



3G30

Dans le triangle MNO rectangle en M,

**1.** MN = 7 dm et  $\widehat{MNO} = 48^{\circ}$ .

Calculer NO à 0,1 dm près.



Dans le triangle VWX rectangle en V,

**2.** VX = 9 cm et  $\widehat{VWX} = 48^{\circ}$ .

Calculer WX à 0,1 cm près.



Dans le triangle GHI rectangle en G,

**3.** HI = 12 dm et  $\widehat{GHI} = 39^{\circ}$ .

Calculer GI à 0,1 dm près.





Dans le triangle MNO rectangle en M,

**4.** NO = 14 dm et  $\widehat{MNO} = 37^{\circ}$ .

Calculer MN à 0,1 dm près.



Dans le triangle VWX rectangle en V,

**5.** VW = 9 cm et  $\widehat{VWX} = 36^{\circ}$ .

Calculer VX à 0,1 cm près.



Dans le triangle GHI rectangle en G,

**6.** GI = 7 dm et  $\widehat{GHI} = 41^{\circ}$ .

Calculer GH à 0,1 dm près.





Dans le triangle RST rectangle en R,

**7.** RT = 10 dm et  $\widehat{RST} = 45^{\circ}$ .

Calculer ST à 0,1 dm près.

Dans le triangle JKL rectangle en J,

**8.**  $JK = 10 \text{ m et } \widehat{JKL} = 49^{\circ}.$ 

Calculer JL à 0,1 m près.

Dans le triangle WXY rectangle en W,

**9.** XY = 11 cm et  $\widehat{WXY} = 51^{\circ}$ .

Calculer  $WY \stackrel{.}{\text{a}} 0, 1$  cm près.











3G30

- 1. Dans le triangle GHI rectangle en G, GH=10 dm et  $\widehat{GHI}=42^{\circ}$ . Calculer GI à 0,1 dm près.
- 2. Dans le triangle VWX rectangle en V,  $WX=14 \ \mathrm{mm} \ \mathrm{et} \ \widehat{VWX}=38^{\circ}.$  Calculer VX à 0,1 mm près.
- 3. Dans le triangle RST rectangle en R,  $RS=7 \ \ {\rm met} \ \widehat{RST}=37^{\circ}.$  Calculer ST à 0,1 m près.
- 4. Dans le triangle WXY rectangle en W,  $XY=12 \quad \text{m et } \widehat{WXY}=43^{\circ}.$  Calculer WX à 0,1 m près.
- 5. Dans le triangle MNO rectangle en M,  $MO = 7 \ \, {\rm cm} \ \, {\rm et} \ \, \widehat{MNO} = 41^{\circ}.$  Calculer NO à 0,1 cm près.

- **6.** Dans le triangle RST rectangle en R,  $RT = 9 \text{ m et } \widehat{RST} = 48^{\circ}.$  Calculer RS à 0,1 m près.
- 7. Dans le triangle HIJ rectangle en H,  $HI=10 \ \mathrm{dm} \ \mathrm{et} \ \widehat{HIJ}=45^{\circ}.$  Calculer HJ à 0,1 dm près.
- 8. Dans le triangle MNO rectangle en M,  $MO=8 \ \ \mathrm{mm} \ \ \mathrm{et} \ \widehat{MNO}=55^{\circ}.$  Calculer MN à 0,1 mm près.
- 9. Dans le triangle UVW rectangle en U,  $VW=12 \ \mathrm{m} \ \mathrm{et} \ \widehat{UVW}=45^{\circ}.$  Calculer UW à 0,1 m près.



#### Corrections



1. Dans le triangle MNO rectangle en M,

le cosinus de l'angle  $\widehat{MNO}$  est défini par :

$$\cos\left(\widehat{MNO}\right) = \frac{MN}{NO}.$$

Avec les données numériques :

$$\frac{\cos\left(48^{\circ}\right)}{1} = \frac{7}{NO}$$

Les produits en croix sont égaux, donc

$$NO = \frac{7 \times 1}{\cos(48^{\circ})}$$
 soit  $NO \approx 10.5$  dm.

