Biological Databases

Dr. Upeksha Ganegoda

Department of Computational Mathematics

Outline

- Different types of biological networks
- Database Structures
- Biological database types based on content

Biological Networks

- Protein-protein interaction network
- Metabolic network
- Gene regulatory network
- RNA network

Protein-protein interaction network

- A protein can interact with another protein, in order to build a protein complex or to activate it. By using a proteinprotein interaction network it shows how and which proteins are interact each other.
- Node represent a protein, Arc represent the interaction between two protein.
- Can use different types of graph algorithms to identify:
 - Protein complexes
 - Protein functions
 - Protein Hubs
 - etc

Protein Hub?

Protein complexes?

Metabolic network

• Metabolic networks give an in-depth insight of the molecular mechanisms of a particular organism. It will correlate the genome with molecular physiology and provide the most comprehensive of all biological networks.

Ex: Databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Biochemical Genetic and Genomics knowledgebase (BIGG) contain the metabolic network of a wide range of species.

Gene-regulatory network

- It is a common type of regulatory network
- gene regulatory network consist of DNA segments in a cell which interact with each other indirectly (by using their RNA and protein expression products) and with other materials in the cell to manage the gene expression levels of mRNA and proteins.

RNA networks

• RNA networks show the interaction between RNA-RNA or RNA-DNA interactions. By understanding the microRNA's role in disease, the researchers able to construct microRNA-gene networks by using predicted microRNA targets available in public databases such as Target Scan, PicTar, microRNA, miRBase and miRDB.

Representation as a network

Network G = (V, E, w), where V represents the set of proteins, E is the set of interactions and w denotes the weight of each interaction

Network can construct as

Main functions of biological databases

- Make biological data available to scientists.
 - As much as possible of a particular type of information should be available in one single place (book, site, database). Published data may be difficult to find or access, and collecting it from the literature is very time-consuming. And not all data is actually published explicitly in an article (genome sequences).
- To make biological data available in computerreadable form.
 - Since analysis of biological data almost always involves computers, having the data in computer-readable form (rather than printed on paper) is a necessary first step.

What is a database?

How can data be stored...

Flat-file format, with fields separated by some delimiter

Nancy | Dengler | Botany | University of Toronto | 25 Willocks St, Toronto, ON. M5S 3B2 Peter | Lewis | Dept. of Biochemistry | Uni. Toronto | 1 King's College Circle, Toronto, ON. M5S 1A8 John | Coleman | Department of Botany | University of Toronto | 25 Willcocks St, Toronto, ON. M5S 3B2 John | Coleman | Dept. of Biology | York University | 4700 Keele St, Toronto, ON. M3J 1P3

These data could also be stored in a spreadsheet

First_name	Last_name	Institution	Department	Address
Nancy	Dengler	University of Toronto	Botany	25 Willocks St, Toronto, ON. M5S 3B2
Peter	Lewis	Uni. Toronto	Dept. of Biochemistry	1 King's College Circle, Toronto, ON. M5S 1A8
John	Coleman	University of Toronto	Department of Botany	25 Willcocks St, Toronto, ON. M5S 3B2
John	Coleman	York University	Dept. of Biology	4700 Keele St, Toronto, ON. M3J 1P3

What are the problems with this sort of database? Relational Databases offer a solution...

Database structures

- Flat files
- Relational
- Object oriented

Relational database

Nancy | Dengler | Botany | University of Toronto | 25 Willocks St, Toronto, ON. M5S 3B2 Peter | Lewis | Dept. of Biochemistry | Uni. Toronto | 1 King's College Circle, Toronto, ON. M5S 1A8 John | Coleman | Department of Botany | University of Toronto | 25 Willcocks St, Toronto, ON. M5S 3B2 John | Coleman | Dept. of Biology | York University | 4700 Keele St, Toronto, ON. M3J 1P3

A relational database consists of a relations (tables) containing attributes (fields or columns). Each row in a table is known as a tuple or a record. Information should be 'normalized' so that it is non-redundant this means that every row should be unique, although this ideal is not always observed.

