Снижение размерности пространства зависимой переменной в задачах прогнозирования*

Мария Владимирова, Роман Исаченко vladimirova.maria@phystech.edu, isa-ro@yandex.ru Московский физико-технический институт

В работе решается задача обнаружения зависимостей в прогнозируемой переменной. Используется набор гомогенных моделей, восстанавливающих прогноз по общему для всех переменных описанию объектов. Рассматривается линейная модель метода частный наименьших квадратов и ее предложенная нелинейная модификация. Находятся оптимальные параметрические преобразования исходных пространств объектов и ответов. Проводится вычислительный эксперимент на реальных данных объемов потребления электроэнергии и данных сигналов кортикограмм.

Ключевые слова: прогнозирование временных рядов; мультиколлинеарность; метод частных наименьших квадратов; PLS; нелинейный PLS

1. Введение

2

12

14

15

16

17

19

21

22

23

24

25

26

27

В работе рассматривается задача прогнозирования временных рядов в случае наличия мультиколлинеарности в данных. Методы решения данной задачи сравниваются на двух наборах данных, имеющих избыточную информацию.

Первый набор данных представляет собой временные ряды объема потребления элек-5 троэнергии в Варшаве. Электрическая энергия является важной движущей силой экономического развития, а точность прогнозов спроса является важным фактором, который ведет к успешному эффективному планированию. По этой причине энергетическим аналитикам необходимо руководство для лучшего выбора наиболее подходящих методов прогнозирования, чтобы обеспечить точные прогнозы тенденций потребления электроэнер-10 гии. Предполагается, что значение сигнала в данный момент времени линейно зависит от предыдущих значений этого же сигнала, поэтому данные являются мультиколлинеарными. 13

Второй набор данных взят из проекта Project Tycho, в котором изучалась проблема проектирования нейро-компьютерного интерфейса (ВСІ) для обмена информацией между мозгом и электронным устройством. Решается задача выбора функций в моделях регрессии в приложении к декодированию движения на основе электрокардиограмм (ECoG). Проблема состоит в том, чтобы предсказать траектории руки из временных рядов напряжения кортикальной активности. Описание функции каждой точки находится в пространственно-временной частотной области включает в себя сами временные ряды напряжения и их спектральные характеристики. Выбор функции имеет решающее значение для адекватного решения проблемы регрессии, поскольку электрокортикальные данные являются высокомерными и измерения коррелируют как во временной, так и в пространственной областях.

Система ВСІ улучшает умственные и физические возможности пользователя, обеспечивая прямую связь между мозгом и компьютером. ВСІ направлены на восстановление поврежденных функциональных возможностей пациентов с механическими или когнитивными нарушениями. В данной статье предлагается новый метод выбора признаков

в прогнозировании движения и его реконструкции. Первый шагом к прогнозированию предполагаемых движений — научиться реконструировать фактические перемещения из кортикальной активности. Рассматривается проблема непрерывной реконструкции траек-тории. Субдуральные сигналы ЕСоС измеряются через 32 или 64 канала, когда субъект перемещает руку. Когда сигналы ECoG трансформируются в информационные функции, проблема восстановления траектории является проблемой регрессии. Извлечение функ-ции включает в себя применение некоторого спектрально-временного преобразования к сигналам ECoG с каждого канала. Так как результирующее пространственно-временное спектральное представление сильно избыточно, используются различные методы выбора объектов и уменьшения размерности, чтобы извлечь только наиболее важные функции.

Для решения задачи прогнозирования используется авторегрессионная модель. Авторегрессионная модель является неустойчивой в случае наличия мультиколлинеарности в исторических данных. Для решения этой проблемы необходимо используются методы отбора признаков [21], в результате чего повышается устойчивость модели без существенного снижения качества прогноза.

В работе исследуются методы отбора признаков: метод частных наименьших квадратов (PLS) [11] и предложенная его нелинейная модицикация (cnlPLS). Метод частных наименьших квадратов основан на снижении размерности матрицы признаков и выделяет линейные комбинации признаков, которые оказывают наибольшее влияние на вектор ответов. Выделение признаков происходит итеративно, в порядке уменьшения их влияния на вектор ответов [11]. Рассматриваются только значимые комбинации признаков, незначительно потеряв в точности прогноза.

Методы PLS регрессии подробно описаны в работах [8,9]. Разницу между методом PLS и связанными с ним подходами, различные разновидности регрессии PLS можно найти в [17].

