Modellierung turbulenter technischer Strömungen

10. Feinstrukturmodellierung 1

Prof. Dr.-Ing. C. Hasse

Inhalt der Vorlesungsreihe

- Einführung/ Phänomenologie turbulenter Strömungen
- Statistische Betrachtungsweise (Reynolds-gemittelte Navier-Stokes Gleichungen)
 - → Behandlung von Schließungsansätzen
- Spektrale Sichtweise der Turbulenz
- Grobstruktursimulation (Large Eddy Simulation, LES)

Inhalt dieses Vorlesungsabschnitts

- 10.1 Rolle des Feinstrukturmodells
- 10.2 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Möglichkeiten der Klassifizierung
 - ► Modelle in RANS-Tradition

Kapitel 10

- 11.1 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Modelle mit Zerlegung der aufgelösten Skalen
- 11.2 Modelle für die Filterweite
- 11.3 Selektive Prozeduren
- 11.4 Implizite LES

Kapitel 11

Inhalt dieses Vorlesungsabschnitts

- 10.1 Rolle des Feinstrukturmodells
- 10.2 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Möglichkeiten der Klassifizierung
 - ► Modelle in RANS-Tradition

Kapitel 10

- 11.1 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Modelle mit Zerlegung der aufgelösten Skalen
- 11.2 Modelle für die Filterweite
- 11.3 Selektive Prozeduren
- 11.4 Implizite LES

Kapitel 11

Gefilterte LES Gleichungen:

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u}_i}{\partial x_j^2} - \frac{\partial \tau_{ij}^{FS}}{\partial x_j}$$

Im Folgenden: Annahme impliziter Filterung:

$$\tau_{ij}^{FS} = \tau_{ij}^{SGS}$$

(SGS ... sub-grid scale)

Definition Feinstrukturspannungen:

$$au_{ij}^{SGS} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$$
Keine Lösungsgröße !

- Ungeschlossener Term, der modelliert werden muss
 - → Feinstrukturmodell

▶ Repräsentation des Einflusses der nicht-aufgelösten Anteile (Feinstruktur, FS) der Strömung auf die aufgelösten Anteile (Grobstruktur, GS)

physikalischer Raum

Spektral-Raum

- ▶ Repräsentation des Einflusses der nicht-aufgelösten Anteile (Feinstruktur, FS) der Strömung auf die aufgelösten Anteile (Grobstruktur, GS)
 - ► turbulenter Transport (von großen zu kleinen Skalen) fast ausschließlich im Inertialbereich (-5/3-Anstieg im Energie-Spektrum)

▶ Dissipation auf kleinen Skalen $\kappa_c = \frac{1}{\Delta}$ $(\varepsilon \sim \kappa^2)$

► Gleichung für die kinetische Energie der aufgelösten Skalen ($K_{res} = 0.5\overline{u}_i\overline{u}_i$):

$$\frac{\partial K_{res}}{\partial t} + \frac{\partial \left(\overline{u}_{j} K_{res}\right)}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(\overline{u}_{j} \overline{p} + \overline{u}_{i} \tau_{ij}^{SGS} - 2\nu \overline{u}_{i} \overline{S}_{ij}\right) \\
= \underbrace{-2\nu \overline{S}_{ij} \overline{S}_{ij}}_{\varepsilon_{res}} - \underbrace{\left(-\tau_{ij}^{SGS} \overline{S}_{ij}\right)}_{P_{FS}}$$