	Professor_id	First_name	Last_name	Contact_id
Table	1	Nancy	Dengler	1
	2	Peter	Lewis	2
'Professors'	3	John	Coleman	1
	4	John	Coleman	3

	Contact_id	Institution	Department	Address
Table	1	University of Toronto	Dept. of Botany	25 Willocks St, Toronto, ON. M5S 3B2
	2	Uni. Toronto	Dept. of Biochemisty	1 King's College Circle, Toronto, ON. M5S 1A8
'Contacts'	3	York University	Dept. of Biology	4700 Keele St, Toronto, ON. M3J 1P

Flat File

Name, States, Course number, Course name|John Smith, Texas, Biol 689, Bioinformatics|Jane Doe, Kansas, Bich 441, Biochemistry|William Brown, Illinois, Chem 289, Organic Chemistry|Jennifer Taylor, New York, Hort 201, Horticulture|Howard Douglas, Texas, Math 172, Calculus

Table A

Student #	Name	State
1	John Smith	Texas
2	Jane Doe	Kansas
3	William Brown	Illinois
4	Jennifer Taylor	New York
5	Howard Douglas	Texas

Table B

Student #	Course #	
1	Biol 689	
2	Bich 441	
3	Chem 289	
4	Hort 201	
5	Math 172	

Table C

Course #	Course name
Biol 689	Bioinformatics
Bich 441	Biochemistry
Chem 289	Organic chemistry
Hort 201	Horticulture
Math 172	Calculus

Different Database Types

- Primary databases
 - Contain original biological data. Ex. Raw nucleic acid sequence data from GeneBank, EMBL database, DNA Data Bank.
- Secondary databases
 - Contain computationally processed or manually curated information based on original information from primary database. Ex. SWISS-PROT, TrEMBL (contain translated nucleic acid sequences), PIR (contain annotated protein sequences).
- Specialized databases
 - This will cater to a particular research interest. Ex. Flybase, WormBase, AceDB, and TAIR

Pitfalls of biological databases

- Overreliance of sequence information without understanding the reliability of the information.
- High level of redundancy
- Annotations of genes can occasionally be false or incomplete.

Accession codes, identifiers

- Many of the biological databases (GenBank, UNIPROT etc.) have two (or more!) different ways of identifying a given entry:
 - Identifier
 - Accession code (or number)

• Identifier

An identifier ("locus" in GenBank, "entry name" in UNIPROT) is a string of letters and digits that understandable in some meaningful way by a human.

Identifiers are not as stable as accession numbers, mainly because they are modified by the curators if the presumed function of the protein is found to be something else.

UNIPROT: B5YME7

GenBank: XM_002295694

An identifier can change. For example, the database curators may decide that the identifier for an entry no longer is appropriate. This can happen very rarely.

Accession code (number)

An accession code (or number) is a number (with a few characters in front) that uniquely identifies an entry. It is often assigned arbitrarily. For example, the accession code for **B5YME7_THAPS** in UNIPROT is **B5YME7**.

In the case of GenBank, the accession code for the human BRAC2 gene sequence is XM_002295694.

Versions and Gene Indices

In 1992, NCBI began assigning a unique number for each sequence submitted — the GenInfo Identifier (GI) number. The same accession number may be associated with a different GI if a newer or corrected sequence is submitted.

Records typically contain the Accession. Version identifier, such as XM_002295694.1, in the VERSION line of the record. This identifier is mapped to its unique corresponding GI number, which is the "primary key" of GenBank.

To specify a sequence exactly in GenBank, use either its GI or Accession. Version. To retrieve the most up-to-date sequence, use the accession number without version.

Develop **Analyze**

Use NCBI APIs and code libraries to build applications

Identify an NCBI tool for your data analysis task

Research

Explore NCBI research and collaborative projects

Popular Resources PubMed Bookshelf PubMed Central PubMed Health Nucleotide Genome Protein PubChem

Search

NCBI Announcements

HTTPS at NCBI: Guidance for NCBI web API users

27 Jul 2016

Sign in to NCBI

As originally announced on June 10, MCRI will be moving all web conices to

dbSNP build 148 for corn, fruit fly, rice and 8 other organisms available

26 Jul 2016

dbSNP build 148 is accessible on the wah and via FTP. This ralease includes

August 3rd webinar: NCBI Targeted Loci: RefSeg Ribosomal RNA Sequences for Identification and Phylogenetic Analysis

On August 3rd MCRI staff will present a

Homology

Literature Proteins

Taxonomy

Variation

Sequence Analysis

Training & Tutorials

Results found in 12 databases for "BRAC2"

Literature			Genes		
Books	3	books and reports	EST	0	expressed sequence tag sequences
MeSH	0	ontology used for PubMed indexing	Gene	8	collected information about gene loci
NLM Catalog	0	books, journals and more in the NLM Collections	GEO Data Sets	1	functional genomics studies
PubMed	18	scientific & medical abstracts/citations	GEO Profiles	0	gene expression and molecular abundance profiles
PubMed Central	116	full-text journal articles	HomoloGene	0	homologous gene sets for selected organisms
Health			PopSet	0	sequence sets from phylogenetic and population studies
ClinVar	1	human variations of clinical significance	UniGene	0	clusters of expressed transcripts
dbGaP	0	genotype/phenotype interaction studies	Proteins		
GTR	0	genetic testing registry			
MedGen	0	medical genetics literature and links	Conserved Domains	0	conserved protein domains
OMIM	0	online mendelian inheritance in man	Protein	17	protein sequences
PubMed Health	2	clinical effectiveness, disease and drug reports	Protein Clusters	0	sequence similarity-based protein clusters
Conomos			Structure	0	experimentally-determined biomolecular structures
Genomes			- Chemicals		
Assembly	0	genome assembly information			
BioProject	1	biological projects providing data to NCBI	BioSystems	38	molecular pathways with links to genes, proteins and chemicals
Bio Sample	0	descriptions of biological source materials	PubChem BioAssay	0	bioactivity screening studies
Clone dbVar	0	genomic and cDNA clones genome structural variation studies	PubChem Compound	0	chemical information with structures, information and links
Genome	1	genome sequencing projects by organism	PubChem Substance	0	deposited substance and chemical information
GSS	0	genome survey sequences	. abonom substance		aspested autotative and oriented infolliation
Nucleotide	22	DNA and RNA sequences			
Probe	0	sequence-based probes and primers			

GenBank Flatfile Format (GBFF)

Thalassiosira pseudonana CCMP1335 chromosome 7 breast cancer 2 early onset (BRAC2) mRNA, partial cds

NCBI Reference Sequence: XM_002295694.1

FASTA Graphics

<u>Go to:</u> ∨

LOCUS XM_002295694 971 bp mRNA linear PLN 28-JUL-2009 DEFINITION Thalassiosira pseudonana CCMP1335 chromosome 7 breast cancer 2

early onset (BRAC2) mRNA, partial cds.

ACCESSION XM 002295694

VERSION XM_002295694.1 GI:224004157

KEYWORDS RefSeq.

SOURCE Thalassiosira pseudonana CCMP1335 ORGANISM Thalassiosira pseudonana CCMP1335

Eukaryota; Stramenopiles; Bacillariophyta; Coscinodiscophyceae; Thalassiosirophycidae; Thalassiosirales; Thalassiosiraceae;

Thalassiosira.

• The GenBank flatfile format (GBFF) explain the nucleotide sequences of a specific gene. It contains all of the information associated with the sequence, as well as the sequence itself.

The GBFF has 3 parts: the header, the features, and the sequence itself.

LOCUS

XM_002295694

identifier

971 bp length

mRNA

linear

PLN 28-JUL-2009

source type NCBI entry date

taxonomic group

GenBank flatfile format - Header

LOCUS XM 002295694 971 bp mRNA linear PLN 28-JUL-2009

DEFINITION Thalassiosira pseudonana CCMP1335 chromosome 7 breast cancer 2

early onset (BRAC2) mRNA, partial cds.

ACCESSION XM 002295694

VERSION XM 002295694.1 GI:224004157

KEYWORDS RefSeq.

DEFINITION: The biology of the molecule in a sentence.

ACCESSION: Code(s)

VERSION: Number; GI number

KEYWORDS: Keywords as defined by the submitters

```
SOURCE
            Thalassiosira pseudonana CCMP1335
  ORGANISM Thalassiosira pseudonana CCMP1335
            Eukaryota; Stramenopiles; Bacillariophyta; Coscinodiscophyceae;
            Thalassiosirophycidae; Thalassiosirales; Thalassiosiraceae;
            Thalassiosira.
REFERENCE
            1 (bases 1 to 971)
 AUTHORS
            Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K.,
            Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P.,
            Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A.,
            Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F.,
            Berges, J.A., Brownlee, C., Cadoret, J.P., Chiovitti, A., Choi, C.J.,
            Coesel, S., De Martino, A., Detter, J.C., Durkin, C., Falciatore, A.,
            Fournet, J., Haruta, M., Huysman, M.J., Jenkins, B.D., Jiroutova, K.,
            Jorgensen, R.E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P.G., La
            Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P.J.,
            Lucas, S., Mangogna, M., McGinnis, K., Medlin, L.K., Montsant, A.,
            Oudot-Le Secq, M.P., Napoli, C., Obornik, M., Parker, M.S., Petit, J.L.,
            Porcel, B.M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T.A.,
            Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M.R.,
            Taylor, A.R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A.,
            Wyrwicz, L.S., Rokhsar, D.S., Weissenbach, J., Armbrust, E.V.,
            Green, B.R., Van de Peer, Y. and Grigoriev, I.V.
  TITLE
            The Phaeodactylum genome reveals the evolutionary history of diatom
            genomes
            Nature 456 (7219), 239-244 (2008)
  JOURNAL
   PUBMED
            18923393
REFERENCE
            2 (bases 1 to 971)
  AUTHORS
            Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D.,
            Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M.,
            Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K.,
            Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z.,
            Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V.,
            Kroger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C.,
            Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S.,
            Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A.,
            Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A.,
            Wilkerson, F.P. and Rokhsar, D.S.
  TITLE
            The genome of the diatom Thalassiosira pseudonana: ecology,
            evolution, and metabolism
  JOURNAL
            Science 306 (5693), 79-86 (2004)
   PUBMED
            15459382
REFERENCE
            3 (bases 1 to 971)
  AUTHORS
            Grigoriev, I., Grimwood, J., Kuo, A., Otillar, R.P., Salamov, A.,
            Detter, J.C., Schmutz, J., Lindquist, E., Shapiro, H., Lucas, S.,
            Glavina del Rio, T., Bruce, D., Pitluck, S., Rokhsar, D. and
            Armbrust.V.
  CONSRTM
            Diatom Consortium
  TITLE
            Direct Submission
  JOURNAL
            Submitted (18-SEP-2008) US DOE Joint Genome Institute, 2800
            Mitchell Drive B100, Walnut Creek, CA 94598-1698, USA
COMMENT
            PROVISIONAL REFSEO: This record has not yet been subject to final
            NCBI review. This record is derived from an annotated genomic
```

SOURCE: Contains organism name ORGANISM: Contains complete taxonomic information from the NCBI taxonomy server.

REFERENCE: Details on a publication about the sequence. COMMENT: Contains misc. information and revision details.

GenBank Flatfile Format - Features

A direct representation of the biological information in the record.

- •The Source Feature must be present in all GenBank records, and contains information as to where the molecule comes from /organism = "Homo sapiens", and, potentially, map, chromosome and tissue type information.
- In some records the CDS (coding sequence) feature is present:

```
Location/Qualifiers
FEATURES
                     1..971
     source
                     /organism="Thalassiosira pseudonana CCMP1335"
                     /mol type="mRNA"
                     /strain="CCMP1335"
                     /db xref="taxon:296543"
                     /chromosome="7"
                     <1...>971
     gene
                     /gene="BRAC2"
                     /locus tag="THAPS 263089"
                     /db xref="GeneID:7448960"
                     <1...>971
     CDS
                     /gene="BRAC2"
                     /locus tag="THAPS 263089"
                     /note="Co-localizes with Bracal in subnuclear foci"
                     /codon start=1
                     /product="breast cancer 2 early onset"
                     /protein id="XP 002295730.1"
                     /db xref="GI:224004158"
                     /db xref="GeneID:7448960"
                     /translation="GCDDSLFSDKWIGNHYRWIVWKLAAMERRFPHHLGGHYLTYERV
                     LKOMKGRYDKELRNFRRPAVRIMLNRDVAASLPVILCVSQILRFKSRPPKGSSSDEIK
                     EEVRLELTDGWYSLPAVVDEILLKFVEERRIAVGSKLMICNGOLVGSDDGVEPLDDSY
                     SSSKRDCPLLLGISANNSRLARWDATLGFVPRNNSNLYGGNLLVKSLODIFIGGGTVP
                     AIDLVVCKKYPRMFLEOLNGGASIHLTEAEEAAROSEYDSRHORASERYADDATKECS
                     EVSSLLFTFFTMKPLPLLWYNLVTDSSFGVHDSHRKSMRMLLLSGKR"
```

