Евгений Борисов

<u>общая схема применения методов ML</u>

определяем задачу в общем виде

изучаем предметную область

формализуем задачу

общая схема применения методов ML

определяем задачу в общем виде

изучаем предметную область

формализуем задачу

извлекаем признаки из объекта

собираем и обрабатываем учебный набор

выбираем и обучаем модель

общая схема применения методов ML

определяем задачу в общем виде

изучаем предметную область

формализуем задачу

извлекаем признаки из объекта

собираем и обрабатываем учебный набор

выбираем и обучаем модель

тестируем модель

запускаем модель в работу

Задачи ML

Классификация - разделение на части

Кластеризация - формирование групп

Регрессия - восстановление зависимости

методы ML

Mempuческие: k-Neighbors

Статистические: Naive Bayes

Логические: Decision Tree

Линейные: SVM, MLP

Композиции: AdaBoost

датасет - размеченная матрица признаков

$$\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} & y_1 \\ x_{21} & x_{22} & \dots & x_{2n} & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} & y_m \end{bmatrix}$$

х - вектор-признак

у - метка класса

n - размер пространства признаков

т - количество примеров

метрика - функция расстояния

$$\rho: X \times X \rightarrow [0, \infty)$$

аксиома тождества : $\rho(x,y)=0 \Leftrightarrow x=y$

симметрия: $\rho(x,y)=\rho(y,x)$

неравенство треугольника: $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$

метрика - функция расстояния

Евклидова метрика:
$$\rho(x, y) = \sqrt{\sum_{i} (x_{i} - y_{i})^{2}}$$

метрика Минковского:
$$\rho(x, y) = \sqrt[n]{\sum_{i} w_{i} |x_{i} - y_{i}|^{n}}$$

метрика Чебышева:
$$\rho(x, y) = \max_{i} |x_i - y_i|$$

косинусная метрика:
$$\rho(x,y) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \cdot \sqrt{\sum_{i} y_{i}^{2}}}$$

метрический подход в методах ML

использование расстояний между объектами

метрический подход в методах ML

использование расстояний между объектами

гипотеза компактности: близкие объекты лежат в одном классе

о задаче классификации

разделение данных на части (классы)

Учебный набор: [объект, ответ]

Задача: классификатор

объект \rightarrow вектор-признак \rightarrow класс

метрический классификатор

Х - пространство признаков размерности т

 $X_l \subset X - o \delta \mathcal{b} e \kappa m$ ы учебной выборки

 y_l -мет ки классов учебного набора X_l

метрический классификатор

Х - пространство признаков размерности т

$$X_{l} \subset X - o \delta \mathbf{b} e \kappa m \mathbf{b} \ y \mathbf{v} e \delta h o \tilde{\mathbf{u}} \ \mathbf{b} \mathbf{b} \delta o p \kappa \mathbf{u}$$
 $y_{l} - m e m \kappa \mathbf{u} \kappa n a c c o \mathbf{g} \ y \mathbf{v} e \delta h o r o h a \delta o p a X_{l}$

$$u \in X - вы берем объект$$

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

метрический классификатор

Х - пространство признаков размерности т

$$X_l \subset X$$
 — объекты учебной выборки y_l — метки классов учебного набора X_l

 $u \in X - вы берем объект$

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

 $v\left(i,u\right)$ - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

метрический классификатор

Х - пространство признаков размерности т

$$X_l \subset X$$
 — объекты учебной выборки y_l — метки классов учебного набора X_l

 $u \in X - вы берем объект$

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

 $v\left(i,u\right)$ - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

$$\Gamma_{y}(u) = \sum_{i} [y = y_{i}] v(i, u)$$
 - оценка близости **u** к классу **y**

метрический классификатор

Х - пространство признаков размерности т

$$X_l \subset X$$
 — объекты учебной выборки y_l — метки классов учебного набора X_l

 $u \in X - вы берем объект$

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

 $v\left(i,u\right)$ - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

$$\Gamma_{y}(u) = \sum_{i} [y = y_{i}] v(i, u)$$
 - оценка близости **u** к классу **y**

$$a(u, X_l) = argmax \Gamma_y(u)$$

метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

достоинства:

- простота
- интерпретируемость

метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод ближайшего соседа (1NN)

метод k-соседей (kNN)

$$v(i,u) = [i=1]$$

$$v(i,u) = [i < k]$$

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод k-соседей (kNN)

$$v(i,u) = [i < k]$$

достоинства:

- более устойчив к шуму чем 1NN
- есть параметр количество соседей к

<u>недостатки</u>:

• возможны неоднозначности

метод ближайшего соседа (1NN)

v(i,u) = [i=1]

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод k-соседей (kNN)

v(i,u) = [i < k]

достоинства:

- более устойчив к шуму чем 1NN
- есть параметр количество соседей к

недостатки:

• возможны неоднозначности

метод взвешеных к-соседей

$$v(i,u) = [i < k]w_i$$

w_i - вес соседа

метод взвешеных к-соседей

$$v(i,u) = [i < k]w_i$$
 w_i - вес соседа

как выбирать вес w_i?

метод взвешеных к-соседей

$$v(i,u) = [i < k]w_i$$
 w_i - вес соседа

как выбирать вес w;?

$$v(i,u) = K\left(\frac{\rho(u,x_u^i)}{h}\right)$$

 $v(i,u) = K \left(\frac{\rho(u,x_u^i)}{h} \right)$ выбираем степень важности і-того соседа на основании расстояния до него

метод взвешеных k-соседей - парзеновское окно

выбираем степень важности і-того соседа на основании расстояния

$$a(u, X_l) = \underset{y \in y_l}{argmax} \sum_{i} [y(i) = y] K \left(\frac{\rho(u, x_u^i)}{h} \right)$$

профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых m-тый сосед из другого класса

профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых т-тый сосед из другого класса

$$K(m,X) = \frac{1}{L} \sum_{i=1}^{L} \left[y_i \neq y_i^m \right]$$
 x_i^m - m-тый сосед x_i y_i^m - ответ на m-том соседе x_i

профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых т-тый сосед из другого класса

$$K(m,X) = \frac{1}{L} \sum_{i=1}^{L} \left[y_i \neq y_i^m \right]$$
 x_i^m - m-тый сосед x_i y_i^m - ответ на m-том соседе x_i

метрические методы: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

К.В. Воронцов Метрические методы классификации. - курс "Машинное обучение" ШАД Яндекс 2014

К.В. Воронцов Методы восстановления регрессии - курс "Машинное обучение" ШАД Яндекс 2014

Вопросы?

метрические методы: практика

источники данных для экспериментов

sklearn.datasets UCI Repository kaggle

реализовать

1NN kNN