda} \cap U_{\mu} \neq \emptyset$ を満たす $(U_{\lambda}, \varphi_{\lambda}), (U_{\mu}, \varphi_{\mu}) \in \mathcal{S}$ に対し、座標変換

$$\varphi_{\mu} \circ {\varphi_{\lambda}}^{-1} : \varphi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \varphi_{\mu}(U_{\lambda} \cap U_{\mu})$$

は C^r 級である.

 C^r 級微分可能多様体を単に C^r 級多様体,または多様体という. C^∞ 級多様体を**滑らかな多様体** (smooth manifold) ということもある. C^r 級多様体 (M, \mathcal{S}) に対し, \mathcal{S} を C^r 級座標近傍系または C^r 級アトラスという.また, C^r 級多様体の次元 (dimension) を $\dim M := n$ と定める.アトラスが明らかなとき, C^r 級多様体 (M, \mathcal{S}) を単に M と表す.次元を明示するときは M^n と表す.

注意 1.1.10. (1) C^0 級多様体は位相多様体そのものである.

- (2) 座標変換 $\varphi_{\mu} \circ \varphi_{\lambda}^{-1}$ は $\varphi_{\lambda} \circ \varphi_{\mu}^{-1}$ を逆写像に持つから, C^{r} 級微分同相写像である.
- (3) 考える対象を扱いやすいもののみに制限するため,多様体の定義に「第2可算公理を満たす」という条件を加えることもある.この場合,定義 1.1.9 の多様体は**広義の多様体**と呼ばれることもある.本稿では,第2可算公理は必要なときに課せば十分であると考え,第2可算公理を課さない.

定義 1.1.11. M を位相空間, U を M の開集合, V を \mathbb{C}^n の開集合, $\varphi: U \to V$ を同相写像とする. このとき, 対 (U,φ) を M の n 次元正則座標近傍 (holomorphic coordinate neighborhood) という. 正則座標近傍 (U,φ) に対し, φ を U 上の n 次元複素局所座標系 (complex local coordinate system) という. $p \in U$ に対し,

$$\varphi(p) = (z_1(p), \dots, z_n(p)) \in V$$

を p の (U, φ) に関する n 次元複素局所座標 (complex local coordinate) という. $i=1,\ldots,n$ に対し、連続写像

$$z_i: U \to \mathbb{C}, \ p \mapsto z_i(p)$$

を U 上の複素座標関数 (complex coordinate function) という. ある M の正則座標近傍 $S := \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ が存在して次を満たすとき,対 (M, S) を n 次元複素多様体 (complex manifold) という:

- (1) *M* は Hausdorff 空間である.
- (2) $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ は M の開被覆である.
- (3) $U_{\lambda} \cap U_{\mu} \neq \emptyset$ を満たす $(U_{\lambda}, \varphi_{\lambda}), (U_{\mu}, \varphi_{\mu}) \in \mathcal{S}$ に対し、座標変換

$$\varphi_{\mu} \circ \varphi_{\lambda}^{-1} : \varphi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \varphi_{\mu}(U_{\lambda} \cap U_{\mu})$$

は正則写像である.

複素多様体 (M, S) に対し,S を M の n 次元正則座標近傍系 (system of holomorphic coordinate neighborhoods) という.複素多様体の複素次元 (complex dimension) を $\dim_{\mathbb{C}} M \coloneqq n$ と定める.

注意 1.1.12. 複素多様体と区別して、定義 1.1.9 の多様体を**実多様体**ということもある.

1.2 C^r 級多様体の例

1.2.1 多様体の例

例 1.2.1. \mathbb{R}^n を Euclid 空間, $\mathrm{id}_{\mathbb{R}^n}: \mathbb{R}^n \to \mathbb{R}^n$ を恒等写像とする.このとき, $(\mathbb{R}^n, \{(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})\})$ は n 次元 C^∞ 級多様体である. $(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})$ を \mathbb{R}^n の標準的なチャート (standard chart) という.

例 1.2.2. $\mathbb R$ を Euclid 空間, $\varphi:\mathbb R\to\mathbb R$ を $\varphi(x)\coloneqq x^3$ とする.このとき, $(\mathbb R,\{(\mathbb R,\varphi)\})$ は 1 次元 C^∞ 級多様体である.

例 1.2.3. \mathbb{R}^n を Euclid 空間, $\{U_{\lambda}\}_{\lambda \in \Lambda} \subset 2^{\mathbb{R}^n}$ を \mathbb{R}^n の開被覆, $\varphi_{\lambda}: U_{\lambda} \hookrightarrow \mathbb{R}^n$ を包含写像とする. このとき, $(\mathbb{R}^n, \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda})$ は n 次元 C^{∞} 級多様体である.

例 1.2.4. U を \mathbb{R}^n の開集合, $f:U\to\mathbb{R}$ を連続関数とする. $\Gamma(f)\subset\mathbb{R}^{n+1}$,proj : $\Gamma(f)\to U$ を 次で定める:

$$\Gamma(f) := \{ (\boldsymbol{x}, y) \in U \times \mathbb{R} \mid y = f(\boldsymbol{x}) \},$$

$$\operatorname{proj}(\boldsymbol{x}, y) := \boldsymbol{x}.$$

このとき, $(\Gamma(f), \{(\Gamma(f), \operatorname{proj})\})$ は n 次元 C^{∞} 級多様体である. $\Gamma(f)$ を f の**グラフ** (graph) という.

例 1.2.5. M を離散空間とする. 任意の $p \in M$ に対し, $\{p\}$ は M の開集合で, $\{p\}$ 上の局所座標系

$$i_p: \{p\} \to \mathbb{R}^0 = \{0\}, \ i_p(p) := 0$$

が自然に定まる.したがって,離散空間 $(M,\{(\{p\},i_p)\}_{p\in M})$ は 0 次元多様体である.0 次元多様体は任意の $r\in\mathbb{N}_0\cup\{\infty\}$ に対し, C^r 級多様体であるとみなす.

1.2.2 n 次元球面

定義 1.2.6. \mathbb{R}^{n+1} の部分集合

$$S^{n} := \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1\} = \{\boldsymbol{x} \in \mathbb{R}^{n+1} \mid ||\boldsymbol{x}|| = 1\}$$

en 次元球面 (sphere) という.

命題 1.2.7. S^n を n 次元球面とする. 各 $i=1,\ldots,n+1$ に対し、開集合 $U_i^\pm\subset S^n$ 、写像 $\varphi_i^\pm:U_i^\pm\to\mathbb{R}^n$ を次で定める:

$$U_i^{\pm} := \{(x_1, \dots, x_{n+1}) \in S^n \mid \pm x_i > 0\},\$$

$$\varphi_i^{\pm}(x_1,\ldots,x_{n+1}) := (x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1})$$

(複合同順). このとき、 $(S^n, \{(U_i^{\pm}, \varphi_i^{\pm})\}_{i=1}^{n+1})$ は n 次元 C^{∞} 級多様体である.

