

Functional Analysis

Author: Hui Sun

Date: September 11, 2023

Contents

1 Lecture 1																	1															
	1.1	Lecture 2													 									 					 			3
	1.2	Lecture 3													 									 					 			4
	1.3	Lecture 4													 						 			 					 			6
	1.4	Lecture 5													 									 					 			8
	1.5	Lecture 6													 									 					 			10
	1.6	Lecture 7													 									 					 			13
	1.7	Lecture 8													 						 			 					 			13

Chapter 1 Lecture 1

Here we go.

1.0.1 Course Overview and Logistics

Some administrative things. OH are Monday, Fridays 1:45 to 2:45, Wednesdays 12:45-1:45 in Evans 811.

Textbook: an introduction to functional analysis by Conway. We will be talking about operators on Hilbert spaces, and more generally, Banach spaces, and Frechet spaces (defined by a countable numer of seminomrs).

Remark Let \mathcal{H} be a Hilbert space, then the dual space \mathcal{H}^* is itself. $\mathcal{H} = \mathcal{H}^*$. Hilbert spaces are the best spaces to work with. They are self-dual, and identified with themslyes.

Then in the next section, we will look at groups, motivated by their actions on Banach spaces, connected with Fourier transforms.

1.0.2 Motivation

Let X be a compact Hausdorff space. Let $C(X)=\{f:X\to\mathbb{R},f\text{ continuous}\}$ be the algebra of continuous functions on X mapping in to \mathbb{R} or \mathbb{C} . Define the norm as the sup norm $\|\cdot\|_{L^{\infty}}$.

We will develop the spectral theorem of operators on the Hilbert space, i..e self-adjoint operators can be diagonalized.

If T is a self-adjoint operator on a Hilbert space, then we take the product of T (polynomials of T), let $C^*(T, I_{\mathcal{H}})$ be the sub-algebra of operators generated by T and I the identity operator, then take the closure, i.e. making it closed in the operator norm.

Remark The * is to remind us, T is self-adjoint and when you take the adjoint and generate with it, it gets back into the same space.

Proposition 1.

We have the next two algebra isomorphic to each other.

$$C^*(T, I_{\mathcal{H}}) \cong C(X) \tag{1.1}$$

This is what we are aimining for. We can generalize this even further to finitely many self-adjoint operators, in some sense, we are diagonalizing finitely many operators at the same time. If $T_1, ..., T_n$ is a collection of self-adjoint operators on \mathcal{H} , and such all commute with each other, then we also have

$$C^*(T_1, ..., T_n, I_{\mathcal{H}}) \cong C(X) \tag{1.2}$$

1.0.3 Groups

Let G be a group, B be a Banach space, for example, groups of automorphisms. Let

$$Aut(B) = \{T : T \text{ is isometric, onto, invertible on } B\}$$

Definition 1.1

Suppose that α is a group homomorphisms, and $\alpha: G \to Aut(B)$, is called a representation on B or an action of the group G on B.

Then we can consider the subalgebra $\mathcal{L}(B)$, consisting of the bounded linear operators on B, generated by

$$\{\alpha_x : x \in G\}$$

Remark The identity on G should be mapped into the identity operator on B, hence no need to include it.

Elements of the form $\Sigma_{z_x} \alpha_x, z_x \in \mathbb{C}$, (where Σ is a finite sum.)

Let's introduce, $f \in C_c(G)$ are functions with compact support and in discrete groups, imply they are of finite support.

$$\sum_{x \in G} f(x)\alpha_x = \alpha_f$$

note for except finitely many x, f(x) = 0.

Let $f, g \in C_c(G)$, then for

$$\alpha_f \alpha_g = (\sum f(x)\alpha_x)(\sum g(y)\alpha_y) = \sum_{x,y} f(x)g(y)\alpha_x \alpha_y = \sum_{x,y} f(x)g(y)\alpha_{xy}$$

The last inequality follows from α being a group homomorphism. And the sums are finite hence are able to exchange the orders. We further have,

$$\alpha_f \alpha_g = \sum_x \sum_y f(x)g(x^{-1}y)\alpha_y = \sum (f * g)(y)\alpha_y$$

where we define $f * g(y) = \sum f(x)g(x^{-1}y)$ as the convolution operator.

We get

$$\alpha_f \alpha_g = \alpha_{f*g}$$

This is how we define convolution on $C_c(G)$ Notice we have, by $\|\alpha_x\|=1$,

$$\|\alpha_f\| = \|\sum f(x)\alpha_x\| \le \sum |f(x)|\|\alpha_x\| = \sum |f(x)| = l^1(f) = \|f\|_{l^1}$$

It is therefore, easy to check

$$||f * g||_{l^1} \le ||f||_{l^1} ||g||_{l^1}$$

We get $l^1(G)$ is an algebra with ??

For G commutative, it is easily connected with the Fourier transform.

Consider $l^2(G)$ with the counting measure on the group. For $x \in G$, let $\xi \in l^2(G)$ define $\alpha_x \xi(y) = \xi(x^{-1}y)$, α_x being unitary. $l^1(G)$ acts on operators in $l^2(G)$ via α .

If G is commutative, then we have

$$\overline{\alpha_{l^1(G)}} \cong C(X)$$

where X is some compact space. Note that $C_c(G)$ operators on $l^2(G)$, and $\|\alpha_f\| \leq \|f\|_{l^1}$.

1.1 Lecture 2

Let's do some math.

