Oversigt over hypotesetests

Oversigt over hypotesetests

Nr	Lektion	Afsnit	Teststørrelse	Fordeling	Frihedsgrader	Eksempel
1	12	VK 4.2	$z_0 = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}}$	Z	-	4.4 s.189
2	13	VK 4.3	$t_0 = \frac{\bar{y} - \mu_0}{s / \sqrt{n}}$	t	n-1	4.7 s. 205 (forts. 4.8, 4.9)
3	13	VK 4.5	$t_0 = \frac{\overline{y_1} - \overline{y_2} - \delta_0}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	t	$n_1 + n_2 - 2$	4.13 s. 225
4	14	VK 4.6	$t_0 = \frac{\bar{d} - \delta_0}{s_d / \sqrt{n}}$	t	n-1	4.15 s. 235
5	14	VK 4.8	$\chi^2_0 = \frac{(n-1)s^2}{{\sigma_0}^2}$	χ^2	n-1	4.18 s. 249
6	14	VK 4.8	$F_0 = \frac{{s_1}^2}{{s_2}^2}$	F	$n_1 - 1$, $n_2 - 1$	4.19 s. 252
7	15	MR 9-7	$\chi^{2}_{0} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$	χ^2	k - p - 1	9-12 s. 338
8	15	MR 9-8	$\chi^{2}_{0} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$	χ^2	(r-1)(c-1)	9-14 s. 341

Tilhørende konfidensinterval

Nr	Lektion	Afsnit	Konfidensinterval	Fordeling	Frihedsgrader	Eksempel
1	12	VK 4.1	$\bar{y} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	Ζ	-	4.4 s.189
2	12	VK 4.1	$\bar{y} \pm t_{df,\alpha/2} \cdot \frac{s}{\sqrt{n}}$	t	n-1	4.7 s. 205 (forts. 4.8, 4.9)
3	13	VK 4.5	$(\bar{y}_1 - \bar{y}_2) \pm t_{n_1 + n_2 - 2, \alpha/2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	t	$n_1 + n_2 - 2$	4.13 s. 225
4	14	VK 4.6	$\bar{d} \pm t_{n-1,\alpha/2} \cdot \frac{s_d}{\sqrt{n}}$	t	n-1	4.15 s. 235
5	14	VK 4.8	$\sigma^{2} \in \left[\frac{(n-1)s^{2}}{\chi^{2}_{n-1,1-\alpha/2}} ; \frac{(n-1)s^{2}}{\chi^{2}_{n-1,\alpha/2}} \right]$	χ^2	n-1	4.18 s. 249
6	14	VK 4.8	$\frac{{\sigma_2}^2}{{\sigma_1}^2} \in \left[\frac{{s_2}^2}{{s_1}^2} \cdot F_{n_1 - 1, n_2 - 1, \alpha/2} ; \frac{{s_2}^2}{{s_1}^2} \cdot F_{n_1 - 1, n_2 - 1, 1 - \alpha/2} \right]$	F	$n_1 - 1, \\ n_2 - 1$	(4.19 s. 252) (vises ikke)
7	15	MR 9-7	Ikke relevant, da nulhypotesen for testen er, om data følger en bestemt fordeling.			9-12 s. 338
8	15	MR 9-8	Ikke relevant, da nulhypotesen for testen er, at to egenskaber er uafhængige.			9-14 s. 341