

Encaminhamento em Redes com Comutação de Pacotes

Desempenho e Dimensionamento de Redes Prof. Amaro de Sousa (asou@ua.pt) DETI-UA, 2020/2021

Sumário do Módulo

- Primeira parte:
 - Redes de circuitos virtuais e redes de datagramas
 - Encaminhamento e atribuição de recursos
- Segunda parte:
 - Desempenho de redes com comutação de pacotes (aproximação de Kleinrock)
- Terceira parte:
 - Encaminhamento ótimo quando os fluxos de pacotes podem ser bifurcados por múltiplos percursos de encaminhamento

Encaminhamento em Redes com Comutação de Pacotes

Primeira parte:

- Redes de circuitos virtuais e redes de datagramas
- Encaminhamento e atribuição de recursos

Encaminhamento em redes com comutação de pacotes

Existem 2 tipos de redes com comutação de pacotes:

- redes de <u>circuitos virtuais</u>
- redes de <u>datagramas</u>

Considere-se o seguinte exemplo de uma rede de um ISP (*Internet Service Provider*) que liga 4 redes de acesso:

Encaminhamento em redes com comutação de pacotes – <u>redes de circuitos virtuais</u>

- A cada fluxo de pacotes, é atribuído pelo menos um circuito virtual.
- Os percursos dos circuitos virtuais s\u00e3o inicialmente estabelecidos.
- Após o estabelecimento dos circuitos virtuais, os pacotes de cada fluxo são encaminhados pelos circuitos virtuais atribuídos.

Exemplo: redes IP/MPLS em que os circuitos virtuais se designam por LSPs (*Label Switched Paths*).

Encaminhamento em redes com comutação de pacotes – <u>redes de circuitos virtuais</u>

- A cada fluxo de pacotes, é atribuído pelo menos um circuito virtual.
- Os percursos dos circuitos virtuais s\u00e3o inicialmente estabelecidos.
- Após o estabelecimento dos circuitos virtuais, os pacotes de cada fluxo são encaminhados pelos circuitos virtuais atribuídos.

Exemplo: redes IP/MPLS em que os circuitos virtuais se designam por LSPs (*Label Switched Paths*).

Encaminhamento em redes com comutação de pacotes – <u>redes de datagramas</u>

- As decisões de encaminhamento são efetuadas pacote a pacote.
- Assim, dois pacotes do mesmo par origem-destino podem seguir percursos distintos na rede.

Exemplo: redes IP com o protocolo de encaminhamento RIP ou OSPF.

Nas redes IP, o encaminhamento é baseado em *percursos de custo mínimo* de cada nó (router) para cada rede destino

- No OSPF, é atribuído a cada ligação um número positivo designado por <u>custo</u> da ligação.
- No RIP, o custo é 1 para cada ligação.
- Cada percurso de um router para um destino tem um custo igual à soma dos custos das ligações que o compõem.
- Em cada router, cada pacote IP é encaminhado por um dos percursos de custo mínimo para a rede destino do pacote.

Encaminhamento em redes com comutação de pacotes – <u>redes de datagramas</u>

Cada pacote IP é encaminhado por um dos percursos de custo mínimo para o destino do pacote:

Método estático: o custo das ligações é fixo (o caso do RIP e do OSPF).

<u>Método dinâmico</u>: o custo das ligações varia ao longo do tempo em função do seu nível de utilização (exemplo: protocolos IGRP e EIGRP)

- o percurso de custo mínimo adapta-se a situações de sobrecarga obrigando os pacotes a evitarem as ligações mais utilizadas
- introduz um efeito de realimentação que pode levar a oscilações indesejáveis.

Quando existem múltiplos percursos de custo mínimo de um nó para um destino, é usada a técnica ECMP (*Equal Cost Multi-Path*):

 em cada nó, o tráfego é bifurcado em igual percentagem por todas as ligações de saída que proporcionam percursos de custo mínimo

Encaminhamento em redes IP com encaminhamento OSPF (I)

Neste exemplo, todos os custos OSPF estão configurados a 1 (equivalente ao RIP).

Encaminhamento em redes IP com encaminhamento OSPF (II)

Pelo ECMP, o router A encaminha os pacotes IP com destino para um endereço IP da rede 193.145.128.0/20 em igual percentagem pelos percursos que passam por B e por C.

