NASA CONTRACTOR REPORT 166477

(NASA-CH-166477) BEFFECTS OF AEROCYBANIC N83-23275
INTERACTION BETWEEN MAIN AND TAIL ECTORS ON
HELICOPTER HOVER PERFORMANCE AND NCISE
(Textron Bell Helicopter) 343 p
HC A15/HF A01

CSCL 01A G3/02 11515

Lffects of Aerodynamic Interaction Between Main and Tail Rotors on Helicopter Hover Performance and Noise

R.P. Menger T.L. Wood J.T. Beieger

CONTRACT NAS2-10771 February 1983

NASA CONTRACTOR REPORT 166477

Effects of Aerodynamic Interaction Between Main and Tail Rotors on Helicopter Hover Performance and Noise

Ross P. Menger Tommie L. Wood John T. Brieger Bell Helicopter Textron Inc. Fort Worth, Texas

Prepared for Ames Research Center Under Contract NAS2-10771

Ames Research Center Moffett Field, California 94035

; ii

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

	Page
LIST OF FIGURES	iv
LIST OF TABLES	vii
SYMEOLS	v iii
SUMMARY	1
INTRODUCTION	2
AERODYNAMIC PERFORMANCE	4
Interaction Effects on the Main Rotor	4 7
Interaction Effects on the Tail Rotor	
ACOUSTICS	9
Isolated Rotors	10
Main Rotor/Tail Rotor Interaction	11
SUMMARY OF RESULTS	13
Effect of Aerodynamic Interaction on	13
Rotor Performance	
Effect of Aerodynamic Interaction on Rotor	13
Noise	3.5
REFERENCES	15
APPENDICES	
A. TEST EQUIPMENT, PROCEDURE AND DATA REDUCT	rion A-1
B. TABULATED TEST DATA	B-1
C. MAIN ROTOR PERFORMANCE PLOTS	C-1
D. ACOUSTIC ANALYSIS OF ISOLATED ROTOR BASELINES	D-1
E. ACOUSTICS PLOTS	E-1

LIST OF FIGURES

		Page
1.	Tail Rotor Location Design Guide - Effect of tail rotor location on main rotor power in HOGE.	16
2.	Historical survey of relative location of the tail rotor.	17
3.	Effect of pusher tail rotor location on main rotor power in HOGE, fin-on, $C_{T} = .005$.	18
4.	Effect of tractor tail rotor location on main rotor power in HOGE, fin-on, C _T = .005	19
5.	Effect of pusher tail rotor location on main rotor power in HOGE, fin-off, $C_{T_{M/R}} = .005$.	20
6.	Effect of tractor tail rotor location on main rotor power in HOGE, fin-off, $C_{T_{\text{M/R}}} = .005$.	21
7.	Contour map of the effect of pusher tail rotor location on main rotor power in HOGE, fin-on, $C_{T} = .005$.	22
8.	Contour map of the effect of tractor tail rotor location on main rotor power in HOGE, fin-on, $C_{T} = .005$.	23
9.	Effect of lateral positioning of the tail rotor on rotor wake proximity.	24
10.	Tuft pattern indication of tail rotor wake displacement due to rotor/rotor interaction, pusher tail rotor in the plane of the main rotor, fin-off.	25
11,	Fffect of fin blockage on pusher tail rotor C vs. C main rotor off.	26
12.	Effect of fin blockage on tractor tail rotor C vs. C main rotor off.	27

LIST OF FIGURES (Cont'd)

		Page
13.	Effect of fin blockage on tail rotor power, main rotor off, $C_{T} = .01$.	28
14.	Effect of main rotor on tail rotor power by tail rotor location, pusher tail rotor, fin-on, C _T = .01. NET	29
15.	Effect of main rotor on tail rotor power by tail rotor location, tractor tail rotor, finon, C _T = .01.	30
16.	Effect of fin blockage on net tail rotor thrust main rotor off.	31
17.	Effect of the main rotor on net tail rotor thrust of a pusher tail rotor versus fin blockage.	32
18.	Sample acoustic spectra for the isolated main rotor.	33
19.	Sample acoustic spectra for a tractor tail rotor with fin, $S/A = .39$.	34
20.	Effect of pusher tail rotor location on main rotor noise.	35
21.	Effect of tractor tail rotor location on main rotor noise.	36
22.	Variation in tail rotor harmonic noise, with thrust and tail rotor location.	37
23.	Variation in tail rotor noise harmonics with tail rotor location.	38
24.	Variation in tail rotor broadband noise (1000 Hz) with thrust and tail rotor location	39
A-1	Main rotor/tail rotor aerodynamic interaction test rig.	A-2
A-2	Fin blockage ratios used in test.	A-4

LIST OF FIGURES (Cont'd)

		Page
A-3	Lateral separation of the tail rotor and vertical fin.	A-5
A-4	Whirl cage floor plan.	A-6
A- 5	Microphone identification.	A-8
A-6	Acoustics data acquisition system.	A-12
A-7	White noise frequency response.	A-14
A-8	Combined ambient background noise/system noise floor.	A-15
A-9	Test configuration code.	A-17
A-10	Grid point identification for tail rotor location tested.	A-18
D-1	Thrust level effect on isolated main rotor noise	D-2
D-2	Main rotor noise directivity, isolated rotor.	D-3
D-3	Temperature effect on isolated main rotor noise.	D-4
D-4	Thrust level effect on isolated tail rotor harmonic noise.	D-6
D-5	Thrust level effect on isolated tail rotor peak broadband noise.	D-7
D-6	Tail rotor noise directivity, isolated rotor.	D-9

LIST OF TABLES

		Page
A-I	Basic Model Data	A-1
A-II	Data Items Scanned and Reduced On-Line	A-10
A-III	Data Displayed at Operator's Console	A-10
B-I	Summary of Test Runs	B-2
C-I	Calculated Main Rotor C _p at Onset of Tail Rotor Stall	C-1
E-I	Summary of Acoustic Plots	E-2

SYMBOLS

```
rotor disk area = \pi (radius)<sup>2</sup>, m^2
Α
            fin force coefficient = F/A_{T/R}^{\rho}(\omega r)^2
CF
            rotor shaft power coefficient = P/A\rho V_m^3
C_{\mathbf{p}}
            main rotor power coefficient
\mathbf{c}_{\mathbf{p}_{\mathbf{T}/\mathbf{R}}}
            tail rotor power coefficient
            rotor thrust coefficient = T/A\rho V_{T}^{2}
CT
            main rotor thrust coefficient
            net tail rotor thrust coefficient = (T_{T/R} - F)/A_{T/R} \circ V_T^2
C<sub>TNET</sub>
            tail rotor thrust coefficient
DB
            sound pressure level, decibels referenced to 20µPa
            "A" weighted sound pressure level
DBA
F
            fin side force, N
            drag force on main rotor, N
HOGE
            hover out of ground effect
L
            antitorque moment arm, m
M/R
            main rotor
P
           rotor shaft power, W
           rotor shaft torque, N-m
Q
           main rotor radius, m
R
           tail "otor radius, m
r
            area of fin swept by tail rotor, m<sup>2</sup>
S
```

SYMBOLS (cont'd)

s ·	tail rotor/fin lateral separation, m
T	rotor thrust, N
T/R	tail rotor
$v_{\mathbf{T}}$	rotor blade tip speed, m/sec
Y	lateral force on main rotor, N
ρ	mass density of air, kg/m^3
Ω	main rotor rotational speed, rad/sec
ω	tail rotor rotational speed, rad/sec

SUMMARY

A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect (HOGE). The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor. Also, findings on the effect of fin blockage ratio on tail rotor thrust are presented along with a comparison of these findings with previously published data. Significant changes in rotor noise levels were also observed. Increases in main rotor noise due to tail rotor position and the presence of the vertical fin ranged up to 6 and 5 dB, respectively. creases in tail rotor noise due to tail rotor position ranged up to 5dB. In the pusher configuration, fin effects on tail rotor noise increased as interaction effects decreased. Detailed test data are presented in the appendices The program documented herein was sponsored to this report. by Contract (NAS2-10771) with the National Aeronautics and Space Administration, Ames Research Center.

INTRODUCTION

One of the least understood areas of helicopter performance has been the aerodynamic interaction between various components of the aircraft. Recent progress in helicopter aerodynamic technology has led to near optimum isolated hovering rotors; and only small further reductions in isolated main rotor power can be expected in the future. However, there are indications that a significant percentage of hover power may be expended due to unfavorable aerodynamic interaction between main and tail rotors. Thus, it has been suspected that a measurable reduction in total power required to hover might be attainable with proper location of the tail rotor with respect to the main rotor.

A number of studies of aerodynamic interaction on helicopters have been conducted. (See Ref. 1, 2, and 3) Although consideration of the particular interaction between main rotor, tail rotor, and vertical fin has been included in some of these studies, none have for used on the power critical flight condition on hovering OGE.

Research has also shown that the tail rotor tends to dominate the noise spectrum of helicopters in the hover condition (See Ref. 4 and 5). Tail rotor blade interaction with the main rotor trailing tip vortex causes induced spanwise and azimuthwise impulsive loading, which in turn increases both harmonic and broadband noise from the tail rotor.

The problem, then, is that the helicopter preliminary designer has had little information to guide him in locating the tail rotor with respect to the main rotor so as to minimize power losses and noise due to unfavorable aerodynamic interactions during HOGE. An acceptable analytical solution to this problem has yet to be developed. To provide some insight into the variation and magnitude of these interaction penalties on hover power and noise and to aid further development of analytical methods, an experimental approach to the problem has been undertaken and is the subject of this report.

The objective of the test was to develop criteria showing the effect of the longitudinal and vertical location of the tail rotor with respect to the main rotor on rotor power required to hover OGE. The resulting design criteria is presented in Figure 1. The contours in Figure 1 represent percent increase in main rotor power due to aerodynamic interaction with the tail rotor. These results are based on the representative fin blockages as shown and are a composite of test findings for both pusher and tractor tail rotor operation.

A literature survey as well as a survey of current helicopters was conducted to aid in determining the range of tail rotor locations and orientations to be tested. Results of the survey of tail rotor locations for many production helicopters are shown in Figure 2. Relative longitudinal and vertical spacings between the tail rotor hub and main rotor plane are shown in terms of tail rotor radius (r). All of the helicopters shown have close to minimum longitudinal spacing between main and tail rotors. The tail rotor centerline of rotation averages 1.1r aft of the main rotor blade tip. Vertical spacing of the tail rotor varies from about .5r above the plane of the main rotor to about 1.4r below. The main rotor plane, for the purposes of this study, was established as the horizontal plane of rotation at the intersection of the pitch change axis with the main rotor shaft. This reference plane is independent of blade coning.* The range of tail rotor spacings tested in Reference 3 were from 1.1r to 2.1r aft from the main rotor blade tip and vertically from 15r above to .5r below the plane of the main rotor. The grid of tail rotor locations established for this test is shown in Figure 1. Tail rotor locations ranged from 1.0r above the main rotor plane to 2.0r below, and from a minimum longitudinal spacing of 1.1r to 3.1r aft of the main rotor tip path plane. Identification of the specific grid points may be found in Figure A-10.

The model used in this test represents a single (main) rotor helicopter with antitorque (tail) rotor. The model components are a two-bladed main rotor, a two-bladed tail rotor and a vertical fin; all scaled (.151) from the Bell Mcdel 222. A detailed description of the model components is presented in Appendix A. The effects of tail rotor/fin separation (s/r), fin blockage ratio (S/A), and tail rotor direction of rotation have been previously investigated. (See Reference 1 and 3). Variation of these parameters was minimized for this test. Two tail rotor fin separations were tested; one (s/r=.63) for all pusher tail rotor cases and one (s/r=.38) for all tractor tail rotor cases (see Fig. Two fin blockage ratios, i.e. fraction of the tail rotor disk blocked by the fin, were also employed, one (S/A=.18) for tail rotor locations at or above the main rotor plane and one (S/A=.39) for all tail rotor locations helow the main rotor plane (see Fig. A-2). The lesser blockage ratio was considered representative of high tail rotors, whereas, the greater blockage ratio was considered representative of low tail rotors. Direction of rotation of the tail rotor was maintained as top blade aft throughout

*Total "live" coning was calculated for the model main rotor used in this test. This thrust dependent, total coning resulted in vertical displacements of the tip-path plane ranging from .28r to .35r above the reference main rotor plane.

the test.

The discussion of test results, which follows, presents first the effects of aerodynamic interaction on rotor performance and second the effects on rotor noise. The appendices contain a detailed description of the test equipment, test procedure, and data reduction (Appendix A), tabulation of all aerodynamic performance data (Appendix B), main rotor performance plots (Appendix C), acoustic analysis of isolated rotor operation (Appendix D), and acoustics plots (Appendix E).

AERODYNAMIC PERFORI NCE

Interaction Effects on the Main Rotor

Aerodynamic interaction effects on main rotor performance were determined by comparing main rotor power measured during simulated yaw trim to power measured with the tail rotor stopped. The test procedure involved a sweep of main rotor thrust resulting in a range of thrust coefficients from approximately .002 to .0065. Tail rotor thrust was varied to maintain yaw trim. Tail rotor thrust requirements were a function of measured main rotor torque, longitudinal separation of the main and tail rotors, and fin side force. Tail rotor thrust required for yaw trim then was as follows:

Required
$$T_{T/R} = (Q_{M/R} \div L) + F$$

In some cases, tail rotor thrust requirements exceeded the maximum thrust capability of the tail rotor. In these cases, the tail rotor was set to maximum collective pitch. Both the net thrust coefficient required for trim and the actual net thrust coefficient obtained are shown in the data tables of Appendix B. These untrimmed conditions did not appear to significantly affect the interaction penalty trends on main rotor power. Followi. these yaw trim sweeps, the tail rotor was stopped while another thrust sweep was made with the main rotor to obtain "isolated" rotor data as a baseline to determine the interaction penalties. The "isolated" main rotor data then was measured with the tail rotor and fin (for fin-on cases) in place. The effect of the vertical fin on the isolated main rotor was insignificant. A detailed description of the test procedure is given in Appendix A.

Plots of the variation of main rotor C_p with main rotor C_T for both the yaw trim and isolated rotor thrust sweeps of each test run are presented in Appendix C. The effects of interaction on main rotor power are expressed as the ratio of main rotor C_p with the tail rotor operating to main rotor C_p with the tail rotor operating are obtained by comparison of the curve fits of C_p versus C_T for the inter-

ORIGINAL PAGE IS

acting and isolated rotor cases. The variation of main rotor power ratio with main rotor $\mathbf{C}_{\mathbf{T}}$ is also presented in Appendix C

for each test run. The accuracy of these main rotor power ratios has been determined to be $\pm 1\%$ of full scale measured data. A more detailed description of the data reduction and data accuracies is presented in Appendix A. For the purpose of establishing the design guideline depicted in Figure 1, interaction penalties on main rotor power were determined at a selected main rotor C_T of .005. The corresponding main

rotor disk loading at 30 kg/m 2 represents a full scale 1.0g hover maneuver. The effects of tail rotor location on main rotor performance at a main rotor $C_{_{T\!\!T}}$ of .005 are shown in

Figures 3 and 4 show results for model Figures 3 thru 6. configurations which included a vertical fin. Figures 5 and 6 show results for the limited number of fin-off cases. Interaction penalties on main rotor power ranged up to 2.5% for pusher tail rotor configurations and 3.5% for tractor tail rotor configurations when the vertical fin was installed. For the fin-on cases of Figures 3 and 4, the fin blockage ratio was .18 for tail.rotors located at or above the main rotor plane and .39 for tail rotor locations below the main rotor as shown. With the tail rotor positioned at minimum longitudinal spacing and .5r below the main rotor plane (grid point 17 of Fig. A-10), both the .18 and the .39 fin blockage ratios were tested. For the pusher tail rotor, the penalty on main rotor power was essentially the same (2%) for both blockage ratios at this grid point. However, for tractor tail rotor operation the interaction penalty on main rotor power was significantly higher for the low fin blockage; 3.2% increase in main rotor power for .39 fin blockage ratio versus 4.6% increase for a .18 fin blockage ratio.

Figures 5 and 6 show that interaction penalties on main rotor power were essentially the same for fin-off cases as compared to fin on cases for the more remote tail rotor locations. With the tail rotor located in close proximity to the main rotor, i.e. minimum longitudinal spacing and in the plane of the main rotor (grid point 2), the penalties on main rotor power were greater with no fin installed. The penalty on main rotor power with a tractor tail rotor at this position with no vertical fin was 5.1% versus 3.4% for .18 fin blockage and for pusher tail rotor 3.6% for no fin versus 2.2% for the .18 fin blockage ratio.

A 10° canted tail rotor configuration (thrusting up) with a fin blockage ratio of .18 was also tested with the tail rotor located at grid point 2. The vertical axis of the fin remained parallel to the main rotor shaft. Lateral separation between tail rotor and the fin (measured from the rotor hub) was maintained the same as for the uncanted

cases. For tractor tail rotor operation, the interaction penalty on main rotor power remained the same as for the uncanted tail rotor with the same disk blockage. For pusher tail rotor operation the canted tail rotor penalty on main rotor power was greater than the corresponding uncanted case; 3.0% for the canted tail rotor versus 2.2% for the uncanted tail rotor.

A contour map showing interaction penalties on main rotor power versus tail rotor location is shown for pusher tail rotor operation in Figure 7 and tractor tail rotor operation in Figure 8. These contours are based on the penalties resulting from the representative fin blockages of Figures 3 and 4. It can be seen that the contour lines for pusher versus tractor tail rotors are very similar in shape and spacing except that tractor tail rotor induced penalties are in general 1% (of main rotor power) greater than for the pusher tail rotor. This disparity held for fin-off cases as well.

During tractor tail rotor operation, the vertical fin has the effect of a ground plane for the tail rotor. Thus, the increased power penalty on the main rotor during tractor tail rotor operation with the fin may be the result of the interaction of "ground" vortices, created by the tail rotor downwash on the fin, with the main rotor wake. Such vortices would not be created by a pusher tail rotor because of the absence of any ground plane in the tail rotor downwash. This explanation still does not account for the greater penalty to the main rotor for tractor versus pusher tail rotor operation when no fin is installed. As seen in Figure 9, however, because of the lateral offset of the tail rotor, there is an appreciable difference in the relative position of the rotor wakes. Such a difference could be responsible for the greater main rotor penalty during tractor tail rotor operation without the fin. Another factor that cannot be ruled out as having some effect on the pusher versus tractor tail rotor effects seen in this test is the location of the tail rotor drive. As seen in Figure 9, the drive was positioned in the downwash of the pusher tail rotor. However, for tractor tail rutor cases, the drive was located on the inflow side of the tail rotor.

A tuft grid was placed in the tail rotor wake approximately 12r downstream as shown in Figures A-1 and A-4. The deflection of the tail rotor wake due to interaction with the main rotor was observed by noting the location of the wake impingement on the grid. A typical progression of tail rotor wake deflection with increasing thrust is shown in Figure 10. This case is considered representative of tail rotor locations which resulted in the greatest penalties on main rotor power, i.e. in close proximity to the main rotor

tip path. In these cases, the tail rotor wake was typically deflected forward and down as shown. This deflection is believed to be strongly influenced by the interaction of the radial component of inflow to the main rotor and the tail rotor wake. It is possible that the downward deflection is due to the top-blade-aft swirl velocity of the tail rotor wake in the presence of main rotor radial inflow. In one trial run with the tail rotor operating top-blade-forward, there was no downward (or upward) deflection of the tail rotor wake. A qualitative assessment of the patterns of tail rotor wake deflection observed during the test supported the results presented in Figures 7 and 8. Increasing deflections as well as earlier onset, i.e., at lower thrust levels, correlated with increasing penalties on main rotor power. The greater main rotor power penalties for tractor tail rotor operation as compared to pusher operation were also associated with increased tail rotor wake deflection.

A composite contour map of interaction penalties on main rotor power which combines the results of pusher and tractor tail rotor operation is shown in Figure 1. The penalties are based on the representative fin blockages as shown. To account for the disparity between tractor versus pusher induced penalties observed in this test, the contour lines of Figure 1 have been assigned a one percentage point spread. Because of its general applicability, Figure 1 is intended as a design guide in considering the effect of the location of the tail rotor on main rotor power in HOGE.

Interaction Effects on the Tail Rotor

Fin blockage effects on tail rotor power are depicted in Figures 11 through 13. Plots of $C_{p_{T/R}}$ versus C_{NET} the tested fin blockage ratios of 0, .18, and .39 are pre-

the tested fin blockage ratios of 0, .18, and .39 are presented in Figure 11 for a pusher tail rotor and Figure 12 for a tractor tail rotor. The $C_{\begin{subarray}{c}T\end{subarray}}$ for stall is evidenced $$^{\begin{subarray}{c}T\end{subarray}}$

by the sharp break in the plotted data. The tail rotor data for thrust levels above the stall break is not considered representative of full scale hover interactions. Thus, tail rotor results presented in Figures 13 thru 17 are based on data measured below the onset of stall, i.e. C_{T} 101.

The corresponding tail rotor disk loadings considered ranged from about 44 to 63 kg/m² and are considered representative of full scale loadings. Tail rotor/fin interaction effects on tail rotor power, expressed as a ratio of C_p (fin-on) / C_p (fin-off), versus fin blockage ratio, S/A, at a constant C_T = .01 are shown in Figure 13. Data from the 6/10 · NET

scale model test of Reference 1 shows good agreement.

Main rotor effects on the tail rotor/fin interaction are shown in Figures 14 and 15. In this figure the effect on tail rotor power is expressed as the ratio of C_{p} (main T/R

rotor on)/ $C_{\frac{p}{T/R}}$ (main rotor off). The effect of the main

rotor on tail rotor power for trim conditions resulting in $C_{\rm T}$ = .01 (below tail rotor stall) was found to be small.

NET

However, because these effects were on the same order of magnitude as the accuracy of tail rotor power measurements, no design criteria was developed from these results.

Tail rotor/fin interference is often evaluated in terms of net tail rotor thrust. A lateral or side force which opposes tail rotor thrust is developed on the vertical fin during both tractor and pusher tail rotor operation. Net tail rotor thrust is defined as total thrust minus the fin force. Net thrust, then, is that portion of the total tail rotor thrust contributing to yaw trim. Figure 16 shows the variation of net tail rotor thrust with fin blockage ratio for pusher and tractor configurations. The ordinate axis is expressed in terms of the ratio of total thrust to net thrust. Data from References 1 and 3 are included. This plot depicts a linear or near linear increase in the ratio C_{T}/C_{T} with increasing fin blockage. The values of C_{T}/C_{T} with increasing fin blockage. The values of

this ratio range up to about 1.075 for pusher tail 1. ors with high fin blockage and 1.50 for tractor tail rotors. None of the results presented here include effects of the main rotor. The effect of the presence of the main rotor wake on the net thrust produced by pusher tail rotors, is seen in Figure 17. The effect of the main rotor wake was seen to aggravate the fin losses resulting from the tail rotor/fin interaction above. These effects were negligible for tractor tail rotor operation.

ACOUSTICS

The acoustic analysis addressed changes in the harmonic and broadband noise sources of the main and tail rotors over the range of test variables. Harmonic noise is identified by discrete narrow peaks in the acoustic spectrum which occur at integer multiples of the blade passage frequency. Broadband noise consists of continuous multi-frequency sources whose peak level is determined at a characteristic center frequency. Both components are heard as independent noise sources with completely different aural signatures.

Scaling effects must be considered when applying the results found to full scale rotors. It is generally thought that harmonic noise can be directly scaled and without any problems (reference 7). However, several components of broadband noise are Reynolds number sensitive and so cannot always be directly scaled from model data. It is not the purpose of this test to research scaling laws for model data and so care must be taken when applying the test results related to broadband noise to the full scale situation.

Examination of the data primarily involved microphone 4, which was located directly aft of the tail rotor. At this location, the sound path between the rotors and the microphone was unobstructed. A main rotor thrust of 780 newtons and its associated tail rotor thrust of 62 newtons represent the normal disk loading in hover for the full scale rotor. These thrust levels are used in this report when a comparison is made between microphone locations or between tail rotor positions.

Sample acoustic spectra generated by model main and tail rotors are shown in Figures 18 and 19, respectively. Figure 18a shows the model main rotor fundamental harmonic (2/rev) to be 77 hertz, with associated harmonics at multiples of this fundamental frequency. The broad curve forming the base of the harmonics (denoted by a dashed line) is considered to be the broadband noise component. The frequency range over which broadband noise is maximum varied slightly with different thrust levels. The average center frequency of perboroadband noise was found to be 2000 hertz.

Figure 18b illustrates that the 2/rev and 6/rev components of Figure 18a also are seen to dominate the time history of that record. Higher harmonics up to 40/rev are also identifiable in the signal.

The model tail rotor frequency spectrum shown in Figure 19a is similar to that of the main rotor, except that the tail rotor source frequencies shift to a higher frequency range. Another exception is the high amplitude component of 1/rev at 208 hertz and its associated higher harmonics at 3/rev, 5/rev, etc. This is believed to be due to different aerodynamic loading on each blade, caused by the blades being slightly out of track. This problem did not interfere with the test data of interest, since the fundamental harmonic at 416 hertz (2/rev) and its associated harmonics are substantially higher in amplitude than the harmonics caused by the slight out of track. As in the case of the main rotor, tail rotor broadband noise is shown to be the broad curve forming the base of the harmonics (dashed line) which peaks at about 3000 hertz. Because of its relatively low sound level, tail rotor broadband noise was difficult to extract from the data. In some cases, it was necessary to read peak levels at center frequencies greater than 3000 hertz.

Figure 19b shows that the tail rotor signal is made up of two primary harmonic tones, 2/rev and 4/rev. In some configurations, harmonics at 6-, and 8- and 10/rev are also of significance.

Isolated Rotors

An extended analysis of the isolated main and tail rotor acoustic data is presented in Appendix D. It discusses the effects due to the presence of the vertical fin, sound directionality around the rotors and temperature effects on the test data. It also presents a summary of baseline thrust sweeps for each rotor.

For the main rotor, this analysis shows that variations of noise with temperature were less than 3dB and so was considered not to be important for this test. The presence of the vertical fin was found to significantly increase main rotor 2/rev and broadband noise at the top forward tail rotor position. Main rotor noise was generally unaffected by the fin located at the other positions.

The presence of the fin when running the tail rotor alone was also found to be important. Tail rotor 4/rev was seen to increase up to 10dB because of the fin. A semewhat losser impact was seen on tail rotor broadband noise. Placing the tail rotor in either pusher or tractor configuration was seen to have little difference on noise levels.

