

- 1 -

*INSAI*

## POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

5

### Cross-Reference to Related Applications

The present application claims priority to related U.S. patent application Serial Nos. 60/102,748, filed 2 Oct. 1998; 60/139,650, filed 17 June 1999; and 60/123,810, filed 11 Mar. 1999, each of which is incorporated herein by reference.

10

### Field of the Invention

The present invention relates to polyketides and the polyketide synthase (PKS) enzymes that produce them. The invention also relates generally to genes encoding PKS enzymes and to recombinant host cells containing such genes and in which expression of such genes leads to the production of polyketides. The present invention also relates to compounds useful as medicaments having immunosuppressive and/or neurotrophic activity. Thus, the invention relates to the fields of chemistry, molecular biology, and agricultural, medical, and veterinary technology.

### Background of the Invention

20 Polyketides are a class of compounds synthesized from 2-carbon units through a series of condensations and subsequent modifications. Polyketides occur in many types of organisms, including fungi and mycelial bacteria, in particular, the actinomycetes. Polyketides are biologically active molecules with a wide variety of structures, and the class encompasses numerous compounds with diverse activities. Tetracycline, 25 erythromycin, epothilone, FK-506, FK-520, narbomycin, picromycin, rapamycin, spinocyn, and tylosin are examples of polyketides. Given the difficulty in producing polyketide compounds by traditional chemical methodology, and the typically low production of polyketides in wild-type cells, there has been considerable interest in finding improved or alternate means to produce polyketide compounds.

- 2 -

This interest has resulted in the cloning, analysis, and manipulation by recombinant DNA technology of genes that encode PKS enzymes. The resulting technology allows one to manipulate a known PKS gene cluster either to produce the polyketide synthesized by that PKS at higher levels than occur in nature or in hosts that otherwise do not produce the polyketide. The technology also allows one to produce molecules that are structurally related to, but distinct from, the polyketides produced from known PKS gene clusters. See, e.g., PCT publication Nos. WO 93/13663; 95/08548; 96/40968; 97/02358; 98/27203; and 98/49315; United States Patent Nos. 4,874,748; 5,063,155; 5,098,837; 5,149,639; 5,672,491; 5,712,146; 5,830,750; and 5,843,718; and 10 Fu *et al.*, 1994, *Biochemistry* 33: 9321-9326; McDaniel *et al.*, 1993, *Science* 262: 1546-1550; and Rohr, 1995, *Angew. Chem. Int. Ed. Engl.* 34(8): 881-888, each of which is incorporated herein by reference.

Polyketides are synthesized in nature by PKS enzymes. These enzymes, which are complexes of multiple large proteins, are similar to the synthases that catalyze condensation of 2-carbon units in the biosynthesis of fatty acids. PKSs catalyze the biosynthesis of polyketides through repeated, decarboxylative Claisen condensations between acylthioester building blocks. The building blocks used to form complex polyketides are typically acylthioesters, such as acetyl, butyryl, propionyl, malonyl, hydroxymalonyl, methylmalonyl, and ethylmalonyl CoA. Other building blocks include amino acid like acylthioesters. PKS enzymes that incorporate such building blocks include an activity that functions as an amino acid ligase (an AMP ligase) or as a non-ribosomal peptide synthetase (NRPS). Two major types of PKS enzymes are known; these differ in their composition and mode of synthesis of the polyketide synthesized. These two major types of PKS enzymes are commonly referred to as Type I or "modular" and Type II "iterative" PKS enzymes.

In the Type I or modular PKS enzyme group, a set of separate catalytic active sites (each active site is termed a "domain", and a set thereof is termed a "module") exists for each cycle of carbon chain elongation and modification in the polyketide synthesis pathway. The typical modular PKS is composed of several large polypeptides, which can be segregated from amino to carboxy termini into a loading module, multiple extender

- 3 -

modules, and a releasing (or thioesterase) domain. The PKS enzyme known as 6-deoxyerythronolide B synthase (DEBS) is a Type I PKS. In DEBS, there is a loading module, six extender modules, and a thioesterase (TE) domain. The loading module, six extender modules, and TE of DEBS are present on three separate proteins (designated 5 DEBS-1, DEBS-2, and DEBS-3, with two extender modules per protein). Each of the DEBS polypeptides is encoded by a separate open reading frame (ORF) or gene; these genes are known as *eryAII*, *eryAII*, and *eryAIII*. See Caffrey *et al.*, 1992, *FEBS Letters* 304: 205, and U.S. Patent No. 5,824,513, each of which is incorporated herein by reference.

10 Generally, the loading module is responsible for binding the first building block used to synthesize the polyketide and transferring it to the first extender module. The loading module of DEBS consists of an acyltransferase (AT) domain and an acyl carrier protein (ACP) domain. Another type of loading module utilizes an inactivated ketosynthase (KS) domain and AT and ACP domains. This inactivated KS is in some 15 instances called KS<sup>Q</sup>, where the superscript letter is the abbreviation for the amino acid, glutamine, that is present instead of the active site cysteine required for ketosynthase activity. In other PKS enzymes, including the FK-506 PKS, the loading module incorporates an unusual starter unit and is composed of a CoA ligase like activity domain. In any event, the loading module recognizes a particular acyl-CoA (usually acetyl or 20 propionyl but sometimes butyryl or other acyl-CoA) and transfers it as a thiol ester to the ACP of the loading module.

The AT on each of the extender modules recognizes a particular extender-CoA (malonyl or alpha-substituted malonyl, i.e., methylmalonyl, ethylmalonyl, and 2-hydroxymalonyl) and transfers it to the ACP of that extender module to form a thioester. 25 Each extender module is responsible for accepting a compound from a prior module, binding a building block, attaching the building block to the compound from the prior module, optionally performing one or more additional functions, and transferring the resulting compound to the next module.

Each extender module of a modular PKS contains a KS, AT, ACP, and zero, one, 30 two, or three domains that modify the beta-carbon of the growing polyketide chain. A

typical (non-loading) minimal Type I PKS extender module is exemplified by extender module three of DEBS, which contains a KS domain, an AT domain, and an ACP domain. These three domains are sufficient to activate a 2-carbon extender unit and attach it to the growing polyketide molecule. The next extender module, in turn, is responsible  
5 for attaching the next building block and transferring the growing compound to the next extender module until synthesis is complete.

Once the PKS is primed with acyl- and malonyl-ACPs, the acyl group of the loading module is transferred to form a thiol ester (trans-esterification) at the KS of the first extender module; at this stage, extender module one possesses an acyl-KS and a  
10 malonyl (or substituted malonyl) ACP. The acyl group derived from the loading module is then covalently attached to the alpha-carbon of the malonyl group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading building block (elongation or extension).

15 The polyketide chain, growing by two carbons each extender module, is sequentially passed as covalently bound thiol esters from extender module to extender module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the name polyketide arises. Most commonly, however, additional enzymatic  
20 activities modify the beta keto group of each two carbon unit just after it has been added to the growing polyketide chain but before it is transferred to the next module.

Thus, in addition to the minimal module containing KS, AT, and ACP domains necessary to form the carbon-carbon bond, and as noted above, other domains that modify the beta-carbonyl moiety can be present. Thus, modules may contain a  
25 ketoreductase (KR) domain that reduces the keto group to an alcohol. Modules may also contain a KR domain plus a dehydratase (DH) domain that dehydrates the alcohol to a double bond. Modules may also contain a KR domain, a DH domain, and an enoylreductase (ER) domain that converts the double bond product to a saturated single bond using the beta carbon as a methylene function. An extender module can also contain  
30 other enzymatic activities, such as, for example, a methylase or dimethylase activity.

- 5 -

After traversing the final extender module, the polyketide encounters a releasing domain that cleaves the polyketide from the PKS and typically cyclizes the polyketide. For example, final synthesis of 6-dEB is regulated by a TE domain located at the end of extender module six. In the synthesis of 6-dEB, the TE domain catalyzes cyclization of 5 the macrolide ring by formation of an ester linkage. In FK-506, FK-520, rapamycin, and similar polyketides, the TE activity is replaced by a RapP (for rapamycin) or RapP like activity that makes a linkage incorporating a pipecolate acid residue. The enzymatic activity that catalyzes this incorporation for the rapamycin enzyme is known as RapP, encoded by the *rapP* gene. The polyketide can be modified further by tailoring enzymes; 10 these enzymes add carbohydrate groups or methyl groups, or make other modifications, i.e., oxidation or reduction, on the polyketide core molecule. For example, 6-dEB is hydroxylated at C-6 and C-12 and glycosylated at C-3 and C-5 in the synthesis of erythromycin A.

In Type I PKS polypeptides, the order of catalytic domains is conserved. When all 15 beta-keto processing domains are present in a module, the order of domains in that module from N-to-C-terminus is always KS, AT, DH, ER, KR, and ACP. Some or all of the beta-keto processing domains may be missing in particular modules, but the order of the domains present in a module remains the same. The order of domains within modules is believed to be important for proper folding of the PKS polypeptides into an active 20 complex. Importantly, there is considerable flexibility in PKS enzymes, which allows for the genetic engineering of novel catalytic complexes. The engineering of these enzymes is achieved by modifying, adding, or deleting domains, or replacing them with those taken from other Type I PKS enzymes. It is also achieved by deleting, replacing, or adding entire modules with those taken from other sources. A genetically engineered 25 PKS complex should of course have the ability to catalyze the synthesis of the product predicted from the genetic alterations made.

Alignments of the many available amino acid sequences for Type I PKS enzymes has approximately defined the boundaries of the various catalytic domains. Sequence alignments also have revealed linker regions between the catalytic domains and at the N- 30 and C-termini of individual polypeptides. The sequences of these linker regions are less

- 6 -

well conserved than are those for the catalytic domains, which is in part how linker regions are identified. Linker regions can be important for proper association between domains and between the individual polypeptides that comprise the PKS complex. One can thus view the linkers and domains together as creating a scaffold on which the  
5 domains and modules are positioned in the correct orientation to be active. This organization and positioning, if retained, permits PKS domains of different or identical substrate specificities to be substituted (usually at the DNA level) between PKS enzymes by various available methodologies. In selecting the boundaries of, for example, an AT replacement, one can thus make the replacement so as to retain the linkers of the recipient  
10 PKS or to replace them with the linkers of the donor PKS AT domain, or, preferably, make both constructs to ensure that the correct linker regions between the KS and AT domains have been included in at least one of the engineered enzymes. Thus, there is considerable flexibility in the design of new PKS enzymes with the result that known polyketides can be produced more effectively, and novel polyketides useful as  
15 pharmaceuticals or for other purposes can be made.

By appropriate application of recombinant DNA technology, a wide variety of polyketides can be prepared in a variety of different host cells provided one has access to nucleic acid compounds that encode PKS proteins and polyketide modification enzymes. The present invention helps meet the need for such nucleic acid compounds by providing  
20 recombinant vectors that encode the FK-520 PKS enzyme and various FK-520 modification enzymes. Moreover, while the FK-506 and FK-520 polyketides have many useful activities, there remains a need for compounds with similar useful activities but with better pharmacokinetic profile and metabolism and fewer side-effects. The present invention helps meet the need for such compounds as well.

25

#### Summary of the Invention

In one embodiment, the present invention provides recombinant DNA vectors that encode all or part of the FK-520 PKS enzyme. Illustrative vectors of the invention include cosmid pKOS034-120, pKOS034-124, pKOS065-C31, pKOS065-C3, pKOS065-  
30 M27, and pKOS065-M21. The invention also provides nucleic acid compounds that

encode the various domains of the FK-520 PKS, i.e., the KS, AT, ACP, KR, DH, and ER domains. These compounds can be readily used, alone or in combination with nucleic acids encoding other FK-520 or non-FK-520 PKS domains, as intermediates in the construction of recombinant vectors that encode all or part of PKS enzymes that make  
5 novel polyketides.

The invention also provides isolated nucleic acids that encode all or part of one or more modules of the FK-520 PKS, each module comprising a ketosynthase activity, an acyl transferase activity, and an acyl carrier protein activity. The invention provides an isolated nucleic acid that encodes one or more open reading frames of FK-520 PKS  
10 genes, said open reading frames comprising coding sequences for a CoA ligase activity, an NRPS activity, or two or more extender modules. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides isolated nucleic acids that encode all or a part of a PKS that contains at least one module in which at least one of the  
15 domains in the module is a domain from a non-FK-520 PKS and at least one domain is from the FK-520 PKS. The non-FK-520 PKS domain or module originates from the rapamycin PKS, the FK-506 PKS, DEBS, or another PKS. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides a method of preparing a  
20 polyketide, said method comprising transforming a host cell with a recombinant DNA vector that encodes at least one module of a PKS, said module comprising at least one FK-520 PKS domain, and culturing said host cell under conditions such that said PKS is produced and catalyzes synthesis of said polyketide. In one aspect, the method is practiced with a *Streptomyces* host cell. In another aspect, the polyketide produced is FK-  
25 520. In another aspect, the polyketide produced is a polyketide related in structure to FK-520. In another aspect, the polyketide produced is a polyketide related in structure to FK-506 or rapamycin.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of ethylmalonyl CoA in a heterologous host cell. These genes  
30 and the methods of the invention enable one to create recombinant host cells with the

- 8 -

ability to produce polyketides or other compounds that require ethylmalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for ethylmalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring ethylmalonyl CoA in host cells that otherwise are  
5 unable to produce such polyketides.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the ability to produce polyketides or other compounds that  
10 require 2-hydroxymalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring 2-hydroxymalonyl CoA or 2-methoxymalonyl CoA in host cells that are otherwise unable to produce such polyketides.

15 In another embodiment, the invention provides a compound related in structure to FK-520 or FK-506 that is useful in the treatment of a medical condition. These compounds include compounds in which the C-13 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. Such compounds are less susceptible to the main *in vivo* pathway of degradation for FK-520  
20 and FK-506 and related compounds and thus exhibit an improved pharmacokinetic profile. The compounds of the invention also include compounds in which the C-15 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. The compounds of the invention also include the above compounds further modified by chemical methodology to produce derivatives such as,  
25 but not limited to, the C-18 hydroxyl derivatives, which have potent neurotrophin but not immunosuppression activities.

- 9 -

Thus, the invention provides polyketides having the structure:



wherein, R<sub>1</sub> is hydrogen, methyl, ethyl, or allyl; R<sub>2</sub> is hydrogen or hydroxyl, provided

5 that when R<sub>2</sub> is hydrogen, there is a double bond between C-20 and C-19; R<sub>3</sub> is hydrogen or hydroxyl; R<sub>4</sub> is methoxyl, hydrogen, methyl, or ethyl; and R<sub>5</sub> is methoxyl, hydrogen, methyl, or ethyl; but not including FK-506, FK-520, 18-hydroxy-FK-520, and 18-hydroxy-FK-506. The invention provides these compounds in purified form and in pharmaceutical compositions.

10 In another embodiment, the invention provides a method for treating a medical condition by administering a pharmaceutically efficacious dose of a compound of the invention. The compounds of the invention may be administered to achieve immunosuppression or to stimulate nerve growth and regeneration.

15 These and other embodiments and aspects of the invention will be more fully understood after consideration of the attached Drawings and their brief description below, together with the detailed description, examples, and claims that follow.

Brief Description of the Drawings

Figure 1 shows a diagram of the FK-520 biosynthetic gene cluster. The top line 20 provides a scale in kilobase pairs (kb). The second line shows a restriction map with selected restriction enzyme recognition sequences indicated. K is *Kpn*I; X is *Xho*I, S is *Sac*I; P is *Pst*I; and E is *Eco*RI. The third line indicates the position of FK-520 PKS and related genes. Genes are abbreviated with a one letter designation, i.e., C is *fkbC*.

- 10 -

Immediately under the third line are numbered segments showing where the loading module (L) and ten different extender modules (numbered 1 - 10) are encoded on the various genes shown. At the bottom of the Figure, the DNA inserts of various cosmids of the invention (i.e., 34-124 is cosmid pKOS034-124) are shown in alignment with the FK-520 biosynthetic gene cluster.

Figure 2 shows the loading module (load), the ten extender modules, and the peptide synthetase domain of the FK-520 PKS, together with, on the top line, the genes that encode the various domains and modules. Also shown are the various intermediates in FK-520 biosynthesis, as well as the structure of FK-520, with carbons 13, 15, 21, and 31 numbered. The various domains of each module and subdomains of the loading module are also shown. The darkened circles showing the DH domains in modules 2, 3, and 4 indicate that the dehydratase domain is not functional as a dehydratase; this domain may affect the stereochemistry at the corresponding position in the polyketide. The substituents on the FK-520 structure that result from the action of non-PKS enzymes are also indicated by arrows, together with the types of enzymes or the genes that code for the enzymes that mediate the action. Although the methyltransferase is shown acting at the C-13 and C-15 hydroxyl groups after release of the polyketide from the PKS, the methyltransferase may act on the 2-hydroxymalonyl substrate prior to or contemporaneously with its incorporation during polyketide synthesis.

Figure 3 shows a close-up view of the left end of the FK-520 gene cluster, which contains at least ten additional genes. The ethyl side chain on carbon 21 of FK-520 (Figure 2) is derived from an ethylmalonyl CoA extender unit that is incorporated by an ethylmalonyl specific AT domain in extender module 4 of the PKS. At least four of the genes in this region code for enzymes involved in ethylmalonyl biosynthesis. The polyhydroxybutyrate depolymerase is involved in maintaining hydroxybutyryl-CoA pools during FK-520 production. Polyhydroxybutyrate accumulates during vegetative growth and disappears during stationary phase in other *Streptomyces* (Ranade and Vining, 1993, *Can. J. Microbiol.* 39:377). Open reading frames with unknown function are indicated with a question mark.

- 11 -

Figure 4 shows a biosynthetic pathway for the biosynthesis of ethylmalonyl CoA from acetoacetyl CoA consistent with the function assigned to four of the genes in the FK-520 gene cluster shown in Figure 3.

Figure 5 shows a close-up view of the right-end of the FK-520 PKS gene cluster 5 (and of the sequences on cosmid pKOS065-C31). The genes shown include *fkbD*, *fkbM* (a methyl transferase that methylates the hydroxyl group on C-31 of FK-520), *fkbN* (a homolog of a gene described as a regulator of cholesterol oxidase and that is believed to be a transcriptional activator), *fkbQ* (a type II thioesterase, which can increase polyketide production levels), and *fkbS* (a crotonyl-CoA reductase involved in the biosynthesis of 10 ethylmalonyl CoA).

Figure 6 shows the proposed degradative pathway for tacrolimus (FK-506) metabolism.

Figure 7 shows a schematic process for the construction of recombinant PKS genes of the invention that encode PKS enzymes that produce 13-desmethoxy FK-506 15 and FK-520 polyketides of the invention, as described in Example 4, below.

Figure 8, in Parts A and B, shows certain compounds of the invention preferred for dermal application in Part A and a synthetic route for making those compounds in Part B.

20

#### Detailed Description of the Invention

Given the valuable pharmaceutical properties of polyketides, there is a need for methods and reagents for producing large quantities of polyketides, as well as for producing related compounds not found in nature. The present invention provides such methods and reagents, with particular application to methods and reagents for producing 25 the polyketides known as FK-520, also known as ascomycin or L-683,590 (see Holt *et al.*, 1993, *JACS* 115:9925), and FK-506, also known as tacrolimus. Tacrolimus is a macrolide immunosuppressant used to prevent or treat rejection of transplanted heart, kidney, liver, lung, pancreas, and small bowel allografts. The drug is also useful for the prevention and treatment of graft-versus-host disease in patients receiving bone marrow 30 transplants, and for the treatment of severe, refractory uveitis. There have been additional

- 12 -

reports of the unapproved use of tacrolimus for other conditions, including alopecia universalis, autoimmune chronic active hepatitis, inflammatory bowel disease, multiple sclerosis, primary biliary cirrhosis, and scleroderma. The invention provides methods and reagents for making novel polyketides related in structure to FK-520 and FK-506, and structurally related polyketides such as rapamycin.

The FK-506 and rapamycin polyketides are potent immunosuppressants, with chemical structures shown below.



FK-520 differs from FK-506 in that it lacks the allyl group at C-21 of FK-506, having instead an ethyl group at that position, and has similar activity to FK-506, albeit reduced immunosuppressive activity.

These compounds act through initial formation of an intermediate complex with protein “immunophilins” known as FKBP (FK-506 binding proteins), including FKBP-12. Immunophilins are a class of cytosolic proteins that form complexes with molecules such as FK-506, FK-520, and rapamycin that in turn serve as ligands for other cellular targets involved in signal transduction. Binding of FK-506, FK-520, and rapamycin to FKBP occurs through the structurally similar segments of the polyketide molecules, known as the “FKBP-binding domain” (as generally but not precisely indicated by the stippled regions in the structures above). The FK-506-FKBP complex then binds calcineurin, while the rapamycin-FKBP complex binds to a protein known as RAPT-1.

- 13 -

Binding of the FKBP-polyketide complex to these second proteins occurs through the dissimilar regions of the drugs known as the "effector" domains.



5

The three component FKBP-polyketide-effector complex is required for signal transduction and subsequent immunosuppressive activity of FK-506, FK-520, and rapamycin. Modifications in the effector domains of FK-506, FK-520, and rapamycin that destroy binding to the effector proteins (calcineurin or RAFT) lead to loss of

10 immuno-suppressive activity, even though FKBP binding is unaffected. Further, such analogs antagonize the immunosuppressive effects of the parent polyketides, because they compete for FKBP. Such non-immunosuppressive analogs also show reduced toxicity (see Dumont *et al.*, 1992, *Journal of Experimental Medicine* 176, 751-760), indicating that much of the toxicity of these drugs is not linked to FKBP binding.

15 In addition to immunosuppressive activity, FK-520, FK-506, and rapamycin have neurotrophic activity. In the central nervous system and in peripheral nerves, immunophilins are referred to as "neuroimmunophilins". The neuroimmunophilin FKBP is markedly enriched in the central nervous system and in peripheral nerves. Molecules that bind to the neuroimmunophilin FKBP, such as FK-506 and FK-520, have the  
20 remarkable effect of stimulating nerve growth. *In vitro*, they act as neurotrophins, i.e.,

- 14 -

they promote neurite outgrowth in NGF-treated PC12 cells and in sensory neuronal cultures, and in intact animals, they promote regrowth of damaged facial and sciatic nerves, and repair lesioned serotonin and dopamine neurons in the brain. See Gold *et al.*, Jun. 1999, *J. Pharm. Exp. Ther.* 289(3): 1202-1210; Lyons *et al.*, 1994, *Proc. National Academy of Science* 91: 3191-3195; Gold *et al.*, 1995, *Journal of Neuroscience* 15: 7509-7516; and Steiner *et al.*, 1997, *Proc. National Academy of Science* 94: 2019-2024. Further, the restored central and peripheral neurons appear to be functional.

Compared to protein neurotrophic molecules (BDNF, NGF, etc.), the small-molecule neurotrophins such as FK-506, FK-520, and rapamycin have different, and often advantageous, properties. First, whereas protein neurotrophins are difficult to deliver to their intended site of action and may require intra-cranial injection, the small-molecule neurotrophins display excellent bioavailability; they are active when administered subcutaneously and orally. Second, whereas protein neurotrophins show quite specific effects, the small-molecule neurotrophins show rather broad effects.

Finally, whereas protein neurotrophins often show effects on normal sensory nerves, the small-molecule neurotrophins do not induce aberrant sprouting of normal neuronal processes and seem to affect damaged nerves specifically. Neuroimmunophilin ligands have potential therapeutic utility in a variety of disorders involving nerve degeneration (e.g. multiple sclerosis, Parkinson's disease, Alzheimer's disease, stroke, traumatic spinal cord and brain injury, peripheral neuropathies).

Recent studies have shown that the immunosuppressive and neurite outgrowth activity of FK-506, FK-520, and rapamycin can be separated; the neuroregenerative activity in the absence of immunosuppressive activity is retained by agents which bind to FKBP but not to the effector proteins calcineurin or RAFT. See Steiner *et al.*, 1997, *Nature Medicine* 3: 421-428.



- 15 -

Available structure-activity data show that the important features for neurotrophic activity of rapamycin, FK-520, and FK-506 lie within the common, contiguous segments of the macrolide ring that bind to FKBP. This portion of the molecule is termed the "FKBP binding domain" (see VanDuyne *et al.*, 1993, *Journal of Molecular Biology* 229: 105-124.). Nevertheless, the effector domains of the parent macrolides contribute to conformational rigidity of the binding domain and thus indirectly contribute to FKBP binding.



There are a number of other reported analogs of FK-506, FK-520, and rapamycin that bind to FKBP but not the effector protein calcineurin or RAFT. These analogs show effects on nerve regeneration without immunosuppressive effects.

Naturally occurring FK-520 and FK-506 analogs include the antascomycins, which are FK-506-like macrolides that lack the functional groups of FK-506 that bind to calcineurin (see Fehr *et al.*, 1996, *The Journal of Antibiotics* 49: 230-233). These molecules bind FKBP as effectively as does FK-506; they antagonize the effects of both FK-506 and rapamycin, yet lack immunosuppressive activity.

- 16 -



Antascomycin A

Other analogs can be produced by chemically modifying FK-506, FK-520, or rapamycin. One approach to obtaining neuroimmunophilin ligands is to destroy the effector binding region of FK-506, FK-520, or rapamycin by chemical modification.

- 5 While the chemical modifications permitted on the parent compounds are quite limited, some useful chemically modified analogs exist. The FK-520 analog L-685,818 ( $ED_{50} = 0.7$  nM for FKBP binding; see Dumont *et al.*, 1992), and the rapamycin analog WAY-124,466 ( $IC_{50} = 12.5$  nM; see Ocain *et al.*, 1993, *Biochemistry Biophysical Research Communications* 192: 1340-134693) are about as effective as FK-506, FK-520, and 10 rapamycin at promoting neurite outgrowth in sensory neurons (see Steiner *et al.*, 1997).



L-685,818



WAY-124,466

One of the few positions of rapamycin that is readily amenable to chemical modification is the allylic 16-methoxy group; this reactive group is readily exchanged by

- 17 -

- acid-catalyzed nucleophilic substitution. Replacement of the 16-methoxy group of rapamycin with a variety of bulky groups has produced analogs showing selective loss of immunosuppressive activity while retaining FKBP-binding (see Luengo *et al.*, 1995, *Chemistry & Biology* 2: 471-481). One of the best compounds, 1, below, shows complete
- 5 loss of activity in the splenocyte proliferation assay with only a 10-fold reduction in binding to FKBP.



1

- There are also synthetic analogs of FKBP binding domains. These compounds
- 10 reflect an approach to obtaining neuroimmunophilin ligands based on "rationally designed" molecules that retain the FKBP-binding region in an appropriate conformation for binding to FKBP, but do not possess the effector binding regions. In one example, the ends of the FKBP binding domain were tethered by hydrocarbon chains (see Holt *et al.*, 1993, *Journal of the American Chemical Society* 115: 9925-9938); the best analog, 2,
- 15 below, binds to FKBP about as well as FK-506. In a similar approach, the ends of the FKBP binding domain were tethered by a tripeptide to give analog 3, below, which binds to FKBP about 20-fold poorer than FK-506. These compounds are anticipated to have neuroimmunophilin binding activity.

- 18 -



In a primate MPTP model of Parkinson's disease, administration of FKBP ligand GPI-1046 caused brain cells to regenerate and behavioral measures to improve. MPTP is 5 a neurotoxin, which, when administered to animals, selectively damages nigral-striatal dopamine neurons in the brain, mimicking the damage caused by Parkinson's disease. Whereas, before treatment, animals were unable to use affected limbs, the FKBP ligand restored the ability of animals to feed themselves and gave improvements in measures of 10 locomotor activity, neurological outcome, and fine motor control. There were also corresponding increases in regrowth of damaged nerve terminals. These results demonstrate the utility of FKBP ligands for treatment of diseases of the CNS.

From the above description, two general approaches towards the design of non-immunosuppressant, neuroimmunophilin ligands can be seen. The first involves the construction of constrained cyclic analogs of FK-506 in which the FKBP binding domain 15 is fixed in a conformation optimal for binding to FKBP. The advantages of this approach are that the conformation of the analogs can be accurately modeled and predicted by computational methods, and the analogs closely resemble parent molecules that have proven pharmacological properties. A disadvantage is that the difficult chemistry limits the numbers and types of compounds that can be prepared. The second approach involves 20 the trial and error construction of acyclic analogs of the FKBP binding domain by conventional medicinal chemistry. The advantages to this approach are that the chemistry is suitable for production of the numerous compounds needed for such interactive chemistry-bioassay approaches. The disadvantages are that the molecular types of compounds that have emerged have no known history of appropriate pharmacological

- 19 -

properties, have rather labile ester functional groups, and are too conformationally mobile to allow accurate prediction of conformational properties.

The present invention provides useful methods and reagents related to the first approach, but with significant advantages. The invention provides recombinant PKS genes that produce a wide variety of polyketides that cannot otherwise be readily synthesized by chemical methodology alone. Moreover, the present invention provides polyketides that have either or both of the desired immunosuppressive and neurotrophic activities, some of which are produced only by fermentation and others of which are produced by fermentation and chemical modification. Thus, in one aspect, the invention provides compounds that optimally bind to FKBP but do not bind to the effector proteins. The methods and reagents of the invention can be used to prepare numerous constrained cyclic analogs of FK-520 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. Such compounds will show neuroimmunophilin binding (neurotrophic) but not immunosuppressive effects. The invention also allows direct manipulation of FK-520 and related chemical structures *via* genetic engineering of the enzymes involved in the biosynthesis of FK-520 (as well as related compounds, such as FK-506 and rapamycin); similar chemical modifications are simply not possible because of the complexity of the structures. The invention can also be used to introduce "chemical handles" into normally inert positions that permit subsequent chemical modifications.

Several general approaches to achieve the development of novel neuroimmunophilin ligands are facilitated by the methods and reagents of the present invention. One approach is to make "point mutations" of the functional groups of the parent FK-520 structure that bind to the effector molecules to eliminate their binding potential. These types of structural modifications are difficult to perform by chemical modification, but can be readily accomplished with the methods and reagents of the invention.

A second, more extensive approach facilitated by the present invention is to utilize molecular modeling to predict optimal structures *ab initio* that bind to FKBP but not effector molecules. Using the available X-ray crystal structure of FK-520 (or FK-506) bound to FKBP, molecular modeling can be used to predict polyketides that should

- 20 -

optimally bind to FKBP but not calcineurin. Various macrolide structures can be generated by linking the ends of the FKBP-binding domain with "all possible" polyketide chains of variable length and substitution patterns that can be prepared by genetic manipulation of the FK-520 or FK-506 PKS gene cluster in accordance with the methods 5 of the invention. The ground state conformations of the virtual library can be determined, and compounds that possess binding domains most likely to bind well to FKBP can be prepared and tested.

Once a compound is identified in accordance with the above approaches, the invention can be used to generate a focused library of analogs around the lead candidate, 10 to "fine tune" the compound for optimal properties. Finally, the genetic engineering methods of the invention can be directed towards producing "chemical handles" that enable medicinal chemists to modify positions of the molecule previously inert to chemical modification. This opens the path to previously prohibited chemical optimization of lead compounds by time-proven approaches.

15 Moreover, the present invention provides polyketide compounds and the recombinant genes for the PKS enzymes that produce the compounds that have significant advantages over FK-506 and FK-520 and their analogs. The metabolism and pharmacokinetics of tacrolimus has been extensively studied, and FK-520 is believed to be similar in these respects. Absorption of tacrolimus is rapid, variable, and incomplete 20 from the gastrointestinal tract (Harrison's Principles of Internal Medicine, 14th edition, 1998, McGraw Hill, 14, 20, 21, 64-67). The mean bioavailability of the oral dosage form is 27%, (range 5 to 65%). The volume of distribution (V<sub>old</sub>) based on plasma is 5 to 65 L per kg of body weight (L/kg), and is much higher than the V<sub>old</sub> based on whole blood concentrations, the difference reflecting the binding of tacrolimus to red blood cells.

25 Whole blood concentrations may be 12 to 67 times the plasma concentrations. Protein binding is high (75 to 99%), primarily to albumin and alpha<sub>1</sub>-acid glycoprotein. The half-life for distribution is 0.9 hour; elimination is biphasic and variable: terminal-11.3 hr (range, 3.5 to 40.5 hours). The time to peak concentration is 0.5 to 4 hours after oral administration.

- Tacrolimus is metabolized primarily by cytochrome P450 3A enzymes in the liver and small intestine. The drug is extensively metabolized with less than 1% excreted unchanged in urine. Because hepatic dysfunction decreases clearance of tacrolimus, doses have to be reduced substantially in primary graft non-function, especially in children.
- 5 In addition, drugs that induce the cytochrome P450 3A enzymes reduce tacrolimus levels, while drugs that inhibit these P450s increase tacrolimus levels. Tacrolimus bioavailability doubles with co-administration of ketoconazole, a drug that inhibits P450 3A. See, Vincent *et al.*, 1992, *In vitro* metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the
- 10 major enzymes responsible for its metabolism, *Arch. Biochem. Biophys.* 294: 454-460; Iwasaki *et al.*, 1993, Isolation, identification, and biological activities of oxidative metabolites of FK-506, a potent immunosuppressive macrolide lactone, *Drug Metabolism & Disposition* 21: 971-977; Shiraga *et al.*, 1994, Metabolism of FK-506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog, and human liver
- 15 microsomes, *Biochem. Pharmacol.* 47: 727-735; and Iwasaki *et al.*, 1995, Further metabolism of FK-506 (Tacrolimus); Identification and biological activities of the metabolites oxidized at multiple sites of FK-506, *Drug Metabolism & Disposition* 23: 28-34. The cytochrome P450 3A subfamily of isozymes has been implicated as important in this degradative process.
- 20 Structures of the eight isolated metabolites formed by liver microsomes are shown in Figure 6. Four metabolites of FK-506 involve demethylation of the oxygens on carbons 13, 15, and 31, and hydroxylation of carbon 12. The 13-demethylated (hydroxy) compounds undergo cyclizations of the 13-hydroxy at C-10 to give MI, MVI and MVII, and the 12-hydroxy metabolite at C-10 to give I. Another four metabolites formed by
- 25 oxidation of the four metabolites mentioned above were isolated by liver microsomes from dexamethasone treated rats. Three of these are metabolites doubly demethylated at the methoxy groups on carbons 15 and 31 (M-V), 13 and 31 (M-VI), and 13 and 15 (M-VII). The fourth, M-VIII, was the metabolite produced after demethylation of the 31-methoxy group, followed by formation of a fused ring system by further oxidation.
- 30 Among the eight metabolites, M-II has immunosuppressive activity comparable to that of

- 22 -

FK-506, whereas the other metabolites exhibit weak or negligible activities. Importantly, the major metabolite of human, dog, and rat liver microsomes is the 13-demethylated and cyclized FK-506 (M-I).

Thus, the major metabolism of FK-506 proceeds via 13-demethylation followed by cyclization to the inactive M-I, this representing about 90% of the metabolic products after a 10 minute incubation with liver microsomes. Analogs of tacrolimus that do not possess a C-13 methoxy group would not be susceptible to the first and most important biotransformation in the destructive metabolism of tacrolimus (i.e. cyclization of 13-hydroxy to C-10). Thus, a 13-desmethoxy analog of FK-506 should have a longer half-life in the body than does FK-506. The C-13 methoxy group is believed not to be required for binding to FKBP or calcineurin. The C-13 methoxy is not present on the identical position of rapamycin, which binds to FKBP with equipotent affinity as tacrolimus. Also, analysis of the 3-dimensional structure of the FKBP-tacrolimus-calcineurin complex shows that the C-13 methoxy has no interaction with FKBP and only a minor interaction with calcineurin. The present invention provides C-13-desmethoxy analogs of FK-506 and FK-520, as well as the recombinant genes that encode the PKS enzymes that catalyze their synthesis and host cells that produce the compounds.

These compounds exhibit, relative to their naturally occurring counterparts, prolonged immunosuppressive action *in vivo*, thereby allowing a lower dosage and/or reduced frequency of administration. Dosing is more predictable, because the variability in FK-506 dosage is largely due to variation of metabolism rate. FK-506 levels in blood can vary widely depending on interactions with drugs that induce or inhibit cytochrome P450 3A (summarized in USP Drug Information for the Health Care Professional). Of particular importance are the numerous drugs that inhibit or compete for CYP 3A, because they increase FK-506 blood levels and lead to toxicity (Prograf package insert, Fujisawa□US, Rev 4/97, Rec 6/97). Also important are the drugs that induce P450 3A (e.g. Dexamethasone), because they decrease FK-506 blood levels and reduce efficacy. Because the major site of CYP 3A action on FK-506 is removed in the analogs provided by the present invention, those analogs are not as susceptible to drug interactions as the naturally occurring compounds.

- 23 -

Hyperglycemia, nephrotoxicity, and neurotoxicity are the most significant adverse effects resulting from the use of FK-506 and are believed to be similar for FK-520. Because these effects appear to occur primarily by the same mechanism as the immunosuppressive action (i.e. FKBP-calcineurin interaction), the intrinsic toxicity of the  
5 desmethoxy analogs may be similar to FK-506. However, toxicity of FK-506 is dose related and correlates with high blood levels of the drug (Prograf package insert, Fujisawa□US, Rev 4/97, Rec 6/97). Because the levels of the compounds provided by the present invention should be more controllable, the incidence of toxicity should be significantly decreased with the 13-desmethoxy analogs. Some reports show that certain  
10 FK-506 metabolites are more toxic than FK-506 itself, and this provides an additional reason to expect that a CYP 3A resistant analog can have lower toxicity and a higher therapeutic index.

Thus, the present invention provides novel compounds related in structure to FK-506 and FK-520 but with improved properties. The invention also provides methods for  
15 making these compounds by fermentation of recombinant host cells, as well as the recombinant host cells, the recombinant vectors in those host cells, and the recombinant proteins encoded by those vectors. The present invention also provides other valuable materials useful in the construction of these recombinant vectors that have many other important applications as well. In particular, the present invention provides the FK-520  
20 PKS genes, as well as certain genes involved in the biosynthesis of FK-520 in recombinant form.

FK-520 is produced at relatively low levels in the naturally occurring cells, *Streptomyces hygroscopicus* var. *ascomyceticus*, in which it was first identified. Thus, another benefit provided by the recombinant FK-520 PKS and related genes of the  
25 present invention is the ability to produce FK-520 in greater quantities in the recombinant host cells provided by the invention. The invention also provides methods for making novel FK-520 analogs, in addition to the desmethoxy analogs described above, and derivatives in recombinant host cells of any origin.

The biosynthesis of FK-520 involves the action of several enzymes. The FK-520  
30 PKS enzyme, which is composed of the *fkbA*, *fkbB*, *fkbC*, and *fkbP* gene products,

- 24 -

synthesizes the core structure of the molecule. There is also a hydroxylation at C-9 mediated by the P450 hydroxylase that is the *fkbD* gene product and that is oxidized by the *fkbO* gene product to result in the formation of a keto group at C-9. There is also a methylation at C-31 that is mediated by an O-methyltransferase that is the *fkbM* gene product. There are also methylations at the C-13 and C-15 positions by a methyltransferase believed to be encoded by the *fkbG* gene; this methyltransferase may act on the hydroxymalonyl CoA substrates prior to binding of the substrate to the AT domains of the PKS during polyketide synthesis. The present invention provides the genes encoding these enzymes in recombinant form. The invention also provides the genes encoding the enzymes involved in ethylmalonyl CoA and 2-hydroxymalonyl CoA biosynthesis in recombinant form. Moreover, the invention provides *Streptomyces hygroscopicus* var. *ascomyceticus* recombinant host cells lacking one or more of these genes that are useful in the production of useful compounds.

The cells are useful in production in a variety of ways. First, certain cells make a useful FK-520-related compound merely as a result of inactivation of one or more of the FK-520 biosynthesis genes. Thus, by inactivating the C-31 O-methyltransferase gene in *Streptomyces hygroscopicus* var. *ascomyceticus*, one creates a host cell that makes a desmethyl (at C-31) derivative of FK-520. Second, other cells of the invention are unable to make FK-520 or FK-520 related compounds due to an inactivation of one or more of the PKS genes. These cells are useful in the production of other polyketides produced by PKS enzymes that are encoded on recombinant expression vectors and introduced into the host cell.

Moreover, if only one PKS gene is inactivated, the ability to produce FK-520 or an FK-520 derivative compound is restored by introduction of a recombinant expression vector that contains the functional gene in a modified or unmodified form. The introduced gene produces a gene product that, together with the other endogenous and functional gene products, produces the desired compound. This methodology enables one to produce FK-520 derivative compounds without requiring that all of the genes for the PKS enzyme be present on one or more expression vectors. Additional applications and benefits of such cells and methodology will be readily apparent to those of skill in the art

- 25 -

after consideration of how the recombinant genes were isolated and employed in the construction of the compounds of the invention.

The FK-520 biosynthetic genes were isolated by the following procedure. Genomic DNA was isolated from *Streptomyces hygroscopicus* var. *ascomyceticus* (ATCC 14891) using the lysozyme/proteinase K protocol described in Genetic Manipulation of *Streptomyces* - A Laboratory Manual (Hopwood *et al.*, 1986). The average size of the DNA was estimated to be between 80 - 120 kb by electrophoresis on 0.3% agarose gels. A library was constructed in the SuperCos™ vector according to the manufacturer's instructions and with the reagents provided in the commercially available kit (Stratagene). Briefly, 100 µg of genomic DNA was partially digested with 4 units of *Sau3A* I for 20 min. in a reaction volume of 1 mL, and the fragments were dephosphorylated and ligated to SuperCos vector arms. The ligated DNA was packaged and used to infect log-stage XL1-BlueMR cells. A library of about 10,000 independent cosmid clones was obtained.

Based on recently published sequence from the FK-506 cluster (Motamedi and Shafiee, 1998, *Eur. J. Biochem.* 256: 528), a probe for the *fkbO* gene was isolated from ATCC 14891 using PCR with degenerate primers. With this probe, a cosmid designated pKOS034-124 was isolated from the library. With probes made from the ends of cosmid pKOS034-124, an additional cosmid designated pKOS034-120 was isolated. These cosmids (pKOS034-124 and pKOS034-120) were shown to contain DNA inserts that overlap with one another. Initial sequence data from these two cosmids generated sequences similar to sequences from the FK-506 and rapamycin clusters, indicating that the inserts were from the FK-520 PKS gene cluster. Two *EcoRI* fragments were subcloned from cosmids pKOS034-124 and pKOS034-120. These subclones were used to prepare shotgun libraries by partial digestion with *Sau3AI*, gel purification of fragments between 1.5 kb and 3 kb in size, and ligation into the pLitmus28 vector (New England Biolabs). These libraries were sequenced using dye terminators on a Beckmann CEQ2000 capillary electrophoresis sequencer, according to the manufacturer's protocols.

To obtain cosmids containing sequence on the left and right sides of the sequenced region described above, a new cosmid library of ATCC 14891 DNA was

- 26 -

prepared essentially as described above. This new library was screened with a new *fkbM* probe isolated using DNA from ATCC 14891. A probe representing the *fkbP* gene at the end of cosmid pKOS034-124 was also used. Several additional cosmids to the right of the previously sequenced region were identified. Cosmids pKOS065-C31 and pKOS065-C3  
5 were identified and then mapped with restriction enzymes. Initial sequences from these cosmids were consistent with the expected organization of the cluster in this region. More extensive sequencing showed that both cosmids contained in addition to the desired sequences, other sequences not contiguous to the desired sequences on the host cell chromosomal DNA. Probing of additional cosmid libraries identified two additional  
10 cosmids, pKOS065-M27 and pKOS065-M21, that contained the desired sequences in a contiguous segment of chromosomal DNA. Cosmids pKOS034-124, pKOS034-120, pKOS065-M27, and pKOS065-M21 have been deposited with the American Type Culture Collection, Manassas, VA, USA. The complete nucleotide sequence of the coding sequences of the genes that encode the proteins of the FK-520 PKS are shown  
15 below but can also be determined from the cosmids of the invention deposited with the ATCC using standard methodology.

Referring to Figures 1 and 3, the FK-520 PKS gene cluster is composed of four open reading frames designated *fkbB*, *fkbC*, *fkbA*, and *fkbP*. The *fkbB* open reading frame encodes the loading module and the first four extender modules of the PKS. The *fkbC* open reading frame encodes extender modules five and six of the PKS. The *fkbA* open reading frame encodes extender modules seven, eight, nine, and ten of the PKS. The *fkbP* open reading frame encodes the NRPS of the PKS. Each of these genes can be isolated from the cosmids of the invention described above. The DNA sequences of these genes are provided below preceded by the following table identifying the start and stop codons 20 of the open reading frames of each gene and the modules and domains contained therein.  
25

|    | <u>Nucleotides</u>       | <u>Gene or Domain</u> |
|----|--------------------------|-----------------------|
|    | complement (412 - 1836)  | <i>fkbW</i>           |
|    | complement (2020 - 3579) | <i>fkbV</i>           |
| 30 | complement (3969 - 4496) | <i>fkbR2</i>          |
|    | complement (4595 - 5488) | <i>fkbR1</i>          |
|    | 5601 - 6818              | <i>fkbE</i>           |

- 27 -

|    |                            |                               |
|----|----------------------------|-------------------------------|
|    | 6808 - 8052                | <i>fkbF</i>                   |
|    | 8156 - 8824                | <i>fkbG</i>                   |
|    | complement (9122 - 9883)   | <i>fkbH</i>                   |
|    | complement (9894 - 10994)  | <i>fkbI</i>                   |
| 5  | complement (10987 - 11247) | <i>fkbJ</i>                   |
|    | complement (11244 - 12092) | <i>fkbK</i>                   |
|    | complement (12113 - 13150) | <i>fkbL</i>                   |
|    | complement (13212 - 23988) | <i>fkbC</i>                   |
|    | complement (23992 - 46573) | <i>fkbB</i>                   |
| 10 | 46754 - 47788              | <i>fkbO</i>                   |
|    | 47785 - 52272              | <i>fkbP</i>                   |
|    | 52275 - 71465              | <i>fkbA</i>                   |
|    | 71462 - 72628              | <i>fkbD</i>                   |
|    | 72625 - 73407              | <i>fkbM</i>                   |
| 15 | complement (73460 - 76202) | <i>fkbN</i>                   |
|    | complement (76336 - 77080) | <i>fkbQ</i>                   |
|    | complement (77076 - 77535) | <i>fkbS</i>                   |
|    | complement (44974 - 46573) | CoA ligase of loading domain  |
|    | complement (43777 - 44629) | ER of loading domain          |
| 20 | complement (43144 - 43660) | ACP of loading domain         |
|    | complement (41842 - 43093) | KS of extender module 1 (KS1) |
|    | complement(40609 - 41842)  | AT1                           |
|    | complement (39442 - 40609) | DH1                           |
|    | complement (38677 - 39307) | KR1                           |
| 25 | complement (38371 - 38581) | ACP1                          |
|    | complement (37145 - 38296) | KS2                           |
|    | complement (35749 - 37144) | AT2                           |
|    | complement (34606 - 35749) | DH2 (inactive)                |
|    | complement (33823 - 34480) | KR2                           |
| 30 | complement (33505 - 33715) | ACP2                          |
|    | complement (32185 - 33439) | KS3                           |
|    | complement (31018 - 32185) | AT3                           |
|    | complement (29869 - 31018) | DH3 (inactive)                |
|    | complement (29092 - 29740) | KR3                           |
| 35 | complement (28750 - 28960) | ACP3                          |
|    | complement (27430 - 28684) | KS4                           |
|    | complement (26146 - 27430) | AT4                           |
|    | complement (24997 - 26146) | DH4 (inactive)                |
|    | complement (24163 - 24373) | ACP4                          |
| 40 | complement (22653 - 23892) | KS5                           |
|    | complement (21420 - 22653) | AT5                           |
|    | complement (20241 - 21420) | DH5                           |
|    | complement (19464 - 20097) | KR5                           |
|    | complement (19116 - 19326) | ACPs5                         |

- 28 -

|    |                            |                |
|----|----------------------------|----------------|
|    | complement (17820 - 19053) | KS6            |
|    | complement (16587 - 17820) | AT6            |
|    | complement (15438 - 16587) | DH6            |
|    | complement (14517 - 15294) | ER6            |
| 5  | complement (13761 - 14394) | KR6            |
|    | complement (13452 - 13662) | ACP6           |
|    | 52362 - 53576              | KS7            |
|    | 53577 - 54716              | AT7            |
|    | 54717 - 55871              | DH7            |
| 10 | 56019 - 56819              | ER7            |
|    | 56943 - 57575              | KR7            |
|    | 57710 - 57920              | ACP7           |
|    | 57990 - 59243              | KS8            |
|    | 59244 - 60398              | AT8            |
| 15 | 60399 - 61412              | DH8 (inactive) |
|    | 61548 - 62180              | KR8            |
|    | 62328 - 62537              | ACP8           |
|    | 62598 - 63854              | KS9            |
|    | 63855 - 65084              | AT9            |
| 20 | 65085 - 66254              | DH9            |
|    | 66399 - 67175              | ER9            |
|    | 67299 - 67931              | KR9            |
|    | 68094 - 68303              | ACP9           |
|    | 68397 - 69653              | KS10           |
| 25 | 69654 - 70985              | AT10           |
|    | 71064 - 71273              | ACP10          |

---

T1 9000

|    |      |                                                                           |
|----|------|---------------------------------------------------------------------------|
|    | 1    | GATCTCAGGC ATGAAGTCCT CCAGGGGAGG CGCCGAGGTG GTGAACACCT CGCCGCTGCT         |
|    | 61   | TGTACGGACC ACTTCAGTC GCGGCGATTG CGGAACCAAG TCATCCGAA TAAAGGGCGG           |
| 30 | 121  | TTACAAGATC CTCACATTGC GCGACGCCA GCATACGCTG AGTTGCCTCA GAGGCAAACC          |
|    | 181  | GAAAGGGCGC GGGCGGTCCG CACCAGGGCG GAGTACGCGA CGAGAGTGGC GCACCCGCGC         |
|    | 241  | ACCGTCACCT CTCTCCCCCG CGGGCGGGAT GCCCGGGCGTG ACACGGTTGG GCTCTCCTCG        |
|    | 301  | ACGCTGAACA CCCGCGCGGT GTGGCGTCGG GGACACCGCC TGGCATCGGC CGGGTGACGG         |
|    | 361  | TACGGGGAGG GCGTACGGCG GCCGTGGCTC GTGCTCACGG CCGCCGGCG GTCATCCGTC          |
|    | 421  | GAGACGGCAC TCGGCGAGCA GGGACGCCCTG GTCGGCACCT GCAGGGCCGGA CGACCGTGTG       |
|    | 481  | GTTCGGGGC GGGCGGTGGC CGGTGGTGAG CCAGCTCTCC AGGGCGGTGA AGGCTGAGCG          |
|    | 541  | GTGACACGGC AGCAAAGGCC GGAGTCGGTC GGGGAAGGTG TCGACGAGGG CGTCGGTGTG         |
|    | 601  | CGTCCGTCC TCGATGCGGT AGTAGCGGT ACGTACGGTA CCGGCCGCCA GGCGCTGCC GGACATACGC |
|    | 661  | GCGTACACGT CGGAGCCCCGG GCGGCAGGCA GCAGCACGTC GAGAGTGCCT GGATGGTGAT        |
| 40 | 721  | CAGCGGCTTG CCGATAACGAC CGGTCAACGC GATGCGTTCC ACGGCCCGGT GGACGCCGGA        |
|    | 781  | GGAGCGGGTG GCGTAGTCGT AGTCGGCATC GCAGCCCGGG ACCGTCCCCG GGGCGCAATA         |
|    | 841  | CGGTGTGCCG GCTTCCTTCT CCCCATCGAA GCCGGGGTCG AACTCCTCGC GGTAGACCGC         |
|    | 901  | CTGCGTCAGA TCCCAGTAGA CCTCGTGGTG GTACGGCCAC AAGAACCTCGG AGTCGGCCGG        |
|    | 961  | GAACCCGGCG CGGAGCAGCG CCTCGCGCGC CTGGCCGGCT GCGGGGCCGC CTGCGCGTA          |
| 45 | 1021 | GGTGGGGTAG TCGCGCAGGG CGGCCGGCAG GAAGGTGAAG AGGTTGGGAC CCTCCGCGCG         |
|    | 1081 | CCACAGGGTG CCTTCCCGAGT CGACTCCTCC GTCGTACAGC TCAGGGATGGT TCTCCAGCTG       |
|    | 1141 | CCAGCGCACG AGGTAGCCGC CGTTGGACAT CCCGGTGACC AGGGTGCCT CGAGCGGCCG          |
|    | 1201 | GTGGTAGCGC TGGCGACCG ACGCGCGGGC GGCCCGGGTC AGCTGGGTGA GGCGGGTGTT          |

- 29 -

1261 CCACTCGGCG ACGGCGTCGC CGGGCCGGGA GCCATCACGG TAGAACGCGG GGCCGGTGT  
1321 CCCCTTGTG GTGGCGCGT AGCGTAACC CGGGCGAGC ACCCAGTCGG CGATGGCCCG  
1381 GTCGTTGGCG TACTGCTCGC GTTACCGGG GGTGCCGCC ACGACCAGGC CACCGTTCCA  
1441 CGGGTCGGGC AGCGGATGA CGAAGTGGGC GTCGTGGTC CACCCGTGGT TGGTGGTGGT  
5 1501 GGTGGAGGTG TCGGGGAAGT AGCGTCGAT CTGGATCCC GGCACCTCCGG TGGGAGTGGC  
1561 CAGGGTCTTG GGCAGTCAGCC CTGCCAGTC CGCCGGTCG GTGTGGCCGG TGGCCGCCGT  
1621 TCCCGCCGTG GTCAGCTCGT CCAGGCAGTC GGCCTGCTGA CGTGCCGCC CGGGGACACG  
1681 CAGCTGGGAC AGACGGGCGC AGTACCGTC CGGGGCATCG GGAGCAGGCC GGGCCGTGGC  
1741 CGGTGAGGGG AGCAGGACGG CGACTGCGC CAGGGTGAGA GGCACCGAGGC CGGTGCGTCT  
10 1801 TCTCGGGGCC CGTCCGACAC CGAGGGGCAG AACCATGGAG AGCCTCCAGA CGTGCAGATG  
1861 GATGACGGAC TGGAGGCTAG GTCCGCAAG GTGGAGACGA ACATGGGTGC GCCCCGCCATG  
1921 ACTGAGGCC CTCAGAGGTG GGCCGCCGCC ATGACGGGC CGGGACCGCG GGCCTCCGG  
1981 GGCGGTGGCC GCGGCCGCCA CCGGTTCCGG GTCCCCGGT CAGGGACAGG TGTCTTCGC  
2041 GACGGTGAAG TAGCCGGTCG GCGACTCTT CAAGGTGGTC GTGACGAAGG TGTTGTACAG  
15 2101 GCCCATGTTC TGGCCGGAGC CCTTGGCGTA GGTGTAACCG GCGCTCGTCG TGGCGCGGCC  
2161 CGCCTGGACG TGAGCGTAGT TGCCGGCGGT CCAGCAGACG GCCGTGGCAC CGGTCGTCTG  
2221 CGCGGTGACC GCGCCCGAGA CGGGTCCGGC CTTGCCGTCC GCGTCCCAGG CGGCACCGC  
2281 GTAGGGTGTGC GATGTGCCCG CCCTCAGGCC GGTGTCCGTG TACGACGTG TGGCGGACGT  
2341 GGTGATCTGG GCACCGTCGC GGTGGACGGC GTAGTCGGT GGCACGTGCA CGGGTTCCA  
20 2401 GGTCAAGGCTG ATGGTGGTGT CGGTGGCGCC GGTGGCGGCC AGGCGGGACG GAGCGGGCAG  
2461 CGAACCGGGG TCGGAGGGCG ATCCGCTCAG GCGAAGAAC TCGGTGATCC AGTAGCTGGA  
2521 ACAGATCGAG TCCAGGAAGT AGGCGGGCGCC GGTGCTGCC CACTGCTGT CTCCGGTGCC  
2581 GGGATCGACC GGGGTGCCGT GCCCCATGCC CGGCACCCGG TTCACCTCCA CGGCCACCGA  
2641 TCCGTCCGCG GCCAGGTACT CCTCGTGCCT GGTGGAGTTC GGGCCGATCA CCGAGGTACG  
25 2701 GTCCGGCGTC TGGGACACGC CGTGCACAGC GGTCCACTGG TCGCGCAACT CGTCGGCGTT  
2761 GCGCGCGCG ACGGTGGTGT CCTTGTGCC GGTGCGATG GCCACGCGCG GCCACGGGCG  
2821 CGACCACGAG GGGTAGCCGT CACGGACCCG CGCGCCACAC TGGTCCCGCG TCAGGGTGGT  
2881 CCCGGGGTTC ATGCACAGGT ACGCGCTGCT GACGTGGT GCACAGCCGA AGGGCAGGCC  
2941 GGCGACGACC GCGCCGGCCT GGAAGACGTC CGGATAGGTG GCGAGCATCA CCGACGTCAT  
30 3001 GGCACCGCCG GCGGACAGCC CGGTGATGTA GGTGCGCTGG GGGTCCCGCG CGTAGGCC  
3061 GACGGTGTGA GCGGCCATCT GCGGATCGA CGCGGCTTCG CCTGGCCCC TGCGGTTGTC  
3121 GCTGCTCTGG AACCAAGTGA AGCACCTGTT CGCGTTGTT GACGACGTGG TCTCGCGAA  
3181 CACGAGCAGG AAGCCATAGC GGTCCGCGAA TGAGAGCAGG CCGGAGTTGT CGGCGTAGGCC  
3241 CTGGCGTCC TGGGTGCAAC CGTGCAGGGC GAACACCAAC GCCGGCTCCG CGGGCAGGGG  
35 3301 CGCGGGCCGG TAGACGTACA TGTCAGCCG GCGGGGTTT GTGCCGAAGT CGCGCACCTC  
3361 GGTCAAGGTC GCCTTGGTCA GACCGGGCTT GGCCAGGCC GCCGCGCGT GGGCGCTCGG  
3421 CGCGGGCCG AGCAGGGCCG CTCCGAGTAC GAGGGCCACG ACGGCCACGA GACGGGTGAG  
3481 CACCCCCCGC CGTCCCAGAC GCGACAACGA CCCGACCGGC GCGAGGAGG AGAGGGGGAA  
3541 CAGCGGGGTG AGGATTCCCC GGAACGGCGG CGGCTGCATG GCGGCTCCCT CGATGCGT  
40 3601 GGGGGGACAC GGAGGGCTCC CTGACGTCGA TCACTGGAG CGCCCCGGTG CCCGGCACCG  
3661 TAGGGGTGGT TCAACCCGCA ACGGTATGGC CGGGAGCACC ACACCCCGCA CGCGCGATG  
3721 TGCGCCCGGA CGGATTGTGT CGCCTTGCAG AATCTGATAC CGGGACGCGA CGAACGCC  
3781 ACCCGACACG GGTAGGGCGT CATGGTGTCC GACTCGGCCG GTCGGCCTTG CCTGCC  
3841 ACGGACCGGG CGTCGGCGGA CGGGCGTCG GCGGGCTGG CGTATGGCG GCGAGGACG  
45 3901 CCAGCCCGT GGGCGGCCG CGCCCAAGTG CAGTACGCC ACCGTGGCG GCGGGAGGGC  
3961 CGGACCGGTC AGTGCAGTCC CGCGGCCCTG CGGGACCGCT CGTCCCAGAC GGGTCC  
4021 GCGGCGAACCG GGGGTCCCGT TCCGCGGCC TAGACCATCA GTGTCGCTC GAAGGTGATG  
4081 ACGATGACAC CGTCCTGGTT GTAGCCGATG GTGCGCACGC TGATGATGCC TACGTCAGGT  
4141 CGGCTGGCGG ACTCCCCGGT GTTCAGGACC TCGGACTGCG AGTAGATGGT GTCGCC  
50 4201 AAGACCGGGT TCGGCAGCCT GACCCGGTCC CAGCCGAGGT TGGCCATCAC ATGCTGGAG  
4261 ATGTCGGTGA CGCTCTGCC GGTGACCAAG GCGAGGGTGA AGGTGGAGTC CACCA  
4321 TTGCCCCAGG TTGGTCCCGC CGAGTAGTGG CGGTGAGAAGT GCAGCGGCC GGTGTCTGC  
4381 GTCAGGAGCG TGAGCCAGGA GTTGTGGTC TCCAGGACCG TCGGGCCAG GGGGTGGCG  
4441 TACACGTGCG CGGTGGTGAAG TCCCTCGAAG TAGCGGCCCTC GCCACAGCG

