

planetmath.org

Math for the people, by the people.

multiresolution analysis

 ${\bf Canonical\ name } \quad {\bf Multire solution Analysis}$

Date of creation 2013-03-22 14:26:48 Last modified on 2013-03-22 14:26:48

Owner swiftset (1337) Last modified by swiftset (1337)

Numerical id 5

Author swiftset (1337)
Entry type Definition
Classification msc 46C99
Synonym level of detail

Related topic Wavelet

Defines scaling function

Definition A multiresolution analysis is a sequence $(V_j)_{j\in\mathbb{Z}}$ of subspaces of $L_2(\mathbb{R})$ such that

- 1. (nesting) $\ldots \subset V_{-1} \subset V_0 \subset V_1 \subset \ldots$
- 2. (density) $\overline{\operatorname{span}\bigcup_{j\in\mathbb{Z}}V_j}=L_2(\mathbb{R})$
- 3. (separation) $\bigcap_{j\in\mathbb{Z}} V_j = \{0\}$
- 4. (scaling) $f(x) \in V_j$ if and only if $f(2^{-j}x) \in V_0$
- 5. (orthonormal basis) there exists a function $\Phi \in V_0$, called a *scaling* function, such that the system $\{\Phi(t-m)\}_{m\in\mathbb{Z}}$ is an orthonormal basis in V_0 .

Notes Multiresolution analysis, particularly scaling functions, are used to derive wavelets. The V_j are called approximation spaces. Several choices of scaling functions may exist for a given set of approximation spaces— each determines a unique multiresolution analysis.