University of California, Davis Department of Statistics

Name .										
P	R	I	N	T	P	L	E	A	S	Е

STA 135

Sample Midterm II

Instructions: 1. **WORK ALL PROBLEMS**. Please, give details and explanations and **SHOW ALL YOUR WORK** so that partial credits can be given.

2. You may use **three** sheets of **notes** and a **calculator** but **no** other reference materials.

Points

- 1. Let \underline{X}_1 , \underline{X}_2 , \underline{X}_3 , \underline{X}_4 , be random samples from a p-dimensional multivariate normal distribution with mean vector μ and covariance matrix Σ .
 - (a) Find the distribution of $(\underline{X}_1 + \underline{X}_2 + \underline{X}_3 + \underline{X}_4) / 4$.
 - (b) Find the distribution of $(\underline{X}_1 \underline{X}_2 + \underline{X}_3 \underline{X}_4) / 2$.
 - (c) Suppose the original population is not multivariate normal and we have increased the sample size from 4 to 400. What is the approximate distribution of the sample mean vector.
 - (d) Let S denote the sample covariance matrix. With the information given in part (c), what is the approximate distribution of $n(\underline{X} \underline{\mu})$ S⁻¹ $(\underline{X} \underline{\mu})$.

In a study of grizzly bears the following summary statistics on head length (cm) and head width (cm) were obtained for n= 61 bears.

$$\underline{x} = [17.98 \ 31.13]$$
', $S = \begin{bmatrix} 9.95 \ 13.88 \\ 13.88 \ 21.26 \end{bmatrix}$

- (a) Obtain the large-sample 95% simultaneous confidence intervals for the means of each one of these two measurements. $(\chi^2_2(0.05) = 5.99)$ (b) Obtain the large-sample 95% confidence region for mean head length and head
- width. $(\chi^2_2(0.05) = 5.99)$
- (c) Obtained the 95% large-sample Bonferroni confidence interval for means of these two measurements. (Z(.0125) = 2.24)

3. The following data matrix is observed for a two-dimensional random vector $\underline{\mathbf{X}}$.

$$\mathbf{X} = \left[\begin{array}{cc} 3 & 4 \\ 6 & 2 \\ 3 & 3 \end{array} \right]$$

Assume that the population is multivariate normal with unknown mean vector $\underline{\mu}$ and unknown covariance matrix Σ .

- (a) Use the Hotelling T^2 to test H_0 : $\underline{\mu}=[\ 3\quad 2]$ ' against H_0 : $\underline{\mu}\neq[\ 3\quad 2]$ ' at 0.05 level of significance. $(F_{2,\ 1}(.05)=200)$.
- (b) Construct a 95% confidence region for mean vector $\underline{\mu}$ and use that to test the hypothesis stated in (a)

4. A researcher considered three indices measuring the severity of heart attacks. All three indices were evaluated for each patient. The values of these indices for n= 40 heart attack patients arriving at a hospital emergency room produced the summary statistics:

$$\mathbf{S} = \begin{bmatrix} 46.1 & 57.3 & 50.4 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 101.3 & 63.0 & 71.0 \\ 63.0 & 80.2 & 55.6 \\ 71.0 & 55.6 & 97.4 \end{bmatrix}$$

Assume that the population is multivariate normal with unknown mean vector $\underline{\mu}$ and unknown covariance matrix Σ , and test the equality of mean indices at .05 level. $(F_{2,38}(.05) = 3.25)$