DATA MANIPULATION WITH DPLYR

DPLYR RATIONALE

Data science means manipulating data

R is a flexible environment

IT STARTS WITH DATA MANIPULATION

POPULAR R LIBRARIES

Top 20 CRAN downloads (direct and indirect) September 2017

DPLYR Vs DATA.TABLE

dplyr advantages

data.table advantages

SQL like syntax...

Extremely fast

Popular

Perhaps more robust...

CHEAT SHEETS

Available from: https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Data Wrangling with dplyr and tidyr

Cheat Sheet

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)

Converts data to tbl class. tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

Source: local data f	rame [150 x 5	5]
Sepal.Length Sepa 1 5.1 2 4.9 3 4.7 4 4.6 5 5.0	al.Width Petal 3.5 3.0 3.2 3.1 3.6	1.Length 1.4 1.4 1.3 1.5
Variables not shown: Species (fctr)	Petal.Width	(dbl),

dplyr::glimpse(iris)

Information dense summary of tbl data.

utils::View(iris)

View data set in spreadsheet-like display (note capital V).

0	a 7 Fil	ter		Q,	
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

dplyr::%>%

Passes object on left hand side as first argument (or . argument) of function on righthand side.

"Piping" with %>% makes code more readable, e.g.

Tidy Data - A foundation for wrangling in R

In a tidy data set:

Each **observation** is saved in its own **row**

Tidy data complements R's **vectorized operations**. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.

Reshaping Data - Change the layout of a data set

in its own column

tidyr::gather(cases, "year", "n", 2:4)

Gather columns into rows.

tidyr::separate(storms, date, c("y", "m", "d"))

Separate one column into several.

tidyr::spread(pollution, size, amount)

Spread rows into columns.

tidyr::unite(data, col, ..., sep)

Unite several columns into one.

$dplyr::data_frame(a = 1:3, b = 4:6)$

Combine vectors into data frame (optimized).

dplyr::arrange(mtcars, mpg)

Order rows by values of a column (low to high).

dplyr::arrange(mtcars, desc(mpg))

Order rows by values of a column (high to low).

dplyr::rename(tb, y = year)

Rename the columns of a data frame.

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15)

Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

	Logic in R - ?(Comparison, ?base	::Logic
<	Less than	!=	Not equal to
>	Greater than	%in%	Group membership
==	Equal to	is.na	Is NA
<=	Less than or equal to	!is.na	Is not NA
>=	Greater than or equal to	&, ,!,xor,any,all	Boolean operators

Subset Variables (Columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Helper functions for select - ?select

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.

select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species.

Summarise Data

dplyr::summarise(iris, avg = mean(Sepal.Length))

Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))

Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)

Count number of rows with each unique value of variable (with or without weights).

Summarise uses **summary functions**, functions that take a vector of values and return a single value, such as:

dplyr::first

First value of a vector.

dplyr::last

Last value of a vector.

dplyr::nth

Nth value of a vector.

dplyr::n

of values in a vector.

dplyr::n_distinct

of distinct values in a vector.

IOR

IQR of a vector.

min

Minimum value in a vector.

max

Maximum value in a vector.

mean

Mean value of a vector.

median

Median value of a vector.

var

Variance of a vector.

sd

Standard deviation of a

vector.

Group Data

dplyr::group_by(iris, Species)

Group data into rows with the same value of Species.

dplyr::ungroup(iris)

Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(...)

Compute separate summary row for each group.

Make New Variables

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)

Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))

Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)

Compute one or more new columns. Drop original columns.

Mutate uses **window functions**, functions that take a vector of values and return another vector of values, such as:

dplyr::lead

Copy with values shifted by 1.

dplyr::lag

Copy with values lagged by 1.

dplyr::dense_rank

Ranks with no gaps.

dplyr::min_rank

Ranks. Ties get min rank.

dplyr::percent_rank

Ranks rescaled to [0, 1].

dplyr::row_number

Ranks. Ties got to first value.

dplyr::ntile

Bin vector into n buckets.

dplyr::between

Are values between a and b?

dplyr::cume_dist

Cumulative distribution.

dplyr::cumall

Cumulative **all dplyr::cumany**

Cumulative **any**

dplyr::cummean

Cumulative **mean**

cumsum

Cumulative **sum**

cummax

Cumulative **max**

cummin

Cumulative **min**

cumprod

Cumulative **prod**

pmax

Element-wise **max**

pmin

Element-wise **min**

iris %>% group_by(Species) %>% mutate(...)

