National University of Singapore

Semester 1, 2021/2022 MA2001 Homework Assignment 2

- (a) Use A4 size paper and pen (blue or black ink) to write your answers. (Students may also type out the answers or write the answers electronically using their devices.)
- (b) Write down your student number and full name clearly on the top left of every page of the answer scripts.
- (c) Write the page number on the top right corner of each page of answer scripts.
- (d) This assignment consists of 4 pages and 7 questions. Total mark is 80 marks.
- (e) To submit your answer scripts, do the following:
 - (i) Scan or take pictures of your work (make sure the images can be read clearly).
 - (ii) Merge all your answers into one pdf file. Arrange them in order of the questions.
 - (iii) Name the pdf file by <u>StudentNo HW2</u> (e.g. A123456R HW2).
 - (iv) Upload your pdf into the LumiNUS folder Homework 2 submission.
- (f) Deadline for submission is <u>1 October</u>, <u>2021</u> by <u>11.59pm</u>. **Late submission** will not be accepted.

- 1. Let $U = \{(x, y, z) \mid x + 2y 3z = 0\}$ and $V = \{(x, y, z) \mid x + 3y 2z = 0\}$.
 - (i) [4 marks] Write down an explicit set notation for each of U and V.
 - (ii) [3 marks] Write down both an implicit set notation and an explicit set notation for $U \cap V$.
 - (iii) [2 marks] Is $W = \{(t-2, t+1, t) \mid t \in \mathbb{R}\}$ a subset of U? Justify your answer.
 - (iv) [3 marks] Find $U \cap V \cap W$.
- 2. Let $S_1 = \{(1,0,1,-1), (0,2,-1,0), (1,1,2,-1)\}$ and $S_2 = \{(1,2,0,-1), (-1,1,-3,1), (0,1,1,0), (0,2,-4,0)\}.$
 - (i) [2 marks] Is $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$?
 - (ii) [2 marks] Is span(S_2) = \mathbb{R}^4 ?
 - (iii) [3 marks] Find a necessary and sufficient condition on $a, b, c, d \in \mathbb{R}$ such that $(a, b, c, d) \notin \text{span}(S_1)$.
 - (iv) [3 marks] Is it possible to find a single linear equation px+qy+rz+sw=0 such that

$$span(S_2) = \{(x, y, z, w) \mid px + qy + rz + sw = 0\}?$$

Justify all your answers.

- 3. Let $V_1 = \{(t-2s, s+3t, 3s, t) \mid s, t \in \mathbb{R}\}$ and $V_2 = \{(x, y, z, w) \mid x + y + z + w = 0 \text{ and } xy zw = 0\}.$
 - (i) [2 marks] Show that V_1 is a subspace of \mathbb{R}^4 by expressing V_1 as a linear span.
 - (ii) [3 marks] Find a proper subset of V_1 which is a subspace of \mathbb{R}^4 and contains a vector of the form (*, *, 3, 3).
 - (iii) [2 marks] Show that V_2 is not a subspace of \mathbb{R}^4 .
 - (iv) [3 marks] Is it possible to find a subset of V_2 which satisfies the closure properties under vector addition and scalar multiplication? Justify your answer.

4. Let $S = \{ \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{x} \} \subseteq \mathbb{R}^n$ and $V = \operatorname{span}(S)$. Suppose $\{ \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \}$ is a basis for V and \boldsymbol{x} is not the zero vector.

Determine whether the following statements are true or false. Justify your answers.

- (i) [2 marks] u + v + w + x is a linear combination of u, v, w.
- (ii) [2 marks] Any three vectors in S are linearly independent.
- (iii) [2 marks] $\{\boldsymbol{u}-\boldsymbol{x},\boldsymbol{v}-\boldsymbol{x},\boldsymbol{w}-\boldsymbol{x}\}$ is a basis for V.
- (iv) [3 marks] If $\operatorname{span}\{\boldsymbol{v}, \boldsymbol{w}\} \neq \operatorname{span}\{\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{x}\}$, then $V = \operatorname{span}\{\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{x}\}$.
- (v) [3 marks] If $\mathbf{y} \notin V$, then $\{\mathbf{y} + \mathbf{z} \mid \mathbf{z} \in V\}$ cannot be a subspace of \mathbb{R}^n .
- 5. Let $S = \{(1,1,2,3,4), (1,2,2,3,3), (1,1,2,2,3)\}$ and V = span(S). Also let $T = \{(3,3,6,7,10), (2,3,4,5,6), (2,3,4,6,7)\}$.
 - (i) [3 marks] Show that S is a basis for V.
 - (ii) [3 marks] Show that $\mathbf{v} = (0, -5, 0, -3, 2)$ belong t V and find the coordinate vector of \mathbf{v} with respect to S.
 - (iii) [4 marks] Show that T is also a basis for V.
 - (iv) [2 marks] Suppose $\mathbf{w} \in V$ such that $(\mathbf{w})_T = (1, 1, -1)$. Find \mathbf{w} .
- 6. Let $\mathbf{A} = \begin{pmatrix} 1 & 3 & 1 & 3 \\ 3 & -1 & 3 & -1 \\ 2 & 1 & 2 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$.
 - (i) [4 marks] Find the solution spaces S of Ax = 0 and T of Bx = 0. Give your answers in explicit set notation.
 - (ii) [2 marks] Find a basis for each of S and T in (i).
 - (iii) [4 marks] Show that every vector \boldsymbol{v} in \mathbb{R}^4 can be expressed as $\boldsymbol{v} = \boldsymbol{s} + \boldsymbol{t}$ in a unique way where $\boldsymbol{s} \in S$ and $\boldsymbol{t} \in T$.

- 7. Let $\mathbf{u}_1 = (1, 4, 2)$, $\mathbf{u}_2 = (0, 3, 1)$, $\mathbf{u}_3 = (1, 1, 1)$, $\mathbf{u}_4 = (1, 3, -3)$ represent four points in the xyz-space, and $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4}$.
 - (i) [3 marks] Show that we cannot find a plane that contains all the four points in S.
 - (ii) [4 marks] Find a linear system with 2 equations that represent two planes U and V such that \mathbf{u}_1 lies on U and \mathbf{u}_2 lies on V, and \mathbf{u}_3 , \mathbf{u}_4 are solutions of the system.
 - (iii) [3 marks] Find the equation of a plane P that contains three points in S such that P is a subspace of \mathbb{R}^3 .
 - (iv) [4 marks] Write down a necessary and sufficient condition on any three points in \mathbb{R}^3 such that the three points lie on a plane that corresponds to a subspace of \mathbb{R}^3 . Justify your answer.