Disponible a un clic de distancia y sin publicidad

Sí este material te es útil, ayúdanos a mantenerlo online

Suscribete

Comparte

Comenta

Este material está en línea porque creo que a alguien le puede ayudar. Lo desarrollo y sostengo con recursos propios. Ayúdame a continuar en mi locura de compartir el conocimiento.

EJERCICIOS DE PROGRAMACIÓN LINEAL RESUELTOS MEDIANTE EL METODO SIMPLEX

I. En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran dos clases de compuestos: el tipo I con una composición de una unidad de A y cinco de B, y el tipo II con una composición de cinco unidades de A y una de B. El precio del tipo I es de 10 dólares y el del tipo II es de 30 dólares. Se pregunta:

¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

	Sustancia A	Sustancia B	Precio \$
Tipo I (x)	1	5	10
Tipo II (y)	5	1	30
	15	15	
les de decisión:	, in the second	shajico	
] y n Objetivo:	asesdeinie		
, +	103		
ciones:			

Variables de decisión:

Tipo I 🛘 x Tipo II□ y

Función Objetivo:

z=10x +30yMin

Restricciones:

sa:
$$x + 5y \ge 15$$

 $5x + y \ge 15$
 $x, y \ge 0$

1. Convertir a igualdad las restricciones:

$$x + 5y - e1 - 0e2 = 15$$

 $5x + y - 0e1 - e2 = 15$

$$10x + 30y - z = 0$$

Iteración 1

Base	X	y	e1	e2	Vs
e1	1	5	-1	0	15
e2	5	1	0	-1	15
-Z	10	30	0	0	0

Vfe2:	5	1	0	-1	15	Vf-z:	10	30	0	0	0
	-	-	-	-	-		-	-	-	-	-
	1	1	1	1	1		30	30	30	30	30
	*	*	*	*	*		*	*	*	*	*
	1/5	1	-1/5	0	3				-1/5	0	3
	=	=	=	=	=		=	=		=	=
Nfe2:	24/5	0	1/5	-1	12	Nf-z:				0	-90

Iteración 2

Base	X	y	e1	e2	Vs
y	1/5	1	-1/5	0	3
e2	24/5	0	1/5	-1	12
-z	4	0	6	0	-90

Vfy:	1/5	1	-1/5	0	3	Vf-z:	4	0	6	0	-90
	-	-	-	- 0	\\\-		-	-	-	-	-
	1/5	1/5	1/5	1/5	1/5		4	4	4	4	
	*	*	*	*	*		*	*	*	*	*
	1	0	1/24	-5/24	5/2		1	0	1/24	-5/24	5/2
	=	=	50	=	=		=	=	=	=	=
Nfy:	0	1	-5/24	1/24	5/2	Nf-z:	0	0	35/6	5/6	-100

Iteración 3

Base	X	y	e1	e2	Vs
y	0	1	-5/24	1/24	5/2
X	1	0	1/24	-5/24	5/2
Z	0	0	-35/6	-5/6	+100

Respuestas:

 $x = 5/2 \ \Box \ 3$

y=5/2 □ 3

z=100

II. Cierto fabricante produce dos artículos, A y B, para lo que requiere la utilización de dos secciones de producción: sección de montaje y sección de pintura.

El artículo A requiere una hora de trabajo en la sección de montaje y dos en la de pintura; y el artículo B, tres horas en la sección de montaje y una hora en la de pintura.

La sección de montaje solo puede estar en funcionamiento nueve horas diarias, mientras que la de pintura solo ocho horas cada día. El beneficio que se obtiene produciendo el artículo B es de 40 dólares y el de A es de 20 dólares.

Calcula la producción diaria de los artículos A y B que maximiza el beneficio.

