

WT6616F USB Power Delivery DRP Controller

Datasheet (General Version)

Rev. 0.90

March 2019

Copyright Notice

This specification copyrighted by Weltrend Semiconductor, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the express written permission of Weltrend Semiconductor, Inc.

Disclaimers

Right to make change -

This document provides technical information for user. Weltrend Semiconductor, Inc. reserves the right to make change without further notice to any products herein.

Table of Contents

1.	General Description	1
2.	Features	1
3.	Pin Assignment	2
	3.1. Package Type	2
	3.2. Pin Description	2
	Block Diagram	4
5.	Functional Description	5
	5.1. MCU and Peripherals	5
	5.1. MCU and Peripherals	5
	5.3. VBUS Control	6
	5.4. Cable Drop Compensation	8
	5.5. Protections	
	5.6. On-chip Temperature Sensor	
	5.7. ADC	9
	5.8. USB BC1.2	
	5.9. Discharge	10
	5.9. Discharge	10
	5.11. GPIO	
	5.12. Watchdog Timer	
	5.13. Resets	
6.	Electrical Characteristics	
٠.	6.1. Absolute Maximum Ratings	
	6.2. Thermal Characteristics	
	6.3. Recommended Operating Conditions	
	6.4. DC Characteristics (VCC=20V, Ta= -20 ~ +105°C, unless specified)	
	6.5. AC Characteristics (VCC=20V, Ta= -20°C to +105°C, unless specified)	
7		
/.	Examples of Application	
	Ordering Information	
9.	Package Information	18
	9.1. Package Dimension	18
	9.2. Product Tube and Tapping Specification	19
10	Revision History	21

1. General Description

The WT6616F is a highly integrated USB Power Delivery (PD) Dual Role Port (DRP) controller that supports USB PD 3.0 Programmable Power Supply specification. It is designed for power banks.

The WT6616F minimizes external components by integrating USB PD baseband PHY, Type-C detection, shunt regulator, voltage and current monitors, NMOS load switch driver and an 8-bit MCU to allow small form factor and low BOM cost. Wide operation voltage range (3V to 24V) supports PD 3.0 Programmable Power Supply (PPS) specification. A Multi-Time-Programmable (MTP) ROM is provided for program code and user configuration data.

2. Features

- USB Type-C and USB-PD
 - Supports USB PD 3.0 including Programmable Power Supply (PPS)
 - Programmable Type-C pull-up Rp
 - Dual Role Port (DRP)
- Supports USB BC1.2 DCP
- ➤ Built-in shunt regulator
 - Programmable constant voltage control
 - Programmable constant current control
 - Integrated low side current sense amplifier
 - Cable drop compensation
- Programmable fault protections
 - Over Voltage Protection (OVP)
 - Under Voltage Protection (UVP)
 - Over Current Protection (OCP)
 - Over Temperature Protection (OTP)
- > 10-bit ADC for voltage and current monitoring
- MCL
 - Turbo 8051 compatible MCU
 - 16K bytes Multi-Time-Programmable (MTP) ROM
- > Driver for NMOS load switch
- ➤ Built-in discharge MOS transistor
- > Internal RC oscillator
- > Internal VDD regulator
- ➤ General purpose I/Os
- Supports power saving mode
- Operating voltage range: 3V to 24V (30V tolerant)
- Operating temperature range: -20°C to +105°C
- Package: 16-Pin QFN

Applications:

➤ USB Type-C with Power Delivery power banks.

