MA 108 - Spring 2018 Tutorial Sheet 2

- 1. Solve the following ODE after finding an integrating factor.
 - (a) $(27xy^2 + 8y^3) dx + (18x^2y + 12xy^2) dy = 0.$
 - (b) $-y dx + (x^4 x) dy = 0$.
 - (c) $y \sin y \, dx + x(\sin y y \cos y) \, dy = 0$.
 - (d) $y(1+5\ln|x|) dx + 4x\ln|x| dy = 0$.
 - (e) $(3x^2y^3 y^2 + y) dx + (-xy + 2x) dy = 0.$
 - (f) $y dx + (2x ye^y) dy = 0$.
 - (g) $[a\cos(xy) y\sin(xy)] dx + [b\cos(xy) x\sin(xy)] dy = 0.$
- 2. Solve the following IVP.
 - (a) $(4x^3y^2 6x^2y 2x 3) dx + (2x^4y 2x^3) dy = 0$, y(1) = 3.
 - (b) $(y^3 1)e^x dx + 3y^2(e^x + 1) dy = 0$, y(0) = 0.
 - (c) $(9x^2 + y 1) dx (4y x) dy = 0$, y(1) = 0.
- 3. Based on the existence and uniqueness theorem, (i) find all the (x_0, y_0) , for which theorem gives an interval on which the given IVP has a solution and (ii) an interval around x_0 for which it has a unique solution.
 - (a) $y' = \frac{e^x + y}{x^2 + y^2}$.
 - (b) $y' = (x^2 + y^2)y^{1/3}$.
 - (c) $y' = \frac{1}{(\sin y)(x-1)}$
- 4. Let $y' = 3x(y-1)^{1/3}$, $y(x_0) = y_0$.
 - (a) For what points (x_0, y_0) does IVP have a solution.
 - (b) For what points (x_0, y_0) does IVP have a unique solution in an interval around x_0 .
 - (c) Observe that $y \equiv 1$ is a solution with initial value y(0) = 1.
 - (d) Let $(x_0, y_0) = (0, 1)$. Find four solutions for the IVP which differ from each other for values of x in every open interval that contains $x_0 = 0$.
- 5. (a) From existence and uniqueness theorem, the IVP $y' = 3x(y-1)^{1/3}$, y(3) = -7 has a unique solution on some open interval that contains $x_0 = 3$. Determine the largest such open interval, and find the solution on this interval.
 - (b) Find two solutions of the IVP defined on $(-\infty, \infty)$.

6. State on which rectangles the hypotheses of existence and uniqueness theorem for ODEs are satisfied.

(a)
$$y' = \frac{\ln|xy|}{1 - x^2 + y^2}$$
.

(b)
$$y' = \frac{1+x^2}{3y-y^2}$$
.

7. Solve the IVP and determine how the interval in which the solution exists depends on the initial value y_0 .

(a)
$$y' + y^3 = 0$$
, $y(0) = y_0$.

(b)
$$y' = \frac{x^2}{y(1+x^3)}$$
, $y(0) = y_0$

8. Find ϕ_1, ϕ_2, ϕ_3 , the first 3 Picard's iterations for following ODE's.

(a)
$$y' = x + y^2$$
, $y(0) = 0$.

(b)
$$y' = x^2 + y^2$$
, $y(0) = 0$.

(c)
$$y' = x^2 + y$$
, $y(0) = 0$.