F1 Dataset Analysis

Problem Statement

Through a comprehensive analysis, the objective is to uncover patterns, anomalies, and correlations within the dataset, providing valuable insights that contribute to a nuanced understanding of Formula 1 dynamics and contribute to informed decision-making in the realm of motorsport.

With this project we planned to answer the following:

- What are the key factors influencing race outcomes in Formula 1?
- How have driver performance metrics (e.g., lap times, overtakes) evolved over recent F1 seasons?
- Which circuits have the highest and lowest average race speeds, and what factors contribute to these differences?
- Regression to predict whether a driver will win the championship or predict the specific championship position based on historical performance.

Future Work:

We had to remove few of the tasks out of scope due to the non availability of data.

- 1. Is there any impact on Netflix stock after the "F1 Drive to Survive" release on netflix.
- 2. Is there any correlation between F1 races in a city and the flight traffic to that city.

To address these, further data(Netflix stocks data, Flight data) needs to be merged to the f1 dataset.

Project Timeline

CSP-554: Project Planner : F1 Dataset analysis

Gopinath Robba

								GANTT CHART		
200 4	0.0 0.0	0107200	8 9	Owner		380	Week			
ID Task	Start Date	End Date	Dependency	Gopinath	Tarun	Snehitha	Status	1(9/17) 2(9/24) 3(10/01) 4(10/08) 5(10/15) 6(10/22) 7(10/29) 8(11/05) 9(11/12) 10(11/19) 11(11/26		
Project Envisioning Stage										
1 Project Group and Topic Formation	9/11	9/24	1				Completed			
2 Project Proposal and Outline	10/2	10/22					Completed			
3 Meeting: Plan for project							Completed			
4 Project Plan and Details	10/30	11/5					Completed			
Data Selection Stage										
5 Identify Data Sources	9/18	10/2					Completed			
6 Data collection from Kaggle	9/25	10/1					Completed			
7 Data extraction from F1 website	10/30	11/5					Completed			
8 Review of dataset for quality	9/25	11/6					Completed			
9 Data Documentation	10/2	11/8					Completed			
10 Data extraction for netflix stock	11/13	11/16					Out Scoped			
11 Meeting: Rewrite project scope	10/31	10/31					Completed			
Data Processing Stage										
12 Data import into R-Studio	10/2	10/5					Completed			
13 Data Cleaning: Outliers, Missing values, Duplicates	10/2	10/12					Completed			
14 Meeting: Status of data cleaning	10/18	10/18					Completed			
15 Data Validations	10/4	10/19					Completed			
16 Data Aggregation	10/10	10/20					Completed			
17 Meeting: Issue with df creation	10/10	10/10					Completed			
18 Features Data	10/10	10/17					Completed			
19 Data Scrubbing from websites	11/6	11/10					Out Scoped			
Data Transformation										
20 Meeting: Next steps	10/25	10/25					Completed			
21 Creating new data frames with races df	10/16	10/20					Completed			
22 Creating new data frames with results df	10/16	10/20					Completed			
23 Creating new data frames with driver standings df	10/16	10/20					Completed			
24 Meeting: results dataset issue	10/30	10/30					Completed			
25 Dropping unwanted columns from circuits, driver, results datasets	10/16	10/22				1	Completed			
26 Scale features: wins, race dataset: sprint runs	10/25	10/29					Completed			
27 Meeting: Next steps	11/2	11/2					Completed			
28 Normalizing datasets: status dataset	10/25	10/30					Completed			
29 Merging race dataset with player dataset	10/25	10/31	21				Completed			
Data Analysis										
30 Create Hypothesis	10/2	10/8					Completed			
31 Test/Train splits of results	10/31	11/5					Completed			
32 Test/Train splits of driver standings	10/31	11/5					Completed			
33 EDA for datasets	10/25	11/6					Completed			
34 Feature selection	10/31	11/12					Completed			
35 Feedback and Iteration	11/12	11/30					Completed			
36 PCA for dimensionality reduction	10/31	11/15	33,34				Completed			
37 Model (Linear and NonLinear) test with K-fold	11/19	11/26					Completed			
Data Interpretation Stage										
38 Insights	11/19	11/26					Completed			
39 Model comparison	11/12	11/19					Out Scoped			
40 Documentation/Project report completion and Review	11/12	11/19					Completed			
41 Presentation	11/12	11/30					Completed			

