Computing Atmospheric Scale Height for Refraction Corrections

(NASA-TM-81059) SHUTTLE PROGRAM: COMPUTING ATMOSPHERIC SCALE HEIGHT FOR REFRACTION CORRECTIONS (NASA) 281 p HC A13/MF A01

N80-23911

CL 04A Uncla G3/46 20332

Mission Planning and Analysis Division March 1980

NASA

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston. Texas

JSC-16462

SHUTTLE PROGRAM

COMPUTING ATMOSPHERIC SCALE HEIGHT FOR REFRACTION CORRECTIONS

By William M. Lear, TRW Systems

JSC Task Monitor: Paul T. Pixley, Mathematical Physics Branch

Approved:

Emil R. Schiesser, Chief Mathematical Physics Branch

Approved:

Ronald L. Berry, Chief

Mission Planning and Analysis Division

Mission Planning and Analysis Division.

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center

Houston, Texas

March 1980

80FM16

CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	COMPUTING REFRACTIVITY	2
3.0	METHODS OF COMPUTING HS	1
4.0	SUMMARY OF RESULTS	8
5.0	CONCLUSIONS AND RECOMMENDATIONS	10
6.0	REFERÊNCES	12

TABLES

Table		Page
1.	PERCENTAGE ERROR IN DE FOR RADIO ATMOSPHERES	13
2	PERCENTAGE ERRÓR IN. Δρ FOR RADIO ATMÓSPHERES	14
3	PERCENTAGE ERROR IN Δ E FOR OPTICAL ATMOSPHERES	15
4	PERCENTAGE ERROR IN Δρ FOR OPTICAL ATMOSPHERES	16
5.	PERCENTAGE ERROR IN \triangle E FOR POINT ARGUELLO RADIO ATMOSPHERES	17
6	PERCENTAGE ERROR IN ΔE FOR POINT ARGUELLO RADIO ATMOSPHERES FOR $E_{M} \geq 3$ DEGREES	- 17
7	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (WHITE SANDS MARCH RADIO ATMOSPHERE)	18
8	VALUES OF H _S FOR STATIONS ABOVE SEA LEVEL (WALLOPS MARCH RADIO ATMOSPHERE)	19
9	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (CAPE CANAVERAL JANUARY RADIO ATMOSPHERE)	20
10	VALUES OF H _S FOR STATIONS ABOVE SEA LEVEL (WHITE SANDS AUGUST RADIO ATMOSPHERE)	21
11	VALUES OF H _S FOR STATIONS ABOVE SEA LEVEL (WALLOPS JULY RADIO ATMOSPHERE)	22
12	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (CAPE CANAVERAL AUGUST RADIO ATMOSPHERE)	23
13 .	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (WHITE SANDS MARCH OPTICAL ATMOSPHERE)	24
14	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (WALLOPS MARCH OPTICAL ATMOSPHERE)	25
15	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (CAPE CANAVERAL JANUARY OPTICAL ATMOSPHERE)	26
16	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (WHITE SANDS AUGUST OPTICAL ATMOSPHERE)	27

80FM16 .

TABLES

Table		Page
17	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (WALLOPS JULY OPTICAL ATMOSPHERE)	28
18	VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (CAPE CANAVERAL AUGUST OPTICAL ATMOSPHERE)	29

80FM16

FIGURES

Figure		Page	
1	H _S versus radio refractivity, N _{SL} ·10 ⁶	30	
2	Hs versus optical refractivity, NSL·106	31	
3	H _S versus radio refractivity, N ₁₅₀₀ ·10 ⁶	32	
4	H _S versus radio refractivity, N ₃₀₀₀ ·10 ⁶	33	
5	HS versus optical refractivity, N ₁₅₀₀ ·10 ⁶	34	
6	Ha vensus optical refractivity, Nacco 106	35	

1.0 INTRODUCTION

The index of refraction minus one is called the modulus of refraction, N. Most real-time refraction correction algorithms assume that N decays exponentially with altitude above a station, h. That is,

 $N = N_O \exp (-h/H_S)$

(1.1)

where

 $N_{\rm O}$ = modulus of refraction at the station

H_S = atmospheric scale height

Errors in either $^{-}N_{O}$ or $^{-}H_{S}$ cause errors in the estimated refraction corrections: $\Delta\rho$ for range and ΔE for elevation angle. Errors in ΔE are generally the most critical. For example, using mean monthly values of N_{O} instead of the actual value is estimated to cause an RMS error of 2.5 percent in ΔE when tracking at orbital altitudes. As will be seen, current methods of computing $^{-}H_{S}$ can cause errors of over 10 percent in ΔE and absolute errors of over 1 milliradian. Note that C-band radar hardware errors are about 0.1 milliradian.

Exact values of N_0 can be easily measured at a station. However, there is no exact value of H_S because equation (1.1) is only an approximation, and only some "optimum" value of H_S can be computed. Six different methods of computing H_S have been investigated using 30 different radio atmospheres and 27 optical atmospheres. Exact refraction corrections were computed using tabular values of refractivity, $N \cdot 10^6$; obtained by weather balloons. Exact corrections were computed for four values of elevation angle and for two different altitudes: $H = 10^6$ meters = 540 n. mi., and $H = 10^4$ meters above the tracking site. Approximate corrections were then computed using the different values of H_S . A comparison was then made with the exact values to determine which method of computing H_S was best.

Appendix A contains tables of refractivity versus altitude for 30 different radio atmospheres. Refractivity was computed using the equations in section 2.0 from the information given in the tables of reference 1. Three atmospheres from each location were used: the month with the lowest radio refractivity, the month with the highest radio refractivity, and the mean annual atmosphere. Appendix B contains tables of refractivity versus altitude for 27 different optical atmospheres. Appendix C contains tables of the refraction corrections for the 30 different radio atmospheres. Appendix D contains tables of the refraction corrections for the 27 optical atmospheres. Appendix E lists the equations used to compute the refraction corrections.

2.0 COMPUTING REFRACTIVITY

These equations were obtained from reference 2. The following quantities are defined and used in the equation for refractivity.

n = index of refraction

N = n-1, modulus of refraction

 $N \cdot 10^6 = refractivity$

 T_D = dry bulb temperature in degrees kelvin = $273.15 + t^{\circ}$ Celsius

 T_W = wet bulb temperature in degrees kelvin

RH = relative humidity in percent

es = saturation water vapor pressure in millibars

 $e_a = \frac{RH}{100} e_s$, actual or aqueous vapor pressure in millibars

P = pressure in millibars.

 ε = 0.622, ratio of molecular weight of water to dry air

L = 595 calorie/gram, latent heat of vaporization

 e_{SO} = 6.11 millibars, saturation vapor pressure at 273.15 K

K = 19.75366

cp = 0.24 calorie/gram/deg K, specific heat of dry air at a constant
 pressure-

 $D = T_D - T_W$ degrees kelvin

λ = wavelength of light in microns = 0.555 micron for yellow-green light = 0.75 micron for a ruby laser

80FM16

The equation for optical refractivity is

$$N \cdot 10^{6} = \frac{77.5P}{T_{D}} (1 + 5.15 \cdot 10^{-3}/\lambda^{2} + 1.07 \cdot 10^{-4}/\lambda^{4})$$
 (2.1)

For radio frequencies, the refractivity is given by

$$N \cdot 10^6 = \frac{77.6}{T_D} \left(P + 4810 \frac{a_a}{T_D} \right) \tag{2.2}$$

The following equation for e_a is used when T_D and T_W are given.

$$e_{a} = \frac{\varepsilon Le_{so} EXP(K(T_{W} - 273.15)/T_{W}) - c_{p}PD}{\varepsilon(L + c_{p}VD)} mbar$$
 (2.3)

If RH and $T_{\rm D}$ are given, the following equations can be used to compute $e_{\rm a}$ (ref. 2).

$$x = \frac{17.2694 (T_D - 273.15)}{T_D - 35.85}$$
 (2.4)

$$e_s = 6.11 e^x$$
 millibars (2.5)

$$e_{a} = \frac{RH}{100} e_{s} \tag{2.6}$$

The IRIG documents (ref. 1) use an alternate set of equations.

$$x = 24.858048 \left(1 - \frac{273.16}{T_D}\right) - 5.028 \ln \frac{T_D}{273.16}$$

$$+ 3.464878 \cdot 10^{-4} \left[1 - \exp\left(-19.104276 \left(\frac{T_D}{273.16} - 1\right)\right)\right]$$

$$- 9.87200 \cdot 10^{-4} \left[1 - \exp\left(10.98227 \left(1 - \frac{273.16}{T_D}\right)\right)\right]$$

$$e_S = 6.11136e^X \text{ millibars}$$
(2.8)

$$e_{a} = \frac{RH}{100} e_{s} \tag{2.9}$$

Note that the maximum difference between equation (2.5) and equation (2.8) is about 0.019 millibar, a small quantity.

3.0 METHODS OF COMPUTING HS

Six different methods of computing $H_{\rm S}$ were used. They are described below. $N_{\rm O}$ is the modulus of refraction at the tracking site.

H_{S1}

$$N_{1000} = N_0 - 7.32 \cdot 10^{-6} \exp(5577 N_0)$$

$$H_{S1} = \frac{1000}{\ln(N_0/N_{1000})} \text{ meters}$$

This method of computing Hg was developed in 1959 at the National Bureau of Standards (ref. 3). It is the most widely used. Goddard Spaceflight Center uses this method to compute Hg and supplies these values in their station characeteristics tables, which are in turn used by Johnson Space Center. An advantage is that it only requires the value of $N_{\rm O}$ at the tracking site. No high altitude weather data are needed. A deficiency is that it does not account directly for station altitude. For example, if Hg = 6000 meters for a particular station, then the equation will give Hg = 7000 meters for a station 1 kilometer above it. The fact is that both stations may have very nearly the same value of Hg. Hg1 has a maximum value of about 8502

meters, a deficiency for optical atmospheres since they require values as large as 11 000 meters.

H_{S2}

 \overline{N}_{30} 000 = annual value of N at 30 000 meters above the tracking site.

$$H_{S2} = \frac{30\ 000}{\ln(N_0/\bar{N}_{30\ 000})}$$
 meters

This is approximately the method used at Patrick AFB for the Eastern Test Range. An advantage is that $\overline{N}_{30\ 000}$ is approximately the same for all tracking sites, and thus high altitude weather data is not required for all sites. Also, the mean monthly values of N at h = 30 000 meters change very little. A disadvantage is that most of the refraction (bending) occurs well below h = 30 000 meters, and the refractivity at h = 30 000 meters has little significance.

H_{S3}

 N_{4500} = value of N at 4500 meters above the tracking site.

$$H_{S3} = \frac{4500}{\ln(N_0/N_{4500})}$$
 meters

The method of computing H_S requires weather data at h=4500 meters above the tracking site.

H_{S4}

 \overline{h} = altitude above tracking site at which N = N_O/2 (4000 < \overline{h} < 6000 m)

$$H_{S4} = \overline{h}/\ln(2)$$

HSU requires low altitude weather data.

H_{S5}

HS5 is determined by a percentage_least-squares fit of the elevation angle refraction corrections. It is the optimum value of HS, giving the least amount of error. The errors would be zero if N truly decayed exponentially with altitude. The errors in the refraction corrections using HS5 are a measure of the nonexponentiality of the atmosphere. This method requires complete high altitude weather data and nontrivial computer programs to fit the data.

HS6 For Radio Atmospheres

 $h_{\mbox{STA}}$ = altitude of station in meters above MSL.

Obtain H_{S6} by iterating the equation below. Use H_{S6} = 7000 meters as an initial estimate.

 $H_{S6} = A - B(N_0 \cdot 10^6) \exp[(h_{STA} - C)/H_{S6}]$

where, for $h_{STA} \le 1500$ meters

A = 17 590 meters B = 30.55 meters C = 0

(A = 20 285 meters B = 40 meters C = 0 for Point Arguello, California)

For 1500 \leq h_{STA} < 2500 meters

A = 18 588 meters B = 40.814 meters C = 1500 meters

For h_{STA} ≥ 2500 meters

 $A = 21 \ 273 \ \text{meters}$ $B = 60.227 \ \text{meters}$ $C = 3000 \ \text{meters}$

Note if $h_{STA} = C$, then H_{S6} is a linear function of N_0 .

 $H_{S6} = A - B(N \cdot 10^6)$

The linear coefficients A=17 590 meters, B=30.55 meters for stations at sea level were determined by a percentage least-squares fit of all the elevation angle refraction corrections for 24 different atmospheres, 4 elevation angles, and 2 different altitudes: $H=10^6$ meters and $H=10^4$ meters. A total of 192 nonlinear equations in the two unknowns, A and B. A quadratic fit was also tried and yielded no signifiant improvement. The results of this exercise showed H_{S3} to also be a good estimate of scale height (but also requiring low altitude weather data). The remaining values of A and B were obtained by a standard least-squares fit to the H_{S3} values for 24 different atmospheres, except for 13 atmospheres at Point Arguello.

The radio atmospheres in the vicinity of Point Arguello, California required separate treatment because of the high degree of nonexponentiallity of the radio atmospheres there (fig. A3 appendix A). This was probably caused by the cool Peru current flowing past Point Arguello. The average relative humidity was frequently very high at low altitudes (92 percent for July, a very dry month).

Like H_{S1} , H_{S6} requires no high altitude weather data, only the refractivity at the station. Unlike H_{S1} , H_{S6} does account for the altitude of the station. To elaborate further, let $N_{C} \cdot 10^{5}$ be the refractivity at the altitude C (C = 0, 1500, 3000 meters). At the altitude of h = C above MSL, it was

$$H_{S6} = A - B(N_C \cdot 10^6)$$

a linear function of $N_C \cdot 10^6$, where A and B were determined by least squares fits to minimize the errors in the elevation angle refraction corrections. However, refractivity $N_O \cdot 10^6$ is given at the station altitude $h_{\rm STA}$. Refractivity at the altitude h = C is (for an exponential atmosphere)

$$N_{C} \cdot 10^6 = N_{o} \cdot 10^6 \exp \left[(h_{STA} - C) / H_{S6} \right]$$

Combining these two equations gives the iteration equation for H_{S6} .

HS6 For Optical Atmospheres

hSTA = station altitude in meters above MSL

 λ = wavelength of light in microns

= 0.555 micron for yellow-green light

= 0.75 micron for ruby laser

 $N_{\rm O}$ = modulus of refraction at station for the wavelength λ

For optical atmospheres, convert $N_{\rm O}$ to the modulus of refraction for yellowgreen light by

$$N_{o} = \frac{1.017847170}{1 + 5.15 \cdot 10^{-3}/\lambda^{2} + 1.07 \cdot 10^{-4}/\lambda^{4}} N_{o}$$

Then obtain H_{S6} by iterating the equation below. Use H_{S6} = 9800 meters as an initial estimate.

$$H_{S6} = A - B(N_0 \cdot 10^6) \exp[(h_{STA} - C)/H_{S6}]$$

where, for hSTA < 1500 meters

A = 27 480 meters B = 64.38 meters C = 0

For 1500 \leq h_{STA} < 2500 meters

 $A = 24 \ 035 \ \text{meters}$ $B = 61.181 \ \text{meters}$ $C = 1500 \ \text{meters}$

For hSTA > 2500 meters

A = 19 092 meters B = 47.371 meters C = 3000 meters

The A and B coefficients were obtained in a similar manner to those for the radio atmospheres.

4.0 SUMMARY OF RESULTS

The very accurate refraction correction equations of appendix E were used to compute the exact refraction corrections using the tabular values of refractivity in appendixes A and B. The the approximate corrections were computed using the six values of HS (sec. 3). Again, the equations in appendix E were used, but with the assumption of an exponential atmosphere.

$$N = N_o \exp(-h/H_S)$$

The percentage errors in the corrections were then computed to determine which method of computing HS was best.

Figures 1 and 2 are revealing. They show plots of H_{S1} , H_{S5} , and H_{S6} versus $N_{SL} \cdot 10^6$ (refractivity at sea level) for radio atmospheres and optical atmospheres. Remember, H_{S5} represents the optimum scale height, giving the least amount of error. From figure 1, for radio atmospheres it is clear that H_{S5} is better than H_{S1} , which is generally too small, the maximum error being about 1500 meters. From figure 2, for optical atmospheres, it is even clearer that H_{S1} is inadequate, with a maximum error from optimum of over 3000 meters.

Table 1 shows the percentage error in computing the elevation angle refraction correction, ΔE , at the various locations of the radio atmospheres. As a point of comparison, using mean monthly values of $N_{\rm O}$ cause about a 2.5 percent. RMS error in ΔE at orbital altitudes and slightly more at low altitudes (ref. 4). As can be seen from the overall RMS statistics in table 1, $H_{\rm S1}$ and HS2 cause errors of about 7 percent in AE. HS6 offers a factor of 2.5 improvement over using $H_{\rm S1}$ and gives an RMS error of 2.8 percent. For semiarid atmospheres, as found at White Sands and Edwards AFB, the errors in computing ΔE by using H_{S1} were over 10 percent. Using H_{S2} here was even worse. However, using HS6 reduced the errors to 2 percent and 1 percent, a factor of 5 and 10 improvement. HS5, the optimum scale height, has an RMS error of 1.6 percent, which is a measure of the nonexponentiality of the radio atmospheres. 1.6 percent is very good; but remember, to achieve this requires extensive high altitude weather data and complicated computer programs. The overall accuracy using $H_{\rm S3}$ and $H_{\rm S4}$ is about 2.9 percent of ΔE . Both are easy to compute but require a small amount of low altitude weather data, which may not be available. It is encouraging to see that HS6, which requires only $N_{\rm O}$ at the site, is slightly better than either $H_{\rm S3}$ or $H_{\rm S4}$. Thus, it is not generally even necessary or desirable to obtain low altitude weather

Table 2 shows the percentage error in computing the range refraction correction, $\Delta\rho$, for radio atmospheres. While it is not a goal of this study to improve the accuracy of $\Delta\rho$, table 2 shows an improvement in estimation accuracy of $\Delta\rho$ by a factor of 1.9 when using $\rm H_{S6}$ compared to using $\rm H_{S1}$, bringing the errors down from 7.2 percent to 3.8 percent. Note though that no scale height gave an absolute error of greater than 10 meters, which is about the standard deviation of the range bias error for a C-band radar. Also note that using a mean monthly value of $\rm N_{O}$ causes an RMS error of about 1.7 percent for $\Delta\rho$ (ref. 4).

Table 3 shows the percentage error in ΔE for optical atmospheres. Clearly, H_S does not do well for optical atmospheres, giving an RMS error of 18.7 percent. H_{S2} does even worse with an RMS error of 23 percent. H_{S6} does quite well at 1.8 percent, which is close to the optimum value for H_{S5} of 1.5 percent of ΔE . H_{S3} at 1.9 percent is the choice over H_{S4} at 2.7 percent.

Table 4 shows the percentage error in $\Delta\rho$ for optical atmospheres. The errors are quite large. Still Hg6 at 6.5 percent is better than Hg1 at 9.5 percent. From the tables in appendix D, it can be seen that the range refraction correction _____

errors are much larger at orbital altitudes. At $H = 10^4$ meters, the errors are very small for H_{S6} . For example, at White Sands, the error in Δp using H_{S6} was 10.7 percent for $H = 10^6$ meters and 0.3 percent for $H = 10^4$ meters. This bodes well for surveying work.

Figures A-1, A-2 and A-3 in appendix A are plots of $\ln(N\cdot10^6)$ versus altitude for three different radio atmospheres. If the atmospheres were truly exponential, these plots would be straight lines. Figure A-3 for Point Arguello, California shows a highly nonlinear plot, particularly at the low altitudes where most of the bending takes place. This will cause large errors in computing real-time refraction corrections, which assume a linear plot. Table 5 shows the percentage errors in computing ΔE for the Point Arguello radio atmospheres. It is seen that the errors are quite large. If the measured elevation angle is restricted to be greater than or equal to 3 degrees, table 6 shows that H_{S6} will do a good job though with errors on the order of 1 percent of ΔE . Because of the unusual nature of this Pacific Coast atmosphere, a special set of fit coefficients was required for H_{S6} here. The fit coefficients were based on the computed values of H_{S3} for the 12 monthly atmospheres and 1 annual atmosphere from reference 1. Below $E_M = 3$ degrees, use of H_{S6} though causes a maximum error of about 1.7 milliradians at $E_M = 0.5$ degree for the July atmosphere. At $E_M = 1$ degree, the error is about 0.6 milliradian.

Figures 3 through 6 show plots of H_{S1} , H_{S3} and H_{S6} versus the refractivity at the altitudes of 1500 meter and 3000 meter. The reference points, of H_{S3} , show a strong linear trend. Thus, H_{S6} was made to be a linear function of refractivity at the altitudes: C = 1500 meter and C = 3000 meter.

Tables 7 through 12 list values of $\rm H_{S1}$, $\rm H_{S3}$ and $\rm H_{S6}$ for stations above sea level for various radio atmospheres. Tables 13 through 18 show values of $\rm H_{S3}$ and $\rm H_{S6}$ for stations above sea level for various optical atmospheres. It is regretted that values of $\rm H_{S5}$ were not available for stations above sea level. The large amount of time and work involved in computing these values was beyond the scope of this study. However, $\rm H_{S3}$ is generally fairly close to optimum and easily computed. Thus, $\rm H_{S3}$ should be used as the reference scale height in these tables. It is seen that $\rm H_{S6}$ generally agrees well with $\rm H_{S3}$. The performance of $\rm H_{S1}$ is generally poor, and completely unacceptable for optical atmospheres.

5.0 CONCLUSIONS AND RECOMMENDATIONS

It is clear—that the best algorithm for general use is the one for H_{S6} . It is easy to use and requires no high altitude weather data, only the refractivity at the radar site. It is the second most accurate value of H_{S} , with H_{S5} , by definition, being the most accurate. H_{S5} is not simple to compute and requires complete high altitude weather data. The worldwide RMS accuracy of computing the elevation angle refraction correction using H_{S6} is about 2.8 percent for radio atmospheres, in line with the 2.5 percent error in ΔE due to uncertainties in N_{O} .

HS3 and HS4 both are easy to compute but require low altitude weather data above the site. For radio and optical atmospheres, their accuracy is not

generally quite as good as that provided by Hs6, which requires no low altitude weather data. So, why bother with weather balloons?

 ${
m H_{S1}}$, the most widely used value currently, is easily obtained but gives RMS worldwide errors of 7 percent of ΔE for radio atmospheres, 2.5 times larger than using ${
m H_{S6}}$. For semiarid atmospheres, the errors caused by using ${
m H_{S1}}$ can be over 10 percent, whereas ${
m H_{S6}}$ offers 1-percent to 2-percent accuracy here, a factor of 5 to 10 improvement in accuracy.

 H_{S2} for radio atmospheres works well at Patrick AFB, where it was developed. However, its overall accuracy of 7.4-percent error in ΔE is the worst. It can not be recommended.

For optical atmospheres, H_{S6} is the clear choice, offering 1.8 percent accuracy in computing ΔE , close to the optimum of 1.5 percent using H_{S5} . H_{S3} at 1.9 percent is the choice over H_{S4} at 2.7 percent. The use of H_{S1} or H_{S2} with optical atmospheres is unacceptable, with errors of 19 percent and 23 percent.

Using H_{S6} compared with H_{S1} or H_{S2} also improves the accuracy of the range refraction correction, $\Delta\rho$. Use of H_{S6} gives errors of 3.8 percent of $\Delta\rho$ for radio atmospheres and 6.5 percent for optical atmospheres. However, for optical atmospheres where the target is below 10 000 meters in altitude, the $\Delta\rho$ errors are generally negligible using H_{S6} . This bodes well for surveying work.

6.0 REFERENCES

1. Inter-Range Instrumentation Group (IRIG) Range Reference Atmospheres. U.S. government agencies may request copies from

Secretariat
Range Commanders Council
ATTN: STEWS-SA-S-RCC
White Sands Missile Range
New Mexico 88002

Others may request copies from

Defense Documentation Center (DDC)
ATTN: DDC-IRA
Cameron Station
Alexandria, Virginia 22314

- 2. Telephone conversation with James Ward at Patrick AFB on October 15, 1979. Phone 305-853-9601.
- 3. Bean, B. R.; Thayer, B. D.; and Cahoon, B. A.: Methods of Predicting Atmospheric Bending of Radio Waves. NBS Report 6056, National Bureau of Standards, Boulder, Colorado, May 18, 1959.
- 4. Lear, William M.: Refraction Correction Equations and Tables. NASA/JSC IN 79-FM-42, October 1979.

TABLE 1.- PERCENTAGE ERROR IN DE FOR RADIO ATMOSPHERES

I LOCATION I	! ! ^H S1 !	H _{S2}	H _S 3	H _{S4}	! H _{S5}	H _{S6}
! ! White Sands	! ! 10.65	10.93	1 2.76	1.72	l 1. 0.68	2.03
! Edwards AFB	1 10.40 !	13.18.	134	.86	.70	1.06
! Eglin AFB	7.74	4.18	3.86	3.51	1.38	3.44
! Ascension	! 3.50	3.87	3.02	3.32	1.83	_ 2.59
Kwajalein	6.23	3.52	2.92	2.77	! ! - 1.38	3.05
! Wallops	8.14	8.65	2.97	2.69	! ! 1.91	! 2.34 !
! Cape Canaveral	3.00	8.11	3 • 91.	3.79	! ! 2.83	- 4-27 !
! Cape Canaveral ^a	1 3.53	3.48	1.91	2.74	1 1 2.94	3.03
! ! Patrick AFB	! 4.55	2.04	1.79	2.07	! ! 1.51	3.10
! Hawaii	: ! 3.61. !	1 1 2.51	! ! 2.94	3.96	! ! 1.03	2.20
! RMS !	! - 7.00. ! !	7.37	1 1 2.94 : 1	! ! _ 2 ₂ 91 !	! ! 1.60 !	2.81 ! ! 2.81 !

 $a_{\text{For}} E_{\text{M}} \ge 3$ degrees.

TABLE 2.- PERCENTAGE ERROR IN Δρ FOR RADIO ATMOSPHERES.

LOCATION	! ^H S1	l ^H S2	H _{S3}	! ! H _{S4} !	H _{S5} .	I. ! HS6!
! !_White Sands .	1 ! 7.81	7.41	1.25	! ! - 1.71 :	2.79	! ! 2.81
! Edwards AFB	6.66	9.07	1 2.4 <u>7</u>	! 2.83	1 1 2.98	! 2.73 !
Eglin AFB	7.23	3.81	3.37	2.87	1.62	! ! 3.33 !
! Ascension	6.67	2.14	5.42	5.68	4.36	! 2.95 !
: Kwajalein	8.46	1.47	3.89	3.94	3.58	5.69
! Wallops	7.16	5.32	2.59	2.73	4.32	3.10
! Cape Canaveral	7.39	2.26	5.26	6.18	6.67	5.89
! Patrick AFB	7.37	4.02	2.75	2.65	3.57	3.82
! Hawaii	6.09	1.84	5.56	6.54	3.20	1.70
RMS	7.23	4.85	3.89	4.25	3.91	3.79

TABLE 3.- PERCENTAGE ERROR IN . AE . FOR OPTICAL ATMOSPHERES

LOCATION	! H _{S1} !	H _{S2}	H _{S3}	. H _{S4} !	H _{S5}	Hs6
! ! White Sands	1 1 23.26 1	28.30.	l. 2.11	3.99	2.04	2.58
! ! _Edwards .AFB	1 17.95	24.02	1.35	1.57	1.27	1.42
! ! Eglin AFB	1 14.66	18.20	1.50	1.48	.93	2.03
! Ascension	1 19.78	1 24.39	! 2.69	3.62	1.99	2.18
! ! Kwajalein	I. 19.40	! ! 24.20	! ! 1.69	2.64	1.50	1.76
! Wallops	! ! 15.52	! ! 18.79	1 1.10	1.58	1.00	1.06
! Cape Canaveral	! ! 18.90	! - ! 23.15	1. 1.70	1 2.49	1.50	1.58
! ! Hawaii	1 1 19.15	1 1 23.37	1 _2.21	1 2.58	1.62	16
! RMS	! 18.74.	! ! 23.25 !	! ! 1.86	1 2.65 1	! ! 1.53 !	1.84

TABLE 4.- PERCENTAGE ERROR IN AP FOR OPTICAL ATMOSPHERES

I LOCATION I	! ! ^H S1 !	H _{S2}	H _{S3}	H _S u	I H _{S5.}	H _{S6}
! ! White Sands	1 1 10.61	13.80	8.63	l 6.03,	8.85	!
1 Edwards AFB	9.12	13.22	7.08	5.88	6.74	6.65
Eglin AFB	1 9.02	11.56	- 5.05	4.78	4.15	5.71
1. Ascension	9.68	12.77	5.57	4.56	7.07	6.72
. Kwajalein	9.82	13.03	5.84	4.70	6.51	7.33
! Wallops	1. 8.70	11.03	5.13	4.89	4.99	5.02
! Cape Canaveral	9.66	12.56	5.78	5.03	6.42	6.22
! Hawaii	9.65	! 12.54	5.36	4.97	6.69	6.32
! RMS	9.55	1 12.59 !	6.16	5.13 !	6.56 1	1 6.49 1 1 1

80FM16

TABLE 5.- PERCENTAGE ERROR IN . AE . FOR POINT_ARGUELLO RADIO ATMOSPHERES.

! TIME _	I- ^H S1	H _{S2}	- H _S 3	H _{S4}	- . II ₃₅ _	Hs6
i iJuly	6.96	9.38	8.65	! ! 9.06	! ! 4.79	8.28
1. December	3.58	3.18	3.40	4.69	1.79	3.35
Annual	3.29	4.63	5.45 I	6.47	. 2.92 I	5.67 I

TABLE 6.- PERCENTAGE ERROR IN ΔE FOR POINT ARGUELLO RADIO ATMOSPHERES FOR $E_{M} \geq 3$ DEGREES

I. TIME. I	! ! H _{S1}	H _{S2}	H _{S3}	! ! ^H S4	! ! ! H _{S5} ! ! !	H _{S6}
! ! July	1 0.96	2.08	! ! 1.38	1.77	5.05	1.05
December -	4.47	4.08	.71	1.91	1.87	.66
! Annual	1- 1.95 1	.56	.96	1.87	- 3.21 -	1.14 1

TABLE 7.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (White Sands_March Radio_Atmosphere)

! ! hsta, m ! !	No·10 ⁶	H _{S3} , m	H _{S6} , m .	H _{S1} , m.
! 0 ^a	294.53	8333 8333	. 8592 J	7273
1. 250.	286.90	8338	8566	7401
500	279.36-	8348	8541	7525
750	271.89	8364	8 <u>5</u> 19.	7643
I I 1000	264.48	 8384	8502	7755 .
1 1250	257.13	. 8419	8488	7862
1499.9	250.51	8421	. 8451	7953.
1500	250.51	8421	8364	7953
1 1750	244.61	8381	8299	8031
2000	237.95	! 8399	8271	8112
1 2250	230.94	! ! 8443	8267	819.2
1 2499.9	223.82	8514	8280	8266
1 2500	! 223.82	! ! 8514	! 8558. !	8266
2750	! ! 216.70	! ! 8594	8596	8331
I. 3000	209.93	! ! 8661	8630	8384
1 3250	! 203.85	! ! _ 8695	! ! 8635	8424
I 3500	! ! 197.39	! ! 8770	! 8680!	8459
1 3750	! ! 190.02	! 8945	8812	8486
1 4000 1	! 182.66 !	! ! 9.158 !	! 8975 !	8500 1

 $a_{H_{S5}} = 8874$ meters.

TABLE 8.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL. (Wallops March Radio Atmosphere)

! !- h _{STA} , m !	I INo•106 I	H _{S3} , m	H _{S6} , m	H _{S1} , m	! !
! 0a	! ! 306.80	8089_	l. 8217	. 7061	!
1_ 250	298.61.	8065	8185	7204	l l ,
500	290.66	8043	8148	7339	!
! 750,	282.83	8021	! !- 8113	7468	l l
1000	275.06	8014	8080	7593	!
11250	267.52	8010	8043	7710	! !
1499.9	258.66	8088	8075	7840	! !
1500.	258.66	8088	8031	7840	! !
1750	249.27	8227	8095	7970	: !.
2000	240.47	8358	8153	8082	! ! –
2250	232.83	8423	8172	8171	! !
2499.9	226.10	8436	! 81 <u>5</u> 6	8243	: !
2500	226.10	8436	!: 8439	8243	1 1
2750	219.86	8418	8419	8303	! !
3000	212.99	8453	8445	_8361	! !
3250	205.80	!8538	! 8509	8412	! !
3500	1 198.84	8618	! ! 8579	1 8452	! !
3750	192.51	! ! 8651	8625	8478	! -
i 4000 i	! 186.63 !	8671	1 8656 1	! 849 <u>.</u> 4	: ! !

 $a_{H\tilde{S}5}$ = 8376 meters.

TABLE 9.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Cape Canaveral January Radio Atmosphere).

! !_ h _{STA} , <u>m</u> !	! ! No•10 ⁶ !	! H _{S3} , m !	I. I H _{S6} , m I	! ! H _{S1} , m ! !
! 0a	- 349.76	! !. 6256	l 6905	6281
! 250	! 335.33	6403	1 6972	6547
500	318.47	6647	 ! - 7157	6853
750	306.33	677.7	7205	7069
1000	2 <u>96</u> .43	6845	7181	7241
1250	287.36	6899	i. ! 7129	7394
1499.9	276.39	7040	7186	- 7572
. 1500	276.39	7040	7307	7572
1750	262.40	7336	7516	7786
2000	248.70	7682	7 762	7977
2250	236.99	7977	<u> </u>	8124
2499.9	225.15	8343	8208	8253
2500	225.15	8343	8489	8253
2750	212.37	8862	8839	8366
30,00	201.39	9349	9144	8439
3250	193.98	9556	9271	8473
3500	188.91	9540	9265	8489 !
3750	184.09	9517	9249	8498 1
4000	179.42	9485 I	92 <u>3</u> 1 I	8502 !

 $a_{H_{S5}} = 6389$ meters.

TABLE 10.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (White Sands August Radio Atmosphere)

h _{STA} , m	No·106	Н _{S3} , m	H _{S6} , m	H _{S1} , m
0a	348.95_	7475	6930	6296
l I 250	! ! 336.40	! ! 7501	6936	6527
! ! 500	1 1 324.33	!- ! 7509	i 6942	6748
! ! 750	! !312.72	1 1 7488	1 6947	6956
! ! 1000	I I 301.53	1 7473	1 6954	7153
I. I 1250	1 290.73	! ! 7475	6961	7338
! ! 1499.9	! ! 280.30	1 7493	1. 697.1	7510
! ! 1500	! ! 280.30	1 7493	1. 1 7148	7510
! ! 1750	1. 1. 271.92	1 7442	7092	7642
1 2000	1 1 264.19	1 7373	7008	7760
! ! 2250	1 256.55	1 7323	6918	7870
1 1 2499.9	! ! 248.91	1 1 7289	1 6826	7975
! ! 2500	! 248.91	7289	7277	7975
! ! 2750	1 241.23	l 7285	7238	8073
! ! 3000	! ! _ 233.43	1 7322	7214	8165 .
! ! 3250	1 225.39	1 . 7400.	1 7220	8250
1 3500	! 217.51	1 1 7487	1 - 7236	! 8324
1 1 3750	! ! 210.26	1 1 7545	1 7224	8382
! ! 4000	! ! 203.81	1 7558 1	! ! 7.158 !	8425 1

 $a_{\rm HS5}$ = 7239 meters.

TABLE 11.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Wallops July Radio Atmosphere)

h _{STA} , m	I N _o ·10 ⁶	Hs3, m	! ! H _{S6} , m !	l H _{S1} , m l
i oa	372.34	6313	L 6215	5863
1 250	348.65	6559	6523	. 63 01
500	329.85	6749	67.37	6647
750	316.79	6834	6780	6884
1000	306.56	6859	672 <u>2</u>	7065
1250	296.56	6856	6659	7239
1499.9	286.86	6812	6584	7402
1500	286.86	6812	6880	7402
1750	277.42	6762	. 68441	7556
2000	267.48	67.68	6844	7710
2250	256.92	6876	6898	7865
2499.9	247.07	6991	6942	7999 !
2500	247.07	6991	7369	7999 !
2750	238.42	7090	7391	8107
3000p	230.12	7188	7414 .1	8201 !
3250	221.63	7319	7471	8287
3500	213.08	7482	- 7563 !	8360 !
3750	204.87	7646 I	7666	8418
4000	197.24 !	7793 I 1	7760 ! !	8459 ! !

 $a_{\rm HS5}$ = 5997 meters.

 $b_{HS5} = 7091$ meters.

TABLE 12.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Cape Canaveral August Radio Atmosphere)

h _{STA} , m	N _{o•10} 6 !	H _{S3} , m !	H _{S6} , m l	H _{S1} , m
0a	399.42 I	5943	5388. <u>.</u>	5366
! ! 2 <u>5</u> 0	373.95	6237	5649	5833
! ! 500	355 .84	6393	5727	6168
! ! 750	339.52	6501	5781	6470
I 1000	324.12	6596	5838	6751
! ! 1250	308.60	6732	5964	7029
1499.9	1 295.35	6866	6008	7259
1500b	1 295.35	6866	6534	7259
1 1750	! 284.98	6932	6501	7433
1 2000	1 274.65	7003	6479	7600
1 . 2250	1 262.98	7124	6553	7777
1 2499.9	251.73	7243	6645	7937
2500	251.73	1 7243	7138	7937
2750	1 242.23	1. 730,1	7183	8060
3000	233.74	7338	7196	8161
1 3250	226.16	7356	1 7169 _	. 8242
!. ! 3500	218.80	7383	7139	1. 8312
! ! 3750	! 210.94	7456	7167	8376
! ! 4000 !	! 202.04 !	7615	! 7325 !	! 8435 !

 $a_{HS5} = 5501$ meters.

 $b_{HS5} \approx 6400$ meters.

TABLE 13.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (White Sands March Optical Atmosphere)

! h _{STA} , m	I I N _{o•10} 6 ! I		Hs6. m
]. 0 <u>a</u>	270.06	10 300	10 094
250	264.44	10 185	10 025
500	258.78	10 086	9 962 1
750	253.06	10 004	9 907
1 1000	247.28	9 932	9 861
1 1250	241.44	9 887	9 828 !
1 1499.9	235.81	9 837	9 783 !
_1500 _	235.81	9 837	9 608
1750	229.86	9 818	9 601
2000	224.46	9 760	9 565
2250	219,16	9 694	9 529
2499.9	213.92.	9. 637.	9 493 1
2500	213.92	9 637	9,479
2750	208.72	9 581	9 463 1
3000	203.56	9 526	9 449 1
1 3250	198.52	9 481	9 435
1 3500	193.55	9. 433	9 424 1
3750	188.63	9 388	9 416 !
1 4000 11	183.79	9 353	9 409

 $a_{HS5} = 10 355 \text{ meters.}$

TABLE 14. - VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Wallops March Optical Atmosphere)

!	h _{STA} , m -		l. I - H _{S3} , m I	! ! Hs6. m !!
1	0 a	290.21	8 99.7	8 796
!	250	281.80	 ! 9, 040.	ا 1. 8 كا 6
!	500	274.20	9 035	8 79 <u>4</u>
i	750	266.99	9 009	8 754
!	1000	259.76	9 010.	8 726
1	1250	252.28	9 058	. 8 741
i	1499.9	245.12	9 092	8 747
İ.	1500	245.12	9 092	9 038
İ	1750	238.28	9 122	9 0-3 !
İ	2000	231.52	9 157	9 067
!	2250	224.99	9 17.6	9 085 1
1	2499.9	218.77	9 190	9 095
İ	2500	218.77	9 190	9 273 .!
1	2750	212.86	9 187	9 277!
!	3000	207.14	9 176	9 280 1
!	3250	201.47	9 175	9 288 1
1	- 3500	195.98	9 155	9 295 1
!	3750	190.71	9 103	9 299 1
! !_	4000 ! !	185.64 ! !	9 050 ! !	9 300 !

 $a_{\rm HS5}$ = 8883 meters.

TABLE 15.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Cape Canaveral January Optical Atmosphere)

i h _{STA} , m	N ₀ •106	H _{S3} , m	H _{S6} , m	l . L.
1. ! 0a	276.95	. 9 <u>.</u> 586	9 650	! <i>,</i> .
250	269 . 82.	9 594	9 653	! !
1. ! 500	263.17	9 57.7	9 635	[. [
1 750.	256.93	9 539	 ! 9. 594.	I . !
1. 1000	250.74	9 502	9 557	: [. •
1 1250	244.45	9 491	9 539	: !
1499.9	238.06	9 505	9 546	! !
1. 1500	238.06	9 505	9 470	1.,
1750	231.63	9 528	9 485	! !
2000	225.32	9 561	9 505	I I
2250	219.23	9 576	9 523	! !
2499.9	213.46	9 582	9 531	! !
2500	213.46	9 582	9 499	! !
2750	207.89	9 573	9 500	! !
3000	202.48	9 568	9 500 .	
3250	197.18	9 557	9 502	l . [.
3500	192.03	9539	9 504	! !
3750	187.13	9 518	9 499	: !
4000 1	182.38	9 486	9 493 1	; ! !

 $a_{HS5} = 9581$ meters.

TABLE 16.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (White_Sands August Optical Atmosphere)

i h _{STA} , m	N _o •10 ⁶ !	-Hs3, m	H _{S6} , m
1 0a	255.22 I	11 26.7	11 049 1
1 250	250.44	11 097	10 986
500	245.60	10 946	10 928
750	240.72	10. 864	10_876
1 1000	235.78!	10 801	10 832
1 1250	230.78	10 726	10 799
1499.9	225.73	10 591	10 777
1500	225.73	10 591	10 225
1750	220.75	10 428	10 194 1
2000	215.80	10 272	10 167
1_ 2250.	210.99	10153	1 10 135
2499.9	206.30	10 042	10 100
2500	206.30	10.042	9 805
2750	201.73	9 945	9 777
3000	197.22	9 868	9 749 1
3250	192.77	9 <u>7</u> 86	9 722
3500	1 188.39	9 703	9 695
3750	184.04	9 639	9 671
1 4000 1	! 179.75 !	! ! 9 574 !	9 647 1 1

 $a_{HS5} = 11$ 218 meters.

TABLE 17.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Wallops Joly Optical Atmosphere)

!	h _{STA} , m	! _ ! - N _O •10 ⁶ !	!. ! H _{S3} , m . !	! ! H _{S.} , m !	I ! !.
!	0a	!	i. 10 057	! ! 10 123	! !
1	250	263.77	9 952	1 10 072	
1	500	257.37	9.905	1 10 067	! !
1.	750 .	25.1.19	! ! 9 847	1 10 056	! !
İ	1000	245.21	9 794	1 ! 10 040	· •••• •••••
1.	1250	239.43	9.739	1. ! 10 017	
1	1499.9	233.86	9 674	! ! 9 983	
1	1500	233.86	9 674	9_727	
!	1750	228.31	9 624	9 702	
!	2000	222.87	9 569	9 676	
!	2250	217.49	9 522	9 653	
!	2499.9	212.07	9 484 _	9 643	
!	_ 2500	212.07	9 484	9 558	
!	2750	206.54	9 479	9 561	
i	3000	201.08	9 479	9 567	i .
	3250	195.86	9.477	9 568	and and also continued to
1	3500	190.89	9 472	9 564	-
!	3750	186.11	9 451	9 556	
!	4000	181.48	9 419	9 546 ! L 9 546 !	

 $a_{HS5} = 10$ 092 meters.

TABLE 18.- VALUES OF HS FOR STATIONS ABOVE SEA LEVEL (Cape Canaveral August Optical Atmosphere)

h _{STA} , m	N ₀ ·10 ⁶	Hs3, m !	H _{S6} , m l
0 ²	265.64 1	10 302 · !	10 378
250	260.77	10 134	10 278
i. 500	254.91	10 057	10 248
750	248.97	9 997	10 232
1000	243.13	9 942	10 218.
! 1250	237.51	9 873	10 194
1499.9	231.99	9 820	10 171
1 1500	231.99	9 820	9 842
! 1750	226.41	9 789	9 826
1 2000	i. 220.91	! 9 754	9 813
2250	! 215.50	9 723	9 802
1 2499.9	1 210.21	9 685	9 791
! 2500	! 210.21	9 685	9 638
1 2750	205.07	9 640	9 627
3000	200.00	9 607	9 618
3250	195.01	9 57.1	9 611
3500	1 190.10	9 536	9 605
3750	1 185.32	9 511	9 600
1 4000 <u>-</u>	180.65	! ! 9 482_ !	1. 9 594 1.

 $a_{HS5} = 10$ 459 meters.

Figure 1.- H_S versus radio refractivity, N_{SL} • 10^6 .

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2.- H_S versus optical refractivity, N_{SL} • 10^6 .

Figure 3.- H_S versus radio refractivity, N_{1500} • 10^6 (h_{STA} = 1500 meters).

ORIGINAL PAGE IS

Figure 4.- H_S versus radio refractivity, $N_{3000} \cdot 10^6$ ($h_{STA} = 3000$ meters).

Figure 5.- H_S versus optical refractivity, N_{1500} • 10^6 . (h_{STA} = 1500 meters).

Figure 6.- H_S versus optical refractivity, N_{3000} • 10^6 (h_{STA} = 3000 meters).

APPENDIX A.

TABLES OF RADIO REFRACTIVITY

This appendix contains tables of radio refractivity versus altitude above mean sea level for 10 different locations. Shown for each location are three atmospheres: the monthly atmosphere with the lowest radio refractivity at sea level, the monthly atmosphere with the highest refractivity, and the annual atmosphere. All atmospheres except those at Patrick AFB were obtained from the IRIG documents (ref. 1), using the equations of section 2. Each atmosphere shown here is the result of several years of measurements at each site.

Also shown in this appendix are tables of the Gaussian quadrature points for each of the radio atmospheres. The quadrature points are those points at which the integrands are evaluated for the refraction correction integrals given in Appendix E.

Figures A-1, A-2 and A-3 are plots of $\ln(N\cdot10^6)$ versus altitude for three different types of atmospheres: dry semiarid, moist tropical and Point Arguello, California. The Point Arguello July radio atmosphere is highly nonexponential, as can be seen by the nonlinearity of the plot shown in figure A-3. This probably is caused by the cool Peru current flowing past Point Arguello, which causes an inversion layer in the atmosphere.

The locations of the weather stations at the various sites are shown in appendix B.

80FM16
TABLE A-1.- REFRACTIVITY FOR WHITE SANDS MARCH RADIO ATMOSPHERE

! ! ! ! ! ! ! ! ! 0 ! 294.53 ! ! 10 000 ! 93.736 !		
250	! 22 500 ! 22 750 ! 23 000 ! 23 250 ! 23 500 ! 23 750 ! 24 000 ! 24 250 ! 24 500 ! 25 500 ! 25 500 ! 25 750 ! 26 000 ! 26 250 ! 26 750 ! 27 000 ! 27 250 ! 27 750 ! 28 000 ! 28 250 ! 28 750	13.880 13.328 12.778 12.295 11.815 11.337 10.359 10.457 10.057 9.6578 9.2603 18.8643 18.5460 18.2292 7.5986 17.2851 16.9725

80FM16
TABLE A-2.- REFRACTIVITY FOR WHITE SANDS AUGUST RADIO ATMOSPHERE

1 250 1 336.40 1 1 10 250 1 91.513 ! 1 20 250 1 500 1 324.33 1 1 10 500 1 89.028 1 1 20 500 1 750 1 312.72 1 1 -10 750 1 86.588 1 1 20 750 1 1 000 1 301.53 1 1 11 000 1 84.180 1 1 21 000 1 1 250 1 290.73 1 1 11 250 1 81.734 1 1 21 250 1 1 500 1 280.30 1 1 11.500 1 79.403 1 1 21 500 1	21.275 ! 20.377 ! 19.564 ! 18.754 !
1 1 750	17.948 17.244 16.543 15.906 15.272 14.640 14.082 13.527 12.974 12.958 11.958 11.495 11.958 11.959 9.8059 9.8059 9.4240 9.6638 8.3589 8.0553

TABLE A-3.- REFRACTIVITY FOR WHITE SANDS ANNUAL RADIO ATMOSPHERE

80FM16

h, m	I N·106 I	!	h, m	I N·106 I I	h, m	N·106
250 1 250 1 500 1 000 1 1 250 1 1 500 1 1 750 1 2 250 1 2 500 1 2 500 1 2 500 1 2 500 1 3 250 1 3 500 1 3 500 1 4 250 1 4 500 1 4 250 1 4 750 1 5 000 1 5 000 1 6 250 1 6 750 1 7 750 1 8 250 1 7 750 1 8 250 1 9 750 1 9 750 1 9 750 1 9 750 1 9 750	302.21		10 000 10 250 10 500 11 250 11 500 12 250 12 500 12 250 13 750 13 750 14 250 14 500 14 500 14 500 15 750 15 750 16 250 15 750 16 250 16 500 17 250 17 500 17 500 17 500 17 500 18 250 18 750 18 250 18 750 18 250 18 250 18 250 18 250 18 250 19 500 19 500 19 750 1	1 94.146	20 500 20 750 21 000 21 250 21 500 21 750 22 250 22 250 22 500 22 750 23 250 23 250 23 500 23 750 24 250 24 250 24 250 24 250	20.499

TABLE A-4.- REFRACTIVITY FOR EDWARDS AFB MAY RADIO ATMOSPHERE

1. 1. h, m. 1	i i N·106 i	! ! ! !	l. h, m	i N·106	!	l . h, m .	I. N•10 ⁶ . I
1 0 250 - 500 1 750 1 1 500 1 1 250 1 2 250 1 2 250 1 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 3 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 4 250 1 4 250 1 5 250 1 5 250 1 5 250 1 5 250 1 5 250 1 6 250 1 6 250 1 6 250 1 7 250 1	160.57 ! 156.20 !		10 000 10 250 10 500 10 750 11 000 11 250 11 750 12 000 12 250 12 750 13 000 13 250 13 500	92.891 90.010 87.141 84.326 81.535 78.760 76.008 73.284 70.909 65.2760 67.796 67.796 67.796 67.796 67.796 67.796 5		20 500 20 750 21 000 21 250 22 500 22 500 23 750 24 500 24 750 25 750 25 750 26 000 1	16.771 16.059 16.059 15.412 14.768 14.150 13.590 13.032 12.475 11.500 11.500 11.506 10.544 10.132 9.7225 9.3152 8.9100 8.5510 8.2281 7.9065 7.5864 7.9065 7.5864 7.9065 7.5864 7.5864 7.5864 7.5864 7.5864 7.5864 5.9673 6.6958 6.4520 6.6958 6.4520 6.59497 6.6958 6.4520 6.59497 6.6958 5.7264 5.9673 5.7264 5.9673 5.7264 5.9673 5.7264 5.9673 15.7264 4.7024 4.5351 4.7024 4.5351 1.5351

1 . 1 1. N · 106 h, m. N-106 1. 1. 1 . h, m 1 1. N · 106 h, m ı I 0 ...1 .. 292.24 1 1 10 000 1 93.252 ! 20 000 19.695 ı 250 284.85 1 ı 1. 10 250 Į 90.422 1 1 20 250 18.868 1 500 1 277.47 1 1 10 500 1 87.674 1 20 500 1 18.045 1 1. 750 I 270.12 1 10 750 84.992 1 1 1 20 750 1 17.302 1 000 I 262.81 1 11 000 82.395 1 21 000 1 16.567 250 1 255.14 250 I 11 1 79.858 ! 1 21 250 1 15.865 500 1. 246.29 1 11 500 1 1 77.374 1.. 21 500 1 15.219 1 750 1.. 237.55 750 74.941 1 11 1 1 1 21 750 14.576 000 2 229.81 1 1 1 12 000 72.555 1 ! 22 000 13.971 2 250 223.04 1 1 12 250 70.203 1 22 250 13.415 2 500 217.60 ļ 1 1. 12 500 67.938 1 22 500 12.860 2 750 1 211.68 ! Į 12 750 1. 65.725 22 750 ļ 12.315 3 000 207.66 ! 1 13 000 63.537 Í 1 23 000 11.835 3 250 1 203.61 Į 13 250 I 61.393 1 23 250. 1 ... [11.355 500 198.14 1 ı 13 500 59.297 1 23 500 10.879 3 750 .192.18 750 l 1 13 57.237. 1 1 23 750 1 10.420 _4 000 185.85 1. 1 1 14 000 55.221 24 000 10.016 4 250 180.33 1 ! 14 250 1 53.252 1 24 250 9.6148 4 500 1 175.22 ! 1 14 500 51.294 1. 24 500 9.2152 1 4 750 170.05 1 ı 14 750 49.355 1 24 750 8.8171 1 5 000 ! 165.14 ! . 1 15 000 47.443 1 25 000... 1 8.4689 5 250 1 160.32 45.548 1 15 250 İ 1 25 250 1 8.1518 5 500 ! 155.82 1 15.500 43.684 1. 25 7.8355 500 - 1 5 750 1 151.48 1 15 750 1 41.859 25 750 1 7.5207 6 000 147.31 1 16. ! 000 1 40.084 ı 26 .000 1 7.2071 6 250 143.22 1 1 16 250 38.358 1 26 250 1 6.8946 6 500 139.25 1 1 1 .. 16 500 36.680 į 26 500 6.6457 750 6 135.41 ı 1. 1. 16 750 35.049 1 750 6.4057 26 1 7 000 ı 131.59 1 ı 17 000 33.469 1 1 27 000 6.1665 250 1 127.76 1 1 17 250 31.972 ļ 27 250 ..! 5.9282 7 500 124.31 ! 17 500 .30.573 I 27 500 ı 5.6910 7 750 120.87 Ī 1 17 750 29.223 27 750 Į ı 5.4543 8 000 117.56 18 000 Į 27.903 ı 28 000 5.2183 8 250 114.34 1 -18 250 I 1 26.663 1 28 250 5.0112 8 500 111.07 18 25.473 .1 500 1 1 28 500 4.8458 8 750 108.06 1 .18 1 750 24.432 ţ 28 750 4.6807 9 000 105.08 1 19 000 1 23.414 4.5161 29 000 9 250 1 102.10 1 1 19 250 22.443 29 250 4.3522 ġ 500 1. 99.124 1 1 19 500 21.495 1 29 500 4.1886 I 9 750 1 96.155 ! 19 750 1 20.583 ! 1 29 750 1 4.0256

A=6

30 000

3.8632

80FM16
TABLE A-6.- REFRACTIVITY FOR EDWARDS AFB ANAUAL RADIO ATMOSPHERE

h, m N·10 ⁶ h, m N·10 ⁶ h, m N·10 ⁶ 0 302.08 10.000 93.284 20.000 19.295 250 294.23 10.250 90.399 20.250 18.47 ⁶ 500 286.42 10.500 87.549 20.500 17.710 750 278.63 10.750 84.753 20.750 16.97 ⁵ 1.000 270.85 11.000 81.98 ⁵ 21.000 16.248
! 250 ! 294.23 ! ! 10 250 ! 90.399 ! ! 20 250 ! 18.476 ! 500 ! 286.42 ! ! 10 500 ! 87.549 ! ! 20 500 ! 17.710 ! 750 ! 278.63 ! ! 10 750 ! 84.753 ! ! 20 750 ! 16.975 !
1 1 250 1 261.47 1 1 1 250 1 79.248 1 21 250 1 15.598 1 1 1500 1 250.39 1 1 11 500 1 76.541 1 21 500 1 14.949 1 1 1750 1 241.16 1 11 750 1 73.888 1 21 750 1 14.315 1 2 2 2 2 2 2 2 1 1

TABLE A-7.- REFRACTIVITY FOR EGLIN AFB JANUARY RADIO ATMOSPHERE

I I h, m. I	I. N•10 ⁶ I	! ! h, m !	N·106 I	! ! h, m !	N•106
0 250 500 750 1 250 1 250 1 250 1 250 1 2 250	1 316.92	1 10 000 1 10 250 1 10 500 1 10 750 1 11 000 1 11 250 1 11 750 1 12 000 1 12 250 1 12 750 1 13 000 1 13 250 1 13 750 1 14 000 1 14 250 1 15 000 1 15 250 1 15 750 1 16 000 1 16 250 1 17 750 1 16 750 1 17 750 1 17 750 1 18 000 1 17 250 1 17 750 1 18 000 1 18 250 1 19 750 1 19 750 1 19 750	93.957 91.237 88.561 86.054 83.539 80.963 78.317 75.646 72.935 70.141 67.508 65.010 62.811 67.508 65.010 62.811 60.698 58.645 56.619 54.533 52.464 50.459 41.751 45.000 43.351 41.751 40.197 38.682 37.216 35.783 34.344 32.964 31.623 37.216 35.783 34.344 32.964 31.623 30.319 29.021 27.795 26.575 25.488 24.385 23.328 22.355 21.387 1.387	1 24 500 1 24 750 1 25 000 1 25 250 1 25 500 1 25 750 1 26 000 1 26 250 1 26 500 1 26 750 1 27 000 1 27 250 1 27 500 1 27 500 1 28 000 1 28 250 1 28 500 1 28 750	20.426 19.583 18.744 17.984 17.227 16.473 15.820 15.170 14.587 14.006 13.427 12.850 12.360 11.871 11.384 10.899 10.490 10.083 9.6771 9.2731 8.9356 8.5990 8.2642 7.9304 7.5983 7.2675 7.0128 6.7596 6.5070 6.2557 6.0052 5.7559 5.5074 5.0896 4.7506 4.5820 4.4138 4.2463 4.0792

TABLE A-8.- REFRACTIVITY FOR EGLIN AFB AUGUST RADIO ATMOSPHERE

1 . 1 h, m	! N·10 ⁶ !	 h, m.	- N-106	! h, m	N·106
1 0 250 1 250 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 2 2 250 1 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 4 250 1 5 250 1 5 250 1 5 250 1 6 250 1 6 250 1 6 250 1 6 250 1 6 250 1 6 250 1 6 250 1 6 250 1 7 250 1 7 250 1 8 250 1 8 250 1 8 250 1 8 250 1 9 25	1 367.68	10 000 1 10 250 1 10 500 1 11 250 1 12 250 1 12 500 1 12 250 1 13 750 1 14 250 1 14 750 1 14 750 1 15 750 1 16 750 1 16 750 1 16 750 1 16 750 1 16 750 1 17 750 1 16 750 1 17 750 1 18 000 1 17 250 1 17 750 1 18 000 1 17 750 1 18 000 1 17 750 1 18 000 1 18 250 1 18 750 1 19	94.027 91.467 88.979 86.534 84.125 81.671 79.339 77.061 74.834 72.650 70.475 68.326 64.171 62.146 60.129 58.127 56.148 54.219 50.355 48.447 46.567 44.716 42.896 41.117 49.384 41.117 41.39.384 41.117 41.39.384 41.117 42.896 41.117 41.117 42.896 41.117	! 23 750 ! 24 000 ! 24 250 ! 24 500 ! 24 750 ! 25 000 ! 25 250 ! 25 500 ! 25 750 ! 26 000 ! 26 250 ! 26 750 ! 27 000 ! 27 250 ! 27 500 ! 27 750 ! 28 000 ! 28 250 ! 28 750	21.288

