Московский государственный технический университет им. Н.Э.Баумана Г.В.БАЛАБИНА

ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ В КОНТУРЕ LRC

Методические указания к лабораторной работе Э-6 по курсу общей физики Под редакцией Л.К.Мартинсона Издательство МГТУ, 1992

Изучены свободные затухающие электрические колебания при помощи осциллографа. Экспериментально определены основные параметры контура LRC. Для студентов 2-го курса.

<u>Цель работы</u> - изучение свободных затухающих электрических колебаний в контуре LRC с сосредоточенными параметрами при помощи осциллографа.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Колебательный контур с сосредоточенными параметрами состоит из конденсатора C, катушки индуктивности L и активного сопротивления R (рис. 1). При этом предполагают, что емкости сопротивления R и катушки L малы по сравнению с емкостью конденсатора C, а индуктивности сопротивления R, конденсатора C и соединительных проводов малы по сравнению с индуктивностью катушки L.

Рис. 1

Рассмотрим процесс возбуждения электрических колебаний в контуре. Пусть, при разомкнутом ключе К конденсатор заряжен, т.е. между обкладками конденсатора имеется электрическое поле, заключающее в себе определенную энергию

$$\mathbf{W}_{\mathbf{C}} = \frac{\mathbf{C}\mathbf{U}_0^2}{2} \tag{1}$$

где C - емкость конденсатора; U_0 - начальное напряжение на конденсаторе.

Если ключ К замкнуть, то конденсатор начнет разряжаться и его электрическое поле будет уменьшаться. При этом в контуре возникнет электрический ток разряда конденсатора, в результате в катушке индуктивности L появится магнитное поле, а в контуре - ЭДС самоиндукции. Через некоторое время конденсатор разрядится полностью, и электрического поля в конденсаторе не будет. Однако магнитное поле в катушке при этом достигнет максимума, иначе говоря, вся энергия электрического поля преобразуется в энергию магнитного поля

$$\mathbf{W}_{L} = \frac{L\mathbf{J}_{0}^{2}}{2} \tag{2}$$

где L - индуктивность катушки; J_0 - максимальное значение силы тока. В последующие моменты времени магнитное поле начнет уменьшаться, так как нет токов, его

поддерживающих. Это уменьшающееся поле вызовет появление ЭДС самоиндукции, которая в соответствии с правилом Ленца будет поддерживать ток разряда конденсатора. В результате конденсатор перезарядится, и между его обкладками появится электрическое поле, направленное противоположно начальному. Через некоторое время магнитное поле в катушке исчезнет, а электрическое поле между обкладками конденсатора достигнет максимума, т.е. вся энергия магнитного поля преобразуется в энергию электрического поля. Конденсатор начнет снова разряжаться, но с противоположным направлением тока.

В ходе рассмотренного процесса периодически меняются заряд ${\bf q}$ на обкладках конденсатора, напряжение U на конденсаторе и сила тока J в контуре, иначе говоря, в контуре происходят свободные электрические колебания. Так как всякий реальный контур обладает активным сопротивлением, то энергия, запасенная в контуре, постепенно расходуется на нагревание сопротивления, вследствие чего колебания затухают. Такие колебания принято называть ${\bf свободны}$ -

ми затухающими колебаниями.

Найдем уравнение, описывающее свободные затухающие колебания в контуре, представленном на рис. 1.

Условимся считать заряд на обкладках конденсатора ${\bf q}$ положительным, если знаки зарядов на обкладках такие, как на рис. 1, а силу тока J положительной, если ток в контуре направлен по часовой стрелке. Причем ток можно считать квазистационарным, т.е. относительно медленно меняющимся переменным током. Для его мгновенных значений с достаточной степенью точности выполняются законы постоянного тока. На практике установлено, что токи промышленной частоты (50 Γ ц) можно рассматривать как квазистационарные.

