Parametry sygnałów

Mateusz Wójcik, 12.12.2024

Laboratorium ma na celu zapoznanie si z podstawowymi parametrami sygnałów oraz metodami ich obliczania w rodowisku MATLAB. W tym celu zapoznano si ze skryptem, w którym opisano poszczególne parametry, wykonano przykłady oraz odpowiednie zadania.

Warto rednia

```
X=[1, 2, 3 4];
SREDNIA_X=mean(X) % 2.5000
```

```
SREDNIA_X = 2.5000
```

2.1602

rednia kwadratowa

```
X=[1, 2, 3];
RMS_X=rms(X) % sqrt((12+22+32)/3) 2.1602
RMS_X =
```

Współczynnik szczytu

```
fs=5000;
t=0:(1/fs):1;
X=sin(2*pi*2*t);
plot(t, X, 'r', 'LineWidth', 3);
```


w=peak2rms(X) % 1.4144 (1/0.7070) = 1.4144

```
RMS_X=rms(X) % 0.7070

RMS_X = 0.7070
```

w =

Współczynnik peak-to-peak

```
fs=5000;
t=0:(1/fs):1;
X=sin(2*pi*2*t);
plot(t, X, 'r', 'LineWidth', 3);
```



```
p2p=peak2peak(X) % 2
```

p2p = 2

Warto minimalna i maksymakna

```
fs=5000;
t=0:(1/fs):1;
X=sin(2*pi*2*t);
plot(t, X, 'r', 'LineWidth', 3);
```

```
1
8.0
0.6
0.4
0.2
  0
-0.2
-0.4
-0.6
-0.8
 -1
   0
           0.1
                   0.2
                           0.3
                                   0.4
                                           0.5
                                                   0.6
                                                           0.7
                                                                    0.8
                                                                            0.9
```

```
[a, b]=max(X)

a =
1
b =
626

[c, d]=min(X)

c =
-1
d =
```

Wariancja

1876

```
X=[1, 2, 6];
a=var(X) % 7 bo wartosc oczekiwana = 3, wart_oczek=(1+2+6)/3
```

a = 7

```
% ((1-3)2+(2-3)2+(6-3)2)/2 = (4+1+9)/2=14/2=7

X=[1, 2, 9];

a=var(X) % 19 bo wartosc oczekiwana = 4, wart_oczek=(1+2+9)/3
```

a = 19

```
% ((1-4)2+(2-4)2+(9-4)2)/2 = (9+4+25)/2=19

X=[1, 2, 3, 4, 5];

a=var(X) % 2.5 bo wartosc oczekiwana = 3,
```

```
a = 2.5000
```

```
%((1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2)/4 =
%=(4+1+0+1+4)/4=10/4=2.5
```

Odchylenie standardowe

```
X=[1, 2, 6];
stdX=std(X) % 2.6458 bo sqrt(7)= 2.6458

stdX =
2.6458

X=[1, 2, 9];
stdX=std(X) % 4.3589 bo sqrt(19)= 4.3589

stdX =
4.3589

X=[1, 2, 3, 4, 5];
stdX=std(X) % 1.5811 bo sqrt(2.5)= 1.5811

stdX =
1.5811
```

Zad 1

Importowanie danych z plików .wav oraz wyliczanie dla nich redniej

```
X = [0, 1, 3];
[wiatrak_20, fs] = audioread("pliki_wav/wiatrak_20.wav");
[przekladnia, fs] = audioread("pliki_wav/przekladnia20.wav");
mean(X)

ans =
1.3333

mean(wiatrak_20)

ans =
-2.4346e-05

mean(przekladnia)

ans =
-4.2175e-04
```

Zad 2

Obliczanie warto ci RMS sygnałów:

```
rms(X)

ans =
1.8257

rms(wiatrak_20)

ans =
0.1855

rms(przekladnia)

ans =
```

Obliczanie współczynnika szczytu z sygnałów:

```
peak2rms(X)

ans =
1.6432

peak2rms(wiatrak_20)

ans =
4.2778

peak2rms(przekladnia)

ans =
4.7018
```

Zad 4

Obliczanie warto ci peak-to-peak sygnałów:

```
peak2peak(X)

ans =
3

peak2peak(wiatrak_20)

ans =
1.5757

peak2peak(przekladnia)

ans =
1.2662
```

