Linguistic Structure

Biryukov Valentin

Statistics methods Convolutional neural network TreeLSTM

Statistics methods

TF-IDF statistic

TF == Term frequency:

Variants of term frequency (TF) weight

weighting scheme	TF weight
binary	0,1
raw count	$oldsymbol{f}_{t,d}$
term frequency	$\int_{t'\in d} f_{t',d}$
log normalization	$1 + \log(f_{t,d})$
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$
double normalization K	$K + (1-K)rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$

IDF == Inverse document frequency

Variants of inverse document frequency (IDF) weight

weighting scheme	IDF weight ($n_t = \{d \in D : t \in d\} $)
unary	1
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$
inverse document frequency smooth	$\log igg(1+rac{N}{n_t}igg)$
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$

Okapi BM25

Given a query Q, containing keywords q, the BM25 score of a document D is:

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot \left(1-b+b \cdot rac{|D|}{ ext{avgdl}}
ight)},$$

usually, k=2.0, b=0.75

Convolutional neural network

CNN 2014

Figure 1: Model architecture with two channels for an example sentence.

CNN: Layers

- A simple variant using one convolutional layer and pooling
- Based on Collobert and Weston (2011) and Kim (2014)
 "Convolutional Neural Networks for Sentence Classification"
- Word vectors: $\mathbf{x}_i \in \mathbb{R}^k$
- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$ (vectors concatenated)
- Concatenation of words in range: $\mathbf{x}_{i:i+j}$
- ullet Convolutional filter: $\mathbf{w} \in \mathbb{R}^{hk}$ (goes over window of h words)
- Could be 2 (as before) higher, e.g. 3:

CNN: Layers

- ullet Convolutional filter: $\mathbf{w} \in \mathbb{R}^{hk}$ (goes over window of h words)
- Note, filter is vector!
- Window size h could be 2 (as before) or higher, e.g. 3:
- To compute feature for CNN layer:

$$c_i = f(\mathbf{w}^T \mathbf{x}_{i:i+h-1} + b)$$

Filter w is applied to all possible windows (concatenated vectors)

- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$
- All possible windows of length h: $\{\mathbf{x}_{1:h}, \mathbf{x}_{2:h+1}, \dots, \mathbf{x}_{n-h+1:n}\}$
- Result is a feature map: $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$

CNN 2014 Results

Table 2: Results of our CNN models against other methods

RAE: Recursive Autoencoders with pre-trained word

vectors from Wikipedia (Socher et al., 2011).

MV-RNN: Matrix-Vector Recursive Neural Network with

parse trees (Socher et al., 2012).

RNTN: Recursive Neural Tensor Network with tensor-based

feature function and parse trees (Socher et al., 2013).

DCNN: Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logisti regres- sion on top of paragraph vectors (Le and Mikolov, 2014).

CCAE: Combinatorial Category Autoencoders with combinatorial category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al., 2014).

NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).

G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013).

Tree-CRF: Dependency tree with Conditional Random Fields (Nakagawa et al., 2010).

CRF-PR: Conditional Random Fields with Posterior Regularization (Yang and Cardie, 2014).

SVMs: SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded rules as features from Silva et al. (2011)

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	-	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	-	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	–	48.7	87.8	_	-	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	-	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	–	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	-	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	-	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	–	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	-	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	-	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	–	82.7	_
SVM _S (Silva et al., 2011)	_	_	_	_	95.0	_	_

CNN 2014 Results

	Most Similar Words for				
	Static Channel Non-static Channel				
bad	good	terrible			
	terrible	horrible			
	horrible	lousy			
	lousy	stupid			
	great	nice			
and	bad	decent			
good	terrific	solid			
	decent	terrific			
	os	not			
n't	ca	never			
n ı	ireland	nothing			
	wo	neither			
	2,500	2,500			
,	entire	lush			
2	jez	beautiful			
	changer	terrific			
•	decasia	but			
	abysmally	dragon			
	demise	a			
	valiant	and			

Next idea: lets add LSTM! (2015)

