§3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций

Рассмотрим два признака применительно к несобственным интегралом с бесконечным верхним пределом. Аналогичные признаки имеют место и для интегралов с бесконечным нижним пределом.

Теорема 3.1 (*признак сравнения*). Пусть функции f(x) и g(x) определены и неотрицательны на промежутке $[a, +\infty)$. Пусть далее существует такое число $A, \ A \ge a$, что при $x \ge A$ выполняется неравенство

$$f(x) \le g(x). \tag{3.1}$$

Тогда:

1) если $\int_{a}^{+\infty} g(x)dx$ сходится, то сходится и интеграл $\int_{a}^{+\infty} f(x)dx$; при этом

$$\int_{A}^{+\infty} f(x)dx \le \int_{A}^{+\infty} g(x)dx; \qquad (3.2)$$

- 2) если интеграл $\int_a^{+\infty} f(x)dx$ расходится, то расходится и интеграл $\int_a^{+\infty} g(x)dx$.
- ▶ 1) Пусть интеграл $J = \int_{a}^{+\infty} g(x) dx$ сходится. Тогда при b > A в силу неравенства (3.1) имеют место неравенства

$$\int_{A}^{b} f(x)dx \le \int_{A}^{b} g(x)dx \le \int_{a}^{+\infty} f(x)dx = J.$$
 (*)

Функция $\Phi(b) = \int_{A}^{b} f(x)dx$ возрастает (в широком смысле) и ограничена сверху,

поэтому она имеет конечный предел $\lim_{b\to +\infty} \int\limits_A^b f(x) dx = \int\limits_A^{+\infty} f(x) dx$, т. е. этот интеграл

сходится, следовательно, сходится и интеграл $\int_{a}^{+\infty} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{+\infty} f(x)dx$. Неравенство (3.2) следует из неравенств (*) предельным переходом при $b \to +\infty$.

2) Пусть интеграл $\int_{a}^{+\infty} f(x)dx$ расходится. Тогда интеграл $\int_{a}^{+\infty} g(x)dx$ также расходится, ибо если бы он сходился, то по первой части теоремы сходился бы и интеграл $\int_{a}^{+\infty} f(x)dx$, что противоречит условию.

Замечание 3.1. Формула (3.2) дает оценку интеграла $\int_{a}^{+\infty} f(x)dx$ при A = a. Эта формула полезна, если интеграл от функции f(x) неберущийся, а интеграл от функции g(x) легко взять.

Пример 3.1. Показать, что интеграл $\int_{0}^{+\infty} e^{-x^2} dx$ сходится и найти его оценку сверху.

▶При $x \ge 1$ выполняются неравенства $0 < e^{-x^2} \le e^{-x}$. Далее, интеграл $\int\limits_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1 - \text{сходится.}$ По признаку сравнения $\int\limits_0^{+\infty} e^{-x^2} dx$ тоже сходится.

Интеграл $\int_{1}^{+\infty} e^{-x^2} dx$ может быть оценен сверху на основании неравенства

$$(3.2): \int_{1}^{+\infty} e^{-x^2} dx \le \int_{1}^{+\infty} e^{-x} dx = -e^{-x} \Big|_{1}^{+\infty} = \frac{1}{e} . \blacktriangleleft$$

Пример 3.1а. Установить сходимость интеграла $\int_{0}^{+\infty} \frac{|\sin x|}{1+x^2} dx$ и оценить его сверху.

►
$$|\sin x| \le 1$$
, поэтому $\int_0^{+\infty} \frac{|\sin x|}{1+x^2} dx \le \int_0^{+\infty} \frac{1}{1+x^2} dx = \operatorname{arctg} x|_0^{+\infty} = \frac{\pi}{2}$.

Пример 3.2. Показать, что интеграл $\int_{1}^{+\infty} \frac{2 + \cos x}{1 + \sqrt{x}} dx$ расходится.

▶Действительно, на промежутке интегрирования выполняются неравенства $2 + \cos x \ge 1$; $1 + \sqrt{x} \le 1 + x$, следовательно, $\frac{2 + \cos x}{1 + \sqrt{x}} \ge \frac{1}{1 + x}$.

Интеграл $\int_{1}^{+\infty} \frac{dx}{1+x} = \ln(1+x)\Big|_{1}^{+\infty} = +\infty$ — расходится. По признаку сравнения исходный интеграл тоже расходится.

Теорема 3.2 (*предельный признак сравнения*). Пусть для положительных, определенных в промежутке $[a,+\infty)$, функций f(x) и g(x) существует предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k, \ k \neq 0, \ k \neq \infty. \tag{3.3}$$

Тогда оба интеграла $\int_{a}^{+\infty} f(x)dx$, $\int_{a}^{+\infty} g(x)dx$ сходятся или расходятся совместно (одновременно).

▶Из условий теоремы следует, что k > 0. Возьмем произвольное положительное ϵ такое, что $k - \epsilon > 0$. По определению предела существует такое число A, $A \ge a$, что при $x \ge A$ выполняются неравенства

$$k - \varepsilon < \frac{f(x)}{g(x)} < k + \varepsilon. \tag{**}$$

- 1) Пусть интеграл $\int_{a}^{+\infty} g(x)dx$ сходится. Тогда интеграл $\int_{a}^{+\infty} (k+\varepsilon)g(x)dx$ также сходится. Из правого неравенства (**) находим, что $f(x) < (k+\varepsilon)g(x)$ при $x \ge A$. По признаку сравнения (теорема 3.1) заключаем: интеграл $\int_{a}^{+\infty} f(x)dx$ сходится.
- 2) Пусть интеграл $\int_{a}^{+\infty} g(x)dx$ расходится. Тогда интеграл $\int_{a}^{+\infty} (k-\varepsilon)g(x)x$ также расходится. Из левого неравенства (**) находим, что $f(x) > (k-\varepsilon)g(x)$. По признаку сравнения (теорема 3.1) заключаем: интеграл $\int_{a}^{+\infty} f(x)dx$ расходится.

