Number Systems

(Solutions to Review Questions and Problems)

Review Questions

- **Q2-1.** A number system shows how a number can be represented using distinct symbols.
- Q2-2. In a positional number system, the position of a symbol determines the value it represents. In a non-positional number system each symbol has a value but the position of a symbol normally has no relation to its value; the value of each symbol is fixed.
- **Q2-3.** The base (or radix) is the total number of symbols used in a positional number system.
- **Q2-4.** The decimal system is a positional number system that uses ten symbols to represent a number. The word decimal is derived from the Latin root *decem* (ten) or *decimalis* (related to ten). In the decimal system, the base is 10.
- Q2-5. The binary system is a positional number system that uses two symbols (0 and 1) to represent a number. The word binary is derived from the Latin root *bini* (two by two) or *binarius* (related to two). In the binary system, the base is 2.
- **Q2-6.** The octal system is a positional number system that uses eight symbols to represent a number. The word octal is derived from the Latin root *octo* (eight) or *octalis* (related to eight). In the octal system, the base is 8.
- Q2-7. The hexadecimal system is a positional number system with sixteen symbols. The word hexadecimal is derived from the Greek root *hex* (six) and the Latin root *decem* (ten). To be consistent with decimal and binary, it should have been called *sexadecimal*, from Latin roots *sex* and *decem*. In the hexadecimal system, the base is 16.
- Q2-8. Conversion is easy because there is a direct relationship between the two systems (see the answer to question 9).
- **Q2-9.** Four bits in binary is one hexadecimal digit.
- **Q2-10.** Three bits in binary is one octal digit.

Problems

P2-1.

a.

Place values		64		32		16		8		4		2		1		1/2		1/4		1/8		
$(01101)_2$	=	0	+	0	+	0	+	8	+	4	+	0	+	1	+	0	+	0	+	0	=	13

b.

Place values	64	32	10	5	8		4		2		1		1/2		1/4		1/8		
$(1011000)_2 =$	64	+ 0	+ 10	5 +	8	+	0	+	0	+	0	+	0	+	0	+	0	=	88

c.

Place values	64		32		16		8		4		2		1		1/2		1/4		1/8		
$(011110.01)_2 =$	0	+	0	+	16	+	8	+	4	+	2	+	0	+	0	+	1/4	+	0	=	30.25

d.

Place values	64		32		16		8		4		2		1		1/2		1/4		1/8		
$(1111111.111)_2 =$	0	+	32	+	16	+	8	+	4	+	2	+	1	+	1/2	+	1/4	+	1/8	-	63.875

P2-2.

a.

Place values		256		16		1		1/16		1/256		
(AB2) ₁₆	=	10×256	+	11 × 16	+	2×1	+	0	+	0	=	2738

b.

Place values		256		16		1		1/16		1/256		
(123) ₁₆	=	1×256	+	2×16	+	3×1	+	0	+	0	=	291

c.

Place values	256	16	1	1/16	1/256		
(ABB) ₁₆	$= 10 \times 256$	+ 11 × 16 +	- 11 × 1	+ 0	+ 0	=	2747

d.

Place values	256	16	1	1/16	1/256
$(35E.E1)_{16} =$	3×256	+ 5 × 16	+ 14 × 1	+ 14 × 1/16 +	$1 \times 1/256 = 862.87$

P2-3.

a.

Place value	es	512	64	8	1	1/8	1/64		
(237) ₈	=		+ 2 × 64	+ 3 × 8	$+$ 7×1	0	+ 0	=	159

b.

Place values	512	64	8		1		1/8		1/64		
(2731) ₈	$= 2 \times 512$	$+$ 7×64	$+$ 3 \times 8	3 +	1×1	+	0	+	0	=	1497

c.

Place values	512	64	8	1	1/8	1/64	
$(617.7)_8 =$	0	+ 6× 64 +	1×8	$7 \times 1 +$	$7 \times 1/8$	0	= 399.875

d.