命題 1.2.8. S^n を n 次元球面とする. 開集合 $U_N, U_S \subset S^n$,写像 $\varphi_N: U_N \to \mathbb{R}^n, \varphi_S: U_S \to \mathbb{R}^n$ を次で定める:

$$U_{N} := S^{n} \setminus \{(0, \dots, 0, 1)\}, U_{S} := S^{n} \setminus \{(0, \dots, 0, -1)\},$$

$$\varphi_{N}(x_{1}, \dots, x_{n+1}) := \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

$$\varphi_{S}(x_{1}, \dots, x_{n+1}) := \left(\frac{x_{1}}{1 + x_{n+1}}, \dots, \frac{x_{n}}{1 + x_{n+1}}\right).$$

このとき、 $(S^n, \{(U_N, \varphi_N), (U_S, \varphi_S)\})$ は n 次元 C^∞ 級多様体である。 φ_N, φ_S をそれぞれ $(0, \ldots, 0, 1), (0, \ldots, 0, -1)$ からの立体射影 (stereoscopic projection) という.

1.2.3 n 次元射影空間

定義 1.2.9. $\mathbb{R}^{n+1}\setminus\{\mathbf{0}\}$ 上の同値関係 \sim を次で定める: $x,y\in\mathbb{R}^{n+1}\setminus\{\mathbf{0}\}$ に対し,

$$x \sim y \iff$$
 ある $\lambda \in \mathbb{R} \setminus \{0\}$ が存在して $y = \lambda x$.

~による商空間

$$\mathbb{R}P^n := (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})/\sim$$

を n 次元実射影空間 (real projective space) という. このとき, 自然な射影を

$$\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$$

とし、 $(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\setminus\{\mathbf{0}\}$ を代表元とする同値類を $\pi(x_1,\ldots,x_{n+1})\coloneqq[x_1:\cdots:x_{n+1}]\in\mathbb{R}P^n$ と表し、同次座標 (homogeneous coordinate) という.

命題 1.2.10. $\mathbb{R}P^n$ を n 次元実射影空間とする. 各 $i=1,\ldots,n+1$ に対し, $U_i\subset\mathbb{R}P^n$, 写像 $\varphi_i:U_i\to\mathbb{R}^n$ を次で定める:

$$U_i := \{ [x_1 : \cdots : x_{n+1}] \in \mathbb{R}P^n \mid x_i \neq 0 \},$$

$$\varphi_i([x_1:\dots:x_{n+1}]) := \left(\frac{x_1}{x_i},\dots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i}\dots,\frac{x_{n+1}}{x_i}\right).$$

このとき、 $(\mathbb{R}P^n, \{(U_i, \varphi_i)\}_{i=1}^{n+1})$ は n 次元 C^{∞} 級多様体である.

射影空間の定義の仕方はいくつかあるが、命題 1.2.12 によって S^n/\sim と $\mathbb{R}P^n$ は同一視できる.

命題 1.2.11 (商空間の普遍性). X,Y を位相空間, \sim を X 上の同値関係, \sim による商空間を X/\sim , 自然な射影を $\pi: X \to X/\sim$ とする. 連続写像 $g: X \to Y$ が任意の $x,x' \in X$ に対して $x \sim x' \Rightarrow g(x) = g(x')$ を満たすならば、連続写像 $f: X/\sim \to Y$ であって $g = f \circ \pi$ を満たすも のが一意に存在する. このとき、g は f を誘導 (induce) するという.

命題 1.2.12. S^n を n 次元球面とする. S^n 上の同値関係 \sim を次で定める: $x, y \in S^n$ に対し,

$$oldsymbol{x} \sim oldsymbol{y} \stackrel{ ext{def.}}{\Longleftrightarrow} oldsymbol{y} = \pm oldsymbol{x}.$$

 \sim による商空間を S^n/\sim^{*1} ,自然な射影を $\pi':S^n\to S^n/\sim$ とする *2 . $i:S^n\to\mathbb{R}^{n+1}\setminus\{\mathbf{0}\}$ を包含写像とするとき、 $\pi\circ i:S^n\to\mathbb{R}P^n$ は同相写像 $\tilde{i}:S^n/\sim\to\mathbb{R}P^n$ を誘導する.すなわち, $S^n/\sim\approx\mathbb{R}P^n$.

$$S^{n} \xrightarrow{i} \mathbb{R}^{n+1} \setminus \{0\}$$

$$\downarrow^{\pi}$$

$$S^{n}/\sim \xrightarrow{\tilde{i}} \mathbb{R}P^{n}$$

 $x \in S^n$ に対し, $-x \in S^n$ を対蹠点 (antipodal point) という.

1.2.4 複素多様体の例

例 1.2.13. \mathbb{C}^n を複素 Euclid 空間, $\mathrm{id}_{\mathbb{C}^n}:\mathbb{C}^n\to\mathbb{C}^n$ を恒等写像とする.このとき, $(\mathbb{C}^n,\{(\mathbb{C}^n,\mathrm{id}_{\mathbb{C}^n})\})$ は n 次元複素 C^∞ 級多様体である.

定義 1.2.14. \mathbb{C}^{n+1} の部分集合

$$Q^n := \{(z_1, \dots, z_{n+1}) \in \mathbb{C}^{n+1} \mid z_1^2 + \dots + z_{n+1}^2 = 1\}$$

をn 次元複素球面 (complex sphere) という.

 $^{^{*1}}S^n/\!\!\sim$ を $S^n/\{\pm 1\}$ と表すことがある.この表記は,位相空間 X と位相群 G に対し,G の X への群作用の軌道空間を X/G と表すことに由来する.

 $^{^{*2}\}pi'$ は2重被覆写像である.

注意 1.2.15. 複素数体 \mathbb{C}^n は \mathbb{R} 上の 2n 次元ベクトル空間であるから, \mathbb{C}^n を \mathbb{R}^{2n} と同一視する.このとき, $j=1,\ldots,n+1$ に対し,

$$z_j = x_j + \sqrt{-1}y_j \in \mathbb{C} \ (x_j, y_j \in \mathbb{R})$$

とすると, $|z_j|^2 = x_j^2 + y_j^2$ より

$$\mathbb{R}^{2n+2} \supset S^{2n+1} = \{ (x_1, y_1, \dots, x_{n+1}, y_{n+1}) \in \mathbb{R}^{2n+2} \mid x_1^2 + y_1^2 + \dots + x_{n+1}^2 + y_{n+1}^2 = 1 \}$$

$$= \{ (z_1, \dots, z_{n+1}) \in \mathbb{C}^{n+1} \mid |z_1|^2 + \dots + |z_{n+1}|^2 = 1 \} \subset \mathbb{C}^{n+1}$$

となる. したがって、(2n+1) 次元球面 S^{2n+1} は \mathbb{C}^{n+1} の部分集合であるとみなせる.

命題 1.2.16. Q^n を n 次元複素球面とする. 開集合 $U_N,U_S\subset Q^n$, 写像 $\varphi_N:U_N\to\mathbb{C}^n,\varphi_S:U_S\to\mathbb{C}^n$ を次で定める:

$$U_{N} := Q^{n} \setminus \{(0, \dots, 0, 1)\}, U_{S} := Q^{n} \setminus \{(0, \dots, 0, -1)\},$$

$$\varphi_{N}(z_{1}, \dots, z_{n+1}) := \left(\frac{z_{1}}{1 - z_{n+1}}, \dots, \frac{z_{n}}{1 - z_{n+1}}\right),$$

$$\varphi_{S}(z_{1}, \dots, z_{n+1}) := \left(\frac{z_{1}}{1 + z_{n+1}}, \dots, \frac{z_{n}}{1 + z_{n+1}}\right).$$

このとき、 $(Q^n, \{(U_N, \varphi_N), (U_S, \varphi_S)\})$ はn次元 C^∞ 級複素多様体である.

定義 1.2.17. $\mathbb{C}^{n+1}\setminus\{0\}$ 上の同値関係 \sim を次で定める: $z,w\in\mathbb{C}^{n+1}\setminus\{0\}$ に対し、

$$z \sim w \iff$$
ある $\lambda \in \mathbb{C} \setminus \{0\}$ が存在して $w = \lambda z$.

~による商空間

$$\mathbb{C}P^n := (\mathbb{C}^{n+1} \setminus \{\mathbf{0}\})/\sim$$

を n 次元複素射影空間 (complex projective space) という. このとき, 自然な射影を

$$\pi: \mathbb{C}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{C}P^n$$

とし、 $(z_1,\ldots,z_{n+1})\in\mathbb{C}^{n+1}\setminus\{\mathbf{0}\}$ を代表元とする同値類を $\pi(z_1,\ldots,z_{n+1})\coloneqq[z_1:\cdots:z_{n+1}]\in\mathbb{C}P^n$ と表し、複素同次座標 (complex homogeneous coordinate) という.

命題 1.2.18. $\mathbb{C}P^n$ を n 次元複素射影空間とする. 各 $i=1,\ldots,n+1$ に対し, $U_i\subset\mathbb{C}P^n$, 写像 $\varphi_i:U_i\to\mathbb{C}^n$ を次で定める:

$$U_i := \{ [z_1 : \dots : z_{n+1}] \in \mathbb{C}P^n \mid z_i \neq 0 \},$$

$$\varphi_i([z_1 : \dots : z_{n+1}]) := \left(\frac{z_1}{z_i}, \dots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \dots, \frac{z_{n+1}}{z_i}\right).$$

このとき、 $(\mathbb{C}P^n, \{(U_i, \varphi_i)\}_{i=1}^{n+1})$ はn次元 C^∞ 級複素多様体である.

命題 1.2.19. 注意 1.2.15 より, S^{2n+1} を \mathbb{C}^{n+1} の部分集合とみなす. S^n 上の同値関係 \sim を命題 1.2.12 と同様に定める. \sim による商空間を S^{2n+1}/\sim ,自然な射影を π' : $S^{2n+1} \to S^{2n+1}/\sim$ とする. $i:S^{2n+1} \to \mathbb{C}^{n+1}\setminus \{0\}$ を包含写像とするとき、 $\pi\circ i:S^{2n+1} \to \mathbb{C}^{n}$ は同相写像 $\tilde{i}:S^{2n+1}/\sim \to \mathbb{C}P^n$ を誘導する.すなわち, $S^{2n+1}/\sim \to \mathbb{C}P^n$.

$$S^{2n+1} \xrightarrow{i} \mathbb{C}^{n+1} \setminus \{\mathbf{0}\}$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi$$

$$S^{2n+1} / \sim \xrightarrow{\tilde{z}} \mathbb{C}P^n$$

1.2.5 多様体でない例

例 1.2.20. ℝの閉部分空間 [0,1] は位相多様体でない.

定義 1.2.21. $a \in \mathbb{R}^n$, $r \in \mathbb{R}_{>0}$ とする. \mathbb{R}^n の部分集合

$$\overline{D}^n(\boldsymbol{a},r) := \{ \boldsymbol{x} \in \mathbb{R}^n \mid \|\boldsymbol{x} - \boldsymbol{a}\| \le r \}$$

を中心 a, 半径 r の n 次元閉円板 (closed disk) という. $\overline{D}^n := \overline{D}^n(\mathbf{0},1)$ とする.

例 1.2.22. 閉円板 $\overline{D}^n(\boldsymbol{a},r)$ は位相多様体でない.

注意 1.2.23. 例 1.2.20 及び例 1.2.22 は境界付き多様体の例である (7章を参照).

例 1.2.24. \mathbb{R}^n の部分空間 $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid x_1\cdots x_n=0\}$ は位相多様体でない.

例 1.2.25. $(\mathbb{R}, \mathcal{O})$ を通常の位相空間, $0' \notin \mathbb{R}, X := \mathbb{R} \sqcup \{0'\}$ とする.

$$\mathcal{O} \cup \{(a,0) \cup \{0'\} \cup (0,b) \mid a < 0 < b, a,b \in \mathbb{R}\}\$$

を開基とする位相を X に定める. このとき, X は Hausdorff 空間でないが, 局所 Euclid 空間である. また, X は第 2 可算公理を満たす. X を 2 つの原点を持つ直線 (line with two origins) という.

1.3 多様体の構成

1.3.1 多様体の構成

命題 1.3.1. $r,s \in \mathbb{N}_0 \cup \{\infty\}$ が $0 \le s \le r \le \infty$ を満たすとき、任意の C^r 級多様体は C^s 級多様体である.

命題 1.3.2. (M, S), (N, T) をn 次元 C^r 級多様体とする. $M \cap N = \emptyset$ であるとき, $(M \sqcup N, S \sqcup T)$ はn 次元 C^r 級多様体である.

命題 1.3.3. (M, S), $S := \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ を C^r 級多様体, W を M の開部分集合とする. このとき,

$$\mathcal{S}|_{W} := \{(U_{\lambda} \cap W, \varphi_{\lambda}|_{U_{\lambda} \cap W})\}_{\lambda \in \Lambda}$$

とすると、 $(W, S|_W)$ は C^r 級多様体である. $(W, S|_W)$ を M の開部分多様体 (open submanifold) という.

例 1.3.4. \mathbb{R}^n の任意の開集合,例えば $\mathbb{R}^n \setminus \{\mathbf{0}\}$, $(0,1)^n$ は \mathbb{R}^n の開部分多様体である.

定義 1.3.5. $a \in \mathbb{R}^n$, $r \in \mathbb{R}_{>0}$ とする. \mathbb{R}^n の部分集合

$$D^{n}(\boldsymbol{a},r) \coloneqq \{\boldsymbol{x} \in \mathbb{R}^{n} \mid \|\boldsymbol{x} - \boldsymbol{a}\| < r\}$$

を中心 a, 半径 r の n 次元開円板 (open disk) という. $D^n := D^n(\mathbf{0}, 1)$ とする.

例 1.3.6. 開円板 $D^n(\boldsymbol{a},r)$ は \mathbb{R}^n の開部分多様体である.

命題 1.3.7. (M, S), $S := \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ を m 次元 C^{r} 級多様体, (N, T), $\mathcal{T} := \{(V_{\mu}, \psi_{\mu})\}_{\mu \in \mathcal{M}}$ を n 次元 C^{r} 級多様体とする. このとき,

$$S \times \mathcal{T} := \{ (U_{\lambda} \times V_{\mu}, \varphi_{\lambda} \times \psi_{\mu}) \}_{(\lambda, \mu) \in \Lambda \times \mathcal{M}},$$

$$\varphi_{\lambda} \times \psi_{\mu} : U_{\lambda} \times V_{\mu} \to \varphi_{\lambda}(U_{\lambda}) \times \psi_{\mu}(V_{\mu}), \quad (\varphi_{\lambda} \times \psi_{\mu})(p,q) := (\varphi_{\lambda}(p), \psi_{\mu}(q))$$

とすると, $(M \times N, \mathcal{S} \times \mathcal{T})$ は (m+n) 次元 C^r 級多様体である. $(M \times N, \mathcal{S} \times \mathcal{T})$ を M と N の積多様体 (product manifold) という.

系 1.3.8. $i=1,\ldots,n$ に対し, $m_i \in \mathbb{N}, (M_i, \mathcal{S}_i), \mathcal{S}_i \coloneqq \{(U_{\lambda_i}, \varphi_{\lambda_i})\}_{\lambda_i \in \Lambda_i}$ を m_i 次元 C^r 級多様体とする.このとき,

$$S_1 \times \cdots \times S_n := \{(U_{\lambda_1} \times \cdots \times U_{\lambda_n}, \varphi_{\lambda_1} \times \cdots \times \varphi_{\lambda_n})\}_{(\lambda_1, \dots, \lambda_n) \in \Lambda_1 \times \cdots \times \Lambda_n}$$

とすると、 $(M_1 \times \cdots \times M_n, S_1 \times \cdots \times S_n)$ は $(m_1 + \cdots + m_n)$ 次元 C^r 級多様体である.

例 1.3.9. S^n を n 次元球面とする. このとき,

$$I^n := S^n \times \mathbb{R}$$

は (n+1) 次元 C^{∞} 級多様体である. I^n を**超円柱** (hypercylinder) という.

1.3.2 n 次元トーラス

例 1.3.10. $n \in \mathbb{N}, S^1$ を 1 次元球面とする. このとき,

$$\mathbb{T}^n := \underbrace{S^1 \times \cdots \times S^1}_{n}$$

はn次元 C^{∞} 級多様体である. \mathbb{T}^n をn次元トーラス (torus) という.

例 1.3.11. $R, r \in \mathbb{R}_{>0}, R > r$ とする. このとき,

$$T^2 = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2\}.$$

これを**回転トーラス** (torus of revolution) といい,xz 平面上の中心が (R,0),半径 r の円を z 軸 の周りに 1 回転させて得られる.

例 1.3.12. \mathbb{R}^n 上の同値関係 \sim を次で定める: $x, y \in \mathbb{R}^n$ に対し,

$$oldsymbol{x} \sim oldsymbol{y} \stackrel{ ext{def.}}{\Longleftrightarrow} oldsymbol{x} - oldsymbol{y} \in \mathbb{Z}^n.$$

このとき, 商集合 $\mathbb{R}^n/\mathbb{Z}^n := \mathbb{R}^n/\sim$ を平坦トーラス (flat torus) という.

例 1.3.13. $S^1 \subset \mathbb{R}^2$ に注意すると,

$$\mathbb{T}^2 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 = z^2 + w^2 = 1\}$$

と表せる.また,この \mathbb{T}^2 を原点中心に $\frac{1}{\sqrt{2}}$ 倍縮小した S^3 の部分集合として

$$\mathbb{T}_{\text{cl}}^2 = \left\{ (x, y, z, w) \in S^3 \middle| x^2 + y^2 = z^2 + w^2 = \frac{1}{2} \right\}$$

と表せる. これらを Clifford トーラス (Clifford torus) という. 注意 1.2.15 より, S^3 を \mathbb{C}^2 の部分集合とみなすと, Clifford トーラスは S^3 , すなわち \mathbb{C}^2 の部分集合とみなせる.

1.3.3 有限次元ベクトル空間

命題 1.3.14. (X, \mathcal{O}_X) を位相空間, Y を集合, $f: Y \to X$ を写像とする. Y の部分集合族 \mathcal{O}_f を

$$\mathcal{O}_f := \{ f^{-1}(U) \subset Y \mid U \in \mathcal{O}_X \}$$

と定めると, (Y, \mathcal{O}_f) は位相空間になる. \mathcal{O}_f を Y の f による**誘導位相** (induced topology) という. また, f が Y に誘導位相を与えるとき, f は連続である.

命題 1.3.15. V, W を \mathbb{R} 上の有限次元ベクトル空間とする. このとき, 次は同値:

- (1) $V \cong W$.
- (2) $\dim V = \dim W$.

命題 1.3.16. V を \mathbb{R} 上の有限次元ベクトル空間, $n \coloneqq \dim V$ とする.命題 1.3.15 より線形同型写像 $f: V \to \mathbb{R}^n$ が存在し,この f による Y の誘導位相を \mathcal{O}_f とすることで V を位相空間とみる.このとき, $(V, \{(V, f)\})$ は n 次元 C^∞ 級多様体である.また,誘導位相 \mathcal{O}_f は f,すなわち基底の取り方によらない.以降, \mathbb{R} 上の有限次元ベクトル空間はこのアトラスにより多様体とする.

