Algoritam sa fiksnim parametrom za nalaženje minimalne Menhetn mreže

Uroš Ševkušić

Univerzitet u Beogradu, Matematički fakultet

decembar 2022

Uvod

Autori rada:

- Kristijan Knauer (Christian Knauer) sa Instituta za informatiku pri Univerzitetu u Bajrojtu (Universität Bayreuth, Institut für Informatik)
- Adams Spilner (Adams Spillner) sa Instituta za matematiku i informatiku pri Univerzitetu u Grajfsvaldu (Universität Greifswald, Institut für Mathematik und Informatik)
- Rad je objavljen 2011. godine u Journal of Computational Geometry
- Glavni rezultati rada su:
 - konstrukcija algoritma za pronalaženje minimalne Menhetn mreže čija je vremenska složenost $O^*(2^{14h})$, gde je h najmanji broj horizontalnih pravih koje pokrivaju skup P
 - dokaz korektnosti algoritma

Osnovni pojmovi

- Menhetn mreža za konačan skup tačaka P u ravni je geometrijski graf $\mathcal{G} = (V, E)$ sa osobinama:
 - P ⊆ V
 - grane grafa su vertikalne ili horizontalne duži
 - postoji put od bilo koje dve tačke p i q iz P koji je jednak njihovom L1 rastojanju
 - za svake dve grane $e_1=\{p_1,q_1\}$ i $e_2=\{p_2,q_2\}$, ako se duži $\overline{p_1,q_1}$ i $\overline{p_2,q_2}$ seku, njihov presek je $e_1\cap e_2$
- Dužina grane L(e) definiše se kao L1 rastojanje njenih krajnjih tačaka
- *Dužina puta p* sačinjenog od tačaka $p_1, p_2, \dots p_k$ definiše se kao

$$L(p) = \sum_{i=1}^{k-1} L(\{p_i, p_{i+1}\})$$

- Put p je monoton ako važi $L(p) = L(\{p_1, p_k\})$
- Dužina mreže $\lambda(\mathcal{G})$ je zbir dužina svih grana u mreži
- Mreža je minimalna ako je njena dužina najmanja od svih Menhetn mreža sa skupom tačaka P

Opis algoritma - uvodni pojmovi

- Za svaku tačku q ravni, označićemo njene x- i y- koordinate sa x(q) i y(q) respektivno
- Za skup tačaka P, sortiramo rastuće njene x-koordinate u niz $x_1, x_2, \dots x_l$
- Definišemo skup $X = \{x(p) \mid p \in P\}$ i skupove $P_i = \{p \in P \mid x(p) \le x_i\}$ za sve $1 \le i \le I$
- Sortiramo tačke iz P po y-koordinati u niz $y_1, y_2 \dots y_h$
- Neka je $Y = \{y(p) \mid p \in P\}$ i neka su $L_i = \{q \in \mathbb{R}^2 \mid y(q) = y_i\}$ za sve $1 \le j \le h$
- Tačke $v_{i,j} = (x_i, y_j)$ i $V_i = \{v_{i,j} \mid 1 \le j \le h\}$

Opis algoritma - uvodni pojmovi

- Skup $R_{i,j}$ je najdešnja tačka $r_{i,j}$, ako takva postoji, u P_i koja leži na L_j
- Za tačku $r_{i,j}$ se kaže da *predstavlja* tačke q takve da je $x(q) \le x_i$ i $y(q) = y(r_{i,j})$
- Ako u Menhetn mreži za P_i postoji monoton put od tačke q' desno od r_{i,j}, onda postoji u toj mreži i monoton put od q' do bilo koje tačke koju r_{i,j} predstavlja
- To znači da, za svaku tačku $v_{i,j}$, kada želimo da proverimo ima li monoton put od nje do neke tačke q, dovoljno je posmatrati tačke q iz skupa $S = \bigcup_{k=1}^h R_{i,k}$
- Za Menhetn mrežu sa tačkama P_i , definišemo skup $R_i = \{j \in \{1, 2, ..., h\} \mid R_{i,j} \neq \emptyset\}$
- Za skup tačaka P_i , par $\Pi = ((A_1, ..., A_h), (B_1, ..., B_h))$ je prihvatljiv ako je A_j podskup od $\{j, j+1, ..., h\} \cap R_i$ i B_j podskup od $\{1, 2, ..., j-1\} \cap R_i$ za sve $1 \le j \le h$
- Osnovna ideja je da se mreža za P_i može opisati prihvatljivim parom kod kojeg su A_j i B_j indeksi k onih tačaka za koje postoji monoton put od $v_{i,j}$ do $r_{i,k}$. Par za koje važi ovo svojstvo se naziva kanonski i označava se sa $\pi(\mathcal{G})$

