

# Vom Skalarprodukt zur Bildbearbeitung

Gesina Schwalbe

| <b>Vektor</b> "Wegbeschreibung" |  |  |
|---------------------------------|--|--|
| Koordinatensystem               |  |  |
| 1.                              |  |  |
| 2.                              |  |  |
|                                 |  |  |
| so, dass:                       |  |  |
| •                               |  |  |
| •                               |  |  |
| ${f Vektordarstellung}$         |  |  |

## Rechnen mit Vektoren

## Addition

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=$$

Beispiel: (2,1) + (-1,1) =



## Strecken/Stauchen

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=$$

Beispiel:  $\frac{1}{2} \cdot (2,1) =$ 



Insbes. 
$$(x_1, \ldots, x_n) = x_1 \cdot (1, 0, \ldots, 0) + x_2 \cdot (0, 1, 0, \ldots) + \cdots + x_n \cdot (0, \ldots, 0, 1)$$

## Andere Räume mit Koordinatensystem

- RGB-Farbpixel: (Rotwert, Grünwert, Blauwert)
- Schwarz-weiß Bild: (Helligkeit Pixel 1, Helligkeit Pixel 2, ...)



## Skalarprodukt

 $(x_1,\ldots,x_n)\circ(y_1,\ldots,y_n)=$ 

Das Skalarprodukt ist ein Maß dafür,



Genauer:

 $x \circ y =$ 



# Anwendung in der Bildverarbeitung: Faltung

Eine Faltung sammelt die Ergebnisse von Skalarprodukten eines Vergleichsbildausschnitts mit Bildausschnitten unseres Anfangsbildes in einem Ergebnisbild.



| Wirkung der Faltung                | Vergleichsbildausschnitt                              |
|------------------------------------|-------------------------------------------------------|
| horizontale (scharfe) Linie        | -2 -2 -2<br>4 4 4<br>-2 -2 -2                         |
| vertikale Kante von dunkel zu hell | 0 0 0   -1 1 0   0 0 0       -1 1 0   -1 1 0   -1 1 0 |
| Relief                             | -2 -1 0<br>-1 1 1<br>0 1 2                            |
| Schärfen                           | 0 -1 0<br>-1 5 -1<br>0 -1 0                           |

#### Beachte für den Umgang mit Bildern und Faltungen:

- Pixelwerte  $\begin{cases} <0 & \text{keine Farbe (schwarz)} \\ >255 & \text{volle Farbe (weiß)} \end{cases}$
- Für Vergleichsbildausschnitte sollte man beachten:
  - Die Summe der Einträge sollte zwischen 0 und 1 sein.
  - Um obige Bedingungen zu erreichen: Die Tendenz (hell zu dunkel) ist entscheidend.

#### **Gimp Bedienung**

Filters  $\to$  Generic  $\to$  Convolution Matrix... Starte mit folgenden Einstellungen:

