

10,102500A1205PAP

The Patent Office Concept House Cardiff Road

Newport
South Wales
NP10 800

1 3 JUL 2004

WIPO PC

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

30 June 2004

BEST AVAILABLE COPY

its Form 1/77

Patents Act 1977 (Rule 16)

06NDV03~E849781-1 P01/7700 0.00-0325832.4

Request for grant of a patent

(See the notes on the back of this form. You can also get the explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

Your reference

PAC 19

ONDON

2. Patent application number

(The Patent Office will fill in this part)

0325832.4

- 5 NOV 2003

3. Full name, address and postcode of the or of each applicant (underline all surnames)

> **CELLTECH R&D LIMITED** 208 BATH ROAD SLOUGH, SL1 3WE BERKSHIRE

GB

8121485001

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

ENGLAND AND WALES

Title of the invention

CHEMICAL COMPOUNDS

Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

DR. JOHN THOMPSON, CPA, EPA

CELLTECH R&D LIMITED 208 BATH ROAD SLOUGH, SL1 3WE **BERKSHIRE**

8121485001

Patents ADP number (if you know it)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if you know it)

Date of filing (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' If:

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an applicant. or

c) any named applicant is a corporate body. See note (d))

YES

F nts Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description 45

Claim(s) 5

Abstract 0

Drawing (5) 0

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Thompopu

Date 05.11.03

Name and daytime telephone number of person to contact in the United Kingdom

DR. JOHN THOMPSON - 01753 534655

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

CHEMICAL COMPOUNDS

Field of the Invention

5

10

15

20

25

30

This invention relates to a series of novel hydroxamate sulfonamides and their derivatives, to processes for their preparation, to pharmaceutical compositions containing them and to their use in medicine.

Background of the Invention

CD23, which is also known as the low affinity receptor for immunoglobulin (Ig)E (FcɛRII) is a type II integral protein expressed on a variety of haematopoietic and structural cells. In humans CD23 is a Ca²⁺ dependant C-type lectin of 45kDa and exists under two forms, CD23a and CD23b (Clin. And Exp. Allergy, 2000, 30, pp. 602-605). Both types are found on B-cells, CD23a is expressed constitutively and CD23b is induced in particular by IL-4. The b isoform is also found on non-B cells such as T-cells, Langerhans cells, monocytes, macrophages, platelets and eosinophils.

CD23 is not only an IgE receptor, but also a membrane-bound precursor of soluble molecules that still bind IgE (sCD23 or IgE-binding factors) (Sarfati. M. et al, Immunol. Res., 1992, 11, pp. 260-272). sCD23 of molecular weights 37, 33, 29, 25 and 17kDa arise by an autocatalytic cleavage process involving a metalloprotease cleavage of membrane-bound CD23 (Marolewski, A et al, Biochem. J., 1998, 333, pp. 573-579).

Membrane bound CD23 is a multifunctional molecule, which may exert different functions according to the cell type on which it is expressed, ranging from cellular adhesion, antigen presentation, growth and differentiation of B and T cells, rescue from apoptosis, release of cytotoxic mediators and regulation of IgE synthesis (Bonnefoy J. *et al*, Int. Rev. Immunol., 1997, 16, pp. 113-128). It has been postulated that CD23 is overexpressed in several pathologic conditions such as allergic, autoimmune, parasite diseases and B-cell lymphoproliferative diseases, such as chronic lymphocytic leukemia.

There is increasing evidence that sCD23 fragments may exert several effects, either alone or in conjunction with other cytokines, on a large variety of

haematopoietic cells. These effects include the regulation of IgE synthesis, promotion of B- and T- cell proliferation, inhibition of monocyte migration and in synergy with interleukin 1 (IL1) it may be implicated in the differentiation of early thymoctes, myeloid cell precursors and some germinal centre B cells.

5

10

15

20

25

30

In particular the three higher molecular weight sCD23 fragments (37, 33 and 29 kDa) have multifunctional cytokine properties which appear to play a major role in IgE production. The excessive formation of sCD23 has been implicated in the overproduction of IgE, which is the hallmark of allergic diseases such as extrinsic asthma, rhinitis, allergic conjunctivitis, eczema, atopic dermatitis and anaphylaxis (Sutton and Gould, Nature, 1993, 366, pp421-428). Elevated levels of sCD23 have also been observed in the synovial fluids of patients with rheumatoid arthritis (Chomarat P et al, Arthritis and Rheumatism, 1993, 36, pp. 234-242).

It has been shown that crosslinking CD23 at the cell surface by IgE delivers a negative feedback for IgE production and inhibits the release of sCD23. However, sCD23 fragments larger than 25kDa that retain part of the stalk region may promote IgE production by at least two mechanisms: 1) sCD23 directly stimulates IgE production possibly through CD21 triggering; 2) sCD23 fragments are capable of trapping IgE in the medium and thus may prevent negative feedback through membrane-bound CD23. Thus, compounds which have the ability to inhibit the formation of sCD23 should have twofold actions of: 1) inhibiting the immunostimulatory activities of the higher molecular weight soluble fragments; 2) enhancing negative feedback inhibition of IgE synthesis by maintaining levels of CD23 on the surface of B-cells. In addition, inhibition of CD23 cleavage should lessen sCD23-induced monocyte activation and mediator formation, thereby reducing the inflammatory response.

Until recently the therapeutic approach to modulating allergic responses has been focussed on the mediators thought to cause the response rather than addressing directly the control of IgE production (Christie G. *et al.*, Eur. J. Immunol. 1997, 27, pp. 3228-3235). One proposed approach for a

therapeutically relevant control point in the regulation of IgE synthesis is the regulation of CD23 processing to sCD23.

Summary of the Invention

We have now found a class of hydroxamate sulfonamides which are potent inhibitors of CD23 shedding. Therefore the compounds are particularly suitable for the treatment and / or prophylaxis of allergic diseases associated with IgE production.

Thus we provide a compound of formula (1):

$$R^{4}$$
 R^{3}
 R^{3}
 R^{2}
 R^{4}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{2}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

10 wherein:

15

20

25

5

Cy is an aryl or heteroaryl group;

m is zero or the integer 1, 2 or 3;

n is zero or the integer 1, 2 or 3; in which the sum of m and n is zero or the integer 1, 2 or 3;

 R^1 is a group selected from C_{1-6} alkyl, aryl, heteroaryl, heterocycloalkyl, C_{3-6} cycloalkyl, $-C_{1-6}$ alkylaryl, $-C_{1-6}$ alkylheteroaryl, $-C_{1-6}$ alkylheterocycloalkyl or $-C_{1-6}$ alkyl C_{3-6} cycloalkyl, in which each aryl or heteroaryl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^7 , wherein each R^7 may be the same or different, and is an atom or group selected from F, Cl, Br, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, -CN, $-CO_2R^{7a}$, $-CON(R^{7a})_2$ or $-COR^{7a}$; and in which each alkyl, heterocycloalkyl and cycloalkyl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^8 , wherein each R^8 may be the same or different, and is an atom or group selected from F, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} haloalkyl

 R^{7a} , which may be the same or different, is each a hydrogen atom, C_{1-6} alkyl group or a C_{1-6} haloalkyl group;

 R^{8a} , which may be the same or different, is each a hydrogen atom, C_{1-6} alkyl group or a C_{1-6} haloalkyl group;

 R^{10} is a hydrogen atom or a C_{1-3} alkyl group;

R² is a hydrogen atom or a C₁₋₃alkyl group;

or R^1 and R^2 together with the carbon atom to which they are attached form a $C_{3\text{-}6}$ cycloalkyl or heterocycloalkyl group optionally substituted with 1, 2 or 3 substituents selected from the group R^9 , wherein each R^9 may be the same or different, and is an atom or group selected from F, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ haloalkoxy, $C_{1\text{-}6}$ haloal

 R^3 is an atom or group selected from F, Cl, Br, C₁₋₃alkyl, C₁₋₃haloalkyl, C₁₋₃haloalkoxy or –CN;

 R^4 is a hydrogen, F, Cl or Br atom or a C_{1-3} alkyl, C_{1-3} haloalkyl, C_{1-3} alkoxy, C_{1-3} haloalkoxy, -CN, $-SO_2R^5$, $-SO_2N(R^6)_2$, $-CON(R^6)_2$, $-N(R^6)_2$, $-NSO_2R^5$ or $-NCOR^5$ group, in which each R^6 group may be the same or different;

R⁵ is a C₁₋₃alkyl group;

5

10

15

20

25

30

 R^6 , which may be the same or different, is each a hydrogen atom or a C_{1-} 3alkyl group;

 R^a and R^b , which may be the same or different, is each an atom or group selected from hydrogen or C_{1-3} alkyl or R^a and R^b may be joined to form a C_{3-6} cycloalkyl or heterocycloalkyl group as defined for R^1 and R^2 ;

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof. Description of the Invention

It will be appreciated that certain compounds of formula (1) may exist as geometric isomers (E or Z isomers). The compounds may also have one or more chiral centres, and exist as enantiomers or diastereomers. The invention is to be understood to extend to all such geometric isomers, enantiomers, diastereomers and mixtures thereof, including racemates. Formula (1) and the formulae hereinafter are intended to represent all individual isomers and mixtures thereof,

unless stated or shown otherwise. In addition, compounds of formula (1) may exist as tautomers, for example keto (CH₂C=O) – enol (CH=CHOH) tautomers.

It will also be appreciated that where desired the compounds of the invention may be administered in a pharmaceutically acceptable pro-drug form, for example, as a protected hydroxamic acid derivative, e.g. as either N or O substituted derivatives, such as O-benzoyl. It will be further appreciated that the pro-drugs may be converted *in vivo* to the active compounds of formula (1), and the invention is intended to extend to such pro-drugs.

5

10

15

20

25

30

In the compounds of the invention as represented by formula (1) and the more detailed description hereinafter certain of the general terms used in relation to substituents are to be understood to include the following atoms or groups unless specified otherwise.

Thus as used herein the term " C_{1-6} alkyl", whether present as a group or part of a group, refers to straight or branched C_{1-6} alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl or neopentyl. The term " C_{1-3} alkyl" refers to a straight or branched C_{1-3} alkyl group selected from methyl, ethyl, n-propyl or i-propyl.

The term "C₃₋₆cycloalkyl group" refers to non-aromatic cyclic, saturated C₃₋₆ring systems selected from cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

The term "heterocycloalkyl group" refers to a 3 to 10 membered saturated monocyclic or multicyclic hydrocarbon ring system containing one, two, or three L^2 linker atoms or groups. Particular examples of suitable L^2 atoms or groups include -O- or -S- or -N(R^{11})-, where R^{11} is a hydrogen atom or a C_{1-6} alkyl group.

Particular examples of heterocycloalkyl groups include 3-7 membered monocyclic ring systems such as azetidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl pyrrolidinyl, oxazolidinyl, dioxolanyl, e.g. 1,3-dioxolanyl, imidazolidinyl, pyrazolidinyl, thiazolidinyl, piperidinyl, 1,4thiomorpholinyl, dioxanyl, morpholinyl, 1,4-dithianyl, piperazinyl, N-C₁₋₆ N-C₁₋₆ alkylpiperazinyl, N-C₁₋₆alkylpyrrolidinyl, N-C₁₋₆alkylpiperidinyl, alkylmorpholinyl, homopiperazinyl or 7-10 membered multicyclic ring systems such as quinuclidinyl or 1,4-dioxaspiro[4.5]decanyl.

Typical heterocycloalkyl groups which may represent either R¹ and R² when joined together or R^a and R^b when joined together include 3-7 membered monocyclic ring systems, such as azetidinyl, tetrahydrofuranyl, tetrahydropyranyl, pyrrolidinyl and piperidinyl.

Heterocycloalkyl groups may be linked to the remainder of the compound of formula (1) by any available carbon atom or, when part of the group -C₁₋₆alkylheterocycloalkyl, by any carbon or hetero e.g. nitrogen atom as appropriate.

5

10

15

20

25

30

The term "halogen atom" is intended to include fluorine, chlorine, bromine or iodine atoms.

The term " C_{1-6} haloalkyl" is intended to include the C_{1-6} alkyl groups as defined herein substituted by one, two or three of the halogen atoms just described. Similarly the term " C_{1-3} haloalkyl" is intended to include the C_{1-3} alkyl groups as defined herein substituted by one, two or three of the halogen atoms just described. Particular examples of such groups include - CF_3 , - CCl_3 , - CH_2F or - CH_2Cl groups.

The term " C_{1-6} alkoxy" as used herein refers to straight or branched C_{1-6} alkoxy groups such as methoxy, ethoxy, n-propoxy, i-propoxy or t-butoxy. Likewise the term " C_{1-3} alkoxy" as used herein refers to straight or branched C_{1-3} alkoxy groups such as methoxy, ethoxy, n-propoxy or i-propoxy.