Для применения предельного признака сравнения необходим набор интегралов, сходимость или расходимость которых известна заранее. Интеграл с параметром p

$$J = \int_{a}^{+\infty} \frac{dx}{x^{p}} (a > 0) \tag{3.4}$$

дает такой набор при различных значениях параметра p. Интеграл (3.4) сходится при p>1 и расходится при $p\leq 1$.

▶ Пусть p=1; $J=\ln x\Big|_a^{+\infty}=+\infty$. Интеграл расходится.

Пусть p < 1; $J = \frac{x^{1-p}}{1-p}\Big|_a^{+\infty} = +\infty$, так как 1-p > 0. Интеграл расходится.

Пусть p>1; $J=\frac{x^{1-p}}{1-p}\Big|_a^{+\infty}=0-\frac{a^{1-p}}{1-p}=\frac{a^{1-p}}{p-1};$ p-1>0. Интеграл сходится.

Пример 3.3. Показать, что интеграл $\int_{0}^{+\infty} \frac{\sqrt{x}}{\sqrt{1+x^8}} dx$ сходится.

▶Имеем: $\frac{\sqrt{x}}{\sqrt{1+x^8}} = \frac{x^{1/2}}{x^4\sqrt{1+1/x^8}} \sim \frac{1}{x^{7/2}}$ при $x \to +\infty$. Привлекаем для сравнения интеграл $\int\limits_1^{+\infty} \frac{dx}{x^{7/2}}$. Здесь $p = \frac{7}{2} > 1$, значит, этот интеграл сходится. Эквивалентность функций $f(x) = \frac{\sqrt{x}}{\sqrt{1+x^8}}$ и $g(x) = \frac{1}{x^{7/2}}$ при $x \to +\infty$ означает, что $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$. По предельному признаку сравнения заключаем, что

сходится интеграл $\int\limits_{1}^{+\infty} \frac{\sqrt{x}}{\sqrt{1+x^8}} \, dx$, поэтому сходится и исходный интеграл $\int_{0}^{+\infty} \frac{\sqrt{x}}{\sqrt{1+x^8}} dx$ (теорема 2.1). \blacktriangleleft

Пример 3.4. Показать, что интеграл $\int\limits_0^{+\infty} \frac{\sqrt{1+x}}{\sqrt{1+x^2}} dx$ расходится.

► $\frac{\sqrt{1+x}}{\sqrt{1+x^2}} = \frac{x^{1/2}\sqrt{1+1/x}}{x\sqrt{1+1/x^2}} \sim \frac{1}{x^{1/2}}$ при $x \to +\infty$; интеграл $\int_{1}^{+\infty} \frac{dx}{x^{1/2}}$ расходится $(p = \frac{1}{2} < 1)$. По предельному признаку сравнения расходится интеграл $\int_{0}^{+\infty} \frac{\sqrt{1+x}}{\sqrt{1+x^2}} dx$, следовательно, расходится и данный интеграл $\int_{0}^{+\infty} \frac{\sqrt{1+x}}{\sqrt{1+x^2}} dx$.

Замечание 3.2. Предельный признак сравнения (теорема 3.2) может быть дополнен рассмотрением исключенных случаев в формуле (3.3). Если k = 0, то из сходимости интеграла $\int_{0}^{+\infty} g(x)dx$ следует сходимость интеграла $\int_{0}^{+\infty} f(x)dx$, а из расходимости интеграла $\int_{a}^{+\infty} f(x)dx$ следует расходимость интеграла $\int_{0}^{\infty} g(x)dx.$

Случай $k = \infty$ сводится к случаю k = 0 для обратного отношения $\frac{g(x)}{f(x)}$.

ightharpoonup Рассмотрим случай k=0. Обращаемся к доказательству первой части теоремы 3.2. Полученное там неравенство $f(x) < (k + \varepsilon)g(x)$ при $x \ge A$ сводится к неравенству $f(x) < \varepsilon g(x)$. Из него на основании признака сравнения (теорема 3.1) заключаем, что если интеграл $\int_{-\infty}^{\infty} g(x) dx$, а тем самым и интеграл $\int\limits_a^{+\infty} \epsilon g(x) dx$ сходится, то сходится и интеграл $\int\limits_a^{+\infty} f(x) dx$. Если интеграл $\int\limits_a^{+\infty} f(x) dx$

расходится,

то расходится и интеграл $\int_{a}^{+\infty} \varepsilon g(x) dx$, а потому и интеграл $\int_{a}^{+\infty} g(x) dx$.

Пример 3.5. Исследовать сходимость интеграла $J = \int_{0}^{+\infty} \frac{x^2}{e^x} dx$.

► Сравним интеграл J со сходящимся интегралом $\int\limits_{1}^{+\infty} \frac{dx}{x^2}$ (p=2>1). По правилу Лопиталя вычисляем предел $\lim_{x\to +\infty} \frac{x^2}{e^x} : \frac{1}{x^2} = \lim_{x\to +\infty} \frac{x^4}{e^x} = \lim_{x\to +\infty} \frac{4\cdot 3\cdot 2\cdot 1}{e^x} = 0$. По замечанию 3.2 интеграл $\int\limits_{1}^{+\infty} \frac{x^2}{e^x} dx$ сходится, но тогда сходится и интеграл J по теореме 2.1. Дважды интегрируя по частям, можем вычислить интеграл точно: J=2.