2-Markov Strategies in Selection Games

Steven Clontz

March 21, 2016

Abstract

asdf

1 Introduction

Let $S(\mathcal{A}, \mathcal{B})$ be the statement that whenever $A_n \in \mathcal{A}$ for $n < \omega$, there exist $B_n \in [A_n]^{<\omega}$ such that $\bigcup \{B_n : n < \omega\} \in \mathcal{B}$. This selection principle characterizes a property of a topological space X when \mathcal{A}, \mathcal{B} are defined in terms of X. For example, if \mathcal{O}_X is the collection of open covers of X, then $S(\mathcal{O}_X, \mathcal{O}_X)$ is the well-known Menger covering property.

This property may be made stronger by considering the following two-player game of length ω : $G(\mathcal{A}, \mathcal{B})$. During each round $n < \omega$, the first player \mathscr{A} chooses $A_n \in \mathcal{A}$, followed by \mathscr{B} choosing $B_n \in [A_n]^{<\omega}$. \mathscr{B} wins the game if $\bigcup \{B_n : n < \omega\} \in \mathcal{B}$; otherwise \mathscr{A} wins. If \mathscr{B} has a winning strategy for the game (a function which defines a move for each finite sequence of previous moves by \mathscr{A} , and beats every possible response by \mathscr{A}), then we write $\mathscr{B} \uparrow G(\mathcal{A}, \mathcal{B})$.

These concepts were first introduced by Scheepers in [MR1378387]. Of course, $\mathscr{B} \uparrow G(\mathcal{A}, \mathcal{B}) \Rightarrow S(\mathcal{A}, \mathcal{B})$, but the converse need not hold, since each B_n may be defined in $S(\mathcal{A}, \mathcal{B})$ using knowledge of all A_n , not just those "previously played". Thus for each topological property P characterized by $S(\mathcal{A}, \mathcal{B})$, we denote the (possibly) stronger property $\mathscr{B} \uparrow G(\mathcal{A}, \mathcal{B})$ as $strategic\ P$.

Such notions may be made even stronger using limited information strategies. A k-Markov strategy for $\mathcal B$ uses only the last k moves of $\mathcal A$ and the round number. When $\mathcal B$ has a winning k-Markov strategy for $G(\mathcal A,\mathcal B)$, we write $\mathcal B$ $\ \uparrow$ $G(\mathcal A,\mathcal B)$. Similarly, for each topological property P characterized by $S(\mathcal A,\mathcal B)$, we denote property $\mathcal B$ $\ \uparrow$ k-mark $G(\mathcal A,\mathcal B)$ as k-Markov P. When k=1, we may omit the k.

2 k-Markov implies 2-Markov

In the case of the selection game $G(\mathcal{A}, \mathcal{B})$, we may see that a (k+2)-Markov strategy may always be improved to a 2-Markov strategy, as shown by the author in [clontzMengerPreprint] with regards to $G(\mathcal{O}_X, \mathcal{O}_X)$.

Theorem 1. For each $k < \omega$, $\mathscr{B} \underset{(k+2)\text{-mark}}{\uparrow} G(\mathcal{A}, \mathcal{B})$ if and only if $\mathscr{B} \underset{2\text{-mark}}{\uparrow} G(\mathcal{A}, \mathcal{B})$.

Proof. Let σ be a winning (k+2)-mark. We define the 2-mark τ as follows:

$$\tau(\langle A \rangle, 0) = \bigcup_{m < k+1} \sigma(\langle \underbrace{A, \dots, A}_{m+1} \rangle, m)$$

$$\tau(\langle A, A' \rangle, n+1) = \bigcup_{m < k+1} \sigma(\langle \underbrace{A, \dots, A}_{k+1-m}, \underbrace{A', \dots, A'}_{m+1} \rangle, (n+1)(k+1) + m)$$

Let $\langle A_0, A_1, \ldots \rangle$ be an attack by $\mathscr A$ against τ . Then consider the attack

$$\langle \underbrace{A_0, \dots, A_0}_{k+1}, \underbrace{A_1, \dots, A_1}_{k+1}, \dots \rangle$$

by \mathscr{A} against σ . Since σ is a winning (k+2)-mark,

$$\bigcup_{m < k+1} \sigma(\langle \underbrace{A_0, \dots, A_0}_{m+1} \rangle, m) \cup \bigcup_{n < \omega, m < k+1} \sigma(\langle \underbrace{A_n, \dots, A_n}_{k+1-m}, \underbrace{A_{n+1}, \dots, A_{n+1}}_{m+1} \rangle, (n+1)(k+1) + m)$$

$$= \tau(\langle A_0 \rangle, 0) \cup \bigcup_{n < \omega} \tau(\langle A_n, A_{n+1} \rangle, n+1) \in \mathcal{B}$$

Thus τ is a winning 2-mark.

The following natrual question is open:

Question 2. Do there exist (interesting/topological) \mathcal{A}, \mathcal{B} such that $\mathscr{B} \uparrow G(\mathcal{A}, \mathcal{B})$ but $\mathscr{B} \uparrow G(\mathcal{A}, \mathcal{B})$?

3 Menger game results

Consider the case that $\mathcal{A} = \mathcal{B} = \mathcal{O}_X$, i.e. the Menger game. The following summarize results from [MR1129143] [clontzMengerPreprint] and [clontzDowAlcompPreprint].

Definition 3. For any cardinal κ , let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ denote the *one-point Lindelöf-ication* of discrete κ , where points in κ are isolated, and the neighborhoods of ∞ are co-countable.

Theorem 4. $\mathscr{B} \uparrow G(\mathcal{O}_{\kappa^{\dagger}}, \mathcal{O}_{\kappa^{\dagger}}).$

Definition 5. For two functions f, g we say f is almost compatible with g if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \omega$.

Definition 6. $\mathcal{A}'(\kappa)$ states that there exists a collection of pairwise almost compactible finite-to-one functions $\{f_A \in \omega^A : A \in [\kappa]^{\leq \omega}\}$.

Theorem 7. $\mathcal{A}'(\omega_n)$ holds for all $n < \omega$.

Theorem 8.
$$\mathcal{A}'(\kappa)$$
 implies $\mathscr{B} \underset{2\text{-mark}}{\uparrow} G(\mathcal{O}_{\kappa^{\dagger}}, \mathcal{O}_{\kappa^{\dagger}}).$

Theorem 9. For any cardinal κ , κ Cohen reals may be added to a model of ZFC + CH while preserving $\mathcal{A}'(\mathfrak{c})$.

Theorem 10. There exists a model of ZFC where $\mathcal{A}'(\omega_{\omega})$ fails.

Theorem 11.
$$\mathscr{B} \underset{2\text{-}mark}{\uparrow} G(\mathcal{O}_{\omega_{\omega}^{\dagger}}, \mathcal{O}_{\omega_{\omega}^{\dagger}}).$$

It remains open whether $\mathscr{B} \underset{2\text{-mark}}{\uparrow} G(\mathcal{O}_{\omega_{\omega+1}^{\dagger}}, \mathcal{O}_{\omega_{\omega+1}^{\dagger}})$ might fail when $\mathcal{A}'(\omega_{\omega})$ fails. Due to the above, any attempt to show $\mathscr{B} \underset{2\text{-mark}}{\not\uparrow} G(\mathcal{O}_{\kappa^{\dagger}}, \mathcal{O}_{\kappa^{\dagger}})$ cannot happen solely within ZFC.