3. Pin Assignment

3.1. Package Type

3.2. Pin Description

Pin Number				-	ī.mo	
			1/0		Туре	
QFN	Pin Name	Function	Voltage	Input	Output	Description
16C				mpat	Output	
15	VCC	vcc	HV	-	1	Positive power supply
15	GPIOA	GPIOA	HV	TTL	OD	General purpose I/O
		DISC		-	OD	Discharge
16	VSS	VSS	-	-	-	Ground
1	GPIOC	GPIOC	HV	TTL	OD	Serial purpose I/O
		ОТРА		AN	-	Temperature sensing pin
		ADC9		AN	-	ADC input
		P07		TTL	OD	8051 port I/O
2	GPIO2	GPIO2	HV	TTL	OD	General purpose I/O
		GATE		-	PP	Blocking MOS Control
		ADC12		AN	-	ADC input
3	VDD	VDD	LV	-	AN	4.8V regulator
4	GPIO0	GPIO0	HV	TTL	OD	General purpose I/O
		D+		AN	-	D+ for B.C. with USB device side
		ADC6		AN	-	ADC input
		TX		TTL	OD	UART transmitter
		SDAB		TTL	OD	I ² C SDA B path
		P00		TTL	OD	8051 port I/O

Pin Number				1	Гуре	
QFN	Pin Name	Function	I/O Voltage		0	Description
16C			voitage	Input	Output	
5	GPIO1	GPIO1	LV	TTL	OD	General purpose I/O
		D-		AN	-	D- for B.C. with USB device side
		FAULTB		TTL	OD	Fault indication. Outputs low when OVP/OCP.
		ADC7		AN	-	ADC input
		RX		TTL	-	UART receiver
		SCLB		TTL	OD	I ² C SCL B path
		P01		TTL	OD	8051 port I/O
6	GPIO4	GPIO4	HV	TTL	-	General purpose Input
		CC1		CC	PP	USB Type-C Configuration Channel
		ADC4		AN	-	ADC input
7	GPIO5	GPIO5	HV	TTL	-	General purpose Input
		CC2		CC	PP	USB Type-C Configuration Channel
		OTPC		AN	10	Temperature sensing pin
		ADC5		AN		ADC input
8	GPIO6	GPIO6	LV	TTL	OD	General purpose I/O
		IS+		AN	-	Positive input of current sensing amplifier.
		SCLA	6	TTL	OD	I ² C SCL A path
9	GPIO7	GPIO7	LV	TTL	OD	General purpose I/O
		IS-	1 8	AN	-	Negative input of current sensing amplifier.
		SDAA		TTL	OD	I ² C SDA A path
10	GPIO8	GPIO8	LV	TTL	OD	General purpose I/O
	4.0	VFB		AN	-	Feedback of shunt regulator
		P04		TTL	OD	8051 port I/O
11	GPIO3	GPIO3	HV	TTL	OD	General purpose I/O. Open drain output.
		IFB		AN	-	Feedback of shunt regulator
		FAULTA		TTL	OD	Fault indication. Output low when OVE/OCP.
		ADC3		AN	-	ADC input
		P03		TTL	OD	8051 port I/O
12	GPIOB	GPIOB	HV	TTL	OD	General purpose I/O.
		ОТРВ		AN	-	Temperature sensing pin
		ADC8		AN	-	ADC input
		P06		TTL	OD	8051 port I/O
13	GPIOD	GPIOD	HV	TTL	OD	General purpose I/O
		OTPD		AN	-	Temperature sensing pin
		P02		TTL	OD	8051 port I/O
14	GPIO9	GPIO9	HV	TTL	OD	General purpose I/O
		CATH		-	AN	Cathode of shunt regulator
		P05		TTL	OD	8051 port I/O

Legend: HV = High Voltage (max. 30V), LV = Low voltage (max. 5.5V), OD = Open Drain, PP = Push Pull, AN = analog, TTL = TTL compatible input, CC = USB PD baseband input.

4. Block Diagram

5. Functional Description

5.1. MCU and Peripherals

5.1.1. MCU

The WT6616F embeds an 8-bit 8051 compatible microcontroller with 16-bit addressable space and 8-bit data access functions. RAM size is 768 bytes, including 256 bytes internal RAM and 512 bytes of the external RAM. Program memory is 16k bytes Multiple Time Programmable (MTP) ROM.

5.1.2. Timer/Counter

Two general purpose 16-bit timer/counters are provided. Each timer/counter can be configured to operate in a variety of modes as a timer or as an event counter.

