

MODEL SETUP I CASE STUDY

Barry Bunch, DE, PE

U.S. Army Engineer Research and Development Center, Environmental Laboratory

CE-QUAL-W2 Workshop

July 18 – 20, 2023

Outline

- Background
- Definition of problem
- **Required Information**
 - Bathymetry
 - Flow
 - Meteorology
 - Observations
 - Other
- Output

Detroit Dam,

Engineer Research and Development Center

UNCLASSIFIED

Case Study: Lower Minnesota River

- Real application to Lower Minnesota River
- Agricultural drainage basin
- Low DO issues
- RIVERINE CE-QUAL-W2 Application
- Objectives
 - Obtain a copy of the model, and review inputs and structure
 - Modify model input as directed and save
 - Run Model
 - Evaluate preliminary results

Case Study: Lower Minnesota River – CE-QUAL-W2

- Original Application: CE-QUAL-W2 ver. 3.6, (Tammy Threadgill, 2016)
- Important files
 - Bathymetry file
 - Boundary conditions
 - Flow files
 - Meteorological file
 - Control File
- Each of the above may require modification/revision for application at a different time or under different conditions.
- May want to work in a copy to prevent overwriting existing files

Bathymetry File

- Typically, the bathymetry file is the first file to be developed.
- Identifies the various geophysical components of model
- Segment
 - Cross-sectional widths and heights
 - Bottom Elevation
 - Directional Orientation
 - Initial Water Surface Elevation
 - Friction
- Reaches
 - Grouping of Segments

\$										
۲										
	1	2	3	4	5	6	7	8	9	10
DLX	0	754.25	1002.72	953.04	1958.26	256.59	1611.46	575.54	973.17	474.71
ELWS	214.66	214.66	214.6	214.54	214.45	214.25	214.23	214.147	214.1	214.05
PHI0	3.142	3.142	3.142	3.142	3.347	3.347	3.347	3.352	3.552	3.552
FRIC	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
LAYERH										
0.4	0	0	0	0	0	0	0	0	0	0
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8
0.4	0	2669.88	2247.91	1458.85	1722.49	1750.51	2030.03	2343.38	2116.63	1996.8

Bathymetry File: Full

Flow & Boundary Files

- Generate Time Series files for all potential external flows entering the model
- Frequency
- Each requires corresponding temperature and concentration boundary conditions file

■ 01QT355.INP

■ Mean daily flows, Sand Creek discharge near river mile 35.5, 10/01/00-9/30/01

■ Source: MCES

■ JDAY QIN Comment (e = estimated)

275.0 .4475

276.0 .4390

277.0 .4786

278.0 .2436

279.0 .0283

280.0 .0283

281.0 .0283

TRIB PLACEMENT and TRIB FILES	TR1	TR2	TR3	TR4	TR5	TR6	TR7	TR8	TR9	TR10	
PTRC - Tributary inflow placement	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY	DENSITY
TRIC - Interpolation control	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ITR - Tributary inflow segment	2	4	30	49	55	61	71	76	81	82	84
ELTRT - Top elevation if trib placement	0	0	0	0	0	0	0	0	0	0	0
ELTRB - Bottom elevation if trib placement	0	0	0	0	0	0	0	0	0	0	0
QTRFN - tributary flow file	01QT355.INP	01QT341.IN	01QD205.I	01QT137.I	01QT125.I	01QD107H.I	01QD076H	01QD065.I	01QD041.I	01QD038.I	01QD030.I
		P									
TTRFN - tributary temperature file	01TT355H.INP	01TT341H.IN	01TD205D	01TT137H.	01TT125H.	01TD107H.I	01TD076H	01TD065D	01TD041.I	01TD038.I	01TD030.I
CTRFN - tributary concentration file	01CTR_355_RU	01CTR_341_	01CTR_20	01CTR_13	01CTR_125	01CTR_107	01CTR_07	01CTR_065	01CTR_041	01CTR_03	01CTR_030
				7		_	6			8	

Temperature Boundary Condition File

Mean hourl	y temperature, Sand Creek to MN river mile	275.5417	16.40 e regression
35.5, 10/1/0	0-9/30/01	275.5833	16.80 e regression
Source: No	measurements so estimated via	275.6250	16.80 e regression
regression	to Nine Mile Creek	275.6667	16.90 e regression
JDAY	TIN Comment (e=estimated via regression)	275.7083	16.80 e regression
275.0000	15.50 e regression	275.7500	16.60 e regression
275.0417	15.30 e regression	275.7917	16.40 e regression
275.0833	15.10 e regression	275.8333	16.10 e regression
275.1250	14.90 e regression	275.8750	15.70 e regression
275.1667	14.60 e regression	275.9167	15.40 e regression
275.2083	14.40 e regression	275.9583	15.20 e regression
275.2500	14.10 e regression	276.0000	15.00 e regression
275.2917	14.00 e regression	276.0417	14.60 e regression
275.3333	13.90 e regression		
275.3750	14.00 e regression		
275.4167	14.60 e regression		
275.4583	15.20 e regression		
275.5000	15.60 e regression		

BODII

Water Quality Boundary Condition File

01CTR_355.NPT -- Sand Creek -- RM 35.5 -- WY01
Obtained from WY01_03 WQ Tributaries_TLT_RUN06.xls; updated LTI algal splits based on latest report

										BC	טטנ													
JDAY TDS	ISS1 F	PO4 N	H4 N0	O3 DSI LDOM	M RDO	M LPC	M RPOM 1C	2C	3C		4C	5C	6C ALG	1 ALG2	ALG3	DO I	LDOP R	RDOP L	POP R	POP LD	ON RD	ON LPC	N RPO	N
275.000 506.21	27.00	0.180	0.020	1.600 20.500	0.134	0.759	0.134 0.759	0.00	0.00	0.00	0.0	0.00	0.00 1.24	0.383	0.133 1	0.970	0.001	0.004	0.001	0.004	0.007	0.038	0.007	0.038
306.000 517.32	26.00	0.220	0.020	1.900 20.500	0.134	0.759	0.134 0.759	0.00	0.00	0.00	0.0	0.00	0.00 1.47	7 0.209	0.069 1	1.840	0.001	0.004	0.001	0.004	0.007	0.038	0.007	0.038
336.000 515.49	28.00	0.210	0.030	2.000 20.500	0.134	0.759	0.134 0.759	0.00	0.00	0.00	0.0	0.00	0.00 1.73	0.008	0.008 1	4.600	0.001	0.004	0.001	0.004	0.007	0.038	0.007	0.038
367.000 527.66	27.00	0.240	0.420	2.300 20.500	0.129	0.729	0.129 0.729	0.00	0.00	0.00	0.0	0.00	0.00 1.630	6 0.010	0.102 1	4.830	0.001	0.004	0.001	0.004	0.006	0.036	0.006	0.036
398.000 515.49	28.00	0.210	0.020	2.000 20.500	0.134	0.759	0.134 0.759	0.00	0.00	0.00	0.0	0.00	0.00 1.29	7 0.069	0.389 1	4.830	0.001	0.004	0.001	0.004	0.007	0.038	0.007	0.038
426.000 517.00										0.00			0.00 1.08											0.038
457.000 328.06	205.00	0.170	0.180	6.100 19.100	0.193	1.093	0.193 1.093	0.00	0.00	0.00	0.0	0.00	0.00 2.85	3 0.048	0.609 1	4.830	0.001	0.005	0.001	0.005	0.010	0.055	0.010	0.055
487.000 347.37	146.00	0.170	0.040	5.400 19.100	0.171	0.971	0.171 0.971	0.00	0.00	0.00	0.0	0.00	0.00 3.309	0.075	0.126 1	10.970 0	0.001 0.	005 0.0	01 0.00	5 0.009	0.049 0	0.009 0.0)49	
518.000 372.39	206.00	0.200	0.030	6.200 19.000	0.188	1.063	0.188 1.063	0.00	0.00	0.00	0.0	0.00	0.00 3.019	0.175	0.248 1	10.470 0	0.001 0.	005 0.0	01 0.00	5 0.009	0.053	0.009 0.0)53	
548.000 447.64	70.00	0.190	0.030	2.600 19.700	0.150	0.850	0.150 0.850	0.00	0.00	0.00	0.0	0.00	0.00 1.93	6 0.301	0.193	8.600	0.001	0.004	0.001	0.004	0.008	0.043	800.0	0.043
579.000 507.94	27.00	0.200	0.020	1.900 20.500	0.134	0.759	0.134 0.759	0.00	0.00	0.00	0.0	0.00	0.00 1.43	2 0.200	0.123	8.550	0.001	0.004	0.001	0.004	0.007	0.038	0.007	0.038
610.000 499.23	25.00	0.200	0.020	1.800 20.500	0.134	0.759	0.134 0.759	0.00	0.00	0.00	0.0	0.00	0.00 1.44	0 0.192	0.123	9.700	0.001	0.004	0.001	0.004	0.007	0.038	0.007	0.038
641.000 513.58	25.00	0.200	0.020	1.900 20.500	0.112	0.633	0.514 2.913	0.00	0.00	0.00	0.0	0.00	0.00 1.24	7 0.376	0.132 1	11.360	0.001	0.003	0.003	0.015	0.006	0.032	0.026	0.146

