

0.002 0.02 193 248 266 355 Wavelength (nm) Chemical Dependencies Photo-chemical parameter 2 Spectral ☐ Material Absorption ☐ Gas Absorption Photo-chemical parameter 1 ß 0 6 5 20 (Arbitrary Units) Absoption Properties PhbtoChemical Ablation Model 0.73 0.09 0.07 0.30 0.10 0.13 Material Parameters 0.13 0.09 0.07 0.07 350,68 -0.34 0.30 0.27 2.10 1.86 0.148 5.19 1.90 1.74 1.73 1.73 စ္တ 8 0.1 The first part of the second part of the first Amplitude (s & p) Reflectivity Component Angle of Incidence (Degrees) Reflectivity Absorption Coefficient Reflectivity Material Threshold Refractive Index (micron-1) (s & p) (mJ/cm2) Material Total Material Section (x 10) 0.0000675 Molecular 0.00675 762.75 810.00 Cross 20 cm) 67.50 0.07 Inc., 0 0 0 0 0 29 UV/Tech Systems Partial Pressure Increment Gas Parameters (Torr) 0 0 0 0 0 0 0 0 0 0 Starting Partial Pressure (Torr) 200 499 499 500 200 200 499 499 0 0 0 3 0 Optical Path Through Gas (cm) (Oxygen) Pressure Reactive Gas 1 (Ozone) Gas 2 Total Gases other とな C AZ 2400 Oxygen Pulse Fluence Ozone + Case Definition Photo Resist 266 188 3 Navelength (nm) Fluence Increment (mJ/cm2) Base Fluence Value (mJ/cm2) Removed Material Reactive Gases Laser

Elliott et al. PREDICTIVE ALGORITHMIC MODEL UV-103J

Bruce E. Kamerer, Reg. No. 36,181

Applicant: Title: Docket No.: Attorney: Page 2 of 4

2 6. 2

0.020 (TO AT) = '280' , grerin 0.010 \$85,0,041,885,04,088 000.0 0,040 0.030 Material Absorbtion 0.020 **7) UJ.** 0.00 000.0 00:09 00.0₽ H4-9Y4-E-V4 20.00 00.0 10.00 Of - 1)*(AA + DAA - 14) = TDAA **00.2** (G10D + G20D)-00.0 00.8 00.8 (vintoeller) soenug) (EAR - FI) = 9FI 007₽ 2.00 10.00 00.00 01 - 1)*17= DA7 **6**.00 (e10D+e50D) 00.0 4.00E-03 (UO) 092 SUM 1772) 2.00E-03 (voltages court (ross searon), cs. (csp raudu) 0.00E+00 00,0001 00.003 G2P = (Total Pressure) - G1P **00.**Q 01.0 (LICY 002', SPEE YZZ) 20.0 (Algues (de-1) 11 5 (notes), seon.) Teno.) s'obseçon/ 00.0 02.0 + (Row Number - 1)*(Pressure Increment) 01.0 G1P = (G1 Starting Partial Pressure) 00.00 09 07 (Row Number-1)*(Fluence Increment) FI = (Base Fluence) + 07 Row Mumber Bruce E. Kamerer, Reg. No. 36,181 Воскее Ио. Астоглеу: UV-103J LEEDICLIAE VICOBILHWIC MODEL Elliott et al Applicant: Title:

BE = 100

bb + b = fb

01.0

20.0

00.00

050.0

48

47

4

M

28

30

e V 090.0

0,040

000.0 020.0

Total Material Removal microns

Ablation Depth Per Pulse

Total Fluence Absorbed in Gas

absorbed by

Gas 2 Partial

Gas1 Partial Pressure microns

(mJ/cm2)

(mJ/cm2)

Torr

Applicant: Elliott et al.
Title: PREDICTIVE ALGORITHMIC MODEL
Docket No.: UV-103J
Attorney: Page 4 of 4

													Pag	e 4 o	f 4															
7-6																										The second secon				
100	/	8155		Total Material	Removal	1.367	1.304	1.241	1.178	1.116	1.054	0.992	0.930	0.868	0.806	0.744	0.682	0.619	0.556	0.491	0.424	0.353	0.274	200	2000					
44									10	4,2,4				in the second							(8.		6		_					The state of the s
42	_	microns	Ablation	Depth Per	Pulse	0.439	0.434	0.428	0.422	0.416	0.409	0,401	0.393	0.385	0.375	0.365	0.353	0.340	0.324	0.306	0.284	0.256	0.216	0.148	0.000	200				
																			. nt.						5.					
	,	(mJ/cm2)	Total Fluence	Absorbed in	Gas	85.99	81.47	76.95	72.44	67.92	63.40	58.88	54.36	49.85	45.33	40.81	36.29	31.78	27.26	22.74	18.22	13.70	9.19	4.67	0.15					
	,			では、																										
	1	(mJ/cm2)	Incident	absorbed by	gas	90.78	86.01	81.24	76.47	71.70	66.93	62.16	57.39	52.62	47.85	43.08	38.31	33.55	28.78	24.01	19.24	14.47	9.70	4.93	0 16					
m							3,40,000	2. A	100000000000000000000000000000000000000	100	1.000						1		10.00			1000								
20 30	-	(Torr)		Gas 2 Dartial	Pressure	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00	499.00					
100	/							*		HOUSE I													0							
24	/	critical (Torr)		Gas1	1			;										i			1.00	1	1.00	1.00	1.00					
	193 nm				- to			3 34 5	3.68		15		13			2.2		200	24					2	1					

F16, 4