

Общероссийский математический портал

С. Е. Степанов, И. Г. Шандра, Семь классов гармонических диффеоморфизмов и их геометрия, Tp. геом. сем., 2003, том 24, 139-154

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.205.19.235

7 июня 2024 г., 16:20:31

I.G. Shandra, S.E. Stepanov

THE SEVEN CLASSES OF HARMONIC DIFFEOMORPHISMS AND THEIR GEOMETRY

Abstract

One of the present authors classified harmonic diffeomorphisms between Riemannian manifolds [1]. This paper is devoted to the study of the local and global geometry of certain classes of harmonic diffeomorphisms.

Аннотация

$C.Е.\ C$ тепанов, $И.Г.\ Ш$ андра Семь классов гармонических диффеоморфизмов и их геометрия

В [1] была получена классификация гармонических диффеоморфизмов между римановыми многообразиями (см. [1]). В данной работе изучается локальная и глобальная геометрия некоторых гармонических диффеоморфизмов.

1. Harmonic diffeomorphisms

1.1. Let (M,g) be a connected smooth pseudo-Riemannian manifold, ∇ its Levi-Civita connection, and R the corresponding curvature tensor defined by $R_{XY} = \nabla_{[X,Y]} - [\nabla_X, \nabla_Y]$ for smooth vector fields X and Y on (M,g). Let Ric and Scal, respectively, denote the Ricci tensor and the scalar curvature.

Next, let $f:(M,g)\to (M',g')$ be a smooth map between two pseudo-Riemannian manifolds and let $f^{-1}TM'$ be the pull-back bundle. The Levi-Civita connections on TM and TM' induce a connection $\overline{\nabla}$ in the bundle of 1-forms on M with values in $f^{-1}TM'$. Then $\wp_f = \overline{\nabla} df$ is a

¹⁹⁹¹ Mathematical Subject Classification. 53C43, 58E20.

Key words and phrases. Riemannian manifold, harmonic diffeomorphism.

symmetric bilinear form on TM, called the second fundamental form of f [2]. The trace of \wp_f with respect to g is called the tension field of \wp_f , and is denoted by $\tau(\wp_f)$. The map f is said to be harmonic if and only if it satisfies the Euler-Lagrange equations (see [3, 4, 5] for more details and references), that is

$$\tau(\wp_f) := trace_q \overline{\nabla} df = 0, \tag{1.1}$$

where $trace_g$ denotes the trace operator with respect to g.

Let's find out a form of the Euler-Lagrange equations in terms of local coordinate systems. Take coordinate neighbourhoods U with local coordinates x^1, \ldots, x^m of (M, g) and U' with local coordinates $y^1, \ldots, y^{m'}$ of (M', g') such that $f(U) \subseteq U'$. The indices i, j, k, l, \ldots run over the range $\{1, 2, \ldots, m'\}$ and the indices $\alpha, \beta, \gamma, \delta, \ldots$ run over the range $\{1, 2, \ldots, m'\}$, where $m = \dim M$ and $m' = \dim M'$, respectively.

Suppose that $f:(M,g) \to (M',g')$ is represented by equations $y^{\alpha} = y^{\alpha}(x^1,\ldots,x^m)$ with respect to U and U'. We set $f_i^{\alpha} = (\partial_i y^{\alpha})(x^1,\ldots,x^m)$, where $\partial_i = \frac{\partial}{\partial x^i}$. Then the differential df of the mapping f is represented by the matrix (f_i^{α}) with respect to the local coordinates x^1,\ldots,x^m of (M,g) and $y^1,\ldots,y^{m'}$ of (M',g').

We denote by g_{ij} the local components of the pseudo-Riemannian metric g, by $g'_{\alpha\beta}$ those of the pseudo-Riemannian metric g'. The Christoffel symbols formed with g_{ij} and $g'_{\alpha\beta}$ we denote by Γ^k_{ij} and $\Gamma'^{\alpha}_{\beta\gamma}$, respectively.

In U we set

$$f_{ij}^{\alpha} = \overline{\nabla}_j f_i^{\alpha}, \tag{1.2}$$

where

$$\overline{\nabla}_{i} f_{i}^{\alpha} = \partial_{i} f_{i}^{\alpha} + \Gamma_{\beta \gamma}^{\prime \alpha} f_{i}^{\beta} f_{i}^{\gamma} - \Gamma_{i i}^{l} f_{i}^{\alpha}$$

$$\tag{1.3}$$

is a local expression of the tensor field $\overline{\nabla} df$ and $f_{ij}^{\alpha} = f_{ji}^{\alpha}$. Differentiating (1.2) covariantly, we find the following

$$\overline{\nabla}f_{ij}^{\alpha} = \partial_k f_{ij}^{\alpha} + \Gamma_{\beta\gamma}^{\prime\alpha} f_{ij}^{\beta} f_k^{\gamma} - \Gamma_{jk}^l f_{li}^{\alpha} - \Gamma_{ik}^l f_{ij}^{\alpha}, \tag{1.4}$$

where $\overline{\nabla} f_{ij}^{\alpha} = \overline{\nabla}_k \overline{\nabla}_j f_i^{\alpha}$. Taking into account (1.2), (1.3), and (1.4), we obtain the formula of Ricci type [6]

$$\overline{\nabla}_k \overline{\nabla}_j f_i^{\alpha} - \overline{\nabla}_j \nabla_k f_i^{\alpha} = R_{\beta\gamma\delta}^{\prime\alpha} f_i^{\beta} f_k^{\delta} f_j^{\gamma} - R_{ijk}^l f_l^{\alpha}, \tag{1.5}$$

where $R_{\beta\gamma\delta}^{\prime\alpha}$ and R_{ijk}^{l} are components of the curvature tensors of the Levi-Civita connections ∇ and $\overline{\nabla}$, respectively.

Now, using the (1.3), we find the coordinate form of the Euler-Lagrange equations

$$g^{ij}(\partial_i\partial_j f^\alpha - \Gamma^k_{ij}\partial_k f^\alpha + \Gamma'^\alpha_{\beta\gamma}\partial_i f^\beta\partial_j f^\gamma) = \Delta f^\alpha + g^{ij}\Gamma'^\alpha_{\beta\gamma}\partial_i f^\beta\partial_j f^\gamma = 0, \quad (1.6)$$

where Δ is the Laplace operator of the manifold (M, g).

Remark 1.1. In the origin of normal coordinate system ($\Gamma_{ij}^k = 0$ and $\Gamma_{\beta\gamma}^{'\alpha} = 0$), each of the components of the harmonic mapping turns to be a harmonic function of the coordinates. Using the Cauchy-Riemann equations, we immediately obtain that every holomorphic mapping of Kählerian manifolds is harmonic [7]. We shall generalize this result (cf. the Theorem 1.3 and Corollary 1.4) in the third part of this section.

1.2. Let $f:(M,g) \to (M',g')$ be a diffeomorphism of equidimensional pseudo-Riemannian manifolds. If $\dim M = \dim M' = m$, we can assume that f is represented by the following equations [8]

$$y^i = x^i \tag{1.7}$$

with respect to the local coordinate systems x^1, \ldots, x^m of (M, g) and y^1, \ldots, y^m of (M', g'). In this case the differential df is represented by the matrix (δ^i_j) , where δ^i_j is the Kronecker delta. If $f: (M, g) \to (M', g')$ is a harmonic diffeomorphism, the Euler-Lagrange equations (1.6) are equivalent to the following equations

$$\sum_{i,j} g^{ij} (\Gamma_{ij}^{\prime k} - \Gamma_{ij}^{k}) = 0, \qquad (1.8)$$

where $T_{ij}^k = \Gamma_{ij}^{'k} - \Gamma_{ij}^k$ are local components of the deformation tensor $T = \nabla' - \nabla$ with respect to a common local coordinate system x^1, \ldots, x^m [9].

We observe that the deformation tensor $T = \nabla' - \nabla$ is a section of the vector bundle $f^{-1}TM' \otimes S^2M$ for an arbitrary diffeomorphism $f:(M,g) \to (M',g')$. But if $f:(M,g) \to (M',g')$ is harmonic, then $T = \nabla' - \nabla$ is a section of the vector bundle $f^{-1}TM' \otimes S_0^2M$, where S_0^2M is the space of traceless symmetric 2-tensor fields on (M,g).

On the other hand, from definition of the deformation tensor and the Christoffel symbols we have

$$\nabla'_{k}g_{ij} = -g_{lj}T^{l}_{ik} - g_{il}T^{l}_{jk}; \quad \nabla_{k}g'_{ij} = g'_{lj}T^{l}_{ik} + g'_{il}T^{l}_{jk};$$
(1.9)

and consequently

$$T_{ij}^{k} = \frac{1}{2}g^{kl}(-\nabla_{i}'g_{jl} - \nabla_{j}'g_{il} + \nabla_{l}'g_{ij});$$

$$T_{ij}^{k} = \frac{1}{2}g'^{kl}(\nabla_{i}g'_{il} + \nabla_{j}g'_{il} - \nabla_{l}g'_{ij}).$$
(1.10)

Then we conclude that (1.8) is equivalent to

$$2g^{ik}\nabla_i'g_{kj} = g^{ik}\nabla_i'g_{ik} \tag{1.11}$$

or

$$2g^{ik}\nabla_i g'_{kj} = \nabla_i (g^{ik}g'_{ik}). \tag{1.12}$$

Now we can give the following theorem which provides an easy way to verify whether a diffeomorphism $f:(M,g)\to (M',g')$ is harmonic.

Theorem 1.1 The diffeomorphism $f:(M,g) \to (M',g')$ of a pseudo-Riemannian manifold (M,g) with the Levi-Civita connection ∇ onto a pseudo-Riemannian manifold (M',g') with the Levi-Civita connection ∇' is harmonic if and only if one of the following equalities is true:

(i)
$$\sum_{i,j} g^{ij} T_{ij}^k = 0$$
; (ii) $2g^{ik} \nabla_i' g_{kj} = g^{ik} \nabla_j' g_{ik}$; (iii) $2g^{ik} \nabla_i g_{kj}' = \nabla_j (g^{ik} g_{ik}')$;

where T_{ij}^k , g_{ij} , g'_{ij} are local components of the deformation tensor $T = \nabla' - \nabla$ and the pseudo-Riemannian metrics g and g' with respect to a common local coordinate system x^1, \ldots, x^m .

1.3. Here we shall give three examples of harmonic diffeomorphisms.

Example 1.1. We assume that $f = f'' \circ f'$ is a composition of a conformal diffeomorphism $f': (M, g) \to (M', g')$ and a projective diffeomorphism $f'': (M', g') \to (M'', g'')$.

It is well known that a diffeomorphism $f':(M,g)\to (M',g')$ between pseudo-Riemannian manifolds is called conformal if $g'=e^{2\sigma}g$ for an arbitrary $\sigma\in C^{\infty}M$. In this case the deformation tensor $T'=\nabla'-\nabla$ has the local expression [9]

$$T_{ij}^{'k} = \Gamma_{ij}^{'k} - \Gamma_{ij}^{k} = \sigma_i \delta_j^k + \sigma_j \delta_i^k - \sigma^k g_{ij}, \tag{1.13}$$

where $\sigma_i = \partial_i \sigma$ and $\sigma^k = g^{ki} \sigma_i$, with respect to a common local coordinate system x^1, \ldots, x^m .

On the other hand, if an arbitrary geodesic in (M',g') is mapped into a geodesic in (M'',g''), then $f'':(M',g')\to (M'',g'')$ is said to be a projective mapping [9]. In this case, with respect to a common local coordinate system x^1,\ldots,x^m the deformation tensor $T''=\nabla''-\nabla'$ has the local expression

$$T_{ij}^{"k} = \Gamma_{ij}^{"k} - \Gamma_{ij}^{'k} = \psi_i \delta_j^k + \psi_j \delta_i^k, \qquad (1.14)$$

where
$$\psi_j = \frac{1}{2(m+1)} \partial_j \ln \left| \frac{\det g''}{\det g'} \right| = \frac{1}{2(m+1)} \partial_j \left| \frac{\det g''}{\det g} \right| - \frac{m}{m+1} \sigma_j$$
.

Denote by $T = T' + T'' = \nabla'' - \nabla$ the deformation tensor of the composition $f = f'' \circ f' : (M, g) \to (M', g')$, then from (1.13) and (1.14) we obtain

$$\Gamma_{ij}^{"k} - \Gamma_{ij}^{k} = (\sigma_i + \psi_i)\delta_j^k + (\sigma_j + \psi_j)\delta_i^k - \sigma^k g_{ij}.$$
 (1.15)

Since $f = f'' \circ f'$ is harmonic, Theorem 1.1 gives $(n-2)\sigma_i = 2\psi_i$. From this we obtain immediately the following (cf. [1]).

Theorem 1.2 For any conformal diffeomorphism $f':(M,g)\to (M',g')$ and a projective diffeomorphism $f'':(M',g')\to (M'',g'')$ between mdimensional ($m \geq 3$) pseudo-Riemannian manifolds the composition $f'' \circ$ f' is a harmonic diffeomorphism if and only if $g' = e^{2\sigma}g$ for $\sigma = (m^2 + 1)$ $(m-2)^{-1} \ln \left| \frac{\det g''}{\det g} \right| + \text{const.}$

Remark 1.2. If m=2, from (1.13) it follows that any conformal diffeomorphism is harmonic. But if $m \geq 3$, any harmonic diffeomorphism $f:(M,g)\to (M',g')$ which is at the same time conformal, is a homothetic diffeomorphism [6].

Example 1.2. In this example we shall consider a holomorphic diffeomorphism $f:(M,g,J)\to(M',g',J')$ of a Kählerian manifold (M, g, J) onto a Kählerian manifold (M', g', J').

Let us recall necessary definitions. A manifold M endowed with a field J of endomorphisms of the tangent bundle TM such that $J^2 = Id_{TM}$, is called an almost complex manifold. Let g be a Hermitian metric on M, that is, a pseudo-Riemannian metric such that g(J, J) = g. An almost complex manifold (M, g, J) is a Kählerian manifold [11, 12] if $\nabla J = 0$. For Kählerian manifolds a map $f:(M,g,J)\to (M',g',J')$ is said to be holomorphic ([3] - [5]) if $f_* \circ J = J' \circ f_*$. In [7] Lichnerowicz proved that a holomorphic map $f:(M,g,J)\to (M',g',J')$ of a compact Kählerian manifold (M, g, J) onto a Kählerian manifold (M', g', J') is harmonic.

Example 1.3. Now let $f:(M,g,J)\to (M',g',J')$ be a holomorphic diffeomorphism of an almost semi-Kählerian manifold (M, g, J) onto a nearly Kählerian manifold (M', g', J').

Let us recall that an almost complex manifold (M, g, J) is an almost semi-Kählerian manifold (see [11, 12]) if

$$trace_g \nabla J = 0. (1.16)$$

An almost complex manifold (M', g', J') is a nearly Kählerian manifold (see [11, 12]) if $\nabla' J'$ is a section of the tensor bundle $TM' \otimes \Lambda^2 M'$, where

 $\Lambda^2 M'$ is the space of skew-symmetric 2-tensor fields on (M', g'). This condition is equivalent to

$$(\nabla_X J')X = 0 \tag{1.17}$$

for an arbitrary $X \in TM'$.

Theorem 1.3 Let (M, g, J) be an almost Hermitian manifold. Then any holomorphic diffeomorphism $f:(M,g,J)\to (M',g',J')$, where (M',g',J') is a nearly Kählerian manifold, is harmonic if and only if the manifold (M,g,J) is an almost semi-Kählerian manifold.

Proof. The diffeomorphism of an almost Hermitian manifold (M, g, J) onto an almost Hermitian manifold (M', g', J') is holomorphic if and only if with respect to a common local coordinate system x^1, \ldots, x^m

$$J_j^i = J_j^{'i}. (1.18)$$

Differentiating (1.18) covariantly, we find

$$\nabla_k J_j^i = \nabla_k' J_j'^i + J_l'^i T_{jk}^l - J_j'^l T_{lk}^i. \tag{1.19}$$

We multiply (1.19) by g^{kj} and use (1.17), then we obtain

$$g^{kj}\nabla_k J_j^i = J_j^{'i}(g^{jk}T_{jk}^i). (1.20)$$

From (1.20) we conclude that under assumptions of Theorem 1.3 the following statements

- (i) (M, g, J) is an almost semi-Kählerian manifold;
- (ii) $f:(M,g,J)\to (M',g',J')$ is a harmonic map are equivalent. \square

From (1.16) and (1.17) we obtain that a nearly Kählerian manifold is almost semi-Kählerian. As a consequence we have the following corollary.

Corollary 1.4 Let (M, g, J) and (M', g', J') be nearly Kählerian manifolds. Then any diffeomorphism $f: (M, g, J) \to (M', g', J')$ is holomorphic if and only if $f: (M, g, J) \to (M', g', J')$ is a harmonic map.

1.4. For the first time the Bochner technique [13] was used in studies of harmonic maps in the well-known paper by Eells and Sampson [4], where the first Weitzenbock formula was obtained. Now we give the following analogue of this formula for harmonic diffeomorphisms.

Theorem 1.5 Let $f:(M,g) \to (M',g')$ be a harmonic diffeomorphism between Riemannian manifolds of some dimensional. Then

$$\Delta \ln \frac{\det g'}{\det g} = 2(Skal - trace_g Ric') + 3||sym T||^2 - ||T||^2.$$
 (1.21)

Proof. From (1.5) one easily can obtain

$$\nabla_{i}^{\prime} T_{jl}^{k} - \nabla_{l}^{\prime} T_{ji}^{k} = \nabla_{i} T_{jl}^{k} - \nabla_{l} T_{ji}^{k} + T_{jl}^{n} T_{ni}^{k} - T_{ji}^{n} T_{nl}^{k} = R_{jil}^{\prime k} - R_{jil}^{k}. \quad (1.22)$$

By Theorem 1.1 and (1.22) we have

$$g^{ij}\nabla_{i}T_{jk}^{k} = g^{ij}(R_{ikj}^{k} - R_{ikj}^{'k}) + g^{ij}T_{ki}^{l}T_{lj}^{k} = g^{ij}R_{ij} - g^{ij}R_{ij}^{\prime} + T_{ijk}T^{jik} =$$

$$= Scal - trace_{g}Ric^{\prime} + \frac{3}{2}||symT||^{2} - \frac{1}{2}||T||^{2},$$

$$(1.23)$$

where the tensor field sym T has the following local components

$$(sym T)_{ijk} = \frac{1}{3}(T_{ijk} + T_{jki} + T_{kij}).$$

By definitions of the deformation tensor T and the Christoffel symbols $\Gamma_{ij}^{'k}$ and Γ_{ij}^{k} we have

$$T_{kj}^{k} = \Gamma_{kj}^{'k} - \Gamma_{kj}^{k} = \partial_{j} \ln \sqrt{\det g'} - \partial_{j} \ln \sqrt{\det g} = \partial_{j} \ln \sqrt{\frac{\det g'}{\det g}}$$
 (1.24)

in a common local coordinate system x^1, \ldots, x^m . Finally from (1.23) and (1.24) we get (1.21). \square

Remark 1.3. Other Weitzenbock formulas for harmonic maps can be found in [15], [16].

2. The seven classes of harmonic diffeomorphisms

2.1. In this section we shall find a classification of the harmonic diffeomorphisms with the use of representation theory.

Let x be an arbitrary point of (M,g), and $E^* = T_x^*M$. E^* is a pseudo-Euclidean vector space over \mathbb{R} with inner product q induced from the metric g_x , E^* being the dual of $E = T_xM$. Then $T(E) = E^* \otimes S_0^2 E$ is a pseudo-Euclidean vector space with inner product defined by $q(T,T') = \sum_{i,j,k=1}^m T(e_i,e_j,e_k)T'(e_i,e_j,e_k)$, where $\{e_1,\ldots,e_m\}$ is an arbitrary orthonormal basis of $E = T_xM$ and $T,T' \in T(E)$.

Denote by O(q) the group of linear transformations \mathcal{A} under which the quadratic form q is invariant, $q(\mathcal{A}, \mathcal{A}) = q$. It is customary to call O(q) an orthogonal group. If \mathcal{A} belongs to the orthogonal group O(q) determined by q, then ${}^{tr}\mathcal{A}^{-1} = \mathcal{A}$ and, hence, the vector spaces E and E^* are isomorphic. The orthogonal group O(q) also acts in $\mathfrak{I}(E)$ according to the rule

$$(\mathcal{A}T)(a,b,c)T(\mathcal{A}^{-1}a,\mathcal{A}^{-1}b,\mathcal{A}^{-1}c)$$

for $a, b, c \in E$, $T \in \mathfrak{T}(E)$, and $A \in O(q)$, this turns $\mathfrak{T}(E)$ into a representation space of the orthogonal group O(q).

Next we set $T_{12}(c) = \sum_{k=1}^{m} (e_k, e_k, c)$ for $c \in E$ and let $\mathfrak{T}_1(E) = S_0^3 E$; $\mathfrak{T}_2(E) = \{ T \in \mathfrak{T}(E) \mid T(a, b, c) + T(b, c, a) + T(c, a, b) = 0, \ T_{12}(a) = 0 \}$; $\mathfrak{T}_3(E) = \{ T \in \mathfrak{T}(E) \mid T(a, b, c) = T_{12}(c)q(a, b) + T_{13}(b)q(a, c) - \frac{2}{m}T_{23}(a)q(b, c) \}$ for $a, b, c \in E$.

We apply the Weyl theorem to find the number of irreducible subspaces of $\mathfrak{I}(E) = E^* \otimes S_0^2 E$ with respect to the action of O(q) (cf. [4]). Then we have

Theorem 2.1 For dim $E \geq 3$, $\mathfrak{I}(E)$ is the orthogonal direct sum of the subspaces $\mathfrak{I}_n(E)$, n = 1, 2, 3. Moreover these spaces are invariant and irreducible under the action of O(q).

Let $f:(M,g)\to (M',g')$ be a diffeomorphism. In local considerations we may suppose that M=M'=U is a domain in \mathbb{R}^m and f is the identity map $Id_M:(M,g)\to (M',g')$. Therefore we will consider the deformation tensor T as a section of the vector bundle $TM\otimes S^2M$ (cf. also [9]). In particular, if f is harmonic, then the deformation tensor T is a section of the vector bundle $TM\otimes S_0^2M$. Moreover, we shall consider the deformation tensor T as a tensor field of type (0,3).

The Theorem 2.1 implies that there are eight invariant subspaces, so we give

Definition. Let G(E) be an invariant subspace of $\mathfrak{T}(E)$. We say that a harmonic diffeomorphism $f:(M,g)\to (M',g')$ is of type G if the deformation tensor $T\in G(T_xM)$ for all $x\in M$.

Hence we may consider the seven classes of harmonic diffeomorphisms including the trivial class characterized by the condition T=0. All these classes have many interesting properties.

2.2. Let $f:(M,g)\to (M',g')$ be a harmonic diffeomorphism of class $\mathcal{T}_1\oplus\mathcal{T}_2$ which is defined by the following identities:

$$g^{ij}T_{kij} = 0, (2.1)$$

$$g^{ij}T_{ijk} = 0, (2.2)$$

where $T_{ijk} = g_{il}T^l_{jk}$, T^l_{jk} are local components of the deformation tensor $T = \nabla' - \nabla$. Let $dV_{g'} = \sqrt{|\det g'|} dx^1 \wedge \cdots \wedge dx^m$, $dV_g = \sqrt{|\det g|} dx^1 \wedge \cdots \wedge dx^m$ be the volume elements of (M, g) and (M', g'), respectively. Then from (2.2) and (1.24) we get

$$dV_{g'} = e^C dV_g$$

for an arbitrary constant C > 0. Hence the harmonic diffeomorphism $f: (M,g) \to (M',g')$ is either volume decreasing [15] or volume increasing. Thus we have proved

Theorem 2.2 Any harmonic diffeomorphism $f:(M,g) \to (M',g')$ of m-dimensional $(m \geq 3)$ pseudo-Riemannian manifolds of class $\mathcal{T}_1 \oplus \mathcal{T}_2$ is either volume decreasing or volume increasing.

2.3. Let us consider the class $\mathcal{T}_1\oplus\mathcal{T}_3$ which is defined by the following identities

$$T_{ijk} - T_{jik} = \frac{1}{m-1} (\theta_j g_{ik} - \theta_i g_{jk}),$$
 (2.3)

where $\theta_j = T_{kj}^k = \partial_j \ln \sqrt{\left|\frac{\det g'}{\det g}\right|}$ with respect to a common local coordinate system x^1, \ldots, x^m . Using (1.9) one conclude fairly easy that the identities (2.3) are equivalent to

$$\nabla_j' G_{ik} - \nabla_i' G_{jk} = 0, \tag{2.4}$$

where

$$G_{ij} = e^{-\frac{1}{m-1}\theta} g_{ij} \tag{2.5}$$

for $\theta = \ln \sqrt{\left|\frac{\det g'}{\det g}\right|} + \text{const.}$ Hence the tensor field $G = e^{-\frac{1}{m-1}\theta}g$ is a Codazzi tensor field on (M',g') [17]. Thus we have

Theorem 2.3 A diffeomorphism $f:(M,g) \to (M',g')$ of m-dimensional $(m \geq 3)$ pseudo-Riemannian manifolds is a harmonic diffeomorphism of class $\mathfrak{T}_1 \oplus \mathfrak{T}_3$ if and only if the tensor field $G = e^{-\frac{1}{m-1}\theta}g$ for $\theta = \ln \sqrt{\left|\frac{\det g'}{\det g}\right|} + \text{const}$ is a Codazzi tensor on (M',g').

Now, let (M', g') be a pseudo-Riemannian manifold of nonzero constant sectional curvature C', then by (2.4) we have

$$G = Hess(F) + C'Fg', (2.6)$$

where $Hess(F) = \nabla' dF$ for an arbitrary smooth function F on (M', g'). It is proved in [17] that any Codazzi tensor G has the form (2.6) on the pseudo-Riemannian manifold (M', g') of nonzero constant sectional curvature C'. Then from (2.5) and (2.6), we get

$$g = e^{\frac{1}{m-1}\theta}[Hess(F) + C'Fg']. \tag{2.7}$$

This implies

Theorem 2.4 A diffeomorphism $f:(M,g) \to (M',g')$ of an m-dimensional $(m \geq 3)$ pseudo-Riemannian manifold (M,g) onto another pseudo-Riemannian manifold (M',g') of nonzero constant sectional curvature C' is a harmonic diffeomorphism of class $\mathfrak{T}_1 \oplus \mathfrak{T}_3$ if and only if the metric tensor g has the form $g = e^{\frac{1}{m-1}\theta}[Hess(F) + C'Fg']$ for $\theta = \ln \sqrt{\left|\frac{\det g'}{\det g}\right|} + \text{const.}$

2.4. Any harmonic diffeomorphism $f:(M,g)\to(M',g')$ of class $\mathcal{T}_2\oplus\mathcal{T}_3$ is characterized by the identities

$$T_{ijk} + T_{jik} + T_{kij} = \frac{2}{m+2} (\theta_i g_{jk} + \theta_j g_{ki} + \theta_k g_{ij}),$$
 (2.8)

where $\theta_j = T_{kj}^k = \partial_j \ln \sqrt{\left|\frac{\det g'}{\det g}\right|}$ with respect to a common local coordinate system x^1, \ldots, x^m . Using (1.9) we conclude that (2.9) is equivalent to

$$\nabla_i' H_{jk} + \nabla_j' H_{ki} + \nabla_k' H_{ij} = 0, \qquad (2.9)$$

where

$$H_{jk} = e^{-\frac{2}{m+2}\theta} g_{jk}. (2.10)$$

We remark that in a pseudo-Riemannian manifold (M', g') the differential equations of the geodesics $\frac{dx^j}{dx} + \Gamma'^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$ admit linear quadratic first integrals of the form $H_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = \text{const}(H_{jk} = H_{kj})$ if and only if the equations (2.9) hold true. Hence follows

Theorem 2.5 A diffeomorphism $f:(M,g)\to (M',g')$ between m-dimensional $(m\geq 3)$ pseudo-Riemannian manifolds is a harmonic diffeomorphism of class $\mathfrak{T}_2\oplus\mathfrak{T}_3$ if and only if the differential equations of q-eodesics

$$\frac{dx^{i}}{ds} + \Gamma_{jk}^{'i} \frac{dx^{j}}{ds} \frac{dx^{k}}{ds} = 0$$

in (M', g') written with respect to a common local coordinate system x^1, \ldots, x^m admit quadratic first integrals $H_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = \text{const}$, where $H_{jk} = e^{-\frac{2}{m+2}\theta}g_{jk}$, and $\theta = \ln \sqrt{\left|\frac{\det g'}{\det g}\right|} + \text{const}$.

Now, let (M', g') be a locally flat pseudo-Riemannian manifold with the fundamental form $ds'^2 = g'_{ij}dx^idx^j = \varepsilon_j(dx^j)^2$, where $\varepsilon_j = \pm 1$. Then the coefficients H_{jk} of quadratic first integrals of geodesics $H_{jk}\frac{dx^j}{ds}\frac{dx^k}{ds} = const$ can be expressed in the following form (cf. [19])

$$H_{ij} = A_{ijkl}x^k x^l + B_{ijk}x^k + C_{ij}, (2.11)$$

where $A_{ijkl} = A_{jikl}$, $B_{ijk} = B_{jik}$, $C_{ij} = C_{ji}$, and the A's, B's and C's are constants. By substituting (2.11) into (2.9) we find that these coefficients also have symmetries:

$$A_{ijkl} + A_{jkil} + A_{kijl} = 0; \quad B_{ijk} + B_{jki} + B_{kij} = 0.$$

From (2.10) and (2.11) we get

$$g_{ij} = e^{\frac{1}{m+2}\theta} (A_{ijkl}x^k x^1 + B_{ijk}x^k + C_{ij})$$
 (2.12)

We have proved the following result.

Theorem 2.6 A diffeomorphism $f:(M,g) \to (M',g')$ of an m-dimensional $(m \geq 3)$ pseudo-Riemannian manifold (M,g) onto a locally flat pseudo-Riemannian manifold (M',g') is a harmonic diffeomorphism of class $\mathfrak{T}_1 \oplus \mathfrak{T}_3$ if and only if with respect to a common local coordinate system x^1, \ldots, x^m such that $ds'^2 = g'_{ij}dx^idx^j = \varepsilon_j(dx^j)^2$ $(\varepsilon_j = \pm 1)$ the metric tensor g has the following components

$$g_{ij} = e^{\frac{1}{m+2}\theta} (A_{ijkl}x^k x^1 + B_{ijk}x^k + C_{ij}),$$

where $\theta = \ln \sqrt{\left|\frac{\det g'}{\det g}\right|} + \text{const}$, the A's, B's and C's are constants such that $A_{ijkl} = A_{jikl}$, $A_{jkil} + A_{jkil} + A_{kijl} = 0$, $B_{ijk} = B_{jik}$, $B_{ijk} + B_{jki} + B_{kij} = 0$, $C_{ij} = C_{ji}$.

We have established that the tensor field H with the local components (2.10) satisfies the equations (2.9). On a compact Riemannian manifold (M', g') of nonpositive sectional curvature such a tensor field is parallel [17]. This, by Shirokov's theorem [18], implies that either (M', g') is locally a Riemannian product, or $H = \mu g'$ for $\mu = const$. In the second

case $g' = \mu^{-1} e^{-\frac{2}{m+2}\theta} g$, then f is a conformal diffeomorphism. Thus, using Remark 2, we obtain

Theorem 2.7 Let $f:(M,g) \to (M',g')$ be a diffeomorphism of an m-dimensional $(m \geq 3)$ Riemannian manifold (M,g) onto a compact Riemannian manifold (M',g') of nonpositive sectional curvature. If f is a harmonic diffeomorphism of class $\mathfrak{T}_1 \oplus \mathfrak{T}_3$, then either (M',g') is locally a Riemannian product, or f is a homothetic diffeomorphism.

- Remark 2.1. P.A. Shirokov proved the following remarkable theorem [18]: a simply connected Riemannian manifold (M,g) is locally a Riemannian product of $(M_1,g_1),\ldots,(M_q,g_q)$ for $2 \leq q \leq m$ if there exists a symmetric 2-tensor field g' with q distinct eigenvalues $\lambda_1,\ldots,\lambda_q$ which is covariantly constant. Moreover, if (M,g) is not locally a Riemannian product, then for each covariantly constant symmetric tensor field g' there holds $g' = \mu g$ with constant μ .
- **2.5.** The diffeomorphism $f:(M,g)\to (M',g')$ is a harmonic diffeomorphism of class \mathcal{T}_1 if and only if the deformation tensor $T\in\mathcal{T}_1(T_xM)$ for all $x\in M$. Then with respect to a common local coordinate system x^1,\ldots,x^m we have

$$T_{ijk} = T_{jik}; (2.13)$$

$$g^{ij}T_{kij} = 0 (2.14)$$

It turns out that $f:(M,g)\to (M',g')$ is a harmonic diffeomorphism of class \mathcal{T}_1 if and only if $\nabla'_k g_{ij}=\nabla'_i g_{kj}$ and $dV_{g'}=e^C dV_g$ for an arbitrary constant C>0. Thus we get

Theorem 2.8 A diffeomorphism $f:(M,g) \to (M',g')$ between m-dimensional $(m \geq 3)$ pseudo-Riemannian manifolds is a harmonic diffeomorphism of class \mathfrak{T}_1 if and only if

- (i) the tensor field is a Codazzi tensor on (M', g');
- (ii) $dV_{g'} = e^C dV_g$ for an arbitrary constant C > 0, therefore the diffeomorphism $f: (M,g) \to (M',g')$ is either volume decreasing or volume increasing.

From (1.21), (2.13), and the harmonicity of f, i.e. (2.14), we get

$$\Delta \ln \sqrt{\frac{\det g'}{\det g}} = Skal - trace_g Ric' + ||T||^2.$$

Theorem 2.9 Let (M,g) and (M',g') be Riemannian manifolds of a same dimension, and $f:(M,g)\to (M',g')$ be a harmonic diffeomorphism of class \mathfrak{T}_1 . Assume in addition that (M,g) is compact. If (M,g)

has non-negative scalar curvature, and (M', g') has non-positive Ricci curvature, then f is affine.

Proof. From the hypothesis we have $Skal - trace_g Ric' + ||T||^2 \ge 0$. Therefore the Weitzenbock formula for harmonic diffeomorphisms of class \mathcal{T}_1 implies that

$$\Delta \ln \sqrt{\frac{\det g'}{\det g}} = Skal - trace_g Ric' + ||T||^2 \ge 0.$$

Thus, if (M,g) is compact, then T=0. Such a map $f:(M,g)\to (M',g')$ is said to be *affine* (see also [6]). In this case an arbitrary geodesic in (M,g) is mapped by f into a geodesic in (M',g') with the affine parameter preserved. \square

2.6. Next, let $f:(M,g)\to (M',g')$ be a harmonic diffeomorphism of class \mathcal{T}_2 , i.e. the deformation tensor $T\in\mathcal{T}_2(T_xM)$ for all $x\in M$. Then with respect to local coordinates we have

$$T_{ijk} + T_{jki} + T_{kij} = 0; (2.15)$$

$$g^{jk}T_{jki} = 0. (2.16)$$

From (1.11) we conclude that the identities (2.15) are equivalent to

$$\nabla_i' g_{kj} + \nabla_k' g_{ji} + \nabla_j' g_{ik} = 0. \tag{2.17}$$

Hence, for local coordinates x^1, \ldots, x^m in (M', g') the differential equations of the geodesics $\frac{dx^i}{ds} + \Gamma'^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$ admit the quadratic first integrals $H_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = const$ with the coefficients $H_{jk} = g_{jk}$.

In addition we can say that the identities (2.15) are equivalent to

In addition we can say that the identities (2.15) are equivalent to $dV_{g'} = e^C dV_g$ for an arbitrary constant C > 0. This yields the following result.

Theorem 2.10 A diffeomorphism $f:(M,g) \to (M',g')$ between m-dimensional $(m \geq 3)$ pseudo-Riemannian manifolds is a harmonic diffeomorphism of class \mathfrak{T}_2 if and only if

- feomorphism of class \mathcal{T}_2 if and only if

 (i) the differential equations $\frac{dx^i}{ds} + \Gamma'^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$ of geodesics in (M', g') written with respect to a common local coordinate system x^1, \ldots, x^m admit quadratic first integrals $H_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = \text{const}$, where $H_{jk} = g_{jk}$;

 (ii) $dV_{g'} = e^C dV_g$ for an arbitrary constant C > 0, thus the diffeo-
- (ii) $dV_{g'} = e^C dV_g$ for an arbitrary constant C > 0, thus the diffeomorphism $f: (M,g) \to (M',g')$ is either volume decreasing or volume increasing.

From (1.21), (2.15) and the harmonicity of f we get

$$\Delta \ln \frac{\det g'}{\det g} = 2(Skal - trace_g Ric') - ||T||^2.$$

Theorem 2.11 Let (M,g) and (M',g') be Riemannian manifolds of a same dimension, and $f:(M,g) \to (M',g')$ be a harmonic diffeomorphism of class \mathcal{T}_2 . Assume in addition that (M,g) is compact. If (M,g) has non-negative scalar curvature, and (M',g') has non-positive Ricci curvature, then f is affine.

Proof. From the hypothesis we have $2(Skal-trace_gRic')-||T||^2 \leq 0$. Therefore the Weitzenböck formula for harmonic diffeomorphisms of class \mathcal{T}_2 implies that

$$\Delta \ln \frac{\det g'}{\det g} = 2(Skal - trace_g Ric') - ||T||^2 \le 0.$$

Thus, if (M, g) is compact, then T = 0. Such a map $f: (M, g) \to (M', g')$ is affine [6]. \square

2.7. Let $f:(M,g)\to (M',g')$ be a harmonic diffeomorphism of class T_3 . In this case the deformation tensor $T\in \mathcal{T}_3(T_xM)$ for all $x\in M$, and hence we have

$$T_{ij}^{k} = \varphi_i \delta_j^k + \varphi_j \delta_i^k - \frac{2}{m} \varphi^k g_{ij}, \qquad (2.18)$$

where $\varphi^k = g^{kj}\varphi_j$, and $\varphi_j = \frac{m}{(m+2)(m-1)}T_{kj}^k = \frac{m}{(m+2)(m-1)}\partial_j \ln \sqrt{\left|\frac{\det g'}{\det g}\right|}$. Using Theorem 1.2, we obtain the following

Theorem 2.12 Let $f:(M,g) \to (M'',g'')$ be a harmonic diffeomorphism of class \mathfrak{T}_3 between m-dimensional $(m \geq 3)$ pseudo-Riemannian manifolds. Then f is a composition $f'' \circ f'$ of a conformal diffeomorphism $f':(M,g) \to (M',g')$ and a projective diffeomorphism $f'':(M',g') \to (M'',g'')$ of pseudo-Riemannian manifolds.

From (1.21) and (2.18) we get

$$\Delta \ln \frac{\det g'}{\det g} = 2(Skal - trace_g Ric') + \frac{m-2}{(m-1)(m+2)} ||\theta||^2,$$

where $\theta = traceT = \frac{1}{2}grad \ln \frac{detg'}{det g}$.

Theorem 2.13 Let (M,g) and (M',g') be Riemannian manifolds of a same dimension, and $f:(M,g) \to (M',g')$ be a harmonic diffeomorphism of class \mathfrak{T}_3 . Assume in addition that (M,g) is compact. If (M,g) has non-negative scalar curvature, and (M',g') has non-positive Ricci curvature, then f is affine.

Proof. From the hypothesis we have

$$2(Skal - trace_gRic') + \frac{m-2}{(m-1)(m+2)} \|\theta\|^2 \ge 0.$$

$$\Delta \ln \frac{\det g'}{\det g} = 2(Skal - trace_g Ric') + \frac{m-2}{(m-1)(m+2)} ||\theta||^2 \ge 0.$$

Thus, if (M, g) is compact, then $\theta = 0$. A direct calculation shows that T = 0 in this case. Therefore a diffeomorphism $f : (M, g) \to (M', g')$ is affine [6]. \square

2.8. Finally, let $f:(M,g) \to (M',g')$ be a harmonic diffeomorphism of the seventh class, i.e. the deformation tensor T=0. Such a map $f:(M,g) \to (M',g')$ is affine [6]. Under this assumption, we have from (1.9) that $\nabla_k g'_{ij} = 0$. Using Shirokov's theorem [18], we obtain

Theorem 2.14 Let $f:(M,g) \to (M',g')$ be a diffeomorphism of a simply connected Riemannian manifold (M,g) onto a Riemannian manifold (M',g'). If f is a harmonic diffeomorphism of the seventh class, then one of the following assertions is true:

- (i) (M, g) is locally a Riemannian product;
- (ii) f is a homothetic diffeomorphism.

References

- [1] Stepanov S.E., The classification of harmonic diffeomorphisms, Abstracts of the 5th International Conf. on Geom. and Appl., Varna, August 24-29, 2001, Union of Bulgarian Mathematicians, Sofia, Bulgaria, 2001, P. 55.
- [2] Nore T., Second fundamental form of a map, Ann. Mat. Pure ed appl., 146 (1987), pp. 281-310.
- [3] Eells J., Lemaire L., A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
- [4] Eells J., Lemaire L., Another report on harmonic maps, Bull. London Math. Soc. **20** (1988), 385-584.
- [5] Davidov I., Sergeev A.G., Twisted products and harmonic mappings, Usp. Mat. Nauk, 48, no. 3 (1993), pp. 3-96 (in Russian).
- [6] Yano K., Ishihara S., Harmonic and relatively affine mappings, J. Diff. Geom. **10** (1975), pp. 501-509.
- [7] Lichnerowicz A. Applications harmoniques et varietes Kahleriennes, Symposia Matematica (Indam, Rom, 1968/69), Bologna 3 (1970), pp. 341-402.
- [8] Narasimhan R., Analysis on real and complex manifolds, Masson & Cie, Paris, 1968.

- [9] Eisenhart L.P., Riemannian geometry, Princeton Univ. Press, Princeton (N. J.), 1949.
- [10] Gray A., Hervella L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pure ed Appl., 123 (1980), 35-58.
- [11] Lew F., Hsiung Ch.-Ch., A certain class of almost Hermitian manifolds, Tensor, N.S. 48 (1989), 252-263.
- [12] Gray A., Nearly Kahler manifolds, J. Diff. Geom. 4 (1970), no. 3-4, 283-309.
- [13] Wu H. The Bochner technique. Princeton Univ. Press, Princeton (N. J.), 1987.
- [14] Eells J., Sampson J.H., Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
- [15] Stepanov S.E., On the global theory of some classes of mappings, Annals of Global Analysis and Geometry 13 (1995), no. 3, 239-249.
- [16] Stepanov S.E., Riemannian almost product manifolds and submersions, Journal of Mathematical Sciences 99 (2000), no. 6, 1788-1831.
- [17] Besse A.L., Einstein Manifolds, Springer-Verlag, Berlin-Heidelberg, 1987.
- [18] Shirokov P.A., Constant vector fields and second order tensor fields in Riemannian spaces, Izv. fiz.-matem. ob-va, Kazan 25 (1925), 86-114 (in Russian).
- [19] Nijenhuis A. A note on first integrals of geodesics, Proc. Kon. Ned. Akad. van Wetens., Amsterdam, 1967, Vol. 52, Ser. A, 141-145.

Адрес: Государственная Финансовая Академия, 129846, Москва, yл. Кибальчича, 1

Адрес: Владимирский государственный педагогический университет, 600024, г. Владимир, проспект Строителей, 11

Address: State Financial Academy, ul. Kibalchicha, Moscow: 129846, RUSSIA

Address: Vladimir State Pedagogical University, Prospect Stroiteley, 11, Vladimir: 600024, RUSSIA

E-mail: stepanov@vtsnet.ru