0.1 A* Evaluation Function

$$f(n) = g(State_n) + h(State_n)$$

where:

• g(n) – initial node

0.2 Admissible Heuristic: Proof

An admissible heuristics h() is guaranteed to give you the optimal solution. Why? Proof by contradiction:

- Say: the algorithm returned a suboptimal path (C > C*)
- So: there exists a node n on C* not expanded on C:

If so:

$$f(n) > C*$$

 $f(n) = g(n) + h(n)$ (by definition)
 $f(n) = g*(n) + h(n)$ (because n is on $C*$)
 $f(n) \le g*(n) + h*(n)$ (if $h(n)$ admissible: $h(n) \le h*(n)$

0.3 What Made A* Work Well?

- Straight-line heuristics is consistent: its estimate is getting better and better as we get closer to the goal
- Every consistent heuristics is admissible heuristics, but not the other way around

But that would mean that:

$$f(n) \le C*$$

0.4 A*: Search Contours

How does A* "direct" the search progress?

0.5 Dominating Heuristics

We can have more than one available heuristics. For example $h_1(n)$ and $h_2(n)$. $h_2(n)$ dominates $h_1(n)$ iff $h_2(n) > h_1(n)$ for every n.

If you have multiple admissible heuristics where none dominates the other:

Let
$$h(n) = \max(h_1(n), h_2(n), \dots, h_m(n))$$

¹if and only if

0.6 Domination \rightarrow Efficiency: Why?

With

$$f(n) < C *$$
 and $f(n) = g(State_n) + h(State_n)$,

we get

0.7 Domination \rightarrow Efficiency: But?

If $h_2(n)$ dominates $h_1(n)$, should you always use $h_2(n)$? Generally yes, but $h_2(n)$ vs $h_1(n)$ heuristic *computation time* may be a deciding factor here.

0.8 Heuristic and Search Performance

- Consider an 8-puzzle game and two admissible heuristics:
 - $-h_1(n)$ number of misplaced tiles (not counting blank)
 - $-h_2(n)$ Manhattan distance

0.9 h() Quality: Effective Branching

0.10 Can We Make A* Even Faster? (Sometimes at a cost!)

0.11 Weighted A* Evaluation Function

$$f(n) = g(State_n) + W * h(State_n)$$

where:

- g(n) initial node to node n path cost
- h(n) estimated cost of the best path that continues from node n to a goal node
- W > 1

Here, weight W makes $h(\text{State}_n)$ (perhaps only "sometimes") inadmissible. It becomes potentially more accurate = less expansions!