Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 24

25 de Junio MAT1106 - Introducción al Cálculo

1) Sea $x = 0, a_1 a_2 a_3 \dots$ Demuestre que $10x = a_1, a_2 a_3 a_4 \dots$

Demostración. Tenemos que

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{10^k}$$

Luego,

$$10x = 10 \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{10^k}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{10^{k-1}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{10^{k-1}}$$

$$= \lim_{n \to \infty} a_1 + \sum_{k=2}^{n} \frac{a_k}{10^{k-1}}$$

$$= \lim_{n \to \infty} a_1 + \sum_{k=1}^{n} \frac{a_{k+1}}{10^k}$$

$$= a_1 + 0, a_2 a_3 a_4 \dots$$

$$= a_1, a_2 a_3 a_4 \dots$$

que es lo que queríamos demostrar.

2) Demuestre que la expansión decimal de un número $x \in [0, 1)$ es finita ssi x = p/q, donde (p, q) = 1 y q solo tiene a 2 y 5 como factores primos.

Demostración. Probaremos ambas implicancias por separado.

 \implies Sea $x=0, a_1a_2 \dots a_j$. Multiplicando por 10^j a ambos lados, se tiene $10^j x=k$, donde $k=a_1a_2 \dots a_j \in \mathbb{N}$. Esto implica que $x=k/10^j$. Simplificando ambos términos por $(10^j,k)$ se tiene lo pedido.

 \subseteq Sea x = p/q, con (p,q) = 1 y $0 \le p < q$. Como q solo tiene a 2 y 5 como factores primos, entonces $q = 2^a 5^b$. Sin perder generalidad, a < b (el otro caso es análogo). Amplificando por 2^{b-a} , tenemos que

$$x = \frac{2^{b-a}p}{10^b}$$

Como el denominador es una potencia de 10, esta es una expansión finita, que es lo que buscábamos.

Habiendo probado ambas partes, tenemos la equivalencia pedida.

3) Muestre que si q es divisible por 7, entonces la expansión decimal de p/q (con (p,q)=1) es única.

Demostración. Por la pregunta 2), no tiene expansiones finitas. Como tiene una única expansión infinita, tenemos que la expansión es única, que es lo que queríamos demostrar.

4) Muestre que \mathbb{Q}^c es denso en \mathbb{R} .

Demostración. Sea x real. Como \mathbb{Q} es denso en \mathbb{R} , existe una sucesión de racionales q_n que converge a $x-\sqrt{2}$. Luego, $q_n+\sqrt{2}\to (x-\sqrt{2})+\sqrt{2}=x$. Notar que $q_n+\sqrt{2}\in\mathbb{Q}^c$. En caso contrario, $q_n+\sqrt{2}=k$ con $k\in\mathbb{Q}$, lo que implica $\sqrt{2}=k-q_n$, y por lo tanto es racional, $\to\leftarrow$.

Por lo tanto, para cada real tenemos una sucesión de irracionales convergente, lo que significa que los irracionales son densos.