例 1.3.17. 複素数体 \mathbb{C}^n は \mathbb{R} 上の 2n 次元ベクトル空間であるから、2n 次元 C^∞ 級多様体である.

例 1.3.18. 複素多様体 M が $\dim_{\mathbb{C}} M = n$ のとき、 $\dim M = 2n$ である.特に、 $\dim \mathbb{C}^n = \dim Q^n = \dim \mathbb{C}P^n = 2n$.

例 1.3.19. m 行 n 列の実行列全体の集合 $M(m \times n, \mathbb{R})$ は \mathbb{R} 上の mn 次元ベクトル空間であるから,mn 次元 C^{∞} 級多様体である.また,m 行 n 列の複素行列全体の集合 $M(m \times n, \mathbb{C})$ は \mathbb{R} 上の 2mn 次元ベクトル空間であるから,2mn 次元 C^{∞} 級多様体である.以降,n 次正方行列全体を $M(n, \mathbb{R}) := M(n \times n, \mathbb{R})$, $M(n, \mathbb{C}) := M(n \times n, \mathbb{C})$ と表す.

1.4 第2可算公理と多様体

 (X,\mathcal{O}) を位相空間, (M,\mathcal{S}) を n 次元 C^r 級多様体とする.

1.4.1 位相空間の諸性質

定義 1.4.1. X の部分集合族 $\{U_{\lambda}\}_{{\lambda}\in\Lambda}\subset 2^{X}$ が

$$X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

を満たすとき、 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を X の被覆 (covering) という. また、部分集合 $A\subset X$ に対し、 $\{U_{\lambda}\}_{\lambda\in\Lambda}\subset 2^{X}$ が

$$A \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

を満たすとき, $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を A の被覆という.

定義 1.4.2. $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を X(または部分集合 $A\subset X$) の被覆とする. 任意の $\lambda\in\Lambda$ に対し, $U_{\lambda}\in\mathcal{O}$ となるとき, $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を X(または A) の開被覆 (open covering) という.

定義 1.4.3. U を X(または部分集合 $A \subset X$) の被覆とする.部分集合 $\mathcal{V} \subset U$ が X(または A) の 被覆であるとき, \mathcal{V} を \mathcal{U} の部分被覆 (subcovering) という.

定義 1.4.4. X の部分集合族 $\{U_{\lambda}\}_{\lambda\in\Lambda}\subset 2^{X}$ が $\#\Lambda<\infty$ を満たすとき, $\{U_{\lambda}\}_{\lambda\in\Lambda}$ は**有限** (finite) であるという.

定義 1.4.5. X の任意の開被覆に対して,有限部分被覆が存在するとき,X は**コンパクト** (compact) である,またはコンパクト空間であるという.部分集合 $A \subset X$ について,X の部分空間 A がコンパクトであるとき,A はコンパクトであるという.

命題 1.4.6. コンパクト空間の閉部分集合はコンパクト空間である.

命題 1.4.7. コンパクト空間の積空間はコンパクト空間である.

命題 1.4.8. Hausdorff 空間のコンパクト部分集合は閉集合である.

例 1.4.9. S^n , $\mathbb{R}P^n$, \mathbb{T}^n はコンパクト空間である.

定義 1.4.10. $U, V \in X$ の被覆とする. 任意の $V \in V$ に対して, ある $U \in U$ が存在して $V \subset U$ となるとき, V はU の細分 (refinement) である(またはV がU を細分する)という.

定義 1.4.11. $\{U_{\lambda}\}_{\lambda \in \Lambda}$ を X の被覆とする. $x \in X$ に対し, x のある開近傍 V が存在し,

$$\#\{\lambda \in \Lambda \mid V \cap U_{\lambda} \neq \varnothing\} < \infty$$

を満たすとき、 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ は x で局所有限 (locally finite) であるという.任意の $x\in X$ に対して \mathcal{U} が x で局所有限であるとき, $\{U_{\lambda}\}_{\lambda\in\Lambda}$ は局所有限であるという.

定義 1.4.12. X の任意の開被覆 U に対して,U の細分であり,かつ局所有限な開被覆 V が存在するとき,X はパラコンパクト (paracompact) であるという.

定義 1.4.13. $U \in \mathcal{O}$ に対し、閉包 \overline{U} がコンパクトであるとき、U は相対コンパクト (relative compact) であるという.

定義 1.4.14. 任意の $x \in X$ に対し、相対コンパクトな x の開近傍が存在するとき、X は局所 コンパクト (locally compact) であるという.

定義 1.4.15. $\{U_{\lambda}\}_{\lambda \in \Lambda}$ を X の被覆とする. 任意の $\lambda \in \Lambda$ に対して, U_{λ} がコンパクトかつ $\#\Lambda \leq \aleph_0$ を満たすとき, X は σ **コンパクト** (σ compact) であるという.

定義 1.4.16. 部分集合 $\mathcal{B} \subset \mathcal{O}$ が \mathcal{O} の開基 (open base) であるとは、任意の $U \in \mathcal{O}$ に対し、ある部分集合 $\mathcal{U} \subset \mathcal{B}$ が存在し、 \mathcal{U} の被覆となることをいう.

定義 1.4.17. X(または部分集合 $A \subset X$) の高々可算個の開集合からなる開基が存在するとき, X(または A) は第 2 可算公理 (second axiom of countability) を満たすという.

命題 1.4.18. U を X の被覆とする. 任意の $U \in \mathcal{U}$ が第 2 可算公理を満たすならば,X は第 2 可算公理を満たす.

命題 1.4.19. 第 2 可算公理を満たす位相空間の部分空間は第 2 可算公理を満たす.

命題 1.4.20. 第2可算公理を満たす位相空間の積空間は第2可算公理を満たす.

例 1.4.21. \mathbb{R}^n は第 2 可算公理を満たす.

定義 1.4.22. X の任意の開被覆に対して,高々可算な部分被覆が存在するとき,X は Lindelöf 空間 (Lindelöf space) であるという.

定義 1.4.23. ある $U, V \in \mathcal{O}$ が存在し, $U \neq \emptyset, V \neq \emptyset, U \cap V = \emptyset, U \cup V = X$ を満たすとき,X は**非連結** (disconnected) であるという.X が非連結でないとき,X は**連結** (connected) であるという.部分集合 $A \subset X$ について,X の部分空間 A が連結であるとき,A は**連結部分空間** (connected subspace) であるという.

例 1.4.24. X 上の同値関係 \sim を次で定める: $x, y \in X$ に対し、

 $x \sim y \stackrel{\text{def.}}{\Longleftrightarrow}$ ある X の連結部分空間 A が存在して $x,y \in A$.

このとき、商集合 X/\sim の同値類を X の連結成分 (connected component) という.

命題 1.4.25. 次は同値:

- (1) *X* は連結である.
- (2) 部分集合 $A \subset X$ が開集合かつ閉集合ならば、A = X または $A = \emptyset$.

1.4.2 第2可算公理と多様体

命題 1.4.26. コンパクト空間はパラコンパクト空間である.

命題 1.4.27. パラコンパクト空間の閉集合はパラコンパクト空間である.

命題 1.4.28. パラコンパクト空間の直和空間はパラコンパクト空間である. 特に、離散空間はパラコンパクト空間である.

命題 1.4.29. 局所コンパクト Hausdorff 空間である Lindelöf 空間はパラコンパクト空間である

命題 1.4.30. 第 2 可算公理を満たす位相空間は Lindelöf 空間である.

系 1.4.31. 第 2 可算公理を満たす局所コンパクト Hausdorff 空間はパラコンパクト空間である.

命題 1.4.32. 第 2 可算公理を満たす局所コンパクト空間は σ コンパクトである.

命題 1.4.33. 局所コンパクト Hausdorff 空間かつ σ コンパクト空間はパラコンパクト空間である.

命題 1.4.34. コンパクト空間は σ コンパクト空間である.

命題 1.4.35. σ コンパクト空間は Lindelöf 空間である.

定理 1.4.36 (A.H.Stone の定理). 距離空間はパラコンパクト空間である.

命題 1.4.37. 多様体は局所コンパクト空間である.

命題 1.4.38. 多様体 M の各連結成分は多様体であり、M は連結成分の直和空間である.

命題 1.4.39. *M* を連結な多様体とする. このとき, 次は同値:

- (1) M はパラコンパクトである.
- (2) M は第二可算公理を満たす.
- (3) M は σ コンパクトである.
- (4) M は Lindelöf 空間である.

系 1.4.40. M を多様体とする. このとき, 次は同値:

- (1) M はパラコンパクトである.
- (2) Mの各連結成分は第二可算公理を満たす.
- (3) M の各連結成分は σ コンパクトである.
- (4) M の各連結成分は Lindelöf 空間である.

1.4.3 1次元多様体の分類

命題 1.4.41. コンパクトな任意の連結 1 次元多様体は S^1 と同相である.

命題 1.4.42. パラコンパクトでありコンパクトでない任意の連結 1 次元多様体は $\mathbb R$ と同相である.

定義 1.4.43. (X, \leq) を全順序集合とする。X に形式的に最大元 $+\infty$ と最小元 $-\infty$ を付け加えた全順序集合 $X^* := X \cup \{\pm\infty\}$ に対し、 $a, b \in X^*, a < b$ について

$$(a,b) := \{ x \in X^* \mid a < x < b \}$$

と定義する. このとき, (a,b) は X の部分集合である.

$$\{(a,b) \mid a < b, a, b \in X^*\}$$

を開基とする X の位相 \mathcal{O}_{\leq} を,X の順序位相 (order topology) という.

定義 1.4.44. ω_1 を最小の非可算順序数, $[0,1)\subset\mathbb{R}$ とする. $\mathbb{L}_{\geq 0}\coloneqq\omega_1\times[0,1)$ 上に,辞書式順序 \leq_L ,すなわち $(\alpha,s),(\beta,t)\in\mathbb{L}_{\geq 0}$ に対し

$$(\alpha, s) \leq_L (\beta, t) \iff \alpha < \beta$$
 または $(\alpha = \beta)$ かつ $s \leq t$

を定める. 全順序集合 $(\mathbb{L}_{\geq 0}, \leq_L)$ を閉じた長い半直線 (closed long ray) という.

定義 1.4.45. 閉じた長い半直線 $(\mathbb{L}_{>0}, \leq_L)$ の部分集合

$$\mathbb{L}_+ := \mathbb{L}_{\geq 0} \setminus \{(0,0)\}$$

に $(\mathbb{L}_{\geq 0}, \leq_L)$ からの相対位相を入れた部分空間を**開いた長い半直線** (open long ray) または **Alexandroff 直線** (Alexandroff line) という.

定義 1.4.46. 閉じた長い半直線を $\mathbb{L}_{\geq 0}$, 開いた長い半直線を \mathbb{L}_{+} とする. $\mathbb{L} := \mathbb{L}_{+} \sqcup \mathbb{L}_{\geq 0}$ に次の順序 < を入れる: $x, y \in \mathbb{L}, x \neq y$ に対し,

$$x < y \iff \begin{cases} x \in \mathbb{L}_+ \text{ かつ } y \in \mathbb{L}_{\geq 0} \\ y < x \ (x, y \in \mathbb{L}_+) \\ x < y \ (x, y \in \mathbb{L}_{\geq 0}). \end{cases}$$

 $(\mathbb{L},<)$ は全順序集合であり、 $(\mathbb{L},<)$ に順序位相を入れた空間を**長い直線** (long line) という.

命題 1.4.47. \mathbb{L}_+ , \mathbb{L} は,第 2 可算公理を満たさない連結 1 次元多様体である.

命題 1.4.48. 任意の連結 1 次元多様体は、 S^1 , \mathbb{R} , \mathbb{L}_+ , \mathbb{L} のいずれかと同相である.

2 多様体間の写像

2.1 C^s 級写像

2.1.1 C^s 級写像の定義

 $(M^m, \mathcal{S}), (N^n, \mathcal{T})$ を C^r 級多様体, $r \in \mathbb{N}_0 \cup \{\infty\}$ とする.

定義 2.1.1. $f: M \to N$ を (位相空間の) 連続写像, $(U, \varphi) \in \mathcal{S}$ を M のチャート, $(V, \psi) \in \mathcal{T}$ を N のチャートとする.このとき,写像

$$\psi \circ f \circ \varphi^{-1} : \varphi(U \cap f^{-1}(V)) \to \psi(V)$$

を (U,φ) と (V,ψ) に関する f の局所座標表示 (locally coordinate display) という. 局所座標系 が $\varphi \coloneqq (x_1,\ldots,x_m),\psi \coloneqq (y_1,\ldots,y_n)$ であるとき, $i=1,\ldots,n,\ f_i:U\cap f^{-1}(V)\to\mathbb{R}$ について

$$\begin{cases} y_1 = f_1(x_1, \dots, x_m) \\ \vdots \\ y_n = f_n(x_1, \dots, x_m) \end{cases}$$

を $f|_U$ の座標表示 (coordinate display) という.

注意 2.1.2. $\varphi(p)=(x_1,\ldots,x_m),\,\psi(f(p))=(y_1,\ldots,y_n)$ とすると, $p=\varphi^{-1}(x_1,\ldots,x_m)$ であるから,

$$(y_1,\ldots,y_n)=\psi\circ f\circ \varphi^{-1}(x_1,\ldots,x_m)$$

となり、 y_i は x_1, \ldots, x_m の関数である。座標表示は、 $\psi \circ f \circ \varphi^{-1}$ を $f = (f_1, \ldots, f_n)$ と表記している言える。

定義 2.1.3. 連続写像 $f: M \to N, p \in M, s \leq r$ とする. $p \in M$ のチャート $(U, \varphi) \in \mathcal{S}$ と, $f(p) \in N$ のチャート $(V, \psi) \in \mathcal{T}$ に対し,局所座標表示 $\psi \circ f \circ \varphi^{-1}$ が $\varphi(p) \in \mathbb{R}^m$ で C^s 級であるとき,f は p で C^s 級 $(class C^s)$ であるという.

$$U \xrightarrow{f} V$$

$$\varphi^{-1} \downarrow \varphi \qquad \qquad \psi^{-1} \downarrow \psi$$

$$\varphi(U) \xrightarrow{\psi \circ f \circ \varphi^{-1}} \psi(V)$$

命題 2.1.4. 定義 2.1.3 の f は well-defined である。すなわち, $p \in U' \neq U$ を満たす M のチャート $(U', \varphi') \in \mathcal{S}$ と, $f(p) \in V' \neq V$ を満たす N のチャート $(V', \psi') \in \mathcal{T}$ に対し,局所座標表示 $\psi' \circ f \circ \varphi'^{-1}$ は C^s 級である.

注意 2.1.5. (1) $\varphi(U \cap f^{-1}(V)) \subset \mathbb{R}^m$, $\psi(V) \subset \mathbb{R}^n$ に注意.

(2) $U \subset f^{-1}(V)$, すなわち $f(U) \subset V$ となるようにチャートを選べば, (U,φ) と (V,ψ) に関する f の局所座標表示は次のようにしてよい:

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

(3) C^r 級多様体間の写像には $s \le r$ として C^s 級までしか定義されない.

定義 2.1.6. 任意の $p\in M$ に対し, $f:M\to N$ が p で C^s 級であるとき,f は C^s 級,または f は M から N への C^s 級写像 $(C^s$ map) であるという.M から N への C^s 級写像全体の集合を $C^r(M,N)$ と表す.

注意 2.1.7. (1) 定義 2.1.6 は明らかに次のように言える:

任意の $(U,\varphi) \in \mathcal{S}, (V,\psi) \in \mathcal{T}$ に対し、局所座標表示 $\psi \circ f \circ \varphi^{-1}$ が C^s 級.

(2) $C(M,N) \coloneqq C^0(M,N)$ は位相空間の間の連続写像全体の集合としてみてよい.

定義 2.1.8. $C^s(M) := C^s(M,\mathbb{R})$ の元を M 上の C^s 級関数 (C^s function) という. ただし、 \mathbb{R} には標準的なチャートが定義されているとする.

注意 2.1.9. (1) $V=\mathbb{R},\,\psi=\mathrm{id}_\mathbb{R}$ より、丁寧に述べると次のようになる: 連続関数 $f:M\to\mathbb{R},\,p\in M,\,s\leq r$ とする。 $p\in U$ を満たす M のチャート $(U,\varphi)\in\mathcal{S}$ に対し、 (U,φ) に関する f の局所座標表示

$$f \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}$$

が C^s 級であるとき,f は p で C^s 級であるという.任意の $p \in M$ に対し, $f: M \to \mathbb{R}$ が p で C^s 級であるとき,f は M 上の C^s 級関数であるという.

局所座標系が $\varphi := (x_1, \ldots, x_m)$ であるとき, $f: U \to \mathbb{R}$ について, $y = f(x_1, \ldots, x_m)$ を $f|_U$ の座標表示 (coordinate display) という.

(2) 注意 2.1.7 と同様に、定義 2.1.8 は次のように言える:

任意の $(U,\varphi) \in \mathcal{S}$ に対し,局所座標表示 $f \circ \varphi^{-1}$ が C^s 級.

(3)
$$\varphi(p) = (x_1, \dots, x_m), f(p) = y$$
 とすると、 $p = \varphi^{-1}(x_1, \dots, x_m)$ であるから、 $y = f(\varphi^{-1}(x_1, \dots, x_m)) = f \circ \varphi^{-1}(x_1, \dots, x_m)$

となり、y は x_1,\ldots,x_m の関数である.座標表示は、 $f\circ\varphi^{-1}$ を f と表記している言える. **命題 2.1.10.** M,N,L を C^r 級多様体、 $f\in C^s(M,N), g\in C^s(N,L), s\leq r$ とする.このとき、

定義 2.1.11. $s \le r$ とする.連続写像 $f: M \to N$ が次を満たすとき,f は C^s 級微分同相写像 $(C^s$ diffeomorphism) であるという:

(1) f は全単射である.

 $g \circ f \in C^s(M,L)$ である.

(2) $f \in C^s(M, N)$ かつ $f^{-1} \in C^s(N, M)$.

 C^s 級微分同相写像 $f:M\to N$ が存在するとき,M と N は C^s 級微分同相 (C^s diffeomorphic) であるといい, $M\cong_{C^r}N$ と表す.M から N への C^s 級微分同相写像全体の集合を Diff $^s(M,N)$ と表す.明らかに Diff $^s(M,N)\subset C^s(M,N)$ である.

命題 2.1.12. $\operatorname{Diff}^s(M) \coloneqq \operatorname{Diff}^s(M,M)$ とする. $\operatorname{Diff}^s(M)$ は、合成

$$\circ: \mathrm{Diff}^s(M) \times \mathrm{Diff}^s(M) \to \mathrm{Diff}^s(M), \ (f,g) \mapsto g \circ f$$

を演算として群になる. 単位元は恒等写像 id_M , f の逆元は f^{-1} である. $\mathrm{Diff}^s(M)$ の元を M 上の C^s **級自己同相写像** (C^s automorphism) という.

2.1.2 C^s 級写像に関する命題

2.2 C^r 級写像の例

2.3 C^r 級微分構造

M を C^r 級多様体とする. また,M のチャート全体の集合を \mathfrak{C}_M ,M の C^r 級アトラス全体の集合を \mathfrak{U}_M^r と表す.

$$\mathfrak{C}_M \coloneqq \{(U, \varphi) \mid (U, \varphi) \ \ \mathsf{tt} \ M \ \mathcal{O}$$
チャート $\}$ $\mathfrak{U}_M^r \coloneqq \{\mathcal{U} \subset \mathfrak{C}(M) \mid \mathcal{U} \ \ \mathsf{tt} \ M \ \mathcal{O} \ C^r$ 級アトラス $\}$

定義 2.3.1. $\mathcal{U} \in \mathfrak{U}_M^r$, $(V,\psi) \in \mathfrak{C}_M$ が $\mathcal{U} \cup \{(V,\psi)\} \in \mathfrak{U}_M^r$ を満たすとき, (V,ψ) は \mathcal{U} と両立 (compartible) するという. \mathcal{U} と両立するチャート全体の集合を $\mathfrak{C}_M(\mathcal{U})$ と表す.

$$\mathfrak{C}_M(\mathcal{U}) := \{ (V, \psi) \in \mathfrak{C}_M \mid (V, \psi) \ \text{は} \mathcal{U} \ \text{と両立する} \ \}$$

注意 2.3.2. (1) 明らかに $U \subset \mathfrak{C}_M(U)$ である.

(2) もちろん, $\{(V,\psi)\} \in \mathfrak{U}_M^r$ である必要はない.

定義 2.3.3. $U, V \in \mathfrak{U}_M$ が $U \cup V \in \mathfrak{U}_M$ を満たすとき, $U \otimes V \otimes C^r$ 級同値 (C^r equivalent) であるという.

命題 2.3.4. $U, V \in \mathfrak{U}_{M}^{r}$ に対し,次は同値:

- (1) $U \otimes V \otimes C^r$ 級同値である.
- (2) 任意の $(U,\varphi) \in \mathcal{U}$ に対し、 (U,φ) は \mathcal{V} と両立する.
- (3) 任意の $(V, \psi) \in \mathcal{V}$ に対し、 (V, ψ) は \mathcal{U} と両立する.

命題 2.3.5. \mathfrak{U}_M 上の関係 \sim を次で定める: $U, V \in \mathfrak{U}_M^r$ に対し,

$$\mathcal{U} \sim \mathcal{V} \stackrel{\text{def.}}{\Longleftrightarrow} \mathcal{U}, \mathcal{V}$$
は C^r 級同値である $(\mathcal{U} \cup \mathcal{V} \in \mathfrak{U}_M^r)$.

このとき、 \sim は \mathfrak{U}_{M}^{r} 上の同値関係である.

命題 2.3.6. $\mathfrak{U}\subset\mathfrak{U}_{M}^{r}$ とする. 任意の $U,U'\in\mathfrak{U}$ に対し, $U\sim U'$ ならば

$$\tilde{\mathcal{U}} := \bigcup_{\mathcal{U} \in \mathfrak{U}} \mathcal{U} \in \mathfrak{U}_M^r.$$

が成り立つ. 特に、任意の $U \in \mathfrak{U}$ に対し、 $U \sim \tilde{U}$ である.

定義 2.3.7. (M, \mathcal{U}) を C^r 級多様体とする. $[\mathcal{U}] \in \mathfrak{U}_M^r/\sim$ について

$$\mathcal{M}^r(\mathcal{U}) \coloneqq \bigcup_{\mathcal{U}' \in [\mathcal{U}]} \mathcal{U}' \in \mathfrak{U}_M^r$$

を M の C^r 級極大座標近傍系 (maximal system of coordinate neighborhoods), または C^r 級極大アトラス (maximal atlas), または C^r 級微分構造 (differential structure) という. $\mathcal{M}^r(\mathcal{U})$ の元を M の C^r 級座標近傍, または C^r 級チャートという.

注意 2.3.8. 定義 2.3.7 における極大とは、次の意味である:

 $\mathcal{R} \sim \mathcal{U}$ を満たす $\mathcal{R} \in \mathfrak{U}_{M}^{r}$ に対し, $\mathcal{M}^{r}(\mathcal{U}) \subset \mathcal{R}$ ならば $\mathcal{R} = \mathcal{M}^{r}(\mathcal{U})$ が成り立つ.

系 2.3.9. $U \sim \mathcal{M}^r(U)$ が成り立つ. また, $U' \in \mathfrak{U}_M^r$ に対し, $U \sim U'$ ならば $U' \subset \mathcal{M}^r(U)$.

命題 2.3.10. $U, V \in \mathfrak{U}_{M}^{r}$ に対し,次は同値:

- (1) $\mathcal{U} \sim \mathcal{V}$.
- (2) $\mathcal{M}^r(\mathcal{U}) = \mathcal{M}^r(\mathcal{V})$.

命題 2.3.11. $\mathfrak{C}_M(\mathcal{U}) = \mathcal{M}^r(\mathcal{U})$ が成り立つ. すなわち, $\mathcal{U} \in \mathfrak{U}_M^r$, $(V, \psi) \in \mathfrak{C}(M)$ に対し, 次は同値:

- (1) $(V, \psi) \in \mathcal{M}^r(\mathcal{U})$.
- (2) (V,ψ) はU と両立する.

- 2.4 1の分割
- 3 接ベクトル空間
- 3.1 接ベクトル空間
- 3.2 C^r 級写像の微分
- 3.3 接ベクトル束
- 4 はめ込みと埋め込み
- 4.1 陰関数定理と逆関数定理
- 4.2 はめ込みと埋め込み
- 4.3 正則点と臨界点
- 4.4 埋め込み定理
- 4.5 Sard の定理
- 5 ベクトル場
- 5.1 ベクトル場
- 5.2 積分曲線
- 5.3 Lie 微分

- 6 微分形式
- 6.1 1次微分形式
- 6.2 k 次微分形式
- 7 Stokes の定理
- 7.1 外微分
- 7.2 Stokes の定理
- 8 Lie 群
- 8.1 Lie 群
- 8.2 Lie 環
- 9 Riemann 多様体
- 9.1 Riemann 多様体

参考文献

- [1] 松本幸夫: 多様体の基礎. 東京大学出版会, 2022.
- [2] 服部晶夫: 多様体. 岩波全書, 2008.
- [3] 藤岡敦: 具体例から学ぶ多様体. 裳華房, 2019.
- [4] みなずみ: 多様体論. https://minazumi.com/math/note/mfd/index.html
- [5] 安藤直也: 幾何学特論 II. http://www.sci.kumamoto-u.ac.jp/ ando/geometryII.pdf
- [6] 高間俊至: 微分幾何学 ノート. https://event.phys.s.u-tokyo.ac.jp/physlab2023/pdf/mat-article04.pdf
- [7] yamyamtopo: パラコンパクト性をめぐって. https://yamyamtopo.files.wordpress.com/2017/05/paracompactness-revd.pdf
- [8] yamyamtopo: 1 次元多様体の分類. https://yamyamtopo.files.wordpress.com/2020/06/one_dimensional_mfd_revd.pdf
- [9] yamyamtopo: 射影空間の Hausdorff性. https://yamyamtopo.files.wordpress.com/2019/08/projective_space_hausdorff.pdf