Лекция 12

19 ноября 2024

Правила дифференцирования

Теорема 1

Пусть даны две дифференцируемые в точке x функции — u(x) и v(x).

- 1. $(u(x) \pm v(x))' = u(x)' \pm v(x)'$.
- 2. $(u(x) \cdot v(x))' = u(x)' \cdot v(x) + v(x)' \cdot u(x)$.
- 3. $\left(\frac{u(x)}{v(x)}\right)' = \frac{u(x)' \cdot v(x) v(x)' \cdot u(x)}{v(x)^2}.$

Доказательство 2.

- 1. Пусть $y(x)=u(x)\cdot v(x)$, тогда $\Delta y=y(x+\Delta x)-y(x)=u(x+\Delta x)\cdot v(x+\Delta x)-u(x)\cdot v(x)$
- 2. Прибавим и отнимем $u(x) \cdot v(x + \Delta x)$: $\Delta y = u(x + \Delta x) \cdot v(x + \Delta x) u(x) \cdot v(x) u(x) \cdot v(x + \Delta x) + u(x) \cdot v(x + \Delta x)$
- 3. Сгруппируем слагаемые: $\Delta y = (u(x+\Delta x)-u(x))\cdot v(x+\Delta x)+u(x)\cdot (v(x+\Delta x)-v(x)) = \Delta u\cdot v(x+\Delta x)+\Delta v\cdot u(x)$
- 4. Поделим на Δx : $\frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} \cdot v(x + \Delta x) + \frac{\Delta v}{\Delta x} \cdot u(x)$
- 5. Выполним предельный переход: $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = u(x)' \cdot v(x) + v(x)' \cdot u(x)$.

Следствие 1: $(c \cdot y(x))' = c \cdot y(x)'$, где c — константа

$$\overline{\underline{\text{Следствие 2:}}} \ (\tan(x))' = \frac{1}{\cos^2(x)}$$

Следствие 3:
$$(\cot(x))' = -\frac{1}{\sin^2(x)}$$

Производная обратной функции

Теорема 2

Пусть функция y = f(x) определена, строго монотонна и непрерывна в $U(x_0)$. $\exists f'(x_0) = y_0 \neq 0 \implies$ в некоторой $U(y_0)$ существует обратная функция $f^{-1}(y)$, дифференцируемая в точке y_0 , причем $(f^{-1}(y_0))' = \frac{1}{f'(x_0)}$.

Доказательство.

- 1. Рассмотрим некторой отрезок $[a, b], a < x_0 < b, y = f(x)$ строго монотонна и непрерывна на [a, b].
- 2. В силу теормеы о промежуточном значении, множеством значений функции будет являться Y = [f(a), f(b)].
- 3. На Y существует обратная функция $x = f^{-1}(y)$, являющаяся строго монотонной и непрерывной, при этом $y_0 \in [f(a), f(b)]$.

1

4. Придадим аргументу y обратной функции в точке y_0 приращение Δy столь малое, что $y_0 + \Delta y \in (f(a), f(b))$.

5. $\Delta x = f^{-1}(y_0 + \Delta y) - f^{-1}(y_0) \neq 0$ (в силу строгой монотонности обратной функции).

6.
$$\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}} \iff \lim_{\Delta x \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y} \iff (f^{-1}(y_0))' = \frac{1}{f'(x_0)}.$$

Пример 1.

1. $f(x) = \sin(x), x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$

2. $x = \arcsin(y), y \in (-1, 1).$

3.
$$(\arcsin(y))' = \frac{1}{\sin'(x)} = \frac{1}{\cos(x)} = \frac{1}{\sqrt{1 - \sin^2(x)}} = \frac{1}{\sqrt{1 - y^2}}$$

Замечание: при $x \to \pm 1$ $(\arcsin(x))' \to \infty$ (касательная перпундикулярна графику).

Пример 2.

1. $y = \tan(x), \ x \in \left(-\frac{\pi}{2}, \ \frac{\pi}{2}\right).$

2. $x = \arctan(y), y \in (-\infty, +\infty).$

3. $(\arctan(y))' = \frac{1}{(\tan(x))'} = \cos^2(x) = \frac{1}{1 + \tan^2(x)} = \frac{1}{1 + y^2}$

Производная сложной функции

Теорема 3

Пусть $t = \varphi(x)$ дифференцируема в точке x_0 и $\varphi(x_0) = t_0$. Пусть y = f(t) дифференцируема в точке t_0 . Тогда сложная функция $F(x) = f(\varphi(x))$ дифференцируема в точке x_0 , причем $F'(x_0) = f'(t_0) \cdot \varphi'(x_0) = f'(\varphi(x_0)) \cdot \varphi'(x_0)$.

Доказательство.

1. По определению требуется доказать, что $\Delta y = f'(\varphi(x_0)) \cdot \varphi(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где $\alpha(\Delta x)$ — бесконечно малая функция, $\alpha(0) = 0$.

2. $\Delta t = \varphi(x_0 + \Delta x) - \varphi(x_0)$. В силу дифференцируемости, $\Delta t = \varphi(x_0) \cdot \Delta x + \beta(\Delta x) \cdot \Delta x$, где $\beta(\Delta x)$ — бесконечно малая функция, $\beta(0) = 0$.

3. $\Delta y = f(t_0 + \Delta t) - f(t_0)$. В силу дифференцируемости, $\Delta y = f'(t_0) \cdot \Delta t + \gamma(\Delta t) \cdot \Delta t$, где $\gamma(\Delta x)$ — бесконечно малая функция, $\gamma(0) = 0$.

4. $\Delta y = f'(t_0) \cdot \varphi'(x_0) \cdot \Delta x + (\beta \cdot f'(t_0) + \gamma \cdot f'(x_0) + \gamma \cdot \beta) \cdot \Delta x = f'(\varphi(x_0)) \cdot \varphi'(x_0) \cdot \Delta x + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) - \theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x) + \theta(\Delta x) \cdot \Delta x$, где $\theta(\Delta x) = \theta(\Delta x) + \theta(\Delta x)$

Следствие 1: $f(x) = x^{\alpha}, \ \alpha \in \mathbb{R} \implies (x^{\alpha})' = \alpha \cdot x^{\alpha-1}$.

Следствие 2: $f(x) = \ln(\cos(\arctan(e^x))) \implies f'(x) = \frac{-e^{2x}}{1 + e^{2x}}$.

<u>Следствие 3:</u> $f(x) = u(x)^{v(x)} \implies f'(x) = u^v \cdot \ln(u) \cdot v' + v \cdot u^{v-1} \cdot u'$.

Доказательства следствий предлагаются читателю в качестве несложного упражнения.