80FM16
TABLE A-9.- REFRACTIVITY FOR EGLIN AFB ANNUAL RADIO ATMOSPHERE

! ! h, m - !	N·106	l h, m	I N·106	! !	l h, m . l	I N·106
1	! 171.30 ! 166.29 ! 161.80 ! 157.26 ! 152.49 ! 147.39 ! 142.55 ! 138.21 ! 134.26 ! 130.77 ! 127.33 ! 123.97 ! 120.79 ! 117.64 ! 111.49 ! 108.47 ! 105.53 ! 102.72 ! 100.03	1 10 000 1 10 250 1 10 500 1 10 750 1 11 500 1 11 750 1 12 500 1 12 500 1 12 500 1 12 500 1 13 500 1 13 500 1 13 750 1 14 750 1 14 750 1 15 500 1 16 500 1 16 250 1 17 750 1 16 750 1 17 750 1 17 750 1 18 250 1 17 750 1 18 250 1 18 17 750 1 18 250 1 18 750 1 18 750 1 19 750 1 19 750 1 19 750 1 19 750	! 95.266 ! 92.830 ! 90.285 ! 87.634 ! 84.727 ! 81.853 ! 76.438 ! 76.438 ! 77.457 ! 66.795 ! 66.795 ! 66.795 ! 62.303 ! 60.145 ! 53.912 ! 53.912 ! 54.661 ! 42.961 ! 42.961 ! 42.961 ! 43.667 ! 46.953 ! 33.534 ! 33.534 ! 33.667 ! 22.638 ! 23.667		20 000 250 250 20 250 21 22 250 22 250 22 250 22 250 22 250 22 250 22 250 22 250 22 250 250	! 20.768 ! 19.920 ! 19.076 ! 18.238 ! 17.504 ! 16.774 ! 16.114 ! 15.458 ! 14.806 ! 14.235 ! 13.667 ! 13.100 ! 12.537 ! 12.063 ! 11.570 ! 11.570 ! 11.652 ! 10.258 ! 1

TABLE A-10.- REFRACTIVITY FOR ASCENSION FEBRUARY RADIO ATMOSPHERE

h, m !	N·106	l l	N·106 1.	l h, m	N·106
0 ! 250 ! 500 ! 1 250 ! 1 250 ! 1 250 ! 1 250 ! 1 250 ! 1 2 250 ! 1 2 250 ! 1 2 250 ! 1 2 250 ! 1 3 250 ! 1 3 250 ! 1 3 250 ! 1 3 250 ! 1 3 250 ! 1 4 250 ! 1 4 250 ! 1 4 250 ! 1 4 250 ! 1 5 250 ! 1 5 750 1 6 250 1 6 500 1 6 500 1 6 500 1 6 500 1 6 500 1 6 500 1 6 500 1 6 500 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	368.20	10 000 10 250 10 500 11 250 11 750 12 250 12 500 12 750 13 750 14 750 14 750 15 500 15 250 15 750 16 500 16 250 16 750 16 500 16 250 16 750 17 750 17 750 18 750 18 750 19 750 1	94.233 91.598 89.044 86.559 84.143 81.796 77.165 77.165 72.823 70.678 168.575 168.575 168.575 169.476 169.475 179.475 189.676 199.612 199.	1 20 000 1 20 250 1 20 500 1 20 750 1 21 500 1 22 250 1 22 500 1 22 500 1 22 500 1 23 500 1 23 500 1 24 750 1 24 750 1 25 500 1 2	! 4.9201 ! 4.7515 ! 4.5838 ! 4.4167 ! 4.2501

80FM16
TABLE A-11.- REFRACTIVITY FOR ASCENSION SEPTEMBER RADIO ATMOSPHERE

1 1 - h, m. 1	1 N·106 1	h, m	! ! N·106	! !	h, m	! ! N.• 10 ⁶
1 0 250 500 750 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 3 250 1 3 250 1 3 250 1 3 250 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 5 250 1	138.07 ! - 134.38 ! 130.77 ! 127.25 ! 123.76 ! 120.23 ! 116.88 ! 113.67 ! 110.61 ! 107.81 ! 105.10 ! 102.46 ! 99.795 !	10 000 10 250 10 500 10 750 11 000 11 250 11 500 11 750 12 250 12 750 13 250 13 250 13 750 14 000 14 250 15 750 16 000 17 750 16 500 17 750 17 750 18 000 17 750 18 000 17 750 18 000 19 250 19 500 19 750	94.422 91.790 1 89.223 2 84.299 8 1.924 7 7.241 7 8.33 8 6.33 8 6.30 8 7 16 8		20 000 20 250 20 500 20 750 21 000 21 250 21 250 21 250 22 250 22 250 23 250 23 250 23 250 23 250 23 750 24 250 24 250 25 250 26 250 27 250 26 250 27 250 26 250 27 250 27 250 27 250 27 250 27 250 28 250 27 250 27 250 28 250 27 250 28 250 29 250 28 250 29 250 20	1 21.044 1 20.176 1 19.314 1 19.314 1 18.457 1 16.976 1 16.976 1 16.970 1 14.987 1 14.987 1 14.982 1 13.243 1 12.668 1 12.181 1 10.738 1 10.738 1 10.9397 9.5440 8.4415 8.1274 7.5033 7.5033 7.5033 7.5033 6.9491 6.9630 6.9630 6.9820 5.7630 4.4386 4.2748

TABLE A-12.- REFRACTIVITY FOR ASCENSION ANNUAL RADIO ATMOSPHERE

i. ! h, m	i N·106 i	h, m	N·106	h, m	N·10 ⁶
	358.52	15 500 1 15 750 1 16 000 1 16 250 1 16 500 1 16 750 1 17 000 1 17 250 1 17 500 1 17 750 1 18 000 1 18 250 1	94.344 - 91.737 89.167 86.642 84.103 81.619 79.110 76.781 74.564 72.435 70.355 68.310 66.337 64.361 62.411 58.475 56.484 54.547 50.661 48.848 47.145 43.811 42.145 43.811 43.145 43.145	20 000 20 250 20 500 20 750 21 250 21 500 21 500 21 500 22 500 22 500 23 250 23 250 24 750 24 750 25 500 25 500 25 750 26 250 27 750 27 750 28 250 27 750 27 750 28 250 27 750 28 250 27 750 28 250 27 750 28 250 29 250 20 20 20 20 20 20 20 20 20 20 20 20 20 2	4.9890 1 4.8257 1 4.6632 1 4.5010 1

h, m N·106 h, m N·106 h, m N·106 h, m N·106 0 384.18 1-10 000 - 1 93.394 1 20 000 1 21.244 250 365.11 1 10 250 N/A 1 20 250 1 20.290 500 347.65 1 10 500 88.437 1 20 500 1 19.417 750 332.56 1 10 750 86.039 1 20 750 1 18.551 1 000 319.22 1 11 000 83.696 1 21 000 1 17.772 1 250 305.59 1 11 250 81.415 1 21 250 1 17.007 1 500 292.32 1 11 500 79.179 1 21 500 1 16.270 1 750 280.78 1 11 750 76.992 1 21 750 1 15.601					**************************************	
1 250 1 365.11 1.1 10 250 1 N/A 1 1 20 250 1 20.290 1 500 1 347.65 1 10 500 1 88.437 1 20 500 1 19.417 1 750 1 332.56 1 10 750 1 86.039 1 20 750 1 18.551 1 1 000 1 319.22 1 11 000 1 83.696 1 21 000 1 17.772 1 1 250 1 305.59 1 11 250 1 81.415 1 21 250 1 17.007 1 1 500 1 292.32 1 11 500 1 76.992 1 21 750 1 15.601	h, m	N·106	!! h, m !! h, m	N•106	l ! h, m l ! h, m	! ! N·106 !
2 000	1 250 1 500 1 1 000 1 1 250 1 1 500 1 1 750 1 2 000 1 2 500 1 2 500 1 3 500 1 3 500 1 4 250 1 4 250 1 4 500 1 4 250 1 5 500 1 5 500 1 5 500 1 6 250 1 6 500 1 7 750 1 8 000 1 7 750 1 8 000 1 7 750 1 8 000 1 9 250 1 9 500 1 65.11 1 347.65 1 319.22 1 305.59 2 292.32 1 280.78 2 270.37 1 260.97 1 250.75 1 240.90 1 231.26 1 220.74 1 213.57 2 207.16 2 201.02 1 194.76 1 188.81 1 182.42 1 176.07 1 169.95 1 148.52 1 148.52 1 148.52 1 148.58 1 158.57 1 188.82 1 194.69 1	N/A 88.437 86.039 83.696 81.415 79.179 76.992 74.839 72.7637 66.599 64.626 64.676 64.676 64.676 65.398 66.757 57.186 68.877 57.186 68.877 57.186 68.877 57.186 89.195 41.195 42.925 43.449 44.925 41.195 42.925 43.395 43.395 44.396 44.396 45.396 46.396 47.7396 48.396 49.468 49.468 40.496	20 250 20 500 21 250 22 250 22 250 22 250 22 250 22 250 23 500 23 500 24 250 24 500 24 250 25 500 25 500 25 500 25 500 26 500 26 500 27 500 27 500 27 500 27 500 27 500 27 500 27 500 27 500 28 500 28 500 28 500 29 500 29 500 29 500 29 500 29 500 29 500 29 750 20 750 2	20.290 19.417 18.551 17.772 17.007 16.270 15.601 14.937 14.301 13.725 13.153 12.584 12.090 11.608 11.127 10.650 10.243 9.8445 11.027 10.650 10.243 9.8445 11.027 10.650 10.243 9.8445 11.127 10.650 10.243 9.8445 11.127 10.650 10.243 9.8445 11.127 10.650 10.243 9.8445 11.127 10.650 10.243 9.8445 11.127 10.650 10.243 9.8445 11.127 10.650 11.584 11.127 10.650 11.584 11.127 10.650 11.584 11.127 11.608 11.127 11		

80FM16
TABLE A-14.- REFRACTIVITY FOR KWAJALEIN DECEMBER RADIO ATMOSPHERE

 h, m - !	i. ! N•106 !	l. h, m	N•10 ⁶	!	l h, m	I I N•106	! !
0 250 500 750 1 1 500 1 1 500 1 2 500 1 2 500 1 2 500 1 3 250 1 3 750 1 4 250 1 4 500 1 4 250 1 5 500 1 5 250 1 5 500 1 5 750 1 6 250 1 5 500 1 6 250 1 6 500 1 6 250 1 7 750 1 6 750 1 7 750 1 8 000 1 7 250 1 7 750 1 8 000 1 7 250 1 7 750 1 8 250 1 7 750 1 8 250 1 9 250 1 9 750	369.48 369.48 356.50 343.41 329.81 316.67 303.86 291.47 291.47	10 000 10 250 10 500 10 750 11 000 11 250 11 500 11 750 12 250 12 750 13 250 13 250 13 750 13 750 13 750 14 000 14 250 14 750 15 750 16 000 17 750 16 000 17 750 17 750 17 750 18 000 17 750 18 000 17 750 18 000 19 250 19 750	93.280 90.780 88.329 85.935 83.600 81.308 79.063 76.867 74.714 72.597 70.515 68.494 66.502 64.554 62.631 60.741 58.884 57.057 55.219 51.722 49.997 46.656 43.358 41.679 39.982 31.681 30.553 21.3681 31.68		20 000 20 250 20 500 20 750 21 000 21 250 21 750 22 250 22 250 23 250 23 250 23 250 23 250 24 250 24 250 24 250 24 250 24 250 25 500 26 250 26 250 26 250 27 750 26 250 27 250 27 250 27 250 27 250 28 250 27 250 28 250 29 250 20 20 20 20 20 20 20 20 20 20 20 20 20 2	! 21.247 ! 20.283 ! 19.388 ! 19.388 ! 17.730 ! 16.956 ! 16.230 ! 15.554 ! 14.881 ! 14.258 ! 13.676 ! 13.098 ! 12.536 ! 13.098 ! 12.557 ! 11.071 ! 10.604 ! 10.201 9.7999 9.0040 8.3239 8.3239 7.0589 6.750 6.750 7.0589 6.750 6.750 6.750 6.750 6.762 7.796 6.762 7.766 6.762 7.766 6.762 7.766 7.76	

1 1.. 1. 1 1 N·106 I - N. 106 N-106 1 1. h, m 1.. 1 h, m h, m 1 ı 1 0. 371.43 1.. 1 10 000 1 93.934 1 ı 20 000 1 21.264 1. 1... 20.313 250 357.15 10 250 91.215 20 250 1 ı Į Į 1 344.43 88.616 19.444 10 500 20 500 500 1 1 1 Į 1 1 750 20 750 18.582 86.118 750 331.36 1. 10 1 1 000 318.38 11 .000 83.700 1 1 21 000 17.806 1! 81.416 21.250 1 250 1 306.21 11 250 Ì - 1 17.047 1 1 500 16.312 1 500 1 294.59 11 500 N/A 21 1 N/A 750 15.646 1.750 ı 11 750 1 21 1 1 283.41 74.820 1 2...000 1 272.40 12 000 22 000. 14.983 12 25C 72.703 22 250 14.347 1 2_250 1 . 261.39 I 500 500 2 500 ! 249.61 12 70.616 1 I 22 13.771 2 750 750 68.581 22 750 13.199 1 ı 238.24 12. 1 I 1 12.631 230.83 13 000 66.579 t 23 000 1 3:000 1 250 1 221.26 Į. 13. 250 64.616 į 1 23 250 İ 12.135 13 500 62.671 1 1 23 500 ! 11.650 3 500 1. 213.80 1 1 750 209.62 13 750 60.769 1 1 23 750 .. 11.169 1 1 1 1 1 4 000 14 000 58.902 24 200.64. ı ! 000 1 10.690 1 ţ 4 250 14 250 24 250 ! 10.284 1. 193.20 57.065 l ı 4.500 183.96 14 500 55.236 ı 24 500 9.8859 I 1. 4.750 178.92 14 750 53.456 24 750 9.4896 1 Į Į Į. ١. 1 1 9.0953 5 000 51.688 000 174.17 15 000 25 1 ı 1 1. I I 250 5 I 170.11 1 15 250 1 49.915 1 25 250 1. 8.7156 .5 500 1 164.65 1 15 500 ! 48.160 1 25 500 - 1 8.3963 5 750 1 159.14 1 15 750 1. 46.432 25 750 1 8.0787 6 000 1 153.87 16 000 44.689 ! 1 26 000 1 7.7627 1. 42.936 _! 26 250 7.4482 6 250 ı 148.67 16 250 1 1 1 6 500 143.75 16 500 41.183 1 ! 26 500 ..7 • 1353 1 6.750 750 39.433 26 750 6.8449 138.45 16 . [Į 7 000 17 000 37.682 27 000 6.6062 .133.91 ı 1 1 I 1 1 17 27 250 129.19 250 1 35.959 İ 1 250 ! 6.3688 1. 27 500 1 125.43 17 500 1 34.294 1 1 500 6.1325 5.8972 750 32.696 27 750 750 1 122.11 11 17 ı ! 1 ! 8 000 118.46 18 000 31.152 I 1 28 000 1 5.6626 1 1 1 8 250 18 250 29.648 28 250 1 5.4293 1 115.04 8 500 111.66 1 18 500 28.230 28 500 5.1970 1. 1 8 750 18 750 26.866 28 750 5.0052 108.74 _1 1 1 1 I 1 ı 000 25.618 000 4.8431 9 105.53 19 000 1 29 1 I 1. 1 1. Į 250 4.6815 24.416 250 102.60 19. 29 Į ı 250 ı 1 1 29 500 4.5204 9 500] 99.690 1 19.500 1 23.306 I 1. 1 1 9 750 22.246 29 750 ! 4.3600 I 96.801 1 1 19 750 1 1 1 30 000 4.2001

A-16

TABLE A-16.- REFRACTIVITY FOR WALLOPS MARCH RADIO ATMOSPHERE

1 1 h, m 1	! N·106	 l !- h, m !	! ! N•106 !	! !	h, m	N·106
1 4 500 1 4 750 1 5 000 1 5 250 1 5 500 1 5 750 1 6 000 1 6 250 1 6 500 1 6 750 1 7 000 1 7 250 1 7 500 1 7 750 1 8 000 1 8 250 1 8 500	1 306.80 1 298.61 290.66 1 282.83 1 275.06 2 267.52 1 258.66 1 249.27 2 240.47 2 32.83 2 226.10 2 19.86 1 212.99 1 205.80 1 198.84 1 192.51 1 186.63 1 181.12 1 175.90 1 170.92 1 166.11 1 161.39 1 170.92 1 166.11 1 161.39 1 156.88 1 152.54 1 148.28 1 149.36 1 149.36 1 132.63 1 128.82 1 129.99 1 170.92 1 161.39 1 170.92 1 161.39 1 170.92 1 161.39 1 170.92 1 161.39 1 170.92 1 161.39 1 170.92 1 140.36 1 120.36 1 000 10 250 10 500 10 750 11 250 11 250 11 250 11 750 12 250 12 250 12 750 13 250 13 250 13 250 13 750 14 250 14 250 15 500 16 250 16 500 17 750 16 500 17 750 17 750 18 250 18 750 19 750 19 750 19 750 19 750	54.408 52.342 50.352 48.443 46.660 44.940 43.216 41.616 40.071 38.577 37.136 35.742 34.398 43.051 31.786 30.572 29.359 28.218 27.134 26.050		24 000 24 250 24 500 25 250 25 500 25 750 26 250 26 500 26 250 27 250 27 250 27 750 28 250 28 500 28 750 28	16.097	

TABLE A-17.- REFRACTIVITY FOR WALLOPS JULY RADIO ATMOSPHERE

! . h, m. ! . h, m.	N·10 ⁶	! ! !!	lh, m_	N·106	1 ! 1 !	l h, m	I. N·106. I
1	1 316.79 1 306.56 1 296.56 1 286.86 1 277.42 1 267.48 1 256.92 1 247.07 1 238.42 2 230.12 2 21.63 1 213.08 1 204.87 1 197.24 1 189.88 1 182.54 1 175.56 1 169.33 1 163.98 1 159.07 1 153.84 1 142.60 1 137.57 1 133.53 1 129.80		10 000 10 250 10 250 10 750 10 750 11 250 11 750 11 750 11 250 11 250 11 250 11 250 11 250 11 250 11 250 11 250 11 250 11 250 11 250 11 3 500 11 3 750 11 4 750 11 4 750 11 5 750 11 6 500 11 6 500 11 6 750 11 7 750 11 7 750 11 8 000 11 17 750 11 8 000 11 17 750 11 8 000 11 18 250 11 19 750 11 19 750 11 19 750 11 19 750 11 19 750 11 19 750 11 19 750 11 19 750 11 19 750	93.894 91.327 88.812 86.349 83.944 81.572 79.217 76.823 74.489 72.178 69.848 67.583 1.69.848 67.583 1.69.848 67.583 1.69.848 67.583 1.69.848 1.69.8		20 000 20 250 20 500 20 750 21 000 21 750 21 750 22 250 22 250 22 250 23 250 23 250 23 250 23 250 23 250 24 250 24 250 24 250 24 250 25 250 26 250 27 250 27 250 28 250 29 250 27 250 27 250 28 250 29 250 28 250 29 250	

TABLE A-18.- REFRACTIVITY FOR WALLOPS ANNUAL RADIO ATMOSPHERE

h, m	N·106	. !	h, m	N·106	1	h, m	N:106	
1 0 1 1 250 1 1 500 1 1 1 000 1	324.40 312.77 302.92 294.74 286.65 277.72 269.13 261.45 252.93 217.99 211.00 204.07 196.97 190.02 183.64 172.68 167.32 167.32 167.32 167.32 167.32 167.32 167.32 167.36 144.38 136.52 132.70 129.07 125.58 111.91 102.35 102.35 102.35	Ó	10 000 10 250 10 500 10 750 11 250 11 500 11 750 12 250 12 250 12 750 13 250 13 750 13 750 13 750 14 750 14 750 14 750 15 750 16 250 17 750 16 250 17 750 17 750 18 250 17 750 18 250 17 750 18 250 19 000 19 250 19 19 250 19 19 750 19 750	93.708 90.929 88.185 85.478 82.792 80.133 77.499 74.895 72.272 69.744 67.236 64.784 62.340 59.957 57.720 55.554 1.59.651 47.801 47.801 47.801 49.651 47.801 47.8	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1 21 000 1 21 250 1 21 500 1 21 750 1 22 000 1 22 250 1 22 500 1 22 750 1 23 000	1 6.8961 1 6.6549 1 6.4141 1 6.1743 1 5.9349 1 5.6965 1 5.2215 1 5.0555 1 4.8900 1 4.7251 1 4.5606 1 4.3966	1 1 1 1 5 1

TABLE A-19.- REFRACTIVITY FOR CAPE CANAVERAL JANUARY RADIO ATMOSPHERE

80FM16

TABLE A-20.- REFRACTIVITY FOR CAP CANAVERAL AUGUST RADIO ATMOSPHERE

l h, m	I	 h, m	N·106	. !	l - h, m .	N · 10 <u>6</u>
0 250 500 750 1 250 1 250 1 250 1 250 1 250 1 2 250 1	! 339.52 ! 324.12 ! 308.60 ! 295.35 ! 284.98 ! 274.65 ! 262.98 ! 251.73 ! 242.23 ! 233.74 ! 226.16 ! 218.80 ! 210.94 ! 202.04 ! 193.91 ! 187.33 ! 181.65 ! 176.02	1 14 500 1 14 750 1 15 000 1 15 250 1 15 500 1 15 750 1 16 000 1 16 250 1 16 500 1 16 750 1 17 000 1 17 250 1 17 750 1 18 000 1 18 250	93.940 91.381 88.883 88.883 86.447 84.072 81.655 79.374 77.134 77.134 77.589 68.435 66.345 66.345 66.221 58.221 58.221 58.221 58.221 58.221 158.2		20 750 21 000 21 250 21 500 21 750 22 000 22 250 22 500 22 750 23 500 23 750 23 500 23 750 24 000 24 250 24 750 25 500 27 750 26 250 27 750 26 250 27 750 26 250 27 750 28 250 28 500 28 750 28 750 28 750 28 750	1 21.281 20.368 19.540 18.718 17.975 17.236 16.500 15.854 15.210 14.009 13.451 12.895 12.895 12.412 11.931 11.452 10.974 10.573 10.172 9.7739 9.3764 10.172 9.7739 10.172 9.3764 10.172 10.1

TABLE A-21.- REFRACTIVITY FOR CAPE CANAVERAL ANNUAL RADIO ATMOSPHERE

	n i N·10 ⁶ i
1 500 1 338.07 1 1 10 500 1 88.954 1 1 20 50 1 750 1 324.29 1 1 10 750 1 86.403 1 1 20 75 1 1 000 1 311.43 1 1 11 1000 1 83.893 1 1 21 00 1 1 250 1 298.35 1 1 11 250 1 81.427 1 1 21 25 1 1 500 1 285.92 1 1 11 500 1 79.008 1 1 21 50 1 1 750 1 274.92 1 1 11 750 1 76.631 1 1 21 75 1 2 000 1 262.91 1 1 12 000 1 74.296 1 1 22 00 1 2 250 1 249.27 1 1 12 500 1 79.008 1 1 22 00 1 2 250 1 249.27 1 1 12 500 1 79.008 1 1 22 00 1 2 250 1 249.27 1 1 12 500 1 79.99 1 1 22 25 1 2 500 1 237.30 1 1 12 500 1 69.656 1 1 22 50 1 2 750 1 228.13 1 1 12 750 1 67.398 1 1 22 75 1 3 000 1 220.23 1 1 13 000 1 65.196 1 1 23 00 1 3 250 1 212.56 1 1 13 250 1 63.006 1 1 23 00 1 3 250 1 212.56 1 1 13 250 1 60.850 1 1 23 50 1 3 750 1 196.62 1 1 13 750 1 60.850 1 1 23 50 1 3 750 1 196.62 1 1 13 750 1 58.757 1 1 23 75 1 4 000 1 188.16 1 1 14 000 1 56.688 1 1 24 00 1 4 250 1 181.02 1 1 14 250 1 54.649 1 24 25 1 4 500 1 175.59 1 1 14 500 1 52.658 1 1 24 50 1 4 750 1 171.12 1 1 14 750 1 50.749 1 1 24 25 1 5 500 1 166.81 1 15 000 1 48.872 1 25 00 1 5 750 1 152.94 1 1 15 750 1 43.519 1 25 50 1 5 750 1 152.94 1 1 15 750 1 36.924 1 26 75 1 6 000 1 147.67 1 1 16 000 1 41.820 1 1 26 75 1 7 000 1 130.50 1 1 17 750 1 33.916 1 27 75 1 7 500 1 123.76 1 1 17 750 1 33.916 1 27 75 1 8 000 1 177.37 1 1 18 000 1 29.711 1 2 28 26 1 8 500 1 117.37 1 1 18 000 1 29.711 1 28 75 1 8 000 1 105.34 1 19 000 1 248.833 1 1 28 21 1 8 500 1 117.37 1 1 18 000 1 248.839 1 1 28 75 1 9 000 1 105.34 1 1 19 000 1 248.839 1 1 28 75 1 9 500 1 99.666 1 1 18 750 1 23.780 1 1 29 55 1 9 500 1 99.666 1 1 19 500 1 22.728 1 1 29 55	

TABLE A-22.- REFRACTIVITY FOR HAWAII FEBRUARY RADIO ATMOSPHERE

l . l h, m l	N•10 ⁶	. ! ! h, m !	i N·10 ⁶ i	! ! →h, m !	I N·10 ⁶ I
! 0 ! ! 250 ! ! 500 !	! 344.07 ! ! 332.46 ! ! 321.50 !	! !10 000 ! 10 250 ! 10 500	! 93.253 ! ! 90.461 ! ! –87.737 !	1 20 000 1 20 250 1 20 500	I 20.919 I I 20.008 I I 19.105 I
1 750	1 31001	1 10 750	! 85.093 !	1 20 750	1 _18.303 1
! 1 000 !	299.13 I	! 11 000	1 82.526 1	! 21 000	! 17.507 !.
! 1 250 !	289.36 I	! 11 250	1 80.028 !	! 21 250	! 16.718 !
! 1 500 !	! 279.42 !	! 11 500	! 77.595 !	i 21 500 :	! 16.039 !
! _ 1 750 !	! 268.79 !	! 11 750	! 75.237 !	i 21 750	! 15.364 !
! 2 000 !	256.37	l 12 000	1 72.948 I	1. 22 000	! 14.693 !
! 2 250 !	240.97	l 12 250	1 70.625 I	1 22 250	! 14.111 !
1 2 500 I 1 2 750 I	226.42 I	1 12 500 1 12 750	1 68.439 I 1 66.284 I		13.533
! 3 000 1	204.31 . !	1 13 000	! 64.215 !	1 23 000	! 12.957 ! ! 12.457 !
! 3 250 !	1 197.56 l	l 13 250	1 62.171 I	1 23 250	1 - 11.961 L
! 3 500 !	1 192.55 l	l 13 500	1 60.167 I	1 23 500	1 11.466 I
1 3 750 1	! 187.51 !	! 13 750	1 58.243 1	1 23 750	! 10.974 !
1 4 000 1	! 182.41 !	! 14 000	1 56.340 1	1 24 000	! 10.561 !
! 4 250 !	l 177.43 !	! 14 250	!_ 54.459 !	! 24 250	! 10.151 !
! 4 500 !	l 172.59 !	! 14 500	! 52.618 !	! 24 500	! 9.7429 !
! 4 750 ! ! 5 000 !	1 167.98 ! 1 163.49 !		! 50.826 ! ! 49.111 !	24 750	! 9.3363 I ! 8.9310 I
! 5 250 !	1 159.07 ! 1 154.74 !	1 15 250 1 15 500	1 47.416 ! 45.748 !	! 25 250 ! 25 500	8.6063
! 5 750 !	! 150.59 !	15 750	1 44.114 1	1 25 750	I 8.2833 I I 7.9611 I
1 6 000 1	146.62 !	1 16 000	! 42.509 !	1 26 250	1 7.6404 1
1 6 250 1	1 142.69 !	1 16 250	! 40.890 !		1 7.3209 1
! 6 500 !	138.88 !	! 16 500	! 39.338 !	! 26 500	1 7.0030 1
! 6 750 !	135.07 !	! 16 750	! 37.835 !	! 26 750	1 6.7612 1
!	l 131.42 l	! 17 000	! 36.337 !	! 27 000	! 6.5203 !
	l 127.85 l	! 17 250	! 34.848 !	! 27 250	! 6.2801 !
! 7 500 !	1 124.47 !	1 17 500 1	1 33.376 I	! 27 500 !	! 6.0408 !
! 7 750 !	1 121.14 !	1 17 750	1 31.907 I	! 27 750	! 5.8022 !
1 8 000 I	117.85 !	1 18 000-	30.486 !	t 28 000 1	1 5.5645 L
1 8 250 I	1 114.61 -1	118 250	! 29.120 !	1 28 250	1 5.3275 L
8 500 I 8 750 I			27.765	1 28 500	1 5.1567 1
9 000 1	105.20	1 19 000	1 26.498 ! 1 25.243 !	1 29 000	4.9865 1 4.8167 1
! 9 250 ! ! 9 500 !	l102.13	1 19 500	l 24.096 l l 22.961 l	1 29 500	1 4.6476 1 1 4.4789 1
l 9 750 - l	! 96.145 !	! 19 750	1 21.934 1	! 29 750	! 4.3108 !
ll	! !	!		! 30 000	! 4.1432 !

N.106 N · 106 h, m 1. 1 h, m 1 1 N.106h, m 1 0 361.17 94.573 10 000 20 000 21.129 345.61 250 I 10 250 91.861 20 250 1 20.223 ı 1 500 500 333.65 ! 1 10 89.244 20 500 1 19.397 750 750 ! 321.09 86.714 ! 1 10 20 750 1 1. 18.576 1 000 309.43 1 000 ı _ 1 11 84.247 21 000 17.834 250 1 298.58 1 11 250 1 81.854 1 1 21 250 17.097 500 1 287.76 1 ı 500 11 79.504 1 21 500 16.363 750 1 1 -277.15 1 1 11 750 1 77.114 1. 21 750 15.721 2 000 263.75 1. 1 ı 12 000 74.830 22 000 15.082 247.29 2 250 Į 12 250 72.578 I 22 250 14.447 2 500 232.33 1 12 500 70.334 22 500 1. 13.891 2 750 221.42 1 12 750 750 Į 1 -68.128 22 ...13.337 3 000 212.42 13 000 65.922 ! 1 1 23.000 12.786 250 203.49 13 250 63.748 I ı .1 23 250 12.305 3 500 194.80 1 . 1 13 500 61.580 23 500 1 11.826 3 750 187:39 750 59.431 ı 1 Į 13 23 750 11.350 4 000 _1 181.65 1 14 000 57.340 24 000 10.875 4 250 1... 176.66 14 250 55.259 24 -250 10.476 4 500 1 172.00 14 500 53.212 24 500 1 10.078 1 4 750 167.51 ! .. 1 14 750 51.215 24 750 1 ... 9.6818 5 000 163.13 1 1 .1 15 000 49.273 25 000 1 9.2875 5 250 1 158.78 1. 1 15 250 47.387 25 250. 8.8944 1 5 500 1 154.56 1 ! 15 500 45.569 25 500 1 8.5772 1 5 750 150.45 1 ı 1 15 750 43.800 1 25 750 8.2612 6 000 1. 146.39 I ! 16 000 42.075 26 000 7.9465. 6 250 1 142.50 ! 1 16 250 40.396 26 250 7.6331 6 500 ... ! 138.67 1 I 1 16 500 38.762 26 500 7.3211 6 750 ! 135.04 ! 16 750 37.184 750 Į. 26 7.0101 7 000 1 131.46 17 000 35.655 1 ļ 27 000 6.7728 I 7 250 128.00 1 1 17 250 34.129 Į 27 250 1. 6.5366 7 500 124.57 ļ 1 17 500 32.688 I 27 500 6.3008 1 7 750 121.16 1 1 ! -17 750 31.305 27 750 1 1 6.0660 I 8 000 1 117.92 18 000 29.984 1 28.000 1 5.8320 250 8 1 114.75 18 250 28.669 İ 28 250 5.5984 8 500 1 111.69 18 500 27.451 28 500 1 5.3658 8 750 1 108.77 18. 750 26.240 28 750 1 5.1337 9 000 1 105.92 19 000 4.9709 25.135 29 000 1 1 9 250 103.06 19 250 24.037 250 1 29 ı 4.8087 9 500 1 100.22 1. 19 500 1 I 23.035 1 1 29 500 1 4.6472 9 750 97.367 1 19 750 Į ! 22.041 1 29 750 1 4.4860 İ 30 000 4.3253

TABLE A-24.- REFRACTIVITY FOR HAWAII ANNUAL RADIO ATMOSPHERE

h, m	! N·106 ! ! N·106 !	1	l. h, m	1 N·10 ⁶	! ! !	! ! h, m !	1	N·10 ⁶
0 250 500 750 1 2 250 1 750 1 2 250 1	1 352.67		10 000 10 250 10 500 10 750 10 750 11 750 11 500 11 750 11 250 11 2500 11 2500 11 2500 11 2500 11 2500 11 2500 11 2500 11 2500 11 2500 11 3 750 11 4 250 11 4 750 11 5 000 11 14 750 11 15 750 11 16 750 11 16 750 11 17 750 11 16 750 11 17 750 11 17 750 11 18 000 11 17 750 11 18 000 11 18 250 11 18 750 11 19 750 11 19 750 11 19 750 11 19 750 11 19 750	94.496 91.775 89.103 86.505 83.983 81.529 79.127 76.781 74.395 1.69.876 67.691 1.69.876 1.69.273 1.69.273 1.59.239 1.59.239 1.59.239 1.59.239 1.59.239 1.59.239 1.59.239 1.59.239 1.59.296 1.49.884 1.49.884 1.49.884 1.49.884 1.49.884 1.49.884 1.49.884 1.49.884 1.49.884 1.49.886 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.8866 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.891 1.49.8866 1.49.891 1.4		1 23 750		20.948 19.180 18.3696 19.180 18.3696 17.825 16.1825 17.825 18.255

TABLE A-25.- REFRACTIVITY FOR POINT ARGUELLO JULY RADIO ATMOSPHERE

h, m	N•106	 h, m	N-10 ⁶	h, m	N. 106	! ! !
0 250 500 750 1 250 1 250 1 250 1 250 1 250 2 25	340.70 326.90 308.83 284.76 259.66 250.29 244.32 237.05 230.09 223.73 218.01 212.64 207.22 201.53 195.71 190.02 184.61 179.38 174.28 164.57 159.99 155.65 151.43 147.26 143.24 139.30 135.50 131.85 124.81 121.37 118.10 111.77 108.75 105.79 102.83 99.900 97.003 97.003	10 000 10 250 10 500 11 750 11 750 12 250 12 500 12 250 12 500 13 750 13 750 14 500 14 500 15 500 15 750 16 250 16 250 16 250 17 750 17 750 18 250 17 750 18 250 18 250 18 250 18 250 18 250 18 250 19 250 19 750 1	94.173 91.435 188.787 188.787 188.787 188.787 188.787 188.709 181.262 78.865 74.111 71.844 169.589 167.402 165.234 163.103 161.031 158.992 156.997 155.108 147.676 143.969 147.676 143.969 147.676 143.969 147.676 143.969 147.676 143.969 147.676 143.969 147.676 143.969 147.676 143.969 147.676 143.969 147.676 149.186	! 23 000 ! 23 250	21.189 20.298 19.493 18.693 17.205 18.695 11.256 11.256 11.294 11	

80FM16

TABLE A-26.- REFRACTIVITY FOR POINT ARGUELLO DECEMBER RADIO ATMOSPHERE

! ! h, m !	! ! N·10 ⁶ !	h, m	! !	N·106	!	! h, m. !	!!	N·10 ⁶	"! ! !
1 250 1 500 1 000 1 1 250 1 1 500 1 2 500 1 2 500 1 2 500 1 2 2 500 1 2 2 500 1 2 2 500 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 5 000 1 5 000 1 5 000 1 6 500 1 6 500 1 6 750 1 7 500	! 316.84 ! 309.16 ! 293.83 ! 277.74 ! 265.14 ! 257.27 ! 249.43 ! 239.51 ! 230.73 ! 224.54 ! 218.73 ! 212.83 ! 206.95 ! 201.17 ! 195.60 ! 190.37 ! 185.37 ! 180.45 ! 175.52 ! 170.63 ! 152.63 ! 152.63 ! 144.53 ! 144.53 ! 144.53 ! 149.41 ! 126.02 ! 129.41 ! 126.02 ! 129.41 ! 126.02 ! 129.41 ! 116.12 ! 112.77 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51 ! 109.51	11 000 1 11 250 1 11 750 1 12 000 1 12 250 1 12 500 1 12 750 1 13 000 1 13 250 1 13 750 1 13 750 1 14 750 1 14 750 1 15 750 1 15 750 1 16 750 1 16 750 1 16 750 1 17 750 1 17 750 1 17 750 1 18 000 1 18 250		95.463 96.463 97.905 98.001		20 000 20 250 20 500 20 750 21 000 21 250 21 250 22 250 22 250 22 250 23 250 23 250 23 250 24 250 23 250 24 250 24 250 24 250 24 250 25 250 26 250 27 250 28 250 29 250 20 250 21 25 250 22 250 23 250 24 250 25 250 26 250 27 250 27 250 28 250 29 250 2		20.374 19.5748 17.2579 18.7983 17.25790 18.7993 17.25790 18.7993 17.25790 18.3846 19.5790 19.5891 11.3846 10.4999 11.3846 10.4999 11.3846 10.4999 1	

80FM16

TABLE A-27.- ŘEFŘAČTIVÍTY FOR POINT ARGUELLO ANNUAL ŘADIÓ ATMOSPHÈRE

h, m	N·106	h, m	N·10 ⁶	! ! h, m !	I N·10 ⁶ I
1 0 250 1 500 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 2 250 1 2 250 1 2 250 1 2 250 1 3 250 1 4 250 1 4 250 1 4 250 1 4 250 1 4 250 1 4 250 1 4 250 1 4 250 1 5 250 1 5 250 1 5 250 1 6 250 1 6 250 1 6 250 1 6 250 1 6 250 1 7 250 1 7 250 1 7 250 1 8 250 1 8 250 1 8 250 1 8 250 1 8 250 1 8 250 1 8 250 1 8 250 1 9 250 1 9 250 1 9 250	1 108.99 ! 1 105.82 ! 1 102.79 !	1 10 000 1 10 250 1 10 500 1 10 750 1 11 000 1 11 250 1 11 750 1 12 000 1 12 250 1 12 500 1 12 500 1 13 250 1 13 500 1 13 750 1 14 000 1 14 250 1 14 500 1 15 750 1 15 750 1 16 000 1 16 250 1 17 000 1 17 250 1 17 750 1 18 000 1 18 250 1 18 750 1 18 750 1 18 250 1 18 250 1 19 250 1 19 250	94.178 91.411 88.678 85.954 85.954 85.953 77.839 74.955 72.631 72.631 70.087 67.615 65.168 62.784 65.168 62.784 65.168 62.784 65.168 62.784 65.168 62.784 65.168 62.784 65.168 62.784 65.168 62.784 60.444 65.168 62.784 60.444 65.168 62.784 60.444 6	1 24 750 1 25 000 1 25 250 1 25 500 1 25 750 1 26 000 1 26 250 1 26 750 1 27 000	1 20.451
1 9 500 1 1 9 750 1	99.848 ! 96.978 !	! 19 500 ! 19 750	22.230 1 21.338 1	1 29 500 1 1 29 750 1 1 30 000 1	4.5210 ! 4.3595 ! 4.1985 !

80FM16

TABLE A-28.- REFRACTIVITY FOR PATRICK AFB AUGUST RADIO ATMOSPHERE

i i h, ft i	I N·10 ⁶ I	l l h, ft l	! ! N·106	h, ft	
1 15 000 1 16 000 1 17 000 1 18 000 1 19 000 1 20 000 1 21 000 1 22 000 23 000 1 24 000 1 25 000 1 26 000 1 27 000 1 28 000 1 29 000		1 37 000 1 38 000 1 39 000 1 41 000 1 42 000 1 43 000 1 45 000 1 46 000 1 47 000 1 48 000 1 49 000 1 49 000 1 51 000 1 52 000 1 53 000 1 55 000 1 57 000 1 58 000 1 66 000 1 67 000 1 68 000 1 68 000 1 69 000 1 70 000 1 71 000 1 72 000 1 73 000	1 78.45 75.71 73.08 1 75.71 73.08 1 70.43 1 67.89 1 62.82 1 62.82 1 63.83 1 57.86 1 53.03 1 55.30 1 45.89 1 45.89 1 45.89 1 45.89 1 45.89 1 47.45 1 37.45 1 37.45 1 37.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46 1 47.46	81 000 82 000 83 000 84 000 85 000 86 000 87 000 88 000 89 000 91 000 92 000 93 000 94 000 95 000 96 000 97 000 98 000 99 000 100 000 110 000	. 1 1

80FM16
TABLE A-29.- REFRACTIVITY FOR PATRICK AFB DECEMBER RADIO ATMOSPHERE

! ! - h, ft !	! ! N±106	1. 1 . 1	l . I h, ft I	N·106	! ! ! !		! N·10 ⁶ !
! ! 0 ! 1.000	i 338.81 i 322.24	1 1	37 000	80.71 1 77.73.	1 1	11 777	! 12.86 ! ! 12.36 !
1 2 000		1	_	74.78	1		11.46
3 000		1		1 71.87	1		1 11.10 1
! 4 000		1.	41. 000	69.00	1 !	78 000	1 10.40 1
5 000	1 267.25	1	! 42_000	1 66.20	1	79 000 -	! 9.91 !
1 6 000	! 254.64	1	43 000	63.39	1. 1		! 9.40 !
! 7 000	1 242.93	1	! 44 000	1 60.64	!		! 8.95 !
! 8 000.	1 232.64	1	45 000	57.89	!!		I 8.41 I
9 000	! 222.54	1	1 46 000	55.31	I		1 8.16
10 000	1 213.17	1. 1	1 - 47 000	52.84	1		1 7.53 !
! 11 000	1 204.94	1	! 48 000		-		1 7.38 1
! 12 000 ! 13 000	1 197.12	1	1 49 000 : 1 50 000		! - !		! 6.91 ! ! 6.41 !
! 13,000 ! 14 000	! 189.89 ! 183.07	1	1. 50 000 1. 51 000	1 45.98 1 43.85	1		! 6.41 ! ! 6.36. !
! 15 000	1 176.48	•		1 41.82	•		1 5.95 !
16 000	1 170.27	•		39.88	•	•	! 5.45 !
17 000	1. 164.38	•	. 54 000 ·	37.95	1 .	•	5.37
18 000	1 158.63	-		36.10			! 5.11 !
19 000		•					1 4.93 1
1 20 000	1 147.86	1					1 4.39 1
! 21 000	1 142.69	!	📥	1. 30.87	1		1 4.36 1
! 22 000	1 137.72	!	1 59 000	29.30	1 !		1. 4.14 1
23.000	1 132.98	1	! 60 000	27.76	1	97 000	1 3.99 1
! 24 000	! 128.36	1	1 61 000	26.24	1 :	98. 000	1 3.91 1
! 25 000	1 123.96	!		24.82	1. 1	99 000	1 3.38 1
! 26 000	1 119.73	1		23.45	1 !		1 3.34 1
27 000	! 115.60	1		22.17	-		! 3.20 !
1 28.000	1 111.60	•	1 65 000	20.96	!!		1 3.00 1
! 29.000	1 107.77	-	1 66 000		-	103 000	! 3.00 !
! 30 000	1 104.01		,	18.74	!!		1 2.91 1
!31 000	1100.39	Ť	! 68 000	17.72	I		1 2.42 1
! 32 000	96.91	1	,	16.78	!!	, , , , , , , , , , , , , , , , , , , ,	1. 2.30 1
33.000	1 93.47	ı	. ,	15.96			1 2.27 !
! 34 000 ! 35 000	! 90.16 ! 86.95		!71 000 ! ! 72 000	15.19 1 14.39	!!		! 2.17 ! ! 2.01 !
! 35 000 ! 36 000	1 83.78	i	! 72 000 ! 73 000	14.39	(110 000	1 2.00 I
1	1 05.,10	•	:- (3.000) 1	1 13.40 1	• i	1 10 000	. 2.00 I

80FM16

1- 1 N-106 .N.106 h, ft N . 106 h, ft 1 1. h, ft 1 1 37 000 80.84 74 .000 13.20 355.89 Ó Į 1 12.53 77.88 75 000 38 000 . ! 337.94 1 1 1 000. 1 11.85 000 74.99. 1 76 000 39 321.79 į 000 1 40 000. 72.15 77 000 11.31 1 306.38 I 3 000 1 69.35 78 000 10.67 1 41 000 291.22 1 1 000 1 66.63 79 000 10.23 1 42 000 5 277.00 1 000 ! 1 80 000 9.63 1. 43 000 63.92 6 000 ! 263.23 1. 1 9.24 1 61.29 ı 81 000 44 .000 I. 250.54 000 I 1 8.68 1 58.71... 82 000 45 000 8 239.09 1 000 1 1 83 000 8.33 228.40 46 000 1 56.29 . .. 1. 1 9 000 Ţ 53.77 .84 000 7.92 1 218.52 47 000 10 1 -000 1 7.48 48 000 51.39 İ _1 85 000 . ! 209.51 11 000 1 . 7.20 49 000 49.06 I 86 000 -- 1 201.17 12 000 1 6.73 46.83 1 87 000 1 193.38 50 000 13 000 1 1 6.41 88 000 .. 1 44.65 I 1. 186.05 -51 000 14 1 000 1 89 000 ..! 6.19 52 42.55 1 1 178.98 000 1 15 000 1 1 90 000 1 .. 5.81 40.49 I 1 172.24 53 000 000 16 1 Ì 91 000 .1 5.46 54.000 1 38.51 1 165.92 17 000 ı 1 1 92.000 1 5.29 Į 000 36.57 1 18 000 159.88 55 L. 1 1 93 000 1 5.10 ...56.000 ţ 154.13 34.70 000 .19 1. 1 94 000 4.72 ! 1 ı 20 000 148.58 57 000 32.91 1 t 4.41 000 95 1 58 1 ı 21.000 143.24 000 31.20 1 1 4.31 96 000 1 1 138.14 59 000 29.54 I 22 000 . 1 97 000 1. 4.15 27.98 1. 133.25 60 000 1 23 000 ! 1 98 000 1 3.99 26.46 1 1 128.53 61 000 24 000 1 1 99 000 3.65 25.05 t 1 1 62 000 25 000 1 124.01 ļ 1 100 000 3.36 23.69 1 1 63 000 119.67 1 26 000 1 22.42 1 101 000 1 3.32 64 1 000 1 27 000 115.51 1 65 21.23 1 102 000 3.20 000 ı 1 28 000 111.56 l 1 1 20.12 000 3.05 1 103 66 000 ţ 1 29 000 107.63 _ 1 1 000 2.98 104 000 1 19.05 1 67 30 000 103.91 ı 1. 105 000 2.67 68 18.07 000 1. 31 000 100.31 1 1 106 ..000 1 2.34 69 000 1 17.13 1 1 32 000 96.82 1 ...1 107 000 2.36 16.25 93.43 1 70 000 1 İ 33 000 1 108 000 2.27 1 000 1. 15.42 1 1 90.16 1 71 34 000 2.18 109 000 1 1 1 72 000 1 14.62 1 1 86.98 1 35 000 1 2.08 13.86 1 1 110 000 .1 1 73 000 83.87 ! t 36 000 1

TABLE A-31.- QUADRATURE POINTS FOR WHITE SANDS MARCH RADIO ATMOSPHERE

	h = 0 meters No = .000.294 53 h = 4500 meters N = .000 171 63 h = 10 000 meters N = .000 093 736 h = 30 000 meters N = .000 004 1208
$H_{S1} = 7273$ $H_{S5} = 8874$	m $H_{S2} = 7068 \text{ m}$ $H_{S3} = 8333 \text{ m}$ $H_{S4} = 8613 \text{ m}$ m $H_{S6} = 8592 \text{ m}$
1.	Quadrature points for H = 10 ⁶ meters
<u> </u>	$N_{1} = N_{0} - (N_{0} - N_{H})X_{1} \qquad N_{H} = 0$
! !	$N_1 = .000 .280 _71$ $h_1 = 455.1 m$ $N_2 = .000 .226 .56$ $h_2 = .2404 m$
1 1 1	$N_3 = .000 147 26$ $h_3 = 5970 m$ $N_4 = .000 067 967$ $h_4 = 12 303 m$ $N_5 = .000 013 816$ $h_5 = 22 279 m$
1 1 1	Quadrature points for H = 10 ¹¹ meters
! !	$N_1 = N_0 - (N_0 - N_H)X_1 - N_H = .000 093 736$
! ! !	$N_1 = .000 285 11$ $h_1 = 309.1 m$ $N_2 = .000 248 19$ $h_2 = 1603 m$ $N_3 = .000 194 13$ $h_3 = 3614 m$ $N_4 = .000 140 07$ $h_4 = 6444 m$ $N_5 = .000 103 16$ $h_5 = 9199 m$

```
1.
                     h = 0 meters
                                                          N_{Q} = .000 348 95
                     h = 4500 \text{ meters}
                                                          N = .000 191 13
N = .000 094 044
1
                    h = 10 000 \text{ meters}
                    h = 30 000 meters
                                                            N = .000 004 4363
     H_{S1} = 6296 \text{ m}
                                H_{S2} = 6796 \text{ m}
                                                          H_{S3} = 7475 \text{ m} H_{S4} = 7410 \text{ m}
     H_{S5} = 7239 \text{ m}
                              H_{S6} = 6930 \text{ m}
                             Quadrature points for H = 106 meters
                              N_{1} = N_{0} - (N_{0} - N_{H})X_{1} N_{H} = 0
                                                                    h_1 = 328.1 \text{ m}
                              N_1 = .000 332 58
                                                                n_1 = 5200. — h_2 = 1862 m h_3 = 5136 m h_4 = 11 378 m h_5 = 21 566 m .
                              N_2 = .000 268 42
                              N_3 = ...000 174 48
                              N_{4} = .000 080 526
                              N_5 = .000 \ 016 \ 369
                             Quadrature points for H = 104 meters
                              N_{i} = N_{o} - (N_{o} - N_{H})X_{i}
                                                              N_{\rm H} = .000 094 044
                              N_1 = .000 336.99
                                                                    h_1 = 238.0 \text{ m}
                                                                  h<sub>2</sub> = 1264 m
h<sub>3</sub> = 3372 m
h<sub>4</sub> = 6041 m
                              N_2 = .000 290 13
                              N_3 = .000 221 50
                              N\bar{4} = .000 152 87
                              N_5 = .000 106 00
                                                                    h_5 = 8962 \text{ m}
```

TABLE A-33.- QUADRATURE POINTS FOR WHITE SANDS ANNUAL RADIO ATMOSPHERE

	h = 0 meters
$\begin{array}{ccc} ! & H_{S1} = 7141 \\ ! & H_{S5} = 8345 \\ ! & & & & & & & & & & & & & & & & & &$	m $H_{S2} = 7025 \text{ m}$ $H_{S3} = 8145 \text{ m}$ $H_{S4} = 8148 \text{ m}$ m $H_{S6} = 8357 \text{ m}$
!	Quadrature points for H = 106 meters
I	$N_{\perp} = N_{\circ} - (N_{\circ} - N_{H}) X_{\perp} \qquad N_{H} = C$
1	$N_1 = .000.288 \ 03$ $h_1 = 406.9 \ m$ $N_2 = .000.232 \ 47$ $h_2 = .2286 \ m$
! !	$N_3 = .000 151 10$ $h_3 = 5648 m$ $N_4 = .000 069 740$ $h_4 = 12 349 m$ $N_5 = .000 014 177$ $h_5 = 22 232 m$
1 1 1	Quadrature points for $H = 10^{4}$ meters
1	$N_1 = N_0 - (N_0 - N_H) X_1$ $N_H = .000 094 146$
	$N_1 = .000 292 45$ $h_1 = 278.0 m$ $N_2 = .000 254 20$ $h_2 = 1424 m$ $N_3 = .000 198 18$ $h_3 = 3527 m$ $N_4 = .000 142 16$ $h_4 = 6238 m$ $N_5 = .000 103 91$ $h_5 = 9153 m$

TABLE A=34.- QUADRATURE POINTS FOR EDWARDS AFB MAY RADIO ATMOSPHERE

```
N<sub>O</sub> = .000 309 83
N = .000 174 57
N = .000 092 891
                     h = 0 meters
                     h = 4500 meters
                     h = 10 000 meters
                                                              N = .000 003 7075
                     h = 30 000 meters
                                                         H_{S3} = 7844 \text{ m} H_{S4} = 8042 \text{ m}
                            H_{S2} = 6800 \text{ m}
H_{S6} = 8125 \text{ m}
     H_{S1} = 7008 \text{ m}
   H_{S5}^{-} = 8088 \text{ m}
1
                              Quadrature points for H = 106 meters
                               N_{1} = N_{0} - (N_{0} - N_{H})X_{1} \qquad N_{H} = 0
                               N_1 = .000 295 30
                                                                      h_1 = 429.8 \text{ m}
                               N_2 = .000 238 33
                                                                       h_2 = 2021 \text{ m}
                                                                      h_3 = 5574 \text{ m}
                               N3 = .000 154 92
N4 = .000 071 498
                                                                      h_{ij} = 11 915 \text{ m}
                                                                      h_5 = 21 591 \text{ m}
                                N_5 = .000 \ 014 \ 534
                               Quadrature points for H = 104 meters
                               N_1 = N_0 - (N_0 - N_H)X_1 N_H = .000 092 891
                                                                         h_1 = 300.5 \text{ m}
                                N_1 = .000 299 65
                                                                        h_2 = 1445 \text{ m}
                                N_2 = .000 259 77
N_3 = .000 201 36
                                                                       h<sub>3</sub> = 3324 m
h<sub>4</sub> = 6293 m
                                N_4 = .000 142 95
                                                                         h_5 = 9143 \text{ m}
                                 N_5 = .000 103 07
```

I . I	h = 0 meters No. = .000 292 24 h = 4500 meters N = .000 175.22 h = 10 000 meters N = .000 093 252 h = 30 000 meters N = .000 003 8632
$H_{S1} = 7312$ $H_{S5} = 8845$	m H _{S2} = 6891 m H _{S3} = 8797 m H _{S4} = 8760 m m H _{S6} = 8662 m
l l	Quadrature points for H = 106 meters
! ! !	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = 0$
1 . 1 1 1 . 1 .	$N_1 = .000 278 53$ $h_1 = 464.0 m$ $N_2 = .000 224 80$ $h_2 = 2177 m$ $N_3 = .000 146 12$ $h_3 = 6072 m$ $N_4 = .000 067 439$ $h_4 = 12 556 m$ $N_5 = .000 013 709$ $h_5 = 22 117 m$
1 1 1 1	Quadrature points for H = 10 ⁴ meters
• 1	$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 093 252$! $N_1 = .000 282 91$ $h_1 = 315.6 m$! $N_2 = .000 246 32$ $h_2 = 1499 m$! $N_3 = .000 192 75$ $h_3 = 3727 m$! $N_4 = .000 139 17$ $h_4 = 6505 m$! $N_5 = .000 102 58$ $h_5 = 9210 m$!

TABLE A-36.- QUADRATURE POINTS FOR EDWARDS AFB ANNUAL RADIO ATMOSPHERE

```
N_0 = .000 302 08
               h = 0 meters
                                                      N = .000 174 64
               h = 4500 \text{ meters}
                                                      N = .000093284
               h = 10 000 meters
                                                      N = .000 003 7591
               h = 30 000 \text{ meters}
H_{S1} = 7144 \text{ m}
                                                   H_{S3} = 8212 \text{ m}
                                                                              H_{S4} = 8381 \text{ m}
                         H_{S2} = 6839 \text{ m}
                         H_{S6} = 8361 \text{ m}
H_{S5} = 8296 \text{ m}
                       Quadrature points for H = 106 meters
                        N_{i} = N_{o} - (N_{o} - N_{H})X_{i} N_{H} = 0
                         N_1 = .000 287 91
                                                             h_1 = 452.1 \text{ m}
                         N_2 = .000 232 37
                                                             h_2 = 2030 \text{ m}
                                                            h_3 = 5809 \text{ m}
                         N_3 = .000 151 04
                                                            h_{4} = 12 151 m
                         N_{4} = .000 069 710
                                                            h_5 = 21 813 \text{ m}
                         N_5 = .000 014 171
                       Quadrature points for H = 10^{4} meters
                                                       N_{\rm H} = .000~093~284
                         N_{\perp} = N_{\circ} - (N_{\circ} - N_{H})X_{\perp}
                         N_1 = .000 292 29
                                                              h_1 = 311.9 \text{ m}
                         N_2 = .000 253 90
                                                              h_2 = 1418 \text{ m}
                         N_3 = .000 197 68
                                                              h_3 = 3379 \text{ m}
                         N_{4} = .000 141 46
                                                             h_{4} = 6393 \text{ m}
                         N_5 = .000 103 07
                                                              h_5 = 9186 \text{ m}
```

```
h = 0 meters
                                                    N_0 = .000 316 92
              h = 4500 \text{ meters}
                                                   N = .000 170 97
              h = 10 000 meters __
                                                   N = .000 093 957
              h = 30 000 \text{ meters}
                                                   N = .000 04 0792
H_{S1} = 6881 \text{ m}
                        H_{S2} = 6954 \text{ m}
                    H_{S6} = 7908 \text{ m}
                                                 H_{S3} = 7291 \text{ m}
                                                                        H_{S4} = 7538 \text{ m}
H_{S5} = 7498 \text{ m}
                     Quadrature points for H = 106 meters
                     N_i = N_o - (N_o - N_H)X_i
                                                    N_{\rm H} = 0
                      N_1 = .000 302 05
                                                           h_1 = 345.7 \text{ m}
                      N_2 = .000 243 79
                                                         h_2 = 1892 \text{ m} .
                      N_3 = .000 158.46
                                                         h_3 = 5225 \text{ m}
                      N_4 = .000 073 134
                                                         h_{4} = 11 982 m
                      N_5 = .000 \ 014 \ 867
                                                        h_5 = 21 879 m
                    Quadrature points for H = 10^{4} meters
                     N_1 = N_0 - (N_0 - N_H)X_1
                                                   N_{\rm H} = .000~093~957
                      N_1 = .000 306 46
                                                        h_1 = 227.5 \text{ m}
                      N_2 = .000 265 47
                                                        h_2 = 1282 \text{ m}
                     N_3 = .000 205 44
                                                       h_3 = 3165 \text{ m}
h_4 = 6046 \text{ m}
                     N_{4} = .000 145 41
                     N_5 = .000 104 42
                                                        h_5 = 9083 \text{ m}
```

TABLE A-38.- QUADRATURE POINTS FOR EGLIN AFB AUGUST RADIO ATMOSPHERE

```
1-
                                                                  N_0 = .000 367 68
                      h = 0 meters
                                                               N = .000 185 64
N = .000 094 027
1
                      h = 4500 meters
                      h = 10 000 meters
                                                                N = .000 004 3965
                      h = 30 000 meters
                                                                                           H_{S4} = 6589 \text{ m}
                                  H_{S2} = 6723 \text{ m}
H_{S6} = 6357 \text{ m}
                                                               H_{S3} = 6585 \text{ m}
      H_{S1} = 5949 \text{ m}
      H_{S5} = 6739 \text{ m}
                                Quadrature points for H = 106 meters
                                                                    N<sub>H</sub> = 0 ......
                                  N_i = N_o - (N_o - N_H)X_i
                                                                            h_1 = 268.0 \text{ m}
                                 N_1 = .000 350.43
                                                                           h_2 = 1763 \text{ m}
                                  N_2 = .000 282 83
                                                                           h_3 = 4567 \text{ m}
                                 N_3 = .000 183 84
                                                                           n_{4} = 10 926 \text{ m}
                                  N_{4} = .000 084 848
                                 N_5 = .000 \ 0.17 \ 248
                                                                            h_5 = 21 \ 259 \ m
                                Quadrature points for H = 104 meters
                                                                     N_{\rm H} = .000 094 027
                                  N_{1} = N_{0} - (N_{0} - N_{H})X_{1}
                                                                      h_1 = 179.2 \text{ m}
                                  N_1 = .000 354 84
                                  N_2 = .000 304 53
                                                                            h_2 = 1350 \text{ m}
                                                                          h<sub>3</sub> = 3111 m
h<sub>4</sub> = 5712 m
                                  N<sub>3</sub> = .000 230 86
N<sub>4</sub> = .000 157 18
N<sub>5</sub> = .000 106 87
                                                                           h_5 = 8897 \text{ m}
```

TABLE A-39.- QUADRATURE POINTS FOR EGLIN AFB ANNUAL RADIO ATMOSPHERE

```
N_0 = .00034463
              h = 0 meters
                                                 N. = .000 176 71
              h = 4500 \text{ meters}
                                                    N = .000 095 266
N = .000 004 2409
              h = 10 000 meters
              h = 30 000 meters
H_{S1} = 6375 \text{ m}
                       H_{S2} = 6822 \text{ m}
H_{S6} = 7062 \text{ m}
                                                                   H_{S4} = 6784 \text{ m}
                                                H_{S3} = 6737 \text{ m}
H_{S5} = 7405 \text{ m}
                      Quadrature points for H = 10^6 meters
                        N_{1} = N_{0} - (N_{0} - N_{H})X_{1} N_{H} = 0
                       N_1 = .000 328 46
                                                          h_1 = 553.3 \text{ m}
                                                           h_2 = 1776 \text{ m}
                        N_2 = .000 \ 265 \ 10
                                                          h_3 = 4702 \text{ m}
                       N_3^- = -.000 172 32
                        N_{4} = .000 079 529
                                                           h_{4} = 11 459 \text{ m}
                        N_5 = .000 \ 016 \ 167
                                                          h_5 = 21 480 \text{ m}
                      Quadrature points for H = 10^{4} meters
                        N_1 = N_0 - (N_0 - N_H)X_1 N_H = .000 095 266
                                                          h_1 = 466.3 m
                        N_1 = .000 332 93
                        N_2 = .000 287 09
                                                           h_2 = 1307 \text{ m}
                                                          h_3 = 2977 \text{ m}
                        N_3 = .000 219 95
                                                           h_4 = 5734 \text{ m}
                        N_{4} = .000 152 81
                        N_5 = .000 \ 106 \ 97
                                                            h_5 = 8876 \text{ m}
```

TABLE A-40.- QUADRATURE POINTS FOR ASCENSION FEBRUARY RADIO ATMOSPHERE

```
N_O = -.000 368 20
                 h = 0 meters
                                                              N = .000 179 34
N = .000 094 233
                 h = 4500 \text{ meters}
                 h = 10 000 \text{ meters}
                                                             N = .000 004 0842
                 h = 30 000 \text{ meters}
                                                           H_{S3} = 6256 \text{ m}
                                                                                          H_{S4} = 6271 \text{ m}
H_{S1} = 5939 \text{ m}
                             H_{S2} = 6698 \text{ m}
                             H_{S6} = 6341 \text{ m}
H_{S5} = 6111 \text{ m}
                          Quadrature points for H = 106 meters
                                                                N_{\rm H} = 0
                            N_1 = N_0 - (N_0 - N_H)X_1
                                                                        h_1 = 285.7 \text{ m}
                            N_1 = ..000 350 93
                                                                       h_2 = 1825 \text{ m}
                            N_2 = .000 283 23
                                                                       h_3 = 4347 \text{ m}
                            N_3 = .000 184 10
                            N_{4} = .000 084 968

N_{5} = .000 017 272
                                                                        h_{4} = 10 914 \text{ m}
                                                                        h_5 = 21.151 \text{ m}
                           Quadrature points for H = 104 meters
                                                                N_{\rm H} = .000 094 233
                             N_i = N_o - (N_o - N_H)X_i
                             N<sub>1</sub> = .000 355 35
N<sub>2</sub> = .000 304 98
N<sub>3</sub> = .000 231 22
                                                                       h_1 = 213.2 \text{ m}
                                                                        h_2 = 1162 \text{ m}
                                                                       h_3 = 2294 \text{ m}
                                                                       n_{4} = 5344 \text{ m}
                             N_{4} = .000 157 45
                                                                        h_5 = 8827 \text{ m}
                             N_5 = .000 107 08
```

TABLE A-41.- QUADRATURE POINTS FOR ASCENSION SEPTEMBER RADIO ATMOSPHERE

! h = h =	0 meters $N_0 = .000 352 17$ 4500 meters $N = .000 172 98$ 10 000 meters $N = .000 094 422$ 30 000 meters $N = .000 004 2748$
H _{S1} = 6236 m H _{S5} = 6647 m	Hs2 = 6766 m Hs3 = 6330 m Hs4 = 6302 m Hs6 = 6831 m
!	Quadrature points for H = 106 meters
I . I	$N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = 0$
: ! !	$N_1 = .000 335 65$ $h_1 = 331.6 m$ $N_2 = .000 270 90$ $h_2 = 1689 m$
I	
1	
!	Quadrature points for $H = 10^{4}$ meters
1	$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 094 422$
1	$N_1 = .000 340 08$ $h_1 = 236.6 m$ $N_2 = .000 292 69$ $h_2 = 1404 m$
i i	$N_3 = .000 \ 223 \ 30$ $h_3 = .2539 \ m$ $N_4 = .000 \ 153 \ 90$ $h_4 = .5516 \ m$
! !	$N_5 = .000 \ 106 \ 51$ $h_5 = 8869 \ m$

TABLE A-42.- QUADRATURE POINTS FOR ASCENSION ANNUAL RADIO ATMOSPHERE

```
h = 0 meters
                                                         N_0 = .000 358 52
                                                     N = .000 172 76
                 h = 4500 meters
                                                      N = .000 094 344
                 h = 10 000 meters
                                                        N = .000 004 1784
                 h = 30 000 meters
H_{S1} = 6118 \text{ m}
                            H\dot{s}_2 = 6738 \text{ m}
                                                    H_{S3} = 6164 \text{ m}
                                                                                   H_{S4} = 6100 \text{ m}
                            H<sub>S6</sub> = 6637 m
 H_{S5} = 6445 \text{ m}
                         Quadrature points for H = 106 meters
                           N_1 = N_0 - (N_0 - N_H)X_1
                                                           N_{H} = 0
                           N_1 = .000 341 70
                                                                  h_1 = 303.7 \text{ m}
                                                          h<sub>2</sub> = 1664 m.
h<sub>3</sub> = 4228 m
h<sub>4</sub> = 11 138 m
h<sub>5</sub> = 21 292 m
                           N_2 = .000 \ 275 \ 79
                           N_3 = .000 179 26
                           N_{4} = .000 082 734 - N_{5} = .000 016 818
                         Quadrature points for H = 104 meters
                           N_i = N_o - (N_o - N_H)X_i N_H = .000 094 344
                                                                  h_1 = 214.1 \text{ m}
                           N_1 = .000 346 13
                           N_2 = .000 297 56
                                                                 h_2 = 1325 \text{ m}
                                                                h_3 = 2545 \text{ m}
                           N_3 = .000 226 43
                           N_{4} = .700 155 30
                                                                 h_4 = 5437 \text{ m}
                           N_5 = .000 \ 106 \ 73
                                                                  h<sub>5</sub> = 8854 in
```

TABLE A-43.- QUADRATURE POINTS FOR KWAJALEIN MAY RADIO ATMOSPHERE

1	h = 0 meters
!- ! !	$H_{S1} = 5644 \text{ m}$ $H_{S2} = 6643 \text{ m}$ $H_{S3} = 6335 \text{ m}$ $H_{S4} = 6294 \text{ m}$! $H_{S5} = 6027 \text{ m}$ $H_{S6} = 5853 \text{ m}$!
i I	Quadrature points for H = 106 meters
1	$N_{1} = N_{0} - (N_{0} - N_{H})X_{1} \qquad N_{H} = 0$
1 1 1 1 1 1 1	N_1 = .000 366 16 h_1 = 235.9 m h_2 = .000 295 52 h_2 = 1437 m h_3 = .000 192 09 h_3 = 4363 m h_4 = .000 088 655 h_4 = 10 478 m h_5 = .000 018 022 h_5 = 20 919 m
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Quadrature points for H = 10 ⁴ meters
1	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = .000 093 394$
1 1 1	$N_1 = .000 370 54$ $h_1 = 178.0 m$ $N_2 = .000 317 08$ $h_2 = 1040 m$ $N_3 = .000 238 79$ $h_3 = 2808 m$ $N_4 = .000 160 49$ $h_4 = 5677 m$ $N_5 = .000 107 03$ $h_5 = 8844 m$

TABLE A-44.- QUADRATURE POINTS FOR KWAJALEIN DECEMBER RADIO ATMOSPHERE

1 1 1 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
I I I	$H_{S1} = 5915 \text{ m}$ $H_{S2} = 6701 \text{ m}$ $H_{S3} = 6298 \text{ m}$ $H_{S4} = 6315 \text{ m}$ $H_{S5} = 6614 \text{ m}$ $H_{S6} = 6302 \text{ m}$
1	Quadrature points for H = 106 meters
1	$N_{1} = N_{0} - (N_{0} - N_{H}) X_{1}$ $N_{H} = 0$
1 1 1 1	$N_1 = .000 352 15$ $h_1 = 334.2 m$ $N_2 = .000 284 22$ $h_2 = 1689 m$ $N_3 = .000 184 74$ $h_3 = 4377 m$ $N_4 = .000 085 263$ $h_4 = 10 821 m$ $N_5 = .000 017 332$ $h_5 = 21 127 m$
1 ! !	Quadrature points for H = 10 ⁴ meters
!	$N_i = N_o - (N_o - N_H)X_i$ $N_H = .000 093 280$
1 40 24 24 24 24	$N_1 = .000 356 52$ $h_1 = 249.7 m$ $N_2 = .000 305 74$ $h_2 = 1214 m$ $N_3 = .000 231 38$ $h_3 = 3044 m$ $N_4 = .000 157 02$ $h_4 = 5552 m$ $N_5 = .000 106 24$ $h_5 = 8862 m$

TABLE A-45.- QUADRATURE POINTS FOR KWAJALEIN ANNUAL RADIO ATMOSPHERE

. . . .	h = 0 meters
$H_{S1} = 5879$ $H_{S5} = 6598$	m $H_{S2} = 6693 \text{ m}$ $H_{S3} = 6404 \text{ m}$ $H_{S4} = 6394 \text{ m}$ $H_{S6} = 6243 \text{ m}$
‡. ‡	Quadrature points for H = 106 meters
	$N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = 0$
1. 1 1	$N_1 = .000 354 01$ $h_1 = 311.3 m$ $N_2 = .000 285 72$ $h_2 = 1698 m$ $N_3 = .000 185 72$ $h_3 = 4432 m$ $N_4 = .000 085 713$ $h_4 = 10 791 m$
1 1 1	$N_{4} = .000 085 713$ $h_{4} = 10 791 m$ $N_{5} = .000 017 424$ $h_{5} = 21 125 m$
1 1 1	Quadrature points for H = 10 ⁴ meters
I. 1	$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 093 934$
• ! ! ! !	$N_1 = .000 358 41$ $h_1 = .225.7 m$! $N_2 = .000 307 39$ $h_2 = .1225 m$! $N_3 = .000 232 68$ $h_3 = .2942 m$! $N_4 = .000 157 97$ $h_4 = .000 106 95$ $h_5 = .000 106 95$! $n_5 = .000 106 95$

TABLE A-46.- QUADRATURE POINTS FOR WALLOPS MARCH RADIO ATMOSPHERE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
! $H_{S1} = 7061 \text{ m}$ $H_{S2} = 7004 \text{ m}$ $H_{S3} = 8089 \text{ m}$ $H_{S4} = 8223 \text{ m}$! $H_{S5} = 8376 \text{ m}$ $H_{S6} = 8217 \text{ m}$!
Quadrature points for H = 106 meters
$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Quadrature points for H = 10 ⁴ meters
$N_{1} = N_{0} - (N_{0} - N_{H})X_{1}$ $N_{H} = .000 092 799$
$N_1 = .000 \ 296 \ 76$ $h_1 = 307.7 \ m$ $N_2 = .000 \ 257 \ 42$ $h_2 = 1533 \ m$ $N_3 = .000 \ 199 \ 80$ $h_3 = 3464 \ m$ $N_4 = .000 \ 142 \ 18$ $h_4 = 6383 \ m$ $N_5 = .000 \ 102 \ 84$ $h_5 = 9147 \ m$

TABLE A-47.- QUADRATURE POINTS FOR WALLOPS JULY RADIO ATMOSPHERE

	h = 0 meters No = .000 372 34 h = 4500 meters N = .000 182 54 h = 10 000 meters N = .000 093 894 h = 30 000 meters N = .000 004 4361
! H _{S1} = 5863 ! H _{S5} = 5997 !	m $H_{S2} = 6701 \text{ m}$ $H_{S3} = 6313 \text{ m}$ $H_{S4} = 6313 \text{ m}$ m $H_{S6} = 6215 \text{ m}$
1	Quadrature points for H = 10 ⁶ meters
1 1	$N_{\perp} = N_{O} - (N_{O} - N_{H})X_{\perp} \qquad N_{H} = 0$
1	$N_1 = .000 354 87$ $h_1 = .185.1 m$ $N_2 = .000 286 42$ $h_3 = .1512 m$
! !	$N_2 = .000$ 286 42 $h_2 = 1512$ $h_3 = 4376$ $h_4 = 10794$ $h_5 = 21$ $h_6 = 21$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Quadrature points for H = 10 ⁴ meters
! !	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = .000 093 894$
! ! !	$N_1 = .000 \ 359 \ 28$ $h_1 = 140.7 \ m$ $N_2 = .000 \ 308 \ 08$ $h_2 = 961.9 \ m$ $N_3 = .000 \ 233 \ 12$ $h_3 = 2910 \ m$ $N_4 = .000 \ 158 \ 15$ $h_4 = 5546 \ m$ $N_5 = .000 \ 106 \ 96$ $h_5 = 8815 \ m$

TABLE A-48.- QUADRATURE POINTS FOR WALLOPS ANNUAL RADIO ATMOSPHERE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H _{S1} = 6746 m H _{S2} = 6914 m H _{S3} = 7500 m H _{S4} = 7564 m H _{S5} = 7696 m H _{S6} = 7680 m
Quadrature points for H = 106 meters
$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = 0$
$N_1 = .000 \ 309 \ 18$ $N_1 = 334.0 \ m$ $N_2 = .000 \ 249 \ 54$ $N_2 = 2085 \ m$ $N_3 = .000 \ 162 \ 20$ $N_3 = 5243 \ m$ $N_4 = .000 \ 074 \ 860$ $N_4 = 11 \ 753 \ m$
$n_5 = .000 \ 0.015 \ 2.18$ $n_5 = 2.1 \ 760 \ m$
Quadrature points for H = 10 ⁴ meters
$N_i = N_0 - (N_0 - N_H)X_i$ $N_H = .000 093 708$
$N_1 = .000 313 58$ $h_1 = 232.0 m$ $N_2 = .000 271 16$ $h_2 = 1438 m$ $N_3 = .000 209 05$ $h_3 = 3321 m$ $N_4 = .000 146 94$ $h_4 = 6090 m$ $N_5 = .000 104 53$ $h_5 = 9072 m$

TABLE A-49.- QUADRATURE POINTS FOR CAPE CANAVERAL JANUARY RADIO ATMOSPHERE

```
h = 0 meters
                                                                 N_0 = .000 349 76
                                                             N = .000 170 37
N = .000 094 321
N = .000 004 1116
                   h = 4500 meters
                   h = 10 000 meters
                   h = 30 000 \text{ meters}
H_{S1} = 6281 \text{ m} H_{S2} = 6789 \text{ m} H_{S5} = 6389 \text{ m} H_{S6} = 6905 \text{ m}
                                                              H_{S3} = 6256 \text{ m} H_{S4} = 6126 \text{ m}
                             Quadrature points for H = 106 meters
                              N_{i} = N_{o} - (N_{o} - N_{H})X_{i}
                                                                   N_{\rm H} = 0
                              N_1 = .000 333 35
                                                                         h_1 = 277.12 \text{ m}
                               N_2 = .000 269 05
                                                                         h_2 = 1635 \text{ m}
                                                                        h<sub>3</sub> = 4246 m
h<sub>4</sub> = 11 331 m
h<sub>5</sub> = 21 301 m
                              N_3 = .000 174 88
                               N_{4} = .000 080 712
                               N_5 = .000 \ 0.16 \ 407
                             Quadrature points for H = 104 meters
                              N_1 = N_0 - (N_0 - N_H)X_1 N_H = .000 094 321
                              N_1 = .000 337 78
                                                                          h_1 = 215.6 \text{ m}
                                                                        h<sub>2</sub> = 1158 m
h<sub>3</sub> = 2562 m
h<sub>4</sub> = 5521 m
h<sub>5</sub> = 8943 m
                               N_2 = .000 290 81
                              N_3 = .000 222 04
                              N_{4} = .000 153 27
                              N_5 = .000 \ 106 \ 30
```

TABLE A-50.- QUADRATURE POINTS FOR CAPE CANAVERAL AUGUST RADIO ATMOSPHERE

1 1 1 1	3. 170.	h = 4500 $h = 100$	ters meters 00 meters 00 meters		N _O = . N = . N = . N = .	000 399 000 187 000 099	7 33	! ! ! !
! ! H _{S1} ! H _{S5}	= 5366 = 5501	m m	H _{S2} = 659 H _{S6} = 538	1 m 8 m	H _{S3} = 59	943 m	НSЦ	= 5866 m
i		<u>Q</u> 1	adrature	points for	r H = 10 ⁶	5 meter	<u>s</u>	
1		1	N ₁ = N ₀ -	(N _o -N _H)X _i	N _H =	0		
1 1 1 1 1			N ₁ = .000 N ₂ = .000 N ₃ = .000 N ₄ = .000 N ₅ = .000	092 172		1177 = 1	69.0 m 272 m 066 m 0 172 m 0 744 m	
1 1		Q	uadraturė	points fo	or H = 10	4 meter	25	
1			$N_1 = N_0 -$	(No-NH)Xi	N _H =	.000	93 940	
1 1 1			N ₁ = .000 N ₂ = .000 N ₃ = .000 N ₄ = .000 N ₅ = .000	328 93 246 68 164 43		h ₂ = 9 h ₃ = 1 h ₄ =	2629 m 5475 m	

TABLE A-51.- QUADRATURE POINTS FOR CAPE CANAVERAL ANNUAL RADIO ATMOSPHERE

	$h = 0$ meters $N_0 = .000 376 07$ h = 4500 meters $N = .000 175 59h = 10 000$ meters $N = .000 094 206h = 30 000$ meters $N = .000 004 2129$
$H_{S1} = 5794$ $H_{S5} = 5774$	m $H_{S2} = 6679 \text{ m}$ $H_{S3} = 5908 \text{ m}$ $H_{S4} = 5777 \text{ m}$ m $H_{S6} = 6101 \text{ m}$
!	Quadrature points for H = 106 meters
1 1 1	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = 0$
	$N_1 = .000 358 43$ $h_1 = 191.7 m$ $N_2 = .000 289 29$ $h_2 = 1428 m$ $N_3 = .000 188 04$ $h_3 = 4004 m$
1 1 1	$N_{4} = .000 086 784$ $h_{4} = 10 712 m$ $N_{5} = .000 017 641$ $h_{5} = 20 957 m$
	Quadraturé points for II = 10 ¹⁴ meters
!	$N_i = N_o - (N_o - N_H)X_i$ $N_H = .000 094 206$
1.	
	$N_1 = .000 362 85$ $h_1 = 136.7 m$ $N_2 = .000 311 03$ $h_2 = 1008 m$
1. 1. 1	

TABLE A-52.- QUADRATURE POINTS FOR HAWAII FEBRUARY RADIO ATMOSPHERE

```
N_0 = .00034407
               h = 0 meters
                                                   N = .000 172 59
               h = 4500 meters
                                                   N = .000 093 253
               h = 10 000 meters
                                                    N = .000.004 1432
               h = 30 000 \text{ meters}
                                                   H_{S3} = 6522 \text{ m} H_{S4} = 6534 \text{ m}
H_{S1} = 6386 \text{ m}
                         H_{S2} = 6820 \text{ m}
H_{S5} = 6831 \text{ m}
                         H_{S6} = 7079 \text{ m}
                       Quadrature points for H = 106 meters
                        N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = 0
                        N_1 = .000 327 93
                                                             h_1 = 354.3 \text{ m}
                        N_2 = .000 264 67
                                                            h_2 = 1839 \text{ m}
                                                           h<sub>3</sub> = 4529 m
h<sub>4</sub> = 11 314 m
h<sub>5</sub> = 21 462 m
                        N_3 = .000 172 04
                        N_{4} = .000 079 399
                        N_5 = .000 016 140
                       Quadrature points for H = 104 meters
                                                       N_{\rm H} \approx .000~093~253
                         N_i = N_o - (N_o - N_H)X_i
                                                             h_1 = 253.7 \text{ m}
                         N_1 = .000 332 30
                         N_2 = .000 286 19
                                                             h_2 = 1331 \text{ m}
                                                            h_3 = 2651 \text{ m}
                         N_3 = .000 218 66
                                                            h_{4} = 5717 \text{ m}
                         N_{4} = .000 151 13
                         N_5 = .000 \ 105 \ 02
                                                             h_5 = 9015 \text{ m}
```

TABLE A-53.- QUADRATURE POINTS FOR HAWAII JULY RADIO ATMOSPHERE

	h = 0 meters
H _{S1} = 6069 H _{S5} = 6320	m $H_{S2} = 6746$ m $H_{S3} = 6066$ m $H_{S4} = 5844$ m ! m $H_{S6} = 6556$ m !
1.	Quadrature points for H = 106 meters
1	$N_{\perp} = N_{O} - (N_{O} - N_{H})X_{\perp}$ $N_{H} = 0$
1	$N_1 = .000 344 23$ $h_1 = 278.6 m$ $N_2 = .000 277 82$ $h_2 = 1735 m$ $N_3 = .000 180 59$ $h_3 = 4051 m$ $N_4 = .000 083 346$ $h_4 = 11 093 m$
1 1	$N_{1} = .000 003 340$ $N_{5} = .000 016 943$ $N_{5} = 21 300 m$
1	Quadrature points for $H = 10^{4}$ meters
i I	$N_i = N_o - (N_o - N_H)X_i$ $N_H = .000 094 573$
! ! ! !	$N_1 = .000 348 66$ $h_1 = 188.8 m$ $N_2 = .000 299 65$ $h_2 = 1225 m$ $N_3 = .000 227 87$ $h_3 = 2594 m$ $N_4 = .000 156 09$ $h_4 = 5409 m$ $N_5 = .000 107 08$ $h_5 = 8898 m$

TABLE A-54.- QUADRATURE POINTS FOR HAWAII ANNUAL RACTO ATMOSPHERE

```
h = 0 meters
                                                                  N_0 = .000 352 67
                 h = 4500 meters
                                                              N = .000 172 59
N = .000 094 496
                  h = 10 000 meters
                  h = 30 000 \text{ meters}
                                                                N = .000 001 2302
                              H_{S2} = 6782 \text{ m}.

H_{S6} = 6816 \text{ m}.
H_{S1} = 6227 \text{ m}
                                                           H_{S3} = 6297 \text{ m}
                                                                                                H_{S4} = 6209 \text{ m}
H_{S5} = 6629 \text{ m}
                           Quadrature points for H = 106 meters
                             N_i = N_o - (N_o - N_H)X_i
                                                                N_{H} = 0
                             N<sub>1</sub> = .000 336 13
N<sub>2</sub> = .000 271 29
N<sub>3</sub> = .000 176 34
N<sub>4</sub> = .000 081 384
                                                                          h_1 = 337.0 \text{ m}
                                                                         n_2 = 1745 \text{ m}
                                                                         h_3 = 4303 \text{ m}

h_4 = 11 265 \text{ m}
                             N_5 = .000 \ 0.16 \ 544
                                                                          h_5 = 21 354 \text{ m}
                            Quadrature points for H = 104 meters
                             N_{i} = N_{o} - (N_{o} - N_{H})X_{i} N_{H} = .000 094 496
                             N_1 = .000 340 56
                                                                           h_1 = 235.2 \text{ m}
                             N_2 = .000 293 09

N_3 = .000 223 58
                                                                          h_2 = 1290 \text{ m}
                                                                          h_3 = 2658 \text{ m}
h_4 = 5542 \text{ m}
                             N_{4} = .000 154 07
                             N_5 = .000 106 61
                                                                           h_5 = 8818 \text{ m}
```

TABLE A-55.- QUADRATURE POINTS FOR POINT ARGUELLO JULY RADIO ATMOSPHERE

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Quadrature points for H = 10 ⁶ meters	
$N_{\perp} = N_{0} - (N_{0} - N_{H})X_{\perp} \qquad N_{H} = 0$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Quadrature points for $H = 10^{\frac{14}{10}}$ meters $N_{1} = N_{0} - (N_{0}-N_{H})X_{1}$ $N_{H} = .000 094 173$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**********

TABLE A-56.- QUADRATURE POINTS FOR POINT ARGUELLO DECEMBER RADIO ATMOSPHERE

h = 0 meters	! ! !
H _{S1} = 6883 m H _{S2} = 6939 m H _{S3} = 7619 m H _{S4} = 78 H _{S5} = 7250 m H _{S6} = 7611 m	14 m !
Quadrature points for H = 106 meters	1
$N_{1} = N_{0} - (N_{0} - N_{H})X_{1}$ $N_{H} = 0$	
$N_1 = .000 \ 301 \ 98$ $N_1 = 387.7 \ m$ $N_2 = .000 \ 243 \ 72$ $N_2 = 1647 \ m$ $N_3 = .000 \ 158 \ 42$ $N_3 = 5416 \ m$ $N_4 = .000 \ 073 \ 116$ $N_4 = 11 \ 957 \ m$ $N_5 = .000 \ 014 \ 863$ $N_5 = 21 \ 894 \ m$!
Quadrature points for H = 10 ⁴ meters	
$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 095 462$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE A-57 - QUADRATURE POINTS FOR POINT ARGUELLO ANNUAL RADIO ATMOSPHERE

1. 1. 1	h = 0 meters
$\begin{array}{ccc} I & & & \\ I & H_{S1} = 6617 \\ I & H_{S5} = 6444 \\ I & & & \\ \end{array}$	m — $H_{S2} = 6867$ m $H_{S3} = 6993$ m $H_{S4} = 7143$ m $H_{S6} = 7025$ m
	Quadrature points for H = 106 meters
1 1	$N_{\perp} = N_{\circ} - (N_{\circ} - N_{H}) X_{\perp} \qquad N_{H} = 0$
1 1. 1.	$N_1 = .000_{-315} 96$ $h_1 = 377.6 m$ $N_2 = .000 255 01$ $h_2 = 1238 m$ $N_3 = .000 165 76$ $h_3 = 4951 m$
1. 1 1	$ \begin{array}{r} $
1 1 1	Quadrature points for H = 10 ⁴ meters
1	$N_i = N_o - (N_o - N_H)X_i$ $N_H = .000 094 178$
1 1 1.	$N_1 = .000 320 38$ $h_1 = 291.7 m$ $N_2 = .000 276 74$ $h_2 = 832.1 m$ $N_3 = .000 212 84$ $h_3 = 2701 m$ $N_4 = .000 148 95$ $h_4 = 5914 m$ $N_5 = .000 105 31$ $h_5 = 9042 m$

TABLE A-58.- QUADRATURE FOINTS FOR PATRICK AFB AUGUST RADIO ATMOSPHERE

```
N_0 = .000 378 63
                  h = 0 meters
                                                        N = .000 184 51
                  h = 4500 \text{ meters}
                                                      N_{-} = .000 094 04
                  h = 10 000 meters
                                                       N = .000 003 32
                  h = 30 000 \text{ meters.}
                                                H_{S3} = 6360 \text{ m} H_{S4} = 6351 \text{ m}
                         H_{S2} = 6451 \text{ m}
H_{S1} = 5746 \text{ m}
                           H_{S6} = 6023 \text{ m}
    H_{S5} = 6328 \text{ m}
                           Quadrature points for H = 106 meters
                            N_1 = N_0 - (N_0 - N_H)X_1
                                                       N_{H} = 0
                                                                h_1 = 315.2 \text{ m}
                            N_1 = .000 360.87
                                                               h_2 = 1546 \text{ m}
                            N_2 = .000 291 26
                                                              h_3 = 4402 \text{ m}
                            N_3 = .000 189 32
                            N_{4} = .000 087 375
                                                               h_{\mu} = 10 663 \text{ m}
                                                               h_5 = 20 909 \text{ m}
                            N_5 = .000 \ 017 \ 762
                            Quadrature points for H = 104 meters
                             N_1 = N_0 - (N_0 - N_H)X_1 N_H = .000 094 04
                                                                h_1 = 246.3 \text{ m}
                             N_1 = .000 365 28
                                                                h_2 = 1101 \text{ m}
                             N_2 = .000 312 96
                             N<sub>3</sub> = .000 236 34
N<sub>4</sub> = .000 159 71
                                                                h_3 = 2851 \text{ m}
                                                                h_{H} = 5633 \text{ m}
                                                                h_5 = 8861 \text{ m}
                             N_5 = .000 107 39
```

TABLE A-59.- QUADRATURE POINTS FOR PATRICK AFB DECEMBER RADIO ATMOSPHERE

	h = 0 meters h = 4500 meters h = 10 000 meters h = 30 000 meters	N _O = .000 338 81 N = .000 176 48 N = .000 094 12 N = .000 003 34
$H_{S1} = 6483$ $H_{S5} = 6845$	$H_{S2} = 6607 \text{ m}$ $H_{S6} = 7239 \text{ m}$	H _{S3} = 7010 m H _{S4} = 7102 m !
1.	Quadrature points f	or H = 10 ⁶ meters
1	$N_1 = N_0 - (N_0 - N_H)X$	$x_i N_H = 0$
1 1 1 1	N ₁ = .000 322 92 N ₂ = .000 260 62 N ₃ = .000 169 40 N ₄ = .000 078 19 N ₅ = .000 015 89	$n_3 = 4925 \text{ m}$ $n_4 = 11 535 \text{ m}$
1	Quadrature points	for H = 10 ⁴ meters X _i N _H = .000 094 12
1 1 1 1 1	N 000 227 33	h ₁ = 193.7 m h ₂ = 1174 m h ₃ = 2936 m h ₄ = 5941 m

TABLE A-60 .- QUADRATURE POINTS FOR PATRICK AFB ANNUAL RADIO ATMOSPHERE

```
N_0 = .000 355 89
                  h = 0 meters
                                                      N = .000 - 178 98
                  h = 4500 meters
                                                      N = .000.094 07
                  h. = 10.000 meters
                                                      N_{\rm h} = .000 003 36
                  h = 30~000 meters
                                                    H_{S3} = 6652 \text{ m}
                                                                              H_{S4} = 6662 \text{ m}
I- Hs1 = .6167 m -- Hs2 = .6537 m
    H_{S5} = 6525 \text{ m} H_{S6} = 6718 \text{ m}
                          Quadrature points for H = 106 meters
                            N_{1} = N_{0} - (N_{0} - N_{H})X_{1}
                                                        N_{\rm H} = 0
                                                                h_1 = 282.0 \text{ m}
                            N_1 = .000.339 20.
                                                               h_2 = 1596 \text{ m}
                            N_2 = .000 273 76
                                                             h_3 = 4618 \text{ m}
h_4 = 11.147 \text{ m}
                            N_3 = .000 177 94
                            N_{4} = .000.082 13
                                                               h_5 = 21 181 \text{ m}
                            N_5 = .000 \ 016 \ 69
                           Quadrature points for H = 104 meters
                                                          N_{\rm H} = .000 094 07
                            N_i = N_o - (N_o - N_H)X_i
                                                                h_1 = 203.7 \text{ m}
                            N_1 = .000 343.61
                                                               h_2 = 1134 \text{ m}
                            N_2 = .000 295 47
                                                              h_3 = 2845 \text{ m}
                            N_3 = .000 224 98
                                                               h_{4} = 5772 \text{ m}
                             N_{\rm H} = .000 154 49
                                                                 h_5 = 8942 \text{ m}
                             N_5 = .000 \ 106 \ 35
```


Figure A-1.- $Log_{\acute{e}}$ (N • $10^{\acute{e}}$) versus altitude for March radio atmosphere at White Sands.

Figure A-2.- Log_e (N • 10^6) versus altitude for August radio atmosphere at Cape Canaveral.

Figure A-3.- \log_e (N • 10^6) versus altitude for July radio atmosphere at Point Arguello.

APPENDIX B

TABLE OF OPTICAL REFRACTIVITY

This appendix contains tables of optical refractivity for λ = 0.555 micron (yellow-green light) versus altitude above mean sea level for nine different locations. Three atmospheres from each location are shown: two monthly atmospheres and the annual atmosphere. Also included are tables of the Gaussian quadrature points for each of the 27 atmospheres. These are the points at which the integrands are evaluated for the refraction correction integrals shown in appendix E. The 27 atmospheres were obtained from the IRIG documents of reference 1.

Figures B-1 and B-2 show plots of $ln(N.10^6)$ versus altitude for two different optical atmospheres. Note that these plots would be straight lines if the atmospheres were truly exponential.

The nine locations of the weather stations are shown below.

Weather Station	Altitude	Latitude	Longitude
White Sands, N. M.	1292 m	32° 22'N	106° 22'W
Edwards AFB, Calif.	706 m	34° 55'N	117° 54'W.
Eglin AFB, Fla.	20. m	30°-29'N	86° 31'W
Ascension Island	79, m	7° 58'S	14º 24'W
Kwajalein Island	4m	80 43 N	167° 44'E
Wallops Island	88 m	38° 50'N	76° 57'W
Cape Canaveral, Fla.	5 m	28° 29'N	80° 33'W
Lihue, Kauai, Hawaii	45 m	21°.59'N	159° 21'W
Point Arguello, Calif.	113 m	340 40'И	120° 35'W

TABLE B-1.- REFRACTIVITY FOR WHITE SANDS MARCH OPTICAL ATMOSPHERE

 $(\lambda = 0.555 \text{ micron})$

l h, m	1 N·10 ⁶ 1	i h, m	I. N·10 ⁶ I I N·10 ⁶ I	! h, щ !	N·106
1 0 1 250 1 500 1 1 000 1 1 250 1 1 500 1 1 500 1 1 500 1 2 500 1 2 500 1 2 500 1 2 500 1 3 250 1 3 000 1 3 250 1 3 500 1 4 250 1 4 500 1 4 500 1 5 750 1 5 750 1 6 000 1 6 750 1 7 750 1 8 250 1 7 750 1 8 250 1 8 250 1 9 750 1 9 750 1 9 750 1 9 750 1 9 750 1 9 750	270.06	10 000 10 250 10 500 11 250 11 750 12 250 12 750 12 250 13 500 13 750 14 500 14 500 14 500 15 750 15 750 16 500 15 750 16 500 16 250 16 750 16 750 16 750 17 750 17 750 18 000 17 250 17 750 18 000 17 250 17 750 18 000 17 250 17 750 18 000 17 750 18 250 18 750 18 250 18 750 18 250 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 18 18 750 19 750 1	95.286 92.382 89.512 86.828 84.077 81.246 78.365 75.465 75.465 72.546 69.673 66.975 64.359 61.956 159.636 157.414 155.290 153.292 151.354 145.956 147.680 145.956 147.680 145.956 147.680 145.956 147.680 159.506 138.004 136.542 133.751 132.378 131.086 129.845	. 20 500	20.467

TABLE B-2.- REFRACTIVITY FOR WHITE SANDS AUGUST OPTICAL ATMOSPHERE

 $(\lambda = 0.555 \text{ micron})$

! ! h, m !	1 N·106 1 1 N·106 1	! ! h, m . !	! N·10 ⁶ !	!!	h, m	I N·10 ⁶ . I
1	255.22	! 10 000 ! 10 250 ! 10 500 ! 10 750 ! 11 000 ! 11 250 ! 11 750 ! 12 250 ! 12 250 ! 12 750 ! 13 500 ! 13 250 ! 13 500 ! 13 250 ! 14 250 ! 14 500 ! 14 250 ! 15 750 ! 15 750 ! 16 500 ! 16 250 ! 16 750 ! 17 750 ! 17 750 ! 18 000 ! 17 750 ! 18 250 ! 18 750 ! 19 250 ! 19 250 ! 19 750 ! 19 750	1 53.309 1 1 51.386 1 1 49.475 1 1 47.586 1		24 250 24 500	21.627 20.714 19.887 19.064 18.245 17.529 16.817 16.169 15.525 14.882 14.315 13.751 13.189 12.629 12.156 11.685 11.217 10.750 10.358 9.9680 9.5798 9.5798 9.5798 9.5798 9.5798 9.5798 18.4971 8.1885 7.8807 7.5739 7.2684 6.9637 8.4971 8.1885 7.5739 7.2684 6.9637 6.7294 6.4958

TABLE B-3.- REFRACTIVITY FOR WHITE SANDS ANNUAL OPTICAL ATMOSPHERE

TABLE B-4.- REFRACTIVITY FOR EDWARDS AFB MAY OPTICAL ATMOSPHERE

h, m	N·10 ⁶	1	h, m	N·10 ⁶ 1	 h, m	N:10 ⁶
0 250 500 750 1 250 1 2 500 1 2 500 1 2 500 1 2 500 1 2 500 1 2 500 1 2 500 1 2 500 1 2 500 1 2 500 1 1 2	275.36 269.14 262.88 256.56 250.20 243.79 237.54 225.75 220.13 214.63 209.28 204.01 198.84 193.82 188.91 105.77 174.75 177.21 165.77 161.43 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 174.75 179.37 179.37 179.37 179.37 179.37 179.37 179.37 179.37 179.37 179.37	1	1 10 000 10 250 10 500 11 500 11 250 11 250 11 750 11 250 11 250 11 250 11 250 11 250 11 250 11 3 250 11 3 250 11 3 250 11 3 250 11 3 250 11 3 250 11 4 250 11 4 500 11 15 250 11 16 250 11 16 500 11 17 750 11 17 750 11 18 000 11 17 750 11 18 250 11 18 250 11 19 250 11 19 500 11 19 500 11 19 750 11 19 750 11 19 750 11 19 750	94.427 91.499 88.582 88.582 88.721 88.683 80.062 77.265 74.496 71.754 69.032 66.355 63.728 1.56.394 1.56.394 1.51.996 1.49.950 1.49.950 1.49.950 1.49.950 1.49.950 1.49.953 1.40.993 1.40.993 1.	20 000 2500 2500 20 7500 21 22 5000 22 7500 22 2500 22 7500 22 2500 22 2500 22 2500 22 2500 22 2500 24 7500 25 25 7500 25 25 7500 26 25 25 7500 27 7500 27 7500 28 25 25 25 25 25 25 25 25 25 25 25 25 25	1 4.2718 1 4.1035 1 3.9360

TABLE B-5.- REFRACTIVITY FOR EDWARDS AFB JULY OPTICAL ATMOSPHERE

l h, m	i N·10 ⁶ i	! ! h, m !	N·10 ⁶	1 1		N·106	l .
1 250 1 500 1 1 250 1 1 500 1 1 250 1 1 250 1 1 250 1 1 250 1 1 250 1 1 2 250 1 1 2 250 1 1 2 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 3 250 1 1 4 250 1 1 4 250 1 1 4 250 1 1 4 250 1 1 4 250 1 1 4 250 1 1 1 5 250 1 1 5 250 1 1 5 250 1 1 5 250 1 1 5 250 1 1 6 000 1 6 250 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N·106 1 266.20 260.33 254.41 248.45 242.45 236.40 230.49 224.86 219.46 214.25 209.17 204.24 199.42 199.42 199.42 199.42 199.42 199.42 199.42 199.68 176.65 172.27 168.00 176.65 172.27 168.00 176.65 177.67 143.80 147.67 143.80 147.67 143.80 147.67 143.80 140.00 136.33 132.69 129.16 125.64 122.19	h, m 10 000 10 250 10 500 10 750 11 000 11 250 11 500 11 750 12 250 12 750 13 500 13 250 13 750 14 250 14 500 14 250 14 750 15 500 16 250 17 500 17 500 17 750 17 750	N·10 ⁶ 94.595 91.806 89.067 86.390 83.757 81.179 78.654 76.180 73.754 71.364 169.061 166.812 169.061 169.061 171.384 171.384 181.59.184 181.593 181.593 181.593 181.593 181.593 181.593 181.593 181.593 181.593		h, m 20 000 20 250 20 500 20 750 21 000 21 250 21 750 22 000 22 750 23 000 23 250 23 750 23 750 23 750 24 750 25 750 26 250 27 750 26 250 27 750 27 250 28 750 29 750 21 750 21 750 22 750 23 750 24 750 25 750 26 750 27 250 27 250	N·10 ⁶ 1 20.021 1 19.180 1 18.343 1 17.568 1 16.841 1 16.127 1 15.471 1 14.817 1 14.202 1 13.636 1 13.073 1 12.519 1 10.592 1 10.593 1 10	
1 8 000 1 1 8 250 1 1 8 500 1 1 8 750 1 1 9 000 1	1 118.87 ! 1 115.61 ! 1 112.42 ! 1 109.30 ! 1 106.25 !	1 18 000 1 18 250 1 18 500 1 18 750 1 19 000	28.365 27.104 25.894 24.836 23.801		28 000 28 250 28 500 28 750 29 000	1 5.3046 1 1 5.0940 1 1 4.9259 1 1 4.7581 1 1 4.5907 1	-
9 250 I 9 500 I 9 750 I	1 103.26 ! 1 100.32 ! 1 97.435 !	l 19 250 l 19 500 l 19750	22.814 1 21.851 1 20.923	1 1 1 1 1 1	29 250 29 500 29 750 30 000	1 4.4242 1 1 4.2579 1 1 4.0921 1 1 3.9271 1	

TABLE B-6.- REFRACTIVITY FOR EDWARDS AFB ANNUAL OPTICAL ATMOSPHERE

h, m	N·10 ⁶ !	l h, m	N·10 ⁶	 	h, m	N·106
0 1 250 1 500 1 750 1 1 250 1 1 500 1 2 250 1 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 4 250 1 1 5 250 1 5 500 1 5 250 1 5 500 1 6 250 1 6 500 1 6 250 1 6 500 1 6 250 1 6 500 1 6 250 1 6 500 1 7 250 1 7 500 1 7 250 1 7 500 1 7 250 1 8 250 1 8 500 1 8 250 1 8 500 1 8 250 1 9 250	276.15 269.75 263.32 256.84 250.32 243.75 237.41 231.34 225.50 219.87 214.33 208.91 203.63 198.47 193.44 188.53 183.71 179.01 174.41 169.91 165.51 161.20 156.98 148.82 144.86 141.01 137.21 133.63 144.86 141.01 137.21 133.63 144.86 141.01 137.21 133.63 144.86 141.01 137.21 133.63 144.86 141.01 137.21 119.61 110.32 119.61 110.36 110.66 110.66 110.66 110.66 110.66 110.66 110.69	10 000 10 250 10 500 11 250 11 500 12 250 12 750 12 750 13 750 13 750 14 250 14 250 14 250 15 750 15 750 15 750 16 250 16 250 16 250 16 250 16 750 17 750 17 750 17 750 18 000 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 19 750 1	94.760 91.864 88.989 86.154 83.340 80.558 77.807 75.109 72.463 69.818 67.238 64.736 69.818 67.238 64.736 155.499 157.681 157.690 1		20 000 20 250 20 500 20 750 21 000 21 250 21 500 21 750 22 000 22 250 22 500	19.614 18.781 18.781 18.003 17.256 16.516 15.855 15.196 14.552 13.404 12.8324 12.8324 11.829 11.336 10.427 10.012 9.5989 9.1869 10.427 10.012 9.5989 9.1869 1.8243 1.82

TABLE B-7.- REFRACTIVITY FOR EGLIN AFB JANUARY OPTICAL ATMOSPHERE

! ! h, m !	! N·106 ! N·106	t h, m = 1	N•106	i i h, m_	I N·106 I	
0 250 750 1 250 1 250 1 250 1 250 1 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 4 250 1 5 250 1 250	I N. 106 I I I I I I I I I	h, m - 1 1 1 0 0 0 0 1 1 0 250 1 1 0 500 1 1 250 1 1 250 1 1 250 1 1 2 500 1 1 2 500 1 1 3 250 1 1 3 500 1 1 3 250 1 1 4 500 1 1 4 250 1 1 4 500 1 1 4 750 1 1 5 0 0 0 1 1 5 250 1 1 5 750 1 1 5 750 1 1 6 0 0 0 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 6 250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N·106 95.511 92.745 90.026 87.476 84.920 82.302 79.612 76.897 74.141 71.301 68.625 66.084 63.849 61.701 59.615 57.556 55.435 53.331 51.294 49.343 47.485 45.744 44.068 42.441 40.862 39.321	20 000 1 20 250 1 20 500 1 21 250 1 21 500 1 21 500 1 22 250 1 22 500 1 23 250 1 23 500 1 23 250 1 23 500 1 23 250 1 24 250 1 24 250 1 24 250 1 25 500 1 25 500 1 25 750 1 26 000 1 26 250	20.763	
1 6 500 1 6 750 1 7 000 1 7 250 1 7 500 1 7 750 1 8 000 1 8 250 1 8 750 1 9 000 1 9 250 1 9 750 1 9 750	! 140.88 ! 137.20 ! 133.55 ! 130.03 ! 126.54 ! 123.12 ! 119.82 ! 116.56 ! 113.33 ! 110.17 ! 107.14 ! 104.16 ! 101.21 ! 98.334 ! !	1 16 500 1 16 750 1 17 000 1 17 250 1 17 500 1 17 750 1 18 000 1 18 250 1 18 500 1 18 750 1 19 000 1 19 250 1 19 750 1 19 750	37.832 36.375 34.912 33.509 32.146 30.821 29.500 28.255 27.015 25.868 24.788 24.788 23.714 22.725 21.741	! <u>- 28 750</u>	1 7.1288 ! 1 6.8713 ! 2 6.6146 ! 3 6.3592 ! 3 6.1045 ! 3 5.8511 ! 4 5.5985 ! 4 5.3471 ! 5 5.3471 ! 5 5.738 ! 4 8291 ! 4 4.8291 !	

TABLE B-8.- REFRACTIVITY FOR EGLIN AFB AUGUST OPTICAL ATMOSPHERE

l h, m	N•10 ⁶	.i. h, m_ !	N·10 ⁶ I	! ! h, m !	N·106
I 1-250 I 1500 I 1750 I 2000 I 2-250 I 2500	! 215.42 ! 210.12 ! 204.97 ! 199.91 ! 194.94 ! 190.07 ! 185.29 ! 175.99 ! 175.99 ! 171.47 ! 167.06 ! 162.71 ! 158.51 ! 154.43 ! 150.40 ! 146.53 ! 142.75 ! 139.03 ! 135.43 ! 128.40 ! 125.06 ! 121.77 ! 118.55 ! 112.41 ! 109.40	I I 12 250 I I 12 500	95.561 92.979 90.450 87.964 85.516 83.022 80.651 78.335 76.072 73.851 71.641 69.456 67.337 65.232 63.174 61.124 59.089 57.076 55.108 51.188 49.248 47.337 45.455 43.605 41.797 40.036 38.325 33.512 32.070 30.638 29.316 28.074 26.840 25.570 22.558 23.570 22.558	! 21 250 ! 21 750 ! 22 000 ! 22 250 ! 22 500 ! 22 750 ! 23 000 ! 23 250 ! 23 500 ! 23 500 ! 23 750 ! 24 000 ! 24 250 ! 24 750 ! 25 000 ! 25 250 ! 25 750 ! 25 750 ! 26 250 ! 26 250 ! 26 250 ! 27 250 ! 27 250 ! 27 750 ! 27 750 ! 27 750 ! 28 750 ! 28 750 ! 28 750 ! 29 000 ! 29 250	21.640 20.728 19.896 19.068 19.068 11.313 17.562 16.814 16.161 15.510 14.863 14.304 13.747 13.191 12.637 12.162 11.688 11.215 10.746 10.347 19.9495 10.347 19.5543 19.1610 18.8367 19.5543 19.1610 18.8367 19.5543 19.5543 19.5543 19.1610 18.8367 18.5141 19.5531 10.746 10.347

TABLE B-9.- REFRACTIVITY FOR EGLIN AFB ANNUAL OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

l. h, m _	N·106	1	h, ml	N·106	h, m	_N·10 ⁶
750 1 000 1 1250 1 1500 1 1 750 1 2 000 1 2 250 1 2 500 1 2 750 1 3 000 1 3 250 1 3 500	1 104.41		11 750	96.841 94.365 91.778 89.083 86.128 83.207 80.394 77.702 75.134 72.638 70.218 67.900 65.607 1.63.333 1.139 1.58.976 1.54.803 1.52.835 1.52.835 1.52.835 1.49.020 1.47.192 1.43.672 1.41.974 1.43.672 1.41.974 1.43.672 1.41.974 1.43.673 1.40.318 1.35.560 1.31.259 1.25.109 1.26.251 1.27.399 1.27.399 1.28.671 1.29.932 1.29.	20 500 20 750 21 000 21 250 21 500 21 750 22 000	21.111 20.249 19.392 18.540 17.793 17.051 16.381 15.714 15.051 14.471 13.892 13.317 12.744 12.262 11.782 11.782 11.304 10.828 10.029 9.6328 10.428 10.029 9.6328 10.929 9.6328 10.929 17.6052 7.2823 7.9290 7.6052 7.2823 7.9333 6.5384 7.9290 7.6052 7.2823 7.9333 6.5384 1.8029

TABLE B-10.- REFRACTIVITY FOR ASCENSION FEBRUARY OPTICAL ATMOSPHERE

1. h, m .	N·106	l. l l _h, m	N·10 ⁶	! !	h, m	N·10 ⁶	! ! !
1 500 1 750 1 1 000 1 1 250 1 1 500 1 1 750 1 2 000 1 2 250 1 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 750 1 5 250 1 5 250 1 6 250 1 6 250 1 7 7 500 1 7 7 500 1 7 7 500 1 8 250 1 8 250 1 8 750 1 9 250 1 9 250 1 9 250	267.06 261.95 256.31 250.53 244.60 238.54 232.28 225.78 219.59 213.94 208.74 203.70 198.81 194.05 189.37 1157.84 175.68 171.11 166.59 162.17 157.84 153.71 149.73 145.80 142.04 138.34 134.79 131.30 127.92 118.13 115.02 111.99 100.72 109.05 100.72 100.72 100.72 198.039	1	95.402 92.819 90.294 87.828 87.828 85.412 83.054 80.649 78.380 76.163 73.988 71.69.684 67.526 63.492 61.466 1.57.575 1.5		20 000 20 250 20 500 21 250 22 250 22 500 22 250 22 500 23 500 23 500 23 500 23 500 24 250 24 250 25 500 25 750 25 500 26 250 26 500 26 250 26 500 26 250 27 750 28 250 27 750 28 250 29 250 20 250 2	1 21.664 20.710 19.766 18.918 18.078 17.244 16.523 15.808 17.244 16.523 15.808 17.247 11.697 11.181 10.750 10.322 9.8963 9.4732 10.322 9.8963 9.4732 10.322 9.8963 9.4732 10.322 9.8963 10.322 9.8963 10.322 9.8963 10.322 10.323 10.323 10.323 10.323 10.323 10.325 10.326 10.326 10.326 10.327 10.327 10.328 10.329 10.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

80FM16

TABLE B-11.- REFRACTIVITY FOR ASCENSION SEPTEMBER OPTICAL ATMOSPHERE

!	N·106		I I I I I I I I I I I I I I I I I I I	h, m	N·10.6
1 750 1 1 000 1 1 250 1 500 1 750 1 2 000 1 2 250 1 2 500 1 2 750 1 3 000 1 3 250 1 3 500 1 3 750 1 4 000 1 4 250 1 4 500 1 4 750	180.49	1 10 000 1 10 250 1 10 500 1 10 750 1 11 000 1 11 250 1 11 750 1 12 000 1 12 250 1 12 750 1 13 000 1 13 250 1 13 500 1 13 750 1 13 750 1 14 750 1 14 750 1 15 750 1 15 750 1 16 250 1 16 250 1 16 250 1 17 750 1 17 750 1 17 750 1 17 750 1 18 000 1 19 250 1 19 750	95.612 - 93.019 93.019 90.474 87.985 85.555 83.176 - 80.753 76.199 73.986 71.769 65.350 67.467 65.350 63.318 61.277 59.237 57.170 55.112 53.102 45.913 44.214 42.495 47.600 45.913 44.214 42.495 47.600 45.913 41.214 42.495 40.762 39.301 37.323 35.655 33.998 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429 30.938 32.429	20. 000 1 20 20 20 20 20 20	15.235 ! 14.640 ! 14.050 ! 13.462 ! 12.878 ! 12.383 ! 11.891 ! 11.402 ! 10.915 10.509 10.104 9.7018 ! 9.3009 ! 8.9018 ! 8.2618 ! 7.9439 ! 7.6274 7.3119 ! 7.0640 ! 6.5709 ! 6.5709 ! 6.5709 ! 5.5944 ! 5.3523 ! 5.0148 ! 4.6792 ! 4.5120 !

TABLE B-12.- REFRACTIVITY FOR ASCENSION ANNUAL OPTICAL ATMOSPHERE

I. h, m I.	. N•10 ⁶ !	-	h, m_	м·10 ⁶	!	h, m	N·10 ⁶
1 3 250 1 1 3 500 - 1 1 3 750 1 1 4 000 1 4 250 1 1 4 500	226.59 219.99 214.19 208.93 203.84 198.88 194.02 189.24 184.52 179.88 175.31 170.82 166.43 162.14 157.90 1153.82 1149.85 1145.92 1142.14 138.42		1 10 000 1 10 250 1 10 500 1 10 750 1 11 000 1 11 250 1 11 750 1 12 250 1 12 250 1 12 250 1 12 750 1 13 250 1 13 250 1 13 750 1 14 250 1 14 250 1 14 750 1 15 250 1 15 250 1 15 750 1 16 250 1 17 000 1 17 250 1 17 750 1 18 000 1 17 250 1 17 750 1 18 000 1 17 250 1 18 250 1 19 250 1 19 750 1 19 750 1 19 750 1 19 750 1 19 750	95.520 92.953 90.405 87.890 85.342 82.845 80.314 77.968 75.728 75.728 73.578 71.470 69.408 67.409 65.400 63.426 61.433 59.433 57.409 1.646 1.47.919 1.49.646 1.47.919 1.49.646 1.47.919 1.46.227 1.44.536 1.47.919 1.46.227 1.44.536 1.47.919 1.46.227 1.41.143 1.39.456 1.37.785 1.31.497 1.32.922 1.31.412 1.29.914 1.29.918 1.29.914 1.29.91	! ! !	20 500	1 21.559

TABLE B-13.- REFRACTIVITY FOR KWAJALEIN MAY OPTICAL ATMOSPHERE

i _ h,_m	! N·10 ⁶	! ! !!	h, m	N·10 ⁶		- h, <u>m</u>	N·10 ⁶
I 0 I 250	1 264.95 1 259.52	!!!	10000 10250	94.938 N/A	 	20 000 20 250	! 21.595 !- ! 20.625 !-
500	253.90	1 9	10 500	89.899		20.500	19.738
1 750	1 248.15	i. i	10 750	87.461	1		18.858 1
	1. 242.33	! !	11.000.	85.080	! . !	21 000	18.065-1
1. 250		!!	11 250	82.761	l' !		17.288
1 500	230.64	1 1	11 500	80.489	!		! 16.540 I
! 1 750 !	224.88	1 1	• • • • • • • • • • • • • • • • • • • •	1. 78.265	l !		15.859
2 000	! 219.25	1. 1		76.077	1	_22 000	! 15.184 !
! 2 250	1 213.75	!!	·	73.926	!!	22.250	1 14.537 1
2 500	208.42	!!		71.805	I	22 500	1 13.952 !
2 750 -		!!		69.738	! :	22 750	13.370
1 3 000	198.19	•	L 13 000	67.700		! 23 000	! 12.792 l
3 250	! 193.28 ! 188.49	1. 1		65.697	! !	! 23 250 ! 23 500	! 12.290 L ! 11.800 I
: 	! 188.49 ! 183.79	I 	l 13 500 l 13.750	1 63.713 1 61.762	: •	23 750	11.311
	179.21	1 1	14 000	59.851	1		10.826
	174.71		14 250	57.970	!	24 250	1 10.413
	1 170.33			56 099	1		1 10.007 1
	1 165.98	1		54.281	1	24 750	9.6044 1
	1 161.69	1		52.482	!	25 000	! 9.2037 !
1 5 250	1 157.52	1 !	15 250	50.680	1 .	25 250	! 8.8138 .I
1 5 500	! 153.44	1	15 500	1 48.900	!	! 25 500	8.4712 !
1 5. 750	1 149.46	1 !	15 750	47.150	1	! 25 750	8.1323 1
	1 145.57	1	! 16000 m	45.397	1	26 000	1 7.7969 1
1 6 250	1 141.77	1	1 16 250	1 43.636	!	26 250	1 7.4647 1
! 6 500	1 138.06	•	1 16 500	1 41.876		1 26 500	1 7.1364 !
1 6 750	1 134.52	-	16 750	40.120	1	26 750	1 6.8319 !
7 000	1 130.96	1	1 17 000	1 38.372	l •	27 000	1 6.6100 I 1 6.3886 I
	1 127.43	1.	17 250	! 36.646 ! 30.65	1	! 27 250 ! 27 500	! 6.3886 I ! 6.1674 I
1 7 500 1 7 750	1 124.08 1 120.84	1	1 17 500 1 17 750	! 34.965 ! 33.347	i I	1 27 750	1. 5.9460 1
1 8 000	1 120.64	i	! 18 000	1 33.347	•	1 28_000	1 5.7250 !
8 250	1 114.52	i	! 18 250	! 30.231	i.	28 250	1 5.5038 1
	1: 111.49	i	1 18 500		!.	1 28 500	1 5.2830 1
1 8 750	1 108 54	i	18 750 —	27.371	1	1 28 750	1 5.0839 1
1 9 000	1 105.70	ĺ	1 19 000	1 26.073	1	1 29 000	1 4.9206 1
9 250	1 102.92	1	1 19 250	1 24.831	1	1 29 250	1 4.7579 1
9 500	1 100.20	1.	1 19 500	1 23.686	1	1 29 500	1 4.5961 !
9 750	97.547	1	1- 19 750	1 22.599	1	1 29. 750	1 4.4348 1
1	!	1	!	!	1	1 30 000	1 4.2741 !