Нелинейное расширение метода PLS регрессии впервые введено в [6]. В литературе были разработаны различные модификации PLS. Предложены нелинейные методы PLS, основанные на различных моделях: искусственных нейронных сетей [4], функции активации радиальных оснований [5], логистическая функция активации и методы оптимизации роевых частиц [7], используют прямые нейронные сети [3], искусственую нейронную сеть Эльмана [10].

Предлагается провести модификацию алгоритма PLS: совершить криволинейное и нелинейное преобразования пространства целевой переменной для учета зависимостей между сигналами в разные моменты времени.

В работе проведено сравнение двух методов отбора признаков в задаче авторегрессионного прогнозирования сигналов (PLSR и cnlPLSR). Цель регрессии PLS [18] —предсказать \mathbf{Y} по \mathbf{X} и описать их общую структуру. Когда \mathbf{Y} — вектор, а \mathbf{X} — матрица полного ранга, эта цель может быть выполнена с использованием обычной линейной регрессии. Если число предикторов велико по сравнению с числом наблюдений, то \mathbf{X} будет сингулярной и регрессионный подход в этом случае невозможен из-за наличия мультиколлинеарности.

В качестве практической проверки данных методов в ходе вычислительного эксперимента решается задача прогнозирования на реальных данных. Результатом применения отбора признаков является снижение размерности задачи и повышение устойчивости моделей без существенной потери точности прогноза.

Постановка задачи

73

83

86

87

94

Пусть $\mathfrak{D} = (\mathbf{X}, \mathbf{Y})$ — выборка, $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^m \in \mathbb{R}^{m \times n}$ — матрица объектов, $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^m \in \mathbb{R}^{m \times r}$ — матрица ответов. В случае данных электроэнергии i-ая строка матрицы \mathbf{X} — локальная история сигнала (n значений сигнала, начиная с момента i), а i-ая строка матрицы \mathbf{Y} — локальный прогноз, то есть r значений сигнала, начиная с момента n+1. В случае данных ECoG матрица \mathbf{X} состоит из пространственно-временного спектрального представления временных рядов напряжения, а матрица \mathbf{Y} содержит информацию о положении руки. Процесс генерации матрицы \mathbf{X} из значений натряжения описан в (ссылка на Мотренко).

Предположим, что между объектами $\mathbf{x} \in \mathbb{R}^n$ и ответами $\mathbf{y} \in \mathbb{R}^r$ существует линейная зависимость

$$y = x\Theta + \varepsilon$$
,

где $m{\Theta} \in \mathbb{R}^{n imes r}$ — матрица параметров модели, а $m{arepsilon} \in \mathbb{R}^r$ — вектор регрессионных остатков.

Введем квадратичную функцию ошибки S на выборке \mathfrak{D} :

$$S(\boldsymbol{\Theta}|\mathfrak{D}) = \|\mathbf{X}\boldsymbol{\Theta} - \mathbf{Y}\|_{2}^{2} = \sum_{i=1}^{m} \|\mathbf{x}_{i}\boldsymbol{\Theta} - \mathbf{y}_{i}\|_{2}^{2}.$$

Оптимальные значения матрицы параметров $oldsymbol{\Theta}$ находятся минимизацией функционала ошибки

$$\Theta^* = \arg\min_{\mathbf{\Theta} \in \mathbb{R}^{n \times r}} S(\mathbf{\Theta}|\mathfrak{D}).$$

Одним из основных препятствий эффективного применения регрессионного анализа является мультиколлинеарность. Она связана с линейной зависимостью между признаками объектов. В результате мультиколлинеарности матрица парных коэффициентов корреляции и матрица $\mathbf{X}^\mathsf{T}\mathbf{X}$ становятся слабообусловленными, т.е. их определители близки к нулю. Это приводит к неустойчивости оценок коэффициентов регрессии, так как в их выражения входит обратная матрица $(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}$, получение которой связано с делением на определитель матрицы $\mathbf{X}^\mathsf{T}\mathbf{X}$. Для решения проблемы мультиколлинеарности применяются методы отбора признаков.

Метод частных наименьших квадратов (PLS)

метод частных наименьших квадратов проецирует матрицу объектов **X** и матрицу ответов **Y** в латентное пространство меньшей размерности. В отличие от метода главных компонент, метод частных наименьших квадратов учитывает взаимосвязь между матрицами **X** и **Y** и снижает размерности обоих пространств.

