Icollado

Inicia

Intro

Solucion

La realidad

La realidae

. . .

Un caso d RNA-seq eucarionte

Curso de Métodos Estadísticos y Analíticos de Datos Genómicos

Leonardo Collado Torres lcollado@ibt.unam.mx y lcollado@wintermexico.com Lic. en Ciencias Genómicas

www.lcg.unam.mx/~lcollado/

Winter Genomics (WG) e Instituto de Biotecnología (IBT) de la UNAM

21 de Enero de 2010

Icollado

Inicio

La realida

7 tillicadore

Un caso d RNA-seq eucarionte

Software para Datos de Secuenciación Masiva

- Intro
- 2 Soluciones
- 3 La realidad
- 4 Tipos de análisis
- **5** Alineadores
- 6 Un caso de RNA-seq eucarionte

Icollado

. . .

Intro

. . .

La realidat

. . . .

Un caso d RNA-seq

Por fin tenemos datos...ahora al análisis

A gap exists between current sequence-generation and data-analysis capabilities.

Icollado

Intro

¿Cuello de botella?

Next-generation gap

John D McPherson

There is a growing gap between the generation of massively parallel sequencing output and the ability to process and analyze the resulting data. New users are left to navigate a bewildering maze of base calling, alignment, assembly and analysis tools with often incomplete documentation and no idea how to compare and validate their outputs. Bridging this gap is essential, or the coveted \$1,000 genome will come with a \$20,000 analysis price tag.

Icollado

Inici

Intro

Solucione

La realidad

Tipos de

Alineadore

Un caso d RNA-seq eucarionte

El otro problema

- A Illumina, y me imagino que las otras, no les interesa desarrollar algoritmos que faciliten el análisis más allá de un nivel que consideran suficiente. Excepto en el análisis de imágenes.
- Lo dejan todo en manos de los investigadores :)

Icollado

400

Intro

Solucione

La realidad

Alineadore

Un caso d RNA-seq

Además, todo cambia MUY rápido!!

Illumina's Cheap New Gene Machine

Matthew Herper, 01.12.10, 03:00 PM EST

A new DNA reader could turbocharge research into cancer and autism.

The biotech company **Illumina** is introducing a new machine that it says will decode a person's DNA in one week using \$10,000 worth of materials—five times cheaper than any other competing gadget on the market

Icollado

Inicia

Intro

Solucione

La realidad

Tinos de

Alineadore

Un caso d RNA-seq eucarionte

Los líderes

The new machine, the HiSeq2000, will begin shipping next month with a cost of \$690,000 vs. \$500,000 for Illumina's current model. It is being unveiled today at J.P. Morgan's investment conference in San Francisco. The Beijing Genomics Institute will be the first customer, purchasing 128 of the new machines.

- 128 * 690000 = 88320000 USD
- Broad, BGI, Sanger

Inicio

Intro

Solucione

La realidad

Tinos de

Alineadore

Un caso d RNA-seq eucarionte

Slim invertirá 75 mdd en medicina genómica

En colaboración con el Instituto Nacional de Medicina Genómica de México y el *Broad Institute* secuenciarán el genoma del cáncer y la diabetes

Icollado

Inicia

Intr

Soluciones

La realidad

Alineadore

Un caso d RNA-seq eucarionte

Soluciones Integrales

- Bioconductor
- CLCbio Genomics Workbench
- Mosaik
- Programas de las compañías de secuenciación: ELAND, Newbler, entre otros.
- SHORE...

Icollado

Inicia

Intro

Soluciones

La realidad

Alineadore

Un caso d RNA-seq eucarionte

CLCbio Genomics Workbench

CLC bio - the world's leading bioinformatics solution provider!

CLC bio is the world's leading bioinformatics solution provider. Next Generation Sequencing is a major focus area and CLC bio delivers the first and only comprehensive crossplatform analysis solution, which can analyze and visualize genomic, transcriptomic, and epigenomic data from all major platforms, like Illumina's Genome Analyzer, SOLiD by Applied Biosystems, 454 by Roche, and HeliScope by Helicos.

El problema principal es el precio, aunque está disponible en modo de prueba.

Icollado

Induta-

....