TABLE B-14.- REFRACTIVITY FOR KWAJALEIN DECEMBER OPTICAL ATMOSPHERE

TABLE B-15.- REFRACTIVITY FOR KWAJALEIN ANNUAL OPTICAL ATMOSPHERE

!h, m	! N:106 .1	1 1 h, m 1	N·10.6	l l h, m l	N:10 ⁶
0 250 500 750 1 000 1 250 1 3 750 1 3 000 1 3 250 1 3 750 1 4 000 1 4 250 1 4 500 1 4 750 1 5 750 1 6 000 1 6 250 1 6 500 1 6 750 1 7 750 1 8 000 1 7 750 1 8 000 1 7 750 1 8 000 1 8 250 1 8 750 1 9 750 1 8 750 1 9 750 1 8 750 1 9 750 1 8 750 1 9	264.79	11 750 12 000 12 250 12 500 12 750 13 000 13 250 13 500 13 750 14 000 14 250 14 500 14 750 15 000 15 750 15 750	1 41.864 ! 40.085 ! 38.305 ! 36.554 ! 34.861 ! 33.237 ! 31.667 ! 30.138 !	20 000 20 250 21 000 21 250 22 500 22 750 23 000 23 250 23 500 24 500 24 500 24 500 24 500 25 250 25 500 25 750 26 000 26 250 26 750 26 750 27 750 28 000 27 250 27 750 28 000 27 250 27 750 28 000 27 250 27 750 28 000 28 250 27 750 28 000 28 250 27 750 28 000 28 250 29 250 20 250 2	21.615 20.649 19.766 18.890 17.328 16.582 15.231 15.231 12.840 12.335 11.843 11.845 11.845 11.857 12.8457 12.857 12.857 12.857 13.457 12.857 15.2531 17.5714 17.2533 17.5714 17.2533 18.2139 17.5714 17.2533 18.2139 18.2591 18.2591 18.2591 18.2591 18.2695 18.26

TABLE B-16.- REFRACTIVITY FOR WALLOPS MARCH OPTICAL ATMOSPHERE

(λ.= 0.555 mieron)

h, m	! ! N·106 !	i h, m	N·106	h, m	N·106
	252.28	10 000 - 10 250 10 500 11 250 11 500 11 500 12 250 12 750 12 750 13 750 13 750 13 750 14 750 14 750 14 750 15 750 15 750 16 250 16 250 16 250 16 250 16 250 16 250 16 750 16 250 17 750 16 250 17 750 16 250 17 750 17 750 18 000 17 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 18 250 18 250 18 250 18 250 18 250 18 250 19 250 19 250 19 250 19 250 19 250 19 750 10 750	94.334 91.179 87.885 84.606 81.392 75.291 72.369 66.914 64.371 61.950 57.462 55.308 51.484 47.431 45.683 43.931 42.304 47.431 45.683 43.931 42.304 40.734 39.215 37.750 36.333 34.967 33.598 32.311 31.078 29.844 28.684 27.582 26.481 27.582 26.481 27.582 26.481 27.582 28.684 28.684 29.844 29.844 29.844 29.844 29.844 29.844 29.844 29.844 29.844 29.845 20.831	20 750 1 21 000 1 21 250 1 21 500 1 21 750 1 22 000 1 22 250 1 22 500 1 23 250 1 23 500 1 23 750 1 23 750 1 24 000 1 24 250 1 24 750 1 25 500 1 25 500 1 25 750 1 26 000 1 26 250 1 26 750 1 27 000 1 26 250 1 27 750 1 27 750 1 28 000 1 28 250 1 28 750 1 28 750 1 28 750 1 28 750 1 29 250 1 29 500 1 29 500 1	-11.389 ! 10.910 ! 10.502 ! 10.096 ! 9.6921 ! 9.2893 ! 8.9599 ! 8.6318 ! 7.9774 ! 7.6515 ! 7.3265 ! 7.0772 ! 6.8285 ! 6.5803 ! 6.3326 ! 6.0855 !

TABLE B-17.- REFRACTIVITY FOR WALLOPS JULY OPTICAL ATMOSPHERE

1. h, m	! ! N·10 ⁶		h, m	N·106	! ! !	h, m	N·10 ⁶
250 1 250 1 000 1 1 250 1 1 250 1 1 250 1 1 250 1 2 250 1 2 250 1 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 5 250 1 5 250 1 6 250 1 6 250 1 7 750 1 6 250 1 7 750 1 7 750 1 8 250 1 9 250 1 9 500 1 9 750 1 9 750 1 9 750	269.61 263.77 257.37 257.37 251.19 245.21 239.43 233.86 228.31 222.87 217.49 212.07 206.54 201.08 195.86 190.89 186.11 172.35 167.82 163.40 172.35 167.82 163.40 159.05 154.88 159.05 154.88 135.58 131.95 135.58 131.95 128.48 125.08 121.82 118.70 115.61 112.55 109.50 106.57 103.68 100.86 98.117	! ! ! ! ! ! ! !	1 10 000 1 10 250 1 10 750 1 10 750 1 11 250 1 11 500 1 12 250 1 12 500 1 12 750 1 13 000 1 13 250 1 13 750 1 14 000 1 14 250 1 14 750 1 14 750 1 15 750 1 16 500 1 15 750 1 16 500 1 17 750 1 16 750 1 17 750 1 17 750 1 18 000 1 17 750 1 18 000 1 18 250 1 17 750 1 18 750 1 19 000 1 19 250 1 19 750	95.446 92.837		1 21 500 1 21 750 1 22 000 1 22 250 1 22 500 1 22 750 1 23 000 1 23 250 1 23 500	21.438

TABLE B-18.- REFRACTIVITY FOR WALLOPS ANNUAL OPTICAL ATMOSPHERE

80FM16

 $(\lambda = 0.555 \text{ midron})$

h, m	i N·10 ⁶ i	! !	հ, տ	N·10 ⁶	h, m	! !	N·106
0 250 1 000 1 500 1 250 1 1 500 1 1 500 1 1 500 1 1 500 1 2 250 2 2 250 2 2 250 2 2 250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	280.10		11.500	95.258 92.433 89.643 89.643 81.458 76.134 770.897 68.345 65.378 65.378 65.378 65.473 65.473 65.473 65.473 65.473 65.473 67.495 67.49	20 000 250 250 20 500 21 250 22 750 22 750 23 750 24 750 25 750 25 750 26 750 26 750 26 750 26 750 26 750 26 750 26 750 26 750 26 750 26 750 26 750 26 750 27 750 26 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 29 750 2		20.600 19.776 18.955 18.258 16.7734 16.7734 16.739 16.1397 14.299 13.780 14.299 13.780 14.291 14.291 13.783 14.291 13.783 14.291 14.291 16.356 17.356 17.356 17.356 17.356 17.356 17.356 17.356 17.356 17.364

80FM16...

TABLE B-19.- REFRACTIVITY FOR CAPE CANAVERAL JANUARY OPTICAL ATMOSPHERE

!. ! ն, m - !	! N·10 ⁶ ! ! N·10 ⁶ !	l h, m !	N:10.6	l h, m	N·10 ⁶
! 2 250 ! 2 500 ! 2 750 ! 3 000 ! 3 250 ! 3 500 ! 3 750 ! 4 000 ! 4 250 ! 4 500 ! 4 750 ! 5 500 ! 5 500 ! 5 500 ! 6 250 ! 6 250 ! 6 750 ! 7 750 ! 7 750 ! 7 750 ! 8 000 ! 7 250 ! 7 750 ! 8 500 ! 8 750 ! 8 750	276.95 1 269.82 1 269.82 1 263.17 1 256.93 1 250.74 1 244.45 1 238.06 1 231.63 1 225.32 1 213.46 1 207.89 1 202.48 1 197.18 1 192.03 1 187.13 1 182.38 1 177.69 1 168.80 1 164.50 1 168.80 1 164.50 1 168.80 1 156.15 1 148.28 1 144.44 1 140.73 1 152.15 1 148.28 1 144.44 1 140.73 1 133.46 1 129.92 1 126.51 1 133.46 1 129.92 1 126.51 1 119.81 1 119.81 1 101.51 1 101		95.881 93.159 90.481 87.950 85.368 82.873 80.297 77.663 75.004 72.281 69.595 67.135 64.790 62.732 60.698 58.674 56.628 54.574 52.556 148.706 45.159 43.480 41.853 40.272 38.750 37.219 37	1 21 250 1 21 750 1 22 000 1 22 250 1 22 500 1 22 750 1 23 000 1 23 250 1 23 750 1 23 750 1 24 500 1 24 500 1 24 250 1 25 500 1 25 500 1 26 500 1 26 500 1 26 500 1 27 750 1 27 750 1 28 000 1 28 250 1 28 500 1 28 750 1 28 750 1 28 750 1 28 750 1 28 750 1 28 750	16.140 15.464 14.793 14.215 13.639 13.066 12.565 12.068 11.572 11.078 10.662 11.078 10.662 11.077 18.6892 19.4261 19.0177 18.6892 18.3621 18.0363 17.7 21.7.3891 17.1339 16.8793 16.6260 16.3736 16.1218 15.8712 15.6215

80FM16

TABLE B-20.- REFRACTIVITY FOR CAPE CANAVERAL_AUGUST OPTICAL ATMOSPHERE

($\lambda = 0.555$ micron).

l h, m	i N·10 ⁶ ! I I	h, m l	N•106		- h, m	- 	N·106 . !
0 250 500 750 1 250 1 250 1 250 1 250 1 250 1 2 250 2 250 2 250 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 5 250 1 5 750 1 6 250 1 6 250 1 7 7 500 1 6 750 1 7 750 1 8 250 1 7 7 500 1 7 7 500 1 8 250 1 9 250 1 9 750 1 9 750 1 9 750 1 9 750	! 226.41 ! 220.91 ! 220.91 ! 215.50 ! 210.21 ! 205.07 ! 200.00 ! 195.01 ! 190.10 ! 185.82 ! 180.65 ! 176.09 ! 171.63 ! 167.27 ! 162.95 ! 158.73 ! 154.62 ! 150.57 ! 146.71	1 12 000 1 12 250 1 12 500 1 12 750 1 13 000	80.686 78.410 76.169 73.960 71.756 69.567		22 000 22 250 22 500 22 750 23 000 23 250 23 500 23 750 24 000 24 250 24 500 24 750		21.633 20.705 19.863 19.028 18.273 17.521 16.773 16.116 15.462 14.811 14.241 13.674 13.109 12.128 11.641 11.156 10.748 10.749 10.748 10.749

80FM16

TABLE B-21.- REFRACTIVITY FOR CAPE CANAVERAL ANNUAL OPTICAL ATMOSPHERE

(λ = 0.555 micron)_

1 .	1	i		 	1.		1
1 - h, m -	N·106 i	!	h, m	N.• 10 ⁶	! !	h, m	N•10 ⁶
1 750 2 000 2 250 2 250 2 250 2 250 3 250 3 250 3 3500 3 250 4 250 4 250 4 250 4 750 1 4 500 1 5 250 1 5 500 1 6 250 1 6 500 1 6 750 1 7 750 1 7 750 1 8 -000 1 8 250 1 8 500 1 8 750 1 8 750 1 8 750	1 163.58		11 500 11 750 12 000 12 250 12 500 12 750 13 000 13 250 13 500 13 750 14 000 14 250 14 750 15 250 15 750 16 000 16 250 17 750 17 750 17 750 18 000 18 250 18 500 18 250 18 750 18 900 19 250 19 500	95.764 93.067 90.425 87.831 85.280 82.773 80.314 77.899 75.525 73.180 82.774 80.314 77.525 73.180 82.74 64.048 61.856 59.725 55.529 51.588 47.823 44.239 42.512 40.824 40.824 39.134 37.534 37.		1	1 21.166 20.291 19.421 18.557 17.803 17.055 16.378 15.706 15.037 14.451 13.868 13.287 12.710 12.226 11.745 11.267 10.789 10.390 9.9922 9.5955 11.267 10.390 9.9922 9.5955 11.267 10.390 9.9922 9.5955 11.267 10.390 9.9922 9.5955 11.267 11.267 10.390 9.9922 9.5955 11.267 10.390 9.5955 10.390 9.5955 10.390 9.5955 10.390 9.5955 10.390 9.5955 10.390 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300 10.300

TABLE B-22.- REFRACTIVITY FOR HAWAII FEBRUARY OPTICAL ATMOSPHERE

!	i i	Ī	1. 1	1.	
h, m	N·10 ⁶ ·	1 h, m	1 N·106 !	i h, m	N-106
0 250 500 750 1 1 250 1 1 750 1 2 250 1 2 250 1 2 250 1 3 250 1 3 250 1 3 250 1 3 250 1 4 250 1 4 250 1 4 250 1 4 250 1 4 250 1 5 250	265.88	10 000 10 250 10 500 11 250 11 500 12 250 12 750 12 750 13 000 13 250 13 750 14 250 14 250 14 250 15 250 15 750 16 250 15 750 16 250 16 250 16 250 17 250 17 250 17 750 18 000 17 250 17 750 18 750 18 750 18 750 18 750 18 750 18 750 19 750 10 750 1	94.630	20 000 20 250 20 500 21 250 21 500 21 250 22 500 22 250 22 500 22 250 23 750 23 750 24 750 24 750 24 750 25 750 25 750 25 750 26 750 26 750 27 750 26 750 27 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 27 750 28 750 29 750 20 750 2	19.421 18.606 17.797 16.994 16.304 15.618 14.936 14.344 13.757 13.171 12.663 12.159 11.655 11.155 10.736 10.319 9.4907 9.4907 9.4907 9.7486 8.4202 8.0928 7.7667 7.4419 7.1188 6.8730

TABLE B-22.- REFRACTIVITY FOR HAWAIT JULY OPTICAL ATMOSPHERE

1					<u></u>		
h, m	!. N·10 ⁶	1 -1 1 1- 1 1	- h, m,	I. I N·10 ⁶ I	l l. l	! ! h, m !	! ! N·106
1 0 250	150.53 146.69 142.97 139.30 135.77 132.27 128.91 125.58 122.32 119.18 116.07	•	10 000 10 250 10 500 10 750 11 000 11 250 11 750 12 250 12 750 13 250 13 250 13 250 13 750 14 250 14 750 15 750 16 250 17 750 16 500 17 750 18 250 17 750 18 250 17 750 18 250 17 750 18 250 19 250 19 750 19 750 19 750	95.924 93.262 90.663 88.126 85.640 83.207 80.818 76.068 73.778 71.497 69.254 67.012 64.802 62.598 60.414 58.288 56.172 54.092 50.088 48.170 46.322 44.524 42.771 41.064 39.403 37.799 36.244 39.403 37.799 36.244 39.403 37.799 36.244 39.403 37.799 36.244 39.403 31.823		20 000 20 250 20 500 20 750 21 000 21 250 21 750 22 250 22 250 23 250 23 250 23 250 23 250 23 250 24 250 24 250 24 250 25 250 26 250 27 250 26 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 28 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 27 250 28 250 29 250 20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 21.478 20.557 19.718 18.883 18.12 17.379 16.634 15.981 15.981 15.981 15.981 15.981 11.059 14.686 14.120 13.557 12.997 12.508 12.022 11.537 11.054 10.649 10.244 9.8419 9.4411 9.4422 9.4411 9.4422 9.4411 9.4422 9.4422 9.4422 9.4422 9.4422 9.4422 9.4432 9

TABLE B-24.- REFRACTIVITY FOR HAWAII ANNUAL OPTICAL ATMOSPHERE

h, m	N•10 ⁶ .	h, m	N·106	! ! ! !	h, m	N·106-	1
0 250 500 750 1 000 1 1 500 1 250 1 1 500 1 2 500 2 250 2 250 2 250 2 250 2 250 2 250 2 250 2 250 3 250 4 250 4 250 4 500 4 500 1 4 500 1 5 500 1 6 250 1 7 7 50 1 7 7 50 1 7 7 50 1 8 000 1 8 250 1 9 750 1 9 750 1 9 750	1 121.51 1 117.58 1 113.96 1 110.71 1 108.28 1 105.90 1 103.52 1 101.10	10 000 10 250 10 750 11 500 12 250 12 750 13 750 13 750 13 750 14 750 14 750 15 750 16 250 16 250 16 250 16 750 16 750 16 750 16 750 17 750 18 000 18 250 18 500 18 250 18 500 18 250 18 500 18 250 18 750 19 750 1	95.851 93.180 90.527 87.921 87.921 85.371 82.877 80.436 78.050 75.625 73.317 71.032 68.810 66.603 64.472 62.356 1 60.253 1 60.253 1 56.010 1 53.890 1 51.912 1 48.473 1 47.308 1 37.137 1 37.316 1 37.316 1 37.328 1 27.846 1 28.639 1 27.846 1 28.639 1 27.846 1 28.639 1 27.846 1 28.639 1 29.125 1 27.846 1 28.639 1 29.125 1 27.846 1 28.225 1 28.225 1 28.225 1 28.225	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 20 000 250 250 20 750 21 250 22 2500 22 2500 22 2500 22 2500 22 2500 22 2500 22 2500 23 250 24 2500 24 2500 25 2500 25 25 2500 25 25 25 25 25 25 25 25 25 25 25 25 25	9.604 9.209 8.881 8.554 8.228 7.904 7.580 1.7.259	2 1 1 3 3 3 0 9 0 5 6 6 8 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE B-25.- REFRACTIVITY FOR POINT ARGUELLO_JULY OPTICAL ATMOSPHERE

		-					
h, m	I N·10 ⁶	- 	l. l. h, m _ l	! ! N·10 ⁶ !	1 i 1	! ! ! h, m ! ! !	N·10 ⁶
! 750 ! 1 000 ! 1 250 ! 1 500 ! 1 750 ! 2 000 ! 2 250 ! 2 500 ! 2 750 ! 2 750 ! 3 250	175.28 170.91 166.56 162.32 158.19 154.25 150.42 146.63 142.96 139.31 135.78 132.27 128.89 125.55 122.29 119.14 116.01 112.90 109.80		11 000 11 250 11 750 11 750 12 000 12 250 12 750 13 000 13 250 13 750 13 750 14 000 14 250 14 750 15 000 15 250 15 750 15 750 16 000 16 250 16 750 16 750	85.086 82.606 80.169 77.699 75.337 73.032 70.740 68.516 66.313 64.147 62.041 59.967 57.939 54.119 50.345 46.565 44.696 42.884 41.132 37.851 36.257 34.764 33.314 31.917 30.528 29.207 27.961 26.727		20 000 20 250 20 750 21 000 21 250 21 750 22 750 22 750 22 750 23 750 23 750 24 750 24 750 24 750 25 750 25 750 25 750 26 250 26 250 26 250 26 250 27 250 2	21.540 20.634 19.816 19.002 18.192 17.490 16.791 16.148 15.508 14.871 14.296 13.725 13.156 12.591 11.664 11.203 10.743 10.360 9.5973 9.5973 9.2171 8.8381 8.5208 8.2047 7.5779 7.2668 8.2047 7.5779 17.26672 6.7174 6.4787 6.2412 6.0050 5.7700 5.3041 9.9785 1.4099 4.9779 4.8156 1.4099 4.9779 4.8156 1.4099 4.9779 4.8156 1.4091 4.6538 4.4921

. 80FM16 TABLE B-26.- REFRACTIVITY FOR POINT ARGUELLO DECEMBER OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

h, m	N•10 ⁶	! !- h, m . !	i N·10 ⁶ i I I	l l h, m l	N·10 ⁶ 1
750	283.97	! 10 000 ! 10 250 ! 10 750 ! 11 500 ! 12 250 ! 12 500 ! 13 250 ! 13 750 ! 14 000 ! 14 250 ! 14 500 ! 14 250 ! 15 750 ! 15 750 ! 16 750 ! 16 750 ! 16 750 ! 16 750 ! 17 750 ! 16 750 ! 17 750 ! 18 000 ! 17 250 ! 17 750 ! 18 000 ! 17 750 ! 18 000 ! 17 750 ! 18 000 ! 18 250 ! 17 750 ! 18 000 ! 18 250 ! 19 750 ! 10 ! 10 ! 10 ! 10 ! 10 ! 10 ! 10 !	73.853 ! 71.206 ! 68.575 ! 66.002 ! 63.436 ! 60.981 ! 58.607 ! 56.333 ! 54.184 ! 52.182 ! 50.233 ! 48.346 ! 46.525 ! 44.764 ! 43.065 ! 41.421 ! 39.774 ! 38.230 ! 36.750 ! 35.320 ! 33.936 ! 32.552 ! 31.248 ! 29.979 ! 28.715 !	20 000 20 250 20 500 21 750 22 500 22 750 23 750 23 750 23 750 24 750 24 750 25 750 25 750 25 750 25 750 26 750 26 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 28 000 27 250 27 750 27 750 28 250 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 27 750 28 750 27 750 2	14.239

TABLE B-27.~ REFRACTIVITY FOR POINT ARGUELLO ANNUAL OPTICAL ATMOSPHERE $(\lambda = 0.555.\,\text{micron}).$

h, m	! ! N·106 !	! !	l. h, m	! N·10 ⁶ !	!!!	h, m	! N·106
1 250 1 500 1 750 2 000 2 250 2 500 2 750 3 000 3 250	159.83 155.80 151.80 147.94 144.18 140.46 136.85 133.29 129.80 126.46 123.15 119.91 116.68 113.41 110.19 107.05 104.08 101.21	! !- !	1. 10 500 1 10 750 1 11 000 1 11 250 1 11 500 1 11 750	45.525 43.802 42.124		21 000 21 250 21 500 21 750 22 000 22 250 22 500 23 250 23 750 24 250 24 250 24 250 24 750 24 250 25 250 25 250 26 250 26 250 27 250 27 250 27 750 27 750 27 750 27 750 28 250 28 250 28 250 28 250 28 250 28 250 28 250	13.770

TABLE B-28.- QUADRATURE POINTS FOR WHITE SANDS MARCH OPTICAL ATMOSPHERE

```
N_{\rm O} = .000 270 06
              h = 0 meters
                                                     N = .000 174 47
              h = 4500 meters
                                                   N = .000 095 286
              h = 10 000 meters.
                                                   N = .000 004 1889
              h = 30 000 \text{ meters}
                         H_{S2} = 7244 \text{ m} H_{S3} = 10 300 \text{ m} H_{S4} = 10 008 \text{ m} !
H_{S1} = 7671 \text{ m}
                       H_{S6} = 10 094 \text{ m}
H_{S5} = 10 355 \text{ m}
                       Quadrature points for H = 106 meters
                        N_1 = N_0 - (N_0 - N_H)X_1 - N_H = 0
                                                              h_1 = 561.0 \text{ m}
                        N_1 = .000 257 39

N_2 = .000 207 74
                                                            h_2 = 2797 \text{ m}
                                                           h_3 = 6937 \text{ m}
                         N_3 = .000 - 135 03
                                                           h_{4} = -12.961 \text{ m}
                         N_{4} = .000 062 320
                                                            h_5 = 22 911 \text{ m}
                         N_5 = .000 012 668
                        Quadrature points for H = 104 meters
                                                      N_{\rm H} = .000 095 286.
                          N_{1} = N_{0} - (N_{0} - N_{H})X_{1}
                                                               h_1 = 364.2 \text{ m}
                          N_1 = .000 261 86
                                                               h_2 = 1756 \text{ m}
                          N_2 = .000 229 73
                                                              h_3 = 4059 \text{ m}
                          N_3 = .000 182 67

N_4 = .000 135 62
                                                               h_{4} = 6896 \text{ m}
                                                               h_5 = 9313 \text{ m}
                          N_5 = .000 103 48
```

TABLE B-29.- QUADRATURE POINTS FOR WHITE SANDS AUGUST OPTICAL ATMOSPHERE

1	0 meters
$H_{S1} =7889 \text{ m}$ $H_{S5} = 11 \ 218 \text{ m}$	$H_{S2} = 7344 \text{ m}$ $H_{S3} = 11 267 \text{ m}$ $H_{S4} = 10 535 \text{ m}$ $H_{S6} = 11 049 \text{ m}$
·	Quadrature points for H = 106 meters
1 1.	$N_{1} = N_{0} - (N_{0} - N_{H})X_{1}$ $N_{H} = 0$
! ! !	$N_1 = .000 243 25$ $h_1 = 620.7 m$! $N_2 = .000 196 32$ $h_2 = 3050 m$! $N_3 = .000 127 61$ $h_3 = 7302 m$! $N_4 = .000 058 896$ $h_4 = 14 033 m$!
1 1	$N_5 = .000 \ 011 \ 972$ $h_5 = 23 \ 598 \ m$!
	Quadrature points for H = 10 ⁴ meters
1.	$N_{i} = N_{o} = (N_{o}-N_{H})X_{i}$ $N_{H} = .000 095 599$
!	$N_1 = .000 \ 247 \ 73$ $h_1 = 390.3 \ m$! $N_2 = .000 \ 218 \ 39$ $h_2 = 1869 \ m$!
1 1 1	$N_3 = .000 \ 175 \ 41$ $h_3 = 4253 \ m$! $N_4 = .000 \ 132 \ 43$ $h_4 = 6956 \ m$! $N_5 = .000 \ 103 \ 09$ $h_5 = .9296 \ m$!

TABLE B-30.- QUADRATURE POINTS FOR WHITE SANDS ANNUAL OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

i. h = h =	0 meters
H _{S1} = 7776 m H _{S5} = 10 870 m	$H_{S2} = 7290 \text{ m}$ $H_{S3} = 10 730 \text{ m}$ $H_{S4} = 10 268 \text{ m}$ $H_{S6} = 10 545 \text{ m}$
I . I	Quadrature points for H = 106 meters
1 _ 1 _	$N_{1} = N_{0} - (N_{0} - N_{H})X_{1} N_{H} = 0$
1 1 1 1	$ \begin{array}{r} N_1 = .000 \ 250 \ 71 \\ N_2 = .000 \ 202 \ 35 \\ N_3 = .000 \ 131 \ 52 \\ N_4 = .000 \ 060 \ 703 \\ \end{array} $ $ \begin{array}{r} h_1 = 611.0 \ m \\ h_2 = 2939 \ m \\ h_3 = .7117 \ m \\ h_4 = .13 \ 401 \ m $
	$N_5 = .000 \text{ 012 } 340$ $n_5 = 23 \text{ 170 m}$
1 1	Quadrature points for $H = 10^{4}$ meters
! !	$N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = .000 095 703$
 	$N_1 = .000 \ 255 \ 20$ $h_1 = 390.9 \ m$ $N_2 = .000 \ 224 \ 43$ $h_2 = 1861 \ m$ $N_3 = .000 \ 179 \ 38$ $h_3 = 4141 \ m$ $N_4 = .000 \ 134 \ 32$ $h_4 = 6921 \ m$ $N_5 = .000 \ 103 \ 55$ $h_5 = 9320 \ m$

TABLE B-31.- QUADRATURE POINTS FOR EDWARDS AFB MAY OPTICAL ATMOSPHERE

```
h = 0 meters
                                                       N_0 = .000 275 36
               h = 4500 meters
                                                       N = .000 174 75
               h = 10 000 meters
                                                     N = .000 094 427
               h = 30 000 meters
                                                     N = .000 003 7688
H_{S1} = 7588 \text{ m}
                         H_{S2} = 7013 \text{ m}
                                             H_{S3} = 9896 \text{ m} H_{S4} = 9695 \text{ m}
H_{S5} = 9863 \text{ m}
                         H_{S6} = 9752 \text{ m}
                       Quadrature points for H = 106 meters
                        N_1 = N_0 - (N_0 - N_H)X_1 N_H = 0
                        N_1 = .000 262 44
                                                         h_1 = 517.4 \text{ m}
                                                         h_2 = 2631 \text{ m}
h_3 = 6720 \text{ m}
h_4 = 12 775 \text{ m}
                        N_2 = .000 211 82
                        N_3 = .000 137 68
                        N_4 = .000 063 544
                        N_5 = .000 \ 0.12 \ 917
                                                            h_5 = 22 392 \text{ m}
                      Quadrature points for H = 104 meters
                        N_{i} = N_{o} - (N_{o} - N_{H})X_{i}
                                                    N_{\rm H} = .000 094 427
                        N_1 = .000 266 87
                                                            h_1 = 340.9 \text{ m}
                       N_2 = .000 233 61

N_3 = .000 184 90
                                                         h<sub>2</sub> = 1663 m
h<sub>3</sub> = 3958 m
h<sub>4</sub> = 6822 m
                       N_{4} = .000 136 18
                        N_5 = .000.10292
                                                             h_5 = 9291 \text{ m}
```

TABLE B-32.- QUADRATURE POINTS FOR EDWARDS AFB JULY OPTICAL ATMOSPHERE

!) meters 1500 met 10 000 m 30 000 m		3	N _O N N N	≈ .(≃ .(≐ .(000 -2 000 1 000 0	266 172 194 103	20 27 595 9271		eres H es	 		!
1	H _{S1} =	7730 m 10 217	m	HS2 HS6	= 700 = 10	59 m 342 m	H _{S3}	= 10	340	m		H _{S4}	±	10	057	m !
Î.				Quadra	ture	points fo	r H =	106	mete	ers						!
! ! !				N _i =	No -	$(N_0-N_H)X_1$	N	H = ()							!
1.				$N_1 = N_2 =$.000	253 71 204 77		ì	1 ₁ =	529 272	.4 m 23 m	1				1
1				N3 = N4 = N5 =	.000	204 77 133 10 061 430 012 487		l l	13 = 14 = 15 =	697 13 22	1 m 364 766	m m				!
1				Quadra	iture	points fo	r H =	104	mete	ėrs						; ;
1						(No-NH)Xi					595	;				!
1 1 1				N ₁ = N ₂ =	.000	258 15 226 60 180 40		l l	n ₁ =	342 167	2.2 m	1				!
!!!!		······································		N4 =	.000	180 40 134 19 102 64		ł	13 = 14 = 15 =	689	16 m					! ! !

80FM16

TABLE B-33.- QUADRATURE POINTS FOR EDWARDS AFB ANNUAL OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

1	h = 0 meters No = .000 276 15 h = 4500 meters N = .000 174 41 h = 10 000 meters N = .000 094 760 h = 30 000 meters N = .000 003 8213
$H_{S1} = 7576$ $H_{S5} = 9751$	m $H_{S2} = 7009 \text{ m}$ $H_{S3} = 9793 \text{ m}$ $H_{S4} = 9653 \text{ m}$ m $H_{S6} = 9701 \text{ m}$
1.	Quadrature points for H = 106 meters
I . I	$N_{1} = N_{0} - (N_{0} - N_{H})X_{1} \qquad N_{H} = 0$
1	$N_1 = .000 263 20$ $h_1 = .504.5 m$ $N_2 = .000 212 42$ $h_2 = 2587 m$
1	
! ! !	Quadrature points for H = 10 ⁴ meters
1	$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 094 760$
I !	$N_1 = .000 \ 267 \ 64$ $h_1 = 332.1 \ m$ $N_2 = .000 \ 234 \ 29$ $h_2 = 1627 \ m$
. 	

TABLE B-34.- QUADRATURE POINTS FOR EGLIN AFB JANUARY OPTICAL ATMOSPHERE

 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H _{S1} = 7459 H _{S5} = 9073	m $H_{S2} = 7167 \text{ m}$ $H_{S3} = 9200 \text{ m}$ $H_{S4} = 9297 \text{ m}$! !
1	Quadrature points for H = 106 meters
1 1	$N_{i} = N_{o} - (N_{o}-N_{H})X_{i}$ $N_{H} = 0$
1	$N_1 = .000 \ 270 \ 13$ $h_1 = 428.0 \ m$! $N_2 = .000 \ 218 \ 02$ $h_2 = 2347 \ m$! $N_3 = .000 \ 114 \ 73$
1	$N_2 = .000 \ 218 \ 02$ $h_2 = 2347 \ m$! $N_3 = .000 \ 141 \ 72$ $h_3 = 6444 \ m$! $N_4 = .000 \ 065 \ 406$ $h_4 = 12 \ 824 \ m$! $N_5 = .000 \ 013 \ 296$ $h_5 = 22 \ 645 \ m$!
1 1 1	Quadrature points for H = 10 ¹ meters
1	$N_1 = N_0 - (N_0 - N_H)X_1 N_H = .000 095 511$
! !	$N_1 = .000 \ 274 \ 61$ $h_1 = 285.5 \ m$ $N_2 = .000 \ 240 \ 06$ $h_2 = 1464 \ m$
1 1 1.	

TABLE B-35.- QUADRATURE POINTS FOR EGLIN AFB AUGUST OPTICAL ATMOSPHERE

I I I I	h = 0 meters N ₀ = .000 268 37 h = 4500 meters N = .000 171 47 h = 10 000 meters N = .000 095 561 h = 30 000 meters N = .000 004 4692
$H_{S1} = 7697$ $H_{S5} = 9881$	m $H_{S2} = 7262 \text{ m}$ $H_{S3} = 10 046 \text{ m}$ $H_{S4} = 9864 \text{ m}$ m $H_{S6} = 10 202 \text{ m}$
1.	Quadrature points for H = 106 meters
	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = 0$
1. 1 1 1	$N_1 = .000 \ 255 \ 78$ $h_1 = 436.8 \ m$ $N_2 = .000 \ 206.44$ $h_2 = 2678 \ m$ $N_3 = .000 \ 134 \ 19$ $h_3 = 6837 \ m$ $N_4 = .000 \ 061 \ 930$ $h_4 = 13 \ 652 \ m$ $N_5 = .000 \ 012 \ 589$ $h_5 = 23 \ 275 \ m$
! ! !	Quadrature points for H = 10 ⁴ meters
1	$N_i = N_0 - (N_0 - N_H)X_i$ $N_H = .000 095 561$
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	$N_1 = .000 \ 260 \ 26$ $h_1 = 271.5 \ m$ $N_2 = .000 \ 228 \ 49$ $h_2 = 1641 \ m$ $N_3 = .000 \ 181 \ 97$ $h_3 = 3926 \ m$ $N_4 = .000 \ 135 \ 44$ $h_4 = 6749 \ m$ $N_5 = .000 \ 103 \ 67$ $h_5 = 9245 \ m$

TABLE B-36.- QUADRATURE POINTS FOR EGLIN AFB ANNUAL OPTICAL ATMOSPHERE

```
N_0 = .000 274 94
              h = 0 meters
                                                      N = .000 172 57
              h = 4500 meters
                                                    N = .000.096.841
              h = 10 000 meters.
                                                   N = .000 004 3111
              h = 30 000 meters
                         H_{S2} = 7220 \text{ m} H_{S3} = 9662 \text{ m} H_{S6} = 9779 \text{ m}
                                                                               H_{S4} = 9640 \text{ m}
H_{S1} = 7595 \text{ m}
H_{S5} = 9441 \text{ m}
                       Quadrature points for H = 106 meters
                        N_{1} = N_{0} - (N_{0} - N_{H})X_{1} N_{H} = 0
                                                             h_1 = 403.4 \text{ m}
                        N_1 = .000 262 04
                                                           h_2 = 2526 \text{ m}
h_3 = 6682 \text{ m}
h_4 = 13 237 \text{ m}
                        N_2 = .000 211 49
                         N_3 = .000 137 47
                         N_{4} = .000 063 447
                                                           h_5 = 22 928 \text{ m}
                         N_5 = .000 012 897
                        Quadrature points for H = 104 meters
                                                      N_{\rm H} = .000 096 841
                         N_i = N_o - (N_o - N_H)X_i
                                                                h_1 = 252.1 \text{ m}
                         N_1 = .000 \ 266 \ 59

N_2 = .000 \ 233 \ 84
                                                               h_2 = 1544 \text{ m}
                                                              h_3 = 3783 \text{ m}
                         N_3 = .000 185 89
                                                              h_4 = 6650 \text{ m}
                         N_{4} = .000 137 94
                         N_5 = .000 105 19
                                                                h_5 = 9182 \text{ m}
```

TABLE B-37.- QUADRATURE POINTS FOR ASCENSION FEBRUARY OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

1	$h = 0$ meters $N_0 = .000 267 06$ h = 4500 meters $N = .000 171 11h = 10 000$ meters $N = .000 095 402h = 30 000$ meters $N = .000 004 1518$
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	$H_{S1} = 7717 \text{ m}$ $H_{S2} = 7244 \text{ m}$ $H_{S3} = 10 \ 109 \text{ m}$ $H_{S4} = 9867 \text{ m}$ $H_{S5} = 10 \ 529 \text{ m}$ $H_{S6} = 10 \ 287 \text{ m}$
1 1	Quadrature points for H = 106 meters
1	$N_1 = N_0 - (N_0 - N_H) X_1 \qquad N_H = 0$
1	$N_1 = .000 254 53$ $h_1 = .577.8$ $h_2 = .000 205 43$ $h_2 = .000 205 43$
! ! !	$N_2 = .000 \ 205 \ 43$ $h_2 = 2663 \ m$ $N_3 = .000 \ 133 \ 53$ $h_3 = 6839 \ m$ $N_4 = .000 \ 061 \ 628$ $h_4 = 13 \ 730 \ m$ $N_5 = .000 \ 012 \ 528$ $h_5 = 23 \ 101 \ m$
! !	Quadrature points for H = 10 ⁴ meters
1	$N_i = N_O - (N_O - N_H)X_i$ $N_H = .000 095 402$
1 1 1	$N_1 = .000 259 01$ $h_1 = 382.0 m$ $N_2 = .000 227 45$ $h_2 = 1936 m$ $N_3 = .000 181 23$ $h_3 = 3944 m$ $N_4 = .000 135 01$ $h_4 = 6734 m$
!	$N_5 = .000 \ 103 \ 45$ $h_5 = 9250 \ m$

TABLE B-38.- QUADRATURE POINTS FOR ASCENSION SEPTEMBER OFFICAL ATMOSPHERE

(λ = 0.555 micron)

1 . 1 . 1 . 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
1. 1. 1.	$H_{S1} = 7666 \text{ m}$ $H_{S2} = 7223 \text{ m}$ $H_{S3} = 9867 \text{ m}$ $H_{S4} = 9714 \text{ m}$! $H_{S5} = 10 034 \text{ m}$ $H_{S6} = 10 074 \text{ m}$!
1	Quadrature points for H = 106 meters
1.	$N_i = N_o - (N_o - N_H)X_i \qquad N_H = 0$
1 1 1 1 1 1	$N_1 = .000 257 69$ $h_1 = 576.5 m$ $N_2 = .000 207 98$ $h_2 = 2538 m$ $N_3 = .000 135 19$ $h_3 = 6733 m$ $N_4 = .000 062 392$ $h_4 = 13 613 m$ $N_5 = .000 012 683$ $h_5 = 23 097 m$
1 1	Quadrature points for H = 10 ¹⁴ meters
1	$N_i = N_o - (N_o - N_H)X_i$ $N_H = .000 095 612$
1 1 1- 1	N ₁ = .000 262 17

TABLE B=39.- QUADRATURE POINTS FOR ASCENSION ANNUAL OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

```
h = 0 meters
                                                     N_0 = .000 268 38
              h = 4500 meters
                                                    N = .000 170.82
              h = 10.000 meters.
                                                    N = -.000 095 520
              h = 30 000 meters
                                                   N = .000 004 2475
H<sub>S1</sub> = 7697 m H<sub>S2</sub> = 1630 m H<sub>S6</sub> = 10 202 m
                                                  H_{S3} = 9960 \text{ m} H_{S4} = 9805 \text{ m}
                       Quadrature points for H = 10^6 meters
                       N_1 = N_0 - (N_0 - N_H)X_1
                                                     N_{H} = 0
                       N_1 = -000 255 79
                                                           h_1 = 590.6 \text{ m}
                                                         h<sub>2</sub> = 2621 m
h<sub>3</sub> = 6796 m
h<sub>4</sub> = 13 687 m
                       N_2 = .000 \ 206 \ 45
                        N_3 = .000 134 19
                       N_{4} = .000 061 933
                        N_5 = .000 012 590
                                                          h_5 = 23 \ 100 \ m
                      Quadrature points for H = 104 meters
                        N_i = N_o - (N_o - N_H)X_i N_H = .000 095 520
                                                           h_1 = 390.2 \text{ m}
                        N_1 = .000 260 27
                       N_2 = .000 228 49
                                                          h_2 = 1682 \text{ m}
                                                         h_3 = 3888 \text{ m}
h_4 = 6711 \text{ m}
                       N_3 = .000 181 95
                       N_4 = .000 135 41
                        N_5 = .000 103 63
                                                           h_5 = 9234 \text{ m}
```

TABLE B-40. - QUADRATURE POINTS FOR KWAJALEIN MAY OPTICAL ATMOSPHERE

! h = ! h =	0 meters No = .000 264 95. 4500 meters N = .000 170 33 10 000 meters N = .000 094 938 30 000 meters N = .000 004 2741
$H_{S1} = 7748 \text{ m}$ $H_{S5} = 10 284 \text{ m}$	$H_{S2} = 7267 \text{ m}$ $H_{S3} = 10 \ 186 \text{ m}$ $H_{S4} = 9946 \text{ m}$ $H_{S6} = 10 \ 423 \text{ m}$
1.	Quadrature points for H = 106 meters
1	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i} \qquad N_{H} = 0$
1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$N_1 = .000 \ 252 \ 52$ $h_1 = 560.3 \ m$ $N_2 = .000 \ 203 \ 81$ $h_2 = 2722 \ m$ $N_3 = .000 \ 132 \ 48$ $h_3 = 6894 \ m$ $N_4 = .000 \ 061 \ 141$ $h_4 = 13 \ 831 \ m$ $N_5 = .000 \ 012 \ 429$ $h_5 = 23 \ 180 \ m$
1.	Quadrature points for H = 10 ⁴ meters
1	$N_i = N_0 - (N_0 - N_H)X_i - N_H = .000 094 938$
	$N_1 = .000 \ 256 \ 97$ $h_1 = 364.2 \ m$ $N_2 = .000 \ 225 \ 72$ $h_2 = 1713 \ m$ $N_3 = .000 \ 179 \ 95$ $h_3 = 3959 \ m$ $N_4 = .000 \ 134 \ 17$ $h_4 = 6775 \ m$ $N_5 = .000 \ 102 \ 92$ $h_5 = 9250 \ m$

TABLE B-41.- QUADRATURE POINTS FOR KWAJALEIN DECEMBER OPTICAL ATMOSPHERE

 $N_0 = .000 - 264 71$ h = 0 meters N = .000 169 71h = 4500 meters N = .000094822h = 10 000 metersN = .000 004 2248h = 30 000 meters $H_{S3} = 10 \ 123 \ \text{m}$ $H_{S4} = 9937 \ \text{m}$ $H_{S2} = 7269 \text{ m}$ $H_{S6} = 10 438 \text{ m}$ $H_{S1} = 7752 \text{ m}$ $H_{S5} = 10 271 \text{ m}$ Quadrature points for H = 106 meters $N_{1} = N_{0} - (N_{0} - N_{H})X_{1}$ $N_{H} = 0$ $h_1 = 562.6 \text{ m}$ $N_1 = .000 252 29$ $N_2 = .000 \ 203 \ 62$ $h_2 = 2710 \text{ m}$ N₃ = .000 132 36 N₄ = .000 061 086 $h_3 = 6888 \text{ m}$ $h_{4} = 13.837 \text{ m}$ $h_5 = 23 162 \text{ m}$ $N_5 = .000 \text{ C12 418}$ Quadrature points for H = 104 meters $N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 094 822$ $h_1 = 364.0 \text{ m}$ $N_1 = .000 256 74$ h₂ = 1720 m h₃ = 3934 m h₄ = 6770 m $N_2 = .000 225 51$ $N_3 = .000 179 77$ $N_{4} = .000 134 02$ $h_5 = 9252 \text{ m}$ $N_5 = .000 102 79$

TABLE B-42.- QUADRATURE POINTS FOR KWAJALEIN ANNUAL OPTICAL ATMOSPHERE

```
h = 0 meters
                                                        N_0 = .000 264 79
                                                   N- = .000 170 15
               h = 4500 meters
               h = 10 000 meters
                                                     N = .000 094 915
               h = 30 000 \text{ meters}
                                                     ---N = .000 004 2695
H_{S1} = 7751 \text{ m}
                      H_{S2} = 7268 \text{ m}
H_{S6} = 10 433 \text{ m}
                                                     H_{S3} = 10 \ 175 \ \text{m} H_{S4} = 9942 \ \text{m}
H_{S5} = 10 300 \text{ m}
                       Quadrature points for H = 106 meters
                         N_{1} = N_{0} - (N_{0} - N_{H})X_{1}
                         N_1 = .000 252 37
                                                               h_1 = 563.7 \text{ m}
                        N_2 = .000 \ 203 \ 69

N_3 = .000 \ 132 \ 40
                                                            h_2 = 2721 \text{ m}
h_3 = 6891 \text{ m}
h_4 = 13 838 \text{ m}
                         N_{4} = .000 061 104
                         N_5 = .000 \ 012 \ 421
                                                               h_5 = 23 \ 207 \ m
                       Quadrature points for H = 10^{4} meters
                        N_i = N_o - (N_o - N_H)X_i N_H = .000 094 915
                        N_1 = .000 256 82
                                                               h_1 = 366.0 \text{ m}
                         N_2 = .000 225 59
                                                               h_2 = 1723 \text{ m}
                        N_3 = .000 179 85
                                                             h_3 = 3957 \text{ m}
                         N_{4} = .000 134 11
                                                               h_4 = 6770 \text{ m}
                         N_5 = .000 102 88
                                                                h_5 = 9250 \text{ m}
```

TABLE B-43.- QUADRATURE POINTS FOR WALLOPS MARCH OPTICAL ATMOSPHERE

	$h = 0$ meters $N_0 = .000 290 21$ h = 4500 meters $N = .000 175 99h = 10 000$ meters $N = .000 094 334h = 30 000$ meters $N = .000 004 1433$
$H_{S1} = 7346$ $H_{S5} = 8883$	$H_{S2} = 7124 \text{ m}$ $H_{S3} = 8997 \text{ m}$ $H_{S4} = 9053 \text{ m}$ $H_{S6} = 8796 \text{ m}$
1.	Quadrature points for H = 106 meters
	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = 0$
1.	$N_1 = .000 \ 276 \ 60$ $h_1 = 418.9 \ m$ $N_2 = .000 \ 223 \ 24$ $h_2 = .2319 \ m$
! ! !	$N_3 = .000 \ 145 \ 11$ $h_3 = 6275 \ m$ $N_4 = .000 \ 066 \ 970$ $h_4 = 12 \ 245 \ m$ $N_5 = .000 \ 013 \ 614$ $h_5 = 22 \ 403 \ m$
1	Quadrature points for H = 10 ⁴ meters
	$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 094 334$
	$N_1 = .000 281 02$ $h_1 = 274.7 m$ $N_2 = .000 245 01$ $h_2 = 1504 m$ $N_3 = .000 192 27$ $h_3 = 3675 m$ $N_4 = .000 139 54$ $h_4 = 6634 m$ $N_5 = .000 103.52$ $h_5 = 9233 m$

TABLE B-44.- QUADRATURE POINTS FOR WALLOPS JULY OPTICAL ATMOSPHERE

```
h = 0 meters
                                                            N_0 = .000 269 61
N = .000 172 35
                  h = 4500 meters
                                                              N = .000 095 446
N = .000 004 5094
                  h = 10 000 \text{ meters}
                  h = 30 000 meters
H_{S1} = 7678 \text{ m}
H_{S5} = 10 092 \text{ m}
                          H_{S2} = 7251 \text{ m}.
H_{S6} = 10 123 \text{ m}.
                                                              H_{S3} = 10 057 \text{ m}
                                                                                               H_{S4} = 9813 \text{ m}
                            Quadrature points for H = 106 meters
                             N_1 = N_0 - (N_0 - N_H)X_1 - N_H = 0
                            N<sub>1</sub> = .000 256 96
N<sub>2</sub> = .000 207 39
N<sub>3</sub> = .000 134 81
N<sub>4</sub> = .000 062 217
                                                                           h<sub>1</sub> = 516.2 m
                                                                       h_2 = 2711 \text{ m}
h_3 = 6802 \text{ m}
h_4 = 13 489 \text{ m}
                             N_5 = .000 012 647
                                                                          h_5 = 23.248 \text{ m}
                           Quadrature points for H = 104 meters
                             N_i = N_o - (N_o - N_H)X_i
                                                                N_{\rm H} = .000 095 446
                             N_1 = .000 261 44
                                                                          h_1 = 341.5 \text{ m}
                             N_2 = .000 229 42
                                                                        h_2 = 1700 \text{ m}
                             N_3 = .000 182 53
                                                                       h_3 = 3943 \text{ m}
                             N_4 = .000 135 64
                                                                       h_{4} = 6746 \text{ m}
                             N_5 = .000 103 62
                                                                           h_5 = 9255. m
```

TABLE B-45.- QUADRATURE POINTS FOR WALLOPS ANNUAL OPTICAL ATMOSPHERE

```
N_0 = .000 280 10
               h = 0 meters
                                                     N = .000 173 87
               h = 4500 meters
                                                    N = .000 095 258
               h = 10 000 meters -
                                                    N = .000 004 3034
               h = 30 000 \text{ meters}
                                                  H_{S3} = 9437 \text{ m} H_{S4} = 9450 \text{ m}
H_{S1} = 7513 \text{ m}
                     H_{S2} = 7184 \text{ m}
H_{S5} = 9422 \text{ m}
                         H_{S6} = 9447 \text{ m}
                       Quadrature points for H = 106 meters
                                                       N_{\rm H} = 0
                        N_{1} = N_{0} - (N_{0} - N_{H})X_{1}
                                                              h_1 = 460.0 \text{ m}
                        N_1 = .000 266 96
                                                           h_2 = 2500 \text{ m}

h_3 = 6552 \text{ m}
                        N_2 = .000 215 46
                        N_3 = .000 140 05
                        N_{4} = .000 064 637
                                                            h_4 = 12872 \text{ m}
                        N_5 = .000 - 013 140
                                                            h_5 = 22.767 \text{ m}
                       Quadrature points for H = 104 meters
                                                       N_{\rm H} = .000 095 258
                         N_1 = N_0 - (N_0 - N_H)X_1
                         N_1 = .000 271 43
                                                              h_1 = 307.6 \text{ m}
                                                             h_2 = 1569 \text{ m}
                         N_2 = .000 237 44

N_3 = .000 187 68
                                                            h_3 = 3777 \text{ m}
                                                            h_4 = 6696 \text{ m}
                         N_{4} = .000 137 91
                         N_5 = .000 103 93
                                                              h_5 = 9256 \text{ m}
```

TABLE B-46.- QUADRATURE POINTS FOR CAPE CANAVERAL JANUARY OPTICAL ATMOSPHERE

5 m !
1
!
!
! !
; ;
!

