CS685: Data Mining Data Discretization

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

 $1^{\rm st}$ semester, 2018-19 Mon, Thu 1030-1145 at RM101

- Transformation from continuous domain to discrete intervals, i.e., from quantitative data to qualitative data
- Reduces number of possible values of an attribute
- May be encoded in a more compact form

- Transformation from continuous domain to discrete intervals, i.e., from quantitative data to qualitative data
- Reduces number of possible values of an attribute
- May be encoded in a more compact form
- If discretization uses information about groups, then it is called supervised discretization
- Otherwise unsupervised discretization

- Transformation from continuous domain to discrete intervals, i.e., from quantitative data to qualitative data
- Reduces number of possible values of an attribute
- May be encoded in a more compact form
- If discretization uses information about groups, then it is called supervised discretization
- Otherwise unsupervised discretization
- Top-down discretization: repeatedly finds split points or cut points to divide the data
- Bottom-up discretization: considers all continuous values as split points and then repeatedly merges

- Transformation from continuous domain to discrete intervals, i.e., from quantitative data to qualitative data
- Reduces number of possible values of an attribute
- May be encoded in a more compact form
- If discretization uses information about groups, then it is called supervised discretization
- Otherwise unsupervised discretization
- Top-down discretization: repeatedly finds split points or cut points to divide the data
- Bottom-up discretization: considers all continuous values as split points and then repeatedly merges
- Discretization often leads to conceptualization where each distinct group represents a particular concept

Concept Hierarchy

- Discrete intervals or concepts can be generated at multiple levels
- Concept hierarchy captures more basic concepts towards the top and finer details towards the leaves
- Example
 - Higher level: dark, medium, light
 - Middle level: Gray value > 160, 80 160, < 80
 - Lower level: actual gray value
- Can be used to represent knowledge hierarchies as well
- Ontology
- Example
 - WordNet: ontology for English words
 - Gene Ontology: three separate ontologies that capture different attributes of a gene

Methods of discretization

- For numeric data
 - Binning and histogram analysis
 - Entropy-based discretization
 - Chi-square merging
 - Clustering
 - Intuitive partitioning

• Entropy captures the amount of randomness or chaos in the data

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

• When is entropy minimum?

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

- When is entropy minimum?
 - When one p_i is 1 (others are 0)
 - Least random

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

- When is entropy minimum?
 - When one p_i is 1 (others are 0)
 - Least random
 - Entropy = 0

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

- When is entropy minimum?
 - When one p_i is 1 (others are 0)
 - Least random
 - Entropy = 0
- When is entropy maximum?

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

- When is entropy minimum?
 - When one p_i is 1 (others are 0)
 - Least random
 - Entropy = 0
- When is entropy maximum?
 - When every p_i is 1/n
 - Most random

- Entropy captures the amount of randomness or chaos in the data
- Entropy encodes the number of bits required to describe a distribution
- It is also called the information content

$$entropy(D) = -\sum_{i=1}^{n} (p_i \log_2 p_i)$$

- When is entropy minimum?
 - When one p_i is 1 (others are 0)
 - Least random
 - Entropy = 0
- When is entropy maximum?
 - When every p_i is 1/n
 - Most random
 - Entropy = $\log_2 n$
 - For n = 2, it is 1

Entropy-based discretization

- Supervised
- Top-down

Entropy-based discretization

- Supervised
- Top-down
- For attribute A, choose n partitions D_1, D_2, \ldots, D_n for the dataset D
- If D_i has instances from m classes C_1, C_2, \ldots, C_m , then entropy of partition D_i is

$$entropy(D_i) = -\sum_{j=1}^m (p_{j_i} \log_2 p_{j_i})$$

where p_{j_i} is probability of class C_j in partition D_i

$$p_{j_i} = \frac{|C_j \in D_i|}{|D_i|}$$

Choosing partitions

- Choose n-1 partition values $s_1, s_2, \ldots, s_{n-1}$ such that $\forall v \in D_i, \ s_{i-1} < v \le s_i$
 - Implicitly, s_0 is minimum and s_n is maximum
- How to choose these partition values?

