Chapter 8 of Rice - Method of Moments

06/24/2021

In the previous lecture,

Unbiased estimators:

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$$
 is an unbiased estimator of σ^2 .

- Central limit theorem under i.i.d assumption: No matter what the population distribution is, the sampling distribution of \bar{X}_n will always converge to a standard Normal distribution.
- Confidence interval for μ :
 - Conservative CI
 - o Bootstrap CI
- Method of moments estimators:
 - Oldest but very simple estimators;
 - Can give unrealistic estimations.

Method of moments

If unknown parameters $\theta_1, \ldots, \theta_k$ are not exactly moments of the population, they can be the solutions of a system of equations.

Population

$$egin{aligned} \mu &= g_1(heta_1, \ldots, heta_k) \ \mu_2 &= g_2(heta_1, \ldots, heta_k) \ dots \ \mu_k &= g_k(heta_1, \ldots, heta_k) \end{aligned}$$

$Gamma(\alpha, \beta)$

$$\mu = rac{lpha}{eta} \ \sigma^2 = rac{lpha}{eta^2}$$

Samples

$$egin{aligned} \hat{\mu} &= g_1 \Big(\hat{ heta}_1, \ldots, \hat{ heta}_k \Big) \ \hat{\mu}_2 &= g_2 \Big(\hat{ heta}_1, \ldots, \hat{ heta}_k \Big) \ dots &dots \ \hat{\mu}_k &= g_k \Big(\hat{ heta}_1, \ldots, \hat{ heta}_k \Big) \end{aligned}$$

Method of Moments (MM): Match the sample moments with their population counterparts.

$$\hat{lpha}_n = rac{ar{X}_n^2}{rac{1}{n}\sum_{i=1}^nig(X_i-ar{X}_nig)^2} \ \hat{eta}_n = rac{ar{X}_n}{rac{1}{n}\sum_{i=1}^nig(X_i-ar{X}_nig)^2}$$

What are the sampling distributions of $\hat{\alpha}_n$ and $\hat{\beta}_n$?

Sample distribution of \bar{X}_n

Population parameter is known

Simulation:

Draw as many samples of size n as possible, and plot the histogram of all \bar{X}_n .

Gamma(2, 0.5)

All possible samples of size n

Sample distribution of $\hat{\alpha}_n$

Population parameter is known

Gamma(2, 0.5)

$$\hat{lpha}_n = rac{ar{X}_n^2}{rac{1}{n}\sum_{i=1}^n \left(X_i - ar{X}_n
ight)^2}$$

Simulation:

Draw as many samples of size n as possible, and plot the histogram of all $\hat{\alpha}_n$.

All possible samples of size n

Sample distribution of $\hat{\alpha}_n$

Population parameter is known

$$\hat{lpha}_n = rac{ar{ar{X}}_n^2}{rac{1}{n}\sum_{i=1}^n ig(X_i - ar{X}_nig)^2}$$

Simulation:

Draw as many samples of size n as possible, and plot the histogram of all $\hat{\alpha}_n$.

Gamma(2, 0.5)

All possible samples of size n

Sample distribution of $\hat{\beta}_n$

Population parameter is known

$$\hat{eta}_n = rac{ar{X}_n}{rac{1}{n}\sum_{i=1}^n \left(X_i - ar{X}_n
ight)^2}$$

Simulation:

Draw as many samples of size n as possible, and plot the histogram of all $\hat{\beta}_n$.

possible survey

All possible samples of size n

Sample distribution of $\hat{\alpha}_n$ and $\hat{\beta}_n$

Population parameter is unknown

$$\hat{lpha}_n = rac{ar{X}_n^2}{rac{1}{n}\sum_{i=1}^nig(X_i-ar{X}_nig)^2} \ \hat{eta}_n = rac{ar{X}_n}{rac{1}{n}\sum_{i=1}^nig(X_i-ar{X}_nig)^2}$$

How to simulate the sampling distributions of $\hat{\alpha}_n$ and $\hat{\beta}_n$?

Bootstrap simulation:

Pretend that the population is Gamma(2.104, 2.298), and repeat the simulation process on Page 6 and 7.

Goodness of fit

Sample distribution of $\hat{\alpha}_n$ and $\hat{\beta}_n$

Population parameter is unknown

$$\hat{lpha}_n = rac{ar{X}_n^2}{rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X}_nig)^2} \ \hat{eta}_n = rac{ar{X}_n}{rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X}_nig)^2}$$

Design A

$$n=200$$
 $\hat{lpha}_n=2.104 \ \hat{eta}_n=2.298$

How to simulate the sampling distributions of $\hat{\alpha}_n$ and $\hat{\beta}_n$?

Bootstrap simulation:

<u>Pretend</u> that the population is Gamma(2.104, 2.298), and repeat the simulation process on Page 6 and 7.

