## Angles in circle (HKMO Classified Questions by topics)

### 1982 FI3.4

圖中,O 為圓心,B 和 C 為圓周上的點,使得  $\angle BOC = 33^{\circ}, \angle OBC = d^{\circ}$ 。求 d 的值。

In the figure, O is the centre, B and C are points on the circumference.  $\angle BOC = 33^{\circ}$ ,  $\angle OBC = d^{\circ}$ .



### 1982 FI5.4

TQF 為一半圓形,求 d 的值。

TQF is a semi-circle. Find the value of d.



# 1983 FG10.3

 $A \cdot P \otimes B$  三點均在圓周上,圓心為  $O \circ \overset{\cdot}{A}$   $\angle APB = 146^{\circ}$  ,求  $\angle OAB$  的值。

A, P, B are three points on a circle with centre O. If  $\angle APB = 146^{\circ}$ , find the value of  $\angle OAB$ .



### 1986 FI5.2

如圖所示, $x = 36^{\circ}$ , $y = 44^{\circ}$ , $z = 52^{\circ}$ 及  $w = b^{\circ}$ 。 求 b 的值。

In the figure,  $x = 36^{\circ}$ ,  $y = 44^{\circ}$ ,  $z = 52^{\circ}$  and  $w = b^{\circ}$ . Find the value of b.



# 1987 FSI.4

附圖中,O 為圓心。若  $\angle ACB = 120^{\circ}$  及  $\angle AOB = d^{\circ}$ ,求 d 的值。

In the figure, O is the centre of the circle.

If  $\angle ACB = 120^{\circ}$  and  $\angle AOB = d^{\circ}$ , find the value of d.



### 1987 FI1.3

附圖中, $\angle PQR = 70^{\circ}$ , $\angle PRQ = 50^{\circ}$ 。 若  $\angle OSR = n^{\circ}$ ,求n的值。

In the given figure,  $\angle PQR = 70^{\circ}$ ,  $\angle PRQ = 50^{\circ}$ .

If  $\angle QSR = n^{\circ}$ , find the value of n.

### 1987 FI2.4

附圖中,AB 為該圓之直徑。APQ 及 RBQ 為直綫。 若 $\angle PAB = 35^{\circ}$ , $\angle PQB = 15^{\circ}$  及  $\angle RPB = p^{\circ}$ , 求 p 的值。

In the figure, AB is a diameter of the circle. APQ and A = RBQ are straight lines. If  $\angle PAB = 35^{\circ}$ ,  $\angle PQB = 15^{\circ}$  and  $\angle RPB = p^{\circ}$ , find the value of p.

### 1988 FI5.3

附圖中,AB = AD, $\angle BAC = 28^{\circ}$ , $\angle BCD = 106^{\circ}$ 。 若  $\angle ABC = x^{\circ}$ ,求x的值。

In the figure, AB = AD,  $\angle BAC = 28^{\circ}$ ,

 $\angle BCD = 106^{\circ}$ . If  $\angle ABC = x^{\circ}$ , find the value of x.

### 1989 HI19

在圖中,ABCD 及 ACDE 是圓內接四邊形, x + y 的值。

In the figure, ABCD and ACDE are cyclic quadrilaterals. Find the value of x + y.

# 1991 FI3.4

在圖中,AB 是該圓形的直徑。求d 的值。 In the figure, AB is a diameter of the circle. Find the value of d.













### 1992 HI10

In the figure, arc BD is 4 times the arc AC,

 $\angle DEB = 80^{\circ}$  and  $\angle ADC = x^{\circ}$ , find the value of x.



如圖所示,若 z=p+q,求 z 的值。 In the figure, if z=p+q, find the value of z.



如圖,O 為圓心、OE = DE 及 $\angle AOB = 84^{\circ}$ 。若  $\angle ADE = a^{\circ}$ ,求 a 的值。 In the figure, O is the centre of the circle, OE = DE and  $\angle AOB = 84^{\circ}$ .

Find the value of a if  $\angle ADE = a^{\circ}$ .

