Quiz 1	Name:	
Week 2, Sep/17/2019	On your left:	
CS 280: Fall 2019	On your right:	
Instructor: Xuming He		

Instructions:

Please answer the questions below. Show all your work. This is an open-book test. NO discussion/collaboration is allowed.

Problem 1. (10 points) *Variance*. Assume x_1, \dots, x_n are independent random variables, show that

$$Var(x_1 + \dots + x_n) = Var(x_1) + \dots + Var(x_n)$$

Problem 2. (10 points) *Gradient*. Let $\sigma(a) = \frac{1}{1+e^{-a}}$ be an activation function, and $f(\mathbf{w}) = -\sum_{i=1}^{n} [y_i \log(\mu_i) + (1-y_i) \log(1-\mu_i)]$, where $\mu_i = \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$.

- (a) Show that $\frac{d}{d\mathbf{w}}f(\mathbf{w}) = \sum_{i=1}^{n} (\mu_i y_i)\mathbf{x}_i$.
- (b) (bonus 10 points) Show that $f(\mathbf{w})$ is convex.

Problem 3. (10 points) Learning basics. Consider Ridge regression

$$L(\mathbf{w}) = \sum_{i=1}^{n} \|\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i}\|^{2} + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

- (a) Show that its optimal weight $\mathbf{w}^* = (X^\intercal X + \lambda I)^{-1} X^\intercal Y$.
- (b) (bonus 10 points) Provide a probabilistic formulation of the objective function using the Bayesian Theorem.