METODY ITERACYJNE		
Na podstawie poprzednich przybliżeń		
wyznaczamy kolejne. Będziemy rozważać		
metody iteracyjne jednopunktowe		
$\varphi(x_m) = x_{n+1} \mid \text{Tw. Jeśli } \varphi(x) \text{ jest ciągła to}$		
$\alpha = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \varphi(x_n) = \varphi(\alpha)$		
α-punkt stały i pierwiastek równania		
$\varphi(x) = \alpha$ WW zbieżności metody. Zał:		
$(1)x = \varphi(x)$ ma rozwiązanie α (2)w		
przedziałe $I = \{x: x - \alpha \le P\}$ istnieje		
pochodna $\varphi'(x)$ (3) $ \varphi'(x) \le m < 1$		
Wtedy dla każdego $x_0 \in I$, m=0,1,:		
(1) $x_m \in I, m = 0,1,$ (2) $\lim_{m \to \infty} x_m = \alpha$		
(3) α jest jedynym pierwiastkiem $x = \varphi(x)$		
leżącym w I. INTERPOLACJA FUNKCJAMI SKLEJANYMI		
(W każdym przedziale określony jest inny		
wielomian – pochodne muszą być ciągłe)		
Δ – układ punktów dzielący przedział [a;b] na		
N części : $a = x_0 < x_1 < \dots < x_N = b$		
W każdym przedziale przybliżam funkcję		
wielomianem ustalonego stopnia (najlepiej		
niskiego) tak aby funkcja była ciągła wraz z		
pochodnymi na [a;b]		
Funkcję rzeczywistą S nazywamy sklejaną		
stopnia m z węzłami Δ gdy: (a) w każdym		
przedziale $(x_{i-1}; x_i)$ dla i=1,,N S jest		
wielomianem stopnia co najwyżej m		
(b) S i jej pochodne rzędu 1,2,,m-1 są ciągłe		
na całej osi rzeczywistej $S \in \mathbb{C}^{m-1}$		
W sytuacji gdy $m=1 \rightarrow S$ jest łamaną.		
Wielomiany są szczególnym przypadkiem		
funkcji sklejanych.		
Na każdym przedziale S(x) jest wielomianem		
stopnia co najwyżej m. $C_{im-1}x^m$ +		
$C_{im+1}x^{m-1} + \dots + C_{i1}x + C_{i0}; \ x \in (x_i; x_{i+1})$		
Mamy N(m+1) dowolnych stałych C_{ij} .		
Def. Funkcję sklejaną stopnia 2m-1 nazywamy		
naturalną jeśli w przedziałach		
$-\infty, x_0), (x_N; \infty)$ dana jest wielomianem		
stopnia m-1. Jeśli węzły x_i są różne dla i=0,1,N oraz $1 \le m \le N+1$ to dla		
dowolnych wartości y_i istnieje dokładnie		
jedna naturalna funkcja sklejana $S \in$		
$N_{2m-1}(\Delta)$ interpolująca punkty (x_i, y_i)		
Kryterium Gładkości		
$\int_{a}^{b} [g^{(m)}(x)]^{2} dx$ osiąga minimum w klasie		
funkcji g interpolujących (x_i, y_i) takich że		
$g \in C^{m-1}_{[a,b]}$, a g jest przedziałami ciągła		
Def : Funkcję sklejaną stopnia m nazywamy		
okresową o okresie (b-a) jeżeli $s^{(i)}(a+0) =$		
okresową o okresie (b-a) jeżeli $s^{(i)}(a+0) = s^{(i)}(b-0)$; i=0,1,,m-1 Klasę funkcji		
sklejanych o węzłach Δ i stopnia m		
oznaczamy jako $\delta_m(\Delta)$. Klasę funkcji		
sklejanych stopnia m (okresowych) o		
węztach Δ oznaczamy jako $P_m(\Delta)$ Klasę		
funkcji sklejanych o węzłach Δ i stopnia 2m-1,		
a do tego naturalnych oznaczamy jako		
$N_{wm-1}(\Delta)$		