Computational Biology

Lecturers:

Tanja Stadler, Carsten Magnus & Tim Vaughan

Teaching Assistants: Jūlija Pečerska, Jérémie Sciré, Sarah Nadeau & Marc Manceau

Computational Evolution
Department of Biosystems Science and Engineering

HS 2019

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

- ► Maximum likelihood tree search;
- ► Any other likelihood-based tree search (e.g. Bayesian);

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example

Calculation at tips
Calculation at internal nodes

Exercise

- ► Maximum likelihood tree search;
- ► Any other likelihood-based tree search (e.g. Bayesian);
- ► Why look for the ML tree?

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example

Calculation at tips

Calculation at internal nodes

Exercise

- ► Maximum likelihood tree search;
- ► Any other likelihood-based tree search (e.g. Bayesian);
- ▶ Why look for the ML tree?
 - Take higher order sequence correlations into account (unlike phenetic approaches);
 - Take hidden mutations into account (unlike cladistic approaches);

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

kample

Calculation at tips

Calculation at internal

_XCI CISC

- Maximum likelihood tree search;
- Any other likelihood-based tree search (e.g. Bayesian);
- ► Why look for the ML tree?
 - ▶ Take higher order sequence correlations into account (unlike phenetic approaches);
 - Take hidden mutations into account (unlike cladistic approaches);
- ► How to get the ML tree?

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

xample

Calculation at tips
Calculation at internal

_XCI CISC

- ► Maximum likelihood tree search;
- ► Any other likelihood-based tree search (e.g. Bayesian);
- ► Why look for the ML tree?
 - ► Take higher order sequence correlations into account (unlike phenetic approaches);
 - Take hidden mutations into account (unlike cladistic approaches);
- ► How to get the ML tree?
 - iterate over proposed parameter and tree space;
 - calculate the (log-)likelihood of each tree;
 - select the tree with the max (log-)likelihood;

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

xample

Calculation at tips

Calculation at interna

- Maximum likelihood tree search;
- Any other likelihood-based tree search (e.g. Bayesian);
- ▶ Why look for the ML tree?
 - Take higher order sequence correlations into account (unlike phenetic approaches);
 - Take hidden mutations into account (unlike cladistic approaches);
- ► How to get the ML tree?
 - iterate over proposed parameter and tree space;
 - calculate the (log-)likelihood of each tree;
 - select the tree with the max (log-)likelihood;
- ► How to compute the (log-)likelihood?

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

ample

Calculation at tips
Calculation at internal

- ► Maximum likelihood tree search;
- ► Any other likelihood-based tree search (e.g. Bayesian);
- ▶ Why look for the ML tree?
 - Take higher order sequence correlations into account (unlike phenetic approaches);
 - Take hidden mutations into account (unlike cladistic approaches);
- ► How to get the ML tree?
 - iterate over proposed parameter and tree space;
 - calculate the (log-)likelihood of each tree;
 - select the tree with the max (log-)likelihood;
- How to compute the (log-)likelihood?
 - Iterate through all possible combinations of nucleotides on the tree nodes (O(4^(2N-1)));
 - ► Felsenstein's tree pruning algorithm.

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

xample

Calculation at tips
Calculation at internal

Full tree log-likelihood computation

```
Data: Sequence alignment A, tree \tau
Result: logL
logL \leftarrow 0;
for i \leftarrow 1 to N do
    L \leftarrow 0:
    for x in \{T, C, A, G\} do
     L \leftarrow L + \pi_x L_i(\text{root}, x);
    end
    logL \leftarrow logL + log(L);
end
return(logL);
```

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Calculation

Calculation at interna

Exercise

Tree node/nucleotide likelihood computation

```
Data: Node n, sequence alignment A, tree \tau, transition probability
            matrices P_{TN93}(t) for each branch length t in \tau
Result: L_i(n)
if n is a tip then
      for i \leftarrow 1 to N do
            L_i(n, ) \leftarrow [0, 0, 0, 0];

L_i(n, A[n, i]) \leftarrow 1;
      end
else
      for i \leftarrow 1 to N do
             for c in \{T, C, A, G\} do
                    L1 \leftarrow 0:
                   for y in \{T, C, A, G\} do
                         \begin{split} L1 \leftarrow L1 + P(|\mathsf{n},\mathsf{child1}|)[c,y] \cdot L_i(\mathsf{child1},y); \\ L2 \leftarrow L2 + P(|\mathsf{n},\mathsf{child2}|)[c,y] \cdot L_i(\mathsf{child2},y); \end{split}
                    end
                    L_i(node, c) = L1 \cdot L2;
             end
      end
```

computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips
Calculation at internal
nodes

Exercise

Calusian

Tree node/nucleotide likelihood computation

For each tree node k, for each site (1 to N), we need to compute:

	Т	С	А	G	
node k					
1	?	?	?	?	
2	?	?	?	?	
N	?	?	?	?	

