Iteratively Reweighted PLS Estimation for Tensor Generalized Linear Regression

Haesong Choi

Florida State University Department of Statistics

April 20, 2020

- 1 Partial Least Squares
- 2 IRPLS Estimation for GLM
- 3 IRPLS Estimation for tensor GLM
- 4 Discussion

- Dateset : independent realizations of $X \in \mathbb{R}^{n \times p}$ and $Y \in \mathbb{R}^{n \times r}$
- The model assumes that the observations are iteratively projected into the low dimensional spaces of latent variables. (Wold, 1966)

$$\boldsymbol{X} = \boldsymbol{T} \boldsymbol{P}^{\top} + \boldsymbol{E}$$

$$\boldsymbol{Y} = \boldsymbol{T} \boldsymbol{Q}^{\top} + \boldsymbol{F}$$

- $T = [t_1, ..., t_d] \in \mathbb{R}^{n \times d}$: the matrix of the latent variables, $P \in \mathbb{R}^{p \times d}$ and $Q \in \mathbb{R}^{r \times d}$: the matrices of the loading vectors E, F: residual matrices and d: the number of iterations
- PLS reduces the predictor X to a sufficiently lower dimensional latent matrix T.
- Well suited for high dimensional regression because of its efficient solution for dimension reduction.

- Marx (1996) extends iteratively reweighted PLS into the framework of generalized linear models (GLM) by an iterative method in which each step involves solving a weighted least squares problem of the form.
- For GLM (McCullagh and Nelder, 1983), $X = (x_1, x_2, ..., x_n)^{\top} \in \mathbb{R}^{n \times p}$: Predictor matrix (not contain $\mathbf{1}_p$) $Y \in \mathbb{R}^{n \times 1}$: independent random variables y_i which belongs to an exponential family with probability density (mass) function

$$y_i \sim f(y_i; \theta_i, \phi) = \exp\left[\left\{\frac{y_i \theta_i - b(\theta_i)}{a(\phi)}\right\} + c(y_i, \phi)\right]$$
 (1)

where $\phi > 0$:a dispersion parameter, θ :the natural parameter of the distribution, and $a(\cdot), b(\cdot), c(\cdot)$: known functions

Haesong Choi

■ In the GLM setting, the mean $\mu = E(Y|X)$ is connected to a linear predictor $X\beta$ via

$$g(\mu_i) = \eta_i = \alpha_i + \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \tag{2}$$

where g is a strictly increasing or decreasing and twice differentiable function. η_i : the linear systematic part with intercept α and the coefficient vector $\beta \in \mathbb{R}^p$.

 \blacksquare The log-likelihood for Y is

$$\ell(\alpha, \beta; \mathbf{X}) = \sum_{i=1}^{n} \left\{ \frac{y_i \theta_i - b(\theta_i)}{\phi} \right\} + c(y_i, \phi), \tag{3}$$

where $a(\phi) \equiv \phi$ is constant over all *i*.

Solution for the likelihood estimator of β: Iterative Fishers'
 Method of Scoring algorithm

■ By introducing the diagonal matrix $\mathbf{W}^{(r)} = \operatorname{diag}(w_i^{(r)}) \in \mathbb{R}^{n \times n}$

$$w_i^{(r)} = \frac{1}{\phi V(\mu_i^{(r)})(g'(\mu_i^{(r)}))^2},$$

it turns out that the updates can be written as

$$\beta^{(r+1)} = (\boldsymbol{X}^{\top} \boldsymbol{W}^{(r)} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{W}^{(r)} \boldsymbol{z}^{(r)}$$
(4)

i.e. the estimated parameters for a weighted least squares regression of $\mathbf{z}^{(r)}$ on \mathbf{X} with weights $\mathbf{W}^{(r)}$, where

$$\mathbf{z}^{(r)} = \boldsymbol{\eta}^{(r)} + (\mathbf{y} - \boldsymbol{\mu}^{(r)}) \mathbf{g}'(\boldsymbol{\mu}^{(r)}). \tag{5}$$