The term " C_{1-6} haloalkoxy" as used herein includes any of those C_{1-6} alkoxy groups substituted by one, two or three halogen atoms as described above. Similarly the term " C_{1-3} haloalkoxy" includes any of those C_{1-3} alkoxy groups as defined herein substituted by one, two or three halogen atoms as described above. Particular examples include -OCF₃, -OCCl₃, -OCHF₂, -OCHCl₂, -OCH₂F or -OCH₂Cl groups.

The term "aryl" refers to an aromatic carbocyclic radical having a single ring or two condensed rings. This term includes, for example, phenyl or naphthyl.

The term "heteroaryl" refers to a 5 to 10 membered aromatic monocyclic or multicyclic hydrocarbon ring system in which one, two or three atoms in the ring system is an element other than carbon, chosen from amongst nitrogen, oxygen or sulfur (or oxidised versions thereof, such as N-oxide). Monocyclic

heteroaryl groups include, for example, five or six membered heteroaryl groups containing one, two or three heteroatoms selected from oxygen, sulfur or nitrogen atoms.

Particular examples of monocyclic ring heteroaryl groups of this type include pyrrolyl, furyl, thienyl, imidazolyl, N-C₁₋₆alkylimidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyridyl, pyridyl, pyridyl, pyridyl-N-oxide.

5

10

15

20

25

30

Particular examples of bicyclic ring heteroaryl groups of this type include benzofuryl, benzothienyl, indolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, pyrido[3,4-b]pyridyl, naphthyridinyl, pyrido[3,4-b]pyridyl, pyrido[3,2-b]pyridyl, quinolinyl or isoquinolinyl.

The heteroaryl groups may be attached to the remainder of the compound of formula (1) by any available carbon atom.

The terms "- C_{1-6} alkylaryl", "- C_{1-6} alkylheteroaryl", "- C_{1-6} alkylheterocycloalkyl" and "- C_{1-6} alkyl C_{3-6} cycloalkyl" refer to a C_{1-6} alkyl group as defined herein in which a terminal hydrogen atom herein is replaced by an aryl, heterocycloalkyl or C_{3-6} cycloalkyl group as described herein.

The presence of certain substituents in the compounds of formula (1) may enable salts of the compounds to be formed. Suitable salts include pharmaceutically acceptable salts, for example acid addition salts derived from inorganic or organic acids, and salts derived from inorganic and organic bases.

Acid addition salts include hydrochlorides, hydrobromides, hydroiodides, alkylsulphonates, e.g. methanesulphonates, ethanesulphonates, or isothionates, arylsulphonates, e.g. p-toluenesulphonates, besylates or napsylates, phosphates, sulphates, hydrogen sulphates, acetates, trifluoroacetates, propionates, citrates, maleates, fumarates, malonates, succinates, lactates, oxalates, tartrates and benzoates.

Salts derived from inorganic or organic bases include alkali metal salts such as sodium or potassium salts, alkaline earth metal salts such as magnesium or calcium salts, and organic amine salts such as morpholine, piperidine, dimethylamine or diethylamine salts.

Particularly useful salts of compounds according to the invention include pharmaceutically acceptable salts, especially acid addition pharmaceutically acceptable salts.

One group of compounds of formula (1) has the formula (2):

5

10

15

wherein m, n, Cy, R^a, R^b, R¹, R³ and R⁴ are as defined herein for compounds of formula (1);

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

In one particular group of compounds of the invention Cy is a phenyl group or a monocyclic heteroaryl group, especially pyridyl, pyrimidinyl or pyrazinyl.

Cy is typically a phenyl group.

Another group of compounds of formula (1) has the formula (3):

wherein m, n, R^a, R^b, R¹, R², R³ and R⁴ are as defined herein for compounds of formula (1);

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

One particular group of compounds of formula (3) has the formula (4):

$$R^{4}$$
 $(1)_{n}$
 $(2)_{n}$
 $(3)_{n}$
 (4)
 (4)

wherein m, n, R^a, R^b, R¹, R², R³ and R⁴ are as defined herein;

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

In another particular aspect of the invention R^{a} and R^{b} is each a hydrogen atom.

In another particular aspect of the invention m is the integer 1 and n is zero or the integer 1.

In one group of compounds of formulae (1), (2), (3) or (4) n is preferably the integer 1. In compounds of this type m is especially the integer 1.

5

10

15

20

25

30

R² in one particular group of compounds of the invention is a hydrogen atom;

 R^1 , in one group of compounds of formulae (1), (2), (3) or (4) is a group selected from C_{1-6} alkyl, phenyl, heteroaryl, heterocycloalkyl, C_{3-6} cycloalkyl, - $(CH_2)_{1-2}$ phenyl, - $(CH_2)_{1-2}$ heteroaryl, - $(CH_2)_{1-2}$ heterocycloalkyl or - $(CH_2)_{1-2}C_{3-6}$ cycloalkyl, in which each phenyl or heteroaryl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^7 , as herein defined; and in which each alkyl, heterocycloalkyl and cycloalkyl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^8 , as herein defined.

 R^1 in a further group of compounds of formulae (1), (2), (3) or (4) is a group selected from optionally substituted C_{1-6} alkyl, phenyl, heterocycloalkyl, C_{3-6} cycloalkyl or -(CH_2)₁₋₂phenyl.

Particular R^1 examples include C_{1-6} alkyl, e.g. i-propyl, phenyl, pyridyl, pyrimidinyl, pyrrolyl, furyl, thienyl, imidazolyl, N- C_{1-6} alkylimidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, tetrahydropyranyl, tetrahydrofuranyl, piperidinyl, pyrrolidinyl, 1,4-dioxaspiro[4.5]decanyl, cyclobutyl, cyclopentyl, cyclohexyl, – CH_2 phenyl or – CH_2 pyridyl.

R¹, in one particular group of compounds of formulae (1), (2), (3) or (4), is an i-propyl, phenyl, 3,4-difluorophenyl, tetrahydropyranyl, cyclopentyl, –CH₂phenyl or –(CH₂)3,4-difluorophenyl group, especially i-propyl, phenyl or –CH₂phenyl. Further typical examples include piperidin-4-yl, 1-methylpiperidin-4-yl, 1-tert-butoxycarbonylpiperidin-4-yl, tetrahydropyran-4-yl, cyclopentyl or 3,4-difluorobenzyl.

In one group of compounds of the invention R^7 is an atom or group selected from F, Cl, Br, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy or -CN.

 R^7 , in compounds of the invention, may be for example an atom or group selected from F, CI, methyl, -CF₃, -CF₂H, methoxy, -OCF₃, -OCF₂H or -CN. Further examples of the group R^7 include $-CO_2H$, $-CO_2CH_3$, $-CO_2CH_2CH_3$, -CO $_2C(CH_3)_3$, -CON(H)CH₃, -CON(CH₃)₂ or -COCH₃. In one particular aspect of the invention R^7 is a F atom.

5

10

15

20

25

30

In one group of compounds of the invention R^8 is an atom or group selected from F, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, =O or =NOR 10 .

 R^8 , in compounds of the invention, may be for example an atom or group selected from F, methyl, -CF₃, -CF₂H, methoxy, -OCF₃, -OCF₂H, =O, =NOH or =NOCH₃. Further examples of the group R^8 include -CO₂H, -CO₂CH₃, -CO₂C(CH₃)₃, -CONH₂, -CON(H)CH₃, -CON(CH₃)₂ or -COCH₃ groups, especially -CO₂C(CH₃)₃. More particular examples of the group R^8 include methyl and -CO₂C(CH₃)₃.

Another group of compounds of the invention has the formulae (1), or (3) wherein R^1 and R^2 together with the carbon atom to which they are attached form a C_{3-6} cycloalkyl group, particularly cyclobutyl, optionally substituted with R^9 as defined herein.

In one group of compounds of the invention R^9 is an atom or group selected from F, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, =O or =NOR 10 .

 R^9 , in one group of compounds of the invention, is an atom or group selected from F, methyl, -CF₃, -CF₂H, methoxy, -OCF₃, -OCF₂H, =O, =NOH or =NOCH₃.

Particular R^3 examples include F, Cl, methyl, ethyl, i-propyl, -CF₃, -CF₂H, methoxy, ethoxy, -OCF₃, -OCF₂H or -CN. R^3 , in one group of compounds of formulae (1), (2), (3) or (4), is a F atom or a methyl, -CF₃, methoxy or -OCF₂H group. R^3 may typically also be a Cl atom.

Particular R^4 examples include hydrogen, F, CI, methyl, ethyl, i-propyl, - CF_3 , - CF_2H , methoxy, ethoxy, - OCF_3 , - OCF_2H , -CN, - SO_2CH_3 , - $SO_2N(H)_2$, - $SO_2N(CH_3)_2$, - $SO_2N(H)_2$, - $CON(H)_2$, - $CON(CH_3)_2$, - $CON(H)_3$, - $CON(H)_4$, in one group of compounds of formulae (1), (2), (3) or (4), is a hydrogen, F or CI atom or a methyl, - CF_3 , methoxy or - $COCF_2H$ group, especially a hydrogen, fluorine or chlorine atom.

Certain compounds of the invention also have a surprisingly good selectivity for CD23 when compared with their ability to inhibit matrix metalloproteinases. Examples of such matrix metalloproteinases include MMP 9 or MMP 13. Such compounds are particularly useful for the treatment of diseases in which CD23 has a role, for example allergic and other diseases as described herein. Compounds of the invention which have this useful property include those of formulae (1), (2), (3) or (4), wherein R³ is an atom or group selected from F, Cl, C¹-₃alkyl or C¹-₃alkoxy. An especially preferred group of compounds is where R³ is a C¹-₃alkyl, particularly methyl, or C¹-₃alkoxy, particularly methoxy group.

Particular compounds of this type include:

5

10

15

20

25

30.

2-[4-(2-methoxyphenyl)piperidine-1-sulfonylmethyl]N-Hydroxy-3-methylbutyramide;

2-[4-(2-methyl-4-fluorophenyl)-piperidine-1-sulfonylmethyl]N-Hydroxy-3-methylbutyramide;

2-benzyl-N-hydroxy-3-[4-(2-methoxyphenyl)-piperidine-1-sulfonyl] propionamide;

2-benzyl-N-hydroxy-3-[4-(2-methylphenyl)-piperidine-1-sulfonyl] propionamide;

N-hydroxy-3-(4-(2-Methoxyphenyl)-piperidine-1-sulfonyl]-2-phenyl propionamide;

2(R)-[4-(2-methoxyphenyl)-piperidine-1-sulfonylmethyl]N-Hydroxy-3-methylbutyramide;

2(R)-[4-(2-methylphenyl)piperidine-1-sulfonylmethyl]N-Hydroxy-3-methylbutyramide;

1-[4-(2-methoxyphenyl)-piperidine-1-sulfonylmethyl]cyclobutane carboxylic acid hydroxyamide;

;

5

10

15

20

25

30

1-[4-(2-methylphenyl)piperidine-1-sulfonylmethyl]cyclobutane carboxylic acid hydroxyamide;

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

Compounds of formulae (1), (2), (3) or (4) are potent inhibitors of CD23 shedding. The ability of the compounds to act in this way may be simply determined by employing tests such as those described in the Examples hereinafter. The selectivity profile for certain compounds of the invention with respect to their inhibition of matrix metalloproteinases may be determined using the assay as described in Example D in the International Patent Application WO-A-98/05635.

Thus the compounds of the invention may be used in the treatment of conditions associated with increased levels of sCD23. The invention extends to such a use and in general to the use of the compounds of formulae (1), (2), (3) or (4) for the manufacture of a medicament for treating such diseases and disorders.

Particular uses to which the compounds of the invention may be put include allergic diseases such as asthma, atopic dermatitis and other atopic diseases, allergic rhinitis, gastrointestinal allergies such as food allergies, eosinophilia, conjunctivitis, glomerular nephritis, graft-v-host disease, systemic anaphylaxis or hypersensitivity responses, urticaria, shock, drug allergies, insect sting allergies or parasite infections.

In a particular embodiment, the compounds of the present invention are useful for the treatment of the aforementioned exemplary disorders irrespective of their etiology, for example, for the treatment of asthma, atopic dermatitis or allergic rhinitis.

Compounds of the invention may also be of use in other diseases where sCD23 is implicated including inflammatory diseases, such as, rheumatoid arthritis and psoriasis or neoplastic diseases, such as, lymphoma or leukemia.

The compounds of formulae (1), (2), (3) or (4) can be used alone or in combination with other compounds having related utilities to prevent and treat allergic disorders and diseases, including asthma and atopic dermatitis, as well as those pathologies as discussed herein.

For the prophylaxis or treatment of disease the compounds according to the invention may be administered as pharmaceutical compositions, and according to a further aspect of the invention we provide a pharmaceutical composition which comprises a compound of formulae (1), (2), (3) or (4) together with one or more pharmaceutically acceptable carriers, excipients or diluents.

