Problema 824 de triánguloscabri. Sean un triangulo ABC y un punto cualquiera D de la circunferencia circunscrita a ABC.

Las rectas AB y CD se cortan en un punto E.

Las rectas BC y AD se cortan en un punto F.

Las rectas EF y AC se cortan en un punto G.

Cuando D recorre la circunferencia circunscrita a ABC, hallar el lugar del centro del círculo circunscrito al triángulo CFG.

Propuesto por Philippe Fondanaiche y F. Javier García Capitán.

Solución de Francisco Javier García Capitán. Usaremos algunos conceptos Geometría Proyectiva. Creo que me habría sido imposible encontrar esta solución sin los conocimientos sobre Geometría Proyectiva y resolución de problemas en general que aprendí de mi gran amigo y uno de los mejores colaboradores de esta revista que fue José María Pedret, desgraciadamente fallecido en 2013. Sirva esta solución de homenaje, admiración y agradecimiento.

¡Muchas gracias, José María!

Con José María Pedret en 2006

Para ver un gran trabajo sobre Geometría Proyectiva escrito por José María Pedret, se aconseja visitar

http://garciacapitan.esy.es/pedret/

Para ver los problemas propuestos o resueltos por José María Pedret en esta reviasta, visitar

http://personal.us.es/rbarroso/trianguloscabri/colabor1-.htm

Nociones de Geometría Proyectiva

Una homografía $h: O^* \to O'^*$ entre los haces de rectas que pasan por O y O' es una biyección que conserva las razones dobles y queda determinada por tres rectas a, b, c de O^* y sus imágenes a', b', c' de O'^* .

En una homografía se cumple que si (a, a') y (b, b') son dos pares de rectas homólogas, la recta que une los puntos $a \cap b'$ y $a' \cap b$ siempre pasa por un punto fijo S, que se llama centro de la homografía.

Una vez hallado el punto S, para hallar la imagen de una recta cualquiera m de O^* , hallamos el punto $m \cap a'$, trazamos la recta que lo une con S y hallamos la intersección de dicha recta con a. La recta m' es la que pasa por O' y este punto.

La homografía h es una proyección cuando para cualquier par (m, m') de rectas homólogas, el punto $m \cap m'$ siempre está en una recta fija. Ese teorema es muy útil:

Condición de proyección. Una homografía $h: O^* \to O'^*$ es una proyección si y solo si la imagen de la recta OO' (perteneciente al haz O^*) es la misma recta O'O (también perteneciente al haz O'^* .

Cuando la homografía h no es una proyección, el Teorema de Chasles-Steiner nos da información sobre el lugar geométrico de las intersecciones de rectas homólogas:

Teorema de Chasles-Steiner. Si la homografía $h: O^* \to O'^*$ no es una proyección, el lugar geométrico de las intersecciones $m \cap m'$ es una cónica que pasa por O y O', y cuyas tangentes en O y O' son las rectas OS y O'S respectivamente.

Como caso particular, si los puntos O y O' son infinitos, todas las rectas de O^* serán paralelas, y también las de O'^* , y las rectas OS y O'S serán asíntotas de la cónica, por lo que S será el centro.

La homografía

1. Todos los circuncentros M de las circunferencias CFG son intersecciones de mediatrices m de CF y m' de CG perpendiculares respectivamente a las rectas CB y CA. Por tanto, todas las rectas m pasan por el punto del infinito J_a de la altura AH. De la misma forma, todas las rectas m' pasan por el punto del infinito J_b de la altura BH y tenemos definida una aplicación $h: J_b^* \to J_c^*$.

Detallemos cómo está definida la aplicación h. Dada una recta m perpendicular a CB (perteneciente a J_a^*),

- 1. F es el punto simétrico de C respecto de m.
- 2. D es la segunda intersección de AF y la circunferencia circunscrita.
- 3. E es la intersección de AB y CD.
- 4. G es la intersección de FG y CA.
- 5. m' es la mediatriz del segmento CG, que pertenece a J_b^* , es decir, es perpendicular a CA.

Por la forma de definir la aplicación h, vemos que es una homografía, ya que todo el proceso se reduce a hallar rectas que pasan por dos puntos (infinitos o no) y a hallar intersecciones de rectas.

La homografía h será una proyección si y solo si la recta J_aJ_b , que une los dos puntos base de los haces entre los que está definida, se transforma en sí misma. Como ambos puntos J_a y J_b son infinitos, la recta J_aJ_b es la recta del infinito. Entonces h será una proyección si y solo si cuando F sea el punto del infinito de la recta CB, entonces también es G el punto del infinito de la recta CA.

2. Considerando D = C, E es el punto de intersección con AB de la tangente a la circunferencia circunscrita en C, y F = C = G, por lo que el punto C pertenece al lugar geométrico.

3. Veamos un caso particular del problema, que nos permitirá hallar una asíntota. Sea D' el punto en el que la paralela por A a BC corta a la circunferencia circunscrita. Hallamos $E' = CD' \cap AB$ y G' la intersección de CA con la paralela por E' a CB. Entonces en el caso D = D' obtenemos E = E', G = G' y F es el punto del infinito de la recta CB, resultando que la homografía no es una proyección, y que, por tanto, el lugar de los puntos $M = m \cap m'$ es una cónica.

Además, la mediatriz de CG' es una asíntota de la curva. En efecto, sean r_A y r_B las perpendiculares por C a CB y CA, respectivamente. Por el apartado 2., es $h(r_A) = r_B$ y por lo que acabamos de decir en el párrafo anterior, $h(\ell_{\infty}) = m_{CG'}$, siendo $m_{CG'}$ la mediatriz de CG' y ℓ_{∞} la recta del infinito. Entonces, teniendo en cuenta el par de rectas homólogas (r_A, r_B) y $(\ell_{\infty}, m_{CG'})$, la recta que une los puntos $r_A \cap m_{CG'}$ y (un punto ordinario de $m_{CG'}$) y $r_B \cap \ell_{\infty} = J_b$ pasa por S. Pero ésta es la recta $m_{CG'}$ y es tangente a la curva en el punto infinito J_b , es decir es una asíntota de la cónica.

4. Observemos ahora otro caso particular.

Sean Y el punto medio de CA y D'' el punto en que la mediana BY vuelve a encontrar a la circunferencia circunscrita. Consideremos los puntos $E'' = CD'' \cap AB$ y $F'' = AD'' \cap BC$. Por construcción de la polar aplicada al cuadrilátero CD''AB, E''F'' es la polar de Y, por lo que E''F'' es perpendicular a OY y, por tanto, paralela a CA. En consecuencia $G'' = E''F'' \cap CA$ es el punto del infinito de la recta CA. Entonces en el caso de que D = D'' tenemos E = D'', F = F'' y G = G'', que es infinito, resultará que la mediatriz de CF'' será otra asíntota de la curva.

Conclusión

El lugar geométrico buscado que da determinado es una HIPÉRBOLA que tiene por asínto tas las rectas mediatrices de CG' y de CF'' descritas anteriormente y que pasa por el punto C.

