Álgebra - Curso de Verão - UFV

$2^{\underline{a}}$ Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Seja $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, onde $i^2 = j^2 = k^2 = -1$ e ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j. Mostre que Q_8 um grupo e que $Q_8 \cong \mathcal{Q}$, onde

$$Q = \{I, A, A^2, A^3, B, BA, BA^2, BA^3\},\$$

I é a matriz identidade e

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

 $com i \in \mathbb{C}, i^2 = -1.$

Exercício 2: Calcule todos os subgrupos grupos dados. Quais so normais?

- (a) S_3
- (b) D_8
- (c) D_6
- (d) Q_8

Exercício 3: Seja G um grupo. Defina $G' = \langle \{xyx^{-1}y^{-1} \mid x, y \in G\} \rangle$. Mostre que

- (a) G' é um subgrupo normal de G.
- (b) G/G' é abeliano.
- (c) G' é o menor subgrupo normal de G com esta propriedade, isto é, se $H \subseteq G$ é tal que G/H é abeliano, então $G' \subseteq H$.

O subgrupo G' é chamado de **subgrupo de comutadores**.

Exercício 4: Seja G um grupo tal que $\{1\}$ e G são seus únicos subgrupos. Mostre que a ordem de G é um número primo.

Exercício 5: Seja $\phi: G \to H$ um homomorfismo de grupos. Se ϕ é injetivo, mostre que $|\phi(x)| = |x|$ para todo $x \in G$.

Exercício 6: Mostre que todo grupo quociente de um grupo cíclico é cíclico.

Exercício 7: Seja $\phi: G \to H$ um isomorfimo de grupos. Mostre que:

- (a) Se $a \in G$ tem ordem infinita, então $\phi(a)$ também tem ordem infinita.
- (b) Se $a \in G$ tem ordem n, então $\phi(a)$ também tem ordem n.
- (c) Conclua que se G tem um elemento de ordem n e H não possui elemento com essa ordem, então $G \ncong H$.

Exercício 8: Prove que um grupo G é abeliano, se e somente se, a função $f: G \to G$ dada por $f(a) = a^{-1}$ é um homomorfismo.

Exercício 9: Seja G um grupo e H um subgrupo de G. Mostre que se [G:H]=2, então $H \subseteq G$.

Exercício 10: Sejam $G \in H$ grupos e $\phi : G \to H$ um homomorfismo. Mostre que ker $\phi \unlhd G$.

Exercício 11: É verdade que se $K \subseteq H \subseteq G$, então $H \subseteq G$?

Exercício 12: Seja G um grupo. Um isomorfismo $\phi: G \to G$ é chamado de um **automorfismo** de G. Seja Aut $G = \{\phi: G \to G \mid \phi \text{ é um automorfismo de } G\}$. Mostre que Aut G é um grupo com a composição de funções.

Exercício 13: Sejam G um grupo e $\mathcal{I}_a: G \to G$, para $a \in G$ fixado, definido por $\mathcal{I}_a(x) = a^{-1}xa$.

- (a) Mostre que \mathcal{I}_a é um isomorfismo.
- (b) Seja $\mathcal{I}(G) = \{\mathcal{I}_a \mid a \in G\} \subseteq \operatorname{Aut}(G)$. Mostre que $\mathcal{I}(G)$ é um subgrupo normal de $\operatorname{Aut}(G)$.

Exercício 14: Considere a função

$$\mathcal{I}: (G, \cdot) \to (\mathcal{I}(G), \circ)$$

 $a \mapsto \mathcal{I}_a.$

Por definição, \mathcal{I} é uma função sobrejetora.

- (a) Mostre que \mathcal{I} é um homomorfismo de grupos.
- (b) Mostre que $\ker \mathcal{I} = Z(G)$ e que $\mathcal{I}(G) \cong G/Z(G)$.
- (c) Mostre que se G não é abeliano, então $\mathcal{I}(G)$ não é cíclico.

Exercício 15: Seja G um grupo finito e sejam K < H < G. Mostre que

$$[G:K] = [G:H][H:K].$$

Exercício 16: Sejam G um grupo e $a, b \in G$. Mostre que $(a^{-1}ba)^n = a^{-1}b^na$ para todo $n \in \mathbb{Z}$.

Exercício 17: Seja G um grupo. Mostre que se $H \subseteq G$ e $K \subseteq G$, então

$$\frac{K}{H \cap K} \cong \frac{HK}{H}.$$

Exercício 18: Seja G um grupo. Mostre que se $K \leq H \leq G$ com $K \leq G$ e $H \leq G$, então

$$\frac{G/K}{H/K} \cong \frac{G}{H}.$$

Exercício 19: Sejam G e H grupos e $\phi:G\to H$ um homomorfismo. Mostre que se $|x|<\infty$, então $|\phi(x)|$ divide |x|.

Exercício 20: Mostre que todo grupo G tal que |G| < 6 é abeliano.

Exercício 21: Mostre que se G é um grupo de ordem 6, então ou G é cíclico ou $G \cong S_3$.

Exercício 22: Seja $G = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) = ax + b, a \neq 0\}$. Prove que G é um grupo com a composição de funções que é isomorfo ao subgrupo de $GL_2(\mathbb{R})$ formado pelas matrizes do tipo

 $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}.$

Exercício 23: Seja p um número primo e G um p-grupo de ordem p^3 . Prove que se G não é abeliano, então |Z(G)| = p.

Exercício 24: Seja G um grupo contendo apenas duas classes de conjugação. Mostre que |G|=2, isto é, G é um grupo cíclico de ordem 2.

Exercício 25: Seja G um grupo tal que |G|=2p, onde p é um número primo. Mostre que existe $H \subseteq G$ tal que |H|=p.

Exercício 26: Seja G um grupo tal que |G|=pq, onde p e q são primos. Mostre que se G é abeliano e $p\neq q$, então G é cíclico.