Choosing partitions

- Choose n-1 partition values $s_1, s_2, \ldots, s_{n-1}$ such that $\forall v \in D_i, \ s_{i-1} < v \le s_i$
 - Implicitly, s_0 is minimum and s_n is maximum
- How to choose these partition values?
- Information gain and expected information requirement

 When D is split into n partitions, the expected information requirement is defined as

$$info(D) = \sum_{i=1}^{n} \left(\frac{|D_i|}{|D|} entropy(D_i) \right)$$

 When D is split into n partitions, the expected information requirement is defined as

$$info(D) = \sum_{i=1}^{n} \left(\frac{|D_i|}{|D|} entropy(D_i) \right)$$

The information gain obtained by this partitioning is defined as

$$gain(D) = entropy(D) - info(D)$$

 When D is split into n partitions, the expected information requirement is defined as

$$info(D) = \sum_{i=1}^{n} \left(\frac{|D_i|}{|D|} entropy(D_i) \right)$$

The information gain obtained by this partitioning is defined as

$$gain(D) = entropy(D) - info(D)$$

• Choose partition values $s_1, s_2, \ldots, s_{n-1}$ such that information gain is maximized (equivalently, expected information requirement is minimized)

 When D is split into n partitions, the expected information requirement is defined as

$$info(D) = \sum_{i=1}^{n} \left(\frac{|D_i|}{|D|} entropy(D_i) \right)$$

The information gain obtained by this partitioning is defined as

$$gain(D) = entropy(D) - info(D)$$

- Choose partition values $s_1, s_2, \ldots, s_{n-1}$ such that information gain is maximized (equivalently, expected information requirement is minimized)
- Keep on partitioning into two parts
- Stopping criterion

 When D is split into n partitions, the expected information requirement is defined as

$$info(D) = \sum_{i=1}^{n} \left(\frac{|D_i|}{|D|} entropy(D_i) \right)$$

The information gain obtained by this partitioning is defined as

$$gain(D) = entropy(D) - info(D)$$

- Choose partition values $s_1, s_2, \ldots, s_{n-1}$ such that information gain is maximized (equivalently, expected information requirement is minimized)
- Keep on partitioning into two parts
- Stopping criterion
 - Number of categories greater than a threshold
 - Expected information gain is below a threshold

Example

Dataset D consists of two classes 1 and 2

Class 1	10, 14, 22, 28
Class 2	26, 28, 34, 36, 38

• Probabilities of two classes are $p_1 = 4/9$ and $p_2 = 5/9$

$$entropy(D) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 = 0.99$$

• How to choose a splitting point?

Splitting point 1

• Suppose splitting point s = 24

Class 1	10, 14, 22
Class 2	

Class 1	28
Class 2	26, 28, 34, 36, 38

Then, probabilities of classes per partition are

$$p_{1_1} = 3/3$$
 $p_{2_1} = 0/3$ $p_{1_2} = 1/6$ $p_{2_2} = 5/6$

• Entropies are

entropy(
$$D_1$$
) = $-(3/3) \log_2(3/3) - (0/3) \log_2(0/3) = 0.00$
entropy(D_2) = $-(1/6) \log_2(1/6) - (5/6) \log_2(5/6) = 0.65$

Expected information requirement and entropy gain are

$$info(D) = (|D_1|/|D|)entropy(D_1) + (|D_2|/|D|)entropy(D_2)$$

= $(3/9) \times 0.00 + (6/9) \times 0.65 = 0.43$
 $gain(D) = entropy(D) - info(D)$
= $0.99 - 0.43 = 0.56$

Splitting point 2

• Suppose splitting point s = 31

Class 1	10, 14, 22, 28
Class 2	26, 28

Class 1	
Class 2	34, 36, 38

Splitting point 2

• Suppose splitting point s = 31

Class 1	10, 14, 22, 28
Class 2	26, 28

Class 1	
Class 2	34, 36, 38

Then, probabilities of classes per partition are

$$p_{1_1} = 4/6$$
 $p_{2_1} = 2/6$ $p_{1_2} = 0/3$ $p_{2_2} = 3/3$

Entropies are

entropy(
$$D_1$$
) = $-(4/6) \log_2(4/6) - (2/6) \log_2(2/6) = 0.92$
entropy(D_2) = $-(0/3) \log_2(0/3) - (3/3) \log_2(3/3) = 0.00$

Expected information requirement and entropy gain are

$$info(D) = (|D_1|/|D|)entropy(D_1) + (|D_2|/|D|)entropy(D_2)$$

= $(6/9) \times 0.92 + (3/9) \times 0.00 = 0.61$
 $gain(D) = entropy(D) - info(D)$
= $0.99 - 0.61 = 0.38$

Example (contd.)

- So, 24 is a better splitting point than 31
- What is the optimal splitting point?

Example (contd.)