Матрица плана ${\bf X}$ и матрица ответов ${\bf Y}$ проецируются на пространство меньшей размерности l следующим образом:

Рис. 1. Размерности векторов в алгоритме PLS

Матрицы \mathbf{T} , \mathbf{U} являются матрицами объектов и ответов в спроектированном пространстве; \mathbf{P} , \mathbf{Q} — матрицы перехода из нового пространства в старое; \mathbf{E} , \mathbf{F} — матрицы невязок.

Псевдокод метода регрессии PLS приведен в алгоритме 1. Алгоритм итеративно на каждом из l шагов вычисляет по одному столбцу \mathbf{t}_k , \mathbf{u}_k , \mathbf{p}_k , \mathbf{q}_k матриц \mathbf{T} , \mathbf{U} , \mathbf{P} , \mathbf{Q} соответственно. Предполагается, что вектора новых признаков \mathbf{t}_k и \mathbf{u}_k являются линейными комбинациями столбцов матриц \mathbf{X} и \mathbf{Y} соответственно. Целью алгоритма является максимизация ковариации между векторами \mathbf{t}_k и \mathbf{u}_k . Этим достигается наилучшее описание пространств матриц \mathbf{X} и \mathbf{Y} , а также их взаимной связи

$$cov(\mathbf{t}_k, \mathbf{u}_k) = corr(\mathbf{t}_k, \mathbf{u}_k) \cdot \sqrt{Var(\mathbf{t}_k)} \cdot \sqrt{Var(\mathbf{u}_k)}.$$

Во внутреннем цикле алгоритма вычисляются вектора \mathbf{w}_k и \mathbf{c}_k . Из данных векторов строятся матрицы \mathbf{W} и \mathbf{C} соответственно Вектора \mathbf{w}_k , \mathbf{c}_k являются собственными векторами матриц $\mathbf{X}_k^\mathsf{T} \mathbf{Y}_k \mathbf{Y}_k^\mathsf{T} \mathbf{X}_k$ и $\mathbf{Y}_k^\mathsf{T} \mathbf{X}_k \mathbf{X}_k^\mathsf{T} \mathbf{Y}_k$ соответственно

$$\begin{aligned} \mathbf{w}_k &\propto \mathbf{X}_k^\mathsf{T} \mathbf{u}_k = \mathbf{X}_k^\mathsf{T} \mathbf{Y}_k \mathbf{c}_k \propto \mathbf{X}_k^\mathsf{T} \mathbf{Y}_k \mathbf{Y}_k^\mathsf{T} \mathbf{t}_k = \mathbf{X}_k^\mathsf{T} \mathbf{Y}_k \mathbf{Y}_k^\mathsf{T} \mathbf{X}_k \mathbf{w}_k, \\ \mathbf{c}_k &\propto \mathbf{Y}_k^\mathsf{T} \mathbf{t}_k = \mathbf{Y}_k^\mathsf{T} \mathbf{X}_k \mathbf{w}_k \propto \mathbf{Y}_k^\mathsf{T} \mathbf{X}_k \mathbf{X}_k^\mathsf{T} \mathbf{u}_k = \mathbf{Y}_k^\mathsf{T} \mathbf{X}_k \mathbf{X}_k^\mathsf{T} \mathbf{Y}_k \mathbf{c}_k. \end{aligned}$$

Правила обновления векторов \mathbf{w}_k , \mathbf{c}_k совпадают с итерацией алгоритма поиска максимального собственного значения [20]. В результате выполнения внутреннего цикла вектора \mathbf{w}_k и \mathbf{c}_k будут являться собственными векторами матриц $\mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k \mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k$ и $\mathbf{Y}_k^{\mathsf{T}} \mathbf{X}_k \mathbf{X}_k^{\mathsf{T}} \mathbf{Y}_k$, соответствующими максимальным собственным значениям.

Обновляя вектора по данным правилам, мы максимизируем ковариацию между векторами \mathbf{t}_k и \mathbf{u}_k

