MATH1061 Discrete Mathematics I

Problem Set 3 Michael Kasumagic, sID#: 44302669

Due: 5pm, 4^{th} of October, 2024

Question 1: (10 marks)

Prove the following set identities a

$$(1) \ (A \cup B) \times C = (A \times C) \cup (B \times C)$$

$$(2) (A' \cap B)' \cap D = (D \setminus A') \cup (D \setminus B)$$

Solution: (a)

$$(A \cup B) \times C = \{(x,c) \mid x \in A \cup B, \ c \in C\}$$
 (Definition of Cartesian Product)
$$= \{(x,c) \mid (x \in A \lor x \in B), \ c \in C\}$$
 (Definition of Union)
$$= \{(x,c) \mid (x \in A, \ c \in C) \lor (x \in B, \ c \in C)\}$$
 (Distributivity of \land over \lor)
$$= \{(a,c) \mid a \in A, \ c \in C\} \cup \{(b,c) \mid b \in B, \ c \in C\}$$
 (Definition of Union)
$$= (A \times C) \cup (B \times C)$$
 (Definition of Cartesian Product)

Which is what we wanted to show.

Solution: (b)

$$(A' \cap B)' \cap D = (A \cup B') \cap D$$
 (De Morgan's)
 $= D \cap (A \cup B')$ (Commutativity)
 $= (D \cap A) \cup (D \cap B')$ (Distributivity)
 $= (D \setminus A') \cup (D \setminus B)$ (Set Difference Law)

Which is what we wanted to show.

Question 2: (15 marks)

Suppose $f: A \to B$ and $g: B \to A$ are functions, and ι_A is the identity function on A, ι_B is the identity function on B. In particular, $\iota_A(x) = x$, $\forall x \in A$ and similarly $\iota_B(x) = x$, $\forall x \in B$.

- (1) Suppose $f \circ g = \iota_B$ and $g \circ f = \iota_A$. Prove that f and g are bijections.
- (2) Suppose g is surrjective and $f \circ g = \iota_B$. Prove that $g \circ f = \iota_A$.

Solution: (a)

Proposition. f is a bijection

Proof. Show that f is injective.

Suppose $x, y \in A$, f(x) = f(y).

We can apply g to both sides, g(f(x)) = g(f(y)).

Which is the same as writing $(g \circ f)(x) = (g \circ f)(y)$.

Given that $g \circ f = \iota_A$, the previous expression can be rewritten $\iota_A(x) = \iota_A(y)$.

Evaluating the identity function, x = y.

Therefore, f is injective.

Show that f is surrjective

Suppose $b \in B$. Take $a = g(b) \in A$, since $g : B \to A$.

Hence, $f(a) = f(g(b)) = (f \circ g)(b) = \iota_B(b) = b$.

Thus, $\forall b \in B, \exists a \in A : b = f(a)$.

Therefore, f is surrjective.

f is surrjective and injective.

Therefore, f is bijective.

Proposition. g is a bijection

Proof. Show that g is injective.

Suppose $x, y \in B$, g(x) = g(y).

We can apply f to both sides, f(g(x)) = f(g(y)).

Which is the same as writing $(f \circ g)(x) = (f \circ g)(y)$.

Given that $f \circ g = \iota_B$, the previous expression can be rewritten $\iota_B(x) = \iota_B(y)$.

Evaluating the identity function, x = y.

Therefore, g is injective.

Show that g is surrjective

Suppose $a \in A$. Take $b = f(a) \in B$, since $f : A \to B$.

Hence, $g(b) = g(f(a)) = (g \circ f)(a) = \iota_A(a) = a$.

Thus, $\forall a \in A, \exists b \in B : a = g(b)$.

Therefore, f is surrjective.

g is surrjective and injective.

Therefore, g is bijective.

