Today's Content
10000 5 601,017
$\mathcal{O}(\mathcal{O})$
AC Pairs
Closest min more
0 1 1 1 1 1 1
Subavoiay définition
Leaders in an array
New ers in an away

bus) Count Pairs "aq" hiven a choured, colculate no of pairs 1,」 &+, ベコ, &ci)= '@' && JEJ=='9', Note: All characters are clower case. e.g.) & a o g d c a g Pairs: ~ <1,3> , <2,3> , <1,7> , <2,7> , < 6,7> => 5 pals, eg2) b c a g g a a g ~2,3>, ~2,4>,~2,7>, ~5,7>, < 6,7> => 5 pain e.g.s) a c g d g a g <0,2>, 10,45, 10,6>, 15,6> => 4 pains.

```
idea ) a) Check all pairs (i, j)
                                  1.C > 0 (m2)
                 cn+=0',
                                     3.C>0(1)
                 for (1=0; 1×0; 1++) {
                    多(サセベロンは)
                       3 ('e'== [ LTL 23 'o'== [ 1] 2) };
                             Contat
                  3
idea 2)
                               T.C > O(m2)
              cn+=0',
                                       3.030(1)
              for (1=0; 1×0; 1++) {
                  $ (LD1==101) }
                    $ (++ C, O > C, 1+1 = C) rod
                      3 ('e'== [c] };
                            Contat
                   3
            2
       d
                 a
                      9
                          a
                              9
  \boldsymbol{a}
                                          cn++= 4
                                           cmt+=3
                                           cn+1= 2
```

C = how	many g's	ave	to 1	he sigh	J	
Ans = 0					Coo	
		1	ı I	<u> </u>		
a d	g a	9	a	9 1	و ع	
Ans to C	C++ Ons+=C C=4 Ons=5	C11	ans: 2	C = C+1	C=C+1	
C= 5+4 39	[2:4]			د ۽ ع		
C=0,	ama = 0					
for	Ci= m-1; 17:	=0; i-	-) {			
	if (dide	- 'g') {	•			
	Ctt	<u>'</u>	/	T.C=OC	M)	
	3			S.C300	. ()	
if Uti7= = (a) {						
	ans	ans+c	,			
	3					
	3			T.C30	(6)	
Яe	tuen ans;		\nearrow	5.03	0(1)	
			6			
0	1 2 3	4	5 6	7 8		
a a	d g a	9	a 9	F _9	Onat=1	
	_				andr=2	
					mst=3	
					st23	

20) Leaders in an Array. Last element is always leader. Criven an Ar [N), you have to count leaders in out]. An ele is leader if it is shoully queater than more of elements in its right. En1. 15, -1, 2, 2, 5, 4, 2, 3 Ans = 5. e_{n2} : e_{n3} : e_{n4} : e_{n En3: au[7]= 8-2 47651 ->5 Eny:- 10, 8, 8 -> 2. - Bf:- for every element, iterate to

night & get man.

```
1.c > 002)
                 for ( i=0, 1< N; 1+4) {
                     literale & get more to right
                       FOX (Jain, JKN; JAA)
                                       Drs = 5
                                         m0p= 15
        15, -1, 7, 2, 5, 4, 2, 3
      ans = 1
      map = aus [N-1];
      for (1= N-2; 1>=0; 1--) {
               if (aur [i]>mas) {
                     and ++'
                      more = aurici]
                 3
                               1.C = 0(m)
                                 1.C -> O(1)
         eletien ans;
                          ans =1
              8 8 8
                          more = 8
```

Subaneray Basics

- (ontinuous paut of an avoidy is called subavoiay.
 - -> Single element is a subaccay.
 -> full accordy is also a subaccay.

En:- -3 4 6 2 8 7 14 9 21

indicos [2, 3, 4, 5]

indices [3, 4, 6, 7, 8)

-> [5]

ind
$$3 [2,8] \rightarrow 8-2+1 p 7$$

ind $[3 e] \rightarrow 8-2+1 p 7$

Subset/ $[3 e] \rightarrow 8-2+1 p 7$

ind $[3 e] \rightarrow 8-2+1 p 7$

Subset/ $[3 e] \rightarrow 8-2+1 p$

Criven is according elements,

find the length of smallest subacrowy,

which contains both min and

more of according.

 e_{n1}) 0 1 2 3 4 5 6 7 8 9 10 e_{n2}) 0 1 2 3 4 5 6 7 8 9 10 e_{n2}) 0 1 2 3 4 5 6 7 8 9 10 e_{n2}) 0 2 3 6 4 5 1 5 2 6 4 1

Observations: - 1) we need only I mm &

Subavoiay min min mos

2) Min & Mor elements will always be in councer.

3] (min - mos) [mos - min]

€m 8 8 3 →1

min = 8, more = 8

(mas _ min) (min _ mos)

Ţ	T	T 7 7 7 1	n 7 7 7 7
O	1	23456	7 8 9 10 11 12
2	2	6 6 5 1 5	5 2 6 4 1 3 4

```
m=0 = 6
             11 iterate & get min & map.
            if (min = = mos) &
                 return 1
            ans = 10;
            for (i=0; i<m', i+1) {
                if (aur [i]== min) {
                   foolf=it1; Jan; JM) &
                       if (aut IJ) = = more) {
J.C. 30(1)
                          ans: minlans, 5-i+1);
break;
                if (aus Ti] = = mose) &
                   もの(5=14)、コスのリコナイ)を
                      if (aux == min) {
```

ans = min (ons, J-i+1);

break! 3 3 3 setuen and 11 optimize min=1 mini=1280 1 23 = 1 down 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 6 4 6 5 1 5 2 6 4 4 2 1 5 Ans: 5432 1) 9 terrate & get mm- var & mos - var. 2) if liminual = = more val) & setuen 13 ans = N, moro i = -1, mini = -1. too (1=N-1; 1>=0; 1--) { if casestizes min -ual) { if (masil=-1) & ans = min (ans, mosi-i+1); 3 mini= i

1
else if CaurtiJ== mas-val) &
if (mini!=-1) &
ans= min (ans, mini- i+1);
'3
marizi
3
3
3. C → O (1).
$Q \longrightarrow Q \longrightarrow Q$
3, 6, 7, 0, 1,

							_
	 2	13	()	1	<u>s 1</u>	6	1
_				•	0	old m	Donoduct
					۲ دیا	u Maha	product.
					<u>د</u>	W/1x	roome,
		2	3				
			6				
		8	9	10			