- 30 -

4501 GTGCGGGTGG CGTCCTGGTC CGGGTTCTCA GTCGTATGG CGCTCATTCT GGGAAAGTCCC  
4561 CGGTCGCTG TGAAATGCCG AACCTTCACC GGGCTCATAC GTGCGGCGCA TGAGCCCTGG  
4621 ACCGTACGTA GTCGTAGAAC CTCGCCACCA CTGGCGCGCG TGGTCCTCCG GCGAGTGTGA  
4681 CCACGCCGAC CGTGCGCCGC GCCTGCGGGT CGTCGAGCGG CACGGCAGC GCGTGGTCAC  
5 4741 CGGGCCCGGA CGGGCTGCCG GTGAGGGGGG CGACGGCAC ACCGAGGCCG GCGGCACCA  
4801 GGGCCCGCAG CGTGCTCAGC TCGGTGCTCT CCAGGACGAC CCGCGGCACG AATCCGGCCG  
4861 CGGCGCACAG CCGGTCGGTG ATCTGGCGCA GTCCGAAGAC CGGCTCCAGT GCCACGAACG  
4921 CCTCATCGC CAGCTCCGCG GTCCGCACCC GGCGGCGTCT GGCGAGCCGG TGTCCGGGTG  
4981 GGACGAGCAG GCACAGTGCC TCGTCCCAGA GTGGTGCTCA CTCCACATCG TCCCCGGCG  
10 5041 GTCGTGGGCT GGTCAAGCCCC AGGTCCAGCC TGCTGTTGCG GACGTGTCG ACCACGGCGT  
5101 CGGCGCGTC GCCGCGCAGT TCGAAGGTGG TGCCGGGAGC CAGCCGGCGG TACCCGGCGA  
5161 GGAGGTCGGG CACCAGCCAG GTGCCGTAGG AGTGCAGGAA ACCCAGTGCC ACGGTGCCGG  
5221 TGTCCGGGTC GATCAGGGCG GTGATGCGCT GCTCGGCAC GGAGACCTCA CTGATCGCGC  
5281 GCAGGGCGTG GGCAGCGGAAG ACCTCGCCGT ACTTGTGAG CCGGAGCCGG TTCTGGTGC  
15 5341 GGTCAACAG CGGCACGCC ACTCGTCGCT CCAGCCCG GATGGCCCTG GACAGGGTCG  
5401 GCTGGGAGAT GTTGAGCCGT TCCGCGGTGA TCGTCACGTG CTCGTGCTCG GCCAAGGCCG  
5461 TGAACCACTG CAACTCCCGT ATCTCCATGC AGGGACTATA CGTACCGGGC ATGGTCTGG  
5521 CGAGGTTTCG TCATTCACA GCGGCCGGGGC GGCGGCCAC AGTGAGTCCT CACCAACCAG  
5581 GACCCCATGG GAGGGACCCC ATGTCCGAGC CGCATCCCG CCTGTAACAG GAACGCCCG  
20 5641 CGGGCCCGCT GTCCGGTCTG CTCGTGGTTT CTTGGAGCA GGCGTCGCC GCTCCGTTGC  
5701 CCACCCGCCA CCTGGCGGAC CTGGCGGCCG GTGTCAAC GATCGAACGC CCCGGCAGCG  
5761 GCGACCTCGC CCGCGGCTAC GACCGCACGG TCGTGGCAT GTCCAGCCAC TTCGTCTGGC  
5821 TGAACCGGGG GAAGGAGAGC GTCCAGCTCG ATGTGCGCTC GCCGGAGGGC AACCGGCACC  
5881 TGCACGCCCTT GGTGGACCGG GCCGATGTCC TGGTGCAGAA TCTGGCACCC GGCGCCGCG  
25 5941 GCCGCCTGGC ATCGGCCACC AGGTCTCGC GCGGAGCAC CGAGGCTGAT CACCTGCGGA  
6001 CATATCCGGC TACGGCAGTA CCGGCTGCTA CCGCGGACCG CAAGGCGTAC GACCTCTGG  
6061 TCCAGTGCAGA AGCGGGGCTG GTCTCCATCA CGGGCACCCC CGAGACCCCG TCCAAGGTGG  
6121 GCCTGTCCAT CGCGGACATC TGTGCGGGGA TGTACCGTA CTCCGGCATC CTCACGGCCC  
6181 TGCTGAAGCG GGCCCGCACC GGCGGGGCT CGCAGTTGGA GGTCTCGATG CTCGAAGCCC  
30 6241 TCGGTGAATG GATGGGATAC GCGGAGTACT ACACCGCCTA CGGCGGCACC GCTCCGGCCC  
6301 GCGCCGGCGC CAGCCACCGC ACGATGCCCG CCTACGGCCC GTTCACCACG CGCGACGGGC  
6361 AGACGATCAA TCTCGGGCTC CAGAACGAGC GGGAGTGGGC TTCTTCTGC GGTGCTGTGC  
6421 TACAACGCC CCGTCTCTGC GACGACCCGC GCTTTCCGG CAACGCCGAC CGGGTGGCGC  
6481 ACCGCACCGA GCTCGACGCC CTGGTGAGCG AGGTGACGGG CACGCTCACC GGCGAGGAAC  
35 6541 TGGTGGCGCG GCTGGAGGAG CGTCGATCG CCTACGCACG CCAGCGCACC GTGCGGGAGT  
6601 TCAGCGAACAA CCCCCAACTG CGTACCGTG GACGCTGGC TCCGTCGAC AGCCCGGTCG  
6661 GTGCGCTGGA GGGCCTGATC CCCCCGGTCA CCTTCCACGG CGAGCACCCCG CGGGCGCTGG  
6721 GCCGGGTCCC GGAGCTGGC GAGCATACCG AGTCCGTCTT GGCCTGGCTG GCCGCGCCCC  
6781 ACAGCGCCGA CGCGGAAGAG GCGGGCCATG CGGAATGAAC TCACCGGAGT CCTGATCTG  
40 6841 GCCGCCGTGT TCCGTCTCGC CGGGTACGG GGGCTGAACA TGGGCCTGCT CGCGCTGGTC  
6901 GCCACCTTTC TGCTCGGGGT GGTCGCACTC GACCGAACGC CGGACGAGGT GCTGGCGGGT  
6961 TTCCCCGCGA GCATGTTCTT GGTGCTGGTC GCGTCACGT TCCTCTTCGG GATGCCCGC  
7021 GTCAACGGCA CGGTGGACTG GCTGGTACGT GTCGCGGTGC GGGCGGTGGG GGCCCGGGTG  
7081 GGAGCCGTCC CCTGGGTGCT CTTCGGCCTG CGGGCACTGC TCTGCGCGAC AGGCGCGGCC  
45 7141 TCGCCCGCGG CGGTGGCGAT CGTGGCGCCG ATCAGCGTCG CGTTCGCCGT CAGGCACCGC  
7201 ATCGATCCGC TGTACGCCGG ACTGATGGCG GTGAACGGGG CGCGACGCCG CAGTTCGCC  
7261 CCCTCCGGGA TCCCTGGCGG CATCGTCCAC TCGGCGCTGG AGAAGAACCA TCTGCCGTC  
7321 AGCGGGCGGGC TGCTCTTCGC AGGCACCTTC GCCTTCAACC TGGCGGTGCG CGCGGTGTCA  
7381 TGGCTCGTCC TCGGGCGCAG GCGCCTCGAA CCACATGACC TGGACGAGGA CACCGATCCC  
50 7441 ACGGAAGGGG ACCCGGCTTC CGGCCCCGGC GCGGAACACG TGATGACGCT GACCGCGATG  
7501 GCCGCGCTGG TGCTGGGAAC CACGGTCCTC TCCCTGGACA CGGGCTTCCT GGCCCTCACC  
7561 TTGGCGCGT TGCTGGCGCT GCTCTTCCCG CGCACCTCCC AGCAGGCCAC CAAGGAGATC  
7621 GCCTGGCCCG TGGTGCTGCT GGTATGCGGG ATCGTGAACCT ACGTGACCCCT GCTCCAGGAG  
7681 CTGGGCATCG TGGACTCCCT GGGGAAGATG ATCGCGGCCGA TCGGCACCCC GCTGCTGGCC

- 31 -

|    |       |             |             |             |             |             |             |
|----|-------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | 7741  | GCCCTGGTGA  | TCTGCTACGT  | GGGCGGTGTC  | GTCTCGGCCT  | TCGCCTCGAC  | CACCGGGATC  |
|    | 7801  | CTCGGTGCC   | TGATGCCGCT  | GTCCGAGCCG  | TTCCCTGAAGT | CCGGTGCCAT  | CGGGACGACC  |
|    | 7861  | GGCATGGTGA  | TGGCCCTGGC  | GGCCGCGGCG  | ACCGTGGTGG  | ACCGCAGTCC  | CTTCTCCACC  |
| 5  | 7921  | AATGGTGTCT  | TGGTGGTGGC  | CAACGCTCCC  | GAGCGGCTGC  | GGCCCGGGCGT | GTACCAGGGG  |
|    | 7981  | TTGCTGTGGT  | GGGGCGCCGG  | GGTGTGCGCA  | CTGGCTCCCG  | CGGCCGCCCTG | GGCGGCCCTC  |
|    | 8041  | GTGGTGGCGT  | GAGCGCAGCG  | GAGCGGAAT   | CCCCCTGGAGC | CCGTTTCCCG  | TGCTGTGTCG  |
|    | 8101  | CTGACGTAGC  | GTCAAGTCCA  | CGTCCGGGC   | GGGCAGTACG  | CCTAGCATGT  | CGGGCATGGC  |
|    | 8161  | TAATCAGATA  | ACCCCTGTCCG | ACACGCTGCT  | CGCTTACGTA  | CGGAAGGTGT  | CCCTGCGCGA  |
| 10 | 8221  | TGACGAGGTG  | CTGAGCCGGC  | TGCGCGCGA   | GACGGCCGAG  | CTGCCGGGCG  | GTGGCGTACT  |
|    | 8281  | GCCGGTGCAG  | GCCGAGGAGG  | GACAGTTCT   | CGAGTTCTG   | GTGCGGTTGA  | CCGGCGCGCG  |
|    | 8341  | TCAGGTGCTG  | GAGATCGGAA  | CGTACACCGG  | CTACAGCACG  | CTCTGCCTGG  | CCCGCGGATT  |
|    | 8401  | GGCGCCCGGG  | GGCCGTGTGG  | TGACGTGCGA  | TGTCATGCCG  | AAGTGGCCCG  | AGGTGGCGA   |
|    | 8461  | GCGGTACTGG  | GAGGAGGGCG  | GGGTTGCCGA  | CCGGATCGAC  | GTCCGGATCG  | GCGACCCCCG  |
| 15 | 8521  | GACCGTCCTC  | ACCGGGCTGC  | TCGACGAGGC  | GGGCGCGGGG  | CCGGAGTCGT  | TCGACATGGT  |
|    | 8581  | GTTCATCGAC  | GCCGACAAGG  | CCGGCTACCC  | CGCCTACTAC  | GAGGC GGCGC | TGCCGCTGGT  |
|    | 8641  | ACGCCGCGGC  | GGGCTGATCG  | TCGTCGACAA  | CACGCTGTT   | TTCGGCCGGG  | TGGCCGACGA  |
|    | 8701  | AGCGGTGCAG  | GACCCGGACA  | CGGTCGCGGT  | ACCGAAGCTC  | AACGCGGCAC  | TGCGCGACGA  |
|    | 8761  | CGACCGGGTG  | GACCTGGCGA  | TGCTGACGAC  | GGCCGACGGC  | GTCACCCCTGC | TGCGGAAACG  |
|    | 8821  | GTGACCGGGG  | CGATGTCGGC  | GGCGGTCAAGC | GTCAGCGTCG  | TGGCGCGGGG  | CCTCGCGGAG  |
| 20 | 8881  | GGCTCCAGAT  | GCAGGGTTC   | GACGCCGGCG  | GCGGAAGCGC  | CCGCCACCTC  | GGACACCGAG  |
|    | 8941  | GGGCAGTCGG  | AGTCCCGCAA  | GCCCCGCGAAC | CGGTAGGCAGA | TCTCCATCAT  | GCGGTTGCGG  |
|    | 9001  | TCCGTACGCC  | GGAAAGTCCGC | CACCAAGGTGC | GCCCCCGCGC  | GGGCGCCCTG  | GTCCGTTGAGC |
|    | 9061  | CAGTTCAGGA  | TCGTCGCAAC  | GGCACCGAAC  | GACACGACCC  | GGCAGGACGT  | GGCGAGCAGT  |
|    | 9121  | TTCAGGTGCGC | ACGTCGACGG  | CTTCTTCTCC  | AGCAGGATGA  | TGCCGACGGC  | GCCGTGCGGG  |
| 25 | 9181  | CCGAAGCGGT  | CGCCCATGGT  | GACGACGAGG  | ACCTCATGGG  | CGGGATCGGT  | GAGCAGCGC   |
|    | 9241  | GCAGGTGGC   | GTGGAGTAG   | TGCAACGCCG  | TCGCGTTCAT  | CTGGCTGGTC  | CGCAGCGTCA  |
|    | 9301  | GTTCTCGAC   | GGGGCTGAGT  | TCCTCCTCCC  | CCGGGGTGC   | GATCGTCATG  | GAGAGGTCGA  |
|    | 9361  | GCGAGCGCAG  | GAAGTCCTCG  | TGGGGACCGG  | AGTACGCC    | CCGGGCCTGG  | TGCGCGCGA   |
| 30 | 9421  | AACCCGCTG   | GTACATCAGG  | CGGCGCCGAC  | GCGAGTCGAC  | CGTGGACACC  | GGCGGGCTGA  |
|    | 9481  | ACTCCGGCAG  | CGACAGGAGC  | GTGGCCGCT   | GCTCGGCCG   | GTAGCACCAC  | ACCTCGGGCA  |
|    | 9541  | GGTGAACGC   | CACCTCGGCA  | CGCTCGCGG   | GCTGGTCGTC  | GATGAACGCG  | ATCGTGGTCG  |
|    | 9601  | GTGCGAAGTT  | CAGCTCCGTG  | GCGATCTGC   | GGACGGACTG  | CGACCTCGGC  | CCCCATCCGA  |
|    | 9661  | TGCGGGCCAG  | CACGAAGTAC  | TCCGCCACAC  | CGAGGCGTT   | CAGACGCTCC  | CACGCGAGGT  |
|    | 9721  | CGTGGTCGTT  | CTTGCTCGCC  | ACCGCTTGA   | GGATGCCGCG  | GTCGTCGAGC  | GTGGTGTATCA |
| 35 | 9781  | CCTCGCGGAT  | CTCGTCGGTG  | AGGACCACCT  | CGTCGTCTC   | CAGCACGGT   | CCCCGCCACA  |
|    | 9841  | AGGTGTTGTC  | CAGGTCCCAG  | ACCAGACACT  | TGACAATGGT  | CATGGCTGTC  | CTCTCAAGCC  |
|    | 9901  | GGGAGCGCCA  | GGCGGTGCTG  | GGCCAGCATC  | ACCCGGCACA  | TCTCGCTGCT  | GCCCTCGATG  |
|    | 9961  | ATCTCCATGA  | GCTTGGCGTC  | GCGGTACGCC  | CGTTGACGA   | CGTGTCCCTC  | TCTCGCCCT   |
| 40 | 10021 | GCCGACCGA   | GCACCTGTGC  | GGCGGTGCG   | GCCCCGGCG   | GGGCTCGTT   | GGCGCGACG   |
|    | 10081 | TGCTTGGCCA  | GGATGTCGCG  | GGGCACCATC  | TCGGGCGAGC  | CCTCGTCCCA  | GTGGTCGCTG  |
|    | 10141 | GCGTACTCGC  | ACACGCGGGC  | CGCGATCTGC  | TCCGCGGTCC  | ACAGGTGCGC  | GATGTGCCCC  |
|    | 10201 | GCGACGAGTT  | GGTGGTCGCC  | GAGCGGCGG   | CCGAACTGCT  | CCCCGGTCCG  | GGCGTGGGCC  |
|    | 10261 | ACCGCGGCCG  | TGCGGCAGGC  | CCGCAGGATC  | CCGACCGAC   | CCCAGGCCAC  | CGACTTGCAC  |
| 45 | 10321 | CCGTAGGCAG  | GTGACGCCGC  | GACCAGCATC  | GCGAGTGACG  | CGCCGGAGCC  | GGCCAGGACC  |
|    | 10381 | GCGCCGGCCG  | GCACACGCAC  | CTGGTCCAGG  | TGCAGATCG   | CGTGGCCGGC  | GGCGCGCAG   |
|    | 10441 | CCGGACGGCT  | TCGGGACGCG  | CTCGACGCGT  | ACGCCGGGG   | TGTCGGCGGG  | CACGACCAAC  |
|    | 10501 | ACCGCACCGG  | AACCATCCCT  | CTGGAGACCG  | AAGACGACCA  | GGTGGTCCGC  | GTAGGCGGCG  |
|    | 10561 | GCAGTCGTCC  | AGACCTGTG   | GCCGTCGACG  | ACAGCGGTGT  | CCCCGTCGAG  | CCGAACCCGC  |
|    | 10621 | GTCCGCATCG  | CCGACAGATC  | GCTGCCGCC   | TGCCGCTCAC  | TGAAGCCGAC  | GGCCGCGAGT  |
| 50 | 10681 | TTCCCGCTGG  | TCAGCTCCTT  | CAGGAAGGTC  | GCCCCGCTGAC | CGGCGTCGCC  | GAGCCGCTGC  |
|    | 10741 | ACGGTCCACG  | CGGCCATGCC  | CTGCGACGTC  | ATGACACTGC  | GCAGCGAAGT  | GCAGAGGCTG  |
|    | 10801 | CCGACGTGTG  | CGGTGAACTC  | GCCGTTCTCC  | CGGCTGCCA   | GTCCCAGACC  | GCCGTGCTCG  |
|    | 10861 | GCCGCCACTT  | CCGCGCAGAG  | CAGGCCGTG   | GCGCCGAGCC  | GGACGAGCAG  | GTCGCGCGGC  |
|    | 10921 | AGTCGCCGG   | ACGTGTCCCCA | CTCGGCCGGCC | CGGTACCGA   | CAAGGTGCGGT | CAGCAGCGCG  |

- 32 -

|       |             |             |             |             |             |              |            |
|-------|-------------|-------------|-------------|-------------|-------------|--------------|------------|
| 10981 | TCACGCTCAG  | GCATCGACGG  | CCCGCAGCCG  | GTGGACGAGT  | GCGACCATGG  | ACTCGACGGT   |            |
| 11041 | ACGGAAGTTC  | GCGAGCTGGA  | GGTCGGGCC   | GGCGATCGT   | ACGTCGAACG  | TCTTCTCCAG   |            |
| 11101 | GTACACGACC  | AGTTCCATCG  | CGAACAGCGA  | CGTGAGGCCG  | CCCTCCGCGA  | ACAGGTCGCG   |            |
| 11161 | GTCCACGGGC  | CAGTCCGACC  | TGGTCTTCGT  | CTTGAGGAAC  | GCGACCAACG  | CGTGCACGAC   |            |
| 5     | 11221       | GGGGTCGTCC  | TTGACGGGTG  | CGGTCATGAG  | AACACCTTCT  | CGTATTGTA    | GAAGCCCCGG |
| 11281 | CCGGTCTTCC  | GGCCGTGGT   | TCCCTCGCG   | ACCTTGCCA   | GCAGCAGGTC  | ACAGGGCGG    |            |
| 11341 | CTGCGCTCGT  | CGCCGGTGC   | TTTGTGCAGC  | ACCCACAGCG  | CGTCGACGAG  | GTTGTCGATG   |            |
| 11401 | CCGATCAGGT  | CCGCGGTGC   | CAGCGGCCG   | GTCGGATGGC  | CGAGGCACCC  | CGTCATGAGC   |            |
| 11461 | GCGTCGACGT  | CCTCGACGG   | CGCGGTGCC   | TCCCTGACGA  | TCCCGGCCG   | GTCGTTGATC   |            |
| 10    | 11521       | ATCGGGTGGA  | GCAGCCGGCT  | CGTGACGAAG  | CCGGGCGCGT  | CCCGGACGAC   | GATCGGCTTG |
| 11581 | CGCCGCAGCG  | CCGCGAGCG   | GTCCCCGGCG  | GCGGCCATGG  | CCTTCTCAC   | GGTCCGGGGT   |            |
| 11641 | CCGCGGATCA  | CCTCGACCGT  | CGGGATCAGG  | TACGACGGGT  | TCATGAAGTG  | CGTGCACGAGC  |            |
| 11701 | AGGTCCCTCGG | GCCGGGCAC   | GGAGTCGGCC  | AGTTCGTCAA  | CCGGGATCGA  | CGACGTGTC    |            |
| 11761 | GTGATGACCG  | GGATACCGGG  | CGCCGCTGCC  | GAGACCGTGG  | CGAGTACCTC  | CGCCTTGACC   |            |
| 15    | 11821       | TCGGCGTCCT  | CGACGACGG   | CTCGATCAC   | GCGGTGGCCG  | TACCGATCGC   | GGGCAGCGCG |
| 11881 | GACGTGGCG   | TCCCGACAC   | ACCGGGTGC   | GCCTCGGCCG  | GCCCAGGCCAC | GAGTTGTGCC   |            |
| 11941 | GTCCGCAGTT  | CGGTGGCGAT  | CCGCGCCCGC  | GCCGCCGTA   | GGATCTCCTC  | GGACGTGTC    |            |
| 12001 | ACGAGTGTCA  | CCGGGACGCC  | GTGGCGCAGC  | GCGAGCGTGG  | TGATGCCGGT  | GCCCACATCACT |            |
| 12061 | CCCGCGCCGA  | GCACGATCAG  | CTGGTGGTCC  | ACGCTGTTTC  | CTCCCTCCGG  | GGTCACCATG   |            |
| 20    | 12121       | GCAGCGAGTA  | CGGGTCGAGG  | ACGTCTTCCG  | GGGTGACCC   | GATCGCGTCC   | TTGCGGCCGA |
| 12181 | GGCCGAGTTC  | GTGGCGAAG   | CCGAGCAGCA  | CGTCGAACGC  | GATGTTGGTC  | GCGAACGCGC   |            |
| 12241 | TGCCCCGTCGA | GTGAGGACG   | CTCAGGCTGT  | CCCGGTGGTC  | CGCCGCGGTG  | TCCGGTGC     |            |
| 12301 | CGCACAGGGC  | CGCCAGCGAC  | GGGCCGAGCT  | CGCGGTCCGG  | CAGTTGCTGG  | TACTCGCCCT   |            |
| 12361 | CGGGCGGGC   | CTGCCCCGGA  | TGGTCGACGC  | AGATGAACGC  | GTCGTCGAGC  | AGGGTCTTCG   |            |
| 25    | 12421       | GCAGTTCGGT  | CTTGCCCCGC  | TCGTCGGCGC  | CGATGGCGT   | CACATGCAGG   | TGCGGCAGCC |
| 12481 | GCGGCTCGGC  | GGGCAGCACC  | GGCCCTTTGC  | CCGAGGGCAC  | CGAGGTGACG  | GTGGACAGGA   |            |
| 12541 | CATCCGCGGC  | GGCGCGGCC   | TCCGCCGGAT  | CGGTACCTT   | GACCGGCACT  | CCGAGGAACG   |            |
| 12601 | CGATCGGGTC  | CGCGAACGAC  | GCCCGTGGC   | CGGGGTCGGT  | GTCGCTGACC  | AGGATCCGCT   |            |
| 12661 | CGATGGGCAG  | GACCCTGCTG  | AGCGCGTGC   | CCTGGGTCAC  | CGCCTGTGCG  | CCCGCGCCGA   |            |
| 30    | 12721       | TCAGCGTGAG  | CGTGGCGCTG  | TCGGACCGGG  | CCAGCAGCCG  | GCTCGCGACG   | GGGGCGACCG |
| 12781 | CGCCGGTCCG  | CATCGCGGTG  | ATCACGCC    | CGTCGGCGAG  | GGCGGTCA    | CTGCCGCTGT   |            |
| 12841 | CGTCGTCGAG  | GCGCGACATC  | GTGCCGACGA  | TCGTCGGCAG  | CCGGAAGCGC  | GGATAGTTGT   |            |
| 12901 | GCGGACTGTA  | CGAAACCGTC  | TTCATGGTCA  | CGCCGACACC  | GGGGACCCGG  | TACGGCATGA   |            |
| 12961 | ACTCGATGAC  | GCCGGGAATG  | TCGCCGCCG   | GGACGAATCC  | GGTACGCGGC  | GGCGCCTCGG   |            |
| 35    | 13021       | CGAACCTCGCC | GGGGCGAGC   | GGGGCGAAC   | CGTCGTCAG   | CTCGCTGATC   | AGCCGGTCCA |
| 13081 | TCATCACGTC  | GGGGCCGATC  | ACGGAGAGAA  | TCCGCTTGAT  | GTACGTTGG   | GCGAGGACCC   |            |
| 13141 | TGGTCTGCAT  | GTGTACCTC   | CCTTCGTGG   | CCGGAGCTGT  | CTTGGTGGTG  | CCGCTCGGGG   |            |
| 13201 | CGGCTTCCGT  | TCTCATCGCA  | GCTCCCTGTC  | GATGAGGTG   | AAAATCTCGT  | CCGCGGTGCG   |            |
| 13261 | GTCCCGGGAC  | AGCACGCCG   | CGGGCGTGGT  | CGGGCGGGTC  | TCCCGCCGCC  | AGCGGTTGAG   |            |
| 40    | 13321       | CAGGGCGTCC  | AGCCGGGTT   | CGATCGCGTC  | CGCCTGGCG   | GCGCCCGGGT   | CGACACCGC  |
| 13381 | AACGAGTGCT  | TCCAGCGGT   | CGAGCTGCGC  | GAGCACCACG  | GTCACCGGGT  | CGTCCGGGG    |            |
| 13441 | CAGCAGTTCA  | CCGATCGGT   | CGGCGAGTC   | GCGCGGCCAC  | GGGTAGTCGA  | AGACGAGCGT   |            |
| 13501 | GGCGGACAGT  | CGCAGACCG   | TCGCCCTCGTT | GAGGCCGTT   | CGCAGCTGCA  | CCGCGATGAG   |            |
| 13561 | CGAGTCCACA  | CCGAGTTCCC  | GGAACGCCG   | GTCCTCCGGG  | ATGTCCTCCG  | GGTCGGCGTG   |            |
| 45    | 13621       | GCCCAGGACG  | GCCGCTGCC   | TCTGCCGGAC  | GAGGGCGAGC  | AGGTGGTGG    | GGCGTCCCTG |
| 13681 | CTCGTTGCGG  | GCGCTCCGGC  | GGGCCGACGG  | CTTGGGCGG   | CCACGCAGCA  | GCAGGGAGGTC  |            |
| 13741 | CGGCGGCAGG  | TCGCCCCGCC  | CGGGGACGAC  | ACTGCCGTT   | CCGGTGTGGA  | CGGCGCGTC    |            |
| 13801 | GTACATGCGC  | ATGCCCTGTT  | CGGGCGGTGAG | CGCGCTCGCC  | CCACCCCTTC  | GCATACGGCG   |            |
| 13861 | CCGGTCGGCG  | TCGGTCAGGT  | CCGGCGTCAG  | GCCACTCGCC  | TGGTCCCACA  | GCCCCCACGC   |            |
| 50    | 13921       | GATCGACAGC  | CCTGGCAGCC  | CTTGTGCAC   | CCGGTGTTCG  | GCGAGCGCGT   | CGAGGAACGC |
| 13981 | GTTCGCCGCC  | GCGTAGTTGC  | CCTGACCGGG  | GGTGCCCCAGC | ACACCGGCCG  | CCGACGAGTA   |            |
| 14041 | GACGACGAAT  | GGGGCGAGGT  | CGGTGTCGCG  | GGTGAGCCGG  | TGCAGGTGCC  | AGGCGGCGTC   |            |
| 14101 | GGCCTTGGGT  | TTGAGGACGG  | TGTCGATGCG  | GTCGGGGT    | AGGGTGTGCA  | GCAGGGCGTC   |            |
| 14161 | GTCGAGGGTT  | CCGGCGGTGT  | GGAAAGACGCC | GGTGAGGGGT  | TGAGGGATGT  | GGGCGAGGGT   |            |

- 33 -

14221 GGTGGCGAGT TGGTGGGGT CGCCGACGTC GCAGGGGAGG TGGGTGCCGG GGGTGGTGTC  
14281 GGGGGTGGG GTGCGGGAGA GGAGGTAGGT GTGGGGTGG TTCAGGTGGC GGGCGAGGAT  
14341 GCCGGCGAGG GTGCCGGAGC CGCCGGTGTAT GACGACGCC CCCTCGGGGT CCAGCGGCCG  
14401 CGGGACCGTG AGGACGATCT TGCCGGTGTG CTCGCCCGG CTCATGGTCG CCAGCGCCTC  
5 14461 GCGGACCTGC CGCATGTCGT GCACCAC GCACCGTCAC CGGCAGCGG TGCAACAC CGCGCGCAA  
14521 CAGGCCGAGC AGCTCCGGA TGATCTCCTT GAGCCGGTCG GGCCCCCGGT CCATCAGGTC  
14581 GAACGGTCGC TGGACGGCGT GCGGGATGTC CGTCTTCCCC ATCTCGATGAA ACCGGCCACC  
14641 CGGCGCGAGC AGGCCGACGG ACGCGTCGAG GAGTTCACCG GTGAGCGAGT TGAGCACGAC  
14701 GTCGACCGGC GGGAACGCGT CGCGAACGC GGTGCTGCGG GATACGGCCA GATGCGCTCC  
10 14761 GTCCAGGTCC ACCAGATGGC GCTTCGCCG GCTGGTGGTC GCGTACACCT CCGCGCCCAG  
14821 GTGCCGCGC ATCTGCCGG CGGCCGAACC GACACCGCCG GTGGCCCGGT GGATCAGGAC  
14881 CTTCTCGCCG GGGCGCAGCC CGGCCGAGGTC GACCAGGCCG TACACGCCG TCGCGAACGC  
14941 GGTCACTACG GACGCCGCT GCAGGAACGT CCAGCCGTCC GGCACTCCGG CGAGCATCCG  
15001 GTGGTCGGCG ATGACCGTGG GGCGAACGC GGTGCCGACG AGGCCGAAGA CGCGGTCGCC  
15 15061 CGGTGCCAGA CGGGAGACGT CGGCCGCCGGT CTCCAGGACG ATGCCCGCGG CCTCGCCGCC  
15121 GAGCACGCC CGGCCAGGGT AGGTGCCGAG CGCGATCAGC ACATCGCGGA AGTTGAGGCC  
15181 CGCCGCACGC ACACCGATCC GGACCTCGGC CGGGCGAGG GGGCGCCGG GCTCCGCCGA  
15241 GTCGCCGCG GTGAGGCCGT CGAGGGTGC CGTCCGCCG GGGCGGATCA GCCACGTGTC  
15301 GCTGTCCGGC ACGGTGAGCG GCTCCGCCAC CGGGTGAGG CGGGCCGCC CGAACCGGCC  
20 15361 GCCGCGCAGC CGCAGACCGC GCTCGCCGAG TCGACGGCG ATGCGCTGCT GCTGGGGGC  
15421 GAGCGTGACG CGGGACTCGG TCTCGACGTG GACGAACCGG CGGGCTGCT CGGCCTGGGC  
15481 GGCGCGCAGC AGTCCGGCC CGCGCCGGT GGCGAGGCC GCGGTGGTGT GCACGAGCAG  
15541 ATCCCCGCCG GAGCCGGTCA GGGCGGTCA CGAGCCGGT GTCAGCGCAC GCGTCTCGGC  
15601 CACCGGGTCG TCGCCATCAG CGCAGGCAA CGTGATGACG TCCACGTGCG TCGCGGGGAC  
25 15661 ATCCGTGGGT CGGGCGACCT CGATCCAGGT GAGACGCATC AGGCCGGTGC CGACGGGTGG  
15721 GGACAGCGGG CGGGTGCAGA CCGTCCGGAT CTCGGCGACG AGTTGGCCGG CGGAGTCGGC  
15781 GACGCGCAGA CTCAGCTCGT CGCCGTCA CGTGATCAGC GCTCGGAGCA TGGCCGAGCC  
15841 CGTGGCGACG AACCGGGCCC CCTTCCAGGC GAAACGGCAGA CCCGCAGCGC TGTGTCGGG  
15901 CGTGGTGAGG GCGACGGCGT GCAGGGCCGC TCGAGCAGC GCGGTGATGCA CACCGAAACC  
30 15961 GTCCGCCCTCG GCGGCCCTGCT CGTCGGGCAG CGCCACCTCG GCATACACGG TGTCACCATC  
16021 ACGCCAGGCA GCCCGCAACC CCTGGAACGC CGACCCGTAC TCATAACCAG CATCCCGCAG  
16081 TTCGTATAG AACCCCAGAGA CGTCGACGGC CACGGCCGT ACCGGCGGCC ACTGCGAGAA  
16141 CGGCTCCACA CCGACAAACAC CGGGGGTGTG GGGGGTGTG GGGGGTCAAGGG TGCCGCTGGC  
16201 GTGCCGGGTG CAGCTGCCG TGCCCTCGGT ACGCGCGTGG ACGGTACCCG GCGCCGTCC  
35 16261 GGCCTCATCA GCCCCTTCA CGGTACCGA CACATCCACC GCTGCGGTCA CGGGCACAC  
16321 AAGGGGGAT TCGATGACCA GCTCGTCCAC TATCCCGAA CGGGTCTCGT CACCGGCCCG  
16381 GATGACCAGC TCCACAAACG CGTACCCGG CAGCAGGACG TGCCCCCGCA CGCGTGTATC  
16441 AGCCAGCCAG GGGTGAGTGC GCAATGAGAT CGGGCCAGTG AGAACAAACAC CACCATCGTC  
16501 GGCGGGCAGC GCTGTGACAG CGGCCAGCAT CGGATGCGCC GCACCCGTCA ACCCCGCCGC  
40 16561 CGACAGATCG GTGGCACCGG CGCCCTCCAG CGAGTACCGC CTGTGCTGCA ACGCGTACGT  
16621 GGGCAGATCC AGCAGCCGTC CGGCCACCGG TTGACCAACC GTGTCCCAAGT CCACTGCCGT  
16681 GCCCAGGGTC CACGCCCTGCG CCAACGCCGT CAGCCACCGC TCCCAGCCGC CGTCACCGGT  
16741 CCGCAACGAC GCCACCGTGT GAGCCTGCTC CATGCCCGC AGCAGCACCG GATGGGCACT  
16801 GCACTCCACG AACACCGACC CATCCAGCTC CGCCACCGC GCGTCCAACG CCACCGGACG  
45 16861 ACGCAGATTG CGGTACCAAGT ACCCCTCATC CACCGGTCC GTCACCCAGG CGCTGTCCAC  
16921 GGTGACCAAC CACGCCACCG ACGCCGCTT CCCTGCCACC CCCTCCAGTA CCTTGGCCAG  
16981 TTCATCCTCG ATGGCTTCA CGTGGGGCGT GTGGGAGGCC TAGTCGACCG CGATACGACG  
17041 CACCCGCACG CCTTCGGCCT CATAACGCCG CACCACTCC TCCACCGCCG ACGGGTCCCC  
17101 CGCCACCAAC GTCGAAGGCC GGCGCTTACG CGCCGCGATC CACACACCC CGACCAGACC  
50 17161 GACCTCACCG GCCGGCAACG CCACCGAACG CATCGCTCCC CGCCCGGCCA GTCGCGCCGC  
17221 GATGACCTGA CTGCGCAATG CCACCAACGC CGCGGCCGTCC TCGAGGCTGA GGGCTCCGGC  
17281 CACGCACGCC GCCCGATCT CGCCCTGGGA GTGTCCGATC ACCCGCGTCC CGACGACCCC  
17341 ATGCGCCTGC CACAGCGCGG CCAGGCTCAC CGCGACCGCC CAGCTGGCCG GCTGGACAC  
17401 CTCCACCCGC TCCGCCACAT CGGCCGCGC CAACATCTCC CGCACATCCC AGCCCGTGTG

|       |             |             |             |             |             |             |            |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
| 17461 | CGGCAGCAAC  | GCCTGAGCGC  | ACTCCTCCAT  | ACGCGCGCG   | AACACCGCGG  | AGTGGGCCAT  |            |
| 17521 | GAGTTCCACG  | CCCATGCCA   | CCCACTGGC   | GCCCTGGCG   | GGGAAGACGA  | ACACCGTACG  |            |
| 17581 | CGGCTGGTCC  | ACCGCCACAC  | CCGTCAACCG  | GGCATCGCC   | AGCAGCACCG  | CACGGTGACC  |            |
| 17641 | GAAGACAGCA  | CGCTCCCAGCA | CCAACCCCTG  | CGCGACCGCG  | GCCACATCCA  | CACCACCCCC  |            |
| 5     | 17701       | GCGCAGATAC  | CCCTCCAGCC  | GTCACACCTG  | CCCCCGCAGA  | CTCACCTCAC  | CACGAGCGA  |
| 17761 | CACCGGCAAC  | GGCACCAACC  | CGTCAACAAC  | CGACTCCCCA  | CGCGACGGCC  | CAGGAACACC  |            |
| 17821 | CTCAAGGATC  | ACGTGCGCGT  | TGTCACCGCT  | CACCCCGAAC  | GACGACACAC  | CCGCATGCGG  |            |
| 17881 | TGCCCGATCC  | GACTCGGGCC  | ACGGGCTCGC  | CTCGGTGAGC  | AGCTCCACCG  | CACCGGCCGA  |            |
| 17941 | CCAGTCCACA  | TGCGACGACG  | GTCACGTCCAC | ATGCAGCGTC  | TTCGGCGCGA  | TCCCGTACCG  |            |
| 10    | 18001       | CATCGCCATG  | ACCATCTTGA  | TCACACCGGC  | GACACCCGCC  | GCCGCCTGCG  | CATGACCGAT |
| 18061 | GTTCGACTTC  | AAACGAACCCA | GCAGCAGCGG  | AAACCTCACGC | TCCTGCCCCGT | ACGTCGCCAG  |            |
| 18121 | AATGGCCTGC  | GCCTCGATGG  | GATCGCCCCAG | CGTCGTCCCC  | GTCCCCTGCG  | CCTCCACCAC  |            |
| 18181 | GTCCACATCG  | GCGGGCGCGA  | GTCCGGCGTT  | CACCAACGCC  | TGCTGGATGA  | CACGCTGCTG  |            |
| 18241 | GGACGGGCCG  | TTGGGGGCCG  | ACAGCCCGTT  | GGAGGCACCG  | TCCTGGTTCA  | CCGCCGACCC  |            |
| 15    | 18301       | GCGGACGACC  | GCGAGAACCG  | TGTGTCCCGT  | GCGCTCGGCC  | TCGGAGAGCC  | GCTCCAGCAC |
| 18361 | AAGAACGCCG  | GCGCCCTCCG  | CCCAGCCGGT  | GCCGTTGGCG  | GCGTCCCGCA  | ACGCGCGGCA  |            |
| 18421 | GCGGCCGTCG  | GGGGAGAGTC  | CGCCCTGCTG  | CTGGAATTCC  | ACGAACCCGG  | TCGGGGTCGC  |            |
| 18481 | CATGACGGTG  | ACACCGCCGA  | CCAGCGCCAG  | CGAGCACTCC  | CCGTGGCGCA  | GTGCGTGC    |            |
| 18541 | GGCCTGGTGC  | AGCGCGACCA  | GCGACGACGA  | GCACCCGTG   | TCCACCGTGA  | ACGCCGGTCC  |            |
| 20    | 18601       | CTGGAGCCCA  | TAGAAGTACG  | AGATCCGGCC  | GGTGAGCACG  | CTGGGCTGCA  | TGCCGATCGA |
| 18661 | GCCGAACCCG  | TCCAGGTCCG  | CGCCGACGCC  | GTACCCGTAC  | GAGAAGGC    | CCATGAACAC  |            |
| 18721 | GCCGGTGTG   | CTGCCGCGCA  | GTGTGCCCGG  | CACGATGCC   | GCGCTCTCGA  | ACGCCCTCCC  |            |
| 18781 | TGTCGTTTC   | AGCAGGATCC  | GTCGCTGGGG  | GTCCATGGCC  | CGTGCTCAC   | GGGGGCTGAT  |            |
| 18841 | GCCGAAGAAC  | GCGGCATCGA  | AGCCGGCGGC  | GTGCGAGAGG  | AAGCCGCCG   | GGTCCGTGTC  |            |
| 25    | 18901       | CGATCCGCCG  | GTGAGGCCG   | ACGGGTCCCA  | GCCACGGTCG  | GCCGGGAAGC  | CGGTGACCGC |
| 18961 | GTCGCCGCCA  | CTGTCCACCA  | TGCGCCACAG  | GTGTCGGGC   | GAGGTGACGC  | CGCCCGGCAG  |            |
| 19021 | TCGGCAGGCC  | ATGCCACCGA  | TGGCCAGCGG  | TTGTCACGG   | GTCCGCGGCC  | CTGTGGAAC   |            |
| 19081 | AGCGACCGGT  | GCGGCACCA   | CGACCCAGAGC | CTCGTCCAAC  | CGCGACGCCA  | TGGCCCGCGG  |            |
| 30    | 19141       | CGTCGGTAG   | TCGAAGACAA  | GCGTGGCGGG  | CAGTCGGACA  | CCGGTCGCCG  | CGGCGAGTCG |
| 19201 | GTTCCGCAGT  | TCGACGGCGG  | TCAGCGAGTC  | GATAACCCAGT | TCCTTGAAGG  | CCGCGTCCGC  |            |
| 19261 | GGACACGTCC  | GCGCGTCCG   | CGTGGCCGAG  | CACCGCCGCC  | GCCTTGTGCG  | GGACCAAGTGC |            |
| 19321 | CAGCAGCGCG  | GTGTCCCGCT  | CAGCGCCGGA  | CATGGTGGCG  | AGCCGGTCGG  | CGAGCGAAC   |            |
| 19381 | GGCGGTGGCC  | GCCGCCGGGC  | GCGATACGGC  | GC GGCGCAGA | TCGGCGAAAA  | GGGGCGATGT  |            |
| 19441 | GTGCGCGGTG  | AGGTCCATCG  | TGGCCGCCAC  | GGCGAACCGC  | GTGCCGGTTC  | CGGCCGCGGC  |            |
| 35    | 19501       | TTCCAGCAGG  | CGCATGCCCA  | CACCGGCCGA  | CATGGGGCGG  | AAACCGCCGC  | GGCGGACACG |
| 19561 | GGTGCGGTTG  | GTGCCGCTCA  | TGCTGCCGGT  | GAGTCCGCTG  | TCATCGGCC   | AGAGGCCCA   |            |
| 19621 | GGCCAGCGAC  | AGCGCGGGCA  | GTCCTTCGGC  | ATGGCGCAGC  | GTCCGAGTC   | CGTCGAGGAA  |            |
| 19681 | CCCGTTCGCC  | GCCGAGTAGT  | TGCCCTGGCC  | CGGGCCGCC   | ATGATGCCG   | CGACGGACGA  |            |
| 19741 | GTAGAGGACG  | AACGAGCGCA  | GGTCCCGCTC  | CCGGGTCAAGC | TCGTGCAGGT  | GCCAGGC     |            |
| 40    | 19801       | GTCGGCTTTG  | GGGCGCAGTG  | TGGTGGCGAG  | CCGCTCCGGG  | GTGAGTGC    | TGGTCACGCC |
| 19861 | GTCGTGAGC   | ACGGCTGCCG  | TGTGAAAGAC  | CGCCGTGAGC  | GGCCTGCCG   | CGGCGGCCAG  |            |
| 19921 | CGCGGCCGGC  | AGCTGGTCCC  | GGTCGGCGAC  | GTCACAGCGG  | ATGTGGACAC  | CGGGAGTGTC  |            |
| 19981 | CGCGGCCGGT  | TCGCTGCGCG  | ACAGCAACAG  | GAGGTGGCGG  | GCGCCATGCT  | CGGCGACGAG  |            |
| 45    | 20041       | ATGCCGGCG   | AGGAGACCTG  | CCAGCACACC  | CGAGCCGCCG  | GTGATGACCA  | CCGTGCCGTC |
| 20101 | CGGGTCCGAGC | AGCGGTTCCG  | GCGTTCCGC   | GGCGGCCGTG  | CGGGTGAACC  | CGGGCGCTTC  |            |
| 20161 | GTACCGGCCG  | TCGGTACGC   | GGACGTACGG  | CTCGGCCAGT  | TCGGTGGCG   | CGGCCAGCGC  |            |
| 20221 | CTCGATGGGG  | GTGTCGGTGC  | CGGTCTCCAC  | CAGCACGAAC  | CGGCCGGGT   | GCTCGGCC    |            |
| 20281 | GGCGGACCGG  | ACGAGGCCGG  | CGACCGCTCC  | TCCGACCGGT  | CCCGCGTCGA  | TCCGGACGAC  |            |
| 20341 | GAGGGTGGTC  | TCCGCAGGGC  | CGTCCTCGGC  | GATCACCCGG  | TGCAAGCTCGC | CGAGCACGAA  |            |
| 50    | 20401       | CTCGGTGAGC  | CGGTACGTCT  | CGTCGAGGAC  | ATCCGCCCC   | GGTCCGGGA   | GC CGGAGAC |
| 20461 | GATGTGGACC  | GCGTCCGCA   | GACCGGGCCC  | GGGAGTGGGC  | AGCTCGGTCC  | AGGAGAGGCC  |            |
| 20521 | GTACAAGGAG  | TTCCGTACGA  | CGGCGGCCGTC | GCCGTCGACG  | TTCACCGGTC  | GC CGGCGTC  |            |
| 20581 | CGCGGCCGACG | GTCACCAACCG | GTTGGCCGAC  | CGGGTCCGTC  | GCATGCACGG  | CAGCGCCGTC  |            |
| 20641 | CGGGCCCTGA  | GTGATCGTGA  | CGCGCAGCGT  | GGTGGCCCCG  | GTGCGTGTGGA | ACCGCACGCC  |            |

- 35 -

|       |                                                                         |
|-------|-------------------------------------------------------------------------|
| 20701 | GCTCCACGAG AACGGCAGCC GCACCTCCGC TTCCCTGTTCC GCGAGCAGCG GCAGGCAGGT      |
| 20761 | GACGTGCAAG GCCGCGTCGA ACAGCGCCGG GTGGACGCCA TAGTGCAGCG TGTCGTCGCC       |
| 20821 | CTGTTCCCCG GCGATCTCCA CCTCGCGTA CAGGGTTTCG CCCTCGCGCC AGGCGGTGCG        |
| 20881 | CAGTCCCTGG AACGCTGGC CGTAGCTGTA GCGCGTCTCG GCCAGCCGCT CGTAGAACGC        |
| 5     | 20941 GCTCACGTCG ACGCGTCGCG CGCCCGGGCG CGGCCACGCG GGCGCGGGGA CGGCCCGAC  |
| 21001 | GCTTCCGGCC CGGCCGAGGG TGCCGCTGGC GTGCCGGGTC CAGCTGTCCG TGCCCTCGGT       |
| 21061 | ACGCGCGTGG ACGGTCACTC GCCGCCGTCC GGCTCATCG GCCCTTCGA CGGTCACCGA         |
| 21121 | CACATCCACC GCGCCGGTCA CGGGCACCC GAGCGGGGTC TCGATGACCA GTTCATCCAC        |
| 21181 | CACCCCGCAA CGCGTCTCGT CACCGGCCCCG GATGACCAAGC TCCACAAACG CCGTACCCGG     |
| 10    | 21241 CAGCAGAACCGT GTGCCCGCA CGCGTGATC AGCCAGCCAG GGATGCGTAC GCAACGAGAT |
| 21301 | CCGGCCAGTG AGAACAAACAC CACCAACGTC GTCGGGCGGC AGTGGTGTGA CGGCGGGCAG      |
| 21361 | CATCGGATGC GCCGCCCGG TCAGCCCAGC CGGGACAGA TCGGTGGCAC CGGCCGCCCTC        |
| 21421 | CAGCCAGTAC CGCCCTGTGCT CGAACGCGTA GGTGGGAGA TCGAGCAGCC GTCCCGGCAC       |
| 21481 | CGGTTCGACC ACCGTGTCAC AGTCCACTGC CGTGCCCAGG GTCCACGCCT GCGCCAACGC       |
| 15    | 21541 CGTCAGCCAC CGCTCCCAGC CGCCGTCAAC GGTCGCACAC GACGCCACCG TGTGAGCCTG |
| 21601 | TTCCATCGCC GGCAGCAGCA CGGGATGGGC GTCGACTCC ACGAACACCG ACCCGTCCAG        |
| 21661 | CTCCGCCACC GCCCGTCCA GCGCGACGGG GCGACGCAGG TTCCGGTACC AGTAGCCTC         |
| 21721 | ATCCACCGGC TCGGTACCCC AGGCCTGTGTC CACCGTGGAC CACCAAGGCCA CCGACCCGGT     |
| 21781 | CCCGCCGGAA ATCCCTCCA GTACCTCGGC CAACTCGTCC TCGATGGCTT CCACGTGGGG        |
| 20    | 21841 CGTGTGGAG GCGTAGTCGA CGCGATAACG GCGCACTCGC ACGCCCTCGG CCTCGTACCG  |
| 21901 | CGTCACCACT TCTTCCACCG CGGACGGGTC CCCCGCCACAC ACAGTCGAAG ACGGGCGTT       |
| 21961 | ACGCGCCGCG ATCCACACGC CCTCGACCG AGTGCACCTCA CGGCGCCGGCA ACGCCACCGA      |
| 22021 | AGCCATCGCC CCCCGCCCGG CGAGCCGCC CGCGATCACCG TGGCTGCGCA AGGCCACAC        |
| 22081 | CGGGCGGGCG TCCTCAAGGC TGAGGGCTCC GGCCACACAC GCGCCCGCGA TCTCGCCCTG       |
| 25    | 22141 GGAGTGTCCG ACCACCGCGT CGGGCACGAC CCCATCGCC TGCCACAGCG CGGCCAGGCT  |
| 22201 | CACCGCGACC GCCCAGCTGG CGGGCTGGAC CACCTCCACC CGCTCCGCCA CATCCGCCG        |
| 22261 | CGCCAACATC TCCCGCACAT CCCAGCCCGT GTGCGGAAC AACGCCCGCG CACACTCCTC        |
| 22321 | CATACGAGCC GCGAACACCG CAGAACACGC CATCAACTCC ACACCCATGC CCACCCACTG       |
| 22381 | AGCACCCCTGC CGGGAAAGA CGAACACCGT AGCGGGCTGA TCCACCGCCA CACCCATCAC       |
| 30    | 22441 CGGGCATCG CCCAACACA CGCACGGTG ACCGAAGACA GCACGCTCAC GCACCAACCC    |
| 22501 | CTGCGCGACC GCGGCCACAT CCACACCACC CCCGCGCAGA TACCCCTCCA GCGCTCCAC        |
| 22561 | CTGCCCCCGC AGACTCACCT CACTCCGAGC CGACACCGGC AACGGCACCA ACCCATCGAC       |
| 22621 | AGCCGACTCC CCACCGGACG GCGGGGAAC ACCCTCAAGG ATCACGTGCG CGTTGTACC         |
| 22681 | GCTCACCCCG AAAGCGGAGA CACCGGCCCCG GCGCGGACGT CCCCGTCCGG GCCACGCCG       |
| 35    | 22741 CGCCTCGGTG AGCAGTTCCA CGCGCCCTC GGTCAGTCC ACATGCGACG ACGGCTCGTC   |
| 22801 | CACATGCGAC GTCTCGGCG CGATGCCATA CGCGATCGCC ATGACCATCT TGATGACACC        |
| 22861 | GGCGACACCC GCAGCCGCT CGCGATGACC GATGTTGAC TTCAACGAAC CCAGCAGCAG         |
| 22921 | CGGAACCTCA CGCTCTGCG CGTACGTCGC CAGAATCGCG TGCCCTCGA TGGGATCGCC         |
| 22981 | CAGCGTCGTC CCCGTCCCCG GCGCCCTCAC CACGTCCACG TCGGGGGGGG CGAGCCCCGC       |
| 40    | 23041 CTTGTGGAGG GCCTGGCGGA TGACGCGCTG CTGGGAGGGG CGGTGGGTG CGGAGATGCC  |
| 23101 | GTTGGAGGCG CGTCCTGGT TGACGGCGGA GGAGCGGACG ACCCGCAGGA CGGTGTGTCC        |
| 23161 | GTTGCGCTCG CGTCCGGAGA GCTTTGAC GACGAGGACG CGGCCCCCT CGCGAAACC           |
| 23221 | GGTGGCGTCC GCCCGTCAAG CGAACGCCCTT GCACCGTCCG TCCGGCGCGA CGCCGCCCTG      |
| 23281 | CGGGGAGAAC TCCACGAAGG TCTGTGGTGA TGCCATCACT GTGACACCAC CGACCAGCGC       |
| 45    | 23341 CAGCGAGCAC TCCCCGGTCC GCAGCGCTG CGGCCCTGG TGCGCGCGA CCAGCGACGA    |
| 23401 | CGAACACGCC GTGTCGACCG TGACGCCGG ACCCTCCATG CGAAGAAGT ACGACAGCCG         |
| 23461 | TCCGGCGAGC ACCCGGGGCT GTGTGCTGTA GGCGCCGAAT CGGCCAGGT CGCGCCCGT         |
| 23521 | GCCGTAGCCG TAGTAGAAC CGCCGACGAA GACGCCGGTG TCGCTGCCGC GCAGGGTGTC        |
| 23581 | CGGCACGATG CGCGCGTGT CGAGCGCTC CCAGCGATT TCGAGGAGGA TCCGCTGCTG          |
| 50    | 23641 CGGGTCGAGT CGGGTGGCCT CGCGCGGACT GATGCCGAAG AACCGGGCAT CGAAGTCGGC |
| 23701 | GGCGCCCGCG AGTGCGCCGG CCCGCCGGT GGCGGACTCG CGGGCGCGT GCAGCGCGC          |
| 23761 | CACGTCCCAG CGCGGGTCGG TGGGGAAGTC GCGGATCGCG TCGCGGCCGT CGCGACGAG        |
| 23821 | CTGCCACAGC TCTTCCGGTG AGGTGACGCC GCGCGGCAGT CGGCAGGCCA TGCCGACGAC       |
| 23881 | GGCGAGCGGC CGTGTGCGCC CGGGCGCGAG CGCGGTGTT CGCCGGCGGA GCTGCGCGTT        |

