天岸大学

《数据挖掘》课程报告

基于随机森林算法的 XGB 和 LGB 分类器解决电动车分类问题

学	号	3021001526	
姓	名_	张铨	
即	箱	7176656@qq.com	
学	院	智能与计算学部	
专	业	人工智能	
年	级	2021	
任课	教师	王熠	

2023年11月27日

摘要

本课题来自2021级人工智能23241课程《数据挖掘》的结课大作业,目的是 应用异常检测,数据增强,数据挖掘方法实现电动车分类。

数据处理部分,对所有数据进行统一打包成csv格式,使用线性插值算法补全特征数不足的数据,使用DBSCAN聚类算法进行异常检测,排除21个离群点。

分类方法采用xgb,lgbm,cat,神经网络等多种方法进行试验,发现随机森林算法具有举足轻重的作用,其稳定性极高,鲁棒性和精确性佳,在所有基于RF的树状算法中都有非常好的表现,神经网络算法和树状算法都能取得很好的效果。

结果为,最佳的精确度acc来自xgb-rf和lgbm-rf算法,为0.9934,在评测网站测试后正常发挥,完美解决电动车分类问题。

关键词: 分类; XGBoost; CatBoost; LightGBM; GBDT; RandomForest; 异常检测; DBSCAN; 神经网络; DNN; CNN; RNN;

目录

1	课题介绍	3
	1.1 课题背景	3
	1.2 总体研究方案	3
2	数据统计特性分析及可视化	3
	2.1 可视化	3
	2.2 统计特性分析	5
3	数据预处理	6
	3.1 数据集成与转换	6
	3.2 异常检测与异常数据处理	6
4	异常检测及分析	7
5	分类模型设置与训练	8
	5.1 XGBoost	8
	5.1.1 XGBRFClassifier	9
	5.1.2 XGBClassifier	9
	5.2 LightGBM	9
	5.3 CatBoost	10
	5.4 RandomForest	10
	5.5 GBDT	11
	5.6 DNN	12
	5.7 CNN	12
	5.8 RNN	13
6	实验结果与分析	14
7	开放性提出及思考	14
8	结论	14

1 课题介绍

1.1 课题背景

本课题来自2021级人工智能23241课程《数据挖掘》的结课大作业,目的是应用异常检测,数据增强,数据挖掘方法实现电动车分类。数据标签分为电动车充电(1)与非电动车充电(0),数据特征为280维的频率谱。

1.2 总体研究方案

总体实现高精度分类即可,首先对数据进行EDA观测特征,然后打包成csv文件,读入模型进行训练,最后预测,提交到网站观察正确率等相关指标。

2 数据统计特性分析及可视化

2.1 可视化

首先对数据进行EDA,观察到都是长度为280的正弦波形,形状不一,比如 微波炉这个就是两个波形叠加在一起导致的。

但是叠加态的波形往往比较逆天,残次不齐,感觉是采样的数据中,电脑的 波形把所有人都给带偏了。

再来看一下电动车是什么样的。

看来电动车的也是类似的,没什么不同的。可以粗略的认为所有数据都遵循类似的规律,是一个正弦波形。[ZZW+23]

到此为止我们已经不难发现,这些数据基本上都是使用模板波形进行叠加而来的数据,我们可以采集一套模板波形进行拼凑,基本可以得出所有所需的标签,但鉴于这个课是数据挖掘课,不是模板匹配课,我们还是使用正常的机器学习方法解决问题。

