Ultralimits

Thomas Forster

February 11, 2007

Frayne's Lemma

(A reminder of two bits of jargon: an **expansion** of a structure \mathcal{B} is a structure with the same carrier set and more gadgets. e.g. the rationals as a field are an expansion of the rationals as an additive group. The converse relation is a **reduction**: the rationals as an additive group are a reduction of the rationals as a field.)

LEMMA 1 Suppose \mathcal{A} and \mathcal{B} are elementarily equivalent. Then there is an ultrapower $\mathcal{A}^I/\mathcal{U}$ of A and an elementary embedding from \mathcal{B} into it.

Proof:

Supply names b for every member b of B. Let \mathcal{L} be the language with the new constants. There is an obvious way of expanding \mathcal{B} to a structure for this new language, namely to let each constant b denote that element b of B which gave rise to it. (Of course this is not the only way of doing it: any map $B \to B$ will give rise to an expansion of \mathcal{B} of this kind—and later we will have to consider some of those ways). Let us write ' \mathcal{B} ' to denote this obvious expansion of \mathcal{B} , and let I be the set of sentences of \mathcal{L} true in \mathcal{B} '. (Use of the letter 'I' for this is a bit of a give-away!)

Consider ϕ a formula in I. It will mention finitely many constants—let us say two, for the sake of argument. Replace these two constants by new variables ' v_1 ' and ' v_2 ' (not mentioned in ϕ !) to obtain ϕ'' and bind them both with ' \exists ' to obtain $(\exists v_1)(\exists v_2)\phi''$ which we will call ' ϕ ' for short. This new formula is a formula of the original language which is true in \mathcal{B} and is therefore also true in \mathcal{A} (since \mathcal{A} and \mathcal{B} are elementarily equivalent).

The next step is to expand \mathcal{A} to a structure for the language \mathcal{L} by decorating it with the with the extra constants \mathfrak{b} etc that we used to denote members of B. Of course any function $B \to A$ gives us a way of decorating \mathcal{A} but with ϕ in mind we are interested only in those decorations which give us a structure that satisfies ϕ . If ϕ contained the constants \mathfrak{b} and \mathfrak{b} , for example then the obvious way to expand A involves using those two constants to denote the witnesses in \mathcal{A} for the two existential quantifiers in ϕ . Since ϕ contains only finitely many constants this nails down denotations for only finitely many of the constant-names-for-members-of-B. However any finite map from B to A can be extended to a total function $B \to A$ so we can extend this to a way of labelling

members of A with these constants in such a way that the decorated version of A satisfies the original formula ϕ .

Pick one such labelling and call it $a(\phi)$. (Thus $a(\phi)$ is merely an element of $B \to A$ satisfying an extra condition parametrised by ϕ . We can think of a as a function $\mathcal{L} \to (B \to A)$ or as a function $(\mathcal{L} \times B) \to A$ ad libitum). \mathcal{A} expanded with this decoration we call $\langle \mathcal{A}, a(\phi) \rangle$. Now consider the set

$$J(\phi) =: \{ \psi \in I : \langle \mathcal{A}, a(\psi) \rangle \models \phi \}$$

It is easy to check that the family $\{J(\phi): \phi \in I\}$ of subsets of I has the finite intersection property and so gives rise to a ultrafilter \mathcal{U} on I and thence to an ultrapower $\mathcal{A}^I/\mathcal{U}$. Evidently if $\phi \in I$ then $J(\phi) \in \mathcal{U}$ and the ultrapower will believe ϕ .

We have to find an elementary embedding from $\mathcal B$ into this ultrapower. Given $b\in B$ whither do we send it? The obvious destination for b is the equivalence class of the function $\lambda\phi.a(\phi,b)$ that sends ϕ to $a(\phi,b)$. The function that sends b to $[\lambda\phi.a(\phi,b)]$ is $\lambda b.[\lambda\phi.a(\phi,b)]$ —which we will write 'h' for short. We must show that h is elementary.