$$\begin{aligned} \max_{\mathbf{t}_{k}, \mathbf{u}_{k}} & \operatorname{cov}(\mathbf{t}_{k}, \mathbf{u}_{k})^{2} = \max_{\substack{\|\mathbf{w}_{k}\|=1 \\ \|\mathbf{c}_{k}\|=1}} \operatorname{cov}(\mathbf{X}_{k} \mathbf{w}_{k}, \mathbf{Y}_{k} \mathbf{c}_{k})^{2} = \max_{\substack{\|\mathbf{w}_{k}\|=1 \\ \|\mathbf{c}_{k}\|=1}} \operatorname{cov}\left(\mathbf{c}_{k}^{\mathsf{T}} \mathbf{Y}_{k}^{\mathsf{T}} \mathbf{X}_{k} \mathbf{w}_{k}\right)^{2} = \\ & = \max_{\|\mathbf{w}_{k}\|=1} \operatorname{cov}\left\|\mathbf{Y}_{k}^{\mathsf{T}} \mathbf{X}_{k} \mathbf{w}_{k}\right\|^{2} = \max_{\|\mathbf{w}_{k}\|=1} \mathbf{w}_{k}^{\mathsf{T}} \mathbf{X}_{k}^{\mathsf{T}} \mathbf{Y}_{k} \mathbf{Y}_{k}^{\mathsf{T}} \mathbf{X}_{k} \mathbf{w}_{k} = \\ & = \lambda_{\max}\left(\mathbf{X}_{k}^{\mathsf{T}} \mathbf{Y}_{k} \mathbf{Y}_{k}^{\mathsf{T}} \mathbf{X}_{k}\right). \end{aligned}$$

После завершения внутреннего цикла вычисляются вектора \mathbf{p}_k , \mathbf{q}_k проецированием столбцов матриц \mathbf{X}_k и \mathbf{Y}_k на вектора \mathbf{t}_k и \mathbf{u}_k . Для перехода на следующий шаг необходимо вычесть из матриц \mathbf{X} и \mathbf{Y} одноранговые аппроксимации $\mathbf{t}_k \mathbf{p}_k^\mathsf{T}$ и $\mathbf{t}_k \mathbf{c}_k^\mathsf{T}$.

Для перехода из пространства ${\bf X}$ в пространство ${\bf T}$ применяется линейное преобразо-121 вание 122

$$\mathbf{T} = \mathbf{X}\mathbf{W}(\mathbf{P}^{^\mathsf{T}}\mathbf{W})^{-1}.$$

Алгоритм 1 Алгоритм PLSR

 \mathbf{B} ход: $\mathbf{X}, \mathbf{Y}, l$;

Выход: T, U, P, Q;

- 1: нормировать матрицы X и Y
- \mathbf{v}_1 : инициализировать \mathbf{u}_1 (первый столбец матрицы \mathbf{Y})
- 3: $X_1 = X; Y_1 = Y$
- 4: для $k = 1, \ldots, l$
- повторять
- $\mathbf{w}_k := \mathbf{X}_k^{\mathsf{T}} \mathbf{u}_k / (\mathbf{u}_k^{\mathsf{T}} \mathbf{u}_k); \quad \mathbf{w}_k := \frac{\mathbf{w}_k}{\|\mathbf{w}_k\|}$

- $egin{aligned} \mathbf{t_k} &:= \mathbf{X}_k \mathbf{w}_k \ \mathbf{c}_k &:= \mathbf{Y}_k^\mathsf{T} \mathbf{t}_k / (\mathbf{t}_k^\mathsf{T} \mathbf{t}_k) \ \mathbf{u}_k &:= \mathbf{Y}_k \mathbf{c}_k / (\mathbf{c}_k^\mathsf{T} \mathbf{c}_k) \end{aligned}$
- пока \mathbf{t}_k не стабилизируется 10:
- $\mathbf{p}_k := \mathbf{X}_k^{\mathsf{\scriptscriptstyle T}} \mathbf{t}_k / (\mathbf{t}_k^{\mathsf{\scriptscriptstyle T}} \mathbf{t}_k), \ \mathbf{q}_k := \mathbf{Y}_k^{\mathsf{\scriptscriptstyle T}} \mathbf{u}_k / (\mathbf{u}_k^{\mathsf{\scriptscriptstyle T}} \mathbf{u}_k)$ 11:
- $\mathbf{X}_{k+1} := \mathbf{X}_k \mathbf{t}_k \cdot \left(rac{\mathbf{x}_k^\mathsf{T} \mathbf{t}_k}{\mathbf{t}_k^\mathsf{T} \mathbf{t}_k}
 ight)$
- $\mathbf{Y}_{k+1} := \mathbf{Y}_k \mathbf{t}_k \cdot \left(rac{\mathbf{Y}_k^\mathsf{T} \mathbf{t}_k}{\mathbf{t}_k^\mathsf{T} \mathbf{t}_k}
 ight)$ 13:

124

125

126

127

128

129 130

131

132

133

134

135

136

137

Модификация метода частных наименьших квадратов (cnIPLS)

Предлагается провести модификацию алгоритма PLS: совершить криволинейное и нелинейное преобразования пространства целевой переменной и независимой переменной для учета мультиколлинеарности между значениями сигнала в различные моменты времени. Схема модифицированного алгоритма представлена на рис. ??. После применения к исходным матрицам \mathbf{X} и \mathbf{Y} нелинейных преобразований F_x и F_y соответственно используется линейный алгоритм метода частных наименьших квадратов.

