Multivariable Calculus

Swayam Chube

November 8, 2022

Contents

0	Preliminaries	2
1	Differentiation	4
	1.1 Counterexamples	10
2	Integration	13
	2.1 Multiple Integrals	13
	2.1.1 Properties of Integrals	16
	2.2 Partitions of Unity	
3	Integration on Chains	22

Chapter 0

Preliminaries

Definition 0.1 (Vector Space). Let *F* be a field and *V* an Abelian group. Then *V* is said to be an *F*-vector space, if

- 1. for all $v \in V$, $0_F v = 0_V$ and $1_F v = v$
- 2. for all $a \in F$ and $v \in V$, $av \in V$
- 3. for all $a, b \in F$ and $v \in V$, (a + b)v = av + bv
- 4. for all $a \in F$ and $u, v \in V$, a(u + v) = au + av

Definition 0.2 (Linear Transformation). Let F be a field and V, W be F-vector spaces. A linear transformation is a function $T:V\to W$ such that

- 1. for all $u, v \in V$, T(u + v) = T(u) + T(v)
- 2. for all $a \in F$ and $v \in V$, T(av) = aT(v)

Definition 0.3 (Inner Product). Let F be a field and V be a vector space over F. An inner product is a function $\langle \cdot, \cdot \rangle : V \times V \to F$ such that for all $x, y, z \in V$ and $a \in F$,

1.
$$\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$$

- 2. $\langle ax, y \rangle = a \langle x, y \rangle$
- 3. $\langle x, y \rangle = \langle y, x \rangle$
- 4. $\langle x, x \rangle > 0$ if and only if $x \neq 0$

We shall mainly concern ourselves with the case where $F = \mathbb{R}$ and $V = \mathbb{R}^n$ for some positive integer n.

Lemma 0.4. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. There is a number M such that $||T(h)|| \le M||h||$ for all $h \in \mathbb{R}^m$.

Proof. Since T is a linear transformation, it has a matrix corresponding to the chosen standard basis, say $A \in \mathbb{R}^{n \times m}$ where

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

Let $h = (h_1, \dots, h_n)$. Then

$$||Ah|| = \sqrt{\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ji} h_{i}\right)^{2}}$$

$$\leq \sqrt{\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ji}^{2} \sum_{i=1}^{n} h_{i}^{2}\right)}$$

$$\leq \sqrt{||A||^{2} ||h||^{2}} = ||A|| ||h||$$

This completes the proof.

Chapter 1

Differentiation

Definition 1.1 (Differentiable). A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *differentiable* at $a \in \mathbb{R}^n$ if there is a linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to \mathbf{0}} \frac{\|f(a+h) - f(a) - \lambda(h)\|}{\|h\|} = 0$$

where $h \in \mathbb{R}^n$. The linear transformation λ is then denoted by Df(a) and called the *derivative* of f at a.

We shall now show that the aforementioned linear transformation is unique:

Proposition 1.2. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then there is a unique linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to \mathbf{0}} \frac{\|f(a+h) - f(a) - \lambda(h)\|}{\|h\|} = 0$$

Proof. Define d(h) = f(a+h) - f(a). Further, let $\mu : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation satisfying the differentiability condition. We then have

$$\lim_{h \to \mathbf{0}} \frac{\|\lambda(h) - \mu(h)\|}{\|h\|} = \lim_{h \to 0} \frac{\|\lambda(h) - d(h) + d(h) - \mu(h)\|}{\|h\|}$$

$$\leq \lim_{h \to \mathbf{0}} \frac{\|\lambda(h) - d(h)\|}{\|h\|} + \lim_{h \to \mathbf{0}} \frac{\|d(h) - \mu(h)\|}{\|h\|} = 0$$

Let $x \in \mathbb{R}^n$. Then, for all $t \in \mathbb{R}$, $\lambda(tx) = t\lambda(x)$ and $\mu(tx) = t\mu(x)$. Therefore,

$$0 = \lim_{t \to \mathbf{0}} \frac{\|\lambda(tx) - \mu(tx)\|}{\|tx\|} = \frac{\|\lambda(x) - \mu(x)\|}{\|x\|}$$

This completes the proof.

Since Df(a) is a linear transformation, it can be given by a matrix multiplication in $\mathbb{R}^{m \times n}$.

