

第二章 数学基础

税蝉 计算机科学与技术学院

提纲

2.1 计算复杂性函数的阶 2.2 递归方程

2.1 计算复杂性函数的阶

- 2.1.1 同阶函数集合
- 2.1.2 低阶函数集合
- 2.1.3 高阶函数集合
- 2.1.4 严格低阶函数集合
- 2.1.5 严格高阶函数集合
- 2.1.6 函数阶的性质

2.1.1 同阶函数集合

定义2.1.1 (同阶函数集合) $\theta(f(n)) = \{g(n) \mid \exists c_1, c_2 > 0, n_0, \forall n > n_0, c_1 f(n) \le g(n) \le c_2 f(n) \}$ 称为与f(n) 同阶的函数集合。

- 若 $g(n) \in \Theta(f(n))$, 则称g(n) = f(n)同阶
- $g(n) \in \Theta(f(n))$ 常记为 $g(n) = \Theta(f(n))$
- f(n)是极限非负的,否则 $\Theta(f(n))$ 定义为空集 即:f(n)在n充分大之后必取非负值

Example

例1 证明: $f(n)=an^2+bn+c=\Theta(n^2)$

(a > 0)

证明: 令 c_1 =a/4, c_2 =7a/4, n_0 = $2 \cdot \max\{|b|/a, \sqrt{|c|/a}\}$ 则, $n > n_0$ 后有 $c_1 n^2 \le a n^2 + b n + c \le c_2 n^2$

 $an^2 + bn + c \le c_2 n^2$

 $\Leftrightarrow an^2 + bn + c \le an^2 + (a/2)n^2 + (a/4)n^2$

 $\Leftrightarrow 0 \le an/2[n-2b/a] + (a/4)(n^2-4c/a)$

 $an^2+bn+c \geq c_1n^2$

 $\Leftrightarrow an^2 + bn + c \ge (a/4)n^2$

 $\Leftrightarrow an/2[n+2b/a]+(a/4)(n^2+4c/a) \ge 0$

Example

例2 证明: $6n^3 \neq \Theta(n^2)$

反证. 如果存在 $c_1,c_2>0$, n_0 使得当 $n\geq n_0$ 时,有 $c_1n^2\leq 6n^3\leq c_2n^2$ 于是,当 $n>c_2/6$ 时,必有 $n\leq c_2/6$

这与n的取值范围矛盾。

Example

例4 对于任意常数c>0有 $c=\Theta(n^0)=\Theta(1)$

取
$$c_1$$
= $c/2$, c_2 = $3c/2$, n_0 = 1 , 则 $n>n_0$ 后有 $c_1n^0 \le c \le c_2n^0$

2.1.2 低阶函数集合

定义2.1.2 (低阶函数集) $O(f(n))=\{g(n) \mid \exists c>0, n_0, n_0\}$ $\forall n > n_0 \neq 0 \leq g(n) \leq cf(n)$ 称为比f(n)低阶的函数集合

- 若 $g(n) \in O(f(n))$,则称f(n)是g(n)的上界
- $g(n) \in O(f(n))$ 常记为 g(n) = O(f(n))

Example

例1 $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$ $\Theta(g(n)) \subseteq O(g(n))$

例 2 证明: n=O(n²)

证明: 令c=1,n₀=1, 则 $n \ge n_0$ 后,恒有 $0 \le n \le cn^2$

2.1.3 高阶函数集合

定义2.1.3 (高阶函数集) $\Omega(f(n)) = \{g(n) \mid \exists c > 0, n_0, \}$ $\forall n > n_0 \neq 0 \le cf(n) \le g(n)$ 称为比f(n)高阶的函数集合

- 若 $g(n) \in \Omega(f(n))$, 则称f(n)是g(n)的下界
- $g(n) \in \Omega(f(n))$ 常记为 $g(n) = \Omega(f(n))$

