

# Vorlesung: Stabile koronare Herzkrankheit II

#### 3. Studienjahr Humanmedizin



Prof. Dr. med. Barbara E. Stähli, EMBA, MPH, FESC
Leitende Ärztin interventionelle und strukturelle Kardiologie
Stv. Klinikdirektorin
Klinik für Kardiologie
Universitäres Herzzentrum Zürich
Universitätsspital Zürich

barbara.staehli@usz.ch

# Stabile koronare Herzkrankheit = chronisches Koronarsyndrom



UZH Medizinische Fakultät (CC BY-NC)

### **Chronisches Koronarsyndrom: Lernziele**

- Sie können die Grundprinzipien der KHK-Diagnostik beschreiben
- Sie können die Therapiekonzepte des chronischen Koronarsyndroms erläutern

## **Chronisches Koronarsyndrom: Inhalt**

#### - Diagnostik

- Anamnese
- EKG
- Laboruntersuchung
- nicht-invasive und invasive Abklärungsschritte

#### - Therapie

- Kontrolle der kardiovaskulären Risikofaktoren
- Lebensstiländerungen und optimale medikamentöse Therapie (OMT)
- koronare Revaskularisation (PCI und CABG)

# **Diagnostisches Management**



#### **Anamnese**



Elsevier, Inc. - NetterImages.com

#### **Typische Angina pectoris:**

- retrosternale <u>drückend/dumpfe</u> Schmerzen/Beschwerden,
- durch k\u00f6rperliche <u>Belastung oder emotionalen Stress</u> provozierbar
- Besserung durch Ruhe und/oder Nitroglyzeringabe

Als atypische Angina pectoris werden Beschwerden bezeichnet, welche nur 2 der zuvor genannten Kennzeichen aufweisen

Nicht-pektanginöse Beschwerden weisen nur 1 Kennzeichen auf

Montalescot G et al. Eur Heart J 2013:34:2949-3003

#### **Anamnese: Schmerzcharakter**



Canto JG et al. Arch Intern Med 2007;167:2405-13; Mehta LS et al. Circulation 2016;133(9):916-47

#### **Anamnese: Schmerzintensität**

#### Einteilung CCS Stadien

- AP CCS 1: AP bei schwerster Anstrengung
- AP CCS 2: AP bei mässiger Anstrengung (bergaufgehen)
- AP CCS 3: AP bei leichter Anstrengung (geradeausgehen)
- AP CCS 4: AP in Ruhe → Akutes Koronarsyndrom

\*CCS: Canadian Cardiovascular Society

#### **Thoraxschmerz: Kardial oder nicht-kardial?**

|              | Kardial                                    | Nicht kardial                            |  |  |
|--------------|--------------------------------------------|------------------------------------------|--|--|
| Qualität     | Dumpf, beklemmend                          | Einschießend, stechend                   |  |  |
|              | Thorakales Engegefühl                      |                                          |  |  |
| Lokalisation | Retrosternal rechts, links epigastrisch    | Präzise lokalisierbar                    |  |  |
|              | Ausstrahlend in den Arm                    | Wandernd<br>(Aortendissektion)           |  |  |
| Auslöser     | Belastung                                  | Druck                                    |  |  |
|              | Kälte                                      | Lage-oder Perikarditis Bewegungsabhängig |  |  |
|              | Emotionaler Trigger                        |                                          |  |  |
| Dauer        | Minuten                                    | Sehr variabel<br>Sekunden bis Stunden    |  |  |
|              | Regredient in Ruhe oder nach Nitroglyzerin |                                          |  |  |

