PROGRAMMAZIONE 2 FONDAMENTI

GESTIONE DELLA MEMORIA IN C

allocazione dinamica: non conosco la dimensione del file o del dato in input;

- Dimensione iniziale 0, MAX memoria massima allocata;
- Codice programma: linguaggio macchina;
- Costanti, letterali: variabili che non cambiano;
- Variabili globali: variabili visibili in tutto il programma, modificabile, la dimensione non può essere modificata durante l'esecuzione;
- **Heap (memoria dinamica)**: area modificabile e gestita dal programmatore;
- Stack: area di memoria gestita automaticamente, dinamica;
- Empty: spazio in cui si espandono lo stack e heap;

STACK

Struttura di dati LIFO (Last-in-first-out): l'ultimo elemento che viene inserito è il primo ad essere estratto (ex. pila di piatti);

Lo stack viene utilizzato per contenere i record di attivazione;

Il record di attivazione rappresenta l'universo della funzione (spazio di lavoro), contiene tutti i parametri formali + tutto lo spazio di memoria per le variabili;

Viene creato quando chiamato (**push**) e la funzione utilizzerà tutti i dati presenti nel record, alla fine viene rimosso (**pop**) e verrà liberata la memoria per altri record di attivazione;

Lo spazio allocato per il record è fisso;

- indirizzo di ritorno: indirizzo del codice dove devo tornare quando termina la funziona;
- **link dinamico**: (non lo utilizzeremo) indirizzo che contiene il record della funzione chiamante;
- Parametri di input: variabili utilizzate nella funzione;
- Variabili locali: allocato spazio nel record;
- Valore di ritorno: (in c non c'è) rappresenta il valore di ritorno restituito, (funziona void non ha valore di

Record di attivazione

Dimensione del record di attivazione non fissa! (cambia da funzione a funzione).

Tuttavia è sempre **possibile a priori** conoscere la dimensione del record di attivazione di una data funzione!

\ Perché opzionale? ritorno), (tipicamente quando la funzione termina la computazione il record viene cancellato, per eliminare questo il c lo restituisce in un registro macchina), meglio utilizzarlo per un fattore teorico;

E' uno spazio gestito dal programmatore che può far variare la dimensione durante l'esecuzione, tipicamente non viene gestita in modo sequenziale (a differenza dello stack);

L'aggiunta viene allocata nel primo spazio libero, la cancellazione può avvenire in qualsiasi momento;

STACK	HEAP
Memoria gestita automaticamente	Memoria gestita manualmente
Piccole dimensioni	Grandi dimensioni
L'accesso è più veloce e facile (cache friendly)	Può essere dispersa nella memoria, non cache friendly
Non flessibile	Flessibile
Accessi veloci , allocazione e deallocazione	Accessi più lenti, allocazione e deallocazione
Gli elementi sono limitati ai loro threads	Elementi accessibili in tutta l'applicazione
Il sistema operativo alloca lo spazio di memoria	Il sistema operativo è chiamato dal linguaggio in runtime

LE STRUTTURE (STRUCT)

Struct: permette di mettere insieme tipi e variabili di tipologia diversa;

```
Tipo2 Variaibile 2;
        TipoN VariaibileN;
};
struct punto{
        float x;
        float y;
struct punto p1;
struct punto p2;
        Per inizializzare:
                struct punto p1 = \{5, 7\};
        Per accedere alle singole proprietà:
```

Posso annidare le struct;

• Possiamo anche definire struct che contengono ulteriori elementi e struct.

nomevariabile.attributo p1.c oppure p1.y

• Esempio: rettangolo

struct rect {

r1.p1.x = 17;

pippo = r1.p2.y;

typedef

Mi permette di definire o ridefinire nuovi tipi;

```
typedef struct STUDENTE {
  char cognome[20];
  char nome[20];
  int anno_nascita;
} Studente;

struct STUDENTE s1;
Studente s2,s3;

s1.anno_nascita = 1988;
  s2.anno_nascita = 1975;

Passaggio di struct come parametri:
p->x (preferibile) == (*p).x

typedef double data;

data x; == double x;
```

COMPLESSITA'

Tempo: tempo richiesto dall'algoritmo

Spazio: memoria richiesta dall'algoritmo, numero di record di attivazione sullo stack; Questi fattori possono essere influenzati da: tipologia di algoritmo (com'è scritto l'algoritmo), dimensione dell'input (più grande è più tempo ci i mpiego), velocità della macchina (ci vogliamo astrarre, non ci interessa analizzare la complessità prendendo in considerazione la macchina specifica);

Complessità asintotica: input tendenti ad infinito;

Complessità lineare: input 2 operazioni 2; Complessità quadratica: input 2 operazioni 4;

Complessità esponenziale

Notazione O-grande

Comportamento asintotico delle funzioni matematiche;

Mette da parte costanti e variabili irrilevanti;

Permette di ottenere un limite superiore al comportamento asintotico;

Date due funzioni che dipendono dall'input, f(n) appartiene ad O-grande di g(n) se e solo se esiste un n0 e c>0 tale f(n)<cg(n) per ogni n>n0; NON VALE SEMPRE [Ex. se f(n) per input piccoli può essere più grande di g(n)];

 $n \rightarrow \infty$

g1(n) è più simile ad f(n) potremmo scegliere ancora meglio una costante per n (20n);

f(n) ha complessità asintotica g(n):

- 1) $f(n) \grave{e} O(g(n))$
- 2) g(n) è la più piccola di tutte le funzioni che soddisfano la 1;

COME STABILIRE QUALE FUNZIONE E' LA PIU' PICCOLA

Date due funzioni f(n) e g(n);

f(n) è "più piccola" di g(n) se:

- 1) $f(n) \grave{e} O(g(n))$
- 2) g(n) non è O(f(n))

Non esiste nessuna costante c per cui a partire da un n sufficientemente grande non potremo trovare g(n) < cf(n);

• 5 ha complessità asintotica	0(1)
• 2n + 5 ha complessità asintotica	O(n)
• $3n^2 + 2n^2 + 2$ è ha complessità asintotica	$O(n^2)$
• n³+ 100n² ha complessità asintotica	$O(n^3)$
• 3*2 ⁿ ha complessità asintotica	$O(2^n)$
• $3^n + 2^n + 8^n$ ha complessità asintotica	$0(8^{n})$
• 3 ⁿ +n! +8 ⁿ ha complessità asintotica	O(n!)

Funzioni iterative avranno sempre complessità in spazio O(1):

ANALISI DELLA COMPLESSITA' IN TEMPO

1) Individuare gli input e capire se questi possono influenzare la durata del programma; Costo computazione programma = costo computazione delle singole istruzioni; Costo(Istruzione 1) + Costo(Istruzione 2) + Costo(Istruzione N);

TIPOLOGIE DI ISTRUZIONI

- Istruzioni Elementari: Operazioni aritmetiche, Lettura/Scrittura di valori da/verso variabili, Condizioni logiche su un numero costante di operazioni e operatori,
 Operazioni di stampa o lettura da I/O ...; (COSTO COSTANTE O(1))
- Istruzioni Condizionali: If, switch case ...; (COSTO = QUALE PESA DI PIU')
- Istruzioni iterative: Cicli, While, Do While, For ...; (COSTO = IL NUMERO DI VOLTE IN CUI VERRA' ESEGUITO IN CICLO DIPENDE DALL'INPUT?, LA CONDIZIONE E' VERA O FALSA?, QUALI SONO E QUALE E' IL VALORE DELLE VARIABILI ALL'INGRESSO DEL CICLO?, COME VENGONO INCREMENTATE LE VARIABILI?)