5.1.3. Serial Port

Standard 8051 serial port with Mode0~3 is supported. Baud rate range is from 2400 to 115200.

5.1.4. Interrupt

Five Interrupt sources are provided: two External Interrupts (INTO, INT1), two Timer/Counter Interrupts and one serial port interrupt. The priority of interrupt is programmable for user flexibility.

5.2. USB Type-C and Power Delivery

5.2.1. USB Type-C termination and detection

WT6616F includes all termination resistors (Rp and Rd). Rp and Rd resistors are required to implement connect detection. Type-C source pull-up resistance (Rp) is implemented by a configurable current source to advertise current capability. Attached/detached detection is done by multiple comparators with different threshold voltage and complied with Type-C specification. The WT6616F will preset Rd on its CC pins for initialization.

Figure 5-1 Type-C pull-up current and pull low resistors

5.2.2. USB PD PHY

USB PD PHY consists of a pair of transmitter and receiver that communicate across CC wire using Biphase Marking Coding (BMC).

The transmitter performs:

- Receive packet data from the protocol layer
- Calculate and append a CRC
- Encode the packet data including the CRC
- Transmit the Packet (Preamble, SOP, payload, CRC and EOP) across the CC channel using BMC

The receiver performs:

- Recover the clock and lock onto the Packet from the Preamble
- Detect the SOP, SOP' and SOP"
- Decode the received data including the CRC
- Detect the EOP and validate the CRC
- If the CRC is valid, deliver the packet data to the protocol layer
- If the CRC is not valid, flush the received data

Figure 5-2 USB PD Physical Layer

5.3. VBUS Control

Two modes of VBUS control circuit are provided for interfacing with different PWM controllers.

5.3.1. Control of optocoupler

The constant voltage regulation is implemented by sensing VCC pin via the resistor divider and comparing with internal reference voltage to generate a compensation signal on the CATH pin. VBUS voltage can be adjusted by DAC from 3.0V to 21V with 20mV granularity.

The constant current regulation is incorporated with the current sense amplifier. VBUS current is limited when the output of current sense amplifier is larger than the DAC output. A current limit flag will be raised when it is in current limit mode.

Figure 5-3 Optocoupler control mode

5.3.2. Control of PWM Feedback

In this mode, VFB pin can be connected to the feedback pin of PWM controller such as Power Integrations TM InnoSwitch3. When the load current exceeds the constant current threshold, a pull-up current is introduced on VFB pin and reduces the VBUS voltage to regulate the current. A compensation capacitor is required on CATH pin for reducing current ripple.

Figure 5-4 Direct feedback control mode

5.4. Cable Drop Compensation

In order to compensate the voltage drop caused by the cable resistance, a compensation current which is proportional to load current is connected to the VFB pin as shown in Figure 5-3.

The compensation voltage is calculated by

$$V_{COMP} = \frac{1}{3} \times K \times (I_{LOAD} \times R_S \times A_V)$$

where K: compensation factor

 A_V : gain of current sense amplifier

 R_S : current sense resistance

To fully compensate the IR drop, $V_{COMP} = I_{LOAD} \times R_{CABLE}$

So
$$K = 3 \times \frac{R_{CABLE}}{R_S \times A_V}$$

For example, if R_{CABLE} =160m Ω , R_{S} =5m Ω , A_{V} =80, then choose K=1.2

5.5. Protections

All protections are programmable and can be set to auto-restart or latched. OVP, UVP, OCP and OTP are implemented by hardware and also can be disabled for using FW control.

5.5.1. OVP and UVP

Over Voltage Protection and Under Voltage Protection is implemented by comparing VCC with individual DAC (Digital to Analog Converter). When VCC voltage is larger than the OVP trip point or under than the UVP trip point, an interrupt is generated and GATE pin goes to low level to turn off load switch.