Конденсатор С, напряжение на котором равно U, разряжается через катушку индуктивности L и

резистор сопротивления R, причем в цепи возникает ЭДС самоиндукции $\mathbf{\mathcal{E}}_{s} = -\mathbf{L} \frac{\mathbf{dJ}}{\mathbf{dt}}$.

По закону Ома ток в цепи

$$J = \frac{U + \mathcal{E}_{s}}{R} = \frac{U - L \frac{dJ}{dt}}{R}$$
(3)

или

$$L\frac{dJ}{dt} + JR - U = 0 \tag{4}$$

Заряд \mathbf{q} и напряжение U на конденсаторе связаны соотношением \mathbf{q} =CU, поэтому силу тока J можно представить в виде:

$$\mathbf{J} = \frac{\mathbf{dq}}{\mathbf{dt}} = -\mathbf{C}\frac{\mathbf{dU}}{\mathbf{dt}} \tag{5}$$

Знак «минус» указывает на то, что выбранное положительное направление тока соответствует уменьшению положительного заряда конденсатора.

Дифференциальное уравнение (4) после подстановки в него выражения (5) и деления всех членов на произведение LC будет иметь вид

$$\frac{\mathbf{d}^2 \mathbf{U}}{\mathbf{dt}^2} + \frac{\mathbf{R}}{\mathbf{L}} \frac{\mathbf{dU}}{\mathbf{dt}} + \frac{1}{\mathbf{LC}} \mathbf{U} = 0$$
 (6)

Уравнение (6) является уравнением, описывающим свободные затухающие электрические колебания для напряжения U на конденсаторе.

Введем обозначения

$$\delta = \frac{\mathbf{R}}{2\mathbf{L}}, \ \mathbf{\omega}_0^2 = \frac{1}{\mathbf{LC}} \tag{7}$$

Тогда уравнение (6) можно записать в виде

$$\frac{\mathbf{d}^2 \mathbf{U}}{\mathbf{d}t^2} + 2\delta \frac{\mathbf{d}\mathbf{U}}{\mathbf{d}t} + \boldsymbol{\omega}_0^2 \mathbf{U} = 0$$
 (8)

где δ - постоянная величина, называемая коэффициентом затухания; ω_0 - собственная частота контура.

Полученное уравнение (8) является линейным дифференциальным уравнением второго порядка с обыкновенными производными и постоянными коэффициентами. Решения его имеют различный вид в зависимости от соотношения между постоянными коэффициентами.

1. Рассмотрим случай, когда $\delta < \omega_0$ (или. $\mathbf{R} < 2\sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$) - малое затухание.

Тогда решение имеет вид

$$U(t) = U_0 e^{-\delta t} \cos(\omega t + \varphi)$$
(9)

где U_0 - начальное напряжение на конденсаторе; ω - циклическая частота затухающих колебаний:

$$\mathbf{\omega} = \sqrt{\mathbf{\omega}_0^2 - \mathbf{\delta}^2} \tag{10}$$

 ϕ - начальная фаза, значение которой определяется начальными условиями, а именно: при t=0 U=U₀, т.е. ϕ = 0.

Примечание. За начало отсчета времени выбираем момент замыкания ключа К.

Период затухающих колебаний в контуре

$$T = \frac{2\pi}{\omega} = 2\pi / \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}$$
 (11)

График зависимости напряжения U от времени t показан на рис. 2.

Рис.2

Приведенное решение (9) позволяет найти закон изменения тока в контуре. С учетом (5) имеем

$$J(t) = -C \frac{dU}{dt} = q_0 e^{-\delta t} \left[\delta \cos (\omega t + \varphi) + \omega \sin (\omega t + \varphi) \right]$$

где $q_0 = CU_0$ - начальный заряд на конденсаторе.

Умножим и разделим правую часть полученного выражения на ω_0 :

$$J(t) = -C\frac{dU}{dt} = q_0 \omega_0 e^{-\delta t} \left[\frac{\delta}{\omega_0} \cos(\omega t + \phi) + \frac{\omega}{\omega_0} \sin(\omega t + \phi) \right]$$

Введем угол α , определяемый условиями $\cos \alpha = \delta/\omega_0$, $\sin \alpha = \omega/\omega_0$.

