시스템반도체설계 Final_Project_<7조>

12181762 김현진

12191401 이찬희

12191787 엄찬하

목차

- 1. 16bit unsigned multiplier 설계
- 2. FF설계설명
- 3. 각 개별블록 스펙 기반으로 pipelining및 전체 구조설계 및 예측
- 4. 개별 블록 기반에서 예측한 결과와, 실제로 합쳐서 설계한 회로의결과 와 비교
- 5. 동작오류 검증

곱셈 방식에 대한 고찰

A.16개, 16개의 인풋을 각각 비트 단위로 곱셈

VS

B.16비트를 4비트씩으로 나누어 부분 곱들 간의 곱셈

Partial Product Adding Algorithm(1)

Wallace tree Output

Partial Product Adding Algorithm(2)

4bit Multiplier의 자리가 다른 출력 16개 ->이론적으로 15개의 32bit adder가 필요

Partial Product Adding Algorithm(3)

1st stage

16bit unsigned multiplier (wallace)

4bit unsigned multiplier (wallace) - Schematic

4X4multiplier

<Layout>

면적 ->34.04X29.82 (단위 u^2)

32bit Adder

Full_Adder

TR 28개 사용

다음 연결을 통해 아래 32bit 구조 설계

D-FF 설계 설명

pipelining및 전체 구조설계 및 예측

(Power-Performance-Area, clock speed, 동작속도 등)

면적 :128.82 x 5.64 µ² (가로 x 세로)

TSPC D-FF

- 고속 동작
- 낮은 전력 소모
- 작은 면적

pipelining및 전체 구조설계 및 예측

LayOut

실제 시뮬레이션 값 성능

DRC,LVS 검증

감사합니다