- 36 -

|       |             |            |             |             |            |             |            |
|-------|-------------|------------|-------------|-------------|------------|-------------|------------|
| 23941 | GTCCTTGACC  | GACGTCCGCA | GCGCCTCGAT  | CAGGTCGTT   | TCGGCCATCG | CCTCATCCCT  |            |
| 24001 | TCAGCACGTG  | CGCGATGAGC | GCGTCTCGT   | CCATGTGTC   | GAACAGTTG  | TCGTCCGGCT  |            |
| 24061 | CCGCGGTCGT  | GGTGCTCGC  | GGTGCTGTG   | CCGGTGGTC   | ACGCCGTCC  | GGGGTCCCCT  |            |
| 24121 | TGTGTCGGG   | GGTCCCCTG  | ACGTCGGGG   | CCAGGAGGT   | CAGCAGATGA | GGGGTGAGCG  |            |
| 5     | 24181       | CGCCGGCGGC | GGGATAGTCG  | AAGACGAGCG  | TGGCCGGCAG | CGGAATGCCG  | AGGGCCTCGG |
| 24241 | AGAGCCGGTT  | CGCGAGGCCG | AGCGCGGTGA  | GCGAGTCGAC  | CCCGAGGTCC | TTGAACGCCG  |            |
| 24301 | TGGTGGCCGT  | GACGCCGCC  | GCGTCGGTGT  | GGCCCAGCAG  | GGTGGCGGCG | GTGTCGCCGA  |            |
| 24361 | CGACGCCGAG  | CAGCACCTGT | TCCCCTCCT   | TGTGGGCAG   | GTCCGGCAGG | CGTTCCAGCA  |            |
| 24421 | GGGAGCCGCC  | GTGCGTCGGG | GAGGCCCGGG  | TGGGGCCTG   | GATCGGTGCG | CACAGCGGTG  |            |
| 10    | 24481       | ACGGGTCGCC | GGGCCCCGGG  | GGGGCGGTG   | CCACGACAC  | GGCTTCCCCG  | GTGGCGCACG |
| 24541 | CGGCGTCGAG  | GAGGTCGGTC | AGCCGGTCCG  | CCGCGGCGGT  | GAACGCCACG | GCCGGCAGGC  |            |
| 24601 | CTTGTGCCCG  | CGCGAGGTG  | GCCAGGGCCT  | GGAGCGGTCC  | GGCCGCCTCG | CCGGACGGAA  |            |
| 24661 | CGGCGAGAAC  | GAACGCGGTC | AGGTCGAGGT  | CGCGGGTCAG  | CGGGTGCAGT | TCCCAGGCCG  |            |
| 15    | 24721       | ACTCGCGGT  | GCCGTCCGGG  | TGGACGACCG  | CGGTACCCG  | GGTTTCCGGC  | ACTGTGCCCG |
| 24781 | GCTCGTACCG  | GATCACTTCG | GCGCCGTGTC  | CGCCGAGGTG  | TCCGGCGAGT | TCCTCCGAAC  |            |
| 24841 | CGCCCCGCGAG | GAGGACGGTG | TCGCCGTACG  | AGGCCGCGGC  | CGTGGTGGGC | GCGGCGGGGA  |            |
| 24901 | CGAGGGCGGG  | CGCTTCGAGG | CGCCCGTCGG  | CCAGGCGCAG  | GTGCGGTTG  | TCGAGGCCGG  |            |
| 24961 | AGAGGGCGGC  | GGCGCGGCCG | GGGGTGACCG  | TGTCGGTGGT  | CTCCACGAGC | ACGAGCCGGC  |            |
| 20    | 25021       | CCGGTTCCGC | GGTGTGAGC   | AGTGCGGCGA  | CGGCACCGGC | GACGGGCCG   | GCCTCGGGCG |
| 25081 | ACACCAACCAG | CGTGGCGCCG | GCGGTCCCTG  | GGTCGTCAG   | TGCGGTACGG | ACCTCGTCGG  |            |
| 25141 | GACCGGATAC  | CGGGACGACG | ATGACGTCGG  | GCGTGGCGTC  | GTCGCCGAGG | TCGGTGTACC  |            |
| 25201 | GGCGGGCCGT  | GGTGCCGGG  | GCCGCCGGGG  | CCCGGACGCC  | GGTCCAGGTG | CGCCGGAACA  |            |
| 25261 | GCCGACGTC   | CCCCTCCGGG | CCCCTCGTGG  | CGGGGGGCCG  | GGTGTAGAGC | GAGCCGATCT  |            |
| 25321 | GAGCCACCGG  | CCGTCCCAGT | TCGTCGGCGA  | GGTGCACCCG  | GGGCCCGCCC | TCGCCCCTCGC |            |
| 25    | 25381       | CGTGGACGAA | GGTGACGCGC  | AGTTCTGTGG  | CGCCGCTGGT | GTGGACACGG  | ACGCCGGTGA |
| 25441 | ACGCGAACGG  | CAACCGTACC | CCCCTCGTCT  | CGCGGGCCGC  | GCCGATGCTG | CCCGCTTGCA  |            |
| 25501 | GCGCGGTGAC  | GAGCAGCGCC | GGGTGCACTG  | TGTAGCGGGC  | GGCGTCCCTG | GCGAGGGCGC  |            |
| 25561 | CGTCGAGGGC  | GAECTCGGCG | CAGACGGTGT  | CTCCGTGGCT  | CCACGCGGC  | GACATGCCGC  |            |
| 30    | 25621       | GGAACTCGGG | GCCGAACCTG  | TATCCCGCTG  | CGTCGAGTCG | CTGGTAGAAG  | GCCGCGACGT |
| 25681 | CGACCGGTT   | CGCGTGCTG  | GGCGGCCAGG  | GCCCCGGCGT  | GGTGGCCGGT | TCGGTGGTGG  |            |
| 25741 | CGATGCCGGC  | GAAGCCGGAG | CGCTGGCGGG  | TCCATGTCCG  | GTCGCCGTCC | GTCCGGCGGT  |            |
| 25801 | GGACCGCAC   | GGCACGGCGT | CCGGTGTGCG  | CGGGCGCGGC  | GACGGTCACG | CGCACCTGGA  |            |
| 25861 | CGGCGCCGGT  | GGCGGGCAGG | ACCAGCGGTG  | TCTCGACGAC  | CAGTTCTGCG | AGCAGGTCGC  |            |
| 35    | 25921       | AGCCTGCCCT | GTCGGCGCCG  | CGTCCGGCCA  | ATTCCAGGAA | GGCGGGTCCG  | GGCAGCAGTA |
| 25981 | CGGCGCCGTC  | GACGGAGTGA | CCGGCCAGCC  | ATGGGTGGGT  | GGCAGCGAG  | AACCGGCCGG  |            |
| 26041 | TGAGCAGCAC  | CTCGTCGGAG | TCGGGGAGCG  | CCACCGACGC  | GGCGAGCAGC | GGGTGGTCGA  |            |
| 26101 | CGGCGTCGAG  | TCCGAGGCCG | GAAGCGTCCG  | TGCCGGCCGC  | GGTCTCGATC | CAGTAGCGCT  |            |
| 26161 | CATGGTGGAA  | GGCGTATGTG | GGCAGGTGCG  | GTGCCGTGCG  | CGTCGCGGGG | ACGACGCCG   |            |
| 40    | 26221       | CCCAGTCGAC | GGGCACGCCG  | GTTGTGTGCG  | CCTCGGCCAG | CGCGGTGAGC  | AGCCGGTGG  |
| 26281 | CTCCCCCGCC  | CGGGCGGAGC | GTGGCGACGG  | TGCGCCGCTC  | GATCGCGGGC | AGCAGCACGG  |            |
| 26341 | GGTGCACGCT  | GACCTCGACG | AAACACGGTGT | CACCCGGCTC  | CGGGGCAGCG | GTCACGCCG   |            |
| 26401 | TGGCGAAGCC  | TACGGGGTGG | CGCATGTTGC  | GGAACACAGA  | CTCGTCGTCG | AGCGGCGCGT  |            |
| 26461 | CGATCCAGCG  | TTCGTCGGCG | GTGGAGAAC   | ACGGGATCTC  | GGCGTGC    | GAGGTGGTGT  |            |
| 45    | 26521       | CCGCGACGAT | CCGCTGGAGT  | TCGTCGTACA  | CGGGGTGAC  | GAACGGGGTG  | TGGGTGGGCG |
| 26581 | AGTCGACGGC  | GATGCGGCGC | ACCCAGACGC  | CGCGGGCCTC  | GTAGTCGGCG | ATCAGCGTTT  |            |
| 26641 | CGACGGCGTC  | CGGGCGCCCG | GCGACGGTGC  | TGGTGGTGGC  | GCCGTTGCGG | CCCGCGACCC  |            |
| 26701 | AGACGCCGTC  | GATCCGGGCG | GCATCCGCC   | CGACGTGCGC  | GGCCGGGAGC | GCGACCGAGC  |            |
| 26761 | CCATCGCGCC  | GGGTCCGGCG | AGTCGCGCA   | GGAGCAGGAG  | AACGCTGCGC | AGCGCGACGA  |            |
| 50    | 26821       | GGCGGGCACC | GTCCTCCAGG  | GTGAGCGCTC  | CGGCGACACA | GGCCGCGGCG  | ATCTCGCCCT |
| 26881 | GGGAGTGTCC  | GATGACGGCG | TCCGGCGTA   | CGCCCGCCGGC | CTCCCACACG | GCGGCCAGCG  |            |
| 26941 | ACACCATGAC  | GGCCCAGCAG | ACGGGGTGCA  | CGACGTGAC   | GGCGCGGGTC | ACCTCCGGGT  |            |
| 27001 | CGTCCAGCAT  | GGCGATGGGG | TCCCAGCCCG  | TGTGCGGGAT  | CAGCGCGTCG | GCGCATTGGC  |            |
| 27061 | GCATCCTGGC  | GGCGAACACC | GGGGAGGCCG  | CCATCAGTTC  | GACGCCCATG | CCGCGCCACT  |            |
| 27121 | CGGGTCCTTG  | TCCGGGAAAG | ACGAAGACGG  | TGCGCGGCTC  | GGTGAGCGCC | GTGCCGGTGA  |            |

- 37 -

27181 CGACGTCGTC GTCGAGCAGC ACGGCAGCGGT GCGGGAACGT CGTACGCCCTG GCGAGCAGGC  
27241 CCGCGGCCAT GGCGCGCGG TCGTGGCCGG GACGGCGGC GAGGTGCTCG CGGAGTCGGC  
27301 GGACCTGGCC GTCGAGGGCC GTGGCGGTCC GCGCCGAGAC GGGCAGTGGT GTGAGCGGCG  
27361 TGGCGATCG CCGCTCACCG GGCTCGAGG CCGACGCCCTC CTCGGCCGGC GGCTCCCCGG  
5 27421 CCGGGTGGGC TTCCAGCAGG ACGTGGGCCTG TGGTGCCGCT GACGCCGAAG GAGGACACAC  
27481 CGGCGCGCCG CGGGCGGTGCG GTCTCGGGCC AGGGCGGGC ATCGGTGAGG AGTTCGACGG  
27541 CGCCGGCCGT CCAGTCGACG TGCGAGGACG GCGTGTCCAC GTGCAGGGTG CGCGGCAGGG  
27601 TGCCGTGCCG CATGGCGAGG ACCATCTTGA TGACACCCGGC GACACCCGGC GCGGCCTGAG  
27661 TGTGGCCGAT GTTGGACTTC AGCGAGCCCCA GCAGCACCGG GGTGTCGCGC CCCTGCCCGT  
10 27721 AGGTGGCCAG CACCGCCCTGT GCCTCGATGG GATCGCCCAG CCTGGTGCCG GTGCCGTGCG  
27781 CCTCCACGGC GTCCACGTCC GCGGGGGTGA GCCCAGCGTT GGCCAGGGCC TGCCGGATCA  
27841 CCCGCTCCTG CGAGGGCCCG TTCCGGCGCCG ACAACCCGTT GGAAGCACCG TCCTGGTTGA  
27901 CCCCGAACC CCGGACAACC GCCAGCACAC GGTGGCGTT GCGCTCGGCA TC GGAGAGCC  
27961 TCTCGACGAT CAGCACACCG GACCCCTCGG CGAAACCGGT GCCGTCAGCC GCATCCGCGA  
15 28021 ACGCCCTGCA GCGCGCGTCG GGCGCGAGAC CCCGCTGCTG GGAGAACTCG ACGAAGCCGG  
28081 ACGGCGAGGC CATCACCGT ACGCCGCCGA CCAGGGCGAG CGAGCATTG CGGGAGCGCA  
28141 GTGACTGCCG GGCCTGGTGC AGCGCCACCA GCGACGACGA ACACGCCGTG TCGACCGTGA  
28201 CCGCCGGACC CTCCAGACCG TAGAAGTACG ACAGCCGACC GGACAGCACA CTGGTCTGGG  
28261 TGCCGGTCGC GCGAAACCG CCCAGGTCGG TGCCGAGTCC GTACCCGTG GAGAAGGCC  
20 28321 CCATGAACAC GCCGGTGTGCG CTTCCGCGCA GCGACTCCGG GAGGATCCCG GCGTGTTC  
28381 GCGCCTCCCA CGAGGTCTCC AGGACCAAGAC GCTGCTCGG GTCCATCGCC AGCGCCTCAC  
28441 GCGGACTGAT CCCGAAGAAC GCGCGTCGA AGTCCGCCAC CCCGGCGAGG AAGCCACCAT  
28501 GACGCACGGT CGACGTGCCCG GGATGATCCG GATCGGGATC GTACAGCCCG TCCACGTCCC  
28561 AACCACGGTC CGTCGGAAAC GCGTGTATCC CGTCACCAACC CGACTCCAGC AGCCGCCACA  
25 28621 AGTCCTCCGG CGACGCGACC CCACCCGGCA GCGGGCAGGC CATCCCCACG ATCGCCAACG  
28681 GCTCGTCCTG CGGGACGGCC GCGGTGCGG TGCGGGTCGG CGATGCCGTC CGGCCGGACA  
28741 GCGCCGGGT GAGCTCGCC GCGACGGCGC GCGCGTCGG GAAGTCGAAG ACCGCGGTGG  
28801 CGGGCAGCCG TACGCCCCGTC GCCCTGGTGA AGGCGTTGCG CAGCCGGATC GCCATGAGCG  
28861 AGTCGACGCC GAGTTCTTG AACGTGGCGG TCGCCTCGAC CCGTGGGCA CGTCGTGGC  
30 28921 CGAGTACGGC CGCGGTGCAC TGCCGGACGA CGCGAGCAC GTCCCTTTCG GCGTCCGCG  
28981 CGGAGAGCCG CGCGATCCGG TCGGCGAGGG TGGTGGCGCC GGCGCCCGG CGCCGCGGCT  
29041 CCCGGCGCGG TGCGCGCAGC AGGGCGAGC TGCCGAGGCC GGCGGGGTGCG CGGGCGACCA  
29101 GCGCCGGGTG CGAGGACCGC AACGCCCGT CGAACAGCGT CAGTCCGCCT TCGGCGGTCA  
29161 GCGCCGTAC GCCGTGCGGG CGCATGCGGG CGCCGGTGCC GACCGTCAGC CCGCTCTCCG  
35 29221 GTTCCCACAG GCCCCAGGCC ACGGACAACG CGGGCAGTCC GGCTGCCCGG CGCTGTTCGG  
29281 CCAGCGCGTC GAGGAACCGC TTCCGGCGC CGTAGTTGCC CTGTCGGGG CTGCCGAGCA  
29341 CACCGGGCGG CGACGAGTAG AGGACGAACG CGGCCAGTTC CGTGTCTGG GTGAGTCG  
29401 GCAGGTGCCA CGCGGTGCTC ACCTTCGGG GCAGCACCGT CTCGAGCCGG TC GGGGGTGA  
29461 GCGCGGTGAG GACGCCGTG TCGAGGACGG CGCGGGTG CACGACGGCC GTGAGGGGT  
40 29521 GCGCCGGGTG GATCCCCGCC AGTACGGAGG CGAGTTGTC CCGGTGGCG ACGTCCGAGG  
29581 CGATCGCCGT GACCTCGCGC CGGGCACGT CGCTCGCCGT GCCGCTGCGC GACAGCATCA  
29641 GCAGCCGGCG CACGCCGTGG CGTTGACGA GGTGGGGCT GATGATGCCG GCCAGCGTCC  
29701 CGGAGCCACC GGTGACGAGC ACGGTCCGT CGGGTGTG CGCCGGAGCG TCACCCGCCG  
29761 GGACCGCCGG GGCCAGACGG CGGGCGTACA CCTGGCCGTC ACCGACGCC ACCCTGGGCT  
45 29821 CATCGAGCGC GGTGGCCGCT GCGAGCAGCG GCTCGGCCGT GTCCGGGGCG GCGTCGACGA  
29881 GGACGATCCG GCCGGGGTGT TCGGCCTGCG CGGTCCGAC CAGTCCGGCG GCCGCGGCCG  
29941 ACGCGAGACC GGGCCGGTG TGGACGCCA GGACCGCGTC GGCGTACCGG TCGTCGGTGA  
30001 GGAAGCGCTG CACGGCGTC AGGACGCCGG CGCCCAGTTC CGGGGTGTC TCGAGCGGGG  
30061 CACCGCCGCC GCCGTGCGCG GGGAGGATCA CCACGTCCGG GACCGTCGGG TCGTCGAGGC  
50 30121 GGCCGGTCGT CGCGGTGCGT GGCGGAGCT CGGGGAGCTC GGCGAGCACC GGGCGCAGCA  
30181 GGCCCGGAAC GGCTCCCGTG ATCGTCAGGG GGCGCCTGCG CACGGCGCCG ATGGTGGCGA  
30241 CGGGCCCGCC GGTCTCGTCC GCGAGGTGTA CGCCGTCAGC GGTGACGGCG ACGCATACCG  
30301 CCGTGGCGCC GGTGGCGTGG ACGCGGACGT CGTCGAACGC GTACGGAAGG TGGTCCCTT  
30361 CCGCGGCCAG GCGGAGTGC GCGCCGAGCA GCGCCGGTGC CAGGCCGTAC CGTCCGGCGT

|       |            |             |             |             |              |             |             |
|-------|------------|-------------|-------------|-------------|--------------|-------------|-------------|
| 30421 | CGGCGAGCTG | TCCGTCGGCG  | AGGGCCACTT  | CCGCCAGAC   | GGCGTCGTCG   | TCGGCCCAGA  |             |
| 30481 | CGGCGCGCGG | GCGGGGCAGC  | GCGGGCCCCT  | CCGTGTACCC  | GGCTCGGGCC   | AGACGGTCGG  |             |
| 30541 | CGATGTCGTC | GGGGTCCACC  | GGCCGGGCGG  | TGGCGGGCGG  | CCACGTCGAC   | GGCATCTCCC  |             |
| 30601 | GCACGGCCGG | GGCGTCCCGC  | GGTCGGGGGG  | CGAGGATTCC  | GTGCGCGTGC   | TCGGTCCACT  |             |
| 5     | 30661      | CCCCCGCCGC  | GTGCGCGTGT  | TGCACGGTGA  | CCGCGCGCG    | GCCGTCCGCC  | CCGGGCGCGC  |
| 30721 | TCACCGTGAC | GGAGAGCGCG  | AGCGCACCGG  | ACCGCGGCAG  | C GTGAGGGGGG | GTGTCCACGG  |             |
| 30781 | TGAACGTGTC | GAGGGCGCCG  | CAGCCGGCTT  | CGTCGCCCC   | CCGGATCGCC   | AGATCCAGGA  |             |
| 30841 | GGGCCGCGGC | GGGCAGCACC  | GCGAGGCCGT  | GCAGGGAGTG  | CGCCAGCGGA   | TCGGCGCGT   |             |
| 30901 | CGACCCGGCC | GGTGAGCACC  | AGGTCGCCGG  | TGCCGGGCAG  | GGTGACCGCC   | GCGGTCAAGCG |             |
| 10    | 30961      | CCGGGTGCGC  | GACCGCGTC   | TGTCCGGCCG  | GGGCCGCGTC   | GCCCGCGGTC  | TGGGTGCCGA  |
| 31021 | GCCAGTAGCG | GACCCGCTCG  | AAACGGGTACG | TGCGCGGGTG  | CGAGGCGCGT   | GCCGGCGCGG  |             |
| 31081 | GGTCGATGAC | CTTCGGCCAG  | TCGACCGTGA  | CGCCGTGGT   | GTGCGAGCCGG  | GCGAGGCCGG  |             |
| 31141 | TCAGGGCGGA | TCGCGGTTCG  | TCGTCGGCGT  | GCAGCATCGG  | GATGCCGTGC   | ACGAGTCGGG  |             |
| 15    | 31201      | TCAGGCTCCG  | GTCCGGGCCG  | ATCTCCAGGA  | GCACCGCCCC   | GTGCGCGCG   | GCGACCTGTT  |
| 31261 | CCCCGAACCG | GACGGTGTGCG | CGGACCTGTC  | GTACCCAGTA  | CTCCGGCGGTG  | GTGCGAGCGGG |             |
| 31321 | CGCCCGCGGC | CATCGGGATC  | CTCGGCTCGT  | GGTACGTCAG  | GCTCTCCCGCG  | ACCTTGCAGGA |             |
| 31381 | ACTCCTCGAG | CATCGGCTCC  | ATCCCGGCCG  | AGTGGAACGC  | GTGGCTGGTC   | CGCAGGCCGG  |             |
| 31441 | TGAAGCGGCC | GAGCGGGGCC  | GCGACGTCGA  | GCACCGCTC   | CTCGTCACCG   | GAGAGCACGA  |             |
| 20    | 31501      | TCGACGCGGG  | CCCGTTGACC  | GCGGCGATCT  | CCACGCGTC    | CCGCGACGAGC | GGCAGGCCGT  |
| 31561 | CCCGTTCCGA | CGCGATCACG  | GCGGCCATCG  | CCCCGCCAGA  | CGGCAGCGCC   | TGCATCAGGC  |             |
| 31621 | GGGCCCGTGC | GGACACCAGC  | CTGACCGCGT  | CCTCCAGGGA  | CCAGACGCCG   | GCGACGTACG  |             |
| 31681 | CGGCGGCCAG | CTCGCCGATC  | GAATGGCCA   | CGAAGGCCGT  | CGGGCGTACG   | CCCCACGCC   |             |
| 31741 | CGAGCTGTGC | GCCGAGTGC   | ACCTGGAGCG  | CGAACACCGC  | GGGCTGGCG    | TACCCGGTGT  |             |
| 25    | 31801      | CGTGGAGGTC  | GAGCCCGGCCG | GGCACGTCGA  | GGGCGTCAG    | CACCTCGCGG  | CGAGTGCAGGG |
| 31861 | CGAAGACGTC | GTAGGCGGCCG | GCCAGTCCGT  | CGCCCATGCC  | GGGACGTTGT   | GAGCCCTGTC  |             |
| 31921 | CGGAGAAGAG | CCACACGAGG  | CGGCGGTCCG  | GTTCTGCGG   | GCCGGTGACC   | GTGTCGGTGC  |             |
| 31981 | CGATCAGCGC | GGCCCGGTGC  | GGGAAGGCCG  | TGCGGGCGAG  | CAGGGCCGCG   | GCCACCGCGC  |             |
| 32041 | GCTCGTCCTC | CTCGCCGGTG  | GCGAGGTGGG  | CGCGCAGGCCG | GTGTACCTGT   | GCGTCGAGTG  |             |
| 30    | 32101      | CCTGCGGGGT  | GGGTGCGCAG  | AGCAGCAGGG  | GCAGCGGTCC   | GGTGTGGGGT  | GGCGGGCGGG  |
| 32161 | GTTCGGGGGC | CGGTCGGGGG  | TGGCTTTGCA  | GGATGATGTG  | AGCCTGGGTG   | CCGCTAACGC  |             |
| 32221 | CGAAGGAGGA | CACCCCGGCCG | CGCCGTGGGC  | GGTCGGTTTC  | GGGCCAGGGG   | GGGGCGTCGG  |             |
| 32281 | TGAGGAGTTC | GACGGCGCCG  | GCCGTCCAGT  | CGACGTGCGA  | GGACGGCGTG   | TCCACGTGCA  |             |
| 32341 | GGGTGCGCGG | CAGGGTGCCG  | TGCCGCATGG  | CGAGGACCAT  | CTTGATGACA   | CCGGCGACGC  |             |
| 35    | 32401      | CCGCGGCCGC  | CTGAGTGTGG  | CCGATGTTGG  | ACTTCAGCGA   | GCCCAGCAGC  | ACCGGGGTGT  |
| 32461 | CGCGATGCTG | CCCGTAGGTG  | GCCAGTACCG  | CCTGCGCTC   | GATGGGGTCG   | CCCAGCCTGG  |             |
| 32521 | TCCCGGTGCC | ATGCGCTCG   | ACAGCGTCCA  | CATCCGCCGG  | GGTGAGGCCG   | GCGTTGCCA   |             |
| 32581 | GCGCCTGCCG | GATCACCCCGC | TCCTGCGACG  | GCCCCTTCGG  | CGCCGACAAC   | CCGTTGAAAG  |             |
| 32641 | CACCGTCCTG | GTGACCGGCC  | GAACCACGCA  | CGACCGCCAG  | GACATTGTGG   | CCGTGCCGCT  |             |
| 40    | 32701      | CGCGTCTGG   | GAGCCTCTCG  | ACGATCAGCA  | CACCGGATCC   | CTCGGCCAAA  | CCGGTGCCAT  |
| 32761 | CAGCCGCATC | CGCGAACGCC  | TTGCAGCGGC  | CGTCCGGGG   | GAGGCCCGC    | TGCTGGGAGA  |             |
| 32821 | AGTCCACGAA | GCGGACGGG   | GAGGCCATCA  | CCGTGACGCC  | GCCGACCACG   | GCGAGCGAGC  |             |
| 32881 | ACTCCCCCGA | GCGCAGCGAC  | TGCCCCGGCT  | GGTGCAGCGC  | CACCAAGCGAC  | GACGAACACG  |             |
| 45    | 32941      | CCGTGTCAC   | CGTGACCGGCC | GGACCCCTCA  | AACCGTAGAA   | GTACGACAGC  | CGACCGGACA  |
| 33001 | GCACACTGGT | CTGGGTGCTG  | GTGGCACCGA  | AACCGCCCG   | GTCCGCTCCA   | GTGCCGTACC  |             |
| 33061 | CGTAGAAGTA | GCCGCCCATG  | AACACGCCGG  | TGTCGCTTCC  | GCGCAGCGAC   | TCCGGGAGGA  |             |
| 33121 | TCCCGCGTGT | TTCCAGCGCC  | TCCCACGAGG  | TCTCCAGGAC  | CAGACGCTGC   | TGCGGGTCCA  |             |
| 33181 | TCGCCAGCGC | CTCACGCGGA  | CTGATCCCAGA | AGAACGCCGC  | GTGGAAGTCC   | GCCACCCCGG  |             |
| 33241 | CGAGGAAGCC | ACCATGACGC  | ACGGTCGACG  | TGCCCCGGATG | ATCCGGATCG   | GGATCGTACA  |             |
| 50    | 33301      | GCCCGTCCAC  | GTCCCAACCA  | CGGTCCGTG   | GAAACGCCGT   | GATCCGTCA   | CCACCCGACT  |
| 33361 | CCAGCAGCGC | CCACAAGTCC  | TCCGGCGACG  | CGACCCCA    | CGGCAGCGGG   | CAGGCCATCC  |             |
| 33421 | CCACGATCGC | CAACGGCTCG  | TCCTGCCGGA  | CGGCCGCGGT  | CGGGGTACGC   | CGCCGGGTGG  |             |
| 33481 | TGGCCCGCGC | GCCGGCCAGT  | TCGTCCAGGT  | GGGCGGGCGAG | CGCCTGCGCC   | GTGGGGTGGT  |             |
| 33541 | CGAAGACGAG | CGTAGCGGGC  | AGCGTCAGGC  | CCGTGCGTC   | GGCCAGCGGG   | TTGCGCAGTT  |             |
| 33601 | CGACGCCGGT | CAGCGAGTCG  | AAGCCCACTT  | CCCTGAACGC  | CGCGCGGGGT   | GCGATGGCGT  |             |

|    |       |            |             |             |             |             |             |
|----|-------|------------|-------------|-------------|-------------|-------------|-------------|
|    | 33661 | GGGCCTCGCG | GTGGCCGAGC  | ACCGCGGCAG  | CGCTGGTACG  | GACGAGGTCG  | AGCATGTCGC  |
|    | 33721 | GCGCGGCCGG | AGGTGCGGAC  | GTGCGCCGGA  | CGGCCGGCAC  | GAGGGTGCCTG | AGGACCGGCG  |
|    | 33781 | GGACCCGGTC | GGACGCGGCG  | ACGGCGGCAGA | GGTCGAGCCG  | GATCGGCACG  | AGCGCGGGCC  |
| 5  | 33841 | GGTCGGTGTG | CAGGGCCGCG  | TGAAACAGGG  | CGAGCCCCCTG | TGCGGCCGTC  | ATCGGGGTCA  |
|    | 33901 | TGCCGTTGCG | GGCGATGCGG  | GCCAGGTCGG  | TGGCGGTCA   | CCGCCCGCCC  | ATCCCGTCCG  |
|    | 33961 | CCGCGTCCCA | CAGTCCCCAG  | GCGAGCGAGA  | CGGCGGGCAG  | CCCCTGGTGG  | TGCCGGTGGC  |
|    | 34021 | GGGCGAGCGC | GTCGAGGAAC  | GCCTTGCCGG  | TGCGTAGTT   | GGCCTGACCC  | GCGCCGCCGA  |
|    | 34081 | ACGTGGCGGA | TATGGACGAG  | TACAGGACGA  | ACGCGGCCAG  | GTCGAGATCG  | CGCGTCAGCT  |
|    | 34141 | CGTGCAGGTG | CCAGGCGACG  | TCCGCCTTGA  | CCCGCAGCAC  | GGCGTCCCAC  | TGCTCCGGCC  |
| 10 | 34201 | GCATGGTCGT | CACGGCCGCG  | TCGTCGACGA  | TCCCGCCCAT  | GTCACGACG   | GCGCGCAGCC  |
|    | 34261 | GCTGGGCGAC | GTCGGCGACG  | ACTGCGGCCA  | GCTCGTCGCG  | GTCGACGACG  | TCGGCGGCCA  |
|    | 34321 | CGTACCGCAC | GGCGTCGTCC  | TCCGGCGTGT  | CGCCGGGCCG  | GCCGTTGCGG  | GACACCACGA  |
|    | 34381 | CGACCTCGGC | GGCCTCGTC   | ACGGTGAGCA  | GGTGGTCCAC  | GAGGAGGCGG  | CCGAGCCCGC  |
|    | 34441 | CGGTGCCGCC | GGTGACGAGG  | ACGGTCCCAG  | CGGTACGCGG  | GGAGGTTCCG  | TGCGGCCGCG  |
| 15 | 34501 | CGACACGGCG | CAGACGGGCC  | GCACCGCCTG  | TGCCGTCGGC  | GACCCGGACG  | TGCGGCTCGT  |
|    | 34561 | CGCCGGCGGC | GAGCCCGGCC  | GCTATGGCGG  | CGGGCGTGAT  | CTCGTCCGCT  | TCGATCAGGG  |
|    | 34621 | CGACCGGGCC | GGGATGCTCC  | GTCTCCGCGG  | TCCGGACCAG  | GCCGCCGAGC  | GCTTCCTGCG  |
|    | 34681 | CGGGATCGCC | GGTACGGGTG  | GCCACGATGA  | GCGGGGATCG  | CGCCCAAGCGC | GGCTCGGCGA  |
|    | 34741 | GCCAGGTCTG | CACGGTGGTG  | AGCAGGTCGC  | GGCCCAGCTC  | CCGGGTCCGG  | GCGCCGGCG   |
| 20 | 34801 | AGGTGCCCGG | GTCGCCGGGT  | TCCACGGCCA  | GGACACGAC   | CGGGGGGTGC  | TCGCCGTCGG  |
|    | 34861 | GCACGTGGC  | GAGGTACGTC  | CAGTCGGGGA  | CGGGTGACGC  | GGGCACGGGC  | ACCCAGGCGA  |
|    | 34921 | TCTCGAACAG | CGCCTCGGCA  | TCGGGGTCCG  | CGGCCCCGAC  | GGTCAGGCTG  | TCGACGTCAA  |
|    | 34981 | GGACCGGTGA | GCCGTGCTCG  | TCCGTGGCGA  | CGATGCGGAC  | CATGTCGGGG  | CCGACCGCTT  |
|    | 35041 | CCAGCAGCAC | GGCGAGCGCG  | GTCCGGCGCG  | GGCGCTGGAT  | CCTCACGCCG  | GACCAAGGAGA |
| 25 | 35101 | ACGCCAGCCG | GCGCCGCTCC  | GGGTCCGTGA  | AGACCGTCCC  | GAGGGCGTGC  | AGGGCCGCGT  |
|    | 35161 | CGAGCAGCAC | GGGGTGCAGC  | CCGTACCGGG  | CGTCGGTGAG  | CTGTTCGGCG  | AGGCGGACCG  |
|    | 35221 | ACGCGTAGGC | GGCGCCCTCC  | CCCGTCCACA  | TCGCGGTCA   | GGCCCGGAAC  | GCGGGCCCGT  |
|    | 35281 | ACGAGAGCGG | CAGCGCTCG   | TAGAAGCCGG  | TCAGGTCGGC  | CGGGTCGGCG  | TCGGCGGGCG  |
|    | 35341 | GCCAGTCCAC | GGGCTCCGCC  | GGACCGCCAG  | TGTCCACGCT  | CAGCGCTCCG  | GTCGCACTGA  |
| 30 | 35401 | GCGCCCAGGG | GCCCCTGCCG  | GTACGGCTGT  | GCAGACTCAC  | CGACCCGCGT  | CCGGACACCT  |
|    | 35461 | CGGTTCCGAC | GGTGGCCTGG  | ATCTCCGTGT  | CGCCGTCGCC  | GTCGACCACC  | ACCGGCGCGA  |
|    | 35521 | CGATGGTCAG | CTCCCGCATC  | TCCGGCTGC   | CGAGCCGGC   | TCCCCTTCG   | GCGAGCAGTT  |
|    | 35581 | CCACGAGCGC | CGAGCCGGGC  | ACGATGACCC  | GGCCGTCAC   | CTCGTGGTCG  | GCGAGCCAGG  |
|    | 35641 | GCTGACGGCG | TACCGAGACA  | CCCGGGTGGC  | CAGCGCCCG   | TCGCCGTCGG  | GCGAGGTCGA  |
| 35 | 35701 | CCCACGAGCC | GAGCAGCGGG  | TGGCCGGACG  | TTCCCGCCGG  | TTCCGCGTCG  | ATCCAGTAGC  |
|    | 35761 | GGTCACGGCG | GAACGGGTAC  | GTGGGCAGCG  | GCACCAACCG  | ACGCGTCGCG  | AACGACCAAG  |
|    | 35821 | TGACGGGCAC | GCCCCGGACC  | CAGAGCGCGG  | CGAGCGACCG  | AGTGAAGCGG  | TCCAGGCCGC  |
|    | 35881 | CCTCGCCTCG | CCGCAGTGTG  | CCGGTGCACGA | CCGTATGCGC  | ATGCCCGGCG  | AGCGTGTCT   |
|    | 35941 | CCAGTGCCTG | GGTGAGCAGC  | GGATGCGCGC  | TGACCTCGAC  | GAACCGCGG   | TATCCGGGT   |
| 40 | 36001 | CCGCCAGGTG | GCCGGTCGCG  | GGCGCGAAC   | GAACGGTGC   | GCGCAGGTTG  | TCGTACCACT  |
|    | 36061 | AGGCGCGTC  | CGCGGGCCGG  | TCCAGCCACG  | CCTCGTCCAC  | GGTGGAGAAG  | AACGGGAACGT |
|    | 36121 | CCGGCGTGC  | GGGAGTGTATG | CCGGCGAGAG  | CGTCGAGCAG  | CGCGCCGCGG  | ATCGTTTCGA  |
|    | 36181 | CATGCGCGGT | GTGCGACCG   | TAGTCGACGG  | CGATCCGGCG  | GGCGCGGGGG  | GTGGCGGCCA  |
|    | 36241 | GCAGCTCTC  | CACGGCGTC   | GCCGCACCGG  | CGACAAACGAT | CGACCGGGT   | CCGTTGACCG  |
| 45 | 36301 | CGGCGACCTC | CAGGCGCCCG  | GCCCCACAGG  | CGGCGTCGAA  | GTCGGCGGGC  | GGCACCGAGA  |
|    | 36361 | CCATGCCGCC | CTGCCCCGCC  | AGTCGGTGG   | CGACGAGTCG  | GTCGCGCACC  | GCGACGACCT  |
|    | 36421 | TCGCGCGTC  | GTCCAGGGTG  | AGCACCCCGG  | CGACGCAAGC  | CGCGGGCAGCT | TCGCCCTGGG  |
|    | 36481 | AGTGGCCGAC | GACCGCGGCC  | GGGGCGACCC  | CGTGCACG    | CCACAGCTCC  | GCCAGGCCA   |
|    | 36541 | CCATCACCGC | GAACGACCG   | GGCTGCACGA  | CATCGACCCG  | GTGGAACGCG  | GGCGCTCCGG  |
| 50 | 36601 | GCCGCTGGG  | GATGACGTCC  | AGCAGGTCCC  | ATCCGGTGTG  | CGGGGCGAGC  | GCCGTGGCGC  |
|    | 36661 | ACTCGCGGAG | CCGCCGGCG   | AAACACGGCT  | CGGTGGCGAG  | CAGTTGGCA   | CCCATGCCGG  |
|    | 36721 | CCCACTGGGA | GCCCTGCCCG  | GGGAACGCGA  | ACACGACACG  | TGTGTCGGTG  | ACGTCGGCGG  |
|    | 36781 | TTCCCGTCAC | GGCCCCCGGC  | ACTTCGGCAC  | CACGGCGAA   | CGCCCTCCGCC | TCTCGGGCCG  |
|    | 36841 | GCACGACCGC | CCGGTGGCGC  | ATGGCCGTCC  | GGGTGGTGGC  | GAGCGAGTGG  | CCGACCGCGG  |

- 40 -

36901 CCGCGGCGCC AGTGAGCGGG GCCAGCTGTC CCGCGACGTC CCGCAGTCCC TCCGGGGTCC  
36961 GGGCCGACAT CGGCCAGACC ACGTCCCTCGG GCACCGGCTC GGCTCAGGGT GCGGACACGG  
37021 GTGCAGGGCGC GGCGGGGGGC CGGGCCTCCA GGACGACATG GGCAGTGGTG CCGCTGATGC  
37081 CGAACCGACGA GACACCCGCA CGCCGGGCGC GCCCGGTGAC CGGCCACGGC TCACTGCGGT  
5 37141 GCAGCAGCCG GATGTGCGCC TCCCAGTCGA CGTGCAGGGGAA CGGCTCGTCG ACGTGCAGCG  
37201 TGCGCGGCAG GACGCCGTGC CGCATCGCCA TGACCATCTT GATGACGCCG GCGACGCCGG  
37261 CGCGGCCCTG GGTGTGGCCG ATGTTGACT TGAGCGAGCC GATCAGCAGC GGATGCACGC  
37321 GTTCGCGCCC GTAGGCCACT TGCAGGGCCT GGGCCTCGAC GGGGTCGCGG AGACGGGTGC  
37381 CGGTGCCGTG TGCCTCCACG GCGTCGACGT CACCCGGCGC CAGGCCGGCG TCGGCGAGCG  
10 37441 CACGCTGGAT GACGCCGTGC TGCAGGAGCC CGTTCAGGGC GGACAGCCCG TTGACGCCGC  
37501 CGTCGGAGTT GACCGCGGAG CCGCCACCA GCGCCAGCAC GGGGTGGCCG TGGCGGGTGG  
37561 CGTCGGAGAG CCGCTCCAGC ACCAGGACAC CGGCGCCCTC GGCGAAGCTC GTGCCGTCCG  
37621 CGGTGTCGCCG GAAGGCCCTG GCACCGCCGT CGGGGGCGAG CCCGCGCTGC CGGGAGAACT  
37681 CGACGAACCC GGTCGTCGTC GCCATCACCG TGACACCGCC GACCAGGGCG AGCGAGCACT  
15 37741 CCCCCGAGCG CAGCGACCCG GCGGCCCTGGT GCAGCGCCAC CAGCGACGAC GAACACGCCG  
37801 TGTCGACGGT GACCGACGGG CCCTCCAGAC CGAAGTAGTA CGAGAGCCGC CGGGAGAGAA  
37861 CGCTGGTCGG CGTGCAGGGC GCCCCGAAAC CGCCCAGGTC CACGCCCGCG CGTAGCCCT  
37921 GGGTGAACGC GCCCATGAAT ACGCCGGTGT CGCTGCCCG GACGCTTTCG GGCAGGATGC  
37981 CCGCTCGTTC GAACGCCCTC CACGACGCTT CGAGGACCAAG ACGCTGCTGC GGGTCCATCG  
20 38041 CCAGGCCCTC ACAGCGGGCTG ATCCCGAAGA ACGCGGCCGT GAAAGTCGGCG GCGCCGGTGA  
38101 GGAAGCCGCC GTGACGCACG GAAACCTTGC CGACCGCCGT GGGGTTGGG TCGTAGAGCG  
38161 CGCGGAGGTC CCAGCCGCGG TCGGCGGGGA ACTCGGTGAT CGCGTCCCCG CGGGAGTCGA  
38221 CCAGCCGCCA CAGGTCTCC GGTGACCGCA CGCCACCGGG CATCCGGCAC GCCATGGCCA  
38281 CGATGCCAG CGGCTCGTTC CCCGCCACCG TCGGTGCGGG CACTGTCGCC GCCGGAGCGG  
25 38341 CAGGGCCCGG CTCACCCCGC CGTTCTCAT CGAGGCCGGC GGCGAGCGCG GCGGGTGTGCG  
38401 GGTGGTCGAA GACGGCCGTC CGGGAGAGCC GTACCCCCGT CGTCTCGGGC AGGCTGTGCG  
38461 GCAACCGGAC ACCGCTGAGC GAGTCGATGC CGAGGTCTT GAACGCCGTC GTGGCGGTGA  
38521 TCTCGGAGGC GTCGGCGTGG CCGAGCACGG CGGCCGTGGC CGCACACACG ATGGCCAGCA  
38581 GGTACGATC GCGGTCGCCG TCGCGGTGCG GGTTGTCCTC CGCACGGCG GCGATGCCGG  
30 38641 GCTCGTCCG CTGCGGGACG GGCTCGGTGG GAATGCCGCG GACCATGAAC GGCACGTCCG  
38701 CGCGGAGGCT CGCGTCGATG AAGTGGGTGC CCTCGGCCCTC GGTGAGCGGC CGGAACCCGT  
38761 CGCGCACCCG CTGCCGGTCG CGTCGTCAA GTTGTCCGGT GAGGGTGTGCTG GTGGTGTGCC  
38821 ACATGCCCA GGCATGGAG GTGGCGGGTT GGCGCAGGGT GTGGCGGTGG GTGGCGAGGG  
38881 CGTCGAGGAA GGCAGTGGCG CGGGCGTAGT TTCTTGTC GGGGCTGCCG AGGACGGCGG  
35 38941 CGCGCTGGA GTAGAGGACG AAGTGGGTGA GGGGTTGGTT TTGGGTGAGG TGGTGCAGGT  
39001 GCCAGCGGC GTTGGCTTG GGGTGGAGGA CGGTGGTGAG GCGGTCGGGG GTGAGGGCGT  
39061 CGAGGATGCC GTCGTCGAGG GTGGCGCGG TGTGGAAGAC GGCAGTGAGG GTTGGGGGA  
39121 TGTGGCGAG GGTGGTGGCG AGTTGGTGGG GGTGCGCGAC GTGCGAGGGG AGGTGGGTGC  
39181 CGGGGGTGGT GTCGGGGGGT GGGTGCAGGG AGAGGAGGTA GGTGTTGGGG TGGTTCAGGT  
40 39241 GGCAGGGCAG GATGCCGGCG AGGGTGCAGG AGCCGCCGGT GATGATGATG GCGTGTTCGG  
39301 GGTGAGGGG GGTGGTGGTG GGTGGGGTGG TGGTGTGGAG GGGGGTGGAG TGGGGTGGT  
39361 GGAGGGTGTG GTGGGTGAGG CGGAGGTGGG GGTGGTGTGAG GGTGGCGAGT TGGGCCAGGG  
39421 GGAGGGGAGT GTGGGGGTGG TCGGTTGCA TGAGGCGGAT GCGGTGGGG TGTCGTTCT  
39481 GGGCGGTGCG GGTGAGGCCG GTGACGGTGG CGCCGGCGGG GTCGGTGGTG GTGTGGACGA  
45 39541 TGAGGGTGTG GTCGGTGGTG GTGAGGTGGT GTTGCAGGGC GGTCAAGGACG CGGGTGGCGC  
39601 GGGTGTGGGC GCGGGTGGGT ATGTCCTCGG GGTGCTCGGG GTGGCGGGCG GTGATCAGGA  
39661 CGTGTCCCTC GGGCAGGTCA CGTCGTCAGA CGGCCCTCGGC GACCGCGAGC CACTCCAACC  
39721 GGAGCGGGTT CGGCCCGAC GGGGTGTGCG CCCGCTCCCT CAGCACCGAGC GAGTCCACCG  
39781 ACACGACAGG ACAGGCCATCC GGGTCGGCCA CGCGCACGGC GACGCCGGCC TCCCCCCCCGG  
50 39841 TGAGGGCGAC GCGCACCGCG GCGGCCCCGG TGGCGTTCAAG GCGCACGCC GTCAGGAGA  
39901 ACGGCAGCTC GATCCCGCCG CCCGCGTCGA GGCAGGGCGC GTGCAAGGGCC GCGTCGAGCA  
39961 GTGCCGGATG CACACCGAAA CGTCCCGCCT CGGCGGGCTG CTCGTCGGGC AGCGCCACCT  
40021 CGGCATACAC GGTGTCACCA TCACGCCAGG CAGGCCGCAA CCCCTGGAAC GCGCACCGT  
40081 ACTCATAACC GGCATCCCGC AGTTGTCAT AGAACCCCGA GACGTCGACG GCGCGGGCG

- 41 -

|       |             |             |            |            |            |             |             |
|-------|-------------|-------------|------------|------------|------------|-------------|-------------|
| 40141 | TGGCCGGCGG  | CCACTGCGAG  | AACGGCTCAC | CGGAAGCGTT | GGAGGTATCC | GGGGTGTGCG  |             |
| 40201 | GGGTCAAGGT  | GCCGCTGGCG  | TGCCGGTCC  | AGCTGCCGT  | GCCCTCGGT  | CGCGCGTGG   |             |
| 40261 | CGGTCAACCGG | CCGCCGTCCG  | GCCTCATCGG | CCCCTTCCAC | GGTCACCGAC | ACATCCACCG  |             |
| 40321 | CTGCGGTAC   | CGGCACCAAG  | AGCAGGGATT | CGATGACCAG | TTCATCCACC | ACCCCGCAAC  |             |
| 5     | 40381       | CGGTCTCGTC  | ACCGGCCCGG | ATGACCAGCT | CCACAAACGC | CGTACCCGGC  | AGCAGAACCG  |
| 40441 | TGCCCCGCAC  | CGCGTGATCA  | GCCAGCCAGG | GATGCGTACG | CAATGAGATC | CGGCCGGTGA  |             |
| 40501 | GAACAAACACC | ACCACCGTCG  | TCGGCGGGCA | GTGCTGTGAC | GGCGGCCAGC | ATCGGATGCG  |             |
| 40561 | CCGCCCCGGT  | CAGCCCAGGC  | GCAGACAGGT | CGGTGGCACC | GGCCGCCTCC | AGCCAGTACC  |             |
| 40621 | GCCTGTGCTC  | GAACCGTAG   | GTGGGCAGAT | CCAGCAGCCG | CCCCGGCACC | GGTTCGACCA  |             |
| 10    | 40681       | CCGTGCCCA   | GTCCACCCCC | GCACCCAGAG | TCCACGCC   | CGCCAACGCC  | CCCAGGCC    |
| 40741 | GCTCCCAGCC  | ACCGTCACCA  | GTCCGCAACG | ACGCCACCGT | GCGGGCCTGT | TCCATCGCCG  |             |
| 40801 | GCAGCAGCAC  | CGGATGGGCA  | CTGCACTCCA | CGAACACCGA | CCCCTCCAGC | TCCGCCACCG  |             |
| 40861 | CCGCATCCAG  | CGCGACAGGG  | CGACGCAGGT | TCCGGTACCA | GTACCCCTCA | TCCACCGGCT  |             |
| 40921 | CGGTCAACCA  | GGCGCTGTCC  | ACGGTCGACC | ACCACGCCAC | CGACCCGGTC | CCGCCGGAAA  |             |
| 15    | 40981       | TTCCCTTCAG  | TACCTCAGCG | AGTTCTCCT  | CGATGGCTC  | CACGTGAGGC  | GTGTGGGAGG  |
| 41041 | CGTAGTCGAC  | CGCGATAACGA | CGCACCCGCA | CCCCATCAGC | CTCATACCAC | GCCACCACCT  |             |
| 41101 | CCTCCACCAC  | CGACGGGTCC  | CCCGCCACCA | CGTCGAAGC  | CGGACCATTA | CGGCCGCGA   |             |
| 41161 | TCCACACACC  | CTCGACCAGA  | CCCACCTCAC | CGGCCGGAA  | CGCCACCGAA | GCCATCGCCC  |             |
| 41221 | CCCAGGCCGGC | CAGCCGCGCC  | GCGATCACCC | GACTGCGAA  | CGCCACACG  | CGGGCGGCGT  |             |
| 20    | 41281       | CCTCCAGGCT  | GAGGGCTCCG | GCCACACACG | CCGCCGCGAT | CTCCCCCTGC  | GAGTGTCCGA  |
| 41341 | CCACAGCGTC  | CGGCACGACC  | CCATGCGCT  | GCCACAGCGC | GGCCAGGCTC | ACCGCGACCG  |             |
| 41401 | CCCAGCTGGC  | CGGCTGGACC  | ACCTCCACCC | GCTCCGCAC  | ATCCGACCGC | GACAACATCT  |             |
| 41461 | CCCGCACATC  | CCAGCCCGTG  | TGCGCAACA  | ACGCCCCGCG | ACACTCCTCC | ATACGAGCCG  |             |
| 41521 | CGAACACCGC  | GAACCGTCC   | ATGAGTTCCA | CGCCCATGCC | CACCCACTGG | GCACCCCTGCC |             |
| 25    | 41581       | CGGGGAAGAC  | GAACACCGTA | CGCGGCTGAT | CCACCGCCAC | ACCCATCACC  | CGGGCATCAC  |
| 41641 | CCAGCAGCAC  | CGCACGGTGA  | CCGAAGACAG | CACGCTCACG | CACCAACCCC | TGCGCGACCG  |             |
| 41701 | CGGCCACATC  | CACCCCACCC  | CCGCGCAGAT | ACCCCTCCAG | CCGCTCCACC | TGCCCCCGCA  |             |
| 41761 | GACTCACCTC  | ACCACGAGCC  | GACACCGGA  | ACGGCACCAA | CCCATCACCA | CCGACTCCA   |             |
| 41821 | CACCGACGG   | CCCAGGAACA  | CCCTCCAGGA | TCACGTGCGC | TTCTGTACCG | CTCACCCCCGA |             |
| 30    | 41881       | ACGACGACAC  | ACCCGCATGC | GGTGCCCGAT | CCGACTCGGG | CCACGGCCTC  | GCCTCGGTGA  |
| 41941 | GCAGCTCCAC  | CGCACCGGCC  | GACCAGTCCA | CATCGACGA  | CGGCTCGTCC | ACGTGCAGCG  |             |
| 42001 | TCTCGCGC    | GATCCCATGC  | CGCATGCCA  | TGACCATCTT | GATGACACCG | GCGACACCCG  |             |
| 42061 | CAGCCGCTG   | CGCATGACCG  | ATGTTGACT  | TGACCGAAC  | GAGGTAGAGC | GGCGTGTGCG  |             |
| 42121 | GGTCCTGCCC  | GTAGGCCCGC  | AGGACGGCCT | GCGCCTCGAT | CGGGTCGCC  | AGCCGCGTGC  |             |
| 35    | 42181       | CGGTGCCGTG  | CGCCTCCACC | ACGTCACAT  | CGGCGGCCG  | CAGTCCGGCG  | TTGACCAACG  |
| 42241 | CCTGCCGGAT  | CACCGCTGC   | TGGCGACGC  | CGTTGGGGGC | GGACAGTCCG | TTGGAGGCAC  |             |
| 42301 | CGTCCTGGTT  | CACCGCCGAG  | CCGCGGACGA | CCGCGAGAAC | GGTGTGCCCG | TTGCGCTCGG  |             |
| 42361 | CGTCGGAGAG  | CCGCTCCAGC  | ACGAGAACGC | CGACGCCCTC | GGCGAAGCCG | GTCCCGTCCG  |             |
| 42421 | CCGCGTCGGC  | GAACGCCCTG  | CACCGTCCGT | CGGGGGAGAG | TCCCGCTGC  | CGGGAGAACT  |             |
| 40    | 42481       | CCACGAGCTC  | TGCGGTGTC  | GCCATGACGG | TGACACCGCC | GACCAGCGCC  | AGGGAGACACT |
| 42541 | CCCCGGCCCG  | CAGTGCCTGT  | GCCGCCTGGT | GCAGGGCGAC | CAGCGACGAC | GAGCACGCCG  |             |
| 42601 | TGTCGACCGT  | GACCGCCGGG  | CCCTGAAGTC | CGTACACGTA | CGAGAGGCGC | CCGGACAGGA  |             |
| 42661 | CGCTCGTCTG  | CGTCGCCGTG  | ACACCGAGCC | CGCCCGAGTC | CCGGCCGACG | CCGTAGCCCT  |             |
| 42721 | GGTTGAACGC  | CCCCATGAAC  | ACGCCGGTGT | CGCTCTCCCG | GAGCCTGTCC | GGCACGATGC  |             |
| 45    | 42781       | CGGCGTTCTC  | GAACGCCCTC | CAGGAGGTCT | CCAGGATCAG | CGCTGCTGG   | GGGTCCATCG  |
| 42841 | CCAGCGCCTC  | GTTCGGACTG  | ATGCCGAAGA | ACGCGGCCGT | GAACCCGGCG | CCGGCCAGGA  |             |
| 42901 | ATCCGCCGTG  | GGTGTGCGT   | GAGCGGCCGG | CCGCGTCCGG | GTCCGGGTG  | TACAGCGCGT  |             |
| 42961 | CGACGTCCC   | GCCCCGGTGT  | GTGGGGAACT | CGGTGATCGC | CTCGGTACCG | GCGGCGACGA  |             |
| 43021 | GCCGCCACAG  | GTCCTCCGGC  | GAGGCACCC  | CGCCGGGCAG | TCGGCACGCC | ATGCCGACGA  |             |
| 50    | 43081       | TCGCGACGGG  | GTCGCCGGAG | CCGAGGGTCT | GGGGGGTGC  | GGGTGCCCCT  | GTCGGGGAGC  |
| 43141 | CGCGAGGTG   | GGCGCGAAC   | GCACCGGGAG | TGGGGTGGTC | GAACCGGGTT | GACGCAGGCA  |             |
| 43201 | CCCGCAGACC  | CGTCCGCCGG  | GCGACGGTGT | TGGTGAACTC | GACGGTGGTG | AGCGAGTCGA  |             |
| 43261 | GGCCGTTCTC  | GGGAACGTG   | CGTCCGGGGG | AGCAGTGTCC | GGCGCCCGGC | AGGCCAGGA   |             |
| 43321 | CGGTGCCGAC  | GCTGTGCGGG  | ACCAGGTCGA | GCAGTACGTC | CTCCCGGCC  | GCACGGGCC   |             |

