$$-28/4 = -28 - (-32) = 4$$

$$-25\%8 = -25 - (-32) = 7$$

$$-60 - (-63) = 3$$

C/CH+ /JAVA

Pythorh

Modular Arithmetic

[1-M-0]

```
3) [a+m)/m = [ ( k/m + m 1/m) /m
              s a/m
4) (a-b)1/m = (a1/m - b1/m + m)1/0 m
        a = 7 b = 10 m = 5
   7-10) 1/05 = 71/05 - 101/05 + 5) 1/5
-1-(-5) -31/5 = (2-0+5)/5
 (ab) 1/0 m = ((a1/m)) 1/m
 Quis: (37103 - 1) %12 = 0
  = (37^{103}/_{-12} - 1/_{12} + 12) \% 12
   = \left( \frac{37}{12} \right) \frac{1}{12} - \frac{1}{12} + \frac{12}{12} \frac{1}{12}
    2 (1 - 1 +12) %12
```

Problem Statement

Given three integers a, n and m. Find aⁿ % m using recursion.

Constraints:

$$a^{N} = a^{N|2} \times a^{N|2} \times a^{N|2} / M^{2} / M^{2}$$

```
powlint u, int N, int m)?
  if( N = = 0) return 1;
   ist half-power = pow(a, N/2, M)
                                         // a N/2 // M
   HNSIDE Mold
      retro ([half-power & half-power) // M x a // M) // M.
    > else // Even
   y return (half-power & half-power) % M;
                                           9:10
                  (e/on) /m = (108) /m
 a = 108 2 10
 m = 109
```

Problem 1 Count pairs whose sum is a multiple of m

Given N array elements, find count of pairs (i, j) such that $(arr[i] + arr[j]) \ \% \ m = 0$ Note: $i \ != \ j$ and pair(i, j) is same as pair(j, i)

Brute Force

Consider all pariss

T.C: O(N')

S.C: O(1)

Approache: (a+b) 1/ M = 0 [0,m-1] (0,m-1] (a'/.M+b'/.M) = (0, 2M-2) = (0, M)20/1 M= 0 > N= 0, M, LM, SM. ---a/om = 10, m3 M = 6 n 8 6 15 2 A : 5 12


```
function pairSumDivisibleByM(A, m) {
    N = A.length;
    freq[ ] = {0}; /
    count = 0;
    for(i \rightarrow 0 to N - 1) {
        val = A[i] % m;
                                          T.C: O(N)
        if(val == 0) {
                                           S-C'. 0 CM)
N
           pair = 0;
        } else {
            pair = m - val;
         += freq[pair];
        freq[val]++;
    return count;
```

	(a 1	•	0. 4	
	or reatest		103' v î sor	
	Highast	Commo	factor	: HCF
ged	(15, 25)	· 2		
	1 1			
	3 5			
	5 25			
a	d(12,30) =	6		
	1 1	v		
	2 2			
	3 3 4 5			
	6 10			
	12 15			
9	d(0,4) =	4 4 % 2	20 2	n is a fautr
		•		
	3 2 4	o /. n	= 0	
	:	t.	= 0	, w)
	:			
	< ✓			

```
big = small
    ged (big, simall) = ged (small, big % small)

[ o, small-1]
g(d (125, 50) = g(d (50, 25) = g(d (25, 0) = 25
ged (24,16): ged (16,8) = ged (8,0) = 8
      int ged lint big, int small 14
              if Csmall = = 0) return big;
              rehm gedl (moll, bry% small );
gul(16,24) => gul(24,16) => gul(16,8)
    1 d
dig small
                                     gcd(7,0)
```


