

Laboratorio di simulazioni finanziarie

A.A. 2017/2018

Approccio attuariale alla misurazione del rischio operativo

Indice

- 1. Il rischio operativo a livello attuariale
- 2. Il Loss Distribution Approach (LDA)
- 3. Indicatori di rischio: VAR (Value at risk) & CAR (Capital at risk)
- 4. Applicazioni: modellizzazione della perdita e simulazione monte carlo
- 5. Vantaggi e limiti del Loss Distribution Approach

- 1. Il rischio operativo a livello attuariale
- 2. Il Loss Distribution Approach (LDA)
- 3. Indicatori di rischio: VAR (Value at risk) & CAR (Capital at risk)
- 4. Applicazioni: modellizzazione della perdita e simulazione monte carlo
- 5. Vantaggi e limiti del Loss Distribution Approach

Definizione di rischio operativo

"Rischio di perdite dovute a inadeguati processi interni, errori umani, carenze nei sistemi operativi o a causa di eventi esterni"

Ogni banca deve maturare una definizione interna di rischi operativi, classificandoli in base ai vari fattori di rischio che possono presentarsi in ogni business line

Working paper 09/2001, Comitato di Basilea

Fattori di rischio operativo

Processi interni

- Model risk
- Transaction risk
- Security risk
- Settlement error

Sistemi interni

- Inadeguati sistemi informativi e tecnologici
- -Inefficienze e malfunzionamento di hardware e software

Fattori umani

- mancanza di esperienza
 e di professionalità del personale
- frodi, collusioni, attività criminali violazione di leggi ...

Eventi esogeni

- Eventi naturali al di fuori del controllo aziendale

Business line

Corporate finance

Negoziazione e vendite Retail banking

Commercial banking

Pagamenti e regolamenti

Gestioni fiduciarie

Asset management

Negoziazione al dettaglio

- 1. Il rischio operativo a livello attuariale
- 2. Il Loss Distribution Approach (LDA)
- 3. Indicatori di rischio: VAR (Value at risk) & CAR (Capital at risk)
- 4. Applicazioni: modellizzazione della perdita e simulazione monte carlo
- 5. Vantaggi e limiti del Loss Distribution Approach

Definizione

Il Loss Distribution Approach permette di stimare per tutte le *business line* e i tipi di *rischio* la distribuzione di probabilità della severity (impatto del singolo evento) e la frequenza dell'evento usando dati interni

Con queste due distribuzioni è possibile computare la distribuzione di probabilità aggregata delle perdite operative. Nella nostra analisi non avendo a disposizione dati reali su perdite operative e sulla loro frequenza le abbiamo generate simulandole casualmente

Loss Distribution Approach

$$L = \sum_{i=1}^{K} X_i$$

dove $k \sim \text{Poisson}(\lambda)$ e Xi $\sim \text{Logn}(\mu, \sigma^2)$ (i=1, ..., N)

Costruzione della distribuzione di frequency

• Definita come la distribuzione di probabilità del numero di perdite operative nell'arco di un anno

ERIK HOLLER - ELIA SCARPARO- STEFANO ZAMPIERO

La distribuzione di Poisson è utile per la stima della frequency in quanto:

 si possono aggregare più distribuzioni di Poisson legate ciascuna ad un determinato event type all'interno di una determinata business line (sfruttando l'ipotesi di indipendenza degli eventi nei diversi sottoperiodi temporali) PROPRIETA' ADDITIVA;

$$p(x) = \frac{\lambda^x}{x!} e^{-\lambda} \operatorname{con} O < \lambda < \infty \operatorname{dove} X \sim P(\lambda)$$

$$F(x) = \sum_{k=0}^{x} \frac{\lambda^{K} \cdot e^{-\lambda}}{k!}$$

• è semplice da implementare, basta conoscere il numero medio di volte che l'evento si verifica in un arco di tempo (*lambda*) per definire l'intera distribuzione;

 Costruzione di un QQplot utile per verificare se la distribuzione teorica utilizzata, in questo caso una poissoniana, approssima correttamente i valori di k

ERIK HOLLER - ELIA SCARPARO- STEFANO ZAMPIERO

Costruzione della distribuzione di *severity*

- Essa rappresenta la densità di probabilità dell'impatto monetario derivante da un singolo evento operativo;
- Per rappresentare la distribuzione del fenomeno osservato abbiamo utilizzato una distribuzione continua definendo quindi le severity delle perdite operative effettuando estrazioni casuali da una distribuzione log-normale

$$f(x) = \frac{e^{\frac{-(\log(x) - \mu)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2 x}}$$

- 1. Il rischio operativo a livello attuariale
- 2. Il Loss Distribution Approach (LDA)
- 3. Indicatori di rischio: VAR (Value at risk) & CAR (Capital at risk)
- 4. Applicazioni: modellizzazione della perdita e simulazione monte carlo
- 5. Vantaggi e limiti del Loss Distribution Approach

Value at Risk

Misura di rischio che sintetizza il rischio di perdite operative e cioè l'incertezza della variabile casuale L;

Il VAR si definisce come la massima perdita in un certo intervallo di tempo [t,T] con un dato livello di confidenza $(1-\alpha)$.