Soluciones

La realidad

Alineadores

Un caso o RNA-seq eucarionte

Mosaik

MOSAIK is a reference-guided assembler comprising of four main modular programs:

- MosaikBuild
- MosaikAligner
- MosaikSort
- MosaikAssembler.
- Es muy nuevo así que siguen arreglando errores, pero tiene potencial.
- ¿Pero se nos olvida algo?

Icollado

......

Landania

Solucion

La realidad

La realidat

A Discoulance

Un caso d RNA-seq

¿Tenemos muchas o pocas secuencias únicas?

Icollado

. . .

. .

Salucian

La realidad

La realidad

Un caso d RNA-seq

Frecuencia de NTs

s_8_1_sequence.txt

Icollado

. . .

. .

Solucion

La realidad

La realidad

A.P. . . . I

Un caso d RNA-seq

Frecuencia de NTs del otro par

Icollado

.....

Intro

Solucion

La realidad

La realida

Allmandan

Un caso d RNA-seq eucarionte

¿Y la calidad?

Quality per Cycle

Icollado

lateta.

Intro

Solucione

La realidad

La realida

Un caso d RNA-seq eucarionte

El par no pinta bien

Quality per Cycle

Icollado

.....

.....

Solucione

La realidad

La realidad

Un caso d RNA-seq

Para entender mejor

Phred Quality to Probility

Icollado

Inicia

Intro

Solucion

La realidad

análisis

Alineadore

Un caso d RNA-seq eucarionte

Así que...

Hay que filtrar!

- Por calidad.
- Por un ciclo dado.
- Por la presencia de Ns.
- Las secuencias compuestas priomordialmente de una sola base.
- Eliminar secuencia de adaptadores.
- Calidad del alineamiento.
- Lo que inventen :)

Icollado

Inicia

Intr

Calada

La realidad

Tipos de análisis

Alineadore

Un caso d RNA-seq

Recordando

A gap exists between current sequence-generation and data-analysis capabilities.

Icollado

Inicia

. .

Calmaian

the second state

Tipos de

Alineadore

Un caso d RNA-seq eucarionte

ChIP y RNA - seq

Icollado

Inicia

Landania

Solucion

La sea Balance

Tipos de

análisis

Un caso d RNA-seq eucarionte

RNA-seq

aDe novo assembly of the transcriptome

Read coverage must be high enough to build EST contigs (solid bar)

b Map onto the genome

Read mapper must support splitting reads to record splices

C
Map onto the genome and splice junctions

Icollado

Inicia

Landana

Solucion

the beautiful and

Tipos de análisis

Alineadores

Un caso d RNA-seq

Ensamblado de novo

Icollado

Inicio

Labora

Solucion

La realidad

Tipos de análisis

Alineadore

Un caso d RNA-seq

Variación estructural

Icollado

Inicia

Intro

Solucione

La realidad

Tipos de análisis

Alineadore

Un caso d RNA-seq eucarionte

Lo básico

 Como pueden ver, hay que filtar y alinear en todo tipo aplicación.

Icollado

Inicia

Intro

La realidad

Alineadores

Un caso d RNA-seq eucarionte

El famoso MAQ

- Todo gracias a Heng Li del Sanger.
- El primero en usar las calidades al momento de alinear.
- Bastante rápido.
- Trae un identificador de SNPs.
- Visualizador de alineamientos asociado: mapview.
- Muy bien documentado.