Рис. 2. Размерности векторов в алгоритме cnlPLS

Нелинейные преобразования

Рассматриваются нелинейное параметрическое преобразование пространства зависимой переменной \mathbf{Y} и независимой переменной \mathbf{X} (примеры преобразований представлены в табл. 1). Преобразование и вектор параметров, относящиеся к зависимой переменной и независимой переменной, обозначим соответственно $F_y(\mathbf{Y}, \mathbf{v}_y)$ и $F_x(\mathbf{X}, \mathbf{v}_y)$ и введем переменные для преобразованных пространств

$$\tilde{\mathbf{Y}} = F_y(\mathbf{Y}, \mathbf{v}_y), \quad \tilde{\mathbf{X}} = F_x(\mathbf{X}, \mathbf{v}_x).$$
 (1)

Функции для криволинейных преобразований удовлетворяют следующим условиям:

```
138 — F: \mathbb{R} \to \mathbb{R},
139 — F(0) = 0,
140 — F дифференцируется по параметрам \mathbf{v}_y,
141 — существует F^{-1}.
```

Nº	Функция	Параметры
1	$F(x) = \operatorname{sign}(x) \exp(a)(\exp(b x) - 1)$	a, b > 0
2	$F(x) = \operatorname{sign}(x) \exp(a)(\exp(b\ln(1+ x) - 1)$	a, b > 0
3	$F(x) = sign(x) \exp(a)(\exp(b x ^{1/2}) - 1)$	a, b > 0
4	$F(x) = sign(x) \exp(a)(\exp(b x ^{1/3}) - 1)$	a, b > 0
5	$F(x) = sign(x) exp(a)(exp(b x ^{1/4}) - 1)$	a, b > 0
6	$F(x) = \operatorname{sign}(x) \exp(a)(\exp(b x ^2) - 1)$	a, b > 0

Таблица 1. Нелинейные преобразования

Для обучения параметров \mathbf{v}_y используется градиентный метод. Предлагается подход для обновления весов \mathbf{v}_y , основаный на линеаризации функции преобразования. Разложим (1) в ряд Тейлора до второго порядка:

$$\mathbf{u} \approx \mathbf{u}_0 + \frac{\partial \mathbf{u}}{\partial \mathbf{v}_y} \Delta \mathbf{v}_y.$$

Для вычисления $\Delta \mathbf{v}_y$ предложены следующие шаги. Рассматривается разница $\mathbf{u} - \mathbf{u}_0 = \frac{\partial \mathbf{u}}{\partial \mathbf{v}_y} \Delta \mathbf{v}_y$. Определется рассогласование

$$\mathbf{u} - \mathbf{u}_0 \approx \frac{\partial \mathbf{u}}{\partial \mathbf{v}_y} \Delta \mathbf{v}_y = \mathbf{J}_u \Delta \mathbf{v}_y,$$

142 где матрица \mathbf{J}_u состоит из частных производных $\left\{\frac{\partial \mathbf{u}}{\partial \mathbf{v}_y}\right\}$, вычисленных при известном зна143 чении переменной \mathbf{u} :

$$\mathbf{J}_{u} = \frac{\partial \mathbf{u}}{\partial \mathbf{v}_{y}} = \frac{\partial}{\partial \mathbf{v}_{y}} (\tilde{\mathbf{Y}} \mathbf{c}) = \frac{1}{(\mathbf{t}^{\mathsf{T}} \mathbf{t})} \frac{\partial}{\partial \mathbf{v}_{y}} \left(\tilde{\mathbf{Y}} \tilde{\mathbf{Y}}^{\mathsf{T}} \mathbf{t} \right) = \frac{1}{(\mathbf{t}^{\mathsf{T}} \mathbf{t})} \left(\frac{\partial \tilde{\mathbf{Y}}}{\partial \mathbf{v}_{y}} \cdot \tilde{\mathbf{Y}}^{\mathsf{T}} + \tilde{\mathbf{Y}} \cdot \frac{\partial \tilde{\mathbf{Y}}^{\mathsf{T}}}{\partial \mathbf{v}_{y}} \right) \mathbf{t}.$$