Let X be a Hausdorff compact space, and let C(X) denote the space of continuous functions defined on X. This is an algebra. You can multiply them, associatively and commutatively. We equip it with a norm $\|\cdot\|_{L^{\infty}}$. Note X, by assumption, is a normal space, you could have continuous functions mapped to 1 on one subset, 0 to the other subset. Hence there are many elements from C(X).

Definition 1.2 (Normed Algebra)

Let A be an algebra on \mathbb{R} or \mathbb{C} , is a normed algebra if it has a norm $\|\cdot\|$, as a vector space, such that for for $a, b \in A$, we have

$$||ab|| \le ||a|| ||b||$$

The above is called submultiplicity.

Definition 1.3 (Banach Algebra)

 $A\ Banach\ Algebra\ is\ a\ normed\ algebra\ that\ is\ complete\ in\ the\ metric\ space\ from\ the\ norm.$

Given $x \in X$, define $\varphi_x : C(X) \to \mathbb{C}$ the evaluation map such that

$$\varphi_x(f) = f(x)$$

 φ_x is an algebra homomorphisms between $C(X) \to \mathbb{R}$ or $C(X) \to \mathbb{C}$. This simply implies

$$\varphi_x(f+g) = (f+g)(x) = f(x) + g(x), \varphi_x(fg) = (fg)(x) = f(x)g(x)$$

We now make the note that, C(X) has an identity element, which is the constant function 1, under multiplication. Hence C(X) is a unital algebra. Note that φ_x defined above is a unital homomorphism, meaning that it sends identity to identity.

Note φ_x is also a multiplicative linear functional, also unital.

Proposition 1.2

Every multiplicative linear functional on C(X) is of the form φ_x for some $x \in X$.

Proof Main Claim: given a multiplicative linear functional φ , there exists a point x_0 and if we have some $f \in C(X)$, we have $\varphi(f) = 0$, then we have $f(x_0) = 0$. To prove this claim, we need compactness. Suppose the contrary of the claim. Suppose that for each $x \in X$, there is an $f_x \in C(X)$ such that $f(x) \neq 0$, but $\varphi(f) = 0$.

Set $g_x=\overline{f}_xf_x$, then we have $g_x(x)>0$, but $\varphi(g_x)=\varphi(f_x)\varphi(\overline{f}_x)=0$, then there is an open set O_x such that $x\in O_x$, and $g_x(y)>0$ for all $y\in O_x$. Now by compactness, there is $x_1,...,x_n$ such that $X=\bigcup_{j=1}^n O_{x_j}$, let $g=g_{x_1}+...g_{x_n}$, then we have g(y)>0 for all $y\in X$, and $\varphi(g)=0$. Note that g is a continuous function, and g is invertible, and also $re(\frac{1}{a})\in C(X)$, but we also have

$$\varphi\left(g\cdot\frac{1}{g}\right) = 1$$

Hence we've reached a contradiction. Then there exists $x_0 \in X$ such that if $\varphi(f) = 0$, this means $f(x_0) = 0$. For any f, consider $f - \varphi(f) \cdot 1$, apply φ , we have

$$\varphi(f-\varphi(f)\cdot 1)=0$$
, this implies there exists x_0 , such that $(f-\varphi(f)1)(x_0)=0$

This implies $f(x_0) = \varphi(f)$ which implies $\varphi(f) = \varphi_{x_0}(f)$.

For any unital commutative algebra \mathcal{A} and let $\widehat{\mathcal{A}}$ be the set of unital homomorphisms of \mathcal{A} into the field.

For
$$\mathcal{A} = C(X)$$
, and $\varphi \in \widehat{\mathcal{A}}$.

Definition 1.4

For any unital commutative algebra A and let \widehat{A} be the set of unital homomorphisms of A into the field.

Remark We have $|\varphi(f)| \le \|\varphi\| \|f\|_{L^{\infty}}$, since φ is unital, we have $\|\varphi\| = 1$.

Thss is not always true for normed algebra, Let

$$\mathcal{A} := Poly \subset C([0,1])$$

We define $\varphi(p)=p(2),$ p is a polynomial. This is not continuous, nor is the $\|\varphi\|=1.$

Proposition 1.3

If A is a unital commutative Banach algebra, and if $\phi \in \widehat{A}$, then we have $\|\varphi\| = 1$.

The word "unital" is key here.

Proposition 1.4

Let A be a unital Banach algebra (not necessarily commutative), then if $a \in A$, and ||a|| < 1, then we have

$$1_{\mathcal{A}} - a$$
 is invertible in \mathcal{A}

Proof For this, we use completeness. $\frac{1}{1-a} = ?\sum_{n=0}^{\infty} a^n, a^0 = 1_{\mathcal{A}}$ You could look at the partial sums. $S_m = \sum_{n=0}^m a^n, a^n = \sum_{n=0}^m a^n$ you want to show that $\{S_m\}$ is a Cauchy sequence, and use completeness of Banach algebras. $\lim_{m\to\infty} S_m = \frac{1}{1-a}$.

To prove this is a cauchy sequence:

$$||S_n - S_m|| = ||\sum_{j=m+1}^n a^j|| \le \sum_{m+1}^n ||a^j|| \le \sum_{m+1}^n ||a||^j$$

And the fact that $||a|| \le 1$, we have the sum bounded by ϵ , hence $\{S_n\}$ is a Cauchy sequence. Let $b = \sum_{n=0}^{\infty} a^n$, we want to show that b(1-a) = 1.

$$b(1-a) = \lim_{n \to \infty} S_n(1-a) = \lim_{n \to \infty} \left(\sum_{n=0}^{\infty} a^n\right) (1-a) = \lim_{n \to \infty} (1-a^{n+1}) = 0$$

The last inequality follows from $||a^{n+1}|| \le ||a||^{n+1} \to 0$.

