अध्याय

पदार्थ : धातु और अधातु

उन्हें प लोहा, ऐलुमिनियम, ताँबा, आदि जैसे कुछ पदार्थों से परिचित हैं। कुछ पदार्थ सारणी 4.1 में दिए गए हैं।

सारणी 4.1 : पदार्थों की दिखावट और कठोरता

वस्तु ⁄ पदार्थ	दिखावट	कठोरता
	(चमकदार/	(बहुत कठोर/
	निष्प्रभ)	बहुत कठोर
		नहीं)
आयरन (लोहा)		
कोयला		
सल्फर (गंधक)		
ऐलुमिनियम		
कॉपर (ताँबा)		

क्या आप उन पदार्थों के नाम बता सकते हैं जो धातु हैं? सारणी 4.1 में शेष पदार्थ अधातु हैं। धातुओं का अधातुओं से अन्तर उनके भौतिक और रासायनिक गुणों के आधार पर किया जा सकता है। स्मरण करिए कि चमक और कठोरता भौतिक गुण हैं।

4.1 धातुओं और अधातुओं के भौतिक गुण

क्या आपने लोहार को लोहे के टुकड़े अथवा लोहे से निर्मित वस्तु, जैसे— फावड़ा, बेलचा, कुल्हाड़ी, आदि को पीटते हुए देखा है? क्या इन वस्तुओं को पीटने पर आप इनके आकार में कोई परिवर्तन पाते हैं? क्या लकडी के लट्ठे की पीटने पर भी वैसे ही परिवर्तन की अपेक्षा करते हैं?

आइए जानें।

क्रियाकलाप 4.1

एक लोहे की कील, एक कोयले का टुकड़ा, एक मोटे ऐलुमिनियम तार का टुकड़ा और एक पेंसिल लेड लीजिए। लोहे की कील लेकर उसे हथौड़े द्वारा पीटिए (चित्र 4.1)। (परन्तु ध्यान रहे कि इस

चित्र 4.1 : हथौड़े से लोहे की कील को पीटना।

प्रक्रम में आप स्वयं को चोट न पहुँचा लें।) जोर से पीटने का प्रयास करिए। ऐलुमिनियम के तार पर भी जोर से चोट करिए। इसी प्रकार का प्रक्रम कोयले के टुकड़े और पेंसिल लेड के साथ भी करिए। अपने प्रेक्षणों को सारणी 4.2 में रिकॉर्ड करिए।

सारणी 4.2 : पदार्थों की आघातवर्धनीयता

वस्तु ⁄पदार्थ	आकार में परिवर्तन (चपटा हो गया/टुकड़े हो गए)
लोहे की कील	
कोयले का टुकड़ा	
ऐलुमिनियम की तार	
पेंसिल लेड	

आपने देखा कि लोहे की कील और ऐलुमिनियम के तार को पीटने पर उनका आकार परिवर्तित हो गया। यदि उन्हें अधिक शक्ति से पीटा जाए तो उन्हें शीट में परिवर्तित किया जा सकता है। आप सम्भवत: मिटाइयों को सजाने के लिए उपयोग में लाए जाने वाले चाँदी के वर्क से भी परिचित होंगे। आप ऐलुमिनियम पन्नी/पर्णिका द्वारा खाद्य सामग्री को लपेटने के उपयोग से भी अवश्य परिचित होंगे। धातुओं का गुण जिसके कारण उन्हें पीटकर शीट में परिवर्तित किया जा सकता है, आघातवर्धनीयता कहलाता है। यह धातुओं का अभिलाक्षणिक गुण है। जैसा आपने देखा होगा, कोयले और पेंसिल लेड जैसे पदार्थ यह गुण प्रदर्शित नहीं करते। क्या हम इन्हें धातु कह सकते हैं?

क्या आप बिना प्लास्टिक या लकड़ी के हत्थे वाले गर्म धातु के पात्र को, स्वयं को बिना आघात पहुँचाए, पकड़ सकते हैं? शायद नहीं! क्यों? कुछ अन्य अनुभवों की सूची बनाने का प्रयास किए जिसमें एक लकड़ी या प्लास्टिक का हत्था आपको घायल होने से बचाता है जब आप गर्म वस्तुओं को पकड़ते हैं। इन अनुभवों के आधार पर आप लकड़ी और प्लास्टिक द्वारा ऊष्मा के चालन के विषय में क्या कह सकते हैं? आपने एक विद्युतकर्मी को पेंचकस से काम करते देखा होगा। उसका हत्था किस प्रकार का होता है? क्यों? आइए जानें।

