

Uncertainty Visualization

Two User Studies

PRAKTIKUM

im Rahmen des Studiums

Visual Computing

eingereicht von

Andreas Roschal, Fabian Schwarzinger

Matrikelnummer 1225600, 1225307

an der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Mag. DI Dr. Theresia Gschwandtner

Uncertainty Visualization

Two User Studies

PRACTICAL

in

Visual Computing

by

Andreas Roschal, Fabian Schwarzinger

Registration Number 1225600, 1225307

to the Faculty of Informatics at the Vienna University of Technology

Advisor: Mag. DI Dr. Theresia Gschwandtner

Abstract

TODO Abstract

Contents

1	Introduction	1
2	Related Work	3
3	Method	5
4	Results	7
5	Discussion	9
6	Conclusion	11
Bi	ibliography	13

Introduction

TODO introduction

Related Work

TODO do we need related work?

Method

TODO Method

Results

todo results

Discussion

TODO discussion

Conclusion

TODO conclusion

Bibliography

- [1] Aigner, W., Hoffmann, S., and Rind, A. (2013). Evalbench: a software library for visualization evaluation. In *Computer Graphics Forum*, volume 32, pages 41–50. Wiley Online Library.
- [2] Aigner, W., Miksch, S., Müller, W., Schumann, H., and Tominski, C. (2007). Visualizing time-oriented data—a systematic view. *Computers & Graphics*, 31(3):401–409.
- [3] Aigner, W., Miksch, S., Schumann, H., and Tominski, C. (2011). Visualization of time-oriented data. http://www.timeviz.net/.
- [4] Aigner, W., Miksch, S., Thurnher, B., and Biffl, S. (2005). Planninglines: novel glyphs for representing temporal uncertainties and their evaluation. In *Information Visualisation*, 2005. *Proceedings. Ninth International Conference on*, pages 457–463. IEEE.
- [5] Allen, J. F. (1983). Maintaining knowledge about temporal intervals. *Communications of the ACM*, 26(11):832–843.
- [6] Billiet, C., Van de Weghe, N., Deploige, J., and De Tre, G. (2016). Visualizing and reasoning with imperfect time intervals in 2d. *IEEE Transactions on Fuzzy Systems*.
- [7] Chittaro, L. and Combi, C. (2001). Visual definition of temporal clinical abstractions: A user interface based on novel metaphors. In *Conference on Artificial Intelligence in Medicine in Europe*, pages 227–230. Springer.
- [8] Correll, M. and Gleicher, M. (2014). Error bars considered harmful: Exploring alternate encodings for mean and error. *IEEE transactions on visualization and computer graphics*, 20(12):2142–2151.
- [9] Ferris, B., Watkins, K., and Borning, A. (2010). Onebusaway: results from providing real-time arrival information for public transit. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, pages 1807–1816. ACM.
- [10] Frank, A. U. (1998). Different types of "times" in gis. *Spatial and temporal reasoning in geographic information systems*, pages 40–62.
- [11] Griethe, H., Schumann, H., et al. (2006). The visualization of uncertain data: Methods and problems. In *SimVis*, pages 143–156.

- [12] Gschwandtner, T., Bögl, M., Federico, P., and Miksch, S. (2016). Visual encodings of temporal uncertainty: A comparative user study. *IEEE transactions on visualization and computer graphics*, 22(1):539–548.
- [13] Harris, R. L. (2000). *Information graphics: A comprehensive illustrated reference*. Oxford University Press.
- [14] Hullman, J. (2016). Why evaluating uncertainty visualization is error prone. In *Proceedings of the Beyond Time and Errors on Novel Evaluation Methods for Visualization*, pages 143–151. ACM.
- [15] Kay, M., Kola, T., Hullman, J., and Munson, S. (2016). When(ish) is my bus? user-centered visualizations of uncertainty in everyday, mobile predictive systems. In *ACM Human Factors in Computing Systems (CHI)*.
- [16] Kosara, R., Healey, C. G., Interrante, V., Laidlaw, D. H., and Ware, C. (2003). Thoughts on user studies: Why, how, and when. *IEEE Computer Graphics and Applications*, 23(4):20–25.
- [17] Kosara, R. and Miksch, S. (2001). Metaphors of movement: a visualization and user interface for time-oriented, skeletal plans. *Artificial intelligence in medicine*, 22(2):111–131.
- [18] MacEachren, A. M., Roth, R. E., O'Brien, J., Li, B., Swingley, D., and Gahegan, M. (2012). Visual semiotics & uncertainty visualization: An empirical study. *IEEE Transactions on Visualization and Computer Graphics*, 18(12):2496–2505.
- [19] Messner, P. (2000). *Time shapes: a visualization for temporal uncertainty in planning*. Citeseer.
- [20] Pang, A. T., Wittenbrink, C. M., and Lodha, S. K. (1997). Approaches to uncertainty visualization. *The Visual Computer*, 13(8):370–390.
- [21] Rit, J.-F. (1986). Propagating temporal constraints for scheduling. In *AAAI*, volume 86, pages 383–388.
- [22] Robertson, G., Fernandez, R., Fisher, D., Lee, B., and Stasko, J. (2008). Effectiveness of animation in trend visualization. *IEEE Transactions on Visualization and Computer Graphics*, 14(6):1325–1332.
- [23] Sanyal, J., Zhang, S., Bhattacharya, G., Amburn, P., and Moorhead, R. (2009). A user study to compare four uncertainty visualization methods for 1d and 2d datasets. *IEEE transactions on visualization and computer graphics*, 15(6):1209–1218.
- [24] Tory, M. and Moller, T. (2004). Human factors in visualization research. *IEEE transactions on visualization and computer graphics*, 10(1):72–84.
- [25] Tufte, E. R. (1985). The visual display of quantitative information. *Journal for Healthcare Quality*, 7(3):15.

- [26] Walny, J., Carpendale, S., Riche, N. H., Venolia, G., and Fawcett, P. (2011). Visual thinking in action: Visualizations as used on whiteboards. *IEEE Transactions on Visualization and Computer Graphics*, 17(12):2508–2517.
- [27] Walny, J., Huron, S., and Carpendale, S. (2015). An exploratory study of data sketching for visual representation. In *Computer Graphics Forum*, volume 34, pages 231–240. Wiley Online Library.
- [28] Xu, K., Rooney, C., Passmore, P., Ham, D.-H., and Nguyen, P. H. (2012). A user study on curved edges in graph visualization. *IEEE Transactions on Visualization and Computer Graphics*, 18(12):2449–2456.
- [29] Zuk, T., Carpendale, M. S. T., and Glanzman, W. D. (2005). Visualizing temporal uncertainty in 3d virtual reconstructions. In *VAST*, volume 2005, page 6th.