	In Vocabulary					Out-of-Vocabulary			
	while	his	you	richard	trading	computer-aided	misinformed	loooook	
	although	your	conservatives	jonathan	advertised	_	_	_	
LSTM-Word	letting	her	we	robert	advertising	_	_	_	
LSTWI-WOID	though	my	guys	neil	turnover	_	_	_	
	minute	their	i	nancy	turnover	_	_	_	
	chile	this	your	hard	heading	computer-guided	informed	look	
LSTM-Char	whole	hhs	young	rich	training	computerized	performed	cook	
(before highway)	meanwhile	is	four	richer	reading	disk-drive	transformed	looks	
	white	has	youth	richter	leading	computer	inform	shook	
	meanwhile	hhs	we	eduard	trade	computer-guided	informed	look	
LSTM-Char	whole	this	your	gerard	training	computer-driven	performed	looks	
(after highway)	though	their	doug	edward	traded	computerized	outperformed	looked	
	nevertheless	your	i	carl	trader	computer	transformed	looking	

Table 6: Nearest neighbor words (based on cosine similarity) of word representations from the large word-level and character-level (before and after highway layers) models trained on the PTB. Last three words are OOV words, and therefore they do not have representations in the word-level model.

https://arxiv.org/pdf/1508.06615.pdf

Highway Network (Srivastava et al. 2015)

- Model *n*-gram interactions.
- Apply transformation while carrying over
- Functions akin to an LSTM memory cell.

$$\mathbf{t} = \sigma(\mathbf{W}_T\mathbf{y} + \mathbf{b}_T)$$
 $\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H\mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$
Transform Gate Input Carry Gate

LSTM TREE

Noun phrase

S stands for sentence, the top-level structure.

NP stands for noun phrase including the subject of the sentence and the object of the sentence.

VP stands for verb phrase, which serves as the predicate.

V stands for verb.

D stands for determiner, such as the definite article "the"

N stands for noun

Use principle of compositionality

The meaning (vector) of a sentence is determined by

- (1) the meanings of its words and
- (2) the rules that combine them.

Models in this section can jointly learn parse trees and compositional vector representations

Recursive vs. recurrent

What we want?

Inputs: two candidate children's representations

Outputs:

- 1. The semantic representation if the two nodes are merged.
- 2. Score of how plausible the new node would be.

score =
$$U^T p$$

$$p = \tanh(W \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b),$$

Same W parameters at all nodes of the tree

Example

Example

The score of a tree is computed by the sum of the parsing decision scores at each node:

$$s(x,y) = \sum_{n \in nodes(y)} s_n$$

x is sentence; y is parse tree

Backpropagaton Through Structure

Principally the same as general backpropagation

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}),$$

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}), \qquad \frac{\partial}{\partial W^{(l)}} E_R = \delta^{(l+1)} (a^{(l)})^T + \lambda W^{(l)}$$

Three differences resulting from the recursion and tree structure:

- Sum derivatives of W from all nodes (like RNN)
- Split derivatives at each node (for tree)
- Add error messages from parent + node itself

Sum derivatives of all nodes

You can actually assume it's a different W at each node Intuition via example:

$$\frac{\partial}{\partial W} f(W(f(Wx)))$$

$$= f'(W(f(Wx))) \left(\left(\frac{\partial}{\partial W} W \right) f(Wx) + W \frac{\partial}{\partial W} f(Wx) \right)$$

$$= f'(W(f(Wx))) (f(Wx) + Wf'(Wx)x)$$

If we take separate derivatives of each occurrence, we get same:

$$\frac{\partial}{\partial W_2} f(W_2(f(W_1x)) + \frac{\partial}{\partial W_1} f(W_2(f(W_1x)))
= f'(W_2(f(W_1x)) (f(W_1x)) + f'(W_2(f(W_1x)) (W_2f'(W_1x)x))
= f'(W_2(f(W_1x)) (f(W_1x) + W_2f'(W_1x)x))
= f'(W(f(W_1x)) (f(W_1x) + W_1f'(W_1x)x))$$

Split derivatives at each node

During forward prop, the parent is computed using 2 children

Hence, the errors need to be computed wrt each of them:

where each child's error is n-dimensional

$$\delta_{p \to c_1 c_2} = [\delta_{p \to c_1} \delta_{p \to c_2}]$$

Add error messages

- At each node:
 - What came up (fprop) must come down (bprop)
 - Total error messages = error messages from parent + error message from own score

Addition

Same Recursive Neural Network as for natural language parsing! (Socher et al. ICML 2011)

Addition: Multi-class segmentation

Method	Accuracy
Pixel CRF (Gould et al., ICCV 2009)	74.3
Classifier on superpixel features	75.9
Region-based energy (Gould et al., ICCV 2009)	76.4
Local labelling (Tighe & Lazebnik, ECCV 2010)	76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010)	77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010)	77.5
Recursive Neural Network	78.1

30

Thank you for