Figure 5-5 OVP and UVP circuit

5.5.2. Over Current Protection

Load current is monitored by reading ADC. Over current protection trip point and debounce time are set by firmware. In power saving mode, the ADC can be changed to comparator mode and wake up MCU when load current exceed setting point.

5.5.3. Over Temperature Protection

Over Temperature protection (OTP) is implemented by a comparator and a current source. The current source provides a constant current to the selected pin and sense the voltage on the external NTC thermistor. When temperature is larger than the OTP trip point which is set by MCU setting, GATE pin goes to low level to turn off load switch and generates an interrupt to MCU. Voltage on the thermistor can also be read through ADC.

Figure 5-6 Over temperature detection circuit

5.6. On-chip Temperature Sensor

An on-chip temperature sensor is provided. Chip temperature can be read by MCU and generates protection if the temperature is too high.

5.7. ADC

The Analog/Digital Converter (ADC) is SAR type with 10-bit resolution and 12 input channels. It provides a single conversion mode with four selectable conversion rate (1MHz, 500kHz, 250Hz and 125kHz) and a comparator mode. The reference voltage of ADC is 2.56V.

Single Conversion Mode:

The ADC starts to convert by MCU enabling conversion. When the conversion is completed, a flag and an interrupt are generated to inform MCU reading the data.

Voltage Compare Mode:

The input voltage is compared with the DAC and can generate an interrupt either the voltage is higher or lower than the DAC. This function can be used to wakeup MCU when it is stopped during power saving mode.

5.8. USB BC1.2

The WT6616F supports USB Battery Charging Rev.1.2 (BC1.2). The HVDCP leverages USB BC1.2 compliant signaling on D+ and D- in order to negotiate voltage requests on VBUS.

Figure 5-7 BC1.2 block diagram

5.9. Discharge

When VBUS transits from a higher voltage level to a lower voltage level, it requires a discharge current to fulfill the transition time specification of USB-PD. There are four transistors can be enabled independently to control discharge time.

5.10. Load Switch Driver

A charge pump is built in to drive the external NMOS load switch. To prevent reverse current from output, it is suggested to use two NMOS switches in series with their sources connected together...

5.11. GPIO

All GPIOs can be configured as an input or output except GPI4 and GPI5 are input only. When configured as an output port, it is open drain type.

5.12. Watchdog Timer

Watchdog Timer can be used to detect CPU failures, such as the software deadlock circles caused by noises, voltage disturbance, or power off etc. When the internal counter of the Watchdog Timer overflows, a reset signal will be generated then reset the CPU.

5.13. Resets

There are several reset sources to generate RESET signal:

- (1) Power On Reset (POR)
- (2) 1.8V regulator Low Voltage Reset
- (3) VCC Under Voltage Lockout (UVLO)
- (4) VDD Low Voltage Reset
- (5) Watchdog Reset
- (6) Program Counter Overflow Reset

All reset sources can be enabled/disabled except Power On Reset.

6. Electrical Characteristics

6.1. Absolute Maximum Ratings

	Parameter	Min.	Max.	Units
Supply voltage V	CC pin	-0.3	30	V
I/O voltage	GPIO0, GPIO3, GPIO4, GPIO5, GPIO9, GPIOB, GPIOC, GPIOD	-0.3	VCC + 0.3 (Max. 30V)	V
	GPIO2	-0.3	37	V
	GPIO1, GPIO6, GPIO7, GPIO8	-0.3	VDD + 0.3	V
Output voltage	VDD	-0.3	6	V
Operating tempe	rature	-40	125	°C
Storage tempera	ture	-55	150	°C

NOTE: Maximum ratings applied to the device are individual stress limit value. Stresses above those listed may cause permanent damage and reliability may be affected. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2. Thermal Characteristics

16-pin QFN

Parameter		Condition	Min.	Тур.	Max.	Units
θ_{JA}	Thermal Resistance (Junction to Air)			44		°C /W
θ_{JC}	Thermal Resistance (Junction to Case)			7.3		°C /W
T _{JMAX}	Maximum Junction Temperature			125		°C

