Tema 2 (Segunda parte): Teoría de números

David de Frutos Escrig versión original elaborada por María Inés Fernández Camacho

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA (Ingeniería Informática - Ciencias Matemáticas) UCM Curso 18/19

DEF:

Dados dos números enteros $\mathbf{a}, \mathbf{b} \in \mathbb{Z}$ se dice que \mathbf{a} es divisible por \mathbf{b} (o también que \mathbf{b} es divisor o factor de \mathbf{a} , o que \mathbf{a} es múltiplo de \mathbf{b}) cuando existe algún entero $\mathbf{c} \in \mathbb{Z}$ tal que $\mathbf{a} = \mathbf{c}\mathbf{b}$.

Notación:

- b a denota que b es divisor de a.
- b/a denota que b no es divisor de a.
- a = b denota que a es múltiplo de b.

Ejs:

$$9|18, 6|18, 2|18, 2 \text{ //} 9, 18 \text{ //} 6$$

 $18 = 3, 6 = 2$

Si b|a y además el entero c tal que $a = c \cdot b$ es único, entonces decimos que c es el cociente exacto de la división de a entre b y escribimos $c = \frac{a}{b}$

Hecho 1: $0 \mid 0$, pero $\frac{0}{0}$ está indefinido. (El 0 es divisor del 0)

Dem: $0 \mid 0$ ya que $\forall c \in \mathbb{Z}, \ 0 = c \cdot 0$, pero $\frac{0}{0}$ está indefinido ya que no existe un único $c \in \mathbb{Z}$ tal que $0 = c \cdot 0$.

Hecho 2: $\forall b \in \mathbb{Z}, b \neq 0, (0 \not\mid b \text{ y, por tanto, } \frac{b}{0} \text{ está indefinido).}$ (Ningún entero distinto de 0 tiene como divisor al 0)

Dem: $\forall b \in \mathbb{Z}, \ b \neq 0$, se tiene que $\forall c \in \mathbb{Z}, \ c \cdot 0 = 0 \neq b$.

DEF:

ALGUNAS PROPIEDADES MÁS DE LA DIVISIBILIDAD DE NÚMEROS ENTEROS

Si $a, b, c, d \in \mathbb{Z}$, entonces

- (1) $a \mid 0$, $(0 = \dot{a})$ (El 0 es múltiplo de cualquier entero)
- (2) 1 a (El 1 es divisor de cualquier entero)
- (3) $\mathbf{a} \mid \mathbf{1}$ si y sólo si $\mathbf{a} = \pm \mathbf{1}$
- (4) Si $\mathbf{a} \mid \mathbf{b}$ y $\mathbf{c} \mid \mathbf{d}$, entonces $\mathbf{ac} \mid \mathbf{bd}$
- (5) a | a
- (6) Si $a \mid b$ y $b \mid a$, entonces $a = \pm b$

- (7) Si $a \mid b \mid c$, entonces $a \mid c$
- (8) Si $a \mid b$ y a > 0 y b > 0, entonces $a \le b$
- (9) Si a|b y a|c, entonces a|(bx + cy) para cualquier par de números x, y ∈ Z
 (Si a es divisor de b y de c, entonces a es divisor de cualquier combinación lineal entera de b y c)
- (10) **a** | **b** si y sólo si |**a**| |**b**|

Dem: Mera aplicación de la definición de divisor. Se deja como ejercicio.

Si $D, d \in \mathbb{Z}$, $d \neq 0$, en general D no será múltiplo de d, pero siempre existirán dos múltiplos consecutivos de d entre los que se encuentre D, ya que la distancia entre dos múltiplos consecutivos de d es |d|.

DEF:

- 1) Dados $D, d \in \mathbb{Z}, d > 0$, siendo c el mayor número entero tal que $c \cdot d \leq D \leq (c+1) \cdot d$, entonces
 - c y c + 1 reciben los nombres respectivos de cocientes enteros por defecto y por exceso de la división de D (dividendo) por d (divisor)
 - los números $r, r' \in \mathbb{N}$ definidos por las igualdades $r = D c \cdot d$, $r' = (c+1) \cdot d D = d r$ reciben los nombres respectivos de restos enteros por defecto y por exceso.
- 2) Dados $D, d \in \mathbb{Z}$, d < 0, el cociente y el resto enteros por defecto/exceso de la división de D entre d, se definen como el cociente y el resto enteros por defecto/exceso de (-D) entre (-d).

