1. Ein Kreisprozeß (10 Punkte)

Eine verschlossene Luftpumpe mit einem zylindrischen Innenvolumen der Länge L = 30 cm und Durchmesser d = 5 cm ist bei dem Druck $p_1 = 1.5$ bar und der Temperatur $T_{min} = 200 K$ (Umgebungstemperatur) zu einem Drittel mit Helium (einatomig, ideales Gas) gefüllt.

- a) Der Kolben wird mechanisch fixiert und die Temperatur wird durch Ankopplung an ein Wärmereservoir auf $T_2 = 3T_1$ erhöht. Berechnen Sie den Druck p_2 in der Luftpumpe nach Beendigung dieses Vorgangs.
- b) Der Kolben wird wieder losgelassen, so dass sich der Druck dem Umgebungsdruck p_3 = 1013 mbar anpasst. Dieser Prozessschritt ist so schnell, dass kein Wärmeaustausch mit der Umgebung stattfinden kann. Berechnen Sie die Temperatur T_3 und das Volumen V_3 am Ende dieses Schrittes.
- c) Durch Kontakt mit einem Kältebad wird das Gas bei frei beweglichem Kolben auf die Temperatur $T_4 = T_{min}$ abgekühlt. Wie groß ist das Volumen des Gases am Ende dieses Schrittes?
- d) Der Kolben wird nun soweit hineingedrückt, bis das Volumen dem Anfangsvolumen V_I entspricht. Dieser Prozeß findet so langsam statt, dass die Temperatur des Gases dabei während dieses Vorgangs konstant bleibt. Welche Wärmemenge wird dabei an das Kältereservoir abgegeben?
- e) Stellen Sie den Prozeß in einem pV-Diagramm dar und klassifizieren Sie die auftretenden thermodynamischen Zustandsänderungen (isotherm adiabatisch isochor isobar).
- f) Berechnen Sie die vom System geleistete mechanische Arbeit sowie die verbrauchte Wärmemenge.

2. Schnelle Zustandsänderung (6 Punkte)

In einem starren Gasbehälter befindet sich ein Gas unter einem Anfangsdruck von $p_1 = 1.8 \times 10^5$ Pa. Dann wird **sehr schnell** eine bestimmte Gasmenge abgelassen, so dass der Druck auf $p_2 = 1.2 \times 10^5$ Pa sinkt. Danach bleibt der Behälter geschlossen und erwärmt sich wieder auf seine ursprüngliche Temperatur.

Berechnen Sie den Gasdruck am Ende des Prozesses für ein ideales Gas.

3. Wirbelstrombremse (12 Punkte)

Zwischen den quadratischen Polschuhen eines Magneten (Kantenlänge a) befindet sich eine quadratische Leiterschleife der Kantenlänge b (b = a). Die Leiterschleife befindet sich zu Beginn in der gezeigten Position bei x = 0. Zum Zeitpunkt t = 0 wird die Leiterschleife fallen gelassen.

- a) Für welche x-Koordinaten des Punktes A besteht eine Bremswirkung?
- b) Welche Spannung wird in Abhängigkeit der Fallgeschwindigkeit in der Leiterschleife induziert?
- c) Berechnen Sie die Kraft, die auf ein waagrechtes Teilstück der Leiterschleife im Magnetfeld wirkt, das vom Strom *I* durchflossen wird.
- d) Wie viel länger benötigt die Leiterschleife zum Durchfallen der Polschuhe, d.h. bis x=a im Vergleich zum freien Fall ohne Magnetfeld. Stellen Sie hierzu die Bewegungsgleichung auf und lösen Sie diese (Separation der Variablen; benutzen Sie die Näherung $\frac{B^2b^2}{mR} \cdot t >> 1$).

Vernachlässigen sie hierbei Randeffekte und nehmen sie an, dass das Magnetfeld auf den Bereich zwischen den Polschuhen konzentriert ist. Die magnetische Flussdichte beträgt B = 5 T, a = 25 cm, die Leiterschleife (Masse m = 20 g) sei unendlich dünn und der Widerstand beträgt $R = 1 \Omega$.

4. Plattenkondensator (6 Punkte)

Die kreisförmigen Platten eines Plattenkondensators sind mit dem Abstand d parallel zur Erdoberfläche angeordnet (Plattendurchmesser D>>d). Die untere Platte ist flüssigkeitsdurchlässig (z. B. ein feinmaschiges Gitter). Der Kondensator wird aufgeladen (Ladung Q_0) und von der Spannungsquelle getrennt. Dann wird er mit der unteren Platte in ein flüssiges Dielektrikum (ε_r , Dichte ρ) eingetaucht, so dass die Flüssigkeit in ihm hochzusteigen beginnt. An der Seite sei eine dünne Wand angebracht, die die Flüssigkeit am herunterlaufen hindert.

Berechnen Sie die Steighöhe x als Funktion von Q_0 . Vernachlässigen Sie dabei Randeffekte.

5. Filter (5 Punkte)

Gegeben Sei die folgende Schaltung:

Berechnen Sie die frequenzabhängige Übertragungsfunktion
$$S(\omega) = \left| \frac{U_{out}(\omega)}{U_{in}(\omega)} \right|$$

6. Dipol (4 Punkte)

Ein elektrischer Dipol $(\vec{P} = Q \cdot \vec{d})$ befindet sich in einem homogenen elektrischen Feld $(\vec{E} = E \cdot \vec{e}_z)$

- a) Berechnen Sie die potentielle Energie in Abhängigkeit der Position seines Mittelpunktes \vec{r}_0 und seines Winkels ϕ zum elektrischen Feld.
- b) Berechnen Sie das Drehmoment, das auf den Dipol wirkt.
- c) Berechnen Sie die Kraft, die auf den Dipol wirkt, falls das Feld nicht mehr homogen ist:

$$\vec{E}_1 = E_1 \cdot (1 + z \cdot \varepsilon) \cdot \vec{e}_z$$
 für $d \cdot \varepsilon \ll 1$.