

Test Report

FCC ID: 2ADTV-A801-38

Date of issue: Mar. 09, 2020

Report number: MTi20010903-10E1

Sample description: Bluetooth Headset

Model(s): A801-38

Applicant: Shenzhen Cannice Technology Co., Ltd.

Address: 20/F, Tower A, Building 7, Baoneng Science and Technology Park,

Qingxiang Road #1, Longhua New District, Shenzhen, China

Date of test: Feb. 26, 2020 to Mar. 09, 2020

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Table of Contents

Report No.: MTi20010903-10E1

1	GENER	AL INFORMATION	5
	1.1	DESCRIPTION OF EUT	5
		PERATION CHANNEL LIST	
	1.3 T	EST CHANNEL LIST	E
		NCILLARY EQUIPMENT LIST	
		ESCRIPTION OF SUPPORT UNITS	
2	SHIMA	IARY OF TEST RESULTS	-
3	TEST F	ACILITIES AND ACCREDITATIONS	8
	3.1 T	EST LABORATORY	8
	3.2 E	NVIRONMENTAL CONDITIONS	8
	3.3 N	Measurement uncertainty	8
	3.4 T	EST SOFTWARE	8
4	FOLUE	MENT LIST	c
5	TEST R	ESULT	10
	5.1 A	NTENNA REQUIREMENT	10
	5.1.1		
	5.1.2		
	5.2 P	EAK OUTPUT POWER	11
	5.2.1	Limit	11
	5.2.2	Test setup	11
	5.2.3	Test procedure	11
	5.2.4	Test results	11
	5.3	ONDUCTED EMISSION	18
	5.3.1	Limits	18
	5.3.2	Test setup	18
	5.3.3	Test procedure	19
	5.3.4	Test results	19
	5.4 R	ADIATED SPURIOUS EMISSION	
	5.4.1	Limits	
	5.4.2	Test setup	
	5.4.3	Test procedure	
	5.4.4	Test results	
	5.4.5	Band edge – radiated	
		Spurious Emission in Restricted Band 3260MHz-18000MHz	
		ODB OCCUPIED CHANNEL BANDWIDTH	
	5.5.1	Limit	
	5.5.2	Test setup	
	5.5.3	Test procedure	
	5.5.4	Test results	
		ARRIER FREQUENCY SEPARATION	
	5.6.1	Limit	
	5.6.2	Test setup	
	5.6.3	Test procedure	
	5.6.4	Test results	
		IOPPING CHANNEL	
	5.7.1	Limit	
	5.7.2 5.7.2	Test procedure	
	5.7.3	Test procedure	
	5.7.4	Test results	
		WELL TIME	_
	5.8.1	Limit	45

- Page 3 of 63 -

Report No.: MTi20010903-10E1

Test setup45 5.8.2 5.8.3 5.8.4 5.9 5.9.1 5.9.2 5.9.3 5.9.4 5.10 5.10.1 5.10.2 5.10.3 5.10.4 5.10.5

Test Result Certification

Report No.: MTi20010903-10E1

Applicant's name: Shenzhen Cannice Technology Co., Ltd. 20/F, Tower A, Building 7, Baoneng Science and Technology Park, Address: Qingxiang Road #1, Longhua New District, Shenzhen, China Shenzhen Cannice Technology Co., Ltd. Manufacture's name: 20/F, Tower A, Building 7, Baoneng Science and Technology Park, Qingxiang Road #1, Longhua New District, Shenzhen, China Address: Product name: Bluetooth Headset N/A Trademark: A801-38 Model name: Standards: FCC Part 15.247 Test procedure: ANSI C63.10-2013 This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. Tested by: Danny Xu Mar. 09, 2020 Reviewed by: Leo Su Mar. 09, 2020 Approved by: Tom Xue Mar. 09, 2020

