Nombres complexes : équations polynômiales

- I. Équations du second degré à coefficients réels
- 1. Équations du type $az^2 + bz + c = 0$, $a \neq 0$

Propriété.

Soit l'équation du second degré $az^2 + bz + c = 0$ avec $a \neq 0$, b et c des réels. Cette équation admet toujours des solutions dans l'ensemble des nombres complexes \mathbb{C} .

À l'aide de son discriminant $\Delta = b^2 - 4ac$, on distingue **trois cas**:

- 1. Si $\Delta = 0$, il existe une unique solution $z = -\frac{b}{2a}$.
- **2.** Si $\Delta > 0$, il existe **deux solutions réelles** $z = \frac{-b \pm \sqrt{\Delta}}{2a}$.
- 3. Si $\Delta < 0$, il existe deux solutions complexes conjuguées $z = \frac{-b \pm i\sqrt{-\Delta}}{2a}$.

Exercice 1.2. Résoudre dans \mathbb{C} l'équation $z^2 - 2z + 5 = 0$.

2. Cas particulier : équations du type $z^2=a,\ a\neq 0$

Propriété.

L'équation $z^2=a$ admet $toujours\ deux\ solutions$ dans $\mathbb C$:

- 1. Si a > 0, les solutions sont les **réels** : $\pm \sqrt{a}$.
- **2.** Si a < 0, les solutions sont les *imaginaires purs* : $\pm i\sqrt{a}$.
- **Exercice 2.2.** Résoudre dans \mathbb{C} l'équation $z^2 + 1 = 0$.

3. Factorisation d'un polynôme du second degré

Propriété.

Soit a, b et c trois réels avec $a \neq 0$.

On considère le polynôme P tel que, pour tout z de \mathbb{C} , on ait : $P(z) = az^2 + bz + c$.

On note z_1 et z_2 les solutions dans \mathbb{C} de l'équation P(z)=0, avec éventuellement $z_1=z_2$ si $\Delta=0$. Alors pour tout z de \mathbb{C} , on a :

$$P(z) = a(z - z_1)(z - z_2)$$

Exercice 3.2. Factoriser dans \mathbb{C} , $P(z) = z^2 - 4z + 8$.

II. Factorisation des polynômes

1. Fonction polynôme

Définitions.

1. Soit n un entier naturel et a_0 , a_1 , a_2 , $\cdots a_n$ des réels (éventuellement complexes) avec $a_n \neq 0$. Une **fonction polynôme** ou **polynôme** P est une fonction définie sur $\mathbb C$ pouvant s'écrire, pour tout complexe z, sous la forme :

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

2. On appelle polynôme nul le polynôme P tel que pour tout complexe x,

$$P(z) = 0$$

- 3. Si P n'est pas le polynôme nul, n est le **degré** de P.
- 4. On appelle *racine* de P tout nombre complexe z_0 tel que :

$$P(z_0) = 0$$

Exercice 4.2. Soit P le polynôme défini sur \mathbb{C} par $P(z)=z^3-(1+\mathrm{i})z^2+z-1-\mathrm{i}$.

- 1. Quel est le degré de P?
- **2.** Montrer que i est racine de P.

Propriété.

Un polynôme est le polynôme nul si et seulement si tous ses coefficients sont nuls.

Factorisation par $z - \alpha$

Définition.

On dit qu'un polynôme P est **factorisable** (ou divisible) par $z - \alpha$ s'il existe un polynôme Q tel que pour tout complexe z:

$$P(z) = (z - \alpha)Q(z)$$

Exercice 5.2. Soit le polynôme P défini dans \mathbb{C} par : $P(z) = z^3 - 12z^2 + 48z - 128$.

- 1. Montrer que 8 est une racine de P.
- **2.** En déduire les réels a et b tels que $P(z) = (z-8)(z^2+az+b)$.
- 3. En déduire l'ensemble des racines de P.

Propriété.

Soit a un nombre complexe.

Pour tout complexe z et tout entier naturel non nul, $z^n - a^n$ est **factorisable** par z - a et :

$$z^{n} - a^{n} = (z - a)(z^{n-1} + az^{n-2} + a^{2}z^{n-2} + \dots + a^{n-2}z + a^{n-1}) = (z - a)\left(\sum_{k=0}^{n-1} a^{k}z^{n-1-k}\right)$$

Exercice 6.2. Soit $P(z) = z^3 - 27$.

Factoriser P dans \mathbb{C} .

Propriété.

Le polynôme P est factorisable par z-a si et seulement si a est une racine de P.

Polynôme et racines 3.

Propriété.

Un polynôme non nul de degré n admet au plus n racines distinctes.