Icollado

Inicio

1111110

Joinciones

La realidad

Alineadores

Un caso de RNA-seq

El famoso MAQ

Icollado

Inicio

Intro

Solucion

La realida

Alineadores

Un caso de RNA-seq eucarionte

El famoso MAQ

Table 2 Se	quencing st	atistics on persona	l genome p	projects						
Personal Genome	Platform	Genomic template libraries	No. of reads (millions)	Read length (bases)	Base coverage (fold)	Assembly	Genome coverage (%)*	SNVs in millions (alignment tool)	No. of runs	Estimated cost (US\$)
J. Craig Venter	Automated Sanger	MP from BACs, fosmids & plasmids	31.9	800	7.5	De novo	N/A	3.21	>340,000	70,000,000
James D. Watson	Roche/454	Frag: 500 bp	93.2*	2505	7.4	Aligned*	95	3.32 (BLAT)	234	1,000,0001
Yoruban	Illumina/	93% MP: 200 bp	3,410*	35	40.6	Aligned*	99.9	3.83 (MAQ)	40	250,000 ¹
male (NA18507)	Solexa	7% MP: 1.8 kb	271	35				4.14 (ELAND)		
Han Chinese male	Illumina/ Solexa	66% Frag: 150–250 bp	1,921*	35	36	Aligned*	99.9	3.07 (SOAP)	35	500,0001
		34% MP: 135 bp & 440 bp	1,029	35						
Korean male (AK1)	Illumina/ Solexa	21% Frag: 130 bp & 440 bp	393‡	36	27.8	Aligned*	99.8	3.45 (GSNAP)	30	200,0001
		79% MP: 130 bp. 390 bp & 2.7 kb	1,156	36, 88. 106						
Korean male (SJK)	Illumina/ Solexa	MP: 100 bp. 200 bp & 300 bp	1,647‡	35,74	29.0	Aligned*	99.9	3.44 (MAQ)	15	250,0001.#
Yoruban male (NA18507)	Life/APG	9% Frag: 100–500 bp	211‡	50	17.9	Aligned*	98.6	3.87 (Corona-lite)	9.5	60,0001.**
		91% MP: 600-3,500 bp	2,075‡	25, 50						
Stephen R. Quake	Helicos BioSciences	Frag: 100–500 bp	2,725*	325	28	Aligned*	90	2.81 (IndexDP)	4	48,0001
AML female	Illumina/ Solexa	Frag: 150-200 bp ^{‡‡}	2,730*.**	32	32.7	Aligned*	91	3.81# (MAQ)	98	1,600,000
		Frag: 150-200 bp ⁵⁵	1,081 ^{±.55}	35	13.9		83	2.92 ⁵⁵ (MAQ)	34	
AML male	Illumina/ Solexa	MP: 200-250 bp**	1,620***	35	23.3	Aligned*	98.5	3.46# (MAQ)	16.5	500,000
		MP: 200-250 bp ⁶⁶	1,351*55	50	21.3		97.4	3.45 ⁸⁸ (MAQ)	13.1	
James R. Lupski CMT male	Life/APG	16% Frag: 100–500 bp	238‡	35	29.6	Aligned*	99.8	3.42 (Corona-lite)	3	75,0001.11
		84% MP: 600-3,500 bp	1,211‡	25,50						

Icollado

Inicio

....

Solucion

La realidad

_. . .

Alineadores

Un caso de RNA-seq eucarionte

Salmonella Typhi con MAQ

Figure 3 Distribution of number of SNPs per gene. Lines indicate 95% confidence interval of mean predicted values under a Poisson distribution fitted to the data shown in green. Inset shows gene count on a log scale to better show deviation from the Poisson model at high numbers of SNPs per gene.

Icollado

.....

Landania

Solucione

La realidad

La realidat

Alineadores

Un caso de RNA-seq eucarionte

Hay dos grandes categorías de alineadores

Icollado

Inicia

Intro

Solucion

La realidad

La realidad

Alineadores

Un caso de RNA-seq eucarionte

Hash Index - Spaced Seeds

 MAQ, SHRiMP, ELAND, SOAP, MOSAIK, ZOOM, BFAST, . . .

Icollado

Inicia

Intro

La realidad

La realidae

Alineadores

Un caso d RNA-seq eucarionte

Burrows-Wheeler Transform

- Bowtie, BWA, SOAP2, ...
- Generalmente son MUCHO más rápidos.

Icollado

Inicia

Intro

Joidelone

La realida

Alineadores

Un caso d RNA-seq eucarionte

SHRiMP

- De los primeros en poder manejar datos de SOLiD.
- Implementa un alineamiento Smith-Waterman en el proceso. Aumenta la precisión.

Inicio

Intro

Solucion

La realidad

Alineadores

Un caso d RNA-seq eucarionte

Table 3. Color-space mapping accuracy of SHRiMP.