DEF:

Se llama división entera entre enteros a la operación aritmética cuyo objetivo es el cálculo de los cocientes y restos enteros.

Obs:

- La división entera de **D** entre **0** no está definida.
- Si no se dice lo contrario, al hablar de cocientes y restos enteros nos referiremos a cocientes y restos por defecto.

- Si $c \cdot d = D$, entonces r = 0, y $c = \frac{D}{d}$ es el cociente exacto de D entre d.
- Si D > 0 y D < d entonces c = 0 y r = D (de lo contrario $r \notin \mathbb{N}$)
- En cualquier caso, r es la distancia (siempre positiva) entre $c \cdot d$ y D.

Ej:

D	d	С	r	c + 1	r'
18	5	3	3	4	2
-18	5	-4	2	-3	3
18	-5	-4	2	-3	3
-18	-5	3	3	4	2
18	6	3	0	4	6
-18	6	-3	0	-2	6
18	-6	-3	0	-2	6
-18	-6	3	0	4	6

Teorema de la división

Dados D, $d \in \mathbb{Z}$, $d \neq 0$, existen dos enteros c y r unívocamente determinados, tales que $D = c \cdot d + r$ y $0 \leq r < |d|$. Los números c y r se llaman cociente y resto de la división entera (euclídea) con dividendo D y divisor d.

Notación: $c \equiv_{not} D \text{ div } d$ $r \equiv_{not} D \text{ mod } d$

Dem: ...

Obs:

- La condición $0 \le r < |d|$ es la que "caracteriza" al "algoritmo" de la división entera:
 - Aunque 18 = (-4)(-5) 2, -2 no puede ser el resto de la división entera de 18 entre -5, por ser un número negativo.
 - Aunque 18 = 3(-5) + 33, 33 **no** puede ser el resto de la división entera de 18 entre -5, pues 33 no es menor que |-5|.
 - $18 = (-3) \cdot (-5) + 3$, c = -3, r = 3.

Obs:

- Fijado el divisor b sólo hay |b| posibles restos: $0,1,2,\cdots,|b|-1$, lo que nos permite clasificar los infinitos números enteros en una cantidad finita de clases, según los restos que producen al dividirlos por b.
- Puede ser útil "leer el teorema de atrás hacia delante": para cada $d \neq 0$ y $0 \leq r < |d|$ los valores $D = c \cdot d + r$ son aquellos que divididos por \boldsymbol{d} dan resto \boldsymbol{r} , y cada $D \in \mathbb{Z}$ podrá ser obtenido para algún tal r (de manera única).

Ejemplo: Demúestrese que el cuadrado de cualquier número entero es de la forma $3 \cdot k$ o $3 \cdot k + 1$ para algún $k \in \mathbb{Z}$

"Leyendo de atrás hacia adelante el teorema", demostrar que "dado $n \in \mathbb{Z}$ entonces $n^2 = 3 \cdot k$ o $n^2 = 3 \cdot k + 1$ para algún $k \in \mathbb{Z}$ " es equivalente a demostrar que "al dividir n^2 entre 3 queda siempre resto 0 o 1".

El teorema de la división, de nuevo leído hacia atrás, garantiza que tendremos $n = 3 \cdot c$, $n = 3 \cdot c + 1$ o $n = 3 \cdot c + 2$

Con lo que:

- Si $n = 3 \cdot c$ entonces $n^2 = 3 \cdot (3 \cdot c^2) = 3 \cdot k$ para $k = 3 \cdot c^2 \in \mathbb{Z}$.
- Si $n = 3 \cdot c + 1$ entonces $n^2 = 3 \cdot (3 \cdot c^2 + 2 \cdot c) + 1 = 3 \cdot k + 1$ para $k = (3 \cdot c^2 + 2 \cdot c) \in \mathbb{Z}$.
- Si $n = 3 \cdot c + 2$ entonces $n^2 = 3 \cdot (3 \cdot c^2 + 4 \cdot c + 1) + 1 = 3 \cdot k + 1$ para $k = (3 \cdot c^2 + 4 \cdot c + 1) \in \mathbb{Z}$.

