

School of Computing

Tutorial 7: BST and bBST

October 10, 2022

Gu Zhenhao

* Partly adopted from tutorial slides by Wang Zhi Jian.

Ordered Map ADT

Why do we need the Ordered Map ADT?

Ordered Map ADT

- Purpose: keep both searching and comparing fast.
- Operations:
 - 1. insert(i), delete(i).
 - 2. find(i): Check if a key exists.
 - 3. predecessor(i), successor(i): find the keys next to i in the sorted list.
 - 4. ...

We assume all keys are unique.

• As unsorted array:

• Finding a key is very slow.

insert	find	predecessor
0(1)	O(n)	O(n)

• As **sorted array**:

- Can use binary search to find keys, faster to find predecessor/successors.
- Slower insertion (need a step in **insertion sort**).

insert	find	predecessor
O(n)	$O(\log n)$	0(1)

• As hash map:

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
		2		4	5	6		8	9

- Fast insertion/deletion and finding.
- Need to check all keys for predecessor/successor!

insert	find	predecessor
0(1)	0(1)	O(n)

Summary

Operations	Unsorted Array	Sorted Array	Hash Map
insert	0(1)	O(n)	0(1)
delete	O(n)	O(n)	0(1)
find	O(n)	$O(\log n)$	0(1)
predecessor	O(n)	0(1)	O(n)

Better at **comparing**

Better at **searching/insert**

• Is there a way to take the merits of these two?

As binary tree:

For **every node**:

Each node in **left subtree** is smaller than it,

Each node in the **right subtree** is larger than it.

• find(8):

Kind of like binary search!

To **find** a key:

- Start from **root**,
- If the node is null, the key is not found.
- If the searched key is larger than root, search **right subtree**.
- Otherwise search left subtree.

• insert(3):

To **insert** a key:

- First find the key.
- If it doesn't exist, insert as a leaf node.

• predecessor(8):

6 is predecessor

To find **predecessor** of a key:

- If it has a left child, find max in left subtree.
- Otherwise
 - if it is a right child, the predecessor is its parent.
 - Otherwise the predecessor is its "first left ancestor".

• delete(6):

To **delete** a key:

- If it is a leaf, simply remove the node.
- If it has only one child, remove the node and attach the child to the node's parent.
- If it has 2 children, swap the node with its successor, then remove.

Summary

Operations	Sorted Array	Hash Map	BST
insert	O(n)	0(1)	O(h)
delete	O(n)	0(1)	O(h)
find	$O(\log n)$	0(1)	O(h)
predecessor	0(1)	O(n)	O(h)

How to reduce the height of tree in worst case?

Problem:

• The height of the tree h can be O(n) in the worst case!

Rebalancing

- When tree is unbalanced (has a node where the height of left subtree and right subtree differ more than 1), needs rebalancing!
- Single rotations:

Rebalancing

- When tree is unbalanced (has a node where the height of left subtree and right subtree differ more than 1), needs rebalancing!
- Double rotations:

True or false: Given any AVL tree of height 4, deleting any vertex in the tree will not result in more than 1 rebalancing operation (not rotation but rebalancing operations!).

False. We can find a counter example:

if we delete 5,

Need rebalancing in the left subtree,

True or false: Given any AVL tree of height 4, deleting any vertex in the tree will not result in more than 1 rebalancing operation (not rotation but rebalancing operations!).

False. We can find a counter example:

if we delete 5,

- Need rebalancing in the left subtree,
- Need another to balance the left and right subtree.

True or false: The minimum number of vertices in an AVL tree of height 5 is 21.

6

Height of AVL tree	Minimum no. of nodes
0	1
1	
2	
3	
4	
5	

True or false: The minimum number of vertices in an AVL tree of height 5 is 21.

	6
Ш	
4	

Height of AVL tree	Minimum no. of nodes
0	1
1	2
2	
3	
4	
5	

True or false: The minimum number of vertices in an AVL tree of height 5 is 21.

Height of AVL tree	Minimum no. of nodes
0	1
1	2
2	4
3	
4	
5	

True or false: The minimum number of vertices in an AVL tree of height 5 is

21.

Smallest AVL tree with h=3

Smallest AVL

tree with h=2

Height of AVL tree	Minimum no. of nodes
0	1
1	2
2	4
3	7
4	
5	

$$N_{i} = N_{i-1} + N_{i-2} + 1$$

True or false: The minimum number of vertices in an AVL tree of height 5 is 21.

False. The minimum is 20.

Height of AVL tree	Minimum no. of nodes
0	1
1	2
2	4
3	7
4	12
5	20

$$N_i = N_{i-1} + N_{i-2} + 1$$

True or false: In a tree, if for every vertex x that is not a leaf, x.left.key < x.key if x has a left child and x.key < x.right.key if x has a right child, the tree is a BST.

False. We can find a counter example:

The tree on the left is not a BST because we require **ALL** nodes in left subtree are smaller than root.

Tree Traversal

How to properly do traversal?

Three ways of tree traversal


```
pre-order(node)
  if node is null: return
  visit(node)
  pre-order(node.left)
  pre-order(node.right)
```

```
in-order(node)
   if node is null: return
   in-order(node.left)
   visit(node)
   in-order(node.right)
```

```
post-order(node)
  if node is null: return
  post-order(node.left)
  post-order(node.right)
  visit(node)
```

```
Algorithm 1 In-Order Traversal1: procedure InOrderTraversal\triangleright bBST T is supplied as input2: currentNodeValue \leftarrow T.findMin()Start from smallest node in BST...3: while currentNodeValue \neq -1 do\bullet output currentNodeValue5: currentNodeValue \leftarrow T.successor(currentNodeValue)6: end while\triangleright successor returns -1 if there is no successor7: end procedure
```

What is the running time of Algorithm 1?

```
      Algorithm 1 In-Order Traversal

      1: procedure InOrder Traversal
      \triangleright bBST T is supplied as input

      2: currentNodeValue ← T.findMin()
      \triangleright while currentNodeValue \neq -1 do

      4: output currentNodeValue Visit current node...
      \triangleright currentNodeValue)

      5: currentNodeValue ← T.successor(currentNodeValue)

      6: end while
      \triangleright successor returns -1 if there is no successor

      7: end procedure
```

What is the running time of Algorithm 1?

```
Algorithm 1 In-Order Traversal1: procedure InORDERTRAVERSAL(T)\triangleright bBST T is supplied as input2: currentNodeValue \leftarrow T.findMin()3: while currentNodeValue \neq -1 do4: output currentNodeValueGo to next smallest node,5: currentNodeValue \leftarrow T.successor(currentNodeValue)until all nodes are visited.6: end while\triangleright successor returns -1 if there is no successor7: end procedure
```

What is the running time of Algorithm 1?

```
Algorithm 1 In-Order Traversal1: procedure InORDERTRAVERSAL(T)\triangleright bBST T is supplied as input2: currentNodeValue \leftarrow T.findMin()O(\log n) time.3: while currentNodeValue \neq -1 doO(\log n) time, the while4: output currentNodeValueO(\log n) time, the while5: currentNodeValue \leftarrow T.successor(currentNodeValue)loop runs O(n) times.6: end while\triangleright successor returns -1 if there is no successor7: end procedure
```

What is the running time of Algorithm 1? In total $O(n \log n)$ time.

Propose modifications to the **successor** function such that Algorithm 1 runs in O(n) time.

The effect is exactly the same as in-order traversal...

But in-order traversal runs in O(n) time. What's the difference?

```
Algorithm 1 In-Order Traversal

1: procedure InOrderTraversal > bBST T is supplied as input

2: currentNodeValue \leftarrow T.findMin()

3: while currentNodeValue \neq -1 do

4: output currentNodeValue

5: currentNodeValue \leftarrow T.successor(currentNodeValue)

6: end while > successor returns -1 if there is no successor

7: end procedure
```

We need to first find the node containing **currentNodeValue** from the root node, then go to its successor!

If we call **successor(2)**...

- 1. Find the node containing 2...
- 2. Starting from the node, find its successor.

```
Algorithm 1 In-Order Traversal

1: procedure InOrderTraversal > bBST T is supplied as input

2: currentNodeValue \leftarrow T.findMin()

3: while currentNodeValue \neq -1 do

4: output currentNodeValue

5: currentNodeValue \leftarrow T.successor(currentNodeValue)

6: end while > successor returns -1 if there is no successor

7: end procedure
```

Idea: We feed a reference of **currentNode** to the successor function instead, instead of its value.

Each node is now visited at most O(1) times ... O(n) time in total!

Applications

How to use BST's ability of comparing keys?

A node x has **rank** k in a BST if there are k-1 nodes that are smaller than x in the BST.

Goal: find the rank of a node x in O(h) time.

Trivial Solution: Find all nodes that are smaller than the node x.

We can use in-order traversal, count the visited nodes, until we visit x!

Time needed: O(n) time.

Where are the nodes smaller than the root 6 located?

The nodes that are smaller than root are all in left subtree.

Idea: just return the size of the left subtree!

But counting the size is still O(n)...

The nodes that are smaller than 6 are all in left subtree.

Idea: just return the size of the left subtree!

Count and store the **size** of subtree rooted at the node beforehand!

What if we want to find the rank of nodes other than root, e.g. 9?

1. Visit the root, and the root 6 < 9.

Intuition

• We know that 6 is in rank 4 in sorted array ... And all numbers before 6 are smaller than 6.

• rank of 9 in the whole array = rank of 6 + rank of 9 in right sub-array.

What if we want to find the rank of node other than root, e.g. 9?