Standard error of the estimate

Population parameter is $\underline{unknown}$ in $f(x | \theta)$

Bootstrap simulation:

- Construct a system of equations relating the parameters of interest to the sample moments;
- Solve the equations for the MM estimators $\hat{\theta}_{MM}$;
- Pretend that the population is $f(x | \hat{\theta}_{MM})$, and repeat the simulation process similar to Page 6 and 7;
- Plot the histogram to approximate the sampling distribution of $\hat{\theta}_{MM}$, and calculate the standard error (SE) of $\hat{\theta}_{MM}$ from the sampling distribution.

Population parameter is unknown in $f(x | \theta)$

If you only want to know the SE of $\hat{\theta}_{MM}$,

Bootstrap estimation:

- Construct a system of equations relating the parameters of interest to the sample moments;
- Solve the equations for the MM estimators $\hat{\theta}_{MM}$;
- Calculate $\operatorname{Var}(\hat{\theta}_{MM}) = h(\theta, n)$, which is difficult to calculate sometimes;
- ullet Estimate the SE $\sqrt{h(heta,n)}$ by $\sqrt{hig(\hat{ heta}_{MM},nig)}$.

Population parameter is unknown in $f(x | \theta)$

Example 5. Suppose the population follows a discrete distribution

X	0	1	2	3	
Probability	$\frac{2}{3}\theta$	$\frac{1}{3}\theta$	$oxed{rac{2}{3}(1- heta)}$	$\frac{1}{3}(1-\theta)$	$\int X_n = \frac{3}{3}$

The following are i.i.d observations of this distribution: 3, 0, 2, 1, 3, 2, 1, 0, 2, 1. Find the Method of Moments estimate for θ , and approximate SE for this estimate.

$$M = EX = 0 \times \frac{2}{3}\theta + 2 \times \frac{2}{3} \text{ (I-0)} + \frac{3}{3} \text{ (I-0)} = \frac{7}{3} - 2\theta.$$

$$6^{2} = EX^{2} - (EX)^{2}$$

$$EX = 0 \times \frac{2}{3}\theta + 2^{2} \times \frac{1}{3}\theta + 2^{2} \times \frac{2}{3} \text{ (I-0)} + \frac{3^{3}}{3} \text{ (I-0)}$$

$$= 17 - 16\theta$$

$$= 17 - 16\theta - (\frac{7}{3} - 2\theta)^{2} = 9(\theta)$$
Thus
$$6^{2} = \frac{17 - 16\theta}{3} - (\frac{7}{3} - 2\theta)^{2} = 9(\theta)$$

Population parameter is $\underline{unknown}$ in $f(x \mid \theta)$

Example 5. Cont'd.

$$M = EX = \frac{7}{3} - 2\theta. \quad \text{To get the MM estimator for } \theta, \text{ solve}$$

$$\hat{M} = \frac{7}{3} - 2\hat{\theta}_{MM}$$
which will give: $\hat{\theta}_{MM} = \frac{1}{2} \left(\frac{7}{3} - \frac{3}{2}\right) = \frac{5}{12}.$
To get the SE for $\hat{\theta}_{MM}$, we can:
$$|\nabla aw(\hat{\theta}_{MM})| = |\nabla aw(\frac{1}{2}(\frac{7}{3} - \frac{7}{2})|) = \frac{1}{4}|\nabla aw(\frac{7}{3} - \frac{7}{2})| = \frac{1}{4}|\nabla aw(\frac{7}{3} - \frac{7}{2})| = \frac{1}{4}|\nabla aw(\frac{7}{3} - \frac{7}{3})| = \frac{1}{4}|\nabla aw(\frac{7}{3} -$$

Conduct 1000 experiments, electricity will contain 10 obs from 1

$$=\frac{g(\theta)}{40} \approx \frac{g(\theta m_{\text{mi}})}{40}$$

8 (Omm) = 17-16× = 13-2×

if X ~ Expla), flx(a) = le-lx

Sample distribution of MM estimators

Population parameter is $\underline{unknown}$ in $f(x \mid \theta)$

Example 6. Suppose the population follows the exponential distribution $\operatorname{Exp}(\lambda)$. Find the MM estimator $\hat{\lambda}_{MM}$ and $\operatorname{SE}(\hat{\lambda}_{MM})$.

Solution. The population
$$M = E(x) = \frac{1}{1}$$
, $Var(x) = \frac{1}{1^2}$.
 $\widehat{M} = \frac{1}{1}$ $\widehat{M} = \frac{1}{1}$ $\widehat{M} = \frac{1}{1}$

$$\operatorname{var}\left(\frac{1}{X_{n}}\right) = \operatorname{var}\left(\frac{n}{X_{1} + \cdots + X_{n}}\right)$$

14

$$\alpha N(0, b^2) = N(0, \alpha^2 6^2)$$

Population parameter is $\underline{unknown}$ in $f(x \mid \theta)$

Delta Method. Under the i.i.d assumption, $\sqrt{n} (\bar{X}_n - \mu) \to N(0, \sigma^2)$ as $n \to \infty$ by Central Limit Theorem. If given a differentiable function g, it follows that

$$\sqrt{n} \{g(ar{X}_n) - g(\mu)\} o g'(\mu) N(0, \sigma^2) ext{ as } n o \infty.$$

Something that immediately follows: $\operatorname{Var}ig[gig(ar{X}_nig)ig] pprox rac{ig[g'(\mu)ig]^2\sigma^2}{n}$.

Population parameter is $\underline{unknown}$ in $f(x \mid \theta)$

$$M = \frac{1}{\lambda}$$

$$b^2 = \frac{1}{\lambda^2}$$

Example 6 cont'd. Suppose the population follows the exponential distribution $\operatorname{Exp}(\lambda)$. Find the MM estimator $\hat{\lambda}_{MM}$ and $\operatorname{SE}(\hat{\lambda}_{MM})$.

Therefore,
$$var(\hat{\lambda}_{nm}) = var(\frac{1}{x_n}) = \frac{(g'(u))^2 b^2}{n}$$

$$= \frac{b^2}{nM^4} = \frac{1/\lambda^2}{n} = \frac{\lambda^2}{n}$$

$$SE(\hat{\lambda}_{nm}) = \int var(\hat{\lambda}_{nm}) = \frac{\lambda}{\sqrt{n}} \frac{\hat{\lambda}_{nm}}{\sqrt{n}}$$
Bootstrap estimate

The consistency of MM estimators

06/24/2021

How good are the MM estimators?

Definition. $\hat{\theta}_n = g(X_1, \dots, X_n)$ is said to be a consistent estimator of θ if

 $\hat{\theta}_n \stackrel{p}{\to} \theta$, as $n \to \infty$.

That is, $\hat{\theta}_n$ converges in probability to θ .

Sampling distr of on

Convergence in probability*:)

For any $\epsilon > 0$, $P(|\hat{\theta}_n - \theta| > \epsilon) \to 0$ as $n \to \infty$.

Connection with unbiasedness:

$$\text{If } \hat{\theta}_n \overset{p}{\to} \theta, \text{ then } E\Big(\hat{\theta}_n\Big) \to \theta \text{ as } n \to \infty.$$

But consistency is more than the average behavior. It assures that the sampling distribution θ_n of is highly concentrated around θ when the sample size is sufficiently large.

MM estimators are consistent!

Law of large number. Let X_1, \ldots, X_n be i.i.d samples from a population f(x). Then for any integer k,

$$rac{1}{n}\sum_{i=1}^n X_i^k \stackrel{p}{
ightarrow} Eig(X^kig) = \mu_k ext{ as } n
ightarrow \infty.$$

Sample moments are consistent estimators of the population moments!

Continuous mapping theorem. For any continuous function $g(\cdot)$, if $\hat{\theta}_n \overset{p}{\to} \theta$, then

$$g(\hat{\theta}_n) \stackrel{p}{\to} g(\theta)$$

MM estimators are consistent!

Theorem E. Under the i.i.d assumption, MM estimators are consistent as long as functions relating the estimates to the sample moments are continuous.

$$egin{aligned} & \underline{\mathrm{Gamma}(lpha,eta)} \ & \hat{\mu} = rac{\hat{lpha}}{\hat{eta}} \ & \hat{eta}^2 = rac{\hat{lpha}}{\hat{eta}^2} + rac{\hat{lpha}^2}{\hat{eta}^2} \end{aligned}$$

$$\hat{lpha} = rac{\hat{\mu}^2}{\hat{\mu}_2 - \hat{\mu}^2}$$
 $\hat{eta} = rac{\hat{\mu}}{\hat{\mu}_2 - \hat{\mu}^2}$

This justifies the bootstrap (plug-in) estimates.

The maximum likelihood estimators (MLE)

"What! You have solved it already?"

"Well, that would be too much to say. I have discovered a suggestive fact, that is all."

Dr. Watson and Sherlock Holmes *The Sign of Four*

06/24/2021

The disadvantages of MM estimators

- The consistency is a limiting result but we always only have finite sample size n;
- With small sample size n, it is not uncommon that MM estimators give unrealistic estimates.
- They sometimes fail to take into account all relevant information in the sample.

