Statistics, Math Models and Algorithms

Fahad Faruqi, Ali Mohamed, Md Omit, Evan Perez, Jennifer Saeteros, Tak Kit Yeung

4219 Industries LLC

Linear Regression

Finding a linear relationship between variables.

Logistic Regression

Determines probability that an event will occur.

Time Series

Find patterns and forecast future values based on historical data.

Common Statistical Softwares

Median

Set A:

Median

Set B:

$$\text{Median} = \frac{11+14}{2} = 12.5$$

Mean

Set B: 11, 17, 3, 14, 19, 7
$$\frac{11+17+3+14+19+7}{6} = 11.8$$

Common Statistical Metric

R

correlation
between two
datasets
high R²== high
correlation

RMSE

differences between true or predicted values Recall, Precision, Accuracy

true positive rate, how closely the predictions group together, percentage correct prediction

History

Linear Regression Model

Introduced in 1894.

Derived by Sir
Francis Galton after
conceptualizing
regression towards
the mean.

Used to determine relationships between variables and predict the value of one variable based on independent variables.

History

Logistic Regression Model

Found by Pierre-Francois Verhulst in 1838.

Rediscovered in 1920 as a model for population growth.

Predicts the probability of an event occurring, classifies data into different categories.

History

Time series Model

Data dates as far back as 800 BC China.

Analysis was created by Udny Yule in 1927.

Understand past performance and predict future outcomes in a relevant and actionable way.

Usecases

Popularity and Community Support

Logistic Linear **Time Series** Regression Regression Binary **Statistical Forecasting** Classificati **Foundation** Capability on Widely Widely Widely **Applicable** Applicable Applicable **Temporal** Simplicity Dependency

Popularity and Community Support

Preprocessing

Data Cleaning and Prepartion

Pandas

```
#Check for missing values
print(df.isnull().sum())

#Drop rows with missing values a
df_cleaned = df.dropna()

#Fill missing values with mean fo
df_filled = df.fillna(df.mean())
```

Uses of NumPy Arithmetic Searching, sorting 10 **Operations** and counting **Statistical** Mathematical **Operations Operations Bitwise** 8 **Broadcasting Operations Copying and** Linear **Viewing Arrays** Algebra Arithmetic 6 Stacking **Operations** Interview Bit

Doing the math

Statical Computation

NumPy SciPy

Statistical Modeling

Statsmodels
Scikit-learn
R

Matplotlib
Seaborn
Plotly
ggplot2

Visualization

```
import matplotlib.pyplot as plt
import pandas as pd

flights = pd.read_csv('flights.csv')

plt.plot(flights['month'], flights['passengers'])
plt.xlabel('year')
plt.ylabel('passengers')
plt.show()
```


1952

1958

Tabular Comparison

	Predictive Analysis	Probability Analysis	Requires lots of data
Linear Regression			
Logistic Regression			
Time Series			

Linear Regression

Pros

best model for linear relationships fast & simple low training times

Cons

succeptible to overfitting
cannot determine complex
relationships
needs high sample size

Logistic Regression

Pros

can extend to multiple
classes (labels)
fast & simple
good accuracy for linear
datasets

boundaries
easily outperformed in
determining complex
relationships
assumes few outliers

Time Series

Pros

identifies historical trends
identifies outliers in data
shows effect over time

needs comprehensive data

data must have linear relationship requires human interpretation

Industry and Academic Relevance

Linear Regression Model

Industry and Academic Relevance

Logistic Regression Model

Industry and Academic Relevance

Time Series Model

Recommended Analysis Technique:

Time Series

Forecasting

- predict future values
- Classification
 - identify and assign categories
- Descriptive
 - o find trends, patterns, cycles
- Curve fitting
 - study relationship between variables
- Obtaining lots of data can be easier due to periodic data collection

Conclusion

- Different problems require different techniques, especially if the problem is finegrained
- Statistical analysis methods should be chosen based on:
 - Data availability
 - Data quality
 - Focus of the problem at hand

Thank You For Listening!

References

- Mathspace. "Statistics."
- <u>Institute of Mathematical Statistics</u> (IMS)
- R Consortium:ocuses on supporting the R programming language and community, but it's also highly relevant for statisticians who use R for statistical models
- Cross Validated (StackExchange): A
 popular Q&A platform for statisticians,
 data scientists, and researchers

Q&A