MÁXIMO COMÚN DIVISOR

DEF:

El máximo común divisor de dos números enteros **a** y **b** es el mayor número natural **d** que es divisor común de **a** y **b**; es decir **d** es el máximo común divisor de **a** y **b** si y sólo si

- I) d | a
- II) **d|b**
- III) $\forall c \in \mathbb{Z}$ tal que $c \mid a \ y \ c \mid b$, entonces $c \leq d$

Notación: d = m.c.d.(a, b) indica que existe el máximo común divisor de a y b y que vale d.

MÁXIMO COMÚN DIVISOR

Propiedades:

- (1) No existe m.c.d.(0,0)
- (2) $\forall a, b \in \mathbb{Z}$, $a \neq 0$ o $b \neq 0$, se cumple m.c.d.(a, b) = m.c.d.(b, a)
- (3) $\forall a \in \mathbb{Z}, a \neq 0$ se cumple m.c.d.(a, 0) = m.c.d.(0, a) = |a|
- (4) $\forall a, b \in \mathbb{Z}$, $a \neq 0$ o $b \neq 0$, se cumple m.c.d.(a, b) = m.c.d.(|a|, |b|)

Teorema:

 $\forall a, b \in \mathbb{Z}, a \neq 0 \text{ o } b \neq 0$, existe el máximo común divisor de a y b y es único.

<u>Dem:</u> Como $\forall n \in \mathbb{Z}, \ 1 \mid n$ y $\forall n \in \mathbb{Z}, \ n \neq 0, \ |n|$ es el mayor divisor de n; el conjunto de los divisores positivos comunes de a y b es un subconjunto finito, no vacío, de \mathbb{N} , que tendrá un máximo único.

LEMA DE REDUCCIÓN DE EUCLIDES

Inmediato

Lema de reducción de Euclides

Dados $a, b \in \mathbb{Z}_1$, $a \ge b$, y $c, r \in \mathbb{Z}_0$ tales que $a = c \cdot b + r$ y $0 \le r < b$, se tiene que m.c.d.(a, b) = m.c.d.(b, r).

Basta demostrar que los divisores comunes de a y b coinciden con los de b y r:

En realidad, lo hemos demostrado utilizando $a \neq 0$ o $b \neq 0$ como única restricción.

Algoritmo de Euclides

i		
0	$a=c_0\cdot b+r_0$	$0 < r_0 < b$
1	$b=c_1\cdot r_0+r_1$	$0 < r_1 < r_0$
2	$r_0 = c_2 \cdot r_1 + r_2$	$0 < r_2 < r_1$
k	$r_{k-2} = c_k \cdot r_{k-1} + r_k$	$0 < r_k < r_{k-1}$
k+1	$r_{k-1}=c_{k+1}\cdot r_k+0$	$r_{k+1}=0$
k+2	$d \leftarrow r_k$	$r_0 > r_1 \cdots \geq 0$

 a_{i} :Dividendo tras i-ésima reducción de Euclides b_{i} :Divisor tras la i-ésima reducción de Euclides c_{i} :Cociente tras i-ésima reducción de Euclides r_{i} :Resto tras la i-ésima reducción de Euclides $a_{0}=a,\ b_{0}=b$ $a_{i}=b_{i-1}\qquad \qquad i\geq 1$ $b_{i}=a_{i-1}\ \mathrm{mod}\ b_{i-1}\qquad i\geq 1$ $a_{k+2}=r_{k}=d$ $b_{k+2}=r_{k+1}=0$

Algoritmo de Euclides

Ej:
$$m.c.d.(51,21) = 3$$

i	aį	b _i	ri	Ci
0	51	21	9	2
1	21	9	3	2
2	9	3	0	3
3	3	0		

$$k = 1$$
 ; $i = k+2 = 3$

Teorema de Bézout

Siendo $a, b \in \mathbb{Z}$, $(a \neq 0)$ o $(b \neq 0)$ y d = m.c.d.(a, b), tenemos que $\exists m, n \in \mathbb{Z}$, tales que $d = m \cdot a + n \cdot b$.

Dem: Sea $C = \{a \cdot x + b \cdot y / a \cdot x + b \cdot y > 0, x, y \in \mathbb{Z}\}$

C es un subconjunto no vacío de \mathbb{N} , ya que $(a \cdot a + b \cdot b) \in C$, y por el principio de buena ordenación tiene un mínimo $d = m \cdot a + n \cdot b$, con $m, n \in \mathbb{Z}$.

