Cours de mathématiques Terminale S1 Chapitre 12 : Calcul Intégral

Année scolaire 2008-2009 mise à jour 5 mai 2009

Fig. 1 – Henri-Léon Lebesgue et Bernhard Riemann

On les confond parfois

Table des matières

Ι	Chapitre 12 : Calcul Intégral				
	I.A	Intégrale d'une fonction continue positive			
		I.A.1 Définition			
	I.B	Intégrale d'une fonction continue négative			
		I.B.1 Intégrale d'une fonction continue de signe quelconque			
		I.B.2 Cas d'une fonction en escalier			
	I.C	Propriétés de l'intégrale			
	I.D	Propriété			
		I.D.1 Linéarité			
		I.D.2 Relation de Chasles			
		I.D.3 Intégrales et inégalités			
		I.D.4 Valeur moyenne d'une fonction			
	I.E	Primitives			
		I.E.1 Exemple			
		I.E.2 Définition			
	I.F	Primitive d'une fonction continue			
	I.G	Calculs de primitives			
	I.H	Calculs d'intégrales			
	I.I	Intégration par parties			
	I.J	Calculs de volumes			

<u>-</u>

Informations sur la mise en page

Le document s'inspire des nombreux livres de Terminale S des différentes éditions. Les figures de ce document ont été réalisées avec métapost et les macros de J-M Sarlat et en s'inspirant très fortement de ce qui est fait ici par David Nivaud^a:

http://melusine.eu.org/syracuse/metapost/cours/nivaud/figTsc_integrale/.
L'environnement bclogo, utilisé pour la réalisation de ce document, est téléchargeable ici : http://melusine.eu.org/syracuse/wiki/doku.php/mc/bclogo

^ale fichier de macros s'appelle toujours courbes.mp mais est différent du fichier courbes.mp des chapitres précédents

I Chapitre 12 : Calcul Intégral

I.A Intégrale d'une fonction continue positive

I.A.1 Définition

Définition 2:

Soit f une fonction continue et positive sur un intervalle [a;b] et C_f sa courbe représentative dans un repère orthogonal $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$.

Le réel, noté $\int_a^b f(x) dx$, est l'aire, en unités d'aire, du domaine \mathcal{D} délimité par C_f , l'axe des abscisses et les droites d'équations x = a et x = b.

 $\int_a^b f(x) dx$ se lit somme de a à b de f(x) dx ou intégrale de a à b de f(x) dx

I.B Intégrale d'une fonction continue négative

I.B.1 Intégrale d'une fonction continue de signe quelconque

On admet pour l'instant l'égalité suivante : si f est une fonction continue sur [a;b], alors, pour tout $c\in [a;b]$,

$$\int_{c}^{c} f(x) \mathrm{dx} = 0$$

I.B.2 Cas d'une fonction en escalier

Définition 5:

Il est un cas où, si la fonction f n'est pas continues ur [a;b], on peut néanmoins définir $\int_a^b f(x) dx$, c'est le cas des fonctions en escalier.

Si f est définie ainsi :

1. si
$$x \in [x_0; x_1], f(x) = c_1$$

2. si
$$x \in [x_1; x_2[, f(x) = c_2]$$

3. si
$$x \in [x_2; x_3[, f(x) = c_3]$$

4. si
$$x \in [x_3; x_4], f(x) = c_4$$

alors $\int_a^b f(x) dx$ =somme des aires des rectangles situés au-dessus de l'axe des abscisses-(somme des aires des rectangles en dessous de l'axe des abscisses)

I.C Propriétés de l'intégrale

I.D Propriété

4

Théorème 1

On admet pour l'instant, la définition de l'intégrale ayant été donnée précédemment, que

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

La notion de primitive nous permettra de valider cette propriété dans quelques instants.

I.D.1 Linéarité

Théorème 2

Si f et g sont deux fonctions continues sur [a;b] et α un réel, alors on a :

$$\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx = \int_{a}^{b} (f(x) + g(x))dx$$

et

$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$$

I.D.2 Relation de Chasles

I.D.3 Intégrales et inégalités

I.D.4 Valeur moyenne d'une fonction

THÉORÈME 6

Si f est une fonction continue sur un intervalle I; a et b sont deux réels distincts de l'intervalle I.

Alors il existe un réel c entre a et b tel que $\int_a^b f(x) dx = (b-a)f(c)$.

Le nombre $\frac{1}{b-a} \int_a^b f(x) dx$ est appelé valeur moyenne de f entre a et b.

Interprétation cinématique : la vitesse moyenne d'un mobile

La vitesse moyenne d'un mobile est la valeur moyenne de la vitesse, d'où:

vitesse moyenne =
$$\frac{\text{distance parcourue}}{\text{dur\'ee du trajet}} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v(t) dt$$

-Démonstration

On suppose la fonction f croissante. (On admet le résultat dans le cas général.) Premier cas : a < b. Puisque f est croissante, pour tout réel x dans [a; b],

$$f(a) \le f(x) \le f(b)$$

On a alors

$$f(a)(b-a) \le \int_a^b f(x) dx \le f(b)(b-a)$$

et, puisque b-a>0,

$$f(a) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(b)$$

Le réel $\frac{1}{b-a} \int_a^b f(x) dx$ est dans l'intervalle [f(a); f(b)], donc il existe c dans [a; b] tel que :

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)$$

Deuxième cas : a>b. On procéde de la même manière que précédemment, à vous de le faire.

I.E Primitives

I.E.1 Exemple

On s'intéresse à la fonction

$$f: x \in \mathbb{R}^+ \longmapsto 0.9 \times e^{-0.9x}$$

Le but est double :

- Introduire la notion de primitive.
- Découvrir la fonction f en vue du chapitre sur la loi exponentielle.

Soit \mathcal{A} la fonction qui, à tout réel x positif, associe $\mathcal{A}(x) = \int_0^x 0.9 \ e^{-0.9t} dt$.

Alors, pour tout réel a positif, le réel $\mathcal{A}(a+h) - \mathcal{A}(a)$ représente l'aire du domaine hachuré en vert ci-après. (on se place dans le cas où h est strictement positif) :

En utilisant les inégalités de la moyenne décrites plus haut, on peut écrire :

$$h \times f(a+h) \le \mathcal{A}(a+h) - \mathcal{A}(a) \le h \times f(a)$$

d'où

$$f(a+h) \le \frac{\mathcal{A}(a+h) - \mathcal{A}(a)}{h} \le f(a)$$

De la même manière, en considérant h strictement négatif, on obtient :

$$f(a) \le \frac{\mathcal{A}(a+h) - \mathcal{A}(a)}{h} \le f(a+h)$$

Si on fait tendre h vers 0 et en tenant compte du fait que la fonction f est continue sur \mathbb{R} , donc sur \mathbb{R}^+ en particulier, on obtient, après passage à la limite :

$$\lim_{h\to 0}\frac{\mathcal{A}(a+h)-\mathcal{A}(a)}{h}=f(a)$$

Ce qui nous permet de dire que la fonction

$$A: x \longmapsto \int_0^x f(t) dt$$

est dérivable sur \mathbb{R}^+ et vérifie

$$\mathcal{A}'(x) = f(x)$$

La fonction \mathcal{A} est appelée **primitive** de la fonction f sur \mathbb{R}^+ .

Cela nous permet aussi de calculer la valeur exacte de $\int_0^1 f(t) dt$ que l'on avait seulement approchée par les méthodes des rectangles et de Monte-Carlo en utilisant Scilab. En effet, si l'on considère la fonction F, définie sur \mathbb{R} , par

$$F(x) = \mathcal{A}(x) + e^{-0.9x}$$

on voit que, la fonction F étant manifestement dérivable sur \mathbb{R}^+ , F'(x) = 0, pour tout $x \geq 0$, donc

$$F(x) = K(constante) = F(0) = 1$$

Autrement dit,

$$\mathcal{A}(x) = 1 - e^{-0.9x}$$
 pour tout $x \ge 0$

or

$$\int_0^1 f(t)dt = \mathcal{A}(1)$$

donc

$$\int_0^1 f(t)dt = \mathcal{A}(1)$$
$$\int_0^1 f(t)dt = 1 - e^{-0.9}$$

Définition I.E.2

Définition 6:

f est une fonction définie sur un intervalle I.

La fonction F est une **primitive** de f sur I si, pour tout x dans I, F'(x) = f(x).(implicitement, cela suppose que F soit dérivable sur I)

Théorème 7

Si f est une fonction définie sur un intervalle I. Si F est une primitive de f sur I, alors f admet une infinité de primitives.

Les autres primitives de f sur I sont définies par G(x) = F(x) + K où K est une constante réelle.

<u>Démonstration</u>: F est dérivable sur I et F' = f. La fonction G est aussi dérivable sur I avec G' = GF' = f. Donc G est une primitive de f sur I.

Inversement, si G est une primitive de f sur I alors G' = f = F' d'où G' - F' = 0.

La dérivée de G-F est nulle sur l'intervalle I donc G-F est constante sur I, il existe donc un réel K tel que pour tout x de I, G(x) - F(x) = K, d'où le résultat.

THÉORÈME 8

Soit f une fonction admettant des primitives sur I.

Soient x_0 est un réel donné appartenant à I et y_0 un réel quelconque.

Alors il existe une unique primitive F de f sur I telle que $F(x_0) = y_0$.

I.F Primitive d'une fonction continue

THÉORÈME 9

Soit f une fonction continue sur un intervalle I; a est un réel de I.

Alors la fonction F définie sur I par $F(x) = \int_{-x}^{x} f(t)dt$ est l'unique primitive de f sur I telle que F(a) = 0.

La démonstration de ce théorème sera vue en TD.

