

Quiz 01	Version 01	Duration: 30 minutes
Student Name:		
Student ID:		
Student Tutorial:		

Part 1: MSQ Questions (20 marks): highest 20/25 correct answers will be considered

- You have to answer by coloring the bubble otherwise the question will **NOT** be marked
- In case of **Otherwise**, you have to fill the dots with the correct answer.

Best of	of.	Luck
---------	-----	------

,	_		
- (^	0	١
V	`	~	,

<u>#</u>		0	uestions			Ans	<u>wers</u>	1
<u>"</u>		4 ************************************			<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>
1		The car braking system (ABS) is considered a real-time embedded system.						
1	a) Soft	b) Firm	(i) Hard	d) Weakly- hard				
2	An embedded system is general-purpose computers embedded into enclosing products and must interact with the physical environment				0	0	0	0
	a) True	b) False	c)	d)				
3	PMU is an integrated circuit that is responsible for power handling the problem of undervoltage problem only.							
	a) True	b) False	c)	d)				
4		The real-time embedded systems are subjected to several constraints except for						
4	a) Power capabilitie	b) Memory Size	c) No User Interface	All of the Above				
5		For both μControllers and μProcessor, the memory is considered an essential part of the its internal architecture.					0	\bigcirc
	(a) True	b) False	c)	d)				

6	In all types of a) True	processors types (b) False	c, the CPU must ex	ist d)		0	\bigcirc	\bigcirc
7	Struct Ta {				0	0	0	0
8	<pre>void edit (int * a) { a = a+1; } int main(void) { int x = 5; edit(&x); printf(" the value of 'x' after edit is %d ", x); } Choose the correct printed value.</pre> a) 5 b) 6 c) 0x00000012 d) 0x00000016					0	0	0
9	Given that the first arr[0] address is 0x00000000, what will be the printed statement: void edit_array (int * a) { a = a+2; // HINT: a is a local pointer carrying the address of arr (the array name) *(a) = (*a)+5; printf("address is %p ", a); } int main(void) { int arr[] = {1,2,3,4}; edit_array(arr); } a) address is 0x0000000 03 c) address is 0x0000000 0x00000000 Ox00000008				0	0	0	

10		stion 9, choose the ter calling edit_a	ne correct values i	f the array ar	r is		\bigcirc	\bigcirc	\bigcirc
10	a) {1,2,3,4 }	b) {1,2,8,9}	c) {9,8,2,1}	d) Other	wise 8,4)
11	<pre>Choose the printed output: void multiply (int m) { m = m*5 ; printf(" 'm' is is %d " , m) ; } int main(void) { int x = 1 ; multiply(x) ; printf(" x is %d" , x) ; } }</pre>				0	0	0	0	
	a) m is 5, x is 5	b) m is 5, x is 0	c) m is 1, x is 1	d) Others	wise 				
12	Choose the printed output: void add (int*t) {				0	0	0	0	
	a) t is 6, x is 6	b) t is 1, x is 1	c) t is 6, x is 1	d) Other	wise				

13	Given that &x is 0x00000004, &ptr_1 is 0x00000008, &ptr_2 is 0x00000012, and &ptr_3 is 0x00000016 int main(void) { int *ptr_1 = &x int **ptr_2 = &ptr_1; int * ptr_3 = ptr_1; printf(" value is %d", **ptr_2); printf(" ptr_3 is %p", ptr_3); printf(" ptr_1 is %p", ptr_1); }				0	0	0	0
	a) value is 4, ptr_3 is 0x00000 016, ptr_1 is 0x00000 004	b) value is 16, ptr_3 is 0x000000 04, ptr_1 is 0x000000 08	value is 16, ptr_3 is 0x0000000 4, ptr_1 is 0x0000000 4	d) Otherwise				
14	From Figure a) FPGA	1 in page 6, this b) ASIC	shows which type (c) µController	d) μProcessor	0	0	0	0
15	From Figure Architecture (a) Harvard	b) Von	c) Not	is following	0	0	0	0
	<u> </u>	Neumann	Clear	<u> </u>				
16	a) CISC	RISC	c) EPIC	d)	0	0	\bigcirc	0
		From Figure 1, the processor is capable of optimizing the power.						
17	a) True	b False	c)	d)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10	From Figure 1, the core of the processor is component ()					\bigcirc		
18	a) (e)	(b) (f)	c) (g)	d) (h)				

19	From Figure 1, component () is considered part of the memory that can be erased by the user at any time			0	0	0	\bigcirc	
	a) (h)	b) (i)	c) (j)	d) (k)				
20	From Figure 1, done through co	the interface with omponent ()	the physical envi	ironment is	0	0	0	\bigcirc
	a) (a)	b) (b)	(e)	d) (1)				
	en that the temper en that the sensor	_	• •		3,25.3,	,24.9,2	25.1]°	С.
	The average of	these readings is	$\ldots \overline{X} = \frac{1}{N} \Sigma$	$\sum_{n=1}^{N} X_n$	((
21	a) 24.3	b) 25.2	c) 24.76	Otherwise	\bigcirc	\bigcirc		\bigcup
	For sample 5: the measurement error is $\varepsilon_n = X_{n, ideal} - X_{n, actual}$)
22	a) 0.2	b) 0.02	c) 0.4	d) Otherwise	\mathcal{O}	\bigcirc		
23	For sample 5: the accuracy is $Acc_n = 1 - \left \frac{X_{n, ideal} - X_{n, actual}}{X_{n, ideal}} \right $							\supset
23	a) 99%	b) 97.2%	c) 100%	Otherwise)	0	0)
24	For sample 5: the precision is)
24	a) 99%	b) 97.2%	c) 100%	Otherwise))
	These readings indicate that our sensor is characterized by							
25	High accuracy, High precision	b) High accuracy, Low precision	c) Low accuracy, High precision	d) Low accuracy, Low precision	0	0	0	0

Figure 1: Refer to for questions 14-20:

