Forest Fires

June 5, 2016

```
Regression Modeling in Practice Course
by Wesleyan University
Linear Regression Model
Mario Colosso V.
In [1]: %matplotlib inline
        import pandas
        import matplotlib.pyplot as plt
        import statsmodels.formula.api as smf
       pandas.set_option('display.mpl_style', 'default') # Make the graphs a bit prettier
       pandas.set_option('display.float_format', lambda x:'%.3f'%x)
       plt.rcParams['figure.figsize'] = (15, 5)
C:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:2885: FutureWarning:
mpl_style had been deprecated and will be removed in a future version.
Use 'matplotlib.pyplot.style.use' instead.
  exec(code_obj, self.user_global_ns, self.user_ns)
In [2]: #plt.style.use('qqplot')
        #plt.rcParams['figure.figsize'] = (15, 5)
        #print(plt.style.available)
0.0.1 Load Forest Fires .csv file
In [3]: fires = pandas.read_csv('forestfires.csv')
     1. Lets have a brief look of Fires DataFrame
In [4]: fires.head()
                       #Show first rows
Out [4]:
                                    DMC
                                             DC
          Х
             Y month day
                            FFMC
                                                  ISI
                                                        temp RH wind rain area
        0
          7
                      fri 86.200 26.200 94.300 5.100 8.200
             5
                                                              51 6.700 0.000 0.000
                 mar
          7
                 oct tue 90.600 35.400 669.100 6.700 18.000 33 0.900 0.000 0.000
        2 7 4
                 oct sat 90.600 43.700 686.900 6.700 14.600 33 1.300 0.000 0.000
                 mar fri 91.700 33.300 77.500 9.000 8.300 97 4.000 0.200 0.000
          8 6
                 mar sun 89.300 51.300 102.200 9.600 11.400 99 1.800 0.000 0.000
```

0.1.1 Get some descriptive statistic of the data

```
In [5]: fires_attributes = fires.columns.values.tolist()
        number_of_columns = len(fires_attributes)
In [6]: statistics = pandas.DataFrame(index=range(0, number_of_columns - 4),
                                      columns=('name', 'min', 'max', 'mean'))
In [7]: for attr in range(4, number_of_columns):
            idx = attr - 4
            statistics.loc[idx] = {'name': fires_attributes[attr],
                                   'min': min(fires[fires_attributes[attr]]),
                                   'max': max(fires[fires_attributes[attr]]),
                                   'mean': fires[fires_attributes[attr]].mean()}
In [8]: statistics
                     #Show min, max and mean
Out[8]:
          name
                   min
                            max
                                   mean
          FFMC 18.700
                        96.200 90.645
        1
                1.100
                       291.300 110.872
           DMC
        2
            DC
                7.900
                       860.600 547.940
       3
            ISI
                0.000
                        56.100
                                 9.022
       4
          temp
                 2.200
                        33.300 18.889
       5
            RH
                    15
                            100
                                44.288
       6 wind 0.400
                          9.400
                                 4.018
       7
          rain 0.000
                          6.400
                                 0.022
        8 area 0.000 1090.840 12.847
```

In [9]: fires['temp'].plot() #Plot temperature graph

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1f79806aef0>


```
In [11]: print(fires.corr()) #Show correlation between variables
```

```
X
      Y
          FFMC
                  DMC
                          DC
                                ISI
                                              RH
                                                   wind
                                                          rain
                                     temp
X
     1.000 0.540 -0.021 -0.048 -0.086 0.006 -0.051
                                                     0.085
                                                           0.019
                                                                   0.065
                         0.008 -0.101 -0.024 -0.024 0.062 -0.020
Y
     0.540 1.000 -0.046
                                                                  0.033
FFMC -0.021 -0.046
                  1.000
                          0.383
                                0.331
                                      0.532
                                              0.432 -0.301 -0.028
                                                                   0.057
DMC
   -0.048 0.008
                  0.383
                          1.000
                                0.682
                                       0.305
                                              0.470 0.074 -0.105
                                                                   0.075
DC
    -0.086 -0.101
                   0.331
                          0.682
                                1.000
                                       0.229
                                              0.496 -0.039 -0.203
                                                                  0.036
                                0.229
                                       1.000
ISI
     0.006 - 0.024
                   0.532
                          0.305
                                             0.394 - 0.133
                                                           0.107
                                                                   0.068
                          0.470 0.496 0.394 1.000 -0.527 -0.227
temp -0.051 -0.024 0.432
                                                                  0.069
     0.085 0.062 -0.301
                         0.074 -0.039 -0.133 -0.527
                                                    1.000
                                                           0.069
                                                                  0.100
wind 0.019 -0.020 -0.028 -0.105 -0.203 0.107 -0.227
                                                    0.069
                                                            1.000
                                                                  0.061
     0.065 0.033
                  0.057
                         0.075
                                0.036
                                      0.068
                                             0.069 0.100
                                                            0.061
                                                                  1.000
area 0.063 0.045 0.040 0.073 0.049 0.008 0.098 -0.076 0.012 -0.007
```

area X 0.063 Y 0.045 FFMC 0.040 0.073 DMC DC 0.049 0.008 ISI temp 0.098 RH -0.076 wind 0.012 rain -0.007 area 1.000