- 42 -

43381 CGGCGAGGCG GTTCGCCAC TCCTGTTCCG TGGCGTCGGG CTCGGCCGGT CCGGTCACTG  
43441 CGGTGAGGAT CGGCGGCGTG GCGCCCGCCA TCGTCGCCGC CCGCGCCCG GCGGAACCGG  
43501 TCCGGGCCAC GATGTACCGAG CGCCCGCCCCG CGATGGCCTT CTCGATCAGG TCGCCGGTGA  
43561 GCGCCGGCCG TTCGATGCCG GGCAGCGC GCAGCGGTGAC GGTGGGGAGT CCCTCCGCGG  
5 43621 CCCGTGGCCG GGTGTGGCCG TCGGCGCCGG CGGGGCCGTC GAGCAGGACG TGCACGAGCG  
43681 CGCCGGGGTT CGCGGCTTCC TCGGCTGC GGTCACGTG GGTGAGGCG GTCTCGTCGC  
43741 GGAGCAGGCC GGCGACGGTG TCGGCGTCTT CCCCAGGTGAC CAGGACCGGC GCGTCCGGC  
43801 CGATCGGAGG CGGCACGGTG AGGACCATCT TGCCGGTGT CGGGCGTGG CTCATCCACG  
43861 CGAACCGCCTC CGCGCACCG CGGATGTCCC ACGGCTGCAC CGGCAGCGGG CACAGCTCAC  
10 43921 CGCGGTCGAA CAGGTGAGG AGCAGTCGA GGATCTCCCG CAGGCGCGCG GGATCCACGT  
43981 CGGCCAGGTC GAACGGCTGC TGGCGGGCGT GGCGGATGTC GGTCTTGCCC ATCTCGACGA  
44041 ACCGGCCGCC CGGTGCGAGC AGGCGCATGG ACGCCTCGAG GAGTTCACCG GTGAGCGAGT  
44101 TGAGCACGAC GTCGACCAGG GGGAAAGGTGT CGCGAACGC CGCGCTGC GGAGTCGCCA  
44161 CATGGTCGGT GTCGAAGCCG TCGGCGTGC GAAGGTGTG TTTGGCGGGA CTGGCGGTGG  
15 44221 CGTACACCTC GGCGCGAGG TGGCGGGCGA TCCGGTCGC CGCCATGCCG ACACCGCCCG  
44281 TCGCGCGTG GACCAGGACC TTCTGGCCGG TCGCAGCTC GCCCGCGTGC ACGAGGCCGT  
44341 ACCAGGCGGT GGCGAACACG ATGGGCACGG ACGCAGCGAT GGGGAACGAC CATCCCCGTG  
44401 GGATCCGTGC GACCAGCCGC CGGTCCCGA CCACGCTGC CGCGAACGCG TCCTGCACGA  
44461 GACCGAACAC CGGGTCGCCG GGGGCCAGGT CGTCGACGCC GGGTCCGACT TCGGTACGA  
20 44521 TGCCCGCGGC CTCCCCGCC ATCTCGCCCT CGCCCGGGTA GGTGCCGAGC GCGATCAGCA  
44581 CGTCGCGGAA GTTCAGCCCC GCGCGCGGA CGTCGATGCG GACCTCGCCG GCGGCCAGGG  
44641 GCGCGCGGG ACGTCGAGCG GGGCGACGAC GAGGTCCCGG AGCGTTCCGG AGGCAGGGCGG  
44701 GCGCAGCGCC CACTGGCGCG TCGGGCAGGG GGGTGGTGC CGCGCGTAC AGCCGGGGCA  
44761 CGTAGGCCAC CGCGGCCCGC AGCGCGATCT GGGGTTCCGC GAGCGAGGCC GCGGCCGGGA  
25 44821 CGAGGTCGTC ATCGCCGTCC GTGTCCACCA GCACGAACGA TCCGGGTTCG GCGGCCTGGC  
44881 GGCGCAGCGC CTCGTCAGAGC AGCCGGGCCT GGTCCCGTC CGGGATCTCG GCCGGGCCGA  
44941 CGCCCACCGC CGGGCGGGTG ACGACCGTCC CGCGGGGTGA CGGGGTGCCG GCGAGTCGC  
45001 GCGCTCCCA GACCAGTCG CACAGCGTGG CCTCGCCACT GCCGGTGGCG ACCAGATGGG  
45061 CGGGCAGCCC CGCGAGCCGC CGCGCCTGGA CCTTGCCGA CGCGGTGCCG GGGATCGTGG  
30 45121 TGACGTGCCA GATCTCGTC GGCACCTGTA AGTAGGCGAG CGGGCGGCCG CACTCGCGA  
45181 GGATCGCCTC GGCGGGGACG CGGGGGCCGT CGGAAACGAC GTAGAGCAGG GGTATGTCGC  
45241 CGAGGACGGG GTGCGGGCGG CCCGCCCGG CGCGTCCCG GACACCGGCC ACCTCCTGGG  
45301 CGACGGTCTC GATCTCCCGG GGGTGGATGT TCTCCCCGCA CGGGATGATC AGCTCCTTGA  
45361 CCCGGCCGGT GATCGTCACG TGTCCGGTCT CGGCGTACG TGCGAGGTCC CGGGTCCGGT  
35 45421 ACCAGCCGTC CACGAGCAC TGGCGGTGCG CCTCCGGCTG GCGTGGTAG CGAGCATGA  
45481 GGCTCGGCCG GCTCGCCAC AGCTCGCCCT CCTCGCCGGG TGCCACGTG GCGCCGGACA  
45541 CGGGGTCGAC GAACCGCAGC GACAGGCCG GCACGGCAG CCCGACGAG CGGGAAACCC  
45601 GCGCATCCTC CAGGGTGTG CGGGTGAGCG AGCCGGTCTG CTCGGTGCAG CGTACGTGT  
45661 CGAGCAGGGG CACGCCAAC GTCGCCCTGA AATCCCTGGT GAGCGACGCC GGCGAGGTGG  
40 45721 ATCCGGCGAC CAGCGCCACG CGCAGCGC GCAGCCCGG CTCGCCGGAC ACGGCGCCGA  
45781 GGAGGTAGCG GTACATCGTC GGCACGCCGA CGAGCACGGT GCTGGAGTGT TCGGCCAGGG  
45841 CGTCGAGGAC GTCACGCCGC ACGAAGCCGC CCAGGATACG GGCGGACGCC CGGACCGTGA  
45901 GGACGGCGAG CAGGCAGAGG TGGTGGCCGA GGCTGTGGAA CAGCGGGCGG GGCCAGAGCA  
45961 GTTCGTGTC CTCGGTCAGC CGCCAGGACG GCACGTCGA GTGCATCGCG GACCACAGGC  
45 46021 CGCTCGCGTG TCGGGAAACC ACGCCCTTGG GACGGCCGGT GGTGCCGGAG GTGTAGAGCA  
46081 TCCAGGCCGG TTCGTCAGG CCGAGGTCGT CGCGGGCGG GCACGGCGGC TCGGTCCCGG  
46141 CGAGGTCTC GTAGGAGACG CAGTCCGGTG CCCGGCCCG GACGAGCAGC ACGGTGGCGT  
46201 CGGTGCCGGT CGGGCGCACC TGGTCGAGGT GGGTTTCGTC GGTGACCGAG ACGGTCGCCG  
46261 CGGAGTCCGT CAGGAAGTGG GCGAGTTCGG CGTCGGCGGC GTCCGGTTG AGCGGGACGG  
50 46321 CGACGGCGGC GGCAGGGCGG CGGGCGAGGT AGACCTCGAT GGTCTCGATC CGGTTGCCGA  
46381 GCAGCATCGC GACCCGGTCG CGCGCGTCGA CGCCGGACGC GGCAGGTGT CGGGCGAGCC  
46441 GGCGGGCCCG GAGCCGGAGT TCGCTGTACG TCACGGCGCG TTGGGAATCC GTGTAGGCGA  
46501 TCCGGTCGCC CGCTCGCTCG GCATGGATGC GGAGCAATTG GTGCAACGCC CGGATTGGTT  
46561 CCACACGCCG CATGGAAACA CCTTCTCTC GACCAACCAC ACAACAGCAC GGAACCGGCC

|       |             |             |             |            |             |             |            |
|-------|-------------|-------------|-------------|------------|-------------|-------------|------------|
| 46621 | ACGAGTAGAC  | GCCGGCGACG  | CTAGCAGCGT  | TTTCCGGACC | GCCACCCCT   | GAAGATCCCC  |            |
| 46681 | CTACCGTGGC  | CGGCCTCCCC  | GGACGCTCAT  | CTAGGGGTT  | GCACGCATAC  | CGCCGTGCGT  |            |
| 46741 | AATTGCCTTC  | CTGATGACCG  | ATGCCGGACG  | CCAGGGAAGG | GTGGAGGCCTG | TGTCCATATC  |            |
| 46801 | TGTCACGGCG  | CCGTATTGCC  | GCTTCGAGAA  | GACCGGATCA | CCGGACCTCG  | AGGGTGACGA  |            |
| 5     | 46861       | GACGGTGCTC  | GGCCTGATCG  | AGCACGGCAC | CGGCCACACC  | GACGTGTCGC  | TGGTGGACGG |
| 46921 | TGCTCCCCGG  | ACCGCCGTGC  | ACACCACGAC  | CCGTGACGAC | GAGGCGTTCA  | CCGAGGTCTG  |            |
| 46981 | GCACGCACAG  | CGCCCTGTGCG | AGTCCGGCAT  | GGACAACGGC | ATCGCCTGGG  | CCCGCACCGA  |            |
| 47041 | CGCGTACCTG  | TTCGGTGTCG  | TGCGCACCGG  | CGAGAGCGGC | AGGTACGCCG  | ATGCCACCGC  |            |
| 47101 | GGCCCTCTAC  | ACGAACGCT   | TCCAGCTAC   | CCGGTGCCTG | GGGTATCCCC  | TGCTCGCCCG  |            |
| 10    | 47161       | GACCTGGAAC  | TACGTCAAGCG | GTATCAACAC | GACGAACGCG  | GACGGGCTGG  | AGGTGTACCG |
| 47221 | GGACTTCTGC  | GTGGGCCGCG  | CCCAGGCGCT  | CGACGAGGGC | GGGATCGACC  | CGGCCACCAT  |            |
| 47281 | GCCCCGGGCC  | ACCGGTATCG  | GCGCCCACGG  | GGGCGGCATC | ACCTGCGTGT  | TCCTCGCCGC  |            |
| 47341 | CGGGGGCGGA  | GTGCGGATCA  | ACATCGAGAA  | CCCCGCCGTC | CTCACGGCCC  | ACCAACTACCC |            |
| 15    | 47401       | GACGACGTAC  | GGTCCGGCGC  | CCCCGGTCTT | CGCACGGGCC  | ACCTGGCTGG  | GCCCGCCGGA |
| 47461 | GGGGGGCCGG  | CTGTTCATCT  | CCGCGACGGC  | CGGCATCCTC | GGACACCGAA  | CGGTGCACCA  |            |
| 47521 | CGGTGATGTG  | ACCGGCCAGT  | GCGAGGTGCG  | CCTCGACAAC | ATGGCCCGGG  | TCATCGGCGC  |            |
| 47581 | GGAGAACCTG  | CGGCGCCACG  | GGCTCCAGCG  | GGGGCACGTC | CTCGCCGACG  | TGGACCACT   |            |
| 47641 | CAAGGTCTAC  | GTCCGCGGCC  | GCGAGGATCT  | CGATACGGTC | CGCCGGGTCT  | GCGCCGCACG  |            |
| 47701 | CCTGTCGAGC  | ACCGCGGCCG  | TCGCCCTTTT  | GCACACCGAC | ATAGCCCGCG  | AGGATCTGCT  |            |
| 20    | 47761       | CGTCGAAATC  | GAAGGCATGG  | TGGCGTGACA | ATACCCGTA   | AAAGGCCCGC  | GACGCTGCGC |
| 47821 | CTCGCGGAT   | CCGCGAAGAG  | AAAAGAAGAGC | GTCACCGCAC | AGCGCGGCAG  | CCCGGTCCTT  |            |
| 47881 | TCGTCTTCG   | CACAGCGCG   | GATCTGGTT   | CTCCAGCAAT | TGGACCCGGA  | GAGCAACGCC  |            |
| 47941 | TATAATCTCC  | CGCTCGTGC   | ACGCCTGCGC  | GGTCTATTGG | ACCGCGCCGGC | CCTGGAGCGT  |            |
| 48001 | GCGCTGGCGC  | TCGTCGTCG   | GCGCCACGAG  | GGCTTGCAGA | CGGTGTTCGA  | CACCGCCGAC  |            |
| 25    | 48061       | GGCGAGCCCC  | TCCAGGGGT   | GCTTCCCAGC | CCGGAACACCC | TCTCGCGCCA  | CGCGCGGGCG |
| 48121 | GGCAGCGAGG  | AGGACGCCGC  | CCGGCTCGTC  | CGCGACGAGA | TCGCCGCGCC  | GTTCGACCTC  |            |
| 48181 | GCCACCGGGC  | CGTTGATCAG  | GGCCCTGCTG  | ATCCGCTCTG | GTGACGACGA  | CCACGTTCTC  |            |
| 48241 | GCGGTGACCG  | TGCACCATGT  | CGCCGGCGAC  | GGCTGGTCGT | TCGGGCTCCT  | CCAACATGAA  |            |
| 30    | 48301       | CTCGCAGCCC  | ACTACACGGC  | GCTGCGCGAC | ACTGCCGCC   | CTGCCGAACT  | GCCGCCGTTG |
| 48361 | CCGGTGCAGT  | ACGCGACTT   | CGCCGCCTGG  | GAGCGGGCGC | AACTCACCGG  | CGCCGGAAGT  |            |
| 48421 | GACAGGCGTC  | TGGCTACTG   | GCGCGAGCAA  | CTCCGGGGCG | CCCCGGCGCG  | GCTCGCCCTC  |            |
| 48481 | CCCACCGACC  | GTCCCCGCC   | GCCGGTCGCC  | GACGCGGACG | CGGGCATGGC  | CGAGTGGCGG  |            |
| 48541 | CCGCCGGCCG  | CGCTGGCCAC  | CGCGGTCTC   | ACGCTCGCGC | GCGACTCCGG  | TGCGTCCGTG  |            |
| 48601 | TTCATGACCC  | TGCTGGCGC   | CTTCCAAGCG  | GTCCTCGCCC | GGCAGGCGGG  | CACGCGGGAC  |            |
| 35    | 48661       | GTGCTGGTCG  | GCACGCCGT   | GGCGAACCGT | ACGCGGGCGG  | CGTACGAGGG  | CCTGATCGGC |
| 48721 | ATGTTCTGCA  | ACACGCTCGC  | GCTGCGCGC   | GACCTCTCGG | GCGATCCGTC  | GTTCCGGGAA  |            |
| 48781 | CTCCTCGACC  | GCTGCCGGC   | CACGACCACG  | GACGCGTTCG | CCCACGCCGA  | CCTGCCGTT   |            |
| 48841 | GAGAACGTCA  | TGGAACCTGT  | CGCACCGGAA  | CGCGACCTGT | CGTCAACCC   | GGTCGTCAG   |            |
| 48901 | GTGCTGTTGC  | AGGTGCTGCG  | GCGCGACGCG  | GCGACGCCG  | CGCTGCCCGG  | CATCGCGGCC  |            |
| 40    | 48961       | GAACCGTTCC  | GCACCGGACG  | CTGGTTACC  | CGCTTCGACC  | TCGAATTCCA  | TGTGTACGAG |
| 49021 | GAGCCGGGTG  | GCGCGCTGAC  | CGGGCGAACTG | CTCTACAGCC | GTGCGCTGTT  | CGACGAGCCA  |            |
| 49081 | CGGATCACGG  | GGTTGCTGGA  | GGAGGTTACG  | GCGGTGCTTC | AGGCGGTCAC  | CGCCGACCCG  |            |
| 49141 | GACGTACGGC  | TGTCGCGGCT  | GCCGGCCGGC  | GACGCGACGG | CGGCAGCGCC  | CGTGGTGCCTC |            |
| 49201 | TCGAACGACA  | CGGCGCGGG   | CCTGCCCGTC  | GACACGCTGC | CGGGCTGCT   | GGCCCCGTAC  |            |
| 45    | 49261       | GCCGCACGCA  | CCCCCGGCC   | CGTGGCCGTC | ACCGACCCGC  | ACATCTCCCT  | CACCTACGCG |
| 49321 | CAGCTGGACC  | GGCGGGCGA   | CCGCCTCGCG  | CACCTGCTCC | GCGCGCGCG   | CACCGCCACC  |            |
| 49381 | GGCGACCTGG  | TGGGGATCTG  | CGCCGATCGC  | GGCGCCGACC | TGATGTCGG   | CATCGTGGGG  |            |
| 49441 | ATCCTCAAGG  | CGGGCGCCGC  | TTATGTCGG   | CTGGACCCCG | AAACATCCTCC | GGAGCGCACG  |            |
| 49501 | GCGTTCTGTC  | TGGCCGACGC  | GCAGCTGACC  | ACGGTGGTGG | CGCACGAGGT  | CTACCGTTCC  |            |
| 50    | 49561       | CGGTCTCCCC  | ATGTGCCCAC  | CGTGGTGGCG | TTGGACGACC  | CGGAGCTGG   | CGGCAGCCG  |
| 49621 | GACGACACGG  | CGCCGGACGT  | CGAGCTGGAC  | CGGGACAGCC | TCGCCTACGC  | GATCTACACG  |            |
| 49681 | TCCGGGTGCA  | CGGGCAGGCC  | GAAGGCCGTG  | CTCATGCCGG | GTGTCAGCGC  | CGTCAACCTG  |            |
| 49741 | CTGCTCTGGC  | AGGAGCGCAC  | GATGGGCCGC  | GAGCCGCCA  | GCCGCACCGT  | CCAGTCGTG   |            |
| 49801 | ACGCCCCACGT | TCGACTACTC  | GGTGCAGGAG  | ATCTTTCCG  | CGCTGCTGGG  | CGGCACGCTC  |            |

49861 GTCATCCGC CGGACGAGGT GCGGTTGAC CCGCCGGAC TCGCCCGGT GATGGACGAA  
49921 CAGGCAGATT CCCGGATCTA CGCGCCGACG GCCGTACTGC GCGCGCTGAT CGAGCACGTC  
49981 GATCCGCACA GCGACCAGCT CGCCGCCCTG CGGCACCTGT GCCAGGGCGG CGAGGCCTG  
50041 ATCCTCGACG CGCGGTTGCG CGAGCTGTGC CGGCACGGC CCCACCTGCG CGTGCACAAT  
5 50101 CACTACGGTC CGGCCGAAAG CGAGCTCATC ACCGGGTACA CGCTGCCGC CGACCCCGAC  
50161 GCGTGGCCCG CCACCGCACC GATCGGCCCG CCGATCGACA ACACCCGCAT CCATCTGCTC  
50221 GACGAGGCGA TGCGGCCGGT TCCGACGGT ATGCCGGGC AGCTCTGCGT CGCCGGCGTC  
50281 GGCCTCGCCC GTGGGTACCT GGCCCGTCCC GAGCTGACCG CCGAGCGCTG GGTGCCGGGA  
50341 GATGCCGTG GCGAGGAGCG CATGTACCTC ACCGGCGACC TGGCCCGCC CGCGCCCCGAC  
10 50401 GGCAGACCTGG ATTCCCTCGG CGGGATCGAC GACCAGGTCA AGATCCGCGG CATCCGCGTC  
50461 GAACCGGGTG AGATCGAGAG CCTGCTCGCC GAGGACGCC GCGTCACGCA GGCGGCCGGTG  
50521 TCCGTGCGCG AGGACCGGGCG GGGCGAGAAG TTCCCTGGCG CGTACGTGCGT ACCGGTGGCC  
50581 GGCCGGCACG GCGACGACTT CGCCGCGTCG CTGCGCGGG GACTGGCCGC CGGGCTGCC  
50641 GCGCGCCTCG TGCCCTCCGC CGTCTCCTG GTGGAGCGAC TGCCGAGGAC CACGAGCGGC  
15 50701 AAGGTGGACC GGCAGCGCGT GCCCGACCCCG GAGCCGGGCC CGCGTGCAC CGGGCGGGT  
50761 ACGCCCCGCA CCGATGCCGA CGGGACGGTG TGCCGGATCT TCCAGGAGGT GCTGACGTC  
50821 CGCGGGTCG GTGCCGACGA CGACTCTTC ACGCTCGGC GGCACCTCC GCTGCCACC  
50881 CGGGTCTCT CCCGCATCCG CGCCGAGCTG GGTGCCGATG TCCCGCTGCG TACGCTCTC  
50941 GACGGCGGA CGCCCGCCGC GCTCGCCCGT GCGGCGGACG AGGCCGGCCC GGCGCCCTG  
20 51001 CCCCCGATCG CGCCCTCCGC GGAGAACGGG CGGGCCCCCCC TCACCGCGGC ACAGGAACAG  
51061 ATGCTGCACT CGCACGGCTC GCTGCTCGCC GCGCCCTCCT ACACGGTCG CCGTACGGG  
51121 TTCCGGCTGC CGGGGCCACT CGACCGCGAA GCGCTCGACG CGGACTGAC CGGATCGCC  
51181 GCGCGCCACG AGCCGCTGCG GACGGGGTTC CGCGATCGGG AACAGGTGCGT CGGGCCGCC  
51241 GCTCCGGTGC CGGCCGAGGT GTTCCGGTG CGGTGCGGC ACGTCGACGC CGGGTCCGG  
25 51301 GTCGCCACC GGGAGCTGAC CGGGCCGTT GACCTCGTA ACGGGTCGTT GCTGCGTGC  
51361 GTGCTGCTGC CGCTGGCGC CGAGGATCAC GTGCTGCTGC TGATGCTGCA CCACCTCGCC  
51421 GGTGACGGAT GGTCTTCTGA CCTCTCTGGT CGGGAGTTGT CGGGGACGCA ACCGGACCTT  
51481 CGGGTGTCC ACACGGACGT GGCCCGTGG GAACGGAGTC CGGCCGTGAT CGCGGCCAGG  
51541 GAGAACGACC GGGCTACTG GCGCCGGCGG CTGGGGGCG CCACCGCGCC GGAGCTGCC  
30 51601 GCGGTCCGGC CGGGGGGGC ACCGACCGGG CGGGCGTTCC TGTGGACGCT CAAGGACACC  
51661 GCGTCTCTGG CGGCACGCGC GGTCCGGAC GCCCACGAC CGACGTTGCA CGAAACCGTG  
51721 CTCGGCCCT TCGCCCTGGT CGTCCGGAG ACCGCCGACA CGACGACGTC GCTCGTGC  
51781 ACGCCGTTCG CGGACCGGGG GTACGCCGG ACCGACCAAC TCATCGGCTT CTTCGCGAAG  
51841 GTCTCGCGC TGCGCCTCGA CCTCGCGGC ACGCCGTCGT TCCCGAGGT GCTGCGCCGG  
35 51901 GTGCACACCG CGATGGTGGG CGCGCACGCC CACCAGCGG TGCCCTACTC CGCGCTGCC  
51961 GCGGAGGACC CGCGCTGCC GCCGGCCCCC GTGCGTTCC AGCTCATCAG CGCGCTCAGC  
52021 GCGGAACTGC GGCTGCCCGG CATGCACACC GAGCCGTTCC CGTCGTCGC CGAGACCGTC  
52081 GACGAGATGA CGGGCGAAGT GTCGATCAAC CTCTCGACG ACGGTCGAC CGTCTCCGGC  
52141 GCGGTGGTCC ACGATGCCGC GCTGCTCGAC CGTGCCACCG TCGACGATT GCTCACCGG  
40 52201 GTGGAGGCGA CGCTGCGTGC CGCCCGGGC GACCTCACCG TACGCGTCAC CGGTTACGTG  
52261 GAAAGCGAGT AGCCATGCC GAGCAGGACA AGACAGTCGA GTACCTTCGC TGGCGACCG  
52321 CGGAACTCCA GAAGACCCGT CGGAACTCG CGCGCACAG CGAGCCGTTG CGATCGTGG  
52381 GGATGGCTG CGGGCTGCC CGGGGGTCG CGTCGCCGGA GGACCTGTGG CAGTTGCTGG  
52441 AGTCCGGTGG CGACGGCATC ACCGCGTTCC CCACGGACCG GGGCTGGAG ACCACCGCCG  
45 52501 ACGGTCGCGG CGGCTTCTC ACCGGGGCGG CGGGCTTCGA CGCGCGTTC TTCGGCATCA  
52561 GCGCGCGCA GGCGCTGGCG ATGGACCCGC AGCAGCGCCT GGCCCTGGAG ACCTCGTGGG  
52621 AGGCGTTCGA GCACCGGGC ATCGATCCGC AGACGCTGCG GGGCAGTGAC ACGGGGGTGT  
52681 TCCTCGCGC GTTCTCCAG GGGTACGGCA TCGGCCCGA CTTCGACGGT TACGGCACCA  
52741 CGAGCATTCA CACGAGCGTG CTCTCCGGCC GCCTCGCGTA CTTCTACGGT CTGGAGGGTC  
50 52801 CGCGGTCAC GGTGACACCG GCGTGTTCGT CGTCGCTGGT GGCGCTGCAC CAGGCCGGC  
52861 AGTCGCTGCG CTCCGGCGA TGCTCGCTCG CCCTGGTCGG CGCGCTCACG GTGATGGCCT  
52921 CGCGGGCGGG GTTCTCGGAC TTCTCCGAGC AGGGCGGCCT GGCCCCCGAC GCGCGCTGCA  
52981 AGGCCTTCGC GGAAGCGGCT GACGGCACCG GTTTCGCCGA GGGTCCGGC GTCCTGATCG  
53041 TCGAGAAGCT CTCCGACGCC GAGCGCAACG GCCACCGCGT GCTGGCGTC GTCCGGGTT

- 45 -

|       |             |              |             |             |             |             |             |
|-------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
| 53101 | CCGCCGTCAA  | CCAGGACGGT   | GCCTCCAACG  | GGCTGTCCGC  | GCCGAACGGG  | CCGTCGCAGG  |             |
| 53161 | AGCGGGTGAT  | CCGGCAGGCC   | CTGGCCAACG  | CCGGACTCAC  | CCGGCGGGAC  | GTGGACGCCG  |             |
| 53221 | TCGAGGCCCA  | CGGCACCAGC   | ACCAGGCTGG  | GCGACCCCAT  | CGAGGCACAG  | GCCGTGCTGG  |             |
| 53281 | CCACCTACGG  | GCAGGGCGC    | GACACCCCTG  | TGCTGCTGGG  | CTCGCTGAAG  | TCCAACATCG  |             |
| 5     | 53341       | GCCACACCCA   | GGCGGCCCGC  | GGCGTCGCCG  | GTGTATCAA   | GATGGTCCTC  | GCCATGCGGC  |
| 53401 | ACGGCACCCCT | GCCCCGACCC   | CTGCACGTGG  | ACACGCCGTC  | CTCGCACGTC  | GAUTGGACGG  |             |
| 53461 | CCGGCGCCGT  | CGAACCTCTC   | ACCGACGCC   | GGCCCTGGCC  | CGAAACCGAC  | CGCCCACGGC  |             |
| 53521 | GCGCCGGTGT  | CTCCTCCTC    | GGCGTCAGCG  | GCACCAACGC  | CCACATCATC  | CTCGAAAGCC  |             |
| 10    | 53581       | ACCCCCGACC   | GGCCCCCGAA  | CCCGCCCCCG  | CACCCGACAC  | CGGACCGCTG  | CCGCTGCTGC  |
| 53641 | TCTCGGCCCG  | CACCCCGCAG   | GCACTCGACG  | CACAGGTACA  | CCGCCTGCGC  | GCCTTCCCTCG |             |
| 53701 | ACGACAACCC  | CGGCGCGGAC   | CGGGTGCAGCG | TCGCGCAGAC  | ACTCGCCCGG  | CGCACCCAGT  |             |
| 53761 | TCGAGCACCG  | CGCCGTGCTG   | CTCGCGACAC  | CGCTCATCAC  | CGTGAGGCCG  | AACGCCGGC   |             |
| 53821 | GCGGACCGGT  | GGTCTTCGTC   | TACTCGGGGC  | AAAGCACGCT  | GCACCCGCAC  | ACCGGGCGGC  |             |
| 53881 | AACTCGCGTC  | CACCTACCCC   | GTGTTGCGCG  | AAAGCGTGGCG | CGAGGCCCTC  | GACCACCTCG  |             |
| 15    | 53941       | ACCCCCACCCA  | GGGCCCCGGCC | ACGCACCTCG  | CCCACCAAGAC | CGCGCTCACC  | GCGCTCCTGC  |
| 54001 | GGTCTGGGG   | CATCACCCCG   | CACCGGGTCA  | TCGGCCACTC  | CCTCGGTGAG  | ATCACCGCCG  |             |
| 54061 | CGCACGCCGC  | CGGTGTCCTG   | TCCCTGAGGG  | ACGCGGGCGC  | GCTCCTCACC  | ACCCGCACCC  |             |
| 54121 | GCCTGATGGA  | CCAAC TGCCG  | TCGGGGCGCG  | CGATGGTCAC  | CGTCCTGACC  | AGCGAGGAAA  |             |
| 54181 | AGGCACGCCA  | GGTGCTGCGG   | CCGGGGCGTGG | AGATCGCCGC  | CGTCAACGGC  | CCCCACTCCC  |             |
| 20    | 54241       | TCGTGCTGTC   | CGGGGACGAG  | GAAGCCGTAC  | TCGAAGCCGC  | CCGGCAGCTC  | GGCATCCACC  |
| 54301 | ACCGCCTGCC  | GACCCGCCAC   | GCCGCCACT   | CCGAGCGCAT  | GCAGCCACTC  | GTCGCCCGCC  |             |
| 54361 | TCCTCGACGT  | CGCCCGGACC   | CTGACGTACC  | ACCAGCCCCA  | CACCGCCATC  | CCCGGGCGACC |             |
| 54421 | CCACCAACCGC | CGAACATACTGG | GCGCACCAAGG | TCCCGCACCA  | AGTACGTTTC  | CAGGCGCACA  |             |
| 54481 | CCGAGCAGTA  | CCCAGGGCGCG  | ACGTTCTCG   | AGATCGGGCC  | CAACCAGGAC  | CTCTCGCCGC  |             |
| 25    | 54541       | TCGTCGACGG   | CGTTGCCGCC  | CAGACCGGTA  | CGCCCGACGA  | GGTGCAGGGCG | CTGCACACCG  |
| 54601 | CGCTCGCGCA  | GCTCCACGTC   | CGCGCGCTCG  | CGATCGACTG  | GACGCTCGTC  | CTCGGGGGGG  |             |
| 54661 | ACCGCGCGCC  | CGTCACGCTG   | CCCACGTATC  | CGTTCCAGCA  | CAAGGACTAC  | TGGCTGCGGC  |             |
| 54721 | CCACCTCCCG  | GGCGATGTG    | ACCGGGCGCG  | GGCAGGAGCA  | GGTGGCGCAC  | CCGCTGCTCG  |             |
| 54781 | GCGCCCGGGT  | CGCGCTGCC    | GGCACGGGCG  | GAGTCGTCT   | GACCGGCCGC  | CTGTCGCTGG  |             |
| 30    | 54841       | CCTCCCATCC   | GTGGCTGCC   | GAGCACGCC   | TCGACGGCAC  | CGTGCTCCTG  | CCCGGGCGCG  |
| 54901 | CCTTCCTCGA  | ACTCGCGGCC   | CGCGCCGGCG  | ACGAGGTCTG  | CTGCGACCTG  | CTGCACGAAC  |             |
| 54961 | TCGTCATCGA  | GACGCCGTC    | GTGCTGCCCG  | CGACCGGGCG  | TGTGGCGGTC  | TCCGTGAGA   |             |
| 55021 | TCGCCGAACC  | CGACGACACG   | GGGGCGCGGG  | CGGTCACCGT  | CCACGCGCGG  | GCCGACGGCT  |             |
| 55081 | CGGGCCTGTG  | GACCCGACAC   | GCCGGCGGAT  | TCCTCGGCAC  | GGCACCGGCA  | CCGGCACCGG  |             |
| 35    | 55141       | CCACGGACCC   | GGCACCCCTGG | CCGCCCGCGG  | AAGCCGGACC  | GGTCGACGTC  | GCCGACGTCT  |
| 55201 | ACGACCGGTT  | CGAGGACATC   | GGGTACTCT   | ACGGACCGGG  | CTTCCGGGGG  | CTGCGGGCCG  |             |
| 55261 | CCTGGCGCGC  | CGGCGACACC   | GTGTACGCGC  | AGGTCGCGCT  | CCCCGACGAG  | CAGAGCGCCG  |             |
| 55321 | ACGCCGCCCG  | TTTCACGCTG   | CACCCCGCGC  | TGCTCGACGC  | CGCGTTCAG   | GCCGGCGCGC  |             |
| 55381 | TGGCCCGCGT  | CGACGCCACCC  | GGCGGGCGG   | CCCGACTGCC  | GTTCTCGTTC  | CAGGACGTCC  |             |
| 40    | 55441       | GCATCCACGC   | GGCGGGGGCG  | ACGCGGCTGC  | GGGTCACGGT  | CGGGCGCGAC  | GGCGAGCGCA  |
| 55501 | GCACCGTCCG  | CATGACCGGC   | CCGGACGGGC  | AGCTGGTGGC  | CGTGGTCGGT  | GCCGTGCTGT  |             |
| 55561 | CGCGCCCGTA  | CGCGGAAGGC   | TCCGGTGAAC  | GCCTGTCGC   | CCCGGTCTGG  | ACCGAGCTGC  |             |
| 55621 | CGATGCCGT   | CCCGTCCCGC   | GACGATCCGC  | CGCTGGAGGT  | CCTCGCGCC   | GACCCGGCG   |             |
| 55681 | ACGGCGACGT  | TCCGGCGGCC   | ACCCGGGAGC  | TGACCGCCCG  | CGTCCTCGGC  | GCGCTCCAGC  |             |
| 45    | 55741       | GCCACCTGTC   | CGCCGCCGAG  | GACACCACT   | TGGTGGTACG  | GACCGGCACC  | GGCCCAGGGCG |
| 55801 | CTGCCGCCGC  | CGCGGGTCTG   | GTCCGCTCGG  | CGCAGGGCGA  | GAACCCCGGC  | CGCGTGTGTC  |             |
| 55861 | TCGTCGAGGC  | GTCCCCGGAC   | ACCTCGGTGG  | AGCTGCTCGC  | CGCGTGCAGCC | GCGCTGGACG  |             |
| 55921 | AACCGCAGCT  | GGCGTCCGG    | GACGGCGTGC  | TCTTCGCGCC  | CGCGCTGGTC  | CGGATGTCCG  |             |
| 55981 | ACCCCCGCGCA | CGGCCCCGCTG  | TCCCTGCCGG  | ACGGCGACTG  | GCTGCTCACC  | CGGTCCGCCT  |             |
| 50    | 56041       | CGGGCACGTT   | GCACGACGTC  | GCGCTCATAG  | CCGACGACAC  | GCCCCGGCGG  | GCGCTCGAAG  |
| 56101 | CGGGCGAGGT  | CCGCATCGAC   | GTCCGCGCGG  | CCGGACTGAA  | CTTCCGCGAT  | GTGCTGATCG  |             |
| 56161 | CGCTCGGGAC  | GTACACCAGG   | GCCACGGCCA  | TGGGCGGGGA  | GGCCGCGGGC  | GTCGTGGTGG  |             |
| 56221 | AGACCGGGGC  | CGGCGTGGAC   | GACCTGTCCC  | CCGGCGACCG  | GGTGTTCGGC  | CTGACCCGGG  |             |
| 56281 | CGGGCATCGG  | CCCGACGCC    | GTCACCGACCC | GGCGCTGGCT  | GGCCCGGATC  | CCCGACGGCT  |             |

|    |       |             |             |             |             |             |             |
|----|-------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | 56341 | GGAGCTTCAC  | CACGGCGGCG  | TCCGTCCCAGA | TCGTGTTGCG  | GACCGCGTGG  | TACGGCCTGG  |
|    | 56401 | TCGACCTCGG  | CACACTGCGC  | GCCGGCGAGA  | AGGTCCCTCGT | CCACGCGGCC  | ACCGGCCTGG  |
|    | 56461 | TCGGCATGGC  | CGCCGCACAG  | ATCGCCCGCC  | ACCTGGCGC   | CGAGCTCTAC  | GCCACCGCCA  |
| 5  | 56521 | GTACCGCAA   | GCAGCACGTC  | CTGCGCGCCG  | CCGGGCTGCC  | CGACACGCAC  | ATCGCCGACT  |
|    | 56581 | CTCGGACGAC  | CGCGTTCGG   | ACCGCTTCC   | CGCGCATGGA  | CGTCGTCCTG  | AACGCGCTGA  |
|    | 56641 | CCGGCGAGTT  | CATCGACCGC  | TCGCTCGACC  | TGCTGGACGC  | CGACGGCCGG  | TTCGTCGAGA  |
|    | 56701 | TGGGCCGCAC  | CGAGCTGCGC  | GACCCGGCCG  | CGATCGTCCC  | CGCCTACCTG  | CCGTCGACC   |
| 10 | 56761 | TGCTGGACGC  | GGGCGCCGAC  | CGCATCGCG   | AGATCCTGGG  | CGAACTGCTC  | CGGCTGTTG   |
|    | 56821 | ACGCGGGCGC  | GCTGGAGCCG  | CTGCCGGTCC  | GTGCCCTGGGA | CGTCCGGCAG  | GCACCGCAGC  |
| 15 | 56881 | CGCTCGGCTG  | GATGAGCCGC  | GCCCCCACA   | TCGGCAAGAA  | CGTCCTGACG  | CTGCCCCGGC  |
|    | 56941 | CGCTCGACCC  | GGAGGGCGCC  | GTGCTCTCA   | CCGGCGGCTC  | CGGCACGCTC  | GCCGGCATCC  |
|    | 57001 | TCGCCCAGCA  | CCTGCGCGAA  | CGGCATGTCT  | ACCTGCTGTC  | CCGGACGGCA  | CCGCCCCGAGG |
|    | 57061 | GGACGCCCCG  | CGTCCACCTG  | CCCTGCGACG  | TCGGTGACCG  | GGACCAAGCTG | GCGGCGGGCC  |
| 20 | 57121 | TGGAGCGGGT  | GGACCGGGCG  | ATCACCGCCG  | TGGTGACACT  | CGCCGGTGCG  | CTGGACGACG  |
|    | 57181 | GCACCGTCGC  | GTCGCTCACC  | CCCGAGCGTT  | TCGACACGGT  | GCTGCGCCCG  | AAGGCCGACG  |
|    | 57241 | GCGCCTGGTA  | CCTGCACGAG  | CTGACGAAGG  | AGCAGGACCT  | CGCCGCGTTC  | GTGCTACT    |
|    | 57301 | CGTCGGCCGC  | CGGCGTGTCT  | GGCAACGCCG  | GCCAGGGCAA  | CTACGTCGCC  | GCGAACCGGT  |
|    | 57361 | TCCTCGACGC  | GCTCGCCGAG  | CTGCGCCACG  | GTTCCGGCT   | GCCGGCCCTC  | TCCATCGCCT  |
| 25 | 57421 | GGGGGCTCTG  | GGAGGACGTG  | AGCGGGCTCA  | CCGCGGGCT   | CGCGAAGCC   | GACCGGGACC  |
|    | 57481 | GGATGCGGCG  | CAGCGGTTTC  | CGGGCCATCA  | CCGCGCAACA  | GGGCATGCAC  | CTGTACGAGG  |
|    | 57541 | CGGCCGGCCG  | CACCGGAAGT  | CCCGTGGTGG  | TCGCGGGCGC  | GCTCGACGAC  | GCGCCGGACG  |
|    | 57601 | TGCCGCTGCT  | GCGCGGCCCTG | CGCGGGACGA  | CCGTCCGGCG  | GGCGCCGCTC  | CGGGAGTGT   |
|    | 57661 | CGTCCGCCGA  | CCGGCTCGCC  | CGCGTGAACG  | GCGACGAGCT  | CGCCGAAGCG  | CTGCTACGC   |
| 30 | 57721 | TCGTCCGGGA  | GAGCACCGCC  | GCCGTGCTCG  | GCCACGTGGG  | TGGCGAGGAC  | ATCCCCCGCA  |
|    | 57781 | CGGCGGGCGTT | CAAGGACCTC  | GGCATCGACT  | CGCTCACCGC  | GGTCAGCTG   | CGAACGCC    |
|    | 57841 | TCACCGAGGC  | GACCGGGTGTG | CGGCTGAACG  | CCACGGGGT   | CTTCGACTTC  | CCGACCCCCGC |
|    | 57901 | ACGTGCTCGC  | CGGGAAAGCTC | GGGCACGAAC  | TGACCGGCAC  | CCGCGCGCCC  | GTCGTGCC    |
|    | 57961 | GGACCGCGGC  | CACGGCCGGT  | GGCAGACGACG | AGCCGCTGGC  | GATCGTGGGA  | ATGGCCTGCC  |
| 35 | 58021 | GGCTGCCCGG  | CGGGGTCGCG  | TCACCCGAGG  | AGCTGTGGCA  | CCTCGTGGCA  | TCCGGCACCG  |
|    | 58081 | ACGCCATCAC  | GGAGTTCCCG  | ACGGACCGCG  | GCTGGGACGT  | CGACGCGATC  | TACGACCCGG  |
|    | 58141 | ACCCCGACGC  | GATCGGCAAG  | ACCTTCGTCC  | GGCACGGTGG  | CTTCCTCACC  | GGCGCGACAG  |
|    | 58201 | GCTTCGACGC  | GGCGTTCTTC  | GGCATCAGCC  | CGCGCGAGGC  | CCTCGCGATG  | GACCCGCAGC  |
|    | 58261 | AGCGGGTGCT  | CCTGGAGACG  | TCGTGGGAGG  | CGTTGAAAG   | CGCCGGCATC  | ACCCCGGACT  |
| 40 | 58321 | CGACCCCGGG  | CAGCGACACC  | GGCGTGTTCG  | TCGGCGCCTT  | CTCCTACGGT  | TACGGCACCG  |
|    | 58381 | GTGCGGACAC  | CGACGGCTTC  | GGCGCGACCG  | GCTCGCAGAC  | CAGTGTGCTC  | TCCGGCCGGC  |
|    | 58441 | TGTCGTACTT  | CTACGGTCTG  | GAGGGTCCGG  | CGGTACGGT   | CGACACGGCG  | TGTCGTCGT   |
|    | 58501 | CGCTGGTGGC  | GCTGCACCAAG | GCCGGGCAGT  | CGCTCGCCTC  | CGCGAATGC   | TCGCTCGCC   |
|    | 58561 | TGGTCCGGCG  | CGTCACGGTG  | ATGGCGTCTC  | CCGGCGGCTT  | CGTGGAGTTC  | TCCCGGCAGC  |
| 45 | 58621 | CGGGCCTCGC  | GGCGGACGGC  | CGGGCGAAGG  | CGTTCGGCGC  | GGGTGCGGAC  | GGCACGAGCT  |
|    | 58681 | TCGCGGAGGG  | TGCGGGTGTG  | CTGATCGTCG  | AGAGGCTCTC  | CGACGCCGAA  | CGAACCGTC   |
|    | 58741 | ACACCGTCCT  | GGCGGTGCGC  | CGTGGTTCCGG | CGGTCAACCA  | GGATGGTGCC  | TCCAACGGGC  |
|    | 58801 | TGTCGGCGCC  | GAACGGGCCG  | TCGCAGGAGC  | GGGTGATCCG  | GCAGGCCCTG  | GCCAACCGCG  |
|    | 58861 | GGCTCACCCC  | GGCGGACGTG  | GACGCCGTG   | AGGCCACGG   | CACCGGCACC  | AGGCTGGCG   |
| 50 | 58921 | ACCCCATCGA  | GGCACAGGGCG | GTACTGGCCA  | CCTACGGACA  | GGAGCGCGCC  | ACCCCCCTGC  |
|    | 58981 | TGCTGGGCTC  | GCTGAAGTCC  | AACATCGGCC  | ACGCCACGG   | CGCGTCCGGC  | GTCGCCGGCA  |
|    | 59041 | TCATCAAGAT  | GGTGCAGGCC  | CTCCGGCACG  | GGGAGCTGCC  | GGCGACGCTG  | CACGCCGACG  |
|    | 59101 | AGCCGTCGCC  | GCACGTCGAC  | TGGACGGCCG  | GCGCGTCGA   | ACTGCTGACC  | TCGGCCCGGC  |
|    | 59161 | CGTGGCCCGA  | GACCGACCGG  | CCACGGCGTG  | CCGCGCTCTC  | CTCGTTGGGG  | GTGAGCGGCA  |
|    | 59221 | CCAACGCCCA  | CGTCATCCTG  | GAGGCCGGAC  | CGGTAACGGA  | GACGCCCGCG  | GCATCGCCTT  |
| 55 | 59281 | CCGGTGACCT  | TCCCCCTGCTG | GTGTGGCAC   | GCTCACCGGA  | AGCGCTCGAC  | GAGCAGATCC  |
|    | 59341 | GCCGACTGCG  | CGCCTACCTG  | GACACCAACCC | CGGACGTCGA  | CCGGGGTGGCC | GTGGCACAGA  |
|    | 59401 | CGCTGGCCCG  | GGCGCACACAC | TTCGCCCAACC | GGCGCGTGCT  | GCTCGGTGAC  | ACCGTCATCA  |
|    | 59461 | CCACACCCCC  | CGCGGACCCGG | CCCGACGAAC  | TCGTCTTCGT  | CTACTCCGGC  | CAGGGCACCC  |
|    | 59521 | AGCATCCCCG  | GATGGGGCGAG | CAGCTCGCCG  | CCGCCCCATCC | CGTGTTCGCC  | GACGCCCTGGC |

|       |             |            |             |             |             |             |            |
|-------|-------------|------------|-------------|-------------|-------------|-------------|------------|
| 59581 | ATGAAGCGCT  | CCGCCGCCTT | GACAACCCG   | ACCCCCACGA  | CCCCACGCAC  | AGCCAGCATG  |            |
| 59641 | TGCTCTTCGC  | CCACCAGGCG | GCGTTCACCG  | CCCTCCTGCG  | GTCCTGGGC   | ATCACCCCGC  |            |
| 59701 | ACGCGGTCA   | CGGCCACTCG | CTGGGCGAGA  | TCACCGGGC   | GCACGCCGCC  | GGCATCCTGT  |            |
| 59761 | CGCTGGACGA  | CGCGTGCACC | CTGATCACCA  | CGCGCGCCCG  | CCTCATGCAC  | ACGCTCCCGC  |            |
| 5     | 59821       | CACCCGGTGC | CATGGTCACC  | GTACTGACCA  | GCGAAGAGAA  | GGCACGCCAG  | GCGTTGCGGC |
| 59881 | CGGGCGTGG   | GATCGCCGCC | GTCAACGGGC  | CCCACCTCCAT | CGTGCTGTCC  | GGGGACGAGG  |            |
| 59941 | ACGCGGTGCT  | CACCGTCGCC | GGGCAGCTCG  | GCATCCACCA  | CCGCCCTGCC  | GCCCCGCACG  |            |
| 60001 | CCGGGCAC    | CGCGCACATG | GAGCCC GTGG | CCGCCGAGCT  | GTCGCCACC   | ACCCGCGGGC  |            |
| 60061 | TCCGCTACCA  | CCCTCCCCAC | ACCTCCATT   | CGAACGACCC  | CACCACCGCT  | GAGTACTGGG  |            |
| 10    | 60121       | CCGAGCAGGT | CCGCAAGCCC  | GTGCTGTTCC  | ACGCCCACGC  | GCAGCAGTAC  | CCGGACGCCG |
| 60181 | TGTTCGTGG   | GATCGGCC   | GCCCAGGACC  | TCTCCCCGCT  | CGTCGACGGG  | ATCCCCTGTC  |            |
| 60241 | AGAACGGC    | CGCGGACGAG | GTGCACGC    | TGCACACCCG  | GTCGCAC     | CTCTACGCGC  |            |
| 60301 | CGGGTGCCAC  | GCTCGACTGG | CCCCGCATCC  | TCGGGGCTGG  | GTCACGGCAC  | GACGCGGATG  |            |
| 60361 | TGCCCCGCGTA | CGCGTTCAA  | CGGCGGACT   | ACTGGATCGA  | GTGCGCACGC  | CCGGCCGCAT  |            |
| 15    | 60421       | CCGACGCC   | CCACCCCGTG  | CTGGGCTCCG  | GTATGCCCT   | CGCCGGTGC   | CCGGGCCGGG |
| 60481 | TGTTCACGGG  | TTCCGTGCCG | ACCGGTGC    | ACCGCGCGGT  | GTTGTCGCC   | GAGCTGGCGC  |            |
| 60541 | TGGCCGCC    | GGACGCGGTC | GAUTGCGCCA  | CGGTCGAGCG  | GCTCGACATC  | GCCTCCGTG   |            |
| 60601 | CCGGCCGGC   | GGGCCATGGC | CGGACGACCG  | TACAGACCTG  | GGTCGACGAG  | CCGGCGGACG  |            |
| 60661 | ACGGCCGGC   | CCGGTTACC  | GTGCACACCC  | GCACCGGCGA  | CGCCCCGTGG  | ACGCTGCACG  |            |
| 20    | 60721       | CCGAGGGGGT | GCTGCGCCC   | CATGGCACGG  | CCCTGCCGA   | TGCGGCCGAC  | GCCGAGTGGC |
| 60781 | CCCCACCGGG  | CGCGGTGCC  | CGGGACGGGC  | TGCCGGGTGT  | GTTGCC      | GGGGACCAAGG |            |
| 60841 | TCTTCGCCGA  | GGCCGAGGTG | GACGGACCGG  | ACGGTTCTGT  | GGTGCACCCCC | GACCTGCTCG  |            |
| 60901 | ACGCGTCTT   | CTCCGCGGT  | GGCGACGGAA  | GCCGCCAGCC  | GGCCGGATGG  | CGCGACCTGA  |            |
| 60961 | CGGTGACGC   | GTCCGACGCC | ACCGTACTGC  | GCACCTGCCT  | CACCCGGCGC  | ACCGACGGAG  |            |
| 25    | 61021       | CCATGGGATT | CGCCGCCTC   | GACGGCGCCG  | GCCTGCCGGT  | ACTCACCGCG  | GAGGCGGTGA |
| 61081 | CGCTGGGGA   | GGTGGCGTCA | CCGTCGGCT   | CCGAGGAGTC  | GGACGGCTG   | CACCGGTGG   |            |
| 61141 | AGTGGCTCG   | GGTOGCCGAG | GGGGTCTACG  | ACGGTGACCT  | GCCCAGGGGA  | CATGTCCTGA  |            |
| 61201 | TCACCGCCG   | CCACCCGAC  | GACCCGAGG   | ACATACCCAC  | CCGCGCC     | ACCCGCGCCA  |            |
| 61261 | CCCGCGTCT   | GACCGCC    | CAACACCACC  | TCACCA      | CGACCA      | CTCATCGCC   |            |
| 30    | 61321       | ACACCAC    | CGACCCCGCC  | GGGCC       | TCACCGGCT   | CACCCGCA    | GCCCAGAACG |
| 61381 | AAACCCCCA   | CCGCATCCG  | CTCATGAAA   | CCGACCACCC  | CCACACCCCC  | CTCCCCCTGG  |            |
| 61441 | CCCAACTCG   | CACCTCGAC  | CACCCCA     | TCCGCTCAC   | CCACCA      | CTCCACCA    |            |
| 61501 | CCCACCTC    | CCCCCTCCAC | ACCACCACCC  | CACCCACAC   | CACCC       | AACCCCGAAC  |            |
| 61561 | ACGCCATCAT  | CATCACCGGC | GGCTCCGGCA  | CCCTCGCCGG  | CATCTCGCC   | CGCCACCTGA  |            |
| 35    | 61621       | ACCACCCCA  | CACCTACCTC  | CTCTCCGCA   | CCCCACCCCC  | CGACGCC     | CCGGCACCC  |
| 61681 | ACCTCCCC    | CGACGTC    | GACCCCCACC  | AACTGCCAC   | CACCTCACC   | CACATCCCC   |            |
| 61741 | ACCCCTC     | CGCCATCTC  | CACACC      | CCACCC      | CGACGGC     | CTCCACGCC   |            |
| 61801 | TCACCCCC    | CCGCTCACC  | ACCGTCTCC   | ACCCCAAAGC  | CAACGCC     | TGGCACCTGC  |            |
| 61861 | ACCACTC     | CCAAAACCA  | CCCCTCACCC  | ACTTCGTCT   | CTACTCC     | GCCGCCGCC   |            |
| 40    | 61921       | TCCTCGG    | CCCCGGACAA  | GGAAACTACG  | CCGCCGCC    | CGCCTTCC    | GACGCC     |
| 61981 | CCACCCAC    | CCACACCC   | GGCCAACCCG  | CCACCTCCAT  | CGCCTGGG    | ATGTGGCACA  |            |
| 62041 | CCACCAGC    | CCTCACCG   | CAACTCGACG  | ACGCCGACCG  | GGACCGC     | CGCCGCGCG   |            |
| 62101 | GTTCCTCC    | GATCACGG   | GACGAGGCA   | TGCGCTCTA   | CGAGGCG     | GTCGGCTCC   |            |
| 62161 | GCGAGGACT   | CGTCATGG   | CCCGCGATGG  | ACCCGGACA   | GCCGATGAC   | GGCTCCGTAC  |            |
| 45    | 62221       | CGCCCATC   | GAGCGG      | CGCAGGAGCG  | CGCGGCG     | CGCCCGTGC   | GGGCAGACGT |
| 62281 | TCGCCAGC    | GCTCGC     | CTGCCGACG   | CCGACCG     | CGCGCG      | ACCACCTCG   |            |
| 62341 | TCTCGGAC    | CACGGC     | GTGCTGGC    | ACGCCGACG   | CTCCGAGATC  | GCGCCGACCA  |            |
| 62401 | CGACGTTCA   | GGACCTCG   | ATCGACTCG   | TCACCGC     | CGAGCTGCG   | AACCGGCTCG  |            |
| 62461 | CGGAGGCG    | CGGGCTG    | CTGAGTGC    | CGCTGGT     | CGACCA      | ACACCTCGG   |            |
| 50    | 62521       | TCCTCGCC   | CAAGCTCC    | ACCGATCTG   | TCGGCACGG   | CGTCCCAC    | CCCGCGGG   |
| 62581 | CGGCACGG    | CCACCA     | GAGCCACTCG  | CGATCGT     | CATGGCG     | CGACTGCC    |            |
| 62641 | CGGGGGT     | CTCGCC     | GACCTG      | AGCTCGT     | GTCCGG      | GACGCGATCA  |            |
| 62701 | CCGAGTT     | CACCGAC    | GGCTGG      | TGACCGG     | GTTGAC      | GACCCGGACG  |            |
| 62761 | CCCCCGG     | GACCTACG   | CGGCACGG    | GCTTCCTG    | CGAGGCC     | GGCTCGATG   |            |

62821 CCGCGTTCTT CGGCATCAGC CCGCGCGAGG CACGGGCCAT GGACCCGCAG CAGCGCGTCA  
62881 TCCTCGAAAC CTCCCTGGAG GCGTCGAGA ACGCGGGCAT CGTCCCGGAC ACGCTCGCG  
62941 GCAGCGACAC CGGCGTGTTC ATGGGCGCGT TCTCCCATGG GTACGGCGCC GGCCTCGAC  
63001 TGGGCGGGTT CGGCGCCACC GCCACGCAGA ACAGCGTGCT CTCCGGCCGG TTGTCGTACT  
5 63061 TCTTCGGCAT GGAGGGCCCG GCGTCACCG TCGACACCGC CTGCTCGTCA TCGCTGGTCA  
63121 CCCTGCACCA GGCAGCACAG GCGCTCGGA CTGGAGAATG CTCGCTGGCG CTCGCCGGCG  
63181 GTGTCACGGT GATGCCAACCG CCGCTGGGCT ACGTCGAGTT CTGCGGCCAG CGGGGACTCG  
63241 CCCCCGACGG CCGTTGCCAG GCCTTCGCGG AAGGCGCCGA CGGCACGAGC TTCTCGGAGG  
63301 GCGCCGGCGT TCTTGTGCTG GAGCGGCTCT CCGACGCCGA GCGAACCGGA CACACCGTCC  
10 63361 TCGCGTCGT CCGCTCTCC GCGTCACCC AGGACGGCGC CTCCAACGGC ATCTCCGCAC  
63421 CCAACGGCCC CTCCCAGCAG CGCGTCATCC GCCAGGGCCCT CGACAAGGGC GGGCTCGCCC  
63481 CGCGCGACGT GGACGTGGTG GAGGCCACG GCACCGGAAC CCCGCTGGGC GACCCGATCG  
63541 AGGCACAGGC CATCATCGCG ACCTACGGCC AGGACCGCGA CACACCGCTC TACCTCGTT  
63601 CGGTCAAGTC GAACATCGGA CACACCCAGA CCACCGCCGG TGTGCGCGGC GTCATCAAGA  
15 63661 TGGTCATGGC GATGCGCCAC GGCATCGCGC CGAAGACACT GCACGTGGAC GAGCCGTCGT  
63721 CGCATGTGGA CTGGACCGAG GGTGCGGTGG AACTGCTCAC CGAGGCCAGG CGTGCGCCCG  
63781 ACGCAGGACG CCCGCGCCCG CGGGCGTGT CGTCGCTCGG TATCAGCGGT ACGAACGCC  
63841 ACGTGATCCT TGAGGGTGTG CCCGGCCGT CGCGTGTGGA GCCGCTGTG GACGGGTTGG  
63901 TGCCGTTGCC GGTGTCGGCT CGGAGTGAGG CGAGTCTGCG GGGGCAGGTG GAGCGGCTGG  
20 63961 AGGGGTATCT GCGCGGGAGT GTGGATGTGG CGCGCGTCGC GCAGGGGTTG GTGCGTGAGC  
64021 GTGCTGTCTT CGGTACCCGT GCGGTACTGC TGGGTGATGC CGGGGTGATG GGTGTCGGCG  
64081 TGGATCAGCC GCGTACGGTG TTCGTTCTTCC CGGGCAGGG TGCTCAGTGG GTGGGCATGG  
64141 GTGTGGAGTT GATGGACCGT TCTGCGGTGT TCGCGGCTCG TATGGAGGAG TGTGCGCGGG  
64201 CGTTGTTGCC GCACACGGGC TGGGATGTGC GGGAGATGTT GGCGCGGCCG GATGTGGCGG  
25 64261 AGCGGGTGGA GGTGGTCCAG CGGGCAGCT GGGCGGTTCGC GGTCAGCCTG GCCGCACTGT  
64321 GGCAGGCCA CGGGGTGCGA CCCGACGCCG TGATCGGACA CTCCCAGGGC GAGATCGCGG  
64381 CGGCCTGCGT GGCGGGGGCC CTCAGCCTTG AGGACGCCGC CGCGTGGTG GCCTGCGCA  
64441 GCCAGGTCAT CGCGCGCGA CTGGCGGGC GGGGAGCGAT GGCTCGGTG GCATTGCGG  
64501 CGGTGAGGT CGGTCTGGTC GAGGGCGTGT GGATCGCGC GCGTAACGGC CCCGCTCGA  
30 64561 CAGTCGTGGC CGCGAGGCC TCAGCGGTGG AGGACGTGGT GACCGGGTAT GAGACCGAAG  
64621 GCGTGCAGT GCGTCGTATC GCGTCGACT ACGCCTCCA CACGCCAAC GTGGAAGCCA  
64681 TCGAGGACGA ACTCGCTGAG GTACTGAAGG GAGTTGCAGG GAAGGCCGC TCGGTGGCGT  
64741 GGTGGTCGAC CGTGGACAGC GCCTGGGTGA CCGAGCCGGT GGATGAGAGT TACTGGTACC  
64801 GGAACCTGCG TCGCCCGTC GCGCTGGACG CGGCGGTGGC GGAGCTGGAC GGGTCCGTGT  
35 64861 TCGTGGAGTG CAGCGCCCAT CGGGTGTGC TGCCGGCAT GGAACAGGCC CACACGGTGG  
64921 CGTCGTTGCG CACCGGTGAC GGCAGCTGGG AGCGATGGCT GACGGCGTTG GCGCAGGGCGT  
64981 GGACCCCTGGG CGCGGCGAGT GACTGGGACA CGGTGGTGA ACCGGTGCCA GGGCGGCTGC  
65041 TCGATCTGCC CACCTACGCG TTGAGCGCC GGCCTACTG GCTGGAAGCG GCCGGTGCCA  
65101 CCGACCTGTC CGCGGCCGGG CTGACAGGGG CAGCACATCC CATGCTGGCC GCCATCACGG  
40 65161 CACTACCCGC CGACGACGGT GGTGTTGTT TCACCGGCCG GATCTCGTT CGCACGCATC  
65221 CCTGGCTGGC TGATCACGCG GTGCGGGCA CGGTCTCGT GCGGGGCACG GCCTTGTGG  
65281 AGCTGGTCAT CGGGGCCGGT GACGAGACCG GTTGCAGGAT AGTGGATGAA CTGGTCATCG  
65341 AATCCCCCT CGTGGTGCCG GCGACCGCAG CGTGGATCT GTCGGTGACC GTGGAAGGAG  
65401 CTGACGGAGGC CGGACGCCGG CGAGTGCACCG TCCACGCCG CACCGAAGGC ACCGGCAGCT  
45 65461 GGACCCGGCA CGCCAGCGGC ACCCTGACCC CCGACACCCC CGACACCCCC AACGCTCCG  
65521 GTGTTGTCGG TCGGGAGCCG TTCTCGCAGT GGCCACCTGC CACTGCCGCG GCCGTCGACA  
65581 CCTCGGAGTT CTACTTGCGC CTGGACGCCG TGGGCTACCG GTTGGACCC ATGTTCCCGCG  
65641 GAATGCCGGC TGCCTGGCGT GATGGTGACA CGTGTACGC CGAGGTCGCG CTCCCGAGG  
65701 ACCGTGCCGC CGACGCCGG ACGGCGACG GGTTCCGCA TGCACCCGGC GCTGCTCGAC GCGGCCCTG  
50 65761 AGAGCGGCAG CCTGCTCATG CTGGATCGG ACGGCAGGCA GAGCGTGCAC CTGCCGTTCT  
65821 CCTGGCACGG CGTCCGGTTC CACGCCGACGG GCGCGACCAT GCTGCGGGTG GCGGTCGTAC  
65881 CGGGCCCGGA CGGCCTCCGG CTGCATGCCG CGGACAGCGG GAACCGTCCC GTCGCGACGA  
65941 TCGACGCCGCT CGTGACCCGG TCCCGGAAG CGGACCTCGC GCGGCCGAT CCGATGCTGC  
66001 GGGTCGGGTG GGCCCCGGTG CCCGTACCTG CGGGGGCCGG TCCGTCCGAC GCGGACGTGC

|       |             |             |             |             |             |             |             |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 66061 | TGACGCTGCG  | CGGCGACGAC  | GCCGACCCGC  | TCGGGGAGAC  | CCGGGACCTG  | ACCACCCGTG  |             |
| 66121 | TTCTCGACGC  | GCTGCTCCGG  | GCCGACCGGC  | CGGTGATCTT  | CCAGGTGACC  | GGTGGCTCG   |             |
| 66181 | CGCCAAGGC   | GGCCGCAAGGC | CTGGTCCGCA  | CCGCTCAGAA  | CGAGCAGCCC  | GGCCGCTTCT  |             |
| 66241 | TCCTCGTCGA  | AACGGACCCG  | GGAGAGGTCC  | TGGACGGCFC  | GAAGCGCGAC  | GCGATCGCGG  |             |
| 5     | 66301       | CACTCGGCGA  | GCCCCATGTG  | CGGCTGCGCG  | ACGGCCTCTT  | CGAGGCAGCC  | CGGCTGATGC  |
| 66361 | GGGCCACGCC  | GTCCCTGACG  | CTCCCCGACA  | CCGGGTCGTG  | GCAGCTGCGG  | CCGTCCGCCA  |             |
| 66421 | CCGGTTCCT   | CGACGACCTT  | GCCGTCGTCC  | CCACCGACGC  | CCCGGACCGG  | CCGCTCGCGG  |             |
| 66481 | CCGGCGAGGT  | GCGGATCGCG  | GTACGCGCGG  | CGGGCCTGAA  | CTTCCGGGAT  | GTCACGGTCG  |             |
| 66541 | CGCTCGGTGT  | GGTCGCCGAT  | GCGCTCCGC   | TCGGCAGCGA  | GGCCGCGGGT  | GTCGTCTGG   |             |
| 10    | 66601       | AGACGGGCC   | CGGTGTGAC   | GACCTGGCFC  | CCGGCGACCG  | GGTCTGGGG   | ATGCTCGCGG  |
| 66661 | GCGCCTTCGG  | ACCGGTCGCG  | ATCACCGACC  | GGCGGCTGCT  | CGGCCGGATG  | CCGGACGGCT  |             |
| 66721 | GGACGTTCCC  | GCAGGGCGCG  | TCCGTGATGA  | CCGCGTTCGC  | GACCGCGTGG  | TACGGCCTGG  |             |
| 66781 | TCGACCTGGC  | CGGGCTGCGC  | CCCGCGGAGA  | AGGTCTGAT   | CCACCGGGCG  | GCGACCGGTG  |             |
| 15    | 66841       | TCGGCGCGGC  | GGCCGTCCAG  | ATCGCGCGGC  | ATCTGGGCGC  | GGAGGTGTAC  | GCGACCAACCA |
| 66901 | GCGCCGCGAA  | GCGCCATCTG  | GTGGACCTGG  | ACGGAGCGCA  | TCTGGCCGAT  | TCCCGCAGCA  |             |
| 66961 | CCGCGTTCGC  | CGACGCGTTC  | CCGCGGTGCG  | ATGTCGTGCT  | CAACTCGCTC  | ACCGGTGAAT  |             |
| 67021 | TCCTCGACGC  | GTCCGTCGGC  | CTGCTCGCGG  | CGGGTGGCCG  | GTTCATCGAG  | ATGGGGAAAGA |             |
| 67081 | CGGACATCCG  | GCACGCCGTC  | CAGCAGCCGT  | TCGACCTGAT  | GGACGCCGGC  | CCCGACCGGA  |             |
| 20    | 67141       | TGCAGCGGAT  | CATCGTCGAG  | CTGCTCGGCC  | TGTCGCGCG   | CGACGTGCTG  | CACCCGCTGC  |
| 67201 | CGGTCCACGC  | CTGGGACGTG  | CGGCAGGGCGC | GGGAGGCCTT  | CGGCTGGATG  | AGCAGCGGGC  |             |
| 67261 | GTCACACCGG  | CAAGCTGGTG  | CTGACGGTCC  | CGCGGCCGCT  | GGATCCCGAG  | GGGGCCGTCG  |             |
| 67321 | TCATCACCGG  | CGGCTCCGGC  | ACCCCTCGCCG | GCATCCTCGC  | CCGCCACCTG  | GGCCACCCCC  |             |
| 67381 | ACACCTACCT  | GCTCTCCCGC  | ACCCCACCCCC | CCGACACCCAC | CCCCGGCACC  | CACCTCCCCT  |             |
| 67441 | GCGACGTCGG  | CGACCCCCAC  | CAACTCGCCA  | CCACCCCTCGC | CCGCATCCCC  | CAACCCCTCA  |             |
| 25    | 67501       | CCGCCGTCTT  | CCACACCGCC  | GGAACCCCTCG | ACGACGCCCT  | GTCGACAAC   | CTCACCCCCG  |
| 67561 | ACCGCGTCGA  | CACCGTCCTC  | AAACCCAAGG  | CCGACGCCGC  | CTGGCACCTG  | CACCGGCTCA  |             |
| 67621 | CCCGCGACAC  | CGACCTCGCC  | CGCTCGTCG   | TCTACTCCGC  | GGTCGCCGGC  | CTCATGGGCA  |             |
| 67681 | GCCCAGGGCA  | GGGCAACTAC  | GTCGCGGGCGA | ACCGCTTCCCT | CGACCGCGCTC | GCCGAACACC  |             |
| 30    | 67741       | GCCGTGCGCA  | AGGGCTGCC   | GCGCAGTCCC  | TCGCATGGGG  | CATGTGGGCG  | GACGTCAAGC  |
| 67801 | CGCTCACCGC  | GAAACTCACC  | GACGCCGGACC | GCCAGCGCAT  | CCGGCGCAGC  | GGATTCCCAC  |             |
| 67861 | CGTTGAGCGC  | CGCGGACGGC  | ATGCGGCTGT  | TCGACGCCGC  | GACCGTACCC  | CCGGAACCGG  |             |
| 67921 | TCGTGTCGC   | GACGACCGTC  | GACCTCACCC  | AGCTGACGG   | CGCCGTCGCG  | CCGTTGCTCC  |             |
| 67981 | GCGGTCTGGC  | CGCGCACCCG  | GCCGGGCCGG  | CGCGCACGGT  | CGCCCGCAAC  | GCCGGCGAAG  |             |
| 68041 | AGCCCCCTGGC | CGTGCCTCTT  | GCCGGCGTA   | CCGCCGCCGA  | GCAGCGGGCGC | ATCATGCAGG  |             |
| 35    | 68101       | AGGTGTCGCT  | CCGCCACCGG  | GCCGCCGGTCC | TCGCGTACGG  | GCTGGGCGAC  | CGCGTGGCGG  |
| 68161 | CGGACCGTCC  | GTTCCGCGAG  | CTCGGTTTCG  | ATTGCTGAC   | CGCGGTCGAC  | CTGCGCAATC  |             |
| 68221 | GGCTCGCGGC  | CGAGACGGGG  | CTGCGGCTGC  | CGACGACGCT  | GGTGTTCAGC  | CACCCGACGG  |             |
| 68281 | CGGAGGCGCT  | CACCGCCAC   | CTGCTCGACC  | TGATGACGC   | TCCCACCGCC  | CGGATCGCCG  |             |
| 40    | 68341       | GGGAGTCCCT  | GCCCCCGGGT  | ACGGCCGCTC  | CCGTGGCGGC  | CGCGCGGGAC  | CAGGACGAGC  |
| 68401 | CGATGCCAT   | CGTGGCGATG  | GCGTGCCGGC  | TGCCCCGGTGG | TGTGACGTCG  | CCCGAGGACCC |             |
| 68461 | TGTGGCGGCT  | CGTCGAGTCC  | GGCACCGACG  | CGATCACCCAC | GCCTCTGAC   | GACCGCGGCT  |             |
| 68521 | GGGACGTCGA  | CGCGCTGTAC  | GACGCCGGACC | CGGACGCCGC  | CGGCAAGGCG  | TACAACCTGC  |             |
| 68581 | GGGGCGGTTA  | CCTGGCCGGG  | GCGGCGGAGT  | TCGACGCCGC  | GTTCTCGAC   | ATCAGTCCGC  |             |
| 45    | 68641       | GCGAAGCGCT  | CGGCATGGAC  | CCGCAGCAAC  | GCCTGCTGCT  | CGAAACGGCG  | TGGGAGGCGA  |
| 68701 | TCGAGCGCGG  | CGGGATCACT  | CCGGCGTCGC  | TCCGCGGCCG  | GGAGGTGCGC  | GTCTATGTCG  |             |
| 68761 | GTGCGGCCGC  | CGAGGGCTAC  | GGGCTGGGCG  | CCGAGGACAC  | CGAGGGCCAC  | GCGATCACCG  |             |
| 68821 | GTGGTTCAC   | GAGCCTGCTG  | TCCGGACGGC  | TGGCGTACGT  | GCTCGGGCTG  | GAGGGCCCGG  |             |
| 68881 | CGGTCAACCGT | GGACACGGCG  | TGCTCGTCGT  | CTCTGGTCGC  | GCTGCATCTG  | GCGTGCAGG   |             |
| 68941 | GGCTGCGCCT  | GGGCGAGTGC  | GAACTCGCTC  | TGGCCGGAGG  | GGTCTCCGTA  | CTGAGTCGC   |             |
| 50    | 69001       | CGGCCGCGTT  | CGTGGAGTTC  | TCCCGCCAGC  | GGGGGCTCGC  | GGCCGACGGG  | CGCTGCAAGT  |
| 69061 | CGTTCGGCGC  | GGGCGCGGAC  | GGCACGACGT  | GGTCCGAGGG  | CGTGGCGTGT  | CTCGTACTGG  |             |
| 69121 | AACGGCTCTC  | CGACGCCGAG  | CGGCTCGGGC  | ACACCGTGT   | CGCCGTCGTC  | CGCGGCAGCG  |             |
| 69181 | CCGTCACTGC  | CGACGCCGCC  | TCCAACGGCC  | TCACCGCGCC  | GAACGGGCTC  | TCGCAGCAGC  |             |
| 69241 | GGGTCACTCCG | GAAGGCGCTC  | GCCGCCGGCCG | GGCTGACCGG  | CGCCGACGTG  | GACGTGTCG   |             |

