Cours deep learning

L'entrainement d'un réseau profond

Adrien CHAN-HON-TONG ONERA/DTIS département traitement de l'information et système

Rappel : du neurone au réseau

Le neurone

Dans les architectures de réseaux de neurones (profond ou pas), le neurone est un filtre linéaire couplé (sauf dernière couche) à une activation non linéaire par exemple $\max(0,x)$:

 $w \in \mathbb{R}^D$ et $b \in \mathbb{R}$ sont les **poids** du neurones. $\max(0,x)$ est appelé **relu** - parfois noté $[x]_+$

Rappel : du neurone au réseau

La couche de neurone

Une couche de K neurones est une sequence de K neurones prenant la même entrée, et, dont les K sorties sont regoupées en 1 vecteur :

$$\begin{array}{ccc} \mathbb{R}^D & \to & \mathbb{R}^K \\ \textit{couche}_{W,b} : & \mathsf{x} & \to & \left(\begin{array}{c} \textit{neurone}_{W_1,b_1}(\mathsf{x}) \\ \dots \\ \textit{neurone}_{W_K,b_K}(\mathsf{x}) \end{array} \right) \end{array}$$

 $W \in \mathbb{R}^{K \times D}$ et $b \in \mathbb{R}^K$ sont les **poids** de chacun des K neurones.

Rappel : du neurone au réseau

Le réseau de neurone

Un réseau de neurones entièrement connectées (multi layer perceptron en anglais) de profondeur Q est un empilement de Q couches de neurones - la dernière est un seul neurone sans activation en classification binaire :

$$reseau_{\theta}: \begin{array}{ccc} \mathbb{R}^{D} & \rightarrow & \mathbb{R} \\ x & \rightarrow & C_{W_{Q},b_{Q}}(C_{W_{Q-1},b_{Q-1}}(...(C_{W_{1},b_{1}}(x))...)) \end{array}$$

 $heta = (W_1, b_1, ..., W_Q, b_Q)$ est un Q uplets de **poids** de couches de neurones - abbrégé C

Rappel: classification supervisée

Algorithme d'apprentissage

- prend en entrée une base d'apprentissage : un ensemble d'observations étiquettées $x_1, y(x_1), ..., x_N, y(x_N)$ par la fonction désirée y (à valeur dans $\{-1, 1\}$).
- produit un modèle f: une fonction qui, à x, associe une classe $f(x) \in \{-1,1\}$ (précisément, f est continue et son signe est utilisé comme prédicteur)
- ce modèle est évalué sur une **base de test** disjointe de la base d'apprentissage $\chi_1, y(\chi_1), ..., \chi_N, y(\chi_N)$ en calculant :

$$\frac{1}{N}\sum_{n=1}^{N}|f(\chi_i)-y(\chi_i)|\approx \int_{\mathbb{R}^D}|f(x)-y(x)|P(x)dx$$

Comment apprendre le modèle

Algorithme d'apprentissage

- prend en entrée une base d'apprentissage : un ensemble d'observations étiquettées $x_1, y(x_1), ..., x_N, y(x_N)$ par la fonction désirée y (à valeur dans $\{-1, 1\}$).
- ▶ produit un modèle f: une fonction qui, à x, associe une classe $f(x) \in \{-1,1\}$ (précisément, f est continue et son signe est utilisé comme prédicteur)
- ce modèle est évalué sur une **base de test** disjointe de la base d'apprentissage $\chi_1, y(\chi_1), ..., \chi_N, y(\chi_N)$ en calculant :

$$\frac{1}{N}\sum_{n=1}^{N}|f(\chi_i)-y(\chi_i)|\approx \int_{\mathbb{R}^D}|f(x)-y(x)|P(x)dx$$

Comment apprendre les poids du modèle

Attention

lci on suppose que la **structures** du réseau est prédéfini. On ne cherche qu'à optimiser les **poids** des neurones.

Plan

- ► Descente de gradient stochastique
- Descente de gradient stochastique en machine learning
- ► Backpropagation

La descente de gradient

F est une fonction dérivable de \mathbb{R}^D dans \mathbb{R} alors $\forall u,h \in \mathbb{R}^D$, $F(u+h) = F(u) + \nabla F_u | h + o(h)$ avec $ho(h) \underset{h \to 0}{\rightarrow} 0$ (notation petit o classique) Donc si $\nabla F_u \neq 0$ alors il existe $\lambda > 0$ tel que $F(u - \lambda \nabla F_u) < F(u)$

