Adressage Privé / NAT

David Bromberg

Adresses privées

- Adresses qui ne seront jamais attribuées (adresses illégales)
- Adresses non routables sur l'Internet
- Trois plages d'adresses privées
 - Classe A:
 - De 10.0.0.0 à 10.255.255.255
 - Classe B :
 - De 172.16.0.0 à 172.31.255.255
 - Classe C :
 - De 192.168.0.0 à 192.168.255.255

Adresses privées Résolution de la pénurie d' @IP ?

- Pénurie d'@IP
 - => Besoin de translation des adresses (NAT).
 - Principe décrit dans la RFC 1631.

NAT

Présentation

Pourquoi le NAT

- Pallier le problème de limitation du nombre d'adresses disponible par IPv4.
- Permettre aux utilisateurs privés de ne payer qu'une seule connexion Internet, et d'avoir plusieurs postes.

NAT

Fonctionnement

10.0.0.1:1800 => 200.12.13.1:1900

- Table liant un couple (IP, Port) du réseau privé à un couple (IP,Port) du réseau Internet,
- Modification des entêtes IP/TCP des paquets entrants et sortants.

NAT

Problèmes

- Problèmes pour les protocoles 'à contenu sale',
 - Échange au niveau applicatif des informations Réseau et ou Transport,
 - Un NAT Traditionnel ne modifie que les entêtes IP/TCP/UDP,
- Différentes solutions NAT présentes.

NAT – Full Cone Définition

- Mapping unique entre une IP:Port privé et une IP:Port public,
 - Une seule entrée par couple (IP,Port) privé dans la table de mapping,
- N'importe quelles machines extérieures connaissant ce mapping peut communiquer avec le client,
- Problèmes de sécurité.

NAT – Full Cone Fonctionnement

NAT – Restricted Cone Définition

- Le mapping entre (IP, Port) privé et (IP, Port) public n'existe qu'à partir du moment où le client privé établi la communication,
- Un extérieur ne peut pas initier la communication contrairement à *Full Cone*,
- Même fonctionnement que Full Cone pour les utilisateurs autorisés.

NAT – Restricted Cone Fonctionnement

Réseau Privé

Réseau Publique

Ext 1 200.12.13.1:14000

Source: 10.0.0.1:8000 Dest: 200.12.13.1:14000

112.110.12.3

Table de Mapping					
10 .0.0.1 :8000	112.110.12.3:30800	200.12.13.1			
10.0.0.2:15000	112.110.12.3:32850	IP ext autorisés			
10.0.0.2:17000	112.110.12.3:32950	IP ext autorisés			

Source: 204.2.45.1217500 Dest: 112.110.12.3:30800

NAT – Port Restricted Cone Définition

- Même fonctionnement que le restricted cone,
- Cependant seuls les paquets venant du couple (IP,PORT) distants connus sont acceptés par le NAT.

NAT – Symétrique

Définition

- Le *mapping* dépend :
 - A la fois du couple(i@IP,iPort) privé du client et
 - A la fois du couple (e@IP,ePort) de l'extérieur.
- Pour le même couple (i@IP,iPort),
 - si la destination (e@IP,ePort) est différente,
 - ⇔ Un autre mapping est utilisé.
- Ce mapping ne peut être initié que par le client.

NAT – Symétrique

Fonctionnement

Datagramme IP 97

Datagramme IP Aperçu

0	4	8	16	19	2	24	31
VERS	HLEN	Type de service	Longueur totale				
Identification			Flag	S	Offset fragment		
Durée d	le vie	Protocole	Somme de contrôle Header			der	
	Adresse IP Source						
Adresse IP Destination							
Options IP (eventuellement) Padding				ıg			
Données							

Datagramme IP Décomposition

Les champs du datagramme IP Vers, Hlen,

VERS :

Numéro de version de protocole IP, actuellement version 4,

• HLEN:

- Longueur de l'en tête non constante
 - 4bits qui donnent la longueur de l'en-tête en mots de 4 octets (32 bits).
 - Taille minimum : 5 mots => 20 octets (sans les options)
 - Taille maximum : 15 mots => 60 octets
 - Reste 40 octets pour les options (souvent insuffisant)

Les champs du datagramme IP Longueur totale

VERS	HLEN	Type de service	Longueur totale		
Identification		Flags	Offset fragment		
Durée de	e vie	Protocole	Somme de contrôle Header		

• Longueur totale :

- Donne la taille du datagramme, en-tête plus données.
- S'il y fragmentation (voir plus loin) il s'agit également de la taille du fragment (chaque datagramme est indépendant des autres).
- La taille des données est donc à calculer par soustraction de la taille de l'en-tête.
- Longueur maximale : 65 535 octets
 - 🗢 Insuffisant pour les réseaux gigabits du futur

Les champs du datagramme IP Type de service :

- Type de service :
 - 8 bits (4 utiles) qui indiquent au routeur l'attitude à avoir vis à vis de ce datagramme.
 - Suivant les valeurs de ce champ, le routeur peut privilégier un datagramme par rapport à un autre.