Encaminhamento em redes IP com encaminhamento OSPF (III)

Mudando o custo da ligação de A para B de 1 para 3, o router A encaminha os pacotes IP com destino para um endereço IP da rede 193.145.128.0/20 pelo único percurso de custo mínimo.

Encaminhamento em Redes com Comutação de Pacotes

Segunda parte:

 Desempenho de redes com comutação de pacotes (aproximação de Kleinrock)

Redes de ligações ponto-a-ponto

Numa rede de ligações ponto-a-ponto os intervalos entre chegadas de pacotes estão correlacionados com o comprimento dos pacotes, após a passagem pela primeira ligação. Este facto dificulta a análise.

Exemplo:

- Considerem-se duas ligações ponto-a-ponto em cascata.
- Considere-se um fluxo de pacotes com origem no nó à esquerda e destino no nó à direita.
- Considere-se que os pacotes deste fluxo chegam segundo um processo de Poisson e o comprimento dos pacotes é exponencialmente distribuído.

Redes de ligações ponto-a-ponto

Numa rede de ligações ponto-a-ponto os intervalos entre chegadas de pacotes estão correlacionados com o comprimento dos pacotes, após a passagem pela primeira ligação. Este facto dificulta a análise.

- a 1^a fila de espera é do tipo M/M/1
- no entanto, a 2ª fila de espera não é do tipo M/M/1:
 - o intervalo entre a chegada de dois pacotes consecutivos à 2ª fila de espera é sempre superior ou igual ao tempo de transmissão do segundo pacote na 1ª fila de espera;
 - assim, tipicamente pacotes maiores esperam menos tempo na 2ª fila de espera que pacotes mais pequenos.

A <u>aproximação de Kleinrock</u> consiste em assumir que as chegadas de pacotes são processos de Poisson em todos as ligações

 i.e. ignora a correlação entre comprimento dos pacotes e intervalos entre chegadas de pacotes

Considerando adicionalmente que:

- as filas de espera são muito grandes em todas as ligações;
- o tamanho dos pacotes é exponencialmente distribuído com a mesma média em todos os fluxos;

então, cada ligação é modelada por um sistema M/M/1.

De notar que:

- os fluxos de pacotes são unidirecionais e as ligações das redes de comutação de pacotes são bidirecionais
- assim, uma ligação de rede entre os nós de comutação i e j é representada pelos pares ordenados (i,j) e (j,i) que representam cada um dos sentidos da ligação

Considere-se uma rede de ligações ponto-a-ponto, onde existem diversos fluxos de pacotes s = 1...S.

- Considere-se que cada fluxo s é suportado por um percurso único na rede, formado por uma sequência de ligações (i,j) definida pelo conjunto R_s.
- Seja λ_s a taxa de chegada de pacotes do fluxo s , em pacotes/segundo.

Então a taxa de chegada de pacotes à ligação ($\emph{i,j}$) é: $\lambda_{\emph{ij}} = \sum_{s:(\emph{i},\emph{j}) \in R_s} \lambda_s$

Considere-se agora o caso em que pode haver múltiplos percursos associados a cada fluxo de pacotes s:

- Seja $f_{ij}(s)$ a fração de pacotes do fluxo s que atravessa a ligação (i,j)
- Considere-se que nenhum pacote atravessa duas vezes a mesma ligação (i.e., não há ciclos de encaminhamento).
- Neste caso, o conjunto R_s inclui todas as ligações (i,j) tais que $f_{ii}(s)>0$.

Então a taxa de chegada de pacotes à ligação (*i,j*) é: $\lambda_{ij} = \sum_{s:(i,j) \in R_s} f_{ij}(s) \lambda_s$

Considerando μ_{ij} a capacidade da ligação (i,j) em número médio de pacotes/segundo, o número médio de pacotes em todas as ligações é:

$$L = \sum_{(i,j)} \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

Usando o teorema de Little, o atraso médio por pacote da rede é:

$$W = \frac{1}{\gamma} \sum_{(i,j)} \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}} \qquad \gamma = \sum_{s} \lambda_{s}$$

Nos casos em que os atrasos de processamento dos pacotes nos nós de comutação e os atrasos de propagação nas ligações não são desprezáveis, o atraso médio por pacote da rede passa a ser

$$W = \frac{1}{\gamma} \sum_{(i,j)} \left(\frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}} + \lambda_{ij} d_{ij} \right) \qquad \gamma = \sum_{s} \lambda_{s}$$

em que d_{ij} é o atraso médio de processamento e propagação associado à ligação (i, j).