После простых тригонометрических преобразований получаем закон изменения тока Ј в контуре:

$$J(t) = J_0 e^{-\delta t} \cos(\omega t + \varphi - \alpha)$$
 (12)

где $J_0 = q_0 \omega_0$ - амплитуда тока в начальный момент.

Так как $\sin \alpha > 0$ и $\cos \alpha > 0$, то угол α меняется в пределах $0 < \alpha < \pi/2$. Следовательно, между напряжением U на конденсаторе и силой тока J в контуре имеется сдвиг по фазе α, который зависит от коэффициента затухания δ : при $\delta < < \omega_0$, $\alpha \rightarrow \pi/2$.

Таким образом, в случае малого затухания сила тока J отстает по фазе от напряжения U на величину α .

2. Пусть теперь затухание велико: $\delta > \omega_0$ (или $\mathbf{R} > 2\sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$).

В этом случав частота ω , представленная соотношением (10), является мнимой величиной. Это означает, что решение (9) не применимо, иначе говоря, электрических колебаний в контуре не будет. Для данного случая общее решение уравнения (8) имеет вид

$$\mathbf{U(t)} = \mathbf{A}_1 \mathbf{e}^{-\mathbf{h}_1 t} + \mathbf{A}_2 \mathbf{e}^{-\mathbf{h}_2 t}$$
 (13)

т.е. является суммой двух экспоненциальных функций времени, что выражает <u>апериодическое</u> монотонное затухание напряжения U. В выражении (13)

$$\mathbf{h}_1 = \mathbf{\delta} + \sqrt{\mathbf{\delta}^2 - \mathbf{\omega}_0^2}$$
, $\mathbf{h}_2 = \mathbf{\delta} - \sqrt{\mathbf{\delta}^2 - \mathbf{\omega}_0^2}$

следовательно, h_1 и h_2 - вещественные и положительные параметры; A_1 в A_2 - произвольные постоянные, определяемые из начальных условий:

$$\mathbf{U}_{t=0} = \mathbf{A}_1 + \mathbf{A}_2$$

$$\frac{\mathbf{dU}}{\mathbf{dt}}\Big|_{t=0} = -\mathbf{A}_1 \mathbf{h}_1 - \mathbf{A}_2 \mathbf{h}_2 = 0$$

так как при t = 0 J = 0.

Решая совместно оба уравнения, получаем

$$A_1 = -U_0 \frac{h_2}{h_1 - h_2}, \qquad A_2 = U_0 \frac{h_1}{h_1 - h_2},$$

Тогда решение (13) принимает вид

$$\mathbf{U(t)} = \mathbf{U}_{0} \frac{1}{\mathbf{h}_{1} - \mathbf{h}_{2}} \left(\mathbf{h}_{1} \mathbf{e}^{-\mathbf{h}_{2} \mathbf{t}} - \mathbf{h}_{2} \mathbf{e}^{-\mathbf{h}_{1} \mathbf{t}} \right)$$
(14)

На рис. 3 графически представлен апериодический разряд конденсатора (пунктирные кривые соответствуют слагаемым, сплошная кривая - их сумме).

Рис.3

3. Рассмотрим случай, когда $\delta = \omega_0$, или

$$\mathbf{R}_{KP} = 2\sqrt{\frac{\mathbf{L}}{\mathbf{C}}}\tag{15}$$

Это соотношение определяет так называемый <u>критический режим,</u> при котором осуществляется переход колебательного процесса в апериодический. Сопротивление R_{KP} принято называть <u>критическим</u> сопротивлением.

Из соотношений (9) и (12) следует, что величина δ характеризует скорость затухания колебаний в контуре, так как чем больше δ , тем быстрее прекращаются колебания. Величина $\tau = 1/\delta$ характеризует время, за которое амплитуда колебаний, убывает в e число раз.