Algoritam

ComputeMMN(P)

```
Input:
                a set P \subseteq \mathbb{R}^2 of n points
                a minimum Manhattan network for P
Output:
       Compute X = \{x_1, ..., x_l\} and Y = \{y_1, ..., y_h\}.
       Initialize an empty collection C_1.
3.
       for each pair \Pi that is admissible for P_1 do
4.
           Compute a minimum Manhattan network \mathcal{N} for P_1 and \Pi.
5.
           Add \mathcal{N} to \mathcal{C}_1.
6.
       for i = 1 to l - 1 do
7.
            Initialize an empty collection C_{i+1}.
8.
           for each N in C_i do
9.
                for each H \subseteq E_{i+1} do
                     Form the Manhattan network \mathcal{N}' by adding the edges in H to \mathcal{N}.
10.
                     if \mathcal{N}' is a Manhattan network for P_{i+1} then
11.
                         if C_{i+1} contains a Manhattan network \mathcal{N}'' with \pi(\mathcal{N}') = \pi(\mathcal{N}'') then
12.
13.
                              if \lambda(\mathcal{N}'') > \lambda(\mathcal{N}') then
                                  Remove \mathcal{N}'' from \mathcal{C}_{i+1} and add \mathcal{N}' to \mathcal{C}_{i+1}.
14.
15.
                         else
16.
                              Add \mathcal{N}' to \mathcal{C}_{i+1}.
       return a Manhattan network \mathcal{N} in \mathcal{C}_l with \lambda(\mathcal{N}) minimum.
```

Algoritam

- Algoritam radi iterativno grade se kolekcije C_i Menhetn mreža za skupove P_i
- Algoritam će na kraju iz kolekcije C_l izdvojiti najjeftiniju mrežu i vratiti je kao rezultat
- Ispostaviće se da je algoritam korektan, tj. da je rezultat algoritma zaista minimalna Menhetn mreža za *P*
- Prvi korak algoritma izgleda ovako:
 - 1. Compute $X = \{x_1, \dots, x_l\}$ and $Y = \{y_1, \dots, y_h\}$.
 - 2. Initialize an empty collection C_1 .
 - 3. for each pair Π that is admissible for P_1 do
 - 4. Compute a minimum Manhattan network N for P_1 and Π .
 - 5. Add \mathcal{N} to \mathcal{C}_1 .
- ullet Na samom početku algoritma, računamo skupove X i Y
- Zatim se gradi kolekcija C₁
- Sve tačke iz P₁ su na istoj pravoj, pa je dovoljno samo povezati ih vertikalnim dužima da bi se napravila Menhetn mreža
- Tako izgrađenu Menhetn mrežu ubacujemo u kolekciju C₁

Algoritam

• Sledeća faza je građenje kolekcija C_i za $i \ge 2$:

```
for i = 1 to l - 1 do
7.
            Initialize an empty collection C_{i+1}.
8.
            for each \mathcal{N} in \mathcal{C}_i do
9.
                 for each H \subseteq E_{i+1} do
                      Form the Manhattan network \mathcal{N}' by adding the edges in H to \mathcal{N}.
10.
                      if \mathcal{N}' is a Manhattan network for P_{i+1} then
11.
12
                           if C_{i+1} contains a Manhattan network \mathcal{N}'' with \pi(\mathcal{N}') = \pi(\mathcal{N}'') then
13
                                if \lambda(\mathcal{N}'') > \lambda(\mathcal{N}') then
                                     Remove \mathcal{N}'' from \mathcal{C}_{i+1} and add \mathcal{N}' to \mathcal{C}_{i+1}.
14.
15.
                           else
                                Add \mathcal{N}' to \mathcal{C}_{i+1}.
16.
```

- Za svaku mrežu iz prethodne kolekcije, pravimo nove mreže tako što dodajemo nove grane iz skupa grana E_{i+1} u nju
- Skup grana E_{i+1} čine grane $\{v_{i,j}, v_{i+1,j}\}$ i $\{v_{i+1,j}, v_{i+1,j+1}\}$
- Potrebno je proveriti da li mreža ispunjava uslove Menhetn mreža
- Ako je nova mreža jeftinija od neke iz kolekcije sa istim kanonskim prihvatljivim parom, onda možemo da izbacimo staru mrežu

- Podebljane linije na levoj slici prikazuju skup grana E₇
- Na desnoj slici smo neke od tih grana izabrali za novu mrežu
- Rezultujuća mreža u ovom koraku nije ispala Menhetn mreža

Redundantni parovi

- Da bismo dokazali korektnost algoritma, potrebno je uvesti još dva pojma
- Kažemo da prihvatljivi par Π čini Π' redundantnim ako je:
 - $A'_j \subseteq A_j$
 - $B'_i \subseteq B_j$
 - svaka minimalna Menhetn mreža za P_i i Π' je minimalna Menhetn mreža za P_i i Π
- Za skup P_i, pokrivač je skup A prihvatljivih parova takvih da za sve prihvatljive parove Π za P_i, postoji prihvatljiv par Π' ∈ A takav da Π' čini Π redundantnim

Dokaz korektnosti

 Na osnovu sledeće tri teoreme, izvodi se dokaz korektnosti algoritma:

Teorema

Neka je i takvo da je $1 \leq i \leq l-1$. Pretpostavimo da je $\mathcal{A}_i = \{\pi(\mathcal{G}) \mid \mathcal{G} \in C_i\}$ pokrivač i za svako $\Pi \in \mathcal{A}_i$ postoji minimalna Menhetn mreža za P_i i Π u C_i . Tada, za svaki prihvatljivi par Π' za P_{i+1} , postoji Menhetn mreža $\mathcal{G} \in C_i$ i skup $H \subseteq E_{i+1}$ takva da je mreža \mathcal{G}' , koja je nastala dodavanjem grana iz H u \mathcal{G} , minimalna Menhetn mreža za P_{i+1} i Π' .

Teorema

Neka je i takvo da je $1 \leq i \leq I$. Neka je Π prihvatljiv par za P_i i \mathcal{G} minimalna Menhetn mreža za P_i i Π . Tada $\pi(\mathcal{G})$ čini Π redundantnim.

Teorema

Za svako C_i , A_i je pokrivač i C_i sadrži minimalnu Menhetn mrežu za P_i i svaki prihvatljivi par Π . Specijalno, C_l sadži minimalnun Menhetn mrežu za P.

Složenost

- Vremenska složenost ovog algoritma je $O^*(2^{14h})$, tj. $O(2^{14h}r(|P|))$, gde je r neki polinom
- Prostorna složenost je O*(2^{12h})
- Dokaz je sproveden u nekoliko faza:
 - 1 Skupovi A_j i B_j mogu se predstaviti pravougaonicima
 - 2 Definiše se kompatibilna šestorka, struktura koja se sastoji od četiri niza i dva skupa i koja će opisati te pravougaonike
 - (3) Ispostavlja se da, za svako \mathcal{A}_i , postoji injektivno preslikavanje φ iz \mathcal{A}_i u skup kompatibilnih šestorki
 - 4 Veličina skupa kompatibilnih šestorki je $O^*(2^{12h})$
 - **5** Primetimo da je $|C_i| = |A_i|$, iz čega sledi da je prostorna složenost $O^*(2^{12h})$
 - **6** Primetimo da imamo ne više od 2^{2h} podskupova H od E_{i+1}
 - 7 Vremenska složenost je $O^*(2^{2h \cdot 12h}) = O^*(2^{14h})$