13)
$$P(Y_{i=1}) : P(Y_{i} : K) e^{P_{i} X_{i}}$$

 $(K)(P(Y_{i} : K))(e^{P_{i} X_{i}} + ... + e^{P_{k} X_{i}}) = 1$
 $P(Y_{i} : K) : K(e^{P_{i} X_{i}} + ... + e^{P_{k} X_{i}}) : K_{i=1}^{\frac{1}{2}} e^{P_{i} X_{i}}$
 $1 = \sum_{n=1}^{k} P(Y_{i} = N)$
 $P(Y_{i} = K) + \sum_{n=1}^{k-1} P(Y_{i} : K) e^{P_{n} X_{i}} = 1$
 $1 = P(Y_{i} = K)(1 + \sum_{n=1}^{k-1} e^{P_{n} X_{i}})$
 $P(Y_{i} = K) = \frac{1}{1 + \sum_{n=1}^{k-1} e^{P_{i} X_{i}}}$

10) Prod. for Xi manges from Ktor when P(Yi=r)>P(Yi=k)

$$P(Y_{i}:v) = P(Y_{i}:k) e^{\beta_{i}} \times e^{\beta$$

Type: Basker, Football, Tennis, Tennis, Basketball Price: \$,\$\$,\$,\$\$

location: WA,B,B, LB, LB

LIVU: I, B,B, I, A

Entropy: 1.994

Fratur	Information Giain
prici	1 [(-3/10g3-3/10g3).4)+(5.(2/10g2-2/10g2))] = 0.8076
Type	[(3·(考log考-考log考))+(3·(考log考·考log考))+(5.(考log考-考log等)]:0.9422
Ucation	11[(3·(3/09/3-3/09/3))+(4·(2/09/2-2/09/3))+(4·(2/09/2-2/09/3))] · 0.9777
wil	11[(4.(\$\log\x-\x\log\x))+(3.(\x\log\x-\x\log\x))+(4.(\x\log\x\x\log\x\log\x))]:0.9777

Match	Type	Price	Location	Level	OK
R1	Football	\$	LA	Intermediate	0
R2	Tennis	\$\$	Burbank	Advanced	0
R3	Basketball	\$\$	Burbank	Beginner	0
R4	Basketball	\$\$\$	Long Beach	Intermediate	0
R5	Basketball	\$	$_{ m LA}$	Intermediate	1
m R6	Football	\$\$	Burbank	Beginner	1
R7	Tennis	\$	Burbank	Beginner	1
R8	Basketball	\$	Long Beach	Advanced	0
R9	Football	\$\$\$	LA	Beginner	0
R10	Tennis	\$\$	Long Beach	Intermediate	1
R11	Basketball	\$\$	Long Beach	Advanced	1

Split on price (most link gain)

	Branon	Fratur	INPO GIBIN
64 (\$	Type	4[0+2+0]=0.5
5	\$	Notesoj	4[2+0+0]=0.5
	\$	Lzvz	4[2+0+0]-0.5
F=044	£\$	Type	K[2·1+2·1+0]: 1/4
Es	\$\$	location	次[(3:2/10g3·3/10g3)+0+0) = 0.551
	tt)	(2V2)	X[2+2+0], 4/5
		spirt in	Notation

Match	Type	Price	Location	Level	OK
R1	Football	\$	$_{ m LA}$	Intermediate	0
R2	Tennis	\$\$	Burbank	Advanced	0
R3	Basketball	\$\$	Burbank	Beginner	0
R4	Basketball	\$\$\$	Long Beach	Intermediate	0
R5	Basketball	\$	$_{ m LA}$	Intermediate	1
R6	Football	\$\$	Burbank	Beginner	1
R7	Tennis	\$	Burbank	Beginner	1
R8	Basketball	\$	Long Beach	Advanced	0
R9	Football	\$\$\$	LA	Beginner	0
R10	Tennis	\$\$	Long Beach	Intermediate	1
R11	Basketball	\$\$	Long Beach	Advanced	1

split	ON	LA
. .	0 60	

Fia	INCO GIBIN
Type	2[0+ log +0(og0)-0
	左[f\$10g左-210g左]-1

We split in type

2	plit on B
Fla	INF GOIN
Tym	D
Level	3[0+(369/2-5109/2)-2]=3

26) Our error is 11 = 0; it classifies all our training data correctly

		,	
	Maten	ΟĽ	Phd
24)	R12	0	l
	R13	ſ	1
	214	O	0
	R12)	9
	210	0	1

bad, misclassified over half the plint

20) Tru	Evve	lions	Emorto - Emorto)
FNII	0.0	9	
LA/Typi	0.10	8	0
Burbank/Typl	0.0	6	0
\$/100ation	0.2	4	0.4 2 -, 0.2
D\$/11/24ron	0.2	3	0
Price	0.4		- 0.(

30) H's more likely to overfit on the non-linously superande data. This is ble not being linearly superande con be molicative if many features that differentiate the classes. The true would try to account for all it thuse to avoid use a legisle regression and

36) Than is no need to , as decision thus overle similarity to the magnitude of variandes

30) Yes, becouse they split on certain values. E.g., if you have [1,2,3,4,100000], & you split on 25, the

- 42) P2: 0.661
 - (46) I would monax the depen & mc. number of features we split on.
 max_depth=1z, max features=5 gives us R2=0.91
- 40) Bython
- (1d) python
 The feature importance for the two classifiers are nearly identical.

 $5a) \triangle w_i : C(t-\epsilon) * \chi_i$

$W_1 = W_2 = W_c = 1$, $C = 2$						
Point	Pnd	ΔW,	∆W2	DWL		
(2,-3)	0		-6-7-5			
(4,4)	1	-8=7-3	-8=7-13	-6=7-3		
(2,-3)	1		6=7-5	6=73		
Point	Pnd	ΔW,	DW2	DWL		
(2,-3)	1	1				
(4,4)	6	_	_	_		
(2,-3)	(-4=>-11	()=7 \	-6=>-3		

$$(2)(1)+(-3)(1)+1=0$$

$$(4)(5)+(4)(-5)+3=3=71$$

$$(2)(-3)+(-3)(-3)-3=30=71$$

$$(z\chi-7)+(-3)(-5)+3=4=71$$

 $(4)(-7)+(4\chi-5)+3=-45=70$
 $(z\chi-7)+(-3)(-5)+3=3=71$

56) It noon't converged, ble It is still misclossifying points. In this case, I don't expect It to converge, ble (z,-3) has both outputs 0 and 1.

(0) (-1) + (-1

With Wi=Wz=-1 and Wo=1, the Catasel can be perhetly classified using a singh activation untl

(06) As we can see hom plotting the points, the data is not linearly separable, thus we will re

(c) Yes, you should be able to, by first supersting (1,1) from the other thru, then supersting (0,0) from the other. Thuse two activation units & their weights can be combined to form a newly without

70) 4 - Imear, smaller C is closer died

70) 3 - Imear, larger C is further pinds him im

70) 5 - quadrate

70) 1 - smaller o, tighter boundary

70) 0 - larger o, 10050 boundary