Descriptive Statistics on API Data

June 20, 2022

1 Final Project - Movie Reviews Analysis

• Team 13: Jimmy Nguyen, Dallin Munger, Tyler Wolff

• Date: 06/20/2022

2 Packages

```
[1]: import pandas as pd
     import numpy as np
     import requests
     import seaborn as sns
     import matplotlib.pyplot as plt
     from wordcloud import WordCloud
     from requests import TooManyRedirects
     import re
     import omdb
     import time
     from collections import Counter, defaultdict
     import nltk
     #nltk.download('stopwords')
     from nltk.corpus import stopwords
     from string import punctuation
     sw = stopwords.words("english")
```

3 Loading the Raw Data from API

```
[2]: # Read in csv data as pandas data frame
movies_info = pd.read_csv("Raw Movie Data.csv")
# see a random subset of 15 samples
movies_info.shape

[2]: (5000, 25)
[3]: movies_info.sample(10)
```

```
[3]:
                                                         title
                                                                year
                                                                      rated \
     351
                                            One Under the Sun
                                                                2017
                                                                       TV-14
     2313
                                                   Square One
                                                                2013
                                                                         NaN
           You Are the One: The Claudine-Raymart Love Story
                                                                2006
     2518
                                                                         NaN
     4525
                                            One Day Over L.A.
                                                                2014
                                                                         NaN
     38
                                            The Son of No One
                                                                2011
                                                                           R
     3123
                                         One Sight, One Sound
                                                                2009
                                                                         NaN
     4544
                                    One Day in Perfect Health
                                                                1950
                                                                         NaN
     2639
                                             One Black Coffee
                                                                2019
                                                                         NaN
     507
            One Damned Day at Dawn... Django Meets Sartana!
                                                                       NaN
     1224
                     One Direction: What Makes You Beautiful
                                                                         NaN
              released
                         runtime
                                                            genre
     351
           14 Mar 2017
                         101 min
                                          Drama, Mystery, Sci-Fi
     2313
           15 Aug 2013
                          15 min
                                                   Short, Comedy
     2518
           26 Mar 2006
                             NaN
                                              Documentary, Music
     4525
                           3 min
                                  Documentary, Short, Adventure
                    NaN
                          90 min
     38
           09 Jul 2011
                                            Action, Crime, Drama
     3123
                          75 min
                                              Documentary, Music
                   NaN
     4544
                    NaN
                          18 min
                                              Documentary, Short
     2639
           30 Mar 2019
                             NaN
                                                            Short
     507
           25 Jun 1970
                          90 min
                                                          Western
     1224
           19 Aug 2011
                           3 min
                                                     Short, Music
                                  director
                                                                             writer
     351
           Riyaana Hartley, Vincent Tran
                                                Katherine Tomlinson, Vincent Tran
     2313
                                                                      Emanuel Parvu
                            Emanuel Parvu
     2518
                                       NaN
                                                                                NaN
     4525
                              Cole Kawana
                                                               Cole Kawana (story)
     38
                             Dito Montiel
                                                                       Dito Montiel
     3123
                            Josh Pomponio
                                                                                NaN
     4544
                               John Krish
                                                                                NaN
     2639
                             Manoj Mathew
                                                                       Manoj Mathew
     507
                          Demofilo Fidani
                                            Demofilo Fidani, Mila Vitelli Valenza
     1224
                              John Urbano
                                                                                NaN
                                                         actors
     351
                     Pooja Batra, Gene Farber, Michael Keeley
           Dorian Boguta, Dorina Lazar, Emanuel Parvu, Co...
     2313
     2518
           Claudine Barretto, Raymart Santiago, Dennis Pa...
     4525
     38
                 Channing Tatum, Al Pacino, Juliette Binoche
     3123
                                                            NaN
     4544
                                                            NaN
     2639
           Manoj Mathew, Babli Das, Kasturi Banerjee, Tar...
     507
                         Jack Betts, Fabio Testi, Dino Strano
     1224
           One Direction, Harry Styles, Louis Tomlinson, ...
```

```
plot ... metascore
351
      Astronaut Kathryn Voss, sole survivor of a dis...
                                                                      NaN
2313
                                                                        NaN
                                                         NaN
2518
                                                         NaN
                                                                        NaN
4525
      Harvard-Westlake sophomore Cole Kawana flies h... ...
                                                                      NaN
38
      A young cop is assigned to a precinct in the w... ...
                                                                     36.0
3123
      September-November 2008; three months with the...
                                                                      NaN
4544
                                                         {\tt NaN}
                                                                        NaN
2639
                                                         NaN ...
                                                                        NaN
507
      Framed for a bank robbery, bounty killer Djang...
                                                                      NaN
1224
      Official music video for "What Makes You Beaut...
                                                                      NaN
     imdb_rating imdb_votes
                                   imdb_id
                                                                   box_office
                                              type
                                                              dvd
351
              3.5
                          612
                                 tt5110386
                                             movie
                                                     14 Mar 2018
                                                                           NaN
                            7
2313
              6.6
                                 tt6479182
                                             movie
                                                              NaN
                                                                           NaN
                            5
2518
              5.3
                                 tt0787250
                                             movie
                                                              NaN
                                                                           NaN
4525
              NaN
                          NaN
                                 tt4540802
                                             movie
                                                              NaN
                                                                           NaN
38
              5.1
                       17,137
                                 tt1535612
                                                     21 Feb 2012
                                                                       $30,680
                                             movie
3123
              NaN
                                                              NaN
                          NaN
                                 tt1567653
                                             movie
                                                                           NaN
4544
              NaN
                          NaN
                                 tt2064890
                                             movie
                                                              NaN
                                                                           NaN
2639
              NaN
                          NaN
                                tt11062440
                                                              NaN
                                                                           NaN
                                             movie
507
              4.9
                          329
                                 tt0067643
                                                              NaN
                                                                           NaN
                                             movie
1224
              7.2
                           45
                                 tt7318548
                                             movie
                                                              NaN
                                                                           NaN
     production website response
351
             NaN
                      NaN
                               True
2313
             NaN
                      NaN
                               True
2518
             NaN
                      NaN
                               True
4525
             NaN
                      NaN
                               True
38
             NaN
                      NaN
                               True
3123
             NaN
                      NaN
                               True
4544
             NaN
                      NaN
                               True
2639
             NaN
                      NaN
                               True
507
             NaN
                      NaN
                               True
1224
             NaN
                      NaN
                               True
```