Turbulence
Safe
Need call
Removed from Scope

Project Overview

The objective of this F1 dataset analysis project is to rev up the search for the most exciting Formula 1 insights. This dataset encompasses a wide range of variables, such as driver statistics, team information, race results, circuit characteristics, and some measures unique to each race. Our goal in conducting this analysis is to find obscure trends, patterns, and insights in the racing industry. We analyze the data in an effort to comprehend the elements that affect race results, including driver skill, team tactics, and the effects of outside variables like weather and circuit features.

Data

Below is overview of the datasets we used and the description of each along with their dimensions

File	Description	Dimensions (features x observations)		
circuits.csv	Details of tracks	9 x 79		
driver_standings.csv	Driver position details	7 x 71000		
driver.csv	Driver details	9 x 855		
lap_time.csv	Time of each lap by driver and race	6 x 73000		
pit_stop.csv	Time interval of each pitstop	7 x 6000		
qualifying.csv	Details of qualifying run	9 x 9000		
races.csv	Race track and date details	8 x 1000		
results.csv	Results of each main race	18 x 25000		
sprint_results.csv	Results of sprint race	16 x 60		
status.csv	Different race status	2 x 139		

The dataset utilized for this Formula 1 analysis encompasses information spanning multiple years, capturing a comprehensive view of the sport until the year 2021. This temporal scope allows for a robust exploration of Formula 1 dynamics, including race outcomes, driver performances, and technical specifications over an extended period.

The report provides a comprehensive overview of the intricate data preparation and feature selection processes undertaken. At a high level, the following encapsulates some of the challenges encountered during the course of the analysis.

- 1. We had a conflict of column names causing incorrect result or the model use to fail. So, we dropped duplication columns to mitigate potential conflicts with the other datasets.
- 2. The grid positions presented values surpassing the defined limit of 20, a deviation from the established maximum capacity for cars and positions on the grid.
- 3. Entries with the 'position' value represented as '\n' are indicative of missing or not applicable (NA) values.

Data issue visualization, before and after the fix.

Before:

After:

Data Cleaning and Analysis Outcome: After the data cleaning process, we were now left with 3258 observations Data before and after data cleaning:

Before: There are many unwanted columns and NA's in the dataset.

	raceld	year	round	circuitId	name	date	time	url	fp1_date	fp1_time	fp2_date	fp2_time	fp3_date
878	880	2013	1	1	Australian Grand Prix	2013- 03-17	06:00:00	http://en.wikipedia.org/wiki/2013_Australian_G	/N	/N	/N	/N	/N
879	881	2013	2	2	Malaysian Grand Prix	2013- 03- 24	08:00:00	http://en.wikipedia.org/wiki/2013_Malaysian_Gr	/N	/N	\N	\N	/N
880	882	2013	3	17	Chinese Grand Prix	2013- 04- 14	07:00:00	http://en.wikipedia.org/wiki/2013_Chinese_Gran	/N	/N	/N	/N	/N
881	883	2013	4	3	Bahrain Grand Prix	2013- 04- 21	12:00:00	http://en.wikipedia.org/wiki/2013_Bahrain_Gran	/N	/N	/N	/N	/N
882	884	2013	5	4	Spanish Grand Prix	2013- 05-12	12:00:00	http://en.wikipedia.org/wiki/2013_Spanish_Gran	/N	/N	/N	/N	/Ν

After: After cleaning the data and merging the required tables:

	raceld	driverId	constructorId	grid	position	driverStanding	constructorStanding
18241	881	20	9	1	1	3	3
18242	881	17	9	5	2	6	3
18243	881	1	131	4	3	5	4
18244	881	3	131	6	4	20	4
18245	881	13	6	2	5	4	1

For a concise exploration of the race and driver datasets, we conducted an analysis focusing on the most successful drivers in terms of victories. The ensuing graph provides a visual representation, distinctly showcasing Lewis Hamilton's dominant performances, spanning both his tenures at McLaren and Mercedes.