1 General Information

1.1 Description of EUT

Product name:	Bluetooth Headset	
Model name:	A801-38	
Serial model:	N/A	
Difference in series models:	N/A	
Operation frequency:	2402-2480MHz	
Modulation type:	GFSK, π/4-DQPSK,8DPSK	
Bit Rate of transmitter:	1 Mbps, 2Mbps, 3Mbps	
Antenna type:	FPC Antenna	
Antenna gain:	0.21dBi	
Max. output power:	6.5dBm	
Hardware version:	V0G	
Software version:	V1E	
Power source:	DC 3.7V from Battery	
Adapter information:	N/A	
Battery:	The Charging box: DC 3.7V 500mAh The Bluetooth earphone: DC 3.7V 60mAh	

1.2 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468

Tel:(86-755)88850135

Fax: (86-755) 88850136

Web: http://www.mtitest.com

E-mail: mti@51mti.com

Report No.: MTi20010903-10E1

Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

1.3 Test channel list

Channel	Channel	Frequency (MHz)
Low	00	2402
Middle	39	2441
High	78	2480

1.4 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
Adapter	EQ-24BCN	/	Huizhou Dongyang Yienbi Electronics Co., Ltd.	1

1.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
1	1	/	1	1	/

Note:

(1)The support equipment was authorized by Declaration of Confirmation.

(2)For detachable type I/O cable should be specified the length in cm in Length column.

2 Summary of Test Results

Test procedures according to the technical standards:

No.	Standard Section	Test Item	Result	Remark
1	15.203	Antenna requirement	Pass	
2	15.247(b)(1)	Peak output power	Pass	
3	15.207	Conducted emission	N/A	
4	15.247(d)	Band edge	Pass	
5	15.205/15.209	Spurious emission	Pass	
6	15.247(a)(1)	20dB occupied bandwidth	Pass	
7	15.247(a)(1)	Carrier Frequencies Separation	Pass	
8	15.247(a)(1)	Hopping channel number	Pass	
9	15.247(a)(1)	Dwell time	Pass	
10	15.247(d)	Spurious RF Conducted Emissions	Pass	

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd.
Location	No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China
FCC Registration No.:	448573

3.2 Environmental conditions

Temperature:	15°C~35°C
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

The reported uncertainty of measurement $y \pm U \cdot$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2 \cdot$ providing a level of confidence of approximately 95 %

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3 Spurious emissions, conducte		±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

3.4 Test software

Software Name	Manufacturer	Model	Version
INAITIE			
Bluetooth and WiFi	Shenzhen JS	JS1120-3	2.5.77.0418
Test System	tonscend co., Itd	3311203	2.0.77.0410

4 Equipment List

Equipment No.	Equipment Name	Manufactur er	Model	Serial No.	Calibration date	Due date
MTI-E004	EMI Test Receiver	Rohde&schw arz	ESPI7	100314	2019/10/09	2020/10/08
MTI-E006	TRILOG Broadband Antenna	Schwarabeck	VULB 9163	9163-872	2019/10/15	2020/10/14
MTI-E007	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	9120D-11 45	2019/10/13	2020/10/12
MTI-E014	Amplifier	Hewlett-Pack ard	8447D	3113A061 50	2019/10/09	2020/10/08
MTI-E036	Single path vehicle AMN(LISN)	Schwarzbeck	NNBM 8124	01175	2019/10/09	2020/10/08
MTI-E038	Low noise active vertical monopole antenna	Schwarzbeck	VAMP 9243	#565	2019/10/16	2020/10/15
MTI-E039	Biconical antenna	Schwarzbeck	BBA 9106	#164	2019/10/15	2020/10/14
MTI-E041	MXG Vector Signal Generator	Agilent	N5182A	MY49060 455	2019/04/16	2020/04/15
MTI-E042	ESG Series Analog signal generator	Agilent	E4421B	GB40051 240	2019/05/21	2020/05/20
MTI-E044	Thermometer clock humidity monitor	-	HTC-1	1	2019/04/17	2020/04/16
MTI-E065	Amplifier	EMtrace	RP06A	00117	2019/04/29	2020/04/28
MTI-E071	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2019/10/25	2020/10/24
MTI-E076	EMI Test Receiver	Rohde&schw arz	ESIB26	100273	2019/04/16	2020/04/15
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2019/04/16	2020/04/15
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2019/04/16	2020/04/15
MTI-E093	Artificial mains network	3ctest	LISN J50	ES391180 5	2019/04/16	2020/04/15
MTI-E096	Power amplifier	Space-Dtroni ccs	EWLNA0118 G-P40	1852001	2019/04/29	2020/04/28
MTI-E097	Current Probe	SOLAR ELECTRONI CS CO.	9207-1	220095-1	2019/04/17	2020/04/16
MTI-E098	Loop Sensor	SOLAR ELECTRONI CS CO.	7334-1	220095-2	2019/04/21	2020/04/20
MTI-E081	EPM Series Power Meter	Agilent	E4419B	MY50000 438	2019/04/16	2021/04/15