No caso em que a cada fluxo s está associado um percurso único na rede, o atraso médio por pacote do fluxo de tráfego s é:

$$W_{s} = \sum_{(i,j) \in R_{s}} \left(\frac{1}{\mu_{ij} - \lambda_{ij}} + d_{ij} \right)$$

No caso em que há diferentes percursos associados a cada fluxo de pacotes s, o atraso médio por pacote do fluxo s é:

- a média pesada do atraso de cada percurso (fórmula acima)
- o peso de cada percurso é a percentagem da taxa de chegada do fluxo s, λ_s , que é encaminhado pelo percurso.
- Nas redes com um percurso por fluxo, a maior fonte de erro associada à aproximação de Kleinrock deve-se à correlação entre os comprimentos dos pacotes e os intervalos entre chegadas.
- Nas redes com múltiplos percursos por fluxo, pode existir um fator adicional de erro, dependendo da forma como os fluxos são bifurcados nos nós.

Considere a rede IP da figura com todas as ligações bidirecionais de 10 Mbps. A rede suporta 4 fluxos de pacotes:

- de A para C com uma taxa de Poisson de 1000 pps,
- de A para D com uma taxa de Poisson de 250 pps,
- de B para D com uma taxa de Poisson de 1000 pps e
- de B para E com uma taxa de Poisson de 750 pps.

O tamanho dos pacotes é exponencialmente distribuído com média 500 bytes em todos os fluxos. O tempo de propagação da ligação B-C é de 10 ms em cada sentido e desprezável nas outras ligações.

O protocolo de encaminhamento nos routers é o RIP. Utilizando a aproximação de Kleinrock, calcule:

- (a) o atraso médio por pacote de cada fluxo;
- (b) o atraso médio por pacote de todos os fluxos;
- (c) a utilização (em percentagem) de cada ligação em cada sentido.

- Ligações bidirecionais de 10 Mbps
- Pacotes de 500 bytes, em média
- Tempo de propagação da ligação B-C de 10 ms em cada sentido
- Encaminhamento RIP
- (a) O atraso médio por pacote de cada fluxo.

$$\mu_{AB} = \mu_{BA} = \mu_{BC} = ... = \mu = \frac{10 \times 10^6 \text{ bps}}{500 \times 8 \text{ bpp}} = 2500 \text{ pps}$$

$$W_{S} = \sum_{(i,j) \in R_{S}} \left(\frac{1}{\mu_{ij} - \lambda_{ij}} + d_{ij} \right)$$

$$W_{A \to C} = \frac{1}{\mu_{AB} - \lambda_{AB}} + d_{AB} + \frac{1}{\mu_{BC} - \lambda_{BC}} + d_{BC} = \frac{1}{2500 - 1000} + 0 + \frac{1}{2500 - (1000 + 1000)} + 0.01 = 0.0127 \text{ seg.}$$

$$W_{A\to D} = \frac{1}{\mu_{AE} - \lambda_{AE}} + d_{AE} + \frac{1}{\mu_{ED} - \lambda_{ED}} + d_{ED} = \frac{1}{2500 - (750 + 250)} + 0 + \frac{1}{2500 - 250} + 0 = 0.0011 \, \text{seg}.$$

$$W_{B\to D} = \frac{1}{\mu_{BC} - \lambda_{BC}} + d_{BC} + \frac{1}{\mu_{CD} - \lambda_{CD}} + d_{CD} = \frac{1}{2500 - (1000 + 1000)} + 0.01 + \frac{1}{2500 - 1000} + 0 = 0.0127 \text{ seg.}$$

$$W_{B\to E} = \frac{1}{\mu_{BA} - \lambda_{BA}} + d_{BA} + \frac{1}{\mu_{AF} - \lambda_{AF}} + d_{AE} = \frac{1}{2500 - 750} + 0 + \frac{1}{2500 - (750 + 250)} + 0 = 0.0012 \text{ seg.}$$

