HARDWARE

ACTIVITAT 1

CIPFP MISLATA SISTEMES INFORMATICS

ontents	
Justifica si els següents números estan expressants d manera correcta en la seua respetciva base:	2
Mostra els 10 números anteriors i posteriors als següents números, realitza l'exercici el vertical:	
3. Converteix a la resta de bases:	4
4. Calcula les següents operacions binàries, mostra tot el procés:	7
5.Crea una llista amb 5 noms de programari per a cada punt:	10
6. Dibuixa l'arquitectura de Von Newmann	10
7. Dibuixa la jerarquia de memòria	11
8. Dibuixa la representació dels següents components electrònics	12
9. Utilitzant Simulide realitza un circuit que mitjançant l'ús de leds i polsadors simule un semàfor (Adjunta Captura de pantalla i el fitxer de simulació)	13
10. Utilitzant Simulide realitza els circuits que simulen les portes lógiques AND, OR, NOT (Adjunta captura de pantalla i el fitxer de la simulació)	

1. Justifica si els següents números estan expressants d manera correcta en la seua respetciva base:

- a. Está bien expresado
- b. No está bien expresado porqué el sistema binario solo cuenta con 0s y 1s
- c. No está bien expresado porqué el sistema de base 5 no puede tener un 8
- d. Está bien expresado.
- e. No está bien expresado porqué en el sistema hexadecimal la última letra es la F.
- f. Está bien expresado.
- g. No está bien expresado porqué el sistema binario solo cuenta con 0s y 1s
- h. No está bien expresado porqué el sistema octal el número 8 no existe.
- i. Está bien expresado.
- j. No está bien expresado porqué en el sistema octal no existen los números G y C

2. Mostra els 10 números anteriors i posteriors als següents números, realitza l'exercici en vertical:

110100001	5460	ab29	
110100010	5461	ab2a	
110100011	5462	ab2b	
110100100	5463	ab2c	
110100101	5464	ab2d	
110100110	5465	ab2e	
110100111	5466	ab2f	
110101000	5467	ab30	
110101001	5470	ab31	
110101010	5471	ab32	
110101011(2)	5372(8)	ab33(16)
110101100	5373	ab34	
110101101	5374	ab35	
110101110	5375	ab36	
110101111	5376	ab38	
110110000	5377	ab39	
110110001	5400	ab3a	
110110010	5401	ab3b	
110110011	5402	ab3c	
110110100	5403	ab4d	
110110101	5404	ab4e	

3. Converteix a la resta de bases:

255(10)	r:1	101010011
127	r:1	
84	r:0	
42	r:0	
21	r:1	
10	r:0	
5	r:1	
2	r:0	
1	r:1	
101.010.011		523
0001.0101.00	011	153
1728(10)	r:0	11110000000
864	r:0	
432	r:0	
216	r:0	
108	r:0	
54	r:0	
27	r:0	
13	r:1	
6	r:1	
3	r:1	
1	r:1	
011.110.000.	000	3600
0111.1000.00	000	780

1100111010	1(2)	1653
1	+	
4	+	
16	+	
32	+	
64	+	
512	+	
1024	+	
011.001.110	.101	3165
0110.0111.0	101	675
1010101010	1(2)	1365
	1(2)	1365
1010101010		1365
1010101010 1	+	1365
1010101010 1 4	+	1365
1010101010 1 4 16	+ + +	1365
1010101010 1 4 16 64	+ + + +	1365
1010101010 1 4 16 64 256	+ + + + +	1365
1010101010 1 4 16 64 256	+ + + + +	2525

/51(8)

111101001		489
1	+	
8	+	
32	+	
64	+	
128	+	

111.101.001 751 0001.1110.1001 1e9

681(8)

256

No se puede hacer ya que el 8 no

existe en base octal.

1010.1111.1110

AFE(16)

1010111111	10	2814
2	+	
4	+	
8	+	
16	+	
32	+	
64	+	
128	+	
512	+	
2048	+	
101.011.111.110		5376

afe

```
9FB1(16)
10011111110110001 40881
16
32
128
256
512
1024
2048
4096
32768
001.001.111.110.110.001
                        117661
1001.1111.1011.0001 9fb1
4. Calcula les següents operacions binàries, mostra tot el procés:
10011+1011=
10011
01011
11110
101+10101=
10101
00101
11010
```

11100+1011=	
011100	
001011	
100111	
10011-101=	
10011	
00101	
01110	
1101-111=	
1101	
0111	
0110	
1111 - 101=	
1111	
0101	
1010	

1001 * 101=				
1001				
0101				
1001				
0000				
1001				
101101	_			
11011*11=				
11011				
00011				
11011				
11011				
1010001				
1011*101=				
1011				
0101				
1011				
0000				
1011				
110111				

5.Crea una llista amb 5 noms de programari per a cada punt:

Base: Windows, MacOS, Linux, Android i iOS.

Aplicació: Spotify, Notion, OBS, Excel i PowerPoint.

Desenvolupament: VSCode, IntellIJ, Git, MySQLworkbench, Docker.

6. Dibuixa l'arquitectura de Von Newmann

7. Dibuixa la jerarquia de memòria

8. Dibuixa la representació dels següents components electrònics.

 9. Utilitzant Simulide realitza un circuit que mitjançant l'ús de leds i polsadors simule un semàfor (Adjunta Captura de pantalla i el fitxer de simulació)

10. Utilitzant Simulide realitza els circuits que simulen les portes <u>lógiques</u> AND, OR, NOT (Adjunta captura de pantalla i el fitxer de la simulació)