Veamos que d = m.c.d.(a, b):

• d|a En efecto: por el teorema de la división $\exists c, r \in \mathbb{Z}$ únicos tales que $r = a - c \cdot d$ y $0 \le r < d$. $(|d| = d \text{ pues } d \in C)$ Luego r puede ponerse como combinación lineal entera de a y b, ya que $r = a - c \cdot (m \cdot a + n \cdot b) = a \cdot \underbrace{(1 - c \cdot m)}_{\in \mathbb{Z}} + b \cdot \underbrace{(-c \cdot n)}_{\in \mathbb{Z}}$, para ciertos $m, n \in \mathbb{Z}$. Por tanto, como $0 \le r < d$, necesariamente tendremos r = 0, ya

 $m, n \in \mathbb{Z}$. Por tanto, como $0 \le r < d$, necesariamente tendremos r = 0, ya que d es el mínimo de C, concluyéndose que $a = c \cdot d$.

- d|b Arriba podemos tomar b en lugar de a, pues m.c.d.(b, a) = m.c.d.(a, b).
- $\forall c \in \mathbb{Z}$ tal que $c \mid a$ y $c \mid b$, se tiene $c \le d$ $(c \mid a \land c \mid b) \rightarrow c \mid (\underbrace{a \cdot m + b \cdot n}_{d})$ Luego $c \mid d$ y por tanto $c \le |c| \le d$, ya que $c \mid d$

Luego $c \mid d$ y por tanto $c \leq |c| \leq d$, ya que $c \mid d \rightarrow |c| \mid d$ y $\forall m, n \in \mathbb{N} \ (m \mid n \rightarrow m \leq n)$

Obs:

- El m.c.d.(a, b) es la combinación lineal entera positiva "más pequeña" de a y b.
- La expresión de m.c.d.(a, b) como combinación lineal entera positiva de a y b, no es única.

Ej.:
$$m.c.d.(-18,24) = 6$$

 $-18 \cdot 1 + 24 \cdot 1 = 6$
 $-18 \cdot 5 + 24 \cdot 4 = 6$
 $-18 \cdot (-3) + 24 \cdot (-2) \Rightarrow 6$

Algoritmo de Euclides extendido para obtener una identidad de Bézout

Se parte de la iteración i = k + 2 con la que termina el algoritmo de Euclides al calcular d = m.c.d.(a, b), y se procede del siguiente modo:

```
\begin{aligned} i &\leftarrow k+2 \\ m_i &\leftarrow 1 \\ n_i &\leftarrow 0 \\ \text{Mientras que} \quad i \neq 0 \quad \text{hacer} \\ i &\leftarrow i-1 \\ m_i &\leftarrow n_{i+1} \\ n_i &\leftarrow m_{i+1} - n_{i+1} \cdot c_i \\ \text{fmientras} \\ m &\leftarrow m_0 \\ n &\leftarrow n_0 \end{aligned}
```

ALGORITMO DE EUCLIDES EXTENDIDO PARA OBTENER UNA IDENTIDAD DE BÉZOUT

$$m_{k+2} = 1, \quad n_{k+2} = 0$$
 $a_0 = a, \quad b_0 = b$ $m_i = n_{i+1}$ $0 \le i \le k+1$ $a_i = b_{i-1}$ $k+2 \ge i \ge 1$ $m_i = m_{i+1} - n_{i+1} \cdot c_i$ $0 \le i \le k+1$ $b_i = a_{i-1} \mod b_{i-1}$ $k+2 \ge i \ge 1$ $m_i = m_0, \quad n_i = n_0$ $c_i = a_i \text{ div } b_i$ $k+2 > i > 0$

$$a_0 = a, b_0 = b$$
 $a_i = b_{i-1}$
 $b_i = a_{i-1} \mod b_{i-1}$
 $k + 2 \ge i \ge 1$
 $c_i = a_i \text{ div } b_i$
 $k + 2 \ge i \ge 0$

La corrección de este algoritmo puede demostrarse probando que

$$\forall i \in \{0, \dots, k+2\}$$
 m.c.d. $(a_i, b_i) = m_i \cdot a_i + n_i \cdot b_i$

por inducción simple por predecesores.