Note: the calibration interval of the above test instruments is 12 or 24 months and the calibrations are traceable to international system unit (SI).

5 Test Result

5.1 Antenna requirement

5.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2 EUT antenna

The EUT antenna is FPC antenna (0.21dBi). It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

5.2 Peak output power

5.2.1 Limit

	FCC Part15 Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)	
15.247(b)(1)	Peak output power	Power<1W(30dBm)	2400-2483.5	

5.2.2 Test setup

ГПТ	Spectrum
	Analyzer

5.2.3 Test procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz)
 RBW=3MHz, VBW=8MHz, Detector=Peak (If 20dB BW > 1 MHz)
- (3) The EUT was set to continuously transmitting in the max power during the test.

5.2.4 Test results

Page 12 of 63 - Report No.: MTi20010903-10E1

Test data

EUT:	Bluetooth Headset	Model Name:	A801-38
Pressure:	1012 hPa	Test Voltage:	DC 3.7V by battery

GFSK

Test Channel	Frequency (MHz)	Maximum Peak Output Power(dBm)	Limit (dBm)
CH00	2402	4.180	30
CH39	2441	4.893	30
CH78	2480	4.881	30

π/4-DQPSK

Test Channel	Frequency (MHz)	Maximum Peak Output Power(dBm)	Limit (dBm)
CH00	2402	5.44	20.97
CH39	2441	6.05	20.97
CH78	2480	6.054	20.97

8DPSK

Test CI	nannel	Frequency (MHz)	Maximum Peak Output Power(dBm)	Limit (dBm)
СН	00	2402	5.861	20.97
СН	39	2441	6.49	20.97
CH	78	2480	6.50	20.97

Test plots

5.3 Conducted emission

5.3.1 Limits

	Class B (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note

- (1)The tighter limit applies at the band edges.(2)The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.3.2 Test setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.3.3 Test procedure

a. EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b. The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- c. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- d. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- e. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f. LISN at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item –EUT Test Photos.

5.3.4 Test results

Because the product does not TX when it is charged, so this item not applicate.

Tel:(86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

5.4 Radiated spurious emission

5.4.1 Limits

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for	
band)	Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.4.2 Test setup

Radiated emission test-up frequency below 30MHz

Radiated emission test-up frequency 30MHz~1GHz

Radiated emission test-up frequency above 1GHz

Tel:(86-755)88850135

Fax: (86-755) 88850136

Web: http://www.mtitest.com

E-mail: mti@51mti.com

5.4.3 Test procedure

a. EUT operating conditions. The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: MTi20010903-10E1

- b. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- c. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the floor on a support that is RF transparent for the frequencies of interest. Final measurements for the EUT require a measurement antenna height scan of 1 m to 4 m.
- f. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- h. For the actual test configuration, please refer to the related Item –EUT Test photos.

Note: Both horizontal and vertical antenna polarities were tested. The worst case emissions were reported.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Abaua 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

5.4.4 Test results

Below 30MHz

EUT:	Bluetooth Headset	Model Name:	A801-38
Pressure:	1010 hPa	LIEST MUITANE.	DC 5V from adapter AC 120V/60Hz
Test Mode:	TX	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Pass
				Pass

Note:

For 9kHz-30MHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Between 30MHz - 1GHz

Note1: Emission Level = Meter Reading + Factor, Margin= Emission Level- Limit, Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Note2: The three modulated high, medium and low channels have been tested. The report only shows the worst mode. The worst mode is π /4-DQPSK CH39