▶ Gleichung für die kinetische Energie des Feinstruktur-Tensors ($K_{\tau} = 0.5 (\overline{u_i u_i} - \overline{u}_i \overline{u}_i) = 0.5 \tau_{kk}$):

$$\frac{\partial K_{\tau}}{\partial t} + \frac{\partial \left(\overline{u}_{j}K_{\tau}\right)}{\partial x_{j}} + \frac{1}{2}\frac{\partial}{\partial x_{j}}\left(\overline{u_{j}u_{i}u_{i}} - \overline{u}_{j}\overline{u_{i}u_{i}}\right) + \frac{\partial}{\partial x_{j}}\left(\overline{u_{j}p} - \overline{u}_{j}\overline{p}\right) + \frac{\partial}{\partial x_{j}}\left(\overline{u_{i}}\tau_{ij}^{SGS}\right)$$

$$= \nu \frac{\partial^{2}K_{\tau}}{\partial x_{j}^{2}} - \nu \left(\overline{\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}} - \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}}\right)^{2}\right) + \underbrace{\left(-\tau_{ij}^{SGS}\overline{S}_{ij}\right)}_{P_{FS}}$$

Darstellung anhand der Simulation isotroper homogener Turbulenz (HIT):

▶ Ohne SGS-Modell und zu grobe Auflösung: Energie K_{res} auf Filterniveau Δ nur über ε_{res} dissipiert → Instabilität in der Simulation

$$\frac{\partial K_{res}}{\partial t} + \frac{\partial \left(u_{j}K_{res}\right)}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}\left(u_{j}p + u_{i}\tau_{ij}^{SGS} - 2\nu u_{i}S_{ij}\right) \\
= -2\nu S_{ij}S_{ij} - \left(-\tau_{ij}^{SGS}S_{ij}\right)$$

$$\varepsilon_{res}$$

Darstellung anhand der Simulation isotroper homogener Turbulenz (HIT):

► Mit SGS-Modell: Ausreichend Dissipation von Energie auch ohne Auflösung kleinster Skalen sichergestellt → Simulation stabil

$$\frac{\partial K_{res}}{\partial t} + \frac{\partial \left(\overline{u}_{j} K_{res}\right)}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(\overline{u}_{j} \overline{p} + \overline{u}_{i} \tau_{ij}^{SGS} - 2\nu \overline{u}_{i} \overline{S}_{ij}\right) \\
= \underbrace{-2\nu \overline{S}_{ij} \overline{S}_{ij}}_{\varepsilon_{res}} - \underbrace{\left(-\tau_{ij}^{SGS} \overline{S}_{ij}\right)}_{P_{ES}}$$

Darstellung anhand der Simulation isotroper homogener Turbulenz (HIT):

▶ Beachte: Realistisches Maß an Dissipation notwendig:

►DNS:
$$\frac{\partial K_{res}}{\partial t} + \frac{\partial \left(u_{j}K_{res}\right)}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}\left(u_{j}p - 2\nu u_{i}S_{ij}\right)$$

$$= -2\nu S_{ij}S_{ij} \longrightarrow \varepsilon_{DNS}$$
►LES: $\frac{\partial K_{res}}{\partial t} + \frac{\partial \left(\overline{u}_{j}K_{res}\right)}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}\left(\overline{u}_{j}\overline{p} + \overline{u}_{i}\tau_{ij}^{SGS} - 2\nu\overline{u}_{i}\overline{S}_{ij}\right)$

$$= -2\nu \overline{S}_{ij}\overline{S}_{ij} - \left(-\tau_{ij}^{SGS}\overline{S}_{ij}\right) \longrightarrow \varepsilon_{LES}$$

- ightharpoonup Kopplung der Gleichungen über P_{FS}
 - ► Vorzeichen steht nicht fest, möglicher Energietransport:
 - ► Feinstruktur → Grobstruktur
 - ► Grobstruktur → Feinstruktur
 - ▶ im Mittel Transport kinetischer Energie von Grobstruktur zu Feinstruktur

- Repräsentation des Einflusses der nicht-aufgelösten Anteile (Feinstruktur, FS) der Strömung auf die aufgelösten Anteile (Grobstruktur, GS)
 - ▶ Transport turbulenter kinetischer Energie im statistischen Mittel von groben zu feinen Skalen
 - ▶ Dissipation auf Skalen der Größe der Kolmogorov-Skalen
 - → Bereitstellung des richtigen Maßes an Dissipation (gleiches Maß an Dissipation wie bei DNS der gleichen Konfiguration)
 - ► Einfaches Modell ausreichend für diese Bedingung, wenn Filterweite viel kleiner als energietragende Skalen der Strömung

- Nomenklatur für die folgenden Folien:
 - ▶ zu modellierender Feinstruktur-Tensor:

$$au_{ij}^{SGS}$$

► Modell für den Feinstrukturtensor:

$$au_{ij}^{mod}$$

▶ durch die Turbulenz der Feinstruktur bedingte Scheinviskosität (bei Verwendung des Wirbelviskositätsansatzes):

$$\nu_{SGS}$$

- 10.2 Vorstellung ausgewählter Feinstrukturmodelle
 - Möglichkeiten der Klassifizierung

Klassifizierung von Feinstrukturmodellen

deterministisch - stochastisch

$$\tau_{ij}^{SGS} = \tau_{ij}^{SGS}(\overline{u}_i)$$

Stochastische Komponente enthalten

$$\tau_{ij}^{SGS} = \tau_{ij}^{SGS}(\overline{u}_i) + \mathcal{F}_{stoch}$$

Klassifizierung von Feinstrukturmodellen

Wirbelviskositätsmodell - Tensorielles Modell

Modellierung skalarer Wirbelviskosität (Modellierung auf Skalarniveau)

$$\tau_{ij}^{a,mod} = -\nu_{SGS} 2\overline{S}_{ij}$$

Modell für Einträge von τ_{ij}^{SGS} (Modellierung auf Tensorniveau)

Klassifizierung von Feinstrukturmodellen

Transportgleichung - Algebraischer Zusammenhang - Schätzung

Lösung einer Transportglg.

Schätzung für das nichtgefilterte Geschwindigkeitsfeld

Algebraische Gleichung

deterministisch							
$ u_t$		$ au_{ij}$					
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung			
SM	K_{τ} -Glg.	$ \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\Omega}) \\ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $	τ_{ij} -Glg.				
WALE	K_{τ} -Glg. ν_t -Glg.	$ SSM (\overline{\overline{u}} oder \hat{\overline{u}}) $					
σ -Modell							
selektive Prozeduren							
dyna	amische Prozedu	ır					
gea	mischte Modelle						
stochastisch							
$\nu_t + \mathrm{Kraftterm}$		Mikrowirbel					

► Klassifizierung nach [1], im weiteren Verlauf der Vorlesung verwendet

10.2 Vorstellung ausgewählter Feinstrukturmodelle

▶ Modelle in RANS-Tradition

- Möglichkeiten der Modellierung:
 - ▶ Algebraisch
 - ► 1-Gleichungsmodelle
 - ► 2-Gleichungsmodelle
 - ► Reynolds-Spannungsmodelle
- Vorteile gegenüber der RANS-Modellierung:
 - ► Es muss nicht der Einfluss des gesamten Energiespektrums sondern nur eines Teils modelliert werden
 - ightharpoonup Das turbulente Längenmaß ist bei einer LES bereits durch die Filterweite Δ gegeben und muss nicht geschätzt werden

Energiereichste Wirbel der Feinstruktur sind die nahe der Filterwellenzahl

→ 2-Gleichungsmodelle daher i.A. nicht benötigt

deterministisch							
$ u_t$		$ au_{ij}$					
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung			
SM	K_{τ} -Glg.	$ \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}}) \\ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $	τ_{ij} -Glg.				
WALE	K_{τ} -Glg. ν_t -Glg.	$\int SSM (\overline{\overline{u}}) der \hat{\overline{u}})$					
σ -Modell							
selektive Prozeduren			,				
dyna	amische Prozedu	ır					
gen							
stochastisch							
$\nu_t + { m Kraftterm}$		Mikrowirbel					

