

Session 2: Canonical Correlation Analysis

Sessions on Multivariate Modeling.

Course on Kernel Based Learning and Multivariate Modeling

Tomàs Aluja-Banet

tomas.aluja@upc.edu

The plan of the course

Multivariate Descriptive techniques

Criterion to optimize:	- in PCA, component with max. varia - in CCA, components with max. cor - in	"
Restrictions:	on $R^p \rightarrow$ normalized weights on $R^n \rightarrow$ normalized components	$\begin{aligned} w_h &\ = 1 \\ &\ t_h &\ = 1 \end{aligned}$

The CCA problem

We have two vectors of variables measured on n individuals:

$$(x_1, x_2, \cdots, x_p)$$

$$(y_1, y_2, \cdots, y_q)$$

$$X = \begin{bmatrix} p \\ n \end{bmatrix}$$

$$Y = n$$

The goal is to measure the relationship between both multivariate vectors

We assume that we can each group can be summarized by a set of components

We compute these components from each group x and y as the ones most related with the components of the other group

In CCA we treat both groups symmetrically, but in fact group x is the explanatory group and group y is the response one.

The CCA graphical model

t is a component for the X group, u is a component for the Y group

- How to obtain these components?
- How to measure their relationship?
- How many components do we need per each group?

The Canonical Correlation Analysis Approach

We want to find pairs of vectors t_h and u_h :

$$\max cor(t_h, u_h)$$

$$t_h = Xa_h \quad u_h = Yb_h$$
$$a_h \in \mathbb{R}^p \quad b_h \in \mathbb{R}^q$$

We assume *X* and *Y* centered and standardized (not necessary but very often assumed) and of full rank.

Since we are interested in the correlation we take standardized components:

$$||t_h|| = ||u_h|| = 1$$

$$t_h'Nt_{h'}=0$$
 $u_h'Nu_{h'}=0$ and orthogonal

Solution in R^p and R^q

Taking N as R^n metric

$$\max_{h} cor(t_h, u_h) = a'_h X' N Y b_h$$
$$t'_h N t_h = a'_h X' N X a_h = 1$$
$$u'_h N u_h = b'_h Y' N Y b_h = 1$$

$$Max \quad a'_h R_{XY} b_h$$
$$a'_h R_X a_h = 1$$
$$b'_h R_Y b_h = 1$$

Assuming standardized data, otherwise we would have covariance matrices

Mahalanobis metric in R^p and R^q

$$\ell = a'_{h}R_{XY}b_{h} - \frac{\lambda}{2}(a'_{h}R_{X}a_{h} - 1) - \frac{\beta}{2}(b'_{h}R_{Y}b_{h} - 1)$$

$$\frac{\partial \ell}{\partial a_{h}} \rightarrow R_{XY}b_{h} = \lambda R_{X}a_{h}$$

$$R_{XY}b_{h} = \lambda R_{X}a_{h}$$

$$R_{YX}a_{h} = \beta R_{Y}b_{h}$$

$$k = \alpha'_{h}R_{XY}b_{h} = \lambda a'_{h}R_{X}a_{h} =$$

$$\begin{bmatrix} R_{X}^{-1}R_{XY}R_{Y}^{-1}R_{YX}a_{h} = \lambda^{2}a_{h} \\ R_{Y}^{-1}R_{YX}R_{X}^{-1}R_{XY}b_{h} = \lambda^{2}b_{h} \end{bmatrix}^{*}$$

 $\lambda b_{\nu} = R_{\nu}^{-1} R_{\nu\nu} a_{\nu}$

$$t_h = Xa_h$$
$$u_h = Yb_h$$

Canonical components of *X* and *Y*

 $rank(R_{XY}) = min\{rank(R_X), rank(R_Y)\}\$ components

CCA in practice

usually q < p

$$R_{Y}^{-1}R_{YX}R_{X}^{-1}R_{XY}b_{h} = r_{h}^{2}b_{h}$$

$$b'_{h}R_{Y}^{-1}b_{h} = 1$$

symmetrisation

$$R_{Y}^{-\frac{1}{2}}R_{YX}R_{X}^{-1}R_{XY}R_{Y}^{-\frac{1}{2}}R_{Y}^{\frac{1}{2}}b_{h} = r_{h}^{2}R_{Y}^{\frac{1}{2}}b_{h}$$

$$R_{Y}^{-\frac{1}{2}}R_{YX}R_{X}^{-1}R_{XY}R_{Y}^{-\frac{1}{2}}\dot{b}_{h} = r_{h}^{2}R_{Y}^{\frac{1}{2}}\dot{b}_{h}$$

$$\dot{b}'_{h}\dot{b}_{h} = 1 \qquad \qquad \dot{b}_{h} = R_{Y}^{\frac{1}{2}}b_{h}$$

