Linear Regression

```
In [1]:
         H #Library
            library(caTools)
            Warning message:
            "package 'caTools' was built under R version 3.6.3"
In [2]:
        ₩ #Dataset
            data=read.csv("USA_Housing.csv")
In [3]:
         ▶ #Creating training and testing
            #70% to train
            #30% to testing
            s=sample.split(data,SplitRatio=0.7)
            #we wonot get splited data
            FALSE TRUE TRUE TRUE FALSE TRUE FALSE
In [4]:
         ▶ #To get train and test dataset
            train=subset(data,train=TRUE) #Giving 70 to train
            test=subset(data,train=FALSE)
            ##train=subset(data,split=TRUE) #Giving 70 to train
            ##test=subset(data,split=FALSE)
         ▶ res=lm(Price~.,data=train)
In [5]:
           #Predict
In [6]:
            res1=predict(res,test)
            Warning message in predict.lm(res, test):
            "prediction from a rank-deficient fit may be misleading"
```

Price	res1
1059033.6	1059033.6
1505890.9	1505890.9
1058988.0	1058988.0
1260616.8	1260616.8
630943.5	630943.5
1068138.1	1068138.1
1502055.8	1502055.8
1573936.6	1573936.6
798869.5	798869.5
1545154.8	1545154.8
1707045.7	1707045.7
663732.4	663732.4
1042814.1	1042814.1
1291331.5	1291331.5
1402818.2	1402818.2
1306674.7	1306674.7
1556786.6	1556786.6
528485.2	528485.2
1019425.9	1019425.9
1030591.4	1030591.4
2146925.3	2146925.3
929247.6	929247.6
718887.2	718887.2
743999.8	743999.8
895737.1	895737.1
1453974.5	1453974.5
1125692.5	1125692.5
975429.5	975429.5
1240763.8	1240763.8
1577017.8	1577017.8
1120943.3	1120943.3
1111307.1	1111307.1
1736401.6	1736401.6

Price	res1
1340769.8	1340769.8
801348.6	801348.6
1324382.2	1324382.2
1340343.9	1340343.9
1518478.0	1518478.0
1910585.1	1910585.1
1823498.4	1823498.4
1406865.5	1406865.5
1203850.1	1203850.1
1020095.9	1020095.9
1194357.4	1194357.4
1211899.7	1211899.7
1378937.9	1378937.9
1260241.4	1260241.4
1197073.4	1197073.4
1275143.2	1275143.2
885205.0	885205.0
479500.6	479500.6
1263720.5	1263720.5
1568700.6	1568700.6
1381830.8	1381830.8
905354.9	905354.9
1060193.8	1060193.8
1482617.7	1482617.7
1030729.6	1030729.6
1198656.9	1198656.9
1298950.5	1298950.5

Logistic Regression

```
In [9]: ► df=read.csv("Train.csv")
```

```
In [13]:  p=predict(model,test,type="response")
  res=data.frame(df["Reached.on.Time_Y.N"],round(p))
  res
```

Reached.on.Time_Y.N	round.p.
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
0	0
0	0

Reached.on.Time_Y.N	round.p.
0	0
1	1
0	0
0	0
0	1
0	1
0	C
0	C
1	0
1	C
0	1
1	C
1	0
1	C
1	1
1	C
1	C
0	C
0	C
0	C
1	C
0	C
0	C
1	C
0	C
0	C
0	C
0	C

K Means Clustering

library(factoextra)
library(cluster)
library(ggplot2)

Warning message:

"package 'factoextra' was built under R version 3.6.3"Loading required pack age: ggplot2

Welcome! Want to learn more? See two factoextra-related books at https://go
o.gl/ve3WBa (https://goo.gl/ve3WBa)

Warning message:

"package 'cluster' was built under R version 3.6.3"

In [16]: ▶ #Group the clusters

df=scale(USArrests)
head(df)

	Murder	Assault	UrbanPop	Rape
Alabama	1.24256408	0.7828393	-0.5209066	-0.003416473
Alaska	0.50786248	1.1068225	-1.2117642	2.484202941
Arizona	0.07163341	1.4788032	0.9989801	1.042878388
Arkansas	0.23234938	0.2308680	-1.0735927	-0.184916602
California	0.27826823	1.2628144	1.7589234	2.067820292
Colorado	0.02571456	0.3988593	0.8608085	1.864967207

```
In [17]: 

#Cluster

# 2->How many clusters

#35->Random 25 values
```

Kclusters=kmeans(df,2,nstart=25)

Kclusters

K-means clustering with 2 clusters of sizes 30, 20

Cluster means:

Murder Assault UrbanPop Rape 1 -0.669956 -0.6758849 -0.1317235 -0.5646433 2 1.004934 1.0138274 0.1975853 0.8469650

Clustering vector:

Alabama	Alaska	Arizona	Arkansas	California
2	2	2	1	2
Colorado	Connecticut	Delaware	Florida	Georgia
2	1	1	2	2
Hawaii	Idaho	Illinois	Indiana	Iowa
1	1	2	1	1
Kansas	Kentucky	Louisiana	Maine	Maryland
1	1	2	1	2
Massachusetts	Michigan	Minnesota	Mississippi	Missouri
1	2	1	2	2
Montana	Nebraska	Nevada	New Hampshire	New Jersey
1	1	2	1	1
New Mexico	New York	North Carolina	North Dakota	Ohio
2	2	2	1	1
Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
1	1	1	1	2
South Dakota	Tennessee	Texas	Utah	Vermont
1	2	2	1	1
Virginia	Washington	West Virginia	Wisconsin	Wyoming
1	1	1	1	1

Within cluster sum of squares by cluster:

[1] 56.11445 46.74796

(between_SS / total_SS = 47.5 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.within ss"

[6] "betweenss" "size" "iter" "ifault"

In [18]: ► #Visualizing the cluster
fviz_cluster(Kclusters,df)

