Recall:

- ullet A vector space is a set V equipped with operations of addition and multiplication by scalars. These operations must satisfy some properties.
- Some examples of vector spaces:
 - 1) \mathbb{R}^n = the vector space of column vectors.
- 2) $\mathcal{F}(\mathbb{R}) = \text{the vector space of all functions } f: \mathbb{R} \to \mathbb{R}.$
- 3) $C(\mathbb{R})$ = the vector space of all continuous functions $f: \mathbb{R} \to \mathbb{R}$.
- 4) $C^{\infty}(\mathbb{R})$ = the vector space of all smooth functions $f: \mathbb{R} \to \mathbb{R}$.
- **5)** $\mathcal{M}_{m,n}(\mathbb{R}) = \text{the vector space of all } m \times n \text{ matrices.}$
- **6)** \mathbb{P} = the vector space of all polynomials.
- 7) \mathbb{P}_n = the vector space of polynomials of degree $\leq n$.
- ullet If V, W are vector spaces then a linear transformation is a function $T\colon V\to W$ such that
 - 1) T(u + v) = T(u) + T(v)
 - 2) $T(c\mathbf{v}) = cT(\mathbf{v})$
- ullet Many problems involving \mathbb{R}^n can be easily solved using row reduction, matrix multiplication etc.
- The same types of problems involving other vector spaces can be difficult to solve.

Next goal:

If V is a $\mathit{finite\ dimensional\ vector\ space\ then\ we\ can\ construct\ a\ }\mathit{coordinate\ }\mathit{mapping\ }$

$$V \to \mathbb{R}^n$$

which lets us turn computations in V into computations in \mathbb{R}^n .

Motivation: How to assign coordinates to vectors

Upshot: In order to define a coordinate system in a vector space V, we need to select vectors by..., bp such that any vector v can be written as

$$V = C_1 b_1 + C_2 b_2 + ... + C_p b_p$$

in a unique way. Then V will have coordinates $\begin{bmatrix} c_1 \\ c_p \end{bmatrix}$ relative to $\{b_1, b_2, ..., b_p\}$.

Definition

If V is a vector space then vector $\mathbf{w} \in V$ is a *linear combination* of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$ if there exist scalars c_1, \dots, c_p such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \ldots + c_p \mathbf{v}_p$$

Definition

If V is a vector space and $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are vectors in V then

$$Span(v_1, ..., v_p) = \begin{cases} the set of all \\ linear combinations \\ c_1v_1 + ... + c_pv_p \end{cases}$$

Note: If $v_1, ..., v_p \in V$ are vectors such that $Span(v_1, ..., v_p) = V$

then every vector $w \in V$ can be written as

$$W = C_1 V_1 + C_2 V_2 + ... + C_p V_p$$

for some c₁₁₋₁ c_p ∈ TR.

Definition

If V is a vector space and $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$ then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is *linearly independent* if the homogenous equation

$$x_1\mathbf{v}_1+\ldots+x_p\mathbf{v}_p=\mathbf{0}$$

has only one, trivial solution $x_1 = 0, ..., x_p = 0$. Otherwise the set is linearly dependent.

Theorem

Let V be a vector space, and let $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. If the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent then the equation

$$x_1\mathbf{v}_1 + \ldots + x_p\mathbf{v}_p = \mathbf{w}$$

has exactly one solution for any vector $\mathbf{w} \in \mathsf{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$.

Proof: The same as for vector equotions in R1.

Definition

A basis of a vector space V is an ordered set of vectors

$$\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$$

such that

- 1) Span($b_1, ..., b_n$) = V
- 2) The set $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is linearly independent.

Example:

In
$$\mathbb{R}^n$$
 let $\alpha_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, ..., $\alpha_n = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The set $\mathcal{E} = \{e_1, e_2, ..., e_n\}$ is a basis of \mathbb{R}^n .

This basis is called the standard basis of IRh

Example:

In \mathbb{R}^2 take $b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The set $B = \{b_1, b_2\}$ is a basis of \mathbb{R}^2 ?

Check: i) the set {b, , bz} is linearly independent

2) Span
$$(b_1, b_2) = \mathbb{R}^2$$
, since if $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \in \mathbb{R}^2$ then

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (a_2 - a_1) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a_1 b_1 + (a_2 - a_1) b_2$$

Example:

Let Pn = the vector space of polynomials of degree < n = { a_0 + a_1t + ... + a_nt^n } a_i \in \mathbb{R}

The set $\mathcal{E} = \{1, t, t^2, ..., t^n\}$ is a basis of \mathbb{R}_n .

This basis is called the standard basis of Pn.

Theorem

A set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of a vector space V if any only if for each $\mathbf{v} \in V$ the vector equation

$$x_1\mathbf{b}_1 + \ldots + x_n\mathbf{b}_n = \mathbf{v}$$

has a unique solution.

<u>Proof</u>: Since Span $(b_1,...,b_n) = V$ thus for each $v \in V$ the equation

has a solution.

Since the set {b,,..., bnf is linearly independent, this solution is unique.

Definition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis of a vector space V. For $\mathbf{v} \in V$ let c_1, \dots, c_n be the unique numbers such that

$$c_1\mathbf{b}_1+\ldots+c_n\mathbf{b}_n=\mathbf{v}$$

Then the vector

$$\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$$

is called the *coordinate vector of* \mathbf{v} *relative to the basis* \mathcal{B} and it is denoted by $[\mathbf{v}]_{\mathcal{B}}$.

Example. Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}_2 , and let

$$p(t) = 3 + 2t - 4t^2$$

Find the coordinate vector $[p]_{\varepsilon}$.

Solution: We have:

Example. Let $\mathcal{B} = \{1, 1+t, 1+t+t^2\}$. One can check that \mathcal{B} is a basis of \mathbb{P}_2 . Let

$$p(t) = 3 + 2t - 4t^2$$

Find the coordinate vector $[p]_{\mathcal{B}}$.

Solution: We have:

$$P(t) = 1 \cdot 1 + 6 \cdot (1+t) + (-4) \cdot (1+t+t^{2})$$

$$1^{5t} \text{ vector} \qquad 2^{nd} \text{ vector}$$
of B
of B

$$50$$
: $[P(t)]_{B} = \begin{bmatrix} 1 \\ 6 \\ -4 \end{bmatrix}$

Example. Consider the following vectors in \mathbb{R}^2 :

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

One can check that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis of \mathbb{R}^2 . Find the coordinate vector $[\mathbf{v}]_{\mathcal{B}}$.

Solution:

We have
$$[v]_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 where $c_1b_1 + c_2b_2 = V$.
Thus it suffices to solve the equation $x_1b_1 + x_2b_2 = V$.

Augmented matrix:

$$\begin{bmatrix}
1 & 2 & | & 1 \\
1 & -1 & | & 0
\end{bmatrix}$$
Thus:
$$\begin{bmatrix}
x_1 = 1/3 \\
x_2 = 1/3
\end{bmatrix}$$

$$\begin{bmatrix}
y \end{bmatrix}_{B} = \begin{bmatrix}
1/3 \\
1/3
\end{bmatrix}$$