- So, 24 is a better splitting point than 31
- What is the optimal splitting point?
 - Exhaustive algorithm
 - Tests all possible n-1 partitions

Chi-Square Test

- Statistical test
- Pearson's chi-square test
- Uses chi-square statistic and chi-square distribution

Chi-Square Test

- Statistical test
- Pearson's chi-square test
- Uses chi-square statistic and chi-square distribution
- Chi-square statistic

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where O_i is the observed frequency, E_i is the expected frequency and k is the number of possible outcomes

- Chi-square statistic asymptotically approaches the chi-square distribution
- Chi-square distribution is characterized by a single parameter: degrees of freedom
- Here, degrees of freedom is k-1

Chi-square Test for Independence

- Two distributions with *k* frequencies each
- Chi-square statistic

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

• Degrees of freedom is $(2-1) \times (k-1)$

Chi-square Test for Independence

- Two distributions with *k* frequencies each
- Chi-square statistic

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- Degrees of freedom is $(2-1) \times (k-1)$
- The value of the statistic is compared against the chi-square distribution with df=k-1
- Choose a significance level, say, 0.05
- If the statistic obtained is *less* than the theoretical level, then conclude that the two distributions are *independent* at the chosen level of significance

Chi-square Test for Independence

- Two distributions with *k* frequencies each
- Chi-square statistic

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- Degrees of freedom is $(2-1) \times (k-1)$
- The value of the statistic is compared against the chi-square distribution with df=k-1
- Choose a significance level, say, 0.05
- If the statistic obtained is *less* than the theoretical level, then conclude that the two distributions are *independent* at the chosen level of significance
- Lower chi-square corresponds to higher p-value
- Null hypothesis is that the two distributions are independent

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent
- Does riding cycles depend on age?
- Contingency table

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent
- Does riding cycles depend on age?
- Contingency table

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

• If H_0 is true, each cell $c_{i,j}$ is a product of $x_i...y_{i,j}$, i.e., the marginals

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent
- Does riding cycles depend on age?
- Contingency table

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

- If H_0 is true, each cell $c_{i,j}$ is a product of $x_i...y_{i,j}$, i.e., the marginals
 - x_1 . = 201/395 = 0.50, $y_{\cdot 1} = 100/395 = 0.25$

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent
- Does riding cycles depend on age?
- Contingency table

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

- If H_0 is true, each cell $c_{i,j}$ is a product of $x_i...y_{i,j}$, i.e., the marginals
 - x_1 . = 201/395 = 0.50, $y_{\cdot 1} = 100/395 = 0.25$
 - Expected $c_{1,1} = 0.50 * 0.25 * 395 = 50.89$;

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent
- Does riding cycles depend on age?
- Contingency table

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

- If H_0 is true, each cell $c_{i,j}$ is a product of $x_i...y_{i,j}$, i.e., the marginals
 - x_1 . = 201/395 = 0.50, $y_{\cdot 1} = 100/395 = 0.25$
 - Expected $c_{1,1} = 0.50 * 0.25 * 395 = 50.89$; Observed is 60

- Null hypothesis H_0 : Variables x, y are independent
 - Alternate hypothesis H_1 : They are *not* independent
- Does riding cycles depend on age?
- Contingency table

	18-24	25-34	35-49	50-64	Total
Yes	60	54	46	41	201
No	40	44	53	57	194
Total	100	98	99	98	395

- If H_0 is true, each cell $c_{i,j}$ is a product of $x_i...y_{i,j}$, i.e., the marginals
 - x_1 . = 201/395 = 0.50, $y_{\cdot 1} = 100/395 = 0.25$
 - Expected $c_{1,1} = 0.50 * 0.25 * 395 = 50.89$; Observed is 60
- Chi-square with degrees of freedom (4-1)*(2-1)=3

$$\chi^2_{(3)} = (50.89 - 60)^2 / 50.89 + \dots = 8.006$$

- *P-value* (from chi-square distribution table) is 0.046
 - At 5% level of significance (but not 1%), cycling does depend on age

- Supervised
- Bottom-up

- Supervised
- Bottom-up
- Tests every adjacent interval
- If they are *independent* of class distributions, then they can be merged
- Otherwise, the difference in frequencies is statistically significant, and they should not be merged

- Supervised
- Bottom-up
- Tests every adjacent interval
- If they are independent of class distributions, then they can be merged
- Otherwise, the difference in frequencies is statistically significant, and they should not be merged
- Keep on merging intervals with lowest chi-square value(s)

- Supervised
- Bottom-up
- Tests every adjacent interval
- If they are independent of class distributions, then they can be merged
- Otherwise, the difference in frequencies is statistically significant, and they should not be merged
- Keep on merging intervals with lowest chi-square value(s)
- Stopping criterion

