# Reasoning with Types

Ben Deane

Sometime 2015

# What is a type?

What do you think?

# Let's play a game

To help us get thinking about types. I'll tell you a type. You tell me how many values it has.

# How many values?

bool;



# How many values?

char;



# How many values?

void;



```
struct Foo { };
```

```
enum Foo
{
   BAR,
   BAZ,
   QUUX
};
```

```
template <class T>
struct Foo
{
   T m_t;
};
```

#### End of Level 1

• Algebraically, a type is the number of values that inhabit it.

# These types are equivalent

```
bool;
enum Foo
{
BAR,
BAZ
};
```

Let's move on to level 2.

## How many values?

pair<char, bool>;

```
struct Foo
{
   char a;
   bool b;
};
```

## How many values?

tuple<bool, bool, bool>;



```
template <class T, class U>
struct Foo
{
    T m_t;
    U m_u;
};
```

#### End of Level 2

- When two types are "concatenated" into one compound type, we <u>multiply</u> the # of inhabitants of the components.
- This kind of compounding gives us a product type.
- On to Level 3.

# How many values?

optional < char>;



## How many values?

variant<char, bool>;



```
template <class T, class U>
struct Foo
{
  variant<T,U> m_v;
};
```

#### End of Level 3

- When two types are "alternated" into one compound type, we add the # of inhabitants of the components.
- This kind of compounding gives us a sum type.
- Caution: Miniboss detected ahead.

```
template <class T>
struct Foo
{
  variant<T,T> m_v;
};
```

```
template <class T>
struct Foo
{
  bool b;
  T m_t;
};
```

# How many values?

bool f(bool);



#### Four possible values

```
bool f1(bool) { return true; }
bool f2(bool) { return false; }
bool f3(bool b) { return b; }
bool f4(bool b) { return !b; }
```

# Miniboss: Algebraic Conundrum "Function"

#### How many values?

char f(bool);

# Miniboss: Algebraic Conundrum "Function"

# How many values (for f)? enum Foo { BAR, BAZ, QUUX }; char f(Foo);

# Miniboss: Algebraic Conundrum "Function"

```
template <class T, class U>
U f(T);
```

# Victory!

- The type of a <u>function</u> from A to B has  $B^A$  possible values.
- Hence a curried function is equivalent to its uncurried alternative:

$$F_{uncurried} :: (A, B) \to C \Leftrightarrow C^{A*B}$$

$$= C^{B*A}$$

$$= (C^B)^A$$

$$\Leftrightarrow (B \to C)^A$$

$$\Leftrightarrow F_{curried} :: A \to (B \to C)$$

WARNING: Boss detected ahead!



# How many values?

template <typename T>
class vector<T>;

We can define a vector<T> recursively:

$$v(t) = 1 + tv(t)$$

And rearrange...

$$v(t) - tv(t) = 1$$
$$v(t)(1 - t) = 1$$
$$v(t) = \frac{1}{1 - t}$$

$$v(t) = \frac{1}{1-t}$$

What does it mean? Let's ask Wolfram Alpha.

#### A vector<T> can have:

- 0 elements (1)
- 1 element (t)
- 2 elements (t²)
- etc...

$$\begin{aligned} \text{vector} < \text{T}> &\Leftrightarrow 1 + t + t^2 + t^3 + \dots \\ &= \frac{1}{1 - t} \end{aligned}$$

# Victory!

Reasoning about types in an algebraic way allows us to discover equivalent formulations for APIs, Data Structures, etc which may be more natural or more efficient.

# Let's play another game

I'll give you a mystery function type.

You tell me possible ways to write and name the function.

There's one rule: I insist on total functions.

#### What's That Function?

#### Name/Implement f

```
template <class T>
T f(T);
```

#### What's That Function?

#### Name/Implement f

```
template <class T, class U>
T f(pair<T,U>);
```

```
template <class T>
T f(bool, T, T);
```

```
template <class T, class U>
U f(function<U(T)>, T);
```

```
template <class T>
vector<T> f(vector<T>);
```

```
template <class T>
T f(vector<T>);
```

```
template <class T>
optional<T> f(vector<T>);
```

```
template <class T, class U>
vector<U> f(function <U(T)>, vector<T>);
```

```
template <class T>
T f(optional<T>);
```

```
template <class K, class V>
V f(map<K,V>, K);
```

```
template <class K, class V>
optional<V> f(map<K,V>, K);
```

# Victory!

Type signatures can tell us a lot about functionality. Using the type system appropriately and writing <u>total functions</u> makes interfaces safer to use.

# The rabbit hole goes deeper

- Algebraic data type (Wikipedia)
- The Algebra of Algebraic Data Types (blog)
- The Algebra of Algebraic Data Types (video)

Let's hope C++ gets sum types (variant) in the standard soon...

# Goals for well-typed interfaces

- Achieve formulations that:
  - are more natural
  - perform better
- Write total functions
- Make illegal states unrepresentable