La descente de gradient

pseudo code

input : F, u_0

- 1. $u = u_0$
- 2. calculer ∇F_u
- 3. si $\nabla F_u \approx 0$ ou early stopping alors sortir
- 4. $\lambda = 1$
- 5. tant que $F(u \lambda \nabla F_u) \ge F(u)$ faire $\lambda = 0.5\lambda$
- 6. $u = u \lambda \nabla F_u$
- 7. go to 2

cet algorithme converge vers un point u^* tel que $\nabla F_u = 0$

La descente de gradient

pseudo code

input : F, u_0

- 1. $u = u_0$
- 2. calculer ∇F_u
- 3. si $\nabla F_u \approx$ 0 ou early stopping alors sortir
- 4. $\lambda = 1$
- 5. tant que $F(u \lambda \nabla F_u) \ge F(u)$ faire $\lambda = 0.5\lambda$
- 6. $u = u \lambda \nabla F_u$
- 7. go to 2

Attention

 u^* peut **ne pas être un minimum global** u^* peut **ne pas être un minimum local** (point de selle) La convergence peut être très lente

u correspond à θ les poids

u correspond à θ les poids

F s'appelle la fonction de perte (loss), elle doit être minimale quand on a atteint le comportement espéré

u correspond à θ les poids

F s'appelle la fonction de perte (loss), elle doit être minimale quand on a atteint le comportement espéré

idealement on voudrait :

$$(x_1, y_1), ..., (x_n, y_n) \in \mathbb{R}^D \times \{-1, 1\}$$

$$loss(\theta) = \sum_{i=1}^{n} sign(-y_i reseau_{\theta}(x_i))$$

mais il nous faut une fonction dérivable

u correspond à θ les poids

F s'appelle la fonction de perte (loss), elle doit être minimale quand on a atteint le comportement espéré

on peut par exemple prendre

$$(x_1, y_1), ..., (x_n, y_n) \in \mathbb{R}^D \times \{-1, 1\}$$

$$loss(\theta) = \sum_{i=1}^{n} relu(1 - y_i reseau_{\theta}(x_i))$$

c'est la hinge loss - elle est conceptuellement simple

u correspond à θ les poids

F s'appelle la fonction de perte (loss), elle doit être minimale quand on a atteint le comportement espéré

en pratique on prend généralement $(x_1, y_1), ..., (x_n, y_n) \in \mathbb{R}^D \times \{-1, 1\}$

$$loss(\theta) = \sum_{i=1}^{n} y_i \log(reseau_{\theta}(x_i)) + (1 - y_i) \log(1 - reseau_{\theta}(x_i))$$

c'est la binary cross entropy (suppose que $reseau_{\theta}(x_i) \in]0,1[$ ce qu'on peut obtenir en utilisant une sigmoide sur le dernier neurone)

Les limites 1/3

$$loss(\theta) = \sum_{i=1}^{n} relu(1 - y_i reseau_{\theta}(x_i))$$

si n=1000000 ça veut dire qu'à chaque fois que je veux calculer ∇f_{θ} je dois faire 1000000 calculs - chacun avec plusieurs étages de plusieurs filtres! et pour trouver λ n'en parlons pas!

SGD

Les limites 2/3

 $reseau_{\theta}(x_i)$ n'est pas vraiment dérivable (relu non plus) \rightarrow pseudo dérivé \rightarrow on pert la certitude de converger est ce que c'est grave sur un problème déjà non convexe?

Les limites 3/3

NIPS 2017 (Gradient Descent Can Take Exponential Time to Escape Saddle Points): on peut mettre un temps exponentiel à sortir d'un point de selle est ce que c'est grave vu qu'on va faire du early stopping?

Les limites 2 et 3 sont marginales.

La SGD (Descente de gradient stochastique) est une solution à la limite 1 et dans une moindre mesure à la limite 3 (NIPS 2017 (How to Escape Saddle Points Efficiently) : la descente de gradient perturbée s'échappe des points de selle)

loss est une fonction dérivable de \mathbb{R}^D dans \mathbb{R} et que loss $(u) = \sum\limits_{i=1}^n q_i(u)$

alors, en faisant comme une descente de gradient mais en prenant 1 des q_i tiré aléatoirement à la place de *loss* et avec un pas (λ) fixe sélectionné a priori

on converge en espérance vers le minimum dans le cas convexe

pseudo code

input: $x_1, y_1, ..., x_n, y_n, \theta_0$

- 1. $\theta = \theta_0$
- 2. iter = 0
- 3. tirer i au hasard dans 1,...,n
- 4. $partial_loss = relu(1 y_i reseau_{\theta}(x_i))$
- 5. calculer $\nabla partial_loss_{\theta}$
- 6. $\theta = \theta \lambda_{iter} \nabla partial_loss_{\theta}$
- 7. iter = iter + 1
- 8. si condition d'arrêt alors sortir
- 9. go to 3

