On s'intéresse à l'écoulement stationnaire, incompressible d'un fluide de masse volumique ρ et de viscosité η autour d'une sphère de rayon R. La vitesse de l'écoulement loin de la sphère est $v_{\infty}\vec{e_z}$. On adoptera les coordonnées sphériques d'axe Oz, O étant le centre le centre de la sphère.

- On suppose que l'écoulement permet de négliger le terme convectif de l'équation de Navier-Stokes devant le terme diffusif. Comment s'écrit alors cette équation ?
- On suppose que la vitesse est telle que : $\vec{rot}(\vec{rot}(\vec{v})) = \frac{3v_{\infty}R}{r^3} \left(\cos\theta\vec{e_r} + \frac{1}{2}\sin\theta\vec{e_\theta}\right)$. Quelle est la résultante des forces de pression sur la sphère ?
- Quelle est la résultante des actions de cisaillement sur la sphère ? On donne $\left(\frac{\partial v_{\theta}}{\partial r}\right)_{r=R} = \frac{3v_{\infty}}{2R}\sin\theta$.
- Trouver la force de trainée s'exerçant sur la sphère.

On donne:

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}$$
 (1)

$$\vec{gradf} = \frac{\partial f}{\partial r}\vec{e_r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\vec{e_\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \varphi}\vec{e_\varphi}$$
 (2)

On considère un fluide d'épaisseur h s'écoulant lentement sur un plan infini incliné d'un angle α par rapport à la verticale. Le fluide a une forte viscosité η et une masse volumique ρ , et il est soumis à la gravité. On est en régime permanent.

- 1 Quel est le profil de vitesse dans le fluide?
- 2 En déduire le débit.
- 3 On observe avec des images satellite que la vitesse d'écoulement d'un glacier à sa surface est d'environ $100\mathrm{m/an}$. En déduire la viscosité d'un glacier de $100\mathrm{m}$ d'épaisseur, d'un kilomètre de large. Quelle quantité de glace est charriée en une année ?
- 5 On place désormais une plaque au dessus du liquide, au niveau de z=h. Que deviennent les conditions aux limites ? Trouver le nouveau profil de vitesse. Comment s'appelle se type d'écoulement ?

On étudie un écoulement permanent d'un fluide incompressible de masse volumique μ , dans un tuyau cylindrique horizontal d'axe Oz, de rayon R, et de longueur L (schéma de gauche). Le champ de pression appliqué le long du tube est noté P(r,z). Par invariance, le champ de vitesse est supposé ne dépendre que de r et z, et est dirigé selon $\vec{e_z}$. Il est noté $\vec{u} = u(r,z)\vec{e_z}$. On définit la vitesse de cisaillement par la quantité $\dot{\gamma} = -\frac{du}{dr}$.

On définit la force surfacique de viscosité $\vec{\tau}$, ou contrainte de cisaillement, entre deux couches adjacentes de fluide, la quantité : $\vec{\tau} = \frac{d\vec{F}}{dS}$. où $d\vec{F}$ est la force qui s'exerce mutuellement entre les couches adjacentes, et dS la surface élémentaire de contact entre ces deux surfaces (schéma de droite).

1 - Quelle est la relation entre la force de viscosité $\vec{\tau}$ et le champ de vitesse u dans le cas d'un fluide classique (vu en cours), dit newtonien? On pourra dans cette question se placer en coordonnées cartésiennes.

Fluide de Bingham

Un fluide est dit de Bingham si les contraintes de cisaillements entre les couches obéissent à une loi de seuil :

$$\begin{cases} \tau > \tau_s : & \tau = \tau_s + \eta \dot{\gamma} \\ \tau < \tau_s : & \dot{\gamma} = 0 \end{cases}$$

On supposera que le fluide que l'on étudie obéit à une telle loi.

- 2 Quel est la différence entre un fluide classique et un fluide de Bingham ?
- 3 Montrer que \vec{u} ne dépend que de r. En négligeant les actions de la pesanteur, déterminer la relation suivante :

$$\frac{\partial P}{\partial z} + \frac{1}{r} \frac{\partial (r\tau)}{\partial r} = 0$$

4 - Établir la relation :

$$\tau(r) = \tau_s \frac{r}{R_s}$$

où R_s est le rayon de seuil, défini par $R_s = 2\tau_s L/\Delta P$, en notant $\Delta P = P(0) - P(L)$ la chute de pression entre l'entrée et la sortie du tuyau. Quel est le signe de ΔP ?

