## Chapter 4 Integrals

4.3 The Fundamental Theorem of Calculus



**EXAMPLE 1** If f is the function whose graph is shown in Figure 2 and  $g(x) = \int_0^x f(t) dt$ , find the values of g(0), g(1), g(2), g(3), g(4), and g(5). Then sketch a rough graph of g.



FIGURE 2



The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$
  $a \le x \le b$ 

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

**EXAMPLE 2** Find the derivative of the function  $g(x) = \int_0^x \sqrt{1 + t^2} dt$ .

**EXAMPLE 4** Find  $\frac{d}{dx} \int_{1}^{x^4} \sec t \, dt$ .

Example. Find the derivative of the function  $f(x) = \int_{\sin x}^1 \sqrt{1+t^2} \, dt$  .

Example. Compute the integral  $\int_a^b x\,dx$  where a and b are two numbers such that a < b.

**Definition** A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

General Antiderivative:

**Example.** Find the general antiderivative of each of the following functions.

(a) 
$$f(x) = x$$

(b) 
$$f(x) = \sqrt{x}$$

(c) 
$$f(x) = \sin x$$

(a) 
$$f(x)=x$$
 (b)  $f(x)=\sqrt{x}$  (c)  $f(x)=\sin x$  (d)  $f(x)=2x\sin(x^2)$ 

## Table of Antiderivaties of some functions.

| Function           | Particular antiderivative | Function                      | Particular antiderivative |
|--------------------|---------------------------|-------------------------------|---------------------------|
| cf(x)  f(x) + g(x) | cF(x)<br>F(x) + G(x)      | cos x<br>sin x                | $\sin x$ $-\cos x$        |
| $x^n (n \neq -1)$  | $\frac{x^{n+1}}{n+1}$     | $\sec^2 x$<br>$\sec x \tan x$ | tan x<br>sec x            |

**EXAMPLE** Find f if  $f'(x) = x\sqrt{x}$  and f(1) = 2.

The Fundamental Theorem of Calculus, Part 2 If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function F such that F' = f.

Consequence on the distance problem:

**EXAMPLE 5** Evaluate the integral  $\int_{-2}^{1} x^3 dx$ .

**EXAMPLE 7** Find the area under the cosine curve from 0 to b, where  $0 \le b \le \pi/2$ .

**EXAMPLE 8** What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \bigg|_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

## Differentiation and Integration as Inverse Processes.

The Fundamental Theorem of Calculus Suppose f is continuous on [a, b].

- **1.** If  $g(x) = \int_a^x f(t) dt$ , then g'(x) = f(x).
- **2.**  $\int_a^b f(x) dx = F(b) F(a)$ , where F is any antiderivative of f, that is, F' = f.