EUT: Bluetooth Headset Model Name: A801-38
Pressure: 1010 hPa Phase: V

Report No.: MTi20010903-10E1

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector
1	*	51.1209	34.69	-12.40	22.29	40.00	-17.71	QP
2		88.3421	28.58	-15.92	12.66	43.50	-30.84	QP
3		148.4410	38.44	-16.17	22.27	43.50	-21.23	QP
4		280.0237	31.70	-10.85	20.85	46.00	-25.15	QP
5		431.0316	31.23	-7.93	23.30	46.00	-22.70	QP
6		824.5968	27.81	-2.84	24.97	46.00	-21.03	QP

1G-25GHz

Note: (1) All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).

(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(3) All other emissions more than 20dB below the limit.

All the modulation modes have been tested, and the worst result was report as below:

All the mou	diation ii	loues na	VC DCCII (•	l		
Frequency	Read	Cable	Antenna	Preamp	Emission	Limits	Margin	Remark	Comment	
	Level	loss	Factor	Factor	Level					
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
		L	ow Chan	nel (2402 N	/Hz)(8DPS	SK)Above	e 1G			
4804.629	62.74	4.36	32.92	45.53	54.49	74.00	-19.51	Pk	Vertical	
4804.629	43.55	4.36	32.92	45.53	35.30	54.00	-18.70	AV	Vertical	
7206.567	60.38	5.02	37.63	45.56	57.47	74.00	-16.53	Pk	Vertical	
7206.567	41.87	5.02	37.63	45.56	38.96	54.00	-15.04	AV	Vertical	
4804.396	61.40	4.36	32.92	45.53	53.15	74.00	-20.85	Pk	Horizontal	
4804.396	42.79	4.36	32.92	45.53	34.54	54.00	-19.46	AV	Horizontal	
7206.424	60.17	5.02	37.63	45.56	57.26	74.00	-16.74	Pk	Horizontal	
7206.424	49.64	5.02	37.63	45.56	46.73	54.00	-7.27	AV	Horizontal	
	Mid Channel (2441 MHz)(8DPSK)Above 1G									
4881.539	61.92	4.43	33.04	45.81	53.58	74.00	-20.42	Pk	Vertical	
4881.539	42.12	4.43	33.04	45.81	33.78	54.00	-20.22	AV	Vertical	
7322.142	59.49	5.02	37.71	45.62	56.60	74.00	-17.40	Pk	Vertical	
7322.142	42.68	5.02	37.71	45.62	39.79	54.00	-14.21	AV	Vertical	
4881.285	59.30	4.43	33.04	45.81	50.96	74.00	-23.04	Pk	Horizontal	
4881.285	46.99	4.43	33.04	45.81	38.65	54.00	-15.35	AV	Horizontal	
7322.199	58.19	5.02	37.71	45.62	55.30	74.00	-18.70	Pk	Horizontal	
7322.199	47.87	5.02	37.71	45.62	44.98	54.00	-9.02	AV	Horizontal	
		Н	ligh Chan	nel (2480 N	/IHz)(8DPS	SK) Abov	e 1G			
4959.223	60.54	4.50	33.26	46.07	52.23	74.00	-21.77	Pk	Vertical	
4959.223	40.68	4.50	33.26	46.07	32.37	54.00	-21.63	AV	Vertical	
7439.201	62.00	5.02	37.78	45.77	59.03	74.00	-14.97	Pk	Vertical	
7439.201	45.68	5.02	37.78	45.77	42.71	54.00	-11.29	AV	Vertical	
4959.165	62.10	4.50	33.26	46.07	53.79	74.00	-20.21	Pk	Horizontal	
4959.165	48.44	4.50	33.26	46.07	40.13	54.00	-13.87	AV	Horizontal	
7439.264	60.02	5.02	37.78	45.77	57.05	74.00	-16.95	Pk	Horizontal	
7439.264	47.09	5.02	37.78	45.77	44.12	54.00	-9.88	AV	Horizontal	
		•			•	•		•		