# 1994 FI2.3

如圖,B=60,求C的值。

Refer to the diagram, B = 60, find the value of C.

# 1998 FSG.2

右圖中,FA//DC 及 FE//BC。求 b 的值。 In the diagram, FA//DC and FE//BC .

Find the value of b.











### 2000 FG4.3

在圖中,O 為圓心, $c^{\circ} = 2y^{\circ}$ ,求c 的值。 In the figure, O is the centre of the circle and  $c^{\circ} = 2y^{\circ}$ . Find the value of c.



### 2002 HG6

如圖,點  $A \cdot B \cdot C \cdot D \cdot E$  位於以 O 為 圓心的一個圓上。已知  $\angle DEO = 45^{\circ}$ ,  $\angle AOE = 100^{\circ}$ , $\angle ABO = 50^{\circ}$ , $\angle BOC = 40^{\circ}$ 及  $\angle ODC = x^{\circ}$ ,求 x 的值。

In the figure, points A, B, C, D, E are on a circle with centre at O.

Given  $\angle DEO = 45^{\circ}$ ,  $\angle AOE = 100^{\circ}$ ,  $\angle ABO = 50^{\circ}$ ,  $\angle BOC = 40^{\circ}$ , and  $\angle ODC = x^{\circ}$ , find the value of x.



# 2002 FI1.4

在右圖中,O 為圓心,HJ和 IK 為圓的直徑以及 $\angle HKI = S^{\circ}$ 。

已知  $\angle HKI + \angle HOI + \angle HJI = \frac{1}{4} \times 648^{\circ}$  , 求 S 的值。

In the following figure, O is the centre of the circle, HJ and IK are diameters and  $\angle HKI = S^{\circ}$ .

Given that  $\angle HKI + \angle HOI + \angle HJI = \frac{1}{4} \times 648^{\circ}$ ,

find the value of S.



### Angles in circle (HKMO Classified Questions by topics)

### 2003 HG8

在圖中,AC = BC = CD, $\angle ACB = 80^{\circ}$ 。

若  $\angle ADB = x^{\circ}$ , 求 x 的值。

In the figure, AC = BC = CD,  $\angle ACB = 80^{\circ}$ .

If  $\angle ADB = x^{\circ}$ , find the value of x.

### 2009 FI2.4

如圖, $\alpha = 36$ ,  $\beta = 43$ ,  $\gamma = 59$  及  $\omega = d$ , 求 d 的值。

In the figure,  $\alpha = 36$ ,  $\beta = 43$ ,  $\gamma = 59$  and  $\omega = d$ , find the value of d.





# 2011 HG9

如圖,ABCD 為一凸四邊形, $\angle BAC = 27^{\circ}$ ,  $\angle BCA = 18^{\circ}$ , $\angle BDC = 54^{\circ}$ , $\angle BDA = 36^{\circ}$ ,且四 邊形的對角綫  $AC \setminus BD$  相交於  $P \circ$ 求 $\angle CPB$  的值。

As shown in the figure, ABCD is a convex quadrilateral,  $\angle BAC = 27^{\circ}$ ,  $\angle BCA = 18^{\circ}$ ,  $\angle BDC = 54^{\circ}$ ,  $\angle BDA = 36^{\circ}$ . The diagonals AC and BD intersect at P. Find the value of  $\angle CPB$ .

### 2011 FI3.4

在圖中, $AP \times AB \times PB \times PD \times AC \otimes BC$  為綫段  $BC \otimes AB \otimes AB \otimes AB \otimes AB \otimes BC \otimes AB \otimes$ 

求S的值。

In the figure, AP, AB, PB, PD, AC and BC are line segments and D is a point on AB. If the length of AB is 5 times that of AD,  $\angle ADP = \angle ACB$  and  $S = \frac{PB}{PD}$ , find the value of S.





