Applied Statistics and Econometrics I

Practice problems - suggested solutions

For Q1 and Q2 see hand written notes.

3) Let \bar{X} denote the mean of a random sample of n=100 scores from a population with $\mu=60$ and $\sigma^2=64$. We want to approximate $P(\bar{X}\leq 58)$. We know from the Central Limit Theorem that $(\bar{X}-\mu)/(\sigma/\sqrt{n})$ has a distribution that can be approximated by a standard normal distribution. Using the standard normal table we have

$$P(ar{X} \le 58) = P\left(rac{ar{X} - 60}{8/\sqrt{100}} \le rac{58 - 60}{.8}
ight) pprox P(Z \le -2.5) = .0062$$

Because this probability is so small, it is unlikely that the sample from the school of interest can be regarded as a random sample from a population with $\mu=60$ and $\sigma^2=64$. The evidence suggests that the average score for this high school is lower than the overall average of $\mu=60$.

- 4) See Greene solutions manual p.163: http://pages.stern.nyu.edu/~wgreene/Text/Greene_6e_Solutions_Manual.pdf
- 5) Let the joint density of two random variables x_1 and x_2 be given by

$$f\left(x_{1},x_{2}
ight)=\left\{egin{array}{ll} rac{1}{6}X_{1}, & ext{if} & 0\leq x_{1}\leq 2, & 0\leq x_{2}\leq 3 \ 0, & ext{otherwise} \end{array}
ight.$$

Find $Cov[x_1, x_2]$

As proven before,

$$Cov[x_1, x_2] = E[x_1x_2] - \mu_{x_1}\mu_{x_2}$$

Let's look at each term separately:

$$E[x_1x_2] = \int_0^3 \int_0^2 x_1 x_2 \frac{1}{6} x_1 dx_1 dx_2$$

$$= \frac{1}{6} \int_0^3 \int_0^2 x_1^2 x_2 dx_1 dx_2$$

$$= \frac{1}{6} \int_0^3 x_2 \left(\frac{x_1^3}{3}\Big|_0^2\right) dx_2$$

$$= \frac{1}{6} \cdot \frac{8}{3} \int_0^3 x_2 dx_2$$

$$= \frac{8}{18} \frac{x_2^2}{2}\Big|_0^3$$

$$= \frac{8}{18} \cdot \frac{9}{2}$$

$$= 2$$

$$\mu_{x_1} \equiv E[x_1] = \frac{1}{6} \int_0^3 \left(\frac{x_1^3}{2}\Big|_0^2\right) dx_2$$

$$= \frac{1}{6} \int_0^3 \frac{8}{3} dx_2$$

$$= \frac{8}{18} x_2 \Big|_0^3$$

$$= \frac{4}{3}$$

$$\mu_{x_2} \equiv E[x_2] = \int_0^3 \int_0^2 \frac{1}{6} x_1 x_2 dx_1 dx_2$$

$$= \frac{1}{6} \int_0^3 x_2 \frac{x_1^2}{2} \Big|_0^2 dx_2$$

$$= \frac{2}{6} \int_0^3 x_2 dx_2$$

$$= \frac{2}{6} \int_0^3 \frac{x_2^2}{2} \Big|_0^3$$

$$= \frac{2}{6} \cdot \frac{9}{2}$$

$$= \frac{3}{2}$$

Therefore,

$$Cov[x_1,x_2] = E[x_1x_2] - \mu_{x_1}\mu_{x_2} = 2 - rac{4}{3} \cdot rac{3}{2} = 0$$

As expected

6) See table:

			Y-Y_bar	X-X_bar	x*y		b0+b1*X	Y-Y_hat	Y_hat - Y_bar			
	Υ	X	у	x	ху	x^2	Y_hat	e	y_hat	y_hat^2	y^2	e^2
	4	1	-3	-3	9	9	2.929	1.071	-4.071	16.577	9	1.148
	5	4	-2	0	0	0	7.000	-2.000	0.000	0.000	4	4.000
	7	5	0	1	0	1	8.357	-1.357	1.357	1.842	0	1.842
	12	6	5	2	10	4	9.714	2.286	2.714	7.367	25	5.224
Sum	28	16	0	0	19	14	28	0	0	25.7857143	38	12.214
Mean (Y_bar X_bar)	7	4								ESS	TSS	RSS
b1 = xy/x^2 = 19/14	1.357											
b0 = Y_bar - B1*X_bar	1.571											
R2 = ESS/TSS	0.679											
R2 = 1 - RSS/TSS	0.679											