	Articulo A (x)	Articulo B (y)	
Montaje	1	3	9
Pintura	2	1	8
Precio \$	20	40	0//

Variables de decisión:

Función Objetivo:

Max
$$z=20x +40y$$

Restricciones:

sa:
$$x + 3y \le 9$$
$$2x + y \le 8$$
$$x, y \ge 0$$

1. Convertir a igualdad las restricciones:

$$x + 3y + h1 + 0h2 = 9$$

$$5x + y + 0h1 + h2 = 8$$

$$z - 20x - 40y = 0$$

Iteración 1

Base	X	y	h1	h2	Vs
h1	1	3	1	0	9
h2	5	1	0	1	8
Z	-20	-40	0	0	0

Vfh2:	5	1	0	1	8	Vfz:	-20	-40	0	0	0
	-	-	-	-	-		-	-	-	-	-
	1	1	1	1	1		-40	-40	-40	-40	-40
	*	*	*	*	*		*	*	*	*	*
	1/3	1	1/3	0	3		1/3	1	1/3	0	3
	=	=	=	=	=		=	=	(-)	=	=
Nfh2:	14/3	0	-1/3	1	5	Nfz:	-20/3	0	40/3	0	120

Iteración 2

Base	ase x		h1	h2	Vs	
y	1/3	1	1/3	0	3	
h2	14/3	0	-1/3	1	5	
Z	-20/3	0	40/3	0	120	

Vfy:	1/3	1	1/3	0	3	Vfz:	-20/3	0	40/3	0	120
	-	-	-	- 0	-		-	-	-	-	-
	1/3	1/3	1/3	1/3	1/3		-20/3	-20/3	-20/3	-20/3	-20/3
	*	*	*	*	*		*	*	*	*	*
	1	0	-1/14	3/14	15/14		1	0	-1/14	3/14	15/14
	=	=	50	=	=		=	=	=	=	=
Nfy:	0	1	15/42	-1/14	37/14	Nfz:	0	0	90/7	10/7	890/7

Iteración 3

Base	X	y	h1	h2	Vs
y	0	1	15/42	-1/14	37/14
X	1	0	-1/14	3/14	15/14
Z	0	0	90/7	10/7	890/7

Respuestas:

x = 15/14

y=37/14

z=890/7

III. Un orfebre fabrica dos tipos de joyas. Las del tipo A precisan 1 g de oro y 1,5 g de plata, vendiéndolas a 40 dólares cada una. Para la fabricación de las de tipo B emplea 1,5 g de oro y 1 g de plata, y las vende a 50 dólares. El orfebre tiene solo en el taller 750 g de cada uno de los metales.

Calcula cuántas joyas ha de fabricar de cada clase para obtener un beneficio máximo.

Tipo A (x) 1 3/2 40 Tipo B (y) 3/2 1 50 ariables de decisión: ipo A		Oro	Plata	Precio \$
Tipo B (y) 3/2 1 50 750	Tipo A (x)			
		3/2	1	50
ariables de decisión: ipo A				G
ariables de decisión: ipo A				8.
ariables de decision: ipo A				· Mo
ipo A \Box x ipo B \Box y unción Objetivo: [ax $z=40x+50y$] estricciones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	ariables de decisión:			
ipo B	ino A 🛮 🖺 x		0.0	
unción Objetivo: [ax $z=40x+50y$] estricciones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	ino B			
unción Objetivo: [ax $z=40x+50y$] estricciones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	- J			
Eax $z=40x+50y$ estricciones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	unción Objetivo:			
estricciones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	·			
estricciones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	[ax z=40x+50y]			
estrictiones: $x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	, • •	Ye		
$x + \frac{3y}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	estricciones:	250		
$x + \frac{1}{2} \le 750$ $\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	. 37	S		
$\frac{3x}{2} + y \le 750$ $x, y \ge 0$ 1. Convertir a igualdad las restricciones:	$x + \frac{7}{2} \le 750$	10		
$x, y \ge 0$ 1. Convertir a igualdad las restricciones:	$\frac{3x}{x} + y \le 750$	1		
 Convertir a igualdad las restricciones: 	v > 0			
1. Convertir a igualdad las restricciones:	$x, y \geq 0$			
1. Convertir a igualdad lab restricciones.	1 Convertir a igual	dad las restrico	iones:	
	i. Convoitin a iguai			
$x + \frac{3y}{2} + h1 + 0h2 = 750$				

