EJEMPLO 5.7.9 Illustración de que $\rho(A) + \nu(A) = n$

Para
$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \\ -1 & -3 & 1 \end{pmatrix}$$
 calcule $\nu(A)$.

SOLUCIÓN \blacktriangleright En el ejemplo 5.7.5 se encontró que $\rho(A) = 2$. Así, $\nu(A) = 3 - 2 = 1$. El lector puede demostrar esto directamente resolviendo el sistema $A\mathbf{x} = \mathbf{0}$ para encontrar que

$$N_A = \operatorname{gen} \left\{ \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Teorema 5.7.8

Sea A una matriz de $n \times n$. Entonces A es invertible si y sólo si $\rho(A) = n$.

Demostración

Por el teorema 5.7.1, A es invertible si y sólo si $\nu(A) = 0$. Pero por el teorema 5.7.7, $\rho(A) = n - \nu(A)$. Así, A es invertible si y sólo si $\rho(A) = n - 0 = n$.

Ahora se demostrará la aplicación del concepto de rango para determinar si un sistema de ecuaciones lineales tiene soluciones o si es inconsistente. De nuevo, se considera el sistema de m ecuaciones en n incógnitas:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
(5.7.9)

lo que se escribe como $A\mathbf{x} = \mathbf{b}$. Se utiliza el símbolo (A, \mathbf{b}) para denotar la matriz aumentada de $m \times (n+1)$ obtenida (como en la sección 1.2) agregando el vector \mathbf{b} a A.

Teorema 5.7.9

El sistema $A\mathbf{x} = \mathbf{b}$ tiene cuando menos una solución si y sólo si $\mathbf{b} \in C_A$. Esto ocurrirá si y sólo si A y la matriz aumentada (A, \mathbf{b}) tienen el mismo rango.

Demostración

Si $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$ son las columnas de A, entonces podemos escribir el sistema (5.7.9) como

$$x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \dots + x_n\mathbf{c}_n = \mathbf{b}$$
 (5.7.10)

El sistema (5.7.10) tendrá solución si y sólo si **b** se puede escribir como una combinación lineal de las columnas de A. Es decir, para tener una solución debemos tener $\mathbf{b} \in C_A$. Si $\mathbf{b} \in C_A$, entonces (A, \mathbf{b}) tiene el mismo número de columnas linealmente independientes de A, así que A y (A, \mathbf{b}) tienen el mismo rango. Si $\mathbf{b} \notin C_A$, entonces $\rho(A, \mathbf{b}) = \rho(A) + 1$ y el sistema no tiene soluciones. Esto completa la prueba.