Tree (log-)likelihood computation

tree-pruning algorithm

Pseudocode

xample

Calculation at tips
Calculation at internal

Exercise

Tree node/nucleotide likelihood computation

For each tree node k, for each site (1 to N), we need to compute:

	Т	С	А	G	
node k					
1	?	?	?	?	
2	?	?	?	?	
N	?	?	?	?	

For each node in the tree we need to know the likelihoods for both child nodes.

Free (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

xample

Calculation at tips
Calculation at interna

Exercise

Felsenstein's pruning algorithm: Example

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips

Calculation at internal nodes

Exercise

Solution

Alignment: sequences=list(one="C", two="A", three="T", four="G")

4, four: G

3. three: T

2, two: A

1, one: C

```
\label{eq:continuous_problem} \begin{array}{l} \text{if } n \text{ is a tip then} \\ & \text{for } i \leftarrow 1 \text{ to } N \text{ do} \\ & & L_i(n,) \leftarrow [0,0,0,0]; \\ & & L_i(n,A[n,i]) \leftarrow 1; \\ & \text{end} \\ \\ \text{else} \\ & & \dots; \\ \text{end} \end{array}
```

Tree (log-)likelihood computation

tree-pruning algorithm

Pseudocode Example

Calculation at tips

Calculation at internal nodes

Exercise

4, four: G

3. three: T

2, two: A

1, one: C

	T	C	A	G	
node 1					
1					
	node 2				
1					
		node 3	3		
1					
node 4					
1					

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips
Calculation at internal

nodes Exercise

4, four: G

3. three: T

2, two: A

1, one: C

	Т	С	Α	G	
node 1					
1	0	0	0	0	
		node 2			
1					
		node 3	3		
1					_
		node 4			
1					

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips

Calculation at internal

nodes Exercise

4, four: G

3. three: T

2, two: A

1, one: C

	Т	С	Α	G	
		node 1			
1	0	1	0	0	
		node 2			
1					
	node 3				
1					
node 4					
1					

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips
Calculation at internal

nodes Exercise

4, four: G

3. three: T

2, two: A

1, one: C

	Т	С	Α	G	
		node 1			
1	0	1	0	0	
		node 2			
1	0	0	1	0	
		node 3	}		
1					
		node 4			
1					

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips
Calculation at internal

nodes Exercise

4, four: G

3. three: T

2, two: A

1, one: C

	Т	С	Α	G
node 1				
1	0	1	0	0
		node 2		
1	0	0	1	0
node 3				
1	1	0	0	0
		node 4		
1				

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Calculation at tips

nodes Exercise

4, four: G

3. three: T

2, two: A

1, one: C

	Т	С	Α	G		
	node ${f 1}$					
1	0	1	0	0		
		node 2				
1	0	0	1	0		
	node 3					
1	1	0	0	0		
		node 4				
1	0	0	0	1		

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips

nodes Exercise

Felsenstein's pruning algorithm: Internal nodes

```
if n is a tip then
else
         for i \leftarrow 1 to N do
                   for c in \{T, C, A, G\} do
                           for y in {T, C, A, G} do
                                    \begin{split} L1 \leftarrow L1 + P(|\textbf{n}, \textbf{child1}|)[\textbf{c}, \textbf{y}] \cdot L_i(\textbf{child1}, \textbf{y}); \\ L2 \leftarrow L2 + P(|\textbf{n}, \textbf{child2}|)[\textbf{c}, \textbf{y}] \cdot L_i(\textbf{child2}, \textbf{y}); \end{split}
                             L_i(node, c) = L1 \cdot L2;
                   end
```

