DEVOIR SURVEILLÉ 3

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 4 pages et est constitué de 4 exercices. Bon courage!

Exercice 1 – On considère la matrice $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

- 1. Montrer par récurrence que pour tout entier naturel n, on a $A^n = \begin{pmatrix} 2^n & 0 & 3^n 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}$.
- 2. Application à l'étude de deux suites.

On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par $a_0=2$, $b_0=0$ et pour tout $n\in\mathbb{N}$,

$$a_{n+1} = 2a_n + 3^n$$
 et $b_{n+1} = 3b_n + 3^n$.

- a) Quelle instruction faut-il ajouter en ligne 4 de la fonction Python suivante pour qu'elle retourne la valeur de a_n pour un entier n donné (on justifiera la réponse)?
 - i. a=2*a+3**n ii. a=2*a+3**i iii. une autre instruction à préciser.

Pour tout entier naturel n, on pose $X_n = \begin{pmatrix} a_n \\ b_n \\ 3^n \end{pmatrix}$.

- b) Montrer que pour tout entier naturel n, on a $X_{n+1} = AX_n$.
- c) Recopier et compléter le programme suivant afin qu'il affiche la valeur de a_n , l'entier n étant donné par l'utilisateur.

```
import numpy as np
def calculbisa(n):
A=np.array(....)
X=np.array(....)
for i in range(n):
X=np.dot(....)
return X[0]
```

- d) Établir pour tout $n \in \mathbb{N}$ que $X_n = A^n X_0$.
- e) En déduire en utilisant la question 1. que pour tout $n \in \mathbb{N}$, on a

$$a_n = 2^n + 3^n$$
 et $b_n = n3^{n-1}$.

3. Application au calcul des puissances d'une autre matrice.

On considère les matrices
$$M = \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ et $Q = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.

- a) Calculer PQ. En déduire que P est inversible et donner P^{-1} .
- b) Vérifier que $PMP^{-1} = A$.
- c) Montrer par récurrence que pour tout entier naturel n, on a $M^n = P^{-1}A^nP$. En déduire que pour tout entier naturel n, on a

$$M^{n} = \begin{pmatrix} 2 \times 3^{n} - 2^{n} & 0 & 2(2^{n} - 3^{n}) \\ -n3^{n-1} & 3^{n} & n3^{n-1} \\ 3^{n} - 2^{n} & 0 & 2^{n+1} - 3^{n} \end{pmatrix}.$$

- 4. Application au calcul d'une somme.
 - a) Montrer que pour tout entier naturel k, on a $2b_k = b_{k+1} b_k 3^k$.
 - b) Pour tout entier naturel n, calculer $\sum_{k=0}^{n} 3^k$.
 - c) Montrer que pour tout entier naturel k, on a $\sum_{k=0}^{n} (b_{k+1} b_k) = b_{n+1}$.
 - d) Déduire des questions précédentes et de la question **2.e**) que pour tout entier naturel *n*, on a

$$\sum_{k=0}^{n} k3^{k-1} = \frac{(n+1)3^n}{2} + \frac{1}{4} - \frac{3^{n+1}}{4}.$$

Exercice 2 – On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{1 + e^x}$.

Soit $\mathcal C$ la représentation graphique de f dans un repère $(O,\vec\imath,\vec\jmath)$ d'unité 2cm.

- 1. Calculer $\lim_{x\to -\infty} f(x)$. Que pouvez-vous en déduire sur la représentation graphique $\mathcal C$ de f?
- 2. a) Montrer que pour tout réel x, on a $f(x) = \frac{1}{1 + e^{-x}}$.
 - b) En déduire $\lim_{x\to +\infty} f(x)$. Comment interpréter graphiquement ce résultat?
- 3. a) Montrer que la dérivée de f vérifie, pour tout réel x, la relation $f'(x) = \frac{e^x}{(1+e^x)^2}$.
 - b) Déterminer le sens de variation de f. Dresser son tableau de variation en y faisant figurer les limites calculées aux questions **1.** et **2.** ainsi que f(0).
 - c) Déterminer l'équation de la tangente ${\mathcal T}$ à ${\mathcal C}$ au point d'abscisse 0.
- 4. On admet que pour tout réel x, on a $f''(x) = \frac{e^x(1-e^x)}{(1+e^x)^3}$. Étudier la convexité de f.
- 5. Tracer \mathcal{C} et \mathcal{T} .

Exercice 3 – Dans cet exercice, on suppose que l'on dispose de deux urnes \mathcal{U}_1 et \mathcal{U}_2 . L'urne \mathcal{U}_1 contient 4 boules rouges, tandis que l'urne \mathcal{U}_2 contient deux boules rouges et deux boules blanches. On commence par lancer une pièce non truquée. Si l'on obtient PILE on choisit de faire une succession de tirages dans l'urne \mathcal{U}_1 . Dans le cas contraire, on choisit de faire les tirages dans l'urne \mathcal{U}_2 . On note F l'événement "la pièce amène FACE". L'événement "la pièce amène PILE" est donc \overline{F} . On définit également, pour tout entier $k \geqslant 1$, l'événement R_k : "le k-ème tirage dans l'urne choisie amène une boule rouge".

