Kapitel 3: Das relationale DB-Modell & SQL

Einführung in Datenbanksysteme

RDM: Anfragen

Relationale Anfragesprachen im Überblick:

Einführung in Datenbanksysteme

Acknowledgments

Bestimmung funktionaler Abhängigkeiten

ProfessorenAdr: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung]} □ {PersNr} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung} \square {Ort,BLand} \rightarrow {EW, Vorwahl} \square {PLZ} \rightarrow {Bland, Ort, EW} \square {Bland, Ort, Straße} \rightarrow {PLZ} □{Bland} → {Landesregierung} \square {Raum} \rightarrow {PersNr} Zusätzliche Abhängigkeiten, die aus obigen abgeleitet werden können: □ {Raum} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung} \Box {PLZ} \rightarrow {Landesregierung}

Herleitung funktionaler Abhängigkeiten: Armstrong-Axiome

Reflexivität
☐ Falls ☐ eine Teilmenge von ☐ ist (☐ ☐ ☐) dann gilt immer ☐ ☐ ☐. Insbesondere gilt immer ☐ ☐ ☐.
Verstärkung
☐ Falls ☐ ☐ gilt, dann gilt auch ☐ ☐ ☐ Hierbei stehe z.B. ☐ ☐ ☐ ☐ ☐
Transitivität
☐ Falls [
Diese drei Axiome sind vollständig und korrekt (ohne Beweis). Zusätzliche Axiome erleichtern die Herleitung:
☐ Vereinigungsregel:
Wenn [
□ Dekompositionsregel:
Wenn [
☐ Pseudotransitivitätsregel:
Wenn □ □ □ und □ □ □, dann gilt auch □□□ □

Notation

Funktionale Abhängigkeiten (functional dependencies) werden auch als FDs bezeichnet.

Bestimmung der Hülle einer Attributmenge

Eingabe: eine Menge F von FDs und eine Menge von Attributen □.

Ausgabe: die vollständige Menge von Attributen □+, für die gilt □ → □+.

AttrHülle(F,□)

- □ Erg := []
- ☐ While (Änderungen an Erg) do

Foreach FD [] [] in F do

If □ □ Erg **then** Erg := Erg □ □

☐ Ausgabe []+ = Erg

Kanonische Überdeckung

F_c heißt kanonische Überdeckung von F, wenn die folgenden drei Kriterien erfüllt sind:

- 1. $F_c = F$, d.h. $F_c + = F +$
- In F_c existieren keine FDs , die überflüssige Attribute enthalten. D.h. es muß folgendes gelten:
 - $\square A \square \square : (F_c (\square \square \square) \square ((\square \square \{\square\}) \square \square)) /= F_c$
 - $\square B \square \square : (\mathsf{F}_{\mathsf{c}} (\square \square \square) \square (\square \square (\square \square \{\square\}))) / \equiv \mathsf{F}_{\mathsf{c}}$
- Jede linke Seite einer funktionalen Abhängigkeit in F_c ist einzigartig. Dies kann durch sukzessive Anwendung der Vereinigungsregel auf FDs der Art [] [] und [] [] erzielt werden, so dass die beiden FDs durch [] [] [] ersetzt werden.

Berechnung der kanonischen Überdeckung

Führe für je	ede FD 🛮 🖶 🖶 F die Linksreduktion durch, also:
🗀 Ül	berprüfe für alle A □ □, ob A überflüssig ist, d.h., ob
	☐ ☐ AttrHülle(F, ☐ - A)
gi	lt. Falls dies der Fall ist, ersetze □ □ □ durch (□ - A) □ □.
Führe für je	ede (verbliebene) FD die Rechtsreduktion durch, also:
🗀 Ül	berprüfe für alle B □ □, ob
•	B
	gilt. Falls dies der Fall ist, ist B auf der rechten Seite überflüssig und kann eliminiert werden, d.h. ersetze $\square \rightarrow \square$ durch $\square \rightarrow (\square - B)$.
Entferne di	ie FDs der Form $\square \rightarrow \varnothing$, die im 2. Schritt möglicherweise entstanden sind.
	els der Vereinigungsregel FDs der Form $\square \to \square 1,, \square \to \square n$ zusammen, so $\square \to (\square 1 \square \square \square n)$ verbleibt.