computation

Felsenstein's

tree-pruning algorithm

Pseudocode

xample

Calculation at internal

Exercise

Internal node 6

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Evample

Calculation at tips

Calculation at internal nodes

Exercise

	T	С	A	G		
	node 1					
1	0	1	0	0		
	node 2					
1	0	0	1	0		
node 6						
1						

$$L_1(6|T) = (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[T,Y])$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G		
	node 1					
1	0	1	0	0		
	node 2					
1	0	0	1	0		
node 6						
1						

$$\begin{split} L_1(6|T) &= (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[T,Y]) \\ &= (0 \times P(2)[T,T] + 1 \times P(2)[T,C] + 0 \times P(2)[T,A] + 0 \times P(2)[T,G]) \\ &\times (0 \times P(2)[T,T] + 0 \times P(2)[T,C] + 1 \times P(2)[T,A] + 0 \times P(2)[T,G]) \end{split}$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G		
	node 1					
1	0	1	0	0		
	node 2					
1	0	0	1	0		
node 6						
1						

$$\begin{split} L_1(6|T) &= (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[T,Y]) \\ &= (0 \times P(2)[T,T] + 1 \times P(2)[T,C] + 0 \times P(2)[T,A] + 0 \times P(2)[T,G]) \\ &\times (0 \times P(2)[T,T] + 0 \times P(2)[T,C] + 1 \times P(2)[T,A] + 0 \times P(2)[T,G]) \\ &= (0 \times 0.76 + 1 \times 0.24 + 0 \times 0.00089 + 0 \times 0.00051) \\ &\times (0 \times 0.76 + 0 \times 0.24 + 1 \times 0.00089 + 0 \times 0.00051) \end{split}$$

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm
Pseudocode

Example Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G		
	node 1					
1	0	1	0	0		
	node 2					
1	0	0	1	0		
node 6						
1						

$$\begin{split} L_1(6|T) &= (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[T,Y]) \\ &= (0 \times P(2)[T,T] + 1 \times P(2)[T,C] + 0 \times P(2)[T,A] + 0 \times P(2)[T,G]) \\ &\times (0 \times P(2)[T,T] + 0 \times P(2)[T,C] + 1 \times P(2)[T,A] + 0 \times P(2)[T,G]) \\ &= (0 \times 0.76 + 1 \times 0.24 + 0 \times 0.00089 + 0 \times 0.00051) \\ &\times (0 \times 0.76 + 0 \times 0.24 + 1 \times 0.00089 + 0 \times 0.00051) \\ &= 0.24 \times 0.00089 \approx 0.00021 \end{split}$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

Internal node 6

	Т	С	А	G		
	node 1					
1	0	1	0	0		
node 2						
1	0	0	1	0		
node 6						
1	0.00021					

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G		
	node 1					
1	0	1	0	0		
node 2						
1	1 0 0 1 0					
node 6						
1	0.00021					

$$L_1(6|C) = (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[C,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[C,Y])$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example

Calculation at tips
Calculation at internal

Exercise

	Т	С	А	G		
	node 1					
1	0	1	0	0		
node 2						
1	0	0	1	0		
node 6						
1	0.00021					

$$\begin{split} L_1(6|C) &= (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[C,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[C,Y]) \\ &= (1 \times P(2)[C,C]) \times (1 \times P(2)[C,A]) = 0.8 \times 0.00089 \approx 0.00071 \end{split}$$

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G		
	node 1					
1	0	1	0	0		
node 2						
1	0	0	1	0		
node 6						
1	0.00021					

$$\begin{split} L_1(6|C) &= (\sum_{X \in \{\mathsf{T},C,A,G\}} L_1(1|X)P(2)[\mathsf{C},X]) \times (\sum_{Y \in \{\mathsf{T},C,A,G\}} L_1(2|Y)P(2)[\mathsf{C},Y]) \\ &= (1 \times P(2)[\mathsf{C},\mathsf{C}]) \times (1 \times P(2)[\mathsf{C},A]) = 0.8 \times 0.00089 \approx 0.00071 \\ L_1(6|A) &= (\sum_{X \in \{\mathsf{T},C,A,G\}} L_1(1|X)P(2)[\mathsf{A},X]) \times (\sum_{Y \in \{\mathsf{T},C,A,G\}} L_1(2|Y)P(2)[\mathsf{A},Y]) \end{split}$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example Calculation at tips

