EXAMEN DE ROBOTIQUE - M2 IRR/PISI

Nom: Prénom:

Modélisation géométrique

On considère le robot manipulateur PPRRR représenté sur la figure jointe. On note \mathcal{R}_0 le repère de base et O_7 le point de référence de l'organe terminal.

Figure 1 – Robot manipulateur PPRRR.

- 1. Positionner les repères \mathcal{R}_1 à \mathcal{R}_5 liés aux corps mobiles de ce robot.
- 2. En déduire le tableau des paramètres modifiés de Denavit/Hartenberg. On précisera les valeurs des coordonnées généralisées pour la figure.
- 3. Calculer les matrices de passage homogènes élémentaires $T_{i-1,i}$.
- 4. Valider précisément chacune de ces matrices pour la configuration représentée sur la figure proposée.
- 5. Pour la configuration représentée sur la figure :
 - (a) donner sans aucun calcul la matrice T_{05} . On pourra exploiter les repères préalablement positionnés.
 - (b) Sachant que l'on choisit comme coordonnées opérationnelles les cosinus directeurs partiels et les coordonnées cartésiennes, déterminer la situation correspondante de l'organe terminal.
- LISEZ ATTENTIVEMENT L'ENSEMBLE DU SUJET AVANT DE COMPOSER.
- IL NE SERA RÉPONDU À AUCUNE QUESTION. SI TOUTEFOIS VOUS CONSIDÉREZ ÊTRE EN PRÉSENCE D'UNE AMBIGUÏTÉ, EXPLIQUEZ EN QUOI ELLE CONSISTE ET INDIQUEZ EXPLICITEMENT PAR QUEL CHOIX VOUS LA RÉSOLVEZ.
- TOUS LES RÉSULTATS DEVRONT ÊTRE VÉRIFIÉS POUR LA CONFIGURATION DE LA FIGURE.
- UNE PRÉSENTATION SOIGNÉE EST L'ASSURANCE D'UNE CORRECTION PLUS INDULGENTE...

Génération de mouvement

Pour la commande d'un axe de robot entre deux valeurs de sa coordonnée généralisée q(t), on impose les profils de vitesse $\dot{q}(t)$, d'accélération $\ddot{q}(t)$ et de jerk $\ddot{q}(t)$ de la figure ??.

FIGURE 2 – Profils de commande en vitesse, accélération et jerk

Sachant que : J_m , V_m sont connus, q(0) et $q(t_4)$ sont connues. et que $t_4-t_3=t_3-t_2=t_2-t_1=t_1$ $V_1=\frac{V_M}{2}$

- 1. Calculer t_1 et Am.
- 2. Pour l'intervalle temporel $0 \le t \le t_2$ donner les équations d'évolution de $\ddot{q}(t)$, de $\dot{q}(t)$ et q(t).
- LISEZ ATTENTIVEMENT L'ENSEMBLE DU SUJET AVANT DE COMPOSER.
- IL NE SERA RÉPONDU À AUCUNE QUESTION. SI TOUTEFOIS VOUS CONSIDÉREZ ÊTRE EN PRÉSENCE D'UNE AMBIGUÏTÉ, EXPLIQUEZ EN QUOI ELLE CONSISTE ET INDIQUEZ EXPLICITEMENT PAR QUEL CHOIX VOUS LA RÉSOLVEZ.
- TOUS LES RÉSULTATS DEVRONT ÊTRE VÉRIFIÉS POUR LA CONFIGURATION DE LA FIGURE.
- UNE PRÉSENTATION SOIGNÉE EST L'ASSURANCE D'UNE CORRECTION PLUS INDULGENTE...

EXAMEN DE ROBOTIQUE

UE Robotique et traitement d'images en production

Tous documents autorisés - Durée : 1h

Nom: Prénom:

Partie I: Modélisation géométrique

On considère le robot PRRRR représenté sur la figure 1.

FIGURE 1 – Robot PRRRR.