Definition 1.3 (Jacobian Matrix). The matrix of $Df(a) : \mathbb{R}^n \to \mathbb{R}^m$ with respect to the standard ordered basis of \mathbb{R}^n and \mathbb{R}^m is called the *Jacobian Matrix* of f at a.

Theorem 1.4 (Chain Rule). If $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at a and $g : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at f(a), then the composition $g \circ f : \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at a and

$$D(g \circ f)(a) = Dg(f(a)) \circ Df(a)$$

Proof. Let b = f(a), $\lambda = Df(a)$ and $\mu = Dg(f(a))$. Further, define:

1.
$$\varphi(x) = f(x) - f(a) - \lambda(x - a)$$
 where $\varphi : \mathbb{R}^n \to \mathbb{R}^m$

2.
$$\psi(x) = g(x) - g(b) - \mu(x - b)$$
 where $\psi : \mathbb{R}^m \to \mathbb{R}^p$

3.
$$\rho(x) = g \circ f(x) - g \circ f(a) - \mu \circ \lambda(x - a)$$
 where $\rho : \mathbb{R}^n \to \mathbb{R}^p$

Note that

$$\rho(x) = g(f(x)) - g(b) - \mu(\lambda(x - a))
= g(f(x)) - g(b) - \mu(f(x) - f(a) - \varphi(x))
= g(f(x)) - g(b) - \mu(f(x) - b) - \mu(\varphi(x))
= \psi(f(x)) + \mu(\varphi(x))$$

Let $\varepsilon > 0$ be given. Then, there is δ such that $\|\psi(f(x))\| < \varepsilon \|f(x) - b\|$ whenever $\|f(x) - b\| < \delta$. Now, since f is differentiable at a, there is δ_1 such that $\|f(x) - b\| < \delta$ whenever $\|x - a\| < \delta_1$.

As a result, whenever $||x - a|| < \delta_1$,

$$\|\psi(f(x))\| < \varepsilon \|f(x) - b\|$$

$$= \varepsilon \|\varphi(x) + \lambda(x - a)\|$$

$$\leq \varepsilon (\|\varphi(x)\| + M\|x - a\|)$$

for some $M \in \mathbb{R}^+$.

It is now obvious that

$$\lim_{x \to a} \frac{\|\psi(f(x))\|}{\|x - a\|} = 0$$

Finally, it is not hard to see that

$$\lim_{x \to a} \frac{\|\mu(\varphi(x))\|}{\|x-a\|} = \lim_{x \to a} \frac{\|\mu(\psi(x)-\psi(a))\|}{\|\psi(x)-\psi(a)\|} \frac{\|\psi(x)-\psi(a)\|}{\|x-a\|} \leq M' \lim_{x \to a} \frac{\|\psi(x)-\psi(a)\|}{\|x-a\|} = 0$$

Therefore,

$$\lim_{x \to a} \frac{\|\rho(x)\|}{\|x - a\|} = 0$$

Proposition 1.5. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ with $f \equiv (f_1, \dots, f_m)$ and $a \in \mathbb{R}^n$. Then f is differentiable at a if and only if each f_i is, and

$$Df(a) = \begin{pmatrix} Df_1(a) \\ \vdots \\ Df_m(a) \end{pmatrix}$$

Proof. If f is differentiable at a, then $f_i \equiv \pi_i \circ f$ is trivially differentiable at a. Conversely, suppose each f_i is differentiable. Then, let $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ denote the linear transformation given by the matrix

$$\lambda \equiv \begin{pmatrix} Df_1(a) \\ \vdots \\ Df_m(a) \end{pmatrix}$$

Then,

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - \lambda(h)\|}{\|h\|} \le \lim_{h \to 0} \sum_{i=1}^{m} \frac{\|f_i(a+h) - f_i(a) - Df_i(a)h\|}{\|h\|} = 0$$

This completes the proof.