Algoritmo de Euclides extendido para obtener una identidad de Bézout

Ej: m.c.d. $(272,18) = 2 = 1 \cdot 272 + (-15) \cdot 18$, m = 1, n = -15

i	a _i	bi	ri	Ci	m _i	ni
0	272	18	2	15	1	-15
1	18	2	0	9	0	1
2	2	0			1	0

$$m.c.d.(51,21) = 3 = ? \cdot 51 + ?' \cdot 21, m = ?, n = ?'$$

Lema de múltiplos:

$$\forall a, b \in \mathbb{Z}, \ \forall k \in \mathbb{N}_1 \ \text{m.c.d.}(k \cdot a, k \cdot b) = k \cdot \text{m.c.d.}(a, b)$$

Dem.:

Sea
$$d = \text{m.c.d.}(a, b)$$

 $(d \mid a \ y \ d \mid b) \rightarrow (k \cdot d \mid k \cdot a \ y \ k \cdot d \mid k \cdot b)$

$$\forall d^{'} \in \mathbb{Z}, \ d^{'} | \ k \cdot a \ y \ d^{'} | \ k \cdot b, \ \ ext{entonces} \ d^{'} \leq k \cdot d$$

En efecto:

$$\exists m, n \in \mathbb{Z}, d = m \cdot a + n \cdot b \text{ (Bézout)}$$

$$\rightarrow \exists m, n \in \mathbb{Z}, k \cdot d = m \cdot k \cdot a + n \cdot k \cdot b$$

$$(d' | k \cdot a \ y \ d' | k \cdot b) \rightarrow (d' | \underbrace{m \cdot k \cdot a + n \cdot k \cdot b}_{k \cdot d})$$

$$\rightarrow d' | k \cdot d$$

$$\rightarrow |d' | k \cdot d$$

$$| |k \cdot d| = k \cdot d$$

 $\rightarrow d' < k \cdot d$

 $[|k \cdot d| = k \cdot d]$

Lema de reducción:
$$\forall a, b \in \mathbb{Z}$$
, si d = m.c.d. (a, b) entonces $\exists a_1, b_1 \in \mathbb{Z}, a = d \cdot a_1, b = d \cdot b_1$ con m.c.d. $(a_1, b_1) = 1$

Dem.:

$$d = m.c.d.(a, b) \rightarrow (\exists a_1, b_1 \in \mathbb{Z}, a = d \cdot a_1, y b = d \cdot b_1)$$

ya que $d \mid a y d \mid b$.

$$d = m.c.d.(a, b) = m.c.d.(d \cdot a_1, d \cdot b_1) = d \cdot m.c.d.(a_1, b_1)$$

justificándose la última igualdad por el lema anterior.

Luego m.c.d. $(a_1, b_1) = 1$, ya que $d \in \mathbb{N}_1$.

DEF:

Decimos que dos enteros a y b no nulos son primos entre sí (coprimos o primos relativos), si m.c.d.(a,b) = 1

Teorema: a y b no nulos son primos entre sí, si y sólo si, existen $m, n \in \mathbb{Z}$ tales que $m \cdot a + n \cdot b = 1$.

Dem.:
$$\Longrightarrow$$
) a y b primos entre sí \sim m.c.d. $(a, b) = 1$
 $\rightarrow (\exists m, n \in \mathbb{Z}, 1 = \text{m.c.d.}(a, b) = m \cdot a + n \cdot b)$
 (Th. Bézout)

Sea $c \in \mathbb{Z}$, $(c \mid a \mid y \mid c \mid b)$. Entonces $\exists k, l \in \mathbb{Z}$, $(a = k \cdot c \mid y \mid b = l \cdot c)$, y por tanto $\exists k, l, m, n \in \mathbb{Z}$, $(1 = m \cdot a + n \cdot b = m \cdot k \cdot c + n \cdot l \cdot c = (m \cdot k + n \cdot l) \cdot c)$, luego $c \mid 1$. Lo que nos

permite concluir que m.c.d.(a, b) = 1, pues 1 es divisor de cualquier número y es el único divisor positivo del propio 1.

Lema de Euclides

Dados $a, b, c \in \mathbb{Z}$, $(a \neq 0)$ o $(b \neq 0)$, si $a \mid b \cdot c$ y m.c.d.(a, b) = 1, entonces $a \mid c$.