Кроме коэффициента δ для оценки быстроты затухания колебаний используют безразмерную величину γ , называемую логарифмическим декрементом затухания и равную натуральному логарифму отношения двух последовательных максимальных отклонений колеблющейся величины в одну и ту же сторону. Так, для напряжения на конденсаторе

$$\gamma = \ln \frac{\mathbf{U}_{t}}{\mathbf{U}_{t+T}} = \delta \mathbf{T} = \frac{\pi \mathbf{R}}{\sqrt{\frac{\mathbf{L}}{\mathbf{C}} - \frac{\mathbf{R}^{2}}{4}}},$$
(16)

где U_t - амплитуда напряжения в момент времени $t;\,U_{t+T}$ амплитуда напряжения в момент времени t+T.

Очевидно, что коэффициент затухания δ характеризует затухание колебаний за единицу времени, а логарифмический декремент затухания γ - затухание колебаний за один период Т. Если N_e -число колебаний за время, в течение которого амплитуда уменьшилась в e раз, то можно записать, что

$$\gamma = \frac{1}{N_a} \tag{17}$$

Колебательный контур часто характеризуют его <u>добротностью Q</u>., которая определяется соотношением

$$\mathbf{Q} = \frac{\pi}{\gamma} = \pi \mathbf{N}_{e} = \frac{1}{\mathbf{R}} \sqrt{\frac{\mathbf{L}}{\mathbf{C}} - \frac{\mathbf{R}^{2}}{4}}$$
 (18)

Очевидно, чем больше добротность контура Q, тем медленнее затухают колебания. Физический смысл добротности Q рассмотрим для случая слабых затуханий ($\delta < \omega_0$). Энергия

 ${\bf W}_0 = {{\bf C}{\bf U}_0^2 \over 2}$, запасенная в контуре в начальный момент, к концу первого периода уменьшится до

 $\frac{{
m CU}_0^2}{2}\,{
m e}^{-2{
m \delta}{
m T}}$. Относительное уменьшение энергии за один период

$$\frac{\Delta \mathbf{W}}{\mathbf{W}_0} = \frac{\frac{\mathbf{CU}_0^2}{2} \left(1 - \mathbf{e}^{-2\delta \mathbf{T}} \right)}{\frac{\mathbf{CU}_0^2}{2}} = 1 - \mathbf{e}^{-2\delta \mathbf{T}} \approx 2\delta \mathbf{T} = \frac{2\pi}{\mathbf{Q}}$$

(здесь учтено, что при слабом затухании $e^{\frac{2}{-2\delta T}} \approx 1\text{-}2\delta T$). Таким образом,

$$\mathbf{Q} = 2\pi \cdot \frac{\mathbf{W}_0}{\Lambda \mathbf{W}} \tag{19}$$

т.е. добротность контура Q равна умноженному на 2π отношению энергии, запасенной в контуре, к потерям энергии за период.

В ряде случаев колебательный процесс целесообразно исследовать непосредственно по зависи-

мости напряжения U от тока J. Интегральную кривую U=f(J), уравнение которой может быть получено с помощью дифференциальных уравнений (5) и (8), называют фазовой траекторией свободных затухающих колебаний. Преимущество анализа процессов в колебательном контуре с помощью фазовых траекторий заключается в их наглядности.

С учетом соотношения (5) уравнение (8) можно представить в виде

$$\frac{\mathrm{dJ}}{\mathrm{dt}} = \omega_0^2 \mathrm{CU} - 2\delta \mathrm{J} \tag{20}$$

Решая совместно (5) и (20), получаем дифференциальное уравнение интегральной кривой на фазовой плоскости

$$\frac{d\mathbf{U}}{d\mathbf{J}} = \frac{\mathbf{J}}{2\delta\mathbf{C}\mathbf{U} - \boldsymbol{\omega}_0^2\mathbf{C}^2\mathbf{U}} = \frac{\mathbf{J}\mathbf{L}}{\mathbf{C}(\mathbf{R}\mathbf{J} - \mathbf{U})}$$
(21)

Так как в начальный момент времени напряжение на конденсаторе равно U_0 , а ток J=0, то согласно (21) dU/dJ=0. Следовательно, фазовая траектория начинается параллельно оси J, т.е. горизонтально.