Consequently we can obtain $\eta^{(r+1)}$ by plugging in (2) via

$$\boldsymbol{\eta}^{(r+1)} = \boldsymbol{\alpha}^{(r)} \mathbf{1} + \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{W}^{(r)} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{W}^{(r)} \boldsymbol{z}^{(r)}.$$
 (6)

Haesong Choi

■ Latent factor models of X and z in (5): With $d \ll p$,

$$\boldsymbol{X} = \sum_{j=1}^{d} \boldsymbol{t}_{j} \boldsymbol{p}_{j}^{\top} + \boldsymbol{E}_{d}$$
 (7)

$$\boldsymbol{z} = \sum_{j=1}^{d} \boldsymbol{q}_{j} \boldsymbol{t}_{j} + \boldsymbol{f}_{d}$$
 (8)

where $t_j \in \mathbb{R}^n$ denotes latent variables, $p_j \in \mathbb{R}^p$ is a loading vector and E_k is a residual matrix. The q_j are scalar coefficients, and $f_d \in \mathbb{R}^n$ is an residual vector.

IRPLS Estimation for tensor GLM

■ For a response variable Y, m-dimensional tensor predictor $X \in \mathbb{R}^{p_1 \times \cdots \times p_M}$ which follows a CANDECOMP/PARAFAC (CP) decomposition (a rank-R decomposition), the response is assumed to belong to an exponential family where the linear systematic part is of the form,

$$g(\mu) = g(E(Y|\mathbf{X})) = \alpha + \langle \mathbf{B}, \mathbf{X} \rangle$$

$$= \alpha + \langle \sum_{r=1}^{R} \beta_{1}^{(r)} \circ \cdots \circ \beta_{M}^{(r)}, \mathbf{X} \rangle$$
(9)

$$= \alpha + \langle (\boldsymbol{B}_{M} \odot \cdots \odot \boldsymbol{B}_{1}) \boldsymbol{1}_{R}, \text{vec} \boldsymbol{X} \rangle$$
 (10)

where $g(\cdot)$ is a strictly increasing link function,

$$\boldsymbol{B}_m = [\boldsymbol{\beta}_m^{(1)}, \dots, \boldsymbol{\beta}_m^{(R)}] \in \mathbb{R}^{p_m \times R}, m = 1, \dots, M, \text{ and } \\
\boldsymbol{B}_M \odot \cdots \odot \boldsymbol{B}_1 \in \mathbb{R}^{\prod_m p_m \times R}$$

$$lacksquare$$
 $\langle \boldsymbol{B}, \boldsymbol{X} \rangle = \langle \operatorname{vec} \boldsymbol{B}, \operatorname{vec} \boldsymbol{X} \rangle = \sum \beta_{i_1, \dots, i_M} x_{i_1, \dots, i_M}, \text{ and } \boldsymbol{B} \approx [\boldsymbol{B}_1, \dots, \boldsymbol{B}_M].$

Haesong Choi

■ The log-likelihood function given i.i.d. data $\{(y_i, x_i), i = 1, ..., n\}$:

$$\ell(\alpha, \boldsymbol{B}_1, \dots, \boldsymbol{B}_M; \boldsymbol{X}) = \sum_{i=1}^n \left\{ \frac{y_i \theta_i - b(\theta_i)}{\phi} \right\} + \sum_{i=1}^n c(y_i, \phi).$$

- Zhou (2013) introduced block relaxation algorithm for efficiently maximizing $\ell(\alpha, \mathbf{B}_1, \dots, \mathbf{B}_M)$.
- A key point is that $g(\mu)$ is not linear in $(\boldsymbol{B}_1, ..., \boldsymbol{B}_M)$ jointly, but linear in \boldsymbol{B}_m individually in (10). So, this algorithm alternatively updates $\boldsymbol{B}_m, m = 1, ..., M$, while keeping other parameters fixed.