On souhaite établir les modèles géométriques direct et inverse de ce robot. On note \mathcal{R}_0 $(O_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ le repère de base lié au socle et O_6 le centre de la pince. On pose $L_1 = O_1O_2$, $L_2 = O_2O_3$, et $L_3 = O_3O_4$. Les distances L_i sont positives.

- 1. Positionner les repères \mathcal{R}_1 à \mathcal{R}_5 .
- 2. Déterminer les paramètres de Denavit-Hartenberg modifiés.
- 3. En déduire les matrices de passage homogènes élémentaires $T_{i-1,i}$. Vérifier vos résultats pour la configuration représentée sur la figure 1. On n'effectuera pas les produits matriciels permettant de déterminer le MGD.
- 4. En supposant la matrice T_{05} connue, donner la situation de l'organe terminal en utilisant les coordonnée cylindriques et les cosinus directeurs complets. Cette représentation est-elle minimale? Justifier votre réponse.

Partie II : Génération de trajectoire

Dans le cadre d'une application robotique, on désire élaborer une commande en vitesse dans l'espace généralisé qui respecte le profil de la figure 2 entre quatre configurations $(q_0, q_1, q_2 \text{ et } q_3)$ avec des vitesses imposées $(V_1, V_2 \text{ et } V_3)$ sur les morceaux de trajectoires. L'utilisateur impose donc les q_i et les V_i (voir figure 2).

L'objectif est de réaliser la trajectoire entre q_0 et q_1 à la vitesse V_1 , la trajectoire entre q_1 et q_2 à la vitesse V_2 , la trajectoire entre q_2 et q_3 à la vitesse V_3 et de minimiser le temps global t_f .

Le robot part de q_0 à vitesse nulle et arrive en q_3 à vitesse nulle. Il possède une accélération/décélération, bornée, connue A_c .

 $\label{eq:figure 2-Profil} Figure \ 2-Profil \ de \ vitesse$

- 1. Calculer les instants de commutation t_i .
- 2. Donner les équations de q(t) et $\dot{q}(t)$ entre t_0 et t_5 .
- 3. Peut-on toujours garantir d'avoir la vitesse V_1 en q_1 (t_2) ? Sinon quel paramètre faut-il modifier et comment? Justifier votre réponse.

EXAMEN DE ROBOTIQUE Janvier 2013 UE Robotique et traitement d'images en production

Tous documents autorisés - Durée : 1h

Nom: Prénom:

Partie I: Modélisation géométrique

On considère le robot manipulateur PRRPR représenté sur la figure jointe. On note \mathcal{R}_0 le repère de base et O_6 le point de référence de l'organe terminal.

- 1. Positionner les repères \mathcal{R}_1 à \mathcal{R}_5 liés aux corps mobiles de ce robot.
- 2. En déduire le tableau des paramètres modifiés de Denavit/Hartenberg. On précisera les valeurs des coordonnées généralisées pour la figure.
- 3. Calculer les matrices de passage homogènes élémentaires $T_{i-1,i}$.

On considère maintenant un robot constitué de 3 liaisons. La matrice de passage homogène exprimant la situation du repère pince par rapport au repère de base s'écrit :

$$T_{0P} = \begin{pmatrix} \cos(q_1 + q_2) & -\sin(q_1 + q_2) & 0 & L_1\cos(q_1) + L_2\cos(q_1 + q_2) \\ \sin(q_1 + q_2) & \cos(q_1 + q_2) & 0 & L_1\sin(q_1) + L_2\sin(q_1 + q_2) \\ 0 & 0 & 1 & q_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

où L_1 et L_2 sont des données géométriques du robot.

- 1. A partir de cette matrice, indiquez si le robot comporte des liaisons rotoides et/ou prismatiques. Aucune réponse non justifiée ne sera acceptée.
- 2. On souhaite maintenant déterminer la valeur des q_i correspondant à la situation de la pince définie par la matrice T^* . En identifiant ces deux matrices, on obtient le système suivant :

$$\begin{cases}
\cos(q_1 + q_2) &= t_{11} \\
\sin(q_1 + q_2) &= t_{21} \\
L_1\cos(q_1) + L_2\cos(q_1 + q_2) &= t_{14} \\
L_1\sin(q_1) + L_2\sin(q_1 + q_2) &= t_{24} \\
q_3 &= t_{34}
\end{cases}$$

où les éléments t_{ij} sont les éléments de T^* et sont donc connus.

