A categorical approach to synthetic chemistry

Leo Lobski joint work with Fabio Zanasi (UCL) and Ella Gale (Bristol)

University College London, UK

International Colloquium on Theoretical Aspects of Computing 8 December 2023, Lima, Peru

Outline

Retrosynthetic analysis

Disconnection rules

Reactions

Retrosynthesis, formalised

Layered props

(1) Start with the target molecule(s)

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons

$$(1) \qquad (2) \qquad 0 \qquad Ph \qquad Ph \qquad 0 \qquad Ph \qquad 0$$

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons
- (3) Search for synthetic equivalents

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons
- (3) Search for synthetic equivalents
- (4) Search for a reaction whose reactants contain the synthetic equivalents, and whose products contain the target

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons
- (3) Search for synthetic equivalents
- (4) Search for a reaction whose reactants contain the synthetic equivalents, and whose products contain the target
- (5) Check whether the synthetic equivalents are known molecules: if yes, terminate, if no, return to (1) taking them as the target

Reactions

Reactions are graph rewrites generated using reaction schemes:

Reactions

Reactions are graph rewrites generated using reaction schemes:

by finding a matching for the left-hand side in a larger entity:

There are the following functors:

between categories of matchings, disconnection rules and reactions,

There are the following functors:

between categories of matchings, disconnection rules and reactions, all parameterised by the environmental molecules (solvent, catalyst, reagent). This is represented by a finite set of molecules M.

This allows for the following definition of a retrosynthetic step:

	M-Dis	С	M-Disc		
Ø-Disc ·	4 [> _D M-Match	\triangleleft_D \triangleright	→ R M- React	
T	S	m	E	T	
a		III .		В	

This allows for the following definition of a retrosynthetic step:

1	M-Dis	C	M-Disc		
Ø-Disc •		D M-Match	\triangleleft_D \triangleright	◄ R M-React	
T	S	m	E	T	
a				В	

Definition (Retrosynthetic sequence)

A retrosynthetic sequence for a target molecular entity T is a sequence of morphisms $r_1 \in M_1$ -React $(E_1, T + B_0)$,

 $r_2 \in M_2$ -React $(E_2, E_1 + B_1), \ldots,$

 $r_n \in M_1$ -React $(E_n, E_{n-1} + B_{n-1})$ such that the domain of r_i is a connected subgraph of the codomain of r_{i+1} :

Let T be some fixed molecular entity. We initialise by setting i = 0 and $E_0 := T$.

- 1. Choose a subset \mathcal{D} of disconnection rules,
- 2. Provide at least one of the following:
 - (a) a finite set of reaction schemes S,
 - (b) a function \mathfrak{F} from molecular graphs to finite sets of molecular graphs,
- 3. Search for a retrosynthetic step with $d \in \varnothing$ -**Disc** (E_i, S) , $m \in M$ -**Match**(S, E), and $r \in M$ -**React** $(E, E_i + B_i)$ such that all disconnection rules in d and D(m) are in \mathcal{D} , and we have at least one of the following:
 - (a) there is an $s \in \mathcal{S}$ such that the reaction r is an instance of s,
 - (b) $E_i + B_i \in \mathfrak{F}(E)$;

if successful, set $E_{i+1} := E$, $M_{i+1} := M$, $r_{i+1} := r$ and proceed to Step 4; if unsuccessful, stop,

 Check if the molecular entities in E_{i+1} are known (commercially available): if yes, terminate; if no, increment i → i + 1 and return to Step 1.