Place values	512		64		8		1		1/8		1/64		
(21.11) ₈ =	0	+	0	+	2×8	+	1×1	+	$1 \times 1/8$	+	$1 \times 1/64$	»	17.141

P2-4.

a. $1234 = (100 \ 1101 \ 0011)_2$ as shown below:

0	\leftarrow	1	\leftarrow	2	\leftarrow	4	\leftarrow	9	\leftarrow	19	\leftarrow	38	\leftarrow	77	\leftarrow	154	\leftarrow	308	\leftarrow	617	\leftarrow	1234
		\downarrow																				
		1		Λ								0						0		1		0
		1		U		U		1		1		U		1		0		U		1		U

b. $88 = (1011000)_2$ as shown below:

0	\leftarrow	1	\leftarrow	2	\leftarrow	5	\leftarrow	11	\leftarrow	22	\leftarrow	44	\leftarrow	88
		\downarrow												
		1		0		1		1		0		0		0

c. $124.02 = (111\ 1110.00000101)_2$ as shown below. Note that we start the integral part from the left, but the fraction part from the right

0	←	-	1 ↓ 1	←	3 ↓ 1	←	7 ↓ 1	+	- 1 \ 1		←	31 ↓ 1	←	62 ↓ 0	←		124 ↓ 0
	.02	\rightarrow	.04	\rightarrow	.08	\rightarrow	.16	\rightarrow	.32	\rightarrow	.64 ↓	\rightarrow	.28	\rightarrow	.56 ↓	\rightarrow	.12

d. $14.56 = (1110.100011)_2$ as shown below:

ı	0	\leftarrow	1	\leftarrow	3	\leftarrow	7	\leftarrow	14		.56	\rightarrow	.12	\rightarrow	.24	\rightarrow	.48	\rightarrow	.96	\rightarrow	.92	\rightarrow	.84
ı			\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
ı			1		1		1		0	•	1		0		0		0		1		1		
			1		1		1		U	•	1		U		U		U		1		1		

P2-5.

a. $1156 = (2204)_8$ as shown below:

0	\leftarrow	2	\leftarrow	18	\leftarrow	144	\leftarrow	1156
		\downarrow		\downarrow		\downarrow		\downarrow
		2		2		0		4

b. $99 = (134)_8$ as shown below:

	_					
0	\leftarrow	1	\leftarrow	12	\leftarrow	99
		\downarrow		\downarrow		\downarrow
		1		4		3

c. $11.4 = (13.3146)_8$ as shown below:

0 ←	1	\leftarrow	11		.4	\rightarrow	.2	\rightarrow	.6	\rightarrow	.8	\rightarrow	4
	\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
	1		3	•	3		1		4		6		

d. $72.8 = (110.6314)_8$ as shown below:

0	\leftarrow	1	\leftarrow	9	\leftarrow	72		.8	\rightarrow	.4	\rightarrow	.2	\rightarrow	.6	\rightarrow	.8
		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
		1		1		0	•	6		3		1		4		

P2-6.

a. $576 = (237)_{16}$ as shown below:

0	\leftarrow	2	\leftarrow	35	\leftarrow	567
		\downarrow		\downarrow		\downarrow
		2		3		7

b. $1411 = (583)_{16}$ as shown below:

ſ	0	\leftarrow	5	\leftarrow	88	\leftarrow	1411
			\downarrow		\downarrow		\downarrow
			5		8		3

c. $12.13 = (C.2147AE)_{16}$ as shown below:

0	\leftarrow	12		.13	\rightarrow	.08	\rightarrow	.48	\rightarrow	.68	\rightarrow	.88	\rightarrow	.08
		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
		C	•	2		1		7		A		Е		

d. $16.5 = (10.8)_{16}$ as shown below:

0	\leftarrow	1	\leftarrow	16		.5	\rightarrow	0
		\downarrow		\downarrow		\downarrow		
		1		0	•	8		

P2-7.

a.