TABLE 8-47.- QUADRATURE POINTS FOR CAPE CANAVERAL AUGUST OPTICAL ATMOSPHERE

- - - -	h = 0 meters
1 1	$H_{S1} = 7738 \text{ m}$ $H_{S2} = 7268 \text{ m}$ $H_{S3} = 10 302 \text{ m}$ $H_{S4} = 10 025 \text{ m}$ $H_{55} = 10 459 \text{ m}$ $H_{56} = 10 378 \text{ m}$
1	Quadrature points for $H = 10^6$ meters
1.	$N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = 0$
1	$N_1 = .000 253 18$ $h_1 = 572.9 m$ $N_2 = .000 204 34$ $h_2 = 2786 m$
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	$N_2 = .000 204 34$ $h_2 = 2786 m$ $N_3 = .000 132 82$ $h_3 = 6949 m$ $N_4 = .000 061 301$ $h_4 = 13 740 m$ $N_5 = .000 012 461$ $h_5 = 23.330 m$
!!!	Quadrature points for H = 10 ⁴ meters
1	$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 095 494$
! ! ! ! !	$N_1 = .000 257 66$ $h_1 = 385.6 m$ $N_2 = .000 226 38$ $h_2 = 1752 m$ $N_3 = .000 180 57$ $h_3 = 4004 m$ $N_4 = .000 134 76$ $h_4 = 6813 m$ $N_5 = .000 103 48$ $h_5 = 9261 m$

TABLE B-48.- QUADRATURE POINTS FOR CAPE CANAVERAL ANNUAL OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

]]]. !!		h h h	0 meters No = .000 269 36 4500 meters N = .000 172 29 10 000 meters N = .000 095 764 30 000 meters N = .000 004 2826
1	HS1 HS5	= 7682 m = 10 228	$H_{S2} = 7244 \text{ m}$ $H_{S3} = 10 070 \text{ m}$ $H_{S4} = 9893 \text{ m}$ $H_{S6} = 10 139 \text{ m}$
1.			Quadrature points for H = 106 meters
1.			$N_{i} = N_{O} - (N_{O} - N_{H})X_{i} \qquad N_{H} = 0$
I . 1 1			
! !			$N_4 = .000 062 159$ $h_4 = 13 465 m$ $N_5 = .000 012 636$ $h_5 = 23 037 m$
I I I			Quadrature points for H = 10 ⁴ meters
!			$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 095 764$
I. ! ! ! !			$ \begin{array}{r} N_1 = .000 \ 261 \ 22 \\ N_2 = .000 \ 229 \ 30 \\ N_3 = .000 \ 182 \ 56 \\ N_4 = .000 \ 135 \ 82 \\ N_5 = .000 \ 103 \ 91 \\ \end{array} $ $ \begin{array}{r} h_1 = 372.6 \ m \\ h_2 = 1716 \ m \\ h_3 = 3935 \ m \\ h_4 = 6779 \ m \\ h_5 = 9273 \ m $

TABLE B-49 .- QUADRATURE POINTS FOR HAWAII_FEBRUARY OPTICAL ATMOSPHERE

```
h = 0 meters
                                                            N_0 = .000 271.63
                                                        N = .000 172 32
                 h = 4500 meters
                 h = 10 000 \text{ meters}
                                                         N = .000 094 630
                                                         N = .000 004 2117
                  h = 30.000 \text{ meters}
                                                         H_{S3} = 9888 \text{ m} H_{S4} = 9771 \text{ m}
 H_{S1} = 7647 \text{ m}
                             H_{S2} = 7236 \text{ m}
H_{S1} = 7647 \text{ m} H_{S2} = 7236 \text{ m} H_{S5} = 10 061 \text{ m} H_{S6} = 9992 \text{ m}
                           Quadrature points for H = 106 meters
                            N_i = N_o - (N_o - N_H)X_i
                                                              N_{H} = 0
                            N_1 = .000 258 89
                                                                    h_1 = 544.3 \text{ m}
                                                                 h<sub>2</sub> = 2637 m
h<sub>3</sub> = 6773 m
h<sub>4</sub> = 13 312 m
                            N_2 = .000 \ 208 \ 95

N_3 = .000 \ 135 \ 82
                            N_{4} = .000 062 683
                            N_5 = .000 012 742
                                                                   h_5 = 22 961 \text{ m}
                           Quadrature points for H = 104 meters
                            N_i = N_o - (N_o - N_H)X_i N_H = .000 094 630
                                                                    h_1 = 356.9 \text{ m}
                            N_1 = .000 263 33
                                                                 h_2 = 1733 \text{ m}
h_3 = 3911 \text{ m}
h_4 = 6797 \text{ m}
                            N_2 = .000 230 78
N_3 = .000 183 13
                            N_{4} = .000 135 48
                             N_5 = .000 102 93
                                                                    h_5 = 9281 \text{ m}
```

TABLE B-50.- QUADRATURE POINTS FOR HAWAII JULY OPTICAL ATMOSPHERE

1 1 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
! ! !	$H_{S1} = 7684 \text{ m}$ $H_{S2} = 7252 \text{ m}$ $H_{S3} = 9920 \text{ m}$ $H_{S4} = 9855 \text{ m}$ $H_{S5} = 10 221 \text{ m}$ $H_{S6} = 10 147 \text{ m}$
1	Quadrature points for H = 106 meters
1	$N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = 0$
1	$N_1 = .000 256 60$ $h_1 = 565.5 m$ $N_2 = .000 207 10$ $h_2 = 2685 m$ $N_3 = .000 134 62$ $h_3 = 6831 m$ $N_4 = .000 062 129$ $h_4 = 13 553 m$ $N_5 = .000 012 630$ $h_5 = 23 187 m$
! ! !	Quadrature points for H = 104 meters
1	$N_{i} = N_{o} - (N_{o} - N_{H})X_{i}$ $N_{H} = .000 095 924$
! ! ! !	$N_1 = .000 \ 261 \ 10$ $h_1 = 372.7 \ m$ $N_2 = .000 \ 229 \ 24 - $ $h_2 = .1745 \ m$ - $N_3 = .000 \ 182 \ 58$ $h_3 = 3872 \ m$ $N_4 = .000 \ 135 \ 92$ $h_4 = 6739 \ m$ $N_5 = .000 \ 104 \ 05$ $h_5 = 9267 \ m$

TABLE B-51.- QUADRATURE POINTS FOR HAWAII ANNUAL OPTICAL ATMOSPHERE

```
h = 0 měters
                                                                       N_{\odot} = .000 269 92...
                                                                  N = .000 171 47
N = .000 095 851
N = .000 004 3002
1.
                        h = 4500 meters
1.
                       h = 10 -000 meters ...
                       h = 30 000  meters
! H_{S1} = 7673 \text{ m} H_{S2} = 7247 \text{ m} H_{S3} = 9918 \text{ m} ! -H_{S5} = 10 \ 145 \text{ m} H_{S6} = 10 \ 103 \text{ m}
                                                                                          H_{S4} = 9859 \text{ m}
1 .
1
                                  Quadrature points for H = 106 meters
                                   N_{1} = N_{0} - (N_{0} - N_{H})X_{1} \qquad N_{H} = 0
                                                                        h_1 = 554.5 \text{ m}
h_2 = 2656 \text{ m}
h_3 = 6834 \text{ m}
h_4 = 13 508 \text{ m}
h_5 = 23 035 \text{ m}
                                   N_1 = .000 257 26
                                   N_2 = .000 207 63

N_3 = .000 134 96
                                   N_{4} = .000 062 288
                                   N_5 = .000 \ 012 \ 662
                                 Quadrature points for H = 10^4 meters
                                   N_1 = N_0 - (N_0 - N_H)X_1 N_H = .000 [095 851]
                                   N_1 = .000 261 75
                                                                             h_1 = 363.3 \text{ m}
                                                                         h_2 = 1727 \text{ m}
h_3 = 3873 \text{ m}
h_4 = 6754 \text{ m}
                                   N_2 = .000 229 75
                                   N_3 = .000 182 89
                                   N_{4} = .000 136 02
                                  N_5 = .000 104 02
                                                                               h<sub>5</sub> ≐ 9198 m
```

80FM16

TABLE B-52.- QUADRATURE POINTS FOR POINT ARGUELLO JULY OPTICAL ATMOSPHERE .

```
h = 0 meters
                                                                 N<sub>O</sub> = .000 279 11
N = .000 170 91
N = .000 095 453
                                                                                                                   1.
                      h = 4500 \text{ meters}
                      h = 10 000 \text{ meters}
                      h = 30 000 \text{ meters}
                                                               N = .000 004 4921
      H<sub>S1</sub> = 7529 m
                                 H_{S2} = 7176 \text{ m}
                                                           H_{S3} = 9175 \text{ m} H_{S4} = 9353 \text{ m}
      H_{S5} = 8644 \text{ m}
                                  H_{S6} = 9511 \text{ m}
                               Quadrature points for H = 106 meters
                                N_{1} = N_{0} - (N_{0} - N_{H})X_{1} \qquad N_{H} = 0
                                N_1 = .000 266 02
                                                                    h_1 = 395.3 \text{ m}
h_2 = 2131 \text{ m}
h_3 = 6483 \text{ m}
h_4 = 13 219 \text{ m}
                                N_2 = .000 214 70
                                N_3 = .000 - 139 56
                                N_{4} = .000 064 409
                                N_5 = .000 \ 013 \ 093
                                                                        h_5 = 23 026 m
                               Quadrature points for H = 104 meters
                                N_i = N_o - (N_o - N_H)X_i
                                                                  N_{\rm H} = .000~095~453
                                N_1 = .000 270 49
                                                                         h_{1} = 287.3 \text{ m}
                                N_2 = .000 \ 236 \ 73
                                                                         h_2 = 1155 \text{ m}
1 .
                                                                      h_3 = 3563 \text{ m}

h_4 = 6604 \text{ m}
                                N_3 = .000 187 28
                                N_4 = .000 137 83
                                N_5 = .000 104 07
                                                                         h_5 = 9231 \text{ m}
```

TABLE B-53.- QUADRATURE POINTS FOR POINT ARGUELLO DECEMBER OPTICAL ATMOSPHERE $(\lambda = 0.555 \text{ micron})$

```
h = .0 meters
                                                              N_0 = .000 283 97
                                                         N = .000 174-31
N = .000 097 041
N = .000 004 1407
                   h = 4500 meters
                  h = 10 000 meters
                   h = 30 000 méters.....
                            H_{S2} = 7147 \text{ m}
H_{S6} = 9198 \text{ m}.
  H_{S1} = 7450 \text{ m}
                                                         H_{S3} = 9221 \text{ m} H_{S4} = 9339 \text{ m}
-H_{S5} = 8826 \text{ m}
                            Quadrature points for H = 106 meters
                             N_{i} = N_{o} - (N_{o} - N_{H})X_{i} N_{H} = 0
                             N_1 = .000 270 65
                                                                       h_1 = 346.8 \text{ m}
                                                                  h<sub>2</sub> = 2310 m
h<sub>3</sub> = 6473 m
h<sub>4</sub> = 12 795 m
h<sub>5</sub> = 22 621 m
                             N_2 = .000 218 44
                             N_3 = .000 141 99
                             N_{4} = .000 065 530
                             N_5 = .000 013 321
                           Quadrature points for H = 10^4 meters
                             N_i = N_o - (N_o - N_H)X_i
                                                               N_{\rm H} = .000~097~041
                             N_1 = .000 275 20
                                                                      h_1 = 222.3 \text{ m}
                                                                   h<sub>2</sub> = 1382 m
h<sub>3</sub> = 3628 m
h<sub>4</sub> = 6596 m
                             N_2 = .000 240 83...
                             N_3 = .000 190 51
                             N_{4} = ..000 140 18
                             N_5 = .000 105 81
                                                                       h_5 = 9198 \text{ m}
```

TABLE B-54.- QUADRATURE POINTS FOR POINT ARGUELLO ANNUAL OPTICAL ATMOSPHERE

h = 0 meters N ₀ = .000-281-27 h = 4500 meters N. = .000 172 68 h = 10 000 meters N = .000 095 633 h = 30 000 meters N = .000 004 2680
$H_{S1} = 7494 \text{ m}$ $H_{S2} = 7163 \text{ m}$ $H_{S3} = 9224 \text{ m}$ $H_{S4} = 9360 \text{ m}$ $H_{S5} = 9053 \text{ m}$ $H_{S6} = 9372 \text{ m}$
Quadrature points for H = 106 meters
$N_1 = N_0 - (N_0 - N_H)X_1 \qquad N_H = 0$
$N_1 = .000 \ 268 \ 08$ $N_1 = 437.3 \ m$ $N_2 = .000 \ 216 \ 36$ $N_2 = 2313 \ m$ $N_3 = .000 \ 140 \ 64$ $N_3 = 6488 \ m$ $N_4 = .000 \ 064 \ 907$ $N_4 = 12 \ 888 \ m$ $N_5 = .000 \ 013 \ 194$ $N_5 = 22 \ 748 \ m$
Quadrature points for H = 10 ⁴ meters
$N_1 = N_0 - (N_0 - N_H)X_1$ $N_H = .000 095 633$
$N_1 = .000 \ 272 \ 56$ $N_1 = 304.1 \ m$ $N_2 = .000 \ 238 \ 43$ $N_2 = 1386 \ m$ $N_3 = .000 \ 188 \ 45$ $N_3 = 3661 \ m$ $N_4 = .000 \ 138 \ 47$ $N_4 = 6637 \ m$ $N_5 = .000 \ 104 \ 34$ $N_5 = 9227 \ m$

Figure B-1.- \log_e (N • 10^6) versus altitude for March optical atmosphere at White Sands.

Figure B-2.- \log_e (N • 10^6) versus altitude for August optical atmosphere at Cape Canaveral.

APPENDIX C

TABLES OF REFRACTION CORRECTIONS FOR RADIO ATMOSPHERES

This appendix contains tables of refraction corrections for the 30 radio atmospheres shown in appendix A.

 E_{M} = measured elevation angle

E = straight-line, geometric elevation angle

 $\Delta E = E_M - E$ is elevation angle refraction correction

 $\Delta E_{18} = \Delta E$ computed by the 18th algorithm in reference 4 (appendix E)

OM = measured range

o = geometric range

 $\Delta \rho = \rho_M - \rho$ is the range refraction correction

 $\Delta \rho_7 = \Delta \rho$ computed by the 7th algorithm in reference 4 (appendix E)

 $H = 10^6$ m and 10^4 m is altitude of target above the tracking site, which is at sea level

The column labeled $\,\rho\,$ is the geometric range computed by the refraction correction algorithm. It is the range determined by the quantities $E_M,\ H,\ and\ \Delta E_{18}$. Differences in the computed range, $\,\rho,$ are due to errors in ΔE_{18} .

TABLE C-1.- REFRACTION CORRECTIONS FOR WHITE SANDS MARCH RADIO ATMOSPHERE, $H = 10^6$ METERS

! ! E _M , deg !	H _S , m	! ! ρ, km !	! ! - Δρ ₇ , m	l ΔΕ ₁₈ , mrád l
1 0.5 1 1 .5 1 1 .5 1 1 .5 1 1 .5 1 1 .5 1	Ref. atm. H _{S1} = 7273 H _{S2} = 7068 H _{S3} = 8333 H _{S4} = 8613 H _{S5} = 8874 H _{S6} = 8592	1 -3707.1 1 3713.0 1 3713.9 1 3708.9 1 3707.9 1 3707.1 1 3708.0	! 79.6 ! 75.4 ! 74.4 ! 80.2 ! 81.4 ! 82.6	8.442 9.364 9.506 8.719 8.569 8.436 8.580
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. H _{S1} = 7273 H _{S2} = 7068 H _{S3} = 8333 H _{S4} = 8613 H _{S5} = 8874 H _{S6} = 8592	1 3644.1 1 3647.7 1 3648.2 1 3645.0 1 8644.4 1 3643.8 1 3644.4	65.5 61.0 60.0 65.9 67.2 68.4 67.1	7.199 ! 7.764 ! 7.856 ! 7.336 ! 7.235 ! 7.144 ! 7.242 !
1 3 ! 1 3 ! 1 3 ! 1 3 ! 1 3 !	Ref. atm. H _{S1} = 7273 H _{S2} = 7068 H _{S3} = 8333 H _{S4} = 8613 H _{S5} = 8874 H _{S6} = 8592	. 3415.0 ! 3415.7 ! 3415.9 ! 3415.0 ! 3414.8 ! 3414.8	36.4 1 33.0 ! 32.3 ! 36.9 ! 37.9 ! 38.8 ! 37.8	4.264 _ ! 4.393 ! 4.418 ! 4.272 ! 4.242 ! 4.214 !
5 ! 5 ! ! ! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 1 . 5 ! !	$H_{S4} = 8613$! 3210.7 ! 3210.4 ! 3210.3	24.4 1- 22.1 1- 21.5 1- 24.7 1- 25.7 1- 26.4 1- 25.6	2.933 2.978 2.988 2.930 2.917 2.906 2.918

TABLE C-2.- REFRACTION CORRECTIONS FOR WHITE SANDS MARCH RADIO ATMOSPHERE, H = 104 METERS

		†			
1	-EM, deg	H _S , m	lρ,km l	! 1 Δρ ₇ , m 1 !	ΔE ₁₈ , mrad
! ! ! ! ! !	0.5 .5 .5 .5 .5 .5 .5 .1	Ref. atm. HS1 = 7273 HS2 = 7068 HS3 = 8333 HS4 = 8613 HS5 = 8874 HS6 = 8592 Ref. atm.	330.4 335.8 336.6 332.3 331.5 330.8 331.6	67.5 ! 64.5 ! 64.0 ! 66.8 ! 67.3 ! 67.3 !	4.341 5.247 5.378 4.660 4.526 4.408 - 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	H _{S1} = 7273 ! H _{S2} = 7068 ! H _{S3} = 8333 ! H _{S4} = 8613 ! H _{S5} = 8874 ! H _{S6} = 8592 !	279.7 ! 282.8 ! 283.3 ! 280.7 ! 280.2 ! 279.8 ! 280.2 !	54.8 ! 51.5 ! 51.0 ! 53.9 ! 54.4 ! 54.9 !	3.593 ! 4.240 _! 4.337 ! 3.801 ! 3.699 ! 3.610 ! 3.707 !
	3 ! 3 ! 3 ! 1 ! 1	Ref. atm. ! HS1 = 7273 ! HS2 = 7068 ! HS3 = 8333 ! HS4 = 8613 ! HS5 = 8874 ! HS6 = 8592 !	159.2 ! 159.8 ! 159.9 ! 159.3 ! 159.2 ! 159.1 !	29.0 ! 26.6 ! 26.3 ! 28.3 ! 28.7 ! 29.1 ! 28.7 !	1.941 ! 2.221 ! 2.265 ! 2.018 ! 1.971 ! 1.928 ! 1.974 !
! ! ! ! !	5 5 5 5 5 5 5 5 5 1 1	Ref. atm. ! Hs1 = 7273 ! Hs2 = 7068 ! Hs3 = 8333 ! Hs4 = 8613 ! Hs5 = 8874 ! Hs6 = 8592 !	106.2 ! 106.4 ! 106.4 ! 106.3 ! 106.2 ! 106.2 ! 106.2 !	19.0 ! 17.3 ! 17.1 ! 18.5 ! 18.8 ! 19.1 ! 18.8 !	1.273 ! 1.447 ! 1.474 ! 1.320 ! 1.290 ! 1.263 ! 1.292 !

TABLE C-3.- REFRACTION CORRECTIONS FOR WHITE SANDS AUGUST RADIO ATMOSPHERE, H = 10⁶ METERS

i É _M , deg	! ! H _S , m !	! ! ρ, km !	ι ! Δρ ₇ , m !	l ι ΔΕ ₁₈ , mrad l
! 0.5 ! 0.5 ! .5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 6296 ! Hs2 = 6796 ! Hs3 = 7475 ! Hs4 = 7410 ! Hs5 = 7239 ! Hs6 = 6930		! 93.0 ! 97.0 ! 87.0 ! 89.7 !- 93.2 !- 92.9 ! 92.0	1 - 1 11.349
	Ref. atm. $H_{S1} = 6296$ $H_{S2} = 6796$ $H_{S3} = 7475$ $H_{S4} = 7410$ $H_{S5} = 7239$ $H_{S6} = 6930$	3657.3 3661.1 3659.2 3656.8 3657.0 3657.6 3658.7	74.6 1 68.2 1 71.2 1 75.0 1 74.7 1 73.7 1 71.9	9.303 ! 9.909 ! 9.593 ! 9.212 ! 9.247 ! 9.339 !
! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! H _{S1} = 6296 ! H _{S2} = 6796 ! H _{S3} = 7475 ! H _{S4} = 7410 ! H _{S5} = 7239 ! H _{S6} = 6930	! 3420.5 ! 3421.5 ! 3421.0 ! 3420.5 ! 3420.7 ! 3420.7	1 40.0 1 35.1 1 37.3 1 40.4 1 40.1 1 39.3 1 37.9	5.213 I 5.381 I 5.303 I 5.202 I 5.212 I 5.236 I 5.282 I
5 ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 6296 ! H _{S2} = 6796 ! H _{S3} = 7475 ! H _{S4} = 7410 ! H _{S5} = 7239 ! H _{S6} = 6930	! 3213.7 ! 3214.0 ! 3213.8 ! 3213.6 ! 3213.7 ! 3213.7 ! 3213.8	26.6 23.0 24.7 26.9 26.7 26.1 25.1	3.529 ! 3.594 ! 3.564 ! 3.526 ! 3.529 ! 3.539 ! 3.557 !

TABLE C-4.- REFRACTION CORRECTIONS FOR WHITE SANDS AUGUST RADIO ATMOSPHERE, H = 104 METERS

! ! E _M , deg	H _S , m	 ρ, km 	ι Δρ ₇ , m ι	i Δέ ₁₈ , mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 6296 ! Hs2 = 6796 ! Hs3 = 7475 ! Hs4 = 7410 ! Hs5 = 7239 ! Hs6 = 6930	1 343.1 1 347.7 1 344.8 1 341.5 1 341.8 1 342.6 1 344.1	78.6 75.6 77.0 78.8 78.6 78.2	6.454 7.197 6.731 6.188 6.236 6.366 6.616
1 1 1 1 1 1 1 1	Ref. atm. H _{S1} = 6296 H _{S2} = 6796 H _{S3} = 7475 H _{S4} = 7410 H _{S5} = 7239 H _{S6} = 6930	287.2 1 290.2 1 288.5 1 286.5 1 286.7 1 287.2 1 288.1	62.3 59.1 60.7 62.6 62.5 62.0	5.126 5.711 5.378 4.982 5.018 5.113 5.295
1 3 1 3 1 3 1 3 1 3 1 3	! Ref. atm. ! H _{S1} = 6296 ! H _{S2} = 6796 ! H _{S3} = 7475 ! H _{S4} = 7410 ! H _{S5} = 7239 ! H _{S6} = 6930	1 160.6 ! 1 161.2 ! 1 160.9 ! 1 160.6 ! 1 160.6 ! 1 160.7 ! 1 160.9 !	31.9 ! 29.5 ! 30.7 ! 32.2 ! 32.0 ! 31.7 ! 31.0 !	2.631 2.912 2.769 2.594 2.610 2.653
! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5	Ref. atm. HS1 = 6296 HS2 = 6796 HS3 = 7475 HS4 = 7410 HS5 = 7239 HS6 = 6930	! 106.7 ! ! 106.9 ! ! 106.8 ! ! 106.7 ! ! 106.7 ! ! 106.7 !	20.7 ! 19.1 ! 19.9 ! 20.9 ! 20.8 ! 20.5 ! 20.1 !	1.707 ! 1.884 ! 1.796 ! 1.687 ! 1.697 ! 1.723 !

TABLE C-5.- REFRACTION CORRECTIONS FOR WHITE SANDS ANNUAL RADIO ATMOSPHERE, H = 106 METERS

E _M , deg	Hs, m	! ! ρ, km !	1 1 Δρ ₇ , m	! ΔE ₁₈ , mrad !.
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 7141 HS2 = 7025 HS3 = 8145 HS4 = 8148 HS5 = 8345 HS6 = 8357	! 3710.3 ! 3715.3 ! 3715.9 ! 3711.2 ! 3711.2 ! 3710.4	! 81.3 ! 77.1 ! 76.5 ! 81.7 ! 81.8 ! 82.6 ! 82.7	8.932 9.726 9.811 9.074 9.073 8.959 8.952
! 1. ! 1 ! 1 ! 1 ! 1 ! 1	! Ref. atm. ! Hs1 = 7141 ! Hs2 = 7025 ! Hs3 = 8145 ! Hs4 = 8148 ! Hs5 = 8345 ! Hs6 = 8357	1 3646.2 1 3649.4 1 3649.8 1 3646.7 1 3646.2 1 3646.2	1 66.6 1 62.1 1 61.5 1 67.0 1 67.0 1 67.9 1 68.0	7.537 8.042 8.097 7.612 7.611 7.535 7.530
3 3 3 3 3 1 3	Ref. atm. HS1 = 7141 HS2 = 7025 HS3 = 8145 HS4 = 8148 HS5 = 8345 HS6 = 8357	3415.8 3416.5 3416.6 3415.8 3415.8 3415.7 3415.7	36.8 ! ! 33.4 ! ! 33.0 ! ! 37.2 ! ! 37.2 ! ! 38.0 !	4.404 ! 4.528 ! 4.542 ! 4.407 ! 4.407 ! 4.385 ! 4.383 !
5 ! 5 ! 5 ! 5 ! 5 !	Ref. atm. H _{S1} = 7141 H _{S2} = 7025 H _{S3} = 8145 H _{S4} = 8148 H _{S5} = 8345 H _{S6} = 8357	! 3210.9 ! 3211.1 ! 3211.1 ! 3210.9 ! 3210.9 ! 3210.8 ! 3210.8	24.7 ! 22.3 ! 21.9 ! 25.1 ! 25.1 ! 25.6 ! 25.7 !	3.018 ! 3.063 ! 3.069 ! 3.016 ! 3.015 ! 3.006 !

TABLE C-6.- REFRACTION CORRECTIONS FOR WHITE SANDS ANNUAL RADIO ATMOSPHERE, H = 104 METERS

I.E _M , deg	H _S , m	ρ, km	Δρ ₇ , m	l ΔΕ ₁₈ , mrad l
0.5 0.5	Ref. atm. HS1 = 7147 HS2 = 7025 HS3 = 8145 HS4 = 8148 HS5 = 8345 HS6 = 8357 Ref. atm. HS1 = 7147 HS2 = 7025 HS3 = 8145 HS4 = 8148 HS5 = 8345 HS6 = 8357 Ref. atm. HS1 = 7147 HS2 = 7025 HS3 = 8148 HS5 = 8345 HS6 = 8357 HS1 = 7147 HS2 = 7025 HS3 = 8148 HS5 = 8345 HS6 = 8357 HS1 = 7147 HS2 = 7025 HS3 = 8148 HS5 = 8345 HS6 = 8357	! 337.2 ! 337.7 ! 333.7 ! 333.7 ! 333.0 ! 281.2 ! 283.7 ! 284.0 ! 281.5 ! 281.5 ! 281.2 ! 281.2 ! 159.4 ! 159.5 ! 159.5 ! 159.5	68.8 66.1 65.8 68.3 68.3 68.7 1 55.5 1 52.7 1 55.0 1 55.0 1 55.4 1 55.5 1 29.1 1 27.1 1 26.9 1 28.8 1 29.1 1 29.1	1 4.792 1 5.481 1 5.563 1 4.890 1 4.888 1 4.787 1 4.780 1 1 4.780 1 1 4.420 1 1 4.420 1 1 4.480 1 3.980 1 1 3.978 1 1 3.902 1 1 3.902 1 1 3.902 1 1 3.902 1 1 3.903 1 1 2.068 1 2.308 1 2.106 1 2.070 1 2.068 1
! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! Hs1 = 7147 ! Hs2 = 7025 ! Hs3 = 8145 ! Hs4 = 8148 ! Hs5 = 8345 ! Hs6 = 8357	! 106.3 ! 106.5 ! 106.5 ! 106.3 ! 106.3 ! 106.3	! 19.1 ! 17.6 ! 17.5 ! 18.8 ! 18.8 ! 19.0 ! 19.0	! 1.351 ! 1.502 ! 1.519 ! 1.376 ! 1.376 ! 1.353 ! 1.352

TABLE C-7.- REFRACTION CORRECTIONS FOR EDWARDS AFB MAY RADIO ATMOSPHERE, H = 106 METERS

Ë _M , deg	l L H _S , m L	!. ! ρ, km ! !	! Ι Δρ ₇ , m Ι	! ΔE ₁₈ , mrad ! ! Δ 18, mrad !
0.5 .5 .5 .5 .5 .5	! Ref. atm. ! H _{S1} = 7008 ! H _{S2} = 6800 ! H _{S3} = 7844 ! H _{S4} = 8042 ! H _{S5} = 8088 ! H _{S6} = 8125	1 3713.2 1 3713.0		1 10.261 1
1. 1 1. 1 1. 1 1. 1. 1 1. 1. 1	! Ref. atm. ! H _{S1} = 7008 ! H _{S2} = 6800 ! H _{S3} = 7844 ! H _{S4} = 8042 ! H _{S5} = 8088 ! H _{S6} = 8125	! 3651.8 ! 3648.8 ! 3648.3 ! 3648.1	67.1 63.2 62.1 67.4 68.3 68.6 68.7	
3 3 1 3 1 3 1 3 1 3	! Ref. atm. ! H _{S1} = 7008 ! H _{S2} = 6800 ! H _{S3} = 7841. ! H _{S4} = 8042 ! H _{S5} = 8088 ! H _{S6} = 8125	1 3416.5 1 3416.5	! 33.8 ! 33.0 ! 37.1	4.555 ! 4.662 ! 4.690 ! 4.557 ! 4.534 ! 4.528 ! 4.524 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. HS1 = 7008 HS2 = 6800 HS3 = 7844 HS4 = 8042 HS5 = 8088 HS6 = 8125	1 3211.6 1 3211.4 1 3211.3		3.109 ! ! 3.148 ! ! 3.159 ! ! 3.107 ! ! 3.098 ! ! 3.095 !

TABLE C-8.- REFRACTION CORRECTIONS FOR EDWARDS AFB MAY RADIO ATMOSPHERE, H = 104 METERS

! ! E _M , deg !	! ! H _S , m. !	Ι Ι Ρ, km Ι	! ι Δρ ₇ , m ! Ι	! Δε ₁₈ , mrad ! !
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 7008 ! Hs2 = 6800 ! Hs3 = 7844 ! Hs4 = 8042 ! Hs5 = 8088 ! Hs6 = 8125	1 334.4 1 338.7 1 339.6 1 335.5 1 334.8 1 334.7 1 334.5	70.0 67.7 67.1 69.6 70.0 70.1	5.009 I 5.731 I 5.883 I 5.195 I 5.082 I 5.057 I 5.036 I
I. 1 I. 1 I. 1 I. 1 I. 1	! Hs2. atm. ! Hs2 = 7008 ! Hs2 = 6800 ! Hs3 = 7844 ! Hs4 = 8042 ! Hs5 = 8088 ! Hs6 = 8125	282.2 ! 284.7 ! 285.2 ! 282.7 ! 282.3 ! 282.2 ! 282.1	56.3 53.8 53.2 55.8 55.8 56.3 56.4	4.114 4.611 4.722 4.722 4 4.214 4 4.130 4 4.111 4
1 3 1 3 1 3 1 3 1 3 1 3	HS1 = 7008 HS2 = 6800 HS3 = 7844 HS4 = 8042 HS5 = 8088 HS6 = 8125	159.7 160.1 160.2 159.8 159.7 159.7 195.6		2.177 ! 2.399 ! 2.449 ! 2.220 ! 2.181 ! 2.172 ! 2.165 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. H _{S1} = 7008 H _{S2} = 6800 H _{S3} = 7844 H _{S4} = 8042 H _{S5} = 8083 H _{S6} = 8125	! 106.4 ! 106.5 ! 106.6 ! 106.4 ! 106.4 ! 106.4 ! 106.4	19.2 17.9 17.6 19.0 19.2 19.2 19.3	1 .419 ! ! 1.560 ! ! 1.591 ! ! 1.448 ! ! 1.424 ! ! 1.418 !

TABLE C-9.- REFRACTION CORRECTIONS FOR EDWARDS AFB JULY RADIO ATMOSPHERE, H \pm 10 6 METERS

! E _M , deg	l H _S , m	! !ρ,km !	! ! Δρ _{7, m.} !	! ΔE ₁₈ , mrad !
I	! Ref. atm. ! Hs1 = 7312 ! Hs2 = 6891 ! Hs3 = 8797 ! Hs4 = 8760 ! Hs5 = 8845 ! Hs6 = 8662	! 3707.3 ! 3712.3 ! 3714.2 ! 3706.9 ! 3707.0 ! 3706.7 ! 3707.3	1 78.9 1 74.9 1 72.9 1 81.5 1 81.3 1 81.7 1 80.9	! 8.469 ! 9.258 ! 9.551 ! 8.404 ! 8.422 ! 8.380
1	! Ref. atm. ! H _{S1} = 7312 ! H _{S2} = 6891 ! H _{S3} = 8797	! 3644.2 ! 3647.2 ! 3648.3 ! 3643.6 ! 3643.7 ! 3643.5 ! 3643.9	64.9 60.6 58.6 67.4 67.3 67.6	1 7.203 1 7.682 1 7.873 1 7.112 1 7.124 1 7.095 1 7.158
! 3 ! 3 ! 3 ! 3 ! 3	$H_{S3} = 8797$ $H_{S4} = 8760$! -3414.8 ! 3415.5 ! 3415.8 ! 3414.5 ! 3414.5 ! 3414.5 ! 3414.6	38.1	4.234 4.354 4.405 4.189 4.192 4.184 4.203
5 1 5 1 5 1 5 1 5 1 5 1 5	$H_{S3} = 8797$ $H_{S4} = 8760$ $H_{S5} = 8845$	3210.3 3210.5 3210.6 3210.2 3210.2 3210.1 3210.1		2.973

TABLE C-10.- REFRACTION CORRECTIONS FOR EDWARDS AFB JULY RADIO ATMOSPHERE, H = 10 METERS

! ! E _M , deg	H _S , m	l 1 ρ, km l	Ι Δό ₇ , mΙ	L ΔΕ ₁₈ , mrad l
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = -7312 ! Hs2 = 6891 ! Hs3 = 8797 ! Hs4 = 8760 ! Hs5 = 8845 ! Hs6 = 8662	1 330.3 1 335.4 1 337.0 1 330.8 1 330.9 1 330.7 1 331.2	67.1 64.0 1 63.1 1 67.1 1 67.0 1 67.1 1 66.8	! 4.327 ! ! 5.178 ! ! 5.449 ! ! 4.405 ! ! 4.421 ! ! 4.384 !
! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 3 ! 3 ! 3 ! 3	! Hef. atm. ! Hs1 = 7312 ! Hs2 = 6891 ! Hs3 = 8797 ! Hs4 = 8760 ! Hs5 = 8845 ! Hs6 = 8662 ! Ref. atm. ! Hs1 = 7312 ! Hs2 = 6891 ! Hs3 = 8797 ! Hs4 = 8760 ! Hs5 = 8845 ! Hs6 = 8662	1 279.6 1 282.6 1 283.6 1 279.7 1 279.8 1 279.7 1 280.0 1 159.1 1 159.1 1 159.1 1 159.1 1 159.1 1 159.1 1 159.1 1 159.1 1 159.2 1 106.2	1 54.4 1 51.2 1 50.1 1 54.3 1 54.4 1 54.1 1 28.8 26.5 1 28.7 1 28.8 1 28.8 1 28.8 1 28.8 1 28.8 1 28.8 1 28.8	1 3.574 ! 4.187 ! 4.387 ! 3.606 ! 3.618 ! 3.589 ! 3.652 ! 1 1.917 ! 2.195 ! 2.285 ! 1.925 ! 1.925 ! 1.931 ! 1.947 ! 1.256
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! H _{S1} = 7312 ! H _{S2} = 6891 ! H _{S3} = 8797 ! H _{S4} = 8760 ! H _{S5} = 8845 ! H _{S6} = 8662	1 106.2 1 106.4 1 106.2 1 106.2 1 106.2 1 106.2	! 17.3 ! 16.7 ! 18.8 ! 18.8 ! 18.9 ! 18.7	1 1.431 1 1.487 1 1.261 1 1.264 1 1.256 1 1.274

TABLE C-11.- REFRACTION CORRECTIONS FOR EDWARDS AFB ANNUAL RADIO ATMOSPHERE, H = 10 METERS

E _M , deg	! - ! H _S , m . !	! ! ρ, km ! !	Δρ ₇ , m 1	ΔΕ _{18.} , mrad	! - ! !
! 0.5 ! .5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 7144 ! Hs2 = 6839 ! Hs3 = 8212 ! Hs4 = 8381 ! Hs5 = 8296 ! -Hs6 = 8361	1 3710.7 1 3715.3 1 3716.7 1 3710.9 1 3710.3 1 3710.6 1 3710.4	80.7 77.1 75.6 82.0 82.8 82.4 82.7	8.997 9.720 1 9.947 1 9.031 1 8.935 1 8.983	!. ! ! !
1	Ref. atm. HS1 = 7144 HS2 = 6839 HS3 = 8212 HS4 = 8381 HS5 = 8296 HS6 = 8361 Ref. atm. HS1 = 7144 HS2 = 6839	1 3646.7 1 3649.4 1 3650.3 1 3646.5 1 3646.1 1 3646.3 1 3646.2 1 3415.9 1 3416.5 1 3416.7	66.0 62.1 60.6 67.2 68.0 67.6 67.6 67.9 1 36.4 1 33.4	1 7.609 1 8.037 1 8.183 1 7.583 1 7.518 1 7.550 1 7.525 1 4.416 1 4.525 1 4.564	
! 3 ! 3 ! 3 ! 3	H _{S2} = 6839 H _{S3} = 8212 H _{S4} = 8381 H _{S5} = 8296 H _{S6} = 8361	1 3415.7 1 3415.6 1 3415.6 1 3415.6	! 37.5 ! 38.1 ! 37.8 ! 38.0	1 4.398 1 4.379 1 4.388 1 4.381	!
1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! H _{S1} = 7144 ! H _{S2} = 6839 ! H _{S3} = 8212 ! H _{S4} = 8381 ! H _{S5} = 8296 ! H _{S6} = 8361	3210.9 ! 3211.1 ! 3211.2 ! 3210.8 ! 3210.8 ! 3210.8 ! 3210.8	24.4 ! 22.3 ! 21.4 ! 25.3 ! 25.7 ! 25.5 ! 25.7	1 3.022 1 3.062 1 3.077 1 3.011 1 3.003 1 3.007 1 3.004	!!!!!!!!

TABLE C-12 - REFRACTION CORRECTIONS FOR EDWARDS AFB ANNUAL RADIO ATMOSPHERE, H = 104 METERS - -

! E _M , deg	i i H _S , m i	1 1 _Θ, km	Δρ ₇ , m 1	ΔE ₁₈ , mrad.!
I 0.5 I .5. I .5. I .5. I .5.	! Ref. atm. ! Hs1 = 7144 ! Hs2 = 6839 ! Hs3 = 8212 ! Hs4 = 8381 ! Hs5 = 8296 ! Hs6 = 8361	1 333.0 1 1 337.2 1 338.5 1 333.4 1 332.9 1 333.2 1 333.0		4.770 ! 5.480 ! 5.691 ! 4.852 ! 4.766 ! 4.809 !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. HS1 = 7144 HS2 = 6839 HS3 = 8212 HS4 = 8381 HS5 = 8296 HS6 = 8361 Ref. atm. HS1 = 7144 HS2 = 6839 HS3 = 8212 HS4 = 8381 HS5 = 8296 HS5 = 8361	281.3 283.7 284.5 281.4 281.1 281.3 281.1 159.5 159.9 160.1 159.5 159.4 159.5	55.3 52.6 51.8 55.1 55.5 55.3 55.4 1 29.1 1 27.1 1 26.5 1 28.9 29.2 29.0	3.927 4.419 4.573 4.573 3.951 3.886 3.919 3.894 1
1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. Hs1 = 7.144 Hs2 = 6839 Hs3 = 8212 Hs4 = 8381 Hs5 = 8296 Hs6 = 8361	! 106.3 ! 106.5 ! 106.5 ! 106.3 ! 106.3 ! 106.3	! 19.0 ! 17.6 ! 17.2 ! 18.9 ! 19.1 ! 19.0 ! 19.0	! 1.357 ! 1.502 ! 1.545 ! 1.368 - ! 1.349 ! 1.358 ! 1.351

C-13.- REFRACTION CORRECTIONS FOR EGLIN AFB JANUARY RADIO ATMOSPHERE, H = 106 METERS.

! E _M , deg	H _S , m	ρ, km	Ι Ι Δρ ₇ , m Ι	l ΔΕ ₁₈ , mrad l
! 0.5 ! -5 ! .5 ! .5 ! .5	Ref. atm.	3717.4 3720.0 3719.6 3418.0 3716.8 3717.0 3715.2		1 10.043 ! 1 10.456 ! 1 10.397 ! 1 10.138 ! 2 9.960 ! 9.988 ! 9.709 !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-Ref. atm. H _{S1} = 6881 H _{S2} = 6954 H _{S3} = 7291 H _{S4} = 7538 H _{S5} = 7498 H _{S6} = 7908	3651.6 3650.9	68.0 64.2 64.5 66.3 67.6 67.4 69.4	8.293 ! 8.596 ! 8.558 ! 8.390 ! 8.274 ! 8.292 !
! 3 ! - 3 ! 3 ! 3 ! 3	Ref. atm. ! H _{S1} = 6881 ! H _{S2} = 6954 ! H _{S3} = 7291 ! H _{S4} = 7538 ! H _{S5} = 7498 ! H _{S6} = 7908 !	3417.5 3418.0 3418.0 3417.7 3417.5 3417.6 3417.3	37.1 34.1 34.4 35.7 36.7 36.6 38.2	4.692 ! 4.789 ! 4.780 ! 4.735_! 4.703 ! 4.708 ! 4.657 !
1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1	Ref. atm. I H _{S1} = 6881 ! H _{S2} = 6954 ! H _{S3} = 7291 ! H _{S4} = 7538 ! H _{S5} = 7498 ! H _{S6} = 7908 !	3212.0	24.8 22.6 22.8 23.8 24.6 24.4 25.6	3.224 I 3.207 I 3.194 I

TABLE C-14.- REFRACTION CORRECTIONS FOR EGLIN AFB JANUARY RADIO ATMOSPHERE, H = 104 METERS

	:
E_{M} , deg ! H_{S} , m ! ρ , km ! $\Delta \rho_{7}$, m ! ΔE_{18} , $m \times 2$!
	1 1 1 1 1 5 5 6 1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1

TABLE C-15.- REFRACTION CORRECTIONS FOR EGLIN AFB AUGUST RADIO ATMOSPHERE, H = 10⁶ METERS

! E _M , deg	! ! H _S , m !	! ! ρ, km !	! ι Δρ ₇ , m ! !	! ΔΕ ₁₈ , mrad !
! 0.5 ! 0.5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 5949 HS2 = 6723 HS3 = 6585 HS4 = 6589 HS5 = 6739 HS6 = 6357	! 3734.3 ! 3738.9 ! 3733.2 ! 3734.1 ! 3734.1 ! 3735.8	95.3 94.5 94.5	1 12.686 1 13.405 1 1 12.517 1 1 12.663 1 1 12.658! 1 12.501 1 12.914 1
1 1 1 1 1 1 1 1 1 1 1 1	DC	1 3663.0 1 3663.6 1 3663.6	76.9 70.4 75.2 74.3 74.4 75.3	10.190 ! 10.753 ! 10.205 ! 10.296 ! 10.294 ! 10.195 ! 10.453 !
3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! H _{S1} = 5949 ! H _{S2} = 6723 ! H _{S3} = 6585 ! H _{S4} = 6589 ! H _{S5} = 6739 ! H _{S6} = 6357	1 3422.6 1 3423.6 1 3422.8 1 3423.0 1 3423.0 1 3422.8 1 3423.2	40.5 35.4 39.1 38.5 38.5 39.2 37.4	5.573 ! 5.741 ! 5.609 ! 5.632 ! 5.631 ! 5.607 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 5949 ! H _{S2} = 6723 ! H _{S3} = 6585 ! H _{S4} = 6589 ! H _{S5} = 6739 ! H _{S6} = 6357		26.8 23.1 25.8 25.3 25.3 25.8 25.8 24.5	3.746 ! 3.812 ! 3.763 ! 3.772 ! 3.772 ! 3.762 ! 3.786 !

TABLE C-16.- REFRACTION CORRECTIONS FOR EGLIN AFB AUGUST RADIO ATMOSPHERE, H = 104 METERS

- 1					
!	E _M , deg	H _Ś , m	! ! ρ, km !	! ! Δρ ₇ , m ! !	ΔE ₁₈ , mrad
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	0.5 5.5 5.5 5.5 5.5 5.5	Ref. atm. HS1 = 5949 HS2 = 6723 HS3 = 6585 HS4 = 6589 HS5 = 6739 HS6 = 6357	348.4 352.9 347.8 348.6 348.6 348.6 350.1	82.5 ! 79.4 ! 81.7 ! 81.3 ! 81.3 ! 81.7 !	7.313 8.035 7.214 7.347 7.344 7.199 7.580
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. HS1 = 5949 HS2 = 6723 HS3 = 6585 HS4 = 6589 HS5 = 6739 HS6 = 6357 Ref. atm. HS1 = 5949 HS2 = 6723 HS3 = 6585 HS4 = 6589 HS5 = 6739 HS6 = 6357 Ref. atm. HS1 = 5949 HS5 = 6739 HS6 = 6357 Ref. atm. HS1 = 5949 HS5 = 6739 HS6 = 6585 HS4 = 6589 HS6 = 6585	290.1	64.6 61.4 63.7 63.7 63.7 64.2 62.9 32.6 33.3 31.9 31.9 31.9 31.9 31.9 31.9 31.9	5.702 6.326 5.745 5.841 5.838 5.734 6.006 2.907 3.189 2.984 2.985 2.984 2.985 1.881 2.957 1.907 1.907 1.904 1.975

TABLE C-17. - REFRACTION CORRECTIONS FOR EGLIN AFB ANNUAL RADIO ATMOSPHERE, H = 10 METERS

! E _M , deg	H _S , m	Ι Ι ρ, km Ι	! ι Δρ ₇ , m !	!
	Ref. atm. HS1 = 6375 HS2 = 6822 HS3 = 6737 HS4 = 6784 HS5 = 7405 HS6 = 7062	1 3722.4 1 3729.7 1 3726.9 1 3727.4 1 3727.2 1 3723.7 1 3725.5	90.2 86.1 88.5 88.0 88.3 91.5 89.7	I 10.838 ! 11.975 ! 11.539 ! 11.618 ! 11.574 ! 11.035 ! 11.323 !
! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	! Ref atm. ! Hs1 = 6375 ! - Hs2 = 6822 ! Hs3 = 6737 ! Hs4 = 6784 ! Hs5 = 7405 ! Hs6 = 7062 ! ! Ref. atm. ! Hs1 = 6375 ! Hs2 = 6822	1 3656.5 1 3660.0 1 3658.2 1 3658.6 1 3656.2 1 3657.4 1 3420.3 1 3421.0 1 3420.6	1 72.7 1 67.7 1 70.3 1 69.8 1 70.1 1 73.6 1 71.7 1 38.9 1 35.0	9.172 ! 9.723 ! 9.448 ! 9.499 ! 9.471 ! 9.125 ! 9.311 ! ! 5.169 ! 5.300 !
1 3 1 3 1 3 1 3	! $H_{S3} = 6737$! $H_{S4} = 6784$! $H_{S5} = 7405$! $H_{S6} = 7062$	1 3420.7 1 3420.7 1 3420.1 1 3420.4	1 36.6 1 36.8 1 39.5 1 38.0 1	! 5.244 ! 5.237 ! 5.146 ! 5.195 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! H _{S1} = 6375 ! H _{S2} = 6822 ! H _{S3} = 6737 ! H _{S4} = 6784 ! H _{S5} = 7405 ! H _{S6} = 7062	1 3213.5 1 3213.7 1 3213.6 1 3213.6 1 3213.6 1 3213.4 1 3213.5	1 23.0 ! 24.4 ! 24.2 ! 24.3 ! 26.3 ! 25.2	1 3.544 1 3.518 1 3.523 1 3.520 1 3.485 1 3.504

TABLE C-18.- REFRACTION CORRECTIONS FOR EGLIN AFB ANNUAL RADIO ATMOSPHERE, H = 10⁴ METERS

E _M , deg	H _Š , m	! ! ρ, km ! !	Δρ ₇ , m 1	ΔE_{18} , mrad	
1. 0.55.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Ref. atm. Hs1 = 6375 Hs2 = 6822 Hs3 = 6737 Hs4 = 6784 Hs5 = 7405 Hs6 = 7062 Hs1 = 6375 Hs2 = 6822 Hs3 = 6737 Hs4 = 6784 Hs5 = 7405 Hs6 = 7062 Ref. atm. Hs1 = 6375 Hs2 = 6822 Hs3 = 6737 Hs4 = 6784 Hs5 = 7405 Hs2 = 6822 Hs3 = 6737 Hs4 = 6784 Hs5 = 7405 Hs4 = 6784 Hs5 = 7062 Ref. atm. Hs1 = 6375 Hs4 = 6784 Hs5 = 7062 Ref. atm. Hs1 = 6375 Hs4 = 6784 Hs5 = 7062 Hs6 = 7062 Hs6 = 7062 Hs7 = 6822 Hs8 = 6737 Hs4 = 6784 Hs9 = 6784 Hs9 = 6784 Hs9 = 6784 Hs9 = 6784	1 339.9 1 346.6 1 344.5 1 344.5 1 344.3 1 342.9 1 286.7 1 289.5 288.3 1 288.3 1 287.3 1 160.7 1 160.9 1 160.9 1 160.9 1 106.7 1 106.8 1 106.7 1 106.8 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7 1 106.7	76.3 74.7 76.0 75.8 75.9 77.5 76.6 60.8 58.5 59.7 1 60.6 1 31.1 29.4 1 30.4 1 30.4 1 30.4 1 30.9 1 20.0 1 19.5 1 19.5 1 19.6	1 5.936 7.018 6.614 6.687 6.646 1 6.646 1 5.012 1 5.579 1 5.312 1 5.312 1 2.642 2 .852 2 .727 2 .750 2 .737 2 .578 1 2 .663 1 1.714 1 1.846 1 1.769 1 1.775 1 1.775 1 1.775 1 1.775 1 1.775	

TABLE C-19.- REFRACTION CORRECTIONS FOR ASCENSION FEBRUARY RADIO ATMOSPHERE, H = 100 METERS

1					
!	E _M , deg	H _{S+} m	! ! ρ, km !	! ! Δρ ₇ , m.	1. ! ΔΕ ₁₈ , mrad
	0.55.55.55.55.55.55.55.55.55.55.55.55.55	Ref. atm. HS1 = 5939 HS2 = 6698 HS3 = 6256 HS4 = 6271 HS5 = 6111 HS6 = 6341 Ref. atm. HS1 = 5939 HS2 = 6698 HS3 = 6256 HS4 = 6271 HS6 = 6341 Ref. atm. HS1 = 5939 HS2 = 6698 HS3 = 6256 HS4 = 6271 HS5 = 6111 HS6 = 6341 Ref. atm. HS1 = 5939 HS2 = 6698 HS3 = 6256 HS4 = 6271 HS5 = 6111 HS6 = 6341 Ref. atm. HS1 = 5939 HS2 = 6698 HS3 = 6256 HS4 = 6271 HS5 = 6111	1 3734.0 1 3739.1 1 3736.6 1 3736.5 1 3736.5 1 3736.0 1 3663.1 1 3665.1 1 3665.1 1 3665.1 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.1 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3665.8 1 3423.7 1 3423.2 1 3423.5 1 3215.0 1 3215.1 1 3215.1 1 3215.2	96.9 91.2 95.3 92.9 93.0 93.4 93.4 1 76.6 1 70.4 1 75.2 1 72.5 71.5 71.5 73.0 1 73.0 1 73.0 1 73.0 1 73.0 1 73.0 1 73.0 1 73.0 1 73.0 1 73.0	1 12.641 1 13.440 1 12.563 1 13.052 1 13.035 1 13.225 1 12.954 1 10.218 1 10.778 1 10.530 1 10.541 1 10.530 1 10.547 1 10.547 1 10.480 1 5.593 5.752 5.622 5.696 5.693 5.721 5.681 3.756 3.756 3.819 3.770 3.798 3.797
	5 ! 	H _{S6} = 6341 !	3215.1 ! !	24.5. !	3.807 ! 3.793 !

TABLE C-20.- REFRACTION CORRECTIONS FOR ASCENSION FEBRUARY RADIO ATMOSPHERE, H = 10 METERS

! E _M , deg	I I. Hs, m I	! Ιρ, km !	Ι Ι Δ <u>ρ</u> γ, m Ι Ι	ΔΕ ₁₈ , mrad ΔΕ ₁₈ , mrad
1 0.5 ! .5 ! .5 ! .5 ! .5 ! .5	! Ref. atm. ! Ref. atm. ! Hs1 = 5939 ! Hs2 = 6698 ! Hs3 = 6256 ! Hs4 = 6271 ! Hs5 = 6111 ! Hs6 = 6341	! 353.9 ! 353.1 ! 348.0 ! 350.8 ! 350.7 ! 351.8 ! 350.2	' LETI	8.191 ! 8.061 ! 7.249 ! 7.700 ! 7.684 ! 7.861 !
1	Ref. atm. Hs1 = 5939 Hs2 = 6698 Hs3 = 6256 Hs4 = 6271 Hs5 = 6111 Hs6 = 6341	293.8 293.4 290.4 292.1 292.0 292.7 291.8	62.5 61.5 64.1 62.6 62.7 62.7 62.1 62.9	6.413 ! 6.344 ! 5.771 ! 6.091 ! 6.080 ! 6.204 ! 6.027 !
1 3 1 3 1 3 1 3 1 3	Ref. atm. H _{S1} = 5939 H _{S2} = 6698 H _{S3} = 6256 H _{S4} = 6271 H _{S5} = 6111 H _{S6} = 6341	1 161.7 1 161.9 1 161.3 1 161.6 1 161.6 1 161.7	! 31.1 ! 30.3 ! 32.2 ! 31.1 ! 31.2 ! 30.8 ! 31.4	! 3.142 ! ! 3.197 ! ! 2.956 ! ! 3.092 ! !- 3.087 ! ! 3.139 ! ! 3.065 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. HS1 = 5939 HS2 = 6698 HS3 = 6256 HS4 = 6271 HS5 = 6111 HS6 = 6341	! 107.0 ! 107.0 ! 106.9 ! 107.0 ! 107.0 ! 107.0	20.1 ! 19.5 ! 20.8 ! 20.1 ! 20.1 ! 20.1 ! 19.8 ! 20.2	! 2.009 ! ! 2.062 ! ! 1.914 ! ! 1.998 ! ! 1.995 ! ! 2.027 !

TABLE C-21.- REFRACTION CORRECTIONS FOR ASCENSION SEPTEMBER RADIO ATMOSPHERE, H = 10⁶ METERS

! E _M , deg	! ! H _S , m !		rad I
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 6236 ! Hs2 = 6766 ! Hs3 = 6330 ! Hs4 = 6302 ! Hs5 = 6647 ! Hs6 = 6831		124 ! 177 ! 1322 ! 152 !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! H _{S1} = 6236 ! H _{S2} = 6766 ! H _{S3} = 6330 ! H _{S4} = 6302 ! H _{S5} = 6647 ! H _{S6} = 6831 ! Ref. atm.	1 3660.1 ! 73.2 ! 9.7 1 3662.0 ! 68.6 ! 10.0 1 3659.9 ! 71.8 ! 9.7 1 3661.6 ! 69.2 ! 9.9 1 3661.8 ! 69.0 ! 10.0 1 3660.3 ! 71.1 ! 9.7 1 3659.6 ! 72.1 ! 9.6 1 1 1 1 1	050 ! 086 ! 086 ! 005 ! 782 !
1 3 1 3 1 3 1 3 1 3	! H _{S1} = 6236 ! H _{S2} = 6766 ! H ₃₃ = 6330 ! T _{S4} = 6302 ! H _{S5} = 6647 ! H _{S6} = 6831	1 3421.9 1 35.1 1 5.4 1 3421.4 1 37.6 1 5.3 1 3421.8 1 35.6 1 5.4 1 3421.8 1 35.4 1 5.4 1 3421.5 1 37.0 1 5.3 1 3421.3 1 37.9 1 5.3 1 1 1 1	142 ! 358 ! 127 ! 132 ! 376 ! 348 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 6236 ! H _{S2} = 6766 ! H _{S3} = 6330 ! H _{S4} = 6302 ! H _{S5} = 6647 ! H _{S6} = 6831	1 3214.2 1 23.2 1 3.6 1 3214.1 1 24.4 1 3.6	531 ! 500 ! 525 !

TABLE C-22.- REFRACTION CORRECTIONS FOR ASCENSION SEPTEMBER RADIO ATMOSPHERE, H = 104 METERS

! ! E _M , deg	H _S , m	 ρ, km 	Δρ ₇ , <u>m</u> l	ΔE ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 6236 HS2 = 6766 HS3 = 6330 HS4 = 6302 HS5 = 6647 HS6 = 6831	1 346.1 1 348.5 1 345.4 1 347.9 1 348.1 1 346.1 1 345.0	77.5 76.3 77.8 76.6 76.5 77.4	1. 6.940 ! 1. 7.334 ! 1. 6.828 ! 1. 7.239 ! 1. 7.267 ! 1. 6.935 ! 1. 6.771 !
! 1 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 !	! Ref. atm. ! Hs1 = 6236 ! Hs2 = 6766 ! Hs3 = 6330 ! Hs4 = 6302 ! Hs5 = 6647 ! Hs6 = 6831 ! Ref. atm. ! Hs1 = 6236 ! Hs2 = 6766 ! Hs3 = 6330 ! Hs4 = 6302 ! Hs5 = 6647 ! Hs6 = 6831	289.5 290.7 288.9 290.3 290.4 289.2 288.7 161.1 161.3 161.3 161.3 161.1 161.3	1 61.0 1 59.5 1 61.2 1 59.8 1 59.7 1 60.8 1 61.4 1 30.8 1 29.7 1 30.9 1 29.9 1 29.8 1 30.7 1 31.1	1 5.572 1 1 5.813 1 2 5.745 1 2 5.745 1 3 5.745 1 3 5.765 1 4 5.528 1 5 5.528 1 5 5.528 1 6 2.959 1 7 2.840 1 8 2.959 1 8 2.930 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1 8 2.938 1
! - 5 5 5 5 5 5 ! ! ! ! ! ! ! ! ! ! ! !	! Ref. atm. ! H _{S1} = 6236 ! H _{S2} = 6766 ! H _{S3} = 6330 ! H _{S4} = 6302 ! H _{S5} = 6647 ! H _{S6} = 6831	! 106.8 ! 106.9 ! 106.8 ! 106.9 ! 106.9 ! 106.8 ! 106.8	1 20.0 1 19.1 1 20.0 1 19.3 1 19.3 1 19.8 1 20.1	1 1.831 1 1.913 1 1.818 1 1.896 1 1.901 1 1.838 1 1.806

TABLE C-23.- REFRACTION CORRECTIONS FOR ASCENSION ANNUAL RADIO ATMOSPHERE, H = 10⁶ METERS

l. ! E _M , deg !	! ! H _S , m !	! ! ρ, km !	! 1 Δρ ₇ , m 1 !	ΔE ₁₈ , mrad
! 0.5 ! .5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 6118 ! Hs2 = 6738 ! Hs3 = 6164 ! Hs4 = 6100 ! Hs5 = 6445 ! Hs6 = 6637	1 3732.7 1 3735.1 1 3730.8 1 3734.8 1 3735.3 1 3732.8 1 3731.5	93.6 89.1 92.4 89.3 89.0 90.8 91.9	12.441 12.817 12.148 12.764 12.838 12.451 12.250
1 1 11 1 1 1 1 1 1 1 1 1	! Ref. atm. ! Hs1 = 6118 ! Hs2 = 6738 ! Hs3 = 6164 ! Hs4 = 6100 ! Hs5 = 6445 ! Hs6 = 6637	3662.0 3663.8 3663.6 3663.6 3663.9 3662.4 3661.6	69.2	9.917 10.300 10.346
1 3 1 3 1 3 1 3 1 3 1	$H_{S4} = 6100$ $H_{S5} = 6445$	3421.9 3422.6 3422.0 3422.5 3422.6 3422.3 3422.1	33.14	5.454 5.564 5.462 5.556 5.567 5.509 5.478
1 5 1 5 1 5 1 5 1 5 1 5 1 5	$H_{S3} = 6164$ $H_{S4} = 6100$	3214.4 3214.6 3214.4 3214.6 3214.6 3214.5 3214.4	23.0 1	3.658 ! 3.705 ! 3.667 ! 3.702 ! 3.706 ! 3.685 ! 3.673 !

TABLE C-24.- REFRACTION CORRECTIONS FOR ASCENSION ANNUAL RADIO ATMOSPHERE, $H = 10^4$ METERS

! ! E _M , deg	! H _S , m !	! ! ρ, km !	i. I Δρ ₇ , m 1 I	. ΔΕ ₁₈ , mrad !
! 0.5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 6118 HS2 = 6738 HS3 = 6164 HS4 = 6100 HS5 = 6445 HS6 = 6637	! 348.6 ! 350.3 ! 346.4 ! 350.0 ! 350.4 ! 348.2 ! 347.0	78.9 77.6 77.6 79.3 77.7 77.5 77.5	7.343 7.614 6.994 7.564 7.633 7.274 7.088
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. H _{S1} = 6118 H _{S2} = 6738 H _{S3} = 6164 H _{S4} = 6100 H _{S5} = 6445 H _{S6} = 6637	1 290.7 1 291.7 1 289.5 1 291.6 1 291.8 1 290.5 1 289.9	61.7 60.3 62.4 60.5 60.2 61.4 62.0	5.825 ! 6.018 ! 5.578 ! 5.983 ! 6.032 ! 5.777 !
. 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. HS1 = 6118 HS2 = 6738 HS3 = 6164 HS4 = 6100 HS5 = 6445 HS6 = 6637	161.3 161.5 161.1 161.5 161.6 161.3 161.2	31.0 ! 29.9 ! 31.5 ! 30.1- ! 29.9 ! 30.8 ! 31.2	2.938 1 3.051 1 1 2.864 1 1 3.037 1 1 3.057 1 2.950 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! Hs1 = 6118 ! Hs2 = 6738 ! Hs3 = 6164 ! Hs4 = 6100 ! Hs5 = 6445 ! Hs6 = 6637	! 106.9 ! 106.9 ! 106.8 ! 105.9 ! 107.0 ! 106.9 ! 106.8	. 20.1 ! 19.3 ! 20.3 ! 19.4 ! 19.3 ! 19.9 ! 20.2	1.890 ! 1.971 ! 1.856 ! 1.962 ! 1.975 ! 1.909 !

