Chapter 17

Temperature and Heat

17.1 Thermodynamics Terminology and Fundamentals

8/19: • System: A collection of objects.

- We will focus on systems comprised of gas molecules.
- Internal energy: The energy (of such a system) associated with the microscopic motion of the molecules. Denoted by $E_{\rm int}$.
- Systems of molecules conserve momentum within themselves, like any system, but they can also interact with the rest of the world by exchanging energy.
- \bullet Heat: Energy exchanged between hot and cold systems. Denoted by Q.
- Temperature: A measure of E_{int} . Denoted by T.
- Heat flows from a hot system to a cold system until thermal equilibrium is reached.
 - Thermal equilibrium implies equal temperatures.
- Zeroth Law of Thermodynamics: If $T_A = T_B$ and $T_B = T_C$, then $T_A = T_C$.
 - You can think of B as a thermometer if it reads the same for two different systems, those systems have the same temperature.
- To measure temperature, we need a thermometric property.
 - One example of a thermometric property is the dependence of the volume of mercury on temperature.
 - Celsius stuck a column of mercury in ice water and called it 0°. Similarly, he called a column of mercury in hot steam 100°.
 - Fahrenheit used iced brine (salt water) for 0° and sheep's blood for 100°.
 - Alternatively, we could measure the **pressure** of a gas, for instance.
- Pressure: The quotient of force and area. Units Pa.
 - $-1 Pa = 1 N/m^2$.
 - $-1 \text{ atm} = 1.01 \times 10^5 \text{ Pa} \approx 14 \text{ lb/in}^2.$
- **Absolute temperature**: The temperature defined by

$$T = 273 \cdot \frac{P}{P_{1 \text{ atm}}}$$

where P is the pressure of a gas at temperature T.

- **Absolute zero**: The temperature when the pressure of a gas is 0.
- Note that

$$T_C = T - 273^{\circ}$$
 $T_F = \frac{9}{5}T_C + 32$

- Equations of motion relate kinematic quantities, such as time, position, velocity, and acceleration.
- Equations of state relate thermodynamic properties of a system, such as pressure, volume, temperature, and moles.