Zad 5

Obliczanie warto ci minimalnej i maksymalnej sygnałów:

```
min(X)
ans =
0

max(X)

ans =
3

min(wiatrak_20)

ans =
-0.7821

max(wiatrak_20)
```

```
ans =
0.7936

min(przekladnia)

ans =
-0.6008

max(przekladnia)

ans =
0.6654
```

Obliczanie wariancji sygnałów:

```
var(X)
ans =
2.3333

var(wiatrak_20)

ans =
0.0344

var(przekladnia)

ans =
0.0200
```

Zad 7

Obliczanie odchylenia standardowego sygnałów:

```
std(X)
ans =
1.5275

std(wiatrak_20)

ans =
0.1855

std(przekladnia)

ans =
0.1415
```

Zad 8

Obliczanie energii sygnałów:

```
sum(abs(X).^2)
ans =
10
```

```
sum(abs(wiatrak_20).^2)

ans =
1.5179e+03

sum(abs(przekladnia).^2)

ans =
883.1704
```

Obliczanie redniej mocy sygnałów:

```
bandpower(X)

ans =
3.3333

bandpower(wiatrak_20)

ans =
0.0344

bandpower(przekladnia)

ans =
0.0200
```

Zad 10

Obliczanie RSS z sygnałów:

```
rssq(X)
ans =
3.1623

rssq(wiatrak_20)

ans =
38.9602

rssq(przekladnia)

ans =
29.7182
```

Zad 11

Zastosowanie funkcji **seqperiod**, która sprawdza, czy w danej kolumnie istnieje jaki wzorzec, okresowo powtarzania si danych.

```
X1 = [4 0 1 6;
2 0 2 7;
4 0 1 5;
2 0 5 6];
segperiod(X1)
```

```
ans = 1 \times 4
2 1 4 3
```

1

3

```
X2 = [4 0 1 6;
2 0 2 7;
4 0 1 5;
2 0 5 6;
1 0 1 7];
seqperiod(X2)
```

```
Tak np. w pierwszej kolumnie macierzy X1 dane powtarzaja si co drug próbk , a w pierwszej kolumnie X2 dane w ogóle si nie powtarzaj .
```

Zad 12

5

```
fs=5000;
t=0:(1/fs):1;
X=sin(2*pi*2*t);
Y=cos(2*pi*8*t);
s=X+Y;
plot(t, s, 'r', 'LineWidth', 3);
```


Funkcja findpeaks mo e zwraca wykres, funkcji, albo wektory, które opisuj warto ci szczytów i ich indeks w wektorze wej ciowym s:

```
findpeaks(s)
```



```
[pks, locs] = findpeaks(s)
```

Kolejny przyklad u ycia funkcji findpeaks:

```
s = [25 8 15 5 6 10 10 3 1 20 7];
plot(s)
```


findpeaks(s)

Znalezienie maksimów lokalnych i ponumerowanie ich w kolejno ci malej cej

```
s = [25 8 15 5 6 10 10 3 1 20 7];
plot(s)
```



```
[PEAKS_s, lokalizacja]= findpeaks(s, 'SortStr','descend')
```

```
PEAKS_s = 1x3
20 15 10
lokalizacja = 1x3
10 3 6
```

```
findpeaks(s, 'SortStr','descend')
```



```
x= [1, 2, 3,4,5,6,7,8,9,10,11];
s = [25 8 15 5 6 10 10 3 1 20 7];
plot(x,s)
```


findpeaks(s, Threshold=10)

findpeaks(s, Threshold=5)

findpeaks(s, Threshold=0)

Parametr Threshold sprawia, e zeby dany punkt został uznany szczyt, to musi mie warto c wi ksz o conajmniej warto Thresholdu od swoich s siadów.

Zad 16

```
x= [1, 2, 3,4,5,6,7,8,9,10,11];
s = [25 8 15 5 6 10 10 3 1 20 7];
plot(x,s)
```


findpeaks(s, MinPeakHeight=12)

findpeaks(s, MinPeakHeight=8)

findpeaks(s, MinPeakHeight=3)

Parametr MinPeakHeight, okre la, e za szczyt mo e zosta uznany tylko taki punkt, którego warto jest wi ksza od tej zdefiniowanej w parametrze.

