インターネットの基本: その2

情報ネットワーク工学入門 2021 年度後期 佐賀大学理工学部 只木進一

- MAC アドレス
- ② IP アドレスとネットワークアドレス
- IP Routing
- 4 アドレス空間の構造
- **5** サービスポート
- 6 DNS: Domain Name System
- **1** DHCP (Dynamic Host Configuration Protocol
- IPv4/IPv6

MAC (Media Access Control) アドレス

- 通信ハードウェアのアドレス
- 48 ビット
- 製造元と個体特定のアドレスで構成
- Ethernet では、同一ネットワーク内での識別に利用
- 新しいデバイスは、プライベートアドレスといって、接続毎 にランダムなアドレスできる
 - MAC アドレス制限や、MAC アドレス登録がある場合には注意
- IP アドレスとの関係
 - arp -a

IP アドレスとネットワークアドレス

- 通信デバイスにアドレスを付与
 - 32 ビットアドレス
 - 通常は8ビット (octet) 毎に分ち書き: 人間が見やすいように
 - 例: 133.49.4.7
- IP アドレスはネットワーク部とホスト部から構成される
 - 分かれる部分は、ネットマスクで指定

サブネットワーク: subnetwork

- インターネットはネットワークの相互接続
- 組織内のネットワークも小さなサブネットワークに分割
- ネットマスクを使ってサブネットワークへと分割

ネットマスク: netmasks

- 32bit
- 上位からあるビットまで1で、その下は全て0
- IP アドレスとネットマスクのビット毎の and 演算
- ネットワークアドレスを導出

例:24 ビットネットマスク

10 進	255							255							255								0									
16 進	FF								FF								FF								00							
2進	1 1 1 1 1 1 1 1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
10 進	133								49								51							12								
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0
2 進	1 0 0 0 0 1 0 1						1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	
10 進	133							49								51							0									

4通りのネットワークアドレス標記

- 133.49.51.0
- 133.49.51.0/24
- 133.49.51.0/255.255.255.0
- 133.49.51.0/FFFFF00

例:22ビットネットマスク

10 進	255							255							252								0										
16 進	FF								FF								FC								00								
2 進	1 1 1 1 1 1 1 1						1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0		
10 進	133								49								51							12									
2 進	1 0 0 0 0 1 0 1				1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0				
2 進	1 0 0 0 0 1 0 1						1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0		
10 進	133							49								48							0										

4 通りのネットワークアドレス標記

- 133.49.48.0
- 133.49.48.0/22
- 133.49.48.0/255.255.252.0
- 133.49.48.0/FFFFFC00

ブロードキャストアドレス: Broadcast address

- ブロードキャスト
 - 同一ネットワーク内への一斉送信
- ネットワークアドレスの末尾のアドレスを使用

network に必須の addresses

- network address
 - netmask で定まる先頭
 - $192.168.1.5/24 \rightarrow 192.168.1.0$
- broadcast address
 - netmask で定まる末尾
 - $192.168.1.5/24 \rightarrow 192.168.1.255$
- 各サブネットの両端の2アドレスは、ホストアドレスとして 使えない

IP Routing

- 一つのネットワークには、一つのネットワークアドレス
- ルータ (router): 異なるネットワークを繋ぐ通信機器
- 宛先 IP アドレスから、宛先ネットワークアドレスを計算
 - ネットワークインターフェースのネットマスクを使用
 - 宛先ネットワークに応じて、パケットを送り出すネットワーク インターフェースを選択
- ルーティングテーブル
 - ネットワークアドレス毎に使用するインターフェースを定義
 - デフォルトルート:知らないネットワークアドレス宛に使用する

例:クライアント PC など

- 宛先 IP アドレスから、宛先ネットワークアドレスを計算
 - 自身のネットマスクを使用
- 自身のネットワークでない場合には、デフォルトルートへ
- 自身のネットワークである場合には、イーサーネットプロトコルで通信

- PC1 から Server への通信
 - Server のネットワークアドレス 133.49.4.0 は、自ネットワークではない
 - デフォルトルート 192.168.1.254 ヘパケットを送信
- PC1 から PC2 への通信
 - PC2 のネットワークアドレス 192.168.1.0 は、自ネットワーク
 - イーサーネットプロトコルで直接通信

ルータの機能

- ネットワークアドレス毎に次の転送先を保持
 - 知らないアドレスは、上位(デフォルト)へ転送
- パケット内の転送回数を一つ増やす
- 転送回数を超えたパケットを破棄
 - Too many hops エラー

デフォルトルートアドレス: Default Route Address

- 次の転送先が分からない場合の転送先
- クライアントの場合には、最近接のルータのアドレス
- ルータの場合には、上位最近接のルータのアドレス

グローバルアドレス: global addresses

- 世界中で一意に設定しなければならない
- 使えるネットワークアドレスの割り当て組織が存在
 - JPNIC: 国内のアドレス割り当てを実施
 - 佐賀大学は 133.49.0.0/16 を保有
- 組織内のサブネット
 - 組織が自律的に管理

ネットワーククラス

クラス	アドレス範囲	説明
Α	0.0.0.0 - 127.255.255.255	8 ビットネットワークアドレス
		先頭は0
В	128.0.0.0 - 191.255.255.255	16 ビットネットワークアドレス
		先頭は 10
С	192.0.0.0 - 223.255.255.255	24 ビットネットワークアドレス
		先頭は 110

プライベートアドレス: private addresses

- プライベートアドレス
 - 組織内で自由に割り当てて良い
 - 外部に出してはいけない
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

サービスポート

- サーバ上で動作しているサービスを指定
- 例

```
80: HTTP22: ssh25: smtp
```

```
https://www.iana.org/assignments/
service-names-port-numbers/
service-names-port-numbers.xhtml
```

ドメイン名

- IP アドレスは覚えられない
- 意味のある名前を付ける
- アプリケーションは、IP アドレスで接続することに注意

DNS の階層構造

FQDN: Fully Qualified Domain Name

- DNS によって指定されたホスト名
- ドメイン名の重要性
 - go. jp: 日本の政府機関
 - ac.jp:日本の高等教育機関及び18歳以上を対象とする専門 学校・各種学校
 - co.jp: 国内で登記している会社組織

DNS を使ってみる

- コマンドプロンプトから
 - nslookup ホスト名

DHCP (Dynamic Host Configuration Protocol

- コンピュータへの IP アドレス等の設定
 - ある程度知識が必要
 - 間違えると通信できない
- エンドユーザが使うクライアントでは無理
- 自動的に設定するプロトコル
 - サーバが居る

IPv4/IPv6

- IPv4: 従来のプロトコル
 - IP アドレスは 32 ビット: $2^{32} \simeq 4.3 \times 10^9$
 - アドレスの枯渇: アジア太平洋地域は 2011 年に枯渇
- lpv6: アドレス枯渇に対応した新プロトコル
- 128 Evlet = 128 = 12

- IPv6 の利点
 - 全てのデバイスに IP アドレスを
 - IP アドレス設定の自動化
- IPv6 の課題
 - IPv4 からの移行の困難
 - 共存できるか?
- 佐賀大学総合情報基盤センターのホームページも IPv6

課題

大学で無線 LAN を使用している際に使っている IP アドレスを確認しなさい。また、自宅や学外の無線 LAN サービスの場合についても、確認しなさい。