Pencil: Private and Extensible Collaborative Learning without the Non-Colluding Assumption

此次介绍的是清华大学Xuanqi Liu等人发表在NDSS24的论文关于隐私保护机器学习训练的论文:

https://www.ndss-symposium.org/ndss-paper/pencil-private-and-extensible-collaborative-learning-without-the-non-colluding-assumption/

开源代码如下:

https://github.com/lightbulb128/Pencil

1. 背景与动机

目前针对隐私保护机器学习训练的工作可以分为以下几类:联邦学习,基于安全多方计算的方案,和基于同态加密的方案。不同的方案在效率、安全性、和扩展性等反面各种不同。如下表所以:1)联邦学习只关注原始数据的隐私,却忽视了每一轮迭代中的模型隐私。2)安全多方计算一般适用的场景是外包计算,即数据提供方将自己的数据以秘密分享的形式分给多个外包服务器,外包服务器调用安全多方计算协议实现模型训练。但是这需要额外的安全假设要求,即外包服务器不能合谋。如果数据提供方作为安全计算节点执行安全计算协议,那么则需要抵抗n-1方合谋的安全协议(例如SPDZ),系统的效率会大大降低。3)基于同态加密的方案因为公私钥的绑定,目前一般只能适用一个数据拥有方。

Category	Representative framework	Techniques used*	Data privacy	Model privacy	Against collusion	Extensibility
Horizontal FL	[39], [10], [9]	Local SGD	√	×	√	$\overline{\hspace{1cm}}$
Vertical FL	[21], [19], [28]	Local SGD ✓		×	\checkmark	\checkmark
MPC (2 servers)	[3], [42]	GC, SS	✓	✓	×	√ †
MPC (3 servers)	[41], [47], [59]	GC, SS	\checkmark	\checkmark	×	√ †
MPC (4 servers)	[11], [33], [14]	GC, SS	\checkmark	\checkmark	×	√ †
MPC $(n \text{ servers})$	[15], [13]	GC, SS	\checkmark	\checkmark	\checkmark	√ [‡]
Data outsourcing / cloud	[43], [24]	HE	√	×	N/A	×
Data outsourcing / cloud	[56]	HE, DP	✓	×	N/A	×
Pencil	Ours	HE, SS, DP	√	√	√	$\overline{\hspace{1cm}}$

^{*} SGD is for stochastic gradient descent, GC for garbled circuits, SS for secret sharing, HE for homomorphic encryption and DP for differential privacy.

TABLE I: Comparison of prior art related with private collaborative training.

和上述方案不同,Pencil面向的场景是一个模型提供方-多个数据提供方的训练场景,最终训练的模型只公开给模型提供方进行后续工作。因此,上述中的FL无法满足本文的要求(FL中每次迭代训练需要将模型公开给所有数据提供方)。同时,本文试图得到比上述MPC方案更优秀的效率和扩展性,可以很自然的拓展到多个数据提供方;同时,又可以不需要计算服务器不合谋的假设。为了解决这个问题,本文在安全两方计算的基础上提出了框架Pencil。

本文需要基于格的同态加密方案和两方秘密分享,之前已经介绍过相关知识,在此不做赘述。

[†] If MO and DOes choose to secretly share their model and data to third-party MPC servers, extensibility is achieved but the approaches are secure only if these servers are not colluding with each other.

[‡] The general *n*-PC protocol against collusion suffers from a scalability problem: including more parties would greatly increase the computation overhead. See § VI-E for experimental results.

2. 系统架构

如上图所示,Pencil系统中有一个模型拥有方(MO)和多个数据拥有方(DO)。MO维护模型,保存模型的权重参数,DO则拥有私有数据,模型架构和超参数时公开信息。Pencil的模型训练流程和FL有些类似,但是不完全相同,大致如下:

- 1. 在每次训练中,MO的输入为当前模型参数,同时MO选择一个DO进行安全两方计算。本文使用Cheetah和CryptoFlow2的相关协议设计了模型训练中的前向计算和反向传播更新算法。最后更新的权重参数加上差分隐私扰动公开给MO。
- 2. MO得到当前轮次更新的模型,然后再选择下一个DO进行下一轮的计算更新。如此迭代,直到模型收敛。

3. 协议设计

3.1 线性层协议

模型线性层(例如全连接和卷积)的前向计算则是参考了Cheetah的方案,利用同态加密实现。形式化算法如下:

Algorithm 1: Evaluation of linear layer f

Input: The input $\langle \mathbf{X} \rangle$ shared between MO and DO; MO holds the weights W and the bias b.