- Ligações bidirecionais de 10 Mbps
- Pacotes de 500 bytes, em média
- Tempo de propagação da ligação B-C de 10 ms em cada sentido
- Encaminhamento RIP
- (b) O atraso médio por pacote de todos os fluxos.

$$\mu_{AB} = \mu_{BA} = \mu_{BC} = ... = \mu = \frac{10 \times 10^6 \text{ bps}}{500 \times 8 \text{ bpp}} = 2500 \text{ pps}$$

$$W = \frac{1}{\gamma} \sum_{(i,j)} \left(\frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}} + \lambda_{ij} d_{ij} \right)$$
$$\gamma = \sum_{s} \lambda_{s}$$

$$\gamma = \lambda_{A \to C} + \lambda_{A \to D} + \lambda_{B \to D} + \lambda_{B \to F} = 1000 + 250 + 1000 + 750 = 3000 \text{ pps}$$

$$W = \frac{1}{\gamma} \times \left(\frac{\lambda_{AB}}{\mu_{AB} - \lambda_{AB}} + \frac{\lambda_{BA}}{\mu_{BA} - \lambda_{BA}} + \frac{\lambda_{BC}}{\mu_{BC} - \lambda_{BC}} + \lambda_{BC} d_{BC} + \frac{\lambda_{CD}}{\mu_{CD} - \lambda_{CD}} + \frac{\lambda_{AE}}{\mu_{AE} - \lambda_{AE}} + \frac{\lambda_{ED}}{\mu_{ED} - \lambda_{ED}} \right)$$

$$W = \frac{1}{3000} \times \left(\frac{1000}{2500 - 1000} + \frac{750}{2500 - 750} + \frac{2000}{2500 - 2000} + 2000 \times 0.01 + \frac{1000}{2500 - 1000} + \frac{1000}{2500 - 1000} + \frac{250}{2500 - 250} \right)$$

$$W = 0.00865 \text{ seg.}$$

- Ligações bidirecionais de 10 Mbps
- Pacotes de 500 bytes, em média
- Tempo de propagação da ligação B-C de 10 ms em cada sentido
- Encaminhamento RIP

(c) A utilização (em percentagem) de cada ligação em cada sentido.

$$\mu_{AB} = \mu_{BA} = \mu_{BC} = ... = \mu = \frac{10 \times 10^6 \text{ bps}}{500 \times 8 \text{ bpp}} = 2500 \text{ pps}$$

$$U_{AB} = \frac{\lambda_{AB}}{\mu_{AB}} = \frac{1000}{2500} = 0.4 = 40\%$$

$$U_{BC} = \frac{\lambda_{BC}}{\mu_{BC}} = \frac{2000}{2500} = 0.8 = 80\%$$

$$U_{AE} = \frac{\lambda_{AE}}{u_{AE}} = \frac{1000}{2500} = 0.4 = 40\%$$

$$U_{BA} = \frac{\lambda_{BA}}{\mu_{BA}} = \frac{750}{2500} = 0.3 = 30\%$$

$$U_{CD} = \frac{\lambda_{CD}}{\mu_{CD}} = \frac{1000}{2500} = 0.4 = 40\%$$

$$U_{AE} = \frac{\lambda_{AE}}{\mu_{AE}} = \frac{1000}{2500} = 0.4 = 40\%$$
 $U_{ED} = \frac{\lambda_{ED}}{\mu_{ED}} = \frac{250}{2500} = 0.1 = 10\%$

Considere a rede IP da figura com todas as ligações bidirecionais de 10 Mbps. A rede suporta 4 fluxos de pacotes:

- de A para C com uma taxa de Poisson de 1000 pps,
- de A para D com uma taxa de Poisson de 250 pps,
- de B para D com uma taxa de Poisson de 1000 pps e
- de B para E com uma taxa de Poisson de 750 pps.

O tamanho dos pacotes é exponencialmente distribuído com média 500 bytes em todos os fluxos. O tempo de propagação da ligação B-C é de 10 ms em cada sentido e desprezável nas outras ligações.