- 50 -

69301 AGGGGCACGG CACCGGCACC CGGCTCGCG ACCCGGTGGA GGCGGACGCG CTGCTCGCGA  
69361 CGTACGGGCA GGACCGTCCG GCACCGGTCT GGCTGGGCTC GCTGAAGTCG AACATCGGAC  
69421 ATGCCACGGC CGCGGCGCGT GTCGCGGGCG TCATCAAGAT GGTGCAGGCG ATCGGCGCG  
69481 GCACGATGCC GCGGACGCTG CATGTGGAGG AGCCCTCGCC CGCCGTCGAC TGGAGCACCG  
5 69541 GACAGGTGTC CCTGCTCGGC TCCAACCGGC CCTGGCCGGA CGACGAGCGT CGCGCCGGGG  
69601 CGGCCGTCTC CGCGTTCGGG CTCAGCGGGGA CGAACCGCAGA CGTCATCCTG GAACAGCACC  
69661 GTCCGGCGCC CGTGGCGTCC CAGCCGCCCC GGCGCCCGG TGAGGAGTCC CAGCCGCTGC  
69721 CGTGGGTGCT CTCCGCGCG ACTCCGGCCG CGCTGCGGGC CCAGGCGGCC CGGCTGCGCG  
69781 ACCACCTCGC GGCGGCACCG GACCGGGATC CGTTGGACAT CGGGTACGCG CTGGCCACCA  
10 69841 GCCCGCCTCA GTTCGCCAC CGTGCCGCGG TCGTCGCCAC CACCCCGGAC GGATTCCGTG  
69901 CCGCGCTCGA CGGCCTCGCG GACGGCGCGG AGGCGCCCGG AGTCGTCACC GGGACCGCTC  
69961 AGGAGCGGCG CGTCGCCCTC CTCTTCGACG GCCAGGGCGC CCAGCGCGCC GGAATGGGGC  
70021 GCGAGCTCCA CCGCCGGTTC CCCGTCTCG CCGCCGCGT GGACGAGGTC TCCGACCGGT  
70081 TCGGAAGCA CCTCAAGCAC TCCCCCACGG ACGTCTACCA CGCGAACAC GGCGCTCTCG  
15 70141 CCCATGACAC CCTGTACGCC CAGGCCGGCC TGTTACGCT CGAAAGTGGCG CTGCTCGCG  
70201 TGCTGGAGCA CTGGGGGGTG CGGCCGGACG TGCTCGTCCG GCACTCCGTC GGCGAGGTGA  
70261 CCGCGCGTA CGCGGCCGGG GTGCTCACCC TGGCGGACGC GACGGAGTTG ATCGTGGCCC  
70321 GGGGGCGGGC GCTGCGGGCG CTGCCGCCCCG GGGCGATGCT CGCCGTCGAC GGAAGCCCGG  
70381 CGGAGGTGCG CGCCCGCACG GATCTGGACA TCGCCGCGGT CAACGGCCCG TCCGCCGTGG  
20 70441 TGCTCGCCGG TTGCGCCGAC GATGTGGCGG CGTTCAACG GGAGTGGTCC GCGGCCGGGG  
70501 GGCGCACGAA ACGGCTCGAC GTCGGGCACG CGTTCCACTC CCGGCACGTC GACGGTGC  
70561 TCGACGGCTT CGTACGGTG CTGGAGTCGC TCGCGTTCGG CGCGGCCGGG CTGCCGTGG  
70621 TGTCCACGAC GACGGGCCGG GACGCCGCGG ACGACCTCAT AACGCCCGCG CACTGGCTGC  
70681 GGCATGCGCG TCGGCCGGTG CTGTTCTCGG ATGCCGTCCG GGAGCTGGCC GACCGCCGGG  
25 70741 TCACCACTGTT CGTGGCCGTC GGCCCCTCCG GCTCCCTGGC GTGCGGCCGG GCGGAGAGCG  
70801 CGGGGGAGGA CGCCGGGACC TACCAACGCGG TGCTGCGCGC CCGGACCGGT GAGGAGACCG  
70861 CGGCGCTGAC CGCCCTCGCC GAGCTGCACG CCCACGGCGT CCCGGTCGAC CTGCCCGCG  
70921 TACTGGCCGG TGGCCGGCA GTGGACCTTC CGTGTAACGC GTTCCAGCAC CGTTCTACT  
70981 GGCTGGCCCC GGCGTGGCG GGGCGCCGG CCACCGTGGC GGACACCGGG GGTCCGGCGG  
30 71041 AGTCCGAGCC GGAGGACCTC ACCGTCGCCG AGATCGTCCG TCGCGCACC GCGGCCTGC  
71101 TCGCGTCAC GGACCCCGCC GACGTCGATG CGGAAGCGAC GTTCTTCGCG CTCGGTTTCG  
71161 ACTCACTGGC GGTGCAGCGG CTGCGCAACC AGCTCGCTC GGCACCCGGG CTGGACCTGC  
71221 CGGCGGCCGT CCTGTTCGAC CACGACACCC CGGCCGCGCT CACCGCGTTC CTCCAGGACC  
71281 GGATCGAGGC CGGCCAGGAC CGGATCGAGG CGGCGAGGA CGACGACGCG CCCACCGTGC  
35 71341 TCTCGCTCCT GGAGGAGATG GAGTCGCTCG ACGCCGGGA CATCGCGCG ACGCCGGCC  
71401 CGGAGCGTGC GGCCATCGCC GATCTGCTCG ACAAGCTCGC CCATAACCTGG AAGGACTACC  
71461 GATGAGCACC GATACGCACG AGGGAACGCC GCCCACGGC CGCTGCCCAT TCGCGATCCA  
71521 GGACGGTCAC CGCGCCATCC TGGAGAGCGG CACGGTGGGT TGTTCGGACC TGTTCGGCGT  
71581 CAAGCACTGG CTGGTCGCCG CCCCGAGGA CGTCAAGCTG GTCACCAACG ATCCCGGGTT  
40 71641 CAGCTCGGCC GCGCCGTCGG AGATGCTGCC CGACCGGGCG CCCGGCTGGT TCTCCGGGAT  
71701 GGACTCACCG GAGCACAACC GCTACCGGCA GAAGATCGCG GGGGACTTCA CACTGCGCG  
71761 GGCGCGCAAG CGGGAGGACT TCGTCGCCGA GGCGCCGAC GCCTGCCTGG ACGACATCGA  
71821 GGCGCGGGGA CCCGGCACCG ACCTCATCCC CGGGTACGCC AAGCGGCTGC CCTCCCTCGT  
71881 CATCAACGCG CTGTACGGGC TCACCCCTGA GGAGGGGGCC GTGCTGGAGG CACGGATGCG  
45 71941 CGACATCACC GGCTCGGGCG ATCTGGACAG CGTCAAGACG CTGACCGACG ACTTCTTCGG  
72001 GCACCGCGTG CGGCTGGTCC GCGCGAAGCG TGACGAGCGG GGCAGGGACC TGCTGCACCG  
72061 GCTGGCCTCG GCCGACGACG GCGAGATCTC GCTCAGCGAC GACGAGGCC CGGGCGTGGT  
72121 CGCGACGCTG CTGTTCGCCG GCCACGACTC GGTGCAGCAG ATGGTGGCT ACTGCCTCTA  
72181 CGCACTGCTC AGCCACCCCG AGCAGCAGGC GGCGCTGCGC GCGCGCCCG AGCTGGTCGA  
50 72241 CAACCGGGTC GAGGAGATGC TCCGTTCTCT GCGCGTCAAC CAGATGGGGC TACCGCGCGT  
72301 CTGTGTGAG GACGTCGATG TGCGGGCGT GCGCATCCGT GCGGGCGACA ACGTGATCCC  
72361 GCTCTACTCG ACGGCCAACC GCGACCCCGA GGTGTTCCCG CAGCCCGACA CCTTCGATGT  
72421 GACGCGCCCG CTGGAGGGCA ACTTCGCGTT CGGCCACGGC ATTACACAAGT GTCCCCGGCA  
72481 GCACATCGCC CGGGTGCTCA TCAAGGTGCG CTGCGTGC GGTTTCGAGC GTTTCCCGGA

|       |            |            |             |             |             |             |             |
|-------|------------|------------|-------------|-------------|-------------|-------------|-------------|
| 72541 | CGTCCGGCTG | GCCGGCGACG | TGCCGATGAA  | CGAGGGGCTC  | GGGCTGTTCA  | GCCC GGCCGA |             |
| 72601 | GCTGGGGTC  | ACCTGGGGG  | CGGCATGAGT  | CACCCGGTGG  | AGACGTTGCG  | GTTGCCAAC   |             |
| 72661 | GGGACGACGG | TCGCGCACAT | CAACCGGGC   | GAGGCGCAGT  | TCCTCTACCG  | GGAGATCTTC  |             |
| 72721 | ACCCAGCGCT | GCTACCTGCG | CCACGGTGTG  | GACCTGCGCC  | CGGGGGACGT  | GGTGTTCGAC  |             |
| 5     | 72781      | GTCGGCGCGA | ACATCGGCAT  | GTTCACGCTT  | TTCGCGCATC  | TGGAGTGTCC  | TGGTGTGACC  |
| 72841 | GTGACCGCT  | TCGAGCCGC  | GCCCCGTGCCG | TTCGCGGCCG  | TGCGGGCGAA  | CGTGACCGGG  |             |
| 72901 | CACGGCATCC | CGGGCCAGGC | GGACCAGTGC  | GCGGTCTCCG  | ACAGCTCCGG  | CACCCGGAAG  |             |
| 72961 | ATGACCTTCT | ATCCCAGCGC | CACGCTGATG  | TCCGGTTTCC  | ACGCGGATGC  | CGCGGCCCGG  |             |
| 10    | 73021      | ACGGAGCTGT | TGCGCACGCT  | CGGGCTCAAC  | GGCGGCTACA  | CCGCCGAGGA  | CGTCGACACC  |
| 73081 | ATGCTCGCGC | AACTGCCCCA | CGTCAGCGAG  | GAGATCGAAA  | CCCCCTGTGGT | CCGGCTCTCC  |             |
| 73141 | GACGTCATCG | CGGAGCGGG  | TATCGAGGCC  | ATCGGGCTTCG | TGAAGGTCGA  | CGTGGAGAAC  |             |
| 73201 | AGCGAACGGC | AGGTCTTCG  | CGGGCTCGAG  | GACACCGACT  | GGCCCCGTAT  | CCGCCAGGTC  |             |
| 73261 | GTCGCGGAGG | TCCACGACAT | CGACGGCGCG  | CTCGAGGAGG  | TGTCACGCT   | GCTCCGCCGC  |             |
| 15    | 73321      | CATGGCTTCA | CCGTGGTCG   | CGAGCAGGAA  | CCGCTGTTG   | CCGGCACGGG  | CATCCACCAAG |
| 73381 | GTCGCCGCGC | GGCGGGTGGC | CGGCTGAGCG  | CCGTCGGGGC  | CGCGGCCGTC  | CGCACCGGCG  |             |
| 73441 | GCCCGGGTGC | GGACGGCGGC | TCAGCCGGCG  | TCGGACAGTT  | CCTTGGGCAG  | TTGCTGACGG  |             |
| 73501 | CCCTTCACCC | CCAGCTTGC  | GAACACGTT   | GTGAGGTGCT  | GTTCCACCGT  | GCTGGAGGTG  |             |
| 73561 | ACGAACAGCT | GGCTGGCGAT | CTCCTTGTG   | GTGCGCCCGA  | CCGCGGCGTG  | CGACGCCACC  |             |
| 20    | 73621      | CGCCGCTCCG | CCTCGGTCA   | CGATGTGATC  | CGCTGCCCG   | CGTCACGTC   | CTGGGTGCCG  |
| 73681 | TCCCGCTCCG | AGGACTCCCC | ACCGAGCCGC  | CGGAGGAGCG  | GCACGGCTCC  | GCACTGGGTC  |             |
| 73741 | GCGAGGTGCC | GTGCGGGCG  | GAACAGTCCC  | CGCGCACGGC  | TGTGCCGCCG  | GAGCATGCCG  |             |
| 73801 | CACGCTTCG  | CCATGTCCG  | GAGGACGCGG  | GCCAGCTCGT  | ACTGGTCGCG  | GCACATGATG  |             |
| 73861 | AGCAGATCGG | CGGCCTCGC  | GAGCAGTTG   | ATCCGCTTGG  | CCGGCGGACT  | GTAGGCCGCC  |             |
| 73921 | TGCACCCGCA | GGGTACATAC | CCGGCCCCGG  | GACCCCATCG  | CCGGGGACAG  | CTGCTCGGAG  |             |
| 25    | 73981      | ATGAGCCTCA | GCCCCCTGTC  | ACGGCCGCGG  | CCGAGCAGCA  | GAAGCGCTTC  | GGCGGCCGTC  |
| 74041 | ACCCGCCACA | GGGCCAGGCC | CGGCACGTCG  | ACGGACCAGC  | GTGCGATCCG  | CTCCCCGCGAG |             |
| 74101 | TCCCGGAACG | CGTTGTACGC | CGCCCGGTAC  | CGCCCGGCCG  | CGAGATGGTG  | TTGCCAACCGG |             |
| 74161 | GCCCAGACCA | TGTGCAGTCC | GAAGAGGCTG  | TCGGAGGTCT  | CCTCCGGCAA  | CGGCTCGGCG  |             |
| 30    | 74221      | AGCCACCGCT | CCGCCCCGTC  | CAGGTCGCC   | AGTCGGATCG  | CGGCGGCCAC  | GGTGTGCTC   |
| 74281 | AGCGGAATG  | CGGCGGCCAT | CCCCCAGGAG  | GGCACGACCC  | GGGGGGCGAG  | CGCGGCCCTCG |             |
| 74341 | CCGCATTGCA | CGGCGGGGT  | CAGGTCGCC   | CGGCGCAGCG  | CGGCCTCGGC  | GCGGAACCCCC |             |
| 74401 | GCGTGGACCG | CCTCGTCGG  | CGGGGTCCG   | ATGTTGTCG   | CACCGGCCAG  | CTTGTGACCC  |             |
| 74461 | CAGGACTGGA | CGGCATCGGT | GTCCCTGGCG  | TAGAGCAGGG  | CCAGCAACGC  | CATCATGGTC  |             |
| 74521 | GTGGTCCGGT | CCGTCTGAC  | CCGGGAGTGC  | TGGAGCACGT  | ACTCGGCTTT  | GGCCTCGGCC  |             |
| 35    | 74581      | TGTCGGACC  | AGCCGCGCAG  | CGCGTTGCTC  | AGGGCCTTGT  | CGGCGACGGC  | GCGGTGCCGG  |
| 74641 | ACGGCTCCGG | AAAACGAGGC | GACCTCGTCC  | TCGGCCGGCG  | GATCGGCCGG  | ACGCGGCCGA  |             |
| 74701 | TCGGCCGCGC | CGGGATAGAT | CAGCGCGAGG  | GACAGGTCCG  | CGACGCGCAG  | GTGCGCCCGG  |             |
| 74761 | CCCTGCTCG  | TCGGGGCGGC | GGAGCGCTGG  | GCCGCCAGGA  | CCTCGGCCGC  | CTCGCCCGGC  |             |
| 74821 | CGCCCGTCCA | TCGCCAGCA  | GCAGGCGAGC  | GACACGGCT   | GCTCGCTGG   | GAGGAGCCGT  |             |
| 40    | 74881      | TCCCGCGACG | CGGTGAGCAG  | CTCGGGCACA  | TGCCGGCCGG  | ATCTGGCGGG  | ATCGCAGAGC  |
| 74941 | CGCTCGATGG | CGGGCGGTG  | GACCGCGACT  | CGGGCGTGG   | CGGCGGGGTC  | GTCGGAGGCC  |             |
| 75001 | CGGTAGGCGA | ACTCCAGGA  | GGTGACGGCC  | TCGTCGAGCT  | CGCCCGCGAG  | GTGGTGTCTG  |             |
| 75061 | CGCGCGCGT  | CGGTGAACAG | CCCGCGAC    | TCGGCGCCGT  | GCACCCGGCC  | GGTACCCATC  |             |
| 45    | 75121      | TGGTGGCGGG | CGAGCACCT   | GCTGGCCACG  | CCGCGGTCCC  | GCAGCAGTTC  | CAGCGCCAGC  |
| 75181 | TCGTGCAGGC | CACGCCGTC  | GGCGCGGGAG  | AGGTGTCGA   | GTACGACGGA  | GCGGGCCGCG  |             |
| 75241 | GGGTGCGGGA | ACCGCCCTTC | CCGCAAGCAGC | CGCCCCCTCGA | CCAGCTGTT   | GTGGGCCTGC  |             |
| 75301 | TCGACCGCCT | CGGTGTCGAG | GCCGGTCATC  | CGCTGGACGA  | GGGTGAGTTC  | GACACTCTCG  |             |
| 75361 | CCGAGCACGG | CGGAAGCTG  | GGCGACGCTC  | AGCGCGGCCG  | GGCCGCAACG  | ATAGAGCGAC  |             |
| 75421 | CCGAGGTAGG | CGAGCCGTA  | CGCCC GCCCC | GCGACCACT   | CCAGGCACCC  | TGAGGTCCTG  |             |
| 50    | 75481      | GTCCGTGCC  | CCCCGATGTC  | GTGATCAGG   | CCGTGGCCGA  | GGAGCAGGTT  | GGCGCCGGTC  |
| 75541 | GCCCGGAACG | CCTGGGCCAC | CACGTCGTC   | TGCGCGTCT   | GGCCGAGGTG  | CCGGCGCACG  |             |
| 75601 | AGTCGGTGG  | TCTGCGCTC  | GGTAGCGGG   | CGCAGCGCA   | TCTCTGGTA   | GTGGCGCAGA  |             |
| 75661 | CTCAGCAGTG | CGGCCCGGAA | TTGGGAGTGG  | CGGGCGTGC   | GCCGGAGCAG  | CTCGGTCA    |             |
| 75721 | ACGATGGCGA | ACGGGCCCG  | GCTGATCGG   | CGCGCGAGGT  | GGAGCAGGCA  | CGCGAGCGAC  |             |

- 52 -

75781 GGCGCGTCGG CGTGGTGCAC GTCGTCGATG CCGATCAGTA CGGGCCGCTC CGCGGCGAGC  
75841 GTCAGCACCG TGCGGGTGAG TTCGGTCCCC AGGCGGTTGT CGACGTCGGC CGGCAGGTTT  
75901 TCGCACGATG CCGTCAGCCG GACCAGCTCC GGTGTCCGG CGGCCAGCTC GGGCTGGTCG  
75961 AGGAGCTGGC CGAGCATGCC GTACGGCAGG GCCCCTCCT CCATGGAGCA CACCGCGCGA  
5 76021 AGGGTGACGA AGCCGGCCTT GGCGCGGGCG GCGTCGAGGA GTTCGGTCTT GCCGCAGGCG  
76081 ATCGGGCCGG TGACGGCGGC GACGACGCC CGCCCGCCCC CGCTCGGGT GAGCGCCCGG  
76141 TGGAGGAAAC CGAACTCGTC ATCGGGCGG ATCAGGTCTG GGGGAGATAA GCGCGCTATC  
76201 ACGAATGGAA CTACCTCGCG ACCGTCGTGG AAACCCATAG GCATCACATG GCTTGTGAT  
76261 CTGTACGGCT GTGATTCAAGC CTGGCGGGAT GCTGTGCTAC AGATGGGAAG ATGTGATCTA  
10 76321 GGGCCGTGCC GTTCCCTCAG GAGCCGACCG CCCCCGGCGC CACCCGCGT ACCCCCTGGG  
76381 CCACCAGCTC GGCGACCCGC TCCTGGTGGT CGACGAGGTA GAAGTGCCCG CGGGGAAAGA  
76441 CCTCCACCGT GGTGGCGCG GTCGTGTGCC CGGCCAGGC GTGGGCTGC TCCACCGTCG  
76501 TCTTCGGATC GTCGTACCG ATGACACACCG TGATCGGGT CTCCAGCGGC GGCGCGGGCT  
76561 CCCACCGGT ACGTCCCGCC GCGTAGTAGT CCGCCCGCAA CGCGGCCAGG ATCAGCGCGC  
15 76621 GCATTTCGTC GTCCGCCATC ACATCGGCAC TCGTCCCGCC GAGGCCGATG ACCGCCGCCA  
76681 GCAGCTCGTC GTCGGACGCG AGGTGGTCTT GTTCGGCGCG CGCTGCGAC GGCGCCCGCC  
76741 GGCCCGAGAC GATCAGGTGC GCCACCGGGA CGCGCTGGC CAGCTGAAC GCGAGTGTG  
76801 CGCCCATGCT GTGGCCGAAC AGCACCAGCG GACGGTCCAG CCCCCGGCTTC AACGCCCTCGG  
76861 CCACGAGGCC GGCGAGAACAA CGCAGGTGCG GCACCGCTC CTCGTCGCGG CGGTCCCTGGC  
20 76921 GGCCGGGGTA CTGCACGGCG TACACGTCCG CAACCGGGC GAGCGCACGG GCCAGCGGAA  
76981 GGTAGAACGT CGCCGATCCG CCGGGTGGG GCAGCAGCAC CACCGTACC GGGGCCTCGG  
77041 GCGTGGGAA GAACTGCCGC AGCCAGAGTT CCGAGCTCAC CGCACCCCT CGGCCGCGAC  
77101 CTGGGGAGCC CGGAACCGGG TGATCTCGGC CAAGTGTTC TCCCGCATCT CGGGGTCGGT  
77161 CACGCCCAT CCCTCCTCCG GCGCAGACA GAGGACGCCG ACTTTGCCGT TGTGCACATT  
25 77221 GCGATGCACA TCGCGCACCG CCGACCCGAC GTCGTCGAGC GGGTAGGTCA CCGACAGCGT  
77281 CGGGTGCACC ATCCCTTGC AGATCAGGCG GTTCGCCTCC CACCGCTCAC GATAGTTCGC  
77341 GAAGTGGGTA CCGATGATCC GCTTCACCGA CATCCACAGG TACCGATTGT CAAAGGCGTG  
77401 CTCGTATCCC GAGGTTGACG CGCAGGTGAC GATCGTCCA CCCCCGACGTG TCACGTAGAC  
77461 ACTCGCGCCG AACGTCGCGC GCCCCGGGTG CTCGAACACG ATGTCGGGAT CGTCACCGCC  
30 77521 GGTCAGCTCC CGGATC

Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given amino acid sequence of the invention. The native DNA sequence encoding the FK-520 PKS of *Streptomyces hygroscopicus* is shown herein merely to illustrate a preferred embodiment of the invention, and the present invention includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the invention. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The present invention includes such polypeptides with alternate amino acid sequences, and the amino acid sequences shown merely illustrate preferred embodiments of the invention.

The recombinant nucleic acids, proteins, and peptides of the invention are many and diverse. To facilitate an understanding of the invention and the diverse compounds and methods provided thereby, the following general description of the FK-520 PKS genes and modules of the PKS proteins encoded thereby is provided. This general 5 description is followed by a more detailed description of the various domains and modules of the FK-520 PKS contained in and encoded by the compounds of the invention. In this description, reference to a heterologous PKS refers to any PKS other than the FK-520 PKS. Unless otherwise indicated, reference to a PKS includes reference to a portion of a PKS. Moreover, reference to a domain, module, or PKS includes 10 reference to the nucleic acids encoding the same and vice-versa, because the methods and reagents of the invention provide or enable one to prepare proteins and the nucleic acids that encode them.

The FK-520 PKS is composed of three proteins encoded by three genes designated *fkbA*, *fkbB*, and *fkbC*. The *fkbA* ORF encodes extender modules 7 - 10 of the 15 PKS. The *fkbB* ORF encodes the loading module (the CoA ligase) and extender modules 1 - 4 of the PKS. The *fkbC* ORF encodes extender modules 5 - 6 of the PKS. The *fkbP* ORF encodes the NRPS that attaches the pipecolic acid and cyclizes the FK-520 polyketide.

The loading module of the FK-520 PKS includes a CoA ligase, an ER domain, 20 and an ACP domain. The starter building block or unit for FK-520 is believed to be a dihydroxycyclohexene carboxylic acid, which is derived from shikimate. The recombinant DNA compounds of the invention that encode the loading module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of methods and in a variety of compounds. In one embodiment, a DNA compound 25 comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for the loading module of the heterologous PKS is replaced by the coding sequence for the FK-520 loading module, provides a novel PKS coding sequence. Examples of heterologous PKS coding sequences include the 30 rapamycin, FK-506, rifamycin, and avermectin PKS coding sequences. In another

embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the loading module coding sequence is utilized in conjunction with a heterologous coding sequence. In this embodiment, the invention provides, for example, either replacing the CoA ligase with a different CoA ligase, deleting the ER, or replacing the ER with a different ER. In addition, or alternatively, the ACP can be replaced by another ACP. In similar fashion, the corresponding domains in another loading or extender module can be replaced by one or more domains of the FK-520 PKS. The resulting heterologous loading module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide.

The first extender module of the FK-520 PKS includes a KS domain, an AT domain specific for methylmalonyl CoA, a DH domain, a KR domain, and an ACP domain. The recombinant DNA compounds of the invention that encode the first extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 first extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the first extender module of the FK-520 PKS or the latter is merely added to coding sequences for modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the first extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or only a portion of the first extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-

- 55 -

hydroxymalonyl CoA specific AT; deleting either the DH or KR or both; replacing the DH or KR or both with another DH or KR; and/or inserting an ER. In replacing or inserting KR, DH, and ER domains, it is often beneficial to replace the existing KR, DH, and ER domains with the complete set of domains desired from another module. Thus, if 5 one desires to insert an ER domain, one may simply replace the existing KR and DH domains with a KR, DH, and ER set of domains from a module containing such domains. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, 10 from a gene for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous first extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the first 15 extender module of the FK-520 PKS.

In an illustrative embodiment of this aspect of the invention, the invention provides recombinant PKSs and recombinant DNA compounds and vectors that encode such PKSs in which the KS domain of the first extender module has been inactivated. Such constructs are especially useful when placed in translational reading frame with the 20 remaining modules and domains of an FK-520 or FK-520 derivative PKS. The utility of these constructs is that host cells expressing, or cell free extracts containing, the PKS encoded thereby can be fed or supplied with N-acylcysteamine thioesters of novel precursor molecules to prepare FK-520 derivatives. See U.S. patent application Serial No. 60/117,384, filed 27 Jan. 1999, and PCT patent publication Nos. US97/02358 and 25 US99/03986, each of which is incorporated herein by reference.

The second extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the second extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of 30 applications. In one embodiment, a DNA compound comprising a sequence that encodes

the FK-520 second extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the second extender module of the FK-520 PKS or the latter is merely added to coding sequences for 5 the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the second extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

10       In another embodiment, all or a portion of the second extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the 15 KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from 20 chemical synthesis. The resulting heterologous second extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the second extender module of the FK-520 PKS.

25       The third extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the third extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 30 third extender module is inserted into a DNA compound that comprises the coding

sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the third extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another 5 embodiment, a DNA compound comprising a sequence that encodes the third extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the third extender module coding 10 sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In 15 addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous third extender module coding sequence 20 can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the third extender module of the FK-520 PKS.

The fourth extender module of the FK-520 PKS includes a KS, an AT that binds 25 ethylmalonyl CoA, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the fourth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fourth extender module is inserted into a DNA compound that comprises the coding 30 sequence for a heterologous PKS. The resulting construct, in which the coding sequence

- 58 -

for a module of the heterologous PKS is either replaced by that for the fourth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the fourth extender 5 module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fourth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In 10 this embodiment, the invention provides, for example, either replacing the ethylmalonyl CoA specific AT with a malonyl CoA, methylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or deleting the inactive DH, inserting a KR, a KR and an active DH, or a KR, an active DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, 15 AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, a PKS for a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fourth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding 20 domains in a module of a heterologous PKS can be replaced by one or more domains of the fourth extender module of the FK-520 PKS.

As illustrative examples, the present invention provides recombinant genes, vectors, and host cells that result from the conversion of the FK-506 PKS to an FK-520 PKS and vice-versa. In one embodiment, the invention provides a recombinant set of FK- 25 506 PKS genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth extender module have been replaced by those for the AT domain of the fourth extender module of the FK-520 PKS. This recombinant PKS can be used to produce FK-520 in recombinant host cells. In another embodiment, the invention provides a recombinant set of FK-520 PKS genes but in which the coding 30 sequences for the fourth extender module or at least those for the AT domain in the fourth

- 59 -

extender module have been replaced by those for the AT domain of the fourth extender module of the FK-506 PKS. This recombinant PKS can be used to produce FK-506 in recombinant host cells.

Other examples of hybrid PKS enzymes of the invention include those in which 5 the AT domain of module 4 has been replaced with a malonyl specific AT domain to provide a PKS that produces 21-desethyl-FK520 or with a methylmalonyl specific AT domain to provide a PKS that produces 21-desethyl-21-methyl-FK520. Another hybrid PKS of the invention is prepared by replacing the AT and inactive KR domain of FK-520 extender module 4 with a methylmalonyl specific AT and an active KR domain, such as, 10 for example, from module 2 of the DEBS or oleandolide PKS enzymes, to produce 21-desethyl-21-methyl-22-desoxo-22-hydroxy-FK520. The compounds produced by these hybrid PKS enzymes are neurotrophins.

The fifth extender module of the FK-520 PKS includes a KS, an AT that binds methylmalonyl CoA, a DH, a KR, and an ACP. The recombinant DNA compounds of the 15 invention that encode the fifth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fifth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a 20 module of the heterologous PKS is either replaced by that for the fifth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the fifth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS 25 or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fifth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA 30 specific AT; deleting any one or both of the DH and KR; replacing any one or both of the

DH and KR with either a KR and/or DH; and/or inserting an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fifth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fifth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH domain of the fifth extender module have been deleted or mutated to render the DH non-functional. In one such mutated gene, the KR and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-19 to C-20 double bond of FK-520 and has a C-20 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant fifth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this fifth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (lacking the C-19 to C-20 double bond of FK-506 and having a C-20 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH domain of module 5 has been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The sixth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the sixth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of 5 applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 sixth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the sixth extender module of the FK-520 PKS or the latter is merely added to coding sequences for 10 the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the sixth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

15       In another embodiment, a portion of the sixth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR, DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical 20 synthesis. The resulting heterologous sixth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the sixth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH and ER domains of the sixth extender module have been deleted or mutated to render them non-functional. In one such mutated gene, the KR, ER, and DH coding sequences are replaced with those 5 encoding only a KR domain from another PKS gene. This can also be accomplished by simply replacing the coding sequences for extender module six with those for an extender module having a methylmalonyl specific AT and only a KR domain from a heterologous PKS gene, such as, for example, the coding sequences for extender module two encoded by the *eryAI* gene. The resulting PKS genes code for the expression of an FK-520 PKS 10 that produces an FK-520 analog that has a C-18 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant sixth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this sixth 15 extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (having a C-18 hydroxyl group) 20 FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH and ER domains of module 6 have been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The seventh extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA 25 compounds of the invention that encode the seventh extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 seventh extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding 30 sequence for a module of the heterologous PKS is either replaced by that for the seventh

extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the seventh extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the seventh extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-  
5 hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting the KR, the DH, and/or the ER; and/or replacing the KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH,  
10 KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous seventh extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be  
15 replaced by one or more domains of the seventh extender module of the FK-520 PKS.  
20

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the seventh extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-15 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant seventh extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that  
25  
30

contains both this seventh extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-  
5 506 but that express this recombinant PKS and so synthesize the corresponding (C-15-desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 7 has been replaced and thus produces this novel polyketide.

In another illustrative embodiment, the present invention provides a hybrid PKS  
10 10 in which the AT and KR domains of module 7 of the FK-520 PKS are replaced by a methylmalonyl specific AT domain and an inactive KR domain, such as, for example, the AT and KR domains of extender module 6 of the rapamycin PKS. The resulting hybrid PKS produces 15-desmethoxy-15-methyl-16-oxo-FK-520, a neurotrophin compound.

The eighth extender module of the FK-520 PKS includes a KS, an AT specific for  
15 15 2-hydroxymalonyl CoA, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the eighth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 eighth extender module is inserted into a DNA compound that comprises the coding  
20 20 sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the eighth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the eighth extender  
25 25 module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the eighth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In  
30 30 this embodiment, the invention provides, for example, either replacing the 2-

hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting or replacing the KR; and/or inserting a DH or a DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous eighth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the eighth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the eighth extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-13 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant eighth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this eighth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-13-desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 8 has been replaced and thus produces this novel polyketide.

- 66 -

The ninth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the ninth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of 5 applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 ninth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the ninth extender module of the FK-520 PKS or the latter is merely added to coding sequences for 10 the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the ninth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

15 In another embodiment, a portion of the ninth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing 20 any one, two, or all three of the KR, DH, and ER with another KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical 25 synthesis. The resulting heterologous ninth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the ninth extender module of the FK-520 PKS.

- The tenth extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, and an ACP. The recombinant DNA compounds of the invention that encode the tenth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA 5 compound comprising a sequence that encodes the FK-520 tenth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the tenth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the 10 heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the tenth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.
- 15 In another embodiment, a portion or all of the tenth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or inserting a KR, a KR and DH, or a KR, DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or 20 ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous tenth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or 25 more domains of the tenth extender module of the FK-520 PKS.

30 The FK-520 polyketide precursor produced by the action of the tenth extender module of the PKS is then attached to pipecolic acid and cyclized to form FK-520. The

enzyme FkbP is the NRPS like enzyme that catalyzes these reactions. FkbP also includes a thioesterase activity that cleaves the nascent FK-520 polyketide from the NRPS. The present invention provides recombinant DNA compounds that encode the *fkbP* gene and so provides recombinant methods for expressing the *fkbP* gene product in recombinant host cells. The recombinant *fkbP* genes of the invention include those in which the coding sequence for the adenylation domain has been mutated or replaced with coding sequences from other NRPS like enzymes so that the resulting recombinant FkbP incorporates a moiety other than pipecolic acid. For the construction of host cells that do not naturally produce pipecolic acid, the present invention provides recombinant DNA compounds that express the enzymes that catalyze at least some of the biosynthesis of pipecolic acid (see Nielsen *et al.*, 1991, *Biochem.* 30: 5789-96). The *fkbL* gene encodes a homolog of RapL, a lysine cyclodeaminase responsible in part for producing the pipecolate unit added to the end of the polyketide chain. The *fkbB* and *fkbL* recombinant genes of the invention can be used in heterologous hosts to produce compounds such as FK-520 or, in conjunction with other PKS or NRPS genes, to produce known or novel polyketides and non-ribosomal peptides.

The present invention also provides recombinant DNA compounds that encode the P450 oxidase and methyltransferase genes involved in the biosynthesis of FK-520. Figure 2 shows the various sites on the FK-520 polyketide core structure at which these enzymes act. By providing these genes in recombinant form, the present invention provides recombinant host cells that can produce FK-520. This is accomplished by introducing the recombinant PKS, P450 oxidase, and methyltransferase genes into a heterologous host cell. In a preferred embodiment, the heterologous host cell is *Streptomyces coelicolor* CH999 or *Streptomyces lividans* K4-114, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference. In addition, by providing recombinant host cells that express only a subset of these genes, the present invention provides methods for making FK-520 precursor compounds not readily obtainable by other means.

In a related aspect, the present invention provides recombinant DNA compounds and vectors that are useful in generating, by homologous recombination, recombinant host cells that produce FK-520 precursor compounds. In this aspect of the invention, a native host cell that produces FK-520 is transformed with a vector (such as an SCP2\*

5 derived vector for *Streptomyces* host cells) that encodes one or more disrupted genes (i.e., a hydroxylase, a methyltransferase, or both) or merely flanking regions from those genes. When the vector integrates by homologous recombination, the native, functional gene is deleted or replaced by the non-functional recombinant gene, and the resulting host cell thus produces an FK-520 precursor. Such host cells can also be complemented by

10 introduction of a modified form of the deleted or mutated non-functional gene to produce a novel compound.

In one important embodiment, the present invention provides a hybrid PKS and the corresponding recombinant DNA compounds that encode those hybrid PKS enzymes. For purposes of the present invention a hybrid PKS is a recombinant PKS that comprises

15 all or part of one or more modules and thioesterase/cyclase domain of a first PKS and all or part of one or more modules, loading module, and thioesterase/cyclase domain of a second PKS. In one preferred embodiment, the first PKS is all or part of the FK-520 PKS, and the second PKS is only a portion or all of a non-FK-520 PKS.

One example of the preferred embodiment is an FK-520 PKS in which the AT

20 domain of module 8, which specifies a hydroxymalonyl CoA and from which the C-13 methoxy group of FK-520 is derived, is replaced by an AT domain that specifies a malonyl, methylmalonyl, or ethylmalonyl CoA. Examples of such replacement AT domains include the AT domains from modules 3, 12, and 13 of the rapamycin PKS and from modules 1 and 2 of the erythromycin PKS. Such replacements, conducted at the

25 level of the gene for the PKS, are illustrated in the examples below. Another illustrative example of such a hybrid PKS includes an FK-520 PKS in which the natural loading module has been replaced with a loading module of another PKS. Another example of such a hybrid PKS is an FK-520 PKS in which the AT domain of module three is replaced with an AT domain that binds methylmalonyl CoA.

- 70 -

In another preferred embodiment, the first PKS is most but not all of a non-FK-520 PKS, and the second PKS is only a portion or all of the FK-520 PKS. An illustrative example of such a hybrid PKS includes an erythromycin PKS in which an AT specific for methylmalonyl CoA is replaced with an AT from the FK-520 PKS specific for malonyl CoA.

Those of skill in the art will recognize that all or part of either the first or second PKS in a hybrid PKS of the invention need not be isolated from a naturally occurring source. For example, only a small portion of an AT domain determines its specificity. See U.S. provisional patent application Serial No. 60/091,526, incorporated herein by reference. The state of the art in DNA synthesis allows the artisan to construct *de novo* DNA compounds of size sufficient to construct a useful portion of a PKS module or domain. For purposes of the present invention, such synthetic DNA compounds are deemed to be a portion of a PKS.

Thus, the hybrid modules of the invention are incorporated into a PKS to provide a hybrid PKS of the invention. A hybrid PKS of the invention can result not only:

- (i) from fusions of heterologous domain (where heterologous means the domains in that module are from at least two different naturally occurring modules) coding sequences to produce a hybrid module coding sequence contained in a PKS gene whose product is incorporated into a PKS,
- but also:
- (ii) from fusions of heterologous module (where heterologous module means two modules are adjacent to one another that are not adjacent to one another in naturally occurring PKS enzymes) coding sequences to produce a hybrid coding sequence contained in a PKS gene whose product is incorporated into a PKS,
- (iii) from expression of one or more FK-520 PKS genes with one or more non-FK-520 PKS genes, including both naturally occurring and recombinant non-FK-520 PKS genes, and
- (iv) from combinations of the foregoing.

Various hybrid PKSs of the invention illustrating these various alternatives are described herein.

Examples of the production of a hybrid PKS by co-expression of PKS genes from the FK-520 PKS and another non-FK-520 PKS include hybrid PKS enzymes produced by coexpression of FK-520 and rapamycin PKS genes. Preferably, such hybrid PKS enzymes are produced in recombinant *Streptomyces* host cells that produce FK-520 or 5 FK-506 but have been mutated to inactivate the gene whose function is to be replaced by the rapamycin PKS gene introduced to produce the hybrid PKS. Particular examples include (i) replacement of the *fkbC* gene with the *rapB* gene; and (ii) replacement of the *fkbA* gene with the *rapC* gene. The latter hybrid PKS produces 13,15-didesmethoxy-FK-520, if the host cell is an FK-520 producing host cell, and 13,15-didesmethoxy-FK-506, 10 if the host cell is an FK-506 producing host cell. The compounds produced by these hybrid PKS enzymes are immunosuppressants and neurotrophins but can be readily modified to act only as neurotrophins, as described in Example 6, below.

Other illustrative hybrid PKS enzymes of the invention are prepared by replacing the *fkbA* gene of an FK-520 or FK-506 producing host cell with a hybrid *fkbA* gene in 15 which: (a) the extender module 8 through 10, inclusive, coding sequences have been replaced by the coding sequences for extender modules 12 to 14, inclusive, of the rapamycin PKS; and (b) the module 8 coding sequences have been replaced by the module 8 coding sequence of the rifamycin PKS. When expressed with the other, naturally occurring FK-520 or FK-506 PKS genes and the genes of the modification 20 enzymes, the resulting hybrid PKS enzymes produce, respectively, (a) 13-desmethoxy-FK-520 or 13-desmethoxy-FK-506; and (b) 13-desmethoxy-13-methyl-FK-520 or 13-desmethoxy-13-methyl-FK-506. In a preferred embodiment, these recombinant PKS genes of the invention are introduced into the producing host cell by a vector such as pHU204, which is a plasmid pRM5 derivative that has the well-characterized SCP2\* replicon, the *coleI* replicon, the *tsr* and *bla* resistance genes, and a *cos* site. This vector 25 can be used to introduce the recombinant *fkbA* replacement gene in an FK-520 or FK-506 producing host cell (or a host cell derived therefrom in which the endogenous *fkbA* gene has either been rendered inactive by mutation, deletion or homologous recombination with the gene that replaces it) to produce the desired hybrid PKS.

In constructing hybrid PKSs of the invention, certain general methods may be helpful. For example, it is often beneficial to retain the framework of the module to be altered to make the hybrid PKS. Thus, if one desires to add DH and ER functionalities to a module, it is often preferred to replace the KR domain of the original module with a

5 KR, DH, and ER domain-containing segment from another module, instead of merely inserting DH and ER domains. One can alter the stereochemical specificity of a module by replacement of the KS domain with a KS domain from a module that specifies a different stereochemistry. See Lau *et al.*, 1999, "Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of

10 extender units," *Biochemistry* 38(5):1643-1651, incorporated herein by reference.

Stereochemistry can also be changed by changing the KR domain. Also, one can alter the specificity of an AT domain by changing only a small segment of the domain. See Lau *et al.*, *supra*. One can also take advantage of known linker regions in PKS proteins to link modules from two different PKSs to create a hybrid PKS. See Gokhale *et al.*, 16 Apr.

15 1999, "Dissecting and Exploiting Intermodular Communication in Polyketide Synthases," *Science* 284: 482-485, incorporated herein by reference.

The following Table lists references describing illustrative PKS genes and corresponding enzymes that can be utilized in the construction of the recombinant PKSs and the corresponding DNA compounds that encode them of the invention. Also presented are various references describing tailoring enzymes and corresponding genes that can be employed in accordance with the methods of the present invention.

20

#### Avermectin

U.S. Pat. No. 5,252,474 to Merck.

MacNeil *et al.*, 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, A Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemalectin.

MacNeil *et al.*, 1992, *Gene* 115: 119-125, Complex Organization of the *Streptomyces avermitilis* genes encoding the avermectin polyketide synthase.

- 73 -

Ikeda *et al.*, Aug. 1999, Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in *Streptomyces avermitilis*, *Proc. Natl. Acad. Sci. USA* 96: 9509-9514.

**Candididin (FR008)**

5 Hu *et al.*, 1994, *Mol. Microbiol.* 14: 163-172.

**Epothilone**

U.S. Pat. App. Serial No. 60/130,560, filed 22 April 1999.

**Erythromycin**

PCT Pub. No. 93/13663 to Abbott.

10 US Pat. No. 5,824,513 to Abbott.

Donadio *et al.*, 1991, *Science* 252:675-9.

Cortes *et al.*, 8 Nov. 1990, *Nature* 348:176-8, An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of *Saccharopolyspora erythraea*.

15 Glycosylation Enzymes

PCT Pat. App. Pub. No. 97/23630 to Abbott.

**FK-506**

Motamedi *et al.*, 1998, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506, *Eur. J. biochem.* 256: 528-534.

20 Motamedi *et al.*, 1997, Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506, *Eur. J. Biochem.* 244: 74-80.

Methyltransferase

US 5,264,355, issued 23 Nov. 1993, Methylating enzyme from

25 *Streptomyces* MA6858. 31-O-desmethyl-FK-506 methyltransferase.

Motamedi *et al.*, 1996, Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK-506 and FK-520, *J. Bacteriol.* 178: 5243-5248.

***Streptomyces hygroscopicus***

30 U.S. patent application Serial No. 09/154,083, filed 16 Sep. 1998.

- 74 -

**Lovastatin**

U.S. Pat. No. 5,744,350 to Merck.

**Narbomycin**

U.S. patent application Serial No. 60/107,093, filed 5 Nov. 1998, and Serial No.

5 60/120,254, filed 16 Feb. 1999.

**Nemadectin**

MacNeil *et al.*, 1993, *supra*.

**Niddamycin**

Kakavas *et al.*, 1997, Identification and characterization of the niddamycin

10 polyketide synthase genes from *Streptomyces caelstis*, *J. Bacteriol.* 179: 7515-7522.

**Oleandomycin**

Swan *et al.*, 1994, Characterisation of a *Streptomyces antibioticus* gene encoding  
a type I polyketide synthase which has an unusual coding sequence, *Mol. Gen. Genet.*  
242: 358-362.

15 U.S. patent application Serial No. 60/120,254, filed 16 Feb. 1999.

Olano *et al.*, 1998, Analysis of a *Streptomyces antibioticus* chromosomal region  
involved in oleandomycin biosynthesis, which encodes two glycosyltransferases  
responsible for glycosylation of the macrolactone ring, *Mol. Gen. Genet.* 259(3): 299-  
308.

20 **Picromycin**

PCT patent application US99/15047, filed 2 Jul. 1999.

Xue *et al.*, 1998, Hydroxylation of macrolactones YC-17 and narbomycin is  
mediated by the *pikC*-encoded cytochrome P450 in *Streptomyces venezuelae*, *Chemistry*  
& *Biology* 5(11): 661-667.

25 Xue *et al.*, Oct. 1998, A gene cluster for macrolide antibiotic biosynthesis in  
*Streptomyces venezuelae*: Architecture of metabolic diversity, *Proc. Natl. Acad. Sci.*  
*USA* 95: 12111 12116.

**Platenolide**

EP Pat. App. Pub. No. 791,656 to Lilly.

- 75 -

**Rapamycin**

Schwecke *et al.*, Aug. 1995, The biosynthetic gene cluster for the polyketide rapamycin, *Proc. Natl. Acad. Sci. USA* 92:7839-7843.

- Aparicio *et al.*, 1996, Organization of the biosynthetic gene cluster for rapamycin  
5 in *Streptomyces hygroscopicus*: analysis of the enzymatic domains in the modular polyketide synthase, *Gene* 169: 9-16.

**Rifamycin**

- August *et al.*, 13 Feb. 1998, Biosynthesis of the ansamycin antibiotic rifamycin:  
deductions from the molecular analysis of the *rif* biosynthetic gene cluster of  
10 *Amycolatopsis mediterranei* S669, *Chemistry & Biology*, 5(2): 69-79.

**Sorangium PKS**

U.S. patent application Serial No. 09/144,085, filed 31 Aug. 1998.

**Soraphen**

U.S. Pat. No. 5,716,849 to Novartis.

- 15 Schupp *et al.*, 1995, *J. Bacteriology* 177: 3673-3679. A *Sorangium cellulosum* (Myxobacterium) Gene Cluster for the Biosynthesis of the Macrolide Antibiotic Soraphen A: Cloning, Characterization, and Homology to Polyketide Synthase Genes from Actinomycetes.

**Spiramycin**

- 20 U.S. Pat. No. 5,098,837 to Lilly.

Activator Gene

U.S. Pat. No. 5,514,544 to Lilly.

**Tylosin**

EP Pub. No. 791,655 to Lilly.

- 25 U.S. Pat. No. 5,876,991 to Lilly.

Kuhstoss *et al.*, 1996, *Gene* 183:231-6., Production of a novel polyketide through the construction of a hybrid polyketide synthase.

Tailoring enzymes

Merson-Davies and Cundliffe, 1994, *Mol. Microbiol.* 13: 349-355. Analysis of five tylasin biosynthetic genes from the *tylBA* region of the *Streptomyces fradiae* genome.

5 As the above Table illustrates, there are a wide variety of polyketide synthase genes that serve as readily available sources of DNA and sequence information for use in constructing the hybrid PKS-encoding DNA compounds of the invention. Methods for constructing hybrid PKS-encoding DNA compounds are described without reference to the FK-520 PKS in PCT patent publication No. 98/51695; U.S. Patent Nos. 5,672,491  
10 and 5,712,146 and U.S. patent application Serial Nos. 09/073,538, filed 6 May 1998, and 09/141,908, filed 28 Aug 1998, each of which is incorporated herein by reference.

The hybrid PKS-encoding DNA compounds of the invention can be and often are hybrids of more than two PKS genes. Moreover, there are often two or more modules in the hybrid PKS in which all or part of the module is derived from a second (or third) 15 PKS. Thus, as one illustrative example, the present invention provides a hybrid FK-520 PKS that contains the naturally occurring loading module and FkbP as well as modules one, two, four, six, seven, and eight, nine, and ten of the FK-520 PKS and further contains hybrid or heterologous modules three and five. Hybrid or heterologous module three contains an AT domain that is specific of methylmalonyl CoA and can be derived 20 for example, from the erythromycin or rapamycin PKS genes. Hybrid or heterologous module five contains an AT domain that is specific for malonyl CoA and can be derived for example, from the picromycin or rapamycin PKS genes.

While an important embodiment of the present invention relates to hybrid PKS enzymes and corresponding genes, the present invention also provides recombinant FK-25 520 PKS genes in which there is no second PKS gene sequence present but which differ from the FK-520 PKS gene by one or more deletions. The deletions can encompass one or more modules and/or can be limited to a partial deletion within one or more modules. When a deletion encompasses an entire module, the resulting FK-520 derivative is at least two carbons shorter than the gene from which it was derived. When a deletion is 30 within a module, the deletion typically encompasses a KR, DH, or ER domain, or both

DH and ER domains, or both KR and DH domains, or all three KR, DH, and ER domains.

To construct a hybrid PKS or FK-520 derivative PKS gene of the invention, one can employ a technique, described in PCT Pub. No. 98/27203 and U.S. patent application 5 Serial No. 08/989,332, filed 11 Dec. 1997, each of which is incorporated herein by reference, in which the large PKS gene is divided into two or more, typically three, segments, and each segment is placed on a separate expression vector. In this manner, each of the segments of the gene can be altered, and various altered segments can be combined in a single host cell to provide a recombinant PKS gene of the invention. This 10 technique makes more efficient the construction of large libraries of recombinant PKS genes, vectors for expressing those genes, and host cells comprising those vectors.

Thus, in one important embodiment, the recombinant DNA compounds of the invention are expression vectors. As used herein, the term expression vector refers to any nucleic acid that can be introduced into a host cell or cell-free transcription and 15 translation medium. An expression vector can be maintained stably or transiently in a cell, whether as part of the chromosomal or other DNA in the cell or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a gene that serves to produce RNA that is translated into a polypeptide in the cell or cell extract. Furthermore, expression vectors typically contain additional 20 functional elements, such as resistance-conferring genes to act as selectable markers.

The various components of an expression vector can vary widely, depending on the intended use of the vector. In particular, the components depend on the host cell(s) in which the vector will be used or is intended to function. Vector components for expression and maintenance of vectors in *E. coli* are widely known and commercially 25 available, as are vector components for other commonly used organisms, such as yeast cells and *Streptomyces* cells.

In a preferred embodiment, the expression vectors of the invention are used to construct recombinant *Streptomyces* host cells that express a recombinant PKS of the invention. Preferred *Streptomyces* host cell/vector combinations of the invention include 30 *S. coelicolor* CH999 and *S. lividans* K4-114 host cells, which do not produce

actinorhodin, and expression vectors derived from the pRM1 and pRM5 vectors, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference.

5       The present invention provides a wide variety of expression vectors for use in *Streptomyces*. For replicating vectors, the origin of replication can be, for example and without limitation, a low copy number vector, such as SCP2\* (see Hopwood *et al.*, *Genetic Manipulation of Streptomyces: A Laboratory manual* (The John Innes Foundation, Norwich, U.K., 1985); Lydiate *et al.*, 1985, *Gene* 35: 223-235; and Kieser  
10 and Melton, 1988, *Gene* 65: 83-91, each of which is incorporated herein by reference), SLP1.2 (Thompson *et al.*, 1982, *Gene* 20: 51-62, incorporated herein by reference), and SG5(ts) (Muth *et al.*, 1989, *Mol. Gen. Genet.* 219: 341-348, and Bierman *et al.*, 1992,  
15 *Gene* 116: 43-49, each of which is incorporated herein by reference), or a high copy number vector, such as pIJ101 and pJV1 (see Katz *et al.*, 1983, *J. Gen. Microbiol.* 129:  
2703-2714; Vara *et al.*, 1989, *J. Bacteriol.* 171: 5782-5781; and Servin-Gonzalez, 1993,  
Plasmid 30: 131-140, each of which is incorporated herein by reference). Generally,  
however, high copy number vectors are not preferred for expression of genes contained  
on large segments of DNA. For non-replicating and integrating vectors, it is useful to  
include at least an *E. coli* origin of replication, such as from pUC, p1P, p1I, and pBR. For  
20 phage based vectors, the phages phiC31 and KC515 can be employed (see Hopwood *et  
al.*, *supra*).

Typically, the expression vector will comprise one or more marker genes by which host cells containing the vector can be identified and/or selected. Useful antibiotic resistance conferring genes for use in *Streptomyces* host cells include the *ermE* (confers  
25 resistance to erythromycin and other macrolides and lincomycin), *tsr* (confers resistance to thiostrepton), *aadA* (confers resistance to spectinomycin and streptomycin), *aacC4* (confers resistance to apramycin, kanamycin, gentamicin, geneticin (G418), and neomycin), *hyg* (confers resistance to hygromycin), and *vph* (confers resistance to viomycin) resistance conferring genes.

- The recombinant PKS gene on the vector will be under the control of a promoter, typically with an attendant ribosome binding site sequence. The present invention provides the endogenous promoters of the FK-520 PKS and related biosynthetic genes in recombinant form, and these promoters are preferred for use in the native hosts and in heterologous hosts in which the promoters function. A preferred promoter of the invention is the *fkbO* gene promoter, comprised in a sequence of about 270 bp between the start of the open reading frames of the *fkbO* and *fkbB* genes. The *fkbO* promoter is believed to be bi-directional in that it promotes transcription of the genes *fkbO*, *fkbP*, and *fkbA* in one direction and *fkbB*, *fkbC*, and *fkbL* in the other. Thus, in one aspect, the present invention provides a recombinant expression vector comprising the promoter of the *fkbO* gene of an FK-520 producing organism positioned to transcribe a gene other than *fkbO*. In a preferred embodiment the transcribed gene is an FK-520 PKS gene. In another preferred embodiment, the transcribed gene is a gene that encodes a protein comprised in a hybrid PKS.
- Heterologous promoters can also be employed and are preferred for use in host cells in which the endogenous FK-520 PKS gene promoters do not function or function poorly. A preferred heterologous promoter is the *actI* promoter and its attendant activator gene *actII-ORF4*, which is provided in the pRM1 and pRM5 expression vectors, *supra*. This promoter is activated in the stationary phase of growth when secondary metabolites are normally synthesized. Other useful *Streptomyces* promoters include without limitation those from the *ermE* gene and the *melC1* gene, which act constitutively, and the *tipA* gene and the *merA* gene, which can be induced at any growth stage. In addition, the T7 RNA polymerase system has been transferred to *Streptomyces* and can be employed in the vectors and host cells of the invention. In this system, the coding sequence for the T7 RNA polymerase is inserted into a neutral site of the chromosome or in a vector under the control of the inducible *merA* promoter, and the gene of interest is placed under the control of the T7 promoter. As noted above, one or more activator genes can also be employed to enhance the activity of a promoter. Activator genes in addition to the *actII-ORF4* gene discussed above include *dnrI*, *redD*, and *ptpA* genes (see U.S. patent application Serial No. 09/181,833, *supra*) to activate promoters under their control.

In addition to providing recombinant DNA compounds that encode the FK-520 PKS, the present invention also provides DNA compounds that encode the ethylmalonyl CoA and 2-hydroxymalonyl CoA utilized in the synthesis of FK-520. Thus, the present invention also provides recombinant host cells that express the genes required for the biosynthesis of ethylmalonyl CoA and 2-hydroxymalonyl CoA. Figures 3 and 4 show the location of these genes on the cosmids of the invention and the biosynthetic pathway that produces ethylmalonyl CoA.

For 2-hydroxymalonyl CoA biosynthesis, the *fkbH*, *fkbI*, *fkbJ*, and *fkbK* genes are sufficient to confer this ability on *Streptomyces* host cells. For conversion of 2-hydroxymalonyl to 2-methoxymalonyl, the *fkbG* gene is also employed. While the complete coding sequence for *fkbH* is provided on the cosmids of the invention, the sequence for this gene provided herein may be missing a T residue, based on a comparison made with a similar gene cloned from the ansamitocin gene cluster by Dr. H. Floss. Where the sequence herein shows one T, there may be two, resulting in an extension of the *fkbH* reading frame to encode the amino acid sequence:

MTIVKCLVWLDLNTLWRGTVLEDDEVVLDEIREVITLDDRGILQAVASKNDH  
DLAWERLERLGVAEYFVLARIGWGPKSQSVREIATELNFAPTTIAFIDDQPAERA  
EVAFHLPEVRCYPAEQAATLLSLPEFSPPVSTVDSRRRLMYQAGFARDQAREA  
YSGPDEDFLRSLDLSMTIAPAGEEELSRVEELTLRTSQMNATGVHYSADLRALL  
20 TDPAHEVLVVTMGDRFGPHGAVGIILLEKKPSTWHLKLLATSCRVVSFGAGATIL  
NWLTDQGARAGAHLVADFRTDRNRMMEIAYRFAGFADSDCPCVSEVAGASA  
AGVERLHLEPSARPAPTTLTAADIAPVTVSAAG.

For ethylmalonyl CoA biosynthesis, one requires only a crotonyl CoA reductase, which can be supplied by the host cell but can also be supplied by recombinant expression of the *fkbS* gene of the present invention. To increase yield of ethylmalonyl CoA, one can also express the *fkbE* and *fkbU* genes as well. While such production can be achieved using only the recombinant genes above, one can also achieve such production by placing into the recombinant host cell a large segment of the DNA provided by the cosmids of the invention. Thus, for 2-hydroxymalonyl and 2-methoxymalonyl CoA biosynthesis, one can simply provide the cells with the segment of

DNA located on the left side of the FK-520 PKS genes shown in Figure 1. For ethylmalonyl CoA biosynthesis, one can simply provide the cells with the segment of DNA located on the right side of the FK-520 PKS genes shown in Figure 1 or, alternatively, both the right and left segments of DNA.

- 5       The recombinant DNA expression vectors that encode these genes can be used to construct recombinant host cells that can make these important polyketide building blocks from cells that otherwise are unable to produce them. For example, *Streptomyces coelicolor* and *Streptomyces lividans* do not synthesize ethylmalonyl CoA or 2-hydroxymalonyl CoA. The invention provides methods and vectors for constructing
- 10      recombinant *Streptomyces coelicolor* and *Streptomyces lividans* that are able to synthesize either or both ethylmalonyl CoA and 2-hydroxymalonyl CoA. These host cells are thus able to make polyketides, those requiring these substrates, that cannot otherwise be made in such cells.

- 15      In a preferred embodiment, the present invention provides recombinant *Streptomyces* host cells, such as *S. coelicolor* and *S. lividans*, that have been transformed with a recombinant vector of the invention that codes for the expression of the ethylmalonyl CoA biosynthetic genes. The resulting host cells produce ethylmalonyl CoA and so are preferred host cells for the production of polyketides produced by PKS enzymes that comprise one or more AT domains specific for ethylmalonyl CoA.
- 20      Illustrative PKS enzymes of this type include the FK-520 PKS and a recombinant PKS in which one or more AT domains is specific for ethylmalonyl CoA.

- 25      In a related embodiment, the present invention provides *Streptomyces* host cells in which one or more of the ethylmalonyl or 2-hydroxymalonyl biosynthetic genes have been deleted by homologous recombination or rendered inactive by mutation. For example, deletion or inactivation of the *fkbG* gene can prevent formation of the methoxyl groups at C-13 and C-15 of FK-520 (or, in the corresponding FK-506 producing cell, FK-506), leading to the production of 13,15-didesmethoxy-13,15-dihydroxy-FK-520 (or, in the corresponding FK-506 producing cell, 13,15-didesmethoxy-13,15-dihydroxy-FK-506). If the *fkbG* gene product acts on 2-hydroxymalonyl and the resulting 2-methoxymalonyl substrate is required for incorporation by the PKS, the AT domains of

modules 7 and 8 may bind malonyl CoA and methylmalonyl CoA. Such incorporation results in the production of a mixture of polyketides in which the methoxy groups at C-13 and C-15 of FK-520 (or FK-506) are replaced by either hydrogen or methyl.

- This possibility of non-specific binding results from the construction of a hybrid
- 5 PKS of the invention in which the AT domain of module 8 of the FK-520 PKS replaced the AT domain of module 6 of DEBS. The resulting PKS produced, in *Streptomyces lividans*, 6-dEB and 2-desmethyl-6-dEB, indicating that the AT domain of module 8 of the FK-520 PKS could bind malonyl CoA and methylmalonyl CoA substrates. Thus, one could possibly also prepare the 13,15-didesmethoxy-FK-520 and corresponding FK-506
- 10 compounds of the invention by deleting or otherwise inactivating one or more or all of the genes required for 2-hydroxymalonyl CoA biosynthesis, i.e., the *fkbH*, *fkbI*, *fkbJ*, and *fkbK* genes. In any event, the deletion or inactivation of one or more biosynthetic genes required for ethylmalonyl and/or 2-hydroxymalonyl production prevents the formation of polyketides requiring ethylmalonyl and/or 2-hydroxymalonyl for biosynthesis, and the
- 15 resulting host cells are thus preferred for production of polyketides that do not require the same.

The host cells of the invention can be grown and fermented under conditions known in the art for other purposes to produce the compounds of the invention. See, e.g., U.S. Patent Nos. 5,194,378; 5,116,756; and 5,494,820, incorporated herein by reference, for suitable fermentation processes. The compounds of the invention can be isolated from the fermentation broths of these cultured cells and purified by standard procedures. Preferred compounds of the invention include the following compounds: 13-desmethoxy-FK-506; 13-desmethoxy-FK-520; 13,15-didesmethoxy-FK-506; 13,15-didesmethoxy-FK-520; 13-desmethoxy-18-hydroxy-FK-506; 13-desmethoxy-18-hydroxy-FK-520; 25 13,15-didesmethoxy-18-hydroxy-FK-506; and 13,15-didesmethoxy-18-hydroxy-FK-520. These compounds can be further modified as described for tacrolimus and FK-520 in U.S. Patent Nos. 5,225,403; 5,189,042; 5,164,495; 5,068,323; 4,980,466; and 4,920,218, incorporated herein by reference.

Other compounds of the invention are shown in Figure 8, Parts A and B. In Figure 30 8, Part A, illustrative C-32-substituted compounds of the invention are shown in two

columns under the heading R. The substituted compounds are preferred for topical administration and are applied to the dermis for treatment of conditions such as psoriasis. In Figure 8, Part B, illustrative reaction schemes for making the compounds shown in Figure 8, Part A, are provided. In the upper scheme in Figure 8, Part B, the C-32 substitution is a tetrazole moiety, illustrative of the groups shown in the left column under R in Figure 8, Part A. In the lower scheme in Figure 8, Part B, the C-32 substitution is a disubstituted amino group, where R<sub>3</sub> and R<sub>4</sub> can be any group similar to the illustrative groups shown attached to the amine in the right column under R in Figure 8, Part A. While Figure 8 shows the C-32-substituted compounds in which the C-15-methoxy is present, the invention includes these C-32-substituted compounds in which C-15 is ethyl, methyl, or hydrogen. Also, while C-21 is shown as substituted with ethyl or allyl, the compounds of the invention includes the C-32-substituted compounds in which C-21 is substituted with hydrogen or methyl.

To make these C-32-substituted compounds, Figure 8, Part B, provides illustrative reaction schemes. Thus, a selective reaction of the starting compound (see Figure 8, Part B, for an illustrative starting compound) with trifluoromethanesulfonic anhydride in the presence of a base yields the C-32 O-triflate derivative, as shown in the upper scheme of Figure 8, Part B. Displacement of the triflate with 1H-tetrazole or triazole derivatives provides the C-32 tetrazole or triazole derivative. As shown in the lower scheme of Figure 8, Part B, reacting the starting compound with p-nitrophenylchloroformate yields the corresponding carbonate, which, upon displacement with an amino compound, provides the corresponding carbamate derivative.

The compounds can be readily formulated to provide the pharmaceutical compositions of the invention. The pharmaceutical compositions of the invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid, or liquid form. This preparation contains one or more of the compounds of the invention as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any

other form suitable for use. Suitable formulation processes and compositions for the compounds of the present invention are described with respect to tacrolimus in U.S. Patent Nos. 5,939,427; 5,922,729; 5,385,907; 5,338,684; and 5,260,301, incorporated herein by reference. Many of the compounds of the invention contain one or more chiral centers, and all of the stereoisomers are included within the scope of the invention, as pure compounds as well as mixtures of stereoisomers. Thus the compounds of the invention may be supplied as a mixture of stereoisomers in any proportion.

The carriers which can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used. For example, the compounds of the invention may be utilized with hydroxypropyl methylcellulose essentially as described in U.S. Patent No. 4,916,138, incorporated herein by reference, or with a surfactant essentially as described in EPO patent publication No. 428,169, incorporated herein by reference.

Oral dosage forms may be prepared essentially as described by Hondo *et al.*, 1987, *Transplantation Proceedings XIX*, Supp. 6: 17-22, incorporated herein by reference. Dosage forms for external application may be prepared essentially as described in EPO patent publication No. 423,714, incorporated herein by reference. The active compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the disease process or condition.

For the treatment of conditions and diseases relating to immunosuppression or neuronal damage, a compound of the invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvant, and vehicles. The term parenteral, as used herein, includes subcutaneous injections, and intravenous, intramuscular, and intrasternal injection or infusion techniques.

Dosage levels of the compounds of the present invention are of the order from about 0.01 mg to about 50 mg per kilogram of body weight per day, preferably from

about 0.1 mg to about 10 mg per kilogram of body weight per day. The dosage levels are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 mg per patient per day, assuming a 70 kg patient). In addition, the compounds of the present invention may be administered on an intermittent basis, i.e., at semi-weekly, 5 weekly, semi-monthly, or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from 0.5 mg to 5 g of active agent compounded 10 with an appropriate and convenient amount of carrier material, which may vary from about 5 percent to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient. For external administration, the compounds of the invention can be formulated within the range of, for example, 0.00001% to 60% by weight, preferably from 0.001% to 10% by weight, and 15 most preferably from about 0.005% to 0.8% by weight. The compounds and compositions of the invention are useful in treating disease conditions using doses and administration schedules as described for tacrolimus in U.S. Patent Nos. 5,542,436; 5,365,948; 5,348,966; and 5,196,437, incorporated herein by reference. The compounds of the invention can be used as single therapeutic agents or in combination with other 20 therapeutic agents. Drugs that can be usefully combined with compounds of the invention include one or more immunosuppressant agents such as rapamycin, cyclosporin A, FK-506, or one or more neurotrophic agents.

It will be understood, however, that the specific dosage level for any particular patient will depend on a variety of factors. These factors include the activity of the 25 specific compound employed; the age, body weight, general health, sex, and diet of the subject; the time and route of administration and the rate of excretion of the drug; whether a drug combination is employed in the treatment; and the severity of the particular disease or condition for which therapy is sought.

A detailed description of the invention having been provided above, the following examples are given for the purpose of illustrating the present invention and shall not be construed as being a limitation on the scope of the invention or claims.

5

Example 1

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-520

The C-13 methoxyl group is introduced into FK-520 via an AT domain in extender module 8 of the PKS that is specific for hydroxymalonyl and by methylation of the hydroxyl group by an S-adenosyl methionine (SAM) dependent methyltransferase.

- 10 Metabolism of FK-506 and FK-520 primarily involves oxidation at the C-13 position into an inactive derivative that is further degraded by host P450 and other enzymes. The present invention provides compounds related in structure to FK-506 and FK-520 that do not contain the C-13 methoxy group and exhibit greater stability and a longer half-life *in vivo*. These compounds are useful medicaments due to their immunosuppressive and 15 neurotrophic activities, and the invention provides the compounds in purified form and as pharmaceutical compositions.

The present invention also provides the novel PKS enzymes that produce these novel compounds as well as the expression vectors and host cells that produce the novel PKS enzymes. The novel PKS enzymes include, among others, those that contain an AT 20 domain specific for either malonyl CoA or methylmalonyl CoA in module 8 of the FK-506 and FK-520 PKS. This example describes the construction of recombinant DNA compounds that encode the novel FK-520 PKS enzymes and the transformation of host cells with those recombinant DNA compounds to produce the novel PKS enzymes and the polyketides produced thereby.

- 25 To construct an expression cassette for performing module 8 AT domain replacements in the FK-520 PKS, a 4.6 kb *Sph*I fragment from the FK-520 gene cluster was cloned into plasmid pLitmus 38 (a cloning vector available from New England Biolabs). The 4.6 kb *Sph*I fragment, which encodes the ACP domain of module 7 followed by module 8 through the KR domain, was isolated from an agarose gel after 30 digesting the cosmid pKOS65-C31 with *Sph* I. The clone having the insert oriented so

the single *SacI* site was nearest to the *SpeI* end of the polylinker was identified and designated as plasmid pKOS60-21-67. To generate appropriate cloning sites, two linkers were ligated sequentially as follows. First, a linker was ligated between the *SpeI* and *SacI* sites to introduce a *BglII* site at the 5' end of the cassette, to eliminate interfering 5 polylinker sites, and to reduce the total insert size to 4.5 kb (the limit of the phage KC515). The ligation reactions contained 5 picomolar unphosphorylated linker DNA and 0.1 picomolar vector DNA, i.e., a 50-fold molar excess of linker to vector. The linker had the following sequence:

10            5'-CTAGTGGGCAGATCTGGCAGCT-3'  
              3'-ACCCGTCTAGACCG-5'

The resulting plasmid was designated pKOS60-27-1.

Next, a linker of the following sequence was ligated between the unique *SphI* and *AfII* sites of plasmid pKOS60-27-1 to introduce an *NsiI* site at the 3' end of the module 8 cassette. The linker employed was:

15            5'-GGGATGCATGGC-3'  
              3'-GTACCCCTACGTACCGAATT-5'

The resulting plasmid was designated pKOS60-29-55.

To allow in-frame insertions of alternative AT domains, sites were engineered at the 5' end (*Avr II* or *Nhe I*) and 3' end (*Xho I*) of the AT domain using the polymerase 20 chain reaction (PCR) as follows. Plasmid pKOS60-29-55 was used as a template for the PCR and sequence 5' to the AT domain was amplified with the primers SpeBgl-fwd and either Avr-rev or Nhe-rev:

SpeBgl-fwd    5'-CGACTCACTAGTGGGCAGATCTGG-3'  
Avr-rev    5'-CACGCCCTAGGCCGGTCGGTCTCGGGCCAC-3'  
25            Nhe-rev    5'-GCGGCTAGCTGCTCGCCCATCGCGGGATGC-3'

The PCR included, in a 50 µl reaction, 5 µl of 10x *Pfu* polymerase buffer (Stratagene), 5 µl 10x z-dNTP mixture (2 mM dATP, 2 mM dCTP, 2 mM dTTP, 1 mM dGTP, 1 mM 7-deaza-GTP), 5 µl DMSO, 2 µl of each primer (10 µM), 1 µl of template DNA (0.1 µg/µl), and 1 µl of cloned *Pfu* polymerase (Stratagene). The PCR conditions 30 were 95°C for 2 min., 25 cycles at 95°C for 30 sec., 60°C for 30 sec., and 72°C for 4

- 88 -

min., followed by 4 min. at 72°C and a hold at 0°C. The amplified DNA products and the Litmus vectors were cut with the appropriate restriction enzymes (*Bgl*II and *Avr*II or *Spe*I and *Nhe*I), and cloned into either pLitmus 28 or pLitmus38 (New England Biolabs), respectively, to generate the constructs designated pKOS60-37-4 and pKOS60-37-2,  
5 respectively.

Plasmid pKOS60-29-55 was again used as a template for PCR to amplify sequence 3' to the AT domain using the primers *BsrXho-fwd* and *NsiAfl-rev*:

*BsrXho-fwd* 5'-GATGTACAGCTCGAGTCGGCACGCCGGCCGCATC-3'  
*NsiAfl-rev* 5'-CGACTCACTTAAGCCATGCATCC-3'

10 PCR conditions were as described above. The PCR fragment was cut with *BsrGI* and *AfI*II, gel isolated, and ligated into pKOS60-37-4 cut with *Asp718* and *AfI*II and inserted into pKOS60-37-2 cut with *BsrGI* and *AfI*II, to give the plasmids pKOS60-39-1 and pKOS60-39-13, respectively. These two plasmids can be digested with *Avr*II and *Xho*I or *Nhe*I and *Xho*I, respectively, to insert heterologous AT domains specific for  
15 malonyl, methylmalonyl, ethylmalonyl, or other extender units.

Malonyl and methylmalonyl-specific AT domains were cloned from the rapamycin cluster using PCR amplification with a pair of primers that introduce an *Avr*II or *Nhe*I site at the 5' end and an *Xho*I site at the 3' end. The PCR conditions were as given above and the primer sequences were as follows:

20 RATN1 5'-ATCCTAGGCGGGCRGGYGTGTCGTCCTCGG-3'  
(3' end of Rap KS sequence and universal for malonyl and methylmalonyl CoA),  
RATMN2 5'-ATGCTAGCCGCCGCTTCCCCGTCTCGCGCG-3'  
(Rap AT shorter version 5'- sequence and specific for malonyl CoA),  
25 RATMMN2 5'-ATGCTAGCGGATTGTCGCGTGGTGTTCGCCGA-3'  
(Rap AT shorter version 5'- sequence and specific for methylmalonyl CoA), and  
RATC 5'-ATCTCGAGCCAGTASCGCTGGTGYTGGAAAGG-3'  
(Rap DH 5'- sequence and universal for malonyl and methylmalonyl CoA).



Because of the high sequence similarity in each module of the rapamycin cluster, each primer was expected to prime any of the AT domains. PCR products representing ATs specific for malonyl or methylmalonyl extenders were identified by sequencing individual cloned PCR products. Sequencing also confirmed that the chosen clones contained no cloning artifacts. Examples of hybrid modules with the rapamycin AT12 and AT13 domains are shown in a separate figure.

The *AvrII-Xhol* restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below. The AT of rap module 12 is specific for incorporation of malonyl units.

AGATCTGGCAGCTGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC 50  
 I W Q L A E A L L T L V R E S T  
 GCCGCCGTGCTCGGCCACGTGGTGGCGAGGACATCCCCGCACGGCGGC 100  
 A A V L G H V G G E D I P A T A A  
 GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150  
 F K D L G I D S L T A V Q L R N  
 CCCTCACCGAGGCAGCCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200  
 A L T E A T G V R L N A T A V F D  
 TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAAGTGGCGA 250  
 F P T P H V L A G K L G D E L T G  
 CACCCGCGCGCCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300  
 T R A P V V P R T A A T A G A H  
 ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCGGGGTC 350  
 D E P L A I V G M A C R L P G G V  
 GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400  
 A S P E E L W H L V A S G T D A I  
 CACGGAGTTCCCGACGGACCGCGGCTGGGACCGTCGACCGCATCTACGACC 450  
 T E F P T D R G W D V D A I Y D  
 CGGACCCCGACCGCATCGGCAAGACCTTCGTCGGCACGGTGGCTCCCTC 500  
 P D P D A I G K T F V R H G G F L  
 ACCGGCGCGACAGGCTTCGACCGCGGCTTCGGCATCAGCCCGCGCGA 550  
 T G A T G F D A A F F G I S P R E  
 GGCCTCGCGATGGACCCCGCAGCAGCGGGTGCCTGGAGACGTGGGG 600  
 A L A M D P Q Q R V L L E T S W  
 AGGCCTCGAAAGCGCCGGCATCACCCGGACTCGACCCCGCGGCAGCGAC 650

- 90 -

E A F E S A G I T P D S T R G S D  
ACCGGCGTGTCTCGTCGGCGCCTTCCTACGGTTACGGCACCGGTGCGGA 700  
T G V F V G A F S Y G Y G T G A D  
CACCGACGGCTTCGGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750  
5 T D G F G A T G S Q T S V L S G  
GGCTGTCGTAATTCTACGGTCTGGAGGGTCCGGCGGTACGGTCGACACG 800  
R L S Y F Y G L E G P A V T V D T  
GCGTGTTCGTCGTCGTCGGTGGCGCTGCACCAGGCCGGCAGTCGCTGCG 850  
A C S S S L V A L H Q A G Q S L R  
10 CTCCGGCGAATGCTCGCTCGCCCTGGTCGGCGCGTCACGGTGATGGCGT 900  
S G E C S L A L V G G V T V M A  
CTCCCAGGCGGCTTCGTCGGAGTTCTCCCGCAGCGCGGCTCGCGCCGGAC 950  
S P G G F V E F S R Q R G L A P D  
GGCCGGGCGAAGGGCGTCGGCGGGTGCACGGCACGGCACGAGCTTCGCCGA 1000  
15 G R A K A F G A G A D G T S F A E  
GGGTGCCGGTGTGCTGATCGTCGAGAGGCTCTCCGACGCCAACGCAACG 1050  
G A G V L I V E R L S D A E R N  
GTCACACCGTCCCTGGCGGTGTCGTGGTTCGGCGGTCAACCAGGATGGT 1100  
G H T V L A V V R G S A V N Q D G  
20 GCCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAAGGAGCGGGT 1150  
A S N G L S A P N G P S Q E R V I  
CCGGCAGGCCCTGGCCAACGCCGGCTCACCCCGCGACGTGGACGCCG 1200  
R Q A L A N A G L T P A D V D A  
TCGAGGCCACGGCACCCGGCACAGGCTGGCGACCCCATCGAGGCACAG 1250  
25 V E A H G T G T R L G D P I E A Q  
GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCCTGCTGCTGG 1300  
A V L A T Y G Q E R A T P L L L G  
CTCGCTGAAGTCCAACATCGGCCACGCCAGGCCGTCGCCGTCGCCG 1350  
S L K S N I G H A Q A A S G V A  
30 GCATCATCAAGATGGTCGAGGCCCTCCGGCACGGGAGCTGCCGCCGACG 1400  
G I I K M V Q A L R H G E L P P T  
CTGCACGCCACGCCAGGCCGTCGCCGACGTCGACTGGACGGCCGGCGCGT 1450  
L H A D E P S P H V D W T A G A V  
CGAACTGCTGACGTCGGCCGGCCGTGGCCCGAGACCGACCGCCTAGGC 1500  
35 E L L T S A R P W P E T D R P R  
GGCAGGCCGTGTCGTCCTCGGGATCAGTGGCACCAACGCCACGTCATC 1550  
R A G V S S F G I S G T N A H V I  
CTGGAAAGCGCACCCCCCACTCAGCCTGCGGACAACGCGGTGATCGAGCG 1600  
L E S A P P T Q P A D N A V I E R  
40 GGCACCGGAGTGGTGGCTGGTGGATTTGCCAGGACCCAGTCGGCTT 1650  
A P E W V P L V I S A R T Q S A  
TGACTGAGCACGAGGGCCGGTGGCTGCGTGCATCGACTGGACGGCG 1700  
L T E H E G R L R A Y L A A S P G  
GTGGATATGCCGGCTGTCGACGCTGGCGATGACACGGTCGGT 1750  
45 V D M R A V A S T L A M T R S V F  
CGAGCACCGTGGCTGCTGGAGATGACACCGTCACCGCACCGCTG 1800  
E H R A V L L G D D T V T G T A  
TGTCTGACCCCTGGCGGTGTTCTCGTCTCCCGGACAGGGGTCGAGCGT 1850  
V S D P R A V F V F P G Q G S Q R  
50 GCTGGCATGGTGAGGAACGGCCCGCGTCCCCGTCCTCGCGCGGAT 1900  
A G M G E E L A A A F P V F A R I  
CCATCAGCAGGTGTGGACCTGCTCGATGTGCCGATCTGGAGGTGAACG 1950  
H Q Q V W D L L D V P D L E V N  
AGACCGGTTACGCCAGCCGGCCCTGTCGCAATGCAGGTGGCTCTGTT 2000

E T G Y A Q P A L F A M Q V A L F  
 GGGCTGCTGGAATCGTGGGTGTACGACCGGACGCGGTGATCGGCCATT C 2050  
 G L L E S W G V R P D A V I G H S  
 GGTGGGTGAGCTTGCCTCGTATGTGTCCGGGTGTGGTCGTTGGAGG 2100  
 5 V G E L A A A Y V S G V W S L E  
 ATGCCTGCACTTGGTGTGGCGCGGGCTCGTCTGATGCAGGCTCTGCC 2150  
 D A C T L V S A R A R L M Q A L P  
 GCGGGTGGGGTGTGGTCGCTGTCCCCTCGGAGGATGAGGCCCGGGC 2200  
 A G G V M V A V P V S E D E A R A  
 10 CGTCTGGGTGAGGGTGTGGAGATCGCCCGGTCAACGGCCCGTCGTCGG 2250  
 V L G E G V E I A A V N G P S S  
 TGGTTCTCTCCGGTGATGAGGCCGCCGTGCTGCAGGCCCGGAGGGGCTG 2300  
 V V L S G D E A A V L Q A A E G L  
 GGGAAAGTGGACGCCGGCTGGCGACCAAGCCACCGCCTCCATTCCGCCGTAT 2350  
 15 G K W T R L A T S H A F H S A R M  
 GGAACCCATGCTGGAGGAGTTCCGGCGGTGCCGAAGGCCCTGACCTACC 2400  
 E P M L E E F R A V A E G L T Y  
 GGACGCCGAGGTCTCCATGGCCGGTGTGATCAGGTGACCACCGCTGAG 2450  
 R T P Q V S M A V G D Q V T T A E  
 20 TACTGGGTGGCGAGGTCCGGGACACGGTCCGGTTCGGCGAGCAGGTGGC 2500  
 Y W V R Q V R D T V R F G E Q V A  
 CTCGTACGAGGACGCCGTGTTCGTCGAGCTGGGTGCCGACCGGTCACTGG 2550  
 S Y E D A V F V E L G A D R S L  
 CCGCCTGGTCGACGGTGTGCGATGCTGCACGGCGACCACGAAATCCAG 2600  
 25 A R L V D G V A M L H G D H E I Q  
 GCCCGCATGGCGCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGA 2650  
 A A I G A L A H L Y V N G V T V D  
 CTGGCCCGCCTGGCGATGCTCCGGAACACGGGTGCTGGACCTTC 2700  
 W P A L L G D A P A T R V L D L  
 30 CGACATACCGCTTCCAGCACCGCCTACTGGCTCGAGTCGGCACGCCCG 2750  
 P T Y A F Q H Q R Y W L E S A R P  
 GCCCGCATCCGACGCCGGCACCCCGTGTGGCTCCGGTATGCCCTCGC 2800  
 A A S D A G H P V L G S G I A L A  
 CGGGTCGCCGGGCCGGGTGTTCACGGGTCCGTGCCGACCGGTGGGACC 2850  
 35 G S P G R V F T G S V P T G A D  
 GCGCGGTGTTCGTCGCCGAGCTGGCGCTGGCGCCGGACGCCGTGAC 2900  
 R A V F V A E L A L A A A D A V D  
 TCGGCCACGGTCGAGCGGCTCGACATGCCCTCGTGCCGGCCGGCGGG 2950  
 C A T V E R L D I A S V P G R P G  
 40 CCATGGCCGGACGACCGTACAGACCTGGGTGACGAGCCGGACGACG 3000  
 H G R T T V Q T W V D E P A D D  
 GCCGGCGCCGGTTCACCGTGCACACCCGCACCGCGACGCCCGTGGACG 3050  
 G R R R F T V H T R T G D A P W T  
 CTGCACGCCGAGGGGGTGTGCTGCCCTGGCACGCCCTGCCGATGC 3100  
 45 L H A E G V L R P H G T A L P D A  
 GCGCGACGCCGAGTGGCCCCCACCGGGCGGGTGCCCGGACGGCTGC 3150  
 A D A E W P P P G A V P A D G L  
 CGGGTGTGTTGGCGCCGGGGGACCAAGGTCTCGCCGAGGCCGAGGTGGAC 3200  
 P G V W R R G D Q V F A E A E V D  
 50 GGACCGGACGGTTCTGGTGCACCCCGACCTGCTCGACGCCGTCTTC 3250  
 G P D G F V V H P D L L D A V F S  
 CGCGTCCGGACGGAAAGCCGCCAGCCGGCGGATGGCGACCTGACGG 3300  
 A V G D G S R Q P A G W R D L T  
 TGCACCGCTGGACGCCACCGTACTGCCCTGCCACCCGGCGCACC 3350

- 92 -

V H A S D A T V L R A C L T R R T  
GACGGAGCCATGGGATTCGCCGCCTCGACGGCGCCGGCTGCCGGTACT 3400  
D G A M G F A A F D G A G L P V L  
CACC CGGGAGGC GGGT GACG CTG C GGGAGGT GGCG T ACCG T CC GCG T CCG 3450  
5 T A E A V T L R E V A S P S G S  
AGGAGT CGGAC GGC T G CACCG GT TGGAGT GGCT GCG GTC GCG GAGGCG 3500  
E E S D G L H R L E W L A V A E A  
GTCTACGACGGTGACCTGCCGAGGGACATGT CCTGATCACGCCGCCA 3550  
V Y D G D L P E G H V L I T A A H  
10 CCCCGACGACCCCGAGGACATA CCCACCCCGCCACACCCCGCCACCC 3600  
P D D P E D I P T R A H T R A T  
GCGT CCTG ACCG C C T G C A A C A C C A C C T C A C C A C C G A C C A C C C T C 3650  
R V L T A L Q H H L T T T D H T L  
ATCGTCCACACCACCCACCGACCCCGCCGGCGCCACC GT CACCG G C C T C A C 3700  
15 I V H T T T D P A G A T V T G L T  
CCGCACCGCCCAGAACGAACACCCCCACCGCATCCGCTCATCGAAACCG 3750  
R T A Q N E H P H R I R L I E T  
ACCACCCCCACACCCCCCTCCCCCTGGCCA ACTCGCCACCCCTGACCA 3800  
D H P H T P L P L A Q L A T L D H  
20 CCCCACCTCCG C C T C A C C C A C C A C C C T C A C C C A C C C C A C C T C A C C C 3850  
P H L R L T H H T L H H P H L T P  
CCTCCACACCACCCACCCACCCACCACCCACCCCCCTCAACCCCCGAACACG 3900  
L H T T T P P T T T P L N P E H  
CCATCATCATCACCGGGGGCTCCGGCACCCCTCGCCGGATCCTCGCCC 3950  
25 A I I I T G G S G T L A G I L A R  
CACCTGAACCACCCCCACACCTACCTCCTCTCCGCACCCCACCCCCGA 4000  
H L N H P H T Y L L S R T P P P D  
CGCCACCCCCGGCACCCACCTCCCTGCGACGT CGGCACCCCCACCAAC 4050  
A T P G T H L P C D V G D P H Q  
30 TCGCCACCACCCCTCACCCACATCCCCAACCCCTCACCGCCATCTTCCAC 4100  
L A T T L T H I P Q P L T A I F H  
ACCGCCGCCACCCCTCGACGACGGCATCCTCACGCCCTACCCCCGACCG 4150  
T A A T L D D G I L H A L T P D R  
CCTCACCA CGT C C T C C A C C C C A A A G C C A A C G C C G C T G G C A C C T G C A C C 4200  
35 L T T V L H P K A N A A A W H L H  
ACCTCACCCAAAACCAACCCCTCACCCACTTCGT CCTACTCCAGCGCC 4250  
H L T Q N Q P L T H F V L Y S S A  
GCCGCCGTCTCGG CAGCCCCGGACAAGGAAACTACGCCGCCAACGC 4300  
A A V L G S P G Q G N Y A A A N A  
40 CTTCCCTCGACGCCCTCGCCACCCACCGCCACACCCCTGGCAACCCGCCA 4350  
F L D A L A T H R H T L G Q P A  
CCTCCATCGCCTGGGCATGTGGCACACCACAGCACCCCTACCGGACAA 4400  
T S I A W G M W H T T S T L T G Q  
CTCGACGACGCCGACCGGGACCGCATCCGCCGCCGGT T C C C G A T 4450  
45 L D D A D R D R I R R G G F L P I  
CACGGACGACGAGGGCATGGGGATGCAT  
T D D E G

The AvrII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS  
50 with the endogenous AT domain replaced by the AT domain of module 13 (specific for

- 93 -

methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

AGATCTGGCAGCTGCCGAAGCGCTGCTGACGCTCGTCGGGAGAGCACC 50  
5 Q L A E A L L T L V R E S T  
GCCGCCGTGCTCGGCCAACGTGGTGGCGAGGACATCCCCCGGACGGCGGC 100  
A A V L G H V G G E D I P A T A A  
GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150  
F K D L G I D S L T A V Q L R N  
CCCTCACCGAGGGCACCGGTGTGGCCTGAACGCCACGGCGGTCTCGAC 200  
10 A L T E A T G V R L N A T A V F D  
TTCCCGACCCCGCACGTGCTGCCGGAAAGCTCGGCCAGCAACTGACCGG 250  
F P T P H V L A G K L G D E L T G  
CACCCCGCGCCCGTCGTGCCCGGACCGCGGCCACGGCCGGTGCGCACG 300  
T R A P V V P R T A A T A G A H  
15 ACGAGCCGCTGGCAGTCGTGGAAATGGCCTGCCGGCTGCCGGCGGGTC 350  
D E P L A I V G M A C R L P G G V  
GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400  
A S P E E L W H L V A S G T D A I  
CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACCGATCTACGACC 450  
20 T E F P T D R G W D V D A I Y D  
CGGACCCCGACGCGATCGCAAGACCTCGTCCGGCACGGTGGCTTCCTC 500  
P D P D A I G K T F V R H G G F L  
ACCGGCGCGACAGGCTTCGACGCGGCGTCTCGGCATCAGCCCGCGCGA 550  
T G A T G F D A A F F G I S P R E  
25 GGGCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTGTTGGG 600  
A L A M D P Q Q R V L L E T S W  
AGGCCTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCCGGGCAGCGAC 650  
E A F E S A G I T P D S T R G S D  
ACCGGCGTGGTCGCGCCCTCTCCTACGGTTACGGCACCGGTGCGGA 700  
30 T G V F V G A F S Y G Y G T G A D  
CACCGACGGCTTCGGCGGACCGGCTCGCAGACCGAGTGTGCTCTCCGGCC 750  
T D G F G A T G S Q T S V L S G  
GGCTGTCGTAACCTCTACGGTCTGGAGGGTCCGGCGGTACGGTCACACG 800  
R L S Y F Y G L E G P A V T V D T  
35 GCGTGTTCGTCGCTGGCTGGCGCTGCACCAAGGCCGGCAGTCGCTGCG 850  
A C S S S L V A L H Q A G Q S L R  
CTCCGGCGAATGCTCGCTGCCCTGGTCGGCGCGTACCGTGATGGCGT 900  
S G E C S L A L V G G V T V M A  
CTCCCGGGCGCTTCGTTGGAGTTCTCCGGCAGCGCGGCCCTCGCGCCGGAC 950  
40 S P G G F V E F S R Q R G L A P D  
GGCCGGGCGAAGGCCTCGGCGGGTGCAGGGCACGGCACGAGCTCGCCGA 1000  
G R A K A F G A G A D G T S F A E  
GGGTGCCGGTGTGCTGATCGTCGAGAGGCTCTCGACGCCGAACGCCAG 1050  
G A G V L I V E R L S D A E R N  
45 GTCACACCGCTCTGGCGGTGTCGCTGGTTCGGCGGTCAACCAGGATGGT 1100  
G H T V L A V V R G S A V N Q D G  
GCCTCCAACGGGCTGTCGGCGCCAACGGGCCGTCAGGAGCGGGTGAT 1150  
A S N G L S A P N G P S Q E R V I  
CCGGCAGGCCCTGGCAACGCCGGCTCACCCGGCGACGTGGACGCCG 1200  
50 R Q A L A N A G L T P A D V D A  
TCGAGGCCACGGCACCGCACCAGGCTGGCGACCCATCGAGGCACAG 1250  
V E A H G T G T R L G D P I E A Q

- 94 -

GCGGTACTGGCCACCTACGGACAGGAGCGGCCACCCCCCTGCTGCTGGG 1300  
A V L A T Y G Q E R A T P L L L G  
CTCGCTGAAGTCCAACATCGGCCACGCCAGGCCGCTCCGGCGTCGCCG 1350  
S L K S N I G H A Q A A S G V A  
5 GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGAGCTGCCGCCGACG 1400  
G I I K M V Q A L R H G E L P P T  
CTGCACGCCGACGCCGCTGCCGACGTCACTGGACGGCCGGCGCCGT 1450  
L H A D E P S P H V D W T A G A V  
CGAACTGCTGACGTGGCCCCGGCGTGGCCCAGACCGACCAGGGCTAGGC 1500  
10 E L L T S A R P W P E T D R P R  
GGGCGGGCGTGTGTCCTTCGGAGTCAGCGGACCAACGCCACGTCATC 1550  
R A G V S S F G V S G T N A H V I  
CTGGAGAGCGCACCCCCCGCTCAGCCCGCGAGGAGGCGCAGCCTGTTGA 1600  
L E S A P P A Q P A E E A Q P V E  
15 GACGCCGGTGGTGGCCTCGGATGTGCTGCCGCTGGTATCGGCCAAGA 1650  
T P V V A S D V L P L V I S A K  
CCCAGCCC GCCCTGACCGAACACGAAGACCGGCTGCGCCCTACCTGGCG 1700  
T Q P A L T E H E D R L R A Y L A  
GCGTCGCCGGGGCGGGATATACGGCTGTGGCATCGACGCTGGCGGTGAC 1750  
20 A S P G A D I R A V A S T L A V T  
ACGGTCGGTGGTCAGCACCGCGCGTACTCCTGGAGATGACACCGTCA 1800  
R S V F E H R A V L L G D D T V  
CCGGCACCGCGGTGACCGACCCCAGGATCGTGTGTTGTCTTCCGGCAG 1850  
T G T A V T D P R I V F V F P G Q  
25 GGGTGGCAGTGGCTGGGATGGCAGTCAGTCAGTCGCGCATTGTCGGTGGT 1900  
G W Q W L G M G S A L R D S S V V  
GTTGCCGAGCGGATGGCGAGTGTGCGGCGCGTTGCGCAGTTCTGTGG 1950  
F A E R M A E C A A A L R E F V  
ACTGGGATCTGTCACGGTTCTGGATGATCCGGCGGTGGACCGGGTT 2000  
30 D W D L F T V L D D P A V V D R V  
GATGTGGTCCAGCCGCTTCCCTGGCGATGATGGTTCCCTGGCCGGT 2050  
D V V Q P A S W A M M V S L A A V  
GTGGCAGGCCGGTGTGCGGCCGGATGCGGTGATGCCATTGCCAGG 2100  
W Q A A G V R P D A V I G H S Q  
35 GTGAGATGCCGCAGCTGTGTGGCGGGTGCGGTGTCAGCGATGCC 2150  
G E I A A A C V A G A V S L R D A  
GCCCGGATCGTACCTTGCGCAGCCAGGCGATGCCCGGGCGTGGCGGG 2200  
A R I V T L R S Q A I A R G L A G  
CCGGGGCGCATGGCATCCGTGCCCTGCCCGCGCAGGATGTCGAGCTGG 2250  
40 R G A M A S V A L P A Q D V E L  
TCGACGGGGCCTGGATCGCCGCCACAACGGGCCGCCCTACCGTGATC 2300  
V D G A W I A A H N G P A S T V I  
GCGGGCACCCCGGAAGCGGTCGACCATGTCCTCACCGCTCATGAGGCACA 2350  
A G T P E A V D H V L T A H E A Q  
45 AGGGGTGCGGGTGCAGGCCGATCACCGTCGACTATGCCTCGCACACCCGC 2400  
G V R V R R I T V D Y A S H T P  
ACGTCGAGCTGATCCCGACGAACACTCGACATCACTAGCGACAGCAGC 2450  
H V E L I R D E L L D I T S D S S  
TCGCAGACCCCGCTGCGCCGTGGCTGCGACCGTGGACGGCACCTGGGT 2500  
50 S Q T P L V P W L S T V D G T W V  
CGACAGCCCGCTGGACGGGGAGTACTGGTACCGGAACCTGCGTAACCGG 2550  
D S P L D G E Y W Y R N L R E P  
TCGGTTCCACCCCGCCGTCAAGCAGTTGCAAGGCCAGGGCGACACCGTG 2600  
V G F H P A V S Q L Q A Q G D T V

- 95 -

TTCTCGAGGTCA CGGCCAGCCGGT GTTGCAGGCGATGGACGACGA 2650  
F V E V S A S P V L L Q A M D D D  
TGTCGTACGGTTGCCACGCTGCGCTGTGACGACGGCGACGCCACCCGGA 2700  
V V T V A T L R R D D G D A T R  
5 TGCTCACGCCCTGGCACAGGCCTATGTCCACGGCGTACCGTCGACTGG 2750  
M L T A L A Q A Y V H G V T V D W  
CCCGCCATCCTCGGCACCACCAACCCGGGTACTGGACCTCCGACCTA 2800  
P A I L G T T T R V L D L P T Y  
CGCCTCCAACACCA CGCGGTACTGGCTCGAGTCGGCACGCCGCCGCAT 2850  
10 A F Q H Q R Y W L E S A R P A A  
CCGACGCGGGCCACCCCGT GCTGGGCTCCGGTATGCCCTCGCCGGTCG 2900  
S D A G H P V L G S G I A L A G S  
CCGGGCCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACCGCGCGT 2950  
P G R V F T G S V P T G A D R A V  
15 GTTCGTCGCCAGCTGGCGCTGGCCGCCGGACCGGTGCGACTGCGCCA 3000  
F V A E L A L A A A D A V D C A  
CGGTCGAGCGGCTCGACATGCCCTCCGTGCCCGGCCGGCCATGGC 3050  
T V E R L D I A S V P G R P G H G  
CGGACGACCGTACAGACCTGGGTGACGAGCCGGCGGACGACGCCGGCG 3100  
20 R T T V Q T W V D E P A D D G R R  
CCGGTTCACCGTGCACACCCGCACCGGCACGCCCGTGGACGCTGCACG 3150  
R F T V H T R T G D A P W T L H  
CCGAGGGGGTGCTGCGCCCCCATGGCACGGCCCTGCCGATGCGGCCGAC 3200  
A E G V L R P H G T A L P D A A D  
25 GCCGAGTGGCCCCCACCGGGCGCGGTGCCCGCGACGGCTGCCGGGTGT 3250  
A E W P P P G A V P A D G L P G V  
GTGGCGCCGGGGGACCAAGGTCTCGCCGAGGCCGAGGTGGACGGACCGG 3300  
W R R G D Q V F A E A E V D G P  
ACGGTTCTGGTGACCCCGACCTGCTCGACGCGGTCTTCTCCGCGTC 3350  
30 D G F V V H P D L L D A V F S A V  
GGCGACGGAAGCCGCCAGCCGGCGATGGCGCACCTGACGGTGCACGC 3400  
G D G S R Q P A G W R D L T V H A  
GTCGGACGCCACCGTACTGCGCGCTGCCAACCGGGCGACCGACGGAG 3450  
S D A T V L R A C L T R R T D G  
35 CCATGGGATTGCGCCCTCGACGGCGCCGGTACTCACCGCG 3500  
A M G F A A F D G A G L P V L T A  
GAGGCGGTGACGCTGCGGGAGGTGGCGTACCGTCCGCTCCGAGGAGTC 3550  
E A V T L R E V A S P S G S E E S  
GGACGGCTGCACCGGTGGAGTGGCTCGCGGTGCCGAGGCCGGTACCG 3600  
40 D G L H R L E W L A V A E A V Y  
ACGGTGACCTGCCGAGGGACATGTCCTGATCACGCCGCCACCCGAC 3650  
D G D L P E G H V L I T A A H P D  
GACCCCGAGGACATACCCACCCGCCACACCCGCCACCCGCGTCC 3700  
45 D P E D I P T R A H T R A T R V L  
GACCGCCCTGCAACACCA CCTCACCA ACCGACCA CACCCCTCATCGTCC 3750  
T A L Q H H L T T D H T L I V  
ACACCA CACCGACCCGCCGGCGCCACCGTCACCGGCTCACCCGAC 3800  
H T T T D P A G A T V T G L T R T  
GCCAGAACGAAACACCCCCCACCGCATCCGCTCATCGAAACCGACCC 3850  
50 A Q N E H P H R I R L I E T D H P  
CCACACCCCCCTCCCCCTGGCCCAACTGCCACCCCTCGACCA CACCC 3900  
H T P L P L A Q L A T L D H P H  
TCCGCCTCACCCACCACCCCTCCACCA CACCCACCTCACCCCCCTCCAC 3950  
L R L T H H T L H H P H L T P L H

- 96 -

ACCACCACCCCACCCACCACCACCCCCTCAACCCCGAACACGCCATCAT 4000  
 T T T P P T T P L N P E H A I I  
 CATCACCGCGGCTCCGGCACCCCTCGCCGGCATCCTCGCCCGGCCACCTGA 4050  
 I T G G S G T L A G I L A R H L  
 5 ACCACCCCCACACCTACCTCCTCTCCCGCACCCCACCCCCCGACGCCACC 4100  
 N H P H T Y L L S R T P P P D A T  
 CCCGGCACCCACCTCCCTCGCAGCTCGGCACCCCCACCAAACCTGCCAC 4150  
 P G T H L P C D V G D P H Q L A T  
 CACCCCTCACCCACATCCCCAACCCCTCACCGCCATTTCCACACCGCCG 4200  
 10 T L T H I P Q P L T A I F H T A  
 CCACCCCTCGACGACGGCATCCTCACGCCCTCACCCCCGACCGCCTCACC 4250  
 A T L D D G I L H A L T P D R L T  
 ACCGTCCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACCACCTCAC 4300  
 T V L H P K A N A A A W H L H H L T  
 15 CCAAAACCAACCCCTCACCCACTTCGTCTACTCCAGCGCCGCCCG 4350  
 Q N Q P L T H F V L Y S S A A A  
 TCCTCGGCAGCCCCGGACAAGGAAACTACGCCGCCAACGCCCTC 4400  
 V L G S P G Q G N Y A A A N A F L  
 GACGCCCTCGCCACCCACCGCCACACCCTCGGCCAACCCGCCACCTCCAT 4450  
 20 D A L A T H R H T L G Q P A T S I  
 CGCCTGGGGATGTGGCACACCACAGCACCCCTCACGGACAACCGACG 4500  
 A W G M W H T T S T L T G Q L D  
 ACGCCGACCGGGACCGCATCCGCCGGCGGTTCTCCGATACGGAC 4550  
 D A D R D R I R R G G F L P I T D  
 25 GACGAGGGCATGGGATGCAT  
 D E G

The *NheII-XhoI* restriction fragment that encodes module 8 of the FK-520 PKS  
 with the endogenous AT domain replaced by the AT domain of module 12 (specific for  
 30 malonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid  
sequence shown below.