Output: The output shares $\langle \mathbf{Y} \rangle$ of $\mathbf{Y} = \mathbf{W} \circ \mathbf{X} + \mathbf{b}$.

- 1 DO sends encrypted $[\![\langle \mathbf{X} \rangle_1]\!]$ to MO;
- 2 MO evaluates $[\![\mathbf{W} \circ \mathbf{X}]\!] = \mathbf{W} \circ ([\![\langle \mathbf{X} \rangle_1]\!] + \langle \mathbf{X} \rangle_0)$ using homomorphic plaintext-ciphertext additions and multiplications;
- 3 MO chooses random mask s and calculates $[\![\langle \mathbf{Y} \rangle_1]\!] = [\![\mathbf{W} \circ \mathbf{X}]\!] \mathbf{s};$ MO sends $[\![\langle \mathbf{Y} \rangle_1]\!]$ back for decryption;
- 4 DO outputs $\langle \mathbf{Y} \rangle_1$; MO outputs $\langle \mathbf{Y} \rangle_0 = \mathbf{s} + \mathbf{b}$.

计算得到Y之后,可以得到 ∇Y ,进而可以根据链式规则计算前一层的权重梯度。算法如下:

Algorithm 2: Weight gradient $\nabla_{\mathbf{W}}$ calculation

Input: MO and DO input secret shares of $\langle \mathbf{X} \rangle$ and $\langle \nabla_{\mathbf{Y}} \rangle$.

Output: MO receives $\nabla_{\mathbf{W}} = \nabla_{\mathbf{Y}} \odot \mathbf{X}$.

- 1 DO sends encrypted $[\![\langle \mathbf{X} \rangle_1]\!], [\![\langle \nabla_{\mathbf{Y}} \rangle_1]\!]$ to MO;
- 2 MO evaluates

$$[\![\nabla^{\mathsf{cross}}_{\mathbf{W}}]\!] = \langle \nabla_{\mathbf{Y}} \rangle_0 \odot [\![\langle \mathbf{X} \rangle_1]\!] + [\![\langle \nabla_{\mathbf{Y}} \rangle_1]\!] \odot \langle \mathbf{X} \rangle_0$$

- 3 MO chooses random mask s and sends $[\![\nabla^{cross}_{\mathbf{W}} \mathbf{s}]\!]$ back for decryption;
- 4 DO evaluates

$$\widetilde{\nabla_{\mathbf{W}}} = \nabla_{\mathbf{W}}^{\mathsf{cross}} - \mathbf{s} + \langle \nabla_{\mathbf{Y}} \rangle_1 \odot \langle \mathbf{X} \rangle_1$$

- 5 DO adds a perturbation e to $\nabla_{\mathbf{W}}$;
- 6 MO finishes by calculating

$$\nabla_{\mathbf{W}} = \widetilde{\nabla_{\mathbf{W}}} + \mathbf{s} + \langle \nabla_{\mathbf{Y}} \rangle_0 \odot \langle \mathbf{X} \rangle_0$$

3.2 线性层预计算优化

在算法1和2中,算法都需要计算大量的明文-同态密文乘法。这些计算在训练的每一步都需要进行,因此会带来大量的开销。本文提出了一种distinguishable却hard的方法来优化上述计算,使得Pencil只需要在预计算做常数次明文-密文乘法,而在线计算则不再需要同态操作。

给定 u, 变量 v: 给定**u**,在预计算阶段生成随机**v**',MO和DO可以计算得到 $\langle \mathbf{u}\mathbf{v}' \rangle$ 。进一步,在线计算阶只需要: 1) DO发送 $\mathbf{v} - \mathbf{v}'$ 给MO,输出 $\langle \mathbf{u}\mathbf{v} \rangle_1 = \langle \mathbf{u}\mathbf{v}' \rangle_1$; 2) MO计算输出 $\langle \mathbf{u}\mathbf{v} \rangle_0 = \mathbf{u}(\mathbf{v} - \mathbf{v}') + \langle \mathbf{u}\mathbf{v}' \rangle_0$ 。

但是上述方案对于不同的 \mathbf{v}_i 需要生成不同的 $\mathbf{u}\mathbf{v}_i'$ 。否则,简单复用的话会泄漏不同 \mathbf{v} 之间的差值。但是,对每一个 \mathbf{v}_i 生成一个 $\mathbf{u}\mathbf{v}_i'$,那么就会带来巨大的开销。为了提升效率,本文提出如下方案:

- 1. 首先生成m个随机 \mathbf{v}_i' ,并计算所有 $\mathbf{u}\mathbf{v}_i'$ 的秘密分享。
- 2. 在线计算阶段,对于每一个 \mathbf{v} ,DO生成m个非0的参数 k_i ,计算

$$\widetilde{\mathbf{v}} = v - \sum_{i \in [m]} k_i \cdot \mathbf{v}_i'$$

3. 最后,两方分别计算

$$egin{aligned} \langle \mathbf{u} \mathbf{v}
angle_0 &= \mathbf{u} \widetilde{\mathbf{v}} + \sum_{i \in [m]} k_i \cdot \langle \mathbf{u} \mathbf{v}_i'
angle_0 \ \langle \mathbf{u} \mathbf{v}
angle_1 &= \sum_{i \in [m]} k_i \cdot \langle \mathbf{u} \mathbf{v}_i'
angle_1 \end{aligned}$$

变量 u: 在实际计算中,**u**在预计算阶段是不确定的。因此,所以无法直接用上述优化方法。但是类似的,Pencil可以将上述方法对称的应用到 \mathbf{u} ,即生成多个 \mathbf{u}_i' 用以计算 $\mathbf{u}\mathbf{v}_i'$ 。具体协议如下:

3/9/24, 2:46 PM

Algorithm 3: $P(\circ, \mathbf{u}, \mathbf{v})$: Preprocessing optimization for calculating the shares of $\mathbf{u} \circ \mathbf{v}$

Input: A predefined linear operation o; in the online phase, MO inputs u and DO inputs v.

Output: The two parties receive shares of $\langle \mathbf{u} \circ \mathbf{v} \rangle$.

1 Preprocessing $P_{\mathsf{Prep}}(\circ)$:

- MO selects m random masks $\mathbf{u}'_i \sim \mathbf{u}, i \in [m]$; 2
- DO selects m random masks $\mathbf{v}_{i}^{\prime} \sim \mathbf{v}, j \in [m]$, and 3 sends their encryption $[v'_i]$ to MO;
- MO selects m^2 masks $\mathbf{s}_{ij} \sim (\mathbf{u} \circ \mathbf{v}), i, j \in [m];$ MO evaluates $[\![\langle \mathbf{u}_i' \circ \mathbf{v}_j' \rangle_1]\!] = \mathbf{u}_i' \circ [\![\mathbf{v}_j']\!] \mathbf{s}_{ij}$ for $i, j \in [m]$, and sends them back for decryption;
- MO and DO keeps shares of $\langle \mathbf{u}_i' \circ \mathbf{v}_i' \rangle$ for all 6 $i, j \in [m]$

$$\langle \mathbf{u}_i' \circ \mathbf{v}_j' \rangle_0 = \mathbf{s}_{ij}$$

 $\langle \mathbf{u}_i' \circ \mathbf{v}_j' \rangle_1 = \mathbf{u}_i' \circ \mathbf{v}_j' - \mathbf{s}_{ij}$

- Online $P_{Online}(\circ, \mathbf{u}, \mathbf{v})$:
- MO randomly picks scalars $k_i, i \in [m]$; MO sends 8 to DO all k_i and

$$\tilde{\mathbf{u}} = \mathbf{u} - \sum_{i \in [m]} k_i \cdot \mathbf{u}_i'$$

MO and DO produces shares of $\langle \mathbf{u} \circ \mathbf{v}'_i \rangle$ for all 9 $j \in [m]$ as

$$\langle \mathbf{u} \circ \mathbf{v}'_j \rangle_0 = \sum_{i \in [m]} k_i \cdot \langle \mathbf{u}'_i \circ \mathbf{v}'_j \rangle_0$$

$$\langle \mathbf{u} \circ \mathbf{v}'_j \rangle_1 = \tilde{\mathbf{u}} \circ \mathbf{v}'_j + \sum_{i \in [m]} k_i \cdot \langle \mathbf{u}'_i \circ \mathbf{v}'_j \rangle_1$$

DO randomly picks scalars $\ell_j, j \in [m]$; DO sends 10 to MO all ℓ_j and

$$\tilde{\mathbf{v}} = \mathbf{v} - \sum_{j \in [m]} \ell_j \cdot \mathbf{v}_j'$$

MO and DO produces shares of $\langle \mathbf{u} \circ \mathbf{v} \rangle$ as 11

$$\langle \mathbf{u} \circ \mathbf{v} \rangle_0 = \mathbf{u} \circ \tilde{\mathbf{v}} + \sum_{j \in [m]} \ell_j \cdot \langle \mathbf{u} \circ \mathbf{v}_j' \rangle_0$$

$$\langle \mathbf{u} \circ \mathbf{v} \rangle_1 = \sum_i \ell_i \cdot \langle \mathbf{u} \circ \mathbf{v}_i' \rangle_1$$

上述代码可以很自然拓展到多个DO,只需要在mask变量 \mathbf{u} 和 \mathbf{v} 时选择不同的随机数 $k_i \& \ell_j$ 。

但是上述技术并不满足不可区分性,但是想要从上述协议中抽取具体的数值信息还是困难的。对于不同的m, f,搜索的难度如下:

\overline{m}	f	Search space	RSA-k	Time to Break
2	10	20 bits	< 512	62.1 seconds
2	25	50 bits	< 512	2114 years
4	25	100 bits	~ 2048	$2.38 \times 10^{18} \text{ years}$
8	25	200 bits	~ 7680	$3.02 \times 10^{48} \text{ years}$

TABLE IX: Hardness of the adaptive attack against the preprocessing optimization. RSA-k means the RSA modulus bit length offering equivalent security guarantees. Time to break is evaluated or estimated using the CIFAR10 dataset.

3.3 非线性层 & 同态优化

对于非线性层,本文用调用Cheetah和CryptFlow2来计算ReLU、2D-Average池化层、和截断。具体可以看之前的博客。对于同态计算优化,本文利用GPU优化了同态加法、乘法计算效率10×以上。

4. 实验评估

本文针对多个模型进行了实验,测试了训练准确率、通信和计算开销等。准确率如下:

Fig. 1: Test accuracies for trained models. (a) \sim (d) are for models trained from scratch; (e) and (f) are for models trained via transfer learning.

			Pencil			Pencil ⁺				
Scenario	Task	Model	Online			Preprocessing		Online		
			TP _{LAN}	TP_{WAN}	C	T _{prep}	C_{prep}	TP_{LAN}	TP_{WAN}	C
	MNIST	MLP	9.73×10^4	5.12×10^4	1.66	0.02	3.35	26.52×10^4	19.87×10^4	0.23
Train from	MNIST	CNN	7.70×10^4	4.43×10^{4}	1.71	0.02	4.13	13.72×10^4	10.75×10^4	0.36
	AGNews	TextCNN	0.37×10^4	0.53×10^{4}	14.62	0.27	19.28	0.76×10^{4}	1.07×10^{4}	6.74
	CIFAR10	CNN	0.18×10^4	0.12×10^{4}	44.89	0.70	83.12	0.22×10^{4}	0.15×10^{4}	34.90
Transfer	CIFAR10	AlexNet	0.52×10^{4}	0.39×10^{4}	11.33	0.91	46.00	1.55×10^{4}	1.24×10^{4}	2.90
learning	CIFAR10	ResNet50	1.83×10^4	1.17×10^{4}	5.48	0.30	15.96	8.05×10^{4}	5.89×10^{4}	0.82

TABLE III: Training costs for different ML tasks. For the online phase, TP stands for the throughput (samples/hour) of the training system, and subscript LAN, WAN indicate the network settings; C stands for the online communication (MB) per sample. For $Pencil^+$, we also report the time (T_{prep} , hours) and communication (C_{prep} , GB) of preprocessing. Note that the preprocessing overhead is one-time overhead.