PLETHORA

SEMANTIC E-COMMERCE WEBSITE WITH ITEM-BASED COLLABORATIVE FILTER RECOMMENDATION SYSTEM

Under the guidance of

Mr. Dinesh Naik Assistant Professor Department of Information Technology Presented By:

Divija Nagaraju- 14IT112 Mukta Kulkarni- 14IT220 Pooja Soundalgekar- 14IT230

INTRODUCTION

• Era of E-commerce

• High relevance over sifting through variety

•Relevant, High Precision Results necessary

Need to make suggestions according to user's interest

Use of Recommender Systems

CURRENT SEARCH

Keyword, Syntactic Based

No Unified View – Back and Forth Jumping Of Data

Bottleneck for sharing Product Data

SEMANTIC SEARCH

Search Based on Information not Documents

Data is Structured

Use of XML/RDF constructs

SparQL for querying the endpoint data

PROBLEM STATEMENT

 Build E-Commerce Website with Semantic Search on Closed Domain

- Include a search bar in the Website to Query Data Semantically
- Use of an Item Based Collaborative Filter Recommender System for prediction

METHODOLOGY

Semantic Search Bar

Use of RDF/XML construct to define an ontology

Use Semantic Query to Retrieve data from the ontology

RDF GRAPH

Defines entities in the concept

Defines properties of the object

Defines relations between entities

Implements a Graphical Representation

SEMANTIC E-COMMERCE

Entities:

Buyer

Seller

Items

Brand

Category

Data Properties

Buys

Sells

Has_Category

ITEM BASED COLLABORATIVE FILTER

- Training Space : User-Item Matrix
- M users and N items

- Compute Similarity between two items i and j
- Predict user ratings for items

Similarity Computation

Cosine Based Similarity

$$sim(i,j) = \cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2 * ||\vec{j}||_2}$$

Correlation Based Similarity

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R}_i)(R_{u,j} - \bar{R}_j)}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R}_i)^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R}_j)^2}}$$

Adjusted Cosine Similarity

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R_u})(R_{u,j} - \bar{R_u})}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R_u})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R_u})^2}}$$

Department of Information Technology

PREDICTION COMPUTATION

Weighted Computation

$$P_{u,i} = \frac{\sum_{\text{all similar items, N}} (s_{i,N} * R_{u,N})}{\sum_{\text{all similar items, N}} (|s_{i,N}|)}$$

WORK DONE

Data Set

• Web Scraping using python BeautifulSoup Library.

O Website Used : Myntra

User Specific Ratings : MovieLens Dataset

WEBSITE DESIGN

Primarily HTML/CSS Bootstrap

PHP

MySQL Database

Protégé

Apache Jena Server / SparQL

ARC Library

SEMANTIC SEARCH BAR IMPLEMENTATION

Ontology Creation

- o Protégé 5.0.0
- o Entities, Data Properties, Object Properties Defined
- o RDF/XML Construct used.

SparQL

- Apache Jena Server
- Upload of the Ontology File Triples

Linking of SparQL and PHP

- Apache Jena Server Runs on localhost:3030
- Endpoint Data store link defined in PHP
- ARC 2 PHP library used for Parsing SparQL
- Execute SparQL Query
- Use Result for displaying data accordingly
- Semantic Search in a closed domain

Recommendation System Implementation

Details

943 users and 1683 items

Users and Items both increase with buyer's ratings on items and sellers increasing items to be sold

Recommendation Algorithm

Python Based Script: Function requires 2 parameters

a) User-ID b)Similarity type

Methods to compute each of the similarities

Method to compute prediction

Returns array in descending order of ratings

Department of Information Technology

RESULTS and DISCUSSION

 Semantic Query Executes a Meaningful Search over the closed Domain

- Item Based Recommendation System outperforms existing collaborative recommender techniques
- Complete characterisation cannot be made due to sparsity of dataset used

CONCLUSION and **FUTURE** WORK

- Open Web Domain for Semantic Search
- Integration of Products Available on all E-Commerce Websites

- Improved Results over Traditional Techniques
- Ability to Scale Larger datasets

References

- [1] B.M. Sarwar, G. Karypis, J.A. Konstan, and J. Reidl."Item-based collaborative filtering recommendation algorithms". In Proceedings of the 10th International World Wide Web Conference, pages 285-295, 2001.
- [2] M.Deshpande and G. Karypis. "Item-based top-n recommendation algorithms". ACM Trans. Inf. Syst., 22(1):143-177, 2004
- [3] S S Dhankeran, 'Ontology Based E-Commerce application using RDF', International Journal of Computer Science and Information Technology -2013
- [4] B. Vijayalakshmi, 'Perspectives of Semantic E-commerce', International Journal of computer applications-2011