Правило обновления для вектора $\Delta {f v}$ является решением задачи регрессии рассогласования

$$\Delta \mathbf{v}_{y} = (\mathbf{J}_{u}^{\mathsf{T}} \mathbf{J}_{u})^{-1} \mathbf{J}_{u}^{\mathsf{T}} (\mathbf{u} - \mathbf{u}_{0}). \tag{2}$$

Аналогично преобразованию зависимой переменной сводим задачу обновления вектора параметров \mathbf{v}_x к задаче линейной регрессии:

$$\mathbf{t} - \mathbf{t}_0 \approx \frac{\partial \mathbf{t}}{\partial \mathbf{v}_x} \Delta \mathbf{v}_x = \mathbf{J}_t \Delta \mathbf{v}_x$$
$$\Delta \mathbf{v}_x = (\mathbf{J}_t^{\mathsf{T}} \mathbf{J}_t)^{-1} \mathbf{J}_t^{\mathsf{T}} (\mathbf{t} - \mathbf{t}_0).$$

Преобразование независимой переменной

Алгоритм cnIPLSR

148

149

151

152

153

154

В данном разделе представлен модифицированный метод PLSR, содержащий шаги преобразования целевой переменной. Аналогично методу PLSR (алгоритм 1), алгоритм ?? начинается с инициализации вектора **u**, а обновления весов преобразования считается с помощью рассогласования **e** для вектора **u**, вычисленного в цикле и на предыдущей итерации.

156

157

158

159

160

161

162

163

164

165

166

167

Алгоритм 2 Алгоритм cnlPLSR с преобразованием пространства объектов 2

```
\mathbf{B}ход: \mathbf{X}, \mathbf{Y}, l;
Выход: \mathbf{T}, \mathbf{U}, \mathbf{P}, \mathbf{Q}, \mathbf{v}_x, \mathbf{v}_y;
   1: инициализировать \mathbf{v}_x и \mathbf{v}_y
   2: \mathbf{T} := \mathbf{U} := \mathbf{P} := \mathbf{Q} := \emptyset
   3: для i=1,\ldots,l
                инициализировать \mathbf{t} (первый столбец матрицы \mathbf{X})
                инициализировать и (первый столбец матрицы Y)
   5:
   6:
                повторять
                       \mathbf{t}_0 := \mathbf{t}, \, \mathbf{u}_0 = \mathbf{u}
   7:
                       \tilde{\mathbf{X}} := F_x(\mathbf{X}, \mathbf{v}_x); \quad \tilde{\mathbf{Y}} = F_y(\mathbf{Y}, \mathbf{v}_y)
   8:
                       \mathbf{w} := \tilde{\mathbf{X}}^{\mathsf{T}} \mathbf{u} / (\mathbf{u}^{\mathsf{T}} \mathbf{u}); \quad \mathbf{w} := \frac{\mathbf{w}}{\|\mathbf{w}\|}
   9:
                       \mathbf{t} := \tilde{\mathbf{X}} \mathbf{w}
10:
                       \Delta \mathbf{v}_x = (\mathbf{J}_t^{\mathsf{T}} \mathbf{J}_t)^{-1} \mathbf{J}_t^{\mathsf{T}} (\mathbf{t} - \mathbf{t}_0), где \mathbf{J}_t := \frac{\partial \mathbf{t}}{\partial \mathbf{v}_0}
11:
                      \mathbf{v}_x := \mathbf{v}_x + \Delta \mathbf{v}_x
12:
                      \mathbf{c} := 	ilde{\mathbf{Y}}^\mathsf{T} \mathbf{t} / (\mathbf{t}^\mathsf{T} \mathbf{t}); \quad \mathbf{c} := rac{\mathbf{c}}{\|\mathbf{c}\|}
13:
                       \mathbf{u} := \tilde{\mathbf{Y}}\mathbf{c}
14:
                      \Delta \mathbf{v}_y = (\mathbf{J}_u^{\mathsf{T}} \mathbf{J}_u)^{-1} \mathbf{J}_u^{\mathsf{T}} (\mathbf{u} - \mathbf{u}_0), где \mathbf{J}_u := \frac{\partial \mathbf{u}}{\partial \mathbf{v}_u}
15:
                       \mathbf{v}_{u} := \mathbf{v}_{u} + \Delta \mathbf{v}_{u}
16:
                пока t не стабилизируется
17:
                 T := concat[T; t]; U := concat[U; u]
18:
                \mathbf{p} := \tilde{\mathbf{X}}^\mathsf{T} \mathbf{t} / (\mathbf{t}^\mathsf{T} \mathbf{t}), \ \mathbf{q} := \tilde{\mathbf{Y}}^\mathsf{T} \mathbf{u} / (\mathbf{u}^\mathsf{T} \mathbf{u})
19:
                P := concat[P; p]; Q := concat[Q; q]
20:
                регрессия \mathbf{u} на \mathbf{t}: \beta := \mathbf{u}^{\mathsf{T}} \mathbf{t} / (\mathbf{t}^{\mathsf{T}} \mathbf{t})
21:
                \tilde{\mathbf{X}} := \tilde{\mathbf{X}} - \mathbf{tp}^{\mathsf{T}}
22:
                \tilde{\mathbf{Y}} := \tilde{\mathbf{Y}} - \beta \mathbf{tq}^{\mathsf{T}}
23:
                \mathbf{X} = F_x^{-1}(\tilde{\mathbf{X}}, \mathbf{v}_x); \, \mathbf{Y} = F_y^{-1}(\tilde{\mathbf{Y}}, \mathbf{v}_y)
```

