VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Mathematics and Statistics Te Kura Mātai Tatauranga

PO Box 600 Wellington New Zealand

Tel: +64 4 463 5341 Fax: +64 4 463 5045

Internet: sms-office@vuw.ac.nz

Graph Algorithms with Hostile Partners

Matthew Askes

Supervisor: Rod Downey

Submitted in partial fulfilment of the requirements for Bachelor of Science with Honours in Mathematics.

Abstract

A short description of the project goes here.

Contents

3	Colouring	5
2	Dominating sets 2.1 min size dominating set	3
1	Introduction	1

Figures

3.1																								5
3.2																								5

Chapter 1

Introduction

Chapter 2

Dominating sets

We begin by listing some definitions.

Definition. The Dominating set, D, of a graph G = (E, V) is any subset of V such that every vertex in V is adjacent to at least one vertex in D.

Definition. The Dominating number, $\gamma(G)$, of a graph G = (E, V) is the size of the smallest dominating set of G.

Definition. Independent set, maximum independent set, independence number $\alpha(G)$

2.1 min size dominating set

Lemma 2.1. Let G be a graph.

$$\gamma(G) \ge \alpha(G)$$

Proof. Let X be a minimum dominating set in some graph G = (V, E). By definition of dominating set vertex in V is adjacent to at least one vertex in

Recall that $\chi(G)$ is the chromatic number of the graph G.

Theorem 2.2 (Willis 2011 3.1). For any graph G = (V, E) [6]

$$\alpha(G) \le \frac{|V|}{\chi(G)}$$

Recall that $\Delta(G)$ is the maximum degree of any vertex in G.

Theorem 2.3 (Balakrishnan 2012 10.3.2). [2] For any graph G with n vertices,

$$\left\lceil \frac{n}{1 + \Delta(G)} \right\rceil \le \gamma(G) \le n - \Delta(G)$$

It is obvious that in the case when $\gamma(G)$ is known that $\gamma(G) > \gamma_g(G)$.

Theorem 2.4. (Ore 1962) [5] For any graph G with n vertices,

$$\gamma(G) \le \frac{n}{2}$$

Theorem 2.5. Let G be a graph. If x is a tight upper bound for the domination number, $\gamma(G)$, then

$$\gamma_q(G) \ge x$$

Proof. Let G be a graph where $\gamma(G) = x$. Thus for G we are unable to find a dominating set with < x vertices. Therefore there cannot be a winning strategy for Alice with < x vertices. Therefore $\gamma_g(G) \ge x$

Theorem 2.6. Let G be a graph with n vertices, such that $n \geq 4$. Then,

$$\gamma_g(G) \ge \left\lfloor \frac{n}{2} \right\rfloor$$

Proof. By combination of theorems 2.4 and 2.5 we get $\gamma_g(G) \geq \left| \frac{n}{2} \right|$

Thereom 2.6 is also proved in Alona, Baloghc, Bollobas, and Szabo 2002 [1]. The trivial upper bound is n.

Theorem 2.7. Let G be a graph with n vertices. Then,

$$\gamma_g(G) \le \left\lceil \frac{2n}{3} \right\rceil$$

Proof. A dominating set on a spanning tree in a dominating set in the parent graph. Thus for any graph, G, it suffices to show we have a winning strategy for a spanning tree of G. let T be a spanning tree of G. The winning strategy for Alice is the greedy strategy as follows. Let D be the current dominating set in T i.e. neighbours of all selected vertices.

- 1. Pick any vertex, v, not in D with a maximal number of neighbours not in D. That is maximise the set $\{x: x \in N(v) \land v \notin D\}$.
- 2. repeat until you have a dominating set.

worst case path graph requires twice the minimum of the path graph??? with no opponent this will give n/3 thus at worst with the opponent it will take 2n/3 At worst Alice will add two vertices to

Theorem 2.8. Given p players then,

$$\gamma_{qp}(G) \ge p\gamma(G)$$

$$\gamma_{gp}(G) \le p\gamma_{g2}(G) \le p\left\lceil \frac{2n}{3} \right\rceil$$

Chapter 3

Colouring

Definition. We extend the colouring game to have p players. The game choromatic number for p players and some graph G is $\chi_g(G;p)$. Note: $\chi_g(G) = \chi_g(G;2)$.

Theorem 3.1. Let T be a tree, if we have $p \geq 2$ players then,

$$\chi_q(T;p) \ge p+2$$

The following proof is an extended version of the proof of Theorem 5.4 in [3, Bodlaender 1990]

Proof. Consider the graph G as defined in figure 3.1.