- Supervised
- Bottom-up
- Tests every adjacent interval
- If they are independent of class distributions, then they can be merged
- Otherwise, the difference in frequencies is statistically significant, and they should not be merged
- Keep on merging intervals with lowest chi-square value(s)
- Stopping criterion
 - When lowest chi-square value is greater than threshold chosen at a particular level of significance
 - Number of categories greater than a threshold

• Dataset D consists of two classes 1 and 2

Class 1	1, 7, 8, 9, 37, 45, 46, 59
Class 2	3, 11, 23, 39

Dataset D consists of two classes 1 and 2

- Test the first merging, i.e., the first two values: $(1, C_1)$ and $(3, C_2)$
- Contingency table is

$$\chi^2 = \frac{(1 - 1/2)^2}{1/2} + \frac{(0 - 1/2)^2}{1/2} + \frac{(1 - 1/2)^2}{1/2} + \frac{(0 - 1/2)^2}{1/2} = 2$$

Example (contd.)

• Test the second merging, i.e., the second and third values: $(3, C_2)$ and $(7, C_1)$

Example (contd.)

- Test the second merging, i.e., the second and third values: $(3, C_2)$ and $(7, C_1)$
- χ^2 is again 2
- Test the third merging, i.e., the third and fourth values: $(7, C_1)$ and $(8, C_1)$
- Contingency table is

	C_1	C_2	
<i>I</i> ₁	1	0	1
<i>I</i> ₂	1	0	1
	2	0	2

$$\chi^2 = \frac{(1-1)^2}{1} + \frac{(0-0)^2}{0} + \frac{(1-1)^2}{1} + \frac{(0-0)^2}{0} = 0$$

Data 1 | 3 | 7 | 8 | 9 | 11 | 23 | 37 | 39 | 45 | 46 | 59

1 2 -											
$\begin{array}{ c c c c } \hline \text{Data} & 1 & \\ \chi^2 & & 2 \\ \hline \end{array}$	2	0	0	2	0	2	2	2	0	0	

$\begin{array}{c} Data \\ \chi^2 \end{array}$	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	., 2	23		37		39		4	1 5,	46,	59)

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9		T	11	Ι, 2	23	$\overline{\parallel}$	37	$\overline{\parallel}$	39	T		1 5,	46,	59)
χ^2		2		4						5				3		2		4					

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, :	23		37		39		4	45,	46,	59)
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, :	23		37		39		4	45,	46,	59)
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, 2	23		37		39		4	45,	46,	59	
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

Data 1, 3 7, 8, 9	11, 23	37, 39	45, 46, 59
-------------------	--------	--------	------------

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, 2	23		37		39		4	45,	46,	59	
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

χ^2 1.875 5 1.33 1.875	Data	1, 3	7, 8, 9		11, 23		37, 39		45,	46,	59
	χ^2	1.87	5	5		1.33		1.875			

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, :	23		37		39		4	45,	46,	59)
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

Data	1, 3		7, 8, 9		11, 23 37, 39		45, 46, 59
χ^2		1.875		5	1.33	1.875	
Data	1, 3		7, 8, 9		11, 23, 37, 39		45, 46, 59

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, :	23		37		39			15,	46,	59)
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

Data	1, 3		7, 8, 9		11, 23		37, 39		45,	46,	59
χ^2		1.875		5		1.33		1.875			
Data	1, 3		7, 8, 9		11,	23, 37	7, 39		45,	46,	59
χ^2		1.875		3.93				3.93			

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, :	23		37		39		4	45,	46,	59)
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

7, 8, 9		11, 23 37, 39		45, 46, 59
.875	5	1.33	1.875	
7, 8, 9		11, 23, 37, 39		45, 46, 59
.875	3.93		3.93	
3, 7, 8, 9		11, 23, 37, 39		45, 46, 59
	.875 7, 8, 9 .875	.875 5 7, 8, 9 .875 3.93	.875 5 1.33 7, 8, 9 11, 23, 37, 39 .875 3.93	7, 8, 9 11, 23, 37, 39 .875

Data	1		3		7		8		9		11		23		37		39		45		46		59
χ^2		2		2		0		0		2		0		2		2		2		0		0	
Data	1		3			7,	8,	9			11	L, :	23		37		39			15,	46,	59)
χ^2		2		4						5				3		2		4					

- Continue till a threshold
- From chi-square distribution table, chi-square value at significance level 0.1 with degrees of freedom 1 is 2.70 (for significance level 0.05, chi-square value is 3.84)
- So, when none of the chi-square values is less than 2.70, stop