"Schlechte" Relationenschemata

	ProfVorl					
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
•••					•••	
2132	Popper	C3	52	5259	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die 3 Kritiken	4

Update-Anomalien

□ Sokrates zieht um, von Raum 226 in R. 338. Was passiert?

Einfüge-Anomalien

■ Neue/r Prof ohne Vorlesungen?

Löschanomalien

☐ Letzte Vorlesung einer/s Profs wird gelöscht? Was passiert?

Zerlegung (Dekomposition) von Relationen

Es gibt zwei Korrektheitskriterien für die Zerlegung von Relationenschemata:

1. Verlustlosigkeit

• Die in der ursprünglichen Relationenausprägung R des Schemas R enthaltenen Informationen müssen aus den Ausprägungen R1, ..., Rn der neuen Relationenschemata R1, ..., Rn rekonstruierbar sein.

Abhängigkeitserhaltung

• Die für \mathcal{R} geltenden funktionalen Anhängigkeiten müssen auf die Schemata $\mathcal{R}1, ..., \mathcal{R}n$ übertragbar sein.

Kriterien für die Verlustlosigkeit einer Zerlegung

 $\mathcal{R} = \mathcal{R}1 \square \mathcal{R}2$

- \square R1 := \square_{R1} (R)
- \square R2 := \square_{R2} (R)

Eine Zerlegung von R in R1 und R2 ist verlustlos,

falls für jede mögliche (gültige) Ausprägung R von \mathcal{R} gilt:

Hinreichende Bedingung für die Verlustlosigkeit einer Zerlegung

- \square ($\mathcal{R}1 \square \mathcal{R}2$) $\rightarrow \mathcal{R}1$ oder
- \square (R1 \square R2) \rightarrow R2

Biertrinker-Beispiel

Biertrinker			
Kneipe	Gast	Bier	
Kowalski	Kemper	Pils	
Kowalski	Eickler	Hefeweizen	
Innsteg	Kemper	Hefeweizen	

"Verlustige" Zerlegung

Biertrinker				
Kneipe	Gast	Bier		
Kowalski	Kemper	Pils		
Kowalski	Eickler	Hefeweizen		
Innsteg	Kemper	Hefeweizen		

☐ Kneipe, Gast

☐ Gast, Bier

Besucht		
Kneipe	Gast	
Kowalski	Kemper	
Kowalski Eickler		
Innsteg	Kemper	

Trinkt		
Gast	Bier	
Kemper	Pils	
Eickler	Hefeweizen	
Kemper	Hefeweizen	

Biertrinker				
Kneipe	Gast	Bier		
Kowalski	Kemper	Pils		
Kowalski	Eickler	Hefeweizen		
Innsteg	Kemper	Hefeweizen		

Besucht		
Kneipe	Gast	
Kowalski	Kemper	
Kowalski	Eickler	
Innsteg	Kemper	

Trii	nkt
Gast	Bier
Kemper	Pils
Eickler	Hefeweizen
Kemper	Hefeweizen

Besucht A Trinkt			
Kneipe	Gast	Bier	
Kowalski	Kemper	Pils	
Kowalski	Kemper	Hefeweizen	
Kowalski	Eickler	Hefeweizen	
Innsteg	Kemper	Pils	
Innsteg	Kemper	Hefeweizen	

Erläuterung des Biertrinker-Beispiels

Unser Biertrinker-Beispiel war eine "verlustige" Zerlegung und dementsprechend war die hinreichende Bedingung verletzt. Es gilt nämlich nur die eine nicht-triviale funktionale Abhängigkeit

☐ {Kneipe,Gast}→{Bier}

Wohingegen keine der zwei möglichen, die Verlustlosigkeit garantierenden FDs gelten

- □ {Gast}→{Bier}
- □ {Gast}→{Kneipe}

Das liegt daran, dass die Leute (insbes. Kemper) in unterschiedlichen Kneipen unterschiedliches Bier trinken. In derselben Kneipe aber immer das gleiche Bier

☐ (damit sich die KellnerInnen darauf einstellen können?)

