EJERCICIOS del TEMA 5: Introducción a la teoría de la Computabilidad

1. ¿Qué función realiza la siguiente máquina de Turing? Haz un par de cómputos con las palabras □abb□, □cbca□.

	a	b	c	#		A	В	С
q_0	$(q_1, \#, R)$	$(q_2, \#, R)$	(q ₃ , #, R)	-		(q_{10}, R)	(q_{10}, R)	(q_{10}, R)
q_1	R	R	R	-	(q ₄ , L)	(q ₄ , L)	(q ₄ , L)	(q ₄ , L)
q_2	R	R	R	-	(q ₅ , L)	(q_5, L)	(q_5, L)	(q_5, L)
q_3	R	R	R	-	(q ₆ , L)	(q_6, L)	(q_6, L)	(q ₆ , L)
q_4	(q ₇ , A, L)	(q_8, A, L)	(q ₉ , A, L)	(q_{10}, A, R)	-	-	-	-
q_5	(q_7, B, L)	(q_8, B, L)	(q ₉ , B, L)	(q_{10}, B, R)	-	-	-	-
q_6	(q ₇ , C, L)	(q_8, C, L)	(q ₉ , C, L)	(q_{10}, C, R)	-	-	-	-
q ₇	L	L	L	(q_0, A, R)	-	-	-	-
q_8	L	L	L	(q_0, B, R)	-	-	-	-
q ₉	L	L	L	(q_0, C, R)	-	-	-	-
q ₁₀	-	-	-	-	(q ₁₁ , L)	R	R	R
q ₁₁				-	R	(q ₁₁ , a, L)	(q ₁₁ , b, L)	(q _{11,} c,L)

- 2. Demuestra que las siguientes funciones f: $\{a,b,c\}^* \rightarrow \{a,b,c\}^*$, son Turing computables (se pueden usar diagramas de MTs).
 - a) $f(x) = x^R$
 - b) f(x) es la función que duplica símbolos, esto es, la función definida:

$$f(\epsilon)=\epsilon$$

$$f(xs)=f(x)ss$$

f(xs)=f(x).ss para $s \in \{a,b,c\}^*$

c)
$$f(x, y) = \begin{cases} x & \text{si } |x| > |y| \\ \\ y & \text{si } |y| \ge |x| \end{cases}$$

$$f(x, y) = \begin{cases} x & \text{si } |x|_a > |y|_a \\ \\ y & \text{si } |y|_a \ge |x|_a \end{cases}$$

e)
$$f(x, y) = y \cdot x^R$$

- 3. Construye la máquina M de Turing que funcione de la siguiente manera: M busca la cadena □abbba□ en la parte derecha de la cabeza lectora (donde aparecen varias palabras separadas por un blanco entre ellas). Si la encuentra, M para en la b del centro de la palabra. Si no encuentra □abbba□ en la parte derecha de la celda inicial, entonces M no para nunca.
- 4. Construye una máquina de Turing que copia una palabra. En concreto, la máquina debe realizar el siguiente cambio entre configuraciones:

$$(\epsilon, q, x \square \beta) \quad |\text{--*} \quad (\epsilon, q, x \square x \square \beta)$$

dónde x es una palabra sobre el alfabeto $\{a,b,c\}$ y en β puede haber cualquier símbolo de cinta (es decir, al copiar la palabra no se destruye β)

5. Teniendo $\{0,1\}$ como alfabeto de entrada, construye una máquina de Turing que compute la función \mathbf{f} definida: $\mathbf{f}(\mathbf{x}) = \mathbf{la}$ longitud de \mathbf{x} en nº binario.