1.2 Lecture 3

We now begin.

Let \mathcal{A} be a unital Banach algebra, and if $a \in \mathcal{A}$ and ||a|| < 1, then we have (1 - a) has an inverse and if $\mathcal{A} = \mathcal{B}(B)$, where B is some Banach space, then $T \in \mathcal{A}$, and ||T|| < 1, then we have

$$(1-T)^{-1} = \sum T^n$$

The above is called the Newmann series.

Now we have the following corollary.

Corollary 1.1

If $a \in A$ and ||1 - a|| < 1, then a is invertible.

Proof a = 1 - (1 - a).

Proposition 1.5

The set of invertible elements of A is an open subset of A.

Proof The open ball about 1 consists of invertible elements. If d is any invertible element, then we define $a \mapsto da$. This map is continuous, i.e. it is the left representation $L_b(a) = ab$ for all $a \in \mathcal{A}$. If d is invertible, then the inverse is also continuous, hence it is a homeomorphism of \mathcal{A} onto itself.

Denote the unit ball about 1 as $B_1(1)$, and let d be some invertible element, under L_d , homeomorphism, $O \mapsto d \cdot O$, this set is open, and consists of invertible elements. We take the union of all these elements, which give us an open set including every invertible elements.

Proposition 1.6

Let C(X) be the unital Banach algebra, and for $f \in C(X)$, we have $\alpha \in Range(f)$ if and only if $(f - \alpha \cdot 1)$ is not invertible.

Proof Let $f \in C(X)$, and if $\alpha \in \text{range of } f$, so $\alpha = f(x_0)$ for some x_0 . then

$$(f - \alpha \cdot 1)(x_0) = 0$$

Hence $f(-\alpha \cdot 1)$ is not invertible. Conversely, if we have $f - \alpha 1$ is not invertible, then there exists $x_0 \in X$ such that

$$(f - \alpha \cdot 1)(x_0) = 0$$

Hence $f(x_0) = \alpha$, i.e., $\alpha \in \text{range of } f$.

Definition 1.5 (spectrum of an element)

For any unital algebra A over some field \mathbb{F} , for any $a \in A$, the set

$$\{\lambda \in \mathbb{F} : a - \lambda 1_{\mathcal{A}} \text{ is not invertible } \}$$

is called the spectrum of a, denoted as $\sigma(a)$.

Interpret this in our familiar linear map: λ is called an eigenvalue, i.e. is in the spectrum of T if we have $T - \lambda I$ is not invertible.

Proposition 1.7

Let A *be a unital Banach algebra, and let* $a \in A$ *, then if* $\lambda \in \sigma(a)$ *, then*

$$|\lambda| \le ||a||$$

Proof Suppose $|\lambda| > ||a||$, then $\lambda \neq 0$, then

$$a - \lambda \cdot 1 = -\lambda(1 - \frac{a}{\lambda})$$

And by assumption, $||a/\lambda|| \le 1$, hence $(1 - a/\lambda)$ is invertible. Hence $a - \lambda \cdot 1$ is invertible (product of two invertible elements), meaning $\alpha \notin \sigma(a)$.

Proposition 1.8

Let φ be a multiplicative linear functional on A, i.e. $\varphi \in \widehat{A}$, and then $\varphi(a) \in \sigma(a)$, and we have

$$|\varphi(a)| \le ||a||, ||\varphi|| = 1$$

Proof $\varphi(a - \varphi(a) \cdot 1) = 0$. Hence $a - \varphi(a)1$ is not invertible.

Proposition 1.9

 $\sigma(a)$ is a closed subset of \mathbb{R} , \mathbb{C} .

Proof Define the map $\phi: \lambda \mapsto a - \lambda 1$, the map ϕ is continuous (multiplication and subtraction are both continuous). We know the set of invertible elements of \mathcal{A} is open, hence

$$\sigma(a) = \phi^{-1}(\text{ noninvertible}) = \phi^{-1}(\mathcal{A} \setminus \text{ invertible })$$

Or simply,

$$\sigma(a) = (\phi^{-1}(\text{ invertible }))^c$$

Hence the spectrum of an element is closed.

Let $\varphi \in \widehat{\mathcal{A}}$ then $\|\varphi\| = 1$. So $\widehat{\mathcal{A}}$ is a subset of the unit ball of \mathcal{A}' , which denotes the dual vector space of continuous linear transformations.

On \mathcal{A}' , we can equip the weak-* topology, i.e. the weakest topology, making the map $\psi \mapsto \psi(a)$ continuous.

 $\widehat{\mathcal{A}}$ is closed for the weak-* topology.

Proof let $\{\varphi_{\lambda}\}$ be a net of elemnts of $\widehat{\mathcal{A}}$, that converges to some $\psi \in \mathcal{A}'$ in the weak-* topology, i.e., for every $a \in \mathcal{A}$, $\varphi_{\lambda}(a) \to \psi(a)$ for all $a \in \mathcal{A}$.

Then $\varphi(a,b) = \lim \varphi_{\lambda}(ab) = \lim \varphi_{\lambda}(a)\varphi_{\lambda}(b) = \varphi(a)\varphi(b)$. $\varphi(1) = \lim(\varphi_{\lambda}(1)) = \lim 1 = 1.$

For any normed vector space V, the closed unit ball of V' is compact in the weak-* topology.

As an immediate corollary, we have the following.

A is compact with respect to the weak-* toplogy.