Compute new variables by group.

Combine Data Sets

Mutating Joins

x1	x2	х3	dplyr::full_join(a, b, by = "x1")
Α	1	Т	aptyratt_join(a, b, b) x1 /
В	2	F	Join data. Retain all values, all rows.
С	3	NA	John data. Netam all values, all 10 ws.
D	NA	Т	

Filtering Joins

x1 x2 A 1 B 2	<pre>dplyr::semi_join(a, b, by = "x1") All rows in a that have a match in b.</pre>
x1 x2 C 3	<pre>dplyr::anti_join(a, b, by = "x1") All rows in a that do not have a match in b.</pre>

Set Operations

x1	x2	dolumintorcoct(v. z)	
В	2	<pre>dplyr::intersect(y, z)</pre>	
С	3	Rows that appear in both y and z.	
		Nows that appear in both y and 2.	
x1	x2		
Α	1	dplyr::union(y, z)	
В	2	aptya(y, 2/	
С	3	Rows that appear in either or both y and z.	
_		TOTTO CHACAPPEAR IN CICITOR OF BOTH & AND E.	

x1 x2 dplyr::setdiff(y, z)

Rows that appear in y but not z.

Binding

3 D 4

dplyr::bind_rows(y, z)

Append z to y as new rows.

dplyr::bind_cols(y, z)

Append z to y as new columns.

Caution: matches rows by position.

EXAMPLE DATA

ONE TO MANY

One customer to <u>many</u> accounts

CUSTOMER TABLE

cust_no (pk)	name	birthdate	gender	address
10	andrew	1980	m	north
15	andrew	1970	m	south
20	mark	1985	m	north
30	ellen	1990	f	south
40	cathy	1987	f	north
50	megan	1978	f	south
60	colin	1992	m	north
70	trung	1990	m	north

ACCOUNTS TABLE

acct_no (pk)	cust_num (fk)	type	balance	name	birthdate
A	30	loan	400	ellen	1990
В	40	savings	80	cathy	1987
С	30	savings	200	ellen	1990
D	50	savings	400	megan	1978
E	60	loan	90	colin	1992
F	10	loan	200	andrew	1980
G	60	credit_card	120	colin	1992
Н	60	savings	40	colin	1992
1	20	credit_card	50	mark	1985
J	40	term_deposit	200	cathy	1987
K	50	loan	300	megan	1978
L	20	savings	300	mark	1985
M	30	credit_card	50	ellen	1990
N	15	savings	20	andrew	1970

```
COLA CISSE INNER PER MAN
                                                                                                                                       <br/>
ch2 class="citle" time 
                                                                                                                                          <h3 class="subtitle">(h3 class="subtitle")
                                                                                                                                                                                                                                                                                   ClixTransfer funds to carry with the standard of the standard 
                                                                                                                                                                                                                                                                                      Send bank transfers to more than around the country of the cou
                                                                                                                                                                                                                                                                                     Get started with a quick some service and a company of the com
                                                                                                                                                  \langle ul \rangle
                                                                                                                                             <div class="clearfix"></div>
                                                                                                                                                  <div class="buttons">
                                                                                                                                                                                                                                                                                        <div class="button"><a href="http://www.max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/max.org/m
                                                                                                                                                                                                                                                                                          <div id="generalDemo" class="demo-tuctor">
                                                                                                                                                                                                                                                                                                                                                                                                                              Watch<br>
                                                                                                                                                                                                                                                                                                                                                                                                                                 Demo
```

