Détaillez vos réponses, prouvez vos affirmations. Les étoiles marquent les questions difficiles.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 2h. Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

Développer le calcul suivant en base 4 :

$$22 \cdot (3202 - 2231).$$

Question 2

En utilisant les règles de la déduction naturelle (voir annexe au verso) prouver que

$$\vdash (p \lor r) \to (r \lor p).$$

Question 3

En utilisant exclusivement les symboles $+, -, \times, =, \leq$, les constantes $0, 1, 2, \ldots$ et le calcul des prédicats, écrire en langage logique l'affirmation « L'addition est commutative ».

Question 4

Montrer par induction que $\sum_{k=0}^{n} (8k+1) = (4n+1)(n+1)$ pour tout $n \ge 0$.

Question 5

On rappelle que la fonction composée $g\circ f$ est la fonction qui à x associe g(f(x)). Donner des exemples de

- (a) Une fonction f injective et une fonction g non injective telles que la composée $g \circ f$ est injective.
- (b) Une fonction f surjective et une fonction g injective telles que la composée $g \circ f$ est injective mais non surjective.

Question 6

On considère la relation \blacktriangle sur $\left(\mathbb{N}^+\right)^2$ (les paires d'entiers positifs) définie par

$$(a,b) \blacktriangle (c,d)$$
 ssi $ad = bc$.

- (a) Dire si $(1,8) \blacktriangle (2,16)$, $(15,3) \blacktriangle (10,1)$, $(2,16) \blacktriangle (1,8)$, $(2,16) \blacktriangle (8,64)$.
- (b) La relation ▲ est-elle réflexive, symétrique, transitive, anti-symétrique?
- (c) Décrire la classe d'équivalence de (1, 1).

Question 7

Soient

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 2 & 5 & 1 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 4 & 2 & 5 & 3 \end{pmatrix}.$$

- (a) Calculer $\sigma_1 \circ \sigma_2$ et σ_1^{-1} .
- (b) Calculer les décompositions en cycles de σ_1 , σ_2 , σ_1^{-1} et σ_2^{-1} .

Question 8

Dans la coupe du monde en cours, les participants sont repartis dans des poules de 4 équipes. Chaque équipe rencontre les adversaires de sa poule exactement une fois.

- (a) Combien de matchs joue une équipe pendant la phase des poules? Combien de matchs y a-t-il dans une poule?
- (b) Si on élargit les poules à n équipes, combien de matchs y aura-t-il par équipe? Combien par poule?

En même temps, se déroule la coupe du monde de Monopoly. Peuvent participer à une partie de Monopoly de 2 à 10 joueurs. Partant du constat que la dynamique du jeu varie sensiblement entre une partie à 2 et une partie à 10, le championnat du monde de la FIMA prévoit une poule de 10 joueurs dans laquelle chaque combinaison de 2, 3, ..., 10 joueurs se rencontre exactement une fois.

- (c) Combien de parties différentes de Monopoly peut-on disputer à $2, 3, \ldots, 10$ joueurs dans une poule de 10?
- (d) Combien de parties au total y a-t-il dans une poule de 10 joueurs?
- (e) Combien de parties joue chaque joueur?

Annexe : règles de la déduction naturelle

Hypothèse	$\overline{\Gamma,\phi \vdash \phi} H$	Tiers exclus	$\overline{\Gamma \vdash \phi \vee \neg \phi}^{ T}$
Affaiblissement	$\frac{\Gamma \vdash \phi}{\Gamma, \psi \vdash \phi} W$	Élimination du faux	$\frac{\Gamma \vdash \psi \land \neg \psi}{\Gamma \vdash \phi} F$
Introduction du et	$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} I_{\land}$		
Élimination du et	$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} L_{\land}$	$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} R_{\land}$	
Introduction du ou	$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} L_{\lor}$	$\frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi} R_{\lor}$	
Élimination du ou	$\frac{\Gamma \vdash \phi \lor \psi \qquad \Gamma \vdash \phi \to}{\Gamma \vdash \chi}$	$\chi \Gamma \vdash \psi \to \chi \\ E_{\vee}$	
Modus ponens	$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \phi \rightarrow \psi}{\Gamma \vdash \psi} M$	Déduction	$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi} D$