Today

- Ammeters, Voltmeters, Ohmmeters, Oh my!
- Solving for Q(t) and I(t) in an RC circuit
- The "time constant" of an RC circuit is RC

Ammeters, Voltmeters and Ohmmeters

Ammeter: measures current I

Voltmeter: measures voltage difference ΔV

Ohmmeter: measures resistance *R*

Ammeter Design: r_{int}

Ammeter is inserted in series into a circuit – measured current

flows through it.

Internal resistance

No ammeter:
$$emf - RI = 0$$
 \longrightarrow $I = \frac{emf}{R}$

With ammeter:
$$emf - r_{int}I - RI = 0 \longrightarrow I = \frac{emf}{R + r_{int}}$$

Internal resistance of an ammeter must be very small

Voltmeter

Voltmeters measure potential difference

 $\Delta V_{\rm AB}$ – add a series resistor to ammeter

$$I = \frac{\Delta V}{R}$$

Measure *I* and convert to $\Delta V_{AB} = IR$

Connecting Voltmeter:

Higher potential must be connected to the '+' socket and lower one to the '-' socket to result in positive reading.

Voltmeter: Internal Resistance

 ΔV_{AB} in absence of a voltmeter

$$\Delta V_{AB} = \frac{R_2}{R_1 + R_2} emf$$

 $\Delta V_{\rm AB}$ in presence of a voltmeter

$$\Delta V_{AB} = \frac{R_{2||\text{int}}}{R_1 + R_{2||\text{int}}} emf$$

$$R_{2||\text{int}} = \frac{R_2 r_{\text{int}}}{R_2 + r_{\text{int}}}$$

Internal resistance of a voltmeter must be very large

Ohmmeter

How would you measure R?

Ammeter with a small voltage source

$$Q = CV$$

 \leftarrow Q is at the capacitor

First: What do we expect?

Note: we use $V_{\it emf}$ Book calls it "emf".

Capacitor initially uncharged. Which graph shows the magnitude of the POTENTIAL DIFFERENCE across the LIGHT BULB FILAMENT while CHARGING?

$$Q = CV$$

 \leftarrow Q is at the capacitor

First: What do we expect?

Just after we connect the circuit:

$$\mathbf{Q} = \mathbf{0}$$

$$V_{emf} = I R$$

A long time after we connect it:

$$Q = C V_{emf}$$

$$I = 0$$

$$Q = CV$$

There's one more concept we need:

$$I = \frac{dQ}{dt}$$

Let's see how...

How are Q(t) and I(t) related?

$$Q = CV$$

In English: Current I = |q| n A v is:

How much charge (ΔQ) passes by per unit time (Δt).

In Math:
$$I = \frac{\Delta Q}{\Delta t} \qquad \qquad lim \ \Delta t \to 0 \ \Rightarrow I = \frac{dQ}{dt}$$

Charge ΔQ per time Δt moves throughout the circuit, but it **piles up** at C.

This is the same Q that is gathering on the capacitor.

$$Q = CV$$

$$I = \frac{dQ}{dt}$$

$$V = IR$$

Use
$$I = \frac{dQ}{dt}$$

Solve this Differential Equation for Q(t).

TIP: How do you "solve" a differential equation? By already knowing the answer!

We have:

$$\frac{dQ(t)}{dt} = \frac{V_{\text{emf}}}{R} - \frac{1}{RC}Q(t)$$

And the solution is:

$$Q(t) = Ae^{-t/RC} + \text{constant}$$
to be determined

Q = CV
$$I = \frac{dQ}{dt}$$
 V = IR $Q(t) = Ae^{-t/RC} + \text{constant}$

$$\frac{dQ(t)}{dt} = \frac{V_{\text{emf}}}{R} - \frac{1}{RC}Q(t)$$

Verify solution:

Use this

Q = CV
$$I = \frac{dQ}{dt}$$
 V = IR $Q(t) = Ae^{-t/RC} + \text{constant}$

Verify solution:
$$\frac{dQ}{dt} = -\frac{1}{RC}Ae^{-t/RC} = -\frac{1}{RC}\left(Q(t) - \text{constant}\right)$$

$$= \frac{1}{RC} \text{constant} - \frac{Q(t)}{RC}$$

 \Rightarrow constant = $V_{\rm emf}C$

"Boundary conditions"

(i.e. use physics – think about the extremes)

At t=0:
$$Q(t \to 0) = Ae^{o} + V_{\text{emf}}C = A + V_{\text{emf}}C = 0$$

$$\Rightarrow A = -V_{\rm emf}C$$

Q = CV
$$I = \frac{dQ}{dt}$$
 V = IR $Q(t) = Ae^{-t/RC} + \text{constant}$ $\frac{dQ(t)}{dt} = \frac{V_{\text{emf}}}{R} - \frac{1}{RC}Q(t)$

constant =
$$V_{\text{emf}}C$$
 $A = -V_{\text{emf}}C$

$$A = -V_{\rm emf}C$$

$$Q(t) = -V_{\rm emf}Ce^{-t/RC} + V_{\rm emf}C$$

$$Q(t) = V_{\rm emf} C \left[1 - e^{-t/RC} \right]$$

Doublecheck: Is it what we expected?

✓ Yes, it is.

$$Q = CV$$
 $I = \frac{dQ}{dt}$ $V = IR$ $Q(t) = V_{emf}C \left[1 - e^{-t/RC}\right]$

Now find I(t):

$$I(t) = \frac{dQ}{dt} = -V_{\text{emf}}C\left[-\frac{1}{RC}e^{-t/RC}\right]$$

$$I(t) = \frac{V_{\text{emf}}}{R} e^{-t/RC}$$

Doublecheck: Is it what we expected?

✓ Yes, it is.

RC Circuit: Summary

Charge in an RC circuit

$$Q = C(emf) \left[1 - e^{-t/RC} \right]$$

Current in an RC circuit

$$I = \frac{emf}{R}e^{-t/RC}$$

The RC Time Constant

Current in an RC circuit

$$I = \frac{emf}{R}e^{-t/RC}$$

When time t = RC, the current I drops by a factor of e.

RC is the 'time constant' of an RC circuit.

$$e^{-t/RC} = e^{-1} = \frac{1}{2.718} = 0.37$$

A rough measurement of how long it takes to reach final equilibrium

What is the value of RC?

About 9 seconds

Today

- Ammeters, Voltmeters, Ohmmeters, Oh my!
- Solving for Q(t) and I(t) in an RC circuit
- The "time constant" of an RC circuit is RC