6.3. Recommended Operating Conditions

	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC_OPR}	Operating voltage	At DFP mode	3		24	V
		At UFP mode	4		24	٧
V _{IO_HV}	GPIO0, GPIO3, GPIO4, GPIO5, GPIO9, GPIOB, GPIOC, GPIOD		0		V _{CC_OPR} + 0.3	V
V _{GATE_HV}	GPIO2 pin		0		V _{CC_OPR} + 8.5	V
V _{IO_LV}	GPIO1, GPIO6, GPIO7, GPIO8		0		V _{O_LDO} + 0.3	V
V_{DD_LDO}	VDD pin		4.6	4.85	5.1	V
T _{OPR}	Operating Temperature		-20		105	°C

6.4. DC Characteristics (VCC=20V, Ta= -20 ~ +105°C, unless specified)

6.4.1. VCC and VDD

	Parameter	Condition	Min.	Тур.	Max.	Units
V _{cc}	VCC Operating Voltage	In DFP mode	3		24	V
		In UFP mode	4		24	V
I _{CC_OPR1}	VCC Current, normal operating	VCC ≧ 4.5V, No load at output, MCU operating @ 10MHz,		8	10	mA
I _{CC_OPR2}	VCC Current, normal operating	VCC < 4.5V, No load at output and MCU operating @ 10MHz	158	18	22	mA
ı	VCC Current, standby mode	CC1 pin floating	0	0.8	1.0	mA
I _{CC_STDBY}	MCU off	CC1 pin 5.1KΩ pull low			1.3	mA
V	VCC Hades Veltage Leekeyt	VCC rising	3.5		4.35	V
V _{UVLO}	VCC Under Voltage Lockout	VCC falling	2.6		2.85	V
V_{DD}	VDD regulator output voltage	I _{DDO} = 0 ~ 5mA	4.6	4.85	5.1	V

6.4.2. Shunt Regulator

V_{DD}	VDD regulator output voltage	$I_{DDO} = 0 \approx 5 \text{ mA}$	4.6	4.85	5.1	V			
6.4.2. Shunt Regulator									
	Parameter	Condition	Min.	Тур.	Max.	Units			
	"Ha.	VPWR=23V, Ta= 25°C , 5V output			±1.5	%			
V _{OUT}	Output voltage range accuracy (Fig. 6-1)	VPWR=23V, Ta= 25°C, 3V ~ 21V output			±2.5	%			
		VPWR=23V, Ta= -20°C~ 105°C, 3V ~ 21V output			±3.5	%			
V_{PPS_STEP}	PPS voltage step			20		mV			
I _{PPS_STEP}	PPS current limit step	$R_{SENSE}=5m\Omega$, Av=80		25		mA			
ΔI_{PPS_CL}	Current limit accuracy	1A ≤ current limit ≤3A			±150	mA			
	Current limit accuracy	current limit > 3A			±5	%			

6.4.3. OVP and UVP

	Parameter	Condition	Min.	Тур.	Max.	Units
V _{OVP}	OVP voltage trip point		3		25.5	V
V _{OVP_STEP}	OVP voltage step	'//\o,		0.1		V
ΔV_{OVP}	OVP trip point accuracy				±5	%
V_{UVP}	UVP voltage trip point		3		25.5	V
V_{UVP_STEP}	UVP voltage step			0.1		V
ΔV_{OVP}	UVP trip point accuracy				±5	%

6.4.4. Over Current Protection

	Parameter	Condition	Min.	Тур.	Max.	Units
I _{OCP}	OCP trip point	Rs=5mΩ, Av=80	0.5		6.4	Α
ΔI_{OCP}	OCP accuracy	Rs=5mΩ, Av=80, I _{OCP} =3.6A			±200	mA