1	Change octal to binary									Change	binary :	to i	hexade	cin	ıal
	$(514)_8$	=	101	001	100	•	=	= [1	0100	1100	٠		=	(14C) ₁₆

b.

	Change octal to binary								Change binary to hexadecimal								
(4	411) ₈	=	100	001	001	٠	=	=	1	0000	1001	•		=	(109) ₁₆		

c.

Change (octal to binary			Change	e binary	to i	hexade	cin	ral	
$(13.7)_8 =$	001 111	٠	111	=	00	1011	٠	1110	=	$(B.E)_{16}$

d. Change octal to binary Change binary to hexadecimal $(1256)_8 = 001 \ 010 \ 101 \ 110$ • = 0010 0101 1110 • $= (25E)_{16}$ P2-8. a. Change Hexadecimal to Binary Change Binary to Octal $(51A)_{16}$ = 0101 0001 1010 • = 010 100 011 010 • = $(2432)_8$ b. Change Hexadecimal to Binary Change Binary to Octal = 0100 1110 0001 • = 010 011 100 001 • = $(2341)_8$ $(4E1)_{16}$ c. Change Hexadecimal to Binary Change Binary to Octal 1011 1011 • 1100 = $(BB.C)_{16} =$ $010 \ 111 \ 011 \bullet 110 = (273.6)_8$ d. Change Hexadecimal to Binary Change Binary to Octal $(ABC.D)_{16} = 1010 \ 1011 \ 1100 \bullet 1101 = 101 \ 010 \ 111 \ 100 \bullet 110 \ 100 = (5274.64)_8$ P2-9. = $(01101)_2$ = 001 101 $(15)_{8}$ • b. 011 $(1011000)_2$ = 001 000 • = $(130)_{8}$ c. $(011110.01)_2$ = 011 110 010 = $(36.2)_{8}$ d. $(1111111.111)_2$ = 111 111 111 = $(77.7)_{8}$ P2-10. a. $(01101)_2$ 1101 = $(0D)_{16}$ b. $(58)_{16}$ $(1011000)_2$ 0101 1000 • c. 0001 $(1E.4)_{16}$ $(0111110.01)_2$ = 1110 • 0100 = d.

0011

1111

1110

 $(3F.E)_{16}$

 $(1111111.111)_2$

P2-11. a. (01111001)2 64 0 8 b. $(01001110)_{2}$ c. 255 $(111111111)_2$ d. 214 (11010110)2 = 128 64 2 P2-12. a. 1/2 + $(11.101)_2$ 3 5/8 0 + 1/8 b. 12 3/32 0 + 0 + 0 + 1/16 + 1/32 = c. 0 + 1/8 + 1/16 + 0 1/64 $(100.0011010)_2$ d. 12 5/8 0 + 0 + 0 + 1/32 + 0 + 1/128 = P2-13. **a.** binary: $2^6 - 1 = 63$ **b.** decimal: $10^6 - 1 = 999,999$ **c.** hexadecimal: $16^6 - 1 = 16,777,215$ **d.** octal: $8^6 - 1 = 262,143$ P2-14. **a.** $[5 \times (\log 10) / (\log 2)] = [16.6] = 17$ **b.** $[4 \times (\log 10) / (\log 8)] = [4.4] = 5$ c. $[7 \times (\log 10) / (\log 16)] = [5.8] = 6$ P2-15. **a.** $[5 \times (\log 2) / (\log 10)] = [16.6] = 2$ **b.** $[3 \times (\log 8) / (\log 10)] = [16.6] = 3$ **c.** $[3 \times (\log 16) / (\log 10)] = [16.6] = 4$ P2-16. **a.** 0.1875 = 0.125 + 0.0625 = (1/8) + (1/16) = (3/16)**b.** 0.640625 = 0.5 + 0.125 + 0.015625 = (1/2) + (1/8) + (1/64) = (41/64)**c.** 0.40625 = 0.25 + 0.125 + 0.03125 = (1/4) + (1/8) + (1/32) = (13/32)

