Понятие функции

Пусть X, Y — некоторые непустые числовые множества.

Если каждому числу $x \in X$ единственным образом поставлено в соответствие число $y \in Y$, то говорят, что на множестве X определена (задана) функция и пишут y = f(x)

Множество X - область определения функции;

x — независимая переменная (аргумент) функции; y , соответствующее данному значению x , - значение функции в точке x.

множество $\{y\}$ – множество значений функции.

Геометрически функция y = f(x) изображается своим графиком. *График функции* — это множество точек $\{M(x, f(x), x \in X)\}$ в прямоугольной системе координат 0xy.

Основные характеристики функции

1. Функция y = f(x), определенная на множестве X, называется *четной*, если $\forall x \in X$ выполнены условия:

$$-x \in X$$
и $f(-x) = f(x)$

Функция y = f(x), определенная на множестве X, называется *нечетной*, если $\forall x \in X$ выполнены условия:

$$-x \in X$$
и $f(-x) = -f(x)$

График четной функции симметричен относительно оси ординат, график нечетной функции симметричен относительно начала координат.

Пример1. Функции, заданные на всей числовой оси: $y = x^2$, $y = \cos x$ — четные, функции $y = x^3$, $y = \sin x$ — нечетные, $y = x^2 + 1$, $y = \sqrt{x}$ — общего вида.

2. Пусть функция y = f(x) определена на множестве X и $X_1 \subset X$.

Если $\forall x_1, x_2 \in X_1$ из неравенства $x_1 < x_2$ следует неравенство $f(x_1) < f(x_2)$, то функция называется возрастающей на множестве X_1 .

Если $\forall x_1, x_2 \in X_1 \ x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$, то функция называется *неубывающей* на множестве X_1 ;

Если $\forall x_1, x_2 \in X_1 \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$, то функция называется убывающей на множестве X_1 ;

Если $\forall x_1, x_2 \in X_1 \ x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$, то функция называется невозрастающей на множестве X_1 .

Возрастающие, невозрастающие, убывающие, неубывающие функции на множестве X_1 называются *монотонными* на этом множестве, Возрастающие, и убывающие, функции на множестве X_1 называются *строго монотонными* на этом множестве.

3. Функция y = f(x), определенная на множестве X, называется *ограниченной* на этом множестве, если существует такое число M > 0, что $\forall x \in X$ выполнено неравенство $|f(x)| \leq M$

3. Функция y = f(x), определенная на множестве X, называется *периодической* на этом множестве, если существует такое число T > 0, такое, что $\forall x \in X$ выполнены условия:

$$(x+T) \in X$$
 и $f(x+T) = f(x)$

Пример2. Функции, заданные на всей числовой оси: $y = \cos x$, $y = \sin x -$ периодические, $y = x^2$, $y = \sqrt{x} -$ не периодические.

Обратная функция

Пусть задана функция y = f(x), определенная на множестве X и принимающая значения во множестве Y. Пусть каждому значению $y \in Y$ соответствует единственное значение $x \in X$. В этом случае говорят, что функция y = f(x) устанавливает взаимнооднозначное соответствие между элементами X и Y.

Поставим каждому $y \in Y$ то число $x \in X$, для которого y = f(x), тем самым будет определена функция $x = f^{-1}(y)$, которая называется обратной κ функции y = f(x).

Любая строго монотонная функция имеет обратную. При этом, если функция возрастает (убывает), то обратная также возрастает (убывает).

Графики взаимно обратных функций симметричны относительно биссектрисы первого и третьего координатных углов.

Пример3. Функция $y = x^2$, заданная на множестве $X = [0; +\infty)$, имеет обратную $y = \sqrt{x}$

Рис. 3

Сложная функция

Пусть аргумент t функции y = f(t) является не независимой переменной, а функцией некоторой переменной x: $t = \varphi(x)$. Тогда говорят, что переменная y является сложной функцией переменной x и пишут $y = f(\varphi(x))$.

Пример 4. Функция $y = \sin x^2$ - сложная функция, $y = \sin t$, $t = x^2$.

Основные элементарные функции

Показательная функция

$$y = a^x, a > 0, a \neq 1$$

Степенная функция

$$y = x^{\alpha}$$
, $\alpha \in \mathbb{R}$

Логарифмическая функция

$$y = \log_a x$$
, $a > 0$, $a \neq 1$

Тригонометрические функции

$$y = \cos x$$
, $y = \sin x$, $y = \tan x$, $y = \cot x$

Рис. 7

Обратные тригонометрические функции

 $y = \arccos x$, $y = \arcsin x$, $y = \arctan x$, $y = \arctan x$

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных, с помощью конечного числа арифметических операций и операций взятия функции от функции называется элементарной.

<u>Пример 5.</u> Функция $y = \sin x^2 + 2^{\sqrt{x}}$ – элементарная функция,

Функция $y = \begin{cases} \sin x^2 \text{, при } x \leq 0 \\ 2^{\sqrt{x}} \text{, при } x > 0 \end{cases}$ не является элементарной.

Предел функции

Окрестности

Окрестность точки c — любой интервал, содержащий точку x_0 ;

 ε – *окрестность* точки c – интервал (c – ε ; c +

Предельные точки множества

Число a называется *предельной точкой числового множества* X, если в любой проколотой ε — окрестности точки a содержатся точки из X. При этом сама точка может принадлежать, а может и не принадлежать X.

Пример 6. 1) $X = \{x : a < x < b\}$. Любая точка интервала, а также точки a, b — предельные точки интервала X.