定理2.1 f(n)= $\Theta(g(n)) \Leftrightarrow f(n)$ =O(g(n))且f(n)= $\Omega(g(n))$ 证明: ⇒. 由 $f(n)=\Theta(g(n))$ 知, $\exists c_1,c_2\geq 0,n_0\geq 0, \exists n\geq n_0$ 时 $c_1g(n) \le f(n) \le c_2g(n)$ 易知 $\overline{f(n)}=O(g(n))$ 且 $f(n)=\Omega(g(n))$ \Leftarrow . 由f(n)= $\Omega(g(n))$ 知,∃ $c_1 > 0, n_1 > 0,$ 当 $n \ge n_1$ 时 $c_1g(n) \le f(\overline{n})$ 由f(n)=O(g(n))知,日 $c_2>0,n_2>0,$ 当 $n\geq n_2$ 时 $f(n) \le c_2 g(n)$ 取 $n_0 = \max\{n_1, n_2\} > 0$, 当 $n \ge n_0$ 时 $c_1g(n) \le f(n) \le c_2g(n)$

即: $f(n)=\Theta(g(n))$

• $g(n) \in o(f(n))$ 常记为 g(n) = o(f(n))

例1 证明: $2n = o(n^2)$

证 明: 对 $\forall c>0$, 欲使 $2n< cn^2$ 必有2/c< n于是, $\forall c>0$, 取 $n_0=2/c$, 当 $n\geq n_0$ 必有 $2n< n^2$

例2 证明: $2n^2 \neq o(n^2)$

证明: 当c=1时,对 $\forall n_0$, $2n < cn^2$ 在 $n \ge n_0$ 都不成立

命题2.1. $f(n)=o(g(n)) \Leftrightarrow \lim_{n\to\infty} \frac{f(n)}{g(n)}=0$

证明: f(n)=o(g(n))

⇔ $\forall c>0$, $\exists n_0$, 使得 $0\leq g(n)< cf(n)$ 对 $n\geq n_0$ 恒成立

⇔ $\forall c$ >0, $\exists n_0$, 使得 0≤ $\frac{f(n)}{g(n)}$ <c对n≥ n_0 恒成立

 $\Leftrightarrow \lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \quad \underline{H}f(n) \ge 0, g(n) > 0$

2.1.5 严格高阶函数集合

定义2.1.4 (严格高阶函数集) $\omega(f(n))=\{g(n)|\forall c>0, \exists n_0, 0\leq cf(n)\leq g(n)\}$ 和 $\geq n_0$ 恒成立} 称为f(n)的严格高阶函数集合

 $\forall c > 0$, $\exists n_0$, $0 \le cf(n) \le g(n)$ 对 $n \ge n_0$ 恒成立

⇔ $\forall c > 0$, $\exists n_0$, $0 \le f(n) < (1/c)g(n)$ 对 $n \ge n_0$ 恒成立

⇔ $\forall c > 0$, $\exists n_0$, $0 \le f(n) < cg(n)$ 对 $n \ge n_0$ 恒成立

命题2.2 $g(n)=\omega(f(n)) \Leftrightarrow f(n)=o(g(n))$

命题2.3. $g(n)=\omega(f(n)) \Leftrightarrow \lim_{n\to\infty} \frac{g(n)}{f(n)}=\infty$

Example

例1 证明: $n^2/2 = \omega(n)$

证明: $\lim_{n\to\infty} \frac{n^2/2}{n} = \infty$

例2 证明: $n^2/2 \neq \omega(n^2)$

证明: $\lim_{n\to\infty} \frac{n^2/2}{n^2} \neq \infty$

2.1.6 函数阶的性质

• 传递性

$$-f(n) = \mathcal{O}(g(n)) \land g(n) = \mathcal{O}(h(n)) \Rightarrow f(n) = \mathcal{O}(h(n))$$

$$-f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$-f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$$

$$-f(n) = o(g(n)) \land g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$$

$$-f(n) = \omega(g(n)) \land g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$$

2.1.6 函数阶的性质(续)

・自反性

$$-f(n)=\mathcal{O}(f(n))$$

$$-f(n)=O(f(n))$$

$$-f(n)=\Omega(f(n))$$

• 对称性

$$-f(n) = \mathcal{O}(g(n)) \iff g(n) = \mathcal{O}(f(n))$$

• 反对称性

$$- f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

$$- f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

注意

*并非所有函数都是可比的,即对于函数 f(n) 和 g(n),可能 $f(n) \neq O(g(n)), f(n) \neq \Omega(g(n))$. 例如, n和 $n^{1+\sin n}$.

