QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 18 de noviembre de 2002 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

882-158 17 páginas

-2-

N02/420/H(1)S

Tabla periódica

1 H 1,01				Número	atómico												2 He 4,00
3 Li 6,94	4 Be 9,01			Masa a	tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
55 Cs 132,91	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 Tl 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs	109 Mt									

†	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 D v	67 Ho	68 E r	69 Tm	70 Yb	71 Lu
	CC	11	Itu	1 111	SIII	Ľu	Gu	10	Dy	110	121	1 111	10	Lu
	140,12	140,91	144,24	146,92	150,35	151,96	157,25	158,92	162,50	164,93	167,26	168,93	173,04	174,97

‡	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232,04	231,04	238,03	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)

1. Considere la siguiente reacción:

$$CaCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl(s) + Ca(NO_3)_2(aq)$$

Se mezclan $2.0 \, dm^3$ de $CaCl_2(aq)$ de concentración $0.50 \, mol \, dm^{-3}$ con $1.0 \, dm^3$ de solución de $AgNO_3(aq)$ de concentración $2.0 \, mol \, dm^{-3}$. ¿Cuáles son las concentraciones de iones $Ca^{2+}(aq)$ e iones $NO_3^-(aq)$ después de la mezcla?

	$\left[Ca^{2^{+}}\right]/moldm^{-3}$	$[NO_3^-]$ / mol dm $^{-3}$
A.	0,66	0,33
B.	0,33	0,66
C.	1,0	2,0
D.	3,0	1,5

2. La obtención de polieteno a partir de carburo de calcio, CaC₂, puede llevarse a cabo de la siguiente forma:

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

$$C_2H_2 + H_2 \rightarrow C_2H_4$$

$$nC_2H_4 \rightarrow -(-CH_2 - CH_2 -)_n -$$

¿Qué masa de polieteno se obtiene a partir de 64 kg de CaC₂?

- A. 7 kg
- B. 14 kg
- C. 21 kg
- D. 28 kg
- 3. El amoníaco se fabrica por síntesis a partir de nitrógeno e hidrógeno, como se indica a continuación:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

56,0 g de N_2 producen 34,0 g de NH_3 .

¿Cuál es el rendimiento porcentual de amoníaco?

- A. 50
- B. 68
- C. 74
- D. 100

- 4. Los isótopos son elementos que tienen
 - A. igual número atómico y el mismo número de neutrones.
 - B. igual número másico pero diferente número de neutrones.
 - C. igual número atómico pero diferente número de neutrones.
 - D. número atómico y número másico diferentes, pero el mismo número de neutrones.
- 5. La configuración electrónica del ion de un metal de transición, X³+, es [Ar] 3d⁴. ¿Cuál es el número atómico del elemento X?
 - A. 22
 - B. 24
 - C. 25
 - D. 27
- **6.** ¿Cuál de las siguientes configuraciones electrónicas ocasiona el mayor incremento entre las energías de segunda y tercera ionización?
 - A. $1s^2 2s^2$
 - B. $1s^2 2s^2 2p^2$
 - C. $1s^2 2s^2 2p^6 3s^2$
 - D. $1s^2 2s^2 2p^6 3s^1$

7. ¿Cuál de las siguientes reacciones de desplazamiento es posible?

A.
$$Br_2(aq) + 2Cl^-(aq) \rightarrow 2Br^-(aq) + Cl_2(aq)$$

B.
$$I_2(aq) + 2Cl^-(aq) \rightarrow 2I^-(aq) + Cl_2(aq)$$

C.
$$Cl_2(aq) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(aq)$$

D.
$$I_2(aq) + 2Br^-(aq) \rightarrow 2I^-(aq) + Br_2(aq)$$

- **8.** La configuración electrónica de un elemento E de número másico 40, es 2.8.8.2. ¿Qué enunciado **no** es correcto con respecto a este elemento?
 - A. Pertenece al grupo 2 de la tabla periódica.
 - B. Tiene 20 neutrones.
 - C. Pertenece al período 4 de la tabla periódica.
 - D. La fórmula de su óxido es EO_2 .
- **9.** ¿En cuál de las opciones los iones están ordenados de forma **decreciente** (el mayor primero) respecto de sus radios iónicos?

