Functional Correspondence from Discrete Geometry to Learning

Riccardo Marin, Emanuele Rodolà

Genoa, 1st July 2023, Symposium on Geometry Processing

$$=\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \ldots$$

$$B = CA$$

$$= \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \ldots$$

$$B = CA$$
 $\underset{C}{\operatorname{arg\,min}} ||B - CA|| + reg(C)$

$$=\beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \ldots$$

Key Ingredients

Choice of the basis

Regularizations

Informative Descriptors

Refinements

Functional Map

LBO Eigenfunctions

Coordinates representation in the the first n LBO basis vectors

Functional map as a recombination of frequencies

Informative Descriptors

Heat Diffusion from a single point

Heat kernel
The heat transfer
between two points at
a given time t

HKS(x)

How much heat remains in the point x at time t

$$k_t(x,x) = \sum_{l=0}^{\infty} e^{-t\lambda_l} \phi_l(x) \phi_l(x)$$

$$k_t(x,y) = \sum_{l=0}^{\infty} e^{-t\lambda_l} \phi_l(x) \phi_l(y)$$

HKS
$$(x) = [k_{t_1}(x, x), k_{t_2}(x, x), \dots, k_{t_O}(x, x)] \quad t_1 < t_2 < \dots t_Q \in \mathbb{R}$$

Sun, Ovsjanikov, Guibas, A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion, SGP 2009

Landmarks

HKS

Pro
Descriptors are intrinsic
and consistent

Con They do not distinguish symmetries

Optimization

$$\arg\min_{C}||B-CA||$$

Descriptors

6 random landmarks + 100 HKS descriptors

Transferring Delta

Functions

20 x 20 Functional maps

Induced Correspondence

Descriptors Transfer

Regularization

Commutativity with the (eigenvalues of the) Laplacian

$$\|\Delta_N C - C\Delta_M\| = 0$$

Lemma:

The mapping is isometric if and only if the functional map matrix commutes with the Laplacian

If the two shapes are near isometric -> the C should be diagonal

Optimization

$$rg \min_{C} ||B - CA|| + reg(C)$$

6 landmarks + 100 HKS descriptors

+ Commutativity with Laplacian

Functional maps

Transferring Delta

Functions

Descriptors transfer is almost the same

GT

Landmark transfer is much improved

Optimization

 $rg \min_{C} ||B - CA|| + reg(C)$

6 landmarks + 100 HKS descriptors

+ Commutativity with Laplacian

20 x 20 Functional maps

Transferring Delta

Functions

Refinement

Lemma

The mapping is locally volume preserving, if and only if the functional map is orthonormal

$$\|\mathbf{C}^T\mathbf{C}\| = \mathbf{I}$$

Finding the best orthonormal matrix that aligns the two spectral embeddings Iterative **Closest** Point (ICP)

6 landmarks + 100 HKS descriptors

- + Commutativity with Laplacian
- + ICP

Key Ingredients

Choice of the basis

Regularizations

Informative Descriptors

Refinements

<u>Informative</u> <u>Descriptors</u>

Litany, Remez, Rodolà, Bronstein, Bronstein; Deep Functional Maps: Structured Prediction for Dense Shape Correspondence; ICCV17

Point cloud feature extractor

Loss directly on the functional map C

LBO Problems

Global

Local region

Low-Pass

Locality – Localized Manifold Harmonics

<u>Low-pass – Coordinates Manifold Harmonics</u>

Melzi, Marin, Musoni, Bardon, Tarini, Castellani; Intrinsic/extrinsic embedding for functional remeshing of 3D shapes; C&G 2020

Basis Learning - Linearly-Invariant Embedding

Marin, Rakotosaona, Melzi, Ovsjanikov; Correspondence Learning via Linearly-invariant embedding; NeurIPS 2020

Refinement - ZoomOut

- (1) Given $k = k_0$ and an initial C_0 of size $k_0 \times k_0$.
- (2) Compute $\arg \min_{\Pi} \|\Pi \Phi_{\mathcal{N}}^k \mathbf{C}_k^T \Phi_{\mathcal{M}}^k\|_F^2$.
- (3) Set k = k + 1 and compute $C_k = (\Phi_M^k)^+ \Pi \Phi_N^k$.
- (4) Repeat the previous two steps until $k = k_{\text{max}}$.

Melzi, Ren, Rodolà, Sharma, Wonka, Ovsjanikov; ZoomOut: Spectral Upsampling for Efficient Shape Correspondence; TOG 2019

Refinement - ZoomOut

Melzi, Ren, Rodolà, Sharma, Wonka, Ovsjanikov; ZoomOut: Spectral Upsampling for Efficient Shape Correspondence; TOG 2019

DPFM: Deep Partial Functional Maps

Attaiki, Pai, Ovsjanikov; DPFM: Deep Partial Functional Maps; 3DV 2021

Lei Lei, Donati, Ovsjanikov; Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching, NeurIPS 2022

Where to start?

Python library for Functional Maps

https://github.com/RobinMagnet/pyFM

Collection of slides, demos, examples, and pointers to other repos

https://github.com/riccardomarin/Tutorial_Spectral_Geometry

https://github.com/riccardomarin/SpectralShapeAnalysis

https://github.com/melzismn/fmap

https://github.com/AriannaRampini/InverseSpectralGeometry_3DVTutorial

https://github.com/lcosmo/isospectralization

Other Courses

SGP Summer School Presentations

2017

Conclusions

Beyond Geometry Processing and matching

Thanks! Questions?