Verlustfreie Zerlegung

Eltern			
Vater	Mutter	Kind	
Johann	Martha	Else	
Johann	Maria	Theo	
Heinz	Martha	Cleo	

☐ Mutter, Kind

Väter		
Vater	Kind	
Johann	Else	
Johann	Theo	
Heinz	Cleo	

Mütter		
Mutter Kind		
Martha	Else	
Maria	Theo	
Martha	Cleo	

Erläuterung der verlustfreien Zerlegung der Eltern-Relation

Eltern: {[Vater, Mutter, Kind]}

Väter: {[Vater, Kind]}

Mütter: {[Mutter, Kind]}

Verlustlosigkeit ist garantiert

Es gilt nicht nur eine der hinreichenden FDs, sondern gleich beide

- \square {Kind} \rightarrow {Mutter}
- ☐ {Kind}→{Vater}

Also ist {Kind} natürlich auch der Schlüssel der Relation Eltern

Die Zerlegung von Eltern ist zwar verlustlos, aber auch ziemlich unnötig, da die Relation in sehr gutem Zustand (~Normalform) ist

Abhängigkeitsbewahrung

R ist zerlegt in R1, ..., Rn

$$F_{\mathcal{R}} = (F_{\mathcal{R}1} \square ... \square F_{\mathcal{R}n})$$
 bzw $F_{\mathcal{R}} + = (F_{\mathcal{R}1} \square ... \square F_{\mathcal{R}n}) +$

Beispiel für Abhängigkeitsverlust

□ PLZverzeichnis: {[Straße, Ort, Bland, PLZ]}

Annahmen

- ☐ Orte werden durch ihren Namen (Ort) und das Bundesland (Bland) eindeutig identifiziert
- ☐ Innerhalb einer Straße ändert sich die Postleitzahl nicht
- □ Postleitzahlengebiete gehen nicht über Ortsgrenzen und Orte nicht über Bundeslandgrenzen hinweg

Daraus resultieren die FDs

- \square {PLZ} \rightarrow {Ort, BLand}
- \square {Straße, Ort, BLand} \rightarrow {PLZ}

Betrachte die Zerlegung

- ☐ Straßen: {[PLZ, Straße]}
- ☐ Orte: {[PLZ, Ort, BLand]}

Zerlegung der Relation PLZverzeichnis

PLZverzeichnis PLZver			
Ort BLand Straße PLZ			
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

☐ PLZ,Straße

☐ Ort,Bland,PLZ

Straßen		
PLZ	Straße	
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	

Orte		
Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234

Die FD {Straße, Ort, BLand} → {PLZ} ist im zerlegten Schema nicht mehr enthalten → Einfügen inkonsistenter Tupel möglich

Einfügen zweier Tupel, die die FD Ort,Bland,Straße→PLZ verletzen

PLZverzeichnis			
Ort BLand Straße PLZ			
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

PLZ,Straße

Stadt,Bland,PLZ

Straßen		
PLZ Straße		
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	
15235	Goethestrasse	

Orte		
Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234
Frankfurt	Brandenburg	15235

Einfügen zweier Tupel, die die FD Ort,Bland,Straße→PLZ verletzen

PLZverzeichnis			
Ort BLand Straße PLZ			
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg Goethestraße		15234
Frankfurt	Brandenburg	Goethestraße	15235

Straßen		
PLZ	Straße	
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	
15235	Goethestrasse	

Orte		
Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234
Frankfurt	Brandenburg	15235

Graphische Darstellung der funktionalen Abhängigkeiten

Erste Normalform

Nur atomare Domänen

Eltern			
Vater Mutter Kinder			
Johann	Martha	{Else, Lucie}	
Johann Maria {Theo, Josef}			
Heinz	Martha	{Cleo}	

1 NF

Eltern					
Vater	Mutter	Kind			
Johann	Martha	Else			
Johann	Martha	Lucie			
Johann	Maria	Theo			
Johann	Maria	Josef			
Heinz	Martha	Cleo			

Exkurs: NF²-Relationen

Non-First Normal-Form-Relationen

Geschachtelte Relationen

Eltern				
Vater	Mutter	Kinder		
		KName	KAlter	
Johann	Martha	Else	5	
		Lucie	3	
Johann	Maria	Theo	3	
		Josef	1	
Heinz	Martha	Cleo	9	

Einführung in Datenbanksysteme

Vereinbarung

FDs, die von jeder Relationenausprägung automatisch immer erfüllt werden, nennen wir *trivial*. Nur FDs der Art \Box \Box mit \Box \Box sind trivial.

