Similarity Transformations, Eigenvectors and Eigenvalues

1. With $x_{-2} = 0$, $x_{-1} = 1$, and $x_n = x_{n-1} + x_{n-2}$, $\forall n \ge 0$ represents the Fibonacci series. In order to compute x_n , you need to know x_{n-1} and x_{n-2} . We can re-write this sequence using matrices as follows:

$$\left[\begin{array}{c} x_n \\ x_{n-1} \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} x_{n-1} \\ x_{n-2} \end{array}\right], \forall n \geq 0$$

Using such a representation, can you derive a closed form expression for x_n that does not depend on any previous elements of the sequence?

- 2. Show that any $n \times n$ matrix A with real-valued entries, but considered as an operator on \mathbb{C}^n has eigenvalues that are real or come in complex conjugate pairs.
- 3. Which of the following matrices are diaganolizable, assuming the field to be \mathbb{R} ?

(a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$
. Try this example for both fields: \mathbb{R} , \mathbb{C} .

(f)
$$A \in \mathbb{R}^{n \times n}$$
, $A^2 = A$.

- 4. Let $\frac{d}{dt} \in \mathcal{L}(U)$, where $U = span(\{1, \cos t, \sin t\})$, over \mathbb{R} , be the usual first derivative operator. If possible diagonalize $\frac{d}{dt}$, else, block-diagonalize.
- 5. Let $A \in \mathbb{R}^{m \times n}$ be any arbitrary matrix. Show that A maps all eigenvectors of $A^T A$ to eigenvectors of AA^T .
- 6. Let $T \in \mathcal{L}(\mathbb{R}^2)$. The matrix A that represents T in the standard \mathbb{R}^2 basis (x and y axis) has eigenvectors (1,3) and (-2,4) (represented in standard basis) with eigenvalues 2 and 3 respectively. Find the matrix A, and the matrix B that represents T with the given eigenvectors as the basis of \mathbb{R}^2 .