क्रियाकलाप 4.2

याद करिए, किसी वस्तु में विद्युत का प्रवाह होता है या नहीं— यह परीक्षण करने हेतु विद्युत परिपथ कैसे बनाया जाता है (चित्र 4.2)। आपने कक्षा VI

में विभिन्न वस्तुओं के साथ यह क्रियाकलाप किया होगा। अब इसी क्रियाकलाप को सारणी 4.3 में दिए गए पदार्थों के साथ दोहराइए। प्रेक्षण लीजिए और इन पदार्थों को सुचालकों और कुचालकों में वर्गीकृत करिए।

सारणी 4.3 : पदार्थों की वैद्युत चालकता

क्रम. सं.	पदार्थ	सुचालक / कुचालक
1.	लोहे की छड़/कील	
2.	गंधक	
3.	कोयला	
4.	ताँबे की तार	

आपने पाया कि लोहे की छड़, कील और ताँबे का तार सुचालक हैं जबकि गंधक और कोयला कुचालक हैं।

ओह! अपने अनुभव स्मरण करने और फिर इस क्रियाकलाप का अर्थ यह दिखाना था कि धातु ऊष्मा और विद्युत के सुचालक होते हैं। यह हमने कक्षा VI में सीखा था।

आप ऐलुमिनियम और ताँबे की तारों का उपयोग कहाँ देखते हैं? क्या आपने कोयले की तारें देखी हैं? निश्चित रूप से नहीं!

धातुओं का वह गुण जिससे उन्हें खींचकर तारों में परिवर्तित किया जा सकता है, **तन्यता** कहलाता है।

क्या आपने कभी लोहे की शीट/प्लेट, धातु का सिक्का, और एक कोयले का टुकड़ा फर्श पर गिराकर, उनसे उत्पन्न ध्वनि के अन्तर पर ध्यान दिया है? यदि नहीं. तो अब आप प्रयास कर सकते हैं। क्या आप उत्पन्न ध्वनियों में कोई अन्तर पाते हैं? क्या आपने मंदिरों में लकड़ी की घंटियाँ देखी हैं? क्या आप इसका कारण बता सकते हैं?

धातुओं से बनी वस्तुओं को जब कठोर सतह से टकराया जाता है तो एक निनाद ध्विन (ringing sound) उत्पन्न होती है। माना आपके पास दो समान दिखने वाले डिब्बे हैं, एक लकड़ी से निर्मित और दूसरा धातु से। क्या आप दोनों डिब्बों पर चोट करके बता सकते हैं कि कौन सा डिब्बा धातु का बना हुआ है?

क्योंकि धातु गायन ध्वनियाँ उत्पन्न करते हैं, अत: वे ध्वानिक कहलाते हैं। धातुओं के अलावा अन्य पदार्थ ध्वानिक नहीं होते।

उक्त क्रियाकलाप करने के पश्चात् हम कह सकते हैं कि कुछ पदार्थ कठोर, चमकीले, आघातवर्ध, तन्य, ध्वानिक और ऊष्मा तथा विद्युत के सुचालक होते हैं। पदार्थ जिनमें सामान्यतया ये गुण होते हैं, धातु कहलाते हैं। धातुओं के उदाहरण हैं— आयरन, कॉपर, ऐलुमिनियम, कैल्सियम, मैग्नीशियम, इत्यादि। इसके विपरीत कोयले और सल्फर जैसे पदार्थ नरम हैं तथा दिखने में मिलन हैं, ये हथौड़े की हलकी चोट से टूटकर चूरा हो जाते हैं, ध्वानिक नहीं हैं और ऊष्मा तथा विद्युत के कुचालक हैं। ये पदार्थ अधातु कहलाते हैं। अधातुओं के उदाहरण हैं – सल्फर, कार्बन, ऑक्सीजन, फॉस्फोरस, इत्यादि।

सोडियम और पोटैशियम धातु नरम होते हैं और उन्हें चाकू से काटा जा सकता है। मर्करी (पारा) केवल ऐसा धातु है जो कमरे के तापमान पर द्रव अवस्था में पाया जाता है। ये अपवाद हैं।

4.2 धातुओं और अधातुओं के रासायनिक गुण

A. ऑक्सीजन से अभिक्रिया

आप आयरन में जंग लगने की परिघटना से परिचित हैं। जंग बनने की अभिक्रिया का स्मरण करिए। आपने कक्षा VII में मैग्नीशियम रिबन के वायु में दहन का क्रियाकलाप किया है। आपने सीखा था कि दोनों प्रक्रमों में ऑक्साइड बनते हैं। आयरन और मैग्नीशियम की ऑक्सीजन के साथ निम्नलिखित अभिक्रियाओं को पूरा करिए। आयरन (Fe) + ऑक्सीजन (O_2) + जल (H_2O) \rightarrow ? मैग्नीशियम (Mg) + ऑक्सीजन (O_2) \rightarrow ?