Corollary. f is a bijection and g is a bijection.

```
Solution: (b)
Proposition. g \circ f = \iota_A

Proof. Suppose g is surrjective and f \circ g = \iota_B.

g is surrjective, which means \forall a \in A, \exists b \in B : a = g(b).

Take any \alpha \in A. There is a \beta \in B such that \alpha = g(\beta).

Apply f to both sides, f(\alpha) = f(g(\beta)).

Apply g to both sides, g(f(\alpha)) = g(f(g(\beta))).

Simplifying, (g \circ f)(\alpha) = g((f \circ g)(\beta)).

Simplify further, (g \circ f)(\alpha) = g(\iota_B(\beta)).

We see, (g \circ f)(\alpha) = g(\beta).

Hence, (g \circ f)(\alpha) = \alpha, which is the definition of \iota_A.
```

Question 3: (15 marks)

- (1) Show that $\mathbb{Z}^+ \times \mathbb{Z}^+$ is in bijection with $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+$. Deduce that $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+$ is countable
- (2) Show that $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+$ is in bijection with $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+$. Deduce that $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.
- (3) Is the set $\mathbb{Z}^+ \times \cdots \times \mathbb{Z}^+$ (Cartesian product n times) countable? A yes or no would suffice.

Remark. In this question, we'll use $\mathbb{Z}^+ =: \mathbb{N} = \{1, 2, 3, 4, \ldots\}$. We will denote the Cartesian product n times, $\mathbb{N} \times \cdots \times \mathbb{N}$, as \mathbb{N}^n . We'll also denote an injective function from set A to B, $f: A \to B$, and a bijective function $f: A \leftrightarrow B$.

Solution: (a)

Proposition. \mathbb{N}^2 is in bijection with \mathbb{N}^3 .

Proof. We'll utilise the Schröder-Bernstein theorem, which states (with notation adapted for our specific problem)

$$f: \mathbb{N}^2 \to \mathbb{N}^3, \ g: \mathbb{N}^3 \to \mathbb{N}^2 \implies h: \mathbb{N}^2 \leftrightarrow \mathbb{N}^3$$

So, to prove that \mathbb{N}^2 is in bijection with \mathbb{N}^3 , we'll find two functions which map from one set to the other, and show that those functions are injective.

Show that there exists an injective function $f: \mathbb{N}^2 \to \mathbb{N}^3$.

Let's propose the function $f: \mathbb{N}^2 \to \mathbb{N}^3$, defined by f((a,b)) := (a,b,0).

Suppose $(a_1, b_1), (a_2, b_2) \in \mathbb{N}^2$, and $f(a_1, b_1) = f(a_2, b_2)$.

Then $(a_1, b_1, 0) = (a_2, b_2, 0)$

Hence $a_1 = a_2$, $b_1 = b_2$, 0 = 0.

Therefore our proposed function $f: \mathbb{N}^2 \to \mathbb{N}^3$ is injective.

Show that there exists an injective function $q: \mathbb{N}^3 \to \mathbb{N}^2$.

Let's propose the function $g: \mathbb{N}^3 \to \mathbb{N}^2$, defined by $g((a,b,c)) := (2^a 3^b 5^c, 0)$.

Suppose $(a_1, b_1, c_1), (a_2, b_2, c_2) \in \mathbb{N}^3$ and $f((a_1, b_1, c_1)) = f((a_2, b_2, c_2)).$

Then $(2^{a_1}3^{b_1}5^{c_1},0) = (2^{a_2}3^{b_2}5^{c_2},0)$

Hence, $2^{a_1}3^{b_1}5^{c_1} = 2^{a_2}3^{b_2}5^{c_2}$.

Which implies that $2^{a_1} = 2^{a_2} \iff a_1 = a_2$,

 $3^{b_1} = 3^{b_2} \iff b_1 = b_2,$

and $5^{c_1} = 5^{c_2} \iff c_1 = c_2$.

Therefore our proposed function $g: \mathbb{N}^3 \to \mathbb{N}^2$ is injective.