Partie II : Génération de trajectoire

On considère une loi de mouvement de type bang-bang ou trapèze (accélération et décélération maximum) sur un seul axe d'un robot dans l'espace généralisé.

FIGURE 1 – Profils de vitesse en trapèze

Dans le cas d'un enchaînement entre 2 configuration q avec un point d'arrêt (vitesse nulle) on a le profil de la figure 1 (a) : le robot part de q_0 à t=0, passe à q_1 à $t=t_3$ avec une vitesse nulle et arrive en q_2 à $t=t_f$ avec une vitesse nulle.

On a:

 $t_3 - t_2 = t_1, t_f - t_5 = t_4 - t_3$

Accélération maximale = A_m

Vitesse maximale = V_M

 $V1 \text{ et } V2 \leq V_M$

Toutes les variations de vitesse se font à accélération/décélération maximale.

Dans ce cas on sait calculer tous les paramètres $t_{1,2,3,4,5,f}$ et $V_{1,2}$, on considère que toutes ces paramètres sont connues pour la suite du problème.

On considère maintenant le cas de la figure 1 (b) ou la configuration q_1 devient une configuration de passage. L'intervalle de temps de variation de la vitesse, $(t_3 - t_2)$ n'est plus identique puisque l'accélération/décélération se fait à valeur maximale. Cette variation de vitesse permet au robot d'atteindre le même point q_2 à t_{f2} avec un temps plus petit que dans le cas (a).

Il est donc nécessaire de calculer V_3 , t_x , t_6 et t_{f2} connaissant les paramètres $t_{1,2,3,4,5,f}$ et $V_{1,2}$.

- 1. Ecrire l'équation entre les 3 inconnues t_2 , t_x et V_3 .
- 2. Ecrire l'équation entre les 3 inconnues t_6 , t_{f2} et V_3 .
- 3. A ce stade vous possédez 2 équations à 4 inconnues V_3 , t_x , t_6 et t_{f2} En faisant l'hypothèse qu'on impose la contrainte $t_6 t_x = t_5 t_3$, calculer v_3 .
- 4. Connaissant V3, peut-on calculer les autres inconnues t_x , t_6 et t_{f2} ? Si oui donner les relations.

EXAMEN DE ROBOTIQUE Septembre 2013 UE Robotique et traitement d'images en production

Tous documents autorisés - Durée : 1h

Nom: Prénom:

Partie I: Modélisation géométrique

I. On considère le robot manipulateur RP4R représenté sur la figure ci-dessous. On note \mathcal{R}_0 le repère de base et O_7 le point de référence de l'organe terminal.

FIGURE 1 – Robot manipulateur RP4R.

- 1. Positionner les repères \mathcal{R}_1 à \mathcal{R}_6 liés aux corps mobiles de ce robot.
- 2. En déduire le tableau des paramètres modifiés de Denavit/Hartenberg. On précisera les valeurs des coordonnées généralisées pour la figure.
- 3. Calculer les matrices de passage homogènes élémentaires $T_{i-1,i}$.
- II. Question de cours : Définir la notion de matrice de passage homogène. Quel(s) intérêt(s) présentent-elles pour la modélisation géométrique des robots? Il ne s'agit pas ici de recopier le cours et la réponse attendue peut être donnée sans calcul.

Partie II : Génération de trajectoire

Dans le cadre d'une application robotique, on désire élaborer une primitive de mouvement correspondant à une trajectoire opérationnelle circulaire passant par trois points A, B, C définis dans un plan (x, y). A: point de départ, C: point final, B point intermédiaire.

L'utilisateur impose la vitesse aux trois points (V_A, V_B, V_C) et les changements de vitesse sont toujours linéaires (voir figure 2).