Proof $\widehat{\mathcal{A}}$ is a closed subset of a compact set, hence is also compact.

Let A = C(X), and \widehat{A} , we define $x \mapsto \varphi_x$ is a bijection. The weak-* topology in \widehat{A} makes $\varphi_x \mapsto \varphi_x(f) = f(x)$ continuous. Such $x \mapsto \varphi_x$ is a homomorphism of X onto A.

For ${\mathcal A}$ unital Banach algebra, commutative, for any $a\in {\mathcal A}$, define

$$\widehat{a} \in C(\widehat{\mathcal{A}}), \widehat{a}(\varphi) = \varphi(a)$$

The map $a \mapsto \hat{a}$ is a unital algebra homomorphism from A into C(A).

Proof we have

$$\widehat{ab}(\varphi) = \varphi(ab) = \varphi(a)\varphi(b) = \widehat{a}(\varphi)\widehat{b}(\varphi) = (\widehat{a}\widehat{b})(\varphi)$$

Hence

$$(\widehat{ab}) = \widehat{a}\widehat{b}, \widehat{(a+b)} = \widehat{a} + \widehat{b}, \widehat{1_a} = 1$$

1.3 Lecture 4

Today we talk about the structure of $\widehat{l^1(S)}$, $\widehat{l^1(G)}$, where S, G are semigroups and groups, and how they naturally identify with the unit disk \mathbb{D} , and the unit circle \mathbb{T} .

Let S be a commutative discrete semigroups, for example $\mathbb{N} \cup \{0\}$, and $f \in C_c(S)$, then we can write f = 0 $\sum_{x \in S} f(x) \delta_x$, where we define $\delta_x \delta_y = \delta_{xy}$. Note that $C_c(S)$ is dense in $l^1(S)$.

Take any $f, g \in C_c(S)$, we consider the following:

$$\sum_{x \in S} f(x)\delta_x \sum_{x \in S} g(y)\delta_y = \sum_{x \cdot y} \delta_{xy} = \sum_{z \in S} \left(\sum_{xy=z} f(x)g(y) \right) \delta_z$$

where we define the convolution between two functions

$$f*g(z) = \sum_{x,y,xy=z} f(x)g(y)$$

And under this convolution operation, we have $l^1(S)$, * as a Banach algebra.

Example 1.1 If we consider polynomials of the form $f(x) = \sum_{n=0}^{\infty} f(n)x^n$, and consider the operation between two polynomials

$$\left(\sum f(m)x^m\right)\left(\sum g(n)x^n\right) = \sum_p \left(\sum_{m+n=p} f(m)g(n)x^p\right) = \sum_p (f*g)(p)$$

And let $f \in C_c(S)$, where $S = \mathbb{N}$. we define $||f||_{l^1} = \sum_{x \in S} |f(x)|$.

It is easy to check we have

$$||f * g||_{l^1} \le ||f||_{l^1} ||g||_{l^1}$$

We let $\mathcal{A}=l^1(S)$, and $\widehat{\mathcal{A}}$ denote the set of unital homomorphisms from \mathcal{A} to \mathbb{R}, \mathbb{C} . Note that $\|\varphi\|=1, \varphi\in\widehat{\mathcal{A}}$. Note that we know $(l^1(S))'=l^\infty(S)$, hence $\widehat{\mathcal{A}}\subset\mathcal{A}'$. Note that we have $\|\varphi\|=1$, hence if we $\varphi\in l^\infty(S)$, we have

$$\|\varphi\|_{l^{\infty}} = 1$$

Then for $z \in S$, $||z|| \le 1$, we have $|\varphi(z)| \le 1$.

Proposition 1.12

We naturally identify $\widehat{l^1(S)}$ with $Hom(S, \mathbb{D})$, i.e. $\{\varphi \in l^{\infty}(S) : \|\varphi\|_{l^{\infty}} = 1\}$.

Proof Given $f \in \widehat{l^1(S)}$, we know it's multiplicative, unital, hence all these transfer when viewing $\varphi \in l^{\infty}(S)$. This implies

$$\varphi(\delta_x)\varphi(\delta_y) = \varphi(\delta_{xy}) \Rightarrow \varphi(x)\varphi(y) = \varphi(xy)$$

Note here xy denotes the operation on S between x,y, for example, could be x+y. Hence naturally, if $\varphi \in \widehat{l^1(S)}$, φ can also be viewed as $\varphi : S \to \mathbb{D}$, and thus is in l^{∞} , with $|\varphi(s)| \leq 1$.

Furthermore, we can identify elements in $\widehat{l^1(S)}$ with the unit disk. Take $S=\mathbb{N}$.

Proposition 1.13

$$\widehat{l^1(\mathbb{N})} \cong \mathbb{D}$$

where \mathbb{D} denotes the unit disk in \mathbb{C} .

Proof We motivate this by noticing \mathbb{N} is generated by 1, and thus viewing $\varphi \in \widehat{l^1(\mathbb{N})}$ as $\varphi \in l^\infty(\mathbb{N})$, we have φ is determined by $\varphi(1)$. And denote $\varphi(1) = z_0$, then we have

$$\varphi(n) = z_0^n$$

We thus define a map as follows, for $z \in \mathbb{D}$,

$$z \mapsto \varphi(n) = z^n$$

The map is continuous, bijective, and thus a homeomorphism between compact and Hausdorff space.