0.2 2. Linear regression

0.2.1 Convert categorical variables (months and days) into numerical values

```
fires.head()
0 7 5
```

```
Out[12]:
                                                       temp RH wind rain area
          X Y month day
                            FFMC
                                    DMC
                                            DC
                                                ISI
                      5 86.200 26.200 94.300 5.100 8.200 51 6.700 0.000 0.000
                    2
        1 7 4
                         2 90.600 35.400 669.100 6.700 18.000 33 0.900 0.000 0.000
                    9
        2 7 4
                    9
                        6 90.600 43.700 686.900 6.700 14.600 33 1.300 0.000 0.000
                        5 91.700 33.300 77.500 9.000 8.300 97 4.000 0.200 0.000
        3 8 6
                    2
                         0 89.300 51.300 102.200 9.600 11.400 99 1.800 0.000 0.000
```

0.2.2 Center each explanatory variable

```
In [13]: for idx in range(0, number_of_columns - 1):
            fires[fires_attributes[idx]] = fires[fires_attributes[idx]] -
                                          fires[fires_attributes[idx]].mean()
In [14]: for idx in range(0, number_of_columns):
            statistics.loc[idx] = {'name': fires_attributes[idx],
                                   'min': min(fires[fires_attributes[idx]]),
                                   'max': max(fires[fires_attributes[idx]]),
                                   'mean': fires[fires_attributes[idx]].mean()}
In [15]: statistics
                   #Only explanatory variables were centered
Out[15]:
             name
                     {\tt min}
                               max mean
                             4.331 0.000
        0
              Х
                   -3.669
                Y -2.300
                           4.700 0.000
        1
        2
           month -6.476
                           4.524 0.000
                             3.027 -0.000
        3
             day
                   -2.973
        4
           FFMC -71.945
                             5.555 0.000
        5
             DMC -109.772 180.428 -0.000
              DC -540.040 312.660 0.000
        6
        7
             ISI
                  -9.022
                           47.078 -0.000
        8
             temp -16.689
                            14.411 0.000
        9
               RH -29.288
                            55.712 0.000
        10
                   -3.618
                             5.382 -0.000
            wind
                             6.378 0.000
                    -0.022
        11
             rain
                     0.000 1090.840 12.847
        12
             area
```

0.2.3 Generate models to test each variable

```
In [16]: for idx in range(4, number_of_columns - 1):
             model = smf.ols(formula = "area ~ " +
                             fires_attributes[idx], data = fires).fit()
             print(model.summary())
             print()
```

OLS Regression Results

______ Dep. Variable: 0.002 R-squared: area Model: OLS Adj. R-squared: -0.000 Method: F-statistic: 0.8304 Least Squares Date: Fri, 03 Jun 2016 Prob (F-statistic): 0.363 21:45:10 Log-Likelihood: Time. -2880.0 No. Observations: 517 AIC: 5764. Df Residuals: 515 BIC: 5773.

Df Model: Covariance Type: nonrobust

=========		=========	=======		=======================================
	coef	std err	t	P> t	[95.0% Conf. Int.
Intercept	12.8473	2.800	4.588	0.000	7.346 18.34
FFMC	0.4627	0.508	0.911	0.363	-0.535 1.46
========		========	=======		
Omnibus:		983.1	37 Durb	in-Watson:	1.64
Prob(Omnibus	s):	0.0	00 Jarqı	ue-Bera (JB)	: 808340.06
Skew:		12.7	93 Prob	(JB):	0.0
Kurtosis:		195.0	15 Cond	. No.	5.5
=========		========	=======		=======================================

