# 5章 三角関数

§ 2 三角関数 (p.137~p.150)

[問1] OX を始線, OP を角の動経とする.

$$(1)$$
  $500^{\circ} = 140^{\circ} + 360^{\circ} \times 1$ 



(2)  $1210^{\circ} = 130^{\circ} + 360^{\circ} \times 3$ 



 $(3) \quad -310^{\circ} = 50^{\circ} + 360^{\circ} \times (-1)$ 



 $(4) \quad -400^{\circ} = -40^{\circ} + 360^{\circ} \times (-1)$ 



(5)  $-1520^{\circ} = -80^{\circ} + 360^{\circ} \times (-4)$ 



問2

(1)  $470^{\circ} = 110^{\circ} + 360^{\circ} \times 1$ よって,第 2 象限



(2)  $-315^{\circ} = 45^{\circ} + 360^{\circ} \times (-1)$ よって,第1象限



(3)  $-410^{\circ} = -50^{\circ} + 360^{\circ} \times (-1)$ よって,第 4 象限



(4)  $1280^\circ = 200^\circ + 360^\circ \times 3$ よって,第 3 象限



(5)  $-570^{\circ} = -210^{\circ} + 360^{\circ} \times (-1)$ 

よって,第2象限



問3

(1)



$$\sin 210^\circ = -\frac{1}{2}$$

 $(2)495^{\circ} = 135^{\circ} + 360^{\circ} \times 1$ 



$$\cos 495^\circ = -\frac{1}{\sqrt{2}}$$

(3)



$$\tan 315^{\circ} = -1$$

$$(4) -840^{\circ} = -120^{\circ} + 360^{\circ} \times (-2)$$



$$\sin(-840^\circ) = -\frac{\sqrt{3}}{2}$$

$$(5) -450^{\circ} = -90^{\circ} + 360^{\circ} \times (-1)$$



$$\cos(-450^\circ) = \mathbf{0}$$

$$(6) -570^{\circ} = -210^{\circ} + 360^{\circ} \times (-1)$$



$$\tan(-570^\circ) = -\frac{1}{\sqrt{3}}$$

問4

$$(1)$$
  $15^\circ=\theta$ (ラジアン)とすると  $15:180=\theta:\pi$   $180\theta=15\pi$  よって, $\theta=\frac{15\pi}{180}=\frac{\pi}{12}$ 

(2) 
$$60^\circ = \theta$$
(ラジアン)とすると  $60:180=\theta:\pi$   $180\theta=60\pi$  よって,  $\theta=\frac{60\pi}{180}=\frac{\pi}{3}$ 

$$(3)$$
  $120^\circ=\theta$ (ラジアン)とすると  $120:180=\theta:\pi$   $180\theta=120\pi$  よって, $\theta=\frac{120\pi}{180}=\frac{2}{3}\pi$ 

$$(4)$$
  $270^\circ=\theta$ (ラジアン)とすると  $270:180=\theta:\pi$   $180\theta=270\pi$  よって, $\theta=\frac{270\pi}{180}=\frac{3}{2}\pi$ 

$$(5)$$
  $-135^\circ = \theta$ (ラジアン)とすると $-135:180 = \theta:\pi$   $180\theta = -135\pi$  よって, $\theta = \frac{-135\pi}{180} = -\frac{3}{4}\pi$ 

問 5

$$(1)$$
  $\frac{180}{\pi} \cdot \frac{\pi}{4} = 45^{\circ}$ 

(2) 
$$\frac{180}{\pi} \cdot \frac{5}{6}\pi = 150^{\circ}$$

(3) 
$$\frac{180}{\pi} \cdot \frac{7}{4}\pi = 315^{\circ}$$

$$(4)$$
  $\frac{180}{\pi} \cdot \left(-\frac{\pi}{5}\right) = -36^{\circ}$ 

(5) 
$$\frac{180}{\pi} \cdot \frac{11}{6} \pi = 330^{\circ}$$

問6

弧の長さを
$$l$$
 , 面積を $S$  とすると $l=r\theta=9\cdot \frac{2}{3}\pi$   $=\mathbf{6}\pi\ (\mathrm{cm})$   $S=\frac{1}{2}rl=\frac{1}{2}\cdot 9\cdot 6\pi$   $=\mathbf{27}\pi\ (\mathrm{cm}^2)$ 

### [問7]

中心角の大きさを  $\theta$  とすると ,  $l=r\theta$  であるから  $3\pi=10\theta$  よって ,  $\theta=\frac{3}{10}\pi$ 

### 問8

扇形 OAB の面積は, $\frac{1}{2}r^2\theta$   $\triangle$ OAB の面積は, $\frac{1}{2}r^2\sin\theta$  よって,弓形の面積は  $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta = \frac{1}{2}r^2(\theta - \sin\theta)$ 

### 問 9

(1) 与式 = 
$$\sin 45^{\circ} = \frac{1}{\sqrt{2}}$$

(2) 
$$= 5\vec{x} = \cos 135^\circ = -\frac{1}{\sqrt{2}}$$

(3) 与式 = 
$$\tan 120^{\circ} = -\sqrt{3}$$

### 問 10

(3) 左辺 = 
$$(\sin \theta - \cos \theta)(\sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta)$$
  
=  $(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)$   
=  $(\sin \theta - \cos \theta)(1 + \sin \theta \cos \theta) = 右辺$ 

## 問 11

$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$$
 より 
$$\frac{1}{\cos^2 \theta} = 1 + (-2)^2 = 5$$
 よって, $\cos^2 \theta = \frac{1}{5}$   $\theta$  は,第 4 象限の角だから, $\cos \theta > 0$  したがって, $\cos \theta = \frac{1}{\sqrt{5}}$   $\sin \theta = \tan \theta \cos \theta$  
$$= -2 \cdot \frac{1}{\sqrt{5}}$$
 
$$= -\frac{2}{\sqrt{5}}$$

## 問 12

#### 問 13

(1) この関数のグラフは, $y=\sin x$  のグラフを y 軸方向に -1 倍したものだから,周期は  $2\pi$  であり,グラフは次のようになる.



( 2 ) この関数のグラフは ,  $y=\cos x$  のグラフを x 軸方向 に  $\frac{1}{2}$  倍したものだから , 周期は  $2\pi\cdot\frac{1}{2}=\pi$  であり , グラフは次のようになる .



(3) この関数のグラフは, $y=\sin x$  のグラフを x 軸方向に  $\frac{\pi}{4}$  平行移動したものだから,周期は  $2\pi$  であり,グラフは次のようになる.



( 4 )  $y=\cos2\left(x+\frac{\pi}{4}\right)$  であるから,この関数のグラフは, $y=\cos2x$  のグラフを x 軸方向に  $-\frac{\pi}{4}$  平行移動したものだから,周期は  $2\pi\cdot\frac{1}{2}=\pi$  であり,グラフは次のようになる.



問 14

(1) この関数のグラフは, $y=\tan x$  のグラフを x 軸方向に  $\frac{1}{2}$  倍したものだから,周期は  $\pi\cdot\frac{1}{2}=\frac{1}{2}\pi$  であり,グラフは次のようになる.



(2) この関数のグラフは ,  $y=\tan x$  のグラフを x 軸方向 に 2 倍したものだから , 周期は  $\pi\cdot 2=2\pi$  であり , グラフは次のようになる .



問 15

(1)



 $x=rac{\pi}{3},\;rac{5}{3}\pi$ 

(2)



 $x=rac{\pi}{3},\;rac{2}{3}\pi$ 

(3)



 $\frac{5}{4}\pi < x < \frac{7}{4}\pi$ 

(4)



$$0 \leq x \leq \frac{\pi}{6}, \quad \frac{11}{6}\pi \leq x < 2\pi$$

問16

(1)



$$x=\frac{\pi}{6},\ \frac{7}{6}\pi$$

(2)



$$x=\frac{3}{4}\pi,\;\frac{7}{4}\pi$$