

Issues in Disk and File System Performance

- Addressing
- Space Management
- Scheduling

VUW Computer Science 305

05/06/98

Addressing

- Logical view is array [0..N-1] of blocks
- For a disk with
 s sectors per track and
 t tracks per cylinder

we map cylinder *i*, surface *j*, and sector *k* to block *b* by:

 $b = k + s \times (j + i \times t)$

VUW Computer Science 305

05/06/98

Space Management ● Allocation ● Contiguous ● Linked 11001111 ● Indexed 00110111 ● Free space management 0101111 WUW Computer Science 305 0506/98 5

Principles of Disk Scheduling

- Goals:
 - ◆ Increase throughput
 - ◆ Reduce mean response time
 - ◆ Control variance of response time
 - ◆ Minimal impact on system performance

VUW Computer Science 305 05/06/

Scheduling Algorithms

- FCFS First come first served
- SSTF Shortest seek time first
- SCAN
- N-step SCAN
- C-SCAN Circular scan

W Computer Science 305 05/06/

Locality

- Previous results assume each cylinder is equally likely
- Different behaviour between a personal machine and a server
- Placement of files may improve locality

TIW Computer Science 305 05/06/98

RAID

- Redundant Array of Inexpensive Disks
- Replace single large disk with lots of "mass produced" disks
- Increased parallelism
- Increased reliability
- Six levels

VUW Computer Science 305 05/06/98

RAID Levels

Level 0 - Data striped across the disk

Level 1 - Mirrored disk array

Level 2 - Hamming-coded disk array

Level 3 - Single byte stripe with parity

Level 4 - Arbitrary stripe with parity

Level 5 - Distributed parity

JW Computer Science 305 05/06/98

RAID Performance

- At low loads
 - ♦ Level 0 performs best
 - ◆ No redundancy
- ullet At high loads
 - ◆ Level 4 is worse as parity is not read
 - ◆ Level 4 has contention for parity on writes
 - ◆ Level 5 preferred

mputer Science 305 05/06/98

The Unix File System Directories I-nodes Disk organisation Open file structure NFS

Blocks and Fragments

- Blocks are a multiple of the sector size
- Larger blocks make for more efficient transfers
- Smaller blocks make for more efficient storage
- Compromise on both block (4-8k) fragment (.5-2k)

VUW Computer Science 305

05/06/98

Allocation Policy

- Attempts to group related blocks
- Files from same cylinder group as directory
- Sub-directories go to a new cylinder group
- Indirect blocks from another cylinder group

VUW Computer Science 305 05/06/98 25