[10 rows x 25 columns]

4 Exploratory Data Analysis

- 1. Examine a five-number summary of the numerical and categorical columns
- 2. Checking for Missing Data
- 3. Plotting Value Distributions
- 4. Comparing Value Distributions Across Categories

4.1 1. Calculating Summary Statistics for Columns

```
[4]: # Create a new column to look at the length of each plot
movies_info['plot_length'] = movies_info['plot'].str.len()

# 5 number summary of the numerical columns
movies_info.describe().T
```

```
[4]:
                                                                   25%
                                                                            50%
                                                                                     75%
                                                 std
                                                                                          \
                     count
                                    mean
                                                          min
                                                                2002.0
                                                                                 2016.0
                   5000.0
                            2002.897000
                                           23.082681
                                                       1887.0
                                                                        2011.0
     year
                                                                  47.0
                                                                           62.0
                                                                                    74.0
                     115.0
                              60.026087
                                           18.559747
                                                         16.0
     metascore
     imdb_rating
                   2442.0
                                6.591155
                                            1.386458
                                                          1.0
                                                                   5.8
                                                                            6.7
                                                                                     7.5
     plot_length
                   3560.0
                             159.808989
                                           70.963086
                                                         16.0
                                                                 109.0
                                                                          170.0
                                                                                   208.0
                       max
     year
                   2023.0
     metascore
                      93.0
     imdb rating
                      10.0
     plot_length
                   1324.0
```

Interpretation 1. **Year:** The range of the movies pulled from the API is from the year 1887 to 2023. This may seem plausible, but requires more drilling down in the data to figure out if the first movie ever was actually made in 1887. For movies in the year 2023, this may be upcoming movies that will be released then.