A.
$$Mg^{2+}, Na^+, F^-, O^{2-}$$

B.
$$O^{2-}, F^-, Na^+, Mg^{2+}$$

C.
$$F^-, O^{2-}, Na^+, Mg^{2+}$$

D.
$$Mg^{2+}, Na^+, O^{2-}, F^-$$

- 10. Considere los siguientes compuestos de coordinación
 - I. $[Pt(NH_3)_4]Cl_2$
 - II. $[Pt(NH_3)_3Cl]Cl$
 - III. $[Pt(NH_3)_2Cl_2]$

¿Cuáles son las cargas de los iones complejos?

	I	II	III
A.	+2	+1	0
B.	-2	-1	0
C.	0	+1	+2
D.	0	-1	-2

- 11. ¿Qué fuerzas intermoleculares existen en el hielo seco, CO₂(s)?
 - A. Enlaces covalentes
 - B. Atracciones dipolo-dipolo
 - C. Fuerzas de van der Waals
 - D. Enlaces de hidrógeno
- **12.** Cuando las especies NH₂⁻, NH₃ y NH₄⁺ se disponen de forma **creciente** respecto del ángulo de enlace H–N–H, el orden correcto es:
 - A. NH_2^-, NH_3, NH_4^+
 - B. NH_4^+, NH_3, NH_2^-
 - C. NH_3 , NH_4^+ , NH_2^-
 - D. NH_3 , NH_2^- , NH_4^+

13. Los elementos X e Y tienen las siguientes configuraciones electrónicas:

$$X \quad 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2$$

$$Y 1s^2 2s^2 2p^6 3s^2 3p^5$$

¿Cuál es la fórmula del compuesto formado entre X e Y?

- A. XY₂
- B. X_5Y_2
- C. X_2Y_5
- D. XY₅
- 14. ¿Qué enunciados sobre la siguiente molécula son correctos?

$$(CH_3)_2$$
CHCH=CHC=CCH=CH $_2$

- I. Tres de los átomos de carbono presentan hibridación sp³.
- II. Tres de los átomos de carbono presentan hibridación sp².
- III. Dos de los átomos de carbono presentan hibridación sp.
- A. Sólo I y II
- B. I, II y III
- C. Sólo II y III
- D. Sólo I y III

- 15. ¿Bajo qué condiciones una masa dada de oxígeno ocuparía el mayor volumen?
 - A. Elevada temperatura y elevada presión
 - B. Elevada temperatura y baja presión
 - C. Baja temperatura y baja presión
 - D. Baja temperatura y elevada presión
- **16.** El volumen de un gas, medido a 27 °C y 101,3 kPa es de 20,0 dm³. ¿Qué temperatura final sería necesaria para que el volumen aumente a 40,0 dm³ a 101,3 kPa?
 - A. 54 °C
 - B. 300 °C
 - C. 327 °C
 - D. 600 °C
- 17. Considere la siguiente reacción:

$$N_2(g) + 3H_2(g) \to 2NH_3(g)$$
 $\Delta H^{\oplus} = ?$

Las entalpías de enlace (expresadas en kJ mol⁻¹) involucradas en la reacción son:

$$N \equiv N$$
 x
 $H-H$ y
 $N-H$ z

¿Qué cálculo dará como resultado el valor de ΔH^{\ominus} ?

- A. x+3y-6z
- B. 6z x + 3y
- C. x-3y+6z
- D. x+3y-2z

- **18.** Cuando se añaden 3600 J de calor a 180 g de C₂H₅OH(l), su temperatura aumenta desde 18,5 °C a 28,5 °C. ¿Cuál es la capacidad calorífica específica del C₂H₅OH(l)?
 - A. $0,500 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$
 - B $2,00 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$
 - C. $20,0 \text{ J g}^{-1} \, {}^{\circ}\text{C}^{-1}$
 - D. 200 J g⁻¹ °C⁻¹
- 19. La siguiente reacción transcurre en un motor de combustión interna:

$$2C_8H_{18}(g) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$$

¿Cuáles son los signos de ΔH^{\ominus} , ΔS^{\ominus} y ΔG^{\ominus} para esta reacción?

	ΔH^{\ominus}	ΔS [⊖]	ΔG [⊖]
A.	I	+	+
B.	_	+	-
C.	_	_	-
D.	+	_	_

20. Considere las siguientes ecuaciones:

$$S(s) + O_2(g) \rightarrow SO_2(g)$$
 $\Delta H^{\ominus} = -298 \text{ kJ}$
 $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ $\Delta H^{\ominus} = -98 \text{ kJ}$
 $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$ $\Delta H^{\ominus} = -130 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$$
 $\Delta H^{\ominus} = -286 \text{ kJ}$

¿Cuál es la variación de entalpía estándar de formación (ΔH^{Θ}_{f}) para el H₂SO₄(l)?

