The following data is from "Note on the spectral lines of hydrogen" by J. J. Balmer dated 1885. The numerical values are wavelengths in units of 10^{-10} meter.

	H_{α}	H_{β}	H_{γ}	H_{δ}	H_{ϵ}	H_{ζ}	H_{η}	H_{ϑ}	H_{ι}
Van der Willigen	6565.6	4863.94	4342.80	4103.8	_	_	_	_	_
Angstrom	6562.10	4860.74	4340.10	4101.2	_	_	_	_	_
Mendenhall	6561.2	4860.16	_	_	_	_	_	_	_
Mascart	6560.7	4859.8	_	_	_	_	_	_	_
Ditscheiner	6559.5	4859.74	4338.60	4100.0	_	_	_	_	_
Huggins	_	_	_	_	_	3887.5	3834	3795	3767.5
Vogel	_	_	_	_	3969	3887	3834	3795	3769^{\dagger}

(†The value given in the paper is 6769 which is an obvious typo.)

From this data, Balmer determined that

$$\hat{y} = \frac{m^2}{m^2 - 2^2} \times 3645.6 \times 10^{-10} \,\text{meter}$$

where \hat{y} is the predicted wavelength and m is determined by the hydrogen line according to the following table.

Let us use linear modeling in R to verify the model coefficient.

```
x = c(1.8, 1.8, 1.8, 1.8, 1.8,
1.33333,1.33333,1.33333,1.33333,1.33333,
1.19048, 1.19048, 1.19048,
1.125, 1.125, 1.125,
1.08889,
1.06667, 1.06667,
1.05195, 1.05195,
1.04167, 1.04167,
1.03419, 1.03419)
y = c(6565.6,6562.1,6561.62,6560.7,6559.5,
4863.94,4860.74,4860.16,4859.8,4859.74,
4342.8,4340.1,4338.6,
4103.8,4101.2,4100,
3969,
3887.5,3887,
3834,3834,
3795,3795,
3767.5,3769)
lm(y \sim 0 + x)
The result is
lm(formula = y ~ 0 + x)
Coefficients:
```

The actual value is now known to be

$$3645.07 \times 10^{-10} \,\mathrm{meter}$$