5

10

15

20

25

30

Alternate compositions of this invention comprise a compound of formulae (1), (2), (3) or (4) or a salt thereof; an additional agent selected from an immunosuppressant or an anti-inflammatory agent; and any pharmaceutically acceptable carrier, adjuvant or vehicle.

Pharmaceutical compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical, vaginal or rectal administration, or a form suitable for administration by inhalation or insufflation.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. polyvinylpyrrolidone hydroxypropyl or pregelatinised maize starch, methylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium glycolate); or wetting agents (e.g. sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such prepared by conventional means be liquid preparations mav pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles and preservatives. The preparations may also contain buffer salts, flavouring, colouring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound

For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

5

10

15

20

25

30

The compounds for formulae (1), (2), (3) or (4) may be formulated for parenteral administration by injection e.g. by bolus injection or infusion. Formulations for injection may be presented in unit dosage form, e.g. in glass ampoule or multi dose containers, e.g. glass vials. The compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use. For particle mediated administration the compounds of formulae (1), (2), (3) or (4) may be coated on particles such as microscopic gold particles.

In addition to the formulations described above, the compounds of formulae (1), (2), (3) or (4) may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation or by intramuscular injection.

For nasal administration or administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of suitable propellant, e.g. dichlorodifluoromethane, trichloro-fluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.

For vaginal or rectal administration the compounds of formulae (1), (2), (3) or (4) may be formulated as a suppository. These formulations may be prepared by mixing the active ingredient with a suitable non-irritating excipient which is a solid at room temperature but liquid at the body temperature. Such materials include for example cocoa butter and polyethylene glycols.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active

ingredient. The pack or dispensing device may be accompanied by instructions for administration.

The quantity of a compound of the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound chosen, 5 and the condition of the patient to be treated. In general, however, daily dosages may range from around 100ng/kg to 100mg/kg e.g. around 0.01mg/kg to 40mg/kg body weight for oral or buccal administration, from around 10ng/kg to 50mg/kg body weight for parenteral administration and around 0.05mg to around 1000mg e.g. around 0.5mg to around 1000mg for nasal administration or administration by inhalation or insufflation.

The compounds according to the present invention may be used as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents. The compounds according to the present invention may also be radiolabelled.

10

15

20

25

30

The compounds of the invention may be prepared by a number of processes as generally described below and more specifically in the Examples hereinafter. Many of the reactions described are well-known standard synthetic methods which may be applied to a variety of compounds and as such can be used not only to generate compounds of the invention, but also where necessary the intermediates thereto.

In the following process description, the symbols m, n, Cy, Ra, Rb, R1, R2, R³, R⁴ when used in the formulae depicted are to be understood to represent those groups described above in relation to formulae (1), (2), (3) or (4) unless otherwise indicated. In the reactions described below, it may be necessary to protect reactive functional groups, for example hydroxy, amino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups may be used in accordance with standard practice [see, for example, Greene, T. W. in "Protective Groups in Organic Synthesis", John Wiley and Sons, (1999) and the examples herein]. In some instances, deprotection may be the final step in the synthesis of a compound of formulae (1), (2), (3) or (4) and the processes

according to the invention described hereinafter are to be understood to extend to such removal of protecting groups.

Thus according to a further aspect of the invention, a compound of formula (1), or particular isomers thereof, may be prepared using the general methods a shown in Scheme A:

5

10

15

20

Scheme A

H-NR₂ (ii)
$$R^2$$
 R^1 R^1 R^2 R^3 R^4 R^5 R^7 R^7 R^8 R^8

Thus, compounds of formula (iii), where W is for example an alkoxy group, such as methoxy, ethoxy or *tert*-butoxy or a chiral auxiliary, for example, 4-(R)-benzyl-oxazolidin-2-one maybe prepared by methods well known in the literature, for example, by reaction of a sulfonyl chloride (i) with an amine (ii) in the presence of an amine base, such as triethylamine in a halogenated solvent, such as dichloromethane at room temperature.

Compounds of general formula (i) are either known or may be made by one skilled in the art using conditions known in the literature, see for example WO-A-99/24399, or as described in the examples hereinafter. Compounds of general formula (ii) are available commercially or they be made using methods known in the literature or by any method known to those skilled in the art.

Carboxylic acids of general formula (iv) may be prepared by deprotection of a suitably protected carboxylic acid of formula (iii). For example, where W is an alkoxy group, such as ethoxy, a base such as aqueous lithium hydroxide may

be used, alternatively trifluoroacetic acid may be used when W is a *tert*-butyl group or in the case of a chiral auxiliary such as 4-(R)-benzyl-oxazolidin-2-one, lithium hydroxide/hydrogen peroxide may be used. Appropriate solvent and temperature conditions such as those described in the examples herein after may be used.

Hydroxamic acids of general formula (1) may be prepared using conditions well known in the literature. For example, treatment of acids of formula (iv) with oxalyl chloride in an inert solvent (such as dichloromethane) gives an intermediate acid chloride, which may or may not be isolated, but which in turn is reacted with hydroxylamine at a suitable temperature such as room temperature to give the desired hydroxamic acids (1). Alternatively an acid of formula (iv) maybe activated *in situ* using for example a diimide such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, advantageously in the presence of a catalyst such as a N-hydroxy compound, e.g. *N*-hydroxybenzotriazole using suitable conditions, e.g. in *N*,*N* dimethylformamide at -15°C, prior to the subsequent addition of a suitably protected hydroxylamine such as *tert*-butyldimethyl silyl hydroxylamine and warming to ambient temperature. The protecting group maybe removed using appropriate conditions, such as water or tetrabutylammonium fluoride and acetic acid in tetrahydrofuran at 0°C, to yield the desired hydroxamic acids of formula (1).

Intermediates of formulae (i)-(iv) and any other intermediates required to obtain compounds of formulae (1), (2), (3) or (4), when not available commercially, may be prepared by methods known to those skilled in the art following procedures set forth in references such as Rodd's Chemistry of Carbon Compounds, Volumes 1-15 and Supplementals (Elsevier Science Publishers, 1989), Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-19 (John Wiley and Sons, 1999), Comprehensive Heterocyclic Chemistry, Ed. Katritzky et al, Volumes 1-8, 1984 and Volumes 1-11, 1994 (Pergamon), Comprehensive Organic Functional Group Transformations, Ed. Katritzky et al, Volumes 1-7, 1995 (Pergamon), Comprehensive Organic Synthesis, Ed. Trost and Flemming, Volumes 1-9, (Pergamon, 1991), Encyclopedia of Reagents for Organic

Synthesis Ed. Paquette, Volumes 1-8 (John Wiley and Sons, 1995), Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989) and March's Advanced Organic Chemistry (John Wiley and Sons, 1992).

Thus, for example, an amine of general formula (ii), in particular where Cy is phenyl group, may be prepared using methods known to those skilled in the art, including the general methods as shown in Scheme B:

5

10

15

Thus, where appropriate, a leaving group X e.g. an aromatic halogen substituent (X e.g. = Br) in the compounds of general formula (v) may be subjected to halogen - metal exchange by treatment with a base, for example a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around -78°C, in a solvent such as tetrahydrofuran and then quenched with a ketone of general formula (vi) (where P is a suitable protecting group, such as carbobenzyloxy) to give an alcohol of formula (vii). The alcohol thus formed may then be dehydrated using standard conditions, such as acid catalysis, to yield a compound of formula (viii).

Alternatively a compound of formula (viii) may also be prepared by reaction of a zinc species e.g. an aryl-zinc species of formula (ix) with a triflate of formula (x) in the presence of a catalyst, such as palladium, using conditions known to those skilled in the art.

5

10

15

20

25

The compound of formula (viii) may then be reduced using standard methodology, such as palladium catalysed hydrogenation, to yield a compound of formula (xi), containing a protecting group, P which may be converted to a compound of formula (ii) using standard deprotection methods. It will be appreciated by those skilled in the art that different protecting groups (P) may be required at each stage of the synthesis in order to satisfy the reaction conditions and as such they may be interconverted using standard methods.

A compound of formula (ii) may also be prepared from a compound of formula (xii):

$$\mathbb{R}^4$$
 \mathbb{R}^3 (xii)

by selective hydrogenation of the pyridine ring, for example using a palladium or nickel catalyst under a hydrogen atmosphere. The compound of general formula (xii) may be prepared using methods known to those skilled in the art, such as standard biaryl coupling methodology.

It will be appreciated that compounds of formulae (1), (2), (3) or (4) or any preceding intermediates may be further derivatised by one or more standard synthetic methods employing substitution, oxidation, reduction or cleavage reactions. Particular substitution approaches include conventional alkylation, arylation, heteroarylation, acylation, thioacylation, halogenation, sulphonylation, nitration, formylation and coupling procedures. It will be appreciated that these methods may also be used to obtain or modify other compounds of any of formula (1), (2), (3) or (4) or any preceding intermediates where appropriate functional groups exist in these compounds.

Salts of compounds of formulae (1), (2), (3) or (4) may be prepared by reaction of a compound of formulae (1), (2), (3) or (4) with an appropriate base or

acid in a suitable solvent or mixture of solvents e.g. an organic solvent such as an ether e.g. diethylether, or an alcohol, e.g. ethanol or an aqueous solvent using conventional procedures. Salts of compounds of formulae (1), (2), (3) or (4) may be exchanged for other salts by use of conventional ion-exchange chromatography procedures.

5

10

15

20

25

30

Where it is desired to obtain a particular enantiomer of a compound of formulae (1), (2), (3) or (4) this may be produced from a corresponding mixture of enantiomers using any suitable conventional procedure for resolving enantiomers.

Thus for example diastereomeric derivatives, e.g. salts, may be produced by reaction of a mixture of enantiomers of formulae (1), (2), (3) or (4) e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base. The diastereomers may then be separated by any convenient means, for example by crystallisation and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt.

In another resolution process a racemate of formulae (1), (2), (3) or (4) may be separated using chiral High Performance Liquid Chromatography. Alternatively, if desired a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above.

Chromatography, recrystallisation and other conventional separation procedures may also be used with intermediates or final products where it is desired to obtain a particular geometric isomer of the invention.

The following Examples illustrate the invention. All temperatures are in °C. Where experimental detail is not given for the preparation of a reagent it is either commercially available, or it is known in the literature, for which the CAS number is quoted. The compounds are named with the aid of Beilstein Autonom supplied by MDL Information Systems GmbH, Theodor-Heuss-Allee 108, D-60486 Frankfurt, Germany.

¹H NMR spectra were obtained at 300MHz or 400MHz unless otherwise indicated.

The following LCMS conditions were used to obtained the retention times (RT) as described herein:

LCMS conditions:

HP1100 (Diode Array) linked to a Finnigan LC-Q Mass Spectrometer, ESI mode with Pos/Neg ionization

Column:

Luna C18(2) 100×4.6mm, 5μm particle size Analytical column

Column Temp:

35°C

Mobile Phase:

A: Water + 0.08% formic acid

B: Acetonitrile + 0.1% formic acid

10 Flow rate:

15

3ml/min

Gradient:

Time (mins): % Composition B:

0 5 4.4 95 5.30 95 5.32 5 6.5 5

6.6

Run time:

6.5 mins

Typical Injection Vol:

5ա

20 Detector Wavelength: DAD

205-330nm

Preparative LC conditions:

Gilson 215 liquid handler setup.

