COMPUTER SCIENCE

Computer Organization and Architecture

ALU & Control unit

Micro operation Micro Program & Westing. Contout unit

Hoadwired Cu Design

Micro Programmed CU Design

42) Vertical uprog.

- 1) Cycle (9 Ti, To clock Cycle)
- 2 Cycle time

than How to Calculate ProgrET, MIPS Rate?

.

- CPU time calculation program execution time.
- Program execution time is calculated based on the clock.
- Processor contain clock pins and these clock pin is externally connected with the clock generator.
- So in the computer system all the operation are controlled by the clock so CPU
 contain pins which is externally connected with clock generator.
- Clock generator is operating with a constant frequency to generate the clock pulse [clock signal]

 These clock pulses are carried into the CPU through (with the help of) Clk pin. So, CPU operation are controlled by the clock signal.

Program ET(execution time) is calculated based on 2 Factor.

1. Cycle

2. Cycle time

 Cycle: Cycle is defined as clock pulse transition either from rising edge to rising edge or falling edge to falling edge.

 Cycle Time: The time required to transfer the pulse either from rising edge to rising edge or falling edge to falling edge is called cycle time.

Cycle time depend on clock frequency

Cycle Time
$$\alpha \frac{1}{Clock \text{ frequency}}$$

1 GHz clock is used

Cycle time =
$$\frac{1}{1 \text{ } GHz}$$
 sec
= $\frac{1}{10^9}$ sec
10-9sec
Cycle time = 1 nsec

The Sold Computer

MTPS (Million of Inst Per Sec) =

20 = 1 Peta

1 Milliger (1 mser) = 15-3 sec. 1 Micros sec (1 msec) = 15-6 sec. 1 Nano see (1 Msec) = 15-9 sec.

Cycle time = 15-9 sec

0.5 × 10 9 sec.

@ IB 29H2 Processor

Cycle time = 0.5 nsec.

Cycletime = $\frac{1}{29n^2}$ sec = $\frac{1}{2x10^9}$ sec = $\frac{1}{2x10^9}$ sec $\frac{1}{2}$ 0.5 nsec

Cycle time

Cycle time of Lock Freq.

@ 19H2 Cycletime = 109 Sec = 1 Msee. Program ET

(3) [Program P] 1942

100 Instr

each Instr takes 5 cycle then
the Prog ET?

2 Gylletime=Insec. Op has 1942 clock Frequencey 4

Program Pr having 100 Instr 4 each Instr takes 504cle the frog ET in Cycle 4 in 19.

Program (IC)
Program

100 Instruction

Each Instratakes 5 Cycle.

Cycle time - Inger

Program ET = 100 x 5 (4de = 500 cycle. Ap Pooppoom ET (in 1 ser) = 500 Cycle =) 500 X LNg = 500 Mec. Ang

> al. Instruction (Instruction Rog.)

> CPI (Cycle Per Instruction)

Cycle time:

How Much time taken to execute a Program.

Program ET =) # Seconder Per'

In the Program we have Dibbeecht type of Dietrach Instrake Dibbeecht Cycle.

(Consume)

then Brog ET = . . .

CPU time calculation/program ET:

CPU time means program execution time.

Program execution time = #seconds/program

Program ET { CPU Time} = $IC \times CPI \times Cycle$ time

Program is a combination of data transfer, data manipulation and transfer of control (TOC) instruction. Different instruction takes [consume] different cycle to complete the execution. So,

Program ET {CPU Time} = $[\Sigma(Ic_i \times CP_i)]$ Cycle time

Proof ET. =
$$\left[\sum (I_{C_i} \times CPI_i) \right] \times Cycle hime.$$

Previous eq.

DC X CPI

100 X 5

= 500 cycle

400 + 200 + 200

= 800 cycle

Consider a 1.5 GHz clock frequency processor used to execute the following program segment

Instruction type	Instruction count [IC]	CPI
Load	300	11
Store	200	9
Arithmetic	250	7
Shift	150	6
Branch	50	4
Total	950	

Q1 what is Average Irel ET?
Q2 What is the MIPS Rate?
Q3 What is Total frog ET?

(i). What is average instruction execution of the program? $\mathbb{Z}(\mathbb{T}C_i \times CPT_i) \times \mathbb{C}$

Ang Trest
$$ET = (300 \times 11) + (200 \times 9) + (200 \times 7) + (100 \times 6) + (50 \times 4)$$

$$= 3300 + 1800 + 1750 + 900 + 200 = (8.36 \text{ Cycle})$$

$$950$$

Cycle time =
$$\frac{1}{1.5}$$
 sec
= $\frac{1}{1.5}$ x10⁻⁹
Cycle time = 0.66 ngec

(ii). What is the MIPS rate of a program?

(iii). What is the total program ET?

1 nsec clock cycle processor consume 4 cycle for load and store operation and 6 cycle for ALU operation and 2 cycle for branch operation. The relative frequency of these operation are 40%, 40% and 20% respectively.

- What is the average instruction ET?
- (ii). What is the performance in term of MIPS?

(iii). If program contain 106 instruction them what is total program ET?

(i) What is the average instruction ET?

= 4.4 Cycle => 4.4x Ingec

(ii). What is the performance in term of MIPS?

227.2 MIPS.

(iii). If program contain 106 instruction them what is total program ET?

Total Rog ET = #Inst | Prog
$$\times$$
 Ang Inst ET
$$= 10^{6} \times 4.4 \times 10^{-9} \text{ Sec}$$

$$= 4.4 \times 10^{-3} \text{ Sec}.$$

Bog ET = 4.4 msec. Ang

GAIN (Speedub)
Factor

- Performance of New Performance of OLD

= ETNEW = ETOLD = ETNEW

Performance GAIN = ETOLD (Speed up Forchor) ETNEW. Ram - 10 hours

SHYAM - 5 Hours

:. So SHYAM Parformance Fact

Performance of 1 Execution (E.T)

Consider a 2.3ns clock cycle processor which consume 9 cycle for load and store instruction and 7 cycle for ALU instruction and 3 cycle for branch instruction. Relative frequency of their instruction are 40%, 40% and 20% respectively. Processor is enhanced with an average CPI of 1. During the enhancement, cycle time is increased by 40%, them what is performance GAIN [speed up factor] of new and OLD Design? (2.3+40) - (2.3)

Avg ET =
$$(40\times9 + .40\times7\times20\times3)\times2.3$$
 wec
Avg ET = $(40\times9 + .40\times7\times20\times3)\times2.3$

Amp(S)

New Design:

ANG CPI = 1

Cycle time increased by 40.1

2.3+ -40x2.3

Any Instr ET new = (.40x1+.40x1+.20x1)x3.27me = 2.3+0.92

And INTHET New = 3.22 ngec

= 3:22 rgec

Performance GAIN = Perf. of New = FTOLD = 16.1 = (5) Ang
FEV. of DID = FTOLD = 16.1 = (5) Ang