O protocolo de encaminhamento nos routers é o OSPF.

(a) Determine os custos OSPF que permitem minimizar a utilização da ligação mais carregada.

(b) Utilizando a aproximação de Kleinrock, determine o atraso médio por pacote de todos os fluxos na solução anterior.

- Ligações bidirecionais de 10 Mbps
- Pacotes de 500 bytes, em média
- Propagação da ligação B-C de 10 ms em cada sentido
- Encaminhamento OSPF
- (a) Determine os custos OSPF que permitem minimizar a utilização da ligação mais carregada.

$$\lambda_{A \to C} = 1000 \text{ pps}$$

$$\lambda_{A \to D} = 250 \, \text{pps}$$

$$\lambda_{B\to D} = 1000 \text{ pps}$$

- Ligações bidirecionais de 10 Mbps
- Pacotes de 500 bytes, em média
- Propagação da ligação B-C de 10 ms em cada sentido
- Encaminhamento OSPF
- (a) Determine os custos OSPF que permitem minimizar a utilização da ligação mais carregada.

$$\lambda_{A\to C} = 1000 \, \text{pps}$$

$$\lambda_{A \to D} = 250 \, \mathrm{pps}$$

$$\lambda_{B\to D} = 1000 \text{ pps}$$

- Ligações bidirecionais de 10 Mbps
- Pacotes de 500 bytes, em média
- Propagação da ligação B-C de 10 ms em cada sentido

 $\gamma = \lambda_{A \to C} + \lambda_{A \to D} + \lambda_{B \to D} + \lambda_{B \to E} = 1000 + 250 + 1000 + 750 = 3000 \text{ pps}$

- Encaminhamento OSPF
- (b) Utilizando a aproximação de Kleinrock, determine o atraso médio por pacote de todos os fluxos na solução anterior.

$$\mu_{AB} = \mu_{BA} = \mu_{BC} = ... = \mu = \frac{10 \times 10^6 \text{ bps}}{500 \times 8 \text{ bpp}} = 2500 \text{ pps}$$

$$\lambda_{A\to C} = 1000 \, \text{pps}$$

$$\lambda_{A \rightarrow D} = 250 \text{ pps}$$

$$\lambda_{B\to D} = 1000 \text{ pps}$$

$$\lambda_{B\to E} = 750 \, \mathrm{pps}$$

$$\boldsymbol{W} = \frac{1}{\gamma} \times \left(\frac{\lambda_{AB}}{\mu_{AB} - \lambda_{AB}} + \frac{\lambda_{BA}}{\mu_{BA} - \lambda_{BA}} + \frac{\lambda_{BC}}{\mu_{BC} - \lambda_{BC}} + \lambda_{BC} \boldsymbol{d}_{BC} + \frac{\lambda_{CD}}{\mu_{CD} - \lambda_{CD}} + \frac{\lambda_{DC}}{\mu_{DC} - \lambda_{DC}} + \frac{\lambda_{AE}}{\mu_{AE} - \lambda_{AE}} + \frac{\lambda_{ED}}{\mu_{ED} - \lambda_{ED}} \right)$$

$$W = \frac{1}{3000} \times \left(\frac{500}{2500 - 500} + \frac{750}{2500 - 750} + \frac{1500}{2500 - 1500} + 1500 \times 0.01 + \frac{1000}{2500 - 1000} + \frac{500}{2500 - 500} + \frac{1500}{2500 - 1500} + \frac{750}{2500 - 750} \right)$$

$$W = 0.00667 \text{ seg.}$$
 (Exemplo 1: $W = 0.00865 \text{ seg.}$)

Encaminhamento em Redes com Comutação de Pacotes

Terceira parte:

 Encaminhamento ótimo quando os fluxos de pacotes podem ser bifurcados por múltiplos percursos de encaminhamento

Encaminhamento ótimo com bifurcação de fluxos

Numa rede MPLS, é possível:

- ter múltiplos LSPs atribuídos a um fluxo de pacotes
- escolher que porção do fluxo de pacotes é encaminhada por cada LSP

<u>Questão</u>: Como escolher as percentagens de bifurcação que otimizam o atraso médio por pacote da rede?