There exists an injection $f: \mathbb{N}^2 \to \mathbb{N}^3$, namely f((a,b)) = (a,b,0), and an injection $g: \mathbb{N}^3 \to \mathbb{N}^2$, namely $g((a,b,c)) = (2^a 3^b 5^c, 0)$.

Therefore, by Schröder-Bernstein theorem, there exists a bijection, $h: \mathbb{N}^2 \leftrightarrow \mathbb{N}^3$.

Therefore \mathbb{N}^2 is in bijection with \mathbb{N}^3 .

Corollary. \mathbb{N}^3 is countable.

Proof.

 $\exists f: \mathbb{N}^2 \leftrightarrow \mathbb{N} \iff \left| \mathbb{N}^2 \right| = |\mathbb{N}|.$

 $\exists g: \mathbb{N}^2 \leftrightarrow \mathbb{N}^3 \iff |\mathbb{N}^2| = |\mathbb{N}^3|.$

 $| \cdot \cdot | \mathbb{N}^3 | = | \mathbb{N} |$, by transitivity. This is the definition of countable.

Therefore \mathbb{N}^3 is countable.

Solution: (b)

Proposition. \mathbb{N}^3 is in bijection with \mathbb{N}^4 .

Proof. We'll utilise the Schröder-Bernstein theorem, which states (with notation adapted for our specific problem)

$$f: \mathbb{N}^3 \longrightarrow \mathbb{N}^4, \ g: \mathbb{N}^4 \longrightarrow \mathbb{N}^3 \implies h: \mathbb{N}^3 \leftrightarrow \mathbb{N}^4$$

So, to prove that \mathbb{N}^3 is in bijection with \mathbb{N}^4 , we'll find two functions which map from one set to the other, and show that those functions are injective.

Show that there exists an injective function $f: \mathbb{N}^3 \longrightarrow \mathbb{N}^4$.

Let's propose the function $f: \mathbb{N}^3 \to \mathbb{N}^4$, defined by f((a, b, c)) := (a, b, c, 0).

Suppose $(a_1, b_1, c_1), (a_2, b_2, c_1) \in \mathbb{N}^3$, and $f(a_1, b_1, c_1) = f(a_2, b_2, c_2)$.

Then $(a_1, b_1, c_1, 0) = (a_2, b_2, c_2, 0)$

Hence $a_1 = a_2$, $b_1 = b_2$, $c_1 = c_2$, 0 = 0.

Therefore our proposed function $f: \mathbb{N}^3 \to \mathbb{N}^4$ is injective.

Show that there exists an injective function $q: \mathbb{N}^4 \to \mathbb{N}^3$.

Let's propose the function $q: \mathbb{N}^4 \to \mathbb{N}^3$, defined by $q((a, b, c, d)) := (2^a 3^b 5^c 7^d, 0, 0)$.

Suppose $(a_1, b_1, c_1, d_1), (a_2, b_2, c_2, d_2) \in \mathbb{N}^4$ and $f((a_1, b_1, c_1, d_1)) = f((a_2, b_2, c_2, d_2))$. Then $(2^{a_1}3^{b_1}5^{c_1}7^{d_1}, 0, 0) = (2^{a_2}3^{b_2}5^{c_2}7^{d_2}, 0, 0)$

Hence, $2^{a_1}3^{b_1}5^{c_1}7^{d_1} = 2^{a_2}3^{b_2}5^{c_2}7^{d_2}$.

Which implies that $2^{a_1} = 2^{a_2} \iff a_1 = a_2$,

 $3^{b_1} = 3^{b_2} \iff b_1 = b_2,$

 $5^{c_1} = 5^{c_2} \iff c_1 = c_2,$ and $7^{d_1} = 7^{d_2} \iff d_1 = d_2.$

Therefore our proposed function $g: \mathbb{N}^4 \to \mathbb{N}^3$ is injective.