Proposition 1.14

The standard topology on $\mathbb D$ coincides with the weak-* topology on $\widehat{l^1(\mathbb N)}$.

$$D_{std} \cong D_{weak-*}$$

•

Proof We just need to associate an element in $\mathbb D$ with a function $\varphi \in \widehat{l^1(\mathbb N)}$. And we do this by

$$z\mapsto \sum_{n\in\mathbb{N}}f(n)x^n$$

Both maps are continuous, bijective, and between compact and Hausdorff space, hence is a homeomorphism.

1.3.1 On groups

We let G denote a discrete commutative group, and we see everything above follows, with one extra property.

Proposition 1.15

We have the following:

$$\widehat{l^1(G)} \cong \mathbb{T}$$

where \mathbb{T} denotes the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.

Proof For $\varphi \in \widehat{l^1(G)}$, we have

$$|\varphi(x \cdot x^{-1})| = |\varphi(e)| = 1$$

Because $|\varphi(x)| \leq 1, \forall x$, Hence we have

$$|\varphi(x)| = 1, \forall x$$

Hence we have $\widehat{l^1(G)}$ naturally identifies with \mathbb{T} . Like what we described above, we have what is desired.

Remark Take $G = \mathbb{Z}$, if we denote $z \in \mathbb{T}$ as $z = e^{2\pi i t}$, then we naturally identify with

$$\sum_{m \in \mathbb{Z}} f(m)e^{2\pi i m}$$

we denote this mapping as \hat{f} , i.e.

$$\widehat{f}(z) = \sum_{m \in \mathbb{Z}} f(m)e^{2\pi i nt}$$

This is the Fourier transform.

1.4 Lecture 5

Last time, we talked about if we denote $\mathcal{A}=l^1(G)$, equipped with $\|\cdot\|_{l^1}$, under convolution, we have $\widehat{\mathcal{A}}$ "=" $Hom(G,\mathbb{T})$

If we take $G=(\mathbb{Q},+)$, one can ask the question if $\widehat{\mathcal{A}}$ is big enough. And we will se later in the course, the answer is yes.

For pointwise multiplication, \widehat{G} forms a group, and in fact \widehat{G} is a compact topological group.

For any compact commutative group G, for exapmle \mathbb{R}^n under +. Define

 $\widehat{G} = \text{continuous homomorphisms into } \mathbb{T}$

Remark We now require continuous with this general G (previously was not required for discrete group G).

Proposition 1.16

Let G be a locally compact and commutative group, we have \widehat{G} as a locally compact, commutative group.

We define the pairing between G and \widehat{G} as follows: $x \in G, \varphi \in \widehat{G}$,

$$\varphi(x) = \langle x, \varphi \rangle$$

And we have the following map is a homeomorphism.

$$G \mapsto \widehat{\widehat{G}}$$

Now let G,H denote locally compact groups, and $\phi:G\to H$ bet a continuous homomorphism. Note we have the following diagram:

$$G \xrightarrow{\phi} H$$

$$\widehat{G} \xleftarrow{\phi} \widehat{H}$$

If we take an element $\psi \in \widehat{H}$, we consider $\psi \circ \phi$. We get $\psi \circ \phi \in \widehat{G}$.

Definition 1.7 (category, functor)

A category is specified by

- 1. a set of objects
- 2. morphisms between objects
 - (a). X, Y, Z are objects, and if

$$X \xrightarrow{\Phi} Y \xrightarrow{\Psi} Z$$

(b). For each object X, there is an identity morphism 1_X .

And a functor is defined to be such a morphism between categories.

Note that we have the following diagram, assuming they are vector spaces over the reals,

$$V \xrightarrow{T} W$$

$$V' \stackrel{T^t}{\longleftarrow} W'$$

$$V'' \xrightarrow{T^{tt}} W''$$

The map going in the same directions $V \to W$, and $V'' \to W''$ is called covariant, whereas $V' \leftarrow W'$ is called contravariant.

Example 1.3 For category of locally compact groups G, H, assigning the dual group is a functor:

$$G \to H$$

$$\widehat{G} \leftarrow \widehat{H}$$

$$\widehat{\widehat{G}} \to \widehat{\widehat{H}}$$

Example 1.4 Now let X be a compact space. Given Φ continuous map between $X \to Y$.

$$X \xrightarrow{\Phi} Y$$

$$C(X) \leftarrow C(\Phi)C(Y)$$

For $f \in C(Y)$, we define

$$C(\Phi)(f) = f \circ \Phi$$

Similarly, we take

$$X \xrightarrow{\varphi} \xrightarrow{\phi} Z$$

$$C(X) \stackrel{C(\varphi)}{\longleftarrow} C(Y) \stackrel{C(\phi)}{\longleftarrow} C(Z)$$

where for $f \in C(Y)$, $C(\varphi)(f) = f \circ \varphi$, and $g \in C(Z)$, $C(\phi) = g \circ \phi$. This is a contravariant functor from the category of compact Hausdorff space into the category of unital commutative Banach algebra.

Now we build an important intuition that given a unital algebra homomorphism map between C(X) and C(Y), there eixsts a map from X to Y.

Proposition 1.17

Suppose X, Y are compact, there exists a unital algebra homomorphism

$$C(X) \xleftarrow{F} C(Y)$$

Then there exists a continuous homomorphism $\check{F}: X \to Y$.

