

Modeling delamination migration: quasi-static and fatigue loading

B.Y. Chen
Imperial College London
National University of
Singapore

**J.G.
Ratcliffe**
NASA Langley

N. V. De Carvalho
nelson.carvalho@nasa.gov
National Institute of Aerospace

**S. T. Pinho, P.
Baiz**
Imperial College
London

T. E. Tay
National University
Singapore

Motivation

Migration: The process by which a propagating delamination relocates to a new ply interface via matrix cracking

Impact

M. McElroy et al. A numerical and experimental study of damage growth in a composite laminate. in proceedings of the ASC 29th Technical Conference, San Diego, CA, USA, 2014.

Skin-stringer pull off

R. Krueger et al. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations. NASA/TM-2001-210842, 2001.

Contents

1 Experiments

2 Modeling approach

3 Validation

4 Summary

Contents

- 1 **Experiments:** delamination migration test
- 2 Modeling approach
- 3 Validation
- 4 Summary

Experiments: delamination migration

Test Setup - Premise

Delamination
("positive" shear stress)

Migration
("negative" shear stress)

*adapted from Greenhalgh, 2009

Experiments: delamination migration test

Test setup

- Cross-ply laminate
- “2D” migration process
- Pre-crack (Teflon insert) between 0° and 90° ply
- Variable load position (L)

All units in mm

Experiments: delamination migration test

Test setup - overview

Delamination

Experiments: delamination migration test

Test setup - overview

Delamination

Migration

Experiments: delamination migration test

Test setup – validation data

Damage morphology

Load - displacement

Migration location

Contents

1

Experiments: delamination migration test

2

Modeling approach: Floating Node Method (FNM) and
Virtual Crack Closure Technique (VCCT)

3

Validation

4

Summary

Floating Node Method

Same implementation
strategy suitable for standard
finite element architecture

X-FEM

Phantom Node
Method (PNM)

Floating Node
Method (FNM)

Remeshing

Same solution

Same solution

Floating Node Method (FNM)

Floating Node Method (FNM)

$$\mathbf{K}\mathbf{q} = \mathbf{Q}$$

Real node
Floating node
**Coordinates of
crack positions**

$$\mathbf{K}_A \mathbf{q}_A = \mathbf{Q}_A$$

$$\mathbf{K}_B \mathbf{q}_B = \mathbf{Q}_B$$

+

Floating Node Method (FNM)

T crack

Intersecting cracks

Key Characteristics:

- Floating Nodes are topologically related to each element with no initial position assigned
- The position of the floating nodes is assigned only after the crack path is determined
- The floating nodes are used to form sub-elements within the original element and accommodate crack networks
- Ideally suited to represent multiple cracks and their intersection
- Can be coupled with **Virtual Crack Closure Technique (VCCT)** and cohesive zone crack formulations to model crack propagation

Floating Node Method & Virtual Crack Closure Technique

Virtual Crack Closure Technique (VCCT):

Mode I

$$G_I = \frac{1}{2\Delta a_1} F_n [q_n] \left(\frac{\Delta a_1}{\Delta a_2} \right)^{\frac{1}{2}}$$

I

Mode II

$$G_{II} = \frac{1}{2\Delta a_1} F_t [q_t] \left(\frac{\Delta a_1}{\Delta a_2} \right)^{\frac{1}{2}}$$

II

FNM & VCCT applied to cross-ply laminates:

Laminate
 $[0^\circ/90^\circ_2/0^\circ]$

**1 FNM Element
(multiple plies)**

- Real node
- △ Floating node (DoF)
- Coordinates of crack positions

FNM & VCCT applied to cross-ply laminates:

Laminate
 $[0^\circ/90^\circ_2/0^\circ]$

1 FNM Element
 $[0^\circ/90^\circ_2/0^\circ]$

- Real node
- △ Floating node (DoF)
- Coordinates of crack positions

FNM & VCCT applied to cross-ply laminates:

Quasi-static

- **Fracture Criterion:**

$$f(G_I, G_{II}) = \frac{G_T}{G_c^{Int}} - 1 = 0$$

- **Mixed Mode exponential law:**

$$G_c^{Int} = G_{Ic} + (G_{IIc} - G_{Ic}) \left(\frac{G_{II}}{G_T} \right)^\eta$$

Fatigue

$$\frac{da}{dN} = A (G_{Tmax})^n$$

$$n = n_I + (n_{II} - n_I) \left(\frac{G_{IImax}}{G_T} \right)$$

$$A = A_I + (A_{II} - A_I) \left(\frac{G_{IImax}}{G_T} \right)$$

Delamination

● Real node

△ Floating node (DoF)

□ Coordinates of crack positions

FNM & VCCT applied to cross-ply laminates: Migration onset

Quasi-static

$$\frac{G_T}{G_c^i(F_t)} > \frac{G_T}{G_c^{Inter}} \geq 1$$

$$G_c^i = \begin{cases} G_c^A, & F_t < 0 \\ G_c^B, & F_t > 0 \end{cases}$$

Fatigue

$$\left(\frac{da}{dN}(F_t) \right)_i > \left(\frac{da}{dN} \right)_{Inter}$$

$$\left(\frac{da}{dN} \right)_i = \begin{cases} \left(\frac{da}{dN} \right)_A, & F_t < 0 \\ \left(\frac{da}{dN} \right)_B, & F_t > 0 \end{cases}$$

Migration onset (delamination to matrix crack)

