Práctica 4: Entrenamiento de redes neuronales

Realizado por Javier Gómez Moraleda y Unai Piris Ibañez # Imports
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as opt
from scipy.io import loadmat
import displayData as display
import checkNNGradients as checkNN
from scipy.optimize import minimize

Visualización de los datos

Del fichero de entrada obtenemos X, que contiene 5000 ejemplos de entrenamiento y cada ejemplo es una imagen de 20x20 píxeles almacenados en un vector de 400 componentes. De esta forma, X es una matriz de 5000x400. También obtenemos el vector y, también con 5000 componentes, que contienen las etiquetas de los ejemplos de entrenamiento.

```
# Cargamos ejemplos de entrenamiento
data = loadmat('ex4data1.mat')
X = data['X']
y = data['y'].ravel() #(5000, 1) --> (5000,)
# Cargamos Theta1 y Theta2
weights = loadmat ( 'ex4weights.mat')
Theta1 = weights['Theta1']
Theta2 = weights['Theta2']
# Variables que utilizaremos en la propagación
params rn = np.concatenate((np.ravel(Theta1), np.ravel(Theta2)))
num entradas = Theta1.shape[1] - 1
num ocultas = Theta1.shape[0]
num \ etiquetas = 10
# Elegimos 100 ejemplos aleatorios y los mostramos
sample = np.random.choice(X.shape[0], 100)
asd = display.displayData(X[sample, :])
```


Función de coste

Para calcular el coste, utilizaremos el algoritmo de propagación hacia delante. Para poder aplicar este algoritmo, debemos codificar el vector y para crear una matriz de 5000x10, que representan el número de ejemplos de entrenamiento y el número de etiqueta. En esta matriz, cada ejemplo contendrá un 1 en la columna correspondiente a su etiqueta y el resto todo 0. Este método se llama onehot, y hemos implementado una función que lo realiza.

```
# Calcula el valor de la función sigmoide
def sigmoid(X):
    z = 1/(1 + np.exp(-X))
    return z
# Propagación hacia delante
def forward propagation(Theta1, Theta2, X):
    m = X.shape[0]
    # Input Layer
    al = np.hstack([np.ones([m, 1]), X])
    # Hidden Layer
    z2 = np.matmul(a1, Theta1.T)
    a2 = np.hstack([np.ones([m, 1]), sigmoid(z2)])
    # Output Layer
    z3 = np.matmul(a2, Theta2.T)
    a3 = sigmoid(z3)
    return a1, a2, a3
# Función de coste
def cost(Theta1, Theta2, X, y):
    a1, a2, H = forward_propagation(Theta1, Theta2, X)
```

```
Term1 = y * np.log(H)
    Term2 = (1 - y) * np.log(1 - H)
    coste = (-1 / (len(y))) * np.sum(Term1 + Term2)
    return coste
# Función de coste con regularización
def cost reg(Theta1, Theta2, X, y, lam):
    coste = cost(Theta1, Theta2, X, y)
    Term3 = np.sum(np.square(Theta1[:,1:])) +
np.sum(np.square(Theta2[:,1:]))
    coste += (lam / (2 * len(y))) * Term3
    return coste
# Calculo de onehot
def one hot(y, num etiquetas):
    m = len(y)
    y = (y - 1)
    y onehot = np.zeros((m, num etiquetas))
    for i in range(m):
        y 	ext{ onehot[i][y[i]]} = 1
    return y onehot
```

Resultados de los costes

Con los valores de las matrices Theta1 y Theta2, vamos a comprobar si nuestra función de coste, tanto regularizada como sin regularizar, realiza el cálculo correctamente.

```
# Onehot
y_onehot = one_hot(y, num_etiquetas)

# Debe salir 0.287629
coste = cost(Theta1, Theta2, X, y_onehot)
print("Coste sin regularizar: ", coste)

Coste sin regularizar: 0.2876291651613189

lam = 1

# Debe salir 0.383770
coste_reg = cost_reg(Theta1, Theta2, X, y_onehot, lam)
print("Coste regularizado: ", coste_reg)

Coste regularizado: 0.38376985909092365
```

Cálculo del gradiente

Para calcular el gradiente vamos a utilizar el algoritmo de propagación hacia atrás sobre una red neuronal de tres capas. Nuestra función recibe los siguientes argumentos:

- params_rn: contiene Theta1 y Theta2 como un array unidimensional
- num_entradas: número de ejemplos de entrenamiento (número de neuronas en la primera capa)
- num_ocultas: número de neuronas en la capa oculta
- num_etiquetas: número de neuronas en la última capa

```
X: ejemplos de entrenamiento
     y: etiquetas de los ejemplos
     reg: término de regularización
# Función que calcula la propagación hacia atrás
def back propagation(params rn, num entradas, num ocultas,
num etiquetas, X, y, reg):
    # backprop devuelve una tupla (coste, gradiente) con el coste y el
gradiente de
    # una red neuronal de tres capas, con num entradas, num ocultas
nodos en la capa
    # oculta y num etiquetas nodos en la capa de salida. Si m es el
número de ejemplos
    # de entrenamiento, la dimensión de 'X' es (m, num entradas) y la
de 'y' es
    # (m, num etiquetas)
    # Thetal y Theta2 están codificados como un array unidimensional
    Theta1 = np.reshape(params rn[:num ocultas * (num entradas + 1)],
(num \ ocultas, (num \ entradas + 1)))
    Theta2 = np.reshape(params rn[num ocultas * (num entradas + 1):],
(num \ etiquetas, (num \ ocultas + 1)))
    m = len(y)
    # Matrices para almacenar el gradiente con las mismas dimensiones
que Theta1 y Theta2
    Delta1 = np.zeros(np.shape(Theta1))
    Delta2 = np.zeros(np.shape(Theta2))
    # Propagación hacia delante
    a1, a2, H = forward propagation(Theta1, Theta2, X)
    # Contribución de cada nodo al error de la salida
    d3 = H - y
    d2 = (np.dot(d3,Theta2) * (a2 * (1 - a2)))[:,1:]
    Delta1 = np.dot(d2.T, a1)
    Delta2 = np.dot(d3.T, a2)
```

```
# Añadimos regularización
Delta1 = Delta1/m
Delta2 = Delta2/m
Delta1[:,1:] = Delta1[:,1:] + (reg/m)*Theta1[:,1:]
Delta2[:,1:] = Delta2[:,1:] + (reg/m)*Theta2[:,1:]

# Devolvemos el coste y el gradiente
coste = cost_reg(Theta1, Theta2, X, y,reg)
grad = np.concatenate((np.ravel(Delta1),np.ravel(Delta2)))
return coste, grad
```

Comprobación del gradiente

Vamos a utilizar la función del archivo checkKNNGradients.py para compronar que el gradiente es correcto.

```
# Comprobamos el descenso de gradiente y el coste
checkNN.checkNNGradients(back propagation, lam)
grad shape: (38,)
num grad shape: (38,)
array([ 5.49965629e-11, 7.32747196e-13, 8.82988127e-12,
9.75091535e-12.
       -6.08260664e-11, 2.10970130e-12, -1.38742212e-11, -
4.70332939e-11,
       -9.29989974e-11, 7.81530396e-12, -4.12793411e-11, -
1.26643918e-10,
       -2.40059500e-11,
                        6.57690569e-12, -7.00919878e-12, -
2.43030734e-11,
        2.15736456e-11, 2.27595720e-13, 9.77740111e-12,
2.84505197e-11,
        6.25964836e-11, 1.38673517e-11, 6.28552765e-12,
5.29279398e-12,
        1.58902475e-11, 1.56177293e-11, 6.93309299e-11,
1.41544554e-11,
        3.42380291e-12, 1.17110766e-11, 1.87037608e-11,
1.95246597e-11,
        7.55120411e-11, 1.66865410e-11, 6.33046393e-12,
1.85329807e-11,
        1.79033732e-11, 1.99839867e-11])
```

Aprendizaje de los parámetros

Una vez comprobada la correción de cálculo de coste y el gradiente, vamos a utilizar scipy.optimize.minimize para entrenar la red neuronal y obtener los valores óptimos para Theta1 y Theta2. Para ello necesitamos pasarle el array de pesos inicializado, que los obtenemos de forma aleatoria en el rango [-eInit, eInit]. Hemos decidido probar con

diferentes valores de regularización y número de iteraciones para observar la diferencia de los resultados.

```
# Entrena una red neuronal con reg como término de regularización y
num iters como número de iteraciones
def training(reg, num iters):
    # Entrenamos la red neuronal
    fmin = minimize(fun=back propagation, x0=params rn,
                args=(num entradas, num ocultas,
                num_etiquetas, X, y_onehot, reg),
                method='TNC', jac=True,
                options={'maxiter': num_iters})
    # Reordenamos Theta1 y Theta2
    Theta1 = np.reshape(fmin.x[:num ocultas*(num entradas + 1)],
(num ocultas, (num entradas + 1)))
    Theta2 = np.reshape(fmin.x[num_ocultas * (num_entradas+1):],
(num etiquetas,(num ocultas + 1)))
    result = forward propagation(Theta1, Theta2, X)[2]
    return result
# Calcula el porcentaje de aciertos de un resultado
def success_rate(resul):
    predicciones = []
    for i in range(len(result)):
        predicciones.append(np.argmax(result[i])+1)
    aciertos = 0
    for i in range(len(y)):
        if (predicciones[i] == y[i]):
            aciertos +=1
    return (aciertos/len(y)*100)
# Generamos valores aleatorios para Thetal v Theta2
eInit = 0.12
Theta1 = np.random.random((num_ocultas,(num_entradas + 1)))*(2*eInit)
- eInit
Theta2 = np.random.random((num etiquetas,(num ocultas + 1)))*(2*eInit)
- eInit
params rn = np.concatenate((np.ravel(Theta1), np.ravel(Theta2)))
# Diferentes valores de regularizacion y número de iteraciones
reg terms = [0.01, 0.1, 1, 3, 7, 10]
iter terms = np.arange(0, 200, 10)
for reg in reg terms:
```

```
porcentajes = []
    for iters in iter_terms:
        result = training(reg, iters)
        porcentajes.append(success_rate(result))

# Pintamos la gráfica
    plt.plot(iter_terms, porcentajes, label='reg = ' + str(reg))

plt.xlabel("Número de iteraciones")
plt.ylabel("Porcentaje de aciertos")
plt.legend()
plt.show()
```


Aumentando el número de iteraciones, hay un mayor porcentaje de aciertos, al principio es bastante grande la diferencia pero a partir dde 50 iteraciones ya no varía demasiado. Consideramos que el valor óptimo estaría en torno a 100. En cuanto a los valores de regularización, cuanto mayor sea, mas rápido se estabiliza y deja de mejorar con el aumento de las iteraciones.