Searching FAU

リーハーン

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-192799

(43) Date of publication of application: 29.07.1997

(51)Int.Cl.

B22D 11/10

B22D 11/10 B22D 41/50

C21C 7/04

(21)Application number: 08-003164

(71)Applicant: NIPPON STEEL CORP

(22)Date of filing:

11.01.1996

(72)Inventor: KONDO KATSUMI

IMAI TADASHI

(54) METHOD FOR PREVENTING CLOGGING OF IMMERSION NOZZLE IN CONTINUOUS CASTING

(57)Abstract:

PROBLEM TO BE SOLVED: To surely prevent the clogging of an immersion nozzle in continuous casting by pouring molten steel with T-Ca specified into a mold from a tundish through the immersion nozzle.

SOLUTION: In a ladle filled with the molten steel after refining, Ca(Ca-Si alloy, etc.) is added after deoxidizing the molten steel with Al, the T-Ca is adjusted to 1-5ppm in the molten steel, and thereafter, the molten steel is poured into the tundish and successively, poured into the mold through the immersion nozzle to executed the continuous casting. As the other way, the T-Ca in the molten steel can be adjusted by adding Ca to the molten metal in the tundish. By the method, the clogging of the immersion nozzle in the continuous casting is prevented and the productivity can be improved.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-192799

(43)公開日 平成9年(1997)7月29日

(51) Int.Cl. ⁶	識別記号 庁内整理番号	FI	技術表示箇所
B 2 2 D 11/10	3 2 0	B 2 2 D 11/10	320E
	370		370C
41/50	5 1 0	41/50	5 1 0
C21C 7/04		C 2 1 C 7/04	С .
		審査請求 未請求	請求項の数1 OL (全 4 頁)
(21)出願番号	特顯平8-3164	(71)出願人 0000066	55
		新日本劉	型鐵株式会社
(22)出顧日	平成8年(1996)1月11日	東京都干	F代田区大手町2丁目6番3号
		(72)発明者 近藤 3	起
		5 4 5	東海市東海町 5 - 3 新日本製鐵株 名古屋製鐵所内
	·	(72)発明者 今 井 🗇	
		愛知県東	F海市東海町5-3 新日本製鐵株
•	·	式会社往	占古屋製鐵所内
		(74)代理人 弁理士	名鳴 明郎 (外2名)

(54) 【発明の名称】 連続鋳造における浸漬ノズル詰り防止方法

(57)【要約】

【課題】 本発明方法は、連続鋳造における浸漬ノズル 詰りを確実に防止する方法を提供する。

【解決手段】 T-C a ϵ $1\sim5$ p p m ϵ m ϵ

10

【特許請求の範囲】

【請求項1】 $T-Ca 1 \sim 5 ppm に調整した溶鋼を、タンディシュから浸漬ノズルを介して鋳型へ注入して、連続鋳造することを特徴とする連続鋳造における浸漬ノズル詰り防止方法。$

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明方法は、連続鋳造における浸漬ノズル詰り防止方法に関するものである。

[0002]

【従来の技術】溶鋼の連続鋳造においては、図1に示すごとく精錬後の溶鋼を満たした取鍋(図示せず)からタンディシュ1へ注入し、次いでタンディシュ1の浸漬ノズル2から鋳型3内へ溶鋼4を注入して鋳片5を鋳造するものであるが、鋳造中に浸漬ノズル3内壁等に溶鋼中のA12 O。系介在物が付着し、ノズル詰りが発生して操業上種々トラブルの原因になることが知られている。このようなノズル詰りを防止するため、浸漬ノズルの内壁表層部をジルコニアで構成し、A12 O。系介在物の付着を防止することが特開平3-268849号公報に20開示されている。また、浸漬ノズル内壁からガスを吹き出してA12 O。系介在物の付着を防止することが特開平4-17966号公報に開示されている。

[0003]

【発明が解決しようとする課題】上記のごとき、浸漬ノズルの詰り防止方法においては、確実にノズル詰りを防止することが困難であり、ノズル詰りにより鋳型内での注入溶鋼の偏流等によって、十分に溶鋼中の介在物を浮上することができず、鋳片への介在物混入による介在物の除去で歩留りが低下する。また、浸漬ノズルの詰りによるノズル取り替えによって、ノズルのコストを上昇させる等の課題がある。本発明方法は、このような課題を有利に解決するためなされたものであり、TーCaを調整した溶鋼をタンディシュから浸漬ノズルを介して鋳型へ注入し、浸漬ノズルの詰りを確実に防止する方法を提供することを目的とするものである。

[0004]

【課題を解決するための手段】本発明方法の特徴とするところは、T-Caを1~5ppmに調整した溶鋼を、タンディシュから浸漬ノズルを介して鋳型へ注入して、

連続鋳造することを特徴とする連続鋳造における浸漬ノズル詰り防止方法である。

[0005]

【発明の実施の形態】上記のごとく、溶鋼中のT-Ca (鋼中CaO+鋼中Caのトータル)を調整して、溶鋼 中のAlzO。の凝集合体を促進している溶鋼中のPz Os をCa添加により、CaOを生成せしめてnCaO mP₂ O₅ とし、A 1₂ O₅ との結合力を低下させ、凝 集合体としてのAl2O。の存在を阻止することによっ て、鋳型への溶鋼注入に際し、浸漬ノズル通過時に浸漬 ノズル内壁へのA12 〇2の付着を防止するものであ る。しかして溶鋼中T-С aが1 p p m未満であると、 n Ca Om P2 Os の生成が少なく、P2 Os とA12 O₃ との結合力を低下させることが困難になり、A 1₂ O₃ の凝集合体が生成して浸漬ノズル内壁に付着するこ とになる。また、溶鋼中T-Caが5ppm超になる と、nCaOmAl₂O₃の高融点介在物が生成し、浸 漬ノズル内壁に付着してノズル詰りを発生することにな り、しかも、溶鋼中介在物として鋳片の品質を劣化させ る原因なり好ましくない。

【0006】このような溶鋼中T-Caの調整は、例えば精錬後の溶鋼を満たした取鍋において、溶鋼のA1脱酸後Ca(Ca-Si合金等)を添加して、溶鋼中のT-Caを1~5ppmに調整した後、タンディシュへ注入し、次いで浸漬ノズルを介して鋳型へ注入して連続鋳造するものである。また、タンディシュ内溶鋼へCaを添加することによって溶鋼中T-Caの調整をすることができる。

【0007】浸漬ノズル内壁へのAl2 O3 の付着し易い鋼種としては、例えばC:0.001~0.05%、Mn:0.1~0.5%、Si:0.04%以下、P:0.05%以下、S:0.05%以下、Al:0.005~0.08%、残りFe及びその他不純物からなる極低炭素鋼等がある。従って、このような溶鋼を連続鋳造するに際し、上記のごとく溶鋼中のT-Caを調整することによって、ノズル詰りを確実に防止することができる。

【0008】次に、本発明方法の実施例を比較例とともに挙げる。

40 【表1】

			,		,		,				
		浸	浸	鋼	溶	溶	鋳	鋳	鋳	鋳	歩
		漬	潰	中	鉀	鋼	型	型	造	造	留
寒		1	1	Т	注	注	幅	厚	速	量	n
施		ス	ズ	1	入	入			度		
態		ル	ル	Ca	盘	温					
様		径	吐	量		度					
			出								
			П			1			l .		
	No		径		t/						
		m	mm	ppm	分	C	m	0001	■分	t	%
	1	90	70	1	8	1550	1000	245	1.3	1000	99
実	2	,,	п	2	n	"	n	n	,,	,,	"
施	3	n,	77	3	Ŋ	n	n	n	,,	,,	n
例	4	,,	П	4	П	n	7	n	Я	. ,,	,,
	5	,,	n	5	n	. #	77	"	A.	,,	"
比	1	,	n	0.5	77	n	n	п	П	500	95
	2	,	- 11	7	,	7	,,	,,	7	, J	70
較例	3	П	n		,,	77	<i>II</i> .	п	л	,,	,,
		ŧ								. 1	

【0009】注1:溶鋼成分は、C:0.002%、Mn:0.2%、Si:0.03%、P:0.03%、S:0.02%、A1:0.03%、Nb:0.015%、Ti:0.015%、残りFe及びその他不純物。注2:溶鋼中のT-Ca調整は、精錬後の取鍋内溶鋼をA1脱酸後にCa-Si合金を添加して調整し、次いで、タンディシュへ注入し浸漬ノズルを介して鋳型へ注入して鋳造した。

注3:浸漬ノズルは、一般に用いられている材質の浸漬 ノズルを使用。

注4:鋳造量は、実施例については予定した鋳造量を全て鋳造したため、その予定鋳込み量を表示。比較例では 浸漬ノズル詰りによる鋳型内溶鋼表面の変動発生等操業 悪化にともない、操業停止までの鋳片鋳込み量を表示した。

[0010]

【発明の効果】本発明方法によれば、連続鋳造において 浸漬ノズル詰りを確実に防止して生産性を向上すること ができる。また、溶鋼中のT-Caの調整により浸漬ノズル詰りを防止するため、操業に際し作業負荷を必要としないので、安定した操業ができる。更に、特別な設備を必要としないので、低コストで実施できる等の優れた効果が得られる。

【図面の簡単な説明】

【図1】連続鋳造を示す側面図である。