Variables de decisión:

Función Objetivo:

$$Max z=40x+50y$$

Restricciones:

sa:
$$x + \frac{3y}{2} \le 750$$
$$\frac{3x}{2} + y \le 750$$
$$x, y > 0$$

$$x + \frac{3y}{2} + h1 + 0h2 = 750$$

$$\frac{3x}{2} + y + 0h1 + h2 = 750$$

$$z - 40x - 50y = 0$$

Iteración 1

Base	X	y	h1	h2	Vs
h1	1	3/2	1	0	750
h2	3/2	1	0	1	750
Z	-40	-50	0	0	0

Vfh2:	3/2	1	0	1	750	Vfz:	-40	-50	0	0	0
	1	_	1	_	_		-50 *	-50	-50	-50 *	-50 *
	* 2/3	1	* 2/3		* 500		* 2/3	* 1	* 2/3	0	* 500
	=	=	=	=	=		=	=	=	=	=
Nfh2:	5/6	0	-2/3	1	250	Nfz:	-20/3	0	100/3	0	25000

Iteración 2

Base	Base x		h1	h2	Vs
y	2/3	1	2/3	0	500
h2	5/6	0	-2/3	1	250
Z	-20/3	0	100/3	0	25000

Nfy:	0	1	6/5	-4/5	300	Nfz:	0	0	28	8	27000
	=	=	5,5	=	=		=	=	=	=	=
	1	0	-4/5	6/5	300		1	0	-4/5	6/5	300
	*	*	*	*	*		*	*	*	*	*
	2/3	2/3	2/3	2/3	2/3		-20/3	-20/3	-20/3	-20/3	-20/3
	-	-	_	- ,			-	-	-	-	-
Vfy:	2/3	1	2/3	0	500	Vfz:	-20/3	0	100/3	0	25000

Iteración 3

Base	X	y	h1	h2	Vs	
y	0	1	6/5	-4/5	300	
X	1	0	-4/5	6/5	300	
Z	0	0	28	8	27000	

Respuestas:

x = 300

y = 300

z=27000

IV. Una fábrica produce neveras utilitarias y de lujo. La fábrica está dividida en dos secciones: montaje y acabado. Los requerimientos de trabajo vienen dados por la siguiente tabla:

	Montaje	Acabado
Utilitaria	3 horas	3 horas
Lujo	3 horas	6 horas

El máximo número de horas de trabajo disponibles diariamente es de 120 en montaje y 180 en acabado, debido a las limitaciones de operarios.

Si el beneficio es de 300 euros por cada nevera utilitaria y de 400 euros por cada nevera de lujo, ¿cuántas deben fabricarse diariamente de cada una para obtener el máximo beneficio?

	Montaje	Acabado	Precio \$
Utilitarias (x)	3	3	300
Lujo (y)	3	6	400
	120	180	

Variables de decisión:

Función Objetivo:

Max z=300x +400y

Restricciones:

sa:
$$3x + 3y \le 120$$
$$3x + 6y \le 180$$
$$x, y \ge 0$$

1. Convertir a igualdad las restricciones:

$$3x + 3y + h1 + 0h2 = 120$$

 $3x + 6y + 0h1 + h2 = 180$

$$z - 300x - 400y = 0$$

Iteración 1

Base	X	y	h1	h2	Vs
h1	3	3	1	0	120
h2	3	6	0	1	180
Z	-300	-400	0	0	0

Vfh1:	3	3	1	0	120	Vfz:	-300	-400	0	0	0
	-	-	-	-	-		-	-	-	-	-
	3	3	3	3	3		-400	-400	-400	-400	-400
	*	*	*	*	*		*	*	*	*	*
	1/2	1	0	1/6	30		1/2	1	0	1/6	30
	=	=	=	=	=		=	=		=	=
Nfh1:	3/2	0	1	-1/2	30	Nfz:	-100	0	0	200/3	12000