TABLE C-25.- REFRACTION CORRECTIONS FOR KWAJALEIN MAY RADIO ATMOSPHERE, H = 106 METERS

0.5	1				
.5	E _M , deg	H _S , m_	! ! ρ, km !	! ! Δρ ₇ , m !	ΔE ₁₈ , mrad
1 5 ! Hs2 = 6643 ! 3215.9 ! 26.7 ! 3.941 5 ! Hs3 = 6335 ! 3216.0 ! 25.5 ! 3.961 5 ! Hs4 = 6294 ! 3216.0 ! 25.4 ! 3.964	1. 0.5 1. 0.5	Ref. atm. HS1 = 5644 HS2 = 6643 HS3 = 6335 HS4 = 6294 HS5 = 6027 HS6 = 5853 Ref. atm. HS1 = 5644 HS2 = 6643 HS3 = 6335 HS4 = 6294 HS5 = 6027 HS6 = 5853 Ref. atm. HS1 = 5644 HS2 = 6643 HS3 = 6335 HS4 = 6294 HS6 = 5853 Ref. atm.	1 3744.3 1 3746.2 1 3740.2 1 3740.6 1 3742.8 1 3742.8 1 3669.0 1 3666.5 1 3668.0 1 3668.1 1 3669.5 1 3669.5 1 3669.5 1 3670.4 1 3424.5 1 3424.8 1 3424.8 1 3425.5 1 3424.8 1 3425.1 1 3425.3 1 3425.3	1 101.6 94.7 1 100.2 98.5 98.3 96.8 95.9 78.8 72.1 78.7 76.7 76.4 74.7 73.5 1 40.8 35.5 40.6 39.0 38.8 37.5 36.6	14.274 14.544 13.251 13.612 13.662 14.004 14.242 11.150 11.551 10.766 10.989 11.020 11.228 11.371 1.371 1.371 1.371 1.391 1.391 1.3940 1.3940 1.3940 1.3940
1 5 H _{S6} = 5853 3216.2 23.8 3.981	1 5 ! 1 5 ! 1 5 !	H _{S3} = 6335 ! H _{S4} = 6294 ! H _{S5} = 6027 !	3215.9 ! 3216.0 ! 3216.0 ! 3216.1 !	26.7 ! 25.5 ! 25.4 ! 24.4 !	3.941 ! 3.961 ! 3.964 ! 3.981 !

TABLE C-26.- REFRACTION CORRECTIONS FOR KWAJALEIN MAY RADIO ATMOSPHERE, H = 104 METERS

E _M , deg	! ! H _S , m !	! Ι ρ, km . : !	Ι Ι Δρ ₇ , m Ι Ι	! Δε ₁₈ , mrad
! 0.5 ! 0.5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 5644 ! Hs2 = 6643 ! Hs3 = 6335 ! Hs4 = 6294 ! Hs5 = 6027 ! Hs6 = 5853	1 357.0 1 358.2 1 350.6 1 352.7 1 353.0 1 355.0 1 356.4	85.9 82.9 85.8 85.0 84.9 84.1 83.5	8.682 8.864 7.670 8.001 8.048 8.364 8.583
1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! H _{S1} = 5644 ! H _{S2} = 6643 ! H _{S3} = 6335 ! H _{S4} = 6294 ! H _{S5} = 6027 ! H _{S6} = 5853	294.8 ! 296.4 ! 292.1 ! 293.3 ! 293.5 ! 294.6 ! 295.4	66.2 63.4 67.1 66.0 65.9 64.9	6.609 6.922 6.089 6.324 6.356 6.577 6.729
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	! Ref. atm. ! H _{S1} = 5644 ! H _{S2} = 6643 ! H _{S3} = 6335 ! H _{S4} = 6294 ! I _{S5} = 6027 ! H _{S6} = 5853	! 161.9 ! 162.4 ! 161.7 ! 161.9 ! 161.9 ! 162.1 ! 162.2	1 32.9 1 30.8 1 33.6 1 32.8 1 32.7 1 31.9 1 31.4	3.222 3.450 3.106 3.205 3.218 3.310 3.372
1 5 1 5 1 5 1 5 1 5 1 5	! Ref. atm. ! H _{S1} = 5644 ! H _{S2} = 6643 ! H _{S3} = 6335 ! H _{S4} = 6294 ! H _{S5} = 6027 ! H _{S6} = 5853	! 107.0 ! 107.2 ! 107.0 ! 107.1 ! 107.1 ! 107.1 ! 107.2	21.2 1 19.7 1 21.7 1 21.1 1 21.0 1 20.5 1 20.2	2.066 2.220 2.009 2.070 2.078 2.134 2.172

TABLE C-27.- REFRACTION CORRECTIONS FOR KWAJALEIN DECEMBER RADIO ATMOSPHERE, H = 106 METERS

!	E _M , deg	H _S , m	! ! ρ, km !	! ! Δρ ₇ , m !	ΔE ₁₈ , mrad
! ! ! ! ! !	0.5 .5 .5 .5 .5	Ref. atm. HS1 = 5915 HS2 = 6701 HS3 = 6298 HS4 = 6315 HS5 = 6614 HS6 = 6302	1. 1. 3734.2 1. 3739.7 1. 3733.8 1. 3736.7 1. 3736.5 1. 3734.4 1. 3736.6	96.8 ! 91.5 ! 95.7 ! 93.5 ! 93.6 ! 95.3 !	12.675 13.526 12.610 13.055 13.036 12.702 13.051
	1 ! 1 ! 1 ! 1 ! 1 ! 1 !	$H_{S6} = 6302$	3663.7 3667.0 3663.4 3665.2 3665.1 3663.8 3665.2	76.5 ! 70.6 ! 75.5 ! 73.0 ! 73.1 ! 74.9 ! 73.0 !	10.275 ! 10.551 ! 10.539 ! 10.332 !
	3 ! 3 ! 3 ! 3 ! 3 ! 3 !	Ref. atm. ! H _{S1} = 5915 ! H _{S2} = 6701 ! H _{S3} = 6298 ! H _{S4} = 6315 ! H _{S5} = 6614 ! H _{S6} = 6302 !	3422.9 ! 3423.8 ! 3423.0 ! 3423.4 ! 3423.4 ! 3423.4 !	40.1 ! 35.4 ! 39.2 ! 37.3 ! 37.3 ! 38.8 ! 37.3 !	5.624 ! 5.777 ! 5.641 ! 5.709 ! 5.706 ! 5.656 !
!!!!!!!!!	5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 1 !	Ref. atm. ! H _{S1} = 5915 ! H _{S2} = 6701 ! H _{S3} = 6298 ! H _{S4} = 6315 ! H _{S5} = 6614 ! H _{S6} = 6302 !	3215.0 ! 3215.3 ! 3215.0 ! 3215.2 ! 3215.2 ! 3215.1 ! 3215.2 !	26.6 ! 23.0 - ! 25.8 ! 24.4 ! 24.5 ! 25.5 ! 24.4 !	3.773 ! 3.834 ! 3.784 ! 3.809 ! 3.808 ! 3.789 ! 3.809 !

TABLE C-28.- REFRACTION CORRECTIONS FOR KWAJALEIN DECEMBER RADIO ATMOSPHERE, H = 104 METERS

! ! E _M , deg	H _S , m	! ρ, km 	! ι Δρ ₇ , m ! !	ΔE ₁₈ , mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 5915 HS2 = 6701 HS3 = 6298 HS4 = 6315 HS5 = 6614 HS6 = 6302	1 348.9 1 353.5 1 348.2 1 350.7 1 350.6 1 348.7 1 350.7	1 82.0 1 79.8 1 82.1 1 81.0 1 81.0 1 81.9 1 81.0	7.393 ! 8.122 ! 1 7.276 ! 1 7.686 ! 1 7.668 ! 1 7.360 ! 1 7.681 !
1	! Ref. atm. ! H _{S1} = 5915 ! H _{S2} = 6701 ! H _{S3} = 6298 ! H _{S4} = 6315 ! H _{S5} = 6614 ! H _{S6} = 6302	291.0 1 293.6 1 290.6 1 292.1 1 292.0 1 290.9 1 292.0	1 64.3 1 61.6 1 64.4 1 63.0 1 63.1 1 64.1 1 63.0	! 5.883 ! ! 6.389 ! ! 5.791 ! ! 6.082 ! ! 6.070 ! ! 5.852 ! ! 6.080 !
! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. H _{S1} = 5915 H _{S2} = 6701 H _{S3} = 6298 H _{S4} = 6315 H _{S5} = 6614 H _{S6} = 6302	161.4 161.9 161.4 161.6 161.6 161.6	1 32.3 1 30.3 1 32.4 1 31.4 1 32.2 1 31.4	2.985 1 3.217 1 2.965 1 3.089 1 3.084 1 2.991 1 3.088
1 5 1 5 1 5 1 5 1 5 1 1 5 1 1	Ref. atm. HS1 = 5915 HS2 = 6701 HS3 = 6298 HS4 = 6315 HS5 = 6614 HS6 = 6302	1 106.9 1 107.1 1 106.9 1 107.0 1 107.0 1 106.9 1 107.0	! 20.9 ! 19.5 ! 20.9 ! 20.2 ! 20.2 ! 20.8 ! 20.2	! 1.927 ! 2.074 ! 1.920 ! 1.996 ! 1.993 ! 1.936 ! 1.996

TABLE C-29.- REFRACTION CORRECTIONS FOR KWAJALEIN ANNUAL RADIO ATMOSPHERE, H = 10⁶ METERS

1	E _M , deg	H _S , m	P, km	! ι Δρ ₇ , m ι	! ΔE ₁₈ , mrad
	0.5 .5 .5 .5 .5 .5	Ref. atm. HS1 = 5879 HS2 = 6693 HS3 = 6404 HS4 = 6394 HS5 = 6598 HS6 = 6243	3735.1 3740.5 3734.3 3736.4 3736.5 3735.0 3737.6	97.7 91.9 96.3 94.7 94.7 95.8	12.808 13.656 12.694 13.012 13.024 12.796 13.200
	1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. HS1 = 5879 HS2 = 6693 HS3 = 6404 HS4 = 6394 HS5 = 6598 HS6 = 6243 Ref. atm. HS1 = 5879 HS2 = 6693 HS3 = 6404	3664.1 3667.6 3663.9 3665.1 3665.1 3665.8 3423.1 3424.0 3423.2	38.0 !	10.339 ! 10.537 ! 10.544 ! 10.403 ! 10.653 ! 5.652 ! 5.815 ! 5.674 !
!!!!!!!!!!!	3 ! -5 !	HS4 = 6394 ! HS5 = 6598 ! HS6 = 6243 ! Ref. atm. !		37.9 ! 38.9 ! 37.2 ! ! 26.7 !	5.724 ! 5.689 ! 5.750 ! 3.792 !
! ! ! ! !	5 ! 5 ! 5 ! 5 ! 5 !	H _{S1} = 5879 ! H _{S2} = 6693 ! H _{S3} = 6404 ! H _{S4} = 6394 ! H _{S5} = 6598 ! H _{S6} = 6243 !	3215.4 ! 3215.2 ! 3215.3 !	23.0 ! 25.9 ! 24.9 !	3.857 ! 3.804 ! 3.823 ! 3.823 ! 3.810 ! 3.833 !

TABLE C-30.- REFRACTION CORRECTIONS FOR KWAJALEIN ANNUAL RADIO ATMOSPHERE, $H=10^4~{\rm MeTers}$

E _M , deg	! ! H _S , m !	Ι Ι <mark>ρ, km</mark> Ι	Ι Ι Δρ ₇ , m Ι Ι	! ΔE ₁₈ , mrad !
! 0.5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 5879 HS2 = 6693 HS3 = 6404 HS4 = 6394 HS5 = 6598 HS6 = 6243	! 349.7 ! 354.1 ! 348.5 ! 350.3 ! 350.4 ! 349.1 ! 351.4	82.9 80.2 80.2 82.6 81.8 81.8 81.8	7.518 8.217 7.328 7.620 7.630 7.421 7.793
1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. HS1 = 5979 HS2 = 6693 HS3 = 6404 HS4 = 6394 HS5 = 6598 HS6 = 6243	291.3 1 294.0 ! 290.8 ! 291.8 ! 291.9 ! 291.1 ! 292.5	64.9 61.9 64.7 63.8 63.7 64.4 63.2	5.929 6.457 5.831 6.039 6.046 5.897 6.161
1 3 1 3 1 3 1 3 1 3 1 3 1	! Ref. atm. ! Hs1 = 5879 ! Hs2 = 6693 ! Hs3 = 6404 ! Hs4 = 6394 ! Hs5 = 6598 ! Hs6 = 6243	161.4 162.0 161.4 161.6 161.6 161.5 161.7	32.6 30.4 32.5 31.8 31.8 31.8 31.8	2.988 3.247 2.984 3.073 3.076 3.012 3.124
5 5 5 5 5 5 5 5 5 5 5 1	! Ref. atm. ! H _{S1} = 5879 ! H _{S2} = 6693 ! H _{S3} = 6404 ! H _{S4} = 6394 ! H _{S5} = 6598 ! H _{S6} = 6243	! 106.9 ! 107.1 ! 106.9 ! 107.0 ! 107.0 ! 107.0 ! 107.0	21.1 19.5 21.0 20.5 20.5 20.9 20.2	1.927 2.093 1.932 1.986 1.988 1.949 2.018

TABLE C-31.- REFRACTION CORRECTIONS FOR WALLOPS MARCH RADIO ATMOSPHERE, H = 106 METERS

l E _M , deg l	! ! H _S , m !	! ! ρ, km !	Ι Ι Δρ ₇ , <u>m</u> Ι	l ΔE ₁₈ , mrad l
! 0.5 ! 0.5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 7061 ! Hs2 = 7004 ! Hs3 = 8089 ! Hs4 = 8223 ! Hs5 = 8376 ! Hs6 = 8217	! 3711.5 ! 3716.8 ! 3717.0 ! 3712.3 ! 3711.8 ! 3711.3 ! 3711.9	81.8 78.1 77.8 82.9 83.5 84.2 83.5	9.121 9.949 9.992 9.258 9.278 9.178 9.090 9.182
! 1 ! 1 ! 1 ! 1 ! 1	Ref. atm. HS1 = 7061 HS2 = 7004 HS3 = 8089 HS4 = 8223 HS5 = 8376 HS6 = 8217	3647.4 3650.5 3650.7 3647.6 3647.3 3646.9 3647.3	66.8 62.8 62.5 67.8 68.5 69.2 68.4	7.723 8.212 8.239 7.758 7.704 7.645
! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. H _{S1} = 7061 H _{S2} = 7004 H _{S3} = 8089 H _{S4} = 8223 H _{S5} = 8376 H _{S6} = 8217	3416.3 ! 3417.0 ! 3417.0 ! 3416.2 ! 3416.1 ! 3416.0	36.7 ! 33.7 ! 33.4 ! 37.6 ! 38.1 ! 38.7 ! 38.1	4.495 4.609 4.616 4.483 4.467 4.450 4.468
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. H _{S1} = 7061 H _{S2} = 7004 H _{S3} = 8089 H _{S4} = 8223 H _{S5} = 8376 H _{S6} = 8217	3211.2 3211.4 3211.4 3211.1 3211.1 3211.1 3211.1	24.5 ! 22.4 ! 22.2 ! 25.3 ! 25.7 ! 26.1 ! 25.7	3.074 3.114 3.117 3.065 3.058 3.051 3.059

TABLE C-32.- REFRACTION CORRECTIONS FOR WALLOPS MARCH RADIO ATMOSPHERE, H = 10 METERS

! ! E _M , deg !	! ! H _S , m !	ρ, km	Ι Δρ ₇ , m I	Æ ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 7061 ! Hs2 = 7004 ! Hs3 = 8089 ! Hs4 = 8223 ! Hs5 = 8376 ! Hs6 = 8217	333.0 338.1 338.3 334.3 333.9 333.4 333.9	69.7 67.0 66.9 69.4 69.6 69.6	4.775 ! 5.632 ! 5.672 ! 5.002 ! 4.930 ! 4.850 ! 4.933 !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hef. atm. Hef. a	281.4 284.3 284.4 282.0 281.7 281.4 281.7	56.1 56.4	3.941 ! 4.535 ! 4.564 ! 4.067 ! 4.013 ! 3.953 !
. 3 ! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. Hs1 = 7061 Hs2 = 7004 Hs3 = 8089 Hs4 = 8223 Hs5 = 8376 Hs6 = 8217		29.5 27.4 27.3 29.2 29.4 29.6 29.4	2.108 ! 2.363 ! 2.376 ! 2.150 ! 2.125 ! 2.097 ! 2.126 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. HS1 = 7061 HS2 = 7004 HS3 = 8089 HS4 = 8223 HS5 = 8376 HS6 = 8217			1.378 ! 1.537 ! 1.546 ! 1.404 ! 1.388 ! 1.370 !

TABLE C-33.- REFRACTION CORRECTIONS FOR WALLOPS JULY RADIO ATMOSPHERE, H = 106 METERS

I E _M , deg	1. Hš, m	i ιρ, km Ι I	Ι ι Δρ ₇ , m Ι	L ΔE ₁₈ , mrad l
! 0.5 ! .5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 5863 ! Hs2 = 6701 ! Hs3 = 6313 ! Hs4 = 6313 ! Hs5 = 5997 ! Hs6 = 6215	1 3734.5	98.7 92.1 96.7 94.5 94.5 92.8 94.0	13.861 ! 13.716 ! 12.722 ! 13.154 ! 13.541 ! 13.271 !
1	! Ref. atm. ! Hs1 = 5863 ! Hs2 = 6701 ! Hs3 = 6313 ! Hs4 = 6313 ! Hs5 = 5997 ! Hs6 = 6215 ! ! Ref. atm. ! Hs1 = 5863	1 3666.1 1 3423.3 1 3424.1	1. 70.9 1. 76.2 1. 73.7 1. 71.7 1. 73.1 1. 40.0 1. 35.4	
1 3 1 3 1 3 1 3 1 5	! Hs2 = 6701 ! Hs3 = 6313 ! Hs4 = 6313 ! Hs5 = 5997 ! Hs6 = 6215 ! Ref. atm.	! 3423.3 ! 3423.7 ! 3423.7 ! 3424.0 ! 3423.8 !	1 39.5 1 37.6 1 37.6 1 36.1 1 37.2 1 26.5	! 5.687 ! ! 5.752 ! ! 5.752 ! ! 5.808 ! ! 5.770 ! ! 3.809 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Hs1 = 5863 ! Hs2 = 6701 ! Hs3 = 6313 ! Hs4 = 6313 ! Hs5 = 5997 ! Hs6 = 6215	1 3215.5 1 3215.2 1 3215.3 1 3215.3 1 3215.5 1 3215.4	1 23.0 1 26.0 1 24.7 1 24.7 1 23.5 1 24.3	1 3.867 1 3.813 1 3.838 1 3.838 1 3.858 1 3.858 1 3.844

TABLE C-34.- REFRACTION CORRECTIONS FOR WALLOPS
JULY RADIO ATMOSPHERE, H = 10. METERS

! ! E _M , deg	! ! H _S , m. !	! ! ρ, km !	! ι Δρ ₇ , m ! !	ΔE ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 5863 HS2 = 6701 HS3 = 6313 HS4 = 6313 HS5 = 5997 HS6 = 6215	1 354 3 1 348.6	83.4 80.4 82.9 81.8 81.8 81.8 81.8	1. 8.594 1 8.260 1 1 7.340 1 1 7.739 1 1 7.739 1 8.097 1 1 7.846 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! Hs1 = 5873 ! Hs2 = 6701 ! Hs3 = 6313 ! Hs4 = 6313 ! Hs5 = 5997 ! Hs6 = 6215 ! Ref. atm. ! Hs1 = 5863 ! Hs2 = 6701 ! Hs3 = 6313 ! Hs4 = 6313 ! Hs5 = 5997 ! Hs6 = 6215	1 293.7 1 294.1- 1 290.8 1 292.3 1 292.3 1 293.6 1 292.7 1 161.6 1 162.0 1 161.7 1 161.7 1 161.7 1 161.7	1 64.2 1 62.0 ! 65.0 ! 63.6 ! 63.6 ! 63.5 ! 63.3 ! 32.0 ! 30.4 ! 32.6 ! 31.7 ! 31.7 ! 30.8	1 6.401
! ! 555555 ! ! 5555	Ref. atm. Hs1 = 5863 Hs2 = 6701 Hs3 = 6313 Hs4 = 6313 Hs5 = 5997 Hs6 = 6215	1 107.0 1 107.1 1 106.9 1 107.0 1 107.0 1 107.1 1 107.0	1 20.7 1 19.6 1 21.1 1 20.4 1 20.4 1 19.8 1 20.2	1 1.987 1 2.102 1 1.935 1 2.009 1 2.009 1 2.074 1 2.029

TABLE C-35.- REFRACTION CORRECTIONS FOR WALLOPS ANNUAL RADIO ATMOSPHERE, H = 106 METERS

! E _M , deg	I H _S , m	! ! ρ, km !	Ι Δρ ₇ , m Ι	ΔE ₁₈ , mrad_!
! 0.5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 6746 HS2 = 6914 HS3 = 7500 HS4 = 7564 HS5 = 7686	1 3718.2 ! 3722.5 ! 3721.6 ! 3718.7 ! 3718.4 ! 3717.8	86.4 81.8 82.7 85.6 85.9 86.6 86.5	10.172 ! 10.847 ! 10.704 ! 10.247 ! 10.201 ! 10.107 ! 10.118 !
1	Ref. atm. HS1 = 6746 HS2 = 6914 HS3 = 7500 HS4 = 7564 HS5 = 7680 HS6 = 7680	. 3651.7 ! 3654.7 ! 3654.2 ! 3652.3 ! 3652.1 ! 3651.7 ! 3651.8	1 66.1 1 69.2 1 69.5 1 70.2 1 70.1	8.414 ! 8.889 ! 8.798 ! 8.502 ! 8.472 ! 8.410 ! 8.418 !
1 3 1 3 1 3 1 3 1 3	! Ref. atm. ! H _{S1} = 6746 ! H _{S2} = 6914 ! H _{S3} = 7500 ! H _{S4} = 7564 ! H _{S5} = 7696 ! H _{S6} = 7680	1 3418.1 1 3418.8 1 3418.7 1 3418.2 1 3418.1 1 3418.1 1 3418.1	! 38.0 ! 34.4 ! -35.1 ! 37.5 ! 37.7 ! 38.3 ! 38.2	! 4.798 ! ! 4.925 ! ! 4.901 ! ! 4.822 ! ! 4.814 ! ! 4.797 !
5 5 5 5 1 5 5 1 5 1 1 5 1 1 5 1 1 1 1 1	! Ref. atm. ! Hs1 = 6746 ! -Hs2 = 6914 ! Hs3 = 7500 ! Hs4 = 7564 ! Hs5 = 7696 ! Hs6 = 7680	1 3212.2 1 3212.5 1 3212.4 1 3212.3 1 3212.2 1 3212.2 1 3212.2	! 25.3 ! 22.7 ! 23.3 ! 25.0 ! 25.2 ! 25.6	1 3.265 1 3.312 1 3.303 1 3.273 1 3.269 1 3.263 1 3.264

TABLE C-36.- REFRACTION CORRECTIONS FOR WALLOPS ANNUAL RADIO ATMOSPHERE, H = 104 METERS.

! E _M , deg !	H _S , m _.	l. ይ, <u>km</u> 1	 ι Δρ ₇ , m ι ι	! Δε _{18.} mrad !
0.5 .5 .5 .5 .5 .5 .5 .1	Ref. atm.	1 341.8 1 341.0 1 338.4 1 338.2 1 337.7 1 337.7 1 284.0 1 286.6		1 5.593 1 6.237 1 6.105 1 5.686 1 5.643 1 5.558 1 5.568 1 4.486 1 4.995
1. 1 1. 1 1. 1 1. 1 1. 1 1. 3	H _{S3} = 7500 H _{S4} = 7564 H _{S5} = 7696	284.4	57.9 58.0	4.899 4.591 4.560 4.496 4.504 4.504 1 2.346
! 3 ! ! 3 ! ! 3 ! ! 3 ! ! 3 !	H _{S1} = 6746 H _{S2} = 6914 H _{S3} = 7500 H _{S4} = 7564 H _{S5} = 7696 H _{S6} = 7680	160.5 160.4	28.4 1 28.7	2.581 2.539 2.401 2.387 2.358 2.362
1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. HS1 = 6746 HS2 = 6914 HS3 = 7500 HS4 = 7564 HS5 = 7696 HS6 = 7680	106.5 106.6 106.6 106.5 106.5 106.5	19.8 18.4 18.6 19.4 19.5 19.7 19.7	1.528 ! 1.675 ! 1.649 ! 1.563 ! 1.555 ! 1.537 !

TABLE C-37.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL JANUARY RADIO ATMOSPHERE, H = 106 METERS.

l É _M , deg l l	H _S , m -	ρ, km !	! ι Δρ ₇ , m. ! !	l ΔE ₁₈ , mrad.
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	$H_{S1} = 6281$ $H_{S2} = 6789$ $H_{S3} = 6256$ $H_{S4} = 6126$ $H_{S5} = 6389$	3728.4 3731.8 3732.8 3730.9	87.2 89.9 87.1 86.4 87.8	12.223 1 12.278 1 12.764 1 12.305 1 12.449 1 12.163
!	H _{S1} = 6281 H _{S2} = 6789 H _{S3} = 6256 H _{S4} = 6126 H _{S5} = 6389 H _{S6} = 6905 Ref. atm. H _{S1} = 6281 H _{S2} = 6789	3661.4 3659.3 3661.5 3662.0 3660.9 3658.9 3421.1 3421.6 3421.1	! 71.3 ! 68.2 ! 67.4 ! 69.0 ! 72.0 ! 38.2 ! 35.1 ! 37.4	9.810 9.944 9.622 9.961 10.049 9.872 9.553 - 5.312 5.397 1 5.316 5.401
1 3 1 3 1 3 1 3 1 5 1 5 1 5	! H _{S4} = 6126 ! H _{S5} = 6389 ! H _{S6} = 6905 ! ! Ref. atm. ! H _{S1} = 6281	1 3421.7 ! 3421.5 ! 3421.0 !	1 34.4	! 5.422 ! 5.379 ! 5.299 ! 3.565 ! 3.603
! 5 ! 5 ! 5 ! 5 ! 5 ! 5		! 3213.9 ! 3214.1 ! 3214.1 ! 3214.0 ! 3213.9	1 24.7	! 3.573 ! 3.605 ! 3.613 ! 3.597 ! 3.566

TABLE C-38. - REFRACTION CORRECTIONS FOR CAPE CANAVERAL JANUARY RADIO ATMOSPHERE, H = 104 METERS

! ! E _M , deg	! ! H _S , m =	. ρ, <u>k</u> m	Ι Ι Δρ ₇ , m - I Ι	ΔΕ ₁₈ , mrad ! !
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 6281 HS2 = 6789 HS3 = 6256 HS4 = 6126 HS5 = 6389 HS6 = 6905	1 348.2 1 347.9 1 344.9 1 348.0 1 348.9 1 347.2 1 344.3	1 77.0 1 75.8 1 77.2 1 75.7 1 75.3 1 76.1 1 77.5	7.280 7.231 6.755 7.256 7.390 7.124 6.655
1	! Ref. atm. !- Hs1 = 6281 ! Hs2 = 6789 ! Hs3 = 6256 ! Hs4 = 6126 ! Hs5 = 6389 ! Hs6 = 6905 ! Ref. atm. ! Hs1 = 6281 ! Hs2 = 6789 ! Hs3 = 6256 ! Hs4 = 6126 ! Hs5 = 6389 ! Hs6 = 6905	1 290.3 1 290.3 1 288.6 1 290.4 1 290.9 1 289.9 1 288.2 1 161.1 1 161.3 1 161.4 1 161.2 1 160.9	. 60.3 ! 59.2 ! 60.8 ! 59.1 ! 58.7 ! 59.5 ! 61.2 ! 30.4 ! 29.6 ! 30.8 ! 29.5 ! 29.2 ! 29.8 ! 31.0	5.727 5.737 5.737 5.396 5.754 5.849 5.661 5.324 1 2.850 2.924 2.777 2.932 2.972 2.892 2.746
! ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! HS1 = 6281 ! HS2 = 6789 ! HS3 = 6256 ! HS4 = 6126 ! HS5 = 6389 ! HS6 = 6905	! 106.8 ! 106.9 ! 106.8 ! 106.9 ! 106.9 ! 106.8 ! 106.8	! 19.7 -! 19.1 ! 19.9 ! 19.0 ! 18.8 ! 19.3 ! 20.1	1.831 1.891 1.801 1.896 1.921 1.872 1.782

TABLE C-39.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL AUGUST RADIO ATMOSPHERE, H = 106 METERS

! ! E _M , deg	H _S , m	! ρ, km. 	! Δρ ₇ , m 	! ΔE ₁₈ , mrad
1 0.5 1 0.5 1 .5 1 .5 1 .5 1 .5		1 3753.6 1 3742.2 1 3747.7 1 3748.5	1 106.8 1 98.3 1 105.0 1 101.4 1 101.0 1 99.0 1 98.4	! 16.034 ! ! 16.034 ! ! 15.692 ! ! 13.922 -! ! 14.778! ! 14.891 ! ! 15.463 !
! 1 ! 1 ! 1 ! 1 ! 1 ! 1	$H_{S1} = 5366$ $H_{S2} = 6591$ $H_{S3} = 5943$	1. 3669.8 1. 3673.1 1. 3673.5 1. 3675.6	73.7 1 82.0 1 77.7 1 77.2 1 74.6	12.081 I 12.336 I 11.279 I 11.800 I 11.867 I 12.203 I 12.314 I
3 1 3 1 3 1 3 1 3 1 3	Ref. atm. HS1 = 5366 HS2 = 6591 HS3 = 5943 HS4 = 5866 HS5 = 5501 HS6 = 5388	3426.3 3427.3 3425.9 3426.6 3426.7 3427.2 3427.3	41.2 ! 35.5 ! 42.0 ! 38.6 ! 38.2 ! 36.2 ! 35.6	6.205 ! 6.376 ! 6.136 ! 6.259 ! 6.274 ! 6.348 ! 6.371 !
. 5 ! 5 ! 5 ! 5 ! 5 ! 5	Ref. atm. HS1 = 5366 HS2 = 6591 HS3 = 5943 HS4 = 5866 HS5 = 5501 HS6 = 5388	3216.9 3217.3 3216.8 3217.0 3217.1 3217.2 3217.3	27.1 ! 22.8 ! 27.6 ! 25.1 ! 24.8 ! 23.4 ! 22.9	4.118 I 4.190 I 4.103 I 4.148 I 4.154 I 4.180 I 4.189 I

TABLE_C-40.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL AUGUST RADIO ATMOSPHERE, H = 104 METERS

! ! E _M , deg	! ! H _S , m	i ! Α, km !	Ι. Ι. Δρ ₇ , m. ι Ι	!
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 5366 ! Hs2 = 6591 ! Hs3 = 5943 ! Hs4 = 5866 ! Hs5 = 5501 ! Hs6 = 5388	1 366.2 1 363.7 1 353.2 1 358.2 1 358.9 1 362.3 1 363.4	90.1 86.1 89.8 37.9 87.7 86.6	10.113 ! 9.714 ! 8.082 ! 8.868 ! 8.972 ! 9.501 ! 9.679 !
! 1 ! 1 ! 1 ! 1 ! 1 ! 1	Ref. atm. HS1 = 5366 HS2 = 6591 HS3 = 5943 HS4 = 5866 HS5 = 5501 HS6 = 5388	298.8 1 299.5 1 293.7 1 296.5 1 296.9 1 298.8 1 299.4	68.0 65.1 70.0 67.5 67.2 65.7	7.384 ! 7.522 ! 6.399 ! 6.947 ! 7.019 ! 7.379 ! 7.498 !
! 3 ! 3 ! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! H _{S1} = 5366 ! H _{S2} = 6591 ! H _{S3} = 5943 ! H _{S4} = 5866 ! H _{S5} = 5501 ! H _{S6} = 5388	1 162.5 1 163.0 1 162.0 1 162.5 1 162.5 1 162.8 1 162.9	33.2 31.2 34.8 33.0 32.8 31.6 31.2	3.491 I 3.706 I 3.250 I 3.478 I 3.507 I 3.650 I 3.697 I
1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. H _{S1} = 5366 H _{S2} = 6591 H _{S3} = 5943 H _{S4} = 5866 H _{S5} = 5501 H _{S6} = 5388	1 107.2 107.4 107.4 107.2 107.2 107.3 107.4 107.	21.4 19.9 1 22.4 21.2 21.0 20.2 1 20.0	2.100 !

TABLE C-41. - REFRACTION CORRECTIONS FOR CAPE CANAVERAL ANNUAL RADIO ATMOSPHERE, H = 10

!!!	E _M , deg	H _Ś , m	Ι ρ, km Ι	! $\Delta \rho_7$, m ! ΔE_{18} , mrad
	0.55.55.55.55.55.55.55.55.55.55.55.55.55	Ref. atm. HS1 = 5794 HS2 = 6679 HS3 = 5908 HS4 = 5777 HS5 = 5774 HS6 = 6101 Ref. atm. HS1 = 5794 HS2 = 6679 HS3 = 5908 HS4 = 5777 HS5 = 5774 HS6 = 6101 Ref. atm. HS1 = 5794 HS2 = 6679 HS3 = 5908 HS4 = 5777 HS5 = 5774 HS6 = 6101 Ref. atm. !! Ref. atm. !! Ref. atm. !! HS1 = 5794 HS6 = 6101 !! Ref. atm. !! HS1 = 5794 HS6 = 6101 !! Ref. atm. !! HS1 = 5777 HS5 = 5774 !! HS6 = 6101 !!	1 3745.0 1 3742.6 1 3742.6 1 3435.6 1 3742.7 1 3742.7 1 3739.9 1 3668.4 1 3669.0 1 3669.0 1 3669.1 1 3669.1 1 3669.1 1 3669.1 1 3669.1 1 3669.1 1 3669.1 2 3424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 424.6 3 425.7 3 215.7 3 215.7 3 215.6	98.9

TABLE C-42. REFRACTION CORRECTIONS FOR CAPE CANAVERAL ANNUAL RADIO ATMOSPHERE, H = 10 METERS

E _M , deg	H _S , m	! ! ρ, km !	Δρ ₇ , m 1	Æ ₁₈ , mråd l
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. Hs1 = 5794 Hs2 = 6679 Hs3 = 5908 Hs4 = 5777 Hs5 = 5774 Hs6 = 6101	1 358.5 1 355.5 1 349.2 1 354.6 1 355.6 1 355.7 1 353.1	83.6 81.2 83.8 81.5 81.5 81.1 81.1 82.1	8.918 ! 8.445 ! 9.447 ! 8.301 ! 8.467 ! 8.471 ! 8.069 !
! 1. ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	! Ref. atm. ! H _{S1} = 5794 ! H _{S2} = 6679 ! H _{S3} = 5908 ! H _{S4} = 5777 ! H _{S5} = 5774 ! H _{S6} = 6101 ! Ref. atm. ! H _{S1} = 5794 ! H _{S2} = 6679 ! H _{S3} = 5908	295.1 1 294.8 1 291.2 1 294.3 1 294.9 1 293.5 1 161.9 1 162.1 1 161.5 1 162.0	64.1 62.4 65.6 62.9 62.4 62.4 63.6 31.7 31.7 30.5 32.9 30.9	6.673 6.622 5.921 6.522 6.637 6.639 6.361 1 6.361 1 3.211 3.319 3.027 3.279 3.279
! 3 ! 3 ! 3 ! 3 ! 3	! $H_{S4} = 5777$! $H_{S5} = 5774$! $H_{S6} = 6101$!	! 162.1 ! 162.1 ! 161.9	1 30.5 1 30.5 1 31.4 1	3.326 3.327 3.212 1 2.053
! 5 5 5 5 5 5 5 !	Ref. atm. HS1 = 5794 HS2 = 6679 HS3 = 5908 HS4 = 5777 HS5 = 5774 HS6 = 6101	1 107.0 1 107.1 1 106.9 1 107.1 1 107.1 1 107.1 1 107.1	! 20.5 ! 19.6 ! 21.3 ! 19.8 ! 19.6 ! 20.2	! 2.138 ! 1.959 ! 2.114 ! 2.142 ! 2.143 ! 2.073

TABLE C-43.- REFRACTION CORRECTIONS FOR HAWAII FEBRUARY RADIO ATMOSPHERE, $H = 10^6$ METERS

I E _M , deg I	H _S , m	ρ, km	! ! Δρ ₇ , m ! !	! ΔΕ ₁₈ , mrád ! !
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm.	3725.6 3729.5 3726.8 3728.6 3728.6 3726.7 3725.3	89.9 86.0 88.3 86.7 86.8 88.3 89.6	11.325 11.325 11.941 11.519 11.804 11.792 11.509 11.288 11.288 1
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. - H _{S1} = 6386 - H _{S2} = 6820 - H _{S3} = 6522 - H _{S4} = 6534 - H _{S5} = 6831 - H _{S6} = 7079	3657.5 3659.8 3658.2 3659.3 3659.2 3658.1 3657.2	71.9 1 67.6 1 70.2 1 68.4 1 68.5 1 70.2 1 71.6	9.327 1 9.698 1 9.433 1 9.613 1 9.605 1 9.426 1
! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. ! H _{S1} = 6386 ! H _{S2} = 6820 ! H _{S3} = 6522 ! H _{S4} = 6534 ! H _{S5} = 6831 ! H _{S6} = 7079 !	3420.3 3421.0 3420.6 3420.8 3420.8 3420.6 3420.3	38.4 1 35.0 1 36.9 1 35.6 1 35.6 1 36.9 1 38.0	5.181 ! 5.289 ! 5.222 ! 5.268 ! 5.266 ! 5.221 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 6386 ! H _{S2} = 6820 ! H _{S3} = 6522 ! H _{S4} = 6534 ! H _{S5} = 6831 ! H _{S6} = 7079 !	:	25.5 1 23.0 1 24.4 1 23.4 1 23.5 1 24.4 1 25.2	3.494 ! 3.537 ! 3.512 ! 3.529 ! 3.529 ! 3.512 ! 3.498 !

TABLE C-44.- REFRACTION CORRECTIONS FOR HAWAII FEBRUARY RADIO ATMOSPHERE, H = 104 METERS

l I E _M , dég I	I H _S , m	! ρ, km !	1. 1. Δρ ₇ , m 1	ΔΕ ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 6386 ! Hs2 = 6820 ! Hs3 = 6522 ! Hs4 = 6534 ! Hs5 = 6831 ! Hs6 = 7079	! 344.2 ! 346.4 ! 344.0 ! 345.6 ! 345.6 ! 344.0	1 75.9 1 74.6 1 75.8 1 75.0 1 75.1 1 75.9 1 76.5	1 6.641 1 1 6.994 1 1 6.603 1 1 6.867 1 1 6.856 1 1 6.594 1 1 6.390 1
! 1	! Ref. atm. ! Hs1 = 6386 ! Hs2 = 6820 ! Hs3 = 6522 ! Hs4 = 6534 ! Hs5 = 6831 ! Hs6 = 7079 ! Ref. atm. ! Hs1 = 6386 ! Hs2 = 6820 ! Hs3 = 6522 ! Hs4 = 6534 ! Hs5 = 6831 ! Hs6 = 7079	288.3 289.4 288.0 289.0 288.9 288.0 287.2 160.8 161.1 160.8 161.0 161.0	59.9 58.4 59.8 58.9 58.9 58.9 59.8 60.6 30.5 29.7 29.7 29.7 30.3 30.3	5.345 5.561 5.561 5.280 5.470 5.462 5.274 5.126 5.126 1 2.725 2.844 2.722 2.805 2.801 2.720 2.655 1
1 5 5 5 1 5 5 1 5 5 1 1 5 1 1 1 1 1 1 1	Ref. atm. HS1 = 6386 HS2 = 6820 HS3 = 6522 HS4 = 6534 HS5 = 6831 HS6 = 7079	1 106.7 1 106.8 1 106.7 1 106.8 1 106.8 1 106.7 1 106.7	! 19.8 ! 18.9 ! 19.6 ! 19.2 ! 19.2 ! 19.7 ! 20.0	! 1.758 ! ! 1.841 ! ! 1.766 ! ! 1.817 ! ! 1.815 ! ! 1.764 !

TABLE C-45.- REFRACTION CORRECTIONS FOR HAWAII .

JULY RADIO ATMOSPHERE, H = 10⁶ METERS.-

! E _M , deg	l. H _S , m. l	i. I ρ, km 1 I I	Δρ ₇ , m	ΔΕ ₁₈ , mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 6069 HS2 = 6746 HS3 = 6066 HS4 = 5844 HS5 = 6320 HS6 = 6556	1 3734.0 1 1 3736.2 1 1 3731.4 1 1 3736.2 1 1 3738.0 1 1 3734.3 1 3732.7 1	94.2 89.7 93.3 89.6 88.4 91.0 92.3	12.643! 12.985 1 12.242 ! 12.988 ! 12.988 ! 13.263 ! 12.694 ! 12.437 !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$H_{S5} = 6320$	3662.8 1 3664.6 1 3661.7 1 3664.6 1 3665.6 1 3663.4 1 3662.4 1	73.8 69.6	10.171 10.453 10.455 10.455 10.622 10.274 10.115 10.
. 3 ! 3 ! 3 ! 3 ! 3	! H _{S1} = 6069 ! H _{S2} = 6746 ! H _{S3} = 6066 ! H _{S4} = 5844	1 3422.2 1 1 3422.9 1 1 3422.2 1 1 3422.9 1 1 3423.1 1 1 3422.6 1	38.5 35.3	5.506 ! 5.615 ! 5.503 ! 5.616 ! 5.654 ! 5.572 !
5 5 5 1 5 1 5 1 5 1 5 1 5	$1 \text{H}_{\text{S4}} = 5844$	1 3214.5 ! 1 3214.8 ! 1 3214.6 ! 1 3214.8 ! 1 3214.9 ! 1 3214.7 ! 1 3214.6 !	25.9 23.1 25.4 23.0 22.3 23.9 24.7	3.689 I 3.736 I 1 3.694 I 1 3.736 I 1 3.750 I 3.720 I 1 3.706 I

TABLE C-46.- REFRACTION CORRECTIONS FOR HAWAII JULY RADIO ATMOSPHERE, H = 10 METERS __

! E _M , deg	! ! Hs, m !	! . ! ρ, km	! 1 Δρ ₇ , m !	i ΔE ₁₈ , mrad_l
! ! 0.5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 6069 HS2 = 6746 HS3 = 6066 HS4 = 5844 HS5 = 6320 HS6 = 6556	! 346.7 ! 351.0 ! 352.7 ! 349.3	79.7 78.1 80.1 78.1 78.1 1-77.4 78.9	7.644 7.733 7.046 7.736 7.993 7.463 7.226
! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	! Ref. atm. ! H _{S1} = 6069 ! H _{S2} = 6746 ! H _{S3} = 6066 ! H _{S4} = 5844 ! H _{S5} = 6320 ! H _{S6} = 6556 ! Ref. atm. ! H _{S1} = 6069 ! H _{S2} = 6746 ! H _{S3} = 6066 ! H _{S4} = 5844	! 289.7 ! ! 292.2 ! ! 293.1 ! ! 291.2 ! ! 290.4 ! ! 161.4 ! ! 161.6 !	60.6 59.8 61.5 62.3 31.2 30.0 31.7 30.0	1 5.972 ! 6.106 ! 5.618 ! 6.108 ! 6.287 ! 5.915 ! 5.747 ! 2.978 ! 3.091 ! 2.883 ! 3.092 !
3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HS5 = 6320 HS6 = 6556 Ref. atm. HS1 = 6069 HS2 = 6746 HS3 = 6066 HS4 = 5844 HS5 = 6320 HS6 = 6556	! 161.8 ! ! 161.5 ! ! 161.3 ! ! 106.9 ! ! 107.0 ! ! 107.0 ! ! 107.0 ! ! 107.0 !	30.7 ! 31.3 ! 20.2 ! 19.3 ! 20.5 ! 19.3 ! 18.9 !	3.166 ! 3.011 ! 2.939 ! 1.914 ! 1.996 ! 1.868 ! 1.996 ! 2.042 ! 1.947 ! 1.902 !

TABLE C-47.- REFRACTION CORRECTIONS FOR HAWAII ANNUAL RADIO ATMOSPHERE, H = 106 METERS

! ! E _M , deg	H _S , m	1 1. ρ, km 1	! Ι Δρ ₇ , m !	! ΔE ₁₈ , mrad ! ! ΔΕ ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. Hs1 = 6227 Hs2 = 6782 Hs3 = 6297 Hs4 = 6209 Hs5 = 6629 Hs6 = 6816	1 3732.3 1 3732.9 1 3730.1	92.0 92.0 87.8 90.8 88.2 87.7 90.0 91.0	1 11.925 1
1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. H _{S1} = 6227 H _{S2} = 6782 H _{S3} = 6297 H _{S4} = 6209 H _{S5} = 6629 H _{S6} = 6816	1 3659.9 1 3661.9 1 3662.2 1 3660.5	73.2 1 68.7 ! 72.0 ! 69.1 ! 68.6 ! 71.1 ! 72.2	9.742 I 1 10.072 I 1 9.713 I 1 10.024 I 1 10.084 I 9.808 I 1 9.693 I
3 1 3 1 3 1 3 1 3 1 3	Ref. atm. H _{S1} = 6227 H _{S2} = 6782 H _{S3} = 6297 H _{S4} = 6209 H _{S5} = 6629 H _{S6} = 6816	1 3421.3 1 3421.9 1 3421.4 1 3421.8 1 3421.9 1 3421.5 1 3421.4	38.8 35.1 37.7 35.5 35.1 37.0 37.9	5.343 ! 5.452 ! 5.363 ! 5.440 ! 5.455 ! 5.387 ! 5.358 !
5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. H _{S1} = 6227 H _{S2} = 6782 H _{S3} = 6297 H _{S4} = 6209 H _{S5} = 6629 H _{S6} = 6816	1 3214.0 1 3214.2 1 3214.1 1 3214.2 1 3214.2 1 3214.1 1 3214.1	25.7 1. 23.0 1. 24.9 1. 23.3 1. 23.0 1. 24.4 1. 25.0	1 3.591 I 1 3.637 I 1 3.604 I 1 3.638 I 1 3.613 I 1 3.602 I

TABLE C-48. - REFRACTION CORRECTIONS FOR HAWAII ANNUAL RADIO ATMOSPHERE, H = 104 METERS

! E _M , deg	! ! H _S , m	! ! ρ, km ! !	Δρ ₇ , m	! - ΔΕ ₁₈ , mrad ! !	
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 6227 HS2 = 6782 HS3 = 6297 HS4 = 6209 HS5 = 6629 HS6 = 6816	1 346.6 1 348.7 1 345.4 1 348.2 1 348.8 1 346.2 1 345.2	76.4	7.021 1. 7.356 1. 7.356 1. 6.825 1. 7.284 1. 7.374 1. 6.963 1. 6.795	[
1	Ref. atm. Hs1 = 6227 Hs2 = 6782 Hs3 = 6297 Hs4 = 6209 Hs5 = 6629 Hs6 = 6816 Ref. atm. Hs1 = 6227 Hs2 = 6782 Hs3 = 6297 Hs3 = 6297 Hs4 = 6209 Hs5 = 6629 Hs5 = 6816	239.6. 290.8 288.9 290.5 290.8 289.4 288.7 161.1 161.0 161.3 161.4 161.1 161.0	1 61.1 59.6 1 61.4 1 59.8 1 59.5 1 60.9 1 61.5 1 30.9 1 29.7 1 31.0 1 29.9 1 29.7 1 30.7	1 5.606 1 5.829 1 5.449 1 5.778 1 5.842 1 5.549 1 5.428 1 2.842 1 2.966 1 2.803 1 2.944 1 2.971 2 .846 1 2.794	
! ! 5 5 5 5 5 5 5 5 5 1	Ref. atm. HS1 = 6227 HS2 = 6782 HS3 = 6297 HS4 = 6209 HS5 = 6629 HS6 = 6816	1 106.8 1 106.8 1 106.8 1 106.9 1 106.8 1 106.8	1 20.0 1 19.2 1 20.1 1 19.3 1 19.1 1 19.8 1 20.1	! 1.832 ! 1.918 ! 1.817 ! 1.904 ! 1.921 ! 1.844 ! 1.812	!!!!!!!!

TABLE_C-49.- REFRACTION CORRECTIONS FOR POINT ARGUELLÓ JULY RADIO ATMOSPHERE, H = 10⁶ METERS

! ! E _M , deg !!	I. HS, m I	! ! Ρ, km . ! !	! Δρ ₇ , m -	ΔΕ ₁₈ , mrad
1	Ref. atm. HS1 = 6448 HS2 = 6824 HS3 = 6713 HS4 = 6776 HS5 = 5884 HS6 = 6657	1 3737.7 1 3728.3 1 3726.0 ! 3726.6 ! 3726.3 ! 3732.2 ! 3737.0	82.3	1 13.212 1 1 11.747 1 1 11.389 1 1 11.491 1 1 11.433 1 1 12.353 1 1 11.544 1
I 1. I I I I I I I I I I I I I I I I I I	Ref. atm. H _{S1} = 6448 H _{S2} = 6824 H _{S3} = 6713 H _{S4} = 6776 H _{S5} = 5884 H _{S6} = 6657	3662.1 3658.9 3657.5 3657.9 3657.7 3661.3 3658.1	70.0 67.2 69.4 68.8 69.1 63.9 68.4	10.060 ! 9.556 ! 9.330 ! 9.395 ! 9.358 ! 9.930 ! 9.428 !
! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. HS1 = 6448 HS2 = 6824 HS3 = 6713 HS4 = 6776 HS5 = 5884 HS6 = 7758	1 3420.4 1 3420.6 1 3420.3 1 3420.4 1 3420.3 1 3421.1 1 3420.4		5.186 ! 5.226 ! 5.169 ! 5.186 ! 5.176 ! 5.316 ! 5.194 _ !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5	Ref. atm. H _{S1} = 6448 H _{S2} = 6824 H _{S3} = 6713 H _{S4} =-6776 H _{S5} = 5884 H _{S6} = 6657	1 3213.3 ! 1 3213.5 ! 1 3213.4 ! 1 3213.4 ! 1 3213.7 ! 1 3213.4 ! 1 3213.4 !	24.2 ! - 23.8 ! 24.0 ! 21.1 !	3.471 ! 3.499 ! 3.477 ! 3.483 ! - 3.480 ! 3.532 ! 3.487 !

TABLE C-50.- REFRACTION CORRECTIONS FOR POINT ARGUELLO JULY RADIO ATMOSPHERE, H = 104 METERS

! E _M , deg	1. H _S , m 	l. ρ, km 	! ι Δρ ₇ , m ι	! ΔΕ ₁₈ , mrad ! !
1	Ref. atm. HS1 = 6448 HS2 = 6824 HS3 = 6713 HS4 = 6776 HS5 = 5884 HS6 = 6657	1 344.1 1 343.8 1 349.1	75.5 74.0 75.0 74.7 74.9 72.3	7.906 ! 6.858 ! 6.527 ! 6.621 ! 6.567 ! 7.425 !
1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	! Ref. atm. ! H _{S1} = 6448 ! H _{S2} = 6824 ! H _{S3} = 6713 ! H _{S4} = 6776 ! H _{S5} = 5884 ! H _{S6} = 6657	291.2 288.9 287.7 288.0 287.9 290.9 288.2	56.1	5.919 I. 5.460 I 5.222 I 5.290 I 5.251 I 5.862 I 5.325 I
! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! H _{S1} = 6448 ! H _{S2} = 6824 ! H _{S3} = 6713 ! H _{S4} = 6776 ! H _{S5} = 5884 ! H _{S6} = 6657		29.6 29.2 30.0 29.8 29.8 29.9 27.8 29.7	2.795 2.797 2.694 2.724 2.707 2.967 2.739
5 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! Hs1 = -6448 ! Hs2 = 6824 ! Hs3 = 6713 ! Hs4 = 6776 ! Hs5 = 5884 ! Hs6 = 6657		19.2 18.9 1 19.4 1 19.3 1 19.4 1 17.9 1 19.2	1 — 1.784 ! 1 1.812 ! ! 1.748 ! ! 1.766 ! ! 1.756 ! ! 1.916 !

TABLE C-51.- REFRACTION CORRECTIONS FOR POINT ARGUELLO DECEMBER RADIO ATMOSPHERE, H = 106 METERS

l É _M , deg	H _S , m	!_ ! ρ, km !	! ι Δρ ₇ , m ! !	ΔΕ ₁₈ , mrád .
1 _0.5 1 _5 1 _5 1 _5 1 _5 1 _5	Ref. atm. HS1 = 6883 HS2 = 6939 HS3 = 7619 HS4 = 7814 HS5 = 7250 HS6 = 7611	1 3718.0 1 3720.0 1 3719.7 1 3716.4 1 3715.6 1 3718.1 1 3716.5	! 80.5 ! 83.8 ! 84.8	1 10.144 ! 1 10.452 ! 1 10.407 ! 9.900 ! 9.766 ! 1 0.166 ! 9.906 !
I	! Ref. atm. ! H _{S1} = 6883. ! H _{S2} = 6939 ! H _{S3} = 7619 ! H _{S4} = 7814 ! H _{S5} = 7250 ! H _{S6} = 7611	1 3651.5 1 3652.9 1 3652.7 1 3650.6 1 3650.1 1 3651.7 1 3650.6	1 67.9 1 64.2 1 64.5 1 68.0 1 68.9 1 66.1 1 67.9	8.394 ! 8.592 ! 8.563 ! 8.235 ! 8.148 ! 8.408 ! 8.238 !
1 3 1 3 1 3 1 3 1 3	! Ref. atm. ! H _{S1} = 6883 ! H _{S2} = 6939 ! H _{S3} = 7619 ! H _{S4} = 7814 ! H _{S5} = 7250 ! H _{S6} = 7611	! 3417.5 ! 3418.0 ! 3417.5 ! 3417.3 ! 3417.7 ! 3417.5	1 37.0 1 34.1 1 34.3 1 37.0 1 37.8 1 35.6 1 37.0	1. 4.696 ! 1. 4.788 ! 1. 4.691 ! 1. 4.667 ! 1. 4.667 ! 1. 4.692 !
1 5 5 5 1 5 5 1 1 5 5 1	! Ref. atm. ! H _{S1} = 6883 ! H _{S2} = 6939 ! H _{S3} = 7619 ! H _{S4} = 7814 ! H _{S5} = 7250 ! H _{S6} = 7611	!3211.8 ! 3212.0 ! 3212.0 ! 3211.8 ! 3211.8 ! 3211.9 ! 3211.8	! 24.8 ! 22.6 ! 22.8 ! 24.8 ! 25.4 ! 23.7 ! 24.8	! 3.189 ! ! 3.227 ! ! 3.224 ! ! 3.189 ! ! 3.180 ! ! 3.208 ! ! 3.190 !

