

National University of Computer & Emerging Sciences, Karachi Fall-2017 CS-Department

MidTerm II 26th October 2017, 1:00 pm – 02:00 pm

Course Code: CS301	Course Name: Theory of Automata
Instructor Name: Muhammad	Shahzad
Student Roll No:	Section No:

Instructions:

- Return the question paper.
- Read each question completely before answering it. There are 4 questions and 2 pages.
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.
- All the answers must be solved according to the sequence given in the question paper.

Time: 60 minutes. Max Marks: 40 points

Question 1: State whether True or False – *To get any credit justify your answer*:

[10 points]

- 1. There is a regular language L for which there is exactly one regular expression R with L(R) = L.
- 2. Intersection of two non-regular languages is always non-regular.
- 3. Given a non-regular language L_1 , $\{L_1 \cup (L_1)^R\}$ where $(L_1)^R$ is the reversal of L_1 , will always be a regular language.
- 4. The complement of a non-regular language must be non-regular.
- 5. Let $L_4 = L_1L_2L_3$. If L_1 and L_2 are regular and L_3 is not regular, it is possible that L_4 is regular.
- 6. Every subset of a regular language is regular.
- 7. If, two strings x and y, defined over Σ , are run over an FA accepting the language L, then x and y are said to belong to the same class if they end in the same state, no matter that state is final or not.
- 8. Let FA3 be an FA corresponding to FA1+FA2, then the initial state of FA3 must correspond to the initial state of FA1 or FA2
- 9. If L_1 and L_2 are expressed by regular expressions r1 and r2, respectively then the language expressed by r1 + r2 will be regular.
- 10. Pumping lemma is generally used to prove that A given language is regular

<u>Question 2:</u> Consider the following NFA- λ , construct an equivalent DFA. Show all steps

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, q_0, \{q_4\})$$

Note: λ represents the *empty string*.

Question 3: Minimize the following DFA using partioning method:

[10 points]

 $\underline{\text{Question 4:}} \text{ Assume alphabet } \underline{\sum} = \{\text{a, b}\}. \text{ Prove or disprove that following languages are regular. Negative marking for using the province of the province$ example(s). [10 points]

B. L =
$$\{a^nb^mc^{m^*n} \mid m, n >= 0\}$$
.
C. L = $\{a^nb^n \mid 3 > n > 1\}$.

C. L =
$$\{a^nb^n \mid 3 > n > 1\}$$
.