- 1. (5 points per part) Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - a. Determine the Jacobi and Gauss–Seidel iteration matrices $T_J=-D^{-1}(L+U)$ and $T_{GS}=-(L+D)^{-1}U$ in terms of $a,\,b,\,c,$ and d.
 - b. Determine the spectral radii $\rho(T_J)$ and $\rho(T_{GS})$ in terms of a, b, c, and d.
 - c. From these spectral radii, what can you say about the convergence or divergence of the Jacobi and Gauss–Seidel iterates? (When do they converge or diverge? Which converges or diverges faster?)
 - d. Suppose that $A = \begin{pmatrix} 10 & 9 \\ 9 & 10 \end{pmatrix}$. Compute $\rho(T_J)$ and $\rho(T_{GS})$ for this A and use their values to determine approximately how many Jacobi and Gauss–Seidel iterations are needed to reduce the error in their iterates by a factor of 10.