TABLE C-52.- REFRACTION CORRECTIONS FOR POINT ARGUELLÓ DECEMBER RADIO ATMOSPHERE, H = 10.4 METERS

! E _M , deg !!	H _S , m	 ρ, km 	ι Δρ ₇ m . l	ΔE ₁₈ , mrad !
I 0.5 1 1 .5 1 .5 1 .5 1 .5 1 .5 1 .5 1 .	Ref. atm. Hs1 = 6883 Hs2 = 6939 Hs3 = 7619 Hs4 = 7814 Hs5 = 7250 Hs6 = 7611	1 339.6 1 340.1 1 339.9 1 337.1 1 336.4 1 338.5 1 337.1	1 71.3	5.875 ! 5.969 ! 5.927 ! 5.463 ! 5.343 ! 5.705 ! 5.468 !
1 1 ! 1 1 . ! 1 1 ! 1 1 ! 1 1 ! 1 1 !	Ref. atm. HS1 = 6883 HS2 = 6939 HS3 = 7619 HS4 = 7814 HS5 = 7250 HS6 = 7611	! 285.6 ! 285.4	56.6 54.8 54.9 56.7 57.1 55.7 56.7	4.683 ! 4.792 ! ! 4.761 ! ! 4.419 ! ! 4.330 ! ! 4.598 ! ! 4.423 !
1 3 1 1 3 1 1 3 1 1 3 1 1 3 1	Ref. atm. H _{S1} = 6883 H _{S2} = 6939 H _{S3} = 7619 H _{S4} = 7814 H _{S5} = 7250 H _{S6} = 7611	! 160.0 ! 160.3 ! 160.3 ! 160.0 ! 159.9 ! 160.1 ! 160.0	! 29.3 ! 28.0 ! 28.1 ! 29.4 ! 29.7 ! 29.7	1 2.350 ! 1 2.485 ! 1 2.472 ! 1 2.318 ! 1 2.277 ! 1 2.399 ! 2.320 !
!	Ref. atm. H _{S1} = 6883 H _{S2} = 6939 H _{S3} = 7619 H _{S4} = 7814 H _{S5} = 7250 H _{S6} = 7611	! 106.5 ! 106.6 ! 106.6 ! 106.5 ! 106.4 ! 106.5	1 19.1 1 18.1 1 18.2 1 19.1 1 19.3 1 18.6 1 19.1	1.517 1.615 1.607 1.511 1.485 1.561 1.512

TABLE C-53.- REFRACTION CORRECTIONS FOR POINT ARGUELLO ANNUAL RADIO ATMOSPHERE, H = 106 METERS

! E _M , deg	H _S , m	l ι ρ, km l	Ι Ι Δρ ₇ , m Ι Ι	 ΔΕ ₁₈ , mrad.
1 0.5 1 .5 1 .5 1 .5 1 .5	HS4 = 7143 HS5 = 6444	1 3723.5 1 3722.8 1 3722.0	84.6 85.3 86.0 82.5	11.568 ! 11.230 ! 11.007 ! 10.899 ! 10.775 ! 11.393 !
-1	H _{S1} = 6617 H _{S2} = 6867 H _{S3} = 6993 H _{S4} = 7143 H _{S5} = 6444 H _{S6} = 7025	! 3655.2 ! 3654.7 ! 3657.2 ! 3655.1	! 69.0 ! 65.1 ! 68.3	9.175 9.033 8.964 8.884 9.277 8.947 1
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	$H_{S2} = 6867$ $H_{S3} = 6993$! 3419.2 ! 3419.6 ! 3419.4 ! 3419.3 ! 3419.2 ! 3419.7 ! 3419.2	! 37.1 ! 34.6 ! 35.7 ! 36.2 ! 36.9 ! 33.9 ! 36.4	! 4.995 ! ! 5.055 ! ! 5.019 ! ! 5.001 ! ! 4.980 ! ! 5.081 !
5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. HS1 = 6617 HS2 = 6867 HS3 = 6993 HS4 = 7143 HS5 = 6444 HS6 = 7025	3212.7 ! 3212.9 ! 3212.8 ! 3212.8 ! 3212.8 ! 3213.0 ! 3213.0	24.8 ! 22.8 ! 23.6 ! 24.0 ! 24.5 ! 22.3 ! 24.1	3.363 3.393 3.379 3.373 3.365 3.403 3.371

TABLE C-54.- REFRACTION CORRECTIONS FOR POINT ARGUELLO ANNUAL RADIO ATMOSPHERE, H. = 104 METERS

I E _M , deg I	н _S , m	l l ρ, km l	Ι Ι Δρ ₇ , m Ι	ΔΕ ₁₈ , mrad ΔΕ ₁₈ , mrad
1 0.5 1 1 .5 1	Ref. atm. Hs1 = 6617	! ! 346.2. ! 343.4	! ! 73.4 ! 72.1	1 6.969 I 1 6.500 I
1 .5.	$H_{S2} = 6867$	1. 342.1		1 - 6.293 !
1 .5 !	$H_{S3} = 6993$	1 _341.5	73.1	1 6.194 !
1 .5	$H_{S4} = 7143$	1 340.8	1 73.5	1. 6.080 1
1 .5 . !	$H_{S5} = 6444$	=	1. 71.6	1 6.651 1
15	H _{S6} _= 7025	1 341.4	73.2	! 6.169 !
1 1	Ref. atm.	1 288.6	1 57.8	! 5.408 !
1 . 1 !	$H_{S1} = 6617$		1. 5.6.8	5.192
1. 1.	$H_{S2} = 6867$	1 286.8	! 57.5	1 5.043 !
1 1 1	$H_{S3} = 6993$	1 286.4	1 57.9	! 4.971 !
1. 1.	! H _{SL} = 7143	1 286.0	! 58.3	1 .4.887 i
1 1 !	$H_{S5} = 6444$! 288.1	! 56.2	1 5.301 !
1 1	$H_{S6} = 7025$	1 286.4	1 58.0	! 4.953 !
1	1	!	!	1 1
1 3	! Ref. atm.	160.6	1 29.5	1 2.624 1
! 3 ! 3 ! 3 ! 3	$H_{S1} = 6617$	160.7	! 28.7	1 2.673 !
1 3	$H_{S2} = 6867$	1 160.6	! 29.3	1 2.608 !
1 3	! H _{S3} = 6993	1 160.5	1 29.5	1 2.576 !
1 3	$H_{S4} = 7143$	1 160.4	1 29.8	1 2.539 !
! 3	$H_{S5} = 6444$	160.8	1 28.4	1 2.721 !
! 3	$H_{S6} = 7025$! 160.5	1 29.6	12.568 !
1 6	1 000	1 105 5	100	1 1 690
! 5	! Ref. atm. ! H _{S1} = 6617	1. 106.6 1 106.7	1 19.2 1 18.6	! 1.682 ! ! 1.734 !
! 5 ! 5		1 106.7	! 19.0	1.693
; 5 ! 6	$H_{S2} = 6867$ $H_{S3} = 6993$	1 106.6	19.0	1.674
! 5 ! 5	$H_{S4} = 7143$	1 106.6	! 19.4	1.651
1 5	! HS5 = 6444	.! 106.7	1 18.3	1.763
! 5 ! 5	$H_{S6} = 7025$	1 106.6	! 19.2	1.669
i	1 -50 - 1025	!	1	1

TABLE C-55. -- REFRACTION CORRECTIONS FOR PATRICK AFB AUGUST RADIO ATMOSPHERE, H = 106 METERS

! ! E _M , deg . !	H _S , m	. <u>Α</u> , km	Ι Ι Δρ ₇ , m Ι	ΔE ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 5746 HS2 = 6451 HS3 = 6360 HS4 = 6351 HS5 = 6328 HS6 = 6023	3738.6 3743.7 3737.9 3738.6 3738.7 3738.8 3741.3	96.8 96.8 96.8 96.7	13.364 14.150 13.248 13.355 13.366 13.393 13.774 1
I 1 ! I 1 ! I 1 ! I 1 ! I. 1 ! I. 1 !	Ref. atm. HS1 = 5746 HS2 = 6451 HS3 = 6360 HS4 = 6351 HS5 = 6328 HS6 = 6023	3666.4 3669.8 3666.3 3666.7 3666.8 3666.9 3668.3	76.1	
! 3 ! ! 3 ! ! 3 ! ! 3 ! ! 3 !	Ref. atm. H _{S1} = 5746 H _{S2} = 6451 H _{S3} = 6360 H _{S4} = 6351 H _{S5} = 6328 H _{S6} = 6023	3423.9 3424.9 3424.1 3424.2 3424.2 3424.3 3424.6	38.5 ! 38.4 . !	5.847 !
5 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. H _{S1} = 5746 H _{S2} = 6451 H _{S3} = 6360 H _{S4} = 6351 H _{S5} = 6328 H _{S6} = 6023 H _{S6} H _{S6} H _{S6} = 6023 H _{S6}	3215.5 3215.9 3215.6 3215.7 3215.7 3215.7 3215.8	23.0 1	3.874 ! 3.942 ! 3.895 ! 3.901 ! 3.902 ! 3.903 ! 3.923 !

TABLE C-56.- REFRACTION CORRECTIONS FOR PATRICK AFB AUGUST RADIO ATMOSPHERE, H = 104 METERS

E _M , deg	H _S , m	! ! ρ, km ! !	Ι Ι Δόγ, m ! Ι	$-\Delta E_{18}$, mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Ref. atm. ! Hs1 = 5746 ! Hs2 = 6451 ! Hs3 = 6360 ! Hs4 = 6351 ! Hs5 = 6328 ! Hs6 = 6023	1 352.7 1 356.3 1 351.1 1 351.7 1 351.7 1 351.9 1 354.1	84.2 81.7 83.8 83.6 83.5 83.5 83.5	8.007 8.576 7.741 7.839 7.849 7.874 8.226 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! H _{S1} = 5746 ! H _{S2} = 6451 ! H _{S3} = 6360 ! H _{S4} = 6351 ! H _{S5} = 6328 ! H _{S6} = 6023 ! Ref. atm.	293.1 1 295.3 1 292.3 1 292.7 1 292.7 1 292.8 1 294.1	65.5 62.7 65.3 65.0 65.0 65.0 64.9 63.8 1	6.295 ! 6.715 ! 6.133 ! 6.203 ! 6.210 ! 6.227 ! 6.474 ! 3.128
1 3 1 3 1 3 1 3	! H _{S1} = 5746 ! H _{S2} = 6451 ! H _{S3} = 6360 ! H _{S4} = 6351 ! H _{S5} = 6328 ! H _{S6} = 6023	! 162.2 ! 161.7 ! 161.8 ! 161.8 ! 161.8 ! 162.0	1 30.6 1 32.6 1 32.3 1 32.3 1 32.3 1 31.4	! 3.360 ! 3.119 ! 3.148 ! 3.151 ! 3.159 ! 3.262
1 5 1 5 1 5 1 5 1 5 1 5	! Ref. atm. ! Hs1 = 5746 ! Hs2 = 6451 ! Hs3 = 6360 ! Hs4 = 6351 ! Hs5 = 6328 ! Hs6 = 6023	! 107.0 ! 107.2 ! 107.0 ! 107.0 ! 107.0 ! 107.0 ! 107.1	! 21.1 ! 19.7 ! 21.0 ! 20.8 ! 20.8 ! 20.8 ! 20.2	! 2.011 ! 2.164 ! 2.016 ! 2.034 ! 2.036 ! 2.041 ! 2.104

TABLE C-57.- REFRACTION CORRECTIONS FOR PATRICK AFB.
DECEMBER RADIO ATMOSPHERE, H = 10⁶ METERS

l I E _M , deg I	l l H _S , m	Ι Ι Ρ, km Ι	Ι Ι Δρ ₇ , m !	1. Æ ₁₈ , mråd_l
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 6483 ! Hs2 = 6607 ! Hs3 = 7010 ! Hs4 = 7102 ! Hs5 = 6845 ! Hs6 = 7239	1 3726.1 1 3727.6 1 3726.8 1 3724.5 1 3724.0 1 3725.4 1 3723.2	! 89.4 ! 84.9 ! 85.5 ! 87.6 ! 88.1 ! 86.8	1
1	! Ref. atm. ! HS1 = 6483. ! HS2 = 6607 ! HS3 = 7010 ! HS4 = 7102! ! HS5 = 6845! ! HS6 = 7239! ! Ref. atm. ! HS1 = 6483! ! HS2 = 6607! ! HS3 = 7010! ! HS4 = 7102! ! HS5 = 6845! ! HS6 = 7239! ! Ref. atm. ! HS1 = 6483! ! HS1 = 6483! ! HS1 = 6483! ! HS1 = 6483!	1 3657.9 1 3656.5 1 3656.2 1 3657.1 1 3655.7 1 3419.7 1 3420.4 1 3420.3 1 3419.9 1 3419.8 1 3419.7 1 3213.1 1 3213.1 1 3213.2 1 3213.3 1 3213.3	71.4 1 67.0 1 67.7 1 70.0 1 70.5 1 69.1 1 71.2 1 38.3 1 34.8 1 35.4 1 37.5 1 37.5 1 36.4 1 38.1 1 25.5 1 22.9 1 23.3 1 24.6	9.215 9.476 9.476 9.476 9.401 9.169 9.119 9.262 9.045 9.045 1 5.082 1 5.172 1 5.172 1 5.172 1 5.172 1 5.136 5.079 1 5.136 1 5.079 1 3.433 3.477 1 3.470 1 3.447
! 5 ! 5 ! 5	! HS4 = 7102 ! HS5 = 6845 ! HS6 = 7239	! 3213.2 ! 3213.3 ! 3213.1	! 24.9 ! 24.1 ! 25.3	1 3.442 1 1 3.456 1 1 3.435 1 1

TABLE C-58.- REFRACTION CORRECTIONS FOR PATRICK AFE DECEMBER RADIO ATMOSPHERE, H = 104 METERS

! E _M , deg	H _S , m	! ! ρ, km !	! Ι Δρ ₇ , m Ι	! ! ΔΕ ₁₈ , mrad ! !
! 0.5 ! .5 ! .5 ! .5 ! .5	! Ref. atm. ! Hs1 = 6483 ! Hs2 = 6607 ! Hs3 = 7010 ! Hs4 = 7102 ! Hs5 = 6845 ! Hs6 = 7239	1 344.5 ! 345.1 ! 344.4 ! 342.4 ! 341.9 ! 343.2	73.9	6.680 6.783 6.671 6.671 6.335 6.262 6.468
!	! Ref. atm. ! Hs1 = 6483 ! Hs2 = 6607 ! Hs3 = 7010 ! Hs4 = 7102 ! Hs5 = 6845 ! Hs6 = 7239		58.1 59.3 59.6 58.9	5.211 1 5.404 1 5.404 1 5.324 1 5.080 1 5.028 1 5.177 1 4.951
! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! H _{S1} = 6483 ! H _{S2} = 6607 ! H _{S3} = 7010 ! H _{S4} = 7102 ! H _{S5} = 6845 ! H _{S6} = 7239	! 160.6 ! 160.9 ! 160.6 ! 160.6 ! 160.7 ! 160.7	29.4 30.2 30.4	2.618 ! 2.771 ! 2.737 ! 2.630 ! 2.607 ! 2.673 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5	Ref. atm. HS1 = 6483 HS2 = 6607 HS3 = 7010 HS4 = 7102 HS5 = 6845 HS6 = 7239	1 106.7 1 106.8 1 106.7 1 106.7 1 106.7 1 106.7 1 106.6 1	19.8 18.8 19.0 19.6 19.7 19.4 19.9	1.690 ! 1.796 ! 1.774 ! 1.708 ! 1.694 ! 1.673 !

TABLE C-59.- REFRACTION CORRECTIONS FOR PATRICK AFB ANNUAL RADIO ATMOSPHERE, H = 10 METERS

E _M , deg	H _S , m	! ρ, km 	Ι Δόγ, m 1	l Δε ₁₈ , mrad l
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. H _{S1} = 6167 H _{S2} = 6537 H _{S3} = 6652 H _{S4} = 6662 H _{S5} = 6525 H _{S6} = 6718	1 3732.2 1 3734.1 1 3731.5 1 3730.7 1 3730.7 1 3730.3	93.6 88.5 90.5 91.1 91.2 90.4 91.5	12.365 12.653 12.653 12.250 12.133 12.123 12.123 12.263 12.067 1
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. H _{S1} = 6167 H _{S2} = 6537 H _{S3} = 6652 H _{S4} = 6662 H _{S5} = 6525 H _{S6} = 6718	13661.5 1 3661.0		9.919 I 10.215 I 1 9.965 I 9.892 I 9.885 I 9.973 I 9.850 I
! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. Hs1 = 6167 Hs2 = 6537 Hs3 = 6652 Hs4 = 6662 Hs5 = 6525 Hs6 = 6718	! 3422.3 ! 3421.9 ! 3421.8 ! 3421.8]	5.391 ! 5.514 ! 5.453 ! 5.434 ! 5.433 ! 5.433 ! 5.455 !
5 1 5 1 5 1 5 1 5 1 5 5 1 5 5 1	Ref. atm. HS1 = 6167 HS2 = 6537 HS3 = 6652 HS4 = 6662 HS5 = 6525 HS6 = 6718	1 3214.2 ! 3214.4 ! 3214.3 ! 3214.3 ! 3214.3 ! 3214.3 ! 3214.3	26.0 23.0 24.3 24.7 24.7 24.7 24.3 24.3	3.624 3.674 3.652 3.645 3.644 1 3.653 1 3.641 1 3.641 1

TABLE C-60.- REFRACTION CORRECTIONS FOR PATRICK AFB ANNUAL RADIO ATMOSPHERE, H = 104 METERS

! E _M , dég	! ! H _S , m	Ι. Ιρ, km Ι	l. Δρ ₇ , m 	Æ18, mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 6167 HS2 = 6537 HS3 = 6652 HS4 = 6662 HS5 = 6525 HS6 = 6718	1 348.5 1 349.5- 1 347.2 1 346.5 1 346.5 1 347.3 1 346.2	79.2 77.0 78.1 78.4 78.5 78.5 78.1	7.336 ! 7.496 ! 7.123 ! 7.015 ! 7.005 ! 7.135 ! 6.954 !
1	! Ref. atm. ! Hs1 = 6167 ! Hs2 = 6537 ! Hs3 = 6652 ! Hs4 = 6662 ! Hs5 = 6525 ! Hs6 = 6718 ! ! Ref. atm. ! Hs1 = 6167 ! Hs2 = 6537 ! Hs3 = 6652 ! Hs4 = 6662 ! Hs5 = 6525 ! Hs6 = 6718 !	1 290.2 1 291.3 289.9 1 289.6 1 289.5 1 290.0 1 289.3 1 161.1 1 161.5 1 161.1 1 161.1 1 161.1 1 161.2 1 161.1 1 161.2 1 161.1	1 62.0 1 60.0 - 1 61.2 1 61.6 1 61.8 1 61.8 1 31.4 1 29.8 1 30.7 1 31.0 1 31.0 1 31.0 1 31.2 1 20.3	1 5.667 1 1 5.589 1 1 5.583 ! 1 5.675 ! 1 5.546 ! 1 2.850 ! 1 2.867 ! 2.867 ! 2.864 ! 2.904 ! 2.848 ! ! 1.835 !
5 5 5 5 5 5 5 5 5 5 5 5 1	! H _{S1} = 6167 ! H _{S2} = 6537 ! H _{S3} = 6652 ! H _{S4} = 6662 ! H _{S5} = 6525 ! H _{S6} = 6718	! 106.9 ! 106.8 ! 106.8 ! 106.8 ! 106.9 ! 106.8	! 19.2 ! 19.9 ! 20.1 ! 20.1 ! 19.8 ! 20.2	! 1.947 ! 1.878 ! 1.857 ! 1.855 ! 1.880 ! 1.845

APPENDIX D

TABLES OF REFRACTION CORRECTIONS FOR OPTICAL ATMOSPHERES

This appendix contains tables of refraction corrections for the 27 optical atmospheres shown in appendix B.

E_M = measured elevation angle

E = straight-line, geometric elevation angle

 $\Delta E = E_M - E$ is elevation angle refraction correction

 $\Delta E_{18} = \Delta E$ computed by the 18th algorithm in reference 4 (appendix E)

 ρ_{M} = measured range

 ρ = geometric range

 $\Delta \rho = \rho_M - \rho$ is the range refraction correction

 $\Delta \rho_7 = \Delta \rho$ computed by the 7th algorithm in reference 4 (appendix E)

 $H = 10^6$ m and 10^4 m is altitude of target above the tracking site, which is at sea level

The column labeled ρ is the geometric range computed by the refraction correction algorithm. It is the range determined by the quantities E_M , H, and ΔE_{18} . Differences in the computed range, ρ , are due to errors in ΔE_{18} .

TABLE D-1.- REFRACTION CORRECTIONS FOR WHITE SANDS MARCH OPTICAL ATMOSPHERE, $H=10^6$ METERS

! E _M , deg	Hg, m	! ! Ρ, km !	ι Δρ ₇ , m ι	Δ _{E 18} , mrad !
! 0.5 ! .5 ! .5 ! .5 ! .5	$H_{S2} = 7244$ $H_{S3} = 10300$	1 3699.4		7.140 ! 8.286 ! 8.535 ! 7.114 ! 7.221 ! 7.095 ! 7.189!
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		! 3637.4 !- 3637.9	57.1 55.2 67.8 66.7	6.219. ! 6.925 ! 7.089 ! 6.122 ! 6.197 ! 6.108 !
! 3 ! 3 ! 3 ! 3 ! 3	$H_{S4} = 10008$	1 3413.3 1 3413.6 1 3411.8 1 3412.0		3.816 ! 3.976 ! 4.022 ! 3.729 ! 3.754 ! 3.725 ! 3.747 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	. .	!3209.3 ! 3208.6 ! 3208.7	24.0 21.2 20.1 27.6 26.9 27.7 27.1	2.655 ! 2.711 ! 2.729 ! 2.608 ! 2.619 ! 2.606 ! 2.616 !

TABLE D-2.- REFRACTION CORRECTIONS FOR WHITE SANDS MARCH OPTICAL ATMOSPHERE, H = 10⁴ METERS

E _M , deg	H _S , m .	_ ρ,_ km	Δρ ₇ , m l	ΔĒ _{18.} mrād
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 7 671 HS2 = 7 244 HS3 = 10 300 HS4 = 10 008 HS5 = 10 355 HS6 = 10 094	325.0 331.7 333.0 325.6 326.1 325.5 326.0	1 63.6 1 59.4 1 58.5 1 63.8 1 63.4 1 63.9	1 3.404 1 1 4.556 1 1 4.786 1 1 3.517 1 1 3.608 1 1 3.500 1 1 3.581 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! H _{S1} = 7 671 ! H _{S2} = 7 244 ! H _{S3} = 10 300 ! H _{S4} = 10 008	276.4 276.7 276.3	52.1 ! 47.8 ! 46.8 ! 52.3 ! 51.9 ! 52.4 ! 52.0	1 2.868 ! 1 3.704 ! 1 3.876 ! 1 2.909 ! 1 2.896 ! 1 2.896 ! 1 2.959 ! 1
! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! H _{S1} = 7 671 ! H _{S2} = 7 244 ! H _{S3} = 10 300 ! H _{S4} = 10 008 ! H _{S5} = 10 355 ! H _{S6} = 10 094	! 158.4 ! 159.2 ! 159.4 ! 158.4 ! 158.5 ! 158.4 ! 158.5	! 27.9 ! 28.2 ! 28.0	! 1.586 ! ! 1.959 ! ! 2.038 ! ! 1.578 ! ! 1.613 ! ! 1.572 ! ! 1.603 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 7 671 ! H _{S2} = 7 244 ! H _{S3} = 10 300 ! H _{S4} = 10 008 ! H _{S5} = 10 355 ! H _{S6} = 10 094	1 106.3 1 106.0 1 106.0 1 106.0	! 18.5 ! 16.3 ! 15.9 ! 18.6 ! 18.3 ! 18.4	1 1.047 1 1 1.279 1 1 1.329 1 1 1.038 1 1 1.061 1 1 1.034 1 1 1.054 1

TABLE D-3.- REFRACTION CORRECTIONS FOR WHITE SANDS AUGUST OPTICAL ATMOSPHERE, $H=10^6\,$ METERS

! E _M , deg	L ! Hś, m. !	! ! ρ, km ! !	! ! Δρ ₇ , m ! !	ΔE ₁₈ , mrad !
! 0.5 ! 0.5 ! .5 ! .5 ! .5	! Ref. atm. ! H _{S1} = 7 889 ! H _{S2} = 7 344 ! H _{S3} = 11 267 ! H _{S4} = 10 535 ! H _{S5} = 11 218 ! H _{S6} = 11 049	1 3704.1 1 3694.1 1 3695.6 1 3694.2	72.8 66.4 64.2 79.0 76.4 78.9	6.461 7.684 7.971 6.397 6.623 6.412 6.462
! 1 ! 1 ! 1 !1 !1 ! 1 ! 1		! 3640.6 ! 3633.8	61.2 54.5 52.3 67.2 64.6 66.5	6.639 I 5.555 I 5.716 I
! 3. ! 3. ! 3 ! 3 ! 3	$H_{S3} = 11 267$! 3412.2 ! ! 3410.2 ! ! 3410.5 ! ! 3410.2 !	35.2 30.4 28.9 40.5 38.4 40.3 39.9	3.548 ! 3.731 ! 3.786 ! 3.447 ! 3.502 ! 3.450 ! 3.463 !
5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. H _{S1} = 7 889 H _{S2} = 7 344 H _{S3} = 11 267 H _{S4} = 10 535 H _{S5} = 11 218 H _{S6} = 11 049	! 3208.4 ! ! 3207.7 ! ! 3207.8 ! ! 3207.7 !	23.9 20.5 19.2 28.2 26.5 26.5 28.1	

TABLE D-4.- REFRACTION CORRECTIONS FOR WHITE SANDS. AUGUST OPTICAL ATMOSPHERE, H = 104 METERS

! E _M , deg	I Ys. m	! ! ρ, km ! !	1. Δρ ₇ , m	! !-ΔE ₁₈ , mrad !
1 0.5 1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 7 889 HS2 = 7 344 HS3 = 11 267 HS4 = 10 535 HS5 = 11 218 HS6 = 11 049	! 329.5 ! ! 331.0 ! ! 323.0 ! ! 324.0 ! ! 323.3 ! ! 323.3 !	60.4 61.2 61.0	2.960 2.960 4.182 4.447 3.056 3.245 3.068 3.110
! 1 ! 1 ! 1 ! 1 ! 1 ! 1	! Ref. atm. ! H _{S1} = 7 889 ! H _{S2} = 7 344 ! H _{S3} = 11 267 ! H _{S4} = 10 535 ! H _{S5} = 11 218 ! H _{S6} = 11 049	279.8	50.1 45.4 44.3 50.4 49.6 50.4 50.2	2.517 3.411 3.610 2.542 2.690 2.551 2.584 1
: 3 : 3 : 3 : 3 : 3 : 3	! Ref. atm. ! H _{S1} = 7889 ! ! H _{S2} = 7344 ! ! H _{S3} = 11267 ! ! H _{S4} = 10535 ! ! H _{S5} = 11218 ! ! H _{S6} = 11049 !	! 159.0 ! ! 158.2 !	27.2 23.9 23.1 27.5 26.8 27.4 27.3	1.413 ! 1.813 ! 1.905 ! 1.390 ! 1.465 ! 1.395 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 7 889 ! ! H _{S2} = 7 344 ! ! H _{S3} = 11 267 ! ! H _{S4} = 10 535 ! ! H _{S5} = 11 218 ! ! H _{S6} = 11 049 !	105.9 ! 105.9 !	17.9 15.6 15.1 18.1 17.7 18.1 18.0	.937 ! 1.186 ! 1.244 ! .917 ! .964 ! .920 !

TABLE D-5. - REFRACTION CORRECTIONS FOR WHITE SANDS ANNUAL OPTICAL ATMOSPHERE, H = 106 METERS

I E _M , dég	! H _S , m !	Ι Ι ρ, km Ι	l Δρ ₇ , m .l l l	ΔE ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5	$H_{S1} = 7776$ $I_{-H_{S2}} = 7290$ $I_{-H_{S3}} = 10730$	1 3704.3 1 3706.0 1 3696.5 1 3697.5 1 3696.2	1 — 74.1 ! 1 — 74.1 ! 1 — 68.3 ! 1 — 66.2 ! 1 — 79.7 ! 1 — 78.0 ! 80.2 ! 1 — 79.1 !	8.268 ! 6.774 ! 6.930 !
1 1. 11 1 1 1 1 1 1. 1 1.	$H_{S3} = 10 730$ $H_{S4} = 10 268$	3642.1 3635.7 3636.4 3635.5	62.0	5.945 ! 6.697 ! 6.876 ! 5.853 ! 5.964 ! 5.821 ! 5.897 !
1. 3 1. 3. 1. 3. 1. 3. 1. 3 1. 3		3412.6 3412.9 3411.1 3411.3	29.4-1 40.2 1 38.8 1 40.6 1	3.688 ! 3.860 ! 3.911 ! 3.596 ! 3.633 ! 3.585 ! 3.611 !
5 5 5 5 5 1 5 1 5 5 1 5 5 1 5 5 1	Ref. atm. H _{S1} = 7 776 H _{S2} = 7 290 H _{S3} = 10 730 H _{S4} = 10 268 H _{S5} = 10 870 H _{S6} = 10 545	3208.2 I	19.7 !	2.575 ! 2.635 ! 2.655 ! 2.525 ! 2.541 ! 2.520 ! 2.531 !

TABLE D-6. REFRACTION CORRECTIONS FOR WHITE SANDS.
ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

! !_E _M , deg	!. H _S ,_m -	L_ ρ, km 	Ι Ι Δρ ₇ , m Ι Ι	ΔE ₁₈ , mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	$H_{S4} = 10 268$	332 · 1 1 324 · 3. 1 325 · 1	1 62.3- 1 57.9 1 56.9 1 62.6 1 62.8 1 62.4	1 3.139 1 1 4.376 1 1 4.625 1 1 3.297 1 1 3.429 1 1 3.259 1 1 3.349 1
! 1 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 !	! H _{S4} = 10 268 ! H _{S5} = 10 870 ! H _{S6} = 10 545 ! Ref. atm. ! H _{S1} = 7 776 ! H _{S2} = 7 290 ! H _{S3} = 10 730 ! H _{S4} = 10 268 ! -H _{S5} = 10 870	1 158.2	! 23.7 ! 27.9 _ ! 27.4 ! 28.0	! 3.750 ! ! 2.734 ! ! 2.837 ! ! 2.704 ! ! 2.775 ! ! 1.495 ! ! 1.889 ! ! 1.975 ! ! 1.489 ! ! 1.540 !
! 3 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5	Hs6 = 10.545 Ref. atm. Hs1 = 7.776 Hs2 = 7.290 Hs3 = 10.730 Hs4 = 10.268 Hs5 = 10.870 Hs6 = 10.545	! 158.3 ! 105.9 ! 106.2 ! 106.2 ! 105.9 ! 106.0 ! 105.9	1 27.7 1 18.2 1 16.0 1 15.5 1 18.4 1 18.0 1 18.4 1 18.2	! 1.509 ! .990 ! 1.234 ! 1.289 ! .981 ! 1.013 ! .971

TABLE D-7.- REFRACTION CORRECTIONS FOR EDWARDS AFB-MAY OPTICAL ATMOSPHERE, $H = 10^6$ METERS

! ! E _M , deg !	! H _S , m	l. ! ρ, km . !	Ι 1 Δρ _{ή,} m 1	1 ΔE ₁₈ , mrad l
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5		3700.6 3701.1 3700.7	75.9 71.1 68.6 80.6 79.8 80.5 80.5	7.479 ! 7.479 ! 8.510 ! 8.866 ! 7.415 ! 7.495 ! 7.428 ! 7.472 !
I I . 1 I . 1 I . 1 I . 1 I . 1 I . 1 I . 1 I . 1	! H _{S2} = 7 013 ! H _{S3} = 9 896 ! H _{S4} = 9 695 ! H _{S5} = 9 863	1 3645.0 1 3638.8 1 3639.2 1 3638.9	63.0 58.0 55.4 67.6 66.8 67.5 67.1	6.463 ! 7.101 ! 7.334 ! 6.355 ! 6.411 ! 6.364 ! 6.395 !
1 3 1 3 1 3 1 3 1 3	Ref. atm. Hs1 = 7 588 Hs2 = 7 013 Hs3 = 9 896 Hs4 = 9 695 Hs5 = 9 863 Hs6 = 9 752	1 3412.6	1 31.9 1 29.9 1 39.5	3.920 ! 4.065 ! 4.130 ! 3.839 ! 3.857 ! 3.842 ! 3.852 !
! 5 ! 5 ! 5 ! 5 ! 5	! Ref. atm. ! H _{S1} = 7 588 ! H _{S2} = 7 013. ! H _{S3} = 9 896 ! H _{S4} = 9 695 ! H _{S5} = 9 863. ! H _{S6} = 9 752.	1 3209.0 1 3209.0 1 3209.0	23.9 ! 21.4 ! 19.9 ! 27.1 ! 26.6 ! 27.1 ! 26.8	2.718- 1 2.768 1 1 2.793 1 1 2.675 1 1 2.683 1 1 2.676 1 1 2.680 1

TABLE D-8.- REFRACTION CORRECTIONS FOR EDWARDS AFB MAY OPTICAL ATMOSPHERE, H = 10⁴ METERS

 $(\lambda = 0.555. micron)$

TABLE D-9. REFRACTION CORRECTIONS FOR EDWARDS AFB JULY OPTICAL ATMOSPHERE, $H=10^6$ METERS

! ! E _M , deg	H _S , m	i ρ, km l	! ! Δρ.ή, m. !	! ! ΔE ₁₈ , mrad . !
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5 1	$H_{S3} = 10 340$ $H_{S4} = 10 057$	1 3698.5 ! 3705.1 ! 3707.6 ! 3697.9 ! 3698.6 ! 3698.2 ! 3697.9	74.3 69.0 66.2 1— 79.3 78.3 78.9	1 7.090 1 8.126 1 8.510 1 6.992 1 7.093 1 7.036 1 6.992
! 1 ! ! 1! ! 1 ! ! 1 ! ! 1 !	Ref. atm. $H_{S1} = 7730$ $H_{S2} = 7069$ $H_{S3} = 10340$ $H_{S4} = 10057$ $H_{S5} = 10217$ $H_{S6} = 10342$	1 3637.2 1	62.2 56.5 53.6 66.9 65.8 66.4 66.9	6.146 ! 6.798 ! 7.052 ! 6.021 ! 6.092 ! 6.051 ! 6.020 !
! 3 ! ! 3 ! ! 3 ! ! 3 ! ! 3 !	Ref. atm. H _{S1} = 7 730 H _{S2} = 7 069 H _{S3} = 10 340 H _{S4} = 10 057 H _{S5} = 10 217 H _{S6} = 10 342	7.	39.5 38.6	3.756 3.756 3.912 3.983 3.672 3.695 3.682 3.671
! 5 ! ! 5 ! ! 5 ! ! 5 ! ! 5 !	Ref. atm. H _{S1} = 7 730 H _{S2} = 7 069 H _{S3} = 10 340 H _{S4} = 10 057 H _{S5} = 10 217 H _{S6} = 10 342	3208.7 3209.0 3209.1 3208.4 3208.5 3208.4 3208.4	23.8 21.0 19.4 27.3 26.6 27.0 27.3	2.614 ! 2.669 ! 2.697 ! 2.569 ! 2.579 ! 2.573 ! 2.569 !

TABLE D-10.- REFRACTION CORRECTIONS FOR EDWARDS AFB.

JULY OPTICAL ATMOSPHERE, H = 104 METERS

I E _M , dég	H _S , m	l !ρ,km l	Ι Δρ ₇ , m	L ΔE ₁₈ , mråd l	
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	$H_{S2} = 7 069$ $H_{S3} = 10 340$ $H_{S4} = 10 057$	1 325.1 1 331.1 1 333.2 1 325.2 1 325.7 1 325.4 ! 325.2	62.6 58.6 57.2 62.9 62.5 62.7 62.9	3.426 ! 4.455 ! 4.810 ! 3.451 ! 3.538 ! 3.488 ! 3.451 !	di pin
I. 1 I. 1 I. 1 I. 1 I. 1 I. 1	$H_{S3} = 10 340$ $H_{S4} = 10 057$! 276.2 ! 279.8- ! 281.1 ! 276.1 ! 276.5 ! 276.3 ! 276.1	51.3 47.2 45.7 51.5 51.2 51.4	2.864 3.626 3.891 2.856 2.924 2.885 2.856 1	
1 3 1 3 1 3 1 3 1 3	! Ref. atm. ! Hs1 = 7 730 ! Hs2 = 7 069 ! Hs3 = 10 340 ! Hs4 = 10 057 ! Hs5 = 10 217 ! Hs6 = 10 342	1 158.4	27.6 ! 24.7 ! 23.7 ! 27.8 ! 27.5 ! 27.7 ! 27.8	1.569 1.920 1.920 1.551 1.584 1.565 1.551	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! H _{S1} = 7 730 ! H _{S2} = 7 069 ! H _{S3} = 10 340 ! H _{S4} = 10 057 ! H _{S5} = 10 217 ! H _{S6} = 10 342	1 106.0 1 136.2 1 106.3 1 106.0 1 106.0 1 106.0 1 106.0	18.2 16.1 15.4 18.3 18.1 18.2 18.3	1 1.035 1 1.254 ! 1.331 ! 1.020 ! 1.042 ! 1.029 ! 1.020	

TABLE D-11.- REFRACTION CORRECTIONS FOR EDWARDS AFB ANNUAL OPTICAL ATMOSPHERE, H = 10⁶ METERS

! ! E _M , deg	H _S , m	l Ιρ, km l	Ι Ι Δρ ₇ , m Ι	! ! ΔΕ ₁ g, mrad !
! 0.5 ! .5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 7 576 HS2 = 7 009 HS3 = 9 793 HS4 = 9 653 HS5 = 9 751 HS6 = 9 701	1 3701.4 1 3707.8 1 3710.0 1 3701.0 1 3710.4 1 3701.1 1 3401.2	76.1 71.3 68.8 80.5 79.9 80.3	7.545 8.544 8.896 7.478 7.535 7.495
! 1 ! ! 1 ! ! 1 ! ! 1 ! ! 1 !			63.2 58.1 55.5 67.4 66.9 67.3 67.1	6.505 7.127 7.358 6.403 6.442 6.414 6.428
	Ref. atm. H _{S1} = 7 576 H _{S2} = 7 009 H _{S3} = 9 793 H _{S4} = 9 653 H _{S5} = 9 751 H _{S6} = 9 701	3412.6	35.6 31.9 30.0 39.3 38.8 39.2 39.0	3.933 ! 4.079 ! 4.142 ! 3.860 ! 3.872 ! 3.863 ! 3.868 !
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	Ref. atm. H _{S1} = 7 576 ! H _{S2} = 7 009 ! H _{S3} = 9 793 ! H _{S4} = 9 653 ! H _{S5} = 9 751 ! H _{S6} = 9 701 !	3209.1	24.0 21.4 20.0 27.0 26.6 26.9 26.7	2.726 ! 2.777 ! 2.801 ! 2.687 ! 2.692 ! 2.688 ! 2.690 !

TABLD D-12.- REFRACTION CORRECTIONS FOR EDWARDS AFB ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

E _M , deg	H _S , m	Ι <u>ρ</u> , km Ι	Ι Ι Δρ ₇ , m Ι	l. ! ΔE ₁₈ , mmad !
1 0.5 1 .5 ! .5 ! .5 ! .5 ! .5 !	Ref. atm. H _{S1} = 7 576 H _{S2} = 7 009 H _{S3} = 9 793 H _{S4} = 9 653 H _{S5} = 9 751 H _{S6} = 9 701	326.8 332.6 334.6 327.1 327.4 327.2 327.3	64.4	3.722 4.719 5.045 3.768 3.816 3.782 3.799
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. ! H _{S1} = 7 576 ! H _{S2} = 7 009 ! H _{S3} = 9 793 ! H _{S4} = 9 653 ! H _{S5} = 9 751 ! H _{S6} = 9 701 !	277.3 ! 280.8 ! 282.0 ! 277.3 ! 277.5 ! 277.4 !	52.6 48.7 47.4 52.8 52.6 52.7 52.6	3.099 ! 3.831 ! 4.073 ! 3.107 ! 3.145 ! 3.118 ! 3.132 !
! 3 !! 3 !! 3 !! 3 !! 3 !! 3 !! 1 3 !! 1 3 !!	Ref. atm. ! H _{S1} = 7 576 ! H _{S2} = 7 009 ! H _{S3} = 9 793 ! H _{S4} = 9 653 ! H _{S5} = 9 751 ! H _{S6} = 9 701 !		28.2 ! 25.4 ! 24.5 ! 28.3 ! 28.2 ! 28.3 ! 28.2 !	1.687 ! 2.021 ! 2.132 ! 1.678 ! 1.696 ! 1.683 !
5 1 5 1 5 1 5 1 5 1 5 1 1 5 1	Ref. atm. ! H _{S1} = 7 576 ! H _{S2} = 7 009 ! H _{S3} = 9 793 ! H _{S4} = 9 653 ! H _{S5} = 9 751 ! H _{S6} = 9 701 !	106.1 ! 106.3 ! 106.3 ! 106.0 ! 106.1 ! 106.1 !	15.9 !	1.110 ! 1.319 ! 1.389 ! 1.102 ! 1.114 ! 1.106 ! 1.110 !

TABLE D-13. -- REFRACTION CORRECTIONS FOR EGLIN AFB JANUARY OPTICAL ATMOSPHERE, H = 10⁶ METERS

! E _M , deg	H _S , m	l.ρ,km L	i 1 -Δόγ, m l	! ! ΔĔ ₁₈ , <u>m</u> rad ! !
1 0.5 ! ! 0.5 ! ! .5 ! ! .5 ! ! .5 !	Ref. atm. H _{S1} = 7 459 H _{S2} = 7 167 H _{S3} = 9 200 - H _{S4} = 9 297 H _{S5} = 9 073 H _{S6} = 9 233	3709.8 3711.0 3704.0 3703.7 3704.3		8.076 ! 8.861 ! 9.047 ! 7.943 ! 7.900 ! 8.001 !
! 1 - ! ! - 1! ! 1 ! ! 1 ! ! 1 !	$H_{S3} = -9 200 1$ $H_{S4} = 9 297 1$	3646.0	64.2 59.3 57.9 66.9 — 67.3 66.4 67.1	6.854 7.374 7.497 6.756 6.727 6.796 6.746
! 3 ! ! 3 ! ! 3 ! ! 3 ! ! 3 !	Ref. atm. H _{S1} = 7 459 H _{S2} = 7 167 H _{S3} = 9 200 H _{S4} = 9 297 H _{S5} = 9 073 H _{S6} = 9 233	3414.8 3413.5 3413.5 3413.6	36.0 32.4 31.4 38.4 38.7 38.0 38.5	4.067 ! 4.202 ! 4.236 ! 4.020 ! 4.010 ! 4.032 ! 4.016 !
5. ! ! 5. ! ! 5 ! ! 5 ! ! 5 ! ! 5 !	Ref. atm. H _{S1} = 7 459 H _{S2} = 7 167 H _{S3} = 9 200 H _{S4} = 9 297 H _{S5} = 9 073 H _{S6} = 9 233	3209.6 3209.6 3209.6	20.9 26.2 26.4	2.807 2.856 2.869 2.781 2.778 2.787 2.781

TABLE D-14.- REFRACTION CORRECTIONS FOR EGLIN AFB JANUARY OPTICAL ATMOSPHERE, H = 104 METERS

! E _M , deg !	! H _S , m_!	_ - ρ, km- 	l ! Δρή, m · !	! ! ΔΕ ₁₈ , mrád ! !
1 0.5 1 .5 1 .5 1 .5 1 .5	$H_{S1} = 7 459$ $H_{S2} = 7 167$ $H_{S3} = 9 200$	1 329.0 1 328.8 1 329.3	61.6 65.5 65.7	4.156 ! 4.921 ! 5.093 ! 4.095 ! 4.058 ! 4.146 ! 4.083 !
i 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. HS1 = 7 459 HS2 = 7 167 HS3 = 9 200 HS4 = 9 297 HS5 = 9 073 HS6 = 9 233	1 282.2 1 1 278.6 1 1 278.4 1 1 278.8 1		3.399 ! 3.988 ! 4.116 ! 3.364 ! 3.335 ! 3.403 ! 3.354 !
1 3 1 3 1 3 1 3 1 3	$H_{S4} = 9 297$	158.9 159.5 159.6 158.9	28.4 25.9 25.4 28.4 28.5 28.2 28.4	1.810 ! 2.098 ! 2.157 ! 1.805 ! 1.791 ! 1.824 ! 1.801 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 1 !	Ref. atm. H _{S1} = 7 459 H _{S2} = 7 167 H _{S3} = 9 200 H _{S4} = 9 297 H _{S5} = 9 073 H _{S6} = 9 233	106.1 ! 106.1 !	18.6 ! 16.9 ! 16.6 ! 18.6 ! 18.7 ! 18.5 !	1.185 ! 1.369 ! 1.405 ! 1.184 ! 1.175 ! 1.196 !

TABLE D-15.- REFRACTION CORRECTIONS FOR EGLIN AFB. AUGUST OPTICAL ATMOSPHERE, H = 106 METERS

 $(\lambda = 0.555 \text{ micron})$

! ! E _M , deg !	H _S , m	! ρ, km	Ι Δρ ₇ , m. Ι	! ! ΔE ₁₈ , mrad ! !!
1 0.5 1 .5 1 .5 1 .5 1 .5	$H_{S1} = 7697$ $H_{S2} = 7262$ $H_{S3} = 10046$	1 3705.6 1 3707.2 1 3698.9 1 3699.3 1 3699.4	67.6 1 78.8 1 78.1 1 78.3	1 7.324 1 1 8.203 1 1 8.454 1 1 7.148 1 1 7.216 1 1 7.221 1 1 7.102 1
I. 1	$H_{S2} = 7 262$ $H_{S3} = 10 046$ $H_{S4} = 9 864$ $H_{S5} = 9 881$	1 3637.5 1 3637.8 1 3637.8	! 54.8 ! 66.3 ! 65.6 ! 65.7	6.256 I 6.859 I 7.025 I 6.138 I 6.186 I 6.190 I 6.107 I
! 3 ! 3 ! 3 ! 3 ! 3	$H_{S2} = 7 262$ $H_{S3} = 10 046$ $H_{S4} = 9 864$ $H_{S5} = 9 881$	1 3413.4 1 3411.8 1 3411.9 1 3411.9	1 35.6 1 31.4 1 29.9 1 38.9 1 38.3 1 38.4 1 39.4	! 3.784 ! ! 3.943 ! ! 3.989 ! ! 3.722 ! ! 3.737 ! ! 3.741 !
5 5 - 1 5 5 5 5 1 5 5 1 1 1 1 1 1 1 1 1	! $H_{S2} = 7 262$! $H_{S3} = 10 046$! $H_{S4} = 9 864$! $H_{S5} = 9 881$	3208.8 3209.1 3209.2 3208.6 3208.6 3208.6 3208.6 3208.6	24.1 ! 21.1 ! 20.0 ! 26.8 ! 26.3 ! 26.4 ! 27.2	2.531 2.689 1 2.707 1 2.597 1 2.604 1 2.595 1 2.595 1

TABLE D-16. - REFRACTION CORRECTIONS FOR EGLIN AFB AUGUST OPTICAL ATMOSPHERE, H = 104 METERS

Ë _M , deg	H _S , m	Ι. ρ, <u>k</u> m	! ! Δρ ₇ , m . !	! ΔE ₁₈ , mrad
0.5 .5 .5 .5 .5	$H_{S1} = 7697$ $H_{S2} = 7262$	332.8 325.9 326.2	1 62.8 1 59.0 1 58.0 1 62.9 1 62.7 1 62.8 1 63.2	3.629 4.505 4.736 3.567 3.625 3.625 3.523
1. 1	Ref. atm. H _{S1} = 7 697 1 H _{S2} = 7 262 1 H _{S3} = 10 046 1 H _{S4} = 9 864 1 H _{S5} = 9 881 1 H _{S6} = 10 202 1	280.9 276.6 276.8 276.8	51.4 47.4 46.5 51.5 51.2 51.3 51.8	2.968 3.664 3.837 2.947 2.992 2.992 2.913
3 ! 3 ! 3 ! 3 ! 3 ! 3 !	Ref. atm. ! H _{S1} = 7 697 ! H _{S2} = 7 262 ! H _{S3} = 10 046 ! H _{S4} = 9 864 ! H _{S5} = 9 881 ! H _{S6} = 10 202 !	159.3 ! 158.4 ! 158.5 !	24.2 1	1.607 -1.939 2.018 1.596 1.618 1.619
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. ! Hs1 = 7 697 ! Hs2 = 7 262 ! Hs3 = 10 046 ! Hs4 = 9 864 ! Hs5 = 9 881 ! Hs6 = 10 202 !	106.3 !	18.2 ! 16.2 ! 15.7 ! 18.2 ! 18.1 ! 18.1 !	1.058 1.267 1.317 1.049 1.064 1.064

TABLE D-17.- REFRACTION CORRECTIONS FOR EGLIN AFB ANNUAL OPTICAL ATMOSPHERE, H = 106 METERS.

! E _M , deg	Hġ, m	ρ, km	! ! Δρη, m - !	! ΔE ₁₈ , mrad J
1 0.5 1 0.5	! Hs3 = 9 662 ! Hs4 = 9 640 ! Hs5 = 9 441 ! Hs6 = 9 779 ! Ref. atm. ! Hs1 = 7 595 ! Hs2 = 7 220 ! Hs3 = 9 662	3708.9 3701.1 3701.2 3701.7 3700.8 1 3640.0 3643.4 3639.2 3639.2 3639.2 3639.6	1 76.3 71.0 1 69.4 1 79.6 1 79.5 1 78.7 1 80.0 1 63.2 1 57.9 1 66.6 1 66.5 1 67.1 1 35.8 1 31.9 1 38.6 1 38.0 1 39.1	7.714 8.492 8.718 7.496 7.505 7.586 7.586 7.449 1 6.537 7.087 7.236 6.410 6.416 6.472 6.377 1 6.377 1 3.912 1 4.058 1 4.058 1 4.100 3.854 3.856 3.874 3.844 1 3.844 1
! 5 5 5 ! 5 5 ! 5 1	! Ref. atm. ! Hs1 = 7 595 ! Hs2 = 7 220 ! Hs3 = 9 662 ! Hs4 = 9 640 ! -Hs5 = 9 441 ! Hs6 = 9 779	1 3209.2 1 3209.5 1 3209.6 1 3209.0 1 3209.0 1 3209.1 1 3209.0	24.2 1 21.4 1 20.4 1 26.5 1 26.5 1 26.0 1 26.8	2.711 2.763 2.780 2.680 2.680 2.638 2.675 1

TABLE D-18.- REFRACTION CORRECTIONS FOR EGLIN AFB ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

! ! E _M , deg	l Hs, m	ρ, km	. Δο ₇ , m	! ΔE ₁₈ , mrad !
! M, deg !	! Ref. atm. ! H _{S1} = 7 595 ! H _{S2} = 7 220 ! H _{S3} = 9 662 ! H _{S4} = 9 640 ! H _{S5} = 9 441 ! H _{S6} = 9 779 ! Ref. atm. ! H _{S1} = 7 595	1 327.9 1 332.5 1 333.7 1 327.2 1 327.3 1 327.7 1 327.0 1 277.6 1 280.7 1 281.5 1 277.4 1 277.5 1 277.7 1 277.3 1 159.3 1 159.5 1 158.6 1 158.6	1 64.1 60.4 1 59.6 1 64.1 1 63.8 1 64.3 1 52.2 1 48.5 1 47.7 1 52.3 1 52.3 1 52.5 1 28.0 1 25.3 1 28.0 1 28.0 1 28.0 1 28.0	3.908 1.4.686 1.4.895 1.3.795 1.3.803 1.3.874 1.3.755 1.3.169 1.3.169 1.3.128 1.3.128 1.3.134 1.3.188 1.3.1
3 - 1 - 5 - 5 - 5 - 5 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 5	! HS6 = 9 779 ! Ref. atm. ! HS1 = 7 595 ! HS2 = 7 220 ! HS3 = 9 662 ! HS4 = 9 640 ! HS5 = 9 447 ! HS6 = 9 773	1 106.1 1 106.3 1 106.3 1 106.3 2 1 106.1 1 1 106.1	! 28.2 ! 18.4 ! 16.5 ! 16.1 ! 18.4 ! 18.4 ! 18.5 ! 18.5	1 1.672 1 1.113 1 1.311 1 1.356 1 1.108 1 1.110 1 1.127 1 1.098

TABLE D-19. REFRACTION CORRECTIONS. FOR ASCENSION FEBRUARY OPTICAL ATMOSPHERE, H = 106 METERS

! E _M , deg	H _S , m	l ! ρ, km -	! !Δρ ₇ , m !	! ! ΔE ₁₈ , mrad ! !
1 0.5 1 1 .5 1 .5 1 .5 1 .5	$H_{S1} = 7717$ $H_{S2} = 7244$ $H_{S3} = 10109$	1 -3707.1- 1 3698.6 1 3699.2 1 3697.6	69.2 67.2 78.7 77.8 80.3	8.161 1
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	$H_{S1} = 7717 - 1$ $H_{S2} = 7244 + 1$ $H_{S3} = 10109 + 1$	3641.8 3642.9 3637.2 3637.6 3636.6	56.6 1 54.5 1 66.3 1 65.3 1	6.162 ! 5.995 !
1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1	Ref. atm. HS1 = 7 717 HS2 = 7 244 HS3 = 10 109 HS4 = 9 867 HS5 = 10 529 HS6 = 10 287	3413.3 1 3411.7 1 3411.8 1 3411.5 1	29.7 ! 38.9 ! 38.2 ! 40.2 !	
1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1	Ref. atm. ! HS1 = 7 717 ! HS2 = 7 244 ! HS3 = 10 109 ! HS4 = 9 867 ! HS5 = 10 529 ! HS6 = 10 287 !	3209.1 ! 3208.5 ! 3208.6 !	24.1 ! 21.1 ! 19.9 ! 26.8 ! 26.2 ! 27.8 ! 27.2 !	2.621 ! 2.678 ! 2.698 ! 2.586 ! 2.594 ! 2.571 ! 2.579 !

TABLE D-20.- REFRACTION CORRECTIONS FOR ASCENSION FEBRUARY OPTICAL ATMOSPHERE, H = 104 METERS

 $(\lambda = 0.555 \text{ mioron})$

I E _M , deg	Hġ, m	ρ, km	Ι Δόγ, m. ! Ι Δόγ	ΔE_{18} , mrad	l. 1 1
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 7 717 L HS2 = 7 244 L HS3 = 10 109 L HS4 = 9 867 L HS5 = 10 529 L HS6 = 10 287 L	325.7 326.2 325.0	62.4	3.260 4.478 4.728 3.534 3.611 3.408 3.479	I I I I
1	Ref. atm. Hs1 = 7 717 Hs2 = 7 244 Hs3 = 10 109 Hs4 = 9 867 Hs5 = 10 529 Hs6 = 10 287	280.8 276.4 276.7 276.0	1 47.3 1 46.3 1 51.4 1 51.1	2.775 1. 3.643 1. 3.830 1. 2.921 1. 2.981 1. 2.823 1. 2.878	! ! ! ! ! !
! 3 ! 3 ! 3 ! 3 ! 3	Ref. atm. HS1 = 7 717 HS2 = 7 244 HS3 = 10 109 HS4 = 9 867 HS5 = 10 529 HS6 = 10 287	1 159.3 1 158.4 1 158.5 1 158.3	1 27.8 1 24.8 1 24.0 1 27.7 1 27.4 1 28.1 1 27.9	! 1.560 ! 1.928 ! 2.014 ! 1.583 ! 1.612 ! 1.535 ! 1.562	1 1 1 1 1 1 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$H_{S3} = 10 109$	1 106.0 1 106.2 ! 106.3 ! 106.0 ! 106.0 ! 106.0	18.3 1-16.2 15.7 18.2 18.0 18.5 18.3	! 1.033 ! 1.260 ! 1.314 ! 1.041 ! 1.060 ! 1.010 ! 1.028	1

TABLE D-21.- REFRACTION CORRECTIONS FOR ASCENSION SEPTEMBER OPTICAL ATMOSPHERE, H = 106 METERS

LE _M , deg	!	! !- ρ, km !	! ! Δρ ₇ , <u>m</u>	1 $^{\Delta E}_{18}$, mrad
0.55 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	HS1 = 7 666 - HS2 = 7 223. HS3 = 9 867 HS4 = 9 714 HS5 = 10 034 HS6 = 10 074 Ref. atm. HS1 = 7 666 HS2 = 7 223 HS3 = 9 867 HS4 = 9 714 HS5 = 10 034 HS6 = 10 074	! 3699.8 ! ! 3700.1 ! ! 3699.4 ! ! 3699.3 ! ! 3638.5 ! 3642.5 ! 3643.5 ! 3638.1 ! 3638.4 ! 3637.9 ! 3637.8 !	70.0 ! 68.1 ! 78.9 ! 78.3 ! 79.5 ! 62.8 ! 57.1 ! 55.2 ! 66.2 ! 65.6 ! 66.9 !	7.245 8.299 8.559 7.283 7.342 7.220 7.205 1 6.298 6.935 7.106 6.242 6.283 6.198 6.187 3.827 3.982 4.029 3.771 3.784 1.3756 3.753 1.2.658 2.714 2.733 2.627 2.633 2.621 2.619

TABLE D-22.- REFRACTION CORRECTIONS FOR ASCENSION SEPTEMBER OPTICAL ATMOSPHERE, $H=10^4$ METERS

 $(\lambda = 0.555 \text{ micron})$

Ë _M , dėg	! ! Hg, m	 ρ, km .	. Δρ ₇ , m	! !. ΔĖ ₁₈ , mrad !
0.5 1.5 1.5 1.5 1.5 1.5	! $H_{S1} = 7666$! $H_{S2} = 7223$! $H_{S3} = 9867$! $H_{S4} = 9714$! $H_{S5} = 10034$	331.7 333.2 326.4 326.7 326.1	1 58.5 1 63.3 -	1 3.497 1 1 4.564 1 1 4.804 1 1 3.659 1 1 3.710 1 1 3.604 1 1 3.592
! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	! Hs3 = 9 867 ! Hs4 = 9 714 ! Hs5 = 10 034 ! Hs6 = 10 074 ! Ref. atm. ! Hs1	! 281.1 ! 276.9 ! 277.1 ! 276.7 ! 276.7 ! 158.5 ! 159.4 ! 158.5 ! 158.6 ! 158.5	1 51.7 1 47.8 1 46.8 1 51.7 1 51.5 1 52.0 1 27.7 1 25.0 1 27.7 2 27.6 1 27.6 1 28.0	1 2.959 1 3.710 1 3.889 1 3.020 1 3.059 1 2.977 1 2.968 1 1.631 1 1.962 1 2.044 1 1.633 1 1.652 1 1.612
3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HS6 = 10 074 Ref. atm. HS1 = 7 666 HS2 = 7 223 HS3 = 9 867 HS4 = 9 714 HS5 = 10 034 HS6 = 10 074	1 158.5 1 106.0 1 106.2 1 -106.3 1 106.0 1 106.0 1 106.0	1 28.0 1 18.2 1 16.3 1 15.8 1 18.3 1 18.2 1 18.4 1 18.4	1.607 1.075 1.281 1.333 1.073 1.085 1.060 1.057

TABLE D-23.- REFRACTION CORRECTIONS FOR ASCENSION ANNUAL OPTICAL ATMOSPHERE, $H=10^6$ METERS

 $(\lambda....)$ 0.555. micron)

i É _M , deg	H _S , in	l. I ρ, km	Ĭ _ ! Δρ _{.7} , m !	l ΔE ₁ 8, mrad l
I 0.5 II .5	Ref. atm. H _{S1} = 7 697 H _{S2} = 7 236 H _{S3} = 9 960 H _{S4} = 9 805 H _{S5} = 10 170 H _{S6} = 10 202	3698.7 3705.7 3707.4 3699.2 3699.5 3698.7 3698.6	75.0 69.5 67.6 78.6 78.0 79.4	7.116 8.216 8.482 7.191 7.250 7.114 7.102
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. H _{S1} = 7 697 H _{S2} = 7 236 H _{S3} = 9 960 H _{S4} = 9 805 H _{S5} = 10 170 H _{S6} = 10 202		62.6 56.8 54.8 66.0 65.4 66.8 67.0	6.204 6.870 7.046 6.169 6.210 6.115 6.107
. 3 ! ! 3 ! ! 3 ! ! 3 ! ! 3 !	Ref. atm. HS1 = 7 697 HS2 = 7 236 HS3 = 9 960 HS4 = 9 805 HS5 = 10 170 HS6 = 10 202	3412.2 3413.1 3413.4 3411.9 3411.9 3411.8 3411.7		3.789 3.948 3.998 3.734 3.748 3.716 3.714
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	Ref. atm. H _{S1} = 7 697 H _{S2} = 7 236 H _{S3} = 9 960 H _{S4} = 9 805 H _{S5} = 10 170 H _{S6} = 10 202	3208.6 3208.6	24.1 21.1 20.0 26.6 26.2 27.1 27.2	2.635 2.692 2.712 2.604 2.610 2.596 2.595

TABLE D-24. - REFRACTION CORRECTIONS FOR ASCENSION ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

E _M , deg	! H _S , m	l ρ, km	Ι Δρ ₇ , m	
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	325.1 331.4 332.9 326.1 326.4 325.7	1 62.8 1 59.0 1 58.1 1 62.9 1 62.7 1 63.2 1 63.2	1 3.424 1 1 4.512 1 1 4.758 1 1 3.600 1 1 3.650 1 1 3.533 1 2 3.524 1
! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$H_{S5} = 10 170$! 276.4 ! 280.0 ! 280.9 ! 276.7 ! 276.9 ! 276.4 ! 276.4 ! 158.5 ! 159.3 ! 158.5 ! 158.5	1 51.4 1 47.5 1 46.5 1 51.2 1 51.8 1 51.8 1 27.6 1 24.9 1 24.2 1 27.7 1 27.5	2.904
3 1 5 5 5 5 5 5	! Hs5 = 10 170 ! Hs6 = 10 202 ! ! Ref. atm. ! Hs1 = 7 697 ! Hs2 = 7 236 ! Hs3 = 9 960 ! Hs4 = 9 805	1 158.4 1 158.4 1 106.0 1 106.2 1 106.3 106.0	! 27.9 ! 27.9 ! 18.2 ! 16.2 ! 15.7 18.2	! 1.584 ! ! 1.580 ! ! 1.059 ! ! 1.268 ! ! 1.322 1.058
1 5 1 5	! H _{S5} = 10 170 ! H _{S6} = 10 202	1 106.0 1 106.0	! 18.3 ! 18.4 !	! 1.041 ! 1.039

TABLE D-25.- REFRACTIONS CORRECTIONS FOR KWAJALEIN MAY OPTICAL ATMOSPHERE, H = 106 METERS

! Ē _M , deg	l H _S , m	l ρ, km	i 1 Δρ ₇ , m	1 ΔE_{18} , mrad
! 0.5 ! ! .5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 7 748 HS2 = 7 267 HS3 = 10 186 HS4 = 9 946 HS5 = 10 284 HS6 = 10 423	1 3697.9 1 3704.8 1 3706.5 1 3698.0 1 3698.6 1 3697.8	1 74.4 1 68.7 1 66.7 1 78.3 1 77.4 1 78.7 1 79.2	6.997 8.075 8.346 7.012 7.099 6.977 6.929
! 11 ! 1 ! 1 ! 1 ! 1	$H_{S3} = 10 186$	3637.2 1 3641.4 1 3642.5 1 3636.8 1 3637.2 1 3636.7 1 3636.4	62.2 56.2 54.2 66.0 65.1 66.4 66.9	6.087 6.758 6.938 6.029 6.076 6.005 5.971
! 3 ! 3 ! 3 ! 3 ! 3	UL	. 3411.8 . 3412.8 . 3413.1 . 3411.5 . 3411.6 . 3411.4 . 3411.4	35.5 1 31.2 1 29.6 1 38.8 1 38.1 1 39.1 1 39.6	3.728 3.891 3.942 3.667 3.687 3.659 3.647
! 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 1 1 5 5 1	! Ref. atm. ! H _{S1} = 7 748 ! H _{S2} = 7 267 ! H _{S3} = 10 186 ! H _{S4} = 9 946 ! H _{S5} = 10 284 ! H _{S6} = 10 423	! 3208.6 ! 3208.9 ! 3209.0 ! 3208.4 ! 3208.4 ! 3208.4 ! 3208.3	1 24.0 1 21.0 1 19.8 1 26.8 1 26.2 1 27.0 1 27.3	2.597 2.655 2.675 2.562 2.571 2.559 2.554

TABLE D-26.- REFRACTION CORRECTIONS FOR KWAJALEIN MAY OPTICAL ATMOSPHERE, H = 104 METERS

! ! E _M , deg	l H _S , m l	l ρ, km	Ι Ι Δρ ₇ , m	l ΔE ₁₈ , mrad l
! 0.5 ! 0.5 ! .5 ! .5 ! .5	Ref. atm. H _{S1} = 7 748 H _{S2} = 7 267 H _{S3} = 10 186 H _{S4} = 9 946 H _{S5} = 10 284 H _{S6} = 10 423	324.7 330.9 332.4 325.4 325.8 325.8 325.0	62.2 58.3 57.3 62.4 62.0 62.5 62.7	3.362 ! 4.424 ! 4.674 ! 3.480 ! 3.555 ! 3.451 ! 3.410 !
! 1 ! 1 ! 1 ! 1 ! 1 ! 1	$H_{S3} = 10 186$ $H_{S4} = 9 946$	276.0 279.7 280.6 276.2 276.5 276.1 276.0	51.0 47.0 45.9 51.1 50.7 51.2 51.4	2.835 ! 3.601 ! 3.788 ! 2.878 ! 2.936 ! 2.855 ! 2.823 !
. 3 ! 3 ! 3 ! 3 ! 3	! $H_{S3} = 10 \ 186$! $H_{S4} = 9 \ 946$! $H_{S5} = 10 \ 284$	158.4 159.1 159.3 158.4 158.4 158.3 158.3	27.4 1 24.6 1 23.9 1 27.5 1 27.3 1 27.6 1 27.8	1.565 I 1.907 I 1.994 I 1.561 I 1.590 I 1.550 I 1.534 I
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$H_{S4} = 9946$! 106.0 ! 106.0 ! 106.0	18.1 16.1 15.6 18.1 18.0 18.1 18.3	1.033 ! 1.246 ! 1.301 ! 1.027 ! 1.045 ! 1.020 ! 1.009 !

