Table of Contents

Housekeeping
Set up
Propagate with ode45
Plot Velocity vs. Time
Calculate Kinetic Energy
Plot Kinetic Energy vs. Time

% CODE CHALLENGE 7 - Template Script %
% The purpose of this challenge is to estimate the velocity and kenitic
<pre>% energy profile of a falling object. %</pre>
% To complete the challenge, execute the following steps:
% 1) Set an initial condition velocity
% 2) Set values for constants
% 3) Propagate freefall w/ drag for 20 seconds
% 4) Plot the velocity vs. time
% 5) Calculate the change kinetic energy vs. time
% 6) Plot the change in kinetic energy vs. time
%
\$ NOTE: DO NOT change any variable names already present in the code. $$$
<pre>% Upload your team's script to Gradescope when complete. %</pre>
% NAME YOUR FILE AS Challenge7_Sec{section number}_Group{group
<pre>breakout #}.m</pre>
% ***Section numbers are 1 or 2***
% EX File Name: Challenge7_Sec1_Group15.m
8
% STUDENT TEAMMATES
% 1) Nina Dolatshahi
% 2) Bill Black
% 3) Drew Miller
% 4) Andrew Logue
% 5) Tristan Workman
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % % % % % % % % % % % % %

Housekeeping

```
clear variables; close all; clc;
```

Set up

```
m = .3; % [kg]
g = 9.81; % [m/s^2]
rho = 1.225; % [kg/m^3]
Cd = 1.2; % coefficient of drag
A = 0.0046; % [m^2]
v0 = 0; % [m/s]
ti = 0;
tf = 20;
interval = [ti:tf];
```

Propagate with ode45

```
% free fall with drag for 20 seconds
[t,v] = ode45(@(t,v) accel(t,v,m,g,rho,Cd,A), [ti:tf], v0);
```

Plot Velocity vs. Time

```
plot(t,v)
title("Velocity versus Time of Airplane")
xlabel("Time (s)")
ylabel("Velocity (m/s)")
```


Calculate Kinetic Energy

 $kinE = 0.5 * m * v.^2; % kinetic energy$

Plot Kinetic Energy vs. Time

```
plot(t,kinE)
title("Kinetic Energy versus Time of Airplane")
xlabel("Time (s)")
ylabel("Kinetic Energy [J]")
```


function dv = accel(t,v,m,g,rho,Cd,A) $dv = (((Cd * .5*(rho * v^2) * A)/m)-g);$ end

Published with MATLAB® R2020a