

SEQUENCING 101

Chain termination:

Sanger sequencing

Chain termination:

Sanger sequencing

Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage ϕ X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Chain termination:

Sanger sequencing

Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage ϕ X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON

High-throughput Sanger sequencing

Dye-terminators and capillary electrophoresis

High-throughput Sanger sequencing

Dye-terminators and capillary electrophoresis

High-throughput Sanger sequencing

Dye-terminators and capillary electrophoresis

48/96 –capillars Read length < 900 bp < 90 Kbp / run

Sequencing by synthesis:

Pyrosequencing

Genome sequencing in microfabricated highdensity picolitre reactors

Marcel Margulies, Michael Egholm, [...] Jonathan M. Rothberg □

Nature 437, 376–380(2005) | Cite this article

Sequencing by synthesis:

Pyrosequencing

Genome sequencing in microfabricated highdensity picolitre reactors

Marcel Margulies, Michael Egholm, [...] Jonathan M. Rothberg □

Nature **437**, 376–380(2005) Cite this article

Sequencing by synthesis:

Pyrosequencing

Genome sequencing in microfabricated highdensity picolitre reactors

Marcel Margulies, Michael Egholm, [...] Jonathan M. Rothberg □

Nature **437**, 376–380(2005) | Cite this article

Marguelis et al., 2005. Nature

Read length ~ 400–1000 bp 20 – 600 Mbp / run

Maatalous-metsätieteellinen tiedekunta

Sequencing by synthesis:

Short-read sequencing

Illumina (Solexa) Genome Analyzer, 2006 **1 Gbp / run**

Sequencing by synthesis:

Short-read sequencing

Illumina Genome Analyzer IIx, 2008 **20 Gbp / run (9.5 days)**

Sequencing by synthesis:

Short-read sequencing

1 Gbp - >1 Tbp / run (~1-2 d)

Third revolution:

Long-read sequencing

Third revolution:

Long-read sequencing

Third revolution:

Long-read sequencing

Third revolution:

Long-read sequencing

Sequel II
HiFi reads:
Read length:
20 kb
30 Gbp /run
(99.92 % acc.)

Minion:

Read length:

> 4 Mb

1–50 Gbp

/run

(~ 97 % acc.)

Real-time!

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Nature Reviews | Microbiology