- 2. **Metascore**: The metascore is a weighted average of many reviews coming from reputed critics. The Metacritic team reads the reviews and assigns each a 0–100 score, which is then given a weight, mainly based on the review's quality and source. That means the higher the metascore, the more positive reviews a movie has. In our summary, we can see that the range for our movies in this sample is from 16 as the lowest and 93 as the highest. The average metascore is 60, where as the median is 62. This can be interesting later as we dive into the average metascore over time.
- 3. **imdb_rating**: IMDB rating allow users to rate films on a scale of 1-10. As expected, the range for this variable is 1 as the lowest and 10 as the highest. However, the average IMDB rating is 6.6 and the median is 6.7.
- 4. **plot_length**: This column displays the length of each movies' plot. Movies plots length range from 16 words as the lowest to 208 as the highest. On average, a movie plot has the length of 160 words whereas the median is 170. This could also indicate that a longer plot description will provide more information to understanding the movies' genres.

```
[5]:
               count unique
                                               freq
                                         top
     awards
                 840
                         177
                               1 nomination
                                                139
     runtime
                3826
                         173
                                       4 min
                                                163
     language
                4586
                         233
                                    English
                                              3414
```

Interpretation

1.awards This variable shows that 139 movies out of 5000 were able to receive 1 nomination for an award. However, due to the number of unique values, we may need to consider that awards recorded down for each movie is not consistent since this has a high cardinality. Therefore, this may not be a reliable insight for the awards variable

- 2. **runtime** This variable also sees a high cardinality, but at a quick glance we can see that there are 163 movies that has a runtime of only 4 minutes.
- 3. **language** There number of unique languages here is 233, while that may seem plausible it is also expected to see that movies in English was most prevalent.
- 4. **country** Understandably, the country with the most movies are from the United States of America (USA). Exactly 1444 movies out of 5000 in this API sample are American.

4.2 2. Checking for Missing Data

0

1440

[6]: movies_info.isna().sum()

response

plot_length

dtype: int64

[0]		
[6]:	title	0
	year	0
	rated	4245
	released	1349
	runtime	1174
	genre	159
	director	415
	writer	1435
	actors	754
	plot	1440
	language	414
	country	203
	awards	4160
	poster	2180
	ratings	0
	metascore	4885
	<pre>imdb_rating</pre>	2558
	imdb_votes	2446
	imdb_id	0
	type	0
	dvd	4497
	box_office	4884
	production	4965
	website	4996

[7]: (3510, 26)

Interpretation

Since our project is based on classifying the first genre of every movie based on its plot, then we only need to take into consideration the plot and genre columns to prepare for modeling

4.3 3. Plotting Value Distributions

```
[8]: ## Plotting Value Distribtuions
plt.figure(figsize=(13,8))
movies_info['plot_length'].plot(kind='box', vert=False)
plt.xlabel('Number of Characters')
plt.title('Plot Length Distribution')
plt.show()
```



```
[9]: # Histogram distribution of movie plot lengths
plt.figure(figsize=(13,8))
movies_info['plot_length'].plot(kind = 'hist', range = (100,250))
plt.xlabel('Number of Characters')
```


Interpretation

After removing the missing values, 50% percent of the plot descriptions have a length between roughly 150 and 230 characters, with the median at about 180 with many outliers to the right. The distribution is obviously left-skewed.

The histogram is showing the bins for the number of characters between the ranges of 100 to 250.