Encaminhamento ótimo com bifurcação de fluxos (exemplo)

Na figura, o fluxo de pacotes λ (pacotes/seg) é bifurcado por duas ligações com capacidades C_1 e C_2 (ambas em pacotes/seg).

• Designemos os fluxos em cada ligação por x_1 e x_2 , respetivamente $(\lambda = x_1 + x_2)$. O número médio de pacotes nesta rede é, pela aproximação de Kleinrock, dado por:

$$L = \frac{x_1}{C_1 - x_1} + \frac{x_2}{C_2 - x_2}$$

- Os valores de x_1 e x_2 que minimizam o atraso médio por pacote W são os que minimizam o número médio de pacotes na rede L (teorema de Little: $L = \lambda W$).
- Assim, atendendo à restrição $\lambda = x_1 + x_2$ temos:

$$L = \frac{x_1}{C_1 - x_1} + \frac{\lambda - x_1}{C_2 - (\lambda - x_1)} \qquad \frac{\partial L}{\partial x_1} = \frac{C_1}{(C_1 - x_1)^2} - \frac{C_2}{(C_2 - (\lambda - x_1))^2}$$

Relembrar regra das derivadas: $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Encaminhamento ótimo com bifurcação de fluxos (exemplo)

$$\frac{\partial L}{\partial x_1} = \frac{C_1}{(C_1 - x_1)^2} - \frac{C_2}{(C_2 - (\lambda - x_1))^2} = 0$$

$$x_{1}^{*} = \frac{\sqrt{C_{1}} \left[\lambda - \left(C_{2} - \sqrt{C_{1}C_{2}} \right) \right]}{\sqrt{C_{1}} + \sqrt{C_{2}}} \qquad x_{2}^{*} = \frac{\sqrt{C_{2}} \left[\lambda - \left(C_{1} - \sqrt{C_{1}C_{2}} \right) \right]}{\sqrt{C_{1}} + \sqrt{C_{2}}}$$

Assumindo que $C_1 \ge C_2$ temos dois casos possíveis:

$$\lambda > C_1 - \sqrt{C_1 C_2} \rightarrow 0 < x_1^* < \lambda$$
 , $0 < x_2^* < \lambda$ solução ótima: fluxo bifurcado por C_1 e C_2

$$\lambda < C_1 - \sqrt{C_1 C_2} \rightarrow x_1^* = \lambda , x_2^* = 0$$

solução ótima: fluxo encaminhado apenas por C_1 31

Encaminhamento ótimo com bifurcação de fluxos (exemplo)

Encaminhamento ótimo - caso geral

 No encaminhamento ótimo, os fluxos em cada percurso são definidos por forma a otimizar uma função de custo que representa o desempenho da rede:

$$\sum_{(i,j)} D_{ij} (F_{ij})$$

onde F_{ij} representa o fluxo total na ligação (i, j), em pacotes por segundo, e a função D_{ij} é monótona crescente.

• Uma função D_{ij} usada com frequência é a obtida com base na aproximação de Kleinrock:

$$D_{ij}(F_{ij}) = \frac{F_{ij}}{C_{ij} - F_{ij}} + d_{ij}F_{ij}$$

onde C_{ij} é a capacidade da ligação (i,j), em pacotes por segundo, e d_{ij} é o atraso de propagação e processamento na ligação (i,j), em segundos.

Encaminhamento ótimo - caso geral

- W conjunto dos pares OD (origem destino) de todos os fluxos
- λ_w fluxo total do par OD w
- P_w conjunto de todos os percursos do nó origem para o nó destino do par OD w
- x_p fluxo encaminhado no percurso p

O encaminhamento ótimo é dado pelo seguinte problema de otimização:

Minimizar:
$$D(x) = \sum_{(i,j)} D_{ij} \left(\sum_{\substack{todos \ os \ percursos \ p \ contendo \ (i,j)}} x_p \right)$$

Sujeito a:

$$\sum_{p \in P_{w}} x_{p} = \lambda_{w} , \forall w \in W$$

$$x_{p} \ge 0 , \forall p \in P_{w}, \forall w \in W$$

Solução para o encaminhamento ótimo

Define-se o *comprimento da primeira derivada* do percurso $p \in P_w$ dado por:

$$\frac{\partial D(x)}{\partial x_p} = \sum_{\substack{\text{todas as ligações } (i,j)\\ \text{no percurso } p}} D'_{ij}$$

