Longest Increasing Subsequence

From Algorithmist

The Longest Increasing Subsequence problem is to find the longest increasing subsequence of a given sequence. It also reduces to a Graph Theory problem of finding the longest path in a Directed acyclic graph.

Contents

- 1 Overview
- 2 Techniques
 - 2.1 Longest Common Subsequence
 - 2.2 Dynamic Programming
 - 2.3 Faster Algorithm
- 3 Implementation
- 4 Other Resources

Overview

Formally, the problem is as follows:

Given a sequence a_1, a_2, \ldots, a_n , find the largest subset such that for every i < j, $a_i < a_j$.

Techniques

Longest Common Subsequence

A simple way of finding the longest increasing subsequence is to use the Longest Common Subsequence (Dynamic Programming) algorithm.

- 1. Make a sorted copy of the sequence A, denoted as B. $O(n \log(n))$ time.
- 2. Use Longest Common Subsequence on with A and $B \cdot O(n^2)$ time.

Dynamic Programming

There is a straight-forward Dynamic Programming solution in $O(n^2)$ time. Though this is asymptotically equivalent to the Longest Common Subsequence version of the solution, the constant is lower, as there is less overhead.

Let A be our sequence a_1,a_2,\ldots,a_n . Define q_k as the length of the longest increasing subsequence of A, subject to the constraint that the subsequence must end on the element a_k . The longest increasing subsequence of A must end on *some* element of A, so that we can find its length by searching for the maximum value of q. All that remains is to find out the values q_k .

But q_k can be found recursively, as follows: consider the set S_k of all i < k such that $a_i < a_k$. If this set is null, then all of the elements that come before a_k are greater than it, which forces $q_k = 1$. Otherwise, if S_k is not null, then a has some distribution over S_k . By the general contract of q, if we maximize a over S_k , we get the length of the longest increasing subsequence in S_k ; we can append a_k to this sequence, to get that:

$$q_k = max(q_i|j \in S_k) + 1$$

If the actual subsequence is desired, it can be found in O(n) further steps by moving backward through the q-array, or else by implementing the q-array as a set of stacks, so that the above "+ 1" is accomplished by "pushing" a_k into a copy of the maximum-length stack seen so far.

Some pseudo-code for finding the length of the longest increasing subsequence:

```
function lis_length( a )
n := a.length
q := new Array(n)
for k from 0 to n:
    max := 0;
    for j from 0 to k, if a[k] > a[j]:
        if q[j] > max, then set max = q[j].
    q[k] := max + 1;
max := 0
for i from 0 to n:
    if q[i] > max, then set max = q[i].
return max;
```

Faster Algorithm

There's also an $O(n \log n)$ solution based on some observations. Let $A_{i,j}$ be the smallest possible tail out of all increasing subsequences of length j using elements $a_1, a_2, a_3, \ldots, a_i$.

Observe that, for any particular i, $A_{i,1} < A_{i,2} < \ldots < A_{i,j}$. This suggests that if we want the longest subsequence that ends with a_{i+1} , we only need to look for a j such that $A_{i,j} < a_{i+1} < = A_{i,j+1}$ and the length will be j+1.

Notice that in this case, $A_{i+1,j+1}$ will be equal to a_{i+1} , and all $A_{i+1,k}$ will be equal to $A_{i,k}$ for $k \neq j+1$.

Furthermore, there is at most one difference between the set A_i and the set A_{i+1} , which is caused by this search.

Since A is always ordered in increasing order, and the operation does not change this ordering, we can do a binary search for every single a_1, a_2, \ldots, a_n .

Further explain:--GONG Zhi Tao 11:19, 1 August 2012 (EDT)

We have elements: $a_1, a_2, a_3, \ldots, a_i$.

And we have a longest increasing subsequences of them: $A_{i,1} < A_{i,2} < \ldots < A_{i,j}$, for any $A_{i,k} (1 <= k <= j)$ you could not find a smaller alternative.

Now we have a new element: a_{i+1}

What we can do about it:

- 1. insert it at the back if $A_{i,j} < a_{i+1}$, where we will have a longer one;
- 2. make it an alternative for $A_{i,k}$ if $A_{i,k-1} < a_{i+1} \ AND \ a_{i+1} <= A_{i,k}$

Alternative means that we MIGHT get longer ones if using the new element.

Implementation

- C
- C++ ($O(n \log n)$ algorithm output sensitive $O(n \log k)$)
- Python $(O(n^2))$

Other Resources

 "Patience Sorting To Find Longest Increasing Subsequence" on PerlMonks (http://www.perlmonks.org/?node_id=547199)

Retrieved from "http://www.algorithmist.com/index.php? title=Longest_Increasing_Subsequence&oldid=13458"

Categories: Dynamic Programming | Longest Increasing Subsequence | Graph Theory

- This page was last modified on 9 June 2013, at 07:11.
- This page has been accessed 273,388 times.
- Content is available under GNU Free Documentation License 1.2 unless otherwise noted.