- Real node
- △ Floating node (DoF)
- Coordinates of crack positions

FNM & VCCT applied to cross-ply laminates: Migration onset – quasi-static

$$\boxed{\frac{G_T}{G_c^i(F_t)}} > \boxed{\frac{G_T}{G_c^{Inter}}} \geq 1$$

$$G_c^i = \begin{cases} G_c^A, & F_t < 0 \\ G_c^B, & F_t > 0 \end{cases}$$

FNM & VCCT applied to cross-ply laminates: Migration onset – quasi-static

$$\frac{G_T}{G_c^i(F_t)} > \frac{G_T}{G_c^{Inter}} \geq 1$$

$$G_c^i = \begin{cases} G_c^A, & F_t < 0 \\ G_c^B, & F_t > 0 \end{cases}$$

FNM & VCCT - application to composites: Migration onset - fatigue

$$\left(\frac{da}{dN} (F_t) \right)_i > \left(\frac{da}{dN} \right)_{Inter}$$

$$\left(\frac{da}{dN} \right)_i = \begin{cases} \left(\frac{da}{dN} \right)_A, & F_t < 0 \\ \left(\frac{da}{dN} \right)_B, & F_t > 0 \end{cases}$$

FNM & VCCT applied to cross-ply laminates:

Quasi-static

$$f(G_I, G_{II}) = \frac{G_T}{G_{Ic}} - 1 = 0$$

Fatigue

$$\frac{da}{dN} = A_I (G_{Tmax})^{n_I}$$

Maximum tangential stress criterion:

$$\theta = 2 \tan^{-1} \left(\frac{1}{4} \left[\left(\frac{G_I}{G_{II}} \right) \pm \sqrt{\left(\frac{G_I}{G_{II}} \right)^2 + 8} \right] \right)$$

Matrix Crack

- Real node
- △ Floating node (DoF)
- Coordinates of crack positions

FNM & VCCT - application to composites: migration matrix crack to delamination interaction

- **Topological criterion**
 - local delamination is onset when matrix crack reaches interface

Migration (matrix crack to delamination)

Fatigue algorithm

Verification – Static: DCB

Verification – Fatigue: DCB benchmark

Contents

1

Experiments: delamination migration test

2

Modeling approach: Floating Node Method (FNM) and
Virtual Crack Closure Technique (VCCT)

3

Validation: modeling delamination migration

4

Summary

Validation: Delamination migration test

Numerical model

Model details

- Contact modeled between specimen and clamps/baseplate
- Clamping force applied in a first static step
- Abaqus/Standard (Implicit) + UEL
- All material properties obtained using standard/recommended test methods

Dimensions (mm)

B^*	$2h$	C	S	a_0
12.7	5.25	12.7	115	49

* B is the width of the specimen (out-of-the page);
 90° - specimen width direction; 0° - specimen span direction

Validation: delamination migration test

Results - migration process

Observations

- Correct sequence of events: delamination followed by migration
- Failure morphology well captured – including crack path through-thickness

Validation: delamination migration test

Results – load vs displacement

$L=1.0a_0$:

Observations

- Max load: good agreement
- Delamination: unstable growth followed by arrest and subsequent unstable and stable growth
- Migration: predicted before delamination arrest

Validation: delamination migration test

Results – load vs displacement

$L=1.1a_0$:

Observations

- Max load: good agreement
- Delamination: small region of stable growth prior to main load-drop
- Migration: predicted within the main load drop

Validation: delamination migration test

Results – load vs displacement

$L=1.2a_0$:

Observations

- Max load: good agreement
- Delamination: stable delamination growth prior to main load-drop
- Migration: predicted within the main load drop

Validation: delamination migration test

Results – load vs displacement

Observations

- Max load: good agreement
- Delamination: stable growth prior to main load-drop
- Migration: predicted within the main load drop

Validation: delamination migration test

Results – Migration location

Fatigue - Preliminary results

Delamination growth and cycles to migration

Constant amplitude, $R = 0.1$ and $f = 5$ Hz:

Contents

1

Experiments: delamination migration test

2

Modeling approach: Floating Node Method (FNM) and
Virtual Crack Closure Technique (VCCT)

3

Validation: modeling delamination migration

4

Summary

Summary

- Developed a **finite element** model based on the **Floating Node Method** combined with the **Virtual Crack Closure Technique** to capture the interaction between **delamination and matrix-cracking**
- Identified and applied **migration criteria** for both **quasi-static and fatigue loading**
- **Compared simulations and experiments.**
 - Good agreement observed for **load-displacement, migration location and path**
- **Validation of the fatigue simulations are in progress**

Modeling delamination migration: quasi-static and fatigue loading

N. V. De Carvalho

nelson.carvalho@nasa.gov

National Institute of Aerospace

B.Y. Chen

Imperial College London
National University of
Singapore

J.G.

Ratcliffe
NASA Langley

S. T. Pinho, P.

Baiz
Imperial College
London

T. E. Tay

National University
Singapore

Backup Slides: cohesive zone elements

Backup Slides: element integration

or

or

...

Backup Slides: Topological migration criterion, experimental evidence

Backup Slides: FNM vs PNM, convergence: K_I

Backup Slides: FNM vs PNM, accuracy: K_I , K_{II}

K_I, K_{II}
(MPa mm $^{1/2}$)

Backup slides: MMB benchmark

*R. Krueger. Development of and application of benchmark examples for mixed-mode I/II quasistatic delamination propagation predictions.

NASA-CR-2012-217562, 2012.