Representative test run data points are presented in Appendix E for isolated main rotor, isolated tail rotor and main rotor/tail rotor interaction cases. Thrust sweeps for microphone 4 and samples from the other five microphones at one thrust level are included. This data is discussed in Appendix D for the isolated rotor cases and in the following sections for the interaction cases.

Main Rotor/Tail Rotor Interaction

The model main and tail rotors, when operating together, resulted in a fairly balanced system acoustically where neither rotor completely dominated the noise spectrum. In all cases of primary interest, the noise components of both rotors were easily distinguishable.

Interaction effects between the main and tail rotors cause substantial and sometimes unpredictable changes in the noise spectrum produced. The interaction effects on each rotor are discussed separately in the following sections. The influence due to pusher and tractor configurations is also examined.

Interaction Fffects on the Main Rotor. - Figures 20 and 21 show the effect of thrust level on main rotor fundamental harmonic (2/rev) and broadband noise for the tail rotor pusher and tractor configurations, respectively. Except for the top forward tail rotor position, both figures show little effect on the main rotor fundamental. The noise level at the top forward position remained about 6dB above the average of the other positions through the thrust range. This is believed to be due to the proximity of the fin to the main rotor tip and not to any rotor/rotor interaction effect. This is discussed in more detail in Appendix D. Test data showed that the second through the fifth harmonic acted similarly to the fundamental harmonic at each position. Harmonic above the fifth appeared not to be sensitive to interaction and were much more stable for the various tail rotor locations.

Figures 20b and 21b do show a significant increase in broadband noise for both the pusher and tractor configurations. The levels for the worst cases are approximately the same for both configurations, although the levels drop off taster for the pusher configuration to isolated rotor levels as the tail rotor is lowered or moved back (a decrease of 14-20 dB). The isolated main rotor runs, discussed earlier, showed main rotor broadband noise to increase because of the presence of the fin. The interaction runs showed no such change. Apparently, the interaction effects on the main rotor broadband noise were greater than the fin effects.

Interaction Effects on the Tail Rotor. - Figure 22 shows the interaction effect on tail rotor harmonic noise (average of 2-, 4-, 6- and 8/rev) for the pusher and tractor configura-The noise level is seen to be maximum with the tail rotor located at or slightly below the main rotor plane and decreases slightly as the tail rotor is moved away from this central position. This shows that either a very high or very low tail rotor position is best for low harmonic noise. A the tail rotor is moved back in tractor configuration, the noise still decreases about two dB. As the tail rotor is moved back in pusher configuration, fin effects appear to prodominate and increase noise levels by six dB from where it would have been without the fin in place. The larger spread of data in the pusher configuration than in the tractor configuration also shows more influence on that configuration by the main rotor.

Figure 23 shows the variation in noise levels with position for the first five tail rotor harmonics. The pusher and tractor configurations are compared at a typical operating thrust of 62 newtons. In the pusher configuration, the fundamental harmonic is greatly influenced by tail rotor position (a 15-20 dB spread); higher harmonics are influenced to a lesser extent (a 5-10 dB spread). In the tractor configuration, the fundamental harmonic does not tend to change a drastically (a variation of less than 8dB); higher harmonics tend to vary more (as much as 20dB), depending on tail rotor position. The increase in the second harmonic is seen in the pusher configuration as the tail rotor moves away from the area of highest interaction and the effect of the vertical fin increases. The fundamental harmonic is suppressed at the same time.

The effect on broadband noise is shown in Figure 24. In the pusher configuration, tail rotor position in and above the main rotor plane cause an increase in tail rotor broadband noise. The least interaction occurs well below the main rotor plane. In the tractor configuration, the broadband noise component is insensitive, for the most part, to tail rotor position. This close grouping is similar to the close grouping in the fundamental harmonic for the same configuration shown in Figure 22b.

SUMMARY OF RESULTS

A .151 scale model test was conducted to determine the effect of tail rotor location (with respect to the main rotor) and orientation (pusher versus tractor) on rotor performance and noise in hover out of ground effect. Effects of a vertical fin were included in the investigation.

Effects of Aerodynamic Interaction on Rotor Performance

- 1. Main rotor power required to hover out of ground effect was increased up to 3% over isolated main rotor power due to aerodynamic interaction with the tail rotor and vertical fin.
- The interaction penalty on main rotor power was greatest with the tail rotor located in close proximity to the main rotor plane (i. e. within .5r above, below and aft of the minimal longitudinal spacing in the plane of the main rotor) and was more sensitive to longitudinal spacing than vertical spacing.
- 3. Interaction penalties on main rotor power were greater (by about 1% in terms of isolated main rotor power) for tractor tail rotor configurations than for pusher tail rotors.
- 4. With the tail rotor located in close proximity to the main rotor, interaction penalities on main rotor power were greater without the fin than with the fin installed.
- The primar; influence on tail rotor performance in hover out of ground effect was fin blockage. The main rotor wake and location of the tail rotor with respect to the main rotor had only a second order effect on the tail rotor/fin interaction.
- for yaw trim varied almost linearly with fin blockage ratio and ranged up to 1.50 for tractor tail rotors and 1.08 for pusher tail rotors with a fin blockage equal to 39% of the tail rotor disk area.

Effects of Aerodynamic Interaction on Rotor Noise

1. Main rotor noise increased up to 6dB when the tail rotor was located at/or above and in close proximity to the main rotor plane. This effect diminished and eventually disappeared as the tail rotor was moved below the main rotor plane or away from the main rotor.

- 2. The presence of the fin at the top forward position caused an increase of up to 5dB in the main rotor fundamental harmonic noise and smaller increases in main rotor broadband noise. The presence of the fin showed little effect on main rotor noise at the other tail rotor locations.
- 3. The harmonic noise level for tail rotors located at minimum longitudinal spacing from the main rotor was noticeably less for the extreme high and low tail rotor locations.
- 4. The presence of the vertical fin was seen to cause a significant increase in harmonic noise for the pusher tail rotor. This fin effect increased as the pusher tail rotor was moved down and then away from the main rotor. The vertical fin showed little effect on tractor tail rotor noise during the hover interaction.

REFERENCES

- Lynn, R. R.; Robinson, F. D.; Batra, N. N.; and Duhon, J. M.: Tail Rotor Design Guide, Part I - Aerodynamics. Journal of the American Helicopter Society, Vol. 15, No. 4, 1970
- Sheridan, P. F.; and Smith, R. P.: Interaction 1
 Aerodynamics A New Challenge to Helicopter Technology.
 AHS Reprint 79-59, 1979.
- Wiesner, W.; and Kohler, G.: Tail Rotor Design Guide. USAAMRDL TR 73-99, 1974.
- 4. Barlow, W. H.; McCluskey, W. C.; Ferris, H. W.: OH-6A Phase II Quiet Helicopter Program. USAAMRDL TR 72-79, September 1972
- 5. Leverton, J. W.: Reduction of Helicopter Noise by Use of a Quiet Tail Rotor. Vertica, Vol. 6, 1982 pp. 37 to 47.
- 6. Gessow, A.; and Myers, G.: Aerodynamics of the Helicopter. Frederick Ungar Publishing Co., 1952.
- 7. Schmitz, F.; Boxwell, D.; Lewy, S.; Dahan, C.: A Note on the General Scaling of Helicopter Blade-Vortex Interaction Noise. Presented at the 38th Annual Forum of the American Helicopter Society, May, 1982.

Tail rotor location design guide - Effect of tail rotor location on main rotor power in HOGE. Figure 1.

ORIGINA AGE IS

Figure 2. Historical survey of relative location of the tail rotor.

Effect of pusher tail rotor location on main rotor power in HOGE, fin-on, $C_{\rm T}$ = .005. Figure 3.

Effect of tractor tail rotor location on main rotor power in HOGE, fin-on, C_T =.005. Figure 4.

Effect of pusher tail rotor location on main rotor power in HOGE, fin-off, C_T = .005. Figure 5.

Effect of tractor tail rotor location on main rotor power in HOGE, fin-off, C_T =.005. Figure 6.

* Percent increase over isolated main rotor power

Contour map of the effect of pusher tail rotor location on main rotor power in HOGE, fin-on, C_T =.005. Figure 7.

*Percent increase over isolated main rotor power

Contour map of the effect of tractor tail roto: location on main rotor power in HOGE, fin-on, C_T = .005. Figure 8.

View looking down

Figure 9. Effect of lateral positioning of the tail rotor on rotor wake proximity.

View looking inboard, L.H. side

Figure 10. Tuft pattern indication of tail rotor wake displacement due to rotor/rotor interaction, pusher tail rotor in the plane of the main rotor, fin-off.

Net T/R thrust coefficient, $C_{T_{\hbox{\scriptsize NET}}}$

Figure 11. Effect of fin blockage on pusher tail rotor C_p vs. C_{T} main rotor off.

Net T/R thrust coefficient, $C_{\text{T}_{\text{NET}}}$

Figure 12. Effect of fin blockage on tractor tail rotor C_p vs. C_{T} , main rotor off.

Figure 13. Effect of fin blockage on tail rotor power, main rotor off, $C_{T} = .01$

= .01 Effect of main rotor on tail rotor power by tail rotor location, pusher tail rotor, fin-on, C_T NET Figure 14.

= .01 Effect of main rotor on tail rotor power by tail rotor location, tractor tail rotor, fin-on, C_T Figure 15.

Figure 16. Effect of fin blockage on net tail rotor thrust, main rotor off.

Figure 17. Effect of the main rotor on net tail rotor thrust of a pusher tail rotor versus fin blockage.

a) Narrowband Analysis

b) Time History

Figure 18. Sample acoustic spectra for the isolated main rotor.

RUN 84 CONF 12PF18 MR THRUST 780 N MIKE 4

a) Narrowband Analysis

b) Time History

Figure 19. Sample acoustic spectra for a tractor tail rotor with fin, S/A = .39.

RUN 94 CONF T16TF39 TR THRUST 62 N MIKE 4

Figure 20. Effect of pusher tail rotor location on main rotor noise.

Figure 21. Effect of tractor tail rotor location on main rotor noise.

Figure 22. Variation in tail rotor harmonic noise with thrust and tail rotor location.

Figure 23. Variation in tail rotor noise harmonics with tail rotor location.

Figure 24. Variation in tail rotor broadband noise (10000 Hz) with thrust and tail rotor location.

APPENDIX A

TEST EQUIPMENT

ORIGINAL PAGE IS OF POOR QUALITY

Model

The model represented a single (main) rotor helicopter with antitorque (tail) rotor. The model consisted basically of a main rotor, a tail rotor, a vertical fin, the respective rotor drive systems, rotor stands and base (see Fig. A-1). Both rotors and vertical fin were .151 scale of the Model 222. The 1.829m diameter main rotor was a two-bladed semi-rigid, teetering type. The .316m diameter tail rotor was a Locke Number scaled, stiff-in-plane, two-bladed teetering rotor with collective pitch. Basic data for the main rotor, tail rotor and vertical fin is summarized in Table A-I.

TABLE A-I. BASI	C MODEL DATA		
	MAIN ROTOR	TAIL ROTOR	
Number of Blades	2	2	
Radius, m	.9144	.1581	
Disk area, m ²	2.627	.078	
Blade chord (constant), m	.110	.038	
Solidity	.076	.153	
Blade twist (linear), rad	.178	0.0	
Precone, rad	.061	0.0	
Pitch/flap coupling, rad	.192	0.0	
Flapping stops, rad	±.209	±.209	
Direction of rotation	CCW looking down	Top blade aft	
Rotor speed, rad/s	241.4	1306.7	
Tip speed, m/s	220.8	206.5	
Blade airfoil	FX080	NACA0012	
	VERTICAL FIN		
Span, m	2.438		
Chord (average), m	.720		
Area, m ²	1.757		
Airfoil	15% Clark Y Modified		
		side to the right)	
Leading edge sweep angle, rad			
Upper Upper	.529		
Lower	.926		
Incidence angle, rad		Nose right	

Figure A-1. Main rotor/tail rotor aerodynamic interaction test rig.

The main rotor was mounted on a drive system which included a 56 kw variable speed electric motor, a speed reducer, a tilting and yawing pylon assembly, rotor controls, and a five component rotor balance. The speed reducer output shaft drove the mast through a spline coupling and flexible disk coupling at the rotor balance. Main rotor fore and aft cyclic and collective were remotely controlled. Direct current motors were used for the control actuators. collective control actuator was mounted above the rotor The cyclic actuators rode on the slider assembly balance. to provide fore-and-aft and lateral swashplate tilt. A forty slip ring assembly, used to carry signals from the rotating system, was located below the speed reducer gearbox. The tail rotor drive assembly consisted of an adjustable base assembly, an 11 kw variable speed electric motor, a drive shaft, a collective control mechanism and motorized collective actuator. The vertical fin support was attached to the tail rotor drive base assembly.

Both rotor drive systems were mounted atop stands to place the rotors out of ground effect. The resultant height to diameter ratio for the main rotor was 1.55. The stands were designed to slide on a base for lateral and longitudinal positioning of the rotors. Vertical positioning was obtained by use of shims under the tail rotor drive base. Canted tail rotor cases were simulated by tilting the main rotor mast and vertical fin through the required angle. Test stand changes from pusher to tractor tail rotor operation were made as follows: (1) the main rotor stand was moved to the opposite side of the "T" shaped base, (2) the tail rotor drive assembly was rotated 180 degrees, and (3) the tail rotor hub and blade assembly was inverted to maintain top blade aft orientation. The vertical fin was also turned around to maintain its fore-aft orientation. Relative positioning of the tail rotor and fin for the various test configurations is shown in Figures A-2 and A-3. Figure A-2 shows the two fin blockages used in the test. Figure A-3 shows the lateral separation of tail rotor and fin.

Test Facility

The model was situated in a 16m diameter covered whirl cage test facility (see Figure A-4). The cage consisted of a concrete floor, wire mesh walls, and a conical wooden roof 5.4m high at the wall and 3m high at the center. Canvas curtains were used to block outside winds. A 1.2m opening

(a) S/A=.18

(b) S/A = .39

Figure A-2. Fin blockage ratios used in test.

Figure A-3. Lateral separation of the tail rotor and vertical fin.

Figure A-4. Whirl cage floor plan.

was maintained above and below the curtains to avoid recirculation. Control inputs to the model were made from an operator's console located along with the data acquisition system in a building adjacent to the whirl cage.

A 2 meter by 3 meter wire mesh tufted grid was situated approximately 2m to the left of the tail rotor in order to show the tail rotor wake location and any main rotor recirculation. A closed circuit TV camera was placed approximately 2.4m behind the tail rotor.

Five microphones were located in a semicircle around the tail rotor at a radius of 3.35m and a height of 2.75m (in the plane of the main rotor). The same distance was maintained to the tail rotor whether in pusher or tractor mode (see Fig. A-4). A sixth microphone was placed 5.1m in front of the tail rotor at a height of 1.22m. These locations were chosen to minimize interference with moving the rotor test stand and yet maintain a maximum distance from any reflective surface. The reflective surfaces of the floor, roof, and walls were not treated and appeared to have no significant impact on the model data taken. Figure A-5 shows the microphone numbering system used for the test.

Model Instrumentation

The main rotor balance sensed thrust, K force, Y force, pitching moment and rolling moment through strain gaged flexures. Main rotor torque was sensed by strain gages on the mast. Main rotor cyclic and collective inputs were sensed with linear potentiometers. Flapping and feathering motions were sensed by rotary potentiometers. Rotational speed and azimuth position were sensed by a magnetic pickup. To monitor for safety, the main rotor hub and blades were strain gaged to sense pitch horn loads, hub beam and chord bending, and blade beam bending.

Tail rotor torque was measured as reacted drive motor torque. This torque was sensed by a strain gaged motor support member. Tail rotor thrust was sensed by an independent, side-mounted thrust balance with strain gaged flexures. Tail rotor collective input was sensed by a rotary potentiometer. Tail rotor rotational speed and azimuth position were sensed by magnetic pickup. Fin side force was sensed by a strain gaged load cell supporting the vertical fin.

Figure A-5. Microphone identification.

The accuracy of rotor thrust and torque measurements, with the one exception of tail rotor torque, was ±2% of full scale measured data. Computed increases in main rotor power due to aerodynamic interaction were accurate to ±1% due to the specialized test run procedure. That run procedure involved the following: (1) extensive warm-up and temperature stabilization, (2) consecutive records at each prime data point, (3) repeat of each prime data point during each run, and (4) conduct of a follow-on isolated main rotor thrust sweep for each run. Due to the low sensitivity of the tail rotor torque gage, accuracies for tail rotor power measurements could be verified to be no better than ±10%. However, tail rotor power measurement was demonstrated to be reasonably repeatable, and good correlation was obtained with test data of Reference 1 (see Figure 13).

Data Acquisition

Model Data - The data acquisition system provided online data reduction for those data items shown in Table A-The analog signals were filtered at 2 Hz to provide essentially steady-state data. Rotor speed pulses were converted to analog signals. These data items were then scanned sequentially at a rate of 1000 channels per second. At this rate, there were approximately 2 observations per main rotor revolution and 1 observation for every three tail rotor revolutions for each respective data item. The sample size for each time-averaged update was 25. The sample thus spanned approximately 12.5 main rotor revolutions and 67.5 tail rotor revolutions. The observations from the scanner were digitized by a digital voltmeter for input to the online computer. The computer was used to store the digitized data observations, adjust for zero tare, time average the sample, compute the five component balance interaction functions, and reduce the data to engineering units. reduced data was continuously updated, displayed on a CRT and printed on a hardcopy during each test run. The computer also solved for tail rotor thrust required for yaw trim according to the following equation:

Required
$$T_{T/R} = (Q_{l1/R}/L) + F$$

This data was displayed to aid the operator in attaining a

TABLE A-II. DATA ITEMS SCANNED AND REDUCED ON- LINE

Main Rotor	Tail Rotor	Vertical Fig
l. Thrust Force	1. Thrust	1. Side
2. H Force	2. Shaft Torque	
3. Y Force	3. Collective	
4. Pitching Moment	4. Rotor Speed	
Rolling Moment	_	
6. Shaft Torque		
7. Collective		
8. Rotor Speed		

TABLE A-III. DATA DISPLAYED AT OPERATOR'S CONSOLE

Digital Analog Meters*

Main Rotor - Thrust

Shaft Torque Collective

Longitudinal Cyclic Lateral Cyclic

Tail Rotor - Thrust

Shaft Torque Collective

Digital Displays

Main rotor speed Tail rotor speed

CRT Displays

Main Rotor - Hub beam vs. chord bending

Pitching moment vs. rolling moment

Pitch link load

Flapping

Tail Rotor - Shaft torque

^{*} Indicates percent full scale

trimmed hover condition for the prime data points. A time code generator was used to give a unique record number and time of day for each prime data point. The operator's console was provided with various visual displays as shown in Table A-III.

Acoustics Data - The acoustics data acquisition system consisted of six microphones mounted on tripods, a six channel microphone amplifier, a time code generator, and a 14-track instrumentation tape recorder. Levels were monitored with a narrow band analyzer/oscilloscope and a digital voltmeter. The data acquisition system is shown in Figure A-6.

B&K 4131 one-half inch pressure response microphones on B&K preamplifiers with wind screens attached were used. The microphone diaphragms were kept parallel to the plane of the main rotor for flat frequency response. The signals were conditioned by a six channel microphone amplifier with 10 dB per step gain adjustments.

The microphone system was calibrated at the beginning and end of each tape reel and at the beginning and end of each day with a Pistonphone calibrator. This calibrator provides a 124 decibel RMS 250 Hertz tone. System frequency response was checked daily with a portable random noise generator.

Time code and record numbers were recorded along with the microphone signals on an Ampex FR-1300 14-track tape deck. The tape recorder used IRIG B intermediate band FM electronics and a tape speed of 30 inches per second, which gave a frequency response of DC to 10 KHz and a signal to noise ratio of 46 dB RMS. The same record numbers and time-of-day were used as for the model data acquisition system. A prime data signal was used to show valid data for each record. The time code, based on hours, minutes and seconds, were in IRIG B format. Additional code bits were used to provide record numbers and indicate prime data.

All of the components of the system were calibrated and tested prior to setup by the BHT Standards and Calibration Laboratory, providing traceability to the National Bureau of Standards. The system frequency response of one channel of the system, not including the microphone, is shown in Figure

Figure A-6. Acoustics data acquisition system.

A-7. The combined ambient background noise and the tape recorder noise floor is shown in Figure A-8 for an intermediate gain setting. None of the test data taken was affected by either the system frequency response or the recorder noise floor. The system frequency response did cause loss of data above 10 KHz and the recorder noise floor dominated the spectrum below 80 Hz, but these regions were not of interest during this test.

Figure A-7. White noise frequency response.

Figure A-8. Combined ambient background noise/system noise floor.

TEST PROCEDURE

The test was conducted in a series of 110 separate test runs over a period of two months. The individual test runs were distinguished by defining the following parameters: 1) operating mode, 2) tail rotor location, 3) Pusher versus tractor tail rotor, 4) cant of tail rotor, 5) fin blockage ratio. The configuration code developed to specify these parameters is shown in Figure A-9. Data was recorded for three operating modes: 1) isolated main rotor, 2) isolated tail rotor, and 3) interaction, i.e., both rotors operating.

Identification numbers defining the tail rotor location matrix are shown in Figure A-10. The initial grid of tail rotor locations established for this test consisted of grid point numbers 1 through 12 shown in Figure A-10. Spacing between the initial grid points was in increments of 1.0r. This grid was explored starting with the tail rotor locations nearest the main rotor and proceeding to the more remote tail rotor locations. This exploration continued for each row to the point at which main rotor power was unaffected by operation of the tail rotor. Within this established boundary, a number of intermediate grid points at .5r increments were added. Data for grid points 5 and 9 through 12 has been omitted from this report due to equipment problems which occurred during those test runs. Based on the results obtained from the remainder of the test, it is believed that these grid points are outside the boundary of tail rotor locations that produce significant interaction in hover. A summary of the valid test runs is given in Table B-I.

The following run procedure was developed to demonstrate repeatability and to compensate for thermal effects on the main rotor thrust measurement:

- Ambient conditions (Outside air temperature, barometric pressure, wind velocity) measured and recorded.
- Werm-up Run Both rotors at operating speed and elevated load.
- 3) Initial static zero Rotors stopped.
- 4) Stabilization Period Both rotors at operating speed and elevated load
- 5) Interaction Data Trim at approximately 4 main rotor thrust levels. Set main rotor collective to obtain desired thrust. Adjust tail rotor collective to obtain required antitorque. (Where required antitorque was in excess of the tail rotor maximum thrust capability, the tail rotor was operated at maximum collective of .30 radians). Take two consecutive prime data records. Repeat trim points.

Figure A-9. Test configuration code.

Figure A-10. Grid point identification for tail rotor locations tested.

Locations of T/R hub

- 6) Isolated Mair Rotor Data Tail rotor stopped.
 Take prime data record at approximately 4 main rotor thrust levels. Repeat 4 thrust levels.
- 7) Final static zero Rotors stopped.

As mentioned before, openings below and above the canvas curtains covering the walls of the whirl cage were maintained to avoid recirculation of rotor wake. Because of these openings to the outside, wind velocity was measured at the model prior to start-up of each test run. Runs were conducted only if maximum winds were less than 1.5m/sec. The procedure of taking two consecutive records for each prime data point and repeating this trim condition within each test run (resulting in four records for each trim condition for a given run) helped minimize the effects of any wind gusts occurring during a test run.

The four main rotor thrust levels comprising the thrust sweeps were, in terms of $C_{\rm T}$, .0021, .0035, .0050, and .0064. In some instances, the antitorque requirement for trim exceeded maximum tail rotor thrust capability. In these cases, tail rotor collective was set to maximum and the record was taken in this untrimmed condition.

DATA REDUCTION

Aerodynamic Performance Data

Due to low frequency filtering and sample averaging as discussed previously, the values for prime data present d in Appendix B are believed to fairly represent steady state conditions. An adjustment was made to the original recorded data to account for any difference between initial and final static zero values as measured for each run. Curve fits of power coefficient, C_p versus thrust coefficient, C_T for both rotors were obtained by a regression technique and based on an equation of the general form:

$$c_p = a_0 + a_1 c_T^{3/2}$$

This model was based on the theoretical relationship of induced power in hover to thrust. (Equation 34 of Ref.6). Profile power contributions were considered secondary in effect and not included in the model. Tail rotor data exhibited an abrupt change in the C_p versus C_m relationship at the onset of rotor stall. For this reason, where sufficient data was available, two separate curve fits were applied to the tail rotor data, one below and one above the stall break.

Acoustics Data

After a first look at the data using a real-time narrow-band analyzer, representative prime data records were processed for high speed digitizing and copying onto digital tapes for further analysis. All data were digitized at a rate of 32768 samples per second to ensure high resolution and to place the Nyquest frequency well above the highest frequency of interest.

The digitized data were subsequently processed through a time history plot program and a spectrum analysis program. Corrections for reference calibration level and amplifier gain were automatically made in each computer program. Since the system frequency response consistenly appeared within tolerance, no adjustments for frequency response were applied to the data.

Time histories are plotted for approximately 1.5 revolutions of the main rotor (39 milliseconds per plot) for isolated main rotor and for approximately 2.5 revolutions of the tail rotor (13 milliseconds per plot) for isolated tail rotor cases. This analysis allows determination of peak amplitudes and reveals any distinct characteristics of the

waveform.

The spectrum analysis program uses the Fast Fourier Transform (FFT) technique to reduce data. Blocks of 32768 samples are first processed to provide a frequency spectrum analysis with a one Hertz resolution. The resulting frequency coefficients are then smoothed using a four hertz sweeping filter. Each contiguous block is then ensemble averaged for the length of the prime data record to give statistically valid data and plotted on a log frequency scale. Each record presented in this report was averaged for twelve seconds. The frequency analysis technique allows identification of noise-producing components, determination of what source actually dominates the noise, and reveals the relative contribution of harmonic and broadband noise.

APPENDIX B

ORIGINAL PAGE IS OF POOR QUALITY

TABULATED TEST DATA

This appendix is a tabulation of measured performance data. All data is shown in EI units. The tables are ordered by test run number. The test configuration for each run is indicated by the configuration code in the table heading. An explanation of the code is presented in Figure A-9. Tail rotor locations are defined by grid point as shown on Figure A-10. A summary of all test runs included is shown in Table B-I. For test runs including both main and tail rotor operation, a table of main rotor data is presented first, followed by a table of tail rotor data. The MODE item shown for main rotor data is defined as follows:

INTERACTION - Both main and tail rotors operating.

*ISOLATED - Main rotor only operating; tail rotor stopped.

• Included at the end of each Interaction run.

T/R @ FLAT PITCH - Main rotor operating at low thrust; tail rotor operating at zero thrust.