Вычислительный эксперимент

В рамках вычислительного эксперимента строится прогноз временных рядов. В ходе эксперимента сравниваются методы PLSR, нелинейных автоэнкодеров и cnlPLS. Сравнение проводится на реальных данных объемов потребления электроэнергии в Польше.

Вычислительный эксперимент, продемонстрированный в этом разделе, основан на данных электроэнергии. Данные состоят из временного ряда польских электрических нагрузок и временных рядов погоды в Варшаве (долгота: 21,25, широта: 52,30, высота над уровнем моря: 94). Временные ряды энергии состоят из почасовых записей (всего 52512 наблюдений), а погодные измерения проводились раз в день и содержат 2188 наблюдений. Многомасштабные временные ряды соответствуют периоду 1999-2004 годов. Результаты, полученные с этим набором данных, являются иллюстрацией предлагаемых методов, поскольку данные содержат многомасштабне временные ряды, имеющие различный характер.

Алгоритм	N=3	N=5	N=10	N=20
PLS	0,00404	0,00337	0,00151	0,00135
cnlPLS g(x) = sign(x) exp(a)(exp(b x) - 1)	0.00529	0.00514	0.00536	0.00506
cnlPLS $g(x) = sign(x) \exp(a)(\exp(b \ln(1 + x) - 1)$	0.00362	0.00386	0.00326	0.00317
cnlPLS $g(x) = \operatorname{sign}(x) \exp(a)(\exp(b x ^{1/2}) - 1)$	0.00272	0.00236	0.00287	0.00128
cnlPLS $g(x) = \operatorname{sign}(x) \exp(a)(\exp(b x ^{1/3}) - 1)$	0.00241	0.00233	0.00221	0.00173
cnlPLS $g(x) = sign(x) \exp(a)(\exp(b x ^{1/4}) - 1)$	0.00796	0.00768	0.00737	0.00803
cnlPLS $g(x) = sign(x) \exp(a)(\exp(b x ^2) - 1)$	0.00816	0.00798	0.00796	0.00775

Таблица 2. Значения ошибки MSE для разных чисел компонент и разных функций

Примеры работы алгоритма приведены на рис. ??. Метод успешно делает краткосрочный прогноз (до 10 дней). С увеличением горизонта прогнозирования предсказание смещается.

Результаты вычислительного эксперимента для предложенного модифицированного алгоритма cnlPLS представлены на рис. \ref{puc} . На графиках изображены сглаженные зависимости ошибки MSE от числа компонент в алгоритме для разных функций. Из графиков видно, что для функций (a)-(e) ошибка при увеличении числа компонент падает, затем колеблется, слабо меняясь. Ошибка алгоритма с функцией (f) увеличивается при увеличении числа компонент. Это означает, что преобразование, выполненное в пространстве целевой переменной с помощью функции (f), плохо описывает зависимость. Меньшую ошибку имеют функции, растущие медленнее, а именно (d) и (e).

В табл. 2 продемонстрировано увеличение точности прогнозивания при использовании криволинейного преобразования в пространстве зависимой переменной, но увеличение точности в пределах погрешности алгоритма (0.0005-0.0010). Функции с быстрым ростом не позволяют описать зависимость.

Заключение

В данной работе предложен новый подход к обнаружению зависимостей в пространстве зависимой переменной задачи прогнозирования временных рядов. Сравнивались результаты прогнозирования временных рядов, полученных с помощью метода частных наименьших квадратов и предложенной модификации. Проведен вычислительный эксперимент на реальных данных потребления электроэнергии в Варшаве. Построенная прогностическая модель показала высокое качество предсказания электрической нагрузки.