		Number of SNPs									
		0		1		2		3		4	
		Prec.	Rec.	Prec.	Rec.	Prec.	Rec.	Prec.	Rec.	Prec.	Rec.
	0	85.7	83.2	84.8	81.3	83.5	76.6	80.6	65.2	75.6	46.8
Max	1	83.8	79.4	82.2	74.0	79.4	62.6	72.8	43.2	63.1	24.7
Indel	2	83.2	77.1	80.8	69.6	77.9	56.6	68.2	36.4	56.4	18.9
Length	3	80.7	71.0	79.6	64.2	73.6	48.3	66.5	31.5	57.1	16.6
	4	78.0	65.4	76.5	56.1	71.4	41.9	60.6	23.9	50.3	12.4
	5	75.9	58.9	73.0	48.1	69.7	36.6	57.0	21.3	46.0	12.7

Icollado

Inicio

Intro

Solucion

La section

Alineadores

Un caso d RNA-seq eucarionte

¿Qué notan?

Son datos de Ciona savignyi

Icollado

Inicia

Intro

Solucioni

La realidad

allalisis

Alineadores

Un caso d RNA-seq eucarionte

Bowtie

- Desarrollado por Ben Langmead
- Extremadamente rápido
- Similar a MAQ en la forma de uso
- Basado en el BWT
- Corre en paralelo

Icollado

lateta.

Labora

Solucion

La realidad

Lu rounduc

Alineadores

Un caso d RNA-seq eucarionte

Bowtie vs otros

Table 3

Length	Program	CPU time	Wall clock time	Peak virtual memory footprint (megabytes)	Bowtie speed-up	Reads aligned (%)
36 bp	Bowtie	6 m 15 s	6 m 21 s	1,305		62.2
	Maq	3 h 52 m 26 s	3 h 52 m 54 s	804	36.7×	65.0
	Bowtie -v 2	4 m 55 s	5 m 00 s	1,138		55.0
	SOAP	16 h 44 m 3 s	18 h I m 38 s	13,619	216×	55.1
50 bp	Bowtie	7 m II s	7 m 20 s	1,310		67.5
	Maq	2 h 39 m 56 s	2 h 40 m 9 s	804	21.8×	67.9
	Bowtie -v 2	5 m 32 s	5 m 46 s	1,138	-	56.2
	SOAP	48 h 42 m 4 s	66 h 26 m 53 s	13,619	691×	56.2
76 bp	Bowtie	18 m 58 s	19 m 6 s	1,323		44.5
	Maq 0.7.1	4 h 45 m 7 s	4 h 45 m 17 s	1,155	14.9×	44.9
	Bowtie -v 2	7 m 35 s	7 m 40 s	1,138		31.7

Icollado

Lateta.

Labora

Solucione

La realidad

T. .

Alineadores

Un caso de RNA-seq eucarionte

Bowtie: en paralelo

Table 4

Bowtie parallel alignment performance

	CPU time	Wall clock time	Reads mapped per hour (millions)	Peak virtual memory footprint (megabytes)	Speedup
Bowtie, one thread	18 m 19 s	18 m 46 s	28.3	1,353	
Bowtie, two threads	20 m 34 s	10 m 35 s	50.1	1,363	1.77×
Bowtie, four threads	23 m 9 s	6 m l s	88.1	1,384	3.12×

Icollado

Inicia

.....

Soluciones

La realidad

Alineadores

Un caso de RNA-seq eucarionte

Bowtie: creando índices

Table 5

Bowtie index building performance

Physical memory target (GB)	Actual peak memory footprint (GB)	Wall clock time		
16	14.4	4 h 36 m		
8	5.84	5 h 5 m		
4	3.39	7 h 40 m		
2	1.39	21 h 30 m		

Icollado

Inicio

Intro

Solucione

La realidad

Tinos de

Alineadores

Un caso de RNA-seq

Resumiendo

Table 1 A selection of short-read analysis software							
Program	Website	Open source?	Handles ABI color space?	Maximum read length			
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None			
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None			
Maq	http://maq.sourceforge.net	Yes	Yes	127			
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None			
Novoalign	http://www.novocraft.com	No	No	None			
SOAP2	http://soap.genomics.org.cn	No	No	60			
ZOOM	http://www.bioinfor.com	No	Yes	240			

Icollado

Inicia

IIILIO

La realidad

Alineadores

Un caso d RNA-seq

Siempre queremos más :)