- Wirbelviskositätsmodelle:
 - Anwendung des Wirbelviskositätsansatz für den anisotropen Anteil des Feinstrukturtensors:

$$\tau_{ij}^{a,mod} = -\nu_{SGS} 2\overline{S}_{ij}$$

Dimensionsanalyse:

$$\nu_{SGS} = l_{FS} u_{FS}$$

ightharpoonup Charakteristisches Längenmaß, multipliziert mit Modellkonstante C_m

$$l_{FS} = C_m \Delta$$

ightharpoonup Unterscheidung der Modelle in Wahl des charakteristischen Geschwindigkeitsmaßes u_{FS} und Wahl der Modellkonstanten

$$\overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) \qquad \overline{S}_{ij} = \frac{1}{2} \left(\overline{g}_{ij} + \overline{g}_{ji} \right) \qquad \overline{g}_{ij} = \frac{\partial \overline{u}_i}{\partial x_j}$$

- Wirbelviskositätsmodelle:
 - ► Anmerkung:
 - Aufspaltung des Feinstrukturtensors in anisotropen (spurfreien) und hydrostatischen Anteil:

$$\tau_{ij}^{SGS} = \tau_{ij}^{a,SGS} + \delta_{ij}\tau_{kk}^{SGS}/3$$

▶ Betrachtung der Spur des zu modellierenden Feinstruktur-Tensors:

$$\tau_{kk}^{SGS} = \tau_{11}^{SGS} + \tau_{22}^{SGS} + \tau_{33}^{SGS} = \overline{u_1 u_1} - \overline{u}_1 \overline{u}_1 + \overline{u_2 u_2} - \overline{u}_2 \overline{u}_2 + \overline{u_3 u_3} - \overline{u}_3 \overline{u}_3 \neq 0$$

Für inkompressible Strömung würde modellierte Spur verschwinden:

$$\tau_{kk}^{mod} \sim \overline{S}_{kk} = \frac{\partial \overline{u}_k}{\partial x_k} = 0$$

▶ Folge der Modellbildung: $au_{ij}^{a,mod} = au_{ij}^{mod}$

- Wirbelviskositätsmodelle:
 - ► Anmerkung:
 - zu modellierender Feinstrukturtensor:

$$\tau_{ij}^{SGS} \neq \tau_{ij}^{a,SGS}$$

- Berücksichtigung dieses Sachverhaltes erforderlich!
- ▶ Lösung: Modellierung anisotropen Anteils und Verrechnung der Spur des Feinstruktur-Tensors im (durch die Dichte dividierten) Druck, Definition des Pseudodruckes:

$$\overline{\Pi} = \overline{p}/\rho + \tau_{kk}/3$$

- → Bestimmung während der Druckkorrektur im Lösungsverfahren
- ➤ Auswertung Druckverteilung auf fester Oberfläche trotzdem möglich, da aufgrund Haftbedingung dort kein Anteil des Feinstruktur-Tensors

- Smagorinsky Modell (SM, 1963) [1]:
 - charakteristisches Geschwindigkeitsmaß:

$$u_{FS} = l_{FS} |\overline{\boldsymbol{S}}|$$

▶ mit der Norm des Deformations-Tensors:

$$|\overline{S}| = \sqrt{2\overline{S}_{ij}\overline{S}_{ij}}$$

resultierender Ausdruck für die Feinstrukturspannungen:

$$\tau_{ij}^{a,SM} = -2(C_s \Delta)^2 |\overline{S}| |\overline{S}_{ij}|$$

- Smagorinsky Modell (SM, 1963) [1]:
 - $ightharpoonup C_s$ bspw. aus Turbulenzspektren bestimmbar:
 - ▶ isotrope Turbulenz (Modellspektrum, Gauß-Filter):

$$C_s \approx 0.18$$

- \rightarrow keine Abhängigkeit von \triangle oder \triangle/η (Skaleninvarianz im Inertialbereich)
- ► A-posteriori Analyse abklingender isotroper Turbulenz:

$$C_s \approx 0.19...0.24$$

- ▶ in Scherströmungen i.A. Reduktion der Konstanten
- heute am meisten verwendeter Wert in komplexen Strömungen: $C_s=0.1$

