Automate d'exploration de l'hémostase ★

C2-09

Pas de corrigé pour cet exercice.

Question 1 Exprimer la vitesse maximale V_M^x en fonction de x_M^{\max} , T et T_a . La distance x_M^{\max} correspond à l'aire sous le courbe de la loi de commande de vitesse. On a alors $x_M^{\max} = (T - T_a) V_M^x \Longleftrightarrow V_M^x = \frac{x_M^{\max}}{T - T_a}$.

Question 2 Par application du théorème de l'énergie cinétique sur l'ensemble des pièces en mouvement, exprimer le couple moteur C_m en fonction de V_x , T_a , J_e et λ durant les trois phases du mouvement.

- ► Expression de l'énerige cinétique : $\mathscr{E}_c(E/0) = \frac{1}{2} J_e(\omega_m^x)^2$.
- ▶ Puissance intérieure : $\mathcal{P}_{int}(E) = 0$.
- ▶ Puissance extérieure : $\mathcal{P}_{\text{ext}}(E) = C_m \omega_m^{x}$.
- ► Application du TEC : $J_e \omega_m^x \dot{\omega}_m^x = C_m \omega_m^x$ soit $J_e \dot{\omega}_m^x = C_m$.

On a alors sur chacune des phases:

- ► Phase 1: $C_m = J_e \dot{\omega}_m^x$ avec $\dot{\omega}_m^x = \dot{V_M}^x/\lambda = \frac{V_M^x}{\lambda T_a}$ et $C_m = J_e \frac{V_M^x}{\lambda T_a}$. ► Phase 2: $C_m = 0$. ► Phase 3: $C_m = -J_e \frac{V_M^x}{\lambda T_a}$.

Question 3 Préciser à quel(s) instant(s) t la puissance fournie par le moteur est maximale (P_{max}).

Question 4 Exprimer cette puissance P_{max} en fonction de V_M^x , λ , J_e , et T_a . P_{max} = $J_e \frac{V_M^x}{\lambda T_a} \omega_m^x = J_e \frac{(V_M^x)^2}{\lambda^2 T_a}.$

Question 5 Donner alors l'expression de P_{max} en fonction de x_M^{max} , λ , J_e , et T_a . On a alors $P_{\text{max}} = J_e \frac{\left(x_M^{\text{max}}\right)^2}{\lambda^2 \left(T - T_e\right)^2 T_e}$

Question 6 À partir de cette expression, montrer que P_{max} est minimale pour un réglage du temps d'accélération T_a tel que $T_a = \frac{T}{3}$. On résout $\frac{dP_{\text{max}}}{dT_a} = 0$ et on cherche la valeur de T_a pour laquelle P_{max} est minimale

Question 7 Déterminer la vitesse de rotation maximum ω_{\max}^{x} que doit atteindre le moteur. Le choix de celui-ci est-il validé? On a $V_M^{\alpha} = \frac{x_M^{\text{max}}}{T - T_c}$. D'autre part, $V_M^{\alpha} = \frac{x_M^{\text{max}}}{T - T_c}$

$$\omega_{M}^{x}kR_{p}$$
 soit $\omega_{M}^{x} = \frac{V_{M}^{x}}{kR_{p}} = \frac{x_{M}^{\max}}{kR_{p}(T - T_{a})}$.

$$\mathrm{AN}: \omega_M^x = \frac{550 \times 10^{-3}}{0.1 \times 20 \times 10^{-3} \, (1-1/3)} = \frac{550 \times 3}{4} = 412.5 \, \mathrm{rad \, s^{-1} \, soit \, 3941 \, tr \, min^{-1}}.$$

Cette valeur est bien compatible avec la vitesse du moteur.