Data	1, 3		7, 8, 9		11, 23		37, 39		45,	46,	59
χ^2		1.875		5		1.33		1.875			
Data	1, 3		7, 8, 9		11, 2	23, 37	7, 39		45,	46,	59
χ^2		1.875		3.93				3.93			
Data	1	, 3, 7,	8, 9		11, 2	23, 37	7, 39		45,	46,	59
χ^2				2.72				3.93			

- Relatively uniform, easy to remember and easy to read intervals
- For example, (500, 600) is a better interval than (512.23, 609.87)
- Idea is to break up into "natural" partitions

- Relatively uniform, easy to remember and easy to read intervals
- For example, (500, 600) is a better interval than (512.23, 609.87)
- Idea is to break up into "natural" partitions
- Uses the 3-4-5 rule

- Relatively uniform, easy to remember and easy to read intervals
- For example, (500, 600) is a better interval than (512.23, 609.87)
- Idea is to break up into "natural" partitions
- Uses the 3-4-5 rule
- Hierarchical partitioning

- Relatively uniform, easy to remember and easy to read intervals
- For example, (500, 600) is a better interval than (512.23, 609.87)
- Idea is to break up into "natural" partitions
- Uses the 3-4-5 rule
- Hierarchical partitioning
- At each level, examine number of distinct values of the most significant digit for each interval
 - If it is 3, 6, 7 or 9 (3n), partition into 3 equi-width intervals
 - May be 2-3-2 for 7 partitions
 - If it is 2, 4 or 8 (2n), partition into 4 equi-width intervals
 - If it is 1, 5 or 10 (5n), partition into 5 equi-width intervals
- Recursively applied at each level

- Relatively uniform, easy to remember and easy to read intervals
- For example, (500, 600) is a better interval than (512.23, 609.87)
- Idea is to break up into "natural" partitions
- Uses the 3-4-5 rule
- Hierarchical partitioning
- At each level, examine number of distinct values of the most significant digit for each interval
 - If it is 3, 6, 7 or 9 (3n), partition into 3 equi-width intervals
 - May be 2-3-2 for 7 partitions
 - If it is 2, 4 or 8 (2n), partition into 4 equi-width intervals
 - If it is 1, 5 or 10 (5n), partition into 5 equi-width intervals
- Recursively applied at each level
- To avoid outliers, it is applied for data that represents the *majority*, i.e., 5th percentile to 95th percentile

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)
- Since max > high', a new interval needs to be formed: (2000, 5000)

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)
- Since max > high', a new interval needs to be formed: (2000, 5000)
- These partitions are broken recursively
 - (-400, 0) into

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)
- Since max > high', a new interval needs to be formed: (2000, 5000)
- These partitions are broken recursively
 - (-400, 0) into 4 partitions: (-400, -300), (-300, -200), (-200, -100), (-100, 0)
 - (0, 1000) into

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)
- Since max > high', a new interval needs to be formed: (2000, 5000)
- These partitions are broken recursively
 - (-400, 0) into 4 partitions: (-400, -300), (-300, -200), (-200, -100), (-100, 0)
 - (0, 1000) into 5 partitions: (0, 200), (200, 400), (400, 600), (600, 800), (800, 1000)
 - (1000, 2000) into

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- ullet 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)
- Since max > high', a new interval needs to be formed: (2000, 5000)
- These partitions are broken recursively
 - (-400, 0) into 4 partitions: (-400, -300), (-300, -200), (-200, -100), (-100, 0)
 - (0, 1000) into 5 partitions: (0, 200), (200, 400), (400, 600), (600, 800), (800, 1000)
 - (1000, 2000) into 5 partitions: (1000, 1200), (1200, 1400), (1400, 1600), (1600, 1800), (1800, 2000)
 - (2000, 5000) into

- Suppose data has range (-351, 4700), i.e., min = -351, max = 4700
- 5th and 95th percentiles are low = -159 and high = 1838 respectively
- Most significant digit is for 1000
- Rounding yields low' = -1000 and high' = 2000
- Number of distinct digits is 3
- 3 equi-width partitions are (-1000, 0), (0, 1000) and (1000, 2000)
- Since low' < min, adjust boundary of first interval to (-400, 0)
- Since max > high', a new interval needs to be formed: (2000, 5000)
- These partitions are broken recursively
 - (-400, 0) into 4 partitions: (-400, -300), (-300, -200), (-200, -100), (-100, 0)
 - (0, 1000) into 5 partitions: (0, 200), (200, 400), (400, 600), (600, 800), (800, 1000)
 - (1000, 2000) into 5 partitions: (1000, 1200), (1200, 1400), (1400, 1600), (1600, 1800), (1800, 2000)
 - (2000, 5000) into 3 partitions: (2000, 3000), (3000, 4000), (4000, 5000)