2.2 标准符号和通用函数

- •Flour ceiling
- 多项式

2.2.1 Flour receiling

定义2.2.1(Flours和ceiling). |x|表示小于或等于x的最大整数. $\lceil x \rceil$ 表示大于等于 x 的最小整数.

命题 2.2.1
$$x-1 < |x| \le x \le \lceil x \rceil < x+1$$

命题 2.2.2 对于任意 整数 n, [n/2]+|n/2|=n

证. 若
$$n = 2k$$
 , 则 $\left[\frac{n}{2}\right] = k$, $\lfloor n/2 \rfloor = k$. 于是 $\left[\frac{n}{2}\right] + \lfloor n/2 \rfloor = 2k = n$ 若 $n = 2k + 1$,则 $\left[\frac{n}{2}\right] + \lfloor n/2 \rfloor = k + 1 + k = 2k + 1 = n$.

命题 2.2.3 设 n、a、b是任意整数, $a \neq 0, b \neq 0$,则

- (1) $\lceil n/a \rceil/b \rceil = \lceil n/ab \rceil$
- (2) | | n/a |/b | = | n/ab |

(2) 类似于(1)的证法。

2.2.2 和或的估计与界限

1. 线性和

命题 2.4.5
$$\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
 命题 2.4.6
$$\sum_{k=1}^{n} \theta(f(k)) = \theta \left(\sum_{k=1}^{n} f(k) \right)$$

证. 对
$$n$$
 用数学归纳法证明。
当 $n = 1$ 时, $\theta(f(1)) = \theta(f(1))$ 显然成立。 假设 $n \le m$ 时成立。
令 $n = m + 1$,则 $\sum_{k=1}^{m+1} \theta(f(k)) = \sum_{k=1}^{m} \theta(f(k)) + \theta(f(m+1))$
 $= \theta\left(\sum_{k=1}^{m} f(k)\right) + \theta(f(m+1))$
 $= \theta\left(\sum_{k=1}^{m} f(k) + f(m+1)\right)$
 $= \theta\left(\sum_{k=1}^{m+1} f(k)\right)$ 。

2.2 递归方程

- 递归方程: 根据其在较小的输入值上的取值递 归地描述一个函数的方程或不等式
- 递归方程例: Merge-sort算法的复杂性方程

 $T(n) = \theta(1)$

if n = 1

 $T(n)=2T(n/2)+\theta(n) \quad if \ n>1.$

T(n)的解是 $\theta(n\log n)$

求解递归方程的三个主要方法

- 迭代方法:
 - 把方程转化为一个和式
 - 然后用估计和的方法来求解
- 替换方法:
 - 先猜测方程的解,
 - 然后用数学归纳法证明.
- · Master方法:
 - 求解型为T(n) = aT(n/b) + f(n)的递归方程

2.2.1 送代方法

方法:

循环地展开递归方程, 把递归方程转化为和式, 然后可使用求和技术解之

例1.T(n)=2T(n/2)+cn

 $=2^{2}T(n/2^{2})+cn+cn$

 $=2^{3}T(n/2^{3})+cn+cn+cn$

=...

 $=2^kT(n/2^k)+knc$

 $=2^{k}T(1)+knc$

 $n=2^k$

=nT(1)+cn log n

 $=\Theta(n\log n)$

$$T(n) = n + 3T \left(\frac{n}{4} \right)$$

$$= n + 3 \left(\frac{n}{4} \right) + 3T \left(\frac{n}{16} \right)$$

$$= n + 3 \left(\frac{n}{4} \right) + 3 \left(\frac{n}{16} \right) + 3T \left(\frac{n}{64} \right)$$

$$= n + 3 \left(\frac{n}{4} \right) + 9 \left(\frac{n}{16} \right) + 27T \left(\frac{n}{64} \right)$$