Zad 17

```
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
x = \frac{1 \times 11}{1}
x = [25 8 15 5 6 10 10 3 1 20 7];
x = [25 8 15 5 6 10 10 3 1 20 7];
x = [25 8 15 5 6 10 10 3 1 20 7];
```


findpeaks(s, Npeaks=1)

findpeaks(s, Npeaks=2)

Parametr Npeaks okre la liczb szczytów, które zostan wykryte id c od pocz tku wektora przechowuj cego dany sygnał.

Zad 18

findpeaks(s, MinPeakWidth=1)

Parametr MinPeakWldth okre la, e aby dany punkt został uznany za szczyt, to musi by conajmniej o szeroko ci 1 próbki.

Zad 19

Wczytywanie danych:

```
[wiatrak_20, fs] = audioread("pliki_wav/wiatrak_20.wav");
[przekladnia_20, fs] = audioread("pliki_wav/przekladnia20.wav");
[wiatrak_21, fs] = audioread("pliki_wav/wiatrak_21.wav");
[przekladnia_21, fs] = audioread("pliki_wav/przekladnia21.wav");
```

```
[wiatrak_23, fs] = audioread("pliki_wav/wiatrak_23.wav");
[przekladnia_23, fs] = audioread("pliki_wav/przekladnia23.wav");
[wiatrak_24, fs] = audioread("pliki_wav/wiatrak_24.wav");
[przekladnia_24, fs] = audioread("pliki_wav/przekladnia24.wav");

wiatraki = [wiatrak_20, wiatrak_21, wiatrak_23, wiatrak_24];

przekladnie = [przekladnia_20, przekladnia_21 przekladnia_23, przekladnia_24];

sygnaly_wzorcowe = [wiatrak_20, wiatrak_21, przekladnia_20, przekladnia_21];

sygnaly_testowane = [wiatrak_23, wiatrak_24, przekladnia_23, przekladnia_24];
```

Obliczanie RMS sygnałów

```
RMS_wiatraki = rms(wiatraki)
RMS_wiatraki = 1 \times 4
   0.1855
            0.1823
                    0.1787
                              0.1846
RMS_przekladnie = rms(przekladnie)
RMS_przekladnie = 1x4
   0.1415
          0.1417
                    0.1469
                              0.1450
RMS_sygnaly_wzorcowe = rms(sygnaly_wzorcowe)
RMS_sygnaly_wzorcowe = 1x4
   0.1855
          0.1823
                    0.1415
                              0.1417
RMS_sygnaly_testowane = rms(sygnaly_testowane)
RMS_sygnaly_testowane = 1x4
   0.1787
          0.1846
                    0.1469
                             0.1450
sygnaly_wzorc_labels = ["Wiatrak 20", "Wiatrak 21", "Przekładnia 20",
"Przekładnia 21"];
sygnaly_test_labels = ["Wiatrak 23", "Wiatrak 24", "Przekładnia 23",
"Przekładnia 24"];
for i =1:length(sygnaly_test_labels)
    diff = abs(RMS_sygnaly_testowane(i) - RMS_sygnaly_wzorcowe);
    [M, I] = min(diff);
    texts = "Na podstawie oblicze sygnal - '" + sygnaly_test_labels(i)
+ "' najlepiej pasuje do sygnału '" + sygnaly wzorc labels(I) + "'," +
newline + "a ich warto rms ró ni si tylko o: " + num2str(M);
    disp(texts)
end
Na podstawie oblicze sygnał - 'Wiatrak 23' najlepiej pasuje do sygnału 'Wiatrak 21',
a ich warto rms ró ni si tylko o: 0.0036448
Na podstawie oblicze sygnał - 'Wiatrak 24' najlepiej pasuje do sygnału 'Wiatrak 20',
a ich warto rms ró ni si tylko o: 0.00088342
Na podstawie oblicze sygnał - 'Przekładnia 23' najlepiej pasuje do sygnału 'Przekładnia 21',
           rms ró ni si tylko o: 0.0052709
a ich warto
```

Na podstawie oblicze sygnał - 'Przekładnia 24' najlepiej pasuje do sygnału 'Przekładnia 21', a ich warto rms ró ni si tylko o: 0.003301

Na podstawie parametru rms przeprowadzono identyfikacjie danych próbek testowych. Mo na zauwa y , e przebiegła ona pomy Inie w wyniku czego rozró niono w testowanym sygnale wiatrak od przekładni. Oczywi cie jest to tylko mała próbka danych, a w realnym wiecie jest ich znacznie wi cej, natomiast pokazuje nam to jak du o mo na wnioskowa po parametrach sygnału.

