Presented to: Mohsen Farhadloo, Ph.D.

BSTA 450 – Statistical Models for Data Analysis

John Molson School of Business

Analysis of Global Warming

Presented By:

Alain Euksuzian 40070126

Executive Summary

The focus of the project will be on analyzing and understanding the causes of global warming.

To achieve said goal, explanatory variables such as Co2 emission, Transportation emission, total fossil fuel consumed by residential and commercial areas, renewable energy from residential and commercial areas, and the number of electric vehicles will be used to predict the average temperature in the United States.

Throughout the report, I will disprove the null hypothesis that global warming is sorely caused by commercial pollution. My report will show that other variables are more harmful to our environments, such as transportation emissions and CO2 emissions by the population.

My final report aligns with expert opinions, which expresses that the largest component of global warming is transportation (27%), as petroleum is the most popular compound used in cars, trucks, planes, etc.

Using various elimination methods (forward, stepwise, etc.), I will remove the least significant variables from the model and use the regression to predict the average temperature from a sample dataset.

Recommendation:

Hence, to mitigate the issue of global warming issue, an alternative should be discovered for transportation, energy production, and commercial use as they constitute the three largest shares of global warming.

Introduction

The subject chosen for my term project is the analysis of global warming in the United States. It has often been a popular topic during elections and has many contradicting views. As it is a topic that affects the world population, I will aim at understanding the subject using the statistical tools learned during this semester.

Throughout the project, I will rely on all explanatory variables mentioned to determine the average temperature per year as an accurate representation. Using the dataset and built models, I will predict sampled temperatures and compare them to expert predictions in my references. Due to the complexity of the topic and the variables used, the project will cover the United States rather than per state. Some of the variables were not available on a per-state basis, and some variables were published on a national level by the federal government.

Using various statistical tools available in SAS such as summary statistics, regression analysis and backward/forward selection, I will aim at answering if the chosen variables are statistically meaningful questions such as:

- Can the variables accurately predict future temperatures?
- Are the seven explanatory variables valid predictors for average temperature?
- Is the model a good fit? Which variables are best fitted in the model?
- Does the hypothesis: Global warming is caused sorely by commercial pollution, hold true?

Data Collection and Characterization

The datasets were collected from US government agencies such as the United States Energy Information Agency and the United States Environmental Protection Agency. The dependent variable will be the average annual temperature in the United States from 1960 to 2021.

Various explanatory variables will also be used such as:

- 1) Yearly CO2 Emission (measured in trillion BTU)
- 2) Transportation Emission (measured in trillion BTU)
- Total fossil fuel consumed by the residential area (Coal, natural gas, petroleum combined measured in trillion BTU)
- 4) Total fossil fuel consumed by the commercial area (coal, natural gas, petroleum combined measured in trillion BTU)
- 5) Total renewable energy consumed by the residential area (geothermal, solar, wood energy combined measured in trillion BTU)
- 6) Total renewable energy consumed by the commercial area (geothermal, solar, wood energy combined measured in trillion BTU)
- Electric vehicle sales per year to measure possible negative effect on greenhouse gas emission

Summary Statistics & Correlation Analysis

With the analysis above, we can confirm that the average temperature dataset appears to be normally distributed with a mean of 52.64, and a standard deviation of 1.04.

Using a line chart, we do see a consistent increase in the average

temperature in the last 60 years. Therefore, we can confirm that global warming is a real issue. Going forward, the purpose of the project will be to answer what variables are causing the increase in temperature.

Scatter Plot Analysis

Pearson Correlation Coefficients, N = 62 Prob > r under H0: Rho=0									
	Transportation_Emission	renewable_energy_commercial	total_fossil_fuel_residential	CO2 emission	electric_vehicule_sales	total_fossil_fuel_commercial	renewable_energy_residential		
Average_temperature	0.71527	0.69723	-0.64991	0.57357	0.38041	0.14421	0.07000		
	<.0001	<.0001	<.0001	<.0001	0.0023	0.2635	0.5888		

With Transportation emission, renewable energy at the commercial level, and CO2 emission all having a very small P-value (p = <0.001) and positive correlation, we can confirm that they all have a linear relationship with the dependant variable average temperature, at 5% alpha using:

Ho: p= 0

Ha: p = /= 0

p value <0001 = reject null, and linear relation between

Hence, we can confirm up to this point, that transportation emission is the strongest positively correlated with the output variable, meaning an increase in the explanatory variable would result in an increase in the output variable.