MI PONGO SEMPRE NEL CASO DEL COSTO COMPUTAZIONALE PEGGIORE

```
void function(int n, int *value) {
int i;

for (i=0;i<n;i++) {
   *value += i*i; O(n)
   i = i +1;
   }

i= 0; O(1)

while (i <2*n) {
   printf("%d\n", *value); O(n)
   i+=2;
   }
</pre>
```

Nel primo for se al posto di n ci fosse stato un numero costante il costo sarebbe stato di O(1);

Se ho un ciclo annidato la complessità sarà =(n*m);

Costo complessivo = O(n); complessità asintotica lineare

COMPLESSITA' IN SPAZIO

La stima che facciamo ha a che fare con il **numero massimo di record di attivazione occuperà contemporaneamente**, non il numero di record che utilizzerà in totale;

Numero massimo di record di attivazione contemporaneamente = 3;

Vogliamo conoscere il numero di record di attivazione a livello asintotico e capire se dipende dall'input oppure no;

Se non dipende dall'input dal punto di vista asintotico sarà O(1);

Se il numero è 3 perché l'input era 3 e se fosse stato 4 sarebbero stati 4 record ecc. il valore dal punto di vista asintotico sarà O(n);

Per funzioni iterative O(1), se non vengono effettuate altre chiamate dipendenti dall'input il numero di record di attivazione sullo stack sarà costante;

Per funzioni ricorsive il valore dipenderà dal numero di chiamate ricorsive effettuate (dipendenti dall'input);

ALLOCAZIONE MEMORIA DINAMICA

Heap:

- Gestita dal programmatore;
- Gestita dinamicamente a run-time;
- Visibile globalmente da tutto il programma;
- Ad ogni richiesta si alloca quando richiesto nel primo blocco di memoria disponibile;
- Allocazione e deallocazione non sono fatte in maniera sequenziale.

malloc()

void * malloc(size_t size);

Libreria: #include <stdlib.h>

Scopo: Permette di allocare un blocco continuo di memoria di size bytes;

Input: la dimensione richiesta di memoria in bytes;

Output: un puntatore alla zona di memoria allocata a void, sta al programmatore attraverso

un cast esplicito definire il tipo puntato;

sizeof()

sizeof (typename)

Scopo: Ottenere la dimensione di un tipo dati;

Motivazione: La dimensione delle variabili non è costante, può cambiare da macchina a

macchina;

Input: un tipo (primitivo o user-defined);

Output: dimensione in bytes;

Uso combinato di malloc() e sizeof()

- Dichiariamo un puntatore a float;
- Richiediamo tramite la funzione malloc uno spazio di memoria
- Per il calcolo di quanto spazio occorre utilizziamo sizeof
- Effettuiamo un typecasting a (float *) e assegnamo l'indirizzo della zona allocata a p

Sovrascrive la variabile p, la zona occupata non è più accessibile perché non abbiamo più il riferimento della zona; MEMORY LEAK

free()

Deallocare la memoria

void free (void *ptr);

Libreria: #include <stdlib.h>

Scopo: Deallocare un blocco di memoria precedentemente allocato;

Input: il puntatore allo spazio di memoria;

Output: nessuno;

La zona di memoria viene resa nuovamente disponibile (ma non necessariamente ripulita); Il puntatore non punterà più ad una zona di memoria significativa;

calloc()

void * calloc (size_t count, size_t size);

Libreria: #include <stdlib.h>

Scopo: Allocare uno spazio contiguo per contente count oggetti di dimensione size bytes;

Input: numero di oggetti (count) di dimensione (size) di un oggetto;

Output: un puntatore alla zona di memoria allocata;

La memoria allocata viene riempita con byte di valore zero;

Azzerare la memoria: memset, bzero;

realloc()

void *realloc(void *ptr, size_t size);

Libreria: #include <stdlib.h>

Scopo: modificare la dimensione di un blocco di memoria precedentemente allocato;

Input: puntatore alla zona da ridimensionare, nuova dimensione;

Output: puntatore alla nuova zona di memoria allocata;

Se c'è spazio disponibile, la zona di memoria viene ridimensionata in loco (senza spostamenti) \rightarrow il valore di ritorno coincide col valore del puntatore della zona da ridimensionare.

