Homework 4: The time-independent Schrodinger equation (**Due Friday October 5**)

September 28, 2018

1 ONE-DIMENSIONAL QUANTUM DOTS (100 POINTS), YOU HAVE SOLVED PARTS OF THIS PROBLEM IN HW3

Quantum dots are nano-technological devices that can be used to confine the electrons and control their motion. An electron is confined to move in a one dimensional quantum dot. The dot can be modeled with the potential

$$V(x) = \begin{cases} 0 & 0 < x < L \\ \infty & \text{elsewhere} \end{cases}$$
 (1.1)

1. **(5 points)** The wave function of an electron at time t = 0 is given by

$$\Psi(x, t = 0) = Ax^{2}(L - x). \tag{1.2}$$

Find the value of *A*.

- 2. **(15 points)** Given the electron's initial wave function $\Psi(x, t = 0)$, **Compute** the expectation value of the electron's total energy $\langle \hat{H} \rangle$.
- 3. (15 points) Calculate Δ_p and Δ_x and show that $\Delta_p\Delta_x$ satisfies the Heisenberg uncertainty principle.

- 4. (15 points) If the electron energy is measured, what are the probabilities, P_n , to find the electron at any of the energy levels $E_n = \frac{n^2 \hbar^2 \pi^2}{2mL^2}$. (Hint: you do not need to do the integral by hand, you can either look it up in the mathematical tables or just use a software.)
- 5. (15 points) Perform the sum $\sum_{n=1}^{\infty} P_n E_n$ numerically. How this sum compares to $\langle \hat{H} \rangle$?
- 6. **(5 points)** Given the electron's initial wave function $\Psi(x, t = 0)$, **find** $\Psi(x, t)$.
- 7. **(10 points) Show** that the revival time T of the wave function (that is $\Psi(x, T) = \Psi(x, 0)$) is given by $T = \frac{4mL^2}{\pi\hbar}$.
- 8. **(5 points)** At time t_1 we measure the electron energy to find that $E = E_2$. What is the wave function of the electron immediately after the measurement? What is the wave function at any time $t > t_1$?
- 9. (15 points) At time t_2 we measure the electron position to find x = L/2. What is the wave function of the electron immediately after this measurement? What is the wave function at any time $t > t_2$?