- A. -812 kJ
- B. +812 kJ
- C. -526 kJ
- D. +526 kJ

- **21.** En general, la velocidad de una reacción se puede incrementar por medio de todos los siguientes factores, **excepto**
 - A. por aumento de la temperatura.
 - B. por aumento de la energía de activación.
 - C. por aumento de la concentración de los reactivos.
 - D. por aumento de la superficie de los reactivos.
- 22. Para la reacción $X + Y \rightarrow$ productos, se obtuvieron los siguientes datos experimentales.

[X] / mol dm ⁻³	[Y] / mol dm ⁻³	Velocidad inicial / mol dm ⁻³ sec ⁻¹
0,10	0,10	$4,0\times10^{-4}$
0,20	0,20	$1,6 \times 10^{-3}$
0,50	0,10	$1,0\times10^{-2}$
0,50	0,50	$1,0\times10^{-2}$

¿Cuál es el orden de reacción con respecto a X y el orden de reacción con respecto a Y?

- A. 2 y 0
- B. 0 y 2
- C. 2 y 1
- D. 1 y 0
- **23.** La velocidad de una reacción gaseosa viene dada por la expresión velocidad = k[P][Q]. Si el volumen del recipiente de reacción se reduce a $\frac{1}{4}$ del volumen inicial, ¿cuál será la relación de la nueva velocidad con respecto a la original?
 - A. 1:4
 - B. 1:16
 - C. 4:1
 - D. 16:1

24. Se aumenta el volumen del recipiente de reacción que contiene la siguiente mezcla en equilibrio

$$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$$

¿Cuál de los siguientes cambios se producirá cuando se alcance nuevamente el equilibrio?

- A. La cantidad de SO₂Cl₂(g) aumentará.
- B. La cantidad de SO₂Cl₂(g) disminuirá.
- C. La cantidad de Cl₂(g) permanecerá invariable.
- D. La cantidad de Cl₂(g) disminuirá.
- **25.** Un recipiente de reacción de $1,0 \, \text{dm}^3$ contiene inicialmente $1,0 \, \text{mol of NO}_2(g)$ and $1,0 \, \text{mol of N}_2O_4(g)$. En el equilibrio, se encuentran $0,75 \, \text{mol of N}_2O_4(g)$. ¿Cuál es el valor de K_c ?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

- A. 0,33
- B. 0,50
- C. 2,0
- D. 3,0
- **26.** ¿Qué factor(es) afecta(n) la cantidad de $X_3Y(g)$ en equilibrio en la siguiente reacción exotérmica?

$$3X(g) + Y(g) \rightleftharpoons X_3Y(g)$$

- A. La temperatura, la presión y el catalizador
- B. La temperatura y la presión
- C. Sólo la temperatura
- D. Sólo la presión

27. Cuando las siguientes soluciones de concentración 0,10 mol dm⁻³ se disponen de forma **creciente** respecto de su pH (el menor primero), ¿cuál es el orden correcto?

$$NH_3(aq)$$
, $NaOH(aq)$, $HCl(aq)$, $CH_3COOH(aq)$

- A. NaOH, NH₃, CH₃COOH, HCl
- B. HCl, CH₃COOH, NH₃, NaOH
- C. HCl, CH₃COOH, NaOH, NH₃
- D. NaOH, NH₃, HCl, CH₃COOH
- 28. Considere un ácido débil HA disuelto en agua.

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

¿Qué enunciados son correctos?

- I. A^{-} (aq) es una base mucho más fuerte que $H_2O(1)$.
- II. HA sólo se disocia en pequeña proporción en solución acuosa.
- III. La concentración de H₃O⁺(aq) es mucho mayor que la concentración de HA(aq).
- A. I, II y III
- B. Sólo II y III
- C. Sólo I y II
- D. Sólo I y III

- **29.** Cuando las siguientes soluciones acuosas se disponen de forma **creciente** respecto a su conductividad eléctrica (la menor primero), ¿cuál es el orden correcto?
 - I. Solución 0,10 mol dm⁻³ de CH₃COOH
 - II. Solución 0,10 mol dm⁻³ de CH₃CH₂OH
 - III. Solución 0,10 mol dm⁻³ de CH₃COONa
 - A. I, II, III
 - B. III, II, I
 - C. I, III, II
 - D. II, I, III
- **30.** Cierta solución reguladora o tampón contiene concentraciones iguales de X^- (aq) y HX(aq). El valor de K_b para X^- (aq) es $1,0\times 10^{-10}$. ¿Cuál es el pH de la solución reguladora o tampón?
 - A. 1
 - B. 4
 - C. 5
 - D. 10
- 31. En la reacción

$$3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- A. El Br₂ sólo se oxida.
- B. El Br₂ sólo se reduce.
- C. El Br₂ no se oxida ni se reduce.
- D. El Br₂ se oxida y se reduce.