► Gleichung für die kinetische Energie der aufgelösten Skalen ($K_{res} = 0.5\overline{u}_i\overline{u}_i$):

$$\frac{\partial K_{res}}{\partial t} + \frac{\partial \left(\overline{u}_{j} K_{res}\right)}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(\overline{u}_{j} \overline{p} + \overline{u}_{i} \tau_{ij}^{SGS} - 2\nu \overline{u}_{i} \overline{S}_{ij}\right) \\
= \underbrace{-2\nu \overline{S}_{ij} \overline{S}_{ij}}_{\varepsilon_{res}} - \underbrace{\left(-\tau_{ij}^{SGS} \overline{S}_{ij}\right)}_{P_{FS}}$$

► Gleichung für die kinetische Energie des Feinstruktur-Tensors ($K_{\tau} = 0.5 (\overline{u_i u_i} - \overline{u}_i \overline{u}_i) = 0.5 \tau_{kk}$):

$$\frac{\partial K_{\tau}}{\partial t} + \frac{\partial \left(\overline{u}_{j}K_{\tau}\right)}{\partial x_{j}} + \frac{1}{2}\frac{\partial}{\partial x_{j}}\left(\overline{u_{j}u_{i}u_{i}} - \overline{u}_{j}\overline{u_{i}u_{i}}\right) + \frac{\partial}{\partial x_{j}}\left(\overline{u_{j}p} - \overline{u}_{j}\overline{p}\right) + \frac{\partial}{\partial x_{j}}\left(\overline{u}_{i}\tau_{ij}^{SGS}\right)$$

$$= \nu \frac{\partial^{2}K_{\tau}}{\partial x_{j}^{2}} - \nu \left(\overline{\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}} - \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}}\right)^{2}\right) + \overline{\left(-\tau_{ij}^{SGS}\overline{S}_{ij}\right)}$$

$$\varepsilon_{FS}$$

$$P_{FS}$$

- Smagorinsky Modell (SM, 1963) [1]:
 - ► Modelleigenschaften:
 - ▶ Beruht auf lokalem Gleichgewicht von turbulenter Produktion und Dissipation (auf feinen Skalen):
 - ► Formulierung der turbulenten Dissipation über Dimensionsanalyse:

$$\varepsilon_{FS} = u_{FS}^3 / l_{FS}$$

Definition der turbulenten Produktion:

$$P_{FS} = -\tau_{ij}^{SGS} \overline{S}_{ij}$$

- Smagorinsky Modell (SM, 1963) [1]:
 - ► Modelleigenschaften:
 - ► Beruht auf lokalem Gleichgewicht von turbulenter Produktion und Dissipation (auf feinen Skalen):
 - ► Einsetzen der Definition des Modells für den Feinstruktur-Tensor und einsetzen charakteristischer Größen:

$$P_{FS} = \underbrace{(C_s \Delta)^2 |\overline{S}|}_{l_{FS}^2} |\overline{S}|_{ij} |\overline{S}|_{ij} = l_{FS}^2 |\overline{S}|^3 = u_{FS}^3 / l_{FS} = \varepsilon_{FS}$$

- Smagorinsky Modell (SM, 1963) [1]:
 - ► Modelleigenschaften:
 - Interpretation als Verallgemeinerung des Prandtlschen Mischungswegansatzes ($C_s\Delta$ als Mischungsweglänge)
 - ► Feinstrukturviskosität stets positiv
 - → Modell rein dissipativ:

$$P_{FS} = -\tau_{ij}^{a,mod} \overline{S}_{ij} = -\nu_{SGS} |\overline{S}|^2 \le 0$$

