Pseudorandomness

A Very Short Introduction

Xinyu Mao

2021/06/06

Motivation:
Get the Power of Randomness
at Lower Cost or even for Free

The Power of Randomness

- Randomized algorithms
 - Quick sort
 - ▶ Polynomial identity testing: Given black-box access to two n-variable polynomial $f, g \in \mathbb{F}[X_1, ..., X_n]$, determine whether $f \equiv g$.
 - ► Solution: test on a small number of random points
- Proving the existence of combinatorial objects with desired property
 - For some property $P: \mathcal{D} \to \{yes, no\}$, if $\Pr_{o \leftarrow \mathcal{D}}[P(o) = yes] > 0$, then there exists an object in domain \mathcal{D} with property P.
 - ► This is known as probability method.
- Cryptography
 - ► There is no much thing we can do in cryptography without randomness

Main Question: Can we do all the things with less or even no randomness?

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

John von Neumann

- ► Can all randomized algorithms be derandomized?
 - **▶** BPP = P?
- Randomness in the physical world: what can we do with a source of biased and correlated bits?
- ► Seek for explicit construction of combinatorial objects.
- ► Make cryptographic constructions more efficient.

Pseudorandomness: A Conception and Paradigm

Idea: To generate objects that 'looks random' efficiently with less or no truly randomness.

Indistinguishable things are identical.

G.W. Leibniz

Pseudorandom Generator (PRG)

Truly random n bits

PRG $\ell(n) > n$ $\ell(n)$ bits

Pseudorandom, or 'look random'

Weak randomness

Randomness Extractor

Close to perfect randomness

Randomness Extractor

Expander Graph

Graphs that are both sparse and well-connected.

Pseudorandom Generator (PRG)

Definition of Pseudorandom Generator (PRG)

Definition. A function $G: \{0,1\}^* \to \{0,1\}^*$ has stretch $\ell: \mathbb{N} \to \mathbb{N}$ if $|G(x)| = \ell(|x|)$.

Definition. Let $G: \{0,1\}^* \to \{0,1\}^*$ be a function with stretch ℓ . We say G fools algorithm A with error ϵ if

$$\left|\Pr\left[A\left(\frac{G(U_n)}{O(U_n)}\right) = 1\right] - \Pr\left[A\left(\frac{U_{\ell(n)}}{O(U_n)}\right) = 1\right]\right| \le \epsilon(n),$$

where U_n is the uniform distribution on $\{0,1\}^n$.

 $n ext{ bits}$ $G ext{ } \ell(n) ext{ bits}$

 $\ell(n)$ uniformly random bits

Definition of PRG

Definition. Let \mathcal{C} be a class of algorithms. $G: \{0, 1\}^* \to \{0, 1\}^*$ is a (\mathcal{C}, ϵ) -PRG with stretch ℓ if

- G has stretch ℓ ;
- G fool every algorithm $A \in \mathcal{C}$ with error ϵ .
- ► A common setting:
 - \triangleright C: all probabilistic polynomial time (PPT) algorithms;
 - \triangleright ϵ is a negligible function, i.e., $\epsilon(n) = o(n^{-c})$ for all $n \in \mathbb{N}$. E.g. $\epsilon(n) = 2^{-n}$.
- ► Remark: this definition is somewhat *subjective*!

From One-way Function to PRG

Does PRG exist?

The answer is yes under *minimal* cryptographic assumption – the existence of *one-way function*.

Definition. A function $f: \{0,1\}^* \to \{0,1\}^*$ is a (\mathcal{C}, ϵ) -one-way function if it is

- **Easy to compute:** *f* is polynomial-time computable and
- ► Hard to invert: for every algorithm $A \in \mathcal{C}$, $\Pr_{\substack{x \leftarrow \{0,1\}^n \\ y \coloneqq f(x)}} [A(y) \in f^{-1}(y)] \le \epsilon(n).$

Theorem([HILL99]). PRG exists if and only if OWF exists.

Remark: Modern cryptography builds upon the assumption that OWF exists.

Lower Bounds for OWF→PRG

- Let $f = \{f_n : \{0, 1\}^n \to \{0, 1\}^{m(n)}\}$ be an OWF and $G^f : \{0, 1\}^{k(n)} \to \{0, 1\}^{\ell(n)}$ be a PRG constructed from f.
 - ▶ Black-box construction
- We care about:
 - \blacktriangleright k(n): seed length
 - ightharpoonup q(n): query complexity, i.e., number of calls to f made by G^f

State of Art ([VZ12]).
$$k(n) = O(n^4)$$
, $q(n) = O(n^3)$.

Theorem.(Lower bound for regular OWF \rightarrow PRG [HS12]). If f is regular, $q(n) = \Omega\left(\frac{n}{\log n}\right)$.

Open problem: Is $k(n) = \Omega(n^4)$, $q(n) = \Omega(n^3)$ optimal for arbitrary OWF?

This matches the state of art construction.

Lower bound is always so hard...

Derandomization with PRG

Derandomization by enumeration

PPT algorithm A that uses $\ell(n)$ bits of randomness

Enumeration

Deterministic A' runs in $2^{\ell(n)} \cdot poly(n)$ time.