Dem.:

m.c.d.
$$(a,b) = 1 \rightarrow (\exists m, n \in \mathbb{Z}, 1 = m \cdot a + n \cdot b)$$
 (Th. Bézout)
 $\rightarrow (\exists m, n \in \mathbb{Z}, c = m \cdot a \cdot c + n \cdot b \cdot c)$

$$a \mid b \cdot c \rightarrow (\exists k \in \mathbb{Z}, b \cdot c = k \cdot a)$$

Luego
$$\exists m, n, k \in \mathbb{Z}, c = m \cdot a \cdot c + n \cdot k \cdot a = (\underbrace{m \cdot c + n \cdot k}_{\in \mathbb{Z}}) \cdot a,$$

concluyendose que a c.

Ejercicio: Dados $a, b, c \in \mathbb{Z}$, $(a \neq 0)$ o $(b \neq 0)$, refuta la siguiente afirmación: si $a \mid b \cdot c$, entonces $a \mid b$ o $a \mid c$.

MÍNIMO COMÚN MÚLTIPLO

El mínimo común múltiplo de dos números enteros \boldsymbol{a} y \boldsymbol{b} es el menor número natural **positivo** \boldsymbol{m} que es múltiplo común de \boldsymbol{a} y \boldsymbol{b} , en caso de que alguno tal exista. Sería entonces el menor $\boldsymbol{m} \in \mathbb{N}_1$ que cumpla las tres condiciones siguientes:

- I) $a \mid m \pmod{m = \dot{a}}$
- II) $b \mid m \pmod{m = \dot{b}}$
- III) $\forall c \in \mathbb{N}_1$ si $(c = \dot{a})$ y $(c = \dot{b})$, entonces $m \le c$

Notación: m = m.c.m.(a, b) indica que existe el mínimo común múltiplo de a y b y que vale m.

MÍNIMO COMÚN MÚLTIPLO

Teorema:

 $\forall a, b \in \mathbb{Z}, \ a \neq 0 \text{ y } b \neq 0, \text{ existe el mínimo común múltiplo de } a \text{ y } b$ y es único

Dem: Sea $M_{ab} = \{ n \in \mathbb{N}_1 / n = \dot{a} \text{ y } n = \dot{b} \}$

Como $|a \cdot b|$ es múltiplo positivo común de ambos, M_{ab} es un subconjunto no vacío de \mathbb{N} que tiene un mínimo único.

Propiedades:

- (1) Para ningún $\mathbf{a} \in \mathbb{Z}$, existe nunca m.c.m.(\mathbf{a} ,0), ni existe m.c.m.($\mathbf{0}$, \mathbf{a})

 Dem: Aunque $0 = \dot{a}$ para cualquier a, el único múltiplo de 0 es 0,

 y por tanto no existe ningún número natural **positivo** que sea

 múltiplo común de 0 y a.
- (2) $\forall a, b \in \mathbb{Z}$, $a \neq 0$ y $b \neq 0$, se cumple m.c.m.(a, b) = m.c.m.(b, a)
- (3) $\forall a, b \in \mathbb{Z}$, $a \neq 0$ y $b \neq 0$, se cumple m.c.m.(a, b) = m.c.m.(|a|, |b|)

MÍNIMO COMÚN MÚLTIPLO

(4) $\forall a, b \in \mathbb{N}_1$, se cumple m.c.d. $(a, b) \cdot \text{m.c.m.}(a, b) = a \cdot b$

```
Dem: Sean
```

$$\overline{d} = m.c.d.(a, b), m = \frac{a \cdot b}{d}$$
 y a_1, b_1 los enteros del lema de reducción,

con lo que
$$m = b_1 \cdot a$$
, $(m = \dot{a})$, $m = a_1 \cdot b$, $(m = \dot{b})$ y $m \in \mathbb{N}_1$.

Entonces para concluir
$$m = \text{m.c.m.}(a, b)$$
 basta con demostrar

$$\forall c \in \mathbb{N}_1 \ ((c = \dot{a}) \ y \ (c = b)) \rightarrow m \leq c$$

En efecto:

$$((c = \dot{a}) \ y \ (c = \dot{b})) \ \rightarrow \ (\exists \ r, s \in \mathbb{N}_1, \ c = r \cdot a \ y \ c = s \cdot b)$$

Por Th. Bézout:
$$\exists m_1, n_1 \in \mathbb{Z}, d = m_1 \cdot a + n_1 \cdot b$$
.