Iteración 2

Base x		y	h1	h2	Vs
h1	3/2	0	1	-1/2	30
y	1/2	1	0	1/6	30
Z	-100	0	0	200/3	12000

Vfy:	1/2	1	0	1/6	30	Vfz:	-100	0	0	200/3	12000
	-	-	-	- 0	-		-	-	-	-	-
	1/2	1/2	1/2	1/2	1/2		-100	-100	-100	-100	-100
	*	*	*	*	*		*	*	*	*	*
	1	0	2/3	-1/3	20		1	0	2/3	-1/3	20
	=	=	5.9	=	=		=	=	=	=	=
Nfy:	0	1	-1/3	1/3	20	Nfz:	0	0	200/3	100/3	14000

Iteración 3

Base	X	y	h1	h2	Vs
X	1	0	2/3	-1/3	20
y	0	1	-1/3	1/3	20
Z	0	0	200/3	100/3	14000

Respuestas:

x = 20

y=20

z=14000

V. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster, y cada chaqueta precisa 1,5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 \$ y el de la chaqueta en 40 \$. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que éstos consigan una venta máxima?

	Algodón	Poliéster	Precio \$
Pantalones (x)	1	2	50
Chaquetas (y)	3/2	1	40
	750	1000	60,

Variables de decisión:

Pantalones \Box x Chaquetas \Box y

Chaquetas 11 y

Función Objetivo:

Max
$$z=50x +40y$$

Restricciones:

sa:
$$x + 2y \le 750$$
$$\frac{3x}{2} + y \le 1000$$
$$x, y \ge 0$$

4. Convertir a igualdad las restricciones:

$$x + 2y - e1 - 0e2 = 750$$

$$\frac{3x}{2} + y - 0e1 - e2 = 1000$$

$$50x + 40y - z = 0$$

Iteración 1

Base	X	y	e1	e2	Vs
e1	1	2	-1	0	750
e2	3/2	1	0	-1	1000
-z	50	40	0	0	0

Nfe1:	0	4/3	-1	2/3	250/3	Nf-z:	0	20/3	0	100/3	-100000/3
	=	=	=	=	=		=	=	= (=	=
	1	2/3	0	-2/3	2000/3		1	2/3	0	-2/3	2000/3
	*	*	*	*	*		*	*	*	*	*
	1	1	1	1	1		50	50	50	50	50
	-	-	-	-	-		-	-	-	-	-
Vfe1:	1	2	-1	0	750	Vf-z:	50	40	0	0	0

Iteración 2

Base	X	y	e1	e2	Vs
e1	0	4/3	-1	2/3	250/3
X	1	2/3	0	-2/3	2000/3
-z	0	20/3	0	100/3	-100000/3

Vfx:	1	2/3	0	-2/3	2000/3	Vf-z:	0	20/3	0	100/3	-100000/3
	-	-	-	-	05		-	-	-	-	-
	2/3		2/3	2/3	2/3		20/3	20/3	20/3		20/3
	*	*	*	*	*		*	*	*	*	*
	0	1	-3/4	1/2	125/2		0	1	-3/4	1/2	125/2
	=	=	=0	9=	=		=	=	=	=	=
Nfx:	1	0	1/2	-1	625	Nf-z:	0	0	5	30	-33750

Iteración 3									
Base	X	y	e1	e2	Vs				
y	0	1	-3/4	1/2	125/2				
X	1	0	1/2	-1	625				
Z	0	0	-5	-30	33750				

Respuestas:

x = 625

y=125/2

z = 33750