

X-Class **Power MOSFET**

IXTA20N65X IXTP20N65X IXTH20N65X

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum	Ratings
V _{DSS}	$T_J = 25$ °C to 150°C	650	V
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to $150^{\circ}\mathrm{C}$, $R_{_{\mathrm{GS}}} = 1\mathrm{M}\Omega$	650	V
V _{GSS}	Continuous	±30	V
V _{GSM}	Transient	±40	V
I _{D25}	T _C = 25°C	20	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	40	Α
dv/dt	$I_{\rm S} \leq I_{\rm D25}, V_{\rm DD} \leq V_{\rm DSS}, T_{\rm J} \leq 150^{\circ} \rm C$	30	V/ns
P _D	T _C = 25°C	320	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T,	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force (TO-263) Mounting Torque (TO-220 & TO-247)	10.65 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-263	2.5	g
	TO-220 TO-247	3.0 6.0	g 9

			cteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	3.0		5.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$			210	mΩ

650V 20A $210m\Omega$

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol (T ₁ = 25°C,	Test Conditions Unless Otherwise Specified)	Chai Min.	acteristic	Values Max
g_{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	9	15	S
R_{gi}	Gate Input Resistance		3.4	Ω
C _{iss}			1390	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1060	pF
C _{rss}			22	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		77	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{SS} = 0.8 \cdot V_{DSS}$		232	pF
t _{d(on)}	Resistive Switching Times		18	ns
t _r	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		30	ns
t _{d(off)}	$R_{G} = 5\Omega$ (External)		46	ns
t, J	$n_{\rm G} = 352$ (External)		22	ns
$Q_{g(on)}$			35	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		7	nC
Q _{gd}			18	nC
R _{thJC}				0.39 °C/W
R _{thCS}	TO-220		0.50	°C/W
	TO-247		0.21	°C/W

Source-Drain Diode

Symbol (T ₁ = 25°C, U				Values Max	
I _s	V _{GS} = 0V			20	A
I _{sm}	Repetitive, pulse Width Limited by $T_{_{\rm JM}}$			80	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr} Q _{RM} }	$I_F = 10A$, -di/dt = 100A/ μ s $V_R = 100V$		350 4.45 25		ns μC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMANARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 10A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 10A$ Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

IXTA20N65X IXTP20N65X IXTH20N65X

SYM	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.160	.190	4.06	4.83
A1	.080.	.110	2.03	2.79
Ь	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8,64	9.65
D1	.315	.350	8.00	8.89
Ε	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC		2.54 BSC	
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