### **EKG**



### **Kardiale Biomarker**



Troponin CK

### Risikostratifikation

|       | Typical |       | Atypical |       | Non-anginal |       |
|-------|---------|-------|----------|-------|-------------|-------|
| Age   | Men     | Women | Men      | Women | Men         | Women |
| 30-39 | 3%      | 5%    | 4%       | 3%    | 1%          | 1%    |
| 40-49 | 22%     | 10%   | 10%      | 6%    | 3%          | 2%    |
| 50-59 | 32%     | 13%   | 17%      | 6%    | 11%         | 3%    |
| 60-69 | 44%     | 16%   | 26%      | 11%   | 22%         | 6%    |
| 70+   | 52%     | 27%   | 34%      | 19%   | 24%         | 10%   |

| Dyspnoea |       |  |  |
|----------|-------|--|--|
| Men      | Women |  |  |
| 0%       | 3%    |  |  |
| 12%      | 3%    |  |  |
| 20%      | 9%    |  |  |
| 27%      | 14%   |  |  |
| 32%      | 12%   |  |  |

## Diagnostisches Management



Knuuti J et al. Eur Heart J 2020;41 (3):29407-77 Vorlesung Stabile koronare Herzkrankheit I, B. Stähli

### Nicht-invasive und invasive Abklärung



### **Belastungs-EKG**





- Sinnvoll zur Abschätzung von Leistungsfähigkeit, Symptomen, Arrhythmien, Blutdruck- und Pulsverhalten
- Zur Diagnostik der koronaren Herzkrankheit nicht mehr primär empfohlen!
- Kein LSB oder Schrittmacher-EKG

#### **Koronar-CT**





Table 12 Characteristics of tests commonly used to diagnose the presence of coronary artery disease

|                                                | Diagnosis of CAD |                 |  |
|------------------------------------------------|------------------|-----------------|--|
|                                                | Sensitivity (%)  | Specificity (%) |  |
| Exercise ECG a, 91, 94, 95                     | 45-50            | 85-90           |  |
| Exercise stress echocardiography <sup>96</sup> | 80-85            | 80-88           |  |
| Exercise stress SPECT <sup>96-99</sup>         | 73-92            | 63-87           |  |
| Dobutamine stress echocardiography%            | 79–83            | 82–86           |  |
| Dobutamine stress MRI <sup>b,100</sup>         | 79–88            | 81–91           |  |
| Vasodilator stress echocardiography%           | 72–79            | 92-95           |  |
| Vasodilator stress SPECT96, 99                 | 90-91            | 75-84           |  |
| Vasodilator stress MRI b,98, 100-102           | 67–94            | 61-85           |  |
| Coronary CTA <sup>c,103-105</sup>              | 95–99            | 64-83           |  |
| Vasodilator stress PET97, 99, 106              | 81-97            | 74-91           |  |

# Stress-Echokardiographie



# Myokardperfusions-Szintigraphie



- Nuklearmedizinisches Verfahren
- Basierend auf einer flussabhängigen
   Aufnahme von radioaktiven Tracern in
   Ruhe und unter Belastung
- Tracer: Thallium-201, Technetium-99m Tetrofosomin



# Positronen-Emissions-Tomographie (PET)



#### **Stress-MRI**

Ischämie oder Narbe?



# Koronarangiographie





## Fraktionelle Flussreserve (FFR)



Pathologisch: FFR ≤ 0.80

# Intravaskulärer Ultraschall (IVUS)





# Optische Kohärenztomographie (OCT)



www.biopticsworld.com
Tearney et al. J Am Coll Cardiol. 2012;59:1058-1072.
Niccoli G et al. Eur Heart J. 2015;36:1377-1384.

# Optische Kohärenztomographie (OCT)



## **Diagnostisches Management**



Knuuti J et al. Eur Heart J 2020;41 (3):29407-77

# **Differentialdiagnose Thoraxschmerz**

**Aortendissektion** 



Neurologie und Thorax-Schmerzen (reissend, wandernd)! Pulsstatus, Auskultation, Blutdruck D-Dimere, Thorax-CT, TTE/TEE