I.G Calculs de primitives

Les opérations sur les fonctions dérivables et la définition d'une primitive conduisent aux résultats suivants :

- si F et G sont des primitives des fonctions f et g sur un intervalle I, alors F + G est une primitive de f + g sur I.
- Si F est une primitive de la fonction f sur un intervalle I et λ un réel, alors λF est une primitive de λf sur I.

De même, les résultats connus sur les dérivées des fonctions usuelles donnent par lecture inverse le tableau des primitives suivant :

Fonction f	Primitive F	Intervalle I
a (constante)	ax	$\mathbb R$
	x^{n+1}	
$x^n \ (n \in \mathbb{Z} \setminus \{-1\})$	$\frac{x}{n+1}$	$\mathbb{R} \text{ si } n \geq 0 \text{ et }]0; +\infty[\text{ ou }]-\infty; 0[\text{ si } n < 0]$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$]0;+\infty[$
$\frac{1}{x}$	$\ln x$	$]0;+\infty[$
e^x	e^x	$\mathbb R$
$\sin x$	$-\cos x$	$\mathbb R$
$\cos x$	$\sin x$	$\mathbb R$
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\tan x$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[(k \in \mathbb{Z})$

Si u est une fonction dérivable sur un intervalle I, on a alors :

Ī	Fonction f	Primitive F	Remarques
	$u'u^n \ (n \in \mathbb{Z} \setminus \{-1\})$	$\frac{u^{n+1}}{n+1}$	si $n < 0$, pour tout x tel que $u(x) \neq 0$
	$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u > 0 sur I
	$\frac{u'}{u}$	$\ln(u)$	$u \neq 0 \text{ sur } I$
	$u'e^u$	e^u	
	$x \longmapsto u(ax+b) \ (a \neq 0)$	$x \longmapsto \frac{1}{a}U(ax+b)$	U primitive de u sur I

Remarque : On peut ajouter à chaque primitive déterminée une constante K pour obtenir toutes les primitives.

I.H Calculs d'intégrales

Théorème 10

Si f est une fonction continue sur un intervalle I, F est une primitive de f sur I, a et b sont deux réels de I. Alors :

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

-`@´-Démonstration

On sait que la fonction $G: x \longmapsto \int_a^x f(t)dt$ est la primitive de f sur I telle que G(a) = 0. Si F est une primitive de f sur I, alors il existe $k \in \mathbb{R}$ tel que pour tout x de I, G(x) = F(x) + k. Or G(a) = 0, d'où k = -F(a) et on obtient : $\int_a^x f(t)dt = F(x) - F(a)$. En posant x = b, on obtient bien $\int_a^b f(t)dt = F(b) - F(a)$.

En posant x = b, on obtient bien $\int_a^b f(t)dt = F(b) - F(a)$.

Notation

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

[©]-Remarque

Cela permet de valider la formule :

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a) = -\int_{b}^{a} f(x) dx = -(F(a) - F(b))$$

I.IIntégration par parties

THÉORÈME 11

Si u et v sont deux fonctions dérivables sur un intervalle I, telles que leurs dérivées u' et v'soient continues sur I.

Alors pour tous réels a et b de I:

$$\int_a^b u(t)v'(t)dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t)dt$$

. Démonstration

La fonction uv est dérivable sur I avec (uv)' = u'v - uv'. Ainsi

$$uv' = (uv)' - u'v$$

Puisque uv', (uv)' et u'v sont continues sur I, on en déduit que :

$$\int_{a}^{b} (uv')(t)dt = \int_{a}^{b} [(uv)'(t) - (u'v)(t)]dt$$

et par linéarité de l'intégration :

$$\int_a^b (uv')(t)dt = \int_a^b (uv)'(t)dt - \int_a^b (u'v)(t)dt$$

Or uv est une primitive de (uv)' sur I, donc

$$\int_a^b (uv)'(t)dt = [u(t)v(t)]_a^b$$

Ainsi, on obtient:

$$\int_a^b u(t)v'(t)dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t)dt$$

I.J Calculs de volumes

Propriété

Dans un repère orthogonal $(O; \overrightarrow{OI}; \overrightarrow{OJ}; \overrightarrow{OK})$ de l'espace, le solide \mathcal{V} est limité par les plans d'équations z = a et z = b, a < b.

 $\mathcal{S}(z)$ désigne l'aire de la section du solide par le plan parallèle à (OIJ) de cote z, avec $a \leq z \leq b$.

L'unité de volume étant le volume du parallélépipède rectangle construit sur O, I, J et K, de la même manière que pour définir l'unité d'aire dans le plan repéré, si $\mathcal S$ est une fonction continue sur l'intervalle [a;b], alors on admet que le volume V du solide V est égal à :

$$V = \int_{a}^{b} \mathcal{S}(z) dz$$

Remarque
Nous verr Nous verrons des exemples en T-D ontamment concernant des solides de révolution et les solides de référence : boule, cone, pyramide......