EJERCICIO 1: Sea n un número natural y considere el siguiente pseudo código que define la función recursiva F(n):

 $\begin{array}{l} \mathbf{funci\'{o}n} \ \mathbf{F}(n) \colon \\ \mathbf{Si} \ n == 0 \\ \mathbf{retornar} \ 1 \\ \mathbf{Si} \ \mathbf{no} \\ \mathbf{retornar} \ 2^n + \mathbf{F}(n-1) \end{array}$

EJERCICIO 2: Sea A un árbol binario.

a) Defina de manera recursiva la función Corta[A], la cual cuenta el número de aristas de la rama más corta de A. Observe que, por ejemplo, $Corta[r_2] = 1$ y $Corta[k_3] = 2$.

a) Escriba el paso a paso de F(3).

Periodo: 2022-1

Profesor: Edgar Andrade

b) Demuestre que $F(n) = 2^{n+1} - 1$

- b) Presente el paso a paso de esta función sobre el árbol r_2 .
- c) Asuma la definición recursiva de la función $Num_Aristas(A)$, la cual cuenta el número total de aristas de A. Demuestre por inducción estructural que

$$Corta(A) \leq \frac{Num_Aristas(A)}{2}$$

EJERCICIO 3: Sea I={'p':True, 'q':False}. Escriba el paso a paso de $A_4.valor(I)$ donde:

$$A_0 = \operatorname{TREE}(p, \operatorname{NULL}, \operatorname{NULL})$$

 $A_1 = \operatorname{TREE}(q, \operatorname{NULL}, \operatorname{NULL})$
 $A_2 = \operatorname{TREE}(\neg, \operatorname{NULL}, A_1)$
 $A_3 = \operatorname{TREE}(\wedge, A_2, A_0)$
 $A_4 = \operatorname{TREE}(\rightarrow, A_0, A_3)$

EJERCICIO 4: Sea A una fórmula representada como un árbol y asuma la definición de las siguientes funciones:

- $-num_bin(A)$: Número de ocurrencias de conectivos binarios en A.
- $num_negs(A)$: Número de ocurrencias de negaciones en A.
- $\bullet \ num_letras(A)$: Número de ocurrencias de letras proposicionales en A.
- str(A): Cadena que representa la notación inorder de A.
- $\bullet \ len(c)$: Cantidad de símbolos en la cadena c.

Demuestre por inducción estructural que:

$$len(str(A)) = 3 * A.num_bin() + A.num_negs() + A.num_letras()$$

