BVM College of Management Education, Gwalior Question Bank MCA 304 Theory of Computationn

Unit I

- Q Question : Attempt very short notes
- (a) Melay Machine & Moorre Machine
- (b) What do you mean by DFA & NDFA?
- (c) Transition System
- (d) Define Autometon

Question: Attempt short notes

- (a) Explain the 4-bit shift register
- (b) Define Graph & Tree with example.
- (c) What do you mean by the Relation & function . Explain with example.

Define long answer type question

- 1. Prove the following are by mathematical induction
 - 10^{2n} -1 is divisible by 11 for all n>=1
- 2. Prove the following are by mathematical induction

$$\Sigma 1/k(k+1)=n/(n+1)$$
 where k=1 to n

Construct a moore machine which is equivalent to the Mealy machine given in following
 Table

N	ext	C+	at.	Δ
IV	₽XI	21	aı	u

Present	a=0		a=	1
State	State	Ouptput	State	Output
q1	q1	1	q2	0
q2	q4	1	q4	1
q3	q2	1	q3	1
q4	q3	0	q1	1

Q.4 Consider a Mealy Machine represented by following fig. construct a Moore machine equivalent to this Mealy machine

Fig. Mealy machine

State	0	1
q0	q1	q5
q1	q6	q2
Q2	q0	q2
q3	q2	q6
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

- Q.6 Construct a Mealy machine which can output EVEN ,ODD according as the total number of 1's Encountered is even or odd. The input symbols are 0 & 1
- Q7 Construct a deterministic finite automaton equivalent to M=({q0,q1,q2,q3},{a,b}, δ ,q0,{q3}) , Δ is given in table

State/ Σ	a	b
q0	q0,q1	q0
q1	q2	q1
q2	q3	q3
Q3		q2

Q.8 Consider the finite state machine whose transition function δ is given in following table in the form of transition table Here Q={q0,q1,q2,q3}, Σ ={0,1},F={q0}. Given the entire sequence of state for the input string 110101