Calculation at internal nodes

Exci cibe

	Т	С	А	G		
	node 1					
1	0	1	0	0		
node 2						
1	0	0	1	0		
node 6						
1	0.00021					

$$\begin{split} L_1(6|C) &= (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[C,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[C,Y]) \\ &= (1 \times P(2)[C,C]) \times (1 \times P(2)[C,A]) = 0.8 \times 0.00089 \approx 0.00071 \\ L_1(6|A) &= (\sum_{X \in \{T,C,A,G\}} L_1(1|X)P(2)[A,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(2|Y)P(2)[A,Y]) \\ &= (1 \times P(2)[A,C]) \times (1 \times P(2)[A,A]) = 0.0007 \times 0.9 \approx 0.00063 \end{split}$$

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode Example

Calculation at tips
Calculation at internal

LXEI CISE

	Т	С	А	G		
	node 1					
1	0	1	0	0		
	node 2					
1	0	0	1	0		
node 6						
1	0.00021					

$$\begin{split} L_1(6|\mathsf{C}) &= (\sum_{X \in \{\mathsf{T},\mathsf{C},\mathsf{A},\mathsf{G}\}} L_1(1|X) P(2)[\mathsf{C},X]) \times (\sum_{Y \in \{\mathsf{T},\mathsf{C},\mathsf{A},\mathsf{G}\}} L_1(2|Y) P(2)[\mathsf{C},Y]) \\ &= (1 \times P(2)[\mathsf{C},\mathsf{C}]) \times (1 \times P(2)[\mathsf{C},\mathsf{A}]) = 0.8 \times 0.00089 \approx 0.00071 \\ L_1(6|\mathsf{A}) &= (\sum_{X \in \{\mathsf{T},\mathsf{C},\mathsf{A},\mathsf{G}\}} L_1(1|X) P(2)[\mathsf{A},X]) \times (\sum_{Y \in \{\mathsf{T},\mathsf{C},\mathsf{A},\mathsf{G}\}} L_1(2|Y) P(2)[\mathsf{A},Y]) \\ &= (1 \times P(2)[\mathsf{A},\mathsf{C}]) \times (1 \times P(2)[\mathsf{A},\mathsf{A}]) = 0.0007 \times 0.9 \approx 0.00063 \\ L_1(6|\mathsf{G}) &= (\sum_{X \in \{\mathsf{T},\mathsf{C},\mathsf{A},\mathsf{G}\}} L_1(1|X) P(2)[\mathsf{G},X]) \times (\sum_{Y \in \{\mathsf{T},\mathsf{C},\mathsf{A},\mathsf{G}\}} L_1(2|Y) P(2)[\mathsf{G},Y]) \end{split}$$

ree (log-)likelihood omputation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal

LXEI CISE

	Т	С	А	G		
	node 1					
1	0	1	0	0		
node 2						
1	0	0	1	0		
node 6						
1	0.00021					

$$\begin{split} L_1(6|C) &= (\sum_{X \in \{\mathsf{T.C.A.G}\}} L_1(1|X)P(2)[\mathsf{C},X]) \times (\sum_{Y \in \{\mathsf{T.C.A.G}\}} L_1(2|Y)P(2)[\mathsf{C},Y]) \\ &= (1 \times P(2)[\mathsf{C},\mathsf{C}]) \times (1 \times P(2)[\mathsf{C},\mathsf{A}]) = 0.8 \times 0.00089 \approx 0.00071 \\ L_1(6|\mathsf{A}) &= (\sum_{X \in \{\mathsf{T.C.A.G}\}} L_1(1|X)P(2)[\mathsf{A},X]) \times (\sum_{Y \in \{\mathsf{T.C.A.G}\}} L_1(2|Y)P(2)[\mathsf{A},Y]) \\ &= (1 \times P(2)[\mathsf{A},\mathsf{C}]) \times (1 \times P(2)[\mathsf{A},\mathsf{A}]) = 0.0007 \times 0.9 \approx 0.00063 \\ L_1(6|\mathsf{G}) &= (\sum_{X \in \{\mathsf{T.C.A.G}\}} L_1(1|X)P(2)[\mathsf{G},X]) \times (\sum_{Y \in \{\mathsf{T.C.A.G}\}} L_1(2|Y)P(2)[\mathsf{G},Y]) \\ &= (1 \times P(2)[\mathsf{G},\mathsf{C}]) \times (1 \times P(2)[\mathsf{G},\mathsf{A}]) = 0.0007 \times 0.17 \approx 0.00012 \end{split}$$

