家具擺設 (Furniture)

問題敘述

小明要買 N 種不同用途的家具(編號 $1\sim N$)各一個擺放在客廳。已知第 i 種家具有 M_i 個型號,它們外觀的明暗程度分別為 $D_{i,1}$, $D_{i,2}$, …, $D_{i,Mi}$ 。為了在視覺上和諧,小明希望他買的 N 個家具的「明暗差異度」X 越小越好,「明暗差異度」X 的定義為 N 個家具明暗程度最大值減去明暗程度最小值。給定上述家具資訊,請寫一個程式幫助小明計算 X 值最小可以為多少。

輸入格式

第一列有一個正整數 $N(2 \le N \le 2 \times 10^5)$,表示有 N 種家具。接下來第 $2 \sim N + 1$ 列,第 i+1 列有 M_i+1 ($M_i \le 2 \times 10^5$) 個數字,相鄰兩數間以一個空白隔開,其中第一個數字為 M_i ,接下來有 M_i 個正整數 $D_{i,1}, D_{i,2}, ..., D_{i,Mi}(D_{i,1}, D_{i,2}, ..., D_{i,Mi} \le 10^9)$,表示第 i 種家具的 M_i 個不同型號的外觀明暗程度。**測資保證** $\sum_{i=1}^{N} M_i \le 2 \times 10^5$ 。

輸出格式

請輸出一個非負整數,為最小的明暗差異度 X 值。

輸入範例1	輸出範例 1
3	2
3 4 6 7	
2 1 4	
3 2 6 9	

範例說明:如果第1種家具選擇明暗程度為4(或為6)、第2種家具選擇明暗程度為4、第3種家具選擇明暗程度為6,則X=6-4=2,是本例的最佳解。

輸入範例 2	輸出範例 2
3	4
2 5 8	
2 1 9	
2 3 2	
輸入範例 3	輸出範例 3
4	2
3 2 7 9	
3 3 4 6	
2 8 9	
4 6 7 8 9	

輸入範例 4	輸出範例 4
2	0
1 3	
1 3	

評分說明

此題目測資分成六組,每組測資有多筆測試資料,需答對該組所有測試資料 才能獲得該組分數,各組詳細限制如下。

第一組 $(10 \, \beta)$: N=2 且所有的 $M_i \leq 8$

第二組 (20 分): N 且所有的 $M_i \le 8$

第三組 (20 分): N=2

第四組 $(15 \, \beta)$: N 且所有的 $M_i \leq 20$ 第五組 $(15 \, \beta)$: N 且所有的 $M_i \leq 10^2$

第六組(20分):無特別限制