6.4.5. ADC

Parameter		Condition	Min.	Тур.	Max.	Units
N _{ADC}	ADC resolution			10		Bit
INL _{ADC}	ADC INL	Ta= 25°C, V _{REF_ADC} = 2.56V			±5	LSB
DNL _{ADC}	ADC DNL	Ta= 25°C, V _{REF_ADC} = 2.56V			±5	LSB
V _{REF_ADC}	Reference voltage of ADC	Ta= 25°C, VCC=5V		2.56		٧

6.4.6. CC1 and CC2

	Parameter	Condition	Min.	Тур.	Max.	Units
V _{OH_CC}	Output high voltage of BMC transmitter		1.05	1.125	1.2	٧
V _{OL_CC}	Output low voltage of BMC transmitter		0		0.075	V
V _{IH_CC}	Input high voltage of BMC receiver		0.67		1.45	V
V_{IL_CC}	Input low voltage of BMC receiver		-0.25	~~	0.43	V
Z _{DRIVER_CC}	BMC Transmitter output impedance		33	O_{II}	75	Ω
Z _{BMCRX_CC}	BMC Receiver Input impedance		1			МΩ
		Capability 0.5A @5V	64	80	96	μΑ
I _{RP_CC}	CC1 and CC2 pull-up current	Capability 1.5A @5V	166	180	194	μΑ
		Capability 3.0A @5V	304	330	356	μΑ
		Capability 0.5A @5V	1.5	1.6	1.65	V
V_{Rd_CC}	CC1 and CC2 attachment detection threshold	Capability 1.5A @5V	1.5	1.6	1.65	V
	unconoid	Capability 3.0A @5V	2.45	2.6	2.75	V
R _{Rd_CC}	CC1 and CC2 pull low resistor	Mo	4.59	5.1	5.61	ΚΩ

6.4.7. D+ and D-

	Parameter	Condition	Min.	Тур.	Max.	Units
V _{DAT_REF}	Data detect voltage		0.25	0.35	0.4	V
V_{SEL_REF}	Output selection reference		1.8	2.0	2.2	V
R _{DWN}	D- pull down resistance		14.25	15	15.75	ΚΩ
R _{DCP_DAT}	D+ to D- resistance during DCP mode			30	40	Ω
R _{DAT_LKG}	D+ leakage resistance		300	710	1500	ΚΩ

6.4.8. Temperature Sensor

	Parameter	Condition	Min.	Тур.	Max.	Units
I _{OTP}	OTP Current Source		19.475	20.5	21.525	μΑ

6.4.9. On-chip Temperature Sensor

	Parameter	Condition	Min.	Тур.	Max.	Units
T _{TS}	Internal temperature sensor accuracy				±10	°C

6.4.10. GPIO

	Parameter	Condition	Min.	Тур.	Max.	Units
V _{OL_GPIO4m}	Output Low Voltage of GPIO1, GPIO6, GPIO7 and GPIO8	I _{OL} = 4mA			0.4	V
V _{OL_GPIO10m}	Output Low Voltage of GPIO0, GPIO3, GPIO9, GPIOB, GPIOC and GPIOD	I _{OL} = 10mA			0.4	٧
V _{OL_GPIO2}	Output Low Voltage of GPIO2	I _{OL} = 5mA			4	V
I _{Z_GPIO}	Leakage current of GPIO in Hi-Z				10	μΑ
		GPIO1, GPIO6, GPIO7, GPIO8	1.5		4.5	٧
V _{IH}	Input High voltage	GPIO0, GPIO2, GPIO3, GPIO4, GPIO5, GPIO9, GPIOB, GPIOC, GPIOD	1.4		VCC	V
V	Input low voltage	GPIO1	0		1.0	V
V _{IL}	Input low voltage	Others GPIOx	0		0.8	V

6.5. AC Characteristics (VCC=20V, Ta=-20°C to +105°C, unless specified)

6.5.1. Internal Oscillator

	Parameter	Condition	Min.	Тур.	Max.	Units
f _{OSC}	Main oscillator frequency		9.5	10	10.5	MHz
f_{LFOSC}	Low frequency oscillator frequency		45.5	65	84.5	KHz