GenBank Flatfile Format – Sequence

• The last part of the GenBank flat file record is the sequence itself:

ORIGIN

```
1 gggtgcgacg attcattgtt ttcggacaag tggataggca accactaccg gtggattgtc
 61 tggaagctag cagcaatgga gagacggttt ccacaccatc ttggaggaca ttacttgacg
121 tacgagcgtg tgctgaaaca aatgaagggc cgctacgata aggaacttcg taatttcaga
181 cggcctgcag tacgcataat gctcaaccga gatgttgcag cgagtttgcc agtcatctta
241 tgcgtaagcc aaatccttcg attcaaatca agaccgccaa aaggaagttc ttccgacgag
301 atcaaagaag aagtccgact ggagttgacg gatggatggt actcactacc tgctgtagtg
361 gacgaaatac tgttgaagtt tgttgaagaa aggagaatcg cagtgggatc aaaactaatg
421 atttgcaatg ggcagttagt tggatctgat gacggagtgg agcctctcga tgacagctac
481 tcatcttcca aacgagattg tcctctattg ctgggcatct ctgccaacaa ctcccgttta
541 gcaagatggg atgcaactct aggttttgta cctcgcaaca actctaatct atacggcggc
601 aatcttttgg tcaaatccct gcaagacatt ttcatcggcg gaggtactgt tccggctatt
661 gatttggttg tttgtaagaa gtacccaagg atgtttctag agcaattaaa cggtggagct
721 tccattcatc ttacagaagc cgaagaagca gcacgccaaa gtgagtacga ttcaaggcat
781 cagcgagcaa gcgagagata tgccgacgat gctacgaagg aatgttcaga ggtaagttca
841 ttgctgttca cattcttcac tatgaagcca cttccgttgc tttggtacaa tcttgtcact
901 gactcatctt ttggcgttca tgattcgcac aggaaatcga tgaggatgct cctactcagt
961 ggaaagagat g
```

Nucleotide Databases – Growth of GenBank

GenBank and WGS Statistics

Other facilities in NCBI database

S NCBI Resources
→ How To Sign in to NCBI Search NCBI databases Help Search Literature Genes Books books and reports EST expressed sequence tag sequences MeSH ontology used for PubMed indexing Gene collected information about gene loci NLM Catalog books, journals and more in the NLM Collections **GEO Data Sets** functional genomics studies PubMed scientific & medical abstracts/citations **GEO Profiles** gene expression and molecular abundance profiles PubMed Central full-text journal articles HomoloGene homologous gene sets for selected organisms sequence sets from phylogenetic and population **PopSet** Health studies UniGene clusters of expressed transcripts ClinVar human variations of clinical significance dbGaP genotype/phenotype interaction studies **Proteins** GTR genetic testing registry Conserved Domains conserved protein domains MedGen medical genetics literature and links Protein protein sequences OMIM online mendelian inheritance in man **Protein Clusters** sequence similarity-based protein clusters **PubMed Health** clinical effectiveness, disease and drug reports Structure experimentally-determined biomolecular structures Genomes Chemicals Assembly genome assembly information molecular pathways with links to genes, proteins and biological projects providing data to NCBI **BioProject Bio Systems** chemicals **BioSample** descriptions of biological source materials PubChem BioAssay bioactivity screening studies Clone genomic and cDNA clones chemical information with structures, information and **PubChem Compound** dbVar genome structural variation studies Genome genome sequencing projects by organism PubChem Substance deposited substance and chemical information GSS genome survey sequences **Nucleotide** DNA and RNA sequences Probe sequence-based probes and primers SNP short genetic variations SRA high-throughput DNA and RNA sequence read archive taxonomic classification and nomenclature catalog Taxonomy

Disease details

Gene Details

Gene expression details....

