1	WHAT IS CLAIMED IS:		
2			
3	1.	A method for tracking the flow of N materials and their interfaces in a	
4		computational domain, the method comprising the steps of:	
5			
6	(a)	creating a macrogrid including control volumes on a computational	
7		domain in which N materials and their interfaces are to be tracked;	
8			
9	(b)	overlaying a microgrid including microgrid cells upon the macrogrid	
10		with each of the microgrid cells being coupled to a control volume;	
11			
12	(c)	initializing the macrogrid and control volumes with initial and boundary	
13		conditions;	
14			
15	(d)	assigning a unique identifier to each of the N materials and to the	
16		microgrid cells;	
17			
18	(e)	calculating volume fractions for the N-materials in the control volumes;	
19			
20	(f)	solve equations of motion upon the macrogrid and control volumes	
21		utilizing the calculated volume fractions to arrive at local velocity	
22		conditions for the control volumes;	
23			
24	(g)	advecting the microgrid cells within the microgrid in response to the	
25		calculated local velocity conditions in the control volumes such that	
26		voids and overlaps of the microgrid cells in the microgrid occur;	
27			
28	(h)	reallocating the microgrid cells so that only one material is in each	
29		microgrid cell to effectively conserve mass and satisfy local fluid	
30		fraction gradient values; and	
31			

1	(i)	repeating steps (e)-(h) until a satisfactory number of time steps has
2		occurred to complete the simulation.
3		
4	2.	The method of claim 1 wherein:
5		the unique identifier numbers are prime numbers.
6		
7	3.	The method of claim 1 wherein:
8		the unique identifier numbers are generated by an Eulerian quadratic
9		number generator.
10		
11	4.	The method of claim 2 wherein:
12		modular arithmetic is used to track the fluid materials which are
13		advected into the microgrid cells of the grid.
14		
15	5.	The method of claim 1 wherein:
16		the number N of materials tracked is at least 3.
17		
18	6.	The method of claim 1 wherein:
19		the number N of materials tracked is at least 4.
20		·
21	7.	The method of claim 1 wherein:
22		the interfaces between the N materials are tracked by the location of
23		the microgrid cells containing different fluid materials.
24		
25	8.	A method for tracking cells in a fluid dynamics computation comprising:
26		
27		assigning unique identifiers to cells located in a grid, the unique
28		identifiers being associated with respective fluid materials;
29		
30		advecting the cells within a grid in response to local velocity conditions
31		such that some of the cells overlap one another in the grid and voids
32		are created in the grid; and

•		
2		calculating the presence of overlapping cells and voids in the grid by
3		taking a combination of the unique identifiers of each of the cells
4		located at a particular microgrid location.
5		
6	9.	The method of claim 8 wherein:
7		the unique identifier numbers are prime numbers.
8		
9	10.	The method of claim 8 wherein:
10		modular arithmetic is applied to the product of the unique identifiers of
11		overlapping cells to determine which fluid materials are present in the
12		overlapping cells.