6.5.2. USB-PD BMC Transmitter and Receiver

	Parameter	Condition	Min.	Тур.	Max.	Units
f _{BMC}	BMC signal bit rate		270	300	330	KHz
t _{RISE_BMC}	BMC signal Tx rise time		300			ns
t _{FALL_BMC}	BMC signal Tx fall time		300			ns
t _{HOLD_BMC}	Time to cease driving the line after the final high-to-low transition		1			μs
t _{IFG_BMC}	Time from the end of last bit of a Frame until the start of the first bit of the next Preamble		25			μs
t _{END_BMC}	Time to cease driving the line after the end of the last bit of the Frame				23	μs
t _{RXFTR_BMC}	BMC receiver bandwidth limiting filter		100			ns
t _{NILDLE_BMC}	Time window for detecting non-idle		12		20	μs
N _{NIDLE_BMC}	Number of transitions to be detected to declare bus non-idle		3			

	Parameter	Condition	Min.	Тур.	Max.	Units
t _{PULSE1_BMC}	Pulse width of transmitted BMC "ONE" signal *(1)	Ta = 25°C, CC total Capacitance =1010pF *(2) *(3), CC pin series resistance =47ohm	1.4		1.8	μs

*(1) Pulse width of transmitted BMC "ONE" signal

*(2) Reference to USB Power Delivery Specification Revision 3.0. The cShunt=560pF is used and assumes cReceiver is minimum value 200pF, and Cable Model provide 250pF.

*(3) Pulse width of transmitted BMC "ONE" signal test circuit

7. Examples of Application

7.1. USB PD 3.0 Power Banks

8. Ordering Information

Package Type	Package Outline	Part Number	Ordering Number	Note
16-pin QFN	5mm x 5mm	WT6616F	WT6616F-UG16CWT-XXX	-

Note: suffix number number-XXX for difference Firmware code, please refer to Firmware control list.

Example:

Top Mark

- Δ ROM Code
- □ Date Code
- # FW Version Code
- & Pin configuration type
- X Production Tracking code

9. Package Information

9.1. Package Dimension

5.1.5. 16-pin QFN

All dimensions shown in mm

SYMBOL	MIN	NOR	MAX
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3		0.203	
b	0.25	0.30	0.35
D	4.95	5.00	5.05
E	4.95	5.00	5.05
е		0.80	
K	0.20	1	-
L	0.45	0.50	0.55
D2	3.28	3.38	3.43
E2	3.28	3.38	3.43

Note:

1. Dimension "b" applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension "b" should not be measured in that radius area.

9.2. Product Tube and Tapping Specification

Package Type	EA/TRAY	TRAY/BOX	EA/BOX	Tapping (EA/Reel)
16-pin QFN (5x5mm)	490	10	4900	5000

9.2.1 Reel Dimensions

(1) Reel Dimensions: W=12mm for "16-pin QFN".

9.2.2 Carrier Tape Dimensions

Notes:

- 1. 10 Sprocket hole pitch cumulative tolerance is ±0.1mm
- 2. Pocket position relative to sprocket hole measured as true position of packet not pocket hole.
- 3. A_0 and B_0 measured on a plane 0.3mm above the bottom of the pocket to the top surface of the carrier.
- 4. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 5. Carrier camber shall be not than 1mm per 100 mm through a length of 250 mm.

Unit: mm

Symbol	16-pin QFN (5mmx5mm)
A _O	5.25 ± 0.10
Bo	5.25 ± 0.10
Ko	1.25 ± 0.10
K1	-
Po	4.00 ± 0.10
P1	8.00 ± 0.10
P2	2.00 ± 0.05
D _o	1.55 ± 0.05
D1	1.50 (MIN)
E	1.75 ± 0.10
F	5.50 ± 0.05
10P ₀	40.0 ± 0.10
W	12.0 ± 0.20
Т	0.30 ± 0.05

10. Revision History

Version	Contents of Change	Date
0.90	Initial issue	March 19, 2019