There exists an injection $f: \mathbb{N}^3 \to \mathbb{N}^4$, namely f((a, b, c)) = (a, b, c, 0), and an injection $g: \mathbb{N}^4 \to \mathbb{N}^3$, namely $q((a, b, c, d)) = (2^a 3^b 5^c 7^d, 0, 0).$

Therefore, by Schröder-Bernstein theorem, there exists a bijection, $h: \mathbb{N}^3 \leftrightarrow \mathbb{N}^4$.

Therefore \mathbb{N}^3 is in bijection with \mathbb{N}^4 .

Corollary. \mathbb{N}^4 is countable.

Proof.

$$\begin{split} &\exists f: \mathbb{N}^2 \leftrightarrow \mathbb{N} \iff \left| \mathbb{N}^2 \right| = |\mathbb{N}|. \\ &\exists g: \mathbb{N}^2 \leftrightarrow \mathbb{N}^3 \iff \left| \mathbb{N}^2 \right| = \left| \mathbb{N}^3 \right|. \\ &\exists h: \mathbb{N}^3 \leftrightarrow \mathbb{N}^4 \iff \left| \mathbb{N}^3 \right| = \left| \mathbb{N}^4 \right|. \end{split}$$

 $|\mathbb{N}^4| = |\mathbb{N}|$, by transitivity. This is the definition of countable.

Therefore \mathbb{N}^4 is countable.

Solution: (c) Yes.

I can always construct an injective function $f: \mathbb{N}^{n-1} \to \mathbb{N}^n$, $f((a_1, \dots, a_{n-1})) = (a_1, \dots, a_{n-1}, 0)$ and a second injective function $g: \mathbb{N}^n \to \mathbb{N}^{n-1}, \ g(a_1,\ldots,a_n) = (\prod_{i=1}^n p_i^{a_i},0,\ldots,0),$ which will inductively be in bijection with \mathbb{N}

Question 4: (10 marks)

Let A be the set of all logical statements. Define a relation on A: for $p, q \in A$, p is related to q if and only if $p \land q$ and $p \lor q$ have the same truth value.

Determine if the above relation is reflexive, symmetric, transitive. If your answer is yes for any of the three properties, please prove your answer; if your answer is no, please find a counterexample.

Solution:

Let $\sigma: A \to A$ be defined By

Is σ reflexive?

Suppose $p \in A$.

Then $p \equiv \text{True or } p \equiv \text{False.}$

In either case, $p \leftrightarrow p$.

So $\forall p \in A, \ p \ \sigma \ p$

Therefore σ on A is reflexive.

Is σ symmetric?

Suppose $p, q \in A$.

Then $p \equiv \text{True or } p \equiv \text{False.}$ And $q \equiv \text{True or } q \equiv \text{False.}$

Without any loss of generality, assume $p \equiv q$.

(if $p \not\equiv q$, then $p \not\leftrightarrow q$ hence $p \sigma q$ does not hold, and doesn't need to be considered.) Suppose $p \sigma q$.

Then $p \leftrightarrow q$. Hence, $q \leftrightarrow p$, by commutativity of \leftrightarrow . Therefore, $q \sigma p$.

Therefore σ on A is symmetric.

Is σ transitive?

Suppose $p, q, r \in A$.

Then $p \equiv \text{True or } p \equiv \text{False.}$ $q \equiv \text{True or } q \equiv \text{False.}$ And $r \equiv \text{True or } r \equiv \text{False.}$

Without any loss of generality assume $p \equiv q$ and $q \equiv r$

(If $p \not\equiv q$ then $p \sigma q$ does not hold and need not be considered. If $q \not\equiv r$ then $q \sigma r$ does not hold and need not be considered.)

Suppose $p \sigma q$ and $q \sigma r$.

Then $p \leftrightarrow q$ and $q \leftrightarrow r$. Therefore $p \leftrightarrow r$, by transitivity of \leftrightarrow . Hence $p \sigma r$.

Therefore σ on A is transitive.

Therefore, σ is an equivilence relation on A.