Within each table the entries are arranged by prime data record number. At each prime data "trim" point, two consecutive records were recorded as a check on repeatability of the time averaged data. These consecutive "repeat" records are denoted by the suffixes A and B on the record numbers.

Rotor collective setting THETA applies to 3/4 radius setting for the twisted main rotor blade. Fin force is positive in the opposite sense of positive tail rotor thrust. Fin and net tail rotor thrust coefficients are defined as follows:

$$C_{T_{\text{FIN}}} = F/A_{T/R}^{\rho} (\omega r)^{2}$$

$$C_{T_{\text{NET}}} = C_{T_{\text{NET}}} \text{ ACTUAL} = (T_{T/R}^{-F})/A_{T/R}^{\rho} (\omega r)^{2}$$

$$C_{T_{\text{NET}}} \text{ REQUIRED} = (Q_{M/R}/L)/A_{T/R}^{\rho} (\omega r)^{2}$$

TABLE B-I. SUMMARY OF TEST RUNS

	4		1
Run Number	Configuration	Run Number	Configuration
30	T6P	86	I2TF18
49	T2PF18	87	T2TF18
52	T2PF18	88	I2TCF18
54	T3PF39	89	T2TCF18
64	18PF39	90	I2T
65	18P	91	I13TF18
66	14P	92	16TF18
67	I4PF39	93	I16TF39
68	13PF39	94	T16TF39
69	13P	95	I19TF39
70	17PF39	96	17TF39
71	I6PF18	97	13TF39
73	I13PF18	98	13T
74	IlPF18	99	118TF39
75	I2PCF18	100	I4TF39
76	Il4PF18	101	18TF39
77	I15PF18	102	I17TF39
78	I16PF18	103	T17TF39
79	I17PF18	104	I17TF18
80	T17PCF18	105	T17TF18
81	I17PF39	106	I14TF18
82	I18PF39	107	I15TF18
83	I19PF39	108	120TF18
84	I2PF18	109	IlTF18
85	I2P	110	TlT
	•		

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 30 CONFIGURATION TOP ARM 1.246 M AIR DENSITY RATIO 0.9990 DAT 15.0 DEG C

TAIL ROTUR DATA

CTNET

CIFIN

FORCE

THETA (RAD)

9

C

RECORD THRUST TORQUE

(FZ)

ŝ

	ORIGINAL OF POOR	PAGE IS QUALITY
00000000000000000000000000000000000000		00000000000000000000000000000000000000
0000000000		
0000 0000 0000 0001 0001 0002 0002 0002	00000000000000000000000000000000000000	001000000000000000000000000000000000000
	10000000000000000000000000000000000000	0000 0000 0000 0000 0000 0000 0000 0000 0000
	10000000000000000000000000000000000000	MWWW WWWWW WWWW
0000	-4335C	18554
	220044	40020
49494949 4448494949	133822 1	68888

MAIN ROTOR-TAIL HOTOR INTERACTION TEST NASA 2-10771

HUN NO. 49 CONFIGURATION TEPFIB ARM 1.088 M AIR DENSITY RATIO 0.9959 DAT 18.3 DEG C

TAIL HOTOR DATA

CINET

CTFIN

FIN FORCE (N)

THETA (RAD)

9

CT

ANGULAR VELUCITY (RAD/S)

(X-N)

(Z)

RECURD THEUST TURQUE

00000000000000000000000000000000000000
00000000000000000000000000000000000000
000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
71777777777777777777777777777777777777
######################################
00000000000000000000000000000000000000

MAIN ROTOR-TAIL RUTOR INTERACTION TEST NASA 2-10771

RUN NO. 52 CONFIGURATION TEPFIB ARME 1.088 M AIR DENSITY RATIO 0.9774 UAT 23.3 DEG C

TAIL RUTOR DATA

CTFIN CTNET

FIN FORCE (N)

THE TA

3

5

RECOND 1HHUST TORQUE ANGULAR VELOCITY (N) (N-M) (RAD/S)

000418 000861	01075 01078 01351 01320	01266	01004 01004 000000 000000	00000000000000000000000000000000000000
000000000000000000000000000000000000000	00000000000000000000000000000000000000	0.000567	000000000000000000000000000000000000000	000000000000000000000000000000000000000
• • • •	• • • •		• • • •	000000
~~\\		W W W	PROOF	00000
000000000000000000000000000000000000000	00192 00192 00305 00306	00473 00270 00273	0000 0000 0000 0000	.0006978 .0007844 .00045081 .0007451
4 M M M M M M M M M M M M M M M M M M M	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01200	000000000000000000000000000000000000000	
44400 00000 00000	0000	306.		20000000000000000000000000000000000000
4400	N. 700	0 F M	0 y	00//00 00//00 00/00 00/00/00 00/00/00
> 0.04	24 N42	~	. T.C.	10000000000000000000000000000000000000
699A 6998 700A 700B	7018 7028 7028 7038	104B	7058 7058 7068	7078 7088 7088 7088 7088

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

	1.088
181	ARME DEG C
ACTION TE	4
MAIN ROTUR-TAIL ROTOR INTERACTION TEST NASA 2-10771	RUN NO. 54 CONFIGURATION TAPFA9 AIR DENSITY RATIO 0.9961 DAT 17
TAIL R	CONF
N ROTUR.	NO. 54 DENS 1TY
MA 1	24

TAIL RUTUR DATA

I

CIFIN CINET

FIN FORCE (N)

THETA (RAD)

8

CI

RECURD THRUST TORQUE ANGULAR VELDCITY (RAD/S)

(X-2)

3

00000000000000000000000000000000000000
00000000000000000000000000000000000000
84000000448600-0000
00000000000000000000000000000000000000
00046504 00014474 00014474 00014474 00014474 00014474 0001474 0001477 0001477 0001477 0001477 0001477 0001477 0001477
00000000000000000000000000000000000000
00
72554 72254 72254 72276 72294 72328 72348 73348 73348 73348 73348 7354

HUN NU. 04 CUNFICURATION 16PF.39
AIR DENSITY RAILU 1.0487 DAT 6.7 DEG C MAIN RUIUR-TAIL RUTUR INTERACTION TEST NASAL-10771

MAIN KUTON UATA

MODE

THETA

9

C

ANCULAR VELUCITY (HAU/S)

CUROUF

THUST

HECURD

														•	-		_	Ж,	JI,	•	Q	U	11	IT	
	NTERACTI	NTERACTI	INTERACTION	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	NTERACTI	SOLATED	SULATE	SULATE	SOLATE	SULATE	SOLATE	SULATE	ULATE	
(RAD)	. 16	2	990.0	00.	100	01.	15	. 15	91.	91.	. 14	4	01.	01.	90.	90.	91.	.16	41.	. 14	01.	01.	90.	90.	
	00485	00485	.0001478	00146	00234	00231	00363	00363	00481	99400	06500	00351	00232	00231	00143	00142	1900	00486	00355	00353	00230	00226	00145	00143	
	£6500	96500	00700	16100	00332	0326	00480	00477	00584	26500	20400	7940	16500	00327	5510	100104	1650	26500	2440	0465	00327	1322	1020	9610	
(KAU/S)	42.	41	24103	4 X +	+ 7 +	474	40.	41.	43.	43.	41.	• 1 5	* C	41.	41.	* * *	41.	44.	44.0	42.	43.	44.		44.	
(W- Z)			707077		•	•	•	•	•	•	•	•		•		•		•	•	-			•	•	
(1)	20.72%	2000	10100	360.0	P+ R+C	C+1+0	7.40/	1000	21015	V.50%	103.4	701.00	341.00	2010	3440	341.0	0.110	7040	/o/o/		24040	2.5.50	333	330.0	
	SOCA	22.00	BD7A	2000	BLUA	BOOM	609A	2000	8/0A	67 00	47/9	9/50	9734	0/30	8/4V	874B	ACIO	8728	blon	20/2	87 /A	8/1a	BZOA	20.00	

AAIN HUTUH-TAIL KUTUH INTEHACTION TEST

KUN NU. 64 CUNFICURATION 189F39 ARME 1.246 M AIK CENSITY RAILO 1.0487 DAI 6.7 DEG C

IAIL HUIUR DATA

	ORIGINAL PAGE IS OF POOR QUALITY
CINE 1 ACTUAL	000 000 000 000 000 000 000 000
CTNET REGD	00000000000000000000000000000000000000
CTFIN	00000000000000000000000000000000000000
FIN FURCE (N)	00000000000000000000000000000000000000
THETA (RAD)	00000000000000000000000000000000000000
ð	00000000000000000000000000000000000000
د1	00000000000000000000000000000000000000
ANGULAK VELUCITY (KAD/S)	01117777777777777777777777777777777777
10x00E	0 1 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4
RECURD THRUST THRUDE	00000000000000000000000000000000000000
RECURD	

MAIN ROJOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 65 CONFIGURATION 18P AIN DENSITY RATIO 1.0347 DAT 10.6 DEG C

MAIN RUTOR DATA

MODE

THE TA

9

5

ANGULAR VELOCITY (RAD/S)

TOROUE (N-M)

THRUST

RE COND

																					C	F		P	0	0	R	(
	INTERACTION	TERACT I	ERACT 1	TERACTI	TFPACTI			I ERACE S	TERACTI	TERACT 1	TERACTI	TERACT 1	TERACT 1	TERACTI	TEDACTI			LEKACI		OL A1	OLAT	OLA1	OLAT		֓֞֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֡֓֜֜֜֡֓֓֡֓֡֓֡֡֡֓֡֓֡֡֡֡֓֡֓֡֓֡֡֡֓֡֓֡֡֡֡֡֓֜֡֡֡֡֡֓֡֡֡֡֡֓֡֡֡֓֡֡֓			
(RAD)	0.189	18	0	0			= 1	2	- 5		81	. 15	2			֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡֡֜֜֜֡֡֡֡	֭֭֭֓֞֜֜֜֜֓֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֡֓֜֜֜֜֓֓֡֓֜֜֡֓֡֓֡֓֡֓֡֓֡֡֡֡֓֡֓֡֓֡֓֡֡֡֓֡֡֡֡֡֡	00	7 7	51.	- 15	-15			-	9	00.	
	0051	00200	0001483	00140	0000	2100	00238	00329	00353	00500	00498	00357	00368	SE 000	36000	95700	00140	00146	00505	10500	00351	00355	AF 400		15200	00145	00145	
	1621	5090	002043	000) (?	340	0472	4940	00606	9090	00471	0486	7) () (6000	6610	020	1 1 90	4090	0468	0473	36.60) () (340	0202	0503	
(RAD/S)	0	4	040	,		:	42.	42.	43.	42.	43	4	Ş)	• !	5	41.	41.	42.	42	44	42		•	42	42.	•	
(X-X)	8	4			· · · ·	000	5.65	3.67	3 . 33	5.00	5.01	7	40) • C	2.40	1.76	1.77	5 . 85	5.17	-	2		*	5.53	1.64	21.764	
(N)			7 - 2 - 2 - 2	•	٠	•	•						•	•	•	•	•	327.7	1 600	0 1 00	4.026	7.00	0.000	2000	554.0	330.5	333.1	
	▼ 0 0		900	46.58	88 38	88 4A	88 48	F. S.A.	88.53	98 6A	2 4 4	9000	000	07.00	₽₽₽	ନନ୍ତ ଶନ	88 9A	88 SB	£004	7508	4100	91.07	01 60	835A	89 2B	A5. 68	86.28	

OF POOR QUALITY

MAIN ROTOR-TAIL RUTOR INTERACTION TEST NASA 2-10771

RUN NO. 65 CONFIGURATION 18P ARM# 1.206 M A IR DENSITY RATIO 1.0347 DAT 10.6 DEG C

TAIL RUTOR DATA

RE CURD	THRUST	TOROUE	딍	5	3	THETA	FIN	CIFIN	CTNET	CINET	
	(2)	(W - Z)	RAD/S)			(RAD)	2				•
ACHA	ć	(Ž	4 4 1	91450	6	9		1424	AF 44	
8826	59.1	2.191	1309.9	013842	.0032444	0.326	0	000000	-014207	013842	
88 3A	7	•	05.	0411	00702	41.		•00000	7140	11 40	
SE SB	7.		05.	9411	00687	-		000000	0418	1150	
88 4A	Ġ	•	07.	9698	01090	• 20	•	00000	0672	9690	
88 4B	ŝ	•	90	0690	96010	•20	•	00000	0673	300	
86 5A	4	•	050	1052	01824	- 25	•	00000	1015	300	
88 55	ġ	•	010	1096	01955	• 25	•	• 00000	1014	1096	
₩ 9 6 ₩	•	•	07.	1398	03273	.32	•	00000	1413	1398	
88 of	2	•	60	1352	03111	. 32	•	00000	1411	1352	
88 7A	ŝ	•	5	1059	01838	• 26	•	00000	1013	1059	
88 7E	ŝ	•	:	1072	01840	• 26	•	00000	1027	1072	
88 b ∀	ů	•	07.	0677	01061	• 20	•	00000	0661	0677	
98 88	5	•	9	0682	96010	.20	•	00000	6990	0682	
88 ¥			05.	0418	16900	.14	•	00000	0411	84 18	
58 YU	-	•	**	04 10	00100	+1.	•	000000	0412	04 10	•
89 UA	•	•	•	•	•	•	•	•	•	•	
89 OE	•	•	•	•	•	•	•	•	•	•	
89 JA	•	•	•	•	•	•	•	•	•	•	-(
89 16	•	•	•	•	•	•	•	•	•	•)(
892A	•	•	•	•	•	•	•	•	•	•	PR
892H	•	•	•	•	•	•	•	•	•	•	}
£63 X	•	•	•	•	•	•	•	•	•	•	Q
65 EQ	•	•	•	•	•	•	•	•		•	U
		i								ı	ALI
											TY

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 66 CONFIGURATION 14P AIR DENSITY RATIO 1.0207 OAT 14.4 DEG C

MAIN ROTOR DATA

	OF PO
MDDE	INTERACTION INTERA
THETA (RAD)	00000000000000000000000000000000000000
. Д О	
10	00000000000000000000000000000000000000
ANGULAR VELDC1TY (RAD/S)	00000000000000000000000000000000000000
TORQUE	77 74 75 76 76 76 76 76 76 76 76 76 76
THRUST (N)	99999999999999999999999999999999999999
RE CORO	88888888888888888888888888888888888888

MAIN KOTOR-TAIL ROTOR INTERACTION (EST NASA 2-10771

RUN NO. 66 CONFIGURATION 14P ARM# 1.068 M AIR DENSITY RATIO 1.0207 DAT 14.4 DEG C

TAIL ROTOR DATA

-		× + + + + + + + + + + + + + + + + + + +									İ
RE CURU	THRUST	THRUST TORQUE	ANGULAR	.	G D	THE TA	FIN	CIFIN	CINET	CTNET	
	ŝ	72	(RAD/S)			(RAD)	Z				į
	Ĭ ! ! !										
89 EA			60	1569	49440	•	•	00000	.016315	.015692	
89.88			60	1560	04426		Ī	00000	01617	2001	
89 9A		•	90	8 79	R2200		Ť	00000	0200	2 10	
ACOB		•	08	04 83	00783			00000	16400	S E 3	
4006		•	11.	0827	01342	٠		00000	E 220	08 27	
9006			05.	0845	01336			00000	0778	0845	
A1 06		•	8	1211	02435			00000	1187	1211	
90 18	•		07.	1230	02405	•	•	00000	1182	1230	
90 2A			90	1583	04510			00000	1632	1583	
902B			12.	1585	76440		•	00000	1604	1385	
AE 06		•	07.	1236	02535			00000	1188	1236	
9038	•	•	90	1246	02521	•	•	00000	1184	1246	
44 O6		٠	13.	6920	01278	•	•	00000	0400	0169	
9048	33.1	0.861	1313.3	.007826	.0012659	0.233	0.0	00000000	3	.007626	
A206	•		90	228	90776	•	•	00000	0488	S 13	
9050	20.6	•	8	888	98 200	•		•00000	0485	0452	
906A	•	•	•	•	•	•	•	•	•	•	
99 O6	•	•	•	•	•	•	•	•	•	•	
VV 06	•	•	•	•	•	•	•	•	•	•	
90 ZE	•	•	•	•	•	•	•	•	•	•	
₽906	•	•	•	•	•	•	•	•	•	•	
906	•	•	•	•	•	•	•	•	•	•	
5 3	•	•	•	•	•	•	•	•	•	•	
3 06	•	•	•	•	•	•	•	•	•	•	

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 67 CONFIGURATION 14PF39 AIR DENSITY RATIO 1.0096 DAT 17.2 DEG C

MAIN ROTOR DATA

91 3A 91 3A 91 3A 91 3B 91 3B 91 5B 91 5B 91 7A 91 7A 91 7B 91 7B 91 7B 91 7B 91 7B 91 7B 91 7B 91 8B 91 8B 91 7B 91 8B 91 8B	67 - 78 0 67 - 67 0 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 7	20000000000000000000000000000000000000	005700	0000 0000 0000 0000 0000 0000 0000	(RAD)	
444 444 444 444 554 654 654 654 745 745 745 745 745 745 745 745 745 7	60044 6004 6004 6004 6004 6004 6004 600	NN4000000	0570 6562 0186	00464		
44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4440MMNN	6562 6562 0186	00461	•	
444 448 448 644 644 644 742 644 742 644 742 644 742 644 644 644 644 644 644 644 644 644 6	700 4 4 10 700 4 4 10 700 4 4 10 700 7 0 70 700 70 70	44000000	6562 0186 198	00461	•	I ERAC!
444 554 554 555 555 555 555 555 555 555	00.00 0.00 0.00 0.00 0.00 0.00	4000000	0186	00141	7	TERACT I
48 52 64 64 74 74 75 64 64 74 74 74 74 74 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	4.41 4.41 6.50 6.50	98888888888888888888888888888888888888	0 5 6		9	TERACT
56 529 56 529 57 742 68 751 74 751 68 752 68 747 68 747 69 747 69 747 60 747	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	MM 200		00145	9	TERACTI
568 742. 668 742. 74 758 742. 74 758 743. 534. 68 534. 68 531. 68 305.	1000 T	MNN	0329	00234	-	TERA CTI
668 751. 78 751. 78 751. 78 752. 68 762. 68 762. 69 69 69 69 69 69 69 69 69 69 69 69 69 6	1.50	200	0326	00233	7	TEKAC11
68 28 28 28 28 28 28 28 28 28 28 28 28 28	2.13	42	0466	00354	7	TERACTI
7A 899 8A 752 8B 752 8B 752 9B 747 9B 747 9B 767 9B 767 9B 767 9B 767 9B 767			0470	00356	7	TERACTI
26 20 20 20 20 20 20 20 20 20 20 20 20 20	9.00	• V	1950	00451	7	TERACT I
44 752 65 65 65 65 65 65 65 65 65 65 65 65 65	5.55	43.	0555	00446	7	TERACT I
665 405. 965 405. 965 405. 965 405. 965 405.	3.	42.	0470	00355	7	TERACTI
944 946 004 005 005 1005 1005 1005 1005 1005 10	1.85	42.	1940	00354	0.150	ERA
08 305. 06 305. 18 305.	14.4	41.	9336	00236	7	TERACTI
305 06 304 304 18 304 304	4.27	42.	0332	00234	7	TERACT 1
06 1A 15 15 15 15 15 15 15 15 15 15 15 15 15	B. 0	41.	0192	00141	9	TERA CT 1
1A 552.	69.0	43.	0188	00140	•	TERACT I
14 A	1.11	43 e	0592	00483	7	DLAT
	1 -27	144	0650	00481	~	DL A 1
2A 777.	3.16	43.	1810	09800	7	DL AT
28 757.	2.69	42.	0475	00362	7	OL AT
3A 535.	4 - 29	44	1860	00231	7	DLAT
38 530	98.4	43.	0329	00234	7	DLAT
4A 313.	20.1	14	2610	00141	0	DLAT
4B 313.	1.07	45.	0192	00141	0	017

MAIN ROTOR-TAIL RUTOR INTERACTION TEST NASA 2-10771

RUN NO. 67 CONFIGURATION 14PF39 ARM= 1.088 M A IR DENSITY RATIO 1.0096 0AT 17.2 DEG C

TAIL ROTOR DATA

						,					į
RE CURU	THRUST	TOROVE	ANGULAR	10	ಕಿ	THETA	FIN	CTFIN	CTNET	CINET	
	(N)	(X-N)	AU/S)			(RAD)					i
_	ė		-	1574	04382	.37	0	.00144	48	1430	
_	9	•	12.	1585	04370	.37	1.	.00160	11	1424	
_	-		07.	9050	00751	.16	7	.00025	46	04 60	
_	-		8	0527	00787	• 16	9	.00038	9	59 48	
_	S	•	9	08 53	01341	. 22	9	*00062	2	0520	
91 543	34.5	0 • 66 ₹	1306-1	.608333	.0013179	0.228	3.0	0.000719	•007594	.007613	
_	Ġ		90	1264	02572	8	9.	-00111	#	1153	
	å	•	05.	1260	02629	.30	7	.00100	15	1159	
_	•		90	1881	04459	.37	8	.00162	45	1426	
	•		65.	1674	60940	.37	7	.00173	45	1501	
_	ń		93.	1304	02722	.31	M	.00100	15	8 = 1	
_	, , ,	•	90	1292	02642	.30	1	-00112	1	1180	
_		• 636	10	0626	01267	-22	0	.00001	75	0754	
	و زي	•	950	0648	01285	.22		•0000	2	07 70	
	•	0.488	05.	4840	00745	• 16	8	+0000+	45	04 40	
2 0B	3	•	99	88	732	- 16	8	-00042	45	0447	
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
	•		•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•		•	•	•		5	_
)	•	,	,	,	•	•		•	•	_

MAIN ROICR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 68 CONFIGURATION 13PF39 AIR DENSITY RATIO 1.0218 DAT 10.6 DEG C

MAIN ROTOR DATA

MCDE

THE TA

đ

C

ANGULAR VELDCITY (RAD/S)

(X)

TOROVE

THRUST

PR -

																							¥
TERACTI	TERACT 1	TERACT 1	TERAC11	TERACTI	INTERACTION	TERACTI	TERACTI	TERAC11	TERACTI	TERAC11	TERACTI	TERACTI	TERACT!	TERACT I	TERACT I	DLAT	DLAT	OLA1	OLAT	OLA1	DLAT	OL AT	DLAT
-	7	0	•	-	0.108	~	7	7	7	7	7	7	-	•	•	-	-	-	7	7	-	•	•
04407	00454	000143	000144	000233	.0002285	000352	00355	64400	04400	00353	00349	000227	00229	141000	1 1 100	000495	000493	00349	00353	00227	00226	00137	00136
00562	00571	66100	00200	00336	.003312	00471	00480	00565	00549	00475	00467	00332	00333	00195	00196	S 1900	01900	00477	00478	0336	0333	0195	610
41.	41.	- 7	4	30	241.5	47	41.	N	43.	42.	42.	43.	42.	40.	*0*	-	42.	42.	41.	41.	42.	42.	42.
6.07	6.78	1.07	1 . 23	3.75	33.490	1.73	2.10	6.5	5.78	2.01	1.71	3.84	3.96	0.55	0.59	2.62	3.02	1.50	1.61	3.39	3.43	0.31	4.
4	~	•	•	å	530.9		-	ŝ	-	3	7	6	3	å	Č	3		•	4)	3	ij	ŝ	•
930A	9308	93 IA	93.18	43.66	9328	933A	93.3H	934A	934B	93 SA	9358	936A	9300	X2 67	9370	938A	9368	93.9A	93.98	40 PG	9408	94 1A	94 16

ORIGINAL PAGE IS OF POOR QUALITY

MAIN ROTOR-TAIL ROTOR INTERACTION TEST
NASA 2-10771
RUN NU. 68 CUNFIGURATION 13PF39 ARM# 1.0088 M
AIR DENSITY RATIO 1.0218 DAT 10.6 DEG C

TAIL ROTOR DATA

† 	OF POOR QUALIT
CTNET	00000000000000000000000000000000000000
CTNET	00000000000000000000000000000000000000
CTFIN	######################################
FIN FORCE (N)	90mmm499mmm
THE TA	00000000000000000000000000000000000000
3	00000000000000000000000000000000000000
13	00000000000000000000000000000000000000
ANGULAR VELUCITY (RAD/S)	43094347445474646444444444444444444444444444
TORQUE	666
R:CORD THRUST TORQUE	0000mm00000mm000 0000mm0000mm000 0000mm00000mm000
R : CORD	90 90 90 90 90 90 90 90 90 90 90 90 90 9

MAIN ROTOR-TAIL RUTOR INTERACTION TEST NASA2-10771

RUN NO. 69 CONFIGURATION 13P AIR DENSITY RATIO 1.0218 DAT 10.6 DEG C

MAIN RUTOR DATA

MODE

THE TA

Ç

C

ANGULAR VELDCITY 'RAD/S)

TOROUE (N-M)

TI RUST

RE COR

(RA_)

TERACTI TERACTI TERACTI TERACTI	IN TERACTION IN TERACTION IN TERACTION IN TERACTION IN TERACTION IN TERACTION IN TERACTION	TERACTI TERACTI TERACTI OLATED OLATED	
10000			000000
0000479 0001599 0001599	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
00059 00059 00070 00070		00000000000000000000000000000000000000	00000000000000000000000000000000000000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 NO NM M	MMM44444
BM-MB	66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0-0146	- NM > M & O
999 999 999 999 999 999 999	10000000000000000000000000000000000000	10021 10021 10021 10031	20000000000000000000000000000000000000
79799 7668 7688	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9528 9528 9538 9538 9538	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

GINAL PAGE IS POOR QUALITY

ARME 1.088 M MAIN ROTOR-TAIL RUTOR INTERACTION TEST NASA 2-10771 CONFIGURATION 13P

N N N N N N N N N N N N N N N N N N N	ND. 69 DENS 11Y	CONFIGURATION 13P	13P 0AT	9.01	ARM# 1 DEC C	1 . 0 8E
		TAIL ROTOR DATA				

CINET

CTNET

CTFIN

FIN FORCE (N)

THETA

9

C

RECORD THRUST TORQUE ANGULAR
VELOCITY
(N) (N-M) (RAD/S)

(X-Z)

3

(RAD)

