Assignment 5

杨乐天

Problem 1

With assignment $s(v_n) = 2n$, we know that freely occurring v_1 is assigned as $s(v_1) = 2 = 1 + 1$.

- $\models_{\mathfrak{N}} \exists v_0, v_0 \dotplus v_0 \doteq v_1[s]$ holds because if we let $v_0 = 1$, then $v_0 \dotplus v_0 = 1 \dotplus 1 = s(v_1)$.
- $\vDash_{\mathfrak{N}} \exists v_0, v_0 \dot{\times} v_0 \dot{=} v_1[s]$ doesn't hold. If we let $f(x) = x \times x = x^2$ with domain \mathbb{N} , we know f(x) is monotonically incremental and one-to-one. Then given $f(1) = 1 \dot{<} s(v_1), s(v_1) \dot{<} f(2) = 4$, and since there isn't any $a \in \mathbb{N}$ such that $1 \dot{<} a$ and $a \dot{<} 2$, we know the proposition doesn't hold.
- $\models_{\mathfrak{N}} \forall v_0 \exists v_1, v_0 \doteq v_1[s]$ holds. The v_0 and v_1 here are not occurring free, so the truth value of the statement isn't affected by s. For any $a \in \mathbb{N}$, let $b = a \in \mathbb{N}$, then $(v_0 \doteq v_1)[s(v_0|a)(v_1|b)]$ holds naturally.
- $\models_{\mathfrak{N}} \forall v_0 \forall v_1, v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2, v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s]$ holds. We have to prove $v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2, v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s(v_0|a)(v_1|b)]$ for every $a, b \in \mathbb{N}$. If the atomic formula $v_0 \dotplus \dot{1} \dot{<} v_1$ is true, then a+1 < b. In this case, $v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s(v_0|a)(v_1|b)(v_2|c)]$ is true by letting c=a+1. Otherwise, if the atomic formula $v_0 \dotplus \dot{1} \dot{<} v_1$ is false, then the original formula holds naturally.

Problem 2

For any structure \mathfrak{A} , we have to prove $\vDash_{\mathfrak{A}} \neg \exists x (Px \land Qx) \rightarrow \forall x (Qx \rightarrow \neg Px)$.

If $\vDash_{\mathfrak{A}} \neg \exists x (Px \land Qx)$, then $\vDash_{\mathfrak{A}} \exists x (Px \land Qx)$ doesn't hold. Further decomposing it, there doesn't exist any $a \in |\mathfrak{A}|$ s.t. $\vDash_{\mathfrak{A}} (Pa \land Qa)$, i.e. for any $a \in |\mathfrak{A}|$, $\vDash_{\mathfrak{A}} Pa$ is false or $\vDash_{\mathfrak{A}} Qa$ is false. Therefore, $\vDash_{\mathfrak{A}} Qa \rightarrow \neg Pa$, and thus $\vDash_{\mathfrak{A}} \forall x (Qx \rightarrow \neg Pa)$.

Problem 3

A binary relation $R \subset |\mathfrak{A}|^2$ becomes a function iff. for any a there is unique b satisfying $(a,b) \in R$.

$$\forall a \exists b (R(a,b) \land \forall c (c \neq b \rightarrow \neg R(a,c)))$$

Problem 4

- $\phi_1: v_0 \dot{\times} v_0 \dot{=} v_0$
- $\phi_2: (v_0 \dotplus v_0 \doteq v_0 \dot{\times} v_0) \land \neg (v_0 \dot{\times} v_0 \doteq v_0)$
- $\phi_3: \exists x \exists y (\phi_2(y) \land x \dot{\times} y \dot{=} v_0)$