- 5 Pour quelle pression minimale ΔP_{min} commence t-on à voir un écoulement à travers le tube ?
- 6 On suppose que $\Delta P > \Delta P_{min}$. Déterminer le champs de vitesse dans le tube. Tracer son allure et expliquer pourquoi l'écoulement présente une zone dite bouchon.

3

Tuyau parabolique

Un fluide est en écoulement permanent dans une portion de tube à section parabolique, avec Oz en axe de symétrie. Les lignes de courant s'écoulant dans le tube ont pour équation :

$$\begin{cases} z < 0 : & r = \lambda a \\ z > 0 : & r = \lambda \left(a + \frac{z^2}{b} \right) \end{cases}$$

où λ est un nombre sans dimension, a et b des constantes.

Le fluide est incompressible et la composante axiale de v_z de la vitesse est supposée uniforme sur une section perpendiculaire, cad v_z ne dépend pas de r. On note v_0 la vitesse en O.

- 1 Déterminez la vitesse \vec{v} en tout point.
- 2 Comment évolue un élément de fluide qui traverse le tuyau ?
- 3 L'écoulement est-il potentiel ?

Écoulement entre deux lames

On considère deux plaques infinies de verres séparées d'une épaisseur e où circule un fluide incompressible. Du fluide est injecté à un débit D_e par le tuyau A, et il peut ressortir à travers le tuyau B identique.

On suppose que l'écoulement dérive du potentiel :

$$\phi(M) = av_0 \ln \frac{r_A}{r_B}$$

où r_A (resp. r_B) est la distance d'un point M du champ à la source A (resp. B).

4

- 1 Déterminer le champ des vitesses. Comment relier a et v_0 au débit des sources ?
- 2 Est-ce un écoulement compressible ?

On considère un fluide incompressible, de viscosité η contenu entre deux cylindres orientés verticalement, de même axe O_z , et de rayons respectifs R_1 et R_2 (avec $R_1 < R_2$). La hauteur des cylindres L est très grande devant les rayons : $L \gg R_1, R_2$. Les deux cylindres peuvent tourner autour de l'axe O_z .

Tout élément de ce fluide subit une force surfacique visque use (ou contrainte visque use) que l'on notera $\vec{\sigma}$. L'expression en coordonnées cylindrique de sa composante se lon $\vec{e_{\theta}}$ s'écrit :

$$\sigma_{\theta}(r, \theta, z) = \eta \left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{\partial v_{\theta}}{\partial r} - \frac{v_{\theta}}{r} \right)$$

Il est possible de démontrer que, dans le cadre de ce problème, les autres composantes de $\vec{\sigma}$ sont nulles. Nous l'admettrons pour la suite du problème.

L'écoulement est supposé permanent, lent et laminaire : on suppose alors que $v_z = 0$.

- 1 A partir des invariances du problèmes, montrer que v ne dépend que de r.
- 2 En s'appuyant sur un bilan de matière, retrouver l'expression de l'équation de conservation. En déduire que le champ de vitesse s'écrit $\vec{v} = v_{\theta}(r)\vec{e_{\theta}}$. L'écoulement est-il rotationnel ?
- 3 En faisant un bilan des moments selon $\vec{e_z}$, montrer que la vitesse vérifie la relation suivante :

$$\frac{\partial}{\partial r} \left(r^3 \frac{\partial}{\partial r} \frac{v_\theta}{r} \right) = 0$$

- 4 Le cylindre de rayon R_1 (resp. R_2) tourne à la vitesse angulaire Ω_1 (resp. Ω_2). En déduire l'expression du champs de vitesse.
- 5 On suppose que le cylindre intérieur (de rayon R_1) est maintenu fixe (cad $\Omega_1 = 0$) à l'aide d'un ressort de torsion qui exerce un moment $\vec{M} = k\theta\vec{e_z}$. Le cylindre intérieur tourne toujours à la vitesse Ω_2 . De quel angle θ tourne le ressort ? A quel quantité physique a t-on alors accès ?
- 6 En étant toujours dans la situation $\Omega_2 = 0$, calculer la puissance mécanique dissipée dans le fluide.

NB

$$\vec{rot}(\vec{v}) = \left(\frac{1}{r}\frac{\partial v_z}{\partial \theta} - \frac{v_\theta}{\partial z}\right)\vec{e_r} + \left(\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}\right)\vec{e_\theta} + \frac{1}{r}\left(\frac{\partial (rv_\theta)}{\partial r} - \frac{\partial v_r}{\partial \theta}\right)\vec{e_z}$$