																			•	אי	1	Q(JA	LI
.015347	00476	00770	00787	01167	01193	01529	1550	2 = 1	3 = 3	0763	0762	95.40	6440	•	•	•	•	•	•	•	•	•	•	
.015490	00485	00400	00775	01 189	01176	01545	1210	01187	01184	00797	00801	60483	00483	•	•	•	•	•	•	•	•	•	•	
000000000000000000000000000000000000000	00000		00000	.00000	000000	00000	00000	00000	00000	00000	000000	00000	00000	•	•	•	•	•	•	•	•	•	•	
00	•	• (•	•	•	•	•	•	•	•	•		•	•	•	•	•	٠	•	•	•	•	•	
0.379	7	- ?	7	3	4	m.	7	7	9	4	7	~	7	•	•	•	•	•	•	•	•	•	•	
.0043715	2772	001244	001261	002325	002367	004332	004388	002255	002210	01237	01259	E6900	90200	•	•	•	•	•	•	•	•	•	•	
.015347	00476	00220	00767	01167	01193	01529	01550	62110	1162	07 63	0782	96 36	843	•	•	•	•	•	•	•	•	•	•	
1305.9	41		-	90	07.	080	66	10	10	8	000	980	8	•	•	•	•	•	•	•	•	•	•	
2.697	15.	֓֞֞֜֜֝֓֞֜֓֓֓֓֓֓֓֓֓֓֓֓֟֜֓֓֓֓֡֓֓֡֓֡֓֓֓֓֡֓֡֓֡֓֡֓֡֡֡֓֡֓֡֓֡֡֡֡֓֡֡֡֓֡֡֡֡	4	3	. 57	88.	. 52	03.	140	. 62	£9.	940	40	•	•	•	•	•	•	•	•	•	•	
64.3	•	• •	•	•	•		•	•	•	•			•	٠	•	•	•	•	•	•	•	•	•	
94 5A 94 54																								

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NU. 70 CONFIGURATION 17PF39 AIR DENSITY RATIO 1.0119 OAT 13.3 DEG C

MAIN RUTOR DATA

RECORD	THRUST (N)	TORQUE (N-M)	ANGULAR VELOCITY (RAD/S)	13	a 5	THE TA	MODE
₩96	1004-1	5.14	4	9190	00204	91.	TERACT 10
96 3B	8	5.32	+ 3.	0620	00511	.19	TERACT 10
96 4A	ċ	2.06	12.	0207	00100	900	TERACT 10
96 4 B	Ġ	2.22	44	0207	64100	900	TERACT 10
865A	ċ	6.14	42.	0354	00247		TERACT 10
96 5B	,	5.98	43.	0347	00244	-	TERACTIO
₹ 996	ř	2.71	42.	0476	09500	.15	TERACT 10
9c oB	784.1	3.66	241	•004956	0037	0.151	INTERACTION
967A	_	18.5	43.	0622	00515	01.	TERACT 10
36 7B	'n	4.71	42.	0613	60500	91.	TERACT 10
¥R 96	,	68°E	42.	0485	00368	.15	TERACT 10
96 88	;	3.59	42.	0481	99800	-15	TERACT 10
¥596	ŝ	4.94	43.	0337	00236	-	TERACT 10
8696	4	4.98	• M4	0338	00237	-	TERACT 10
970A	4	2.17	42.	0209	00152	900	TERA CT 10
97 0B	ġ	1.97	42.	0204	00120	900	TERACT 10
97 1A	ئ	95.4	42.	9190	00210	0.	OLAI
97 1d	\$	4.73	42.	0623	60500	6	OL AT
972A	4	3.92	43.	0486	00365	-15	OLAT
97 2H	-	3.92	43.	0483	00364	.15	OLAT
973A	ň	5.60	43.	6344	00241	. 1.1	OLAT
97.38	Ġ	5.71	43.	0346	00241	. 1 .	OLAT
97 4A	337.4	2.28	43.	0209	00151	90.	OLAT
974B	337.1	22 • 22 2	4	0206	48	90.	OLAT

ORIGINAL PAGE IS OF POOR QUALITY

RUN NO. 70 CONFIGURATION 17PF39 ARM= 1.206 M AIR DENSITY RATIO 1.0119 DAT 13.3 DEG C MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

TAIL ROTOR DATA

CTNET ACTUAL

CTNE T

CIFIN

FIN FORCE (N)

THETA (RAD)

3

7

RECORD THRUST TORQUE ANGULAR
VELUCITY
(N-M) (RAD/S)

(¥ Z)

. SOU GOVERA
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000+60+800 -000+00-6900000
00000000000000000000000000000000000000
0044793 00045437 0007474 0007160 00011164 00020468 00020468 00011372 0007179
00000000000000000000000000000000000000
######################################
00000110000 000001100000 000000000000
\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
96 38 96 38 96 48 96 48 96 58 96 58 97 28 97 28 97 28 97 38 97 48 97 48

MAIN HOTOR-TAIL HOTOR INTERACTION TEST NASA2-10771

AIR DENSITY RATIO 0.9969 DAT 14.4 DEG C

MAIN ROTUR DATA

977A 977b 977b	(N)		5	5	5	V 1 1 1 1 1	I COE
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(2)						
55mr		(X - Z)	(HAD/S)			(RAD)	
42.44 42.44 42.44 43.44 44 44 44 44 44 44 44 44 44 44 44 44		· · · · · · · · · · · · · · · · · · ·					
2 V 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.06	.67	42.	0632	00532	•19	TEHACTI
W	9.3.7	659	42.	0631	00532	.19	TEHAC 11
4	34.7	.36	42	0213	00155	100	TEMAC TI
	3.3.6	. 4.1	44	0208	00153	.07	TERAC TI
₩.	500	118	42	0351	00250	-11	TERACFI
90	57.	2	41	0357	00253	. 11	TERACTI
P	22.00	.60	41.	0500	00383	.15	TEHACTI
200	87.	00:	41.	0501	00383	.15	TEHACTI
5	6.3	36.	47.4	0625	00521	91.	TERACTI
5 AI	5.12	74.606	241,8	.006236	•0005204	0.1.0	INTERACTION
2	79.	11.		0495	00380	. 15	TEHACTI
26	75.	44.	4	2240	00375	.15	TERACTI
34 5	5.5	. 12	41.	0352	00251	11.	TEHACTI
5 55	555	61.	41.	0354	00252	- 11	TEHAC 11
~	37.	14.	41.	0215	00156	90.	TERACTI
7 94	30.	14.	41	0210	00156	. 12	TERAC 11
2A 10	0.5	11.	43.	0635	00530	.19	OLATE
36 10	03.4	BE.	42.	9690	16500	51.	ULATE
7	1 - pq	11.	43.	1840	96500	.15	OLATE
99	71.0	.03	43.	0486	00372	.15	OI ATE
7. Y	58.6	.25	23.	0352	00250	- 1	OLATE
3 PA	59.1	-21	4 J.	0353	00250	. 1 1	OLASE
E 40	32.8	.21	42.	0770	00153	90.	OLATE
7 99	1-82	.20	43.	1070	00153	•06	UL A I

ORIGINAL PAGE 15 OF POOR QUALITY

MAIN ROTOR-TAIL NOTOR INTERACTION TEST
NASA 2-10771
RUN NO. 71 CONFIGURATION 16PF18 ARM= 1.246 M
AIR DENSITY RAILO 0.9969 DAT 14.4 DEG C

TAIL ROTOR DATA

977A c5-11 2-924 1307-6 -0155083 -0045104 0-378 2-7 0-0000551 -0155044 -015534 9778 1303-4 -0155083 -0045040 0-378 2-7 0-0000751 -015508 -015608		RECURD THRUST	TORVOE	ANGULAR VELOCITY (RAD/S)	C 1	3	THE TA	FIN FORCE (N)	CTF IN	CTNET	CTNET ACTUAL	}
10.0000716		(séa)		•	58	0196	37	7.	9000	1500	152	}
1994 0.499 1303.4 0004771 00007665 0.166 0.4 0.000109 0004409 001450 0.165 0.3 0.000077 0007102 000450 0.165 0.3 0.000077 0007102 000450 0.165 0.3 0.000077 0007102 000450 0.165 0.3 0.000071 0007102 00077 0007102 00077 0.165 0.3 0.00007102 00077 0007102 0.165 0.3 0.00007102 00077 0007102 00077 0.165 0.3 0.00007102 00077 0.165 0.165 0.3 0.00007102 00077 0.165 0.165 0.3 0.00007102 0.165 0.3 0.00007102 0.165 0.3 0.00007102 0.165 0.3 0.00007102 0.165 0.3 0.00007102 0.165 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		£15.0		•	2	4044	37	0	.00071	1500	145	
19-3 U-485 1297:1 0004796 0010552 U-3 U-00077 000459 00105 31-9 U-806 1306-9 0007809 001252 U-9 U-000217 000775 47-3 U-806 1306-9 0017804 001224 U-9		す。カー			1	0766	10	4	000010	0440	040	
32.0 0.811 1306.9 .007809 .0012527 0.221 0.9 0.000217 .007799 .007804 .0012466 0.221 0.9 0.000218 .007102 .00754 0.1102 .00754 0	_				1	0759	10	M	10000	0445	047	
31.9 0.806 1305.5 .007804 .0012466 0.221 0.9 0.000218 .007102 .0075 47.3 1.426 1305.5 .011549 .0022065 0.296 1.6 0.000348 .010776 .0110 6.3.7 2.879 1306.9 .015495 .0045321 0.376 2.8 0.000790 .014645 .01147 6.3.7 2.956 1306.0 .016076 .0045709 0.376 2.8 0.000790 .014645 .01147 6.3.7 2.956 1306.0 .011695 .0022788 0.294 2.4 0.000645 .014657 .01574 6.3.8 1.479 1306.4 .011695 .0022788 0.294 2.2 0.000645 .010674 .01111 6.3.9 0.791 1306.4 .0018223 0.214 1.1 0.000551 .00707 .010974 6.1.3 0.521 1304.8 .005219 .0008223 0.214 1.1 0.000551 .00704 .00707 6.0.4 0.511 1299.9 .005039 .0007972 0.164 0.9 0.000131 .004439 .00468				•	36	1252	22	÷.	.00021	90739	0075	
46.7 1.426 1305.5 .011428 .0022065 0.296 1.4 0.000348 .010758 .011076.3 1.466 1308.9 .011545 .0022647 0.296 1.6 0.000434 .010776 .01111	_			•	78	1246	229	0	.00021	01200	075	
47.3 1.466 1306.9 .011545 .0022647 0.296 1.6 0.000434 .010776 .0111	_	•	•		0114	2206	24	*	.00034	01075	110	
63.7 2.879 1308.9 .015495 .0044321 0.376 3.2 0.000790 .014645 .0147 (5.7 2.956 1308.9 .016076 .0045709 0.376 2.8 0.000685 .014637 .0153 47.5 1.479 1308.4 .011563 .0023788 0.294 2.8 0.000685 .010747 .01694 .01791 1308.4 .001845 0.0023556 0.294 2.2 0.000574 .01711 .01695 .001762 0.0294 2.2 0.000543 .010674 .01711 .1290 .1207870 .0018223 0.214 1.1 0.0006561 .007082 .0076 .01741 .1290 .1207870 .0018223 0.214 1.1 0.0006561 .007082 .0076 .0076 .1290 .1	•			•	0115	2264	29	9	.00043	1077	0111	
(55.7 2.95b 1306.0 .016076 .0045709 0.376 2.8 0.000685 .014637 .0153 47.5 1.479 1308.4 .011563 .0022786 0.294 2.4 0.000574 .01707 .0169 47.9 1.524 1306.4 .01169b .0023556 0.294 2.2 0.000543 .011674 .0171 22.2 0.791 1306.4 .007870 .001223 0.214 1.1 0.000261 .007062 .0070 21.9 0.790 1306.0 .007869 .001223 0.214 1.4 0.000337 .007102 .0074 21.3 0.521 1306.9 .005219 .000069 0.154 0.9 0.000131 .004406 .0050 20.4 0.511 1299.9 .005219 .0007972 0.154 0.9 0.000131 .004409 .0046	_				0154	4432	.37	?	\$7000	1464	0147	
47.5 1.479 1308.4 .011563 .0022786 0.294 2.4 0.000574 .010707 .0109474 1.524 1306.4 .011696 .0023556 0.294 2.2 0.000543 .010674 .0131 24.2 0.791 1306.4 .007870 .0012223 0.214 1.1 0.000261 .007062 .0076 21.3 0.521 1306.0 .007809 .0012213 0.214 1.4 0.000337 .007102 .0074 21.3 0.521 1304.8 .005214 .0008069 0.164 0.9 0.000131 .004406 .0054 0.0044 0.00521 12.99.9 .005029 0.164 0.9 0.004429 .0044410 .004429 .004449 .004449 .004449 .004449 .004449 .004449 .004449 .004449 .	_	•		90	3	4570	.37	3	99000	1463	0153	
47.9 1.524 1306.4 .011696 .0023556 0.294 2.2 0.000543 .010674 .0111 1306.4 .007652 0.214 1.1 0.000261 .007652 .007651 0.791 1306.0 .007602 .007651 0.214 1.4 0.000261 .007652 .007651 0.521 1304.8 .005214 1.4 0.000337 .007102 .007452 0.154 0.55 0.000131 .004406 .005020 .0064499 .006469 0.154 0.55 0.0000220 .004409 .0046	_			90	25	2278	67.0	*	-000057	1070	かつる	
22.2 U.791 1306.4 .007870 .0012223 U.214 1.1 U.000261 .007062 .0076 51.9 U.790 1306.0 .007809 .U012213 U.214 1.4 U.000337 .007102 .U074 21.3 U.521 1304.8 .005219 .U004069 U.154 0.9 U.000131 .004406 .U050 20.4 U.511 1299.9 .U05039 .U07972 U.154 U.59 U.000220 .U04439 .U046	_	•		99	9	2355	29	7.	.00054	1007	1 1 1	
21.9 0.790 1306.0 .007609 .001213 0.214 1.4 0.000337 .007102 .0074 21.3 0.521 1304.8 .00521 1304.8 .00521 1304.8 .00521 1304.8 .005039 .000022 .004406 .0050 .00511 1299.9 .005039 .0007972 0.164 0.9 0.00022 .004439 .0048	_			1306.4	18	1222	.21	-	.00026	0706	076	
21.3 0.521 1304.8 .005219 .0008069 0.1c4 0.5 0.000131 .004406 .0050 20.4 0.511 1299.9 .005039 .0007972 0.1c4 0.9 0.000220 .004439 .0046				1306.0	76	1221	23	4	EE0009	0110	7/0	
20.4 U.511 1299.9 .0050.39 .0007972 O.164 O.9 O.000220 .004439 .0048		ė		1304.8	52	9090	2	S	.00013	0440	050	
• • • • • • •	_	•		1299.9	3	0797	100	3	.00022	2440	040	
		•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	
	_	•	•	•	•	•	•	•	•	•	•	•
	_	•	•	•	•	•	•	•	•	•	•	-
		•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•		

ORIGINAL PAGE IS

MAIN ROTUR-TAIL ROTUR INTERACTION TEST NASA2-10771

HUN NO. 73 CONFIGURATION II3PF18 AIK DENSITY RATIO 0.9893 DAT 16.7 DEG C

MAIN ROTOR DATA

	OF.	P
MODE	INTERACTION INTERA	OLATE
THE TA (RAD)	00000000000000000000000000000000000000	•
ďЭ	00000000000000000000000000000000000000	00147
C.1	00000000000000000000000000000000000000	0198
ANGULAR VELUCITY (RAD/S)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	カス・フィ
TOKOUE (N-N)		1.23
THRUST (N)		13.
RECOND	100 100 100 100 100 100 100 100 100 100	770

MAIN ROTOR-TAIL RUTUR INTERACTION TEST NASA 2-10771

RUN NU. 73 CONFIGURATION 113PF18 ARM= 1.167 M AIR DENSITY RATIO 0.9493 UAT 16.7 DEG C

TAIL ROTOR DATA

CTNET

CTNET

CTF IN

FIN FORCE (N)

THE TA

9

C1

RECURD THRUST TUNGUE ANGULAR VELOCITY (N) (N-M) (RAD/S)

MAIN ROTUR-TAIL ROTOR INTERACTION TEST NASA2-10771

FUN NO. 74 CONFIGURATION 11PF18 AIR DENSITY RATIO 0.9636 OAT 23.9 DEG C

MAIN RUTUR DATA

(RAD) 18 0 - 168 INTERACTION 19 0 - 161 INTERACTION 19 0 - 161 INTERACTION 19 0 - 161 INTERACTION 19 0 - 119 INTERACTION 10 0 - 120 INTERACTION 11 0 - 120 INTERACTION 12 0 - 120 INTERACTION 13 0 - 120 INTERACTION 14 0 - 120 INTERACTION 15 0 - 120 INTERACTION 16 0 - 120 INTERACTION 17 0 - 120 INTERACTION 18 0 - 119 ISOLATED 18 0 - 073 ISOLATED	NGULA	E ANGULAR CT	NGULAR CT		გ		THETA	MODE
0.168 INTERACTI 0.161 INTERACTI 0.076 INTERACTI 0.076 INTERACTI 0.119 INTERACTI 0.161 INTERACTI 0.161 INTERACTI 0.161 INTERACTI 0.161 INTERACTI 0.076 INTERACTI 0.076 INTERACTI 0.076 INTERACTI 0.076 INTERACTI 0.077 ISOLATED	VELOCITY (N-M) (RAD/S)	VELOCITY (RAD/S)	ELOCITY (RAD/S)				(RAD)	
0004148 0.168 INTERACTI 0003970 0.161 INTERACTI 0001584 0.076 INTERACTI 0002583 0.119 INTERACTI 0003891 0.161 INTERACTI 0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0001605 0.076 INTERACTI 0001605 0.076 INTERACTI 0001607 0.076 INTERACTI 0001646 0.119 ISDLATED 0001546 0.073 ISDLATED	3.1 58.552 243.4 .00529	8.552 243.4 .00529	13.4 .00529	00529	•	00417	• 16	TERACTI
0003970 0.161 INTERACTI 0003898 0.161 INTERACTI 0001608 0.076 INTERACTI 0002583 0.119 INTERACTI 0003891 0.161 INTERACTI 0002640 0.161 INTERACTI 0002640 0.120 INTERACTI 0001605 0.076 INTERACTI 0001605 0.076 INTERACTI 0001609 0.119 ISOLATED 0001546 0.073 ISOLATED	3.0 58.328 243.6 00522	8.328 243.6 00522	13.6 .00522	00522	•	00414	• 16	TERACTI
0003898 0.161 INTERACTI 0001508 0.076 INTERACTI 0002583 0.119 INTERACTI 0002891 0.161 INTERACTI 0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0002677 0.120 INTERACTI 0001605 0.076 INTERACTI 0001605 0.076 INTERACTI 0002608 0.119 ISOLATED 0001546 0.073 ISOLATED	9.7 56.022 244.0 .00505	6.022 244.0 .00505	44.0 .00505	00505		00397	97.	TERACTI
0001584 0.076 INTERACTI 0002583 0.119 INTERACTI 0002587 0.119 INTERACTI 0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0002677 0.120 INTERACTI 0001605 0.076 INTERACTI 0003896 0.076 INTERACTI 0003611 0.119 ISOLATED 0001546 0.073 ISOLATED	4.9 54.960 243.9 00509	4.960 243.9 .00509	60500. 6.2050	00500		98500	.16	TERACTI
0001608 0.076 INTERACTI 0002587 0.119 INTERACTI 0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0002677 0.120 INTERACTI 0001605 0.076 INTERACTI 0003996 0.076 INTERACTI 0003601 0.119 ISOLATED 0002608 0.119 ISOLATED 0001548 0.073 ISOLATED	3.5 22.253 243.5 .00210	2.253 243.5 .00210	13.5 .00210	00210		000158	.07	NTERACTI
0002583 0.119 INTERACTI 0002587 0.119 INTERACTI 0003891 0.161 INTERACTI 0002640 0.120 INTERACTI 0001605 0.076 INTERACTI 0001627 0.076 INTERACTI 0003996 0.16: ISDLATED 0002608 0.119 ISDLATED 0001546 0.073 ISDLATED	8.3 22.611 243.6 .00219	2.611 243.6 .00219	13.6 .00219	00219		0001000	10.	NTERACTI
0002587 0.119 INTERACTI 0003891 0.161 INTERACTI 0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0001627 0.076 INTERACTI 0003996 0.16: ISDLATED 0002608 0.119 ISDLATED 0001546 0.073 ISDLATED 0001548 0.073 ISDLATED	174 243.1	6-174 243-1 .00357	13.1 .00357	00357		00258	. 1 1	NTERACTI
0003891 0.161 INTERACTI 0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0001605 0.076 INTERACTI 0003996 0.16: ISDLATED 0002608 0.119 ISDLATED 0001546 0.073 ISDLATED	4.6 36.349 243.5 .00354	6.349 243.5 .00354	43.5 .00354	00354		00258	. 11	NTERACTI
0003884 0.161 INTERACTI 0002640 0.120 INTERACTI 0001605 0.076 INTERACTI 0001627 0.076 INTERACTI 0002611 0.11 150LATED 0002608 0.119 ISDLATED 0001546 0.073 ISDLATED	3.9 54.717 243.6 .00503	4.717 243.6 .00503	13.6 .00503	00503		00389	•16	NTERACTI
0002640 0.120 INTERACTI 0002677 0.076 INTERACTI 0001605 0.076 INTERACTI 0003996 0.16 ISOLATED 0002608 0.119 ISOLATED 0001546 0.073 ISOLATED	6.7 54.807 244.0 .00503	4.807 244.0 .00503	14.0 .00503	00503		00388	• 16	NTERACTI
002677 0.120 INTERACTI 001605 0.076 INTERACTI 003996 0.16: ISOLATED 002611 0.119 ISOLATED 002608 0.119 ISOLATED 001546 0.073 ISOLATED	5.1 37.216 243.9 .00366	7.216 243.9 .00366	13.9 .00366	00366		000264	.12	NTERACTI
001605 0.076 INTERACTI 001627 0.076 INTERACTI 003996 0.16: ISOLATED 002611 0.113 ISOLATED 002608 0.119 ISOLATED 001546 0.073 ISOLATED	6.0 37.388 242.7 .00370	7.388 242.7 .00370	12.7 .00370	00370		00267	.12	NTERACTI
001627 0.076 INTERACTI 003996 0.16: ISOLATED 002611 0.11	8.0 22.632 243.9 .00219	2.632 243.9 .00219	13.9 .00219	00219		00100	.07	NTERACTI
003996 0.16: ISOLATED 002611 0.11	5.4 22.828 243.3 .00225	2.828 243.3 .00225	13.3 .00225	00225		00162	.07	NTERACTI
002611 0.11 150LATE 002608 0.119 ISULATE 001546 0.073 ISOLATE 001548 0.073 ISOLATE	4.4 56.203 243.6 .00510	6.203 243.6 .00510	43.6 .00510	00510		66800	• 16	SOLATED
002608 0.119 ISDLATE 001546 0.073 ISDLATE 001548 0.073 ISDLATE	0.2 36.598 243.2 00358	6.598 243.2 00358	13.2 .00358	00358		00261	. 11	SOLATE
001546 0.073 150LATE 001548 0.073 ISULATE	7•6 36-966 244.5 .00359	5-966 244.5 .00359	14.5 .00359	00359		00200	. 1.1	SULATE
001548 0.073 ISULATE	8.3 21.706 243.4 .00207	1.706 243.4 .00207	13.4 .00207	207		00154	10.	SOLATE
	6.0 22.124 245.6 .00208	2.124 245.6 .00208	15.6 .00208	208		00154	•07	SULATE

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

MUN NU. 74 CONFIGURATION LIPFIB ARM= 1.088 M AIR DENSITY RATIO 0.9636 UAT 23.9 DEG C

TAIL ROTOR DATA

}		OF	POOR
CTNET	013605 013163 013163 0013163 0005905 0009596 0009596 0009435 0009435	••	• •
CTNET REOD	013588 013551 013551 0012882 005279 008426 008470 012727 008707 008707	• •	••
CTFIN	0.000855 0.000855 0.000745 0.000760 0.000802 0.000853 0.000553 0.000553 0.000553	••	••
FIN FORCE (N)	WWWWO	• •	• •
THETA (RAD)	0.376 0.376 0.352 0.352 0.253 0.253 0.255 0.255 0.255	• •	• •
d)	.0042430 .0043760 .00437176 .00037176 .0009504 .0015731 .0015731 .0016831 .0016831	•, •	• •
5	014571 015161 015161 015161 006525 0009228 014174 015771 0009903	•	• •
ANGULAR VELOCITY (RAD/S)	11000000000000000000000000000000000000	• •	• • •
1 OKOUE	20020000000000000000000000000000000000	•	• • •
MECOND THRUST 10KQUE	10000000000000000000000000000000000000	•	•••
MECURD	100322A 100322A 100322A 100322A 100323A 100323A 100323A 100323A 100323A 100323A	1041A	1042A 1042B

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 75 CONFIGURATION 12PCF18 AIR DENSITY RATIO 1.0332 DAT 5.6 DEG C

MAIN RUTCH DATA

MODE

THETA (RAD)

9

7

ANGULAR VELOCITY (RAD/S)

TOROUE (N-M)

THRUST (N)

RECORD

		OF POOR QU
RACTI RACTI RACTI	INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION	A1666666666666666666666666666666666666
7700		
9000	00000000000000000000000000000000000000	3000000
0562 0562 0205 0205	00000000000000000000000000000000000000	00000000000000000000000000000000000000
2000	7.000 7.000	
923.2 918.7 931.7	NE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	260 260 260 260 260 260 260 260 260 260
1048A 1048B 1049A 1049B	10000000000000000000000000000000000000	100000 100000 100000 100000 100000 100000 100000

MAIN ROTUR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 75 CONFIGURATION 12PCF18 ARM= 1.088 M AIR DENSITY RATIO 1.0332 OAT 5.6 DEG C

TOIL RUTOR DATA

CINET

CTNET

CIFIN

FIN FORCE (N)

THETA (RAD)

9

t

ANGULAR VELOCITY

(XXX)

2

MECCIND IMMUST TOROUG

ORIGINAL PAGE IS OF POOR QUALITY
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
\$\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00000000000000000000000000000000000000
00434433 00044433 0004433 00013286 0013286 0013286 00132812 00132812 00132813 0013813 0013813 0013813
015318 0015739 0015739 0015739 0115731 0115731 0115731 0115731 0115731 0115731 0115731 0115731 0115731 0115731
42-43-44-44-44-44-44-44-44-44-44-44-44-44-
00000000000000000000000000000000000000
1000 1000 1000 1000 1000 1000 1000 100