Column:

Luna C18(2) 250x21.2mm, 5μn particle size PREP column

Column Temp:

Ambient

25 Mobile Phase:

A: Water + 0.08% formic acid

B: Acetonitrile + 0.1% formic acid

Gradient:

Variable – depends on retention of sample in LCMS screen

Run Time: Flow rate:

20 mins 20ml/min

30 Typical Injection Vol:

750µl of 25mg/ml solution

Detector Wavelength:

210 and 254nm

Abbreviations used:

DCM - Dichloromethane

THF – Tetrahydrofuran

35 MeOH – Methanol

DMF – N,N-dimethylformamide

TFA- Trifluoroacetic acid

MTBE – *tert*-butyl methyl ether

nBuLi - n-butyllithium

Hunig's base - N,N-diisopropylethylamine

CDCl₃ – Deuterated chloroform

d₆DMSO - Deuterated dimethylsulfoxide

Methanol-d₄ – Deuterated methanol

40

Intermediate 1

3-Methyl-2-methylenebutyric acid

Isopropyl malonic acid (30 g) was dissolved in dioxan (200 ml) and piperidine (30 ml) was added, followed by aqueous formaldehyde (30 ml). The solution was 5 stirred overnight and the resulting thick white suspension was heated to 100°C for 2 h, then cooled and evaporated. The mixture was diluted with water (400 ml) and washed with ether (200 ml), then acidified with citric acid to pH 4 and extracted with DCM (200 ml). The solvent was washed with water (200 ml) and brine (200 ml), dried and evaporated to give the title compound as colourless solid 25 g. MS 114 (M)

Intermediate 2

10

15

30

2-Bromomethyl-3-methylbutyric acid

3-Methyl-2-methylenebutyric acid (25 g) was dissolved in 48% hydrobromic acid in acetic acid (100 ml) and the solution stirred overnight at room temperature, then added to water (300 ml) and extracted with diethyl ether (2 x 200 ml). The solvent washed with water (200 ml) and brine (200 ml), dried and evaporated to give the title compound as a pale amber solid 33 g. MS 195 (M)

Intermediate 3

2-Bromomethyl-3-methylbutyric acid tert-butyl ester

2-Bromomethyl-3-methylbutyric acid (33 g) was placed in a Parr pressure 20 reactor, cooled to -78 °C and isobutylene (200 ml) and DCM (200 ml) were added, followed by concentrated sulphunc acid (1 ml). The vessel was sealed and the mixture stirred at room temperature for 18 h, then pressure carefully released and the solution added to saturated sodium bicarbonate solution (400 ml). The mixture was extracted with diethyl ether (2 x 200 ml), the solvent 25 washed with water (200 ml) and brine (200 ml) and evaporated in vacuo to give the title compound as a colourless liquid (33 g). MS 251 (M)

Intermediate 4

2-Acetylsulfanylmethyl-3-methylbutyric acid tert-butyl ester

Potassium thioacetate (20 g) was added to a solution of 2-bromomethyl-3methylbutyric acid tert-butyl ester (33 g) in DMF (200 ml) and the brown mixture stirred for 18 h, then added to water (1 litre), and the mixture extracted with diethyl ether (300 ml). The solvent was washed with water, saturated sodium bicarbonate solution and brine, dried and evaporated to give the title compound as an amber oil (29 g). MS 246 (M)

5 Intermediate 5

10

2-Chlorosulfonylmethyl-3-methyl-butyric acid tert-butyl ester

Chlorine was passed through a solution of 2-acetylsulfanylmethyl-3-methylbutyric acid *tert*-butyl ester (29 g) in DCM (100 ml) and water (100 ml) at 0°C for 1 h, giving a pale green solution. The phases were separated and the organic layer washed with water (200 ml), sodium bicarbonate solution (200 ml) and brine (200 ml), dried and evaporated to give the product as a colourless liquid which crystallised on refrigeration (27 g). MS 271 (M)

Intermediate 6

2-Benzyl acrylic acid

Prepared from benzyl malonic acid (25g) using the method as described for 3-methyl-2-methylenebutyric acid to give the title compound as white solid (18 g).

MS 162 (M + 1)

Intermediate 7

2-Bromomethyl-3-phenylpropionic acid

20 Prepared from 2-benzyl acrylic acid (18 g) using the method as described for 2-bromomethyl-3-methylbutyric acid to give the title compound as a white solid (23 g). MS 243 (M)

Intermediate 8

2-Bromomethyl-3-phenylpropionic acid- tert-butyl ester

25 Prepared using the method as described for 2-bromomethyl-3-methylbutyric acid tert-butyl ester from 2-bromomethyl-3-phenylpropionic acid (23 g) to give the title compound as a brown oil 28 g. MS 299 (M)

Intermediate 9

2-Acetylsulfanylmethyl-3-phenylpropionic acid- tert-butyl ester

30 Prepared using the method as described for 2-acetylsulfanylmethyl-3-methylbutyric acid tert-butyl ester from 2-bromomethyl-3-phenylpropionic acid-

tert-butyl ester (28 g) to give the title compound as a yellow oil (18.5 g). MS 294 (M)

Intermediate 10

2-(Chlorosulfonylmethyl)-3-phenylpropionic acid- tert-butyl ester

5 Prepared using the method as described for 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester from 2-acetylsulfanylmethyl-3-phenylpropionic acid-tert-butyl ester (18.5 g) as a colourless solid (19 g). MS 319 (M + H).

Intermediate 11

10

15

20

25

30

1-(Chlorosulfonylmethyl)cyclobutane carboxylic acid ethyl ester

N-Butyl lithium (49.8 ml of 1.6M solution in hexanes) was added to a solution of di-isopropylamine (11.2 ml) in THF (90 ml) at –78 °C and the solution stirred for 30 min. A solution of ethyl cyclobutane carboxylate (10 ml) was added dropwise and the mixture stirred for 30 min, then treated with diiodomethane (6.4 ml). The mixture was stirred for 3 h and allowed to warm to room temperature, quenched with water (50 ml) and evaporated. The residual mixture was partitioned between water and ethyl acetate, the organic layer washed with water and brined, dried and evaporated. The residue was dissolved in DMF (50 ml) and potassium thioacetate (8.3 g) was added. The brown solution was stirred ovemight at room temperature, then added to water and extracted with ethyl acetate. The solvent was washed with water (200 ml) and brine (200 ml), dried and evaporated to a brown oil. The residue was dissolved in DCM (100 ml), water (100 ml) was added and chlorine bubbled through the mixture at 0 °C. The organic layer was washed with water (200 ml) and brine (200 ml), dried and evaporated to give the title compound as a brown oil (9.8 g).

TLC R_f 0.45 (2:1 heptane-ethyl acetate).

Intermediate 12

4-(R)-Benzyl-3-(3-methylbutyryl)oxazolidin-2-one

nButyllithium (2.5 M in hexanes, 65 ml) was added to a solution of (R)-benzyloxazolidinone (28.9 g) in THF (200 ml) at -78° C and the mixture was stirred for 30 min, then 3-methylbutanoyl chloride (22 ml) was added and the solution stirred for 2 h. The reaction mixture was quenched with saturated

ammonium chloride, evaporated *in vacuo* and the residue extracted with DCM (2 x 200 ml). The solvent was washed with water (200 ml), bicarbonate solution (200 ml) and brine (200 ml), dried and evaporated to give the title compound as a colourless solid (41.5 g). MS 261 (M)

5 **Intermediate 13**

4-(R)-Benzyl-3-(2-(S)-hydroxymethyl-3-methylbutyryl) oxazolidin-2-one

Titanium tetrachloride (18 ml) was added to a solution 4-(R)-benzyl-3-(3-methylbutyryl)oxazolidin-2-one (41.5 g) in DCM at 0 °C. Hunig's base (28 ml) was added and the purple solution stirred for 30 min, then a solution of trioxane (11.2 g) in DCM was added dropwise, followed by titanium tetrachloride. The mixture was stirred vigorously for 2 h at 0 °C, giving an amber solution, which was quenched with saturated aqueous ammonium chloride. The phases were separated and the organic layer washed with water (150 ml), bicarbonate solution (150 ml), and brine(150 ml), dried and evaporated to a white solid (45 g).

15 MS 291 (M).

10

20

30

Intermediate 14

4-(R)-Benzyl-3-(2-(R)-iodomethyl-3-methylbutyryl)oxazolidin-2-one

lodine (42 g), triphenylphosphine (47 g) and imidazole (12 g) were added to a solution of 4-(R)-benzyl-3-(2-(S)-hydroxymethyl-3-methylbutyryl) oxazolidin-2-one (45 g) in toluene (500 ml) and the mixture was boiled under reflux for 1 h. The resulting suspension was cooled, filtered and the filtrate washed with water (150 ml), and brine (150 ml),. The solid residue was dissolved in DCM and filtered through silica (200 g) eluting with ether/hexane to give the title compound as a pale yellow oil (57 g). MS 401 (M)

25 Intermediate 15

4-(R)-Benzyl-3-(2-(R)-acetylthiomethyl-3-methylbutyryl) oxazolidin-2-one

Potassium thioacetate (19 g) was added to a solution of 4-(R)-benzyl-3-(2-iodomethyl-3-methylbutyryl)oxazolidin-2-one (56 g) in DMF (300 ml) and the mixture was stirred at room temperature for 3 h, then added to water (2 l) and extracted with ether (2 x 500 ml). The solvent was washed with water (400 ml),

bicarbonate solution (200 ml) and brine (200 ml), dried and evaporated to give the title compound as a pale amber oil (49 g). MS 349 (M)

Intermediate 16

5

10

4(R)-Benzyl-3-(2(R)-chlorosulfonylmethyl-3-methylbutyryl)oxazolidin-2-one

Chlorine was bubbled through a solution of 4-(R)-benzyl-3-(2-(R)-acetylthiomethyl-3-methylbutyryl) oxazolidin-2-one (49g) in DCM (200 ml) and water (200 ml) until the solution became yellow. The mixture was stirred vigorously for 1 h, then purged with nitrogen, the phases were separated and the organic layer washed with water (150 ml), and brine (150 ml), dried and evaporated to give the title compound as a colourless gum (42 g). MS 373 (M) 1H NMR (δH, CDCl3) 7.2-7.4 (5H, m), 4.65-4.8 (2H, m), 4.45 (1H, dd), 4.20 (2H, d), 3.70 (1H, dd), 3.45 (1H, dd), 2.65 (1H, dd), 2.10 (1H, m), 1.15 (3H, d), 0.03 (3H, d)

Intermediate 17

15 3-Bromo-2-phenylpropionic acid

Prepared from phenylmalonic acid [CAS number 492-38-6] (4 g) following the procedure as described for 2-bromomethyl-3-methylbutyric acid to yield an amber oil (5.2 g). MS 229 (M)

Intermediate 18

20 3-Bromo-2-phenylpropionic acid-tert-butyl ester

Prepared using the method as described for 2-bromomethyl-3-methylbutyric acid *tert*-butyl ester from 3-bromo-2-phenylpropionic acid (5g) as a colourless oil (4.5 g). MS 285 (M)

Intermediate 19

25 3-Acetylsulfanyl-2-phenylpropionic acid-tert-butyl ester

Prepared using the method as described for 2-acetylsulfanylmethyl-3-methylbutyric acid *tert*-butyl ester from *tert*-butyl-3-bromo-2-phenylpropanoate (4 g) as a yellow liquid (3.3 g). MS 280 (M)

Intermediate 20

30 3-Chlorosulfonyl-2-phenylpropionic acid-tert-butyl ester

Prepared using the method as described for 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester from 3-acetylsulfanyl-2-phenylpropionic acid-*tert*-butyl ester (3 g) as a beige solid (2.1 g). TLC R_f 0.47 (ether)

Intermediate 21

10

15

30

5 1-tert-butoxycarbonyl-piperidin-4-ylmalonic acid

Titanium tetrachloride (22 ml) was added dropwise to a solution of 1-tert-butoxycarbonylpiperidin-4-one (20 g) and diethyl malonate (16 ml) in THF (200 ml) at 0 °C. Pyridine (52 ml) was added dropwise and the mixture was stirred overnight. Water (500 ml) and EtOAc (500 ml) were added, the organic layer washed with brine (300 ml), I M HCl (300 ml), dried and evaporated. The residue was dissolved in EtOH (200 ml) and hydrogenated at atmospheric pressure over 10% Pd/C (2 g) overnight. The mixture was filtered and aqueous NaOH (2M, 200 ml) was added. The solution was boiled under reflux for 6 h, cooled, evaporated and the residue partitioned between 1M HCl (400 ml) and EtOAc (400 ml). The solvent was dried (MgSO₄) and evaporated and the residue triturated with ether to give the title compound as white crystalline solid (9 g).

TLF R_f 0.27 (EtOAc/I% AcOH).

Intermediate 22

2-((1-tert-butoxycarbonyl)piperidin-4-yl)acrylic acid

20 Intermediate 21 (9 g) was dissolved in dioxan (60 ml) and formaldehyde solution (37% aq., 10 ml) and piperidine (10 ml) were added. The mixture was stirred ovemight, then heated at reflux for 1 h. The solution was evaporated *in vacuo* and partitioned between 1 M HCl (100 ml) and Et₂O (100 ml). The solvent was washed with water (50 ml) and brine (50 ml), dried and evaporated to give the title compound as colourless crystalline solid (5.6 g). TLC R_f 0.42 (Et₂O).

Intermediate 23

4-[1-(4(R)-Benzyl-2-oxo-oxazolidine-3-carbonyl)vinyl]piperidine-1-carboxylic acid tert-butyl ester

Intermediate 22 (4.0 g) was dissolved in DCM (50 ml) and pyridine (3ml) and treated with oxalyl chloride (3 ml) and DMF (1 drop). The solution was stirred for 3 h, then evaporated *in vacuo* and azeotroped to dryness with heptane. The

product was dissolved in THF (20 ml) and added dropwise to a solution of (R)-benzyloxazolidin-2-one (2.7 g) and nBuLi (2.5M in hexanes, 6.5 ml) in THF (60 ml) at -78 °C. The mixture was stirred for 4h, then quenched with ammonium chloride solution (200 ml), extracted with EtOAc (200 ml) and the solvent washed with water (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated. The residue was columned on silica (3:1 ether-hexane) to give the title compound as colourless solid 3.3 g. TLC R_f 0.35 (3:1 ether-hexanes). 1H NMR (δ H, CDCl₃) 7.2-7.4 (5H, m), 5.40 (2H, m), 4.75 (1H, m). 4.10-4.35 (4H, m), 3.30 (1H, dd), 2.85 (1H, dd), 2.70 (2H, dt), 2.55 (1H, dt), 1.85 (2H, dt), 1.60 (9H, s), 1.45-1.60 (2H, m).