Через четверть периода U=0, а $J=J_0$ и dU/dJ=L/(CR). В этом случае траектория подходит к оси J под углом

$$\varphi = \operatorname{arctg} \frac{L}{CR}$$
.

В теории колебаний уравнение интегральных кривых часто записывают в полярных координатах. Полагая $U=\rho\cos\theta$, $J=\omega_0C\rho\sin\theta$, уравнение (21) представим в виде

$$\frac{\mathrm{d}\rho}{\rho} = \frac{2\delta\sin^2\theta\mathrm{d}\theta}{\delta\sin2\theta - \omega}.\tag{22}$$

При очень слабом затухании ($\delta << \omega_0,\, \omega = \omega_0$) решение уравнения (22) принимает вид

$$\rho = \mathbf{U}_0 e^{\frac{\delta}{\omega_0} \left(\frac{1}{2}\sin 2\theta - \theta\right)}. \tag{23}$$

Вид фазовой траектории представлен на рис. 4. Каждый поворот на угол θ =2 π соответствует одному полному колебанию. Из (23) следует, что за время одного периода Т амплитуда

напряжения U уменьшается в $e^{-2\pi\delta/\omega_0} = e^{-\delta T}$ раз, что полностью согласуется о выражением (9).

Рис.4

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Описание установки.

Для получения свободных затухающих колебаний и их изучения в данной работе использовалась электрическая схема, приведенная на рис. 5. Конденсатор С с помощью реле, частота переключения которого составляет 50 Гц, подключается то к источнику постоянного напряжения, то к катушке индуктивности L и сопротивлению Р. Колебания» можно наблюдать на экране осциллографа.

Рис 5

При включении генератора временной развертки осциллографа и синхронизации его частоты с частотой реле на экране наблюдается устойчивая картина затухающих колебаний.

Для получения фазовой кривой U=f(J) достаточно отключить генератор развертки осциллографа. В этом случае на вход Y будет подаваться напряжение U, а на вход X - напряжение JR, пропорциональное силе тока J.

Определяя по фазовой кривой начальное напряжение U_0 и напряжение к концу первого полного колебания U_1 (см. рис. 4), найдем добротность контура Q.

Действительно, начальная энергия, записанная в контуре, и энергия к концу первого полного колебания соответственно равны:

$$\mathbf{W}_{0} = \frac{1}{2}\mathbf{C}\mathbf{U}_{0}^{2}, \qquad \mathbf{W}_{0} = \frac{1}{2}\mathbf{C}\mathbf{U}_{1}^{2},$$

Отсюда потери энергии за один период $\Delta \mathbf{W} = \mathbf{W}_0 - \mathbf{W}_1 = \frac{\mathbf{C}}{2} \left(\mathbf{U}_0^2 - \mathbf{U}_1^2 \right)$. Поэтому добротность контура Q согласно (9) можно представить в виде

$$Q = 2\pi \frac{U_0^2}{U_0^2 - U_1^2} = \frac{2\pi}{1 - \left(\frac{U_1}{U_0}\right)^2}$$
 (24)

Если чувствительность вертикально отклоняющихся пластин равна k_Y , то можно записать, что $U_0=y_0/k_Y$; $U_1=y_1/k_Y$, где y_0 - максимальное отклонение луча по вертикали; y_1 - отклонение луча по вертикали к концу первого полного колебания. Тогда добротность контура

$$Q = \frac{2\pi}{1 - \left(\frac{y_1}{y_0}\right)^2} \tag{25}$$

ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА

Задание 1. Определение периода затухающих колебаний Т.