MAIN RUTOR-TAIL RUTOR INTERACTION TEST NASA2-10771

RUN NO. 76 CUNFIGURATION 114PF18 AIH DENSITY RATIO 1.0078 DAT 12.8 DEG C

MAIN ROTOR DATA

	ORIGINAL PAGE IS OF POOR QUALITY
MODE	INTERACTION INTERA
THETA (RAD)	
ზ	00000000000000000000000000000000000000
1.5	
ANGULAR VELOCITY (RAD/S)	00000000000000000000000000000000000000
TORQUE (N-M)	0000mmuna 0000mmuna 0000mmuna 0000mmuna 0000mmuna 0000mmuna 00000mmuna 00000mmuna 0000mmuna 00000mmuna 000000mmuna 000000mmuna 000000mmuna 000000mmuna 000000mmuna 000000mmuna 000000mmuna 000000mmuna 000000000mmuna 000000000mmuna 000000000000000000000000000000000000
THRUST (N)	$\begin{array}{c} \alpha \vee \omega \omega \otimes \omega \vee \omega \otimes \omega \wedge \omega \wedge$
ME CUND	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ORIGINAL PAGE IS OF POOR QUALITY

MAIN ROTOR-TAIL KOTUH INTEHACTION TEST
NASA 2-10771

FUN NO. 76 CONFIGURATION II4PF18 ARM= 1.088 M
A.IR DENSITY RATIO 1.0078 OAT 12.8 DEG C
TAIL RUTOR DATA

! !		OF POOR
CTNET ACTUAL	00000000000000000000000000000000000000	••••
CTNET HEOD		••••
CTFIN	00000000000000000000000000000000000000	•••••
FIN FORCE	44	•••••
THETA (RAD)	00000000000000000000000000000000000000	•••••
CP		• • • • •
CT	00000000000000000000000000000000000000	•••••
ANGUL AH VELUC 1TV (RAD/S)	0.000000000000000000000000000000000000	••••
TOHOUE (N-M)	0.00004=NA==0000 0.0004=NA==0000 0.00040000000000000000000000000000	
THRUS T	00000000000000000000000000000000000000	••••
ME COND	10688 10688 10688 10708 10728 10728 10728 10728 10728 10728 10728 10728 10728 10788	200011 10005

MAIN ROTOR-TAIL ROTOR INTERACTION TEST
NASA2-10771
HUN NO. 77 CONFIGURATION 115PF18
AIR DENSITY RATIO 1.0729 UAT 3.3 DEG C

MAIN ROTOR DATA

MODE

12年7

13

5

ANGULAR VELOCITY (RAD/S)

TUROUE (N-M)

THRUST

HE CURD

(RAD)

																									AL N
INTERACT ION	TERACTI	TERACT 1	TERACT 1	TERACTI	TERACT I	TERACT 1	TERACTI	TERACTI	TERACTI	TERACTI	TERACTI	TERACT 1	TERACTI	TERACTI	TERACTI	TERACTI	TERACTI	OLATED	OLATE	DLATED	DLATED	DLATED	OLATED	DLATED	OLATE
306	- 160	.071	.071	.113	. 113	. 150	-150	.167	. 167	.152	. 152	150	.157	113	717	-072	0.72	8	150	. 153	.153	. 511.	.113	690	•90•
000	244000	000127	491000	9E 2000	000242	000356	000354	000492	244000	195000	000363	000374	00037B	000237	000237	000151	000151	000502	000499	900354	195000	000238	000240	00146	941000
***************************************	00000	70100	00200	00327	00320	00463	19400	99900	26500	89400	19100	12400	94 400	00323	00325	00700	00200	60603	20900	00470	00479	00340	00336	0192	00197
240.5		•	•	42.	41.	41.	100	17	•	41.	•	42.	4 10	41.	41.	41.	4 1	11	17	12	40	17	11	43.	42.
74.255	000	3.19	3.51	7.01	7.19	5.01	4.86	5.41	5.33	5.56	5.40	7.68	6.16	6.56	99.0	3.30	3.20	7.26	7.03	5.62	5.64	6.58	6.97	2.90	3.02
961.B	90	20.	32.	54.	51.	77.	61.	500	2%	b 3.	74.	97.	•00		46.	35.	36.	016.	3.4	150.	01.	71.	69.	22	34.
10874	0	9	30	30	80	20	2	9	30	50	80	90	9	2	0	9	9	9	3	3	60	30	8	30	3

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

HUN NO. 77 CONFIGURATION 118PF18 ARM 1.167 M AIR DENSITY RATIO 1.0729 UAT 3.3 DEG C

TAIL ROTOR DATA

CTNET REOD

CIFIN

FORCE (N.)

THE TA

g

C

NECORD THRUST TURQUE ANGULAR
VELOCITY
(N-M) (RAD/S)

40	8.5	3.211	306	01964	04607	0 3A2	9	000		3
1087B	9.00	3.247	1508.1	.015616	.0046510	0.362	2.7	4090000	.014745	.015211
90	4	99.	305.	00546	000012	12	•	10000	0452	00539
90	'n	. 55	304.	00516	000 795	. 15	•	• 000 16	96400	00200
90	•	643	300	00784	001204	. 21	•	.00025	00726	00759
90	•	.87	357.	00627	001240	.23	•	.000030	00722	92700
2	•	.65	303.	01153	002383	97.	•	34000	42010	01103
9	å	• 69	306	B1110	002426	97		. 00027	01062	01151
9	9	.16	306.	01557	004550	.37		• 000076	01467	01461
20	ċ	.05	-	01506	004374	.37	•	+ 2000 •	1463	01432
3	ŝ	.90	•	01201	002737	30		94000	01083	01214
9		48.	7	01295	002639	30	•	•0000	01077	01236
20	•	19.		01233	002416	.29	•	40000	01133	1157
9	Ų	69	4	01264	002432	2%		06000	01134	1173
3	ů	7.	•	99900	212100	.21	•	. 00037	0713	0830
30	.0	68.	ŝ	92800	001287	.21	•	.00035	0713	1620
30	m	. 57	•	00526	000830	94.	•	. 1000	0463	9050
9	~	.57	9	0014	00820	. 16	•	. 00023	0452	1540
9	•	•		•	•	•	•	•		
9	•	•	•	•	•	•	•	•	•	•
30	•	•	•	•	•	•	•	•	•	•
S	•	•	•	•	•	•	•	•	•	•
9	•	•	•	•	•	•	•	•	•	•
9	•	•	•	•	•	•	•	•	•	•
Э	•	•	•	•	•	•	•	•	•	•
3	•	•	•	•	•	•	•	•	•	•

MAIN ROTOR-TAIL RUTOR INTERACTION TEST
NASA2-10771
RUN NO. 78 CONFIGURATION 116PF18
AIR DENSITY RATIO 1.0499 DAT 3.3 DEG C

MAIN ROTOR DATA

, ,	OF PO
MODE	INTERPORTED INTERPRORTED INTERPORTED INTER
THE TA	
G D	
15	
ANGULAR VELUCITY (RAD/S)	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
TOROUE (N-M)	77 MANUSSTANDS AVERNAND AVERNA
THRUST (N)	00000000000000000000000000000000000000
RECORD	

MAIN ROTOK-TAIL ROTOR INTERACTION TEST
NASA 2-10771
RUN NO. 78 CONFIGURATION 116PF18 ARM= 1.167 M
AIR DENSITY RATIO 1.0499 OAT 3.3 DEG C

TAIL ROTOR DATA

THRUST TURQUE ANGULAR CT VELOCITY (N) (N-M) (RAD/S)	į	CP THETA (RAD)	FIN FORCE (N)	CIFIN	CTNE T	CTNE T ACTUAL
3,065 1308.3 .01559		0044852 0.38	•0 0••	0637	1 500	1465
3 3,162 1311.9 ,015944		.0046016 0.379	2.3 0.00	0532	015064	.015412
46400° 8°1201 664°0		0007279 0.16	0.80	. 9610	1940	1410
23400° 0.4021 905.0		0007445 0.16	1.0 0.	0236 .	0467	00452
40800° 6.40E1 148.0		0012363 0.22	1.0 0.	0236 .	0758	00761
0.839 1306.7 .00800		0012313 0.22	1.3 0.	6020	0753	00769
10462 1304.7 .011724	-	0021510 0.29	3.10.	0714	1093	1101
1.490 1305.5 .01220		0021697 0.29	2.6 0.	. 6650	1099	0110
3.176 1311.3 .01567		0046257 0.38	3.7 0.	. 0880	1552	01502
3.262 1306.6 .01685		0047851 0.38	3.2 0.	0733	1533	01612
7.299 1306.4 .01193		0012067 0.27	2.4 0.	0547	1092	01136
N.457 1308.4 .012008	•	0021323 0.27	2.10.	. +8+0	1067	1152
0.616 1305.5 .00772		0011986 0.21	2.0 0.	0465	0734	0725
0.799 1306.2 .00740		0011726 0.21	1.90	+240	0727	38
0.519 1504.0 .00519		0007638 0.15	1.4 0.	0331	0470	0485
0.504 1306.5 .00502	•	007394 0.15	1.10	0248	0467	0477
•	•	•	•	•		
•	-	•	•	•		•
•	_	•	•	•		•
•	•	•	· •	•		•
•	•	•	•	•		•
•		•	•	•		•
•	•		•	•		•
		•	•	•		

117PF18 0AT 2.8 DEG C MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771 RUN NO. 79 CONFIGURATION AIR DENSITY RATIU 1.0527 MAIN HOTOR DATA

HECORD

	OF PO
MODE	INTERACTION INTERA
THE TA (RAD)	
d O	00000000000000000000000000000000000000
CT.	
ANGULAR VELOCITY (RAD/S)	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
TOROUE (N-M)	77 77 77 77 77 77 77 77 77 77 77 77 77
THRUS T	00000000000000000000000000000000000000
ECORD	######################################

HUN NO. 79 CONFIGURATION 117PF18 ARM# 1.088 M MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

TAIL RUTOR DATA

CTNET

CTNE T REOD

CIFIN

FIN FORCE (N)

9

5

KECOND THRUST TURQUE ANGULAR VELOCITY (N) (N-M) (R.D/S) (エース)

2

(RAD) THETA

MAIN RUTUR-TAIL RUTUR INTERACTION TEST
NASA 2-10771
RUN NO. 80 CONFIGURATION TITMCF18 ARM# 1.088 M
AIR DENSITY RATIO 1.0506 DAT 3.3 DEG C

TAIL KOTOR DATA

CINET

CTFIN

FIN FORCE (N)

THETA

9

CJ

ANGULAR VELUCITY (RAD/S)

(FZ)

3

RECURD THRUST TORQUE

(HAD)

00000000000000000000000000000000000000
00000000000000000000000000000000000000
140mm=duddmmmmmmdda====00
00000000000000000000000000000000000000
00000000000000000000000000000000000000
PP====================================

MAIN ROTOH-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 81 CONFIGURATION 1179F39 AIR DENSITY RATIO 1.0436 OAT 5.0 DEG C

. MAIN ROTOR DATA

RECORD

RECORD	THEUST	TURQUE	4	CT	3	THETA	MODE
	(4)	(X-X)	(RAD/S)			(RAD)	
			} }		1		
155	(r)	70.957	243.2	.005563	.0004675	0.176	
155	11	9.64	2	2222	199		
1 5 6	2	2.99	42.	194	1152	ŝ	ERACT
1	7	2.99	41.	9610	0154	ô	ERACTI
100	, Y	66	4.1	0333	0246	=	ERACTI
7		5-65	4	0328	1770	= = =	ERACT I
115HA	771.1	5.05	42.	0465	0363	5	FRACTI
3	86	5.21	42.	0479	9366	. 25	ERACTI
7	28	1.86	4	0566	0419	. 18	ERACT
5	4	1.16	42.	0575	0472	. 18	ERACTI
1		1.37	42.	0578	9440	=	ERACT
	55	1.90	4	0581	0410	3.	ERACT
161	67	6.3B	41.	0480	0376	. 5	ERACT
161	3	6.82	42.	4840	0377	. 15	ERACTI
102	51.	7.70	•	6880	0253	7	ERACT
162	55	7.48	43.	0331	0245	7	ERACT
103	22	3.02	42.	0196	E 2 2 0	90	ERACT
LOI	4	3. 18	#:	0197	124	90	FRACT
104	6,4	5.05	42.	0597	8640	919	_ A 1 E
164	.0	b.17	42.	0612	9050		\
165	Š	7.97	+ M.	0551	0440	-	1 × 1
165	9	9.11	42.	6980	0458	-	
166	77.	3.83	41.	0474	0329	7	
160	53.	3.02	42.	0458	0325	7	
167	56.	6.59	42.	0338	0242	=	LATE
107	62.	6.85	:	0341	0245	=	
100	2.10	2.61	42.	0295	0120	9	
168	•	.8	42.	0191	0151	9	- K

MAIN ROTUR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 81 CONFIGURATION 117PF39 ARM= 1.088 M AIR DENSITY RATIO 1.0436 OAT 5.0 DEG C

TAIL ROTOR DATA

CTNET ACTUAL

CTNE T RE OD

CTFIN

FIN FORCE (N)

THE TA

9

C

AMGULAR VELOCITY (RAD/S)

Z

RECORD THRUST TORQUE

0114922 0050122 0050122 010225 0113622 0113613 011787 001787 001787 001787 001787 001787	ORIGINAL PAGE IS OF POOR QUALITY
00000000000000000000000000000000000000	•••
00000000000000000000000000000000000000	•••
⊕►∪≒4₩₩4₽₫₽►₫₽₩₩₩	•••
00000000000000000000000000000000000000	•••
	•••
00000000000000000000000000000000000000	•••
	•••
00000000000000000000000000000000000000	•••
	•••
6568 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1678 1688 1688

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN ND. 82 CONFIGURATION 118PF39 AIR DENSITY RATIO 1.0276 DAT 10.6 DEG C

MAIN ROTOR DATA

RECORD	THRUST	TOROUE	30	13	CP	THETA	MODE	
	(2)	(X-X)	(KAD/S)			(RAD)		
6	9	4	6	9490	04 S.A.		FDA	
V ()			74			
V		700	7	0000	3	7	こしてとは	
m	3.7	2.74	100	0212	0125	90.	TERACTI	
m	37.	2.69	-11	0208	0153	90.	TERAC:1	
4	63.	0.39	43.	0344	0243	. 11	TERACT I	
•	67.	6.54	42.	0350	0246	. 1 1	TERACT I	
J	81.	4-12	42.	0481	0365	215	TERACT I	
S	70.	3.96	41.	0480	1980	.72	TERACTI	
•	055	6.52	42.	0557	0448	. 17	TERACT 1	
٥	-	6.15	11	0556	0448	.17	TERACT 1	
1	46.	4.11	41.	0483	9960	5	TERACTI	
	11.	3.43	41.	0480	1980	.15	TERACT I	
3	60.	6.13	42.	0347	0245	. 1 1	TERAC	
3	SB.	6.13	42.	0343	0243	. 11	TERACT 1	
0	37.	2.45	41.	020B	0152	90.	TERACT 1	
0	35	2.51	42.	0205	0151	• 06	TERACT I	
0	000	4.98	42.	0619	0505	. 16	OLATE	
0	10	5.02	42.	06 16	0505	. 18	OLATE	
~	918.	5.90	42.	0566	0445	.17	OLATE	_
-	20.	6.46	41.	0573	0440	-17	OLATE	•
N	67.	3.46	43.	0482	9350	47.	OLATE	•
V	81.	3.77	42.	0484	0361	. 14	OLATE	_
M	90.9	5.51	41.	0348	0241	111	OLATE	_
M	62.	5.02	41.	0349	0242	111	OLATE	•••
11644	334.3	21.975	243.7	.002024	•0001464	0.065	ISOLATED	7
4	34.	2.15	43.	0202	0148	000	OL ATE	

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NU. 82 CONFIGURATION IIBPF39 ARM= 1.088 M AIR DENSITY RATIO 1.0276 DAT 10.6 DEG C

TAIL ROTOR DATA

	ORIGINAL PAGE IS
CTNET ACTUAL	OF POOR QUALITY OF POOR QUALITY OF POOR QUALITY OF POOR QUALITY
CTNET REOD	00000000000000000000000000000000000000
CTFIN	00000000000000000000000000000000000000
FIN FORCE (N)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
THE TA	00000000000000000000000000000000000000
3	00043 00043 00043 00043 00043 00043 00043 00043 00043 00043 0004 0
15	
ANGULAR VELOCITY (RAD/S)	00000000000000000000000000000000000000
TORQUE	00000==00==000 00000==0000000 00000000
RECORD THRUST (N)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
RECORD	11111111111111111111111111111111111111

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 83 CONFIGURATION 119PF39 AIR DENSITY RAIJO 1.0140 OAT 14.4 DEG C

MAIN RUTUR DATA

	(N)	(X-N)	(RAD/S)			(RAD)	
40011	4	6.0	0	4	00467		TENACTI
ΝО	• ·				90400		
;) N		0		100		110001
	•			1010			
4/5 E	2 - C	35-045	20170	196100	F09000	0110	INTERACTION
212		5.28	42	0334	00240	1	TEHACIL
5	8	2.93	4	04 75	00360	2	TERAC TI
200	-	2.58	43.	9414	96500	. 15	TERACT 1
V*611	å	****	42.	0580	00465	.17	TENAC 11
11946	å	8.74	43.	0575	00464	.17	TEHAC 1 1
1195A	۵	3.07	42.	1140	00361	.15	TERACT!
11958	-	3.00	43.	0474	0035 8	.15	TERACT 1
1196A	å	5.37	12.	6660	00242	11.	TEHAC TI
11568	545.7	5.27	43.	0336	90538	. 11	TERAC11
V/611	į	1.37	41	0198	100	90	TERACTI
11970	å	1.62	41.	0203	00149	900	TEHAC 11
1198A	ġ	1.15	•	0190	00502	PT.	DLA TE
11988	3	1.13	43.	0610	00200	91.	ULAT
11998	ċ	5.31	43.	0562	64400	.17	DLATE
11996		4.46	•	0556	00442	-17	OLATE
1200A	;	15.1	430	2040	19500	*~.	ULATE
12008	2	2.00	43.	0468	00352	41.	OLATE
1201A	•	5.12	42.	9440	00240	11.	DLATE
12018	ċ	5.19	11.	0342	00237	-11	ULATE
1202A	•	04.1	43.	1910	00144	90	DLA TE
1202H		5	1	0202	00147	90	DI A TE

MAIN RUTOR-TAIL RUTUR INTERACTION TEST NASA 2-10771

RUN NO. 83 CONFIGURATION 119PF39 ARM= 1.167 M AIR DENSITY RATIO 1.0140 DAT 14.4 DEG C

TAIL ROTOR DATA

		ORIGINAL PAGE IS OF POOR QUALITY
CTNE T ACTUAL	######################################	· · · · · · ·
C TNE 1 RE OU	641640000000000000000000000000000000000	• • • • • •
CTFIN	00000000000000000000000000000000000000	• • • • • •
FIN FORCE	Mandon+4-4+4+0+0	•••••
THETA (RAD)	00000000000000000000000000000000000000	•••••
g 3	00000000000000000000000000000000000000	••••
C1		••••
ANGULAR VELOCITY (RAD/S)	00000000000000000000000000000000000000	
TOHOUE (N-M)	000083000 000093000 0000	:
HECOMO THRUST TORDUE (N) (N-N)		•••••
HE COM		110000 12000 10000

MAIN ROTOR-TAIL HUTOR INTERACTION TEST NASA2-10771

RUN NO. 84 CONFIGURATION IZPFIB AIR DENSITY RATIO 1.0117 DAT 15.0 DEG C

MAIN ROTOR DATA

UP PO
IN NATURE OF THE PROPERTY OF T
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
######################################
PART ARTER DE PROPERTO DE PROP

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

HUN NO. 84 CONFIGURATION 12PF18 ARM 1.068 M AIR UENSITY RATIC 1.0117 DAT 15.0 DEG C

TAIL RUTOR DATA

CTNET

CTNET RE 00

CTFIN

FIN FORCE (N)

THETA

g

7

RECORD THHUST TOROUE ANGULAR
VELOCITY
(N) (N-M) (RAD/S)

(KAC)

	ORIGINAL PAGE IS OF POOR QUALITY
00000000000000000000000000000000000000	••••
00000000000000000000000000000000000000	• • • • •
00000000000000000000000000000000000000	••••
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	••••
######################################	••••
00000000000000000000000000000000000000	••
	••••
	• • • • •
70000000000000000000000000000000000000	••••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 3 0 8 8
STATE TO STATE OF THE STATE OF	907799

441N ROTOR-TAIL HOTOR INTERACTION TEST NASA2-10771

RUN NO. 85 CONFIGURATION 12P AIR UTASITY RATIO 1.0014 DAT 17.8 DEG C

MAIN ROTOR DATA

MODE

THETA (RAD)

3

15

ANGULAR VELOCITY (RAD/S)

TOKOUE (N-M)

E

D THEUST

RECORD

222	91.	8.44	43.	0560	00470	. 17	TERACT 1
222	91.	8.20	42.	0562	00470	117	TERACTI
223	17.	2.04	41.	0201	00153	90	TERACTI
223	26.	2.14	4	0206	00153	90.	TERACT
224	54.	6.47	42.	0351	00252	. 11	TERACT 1
224	47.	6.54	42.	0340	00253		TERACT 1
225	57.	3.72	42.	0476	00369	15	TERACTI
225	400	3.31	43.	0407	99500	1 1 5	TERACT 1
226	90	8.02	42.	0572	00469	17	TERACTI
226	11.	6.42	42.	0574	00471	. 17	TERACT I
227	7%.	4.11	42.	0486	60373	15	TERACTI
227	75.	3.54	43.	00465	00367	15	TERACTI
228	36.	5.54	41	1450	00247	-	TERACTI
228	43.	5.73	41.	00346	00249	1	TERACTI
229	50.	2.52	4 2	00204	00164	90	TERACTI
229	21.	2.15	4 2.	0204	00154	90.	TERAC
230	014.	6.52	4 G.	0633	00522	7	OLATED
230	15.	69 .9	43.	0637	00528	100	OLATE
231	375.	2.42	12.	0554	00432	17	DLATE
231	66.	2.84	42.	1950	00435	. 17	OLATE
232	78.	3.75	43.	0488	00360	57.	OLATE
232	76.	3.75	43.	0487	99600	. 15	OLATE
233	40.	5.35	42.	0345	00243	-	OLATE
233	43.	2008	41.	4460	00243	. 2 2	OLATE
1234A		22.134	242.3	.002160	.1	900	OLATE
234	٠	=	42.	0206	00	990.0	ISOLATED

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

12P ARM# 1.088 M FUN NO. 85 CONFIGURATION AIR DENSITY RATIO 1.0014

•	•
4	ť
Č	֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
_	_
q	Ľ
C	3
٠	•
do Too	3
a	Ś
•	J
•	•
*	ζ
•	•

!		ORIGINAL PAGE IS OF POOR QUALITY
ACTUAL	00000000000000000000000000000000000000	on doirily
CTNE T	00000000000000000000000000000000000000	
CTFIN		
FIN FORCE	00000000000000	
THE TA		• • • • •
8	00000000000000000000000000000000000000	
5	00000000000000000000000000000000000000	
ANGULAR VELOCITY (RAD/S)	##4@4@F@A@AMAG@ 000000000000000 00000000000000 0000000	••••
TCHOUE	00000==00==000 	•••••
THRUST (N)	\$	• • • • •
RECORD	E > E > E > E > E > E > E > E > E > E >	~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~

MUDL

THE 1A

3

C

ANGULAR VELUCITY (HAU/S)

(エース)

TURUNE

INDS (N)

RLCORD

(RAU)

MAIN RUTUR-TAIL HUTUR INTERACTION TEST NASSAC-10771

RUN NO. 00 CONFIGURATION 12TF18 AIR DENSITY RAILO 6.5514 DAI 17.2 DEG C

MAIN KUTUK UATA

TEHAC	IN TERACT 10N	TENACTI	TERACT I	TEKAC11	ICHALII	TERALFI	TERAL	TERAC 11	TERACLI	TERALII	FEHALTI	TERACTI	TEHACII	I LERALII	TERALTI	エト	JLAT F	ドト	JLA 1 E	7)LA1L	7	SLA JU	4	ISOLAILU
7	0.178	•	9	7	-	7	7	7	7	-	7	7	7	=	•	7	~	7.	-	-	7	-	-	3	870·0
. 000454	.0004570	.0001637	7 19 1000 ·	• 000500 P	•0005000•	******	. CCCCAR2	.0004651	+ CCCC+014	9686000•	9185000.	1562000.	• 600000	.0001578	• 0001000	• 0000526	**10000	3 * * * * 3 0 3 •	00044000	. 60003042	£010000.	.0002451	* COCC * 74	91010000	*E01000*
• 005522	.005579	1700	.002131	.003530	•003240	.004640	743 tOJ •	0056	.005642	0/4400	024+00•	003800	132700	-002086	.062151	.000.327	F42900.	•005000	9500	400400·	そのかすつご・	1000	7.44000°	•00200•	-
4	244.0	7	7.747	4	646.3	243.5	*	243.6	7	4	7	3		3	4	2+3+7	7	. ? .		ز	440.47	4	7.44.7	1	744 - 1
00000	560.09	23.300	23.100	37.500	37.455	55.905	104.00	150-10	01.010	56.400	561.06	27.410	050.15	<3 - 1 O4	661.62	75.67	12.01	04.134	5/2000	5/6.53	カルマ・カコ	35.521	701-25	<4. •305	22.363
2000	2.062	330.4	333.5	5555.4	555.4	10000	1300	5.7 KG	5 oc; 63	700.1	11302	252.0	55440	33400	334.0	1007	ついつかん	0000	-J • T &-	783.0	174.0	5440	250° ¢	330-1	2.005
4964	2430	AUDA	2490	× 20×	2500	1251A	1157	4.5CA	2560	SSSA	4530	452 V	1 5 5 4 to	₹22%	C550	K SUA	. Sun	1 5 5 7 A	25/3	15ch	2001	ASSA	2 5×1;	ZCOA	1 37

KAIN HULLH-TAIL HUTUR INIERACTION TEST NAME Z-10771

HIN NO. BO CONFIGURATION IZIFIB ANNE 1.086 M AIN DENSITY RAILO. 0.1.14 DAI 17.2 DEG C

TAIL KUICK UAIA

	ORIGINAL PA	9
CINE ACTUAL	00000000000000000000000000000000000000	
C TNE T REQU		
C I T	N A G M 3 - N = - m N > 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	
FUNCE (N)	00046640000000000000000000000000000000	
THE TA	MANASAMANANANAS MU	
3	######################################	
-		
ANGULAR VELUC ITY (RAD/s)	######################################	
ו בויפטב (א-א)		
THKUS I	######################################	
KE CIBED	10000000000000000000000000000000000000	