The best way to understand what h does and why it is elementary is to think of the ultrapower as a reduction of the ultraproduct

$$\prod_{\psi \in I} \langle \mathcal{A}, a(\psi) \rangle.$$

("**expand** the factors; take an ultraproduct; **reduce** the ultraproduct—to obtain a ultrapower of the factors ...")

Each of the factors $\langle \mathcal{A}, a(\psi) \rangle$ is a structure for \mathcal{L} and therefore the ultraproduct is too. By the same token, for each $b \in B$, each of the factors has an element which is pointed to by b-the-constant-name-of-b, and therefore the ultraproduct will too. The key fact is that h is the function that sends each $b \in B$ to the thing in the ultraproduct that is pointed to by b the constant-name-of-b.

As for the elementarity of h, suppose $\mathcal{B} \models \phi(\vec{v})$. Then, for some choice of constants \vec{b} , $\mathcal{B} \models \phi(\vec{b})$, and $\mathcal{B}' \models \phi'$. But now $J(\phi)$ is \mathcal{U} -large, so the ultrapower believes ϕ .

But what we really need is Scott's lemma:

LEMMA 2 Suppose $g: \mathcal{A} \hookrightarrow \mathcal{B}$ is an elementary embedding. Then there is an ultrapower $\mathcal{A}^I/\mathcal{U}$ of A and an elementary embedding from \mathcal{B} into it making the triangle commute.

Proof:

The ideas are the same, but we need to be slightly more careful in the definition of $a(\phi)$. Fix once for all a member a of A. As before, we extend the language by adding names for every member of B, thus obtaining the language \mathcal{L} as before. Now we expand \mathcal{B} by decorating B with these names, but not in

¹There doesn't seem to be any reason to conclude that this ultrafilter will be nonprincipal, but then nor does it seem to matter if it *isn't*. Bell and Slomson don't say that it will be nonprincipal. Thanks to Phil Ellison for drawing my attention to this point.

the obvious way. If b is in the range of g we allow b the constant-name-of-b to denote b; if b is not in the range of g, then b will denote g(a). Let's call this expanded structure \mathcal{B}' .

If we are to expand \mathcal{A} to obtain a structure for \mathcal{L} then we must ensure that, for each $b \in \mathcal{B}$, the constant-name-b-of-b points to something in \mathcal{A} . The obvious way to do this is to ordain that b point to g^{-1} of the thing that that b points to in the expansion \mathcal{B}' of \mathcal{B} . This decorated version of \mathcal{A} and the decorated version \mathcal{B}' of \mathcal{B} are elementarily equivalent (with respect to the extended language with the names)

As before, let I be the set of sentences of \mathcal{L} true in \mathcal{B}' . Consider a formula $\phi \in I$. Recall what we did at the same stage in the proof of Frayne's Lemma. This time we replace with existentially-quantified variables only those constants denoting elements of B not in the range of g. Let's call this formula ϕ' like last time. Evidently $\mathcal{B}' \models \phi'$ and so, by the remark (*) at the end of the last paragraph, the decorated version of \mathcal{A} also satisfies ϕ' . So, as before, there is another decoration of \mathcal{A} which actually satisfies the original ϕ . Pick one such decoration and call it $a(\phi)$, and call the structure thus decorated $\langle \mathcal{A}, a(\phi) \rangle$. We define

$$J(\phi) =: \{ \psi \in I : \langle \mathcal{A}, a(\phi) \rangle \models \phi \}$$

as before, and it has the finite intersection property as before and gives us an ultrafilter \mathcal{U} as before, and we have the same elementary embedding h from \mathcal{B} into the ultrapower as before. It remains only to check that the diagram is commutative. I think this can safely be left as an exercise to the reader.

Now comes the fun part, and i wish i had the diagrams package working (hint! hint!!)

Coda

This document is the result of my attempting to digest the relevant section (around pp 150-160) of John Bell and Alan Slomson: *Models and Ultraproducts*: a lovely book. Thanks to Alan and John. Since I intend to leave this document on my web-page as a resource for my Cambridge students, I welcome comments from them that might help make the document more useful.