We first define the function h and put the number of digits high, to have better computer precision

>
$$h(x) := -\frac{(x \cdot \log(x) + (1-x) \cdot \log(1-x))}{\log(2)};$$

 \rightarrow Digits := 250;

We compute the values for b,a and c which are related with the atomic distribution which shows that the improvement is bounded (by c).

> with(RootFinding):

$$B := NextZero(x \mapsto h(x) * (2 - h(x)) - h(2 * x - x^2), 0.14);$$

> *evalf*[10](*B*);

$$A := \frac{(1-h(B))}{(2-h(B))};$$

> evalf[10](C);

Next, we consider the ratio's of the derivatives to compute the optimal choice of alpha.

$$gI(x) := diff((1-(C-x)/(1-x))^2 * h(2*x-x^2) - (1-(C-x)/(1-x)) * h(x), x);$$

$$g_2(x) := diff((1-2*(C-x)/(1-x))-(1-(C-x)/(1-x))*h(x),x);$$

> alpha :=
$$-\frac{eval(g1(x), x = B)}{(eval(g2(x), x = B) - eval(g1(x), x = B))}$$
;

> *evalf* [10](alpha)

We verify the statement for probability distributions for which the support contains 3 elements; a_1,a_2 and 1, which have probabilities respectively equal to p_1, p_2 and 1-p_1-p_2. As such we can compute E [H(p)], E[H(p+q-pq)] and E'[H(min(2*p,1/2)]

$$H(p_1, a_1, p_2, a_2) := p_1 \cdot h(a_1) + p_2 \cdot h(a_2);$$

$$\begin{array}{l} \rightarrow H(p_1, a_1, p_2, a_2) & p_1 \cdot h(a_1) + p_2 \cdot h(a_2), \\ \rightarrow Hpq(p_1, a_1, p_2, a_2) & \coloneqq p_1^2 \cdot h((1 - a_1)^2) + p_2^2 \cdot h((1 - a_2)^2) + 2 \cdot p_1 \cdot p_2 \cdot h((1 - a_1)^2) + p_2^2 \cdot h((1 - a_2)^2), \\ & - a_1) \cdot (1 - a_2), \end{array}$$

>
$$Hpr(p_1, a_1, p_2, a_2) := (p_1 + \min((p_2 - (1 - p_1 - p_2)), 0)) \cdot h\left(\min\left(2 \cdot a_1, \frac{1}{2}\right)\right) + \max((p_2 - (1 - p_1 - p_2)), 0) \cdot h\left(\min\left(2 \cdot a_2, \frac{1}{2}\right)\right);$$

We do the optimization problem, once in the precise sense. Here we conclude that the extremal distribution seems to be atomic.

> with(Optimization): $Minimize((1 - alpha) \cdot Hpq(p_1, a_1, p_2, a_2) + alpha \cdot Hpr(p_1, a_1, p_2, a_2) - H(p_1, a_1, p_2, a_2), \{p \ 1 \le 1, p \ 2 \le 1, a \ 1 \le C, a \ 2 \le 0.5, p \ 1 \cdot a \ 1 + p \ 2 \cdot a \ 2 + (1 - p \ 1) \}$

```
-p_2 \le C, p_1 + p_2 \le 1, a_1 \le a_2, assume = nonnegative
```

Once, we add the condition the probability p_1 has to be strictly positive and a_1 is bounded by e. g. 0.26, the minimization problem has a strict positive output. From this, we conclude that the extremum indeed seems to occur for the atomic distribution.

- > with(Optimization): $\begin{aligned} & \textit{Minimize}((1-\text{alpha}) \cdot \textit{Hpq}(p_1, a_1, p_2, a_2) + \text{alpha} \cdot \textit{Hpr}(p_1, a_1, p_2, a_2) - \textit{H}(p_1, a_1, p_2, a_2) \\ & a_1, p_2, a_2), \ \{ \ 0.0000001 \le p_1, p_1 \le 1, a_1 \le 0.26, p_2 \le 1, a_2 \le 0.5, p_1 \cdot a_1 \\ & + p_2 \cdot a_2 + (1-p_1-p_2) \le C, p_1 + p_2 \le 1, a_1 \le a_2 \}, \ assume = nonnegative) \\ & \vdots \end{aligned}$
- > plots:-implicitplot3d $\left(F\left(p_1, a_1, \frac{(p_1 \cdot a_1 + 1 p_1 C)}{1 a_2}, a_2\right) 0.00001, a_1 = 0$.. 0.25, $p_1 = 0$..1 -C, $a_2 = 0$.. 0.5, numpoints = 10000, style = surface, color = navy $\right)$;