क्रियाकलाप 4.3

आइए, आयरन, ऑक्सीजन और जल की अभिक्रिया के परिणामस्वरूप बने जंग की प्रकृति की जाँच करें। लगभग एक चम्मच जंग को इकट्ठा करिए और उसे बहुत थोड़े जल में घोलिए। आप पाएँगे कि वह जल में निलम्बन के रूप में रहता है। लटकन को अच्छी तरह हिलाइए। विलयन का परीक्षण क्रमश: लाल और नीले लिटमस पत्रों से करिए (चित्र 4.3)। आप क्या देखते हैं? विलयन अम्लीय है या क्षारीय?

46

क्या कॉपर में भी जंग लगता है? मैंने कॉपर के बर्तनों की सतह पर हरा पदार्थ जमा हुआ देखा है।

जब कॉपर के बर्तन को लम्बे समय तक नम वायु में खुला रखा जाता है तो उस पर एक हलकी हरी परत जम जाती है। यह हरा पदार्थ कॉपर हाइड्रॉक्साइड [Cu(OH)2] और कॉपर कार्बोनेट [CuCO3] का मिश्रण होता है। अभिक्रिया निम्नलिखित है-

2Cu+H₂O+CO₂+O₂→Cu(OH)₂ + CuCO₃ नम वाय

अब मैग्नीशियम रिबन के दहन के क्रियाकलाप का स्मरण करिए। मैग्नीशियम रिबन का दहन करने पर प्राप्त राख को जल में घोलकर उसकी अम्लीय/ क्षारीय प्रकृति जानने हेतु विलयन का परीक्षण करते हैं।

विलयन अम्लीय है या क्षारीय? आप इसको किस प्रकार सुनिश्चित करेंगे।

आपने प्रेक्षण किया होगा कि लाल लिटमस नीला हो जाता है। इसलिए मैग्नीशियम के ऑक्साइड की प्रकृति क्षारीय होती है। सामान्यत: धात्विक ऑक्साइड क्षारीय प्रकृति के होते हैं।

आइये, अब अधातुओं की ऑक्सीजन के साथ अभिक्रिया का प्रेक्षण करें।

क्रियाकलाप 4.4

(शिक्षक द्वारा कक्षा में प्रदर्शित की जाएँ)

चूर्णित सल्फर की कुछ मात्रा एक उद्दहन चम्मच में लीजिए और उसे गर्म करिए। यदि उद्दहन चम्मच उपलब्ध न हो तो आप किसी भी बोतल का धातु का ढक्कन ले सकते हैं। इसके चारों ओर एक धातु का तार लपेट दीजिए जैसा कि चित्र 4.4(a) में दिखाया गया है। जैसे ही सल्फर जलना प्रारम्भ हो तो चम्मच को एक गैस जार/काँच के गिलास में ले जाइए [चित्र 4.4(a)] गिलास को एक ढक्कन से ढक दीजिए जिससे बनने वाली गैस बाहर न जा सके। कुछ समय पश्चात् चम्मच को हटा दीजिए।

गिलास में थोड़ा जल डालिए और तुरन्त ढक्कन से वापस ढक दीजिए। अब गिलास को भली भांति हिलाइए। विलयन का परीक्षण क्रमश: लाल और नीले लिटमस पत्रों से करिए [चित्र 4.4(b)]।

चित्र 4.4(a): सल्फर चूर्ण का दहन।

चित्र 4.4(b): लिटमस पत्रों द्वारा विलयन का परीक्षण।

सारणी 4.4 : अम्लों और क्षारों में धातु और अधातु

क्रम सं.	क्षार का नाम	धातु	अम्ल का नाम	अधातु
1.	कैल्सियम हाइड्रॉक्साइड	कैल्सियम	सल्फ्यूरिक अम्ल	सल्फर
2.				
3.				
4.				
5.				

