

ICE- Institutos de Ciências Exatas DEMAT - Departamento de Matemática

CÁLCULO 1 - SEMANA 5 - DERIVADAS

Componente Curricular:

IC241 - CÁLCULO I (90h) - Turma: 02 (2020.1)

IC241 - CÁLCULO I (90h) - Turma: 07 (2020.1)

Prof. Roseli Alves de Moura

DERIVADAS - INTRODUÇÃO

A derivada é um limite especial e muito importante, com muitas aplicações em engenharia e nas ciências naturais. Nascida nos problemas de cinemática e de geometria se expandiu para incluir os demais campos do conhecimento.

DEFINIÇÃO: Seja f(x) uma função definida num intervalo aberto I contendo o valor $\underline{x_0}$. A derivada da função f no ponto de abscissa é $\underline{x_0}$ o valor do limite:

$$f'(x_o) = \lim_{x \to a} \frac{f(x) - f(x_0)}{x - x_0}$$

ou do seu equivalente

$$f'(x_o) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

desde que existam.

Indica-se derivada por: $f'(x_o)$, $\frac{df}{dx}(x_o)$ ou $f(x_o)$, notações de Lagrange, Leibniz e

Newton, respectivamente.

Se $f'(x_0)$ existe, dizemos que f é derivável ou diferenciável no ponto de abscissa x_0 . Dizemos que f é derivável em um conjunto se for derivável em cada ponto.

Exemplo 1) Derivar pela definição $f(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$

Resolução: Fazendo $x_0 = a$,

teremos:
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^{\frac{1}{3}} - a^{\frac{1}{3}}}{x - a} =$$

$$= \lim_{x \to a} \frac{x^{\frac{1}{3}} - a^{\frac{1}{3}}}{x - a} \left(\frac{x^{\frac{2}{3}} + x^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}}{x^{\frac{2}{3}} + x^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}} \right) =$$

$$= \lim_{x \to a} \frac{x - a}{(x - a)(x^{\frac{2}{3}} + x^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}})} = \lim_{x \to a} \frac{1}{x^{\frac{2}{3}} + x^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}} = \frac{1}{3a^{\frac{2}{3}}}.$$

Observe que a função f do exemplo está definida para todos os números reais, porém, a expressão de f'(a) não aceita o valor zero para a. Em zero o limite é igual $+\infty$.

FUNÇÃO DERIVADA: Seja D' o conjunto de valores do domínio de f para os quais f'(a) existam. A função $f': D' \to \Re/y = f'(x)$ chama-se função derivada ou simplesmente derivada.

Exemplo: A derivada de $f(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$ é a função $f'(x) = \frac{1}{3\sqrt[3]{x^2}}$.

ÁLGEBRA DAS DERIVADAS:

R1) A derivada de uma soma ou subtração de funções é a soma ou a subtração das derivadas, isto é: $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$

R2) Produto de funções: [f(x).g(x)]' = f'(x).g(x) + f(x).g'(x)

R3) Quociente de funções:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x) \right]^2}$$

R4) Casos particulares: Sendo K uma constante, então:

1)
$$[Kf(x)]' = k.f'(x)$$

$$2) \left[\frac{k}{g(x)} \right] = -\frac{Kg'(x)}{g^2(x)}$$

Usando o limite da definição de derivada prova-se todas as propriedades "operacionais" abaixo:

R1) A derivada de uma soma ou subtração de funções

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

Prova:

$$[f(x) \pm g(x)]' = \lim_{h \to 0} \frac{[f(x+h) \pm g(x+h) - [f(x) \pm g(x)]]}{h} =$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \pm \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) \pm g'(x)$$

R2) Produto de funções: [f(x).g(x)]'=f'(x).g(x)+f(x).g'(x)

Prova:

$$[f(x).g(x)]' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{[f(x+h) - f(x)]g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{[f(x+h) - f(x)]g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h)}{h} = \lim_{h \to 0} \frac$$

R3) Quociente de funções :
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x) \right]^2}$$

Prova:

$$\begin{split} &\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \to 0} \frac{\frac{f(x+h)g(x) - f(x)g(x+h)}{h \cdot g(x) + h \cdot g(x)}}{h \cdot g(x+h)g(x)} = \\ &= \lim_{h \to 0} \frac{\frac{f(x+h)g(x) - f(x)g(x) - f(x)g(x+h) + f(x)g(x)}{h g(x+h)g(x)}}{h g(x+h)g(x)} = \\ &= \lim_{h \to 0} \frac{\left[\frac{f(x+h) - f(x)g(x) - f(x)g(x+h) - g(x)}{h \cdot g(h+h)g(x)} \right]}{h \cdot g(h+h)g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \end{split}$$

R4) Casos particulares: Sendo K uma constante, então a sua derivada é zero e, portanto:

i)
$$[Kf(x)]' = k.f'(x)$$

ii)
$$\left[\frac{k}{g(x)}\right]' = -\frac{Kg'(x)}{g^2(x)}$$

TABELA DE DERIVADAS: Na prática a derivada (isto é, o limite) será mais útil se for usada na forma tabelada. A tabela funciona como uma "caixa preta" no seguinte sentido:

(0 mecanismo da caixa é o limite)

TABELA 1

Função	Derivada
f(x) = K	f'(x) = 0
f(x) = x	f'(x) = 1
$f(x) = x^n$, função	$f'(x) = nx^{n-1}$
potência inteiras positivas	
de x	
$f(x) = x^{-n} = \frac{1}{x^n}, \text{função}$	$f'(x) = -x^{-n-1} = \frac{1}{x^{n+1}}$
potência inteiras negativas	
de x	
$f(x) = x^{p/q} = \sqrt[q]{x^p} ,$	$f'(x) = \frac{p}{q} x^{\frac{p}{q-1}}$
função com potências	q
racionais de x	
$f(x) = x^{\alpha} , \ \alpha \in \Re,$	$f'(x) = \alpha . x^{\alpha - 1}$
função potência	

CONTINUIDADE:

Teorema: Se f(x) tem derivada em x = a, então f(x) é contínua em x = a.

Prova:

$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) = f'(a).0 = 0 \Rightarrow \lim_{x \to a} f(x) = f(a)$$
Logo $f(x)$ é contínua no ponto $x = a$.

Nota: A recíproca não é verdadeira. Basta observar que a função modular f(x) = |x| é contínua no ponto x = 0 porém não tem derivada nesse ponto. Achando as derivadas laterais (limites laterais) da função teremos:

$$f'(0^+) = \lim_{x \to 0^+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0^+} \frac{x}{x} = 1$$

$$f'(0^-) = \lim_{x \to 0^-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0^-} \frac{-x}{x} = -1 \Rightarrow f'(0)$$
 não existe. Isto é, a função não

tem reta tangente nesse ponto.

Um ponto no qual as derivadas laterais $f'(a^+) \neq f'(a^-)$ (existem, são finitas e diferentes), chama-se ponto anguloso da curva.

Exemplos:

- 1) f(x) = |x| tem ponto anguloso em x = 0.
- 2) $f(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$ não tem ponto anguloso em x = 0.

EXERCÍCIOS

I) Derivar as funções abaixo pela definição:

1)
$$f(x) = x^3 - x$$

Resolução: Pela definição teremos:

$$f'(a) = \lim_{x \to a} \frac{x^3 - x - a^3 + a}{x - a} = \lim_{x \to a} \frac{x^3 - a^3 - (x - a)}{x - a} = \lim_{x \to a} (x^2 + ax + a^2 - 1) = 3a^2 - 1$$

para um valor genérico a. Em outras palavras: $\frac{d}{dx}(x^3 - x) = 3x^2 - 1$.

$$2) f(x) = \frac{1}{\sqrt{x}}$$

Resolução: Explorando a outra expressão do limite

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x+h}\sqrt{x}} = \lim_{h \to 0} \frac{x - x - h}{h\sqrt{x+h}\sqrt{x}(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{-1}{\sqrt{x+h}\sqrt{x}(\sqrt{x+h} + \sqrt{x})} = -\frac{1}{2x\sqrt{x}}$$

II) Derivar as funções abaixo usando a tabela

3)
$$y = (x+1)^3$$

Resolução - Desenvolvendo o binômio teremos:

$$y = (x+1)^3 = x^3 + 3x^2 + 3x + 1$$

Logo:
$$y' = 3x^2 + 6x + 3$$

4)
$$y = (x^2 + \sqrt{x})^2$$

Resolução:
$$y = x^4 + 2x^2x^{\frac{1}{2}} + x = x^4 + 2x^{\frac{5}{2}} + x \Rightarrow y' = 4x^3 + 5x^{\frac{3}{2}} + 1$$

$$5) \quad y = \frac{x^2 - 1}{x^2 + 2}$$

Resolução:
$$y' = \frac{(x^2 - 1)' \cdot (x^2 + 2) - (x^2 - 1)(x^2 + 2)'}{(x^2 + 2)^2}$$

$$\Rightarrow y' = \frac{2x.(x^2 + 2) - (x^2 - 1).2x}{(x^2 + 2)^2} = \frac{6x}{(x^2 + 2)^2}$$

6) Sendo
$$f(1) = 1$$
, $f'(1) = 2$, $g(1) = 3$, $g'(1) = 4$ calcule:

a)
$$(f^2)'(1)$$

b)
$$(f + g)'(1)$$

c)
$$(f.g)'(1)$$

$$\mathsf{d}\big)(\frac{f}{g})'(1)$$

Resolução

a) Como $f^2(x) = f(x).f(x)$ teremos pela derivação do produto o seguinte:

$$(f^2(x))'=2.f(x).f'(x)$$
. Para x=1, obtemos $(f^2)'(1)=2.1.2=4$

b)
$$[f(x)+g(x)]'=f'(x)+g'(x) \Rightarrow [f+g]'(1)=f'(1)+g'(1)=2+4=6$$

C)
$$[f.g]'(1) = f'(1).g(1) + f(1).g'(1) = 2.3 + 1.4 + 10$$

$$\mathsf{d}) \left[\frac{f}{g} (1) \right] = \frac{f'(1)g(1) - f(1).g'(1)}{g^2(1)} = \frac{2.3 - 1.4}{3^2} = \frac{2}{9}$$