Intermediate 24

5

10

15

20

25

30

4-[1(R)-Acetylsulfanylmethyl-2-(4(R)-benzyl-2-oxo-oxazolidin-3-yl)-2-oxoethyl]-piperidine-1-carboxylic acid *tert*-butyl ester

Intermediate 23 (3.3 g) was stirred in thioacetic acid (10 ml) for 18 h at room temperature. The mixture was diluted with Et₂O (100 ml) and washed with 1M NaOH (2 x 50 ml), water and brine (50 ml), dried (MgSO₄) and evaporated. Analysis showed the crude product to be a 9 to 1 mixture of diastereomers. The residue was columned (1:1 Et₂O/hexane) to give the title compound as white solid 2.6 g. TLC R_f 0.27 (1:1 Et₂O/hexane). 1H NMR (δ H, CDCl₃) 7.2-7.4 (5H, m), 4.70 (1H, m), 4.0-4.2 (5H, m), 3.25-3.40 (2H, m), 3.10 (1H, dd), 2.75 (1H, dd), 2.55-2.70 (2H, m), 2.35 (3H, s), 1.90 (1H, m), 1.2-1.70 (4H, m), 1.45 (9H, s).

Intermediate 25

4-[2-(4(R)-Benzyl-2-oxo-oxazolidin-3-yl)-1(R)-chlorosulfonylmethyl-2-oxo-ethyl]piperidine-1-carboxylic acid *tert*-butyl ester

Chlorine was bubbled through a solution of Intermediate 24 (1.6 g) and sodium acetate (5 g) in DCM (50 ml) and water (20 ml) at 0 °C for 10 min, until a faint yellow colour persisted in the organic layer. The mixture was stirred for a further 30 min, then the phases were separated and the organic layer washed with water (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated to give the title compound as colourless solid (1.6 g). TLC R_f 0.53 (Et₂O). 1H NMR (δH, CDCl₃) 7.2-7.4 (5H, m), 4.80 (1H, m), 4.70 (1H, m), 4.45 (1H, dd), 4.15-4.30 (4H, m),

3.80 (1H, dd), 3.50 (1H, dd), 2.65 (1H, dd), 2.55-2.70 (2H, m), 1.90 (1H, m), 1.70 (2H, m), 1.45 (9H, s), 1.35-1.55 (2H, m)

Intermediate 26

(Tetrahydropyran-4-ylidene)acetic acid methyl ester

Carbomethoxy triphenylphosphonium bromide (45 g) was added to a solution of tetrahydropyran-4-one (10 g) in THF (100 ml). Sodium hydride (4.2 g) was added carefully in small portions. The suspension was stirred at reflux for 18 h, then cooled, filtered and evaporated. The residue was filtered through silica, eluting with Et₂O /hexane 1:1 to give the title compound as a colourless oil (13 g).

10 MS 156 (M)

15

20

30

Intermediate 27

(Tetrahydropyran-4-yl)acetic acid methyl ester

Intermediate 26 (13 g) was hydrogenated at atmospheric pressure in MeOH (100 ml) for 24 h, the solution filtered and evaporated to give the title compound as a colourless liquid (13 g). MS 158 (M)

Intermediate 28

(Tetrahydropyran-4-yl)acetic acid

Sodium hydroxide (16 g) in water (400 ml) was added to a solution of Intermediate 27 (13 g) in MeOH (60 ml). The mixture was stirred overnight at room temperature, then evaporated *in vacuo*. The solution was washed with Et₂O (50 ml), acidified with concentrated hydrochloric acid to pH 2 and extracted with EtOAc (100 ml), the solvent washed with brine (50 ml), dried (MgSO₄) and evaporated to give the title compound as a colourless solid (10.2 g). MS 144 (M)

Intermediate 29

25 4-(R)-Benzyl-3-(2-tetrahydropyran-4-yl-acetyl)oxazolidin-2-one

Oxalyl chloride (5 ml) and DMF (1 drop) were added to a solution of Intermediate 28 (10 g) in DCM (100 ml). The mixture was stirred for 3 h, then evaporated *in vacuo* and thoroughly azeotroped with toluene. The residue was dissolved in THF (30 ml) and added dropwise to a solution of (R)-benzyloxazolidinone (12.1 g) and nBuLi (2.5 M in hexanes, 30 ml) in THF (200 ml) at -78° C. The solution was stirred for 2 h, then quenched with saturated aqueous ammonium chloride

(100 ml) and evaporated *in vacuo*. The mixture was extracted with EtOAc (100 ml), solvent washed with water (100 ml) and brine, dried (MgSO₄) and evaporated to give the title compound as a colourless solid (14 g). MS 304 (M + H).

5 Intermediate 30

10

15

20

30

4-(R)-Benzyl-3-[3-hydroxy-2-(S)-(tetrahydropyran-4-yl)propionyl]oxazolidin-2-one

Titanium tetrachloride (14 ml, 1M in DCM) was added to a solution of Intermediate 29 (4 g) in DCM (100 ml) at 0 $^{\rm o}$ C, followed by Hunig's base (2.5 ml). The mixture was stirred for 30 min, then trioxane (1.2 g) and titanium

tetrachloride (14 ml) were added. The dark purple suspension was stirred for 4 h, then quenched with saturated ammonium chloride solution, the organic layer washed with water (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated. The residue was columned on silica (Et₂O) to give the title compound as a white solid (1.6 g). MS 334 (M + 1)

Intermediate 31

4-(R)-Benzyl-3-[3-iodo-2-(R)-(tetrahydropyran-4-yl)propionyl]oxazolidin-2-one

Intermediate 30 (1.6 g) was dissolved in toluene (30 ml) and triphenyl phosphine (1.4 g), iodine (1.3 g) and imidazole (350 mg) were added. The mixture was stirred at reflux for 1 h, then cooled, washed with water (50 ml) and the solution evaporated. The residue was columned on silica (2:1 $Et_2O:hexane$) to give the title compound as a white solid (1.8 g). MS 444 (M + 1).

Intermediate 32

25 4-(R)-Benzyl-3-[3-acetylsulfanyl-2-(R)-(tetrahydropyran-4-yl)propionyl]oxazolidin-2-one

Intermediate 31 (1.8 g) was dissolved in DMF (10 ml) and potassium thioacetate (600 mg) was added. The suspension was stirred for 4 h, then added to water (100 ml) and extracted with EtOAc (50 ml). The solvent was washed with water (2 x 30 ml), bicarbonate (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated to give the title compound as a pale orange gum 1.5 g. MS 392 (M + H)

Intermediate 33

5

15

20

3-(4-(R)-Benzyl-2-oxooxazolidin-3-yl)-3-oxo-2-(R)-(tetrahydropyran-4-yl)propane-1-sulfonyl chloride

Chlorine was passed through a solution of Intermediate 32 (1.5 g) in DCM (100 ml) and water (100 ml) for 30 min. The solution was stirred for 30 min, purged with nitrogen and the phases separated. The organic layer was washed with water (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated to give the title compound as a colourless solid (1.3 g). MS 416 (M + 1).

Intermediate 34

10 4- (2-Chloro-4-fluorophenyl)piperidine trifluoroacetate

2-Chloro-4-fluorophenyl zinc iodide (2.9 g) in THF (30 ml) was added dropwise to a solution of 4-(trifluoromethanesulphonyloxy)-1-tertbutoxycarbonyl-tetrahydropyidine (2 g) and palladium tetrakis triphenyl phosphine (0.33 g) in THF (30 ml). The solution was stirred at 50 °C for 3 h, then the mixture was poured into sodium bicarbonate solution (100 ml) and extracted with DCM (100 ml). The solvent was dried (MgSO₄) and evaporated. The product was dissolved in MeOH (100 ml) and hydrogenated over platinum oxide catalyst (0.10 g) at atmospheric pressure. The product was dissolved in DCM (20 ml) and TFA (5 ml) was added. The solution was stirred for 2 h, then evaporated and azeotroped with heptane (2 x 50 ml). The crude product was purified by crystallization from MeOH/Et₂O to give the title compound as colourless solid 0.91 g. MS 214 (M + 1)

Intermediate 35 was prepared in a similar manner to the method of Intermediate 34:

25 Intermediate 35

4- (2,4-Dichlorophenyl)piperidine trifluoroacetate

From 2,4-dichlorophenyl zinc iodide (0.5 M in THF, 20 ml) and - (trifluoromethanesulphonyloxy)-1-tertbutoxycarbonyl-tetrahydropyidine (3.31 g) as white solid (1.2 g). MS 231 (M + 1).

30 Intermediate 36

1-Benzyl- 4- (2-methoxy-4-fluorophenyl)tetrahydropyridine

2-Methoxy-4-fluorobromobenzene (1.61 g) was treated with nBuLi (2.5 M in hexanes, 3.2 ml) in Et₂O (100 ml) at -78 °C. The solution was stirred for 10 min, then a solution of N-benzylpiperidin-4-one (1.52 g) in Et₂O (50 ml) was added dropwise. The mixture was stirred for 2 h, then washed with ammonium chloride solution, dried and evaporated. The crude product was dissolved in toluene (100 ml) and P_2O_5 (3.5 g) was added. The mixture was heated at reflux for 8 h, then washed with 1M NaOH (100 ml), dried (MgSO₄), evaporated and the crude product purified by chromatography on silica (5% MeOH/DCM) to give the title compound as pale yellow oil 2.21 g. MS 298 (M + 1).

10 Intermediate 37

5

20

25

1-Benzyl- 4-(2-methoxy-4-fluorophenyl)piperidine

Intermediate 36 (2.21 g) was hydrogenated over platinum oxide (20 mg) in MeOH (30 ml) for 18 h. The mixture was filtered and evaporated *in vacuo* to give the title compound as colourless oil 2.2 g. MS 300 (M + 1).

15 Intermediate 38

4- (2-Methoxy-4-fluorophenyl)piperidine hydrochloride

Intermediate 37 (1.9 g) was dissolved in dichloroethane (10 ml) and 1-chloroethylchloroformate (1 g) was added. The solution was heated at reflux for 1h, then the mixture evaporated. MeOH (20 ml) was added and the solution heated at reflux for 2h, then cooled and diluted with Et_2O (50 ml). The product was collected by filtration to give the title compound as colourless solid (1.2 g). MS 210 (M + 1)

Intermediates 39 and 40 were prepared in a similar manner using the methods as described in Intermediates 36 – 38:

Intermediate 39

4-(2-Methoxy-4-chlorophenyl)piperidine hydrochloride

From 2-methoxy-4-chlorobromobenzene (0.86 g) and N-benzylpiperidin-4-one (0.74 g) as colourless solid 300 mg. MS 226 (M + 1)

30 Intermediate 40

4-(2-Methyl-4-fluorophenyl)piperidine hydrochloride

From 2-methyl-4-fluorobromobenzene (3.25 g) and N-benzylpiperidine (3.25 g) as colourless solid 1.2 g. MS 193 (M \pm 1)

Intermediate 41

2-Cyclopentylacrylic acid

Prepared using the method as described for intermediate 1, from cyclopentylmalonic acid (5 g) to give the title compound as a yellow oil (4.1 g). 1H NMR (δH, CDCl₃) 11.5 (1H, s), 6.3 (1H, s), 5.8 (1H, s), 2.95 (1 H, q), 1.95-2.0 (2H, m), 1.65-1.8 (4H, m), 1.35-1.5 (2H, m)

Intermediate 42

10 3-Bromo-2-cyclopentyl propionic acid

Prepared using the method as described for Intermediate 2, from Intermediate 41 (4.1 g) to give the title compound as a white solid (4.34 g). 1H NMR (δ H, CDCl₃) 10.5 (1H, s), 3.45-3.65 (2H, m), 2.55-2.75 (1H, m), 1.90-2.15 (1H, m), 1.70-1.90 (2H, m), 1.45-1.70 (4H, m), 1.15-1.45 (2H, m). MS 221 (M)

15 **Intermediate 43**

20

30

3-Acetylsulfanyl-2-cyclopentyl propionic acid

Potassium thioacetate (2.24 g) was added to a solution of Intermediate 42 (4.34 g) in DMF (20 ml) and the mixture stirred for 24 h. The brown solution was added to water (100 ml), extracted with Et_2O (100 ml) and the solvent washed with water and brine, dried (MgSO₄) and evaporated *in vacuo* to give the title compound as a brown solid (3.8 g). 1H NMR (δ H, CDCl₃) 3.30 (1H, dd), 2.96-3.0 (1H, m), 2.50 (1H, dd), 2.38 (3H, s), 2.05 (1H, q), 1.85-1.95 (1H, m),1.45-1.70 (4H, m), 1,25-1.40 (2H, m)