2.2 统计特性分析

首先第一步,算一下分位数,std和mean,偏锋度。

	count	mean	std	min	25%	50%	75%	max	skew	kurt	name
0	280.0	-1.482143	130.360294	-656.0	-20.0	-0.5	20.0	611.0	-0.372662	14.834345	220V1A苹果笔记本
1	280.0	-52.396429	1514.020221	-3140.0	-694.0	-132.0	664.5	3111.0	-0.086289	-0.866044	220V3.5A华硕天选4
2	280.0	-0.3	3823.2574	-5435.0	-3775.0	-6.0	3782.0	5430.0	-0.000852	-1.51371	220V800W饮水机
3	280.0	-17.332143	36765.823673	-55011.0	-34988.5	-1063.0	33927.75	59040.0	0.060809	-1.415367	220V1150W微波炉
4	280.0	-0.207143	6949.66486	-9891.0	-6905.5	-10.5	6890.75	9890.0	-0.000042	-1.523618	220V1500W电暖器
5	280.0	-0.925	8249.822327	-11685.0	-8082.25	34.0	8098.5	11737.0	0.000522	-1.51668	220V1800W烧水壶
6	280.0	-1.364286	241.593907	-528.0	-93.25	0.0	90.5	528.0	0.000958	-0.050353	220V碎纸机
7	280.0	0.539286	89.121108	-259.0	-8.0	0.0	8.0	259.0	0.094551	3.629248	华为P30PRO手机
8	280.0	-53.110714	1574.966987	-3152.0	-703.0	-140.5	671.25	3114.0	-0.094837	-0.822718	手机(工况:80%以下充电),带独显笔记本电脑(工况:未知)
9	280.0	2.082143	2589.627956	-12038.0	-266.0	41.5	291.0	11878.0	-0.012781	9.081365	thinkpadX1nano充电(笔记本电脑)
10	280.0	-11.571429	8802.693249	-23950.0	-6868.75	-6.0	6833.0	24805.0	0.006019	-0.269439	电脑(工况:未知),1500W电暖器(工况:未知)
11	280.0	6.453571	2707.811064	-12133.0	-264.5	0.0	292.0	11499.0	-0.121523	7.636418	电脑(工况:未知),碎纸机(工况:未知)
12	280.0	-0.232143	196.134526	-277.0	-201.0	1.0	200.5	274.0	-0.002868	-1.561772	电风扇3挡
13	280.0	-53.482143	5237.096264	-8385.0	-4888.5	28.5	4784.75	7913.0	-0.028794	-1.302867	电风扇(工况:未知),800W饮水机(工况:烧水),带独显笔记本电脑(工况:未知)
14	280.0	-54.846429	5432.82977	-8813.0	-5171.25	28.5	5114.0	8273.0	-0.029237	-1.297935	电风扇(工况:未知),带独显笔记本电脑(工况:未知),碎纸机 (工况:未知),800W饮水机(
15	280.0	0.585714	1281.303494	-4165.0	-40.0	6.0	44.0	4121.0	-0.036531	4.75871	电动车48V2.8A
16	280.0	-1.282143	7720.254567	-13183.0	-6883.25	-9.0	6889.5	13056.0	-0.000634	-1.291262	电动车(工况:未知),1500W电暖器(工况:未知)

统计量几乎是看不出任何抓手,接下来看相似度。

这一看不得了,pearson相似度竟然有这么高的,这就说明很多情况下不同的电器是有线性相关性的。

3 数据预处理

3.1 数据集成与转换

使用python os.walk函数遍历文件夹,读取数据,打包成一个具有280维特征的数据集,并附上label。

```
for dir in dirsyes:
    for path, dir, files in os.walk(dir):
        print(len(files))
        for file in files:
            realpath = os.path.join(path, file)
            raw_data = pd.read_csv(realpath, header=None, names=['data']).to_numpy()
            raw_data = [1] + list(raw_data.flatten())
            dataframe_datas.loc[len(dataframe_datas)] = raw_data
```

对于后续神经网络的训练,不能像树状模型那么粗糙,必须进行归一化,此处选用的是MinMax归一化,主要就是为了保存波形的形状信息,尽可能地无损传给神经网络。

```
def scale(x):
    x = np.array(x)
    xmean = x.mean()
    xstd = x.std()
    xmin = x.min()
    xmax = x.max()
    # x = (x - xmean) / xstd
    x = (x - xmin) / (xmax - xmin)
    return x
```

3.2 异常检测与异常数据处理

在打包过程中,发现有的数据不足280,一开始直接drop了,后来测试的时候发现,有的test数据也不足280,这就不能drop了,会出问题。

为了更精确的处理这些数据,还是先EDA一下看看情况。

可以看出损失的长度不大,大部分波形都保留完好,但是尽量为了避免对数据整体产生较大的影响,此处使用线性插值法,补齐所有异常数据点。

```
if len(raw_data) != 280:
    x = np.linspace(0, 1, len(raw_data))
    y = raw_data.flatten()
    f = interpolate.interp1d(x, y, kind="quadratic")
    xnew = np.linspace(0, 1, 280)
    ynew = f(xnew)
    raw_data = ynew.reshape((-1, 1))
```

4 异常检测及分析

使用DBSCAN算法,对数据进行minmax标准化后进行聚类分析,找到离群点并剔除。[KGJV83]

显然是有离群点的,具体统计后有21个离群点,标签为-1,将其剔除后进入训练部分。定量分析数据表如下:

表 1: DBSCAN

Metric Score

Homogeneity 0.938

Completeness 0.272

V-measure 0.421

Adjusted Rand Index 0.231

Adjusted Mutual Information 0.419

5 分类模型设置与训练

5.1 XGBoost

首先上场的是XGB比赛神器,不需要太多的操作,直接塞进去raw文件,反正树类模型不太吃归一化,稍微离谱一点的数据,保证纯净的生数据,让DT更好决策。[HZRS16]

5.1.1 XGBRFClassifier

使用python xgboost模块XGBRFClassifier,maxdepth=5, estimators=140, 训练集: 测试集 = 3: 1

	表 2: XGBoost				
Metric	ACC	F1score	Recall	precision	
round 1	1	1	1	1	
round 2	0.9961	0.9905	1	0.9811	
round 3	0.9902	0.9630	1	0.9286	

震惊,过于炸裂,表现极好,现在放到测评网站上看看分数。

3021001526	XGBRFClassifier	0.9934	0.9901	1	0.995
3021001320	ACDITI CIGOSITICI	0.5554	0.0001	'	0.555

图 1: XGBRFClassifier评测网站

5.1.2 XGBClassifier

非常奇怪的是,使用普通的xgb,即使用dt作为分类器的情况下,非常容易陷入全0或者全1,即使分数体现上仍然很高。

5.2 LightGBM

LightGBM是谷歌开发的一种流式训练器,以快为著称,实验的时候发现了一些奇怪的细节。首先是常规的三次对照试验,参数随便写的,效果如下。 [HLVDMW17]

	表 3:	LGBMCla	assifier	
Metric	ACC	F1score	Recall	precision
round 1	0.9706	0.8966	1	0.8125
round 2	0.9902	0.9714	1	0.9444
round 3	0.9804	0.9444	1	0.8947

效果好像不如XGBRFClassifier,但是仍然需要特别注意的一个参数叫boosting type,有三种选项,此处采用的是rf,即随机森林分类器,如果改成gbdt,那么又会陷入XGBClassifier的全0全1中,这有关于算法的设计问题。

3021001526 LGBM RF	0.9934 0.9901	1 0.995
--------------------	---------------	---------

图 2: LightGBM评测网站

5.3 CatBoost

与 XGBoost 和 LightGBM 不同, CatBoost 构建对称(平衡)树。在每一步中,前一棵树的叶子都使用相同的条件进行拆分。选择损失最低的特征分割对并将其用于所有级别的节点。这种平衡的树结构有助于高效的 CPU 实现,减少预测时间,模型结构可作为正则化以防止过度拟合。[KSH12]

iteration=100,三次测试,稳定性非常恐怖。

表 4: CatBoostClassifier Metric ACC F1score Recall precision				
Metric	ACC	r iscore	кесап	precision
round 1	1	1	1	1
round 2	1	1	1	1
round 3	1	1	1	1

预测电动车时, 无一例外全0, 稳定全0, 效果极差。

5.4 RandomForest

到底是什么样的魔力让随机森林如此出色呢,此处单独把他捡出来对比一下。使用python xgboost模块RandomForestClassifier,maxdepth=5, estimators=140, 训练集:测试集 = 3: 1

表 5: RandomForestClassifier

Metric	ACC	F1score	Recall	precision
round 1	1	1	1	1
round 2	1	1	1	1
round 3	1	1	1	1

天哪,太可怕了,评测网站的得分也非常惊人。

3021001526 随机森林 0.9868 0.99 0.99 0.99

图 3: RandomForestClassifier评测网站

5.5 GBDT

难道真的是GBDT的锅吗? [SKK18]此处使用GradientBoostingClassifier进行试验,maxdepth=5,estimators=140,得出的本地测试结果如下:

表 6: GradientBoostingClassifier

			0	
Metric	ACC	F1score	Recall	precision
round 1	1	1	1	1
round 2	1	1	1	1
round 3	1	1	1	1

本地效果很好,网站效果也很好,稳定得到99的ACC。这说明GBDT没有问题,是XGB和LGB等继承算法的策略有问题。

gbdt	gbdt	0.9868	0.99	0.99	0.99

图 4: GBDTClassifier评测网站

5.6 DNN

树状模型全都结束了,现在上神经网络,采用刚才的minmax归一化数据集,进行训练,模型结构如下(两步relu激活函数位于forward内):

```
Model(
   (fc1): Linear(in_features=280, out_features=128, bias=True)
   (fc2): Linear(in_features=128, out_features=128, bias=True)
   (fc5): Linear(in_features=128, out_features=2, bias=True)
)
```

图 5: DNN模型结构

训练迭代200次,随机梯度下降,MultiStepLR学习率规划器,初始学习率为1e-3,在20与50的milestone处进行后移一位,batch大小32。

aaa 0.9868 0.99 0.99 0.99

图 6: DNN评测网站

原来DNN就能做到这个地步吗?

5.7 CNN

但我的模型都搭好了,不能不做啊,这里再使用CNN进行试验,模型参数如下,超参数与DNN相同。

```
CNN1D(
  (conv1): Conv1d(1, 16, kernel_size=(5,), stride=(1,))
  (pool1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv1d(16, 32, kernel_size=(5,), stride=(1,))
  (pool2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv1d(32, 64, kernel_size=(5,), stride=(1,))
  (pool3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=1344, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=2, bias=True)
)
```

图 7: CNN模型结构

毫无悬念的结果。

cnn 0.9868 0.99 0.99 0.99	cnn	0.9868	0.99	0.99	0.99
---------------------------	-----	--------	------	------	------

图 8: CNN评测网站

5.8 RNN

这里再使用RNN进行试验,模型参数如下,超参数与DNN,CNN相同。

```
LstmRNN(
   (rnn): RNN(1, 64, num_layers=2, batch_first=True)
   (fc1): Linear(in_features=64, out_features=32, bias=True)
   (fc2): Linear(in_features=32, out_features=2, bias=True)
)
```

图 9: RNN模型结构

非常奇怪的现象出现了,XGB和LGB的全0全1在这里得到了解答,RNN意外地在同样超参数情况下没能收敛到最低值,结果就是acc稳定在78左右,最后预测的结果就是全0。

这样一来可以轻易的推论出一个粗浅的结论,那就是XGB和LGB的剪枝策略过于激进了,通过调节超参数树状集成学习方法也可以得到很好的效果,但是这很依赖超参数的设置。

6 实验结果与分析

表中数据汇总了所有评测网站中表现突出的模型,附上了主观的稳定性评价。

表 7. 实验结果

Metric	ACC	F1score	Recall	precision	stability			
XGB RF	0.9934	0.9901	1	0.995	high			
LGBM RF	0.9934	0.9901	1	0.995	high			
RF	0.9868	0.99	0.99	0.99	high			
GBDT	0.9868	0.99	0.99	0.99	medium			
DNN	0.9868	0.99	0.99	0.99	low			
CNN	0.9868	0.99	0.99	0.99	medium			

7 开放性提出及思考

主观分析来看,正应了那句**"没有最好的模型,只有最适合的模型"**,所有模型都有其用武之地,随机森林算法在此次任务中的表现非常出色,起到决定性作用。

鉴于数据的表现过于逆天,完全可以采用**模板匹配**的方式进行测试,使用 **波形叠加**的方法进行观测,找到所有最有可能有电动车的波形,打上1,这种方 案在实验中**已经被证明可行**,效果极佳。

8 结论

通过使用基于随机森林算法的XGB和LGBM集成学习算法,都能获得极高的评分,并且模型的鲁棒性极强,精确度大概稳定在0.9934,是非常不错的表现。

参考文献

- [HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4700–4708, 2017.
- [HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [KGJV83] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. *science*, 220(4598):671–680, 1983.
- [KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- [SKK18] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification uncertainty, 2018.
- [ZZW⁺23] Huan Ma. Qingyang Zhang, Changqing Zhang, Bingzhe Wu, Huazhu Fu, Joey Tianyi Zhou, and Qinghua Hu. Calibrating multimodal learning, 2023.