Se non c'è abbastanza spazio per ridimensionare, si cerca nella heap una nuova zona abbastanza grande, e il contenuto della vecchia zona viene copiato nella nuova.

Per allocare una matrice:

int **a → malloc(sizeof(int*)*m); poi fare una serie di for con allocazioni a vettori di dimensione n;

**a puntatore a zona di memoria che contiene altre zone di memoria; Per deallocare devo prima deallocare i vettori e poi posso fare la free di a;

Sequenza ordinata di elementi (nodi), contengono qualche tipo di informazione (struct, int, char ecc...), contiene il riferimento al nodo successivo (non a quello precedente); Approccio induttivo:

- 1. (passo base) Una lista vuota è una lista;
- 2. (passo induttivo) Un nodo seguito da una lista è una lista.

Non sappiamo a priori quanti nodi ha la lista;

Per sapere quanti nodi ha bisogna scorrere la lista e contare il numero di nodi;

Le liste in C

Non esistono le liste in C;

Dobbiamo implementare noi;

LISTA DINAMICA, può crescere e decrescere in base alle necessità;

Useremo:

- struct (definire la forma del nodo);
- puntatori (mettere in evidenza la connessione con il nodo successivo).

```
#include <stdio.h>
 #include <stdlib.h>
 typedef int DATA;
 struct linked list {
 DATA d;
 struct linked list *next;
 };
 typedef struct linked list ELEMENT;
 typedef ELEMENT * LINK;
LINK = ELEMENT * = STRUCT LINKED_LIST *
Indirizzo al primo nodo, se è NULL la lista è vuota;
Quando il puntatore punta a NULL vuol dire che la lista è finita;
LINK newnode (void) {
return malloc(sizeof(ELEMENT));
 /* includere <stdlib.h> */
int main() {
LINK a;
a = newnode();
 free(a);
return 0;
 }
```

newnode richiede lo spazio di memoria sufficiente a contenere un nodo; Sempre mettere la free alla fine (considerato come errore se manca)

Visita di una lista

> Visita incondizionata

```
void printlis(LINK lis) {
  while (lis != NULL) {
    printf("%d\n", lis->d);
    lis= lis->next;
  }
}
```

- Ottengo una copia al puntatore alla testa della lista;
- Complessità in tempo = O(n), n numero di nodi della lista (il ciclo while dipende dall'input ed avanza di uno ad ogni ciclo);

- Complessità in spazio = O(1) (un record di attivazione della funzione).
- SCRIVERE SEMPRE LE SPIEGAZIONI PER LE COMPLESSITA' E COSA E'N
- > Visita con condizione

```
void print greater(LINK lis, int k) {
  while (lis != NULL) {
       if(lis->d > k)
          printf("%d\n", lis->d);
     lis= lis->next;
}
```

- Le operazioni vengono eseguite solo se si verificano determinate condizioni;
- Complessità in tempo = O(n), n numero di nodi della lista (k non influenza il numero di volte in cui verrà eseguito il ciclo while);
- Complessità in spazio = O(1), (un record di attivazione).
- > Visita condizionata da contatore/accumulatore

```
void printpos(LINK lis, int x) {
  int pos=1;
  while (lis != NULL) {
     if ((pos % x) == 0) {
       printf(">>>> %d\n", lis->d);
     pos++;
     lis= lis->next;
  }
}
```

- La posizione non la conosciamo a priori;
- Il primo nodo sarà in posizione 1;
- Complessità in tempo = O(n), n numero di nodi della lista (x non influenza il numero di volte in cui verrà eseguito il ciclo while);
- Complessità in spazio = O(1), (un record di attivazione).