Attribute eines Relationenschemas, die Elemente eines Kandidatenschlüssels des Relationenschemas sind, heißen "prim". Alle anderen Attribute des Relationenschemas nennen wir "nicht prim".

Zweite Normalform

Eine Relation $\mathcal R$ mit zugehörigen FDs $F_{\mathcal R}$ ist in zweiter Normalform, falls jedes Nichtschlüssel-Attribut A $\square \mathcal R$ voll funktional abhängig ist von jedem Kandidatenschlüssel der Relation.

StudentenBelegung				
MatrNr	VorlNr	Name	Semester	
26120	5001	Fichte	10	
27550	5001	Schopenhauer	6	
27550	4052	Schopenhauer	6	
28106	5041	Carnap	3	
28106	5052	Carnap	3	
28106	5216	Carnap	3	
28106	5259	Carnap	3	

Studentenbelegung mit Schlüssel {MatrNr, VorlNr} ist nicht in zweiter NF

- \square {MatrNr} \rightarrow {Name}
- ☐ {MatrNr} → {Semester}

Zweite Normalform

Einfügeanomalie: Was macht man mit Studenten, die keine Vorlesungenen hören?

Updateanomalien: Wenn z.B. Carnap ins vierte Semester kommt,

muss man sicherstellen, dass alle vier Tupel geändert werden.

Löschanomalie: Was passiert wenn Fichte ihre einzige Vorlesung absagt?

Zerlegung in zwei Relationen

- □ hören: {[MatrNr, VorlNr]}
- Studenten: {[MatrNr, Name, Semester]}

Beide Relationen sind in 2 NF – erfüllen sogar noch "höhere" Gütekriterien ~ Normalformen.

Weitere Normalisierung: Motivation

Beispiel:

$$R = \{[A, B, C, D]\}, F = \{A \rightarrow B, D \rightarrow ABCD\}, Schlüsselkandidat: \{D\}\}$$

R				
А	В	С	D	
3	4	5	1	
3	4	6	2	

Do not represent the same fact twice

Allgemeiner Fall: [] [] [] F, dann: [] Superschlüssel oder FD ist trivial

ggf. Dekomposition notwendig (verlustfrei und abhändigkeitsbewahrend)

Dritte Normalform

Ein Relationenschema ℜ ist in dritter Normalform, wenn für jede für ℜ geltende funktionale Abhängigkeit der Form ☐ ☐ mit ☐ ℜ und B ☐ ℜ mindestens eine von drei Bedingungen gilt:

□ B ☐ ☐, d.h., die FD ist trivial
□ Das Attribut B ist in einem Kandidatenschlüssel von ℜ enthalten (Man sagt: B ist prim)
□ ☐ ist Superschlüssel von ℜ

Bestimmung funktionaler Abhängigkeiten

ProfessorenAdr: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung]} □ {PersNr} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung} \square {Ort,BLand} \rightarrow {EW, Vorwahl} \square {PLZ} \rightarrow {Bland, Ort, EW} \square {Bland, Ort, Straße} \rightarrow {PLZ} □{Bland} → {Landesregierung} \square {Raum} \rightarrow {PersNr} Zusätzliche Abhängigkeiten, die aus obigen abgeleitet werden können: □ {Raum} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung} \Box {PLZ} \rightarrow {Landesregierung}

Bestimmung der Schlüssel

Schlüsselkandidaten: {Raum} und {PLZ}:

Problem: mit diesen Schlüsselkandidaten 3NF nicht gegeben

Graphische Darstellung

Zerlegung mit dem Synthesealgorithmus

Wir geben jetzt einen sogenannten Synthesealgorithmus an, mit dem zu einem gegebenen Relationenschema \mathcal{R} mit funktionalen Anhängigkeiten F eine Zerlegung in $\mathcal{R}1, ..., \mathcal{R}n$ ermittelt wird, die alle drei folgenden Kriterien erfüllt.

