Review Midterm and Discuss Grades

box plot

Hypothesis Testing

Beyond 2 'Groups'

Animal Food Consumption

animal	grams/day
chicken	49
chicken	50
chicken	51
dog	99
dog	100
dog	101
sheep	149
sheep	150
sheep	151
std	43.3
XBAR	100

Animal Food Consumption

animal	grams/day
chicken	49
chicken	50
chicken	51
dog	99
dog	100
dog	101
sheep	149
sheep	150
sheep	151
std	43.3
XBAR	100

	chicken	dog	sheep
	49	99	149
	50	100	150
	51	101	151
std	1	1	1
XBAR		100	150

Another Scenario

animal	grams/day
chicken	1
chicken	50
chicken	99
dog	50
dog	100
dog	149
sheep	101
sheep	150
sheep	199
std	60.7
XBAR	99.9

Another Scenario

animal	grams/day
chicken	1
chicken	50
chicken	99
dog	50
dog	100
dog	149
sheep	101
sheep	150
sheep	199
std	60.7
XBAR	99.9

	chicken	dog	sheep
	1	51	101
	50	100	150
	99	149	199
std	49	49	49
XBAR	50	100	150

Yet Another Scenario

animal	grams/day
chicken	49
chicken	50
chicken	51
dog	49
dog	50
dog	51
sheep	49
sheep	50
sheep	51
std	0.9
XBAR	50

Yet Another Scenario

animal	grams/day
chicken	49
chicken	50
chicken	51
dog	49
dog	50
dog	51
sheep	49
sheep	50
sheep	51
std	0.9
XBAR	50

	chicken	dog	sheep
	49	49	49
	50	50	50
	51	51	51
std	1	1	1
XBAR	50	50	50

ANOVA: When And Why

- When we want to compare means we can use a t-test. This test has limitations:
 - You can compare only 2 means: often we would like to compare means from 3 or more groups.
 - It can be used only with one Predictor/Independent Variable.
- ANOVA
 - Compares several means.

Why Not Use Lots of *t*-Tests?

- If we want to compare several means why don't we compare pairs of means with *t*-tests?
 - Can't look at several independent variables.
 - Inflates the Type I error rate.

What Does ANOVA Tell us?

- Null Hyothesis:
 - Like a t-test, ANOVA tests the null hypothesis that the means are the same.
- Research Hypothesis:
 - The means differ.
- ANOVA is an Omnibus test
 - It test for an overall difference between groups.
 - It tells us that the group means are different.
 - It doesn't tell us exactly which means differ.

Theory of ANOVA

- We calculate how much variability there is between scores
 - Total Sum of squares (SS_T).
- We then calculate how much of this variability can be explained by the model we fit to the data
 - How much variability is due to the experimental manipulation, Model Sum of Squares (SS_R)...
- ... and how much cannot be explained
 - How much variability is due to individual differences in performance, Residual Sum of Squares (SS_w).

Theory of ANOVA

- We compare the amount of variability explained by the Model (experiment), to the error in the model (individual differences)
 - This ratio is called the F-ratio.
- If the model explains a lot more variability than it can't explain, then the experimental manipulation has had a significant effect on the outcome (DV).

Theory of ANOVA

Partitioning variance for ANOVA

- If the experiment is successful, then the model will explain more variance than it can't
 - SS_B will be greater than SS_W

Test Requirements

- Dependent variable must be Interval-Ratio
- Independent variable must be nominal or ordinal, with 3 or more categories (but usually no more than 5)

Quiz Yourself

 Could you conduct the test with two interval-ratio variables? How?

- Step One:
 - Random/EPSEM samples
 - I/R dependent variable, 3-5 categories in independent variable
 - The categories are about the same size (a limitation of ANOVA)

Step Two, State the Null Hypothesis:

- H_0 : $\mu_1 = \mu_2 = \mu_n$
- H₁: At least one of the means is different.

- Step 3:
 - F Distribution (Appendix D)
 - Set Alpha (0.05)
 - Find F_{critical} using dfw & dfb

- Step 4: Compute the Test Statistic
- Step 5: Interpret the Results

ANOVA by Hand

- Testing the effects of a medicine using three groups:
 - Placebo (Sugar Pill)
 - Low Dose
 - High Dose
- The Outcome/Dependent Variable (DV) was an objective measure of treatment effect (the higher the score, the more effective the treatment).

