Al-Mahdi Schools

Chapter 1: Energy

Grade 12 GS

I- Prerequisites:

- Scalar or dot product $\vec{v}_1 \cdot \vec{v}_2 = v_1 \times v_2 \times \cos(\alpha)$
- Derivative : $(u^m)'=m u^{m-1}u'$ e.g.: $(x^2)' = 2xx'$ for rectilinear motion x' = v so: $(x^2)' = 2xv$ $(v^2)' = 2vv'$ for rectilinear motion v' = a so: $(v^2)' = 2va$
- Rectilinear motion:
 - **1.** URM: a = 0, $v = constant : x = vt + x_0$

2. URAM:
$$a. v > 0$$
, $|v| \nearrow$
3. URDM: $a. v < 0$, $|v| \searrow$:
$$\begin{vmatrix} x = \frac{1}{2}at^2 + v_0t + x_0 \\ v = at + v_0 \\ v = v_0 \end{vmatrix} = 2a(x - x_0)$$

II- Work done by a force:

- A force works if it participates in the motion of a system.
- The work done by a **constant force** \vec{F} acting on a solid (S), whether (S) moves along a **rectilinear** displacement $\vec{d} =$ \overline{AB} or along a **curvilinear** trajectory from A to B (adjacent figure), is: $W_{\vec{F}} = \vec{F} \cdot \vec{d} = F \times d \times d$
 - In SI units **F** is in Newton (**N**), **d** is in meter (m) and W is in Joules (J).

- A **constant force** is a force that keeps the same direction and magnitude
- The work done by a constant force is **independent** of the followed path.

Note 1

•	Particular cases:

Angle α	Work of \vec{F}	Participation in motion
Acute	$W_{\vec{F}} > 0$	The work is motive, and the force tends to accelerate the motion (e.g.: work of \vec{F}_1)
Obtuse	$W_{\vec{F}} < 0$	The work is resistive, and the force tends to decelerate the motion (e.g.: work of \vec{F}_2)
90°	$W_{\vec{F}}=0$	No participation in motion (e.g.: work of $m\vec{g}$ and \vec{N})

1. Work done by weight

Along any path:

When an object moves from an initial height h_i to a final height h_f , the work of the weight as a constant force is independent of the followed path

$$W_{\overrightarrow{mg}} = mgd\cos\alpha = mgh = mg(h_i - h_f)$$

- If the body moves up: $h_i < h_f \Rightarrow W_{\overrightarrow{mg}} = -mgh < 0$ then the weight resists the motion.
- If the body moves down: $h_i > h_f \implies W_{\overrightarrow{mg}} = mgh > 0$ then the weight helps the motion.

- <u>Upwards motion:</u> $\alpha(\overrightarrow{mg}_x; \vec{d}) = 180^\circ \Longrightarrow$ $W_{\overrightarrow{mg}} = -mgd \sin \alpha$

2. Work done by a force having a constant moment M

 $W_{\vec{F}} = \mathbf{M} \times \Delta \theta$ ($\Delta \theta = \theta - \theta_0$ is the angle described by the object in rotation.

III- Power due to the force

- **Definition**: The power is the time rate at which work is done by a force
- The average power: $P_{av} = \frac{\text{work done}}{\text{taken time}} = \frac{\text{w}}{\Delta t} \text{ or } P_{av} = \frac{W}{\Delta t}$
- The instantaneous power: $P = \frac{\lim}{\Delta t \to 0} \left(\frac{\Delta W}{\Delta t} \right) = \frac{dW}{dt} = \overrightarrow{F} \cdot \overrightarrow{V_{t}}$
- In rotational motion $P = M \times \theta'$ (where $\theta' = \frac{d\theta}{dt}$ is the angular velocity in rad/s)
- In S.I units, W is in joules (J), t is in (s) and P is in Watt (W).
- $1 \, kWh = 1000 \times W \times 3600s = 36 \times 10^5 J$

if the power P is constant then $P = P_{av}$

Note 2

IV-Energy:

Energy is the ability to produce work. The SI unit of energy is the Joule (J).

- 1. Kinetic Energy: is the energy stored in a body or a system due to its velocity.
 - Case of a particle or a rigid body in translation: $E_k = \frac{1}{2} m v^2$
 - Case of a system of particles:

$$E_{k \text{ (system)}} = \sum E_{k \text{(particles)}} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 + \cdots$$

• For a rigid body in rotation: $E_{k(\text{system})} = \frac{1}{2} I \theta'^2$

Work-energy theorem $\Delta E_k = E_{kf} - E_{ki} = \sum W_{\vec{F}_{ext}}$

Note 3

2. Potential energy: is the energy stored in the system, due to the interaction between its particles.

Potential energy could be elastic, gravitational, torsion...

• Gravitational potential energy (E_{pg}) : $E_{pg} = \pm m g h$

$$E_{pq1} = +m_1gh_1$$

$$E_{pq2} = +m_2gh_2 = 0$$

$$E_{pq3} = -m_3gh_3$$

• Elastic potential energy

$$E_{pe} = \frac{1}{2} k (\Delta l)^2 = \frac{1}{2} k x^2$$

e.g. (on the adjacent figure)

k: spring constant (or stiffness) expressed in N/m (SI)

Torsion Potential energy

$$E_{pt} = \frac{1}{2} C(\theta)^2$$

C: is the torsion constant of the wire is in Nm/rad (SI)

Analogy		
Spring	Torsion wire	
k : spring constant	C: torsion constant	
T = -kx	$M = -C\theta$	
$E_{Pe} = \frac{1}{2}kx^2$	$E_{Pt} = \frac{1}{2}C\theta^2$	

- Variation of E_{pg} $\Delta E_{pg} = m g (h_f - h_i)$ $= -W_{m\vec{g}}$
- Note 4

- 3. Mechanical Energy: is the sum of the kinetic energy and potential energy of a system $E_m = E_k + E_{pg} + E_{pe}$
 - Conservation of mechanical energy: If no non conservative forces acting on the system: $E_m = constant$ and $\Delta E_m = 0$ so $E_{mi} = E_{mf}$
 - Non conservation of mechanical energy: If non conservative forces exist $\Delta E_m = \sum W_{\vec{F}_{(non-conservative\ forces)}}$
 - Non conservative forces: friction, traction, push...
 - Conservative forces: weight, normal, tension of spring.
- 4. Total Energy $E_t = E_m + U$

Page 3 of 3

 $W_{F(non-conservative forces)} \neq 0$ $\Rightarrow E_m \neq const.$ $|\Delta E_m| = |E_{mf} - E_{ml}|$ This is the amount of energy gained by the system in the form of E_m or lost in thermal form.

Note 5

Energy-isolated system: $E_t = E_m + U = constant$ $\Rightarrow \Delta E_m = -\Delta U$ (e.g.: the system [(S), Earth, atmosphere].

In addition, if $\Delta U=0$ then $\Delta E_m=0$ therefore $E_m=E_K+E_P=$ constant As a result, $\Delta E_K=-\Delta E_P$

Note <u>6</u>