ORIGINAL PAGE IS OF POOR QUALITY

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RLN NO. 67 CONFIGURATION TZTF18 ARM 1.088 M AIR DENSITY RATIO 0.9895 UAT 17.8 DEG C

TAIL ROTOR DATA

CTNET

CIFIN

FIN FORCE (N)

THE TA

8

C

ANGLEAR VELOCITY (RAD/S)

(X X)

î

RECORD THRUST TORONE

.0018602 .0018602 .0018602 .0018667 .0018667 .0018667 .00186867 .0018686 .0018686 .0018686 .0018686 .0018686 .0018686
0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0-8946-046-046-046-06-06-06-06-06-06-06-06-06-06-06-06-06
.0050154 .0050737 .0050737 .0012686 .0012686 .00166596 .0016596 .0016596 .0016596 .0016596 .0016596 .0016596
2000 2000
1266A 1266A 1266A 1266A 1266A 1266A 1266A 1272A 1272A 1272A 1272A 1273A 1273A 1273A 1273A 1273A 1273A 1273A

AAIN ROIUR-FAIL RUTUR INTERACTION TEST NASAZ-10771

HUN NU. 64 CUNTICURATION 121CF16

ALM RUIDE DATA

RECURD 1MHU:

RECURD	I HHO! I	TUROUE	ANCOLAZ	10	47	I HE TA	MUDE
	(%)	(X-N)	(KÀO/5)			(RAD)	
12824	2460		- 4	-005465	N844000 •	-	INTERACTION
1 < 0 < 0	4.600		4	• 005454	3×47000 ·		ACT
1 263A	2350	400.64	1	02112	. 00011005	0.075	INTERACTION
1 < 630	340.0		4	651210	. 0001591	Э	ACTI
1 204A	5500.4		7.0.7	. 003405	.00004014		ACTI
1 . 141	553.0		4.547	.003517	.0002622	~	ACTI
1265A	784.11		Z-1:0.0	.004911	. 0003435	-	ACTI
गुद्धः ।	720.4		ソ・キャン	. 004 585	¥955000.	~	ACTI
1 cto A	2710		244.5	1940000	7/44000	-	ACTI
1 etth	C0000		ス・カナン	. 0005433	.0004473	-	ACT 1
1 < 5/4	770.3		いまけるこ	. 004663	• 0005858	-	ACT 1
1 2670	1920.		243.2	040200	5004000.	~	ACT I
1 c tota	1:133			. 003523	. 0002642	-	A CT 1
1 < 00b	55.30.3		24.0.65	. 663511	* 000500 *	_	ACE I
1 cush	25000		3.4.7	. 60200	* 0001082	.3	I LTY
1 < 456	530.3		つ・コテン	\$90700·	ancion.	$\boldsymbol{\circ}$	INTERACTION
1<904	19296		243.0	SBLOOD.	1710000	2.7.0	ISOLATED
1 < 50th	2.044		1.42.47	.000173	0615000+	_	ISULATLU
12514	00 Je 0		240.04	•10000•	.0004371	0.174	150LA1 LD
12518	076-1		242.6	\$0\$¢09•	おののそつつつ・	-	150LA14.U
1 × 92A	70%.0		245.6	816470.	9065300.	_	
1 2.925	104-11		C40.C	.004656	.0003727	-	
1 2 5 3 A	50100		4.0°7	. 003544	• 600/5035	_	۳
1 < 9.00	2650		4.047	ລ	• 0002502	-	-
1.544	247.1		*	• 002130	. uou1578	0.073	ISOLATED
コスパー	347.0	22.353	20007	-	• 0001575	0.073	_

HAIN NOTUR-TAIL HULGH INTERACTION TEST NASA Z-10/71

RUN NU. BB CONFIGURATION IZICFIU AKM= 1.0000 M AIR DENSIIY RATIO 0.5082 UAI 18.3 DEG C

IAIL HUICH DATA

į	i i
CINI I	00000000000000000000000000000000000000
CINET	00000000000000000000000000000000000000
CIFIN	00000000000000000000000000000000000000
FIN FUNCE (N)	03443341331N3343 0306443341331N3340
IME 1A (RAU)	00000000000000000000000000000000000000
3	33333333333333333333333333333333333333
1 0	744 2 2 4 7 7 4 7 4 9 9 4 8 27 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ANGULAR VELUCIIY (RAU/S)	######################################
וטייטר נא-א)	200-4470224433 2444744324433 34447433334433
IHRUST (N)	AND 10 C 2 C C C C C C C C C C C C C C C C C
RECUIA	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 89 CUNFIGURATION TZTCF18 ARM= 1.088 M AIR DENSITY RATIO 0.5789 UAT 21.1 DEG C

TAIL RUTOR DATA

CINET

CIFIN

FIN FOACE (N)

THE TA

3

CI

ANGLEAR VELOCITY (RAD/S)

-

3

RECORD THRUST TOROUR

0015718 0015718 0015718 0017792 0017792 0017792 0017792 0017291 0017291 0017291 0017291 0017291
00000000000000000000000000000000000000
.0051530 .0051530 .0051530 .0013562 .0013562 .0013562 .0013562 .0023030 .00231030 .00231050 .00231157 .002531157 .002531157 .001521069
2.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.
44544444444444444444444444444444444444
12988 12988 12988 13998 13998 13998 13998 13998 13998 13998 13998 13998 13998 13998 13998

MAIN MUTUR-TAIL MUTOR INTERACTION TEST NASAZ-10771

HUN NU. 90 CUNFIGURATION 12T AIR DENSITY RAITU 0.9752 BAT 22.2 DEG C

MAIN HUIÜN DAIA

KECO

i	ว่อ
MUDL	INTERACTION INTERA
THE TA	######################################
3	00000000000000000000000000000000000000
15	000 000 000 000 000 000 000 000 000 00
ANGULAR VELUCITY (HAU/S)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TURUDE (N-M)	7.2.
THECS I	
KE COM	

HAIN RUTUR-TAIL AUTUR INTERACTION TEST NASA 2-10771

ALN NO. 50 CUNFIGURATION 12T ARM= 1.06F M AIR DENSITY RAILU 0.9752 UAI 22.2 DEG C

INIL KUICH DATA

CINET

CTNET

CIFIN

FIN FURCE (N)

THETA (RAD)

3

3

ANGLER VELUCITY (RAD/S)

RECURD THRUST TORME

	(2)	(N-K)	(KAU/S)			(RAD)	S				ļ
-	14.7	30 417	1300.5	.018664	•	ċ	0.0	ĭ	-017041	• 018664	
	73.6	3. 100	90	016431	•	ċ	0.0	ï	•01 7885	.010431	
	1	7	500	. uos1 /c	•	0	0.0	-	•00, 223	.0.5176	
13146	21.04	U.500	13000	. 00534 C	· 0007586	0	0.0	00000000	-00° -317	. 005 34 c	
	37.5		3	• 009321	•	5	ن د	ĕ	•306628	126600.	
	36.1		03.	. 00200.	•	÷	٥ •	•	• 0000	1000000	
	4.50	404.1	5	.013380	•	ċ	0.0	7	·013087	• 013386	
13106		1.400	.50	.613488	.0023287	ċ	0.0	ĭ	.013150	. (1) 3466	
	73.4	3.140		.010300	•	•	0	۲	.018221	.018300	
1 21/6		2.113	1313.5	>15010-	•	•	o•0	7	118716.	.018312	
A STOR	500	136	3	.613375	•	, ,	0-0	7	.013153	.013375	
I SABU	53.3	E24.1	3	.013424	•	ċ	0.0	•	.013213	.013424	
1 3150	15.1	767 -0	3	00/2000	•	ô	0.0	٦.	*008628	.008 J6U	
13150	35.4	3.605	.00	~1000O.	•	3	0.0	•	•008660	.006672	
13604	42.4	0.510	5	• 44444	. uuuu	ċ	0.0	ĭ	.005367	• 002 224	
1 3200	2.2.4	0.510		.19599.	1918000	ċ		٠,	.005334	3	
1 321A	0.0	C. 25.55	2	71.000.	. 0004000		3.3	00000000	.00515b	• 0000213	
13210	5.0	602.0	10001	-00021	_	•	0.0	•	•005083	7	
1 322A	•	•	•	•	•	•	•	•	•	•	
1 342b	•	•	•	•	•	•	•	•	•	•	
12534	•	•	•	•	•	•	•	•	•	•	
1 3230	•	•	•	•	•	•	•	•	•	•	
13648	¢	•	•	•	•	•	•	•	•	•	
13546	•	•	•	•	•	•	•	•	•	•	
13254	•	•	•	•	•	•	•	•	•	•	
13551	•	•	•	•	•	•	•	•	•	•	

MAIN HUTAR-TAIL RU UR JATERACTION TEST NASAZ-10771

ALM DENSITY RAILO 0.5001 UAT 20.7 DEG C

MAIN RUIUM UATA

MUDE

THE TA

RECORD

RECORD	INMOS 1	IURAUE	~ -	1.0	ď	THE TA	MUDIL
 	(2)	(X-Z)	(AAD. 5)			(RAU)	
4704			44	- 00 G 7 A 14		44.0	40 % E
	2000	70000	00000	2000	00000	•	
2630	0.00	160.00	•	•	700700	•	
4 3 7 C Y	36%	506.22	4	961200	7 40 TOOO •	•	コドドタにコ
10501	32506	<3.005	こ・キキバ	.002117	.0001636	•	TERACTI
1 231 4	554.0	37.0.72	7	. 003572	.0002014	~	TERACT 1
13366	5000	77-144	* * 7	. 663573	• 000000°	~	TERACTI
1 3cA	163.1	56.408	ウ・サマン	*10500*	1004000	7	TERACII
ואל	1.011	50.171	. 73	•005050	. CO04003.	7	TERACTI
1 233A	2006	104.40	1	.005890	• COC+000	7	TERACTI
1 sist	1.012	70.159	7	• 005052		7.	TERACT 1
43071	10/01	55.22		かかが すつつ・	15650000	7.	TEKACFI
1 3340	701.1	35.300	643.3	222400.	. 955000	-	TEKA
Actel	547.5	37.677	43	.003571	. 5002646	-	TERACT I
1 33313	2000	37.070	1	• 603566	• 0002625	7.	TERACT1
1 3304	320.0	21.075	7	でいつつつつ・	.0001543	0.067	INTERACTION
13300	3110:2	21.000	744 •D	10700.	.0001930	•	TERACTION
1337A	322.1	210012	1	•005100•	.0001550	•	ょって
1.3370	32.30.7	21 .uo l	144.0	. 002105	.0001555	•	H WFLAI FI
1 333A	1012.2	10.171	7	.006537	**************************************	~	OLAI
1 3336	1013.0	200.66	7.44.7	. 000551	• 000000•	7	ULAT
10554	7005	0/0.00	1	• 0050	. 0004723	~	ULA1
コンジント	10105	~	り・オギン	Ð.	. 50000	-	7
1 3404	70407	としている	;	n	. 00003720	7.	ULA1
1.340.5	7040.3	410.50	7.043	ማ	00/10000	-	DLAI
1 3414	246.1	•	. 7 .	J	01970000	-	UL A 1
13410	U4 4.0	ij	177	บู	. 0002512	-	OLAT
1 342A		41.021	ス・サナル	• 002000	3 tú 1000 ·	9	2
13450	21000	4	11.	97	*0001000 •	0	OLAT

MAIN MOTUR-TAIL MUTING INTERACTION TEST NASA 2-10771

RUN NU. 51 COMFIGURATION 1137F16 ARME 1.086 M. A.IK DENSIFY RATIO 0.5001

TAIL HUILH DAIA

		ORIGINAL PAGE IS OF POOR QUALITY
CINE I	00000000000000000000000000000000000000	•••••
CINET		• • • • • •
CJFJN	######################################	•••••
T 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0-24-2011	• • • • • •
THE FA	######################################	•••••
3	00000000000000000000000000000000000000	• • • • • •
15	10000000000000000000000000000000000000	•••••
ANGLOCITY CHAU/S)	######################################	•••••
TUNULE (N-M)	4074307440027374477 74454044777447744 74577044777447744	•••••
I SOUTH OF THE CANAL OF THE CAN		•••••
HLCDKO	10000000000000000000000000000000000000	24424 2442 24424 2442 24424 24424 24424 24424 24424 24424 24424 24424 24424 24424 2442 24424 24424 24424 24424 24424 24424 24424 24424 24424 24424 244

MAIN RUIUM-IAIL RUIUM INTERACTION TEST NALME-10771

RUM NU. 52 CUNFIGURATION 16TF18 AIM DENSITY RATIO 0.5600 DAT 25.6 DEG C

MAIN HUIUM UAIA

なっていない	[FIRUS]	IUNCUE (N-M)	WELLICITY (FALLE)	-	ż	THE TA	MUUL
1.25.4 11		200-164			1 1 2 4 50000	0.128	INTERACTION
4744	2 0 0 0 0 0	245-12	744.7	. 602144	0751000	2000	とうしてという
135.8	3 N. C.	25.17	ス・サマン	002146	9751000		
1 5538	50.4° 1	472.00	た・キモソ	. 002037	* 0000x5	7.	
1 3536	545.0	350000	するするが	000500.	• CCCCC	7	INTERACTION
1 354A	7.07	54.6633	2.2.2	.00500.	.0003858	-	ERACT
2552	130.1	53.440	20 442	• 005026	11850000	-	5
133.6	317.03	オログ・オト	****	. 000332	. 1650000	7	ENACTI
1 atok	0.127	55.05	2.54N	.005017	ガチへがこつつ。	901.0	ERACT
13500	たったに	53.500	740.7	400 to 400 to	.0003755	D . 1 5 G	ERACTI
1 SSTA	ניינייי	30000	ベ・キャン	.003646	• 0002545	0.117	ことろとせる
135/10		45.021	7.55%	.003550	1562000.	٠	INTERACTION
1 3.0A	けるとなり	<1 - 120	7.447	• 602070	10000°	•	IN TERACTION
13501	34:00 4	410314	サ・サマソ	•007700•	0151000.	•	INTERACTION
A SOSA	3.64 .4	21.192	7.54.0	• 002146	1001000	80000	I/R PLIAT PITCH
13550	3450	420.17	0.220	•002114	6741303	820.0	R EFLAT
13601	0.010%	74.520	Z40.1	• 000 a5u	. 0005247	0.150	ISOLATED
1 3600	2 - 12 the	74.550	<45.1	4569000	.0005252	•	ISOLATED
13614	1.00.	500.50	0.0.45	040000	*~~MOOO!	20 C - 0	ISOLATED
13618	11000	24.148	241.03	.004400.	* (CO0000)	•	150LATLD

NAIN RUIUR-IAIL MUIUK INTERACTION TEST NASA 2-10771

RUN NIS 92 CURFIGURATION 16TFIB ARME 1-246 M

HICUMU THUSE ENHAUL MNEULAN CT CP

C TNE T REJU

CIFIN

(RAU)

THEIA

26 0.004510 26 0.004510	12 0.00427	33 0.00740	7000000 66	31 0.0 1145	75 0.01121	15 0.01547	50 0.C113*	27 0.01158	37 0.00757	/30.0 17	10 0.00434	715000 Rt	13 0.00012	#2 C.OCUU4	•	•	•	•
/010° 4	*****	E .0073	7100° q	0110. 9	7010· 5	3	9010° 6	3010° s	E 100' E	5 .007 £	E+00. 1	E +00. 2	m	. 004 A	•	•	•	•
700	0.000.0	E100.0	S 100 -0	9700.0	0.0025	u.00:55	0.0024	0.0023	0.00.0	0.0016	2000 .0	4 8000 · 0	- 00000	000004	•	•	•	•
3°7	7	\$	3	÷	• • •	- 4-	,	,	٥	•	7		E 0-	7.0-	•	•	•	•
0.57		2.0 0	⊕ 9. •	•	0.20	C • 37	0.46	0.20	0.17	-	0.12	ċ	010	910	•	•	•	•
.0050141	\$00000°	•0012100•	• 6012452	.0023015	. 302205.	£041404	. 0022527	+067700·	*105100 ·	00051000	.409000	• U007922	• 0000 • 7.34	40000 ·	•	•	•	•
37	8	•	•	メタスワーフ・つ		•	•	105,510.3	•	14,00	1.224.0.0	こっていいっこ	000000°	3222000	•	•	•	•
1311.2	13000	•	10000		ė	1.0051	•	1304.0	•	1300.1	ė	130400	130001	130004	•	•	•	•
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	707.	351.3	373.3	7777	774-1	3.445	ワンヤ・コ	1 • 4 6 4	21000	413.0	€	つてきるい	いかいのつ	のアン・コ	•	•	•	•
- 7 · 7 ·	£.0.3	かっせつ	4.000	55.0	54.3	7.07	54.3	40	35.4	1000	¿.•07	1.51	6.2	7.0	•	•	•	•
3510 352A	3566	VCC.	3536	43,7	2500	4556	しならみ	2506	4195	3576	4 CQ ?	3500	4630	35%	300 A	3WF	4175	3610

TAIN HUILM-IAIL HUILM INTERACTION TEST NASAL-10771

HIM NO. 93 CONFIGURATION HETE 39 A ME OLNSHY RATIO 0.9510 DAI 27.8 DEG C

HAIN HUIDH DATA

1	55	OO,
MUDE	I DE LE	150LAILU
THE TA		3
J.		00100
15		777
ANGULAR VLLUC1TY (AAU/5)	AMMANANANANANANANANANANANANANANANANANAN	7
TORCUE (N-M)	77 - A A A A A A A A A A A A A A A A A A	22 - 203
MACON (N)	20114477 1844500 1 V 5 147 2 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.0
RECURD	######################################	A2751

AAIN KUTUR-TALL RUTUR INTERACTIUN TEST NASA 2-10771

AUN NO. 94 CONFIGURATION INSTERS AMM ISTOR ALK DENSITY RAILD 0.5510 UAT 27-6 DEC C

TAIL HUIDE DATA

		OF POOR
CINE I	00000000000000000000000000000000000000	• • • • •
C INE T REUD	00000000000000000000000000000000000000	••••
CIFIN	######################################	•••••
F. N. C. S. C.	2-02-04-04-04-04-04-04-04-04-04-04-04-04-04-	•••••
THETA (RAD)	77~~7NGJergerann 374~7NGJergerann 77~~NNGJerge	••••
9	1000 1000	• • • • • •
-		• • • • • •
ANCILAR VELUCITY (AAU/S)		•••••
10 KCUE	Venson a vare namanan Nenson a vare namanan Nusasan a vare namanan Nusasan a vare namanan Nusasan a vare namanan	
HRUS (20101111111111111111111111111111111111	• • • • • •
KLCUMD	10000000000000000000000000000000000000	2000

ORIGINAL PAGE IS OF POOR QUALITY

MAIN ROTOR-TAIL ROTOR INTERACTION TEST
NASA 2-10771
RUN NO. 94 CONFIGURATION TIGTF39 ARM= 1.167 M
AIR DENSITY RATIO 0.9518 OAT 27.8 DEG C
TAIL ROTOR DATA

CINET

CTF IN

FIN FORCE (N)

THETA (RAD)

Ç

5

ANGULAR VELOCITY (RAD/S:

TZ.

ŝ

RECORD THRUST TORQUE

00000000000000000000000000000000000000	0000
	000
	000
00000000000000000000000000000000000000	Maa
	000524
	0000
	900 900 900
	104W
1440の555では、1440の1450の1450では、1440の1440の1440の1440の1440の1440の1440の1440	
	3000

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 95 CONFIGURATION 1197F39 AIR DENSITY RATIO 0.9899 DAT 18.3 DEG C

MAIN ROTOR DATA

	ORIGINAL PAGE IS OF POOR QUALITY
MODE	INTERACTION INTERA
THE TA (RAD)	
d)	00000000000000000000000000000000000000
C1	00000000000000000000000000000000000000
ANGULAR VELOCITY (RAD/S)	######################################
TORQUE (N-N)	
THRUST (N)	
RECORD	8>8>8>8>8>8>8>8>8>8>8>8>8>8>8>8>8>8>8>

CTNE T ACTUAL

CTNE T

CTFIN

FIN FORCE (N)

THETA (RAD)

9

Ç

ANGULAR VELOCITY (RAD/S)

TZ.

ŝ

RECORD THRUST TORQUE

TAIL ROTOR DATA

MAIN ROTOR-TAIL ROTOR INTERACTION TEST
NASA 2-10771
RUN NO. 95 CONFIGURATION 119TF39 ARM# 1.167 M
AIR DENSITY RATIO 0.9899 GAT 18.3 DEG C

MAIN KUILK-TAIL KUTUK INTERACTION TEST NASAZ-10771

RÍM NO. SO COMFIGURATION 171F39 AIR DENSITY RATIO 0. 1534 DAI 17.6 DEG C

MAIN KUIUK UATA

R. COMD

3001

THE TA

R. COMD	(N)	FORUNE (N-M)	ANIMERAR VELUCI (Y (KALZ'S)	C.I.	'n	THE TA	Alsh A.
475.4	7	4 2 3	3 4	F 47 G00-	-0004703	0.102	INTERACT JUN
		105.50	4.042	107500	\$ C C C C C C C C C C C C C C C C C C C	0 1 152	ハンニノイエリース
1422A	2.077	771077	30 777	.002114	0001500	0.0.0	IN TERACTION
14596	2,0050	23-203	N = 7 = 7	.002114	265KC90*	0.000	ACT 1
1 + 30 A		30.763	74:00	• 003455	• 000200	E1100	ストノス
1054 a	255.0	37.08	744.0	•0034/4	• 0002531	0.113	INTERACTION
47047	1000	ひすい まい	3 · 5 7 N	150400.	プタレクロコロ・	0.100	**CT 1
14310	720.0	55.8/5	76450	• 504 256	.0003825	0.156	1174
143CA	2000	400.00	Z & U & Z	. 605048	.000453	0 • 1 80	Interaction
14366	76.90	100-104	人もむ・ソ	.005752	4104700.	561.0	IVCLI
A: 047	1986	178.81	744.0	•002900•	• CCCC 124	5. T ~ 5	150LA1tD
14536	7.06%	(20.60)	さ・キャン	. 006251	.0000.	サブ しゅつ	ISOLATED
4 TO T	×45.0	456-10	20447	• 005052	· 0004577	0.1.1	1 SOLATED
257	ر مان الر	60.000	ス・カマル	• 005062	. CO0404	0.101	=
1 + 35 A	735.7	53.864	2.5.0	667400.	£005000.	0.153	1SOLAT FU
143.43	105.4	からか・アハ	フ・コテン	*00400·	6000000		15ULA 1 LD
1 4 30 A	2,550	30.143	つ・ササー	. 003474	*2 *2000*	0.112	ISOLATED
1 4 30 13	1.0000	404.00	74242	• 003503	.0002481	-	150LA1LU
4374	33.40	45.134	245+1	.002111	1001000	0,000	ISOLATLD
14.3715	14 50	22.341	0.447	. 002142	•0001524	0.000	15 OLA 1 LD
	•						

MAIN ROTOR-TAIL RUTON INTERACTION TEST NASA 2-10771

RUH NU. SC CUNFICHATION 17F59 ARM 1-167 M AIM DENSITY RAITU 0-5554 DAI 17-6 DEG C

IAIL HUIUN UATA

1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HI CURD HIRUST		ういいいう !	ANGA AK	5	7	1HE 1A	NI	CITIN	CTNET	CTACT	
24 A A Section 1 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	(F. 4)	(RAD/S)			(RAD)	S		200		Ì
244 200 200 200 200 200 200 200 200 200	1420A	200		13154		.0046493	0.37	•	0.000302	.01440	•	
244	14606	78.0		1314.0		.0047250	0.37	45.5	0. JOD 281	• U14 386	00210.	
200	47.74 T	20.5		ė		.0009333	0.13	,	6.602223	.004844	42400.	
30.4 42.4 2.324 13.05.1 0.010.4 3.05	142215	70°7		1307.0		0000000	0.135	¥•0	0.002190	4004 869	0.004352	
30:2 43:4 2-43 130:1 0.0107 31:0 00.0 1.300 13:00.0 10:0143 31:0 00.0 13:00 13:00 13:00 13:00 32:0 20.0 20.0 13:00 13:00 32:0 20.0 20.0 20.0 20:00 33:0 20.0 20.0 20.0 20:00 33:0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	1 4 30 4		_	130003	7010	1 サブサイロつ・	0-21	12.1	0.002967	.007717	.00750	
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1 4303	ア・ハマ		1305.1	0	. (014400	0.21	1 - 7 - 7	U. 003454	FRC LOO.	ろし てい ひ・	
410 600 4 4 4 7 5 1 5 0 5 4 6 1 1 4 7 5 1 5 0 5 4 6 1 1 4 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	41011	200	004.	130000	7410	•002200•	0.27	ů	0.003681	.011451	04010.	
322	14310	** 70	1.400	1305.4	2410.	.0022917	0.27	20.5	0.000047	•0111776	82600.	
5.54 5.54 5.54 5.54 5.54 5.65	143CA	12.1	20103	131101	3	.0047667	0.30	3	0.000422	. U.3903	•012E4	
4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1001	フジョ・リ	1311.5	5	.0047901	ċ	2	U. 006533	.014178	0.012254	
14544 14544 14554 14554 14554 14505 14505 14505 14505	455.4	•	•	•	•	•	•	•	•	•	•	
14348 14358 14358 14308 14308 14308 14308	143.30	•	•	•	•	•	•	•	•	•	•	
14340 14350 14300 14300 14300 14301	14364	•	•	•	•	•	•	•	•	•	•	
4304 4304 4304 4304 4304 4304	250.71	•	•	•	•	•	•	•	•	•	•	
	14354	•	•	•	•	•	•	•	•	•	•	
1430b		•	,	•	•	•	•	•	•	•	•	
1430d	14304	•	•	•	•	•	•	•	•	•	•	
• • • • • • • • • • • • • • • • • • •	14300	•	•	•	•	•	•	•	•	•	•	
The state of the s	14517	•	•	•	•	•	•	•	•	•	•	
	14378	•	•	•	•	•	•	•	•	•	•	

MAIN KULUK-IAIL RULUK INTERACTION TEST NASAL-10771

KIKA NU. 97 CUNFIGURATION 137F39
A.IH DENSITY RAILU 0.5434 OAI 17-8 DEG C

MAIN AUTUR UATA

RF CURD	THRUS 3	LUKUUE (N-M)	ANGULAR VELUCITY (RAU/S)	5	3	THE IA	MUDL
40404040404040404040404040404040404040		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		40000000000000000000000000000000000000			-
2	78.00 78.00 78.00 78.00 78.00 78.00 78.00	24.542 54.742 54.743 54.743 52.743 52.743 52.743	NN	4-00-00		~~~~~	ISULATED ISOLATED ISOLATED ISOLATED ISOLATED ISOLATED

