

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory

May/June 2012

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
Section A		
В6		
В7		
B8		
В9		
Total		

This document consists of 17 printed pages and 3 blank pages.

[Total: 7]

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

carbon monoxide

A1 Choose from the following gases to answer the questions below.

ammonia

		chlorine	ethane
		fluorine	methane
		neon	nitrogen
		nitrogen monoxide	oxygen
		propane	propene
		sulfur dioxide	sulfur trioxide
Eac	ch gas can b	e used once, more than once or no	t at all.
Whi	ich gas		
(a)	turns mois	t red litmus paper blue,	
			[1]
(b)	decolouris	es bromine water,	
			[1]
(c)	is used in t	the manufacture of steel,	
			[1]
(d)	is a monat	omic element,	
()			[1]
(e)			[1]
(e)		a food preservative,	r41
			[1]
(f)	is used to	disinfect water,	
			[1]
(g)	is a molecu	ule with 14 protons?	

......[1]

A2 Iron(II) sulfate crystals decompose when heated to give three gases U, V and W and an orange-brown solid **T**. Gas **U** was tested with filter paper soaked with acidified potassium dichromate(VI). The filter paper changed colour from orange to green. Analysis of gas **V** showed it contained 40.0% sulfur and 60.0% oxygen by mass. When gas W was condensed it formed a colourless liquid that turned anhydrous copper(II) sulfate from white to blue. Solid T was dissolved in dilute nitric acid. Aqueous ammonia was added drop by drop and a red-brown precipitate was obtained. What is the formula for gas **U**? (a) (i)[1] (ii) Calculate the empirical formula of gas V. empirical formula of V is[2] (iii) Name gas W.[1] (iv) Give the name or the formula of the metal ion present in solid **T**.[1] (b) Iron(II) sulfate dissolves in water to give a green solution X. Aqueous sodium hydroxide was added drop by drop to solution **X**. A green precipitate, **Y**, was formed. (i) Name precipitate Y.[1] Construct the ionic equation, with state symbols, to show the formation of the precipitate, Y.

For

Examiner's Use

[Total: 8]

 $\begin{tabular}{ll} \bf A3 & \mbox{lodine forms a diatomic molecule, I_2.} \\ \mbox{lt has a simple molecular structure.} \\ \end{tabular}$

For Examiner's Use

The diagram shows the structure of the simple molecular lattice of iodine.

Each iodine molecule is held in place by weak intermolecular forces. Within each iodine molecule the atoms are covalently bonded.

(a)	Explain why solid iodine does not conduct electricity.
	[1]
(b)	When heated, solid iodine turns directly into iodine gas . Use the kinetic particle theory to explain this change of state.
	[2]
(c)	Draw a 'dot-and-cross' diagram to show the bonding in an iodine molecule. Show only the outer shell electrons.

[1]

(i) What is the formula for an astatide ion? [1] (ii) Complete the table about the appearance at room temperature of the elements in Group VII. element atomic number colour state Cl ₂ 17 green Br ₂ 35 solid [2] (iii) Predict the appearance of astatine at room temperature. [1] (ie) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] (f) Explain why astatine will not react with aqueous potassium iodide.				iodine and astatine		VII.		For Examin
(ii) Complete the table about the appearance at room temperature of the elements in Group VII. element atomic number colour state Cl ₂ 17 green Br ₂ 35 I ₂ 53 solid (iii) Predict the appearance of astatine at room temperature. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] (iii) Explain why astatine will not react with aqueous potassium iodide.	(i)	W	hat is the fo	rmula for an astatid	e ion?			Use
Group VII.							[1]	
Cl2 17 green	(ii)			table about the app	pearance at roo	m temperature of	the elements in	
Br ₂ 35 I ₂ 53 solid [2] (iii) Predict the appearance of astatine at room temperature. [1] (i) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] (ii) Explain why astatine will not react with aqueous potassium iodide.			element	atomic number	colour	state		
[2] (iii) Predict the appearance of astatine at room temperature. [1] (ii) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] (ii) Explain why astatine will not react with aqueous potassium iodide.			Cl_2	17	green			
(iii) Predict the appearance of astatine at room temperature. [1] (ii) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] [5] Explain why astatine will not react with aqueous potassium iodide.			Br ₂	35				
(iii) Predict the appearance of astatine at room temperature. [1] (i) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] (ii) Explain why astatine will not react with aqueous potassium iodide.			I ₂	53		solid		
c) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] (ii) Explain why astatine will not react with aqueous potassium iodide.		L					[2]	
c) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. (ii) Construct the ionic equation for the reaction that takes place. [1] (ii) Explain why astatine will not react with aqueous potassium iodide.	(iii)	Pr	edict the ap	pearance of astatin	e at room tempe	erature.		
c) Chlorine is bubbled into aqueous potassium iodide. (i) Describe what you would see. (ii) Construct the ionic equation for the reaction that takes place. [1] (ii) Explain why astatine will not react with aqueous potassium iodide.							[1]	
(i) Describe what you would see. [1] (ii) Construct the ionic equation for the reaction that takes place. [1] Explain why astatine will not react with aqueous potassium iodide.	e) Chl	orin	ne is bubbled	d into aqueous pota	ssium iodide.			
(ii) Construct the ionic equation for the reaction that takes place. [1] Explain why astatine will not react with aqueous potassium iodide.								
(ii) Construct the ionic equation for the reaction that takes place. [1] Explain why astatine will not react with aqueous potassium iodide.	(-)			-			[4]	
Explain why astatine will not react with aqueous potassium iodide.	/::\	···						
Explain why astatine will not react with aqueous potassium iodide.	(11)	C	mstruct the	•		•		
							[1]	
[1]) Exp	olair	n why astatir	ne will not react with	n aqueous potas	sium iodide.		
[1]								
							[1]	
[Total: 11]							[Total: 11]	

number of

protons

number of

neutrons

A4 This question is about some Group II elements and their compounds.
Magnesium reacts with oxygen to form magnesium oxide.
(a) The table shows information about the ions in magnesium oxide.
(i) Complete the table.

electron

configuration

ion

For Examiner's Use

		²⁴ Mg ²⁺				
		¹⁶ O ²⁻				
						[3]
		escribe how a oxide ion.	a magnesium ato	m and an oxyge	en atom form a m	agnesium ion and
						[1]
(b)	Explair melting		of structure and	bonding, why r	nagnesium oxide	has a very high
						[2]
(c)	Descril			of barium sulfat	e can be prepa	red from aqueous

[Total: 10]

A5 Displacement reactions occur when a metal reacts with a metal compound.

For Examiner's Use

The table shows the results of some displacement reactions.

In each case a sample of powdered metal is added to an aqueous metal sulfate.

	aqueous copper(II) sulfate	aqueous iron(II) sulfate	aqueous magnesium sulfate	aqueous nickel(II) sulfate	
copper		no reaction	no reaction	no reaction	
iron	reaction		no reaction	reaction	
magnesium	reaction	reaction		reaction	
nickel	reaction	no reaction	no reaction		
(a) Place the four metals in order of increasing reactivity.					

nic	kel		reaction	no reaction	no reaction		
(a)	Plac	ce the fo	our metals in order	of increasing reac	ti∨ity.		
	leas	st reacti	ve				
	mos	st reacti	ve				[1]
(b)	Iron	powde	r is added to aqueo	us copper(II) sulfa	ate.		
	Wha	at you v	vould observe in this	s reaction?			
							. [2]
(c)			foil is added to aqu temperature of the i			cement reaction ta	akes
	(i)	Name increas	the type of react ses.	ion in which the	temperature of	the reaction mix	ture
							[1]
	(ii)	Constr	ruct the ionic equation	on for this displac	ement reaction.		
							[1]
(d)		olain wh	y, even though it is ater.	high up in the rea	ctivity series, alur	minium does not r	eact

.....[2]

(e)	Molybdenum, atomic number 42, is manufactured by the displacement reaction between
	molybdenum(VI) oxide and aluminium.

$$\mathrm{MoO_3}$$
 + 2AI \rightarrow Mo + $\mathrm{Al_2O_3}$

Calculate the mass of aluminium needed to make 1 tonne of molybdenum. [1 tonne is one million grams.]

mass of aluminium = [2]

[Total: 9]

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B6 Seawater contains many dissolved ions. The table shows the concentration of some of these ions in a typical sample of seawater.

ion	formula	concentration/ g/dm ³
chloride	C1-	19.00
sodium	Na ⁺	10.56
sulfate	SO ₄ ²⁻	2.65
magnesium	Mg ²⁺	1.26
calcium	Ca ²⁺	0.40
potassium	K ⁺	0.38
hydrogencarbonate	HCO ₃ -	0.14

(a)	Suggest the formula of one salt dissolved in seawater.
	[1]
(b)	Calculate the concentration, in mol/dm³, of sulfate ions in seawater.
	[1]
(c)	Excess aqueous silver nitrate is added to a 25.0 cm ³ sample of seawater. What mass of silver chloride is precipitated in this reaction?
	$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$
	[3]

(d)		ne countries purify seawater to make drinking water. ne the process by which seawater is purified into drinking water.
		[1]
(e)	The	pH of seawater is 7.9.
	(i)	State the formula of an ion, other than those in the table, which must be present in seawater to account for this pH. Explain your answer.
		formula of ion
		explanation
		[2]
	(ii)	One way of measuring the pH of seawater is to use a pH meter. Describe an alternative method of measuring the pH of seawater.
		[2]
		[Total: 10]

B7 Carboxylic acids are a homologous series of organic compounds. The table shows some information about the first five carboxylic acids.

For Examiner's Use

name	molecular formula	melting point /°C	boiling point /°C
methanoic acid	CH ₂ O ₂	8	101
ethanoic acid	C ₂ H ₄ O ₂	17	118
propanoic acid	C ₃ H ₆ O ₂	– 21	141
	C ₄ H ₈ O ₂	-6	164
pentanoic acid	C ₅ H ₁₀ O ₂		

(a)	Explain the meaning of the term <i>homologous series</i> .
	[2]
(b)	Suggest the name of the carboxylic acid with the molecular formula $\mathrm{C_4H_8O_2}$.
	[1]
(c)	Draw the structure, showing all atoms and all bonds, of the carboxylic acid with the molecular formula $\rm C_3H_6O_2$.
	[1]
(d)	Deduce the molecular formula for a molecule of a carboxylic acid that contains seven carbon atoms.
	[1]
(e)	Explain why it is easier to predict the boiling point of pentanoic acid rather than its melting point.
	[1]

(f)	Ethanoic acid is a weak acid whereas hydrochloric acid is a strong acid. Describe the difference between a <i>weak acid</i> and a <i>strong acid</i> . Include equations in your answer.	For Examiner's Use
	[2]	
(g)	Powdered calcium carbonate, CaCO ₃ , is added to a sample of dilute ethanoic acid. The mixture fizzes and eventually forms a colourless solution. Construct the equation, including state symbols, for this reaction.	
	[2]	
	[Total: 10]	

B8	Solid sodium hydroxide, NaOH, has a giant ionic structure.		
	(a)	How many electrons are there in one hydroxide ion?	
		[1]	
	(b)	Explain why solid sodium hydroxide cannot be electrolysed but aqueous sodium hydroxide can be electrolysed.	
		[2]	
	(c)	The electrolysis of aqueous sodium hydroxide produces hydrogen and oxygen as shown by the electrode reactions.	
		at anode 4OH ⁻ (aq) \rightarrow O ₂ (g) + 2H ₂ O(l) + 4e ⁻	
		at cathode $2e^- + 2H_2O(I) \rightarrow H_2(g) + 2OH^-(aq)$	
		Explain why the electrolysis of aqueous sodium hydroxide involves both oxidation and reduction.	
		[2]	

(d) The overall reaction for the electrolysis of aqueous sodium hydroxide is shown belo

$$2 \mathrm{H_2O(I)} \, \longrightarrow \, 2 \mathrm{H_2(g)} \, + \, \mathrm{O_2(g)}$$

This reaction is endothermic.

(i) Explain, in terms of the energy changes associated with bond breaking and I forming, why the reaction is endothermic.	Joria
	[2]
(ii) Some submarines use this reaction to provide oxygen for the occupants to brea	athe.
Calculate the mass of water which must be electrolysed to make 2500 dm oxygen at room temperature and pressure. [One mole of any gas at room temperature and pressure occupies a vol of 24 dm ³ .]	
mass of water = (j [3]
[Tota	l:10]

		IJ	
В9		rogen has many industrial uses. One possible way to manufacture hydrogen involves the ersible reaction between methane and steam.	
		$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g) \Delta H = +210 \text{ kJ/mol}$	
	The reaction is carried out in the presence of a nickel catalyst. The conditions used are 30 atmospheres pressure and a temperature of 750 °C.		
	(a)	If the temperature of the reaction mixture is $increased$ to 900 $^{\circ}\text{C},$ explain what happens to the position of equilibrium.	
		[2]	
	(b)	If the pressure of the reaction mixture is increased to 50 atmospheres explain, in terms of collisions between reacting particles, what happens to the speed of the forward reaction.	
		[2]	
	(c)	Explain the advantages of using a catalyst in this manufacture of hydrogen.	

heat energy = kJ [2]

(d) In the reaction, 210 kJ of heat energy is used to form 3.0 moles of hydrogen.

Calculate how much heat energy is needed to make 1000 kg of hydrogen.

(e)	Describe how hydrogen is used to manufacture margarine.	For Examiner's Use
	[2] [Total: 10]	

17

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET

257 **Fm** Fermium 100 252 **ES** Einsteinium 99 The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.). Californium 247 **BK**Berkelium **Curium** 243 **Am**Americium 244 **Pu** Neptunium 231 **Pa** 232 **Th** Thorium 90

260 **Lr** Lawrendum 103

259 Nobelium

258 **Md**

a = relative atomic mass X = atomic symbol b = atomic (proton) number

р

Key