5.4.5 Band edge - radiated

Frequency Rea		ole Antenr	a Preamp	Emississ				
Rea	lina Lo			Emission	Limits	Margin	Detector	
(1.41.1.)	ing Lo	s Facto	r Factor	Level	Liiiito	iviargiii	Detector	Comment
(MHz) (dB	ıV) (dE	B) dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
		1	Mbps(8DPS	K)- Non-ho	opping			
2310.00 60	24 2.4	0 27.70	40.40	49.94	74	-24.06	Pk	Horizontal
2310.00 42	05 2.4	0 27.70	40.40	31.75	54	-22.25	AV	Horizontal
2310.00 63.	59 2.4	0 27.70	40.40	53.29	74	-20.71	Pk	Vertical
2310.00 42	34 2.4	0 27.70	40.40	32.04	54	-21.96	AV	Vertical
2390.00 59	79 2.4	4 28.30	40.10	50.43	74	-23.57	Pk	Vertical
2390.00 41.	12 2.4	4 28.30	40.10	31.76	54	-22.24	AV	Vertical
2390.00 59	75 2.4	4 28.30	40.10	50.39	74	-23.61	Pk	Horizontal
2390.00 42	39 2.4	4 28.30	40.10	33.03	54	-20.97	AV	Horizontal
2400.00 63	37 2.4	6 28.30	40.10	54.53	74	-19.47	Pk	Vertical
2400.00 44	20 2.4	6 28.30	40.10	34.86	54	-19.14	AV	Vertical
2400.00 64	14 2.4	6 28.30	40.10	54.80	74	-19.20	Pk	Horizontal
2400.00 44	18 2.4	6 28.30	40.10	34.84	54	-19.16	AV	Horizontal
2483.50 61.	94 2.4	8 28.70	39.80	53.32	74	-20.68	Pk	Vertical
2483.50 40	69 2.4	8 28.70	39.80	32.07	54	-21.93	AV	Vertical
2483.50 61.	09 2.4	8 28.70	39.80	52.47	74	-21.53	Pk	Horizontal
2483.50 42	31 2.4	8 28.70	39.80	33.69	54	-20.31	AV	Horizontal
2500.00 60.	46 2.4	8 28.70	39.80	51.84	74	-22.16	Pk	Vertical
2500.00 42.	68 2.4	8 28.70	39.80	34.06	54	-19.94	AV	Vertical
2500.00 59	57 2.4	8 28.70	39.80	50.95	74	-23.05	Pk	Horizontal
2500.00 42	73 2.4	8 28.70	39.80	34.11	54	-19.89	AV	Horizontal
·			1Mbps (8D	PSK)- hopp	ing			
2400.00 59	73 2.4	6 28.30	40.10	50.39	74	-23.61	Pk	Vertical
2400.00 42	32 2.4	6 28.30	40.10	33.48	54	-20.52	AV	Vertical
2400.00 60	42 2.4	6 28.30	40.10	51.08	74	-22.92	Pk	Horizontal
2400.00 43	71 2.4	6 28.30	40.10	34.37	54	-19.63	AV	Horizontal
2483.50 62.	63 2.4	8 28.70	39.80	54.01	74	-19.99	Pk	Vertical
2483.50 43	15 2.4	8 28.70	39.80	34.53	54	-19.47	AV	Vertical
2483.50 59	61 2.4	8 28.70	39.80	50.99	74	-23.01	Pk	Horizontal
2483.50 42	66 2.4	8 28.70	39.80	34.04	54	-19.96	AV	Horizontal

5.4.6 Spurious Emission in Restricted Band 3260MHz-18000MHz

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Reading	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	Comment
	Level	Loss	Factor	Factor	Level				
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	59.69	3.27	30.02	38.05	54.93	74	-19.07	Pk	Vertical
3260	41.14	3.27	30.02	38.05	36.38	54	-17.62	AV	Vertical
3260	60.41	3.27	30.02	38.05	55.65	74	-18.35	Pk	Horizontal
3260	39.64	3.27	30.02	38.05	34.88	54	-19.12	AV	Horizontal
3332	61.07	3.31	30.00	37.91	56.47	74	-17.53	Pk	Vertical
3332	41.45	3.31	30.00	37.91	36.85	54	-17.15	AV	Vertical
3332	61.22	3.31	30.00	37.91	56.62	74	-17.38	Pk	Horizontal
3332	41.82	3.31	30.00	37.91	37.22	54	-16.78	AV	Horizontal
17797	49.57	8.63	44.23	39.60	62.83	74	-11.17	Pk	Vertical
17797	30.87	8.63	44.23	39.60	44.13	54	-9.87	AV	Vertical
17788	49.72	8.63	44.23	39.60	62.98	74	-11.02	Pk	Horizontal
17788	30.71	8.63	44.23	39.60	43.97	54	-10.03	AV	Horizontal

