BELMAHI Ichraq HUTTE Norman

M2 IMAGINE

Projet IMAGE

Edition du genre d'un portrait

Soutenance finale

Sommaire

- Contexte du projet
- Approche traditionnelle
 Etat de l'art
 Méthode proposée
- Approche par apprentissage
 Etat de l'art
 Méthode proposée
- Démonstration
- Conclusion

Objectif du projet

-> Obtenir un visage changé et plutôt cohérent en utilisant une méthode traditionnelle et une méthode avec deep learning

Etat de l'art

Méthode traditionnelle

Morphing facial

Passage d'un visage d'un genre à un autre par morphing

4 étapes nécessaires à cette méthode :

Définition de points caractéristiques

4

4

Triangulation de Delaunay

Calcul du "visage moyen"

Changement de genre

100 -200 -300 -400 -500 -700 -

200 300

Illustration de points caractéristiques sur le visage de George Clooney (Source: https://inst.eecs.berkeley.ed u/~cs194-26/fa18/upload/file s/proj4/cs194-26-adu/jose_ chavez_proj4/)

100

Méthode traditionnelle

Méthode proposée

Visage moyen d'un pays

Méthode traditionnelle

Morphing facial

Résultats de la méthode traditionnelle

Homme	Femme	Prédictions du CNN -VGG16-		Avis des personnes	
Femme	↓ Homme	Vrai	Faux	Vrai	Faux
		X		7	3
			X	5	5
			X	3	7
		X		4	6

Evaluation des résultats

Avis des personnes

Evaluation des résultats

Prédictions du CNN

Etat de l'art

Méthode par apprentissage

Réseaux génératifs antagonistes (GAN)

• Réseaux adversaires : générateur VS discriminateur

> Supervisé : Pix2Pix Image -> Image Paires nécessaires

Non supervisé : CycleGAN

Domaine -> domaine

Pas de paires nécessaires
2 générateurs/discriminateurs

Auto-encodeur variationnel (VAE)

Image d'origine

Représentation latente

Représentation latente modifiée

Nouvelle image

Modèles de diffusion

Génération d'une image cible pixel par pixel en prenant en compte :

- Les pixels déjà générés
- L'image source donnée

Côté méthode par apprentissage

Réseaux génératifs antagonistes (GAN): CycleGAN

Schéma du principe dy CycleGAN (Source : Train your first CycleGAN for Image to Image Translation https://blog.jaysinha.me/train-your-first-cyclegan-for-image-to-image-translation/)

Côté méthode par apprentissage

Réseaux génératifs antagonistes (GAN): CycleGAN

Schéma du principe dy CycleGAN (Source : <u>Jun-Yan Zhu</u>, <u>Taesung Park</u>, <u>Phillip Isola</u>, <u>Alexei A. Efros</u>, <u>Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks</u>)

Côté méthode par apprentissage

Dataset: Celeb-HQ Face Gender Recognition Dataset

Extrait du Celeb-HQ Face Gender Recognition Dataset (Source: https://github.com/ndb796/LatentHSJA)

Notre avancée

Côté méthode par apprentissage

1er apprentissage:

Dataset: 1000 images (500 H/500 F)

Batch size: 1 Epochs: 200

Résultats issus de notre premier entrainement

Notre avancée

Côté méthode par apprentissage

2ème apprentissage:

Dataset: 17 690 images (8845 H/8845 F)

Batch size : 1 Epochs : 70

Résultats issus du second entraînement (10ème époch)

Résultats de la méthode avec deep learning

Homme	Femme	Prédictions du CNN -VGG16-		Avis des personnes	
Femme	Homme	Vrai	Faux	Vrai	Faux
N GO		X		10	0
		X		10	0
2			X	10	0
		X		9	1

Evaluation des résultats

Avis des personnes

Evaluation des résultats

Prédictions du CNN

Interface graphique

Interface graphique

Conclusion et perspectives

- Une nouvelle phase d'apprentissage avec un plus grand nombre d'epochs (et des paramètres différents)
- Un dataset différent

Démonstration