Mais ça suppose qu'on sache calculer le gradient!!!!

définitions

```
\begin{split} &\text{input}: (x \textit{in}_i)_i \\ &\text{variables}: (w_{t,i,j})_{t,i,j} \\ &\text{convention}: x_{0,i} = x \textit{in}_i, x_{t,0} = 1 \\ &\text{règles du forward}: \end{split}
```

- $ightharpoonup x_{t+1,i} = relu(\alpha_{t+1,i})$
- ightharpoonup loss(w) peut se calculer à partir de la dernière couche

```
\begin{array}{l} \mbox{for ward} \\ \mbox{for } t \\ \mbox{for } i \\ \mbox{for } j \\ \mbox{A[t][i]} += \mbox{relu(A[t-1][j])*w[t-1][i][j]} \end{array}
```

forward

$$x_{t+1,i} = relu\left(\alpha_{t+1,i}\right)$$

$$\alpha_{t+1,i} = \sum_{i} x_{t,i} w_{t,i,j}$$

loss(w) se calcule à partir de la dernière couche

objectif

On chercher à calculer $\frac{\partial loss}{\partial w_{t,i,i}}$

Pas trivial

$$\begin{array}{l} \text{R\'eduction } w - \alpha \\ \frac{\partial loss}{\partial w_{t,i,j}} = \frac{\partial loss}{\partial \alpha_{t,i,j}} \frac{\partial \alpha_{t,i}}{\partial w_{t,i,j}} = \frac{\partial loss}{\partial \alpha_{t,i}} x_{t,j} \end{array}$$

Réduction α - α

$$\frac{\partial loss}{\partial \alpha_{t,j}} = \sum_{i} \frac{\partial loss}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial \alpha_{t,j}} = \sum_{i} \frac{\partial loss}{\partial \alpha_{t+1,i}} \mathbf{w}_{t,i,j} \mathit{relu'}\left(\alpha_{t,j}\right)$$

relu est une fonction linéaire par morçeau, sa *dérivé* est donc une constante par morçeau

Attention

La somme dans $\frac{\partial loss}{\partial \alpha_{t,j}} = \sum_i \frac{\partial loss}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial \alpha_{t,j}}$ ne vient **pas** de la somme dans $\alpha_{t+1,i} = \sum_i x_{t,j} w_{t,i,j}$.

Elle vient de
$$f(u) = a(b(u), c(u))$$
 implique $\frac{\partial f}{\partial u} = \frac{\partial a}{\partial b} \frac{\partial b}{\partial u} + \frac{\partial a}{\partial c} \frac{\partial c}{\partial u}$. Lui même vient de $f(u+h) = f(u) + f'(u)h$

forward

$$x_{t+1,i} = relu\left(\alpha_{t+1,i}\right)$$

$$\alpha_{t+1,i} = \sum_{i} x_{t,i} w_{t,i,j}$$

loss(w) se calcule à partir de la dernière couche

backward

$$\begin{split} \frac{\partial I}{\partial w_{t,i,j}} &= \frac{\partial I}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial w_{t,i,j}} = \frac{\partial I}{\partial \alpha_{t+1,i}} x_{t,j} \\ \frac{\partial I}{\partial \alpha_{t,j}} &= \sum_{i} \frac{\partial I}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial \alpha_{t,j}} = \sum_{i} \frac{\partial I}{\partial \alpha_{t+1,i}} w_{t,i,j} h'\left(\alpha_{t,j}\right) \end{split}$$

```
forward backward
for t
    for i
        for j
            A[t][i] += relu(A[t-1][j])*w[t-1][i][j]

DA[z][1] = se calcule à partir de la dernière couche
for t from z to 1
    for j
        for i
        DA[t][j] += DA[t+1][i]*w[t][i][j]*relu'(A[t][j])

ATTENTION c'est juste un pseudo code qui NE MARCHE PAS si on fait juste un copier coller!
```

Conclusion

```
base d'apprentissage (x_1, y(x_1)), ..., (x_n, y(x_n)) \in \mathbb{R}^D \times \{-1, 1\}
base de test (\chi_1, y(\chi_1)), ..., (\chi_n, y(\chi_n)) \in \mathbb{R}^D \times \{-1, 1\}
on optimise \theta avec l'objectif que sign(reseau_{\theta}(x_i)) \approx y(x_i) avec SGD et backpropagation
dans l'espoir que \forall i \in \{1, ..., n\}, sign(reseau_{\theta}(\chi_i)) \approx y(\chi_i)
```