Unit Number	Experiment Number	Experiment Name	Text/Reference Books	Pedagogical Tools	Mapped with CO Number
1	1	To numerically generate continuous time standard signals required for analyzing the LTI systems.		Infographics Practical,Simulation Practical,Video Demonstration	CO1
	2	To numerically compute Elementary Operations like superposition, temporal shifting and scaling on continuous time signals.	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1
	3	To numerically generate discrete time standard signals required for analyzing the LTI systems.	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1
	4	To numerically compute Elementary Operations like superposition, shifting and flipping on discrete time signals.	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1

5	To numerically compute the Characterization of Systems in the Time Domain using following operation: Impulse Response Convolution Step Response Eigenfunctions and the Transfer Function	T-Signals and Systems,R-Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1,CO2
6	To numerically compute the Characterization of Systems in the frequency Domain using following operation:The Transfer Function The Bode Plot Phase and Group Delay Combination of Systems	T-Signals and Systems,R-Signals and Systems	Infographics Practical, Simulation Practical, Video Demonstration	CO1,CO3

7	To numerically compute the following Properties of LTI-Systems The Transfer Function Causality and Stability Classes of Systems Idealized Systems	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1,CO2,CO3,CO4
8	To numerically compute the fourier transform of a pulse train and plot its frequency spectrum	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1,CO3,CO4
9	To numerically perform the Convolution of an Audio Signal with a Room Impulse Response	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1,CO2,CO3,CO4,CO5
10	To numerically perform the signal analysis of a Damped Spring Pendulum	T-Signals and Systems,R- Signals and Systems	Infographics Practical,Simulation Practical,Video Demonstration	CO1,CO2,CO3,CO4,CO5