Dividiendo c entre m (puede dividirse por ser m > 0):

$$\exists m_1, n_1 \in \mathbb{Z} \quad \exists r, s \in \mathbb{N}_1, \quad \frac{c}{m} = \frac{c \cdot d}{a \cdot b} = \frac{c \cdot (m_1 \cdot a + n_1 \cdot b)}{a \cdot b} = \frac{c}{b} \cdot m_1 + \frac{c}{a} \cdot n_1$$
$$= \frac{s \cdot b}{b} \cdot m_1 + \frac{r \cdot a}{a} \cdot n_1 = s \cdot m_1 + r \cdot n_1 \in \mathbb{N}_1$$

Luego
$$c = (s \cdot m_1 + r \cdot n_1) \cdot m$$
 con $s \cdot m_1 + r \cdot n_1 \in \mathbb{N}_1$,
de modo que $m \mid c$ y por tanto $m \leq c$ (por ser $m, c > 0$)

Números primos

DEF:

Un número entero p es primo si $p \ge 2$ y los únicos divisores **positivos** de p son el 1 y el propio p

DEF:

Un número entero $x \geq 2$ es **compuesto** cuando no es primo; es decir si existe una "factorización" $x = k \cdot l$ que expresa x como producto de dos enteros k y l, tales que 1 < k < x y 1 < l < x

Obs:

- Todo entero n tiene a 1, n, -1 y -n como divisores, a los que se llama divisores triviales, mientras que los demás divisores (si los tiene) son divisores propios. Entonces un número entero $p \ge 2$ es primo si no tiene divisores propios o, equivalentemente, si sus únicos divisores son los triviales.
- 2 es el menor número primo y todos los demás números positivos pares son compuestos (pues tienen a 2 como divisor propio).
- El 1 ni es primo, ni es compuesto: (1 ≥ 2) y sólo tiene divisores triviales (1 y -1).
- El 0 ni es primo, ni es compuesto: (0 ≥ 2) y aunque tiene infinitos divisores propios, no puede factorizarse como producto de enteros positivos.
- Los números enteros negativos se dividen en tres clases: -1, los opuestos de los números primos y los opuestos de los números compuestos.

Proposición

 $\forall a \in \mathbb{Z} \ \forall p \in \mathbb{Z}, p \text{ primo, se tiene que}$

$$m.c.d.(p, a) = \begin{cases} p & si & p \mid a \\ 1 & si & p \nmid a \end{cases}$$

Dem: Los únicos posibles divisores positivos comunes de p y a son 1 y p.

Proposición

Si p es primo y x_1, x_2, \dots, x_n son enteros tales que $p \mid x_1 \cdot x_2 \cdot \dots \cdot x_n$, entonces $p \mid x_i$ para algún i con $1 \le i \le n$.

Dem: Por inducción simple sobre n, con $n \ge 1$.

$$\mathsf{P}(\mathsf{n}): \quad \rho \mid \prod_{i=1}^n x_i \to \exists j \in \{1, \cdots, n\}, \ \rho \mid x_j$$

Caso base: n = 1 $p \mid x_1$ Trivial

Paso inductivo: Sea $k \in \mathbb{Z}, \ k \geq 1$

HI: P(k):
$$p \mid \prod_{i=1}^k x_i \rightarrow \exists j \in \{1, \dots, k\}, p \mid x_j$$

$$iP(k) \rightarrow P(k+1)$$
?

Ejercicio: Escribe una demostración alternativa del Subcaso ii) usando el Lema de Fuclides.

TEOREMA FUNDAMENTAL DE LA ARITMÉTICA

 \forall $n \in \mathbb{N}$, $n \ge 2$ puede expresarse de forma única (salvo el orden de los factores) como

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_m^{e_m}$$

dónde p_1, p_2, \cdots, p_m son primos distintos y $m, e_1, e_2, \cdots, e_m \in \mathbb{N}_1$ (es decir $\forall n \in \mathbb{N} \ n \geq 2$, su descomposición en factores primos es única)

Dem:

<u>Parte 1</u>: Todo $n \in \mathbb{N}_2$ puede descomponerse en factores primos

Lo demostraremos por inducción completa sobre *n*.