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variab	 le:	are	a R-sq	 uared:		0.005	
Model:	OL		s Adj.	R-squared:		0.003	
Method:	Least Squares		s F-st	atistic:		2.759	
Date:	F	ri, 03 Jun 201	6 Prob	(F-statistic):		0.0973	
Time:		21:45:1	0 Log-	Likelihood:		-2879.1	
No. Observat	tions:	51	7 AIC:			5762.	
Df Residuals	s:	51	5 BIC:			5771.	
Df Model:			1				
Covariance :	Гуре:	nonrobus	t				
	coef	std err	t	P> t	[95.0% Con	if. Int.]	
Intercept	12.8473	2.795	4.597	0.000	7.357	18.338	
DMC	0.0725	0.044	1.661	0.097	-0.013	0.158	
Omnibus:		982.80	==== == 3 Durb	======== in-Watson:		1.649	
Prob(Omnibus	s):	0.00	_	ue-Bera (JB):	81	1231.935	

195.368 Cond. No. Kurtosis: 64.0 _____

12.780 Prob(JB):

Warnings:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.00

============			
Dep. Variable:	area	R-squared:	0.002
Model:	OLS	Adj. R-squared:	0.001
Method:	Least Squares	F-statistic:	1.259
Date:	Fri, 03 Jun 2016	Prob (F-statistic):	0.262
Time:	21:45:10	Log-Likelihood:	-2879.8
No. Observations:	517	AIC:	5764.
Df Residuals:	515	BIC:	5772.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept DC	12.8473 0.0127	2.799 0.011	4.590 1.122	0.000 0.262	7.349 18.346 -0.010 0.039
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	982.8 0.0 12.7 194.8	000 Jarq 786 Prob	in-Watson: ue-Bera (JB) (JB): . No.	1.648 807312.309 0.00 248

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

=======================================			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	area OLS Least Squares Fri, 03 Jun 2016 21:45:11 517 515 1 nonrobust	Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:	0.000 -0.002 0.03512 0.851 -2880.4 5765.
CO	ef std err	t P> t	[95.0% Conf. Int.]
Intercept 12.84 ISI 0.11			7.342 18.352 -1.093 1.324
Omnibus: Prob(Omnibus): Skew: Kurtosis:	983.625 0.000 12.806 195.211	Jarque-Bera (JB):	1.649 809992.277 0.00 4.56

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

===========	=====	=========			======	-=======	=
Dep. Variable:		area	R-squa	red:		0.010	О
Model:		OLS	Adj. R	-squared:		0.008	3
Method:		Least Squares	F-stat	istic:		4.978	3
Date:	F	ri, 03 Jun 2016	Prob (F-statistic):		0.0261	1
Time:		21:45:11	Log-Li	kelihood:		-2878.0	0
No. Observations:		517	AIC:			5760.	
Df Residuals:		515	BIC:			5768.	
Df Model:		1					
Covariance Type:		nonrobust					
=======================================	====						=
•	coef	std err	t	P> t	[95.0%	Conf. Int.]]

Intercept	12.8473	2.789	4.607	0.000	7.368	18.326
temp	1.0726	0.481		0.026	0.128	2.017
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	979.270 0.000 12.687 193.275	Jarqı Prob	in-Watson: ue-Bera (JB): (JB): . No.	79	1.650 93772.021 0.00 5.80

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model:	ions:	Least Squar Fri, 03 Jun 20 21:45:	16	Adj. F-sta Prob	nared: R-squared: atistic: (F-statistic): Likelihood:		0.006 0.004 2.954 0.0863 -2879.0 5762. 5770.
Covariance T	'ype:	nonrobu	ıst				
========	coef	std err		===== t	P> t	[95.0% Conf	f. Int.]
Intercept RH	12.8473 -0.2946	3 2.794 5 0.171			0.000 0.086	7.358 -0.631	
Omnibus: Prob(Omnibus Skew: Kurtosis:	:):	980.4 0.0 12.7 193.5	20		•	798	1.642 5947.965 0.00 16.3

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

========	======		=====	-====		
Dep. Variabl	e:	:	area	R-sqı	uared:	0.000
Model:			OLS	Adj.	R-squared:	-0.002
Method:		Least Squ	ares	F-sta	atistic:	0.07815
Date:		Fri, 03 Jun	2016	Prob	(F-statistic):	0.780
Time:		21:4	5:11	Log-I	Likelihood:	-2880.4
No. Observat	ions:		517	AIC:		5765.
Df Residuals	:		515	BIC:		5773.
Df Model:			1			
Covariance T	ype:	nonro	bust			
	coei	f std err		t	P> t	[95.0% Conf. Int.]
Intercept	12.8473	3 2.802		4.585	0.000	7.342 18.352

wind	0.4376	1.565	0.280	0.780	-2.638	3.513
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	983.721 0.000 12.809 195.251	Jarqu	•	810	1.647 324.708 0.00 1.79
=========		=========	======	==========	========	======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