The Data

	Placebo	Low Dose	High Dose
	3	5	7
	2	2	4
	1	4	5
	1	2	3
	4	3	6
\overline{X}	2.20	3.20	5.00
S	1.30	1.30	1.58
S ²	1.70	1.70	2.50
	Grand Mean = 3.467	Grand SD = 1.767	Grand Variance = 3.124

The data:

Total Sum of Squares (SS_T):

Step 1: Calculate SS_T

$$SS_T = \sum (x_i - \overline{x}_{grand})^2$$

$$SS_T = \sum x^2 - N\overline{x}^2$$

Computational formula

Step 1: Calculate SS_T

$$SS_T = \sum x^2 - N\overline{x}^2$$

$$SS_T = 224 - 15(3.467)^2$$

= 224 - 15(12.02)
= 224 - 180.3
= 43.7

X	X^2
3	9
2	4
1	1
1	1
4	16
5	25
2	4
4	16
2	4
3	9
7	49
4	16
5	25
3	9
6	36
SUM	224

Degrees of Freedom (df)

- Degrees of Freedom (df) are the number of values that are free to vary.
- In general, the df are one less than the number of values used to calculate the SS.

$$df_T = (N-1) = 15 - 1 = 14$$

Model Sum of Squares (SS_B):

Step 2: Calculate SS_B

$$SS_B = \sum n_i (\bar{x}_i - \bar{x}_{grand})^2$$

$$SS_B = 5(2.2 - 3.467)^2 + 5(3.2 - 3.467)^2 + 5(5.0 - 3.467)^2$$

$$= 5(-1.267)^2 + 5(-0.267)^2 + 5(1.533)^2$$

$$= 8.025 + 0.355 + 11.755$$

$$= 20.135$$

Model Degrees of Freedom

$$df_B = (k-1) = 3 - 1 = 2$$

Residual Sum of Squares (SS_W):

Step 3: Calculate SS_W

$$SS_W = SST - SSB$$

$$SSW = 43.73 - 20.14$$

$$SSW = 23.59$$

Residual Degrees of Freedom

$$df_W = N - k$$

$$= 12$$

Step 4: Calculate the Mean Squared Error

$$MS_B = \frac{SS_B}{df_B} = \frac{20.135}{2} = 10.067$$

$$MS_W = \frac{SS_W}{df_W} = \frac{23.60}{12} = 1.967$$

Step 5: Calculate the *F*-Ratio

$$F = \frac{MS_B}{MS_W}$$

$$F = \frac{MS_B}{MS_W} = \frac{10.067}{1.967} = 5.12$$

Step 6: Construct a Summary Table

Source	SS	df	MS	F
Model	20.14	2	10.067	5.12*
Residual	23.60	12	1.967	
Total	43.74	14		

Data in R

> > experiment

	treatmentOutcome	dose
1	3	placebo
2	2	placebo
3	1	placebo
4	1	placebo
5	4	placebo
6	5	low
7	2	low
8	4	low
9	2	low
10	3	low
11	7	high
12	4	high
13	5	high
14	3	high
15	6	high

Results in R

> aggregate(treatmentOutcome~dose, experiment, mean)

```
dose treatmentOutcome
high 5.0
low 3.2
placebo 2.2
```

Results in R

Follow-Up Tests

- The F-ratio tells us only that the experiment was successful
 - i.e. group means were different
- It does not tell us specifically which group means differ from which.
- We need additional tests to find out where the group differences lie.

How?

- Multiple *t*-tests
 - We saw earlier that this is a bad idea
- Post Hoc Tests
 - Not Planned (no hypothesis)
 - Compare all pairs of means

Post Hoc Tests

- Compare each mean against all others.
- In general terms they use a stricter criterion to accept an effect as significant.
 - Hence, control the familywise error rate.

Post Hoc Test Output

> TukeyHSD(anova.results)

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

Fit: aov(formula = treatmentOutcome ~ dose, data
= experiment)

\$dose

```
difflwruprp adjlow-high-1.8-4.1662410.56624120.1474576placebo-high-2.8-5.166241-0.43375880.0209244placebo-low-1.0-3.3662411.36624120.5162761
```

Does mood vary by sunshine level?

Sunshine	Mood
High	8
Low	3
Medium	5
Medium	7
Low	4
High	10
High	10
Medium	5
Low	1
Medium	6

Next:

- Chi-Square
- Chapter 1 & 2 in Tufte book