AGATCTGGCAGCTGCCGAAGCGCTGCTGACGCTCGTCCGGAGAGCACC 50  
 Q L A E A L L T L V R E S T  
 GCCGCCGTGCTGGCACGTGGTGGCGAGGACATCCCCGCGACGGCGC 100  
 35 A A V L G H V G G E D I P A T A A  
 GTTCAAGGACCTCGGCATCGACTCGCTACCCGGTCCAGCTGCACCG 150  
 F K D L G I D S L T A V Q L R N  
 CCCTCACCGAGGCGACCGGTGTGGCGTGAACGCCACGGCGGTCTCGAC 200  
 A L T E A T G V R L N A T A V F D  
 40 TTCCGACCCCGCACGTGCTGCCGGAAAGCTCGGCACGAACCTGACCG 250  
 F P T P H V L A G K L G D E L T G  
 CACCCGCGCCCGTGTGCCGGACCGCGGCCACGGCGGTGCGCACCG 300  
 T R A P V V P R T A A T A G A H  
 ACGAGCCGCTGGCAGTCGTGGAAATGGCCTGCCGGCTGCCGGGGTC 350  
 45 D E P L A I V G M A C R L P G G V  
 GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400  
 A S P E E L W H L V A S G T D A I  
 CACGGAGTTCCCGACGGACCGCGGCTGGACGTCGACCGCATCTACGACC 450  
 T E F P T D R G W D V D A I Y D  
 50 CGGACCCCGACGCGATCGCAAGACCTCGTCCGGCACGGTGGCTCCTC 500

P D P D A I G K T F V R H G G F L  
 ACCGGCGCGACAGGCTTCGACGCCGCGTCTCGGCATCAGCCCGCGA 550  
 T G A T G F D A A F F G I S P R E  
 GGCCTCGCATGGACCCGCAGCAGGGTGCTCCTGGAGACGTCTGGG 600  
 5 A L A M D P Q Q R V L L E T S W  
 AGGCCTCGAAAGCGCCGGCATCACCCCGACTCGACCCCGCGAC 650  
 E A F E S A G I T P D S T R G S D  
 ACCGGCGTCTCGCTGGCGCTTCTCCTACGGTTACGGCACCGGTGCGGA 700  
 T G V F V G A F S Y G Y G T G A D  
 10 CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750  
 T D G F G A T G S Q T S V L S G  
 GGCTGTCGTAACCTCTACGGTCTGGAGGGTCCGGCGGTACGGTCACACG 800  
 R L S Y F Y G L E G P A V T V D T  
 GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGCAGTCGCTGCG 850  
 15 A C S S S L V A L H Q A G Q S L R  
 CTCCGGCGAATGTCGCTCGCCCTGGTCGGCGCGTCACGGTGATGGCGT 900  
 S G E C S L A L V G G V T V M A  
 CTCCCGCGCTTCGTTGGAGTTCTCCGGCAGCGCGGCCCTCGCGCCGGAC 950  
 S P G G F V E F S R Q R G L A P D  
 20 GGCCGGCGAAGGCCTCGGCCGGTGGCACGGCACAGCTCGCCGA 1000  
 G R A K A F G A G A D G T S F A E  
 GGGTGCCGGTGTGCTGATCGTCGAGAGGCTCTCGACGCCAACGCAACG 1050  
 G A G V L I V E R L S D A E R N  
 GTCAACCCGTCCTGGCGGTGTCGTCGGTGGTCTGGCGGTCAACCAGGATGGT 1100  
 25 G H T V L A V V R G S A V N Q D G  
 GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGAGGAGCGGGTGAT 1150  
 A S N G L S A P N G P S Q E R V I  
 CGGGCAGGCCCTGGCAACGCCGGCTACCCCAGGCCGGACGTGGACGCCG 1200  
 R Q A L A N A G L T P A D V D A  
 30 TCGAGGCCACGGCACCCGGCACAGGCTGGCGACCCCATCGAGGCACAG 1250  
 V E A H G T G T R L G D P I E A Q  
 GCGGTACTGCCACCTACGGACAGGAGCGGCCACCCCCCTGCTGGGG 1300  
 A V L A T Y G Q E R A T P L L L G  
 CTCGCTGAAGTCAAACATCGGCCACGCCAGGCCGCTCCGGCGTCGCCG 1350  
 35 S L K S N I G H A Q A A S G V A  
 GCATCATCAAGATGGTCGAGGCCCTCCGGCACGGGAGCTGCCGCCGACG 1400  
 G I I K M V Q A L R H G E L P P T  
 CTGCACGCCACGCCGAGCGTCGCCGACGTCGACTGGACGCCGGCGCCGT 1450  
 L H A D E P S P H V D W T A G A V  
 40 CGAACTGCTGACGTCGCCGGCGCTGGCCCGAGACCGACCGGCCACGGC 1500  
 E L L T S A R P W P E T D R P R  
 GTGCCGCCGTCCTCGTGGGGTGAGCGGCCACCGCCACGTCATC 1550  
 R A A V S S F G V S G T N A H V I  
 CTGGAGGCCGGACCGGTAACGGAGACGCCGCCGCGCATCGCCTCCGGTGA 1600  
 45 L E A G P V T E T P A A S P S G D  
 CCTTCCCCCTGCTGGTGTGGCACGCTCACCGGAAGCGCTCGACGAGCAGA 1650  
 L P L L V S A R S P E A L D E Q  
 TCCGCCGACTGCGCGCTACCTGGACACCACCCGGACGTCGACCGGGTG 1700  
 I R R L R A Y L D T T P D V D R V  
 50 GCCGTGGCACAGACGCTGGCCGGCGCACACACTCGCCCACCGCGCCGT 1750  
 A V A Q T L A R R T H F A H R A V  
 GCTGCTGGACACCGTCATCACCAACCCCCCGCGGACCGGCCGACG 1800  
 L L G D T V I T T P P A D R P D  
 AACTCGTCTCGTACTCCGGCCAGGGCACCCAGCATTCCCGCATGGGC 1850

- 98 -

E L V F V Y S G Q G T Q H P A M G  
 GAGCAGCTAGCCGCCGGTCCCCGTCTTCGCGCGGATCCATCAGCAGGT 1900  
 E Q L A A A F P V F A R I H Q Q V  
 GTGGGACCTGCTCGATGTGCCGATCTGGAGGTGAACGAGACCGGTTACG 1950  
 5 W D L L D V P D L E V N E T G Y  
 CCCAGCCGGCCCTGTTCGCAATGCAGGTGGCTCTGTTGGGCTGCTGGAA 2000  
 A Q P A L F A M Q V A L F G L L E  
 TCGTGGGTGTACGACCGGACGCCGTGATGCCATTGGTGGGTGAGCT 2050  
 S W G V R P D A V I G H S V G E L  
 10 TCGGGCTGCGTATGTGTCGGGGTGTGGTCGTTGGAGGATGCCTGCACCT 2100  
 A A A Y V S G V W S L E D A C T  
 TGGTGTGGCGCGGGCTCGTCTGATGCAGGCTCTGCCCGCGGGTGGGTG 2150  
 L V S A R A R L M Q A L P A G G V  
 ATGGTCGCTGTCCGGTCTCGGAGGATGAGGCCCGGGCGTGCTGGGTGA 2200  
 15 M V A V P V S E D E A R A V L G E  
 GGGTGTGGAGATGCCCGGTCAACGCCCGTCGTCGGTGGTTCTCCG 2250  
 G V E I A A V N G P S S V V L S  
 GTGATGAGGCCGCCGTGCTGCAGGCCCGGGAGGGCTGGGAAGTGGACG 2300  
 G D E A A V L Q A A E G L G K W T  
 20 CGGCTGGCGACCAGCCACGCCATTCCGCCGTATGGAACCCATGCT 2350  
 R L A T S H A F H S A R M E P M L  
 GGAGGAGTCCGGCGGTGCGCGAACGCCCTGACCTACCGGACGCCAGG 2400  
 E E F R A V A E G L T Y R T P Q  
 TCTCCATGGCGTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGG 2450  
 25 V S M A V G D Q V T T A E Y W V R  
 CAGGTCCGGGACACGGTCCGGTCCGGCAGCAGGTGGCCTCGTACGAGGA 2500  
 Q V R D T V R F G E Q V A S Y E D  
 CGCCGTGTCGTCGAGCTGGGTGCCGACCGGTCACTGCCCGCCTGGTCG 2550  
 A V F V E L G A D R S L A R L V  
 30 ACGGTGTGCGATGTCGACGCCACGAAATCCAGGCCGATCGGC 2600  
 D G V A M L H G D H E I Q A A I G  
 GCCCTGGCCCACCTGTATGTCACCGCGTCACGGTCGACTGCCCGCCT 2650  
 A L A H L Y V N G V T V D W P A L  
 CCTGGCGATGCTCCGCAACACGGGTGCTGGACCTCCGACATAGCCT 2700  
 35 L G D A P A T R V L D L P T Y A  
 TCCAGCACCGCGTACTGGCTCGAGTCGGCACGCCGCCATCCGAC 2750  
 F Q H Q R Y W L E S A R P A A S D  
 GCGGGCCACCCCGTGTGGCTCCGGTATGCCCTGCCGGTCCGGGG 2800  
 A G H P V L G S G I A L A G S P G  
 40 CCGGGTGTTCACGGGTCCGTGCCGACCGGTGCGGACCGCGCGGTGTTG 2850  
 R V F T G S V P T G A D R A V F  
 TCGCCGAGCTGGCGCTGGCCGCCCGGACGCCGTGACTGCGCCACGGTC 2900  
 V A E L A L A A A D A V D C A T V  
 GAGCGGCTCGACATGCCCTCCGTGCCGCCGCCGGCATGGCCGGAC 2950  
 45 E R L D I A S V P G R P G H G R T  
 GACCGTACAGACCTGGGTGACGCCGGGACGACGCCGCCGGT 3000  
 T V Q T W V D E P A D D G R R R  
 TCACCGTGACACCCGACCGGCCACGCCCGTGGACGCTGCACGCCGAG 3050  
 F T V H T R T G D A P W T L H A E  
 50 GGGGTGCTGCCCTGGCATGGCACGCCCTGCCGATGCCGCCGA 3100  
 G V L R P H G T A L P D A A D A E  
 GTGGCCCCCACCGGGCGGTGCCGCCGGACGGCTGCCGGTGTGGC 3150  
 W P P P G A V P A D G L P G V W  
 GCCGGGGGGACAGGTCTCGCCAGGCCGAGGTGGACGGACCGGACGGT 3200

- 99 -

R R G D Q V F A E A E V D G P D G  
TTCGTGGTGCACCCCGACTGCTGACGCGTCTTCTCCGCGTCGGCGA 3250  
F V V H P D L L D A V F S A V G D  
CGGAAGCCGCCAGCCGGCGATGGCGCAGCTGACGGTGCACGCGTCGG 3300  
5 G S R Q P A G W R D L T V H A S  
ACGCCACCGTACTGCGCCCTGCCTCACCCGGCGCACCACGGAGCCATG 3350  
D A T V L R A C L T R R T D G A M  
GGATTGCGCCCTTCGACGGCGCCGGCTGCCGGTACTCACCGCGGAGGC 3400  
G F A A A F D G A G L P V L T A E A  
10 GGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCGAGGAGTCGGACG 3450  
V T L R E V A S P S G S E E S D  
GCCTGCACCGGGTTGGAGTGGCTCGCGGTGCCAGGGCTACGACGGT 3500  
G L H R L E W L A V A E A V Y D G  
GACCTGCCGAGGGACATGTCCCTGATCACCGCCGCCACCCGACGACCC 3550  
15 D L P E G H V L I T A A H P D D P  
CGAGGACATACCCACCCCGCGCCCACACCCCGGCCACCCGCGTCCTGACCG 3600  
E D I P T R A H T R A T R V L T  
CCCTGCAACACCACTCACCAACCACCGACCACCCCTCATCGTCCACACC 3650  
A L Q H H L T T D H T L I V H T  
20 ACCACCGACCCCCGGCCGGCGCCACCGTCACCGGCCCTCACCCGCACCGCCA 3700  
T T D P A G A T V T G L T R T A Q  
GAACGAACACCCCCACCGCATCCGCTCATCGAAACCGGACCACCCCCACA 3750  
N E H P H R I R L I E T D H P H  
CCCCCTCCCCCTGGCCCAACTCGCCACCCCTCGACCACCCCCACCTCCGC 3800  
25 T P L P L A Q L A T L D H P H L R  
CTCACCCACCAACCCCTCCACCCACCCACCTCACCCCCCTCCACACAC 3850  
L T H H T L H H P H L T P L H T T  
CACCCCCACCCACCAACCCACCCCTCAACCCCGAACACGCCATCATCATCA 3900  
T P P T T T P L N P E H A I I I  
30 CGGGCGGCTCCGGCACCCCTCGCCGGCATCCTCGCCGCCACCTGAACAC 3950  
T G G S G T L A G I L A R H L N H  
CCCCACACCTACCTCCTCTCCGCACCCACCCCCGACGCCACCCCCGG 4000  
P H T Y L L S R T P P P D A T P G  
CACCCACCTCCCCCTGCGACGTCGGCGACCCCCACCAACTGCCACCAAC 4050  
35 T H L P C D V G D P H Q L A T T  
TCACCCACATCCCCAACCCCTCACCGCCATCTTCCACACCGCCGCCACC 4100  
L T H I P Q P L T A I F H T A A T  
CTCGACGACGGCATCTCCACGCCCTCACCCCCGACCGCCTCACCGGT 4150  
L D D G I L H A L T P D R L T T V  
40 CCTCCACCCCAAAGCCAACGCCGCTGGCACCTGCACCACTCACCCAAA 4200  
L H P K A N A A W H L H H L T Q  
ACCAACCCCTACCCACTTCGTCCCTACTCCAGCGCCGCCGCGTCCTC 4250  
N Q P L T H F V L Y S S A A A V L  
GGCAGCCCCGGACAAGGAAACTACGCCGCCAACGCCCTCGACGC 4300  
45 G S P G Q G N Y A A A N A F L D A  
CCTCGCCACCCACCGCCACACCCCTCGGCCAACCCGCCACCTCCATCGCCT 4350  
L A T H R H T L G Q P A T S I A  
GGGCATGTGGCACACCACAGCACCCCTACCGGACAACCTCGACGACGCC 4400  
W G M W H T T S T L T G Q L D D A  
50 GACCGGGACCGCATCCGCCGCCGGTTCTCCGATCACGGACGACGA 4450  
D R D R I R R G G F L P I T D D E  
GGGCATGGGGATGCAT  
G

- 100 -

The *NheII-XhoI* restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

|    |                                                      |      |
|----|------------------------------------------------------|------|
| 5  | AGATCTGGCAGCTGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC    | 50   |
|    | Q L A E A L L T L V R E S T                          |      |
|    | GCCGCCGTGCTCGGCCACGTGGTGGCGAGGACATCCCCGCGACGGCGGC    | 100  |
|    | A A V L G H V G G E D I P A T A A                    |      |
|    | GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG   | 150  |
| 10 | F K D L G I D S L T A V Q L R N                      |      |
|    | CCCTCACCGAGGCACCGGTGTGCGGCTGAACGCCACGGCGGTCTCGAC     | 200  |
|    | A L T E A T G V R L N A T A V F D                    |      |
|    | TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG   | 250  |
|    | F P T P H V L A G K L G D E L T G                    |      |
| 15 | CACCCGCGCGCCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG   | 300  |
|    | T R A P V V P R T A A T A G A H                      |      |
|    | ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCGGCGGGTC     | 350  |
|    | D E P L A I V G M A C R L P G G V                    |      |
|    | GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCGGCCACCGACGCCAT   | 400  |
| 20 | A S P E E L W H L V A S G T D A I                    |      |
|    | CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC   | 450  |
|    | T E F P T D R G W D V D A I Y D                      |      |
|    | CGGACCCCGACCGCATCGCAAGAACCTCGTCCGGCACGGTGGCTTCCTC    | 500  |
| 25 | P D P D A I G K T F V R H G G F L                    |      |
|    | ACCGGCGCGACAGGCTTCGACCGCGCGTTCTCGGCATCAGCCCGCGCGA    | 550  |
|    | T G A T T G F D A A F F G I S P R E                  |      |
|    | GGCCCTCGCGATGGACCCCGCAGCAGCGGGTGCTCTGGAGACGTGTTGGG   | 600  |
|    | A L A M D P Q Q R V L L E T S W                      |      |
| 30 | AGGCCTTCGAAAGCGCCGGCATCACCCGGACTCGACCCCGCGCAGCGAC    | 650  |
|    | E A F E S A G I T P D S T R G S D                    |      |
|    | ACCGGCGTGGTCGTCGGCGCTTCCTACGGTTACGGCACCGGTGCGGA      | 700  |
|    | T G V F V G A F S Y G Y G T G A D                    |      |
|    | CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCACTGTGCTCTCCGGCC   | 750  |
|    | T D G F G A T G S Q T S V L S G                      |      |
| 35 | GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTACGGTCGACACG    | 800  |
|    | R L S Y F Y G L E G P A V T V D T                    |      |
|    | GCGTGGTCGTCGCTGGTGGCGCTGCACCAGGCCGGCAGTCGCTGCG       | 850  |
|    | A C S S S L V A L H Q A G Q S L R                    |      |
|    | CTCCGGCGAATGCTCGCTGCCCTGGTCGGCGCGTCACTGGTATGGCGT     | 900  |
| 40 | S G E C S L A L V G G V T V M A                      |      |
|    | CTCCCGGCGGCTTCGTTGGAGTTCTCCCGCAGCGCGGCCCTCGCGCCGGAC  | 950  |
|    | S P G G F V E F S R Q R G L A P D                    |      |
|    | GGCCGGCGAAGGGCGTTCGGCGCGGGTGGACGGCACGGCAGAGCTTCGCCGA | 1000 |
|    | G R A K A F G A G A D G T S F A E                    |      |
| 45 | GGGTGCCGGTGTGCTGATCGTCGAGAGGGCTCTCCGACGCCGAACGCAACG  | 1050 |
|    | G A G V L I V E R L S D A E R N                      |      |
|    | GTCACACCGTCTGGCGGTGTCGCTGGTGGCTGGCGGTCAACCAGGATGGT   | 1100 |
|    | G H T V L A V V R G S A V N Q D G                    |      |
|    | GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT   | 1150 |
| 50 | A S N G L S A P N G P S Q E R V I                    |      |

- 101 -

CCGGCAGGCCCTGGCCAACGCCGGCTCACCCCGGCGGACGTGGACGCCG 1200  
R Q A L A N A G L T P A D V D A  
TCGAGGCCACGGCACCGGCACCAGGCTGGCGACCCCACGAGGCACAG 1250  
V E A H G T G T R L G D P I E A Q  
5 GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCCTGCTGCTGGG 1300  
A V L A T Y G Q E R A T P L L L G  
CTCGCTGAAGTCCAACATCGGCCACGCCAGGCCGCGTCCGGCGTCGCCG 1350  
S L K S N I G H A Q A A S G V A  
GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGAGCTGCCGCCGACG 1400  
10 G I I K M V Q A L R H G E L P P T  
CTGCACGCCGACGAGCCGTCGCCGACGTCGACTGGACGGCCGGCGCCGT 1450  
L H A D E P S P H V D W T A G A V  
CGAACTGCTGACGTCGGCCGGCGTGGCCGAGACCGACCGGCCACGGC 1500  
E L L T S A R P W P E T D R P R  
15 GTGCCGCCGCTCTCGTCTCGGCTGGGGTGAGCGGCACCAACGCCACGTCA 1550  
R A A V S S F G V S G T N A H V I  
CTGGAGGCCGACCGGTAACGGAGACGCCCGGCATGCCCTCCGGTGA 1600  
L E A G P V T E T P A A S P S G D  
CCTTCCCTGCTGGTGTGGCACGCTCACCGGAAGCGCTCGACGAGCAGA 1650  
20 L P L L V S A R S P E A L D E Q  
TCCGCCGACTGCGCGCTACCTGGACACCACCCCGGACGTCGACCGGGTG 1700  
I R R L R A Y L D T T P D V D R V  
GCCGTGGCACAGACGCTGGCCGGCGCACACACTCGCCACCGCGCCGT 1750  
A V A Q T L A R R T H F A H R A V  
25 GCTGCTCGGTGACACCGTCATCACACACCCCCCGCGGACCGGCCGACG 1800  
L L G D T V I T T P P A D R P D  
AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGG 1850  
E L V F V Y S G Q G T Q H P A M G  
GAGCAGCTAGCCGATTCGTCGGTGGTGTGCGCAGCGGATGGCCGAGTG 1900  
30 E Q L A D S S V V F A E R M A E C  
TGCGGCGGCCGTTGCGCGAGTTCGTGGACTGGGATCTGTTACGGTTCTGG 1950  
A A A L R E F V D W D L F T V L  
ATGATCCGGCGGTGGTGGACCGGGTTGATGTGGTCCAGCCGCTTCTGG 2000  
D D P A V V D R V D V V Q P A S W  
35 GCGATGATGGTTCCCTGGCCGGTGTGGCAGGCGGCCGGTGTGCGGCC 2050  
A M M V S L A A A V W Q A A G V R P  
GGATGCGGTGATCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGG 2100  
D A V I G H S Q G E I A A A C V  
CGGGTGCGGTGTCACTACCGCATGCCGCCGGATCGTGACCTTGCAGCAGC 2150  
40 A G A V S L R D A A R I V T L R S  
CAGGGCATGCCGCCGGGCTGGCGGGCGGGCGCATGGCATCCGTCGC 2200  
Q A I A R G L A G R G A M A S V A  
CCTGCCGCCAGGATGTCGAGCTGGTCGACGGGCGCTGGATGCCGCC 2250  
L P A Q D V E L V D G A W I A A  
45 ACAACGGGCCGCCCTCACCGTGATCGCGGGCACCCCGGAAGCGGTGAC 2300  
H N G P A S T V I A G T P E A V D  
CATGTCCTCACCGCTCATGAGGCACAAGGGTGCGGGTGCAGCGGATCAC 2350  
H V L T A H E A Q G V R V R R I T  
CGTCGACTATGCCCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAAC 2400  
50 V D Y A S H T P H V E L I R D E  
TACTCGACATCACTAGCGACAGCAGCAGCTCGCAGACCCCGCTCGTGG 2450  
L L D I T S D S S S Q T P L V P W  
CTGTCGACCGTGGACGGCACCTGGGTCGACAGCCCGCTGGACGGGAGTA 2500  
L S T V D G T W V D S P L D G E Y

CTGGTACCGGAACCTGCGTGAACCGGTCGGTTCCACCCCGCCGTAGCC 2550  
 W Y R N L R E P V G F H P A V S  
 AGTTGCAGGCCAGGGCGACACCGTGGTCAGGCCAGCCCG 2600  
 Q L Q A Q G D T V F V E V S A S P  
 5 GTGTTGTTGCAGGCATGGACGACGATGTCGTACGGTTGCCACGCTGCG 2650  
 V L L Q A M D D D V V T V A T L R  
 TCGTGACGACGGCAGGCCACCCGGATGCTCACCGCCCTGGCACAGGCCT 2700  
 R D D G D A T R M L T A L A Q A  
 ATGTCCACGGCGTACCGTCGACTGGCCGCCATCCTCGGCACCACCA 2750  
 10 Y V H G V T V D W P A I L G T T T  
 ACCCGGGTACTGGACCTTCGACCTACGCCCTCCAACACCAGCGGTACTG 2800  
 T R V L D L P T Y A F Q H Q R Y W  
 GCTCGAGTCGGCACGCCGGCGATCCGACGCGGGCACCCGTGCTGG 2850  
 L E S A R P A A S D A G H P V L  
 15 GCTCCGGTATGCCCTCGCCGGGTGCGCCGGGCCGGTGTTCACGGTTCC 2900  
 G S G I A L A G S P G R V F T G S  
 GTGCCGACGGGTGCGGACCGCGCGGTGTTCTCGCCGAGCTGGCGCTGGC 2950  
 V P T G A D R A V F V A E L A L A  
 CGCCGCGGACGCGGTGACTGCGCACGGTCGAGCGGCTCGACATGCC 3000  
 20 A A D A V D C A T V E R L D I A  
 CCGTGCCCCGGCCGGCCGGCCATGGCCGGACGACCGTACAGACCTGGTC 3050  
 S V P G R P G H G R T T V Q T W V  
 GACGAGCCGGCGACGACGGCCGGCGCCGGTTACCGTGCACACCCGCAC 3100  
 D E P A D D G R R F T V H T R T  
 25 CGCGACGCCCGTGGACGCTGCACGCCGAGGGGGTGTGCGCCCCCATG 3150  
 G D A P W T L H A E G V L R P H  
 GCACGGCCCTGCCGATGCGCCGACGCCGAGTGGCCCCCACGGCGCG 3200  
 G T A L P D A A D A E W P P P G A  
 GTGCCCGCGACGGCTGCCGGTGTGTGGCGCCGGGGACCAGGTCTT 3250  
 30 V P A D G L P G V W R R G D Q V F  
 CGCCGAGGCCGAGGTGGACGGACGGACGGTTCTGTGGTCACCCGACC 3300  
 A E A E V D G P D G F V V H P D  
 TGCTCGACCGGTCTTCGCCGCGACGGAGCC 3350  
 L L D A V F S A V G D G S R Q P A  
 35 GGATGGCGCGACCTGACGGTGCACCGTGGACGCCACCGTACTGCGCGC 3400  
 G W R D L T V H A S D A T V L R A  
 CTGCCCTACCCGGCGCACCGACGGAGCCATGGGATTGCCGCCCTGACG 3450  
 C L T R R T D G A M G F A A F D  
 GCGCCGGCCTGCCGGTACTCACCGCGAGGGCGGTGACGCTGCGGGAGGTG 3500  
 40 G A G L P V L T A E A V T L R E V  
 GCGTCACCGTCCGGCTCCGAGGAGTCGGACGGCCTGCACCGGTTGGAGTG 3550  
 A S P S G S E E S D G L H R L E W  
 GCTCGCGGTGCCGAGGCCGTACGACGGTGACCTGCCGCCAGGGACATG 3600  
 L A V A E A V Y D G D L P E G H  
 45 TCCTGATACCGCCGCCACCCCGACGACCCCGAGGACATACCCACCGC 3650  
 V L I T A A H P D D P E D I P T R  
 GCCCACACCCGGCCACCCCGTCTGACCGCCCTGCAACACCACCTCAC 3700  
 A H T R A T R V L T A L Q H H L T  
 CACCACCGACCACACCCCTCATCGTCCACACCACCGACCCCGCCGGCG 3750  
 50 T T D H T L I V H T T T D P A G  
 CCACCGTCACCGGCCCTACCCGCACCGCCAGAACGAACACCCACCGC 3800  
 A T V T G L T R T A Q N E H P H R  
 ATCCGCCTCATCGAAACCGACCCACACCCCTCCCCCTGGCCCA 3850  
 I R L I E T D H P H T P L P L A Q

- 103 -

ACTCGCCACCCCTCGACCACCCCCCACCTCCGCCTCACCCACCACACCCCTCC 3900  
L A T L D H P H L R L T H H T L  
ACCACCCCCCACCTCACCCCCCTCCACACCACCCACCCACCCACCCACC 3950  
H H P H L T P L H T T T P P T T T  
5 CCCCTCAACCCCAGAACACGCCATCATCATCACCGGCGGCTCCGGCACCC 4000  
P L N P E H A I I I T G G S G T L  
CGCCGGCATCCTCGCCCCGCCACCTGAACCACCCCCCACACCTACCTCCCT 4050  
A G I L A R H L N H P H T Y L L  
CCCGCACCCCACCCCCCGACGCCACCCCCGGCACCCACCTCCCCTGCAC 4100  
10 S R T P P P D A T P G T H L P C D  
GTCGGCGACCCCCACCAACTCGCCACCACCCCTCACCCACATCCCCAAC 4150  
V G D P H Q L A T T L T H I P Q P  
CCTCACCGCCATCTTCCACACCGCCGCCACCCCTCGACGACGGCATCCCT 4200  
L T A I F H T A A T L D D G I L  
15 ACGCCCTCACCCCCGACCGCCTCACCCACCGTCCCTCACCCAAAGCCAAC 4250  
H A L T P D R L T T V L H P K A N  
GCCGCCTGGCACCTGCACCAACTCACCCAAAACCAACCCCTCACCCACTT 4300  
A A W H L H L T Q N Q P L T H F  
CGTCCTCTACTCCAGCGCCGCCGTCTCGGCAGCCCCGGACAAGGAA 4350  
20 V L Y S S A A A V L G S P G Q G  
ACTACGCGCCGCCAACGCCTTCCTCGACGCCCTGCCACCCACCGCCAC 4400  
N Y A A A N A F L D A L A T H R H  
ACCCTCGGCCAACCGCCACCTCCATCGCCTGGGCATGTGGCACACCAC 4450  
T L G Q P A T S I A W G M W H T T  
25 CAGCACCCCTACCGGACAACCTGACGACGCCGACCGGGACCGCATCCGCC 4500  
S T L T G Q L D D A D R D R I R  
GCGGCGGTTCTCCCGATCACGGACGACGAGGGCATGGGATGCAT  
R G G F L P I T D D E G

30 Phage KC515 DNA was prepared using the procedure described in Genetic Manipulation of *Streptomyces*, A Laboratory Manual, edited by D. Hopwood *et al.* A phage suspension prepared from 10 plates (100 mm) of confluent plaques of KC515 on *S. lividans* TK24 generally gave about 3 µg of phage DNA. The DNA was ligated to circularize at the cos site, subsequently digested with restriction enzymes *Bam*HI and *Pst*I, and dephosphorylated with SAP.

Each module 8 cassette described above was excised with restriction enzymes *Bgl*II and *Nsi*I and ligated into the compatible *Bam*HI and *Pst*I sites of KC515 phage DNA prepared as described above. The ligation mixture containing KC515 and various cassettes was transfected into protoplasts of *Streptomyces lividans* TK24 using the 40 procedure described in Genetic Manipulation of *Streptomyces*, A Laboratory Manual edited by D. Hopwood *et al.* and overlaid with TK24 spores. After 16-24 hr, the plaques were restreaked on plates overlaid with TK24 spores. Single plaques were picked and resuspended in 200 µL of nutrient broth. Phage DNA was prepared by the boiling method

- 104 -

(Hopwood *et al.*, *supra*). The PCR with primers spanning the left and right boundaries of the recombinant phage was used to verify the correct phage had been isolated. In most cases, at least 80% of the plaques contained the expected insert. To confirm the presence of the resistance marker (thiostrepton), a spot test is used, as described in Lomovskaya *et al.* (1997), in which a plate with spots of phage is overlaid with mixture of spores of TK24 and phiC31 TK24 lysogen. After overnight incubation, the plate is overlaid with antibiotic in soft agar. A working stock is made of all phage containing desired constructs.

10        *Streptomyces hygroscopicus* ATCC 14891 (see US Patent No. 3,244,592, issued 5 Apr 1966, incorporated herein by reference) mycelia were infected with the recombinant phage by mixing the spores and phage ( $1 \times 10^8$  of each), and incubating on R2YE agar (Genetic Manipulation of *Streptomyces*, A Laboratory Manual, edited by D. Hopwood *et al.*) at 30°C for 10 days. Recombinant clones were selected and plated on minimal medium containing thiostrepton (50 µg/ml) to select for the thiostrepton 15 resistance-conferring gene. Primary thiostrepton resistant clones were isolated and purified through a second round of single colony isolation, as necessary. To obtain thiostrepton-sensitive revertants that underwent a second recombination event to evict the phage genome, primary recombinants were propagated in liquid media for two to three days in the absence of thiostrepton and then spread on agar medium without thiostrepton 20 to obtain spores. Spores were plated to obtain about 50 colonies per plate, and thiostrepton sensitive colonies were identified by replica plating onto thiostrepton containing agar medium. The PCR was used to determine which of the thiostrepton sensitive colonies reverted to the wild type (reversal of the initial integration event), and which contain the desired AT swap at module 8 in the ATCC 14891-derived cells. The 25 PCR primers used amplified either the KS/AT junction or the AT/DH junction of the wild-type and the desired recombinant strains. Fermentation of the recombinant strains, followed by isolation of the metabolites and analysis by LCMS, and NMR is used to characterize the novel polyketide compounds.

- 105 -

Example 2

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-506

The present invention also provides the 13-desmethoxy derivatives of FK-506 and the novel PKS enzymes that produce them. A variety of *Streptomyces* strains that produce 5 FK-506 are known in the art, including *S. tsukubaensis* No. 9993 (FERM BP-927), described in U.S. Patent No. 5,624,852, incorporated herein by reference; *S. hygroscopicus* subsp. *yakushimaensis* No. 7238, described in U.S. patent No. 4,894,366, incorporated herein by reference; *S. sp.* MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference; and *S. sp.* MA 6548, described 10 in Motamedi *et al.*, 1998, "The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506," *Eur. J. Biochem.* 256: 528-534, and Motamedi *et al.*, 1997, "Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506," *Eur. J. Biochem.* 244: 74-80, each of which is incorporated herein by reference.

15 The complete sequence of the FK-506 gene cluster from *Streptomyces* sp. MA6548 is known, and the sequences of the corresponding gene clusters from other FK-506-producing organisms is highly homologous thereto. The novel FK-506 recombinant gene clusters of the present invention differ from the naturally occurring gene clusters in that the AT domain of module 8 of the naturally occurring PKSs is replaced by an AT 20 domain specific for malonyl CoA or methylmalonyl CoA. These AT domain replacements are made at the DNA level, following the methodology described in Example 1.

The naturally occurring module 8 sequence for the MA6548 strain is shown below, followed by the illustrative hybrid module 8 sequences for the MA6548 strains.

25 GCATGCGGCTGTACGAGGC GG CACGGCGCACCGGAAGTCCC GTGGTGGT G 50  
M R L Y E A A R R T G S P V V V  
GCGGCCGCGCTCGACGACGCCGGACGTGCCGCTGCTGCCGGCTGCG 100  
A A A L D D A P D V P L L R G L R  
GCGTACGACCGTCCGGCGTGCCGCCGTCCGGAAACGCTCTCGCCGACC 150  
30 R T T V R R A A V R E R S L A D  
GCTCGCCGTGCTGCCGACGACGAGCGCGCCGACGCCCTCCCTCGCGTTG 200  
R S P C C P T T S A P T P P S R S  
TCCTGGAACAGCAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250  
S W N S T A T V L G H L G A E D I

CCCGCGACGACGACGTTCAAGGAACCTGGCATCGACTCGCTACCGCGG 300  
P A T T T F K E L G I D S L T A  
TCCAGCTGCGAACCGCGTACCGACGGCGACCGCGTACGCCAACGCC 350  
V Q L R N A L T T A T G V R L N A  
5 ACAGCGGTCTTCGACTTCCGACGCCGCGCGCTCGCCCGAGACTCGG 400  
T A V F D F P T P R A L A A R L G  
CGACGAGCTGGCCGGTACCCGCGCCCGTGCACGGCCGGACCACGCCA 450  
D E L A G T R A P V A A R T A A  
CCGCGGCCGCGCACGACGAACCGCTGGCGATCGTGGGCATGGCGT 500  
10 T A A A H D E P L A I V G M A C R  
CTGCCGGCGGGTTCGCGTCCACAGGAGCTGTGGCGTCTCGTGC 550  
L P G G V A S P Q E L W R L V A S  
CGGCACCGACGCCATACGGAGTTCCCCGCGGACCGCGCTGGGACGTGG 600  
G T D A I T E F P A D R G W D V  
15 ACGCGCTTACGACCCGGACCCGACCGCATCGGAAAGACCTCGTCCGG 650  
D A L Y D P D P D A I G K T F V R  
CACGGCGGCTCCTCGACGGTGCACGGCTTCGACCGCGCTTCTCGG 700  
H G G F L D G A T G F D A A A F F G  
GATCAGCCCGCGAGGGCCCTGCCATGGACCCGACGAAACGGGTGCTCC 750  
20 I S P R E A L A M D P Q Q R V L  
TGGAGACGCTCTGGGAGGCCTCGAAAGCGCGGGCATCACCCGGACGCG 800  
L E T S W E A F E S A G I T P D A  
GCGCGGGCGAGCGACACCGCGTGTTCATCGCGCGTCTCTACGGGTA 850  
A R G S D T G V F I G A F S Y G Y  
25 CGGCACGGGTGCGGATAACCAACGGCTTCGCGCGACAGGGTCGCAGACCA 900  
G T G A D T N G F G A T G S Q T  
GCGTGCCTCCGGCCGCTCTCGTACTTCTACGGTCTGGAGGGCCCTCG 950  
S V L S G R L S Y F Y G L E G P S  
GTCACGGTCGACACCGCCTGCTCGTCACTGGTCGCCCTGCACCAAGGC 1000  
30 V T V D T A C S S S L V A L H Q A  
AGGGCAGTCCCTGCCTCGGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050  
G Q S L R S G E C S L A L V G G  
TCACGGTGATGGCGTCGCCCGGGATTCTCGAGTTCTCCCGCAGCGC 1100  
V T V M A S P G G F V E F S R Q R  
35 GGGCTCGCGCCGGACGGCGGGCGAAGGGTTCGGCGCGGGACGG 1150  
G L A P D G R A K A F G A G A D G  
TACGAGCTTCGCCGAGGGCGCCGGTGCCTGGTGGTCGAGCGGGCTCTCG 1200  
T S F A E G A G A L V V E R L S  
ACCGGGAGCGCCACGGCACACCGCTCTCGCCCTCGTACCGCGCTCCCG 1250  
40 D A E R H G H T V L A L V R G S A  
GCTAACTCCGACGGCGCGTCAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300  
A N S D G A S N G L S A P N G P S  
CCAGGAACCGCTACCCACCGCCCTCGCAACCGCAAACGGAAACTCACCCCG 1350  
Q E R V I H Q A L A N A K L T P  
45 CCGATGTCGACCGCGTCGAGGGCGACGGCACCGGACCCGCCCTCGCG 1400  
A D V D A V E A H G T G T R L G D  
CCCATCGAGGCAGGGCGTCTCGCGACGTACGGACAGGACCGGGCGAC 1450  
P I E A Q A L L A T Y G Q D R A T  
GCCCTGCTGCTCGCTCGCTGAAGTCGAACATCGGGCACGCCAGGCC 1500  
50 P L L L G S L K S N I G H A Q A  
CGTCAGGGGTCGCCGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550  
A S G V A G I I K M V Q A I R H G  
GAAC TGCGCCGACACTGCACCGGGACGAGCCGTGCGCGACGTGACTG 1600  
E L P P T L H A D E P S P H V D W

- 107 -

GACGGCCGGTGCCTGAGCTCCTGACGTGGCCCCGGCGTGGCGGGGA 1650  
 T A G A V E L L T S A R P W P G  
 CCGGTCGCCCGCGCCGCTGCCGTCTCGTCGGCGTGAGCGGCACG 1700  
 T G R P R R A A V S S F G V S G T  
 5 AACGCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCA 1750  
 N A H I I I L E A G P V K T G P V E  
 GGCAGGAGCGATCGAGGCAGGACCGGTCAAGTAGGACCGGTGAGGCTG 1800  
 A G A I E A G P V E V G P V E A  
 GACCGCTCCCCGGCGCCGCCGTAGCACCGGGCGAAGACCTTCCGCTG 1850  
 10 G P L P A A P P S A P G E D L P L  
 CTCGTGCGCGCGTCCCCGGAGGCACTCGACGAGCAGATGGCGCCT 1900  
 L V S A R S P E A L D E Q I G R L  
 GCGCGCCTATCTGACACC GGCCGGCGTCAACCAGGCGACGAACTCGTCTG 1950  
 R A Y L D T G P G V D R A A V A  
 15 AGACACTGGCCC GGCGTACGCACTTCACCCACCGGGCGTACTGCTCGGG 2000  
 Q T L A R R T H F T H R A V L L G  
 GACACCGTCATCGGCGCTCCCCCGCGAACCGAGGCCACGAACTCGTCTT 2050  
 D T V I G A P P A D Q A D E L V F  
 CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGCGAGCAACTCG 2100  
 20 V Y S G Q G T Q H P A M G E Q L  
 CGGCCGCGTTCCCGTGTTCGCCGATGCCGACGACGCGCTCCGACGG 2150  
 A A A F P V F A D A W H D A L R R  
 CTCGACGACCCCGACCCGACGACCCACACGGAGGCCAGCACACGCTCTT 2200  
 L D D P D P H D P T R S Q H T L F  
 25 CGCCCACCAAGCGGGCGTTCACGCCCTCCTGAGGTCTGGGACATCACGC 2250  
 A H Q A A F T A L L R S W D I T  
 CGCACGCCGTATGCCACTCGCTCGCGAGATCACCGCCGCGTACGCC 2300  
 P H A V I G H S L G E I T A A Y A  
 GCCGGGATCCTGTCGCTCGACGACGCCACTCGCTGACCGACCGCGTGC 2350  
 30 A G I L S L D D A C T L I T T R A  
 CCGCCTCATGCACACGCTCCGCCGCCGCGCATGGTACCGTGCTGA 2400  
 R L M H T L P P P G A M V T V L  
 CCAGCGAGGAGGAGGCCCGTCAGGCCTGCCGGCGGTGGAGATCGCC 2450  
 35 T S E E E A R Q A L R P G V E I A  
 GCGGTCTCGGCCCGACTCCGTGCTCTCGGGCGACGAGGACGCCGT 2500  
 A V F G P H S V V L S G D E D A V  
 GCTCGACGTCGCACAGCGGCTCGGCATCCACCAACCGCTGCCCCCGCC 2550  
 L D V A Q R L G I H H R L P A P  
 ACGCGGGCCACTCCGCGCACATGGAACCCGTGGCCGCCGAGCTGCTCGCC 2600  
 40 H A G H S A H M E P V A A E L L A  
 ACCACTCGCGAGCTCCGTTACGACCGGCCCCACACCGCCATCCGAACGA 2650  
 T T R E L R Y D R P H T A I P N D  
 CCCCACCAACGCCGAGTACTGGCCGAGCAGGTCCGCAACCCCGTGT 2700  
 P T T A E Y W A E Q V R N P V L  
 45 TCCACGCCACACCCAGCGGTACCCCGACGCCGTGTCGAGATCGGC 2750  
 F H A H T Q R Y P D A V F V E I G  
 CCCGGCCAGGACCTCTCACCGCTGGTCGACGGCATGCCCTGAGAACGG 2800  
 P G Q D L S P L V D G I A L Q N G  
 CACGGCGGACGAGGTGCACCGCGTGCACACCGCGCTGCCCGCCTCTCA 2850  
 50 T A D E V H A L H T A L A R L F  
 CACGCGGGGCCACGCTCGACTGGTCCCGCATCCTCGCGGTGCTCGGG 2900  
 T R G A T L D W S R I L G G A S R  
 CACGACCCCTGACGTCCCTCGTACCGTCCAGCGGGCGTCCCTACTGGAT 2950  
 H D P D V P S Y A F Q R R P Y W I

- 108 -

CGAGTCGGCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCTCGGCA 3000  
E S A P P A T A D S G H P V L G  
CCGGAGTCGCCGTGCCGGTGCACGGGGTGTTCACGGTCCCGTG 3050  
T G V A V A G S P G R V F T G P V  
5 CCCGCCGGTGCACGGGGTGTTCATCGCCGAACGGCTCGACGTACCTCCG 3100  
P A G A D R A V F I A E L A L A A  
CGCCGACGCCACCGACTCGGCCACGGTCGAACAGCTCGACGTACCTCCG 3150  
A D A T D C A T V E Q L D V T S  
TGCCCAGGGATCCGCCGCGCAGGGCCACCGCGCAGACCTGGTGTGAT 3200  
10 V P G G S A R G R A T A Q T W V D  
GAACCCGCCGCCGACGGGCGGGCGCTCACCGTCCACACCCCGCGTCGG 3250  
E P A A D G R R R F T V H T R V G  
CGACGCCCGTGGACGCTGCACGCCGAGGGGTTCTCCGCCCGGCCGCG 3300  
D A P W T L H A E G V L R P G R  
15 TGCCCCAGCCGAAGCCGTGACACCGCCTGGCCCCCGCGCGCGTG 3350  
V P Q P E A V D T A W P P P G A V  
CCCGCGGACGGGCTGCCCGGGCGTGGCGACGCCGAGGTCTCGT 3400  
P A D G L P G A W R R A D Q V F V  
CGAACGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCGACCTGC 3450  
20 E A E V D S P D G F V A H P D L  
TCGACCGCGTCTCTCCCGCGTCGGCGACGGGAGGCCAGCCGACCGGA 3500  
L D A V F S A V G D G S R Q P T G  
TGGCGCGACCTCGCGGTGCACCGCTGGACGCCACCCTGCTGCCGCGCTG 3550  
W R D L A V H A S D A T V L R A C  
25 CCTCACCCGCCGCGACAGTGGTGTGCTGGAGCTGCCGCCTCGACGGTG 3600  
L T R R D S G V V E L A A F D G  
CCGGAATGCCGGTGTCAACCGCGGAGTCGGTGACGCTGGCGAGGTGCG 3650  
A G M P V L T A E S V T L G E V A  
TCGGCAGGGGGATCCGACGAGTCGGACGGTCTGCTCGGCTTGAGTGGTT 3700  
30 S A G G S D E S D G L L R L E W L  
GCCGGTGGCGGAGGGCCACTACGACGGTGCGACGAGCTGCCGAGGGCT 3750  
P V A E A H Y D G A D E L P E G  
ACACCCCTCATCACCGCCACACACCCCGACGACCCGACGACCCACCAAC 3800  
Y T L I T A T H P D D P D D P T N  
35 CCCCCACAACACACCCACACGACCCACACACAAACACACGCGTCCCTCAC 3850  
P H N T P T R T H T Q T T R V L T  
CGCCCTCCAACACCCACCTCATCACCAACCACACCCCTCATCGTCCACA 3900  
A L Q H H L I T T N H T L I V H  
CCACCACCGACCCCCCAGGCGCCGCGTCAACGGCCTCACCGCACCGCA 3950  
40 T T T D P P G A A V T G L T R T A  
CAAAACGAACACCCCGCCGATCCACCTCATCGAAACCCACCCACCCCA 4000  
Q N E H P G R I H L I E T H H P H  
CACCCCACTCCCCCTCACCAACTCACCAACCCCTCCACCAACCCACCTAC 4050  
T P L P L T Q L T T L H Q P H L  
45 GCCTCACCAACACACCCCTCCACACCCCCCACCTCACCCCATCACCAAC 4100  
R L T N N T L H T P H L T P I T T  
CACCAACACACCACCAACCACCCCCAACACCCACCCCTCAACCCCAA 4150  
H H N T T T P N T P P L N P N  
50 CCACGCCATCCTCATCACGGCGGCTCCGGCACCCCTCGCCGGCATCCTCG 4200  
H A I L I T G G S G T L A G I L  
CCCGCCACCTCAACCAACCCCCCACACCTACCTCCTCTCCCGCACACCA 4250  
A R H L N H P H T Y L L S R T P P  
CCCCCCCACACACCCGGCACCCACATCCCCCTGCGACCTCACCGACCCAC 4300  
P P T T P G T H I P C D L T D P T

- 109 -

CCAAATCACCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCT 4350  
 Q I T Q A L T H I P Q P L T G I  
 TCCACACCGCCGCCACCCCTCGACGACGCCACCCCTCACCAACCTCACCCCC 4400  
 F H T A A T L D D A T L T N L T P  
 5 CAACACCTCACCACCACCCCTCCAACCCAAAGCCGACGCCGCTGGCACCT 4450  
 Q H L T T T L Q P K A D A A W H L  
 CCACCACCAACCCAAAACCAACCCCTCACCCACTTCGTCCCTACTCCA 4500  
 H H H T Q N Q P L T H F V L Y S  
 GCGCCGCCGCCACCCCTCGGCAGCCCCGGCCAAGCCA ACTACGCCGCCGCC 4550  
 10 S A A A T L G S P G Q A N Y A A A  
 AACGCCTTCCCTCGACGCCCTGCCACCCACCGCCACACCCAAGGACAACC 4600  
 N A F L D A L A T H R H T Q G Q P  
 CGCCACCAACCATCGCCTGGGCATGTGGCACACCACACCACACTCACCA 4650  
 A T T I A W G M W H T T T T L T  
 15 GCCAACTCACCGACAGCGACCGCAGCGCATCCGCCGGCGCTTCCTG 4700  
 S Q L T D S D R D R I R R G G F L  
 CCGATCTCGGACGACGAGGGCATGC  
 P I S D D E G M

20 The *AvrII-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of  
 module 12 of rapamycin is shown below.

GCATGCGGCTGTACGAGGC GG CACGGCGCACCGGAAGTCCGTGGTGGTG 50  
 M R L Y E A A R R T G S P V V V  
 GCGGCCGCGCTCGACGACGCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100  
 25 A A A L D D A P D V P L L R G L R  
 GCGTACGACCGTCCGGCGTGC CGCCGTCGGGAACGCTCTCGCCGACC 150  
 R T T V R R A A V R E R S L A D  
 GCTCGCCGTGCTGCCGACGACGAGCGCGCCACGCGCTCCCTCGCGTTG 200  
 R S P C C P T T S A P T P P S R S  
 30 TCC TGGAACAGCACCGCCACCGTGC TCGGCCACCTGGCGCCGAAGACAT 250  
 S W N S T A T V L G H L G A E D I  
 CCCGGC GACGACGACGTTCAAGGA ACTCGGCATCGACTCGCTCACCGCGG 300  
 P A T T F K E L G I D S L T A  
 TCCAGCTGCCAACGCCGTGACCACGGCGACCGCGTACGCCCTAACGCC 350  
 35 V Q L R N A L T T A T G V R L N A  
 ACAGCGGTCTCGACTTCCGACGCCGCGCGCTCGCCCGAGACTCGG 400  
 T A V F D F P T P R A L A A R L G  
 CGACGAGCTGGCGGTACCCCGCGCCCGTGC CGGCGCCCGACCGCGGCCA 450  
 D E L A G T R A P V A A R T A A  
 40 CCGCGGCCGCGCACGACGAAACCGCTGGCGATCGTGGCATGGCTGCCGT 500  
 T A A A H D E P L A I V G M A C R  
 CTGCCGGCGGGGTGCGCTCGCCACAGGAGCTGTGGCGTCTCGTCCGTC 550  
 L P G G V A S P Q E L W R L V A S  
 CGGCACCGACGCCATCACGGAGTTCCCCCGCGACCGCGCTGGACGTGG 600  
 45 G T D A I T E F P A D R G W D V  
 ACGCGCTCTACGACCCGGACCCCGACCGATCGCAAGACCTTCGTCCGG 650  
 D A L Y D P D P D A I G K T F V R  
 CACGGCGGCTTCCTCGACGGTGC GACCGGCTTCGACGCCGGCTTCTCGG 700  
 H G G F L D G A T G F D A A F F G  
 50 GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750  
 I S P R E A L A M D P Q Q R V L  
 TGGAGACGTCCTGGGAGGC GTTGAAAGCGCGGGCATCACCCGGACGCG 800

- 110 -

L E T S W E A F E S A G I T P D A  
 GCGCGGGGACCGACACCGCGTGTTCATCGCGCGTTCTCCTACGGGTA 850  
 A R G S D T G V F I G A F S Y G Y  
 CGGCACGGGTGCGGATACCAACGGCTTCGGCGACAGGGTCGCAGACCA 900  
 5 G T G A D T N G F G A T G S Q T  
 GCGTGTCTCCGGCCGCTCTCGTACTTCTACGGTCTGGAGGGCCCTCG 950  
 S V L S G R L S Y F Y G L E G P S  
 GTCACGGTCGACACCGCCTGCTCGTCGACTGGTCGCCCTGCACCAGGC 1000  
 V T V D T A C S S S L V A L H Q A  
 10 AGGGCAGTCCCTCGCTCGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050  
 G Q S L R S G E C S L A L V G G  
 TCACGGTGATGGCGTCGCCCGGCGATTGCGAGTTCTCCCAGCGC 1100  
 V T V M A S P G G F V E F S R Q R  
 GGGCTCGCGCCGGACGGCGGGCGAAGGCCTCGGCGCGGGCGACGG 1150  
 15 G L A P D G R A K A F G A G A D G  
 TACGAGCTCGCCGAGGGCGCCGGTGCCTGGTGGTCGAGCGGCTCTCG 1200  
 T S F A E G A G A L V V E R L S  
 ACGCGGAGCGCCACGGCACACCGTCCTCGCCCTCGTACCGGGCTCG 1250  
 D A E R H G H T V L A L V R G S A  
 20 GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCAACGGCCCCTC 1300  
 A N S D G A S N G L S A P N G P S  
 CCAGGAACGCGTCATCCACCAAGGCCCTCGCGAACCGCAAACCCCCCG 1350  
 Q E R V I H Q A L A N A K L T P  
 CCGATGTCGACCGCGGTGAGGCGCACGGCACCCGCTCGGCAC 1400  
 25 A D V D A V E A H G T G T R L G D  
 CCCATCGAGGCGCAGGCCGCTGCTCGCGACGTACGGACAGGACGGCGAC 1450  
 P I E A Q A L L A T Y G Q D R A T  
 GCCCTGCTCGCTCGCTGAAGTCGAACATCGGGCACGCCAGGCCG 1500  
 P L L L G S L K S N I G H A Q A  
 30 CGTCAGGGTGCCTGGGATCATCAAGATGGTGCAGGCCATCCGGCACGG 1550  
 A S G V A G I I K M V Q A I R H G  
 GAACTGCCGCCGACACTGCACGCCGACGAGCCGTCGCCGACGTCGACTG 1600  
 E L P P T L H A D E P S P H V D W  
 GACGGCCGGTGCCTGAGCTGACGTCGCCCGGCGTGGCCGGGA 1650  
 35 T A G A V E L L T S A R P W P G  
 CCGTGCCTCTAGGCAGGCGTGTGTCCTCGGGATCAGTGGCACC 1700  
 T G R P R R A G V S S F G I S G T  
 AACGCCACGTCATCTGGAAAGCGCACCCCCCACTCAGCCTGCCGACAA 1750  
 N A H V I L E S A P P T Q P A D N  
 40 CGCGGTGATCGAGCGGGCACCGGAGTGGGTGCCGTTGGTGATTCGGCCA 1800  
 A V I E R A P E W V P L V I S A  
 GGACCCAGTCGGCTTGACTGAGCACGAGGCCGGTGCCTGCGTATCTG 1850  
 R T Q S A L T E H E G R L R A Y L  
 GCGCGTCGCCGGGGTGGATATGCCGGCTGTCGACGCTGCCGAT 1900  
 45 A A S P G V D M R A V A S T L A M  
 GACACGGTCGGTGTTCGAGCACCGTGCCGTGCTGGAGATGACACCG 1950  
 T R S V F E H R A V L L G D D T  
 TCACCGGCACCGCTGTGTCGACCTCGGGCGGTGTTCGTCTTCCCGGGA 2000  
 V T G T A V S D P R A V F V F P G  
 50 CAGGGGTGCGAGCGTGTGGCATGGGTGAGGAACGGCCGCCGCTCCC 2050  
 Q G S Q R A G M G E E L A A A F P  
 CGTCTTCGCGCGGATCCATCAGCAGGTGTGGGACCTGCTCGATGTGCCCG 2100  
 V F A R I H Q Q V W D L L D V P  
 ATCTGGAGGTGAACGAGACCGGTTACGCCAGCCGCCCTGTTCGCAATG 2150

- 111 -

D L E V N E T G Y A Q P A L F A M  
 CAGGTGGCTCTGTTGGGCTGCTGGAATCGTGGGGTGTACGACCGGACGC 2200  
 Q V A L F G L L E S W G V R P D A  
 GGTGATCGGCCATTGGTGGGTGAGCTTGCCTGCGTATGTGTCCGGG 2250  
 5 V I G H S V G E L A A A A Y V S G  
 TGTGGTCGGTGGAGGATGCCCTGCACCTTGGTGTCCGGCCTCGTCTG 2300  
 V W S L E D A C T L V S A R A R L  
 ATGCAGGCTCTGCCCGCGGGTGGGTGATGGTCGCTGTCCCCTCGGA 2350  
 M Q A L P A G G V M V A V P V S E  
 10 GGATGAGGCCCGGGCGTGTGGGTGAGGGTGTGGAGATGCCCGGTCA 2400  
 D E A R A V L G E G V E I A A V  
 ACGGCCCGTCGTCGGTGGTTCTCTCCGGTGATGAGGCCCGTGCTGCAG 2450  
 N G P S S V V L S G D E A A V L Q  
 GCCCGGAGGGCTGGGAAGTGGACGCCGCTGGCACCAGCCACCGCTT 2500  
 15 A A E G L G K W T R L A T S H A F  
 CCATCCGCCGTATGGAACCCATGCTGGAGGAGTTCCGGCGGTGCGCCG 2550  
 H S A R M E P M L E E F R A V A  
 AAGGCCTGACCTACCGGACGCCGCAAGTCTCCATGGCCGGTGGTGATCAG 2600  
 E G L T Y R T P Q V S M A V G D Q  
 20 GTGACCACCGCTGAGTACTGGTGCGGCAGGTCCGGACACGGTCCGGTT 2650  
 V T T A E Y W V R Q V R D T V R F  
 CGGCGAGCAGGTGGCCTCGTACGAGGACGCCGTGTCGAGCTGGTG 2700  
 G E Q V A S Y E D A V F V E L G  
 CCGACCGGTCACTGGCCCCGCTGGTCGACGGTGTGCGATGCTGCACGGC 2750  
 25 A D R S L A R L V D G V A M L H G  
 GACCACGAAATCCAGGCCCGATCGGCCCTGGCCCACCTGTATGTCAA 2800  
 D H E I Q A A I G A L A H L Y V N  
 CGCGTCACGGTCGACTGGCCCCGCTCCTGGCGATGCTCCGGAACAC 2850  
 G V T V D W P A L L G D A P A T  
 30 GGGTGCTGGACCTTCCGACATACGCCCTCCAGCACCGCCTACTGGCTC 2900  
 R V L D L P T Y A F Q H Q R Y W L  
 GAGTCGGCTCCCCGGCACGGCCACTCGGCCACCCGTCTGGCAC 2950  
 E S A P P A T A D S G H P V L G T  
 CGGAGTCGCCGTGCGGGTGCACGGGGCGGGTGTACGGGTCCCGTGC 3000  
 35 G V A V A G S P G R V F T G P V  
 CCGCCGGTGCAGGCCGCGCGGTGTTCATGCCGAACTGGCCTCGCCGCC 3050  
 P A G A D R A V F I A E L A L A A  
 GCCGACGCCACCGACTGCCACGGTCGAAACAGCTCGACGTACCTCCGT 3100  
 A D A T D C A T V E Q L D V T S V  
 40 GCCCGCGGATCCGCCCGGGCAGGGCACCGCGCAGACCTGGTGTGATG 3150  
 P G G S A R G R A T A Q T W V D  
 AACCCGCCGCGACGGGGCGCCGCTTCACCGTCCACACCCGCGTCGGC 3200  
 E P A A D G R R R F T V H T R V G  
 GACGCCCCGTGGACGCTGCACGCCAGGGTTCTCCGCCCGCGCGT 3250  
 45 D A P W T L H A E G V L R P G R V  
 GCCCCAGCCCCAAGCCGTGACACCCCTGGCCCCCGCCGGCGCGGTGC 3300  
 P Q P E A V D T A W P P P G A V  
 CGCGGGACGGGCTGCCGGCGTGGCGACGCCGGACAGGTCTCGTC 3350  
 P A D G L P G A W R R A D Q V F V  
 50 GAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCGACCTGCT 3400  
 E A E V D S P D G F V A H P D L L  
 CGACGCCGGTCTCTCCGCCGTGGCACGGAGGCCAGCCGACCGGAT 3450  
 D A V F S A V G D G S R Q P T G  
 GGCGCGACCTCGCGGTGACCGCGTGGCACGCCACCGTGTGCGCGCCTGC 3500

- 112 -

W R D L A V H A S D A T V L R A C  
 CTCACCCGCCGCGACAGTGGTGTCTGGAGCTGCCGCCCTCGACGGTG 3550  
 L T R R D S G V V E L A A F D G A  
 CGGAATGCCGGTGTCTACCGCGGAGTCGGTGACGCTGGCGAGGTGCGT 3600  
 5 G M P V L T A E S V T L G E V A  
 CGGCAGGCGGATCCGACCGAGTCGGACGGTCTGCTCGGCTTGAGTGGTTG 3650  
 S A G G S D E S D G L L R L E W L  
 CCGGTGGCGGAGGCCACTACGACGGTGCGACGAGCTGCCGAGGGCTA 3700  
 P V A E A H Y D G A D E L P E G Y  
 10 CACCCCATCACCGCCACACACCCCCGACGACCCCCGACGACCCCCACCAACC 3750  
 T L I T A T H P D D P D D P T N  
 CCCACAACACACCCACACGCACCCACACACAAACCACACGCGTCCTCACC 3800  
 P H N T P T R T H T Q T T R V L T  
 GCCCTCCAACACCACCTCATCACCACCAACCACCCCTCATCGTCCACAC 3850  
 15 A L Q H H L I T T N H T L I V H T  
 CACCAACCGACCCCCCAGGGCGCGCCGTACCGGCCTCACCCGCACCGCAC 3900  
 T T D P P G A A V T G L T R T A  
 AAAACGAACACCCCGGCCATCCACCTCATCGAAACCCACCCACCCCCAC 3950  
 Q N E H P G R I H L I E T H H P H  
 20 ACCCCCACCTCCCCCTCACCAACTCACCAACCCCTCCACCAACCCCCACCTACG 4000  
 T P L P L T Q L T T L H Q P H L R  
 CCTCACCAACAAACACCCCTCCACACCCCCCACCTCACCCCCATCACCAACCC 4050  
 L T N N T L H T P H L T P I T T  
 ACCACAAACACCAACCAACCCACACCCCCAACACCCCCACCCCTCAACCCAAAC 4100  
 25 H H N T T T T P N T P P L N P N  
 CACGCCATCCTCATCACGGGGCTCCGGCACCCCTGCCGGCATCCTCGC 4150  
 H A I L I T G G S G T L A G I L A  
 CGGCCACCTCAACCACCCCCCACACCTACCTCTCTCCCGCACACCACAC 4200  
 R H L N H P H T Y L L S R T P P  
 30 CCCCCACACACCCGGCACCCACATCCCCCTGCGACCTCACCGACCCCCACC 4250  
 P P T T P G T H I P C D L T D P T  
 CAAATCACCAAGCCCTCACCCACATAACCACAACCCCTCACGGCATCTT 4300  
 Q I T Q A L T H I P Q P L T G I F  
 CCACACCGCCGCCACCCCTGACGACGCCACCCCTACCAACCTCACCCCCC 4350  
 35 H T A A T L D D A T L T N L T P  
 AACACCTCACCAACCAACCCCTCAACCAAAGCCGACGCCCTGGCACCTC 4400  
 Q H L T T T L Q P K A D A A A W H L  
 CACCACCAACCCAAAACCAACCCCTACCCACTTCGTCTACTCCAG 4450  
 H H H T Q N Q P L T H F V L Y S S  
 40 CGCCGCCGCCACCCCTGGCAGCCCCGGCCAAGCCAACCTACGCCGCC 4500  
 A A A T L G S P G Q A N Y A A A  
 ACGCTTCCCTCGACGCCCTGCCACCCACCGCCACACCCAAAGGACAACCC 4550  
 N A F L D A L A T H R H T Q G Q P  
 GCCACCAACCATCGCCTGGGCATGTGGCACACCACCAACTCACCAAG 4600  
 45 A T T I A W G M W H T T T L T S  
 CCAACTCACCGACAGCGACCGCACCGCATCCGCCGCCGGCTTCCCTGC 4650  
 Q L T D S D R D R I R R G G F L  
 CGATCTGGACGACGAGGGCATGC  
 P I S D D E G M

50

The *AvrII-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

GCATGCGGCTGTACGAGGC GG CACGGCGCACCGGAAGTCCCGTGGTGGTG 50  
 M R L Y E A A R R T G S P V V V  
 GCGGCCGCGCTCGACGACGCGCCGACGTGCCGCTGCTGCGCGGGCTGCG 100  
 A A A L D D A P D V P L L R G L R  
 5 GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150  
 R T T V R R A A V R E R S L A D  
 GCTCGCCGTGCTGCCGACGACGAGCGCCGACGCCCTCCCTCGCGTTCG 200  
 R S P C C P T T S A P T P P S R S  
 TCCCTGGAACAGCACCGCCACCGTGTCTCGGCCACCTGGGCGCCGAAGACAT 250  
 10 S W N S T A T V L G H L G A E D I  
 CCCGGCGACGACGACGTTCAAGGAACCTCGGCATCGACTCGCTCACCGCGG 300  
 P A T T T F K E L G I D S L T A  
 TCCAGCTGCGCAACGCGCTGACCACGGCGACCGCGTACGCCCTAACGCC 350  
 V Q L R N A L T T A T G V R L N A  
 15 ACAGCGGTCTCGACTTCCGACGCCGCGCGCTCGCCGCGAGACTCGG 400  
 T A V F D F P T P R A L A A R L G  
 CGACGAGCTGGCCGGTACCCGCGCCCGTCCGGCCCCGACCGCGGCCA 450  
 D E L A G T R A P V A A R T A A  
 CCGCGGCCGCGCACGACAACCGCTGGCGATCGTGGCATGCCCTGCCGT 500  
 20 T A A A H D E P L A I V G M A C R  
 CTGCCGGCGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCCGTC 550  
 L P G G V A S P Q E L W R L V A S  
 CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600  
 G T D A I T E F P A D R G W D V  
 25 ACGCGCTCTACGACCCGGACCCCGACCGATCGCAAGACCTTCGTCCGG 650  
 D A L Y D P D P D A I G K T F V R  
 CACGGCGGCTCCTCGACGGTGCACCGGCTTCGACGCCGCGTTCTCGG 700  
 H G G F L D G A T G F D A A F F G  
 GATCAGCCC CGCGAGGGCCCTGGCATGGACCGCAGCAACGGGTGCTCC 750  
 30 I S P R E A L A M D P Q Q R V L  
 TGGAGACGTCTGGAGGGCGTTCGAAAGCGCGGGCATACCCCGACCG 800  
 L E T S W E A F E S A G I T P D A  
 GCGCGGGCGACACCGCGTGTTCATCGCGCGTCTCCTACGGGTA 850  
 A R G S D T G V F I G A F S Y G Y  
 35 CGGCACGGGTGCGGATACCAACGGCTCGGCGACAGGGTCGCAGACCA 900  
 G T G A D T N G F G A T G S Q T  
 GCGTGCCTCCGGCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTCG 950  
 S V L S G R L S Y F Y G L E G P S  
 GTCACGGTCGACACCGCCTGCTCGTCACTGGTCGCCCTGCACCCAGGC 1000  
 40 V T V D T A C S S S L V A L H Q A  
 AGGGCAGTCCCTCGCCTGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050  
 G Q S L R S G E C S L A L V G G  
 TCACGGTGATGGCGTCCGGCGGATTCGTCGAGTTCTCCCGAGCGC 1100  
 V T V M A S P G G F V E F S R Q R  
 45 GGGCTCGCGCCGGACGGCGGGCGAAGGGCGTCCGGCGGGCGCGACGG 1150  
 G L A P D G R A K A F G A G A D G  
 TAGGAGCTTCCCGAGGGCGCCGGTCCCTGGTCGAGCGGCTCTCCG 1200  
 T S F A E G A G A L V V E R L S  
 ACGCGGAGCGCCACGGCCACACCGCTCTCGCCCTCGTACCGCGCTCCG 1250  
 50 D A E R H G H T V L A L V R G S A  
 GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300  
 A N S D G A S N G L S A P N G P S  
 CCAGGAACGCGTCATCCACCGAGGCCCTCGCGAACCGCAGACACTACCCCG 1350  
 Q E R V I H Q A L A N A K L T P