<div class="play"></div>

CODE EXAMPLES

```
<h2 class="title">Receive <span class="grayed">& Contact The Conta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           <h3 class="subtitle">Global solution to receive runs les receive runs
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Receive funds from any <strong>U.S. based company
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             class="equal">
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Withdraw funds to your <strong local bank and the strong local ban
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Spend funds with a <strong>Prepai democratic management of the control of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Tref="ReceiveWithdraw.aspx" class="read-more" seek with a spx " cl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Class="clearfix"></div>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                <div class="button"><a href="https://parket.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.amment.am
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Class="buttons">
FIVE & Withdraw</a>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  The Id="uspsDemo" class="demo-buttom">
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Watch<br/>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Suc wrights. 1873. Perdys. 1994. Some Supersylvent.
```

MAGRITTR REVISION [a]

replace letters "a" with "*" — demonstrates "." operator

```
# syntax without magrittr
gsub("a", "*", df_customer$name)
# syntax with magrittr
# using the "." if not the first argument
df customer$name %>% gsub("a", "*", .)
```

MAGRITTR REVISION [b]

add "_suffix" to each customer name

```
# following statements are equivalent
paste(df_customer$name, "_suffix")
```

```
# syntax with magrittr - first argument inserted automatically
df_customer$name %>% paste("_suffix")
```

DPLYR VERB STRUCTURE

dplyr verbs have the table name as first argument

```
# following statements are equivalent
dplyr::select(df_customer, name, birthdate)
```

```
# equivalent with magrittr

df_customer %>% dplyr::select(name, birthdate)
```

birthdate	name
1980	andrew
1970	andrew
1985	mark
1990	ellen
1987	cathy
1978	megan
1992	colin
1990	trung

COMPARISON TO SQL

SQL Syntax

SELECT name, birthdate

FROM df_customer

ORDER BY birthdate

DPLYR EQUIVALENT

Equivalent using dplyr

```
df_customer %>%
    select(name, birthdate) %>%
    arrange(birthdate)
```

FLEXIBLE OPERATION ORDER

```
# equivalent operation - flip verb order
```

```
df_customer %>%
    arrange(birthdate) %>%
    select(name, birthdate)
```

name	birthdate
andrew	1970
megan	1978
andrew	1980
mark	1985
cathy	1987
ellen	1990
trung	1990
colin	1992

ADD A CALCULATED COLUMN

Using mutate()

```
# add a calculated 'age' column and then sort by
# descending order
df customer %>%
  mutate(age = 2018 - birthdate) %>%
  arrange(desc(age))
```

cust_no	name	birthdate	gender	address	age
15	andrew	1970	m	south	48
50	megan	1978	f	south	40
10	andrew	1980	m	north	38
20	mark	1985	m	north	33
40	cathy	1987	f	north	31
30	ellen	1990	f	south	28
70	trung	1990	m	north	28
60	colin	1992	m	north	26

AGGREGATION - NO GROUPS

calculate average birthdate for all rows

```
df_customer %>%
```

summarise(av_birth_date = mean(birthdate))

av_birth_date

1984

AGGREGATION WITH GROUPS

calculate mean age by gender

```
df_customer %>%

mutate(age = 2018 - birthdate) %>%

group_by(gender) %>%

summarise(av_age = mean(age))
```

gender	av_age
f	33.0
m	34.6

COERCION TO TIBBLE

Some dplyr verbs implicitly coerce to a Tibble. Tibble is a type of data.frame that has some better print functions especially for large data.frames. The following explicitly converts to Tibble and then back to data.frame

```
df_customer %>%
```

```
tibble::as_tibble() %>%
```

base::as_as.data.frame()