*
$$r_h R_X a_h = R_{XY} b_h$$

$$a_h = \frac{1}{r_h} R_X^{-1} R_{XY} R_Y^{-\frac{1}{2}} b_h = \frac{1}{r_h} R_X^{-1} R_{XY} R_Y^{-\frac{1}{2}} \dot{b}_h$$

$$t_h = X a_h \qquad t_h^{test} = X^{test} a_h$$

$$u_h = Y b_h = Y R_Y^{-\frac{1}{2}} \dot{b}_h$$

power of a matrix by SVD

$$A = UDV'$$
 $A^s = UD^sV'$

Dual solution in R^n

Solution in \mathbb{R}^p and \mathbb{R}^q

$$R_{Y}^{-1}R_{YX}R_{X}^{-1}R_{XY}b_{h} = r_{h}^{2}b_{h}$$

$$R_{X}^{-1}R_{XY}R_{Y}^{-1}R_{YX}a_{h} = r_{h}^{2}a_{h}$$

$$Y(Y'NY)^{-1}Y'NX(X'NX)^{-1}X'NYb_{h} = r_{h}^{2}Yb_{h}$$

$$X(X'NX)^{-1}X'NY(Y'NY)^{-1}Y'NXa_{h} = r_{h}^{2}Xa_{h}$$

Solution in \mathbb{R}^n

$$\Pi_Y \Pi_X u_h = r_h^2 u_h$$

$$\Pi_X \Pi_Y t_h = r_h^2 t_h$$

$$a'_{h}R_{X}a_{h} = a'_{h}X'NXa_{h} = t'_{h}Nt_{h} = 1$$

 $b'_{h}R_{Y}b_{h} = b'_{h}Y'NYb_{h} = u'_{h}Nu_{h} = 1$

$$t_h = Xa_h$$
 $\Pi_X = X(X'NX)^{-1}X'N$ $u_h = Yb_h$ $\Pi_Y = Y(Y'NY)^{-1}Y'N$ Orthogonal projectors

Properties of the canonical components

CCA components are different from PCRs'

$$cor(Xa_h, Yb_h) = cov(Xa_h, Yb_h) / \sqrt{var(Xa_h)} \sqrt{var(Yb_h)}$$
PCA criterion

Maximising the correlation implies that we don't take care of the variances (PCA criterion), hence canonical variates don't need to explain each own group.

Properties of the canonical components

t_h and u_h need to be collinear

$$\Pi_X = X(X'NX)^{-1}X'N$$

$$\Pi_Y = Y(Y'NY)^{-1}Y'N$$

$$r = \lambda = \cos(\theta)$$
 canonical correlation

*
$$R_{XY}b_h = r_h R_X a_h$$
 $X'NYb_h = r_h X'NXa_h$
 $R_{YX}a_h = r_h R_Y b_h$ $Y'NXa_h = r_h Y'NYb_h$

$$X(X'NX)^{-1}X'NYb_h = r_h Xa_h$$
$$Y(Y'NY)^{-1}Y'NXa_h = r_h Yb_h$$

$$\Pi_X u_h = r_h t_h$$
$$\Pi_Y t_h = r_h u_h$$

We have: $cor^2(t_h, u_h) = R^2(u_h, X) = R^2(t_h, Y) = cos^2 \theta = r_h^2$

Properties of the canonical components

 y_1

Relationships with correlations

*
$$X'NYb_h = r_h X'NXa_h$$
 $X'Nu_h = r_h X'Nt_h$
 $Y'NXa_h = r_h Y'NYb_h$ $Y'Nt_h = r_h Y'Nu_h$

$$\begin{cases} cor(x_j, u_h) = r_h cor(x_j, t_h) \\ cor(y_k, t_h) = r_h cor(y_k, u_h) \end{cases}$$

Orthogonality of canonical variates

$$t'_h N t_l = a_h X' N X a_l = a_h R_X a_l = 0$$

 $t'_h N u_l = a_h X' N u_l = a_h (r_l X' N t_l) = r_l t'_h N t_l = 0$

Graphical displays of individuals

of individuals

2 displays (not optimal, not interesting)

$$Xa_h = t_h \qquad (t_1, t_2), \dots$$

$$Yb_h = u_h \qquad (u_1, u_2), \dots$$

Display of individuals in the (t_h, u_h) basis. Just to reveal the strength of the liaison

$$(t_1, u_1), (t_2, u_2), \dots$$

Graphical displays

of Variables

As correlation with the canonical components

- on $(t_h t_{h'})$ basis

$$XNt_{h} = \begin{pmatrix} \vdots \\ cor(x_{j}, t_{h}) \\ \vdots \end{pmatrix}, \quad YNt_{h} = \begin{pmatrix} \vdots \\ cor(y_{j}, t_{h}) \\ \vdots \end{pmatrix}$$

- on the $(u_h u_{h'})$ canonical components

$$X \mathcal{N} u_h = \begin{pmatrix} \vdots \\ cor(x_j, u_h) \\ \vdots \end{pmatrix}, \quad Y \mathcal{N} u_h = \begin{pmatrix} \vdots \\ cor(y_j, u_h) \\ \vdots \end{pmatrix}$$

Singular Value Decomposition and CCA Biplot

equivalence svd – eigen:

$$X = U\Lambda V' \begin{cases} X'X = V\Lambda^{2}V' & X'XV = V\Lambda^{2} \\ XX' = U\Lambda^{2}U' & XX'U = U\Lambda^{2} \end{cases}$$

$$V'V = I$$

$$U'U = I$$

$$B = \begin{cases} A_{h} \\ \vdots \\ B_{h} \end{cases}$$

$$B = \begin{cases} A_{h} \\ \vdots \\ B_{h} \end{cases}$$

$$B = \begin{cases} A_{h} \\ \vdots \\ B_{h} \end{cases}$$

$$B = \begin{cases} A_{h} \\ \vdots \\ B_{h} \end{cases}$$

*
$$R_X^{-\frac{1}{2}}R_{XY}R_Y^{-1}R_{YX}R_X^{-\frac{1}{2}}R_X^{\frac{1}{2}}a_h = r_h^2 R_X^{\frac{1}{2}}a_h$$

 $R_Y^{-\frac{1}{2}}R_{YX}R_X^{-1}R_{XY}R_Y^{-\frac{1}{2}}R_Y^{\frac{1}{2}}b_h = r_h^2 R_Y^{\frac{1}{2}}b_h$

$$A = \begin{pmatrix} \vdots & \vdots & \vdots \end{pmatrix}$$

$$R_X^{-1/2}R_{XY}R_Y^{-1/2} = R_X^{1/2}A\Lambda B'R_Y^{1/2}$$

$$R_{XY} = R_X A \begin{pmatrix} r_1 & & \\ & \ddots & \\ & & r_s \end{pmatrix} B'R_Y = X'NXA\Lambda B'Y'NY = \sum_h r_h X'Nt_h u_h'NY$$

$$cor(x_j, y_k) = \sum_{h=1}^{s} cor(x_j, t_h) \times cor(y_k, t_h) = \sum_{h=1}^{s} cor(x_j, u_h) \times cor(y_k, u_h)$$

Biplot of vars. in (t_1, t_2) basis

Biplot of vars. in (u_1, u_2) basis

Interpreting the results

Loadings

components

$$\begin{pmatrix} \vdots \\ cor(y_j, u_h) \\ \vdots \end{pmatrix} = R_Y b_h$$

Communality (part of explained variance of variables from their own component(s))

$$R^2(x_j, t_h) = cor^2(x_j, t_h)$$

$$R^{2}(x_{j};t_{1},\dots,t_{s}) = \sum_{h=1}^{s} cor^{2}(x_{j},t_{h})$$

$$R^{2}(X;t_{h}) = \frac{1}{p} \sum_{j=1}^{p} cor^{2}(x_{j},t_{h})$$

$$R^2(y_k, u_h) = cor^2(y_k, u_h)$$

$$R^{2}(y_{k}; u_{1}, \dots, u_{s}) = \sum_{h=1}^{s} cor^{2}(y_{k}, u_{h})$$

$$R^{2}(Y; u_{h}) = \frac{1}{q} \sum_{k=1}^{q} cor^{2}(y_{k}, u_{h})$$

Interpreting the results

Redundancy.