Pneumothorax

D-Dimere negativ
-> Aortendissektion raus



Perkussion, Auskultation Thorax-Röntgenbild

Vorlesung Stabile koronare Herzkrankheit I, B. Stähli

Lungenembolie



Atemabhängige Thoraxschmerzen D-Dimere, Thorax-CT

Perikarditis/Perikarderguss



Echokardiographie

### Diagnostik



- Erster und wichtigster Abklärungsschritt ist die Anamnese!
- Die typische Angina pectoris ist charakterisiert durch: retrosternale drückende Schmerzen, provoziert durch Belastung/Stress, Besserung in Ruhe (Atypische Angina: nur 2 von 3 Kriterien).
- Die Diagnostik richtet sich nach der klinischen Vortestwahrscheinlichkeit: sehr niedrige Vortestwahrscheinlichkeit: keine weiteren Tests, Ursachenabklärung mittlere Vortestwahrscheinlichkeit: nicht-invasive Abklärungen sehr hohe Vortestwahrscheinlichkeit: Koronarangiographie
- Denken Sie an die gefährlichen Differentialdiagnosen: Aortendissektion («Messer im Rücken», «wandernde Schmerzen», Thoraxschmerz + Neurologie = Aortendissektion!!!), Lungenembolie, Pneumothorax, und Perikarditis/tamponade.

#### Stabile Koronare Herzkrankheit: Inhalt

- Diagnostik
  - Anamnese
  - Laboruntersuchung
  - EKG
  - nicht-invasive und invasive Abklärungsschritte
- Therapie
  - Kontrolle der kardiovaskulären Risikofaktoren
  - optimale medikamentöse Therapie (OMT)
  - koronare Revaskularisation (PCI und CABG)

## **Diagnostisches Management**



# Optimale Kontrolle der kardiovaskulären Risikofaktoren



# Optimale medikamentöse Therapie (OMT)



Montalescot G et al. Eur Heart J 2013;34:2949-3003

#### Indikationen zur koronaren Revaskularisation

| Extent of CAD (anatomical and/or functional) |                                                                                                                     | Class <sup>b</sup> | Level <sup>c</sup> |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| For prognosis                                | Left main disease with stenosis >50% <sup>a</sup>                                                                   | 1                  | A                  |
|                                              | Any proximal LAD stenosis >50% <sup>a</sup>                                                                         | ı                  | A                  |
|                                              | Two-vessel or three-vessel disease with stenosis > 50% with impaired LV function (LVEF<40%)                         |                    | A                  |
|                                              | Large area of ischaemia (>10% LV)                                                                                   | į                  | В                  |
|                                              | Single remaining patent coronary artery with stenosis >50% a                                                        | 1                  | С                  |
| For symptoms                                 | Any coronary stenosis >50% in the presence of limiting angina or angina equivalent, unresponsive to medical therapy | ı                  | A                  |

### Perkutane koronare Revaskularisation (PCI)







#### **Drug-eluting stents (DES):**

- Reduktion der Restenoserate im Vergleich zu bare-metal stents (BMS)
- Vergleichbare Rate an Stent-Thrombosen

#### Stentaufbau:

- 1) Platform (Metallgeflecht, Kobalt-Chrom)
- 2) Polymer
- 3) Medikament (Everolimus, Zotarolimus, Biolimus, Sirolimus)

#### **Drug-eluting balloon**

#### **Rotablation**

- Bei stark verkalkten Stenosen

## Duale antiaggregatorische Medikation (DAPT)



#### **PCI versus CABG**





#### **FAVOURS PCI**

#### Clinical characteristics

artery

Presence of severe co-morbidity (not adequately reflected by scores)

Advanced age/frailty/reduced life expectancy

Restricted mobility and conditions that affect the rehabilitation process

#### Anatomical and technical aspects

MVD with SYNTAX score 0-22

Anatomy likely resulting in incomplete revascularization with CABG due to poor quality or missing conduits

Severe chest deformation or scoliosis

Sequelae of chest radiation

Porcelain aorta<sup>a</sup>

#### **FAVOURS CABG**

#### Clinical characteristics

Diabetes

Reduced LV function (EF <35%)