- 114 -

CCGATGTCGACGCCGTGAGGCGCACGGCACCGCACCCGCTCGCGAC 1400  
 A D V D A V E A H G T G T R L G D  
 CCCATCGAGGCCAGGCCCTGCTCGCACGTACGGACAGGACCGGGCGAC 1450  
 P I E A Q A L L A T Y G Q D R A T  
 5 GCCCCCTGCTCGCTCGCTGAAGTCGAACATCGGGCACGCCAGGCCG 1500  
 P L L L G S L K S N I G H A Q A  
 CGTCAGGGGTCGCCGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550  
 A S G V A G I I K M V Q A I R H G  
 10 GAACTGCCGCCGACACTGCACGCCGAGCGCTGCCGACGTGACTG 1600  
 E L P P T L H A D E P S P H V D W  
 GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCGGCCGTGGCCGGGA 1650  
 T A G A V E L L T S A R P W P G  
 CCGGTCGCCCTAGGCGGGCGGCGTGTGTCCTCGGAGTCAGCGGCACC 1700  
 T G R P R R A G V S S F G V S G T  
 15 AACGCCACGTCATCCTGGAGAGCGCACCCCCCGCTCAGCCCGGGAGGA 1750  
 N A H V I L E S A P P A Q P A E E  
 GGCAGCAGCCTGTTGAGACGCCGGTGGTGGCCTCGGATGTGCTGCCGCTGG 1800  
 A Q P V E T P V V A S D V L P L  
 20 TGATATCGGCCAAGACCCAGCCGCCCTGACCGAACACGAAGACCGGCTG 1850  
 V I S A K T Q P A L T E H E D R L  
 CGCGCCTACCTGGCGCGTCGCCCGGGCGGATATACGGGCTGTGGCATC 1900  
 R A Y L A A S P G A D I R A V A S  
 GACGCTGGCGGTGACACGGTCGGTGTGAGCACCGCCGCGTACTCCTG 1950  
 T L A V T R S V F E H R A V L L  
 25 GAGATGACACCGTCACCGCACCGCGGTGACCGACCCCAGGATCGTGT 2000  
 G D D T V T G T A V T D P R I V F  
 GTCTTCCCGGGCAGGGGTGGCAGTGGCTGGGATGGGCAGTGCAGTGC 2050  
 V F P G Q G W Q W L G M G S A L R  
 CGATTCTCGTGGTGGTGTGCGCGAGCGGATGGCGAGTGTGCGGGCGT 2100  
 30 D S S V V F A E R M A E C A A A  
 TCGCGAGTCGTGGACTGGATCTGTTACGGTCTGGATGATCCGGCG 2150  
 L R E F V D W D L F T V L D D P A  
 GTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTCCTGGCGATGATGGT 2200  
 V V D R V D V V Q P A S W A M M V  
 35 TTCCCTGGCCCGGGTGTGGCAGCGGCCGGTGTGCGGGCGATGCGGTGA 2250  
 S L A A V W Q A A G V R P D A V  
 TCGGCCATTGCGAGGGTGAGATGCCGCAGCTGTGTGGCGGGTGCCTG 2300  
 I G H S Q G E I A A A A C V A G A V  
 TCACTACGCCATGCCGCCGGATCGTGACCTTGCAGCCAGGCCGATCGC 2350  
 40 S L R D A A R I V T L R S Q A I A  
 CCGGGGCTGGCGGGCGCGATGGCATCCGTGCCCTGCCCGCGC 2400  
 R G L A G R G A M A S V A L P A  
 AGGATGTCGAGCTGGTCGACGGGGCTGGATCGCCGCCACAACGGGCC 2450  
 Q D V E L V D G A W I A A H N G P  
 45 GCCTCCACCGTATCGCGGGCACCCCGGAAGCGGTGACCATGTCCTCAC 2500  
 A S T V I A G T P E A V D H V L T  
 CGCTCATGAGGCACAAGGGGTGCGGGTGCAGCGGATCACCGTCGACTATG 2550  
 A H E A Q G V R V R R I T V D Y  
 CCTCGCACACCCCGCACGTCGAGCTGATCCGCAGCAACTACTGACATC 2600  
 50 A S H T P H V E L I R D E L L D I  
 ACTAGCGACAGCAGCTCGCAGACCCCGCTCGTGGCTGTGACCGT 2650  
 T S D S S S Q T P L V P W L S T V  
 GGACGGCACCTGGGTGACAGCCGCTGGACGGGGAGTACTGGTACCGGA 2700  
 D G T W V D S P L D G E Y W Y R

- 115 -

ACCTGCGTGAACCGGTCGGTTCCACCCCGCCGTCAAGCCAGTTGCAGGCC 2750  
 N L R E P V G F H P A V S Q L Q A  
 CAGGGCGACACCGTGTCGTGAGGTCAAGGCCAGCCGGTGTGCA 2800  
 5 Q G D T V F V E V S A S P V L L Q  
 GGCATGGACGACGATGTCGTACGGTTGCCACGCTGCGTCGTGACGACG 2850  
 A M D D D V V T V A T L R R D D  
 GCGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCATGTCCACGGC 2900  
 G D A T R M L T A L A Q A Y V H G  
 GTCACC GT CG ACT GG CCC GCC AT CCT CGG C ACC ACCA ACC C GGG T ACT 2950  
 10 V T V D W P A I L G T T T T R V L  
 GGACCTCCGACCTACGCCCTCCAACACCAGCGTACTGGCTCGAGTCGG 3000  
 D L P T Y A F Q H Q R Y W L E S  
 CTCCCCCGGCCACGGCCACTCGGGCCACCCCGTCTCGGCACCGGAGTC 3050  
 15 A P P A T A D S G H P V L G T G V  
 GCCGTGCCCCGGT CGCCGGCCGGGTGTTCACGGGTCCTCGGCACCGG 3100  
 A V A G S P G R V F T G P V P A G  
 TGCGGACCGCGCGGTGTTCATCGCCGA ACTGGCGCTGCCGCCGCGACG 3150  
 A D R A V F I A E L A L A A A D  
 CCACCGACTGCGCCACGGTCGAACAGCTCGACGTACCTCCGTGCCGGC 3200  
 20 A T D C A T V E Q L D V T S V P G  
 GGATCCGCCCGCGCAGGGCCACCGCGCAGACCTGGGTGATGAACCCGC 3250  
 G S A R G R A T A Q T W V D E P A  
 CGCGACGGCGGCCCTCACCGTCCACACCCCGCTCGGCACGCC 3300  
 A D G R R R F T V H T R V G D A  
 25 CGTGGACGCTGCACGCCAGGGGTTCTCCGCCCGGCCGCGTGCAGCAG 3350  
 P W T L H A E G V L R P G R V P Q  
 CCCGAAGCCGTCGACACCGCCTGGCCCCCGCCGGCGCGGTGCCCCCGGA 3400  
 P E A V D T A W P P P G A V P A D  
 CGGGCTGCCGGGGCGTGGCGACCGCGGACAGGTCTCGTCGAAGCCG 3450  
 30 G L P G A W R R A D Q V F V E A  
 AAGTCGACAGCCCTGACGGCTTCTGGCACACCCGACCTGCTCGACGCG 3500  
 E V D S P D G F V A H P D L L D A  
 GTCTTCTCCCGGGT CGGCACGGGAGCCGACCCGAGGTGCGCGCGA 3550  
 V F S A V G D G S R Q P T G W R D  
 35 CCTCGCGGTGCACCGTGGACGCCACCGTGCCTGCCCTGCCCTACCC 3600  
 L A V H A S D A T V L R A C L T  
 GCCCGACAGTGGTGTCTGGAGCTCGCCGCCCTCGACGGTGCCCGAATG 3650  
 R R D S G V V E L A A F D G A G M  
 CCGGTGCTCACCGCGGAGTCGGTACGCTGGCGAGGTGCGCGCAGG 3700  
 40 P V L T A E S V T L G E V A S A G  
 CGGATCCGACGAGTCGGACGGTCTGCTCGGCTTGAGTGGTTGCCGGTGG 3750  
 G S D E S D G L L R L E W L P V  
 CGGAGGCCACTACGACGGTGGCGACGAGCTGCCGAGGGCTACACCCCTC 3800  
 A E A H Y D G A D E L P E G Y T L  
 45 ATCACCGCCACACACCCGACGACCCGACGACCCACAAACCCACAA 3850  
 I T A T H P D D P D D P T N P H N  
 CACACCCACACGCACCCACACACAAACACACCGTCCACCGCCCTCC 3900  
 T P T R T H T Q T T R V L T A L  
 AACACCACCTCATCACCAACCACACCCCTCATCGTCCACACCACCC 3950  
 50 Q H H L I T T N H T L I V H T T T  
 GACCCCCCAGGCGCCGCCGTACCCGGCTCACCCGCACCGCACAAAACGA 4000  
 D P P G A A V T G L T R T A Q N E  
 ACACCCCGGCCGCATCCACCTCATCGAAACCCACACCCCCACACCCCAC 4050  
 H P G R I H L I E T H H P H T P

- 116 -

TCCCCCTCACCCAACTCACCAACCCCTCCACCAACCCCACCTACGCCTCACC 4100  
 L P L T Q L T T L H Q P H L R L T  
 AACAAACACCCCTCCACACCCCCCACCTCACCCCCATCACCAACCCACCAA 4150  
 5 N N T L H T P H L T P I T T H H N  
 CACCACCACAAACCACCCCCAACACCCCACCCCTCAACCCCAACCACGCCA 4200  
 T T T T P N T P P L N P N H A  
 TCCTCATCACCGGGGGCTCCGGCACCCCTCGCCGGCATCTCGCCGCCAC 4250  
 I L I T G G S G T L A G I L A R H  
 CTCAACCACCCCCACACCTACCTCTCCGCACACCACCAACCCCCAC 4300  
 10 L N H P H T Y L L S R T P P P P T  
 CACACCCGGCACCCACATCCCTGGCACCTCACCGACCCCACCCAAATCA 4350  
 T P G T H I P C D L T D P T Q I  
 CCCAAGCCCTCACCCACATACCACAACCCCTCACCGGATCTTCCACACC 4400  
 T Q A L T H I P Q P L T G I F H T  
 15 GCCGCCACCCCTCGACGACGCCACCCCTCACCAACCTCACCCCCCAACACCT 4450  
 A A T L D D A T L T N L T P Q H L  
 CACCACCACCCCTCCAACCCAAAGCCGACGCCCTGGCACCTCCACCAACC 4500  
 T T T L Q P K A D A A W H L H H  
 ACACCCAAAACCAACCCCTCACCCACTTCGTCCCTACTCCAGCGCCGCC 4550  
 20 H T Q N Q P L T H F V L Y S S A A  
 GCCACCCCTCGGCAGCCCCGGCAAGCCAACACTACGCCGCCAACGCCCT 4600  
 A T L G S P G Q A N Y A A A N A F  
 CCTCGACGCCCTCGCCACCCACCACCAAGGACAACCCGCCACCA 4600  
 L D A L A T H R H T Q G Q P A T  
 25 CCATCGCCTGGGCATGTGGCACACCACCACTCACCAAGCCAACTC 4700  
 T I A W G M W H T T T L T S Q L  
 ACCGACAGCGACCGCGACCGCATCCGCCGCGGCTTCTGCCGATCTC 4750  
 T D S D R D R I R R G G F L P I S  
 GGACGACGAGGGCATGC  
 30 D D E G M

The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of  
module 12 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCCGACGGCCACCGGAAGTCCCGTGGTGGT 50  
 35 M R L Y E A A R R T G S P V V V  
 GCGGCCGCGCTCGACGACGCCGACGTGCCGCTGCGCGGGCTGCG 100  
 A A A L D D A P D V P L L R G L R  
 GCGTACGACCGTCCGGCGTCCGCCGTCGGGAACGCTCTCGCCGACC 150  
 R T T V R R A A V R E R S L A D  
 40 GCTCGCCGTGCTGCCGACGAGCGCCACGCCCTCCCTCGCGTTCG 200  
 R S P C C P T T S A P T P P S R S  
 TCCTGGAACAGCACCGCCACCGTGTCCGCCACCTGGCGCCGAAGACAT 250  
 S W N S T A T V L G H L G A E D I  
 CCCGGCGACGACGACGTCAAGGAACCTCGCATCGACTCGCTCACCGCGG 300  
 45 P A T T T F K E L G I D S L T A  
 TCCAGCTGCGCAACCGCGTGTACGACGCCGACCGCGTACGCCCTAACGCC 350  
 V Q L R N A L T T A T G V R L N A  
 ACAGCGGTCTCGACTTCCGACGCCGCGCGCTCGCCGAGACTCGG 400  
 T A V F D F P T P R A L A A R L G  
 50 CGACGAGCTGGCCGGTACCCGCGCGCCGTCGGGCCGGACCGCGGCCA 450  
 D E L A G T R A P V A A R T A A  
 CCGCGGCCGCGCACGACGAACCGCTGGCGATCGTGGCATGGCCTGCCGT 500

- 117 -

T A A A H D E P L A I V G M A C R  
 CTGCCGGGCGGGTCCGCTGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550  
 L P G G V A S P Q E L W R L V A S  
 CGGCACCGACGCCATCACGGAGTTCCCCCGCGACCGCGCTGGGACGTGG 600  
 5 G T D A I T E F P A D R G W D V  
 ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTCGTCCGG 650  
 D A L Y D P D P D A I G K T F V R  
 CACGGCGGCTTCCTCGACGGTGCACCGGCTTCGACGCGGCGTCTCGG 700  
 H G G F L D G A T G F D A A F F G  
 10 GATCAGCCCGCGCAGGGCCCTGGCCATGGACCGCAGCAACGGGTGCTCC 750  
 I S P R E A L A M D P Q Q R V L  
 TGGAGACGTCTGGGAGGGCGTTCGAAAGCGCGGGCATACCCCGACGCG 800  
 L E T S W E A F E S A G I T P D A  
 GCGCGGGGCAAGCACCCGGCGTTCATCGCGCGTCTCCTACGGGTA 850  
 15 A R G S D T G V F I G A F S Y G Y  
 CGGCACGGGTGCGGATAACCAACGGCTCGCGCGACAGGGTCGACAGCCA 900  
 G T G A D T N G F G A T G S Q T  
 GCGTGCTCTCCGGCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTCG 950  
 S V L S G R L S Y F Y G L E G P S  
 20 GTCACGGTCGACACCGCCTGCTCGTCACTGGTCGCCCTGCACCAGGC 1000  
 V T V D T A C S S S L V A L H Q A  
 AGGGCAGTCCTCGCGCTCGGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050  
 G Q S L R S G E C S L A L V G G  
 TCACGGTGATGGCGTCGCCCGGGATTCGTCGAGTTCTCCCGCAGCGC 1100  
 25 V T V M A S P G G F V E F S R Q R  
 GGGCTCGCGCCGGACGGCGGGCGAAGGCCTCGGCGCGGCGCGACGG 1150  
 G L A P D G R A K A F G A G A D G  
 TACGAGCTCGCCGAGGGCGCCGGTGCCTGGTCGAGCGGCTCTCCG 1200  
 T S F A E G A G A L V V E R L S  
 30 ACGCGGAGCGCCACGGCACACCGCCTCGCCCTCGTACCGCGCTCCGCG 1250  
 D A E R H G H T V L A L V R G S A  
 GCTAACTCCGACGGCGCGTGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300  
 A N S D G A S N G L S A P N G P S  
 CCAGGAACCGTCATCCACCAGGCCCTCGCAACCGCAAACCGCAAAC 1350  
 35 Q E R V I H Q A L A N A K L T P  
 CCGATGTCGACCGCGTCGAGGCACGGCACCGCACCCCGCTGGCGAC 1400  
 A D V D A V E A H G T G T R L G D  
 CCCATCGAGGCAGGGCGCTCGCGACGTACGGACAGGACCGGGCGAC 1450  
 P I E A Q A L L A T Y G Q D R A T  
 40 GCCCCTGCTCGCTCGCTGAAGTCGAACATCGGGCACGCCAGGCCG 1500  
 P L L L G S L K S N I G H A Q A  
 CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550  
 A S G V A G I I K M V Q A I R H G  
 GAACTGCCGCCGACACTGCACGGACGAGCCGTCGCCACGTGACTG 1600  
 45 E L P P T L H A D E P S P H V D W  
 GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCCCGGCGTGGCCGGGA 1650  
 T A G A V E L L T S A R P W P G  
 CCGGTCGCCCGCGCCGCTGCCGTCTCGTCGTTGGCGTGAGCGGCACG 1700  
 T G R P R R A A V S S F G V S G T  
 50 AACGCCACATCATCCTGAGGCAGGACCGGTCAAACGGGACCGGTGA 1750  
 N A H I I L E A G P V K T G P V E  
 GGCAGGAGCGATCGAGGCAGGACCGGTGAAGTAGGACCGGTGAGGCTG 1800  
 A G A I E A G P V E V G P V E A  
 GACCGCTCCCCCGCGCCGCCGTCAAGCACCGGGCGAAGACCTCCGCTG 1850

- 118 -

G P L P A A P P S A P G E D L P L  
 CTCGTGCGGCCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCCCT 1900  
 L V S A R S P E A L D E Q I G R L  
 GCGGCCCTATCTGACACCAGGCCGGCGTGCACCGGGCCGCGTGGCGC 1950  
 5 R A Y L D T G P G V D R A A V A  
 AGACACTGGCCCGCGTACGCACCTCACCCACCAGGGCGTACTGCTCGGG 2000  
 Q T L A R R T H F T H R A V L L G  
 GACACCGTCATCGCGCTCCCCCGCGAACCGAGCCGACGAACCGTCTT 2050  
 D T V I G A P P A D Q A D E L V F  
 10 CGTCTACTCCGGTCAGGGCACCCAGCATCCCCGATGGCGAGCAGCTAG 2100  
 V Y S G Q G T Q H P A M G E Q L  
 CCGCCGCGTCCCCGTCTCGCGCGATCCATCAGCAGGTGTGGGACCTG 2150  
 A A A F P V F A R I H Q Q V W D L  
 CTCGATGTGCCGATCTGGAGGTGAACGAGACCGGTTACGCCAGCCGGC 2200  
 15 L D V P D L E V N E T G Y A Q P A  
 CCTGTTCGCAATGCAGGTGGCTCTGGCTGGAAATCGTGGGTG 2250  
 L F A M Q V A L F G L L E S W G  
 TACGACCGGACGCGGTGATCGGCCATTGGTGGGTGAGCTGGCGCG 2300  
 V R P D A V I G H S V G E L A A A  
 20 TATGTGTCCGGGTGTGGTCGTTGGAGGATGCCCTGCACCTTGTTGTCGGC 2350  
 Y V S G V W S L E D A C T L V S A  
 GCGGGCTCGTCGATGCAGGCTCTGCCCGCGGGTGGGTGATGGTCGCTG 2400  
 R A R L M Q A L P A G G V M V A  
 TCCCGGTCTCGGAGGATGAGGCCGGCGTGTGGGTGAGGGTGTGGAG 2450  
 25 V P V S E D E A R A V L G E G V E  
 ATCGCCGCGGTCAACGGCCGTCGCGGTGGTCTCTCCGGTGATGAGGC 2500  
 I A A V N G P S S V V L S G D E A  
 CGCCGTGCTGCAGGCCGCGGAGGGCTGGGAAGTGGACGCCGCTGGCGA 2550  
 A V L Q A A E G L G K W T R L A  
 30 CCAGCCACCGCGTCCATTCCGCCGTATGGAACCCATGCTGGAGGAGTC 2600  
 T S H A F H S A R M E P M L E E F  
 CGGGCGGTGCCGAAGGCTGACCTACCGGACGCCGCAAGGTCTCCATGGC 2650  
 R A V A E G L T Y R T P Q V S M A  
 CGTTGGTGTAGGTGACCGACCACCGCTGAGTACTGGGTGCCAGGTCCGGG 2700  
 35 V G D Q V T T A E Y W V R Q V R  
 ACACGGTCCGGTTCGGCCAGCAGGTGGCCTCGTACGAGGACGCCGTTC 2750  
 D T V R F G E Q V A S Y E D A V F  
 GTCGAGCTGGGTGCCGACCGGTCACTGGCCCGCTGGTCGACGGTGTGCG 2800  
 V E L G A D R S L A R L V D G V A  
 40 GATGCTGCACGGCGACCAACGAAATCCAGGCCCGATGGCGCCCTGGCCC 2850  
 M L H G D H E I Q A A I G A L A  
 ACCTGTATGTCACGGCGTCACGGTCGACTGGCCCGCGCTGGCGAT 2900  
 H L Y V N G V T V D W P A L L G D  
 GCTCCGGCAACACGGGTGCTGGACCTTCGACATAACGCCCTCCAGCACCA 2950  
 45 A P A T R V L D L P T Y A F Q H Q  
 GCGCTACTGGCTCGAGTCGGCTCCCCCGGCCACGGCCGACTGGGCCACC 3000  
 R Y W L E S A P P A T A D S G H  
 CCGTCCCTCGGCCACCGGAGTCGCCGTGCCGGTCGCCGGCGGTGTT 3050  
 P V L G T G V A V A G S P G R V F  
 50 ACGGGTCCCGTGCCCCGCCGGTGCAGGCCACGGCCGACTGGGCCACC 3100  
 T G P V P A G A D R A V F I A E L  
 GGCCTCGCCGCCGCGACGCCACCGACTGCCACGGTCGAACAGCTCG 3150  
 A L A A A D A T D C A T V E Q L  
 ACGTCACCTCCGTGCCCGGGATCCGCCGCCGGCAGGGCCACCGCGCAG 3200

- 119 -

D V T S V P G G S A R G R A T A Q  
 ACCTGGGTGATGAACCCGCCGCGACGGGCGGCCCTTACCGTCCA 3250  
 T W V D E P A A D G R R R F T V H  
 CACCCCGCGTCGGCGACGCCCGTGGACGCTGCACGCCGAGGGGGTTCTCC 3300  
 5 T R V G D A P W T L H A E G V L  
 GCCCCGGCCGCGTCCCCAGCCGAAGCCGTCGACACCCGCTGGCCCCCG 3350  
 R P G R V P Q P E A V D T A W P P  
 CGGGGCGCGTCCCCGGACGGCTGCCGGCGTGGCGACGCCGGA 3400  
 P G A V P A D G L P G A W R R A D  
 10 CCAGGTCTCGTCAAGCCGAAGTCGACAGCCCTGACGGCTCGTGGCAC 3450  
 Q V F V E A E V D S P D G F V A  
 ACCCCGACCTGCTCGACCGGGTCTTCTCCGGTGGACGGAGCCGC 3500  
 H P D L L D A V F S A V G D G S R  
 CAGCCGACCGGATGGCGCGACCTCGCGTGCACCGCTGGACGCCACCGT 3550  
 15 Q P T G W R D L A V H A S D A T V  
 GCTGCGCCTGCCTCACCGCCGACAGTGGTGTGAGCTCGCCG 3600  
 L R A C L T R R D S G V V E L A  
 CCTTCGACGGTGCCGGAATGCCGGTGTCAACCGCGGAGTCGGTGACGCTG 3650  
 A F D G A G M P V L T A E S V T L  
 20 GCGGAGGTGCGTCGGCAGGCGGATCCGACCGAGTCGGACGGTCTGCTCG 3700  
 G E V A S A G G S D E S D G L L R  
 GCTTGAGTGTTGCCGGTGGCGGAGGCCACTACGACGGTGCGACGAGC 3750  
 L E W L P V A E A H Y D G A D E  
 TGGCCGAGGGCTACACCTCATCACGCCACACACCCGACGCCGAC 3800  
 25 L P E G Y T L I T A T H P D D P D  
 GACCCCACCAACCCCCACAACACACCCACACGCAACACACAAACAC 3850  
 D P T N P H N T P T R T H T Q T T  
 ACGCGTCCTCACCGCCCTCCAACACCACCTCATCACCAACACACCC 3900  
 R V L T A L Q H H L I T T N H T  
 30 TCATCGTCCACACCACCGACCCCCCAGGGCGCCGTCACCGGCCTC 3950  
 L I V H T T D P P G A A V T G L  
 ACCCGCACCGCACAAACGAACACCCGGCGCATCCACCTCATCGAAC 4000  
 T R T A Q N E H P G R I H L I E T  
 CCACCAACCCCCACACCCACTCCCCCTACCCAACTCACCAACCTCCACC 4050  
 35 H H P H T P L P L T Q L T T L H  
 AACCCCACCTACGCCTCACCAACACACCCCTCCACACCCCCCACCTCACC 4100  
 Q P H L R L T N N T L H T P H L T  
 CCCATCACCAACCCACCAACACCACACAACCACCCCCAACACCCACC 4150  
 P I T T H H N T T T T P N T P P  
 40 CCTCAACCCAAACCACGCCATCTCATCACCGGCGCTCCGGCACCCCTCG 4200  
 L N P N H A I L I T G G S G T L  
 CCGGCATCCTCGCCGCCACCTCAACCACCCCCCACCTACCTCCTCTCC 4250  
 A G I L A R H L N H P H T Y L L S  
 CGCACACCAACCCCCACCAACACCCGGCACCCACATCCCCTGCGACCT 4300  
 45 R T P P P P T T P G T H I P C D L  
 CACCGACCCCACCCAAATCACCAAGCCCTCACCCACATACCACACCC 4350  
 T D P T Q I T Q A L T H I P Q P  
 TCACCGGCATCTTCCACACCGCCGCCACCTCGACGACGCCACCCCTCACC 4400  
 L T G I F H T A A T L D D A T L T  
 50 AACCTCACCCCCCAACACCTCACCAACACCCCTCCAACCAAAGCCGACGC 4450  
 N L T P Q H L T T T L Q P K A D A  
 CGCCTGGCACCTCCACCAACACCCAAAACCAACCCCTCACCCACTTCG 4500  
 A W H L H H H T Q N Q P L T H F  
 TCCTCTACTCCAGCGCCGCCACCTCGGCAGCCCCGGCCAAGCCAAC 4550

- 120 -

V L Y S S A A A T L G S P G Q A N  
TACGCCGCCCAACGCCCTCGACGCCCTGCCACCCACCGCCACAC 4600  
Y A A A N A F L D A L A T H R H T  
CCAAGGACAACCGCCACCACCATGCCCTGGGCATGTGGCACACCACCA 4650  
5 Q G Q P A T T I A W G M W H T T  
CCACACTCACCAGCCAACCTACCGACAGCGACCGGACCGCATCCGCCGC 4700  
T T L T S Q L T D S D R D R I R R  
GGCGGCTCCTGCCGATCTGGACGACGAGGGCATGC  
G G F L P I S D D E G M

10       The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of  
module 13 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCAGGCCACGGCGCACCGGAAGTCCC GTGGTGGTG 50  
M R L Y E A A R R T G S P V V V  
15 GCGGCCGCGCTCGACGACGCCGGACGTGCCGCTGCTGCCGCGGGCTGCG 100  
A A A L D D A P D V P L L R G L R  
GCGTACGACCGTCCGGCGTCCGGCGACGCCCTCGCCGACC 150  
R T T V R R A A V R E R S L A D  
GCTCGCCGTGCTGCCCGACGACGAGCGCCGACGCCCTCGCGTTCG 200  
20 R S P C C P T T S A P T P P S R S  
TCCTGGAACAGCACCGCCACCGTGCTGCCAACCTGGCGCCGAAGACAT 250  
S W N S T A T V L G H L G A E D I  
CCCGCGACGACGACGTTCAAGGAACCTCGGCATCGACTCGCTCACCGCGG 300  
P A T T T F K E L G I D S L T A  
25 TCCAGCTGCGCAACGCCGCTGACCAACGGCGACCGCGTACGCCCTAACGCC 350  
V Q L R N A L T T A T G V R L N A  
ACAGCGGTCTTCGACTTCCGACGCCGCGCGCTGCCGCGAGACTCGG 400  
T A V F D F P T P R A L A A R L G  
CGACGAGCTGCCGGTACCCCGCGCCGCTCGCGGCCGACCGCGCCA 450  
30 D E L A G T R A P V A A R T A A  
CCGGCGCCGCCACGACCGAACCCTGGCGATCGTGGCATGGCCTGCCGT 500  
T A A A H D E P L A I V G M A C R  
CTGCCGGCGGGTCCGCTGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550  
L P G G V A S P Q E L W R L V A S  
35 CGGCACCGACGCCATCACGGAGTTCCCCGCCGGACCGCGGGCTGGACGTGG 600  
G T D A I T E F P A D R G W D V  
ACCGCCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCGG 650  
D A L Y D P D P D A I G K T F V R  
CACGGCGGCTTCCTCGACGGTGCACGGCTTCGACGCCGCGTTCTCGG 700  
40 H G G F L D G A T G F D A A F F G  
GATCAGCCCCGCCGAGGCCCTGGCCATGGACCCCGCAGCAACGGGTGCTCC 750  
I S P R E A L A M D P Q Q R V L  
TGGAGACGTCTGGAGGGCGTTCGAAAGCGCGGGCATACCCCGGACCG 800  
L E T S W E A F E S A G I T P D A  
45 GCGCGGGCAGCGACACCGCGTGTTCATCGGCCGTTCTCCTACGGTA 850  
A R G S D T G V F I G A F S Y G Y  
CGGCACGGGTGCGGATACCAACGGCTCGCGCGACAGGGTCGACGACCA 900  
G T G A D T N G F G A T G S Q T  
GCGTGCTCTCCGGCCGCCCTCGTACTTCTACGGTCTGGAGGGCCCTCG 950  
50 S V L S G R L S Y F Y G L E G P S  
GTCACGGTCGACACCGCCCTGCTCGTCGTCAGTGGTCGCCCTGCACCAAGGC 1000  
V T V D T A C S S S L V A L H Q A

AGGGCAGTCCTCGCTCGGCGAATGCTCGCTGCCCTGGTCGGCGGTG 1050  
G Q S L R S G E C S L A L V G G  
TCACGGTGATGGCGTCCGGCGGATTCTCGAGTTCTCCGGCAGCGC 1100  
V T V M A S P G G F V E F S R Q R  
5 GGGCTCGGCCGGACGGCGGGCGAAGGCCTCGGCGGGCGCGACGG 1150  
G L A P D G R A K A F G A G A D G  
TACGAGCTTCGCCAGGGCGCCGGTGCCTGGTGGTCAGCGGCTCTCCG 1200  
T S F A E G A G A L V V E R L S  
ACCGGGAGGCCACGGCCACACCGCTCGCCCTCGTACCGGGCTCCGCG 1250  
10 D A E R H G H T V L A L V R G S A  
GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300  
A N S D G A S N G L S A P N G P S  
CCAGGAACGCGTCATCCACCAAGGCCCTCGCAACGCGAAACTCACCCCCG 1350  
Q E R V I H Q A L A N A K L T P  
15 CCGATGTCGACGCGGTCGAGGCACGGCACCGGACCCCGCTCGCGAC 1400  
A D V D A V E A H G T G T R L G D  
CCCATCGAGGCGCAGGCCTGCTCGCACGTACGGACAGGACCGGGCGAC 1450  
P I E A Q A L L A T Y G Q D R A T  
GCCCTGCTCGCTCGCTGAAGTCGAACATCGGGCACGCCAGGCCG 1500  
20 P L L L G S L K S N I G H A Q A  
CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550  
A S G V A G I I K M V Q A I R H G  
GAACTGCCGCCACACTGCACGCCAGGCCGTCGCCGACGTGACTG 1600  
E L P P T L H A D E P S P H V D W  
25 GACGGCCGGTGCCTCGAGCTCCTGACGTCGGCCGGCCGTGGCCGGGA 1650  
T A G A V E L L T S A R P W P G  
CCGGTGCGCCCGCGCCGCGCTGCCGCTCGTCGTTGGCGTGAGCGGCACG 1700  
T G R P R R A A V S S F G V S G T  
AACGCCACATCATCCTGAGGCAGGCCGTCAGGACCGGTCAAAACGGGACC 1750  
30 N A H I I L E A G P V K T G P V E  
GGCAGGAGCGATCGAGGCAGGCCGTCGAAGTAGGACCGGTGAGGCTG 1800  
A G A I E A G P V E V G P V E A  
GACCGCTCCCCCGCGCCGCCGTCAAGCACCGGGCGAACGACCTCCGCTG 1850  
G P L P A A P P S A P G E D L P L  
35 CTCGTGTCGGCGCGTTCCCGGAGGCACTCGACGAGCAGATGGCGCCT 1900  
L V S A R S P E A L D E Q I G R L  
GCGCGCCTATCTCGACACCGGCCGGCGTCGACCGGGCGGTGGCGC 1950  
R A Y L D T G P G V D R A A V A  
AGACACTGGCCCGCGTACGCACTCACCCACCGGGCGTACTGCTCGGG 2000  
40 Q T L A R R T H F T H R A V L L G  
GACACCGTCATCGCGCTCCCCCGCGGACAGGCCGACGAACCTCGTCTT 2050  
D T V I G A P P A D Q A D E L V F  
CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCATGGCGAGCAGCTAG 2100  
V Y S G Q G T Q H P A M G E Q L  
45 CCGATTGTCGGTGGTGTGCGCGAGCGGATGGCGAGTGTGCGGGCG 2150  
A D S S V V F A E R M A E C A A A  
TTGCGCGAGTTCTGTGGACTGGGACTGTGTTACGGTTCTGGATGATCCGGC 2200  
L R E F V D W D L F T V L D D P A  
GGTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTGGCGATGATGG 2250  
50 V V D R V D V V Q P A S W A M M  
TTCCCTGGCCCGCGGTGTGGCAGGGCGCCGGTGTGCGGGCGATGCGGTG 2300  
V S L A A V W Q A A G V R P D A V  
ATCGGCCATTGCAAGGGTGAAGATCGCCGCAGCTGTGTTGGCGGGTGC 2350  
I G H S Q G E I A A A C V A G A V

- 122 -

GTCACTACGCGATGCCGCCGGATCGTGACCTTGCAGCCAGGGATCG 2400  
S L R D A A R I V T L R S Q A I  
CCCGGGGCTGGCGGGCGGATGGCATCCGTGCCCTGCCCG 2450  
A R G L A G R G A M A S V A L P A  
5 CAGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCACAACGGGCC 2500  
Q D V E L V D G A W I A A H N G P  
CGCCTCACCGTATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCCTCA 2550  
A S T V I A G T P E A V D H V L  
CCGCTCATGAGGCACAAGGGGTGCGGGTGCAGGATCACCGTCGACTAT 2600  
10 T A H E A Q G V R V R R I T V D Y  
GCCTCGCACACCCCGCACGTCGAGCTGATCCGCAGCAACTACTCGACAT 2650  
A S H T P H V E L I R D E L L D I  
CACTAGCGACAGCAGCTCGCAGACCCGCTCGTGCCTGGCTGTCGACCG 2700  
T S D S S S Q T P L V P W L S T  
15 TGGACGGCACCTGGTCGACAGCCGCTGGACGGGAGTACTGGTACCGG 2750  
V D G T W V D S P L D G E Y W Y R  
AACCTCGTGAACCGGTCGGTTCCACCCCGCCGTCAAGCAGTTGCAGGC 2800  
N L R E P V G F H P A V S Q L Q A  
CCAGGGCAGACCCGTGTCGAGGTCAAGGCCAGCCGGTGTGTTGC 2850  
20 Q G D T V F V E V S A S P V L L  
AGGCAGATGGACGACGATGTCGTCACGGTTGCCACGCTCGCTGACGAC 2900  
Q A M D D D V V T V A T L R R D D  
GGCGACGCCACCCGGATGTCACGCCCTGGCACAGGCCTATGTCCACGG 2950  
G D A T R M L T A L A Q A Y V H G  
25 CGTCACCGTCGACTGGCCGCCATCCTCGGCACCACAAACCCGGGTAC 3000  
V T V D W P A I L G T T T R V  
TGGACCTCCGACCTACGCCCTCCAACACCCAGCGGTACTGGCTCGAGTCG 3050  
L D L P T Y A F Q H Q R Y W L E S  
GCTCCCCGGCCACGGCGACTCGGGCCACCCCGTCCTGGCACCGGAGT 3100  
30 A P P A T A D S G H P V L G T G V  
CGCCGTGCGCCGGTGCACGGGCGGTGTTCACGGTCCCCTGGCGCCCG 3150  
A V A G S P G R V F T G P V P A  
GTGCGGACCGCGCGGTGTTCATCGCGAACCTGGCGCTGCCGCCGAC 3200  
G A D R A V F I A E L A L A A A D  
35 GCCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCGTGCCCG 3250  
A T D C A T V E Q L D V T S V P G  
CGGATCCGCCCGCGCAGGGCCACCGCGCAGACCTGGGTGATGAACCCG 3300  
G S A R G R A T A Q T W V D E P  
CCGCCGACGGCGGCCGCTTCACCGTCCACCCCGCGTGGCGACGCC 3350  
40 A A D G R R R F T V H T R V G D A  
CCGTGGACGCTGACGCCGAGGGGGTTCTCCGCCGGCGTGGCGACGCC 3400  
P W T L H A E G V L R P G R V P Q  
GCCCGAAGCCGTCGACACCGCTGGCCCCCGCCGGCGGTGCCCGGG 3450  
P E A V D T A W P P P G A V P A  
45 ACGGGCTGCCGGGGCGTGGCGACGCCGCGGACCAGGTCTCGTCGAAGCC 3500  
D G L P G A W R R A D Q V F V E A  
GAAGTCGACGCCCTGACGGCTTGTGGCACACCCGACCTGCTCGACGC 3550  
E V D S P D G F V A H P D L L D A  
GGTCTCTCCGGTGCACGGGAGCCGCGACGCCGACCGGATGGCGCG 3600  
50 V F S A V G D G S R Q P T G W R  
ACCTCGCGGTGCACCGCGTGGACGCCACCGTGTGCGCGCCTGCCCTCACC 3650  
D L A V H A S D A T V L R A C L T  
CGCCCGACAGTGGTGTGGAGCTCGCCGCCCTCGACGGTGCCGAAT 3700  
R R D S G V V E L A A F D G A G M

- 123 -

GCCGGTGCTACCGCGGAGTCGGTACGCTGGCGAGGTGCGTCGGCAG 3750  
 P V L T A E S V T L G E V A S A  
 GCGGATCCGACGAGTCGGACGGTCTGCTCGGCTTGAGTGGTTGCCGGT 3800  
 G G S D E S D G L L R L E W L P V  
 5 GCGGAGGCCACTACGACGGTGCCGACGAGCTGCCGAGGGCTACACCC 3850  
 A E A H Y D G A D E L P E G Y T L  
 CATCACCGCCACACACCCCCGACGACCCCCGACGACCCCCACCAACCCCCA 3900  
 I T A T H P D D P D D P T N P H  
 ACACACCCACACGCACCCACACACAAACCACACGCGTCCACCGCCCTC 3950  
 10 N T P T R T H T Q T T R V L T A L  
 CAACACCCACCTCATCACCAACCACACCCCTCATCGTCCACACCACAC 4000  
 Q H H L I T T N H T L I V H T T T  
 CGACCCCCCAGGCGCCGCCGTACCGGCCCTCACCGCACCGCACAAAACG 4050  
 D P P G A A V T G L T R T A Q N  
 15 AACACCCCGGCCGCATCCACCTCATCGAAACCCACCACCCCCAACCCCCA 4100  
 E H P G R I H L I E T H H P H T P  
 CTCCCCCTACCCAACTCACCACCCCTCACCAACCCCACCTACGCCCTCAC 4150  
 L P L T Q L T T L H Q P H L R L T  
 CAACAACACCCCTCACACCCCCCACCTCACCCCCATCACCAACCCACCA 4200  
 20 N N T L H T P H L T P I T T H H  
 ACACCAACACACACCACCCCCAACACCCCCACCCCTCAACCCCCAACGCC 4250  
 N T T T T T P N T P P L N P N H A  
 AT CCTCATCACCGGCCGGCTCCGGCACCCCTCGCCGGCATCCTCGCCCGCCA 4300  
 I L I T G G S G T L A G I L A R H  
 25 CCTCAACCACCCCCCACACCTACCTCTCTCCCGCACACCACCCACCCCA 4350  
 L N H P H T Y L L S R T P P P P  
 CCACACCCGGCACCCACATCCCTGCGACCTCACCGACCCCCACCCAAATC 4400  
 T T P G T H I P C D L T D P T Q I  
 ACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTCCACAC 4450  
 30 T Q A L T H I P Q P L T G I F H T  
 CGCCGCCACCCCTGACGACGCCACCCCTCACCAACCTCACCCCCAACACC 4500  
 A A T L D D A T L T N L T P Q H  
 TCACCACCCACCTCCAACCCAAAGCCGACGCCGCTGGCACCTCCACAC 4550  
 L T T T L Q P K A D A A W H L H H  
 35 CACACCCAAACCAACCCCTCACCACTTCGTCCCTACTCCAGCGCCGC 4600  
 H T Q N Q P L T H F V L Y S S A A  
 CGCCACCCCTGGCAGCCCCGGCCAAGCCAACACTACGCCGCCAACGCCT 4650  
 A T L G S P G Q A N Y A A A N A  
 TCCTCGACGCCCTGCCACCCACGCCAACACCAAGGACAACCGGCCACC 4700  
 40 F L D A L A T H R H T Q G Q P A T  
 ACCATCGCCTGGGCATGTGGCACACCACCCACACTCACCAGCCAATC 4750  
 T I A W G M W H T T T T L T S Q L  
 CACCGACAGCGACCGCGACCGCATCCGCCGGCGGCTTCCCTGCCGATCT 4800  
 T D S D R D R I R R G G F L P I  
 45 CGGACGACGAGGGCATGC  
 S D D E G M

Example 3

Recombinant PKS Genes for 13-desmethoxy FK-506 and FK-520

50 The present invention provides a variety of recombinant PKS genes in addition to  
 those described in Examples 1 and 2 for producing 13-desmethoxy FK-506 and FK-520

- 124 -

compounds. This Example provides the construction protocols for recombinant FK-520 and FK-506 (from *Streptomyces* sp. MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference) PKS genes in which the module 8 AT coding sequences have been replaced by either the *rapAT3* (the AT domain from module 5 3 of the rapamycin PKS), *rapAT12*, *eryAT1* (the AT domain from module 1 of the erythromycin (DEBS) PKS), or *eryAT2* coding sequences. Each of these constructs provides a PKS that produces the 13-desmethoxy-13-methyl derivative, except for the *rapAT12* replacement, which provides the 13-desmethoxy derivative, i.e., it has a hydrogen where the other derivatives have methyl.

Figure 7 shows the process used to generate the AT replacement constructs. First, a fragment of ~4.5 kb containing module 8 coding sequences from the FK-520 cluster of ATCC 14891 was cloned using the convenient restriction sites *SacI* and *SphI* (Step A in Figure 7). The choice of restriction sites used to clone a 4.0 - 4.5 kb fragment comprising module 8 coding sequences from other FK-520 or FK-506 clusters can be different depending on the DNA sequence, but the overall scheme is identical. The unique *SacI* and *SphI* restriction sites at the ends of the FK-520 module 8 fragment were then changed to unique *Bgl II* and *NsiI* sites by ligation to synthetic linkers (described in the preceding Examples, see Step B of Figure 7). Fragments containing sequences 5' and 3' of the AT8 sequences were then amplified using primers, described above, that introduced either an *AvrII* site or an *NheI* site at two different KS/AT boundaries and an *XhoI* site at the AT/DH boundary (Step C of Figure 7). Heterologous AT domains from the rapamycin and erythromycin gene clusters were amplified using primers, as described above, that introduced the same sites as just described (Step D of Figure 7). The fragments were ligated to give hybrid modules with in-frame fusions at the KS/AT and AT/DH boundaries (Step E of Figure 7). Finally, these hybrid modules were ligated into the *BamHI* and *PstI* sites of the KC515 vector. The resulting recombinant phage were used to transform the FK-506 and FK-520 producer strains to yield the desired recombinant cells, as described in the preceding Examples.

- 125 -

The following table shows the location and sequences surrounding the engineered site of each of the heterologous AT domains employed. The FK-506 hybrid construct was used as a control for the FK-520 recombinant cells produced, and a similar FK-520 hybrid construct was used as a control for the FK-506 recombinant cells.

| Heterologous AT                  | Enzyme       | Location of Engineered Site                                          |
|----------------------------------|--------------|----------------------------------------------------------------------|
| FK-506 AT8<br>(hydroxymalonyl)   | <i>AvrII</i> | GGCCGT <u>ccgcgc</u> CGTGCGGCGGTCTCGTCGTT<br>G R P R R A A V S S F   |
|                                  | <i>NheI</i>  | ACCCAGCATCCCGCGATGGGTGAGCGG <u>gctcgcc</u><br>T Q H P A M G E R L A  |
|                                  | <i>XbaI</i>  | TACGCCCTCCAGCGGGCGGCCCTACTGG <u>gtcgag</u><br>Y A F Q R R P Y W I E  |
| rapamycin AT3<br>(methylmalonyl) | <i>AvrII</i> | GACCGG <u>ccccgt</u> CGGGCGGGCGTGTGTCCTTC<br>D R P R R A G V S S F   |
|                                  | <i>NheI</i>  | TGGCAGTGGCTGGGATGGGCAGTGC <u>cctcgcc</u><br>W Q W L G M G S A L R    |
|                                  | <i>XbaI</i>  | TACGCCCTCCAACACCAGCGGTACTGG <u>gtcgag</u><br>Y A F Q H Q R Y W V E   |
| rapamycin AT12<br>(malonyl)      | <i>AvrII</i> | GGCCGA <u>gcgcgc</u> CGGGCAGGC GTGTCCTTC<br>G R A R R A G V S S F    |
|                                  | <i>NheI</i>  | TCGCAGCGTGCTGGCATGGGTGAGGA <u>actggcc</u><br>S Q R A G M G E E L A   |
|                                  | <i>XbaI</i>  | TACGCCCTCCAGCACCA CGC GTACTGG <u>gtcgag</u><br>Y A F Q H Q R Y W L E |
| DEBS AT1<br>(methylmalonyl)      | <i>AvrII</i> | GCGCGA <u>accgcgc</u> CGGGCGGGGGTCTCGTCGTT<br>A R P R R A G V S S F  |
|                                  | <i>NheI</i>  | TGGCAGTGGCGGGCATGGCGTCA <u>acctgctc</u><br>W Q W A G M A V D L L     |
|                                  | <i>XbaI</i>  | TACCCGTTCCAGCGCGAGCGCGTCTGG <u>gtcgaa</u><br>Y P F Q R E R V W L E   |
| DEBS AT2<br>(methylmalonyl)      | <i>AvrII</i> | GACGGG <u>gtgcgc</u> CGGGCAGGTGTGTCGGCGTTC<br>D G V R R A G V S A F  |
|                                  | <i>NheI</i>  | GCCCAGTGGGAAGGCATGGCGCGGG <u>Agttgttg</u><br>A Q W E G M A R E L L   |
|                                  | <i>XbaI</i>  | TATCCTTCCAGGGCAAGCGGTTCTGG <u>gtcgctg</u><br>Y P F Q G K R F W L L   |

- 126 -

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-520 module 8 coding sequences. Regions where *AvrII* and *NheI* sites were engineered are indicated by lower case and underlining.

5           CCGGCGCCGTCGACTGACGTCGGCCCGGCCGTGGCCGAGACCGACCGGccacggC  
A G A V E L L T S A R P W P E T D R P R  
GTGCCGCCGTCCTCGTTGGGGTGAGCGGCACCAACGCCACGTCATCCTGGAGGCCG  
R A A V S S F G V S G T N A H V I L E A  
GACCGGTAACGGAGACGCCGCGCATCGCCTCCGGTGACCTCCCTGCTGGTGTCGG  
G P V T E T P A A S P S G D L P L L V S  
10          CACGCTCACCGGAAGCGCTCGACGAGCAGATCCGCCACTGCGCCCTACCTGGACACCA  
A R S P E A L D E Q I R R L R A Y L D T  
CCCCGGACGTCGACCGGGTGGCGTGGCACAGACGCTGGCCGGCGCACACACTCGCCC  
T P D V D R V A V A Q T L A R R T H F A  
ACCGCGCCGTGCTCGGTGACACCGTCATCACCACACCCCCCGGGACCGGCCGACG  
15          H R A V L L G D T V I T T P P A D R P D  
AACTCGTCTTCGTCTACTCCGGCCAGGGCACCAGCATCCCGGATGGGCGAGCAgctcg  
E L V F V Y S G Q G T Q H P A M G E Q L  
cCGCCGCCCATCCCGTGGCATGAAGCGCTCCGGCCCTTGACAACC  
A A A H P V F A D A W H E A L R R L D N

20

The sequences shown below provide the location of the AT/DH boundary chosen in the FK-520 module 8 coding sequences. The region where an *XhoI* site was engineered is indicated by lower case and underlining.

25          TCCTCGGGGCTGGGTCACGGCACGACCGGGATGTGCCCGGTACCGTTCCAACGGCGC  
I L G A G S R H D A D V P A Y A F Q R R  
ACTACTGGatcgagTCGGCACGCCGGCCCATCCGACGCGGCCACCCGGTGCTGGGCT  
H Y W I E S A R P A A S D A G H P V L G

30          The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-520 module 8 coding sequences. Regions where *AvrII* and *NheI* sites were engineered are indicated by lower case and underlining.

35          TCGGCCAGGCCGTGGCCCGGACCGGCGTccgcgcGTGCGGCGGTCTCGTCGG  
S A R P W P R T G R P R R A A V S S F G  
GTGAGCGGCACCAACGCCCACATCATCCGGAGGCCACCCGACCAGGAGGAGCGTCG  
V S G T N A H I I L E A G P D Q E E P S  
GCAGAACGGCCGGTGACCTCCCGCTGCGGCACGGTCCCCGGGAGGGACTGG  
A E P A G D L P L L V S A R S P E A L D  
GAGCAGATGGCGCCCTCGCGACTATCTCGACGCCCCCGGGCGGTGGACCTGGCG  
E Q I G R L R D Y L D A A P G V D L A A  
40          GTGGCGCGGACCTGGCCACGCGTACGCATTCTCCACCGCGCCGTACTGCTCGGTGAC  
V A R T L A T R T H F S H R A V L L G D  
ACCGTCCATACCCGCTCCCCCGGGAAACAGCCGGGCGAGCGTGCTTCGTACTCGGGGA  
T V I T A P P V E Q P G E L V F V Y S G  
45          CAGGGCACCCAGCATCCCGCGATGGGTGAGCGgctcgcCGCAGCCTTCCCCGTGTTCGCC  
Q G T Q H P A M G E R L A A A F P V F A

GACCCGGACGTACCCGCCTACGCCCTCCAGCGGCGGCCCTACTGGATCGAGTCCGCGCCG  
D P D V P A Y A F Q R R P Y W I E S A P

The sequences shown below provide the location of the AT/DH boundary chosen  
5 in the FK-506 module 8 coding sequences. The region where an *Xba*I site was  
engineered is indicated by lower case and underlining.

GACCCGGACGTACCCGCTACGCCCTCCAGCGGCGGCCCTACTGGAtcgagTCCGCGCCG  
D P D V P A Y A F Q R R P Y W I E S A P

10

Example 4

Replacement of Methoxyl with Hydrogen or Methyl at C-15 of FK-506 and FK-520

The methods and reagents of the present invention also provide novel FK-506 and  
FK-520 derivatives in which the methoxy group at C-15 is replaced by a hydrogen or  
methyl. These derivatives are produced in recombinant host cells of the invention that  
15 express recombinant PKS enzymes the produce the derivatives. These recombinant PKS  
enzymes are prepared in accordance with the methodology of Examples 1 and 2, with the  
exception that AT domain of module 7, instead of module 8, is replaced. Moreover, the  
present invention provides recombinant PKS enzymes in which the AT domains of both  
modules 7 and 8 have been changed. The table below summarizes the various compounds  
20 provided by the present invention.

|    | Compound | C-13     | C-15     | Derivative Provided                      |
|----|----------|----------|----------|------------------------------------------|
|    | FK-506   | hydrogen | hydrogen | 13, 15-didesmethoxy-FK-506               |
|    | FK-506   | hydrogen | methoxy  | 13-desmethoxy-FK-506                     |
| 25 | FK-506   | hydrogen | methyl   | 13,15-didesmethoxy-15-methyl-FK-506      |
|    | FK-506   | methoxy  | hydrogen | 15-desmethoxy-FK-506                     |
|    | FK-506   | methoxy  | methoxy  | Original Compound -- FK-506              |
|    | FK-506   | methoxy  | methyl   | 15-desmethoxy-15-methyl-FK-506           |
|    | FK-506   | methyl   | hydrogen | 13,15-didesmethoxy-13-methyl-FK-506      |
| 30 | FK-506   | methyl   | methoxy  | 13-desmethoxy-13-methyl-FK-506           |
|    | FK-506   | methyl   | methyl   | 13,15-didesmethoxy-13,15-dimethyl-FK-506 |
|    | FK-520   | hydrogen | hydrogen | 13, 15-didesmethoxy FK-520               |

- 128 -

|        |          |          |                                              |
|--------|----------|----------|----------------------------------------------|
| FK-520 | hydrogen | methoxy  | 13-desmethoxy FK-520                         |
| FK-520 | hydrogen | methyl   | 13,15-didesmethoxy-15-methyl-FK-520          |
| FK-520 | methoxy  | hydrogen | 15-desmethoxy-FK-520                         |
| FK-520 | methoxy  | methoxy  | Original Compound -- FK-520                  |
| 5      | FK-520   | methoxy  | methyl 15-desmethoxy-15-methyl-FK-520        |
|        | FK-520   | methyl   | hydrogen 13,15-didesmethoxy-13-methyl-FK-520 |
|        | FK-520   | methyl   | methoxy 13-desmethoxy-13-methyl-FK-520       |
|        | FK-520   | methyl   | 13,15-didesmethoxy-13,15-dimethyl-FK-520     |

10

Example 5

Replacement of Methoxyl with Ethyl at C-13 and/or C-15 of FK-506 and FK-520

The present invention also provides novel FK-506 and FK-520 derivative compounds in which the methoxy groups at either or both the C-13 and C-15 positions are instead ethyl groups. These compounds are produced by novel PKS enzymes of the invention in which the AT domains of modules 8 and/or 7 are converted to ethylmalonyl specific AT domains by modification of the PKS gene that encodes the module. Ethylmalonyl specific AT domain coding sequences can be obtained from, for example, the FK-520 PKS genes, the niddamycin PKS genes, and the tylosin PKS genes. The novel PKS genes of the invention include not only those in which either or both of the 15 AT domains of modules 7 and 8 have been converted to ethylmalonyl specific AT domains but also those in which one of the modules is converted to an ethylmalonyl specific AT domain and the other is converted to a malonyl specific or a methylmalonyl specific AT domain.

25

Example 6

Neurotrophic Compounds

The compounds described in Examples 1 - 4, inclusive have immunosuppressant activity and can be employed as immunosuppressants in a manner and in formulations similar to those employed for FK-506. The compounds of the invention are generally effective for the prevention of organ rejection in patients receiving organ transplants and

in particular can be used for immunosuppression following orthotopic liver transplantation. These compounds also have pharmacokinetic properties and metabolism that are more advantageous for certain applications relative to those of FK-506 or FK-520. These compounds are also neurotrophic; however, for use as neurotrophins, it is  
5 desirable to modify the compounds to diminish or abolish their immunosuppressant activity. This can be readily accomplished by hydroxylating the compounds at the C-18 position using established chemical methodology or novel FK-520 PKS genes provided by the present invention.

Thus, in one aspect, the present invention provides a method for stimulating nerve  
10 growth that comprises administering a therapeutically effective dose of 18-hydroxy-FK-520. In another embodiment, the compound administered is a C-18,20-dihydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18-hydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18,20-  
15 dihydroxy-FK-520 derivative. In other embodiments, the compounds are the corresponding analogs of FK-506. The 18-hydroxy compounds of the invention can be prepared chemically, as described in U.S. Patent No. 5,189,042, incorporated herein by reference, or by fermentation of a recombinant host cell provided by the present invention that expresses a recombinant PKS in which the module 5 DH domain has been deleted or  
20 rendered non-functional.

The chemical methodology is as follows. A compound of the invention (~200 mg) is dissolved in 3 mL of dry methylene chloride and added to 45  $\mu$ L of 2,6-lutidine, and the mixture stirred at room temperature. After 10 minutes, tert-butyldimethylsilyl trifluoromethanesulfonate (64  $\mu$ L) is added by syringe. After 15 minutes, the reaction  
25 mixture is diluted with ethyl acetate, washed with saturated bicarbonate, washed with brine, and the organic phase dried over magnesium sulfate. Removal of solvent *in vacuo* and flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) gives the protected compound, which is dissolved in 95% ethanol (2.2 mL) and to which is added 53  $\mu$ L of pyridine, followed by selenium dioxide (58 mg). The flask is fitted  
30 with a water condenser and heated to 70°C on a mantle. After 20 hours, the mixture is

- 130 -

cooled to room temperature, filtered through diatomaceous earth, and the filtrate poured into a saturated sodium bicarbonate solution. This is extracted with ethyl acetate, and the organic phase is washed with brine and dried over magnesium sulfate. The solution is concentrated and purified by flash chromatography on silica gel (ethyl acetate: hexane 5 (1:2) plus 1% methanol) to give the protected 18-hydroxy compound. This compound is dissolved in acetonitrile and treated with aqueous HF to remove the protecting groups. After dilution with ethyl acetate, the mixture is washed with saturated bicarbonate and brine, dried over magnesium sulfate, filtered, and evaporated to yield the 18-hydroxy compound. Thus, the present invention provides the C-18-hydroxyl derivatives of the 10 compounds described in Examples 1 - 4.

Those of skill in the art will recognize that other suitable chemical procedures can be used to prepare the novel 18-hydroxy compounds of the invention. See, e.g., Kawai *et al.*, Jan. 1993, Structure-activity profiles of macrolactam immunosuppressant FK-506 analogues, *FEBS Letters* 316(2): 107-113, incorporated herein by reference. These 15 methods can be used to prepare both the C18-[S]-OH and C18-[R]-OH enantiomers, with the *R* enantiomer showing a somewhat lower IC<sub>50</sub>, which may be preferred in some applications. See Kawai *et al.*, *supra*. Another preferred protocol is described in Umbreit and Sharpless, 1977, *JACS* 99(16): 1526-28, although it may be preferable to use 30 equivalents each of SeO<sub>2</sub> and t-BuOOH rather than the 0.02 and 3-4 equivalents, 20 respectively, described in that reference.

All scientific and patent publications referenced herein are hereby incorporated by reference. The invention having now been described by way of written description and example, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments, that the foregoing description and example is for purposes of 25 illustration and not limitation of the following claims.