II.4. Minimization of Boole Functions Using Karnaugh Diagrams

The Veitch-Karnaugh Method

- provides a visual way of putting together the conjunction terms in DNF for which unification can be applied
- unification is possible if two terms differ on one variable only
 - which is negated for one term and not negated for the other one
- such terms become neighbors in a Karnaugh diagram

Structure of a Karnaugh Diagram

2-dimensional table

- variable names
 - for rows and columns, respectively
- label area
 - label bit string of length n
 - each bit corresponds to a variable (input)
 - all possible input combinations are present
- function value (output) area

Examples of Diagrams

Grey Code

- labels are not written in increasing order, but in Grey order
- any two consecutive labels, including the first and the last, differ by one bit
 - 2 bits: 00, 01, 11, 10
 - 3 bits: 000, 001, 011, 010, 110, 111, 101, 100
 - 4 bits: 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1011, 1001, 1000

Diagram Adjacencies (1)

- two positions are adjacent if their corresponding labels differ by a single bit
 - Grey code: adjacency → neighborhood
- for an *n*-variable function, a location has *n* adjacent locations
 - -n < 5: adjacent locations are found visually (up, down, left, right)
 - $-n \ge 5$: there are also other adjacencies, not directly visible

Diagram Adjacencies (2)

- there may be more than 2 adjacent locations
 - extend the unification to more than 2 variables
- in Karnaugh diagrams, they correspond to blocks with 2^k locations
 - power of 2 both for rows and for columns
 - including power 0
 - rectangle-shaped
 - for each location, the block must contain precisely k adjacent locations

Karnaugh Minimization

- look for blocks containing only 1s
 - corresponding to an adjacency (see before)
 - the blocks as large and as few as possible
- for each block with 2^k locations (all 1s)
 - we have a conjunction term of n-k variables
 - contains the variables whose values are constant for all locations in the block
 - 0: variable is negated; 1: variable is not negated
 - all these terms are connected by disjunction

Examples

Adjacency of Extreme Rows/Columns

$$f = \Sigma(0,2,3,4,5,6)$$

Expression Depends on Groups

Avoiding Redundancies

non-minimal simplification

minimal simplification

Impossible Value Combinations

- certain value combinations will never show up on input
 - according to the behavior we seek
 - but the diagram must be filled for all value combinations of the variables
- in the locations corresponding to these combinations we can write either 0 or 1
 - in order to get a simpler expression

Example - Displaying Decimal Digits

- 7 segment display
- selecting the segments for each digit
 - 0 switched off
 - 1 switched on
- input (command) 4 variables
 - a decimal digit can be written on 4 bits

Segment *d* - Truth Table

No	A	В	C	D	d
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

No	A	В	C	D	d
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	*
11	1	0	1	1	*
12	1	1	0	0	*
13	1	1	0	1	*
14	1	1	1	0	*
15	1	1	1	1	*

Simpler Expressions

"safe" simplification

exploiting impossible combinations

Homework: 2-bit Comparison

- 4 variables: A, B, C, D
- make 2 numbers

$$-N_1 = AB$$

$$-N_2 = CD$$

• 3 outputs - correspond to the truth values

$$-LT = (N_1 < N_2)$$

$$- EQ = (N_1 = N_2)$$

$$-GT = (N_1 > N_2)$$

A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Homework: 2-bit Multiplication

- 4 variables: A, B, C, D
- make 2 numbers

$$-N_1 = AB$$

$$-N_2 = CD$$

• 4 outputs - the product $N_1 \cdot N_2$

A	В	C	D	P8	P4	P2	P1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

Homework: BCD Increment by 1

- 4 variables
 - make a BCD numbers
 - between 0 and 9
- 4 outputs the input number, incremented
 - the result is also aBCD number

I8	I4	I2	I1	O8	O4	O2	01
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	*	*	*	*
1	0	1	1	*	*	*	*
1	1	0	0	*	*	*	*
1	1	0	1	*	*	*	*
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*

II.5. Combinational Circuits

• output values depend only on the input values at the current moment

The Multiplexer

- 2ⁿ inputs (data)
- *n* selection inputs (control variables)
 - control (address) bits
- a single output
- each data input corresponds to a DNF term
- one of the inputs (data bit) is selected copied to the output

Multiplexer $4 \rightarrow 1 (n=2)$

S_1	S_0	O
0	0	I_0
0	1	\mathbf{I}_1
1	0	${ m I}_2$
1	1	I_3

Logic Diagram (4→1)

Implementation of Boole functions

- selection inputs make a number
- which is the index of the data input to be selected for the output
- we can thus implement Boole functions through the multiplexer
 - data inputs the outputs corresponding to the rows in the truth table
 - selection inputs inputs of the Boole function

Examples

Efficient Implementation - folding

majority of 3

A	В	C	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

_A	В	
0	0	0
0	1	С
1	0	C
1	1	1

Efficient Implementation - folding

			1
A	В	C	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

		odd
A	В	
0	0	С
0	1	$\overline{\overline{\mathbf{C}}}$
1	0	$\overline{\overline{C}}$
1	1	С

The Decoder

- *n* inputs
- 2^n outputs
- at each moment, exactly one of the outputs is activated
 - the one whose index is the number made by the inputs
 - each output corresponds to a DNF term written with the input variables

Decoder *n*=2

I_1	I_0	O_3	O_2	O_1	O_0
0	0	0	0		1
0	1	0	0		0
1	0	0	1	_	0
1	1	1	0	0	0

Logic Diagram (*n*=2)

Addition - Decoder Implementation

A	В	C_{in}	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The Comparison Circuit

- comparison operators: = $, > , < , \ge , \le$
 - example of implementation: 4-bit equality
 - homework: complete comparison (<, =, >)

Adders

- half-adder
 - Adds the two input bits
 - outputs: a sum bit and a carry bit
 - cannot be extended for adding longer numbers
- full adder
 - Adds the three input bits (including carry in)
 - same outputs: a sum bit and a carry (out) bit
 - can be extended for multiple digits (bits)

Logic Diagrams

A	В	Sum	C _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A	В	C_{in}	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ripple-carry Adder (16 bits)

Ripple-carry Adders

- this kind of addres uses carry propagation
- advantage: the same (simple) circuit, repeated
- drawback: low speed
 - for each rank, one must wait for the result from the previous rank
 - so the delay is proportional to the number of bits

Speed-up (1)

- carry lookahead adder
 - carry in generated independently for each rank
 - $C_0 = A_0 B_0$
 - $C_1 = A_0 B_0 A_1 + A_0 B_0 B_1 + A_1 B_1$
 - •
 - $C_i = G_i + P_i C_{i-1} = A_i B_i + (A_i + B_i) \cdot C_{i-1}$
 - ...

Speed-up (2)

- carry lookahead adder (continued)
 - advantage hish speed
 - eliminates the delay caused by carry propagation
 - drawback requires complex additional circuits
 - usually combination of the two methods
- carry selection adder
 - for each rank, compute the sum for both $C_{in}=0$ and $C_{in}=1$, the select the correct result

Elementary Arithmetic Logic Unit (1 Bit)

F_1	F_0	F
0	0	A and B
0	1	A or B
1	0	A+B
1	1	A-B

 F_1, F_0 - control signals

Improved Design

F_1	F_0	F
0	0	A and B
0	1	A or B
1	0	A+B
1	1	A-B

 F_1, F_0 - control signals

Arithmetic Logic Unit (16 Bits)