Prova-se que um vetor de fluxos $x^* = \{x_p^*, \forall p \in P_w\}$ para o par OD w é ótimo se e só se:

$$x_p^* > 0 \Rightarrow \frac{\partial D(x^*)}{\partial x_{p'}} \ge \frac{\partial D(x^*)}{\partial x_p} , \forall p' \in P_w$$

O fluxo ótimo é positivo apenas nos percursos $p \in P_w$ com um comprimento de primeira derivada mínimo.

Assim, os percursos usados no encaminhamento ótimo têm comprimento de primeira derivada igual.

Considere a rede com comutação de pacotes da figura. A rede suporta inicialmente um único fluxo de 12 pacotes/s no $r_{AC} = 48 \text{ pps}$ percurso direto AC. Admita que é oferecido um novo fluxo

Assuma que ambos os fluxos são caracterizados por intervalos entre chegadas e comprimentos de pacotes independentes e exponencialmente distribuídos, e que o comprimento médio dos pacotes é 125 bytes.

- (a) Calcule o atraso médio total dos pacotes (isto é, o atraso médio calculado sobre todos fluxos), quando o novo fluxo é encaminhado em igual percentagem pelos dois percursos possíveis.
- (b) Admitindo que o novo fluxo (e apenas o novo) pode ser bifurcado pelos dois percursos possíveis, calcule os fluxos ótimos que minimizam o atraso médio total dos pacotes e determine o atraso médio resultante.

(a) Calcule o atraso médio total dos pacotes (isto é, o atraso médio calculado sobre todos fluxos), quando o novo fluxo é encaminhado em igual percentagem pelos dois percursos possíveis.

$$\mu_{AB} = \mu_{BC} = \frac{32000}{125 \times 8} = 32 \text{ pps}$$
 $\mu_{AC} = \frac{64000}{125 \times 8} = 64 \text{ pps}$

$$W = \frac{L}{\gamma} = \frac{L_{AB} + L_{BC} + L_{AC}}{\gamma} = \frac{\frac{\lambda_{AB}}{\mu_{AB} - \lambda_{AB}} + \frac{\lambda_{BC}}{\mu_{BC} - \lambda_{BC}} + \frac{\lambda_{AC}}{\mu_{AC} - \lambda_{AC}}}{\gamma}$$
$$= \frac{\frac{24}{32 - 24} + \frac{24}{32 - 24} + \frac{24 + 12}{64 - (24 + 12)}}{48 + 12} = 0.121 \text{ seg.}$$

(b) Admitindo que o novo fluxo (e apenas o novo) pode ser bifurcado pelos dois percursos possíveis, calcule os fluxos $r_{AC} = 48$ ótimos que minimizam o atraso médio total dos pacotes e determine o atraso médio resultante.

$$L = \frac{x_1}{32 - x_1} + \frac{x_1}{32 - x_1} + \frac{x_2 + 12}{64 - (x_2 + 12)}$$

$$\frac{\partial L}{\partial x_1} = \frac{32}{(32 - x_1)^2} + \frac{32}{(32 - x_1)^2} + 0 = \frac{64}{(32 - x_1)^2}$$

$$\frac{\partial L}{\partial x_2} = 0 + 0 + \frac{64}{(52 - x_2)^2} = \frac{64}{(52 - x_2)^2}$$

$$\begin{cases} \frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_2} \\ x_1 + x_2 = 48 \end{cases} = \begin{cases} \frac{64}{(32 - x_1)^2} = \frac{64}{(52 - x_2)^2} = \begin{cases} \frac{8}{32 - x_1} = \frac{8}{52 - x_2} \\ x_2 = 48 - x_1 \end{cases} = \dots = \begin{cases} x_1 = 14 \text{ pps} \\ x_2 = 34 \text{ pps} \end{cases}$$

$$W = \frac{L}{\gamma} = \frac{\frac{14}{32 - 14} + \frac{14}{32 - 14} + \frac{34 + 12}{64 - (34 + 12)}}{48 + 12} = 0.069 \text{ seg.}$$