Statistical Analysis

For the upcoming part, I will conduct various statistical analyses on the dataset. The approach will be to first run a linear regression and obtain the regression equation for prediction purposes. Next, I will conduct a hypothesis analysis using an F-test to see if the model is a good fit. Lastly, I will conduct a forward selection, backward elimination, and stepwise regression to select the best-fitted variables.

	Line	ar F	Regress	sion Res	sults				
	The REG Procedure Model: Linear_Regression_Model Dependent Variable: Average_temperature								
				tions Read					
		Ana	lysis of	Variance					
9	Source	DF	Sum o	f Mean Square		e P	r > F		
	Model	7	49.5454			2 <.	0001		
	rror Corrected Total	54 61	17.2006	0.31853		+			
C	orrected Lotal	61	66.7461)					
	Root MSE			139 R-Squ		7423			
	Dependent I	Mean		177 Adj R	-Sq 0.	7089			
	Coeff Var		1.07	212					
		Par		stimates					
Variable				arameter Estimate	Stand		t Value	Dr s. ltl	
Intercept				60.50131	1.93			<.0001	
CO2 emission			1	-0.07475	0.04	183	-1.79	0.0795	
Transportation_Emission			1	0.00278	0.00			0.0143	
total_fossil_fuel_residential			1	-0.00146				<.0001	
total_fossil_fuel_commercial				00083837				0.0400	
	energy_residenti		1	-0.00290	0.00066			<.0001	
electric veh	energy_commen	cial	1 1 0	-0.00577 00000313	0.0000			0.0434	
eleculc_vell	icuie_aulea		1 0.	00000313	0.00000	102	1.00	0.0300	

The regression equation for the dataset using the parameter estimates would be:

Average temperature = 60.50 - 0.07*CO2 emission + 0.002*Transportation emission - 0.001* fossil fuel residential + 0.0008* fossil fuel commercial – 0.002* renewable energy residential – 0.005* renewable energy commercial + 0.000003* electric vehicle sales

F-test:

Ho: B0=B1=B2=B3=B4=B5=B6=B7

Ha: At least one B is not 0

Level of significance (alpha) = 5% or 0.05

If F-calculated > F-table score = reject Ho

Analysis of Variance								
Source Squares Square F Value Pr >								
Source	DF	Squares	Square	F Value	Pr > F			
Model	7	49.54546	7.07792	22.22	<.0001			
Error	54	17.20065	0.31853					
Corrected Total	61	66.74610						

Explanatory variables = 7

Sample size minus 2 = 60

Alpha = 0.05

f-table output = 2.1665

As F value of 22.22 > f calculated of 2.1665, we have enough evidence to reject Ho and conclude that the model is a good fit.

Forward Selection:

Variable	Parameter Estimate		Type II SS	F Value	Pr > F
Intercept	58.65411	1.72699	393.76153	1153.49	<.0001
CO2 emission	-0.10803	0.03457	3.33335	9.76	0.0028
Transportation_Emission	0.00365	0.00070308	9.18755	26.91	<.0001
total_fossil_fuel_residential	-0.00080397	0.00014601	10.35046	30.32	<.0001
renewable_energy_residential	-0.00179	0.00052461	3.97953	11.66	0.0012

Backward Elimination:

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	60.50131	1.93467	311.50711		
CO2 emission	-0.07475	0.04183	1.01726	3.19	0.0795
Transportation Emission	0.00278	0.00110	2.04176	6.41	0.0143
total fossil fuel residential	-0.00146	0.00030672	7.25649	22.78	<.0001
total fossil fuel commercial	0.00083837	0.00039828	1.41140	4.43	0.0400
renewable energy residential	-0.00290	0.00066901	5.96976	18.74	<.0001
renewable energy commercial	-0.00577	0.00279	1.36217	4.28	0.0434
electric vehicule sales	0.00000313	0.00000162	1.18931	3.73	0.0586

Stepwise Selection:

	Parameter				
Variable	Estimate	Error	Type II SS	F Value	Pr > F
Intercept	58.65411	1.72699	393.76153	1153.49	<.0001
CO2 emission	-0.10803	0.03457	3.33335	9.76	0.0028
Transportation_Emission	0.00365	0.00070308	9.18755	26.91	<.0001
total_fossil_fuel_residential	-0.00080397	0.00014601	10.35046	30.32	<.0001
renewable_energy_residential	-0.00179	0.00052461	3.97953	11.66	0.0012

We do find commonalities in the forward and stepwise selection, where CO2 emission, transportation emission, total fossil fuel residential and renewable energy residential were kept in the regression at 10% alpha. Backward elimination kept all 7 explanatory variables in the model.

