Distribuições de probabilidade discretas

Parte 1

Prof.: Eduardo Vargas Ferreira

Exemplo: seleção de candidatos

Uma dinâmica selecionará 5 candidatos para a próxima fase. A distribuição de probabilidade do nº de homens escolhidos é dada por:

X = número de homens selecionados.

$$p(x) = \begin{cases} \binom{5}{x} 0, 2^x \cdot 0, 8^{5-x}, & \text{se } x \in \mathbb{N} \le 5 \\ 0, & \text{caso contrário} \end{cases}$$

X	0	1	2	3	4	5
P(X = x)	0.327	0.409	0.204	0.051	0.006	0.000

Exemplo: número de erros de impressão

Suponha que o número de erros tipográficos em uma página de livro tenha a seguinte distribuição:

X = número de erros na página

$$p(x) = \begin{cases} \frac{e^{-0.5} \cdot 0.5^x}{x!}, & \text{se } x = 0, 1, 2 \dots \\ 0, & \text{caso contrário} \end{cases}$$

X	0	1	2	3	
P(X=x)	0.60	0.30	0.07	0.01	

As principais distribuições de probabilidade

Discretas

- Uniforme Discreta;
- Bernoulli;
- Binomial;
- Hipergeométrica.
- Poisson;
- Geométrica;
- Binomial negativa;

Continuas

- Uniforme Contínua;
- Exponencial;
- Normal;
- Lognormal;
- Gama;
- Weibull;
- Beta.

Distribuição uniforme discreta

Exemplo: sorteio da Mega Sena

▶ Os números do próximo sorteio da Mega Sena.

Exemplo: placa de um veículo

▶ O último digito da placa de um veículo.

Distribuição uniforme discreta

Definição: A v.a. discreta X, assumindo os valores x_1, \ldots, x_k , tem distribuição uniforme se, e somente se:

$$p(x) = \begin{cases} \frac{1}{k}, & \text{se } x \in \{1, 2, \dots, n\} \\ 0, & \text{caso contrário} \end{cases}$$

Notação: $X \sim U(1, 2, \dots, n)$.

$$\mathbb{E}(X) = \frac{1}{k} \sum_{i=1}^{k} X_i \qquad e \qquad \mathbb{V}ar(X) = \frac{1}{k} \left\{ \sum_{i=1}^{k} X_i^2 - \frac{\left(\sum_{i=1}^{k} X_i\right)^2}{k} \right\}$$

Exemplo: relógio mecânico

▶ O ponteiro dos segundos de um relógio mecânico pode parar a qualquer instante, devido a algum defeito técnico ou término da bateria.

X=ângulo entre o XII e o ponteiro dos segundos.

Exemplo: relógio mecânico

X	0°	6°	12°	18°	 348°	354°
D/ V - \	1	1	1	1	 1	1
P(X=x)	$\overline{60}$	$\overline{60}$	$\overline{60}$	$\frac{1}{60}$	$\frac{1}{60}$	$\overline{60}$

Distribuição de Bernoulli

Exemplo: conversão e anúncio em venda

▶ Um anúncio apresentado a um cliente é convertido em venda (sucesso) ou não (fracasso).

Exemplo: resolver um CAPTCHA

► Se um robô consegue resolver um CAPTCHA, se sim = sucesso, se não = fracasso.

Distribuição de Bernoulli

Definição: A variável aleatória tem distribuição de Bernoulli se o resultado do experimento apresenta apenas **dois desfechos possíveis**, representados por 1 (sucesso) e 0 (fracasso).

$$p(x) = \begin{cases} p, & \text{se } x = 1 \text{ (sucesso)} \\ 1 - p, & \text{se } x = 0 \text{ (fracasso)} \end{cases}$$

Notação: $X \sim Ber(p)$.

$$\mathbb{E}(X) = p \qquad e \qquad \mathbb{V}ar(X) = p \cdot (1-p)$$

Gráficos da distribuição de Bernoulli

Outros exemplos

1. O paciente ser diagnosticado com Covid-19:

$$p(x) = \begin{cases} 0.23, & \text{se } x = 1 \text{ (positivo)} \\ 0.77, & \text{se } x = 0 \text{ (negativo)} \end{cases}$$

2. O réu ser condenado após o julgamento.

$$p(x) = \begin{cases} 0.8, & \text{se } x = 1 \text{ (culpado)} \\ 0.2, & \text{se } x = 0 \text{ (inocente)} \end{cases}$$

Distribuição Binomial

Distribuição Binomial

Temos n tentativas independentes, cada uma com probabilidade de sucesso p e de fracasso 1-p, tq:

- 1. Os ensaios sejam independentes;
- 2. Apresentem apenas dois resultados possíveis;
- 3. A probabilidade em cada ensaio permanece constante.

Exemplo: lances livre

▶ De três arremessos livre, soma-se o número de acertos.

- 1. São lances independentes;
- 2. Dois resultados possíveis;
- 3. Mesma probabilidade de acerto.

Distribuição Binomial

Definição: A variável aleatória X, que corresponde ao número total de sucessos em n ensaios de Bernoulli, com probabilidade de sucesso p, 0 , tem <math>f.p dada por:

$$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & \text{se } x = 0, 1, 2, \dots, n \\ 0, & \text{caso contrário} \end{cases}$$

Notação: $X \sim Bin(n, p)$.

$$\mathbb{E}(X) \ = \ n \cdot p \qquad \qquad e \qquad \qquad \mathbb{V}ar(X) \ = \ n \cdot p \cdot (1-p)$$

Gráficos da distribuição Binomial

X = número de sucesso em 30 realizações.

Exemplo: seleção de candidatos

Uma dinâmica selecionará 5 candidatos para a próxima fase. A distribuição de probabilidade do nº de homens escolhidos é dada por:

X = número de homens selecionados.

$$p(x) = \begin{cases} \binom{5}{x} 0, 2^x \cdot 0, 8^{5-x}, & \text{se } x \in \mathbb{N} \le 5 \\ 0, & \text{caso contrário} \end{cases}$$

X	0	1	2	3	4	5
P(X = x)	0.327	0.409	0.204	0.051	0.006	0.000

Exemplo: carretéis com avaria

Um inspetor de qualidade escolhe 10 carretéis aleatoriamente para avaliação. Sabe-se que:

 $X=\mathrm{n}^{\mathrm{o}}$ de carretéis defeituosos dos 10 disponíveis.

 $\begin{cases} 72\% & \text{dos carret\'eis n\~ao tem avaria} & \textbf{(fracasso)} \\ 28\% & \text{dos carret\'eis t\'em algum problema} & \textbf{(sucesso)}. \end{cases}$

1. Qual a probabilidade de que menos de 2 tubos tenham problema?

$$P(X < 2) = {10 \choose 0} 0.28^{0} (1 - 0.28)^{10-0} + {10 \choose 1} 0.28^{1} (1 - 0.28)^{10-1}$$

Exemplo: ovos danificados

Número de ovos danificados em uma caixa com meia dúzia de ovos.

 $X=\mathrm{n}^{\mathrm{o}}$ de ovos danificados de 6 disponíveis.

$$p(x) = \begin{cases} \binom{6}{x} p^x (1-p)^{6-x}, & \text{se } x = 0, 1, \dots, 6 \\ 0, & \text{caso contrário} \end{cases}$$

Exemplo: ovos danificados

Número de ovos danificados em uma caixa com meia dúzia de ovos.

- 1. Os ovos tem a mesma resistência a impactos?
- 2. Todas as posições na caixa oferecem mesmo risco de quebrar?
- 3. Eles quebram de forma independente ou existe dependência espacial?

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