Figure 3.1

We give a strategy for Bob with p+1 colours. Let the colours be $\{c_1, c_2, \ldots, c_p, c_{p+1}\}$ On Alice's first move she picks any vertex, v, and colours it. Let the colour of v be c_1 . Bobs first move is to colour any vertex with distance 3 to v. We now have a subgraph in G of the type shown in figure 3.2. We then colour $y_1 \ldots y_{p-2}$ with $c_2 \ldots c_{p-1}$ respectively.

Figure 3.2

We consider three cases.

1. Alice colours 2, x_1, x_2, \ldots , or x_p .

Bob colours y_{p-1} with c_p and y_p with c_{p+1} . Vertex 3 now has p+1 different coloured neighbours and thus Bob wins.

2. Alice colours 3.

The colour of 3 cannot be one of $c_1
ldots c_{p-1}$. Therefore 3 is either c_p or c_{p+1} . W.l.o.g let the colour of 3 be c_{p+1} . Bob colours $x_1
ldots x_{p-1}$ with $c_2
ldots c_p$ respectively. Vertex 2 now has p+1 different coloured neighbours and thus Bob wins.

3. Alice colours y_{p-1} or y_p

Bob colours 2 with c_p and y_p (or y_{p-1} if Alice coloured y_p) with c_{p+1} . Vertex 2 now has p+1 different coloured neighbours and thus Bob wins.

Theorem 3.2.

 $\chi_q(G; p) \le \chi_q(G; 2) + p - 2$

Proof. By induction on the number of vertices, n and the number of players, p. We show for any p $\chi_q(G_{n+1};p) \leq (\chi_q(G_{n+1};2) + p - 2)$

$$\chi_g(G_n; p) \le (\chi_g(G_n; 2) + p - 2)$$
 from induction (3.1)

$$\chi_g(G_n; p) \le \chi_g(G_{n+1}; p) \tag{3.2}$$

$$(\chi_q(G_n; 2) + p - 2) \le (\chi_q(G_{n+1}; 2) + p - 2) \tag{3.3}$$

Assume, for a contradiction, $\chi_g(G_{n+1}; p) > \chi_g(G_{n+1}; 2) + p - 2$. Then for p = 2 $\chi_g(G_{n+1}; 2) > \chi_g(G_{n+1}; 2) + 2 - 2$. This is a contradiction, therefore $\chi_g(G_{n+1}; p) \leq \chi_g(G_{n+1}; 2) + p - 2$.

Claim: For some n $\chi_g(G_n; p) \implies \chi_g(G_n; p+1)$ By induction hypothesis $\chi_g(G_n; p) \le \chi_g(G_n; 2) + p - 2$

Theorem 3.3.

 $\chi_g(G; p) \le \chi_g(G; p) + 1 \le \chi_g(G; p + 1)$

$$\chi_g(G; 2) + p - 2 \le \chi_g(G; p + 1)$$

L is a linear order, G = (V, E) is a graph, u is a vertex in V, the rank r(L, G) and rank r(G) are defined as:

$$\begin{split} r(u,L,G) &= d^+_{G_L}(u) + m(u,L,G) \\ r(L,G) &= \max_{u \in V} r(u,L,G) \\ r(G) &= \min_{L \in \Pi(G)} r(L,G) \end{split}$$

Theorem 3.4 (Theorem 1 [4]). For any graph G = (V, E) and ordering $L \in \Pi(G)$, if Alice uses the strategy S(L, G) to play the ordering game on G, then the score will be at most 1 + r(L, G). In particular, $col_q(G) \le 1 + r(G)$.

Bibliography

- [1] Alon, N., Balogh, J., Bollobs, B., and Szab, T. Game domination number. Discrete Mathematics 256, 1 (2002), 23–33.
- [2] Balakrishnan, R. A Textbook of Graph Theory (Universitext). Springer, sep 2012.
- [3] Bodlaender, H. On the complexity of some coloring games. pp. 13–14.
- [4] Kierstead, H. A simple competitive graph coloring algorithm. *Journal of Combinatorial Theory, Series B* 78, 1 (2000), 57 68.
- [5] ORE, O. Theory of Graphs (COLLOQUIUM PUBLICATIONS (AMER MATHEMATI-CAL SOC)). American Mathematical Society, dec 1962.
- [6] WILLIS, W. Bounds for the independence number of a graph. Virginia Commonwealth University.