- \square $\mathcal{R}1$, ..., $\mathcal{R}n$ ist eine verlustlose Zerlegung von \mathcal{R} .
- ☐ Die Zerlegung R1, ..., Rn ist abhängigkeitserhaltend.
- \square Alle $\mathcal{R}1, ..., \mathcal{R}n$ sind in dritter Normalform.

Synthesealgorithmus

Bestimme die kanonische Überdeckung F_c zu F. Wiederholung:

- a. Linksreduktion
- b. Rechtsreduktion
- c. Entfernung von FDs der Form $\square \rightarrow \emptyset$
- d. Zusammenfassung gleicher linker Seiten

- □ Kreiere ein Relationenschema R□ := □ □ □

- **□ F**[]:= Ø

Eliminiere diejenigen Schemata \mathcal{R} , die in einem anderen Relationenschema \mathcal{R} enthalten sind, d.h.,

Anwendung des Synthesealgorithmus

Anwendung des Synthesealgorithmus

ProfessorenAdr: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, BLand, EW, Landesregierung]}

- 1. {PersNr} → {Name, Rang, Raum, Ort, Straße, BLand}
- 2. $\{Raum\} \rightarrow \{PersNr\}$
- 3. $\{Straße, BLand, Ort\} \rightarrow \{PLZ\}$
- 4. {Ort,BLand} → {EW, Vorwahl}
- 5. {BLand} → {Landesregierung}
- 6. $\{PLZ\} \rightarrow \{BLand, Ort\}$

Professoren: {[PersNr, Name, Rang, Raum, Ort, Straße, BLand]}

PLZverzeichnis: {[Straße, BLand, Ort, PLZ]}

OrteVerzeichnis: {[Ort, BLand, EW, Vorwahl]}

Regierungen: {[Bland, Landesregierung]}

Beispiel

Wir nehmen an, aus der Analyse der Anwendung haben sich die folgenden funktionalen Abhängigkeiten ergeben:

Matrikelnr → Student-Name Student-PLZ Student-Strasse

Vorlesungsnr → Vorlesungsdozent

Die unten dargestellte Relation (Tabelle) befindet sich in der zweiten Normalform. Schlüsselattribute sind unterstrichen. Zur besseren Nachvollziehbarkeit sind Beispieldaten in Form von drei Tupeln angegeben.

Matrikelnr.	Student-Name	Student-PLZ	Vorlesungsnr.	Vorlesungsdozent	Student-Strasse
94-647-889	Schmid	3007	W3488	Jung	Schwarztorstr. 4
95-667-103	Moser	8052	W3988	Kühn	Rennweg 12
94-504-112	Huber	3007	W3988	Kühn	Zwyssigstr. 41

Transformieren Sie die Relation unter Berücksichtigung der oben genannten Dependenzen in die dritte Normalform und tragen Sie die Beispieldaten auch in den neuen Relationen ein.

Boyce-Codd-Normalform

Die Boyce-Codd-Normalform (BCNF) stellt nochmals eine Verschärfung dar.

Ein Relationenschema $\mathcal R$ mit FDs F ist in BCNF, wenn für jede für $\mathcal R$ geltende funktionale Abhängigkeit der Form $[\] \ [\]$ F mindestens eine der folgenden zwei Bedingungen gilt:

- □ □ □ , d.h., die Abhängigkeit ist trivial oder
- \square \square ist Superschlüssel von $\mathcal R$

Man kann jede Relation verlustlos in BCNF-Relationen zerlegen

Manchmal läßt sich dabei die Abhängigkeiterhaltung aber nicht erzielen

Städte ist in 3NF, aber nicht in BCNF

Städte: {[Ort, BLand, Ministerpräsident/in, EW]}
Geltende FDs:
□ {Ort, BLand} → {EW}
□ {BLand} → {Ministerpräsident/in}
□ {Ministerpräsident/in} → {BLand}
Schlüsselkandidaten:
□ {Ort, BLand}
□ {Ort, Ministerpräsident/in}

Dekomposition

Man kann grundsätzlich jedes Relationenschema \mathcal{R} mit funktionalen Anhängigkeiten F so in $\mathcal{R}1, ..., \mathcal{R}n$ zerlegen, dass gilt:

- \square $\mathcal{R}1$, ..., $\mathcal{R}n$ ist eine verlustlose Zerlegung von \mathcal{R} .
- \square Alle $\mathcal{R}1, ..., \mathcal{R}n$ sind in BCNF.
- □ Es kann leider nicht immer erreicht werden, dass die Zerlegung R1, ..., Rn abhängigkeitserhaltend ist.