सल्फर और ऑक्सीजन की अभिक्रिया में बनने वाले उत्पाद का नाम सल्फर डाइऑक्साइड गैस है। जब सल्फर डाइऑक्साइड को जल में विलेय करते हैं तो सल्फ्यूरस अम्ल प्राप्त होता है। अभिक्रिया निम्न प्रकार से दी जा सकती है :

सल्फर डाइऑक्साइड ($\mathrm{SO_2}$) + जल ($\mathrm{H_2O}$) \to सल्फ्यूरस अम्ल ($\mathrm{H_2SO_3}$)

सल्फ्यूरस अम्ल नीले लिटमस पत्र को लाल कर देता है। सामान्यत: अधातुओं के ऑक्साइड अम्लीय प्रकृति के होते हैं।

प्रयोगशाला में काम आने वाले कुछ अम्लों और क्षारों के नाम याद करिए जो आपने कक्षा VII में पढ़े थे। उनके नाम सारणी 4.4 में लिखिए। उनमें उपस्थित धातु अथवा अधातु की पहचान करिए जो ऑक्सीजन के साथ ऑक्साइड बनाता है।

B. जल के साथ अभिक्रिया

आइए देखें, धातु और अधातु किस प्रकार जल से अभिक्रिया करते हैं।

सोडियम धातु बहुत अभिक्रियाशील होता है। यह ऑक्सीजन और जल के साथ अत्यन्त तीव्र अभिक्रिया करता है। अभिक्रिया में बहुत अधिक ऊष्मा उत्पन्न होती है। इसलिए यह मिट्टी के तेल में संचित रखा जाता है।

क्रियाकलाप 4.5

शिक्षक द्वारा कक्षा में प्रदर्शित की जाए (प्रदर्शन के समय विशिष्ट सावधानी रखी जाए कि सोडियम धातु के टुकड़े का आकार लगभग गेहूँ के दाने के बराबर हो। इसे चिमटी द्वारा पकड़ना चाहिए)। एक 250 mL का बीकर/काँच का गिलास लीजिए। इसे आधा जल से भर लीजिए। अब सावधानीपूर्वक एक छोटा सोडियम धातु का टुकडा काटिए। फिल्टर पत्र का उपयोग कर इसे सुखा लीजिए और फिर रुई के छोटे टुकड़े में लपेट लीजिए। रुई में लिपटे सोडियम के टुकड़े को बीकर में डाल दीजिए। सावधानीपूर्वक प्रेक्षण लीजिए। प्रेक्षण लेते समय बीकर से दूर रहें। जब अभिक्रिया बंद हो जाए, बीकर को छूइए। आप क्या अनुभव करते हैं? क्या बीकर गर्म हो गया? विलयन का लाल और नीले लिटमस पत्रों से परीक्षण करिए। विलयन अम्लीय है या क्षारीय?

चित्र 4.5 : सोडियम की जल से अभिक्रिया।

आपने देखा कि सोडियम जल के साथ तीव्र अभिक्रिया करता है। कुछ अन्य धातु ऐसा नहीं करते। उदाहरण के लिए, आयरन जल से धीमी अभिक्रिया करता है।

सामान्यत: अधातु जल से अभिक्रिया नहीं करते, यद्यपि वे वायु में बहुत सिक्रिय हो सकते हैं। इस प्रकार के अधातुओं को जल में रखा जाता है। उदाहरण के लिए, फॉस्फोरस एक बहुत सिक्रिय अधातु है। वायु में खुला रखने पर यह आग पकड़ लेता है। फॉस्फोरस से वायुमण्डलीय ऑक्सीजन का सम्पर्क न हो, इसलिए उसे जल में रखा जाता है।

C. अम्लों से अभिक्रिया

आइए देखें, धातु और अधातु अम्लों के साथ किस प्रकार व्यवहार करते हैं।

कियाकलाप 4.6

सावधानी : परखनली के मुँह को अपने चेहरे से दूर रखिए। परखनली पकड़ने के लिए परखनली होल्डर का प्रयोग करिए।

सारणी 4.5 में सूचीबद्ध धातुओं और अधातुओं के

नमूने पृथक् परखनिलयों में लीजिए और उन्हें A, B, C, D, E और F से चिह्नित कर दीजिए। ड्रॉपर की सहायता से प्रत्येक परखनिली में एक-एक करके 5 mL तनु हाइड्रोक्लोरिक अम्ल डालिए। अभिक्रिया का सावधानीपूर्वक प्रेक्षण करिए। यदि ठंडे विलयन में कोई अभिक्रिया नहीं होती तो परखनिलों को हलका गर्म करिए। प्रत्येक परखनिलों के मुँह के पास एक जलती हुई माचिस की तीली लाइए। यही क्रियाकलाप तनु हाइड्रोक्लोरिक अम्ल के स्थान पर तनु सल्फ्यूरिक अम्ल लेकर दोहराइए। अपने प्रेक्षणों को सारणी 4.5 में लिखए।

क्या धातु और अधातु, अम्लों से भिन्न प्रकार से अभिक्रिया करते हैं? परखनिलयों के मुँह के पास जलती हुई माचिस की तीली लाने पर, कुछ में 'पॉप' ध्विन क्यों उत्पन्न हुई थी?

आपने पाया होगा कि अधातु सामान्यत: अम्लों से अभिक्रिया नहीं करते, परन्तु धातु अम्लों से अभिक्रिया करते हैं और हाइड्रोजन गैस उत्पन्न करते हैं, जो 'पॉप' ध्विन के साथ जलती है। आपने देखा कि कॉपर तनु हाइड्रोक्लोरिक अम्ल से गर्म करने पर भी अभिक्रिया

सारणी 4.5 : धातुओं और अधातुओं की अम्लों से अभिक्रिया

परखनली का चिह्न	धातु∕अधातु	तनु हाइड्रोक्लोरिक अम्ल से अभिक्रिया		तनु सल्फ्यूरिक अम्ल से अभिक्रिया	
			गरम करने पर	सामान्य	गरम करने पर
		ताप पर		ताप पर	
A	मैग्नीशियम (रिबन)				
В	ऐलुमिनियम (पन्नी)				
С	आयरन (छीलन)				
D	कॉपर (छीला हुआ				
	लचीला तार)				
E	लकड़ी का कोयला				
	(चूर्ण)				
F	सल्फर (चूर्ण)				

नहीं करता। परन्तु यह सल्फ्यूरिक अम्ल से अभिक्रिया कर लेता है।

D. क्षारों से अभिक्रियाएँ

कियाकलाप 4.7

शिक्षक द्वारा प्रदर्शित की जाए

(सोडियम हाइड्रॉक्साइड विलयन बनाते समय सावधानी बरतिए कि सोडियम हाइड्रॉक्साइड की टिकियाओं को प्लास्टिक स्पैचुला से पकड़ें)

एक परखनली में सोडियम हाइड्रॉक्साइड का ताज़ा विलयन उसकी 3-4 टिकियाँ 5 mL जल में घोलकर बनाइए। इसमें एक ऐलुमिनियम की पन्नी का टुकड़ा डालिए। एक जलती हुई माचिस की तीली परखनली के मुँह के निकट लाइए। ध्यान से प्रेक्षण लीजिए।

'पॉप' ध्विन क्या दर्शाती है? पहले की तरह 'पॉप' ध्विन हाइड्रोजन गैस की उपस्थिति दर्शाती है। धातु सोडियम हाइड्रॉक्साइड से अभिक्रिया कर हाइड्रोजन गैस उत्पन्न करते हैं। अधातुओं की क्षारों से अभिक्रियाएँ जटिल हैं।

E. विस्थापन अभिक्रियाएँ

कॉपर सल्फेट और आयरन के मध्य अभिक्रिया वाले क्रियाकलाप को याद करिए जो आपने कक्षा VII में किया था। आइए, उस प्रकार की कुछ और अभिक्रियाओं को देखें।

क्रियाकलाप 4.8

100 मिली के पाँच बीकर लीजिए और उन्हें A, B, C, D और E चिह्नित कर दीजिए। प्रत्येक बीकर में लगभग 50 mL जल लीजिए। प्रत्येक बीकर में चित्र 4.6 (a) में दर्शाये पदार्थों में से प्रत्येक का एक चम्मच डालकर घोल लीजिए।

बीकर A: कॉपर सल्फेट (CuSO_s) + जिंक का टुकड़ा (Zn),

बीकर B: कॉपर सल्फेट (CuSO4) + लोहे की कील (Fe)

बीकर C : जिंक सल्फेट (ZnSO4) + ताँबे की छीलन (Cu),

बीकर D : आयरन सल्फेट (FeSO4) + ताँबे की छीलन (Cu)

बीकर E : जिंक सल्फेट ($ZnSO_4$) + लोहे की कील (Fe)

चित्र 4.6 (a) तथा (b) : विस्थापन अभिक्रियाएँ।

- बीकरों को बिना छेड़े कुछ समय तक रखा रहने दीजिए।
- 🗢 अपने प्रेक्षणों को नोटबुक में रिकॉर्ड करिए।