Contraindication to DAPT

Recurrent diffuse in-stent restenosis

#### Anatomical and technical aspects

MVD with SYNTAX score ≥23

Anatomy likely resulting in incomplete revascularization with PCI

Severely calcified coronary artery lesions limiting lesion expansion

#### Need for concomitant interventions

Ascending aortic pathology with indication for surgery Concomitant cardiac surgery

Neumann FJ et al. Eur Heart J 2018;00:1-96

# PCI versus CABG: Der Syntax-Score

| Recommendations according to extent of CAD                                                          |                    | CABG   |        | PCI    |  |
|-----------------------------------------------------------------------------------------------------|--------------------|--------|--------|--------|--|
|                                                                                                     | Class <sup>a</sup> | Levelb | Classa | Levelb |  |
| One-vessel CAD                                                                                      |                    |        |        |        |  |
| Without proximal LAD stenosis.                                                                      | Шь                 | С      | 1      | С      |  |
| With proximal LAD stenosis. 68,101,139–144                                                          | 1                  | A      | 1      | A      |  |
| Two-vessel CAD                                                                                      |                    |        |        |        |  |
| Without proximal LAD stenosis.                                                                      | ПР                 | С      | 1      | С      |  |
| With proximal LAD stenosis. 68,70,73                                                                | 1                  | В      | i      | С      |  |
| Left main CAD                                                                                       |                    |        |        |        |  |
| Left main disease with low SYNTAX score (0 - 22). 69,121,122,124,145–148                            | 1                  | A      | I.     | A      |  |
| Left main disease with intermediate SYNTAX score (23 - 32). 69,121,122,124,145–148                  | 10                 | A      | lla    | A      |  |
| Left main disease with high SYNTAX score (≥33).c 69.121.122.124.146-148                             | 1                  | A      | 10     | В      |  |
| Three-vessel CAD without diabetes mellitus                                                          |                    |        |        |        |  |
| Three-vessel disease with low SYNTAX score (0 - 22). 102,105,121,123,124,135,149                    | 1                  | A      | 1      | A      |  |
| Three-vessel disease with intermediate or high SYNTAX score (>22).c 102,105,121,123,124,135,149     | 1                  | A      | 111    | A      |  |
| Three-vessel CAD with diabetes mellitus                                                             |                    |        |        |        |  |
| Three-vessel disease with low SYNTAX score 0–22. 102,105,121,123,124,135,150–157                    | Ü                  | A      | IIb    | A      |  |
| Three-vessel disease with intermediate or high SYNTAX score (>22).c 102,105,121,123,124,135,150–157 | 1                  | A      | 111    | Α      |  |

Neumann FJ, Eur Heart J;2019;40:87-165

Wichtig

### **Take Home Messages**

#### Prüfung



- Die Anamnese stellt das wichtigste Instrument zur Abklärung bei Verdacht auf eine koronare Herzkrankheit dar.
- Die klinische Vortestwahrscheinlichkeit bestimmt die weiteren diagnostischen Abklärungsschritte (SPECT, Herz-MRI, Herz-PET, Koronarangiographie).
- Eine strikte Kontrolle der kardiovaskulären Risikofaktoren nach sekundärpräventiven Zielwerten ist essentiell.
- Eine optimale medikamentöse Therapie (antianginöse Medikation) stellt den Grundpfeiler der Therapie der stabilen Angina pectoris dar.
- Eine koronare Revaskularisation erfolgt einerseits aus prognostischer, andererseits aus symptomatischer Indikation.

#### Vielen Dank!



Prof. Dr. med. Barbara E. Stähli, MPH, EMBA, FESC Leitende Ärztin interventionelle und strukturelle Kardiologie
Stv. Klinikdirektorin
Klinik für Kardiologie
Universitäres Herzzentrum Zürich
Universitätsspital Zürich

barbara.staehli@usz.ch