### 2011 FG2.3

在圖中的圓,其圓心為O及半徑為r,三角形ACD與圓相交於B、C、D及E點。綫段AE的長度與圓的半徑相同。

若  $\angle DAC = 20^{\circ}$ 及  $\angle DOC = x^{\circ}$ , 求 x 的值。

In the figure, there is a circle with centre O and radius r. Triangle ACD intersects the circle at B, C,

 ${\cal D}$  and  ${\cal E}$  . Line segment  ${\cal AE}$  has the same length as the radius.

If  $\angle DAC = 20^{\circ}$  and  $\angle DOC = x^{\circ}$ , find the value of x.

### 2012 FI3.3

在圖中,有一個圓心在O的圓,其圓周上有點 $A \times B$ 及C,四條綫段: $OA \times OB \times AC$ 與BC,且OA與BC平行。

In the figure, a circle at centre O has three points on its circumference, A, B and C. There are line segments OA, OB, AC and BC, where OA is parallel to BC. If D is the intersection of OB and AC with  $\angle BDC = 111^{\circ}$  and  $\angle ACB = \gamma^{\circ}$ , find the value of  $\gamma$ .

# points e line OA is B and nd the

# 2013 HI7

圖二所示為一通過 B 點及 C 點的圓,而 A 點則在圓之外。已知 BC 是圓的直徑,AB 及 AC 分別與圓相交於 D 點及 E 點,且 $\angle BAC$ = 45°,

求  $\frac{\Delta ADE$ 的面積 BCED的面積

The figure shows a circle passes through two points

B and C, and a point A is lying outside the circle. Given that BC is a diameter of the circle, AB and AC intersect the circle at D and E respectively and  $\angle BAC = 45^{\circ}$ ,

find  $\frac{\text{area of } \Delta ADE}{\text{area of } BCED}$ 



Created by Mr. Francis Hung



Angles in circle (HKMO Classified Questions by topics)

### 2014 FG2.4

在圖中,D 以直綫連接著等邊三角形 ABC 的頂點,當中 AB = AD。

設  $\angle BDC = \alpha^{\circ}$ , 求  $\alpha$  的值。

In the figure, vertices of equilateral triangle ABC are connected to D in straight line segments with AB = AD. If  $\angle BDC = \alpha^{\circ}$ , determine the value of  $\alpha$ .



# 2017 HI10

如圖,CM 是 $\angle ACB$  的角平分幾, AB = 2AC。已知  $\triangle AMC$  的外接圓 與 BC 相交於 N。 若 BN = 10,求 AM 的長度。



In the figure, CM is the angle bisector of  $\angle ACB$  and AB = 2AC. Given that the circumscribed circle of  $\triangle AMC$  intersects BC at N. If BN = 10, find the length of AM.

# 2024 HG10

圖三所示為圓 ABCDEFGH,

求 a+b+c+d 的值。

Figure 3 shows the circle ABCDEFGH.

Find the value of a + b + c + d.



圖三 Figure 3

# **Answers**

| 1982 FI3.4       | 1982 FI5.4            | 1983 FG10.3       | 1986 FI5.2 | 1987 FSI.4 |
|------------------|-----------------------|-------------------|------------|------------|
| 73.5             | 36                    | 56°               | 48         | 120        |
| 1987 FI1.3       | 1987 FI2.4            | 1988 FI5.3        | 1989 HI19  | 1991 FI3.4 |
| 60               | 40                    | 99                | 230        | 50         |
| 1992 HI10        | 1992 FI1.3            | 1994 HI10         | 1994 FI2.3 | 1998 FSG.2 |
| 16               | 205                   | 28                | 15         | 73         |
| 2000 FG4.3       | 2002 HG6              | 2002 FI1.4        | 2003 HG8   | 2009 FI2.4 |
| 60               | 65                    | 40.5              | 40         | 42         |
| 2011 HG9         | 2011 FI3.4 $\sqrt{5}$ | 2011 FG2.3        | 2012 FI3.3 | 2013 HI7   |
| 99°              |                       | 60                | 23         | 1          |
| 2014 FG2.4<br>30 | 2017 HI10<br>5        | 2024 HI10<br>540° |            |            |