5.5 20dB occupied channel bandwidth

5.5.1 Limit

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)					
15.247a(1)	20dB bandwidth	N/A	2400-2483.5					

5.5.2 Test setup

ELIT	Spectrum
EUI	Analyzer

5.5.3 Test procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 Bandwidth: RBW=30 kHz, VBW=100 kHz, detector= Peak

5.5.4 Test results

- Page 30 of 63 -

Report No.: MTi20010903-10E1

Ţ	est data			
	EUT:	Bluetooth Headset	Model Name:	A801-38
	Pressure:	1012 hPa	Test Voltage:	DC 3.7V by battery

Mode	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (kHz)	Result
	2402	0.9386	N/A	Pass
GFSK	2441	0.9375	N/A	Pass
	2480	0.9379	N/A	Pass
	2402	1.214	N/A	Pass
π /4-DQPSK	2441	1.228	N/A	Pass
	2480	1.233	N/A	Pass
	2402	1.285	N/A	Pass
8DPSK	2441	1.263	N/A	Pass
	2480	1.259	N/A	Pass

Test plots GFSK mode

π/4-DQPSK

8DPSK mode

5.6 Carrier frequency separation

5.6.1 Limit

	FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)					
15.247(a)(1)	Channel Separation	>25kHz or >two-thirds of the 20 dB bandwidth (Which is greater)	2400-2483.5					

5.6.2 Test setup

EUT	Spectrum
	Analyzer

5.6.3 Test procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=30 kHz, VBW=100 kHz, detector= Peak, Sweep Time =auto.
- (3) The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Test.

5.6.4 Test results

- Page 37 of 63 - Report No.: MTi20010903-10E1

Test data

EUT:	Bluetooth Headset	Model Name:	A801-38	
Pressure:	1012 hPa	Test Voltage:	DC 3.7V by battery	
Test Mode:	GFSK, π/4-DQPSK, 8DPSK /CH00, CH39, CH78			

Mode	Channel	Frequency (MHz)	Test Result	Limit (kHz)		Result
	Low	2402	1000	625.733	2/3 of 20dB BW	Pass
GFSK	Middle	2441	1000	625.000	2/3 of 20dB BW	Pass
	High	2480	998	625.267	2/3 of 20dB BW	Pass
	Low	2402	1000	809.333	2/3 of 20dB BW	Pass
π/4-DQPSK	Middle	2441	1000	818.667	2/3 of 20dB BW	Pass
	High	2480	998	822.000	2/3 of 20dB BW	Pass
	Low	2402	1000	856.667	2/3 of 20dB BW	Pass
8DPSK	Middle	2441	1002	842.000	2/3 of 20dB BW	Pass
	High	2480	1002	839.333	2/3 of 20dB BW	Pass

Test plots

5.7 Hopping Channel

5.7.1 Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

5.7.2 Test setup

ГПТ	Spectrum
	Analyzer

5.7.3 Test procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

5.7.4 Test results

 Mode
 Quantity of Hopping Channel
 Limit
 Results

 GFSK, π/4-DQPSK, 8DPSK
 79
 >15
 Pass

Report No.: MTi20010903-10E1

Test plots

π/4-DQPSK mode

5.8 Dwell time

5.8.1 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
15.247(a)(1)	Dwell time	0.4 sec	2400-2483.5	

5.8.2 Test setup

5.8.3 Test procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.
- (9) The EUT was set to the Hopping Mode for Dwell Time Test.