Visita di una parte di una lista

La parte da visitare dipende da un valore da aggiornare ad ogni passo della visita;

```
/* Esempio: stampa i primi n numeri della lista (se
ci sono) */
void print_k(LINK lis, int k) {
   int pos=1;
   while ((lis !=NULL) && (pos <=k)) {
      printf("%d\n", lis->d);
      lis=lis->next;
      pos++;
```

- Complessità in tempo = O(min(n,k)), n numero di nodi della lista, se il numero di nodi è < di k O(n), se il numero di nodi è > k la complessità sarà O(k):
- Complessità in spazio = O(1)

ALGORITMI CON FINESTRA

- > Visita con finestra
 - Analizzare elementi a gruppi;
 - Con finestra si intende un intervallo:

```
int elementi_minori(LINK lis) {
  int cnt=0;
  if(lis == NULL) return 0;
  if(lis->next == NULL) return 0;
  while (lis->next != NULL) {
    if(lis->d < lis->next->d ) cnt++;
    lis= lis->next;
  }
  return cnt;
}
COMPLESSITA'?
```

Soluzione non ottimale

```
int elementi_minori(LINK lis) {
  int cnt=0;
  while (lis! = NULL && lis->next != NULL) {
    if(lis->d < lis->next->d) cnt++;
  lis= lis->next;
  }
  return cnt;
}
```

■ Problemi: stiamo presupponendo che lis != NULL venga valutato prima di lis->next != NULL potrebbe succedere che prima valutiamo il secondo poi il primo, perché non sappiamo a prescindere come lavora il c; anche se l'ordine viene rispettato ad ogni iterazione del while andremo a fare due valutazioni:

RICERCA DI UN ELEMENTO

Casi: ricerca per valore, ricerca per posizione;

- > Ricerca per valore
 - o Restituisce un puntatore al nodo con valore x nella lista;
- > Ricerca per posizione
 - Visita con contatore, contare il numero dei nodi, se esiste la posizione k restituisco il riferimento
- Nodo precedente a nodo di valore x
 - Se lista vuota:
 - → restituisce NULL

- Se nodo contenente x in testa alla lista:
 - → restituisce NULL
- Altrimenti:
 - → restituisci predecessore del nodo

Complessità in termini di tempo: O(n), n numero di nodi della lista; Complessità in termini di spazio: O(1).

MODIFICA DI UNA LISTA

- > Modifica del valore di tutti gli elementi o sottoinsieme di questi
 - Visita incondizionata;
- > Aggiunta/rimozione di nodi
 - Inserimento in testa
 - ORDINE OBBLIGATORIO
 - CREO NODO
 - COLLEGO AL PRIMO NODO
 - COLLEGO IL PRIMO RIFERIMENTO DELLA LISTA AL NUOVO NODO
 - NON DIMENTICARE IL NULL FINALE
 - Complessità in tempo e spazio O(1).
 - o Inserimento in coda
 - Complessità in tempo O(n);
 - Complessità in spazio O(1).
- Creazione di una lista

0

- > Cancellazione di una lista
 - o Cancellazione in testa
 - Si può iterare per cancellare tutti i nodi della lista
 - Salvare il riferimento al primo nodo
 - Modificare la testa della lista e punto al secondo elemento
 - Liberare lo spazio di memoria (free)
 - Complessità tempo e spazio = O(1);
 - Cancellazione in coda
 - Se la lista ha un solo nodo la cancellazione in coda e in testa sono uguali; PER QUESTO CASO DEVO PASSARE LA LISTA PER RIFERIMENTO
 - Complessità in spazio = O(1);
 - Complessità in tempo = O(n).
 - Cancellazione di tutti i nodi
 - Cancellazione in testa ripetuta
 - Complessità in spazio = O(1);
 - Complessità in tempo = O(n).

