Longest common subsequence

Subsequence

- A subsequence of a character string $x_0 x_1 x_2 ... x_{n-1}$ is a string of the form $x_{i1} x_{i2} ... x_{ik}$, where $i_j < i_{j+1}$
- Not the same as substring
- Example
- String: ABCDEFGHIJK
- Subsequence: ACEGJIK
- Subsequence: DFGHK
- Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

Brute-force solution

- Enumerate all subsequences of X
- Test which ones are also subsequences of Y
- Pick the longest one.
- Analysis:
- If X is of length n, then it has 2ⁿ subsequences
- This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define L[i,j] to be the length of the longest common subsequence of X[1..i] and Y[1..j].
- Base Case L[0,k] = 0 and L[k,0]=0, to indicate that the null part of X or Y has no match with the other.
- Then define L[i,j] in the general case :
- 1. If $x_i = y_i$, then L[i,j] = L[i-1,j-1] + 1 (add match)
- 2. If $xi \neq yj$, then $L[i,j] = max\{L[i-1,j], L[i,j-1]\}$ (no match)

```
Algorithm LCS(X,Y)
for i = 0 to n do
   L[i,0] = 0
for j = 0 to m do
   L[0,j] = 0
for i = 1 to n
   for j = 1 to m
   if x_i = y_i
       L[i, j] = L[i-1, j-1] + 1
   else
       L[i, j] = max\{L[i-1, j], L[i, j-1]\}
end
```

Input: Strings X and Y with n and m elements, respectively

Output: For i = 1,...,n, j = 1,...,m, the length L[i, j] of a longest string that is a subsequence of both the string $X[0..i] = x_0x_1x_2...x_i$ and the string $Y[0..j] = y_0y_1y_2...y_j$

Example: X: optimal Y: similar

L	0	S	I	М	I	L	А	R
0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1
Р	0	0	0	0	1	1	1	1
Т	0	0	0	0	1	1	1	1
I	0	0	0	1	1	1	1	1
М	0	0	1	2	2	2	2	2
А	0	0	1	2	2	2	3	3
I	0	0	1	2	2	3	3	3

Length of LCS = 3

LCS – Trace back

L	0	S 1	12	M 3	14	L 5	A 6	R 7
0	0	0	0	0	0	0	0	0
01	0	0	0	0	1	1	1	1
P 2	0	0	0	0	1	1	1	1
Т3	0	0	0	0	1	1	1	1
14	0	0	1	1	1	1	1	1
M 5	0	0	1	2	2	2	2	2
A 6	0	0	1	2	2	2	3	3
L 7	0	0	1	2	2	3	3	3

Longest Common Subsequence IMA

1	2	3	4	5	6	7
0	Р	T	_	M	A	I
S		M	ı	L	A	R
1	2	3	4	5	6	7

Exercise

Determine the longest Common subsequence of

X:GTTCCTAATA

y:CGATAATTGAGA

Analysis of LCS Algorithm

- We have two nested loops
- The outer one iterates n times
- The inner one iterates m times
- A constant amount of work is done inside each iteration of the inner loop
- Thus, the total running time is O(nm)
- Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).