## Devoir maison n°14 : Puissance d'un point par rapport à un cercle

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

| Problème 1 -                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , Oéfinition                                                                                                                                                                                                                                                   |
| 1) a) Comme $[AA']$ forme un diamètre de $\Gamma$ , les vecteurs $\overrightarrow{AB}$ et $\overrightarrow{A'B}$ sont orthogonaux Comme $\overrightarrow{MA}$ et $\overrightarrow{BA}$ sont colinéaires, $\overrightarrow{MA} \perp \overrightarrow{A'B}$ et : |
| $\overrightarrow{MA} \cdot \overrightarrow{MB} = \overrightarrow{MA} \cdot \overrightarrow{MA'} + \overrightarrow{MA} \cdot \overrightarrow{A'B}$ $= \overrightarrow{MA} \cdot \overrightarrow{MA'}$                                                           |
| <b>b)</b> Comme $[AA']$ est un diamètre de $\Gamma$ , en appliquant la formule de la médiane,                                                                                                                                                                  |
| $\overrightarrow{MA}\cdot\overrightarrow{MB}=\overrightarrow{MA}\cdot\overrightarrow{MA'}=OM^2-R^2$                                                                                                                                                            |
| 2) a) TODO                                                                                                                                                                                                                                                     |
| <b>b)</b> Notons $H$ l'un des points $T$ ou $S$ : la preuve est la même pour les deux. Par définition des tangentes, le triangle $MHO$ est rectangle en $H$ , et par Pythagore :                                                                               |
| $MH^2 + OH^2 = OM^2$                                                                                                                                                                                                                                           |
| $\Longleftrightarrow P_{\Gamma}(M) = OM^2 - OH^2 = MH^2$                                                                                                                                                                                                       |
| Ce qui prouve l'égalité.                                                                                                                                                                                                                                       |
| 3)                                                                                                                                                                                                                                                             |
| 4) a)                                                                                                                                                                                                                                                          |
| b)                                                                                                                                                                                                                                                             |
| Partie B - Critère de cocyclicité                                                                                                                                                                                                                              |
| 1)                                                                                                                                                                                                                                                             |
| 2)                                                                                                                                                                                                                                                             |
| 3)                                                                                                                                                                                                                                                             |