आप विभिन्न बीकरों में क्या परिवर्तन देखते हैं? आपने पढ़ा है कि एक धातु दूसरे धातु को उसके यौगिक के जलीय विलयन से विस्थापित करता है। बीकर A में जिंक, कॉपर सल्फेट विलयन से कॉपर को विस्थापित करता है और इसीलिए कॉपर सल्फेट का नीला रंग अदृश्य हो जाता है और बीकर के पेंदे पर कॉपर का लाल चूर्ण जमा हो जाता है। अभिक्रिया को निम्न प्रकार से प्रदर्शित किया जा सकता है:

कॉपर सल्फेट ($CuSO_4$) + जिंक (Zn) \rightarrow (नीला) जिंक सल्फेट ($ZnSO_4$) + कॉपर (Cu) (रंगहीन) (लाल)

आप इसी प्रकार बीकर B में होने वाली अभिक्रिया को लिख सकते हैं।

मैंने बीकर A और B में होने वाली अभिक्रियाओं को समझ लिया है। परन्तु मैं अभी भी भ्रमित हूँ कि बीकर C, D और E में कोई परिवर्तन क्यों नहीं हुआ?

बीकर C में जिंक का कॉपर द्वारा और बीकर E में आयरन द्वारा विस्थापन हो सकता था। इसी प्रकार बीकर D में आयरन का विस्थापन कॉपर द्वारा हो सकता था।

क्योंकि हम बीकर C में कोई परिवर्तन नहीं देखते, हम इस निष्कर्ष पर पहुँच सकते हैं कि कॉपर, जिंक सल्फेट से जिंक को प्रतिस्थापित करने में सक्षम नहीं है। परन्तु क्यों? जब बीकर A में जिंक, कॉपर को प्रतिस्थापित कर सकता है, तो बीकर C में कॉपर, जिंक को प्रतिस्थापित क्यों नहीं कर सकता? याद रिखए विज्ञान मनमाना नहीं होता। यह तथ्यों पर आधारित निश्चित नियमों का पालन करता है। और यहाँ नियम यह है कि जिंक, कॉपर और आयरन से अधिक अभिक्रियाशील है। एक अधिक अभिक्रियाशील धातु, कम अभिक्रियाशील धातु को विस्थापित कर सकता है परन्तु कम अभिक्रियाशील धातु, अधिक अभिक्रियाशील धातु को प्रतिस्थापित नहीं कर सकता। अब आप समझ सकते हैं कि बीकर D और E में विस्थापन अभिक्रियाएँ क्यों सम्पन्न नहीं हुईं। क्या आप जिंक, आयरन और कॉपर के मध्य अधिक अभिक्रियाशील से कम अभिक्रियाशील धातु के क्रम का अनुमान लगा सकते हैं?

4.3 धातुओं और अधातुओं के उपयोग

आपको अनुमान लगाने में सक्षम होना चाहिए कि क्यों धातुओं का उपयोग मशीनें, मोटर गाड़ियाँ, वायुयान, रेलगाड़ियाँ, उपग्रह, औद्योगिक साजो-सामान, खाना बनाने के पात्र, जल बॉयलर, आदि के निर्माण में किया जाता है। आप कुछ अधातुओं के उपयोगों से भी परिचित होंगे। यहाँ कुछ रोचक उपयोग दिये जा रहे हैं। हमें विश्वास है कि आप उनका सही अनुमान लगा पाएँगे:

- अधातु जो हमारे जीवन के लिए आवश्यक है और जिसे सभी सजीव श्वसन के समय अन्दर लेते हैं।
- अधातु जिनका उपयोग उर्वरकों में पौधों की वृद्धि हेतु किया जाता है।
- अधातु जिसका उपयोग जल शुद्धिकरण प्रक्रम में किया जाता है।
- अधातु जिसका बैंगनी रंग का विलयन एंटीबायोटिक के रूप में घावों पर लगाया जाता है।
- पटाखों में प्रयुक्त होने वाले अधातु।
 आप अपने अनुभव से धातुओं और अधातुओं के कुछ और उपयोग जोड़ सकते हैं।

डॉक्टर ने मेरे शरीर में आयरन की कमी बताई है। मेरे शरीर में आयरन कहाँ है?