2. Dans le triangle VWX rectangle en V,

le sinus de l'angle  $\widehat{VWX}$  est défini par :

$$\sin\left(\widehat{VWX}\right) = \frac{VX}{WX}$$

Avec les données numériques :

$$\frac{\sin\left(48^{\circ}\right)}{1} = \frac{9}{WX}$$

Les produits en croix sont égaux, donc

$$WX = \frac{9 \times 1}{\sin(48^\circ)}$$
 soit  $WX \approx 12,1$  cm.

3. Dans le triangle GHI rectangle en G,

le sinus de l'angle  $\widehat{GHI}$  est défini par :

$$\sin\left(\widehat{GHI}\right) = \frac{GI}{HI}$$

Avec les données numériques :



$$\frac{\sin(39^\circ)}{1} = \frac{GI}{12}$$

Les produits en croix sont égaux, donc

$$GI = \frac{12 \times \sin{(39^{\circ})}}{1}$$
soit  $GI \approx 7.6$  dm.

**4.** Dans le triangle MNO rectangle en M,

le cosinus de l'angle  $\widehat{MNO}$  est défini par :

$$\cos\left(\widehat{MNO}\right) = \frac{MN}{NO}.$$

Avec les données numériques :

$$\frac{\cos{(37^\circ)}}{1} = \frac{MN}{14}$$

Les produits en croix sont égaux, donc

$$MN = \frac{14 \times \cos{(37^\circ)}}{1} \text{soit} \ MN \approx 11,2 \ \text{dm}.$$

5. Dans le triangle VWX rectangle en V,

la tangente de l'angle  $\widehat{VWX}$  est défini par :

$$\tan\left(\widehat{VWX}\right) = \frac{VX}{VW}$$

Avec les données numériques :

$$\frac{\tan{(36^\circ)}}{1} = \frac{VX}{9}$$

Les produits en croix sont égaux, donc

$$VX = \frac{9 \times \tan{(36^{\circ})}}{1}$$
soit  $VX \approx 6.5$  cm.

6. Dans le triangle GHI rectangle en G,

la tangente de l'angle  $\widehat{GHI}$  est défini par :

$$\tan\left(\widehat{GHI}\right) = \frac{GI}{GH}$$



Avec les données numériques :

$$\frac{\tan\left(41^{\circ}\right)}{1} = \frac{7}{GH}$$

Les produits en croix sont égaux, donc

$$GH = \frac{7 \times 1}{\tan(41^{\circ})}$$
 soit  $GH \approx 8.1$  dm.

7. Dans le triangle RST rectangle en R,

le sinus de l'angle  $\widehat{RST}$  est défini par :

$$\sin\left(\widehat{RST}\right) = \frac{RT}{ST}$$

Avec les données numériques :

$$\frac{\sin\left(45^{\circ}\right)}{1} = \frac{10}{ST}$$

Les produits en croix sont égaux, donc

$$ST = \frac{10 \times 1}{\sin(45^\circ)}$$
 soit  $ST \approx 14.1$  dm.

8. Dans le triangle JKL rectangle en J,

la tangente de l'angle  $\widehat{JKL}$  est défini par :

$$\tan\left(\widehat{JKL}\right) = \frac{JL}{JK}$$

Avec les données numériques :

$$\frac{\tan{(49^\circ)}}{1} = \frac{JL}{10}$$

Les produits en croix sont égaux, donc

$$JL = \frac{10 \times \tan{(49^\circ)}}{1} \text{soit} \ JL \approx 11.5 \ \text{m}.$$

9. Dans le triangle WXY rectangle en W,

le sinus de l'angle  $\widehat{WXY}$  est défini par :



$$\sin\left(\widehat{WXY}\right) = \frac{WY}{XY}$$

Avec les données numériques :

$$\frac{\sin{(51^\circ)}}{\frac{1}{}} = \frac{WY}{11}$$

Les produits en croix sont égaux, donc

$$WY = \frac{11 \times \sin(51^{\circ})}{1}$$
 soit  $WY \approx 8.5$  cm.



1. Dans le triangle GHI rectangle en G,

la tangente de l'angle  $\widehat{GHI}$  est défini par :

$$\tan\left(\widehat{GHI}\right) = \frac{GI}{GH}$$

Avec les données numériques :

$$\frac{\tan{(42^\circ)}}{1} = \frac{GI}{10}$$

Les produits en croix sont égaux, donc

$$GI = \frac{10 \times \tan{(42^{\circ})}}{1}$$
soit  $GI \approx 9$  dm.