Caso base:

n = 2 Obvio: m = 1, $e_1 = 1$, $p_1 = 2$

Paso inductivo completo: Dado k > 2

HIC: $\forall I$, $2 \le I < k$, I puede descomponerse en factores primos

CIC: k puede descomponerse en factores primos

Caso i) k es primo, Obvio: m = 1, $p_1 = k$, $e_1 = 1$

Caso ii) k es compuesto, es decir $\exists a, b \in \{2, 3, \dots, k-1\}$ tales que $k=a \cdot b$

Por HIC a y b pueden descomponerse en factores primos y por tanto también $k = a \cdot b$

Luego $\forall n \in \mathbb{N}_2$, n puede descomponerse en factores primos

Parte 2: $\forall n \in \mathbb{N}_2$ su descomposición en factores primos es única

Lo demostraremos por inducción completa sobre n.

Caso base:

$$n = 2$$
 Obvio: $m = 1$, $e_1 = 1$, $p_1 = 2$

Paso inductivo completo: Dado k > 2

HIC: $\forall I$, $2 \le I < k$, la descomposición en factores primos de I es única

CIC: la descomposición de k en factores primos es única

Caso i) k es primo, Obvio: m = 1, $p_1 = k$, $e_1 = 1$

Caso ii) k es compuesto.

Supongamos que k puede descomponerse en factores primos de dos formas distintas $k = \prod_{i=1}^s p_i$, con p_i primos no necesariamente distintos para $1 \le i \le s$ y $k = \prod_{j=1}^r q_j$, con q_j primos no necesariamente distintos para $1 \le j \le r$. Obviamente s, r > 1, por ser k compuesto.

$$\begin{split} k &= \prod_{i=1}^s p_i \to p_1 \mid k \\ &\to p_1 \mid q_1 \cdot q_2 \cdots q_r \\ &\to p_1 \mid q_j \text{ para algún } j \in \{1, \cdots, r\} \\ &\to p_1 = q_j \text{ para algún } j \in \{1, \cdots, r\} \quad \text{[por ser } p_1 \text{ y } q_j \text{ primos]} \end{split}$$
 Sea $a = p_2 \cdot p_3 \cdots p_5$. Entonces $k = p_1 \cdot a = q_j \cdot a = q_j \cdot \prod_{u=1, u \neq j}^r q_u$. Luego $a = p_2 \cdot p_3 \cdots p_5 = \prod_{u=1, u \neq j}^r q_u$, lo que es absurdo, pues al ser $2 \leq a < k$ por la HIC, su descomposición en factores primos ha de ser única.

Para cualquier primo existe otro primo mayor.

Infinitud del conjunto de los números primos

Teorema: Si p es primo, cualquier factor primo de 1 + p! es mayor que p.

<u>Dem:</u> Sean p y q primos tales que $q \mid (1 + p!)$.

Supongamos que $q \leq p$

$$q \mid (1+p!) \longrightarrow \exists n \in \mathbb{Z}_1 \ 1+p! = n \cdot q$$
 $[q, p \ge 2]$

$$(2 \le q \le p) \quad \rightarrow q \mid p! \rightarrow \exists \ m \in \mathbb{Z}_1 \quad p! = m \cdot q \\ \rightarrow \exists \ n, m \in \mathbb{Z}_1 \quad n \cdot q = 1 + p! = 1 + m \cdot q \\ \leftrightarrow \exists \ n, m \in \mathbb{Z}_1, \quad (n - m) \cdot q = 1 \\ \rightarrow q \mid 1 \quad \text{lo que es absurdo pues} \quad q \ge 2$$

CÁLCULO DEL MÁXIMO COMÚN DIVISOR Y DEL MÍNIMO COMÚN MÚLTIPLO USANDO DESCOMPOSICIONES EN FACTORES PRIMOS

Dadas las descomposiciones de a y b en factores primos:

- Los factores primos del máximo común divisor tienen que ser divisores comunes de a y b, luego para calcular m.c.d.(a,b) hay que quedarse con esos divisores primos comunes elevados al menor exponente con que aparezcan en ambas factorizaciones.
- Cada uno de los factores primos de a o de b debe serlo del mínimo común múltiplo, luego para calcular m.c.m.(a,b) hay que quedarse con todos los divisores primos de a o de b, elevados al mayor exponente con que aparezcan en sus factorizaciones.

$$a = 360 = 2^3 \cdot 3^2 \cdot 5$$

 $b = 336 = 2^4 \cdot 3 \cdot 7$

m.c.d.(360, 336) =
$$2^3 \cdot 3 = 24$$

m.c.m.(360, 336) = $2^4 \cdot 3^2 \cdot 5 \cdot 7 = 5040$