Meteorological File

- One file
- Daily or more frequent, depending upon issues
- Important to capturing what is happening "in" the model at a given time

Hourly (plus) meteorological data, MSP Intl Airport near river mi 3; updated 06/01/2009 Source: MDNR except solar from UM, St. Paul Campus; TLT added cloud cover from 14WS

JDAY TAIR TDEW WIND PHI	CLOUD SRO
275.000 23.900 10.000 3.600 2.600	8.0 0.000
275.037 22.800 8.900 5.100 2.600	8.3 0.000
275.079 22.800 8.900 6.200 3.000	8.6 0.000
275.120 22.200 8.900 6.700 3.100	8.9 0.000
275.162 21.100 9.400 6.700 3.500	9.1 0.000
275.204 21.700 9.400 7.700 3.700	9.4 0.000
275.245 21.100 8.900 5.700 3.700	9.7 0.000
275.250 21.100 9.400 6.200 3.700	10.0 23.012
275.287 20.000 10.000 6.200 3.700	9.9 23.012
275.329 18.900 10.000 5.100 3.700	9.7 88.560
275.370 17.200 10.000 3.600 3.700	9.6 128.307
275.412 16.100 10.000 1.500 3.050	9.4 355.633
275.454 14.400 10.000 3.600 2.400	9.3 433.733
275.495 13.900 10.000 3.100 2.300	9.1 278.231
275.500 14.400 10.000 3.100 2.300	9.0 370.974
275.537 13.900 10.600 3.100 2.400	9.0 370.974
275.579 15.000 10.600 3.100 2.600	9.0 175.725
275.620 16.100 10.600 4.100 3.100	9.0 149.924
275.662 18.300 11.100 4.100 2.600	9.0 56.483
275.704 20.000 11.100 4.600 3.000	9.0 28.590
275.745 21.100 11.100 3.050 2.720	9.0 9.763
275.750 20.600 11.100 1.500 2.440	9.0 0.000
275.787 22.200 11.700 3.100 2.160	9.0 0.000
275.829 22.200 11.700 0.000 1.880	9.0 0.000
275.870 23.300 11.700 5.100 1.600	9.0 0.000
275.912 22.200 11.700 2.600 3.000	9.0 0.000
275.954 22.800 11.700 2.600 1.950	9.0 0.000
275.995 22.200 12.200 3.600 0.900	9.0 0.000
276.000 21.700 12.200 3.600 0.900	9.0 0.000

Control File

This file contains specifications of much of the information that controls model operation

Fill in these with real date	DLT CON	NDLT	DLTMIN	DLTINTER
TMSTRT	Time step control parameters	7	0.1	OFF
10/1/2000 0:00				
TMEND	DLT DATE	DLTD	DLTD	DLTD
10/1/2001 0:00	Date of time step change in JDAY	275	277	457
275.000				
640.000	DLT MAX	DLTMAX	DLTMAX	DLTMAX
Year	Maximum time step in seconds	100	75	75
2000				
Go to Index of Sheets:	DLT FRN	DLTF	DLTF	DLTF
Index of Sheets'!A1	Fraction of maximum theoretical time step	0.4	0.4	0.4

After Model is Initially Set Up

- Run the W2 preprocessor
- Address what Errors the pre-processor identifies.
- Once addressed, re-run W2 pre-processor, and continue until there are no Errors.
- Evaluate Warnings to see if they warrant changes or modifications.
- Compare computed Volume Elevation curve to official curve if available.
 - If results are not satisfactory, adjust the bathymetry, and start the process again.

After W2 Preprocessor is Finished

- Run CE-QUAL-W2 model
- Review model output
- "w2.wrn" file
- Time Series files
- Evaluate model performance.
 - Did it appear to operate as you desired?
- Address issues that develop......

Exercises: Model Simulation 1

Short Duration Simulation:

- 1. Modify W2 Control file to adjust model simulation duration to 3 months (90 days).
- 2. Adjust model time step in W2 Control file by changing DLTMIN from 0.1 to 1.

NDLT	DLTMIN
7	0.1

- 1. Change NDLT from 7 to 1.
- 2. Try different schemes.

TRANSPORT SCHEME	WB1
SLTRC - UPWIND, QUICKEST, ULTIMATE - use ULTIMATE	ULTIMATE
THETA - degree of implicitness - use 0.55 - Time-weighting	
for vertical advection scheme	0.5
HYD COEFFICIENTS	WB1
AX - Longitudinal eddy viscosity, m2/s	1
DX - Longitudinal eddy diffusivity/conductivity, m2/s	1

Questions?

US Army Corps of Engineers · Engineer Research and Development Center

UNCLASSIFIED