- To derandomize BPP, we want
 - ▶ G has logarithmic seed length: $k = O(\log \ell)$;
 - ▶ G is efficient: computable in $O(2^k)$ time
 - lacktriangleright G fools all PPT algorithm with error $\epsilon=0.1$

Use PRG $G: \{0,1\}^{k(n)} \to \{0,1\}^{\ell(n)}$ to reduce randomness Input x $A(x;r) \longrightarrow 0/1$ $\Pr[A(x;r) \text{ is correct}] \geq 0.7$ Randomness r' $r'' \longrightarrow A(x;r'') \longrightarrow 0/1$

If G fools A with error $\epsilon \coloneqq 0.1$, then

 $Pr[A(x; r'') \text{ is correct}] \ge 0.6.$

Does such a PRG exist?

Hardness vs. Randomness: Evidence for BPP = P

Fig. Main idea of Nisan-Wigderson generator.

Theorem ([NW88]). If there exists a function $f: \{0,1\}^* \rightarrow \{0,1\}$ such that:

- computable in $2^{O(n)}$ time by Turing Machines, and
- not computable by $2^{0.001n}$ size circuits, then **BPP** = **P**.

Pseudorandomness in Cryptography: An Example

OWF → PRG → Pseudorandom Function → CPA-Secure Symmetric Encryption

Symmetric Encryption and One-time Pad

One-time pad

- $KeyGen(1^{\lambda})$: return $k \leftarrow \{0,1\}^{\lambda}$.
- Enc(k,m): return $c := k \oplus m$.
- Dec(k, c): return $m := c \oplus k$.
- $\mathcal{K} = \mathcal{C} = \mathcal{M} = \{0, 1\}^{\lambda}$

- ▶ Drawback of One-time pad: No randomization in encryption → insecure under chosen ciphertext attack (CPA).
 - lt leaks whether two ciphertexts encode the same plaintext.

Pseudorandom Function (PRF) -> CPA-Secure Symmetric Encryption

- $KeyGen(1^{\lambda})$: return $F \leftarrow \mathcal{F}_{\lambda}$.
- Enc(F, m):
 - choose $r \leftarrow \{0,1\}^{\lambda}$;
 - return $c := (r, F(r) \oplus m)$.
- $Dec(F, c = (r, \tilde{c}))$:
 - return $m := F(r) \oplus \tilde{c}$.
- $\mathcal{K} = \mathcal{C} = \mathcal{M} = \{0, 1\}^{\lambda}$

```
\mathcal{F}_{\lambda} := \text{all functions from } \{0, 1\}^{\lambda} \text{ to } \{0, 1\}^{\lambda}.
```

- Problem: key size is too large!
- ► Solution: use a pseudorandom function that is:
 - indistinguishable from real random function
 - ▶ has short description

Pseudorandom Function (PRF)

Definition. $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ is a PRF if the following holds:

- For every $k \in \{0, 1\}^{\lambda}$, define $F_k(x) := F(k, x)$, then $F_k(x) \in \mathcal{F}_{\lambda}$.
- For all PPT oracle-aided algorithm A:

$$\left| \Pr_{k \leftarrow \{0,1\}^{\lambda}} \left[A^{F_k(\cdot)}(1^{\lambda}) = 1 \right] - \Pr_{F \leftarrow \mathcal{F}_{\lambda}} \left[A^{F(\cdot)}(1^{\lambda}) = 1 \right] \right| \text{ is negligible in } \lambda.$$

- $KeyGen(1^{\lambda})$: return $k \leftarrow \mathcal{F}_{\lambda}$.
- Enc(k,m):
 - choose $r \leftarrow \{0,1\}^{\lambda}$;
 - return $c := (r, F_k(r) \oplus m)$.
- $Dec(F, c = (r, \tilde{c}))$:
 - return $m \coloneqq F_k(r) \oplus \tilde{c}$.

Efficiency: The description of F_k is of length $|k| = \lambda$, if we want to encrypt λ bits.

Theorem. PRF exists if and only if PRG exists.

Constrained PRF (CPRF)

- k_C reveals nothing about F(k, x) when C(x) = 0.
- \blacktriangleright Constrained hiding: k_C reveals nothing about C.
- Proposed Boneh and Waters [BW13].

Open problem: Can we construct a adaptively secure Constrained hiding CPRF for polynomial-size circuits (upon standard assumptions)?

Epilogue

Three Perspectives on Randomness

- ▶ Information theoretic view: Randomness is lack of information.
 - ► Consider the probability distribution of the missing data.
 - ▶ By definition, one cannot generate more random bits.
- ► Kolmogorov complexity: Randomness in terms of effective description.
- ► Computational view: Pseudorandomness -- randomness is something in the eye of the observer.
 - ► Subjectivity: The ability of the observer matters.

Thanks for Listening ©

Reference

- ► [HILL99] Håstad J, Impagliazzo R, Levin LA, Luby M.A pseudorandom generator from any one-way function. SIAM Journal on Computing. 1999;28(4):1364-96.
- [NW88] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167, 1994. Prelim version FOCS '88
- ► [VZ12] Vadhan S, Zheng CJ. Characterizing pseudoentropy and simplifying pseudorandom generator constructions. InProceedings of the forty-fourth annual ACM symposium on Theory of computing 2012 May 19 (pp. 817-836).
- ► [HS12] Holenstein T, Sinha M. Constructing a pseudorandom generator requires an almost linear number of calls. In2012 IEEE 53rd Annual Symposium on Foundations of Computer Science 2012 Oct 20 (pp. 698-707). IEEE.
- ▶ [BW13] Boneh D, Waters B. Constrained pseudorandom functions and their applications. InInternational conference on the theory and application of cryptology and information security 2013 Dec 1 (pp. 280-300). Springer, Berlin, Heidelberg.