4.4 4. Comparing Value Distributions Across Categories

```
[10]: # top 10 countries with most movie plot descriptions
movies_info['country'].value_counts().nlargest(10)
```

```
[10]: United States
                         885
      USA
                         883
      UK
                          174
      United Kingdom
                          155
      Canada
                          139
                           81
      Japan
                           78
      Australia
      France
                           62
      India
                           57
```

```
Italy
                       43
     Name: country, dtype: int64
[11]: # Replace United States Values
     movies_info['country'] = movies_info['country'].str.replace(r'USA','United_
      ⇔States', regex=True)
     # Replace UK Values
     movies_info['country'] = movies_info['country'].str.replace(r'UK', 'Unitedu
      # top 10 countries with most movie plot descriptions
     movies_info['country'].value_counts().nlargest(10)
[11]: United States
                      1768
     United Kingdom
                       329
     Canada
                       139
     Japan
                        81
     Australia
                        78
     France
                        62
     India
                        57
     Italy
                        43
     Germany
                        37
     China
                        26
     Name: country, dtype: int64
[12]: # Boxplot and violint plots for movie plot lengths by countries
     sns.set(font scale = 0.7)
     ⇔'Canada', 'Japan', 'Australia', 'France'])
     sns.catplot(data=movies_info[where], x="country", y="plot_length", kind='box', u
      \rightarrowheight=8.27, aspect=11.7/8.27)
     plt.ylabel("Plot length")
     sns.catplot(data=movies_info[where], x="country", y="plot_length", u
      ⇔kind='violin', height=8.27, aspect=11.7/8.27)
     plt.ylabel("Plot length")
```


Interpretation

Both plots reveal that the lengths of the movie plots, for Japan has a higher median number of characters than the rest, otherwise all other countries seem to be closely distributed around the same length for movie plots.

4.5 5. Visualizing Movie Plots Over Time

```
[13]: # Average plot lengths over
      plots_avg = movies_info.groupby(['year'])['plot_length'].mean().reset_index()
      # time series plot of average plot length overall
      plt.figure(figsize=(13,8))
      sns.set(font_scale = 1.2)
      sns.lineplot(data=plots_avg, x="year", y="plot_length")
      plt.title("Average Plot Lengths Over Time (Overall)")
      plt.xlabel("Year")
      plt.ylabel("Average plot length")
      plt.show()
      # Average plot lengths over time by countries
      plt.figure(figsize=(13,8))
      plots_over_time = movies_info.groupby(['year','country'])['plot_length'].mean().
       →reset index()
      where = plots_over_time['country'].isin(['United States', 'United_

→Kingdom', 'Canada'])
      plots_over_time = plots_over_time[where]
      # time series plot of average plot length by countries
      sns.lineplot(data=plots_over_time, x="year", y="plot_length", hue="country", u
       ⇔style = "country",
          markers=True, dashes=False)
      plt.title("Average Plot Lengths Over Time by Top 3 Countries")
      plt.xlabel("Year")
      plt.ylabel("Average plot length")
      plt.show()
```


Interretation

The timeline reflects the number of average movie plot lengths over the years with all the countries, then a second plot aggregating by the top 3 countries with the most movies avaliable in this sample, which is the United States, United Kingdom, and Canada. Overall, movies across all countries in this sample have created shorter movie plot descriptions over time, whereas in the top 3 countries, any real pattern is hard to distinguish as there are a lot of variations.