आपने कक्षा VII में सीखा है कि रासायनिक अभिक्रियाओं में नये पदार्थ बनते हैं। ये पदार्थ, उन पदार्थों से भिन्न होते हैं जिनमें अभिक्रिया होती है। अब यदि कोई पदार्थ रासायनिक अभिक्रियाओं द्वारा, ठंडा करके, गर्म कर अथवा वैद्युत अपघटन द्वारा और अधिक विघटित नहीं किया जा सकता, तो वह 'तत्व' कहलाता है। सल्फर एक तत्व है। इसी प्रकार आयरन और कार्बन भी एक तत्व हैं। तत्व के एक नमूने में एक ही प्रकार के परमाणु होते हैं। परमाणु तत्व की सबसे छोटी इकाई होता है। तत्व के भौतिक परिवर्तनों में तत्व के परमाणु अप्रभावित रहते हैं। उदाहरण के लिए, द्रव सल्फर का परमाणु पूर्ण रूप से ठोस अथवा वाष्य सल्फर के परमाणु के समान होता है।

यद्यपि ब्रह्माण्ड में पदार्थों की असंख्य किस्में हैं, इन्हें बनाने वाले तत्वों की संख्या सीमित है। प्राकृतिक रूप से पाए जाने वाले तत्वों की संख्या 94 से अधिक नहीं है। धातुओं और अधातुओं के रूप में तत्वों का एक महत्वपूर्ण वर्गीकरण है। अधिकांश तत्व धातु हैं। 20 से कम अधातु हैं। कुछ उपधातु हैं जिनमें धातुओं और अधातुओं दोनों के गुण हैं।

52

प्रमुख शब्द

परमाणु

चालक

विस्थापन-अभिक्रिया

तन्यता

तत्व

कठोरता

आघातवर्धनीयता

धातु

उपधात्

अधात्

ध्वानिक

आपने क्या सीखा

- 🗢 धातुओं में चमक होती है जबिक अधातुओं में चमक नहीं होती।
- सामान्यतः धातु आघातवर्धनीय और तन्य होते हैं, अधातु नहीं होते।
- सामान्यतः धातु ऊष्मा और विद्युत के सुचालक होते हैं परन्तु अधातु नहीं होते।
- दहन करने पर धातु ऑक्सीजन से अभिक्रिया कर धातु ऑक्साइड बनाते हैं जो क्षारीय प्रकृति के होते हैं। अधातु, ऑक्सीजन से अभिक्रिया कर अधातु ऑक्साइड बनाते हैं जिनकी प्रकृति अम्लीय होती है।
- कुछ धातु, जल से अभिक्रिया कर धातु हाइड्रॉक्साइड और हाइड्रोजन गैस उत्पन्न करते हैं। अधातु जल से अभिक्रिया नहीं करते।
- धातु अम्लों से अभिक्रिया करते हैं और धातु लवण तथा हाइड्रोजन
 गैस बनाते हैं। सामान्यत: अधातु अम्लों से अभिक्रिया नहीं करते।
- 🗢 कुछ धातु क्षारों से अभिक्रिया कर हाइड्रोजन गैस देते हैं।
- अधिक अभिक्रियाशील धातु, कम अभिक्रियाशील धातुओं को उनके धातु यौगिकों के जलीय विलयन में विस्थापित कर देते हैं।
- धातुओं और अधातुओं का दैनिक जीवन में व्यापक उपयोग होता है।

अभ्यास

- 1. निम्नलिखित में से किसको पीटकर पतली चादरों में परिवर्तित किया जा सकता है?
 - (क) जिंक (ख) फॉस्फोरस
- (ग) सल्फर
- (घ) ऑक्सीजन
- 2. निम्नलिखित में से कौन सा कथन सही है?
 - (क) सभी धातुएँ तन्य होती हैं।
 - (ख) सभी अधातुएँ तन्य होती हैं।
 - (ग) सामान्यत: धातुएँ तन्य होती हैं।
 - (घ) कुछ अधातुएँ तन्य होती हैं।
- 3. रिक्त स्थानों की पूर्ति कीजिए-
 - (क) फॉस्फोरस बहुत _____ अधात् है।

	(ख) धातुएँ ऊष्मा और की होती	हैं।	
	(ग) आयरन, कॉपर की अपेक्षा अभिक्रियाशील है।		
	(घ) धातुएँ, अम्लों से अभिक्रिया कर गैस बनाती हैं	l	
4.	यदि कथन सही है तो "T" और यदि गलत है तो कोष्ठक में "F" लि	खए-	
	(क) सामान्यत: अधातु अम्लों से अभिक्रिया करते हैं।	()
	(ख) सोडियम बहुत अभिक्रियाशील धातु है।	()
	(ग) कॉपर, जिंक सल्फेट के विलयन से जिंक विस्थापित करता है।	()
	(घ) कोयले को खींच कर तारें प्राप्त की जा सकती हैं।	()

5. नीचे दी गई सारणी में गुणों की सूची दी गई है। इन गुणों के आधार पर धातुओं और अधातुओं में अन्तर कीजिए—

	गुण	धातु	अधातु
1.	दिखावट		
2.	कठोरता		
3.	आघातवर्धनीयता		
4.	तन्यता		
5.	ऊष्मा चालन		
6.	विद्युत चालन		

- 6. निम्नलिखित के लिए कारण दीजिए-
 - (क) ऐलुमिनियम की पन्नी का उपयोग खाद्य सामग्री को लपेटने में किया जाता है।
 - (ख) निमज्जन छड़ें (इमरशन रॉड) धात्विक पदार्थों से निर्मित होती हैं।
 - (ग) कॉपर, जिंक को उसके लवण के विलयन से विस्थापित नहीं कर सकता।
 - (घ) सोडियम और पोटैशियम को मिट्टी के तेल में रखा जाता है।
- 7. क्या आप नींबू के अचार को ऐलुमिनियम पात्रों में रख सकते हैं? स्पष्ट करिए।
- 8. नीचे दी गई सारणी के कॉलम I में कुछ पदार्थ दिये गये हैं। कॉलम II में उनके कुछ उपयोग दिये गये हैं। कॉलम I के पदार्थों का कॉलम II से सही मिलान किएए—

कॉलम I	कॉलम II	
1. गोल्ड	1. थर्मामीटर	
2. आयरन	2. बिजली के तार	
3. ऐलुमिनियम	3. खाद्य सामग्री लपेटना	
4. कार्बन	4. आभूषण	
5. कॉपर	5. मशीनें	
6. मर्करी	6. ईंधन	

- 9. क्या होता है जब-
 - (क) तनु सल्फ्यूरिक अम्ल कॉपर प्लेट पर डाला जाता है?
 - (ख) लोहे की कील, कॉपर सल्फेट के विलयन में रखी जाती है? सम्बन्धित अभिक्रियाओं के शब्द समीकरण लिखिए।
- 10. सलोनी ने लकड़ी के कोयले का एक जलता हुआ टुकड़ा लिया और उससे उत्सर्जित होने वाली गैस को एक परखनली में इकट्ठा किया—
 - (क) वह गैस की प्रकृति कैसे ज्ञात करेगी?
 - (ख) इस प्रक्रम में होने वाली सभी अभिक्रियाओं के शब्द समीकरण लिखिए।
- 11. एक दिन रीता अपनी माँ के साथ आभूषण विक्रेता की दुकान पर गई। उसकी माँ ने सुनार को पॉलिश करने हेतु सोने के पुराने आभूषण दिए। अगले दिन जब वे आभूषण वापस लाई तो उन्होंने पाया कि उनका भार कुछ कम हो गया है। क्या आप भार में कमी का कारण बता सकते हैं?

विस्तारित अधिगम - क्रियाकलाप एवं परियोजनाएँ

- िकन्हीं चार धातुओं और चार अधातुओं के लिए सूचक पत्रक (इंडेक्स कार्ड) तैयार किरए। पत्रक में धातु/अधातु का नाम, उसके भौतिक गुण, रासायनिक गुण और उपयोगों जैसी सूचना होनी चाहिए।
- 2. एक लोहार के कार्य स्थल पर जाइए और देखिए कि किस प्रकार धातुओं को ढाला जाता है।
- 3. आयरन, कॉपर, ऐलुमिनियम और जिंक की वैद्युत चालकताओं की तुलना करने हेतु कोई प्रयोग सुझाइए। प्रयोग करिए और परिणामों पर एक संक्षिप्त रिपोर्ट तैयार करिए।
- 4. भारत में आयरन, ऐलुमिनियम और जिंक के भण्डार स्थलों की जानकारी प्राप्त किरए। इसे भारत के रेखाचित्र में चिह्नित किरए। ये भण्डार किस रूप में पाये जाते हैं? कक्षा में चर्चा किरए।
- 5. अपने माता-पिता/पड़ोसियों/स्वर्णकारों से चर्चा करिए कि आभूषण निर्माण में गोल्ड को वरीयता क्यों दी जाती है।
- 6. निम्नलिखित वेबसाइटों को देखिए और धातुओं एवं अधातुओं पर क्विज का आनन्द लीजिए :
 - chemistry.about.com/library/weekly/bl050303a.htm
 - chemistry.about.com/od/testsquizzes/Chemistry_Tests_ Quizzes.htm
 - www.syvum.com/cgi/online/mult.cgi/squizzes/science/metals.tdf?0
 - www.gcsescience.com/q/qusemet.html
 - www.corrosionsource.com/handbook/periodic/metals.htm

पदार्थ : धातु और अधातु) 55