Regression equation using forward and stepwise with the best set of variables:

Average Temperature = 58.65 - 0.108* CO2 emission + 0.003* transportation emission – 0.008* total fossil fuel residential – 0.001* renewable energy residential

Residual analysis:

Residual analysis attached with 20% prediction excel

Fossil fuel Commercial hypothesis:

Ho:
$$B=0$$
 Ha $B=/=0$ T-score $(0.025,60) = 0.679 < t$ -value 1.48.

We do not have enough evidence to reject Ho and conclude that Fossil fuel commercial is a contributing factor in global warming. But it is not the only factor as transportation, CO2 emission are also important variables

Sampling and predicting

Performing an 80-20 random sampling using SAS survey select with sample size of 50, and performing a regression analysis we obtain the output:

Parameter Estimates								
		Parameter	Standard					
Variable	DF	Estimate	Error	t Value	Pr > t			
Intercept	1	60.71571	2.93512	20.69	<.0001			
CO2 emission	1	-0.07236	0.05416	-1.34	0.1899			
Transportation_Emission	1	0.00245	0.00125	1.96	0.0573			
total_fossil_fuel_residential	1	-0.00142	0.00050987	-2.79	0.0083			
total_fossil_fuel_commercial	1	0.00077973	0.00052861	1.48	0.1489			
renewable_energy_residential	1	-0.00285	0.00113	-2.53	0.0159			
renewable_energy_commercial	1	-0.00425	0.00536	-0.79	0.4323			
electric_vehicule_sales	1	0.00000306	0.00000423	0.72	0.4734			

Regression equation:

Average temperature = 60.71571 – 0.07236*CO2 emission +0.00245* Transportation emission – 0.00142* fossil fuel residential + 0.00077973*fossil fuel commercial – 0.00285*renewable energy residential – 0.00425* renewable energy commercial + 0.00000306* electric vehicle sale Applying the linear regression to the remaining 20% sample, we can conclude that we are able to predict the average temperate using both sample and full dataset and stepwise/forward aproach

Regression prediction (80%)	forward&stepwise prediction	regression prediction (100% dataset)	Average Temperature from dataset
53.72517474	53.45086506	53.73524609	54.13
53.46847186	53.55240717	53.4761052	52.36
53.81577843	53.59236012	53.57406669	53.55
52.9211689	52.90829146	52.96667901	53.05
52.11565831	52.37129096	52.06876373	51.91
53.25899595	53.35369772	53.31912197	54.1
51.3055243	51.30416192	51.30978735	51.7
52.90384515	53.12161731	52.82099095	52.75
53.37831232	53.26169766	53.44348588	53.07
51.89388875	51.96459906	51.85445979	51.23
54.54516607	54.50919229	54.44774595	54.43
51.40689205	51.88907023	51.35646553	52.04
54.58493394	53.69983041	54.38417922	54.29
52.38750569	52.54752182	52.33884806	51.17
52.70955778	52.60631649	52.76898614	53.03
51.2688017	51.1977752	51.29380744	50.72
53.24446541	53.39377643	53.18395409	52.29
51.43233886	51.33570472	51.42717171	51.8
53.52523972	53.54850094	53.50467203	53.72
51.86602958	51.91929335	51.81546635	51.7

Conclusion

The original hypothesis that claimed pollution is mostly due to commercial pollution was proven to be false. Although commercial pollution plays a role in global warming, other variables were also shown to be larger factors in polluting, such as CO2 emission and transportation emission. Hence, the hypothesis test to confirm if our data model was a good fit was proven to be true. The analyses align with various expert opinions that transportation, electricity production, and commercial pollution are among the three largest causes.

References

Nordell, B. (2003). Thermal pollution causes global warming. Global and planetary change, 38(3-4), 305312.

Ritchie, H., & Roser, M. (2020). CO₂ and greenhouse gas emissions. Our world in data.