===========	:====	-========	======	========	======	========
Dep. Variable:		area	R-squa	red:		0.000
Model:		OLS	Adj. R	-squared:		-0.002
Method:		Least Squares	F-stat	istic:		0.02794
Date:	Fr	ri, 03 Jun 2016	Prob (F-statistic):		0.867
Time:		21:45:11	Log-Li	kelihood:		-2880.4
No. Observations:		517	AIC:			5765.
Df Residuals:		515	BIC:			5773.
Df Model:		1				
Covariance Type:		nonrobust				
=============	-====			========	======	========
C	coef	std err	t	P> t	[95.0%	Conf. Int.]

	coef	std err	t	P> t	[95.0% Co	nf. Int.]
Intercept rain	12.8473 -1.5842	2.802 9.477	4.585 -0.167	0.000 0.867	7.342 -20.203	18.352 17.035
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):		000 Jaro 809 Prob	oin-Watson: que-Bera (JB) o(JB): d. No.	: 8	1.649 10320.385 0.00 3.38

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [17]: print((smf.ols(formula = "area ~ temp", data = fires).fit()).summary())

===============	====	~ ============	======		:======	======	=====
Dep. Variable:		area	R-squ	ared:			0.010
Model:		OLS	Adj. 1	R-squared:			0.008
Method:		Least Squares	F-sta	tistic:			4.978
Date:		Fri, 03 Jun 2016	Prob	(F-statistic):		(0.0261
Time:		21:45:11	Log-L	ikelihood:		-2	2878.0
No. Observations:		517	AIC:				5760.
Df Residuals:		515	BIC:				5768.
Df Model:		1					
Covariance Type:		nonrobust					
	==== coef	std err	t	P> t	[95.0%	Conf.	Int.]

	coef	std err	t	P> t	[95.0% Con:	f. Int.]
Intercept	12.8473	2.789	4.607	0.000	7.368	18.326
temp	1.0726	0.481	2.231	0.026	0.128	2.017

Omnibus:	979.270	Durbin-Watson:	1.650			
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):	793772.021			
Skew:	12.687	Prob(JB):	0.00			
Kurtosis:	193.275	Cond. No.	5.80			
=======================================	=========					

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The results of the linear regression models indicated than only temperature (Beta = 1.0726, p=0.026) was significantly and positively associated with the total burned area due to forest fires. 'p-value' of other models are greater than treshold value of 0.05 so results are not statistically significant to reject null hypothesis.

0.2.4 Create a Linear Regression Model for a combination of variables

```
In [18]: explanatory_variables = "FFMC + DMC + DC + ISI + temp + RH + wind + rain"
         response_variable =
                                 "area"
         model = smf.ols(formula = response_variable + " ~ " + explanatory_variables,
                         data = fires).fit()
```

In [19]: print(model.summary())

OLS Regression Results

Skew:

==========			
Dep. Variable:	area	R-squared:	0.016
Model:	OLS	Adj. R-squared:	0.001
Method:	Least Squares	F-statistic:	1.033
Date:	Fri, 03 Jun 2016	<pre>Prob (F-statistic):</pre>	0.410
Time:	21:45:11	Log-Likelihood:	-2876.3
No. Observations:	517	AIC:	5771.
Df Residuals:	508	BIC:	5809.
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Con	f. Int.]
Intercept	12.8473	2.799	4.590	0.000	7.349	18.346
FFMC	-0.0233	0.661	-0.035	0.972	-1.322	1.275
DMC	0.0765	0.067	1.145	0.253	-0.055	0.208
DC	-0.0057	0.016	-0.349	0.727	-0.038	0.026
ISI	-0.6984	0.772	-0.905	0.366	-2.215	0.818
temp	0.8480	0.787	1.077	0.282	-0.699	2.394
RH	-0.1963	0.237	-0.829	0.407	-0.661	0.269
wind	1.5271	1.670	0.914	0.361	-1.754	4.808
rain	-2.5400	9.676	-0.263	0.793	-21.549	16.469
========	=======		========		========	======
Omnibus:		978.	059 Durbii	n-Watson:		1.645
Prob(Omnibu	s):	0.	000 Jarque	e-Bera (JB):	79	2201.920

193.092 Kurtosis:

12.652

Prob(JB):

0.00

871.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

<u>p-value</u> of combination model (p = 0.410) is bigger than treshold value, so the combination of the Canadian Forest Fire Weather Index (FWI) system plus temperature, humidity, wind and rain are not significantly associated with the total burned area due to forest fires. <u>p-value</u> of temperature in combination model (p = 0.282) is not longer statistically significant, a confounder variable?

In []: