SEAPODYM Source Code Documentation 4.01

Generated by Doxygen 1.8.17

1	Hierarchical Index	1
	1.1 Class Hierarchy	1
2	Class Index	3
	2.1 Class List	3
3	Class Documentation	5
	3.1 CBord Class Reference	5
	3.1.1 Detailed Description	5
	3.2 CCalpop Class Reference	6
	3.2.1 Detailed Description	8
	3.2.2 Member Function Documentation	8
	3.2.2.1 Calrec_juv()	8
	3.2.2.2 Ctot_proportion_fishery_comp()	8
	3.2.2.3 Precaldia_Caldia()	9
	3.2.2.4 Precalrec_Calrec_adult()	9
	3.2.2.5 Precalrec_juv()	9
	3.2.2.6 precalrec_juv_comp()	9
	3.2.2.7 precalrec_total_mortality_comp()	10
	3.2.2.8 Precalrec_total_mortality_comp()	10
	3.2.2.9 Predicted_Catch_Fishery()	10
	3.2.2.10 Predicted_Catch_Fishery_no_effort()	11
	3.2.2.11 total_exploited_biomass_comp()	11
	3.2.2.12 Total_exploited_biomass_comp()	11
	3.2.2.13 total_obs_catch_age_comp()	11
	3.2.2.14 Total_obs_catch_age_comp()	12
	3.2.2.15 xbet_comp()	12
	3.2.2.16 Xbet_comp1()	12
	3.3 CMatrices Class Reference	13
	3.3.1 Detailed Description	16
	3.3.2 Member Function Documentation	16
	3.3.2.1 createMatCatch()	16
	3.4 CNumfunc Class Reference	16
	3.4.1 Detailed Description	17
	3.5 CParam Class Reference	17
	3.5.1 Detailed Description	23
	3.5.2 Member Function Documentation	23
	3.5.2.1 dfselectivity()	23
	3.5.3 Member Data Documentation	24
	3.5.3.1 length	24
	3.5.3.2 life_stage	24
	3.6 CReadWrite Class Reference	24
	3.6.1 Detailed Description	26
	O.O. Detailed Description	20

3.6.2 Member Function Documentation	26
3.6.2.1 read_lf_EPO()	26
3.6.2.2 read_lf_WCPO()	. 27
3.6.2.3 read_pred_frq_data()	27
3.6.2.4 write_frq_data()	27
3.7 CSaveTimeArea Class Reference	27
3.7.1 Detailed Description	28
3.8 CSimtunaFunc Class Reference	28
3.8.1 Detailed Description	. 29
3.9 Date Class Reference	29
3.9.1 Detailed Description	30
3.10 fishery_record Class Reference	30
3.10.1 Detailed Description	30
3.11 fishing_effort Class Reference	30
3.11.1 Detailed Description	31
3.12 PMap Class Reference	31
3.12.1 Detailed Description	32
3.13 CParam::region Struct Reference	32
3.13.1 Detailed Description	32
3.14 SeapodymCoupled Class Reference	. 33
3.14.1 Detailed Description	34
3.14.2 Member Function Documentation	34
3.14.2.1 OnRunCoupled()	34
3.14.2.2 OnRunDensity()	35
3.15 SeapodymDocConsole Class Reference	36
3.15.1 Detailed Description	38
3.16 tag_release Class Reference	38
3.16.1 Detailed Description	38
3.17 Utilities Class Reference	39
3.17.1 Detailed Description	40
3.18 VarMatrices Class Reference	40
3.18.1 Detailed Description	41
3.19 VarParamCoupled Class Reference	41
3.19.1 Detailed Description	45
3.19.2 Member Function Documentation	45
3.19.2.1 read()	45
3.20 VarSimtunaFunc Class Reference	45
3.20.1 Detailed Description	47
3.20.2 Member Function Documentation	47
3.20.2.1 Faccessibility()	47
3.20.2.2 Feeding_Habitat_Index()	48
3.20.2.3 Juvenile_Habitat()	48

		iii
	2.20.2.4 M. an. comp()	10
	3.20.2.4 M_sp_comp()	
	3.20.2.6 Seasonal_switch()	
	3.20.2.7 Spawning_Habitat()	49
Index		51

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CBord	
CCalpop	6
CMatrices	13
VarMatrices	40
CNumfunc	16
CParam	17
VarParamCoupled	41
CReadWrite	24
CSaveTimeArea	27
CSimtunaFunc	28
VarSimtunaFunc	45
Date	29
fishery_record	30
fishing_effort	30
PMap	31
CParam::region	32
SeapodymDocConsole	36
SeapodymCoupled	33
tag_release	38
Utilities	39

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CBord	
Class handling the type of the borders of a grid cell	5
CCalpop	
This is main computational class: all functions and variables to solve ADR equations are here .	6
CMatrices	
Seapodym matrices class	13
CNumfunc	
Class for computing various mathematical functions	16
CParam Sanadam navarratav alaas	4-
Seapodym parameter class	17
CReadWrite IO class	24
CSaveTimeArea	24
The class to aggregate variables to the regional structure	27
CSimtunaFunc	
The simulation function which do not use dvariables	28
Date	
Class written by J.Jouanno to handle date format	29
fishery_record	
Class that reads and stores all fishing data	30
fishing_effort	
Class that reads and stores redistributed fishing effort data	30
PMap	
Class managing spatial domain and grid: the land mask, the indexing and the boundaries	31
CParam::region	
Structure defining the regional ID and boundaries	32
SeapodymCoupled	0.0
The main simulation class	33
SeapodymDocConsole This class derives all necessary classes for the main simulation class	26
tag_release	36
Class handling tag releases	38
Utilities	00
Old SEAPODYM class containing conversions and array handling functions	39
VarMatrices	00
Seapodym DVAR matrices class	40

Class Index

VarParamCoupled	
Seapodym DVAR parameter class	41
VarSimtunaFunc	
All SEAPODYM functions including DVAR parameters	45

Chapter 3

Class Documentation

3.1 CBord Class Reference

Class handling the type of the borders of a grid cell.

```
#include <Map.h>
```

Public Member Functions

- int cotex ()
- int cotey ()

Public Attributes

```
union {
   unsigned short int b
   struct {
      char x
      char y
   } cote
};
```

3.1.1 Detailed Description

Class handling the type of the borders of a grid cell.

For a given pair of indices (i,j) structure cote stores the type of cell's borders, two in x and two in y direction - left-closed (G_FERME), right-closed (D_FERME) or open (SANS) for ocean cells, and land (TERRE) if the land is next to the land cell.

The documentation for this class was generated from the following file:

• src/Map.h

3.2 CCalpop Class Reference

This is main computational class: all functions and variables to solve ADR equations are here.

#include <calpop.h>

Public Member Functions

- void InitCalPop (CParam ¶m, const PMap &map)
- void precaldia (const CParam ¶m, const PMap &map, CMatrices &mat)
- void precaldia_comp (const PMap &map, CParam ¶m, CMatrices &mat, const dmatrix &habitat, const dmatrix &total_pop, double MSS, double MSS_size_slope, double sigma_species, double c_diff_fish, const int sp, const int age, const int jday)
- void Precaldia_Caldia (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, dvar_matrix &habitat, dvar_matrix &total_pop, const int sp, const int age, const int t_count, const int jday)
- void caldia (const PMap &map, const CParam ¶m, const DMATRIX &diffusion_x, const DMATRIX &diffusion y, const DMATRIX &diffusion y)
- void caldia_GO (const PMap &map, const CParam ¶m, const DMATRIX &diffusion_x, const DMATRIX &diffusion_y, const DMATRIX &diffusion_y)
- void **starvation_penalty** (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, dvar_matrix &mortality, dvar_matrix &total_pop, dvar3_array &nF_ratio, dvar_matrix &uu, const int sp, const int age)
- void precalrec (PMap &map, const dmatrix &mortality)
- · void Precalrec juv (const PMap &map, CMatrices &mat, dvar matrix &mortality, const int t count)
- void precalrec juv comp (const PMap &map, dmatrix &bm, const dmatrix &mortality)
- void Precalrec_total_mortality_comp (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, dvar_matrix &mortality, const int age, const int sp, const int t_count, const int year, const int month, const int step_count)
- void **Recomp_total_mortality_comp** (const PMap &map, CParam ¶m, CMatrices &mat, CReadWrite &rw, dmatrix &mortality, const int age, const int sp, const int year, const int month, const int step_count)
- void precalrec_total_mortality_comp (const imatrix carte, const dmatrix effort, dvar_matrix &mortality, const double sq, const dvector lat correction)
- void Precalrec_Calrec_adult (const PMap &map, VarMatrices &mat, VarParamCoupled ¶m, CReadWrite &rw, dvar_matrix &uu, dvar_matrix &mortality, const int t_count, const bool fishing, const int age, const int sp, const int year, const int month, const int jday, const int step_count, const int no_mortality)
- void calrec (const PMap &map, dmatrix &uu, const dmatrix &mortality)
- void calrec1 (const PMap &map, dvar matrix &uu, const dmatrix &mortality)
- void calrec_with_catch (const PMap &map, CParam ¶m, dvar_matrix &uu, const dmatrix &C_obs, dvar matrix &C est)
- void calrec_GO (const PMap &map, dvar_matrix &uu)
- void calrec_GO_with_catch (const PMap &map, CParam ¶m, dvar_matrix &uu, const dmatrix &C_obs, dvar_matrix &C_est)
- void Calrec_juv (const PMap &map, CMatrices &mat, dvar_matrix &uu, dvar_matrix &mortality, const int t_← count)
- void Calrec adult (const PMap &map, dvar matrix &uu, dvar matrix &mortality)
- void Recomp_abc_coef (const PMap &map, CMatrices &mat, const int t_count, const dmatrix &mortality, dmatrix &aa, dmatrix &bbm, dmatrix &cc)
- void Recomp_DEF_coef (const PMap &map, CParam ¶m, CMatrices &mat, const int t_count, const int jday, const dmatrix &habitat, dmatrix &dd, dmatrix &ee, dmatrix &ff, dmatrix &advection_x, dmatrix &advection_y, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma
 _species)
- void Recomp_DEF_UV_coef (const PMap &map, CParam ¶m, CMatrices &mat, dmatrix &u, dmatrix &v, const dmatrix &habitat, dmatrix &dd, dmatrix &ee, dmatrix &ff, dmatrix &advection_x, dmatrix &advection_y, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma
 _species, const int jday)

- void RecompDiagCoef_juv (const PMap &map, CMatrices &mat, const int t_count, const dmatrix mortality, dmatrix &a, dmatrix &bm, dmatrix &c, dmatrix &d, dmatrix &e, dmatrix &f)
- void RecompDiagCoef_adult (const PMap &map, CParam ¶m, CMatrices &mat, const int t_count, const int jday, const dmatrix &mortality, const dmatrix &habitat, dmatrix &aa, dmatrix &bbm, dmatrix &cc, dmatrix &dd, dmatrix &ee, dmatrix &ff, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma_species)
- void RecompDiagCoef_UV_adult (const PMap &map, CParam ¶m, CMatrices &mat, const int t_count, const int jday, const dmatrix &mortality, const dmatrix &habitat, dmatrix &aa, dmatrix &bbm, dmatrix &cc, dmatrix &dd, dmatrix &ee, dmatrix &ff, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma_species)
- void RecompM_sp (const PMap &map, const CParam ¶m, dmatrix &M, const dmatrix &H, const double age, const int sp)
- void Predicted_Catch_Fishery (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, const int sp, const int f, const int k, const int year, const int month, const int t_count, const int step_count)
- void **predicted_catch_fishery_comp** (const PMap &map, CParam ¶m, VarMatrices &mat, const int f, const int k, const int sp, const int age, const dmatrix &uu, const int step_count)
- void Total_obs_catch_age_comp (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, const int age, const int sp, const int year, const int month, const int t_count)
- void Ctot_proportion_fishery_comp (const PMap &map, CParam ¶m, CMatrices &mat, CReadWrite &rw, const int year, const int month, const int sp)
- void **Recomp_C_fishery_proportion_in_Ctot** (const PMap &map, CParam ¶m, CReadWrite &rw, dmatrix &Ctot proportion fishery, const int year, const int month, const int sp, const int k)
- void Total_exploited_biomass_comp (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, const int sp, const int t count)
- void Selectivity_comp (CParam ¶m, const int nb_fishery, const int a0, const int nb_ages, const int sp)
- void Predicted_Catch_Fishery_no_effort (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, const int sp, const int year, const int month)
- void **predicted_catch_fishery_no_effort_comp** (const PMap &map, CParam ¶m, VarMatrices &mat, const int f, const int k, const int sp, const int age)
- void total_exploited_biomass_comp (const imatrix carte, const dmatrix &uu, const dmatrix &Cobs, const int f, const int fne, const int age, const int sp)
- void Recomp_total_exploited_biomass (const PMap &map, CParam ¶m, CMatrices &mat, dmatrix &EB, const dmatrix &Cobs, const dvector &selectivity, const int f, const int sp, const int t_count)
- void total_obs_catch_age_comp (const PMap &map, const CParam ¶m, CMatrices &mat, const dmatrix &uu, const dmatrix &Cobs, dvar_matrix &Ctot_age_obs, const int f, const int fne, const int k, const int age, const int sp, const double C2Dunits)
- void **Recomp_total_obs_catch_age** (const PMap &map, CParam ¶m, CMatrices &mat, CReadWrite &rw, dmatrix &Ctot_age_obs, const int age, const int sp, const int year, const int month, const int t_count)
- int get_iterationN ()
- int get maxn ()
- int get_Vinf()
- void Xbet comp1 (const PMap &map, int dt)
- void xbet comp (const PMap &map, dmatrix &xbet, dmatrix &a, dmatrix &bm, dmatrix &c, int dt)
- void ybet_comp (const PMap &map, dmatrix &ybet, dmatrix &d, dmatrix &e, dmatrix &f, int dt)
- void time_reading_init ()

Public Attributes

- dvar_matrix dvarsA
- dvar matrix dvarsB
- dvar matrix dvarsBM
- dvar matrix dvarsC
- dvar matrix dvarsD
- dvar_matrix dvarsE

- · dvar_matrix dvarsF
- dvar_matrix Xbet
- · dvar matrix Ybet
- dvar3_array dvarsSNsum
- d3_array Selectivity
- DMATRIX uuint
- double elapsed_time_reading

3.2.1 Detailed Description

This is main computational class: all functions and variables to solve ADR equations are here.

3.2.2 Member Function Documentation

3.2.2.1 Calrec_juv()

Forward main function called in simulation mode only for: calrec for larval and juvenile life stages, i.e. with passive drift only. See calrec_adre.cpp

3.2.2.2 Ctot_proportion_fishery_comp()

```
void CCalpop::Ctot_proportion_fishery_comp (
    const PMap & map,
    CParam & param,
    CMatrices & mat,
    CReadWrite & rw,
    const int year,
    const int month,
    const int sp )
```

Forward functions for: predicting catch by fishery without using the effort data. They compute local proportions of catch by fishery in the total catch over 'no effort' fisheries. Note, the catches being used need to have the same units.

3.2.2.3 Precaldia_Caldia()

Forward main function called in simulation mode only for: precaldia and caldia functions. See caldia.cpp

3.2.2.4 Precalrec_Calrec_adult()

```
void CCalpop::Precalrec_Calrec_adult (
             const PMap & map,
             VarMatrices & mat,
             VarParamCoupled & param,
             CReadWrite & rw,
             dvar_matrix & uu,
             dvar_matrix & mortality,
             const int t_count,
             const bool fishing,
             const int age,
             const int sp,
             const int year,
             const int month,
             const int jday,
             const int step_count,
             const int no_mortality )
```

Forward main function called in simulation mode only for: precalrec and calrec for adults functions. See calrec_ precalrec.cpp

3.2.2.5 Precalrec_juv()

Forward main function called in simulation mode only for: precalrec for larval and juvenile life stages. See precalrec_juv.cpp

3.2.2.6 precalrec juv comp()

Forward function for: precalrec for larval and juvenile life stages. This routine precomputes diagonal coefficient for calrec_adre

3.2.2.7 precalrec_total_mortality_comp()

Forward functions for: computing the sum of natural and fishing mortalities

3.2.2.8 Precalrec_total_mortality_comp()

Forward main function called in simulation mode only for: computing the sum of natural and fishing mortalities See total_mortality_comp.cpp

3.2.2.9 Predicted_Catch_Fishery()

Forward main function called in simulation mode only for: predicting catch by fishery based on fishing effort. See predicted_catch.cpp

3.2.2.10 Predicted_Catch_Fishery_no_effort()

```
void CCalpop::Predicted_Catch_Fishery_no_effort (
    const PMap & map,
    VarParamCoupled & param,
    VarMatrices & mat,
    CReadWrite & rw,
    const int sp,
    const int year,
    const int month )
```

Forward main function called in simulation mode only for: predicting catch by fishery without using the effort data. See predicted_catch_without_effort.cpp

3.2.2.11 total_exploited_biomass_comp()

```
void CCalpop::total_exploited_biomass_comp (
    const imatrix carte,
    const dmatrix & uu,
    const dmatrix & Cobs,
    const int f,
    const int fne,
    const int age,
    const int sp )
```

Forward functions for: computing total exploited biomass at age, which is used to split the observed catch of fisheries without effort data among age classes, and then used in computation of predicted catch without effort

3.2.2.12 Total exploited biomass comp()

Forward main function called in simulation mode only for: computing total exploited biomass at age, which is used to split the observed catch of fisheries without effort data among age classes, and then used in computation of predicted catch without effort See total_exploited_biomass.cpp

3.2.2.13 total_obs_catch_age_comp()

Forward functions for: computing the total (sum over fisheries without effort) observed catch at age.

3.2.2.14 Total_obs_catch_age_comp()

Forward main function called in simulation mode only for: computing the total (sum over fisheries without effort) observed catch at age. See total_obs_catch_age.cpp

3.2.2.15 xbet_comp()

Forward functions for: tridag_bet function. This routine precomputes an operator in the Gaussian solver of the tridiagonal linear system, which does not change during iterations.

3.2.2.16 Xbet comp1()

Forward main function called in simulation mode only for: tridag_bet function. See tridag_bet.cpp

The documentation for this class was generated from the following files:

- · src/calpop.h
- src/caldia.cpp
- src/Calpop_caldia.cpp
- src/Calpop_calrec.cpp
- src/Calpop InitCalPop.cpp
- src/Calpop_precaldia.cpp
- src/Calpop_precalrec.cpp
- src/Calpop_recompute_coefs.cpp
- src/Calpop_tridag.cpp
- src/calrec_adre.cpp
- src/calrec_precalrec.cpp
- src/dv_caldia.cpp
- src/dv_calrec_adre.cpp

- src/dv_calrec_precalrec.cpp
- src/dv_precalrec_juv.cpp
- src/dv_predicted_catch.cpp
- src/dv_predicted_catch_without_effort.cpp
- src/dv_total_exploited_biomass.cpp
- src/dv_total_mortality_comp.cpp
- src/dv_total_obs_catch_age.cpp
- src/dv_tridag_bet.cpp
- · src/fd_caldia.cpp
- src/fd_calrec_adre.cpp
- src/fd_calrec_precalrec.cpp
- · src/fd precalrec juv.cpp
- src/fd_predicted_catch.cpp
- src/fd_predicted_catch_without_effort.cpp
- src/fd_total_exploited_biomass.cpp
- src/fd_total_mortality_comp.cpp
- src/fd_total_obs_catch_age.cpp
- src/fd_tridag_bet.cpp
- src/precalrec_juv.cpp
- src/predicted_catch.cpp
- src/predicted_catch_without_effort.cpp
- src/total_exploited_biomass.cpp
- · src/total mortality comp.cpp
- src/total_obs_catch_age.cpp
- · src/tridag_bet.cpp
- src/VarCalpop_caldia.cpp
- src/VarCalpop_calrec.cpp

3.3 CMatrices Class Reference

Seapodym matrices class.

#include <Matrices.h>

Inheritance diagram for CMatrices:

Public Member Functions

- void createMatHeader (const CParam ¶m)
- void createMatOcean (const PMap &map, int t0, int nbt, int nbi, int nbj, int nb_layer, int dt)
- void createMatTransport (const PMap &map)
- void createMatFluxes (const int nb_region, const int nb_cohort)
- void createMatSource (int nforage, int ntr, int nbi, int nbj)
- void createMatNoBorder (int nbi, int nbj)
- · void createMatForage (const PMap &map, int nforage, int t0, int nbt, int nbi, int nbj)
- void createMatHabitat (const PMap &map, const int nb_forage, const int nb_species, int t0, int nbt, const ivector sp adult age0, const ivector sp nb age class, const imatrix age compute habitat)
- void createMatHabitat input (const PMap &map, const int nb ages, const int nb total)
- void createMatSpecies (const PMap &map, int t0, int nbt, int nbi, int nbj, int nb_species, const ivector a0_adult, const ivector sp_nb_age_class)
- void createMatEffort (const PMap &map, int nbi, int nbj, int nb_fleet)
- void createMatCatch (const PMap &map, int nbi, int nbj, int nb_species, const IVECTOR &nb_fleet, const ivector a0_adult, const IVECTOR &nb_cohorts, const IVECTOR &nb_region)
- void createMatMortality (int nforage, int nbi, int nbj)
- void MeanVarMovement (const PMap &map, const dmatrix &Adv_x, const dmatrix &Adv_y, const dmatrix &Diff, const double mss, const double sigma_species, const double length_age, const double length_age_

 max, const int dT, const int sp, const int age)
- void MeanVarMortality (const PMap &map, const dmatrix &M, const double Mp_max, const double Ms_←
 max, const double Mp_exp, const double Ms_slope, const double mean_age_in_month, const int sp, const
 int age)
- void MeanVarTemperature (const PMap &map, const int sp_nb_cohort_lv, const int a0_adult, const int t count)
- double comp waverage (const PMap &map, const dmatrix &var, const int sp, const int age)
- double comp_waverage2 (const PMap &map, const dmatrix &var1, const dmatrix &var2, const int sp, const int age)

Public Attributes

- DMATRIX xlon
- DMATRIX ylat
- DVECTOR zlevel
- IMATRIX mask
- DMATRIX u
- DMATRIX v
- DMATRIX diffusion_x
- DMATRIX advection x
- DMATRIX diffusion y
- DMATRIX advection_y
- DMATRIX speed
- DVECTOR lastlat
- DVECTOR lat_correction
- · dmatrix daylength
- D3_ARRAY np1
- D3_ARRAY sst
- D3_ARRAY ph1
- D3_ARRAY vld
- D4_ARRAY un
- D4_ARRAY vn
- D4_ARRAY tempn
- D4 ARRAY oxygen

- D4_ARRAY forage
- D3_ARRAY season_switch
- D3_ARRAY sigma_season
- d3 array fluxes region
- D3 ARRAY mats
- · DMATRIX Hs
- DMATRIX Hj
- DMATRIX Ha
- DMATRIX mat2d_NoBorder
- D3 ARRAY mortality
- · ivector nb_age_built
- dmatrix mean_speed
- dmatrix mean diffusion
- · dmatrix mean_mortality
- dmatrix mean_temperature
- D3_ARRAY larvae
- D3 ARRAY juvenile
- D3_ARRAY young
- D3_ARRAY recruit
- D3 ARRAY adult
- D3_ARRAY total_pop
- D3_ARRAY **PEB**
- · d4 array habitat input
- d3_array density_input
- D3_ARRAY total_obs_catch
- D3_ARRAY total_pred_catch
- d4_array Ctot_proportion_fishery
- D4_ARRAY init_density_species
- D5_ARRAY F_access_sum_age
- D5_ARRAY density_before
- D5_ARRAY adult_habitat
- D4_ARRAY density_after
- DVECTOR sum B larvae
- · DVECTOR sum B juv
- DVECTOR sum_B_young
- DVECTOR sum_B_recruit
- · DVECTOR sum B adult
- DVECTOR sum total pop
- D3_ARRAY effort
- D3_ARRAY efflon
- D3 ARRAY efflat
- D4_ARRAY catch_obs
- D4_ARRAY catch_est
- D4_ARRAY C_N_sp_age_fishery
- D4_ARRAY C_tot_no_effort_sp_age
- D4_ARRAY LF_qtr_obs
- D4_ARRAY C_N_sp_age_fishery_qtr
- D5_ARRAY Sum_C_N_sp_age_fishery_area

Friends

· class dim

3.3.1 Detailed Description

Seapodym matrices class.

3.3.2 Member Function Documentation

3.3.2.1 createMatCatch()

const int agemax = nb_age_class(sp);

The documentation for this class was generated from the following files:

- · src/Matrices.h
- · src/Matrices.cpp

3.4 CNumfunc Class Reference

Class for computing various mathematical functions.

```
#include <Numfunc.h>
```

Public Member Functions

- void corcatch (DMATRIX &xx, DMATRIX &yy, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, double &cor, double &z, double &prob, const IMATRIX &mask, double missval)
- void **corcpue** (DMATRIX &xx, DMATRIX &yy, dmatrix &eff, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, double &cor, double &prob, const IMATRIX &mask, double missval)
- void **corlin** (const DMATRIX &xx, const DMATRIX &yy, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, double &cor, double &z, double &prob, double missval)
- void summat (const DMATRIX &xx, double &sx, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, const double missval)
- void sumdif (const DMATRIX &xx, const DMATRIX &yy, const int imin, const int imax, const ivector jinf, const ivector jsup, const int nn, double sx, double sy, double &sxx, double &sxy, double &sxy, const double missval)
- double gammin (const double xx)
- double **betacf** (double a, double b, double x)
- double **betai** (double a, double b, double x)
- void **pearsn** (const double sxx, const double syy, const double sxy, const int n, double &r, double &prob, double &z)
- double deplete (double fish, double f, double m)

Public Attributes

- double sx
- double sy
- double sxx
- · double syy
- double sxy
- double nn
- double missval

3.4.1 Detailed Description

Class for computing various mathematical functions.

The documentation for this class was generated from the following files:

- src/Numfunc.h
- src/Numfunc.cpp

3.5 CParam Class Reference

Seapodym parameter class.

#include <Param.h>

Inheritance diagram for CParam:

Collaboration diagram for CParam:

Classes

· struct region

Structure defining the regional ID and boundaries.

Public Member Functions

- void init_param ()
- void init param dym ()
- void delete_param (bool flag)
- void read_param (bool &file_found)
- void write_param (char runtype)
- void rbin input2d (string file in, const imatrix &carte, DMATRIX &mat2d, int nbi, int nbj, int nbytetoskip)
- · void rbin input2d (string file in, DMATRIX &mat2d, int nbi, int nbj, int nbytetoskip)
- void rbin_mat2d (string file_in, const imatrix &carte, DMATRIX &mat2d, int nlat, int nlong, int nbytetoskip)
- void rbin_mat2d (string file_in, DMATRIX &mat2d, int nlat, int nlong, int nbytetoskip)
- double correction_lat (double lat)
- double lastlat (int j)
- double cell_surface_area (int j)
- double jtolat (int j)
- double itolon (int i)
- int lattoj (double lat)
- int lontoi (double lon)
- double func_limit_one (const double m)
- double dffunc_limit_one (const double x, const double dfy)
- void afcoef (const double lon, const double lat, dmatrix &a, int &ki, int &kj, const int reso)
- double selectivity_comp (const int sp, const int age, const int f, const int k)
- void dfselectivity (double &dfslope, double &dflength, double &dfasympt, const int sp, const int age, const int f, const int k)
- void define_regions ()
- float fdate (float year, float month)
- int **get_month** (double fdate)
- int get_year (double fdate)
- int get_nbi () const

- int get_nbj () const
- void set_nbt (int nbt)
- int get_nbt ()
- int get_nbspecies ()
- int get_nbfishery () const
- int get_nbforage () const
- void time_reading_init ()

Public Attributes

- · bool flag coupling
- bool build_forage
- bool flag_twin
- bool connectivity_comp
- int tuna spinup
- int wbin_flag
- int mpa_simulation
- int nb_mpa
- int type_oxy
- int use_sst
- int use_vld
- · int use ph1
- · int maxfn
- · double crit
- ivector vert_movement
- ivector food_requirement_in_mortality
- ivector uncouple_sst_larvae
- · ivector gaussian_thermal_function
- · ivector cannibalism
- · string idformat
- · int idfunc
- imatrix like_types
- · bool cpue
- dmatrix like_param
- dmatrix prob_zero
- ivector tag_like
- · ivector stock_like
- dvector mean_stock_obs
- · dvector stock lonmin
- dvector stock lonmax
- dvector stock_latmin
- dvector stock_latmax
- ivector frq_like
- dvector eff_units_converter
- dvector cpue_mult
- double total_like
- int fdata_rm
- int use_lf_regstruc
- int use_mask_catch
- string * parfile names
- int nb_varproj
- ivector varproj_nsteps
- vector< string > varproj
- · dvector statpars

- int _nstatpars
- adstring_array statpar_names
- double longitudeMin
- double longitudeMax
- · double latitudeMin
- · double latitudeMax
- double deltaX
- · double deltaY
- · int deltaT
- · int nlevel
- · double startdate
- · double enddate
- · int ndatini
- · int ndatfin
- int date_mode
- · ivector rundates
- · int nbytetoskip
- · double save first yr
- double save_last_yr
- int first_recruitment_date
- int nb_yr_forecast
- · int nbsteptoskip
- int nlong
- · int nlat
- · int iterationNumber
- int nb_layer
- DVECTOR source_frg
- IVECTOR day_layer
- IVECTOR night layer
- · double lambda
- · double E
- double c_pp
- double **pp_transform**
- · double sigma_fcte
- int inv_lambda_max
- double inv_lambda_curv
- int Tr_max
- double Tr_exp
- string str_file_mask
- · string str_file_topo
- string str_file_maskEEZ
- string str_file_maskMPA
- string str_file_param
- string str_dir
- string str_dir_forage
- string str_dir_init
- · string str_dir_fisheries
- string str_dir_tags
- string strfile_pp
- · string strfile_sst
- · string strfile vld
- string strfile ph1
- vector< string > frg_name
- vector< string > sp_name
- vector< string > strfile_F

- vector< string > strfile_Fmc
- vector< string > strfile_S
- vector< string > strfile_Smc
- · string strfile ppmc
- string strfile_sstmc
- string strfile_vldmc
- vector< string > strfile_u
- vector< string > strfile_v
- vector< string > strfile_t
- vector< string > strfile_oxy
- $\bullet \ \ \mathsf{vector} \! < \mathsf{string} > \mathbf{strfile_umc}$
- $\bullet \ \ \mathsf{vector} \! < \mathsf{string} > \mathbf{strfile_vmc}$
- vector< string > strfile_tmc
- vector< string > strfile_oxymc
- string **strdir_output**
- · int write all cohorts dym
- · int write all fisheries dym
- vector< string > life stage
- ivector sp_nb_cohort_life_stage
- ivector sp_nb_cohorts
- ivector sp_nb_cohort_lv
- ivector sp_nb_cohort_jv
- · ivector sp nb cohort ad
- ivector sp_a0_adult
- · imatrix sp unit cohort
- DMATRIX length
- · DMATRIX length bins
- DMATRIX weight
- · DVECTOR M inc ph a
- DVECTOR M_inc_ph_b
- DVECTOR Mp_mean_max
- DVECTOR Mp mean exp
- DVECTOR Ms_mean_slope
- DVECTOR Ms_mean_max
- DVECTOR M_mean_rangedvector residual competition
- int habitat_run_type
- int nb_habitat_run_age
- · ivector habitat_run_age
- · int migrations by maturity flag
- IVECTOR age mature
- DMATRIX maturity_age
- IVECTOR age_autonomous
- IVECTOR age_recruit
- imatrix age_compute_habitat
- DVECTOR nb_recruitment
- DVECTOR a_adults_spawning
- ivector seasonal_migrations
- dvector spawning_season_peak
- · dvector spawning_season_start
- · DVECTOR a sst spawning
- DVECTOR b_sst_spawning
- DVECTOR a_sst_larvae
- DVECTOR b_sst_larvae
- DVECTOR alpha_hsp_prey

- DVECTOR alpha_hsp_predator
- DVECTOR beta_hsp_predator
- DVECTOR a_sst_habitat
- DVECTOR b_sst_habitat
- DVECTOR T age size slope
- dmatrix thermal_func_delta
- DVECTOR a oxy habitat
- DVECTOR b_oxy_habitat
- dmatrix eF_habitat
- DVECTOR hp_cannibalism
- · DVECTOR forage_ration
- · DVECTOR sigma species
- DVECTOR MSS_species
- DVECTOR MSS size slope
- DVECTOR c_diff_fish
- · dmatrix sigma ha
- · dmatrix temp_age
- string * list_fishery_name
- dvector fishery_reso
- · float catch reso
- · ivector fishery_catch_units
- IVECTOR nb_fishery_by_sp
- IMATRIX mask fishery sp
- IMATRIX mask_fishery_sp_no_effort
- IMATRIX mask_fishery_sp_like
- int nb_fishery_type
- · ivector fisheries_no_effort_exist
- int actual_eff
- ivector mpa_scenario
- · ivector mpa ID
- ivector mpa S1 X
- · ivector mpa fishery
- IVECTOR type_each_fishery
- IVECTOR list_fishery_type
- IVECTOR nb_fishery_type_sp
- IMATRIX list_fishery_type_sp
- DMATRIX q_sp_fishery
- dvector q_dyn_fishery
- ivector s_func_type
- DMATRIX s slope sp fishery
- DMATRIX s length sp fishery
- DMATRIX s_asympt_sp_fishery
- D3_ARRAY selectivity_sp_fishery_age
- vector< vector< string >> name_sp_by_file
- vector< string > file_catch_data
- vector< string > file_frq_data
- vector< string > file_tag_data
- · int nb_catch_files
- · int nb_frq_files
- · int nb_tag_files
- · int tag gauss kernel on
- · int dx_tags
- int dy_tags
- float lonmin_tags
- · float lonmax_tags

- · float latmin_tags
- float latmax_tags
- bool tags_only
- string m_file_in_str
- string m_file_out_str
- double m_f
- int nb_region
- IVECTOR nb_region_sp_B
- IVECTOR nb_region_fishery
- IMATRIX area_sp_B
- region ** area
- int **nb_EEZ**
- IVECTOR **EEZ_ID**
- string * **EEZ_name**
- · double elapsed_time_reading

Protected Attributes

- int nbt_total
- int **nbi**
- int nbj
- int nb_species
- int nb_forage
- · int nb_fishery

3.5.1 Detailed Description

Seapodym parameter class.

All static SEAPODYM parameters are defined and described here. For the DVAR parameters see class VarParamCoupled

3.5.2 Member Function Documentation

3.5.2.1 dfselectivity()

Adjoint code for selectivity functions (Param class) Forward functions are in Param.cpp

3.5.3 Member Data Documentation

3.5.3.1 length

DMATRIX CParam::length

DMATRIX juv_length; // length by age for each species (cm) for the first three months of live DMATRIX juv_weight; // weight by age for each species (kg) for the first three months of live

3.5.3.2 life_stage

vector<string> CParam::life_stage

IVECTOR sp_nb_age_class_ad; // number of age classes for each species [sp] IVECTOR sp_unit_age_class_ad; // time step used for the population of the species [sp] (0= pas de calcul de pop; 1=month;2=quarter) IMATRIX sp_unit_age_class; // time step (in days) used for the population of the species [sp] and cohort [a] IVECTOR sp_ character by nb_age_class_jv; // number of age classes for each species [sp] IVECTOR sp_unit_age_class_jv; // time step used for the population of the species [sp] (0= pas de calcul de pop; 1=month;2=quarter) int max_age_class; // max number of age classes over all species

The documentation for this class was generated from the following files:

- · src/Param.h
- src/dv selectivity.cpp
- src/Param.cpp
- · src/VarParamCoupled.cpp

3.6 CReadWrite Class Reference

IO class.

#include <ReadWrite.h>

Collaboration diagram for CReadWrite:

Public Member Functions

- void rbin_headpar (string file in, int &nlong, int &nlat, int &nlevel)
- void rtxt_headpar (string file_in, int &nlong, int &nlat, int &nlevel)
- void **rwbin minmax** (string file io, double minvalstep, double maxvalstep)
- void rtxt mat2d (string file in, DMATRIX &mat2d, int &nlong, int &nlat)
- void rbin_header (string file_in, string &idformat, int &idfunc, double &minval, double &maxval, int nlong, int nlat, int nlevel, double &startdate, double &enddate, DMATRIX &xlon, DMATRIX &ylat, DVECTOR &zlevel, IMATRIX &msksp)
- void wbin_header (string file_out, string &idformat, int &idfunc, double &minval, double &maxval, int nlong, int nlat, int nlevel, double &startdate, double &enddate, const DMATRIX &xlon, const DMATRIX &ylat, const DVECTOR &zlevel, const IMATRIX &msksp)
- void rtxt_header (string file_in, int nlong, int nlat, int nlevel, double &startdate, double &enddate, DVECTOR &xlon, DVECTOR &ylat, DVECTOR &zlevel, IMATRIX &msksp)
- void rbin_mat2d (string file_out, PMap &map, DMATRIX &mat2d, int nlat, int nlong, int nbytetoskip)
- void rbin input2d (string file in, PMap &map, DMATRIX &mat2d, int nbi, int nbj, int nbytetoskip)
- void wbin mat2d (string file out, const DMATRIX &mat2d, int nlat, int nlong, bool FILEMODE)
- void wbin_transpomat2d (string file_out, const DMATRIX &mat2d, int nlong, int nlat, bool FILEMODE)
- void wtxt_header (string file_out, int nlong, int nlat, int nlevel, double &startdate, double &enddate, const DVECTOR &xlon, const DVECTOR &ylat, const DVECTOR &zlevel, const IMATRIX &msksp)
- void wtxt_mat2d (string file_out, const DMATRIX &mat2d, int nlat, int nlong, bool FILEMODE)
- void rtxt_col_lonlat (string file_in, DMATRIX &mat2d, int nlong, int nlat, DVECTOR &xlon, DVECTOR &ylat, int nbvar, int var)
- void wbin_fishery (string file_in, string file_out, int nbvar)
- void rbin_fishery (string file_in, DMATRIX &mat2d, CParam ¶m, int nbvar, int nvar, int yyyy, int mm)
- void InitSepodymFileDym (CParam ¶m, CMatrices &mat, int nb_mo, DVECTOR &zlevel, const IMA
 — TRIX &msksp)
- void SaveSepodymFileDym (CParam ¶m, PMap &map, CMatrices &mat)
- void SaveDymFile (PMap &map, CMatrices &mat, string file, const dmatrix &data, const int nlon, const int nlat)
- void InitFluxesCohortsFileTxt (CParam ¶m)
- void SaveFluxesCohortsFileTxt (CParam ¶m, CMatrices &mat, PMap &map, int day, int month, int vear)
- void InitSepodymFileTxt (CParam ¶m)
- void **SaveSepodymFileTxt** (CParam ¶m, CMatrices &mat, PMap &map, dvector sumP, DVECTOR &sumF, DVECTOR &sumF_area_pred, DVECTOR &sumF_required_by_sp, DV← ECTOR &mean_omega_sp, int day, int mois2, int yr2, int t_total, int qtr1, int qtr2, int nbi, int nbj)
- void rbin_fishery_header (CParam ¶m)
- void rtxt fishery data (CParam ¶m, const PMap &map, const int nbt, const int jday spinup)
- void set_effort_rm (CParam ¶m, PMap &map, const int nbt, const int jday_spinup)
- void degrade fishery reso (CParam ¶m, PMap &map, const int nbt, const int jday spinup)
- void set_frec_rm (CParam ¶m, const PMap &map, const int nbt, const int jday_spinup)
- void set_frec_rm_no_effort_fisheries (CParam ¶m, const PMap &map, const int nbt, const int jday
 —spinup)
- void delete fisheries rec (void)
- void get catch (CParam ¶m, dmatrix &catch obs, const int f, int y, const int m, const int sp)
- void **get_effort** (CParam ¶m, dmatrix &effort, const int f, int y, const int m)
- void get_effort_lonlat (CParam ¶m, dmatrix &effort, dmatrix &efflon, dmatrix &efflat, const int f, int y, const int m)
- void **get_effort_rm** (CParam ¶m, dmatrix &effort, const int f, int y, const int m)
- void **get_fishery_data** (CParam ¶m, D3_ARRAY &effort, D4_ARRAY &catch_obs, int y, const int m)
- void get_fishery_data (CParam ¶m, D3_ARRAY &effort, D4_ARRAY &catch_obs, D3_ARRAY &efflon,
 D3_ARRAY &efflot, int y, const int m)
- void get_average_effort (CParam ¶m, D3_ARRAY &effort, D3_ARRAY &efflon, D3_ARRAY &efflat, const int nby, const int m)
- void **get_average_effort_rm** (CParam ¶m, dmatrix &effort, const int f, const int nby, const int m)

• void **get_average_selectivity** (PMap &map, CParam ¶m, dvector &swa, const ivector fisheries, const int nbf, const int nbt, const int nb_ages, const int sp, const int step_count)

- void get_fishery_data_mpa (PMap &, CParam &, d3_array &, d4_array &, d3_array &, d3_array &, int, int)
- void mpa_areas_comp (PMap &, CParam &)
- void inc_obs_catch_mpa (PMap &map, CParam ¶m, dmatrix &catch_obs, const int sp)
- int **get_numrec** (const int f, const int y, const int m)
- void read If WCPO (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)
- void read_lf_EPO (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)
- void read_lf_fine (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)
- void read_frq_data (CParam ¶m, PMap &map, const float startdate, const float enddate, const int sp)
- void get LF gtr data (CParam ¶m, d4 array LF gtr obs, int y, const int g)
- void write_frq_data (CParam ¶m, int sp, int year, int qtr, d3_array frq, bool FILEMODE)
- void read_pred_frq_data (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)

Public Attributes

- vector< string > dymFileSpPred
- vector< string > dymFileSpC
- vector< string > dymFileSpLF
- vector< string > dymFileSumSpLF
- vector< string > dymFileSpCorr
- vector< string > FileSpFR

Friends

- · class fishery_record
- · class fishing_effort

3.6.1 Detailed Description

IO class.

Class functions are accessible through all computational classes. All types of input data are read here, any new output writing routines must be placed here as well.

3.6.2 Member Function Documentation

3.6.2.1 read If EPO()

const int nb_ages = param.sp_nb_age_class_ad[sp];

3.6.2.2 read_lf_WCPO()

double L_pr = param.juv_length(sp,param.sp_nb_age_class_jv[sp]-1);

3.6.2.3 read_pred_frq_data()

int nb ages = param.sp nb age class ad[sp];

3.6.2.4 write_frq_data()

int nb_ages = param.sp_nb_age_class_ad[sp];

The documentation for this class was generated from the following files:

- src/ReadWrite.h
- src/ReadWrite DYM.cpp
- src/ReadWrite_fisheries.cpp
- src/ReadWrite_TXT.cpp

3.7 CSaveTimeArea Class Reference

The class to aggregate variables to the regional structure.

```
#include <SaveTimeArea.h>
```

Public Member Functions

void SumByArea (const PMap &map, const dmatrix &mask_catch, const dmatrix &mat2d, dvector &sum
 —area, const dvector cell_area, const int nb_reg, const int nbt)

- void SumByEEZ (const CParam ¶m, const PMap &map, const DMATRIX &mat2d, DVECTOR &sum
 — EEZ, const dvector cell_area)
- double SumByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &mat2d, const dvector cell_area, const int nlon, const int nlat)
- int NobsByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &mat2d, const int nlon, const int nlat)
- double SumByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &C, const DMATRIX &E, const int nlon, const int nlat)
- double StdCPUEByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &C, const DMATRIX &E, const double mean, const int nobs, const int nlon, const int nlat)

3.7.1 Detailed Description

The class to aggregate variables to the regional structure.

The documentation for this class was generated from the following files:

- src/SaveTimeArea.h
- src/SaveTimeArea.cpp

3.8 CSimtunaFunc Class Reference

The simulation function which do not use dvariables.

#include <SimtunaFunc.h>

Inheritance diagram for CSimtunaFunc:

Public Member Functions

- double function_lambda (CParam ¶m, CMatrices &mat, int n, int i, int j)
- double daylength (double lat, int jday)
- double daylength_twilight (double lat, int jday, const double p)
- double grad daylength (double lat, int jday)
- double f_accessibility_comp (const double Od, const double On, const double Td, const double Tn, double twosigsq, double temp_mean, double oxy_teta, double oxy_cr, const double DL)

3.9 Date Class Reference 29

3.8.1 Detailed Description

The simulation function which do not use dvariables.

The documentation for this class was generated from the following files:

- · src/SimtunaFunc.h
- src/SimtunaFunc.cpp

3.9 Date Class Reference

Class written by J.Jouanno to handle date format.

```
#include <Date.h>
```

Static Public Member Functions

- static void **init_time_variables** (CParam ¶m, int &Tr_step, int &nbt_spinup_tuna, int &jday_run, int &jday_spinup, int &nbstot, const int info, const int flagsimu)
- static void update_time_variables (const int t_count, const int deltaT, const int date_mode, const int jday
 —spinup, int &jday, int &day, int &month, int &year, int &newyear)
- static int **get_nbstot** (const int ndat000, const int ndatfin, const int jdays_run, const int deltaT, const int date_mode, ivector &rundates)
- static int **get_nbt_before_first_recruitment** (const int first_recruitment_date, const int ndatini, const int deltaT, const int date mode)
- static int dym startdate run (CParam ¶m, const dvector zlevel dym, const int nbstot)
- static void **zlevel_run** (CParam ¶m, const dvector zlevel_dym, const int nbstot, dvector &zlevel, const int nbt_start_series)
- static int leapYear (int year)
- static int dayWithinMonth (int day, int month, int year)
- · static unsigned long julday (int day, int month, int year)
- static unsigned long clmjulday (int day, int month, int year)
- static unsigned long **nlyjulday** (int day, int month, int year)
- static unsigned long **juldayy** (int day, int month, int year)
- static unsigned long clmjuldayy (int day, int month, int year)
- static unsigned long **nlyjuldayy** (int day, int month, int year)
- static void dmy (unsigned long julnum, int &d, int &m, int &y)
- · static void clmdmy (unsigned long julnum, int &d, int &m, int &y)
- static void **nlydmy** (unsigned long julnum, int &d, int &m, int &y)
- static void **idatymd** (const int ndat, int &year, int &month, int &day)
- static string MakeDate (int yr, int mo, int jr)
- static string MakeDate (int yr, int mo)
- static string **MonthName** (int mo)
- static int **Update now time** (int yr, int month, int day)
- static string **Update_now_time_str** (int yr, int month, int day)
- static string Update_now_time_str_spinup (int month)

3.9.1 Detailed Description

Class written by J.Jouanno to handle date format.

The model supports three date formats depending on the calendar: 360-day year (most frequently used), 365-day year and standard calendar with leap years.

The documentation for this class was generated from the following files:

- · src/Date.h
- · src/Date.cpp

3.10 fishery_record Class Reference

Class that reads and stores all fishing data.

```
#include <ReadWrite.h>
```

Public Member Functions

- int get_i ()
 - 2015: catch for a single species, can be modified to multispecies if needed
- int **get_j** ()
- double get_lon ()
- double get_lat ()
- double get_effort (void)
- double get_efflon (void)
- double get_efflat (void)
- double get_catch (void)
- void **set_record** (double longitude, double latitude, int ii, int jj, double ee, double cc)
- void change_coord (double longitude, double latitude, int ii, int jj)

3.10.1 Detailed Description

Class that reads and stores all fishing data.

Fishing data to be stored in SEAPODYM: i,j indices, lon/lat coordinates (center of the fishing area), effort and catch

The documentation for this class was generated from the following file:

• src/ReadWrite.h

3.11 fishing_effort Class Reference

Class that reads and stores redistributed fishing effort data.

```
#include <ReadWrite.h>
```

Public Member Functions

- int get_j ()
- double get_effort (void)
- void set_effort (int ii, int jj, double ee)

3.11.1 Detailed Description

Class that reads and stores redistributed fishing effort data.

Fishing effort redistributed to the model resolution will be read and used in Calpop class for each i,j to compute fishing mortality rates.

The documentation for this class was generated from the following file:

· src/ReadWrite.h

3.12 PMap Class Reference

Class managing spatial domain and grid: the land mask, the indexing and the boundaries.

```
#include <Map.h>
```

Public Member Functions

- void lit_map (CParam ¶m)
- void **delete_map** (const CParam ¶m)
- void reg_indices (CParam ¶m)

Public Attributes

- IMATRIX bord_cell
- IMATRIX nbl bord cell
- IMATRIX carte
- DMATRIX itopo
- IMATRIX maskEEZ
- IMATRIX maskMPA
- int imin
- int imax
- int jmin
- int jmax
- int imin1int imax1
- int global
- IVECTOR iinf
- IVECTOR isup
- IVECTOR jinf
- IVECTOR jsup
- IVECTOR jinf1
- IVECTOR jsup1
- ivector regimin
- ivector regimax
- ivector regimin
- ivector regimax

3.12.1 Detailed Description

Class managing spatial domain and grid: the land mask, the indexing and the boundaries.

This class reads land mask, EEZ mask (if exist) and topographic indices. The boundary conditions are defined here as well using the land mask information. Also, the ragged array indices are computed and stored in this class.

The documentation for this class was generated from the following files:

- src/Map.h
- · src/Map.cpp

3.13 CParam::region Struct Reference

Structure defining the regional ID and boundaries.

```
#include <Param.h>
```

Public Attributes

- int area_id
- · double Igmin
- · double Igmax
- · double Itmin
- · double Itmax

3.13.1 Detailed Description

Structure defining the regional ID and boundaries.

The derived instance **area is used for regional extractions, mostly in the IO routines.

The documentation for this struct was generated from the following file:

• src/Param.h

3.14 SeapodymCoupled Class Reference

The main simulation class.

#include <SeapodymCoupled.h>

Inheritance diagram for SeapodymCoupled:

Collaboration diagram for SeapodymCoupled:

Public Member Functions

- SeapodymCoupled (const char *parfile)
- int nvarcalc () const
- void xinit (dvector &x, adstring_array &names)
- double **run_coupled** (dvar_vector x, const bool writeoutputfiles=false)

- double run_habitat (dvar_vector x, const bool writeoutputfiles=false)
- double run_density (dvar_vector x, const bool writeoutputfiles=false)
- dvariable **reset** (dvar vector x)
- void write (const char *parfile)
- void save_statistics (const string dirout, const adstring_array x_names, double likelihood, dvector g, double elapsed_time, int status, int iter, int nvars)
- int EditRunCoupled (const char *parfile)
- double OnRunCoupled (dvar_vector x, const bool writeoutputfiles=false)

The tuna population main loop is in this function.

- void OnSimulationEnd ()
- double OnRunHabitat (dvar_vector x, const bool writeoutputfiles=false)

The main loop of habitat simulations.

- void ReadHabitat ()
- double OnRunDensity (dvar_vector x, const bool writeoutputfiles=false)

The tuna population simulation without fishing and density fitting.

- void ReadDensity ()
- void OnRunFirstStep ()
- void OnBuildForage ()
- double get_total_time_reading ()
- int get_maxfn ()
- · double get_crit ()

Friends

· class tag release

Additional Inherited Members

3.14.1 Detailed Description

The main simulation class.

3.14.2 Member Function Documentation

3.14.2.1 OnRunCoupled()

The tuna population main loop is in this function.

This is the main loop function including the calculation of biomass exchange between regions, based on the one time step simulations with non-zero biomass only in the donor region and quantification of biomass changes in all. See SeapodymCoupled_OnRunCoupled.cpp for the description of the main loop

This is the main loop function. It includes the following calls: 1- Initialising population density 2- Reading all forcing data (once in optimization mode, at every time step in simulation mode) 3- Reading fisheries data 4- Reading tagging data if tag_like is activated 5- Age/lifestage loop calling the ADRE solvers and ageing 6- Predicting observed variables (catch, LF and density of tags) 7- Likelihood computation 8- Writing outputs (in simulation mode only)

This is the main loop function for the SAVE-BEFORE-FISHING simulation mode. The default function includes the following calls: 1- Initialising population density 2- Reading all forcing data (once in optimization mode, at every time step in simulation mode) 3- Reading fisheries data 4- Reading tagging data if tag_like is activated 5- Age/lifestage loop calling the ADRE solvers and ageing 6- Predicting observed variables (catch, LF and density of tags) 7-Likelihood computation 8- Writing outputs (in simulation mode only) Here to the default function added the second ADRE solver in order to: 1) Solve the ADREs without fishing using the state vector of model with fishing at T-1 2) Save the outputs, which correspond to the model solution without fishing mortality 3) Restore the model-with-fishing state vector and get the ADRE solution for T. Note, to activate this simulation mode, use this file instead of SeapodymCoupled_OnRunCoupled in Makefile or Makefile.clt. If latter, only simulation mode is supported for this run.

```
if (t_count > nbt_spinup_forage + nt_jv){ SPINUP TO BE FIXED OR REMOVED!!!
}
```

if (t_count > nbt_spinup_forage + nt_yn){ TO BE FIXED!!! for (int age=0; age<=nb_age_built[sp]; age++){///TO BE FIXED!!!

3.14.2.2 OnRunDensity()

The tuna population simulation without fishing and density fitting.

This is the main loop for the model without fishing and fitting of density. Similar to the default function, it includes the following calls: 1- Initialising population density 2- Reading all forcing data (once in optimization mode, at every time step in simulation mode) 3- Age/lifestage loop calling the ADRE solvers and ageing 4- Computing model density -> used as predictions 5- Likelihood computation using input density as observations 6- Writing outputs (in simulation mode only) Note, there is no modelling of tagged cohorts here! if (t_count > nbt_spinup_forage + nt_yn){ TO BE FIXED!!! for (int age=0; age<=nb_age_built[sp]; age++){///TO BE FIXED!!!

The documentation for this class was generated from the following files:

- src/SeapodymCoupled.h
- src/dv food requirement index.cpp
- src/dv_spawning.cpp
- src/dv_survival.cpp
- src/dv_total_pop.cpp
- src/fd food requirement index.cpp
- src/fd_spawning.cpp
- src/fd survival.cpp
- src/fd_total_pop.cpp
- src/food_requirement_index.cpp
- · src/like.cpp
- src/Seapodym_OnRunDensity.cpp
- src/Seapodym_OnRunHabitat.cpp
- src/SeapodymCoupled_EditRunCoupled.cpp

- src/SeapodymCoupled_Forage.cpp
- src/SeapodymCoupled_Funcs.cpp
- src/SeapodymCoupled_OnCompFluxes.cpp
- src/SeapodymCoupled_OnReadForcing.cpp
- src/SeapodymCoupled_OnRunCoupled.cpp
- src/SeapodymCoupled_OnRunFirstStep.cpp
- src/SeapodymCoupled_OnWriteOutput.cpp
- src/SeapodymCoupled_ReadTags.cpp
- src/SeapodymCoupled_SaveBeforeFishing.cpp
- · src/spawning.cpp

3.15 SeapodymDocConsole Class Reference

This class derives all necessary classes for the main simulation class.

#include <SeapodymDocConsole.h>

Inheritance diagram for SeapodymDocConsole:

Collaboration diagram for SeapodymDocConsole:

Public Attributes

- CReadWrite rw
- VarParamCoupled * param
- VarMatrices mat
- PMap map
- VarSimtunaFunc func
- CNumfunc nfunc
- CSaveTimeArea save
- int **nbi**
- int **nbj**
- int nlon
- int nlat
- int deltaT
- int nlon_input
- int nlat_input
- double deltaX
- double deltaY
- double SUM_CATCH
- int nb_fishery
- int nb_species
- int nb_forage
- int nb_layer
- int tuna_spinup
- string date_str

- · char runtype
- int t_count
- int t_series
- · double sumP
- DVECTOR sumF
- DVECTOR sumFprime
- DVECTOR sumF_area_pred
- DVECTOR sumF_required_by_sp
- DVECTOR mean_omega_sp

Protected Member Functions

• void UpdateDisplay ()

Protected Attributes

CCalpop pop

3.15.1 Detailed Description

This class derives all necessary classes for the main simulation class.

The documentation for this class was generated from the following files:

- src/SeapodymDocConsole.h
- src/SeapodymDocConsole_UpdateDisplay.cpp

3.16 tag_release Class Reference

Class handling tag releases.

#include <SeapodymCoupled.h>

Public Member Functions

- int **get_i** ()
- int **get_j** ()
- int **get_age** (void)
- void set_release (int ii, int jj, int aa)

3.16.1 Detailed Description

Class handling tag releases.

It stores and returns the information about release position and fish age at release.

The documentation for this class was generated from the following file:

• src/SeapodymCoupled.h

3.17 Utilities Class Reference

Old SEAPODYM class containing conversions and array handling functions.