Intermediate 44

25 3-Acetylsulfanyl-2-cyclopentylpropionic acid *tert*-butyl ester

Intermediate 43 (3.8 g) was dissolved in a mixture of isobutylene (30 ml) and DCM (30 ml), concentrated sulphuric acid (1 ml) was added and the mixture stirred in a Parr pressure reaction vessel for 18 h. The pressure was released cautiously and the solution added to saturated sodium bicarbonate solution, the phases separated and the organic layer washed with water and brine, dried (MgSO₄) and evaporated to give the title compound as a brown oil (4.1 g).1H

NMR (δ H, CDCl₃) 3.35 (1H, dd), 3.1-3.25 (1H, m), 2.45 (1H, dd), 2.40 (3H, s), 2.05 (1H, q), 1.85-1.95 (1H, m), 1.4-1.65 (4H, m), 1.30 (9H, s), 1.25-1.40 (2H, m)

Intermediate 45

5

10

15

3-Chlorosulfonyl-2-cyclopentylpropionic acid tert-butyl ester

Prepared using the method as described for Intermediate 5 from Intermediate 44 (1.7 g) to give the title compound as an amber oil (1.6 g). 1H NMR (δ H, CDCl₃) 4.25 (1H, dd), 3.70 (1H, dd), 2.90 (1H, dt), 2.05 (1H, m), 1.85-1.95 (1H, m), 1.4-1.65 (4H, m), 1.30 (9H, s), 1.25-1.40 (2H, m)

Intermediate 46

4-(R) - Benzyl-3-(3-(3,4-difluorophenyl)propionyl)oxazolidin-2-one

3,4-difluorophenylhydrocinnamic acid (10 g, 53 mmol) was dissolved in DCM (100 ml) and stirred with oxalyl chloride (10 ml) and DMF (1 drop) for 3 h at room temperature. The solution was evaporated *in vacuo* and azeotroped with heptane (2 x 200 ml). The residue was dissolved in THF (20 ml) and added dropwise to a solution of (R)-benzyloxazolidinone (9 g) and nBuLi (1.6 M in hexanes, 35 ml) in THF (100 ml) at -78 °C. The mixture was stirred for 2 h, quenched with saturated ammonium chloride solution (100 ml) evaporated in vacuo and the solid product collected by filtration to give the title compound as colourless solid (16 g). MS 346 (M + 1). TLC R_f 0.65 (Et₂O).

20 Intermediate 47

4-(R)-Benzyl-3-(2-(R)-hydroxymethyl)-3-(3,4-difluorophenyl)propionyl) oxazolidin-2-one

Intermediate 46 (6.9 g) was dissolved in dry DCM (150 ml) at 0 oC and titanium tetrachloride (2.2 ml) was added, followed by Hunig's base (3.5 ml). The mixture was stirred for 2 h, then quenched with saturated ammonium chloride (100 ml). The phases were separated and the organic layer washed with bicarbonate solution (2 x 100 ml) and brine, dried and evaporated and the residue columned (3:1 Et₂O /hexanes) to give the title compound as colourless solid (4.3 g). MS 376 (M + 1). TLC R_f 0.45 (Et₂O).

25

Intermediate 48

4-(R)-Benzyl-3-(2-(R)-iodomethyl)-3-(3,4-difluorophenyl)propionyl) oxazolidin-2-one

Intermediate 47 (4.3 g) was suspended in toluene (100 ml) and triphenylphosphine (3 g), iodine (2.9 g) and imidazole (1 g) were added. The mixture was heated at reflux for 1 h, cooled and washed with water (100 ml), bicarbonate solution (100 ml) and brine, dried and evaporated. The residue was filtered through a silica plug eluting with Et_2O -hexane (1:1) to give the title compound as colourless gum (3.7 g). TLC R_f 0.35 (1:1 Et_2O -hexane).

10 **Intermediate 49**

5

15

25

4-(R)-Benzyl-3-(2-(R)-acetylsulphanylmethyl)-3-(3,4-difluorophenyl) propionyl)oxazolidin-2-one

Intermediate 48 (3.7 g) was dissolved in DMF (50 ml) and potassium thioacetate (0.95 g) was added. The mixture was stirred at room temperature for 3 h, added to water and extracted with $\rm Et_2O$. The solution was washed with water (2 x 50 ml), and the residue columned (2:1 $\rm Et_2O$ -hexane) to give the title compound as pale yellow oil (3.05 g). TLC R_f 0.45 (2:1 $\rm Et_2O$ -hexane).

Intermediate 50

4-(R)-Benzyl-3-(2-(R)-chlorosulphonylmethyl)-3-(3,4-difluorophenyl)

20 propionyl)oxazolidin-2-one

Intermediate 49 (3.05 g) was dissolved in DCM (50 ml) and water (40 ml) and chlorine was bubbled through the solution at 0°C for 10 min. The pale yellow mixture was stirred for 30 min, then the phases separated and the organic layer washed with water (50 ml) and brine (50 ml), dried (MgSO₄) and evaporated to give the title compound as colourless solid (3.10 g). TLC Rf 0.54 (Et₂O). 1H NMR (δ H, CDCl₃) 6.9-7.3 (8H, m), 5.0 (1H, m), 4.6 (1H, m), 4.4 (1H, dd), 4.1-4.2 (2H, m), 3.6 (1H, dd), 3.4 (1H, dd), 3.2 (1H, dd), 2.7-2.8(2H, m)

Method A

Example 1

5

10

15

20

30

2-[4-(2-Ethoxyphenyl)piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide

2-Ethoxyphenylpiperidine [CAS 100617-80-9] (100 mg) was added to a solution of 2-chlorosulfonylmethyl-3-methyl-butyric acid tert-butyl ester (120 mg) in DCM (10 ml) and triethylamine (50 mg). The solution was stirred for 18 h, then washed with citric acid solution, water and brine, the solvent dried and evaporated. The residue was redissolved in DCM (10 ml) and TFA (2 ml) added. The solution was stirred for 3 h, then evaporated and azeotroped to dryness, the residue dissolved in DCM (10 ML) and washed with water (20 ml) and brine (20 ml). Oxalyl chloride (200 mg) and DMF (1 drop) were added, the solution stirred for 3h, then evaporated to dryness. The residue was dissolved in THF (10 ml) and aqueous hydroxylamine (0.5 ml) added. The mixture was stirred for 2 h, diluted with water (10 ml) and evaporated to remove THF. The aqueous mixture was extracted with DCM (20 ml), the solvent washed with water (10 ml) and brine (7 ml), dried and evaporated and the residue recrystallised from ether-hexane to give the title compound as a white solid. MS 399 (M + H) 1H NMR (δH, CDCl₃) 8.9 (2H, br s), 7.2 (2H, m), 6.8-7.0 (2H, m), 4.1 (2H, q), 3.8 (2H, m), 3.5 (1H, dd), 2.8-3.1 (4H, m), 2.5 (1H, m), 1.7-2.1 (5H, m), 1.30 (3H, t), 1.0 (6H, appears as triplet)

Similarly prepared using method A were:

Example 2

2-[4-(2-Chlorophenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-

25 methylbutyramide

Prepared from 4-(2-chlorophenyl)piperidine [CAS 82211-92-5] (230 mg) and 2-chlorosulfonylmethyl-3-methyl-butyric acid tert-butyl ester (270 mg) as a white solid (70 mg). MS 389 (M + H) 1H NMR (δ H, CDCl₃) 8.5 (2H, br s), 7.1-7.4 (4H, m), 3.9 (2H, m), 3.5 (1H, dd), 3.2 (1H, m), 3.0 (1H, dd), 2.9 (2H, m), 2.4 (1H, m), 1.6-2.0 (5H, m), 1.0 (6H, appears as triplet)

Example 3

2-[4-(2-Methoxyphenyl)piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide

Prepared from 4-(2-methoxy-4-chlorophenyl)piperidine (70 mg) and 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester (80 mg) as a white solid (30 mg). MS 419 (M + H). 1H NMR (δ H, CDCl₃) 8.7 (2H, br s), 7.1 (1H, d), 6.85 (1H, d), 6.8 (1H, s), 3.85 (3H, s), 3.7-3.9 (2H, m), 3.5 (1H, dd), 3.0 (2H, m), 2.8-2.9 (2H, m), 2.4 (1H, m), 1.5-2.0 (5H, m), 1.0 (6H, appears as triplet)

Example 4

5

15

30

2-[4-(2-Methyl-4-fluorophenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-

10 methylbutyramide

Prepared from 4-(2-methyl-4-fluorophenyl)piperidine [CAS 277295-96-2] (140 mg) and 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester (160 mg) as a white solid (5.9 mg). MS 387 (M + H) 1H NMR (δ H, d $_{\theta}$ DMSO) 10.7 (1H, s), 9.0 (1H, s), 7.4 (1H, m), 7.1 (2H, m), 3.7-3.9 (2H, m), 3.6 (1H, dd), 3.1 (1H, dd), 2.8-3.1 (3H, m), 2.4 (3H, s) 2.3-2.4 (1H, m), 1.7-2.0 (5H, m), 1.0 (6H, appears as doublet)

Example 5

2-[4-(2-Difluoromethoxyphenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3- methylbutyramide

20 Prepared from 4-(2-difluoromethoxyphenyl)piperidine (200 mg) and 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester (220 mg) as a white solid (120 mg). MS 421 (M + H). 1H NMR (δH, CDCl₃) 8.6 (2H, br s), 7.2-7.4 (3H, m), 7.1 (1H, d), 6.5 (1H, t), 3.9 (2H, m), 3.5 (1H, dd), 3.1 (1H, tt), 3.0 (1H, dd), 2.8-2.9 (2H, m), 2.4 (1H, dt), 2.0 (1H, m), 1.6-1.9 (4H, m), 1.0 (6H, appears as triplet).

Example 6

2-[4-(2-Fluorophenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide

Prepared from 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester (270 mg) and 4-(2-fluorophenyl)piperidine (220 mg) as a white solid 130 mg. MS 273 (M + H). 1H NMR (δH, d₆DMSO) 10.6 (1H, s), 8.9 (1H, s), 7.0-7.4 (4H, m) 3.7-

3.9 (2H, m), 3.6 (1H, dd), 3.2 (1H, dd), 2.8-3.1 (3H, m), 2.3 (1H, m), 1.8-2.1 (5H, m), 0.95 (6H, appears as doublet)

Example 7

2-[4-(2-Trifluorophenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-

5 methylbutyramide

Prepared from 4-(2-trifluoromethylphenyl)piperidine (270 mg) and 2-chlorosulfonylmethyl-3-methyl-butyric acid *tert*-butyl ester (270 mg) as a white solid (160 mg). MS 423 (M + H). 1 H NMR (δ H, d $_{\theta}$ DMSO) 10.8 (1H, s), 9.1 (1H, s), 7.2-7.6 (4H, m) 3.8-4.0 (2H, m), 3.7 (1H, dd), 3.1 (1H, dd), 3.1 (1H, m), 2.8-3.0 (2H, m), 2.4 (1H, m), 1.7-2.0 (5H, m), 1.0 (6H, appears as doublet)

Example 8

10

15

25

30

2-Benzyl-N-Hydroxy-3-[4-(2-trifluoromethylphenyl)-piperidine-1-sulfonyl]propionamide

Prepared from 2-(chlorosulfonylmethyl)-3-phenylpropionic acid-*tert*-butyl ester (160 mg) and 4-(2-trifluoromethylphenyl)piperidine (120 mg) as a white solid (8.4 mg) after purification by preparative HPLC. MS 471 (M + 1). 1H NMR (δ H, CDCl₃) 8.6 (2H, s), 7.6 (1H, d), 7.4 (1H, t), 7.35 (1H, d), 7.1-7.4 (6H, m), 3.8 (2H, m), 3.6 (1H, dd), 2.6-3.1 (7H, m), 1.6-1.9 (4H, m)

Example 9

20 2-Benzyl-N-Hydroxy-3-[4-(2-fluorophenyl)-piperidine-1-sulfonyl] propionamide

Prepared from 2-(chlorosulfonylmethyl)-3-phenylpropionic acid-*tert*-butyl ester (150 mg) and 4-(2-fluorophenyl)piperidine (100 mg) as a white solid (14mg) after preparative HPLC. MS 421 (M + 1). 1H NMR (δ H, CDCl₃) 8.6 (2H, s), 6.9-7.4 (9H, m), 3.8 (2H, m), 3.6 (1H, dd), 2.6-3.1 (7H, m), 1.6-1.9 (4H, m)