Dekompositions-Algorithmus

Starte mit $Z = \{R\}$

Solange es noch ein Relationenschema \mathcal{R} i in Z gibt, das nicht in BCNF ist, mache folgendes:

- \square Es gibt also eine für $\mathcal R$ i geltende nicht-triviale funktionale Abhängigkeit (\square \square) mit
 - □□□=∅
 - □(□ □ Ri)
- ☐ Finde eine solche FD
 - Man sollte sie so wählen, dass ☐ alle von ☐ funktional abhängigen Attribute B ☐
 (Ri ☐) enthält, damit der Dekompositionsalgorithmus möglichst schnell
 terminiert.
- \square Zerlege \mathcal{R} i in \mathcal{R} i1 := \square \square und \mathcal{R} i2 := \mathcal{R} i \square
- \Box Entferne \mathcal{R} i aus Z und füge \mathcal{R} i1 und \mathcal{R} i2 ein, also
 - $Z := (Z \{Ri\}) \square \{Ri1\} \square \{Ri2\}$

Veranschaulichung der Dekomposition

Dekomposition der Relation Städte in BCNF-Relationen

Städte: {[Ort, BLand, Ministerpräsident/in, EW]} Geltende FDs: □ {BLand} → {Ministerpräsident/in} \square {Ort, BLand} \rightarrow {EW} □ {Ministerpräsident/in} → {BLand} Ri1:☐ Regierungen: {[BLand, Ministerpräsident/in]} Ri2:☐ Städte: {[Ort, BLand, EW]}

Zerlegung ist verlustlos und auch abhängigkeitserhaltend

Dekomposition des PLZverzeichnis in BCNF-Relationen

Funktionale Abhängigkeiten:

- \square {PLZ} \rightarrow {Ort, BLand}
- \square {Straße, Ort, BLand} \rightarrow {PLZ}

Betrachte die Zerlegung

- ☐ Straßen: {[PLZ, Straße]}
- ☐ Orte: {[PLZ, Ort, BLand]}

Diese Zerlegung

- ☐ ist verlustlos aber
- □ Nicht abhängigkeitserhaltend
- ☐ Siehe oben

Mehrwertige Abhängigkeiten: ein Beispiel

Fähigkeiten			
PersNr	Sprache	ProgSprache	
3002	griechisch	С	
3002	lateinisch	Pascal	
3002	griechisch	Pascal	
3002	lateinisch	С	
3005	deutsch	Ada	

Mehrwertige Abhängigkeiten dieser Relation:

- □ {PersNr}→→{Sprache} und
- □ {PersNr}→→{ProgSprache}

MVDs führen zu Redundanz und Anomalien

Mehrwertige Abhängigkeiten

	R		
	A1 Ai	Ai+1 Aj	Aj+1 An
t1	a1 ai	ai+1 aj 🔀	🔰 aj+1 an
t2	a1 ai	bi+1 bj 🗡	bj+1 bn
t3	a1 ai	bi+1 bj	aj+1 an
t4	a1 ai	ai+1 aj	bj+1 bn

- ☐ → → ☐ gilt genau dann wenn
 - □ es zu zwei Tupel t1 und t2 mit gleichen □-Werten
 - □ auch zwei Tupel t3 und t4 gibt mit
 - t3. = t4. = t1. = t2.
 - t3. = t1. , t4. = t2.
 - t3.□= t2.□, t4.□= t1.□

"Zu zwei Tupeln mit gleichem [] - Wert kann man die [] -Werte vertauschen, und die Tupel müssen auch in der Relation sein"

MVDs

Tuple-generating dependencies

- ☐ Man kann eine Relation MVD-konform machen, indem man zusätzliche Tupel einfügt
- ☐ Bei FDs geht das nicht!!