SAIN HOTUR-TAIL HUTUR INTERACTION TEST NASA 2-10771

RUN NO. 97 CUNTICURATION 13TF-39 ARM= 1.000 M

TAIL RUILE DATA

KLCJKU INKUST TURADE	INHOSE	10 hade	ANCE AR	13	ď	THETA	Z	CIFIN	CINET	CINCI
	Ž	(W-?:)	(KAU/S)			(RAD)	(N)		ME UD	ACTOR
41471	11.1	7 14	1305.0	5	. 004401	ċ	7p.0		.012759	3
1 441 12	17.1	10000	1307.0	70.	.0043710	0	2502		.012613	9
144CA	17.4	C111.7	1310.0	6.00 00.0	.0044291	•	29.6		•U15054	9
1 4465	10.4	37:44.1	1310.0	7	· 6043412	0	25.0		6884!1.	9
14431	5005	303.0	1305.0	•	. 0010177	•	10.1		.005216	0
3777		****	13600	3	.150100.	•	0.0		.005161	•
4 - 4 - 4	3.17	71-1	1303.7	3	. tr(1177; n	•	15.5		.008532	7
7777	36.0	10 104	1503.4	406210.0	ca4/100.	0.236	1 7-1	0.004218	• 602200	044800.0
A 445A	70.07	5000 0 70	136%	5	-0041222	င်	23.0		.612740	•
14450		D:00.	130%	.0103	• 0040600	÷	25.b		.012717	9
420%		0.000; • 7	130%00	3	9996590.	;	22.0		· 015208	9
1-401	13.0	21700	13050	30.00	3041400	•	<3.2		.015307	3
4774		1 - 10.3	1366.3	70.	. (-015/33	ċ	17.3		•008584	9
2144		1.153	1365.0	0,01200	304/100·	0.23	11.7		• UDB 4400•	•
1 +40A		207-0	13000	-10/ no • n	• 001000	3	7.7	0.02300	.005327	9
75.44		2444	-00	3	. 0(10331	0.15	10.5	• 60250	\$27500.	2
A 4.7 A		300. • 0		15 1000 0	4000.	70.0	10.5	000120	.005287	•
1 44 313	0.0	500 · 0	.55	70 (000) 0	.0004730	3.0	-5-	0000033	9653300	0.0000
14568	•	•	•	•	•	•	•	•	•	•
14560	•	÷	•	•	•	•	•	•	•	•
1 4 5.1 A	•	•	•	•	•	•	•	•	•	•
915-1	•	•	•	•	•	•	•	•	•	•
77777	•	•	•	•	•	•	•	•	•	•
1 4 3 4 4	•	•	•	•	•	•	•	•	•	•
14534	•	•	•	•	•	•	•	•	•	•
14530	•	•	•	•	•	•	•	•	•	•
これできる	•	•	•	•	•	•	•	•	•	•
27 47 4 4	•	,	•	,	((•	(•	•

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 98 CONFIGURATION 13T AIR DENSITY RATIO 0.9878 UAT 19.4 DEG C

MAIN ROTOR DATA

MODE

THE TA

5

C

MIGULAR VELDCITY (RAD/S)

TOROVE

THRUST

RECORD

3

INTERACTION INTERA
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
23.41.1 23.41.1 23.41.1 24.41.
######################################
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ORIGINAL PACE LE

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

AIR DENSITY RATIO 0-9878 UAT 19-4 DEG C

TAIL ROTOR DATA

CTNET

CTFIN

FIN FORCE (N)

THETA (RAD)

8

CI

ANGILAR VELOCITY (RAD/S)

177

î

RECORD THRUST TORONE

OF POOR QUALITY

MAIN HUIUM-TAIL HUIUM INTERACTION TEST NASAz-10771

HIM NIL 199 CINFIGURATION LIBITESS
A.H DENSITY HALLD 0.5009 DAI 19.4 DEG C

MAIN RUIUR DAIA

100 170 170 170 170 170 170 170 170 170	2000 2000 2000 2000 2000 2000 2000 200		20000000000000000000000000000000000000	4 4 4 3 7 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20000000000000000000000000000000000000	
		- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		TERACT TERACT TERACT TERACT TERACT
	,	* * * * * * * * * * * * * * * * * * *	00000000000000000000000000000000000000	> 4 4 4 3 7 N M M M M M M M M M M M M M M M M M M	~~~0	TERACT TERACT TERACT TERACT
	7 N 2 N N T T T T T T T T T T T T T T T T	000000000000000000000000000000000000000	00000000000000000000000000000000000000	4437F8999999999999999999999999999999999999	00	TERACT I TERACT I TERACT I
	3 N N.n.n n n n n n	00000000000000000000000000000000000000		######################################	-03	TERACTI TERACTI TERACTI
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	# # # # # # # # # # # # # # # # # # #		######################################	03	TERACT I
		7777		2682000 2682000 2792000 2792000 2792000 2792000	3	TERACT
		1111		1 000000 000000 000000 00000 00000 00000 0000		
		111	.00450 .004400 .004401 .00500	.000% .000% .000%	-	TERACI
	200-000 200-000 200-000	40.	. 604461 . 604461 . 605661	.0003923 .0003923	•	TERACT 1
	500000	1	. 604902	26950000	~	ACTI
	560.03		.005054		7	AC.
	127-40	* * *			7	ACF
		7.44.	. 005cc5	0504000.	-	INTERACTION
3 2 3 3 3 3 3 4 3 7 7 3 1 1 7 7 7			. 00301c	.0002641	7	INTERACTION
2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		サ・ササ ン	•003015	.0002040	7	AC.
9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.705	40.	.002197	2 40 1000 ·	•	INTERACTION
14. 14. 14.	001 S N	つ・ササン	. 602153	.0001625	2	134
	22.013	70000	.002113	• 0001554	0	I/R FELAT PITCH
	45.554	ス・ウェフ	.002121	.0001571	2	FLAT
	10.472	* 0.4	. 000202	• 6005256	-	15ULA11U
4 titls 101	_	10.	.005377	.0000332	7	ISULATED
+ bus ayer	000.00	フ・ウキン	• 000 Feb.	• 00004e15	0.176	⋍
מייטטרו ויאניין	524°50	140・0	•002020	.0004010	7	ISULATED
T-381. W/97	500.00	*・サマリ	•	•000000	-	ISULATED
-610 (67.3	55.133	- TTT	1044000	3195000.	7	150LA FLU
70.1.		1.40.4	40	でおかがいうつ・	7	-
4 toth tota	30.00	240.4	J	•0002520	C-110	ISULATED
4654 4554	22.520	240.0	7	3491000.	0	150LATeu
table siven	.c. 134	7.07.67	.002131	10510000	140.0	ISULATED

ORIGINAL PROPERTY

CTNL 1 ACT UAL

CTNET

NI LI

FIN FUNCE (N)

THETA

5

ANCULAR VELUCITY (RAU/S)

RECINO IMPOST TURAL

MAIN RUIDH-IAIL MUICH INTENACTION TEST NASA 2-10/71

ALM NU. SY CUNTICURATION FIRTESS ARM 1.058 M

IAIL KUIUK DATA

	2	3-2	(HAU/S)			(UAN)	(N)				(
	 - -)
14/04	70.55	017	•	77.	30		•	4000	2	3	
14/01	1001		-	7710	7		3	. 0071	710	9	
11/21	7007		-	2772	4	•	'n	0/000	7	9	
14/1/	77.5	71107	2	.410.	3		å	06.00	2	á	
1 × 70.A		A. 404 - O	•	1,70.	3		င်	4700	005	3	
		373 * 7		3	3		3	0700	000	7	
14741	5000	10001	1306.0	710	0207100.	W 47.0	14.0	0.003604	. 006597	0.000000	
14 (70		16.00	÷	*>10.	3	•	٥	400.	R00	9	
1 4504		2600	,	¥0 10.	3		:	2000	7	3	
4 4 40 15	1:00	10/ - 7	3	5	7	•	3	.0070	.v.	7	
1 -014	70.5	/10=2	3	ふつ 7つ・	3	•	å	7000·	5	•	
14011	70.1	77127	;	B010.	3	•	3	7/00.	5	3	
146イル	2.7.4	300 = 4	ŝ	12100	3	•	2	. 004 2	30	=	
1400	7.77	アマコ・コ	-	70.	3	•	å	.0041	80	•	
1 abon	31.0	0:30	3	2/00.	3	•	3	• 00 £6	3	.	
14638	4.17	0 *** 3	;	// 00.	アスコ		٠	. 0026	S	7	
4777	7:01	10200	•	110000-	* coû*50b	210.1	3	1000	a	•	
1 404 1	4.0-	1 < 70	3	5.500 20	\$50 to 000.	7100-		**0000 ·-	ວິ	7	
1 465 A	•	•	•	•	•	•	•	•	•	•	
14150	•	•	•	•	•	•	•	•	•	•	
1 4 bu A	•	3	•	•	•	•	•	•	•	•	
2077	•		•	•	•	•	•	•	•	•	
A TOTA	•	•	•	•	•	•	•	•	•	•	
1 4070	•	•	•	•	•	•	•	•	•	•	
400+	•	•	•	•	•	•	•	•	•	•	
14000	•	•	•	•	•	•	•	•	•	•	
14024	•		•	•	•	•	•	•	•	•	
1-454	•	•	•	•	•	•	•	•	•	•	

OF POOR QUALITY

MAIN RUTUR-IAIL RUTUR INTENACTION TEST NASAL-10771

HUN NU. 100 CUM-16UMATIUN 141F39 Air Density Ratio 4.5747 UAI 21.1 DEC C

MAIN HUIUK UATA

THE 1A

5

CJ

WEULAY VECULITY (AAU/V)

לטאימן (N-M)

3

14:02:H1

RECIMO

(RAU)

TERACT TERACT TERACT		
		000000000000000000000000000000000000000
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000000000000000000000000000000000000
	7	10000000000000000000000000000000000000
	14741111111111111111111111111111111111	
00000000000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
703. 773. 673. 665. 665.		10000000000000000000000000000000000000
4000 7777 7777 7777	22222222222222222222222222222222222222	64474742447467 6447476667 6447667 644767 6447474 6447474

MAIN HUIGH-TAIL HUIGH INTERACTION ILST NASA <-10771

ALM NU. 100 CUNTICUTATION 14TF39 ANNE 1.086 M AIN DENSITY HATLD 0.5747 UAI 21.1 DEG C

INIL MUIUN DATA

CINET

CIF IN

FINCE FINCE (N)

THETA

RECURD IMMIST 1 DINGUE

	Ž	(まーア:)	(KMD/S)			(RAD)	(N)				l
	!		i - - - -								
14504	7.27	4.06.	101400	0.07.10.0	- UU45040	Ġ	j	-00/42	.012591	110.	
	77.5	7 64 67		ーケーつ・	トロスクラン	.36	;	92/00•	26	37 TO .	
4054	4.5%	3000		J. 10.	1447400.	. 30	;	. uc 705	3	• 0 1251	
		2000		3	.0047269	.30	9	8 (1)))	3	-01232	
1457A	30.00	277300	150000	U. 0000000	.0010732	0.164	11-1	0.002700	.005233	0561	
11970	8	61000	۰	3	4270100°	91.	_	. 0550.	3	.00547	
	4	0270		.0133	. Dis 1 0536	. 45	:	りょうこう・	S.	つかねつつ・	
14500	3.53	> 1 - 1		4010.	• 001 0082	. 25	÷	りいさつつ・	?	.0000	
マスカマ	17:1	3.01c		6417	スキワーキココ・	• 36	;	.00723	3	10210.	
	70.0	000000		1210.	.U045456	550	3	.06735	2	.01270	
4000	78.5	30000	•	2410.	. uu4 /u58	95.	,	.00121	2	91710	
2007	1001	2000	•		50124770	.30	5	. 1700.	7	•01237	
A 130 A	51.3	1.100		· 111 C	· 601 603d	• 24	;	. 00455	3	.00t31	
13618	20.00	1 . 1.0	٠		1047 1000	. 24	3	91470.	3	• 0 uaal	
1,000	34.1	*00.00	•	. 00 au	- 001004 V	- 10	-	. 50200	7	11500.	
1 SUCI	36.1	55000	1304.0	. 00 to	• CO100-	91.	-	. UO: Y	2	•00512	
1 25.34	3.0-	10201	1 3 5 5 4	777770-1	444,¥000·	30.	3		3	01000.	
1:(.30	-0-1	16200	10501	S	4064000·	3.	10.4	=	Y.	1007	
といういく	•	•	•	•	•	•	•	•	•	•	
1500	٠	•	•	•	•	•	•	•	•	•	
といいな	•	•	•	•	•	•	•	•	•	•	
しっていい	•	÷	•	•	•	•	•	•	•	•	
27707	•	•	•	•	•	•	•	•	•	•	
1 -0/10	•	•	•	•	•	•	•	•	•	•	
1:CoA	•	•	•	•	•	•	•	•	•	•	
15630	•		•	•	•	•	•	•	•	•	

OF POOR QUALITY

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 101 CONFIGURATION 18TF39 AIR DENSITY RATIO 0.9710 OAT 22.2 DEG C

MAIN ROTOR DATA

MODE

THE TA (RAD)

9

C

ANGULAR VELDCITY (RAD/S)

TOROUE (N-M)

THRUST (N)

RECORD

INTERACTION INTERA
00111000000000000000000000000000000000
1152228 1152238 1152238 1152238 1155258 1155258 1155258 1155258 1155258 1155258 1155258 1155258 1155258 1155258 1155258 1155258

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 101 CONFIGURATION 18TF39 ARM= 1.246 M

TAIL ROTOR DATA

i i	ORIGINAL PAGE IS OF POOR QUALITY
CTNE T ACTUAL	00000000000000000000000000000000000000
C TNE T REOD	00000000000000000000000000000000000000
CTF 1N	00000000000000000000000000000000000000
FIN FOR NO CE	
THETA (RAD)	
გ	
5	00000000000000000000000000000000000000
ANGULAR VELOCITY (RAD/S)	######################################
TOROUE (N-M)	00000000000000000000000000000000000000
THRUST (N)	70000000000000000000000000000000000000
RECORD	15224 15

ORIGINAL PAGE OF POOR QUA	LITY	<u>5</u> 5
Or 1°	MODE	INTERACTION INTERA
	THE TA (RAD)	
TEST B DEG C	d	00000000000000000000000000000000000000
INTERACTION 71 110 117 110 117 110 117 117 117 117	CT.	
IL ROTOR II NASA2-1077 CONF I GURAT 710 0.9881 IN ROTOR D	ANGULAR VELOCITY (RAD/S)	00000000000000000000000000000000000000
IN ROTOR—TA NO. 102 DENSITY RA	TORQUE (N-M)	20000000000000000000000000000000000000
A ZE	ThRUST (N)	~~***********************************
	RECORD	11000000000000000000000000000000000000

OF POOR QUALITY

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 102 CONFIGURATION 1177F39 ARM= 1.088 M AIR DENSITY RATIO 0.9881 OAT 17.8 DEG C

TAIL ROTOR DATA

ACTUAL

CTNET

CTF IN

FIN FORCE (N)

THE TA

9

C

ANGULAR VELOCITU (RAD/S)

TZ

RECORD THINST TORQUE

.01187	0.012076	.01233	.01234	.00497	•00526	.00872	•00850	.01207	.01217	.01231	.01224	.00888	.00857	.00490	•002500	.000 B	.0000	•	•	•	•	•	•	•	•	•	•
0126	.012619	0154	0153	0053	0052	0085	9900	0125	0124	0153	0152	0086	0085	0052	0052	0052	053	•	•	•	•	•	•	•	•	•	•
1000	0.007149	9900.	9900	•0025	.0024	.0037	0000	2000	.0068	6900.	.0068	.0038	•0039	-0024	•0022	0000.	0000	•	•	•	•	•	•	•	•	•	•
0	29.1	7	-	ė	ċ	S	•		8	ė		S	•	ò		•	ė	•	•	•	•	•	•	•	•	•	•
8	0.363	98.	8	.17	.17	.24	-24	98.	.36	36	38	. 24	.24	.17	.17	ġ.	00.	•	•	•	•	•	•	•	•	•	•
004453	.0044818	M44400	004480	000982	066000	001719	001100	004539	004557	004586	004548	001749	001716	196000	926000	000430	00410	•	•	•	•	•	•	•	•	•	•
.01901	0.019165	.01897	•0100	.00752	.00772	-01247	.01228	.01905	-01905	.01922	01610	.01272	.01250	\$E100	.00747	• 00000	90000•	•	•	•	•	•	•	•	•	•	•
310.	1309.5	311.	309.	306.	305.	307.	307.	309.	310.	309.	309.	306.	309.	307.	306.	306.	308.	•	•	•	•	•	•	•	•	•	•
-87	2.888	.87	.88	.63	.63	. 10	60.	.92	46.	-95	.93	.12	.10	-62	•62	.27	.26	•	•	•	•	•	•	•	•	•	•
	78.1	ŗ	ř	=	• •	3	3		*	8	-	-	•	0	•	•	F. 0	•	•	•	•	•	•	•	•	•	•
E	5338	M	P E	35	35	8	36	37	37	38	38	30	8	0	0	7	4	4	4	1	E T	1	1	45	45	346A	146B

MAIN ROTOR-TAIL ROTOR INTERACTION TEST
NASA 2-10771
RUN NO. 103 CONFIGURATION T177F39 ARM= 1.080 M
AIR DENSITY RATIO 0.9807 DAT 20.0 DEG C

TAIL ROTOR DATA

CINET

CIFIN

FIN FORCE (N)

THE TA

გ

C

AHGULAR VELOCITY (RAD/S)

-

3

RECORD THRUST TORQUE

001199 0011999 0011999	00593	00000 00000 00000 000000 000000	01216	0.005851 0.005885 0.003133 0.003132 0.000133
000000000000000000000000000000000000000	00000 00000 00000	00000 W44000 M440000	000000000000000000000000000000000000000	0.002920 0.002909 0.001539 0.001516 000089
				1000 1000 1000 1000
WW. 24	222	446	324	000000000000000000000000000000000000000
0004010 0004019 000736	001226 001226 001530 001530	405100 405100 405100	004286 004232 001874 001895	.0011650 .0011724 .0006936 .00007148
0187	0000	.0134 .0134 .0175	0100	0.008770 0.006794 0.004672 0.004648 0.000044
MWWW	0000 0000 0000	0000 0000 0000	303 305 305	1305.6 1305.6 1305.1 1305.4 1305.4
000 000 000 000	27.68	12161	.73 .19 .20	0.745 0.745 0.254 0.251
9999		m400	9966	MM44 000000 000000
5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	552	5 5000 5000 5000 5000	555 555 557 557	1558A 1558B 1559A 1560A 1560B

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN ND. 104 CONFIGURATION 1177F18 AIR DENSITY RATIO 0.9811 DAT 20.6 DEG C

MAIN ROTOR DATA

MODE

9

CI

ANGULAR VELOCITY (RAD/S)

TOROUE (N-M)

THRUST

RECORD

THE TA

66A 1005	00000000000000000000000000000000000000			INTERACTION INTERA
----------	--	--	--	--

		N Y	ROTOR-TA	IL ROTOR NASA 2-1	INTERACTION 0771	ION TES	t			OF PO	_1
		RUN NO AIR DE	. 104 NSITY R	CONFIGURA ATTO 0.981	TION 117	7F18 20.6 D	ARME FG C	3.088 M		OR OI	AL.
			1.4	NIL ROTOR	DATA) Pro	Vr.
18	THRUST (N)	TOROUE (N-H)	ANGULAR VELOCITY (RAD/S)	13	ზ	THETA (RAD)	FIN FORCE (N)	CIFIN	CTNET	CTNE T ACTUAL	:
•	9	9	000	80810	04840	7		75500-	155	01560	
	76.0	3.069	1309.7	0.018779	.0047951	0.376	14.2	0.003505	015453	0.015274	
< 0	٥	90	308	.01892	04837	10	m r	1 4E00°	10000 10000	01550	
0 <	מים	79	310.	6E900*	00958	.16	'n	.00062	1910	.00557	
.	in	.62	900	.00643	92600	100	•	-00086	024	.00557	
< □	m n	96	30E	+0101¢	01586	225	•	69100	0000	01000	
0 ≪	7 0		100	-01047	03367	32		.00271	0131	01376	
•	6	27	304	.01548	03354	.32	8	.00304	0129	.01343	
< €		2	306	•01898	04881	.37	;	.00348	0155	01550	
D <	00	077	306	20610	16870	7	. (E 4E 00°	100	6010°	
e de	6		306	.01909	04898	.37	m	.00328	0182	.01581	
∢:		200	302	.01607	03185	-32	å,	.00276	132	01330	
20 4		200	100	76610	20172		-	70000	760	17540	
C 50	;		305	0100	01576	22	•	.00173	089	.00920	
4		•65	305	.00714	01024	• 17	•	-00100	054	10900	
☎ •	0	500	302	E0700.	01028	• 17	•	# # # OO •	055	16500	
C A		40	0000		44400		7				
•	•	}	•			•	•))))		
ø	•	•	•	•	•	•	•	•	•	•	
<	•	•	•	•	•	•	•	•	•	•	
6	•	•	•		•	•	•	•	•	•	
∢!	•	•	•	•	•	•	•	•	•	•	

ORIGINAL PACE ITY

MAIN ROTOR-JAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 105 CONFIGURATION TITTF18 ARM= 1.088 M AIR DENSITY RATIO 0.9724 OAT 22.8 DEG C

TAIL ROTOR DATA

CTNET	0.015591 0.015571 0.003770 0.001747 0.011448 0.011548 0.001565 0.003748 0.003748
CTFIN	00000000000000000000000000000000000000
FIN FORCE (N)	44000000000000000000000000000000000000
THETA (RAD)	1 000000000000000000000000000000000000
8	.0044790 .00044792 .00047741 .00013010 .0013010 .0012010 .0012010 .0012010 .0012010 .0006802 .0004304
15	00000000000000000000000000000000000000
ANGULAR VELDC 1TV (RAD/S)	
TORQUE	
RECORD THRUST TOROU	WW. 0 0 WW. 0 0 W. 0 0 0 0 0 0 0 0 0 0 0
RECORD	1150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA2-10771

RUN NO. 106 CONFIGURATION 114TF18 AIR DENSITY RATIO 0.9631 DAT 25.6 DEG C

MAIN ROTOR DATA

RECORD

CORD	THRUST (N)	TORQUE (N-M)	ANGULAR VELOCITY (RAD/S)	CT	3	THE TA (RAD)	море	
	63	7	9	950	•		. ≤	
٠,0	98		S	le e	ж.		ACT	
598A	1003.9	80.452	245.7	•000	.0005627	0.202	14:TERACTION	
0	90	ó	45.	990	111	7	MCT I	
0	309	d	1	020		0	ACTI	
, Q	60	-	13.	020		0	ACTI	
0	420	-	45.	400	w	7	ACT	
0	47.	-	45.	035	M	7	ACT 1	
0	43.	j	15.	7	.,	7	MC71	
0	56,	ŝ	45.	940	m	7	ACTI	
0	63,	'n	46.	952	•	7	ACTI	
0	99	ŝ	15.	055	•	7	ACT I	
0	65.	å	150	5 7 0	7	7	MCT I	
0	· 9	ŝ	15.	3	M	7	MCT 1	
O	410	3	46.	7 00	M	7	ACTI	
O	37.	ŝ	45.	930	CM	7	ACTI	
0	18,	å	45.	070	•	9	ACTI	
0	18.	å	15.	020	•	0	MCTI	
0	98.	ġ	46.	E 90	80	7	۳	
9	94.	ŝ	46.	F 90	ш	7	~_	
0	62.	ë	**	055	•	7		
0	76.	ġ	16.	055	•	~		
0	55.	m	45.	810	77	•		
0	900	j	45.	810	m	7	5	
0	41.	ŝ	15.	934	w	7		
9609	45.	ġ	111	700	œ	7	5	
5 10A	16.	å	•	020	-	0	Ξ	
5108	20.	å	-	020	•	9		

OF POOR QUALITY

CTNE T ACTUAL

CTNE T REGO

CTFIN

FIN FORCE (N)

THE TA (RAD)

გ

C

ANGULAR VELOCITY (RAD/S)

(H-N)

ŝ

RECORD THRUST TOROUE

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 106 CONFIGURATION 114TF16 ARM= 1.086 M AIR DENSITY RATIO 0.9631 DAT 25.6 DEG C

TAIL ROTOR DATA

0=00r4000000000000000000000000000000000
55555555555555555555555555555555555555
99999999999999
44444440404444444444444444444444444444
00000000000000000000000000000000000000
00000000000000000000000000000000000000
0m/4n00000m4m4nm
406WW=00W0000000000000000000000000000000
00000000000000000000000000000000000000
700000mmmam4400mmm
00000000000000000000000000000000000000
20000000000000000000000000000000000000

ORIGINAL PAGE OVALITY

MUDE

INE TA

3

J

MUCULAR VILUCITY (RAU/S)

777

SURVE

こうない

RECURD

Ŝ

(HAD)

MAIN RUIUR-TAIL HUIIN BHIEHACTION TEST

HUN NU. 107 CURTICURATION INSTEIN ALM DERSITY RATIO 0.3004 UAT 20.6 DEG C

MAIN HUILK DATA

ERACII ERACII ERACII ERACIII		IVR #FLAT FITCH ISOLATED
000000000000000000000000000000000000000	000000000000000000000000000000000000000	7-1000000000000000000000000000000000000
00000000000000000000000000000000000000		
		00000000000000000000000000000000000000
77 77 77 77 77 77 77 77 77 77 77 77 77	20262222222222222222222222222222222222	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2000 2000 2000 2000 2000 2000 2000 200	07770000000000000000000000000000000000	F 7 = 0 a 4 × a × a 0 a a c a c a c a c a c a c a c a c a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	10000 20000
10100 10100 10100 10100 10100 10100	1 1 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10000000000000000000000000000000000000

MAIN ROTUR-FAIL HUTLK INTERACTION TEST NASA L-10771

HUN NU. 107 CUNTICONATION 1151F16 ARMS 1-167 M

ORIGINAL PACE IS

CINET REUD

CIFIN

IMETA (GVH)

3

5

ANGALAH VELOCIIV (RAD/S)