Example 10

2-Benzyl-N-Hydroxy-3-[4-(2-methoxyphenyl)-piperidine-1-sulfonyl] propionamide

From 2-(chlorosulfonylmethyl)-3-phenylpropionic acid-*tert*-butyl ester (150 mg) and 4-(2-methoxyphenyl)piperidine (100 mg) as a white solid (1.2 mg) after preparative HPLC. MS 433 (M + 1). 1H NMR (δ H, CDCl₃) 8.5 (2H, br s), 7.2-7.5

(5H, m), 6.8-7.0 (4H, m), 3.8 (3H, s), 3.8 (2H, m), 3.6 (1H, dd), 2.6-3.1 (7H, m), 1.6-1.9 (4H, m)

Example 11

2-Benzyl-N-Hydroxy-3-[4-(2-methylphenyl)-piperidine-1-sulfonyl]

5 propionamide

Prepared from 2-(chlorosulfonylmethyl)-3-phenylpropionic acid-*tert*-butyl ester (320 mg) and 4-(2-methylphenyl)piperidine (200 mg) as a white solid (150 mg). MS 417 (M + 1). 1H NMR (δ H, CDCl₃) 8.5 (2H, br s), 7.2-7.5 (5H, m), 6.8-7.0 (4H, m), 3.8 (2H, m), 3.6 (1H, dd), 2.6-3.1 (7H, m), 2.4 (3H, s), 1.6-1.9 (4H, m)

10 **Example 12**

15

25

30

N-Hydroxy-3-(4-(2-Methoxyphenyl)-piperidine-1-sulfonyl]-2-phenyl propionamide

Prepared from 3-chlorosulfonyl-2-phenylpropionic acid-*tert*-butyl ester (230 mg) and 4-(2-methoxyphenyl)piperidine (160 mg) as a beige solid (35 mg). MS 419 (M + 1). 1H NMR (δ H, d₆DMSO) 10.9 (1H, s), 8.9 (1H, s), 7.25-7.5 (5H, m), 7.2 (2H, m), 6.9 (1H, d), 6.85 (1H, t), 3.9 (1H, dd), 3.8 (1H, dd), 3.75 (3H, s), 3.6 (2H, m), 3.25 (1H, dd), 2.96 (1H, m), 2.7-2.9 (2H, m), 1.5-1.9 (4H, m)

Method B

Example 13

20 **2(***R*)-[4-(2-Methoxyphenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide

4-(2-Methoxyphenyl)piperidine (230 mg) was added to a solution of 4(R)-benzyl-3-(2(R)-chlorosulfonylmethyl-3-methylbutyryl)oxazolidin-2-one (373 mg) in DCM (10 ml) and triethylamine (200 mg) and the solution was stirred for 2 h at room temperature. The mixture was washed with aqueous citric acid, bicarbonate solution and brine, dried and evaporated. The residue was chromatographed on silica (30% ethyl acetate-hexane) and the product dissolved in THF. Hydrogen peroxide (0.15 ml) was added, the mixture cooled in ice and a solution of lithium hydroxide (40 mg) in water (5 ml) was added dropwise. The mixture was stirred for 2h, quenched with aqueous sodium sulphite (10% wt/v, 20 ml), then evaporated to half volume *in vacuo*. The aqueous layer was washed with DCM

(20 ml), then acidified and extracted with DCM (50 ml). The organic layer was washed with water (20 ml) and brine (20 ml), dried and evaporated. The residue was dissolved in dry DCM (10 ml) and oxalyl chloride (130 mg) was added, followed by one drop of DMF. The solution was stirred for 2 h, evaporated *in vacuo* and azeotroped to dryness. The residue was dissolved in THF (10 ml) and aqueous hydroxylamine (0.5 ml) added, the solution stirred for 2 h, diluted with water (20 ml) and evaporated to remove THF. The solid product was collected by filtration and washed with hexane-MTBE (10 ml) to give the title compound as a white solid (151 mg). MS 385 (M + H). 1H NMR (δH, CDCl₃) 8.5 (2H, br s), 7.15-7.3 (2H, m), 7.0 (1H, t), 6.9 (1H, d), 3.8-3.9 (2H, m), 3.85 (3H, s), 3.6 (1H, dd), 3.0 (1H, m), 2.95 (1H, dd), 2.8-2.9 (2H, m), 2.5 (1H, m), 1.7-2.0 (5H, m), 1.0 (6H, appears as triplet)

Similarly prepared using Method B were:

15 **Example 14**

5

10

20

30

2(R)-[4-(2-Methylphenyl)piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide

Prepared from 4-(2-methylphenyl)piperidine (170 mg) and 4(R)-benzyl-3-(2(R)-chlorosulfonylmethyl-3-methylbutyryl)oxazolidin-2-one (370 mg) as a white solid (16 mg). MS 369 (M + H). 1H NMR (δ H, d $_{\theta}$ DMSO) 10.7 (1H, s), 9.0 (1H, s), 7.1-7.4 (4H, m), 3.7-3.9 (2H, m), 3.5 (1H, dd), 3.1 (1H, dd), 2.8-3.0 (3H, m), 2.5 (1H, m), 2.3 (3H, s), 1.6-1.9 (5H, m), 0.95 (6H, appears as doublet).

Example 15

2(R)-[4-(2-Fluorophenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-

25 methylbutyramide

Prepared from 4(R)-benzyl-3-(2(R)-chlorosulfonylmethyl-3-methylbutyryl)oxazolidin-2-one (180 mg) and 4-(2-fluorophenyl)piperidine (100 mg) as a beige solid (45 mg). MS 373 (M + H). 1H NMR (δH, d_6 DMSO) 10.7 (1H, s), 8.9 (1H, s), 7.1-7.5 (4H, m), 3.6-3.8 (2H, m), 3.5 (1H, dd), 3.1 (1H, dd), 2.8-3.0 (3H, m), 2.4 (1H, dt), 1.6-1.9 (5H, m), 0.96 (6H, appears as doublet)

Method C

Example 16

5

10

15

20

25

30

1-[4-(2-Methoxyphenyl)-piperidine-1-sulfonylmethyl]cyclobutane carboxylic acid hydroxyamide

4-(2-Methoxyphenyl)piperidine (230 mg) was added to a solution of 1-(chlorosulfonylmethyl)cyclobutane carboxylic acid ethyl ester (240 mg) and triethylamine (200 mg) in DCM (20 ml) and the solution stirred at room temperature for 3 h, then washed with water (20 ml) and brine (20 ml), dried and evaporated. The residue was dissolved in methanol (20 ml) and a solution of lithium hydroxide (100 mg) in water (20 ml) was added. The solution was stirred ovemight, then evaporated to half volume, acidified with 1M HCl and the mixture extracted with DCM (20 ml). The solvent was washed with water (20 ml) and brine (20 ml), dried and evaporated. The residue was dissolved in DCM (20 ml) and oxalyl chloride (200 mg) added, followed by one drop of DMF. The mixture was stirred for three hours, evaporated and azeotroped to dryness. The residue was dissolved in THF (20 ml) and aqueous hydroxylamine (0.5 ml) was added, the solution stirred for 3 h, then evaporated in vacuo, the residue triturated with water (10 ml) and the solid product collected by filtration to give the title compound as a white solid (64 mg). MS 383 (M + H). 1H NMR (δH, CDCl₃) 8.5 (2H, m), 7.1-7.3 (2H, m), 6.8-7.0 (2H, m), 3.9 (2H, m), 3.8 (3H, s), 3.5 (2H, s), 3.1 (1H, m), 2.8 (2H, m), 2.35 (2H, m), 2.25 (2H, m), 2.0 (2H, m), 1.7-1.9 (4H, m).

Similarly prepared using Method C was:

Example 17

1-[4-(2-Methylphenyl)piperidine-1-sulfonylmethyl]cyclobutane carboxylic acid hydroxyamide

From 1-(chlorosulfonylmethyl)cyclobutane carboxylic acid ethyl ester (100 mg) and 4-(2-methylphenyl)piperidine (100 mg) to give the title compound as a white solid (7.3 mg). MS 367 (M + 1). 1H NMR (δ H, D₆DMSO) 10.5 (1H, s), 8.7 (1H, s), 7.0-7.2 (4H, m), 3.5 (2H, m), 3.4 (2H, s), 2.7 (3H, m), 2.1-2.5 (6H, m), 2.2 (3H, s), 1.5-1.8 (4H, m)

Example 18 was prepared using the methodology as described in Method A:

Example 18

2-(R)-[4-(2,4-Dichlorophenyl)piperidine-1-sulphonylmethyl]-N-hydroxy butyramide

5 Prepared from Intermediate 35 (110 mg) and Intermediate 5 (100 mg) as white solid 35 mg. MS 424 (M + 1)

Examples 19 and 20 were prepared using the methodology as described in Method B:

10 **Example 19**

15

4-{2-[4-(2,4-Dichlorophenyl)piperidine-1-sulfonyl]-1(R)-hydroxycarbamoylethyl}piperidine-1-carboxylic acid *tert*-butyl ester

Prepared from Intermediate 35 (160 mg) and Intermediate 25 (130 mg) to give the title compound as white solid 13 mg. MS 565 (M + 1). 1H NMR (d6 DMSO) 10.4 (1H, s), 8.7 (1H, s), 7.2-7.3 (2H, m), 7.0 (1H, m), 3.7 (2H, m), 3.5 (2H, m), 3.25 (1H, dd), 2.90 (1H, dd), 2.80 (1H, m), 2.6 (2H, m)2.35 (2H, m), 2.20 (1H, m), 0.80-1.6 (9H, m), 1.20 (9H, s).

Example 20

4-{2-[4-(2-Chloro-4-fluorophenyl)piperidine-1-sulfonyl]-1(R)-

20 hydroxycarbamoylethyl}piperidine-1-carboxylic acid tert-butyl ester

Prepared from Intermediate 34 (170 mg) and Intermediate 25 (350 mg) as white solid (60 mg). MS 546 (M - 1). 1H NMR (d6 DMSO) 10.7 (1H, s), 9.0 (1H, s), 7.2-7.5 (3H, m), 4.0 (2H, m), 3.7 (2H, m), 3.5 (1H, dd). 3.1 (1H, dd), 3.05 (1H, m), 2.95 (2H, m), 2.65 (2H, m), 2.45 (1H, m), 1.0-1.6 (9H, m), 1.40 (9H, s)

25 **Example 21**

30

3-[4-(2-Chloro-4-fluorophenyl)piperidine-1-sulfonyl]-*N*-hydroxy-2(R)-piperidin-4-ylpropionamide

In a similar manner to the method described in Example 23 the title compound was prepared from Example 20 (50 mg), TFA (1 ml) and DCM (5 ml). The crude product was purified by preparative HPLC to give the title compound as colourless solid (6 mg). MS 448 (M + 1). 1H NMR (d6 DMSO) 10.6 (1H, s), 8.9

(1H, s), 6.95-7.20 (3H, m), 3.3 (2H, m), 3.1 (1H, dd), 3.0 (2H, m), 2.8 (1H, dd), 2.75 (1H, m), 2.65 (4H, m), 2.40 (1H, m), 0.85-1.60 (9H, m)

Example 22

3-[4-(2-Chloro-4-fluorophenyl)piperidine-1-sulfonyl]-N-hydroxy-2(R)-(1-

5 methylpiperidin-4-yi)propionamide

Example 21 (60 mg) was dissolved in DCM (10 ml) and treated with formaldehyde (0.2 ml, 37 % aq), sodium triacetoxy borohydride (200 mg) in dichloroethane (20 ml). The mixture was stirred for 2 h, then washed with bicarbonate solution (20 ml), dried (MgSO₄) and evaporated and the residue recrystallised from EtOAc-hexane to give the title compound as colourless solid 32 mg. MS 462 (M + 1). 1H NMR (d4 MeOH) 7.35 (1H, m), 7.20 (1H, m), 7.0 (1H, m), 3.8 (1H, m), 3.65 (1H, dd), 3.3 (2H, m), 3.15 (1H, m), 3.1 (1H, dd), 2.90 (4H, m), 2.4 (1H, m), 2.25 (3H, s), 1.2-2.1 (9H, m)

Example 23

10

20

30

3-[4-(2,4-Dichlorophenyl)piperidine-1-sulfonyl]-N-hydroxy-2(R)-piperidin-4-yl-propionamide

Example 19 (8 mg) was dissolved in DCM (10 ml) and TFA (1 ml) was added. The solution was stirred for 2 h, then evaporated *in vacuo* and azeotroped to dryness with heptane. The crude product was crystallized from EtOAc-hexanes to give the title compound as white solid (5 mg). MS 464 (M + 1). 1H NMR (d6 DMSO) 10.6 (1H, s), 8.9 (1H, s), 7.3 (1H, s), 7.2 (1H, d), 7.15 (1H, d), 3.3 (2H, m), 3.1 (1H, dd), 3.0 (2H, m), 2.9 (1H, dd), 2.85 (1H, m), 2.65 (4H, m), 2.40 (1H, m), 0.85-1.60 (9H, m).