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal

Internal node 6

	Т	С	А	G	
node 1					
1	0	1	0	0	
node 2					
1	0	0	1	0	
node 6					
1	0.00021	0.00071	0.00063	0.00012	

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

Internal node 7

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal

nodes

Exercise

Internal node 7

	T	С	А	G		
	node 3					
1	1	0	0	0		
		node 4				
1	0	0	0	1		
node 7						
1	0.00022	0.000029	0.000015	0.00027		

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm
Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

Internal node 5

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

xample

Calculation at tips

Calculation at internal

nodes

Exercise

	Τ	С	А	G	
		node 6	i		
1	0.00021	0.00071	0.00063	0.00012	
		node 7	,		
1	0.00022	0.000029	0.000015	0.00027	
node 5					
1					

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G	
		node 6	j		
1	0.00021	0.00071	0.00063	0.00012	
		node 7			
1	0.00022	0.000029	0.000015	0.00027	
	node 5				
1					

$$L_1(5|T) = (\sum_{X \in \{T,C,A,G\}} L_1(6|X)P(1)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(7|Y)P(2)[T,Y])$$

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal

nodes

Exercise

	Т	С	А	G		
	node 6					
1	0.00021	0.00071	0.00063	0.00012		
		node 7				
1	0.00022	0.000029	0.000015	0.00027		
	node 5					
1						

$$\begin{split} L_1(5|T) &= (\sum_{X \in \{T,C,A,G\}} L_1(6|X)P(1)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(7|Y)P(2)[T,Y]) \\ &= (0.00021 \times 0.861 + 0.00071 \times 0.13 + 0.00063 \times 0.00045 + 0.00012 \times 0.00026) \\ &\times (0.00022 \times 0.76 + 0.000029 \times 0.24 + 000015 \times 0.00089 + 0.00027 \times 0.00051) \end{split}$$

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G			
	node 6						
1	0.00021	0.00071	0.00063	0.00012			
		node 7					
1	0.00022	0.000029	0.000015	0.00027			
	node 5						
1							

$$\begin{split} L_1(5|T) &= (\sum_{X \in \{T,C,A,G\}} L_1(6|X)P(1)[T,X]) \times (\sum_{Y \in \{T,C,A,G\}} L_1(7|Y)P(2)[T,Y]) \\ &= (0.00021 \times 0.861 + 0.00071 \times 0.13 + 0.00063 \times 0.00045 + 0.00012 \times 0.00026) \\ &\times (0.00022 \times 0.76 + 0.000029 \times 0.24 + 000015 \times 0.00089 + 0.00027 \times 0.00051) \\ &\approx 4.89\varepsilon - 08 \end{split}$$

Tree (log-)likelihood computation

Felsenstein's

tree-pruning algorithm

Pseudocode

Example

Calculation at tips

Calculation at internal

nodes Exercise

Internal node 5

	Т	С	А	G
		node 6		
1	0.00021	0.00071	0.00063	0.00012
		node 7	•	
1	0.00022	0.000029	0.000015	0.00027
node 5				
1	4.89e-08	4.43e-08	2.42e-08	3.72e-08

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal

nodes

Exercise

	Т	С	А	G		
	node 5					
1	1 4.89e-08 4.43e-08 2.42e-08 3.72e-08					

$$\pi = (0.22, 0.26, 0.33, 0.19)$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example

Calculation at tips

Calculation at internal

nodes

Exercise

	Т	С	А	G		
node 5						
1	1 4.89e-08 4.43e-08 2.42e-08 3.72e-08					

$$\pi = (0.22, 0.26, 0.33, 0.19)$$

$$LogL = (\sum_{i \in 1:N} log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_i(5|X)))$$

Tree (log-)likelihood computation

tree-pruning algorithm

Pseudocode

xample

Calculation at tips

Calculation at internal nodes

Exercise

	Т	С	А	G		
	node 5					
1	1 4.89e-08 4.43e-08 2.42e-08 3.72e-08					

$$\pi = (0.22, 0.26, 0.33, 0.19)$$

$$\begin{split} LogL &= (\sum_{i \in 1:N} log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_i(5|X))) \\ &= log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_1(5|X)) \end{split}$$