5 Preparing Texual Data for Statistics and Modeling

- Remove Punctuation
- Remove extra white space
- Tokenize on white space pattern
- Fold to lowercase
- Remove stopwords

```
[14]: punctuation = set(punctuation)
      # Text cleaning function
      def clean_text_data(column):
          new_description = []
          for description in column:
              update_desc = description
              # Remove the punctuation from each description
              for i in description:
                  if i in punctuation:
                      update_desc = update_desc.replace(i, "")
              # Remove extra white space
              update_desc = re.sub(r'\s+', ' ', update_desc)
              # Split on whitespace
              update_desc = update_desc.split()
              # Fold to lowercase
              for i in range(len(update_desc)):
                  update_desc[i] = update_desc[i].lower()
              # Remove stopwords
              update_desc = [i for i in update_desc if i not in sw]
              new_description.append(update_desc)
          return new_description
```

```
[15]: #Remove empty lists from cleaned_genre
movies_info = movies_info[movies_info['genre'] != ' ']

# Clean the plot description and genre text
movies_info['cleaned_plot'] = clean_text_data(movies_info['plot'])
movies_info['cleaned_genre'] = clean_text_data(movies_info['genre'])

# Keep only the first word in the cleaned genre lists
movies_info['first_genre'] = [i[0] for i in movies_info['cleaned_genre']]

# Create new df with only the first_genre and cleaned_plot columns
```

```
cleaned_df.sample(15)
[15]:
                                         title first_genre \
      4856
                       And Then There Was One
                                                      short
      494
                    One Day You'll Understand
                                                       drama
      436
                             One in a Thousand
                                                      drama
      1787
                    Fifty People One Question
                                                documentary
      4293
                                One Year Later
                                                      short
      4318
                           One Pillow One Soul
                                                     family
      2998
                            I Am the Other One documentary
      3758
                       One Minute to Midnight
                                                      short
      488
              Sam Smith: I'm Not the Only One
                                                      short
      1540
                                One Small Step
                                                      short
      3961
                     Laal Vaali (The Red One)
                                                       short
      1435
                      I'm Your Number One Fan
                                                documentary
      4114
                        One Heart: One Spirit
                                                documentary
      2330
            One Hot Rotting, Zombie Love Song
                                                      short
      4246
                              One and the Same
                                                      short
                                                  cleaned plot imdb rating
      4856
            [woman, discovers, shes, pregnant, finds, husb...
                                                                       NaN
      494
            [man, endeavors, collect, memories, grandparen...
                                                                       5.7
      436
            [iris, expelled, school, spends, days, cousins...
                                                                       6.3
            [one, town, 50, different, people, one, diffic...
                                                                       5.8
      1787
      4293
            [one, year, later, spooky, halloween, fairytal...
                                                                       NaN
      4318
            [story, tomb, removal, story, conflict, family...
                                                                       NaN
      2998 [luca, longs, lost, love, thalles, name, chang...
                                                                       {\tt NaN}
      3758 [friendship, two, teenage, boys, imminent, nuc...
                                                                       {\tt NaN}
      488
             [music, video, sam, smiths, song, know, im, one]
                                                                         8.2
      1540
            [dasani, 9, attempts, juggle, responsibilities...
                                                                       8.8
      3961
            [comedy, errors, situation, arises, lata, find...
                                                                       NaN
      1435
            [professor, paul, mullen, looks, way, admirati...
                                                                       7.2
      4114
            [aboriginal, australian, native, american, doc...
                                                                       {\tt NaN}
            [jonas, kindhearted, zombie, sick, tired, kill...
      2330
                                                                       5.4
            [still, photographer, sound, recordist, indepe...
      4246
                                                                       NaN
[16]: # Plotting Value Distribtuions
      plt.figure(figsize=(13,8))
      sns.set(font scale = 1.2)
      cleaned_df['imdb_rating'].plot(kind='box', vert=False)
      plt.title('IMDB Ratings Distribution')
      plt.show()
```

cleaned_df = movies_info[['title', 'first_genre', 'cleaned_plot', __


```
[17]: # Count instances of each genre cleaned_df['first_genre'].value_counts()
```

```
[17]: short
                      1342
      documentary
                       743
                       428
      drama
      comedy
                       380
                       145
      animation
      action
                       132
      crime
                       71
      horror
                        40
      adventure
                        35
      thriller
                       32
      music
                        32
     biography
                        20
      family
                        19
      western
                        17
      romance
                        15
      scifi
                        15
      sport
                         9
                         9
      fantasy
                         9
      mystery
                         5
      musical
                         5
      history
      realitytv
                         3
                         3
      talkshow
```

```
news 1
Name: first_genre, dtype: int64
```

5.1 Only use top 5 first genres

- Include descriptive statistics on final clean data set
- Frequency Diagram
- Word cloud