2) № - множество натуральных чисел не имеет предельных точек.

Пусть функция y = f(x) определена на множестве X и a – предельная точка X.

Определение предела (по Коши). Число A называется пределом функции f(x) в точке a (при $x \to a$), если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента x из проколотой δ - окрестности точки a выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon 0 < |x - a| < \delta \Longrightarrow |f(x) - A| < \varepsilon$$

$$\lim_{x \to a} f(x) = A$$

Геометрический смысл предела функции

Рис. 9

Замечание 1. Функция может иметь в данной точке не более одного предела.

Замечание 2. Если функция имеет предел в точке а, то она ограничена в некоторой окрестности этой точки.

Утверждение следует непосредственно из определения предела функции:

$$|f(x) - A| < \varepsilon$$
 $A - \varepsilon < f(x) < A + \varepsilon$ при $0 < |x - a| < \delta$

Пример 6.

1) Пусть $f(x) = A = const \ \forall x \in \mathbb{R}$, тогда $\forall a$: $\lim_{x \to a} f(x) = A$

Действительно, $\forall \varepsilon > 0$ возьмем любое $\delta > 0$. Тогда

 $|f(x) - A| = 0 < \varepsilon$ при всех x и, значит, при $0 < |x - a| < \delta$

2)
$$f(x) = \begin{cases} A, \text{при } x \neq a \\ B, \text{при } x = a \end{cases}$$
, тогда $\lim_{x \to a} f(x) = A$

3)
$$f(x) = \begin{cases} A, \text{при } x \neq a \\ \text{не определена, при } x = a \end{cases}$$
 тогда $\lim_{x \to a} f(x) = A$

Замечание 3. Если в определении предела опустить неравенство 0 < |x - a|, то в 3) ответ не изменится, т.к. x = a не является значением аргумента.

В 2) ответ изменится: предел $\lim_{x \to a} f(x)$ не будет существовать, так как при x = a неравенство $|f(x) - A| < \varepsilon$ примет вид $|B - A| < \varepsilon$, оно не выполняется, если взять $\varepsilon < |B - A|$.

Односторонние пределы

Функция может иметь различные предельные точки слева и справа в некоторой точке.

Например,

$$y = sgn \ x =$$

$$\begin{cases} 1, \text{при } x > 0 \\ 0, \text{при } x = 0 \\ -1, \text{при } x < 0 \end{cases}$$

Рис. 10

Число A называется пределом функции f(x) в точке а справа (слева), если

для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента

 $x \in (a; a + \delta)$ (соответственно $x \in (a - \delta; a)$) выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\lim_{x \to a+0} f(x) = A$$
 или $f(a+0) = A$
$$\lim_{x \to a-0} f(x) = A$$
 или $f(a-0) = A$

Теорема. Если у функции f(x) существуют в точке а предел слева и предел справа, причем f(a+0) = f(a-0) = A, то в данной точке существует предел этой функции, равный A.

Предел функции при $x \to \infty$

Пусть функция f(x) задана на множестве X и $\forall N \ \exists x \in X: \ x > N$

Число A называется пределом функции f(x) при $x \to +\infty$, если $\forall \varepsilon > 0 \exists N$, такое, что для любого x > N выполнено неравенство $|f(x) - A| < \varepsilon$.

$$\lim_{x\to +\infty} f(x) = A$$

Аналогично определяется $\lim_{x\to -\infty} f(x) = A$

Если
$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$$
то пишут

$$\lim_{x \to \infty} f(x) = A$$

Пример 7. Докажем, что

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

Действительно, $\forall \varepsilon > 0$ возьмем $N = \frac{1}{\varepsilon}$. Тогда

если
$$x > N = \frac{1}{\varepsilon}$$
, то $\frac{1}{x} < \varepsilon$, т.е. $\left| \frac{1}{x} - 0 \right| < \varepsilon$.

Предел числовой последовательности

Числовая последовательность — это функция, определенная на множестве натуральных чисел: f(n): $n \in \mathbb{N}$ $\{x_n\} = x_1, x_2, x_3, \dots, x_n, \dots$

Число A называется пределом числовой последовательности $\{x_n\}$, если $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$, такой, что $\forall n > N$ выполнено неравенство $|x_n - A| < \varepsilon$ $\lim_{n \to \infty} x_n = A$

Если последовательность имеет предел, то говорят, что она *сходится*, а если не имеет предела, то *расходится*.

Свойства пределов функций

Теорема. Пусть функции f(x) и g(x) определены в проколотой окрестности точки а u, пусть $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$. Тогда:

$$\lim_{x \to a} [f(x) \pm g(x)] = A \pm B;$$
$$\lim_{x \to a} f(x)g(x) = A \cdot B;$$

Если $B \neq 0$, то в некоторой проколотой окрестности точки а определена функция f(x)/g(x) и $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$.

Следствие 1.

$$\lim_{x \to a} c f(x) = c A$$

 $r\partial e \ c = const$

Следствие 2. Пусть $P_n(x)$ и $Q_m(x)$

многочлены степени n и m. Если $Q_m(a) \neq 0$, то

$$\lim_{x \to a} \frac{P_n(x)}{Q_m(x)} = \frac{P_n(a)}{Q_m(a)}$$

Пример 8.

$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 5x + 6} =$$

$$= \lim_{x \to 2} \frac{x(x - 2)}{(x - 2)(x - 3)} = \lim_{x \to 2} \frac{x}{(x - 3)} = \frac{2}{-1} - 2$$