- Cancellazione di tutti i nodi in coda
- Complessità in tempo $O(n^2)$
- [(n+1)*n]/2
- Cancellazione di un elemento con un determinato valore

- Dobbiamo sempre conoscere il nodo precedente
- Complessità in spazio = O(1);
- Complessità in tempo = O(n), dovuta dalla funzione findpred.

> Operazioni su più liste

- Duplicazione di una lista
 - Complessità in spazio = O(1);
 - Complessità in tempo = O(n).
- o Duplicazione nodi soddisfacenti certe condizioni
 - Complessità in spazio = O(1);
 - Complessità in tempo = O(n).
- Visita di 2 o più liste
 - Complessità in spazio = O(1);
 - Complessità in tempo = O(min(m,n)), lunghezza della lista più corta.
- Confronto in parallelo di 2 liste
 - Complessità in spazio = O(1);
 - Complessità in tempo = O(max(m,n)), lunghezza della lista più lunga.

RICORSIONE

Caso base = caso per cui si ferma la ricorsione;

FATTORIALE

Complessità in tempo/spazio = O(n);

La complessità in tempo si calcola n chiamate di costo costante, contare il numero massimo di record di attivazione (non sempre coincide).

FIBONACCI

IMPORTANTE: Se dobbiamo passare dei valori condivisi nelle varie chiamate ricorsive non devo usare variabili locali ma dei puntatori a delle aree di memoria condivise.

TORRE DI HANOI

Albero delle chiamate: scendo a sinistra scambio secondo e terzo, scendo a destra scambio primo e secondo.

TIPI DI RICORSIONE

> Ricorsione diretta

- Ricorsione lineare:
 - Ho solamente un ramo che si espande (il numero massimo di record di attivazione che ho sullo stack è uguale al numero totale di record che avrò sullo stack).
 - FATTORIALE
- Ricorsione non lineare:
 - Avrò dei rami distinti che si sviluppano. Il numero totale di record di attivazione NON coincide con il numero massimo di record di attivazione presenti sullo stack).
 - FIBONACCI, TORRE DI HANOI
- o Ricorsione di coda
 - Quando l'ultima operazione eseguita è la ricorsione, non somme ecc.
 - Dalla ricorsione di coda posso passare ad un algoritmo iterativo.

> Ricorsione indiretta

RICORSIONE SU LISTE

a punto chiamata ricorsiva m punto nel main in cui viene chiamata la funzione

> Visita


```
Si simuli l'esecuzione della funzione ricorsiva f, utilizzando i record di attivazione, e supponendo che la funzione venga richiamata con L1: 3 > 1 > 4 > 8 > 7 e nella seguente situazione:

x=0; y=0; f(x,&y,L1);

f(int a, int * b, LINK lis)
{ if (lis != NULL)

if (lis->d > (a+(*b))

{ *b = (*b)+1; printf("%d'n",*b); f(a+1,b, lis->next); printf("%d'n",a);}

else if (lis->d < (a+(*b))

{ printf("%d'u",*b); f(a+2,b, lis->next); *b=(*b)+2; printf("%d'n",a);}

printf("%d'u",*b); }
```

Torre di Hanoi

Complessità in tempo: O(2ⁿ) Complessità in spazio: O(n)

Bubble sort = Insertion sort

Complessità in tempo: $O(n^2) = [(n+1)*n]/2$

Complessità in spazio: O(1)

k=r-p+1;

Mergesort

Complessità in tempo: O($n * log_{\gamma} n$) Ogni livello * k elementi scansionati nella merge.

Complessità in spazio: $O(log_2 n)$

Quicksort

Algoritmo instabile, dipende dalla dimensione e da come è fatto l'input Dobbiamo studiare la complessità nel caso migliore e nel caso peggiore MIGLIORE:

Complessità in tempo: $O(n * log_{2}n)$ Ogni livello * k elementi scansionati nella partition.

Complessità in spazio: $O(log_{\gamma}n)$

PEGGIORE:

Complessità in tempo: $O(n^2)$ Complessità in spazio: O(n)