Odpowiedzi na pytania

1) Jakie s podstawowe parametry sygnałów?

Podstawowymi parametrami sygnałów zajmowali my si podczas dzisiejszego laboratorium i s to m.in.: warto rednia, warto RMS, współczynnik szczytu, współczynnik peak-to-peak, warto maksymalna i minimalna, wariancja, odchylenie standardowe, energia sygnału dyskretnego, rednia moc sygnału dyskretnego oraz warto RSS.

2) Do czego mog si przyda parametry sygnałów? Gdzie mog by zastosowane?

Parametry sygnałów s szczególne wa ne w technice, otó dzi ki nim jeste my w stanie kontrolowa i diagnozowa wiele procesów. Warto rednia okre la składow stał sygnału, a RMS pozwala mierzy jego moc skuteczn , co jest istotne w systemach elektroenergetycznych i diagnostyce maszyn. Współczynniki szczytu i peak-to-peak wskazuj ekstremalne wahania, przydatne w analizie drga i wykrywaniu anomalii. Wariancja i odchylenie standardowe mierz zmienno sygnału, co pozwala oceni poziom szumów. Energia i moc sygnału okre laj ilo energii przenoszon przez sygnał, co ma zastosowanie w systemach radarowych i przetwarzaniu obrazów. Parametr RSS jest wykorzystywany do wykrywania bł dów w systemach predykcyjnych. Razem te parametry wspieraj diagnostyk , kontrol i optymalizacj procesów in ynieryjnych, biomedycznych i komunikacyjnych

3) Co by si stało gdyby my dodali do siebie warto ci: RMS, RSS i maksymaln sygnałuy=xRMS+xRSS+xMAX. Czy taka warto b dzie dla nas u yteczna? Odpowied uzasadni .

W mojej opini dodanie tych sygnałów nie prowadzi do u ytecznego rezultatu. Wszystkie te parametry odnosz si do jednego sygnału, czyli s ze sob powi zane. Dodatkowym czynnikiem odradzaj cym u ycia takiego kryterium jest fakt, e warto maksymalna odnosi si do jednej próbki sygnału, która z pewnych przyczyn technicznych mo e by znacznie zakłamana, podczas, gdy warto RMS i RSS do całego sygnału, który analizujemy. Suma ta te nie ma interpretacji fizycznej, poniewa nie odnosi si ani do energii sygnału, ani do mocy, bł du ani tym podobnych.

4) Co takiego robi funkcja findpeaks()?

Funkcja *findpeaks()* znajduje maksima lokalne w danym wektorze, który tej funkcji podamy. Na wyj ciu z funkcji oprócz ich warto ci otrzymujemy indeks póbki z wektora wej ciowego. Dzi ki mo liwo ci skonfigurowania wielu parametrów mo emy zmieni maksima, które nas interesuj , np. okre li minimalny poziom dla którego dana próbka mo e by uznana za maksimum. Dzi ki tej funkcji mo na identyfikowa zdarzenia w sygnale.

Wnioski

Na podstawie przeprowadzonych eksperymentów mo na stwierdzi , e parametry sygnałów pozwalaj na kompleksow analiz i identyfikacj sygnałów. Obliczone warto ci rednie, wariancje, odchylenia

standardowe oraz wska niki takie jak RMS, peak-to-peak i współczynnik szczytu umo liwiaj dokładne scharakteryzowanie sygnałów. Dzi ki zastosowaniu funkcji findpeaks mo liwe jest wykrywanie lokalnych maksimów, co ma zastosowanie w analizie drga i identyfikacji zdarze w sygnałach. Eksperymenty z próbkami d wi kowymi potwierdziły, e identyfikacja sygnałów testowych w oparciu o warto RMS jest skuteczna. Parametry te maj szerokie zastosowanie w diagnostyce maszyn, analizie drga , przetwarzaniu sygnałów akustycznych i elektroenergetycznych. Warto jednak pami ta , eł czenie niektórych parametrów, jak RMS, RSS i warto ci maksymalnej, nie daje u ytecznych wyników ze wzgl du na ró ne interpretacje fizyczne tych warto ci.