RECURD IMPOST TURANE

TAIL RUIUN DATA

	2	(H-Z-	(RAD/S)			(RAD)	N N				(
											ļ
1 to 1 to A	75.4	10% • 7	?	.0166	250	•		• 00 382	140A	994100	
10101	76.1	1. 020	3	2010.	767	•		. 60386	1426	\$14:10	
16174		3.020	\$	3010	756	•		•00364	1000	01510.	
10170	•	5 50€′•52	3	2010.	200	•		.00376	1683	· 0 14 :>t	
1 to loa	25.0	2000	1300.9	0.0000	. 4069254	0.166	3.7	6.00092d	.004439	0.00000	
10101	•	540.0	3	7000·	533			* 000 V	00445	AC 0000.	
10174		444.00	3	.010.	503	•		.00172	9080	•0 Dacs	
10196		£ 'X. &	3	7717.	400	•		46100.	0610	•0.0050	
1 6204	•	1 - titu	50	42.10.	245	•		• 00700	1200	197100	
1 62013	•	7000	77	5010.	629	•		• 00274	1204	•0 124C	
10:14	•	3.044	1,0	*010*	781	•		.00385	1447	.01462	
10KA	•	73.1	20.	2410.	613	•		.00256	1120	.01239	
10220	•	1 - 025	3	/*[0.	300	٠		7 / 700 •	1101	•01203	
10234	•	.1.350	ŝ	1010	471	•		.00175	0794	** 37 O.	
lozan	•	カラ・コ	3	7777	さなの	•		. 00177	0803	13800.	
10244	•	212.0	55	2227	608	•		90100	0250	.00551	
1 teats	•	20000	ç.	. 0000	250	•		11700.	6050	.00041	
16254	7. 7	いみび・コ	\$	2000.	3	010		. 00001	0504	.0000	
10226		66.701	;	1. 000 ck	404	013.1		.0000	0507	• 6 00 05	
1 CCCA	•	•	•	•	•	•	•	•	•	•	
10000	•	•	•	•	•	•	•	•	•	•	
15514	•	•	•	•	•	•	•	•	•	•	
16276	•	•	•	•	•	•	•	•	•	•	
16234	•	•	•	•	•	•	•	•	•	•	
16201	•	•	•	•	•	•	•	•	•	•	
1 5.22	•	•	•	•	•	•	•	•	•	•	
16290	•	•	•	•	•	•	•	•	•	•	
1 C 30 A	•	•	•	•	•	•	•	•	•	•	
1 c.30ta	•	•	•	•	•	•	•	•	•	•	

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 108 CONFIGURATION 1207F18 ARM= 1.246 M AIR DENSITY RATIO 0.9806 DAT 21.1 DEG C

TAIL ROTOR DATA

RECORD	RECORD THRUST TORQUE (N) (N-M)	TORQUE (N-N)	ANGULAR VELOCITY (RAD/S)	C1	පී	THETA (RAD)	FIN FORCE (N)	CTF IN	CTNET REGD	CTNE T ACTUAL
		######################################				00000000000000000000000000000000000000		00000000000000000000000000000000000000		
657	• • •	•••	•••	•••	•••	• • •	•••	•••	••••	• • •

	MA	IN ROTOR-TA	IL ROTOR I NASA2-1077	NTERACTION 1	TEST		POOR
	RUN	NO. 109 DENSITY RA	CONFIGURATI TIO 0.9735	ON 111F16 OAT 23.	3 DEG C		k Qu
	٠	4	MAIN ROTOR DA	ITA			
RECORD	THRUST	TOROUE	SULAR	5	ą.	THETA	MODE
	(2)	(X-K)	(RAD/S)			(RAD)	
3	92	6.24	•	0557	00461	-	TERACTI
16548	878.9	66.282	245.5	•005570	.0004594	0-176	INTERACTIO
מ מ מ		01.0		07090	74600	•	
9	27.	3.10	4	0210	00162	9	TERACTI
3	50	3.50	1	0500	00164	•	TERACTI
51	52	7.29	9	0388	00250	7	TERACT I
2	90	000	Ď,		00700	-	TERACTI
0 K	9	7	9				
300	9.0	5.92	9	0550	00458		TERACTI
8	879.	60.9	45.	0556	00459		TERACT 1
9	200	6.93	9	4690	00546	~	TERACTI
9;		MM . 0	91	9E 90	M	7.	TERACTI
7 5		700		040		•	
52	55	7.95		0383	0000	•	TERACTI
29	5	7.94	++	0384	00265	7	TERACT
M 1	000	30.78	•	0170	99700	9	TERACTI
	200	900 F		0200	00162		A BELAT
3	325	3.56	4	0207	00164		200
3	500	7.45	43	0649	00547	7	DL ATE
g ,	, MOD	2	0	PP 00	25500	~	OL ATE
25	9		e d	2000		7	
		400				•	71410
9		6.02	1	9670			
9	5	7.19	44	0354	00200		DLATE
99	52.	59	1	0352	00262		DLATE
2	9	2.40	:	0270	00162	0	DLATE
9	88	3.20	++	020	00161	•	DLATE

OF POOR QUALITY

ORIGINAL PROPERTY.

MAIN ROTOR-TAIL ROTOR INTERACTION TEST NASA 2-10771

RUN NO. 109 CONFIGURATION IITFIG ARM I.066 M AIR DENSITY RATIO 0.9735 DAT 23.3 DEG C

TAIL ROTOR DATA

ACTUAL ACTUAL

CTNET

CTFIN

FIN NON CM

THETA (RAD)

8

5

RECORD THRUST TORQUE ANGULAR VELOCITY (N) (N-M) (RAD/S)

00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
######################################
00000000000000000000000000000000000000
UMWWUUUUWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
######################################
10000000000000000000000000000000000000

CRIGINAL PAGE IS OF POOR QUALITY		
	CTNET	00000000000000000000000000000000000000
# 6	CTF IN	
ARM B	FORCE	
5. 0. T.E.S	THETA (RAD)	
INTERACTION 1771 1110N 111 18 DAT 2 DATA	80	
NASA 2-10 CONF 1 GURA TTO 0.968	10	
ROTOR-TA	ANGULAR VELOCITY (RAD/S)	11000000000000000000000000000000000000
MAIN ALR DE	TOROUE (N-M)	00000000000000000000000000000000000000
	THRUST (N)	
	RECORD	16738 16738 16738 16738 16738 16738 16738 16738 16808 16808 16818

MAIN ROTOR PERFORMANCE PLOTS

Plots of main rotor performance are presented in this appendix. The plots are ordered by run number. A summary of test runs is presented in Table B-I. Configuration codes and grid points are presented in Figures A-9 and A-10. Two plots are shown for each main rotor case. The first is a plot of the variation of power with thrust, expressed in the non-dimensional coefficients C_{D} and C_{T} . Discrete test data points for both the interaction mode (both rotors operating) and isolated mode (tail rotor stopped) are included on each plot along with the respective regression curve fits. second plot shows the interaction effects on main rotor power, expressed as the power ratio $C_{p_{M/R}}$ (Interaction)/ $C_{p_{M/R}}$ (Isolated), versus thrust coefficient. This power ratio is derived from the curve fits of $C_{\rm p}$ versus $C_{\rm m}$. The model used for the regression curve fits was $C_p = a_0 + a_1 C_T^{3/2}$ (ref. p. A-20.) The average standard derivation of main rotor $C_{_{\mathrm{D}}}$ (measured value versus curve fit) for all of the $C_{D}^{-}C_{T}^{-}$ curve fits of Appendix C was 1.3% of the mean Cp. The average mean Cp was

Due to equipment problems, Run 092 was cut short. Insufficient data was obtained for isolated main rotor operation during this run to enable a satisfactory curve fit of that portion of the data.

approximately .003.

Dependent on tail rotor location and fin blockage, tail rotor stall occurred during the main rotor thrust sweeps with yaw trim. Table C-I shows the calculated main rotor C_p at the onset of tail rotor stall. Tail rotor stall is determined from the main-rotor-off data of Figures 11 and 12. The C_T at NET

which call rotor stall occurred in the presence of the main rotor wake may differ from the main-rotor-off cases. However, the tail rotor stall point for main-rotor-on cases was not defined due to an insufficient number of data points for these cases.

TABLE C-I. CALCULATED $C_{p_{\text{M/R}}} \times 10^5$ AT ONSET OF T/R STALL*

Location of T/R Hub (aft of M/R tip)	S/A	for Push	er T/R	S/A	for Tra	actor T/R
(are or tyk cip)	0.0	.18	. 39	0.0	.18	.39
1.1r 1.6r 2.1r		35.89 38.50 41.10	32.77 35.15 37.53	40.57 43.52 46.46	40.13	31.21 33.47 35.74

^{*} Tail rotor stall as determined with main rotor off (Figs. 11 and 12)

MAIN ROTOR POWER RATIO 1.00-0.98-0.0015 0.0025 0.0035 0.0045 0.0055 0.0065 MAIN ACTOR THRUST COEFFICIENT POWER RATIO = CP (INTERACTION) / CP (ISOLATED)

OF POOR QUALITY.

OF POOR QUALITY

UP. PULL QUILLITY

ORIGINAL PAGE IS

APPENDIX D

ACOUSTIC ANALYSIS OF ISOLATED ROTOR BASELINE

This appendix examines the isolated main rotor and tail rotor baselines and discusses the effects of the physical environment on the results. Particular items of interest are the effects of the presence of the vertical fin and the effects of the test building on noise, both of which can change the amplitude and distribution of acoustic energy generated by the rotors.

Isolated Main Rotor

Figure D-l shows the effects of thrust variation on isolated main rotor noise. An increase in noise with thrust of approximately 5 dB over the thrust range 300 to 1000 newtons is seen in all three indicators (DBA, fundamental harmonic, and the broadband peak). The increase in noise level with thrust is reasonably linear, since the rotor was always operating below stall. Figures E-3 through E-7 (Appendix E) contain the data plots for the isolated main rotor thrust sweep at microphone 4.

Under ideal conditions, the same noise level will be produced in the plane of the rotor at all azimuths. A check of the test rotor is shown in figure D-2. This shows the DBA and broadband peak levels to be relatively uniform, although the fundamental harmonic has slightly more scatter. This scatter is believed due to reverberation effects of the whirl cage enclosure. Figures E-8 through E-12 (Appendix F) show data for a constant thrust level for microphones 1, 2, 3, 5, and 6.

Since all tests were run at constant tipspeed and the ambient temperature varied significantly during the test, the tip mach number also varied. This initially caused concern when comparing data from different days. However, Figure D-3 shows that the variation appeared to have minimal effect on the noise. The DBA level increased approximately 0.7 dB between the hottest day and the coldest day. The fundamental harmonic varied up to 2.6 dB; however, it is of lesser significance at scaled frequencies. Significant changes were not expected in the hover condition, since the highest tip Mach number achieved of 0.66 was below the delocalization Mach number for the FX-083 airfoil.

The isolated main rotor cases were run with the non-rotating tail rotor and the fin in place. This appeared to have no effect on the majority of main rotor acoustic data. One exception occurred when the tail rotor and fin were

Figure D-1. Thrust level effect on isolated main rotor noise.

Figure D-2. Main rotor noise directivity, isolated rotor.

Figure D-3. Temperature effect on isolated main rotor noise.

located at grid point 1 in the pusher configuration. At this location, both the main rotor fundamental harmonic and the broadband component increased 2-5 dB for all thrust levels while the higher harmonics are relatively unaffected. This increase is believed to have been caused by the close proximity of the fin to the main rotor tip.

Isolated Tail Rotor

The isolated tail rotor cases included both pusher and tractor configurations and test for the effects of fin blockage. Fin effect tests included the baseline fin-off and fin-installed runs with both 18% and 39% blockage. A canted fin run was also made to simulate a canted tail rotor.

Figure D-4 summarizes the effects of thrust on isolated tail rotor harmonic noise, with and without a fin. Recause of the large data scatter, a logarithmic average of the first four harmonics (2, 4, 6 and 8/rev) has been plotted. Harmonics above 8/rev quickly drop off in amplitude and so do not contribute significantly to the total energy. This plot shows a moderate increase in noise with thrust level, an average increase of 8 dB over the entire thrust range, which is similar to that for the main rotor.

The presence of a fin increase tail rotor noise by 4 to 5 dB. This is mainly due to a large increase in the amplitude of the 4/rev component when the fin is added. An examination of test data showed that in the case with no fin, the 2/rev component either dominates the spectrum or is equal in amplitude to the 4/rev component. In the cases with fin blockage, most of the harmonics match the no-fin cases. The 4/rev harmonic, though increases approximately 8-10 dB.

The test data also showed no discernible effects between different fin blockages, nor any effect due to canting the fin relative to the tail rotor.

Figure D-5 summarizes the thrust level effect on isolated tail rotor broadband noise. Here a dramatic change appears when the tail rotor enters stall at approximately 45 newtons of thrust. Above stall, broadband noise increases at a rate of approximately 1.2 dB per newton of thrust, compared to approximately 0.1 dB per newton of thrust below stall. Mixed results are seen for the no-fin and fin-on cases. Below stall, the trend is similar to that of the tail rotor harmonic noise, where fin blockage increased noise by 4dB above the no-fin case. Fin blockage in the pusher mode continues this trend above stall. However, the run in tractor mode stays significantly below the other runs by as much as 8dB. Figures E-13 through E-20 (appendix E) show an

Thrust level effect on isolated tail rotor harmonic noise. Figure D-4.

Thrust level effect on isolated tail rotor peak broadband noise. Figure D-5.

example isolated tail rotor thrust sweep for the tractor configuration with fin installed for microphone 4.

The directivity of isolated tail rotor is shown in Figure D-6. There is a slight increase of 2-3 dB in the harmonic noise at the 135 degree (microphone 3) and the 225 degree (microphone 5) locations. The increase in noise at the 0 degree (microphone 1) location is probably due to the effect of the whirl cage, as was the main rotor noise level at this location. The effect of the fin adding 2 to 4 dB to the lower harmonics is generally true at all locations, except for the 270 degree location. The presence of the fin appeared to have no effect on broadband noise at this thrust level (62 newtons). Figures E-21 through E-25 (appendix E) show data for the same thrust level for microphones 1, 2, 3, 5 and 6 for the tail rotor.

Figure D-6. Tail rotor noise directivity, isolated rotor.

APPENDIX E

ACOUSTICS PLOTS

Narrowband acoustics analyses of noise generated by the model are presented in graphical form in this appendix. Plots are presented for selected test runs as shown in Table E-I. Time history plots are included for the single rotor cases. In most cases, results are plotted for various rotor thrust levels at a given azimuth (i.e., microphone 4 shown in Figure A-5) along with results for various azimuths at a given rotor thrust or trim point. Microphone location numbers are described in Figure A-5. The test run configuration code is explained in Figure A-9 and tail rotor locations are shown in Figure A-10.

TABLE E-I. SUMMARY OF ACOUSTICS PLOTS

OPERATING MODE	TEST RUN NUMBER	CONFIGURATION (See Fig. A-9)	PAGE
Isolated Main Rotor Tail rotor/fin Main rotor/tail rotor/fin	084 094 074 109 076 106 084 079 0°1 104 055 097 099 067 100 042 096 064 101	I2PF18 T'6TF39 I1PF18 I1TF18 I14PF18 I14TF18 I2PF18 I17PF39 I17TF18 I3PF39 I3TF39 I4BTF39 I4PF39 I4TF39 I5PF18 I7TF39 I5PF18	E-3 thr 1 E-12 E-13 thru E-25 E-26 thru F-33 E-34 thru E-43 F-44 thru E-47 F-48 thru E-51 F-52 thru F-55 E-56 F-57 E-58 F-59 thru F-62 E-63 thru E-66 E-67 E-68 thru E-76 E-77 thru E-20 E-81 F-82 thru F-84 F-85 thru F-38 E-89 thru F-93 F-94

a) Narrowband Analysis

b) Time History

RUN 84 CONF 12PF18 MR THRUST 341 N MIKE 4

a) Narrowband Analysis

b) Time History

RUN 84 CONF [2PF18 NA THRUST 551 N MIKE 4

a) Narrowband Analysis

b) Time History

RUN 84 CONF [2PF18 MR THRUST 780 N MIKE 4

a) Narrowband Analysis

b) Time History

RUN 84 CONF 12PF18 MR THRUST 869 N MIKE 4

a) Narrowband Analysis

b) Time History

AUN 84 CONF 12PF18 HR THRUST 1008 N MIKE 4

ORIGINAL PAGE IS

b) Time History

RUN 84 CONF [2PF18 MR THRUST 780 N MIKE 1

a) Narrowband Analysis

b) Time History

RUN 84 CONF 12PF18 MR THRUST 780 N MIKE 2

OF POOR QUALITY

b) Time History

RUN 84 CONF (2PF18 MR THRUST 780 N MIKE 3

a) Narrowband Analysis

b) Time History

RUN 84 CONF 12PF18 NR THRUST 780 N MIKE 5

a) Narrowband Analysis

b) Time History

RUN 84 CONF 12PF18 MR THRUST 780 N MIKE 6

a) Narrowband Analysis

b) Time History

RUN 94 CONF T16TF39 TH THRUST ON MIKE 4

a) Narrowband Analysis

b) Time History

RUN 94 CONF T16TF39 TR THRUST 17 N MIKE 4

a) Narrowband Analysis

b) Time History

RUA 94 CONF TLOTF39 TO THRUST 35 N MIKE 4

b) Time History

RUN 94 CONF T16TF38 TR THRUST 44 N MIKE 4

OF POOR QUALITY

a) Narrowband Analysis

b) Time : ·tory

RUN 94 CONF T18TF39 TR THRUST 53 N MIKE 4

b) Time History

RUN 94 CONF T16TF39 TR THRUST 62 N MIKE 4

b) Time History

RUN 94 CONF T161F39 TR THRUST 71 N MIKE 4

b) Time History

RUN 94 CONF T16TF39 TR THRUST 79 N MIKE 4

b) Time History

RUN 94 CONF T16TF39 TR THRUST 62 N MIKE 1

a) Narrowband Analysis

b) Time History

RUN 94 CONF TLETF39 TR THRUST 62 N MIKE 2

b) Time History

RUN 94 CONF T16TF39 TR THRUST 62 N MIKE 3

ORIGINAL PAGE IS

a) Narrowband Analysis

RUN 94 CONF TLETF39 TR THRUST 62 N MIKE 5

h) Time History

b) Time History

RUN 94 CONF T16TF39 TR THRUST 62 N MIKE 6

ORIGINAL PAGE IS

RUN 74 CONF LIPFIG MR 546 N TR 38 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 74 CONF IIPF18 MR 775 N TR 55 N MIKE 4

ORIGINAL PAGE 18 OF POOR QUALITY

RUN 74 CONF LIPFIB MA 775 N TR 55 N MIKE I

RUN 74 CONFILPFIB MR 775 N TR 55 N MIKE 2

ORIGINAL PAGE IS

RUN 74 CONF [IPFIG MR 775 N TR 55 N MIKE

ORIGINAL PAGE IS OF POOR QUALITY

AUN 74 CONF TIPFIS MR 775 N TR 55 N M

4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 109 CONF LITFIG MR 327 N TR 26 N MIKE 4

4.0 HZ. NARROW BAND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (DB) 0 .0S t 0.001 0.0p 0.08 60.0 0.0S

RUN 109 CONF LITFIS AR 555 N TR 45 N MIKE

50000 20000 00001 TEST 4.0 HZ. NARROW BAND ANALYSIS MAIN ADTOB/TAIL ROTOR INTERACTION SOUND PRESSURE LEVEL (DB) 1000 2000 FREQUENCY (HZ) 0.0S 150.0 0.001 0.08 0.03 0.04

RUN 109 CONF TITFIS MR 780 N TR 68 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

SOUND PRESSURE LEVEL (DB)

MIKE

z

TR 75

MR 875 N

11TF18

CONF

RUN 109

E-37

20000 **TEST** 5000 4.0 HZ. NARROW BAND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION SOUND PRESSURE LEVEL (DB) FREQUENCY (HZ) 20.0 150.0 0.001 0.08 0.09 0.04 INAL PAGE IS 'OOR QUALITY

ORIGINAL PAGE IS

RUN 109 CONF TITFIG MR 1003 N TR 75 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 109 CONF LITFIS MR 780 N TR 68 N MIKE 1

RUN 109 CONF (11F18 MR 780 N TR 68 N MIKE 2

ORIGINAL PAGE IS

RUN 109 CONF LITFIG MA 780 N TA 68 N MIKE 3

--:

ORIGINAL PAGE OF POOR QUALI

RUN 109 CONF [1TF18 MR 780 N TR 68 N MIKE 5

ORIGINAL PAGE IS OF POUR QUALITY

RUN 109 CONF 11TF18 MR 780 N TR 68

ø

z

BUN 76 CONF [14PF18 AR 328 N TR 21 N MIKE 4

BUN 76 CONF ILLPFIG MR 568 N TR 39 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 76 CONF II4PF18 MR 772 N TR 52 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

BUN 76 CONF ILLFFIG MR 870 N TR 64 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 106 CONF (14TF18 MR 309 N TR 26 N MIKE 4

BUN 106 CONF CIUTFIG MR 545 N TR 43 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 106 CONF IINTFIS MR 750 N TR 63 " HIKE 4

OPICINAL PAGE IS OF POOR QUALITY

Z

TR 74

CONF ILUTFIO MA 965 N

E-51

ORIGINAL PAGE IS OF POOR QUALITY

RUN 84 CONF 12PF18 MR 326 N TR 21 N MIKE 4

AUN 84 CONF 12PF18 MR 561 N TR 34 N MIN

ORIGINAL PAGE IS OF POOR QUALITY

RUN 84 CONF 12PF18 MR 778 N TR 53 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

AUN 84 CONF 12PF18 MR 869 N TR 61 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 79 CONF [17] MR 770 N FR 53 N MIKE 4

ORIGINAL PAGE TS OF POOR QUALITY

RUN BI CONF 117PF39 MR 780 N TR 55 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 104 CONF 1177F18 MR 765 N TA 66 N

ORIGINAL PAGE IS OF POOR QUALITY

RUN 55 CONF 13PF39 MR 330 N TR 21 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY 4.0 HZ. NARROW BAND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (DB) 150.0 0.001 0.08 0.09 0.04 0.05

z

73 to

MR 570 N

CONF 13PF39

E-60

ORIGINAL PAGE IS OF POOR QUALITY

RUN 55 CONF 13PF39 MR 780 N TR. 52 N MIKE 4

OF POOR QUALITY

RUN 55 CONF (3PF39 MR 680 N TR 65 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

z

TA 31

Z

HR 338

CONF 131F39

E-63

RUN 97 CONF 131F39 MR 564 N TR 52 N MIKE 4

ORIGINAL PAGE 18 OF POOR QUALITY

RUN 97 CONF 13TF39 MR 781 N TR 76 N MIKE 4

ORIGINAL PAGE IS AN ALTER OF POOR QUALITY ATTENTION

MIKE

z

27 HT

MR 904 N

CONF 13TF39

E-66

ORIGINAL PAGE IS OF POOR QUALITY

RUN 99 CONF [18TF39 MR 778 N TR 76 N MIKE 4

JUN 67 CONF THPF39 MR 301 N TR 21 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 67 CONF LYPF39 MR 526 N

35 N

TH

ORIGINAL PAGE IS OF POOR QUALITY

AUN 67 CONF LYPF39 MA 747 N TR 52 N MIKE

ORIGINAL PAGE IS OF POOR QUALITY

BUN 67 CONF 14PF39 MR 896 N TR 67 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

10000 4.0 HZ. NARROW BAND ANALYSIS MAIN BOTOR/TAIL HOTOR INTERACTION TEST SOUND PRESSURE LEVEL (OB) -----0.03 1 20.0 0.08 0.0% 0.02 100.0

BUN 67 CONF THPF39 MR 747 N TR 52 N MIKE L

ORIGINAL PAGE IS C: POOR QUALITY

32 x

E

Z

MR 747

CONF 14PF39

E-73

ORIGINAL PAGE IS OF POOR QUALITY

CONF 14PF39

E-74

ORIGINAL PAGE IS

CRIGINAL PAGE IS OF POOR QUALITY

8

MIKE

52 N

E

Z

MA 747

67

E-76

ORIGINAL PAGE IS OF POOR QUALITY

RUN 100 CONF 14TF39 MR 335 N TR 33 N MIKE 4

4.0 HZ. NARROW BRND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (08) 150.0 0.001 0.08 0.04

RUN 100 CONF 14TF39 MR 561 N TR 53 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

z

TR 78

z

CONF 14TF39 MR 769

BUN 100

E-79

ORIGINAL PAGE IS OF POOR QUALITY

50000 4.0 HZ. NARROW BRND RNALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION SOUND PRESSURE LEVEL (DB) 120.0 0.001 0.08 0.09 0.0# 0.05_

BUN 100 CONF 14TF39 MR 896 N TR 78 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 42 CONF [SPF18 MR 780 N TR 45 N MIKE 4

RUN 96 CONF 171F39 MR 337 N TR 27 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY 4.0 HZ. NARROW BRND ANALYSIS MRIN ROTOR/TRIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (DB)

RUN 96 CONF (71F39 MR 555 N TR 43 N MIKE 4

0.08

0.09

0.04

0.05

120.0

1 00.0

ORIGINAL PAGE IS OF POOR QUALITY

RUN 96 CONF 171F39 MR 782 N TR 60 N MIKE 4

RUN 64 CONF 18PF3: MR 329 N TR 20 N MIKE 4

50000 4.0 HZ. NARROW BAND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (DB) 1000 2000 FREQUENCY (HZ) S. 0.0S 0.051 O.CQI 0.08 0.09 0.0#

RUN 64 CONF 18PF39 MR 545 N TR 34 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

BUN 64 CONF [6PF39 MR 783 N TR 47 N MIKE 4

ORIGINAL PAGE IS OF POOR QUAL Y 4.0 HZ. NARROW BAND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (DB) FREQUENCY (HZ) . So. 0 0.09 0.03 0.021 0.001 0.08

RUN 64 CONF 18FF39 MR 967 N TR 65 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 101 CONF 18TF39 MR 328 N TR 26 N MIKE 4

AUN 101 CONF 181F39 MR 546 N TR 42 N MIKE 4

ORIGINAL PAGE IS OF POOR QUALITY

RUN 101 CONF 10TF39 MR 705 N TR 65 N MIKE 4

50000 20000 4.0 HZ. NARROW BRND ANALYSIS MAIN ROTOR/TAIL ROTOR INTERACTION TEST SOUND PRESSURE LEVEL (DB)

ORIGINAL PAGE IS OF POOR QUALITY

RUN 101 CONF 181F39 MR 883 N TR 79 N MIKE 4

0.08

60.0

20.0

0.04

150.0

0.001

ORIGINAL PAGE IS OF POOR QUALITY

BUN 101 CONF 181F39 MR 995 N TR 78 N MIKE 4

RUN 40 CONF 19PF18 MR 780 N TR 45 N MIKE 4