$$= n + 3 \left(\frac{n}{4} \right) + 3^{2} \left(\frac{n}{4^{2}} \right) + 3^{3} \left(\frac{n}{4^{3}} \right) + \dots + 3^{i} T \left(\frac{n}{4^{i}} \right)$$

$$= n + 3 \left(\frac{n}{4} \right) + 3^{2} \left(\frac{n}{4^{2}} \right) + 3^{3} \left(\frac{n}{4^{3}} \right) + \dots + 3^{\log_{4} n} T \left(\frac{1}{1} \right)$$

$$\leq \sum_{i=0}^{\log_{4} n} 3^{i} \frac{n}{4^{i}} + O(n) \leq n \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^{i} = n \times \frac{1}{1 - \frac{3}{4}} = 4n = O(n)$$

2.2.2 替换法

方法:

- 1. 变量代换, 将方程转换成已知方程
- 2. 先根据方程的形式猜测解 然后用数学归纳法证明

变量代换

例1. T(n)=2T(n/2+17)+n

 $\diamondsuit n=m+34$,则

T(m+34)=2T(m/2+34)+m+34令T(m+34)=S(m),则

S(m)=2S(m/2)+m+34

 $S(m) = \Theta(m \log m)$

 $T(n) = \Theta(n \log n)$

例2. $T(n)=2T(n^{1/2})+\log n$

 $\diamondsuit n = 2^m, 则$

 $T(2^m)=2T(2^{m/2})+m$ $\diamondsuit T(2^m)=S(m)$,则

S(m)=2S(m/2)+m

 $S(m) = \Theta(m \log m)$

 $T(n) = \Theta(\log n \log \log n)$

先猜后证

例. T(n)=2T(n/2+17)+n

由于 n/2 与n/2+17 在n充分大之后相近 故猜T(n/2)≈T(n/2+17) 在n充分大后成立

 $T(n) \approx 2T(n/2) + n$

故原始方程的解 $T(n)=\Theta(n\log n)$ 再用数学归纳法证明

猜测方法 I:

猜测上下界,减少不确定性范围

例 3. 求解 $T(n) = 2T\left(\frac{n}{2}\right) + n$.

解: 首先证明 $T(n) = \Omega(n)$, $T(n) = O(n^2)$

然后逐阶地降低上界、提高下界。

 $\Omega(n)$ 的上一个阶是 $\Omega(n\log n)$,

 $0(n^2)$ 的下一个阶是 $0(n\log n)$ 。

细微差别的处理

- 问题:猜测正确,数学归纳法的归纳步 似乎证不出来
- •解决方法:从猜测结论中减去一个低阶项, 可能方法就能用了

例 **4**. 求解 $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil \frac{n}{2} \rceil) + 1$

解: (1) 我们猜T(n) = O(n)

i. $T(n) \le c |n/2| + c [n/2] + 1 = cn + 1 \ne cn$ 证不出 T(n) = O(cn)

(2) 减去一个低阶项, 猜 $T(n) \le cn - b$, $b \ge 0$ 是常数

证:设当≤n-1时成立

$$T(n) = T\left(\left\lfloor n/2 \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 \le c\left\lfloor \frac{n}{2} \right\rfloor - b + c\left\lceil \frac{n}{2} \right\rceil - b + 1$$

 $=cn-2b+1=cn-b-b+1 \le cn-b$ (只要 $b \ge 1$)。 *c必须充分大,以满足边界条件。

避免陷阱

例 5. 求解 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ 。

解: 猜T(n) = O(n)

证:用数学归纳法证明 $T(n) \le cn$ 。 --错!! $T(n) \le 2(c \lfloor n/2 \rfloor) + n \le cn + n = O(n)$

措在那里: 过早地使用了O(n)而陷入了陷阱应该在证明 了 $T(n) \le cn$ 才可用。从 $T(n) \le cn + n$ 不可能得

到 T(n) ≤ cn 因为对于任何 c>0,我们都得不

到 $cn + n \le cn$.