Documentation 🔻

Query & Browse ▼

Email GEO

Gene Expression Omnibus

Keyword or GEO Accession

Search

Getting Started	Tools	E
Overview	Search for Studies at GEO DataSets	F
FAQ	Search for Gene Expression at GEO Profiles	
About GEO DataSets	Search GEO Documentation	S
About GEO Profiles	Analyze a Study with GEO2R	F
About GEO2R Analysis	GEO BLAST	S
How to Construct a Query	Programmatic Access	
How to Download Data	FTP Site	

Browse Content		
Repository Browser		
DataSets:	3848	
Series: 🔊	71898	
Platforms:	16217	
Samples:	1887802	

Information for Submitters					
Login to Submit Submission Guidelines MIAME Standards					
	Update Guidelines	Citing and Linking to GEO			
		Guidelines for Reviewers			
		GEO Publications			

GEO Publications FAQ MIAME Email GEO

NCBI » GEO » Repository browser » Series

Samples Platforms Series DataSets

Summary | Advanced search

GSE7307 Search Export

71,898 series

< < Page 1 of 3,595 > >> Page size 20 ▼

Accession \$	Title +	Series type(s)	Organism(s) 🕴	Samples \$ GDS	Supplementary	♦ Contact	♦ Release date ▼
GSE71846	Blast traumatic brain injury induced cognitive deficits are attenuated by pre- or post-injury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4 [Day 3 dataset]	Expression profiling by array	Mus musculus	24	♣ TXT	Kevin G Becker	Aug 05, 2016
GSE76533	Epigenetic characteristics and gene-expression analysis of Derivative 3-3 de novo centromere in maize	Expression profiling by high throughput sequencing Methylation profiling by high throughput	■ Zea mays	5	DIFF TXT ♣ SRA Study	Handong Su	Aug 05, 2016
		sequencing Genome binding/occupancy profiling by high throughput sequencing					
GSE81157	Biased Expression of the FOXP3∆3 Isoform in Aggressive Bladder Cancer Mediates Differentiation and Cisplatin Chemotherapy Resistance	Expression profiling by high throughput sequencing	Homo sapiens	9	♣ TXT ♣ SRA Study	Kelvin Zhang	Aug 05, 2016
GSE83368	POLRMT regulates the switch between replication-primer formation and gene expression of mammalian mtDNA	Expression profiling by high throughput sequencing	Mus musculus	6		Stefan Johannes Siira	Aug 05, 2016
GSE84782	GATA-2 occupancy in Kasumi-3 cell line	Genome binding/occupancy profiling by high throughput sequencing	Homo sapiens	3	♣ SGR ♣ SRA Study	Kyle Hewitt	Aug 05, 2016
GSE85007	Gene expression data from peripheral blood leukocytes of Amish and Hutterite schoolchildren	Expression profiling by array	Homo sapiens	56	⊉ TXT	Carole Ober	Aug 05, 2016

Platforms (1) GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

Samples (677) GSM175786 Endometrium/Ovary 1 Disease
GSM175787 Endometrium/Ovary 2 Disease
GSM175788 Endometrium/Ovary 3 Disease

Relations

BioProject PRJNA98081

Analyze with GEO2R Download family SOFT formatted family file(s) MINiML formatted family file(s) Series Matrix File(s) TXT ②

Supplementary file	Size	Download	File type/resource
GSE7307_GEO_Sample_Info.xls	212.5 Kb	(ftp)(http)	XLS
GSE7307_RAW.tar	3.7 Gb	(http)(custom)	TAR (of CEL)

Raw data provided as supplementary file

Not logged in | Login 🗷

Organization name Neurocrine Biosciences, Inc.

Department Molecular Medicine Street address 12790 El Camino Real

 City
 San Diego

 State/province
 CA

 ZIP/Postal code
 92130

 Country
 USA

Data table header descriptions

ID_REF

VALUE RMA-calculated Signal intensity

B-t-1-U-	
Data table	
ID_REF	VALUE
1554096_a_at	8.705967
235618_at	31.018942
226481_at	90.709816
203075_at	158.27777
236658_at	2.2517445
212621_at	59.485825
1557720_s_at	13.7795925
242882_at	29.065136
238622_at	14.13699
1566288_at	0.57941365
223862_at	11.631055
227982_at	39.791286
235483_at	30.89615
1566114_at	2.1306062
204150_at	100.160934
201484_at	233.00635
212061_at	111.64305
210092_at	150.438
205145_s_at	16.445053
221594_at	7.171978

Total number of rows: 54675

Table truncated, full table size 1095 Kbytes.

View full table...

Supplementary file	Size	Download	File type/resource
GSM175786.CEL.gz	7.2 Mb	(ftp)(http)	CEL