Capital at Risk

- Capitale necessario a coprire una perdita potenziale entro un determinato livello di confidenza ed entro un determinato orizzonte di tempo.
- Il Capitale economico permette di allocare alle diverse linee di business della banca la giusta quantità di capitale per valutarne poi la reddittività.
- Il capitale economico è pari alla perdita inattesa e cioè alla differenza tra la perdita corrispondente ad un determinato livello di confidenza scelto dalla banca e alla perdita attesa.

Modellizzazione della perdita e simulazione Monte Carlo

- 1. Definizione delle distribuzioni di severity e frequency;
- 2. Generazione di un numero sufficiente di scenari di frequency e severity:
 - si genera un certo numero casuale n estraendolo dalla distribuzione di frequency;
 - si generano k variabili x_i campionate dalla distribuzione di severity;
- 3. Si sommano le k variabili xi individuate e si trova L (perdita operativa);
- 4. Si ripete il processo per un numero sufficientemente grande di scenari e si studia la distribuzione delle perdite operative così ottenuta;
- 5. Dalla distribuzione cumulativa empirica di L si individua il VaR come percentile al livello desiderato

Ipotesi formulate

Per costruire la distribuzione aggregata è necessario partire dalle assunzioni che:

- tutti gli eventi siano reciprocamente indipendenti;
- il costo di ogni "incidente" sia identicamente distribuito;
- la distribuzione di frequency e quella di severity siano indipendenti.

Aggregazione delle classi di rischio e VaR aggregato

- Il calcolo del requisito patrimoniale complessivo a fronte del rischio operativo può essere effettuato sommando i requisiti di capitale determinati per ciascuna Business Line e tipologia di evento.
- Oppure si può tener conto delle correlazioni tra i vari rischi operativi e le diverse linee di business, con modelli di stima delle correlazioni.

Capital At Risk aggregato

Schema per il calcolo del CaR aggregato:

- Computazione del CaR per ciascuna Business Line e per ciacun event type;
- Computazione del Car totale, tenendo in considerazione di eventuali effetti mitigatori della diversificazione di capitale;
- 3. Allocazione di componenti di CaR aggregato a ciascun event type;
- 4. Allocazione di componenti di ciascuna quantità di capitale definita al punto 3 a ciascuna unità di business, considerando eventuali effetti mitigatori.

DISTRIBUZIONE DELLE PERDITE

n simulazioni dell'ammontare di perdite aggregate generato come somma delle perdite dei k eventi distribuite secondo una distribuzione lognormale

n simulazioni dell'ammontare di perdite aggregate generato come somma delle perdite dei k eventi distribuite secondo una distribuzione lognormale

DISTRIBUZIONE DELLE PERDITE

n simulazioni dell'ammontare di perdite aggregate generato come somma delle perdite dei k eventi distribuite secondo una distribuzione lognormale

- 1. Il rischio operativo a livello attuariale
- 2. Il Loss Distribution Approach (LDA)
- 3. Applicazioni: modellizzazione della perdita e simulazione monte carlo
- 4. Indicatori di rischio: VAR (Value at risk) & CAR (Capital at risk)
- 5. Vantaggi e limiti del Loss Distribution Approach

Vantaggi

- I risultati si basano sulle caratteristiche specifiche di ogni singola istituzione, invece di basarsi su una proxy o su una media di settore;
- I risultati si basano su principi matematici simili a quelli utilizzati per la stima del requisito patrimoniale per il rischio di mercato e per il rischio di credito;
- La separazione tra frequency e severity favorisce la precisione nella stima e la comprensione del processo di generazione del rischio;
- L'utilizzo di distribuzioni statistiche ben conosciute può aiutare il processo di calibrazione

Limiti

- E' un modello ad alta intensità di dati. Per applicare questo metodo in modo coerente in tutta l'organizzazione, è necessaria una serie di dati completa riguardante gli eventi di perdita.
- E' necessario un vasto campione statistico strutturato e qualitativamente adeguato
- L'assunzione di indipendenza tra la distribuzione di frequency e quella di severity costituisce un grosso limite.

Grazie per l'attenzione!

Fonti

Loss Distribution Approach for operational risk, A. Frachot, P. Georges & T. Roncalliy, Groupe de Recherche Operationnelle, Credit Lyonnais, France

[Wiley Series in Probability and Statistics] Klugman, S.A. and Panjer, H.H. and Wilmt, G.E. – Loss Models_From Data to Desicions, 2012

Presentazione PPT del Professor Michele Bonollo dell'Università degli Studi di Padova sul tema: Rischi Operativi e Basilea 2. Modelli, metodi e problematiche applicative.

Presentazione PPT della Professoressa Simona Cosma dell'Università del Salento sul tema: Il calcolo del VAR operativo mediante la metodologia stocastica parametrica.

Lezione n. 5. - 28/3/03. Università degli Studi di Roma Tre, sezione di Matematica. Dipartimento di Matematica e Fisica.

Tesi di Laurea Magistrale del Dott. Giacomo Fasiolo Tozzo. Corso di Laurea: Economia e Finanza presso l'Università Ca' Foscari di Venezia. Relatore: prof. Andrea Giacomelli. Anno accademico 2014 – 2015. Titolo della tesi: I Rischi Operativi.

Presentazione PPT della Prof.sa Damiana Costanzo dell'Università degli Studi della Calabria.

Presentazione PPT del Docente: Dott. L. Corain insegnante del Corso di laurea in Ingegneria Civile, Università degli Studi di Padova. Modelli Probabilistici.