5.2 Descriptive Statistics

```
[19]: def descriptive_stats(tokens, common_tokens = 5, verbose=True) :
              Given a list of tokens, print number of tokens, number of unique,
       \hookrightarrow tokens.
              number of characters, lexical diversity (https://en.wikipedia.org/wiki/
       ⇔Lexical diversity),
              and num_tokens most common tokens. Return a list with the number of \Box
       \hookrightarrow tokens, number
              of unique tokens, lexical diversity, and number of characters.
          11 11 11
          # Fill in the correct values here.
          num tokens = len(tokens)
          num_unique_tokens = len(set(tokens))
          lexical_diversity = num_unique_tokens/num_tokens
          num_characters = sum([len(i) for i in tokens])
          if verbose:
              print(f"There are {num_tokens} tokens in the data.")
              print(f"There are {num_unique_tokens} unique tokens in the data.")
              print(f"There are {num_characters} characters in the data.")
              print(f"The lexical diversity is {lexical_diversity:.3f} in the data.")
              # print the five most common tokens
              counter = Counter(tokens)
              counter list = counter.most common(common tokens)
              print(f"Most {common_tokens} common words: {counter_list}\n")
[20]: movie_plot_tokens = cleaned_df.apply(lambda x: pd.
       Series(x['cleaned_plot']),axis=1).stack().reset_index(level=1, drop=True).
       →tolist()
      print("\t Movies Plot Descriptions:")
      descriptive_stats(movie_plot_tokens)
              Movies Plot Descriptions:
     There are 31048 tokens in the data.
     There are 9494 unique tokens in the data.
     There are 191378 characters in the data.
     The lexical diversity is 0.306 in the data.
     Most 5 common words: [('one', 482), ('life', 202), ('story', 176), ('film',
     175), ('world', 138)]
```

5.3 Creating a Frequency Diagram

```
[21]: def count_words(cleaned_df, column='cleaned_plot', preprocess=None, min_freq=2):
    # process tokens and update counter
    def update(doc):
        tokens = doc if preprocess is None else preprocess(doc)
        counter.update(tokens)

# create counter and run through all data
    counter = Counter()
    cleaned_df[column].map(update)

# transform counter into a DataFrame
    freq_df = pd.DataFrame.from_dict(counter, orient='index', columns=['freq'])
    freq_df = freq_df.query('freq >= @min_freq')
    freq_df.index.name = 'token'

    return freq_df.sort_values('freq', ascending=False)

freq_df = count_words(cleaned_df).reset_index()
```

```
[22]: # Plot Frequency Diagram
    plt.figure(figsize=(13,8))
    sns.set(font_scale = 1.2)
    sns.barplot(x="freq", y="token", data=freq_df.head(15), orient = "h")
    #ax.invert_yaxis()
    plt.title("Top 15 Words")
    plt.xlabel("Frequency")
    plt.ylabel("Token")
    plt.show()
```


5.4 Word Cloud

```
[23]: def wordcloud(word_freq, title=None, max_words=200, stopwords=None):
          # Create word cloud
          wc = WordCloud(width=800, height=400,
              background_color= "black", colormap="Paired",
              max_font_size=150, max_words=max_words)
          # convert DataFrame into dict
          if type(word_freq) == pd.Series:
              counter = Counter(word_freq.fillna(0).to_dict())
          else:
              counter = word_freq
          # filter stop words in frequency counter
          if stopwords is not None:
              counter = {token:freq for (token, freq) in counter.items() if token not⊔
       →in stopwords}
          wc.generate_from_frequencies(counter)
          plt.title(title)
          plt.imshow(wc, interpolation='bilinear')
          plt.axis("off")
```

```
[24]: # Plot Word Cloud plt.figure(figsize=(13,8))
```

```
freq_df = count_words(cleaned_df)
wordcloud(freq_df['freq'], max_words=100)
plt.title("Top 100 Words")
plt.show()
```


5.5 Export Final Clean Dataset

```
[25]: # Write to a csv
cleaned_df.to_csv('Cleaned Plot Data.csv', index = False)
```

Created in Deepnote