

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Modelos matemáticos en biología mediante sistemas dinámicos discretos

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221526TS	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante métodos, técnicas y herramientas mediante los sistemas dinámicos discretos, que son útiles para el tratamiento y modelado matemático de algunos procesos biológicos, además de mostrar sus aplicaciones prácticas y teóricas en la investigación biológica y en la solución de problemas concretos.

TEMAS Y SUBTEMAS

1. Modelos de crecimiento de poblaciones.

- 1.1. El modelo de Malthus.
- 1.2. Modelos no lineales.
- 1.3. Análisis de modelos no lineales.
- 1.4. Modelos con crecimiento restringido: Curva de reclutamiento de Beverton-Holt, Modelo logístico discreto y Curva de Ricker.
- 1.5. Modelo de Nicholson-Bailey
- 1.6. Modelo binomial negativo (Griffiths-May).
- 1.7. Modelos de interacciones entre dos especies.
- 1.8. Un modelo simple de depredador-presa.
- 1.9. Modelo de parasitismo.

2. Modelos lineales de poblaciones estructuradas

- 2.1. Modelos lineales y álgebra matricial.
- 2.2. Matrices de proyección para modelos estructurados.
- 2.3. El modelo de Leslie.
- 2.4. El modelo de Usher.
- 2.5. Otros modelos poblacionales estructurados.

3. Modelos en epidemiología

- 3.1. Modelos epidémicos elementales.
- 3.2. Valores umbrales y parámetros críticos.
- 3.3. Poblaciones múltiples e infectividad diferenciada.
- 3.4. Un modelo adaptado de una epidemia de sarampión.

4. Modelos para genética de poblaciones

- 4.1. Algunos antecedentes genéticos.
- 4.2. Apareamiento aleatorio con igual supervivencia.
- 4.3. Recesivos letales, selección y mutación.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las técnicas de demostración. Los estudiantes acudirán a asesorías extra clase. Solución de problemas relacionados con el tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Mathematical Models in Biology: An Introduction, Elizabeth S. Allman, John A. Rhodes, Cambridge University Press, New York, 2014.
- Difference Equations and Inequalities: Theory, Methods, and applications, Ravi P. Agarwal, Second Ed. Marcel Dekker, Inc. New York. Basel, 2000.
- 3. Mathematical Biology: I. An Introduction, J.D. Murray, Springer, New York, 2001.

Consulta:

- 1. Difference Equations: An introduction with applications, Walter G. Kelley y Allan C. Peterson, Second Ed. Academic press, London, 2001.
- 2. Difference Equations: From rabbits to Chaos, Paul Cull, Mary Flahive y Robby Robson, Springer, 2004.
- 3. Introduction to dynamic systems. Theory, models, and applications. D. G. Luenberger, John Wiley & Sons, 1979.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Matemáticas o Doctorado en Matemáticas Aplicadas.

Vo.Bo

DIVISION DE ESTUDIOS

DR. JOSÉ ANIBAL ARIAS AGUI**LAR POSGRADO**

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZO

DR. AGUSTÍN SANTIAGO ALVARADOA
VICE-RECTOR ACADÉMICO
ACADEMICA