二阶线性微分方程

钟思佳

东南大学数学系

January 3, 2018

$$ar^2 + br + c = 0$$

- if $b^2 4ac > 0$, 两个不同的根 r_1 , r_2 , $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.
- if $b^2 4ac = 0$, 两重根 r, $y = (C_1 + C_2 x)e^{rx}$.
- if $b^2 4ac < 0$, 一对共轭复根, $r = \alpha \pm i\beta$, $y = (C_1 \cos(\beta x) + C_2 \sin(\beta x))e^{\alpha x}$.

小结

- 1. 求解特征方程
- 2. 写出两个特解
- 3. 写出通解

例 3.2. 求解:

(1)
$$y'' + 8y' = 0$$

$$y=C_1+C_2e^{-8x}$$

(2)
$$y'' + 2y' + y = 0$$

$$y=(C_1+C_2x)e^{-x}$$

(3)
$$y'' + y' + 2y = 0$$

$$y = (C_1 \cos(\frac{\sqrt{7}}{2}x) + C_2 \sin(\frac{\sqrt{7}}{2}x))e^{-\frac{1}{2}x}$$

更高阶的类似

例 3.3.
$$y^{(4)} - 5y''' + 4y'' = 0$$
。

$$y = C_1 + C_2 x + C_3 e^x + C_4 e^{4x}$$