IRPLS Estimation for tensor GLM

■ Given i.i.d. $\{(y_i, \boldsymbol{x}_i^*), i = 1, ..., n\}$, when updating \boldsymbol{B}_m

$$g(\mu_i) = \alpha + \langle \boldsymbol{B}, \boldsymbol{X} \rangle$$

$$= \alpha + \langle \boldsymbol{B}_m, \boldsymbol{X}_{(m)} (\boldsymbol{B}_M \odot \cdots \odot \boldsymbol{B}_{m+1} \odot \boldsymbol{B}_{m-1} \odot \cdots \odot \boldsymbol{B}_1) \rangle$$

$$= \alpha + \text{vec}^{\top} \boldsymbol{B}_m \text{vec} \{ \boldsymbol{X}_{(m)} (\boldsymbol{B}_M \odot \cdots \odot \boldsymbol{B}_{m+1} \odot \boldsymbol{B}_{m-1} \odot \cdots \odot \boldsymbol{B}_1) \}$$

$$= \alpha + \beta^* \boldsymbol{x}_i^*.$$

where β^* is the coefficients for linear relationship between $g(\mu_i)$ and x_i^* . (parameters $\text{vec}\boldsymbol{B}_m \in \mathbb{R}^{p_m \cdot R}$)

■ Then our new log likelihood for **Y** is

$$\ell^*(\alpha, \beta^*; \mathbf{X}^*) = \sum_{i=1}^n \left\{ \frac{y_i \theta_i - b(\theta_i)}{\phi} \right\} + c(y_i, \phi),$$

where $X^* = (x_1^*, \dots, x_n^*)^{\top}$ and we can apply IRPLS (Marx (1996)) to new GLM.

Algorithm 1: IRPLS Estimation for tensor GLS

Result: α, B_1, \dots, B_M

[0] Initialize $\alpha^{(0)} = \arg \max_{\alpha} \ell(\alpha, \mathbf{0}, \dots, \mathbf{0}), \ \boldsymbol{B}_{m}^{(0)} \in \mathbb{R}^{p_{m} \times R}$ a random matrix for $m = 1, \dots, M$.

repeat

Partial Least Squares

for $m = 1, \dots, M$ do

- [1] Define $\mathbf{x}_{i}^{*} = \text{vec}\{\mathbf{X}_{(m)}(\mathbf{B}_{M} \odot \cdots \odot \mathbf{B}_{m+1} \odot \mathbf{B}_{m-1} \odot \cdots \odot \mathbf{B}_{1})\}, i = 1, \ldots, n$
- [2] Initialize $E_0 = X^* \in \mathbb{R}^{n \times p_m \cdot R}$; $f_0 = \psi(y) \in \mathbb{R}^n$; $W = \{\phi V(\mu)\}^{-1} h'[\psi(y)]^2 \in \mathbb{R}^{n \times n}$

for
$$k=1,\ldots,K$$
 do

- [3] Define r_k = the coefficient for the WLS regression of f_{k-1} on E_{k-1} with W.
- [4] Define a latent variable t_k = E_{k-1}r_k ∈ Rⁿ.
- [5] Scale t_k with center (=Weighted mean of t_k with W) and scale (=SS).
- [6] Define q_k = the coefficient for the WLS regression of f_{k-1} on t_k with W.
- [7] Deflate the response vector $\mathbf{f}_k = \mathbf{f}_{k-1} \mathbf{t}_k \mathbf{q}_k$.
- [8] Define E_k = Residuals for the WLS regression of E_{k-1} on t_k with W.

end for

- [9] η = Weighted mean of f_0 with weight $W + \sum_{k=1}^R q_k t$
- [10] $W = {\phi V(\mu)}^{-1}h'[\psi(\eta)]^2$

until $\triangle \hat{\eta} < \epsilon$

- [11] Define $\boldsymbol{\beta}_m^*$ = the coefficient for the Glm of \boldsymbol{y} on $\boldsymbol{T}=(\boldsymbol{t}_1,\ldots,\boldsymbol{t}_K)\in\mathbb{R}^{n\times K}$
- [12] Convert β_m^* into a matrix $B_m^{(t+1)}$.

end for

[13]
$$\alpha^{(t+1)} = \arg \max_{\alpha} \ell(\alpha, \boldsymbol{B}_{1}^{(t+1)}, \boldsymbol{B}_{2}^{(t+1)}, \dots, \boldsymbol{B}_{M}^{(t+1)})$$

Partial Least Squares IRPLS Estimation for GLM IRPLS Estimation for tensor GLM Discussion References

OO OOOO OOOO OOOO

Discussion

Discussion

Partial Least Squares

■ IRPLS Estimation for tensor GLM with Tucker decomposition : For a response variable Y, m-dimensional tensor predictor $X \in \mathbb{R}^{p_1 \times \cdots \times p_M}$,

$$g(\mu) = g(E(Y|X)) = \eta = \alpha + \langle B, X \rangle$$

■ A tensor coefficient $\mathbf{B} \in \mathbb{R}^{p_1 \times \cdots \times p_M}$ follows a Tucker decomposition,

$$m{B} = \sum_{r_1=1}^{R_1} \cdots \sum_{r_M=1}^{R_M} g_{r_1,\dots,r_M} \beta_1^{(r_1)} \circ \cdots \circ \beta_M^{(r_M)} = [\![m{G}; m{B}_1,\dots, m{B}_M]\!], and$$

where $\beta_m^{(r_m)} \in \mathbb{R}^{p_m}$ m = 1, ..., M, $r_m = 1, ..., R_m$ are all column vectors, $g_{r_1,...,r_M}$ are constants, $G \in \mathbb{R}^{R_1 \times \cdots \times R_M}$ and $B_m \in \mathbb{R}^{p_m \times R_m}$.

Discussion

■ When updating $\boldsymbol{B}_m \in \mathbb{R}^{p_m \times R_m}$,

$$\langle \boldsymbol{B}, \boldsymbol{X} \rangle = \langle \boldsymbol{B}_{(m)}, \boldsymbol{X}_{(m)} \rangle$$

$$= \langle \boldsymbol{B}_{m}, \boldsymbol{X}_{(m)} (\boldsymbol{B}_{M} \otimes \cdots \otimes \boldsymbol{B}_{m+1} \otimes \boldsymbol{B}_{m-1} \otimes \cdots \otimes \boldsymbol{B}_{1}) \boldsymbol{G}_{(m)}^{\top} \rangle$$

$$= \operatorname{vec}^{\top} \boldsymbol{B}_{m} \operatorname{vec} \{ \boldsymbol{X}_{(m)} (\boldsymbol{B}_{M} \otimes \cdots \otimes \boldsymbol{B}_{m+1} \otimes \boldsymbol{B}_{m-1} \otimes \cdots \otimes \boldsymbol{B}_{1}) \boldsymbol{G}_{(m)}^{\top} \}$$

$$= \beta^{*} \boldsymbol{x}^{*}.$$

- It turns into a low-dimensional GLM with $\text{vec}\boldsymbol{B}_m \in \mathbb{R}^{p_m R_m}$ parameters.
- When updating G,

$$\langle \boldsymbol{B}, \boldsymbol{X} \rangle = \langle \operatorname{vec} \boldsymbol{B}, \operatorname{vec} \boldsymbol{X} \rangle$$

$$= \langle (\boldsymbol{B}_M \otimes \cdots \otimes \boldsymbol{B}_1) \operatorname{vec} \boldsymbol{G}, \operatorname{vec} \boldsymbol{X} \rangle$$

$$= \langle \operatorname{vec} \boldsymbol{G}, (\boldsymbol{B}_M \otimes \cdots \otimes \boldsymbol{B}_1)^\top \operatorname{vec} \boldsymbol{X} \rangle$$

$$= \beta^* \boldsymbol{x}^*.$$

References

References

- Marx, B, D. (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38, pages 374–381.
- McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models (Monographs on Statistics and Applied Probability). Chapman and Hall, London.
- Wold, S. (1966). Estimation of principle components and related models by iterative models iterative least squares. Academic Press, NY.
- Zhou, Hua., L. L. Z. H. (2013). Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association 108, pages 540–552.