- 1. Собрать электрическую схему согласно рис. 5.
- 2. Включить осциллограф и реле.
- 3. Меняя сопротивление R_M , с помощью магазина сопротивление для выбранного значения емкости C получить осциллограмму, соответствующую затухающей кривой (см. рис. 2). Ручками управления осциллографа добиться, чтобы вся осциллограмма располагалась в центральной части экрана. Доя получения устойчивой картины необходимо воспользоваться ручкой «Уровень»; если этого сделать не удается, ручкой «Стаб».
- 4. Поставить большую ручку сдвоенного переключателя «Время/см» и переключатель "X, xl, x0,2» в такие положения, чтобы на горизонтальной оси укладывались 2...3 полных колебания.
- 5. Измерить по горизонтальной шкале экрана осциллографа длину интервала l одного полного колебания.
- 6. Определить период колебаний T по формуле: $\mathbf{T}=I\mathbf{N}\boldsymbol{\tau}$, где N значение множителя развертки, равное 1 или 0,2 в зависимости от положения переключателя «X, xl, x0,2»; $\boldsymbol{\tau}$ коэффициент развертки. Значение $\boldsymbol{\tau}$ соответствует цифровой отметке переключателя «Время/см» при условии, что малая ручка «Длительность» находится в крайнем правом положении (в этом положении ручка «Длительность» имеет механическую фиксацию).
- 7. Зарисовать осциллограмму без строгого соблюдения масштаба (табл. 1).
- 8. Полученное значение периода $T_{ЭКСП}$ сравнить с теоретическим, рассчитанным по формуле (11), при этом следует учитывать, что $R=R_M+R_L$ (R_L сопротивление катушки L).
- 9. Выполнить измерения для трех четырех различных комбинаций сопротивления R_M и емкости C (при R = const два различных значения C и, наоборот). Результаты занести в табл. 1.

-				Таблица 1
Характеристика	1	2	3	4
Осциллограмма				
Ёмкость С, Ф				
Сопротивление				
$R=R_M+R_L$, OM				
Длина интервала l , см				
Коэффициент развертки τ, с/см				
Период колебаний Т _{ЭКСП} , с				
Период колебаний T_{TEOP} , с				
Относительная ошибка				
$\frac{\mathbf{T}_{\text{TEOP}} - \mathbf{T}_{\text{ЭКСП}}}{\mathbf{T}_{\text{TEOP}}} 100,\%$				

Задание 2. Определение критического сопротивления R_{KP}.

1. Постепенно увеличивая сопротивление R_M , зафиксировать R_{KP} , при котором затухающие колебания переходят в апериодический разряд конденсатора (см. рис. 3).

- 3. Провести измерения для трех различных емкостей C. Данные занести в табл. 2. Значения R_L и L указаны на панели установки.

				Таблица 2
Характеристика	1	2	3	4
Осциллограмма				
Емкость С, Ф				
$R_{ ext{KP}}^{ ext{SKCII}}$, Om				
$R_{\mathrm{KP}}^{\mathrm{TEOP}}$, o_{M}				
Относительная ошибка				
$\frac{R_{KP}^{TEOP} - R_{KP}^{SKC\Pi}}{R_{KP}^{TEOP}}$ 100,%				

Задание3. Определение добротности контура Q с помощью фазовых кривых.

1. Получить фазовую кривую, отключив генератор развертки осциллографа (переключатель «X, x1, x0,2» поставить в положение «1»). Сопротивление R_M и емкость C необходимо выбрать такими, чтобы фазовая кривая имела не менее четырех полных колебаний (случай слабого зату-

хания: $\mathbf{R} < 2\sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$). Это достигается для диапазонов сопротивления 10...200 Ом и емкости 0,25.....0,5 мкФ.

2. С помощью вертикальной шкалы экрана осциллографа измерить значения y_0 и y_1 и определить добротность контура $Q_{\rm ЭКСП}$ по формуле (25). Полученные значения $Q_{\rm ЭКСП}$ сравнить с тео-

ретическим $\mathbf{Q}_{\text{TEOP}} \cong \frac{1}{\mathbf{R}} \sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$, учитывая, что $\mathbf{R} = \mathbf{R}_{\mathrm{M}} + \mathbf{R}_{\mathrm{L}}$.

3. Провести измерения для трех-четырех комбинаций $R_{\rm M}$ и C. Результаты занести в табл. 3.

	•	J		Таблица 3
Характеристика	1	2	3	4
Фазовая кривая				
Емкость С, Ф				
Сопротивление $R=R_M + R_L$, Ом				
y_0 , mm				
y ₁ , mm				
Qэксп				
$Q_{ ext{TEOP}}$				
Относительная ошибка				
$\frac{\mathbf{Q}_{\text{TEOP}} - \mathbf{Q}_{\text{ЭКСП}}}{\mathbf{Q}_{\text{TEOP}}} 100,\%$				

4. Экспериментально исследовать влияние параметров R и C на характер фазовой кривой и объяснить полученные результаты.

Задание 4. Определение логарифмического декремента затухания у.

- 1. Получить фазовую кривую при минимальном значении емкости С.
- 2. С помощью вертикальной шкалы экрана осциллографа измерить значения начального отклонения луча по вертикали y_0 и последующие значения y_1 , y_2 , y_3 ,... соответственно к концу первого, второго, третьего и т.д. полных колебаний.
- 3. Рассчитать логарифмический декремент затухания по формуле

$$\gamma = ln \frac{\mathbf{y_i}}{\mathbf{y_{i+1}}} \tag{26}$$

Данные занести в табл. 4.

Таблица 4

y _i ,. mm	$\frac{\mathbf{y_{i}}}{\mathbf{y_{i+1}}}$	$\gamma_{i} = ln \frac{y_{i}}{y_{i+1}}$	$\gamma_{i} - \langle \gamma \rangle$	$(\gamma_i - \langle \gamma \rangle)^2$

4. Рассчитать погрешность среднего значения по формуле

$$\Delta \langle \gamma \rangle = t_{P,f} \sqrt{\frac{\sum (\gamma_i - \langle \gamma \rangle)^2}{n(n-1)}}$$

где множитель $\mathbf{t}_{\mathbf{P},\mathbf{f}}$ для $\mathbf{P}=0.95$ и $\mathbf{f}=\mathbf{n}-1$ (\mathbf{n} - число измерений) приведены в табл. 5.

Таблица 5

Величина	P = 0.95								
f = n - 1	1	2	3	4	5	6	7	8	9
$t_{P,f}$	12,7	4,3	3,2	2,8	2,6	2,4	2,4	2,3	2,3

5. Окончательный ответ представить в вида $\langle \mathbf{\gamma} \rangle \pm \Delta \langle \mathbf{\gamma} \rangle$.

Контрольные вопросы

- 1. Как получаются свободные затухающие колебания в контуре LRC?
- 2. Как меняется амплитуда затухающих колебаний за один, п периодов?
- 3. Что понимают под критическим режимом работы контура?
- 4. В чем физический смысл добротности контура?
- 5. Что называют фазовой траекторией?
- 6. Можно ли с помощью фазовой траектории определить соотношение между энергиями электрического и магнитного полей в любой момент времени?
- 7. Какими факторами можно объяснить расхождение между экспериментальными и теоретическими значениями исследуемых величин?

Литература

- 1. Савельев И.В. Курс общей физики: Учеб. пособие. В 3 т. Т. 2. Электричество и магнетизм. Волны. Оптика. 3-е изд., испр. М.: Наука, 1988. 496 с.
- 2. Калашников С.Г. Электричество: Учеб. пособие для вузов. 5-е изд., испр. и доп. М.: Наука, 985. 576 с.
- 3. Стрелков С.П. Введение в теорию колебаний: Учебник для вузов. 2-е изд., перераб. М.: Наука, 1964. 437 с.