Lecture 13

Sch.1 R' ch.2 Surface

(R^2 , devc) given $P,Q \in \mathbb{R}^2$, compute d(P,Q)

We consider isometries $f \in Iso(\mathbb{R}^2, d)$:

d(P,Q)=d(fip),fiQ)) group of isometries

How to classify f?

器加入条件.

"Characterization of isometries by mages of 3 pts" Non calinean

Thm I: Let A.B.C E R2 be 3 points

Then, f: R2 -> R2 is uniquely determined by the images of f(A), f(B), f(c)

FALSE /

Review Proof: given $D \in \mathbb{R}^2$, where is $f(D) \in \mathbb{Z}^2$?

ThmI (Classification of Isometries)

Example: (1)
$$\frac{1}{23} \frac{1}{2} \frac{1}{$$

Thm I (Type of Isometries)

- (1) Reflection Fr (1) (3) Translation t(2,p) (2)

Part 2: Geometry in \mathbb{R}^2/Γ and $\Gamma \subseteq \mathrm{Iso}(\mathbb{R}^2)$

Given $P,Q \in \mathbb{R}^2$, they define points $PP,PQ \in \mathbb{R}^2/P$.

Ex compute d CPP, Pa) in P/P Ly (1st) Draw P-orbit of P

(2rd) Min. distance.

(Det") A fundamental domain Dr for r - it 17 is given, find such Dr

= Find distances in Dr and computing intersection between lines in R/p

Computationally efficient Matter Example Consider p=\(t(1,0)° \(\dagger\) (t(0,1)) \(\leq \tag{2}\)

Dr (0.5)

(0.5)

相同的点

d[0,2),(1.0)] =
$$\frac{1}{2}$$

[X,Y) \wedge (X, Y±1) \wedge (X±1, $-$ 6)