2.2.3 Master method

目的: 求解 T(n) = aT(n/b) + f(n) 型方程, $a \ge 1, b > 0$ 是常数, f(n) 是正函数

方法:记住三种情况,则不用笔纸即可求解上述方程。

Master 定理

定理 **2.4.1** 设 $a \ge 1$ 和b > 1是常数,f(n)是一个函数,T(n)是定义在非负整数集上的函数 $T(n) = aT(\frac{n}{b}) + f(n)$. T(n)可以如下求解:

- (1). 若 $f(n) = O(n^{\log_b a \varepsilon})$, $\varepsilon > 0$ 是常数,则 $T(n) = \theta(n^{\log_b a})$.
- (2). 若 $f(n) = \theta(n^{\log_b a})$, 则 $T(n) = \theta(n^{\log_b a} \lg n)$.
- (3). 若 $f(n) = \Omega(n^{\log_8 a + \varepsilon})$, $\varepsilon > 0$ 是常数,且对于所有充分大的 \mathbf{n} $af(n/\epsilon) \le cf(n)$, $\mathbf{C} < 1$ 是常数,则 $T(n) = \theta(f(n))$.

*直观地:我们用 f(n) 与 $n^{\log_{p^a}}$ 比较

(1). 若 $n^{\log_{p^a}}$ 大,则 $T(n) = \theta(n^{\log_{p^a}})$ (2). 若 f(n) 大,则 $T(n) = \theta(f(n))$ (3). 若 f(n) 与 $n^{\log_{p^a}}$ 同阶,则 $T(n) = \theta(n^{\log_{p^a}} \lg n) = \theta(f(n) \lg n)$. $T(n) = \theta(n^{\log_{p^a}})$ $T(n) = \theta(f(n))$ $T(n) = \theta(f(n))$ 对于红色部分,Master定理无能为力

更进一步:

- (1). 在第一种情况, f(n) 不仅小于 $n^{\log_{p^a}}$, 必须多项式地小于,即对于一个常数 $\varepsilon > 0$, $f(n) = O(\frac{n^{\log_{p^a}}}{v^\varepsilon})$.
- (2). 在第三种情况, f(n) 不仅大于 $n^{\log_8 a}$, 必须多项式地大于,即对一个常数 $\varepsilon > 0$, $f(n) = \Omega(n^{\log_8 a} \cdot n^{\varepsilon})$.

Master定理的使用

例 **1**.求解 $T(n) = 9T(\frac{n}{3}) + n$.

解: a = 9, b = 3, f(n) = n, $n^{\log_b a} = \theta(n^2)$

 $\therefore f(n) = n = O(n^{\log_{h^a} - \varepsilon}), \quad \varepsilon = 1$

 $\therefore T(n) = \theta \left(n^{\log_{b^a}} \right) = \theta \left(n^2 \right)$

例 2. 求解 T(n) = T(2n/3) + 1.

解: a = 1, $b = (\frac{3}{2})$, f(n) = 1, $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$, $f(n) = 1 = \theta(1) = \theta(n^{\log_{b^a}}), \quad T(n) = \theta(n^{\log_{b^a}} \lg n) = \theta(\lg n)$

Master定理的使用(续)

例 3. 求解 $T(n) = 3T(n/4) + n \lg n$

##: a = 3, b = 4, $f(n) = n \lg n$, $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$

(1) $f(n) = n \lg n \ge n = n^{\log_b a + \varepsilon}$, $\varepsilon \approx 0.2$

(2) 对所有 n, $af(n/b) = 3 \times \frac{n}{4} \lg \frac{n}{4} = \frac{3}{4} n \lg \frac{n}{4} \le \frac{3}{4} n \lg n = cf(n)$, $c = \frac{3}{4}$ 于是, $T(n) = \theta(f(n)) = \theta(n \lg n)$

例 **4**. 求解 $T(n) = 2T(n/2) + n \lg n$.

解: a=2, b=2, $f(n)=n\lg n$, $n^{\log_b a}=n$. $f(n)=n\lg n$ 大于 $n^{\log_p a}=n$, 但 不是多项式**地**大于, **Master** 定理不**适**用于该T(n).