This was to answer the problem statement "Which circuits have the highest and lowest average race speeds, and what factors contribute to these differences?"

We looked at the one of the greeted rivalry of the decade, between the Max and Hamilton and how they both were neck to neck in 2021 GP but RedBull clearly dominated 2022 GP and gapped Mercedes.

We also looked at the individual driver performance in 2021 GP where Max finally won to become the new World champion. The season was extremely close between RebBull and Mercedes.

Model Estimation

We constructed two linear models to answer below questions.

- 1. To find the correlation between the features and predict the outcome of the race for a driver based off of the highly correlated features.
- 2. If there is a linear relationship between number of wins for a driver and the number of races they have been part of.

Model Estimation

This shows the correlation between the features we chose for model creation. We identified three features to be mostly correlated with the race outcome and used this to predict the track position of a driver.

dataset.corr()["position"]

grid	0.750109		
drive	0.742595		
const	0.750760		
posit	1.000000		
Name:	position,	dtype:	float64

Model Estimation

We then tested the model to predict the Abu Dhabi 2023 GP with the current driver position, team constructor position and car grid position. The actual race finishes for the specified drivers were Max: 1, Leclerc: 3, Hamilton: 9. This discrepancy may be attributed to the utilization of data spanning the past decade to train our model. Given the longstanding dominance of Mercedes throughout this period, it has likely influenced the model to predict higher positions. Additionally, the recent ascendancy of Red Bull might explain the slight deviation, with one position less predicted. Below are the results for the last race of the season for 2023.

```
VER = predict(1, 1, 1)
HAM = predict(11, 3, 2)
LEC = predict(2, 5, 3)
print(f"Predictions: Max Verstappen - {VER}, Lewis Hamilton - {HAM}, Charles Leclerc - {LEC}")

Predictions: Max Verstappen - 2, Lewis Hamilton - 6, Charles Leclerc - 4
```

Conclusion

The preceding analysis underscores the dominance of the Mercedes team in Formula 1 between 2013 and 2019, aligning seamlessly with the exceptional performance of Lewis Hamilton, who stands as the top driver of all time with 99 Grand Prix Championships. Notably, Red Bull has emerged as a formidable contender, challenging Mercedes in recent years. While the top two drivers, L. Hamilton and M. Schumacher, have achieved considerable success, their higher win counts correlate with their extensive participation in races.

Furthermore, a discernible correlation exists among the driver's grid position, their ranking, and the standings of the constructors. Notably, the grid position holds significant influence, particularly evident in the Monaco Grand Prix.

References

- F1 Global fan survey results revealed at Monaco GP https://www.motorsport.com/f1/news/f1-global-fan-survey-results-monaco-gp-910621/910621/
- 2023 Formula One World Championship
- Smith, J. (2020). "Formula 1 Analytics: Uncovering Patterns and Trends in Motorsport Data." Journal
 of Sports Data Analysis, 10(2), 123-140.
- Johnson, M. A. (2018). "Predictive Modeling of F1 Race Outcomes Using Machine Learning."
 Proceedings of the International Conference on Data Science in Sports, 45-56.
- Formula 1 Official Website. "Formula 1 Race Results Archive." Retrieved from https://www.formula1.com/en/results.html
- Chen, S. (2017). "Data-Driven Insights into Pit Stop Strategies in Formula 1 Racing." International Journal of Data Science and Analytics, 5(3), 189-204.