MATH 178 Homework #13 Tamir Enkhjargal May 2019

Elliptic Curve Cryptography

4.

$$y^2 = x^3 - 4$$
 in \mathbb{F}_2
 $0^2 = 0$, $1^2 = 1$

x	$x^3 - 4$	$y \pm \sqrt{x^3 - 4}$
0	0	(0,0)
1	1	(1,1) (and 0)

$$y^2 = x^3 - 4$$
 in \mathbb{F}_3
 $0^2 = 0$, $1^2 = 1$, $2^2 = 1$

x	$x^3 - 4$	$y \pm \sqrt{x^3 - 4}$
0	2	-
1	0	(1,0)
2	1	(2,1), (2,2) (and 0)

$$y^2 = x^3 - 4$$
 in \mathbb{F}_5
 $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 4$, $4^2 = 1$

x	$x^3 - 4$	$y \pm \sqrt{x^3 - 4}$
0	1	(0,1), (0,4)
1	2	-
2	4	(2,2), (2,3)
3	3	_
4	1	(4,0) (and 0)

5.

$$e=[0,0,1,-1,0]$$

p=7

e=Mod(1,p)*e

q = [0, 0]

ellpow(e,q,2)=[1,0]

ellpow(e,q,3)=[6,6]

ellpow(e,q,4)=[2,4]

ellpow(e,q,5)=[2,2]

ellpow(e,q,6)=[6,0]

ellpow(e,q,7)=[1,6]

ellpow(e,q,8)=[0,6]

ellpow(e,q,9)=[0]

Therefore 9q is the zero point.

```
6. ee=[0,0,0,0,-4] p=nextprime(10^25) e=ee*Mod(1,p) g=[2,2] public = \ r \ eckey.txt ellpow(e,public,a) The shared key was 5372475807523701402046910 \equiv 4542 reduced mod 65536. Using this as the key, and decrpyting the message: 'tiara is a recursive acronym' 9. f = t^16+t^6+t^2+t+1 E = [1,0,0,0,1]*Mod(Mod(1,2),f)
```

\r ECDHkey.txt
public = %4
private = 31415