- ► Verhalten bei laminaren (und schwach turbulenten) Strömungen:
 - ▶ Scherrate vorhanden ($|\overline{S}| > 0$)
 - ➤ → Feinstrukturviskosität bleibt größer 0, obwohl keine turbulenten Schwankungen vorhanden
 - ► Tritt beispielsweise in viskoser Unterschicht in der Nähe fester Wände auf oder bei Relaminarisierung

- Smagorinsky Modell (SM, 1963) [1]:
 - ► Vorteile:
 - ► Einfache Implementierung
 - Robust (vorteilhaft bei komplexen Strömungen mit evtl. stark verzerrten Gittern)
 - ▶ Nachteile:
 - Wirbelviskositätsmodell:
 - ▶ Bestimmung von ν_{SGS} isotrop durch Verwendung Norm von \overline{S}_{ij}
 - ▶ Dämpfung von Schwankungen in alle Richtungen gleichermaßen (auch bei Anisotropie der großen Skalen)
 - Unsicherheiten in Wahl der Konstanten
 - Nicht für laminare Strömung anwendbar
 - Nicht ohne weiteres für wandnahen Bereich geeignet $(\nu_{SGS}$ geht nicht gegen null)

- Selektive Modelle:
 - Modellverhalten angepasst an physikalische Eigenschaften der Strömung
- Beispiele:
 - ▶ WALE-Modell ("Wall-Adapted Local Eddy Viscosity", 1998) [1]
 - ► Verwendung Differentialoperator, basierend auf anisotropen Anteil des Quadrates des Geschwindigkeitsgradienten-Tensor
 - → Sicherstellung des korrekten asymptotischen Verhaltens in Nähe fester Wände
 - $\triangleright \sigma$ -Modell

- $\triangleright \sigma$ Modell (2011) [1]:
 - ► Motivation:
 - ► Schwächen Smagorinsky-Modell:
 - ▶ Positiver Wert für ν_{SGS} im Falle
 - ► laminare Strömung
 - ▶ axialsymmetrischer oder isotroper Expansion
 - ► Schwächen WALE-Modell:
 - ▶ Positiver Wert für ν_{SGS} im Falle
 - ▶ reine Festkörperrotation
 - axialsymmetrischer Expansion

- $ightharpoonup \sigma$ Modell (2011) [1]:
 - ► Charakteristisches Geschwindigkeitsmaß:
 - ▶ Differentialoperator, mit folgenden Eigenschaften:
- 1. Lokal definiert
- → Vermeidung der Notwendigkeit von 2-Punkt-Korrelation
- 2. Generierung ausschließlich positiver Werte
 - → Numerische Stabilität
- 3. Korrektes asymptotisches Verhalten in Nähe fester Wände
- 4. Verschwinden im Fall reiner Scherung und/oder Festkörperrotation
- → Fall 2-dimensionaler und/oder 2-komponenten-Strömung
- Verschwinden im Falle axialsymmetrischer oder isotroper Expansion oder Kontraktion

- $ightharpoonup \sigma$ Modell (2011) [1]:
 - ► Umsetzung:
 - ▶ Grundlage Geschwindigkeitsgradienten-Tensor $\overline{g}_{ij} = \partial \overline{u}_i / \partial x_j$
 - ► Verwendung von dessen Singulärwerte ($\sigma_1, \sigma_2, \sigma_3$)
 - ► Ausdruck für Differentialoperator:

$$\mathcal{D}_{\sigma} = \frac{\sigma_3(\sigma_1 - \sigma_2)(\sigma_2 - \sigma_3)}{\sigma_1^2}$$

- → Herleitung rein formal, um gewünschte Eigenschaften des Operators zu erhalten
- ightharpoonup Charakteristisches Längenmaß: Δ
- lacktriangle Ausdruck für Wirbelviskosität: $u_{SGS} = (C_\sigma \Delta)^2 \mathcal{D}_\sigma$

