Abgabe - Übungsblatt [2]

[Felix Lehmann]

[Markus Menke]

19. November 2020

Aufgabe 1

$$B = \begin{pmatrix} -2 & 1 & -7 \\ -7 & -1 & 1 \\ 0 & 6 & 5 \end{pmatrix}$$

a)

$$||B||_1 = 13$$

 $||B||_{\infty} = 11$
 $||B||_F = 2\sqrt{41}$

b)

1. Zu zeigen: $||x||_W \ge 0$, $||x||_W = 0$ gdw. x = 0

Der Beweis erfolgt in drei Schritten.

Wir zeigen zunächst, dass $||x||_W \ge 0$: Laut Definition ist $||x||_W := ||W * x||$. Da ||*|| eine Norm ist, muss $||x|| \ge 0$ gelten. Somit ist gilt auch $||W*x|| \ge 0$. Damit ist die erste Bedingung erfüllt.

Als nächsten Schritt zeigen wir die Hinrichtung der Äquivalenz.

Hierbei nutzen wir die absorbierende Eigenschaft von 0 und die Eigenschaft $||x|| = 0 \Rightarrow x = 0 \text{ der Norm } ||*||$:

$$x = 0 \Rightarrow ||x||_W = ||0||_W \coloneqq ||W * 0|| = ||0|| = 0$$

Als letzten Schritt zeigen wir die Rückrichtung der Äquivalenz.

$$||x||_W = 0 \Rightarrow ||x||_W \coloneqq ||W * x||$$

 $||x||_W=0 \Rightarrow ||x||_W\coloneqq ||W*x||$ Sei y das Ergebnis von W*x, dann ist $y_i\coloneqq \sum_{j=1}^m w_i j*x_j$. Da W invertierbar ist, sind auch alle Zeilen von W linear unabhängig. Somit ist der Vektor x=0 eindeutig bestimmt. Damit sind alle Bedingungen für Schritt 1 erfüllt.

2. Zu zeigen: $||\alpha x||_W = |\alpha| * ||x||_W$

$$||\alpha * x||_W \coloneqq ||W * (\alpha * x)||$$

Sei y das Ergebnis von $W*(\alpha*x)$, dann gilt aufgrund der Kommutativität von * in \mathbb{C} :

$$y_i = \sum_{j=1}^m w_i j * (\alpha * x_j) = \alpha * \sum_{j=1}^{w_i} j * x_j.$$
 Somit ist $w * (\alpha * x) = \alpha * (w * x)$

Da || * || eine Norm ist, gilt || $\alpha * A$ || = $|\alpha| * ||A||$. Sei $A \coloneqq W * x$, so gilt aufgrund der Eigenschaft der Norm || * || auch || $\alpha * (W * x)$ || = $|\alpha| * ||W * x||$ == $|\alpha| * ||x||_W$. Dies galt zu zeigen.

3. Zu zeigen: $||x + y||_W \le ||x||_W + ||y||_W$

Sei y' das Ergebnis von W*(x+y), dann ist $y_i' = \sum_{j=1}^m w_i j*(x_j+y_j) = \sum_{j=1}^m w_i j*x_j + \sum_{j=1}^m w_i j*y_j$ somit ist W*(x+y) = Wx + Wy. Aufgrund der Eigenschaft der Norm ||*|| gilt dann auch $||Wx + Wy|| \le ||Wx|| + ||Wy||$.

Da alle 3 Eigenschaften für eine Norm erfüllt sind, bildet $||x||_W$ eine Norm.

c)

Eine Norm muss drei Eigenschaften erfüllen:

$$\begin{split} ||A|| &= 0 \Rightarrow A = 0 \\ ||\alpha * A|| &= |\alpha| * ||A|| \\ ||A + B|| &\leq ||A|| + ||B|| \end{split}$$

Die gegebene Abbildung erfüllt diese, und ist damit eine Norm.

Aufgabe 2

a)

Ist für m=1 immer gleich. Für $m\geq 2$ das größte element allein ist immer \leq als das größte element $+x\epsilon R_0^+$.

b)

Ist für m=1 immer gleich.

 \mathbf{c}

Ist für m, n = 1 immer gleich.

d)

Ist für m, n = 1 immer gleich.

Aufgabe 3

a)

$$v*((I-\frac{2}{v*v}\cdot v\cdot v^*)\cdot w)=-v*w$$

 v^* wird ist nicht eindeutig definiert, Aufgabe daher nicht lösbar

Aufgabe 4

a)

$$a_1 \cdot a_2 = 0$$

 $a_1 \cdot a_3 = 0$
 $a_1 \cdot a_4 = 0$
 $a_2 \cdot a_3 = 0$
 $a_2 \cdot a_4 = 0$
 $a_3 \cdot a_4 = 0$
damit ist A paarweise orthogonal $c_1 \cdot c_2 = -22i$
 $c_1 \cdot c_3 = 22i$
 $c_2 \cdot c_3 = 48 + 46i$

damit ist C nicht paarweise orthogonal

b)

$$A^* \cdot A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

 $(A^* \cdot A)^{-1}$ ist nicht definiert

$$(A^* \cdot A)^{-1} \cdot A^* = \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 1 & -1 & 0 & 1 & 0 \end{pmatrix}$$