Mehrwertige Abhängigkeiten

	R	
А	В	С
а	b	C
а	bb	СС
а	bb	С
а	b	CC

$$A \rightarrow \rightarrow B$$

$$A \rightarrow \rightarrow C$$

Mehrwertige Abhängigkeiten: ein Beispiel

Fähigkeiten			
PersNr	Sprache	ProgSprache	
3002	griechisch	С	
3002	lateinisch	Pascal	
3002	griechisch	Pascal	
3002	lateinisch	С	
3005	deutsch	Ada	

PersNr, Sprache

PersNr, ProgSprache

Sprachen		
PersNr	Sprache	
3002	griechsich	
3002	lateinisch	
3005	deutsch	

Sprachen		
PersNr ProgSprache		
3002	С	
3002	Pascal	
3005	Ada	

Mehrwertige Abhängigkeiten: ein Beispiel

Fähigkeiten			
PersNr	Sprache	ProgSprache	
3002	griechisch	С	
3002	lateinisch	Pascal	
3002	griechisch	Pascal	
3002	lateinisch	С	
3005	deutsch	Ada	

Sprachen		
PersNr	Sprache	
3002	griechsich	
3002	lateinisch	
3005	deutsch	

Sprachen		
PersNr ProgSprache		
3002	С	
3002	Pascal	
3005	Ada	

Zusatzinformation

Die nachfolgenden Inhalte dieses Dokumentes wurden im WS04/05 nicht behandelt.

Verlustlose Zerlegung bei MVDs: hinreichende + notwendige Bedingung

$$\mathcal{R} = \mathcal{R}1 \square \mathcal{R}2$$

- R1 := □_{R1} (R)
- R2 := \prod_{R2} (R)

Die Zerlegung von \mathcal{R} in $\mathcal{R}1$ und $\mathcal{R}2$ ist verlustlos, falls für jede mögliche (gültige) Ausprägung R von \mathcal{R} gilt:

$$\square$$
 R = R1 \rightarrow R2

Die Zerlegung von $\mathcal R$ in $\mathcal R$ 1 und $\mathcal R$ 2 ist verlustlos genau dann wenn

 \square $\mathcal{R} = \mathcal{R}1 \square \mathcal{R}2$

und mindestens eine von zwei MVDs gilt:

- \square ($\mathcal{R}1 \square \mathcal{R}2$) $\rightarrow \rightarrow \mathcal{R}1$ oder
- \square (R1 \square R2) $\rightarrow \rightarrow$ R2

Triviale MVDs ...

... sind solche, die von jeder Relationenausprägung erfüllt werden

Eine MVD ☐ → → ☐ ist trivial genau dann wenn

- 🛮 🗘 oder
- [] = R []

Vierte Normalform

Eine Relation \mathcal{R} ist in 4 NF wenn für jede MVD $\square \rightarrow \rightarrow \square$ eine der folgenden Bedingungen gilt:

- Die MVD ist trivial oder
- \square ist Superschlüssel von $\mathcal R$

Dekomposition in 4 NF

Starte mit der Menge $Z := \{R\}$

Solange es noch ein Relationenschema \mathcal{R} i in Z gibt, das nicht in 4NF ist, mache folgendes:

- \square Es gibt also eine für \mathcal{R} i geltende nicht-triviale MVD (\square \square \square), für die gilt:
 - □ □ □ = ∅
- ☐ Finde eine solche MVD
- \square Zerlege \mathcal{R} i in \mathcal{R} i1 := \square \square und \mathcal{R} i2 := \mathcal{R} i \square
- \Box Entferne Ri aus Z und füge Ri1 und Ri2 ein, also
 - $Z := (Z \{Ri\}) \square \{Ri1\} \square \{Ri2\}$

Dekomposition in 4 NF

Beispiel-Zerlegung

- Assistenten: {[PersNr, Name, Fachgebiet, Boss]}
- Fähigkeiten: {[PersNr, Sprache, ProgrSprache]}
- Sprachen: {[PersNr, Sprache]}
- ProgrSprachen: {[PersNr, ProgrSprache]}

Zusammenfassung

Die Verlustlosigkeit ist für alle Zerlegungsalgorithmen in alle Normalformen garantiert Die Abhängigkeitserhaltung kann nur bis zur dritten Normalform garantiert werden

verlustlose