实变函数复习题

1. 若 E 有界, 则 $m^*(E) < \infty$.

Rem. 有界, 于是存在有限开覆盖, 于是测度小于 ∞ .

2. 可数点集的外测度为零.

Rem. 单点集的外测度为 0, 可数并的外测度为可数个单点集的外测度之和, 于是可数点集的外测度为 0.

- 3. 设 E 为可测集, f(x) 为定义在 E 上的实函数, 则以下几条等价:
 - 1. E[f > a] 可测, $\forall a \in \mathbb{R}$;
 - 2. $E[f \leqslant a]$ 可测, $\forall a \in \mathbb{R}$;
 - 3. $E[f \geqslant a]$ 可测, $\forall a \in \mathbb{R}$;
 - 4. E[f < a] 可测, $\forall a \in \mathbb{R}$.

Rem. (1), (3) 和 (2), (4) 为余集, 可测性自然. (3) 可表示为可列个 (1) 的并.

4. 设 A, B 均为可测集, 则 $m(A \cup B) + m(A \cap B) = m(A) + m(B)$.

Rem. 若 A, B 任一集合测度为 ∞ , 自然成立.

否则, 由可测集可加性可得.

5. 设 E_n 为可测集列, 且 $\sum_{n=1}^{\infty} m(E_n) < +\infty$, 则 $m(\limsup E_n) = 0$.

Rem. $\oplus m\left(\bigcup_{n=1}^{\infty} E_n\right) \leqslant \sum_{n=1}^{\infty} m(E_n)$ $\iff \lim \sup E_n \subset \bigcup_{n=1}^{\infty} E_k.$

6. 设 E_n 为可测集列, 则 m ($\liminf E_n$) $\leq \liminf (m(E_n))$.

 $\mathbf{Rem.} \bigcap_{i=1}^{\infty} (E_i)$ 关于 n 单增, 由单调性和测度的下连续性可得.

7. 设 E_n 为可测集列, $\exists k_0$, 使 $m\left(\bigcup_{n=k_0}^{\infty} E_n\right) < \infty$ 则 $m\left(\limsup E_n\right) \leqslant \limsup(m(E_n))$.

Rem. $\bigcup_{i=1}^{\infty}(E_i)$ 关于 n 单减, 由单调性和测度的上连续性可得.

8. 零测集的闭包不一定是零测集.

Rem. 例如 \mathbb{Q} 的闭包为 \mathbb{R} , \mathbb{R} 的测度为 ∞ .

9. 闭的零测集 E 必是疏朗集.

Rem. 反证, 若不疏朗,则存在小邻域,此时测度大于 0.

10. Lebesgue 可测集族的势为 2^{ko}.

Rem. \mathbb{R} 的势为 2^{\aleph_0} ,而 Lebesgue 可测集族包含所有开集,所以势至少为 2^{\aleph_0} . 另一方面,Lebesgue 可测集族是 σ -代数,所以势不超过 2^{\aleph_0} .

11. E 可测的充要条件是: 对 $\forall \varepsilon > 0$, 存在开集 $G \supset E$ 和闭集 $F \subset E$, 使得 $m(G \setminus F) < \varepsilon$.

Rem. 必要性显然, 充分性考虑取 $\varepsilon = \frac{1}{n}$, 则存在开集 $G_n \supset E$ 和闭集 $F_n \subset E$, 使得 $m(G_n \backslash F_n) < \frac{1}{n}$. 由可测集的定义, E 可测.

- 12. 以下命题等价:
- (i) E 可测;
- (ii) 存在 G_{δ} 集 $H \supset E$, 使得 $m^*(H \setminus E) = 0$;
- (iii) 存在 F_{σ} 集 $K \subset E$, 使得 $m^*(E \backslash K) = 0$;
- (iv) 存在 G_{δ} 集 H 和 F_{σ} 集 K, 使得 $K \subset E \subset H$ 且 $m(H \setminus K) = 0$.

Rem. $(i) \Rightarrow (ii)$: 由可测集的定义,存在开集 $G \supset E$, 使得 $m(G \setminus E) = 0$. 由于开集是 G_δ 集, 所以存在 G_δ 集 $H \supset E$, 使得 $m^*(H \setminus E) = 0$.

(ii) \Rightarrow (iii): 由 G_δ 集的性质, H 可以表示为可数个开集的交, 所以存在闭集 $F \subset H$, 使得 $m^*(H \setminus F) = 0$. 因此, F 是一个 F_σ 集, 且满足 $m^*(E \setminus F) = 0$.

 $(iii) \Rightarrow (iv)$: 显然成立.

 $(iv) \Rightarrow (i)$: 由可测集的定义, $K \subset E \subset H$, 所以 $m(H \setminus K) = 0$, 因此 E 可测.

13. 在二维平面上作一开集 G, 使其边界的测度大于零.

Rem. 类 *Cantor* 集记为 E, 则 $G = \mathbb{R}^2 \setminus ([0,1] \times E)$ 是一个开集, 且边界的测度大于零.

14. 在平面上造一个不可测集.

Rem. 利用一维空间上的不可测集,

15. ℝ 中外测度大于零的点集中均含有不可测的子集.

Rem. 外测度大于 0 的集合总可以构造不可测集.

16. 零测集的余集必是稠密集.

Rem. 反证, 若不是, 则存在开集 G 使得 $G \cap E = \emptyset$, 于是 m(G) = 0, 这与 G 为开集矛盾.

17. 证明简单函数的和、差、积、商仍为简单函数.

Rem. 设 $f = \sum_{i=1}^{n} a_i \chi_{E_i}$, $g = \sum_{j=1}^{m} b_j \chi_{F_j}$ 为两个简单函数, 则它们的和、差、积、商可以表示为:

- π : $f+g=\sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)\chi_{E_i\cap F_j};$
- $\not\equiv : f g = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i b_j) \chi_{E_i \cap F_i};$

- #R: $fg = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i b_j) \chi_{E_i \cap F_j} ;$
- $\tilde{\mathfrak{p}}$: $f/g = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i/b_j) \chi_{E_i \cap F_j}$ (\mathfrak{b} $b_j \neq 0$).

由于有限个简单函数的线性组合仍是简单函数, 所以和、差、积、商均为简单函数.

18. 函数 $f(x)|_E$ 在孤立点 $x_0 \in E$ 处连续.

Rem. 设 E 为可测集, f(x) 为定义在 E 上的实函数, $x_0 \in E$ 为孤立点. 则存在 $\delta > 0$, 使得 $B(x_0, \delta) \cap E = \{x_0\}$. 因此, 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in B(x_0, \delta) \cap E$ 时, $|f(x) - f(x_0)| < \varepsilon$. 所以 $f(x)|_E$ 在 x_0 处连续.

19. 可测集 $E \subset \mathbb{R}$ 上的单调函数 f(x) 是 E 上的可测函数.

Rem. E[f > a] 总是可测的, 取 E_0 表示 f 的间断点, 则 $m(E_0[f > a]) = 0$, 另一方面, $E \setminus E_0[f > a]$ 连续, 因而可测, 所以 E[f > a] 可测.

20. 设 f 为可测集 E 上的广义实函数. 若对几乎所有的 $a \in \mathbb{R}$, 集合 E[f > a] 均可测, 则 f 在 E 上可测.

Rem. 任取 $a \in mathbb{R}$, 则 $\exists a_n \to a$, $E[f > a_n]$ 可测. 于是 $E[f > a] = \bigcup_{n=1}^{\infty} E[f > a_n]$.

21. 设 $m(E) < \infty$, f 是 E 上几乎处处有限的可测函数. 证明: 对 $\forall \varepsilon > 0$, 存在闭集 $F \subset E$, 使得 $m(E \setminus F) < \varepsilon$, 且 f 在 F 上有界.

Rem. 构造 E[|f|>n], 则 $\lim_{n\to\infty}m(E_n)=0$, 于是 $\exists N>0, m(E[|f|>N])<\varepsilon$, 取闭集 $F\subset E\backslash E_N$ 满足 $m\left((E\backslash E_N)\backslash F\right)<\frac{\varepsilon}{2}$, 则 $m(E\backslash F)<\varepsilon$, 且 f 在 F 上有界.

22. 设 f 和 f_n 均是可测集 E 上几乎处处有限的可测函数. 证明: $E[f_n \to f]$ 和 $E \setminus E[f_n \to f]$ 均可测.

Rem. 取 E_n 使 f 和 f_n 均不有限, 则 $m(\bigcup_{n=1}^{\infty} E_n) = 0$. 只需证 $E \setminus (\bigcup_{n=1}^{\infty} E_n) [f_n \to f]$ 可测.

23. 设 f, g 均是 E 上的可测函数. 证明: 集合 E[f > g] 是可测集.

Rem. 取有理数集 r_i ,则 $E[f > g] = \bigcup_{i=1}^{\infty} E[f > r_i] \cap E[g < r_i]$.由于 $E[f > r_i]$ 和 $E[g < r_i]$ 均可测,所以它们的交集也是可测的.

24. 构造反例说明: 由 |f| 可测得不到 f 可测.

Rem. 取 E 的不可测子集 A, 则 $f = \chi_A - \chi E \setminus A$ 在 E 上不是可测函数.

25. 设在 \mathbb{R}^p 中, f(x) 是 E_1 上的可测函数; 在 \mathbb{R}^q 中, g(y) 是 E_2 上的可测函数. 证明: 在 \mathbb{R}^{p+q} 中, f(x)g(y) 是 $E = E_1 \times E_2$ 上的可测函数.

Rem. 取 E[f(x)g(y) > a], 则 $E[f(x) > a/b] \cap E[g(y) > b]$ 可测, 所以 E[f(x)g(y) > a] 可测.

26. 设在可测集 E 上,有 $f_n \Rightarrow f$; 在 E 上对任意的 n 都几乎处处成立 $|f_n(x)| \leq K$. 证明: 在 E 上几乎处处成立 $|f(x)| \leq K$.

Rem. 由 Riesz 定理存在子列 f_{n_k} 几乎处处收敛到 f, 由极限保序性, 可得 $|f(x)| \leq K$.

27. 设 $E \subset \mathbb{R}^n$ 是闭集, f(x) 在 E 上连续, 证明对任意的 $a \in \mathbb{R}, E[f \geqslant a]$ 是闭集.

Rem. 由连续性, 对任意的 $a \in \mathbb{R}$, $E[f \geqslant a]$ 可以表示为 $E \cap f^{-1}([a, \infty))$, 其中 $f^{-1}([a, \infty))$ 是闭集, 所以 $E[f \geqslant a]$ 是闭集.

28. Lusin 定理中的 ε 不能换成 0.

Rem. 取 (0,1) 上的 *Dirichlet* 函数, 若存在 F 是 (0,1) 上的闭集, 使得 $m((0,1)\backslash F) = 0$, 则 $(0,1)\backslash F$ 是 零测集, F = (0,1), 但 *Dirichlet* 函数在 (0,1) 上处处不连续, 所以不存在这样的闭集 F.

29. 求 [0,1] 上 Dirichlet 函数 D(x), Riemann 函数 R(x) 的积分.

Rem. 均为 θ .

30. 设 $m(E) < \infty$, f(x) 在 E 上非负可测, 证明: f(x) 在 E 上可积 $\Leftrightarrow \sum_{k=0}^{\infty} 2^k m(F_k)$, 其中 $F_k = E\left[f \geqslant 2^k\right]$.

Rem.

31. 设 $m(E) < \infty$, E_1, E_2, \dots, E_n 是 E 的 n 个可测子集, 正整数 $k \le n$. 证明: 若 E 中每一点至少属于 k 个 E_i , 则存在某个 i, 使得 $m(E_i) \ge \frac{k}{n} m(E)$.

Rem. 设 E_i 的测度为 $m(E_i)$,则每个点至少属于 $k \wedge E_i$,所以 $\sum_{i=1}^n m(E_i) \geqslant km(E)$.由于 $\sum_{i=1}^n m(E_i) = m(E)$,所以存在某个 i,使得 $m(E_i) \geqslant \frac{k}{n}m(E)$.

32. f 是 Lebesgue 可积的 ⇒ |f| 也是 Lebesgue 可积的. 反之, 不对.

Rem. 取 E 的一不可测集 A, 做 $f = \chi_A - \chi_{E \setminus A}$. 则 |f| 是 Lebesgue 可积的, 但 f 不是 Lebesgue 可积的.

33. 证明: 1. $\frac{\sin x}{x}$ 在 $(0,\infty)$ 上不是勒贝格可积的.

2. $\frac{1}{x}$ 在 (0,1) 上不是勒贝格可积的.

Rem. 1. 绝对值不是黎曼可积的. 2. 反证可得

34. 设 $m(E) < \infty$, $f_n(x) \subset L(E)$, 且在 $E \perp f_n(x)$ 一致收敛到 f(x). 证明: $f(x) \in L(E)$, 且 $\int_E f(x) dx = \lim_{n \to \infty} \int_E f_n(x) dx$.

Rem. 由一致收敛性, 对任意的 $\varepsilon > 0$, 存在 N, 使得当 $n \geqslant N$ 时, $|f_n(x) - f(x)| < \varepsilon$ 对所有 $x \in E$ 成立. 由于 $f_n(x)$ 在 E 上可积, 所以 $\int_E |f_n(x)| dx < \infty$. 于是 $\int_E |f(x)| dx \leqslant \int_E |f_n(x)| dx + \varepsilon m(E) < \infty$, 所以 $f(x) \in L(E)$. 由一致收敛性, $\int_E f_n(x) dx \to \int_E f(x) dx$.

35. 设 $m(E)<\infty$, 证明: 在 $E\perp f_n(x)\Rightarrow 0$ 的充要条件是 $\lim_{n\to\infty}\int_E \frac{|f_n(x)|}{1+|f_n(x)|}dx=0$.

Rem.

36. 设 f(x) 是可测集 E 上的可积函数, 令 $e_n = E[f \geqslant n]$. 证明: $\lim_{n \to infty} n \cdot m(e_n) = 0$.

Rem. 由 f(x) 的可积性, $\int_E |f(x)| dx < \infty$, 所以 $\lim_{n \to \infty} n \cdot m(E[f \geqslant n]) = 0$. 由于 $E[f \geqslant n]$ 是可测集, 所以 $m(E[f \geqslant n])$ 是有限的, 因此结论成立.