Early gene regulation of osteogenesis in embryonic stem cells

Simon Johanning

Institut für Mathematik und Informatik der Universität Leipzig

January 20, 2016

Hintergrund

Wissenschaftlicher Hintergrund

 Signal pathways und Veränderung der Genexpression von Stammzellendifferentiation von Mäusen (mES) nicht gut charakterisiert

Wissenschaftlicher Hintergrund

- Signal pathways und Veränderung der Genexpression von Stammzellendifferentiation von Mäusen (mES) nicht gut charakterisiert
- Differenzierung in pluripotente Zellen in Knochengewebe essentiell für therapeutische Anwendungen (insbesondere tissue engineering)

Wissenschaftlicher Hintergrund

- Signal pathways und Veränderung der Genexpression von Stammzellendifferentiation von Mäusen (mES) nicht gut charakterisiert
- Differenzierung in pluripotente Zellen in Knochengewebe essentiell für therapeutische Anwendungen (insbesondere tissue engineering)
- Genregulatorische Netzwerke nicht klar

• Runx2 wesentliches regulatorisches Gen in Osteoblasten

Runx2 wesentliches regulatorisches Gen in Osteoblasten
 Wichtig für (down-stream) Expression vieler osteogenetischer Gene

- Runx2 wesentliches regulatorisches Gen in Osteoblasten
 Wichtig für (down-stream) Expression vieler osteogenetischer Gene
- Bekannt, dass von Wachstumsfaktoren BMP2 und TGF β 1 reguliert

- Runx2 wesentliches regulatorisches Gen in Osteoblasten
 Wichtig für (down-stream) Expression vieler osteogenetischer Gene
- Bekannt, dass von Wachstumsfaktoren BMP2 und TGF β 1 reguliert
- Ebenso von Genen Dlx5 und Msx2, welche beide von BMP2 und TGF\(\beta\)1 beeinflusst werden

- Runx2 wesentliches regulatorisches Gen in Osteoblasten
 Wichtig für (down-stream) Expression vieler osteogenetischer Gene
- Bekannt, dass von Wachstumsfaktoren BMP2 und TGF β 1 reguliert
- Ebenso von Genen Dlx5 und Msx2, welche beide von BMP2 und TGF β 1 beeinflusst werden
- Dlx5 von BMP2 allein stimuliert

- Runx2 wesentliches regulatorisches Gen in Osteoblasten
 Wichtig für (down-stream) Expression vieler osteogenetischer Gene
- Bekannt, dass von Wachstumsfaktoren BMP2 und TGFβ1 reguliert
- Ebenso von Genen Dlx5 und Msx2, welche beide von BMP2 und TGFβ1 beeinflusst werden
- Dlx5 von BMP2 allein stimuliert
- Msx2 wird oft als negativer Regulator von Runx2 gesehen

- Runx2 wesentliches regulatorisches Gen in Osteoblasten
 Wichtig für (down-stream) Expression vieler osteogenetischer Gene
- Bekannt, dass von Wachstumsfaktoren BMP2 und TGF β 1 reguliert
- Ebenso von Genen Dlx5 und Msx2, welche beide von BMP2 und TGFβ1 beeinflusst werden
- Dlx5 von BMP2 allein stimuliert
- Msx2 wird oft als negativer Regulator von Runx2 gesehen
 Aber: Rolle nicht klar; Manche Studien: Msx2 supprimiert, manche kein Effekt, manche pro-osteogenetisch unabhängig von Runx2

 Wichtige Wachstumsfaktoren O.: BMP2 (Bone Morphogenetic Protein 2) und TGFβ1 (Transforming Growth Factor β1)

- Wichtige Wachstumsfaktoren O.: BMP2 (Bone Morphogenetic Protein 2) und TGFβ1 (Transforming Growth Factor β1)
- BMP2: positiver Regulator in Osteogenese

- Wichtige Wachstumsfaktoren O.: BMP2 (Bone Morphogenetic Protein 2) und TGFβ1 (Transforming Growth Factor β1)
- BMP2: positiver Regulator in Osteogenese
- TGF β 1: negativer Regulator in O.; hohe Konzentration in Knochen und Knorpelgewebe

- Wichtige Wachstumsfaktoren O.: BMP2 (Bone Morphogenetic Protein 2) und TGFβ1 (Transforming Growth Factor β1)
- BMP2: positiver Regulator in Osteogenese
- TGF β 1: negativer Regulator in O.; hohe Konzentration in Knochen und Knorpelgewebe
- Aber: Manche Studien sehen TGF $\beta 1$ als pro-osteogenisch, (manche als kontra-osteogenisch)

- Wichtige Wachstumsfaktoren O.: BMP2 (Bone Morphogenetic Protein 2) und TGFβ1 (Transforming Growth Factor β1)
- BMP2: positiver Regulator in Osteogenese
- TGF β 1: negativer Regulator in O.; hohe Konzentration in Knochen und Knorpelgewebe
- Aber: Manche Studien sehen TGF $\beta 1$ als pro-osteogenisch, (manche als kontra-osteogenisch)
- ullet osteog. Rolle von TGFeta 1 hängt von Zelltyp und Umgebung ab

- Wichtige Wachstumsfaktoren O.: BMP2 (Bone Morphogenetic Protein 2) und TGFβ1 (Transforming Growth Factor β1)
- BMP2: positiver Regulator in Osteogenese
- TGF β 1: negativer Regulator in O.; hohe Konzentration in Knochen und Knorpelgewebe
- Aber: Manche Studien sehen TGF β 1 als pro-osteogenisch, (manche als kontra-osteogenisch)
- osteog. Rolle von TGF $\beta1$ hängt von Zelltyp und Umgebung ab
- wenige in vitro-Studien, die TGF $\beta 1$ und BMP2 untersuchen

Biologischer Hintergrund: Motivation

• Signal- und Regulationsnetzwerke, die Interaktion zwischen BMP2 und TGF β 1 regeln, sind nicht bekannt

Biologischer Hintergrund: Motivation

- Signal- und Regulationsnetzwerke, die Interaktion zwischen BMP2 und TGF β 1 regeln, sind nicht bekannt
- Kandidaten für GRN: Dlx5 und Msx2, da diese um Runx2-Promoter konkurrieren

Biologischer Hintergrund: Motivation

- Signal- und Regulationsnetzwerke, die Interaktion zwischen BMP2 und TGF β 1 regeln, sind nicht bekannt
- Kandidaten für GRN: Dlx5 und Msx2, da diese um Runx2-Promoter konkurrieren
 - \rightarrow Motivation für Netzwerke, die BMP2, TGF β 1, Dlx5, Msx2 und Runx2 beinhalten

• Rigorose Repräsentation qualitativen biologischen Wissens

- Rigorose Repräsentation qualitativen biologischen Wissens
- Komponenten (Spezies) haben diskrete Zustände; oftmals binär:
 An/Aus

- Rigorose Repräsentation qualitativen biologischen Wissens
- Komponenten (Spezies) haben diskrete Zustände; oftmals binär:
 An/Aus
- Repräsentation als Graphen: Gene/Faktoren als Knoten, Interaktionen als Kanten (aktivierend/inhibierend)

- Rigorose Repräsentation qualitativen biologischen Wissens
- Komponenten (Spezies) haben diskrete Zustände; oftmals binär:
 An/Aus
- Repräsentation als Graphen: Gene/Faktoren als Knoten, Interaktionen als Kanten (aktivierend/inhibierend)
- Diskrete Zeit: Zustand(t+1) hängt von Zuständen(t) ab

- Rigorose Repräsentation qualitativen biologischen Wissens
- Komponenten (Spezies) haben diskrete Zustände; oftmals binär:
 An/Aus
- Repräsentation als Graphen: Gene/Faktoren als Knoten, Interaktionen als Kanten (aktivierend/inhibierend)
- Diskrete Zeit: Zustand(t+1) hängt von Zuständen(t) ab
- stabile steady-states: Zellphänotypen, die mit experimentellen
 Daten verglichen werden können

- Rigorose Repräsentation qualitativen biologischen Wissens
- Komponenten (Spezies) haben diskrete Zustände; oftmals binär:
 An/Aus
- Repräsentation als Graphen: Gene/Faktoren als Knoten, Interaktionen als Kanten (aktivierend/inhibierend)
- Diskrete Zeit: Zustand(t+1) hängt von Zuständen(t) ab
- stabile steady-states: Zellphänotypen, die mit experimentellen Daten verglichen werden können
- Auch wenn grob, können BM das qualitative Verhalten biologischer Systeme recht gut reproduzieren

 Können weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen abbilden

- Können weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen abbilden
 - ⇒ Können quantitative (biologische) Experimente weder erklären noch vorhersagen

- Können weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen abbilden
 - ⇒ Können quantitative (biologische) Experimente weder erklären noch vorhersagen (zunehmend wichtig in systems biology)

- Können weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen abbilden
 - ⇒ Können quantitative (biologische) Experimente weder erklären noch vorhersagen (zunehmend wichtig in systems biology)
 - \rightarrow Übergang zu Differentialgleichungssystemen: HillCube Methode

/ odefy

For schung sans at z

 Messung Genexpression von Runx2, Dlx5 und Msx2 unter Zugabe von TFs BMP2, TGFβ1 und Kombination

- Messung Genexpression von Runx2, Dlx5 und Msx2 unter Zugabe von TFs BMP2, TGFβ1 und Kombination
- Konstruktion Boolscher Modelle

- Messung Genexpression von Runx2, Dlx5 und Msx2 unter Zugabe von TFs BMP2, TGFβ1 und Kombination
- Konstruktion Boolscher Modelle
- Überführung in HillCube-Modelle (DGLs)

- Messung Genexpression von Runx2, Dlx5 und Msx2 unter Zugabe von TFs BMP2, TGFβ1 und Kombination
- Konstruktion Boolscher Modelle
- Überführung in HillCube-Modelle (DGLs)
- Rekonstruktion der experimentellen Daten mittels HillCube-Modelle

Setup Studie (grob)

- Messung Genexpression von Runx2, Dlx5 und Msx2 unter Zugabe von TFs BMP2, TGFβ1 und Kombination
- Konstruktion Boolscher Modelle
- Überführung in HillCube-Modelle (DGLs)
- Rekonstruktion der experimentellen Daten mittels HillCube-Modelle
- Testen der Vorhersagen der Modelle mit experimentellen Daten mittel Über- und Unterexpression

Setup Studie (grob)

- Messung Genexpression von Runx2, Dlx5 und Msx2 unter Zugabe von TFs BMP2, TGFβ1 und Kombination
- Konstruktion Boolscher Modelle
- Überführung in HillCube-Modelle (DGLs)
- Rekonstruktion der experimentellen Daten mittels HillCube-Modelle
- Testen der Vorhersagen der Modelle mit experimentellen Daten mittel Über- und Unterexpression
 - ightarrow Reduktion der möglichen Modelle (3⁵ ightarrow 1)

Genexpression bzgl. WF

• Zugabe von BMP2, TGF β 1, sowie Kombination in embryonische Stammzellenkultur

Genexpression bzgl. WF

- Zugabe von BMP2, TGF β 1, sowie Kombination in embryonische Stammzellenkultur
- Messung der Expression von Runx2, Dlx5 und Msx2, normalisiert an Kontrollgruppe (ohne Zugabe von Wachstumsfaktoren) an $t \in \{0, 8, 16, 24(,48)\}$

Genexpression bzgl. WF

- Zugabe von BMP2, TGF β 1, sowie Kombination in embryonische Stammzellenkultur
- Messung der Expression von Runx2, Dlx5 und Msx2, normalisiert an Kontrollgruppe (ohne Zugabe von Wachstumsfaktoren) an $t \in \{0, 8, 16, 24(,48)\}$
- System steady-state an t=24h; t=48h verändert System nicht signifikant

Boolsche Modelle: Kandidatennetzwerke

Modellierung Genregulationsnetzwerk nach Literatur:

Boolsche Modelle: Kandidatennetzwerke

Modellierung Genregulationsnetzwerk nach Literatur:

Boolsche Modelle: Kandidatennetzwerke

Modellierung Genregulationsnetzwerk nach Literatur:

Genexpression bzgl. WF: Ergebnis

Vergleich Expressionsprofile mit binären Daten

Vergleich Kandidatennetzwerke mit Expressionsdaten an t=24:

Vergleich Expressionsprofile mit binären Daten

 $\label{lem:vergleich} Vergleich \ Kandidatennetzwerke \ mit \ Expressionsdaten \ an \ t{=}24:$

Time (hours)	Media	Gene expression		
		Dlx5	Msx2	Runx2
0		Off	Off	Off
24	BMP2	On	On	On
	TGFβ1	Off	Off	On
	BMP2/TGFβ1	On	On	Off

Vergleich Expressionsprofile mit binären Daten

Vergleich Kandidatennetzwerke mit Expressionsdaten an t=24:

Time (hours)	Media	Gene expression		
		Dlx5	Msx2	Runx2
0 24	BMP2 TGFβ1 BMP2/TGFβ1	Off On Off On	Off On Off On	Off On On Off

Daten Input in BM

 Problem BM: weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen

- Problem BM: weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen
- ODEs: Erlauben detailliertere und quantitative Charakterisierung der Genregulationsnetzwerke

- Problem BM: weder kontinuierliche Konzentrationslevel noch realistische Zeitskalen
- ODEs: Erlauben detailliertere und quantitative Charakterisierung der Genregulationsnetzwerke
- stabile steady-states in ODEs: Zellphänotypen

HillCube-Modell

 $\overline{B_i}$ HillCube-Modell von $\overline{x_i}$;

HillCube-Modell

$$\overline{B_i}$$
 HillCube-Modell von $\overline{x_i}$;
Differentialgleichung $\dot{\overline{x_i}} = \frac{1}{\tau_i} (\overline{B_i}(\overline{x}_{i_1}, \overline{x}_{i_2}, ..., \overline{x}_{i_{N_i}}) - \overline{x_i})$ mit τ_i Lebensdauer der Spezies X_i

Expressionsprofile

Reduzierte Kandidatennetzwerke

Modelle, die Verhalten reproduzieren:

Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var.

```
\in \{0,1\})
```

- Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var. $\in \{0,1\}$)
- Vorhersage steady-state Dlx5, Msx2; Verhalten von Runx2 unklar

- Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var. $\in \{0,1\}$)
- Vorhersage steady-state Dlx5, Msx2; Verhalten von Runx2 unklar
- Runx2 reguliert Dlx5 positiv: up-regulation in TGF β 1 und Kontrollmedium; down-regulation von Msx2 in TGF β 1

- Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var. $\in \{0,1\}$)
- Vorhersage steady-state Dlx5, Msx2; Verhalten von Runx2 unklar
- Runx2 reguliert Dlx5 positiv: up-regulation in TGF β 1 und Kontrollmedium; down-regulation von Msx2 in TGF β 1
- Ansonsten down-regulation von Dlx5 in TGFβ1 und Kontrollmedium; up-regulation von Msx2 in TGFβ1

- Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var. $\in \{0,1\}$)
- Vorhersage steady-state Dlx5, Msx2; Verhalten von Runx2 unklar
- Runx2 reguliert Dlx5 positiv: up-regulation in TGF β 1 und Kontrollmedium; down-regulation von Msx2 in TGF β 1
- Ansonsten down-regulation von Dlx5 in TGFβ1 und Kontrollmedium; up-regulation von Msx2 in TGFβ1
- Vergleichen Vorhersage mit Daten wenn Runx2 überexprimiert

- Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var. $\in \{0,1\}$)
- Vorhersage steady-state Dlx5, Msx2; Verhalten von Runx2 unklar
- Runx2 reguliert Dlx5 positiv: up-regulation in TGF β 1 und Kontrollmedium; down-regulation von Msx2 in TGF β 1
- Ansonsten down-regulation von Dlx5 in TGFβ1 und Kontrollmedium; up-regulation von Msx2 in TGFβ1
- Vergleichen Vorhersage mit Daten wenn Runx2 überexprimiert
- Ergebnis Experiment: BM Oszillation in TGF β 1

- Vorhersage Verhalten bei Über und Unterproduktion von TFs (Var. $\in \{0,1\}$)
- Vorhersage steady-state Dlx5, Msx2; Verhalten von Runx2 unklar
- Runx2 reguliert Dlx5 positiv: up-regulation in TGF β 1 und Kontrollmedium; down-regulation von Msx2 in TGF β 1
- Ansonsten down-regulation von Dlx5 in TGFβ1 und Kontrollmedium; up-regulation von Msx2 in TGFβ1
- Vergleichen Vorhersage mit Daten wenn Runx2 überexprimiert
- Ergebnis Experiment: BM Oszillation in TGFβ1
 ODE-modell: Stabile Oszillation nur wenn Runx2 Dlx5 neg. reg.

Oszillationen

Zusammenfassung

 Biologisches Wissen für Konstruktion von Kandidatennetzwerken (BM)

Zusammenfassung

- Biologisches Wissen für Konstruktion von Kandidatennetzwerken (BM)
- Vergleich mit experimentellen Daten: Reduktion auf 3 GRNs

Zusammenfassung

- Biologisches Wissen für Konstruktion von Kandidatennetzwerken (BM)
- Vergleich mit experimentellen Daten: Reduktion auf 3 GRNs
- Uberführung in ODEs, Vergleich mit experimentellen Daten: Reduktion auf 1

Kritik

Kritik Setup Studie

 Rolle von $\mathsf{TGF}\beta 1$ in Osteogenese hängt von Zelltyp und lokaler Umgebung ab

Zelltyp und lokale Umgebung spielen keine Rolle in Studie

Kritik Setup Studie

- Rolle von TGFβ1 in Osteogenese hängt von Zelltyp und lokaler Umgebung ab
 Zelltyp und lokale Umgebung spielen keine Rolle in Studie
- Keine (kritische) Reflexion welche GRNs betrachtet werden

Kritik Interpretation Daten

Expression an t=48 nicht auf baseline zurückgekehrt (oder stabil) für Runx2 und Msx2:

Kritik Setup boolsches Netzwerk

• Wird gesagt, dass BMP2 Runx2 moderiert, TGF β 1 Dlx5 supprimiert, aber Einfluss von BMP2 auf Runx2, sowie TGF β 1 auf Dlx5 nicht modelliert

• Wird gesagt, dass BMP2 Runx2 moderiert, TGF β 1 Dlx5 supprimiert, aber Einfluss von BMP2 auf Runx2, sowie TGF β 1 auf Dlx5 nicht modelliert

Wird gesagt, dass BMP2 Runx2 moderiert, TGFβ1 Dlx5 supprimiert, aber Einfluss von BMP2 auf Runx2, sowie TGFβ1 auf Dlx5 nicht modelliert
 Sinnvoll 0 Studien als keinen Einfluss 1 Studie ungesichert 2

Sinnvoll 0 Studien als keinen Einfluss, 1 Studie ungesichert, 2 Studien gesichert?

Studien gesichert?

- Wird gesagt, dass BMP2 Runx2 moderiert, TGFβ1 Dlx5 supprimiert, aber Einfluss von BMP2 auf Runx2, sowie TGFβ1 auf Dlx5 nicht modelliert
 Sinnvoll 0 Studien als keinen Einfluss, 1 Studie ungesichert, 2
- Ebenfalls: Kein Unterschied ob kein Einfluss oder keine Studien (bekannt)

• Mehr Hintergrund und Umsetzung über HillCube nötig gewesen

- Mehr Hintergrund und Umsetzung über HillCube nötig gewesen
- Teil der Über- / Unterexpression methodisch nicht sehr deutlich

- Mehr Hintergrund und Umsetzung über HillCube nötig gewesen
- Teil der Über- / Unterexpression methodisch nicht sehr deutlich
- Schlussfolgerungen / Ergebnisse und Methoden vermischt (könnte systematischer aufgebaut sein)

- Mehr Hintergrund und Umsetzung über HillCube nötig gewesen
- Teil der Über- / Unterexpression methodisch nicht sehr deutlich
- Schlussfolgerungen / Ergebnisse und Methoden vermischt (könnte systematischer aufgebaut sein)
- Diskussion und Schlussfolgerung: bereits in Methodik dargestellt

 Spezielles GRN gewählt; Keine Diskussion ob andere GRN passend (nicht ausreichend begründet)

- Spezielles GRN gewählt; Keine Diskussion ob andere GRN passend (nicht ausreichend begründet)
- Allgemeine Betrachtung fehlt: Wann funktioniert Methode, wann nicht?

- Spezielles GRN gewählt; Keine Diskussion ob andere GRN passend (nicht ausreichend begründet)
- Allgemeine Betrachtung fehlt: Wann funktioniert Methode, wann nicht?

Wie gross darf ein GRN werden?

- Spezielles GRN gewählt; Keine Diskussion ob andere GRN passend (nicht ausreichend begründet)
- Allgemeine Betrachtung fehlt: Wann funktioniert Methode, wann nicht?

Wie gross darf ein GRN werden? Unterschied Gene / WFs?

- Spezielles GRN gewählt; Keine Diskussion ob andere GRN passend (nicht ausreichend begründet)
- Allgemeine Betrachtung fehlt: Wann funktioniert Methode, wann nicht?

Wie gross darf ein GRN werden? Unterschied Gene / WFs? Welche topologischen / biologischen Eigenschaften muss es aufweisen?

- Spezielles GRN gewählt; Keine Diskussion ob andere GRN passend (nicht ausreichend begründet)
- Allgemeine Betrachtung fehlt: Wann funktioniert Methode, wann nicht?

Wie gross darf ein GRN werden? Unterschied Gene / WFs? Welche topologischen / biologischen Eigenschaften muss es aufweisen?

Welche Szenarios können gewählt werden um GRNs zu reduzieren (wie Über- / Unterexpression)?

Selbstkritik

 Einzige Selbstkritik: Viele signal processes und Geninteraktionen (die Osteogenese beeinflussen) nicht modelliert

Selbstkritik

 Einzige Selbstkritik: Viele signal processes und Geninteraktionen (die Osteogenese beeinflussen) nicht modelliert
 Mehr Daten werden das Problem lösen

Selbstkritik

 Einzige Selbstkritik: Viele signal processes und Geninteraktionen (die Osteogenese beeinflussen) nicht modelliert Mehr Daten werden das Problem lösen Selbstaussage paper: Methodik kann auf jedes GRN angewendet werden

<u>Praktikumsarbeit</u>

Optimaler Fall

Nachvollziehen der Studie:

 Hernahme von Expressionsdaten verschiedener Gene in verschiedenen Medien

Optimaler Fall

Nachvollziehen der Studie:

- Hernahme von Expressionsdaten verschiedener Gene in verschiedenen Medien
- Konstruktion Boolsches Modell / HillCube Modell

Optimaler Fall

Nachvollziehen der Studie:

- Hernahme von Expressionsdaten verschiedener Gene in verschiedenen Medien
- Konstruktion Boolsches Modell / HillCube Modell
- Reduktion Kandidatennetzwerke

 Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)
- Konstruktion HillCube Modelle mittels odefy

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)
- Konstruktion HillCube Modelle mittels odefy Ausarbeitung der Mathematik

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)
- Konstruktion HillCube Modelle mittels odefy Ausarbeitung der Mathematik
 - → mathematischer Fokus

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)
- Konstruktion HillCube Modelle mittels odefy Ausarbeitung der Mathematik
 - \rightarrow mathematischer Fokus

Auch sinnvoll, da im paper vernachlässigt

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)
- Konstruktion HillCube Modelle mittels odefy Ausarbeitung der Mathematik
 - \rightarrow mathematischer Fokus
 - Auch sinnvoll, da im paper vernachlässigt
- Nachmodellieren des Oszillationsverhaltens bei Über- / Unterexpression

- Vermutlich schwer (gute) Genexpressionsdaten für geeignete (hinreichend kleine) Netzwerke zu finden (Ideen?)
 - → Extraktion der 45 Datenpunkte aus paper (nachbauen)
- Konstruktion HillCube Modelle mittels odefy Ausarbeitung der Mathematik
 - $\rightarrow \, \mathsf{mathematischer} \,\, \mathsf{Fokus} \,\,$
 - Auch sinnvoll, da im paper vernachlässigt
- Nachmodellieren des Oszillationsverhaltens bei Über- /
 Unterexpression
 Potentiell problematisch: Kann die Sonsitivität nicht einschätz
 - Potentiell problematisch; Kann die Sensitivität nicht einschätzen

Appendix

• *N* Spezies $X_1, X_2, ..., X_N$ mit $x_i \in \{0, 1\}$

- *N* Spezies $X_1, X_2, ..., X_N$ mit $x_i \in \{0, 1\}$
- Für jede Spezies: Menge von Spezies, die x_i beeinflussen:

$$R_i := \{X_{i_1}, X_{i_2}, ..., X_{i_{N_i}}\} \subset \{X_1, ..., X_N\}$$

- N Spezies $X_1, X_2, ..., X_N$ mit $x_i \in \{0, 1\}$
- Für jede Spezies: Menge von Spezies, die x_i beeinflussen:

$$R_i:=\{X_{i_1},X_{i_2},...,X_{i_{N_i}}\}\subset\{X_1,...,X_N\}$$
 , sowie eine Aktualisierungsfunktion $B_i:\{0,1\}^{N_i} o\{0,1\}$ für jede

Kombination von $(x_{i_1},...,x_{i_2},x_{i_{N_i}})\in\{0,1\}^{N_i}$

- N Spezies $X_1, X_2, ..., X_N$ mit $x_i \in \{0, 1\}$
- Für jede Spezies: Menge von Spezies, die x_i beeinflussen:

$$R_i:=\{X_{i_1},X_{i_2},...,X_{i_{N_i}}\}\subset\{X_1,...,X_N\}$$
, sowie eine Aktualisierungsfunktion $B_i:\{0,1\}^{N_i} o\{0,1\}$ für jede Kombination von $(x_{i_1},...,x_{i_2},x_{i_{N_i}})\in\{0,1\}^{N_i}$

• Betrachte B_i auf (Hyper-)Einheitswürfel: Knoten $(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}}) \in \{0,1\}^{N_i}$ entspricht $(\bigwedge_{ij|\xi_{ii}=1} x_{ij}) \wedge (\bigwedge_{ij|\xi_{ii}=0} \neg x_{ij})$

• sum-of-product Repräsentation: $B(x_{i_1},...,x_{i_2},x_{i_{N_i}}) = \bigvee_{(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}})|B_i(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}})=1} [(\bigwedge_{ij|\xi ij=1} x_{ij}) \land (\bigwedge_{ij|\xi ij=0} \neg x_{ij})]$

- sum-of-product Repräsentation: $B(x_{i_1},...,x_{i_2},x_{i_{N_i}}) = \bigvee_{(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}})|B_i(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}})=1} [(\bigwedge_{ij|\xi ij=1} x_{ij}) \land (\bigwedge_{ij|\xi ij=0} \neg x_{ij})]$
- Nun ersetzen von $x_i \in \{0,1\}$ durch $\overline{x_i} \in [0,1] \to \overline{B_i} : [0,1]^n \to [0,1]$: kontinuierliche homologe von B_i

Formale Darstellung boolsches Modell

- sum-of-product Repräsentation: $B(x_{i_1},...,x_{i_2},x_{i_{N_i}}) = \bigvee_{(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}})|B_i(\xi_{i_1},...,\xi_{i_2},\xi_{i_{N_i}})=1} [(\bigwedge_{ij|\xi ij=1} x_{ij}) \land (\bigwedge_{ij|\xi ij=0} \neg x_{ij})]$
- Nun ersetzen von $x_i \in \{0,1\}$ durch $\overline{x_i} \in [0,1] \to \overline{B_i} : [0,1]^n \to [0,1]$: kontinuierliche homologe von B_i
- Normalisierte HillCubes:

$$\overline{B}_{n_{i}}^{H}(\overline{x_{1}}, \overline{x_{2}}, ..., \overline{x_{n}}) := \overline{B}_{i}^{I}(\frac{f_{i_{1}}(\overline{x_{i_{1}}})}{f_{i_{1}}(1)}, \frac{f_{i_{2}}(\overline{x_{i_{2}}})}{f_{i_{2}}(2)}, ..., \frac{f_{i_{n}}(\overline{x_{i_{n}}})}{f_{i_{n}}(n)})$$

• $\overline{B_i}'$: lineare Interpolation von B_i mittels multivariater polynomialer Interpolation: BooleCubes.

• $\overline{B_i}^I$: lineare Interpolation von B_i mittels multivariater polynomialer Interpolation: BooleCubes. $\overline{B_i}^I$ affin multilinear:

$$1 \leq j \leq \textit{N}_{\textit{i}}, \overline{x}_{\textit{ik}} \text{ fix } : \exists \textit{a}, \textit{b} \in \mathbb{R} : \overline{\textit{B}_{\textit{i}}}^{\textit{I}}(\overline{x}_{\textit{i}1}, \overline{x}_{\textit{i}2}, ..., \overline{x}_{\textit{i}N_{\textit{i}}}) = \textit{a} + \textit{b}\overline{x}_{\textit{ij}}$$

• $\overline{B_i}^I$: lineare Interpolation von B_i mittels multivariater polynomialer Interpolation: BooleCubes. $\overline{B_i}^I$ affin multilinear:

$$1 \leq j \leq N_i, \overline{x}_{ik} \text{ fix } : \exists a, b \in \mathbb{R} : \overline{B_i}^I(\overline{x}_{i1}, \overline{x}_{i2}, ..., \overline{x}_{iN_i}) = a + b\overline{x}_{ij}$$

• f: Hill-Funktionen: $f(\overline{x}) = \frac{\overline{x}^n}{\overline{x}^n + k^n}$

- $\overline{B_i}^I$: lineare Interpolation von B_i mittels multivariater polynomialer Interpolation: BooleCubes. $\overline{B_i}^I$ affin multilinear:
 - $1 \leq j \leq N_i, \overline{x}_{ik} \text{ fix } : \exists a, b \in \mathbb{R} : \overline{B_i}^I(\overline{x}_{i1}, \overline{x}_{i2}, ..., \overline{x}_{iN_i}) = a + b\overline{x}_{ij}$
- f: Hill-Funktionen: $f(\overline{x}) = \frac{\overline{x}^n}{\overline{x}^n + k^n}$
- Sigmoide Funktionen mit
 - n: Anstieg der Funktion: Kooperativität der Interaktion
 - k: Schwellenwert des Boolschen Modelles (Halbmaximalität von f)

- $\overline{B_i}^I$: lineare Interpolation von B_i mittels multivariater polynomialer Interpolation: BooleCubes. $\overline{B_i}^I$ affin multilinear:
 - $1 \leq j \leq N_i, \overline{x}_{ik} \text{ fix } : \exists a, b \in \mathbb{R} : \overline{B_i}^I(\overline{x}_{i1}, \overline{x}_{i2}, ..., \overline{x}_{iN_i}) = a + b\overline{x}_{ij}$
- f: Hill-Funktionen: $f(\overline{x}) = \frac{\overline{x}^n}{\overline{x}^n + k^n}$
- Sigmoide Funktionen mit
 - n: Anstieg der Funktion: Kooperativität der Interaktion
 - k: Schwellenwert des Boolschen Modelles (Halbmaximalität von f)
- $rac{f_{i_\ell}(\overline{x_{i_\ell}})}{f_{i_s}(\ell)}$: Normalisierung, sodass $f(\zeta)=1$ erreicht wird