Proof Define $\varphi_x: C(X) \to \mathbb{C}$ as the evaluation map: take $f \in C(X)$,

$$\varphi_x(f) = f(x)$$

Then $\varphi_x \circ F \in \widehat{C(Y)}$. And we know that any element in $\widehat{C(Y)}$ is a point evaluation, i.e. there exists $y \in Y$ such that

$$\varphi_y = \varphi_x \circ F$$

We thus define $\check{F}(x) = y$ as such that it satisfies the above equation. We need to show \check{F} is continuous. Note that X, Y are compact Hausdorff spaces, and the topology on Y is the coarest topology making all functions $g \in C(Y)$ continuous.

$$g \circ \check{F}(x) = g(\check{F}(x))$$

$$= g(y : \varphi_y = \varphi_x \circ F)$$

$$= \varphi_y(g : \varphi_y = \varphi_x \circ F)$$

$$= \varphi_x \circ F(g)$$

$$= F(g)(x)$$

Hence by F, g being continuous, we have \check{F} is also continuous.

There is a natural bijection between the continuous functions from X to Y, and the unital algebra homomorphism from C(X) to C(Y).

A quick reminder:

Remark For X compact, the weak-* topology coincides with the standard topology.

1.5 Lecture 6

Now we begin. From Aren "not talking to you is torture."

Let A be a unital Banach algebra.

We write $GL_n(A)$ to denote the general linear group, the group formed by $n \times n$ matrices with entries from A.

The less standard notation is $GL_I(A)$ is the group of invertible elements in A. As we have shown previously, this is a closed subset of A. This is the notation that we will use.

Remark It is easy to see that the product is jointly continuous.

Proposition 1.18

The following map is continuous.

$$a \mapsto a^{-1}$$

Proof Given $||a-b|| < \delta$, we would like to show $||a^{-1}-b^{-1}|| < \epsilon$. We first rewrite

$$a^{-1} - b^{-1} = a^{-1}(b - a)b^{-1}$$

Hence we have

$$||a^{-1} - b^{-1}|| \le ||a^{-1}|| ||b - a|| ||b^{-1}||$$

Take $\delta = \epsilon/\|a^{-1}\|\|b^{-1}\|$ would suffice.

Proposition 1.19

Fix $a \in GL(A)$, there exists a neighborhood O of a and a constant K such that for all $y \in O$, we have

$$||c^{-1}|| < K$$

Proof Let $V = \{d \in \mathcal{A} : ||1 - d|| < 1/2\}$, then d is invertible and

$$d^{-1} = \sum_{n=0}^{\infty} (1-d)^n$$

We thus have

$$\|d^{-1}\| \leq \frac{1}{1 - \|1 - d\|} \leq \frac{1}{1 - 1/2} = 2$$

We then identify what our O should be. Let O = aV, then we want to show that every ad has an inverse with bounded norm. Because a, d are both invertible, ad is also invertible.

$$||(ad^{-1})|| = ||d^{-1}a^{-1}|| \le ||d^{-1}|| ||a^{-1}|| \le 2||a^{-1}||$$

Remark For each invertible element, we can find a neighborhood of invertible elements around it, and using that (1-d) is bounded, then d is invertible, we can bound $||d^{-1}||$.

Definition 1.8

Fix $a \in A$, the resolvent set of A is the complement of spectrum of A, i.e. it is the set

$$\{\lambda \in \mathbb{F} : a - \lambda I \text{ is invertible }\}$$

Hence the resolvent set is an open, unbounded suset of \mathbb{C} or \mathbb{R} .

Definition 1.9 (Resolvent function)

On the resolvent set, $\{\lambda \in \mathbb{F} : a - \lambda 1 \text{ is invertible } \}$ is as follows:

$$R(a,\lambda) = (\lambda 1_{\mathcal{A}} - a)^{-1}$$

note that a is fixed, and λ is the variable here.

Now we note that this $R_a(\lambda)$ function is nicely behaved.

Proposition 1.20

The resolvent function $R_a(z)$ is analytic on the resolvent set, and vanishes as $z \to \infty$.

Proof We first define the notation of analyticity on an open subset of \mathbb{R} , \mathbb{C} : this means for every point in the open set O, we can find a power series expansion of the function such that its radius of convergence > 0.

Fix z_0 in the resolvent set. We know $z_0 1_A - a$ is invertible. We consider $(z 1_A - a)$, for z in the resolvent set. We will omit the 1_A for simplicity.

$$z1_{\mathcal{A}} - a = (z_0 - a) - (z_0 - z) = (z_0 - a) \left(1_{\mathcal{A}} - \frac{z_0 - z}{z_0 - a} \right)$$

We know the latter term is invertible if $\left\| \frac{z_0 - z}{z_0 - a} \right\| < 1$ has norm, hence we have

$$(z-a)^{-1} = \sum_{n=0}^{\infty} \left(\frac{z_0 - z}{z_0 - a}^n\right) (z_0 - a)^{-1}$$

What happens when we let $z \to \infty$, we consider $R_a(1/z)$, and let $z \to 0$. Note that we have the following:

$$R_a\left(\frac{1}{z}\right) = \left(\frac{1}{z} - a\right)^{-1} = \left(\frac{1 - az}{z}\right)^{-1} = z(1 - az)^{-1}$$

Let $z \to 0$ makes $R_a(1/z)$ go to zero.

Now given that $R_a(z)$ is analytic and bounded at ∞ , we can state the following important theorem.

Theorem 1.2 (Nonemptyness of spectrum)

Let A *be a unital Banach algebra over* \mathbb{C} *, then for any* $a \in A$ *, we have* $\sigma(a) \neq \emptyset$ *.*

 \bigcirc

Proof Assume there exists $a \in \mathcal{A}$, such that $\sigma(a) = \emptyset$. If $\mathcal{A} = \mathcal{C}$, then we would have $R_a(\lambda)$ be a bounded entire, complex-valued function defined on all of \mathbb{C} . By Liouville's theorem, we must have $R_a(z)$ a constant function, but we know $z \to \infty$, $R_a \to 0$, hence $R_a(z)$ is constantly 0, but this cannot be true.

If our A is a more general Banach algebra, then we take a slight detour of creating an entire bounded function, via the following map

$$z \mapsto \phi(R_a(z))$$

where ϕ is some nonzero element in \mathcal{A}' , guaranteed by Hahn-Banach theorem. Then we have the above map is complex-valued, entire, bounded at ∞ . Again, the function is constantly 0.

With the nonemptyness of spectrum theorem, we now state the Gelfand-Mazur theorem.

Theorem 1.3 (Gelfand-Mazur)

Let A be a unital Banach algebra over \mathbb{C} , if any nonzero element of A is invertible, then A is isomorphic to \mathbb{C} .

Proof For any $a \in \mathcal{A}$, we know $\sigma(a) \neq \emptyset$, hence there exists λ such that $\lambda 1_{\mathcal{A}} - a$ is invertible, i.e. $a = \lambda 1_{\mathcal{A}}$, hence establishing an isomorphism between \mathcal{A} and \mathbb{C} . In other words, $\mathcal{A} = \mathbb{C}1_{\mathcal{A}}$.

1.5.1 Functional Calculus

Proposition 1.21

Let $a \in \mathcal{A}$, then if $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ converges for |z| < r, where r > ||a||, then $\sum_{n=0}^{\infty} \alpha_n a^n$ converges as well.

We first start with proving the following statement.

Lemma 1.1

Let f be a polynomial, A is a unital Banach algebra over \mathbb{C} , $f = \sum_{n=0}^{k} a_n x^n$, then for $a \in A$, we have

$$\sigma(f(a)) = f(\sigma(a))$$

This states the spectrum of a under f is exactly the spectrum of f evaluated at a.

C

Proof (\Leftarrow). We take $\lambda \in \sigma(a)$, and we would like to show $f(\lambda)$ is in the spectrum of f(a). We note that if $\lambda \in \sigma(a)$, then $a = \lambda 1_{\mathcal{A}}$, and $f(\lambda 1_{\mathcal{A}}) = f(a)$, hence by definition, $f(a) - f(\lambda) 1_{\mathcal{A}}$ is not invertible implying $f(\lambda)$ is in the spectrum of f(a). Note that this also implies $f(a) - f(\lambda) = (a - \lambda)Q(z)$ for some polynomial Q(z).

 (\Rightarrow) . We take $\lambda \in \sigma(f(a))$, i.e. $f(a) = \lambda 1_A$. we would like to show $\lambda = f(y)$, where $y \in \sigma(a)$. If f is some polynomial, then we can rewrite as follows:

$$f(z) - \lambda = d(z - c_1)...(z - c_n)$$

Plugging in a we get

$$f(a) - \lambda = d(a - c_1 1_{\mathcal{A}})...(a - c_n 1_{\mathcal{A}})$$

If $f(a) - \lambda$ is not invertible, then there exists j such that $(a - c_j 1_A)$ is not invertible. This implies,

$$c_j \in \sigma(a)$$

Recall we would like to show $\lambda = f(y)$, where $y \in \sigma(a)$. In fact, we have $\lambda = f(c_j)$ by knowing $f(c_j) - \lambda = 0$.

Now let $f(z)=z^n$, and if $\lambda\in\sigma(a)$, then $\lambda^n\in\sigma(a^n)$ by the previous lemma. Then we know that

$$|\lambda^n| = |\lambda|^n \le ||a^n||$$

This implies

$$|\lambda| \le ||a^n||^{1/n}, \forall n$$

Hence we have

$$|\lambda| \le \liminf_n \{ \|a^n\|^{1/n} \}$$

Definition 1.10

Fix $a \in A$, we define the spectral radius of a, denoted by r(a),

$$r(a) = \sup_{\lambda} \{ |\lambda| : \lambda \in \sigma(a) \}$$

Corollary 1.3

$$r(a) \le \limsup_{n} \{ \|a^n\|^{1/n} \}$$

Proof From the previous remark that $|\lambda| \leq ||a^n||^{1/n}$, hence this follows.

1.6 Lecture 7

I have not typed up for this?

1.7 Lecture 8

Let \mathcal{A} be a unital Banach algebra. Then for $a \in \mathcal{A}$, and we look at the resolvent of a, $R_a(\lambda)$, we've noted that as $\lambda \to \infty$, we have

$$\lim_{\lambda \to \infty} R_a(\lambda) = \lim_{\lambda \to \infty} (\lambda 1_{\mathcal{A}} - a)^{-1} = \lim_{\lambda \to \infty} \lambda^{-1} \sum_{n=0}^{\infty} a^n \lambda^{-n}$$

And the above Laurent series converges for $|\lambda| \ge ||a||$.

Recall that we define the spectral raidus, r(a), as

$$r(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\} \le ||a||$$

Now we would like to prove the following proposition.

Proposition 1.22

$$r(a) = \lim \|a^n\|^{1/n}$$

Proof

If we let $\lambda = 1/z$, then

$$R(a,z) = z \sum_{n=0}^{\infty} a^n z^n$$

This converges for $|z| \leq ||a||^{-1}$, but maybe?? also for $|z| < r(a)^{-1}$?

For r>r(a), i.e. $|z|\leq r^{-1},$ we know $\sum_n a^n r^n$ converges for r>r(a).

know $z \sum a^n z^n$ converges absolutely. In particular,

$$a^n z^n \to 0$$

Hence there exists M such that for $n \geq M$, we have

$$||a^n r^{-n}|| \le 1$$

This implies that

$$||a^n|| \le r^n \Rightarrow ||a^n||^{1/n} \le r$$

for all $n \geq M$.