#include <Utilities.h>

Static Public Member Functions

- static string **MakeDate** (int yr, int mo, int jr)
- static string MakeDate (int yr, int mo)
- static string MonthName (int mo)
- static string itoa (int i)
- static int MyMax (int a, int b)
- static double MyMax (double a, double b)
- static short MyMax (short a, short b)
- static char MyMax (char a, char b)
- static int MyMin (int a, int b)
- static double MyMin (double a, double b)
- static short MyMin (short a, short b)
- static char MyMin (char a, char b)
- static int * create1d (int *mat, const int n1, const int val=0)
- static double * create1d (double *mat, int n1, double val=0)
- static string * create1d (string *mat, int n1, string val="")
- static double ** create2d (double **mat, int n1, int n2, double val=0)
- static double ** create2d (double **mat, int n1, const IVECTOR &n2, double val=0)
- static string ** create2d (string **mat, int n1, const IVECTOR &n2, string val="")
- static int ** create2d (int **mat, int n1, int n2, int val=0)
- static int ** create2d (int **mat, int n1, const IVECTOR &n2, int val=0)
- static double *** create3d (double ***mat, int n1, int n2, int n3, double val=0)
- static double *** create3d (double ***mat, int n1, const IVECTOR &n2, const IVECTOR &n3, double val=0)
- static int *** create3d (int ***mat, int n1, int n2, int n3, int val=0)
- static double **** create4d (double ****mat, int n1, int n2, int n3, int n4, double val=0)
- static double **** create4d (double ****mat, int n1, const IVECTOR &n2, int n3, int n4, double val=0)
- static double **** **create4d** (double ****mat, int n1, const IVECTOR &n2, const IVECTOR &n3, const IVECTOR &n4, double val=0)
- static double **** create5d (double ****mat, int n1, const IVECTOR &n2, int n3, const IVECTOR &n4, const IVECTOR &n5, double val=0)
- static void delete1d (string *mat)
- static void delete1d (const IVECTOR &mat)
- static void delete1d (double *mat)
- static void **delete2d** (double **mat, int n1)
- static void delete2d (int **mat, int n1)
- static void delete2d (string **mat, int n1)
- static void delete3d (double ***mat, int n1, int n2)
- static void delete3d (double ***mat, int n1, const IVECTOR &n2)
- static void delete3d (int ***mat, int n1, int n2)
- static void **delete4d** (double ****mat, int n1, int n2, int n3)
- static void **delete4d** (double ****mat, int n1, const IVECTOR &n2, int n3)
- static void delete4d (double ****mat, int n1, const IVECTOR &n2, const IVECTOR &n3)
- static void **delete5d** (double ****mat, int n1, const IVECTOR &n2, int n3, const IVECTOR &n4)

3.17.1 Detailed Description

Old SEAPODYM class containing conversions and array handling functions.

Most of the functions to handle multi-dimensional array of doubles (de)allocation are currently handled by Autodif classes and functions, so only functions for the arrays of string are used.

The documentation for this class was generated from the following file:

• src/Utilities.h

3.18 VarMatrices Class Reference

Seapodym DVAR matrices class.

#include <VarMatrices.h>

Inheritance diagram for VarMatrices:

Collaboration diagram for VarMatrices:

Public Member Functions

- void CreateMatHabitat (PMap &map, const int nb_species, const int nforage, const int nblayer, const int nb
 _ages, int t0, int nbt, const int nbi, const int nbj, const ivector sp_adult_age0, const ivector sp_nb_age_class, const imatrix age_compute_habitat)
- void CreateMatTransport (PMap &map, const int nbi, const int nbj)
- void CreateMatSpecies (PMap &map, int t0, int nbt, int nbj, int nbj, int nb_species, const ivector a0_adult, const ivector &sp_nb_cohorts)

void CreateMatSpecies(PMap& map, int nbi, int nbj, int nb_species, const ivector& sp_nb_age_class_jv, const ivector& sp_nb_age_class) {

 void CreateMatCatch (PMap &map, int nbi, int nbj, int nb_species, const IVECTOR &nb_fleet, const ivector a0_adult, const IVECTOR &nb_cohorts, const IVECTOR &nb_region)

Public Attributes

- · dvar matrix dvarsU
- dvar matrix dvarsV
- DVAR4 ARRAY dvarF_access
- DVAR4_ARRAY dvarZ_access
- DVAR4_ARRAY dvarDensity
- DVAR4_ARRAY dvarCatch_est
- DVAR4 ARRAY dvarLF_est
- dvar4_array dvarCtot_age_obs
- dvar4_array dvarCtot_age_est
- dvar3_array dvarSeasonSwitch
- dvar3_array dvarSigmaSeason
- dvar_matrix dvarsDiffusion_x
- dvar_matrix dvarsDiffusion_y
- dvar_matrix dvarsAdvection_x
- · dvar matrix dvarsAdvection y

3.18.1 Detailed Description

Seapodym DVAR matrices class.

The documentation for this class was generated from the following file:

· src/VarMatrices.h

3.19 VarParamCoupled Class Reference

Seapodym DVAR parameter class.

#include <VarParamCoupled.h>

Inheritance diagram for VarParamCoupled:

Collaboration diagram for VarParamCoupled:

Public Member Functions

- int nvarcalc () const
- bool gcalc ()
- void set_gradcalc (bool flag)
- bool scalc ()
- void set_scalc (bool flag)
- void xinit (dvector &x, adstring_array &x_names)
- dvariable reset (dvar_vector x)
- · void getparam (void)
- double get_parval (int idx)
- dvector get_parvals (void)
- void outp_param (adstring_array x_names, const int nvars)
- void **get_param_index** (ivector &ix, dmatrix &xy, dmatrix &pars)
- double par_init_lo (int ix, double eps)
- double par_init_up (int ix, double eps)

- double par_init_step (int ix, double delta)
- double par_init_step_left (int ix)
- double par_init_step_right (int ix)
- void set_all_false (string *pnames)
- int set var parameters (ivector phase par flags, string *pnames)
- bool read (const string &parfile)
- void re read varparam ()
- void write (const char *parfile)
- void **save_statistics** (const string dirout, const adstring_array x_names, double likelihood, dvector g, double elapsed time, int status, int iter, int nvars)

Public Attributes

- double Mp_mean_max_min
- · double Mp mean max max
- dvar_vector dvarsMp_mean_max
- · double Mp mean exp min
- double Mp_mean_exp_max
- dvar vector dvarsMp mean exp
- · double Ms_mean_max_min
- · double Ms mean max max
- dvar_vector dvarsMs_mean_max
- · double Ms mean slope min
- double Ms_mean_slope_max
- dvar_vector dvarsMs_mean_slope
- · double M mean range min
- double M_mean_range_max
- dvar_vector dvarsM_mean_range
- double a_sst_spawning_min
- double a_sst_spawning_max
- dvar_vector dvarsA_sst_spawning
- double b_sst_spawning_min
- double b_sst_spawning_max
- dvar_vector dvarsB_sst_spawning
- double a_sst_larvae_min
- · double a_sst_larvae_max
- · dvar vector dvarsA sst larvae
- double b_sst_larvae_min
- · double b sst larvae max
- dvar vector dvarsB sst larvae
- double alpha_hsp_prey_min
- double alpha_hsp_prey_max
- dvar_vector dvarsAlpha_hsp_prey
- double alpha_hsp_predator_min
- double alpha_hsp_predator_max
- dvar_vector dvarsAlpha_hsp_predator
- · double beta_hsp_predator_min
- double beta_hsp_predator_max
- dvar_vector dvarsBeta_hsp_predator
- double a_sst_habitat_min
- · double a_sst_habitat_max
- · dvar vector dvarsA sst habitat
- · double b sst habitat min
- double b_sst_habitat_max

- · dvar vector dvarsB sst habitat
- double T_age_size_slope_min
- double T_age_size_slope_max
- dvar_vector dvarsT_age_size_slope
- · dvector thermal func delta min
- · dvector thermal_func_delta_max
- · dvar matrix dvarsThermal func delta
- double a_oxy_habitat_min
- double a_oxy_habitat_max
- · dvar vector dvarsA oxy habitat
- double b_oxy_habitat_min
- · double b oxy habitat max
- · dvar vector dvarsB oxy habitat
- dvector eF habitat min
- dvector eF_habitat_max
- · dvar matrix dvarsEF habitat
- · double hp cannibalism min
- · double hp cannibalism max
- dvar vector dvarsHp_cannibalism
- double sigma_species_min
- · double sigma_species_max
- dvar_vector dvarsSigma_species
- · double MSS species min
- · double MSS_species_max
- · dvar vector dvarsMSS species
- double MSS_size_slope_min
- · double MSS size slope max
- · dvar vector dvarsMSS size slope
- double c diff fish min
- double c_diff_fish_max
- · dvar vector dvarsC diff_fish
- · double nb recruitment min
- double nb_recruitment_max
- dvar_vector dvarsNb_recruitment
- double a_adults_spawning_min
- double a_adults_spawning_max
- dvar_vector dvarsA_adults_spawning
- double spawning_season_peak_min
- double spawning_season_peak_max
- · dvar vector dvarsSpawning season peak
- · double spawning season start min
- double spawning_season_start_max
- dvar_vector dvarsSpawning_season_start
- dmatrix q_sp_fishery_min
- dmatrix q_sp_fishery_max
- dvar_matrix dvarsQ_sp_fishery
- dmatrix s_slope_sp_fishery_min
- dmatrix s_slope_sp_fishery_max
- dmatrix s_asympt_sp_fishery_min
- dmatrix s_asympt_sp_fishery_max
- dvar_matrix dvarsSslope_sp_fishery
- dvar_matrix dvarsSlength_sp_fisherydvar matrix dvarsSasympt_sp_fishery
- disas matrix disasal ilsa masam
- dvar_matrix dvarsLike_paramdvar matrix dvarsProb_zero

Additional Inherited Members

3.19.1 Detailed Description

Seapodym DVAR parameter class.

In this class we read the XML parameter file, initialize and reset variable parameters.

3.19.2 Member Function Documentation

3.19.2.1 read()

create vectors of model parameters sp_unit_age_class_jv.allocate(0, nb_species - 1); sp_nb_age_class_jv. ⇔ allocate(0, nb_species - 1); juv_length.allocate(0, nb_species - 1); juv_weight.allocate(0, nb_species - 1); sp_ ⇔ nb_age_class_ad.allocate(0, nb_species - 1); sp_unit_age_class_ad.allocate(0, nb_species - 1); sp_unit_age_⇔ class.allocate(0, nb_species - 1);

The documentation for this class was generated from the following files:

- src/VarParamCoupled.h
- src/VarParamCoupled.cpp
- src/VarParamCoupled_reset.cpp
- src/VarParamCoupled_xinit.cpp

3.20 VarSimtunaFunc Class Reference

All SEAPODYM functions including DVAR parameters.

```
#include <VarSimtunaFunc.h>
```

Inheritance diagram for VarSimtunaFunc:

Collaboration diagram for VarSimtunaFunc:

Public Member Functions

- void Spawning_Habitat (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, const double sigma_sp_var, int sp, const int t_count, const int jday)
- void Hs_comp (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, double
 a, double b, double c, double d, double e, const double sigma_sp_var, const int jday, int t_count)
- double **Hs_comp_elem** (CMatrices &mat, dvector F, const double pp_transform, const double a, const double b, const double c, const double d, const double e, const double sigma_sp_var, const int nb_forage, ivector day_layer, ivector night_layer, const int jday, const int t, const int i, const int j)
- void Juvenile_Habitat (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, int sp, const int t_count)
- void Juvenile_Habitat_cannibalism (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, dvar_matrix &total_pop, int sp, const int t_count)
- void Hj_comp (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hj, double a, double b, const int t)
- void **Hj_cannibalism_comp** (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hj, const dmatrix &total_pop, double a, double b, double c, const int t)
- void Faccessibility (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int sp, const int jday, const int t_count, const int pop_built, const int tags_only, const ivector tags_age_solve)
- void Vars_at_age_precomp (CParam ¶m, const int sp)
- double Topt_at_age_comp (CParam ¶m, const double teta_min, const double teta_max, const int sp, const int age)
- void Faccessibility_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, double teta
 —max, double oxy_teta, double oxy_cr, const int sp, const int age, const int jday, const int t)
- void **Average_currents** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, int age, const int t_count, const int pop_built)
- void Average_currents_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int age, const int t)
- double Tmean_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int sp, const int age, const int t)
- void **Feeding_Habitat** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_matrix &Ha, int sp, int age, const int jday, const int t_count, const int migration_flag)
- void **Hf_comp** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_matrix &Hf, const int sp, const int age, const int jday, const int t)
- void Feeding_Habitat_Index (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_matrix &Ha, int sp, int age, const int jday, const int t_count)
- void **Seasonal_Habitat_Index** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_ matrix &Hs, dvar_matrix &Ha, int sp, int age, const int jday, const int t_count)

- void Ha_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const dmatrix Hs, dvar
 —matrix &Ha, const int sp, const int jday)
- void Seasonal_switch (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int jday, int sp)
- void Seasonal_switch_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, double season_peak, double season_start, const int jday, const int sp)
- void **Seasonal_switch_year_precomp** (CParam ¶m, CMatrices &mat, const PMap &map, double season_peak, double season_start, const int sp)
- void Mortality_Sp (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &M, dvar
 —matrix &H, int sp, double mean_age_in_dtau, const int age, const int t_count)
- void M_sp_comp (const PMap &map, dvar_matrix &M, const dmatrix &H, double, d
- void M_PH_juv_comp (VarParamCoupled ¶m, const PMap &map, CMatrices &mat, dvar_matrix &M, const dmatrix &PH, double mean_age_in_dtau)
- void allocate_dvmatr (const int imin, const int imax, const ivector jinf, const ivector jsup)
- dvariable adv_diff (const double H, dvariable &c)
- void time_reading_init ()

Public Attributes

· double elapsed time reading

3.20.1 Detailed Description

All SEAPODYM functions including DVAR parameters.

3.20.2 Member Function Documentation

3.20.2.1 Faccessibility()

Forward main functions called in simulation mode only for: 1) accessibility to forage components (f_accessibility) or to their respective layers (f_accessibility_layer). 2) average currents given the accessibility to the layer. See accessibility.cpp

3.20.2.2 Feeding_Habitat_Index()

Forward main function called in simulation mode only for: feeding habitat for young and adult life stages, with or without seasonal switch between habitats depending on the migration flag. See feeding_habitat.cpp

3.20.2.3 Juvenile_Habitat()

```
void VarSimtunaFunc::Juvenile_Habitat (
    VarParamCoupled & param,
    CMatrices & mat,
    const PMap & map,
    dvar_matrix & Hj,
    int sp,
    const int t_count )
```

Forward main function called in simulation mode only for: juvenile habitat functions. See juvenile_habitat.cpp

3.20.2.4 M_sp_comp()

Forward functions for: mortality rates at age. These functions include fixed natural mortality rate and variable component, depending on habitat indices defined for the life stage

3.20.2.5 Mortality_Sp()

Forward main function called in simulation mode only for: mortality rates at age. See mortality_sp.cpp

3.20.2.6 Seasonal_switch()

Forward main function called in simulation mode only for: computing the seasonal switch function used to switch between habitats. See seasonal_switch.cpp

3.20.2.7 Spawning_Habitat()

Forward main function called in simulation mode only for: spawning habitat functions. See spawning_habitat.cpp

The documentation for this class was generated from the following files:

- src/VarSimtunaFunc.h
- · src/accessibility.cpp
- src/dv_accessibility.cpp
- src/dv_feeding_habitat.cpp
- src/dv_juvenile_habitat.cpp
- src/dv_mortality_sp.cpp
- src/dv_seasonal_switch.cpp
- src/dv_spawning_habitat.cpp
- · src/fd_accessibility.cpp
- · src/fd_feeding_habitat.cpp
- · src/fd juvenile habitat.cpp
- src/fd_mortality_sp.cpp
- · src/fd seasonal switch.cpp
- src/fd_spawning_habitat.cpp
- src/feeding_habitat.cpp
- src/juvenile_habitat.cpp
- src/mortality_sp.cpp
- src/seasonal_switch.cpp
- src/spawning_habitat.cpp

Index

Calrec_juv	Juvenile_Habitat
CCalpop, 8	VarSimtunaFunc, 48
CBord, 5	
CCalpop, 6	length
Calrec_juv, 8	CParam, 24
Ctot_proportion_fishery_comp, 8	life_stage
Precaldia_Caldia, 8	CParam, 24
Precalrec_Calrec_adult, 9	
Precalrec_juv, 9	M_sp_comp
precalrec_juv_comp, 9	VarSimtunaFunc, 48
Precalrec_total_mortality_comp, 10	Mortality_Sp
precalrec_total_mortality_comp, 9	VarSimtunaFunc, 48
Predicted_Catch_Fishery, 10	OnBunCounled
Predicted_Catch_Fishery_no_effort, 10	OnRunCoupled SeapodymCoupled, 34
Total_exploited_biomass_comp, 11	OnRunDensity
total_exploited_biomass_comp, 11	
Total_obs_catch_age_comp, 11	SeapodymCoupled, 35
total_obs_catch_age_comp, 11	PMap, 31
xbet_comp, 12	Precaldia_Caldia
Xbet_comp1, 12	CCalpop, 8
CMatrices, 13	Precalrec_Calrec_adult
createMatCatch, 16	CCalpop, 9
CNumfunc, 16	Precalrec_juv
CParam, 17	CCalpop, 9
dfselectivity, 23	precalrec_juv_comp
length, 24	CCalpop, 9
life_stage, 24	Precalrec_total_mortality_comp
CParam::region, 32	CCalpop, 10
CReadWrite, 24	precalrec_total_mortality_comp
read_lf_EPO, 26	CCalpop, 9
read_If_WCPO, 26	Predicted_Catch_Fishery
read_pred_frq_data, 27	CCalpop, 10
write frq data, 27	Predicted Catch Fishery no effort
createMatCatch	CCalpop, 10
CMatrices, 16	σσαίρορ, το
CSaveTimeArea, 27	read
CSimtunaFunc, 28	VarParamCoupled, 45
Ctot_proportion_fishery_comp	read_lf_EPO
CCalpop, 8	CReadWrite, 26
	read_lf_WCPO
Date, 29	CReadWrite, 26
dfselectivity	read_pred_frq_data
CParam, 23	CReadWrite, 27
Faccessibility	SeapodymCoupled, 33
VarSimtunaFunc, 47	OnRunCoupled, 34
Feeding_Habitat_Index	OnRunDensity, 35
VarSimtunaFunc, 47	SeapodymDocConsole, 36
fishery_record, 30	Seasonal_switch
fishing effort, 30	VarSimtunaFunc, 48

52 INDEX

```
Spawning_Habitat
    VarSimtunaFunc, 49
tag_release, 38
Total_exploited_biomass_comp
    CCalpop, 11
total_exploited_biomass_comp
    CCalpop, 11
Total_obs_catch_age_comp
    CCalpop, 11
total_obs_catch_age_comp
    CCalpop, 11
Utilities, 39
VarMatrices, 40
VarParamCoupled, 41
    read, 45
VarSimtunaFunc, 45
    Faccessibility, 47
    Feeding_Habitat_Index, 47
    Juvenile_Habitat, 48
    M_sp_comp, 48
    Mortality_Sp, 48
    Seasonal switch, 48
    Spawning_Habitat, 49
write_frq_data
    CReadWrite, 27
xbet_comp
    CCalpop, 12
Xbet_comp1
    CCalpop, 12
```