TWO TABLE VERBS — INNER JOIN

cust_no	name.x	birthdate.x	gender	address	account_no	type	balance	name.y	birthdate.y
10	andrew	1980	m	north	F	loan	200	andrew	1980
15	andrew	1970	m	south	N	savings	20	andrew	1970
20	mark	1985	m	north	I	credit_card	50	mark	1985
20	mark	1985	m	north	L	savings	300	mark	1985
30	ellen	1990	f	south	Α	loan	400	ellen	1990
30	ellen	1990	f	south	С	savings	200	ellen	1990
30	ellen	1990	f	south	М	credit_card	50	ellen	1990
40	cathy	1987	f	north	В	savings	80	cathy	1987
40	cathy	1987	f	north	J	term_deposit	200	cathy	1987
50	megan	1978	f	south	D	savings	400	megan	1978
50	megan	1978	f	south	K	loan	300	megan	1978
60	colin	1992	m	north	E	loan	90	colin	1992
60	colin	1992	m	north	G	credit_card	120	colin	1992
60	colin	1992	m	north	Н	savings	40	colin	1992

DESELECTING COLUMNS

```
# We want to exclude two columns from df customer
df customer %>%
 select(-c(name, birthdate)) %>%
 inner join(df account,
              by = "cust_no" = "cust_num")
```

cust_no	gender	address	account_no	type	balance	name	birthdate
10	m	north	F	loan	200	andrew	1980
15	m	south	N	savings	20	andrew	1970
20	m	north	I	credit_card	50	mark	1985
20	m	north	L	savings	300	mark	1985
30	f	south	A	loan	400	ellen	1990
30	f	south	С	savings	200	ellen	1990
30	f	south	M	credit_card	50	ellen	1990
40	f	north	В	savings	80	cathy	1987
40	f	north	J	term_deposit	200	cathy	1987
50	f	south	D	savings	400	megan	1978
50	f	south	K	loan	300	megan	1978
60	m	north	E	loan	90	colin	1992
60	m	north	G	credit_card	120	colin	1992
60	m	north	Н	savings	40	colin	1992

ANTI-JOIN

```
# What customers do not have accounts.
# Joining using multiple columns
df customer %>%
  anti_join(df_account,
              by = c("name" = "name",
                      "birthdate = "birthdate"))
```

cust_no	name	birthdate	gender	address
70	trung	1990	m	north

SELECTING DISTINCT ROWS

```
# The following two statements are equivalent
```

```
df_account %>% distinct(name, birthdate)
```

name	birthdate
ellen	1990
cathy	1987
megan	1978
colin	1992
andrew	1980
mark	1985
andrew	1970

FILTERING USING EXPRESSIONS

```
# northern men
df customer %>%
 filter(address == "north" & gender == "m")
# this is the same as the above
df customer %>%
 filter(address == ) %>%
 filter(gender == "m")
```

FILTERING USING VECTORS

```
# What is the total account balance for
Cathy, Mark & Megan

df_account %>%

filter(name %in% c("cathy", "mark", "megan")) %>%
summarise(total_balance = sum(balance))
```

total_balance

1330

VECTOR NEGATION

```
# What is the total account balance for the rest

df_account %>%

filter(!name %in% c("cathy", "mark", "megan")) %>%

summarise(total_balance = sum(balance))
```

total_balance

1120

SLICING GROUPS

```
# For each customer what is the account with
# the highest value
# n() counts the number of rows in each group
df_account %>%
  group_by(cust_num) %>%
  arrange(balance) %>%
  slice(n())
```

account_no	cust_num type	balance name	birthdate
F	10 loan	200 andrew	1980
N	15 savings	20 andrew	1970
L	20 savings	300 mark	1985
Α	30 loan	400 ellen	1990
J	40 term_deposit	200 cathy	1987
D	50 savings	400 megan	1978
G	60 credit_card	120 colin	1992

RENAMING COLUMNS

```
# Select two columns
# and rename them.

df_customer %>%

select(name, birthdate) %>%

rename(new_name = name, new_birthdate = birthdate))
```

ADVANCED FUNCTIONS

ADVANCED SLICING

```
# For customers with 3 or more accounts
# list the smallest and largest accounts
df_account %>%
  group_by(cust_num) %>%
  filter(n() >= 3) %>%
  arrange(balance) %>%
  slice(c(1, n()))
```

account_no	cust_num	type	balance	name	birthdate
M	30	credit_card	50	ellen	1990
Α	30	loan	400	ellen	1990
Н	60	savings	40	colin	1992
G	60	credit_card	120	colin	1992

