## Laboratorio Nro. 2 Escribir el tema del laboratorio

Juan Pablo Yepes García

Universidad Eafit Medellín, Colombia jpyepesg@eafit.edu.co Simón Cárdenas Villada

Universidad Eafit Medellín, Colombia scardenasy@eafit.edu.co

## 3) Simulacro de preguntas de sustentación de Proyectos

# 3.1 Insertion Sort

| mocration oort |        |
|----------------|--------|
| Tamaño         | Tiempo |
| 10000000       | 32     |
| 20000000       | 75     |
| 30000000       | 117    |
| 40000000       | 164    |
| 50000000       | 218    |
| 60000000       | 282    |
| 70000000       | 485    |
| 80000000       | 784    |
| 90000000       | 1027   |
| 100000000      | 1402   |
| 110000000      | 1692   |
| 120000000      | 2144   |
| 130000000      | 2247   |
| 140000000      | 2371   |
| 150000000      | 2490   |
| 160000000      | 2606   |
| 170000000      | 2728   |
| 180000000      | 2856   |
| 190000000      | 2992   |
| 200000000      | 3132   |

#### PhD. Mauricio Toro Bermúdez









#### **Merge sort**

| ivier ge sort |        |
|---------------|--------|
| Tamaño        | Tiempo |
| 10000000      | 686    |
| 20000000      | 2002   |
| 30000000      | 3968   |
| 40000000      | 6634   |
| 50000000      | 10044  |
| 60000000      | 14179  |
| 70000000      | 19222  |
| 80000000      | 24925  |
| 90000000      | 31298  |
| 100000000     | 38412  |
| 110000000     | 46133  |
| 120000000     | 54544  |
| 130000000     | 63663  |
| 140000000     | 73638  |
| 150000000     | 84268  |
| 160000000     | 96886  |
| 170000000     | 109288 |
| 180000000     | 122238 |
| 190000000     | 135681 |
| 200000000     | 149870 |













- **3.3** Teniendo en cuenta que la complejidad del Insertion Sort para el peor de los casos es exponencial  $(O(n^2))$  no sería optimo implementarlo en un videojuego en donde el objetivo es ejecutar los algoritmos rápidamente.
- **3.4** El log(n) aparece en la complejidad del Merge sort, esto gracias a que ejecuta una parte del algoritmo solo en algunos casos lo cual nos indica que la complejidad será logarítmica.

#### PhD. Mauricio Toro Bermúdez







- 3.5 Ordenados, ya que en el mejor de los casos del Insertion Sort la complejidad es O(n).
- 3.6 determinar primero si el tamaño del arreglo es menor o igual que 1 para devolver la longitud del arreglo o determinar si el primer elemento y el ultimo son iguales, si no, se empieza desde el segundo elemento hasta el final del arreglo con ayuda de un contador iterando hasta llegar a dos elementos iguales retornando el valor de contador

#### 3.7 Complejidad

Arrays 3:

**Maxspan:** O(n) **Fix34:** O(n^2)

Can Balance: O(n^2)

**Linearin**: O(n)

Countclumps: O(n^2)

#### Arrays 2:

Countevens: O(n) **Big diff:** O(n)

Centered average: O(n)

**Sum13**: O(n) **Sum67:** O(n^2)

#### 3.8

N es el tamaño de los arreglos que se entrega en el parámetro de todos los ejercicios excepto en linearin que n sería el tamaño de outer.

## 4) Simulacro de Parcial

- **4.1** c) O(n+m)
- **4.2** b) O(m\*n\*sqrt(n))
- **4.3** b) O(ancho)
- **4.5** d) T(n/10)+c, que es O(logn)
- **4.6** T(n)/n^2 = C

 $1000/100^2 = 0.1 \text{ ms}$ 

- **4.7** verdaderas: 1,2,3
- **4.8** a) T(n) = c + T(n-1) pasos que es O(n)
- 4.9 a) O(n^3)
- **4.10** c) Ejecuta menos de n\*log(n) pasos
- **4.14** a)  $O(n^3 + n(\log(\log(m)) + m \, \text{sqrt}(m))$

#### 5) Lectura recomendada (opcional)

Mapa conceptual

#### PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627

Tel: (+57) (4) 261 95 00 Ext. 9473







## 6) Trabajo en Equipo y Progreso Gradual (Opcional)

- 6.1 Actas de reunión
- 6.2 El reporte de cambios en el código
- 6.3 El reporte de cambios del informe de laboratorio