Le problème est d'établir les équations de mouvement permettant de réaliser cette trajectoire. On connait :

- les coordonnées (x_i, y_i) des trois points A, B, C
- les vitesses V_A , V_B , V_C

FIGURE 2 – Profils de vitesse opérationnelle, $\dot{s}(t)$, entre 3 points (x, y)

- 1. Calculer t_1 , t_2 (utiliser l'équation de la vitesse moyenne entre deux points).
- 2. Calculer la valeur des accélérations entre les points A et B, K_{AB} , et entre les points B et C, K_{BC} .
- 3. Déterminer les lois d'évolution s(t), $\dot{s}(t)$, $\ddot{s}(t)$ de l'abcisse curviligne.
- 4. On désire maintenant que la trajectoire soit parcourue en temps minimal mais en respectant une contrainte sur l'accélération $|\ddot{s}(t)| \leq A_{max}$. Expliciter la conséquence de cette contrainte et donner les modifications induites au niveau des équations.

EXAMEN DE ROBOTIQUE Mars 2014 UE Robotique et traitement d'images en production

Tous documents autorisés - Durée : 1h

Nom: Prénom:

Partie I: Modélisation géométrique

On considère le robot manipulateur cartésien 3P3R représenté sur la figure ci-dessous. On note \mathcal{R}_0 le repère de base et O_6 le point de référence de l'organe terminal.

FIGURE 1 – Robot manipulateur cartésien RP4R.

- 1. Positionner les repères \mathcal{R}_1 à \mathcal{R}_6 liés aux corps mobiles de ce robot.
- 2. En déduire le tableau des paramètres modifiés de Denavit/Hartenberg. On précisera les valeurs des coordonnées généralisées pour la figure.

Question de cours : Le MGI : définition et utilité en robotique. Il ne s'agit pas ici de recopier le cours mais d'en faire une synthèse. La réponse attendue peut être donnée sans calcul.

Partie II : Génération de trajectoire

Partie II : Génération de trajectoire

On considère une loi de mouvement de type bang-bang ou trapèze (accélération et décélération maximum) sur un seul axe d'un robot dans l'espace généralisé.

FIGURE 1 – Profils de vitesse en trapèze

Dans le cas d'un enchaînement entre 2 configuration q avec un point d'arrêt (vitesse nulle) on a le profil de la figure 1 (a) : le robot part de q_0 à t=0, passe à q_1 à $t=t_3$ avec une vitesse nulle et arrive en q_2 à $t=t_f$ avec une vitesse nulle.

On a:

 $t_3 - t_2 = t_1, t_f - t_5 = t_4 - t_3$

Accélération maximale = A_m

Vitesse maximale = V_M

 $V1 \text{ et } V2 \leq V_M$

Toutes les variations de vitesse se font à accélération/décélération maximale.

Dans ce cas on sait calculer tous les paramètres $t_{1,2,3,4,5,f}$ et $V_{1,2}$, on considère que toutes ces paramètres sont connues pour la suite du problème.

On considère maintenant le cas de la figure 1 (b) ou la configuration q_1 devient une configuration de passage. L'intervalle de temps de variation de la vitesse, $(t_3 - t_2)$ n'est plus identique puisque l'accélération/décélération se fait à valeur maximale. Cette variation de vitesse permet au robot d'atteindre le même point q_2 à t_{f2} avec un temps plus petit que dans le cas (a).

Il est donc nécessaire de calculer V_3 , t_x , t_6 et t_{f2} connaissant les paramètres $t_{1,2,3,4,5,f}$ et $V_{1,2}$.

- 1. Ecrire l'équation entre les 3 inconnues t_2 , t_x et V_3 .
- 2. Ecrire l'équation entre les 3 inconnues t_6 , t_{f2} et V_3 .
- 3. A ce stade vous possédez 2 équations à 4 inconnues V_3 , t_x , t_6 et t_{f2} En faisant l'hypothèse qu'on impose la contrainte $t_6 t_x = t_5 t_3$, calculer v_3 .
- 4. Connaissant V3, peut-on calculer les autres inconnues t_x , t_6 et t_{f2} ? Si oui donner les relations.