Литература

- [1] Thrun, Sebastian and Pratt, Lorien Learning to learn // Springer Science & Business Media, 2012.
- [2] Chong, Il Gyo and Jun, Chi Hyuck Performance of some variable selection methods when
 multicollinearity is present // Chemometrics and Intelligent Laboratory Systems, 2005. Vol. 78.
 No. 1. P. 103–112.
- [3] Xuefeng, Yan Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors // Chemometrics and Intelligent Laboratory Systems, 2010. Vol. 103.
 No. 2. P. 152–159.
- 198 [4] Mcavovt, J. and Process, Chemical Title // Journal name, 2005. Vol. 16. No. 4. P. 379–391.
- Yan, Xuefeng F. and Chen, Dezhao Z. and Hu, Shangxu X. Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model // Computers and Chemical Engineering, 2003. Vol. 27. No. 10. P. 1393–1404.
- ²⁰² [6] Frank, Ildiko E. A nonlinear PLS model // Chemometrics and Intelligent Laboratory Systems, 1990. Vol. 8. No. 2. P. 109–119.
- Zhou, Yan Ping and Jiang, Jian Hui and Lin, Wei Qi and Xu, Lu and Wu, Hai Long and Shen,
 Guo Li and Yu, Ru Qin Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies // Talanta, 2007. Vol. 71. No. 2. P. 848–853.
- ²⁰⁷ [8] Chong, Il Gyo and Jun, Chi Hyuck Notes on the history and nature of partial least squares (PLS) modelling // Journal of Chemometrics, 1988. Vol. 2. No. January. P. 231–246.
- [9] Höskuldsson, Agnar PLS regression // Chemometrics and Intelligent Laboratory Systems, 1987.
 Vol. 2. No. August. P. 581–591.
- 211 [10] Bulut, Elif and Egrioglu, Erol A New Partial Least Square Method Based on Elman Neural Network // Chemometrics and Intelligent Laboratory Systems, 2005. Vol. 4. No. 4. P. 154–158.
- [11] Ng, Kee Siong A Simple Explanation of Partial Least Squares // Journal title, 2013. Vol. volume.
 No. number. P. 1–10.
- [12] Rosipal, Roman Nonlinear partial least squares: An overview // Chemoinformatics and Advanced
 Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques,
 2011. Vol. number. No. number. P. 169–189.
- 218 [13] Wold, Svante and Kettaneh-Wold, Nouna and Skagerberg, Bert Nonlinear PLS modeling // Chemometrics and Intelligent Laboratory Systems, 1989. Vol. 7. No. 1-2. P. 53–65.
- [14] Rosipal, Roman and Kramer, Nicole Overview and Recent Advances in Partial Least Squares //
 ?????? C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, 2006. Vol. ?. No. ?. P. 34–51.
- 222 [15] Lu, Wen-Cong and Chen, Nian-Yi and Li, Guo-Zheng and Yang, Jie Multitask Learning Using
 223 Partial Least Squares Method // Proceedings of the Seventh International Conference on
 224 Information Fusion; International Society of Information Fusion, 2004. Vol. 1. P. 79–84.
- Varnek, Alexandre and Baskin, Igor Machine learning methods for property prediction in chemoinformatics: Quo Vadis? // Journal of Chemical Information and Modeling, 2012. Vol. 52.
 No. 6. P. 1413–1437.
- Lehky, Sidney R. and Kiani, Roozbeh and Esteky, Hossein and Tanaka, Keiji Dimensionality of object representations in monkey inferotemporal cortex // Neural computation, 2014. Vol. 1872.
 No. 10. P. 1840–1872.
- ²³¹ [18] Abdi, Hervé Partial Least Squares (PLS) Regression // Encyclopedia for research methods for the social sciences, 2003. P. 792–795.
- ²³³ [19] Caruana, Rich and de Sa, Virginia R. Benefitting from the Variables that Variable Selection Discards // Journal of Machine Learning Research, 2003. Vol. 3. No. 7-8. P. 1245–1264.

- [20] Mises R. V., Pollaczek-Geiringer H. Praktische Verfahren der Gleichungsauflösung // ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
 Mechanik, 1929. Vol. 9. No. 1. P. 58–77.
- 238 [21] Li J. et al. Feature selection: A data perspective // arXiv preprint arXiv:1601.07996, 2016.