- 1. Visit the root, and the root 6 < 9.
- 2. Ignore the left subtree, and find the rank of 9 in right subtree.

Algorithm 2 BST Rank

```
1: function Rank(node, v)
     if node.key = v then
2:
         return node.left.size + 1
3:
     else if node.key > v then
4:
        return Rank(node.left, v)
5:
     else
6:
        return node.left.size + 1 + Rank(node.right, v)
7:
     end if
                rank of root node.
9: end function
```

Recurrence relation:

$$T(h) = T(h-1) + 1$$

In total O(h) time.

A node x has **rank** k in a BST if there are k-1 nodes that are smaller than x in the BST.

Goal: Find the node with rank k in O(h) time.

Example: Find the node with rank = 5.

5 > rank of root node = 4.

Example: Find the node with rank = 5.

5 > rank of root node = 4.

Idea: we only need to check the right subtree for the node!

Algorithm 3 BST Select

```
1: function Select(node, k)
      q \leftarrow node.left.size
      if q+1=k then
3:
          return node.key
4:
      else if q+1>k then
5:
          return Select(node.left, k)
6:
      else
7:
          return Select(node.right, k-q-1)
8:
      end if
9:
10: end function
```

This is very similar to QuickSelect!

... Except for the **partition** is already done by BST!

^{*} It is very common to use recursions in tree-related algorithms! Get used to it @

- n servers in a line, either enabled or disabled.
- Server i can send data to server j if all servers between i and j are enabled.

Goal: support the operations:

- 1. enable(i): Enable the *i*-th server.
- 2. disable(i): disable the *i*-th server.
- **3.** send(i, j): return true if we can send data from server i to j.

- n servers in a line, either enabled or disabled.
- Server i can send data to server j if all servers between i and j are enabled.

Example: Servers 5 and 8 are disabled.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]

send(3, 10) returns false.

Trivial Solution:

- Store everything in an array.
- Start from \mathbf{i} and see if we encounter a disabled server, until we reach \mathbf{j} .
- enable and disable are O(1) time, send takes O(n) time.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
Т	Т	Т	Т	F	Т	Т	F	Т	Т

Another Solution:

- Store everything in UFDS.
- Group consecutive enabled servers in a set.
- **send** simply checks if \mathbf{i} and \mathbf{j} are in same set.
- enable and send are $O(\alpha(n))$ time, disable takes O(n) time.

Observation:

Cannot send message from \mathbf{i} to \mathbf{j} if the first disabled server after \mathbf{i} is $< \mathbf{j}$. e.g. **send(3, 10)** is false because the first disabled server after 3 is 5.

find the **successor** of 3!

Idea:

- Store all the disabled servers in an AVL tree.
- send(i, j) checks existence of i, and find the successor of i and check if it is > j.
- All 3 operations takes $O(\log n)$ time.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]

Algorithm 4 Solution to Problem 4

```
1: T \leftarrow \text{bBST}, initially empty
 2: procedure ENABLE(i)
      T.delete(i)
 4: end procedure
 5: procedure DISABLE(i)
     T.insert(i)
 7: end procedure
 8: function SEND(i, j)
      if i is in T or T.successor(i) \leq j then
          return false
10:
    else
11:
          return true
12:
      end if
13:
14: end function
```

Note:

This **successor** is different from the one in the lecture: **i** may not be a node in the BST!

How to implement this successor function?

* See the appendix for hints!

The Lowest Common Ancestor (LCA) of two nodes a and b in a BST is the node furthest from the root that is an ancestor of both a and b.

Example:

LCA of 2 and 6 is 5.

The Lowest Common Ancestor (LCA) of two nodes a and b in a BST is the node furthest from the root that is an ancestor of both a and b.

Do we need to store the path?

Idea:

- We can first find the two nodes:
 - For node 2, we go through 10 -> 5 -> 3 -> 2.
 - For node 6, we go through 10 -> 5 -> 7 -> 6.
- Just check the common path!

A set of *N* strings of length *L*.

Goal: implement **gotPrefix(k)**: return true if string **k** is a prefix of some string in the set.

Example: Set is {ME, MAE, MAT}, gotPrefix("MA") returns true.

Idea: Simply use a trie!

- **preprocessing**: each insertion takes O(L) time.
- query: check if there is a path matching k. Takes O(k length) time.

Appendix

successor(value)

Problem: How do we implement successor(value), where the value might not be among the nodes in BST?

Example: successor(1).

Trivial Solution:

- Insert a node 1,
- Find its successor,
- Delete the node 1.

Can we avoid creating the node?

successor(value)

Problem: How do we implement successor(value), where the value might not be among the nodes in BST?

Idea: Can also do it recursively!

We have the root 6 > 1.

If 6 is not the successor, it must be in left subtree!

The successor must be: min{6, successor of 1 in left subtree}.

End of File

Thank you very much for your attention :-)