• $\overline{B} := \overline{B}_{n_i}^H(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}) := \overline{B}_i^I(\frac{f_{i_1}(\overline{x_{i_1}})}{f_{i_1}(1)}, \frac{f_{i_2}(\overline{x_{i_2}})}{f_{i_2}(2)}, ..., \frac{f_{i_n}(\overline{x_{i_n}})}{f_{i_n}(n)})$ ist perfektes Homolog von B_i

- $\overline{B} := \overline{B}_{n_i}^H(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}) := \overline{B}_i^I(\frac{f_{i_1}(\overline{x_{i_1}})}{f_{i_1}(1)}, \frac{f_{i_2}(\overline{x_{i_2}})}{f_{i_2}(2)}, ..., \frac{f_{i_n}(\overline{x_{i_n}})}{f_{i_n}(n)})$ ist perfektes Homolog von B_i
- steady-states von Boolschen Modellen übertragen sich

- $\overline{B} := \overline{B}_{n_i}^H(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}) := \overline{B}_i^I(\frac{f_{i_1}(\overline{x_{i_1}})}{f_{i_1}(1)}, \frac{f_{i_2}(\overline{x_{i_2}})}{f_{i_2}(2)}, ..., \frac{f_{i_n}(\overline{x_{i_n}})}{f_{i_n}(n)})$ ist perfektes Homolog von B_i
- steady-states von Boolschen Modellen übertragen sich
- HillCubes stimmen auf Knoten mit BoolCubes überein

- $\overline{B} := \overline{B}_{n_i}^H(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}) := \overline{B}_i^I(\frac{f_{i_1}(\overline{x_{i_1}})}{f_{i_1}(1)}, \frac{f_{i_2}(\overline{x_{i_2}})}{f_{i_2}(2)}, ..., \frac{f_{i_n}(\overline{x_{i_n}})}{f_{i_n}(n)})$ ist perfektes Homolog von B_i
- steady-states von Boolschen Modellen übertragen sich
- HillCubes stimmen auf Knoten mit BoolCubes überein
- Haben 'schöne' analytische Eigenschaften (bspw. Stetigkeit)

- $\overline{B} := \overline{B}_{n_i}^H(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}) := \overline{B}_i^I(\frac{f_{i_1}(\overline{x_{i_1}})}{f_{i_1}(1)}, \frac{f_{i_2}(\overline{x_{i_2}})}{f_{i_2}(2)}, ..., \frac{f_{i_n}(\overline{x_{i_n}})}{f_{i_n}(n)})$ ist perfektes Homolog von B_i
- steady-states von Boolschen Modellen übertragen sich
- HillCubes stimmen auf Knoten mit BoolCubes überein
- Haben 'schöne' analytische Eigenschaften (bspw. Stetigkeit)
- Eindeutige minimale Lösung innerhalb Funktionenklasse

• Option 1 (zeitdiskretes Modell):

$$\overline{x}_i(t+1) = \overline{B}_i(\overline{x}_{i_1}(t), \overline{x}_{i_2}(t), ..., \overline{x}_{i_{N_i}}(t))$$

• Option 1 (zeitdiskretes Modell):

$$\overline{x}_i(t+1) = \overline{B}_i(\overline{x}_{i_1}(t), \overline{x}_{i_2}(t), ..., \overline{x}_{i_{N_i}}(t))$$

Nachteil: Unstetigkeit lässt analytische Methoden nicht zu

• Option 1 (zeitdiskretes Modell):

$$\overline{x}_i(t+1) = \overline{B}_i(\overline{x}_{i_1}(t), \overline{x}_{i_2}(t), ..., \overline{x}_{i_N}(t))$$

Nachteil: Unstetigkeit lässt analytische Methoden nicht zu

• Option 2 (zeitkontinuierliches Modell): Annahme: $\overline{B_i}$ ist Produktionsrate von $\overline{x_i}$, Abbau mit Rate $\overline{x_i}$:

• Option 1 (zeitdiskretes Modell):

$$\overline{x}_i(t+1) = \overline{B}_i(\overline{x}_{i_1}(t), \overline{x}_{i_2}(t), ..., \overline{x}_{i_{N_i}}(t))$$

Nachteil: Unstetigkeit lässt analytische Methoden nicht zu

• Option 2 (zeitkontinuierliches Modell): Annahme: $\overline{B_i}$ ist Produktionsrate von $\overline{x_i}$, Abbau mit Rate $\overline{x_i}$: Differentialgleichung $\dot{\overline{x_i}} = \frac{1}{\tau_i} (\overline{B_i}(\overline{x_{i_1}}, \overline{x_{i_2}}, ..., \overline{x_{i_{N_i}}}) - \overline{x_i})$

mit τ_i Lebensdauer der Spezies X_i