Proposition 1.6. *If* $f, g : \mathbb{R}^n \to \mathbb{R}$ *are differentiable at a, then*

$$D(f+g)(a) = Df(a) + Dg(a)$$

$$D(f \cdot g)(a) = g(a)Df(a) + f(a)Dg(a)$$

Moreover, if $g(a) \neq 0$ *, then*

$$D(f/g)(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{g(a)^2}$$

Proof. Let h = f + g and $\lambda = Df(a) + Dg(a)$. Then,

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) + g(a+h) - g(a) - Df(a)(h) - Dg(a)(h)\|}{\|h\|}$$

$$\leq \lim_{h \to 0} \frac{\|f(a+h) - f(a) - Df(a)(h)\|}{\|h\|} + \lim_{h \to 0} \frac{\|g(a+h) - g(a) - Dg(a)(h)\|}{\|h\|}$$

$$= 0$$

Let $h = f \cdot g$ and $\lambda = g(a)Df(a) + f(a)Dg(a)$. There is a significant amount of algebraic manipulation involved here:

$$||f(a+h)g(a+h) - f(a)g(a) - g(a)Df(a)(h) - f(a)Dg(a)(h)||$$

$$\leq ||(g(a+h) - g(a))(f(a+h) - f(a))|| + ||f(a)(g(a+h) - g(a) - Dg(a)(h))||$$

$$+ ||g(a)(f(a+h) - f(a) - Df(a)(h))||$$

This immediately implies the desired conclusion.

TODO: Write up the thing for f/g

Definition 1.7 (Partial Derivative). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$. Then, the limit

$$\lim_{h\to 0}\frac{f(a_1,\ldots,a_i+h,\ldots,a_n)-f(a_1,\ldots,a_n)}{h}$$

if it exists is called the *i*-th partial derivative of f at a and is denoted by $D_i f(a)$.

We denote $D_j(D_i f)(x)$ as $D_{i,j} f(x)$. It is important to remember that this notation reverses the order of i and j. Derivatives such as $D_{i,j} f$ are called *second-order* or *mixed* partial derivatives of f.

Theorem 1.8. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. If $D_{i,j}f$ and $D_{j,i}f$ exist and are continuous in an open set containing a, then

$$D_{i,j}f(a) = D_{j,i}f(a)$$

Proof. This proof requires Fubini's Theorem. Suppose $D_{i,j}f(a) - D_{j,i}f(a) \neq 0$. Without loss of generality, suppose $D_{i,j}f(a) - D_{j,i}f(a) > 0$. Let $\varepsilon > 0$. Using continuity, there is an open set U containing a such that $D_{i,j}f(x) - D_{j,i}f(x) > \varepsilon$ for all $x \in U$. Let A be a closed rectangle contained in A.

But, due to Fubini's Theorem,

$$\int_A D_{i,j}f(x) - D_{j,i}f(x) = \int \cdots \int D_{i,j}f(x) - \int \cdots \int D_{j,i}f(x) = 0$$

A contradiction.

Proposition 1.9. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then $D_j f_i(a)$ exists for $1 \le i \le m$ and $1 \le j \le n$ and f'(a) is the $m \times n$ matrix $[D_j f_i(a)]_{m \times n}$

Proof. That each partial $D_j f_i(a)$ exists is immediate from the fact that f is differentiable. Define the function $h_i : \mathbb{R} \to \mathbb{R}^n$ given by $h_i(x) = (a_1, \dots, x, \dots, a_n)$ where x occurs at the i-th position. Then, by definition, we have that $D_i f(a) = D(f \circ h_i)(a_i)$. And due to the chain rule,

$$D_{i}f(a) = D(f \circ h_{i})(a) = Df(h_{i}(a_{i}))Dh(a_{i}) = Df(a) \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

This immediately implies the desired conclusion.

In conclusion,

Differentiable at $a \Longrightarrow Partials$ exist at a

Theorem 1.10 (Differentiability Theorem). If $f : \mathbb{R}^n \to \mathbb{R}^m$, then Df(a) exists if all $D_j f_i(x)$ exist in an open set containing a and if each function $D_j f_i$ is continuous at a. Such a function f is called **continuously differentiable**.

