수학

목차

- 나머지 연산
- 최대공약수(GCD)/최소공배수(LCM)
- 소수
 - 소수 구하기.
 - 에라토스테네스의 체

나머지 연산

문제를 풀다 보면 답이 매우 큰 경우가 있다. 이럴 때 문제에서 '정답을 n으로 나눈 나머지를 구하여라' 라고 주어지는 경우가 있다.

- $\bullet (A + B) \bmod M = ((A \bmod M) + (B \bmod M)) \bmod M$
- $(A * B) \mod M = ((A \mod M) * (B \mod M)) \mod M$
- 나누기는 성립 x
- (A B) mod M = ((A mod M) (B mod M) + M) mod M(음수 보정)

나머지 연산(음수보정..?)

• (6%3-5%3)%3 을 풀어보자.

C11,C++14: -2

Java : -2 Python3: 1

언어마다 다르다. 그래서 음수를 보정을 해 주는 것. (원하는 결과를 얻기 위해)

부등호로 증명하지만 필자는 이해를 못했다.

시간복잡도

 https://joshuajangblog.wordpress.com/2016/09/21/time_comp lexity_big_o_in_easy_explanation/

최대공약수

- 최대공약수 (Greatest Common Divisor) 즉, GCD라고 부른다.
- 두 수 A,B의 공통된 약수 중에서 가장 큰 수
- 최대공약수가 1인 두 수를 서로소(Coprime)라고 한다.

• 최대공약수를 가장 쉽게 구하는 방법은 2부터 min(a,b)까지 나

누어 보면 된다.

```
#include <iostream>

—int min(const int &a, const int &b) {
      return a < b ? a : b;
□int main(void) {
      int result:
      int a, b;
      for (int i = 2; i \leftarrow min(a, b); i++) {
          if (a \& i == 0 \&\& b \% i == 0)
              result = i;
      return 0;
```

최대공약수

- 앞에 있는 방법은 시간 복잡도가O(n)이다.
 - '최악의 시간이 min(a, b)만큼 돌기 때문에. (여기선 min(a, b)돈다.)
- O(n)도 좋은 알고리즘이지만 더 좋은 알고리즘이 있다.

최대공약수-유클리드 호제법

- A를 b로 나눈 나머지를 r이라고 했을 때
- GCD(a,b) = GCD(b,r)이다.
- R이 0이면 그때 b가 최대 공약수이다.
- GCD(24,16) = GCD(16,8) = GCD(8,0) = 8
- 이 내용을 이용하여 gcd를 구하는 함수를 구해보자

최대공약수-유클리드 호제법

```
int main(void) {
    int a, b;
    while (b != 0) {
        int r = a % b;
        a = b;
        b = r;
    }
    //GCD(a,b) = 여기서의 b의 값.
    return 0;
}
```

```
#include <iostream>
int gcd(int a, int b) {
    if (b == 0) {
        return a;
    }
    else {
        return gcd(b, a % b);
    }
}
```

While버전

재귀버전

이 시간 복잡도는 O(logN)이라고 한다

최대공약수-유클리드 호제법

GCD(a,b,c) = GCD(GCD(a,b),c) 계속 늘려가도 성립된다.

최소공배수

- 1. Least Common Multiple 줄여서 LCM이라고 한다.
- 2. 두 수의 공통된 배수 중에서 가장 작은 수.
- 3. GCD를 응용해서 구할 수 있다.
- 4. 두 수 a,b의 최대공약수를 g라고 했을 때,
- 5. 최소공배수 I 은 g*(a/g)*(b/g) 이다.

두 정수의 최대공약수와 최소공배수의 관계는 다음과 같다.

$$\gcd\{n, m\} \operatorname{lcm}\{n, m\} = nm$$

https://ko.wikipedia.org/wiki/%EC%B5%9C%EB%8C%80%EA%B3%B5%EC%95%BD%EC%88%98

두수 곱한 거에 gcd 나눠주면 최소공배수다.

최소공배수

같이 만들어 본 gcd와 lcm을 이용하여 문제를 풀어보자

- 약수가 1과 자기 자신 밖에 없는 수.
- 어떤 수가 소수이기 위해선, 2보다 크고 N-1보다 작거나 같은 자연수로 나누어 떨어지면 안된다.
- 어떤 수 N이 소수인가 아닌가.
- N이하의 소수를 모두 찾기.

간단하지만 이 방법도 O(n)이다.

어떤 수가 소수이기 위해선, 2보다 크거나 같고, 루트N보다 작거나 같은 자연수로 나누어 떨어지면 안된다.

N이 소수가 아니라면, N = a*b 로 나타낼 수 있다. (a <= b) 두 수 a와 b의 차이가 가장 작은 경우는 루트 N이다. (루트의 성질) 따라서 루트 N까지만 검사해보면 된다.

24 = 1, 2, 3, 4, 6, 8, 12, 24

```
bool prime(int n) {
    if (n < 2)
        return false;
    else {
        for (int i = 2; i <= n - 1; i++) {
             if (n % i == 0)
                 return false;
        }
        return true;
}</pre>
```

루트 n은 근사값이기 때문에 i<=n-1을 i*i<=n으로 변경하자! 이러면 O(루트n)으로 훨씬 빨라졌다.

그럼 $1 \sim n$ 까지 소수의 개수를 찾는 문제의 시간 복잡도는 $O(n\sqrt{n})$ 이다. 좋아 보이지만 1,000,000까지의 소수를 구하려면 1,000,000 * 1,000 만큼 걸린다. 10억 = 10초

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

에라토스테네스의 체라고 한다. 시간 복잡도가 무려 O(nloglogn). 루트N -> loglogn 이면 아까 1,000,000의 수를 본다면, N * 1,000 -> N * log3 으로 줄어드는 것이다.

한번 오른쪽의 그림을 보고 구현해보는 시간을 가져보자.

함수호출시, 파라메터에 N을 넣으면 N까지의 소수를 구해주는 함수를 만들어보자.

```
const int ERA_MAX = 1000000; //1,000,000까지의 수를 담을 예정
bool check[ERA_MAX]; //소수가 아닌지 체크
vector<int> v;
Ivoid go_era(int num) {
   if(num <= 1 || num > 1000000)
       return;
   else {
       for(int i=2;i*i<=num;i++) { //N이 소수인지 판별할때 sqrt(N)까지 체크
           if(!check[i]) { //체크가 되지 않은 수이면
              v.push_back(i); //넣는다
              for(int j=i+i;j<=num;j*=2) {</pre>
                  check[j] = true; //체크
```

대충 비슷한가?

1929 소수 구하기