- 1. On lance la pièce, on choisit l'urne puis on effectue un tirage. Montrer en utilisant la formule des probabilités totales que la probabilité de tirer une boule rouge est $\frac{3}{4}$.
- 2. On lance la pièce, on choisit l'urne puis on effectue deux tirages *sans remise*. C'est-à-dire que la boule tirée lors du premier tirage n'est pas remise dans l'urne avant de procéder au deuxième tirage dans la même urne.
 - a) Calculer $P_F(R_1 \cap R_2)$ et $P_{\overline{F}}(R_1 \cap R_2)$. En déduire que la probabilité que le tirage amène deux boules rouges de suite est $\frac{7}{12}$.
 - b) On remarque *a posteriori* que les deux boules tirées sont rouges. Quelle est la probabilité que la pièce ait amené PILE?
- 3. On lance la pièce, on choisit l'urne puis on décide de faire des tirages *sans remise* dans l'urne choisie jusqu'à ce que l'on soit en mesure de déterminer avec certitude dans quelle urne l'on se trouve. On note *Y* la variable aléatoire égale au nombre de tirages effectués.
 - a) Justifier que l'ensemble $Y(\Omega)$ des valeurs prises par Y est égal à [1,3].
 - b) Expliquer pourquoi $[Y = 1] = F \cap B_1$. En déduire P(Y = 1).
 - c) Calculer de même P(Y = 2).
 - d) En déduire la valeur de P(Y = 3).
 - e) Calculer E(Y).

Exercice 4 -

Partie A

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 0$$
, $u_1 = 1$ et $\forall n \in \mathbb{N}^*$, $u_{n+1} = 7u_n + 8u_{n-1}$.

1. Recopier et compléter les trois lignes incomplètes de la fonction Python ci-dessous afin qu'elle calcule u_n :

		<pre>def calcul(n):</pre>		
	2.	u=0		
İ	3.	v=1		
	2. 3. 4.	for k in		
İ	5. 6.	w=u		
	6.	u=		
	7.	ν=		
	8.	return u		

2. Montrer que la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=u_{n+1}+u_n$ est une suite géométrique de raison 8. En déduire l'expression de s_n en fonction de n.

3. On pose pour tout entier naturel n,

$$v_n = (-1)^n u_n$$
 et $t_n = v_n - v_{n+1}$.

- a) Exprimer t_n en fonction de s_n pour tout entier naturel n.
- b) En déduire que pour tout $n \ge 0$, on a $t_n = (-8)^n$.
- 4. Soit *n* un entier naturel non nul.
 - a) Calculer la somme $\sum_{i=0}^{n-1} (-8)^i$.
 - b) Justifier que $\sum_{i=0}^{n-1} (v_i v_{i+1}) = -v_n.$
 - c) En déduire l'expression de v_n en fonction de n, puis vérifier que

$$\forall n \in \mathbb{N}, \quad u_n = \frac{(-1)^{n+1} + 8^n}{9}.$$

Partie B

On considère les matrices carrées d'ordre 3 suivantes :

$$M = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. Calculer $M^2 7M 8I$.
- 2. En déduire que M est inversible et exprimer M^{-1} en fonction de M et de I.
- 3. a) On pose $a_0 = 0$ et $b_0 = 1$. Vérifier que $M^0 = a_0 M + b_0 I$.
 - b) Déterminer deux réels a_1 et b_1 tels que $M^1 = a_1 M + b_1 I$.
 - c) Soit $n \in \mathbb{N}$. On suppose qu'il existe deux réels a_n et b_n tels que $M^n = a_n M + b_n I$. Prouver alors que

$$M^{n+1} = a_n(7M + 8I) + b_n M.$$

En déduire deux réels a_{n+1} et b_{n+1} en fonction de a_n et b_n tels que $M^{n+1} = a_{n+1}M + b_{n+1}I$.

d) Montrer par récurrence que

$$\forall n \in \mathbb{N}, \quad a_n = u_n$$

où (u_n) est la suite définie dans la Partie A.

Partie C

Soient X et Y deux variables aléatoires pour lesquelles on suppose que la loi du couple (X,Y) est donnée par le tableau suivant :

	Y = 1	Y = 2	Y = 3
X = 1	2β	3β	3β
X = 2	3β	2β	3β
X = 3	3β	3β	2β

- 1. Déterminer la valeur du réel β pour que ce tableau représente effectivement la loi du couple (X, Y).
- 2. Reconnaître les lois marginales de X et Y. En déduire les espérances E(X) et E(Y).
- 3. a) Vérifier que la covariance de X et Y est donnée par $Cov(X, Y) = -\frac{1}{12}$
 - b) Les variables aléatoires *X* et *Y* sont-elles indépendantes?