ADVANCED GROUP OPERATIONS

```
# Get all accounts associated with a customer who has
# a loan account
df account %>%
  group_by(cust_num) %>%
  filter(any(type == "loan")) %>%
  arrange(cust_num)
```

account_no	cust_num	type	balance	name	birthdate
F	10	loan	200	andrew	1980
Α	30	loan	400	ellen	1990
С	30	savings	200	ellen	1990
M	30	credit_card	50	ellen	1990
D	50	savings	400	megan	1978
K	50	loan	300	megan	1978
Е	60	loan	90	colin	1992
G	60	credit_card	120	colin	1992
Н	60	savings	40	colin	1992

WIDE AND LONG FORMATS

Yes! you can even process process LIDAR data using dplyr

LONG TO WIDE

And back again using tidyr::spread() and tidyr::gather()

```
# lets use account type as column headings
library(tidyr)
df account wide <-</pre>
 df account %>%
  mutate(uniq_name = paste0(name,"_", birthdate)) %>%
  select(uniq_name, type, balance) %>%
  tidyr::spread(key = type, value = balance, fill = 0)
```

uniq_name	credit_card	loan	savings	term_deposit
andrew_1970	0	0	20	0
andrew_1980	0	200	0	0
cathy_1987	0	0	80	200
colin_1992	120	90	40	0
ellen_1990	50	400	200	0
mark_1985	50	0	300	0
megan_1978	0	300	400	0

WIDE TO LONG

```
Using tidyr::gather()
# go from wide format to long; sample 10 rows
 set.seed(123)
 df_account_wide %>%
   tidyr::gather(key = type,
                 value = value,
                  -unique name) %>%
   sample_n(10)
```

uniq_name	type	value
andrew_1980	loan	200
andrew_1970	term_deposit	0
colin_1992	loan	90
andrew_1980	term_deposit	0
colin_1992	term_deposit	0
andrew_1980	credit_card	0
ellen_1990	loan	400
ellen_1990	savings	200
mark_1985	term_deposit	0
megan_1978	term_deposit	0

NON STANDARD EVALUATION

NON STANDARD EVALUATION

Saves typing do not have to use quotes

Non standard evaluation - no quotes

```
df_customer %>%
    select(name, birthdate)

# Standard evaluation - uses quotes (note the underscore)
    df_customer %>%
    select_("name", "birthdate")
```

NON STANDARD Vs STANDARD EVALUATION

Non standard evaluation is useful for interactive programming as it saves time.

But what about programmatically specifying dplyr's arguments....

STANDARD EVALUATION

A simple example

```
# Create a simple list of column names
lst_names <- c("name", "birthdate") %>% lapply(as.name)

# Set the .dots argument equal to the list
df_customer %>% select_(.dots = lst_names)
```

name	birthdate
andrew	1980
andrew	1970
mark	1985
ellen	1990
cathy	1987
megan	1978
colin	1992
trung	1990

A MORE USEFUL EXAMPLE [1]

Firstly create a more useful data set by joining the two tables

cust_no	gender	address	account_no	type	balance	name	birthdate
10	m	north	F	loan	200	andrew	1980
15	m	south	N	savings	20	andrew	1970
20	m	north	1	credit_card	50	mark	1985
20	m	north	L	savings	300	mark	1985
30	f	south	Α	loan	400	ellen	1990
30	f	south	С	savings	200	ellen	1990
30	f	south	М	credit_card	50	ellen	1990
40	f	north	В	savings	80	cathy	1987
40	f	north	J	term_deposit	200	cathy	1987
50	f	south	D	savings	400	megan	1978
50	f	south	K	loan	300	megan	1978
60	m	north	Е	loan	90	colin	1992
60	m	north	G	credit_card	120	colin	1992
60	m	north	Н	savings	40	colin	1992

A MORE USEFUL EXAMPLE [2]