The disadvantages of MM estimators

Example 4. Suppose X_1,\ldots,X_n are i.i.d samples from $X\sim \mathsf{Binomial}(\mathit{k},\mathit{p})$. Find the Method of Moments estimators for k and p.

$$\hat{p}_{MM} = \frac{ar{ar{X}_n} - rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X}_nig)^2}{ar{ar{X}_n}}, \quad \mathcal{O}$$
 $\hat{k}_{MM} = \frac{ar{ar{X}_n^2}}{ar{ar{X}_n} - rac{1}{n} \sum_{i=1}^n ig(X_i - ar{X}_nig)^2} \quad \mathcal{O}$

Example 3. Suppose X_1, \ldots, X_n are i.i.d samples from $Gamma(\alpha, \beta)$, find Method of Moments for a and β .

$$\mu = \frac{lpha}{eta}$$

$$\sigma^2 = \frac{lpha}{eta^2}$$

$$\hat{\alpha}_n = \frac{\bar{X}_n^2}{\frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2}$$

$$\hat{X}_n = \frac{\bar{X}_n}{\frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2}$$

$$\mu = \frac{lpha}{eta}$$

$$\mu_3 = \frac{lpha(\alpha + 1)(\alpha + 2)}{\beta^3}$$

$$\left\{egin{array}{l} \mu=rac{lpha}{eta} \ \mu_3=rac{lpha(lpha+1)(lpha+2)}{eta^3} \end{array}
ight.$$

Does the third moment also contain information about α and β ?

The joint density or frequency function

Let X_1,\ldots,X_n be i.i.d samples from a population $f(x\,|\,\theta)$. The joint density of X_1,\ldots,X_n can be written as

$$f(x_1,\ldots,x_n\,|\, heta) = \prod_{i=1}^n f(x_i\,|\, heta).$$

If the population is a normal distribution, then the joint density is $f(x_1,\ldots,x_n\,|\,\mu,\sigma^2)=\prod_{i=1}^nrac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2\sigma^2}(x_i-\mu)^2}.$

 $f(x_1,\ldots,x_{100}\,|\,3,2)$ or $f(x_1,\ldots,x_{100}\,|\,-1,1)$?

The joint density or frequency function

Let X_1,\ldots,X_n be i.i.d samples from a population $f(x\,|\,\theta)$. The joint density of X_1,\ldots,X_n can be written as

$$f(x_1,\ldots,x_n\,|\, heta) = \prod_{i=1}^n f(x_i\,|\, heta).$$

If the population is a normal distribution, then the joint density is $f(x_1,\ldots,x_n\,\big|\,\mu,\sigma^2)=\prod_{i=1}^nrac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x_i-\mu)^2}.$

Which one has more chance to

$$f(x_1, \ldots, x_{100} | 3, 2)$$
 or $f(x_1, \ldots, x_{100} | -1, 1)$?

The likelihood function

Let X_1,\ldots,X_n be i.i.d samples from a population $f(x\,|\,\theta)$. The joint density of X_1,\ldots,X_n can be written as

$$f(x_1,\ldots,x_n\,|\, heta) = \prod_{i=1}^n f(x_i\,|\, heta).$$

To find θ that makes the observed data "most probable" or "most likely".

Definition. For the i.i.d samples X_1, \ldots, X_n , we vary the value of θ in a meaningful set to evaluate its likelihood $= \rho \text{ in a meaningful set}$

$$L(heta) = \prod_{i=1}^n f(X_i \,|\, heta),$$

and $L(\theta)$ is called the likelihood function. The maximum likelihood estimator of θ is the particular value that maximizes the likelihood.

More often than not, it is easier to deal with the log-likelihood function:

$$l(heta) = \log \left(\prod_{i=1}^n f(X_i \, | \, heta)
ight) = \sum_{i=1}^n \log f(X_i \, | \, heta).$$

Maximum likelihood estimators $_{\mathcal{I}} \mathcal{L} = \lambda$

conver **Example 7**. Let X_1, \ldots, X_n be i.i.d $\operatorname{Poisson}(\lambda)$. Find the MLE for λ .

(10 n Cave

Solution. The probability mass function is
$$P(X=x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$
.

The likelihood function can be written $x!$ as

Thus, the lef-likelihood function is:

 $P(X=x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$.

Thus, the lef-likelihood function is:

$$L(\lambda) = lg(\lambda) = (\Sigma Xi) lg(\lambda - n\lambda - \Sigma lg(Xi!))$$

$$\frac{\partial L}{\partial \lambda} = \frac{ZXi}{\lambda} - R = 0 \Rightarrow \hat{\lambda}_{ME} = \frac{L}{R_{i}}X_{i}$$

$$\frac{\partial^2 l}{\partial l^2} = \frac{(x_i)^{30}}{\lambda^2} < 0 \quad (concave) = \frac{x_i}{\lambda}$$

Next Tuesday...

More on MLE: examples and limiting theory