- 32. Considere los siguientes enunciados que se refieren a la electrólisis del bromuro de plomo(II) fundido.
 - I. La oxidación se produce en el ánodo donde los iones plomo ganan electrones.
 - II. La reducción se produce en el cátodo donde los iones plomo ganan electrones.
 - III. La oxidación se produce en el ánodo donde los iones bromuro pierden electrones.
 - IV. La reducción se produce en el cátodo donde los iones bromuro pierden electrones.

¿Qué enunciados son correctos?

- A. Sólo I y II
- B. Sólo I y IV
- C. Sólo II y III
- D. Sólo II y IV
- **33.** Los potenciales de electrodo estándar de tres elementos son los siguientes:

$$X +1,09 V$$

$$Y + 0.54 V$$

$$Z +1,36 V$$

¿Qué enunciado es correcto?

- A. Z oxidará a Y⁻(aq) y X⁻(aq)
- B. Y oxidará a $X^{-}(aq)$ y $Z^{-}(aq)$
- C. X oxidará a $Y^{-}(aq)$ y $Z^{-}(aq)$
- D. Z oxidará a Y⁻(aq) pero no a X⁻(aq)
- **34.** Se hace pasar un Faraday de electricidad a través de celdas electrolíticas conectadas en serie que contienen soluciones de Ag⁺(aq), Ni²⁺(aq) y Cr³⁺(aq). ¿Qué masa de Ag, Ni y Cr se depositará respectivamente?

[valores de
$$A_r$$
: Ag = 108, Ni = 59, Cr = 52]

35. Considere la siguiente reacción:

$$\mathrm{CH_{3}COOH} + \mathrm{NH_{3}} \rightarrow \mathrm{CH_{3}COONH_{4}} \rightarrow \mathrm{CH_{3}CONH_{2}}$$

¿Cuál sería el producto final si se utilizara aminoetano (etilamina) en lugar de NH3?

- A. CH₃CONHCH₂CH₃
- B. CH₃CONHCH₃
- C. CH₃CONH₂
- D. CH₃CONH₂CH₂CH₃
- **36.** ¿Cuál de los siguientes compuestos es ópticamente activo?
 - А. HO—CH₂—СООН
 - В. H₃C—СН—СООН ОН
 - С. H₃C—СН—СООН СН₃
 - D. СН₃ СООН

37. ¿Cuántos ambientes químicos diferentes para los átomos de hidrógeno se encuentran en el espectro de ¹H RMN del siguiente compuesto?

- A. 3
- B. 4
- C. 5
- D. 9
- **38.** Considere las siguientes reacciones:

$$\begin{array}{c|cccc} & O & & O \\ \hline I & & \parallel & \parallel & \parallel \\ CH_3CH_2CH_2OH \leftarrow CH_3CH_2C - H \rightarrow CH_3CH_2C - OH \end{array}$$

- ¿Cuáles son los reactivos I y II respectivamente?
- A. $H^+/Cr_2O_7^{2-}(aq)$ LiAlH₄
- $B. \hspace{0.5cm} H_2/Ni \hspace{0.5cm} LiAlH_4$
- $C. \quad LiAlH_4 \qquad \qquad H^+ \, / \, Cr_2O_7^{2-}(aq)$
- D. $H^+/MnO_4^-(aq)$ $H^+/Cr_2O_7^{2-}(aq)$
- 39. La masa molecular relativa de un líquido orgánico L es 46. Cuando se lo calienta con H₂SO₄ concentrado a 170 °C, se desprende un gas incoloro que decolora al Br₂(aq). ¿Qué líquido orgánico es L?
 - A. CH₃CH₂OH
 - B. CH₃OCH₃
 - C. CH₃CH=CH₂
 - D. CH₃OH

- **40.** La hidrólisis alcalina de los halógenoalcanos primarios sigue generalmente un mecanismo $S_{\rm N}2$. ¿Qué compuesto presenta la mayor velocidad de hidrólisis?
 - A. CH₃CH₂CH₂F
 - B. CH₃CH₂CH₂Cl
 - C. CH₃CH₂CH₂Br
 - D. CH₃CH₂CH₂I