Proof. Recall that due to a preceding theorem, f is differentiable if and only if each f_i is differentiable and its derivative is given by stacking the derivatives of all the respective functions. Therefore, it suffices to show this in the case when m = 1. Now,

$$f(a+h) - f(a) = f(a_1 + h_1, a_2, \dots, a_n) - f(a_1, \dots, a_n)$$

+ $f(a_1 + h_1, a_2 + h_2, a_3, \dots, a_n) - f(a_1 + h_1, a_2, \dots, a_n)$
+ $f(a_1 + h_1, \dots, a_n + h_n) - f(a_1 + h_1, \dots, a_{n-1} + h_{n-1}, a_n)$

Now, due to the Mean Value Theorem, there are real numbers b_i such that

$$f(a_1 + h_1, ..., a_i + h_i, a_{i+1}, ..., a_n) - f(a_1 + h_1, ..., a_i, ..., a_n)$$

= $h_i D_i f(a_1 + h_1, ..., b_i, ..., a_n)$

We now have

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \sum_{i=1}^{n} D_i f(a) h_i|}{\|h\|}$$

$$= \lim_{h \to 0} \frac{|\sum_{i=1}^{n} (D_i f(c_i) - D_i f(a)) h_i|}{\|h\|}$$

$$\leq \lim_{h \to 0} \sum_{i=1}^{n} \frac{|D_i f(c_i) - D_i f(a)| |h_i|}{\|h\|}$$

$$\leq \lim_{h \to 0} \sum_{i=1}^{n} |D_i f(c_i) - D_i f(a)| = 0$$

This completes the proof.

Definition 1.11 (Directional Derivative). Let $f : \mathbb{R}^n \to \mathbb{R}$. For $v \in \mathbb{R}^n$, the limit

$$\lim_{h\to 0}\frac{f(a+hv)-f(a)}{h}$$

if it exists, is denoted by $D_v f(a)$ and is called the *directional derivative* of f at a in the direction v.

Lemma 1.12. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$. If f is differentiable at a, then $D_v f(a) = Df(a)(v)$.

Proof. By definition, we have that

$$0 = \lim_{h \to 0} \frac{f(a+hv) - f(a) - Df(a)(hv)}{h} = \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h} - Df(a)(v)$$

and we have the desired conclusion.

1.1 Counterexamples

Partials but not Differentiable

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

We first show that f is continuous at (0,0). Indeed,

$$\lim_{(h,k)\to 0} \frac{h^2k}{h^2 + k^2} \le \lim_{(h,k)\to 0} k = 0$$

Next, note that both the partials exist and

$$D_x f(\mathbf{0}) = \begin{cases} \frac{2xy^3}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$
$$D_y f(\mathbf{0}) = \begin{cases} \frac{x^2(x^2 - y^2)}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

We shall now show that the function is not differentiable at (0,0). Suppose it were. Then, the derivative Df(a) would be given by

$$Df(\mathbf{0}) = \begin{pmatrix} D_x f(0) & D_y f(0) \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Therefore, one would expect,

$$\lim_{h \to \mathbf{0}} \frac{f(h)}{\|h\|} = 0$$

But note that

$$\lim_{h \to 0} \frac{f(h,h)}{h} = \frac{1}{2}$$

a contradiction.

Directional Derivatives but not Continuous

Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

We shall first show that the directional derivatives exist at **0**. Indeed, for $\mathbf{v} = (a, b)$, with $a \neq 0$,

$$\lim_{h \to 0} \frac{f(ha, hb)}{h\sqrt{a^2 + b^2}} = \lim_{h \to 0} \frac{ab^2}{(a^2 + h^2b^4)} = \frac{b^2}{a}$$

On the other hand,

$$\lim_{h \to 0} \frac{f(0,h)}{h} = 0$$

But, f is not continuous at $\mathbf{0}$, since it takes the value $\frac{1}{2}$ for each point on the parabola $y^2 = x$.

Continuous and Directional Derivatives but not Differentiable

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^2 + y^2} & y \neq 0\\ 0 & y = 0 \end{cases}$$

The continuity at **0** is obvious. Let $\mathbf{v} = (a, b)$ with $b \neq 0$. Then, the directional derivative of f at **0** in the direction of v is given by

$$\lim_{h \to 0} \frac{f(ah, bh)}{h} = \frac{bh}{|bh|} \frac{|h|}{h} \sqrt{a^2 + b^2} = \frac{b}{|b|} \sqrt{a^2 + b^2}$$

On the other hand, if b = 0, then $D_{\mathbf{v}} f(\mathbf{0})$ is just 0.

We shall now show that teh function is not differentiable at (0,0). Suppose it were. Then, the derivative $Df(\mathbf{0})$ would be given by

$$Df(\mathbf{0}) = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Therefore, one would expect

$$0 = \lim_{(h,k)\to 0} \frac{f(h,k) - k}{\sqrt{h^2 + k^2}}$$

But note that

$$\lim_{h \to 0} \frac{f(h,h) - h}{h\sqrt{2}} = 1 - \frac{1}{\sqrt{2}}$$

a contradiction.

Chapter 2

Integration

2.1 Multiple Integrals

Definition 2.1 (Partition). A *partition* of a rectangle $\mathcal{R} = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is a collection $P = (P_1, \dots, P_n)$ where each P_i is a partition of the interval $[a_i, b_i]$. A partition divides \mathcal{R} into *subrectangles*.

Definition 2.2 (Refinement). A partition P' of \mathcal{R} is said to refine P if every subrectangle of P' is contained in a subrectangle of P.

Definition 2.3 (Upper and Lower Sums). Let $\mathcal{R}(P)$ denote the subrectangles induced by P. Further, for each subrectangle S, let $m_S(f)$ and $M_S(f)$ denote the minimum and maximum values taken by f on S respectively. Then, we define

$$L(f,P) = \sum_{S \in \mathcal{R}(P)} m_S(f)v(S)$$
 $U(f,P) = \sum_{S \in \mathcal{R}(P)} M_S(f)v(S)$

as the lower and upper sums of *f* for *P* respectively.

Lemma 2.4. Suppose the partition P' refines P over R. Then,

$$L(f, P) \le L(f, P')$$
 and $U(f, P') \le U(f, P)$

Proof. Obviously, for each $S \in \mathcal{R}(P')$, there is a unique $\mathscr{C}(S) \in \mathcal{R}(P)$ containing it. Therefore,

$$L(f,P') = \sum_{S \in \mathcal{R}(P')} m_S(f) v(S) \ge \sum_{S \in \mathcal{R}(P')} m_{\mathcal{C}(S)}(f) v(S) = L(f,P)$$

and similarly, for the upper sum.

Corollary. *If* P *and* P' *are any two partitions, then* $L(f, P') \leq U(f, P)$.

Proof. Let P'' be a partition which refines both P and P'. Then,

$$L(f, P') \le L(f, P'') \le U(f, P'') \le U(f, P)$$

Definition 2.5. Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function where A is a closed rectangle. Let \mathscr{P} be the set of all possible partitions of A. Then f is said to be integrable over A if

$$\sup_{P\in\mathscr{P}}L(f,P)=\inf_{P\in\mathscr{P}}U(f,P)$$

and this common value is said to be the *integral* of f over A and is often denoted by $\int_A f d\mathbf{x}$.

Definition 2.6 (Measure Zero). A suset A of \mathbb{R}^n has measure 0 if for every $\varepsilon > 0$, there is a countable cover $\{U_1, U_2, \ldots\}$ of A by closed/open rectangles such that $\sum_{i=1}^{\infty} v(U_i) < \varepsilon$.

Proposition 2.7. If $A = \bigcup_{i=1}^{\infty} A_i$ and each A_i has measure 0, then A has measure 0.

Proof. Straightforward.

Definition 2.8 (Content Zero). A subset A of \mathbb{R}^n has content0 if for every $\varepsilon > 0$, there is a finite cover $\{U_1, \ldots, U_n\}$ of A by closed/open rectangles such that $\sum_{i=1}^n v(U_i) < \varepsilon$.

A set *A* with content 0 obviously has measure 0.

Proposition 2.9. *If A is compact and has measure* 0, then A has content 0.

Proof. Trivial.

Definition 2.10 (Oscillation). Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. Define

$$M(a, f, \delta) = \sup\{f(x) : x \in A, \|x - a\| < \delta\}$$

$$m(a, f, \delta) = \inf\{f(x) : x \in A, \|x - a\| < \delta\}$$

The *oscillation* o(f, a) of f at a is defined by

$$o(f,a) = \lim_{\delta \to 0} M(a,f,\delta) - m(a,f,\delta)$$

Lemma 2.11. Let A be a closed rectangle and let $f: A \to \mathbb{R}$ be a bounded function such that $o(f, x) < \varepsilon$ for all $x \in A$. Then there is a partition P of A with $U(f, P) - L(f, P) < \varepsilon \cdot v(A)$.

Proof. Using the definition of a limit, for each $x \in A$, there is an open set U_x containing x such that $M_{U_x}(f) - m_{U_x}(f) < \varepsilon$. Since A is compact, there is $\{U_1, \ldots, U_m\} \subseteq \{U_x \mid x \in A\}$ that forms a finite subcover for A.

Now, choose a partition P of A such that for all subrectangles $S \in P$, there is an open set U_i containing it. Then, we may trivially note that

$$M_S(f) - m_S(f) < M_{U_j}(f) - m_{U_j}(f) < \varepsilon$$

The conclusion is now obvious.

Theorem 2.12. Let A be a closed rectangle and $f: A \to \mathbb{R}$ a bounded function. Let $B = \{x \mid f \text{ is not continuous at } x\}$. Then f is integrable if and only if B is a set of measure 0.

Proof.

Definition 2.13 (Characteristic Function). If $C \subseteq \mathbb{R}^n$, the *characteristic function* of C is defined as

 $\chi_C = \begin{cases} 1 & x \in C \\ 0 & x \notin C \end{cases}$

Theorem 2.14. Let A be a closed rectangle and $C \subseteq A$. Then, $\chi_C : A \to \mathbb{R}$ is integrable if and only if ∂C has measure 0.

Proof. It is not hard to argue that

$$\partial C = \{x \mid \chi_C \text{ is not continuous at } x\}$$

This implies the desired conclusion.

Definition 2.15 (Jordan Measurable, Content). A bounded set C whose boundary has measure 0 is called *Jordan-measurable*. The integral $\int_C 1$ is called the *content* of C or the *volume* of C.

2.1.1 Properties of Integrals

In what follows $A \subseteq \mathbb{R}^n$ is a closed rectangle.

Proposition 2.16. Let $f,g:A\to\mathbb{R}$ be bounded integrable functions. Then f+g and cf are integrable for all $c\in\mathbb{R}$.

Proof. Obviously, f + g is bounded. Using the integrability of f and g, there are partitions P_f and P_g of A such that $U(f, P_f) - L(f, P_f) < \varepsilon/2$ and $U(g, P_g) - L(g, P_g) < \varepsilon/2$. Let P be a partition of A that refines both P_f and P_g . Then,

$$U(f+g,P) - L(f+g,P) = \sum_{S \in P} (M_S(f+g) - m_S(f+g))v(S)$$

$$\leq \sum_{S \in P} (M_S(f) + M_S(g) - m_S(f) - m_S(g))v(S)$$

$$= (U(f,P) - L(f,P)) - (U(g,P) - L(g,P))v(S)$$

$$< \varepsilon$$

Therefore, f + g is integrable.

The assertion regarding cf is trivial.

The converse of the statement regarding f+g is obviously not true. Since $\mathbf{0}=\chi_{\mathbb{Q}\cap[0,1]}+(-\chi_{\mathbb{Q}\cap[0,1]})$ but neither oef the functions on the right hand side of the equality are integrable.

Lemma 2.17. Let $f: A \to \mathbb{R}$ be a bounded integrable function. Then |f| is integrable.

Proof. Obviously |f| is bounded. Since f is integrable, there is a partition P of A with $U(f,P)-L(f,P)<\varepsilon$. Then,

$$U(|f|, P) - L(|f|, P) = \sum_{S \in P} (M_S(|f|) - m_S(|f|))v(S)$$

$$\leq \sum_{S \in P} (M_S(f) - m_S(f))v(S)$$

$$< \varepsilon$$

Therefore |f| is integrable.

Lemma 2.18. Let $f: A \to \mathbb{R}$ be a bounded integrable function. Then f^2 is integrable.

Proof. Let $T = \sup_{x \in A} f(x)$. Using the integrability of f, there is a partition P of A such that $U(f,P) - L(f,P) < \varepsilon/2T$. As a result, we have

$$\begin{split} U(f^2,P) - L(f^2,P) &= \sum_{S \in P} (M_S(f^2) - m_S(f^2)) v(S) \\ &\leq \sum_{S \in P} 2T(M_S(f) - m_S(f)) v(S) \\ &< 2T \cdot \frac{\varepsilon}{2T} = \varepsilon \end{split}$$

This completes the proof.

The converse is not true. Consider the function $\theta : [0,1] \to \mathbb{R}$ given by

$$\theta(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & \text{otherwise} \end{cases}$$

Then f is not integrable but $f^2 = 1$ is.

Proposition 2.19. *Let* $A \subseteq \mathbb{R}$ *be a closed rectangle and* $f,g:A \to \mathbb{R}$ *be bounded and integrable. Then,* $f \cdot g$ *is integrable.*

Proof. Obviously, $f \cdot g$ is bounded. Since we may write

$$fg = \frac{1}{4} \left((f+g)^2 - (f-g)^2 \right)$$

it follows that fg is integrable.

Theorem 2.20 (Fubini). Let $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ be closed rectangles, and let $f: A \times B \to \mathbb{R}$ be integrable. For $x \in A$, let $g_x: B \to \mathbb{R}$ be defined by $g_x(y) = f(x,y)$ and let

$$\mathfrak{L}(x) = \mathbf{L} \int_{B} g_{x} = \mathbf{L} \int_{B} f(x, y) \, dy$$
$$\mathfrak{U}(x) = \mathbf{U} \int_{B} g_{x} = \mathbf{U} \int_{B} f(x, y) \, dy$$

Then \mathfrak{L} and \mathfrak{U} are integrable on A and

$$\int_{A \times B} f = \int_{A} \mathfrak{L} = \int_{A} \left(\mathbf{L} \int_{B} f(x, y) \, dy \right) \, dx$$
$$\int_{A \times B} f = \int_{A} \mathfrak{U} = \int_{A} \left(\mathbf{U} \int_{B} f(x, y) \, dy \right) \, dx$$

Proof. Let P_A be a partition of A and P_B be a partition of B. Then $P = P_A \times P_B$ is a partition of $A \times B$. Now, note that

$$\begin{split} L(f,P) &= \sum_{S \in P} m_S(f) v(S) \\ &= \sum_{S_A \in P_A} \sum_{S_B \in P_B} m_{S_A \times S_B}(f) v(S_A \times S_B) \\ &\leq \sum_{S_A \in P_A} \left(\sum_{S_B \in P_B} m_{S_A \times S_B}(f) v(S_B) \right) v(S_A) \end{split}$$

Now, for any $x \in S_A$,

$$\sum_{S_B \in P_B} m_{S_A \times S_B}(f) v(S_B) \le \sum_{S_B \in P_B} m_{S_B}(g_x) v(S_B) \le \mathbf{L} \int_B g_x = \mathfrak{L}(x)$$

Therefore,

$$L(f,P) \leq L(\mathfrak{L},P_A)$$

Similarly, we obtain

$$U(f,P) \geq U(\mathfrak{U},P_A)$$

Consequently, we obtain

$$L(f, P) \le L(\mathfrak{L}, P_A) \le U(\mathfrak{L}, P_A) \le U(\mathfrak{U}, P_A) \le U(f, P)$$

and we have the desired conclusion.

1. In the case when f is a continuous function over the closed rectangle $A \times B$, we trivially note that g_x is also a continuous function from over B and is therefore integrable. As a result,

$$\mathbf{L} \int_{B} g_{x} = \mathbf{U} \int_{B} g_{x}$$

and we may write

$$\int_{A\times B} f = \int_{A} \int_{B} f(x, y)$$

2. Consider the function:

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

and let us attempt to calculate $\int_{[0,1]\times[0,1]} f$.

We have

$$\mathfrak{L}(x) = \mathfrak{U}(x) = \begin{cases} \frac{1}{1+x^2} & x \neq 0\\ \text{undefined} & x = 0 \end{cases}$$

and similarly,

$$\mathfrak{L}(y) = \mathfrak{U}(y) = \begin{cases} -\frac{1}{1+y^2} & y \neq 0\\ \text{undefined} & y = 0 \end{cases}$$

Therefore,

$$\int_0^1 \int_0^1 f(x,y) \, dy \, dx = \frac{\pi}{4} \qquad \int_0^1 \int_0^1 f(x,y) \, dx \, dy = -\frac{\pi}{4}$$

As a result, both the integrals exist but the function is not integrable over $[0,1] \times [0,1]$.

The above theorem is best elucidated using an example. Define

$$D = \{(x, y) \in [0, 1] \times [0, 1] \mid y \le x^2\}$$

Let us attempt to evaluate $\int_D xy$. First, we must rewrite this as an integral over a rectangle. Let $A = [0,1] \times [0,1]$. Then, we wish to evaluate the integral

$$\int_A xy\chi_D(x,y)$$

Then, $g_x : [0,1] \to \mathbb{R}$ is given by

$$g_x(y) = \begin{cases} xy & y \le x^2 \\ 0 & y > x^2 \end{cases}$$

It is not hard to see that $g_x(y)$ is integrable. Therefore,

$$\mathfrak{L}(x) = \mathbf{L} \int_{[0,1]} g_x = \mathbf{U} \int_{[0,1]} g_x = \mathfrak{U}(x) = x \int_0^{x^2} y \, dy = \frac{1}{2} x^5$$

Finally,

$$\int_A xy\chi_D(x,y) = \int_{[0,1]} \frac{1}{2} x^5 = \frac{1}{12}$$

2.2 Partitions of Unity

Theorem 2.21. Let $A \subseteq \mathbb{R}^n$ and let \mathcal{O} be an open cover of A. Then there is a collection Φ of C^{∞} functions φ defined in an open set containing A with the following properties

- 1. For each $x \in A$ we have $0 \le \varphi(x) \le 1$
- 2. For each $x \in A$ there is an open set V containing x such that all but finitely many $\varphi \in \Phi$ are 0 on V
- 3. For each $x \in A$ we have $\sum_{\varphi \in \Phi} \varphi(x) = 1$
- 4. For each $\varphi \in \Phi$ there is an open set U in \mathcal{O} such that $\varphi = 0$ outside of some closed set contained in U.

A collection Φ satisfying 1 to 3 is called a C^{∞} partition of unity for A. If Φ also satisfies 4, it is said to be subordinate to the cover \mathcal{O} .

Proof.

Theorem 2.22 (Change of Variables). Let $A \subseteq \mathbb{R}^n$ be an **open** set and $g : A \to \mathbb{R}^n$ be a 1-1, continuously differentiable function such that $\deg g'(x) \neq 0$ for all $x \in A$. If $f : g(A) \to \mathbb{R}$ is integrable, then

$$\int_{g(A)} f = \int_{A} (f \circ g) |\det g'|$$

Proof. TODO: Add in proof

Chapter 3

Integration on Chains

Definition 3.1 (Tensor). Let V be an \mathbb{R} -vector space. A function $T:V^k\to\mathbb{R}$ is called *multilinear* if for each i with $1\leq i\leq k$ we have

$$T(v_1,...,v_i+v'_i,...,v_k) = T(v_1,...,v_i,...,v_k) + T(v_1,...,v'_i,...,v_k)$$

$$T(v_1,...,av_i,...,v_k) = aT(v_1,...,v_i,...,v_k)$$

A multilinear function is called a k-tensor on V and the set of all k-tensors, denoted by $\mathfrak{J}^k(V)$ becomes an \mathbb{R} -vector space

Definition 3.2 (Tensor Product). Let V be an \mathbb{R} -vector space. For $S \in \mathfrak{J}^k(V)$ and $T \in \mathfrak{J}^l(V)$, we define the *tensor product* $S \otimes T \in \mathfrak{J}^{k+l}(V)$ in the most obvious sense.

Obviously, $S \otimes T \neq T \otimes S$. Furthermore, one notes that $\mathfrak{J}^1(V) = V^*$, the dual space. Recall that for finite dimensional spaces, dim $V^* = \dim V$.

Theorem 3.3. Let $v_1, \ldots v_n$ be a basis for V and let $\varphi_1, \ldots \varphi_n$ be the dual basis, $\varphi_i(v_i) = \delta_{ij}$. Then the set of all K-fold tensor products

$$\varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k} \qquad 1 \leq i_1, \ldots, i_k \leq n$$

is a basis for $\mathfrak{J}^k(v)$ which therefore has dimension n^k .

Proof. Straightforward