d. 0.375 = 0.25 + 0.125 = (1/4) + 1/8 = 3/8

P2-17. Using the result of previous exercise, we can find the equivalent as:

a.
$$7.1875 = (111)_2 + (0.001)_2 + (0.0001)_2 = (111.0011)_2$$

b.
$$12.540625 = (1100)_2 + (0.1)_2 + (0.001)_2 + (0.000001)_2 = (1100.101001)_2$$

c.
$$11.40625 = (1011)_2 + (0.01)_2 + (0.001)_2 + (0.00001)_2 = (1011.01101)_2$$

d.
$$0.375 = (0.01)_2 + (0.001)_2 = (0.011)_2$$

P2-18.

a.
$$10^{10} - 1 = 999$$

b.
$$22^1 - 1 = 4095$$

c.
$$8^8 - 1 = 16,777,215$$

d.
$$16^7 - 1 = 268,435,455$$

P2-19.

a.
$$\lceil \log_2 1000 \rceil = \lceil \log_2 1000 / \log_2 \rceil = \lceil 9.97 \rceil = 10$$

b.
$$\lceil \log_2 100,000 \rceil = \lceil \log_2 100,000 / \log_2 \rceil = \lceil 16.6 \rceil = 17$$

c.
$$\lceil \log_2 64 \rceil = \lceil \log_2 2^6 \rceil = \lceil 6 \times \log_2 2 \rceil = \lceil 6 \rceil = 6$$

d.
$$\lceil \log_2 256 \rceil = \lceil \log_2 2^8 \rceil = \lceil 8 \times \log_2 2 \rceil = \lceil 8 \rceil = 8$$

P2-20.

- **a.** 14
- **b.** 8
- **c.** 13
- **d.** 4

P2-21.

a.	17×256^{3}	+	234×256^{2}	+	34×256^{1}	+	$14 \times 256^{\circ}$	=	300,556,814
	•	· 1		· .		, i			/ /-
b.	14×256^{3}	+	56×256^{2}	+	234×256^{1}	+	56×256^{0}	=	238,611,000
c.	110×256^3	+	14×256^{2}	+	56×256^{1}	+	78×256^{0}	=	1,864,425,678
d.	24×256^{3}	+	56×256^{2}	+	13×256^{1}	+	11×256^{0}	=	406,326,539

P2-22.

a.	00010001	11101010	00100010	00001110	
b.	00001110	00111000	11101010	00111000	
c.	01101110	00001110	00111000	01001110	
d.	00011000	00111000	00001101	00001011	

P2-23.

- **a.** 15
- **b.** 27
- c. This is not a valid Roman Numeral (V cannot come before L)
- **d.** 1157

P2-24.

a. XVII

- b. XXXVIII
- c. LXXXII
- d. CMXCIX

P2-25.

- a. Not valid because I cannot come before M
- **b.** Not valid because I cannot come before C
- c. Not valid because V cannot come before C
- **d.** Not valid because 5 is written as V not VX
- **P2-26.** First, we convert the four numbers to base 20 as shown below:

The equivalent Myan numerals are in Figure 2.1.

Figure 2.1 Solution to P2-26

P2-27.

a. First, we convert the three numbers to base 60 as shown below:

0	\leftarrow	3	\leftarrow	188	\leftarrow	11291	0	\leftarrow	1	\leftarrow	60	\leftarrow	3646	0	\leftarrow	59	\leftarrow	3582
		\downarrow		\downarrow		\downarrow			\downarrow		\downarrow		\downarrow			\downarrow		\downarrow
		3		8		11			1		0		46			59		42

The equivalent Babylonian numerals are shown in Figure 2.2.

Figure 2.2 Solution to P2-27

b. In Babylonian numerals, they used extra space when a zero was needed in the middle of the number. When a zero was need at left, they did not use anything; They probably recognized it from the context.