► Gave precise definitions of retrosynthetic steps and sequences

- ► Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms

- Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms
- Wrote down the retrosynthetic disconnection rules

- Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms
- Wrote down the retrosynthetic disconnection rules

- Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms
- Wrote down the retrosynthetic disconnection rules

Future work:

Wish to model the retrosynthetic steps and full retrosynthesis

- Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms
- Wrote down the retrosynthetic disconnection rules

- Wish to model the retrosynthetic steps and full retrosynthesis
- Prove that all reactions arise from the (dis)connection rules

- Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms
- Wrote down the retrosynthetic disconnection rules

- Wish to model the retrosynthetic steps and full retrosynthesis
- Prove that all reactions arise from the (dis)connection rules
- Encode existing retrosynthesis algorithms within framework

- Gave precise definitions of retrosynthetic steps and sequences
- Described how to model retrosynthetic algorithms
- Wrote down the retrosynthetic disconnection rules

- Wish to model the retrosynthetic steps and full retrosynthesis
- Prove that all reactions arise from the (dis)connection rules
- Encode existing retrosynthesis algorithms within framework
- ► Suggest features for new algorithms: e.g. chirality, reaction environment, protection-deprotection steps

References

- Andersen, Flamm, Merkle, Stadler. An intermediate level of abstraction for computational systems chemistry. Philosophical Transactions of the Royal Society A. 2017.
- ► Clayden, Greeves, Warren. *Organic chemistry*. Oxford University Press. 2012.
- Lobski, Zanasi. String diagrams for layered explanations. Applied Category Theory. 2022.
- Sun, Sahinidis. Computer-aided retrosynthetic design: fundamentals, tools, and outlook. Current Opinion in Chemical Engineering. 2022.
- Warren, Wyatt. Organic synthesis: the disconnection approach. Wiley. 2008.

Thank you for your attention!

Layers of abstraction

Image source: Openclipart

Layered props

Definition

A *layered signature* is a functor $\Omega: P \to \mathbf{StrMon}$ from a poset P which does not send non-isomorphic objects to isomorphic objects.

Layered props

Definition

A *layered signature* is a functor $\Omega: P \to \mathbf{StrMon}$ from a poset P which does not send non-isomorphic objects to isomorphic objects.

Definition

A layered prop generated by Ω is a 2-category whose 0-cells are lists $(\omega_1, a_1; \ldots; \omega_n, a_n)$ of pairs (ω, a) , where $\omega \in P$ and $a \in \Omega(\omega)$,

Layered props

Definition

A layered signature is a functor $\Omega: P \to \mathbf{StrMon}$ from a poset P which does not send non-isomorphic objects to isomorphic objects.

Definition

A layered prop generated by Ω is a 2-category whose 0-cells are lists $(\omega_1, a_1; \ldots; \omega_n, a_n)$ of pairs (ω, a) , where $\omega \in P$ and $a \in \Omega(\omega)$, and whose 1-cells are generated by the procedure below:

Layered props: 1-cells

$$\frac{\omega \leq \tau \quad \alpha \in \Omega(\omega) \quad \Omega(\omega \leq \tau) = f}{\omega \quad \frac{\sigma}{\alpha \quad f\alpha} \quad \tau : (\omega, \alpha \mid \tau, f\alpha)} \qquad \frac{\omega \leq \tau \quad \alpha \in \Omega(\omega) \quad \Omega(\omega \leq \tau) = f}{\tau \quad \frac{\sigma}{\alpha \quad \alpha} \quad \omega : (\tau, f\alpha \mid \omega, \alpha)} \qquad \frac{\alpha, \beta \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha \quad \frac{\sigma}{\alpha} \quad \omega : (\omega, \alpha \mid \omega, \beta)}$$

$$\frac{\alpha \in \Omega(\omega) \quad \beta \in \Omega(\tau)}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \beta \in \Omega(\tau)}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \sigma : \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \alpha \in \Omega(\omega) \quad \alpha \to \beta}{\omega \quad \alpha} \qquad \frac{\sigma \in \Omega(\omega) \quad \alpha \to \alpha}{\omega} \qquad \frac{\sigma \to \alpha}{\omega}$$

Layered props: 2-cells

Figure 2: 2-cells of a layered prop expressing functoriality of refinement, coarsening, pants and copants.

Figure 3: 2-cells of a layered prop that exhibit pants-copants and refinement-coarsening as two adjoint pairs.

Layered props: 2-cells

Figure 4: 2-cells of a layered prop that are motivated by monoidal categories and functors.