5.8.4 Test results

Test data

EUT:	Bluetooth Headset	Model Name:	A801-38	
Pressure:	1012 hPa	Test Voltage:	DC 3.7V by battery	
Test Mode:	GFSK, π/4-DQPSK, 8DPSK /CH39			

Report No.: MTi20010903-10E1

Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (ms)	Limit(s)	Conclusion
	DH1	2441	0.3914	125.25	<0.4	Pass
GFSK	DH3	2441	1.656	264.96	<0.4	Pass
	DH5	2441	2.870	306.13	<0.4	Pass
	2DH1	2441	0.4066	130.11	<0.4	Pass
π/4 DQPSK	2DH3	2441	1.662	265.92	<0.4	Pass
	2DH5	2441	2.908	310.19	<0.4	Pass
	3DH1	2441	0.4079	130.53	<0.4	Pass
8DPSK	3DH3	2441	1.659	265.44	<0.4	Pass
	3DH5	2441	2.906	309.97	<0.4	Pass

Note1: A period time = 0.4 (s) * 79 = 31.6(s)

Note2:

DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time

DH3 time slot = Pulse Duration * (1600/(4*79)) * A period time
DH5 time slot = Pulse Duration * (1600/(6*79)) * A period time
Note3: For GFSK, π/4-DQPSK and 8DPSK: The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Tel:(86-755)88850135 Fax: (86-755) 88850136 E-mail: mti@51mti.com Web: http://www.mtitest.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

Test plots

8DPSK mode Modulation mode Frequency Trig Delay-2.000 ms #Avg Type: RMS
Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz **Auto Tune** Ref 20.00 dBm Center Freq 2.441000000 GHz 2Δ1 Stop Freq 3-DH1 2.441000000 GHz Freq Offset 0 Hz Span 0 Hz Sweep 10.13 ms (8000 pts) Center 2.441000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Frequency SENSE:INT ALIGNAL
Trig Delay-2.000 ms #Avg Type: RMS
Trig: Video
W #Atten: 30 dB Center Freq 2.441000000 GHz
PNO: Fast
IFGain:Low **Auto Tune** ΔMkr2 1.659 ms 0.37 dB Ref 20.00 dBm Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz 3-DH3 Stop Freq 2.441000000 GHz **CF Step** 1.000000 MHz Freq Offset

#VBW 3.0 MHz

Sweep 10.13 ms (8000

Center 2.441000000 GHz Res BW 1.0 MHz

#VBW 3.0 MHz

5.9 Conducted band edge

5.9.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.9.2 Test setup

ГПТ	Spectrum
EUI	Analyzer

5.9.3 Test procedure

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

5.9.4 Test results

Test data

EUT:	Bluetooth Headset	Model Name:	A801-38
Pressure:	1012 hPa	Test Voltage:	DC 3.7V by battery

Test plots

GFSK: Band Edge, Right Side

Start 2.47000 GHz #Res BW 100 kHz

Report No.: MTi20010903-10E1

2.470000000 GHz

Stop 2.55000 GHz Sweep 7.667 ms (1001 pts)

Stop Freq 2.550000000 GHz

CF Step 8.000000 MHz Man

Freq Offset

#VBW 300 kHz

Hopping Mode

STATUS

2.550000000 GHz

CF Step 8.000000 MHz Man

Freq Offset

Stop 2.55000 GHz Sweep 7.667 ms (1001 pts)

#VBW 300 kHz

5.10 Spurious RF Conducted Emissions

5.10.1 Limit

Below -20dB of the highest emission level in operating band.

5.10.2 Measuring instruments

The Measuring equipment is listed in the section 4 of this test report.

5.10.3 Test setup

5.10.4 Test procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300kHz to measure the peak field strength, and measure frequency range from 9kHz to 26.5GHz.

5.10.5 Test results

Remark: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.

The worst mode is 8DPSK mode, and the report only show the worst mode data.

8SPSK on Channel 78

Photographs of the Test Setup

Radiated emission

Report No.: MTi20010903-10E1

- Page 63 of 63 - Report No.: MTi20010903-10E1

See the APPENDIX 1: EUT PHOTO in the report No.: MTi20010903-10E1-1.

----END OF REPORT----