25 Example 24 was prepared using the methodology as described for Method B:

Example 24

3-[4-(2-Chloro-4-fluorophenyl)piperidine-1-sulfonyl]-*N*-hydroxy-2(R)-(tetrahydropyran-4-yl)propionamide

From Intermediate 34 (100 mg) and Intermediate 33 (130 mg) as white solid (93 mg). MS 449 (M + 1). 1H NMR (d6 DMSO) 10.6 (1H, s), 8.9 (1H, s), 7.2-7.5 (3H,

m), 4.0 (2H, m), 3.8 (2H, m), 3.7 (2H, m), 3.6 (2H, m), 3.5 (1H, dd). 3.2 (1H, dd), 3.0 (1H, m), 2.7 (2H, m), 2.4 (1H, m), 1.1-1.6 (9H, m)

Example 25 was prepared using the methodology as described for Method B:

5 Example 25

10

20

30

3-[4-(2-Chloro-4-fluorophenyl)piperidine-1-sulfonyl]-2(R)-(3,4-difluorobenzyl)-N-hydroxypropionamide

Prepared from Intermediate 50 (100 mg) and Intermediate 34 (80 mg) as beige solid (22.7 mg). M + H 491. 1H NMR 6.9-7.3 (6H, m), 3.8 (2H, m), 3.5 (1H, m), 3.10 (1H, m), 3.0 (1H, m), 2.8 (5H, m), 1.6-1.8 (4H, m)

Example 26 was prepared using the methodology as described for Method A:

Example 26

2-Cyclopentyl-N-hydroxy-3-(4-O-tolylpiperidine-1-sulfonyl)propionamide

Prepared from Intermediate 45 (100 mg) and 4-(2-methylphenyl)piperidine (80 mg) as beige solid (80 mg). MS 395 (M + 1). 1H NMR 7.0-7.3 (4 H, m), 3.7 (2H, m), 3.5 (1H, dd), 3.0 (1H, dd), 2.9 (3H, m), 2.4 (1H, m), 1.2-2.0 (14 H, m).

The ability of the compounds of the invention to inhibit the shedding of CD23 may be determined using the following assays:

Abbreviatons used:

DTT Dithiothreitol CO₂ Carbon Dioxide FCS Foetal Calf Serum IL-4 Interleukin-4

ELISA Enzyme Linked ImmunoSorbent Assay

25 Plasma Membrane CD23 Shedding Assay

Plasma membranes were isolated from RPMI8866 cells by initally resuspending the cells in 20mM Hepes buffer (+ NaCl 150nM, MgCl₂ 1.5mM at pH 7.5 containing DTT 1mM) and homogenising in a glass Dounce homogeniser followed by centrifugation (500g for 5mins at 4°C) and removal of the supernatant. The homogenisation step was subsequently repeated twice on the remaining cell pellet in order to maximise the yield of membranes. Supernantants

were then pooled, further centrifuged (48,000g for 60mins at 4°C) and finally resuspended in 1mM sodium bicarbonate. Plasma membranes were further enriched using an aqueous extraction method (Morre DJ & Morre DM 1989; BioTechniques 7; 9; 946-958).

Plasma membranes were incubated at 37° C in the presence and absence of inhibitor for 2 hours (Marolewski *et al* 1998; Biochem. J.; 333; 573-579) following which time the reaction was stopped by the addition of 100μ M Marimastat. Soluble CD23 shed from the plasma membranes was filtered through a 0.22μ m Millipore filter plate and quantitated by ELISA. IC50 values were calculated by plotting inhibitor concentration versus %inhibition.

The functional effect of the compounds of the invention may be demonstrated using the following assays:

Cellular CD23 Shedding Assay

5

10

15

20

25

30

The RPMI8866 cell line is routinely grown in RPMI1640 medium containing 10% FCS but were washed twice and resuspended in serum-free RPMI1640 medium immediately prior to the assay. Cells were then plated out in the presence and absence of inhibitor and incubated at 37°C in an atmosphere of 95% air/5% CO₂ for 1 hour (Christie *et al* 1997; Eur. J. Immunol.; 27; 3228-3235). Following the time allocated, plates were centrifuged, the supernatants removed and subsequently analysed for shed soluble CD23 by ELISA. IC₅₀ values were calculated by plotting inhibitor concentration versus %inhibition.

In Vitro Human IgE Synthesis

Mononuclear cells were isolated from human tonsillar tissue over a ficol gradient, washed in PBS and resuspended in RPMI1640 medium containing 10% FCS. Cells were then plated out, stimulated with 20ng/ml IL-4 / 5μg/ml anti-CD40 and incubated in the presence and absence of inhibitor at 37°C in an atmosphere of 95% air/5% CO₂ for 14 days (Christie *et al* 1997; Eur. J. Immunol.; 27; 3228-3235). Following the time allocated, plates were centrifuged, the supernatants removed and subsequently analysed for human IgE by ELISA. IC₅₀ values were calculated by plotting inhibitor concentration versus %inhibition.

CLAIMS

1. A compound of formula (1):

5 wherein:

10

15

20

Cy is an aryl or heteroaryl group;

m is zero or the integer 1, 2 or 3;

n is zero or the integer 1, 2 or 3; in which the sum of m and n is zero or the integer 1, 2 or 3;

 R^1 is a group selected from C_{1-6} alkyl, aryl, heteroaryl, heterocycloalkyl, C_{3-6} cycloalkyl, $-C_{1-6}$ alkylaryl, $-C_{1-6}$ alkylheteroaryl, $-C_{1-6}$ alkylheterocycloalkyl or $-C_{1-6}$ alkyl C_{3-6} cycloalkyl, in which each aryl or heteroaryl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^7 , wherein each R^7 may be the same or different, and is an atom or group selected from F, Cl, Br, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, -CN, $-CO_2R^{7a}$, $-CON(R^{7a})_2$ or $-COR^{7a}$, and in which each alkyl, heterocycloalkyl and cycloalkyl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^8 , wherein each R^8 may be the same or different, and is an atom or group selected from F, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, =C0, $=NOR^{10}$, or $-CO_2R^{8a}$, $-CON(R^{8a})_2$ or $-COR^{8a}$;

 R^{7a} , which may be the same or different, is each a hydrogen atom, $C_{1\text{-}6}$ alkyl group or a $C_{1\text{-}6}$ haloalkyl group;

 R^{8a} , which may be the same or different, is each a hydrogen atom, 25 C_{1-6} alkyl group or a C_{1-6} haloalkyl group;

 R^{10} is a hydrogen atom or a C_{1-3} alkyl group;

R² is a hydrogen atom or a C₁₋₃alkyl group;

or R^1 and R^2 together with the carbon atom to which they are attached form a C_{3-6} cycloalkyl or heterocycloalkyl group optionally substituted with 1, 2 or 3 substituents selected from the group R^9 , wherein each R^9 may be the same or different, and is an atom or group selected from F, C_{1-6} alkyl, C_{1-6} haloalkoxy, C_{1-

R³ is an atom or group selected from F, Cl, Br, C₁₋₃alkyl, C₁₋₃haloalkyl, C₁₋₃haloalkoxy or –CN;

 R^4 is a hydrogen, F, CI or Br atom or a C_{1-3} alkyl, C_{1-3} haloalkyl, C_{1-3} haloalkoxy, -CN, $-SO_2R^5$, $-SO_2N(R^6)_2$, $-CON(R^6)_2$, $-N(R^6)_2$, $-NSO_2R^5$ or $-NCOR^5$ group, in which each R^6 group may be the same or different;

R⁵ is a C₁₋₃alkyl group;

5

10

15

 R^6 , which may be the same or different, is each a hydrogen atom or a C_{1-3} alkyl group;

R^a and R^b, which may be the same or different, is each an atom or group selected from hydrogen or C₁₋₃alkyl or R^a and R^b may be joined to form a C₃₋₆cycloalkyl or heterocycloalkyl group as defined for R¹ and R²;

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

2. A compound according to Claim 1 which has the formula (2):

wherein m, n, Cy, R¹, R^a, R^b, R², R³ and R⁴ are as defined in Claim 1; and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

A compound according to Claim 1 which has the formula (3):

$$R^{4} \longrightarrow \begin{pmatrix} \begin{pmatrix} \begin{pmatrix} \\ \\ \end{pmatrix}_{m} & Q & Q & R^{2} \\ \end{pmatrix} & \begin{pmatrix} R^{1} & H \\ Q & R^{3} \end{pmatrix} & \begin{pmatrix} Q & Q & Q \\ Q & Q & Q \\ \end{pmatrix} & \begin{pmatrix} Q & Q & Q \\ Q & Q \\ \end{pmatrix} & \begin{pmatrix} Q & Q & Q \\ Q & Q \\ \end{pmatrix} & \begin{pmatrix} Q & Q & Q \\ Q & Q \\ \end{pmatrix} & \begin{pmatrix}$$

wherein m, n, Ra, Rb, R1, R3 and R4 are as defined in Claim 1;

and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

4. A compound according to Claim 1 or 3 which has the formula (4):

wherein m, n, R^a, R^b, R¹, R³ and R⁴ are as defined in Claim 1; and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

- 5 5. A compound according to Claim 1 or 2 wherein Cy is a phenyl group.
 - 6. A compound according to any preceding Claim wherein R^a and R^b is each a hydrogen atom.
 - 7. A compound according to any preceding Claim wherein m is the integer 1 and n is zero or the integer 1.
- 10 8. A compound of any preceding Claim in which n is the integer 1.

15

- 9. A compound of any preceding Claim in which R^1 is a group selected from C_{1-6} alkyl, phenyl, heteroaryl, heterocycloalkyl, C_{3-6} cycloalkyl, $-(CH_2)_{1-2}$ phenyl, $-(CH_2)_{1-2}$ heteroaryl, $-(CH_2)_{1-2}$ heterocycloalkyl or $-(CH_2)_{1-2}C_{3-6}$ cycloalkyl, in which each phenyl or heteroaryl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^7 ; and in which each alkyl, heterocycloalkyl and cycloalkyl group, present as or as part of the group R^1 , may optionally be substituted with 1, 2 or 3 substituents selected from the group R^8 .
- 10. A compound according to any preceding Claim in which R¹ is a group selected from optionally substituted C₁₋₆alkyl, phenyl, heterocycloalkyl, C₃₋₆cycloalkyl or -(CH₂)₁₋₂phenyl.
 - 11. A compound according to Claims 1, 3 or 5 8 in which R^1 and R^2 together with the carbon atom to which they are attached form a C_{3-6} cycloalkyl group optionally substituted with 1, 2 or 3 substituents selected from the group R^9
- 25 12. A compound according to Claim 11 in which R¹ and R² together with the carbon atom to which they are attached form a cyclobutyl group.

- 13. A compound according to any preceding Claim in which R^3 is an atom or group selected from F, Cl, methyl, ethyl, i-propyl, -CF₃, -CF₂H, methoxy, ethoxy, OCF₃, -OCF₂H or -CN.
- 14. A compound according to any preceding Claim in which R⁴ is an atom or group selected from hydrogen, F or Cl atom or a methyl, -CF₃, methoxy or OCF₂H.
 - 15. A compound of any preceding Claim wherein R³ is an atom or group selected from F, Cl, C₁₋₃alkyl or C₁₋₃alkoxy.
- 16. A compound according to Claim 15 wherein R³ is a C₁₋₃ alkyl or C₁₋₃alkoxy group.
 - 17. A compound according to Claim 15 or 16 wherein R³ is a methyl or methoxy group.
 - 18. A compound which is:
 - 2-[4-(2-methoxyphenyl)piperidine-1-sulfonylmethyl]N-hydroxy-3-
- 15 methylbutyramide;
 - 2-[4-(2-methyl-4-fluorophenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide;
 - 2-benzyl-N-Hydroxy-3-[4-(2-methoxyphenyl)-piperidine-1-sulfonyl] propionamide; 2-benzyl-N-hydroxy-3-[4-(2-methylphenyl)-piperidine-1-sulfonyl] propionamide;
- N-hydroxy-3-(4-(2-methoxyphenyl)-piperidine-1-sulfonyl]-2-phenyl propionamide; 2(R)-[4-(2-methoxyphenyl)-piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide;
 - 2(R)-[4-(2-methylphenyl)piperidine-1-sulfonylmethyl]N-hydroxy-3-methylbutyramide;
- 1-[4-(2-methoxyphenyl)-piperidine-1-sulfonylmethyl]cyclobutane carboxylic acid hydroxyamide;
 - 1-[4-(2-methylphenyl)piperidine-1-sulfonylmethyl]cyclobutane carboxylic acid hydroxyamide;
 - and the salts, solvates, hydrates, tautomers, isomers or N-oxides thereof.

19. A pharmaceutical composition comprising a compound according to Claim1 together with one or more pharmaceutically acceptable carriers, excipients or diluents.