Secondly create a standard evaluation function

```
fn_demo_dots <- function(. . .) {

    lst_group_by <- list(. . .) %>% lapply(as.name)

    df_data %>%
        group_by_(.dots = list_group_by) %>%
        summarise(total = sum(balance))
}
```

A MORE USEFUL EXAMPLE [3]

Finally apply the function

```
# group_by address and gender
```

```
fn_demo_dots("address", "gender")
```

address	gender	total
north	f	280
north	m	800
south	f	1350
south	m	20

A MORE USEFUL EXAMPLE [4]

Apply the function again

```
# group_by type
fn_demo_dots("type")
```

For more complex usage of using standard evaluation with dplyr see the <u>lazyeval</u> or the <u>rlang</u> libraries

type	total
credit_card	220
loan	990
savings	1040
term_deposit	200

LAZYEVAL EXAMPLE [1]

```
# filter table where (loan) type == str_type
library(lazyeval)
fn filter account <- function(df, str type) {</pre>
  filter condition <- lazyeval::interp(\sim x == y, x =
   as.name("type"), y = str_type)
  df_rtn <- df %>% filter_(filter_condition)
  return(df rtn)
```

LAZYEVAL EXAMPLE [2]

```
# filter the accounts table by: type == loan
# call the function we created previously
fn_filter_account(df_account, "loan")
```

account_no	cust_num type	balance name	birthdate
Α	30 loan	400 ellen	1990
E	60 loan	90 colin	1992
F	10 loan	200 andrew	1980
K	50 loan	300 megan	1978

MULTIPLE ROWS FROM GROUPS

MULTIPLE ROWS FROM A GROUP

```
Using do()
# previously we only obtain 1 row per group.
# Now, we get multiple rows from each group
df_data %>%
  group_by(type) %>%
  do(head(., 2))
```

cust_no	gender	address	account_no	type	balance	name	birthdate
20	m	north	1	credit_card	50	mark	1985
30	f	south	M	credit_card	50	ellen	1990
10	m	north	F	loan	200	andrew	1980
30	f	south	Α	loan	400	ellen	1990
15	m	south	N	savings	20	andrew	1970
20	m	north	L	savings	300	mark	1985
40	f	north	J	term_deposit	200	cathy	1987

MORE COMPLEX EXAMPLE

Fit a linear model to each group using do()

```
# regress balance against birthdate
df_models <- df_data %>%
  group_by(type) %>%
  do(mod = lm(balance \sim birthdate, data = .))
# problem is how to extract results
df models
```

Each row contains an S3 model

type	mod
credit_card	<\$3: lm>
loan	<\$3: lm>
savings	<s3: lm=""></s3:>
term_deposit	<s3: im=""></s3:>

EXTRACTING LIST INFORMATION [1]

broom: "tidying statistical models into data.frames"

```
# broom::glance() returns one row per data.frame
```

```
df_models %>%
```

broom::glance(mod)

Selection of columns - output of broom::glance()

type	r.squared	sigma	statistic	p.value	AIC	BIC	df.residual
credit_card	0.51	39.62	1.08	0.48	33.29	30.59	1
loan	0.02	160.59	0.05	0.83	55.21	53.36	2
savings	0.001	171.69	0.01	0.93	82.34	81.71	4
term_deposit	0	NA	NA	NA	NA	NA	0

EXTRACTING LIST INFORMATION [2]

broom: "tidying statistical models into data.frames"

```
# broom::tidy() returns multiple rows per data.frame
```

```
df_models %>%
```

broom::tidy(mod)

Output of broom::tidy()

type	term	estimate	std.error	statistic	p.value
credit_card	(Intercept)	-15991.66	15458.57	-1.03	0.48
credit_card	birthdate	8.07	7.77	1.039	0.48
loan	(Intercept)	6551.21	26204.00	0.25	0.82
loan	birthdate	-3.17	13.20	-0.240	0.83
savings	(Intercept)	1761.81	18434.69	0.095	0.92
savings	birthdate	-0.80	9.29	-0.086	0.93
term_deposit	(Intercept)	200	NA	NA	NA