**2.** Dans le triangle VWX rectangle en V,

le sinus de l'angle  $\widehat{VWX}$  est défini par :

$$\sin\left(\widehat{VWX}\right) = \frac{VX}{WX}$$

Avec les données numériques :

$$\frac{\sin{(38^\circ)}}{1} = \frac{VX}{14}$$

Les produits en croix sont égaux, donc



$$VX = \frac{14 \times \sin(38^\circ)}{1}$$
 soit  $VX \approx 8.6$  mm.

3. Dans le triangle RST rectangle en R,

le cosinus de l'angle  $\widehat{RST}$  est défini par :

$$\cos\left(\widehat{RST}\right) = \frac{RS}{ST}.$$

Avec les données numériques :

$$\frac{\cos(37^\circ)}{1} = \frac{7}{ST}$$

Les produits en croix sont égaux, donc

$$ST = \frac{7 \times 1}{\cos{(37^\circ)}} \text{soit} \quad ST \approx 8.8 \quad \text{m}.$$

**4.** Dans le triangle WXY rectangle en W,

le cosinus de l'angle  $\widehat{WXY}$  est défini par :

$$\cos\left(\widehat{WXY}\right) = \frac{WX}{XY}.$$

Avec les données numériques :

$$\frac{\cos\left(43^{\circ}\right)}{1} = \frac{WX}{12}$$

Les produits en croix sont égaux, donc

$$WX = \frac{12 \times \cos{(43^{\circ})}}{1} \text{soit} \quad WX \approx 8.8 \text{ m.}$$

5. Dans le triangle MNO rectangle en M,

le sinus de l'angle  $\widehat{MNO}$  est défini par :

$$\sin\left(\widehat{MNO}\right) = \frac{MO}{NO}$$

Avec les données numériques :

$$\frac{\sin(41^\circ)}{1} = \frac{7}{NO}$$



#### Les produits en croix sont égaux, donc

$$NO = \frac{7 \times 1}{\sin(41^{\circ})}$$
 soit  $NO \approx 10,7$  cm.

**6.** Dans le triangle RST rectangle en R,

la tangente de l'angle  $\widehat{RST}$  est défini par :

$$\tan\left(\widehat{RST}\right) = \frac{RT}{RS}$$

Avec les données numériques :

$$\frac{\tan{(48^\circ)}}{1} = \frac{9}{RS}$$

Les produits en croix sont égaux, donc

$$RS = \frac{9 \times 1}{\tan{(48^\circ)}}$$
 soit  $RS \approx 8.1$  m.

7. Dans le triangle HIJ rectangle en H,

la tangente de l'angle  $\widehat{HIJ}$  est défini par :

$$\tan\left(\widehat{HIJ}\right) = \frac{HJ}{HI}$$

Avec les données numériques :

$$\frac{\tan\left(45^{\circ}\right)}{1} = \frac{HJ}{10}$$

Les produits en croix sont égaux, donc

$$HJ = \frac{10 \times \tan{(45^\circ)}}{1} \text{soit} \ HJ \approx 10 \ \text{dm}.$$

**8.** Dans le triangle MNO rectangle en M,

la tangente de l'angle  $\widehat{MNO}$  est défini par :

$$\tan\left(\widehat{MNO}\right) = \frac{MO}{MN}$$

Avec les données numériques :



$$\frac{\tan{(55^\circ)}}{1} = \frac{8}{MN}$$

Les produits en croix sont égaux, donc

$$MN = \frac{8 \times 1}{\tan{(55^{\circ})}}$$
 soit  $MN \approx 5.6$  mm.

9. Dans le triangle UVW rectangle en U,

le sinus de l'angle  $\widehat{UVW}$  est défini par :

$$\sin\left(\widehat{UVW}\right) = \frac{UW}{VW}$$

Avec les données numériques :

$$\frac{\sin{(45^\circ)}}{1} = \frac{UW}{12}$$

Les produits en croix sont égaux, donc

$$UW = \frac{12 \times \sin(45^{\circ})}{1}$$
soit  $UW \approx 8.5$  m.