Part of the variance of one group explained by the canonical components of the other group.

$$Rd(y_k, t_h) = cor^2(y_k, t_h) = r_h^2 R^2(y_k, u_h)$$

$$Rd(Y;t_h) = \frac{1}{q} \sum_{k=1}^{q} cor^2(y_k, t_h) = \frac{r_h^2}{q} \sum_{k=1}^{q} R^2(y_k, u_h)$$

$$Rd(Y;t_1,\dots,t_s) = \frac{1}{q} \sum_{h=1}^{s} \sum_{k=1}^{q} cor^2(y_k,t_h) = \sum_{h=1}^{s} r_h^2 R^2(Y,u_h)$$

Number of significant canonical variates

By crossvalidation, computing the R2cv

Number of significant canonical variates

Assuming multivariate normality

$$(x, y) \sim N \left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \Sigma_X & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_Y \end{pmatrix} \right)$$

We can test the hypothesis about the number canonical correlations r_h are zero. Correlations of the Σ_{xy} matrix

Test of all canonical correlations are zero

$$H_0: \rho_1 = 0, ..., \rho_s = 0$$

LRT:
$$H_0: \Sigma_{XY} = 0 \\ H_1: \Sigma_{XY} \neq 0$$

$$\Sigma_0 = \begin{bmatrix} \Sigma_X & 0 \\ 0 & \Sigma_Y \end{bmatrix}$$

Likelihood Ratio Test

$$H_0: \Sigma_{XY} = 0$$

 $H_1: \Sigma_{yy} \neq 0$

 \Rightarrow

MLE estimators

$$\hat{\Sigma}_0 = \begin{bmatrix} V_X & 0 \\ 0 & V_Y \end{bmatrix}$$

$$\hat{\Sigma} = V = \begin{bmatrix} V_X & V_{XY} \\ V_{YY} & V_Y \end{bmatrix}$$

Likelihood function maximums

$$L_0(\hat{\Sigma}_0) = \frac{1}{|\hat{\Sigma}_0|^{n/2}} e^{-\frac{1}{2}np}$$

$$L(\hat{\Sigma}) = \frac{1}{|V|^{\frac{n}{2}}} e^{-\frac{1}{2}np}$$

$$-2\ln\frac{\max L_0(\Sigma_0)}{\max L(V)} = -n\ln\left|\hat{\Sigma}_0^{-1}V\right| = -n\ln\frac{|V|}{|V_X||V_Y|}$$

$$|V| = |V_{x}| |V_{Y} - V_{YX} V_{X}^{-1} V_{XY}|$$

$$-n\ln\left(\left|V_{Y}-V_{YX}V_{X}^{-1}V_{XY}\right|/\left|V_{Y}\right|\right) = -n\ln\left(\left|I-V_{Y}^{-1}V_{YX}V_{X}^{-1}V_{XY}\right|\right) = -n\ln\left(\left|1-r_{h}^{2}\right|\right) \sim \chi_{p*q}^{2}$$

Finding the significant canonical correlations

Sequential tests for a decreasing non zero canonical correlations

from
$$h=0,...,rang(V_{XY})-1$$

$$H_0: \rho_1 \neq 0, ..., \rho_h \neq 0, \rho_{h+1} = 0, ..., \rho_s = 0$$

$$-n \ln \prod_{j=h+1}^{rang(V_{XY})} (1-r_j^2) \sim \chi_{(p-h)(q-h)}^2$$

CCA Regression

CCA Regression in practice:

We use the t_1 , t_2 , ... significant canonical components as explanatory latent components of the y_i variables.

$$Y = T_{(r)}^{CCA} \tilde{B}_{(r)} + \varepsilon_Y$$

$$Y = XA_{(r)}\tilde{B}_{(r)} + \varepsilon_{Y} = XB + \varepsilon_{Y}$$

$$\tilde{B}_{(r)} = (T_{(r)}^{CCA'} N T_{(r)}^{CCA})^{-1} T_{(r)}^{CCA'} N Y = T_{(r)}^{CCA'} N Y$$

$$B = A_{(r)} T_{(r)}^{CCA'} NY$$

Limitations of CCA

- X and Y have to be of full rank
- Unstable solution if X or Y are ill conditioned (high collinearity)
- Components not representatives of the own group
- Number max. of components = min(p,q)
- n > max(p,q)

Advantages of CCA

- Optimal solution for components (max. correlation)
- Orthogonal components
- Joint representations of x and y variables are biplots

CCA of the Linnerud case

```
> library(calibrate) (Jan Graffelman)
> cc <- canocor(X,Y)</pre>
         $ccor
                [,1] [,2] [,3]
         [1,] 0.7956 0.0000 0.00000
                                            Canonical correlations cor(t_h, u_h)
         [2,] 0.0000 0.2006 0.00000
         [3,] 0.0000 0.0000 0.07257
         $A
                  [,1] [,2] [,3]
                                             Coefficients of Rp
         [1,] 0.77540 -1.8844 0.191
         [2,] -1.57935 1.1806 -0.506
         [3,] 0.05912 -0.2311 -1.051
         $В
                 [,1] [,2] [,3]
                                             Coefficients of Rq
         [1,] 0.3495 -0.3755 1.2966
         [2,] 1.0540 0.1235 -1.2368
         [3,] -0.7164 1.0622 0.4188
```


The canonical components

\$U	$=t_h$					
	[,1]	[,2]	[,3]			
1	0.043457	-0.52961	0.89006			
2	-0.496195	-0.07235	0.42509			
3	-0.814622	-0.20122	-0.57639			
4	-0.275645	0.93031	-0.92501			
5	0.441092	-0.61749	1.61555			
6	-0.189989	-0.03505	-0.05395			
7	-0.265736	-1.51087	-0.14570			
8	0.358221	0.24409	-0.43684			
9	2.235379	-1.99768	-1.93337			
10	0.410405	0.99573	0.20357			
11	0.339038	0.41197	1.03596			
12	0.754464	0.20810	0.87932			
13	-0.017242	1.10804	-1.12032			
14	-3.130297	-1.11627	-0.25711			
15	0.073469	-0.55404	1.48846			
16	-0.005941	-1.38503	-0.93167			
17	-0.888057	0.85570	0.03307			
18	0.965063	0.52626	0.96774			
19	0.456816	0.90719	0.51051			
20	0.006322	1.83222	-1.66898			

```
=u_h
$V
                [,2]
       [,1]
                         [,3]
   0.12682
            0.13525 -1.50078
   -0.94753 0.24574 -1.20869
   -1.01084 0.36684 1.75684
   -0.04927 -0.95097 1.15505
5
  0.56575 -0.48833
                     0.58346
   -0.71543 - 0.28696 - 0.68724
   -0.39508 -0.65399
                      0.26119
   -0.15094 - 0.42311 - 0.68745
9
   1.70755 -0.91445 0.03746
10 -0.23510
           3.39410 1.23503
                     2.09308
11
  0.52002 -1.25586
  0.69592 0.80093 -0.03821
12
   0.98598
            0.53262
13
                      0.02655
14 -1.88470 -0.00879 -0.34958
15 -0.95174 -0.71809 0.32626
  0.55994 0.97554 -0.24265
16
17 -1.16860 -0.72003 -0.01562
  1.38962
            0.25750 -1.20998
18
19
   1.66764 - 0.18154 - 0.18721
20 -0.71001 -0.10640 -1.34753
```


The correlations

```
$Fs
          [,1] [,2] [,3]
Weight -0.6206 -0.77239 0.13496
                                       = cor(X,T) (X loadings)
Waist
      -0.9254 - 0.37766 0.03099
Pulse
      0.3328 0.04148 -0.94207
$Gs
           [,1] [,2] [,3]
Tractions 0.7276 0.2370
                        0.64375
                                       = COr(Y, U) (Y loadings)
Push.ups 0.8177 0.5730 -0.05445
Jumps
         0.1622 0.9586
                        0.23394
$Fp
          [,1] [,2]
                            [,3]
Weight -0.4938 -0.15491 0.009794
                                       = cor(X, U)
Waist
      -0.7363 -0.07574 0.002249
      0.2648 0.00832 -0.068366
Pulse
$Gp
           [,1]
                   [,2]
                             [,3]
Tractions 0.5789 0.04752
                        0.046717
                                       = cor(Y,T)
Push.ups 0.6506 0.11492 -0.003951
Jumps
         0.1290 0.19226
                         0.016977
```


The quality of the fit

\$fitRxy [,1] [,2] [,3] lamb 0.633 0.04022 0.005266 frac 0.933 0.05928 0.007762 cumu 0.933 0.99224 1.000000	$lamb_{h} = r_{h}^{2}$ $frac = lamb_{h} / \sum_{h} dh$	$_{_{_{l}}}lamb_{_{h}}$
\$fitXs [,1] [,2] [,3] AdeX 0.4508 0.2470 0.3022 cAdeX 0.4508 0.6978 1.0000	X Communality	$R^2(X;t_h)$
\$fitXp [,1] [,2] [,3] RedX 0.2854 0.009934 0.001592 cRedX 0.2854 0.295286 0.296878	X Redundancy	$Rd^2(X;u_h)$
\$fitYs [,1] [,2] [,3] AdeY 0.4081 0.4345 0.1574 cAdeY 0.4081 0.8426 1.0000	Y Communality	$R^2(Y;u_h)$
\$fitYp	Y Redundancy	$Rd^2(Y;t_h)$

Number of significant dimensions

$$H_0: \rho_1 = 0, \rho_2 = 0, \rho_3 = 0$$

$$H_0: \rho_1 \neq 0, \rho_2 = 0, \rho_3 = 0$$

$$H_0: \rho_1 \neq 0, \rho_2 \neq 0, \rho_3 = 0$$

	corca2	stat.val	gd	p.val
1	0.632992	20.9741	9	0.01277

Just the first component is significant

Crossvalidation of $\hat{Y}=T_{(h)}B$

```
"Num. components: 1"
"RMPRESS" Tractions
                     Push.ups
                                  Jumps
                       0.7841
             0.8076
                                 0.9924
            0.28932
R2cv"
                      0.33007
                               -0.07298
"Num. components: 2"
"RMPRESS" Tractions
                     Push.ups
                                  Jumps
             0.8599
                       0.8488
                                 1.0351
             0.1943
                       0.2150
                                -0.1674
"R2cv"
"Num. components: 3"
"RMPRESS" Tractions
                     Push.ups
                                  Jumps
             0.9200
                       0.9124
                                 1.0898
"R2cv"
            0.07789
                      0.09289
                               -0.29409
```


Relation between components t_1 and u_1

Relation th with uh

Circle of correlations (biplots)

correlations on t1, t2

correlations on u1, u2

The CCA model

```
> lmY <- lm(Ys \sim cc$U[,1]-1)
> summary(lmY)
Response Tractions :
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
cc$U[, 1]
            0.579
                        0.187
                                 3.09
                                         0.006 **
Residual standard error: 0.815 on 19 degrees of freedom
Multiple R-squared: 0.335, Adjusted R-squared:
                                                      0.3
F-statistic: 9.58 on 1 and 19 DF, p-value: 0.00597
Response Push.ups :
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
            0.651
                        0.174
                                3.73 0.0014 **
cc$U[, 1]
Residual standard error: 0.759 on 19 degrees of freedom
Multiple R-squared: 0.423, Adjusted R-squared:
F-statistic: 13.9 on 1 and 19 DF, p-value: 0.00141
Response Jumps :
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
cc$U[, 1]
             0.129
                        0.227
                                 0.57
                                         0.58
Residual standard error: 0.992 on 19 degrees of freedom
Multiple R-squared: 0.0167, Adjusted R-squared: -0.0351
F-statistic: 0.322 on 1 and 19 DF, p-value: 0.577
> summary(manova(lmY))
         Df Pillai approx F num Df den Df Pr(>F)
                       9.77
                                  3
                                       17 0.00056 ***
cc$U[, 1] 1 0.633
Residuals 19
```


Summary of results of CCA on Linnerud case

$$Com = 0.451$$

$$Red = 0.258 = mean(R^2)$$

$$mean(R_{cv}^2)=0.182$$