TABLE D-27. - REFRACTION CORRECTIONS FOR KWAJALEIN DECEMBER OPTICAL ATMOSPHERE, H = 106 METERS

! !_E _M , deg!	Hs., m	! !p, km !	! ! 497, m !	ΔE_{18} , mrad
I 0.5 I I .5 I I .5 I I .5 I I .5 I I .5 I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I .5 I I I I	$H_{S4} = 9937$	1. 3698.1. 1. 3698.6	1 74.3 1 68.7 1 66.6 1 78.0 1 77.3 1 78.6 1 79.2	6.993 8.065 8.337 7.027 7.095 6.975 6.917
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref. atm. HS1 = 7 752 HS2 = 7 269 HS3 = 10 123 HS4 = 9 937 HS5 = 10 271 HS6 = 10 438	1 3636.9 1 3637.2	62.1 56.2 54.1 65.7 65.0 66.2 66.9	6.084 6.750 6.930 6.039 6.087 6.002 5.961
1 3 1 1 3 1 1 3 ! 1 3 ! 1 3 !	$H_{S2} = 7 269$ $H_{S3} = 10 123$	1 3411.5 1 3411.6 1 3411.4	35.5 31.2 29.6 38.6 38.1 39.1	3.669 3.684 3.656
5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 !	$H_{S2} = 7 269$ $H_{S3} = 10 123$	3208.6 3208.9 3209.0 3208.4 3208.4 3208.4 3208.3 1	1 19.8- 1 1 26.6 1 26.2	2.595 2.653 2.673 2.562 2.569 2.557 2.551

TABLE D-28. - REFRACTION CORRECTIONS FOR KWAJALEIN DECEMBER OFTICAL ATMOSPHERE, H = 104 METERS

! ! E _M , deg	! . H _S , m !	l ! ρ, km !	! ! Δρ ₇ , m !	! ! ΔE ₁₈ , mrad ! !
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. H _{S1} = 7 752 H _{S2} = 7 269 H _{S3} = 10 123 H _{S4} = 9 937 H _{S5} = 10 271 H _{S6} = 10 438	332.4 325.5 325.8	62.1 58.3 57.3 62.2 61.9 62.4 62.6	3.362 4.417 4.668 3.496 3.554 3.451 3.402
I 1 I I I I I I I I I I I I I I I I I I	! Ref. atm. ! H _{S1} = 7 752 ! H _{S2} = 7 269 ! H _{S3} = 10 123 ! H _{S4} = 9 937 ! H _{S5} = 10 271 ! H _{S6} = 10 438	280.6 276.3 276.5	50.9 46.9 45.9 50.9 50.7 51.1 51.4	2.835 3.596 3.784 2.891 2.936 2.856 2.817
	Ref. atm. HS1 = 7 752 HS2 = 7 269 HS3 = 10 123 HS4 = 9 937 HS5 = 10 271 HS6 = 10 438	1. 159.3	27.4 ! 24.6 ! 23.9 ! 27.5 ! 27.3 ! 27.6 ! 27.8	1 - 1.566 1 - 1.905 1 - 1.992 1 - 1.567 1 - 1.589 1 - 1.531
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. Hs1 = 7 752 Hs2 = 7 269 Hs3 = 10 123 Hs4 = 9 937 Hs5 = 10 271 Hs6 = 10 438	1 106.3 1 106.0	18.0 16.1 15.6 18.1 17.9 18.2 18.3	1.033 1.245 1.299 1.031 1.045 1.020 1.007

E _M , deg	! . H _S , m.	ρ,_km	ι Δρ ₇ , m	$\Delta \dot{E}_{18}$, mrad
! 0.5 ! .5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 7 751 HS2 = 7 268 HS3 = 10 175 HS4 = 9 942 HS5 = 10 300 HS6 = 10 433	3706.5 3698.0 3698.6	1 74.4 1 68.7 1 66.7 1 78.2 1 77.4 1 78.7 1 79.2	6.988 8.068 8.340 1 7.011 7.096 1 6.967 1 6.921 1
! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	1 1154 - 7 7 1-	1 3637.1 1 3641.3 1 3642.5 1 3636.8 1 3637.2 1 3636.6 1 3636.4	1 62.1 1 56.2 1 54.1 1 65.9 1 65.0 1 66.4 1 66.9	1 1
! ! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! Hs1 = 7 751 ! Hs2 = 7 268 ! Hs3 = 10 175 ! Hs4 = 9 942 ! Hs5 = 10 300 ! Hs6 = 10 433	! 3411.5 ! 3411.6 ! 3411.4	! 35.5 ! 31.2 ! 29.6 ! 38.8 ! 38.1 ! 39.2- ! 39.6	1 3.644
5 5 5 5 5 5 5 5 1	Ref. atm. H _{S1} = 7 751 H _{S2} = 7 268 H _{S3} = 10 175 H _{S4} = 9 942 H _{S5} = 10 300 H _{S6} = 10 433	1 3209.0 1 3208.4 1 3208.4 1 3208.4	1 24.0 1 21.0 1 19.8 1 26.7 1 26.2 1 27.0 1 27.3	1 2.595 1 2.654 1 2.674 1 2.561 1 2.569 1 2.557 1 2.552

TABLE D-30.- REFRACTION CORRECTIONS FOR KWAJALEIN ANNUAL OPTICAL ATMOSPHERE, H = 10 H METERS

 $(\lambda = 0.555 \text{ micron})$

E _M , deg	l. H _S , m	! ! .ρ, km !	! Ι Δρ ΄ , m L	! ! ΔE ₁₈ , mrad !
! 0.5 ! .5 ! .5 ! .5 ! .5 ! .5	Ref. atm. H _{S1} = 7 751 H _{S2} = 7 268 H _{S3} = 10 175 H _{S4} = 9 942 H _{S5} = 10 300 H _{S6} = 10 433	1 324.7 1 330.9 1 332.4 1 325.4 1 325.8 1 325.2 1 325.0 1	62.1 58.3 57.3 62.3 62.0 62.5 62.6	1 3.352 1 4.419 1 4.671 1 3.481 1 3.554 1 3.444 3.405
I	Ref. atm. H _{S1} = 7 751 H _{S2} = 7 268 H _{S3} = 10 175		51.0 50.7 51.2	2.828 3.597 3.785 2.879 2.935 2.850 2.819
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 1 3 1	Ref. atm. H _{S1} = 7 751 H _{S2} = 7 268 H _{S3} = 10 175 H _{S4} = 9 942 H _{S5} = 10 300 H _{S6} = 10 433	! 158.4 - ! ! 158.4 !	23.9 27.5 27.3	1.563 1.906 1.992 1.562 1.589 1.547 1.532
5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 !		1 106.0 1 106.2 1 106.3 1 106.0 1 106.0 1 106.0	18.0 16.1 15.6 18.1 17.9-1 18.2 18.3	1.032 1.245 1.300 1.027 1.045 1.018 1.008

TABLE D-31.- REFRACTION CORRECTIONS FOR WALLOPS MARCH OFTICAL ATMOSPHERE, H = 106 METERS

! ! E _M , deg !	H _S , m	! ρ, km	! Δργ, m !	! ! ΔE ₁₈ , mrad ! !
1 0.5 1 .5 1 .5 1 .5	Ref. atm. H _{S1} = 7 346 H _{S2} = 7 124 H _{S3} = 8 997 H _{S4} = 9 053	1 1 3706.7 1 3711.8 1 3712.7 1 3705.9 1 3705.7	! 78.7 ! 74.4 ! 73.4 ! 81.7 ! 82.0	! 8.383 ! ! 9.166 ! ! 9.314 ! ! 8.243 !
! .5. ! .5	! H _{S5} = 8 883 ! H _{S6} = 8 796	3706.2	81.2 1 80.9	! 8.298 ! ! 8.341 !
! 1 ! 1 ! 1 ! 1 ! 1 ! 1	$H_{S4} = 9.053$	1 3643.5 1 3646.7 1 3647.3 1 3642.8 1 3642.7 1 3643.1 1 3643.3	! 64.8 ! 60.3 ! 59.3 ! 67.8 ! 68.0 ! 67.3 ! 66.9	! 7.100 ! ! 7.611 ! ! 7.708 ! ! 6.993 ! ! 6.974 ! ! 7.030 ! ! 7.060 !
: ! 3 ! 3 ! 3 ! 3 ! 3	! $H_{S3} = 8997$! $H_{S4} = 9053$	3414.5 3415.3 3415.4 3414.2 3414.2 3414.3 3414.3	36.1 ! 32.8 ! 32.0 ! 38.7 ! 38.9 ! 38.3 ! 38.3	4.192 ! 4.319 ! 4.345 ! 4.138 ! 4.133 ! 4.150 ! 4.159 !
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	Ref. atm. H _{S1} = 7 346 H _{S2} = 7 124 H _{S3} = 8 997 H _{S4} = 9 053 H _{S5} = 8 883 H _{S6} = 8 796	3210.2 3210.4 3210.4 3210.0 3210.0 3210.0 3210.0	! 24.2- ! 21.9 ! 21.3 ! 26.3 ! 26.5 ! 26.0 ! 25.8	! 2.886 ! ! 2.930 ! ! 2.941 ! ! 2.858 ! ! 2.855 ! ! 2.862 ! ! 2.866 !

TABLE D-32.- REFRACTION CORRECTIONS FOR WALLOPS MARCH OPTICAL ATMOSPHERE, H. = 104 METERS

!_E _M , deg	! . H _S , m !	! L. ρ, km !	l Δρ ₇ , m.	! ! ^Δ E _{18.} , mrad . !	.
I _ 0 .5 _ I5 I5 I5 I5 I5 I5 I5	! Ref. atm. ! H _{S1} = 7 346 ! H _{S2} = 7 124 ! H _{S3} = 8 997 ! H _{S4} = 9 053 ! H _{S5} = 8 883	! 335.8 ! 330.1 ! 330.0	63.6. 63.1 66.9 67.0	! 4.339 ! 5.117 ! 5.225 - ! 4.286 ! 4.262	
! .5. ! ! !	$H_{S6} = 8796$! ! Ref. atm.	! 330.6 ! ! ! 279.4	66.5 !	1. 4.372 1. 3.537	 -
I 1 I I I I I I I I I I I I I I I I I I	! $H_{S1} = 7346$. ! $H_{S2} = 7124$! $H_{S3} = 8997$! $H_{S4} = 9053$! $H_{S5} = 8883$	1 282.3 1 282.8 1 279.3 1 279.2 1 279.5	50.9 50.3 54.3 54.4 54.1	! 4.140 ! 4.242 ! 3.513 ! 3.495 ! 3.550	: ! ! !
I 1 I 3 I 3 I 3 I 3 I 3	! H _{S6} = 8 796 ! ! Ref. atm. ! H _{S1} = 7 346 ! H _{S2} = 7 124	! 159.1 ! 159.7 ! 159.8	! 53.9 ! 28.8 ! 26.4 ! 26.0	! 3.579 ! 1.885 ! 2.173 ! 2.219	! ! ! ! !
! 3 ! 3_ ! 3 ! 3	! $H_{S3} = 8997$! $H_{S4} = 9053$! $H_{S5} = 8883$! $H_{S6} = 8796$! 159.0 ! 159.1	! <u>29.9</u> ! 28.7	! 1.880 ! 1.872 ! 1.898 ! 1.912] [[
5 5 5 5 1 5 1 5 1 5 5	Ref. atm. H _{S1} = 7 346 H _{S2} = 7 124 H _{S3} = 8 997 H _{S4} = 9 053 H _{S5} = 8 883 H _{S6} = 8 796	! 106.2 ! 106.2 ! 106.2	18.9 17.2 16.9 18.9 18.9 18.8 18.8	1.234 1.416 1.445 1.232 1.227 1.227 1.243 1.252	

TABLE D-33.- REFRACTION CORRECTIONS FOR WALLOPS JULY OPTICAL ATMOSPHERE, H = 106 METERS

					-
!_E _M , deg	g L	H _S , m	! ! ρ, km !	!- ! Δρ ₇ , m !	! ! ΔE ₁₈ , mrad !
1 0 .5 .5 .5 .5 .5 .5 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1		Ref. atm. HS1 = 7 678 HS2 = -7 251 HS3 = 10 057 HS4 = 9 813 HS5 = 10 123 Ref. atm. HS1 = 7 678 HS2 = 7 251 HS3 = 10 057 HS4 = 9 813 HS5 = 10 092 HS6 = 10 123 Ref. atm. ! Ref. atm. ! HS1 = 7 678 ! RS5 = 10 092 ! Ref. atm. HS1 = 7 678 ! Ref. atm. ! Ref. atm. HS1 = 7 678 ! HS5 = 10 092 ! Ref. atm. HS1 = 7 678 ! HS2 = 7 251 HS3 = 10 057 ! HS4 = 9 813 ! HS5 = 10 092 ! HS6 = 10 123 !	3699.4 3706.0 3707.6 3699.2 3699.8 3699.0 3638.2 3642.3 3643.3 3637.7	1 75.4 1 69.8 1 68.0 1 79.4 1 78.4 1 79.5 1 79.6 1 62.9 1 57.0 1 55.1 1 66.7 1 65.8 1 66.9 1 67.0 1 35.8 31.5	7.227 8.267 8.516 7.190 7.282 7.177 7.166 6.250 6.910 7.074
5 1 5 1 5 1 5 1 5 1 5	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Ref. atm. ! HS1 = 7 678 ! HS2 = 7 251 ! HS3 = 10 057 ! HS4 = 9 813 ! HS5 = 10 092 ! HS6 = 10 123 !	3208.9 ! 3209.2 ! 3209.3 ! 3208.7 ! 3208.7 ! 3208.6 !	24.2 ! 21.2 ! 20.1 ! 26.9 ! 26.4 ! 27.0 ! 27.1 !	2.648 ! 2.706 ! 2.724 ! 2.612 ! 2.621 ! 2.611 !

TABLE D-34.- RETRACTION CORRECTIONS FOR WALLOPS
JULY OPTICAL ATMOSPHERE, H = 10 METERS

! ! E _M , deg	!- H _S , m	ρ, km	ι Δρ ₇ , m	ΔE_{18} , mrad I
1 0.5 1 .5 1 .5 1 .5 1 .5 1 .5	Ref. atm. ! Hs1 = 7 678 ! Hs2 = 7 251 ! Hs3 = 10 057 ! Hs4 = 9 813 ! Hs5 = 10 092 ! Hs6 = 10 123	! 333.0 ! 326.0 ! 326.5	63.2 59.3 58.4 63.4 63.4 63.4 63.4	3.500 4.544 4.773 4.773 3.586 1 3.665 1 3.56
! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! H _{S1} = 7 678 ! H _{S2} = 7 251 ! H _{S3} = 10 057 ! H _{S4} = 9 813 ! H _{S5} = 10 092	1 276.6 1 276.9 1 276.6 1 276.6 1 158.5 1 159.2 1 159.4 1 158.5	1 51.7 1 47.7 1 46.8 1 51.8 1 51.9 1 51.9 1 27.8 1 27.8 1 27.9 1 27.6 1 27.9 1 27.9	2.931 3.695 3.866 2.963 3.024 2.954 1.610 1.954 2.033 1.605 1.605 1.605 1.600 1.597
! 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! H _{S1} = 7 678 ! H _{S2} = 7 251 ! H _{S3} = 10 057 ! H _{S4} = 9 813 ! H _{S5} = 10 092 ! H _{S6} = 10 123	1 106.3 1 106.0 1 106.0 1 106.0	! 18.3 ! 16.3 ! 15.8 ! 18.4 ! 18.2 ! 18.4 ! 18.4	1 1.062 1 1.276 1 1.326 1 1.055 1 1.074 1 1.052 1 1.050

TABLE D-35. - REFRACTION CORRECTONS FOR WALLOPS
ANNUAL OPTICAL ATMOSPHERE, H = 100 METERS

TABLE D-36.- REFRACTION CORRECTIONS FOR WALLOPS ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

 $(\lambda = 0.555 \text{ micron})$

E _M , deg	Hġ, m	1.ρ,km	1 Δ <u>0</u> 7, m	! ΔE ₁₈ , mrad ! ! ΔΕ ₁₈ , mrad !
1 0.5 ! .5 ! .5 ! .5 ! .5	$H_{S3} = 9 437$ $H_{S4} = 9 453$ $H_{S5} = 9 422$		65.0 61.5 60.8 65.1 65.1 65.1	1 3.927 1 1 4.827 1 1 5.017 1 1 3.954 1 1 3.948 1 1 3.959 1 1 3.950 1
! ! 1- ! 1 ! 1. ! 1- ! 1-	! Ref. atm. ! H _{S1} = 7 513 ! H _{S2} = 7 184 ! H _{S3} = 9 437 ! H _{S4} = 9 453 ! H _{S5} = 9 422 ! H _{S6} = 9 447	! 278.0 ! 281.2 ! 281.9 ! 278.0 ! 278.0 ! 278.1 ! 278.1	1 53.0 1 49.3- 1 48.6 1 53.0 1 53.0 1 53.0	3.244 3.915 4.057 3.253 3.248 3.257 3.250
1 3 1 3 1 3 1 3 1 3	Ref. atm. HS1 = 7 513 HS2 = 7 184 HS3 = 9 437 HS4 = 9 453 HS5 = 9 422 HS6 = 9 447	1 158.8 1 159.4 1 159.6 1 158.8 1 158.8 1 158.8	1 28.3 1 25.7 1 25.2 1 28.3 1 28.3 1 28.3	! 1.750 ! 2.063 ! 2.127 ! 1.750 ! 1.748 ! 1.752 ! 1.749
5555555 1 5555 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! Hs1 = 7 513 ! Hs2 = 7 184 ! Hs3 = 9 437 ! Hs4 = 9 453 ! Hs5 = 9 422 ! Hs6 = 9 447	1 106.1 1 106.3 1 106.3 1 106.1 1 106.1 1 106.1 1 106.1	1 18.6 1 16.8 1 16.4 1 18.6 1 18.6 1 18.6 1 18.6	! 1.149 ! 1.346 ! 1.386 ! 1.149 ! 1.147 ! 1.150 ! 1.148

TABLE D-37.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL JANUARY OFTICAL ATMOSPHERE, H = 106 METERS

! !-E _M , deg	H _S , m	l !ρ,km	1 Δρ ₇ , m	! ! ΔΕ ₁ 8, mrad ! ! !
! 0.5 ! .5 ! .5 ! .5 ! .5	$H_{S2} = 7 195$ $H_{S3} = 9 586$	1 3702.1 1 3708.0 1 3709.4 1 3701.7 1 3701.7 1 3701.7 1 3701.5 1	76.6 71.5 69.9 79.9 79.9 79.9	7.587 !
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	$\begin{array}{l} \text{II} \text{ H}_{\text{S2}} = 7 \text{ 195} \\ \text{II} \text{ H}_{\text{S3}} = 9 \text{ 586} \\ \text{III} \text{ H}_{\text{S4}} = 9 \text{ 595} \\ \text{III} \text{ H}_{\text{S5}} = 9 \text{ 581} \\ \end{array}$	3640.1	56.6 66.8 66.9	6.560 ! 7.154 ! 7.302 ! 6.480 ! 6.478 ! 6.482 ! 6.462
1 3 1 3 1 3 1 3 1 3 1 3	$H_{S2} = 7 195$. $H_{S3} = 9 586$. $H_{S4} = 9 595$	1 3412.8 1 3412.8	35.9 32.0 30.7 38.7 38.8 38.8 39.0	3.944 1. 4.092 1. 4.133 1. 3.890 1. 3.889 1. 3.890 1. 3.884
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	! $H_{S3} = 9586$! $H_{S4} = 9595$	1 3209.3 1 3209.6 ! 3209.7 ! 3209.2 ! 3209.1 ! 3209.2 ! 3209.1	24.2 1 21.5 1 20.5 1 26.5 1 26.6 1 26.5 1 26.7	2.732 2.785 2.801 2.702 1 2.702 1 2.703 1 2.700 1

TABLE D-38.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL JANUARY OPTICAL ATMOSPHERE, H = 10 METERS

! E _M , deg	. Н _S , m	. ρ, km	1 Δο ₇ , m	ΔE ₁₈ , mrad_
1 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HS3 = 9 586	277.6 1 158.7 1 159.4 1 159.5 1 158.7 1 158.7 1 106.1 1 106.3 6 1 106.3 6 1 106.1 1 106.1	! 16.2 ! 18.5 ! 18.5 ! 18.5	! 1.325 ! 1.369 ! 1.123 ! 1.122

TABLE D-39.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL AUGUST OPTICAL ATMOSPHERE, H = 106 METERS

1 1	E _M , deg	H _S , m	i ρ, km	! Δρ ₇ , m	1 $\Delta \mathrm{E}_{18}$, mrad
	0.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Ref. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 302 HS4 = 10 025 HS5 = 10 459 HS5 = 10 378 Ref. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 302 HS4 = 10 025 HS5 = 10 459 HS6 = 10 378 Ref. atm. HS1 = 7 738 Ref. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 302 HS4 = 10 025 HS5 = 10 459 HS6 = 10 378 IRef. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 378 IRef. atm.	3697.7 3705.0 3706.7 3697.9 3698.5 3697.5	74.8 68.9	- 6.966 8.103 8.369 6.990
! ! ! !	5 ! 5 ! 5 ! 5 !	HS3 = 10 302 ! HS4 = 10 025 ! HS5 = 10 459 ! HS6 = 10 378 !	3208.4 ! 3208.5 ! 3208.4 ! 3208.4 !	27.1 ! 26.5 ! 27.5 ! 27.3 !	2.565 ! 2.575 ! 2.559 ! 2.562 !

TABLE D-40.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL .. AUGUST OPTICAL ATMOSPHERE, H = 104 METERS

! ! E _M , deg	H _S , m	l !ρ,km l	! ! Δρ ₇ , m !	- ΔE ₁₈ , mrad
1. 0.5 1 1 .5 1 1 .5 1 1 .5 1 1 .5 1	Ref. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 302 HS4 = 10 025 HS5 = 10 459 HS6 = 10 378	325.7 325.0	1 62.5 1 58.5 1 57.5 1 62.7 1 62.3 1 62.9	3.299 4.441 4.687 3.455 3.540 1 3.432
!	Ref. atm. H _{S1} = 7 738 H _{S2} = 7 268 H _{S3} = 10 302 H _{S4} = 10 025 H _{S5} = 10 459 H _{S6} = 10 378	276.1 276.5	! 51.3 ! 47.1 ! 46.1 ! 51.4 ! 51.6 ! 51.6	2.798 3.614 3.798 3.798 2.859 2.925 2.823 2.841
1 3 1 1 3 1 1 3 1 1 3 1 1 3 1	Ref. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 302 HS4 = 10 025 HS5 = 10 459 HS6 = 10 378	1 158.4 1 159.1 1 159.3 1 158.4 1 158.4 1 158.3 1 158.3	27.6 24.7 24.0 27.7 27.5 27.5 27.9	1.554 1.914 1.999 1.552 1.584 1.534 1.543
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	Ref. atm. HS1 = 7 738 HS2 = 7 268 HS3 = 10 302 HS4 = 10 025 HS5 = 10 459 HS6 = 10 378	1 106.0 1 106.2 1 106.3 1 106.0 1 106.0 1 106.0 1 106.0	18.2 16.1 15.6 18.3 18.1 18.4 18.3	1.027 1.251 1.304 1.021 1.042 1.010 1.015

TABLE D-41.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL ANNUAL OPTICAL ATMOSPHERE, H = 106 METERS

E _M , deg	!	l !ρ,km	i 1 Δρ ₇ , m 1	! ! ΔE ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5	Ref. atm. HS1 = 7682 HS2 = 7244 HS3 = 10070 HS4 = 10028 HS5 = 10028 HS6 = 10039	3707.6 3699.1	75.3 69.7 67.9 79.3 78.7 79.9	7.154 8.257 8.511 7.178 7.244 7.120 7.153
I. 1 II II II II II II II II II II II II I	Ref. atm. H _{S1} = 7 682 H _{S2} = 7 244 H _{S3} = 10 070 H _{S4} = 9 893 H _{S5} = 10 228 H _{S6} = 10 139	3643.3 ! 3637.6 ! 3637.9 !	62.8 57.0 55.1 - 1 66.7 66.0 67.3 67.0	6.220 ! 6.902 ! 7.070 ! 6.164 ! 6.211 ! 6.124 !
! 3 ! ! 3 ! ! 3 ! ! 3 !	Ref. atm. ! Hs1 = 7 682 ! Hs2 = 7 244 ! Hs3 = 10 070 ! Hs4 = 9 893 ! Hs5 = 10 228 ! Hs6 = 10 139 !	3413.5 ! 3411.9 ! 3412.0 !	35.7 ! 31.5 ! 30.0 ! 39.2 ! 38.6 ! 39.6 ! 39.4 !	3.803 ! 3.965 ! 4.012 ! 3.739 ! 2.754 ! 3.725 ! 3.733 !
5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 ! 5 !	Ref. atm. ! HS1 = 7 682 ! HS2 = 7 244 ! HS3 = 10 070 ! HS4 = 9 893 ! HS5 = 10 228 ! HS6 = 10 139 !	3208.8 ! 3209.2 ! 3209.3 ! 3208.6 ! 3208.7 ! 3208.6 ! 3208.6 !	24.2 ! 21.2 ! 20.1 ! 26.9 ! 26.5 ! 27.3 ! 27.1 !	2.646 ! 2.703 ! 2.722 ! 2.610 ! 2.616 ! 2.604 ! 2.607 !

TABLE D-42.- REFRACTION CORRECTIONS FOR CAPE CANAVERAL ANNUAL OPTICAL_ATMOSPHERE, $H = 10^4$ METERS

! E _M , deg	! !- H _S , m !	! !- ρ, km !	! ! _Δρ ₇ , m !	ΔE_{18} , mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	! Ref. atm. ! Hs1 = 7 682 ! Hs2 = 7 244 ! Hs3 = 10 070 ! Hs4 = 9 893 ! Hs5 = 10 228 ! Hs6 = 10 139	325.7	63.2 59.3 58.3 63.3 63.1 63.5 63.4	3.428 4.537 4.772 3.579 3.635 3.529 3.557
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1 \text{ H}_{\text{S4}} = 9 893$	1 276.6	51.8 47.7 46.7 51.8 51.6 52.0 51.9	2.896 3.690 3.865 2.957 3.001 2.918 2.940
1 3 1 3 1 3 1 3 1 3		. 158.5 ! 159.2 ! 159.4 ! 158.5 ! 158.5 ! 158.4 ! 158.4	27.8 1 24.9 1 24.3 1 27.9 1 27.7 1 28.0 1 28.0	1.600 1.951 2.032 1.602 1.623 1.583 1.593
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$H_{S3} = 10 070$	1 106.0 1 106.2 1 106.3 1 106.0 1 106.0 1 106.0 1 106.0		1.055 1.275 1.325 1.053 1.067 1.041 1.048

TABLE D-43.- REFRACTION CORRECTIONS FOR HAWAII FEBRUARY OPTICAL ATMOSPHERE, H = 106 METERS

! E _M , deg	! H _S , m !.	ρ, km !	Δρ ₇ , m!	ΔE ₁₈ , mrad !
! 0.5 ! .5 ! .5 ! .5 ! .5	Ref. atm.	3699.8 ! 3706.6 —! 3708.1 ! 3699.9 ! 3700.2 ! 3699.5 ! 3699.7 !	75.6 ! 70.3 ! 68.5 ! 79.4 ! 78.9 ! 80.0 ! 79.8 !	7.288 ! 8.352 ! 8.594 ! 7.311 ! 7.357 ! 7.246 ! 7.272 !
! 1	! Ref. atm. ! Hs1 = 7 647 ! Hs2 = 7 236 ! Hs3 = 9 888 ! Hs4 = 9 771 ! Hs5 = 10 061 ! Hs6 = 9 992 !	3638.0 ! 3638.1 !	62.9 57.4 55.5 66.6 66.2 67.3 67.0	6.321 6.976 7.136 6.267 6.299 6.221 6.239 1
! 3 ! 3 ! 3 ! 3 ! 3	! Ref. atm. ! ! H _{S1} = 7 647 ! ! H _{S2} = -7 236 ! ! H _{S3} = 9 888 ! ! H _{S4} = 9 771 ! ! H _{S5} = 10 061 ! ! H _{S6} = 9 992 !	3413.7 3412.2 3412.2 3412.1	35.7 31.6 30.2 38.9 38.6 39.5 39.3	1 3.847 1 1 4.003 1 1 4.047 1 1 3.787 1 1 3.772 1 1 3.778 1
5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. HS1 = 7647 HS2 = 7236 HS3 = 9888 HS4 = 9771 HS5 = 10061 HS6 = 9992	3209.4 1 3208.8 1 3208.8 1 3208.8 1	24.1 21.2 20.2 26.7 26.5 27.2 27.0	2.672 ! 2.727 ! 2.745 ! 2.639 ! 2.643 ! 2.632 ! 2.635 !

TABLE D-44. - REFRACTION CORRECTIONS FOR HAWAII FEBRUARY OPTICAL ATMOSPHERE, H = 104 METERS

E _M , deg	H _S , m	l lρ, km l	! ! Δρ ₇ ,_m !	! ΔE _{18. m} rad
! 0.5 ! .5 ! .5 ! .5 ! .5	Ref. atm. HS1 = 7 647 HS2 = 7 236 HS3 = 9 888 HS4 = 9 771 HS5 = 10 061 HS6 = 9 992	1 325.6 1 331.9 1 333.3 1 326.5 1 326.7 1 326.2 1 326.3	63.5 59.7 58.9 63.6 63.4 63.9 63.8	3.518 4.597 4.821 3.670 3.709 3.614 3.636
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ref. atm. H _{S1} = 7 647 H _{S2} = 7 236 H _{S3} = 9 888 H _{S4} = 9 771 H _{S5} = 10 061 H _{S6} = 9 992	276.6 280.4 281.2 277.0 277.1 276.7 276.8	52.0 48.0 47.1 52.0 51.8 52.3 52.2	2.960 3.736 3.903 3.029 3.059 2.985 3.003
! 3 ! ! 3 ! ! 3 ! ! 3 !	Ref. atm. H _{S1} = 7 647 H _{S2} = 7 236 H _{S3} = 9 888 H _{S4} = 9 771 H _{S5} = 10 061 H _{S6} = 9 992	158.5 159.2 159.4 159.4 158.5 158.6 158.5	27.9 25.1 24.5 27.9 27.8 28.1 28.0	1.632 1.974 2.051 1.638 1.653 1.616
5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. HS1 = 7 647 HS2 = 7 236 HS3 = 9 888 HS4 = 9 771 HS5 = 10 061 HS6 = 9 992	106.0 I 106.2 I 106.3 I 106.0 I 106.0 I 106.0 I	18.4 ! 16.4 ! 15.9 ! 18.4 ! 18.3 ! 18.5 !	1.076 1.290 1.338 1.076 1.086 1.063 1.068

TABLE D-45.- REFRACTION CORRECTIONS FOR HAWAII __ JULY OPTICAL ATMOSPHERE, H.= 100 METERS

! ! E _M , deg !	!	Ι	1Δρ ₇ , m	! ΔÉ ₁₈ , mrád ! ! Δ	
1 0.5 5 1 .5 1 .5 1 .5 1 .5 1 .5	! $H_{S1} = 7.684$! $H_{S2} = 7.252$! $H_{S3} = 9.920$! $H_{S4} = 9.855$! $H_{S5} = 10.221$	1 3707.5 1 3699.4 1 3699.6	75.3 69.7 67.9 78.7 78.5 79.9	1 - ! 7.146 ! 8.251 ! 8.502 ! 7.230 ! 7.255 ! 7.119 ! 7.146 !	
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! Ref. atm. ! Hs1 = 7 684 ! Hs2 = 7 252 ! Hs3 = 9 920 ! Hs4 = 9 855 ! Hs5 = 10 221 ! Hs6 = 10 147	1 3643.3 1 3637.9	62.8 57.0 55.1 66.1 65.9 67.3	6.217 6.897 7.063 6.200 6.218 6.122 6.141	
	$H_{S2} = 7 252$ $H_{S3} = 9 920$ $H_{S4} = 9 855$	1 3412.0		3.800 I 3.963 I 4.009 I 3.750 I 3.755 I 3.724 I 3.730 I	•
5 1 5 1 5 1 5 1 5 1 5 1 5	! $H_{S2} = 7 252$! $H_{S3} = 9 920$! $-H_{S4} = 9 855$! 3209.2 ! 3208.7	24.2 21.2 20.1 26.6 26.4 27.3 27.1	2.644 I 2.702 I 2.720 I 2.614 I 2.616 I 2.603 I 2.605 I	****

TABLE D-46.- REFRACTION CORRECTIONS FOR HAWAII JULY OPTICAL ATMOSPHERE, H = 104 METERS

! E _M , deg .	! H _S , m !	l !ρ,km !	L Ι Δρ _{.7} , m Ι	
1 0.5 1 .5 1 .5 1 .5 1 .5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	331.6- 332.9 326.2	63.1 59.2 58.3 63.1 63.0 63.5 63.4	3.423 4.534 4.765 3.625 3.646 3.530 3.553
! 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	$H_{S2} = 7 252$ $H_{S3} = 9 920$ $H_{S4} = 9 855$ $H_{S5} = 10 221$	276.3 280.1 281.0 276.8 276.9 276.4 276.4	51.7 47.6 46.7 51.6 51.5 52.0 51.9	2.895 3.687 3.860 2.993 3.009 2.919
! 3 ! 3 ! 3 ! 3 ! 3	$H_{S2} = 7 252$ $H_{S3} = 9 920$ $H_{S4} = 9 855$ $H_{S5} = 10 221$	158.5 158.5	27.8 24.9 24.3 27.7 27.7 28.0 28.0	1.603 ! 1.950 ! 2.030 ! 1.619 ! 1.627 ! 1.583 ! 1.592 !
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ref. atm. H _{S1} = 7 684 H _{S2} = 7 252 H _{S3} = 9 920 H _{S4} = 9 855 H _{S5} = 10 221 H _{S6} = 10 147	106.3 1 106.0 1 106.0	18.3 16.3 15.8 118.2 118.2 118.4 118.4	1.057 1.274 1.324 1.064 1.069 1.041 1.047

TABLE D-47.- REFRACTION CORRECTIONS FOR HAWAII. ANNUAL OPTICAL ATMOSPHERE, H + 106 METERS

l E _M , deg	! ! Hs, m !	ρ, km	! ! Δρη, m !	! ΔÉ ₁₈ , mrad !
1 0.5 1 .5 1 .5 1 .5 1 .5	! $H_{S2} = 7 247$! $H_{S3} = 9 918$! $H_{S4} = 9 859$! $H_{S5} = 10 145$!	3699.2 3706.1 3707.1 3699.6 3699.7 3699.0	75.4 69.9 68.0 78.9 78.7 79.8	7.198 8.280 8.529 7.251 7.273 7.166 7.182
1	! Ref. atm. ! H _{S1} = 7 673 ! ! H _{S2} = 7 247 ! ! H _{S3} = 9 918 ! ! H _{S4} = 9 859 ! ! H _{S5} = 10 145 ! ! H _{S6} = 10 103 !	3638.0 I 3638.1 I	55.2 I 66.3 I	• • • • • • • • • • • • • • • • • • • •
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	Ref. atm. HS1 = 7 673 HS2 = 7 247 HS3 = 9 918 HS4 = 9 859 HS5 = 10 145 HS6 = 10 103	3412.3 3413.3 3413.5 3412.0 3412.0 3411.9 3411.9	35.8 ! 31.5 ! 30.1 ! 38.8 ! 38.6 ! 39.5 !	3.813 ! 3.974 ! 4.020 ! 3.760 ! 3.765 ! 3.740 ! 3.744 !
! 5 ! 5 ! 5 ! 5 ! 5 ! 5	Ref. atm. HS1 = 7 673 ! HS2 = 7 247 ! HS3 = 9 918 ! HS4 = 9 859 ! HS5 = 10 145 ! HS6 = 10 103 !	3209.3 ! 3208.7 ! 3208.7 !	24.2 ! 21.2 ! 20.1 ! 26.6 ! 26.5 ! 27.2 ! 27.1 !	2.652 ! 2.709 ! 2.727 ! 2.621 ! 2.623 ! 2.612 ! 2.614 !

TABLE D-48.- REFRACTION CORRECTIONS FOR HAWAII ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

E _M , deg	II _S , m	l ρ, km	l 1. Δρ ₇ , m l	! ! ΔΕ ₁₈ , mrad ! !
1 0.5 1 .5 1 .5 1 .5 1 .5	$H_{S3} = 9918$ $H_{S4} = 9859$	1 325.3 1 331.7 1 333.0 1 326.3 1 326.4 1 325.9 1 326.0	63.2 1 59.4 1 58.5 1 63.2 1 63.1 1 63.6 1 63.5	3.464 4.552 4.781 3.635 3.655 3.563 3.576 4.781
1	$H_{S3} = 9918$ $H_{S4} = 9859$	276.4 280.2 281.0 276.8 276.9 276.6 276.6	51.8 1 47.8 1 46.8 1 51.7 1 51.6 1 52.0 1 52.0	2.922 3.701 3.872 3.001 3.016 2.945 2.955
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	$H_{S3} = 9918$ $H_{S4} = 9859$	158.5 159.2 159.4 158.5 158.5 158.5 158.5	27.8 25.0 24.3 27.8 27.7 28.0 28.0	1.613 1.957 2.036 1.624 1.631 1.596 1.601
5 1 5 1 5 1 5 1 5 1 5 1 5	Ref. atm. H _{S1} = 7 673 H _{S2} = 7 247 H _{S3} = 9 918 H _{S4} = 9 859 H _{S5} = 10 145 H _{S6} = 10 103	1 106.0 1 106.2 1 106.3 1 106.0 1 106.0 1 106.0	! 18.3 ! 16.3 ! 15.8 ! 18.3 ! 18.2 ! 18.4 ! 18.4	! 1.064 ! 1.278 ! 1.328 ! 1.067 ! 1.072 ! 1.049 ! 1.053

TABLE D-49. - REFRACTION CORRECTIONS FOR POINT ARGUELLO JULY OPTICAL ATMOSPHERE, H = 106 METERS

 $(\lambda \pm 0.555 \text{micron})$

! ! E _M , deg	H _S , m	-ρ, km -	. Δόγ, m	ΔE ₁₈ , mrad ΔE ₁₈ , mrad
! 0.5 ! .5 ! .5 ! .5. ! .5.	$H_{S2} = 7 176$ $H_{S3} = 9 175$ $H_{S4} = 9 353$	3703.2 3702.7	76.6 72.0 72.0 70.4 78.9 79.7 76.7	8.124 8.672 8.672 8.891 7.825 7.747 1 8.071 7.680 1
! 1. 1. ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	! H _{S2} = 7 176 ! H _{S3} = 9 175 ! H _{S4} = 9 353	! 3641.8 ! 3644.3 ! 3645.2 ! 3640.7 ! 3640.4 ! 3641.8 ! 3640.1 ! 3414.2 ! 3414.4 ! 3414.2 ! 3413.1 ! 3413.5 ! 3413.0	1 63.3 1 58.6 1 57.0 1 65.7 1 66.4 1 63.5 1 67.1 1 35.7 1 32.1 1 30.9 1 37.7 1 38.3 1 36.0 1 38.8	6.828 ! 7.227 ! 7.371 ! 6.656 ! 6.602 ! 6.824 ! 6.555 ! ! 4.005 ! 4.129 ! 4.168 ! 3.959 ! 3.943 ! 4.011 : 3.928
	! Ref. atm. ! H _{S1} = 7 529 ! H _{S2} = 7 176 ! H _{S3} = 9 175 ! H _{S4} = 9 353 ! H _{S5} = 8 644 ! H _{S6} = 9 511	1 3209.5 ! 3209.7 ! 3209.8 ! 3209.4 ! 3209.3 ! 3209.5 ! 3209.5	! 24.1 ! 21.5 ! 20.6 ! 25.7 ! 26.2 ! 24.4 ! 26.6	! 2.762 ! 2.809 ! 2.824 ! 2.740 ! 2.733 ! 2.761 ! 2.727

TABLE D-50.- REFRACTION CORRECTIONS FOR POINT ARGUELLO JULY OPTICAL ATMOSPHERE, H = 104 METERS

! ! E _M , deg !	! H _S , m . !	l ρ, km.	Ι 1 Δργ, m 1	 ΔE ₁₈ , mrad
I 0.5 I .5 I .5 I .5 I .5	! Ref. atm. ! Hs1 = 7 529 ! Hs2 = 7 176 ! Hs3 = 9 175 ! Hs4 = 9 353 ! Hs5 = 8 644 ! Hs6 = 9 511	1 334.3	64.2 1 61.3 1 60.5 1 64.4 1 64.7 1 63.5 1 64.9	! 4.374 ! ! 4.800 ! ! 5.002 ! ! 4.038 ! ! -3.970 ! ! 4.256 ! ! 3.911 !
! 1. ! 1. ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 !	! Ref. atm. ! HS1 = 7 529 ! HS2 = 7 176 ! HS3 = 9 175 ! HS4 = 9 353 ! HS5 = 8 644 ! HS6 = 9 511	279.3 1 281.1 1 281.9 1 278.3 1 278.1 1 279.1 1 277.9	52.0 1 49.2 1 48.4 52.4 52.7 1 51.4 1 52.9	3.525 3.894 4.045 3.317 3.265 3.484 3.220
1 3 1 3 1 3 1 3 1 3	Ref. atm. H _{S1} = 7 529 H _{S2} = 7 176 H _{S3} = 9 175 H _{S4} = 9 353 H _{S5} = 8 644 H _{S6} = 9 511	158.9 159.4 159.6 158.8 158.8 158.8 158.7	27.7 1 25.6 1 25.0 1 27.9 1 28.1 1 27.2 1 28.3	1 1.821 1 2.052 1 1 2.121 1 1 1.781 1 1 1.756 1 1 1.860 1
5 5 5 1 5 5 5 1 5 5 1 5 1 5 1 1 5 1	! Ref. atm. ! H _{S1} = 7 529 ! H _{S2} = 7 176 ! H _{S3} = 9 175 ! H _{S4} = 9 353 ! H _{S5} = -8 644 ! H _{S6} = 9 511	1 106.1 1 106.3 1 106.3 1 106.1 1 106.1 1 106.2 1 106.1	18.2 16.7 16.3 18.3 18.5 17.8 118.6	1.186 1.339 1.382 1.168 1.152 1.218 1.138

TABLE D-51.- REFRACTION CORRECTIONS FOR POINT ARGUELLO DECEMBER OPTICAL ATMOSPHERE, H = 106

 $(\lambda = 0.555 \text{ micron})$

I I E _M , deg	H _S , m	l - ρ, km	! Δρ7, m	ΔE ₁₈ , mrad ! !
1 0.5 ! .5 ! .5 ! .5 ! .5			77.9 1 77.9 1 73.1 1 71.7 1 80.7 1 81.2 1 79.0 1 80.6	8.305 8.885 9.080 7.950 7.898 8.134 1 7.961
!	! Ref. atm. ! Hs1 = 7 450 ! Hs2 = 7 147 ! Hs3 = 9 221 ! Hs4 = 9 339 ! Hs5 = 8 826 ! Hs6 = 9 198 ! Ref. atm. ! Hs1 = 7 450 ! Hs2 = 7 147 ! Hs3 = 9 221 ! Hs3 = 9 339 ! Hs6 = 9 198	! 3642.5 ! 3645.3 ! 3646.1 ! 3641.4 ! 3641.2 ! 3642.2 ! 3641.4 ! 3413.9 ! 3414.7 ! 3414.9 ! 3413.6 ! 3413.6	1 64.2 1 59.3 1 57.9 1 67.6 1 65.5 1 67.1 1 36.0 1 32.4 1 38.6 1 38.6 1 38.5	6.935 ! 7.393 ! 7.521 ! 6.763 ! 6.727 ! 6.889 ! 6.771 ! 1 4.080 ! 4.211 ! 4.246 ! 4.025 ! 4.014 ! 4.064 ! 4.028
! ! 55 ! 55 ! 55 ! 55 !	! Ref. atm. ! Hs1 = 7 450 ! Hs2 = 7 147 ! Hs3 = 9 221 ! Hs4 = 9 339 ! Hs5 = 8 826 ! Hs6 = 9 198	1 3209.8 1 3210.0 1 3210.1 1 3209.6 1 3209.6 1 3209.7 1 3209.6	1 24.2 1 21.7 1 20.9 1 26.3 1 26.6 1 25.3 1 26.2	! 2.814 ! 2.862 ! 2.875 ! 2.786 ! 2.782 ! 2.803 ! 2.787

TABLE D-52.- REFRACTION CORRECTIONS FOR POINT ARGUELLO DECEMBER OPTICAL ATMOSPHERE, H = 10 METERS

! E _M , de	ég	l H _S , m	! ! ρ, km	! ! Δργ, m	! ! AE18, mrad
0.555555555555555555555555555555555555		Ref. atm. HS1 = 7 450 HS2 = 7 147 HS3 = 9 221 HS4 = 9 339 HS5 = 8 826 HS6 = 9 198 Ref. atm. HS1 = 7 450 HS2 = 7 147 HS3 = 9 221 HS4 = 9 339 HS5 = 8 826 HS6 = 9 198 Ref. atm. HS1 = 7 450 HS2 = 7 147 HS3 = 9 221 HS4 = 9 339 HS5 = 8 826 HS6 = 9 198 Ref. atm. HS1 = 7 450 HS2 = 7 147 HS3 = 9 221 HS4 = 9 339 HS5 = 8 826 HS6 = 9 198 Ref. atm. HS1 = 7 450 HS2 = 7 147 HS3 = 9 221 HS4 = 9 339 HS5 = 8 826 HS6 = 9 198 Ref. atm.	330.6 333.9 335.0 329.0 328.7 329.9 329.0 279.1 281.7 282.3 278.6 278.6 278.6 158.9 159.5 159.6 158.9 158.9 158.9 158.9 158.9	! ! 65.7 ! 62.3	1.366 4.936 5.116 4.096 4.050 4.257 4.105 3.482 4.000 4.133 3.364 3.329 3.488 3.371 1.825 2.104 2.165 1.806 1.789 1.865 1.899 1.192 1.372 1.411 1.184 1.173 1.222 1.186

TABLE D-53.- REFRACTION CORRECTIONS FOR POINT ARGUELLO ANNUAL OPTICAL ATMOSPHERE, H = 106 METERS

 $(\lambda = 0.555 \text{ mieron})$

E _M , deg	! H _S , m	ρ, km	Ι Δρ ₇ , m Ι	ΔË ₁₈ , mrad
1 0.5 1 .5 1 .5 1 .5 1 .5	$1 \text{ Hs}_3 = 9224$	3704.3 3709.2 3710.5 3703.5 3703.1 3704.0	77.1 1 72.5 1 71.0 1 79.8 1 80.4 1 79.1 1 80.4	8.000 8.766 8.766 8.975 7.868 7.808 7.945 7.803
! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 3 3 ! 3	! Ref. atm. ! Hs1 = 7 494 ! Hs2 = 7 163 ! Hs3 = 9 224 ! Hs4 = 9 360 ! Hs5 = 9 053 ! Hs6 = 9 372 ! Ref. atm. ! Hs1 = 7 494 ! Hs2 = 7 163 ! Hs3 = 9 224	1 3641.6 1 3644.8 1 3645.6 1 3640.7 1 3640.7 1 3640.7 1 3413.6 1 3414.4 1 3414.6 1 3413.3	! 63.7 ! 58.9 ! 57.4 ! 66.5 ! 67.0 ! 65.7 ! 67.1 ! 35.8 ! 32.3 ! 31.1	6.797 ! 7.300 ! 7.437 ! 6.695 ! 6.654 ! 6.650 ! 4.033 ! 4.165 ! 4.203 ! 3.986
1 3. 1 3 1 3	! H _{S4} = 9 360 ! H _{S5} = 9 053 ! H _{S6} = 9 372	! 3413.3 ! 3413.4 ! 3413.3	1 38.6 1 37.6 1 38.7	1 3.973 ! 4.003 ! 3.972
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	! Ref. atm. ! Hs1 = 7 494 ! Hs2 = 7 163 ! Hs3 = 9 224 ! Hs4 = 9 360 ! Hs5 = 9 053 ! Hs6 = 9 372	1 3209.6 1 3209.9 1 3209.9 1 3209.5 1 3209.4 1 3209.4	24.2 1 21.6 1 20.8 1 26.1 1 26.4 1 25.6 1 26.4	2.784 2.832 2.847 2.759 2.754 2.766 2.754

TABLE D-54.- REFRACTION CORRECTIONS FOR POINT ARGUELLO ANNUAL OPTICAL ATMOSPHERE, H = 104 METERS

! E _M , deg	H _S , m	lρ, km	! Δρ7, m	! ! ΔĒ ₁₈ , mrād ! !
0.5 1 .5 1 .5 1 .5 1 .5 1 .5	$H_{S3} = 9224$ $H_{S4} = 9360$	329.2 333.5 334.6 328.7 328.4 329.1 328.4	65.0 61.8 61.0 65.0 65.2 65.2 64.7 65.3	4.133 4.860 4.860 4.053 4.000 4.120 4.120 3.996
! 1 ! 1 ! 1 ! 1 ! 1 ! 3 ! 3 ! 3	! Ref. atm. ! Hs1 = 7 494 ! Hs2 = 7 163 ! Hs3 = 9 224 ! Hs4 = 9 360 !- Hs5 = 9 053 ! Hs6 = 9 372 ! ! Ref. atm. ! Hs1 = 7 494 ! Hs2 = 7 163 ! Hs3 = 9 224 ! Hs4 = 9 360 ! Hs5 = 9 053 ! Hs6 = 9 372	278.7 1 281.4 1 282.1 1 278.4 1 278.2 1 278.6 1 278.2 1 158.9 1 159.6 1 158.8 1 158.8 1 158.8	1 52.8 1 49.5 1 48.8 1 52.9 1 53.1 1 52.6 1 53.1 1 28.1 1 25.8 1 25.2 1 28.2 1 28.3 1 28.4	3.389 1.3.941 1.4.084 1.3.329 1.3.289 1.3.286 1.798 1.2.075 1.2.141 1.788 1.768 1.768
! ! 55555! ! 5555! ! 555!	! Ref. atm. ! H _{S1} = 7 494 ! H _{S2} = 7 163 ! H _{S3} = 9 224 ! H _{S4} = 9 360 ! H _{S5} = 9 053 ! H _{S6} = 9 372	! 106.1 ! 106.3 ! 106.3 ! 106.1 ! 106.1 ! 106.1	! 18.5 ! 16.8 ! 16.4 ! 18.5 ! 18.6 ! 18.3 ! 18.6	1 1.176 1 1.354 1 1.395 1 1.173 1 1.160 1 1.188 1 1.159

APPE" IX È

REFRACTION CORRECTION EQUATIONS

These equations were obtained from reference 4. The equations have been simplified for use in this report. They provide highly precise answers for measured elevation angles greater than 0.5 degree. For elevation angles less than 0.5 degree (negative angles also), see reference 4. The following quantities are defined.

 $R_{\rm O} = 6 378 165 \text{ meters}$

h = altitude above tracking site

H = altitude of target above the tracking site

 $N_{\rm O}$ = modulus of refraction at the tracking site

N = modulus of refraction at the altitude h

 $N_{\rm H}$ = modulus of refraction at h = H

n = 1 + N, the index of refraction at the altitude h

 $x = variable of integration, 0 \le x \le 1$

H_S = atmospheric scale height

E = geometric elevation angle

E_M = measured elevation angle

 $\Delta E = E_M - E$ is the elevation angle refraction correction

ρ = geometric rang to the target

OM = measured rank to the target

 $\Delta \rho = \rho_M - \rho$ is the range refraction correction

0 = Earth central angle between the tracking site and target

The equations for computing the refraction corrections are shown below. Note that the basic inputs to these equations are: N_{O} , E_{M} , H, and R_{O} . (N_{H} must also be determined from either a look-up table or by the assumption of an exponential atmosphere.)

$$N = N_O - (N_O - H_H) \times$$

$$n = N + 1$$

Given N, determiné h.

$$q = \frac{(N + 1)(R_0 + h)}{(N_0 + 1)R_0}$$

$$q_{H} = \frac{(N_{H} + 1)(R_{O} + h)}{(N_{O} + 1)R_{O}}$$

$$\Theta = \operatorname{arc} \cos \left(\frac{1}{q_H} \cos E_M \right) - E_M$$

+
$$(N_0 - N_H) \cos E_M \int_0^1 \frac{dx}{n\sqrt{q^2 - \cos^2 E_M}}$$

$$\rho_{M} = \frac{\left((N_{H} + 1)H - (N_{O} - N_{H})R_{O} \right)(q_{H} + 1)}{\sqrt{q_{H}^{2} - \cos^{2}E_{M} + \sin E_{M}}}$$

+
$$(N_O - N_H)$$

$$\int_{0}^{1} \frac{q(R_O + h)dx}{\sqrt{q^2 - \cos^2 E_M}}$$

$$T_1 = (R_0 + H) \cos \Theta - R_0$$

$$T_2 = (R_0 + H) \sin \theta$$

$$\rho = \sqrt{T_1^2 + T_2^2}$$

$$E = \arctan (T_1/T_2)$$

$$\Delta \rho_7 = \rho_M \sim \rho$$
 (7th algorithm, ref. 4)

$$\Delta E_{18} = E_M - E$$
 (18th algorithm, ref. 4)

The integrals above may be accurately evaluated (for $E_M \geq 0.5$ degree) by using five point Gaussian quadrature. The quadrature points, x_1 , and associated weights, w_1 , are shown below.

<u>i</u>	x _i	Wi
1	0.04691 00770 30668	0.11846 34425 28095
2	.23076 53449 47158	.23931 43352 49683
3	.5	.28444 44444 44444
4	.76923 46550 52842	.23931 43352 49683
5	.95308 99229 69332	.11846 34425 28095

In the above equations, the step "Given N, determine h" may be performed by either using a look-up table of an actual atmosphere or by assuming an exponential atmosphere

 $h = H_S \ln(N_O/N)$