Klassifizierung Feinstrukturmodelle

	d	eterministisch				
$ u_t$		$ au_{ij}$				
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung		
SM	K_{τ} -Glg. ν_t -Glg.	$ \begin{aligned} \tau_{ij} &= f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}}) \\ SSM &(\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) \end{aligned} $	τ_{ij} -Glg.			
WALE	ν_t -Glg.	$ SSM (\overline{\overline{u}} oder \hat{\overline{u}}) $				
σ -Modell						
selektive Prozeduren						
dyn	amische Prozedu	ır				
gemischte Modelle						
stochastisch						
$\nu_t + ext{Kraftterm}$		Mikrowirbel				

- ▶ 1-Gleichungsmodell:
 - ► Motivation:
 - ▶ große Gitter- bzw. Filterweiten verlangen im Falle unzureichender Auflösung hochwertigere Feinstruktur-Modelle
 - → Lage der Grenzwellenzahl innerhalb der energiereichsten Strukturen: "Very Large Eddy Simulation" (VLES)
 - ► Lösung zusätzlicher DGL notwendig, Mehraufwand von rund 10-20%
 - → Relativ kostenarm (im Vergleich zu Verfeinerung des Gitters)
 - ► Berücksichtigung turbulenten Nicht-Gleichgewichtes
 - → Auftreten z.B. bei Strömungen starker Inhomogenität o. starker Scherung

- 1-Gleichungsmodell (1985) [1]:
 - ► Charakteristisches Geschwindigkeitsmaß:
 - ► Wurzel aus kinetischer Energie der zu modellierenden Terme:

$$u_{FS} = \sqrt{K_{\tau}} = \sqrt{\tau_{kk}/2}$$

► Exakte-Transportgleichung für diese:

$$\frac{\partial K_{\tau}}{\partial t} + \frac{\partial \left(\overline{u}_{j}K_{\tau}\right)}{\partial x_{j}} + \frac{1}{2} \frac{\partial}{\partial x_{j}} \left(\overline{u_{j}u_{i}u_{i}} - \overline{u_{j}}\overline{u_{i}u_{i}}\right) + \frac{\partial}{\partial x_{j}} \left(\overline{u_{j}p} - \overline{u_{j}p}\right) + \frac{\partial}{\partial x_{j}} \left(\overline{u_{i}\tau_{ij}^{SGS}}\right) \\
= \nu \frac{\partial^{2}K_{\tau}}{\partial x_{j}^{2}} - \nu \left(\overline{\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}} - \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}}\right)^{2}\right) + \left(-\tau_{ij}^{SGS}\overline{S}_{ij}\right)$$

► Modell-Transportgleichung für diese:

$$\frac{\partial K_{\tau}}{\partial t} + \frac{\partial (\overline{u}_{j} K_{\tau})}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left((\nu + \nu_{SGS}) \frac{\partial K_{\tau}}{\partial x_{j}} \right) - \varepsilon^{mod} - \tau_{ij}^{mod} \overline{S}_{ij}$$

- 1-Gleichungsmodell (1985) [1]:
 - ► Charakteristisches Geschwindigkeitsmaß:
 - ► Wurzel aus kinetischer Energie der zu modellierenden Terme:

$$u_{FS} = \sqrt{K_{\tau}} = \sqrt{\tau_{kk}/2}$$

Modell-Transportgleichung für diese:

$$\frac{\partial K_{\tau}}{\partial t} + \frac{\partial (\overline{u}_{j}K_{\tau})}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left((\nu + \nu_{SGS}) \frac{\partial K_{\tau}}{\partial x_{j}} \right) - \frac{\tau_{ij}^{mod}}{\overline{S}_{ij}} - \varepsilon^{mod} \leftarrow$$

Modell für deren Dissipation:

$$\varepsilon^{mod} = u_{FS}^3 / l_{FS} = C_{\varepsilon} \Delta^{-1} \sqrt{K_{\tau}}^3$$

► Ausdruck für Wirbelviskosität und Feinstrukturspannungen

$$u_{SGS} = C_{K_{\tau}} \Delta \sqrt{K_{\tau}} \longrightarrow \tau_{ij}^{mod} = -2\nu_{SGS} \overline{S}_{ij} + \frac{2}{3} K_{\tau} \delta_{ij}$$

- ► 1-Gleichungsmodell (1985) [1]:
 - ► Wahl der Modellkonstanten:
 - ► Analoges Vorgehen wie bei Bestimmung *C*_s aus Modellspektren
 - ► So erhaltener Wert:

$$C_{K_{\tau}} = 0,094$$

► Weitere Vorschläge in Literatur:

$$C_{K_{\tau}} = 0.048; 0.07; 0.1$$

ightharpoonup Vorschläge für $C_{arepsilon}$:

$$C_{\varepsilon} = 0.884 \dots 1.02; 1.05$$

gitterabhängig

- ▶ 1-Gleichungsmodell (1985) [1]:
 - ► Modelleigenschaften
 - strikt dissipativ
 - ➤ Vorteile:
 - kein turbulentes Gleichgewicht vorausgesetzt
 - Bereitstellung Modell für gesamten Feinstrukturtensor (und nicht nur für anisotropen Anteil)
 - → Vergleich aufgelöster und modellierter Spannungen mit Referenzdaten möglich
 - $\triangleright \nu_{SGS} = 0$ in laminaren Bereichen

- ▶ 1-Gleichungsmodell (1985) [1]:
 - ► Nachteile:
 - ► Meist nur geringe Verbesserung gegenüber algebraischen Modellen
 - ► Probleme bei transitionellen Strömungen
 - \rightarrow Einströmung mit $K_{\tau}=0$ und $K_{\tau}=0$ an Wänden kann im gesamten Integrationsgebiet zu $K_{\tau}=0$ führen

Klassifizierung Feinstrukturmodelle

deterministisch							
$ u_t$		$ au_{ij}$					
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung			
SM	K_{τ} -Glg.	$ au_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\Omega})$	τ_{ij} -Glg.				
WALE	K_{τ} -Glg. ν_t -Glg.	$\overline{\text{SSM}}$ $(\overline{\overline{u}} \text{ oder } \hat{\overline{u}})$					
σ -Modell							
selektive Prozeduren							
dyn	amische Prozedu	ır					
gemischte Modelle							
stochastisch							
$\nu_t + ext{Kraftterm}$		Mikrowirbel					

- Reynolds-Spannungsmodelle:
 - ► Lösen Transportgleichungen für Feinstrukturspannungen
 - → Lösung sechs zusätzlicher Gleichungen notwendig (erhöhter Rechenaufwand)
 - ► Schließungsansätze dieselben wie bei statistischen Modellen
 - → u.U. nicht optimal, da nur Feinstrukturspannungen betrachtet
 - ► Modelle komplex (LES soll eigentlich mit einfachen Modellen auskommen)
 - → Bisher wenig verwendet

10.3 Lernziele

Lernziele: Sie sollen ...

- die Rolle des Feinstrukturmodells beschreiben können
- Feinstrukturmodelle klassifizieren können
- charakteristische Zeit-, Längen- und Geschwindigkeitsmaße der nichtaufgelösten Turbulenz zur Verwendung in der Modellbildung nennen können
- erklären können, warum Feinstrukturmodelle "in RANS-Tradition" diese Bezeichnung tragen
- ▶ die Modellgleichung des Smagorinsky-Modells aufschreiben und die Eigenschaften dieses Modells nennen können
- die Grundidee weiterer Feinstrukturmodelle "in RANS-Tradition" nennen können

