Homework 2

- 1. Consider the following relation on the set $\mathbb{R}^{\times} = \{x \in \mathbb{R} : x \neq 0\}$: $(x,y) \in R \iff y/x > 0$. Prove that R is an equivalence relation. Describe the equivalence classes of R, in particular, how many are they?
- 2. Consider $X = \mathbb{R}^2 \{(0,0)\}$ the real plane without the point zero. Define the relation $(x,y) R(x',y') \iff \exists a \in \mathbb{R}^{\times}$ such that x' = ax and y' = ay. Prove that R is an equivalence relation. Can you describe the geometry of the set of equivalence classes (what its shape?).
- 3. Consider the following relation on $\mathbb{Z} \times \mathbb{Z}$: $(x,y) \sim (x',y') \iff xy' = x'y$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Consider the set of equivalence classes $\mathbb{Z} \times \mathbb{Z}/\sim$, denote the equivalence class of (x,y) by $\overline{(x,y)}$. Define the following binary operations between equivalence classes:

$$\frac{\overline{(x,y)} \cdot \overline{(x',y')}}{\overline{(x,y)} + \overline{(x',y')}} = \frac{\overline{(xx',yy')}}{\overline{(xy' + x'y,yy')}}.$$

Prove that these operations are well defined, that is does not depend on a choice of a representative. Do you recognize the arithmetic system $\mathbb{Z} \times \mathbb{Z}/\sim$ you just constructed?

- 4. Consider the residue ring \mathbb{Z}_n for some fixed $n \geq 2$. Formulate and prove the following list of properties for the operations + and \cdot defined in class: Addition: associativity, commutativity, existence of neutral element, existence of additive inverse; Multiplication: associativity, commutativity, existence of neutral and finally, distributivity.
- 5. Compute explicitly the addition and multiplication tables for $\mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_6$.
- 6. Let \sim be an equivalence class on X, let $P=P_{\sim}$ be the associated partition and finally let \approx denote the equivalence relation associated to P. Prove that $\approx = \sim$, that is $x \sim y$ if and only if $x \approx y$.
- 7. Opposite direction. let P be a partition of a set X. Let $\sim = \sim_P$ be the associated equivalence relation and finally let $Q = P_{\sim}$ be the partition associated to \sim . Prove that P = Q.
- 8. Let (G, *) be a finite group and $H \subset G$ be a subgroup. Define the following relation on $G: g_1 \sim g_2 \Leftrightarrow \exists h \in H$ such that $g_1 = g_2 h$. Prove that \sim is an equivalence relation. Consider the group $(\mathbb{Z}, +)$ and the subgroup $E_n \subset \mathbb{Z}$, $E_n = \{x \in \mathbb{Z} : n | x\}$. Describe \mathbb{Z}/E_n .
- 9. Let $X = \{1, 2, 3\}$. How many relations exists on X? How many equivalence relation exists on X?