Tree (log-)likelihood computation

tree-pruning algorithm

Pseudocode

Calculation at tips

Calculation at internal nodes

LACI CISC

	T	С	А	G		
node 5						
1	1 4.89e-08 4.43e-08 2.42e-08 3.72e-08					

$$\pi = (0.22, 0.26, 0.33, 0.19)$$

$$\begin{split} LogL &= (\sum_{i \in 1:N} log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_i(5|X))) \\ &= log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_1(5|X)) \\ &= log(\pi_T \times L_1(5|T) + \pi_C \times L_1(5|C) \\ &+ \pi_A \times L_1(5|A) + \pi_G \times L_1(5|G)) \end{split}$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

Example
Calculation at tips

Calculation at internal

LACICISC

	Т	С	А	G	
node 5					
1 4.89e-08 4.43e-08 2.42e-08 3.72e-08					

$$\pi = (0.22, 0.26, 0.33, 0.19)$$

$$\begin{split} Log L &= (\sum_{i \in 1:N} log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_i(5|X))) \\ &= log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_1(5|X)) \\ &= log(\pi_T \times L_1(5|T) + \pi_C \times L_1(5|C) \\ &+ \pi_A \times L_1(5|A) + \pi_G \times L_1(5|G)) \\ &= log(0.22 \times 4.89e - 08 + 0.26 \times 4.43e - 08 \\ &+ 0.33 \times 2.42e - 08 + 0.19 \times 3.72e - 08) \end{split}$$

omputation

elsenstein's

tree-pruning algorithm

Pseudocode Example

Calculation at tins

Calculation at internal nodes

	Т	С	А	G	
node 5					
1 4.89e-08 4.43e-08 2.42e-08 3.72e-08					

$$\pi = (0.22, 0.26, 0.33, 0.19)$$

$$\begin{split} Log L &= (\sum_{i \in 1:N} log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_i(5|X))) \\ &= log(\sum_{X \in \{T,C,A,G\}} \pi_X \times L_1(5|X)) \\ &= log(\pi_T \times L_1(5|T) + \pi_C \times L_1(5|C) \\ &+ \pi_A \times L_1(5|A) + \pi_G \times L_1(5|G)) \\ &= log(0.22 \times 4.89e - 08 + 0.26 \times 4.43e - 08 \\ &+ 0.33 \times 2.42e - 08 + 0.19 \times 3.72e - 08) \\ &= log(3.73e - 08) \approx -17.1 \end{split}$$

omputation

elsenstein's

tree-pruning algorithm
Pseudocode

kample

Calculation at tips
Calculation at internal nodes

Exercise

Pen'n'paper exercise

P(1):

	T	С	Α	G
Т	0.86	0.13	0.00045	0.00026
С	0.11	0.89	0.00045	0.00026
Α	0.0003	0.00035	0.95	0.052
G	0.0003	0.00035	0.09	0.91

P(2):

		Т	С	Α	G
	Т	0.76	0.24	0.00089	0.00051
	С	0.2	0.8	0.00089	0.00051
ĺ	A	0.00059	0.0007	0.9	0.096
	G	0.00059	0.0007	0.17	0.83

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode Example

Calculation at tips

Calculation at internal nodes

Exercise

Pen'n'paper solution

	Т	С	Α	G			
node 1							
1	0	0	0	1			
node 2							
1	0	0	0	1			
node 6							
1	2.601e-07	2.601e-07	9.216e-03	0.6889			
node 3							
1	0	0	1	0			
node 4							
1	0	0	1	0			
node 7							
1	2.025e-07	2.025e-07	0.9025	8.1e-03			
node 5							
1	1.482021e-07	1.448554e-07	0.036	0.099			

$$\begin{split} Log L &= log(\pi_T \times L_1(5|T) + \pi_C \times L_1(5|C) + \pi_A \times L_1(5|A) + \pi_G \times L_1(5|G)) \\ &= log(0.22 \times 1.482021 e - 07 + 0.26 \times 1.448554 e - 07 \\ &+ 0.33 \times 0.03624314450 + 0.19 \times 0.1005294544) \\ &= log(0.0310609) \approx -3.472 \end{split}$$

Tree (log-)likelihood computation

Felsenstein's tree-pruning algorithm

Pseudocode

ample

Calculation at tips
Calculation at internal nodes

Exercise