These technologies generate relatively short reads, typically from a few tens to a few hundred bases in length, with a general inverse relation between the total number of reads and the read length. In the context of whole human genome resequencing, on the order of a billion short reads are required to accurately resequence an individual genome, and this creates an unprecedented alignment problem of aligning this many reads to the reference human genome on a practical timescale of days. Using established dynamic programming algorithms [7] to align reads to the entire human genome is grossly impractical, since the computational cost is proportional to the target size. To reduce the cost resulting from

> (1e+09 * 50)/(2 * 3e+09)

[1] 8.333333

> 1e+09/(2e+07 * 8)

[1] 6.25

Icollado

Inicia

Intr

Solucione

La realidad

Alineadores

Un caso d RNA-seq eucarionte

BFAST

- Desarrollado por Nils Homer
- Rápido aunque no tanto como Bowtie
- Utiliza un alineamiento tipo Smith-Waterman. Es mucho más sensible!
- Acepta datos de SOLiD
- Mucho más robusto que cualquier otro so far
- Bastante nuevo.

Icollado

Inicia

Intro

Solucione

La realidad

Alineadores

Un caso de RNA-seq eucarionte

BFAST: el plan

Step 1: Index the reference

Step 2: Find CALs using the index(es)

Step 3: Gapped local alignment

Icollado

10000

Intro

La seattales

Alineadores

Un caso de RNA-seq

BFAST: creando un índice

Α			С		order	order
start	AAT	CCCGATTACAGGGATT	2	2-mer	start	end
1	AA	CCCGATTACAGGGATT	1.	AA		-
2	A	CCCGATTACAGGGATT	2.	AC	1	1
3	2	CCCGATTACAGGGATT	3.	AG		-
4		CCCGATTACAGGGATT	4.	AT	2	3
5		CCGATTACAGGGATT	5.	CA	4	4
6		CGATTACAGGGATT	6.	CC	5	5
7		GATTACAGGGATT	7.	CG	6	6
8		ATTACAGGGATT	8.	CT	(- C	-
9		TTACAGGGATT	9.	GA	2 — 2	-
			10.	GC	30 - 03	-
В			11.	GG	2.	
В			12.	GT	7	7
order	star	t 10100000011	13.	TA	8	8
1.	2	ATCCCGATTACAGGGATT	14.	TC	9	9
2.	8	ATTACAGGGATT	15.	TG	(-)	-
3.	1	AATCCCGATTACAGGGATT	16.	TT	2-3	-
4.	6	CGATTACAGGGATT				
5.	4	CCCGATTACAGGGATT	D			
6.	5	CCGATTACAGGGATT O	ffset	ATCCC	GATTATAG	match
7.	7	GATTACAGGGATT	0	AC	AT	x
8.	9	TTACAGGGATT	1	T C	TA	x
9.	3	TCCCGATTACAGGGATT	2	cc	AG	1

Icollado

Inicio

.

La realidad

Alineadores

Un caso d RNA-seq eucarionte

BFAST vs otros

Icollado

lateta.

Landana

Soluciones

La realidad

T. .

Alineadores

Un caso de RNA-seq eucarionte

BFAST vs otros con datos reales

Table 2. Timing results of alignment algorithms on four different real-world datasets.

	Illumina 10.9 M 36 bp reads	Illumina 10.9 M 36 bp reads	Illumina 3.5 M 55 bp reads Time (s)	Illumina 3.5 M 55 bp reads % mapped	ABI SOLID 1 M 25 bp read Time (s)	ABI SOLID 1 M 25 bp read % mapped	ABI SOLID 1 M 50 bp read Time (s)	ABI SOLID 1 M 50 bp read % mapped
	Time (s)	% mapped						
BFAST	43,775	32.1	47,474	69.6	9,590	66	42,856	72.5
BLAT*	68,758	24.3	6,735,069	77.4	NA	NA	NA	NA
Bowtie	2,270	13.1	857	55.7	NA	NA	NA	NA
BWA	7,682	16	4,883	59.3	21,179	74.7	845	47.8
MAQ	8,607	28.7	126,541	73.6	7,602	63.6	6,680	68.1
SHRiMP*	186,764	14.9	324,380	83.3	2,977	2,4	32,644	70.4
SOAP	11,938	13.3	131,248	62.4	NA	NA	NA	NA

Icollado

initiate.

. .

C = 1...=!===

rando en la compansión de la compansión de

La realidad

Alineadores

Un caso de RNA-seq

BFAST y color errors

Icollado

Inicia

IIILIO

La realidad

Alineadores

Un caso d RNA-seq eucarionte

Para todos gustos

Acuérdense de fijarse

- La sensibilidad.
- La velocidad, si es crucial.
- La memoria requerida.
- Exploren los parámetros.
- Chequen que estén bien los archivos de entrada. Cada programa puede usar uno diferente.
 - Cuidado con secuencias paired-end y mate-pair.

Icollado

Inicia

Intro

O O I d C I O I I C

La realidad

allalisis

Alineadores

Un caso d RNA-seq eucarionte

El tío SAM

- Heng Li y otros desarrollaron SAMtools que entre otras funciones, su objetivo es unificar formatos de salida de los alineadores.
- Está muy relacionado a su hermano BAMtools.
- http://samtools.sourceforge.net/

Icollado

Alineadores

Having a large memory machine - whatever route used

Ewan Birney

here - is always useful. I would buy the largest machine which still has a reasonable linear trend of memory cost (at one goes up in memory, there is often a sharp increase in cost which is not linear. Buy just below that with lots of cores). This machine therefore, with the right number of cores, can be part of a standard farm without much cost penalty and can be used for these other tasks. This is often a 128GB or 256GB machine, but...you need to talk to vendors.

Icollado

Inicia

Intro

Solucion

La realidad

Alineadore

Un caso de RNA-seq eucarionte

Programas a usar - Ben Langmead

TopHat

- Alinea las secs. para identificar uniones exón-exón
- Las secs. tienen que ser del mismo tamaño y no identifica indeles menores a cierto umbral.
- O todas son PE o todas son SE.
- No usa genoma de referencia.
- Usa Bowtie para identificar exones potenciales.
- Construye una db de posibles uniones y luego las confirma (3 tipos de evidencia).

2 Cufflinks

- Ensambla secs. alineadas en transcritos y estima su abundancia.
- ▶ Mide la abundancia en RPKM: reads per pk of exon model per million mapped reads
- La version actual es beta.

Icollado

Inici

c . .

La realidad

La realiua

Alineadore

Un caso de RNA-seq eucarionte

Análisis

- Nos dan los datos: 100mil secuencias de 36pb de un experimento RNA-seq de *Drosophila melanogaster*.
- Leer en R, explorar las secuencias y filtrar: las que tienen Ns y no son del cromosoma. Nos quedamos con $55\,\%^1$
- Calcular la cobertura con lRanges.
- Obtener la anotación del genoma usando biomaRt para conectarnos a ENSEMBL.
- Pasar la anotación a un objeto de IRanges.
- Calcular la cobertura por exón y por transcrito.
- Visualizar la cobertura en un Genome Browser como el de UCSC.
- Excluyendo solo las secs con Ns, corremos TopHat.
- Visualizar los archivos WIG y BED en un Genome Browser.
- Tan tan!

¹Podrían usar BioPython entre otras opciones

Icollado

Inicia

Intro

Solucion

La realida

Alineadore

Un caso de RNA-seq eucarionte

Referencias

- Next Generation Sequencing Analysis Focus de Nature Methods
- Trapnell y Salzberg
- Noticia Illumina
- Noticia Slim
- Artículo de MAQ
- Artículo Bowtie
- Artículo BFAST
- Artículo sobre Salmonella Typhi
- Software List de SEQanswers muy útil!
- Metzker Review
- Comunicación personal con Nicolas Delhomme

Un caso de RNA-sea eucarionte

sessionInfo

Información de mi sesión:

> sessionInfo()

R version 2.10.0 (2009-10-26) i386-pc-mingw32

locale:

- [1] LC_COLLATE=English_United States.1252
- [2] LC_CTYPE=English_United States.1252
- [3] LC_MONETARY=English_United States.1252
- [4] LC_NUMERIC=C
- [5] LC_TIME=English_United States.1252

attached base packages:

- [1] stats graphics grDevices
- [4] utils datasets methods
- [7] base