Priorité D T R

- PRECEDENCE (3 bits):
 - Définit la priorité du datagramme;
 - Valeurs de 0 à 7
 - En général ignoré par les machines et passerelles.
- Bits D, T, R :
 - Indiquent le type d'acheminement désiré du datagramme, permettant à une passerelle de choisir entre plusieurs routes (si elles existent) :
 - D signifie délai court,
 - T signifie débit élevé
 - R signifie grande fiabilité.
 - En théorie aide les routeurs à choisir entre une liaison plutôt qu'une autre

Fragmentations LE MTU

- MTU (Maximum Transfert Unit)
 - Une unité maximale de transfert
 - Définit la taille maximale d'un datagramme véhiculé sur le réseau physique correspondant.
- Lorsque le datagramme est routé vers un réseau physique dont le MTU est plus petit que le MTU courant :
 - La passerelle fragmente le datagramme en un certain nombre de fragments.

Fragmentations IDENTIFICATION, FLAGS ...

Identification Flags Offset fragment

Ces champs sont prévus pour :

Fragmentation des données :

Les datagrammes peuvent avoir à traverser des réseaux avec des MTU plus petits que celui du premier support physique employé.

Fragmentations Fonctionnement (1)

 Lorsque le datagramme est routé vers un réseau physique dont le MTU est supérieur au MTU courant, le routeur route les fragments tels quels.

Fragmentations Fonctionnement (2)

- Le destinataire final reconstitue le datagramme initial à partir de l'ensemble des fragments reçus;
 - La taille de ces fragments correspond au plus petit MTU emprunté sur le réseau.
 - Si un seul des fragments est perdu, le datagramme initial est considéré comme perdu :
 - La probabilité de perte d'un datagramme augmente avec la fragmentation.

Exemple

Le MTU est de 1500 pour une trame Ethernet, elle peut être de 256 avec SLIP (``Serial Line IP'') sur liaison série (RS232...).

- Dans ces conditions, si la couche IP doit transmettre un bloc de données de taille supérieure au MTU à employer, il y a fragmentation!
- Un bloc de 1481 octets sur Ethernet sera décomposé en un datagramme de 1480
 - (1480 + 20 = 1500) et un datagramme de 1 octet!

Fragmentations L'exception (1)

- Il existe une exception à cette opération
 - Bit Don't Fragment bit (DF) du champ FLAGS de l'en-tête IP.
 - La présence à 1 de ce bit interdit la fragmentation dudit datagramme par la couche IP qui en aurait besoin.
- Bit More Fragment (MF) activé dans tous les fragments d'un datagramme excepté le dernier.

Fragmentations L'exception (2)

- Situation de blocage,
 - Peut conduire à la perte du fragment
 - ⇔ la couche émettrice est tenue au courant par un message ICMP
 - Fragmentation needed but don't fragment bit set et bien sûr le datagramme n'est pas transmis plus loin.

Fragmentations Que devient un fragment?

- Les fragments deviennent des datagrammes à part entière.
- Rien ne s'oppose à ce qu'un fragment soit à nouveau fragmenté.
- Absolument transparente pour les couches de transport qui utilisent IP.

Fragmentation Fonctionnement interne

- Chaque fragment est identifié de manière unique, relativement au datagramme initial.
- Cette valeur est inscrite dans le champ IDENTIFICATION.
- S'il y a encore des fragments, un des bits du champ FLAGS est positionné à 1 pour indiquer 'More fragment!'
- FRAGMENT OFFSET contient l'offset du fragment, relativement au datagramme initial.

Fragmentation Offset (1)

- Les données doivent faire un multiple de 8 octets, sauf pour le dernier fragment.
- Le champ TOTAL LENGTH change.
- Chaque fragment est un datagramme indépendant, susceptible d'être à son tour fragmenté.
- Pour le dernier fragment :
 FLAGS est remis à zéro.

 - Les données ont une taille quelconque.

Fragmentation Offset (2)

Fragmentation Offset(3)

Les champs du datagramme IP Durée de vie, Protocole

VERS	HLEN	Type de service	Longueur totale		
Identification		Flags	Offset fragment		
Durée de vie Protocole		Somme de contrôle Header			

Durée de vie

- Indique en secondes, la durée maximale de transit du.
- La machine qui émet le datagramme définit sa durée de vie.
- Les routeurs qui traitent le datagramme doivent décrémenter sa durée de vie du nombre de secondes (1 au minimum) que le datagramme a passé pendant son séjour dans le routeur;
- Lorsque celle-ci expire le datagramme est détruit et un message d'erreur est renvoyé à l'émetteur.

Protocole

Ce champ identifie le protocole de niveau supérieur dont le message est véhiculé dans le champ données du datagramme :

6 : TCP,17 : UDP,1 : ICMP.

RFC 1700

Les champs du datagramme IP Somme de contrôle de l'en-tête

VERS HLEN	Type de service	Longueur totale		
Identification		Flags	Offset fragment	
Durée de vie	Protocole	Somme de contrôle Header		

Somme de contrôle de l'en-tête

 Ce champ permet de détecter les erreurs survenant dans l'en-tête du datagramme, et par conséquent l'intégrité du datagramme.

Les options

- Le champ OPTIONS est facultatif et de longueur variable.
 - Les options concernent essentiellement des fonctionnalités de mise au point.
 - Débute par un code d'identification de 1 octet

Les options Structure

- Le champ option doit être un multiple de 4 octets
- C indique que l'option doit être recopiée dans tous les fragments (c=1) ou bien uniquement dans le premier fragment (c=0).
- Les bits classe d'option
 - 00 : contrôle
 - 01 : réservé pour un usage ultérieur
 - 10 : option pour le déboguage et les mesures
 - 11 : réservé pour un usage ultérieur
- Un numéro d'option indiquent le type de l'option et une option particulière
- Si une option nécessite des arguments, on ajoute un champ longueur codé sur un octet donnant la longueur totale de l'option, suivi des paramètres.

Option Record Route (RR) (1)

- Enregistrement de route (classe = 0, option = 7)
 - Permet à la source de créer une liste d'adresse IP vide et de demander à chaque routeur d'ajouter son adresse dans la liste.
 - Permet de détecter les bogues des algorithmes de routages.

Option Record Route (RR) (2)

Peut-on vraiment enregistrer l'@IP de tous les routeurs traversés?

- A l'origine, avec ARPANET le routage d'un datagramme ne pouvait pas inclure plus de neuf routeurs!!
- Ne pas oublier que la taille maximale du champs options ne peut pas dépasser 40 octets !!

Options Horodatage (1)

- Horodatage (classe = 2, option = 4)
 - Même fonctionnement que RR
 - Permet d'obtenir les temps de passage (timestamp) des datagrammes dans les routeurs.
 - Exprimé en heure et date universelle.

Options Horodatage (2)

 Une liste de couples (adresse IP - horodatage) est réservée par l'émetteur; les passerelles ont à charge de remplir un champ lors du passage du datagramme.

Options Horodatage (3)

- Le champ dépassement de capacité (dep.) comptabilise les routeurs qui n'ont pu fournir les informations requises (liste initiale était trop petite).
- Plusieurs mode de fonctionnement :
 - 1. FLAGS = 0
 - Les routeurs doivent renseigner uniquement l'horodatage
 - 2. FLAGS = 1
 - L'horodatage et l'adresse IP
 - 3. FLAGS=3)
 - Si les adresses IP sont prédéfinies par l'émetteur, les passerelles n'indiquent l'horodatage que si l'adresse IP pointée par le champ *pointeur* est identique à leur adresse IP.
- Les horodatages, bien qu'exprimés en temps universel, ne constituent qu'une estimation sur le temps de passage car les horloges des machines situées sur les réseaux ne sont pas synchronisées.

Option Strict source route (SSR)

- Routage strict prédéfini par l'émetteur (classe = 0, option = 9)
 - Prédéfinit le routage qui doit être utilisé dans l'interconnexion en indiquant la suite des adresses IP des routeurs.
 - Le chemin spécifié ne tolère aucun autre intermédiaire; une erreur est retournée à l'émetteur si un routeur ne peut appliquer le routage spécifié.