This implies that

$$\limsup \|a^n\|^{1/n} \le r$$

And note that r is arbitrary close to the spectral radius r(a). Hence we have

$$\limsup \|a^n\|^{1/n} \le r(a) \le \liminf \|a^n\|^{1/n}$$

We've derived the second inequality from last class. Hence all inequalities become equalities. This gives us

$$r(a) = \lim \|a^n\|^{1/n}$$

For each $\varphi \in \mathcal{A}'$, consider the map

$$\lambda \mapsto \lambda^{-1} \sum \varphi(a^n) \lambda^{-n}$$

This series converges for r > r(a). We can apply the same process, to argue that there exists M_{φ} such that

$$\|\varphi(a^n)r^{-n}\| \le M_{\varphi}$$

for all $n \geq 0$. Note that M_{φ} could be different for all φ .

Note that

$$\mathcal{A} o \mathcal{A}' o \mathcal{A}''$$

there is a natural injection of $a \mapsto \hat{a} \in \mathcal{A}''$.

For each n, definite $F_n \in \mathcal{A}''$, by $F_n(\varphi) = |\varphi(a^n r^{-n})| \leq M_{\varphi}$. Applying the UBP, we have

$$|F_n(\varphi)| \le M \Rightarrow |\varphi(a^n)r^{-n}| \le M$$

This implies that

$$|\varphi(a^n)| \le r^n M$$

Note that by Hahn-Banach, for any $b \in \mathcal{A}$, we have

$$||b|| = \sup\{|\varphi(b)| : ||\varphi|| = 1\}$$

Taking n-th root of both sides, we gets

$$||a^n|| \le r^n M \Rightarrow ||a^n||^{1/n} \le rM^{1/n} \to r$$

Hence we again obtain the same result.

Recall UBP.

Theorem 1.4 (Uniform Boudnedness Principle

Let X be Banach, and Y be normed, let $T_n: X \to Y$ be a family of linear operators, and if for all $x \in X$, we have

$$||T_n(x)|| < \infty$$

Then for all n, we have

$$||T_n|| < \infty$$

Note that if A is unital, and if $A \subset B$ with some unit. For $a \in A$, if a is not invertible in A, then it might be invertible in B. Hence if we use $\sigma_A(a)$ to denote the spectrum of a in A.

Proposition 1.23

$$\sigma_{\mathcal{B}}(a) \subset \sigma_{\mathcal{A}}(a)$$

Example 1.5 Let $\mathcal{B} = l^1(\mathbb{Z})$, and let $\mathcal{A} = l^1(\mathbb{N})$, equipped with convolution.

Clearly $A \subset B$. And note that the delta function at 1, δ_1 is not invertible in A but it has an inverse δ_{-1} in B. Hence we see $0 \in \sigma_A(a)$, but $0 \notin \sigma_B(a)$.

Proposition 1.24 (Spectral radius is preserved)

For $A \subset B$ *, we have*

$$r_{\mathcal{A}}(a) = ||a^n||^{1/n} = r_{\mathcal{B}}(a)$$

Proposition 1.25

Let X be compact, and let A = C(X). Then for $f \in C(X)$, we have

$$||f^2||_{\infty} = ||f||_{\infty}^2$$

Proof Look at where f takes $||f||_{\infty}$, and square it.

Remark The same property holds for f in any unitla subalgebra of C(X), for example, if $X \subset \mathbb{C}$, and let A=functions that are holomorphic on an open subset of \mathbb{C} that are in X.

Let A be a unital Banach alagebra with the property such that for any $a \in A$, we have

$$||a^2|| = ||a||^2$$

This implies that

$$||a^4|| = ||a||^4$$

By induction, for any n, we have

$$||a^{2^n}|| = ||a||^{2^n}$$

Hence by taking $1/2^n$ -root of both sides, we get that the spectral radius of r(a)

$$r(a) = ||a^{2^n}||^{1/2^n} = ||a||$$

Let \mathcal{H} be a Hilbert space, over \mathbb{C} , and let $\mathcal{A} = B(H)$, i.e. the bounded lineaer operators on \mathcal{H} ., and equip with the operation of taking adjoint. $T \mapsto T^*$.

Proposition 1.26

For any $T \in B(\mathcal{H})$, we have

$$||T^*T|| = ||T||^2$$

Proof We know that $||T^*|| = ||T||$. And thus

$$||T^*T|| \le ||T^*|| ||T|| = ||T||^2$$

For the reverse direction, let $\xi \in \mathcal{H}$, then

$$||T(\xi)||^2 = \langle T\xi, T\xi \rangle = \langle \xi, T^*T\xi \rangle \le ||T^*T|| ||\xi||^2$$

where the last inequality follows form Cauchy-Schwartz. This implies that

$$||T(\xi)|| \le ||T^*T||^{1/2}||\xi||$$

which by definition, gives

$$\|T\| \le \|T^*T\|^{1/2}$$

Taking squares we get the desired result.

Corollary 1.4

If $T^* = T$, then

$$||T^2|| = ||T||^2$$

And we have

$$r(T) = ||T||$$

where the spectral radius is determined by the algebra elements.

(

Note that for general T, we have

$$||T||^2 = ||T^*T|| = r(T^*T)$$

Because T^*T is self-adjoint. Then we have

$$||T|| = (r(T^*T))^{1/2}$$

where the spectral radius is determined by the *-algebra structure.