(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-253926

(P2002-253926A)

(43)公開日 平成14年9月10日(2002.9.10)

(51) Int.Cl.7		識別記号		FΙ			÷	7] -*(参考)
B01D	53/50 53/81			B 0	1 J 20/20 20/30		F	4D002 4G066
	53/34 53/56	ZAB		В0	1 D 53/34		123B ZAB	46066
B01J	20/20		審査請求	±#40	±±+₽1≅ 0 ₩. F		129A	Tan office
			田上明不	不明 不	請求項の数5	OL	(全 4 頁)	最終頁に続く

(21)出願番号

特願2001-57846(P2001-57846)

(22)出顧日

平成13年3月2日(2001.3.2)

(71)出願人 396024808

株式会社ニッコープラント

大阪府箕面市小野原東4丁目37番1号

(72)発明者 天野 成一

兵庫県川西市緑台4丁目8番地30

(72)発明者 相部 紀夫

東京都中野区本町4丁目38番25-603号

(74)代理人 100071973

弁理士 谷 良隆

Fターム(参考) 4D002 AA02 AA12 AC01 AC10 BA03

BA04 DA01 DA07 DA35 DA51

DA52 DA59 EA09

40066 AA05B AA13D AA14D AA52D

AA80D BA07 GA11

(54) 【発明の名称】 ガスの処理法

(57)【要約】

【課題】排ガスや大気中に含まれる硫黄酸化物や窒素酸化物を長期に亘り、効率的に除去する方法の提供。

【解決方法】 硫黄硫化物または窒素硫化物を含有する ガスをハニカム状活性炭と接触させ、且つ間欠的または 連続的に水性媒体を該ハニカム状活性炭に接触させるこ とにより前記課題を解決した。

【特許請求の範囲】

【請求項1】硫黄酸化物または窒素酸化物を含有するガ スをハニカム状活性炭と接触させ、且つ間欠的にまたは 連続的に水性媒体を該ハニカム状活性炭に接触させるガ スの処理法。

【請求項2】硫黄酸化物または窒素酸化物を含有するガ スにオゾンまたはアンモニアを共存させる請求項1記載 のガスの処理法。

【請求項3】水性媒体が、アルカリ水溶液である請求項 1記載のガスの処理法。

【請求項4】 水性媒体が、過酸化水素水である請求項1 記載のガスの処理法。

【請求項5】水性媒体が、微生物を含有するものである 請求項1記載のガスの処理法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、燃焼ガス 等に含まれる硫黄酸化物(いわゆるSOx)または窒素 酸化物(いわゆるNOx)を長期に亘り効率よく除去す るガスの処理法に関する。

[0002]

【従来の技術】従来、燃焼ガス、工場排ガスなどに含ま れる硫黄酸化物や窒素酸化物は、薬液による洗浄法、粒 状活性炭による吸着法、アンモニア還元法などによって 除去されれている。しかし、薬液法は、効率が悪く、か つ廃液の処理に問題がある。粒状活性炭による吸着法 は、活性炭の硫黄酸化物や窒素酸化物に対する吸着容量 が小さく、従って頻繁に活性炭を入れ替える必要があ り、また活性炭が濡れると、ガスが偏流して十分な性能 が発揮できない。触媒を用いてアンモニアで窒素酸化物 30 を還元する方法は、250~350℃の加熱が必要であ り、また硫黄酸化物は除去できない

[0003]

【発明が解決しようとする課題】本発明の課題は、ハニ カム状活性炭を用いて、硫黄酸化物や窒素酸化物を効率 よく且つ、長期に亘って除去し、しかも後処理も簡単な 硫黄酸化物や窒素酸化物の処理法を提供することにあ

[0004]

【課題を解決するための手段】本発明者らは、上述の課 40 題を解決するために、鋭意研究を重ねた結果、硫黄酸化 物または窒素酸化物を含有するガスをハニカム状活性炭 と接触させ、間欠的にまたは連続的に水性媒体を該ハニ カム状活性炭に接触させることによって、長期に亘って 連続的に硫黄酸化物または窒素酸化物ガスを効率よく除 去しうることを見いだした。また、硫黄酸化物または窒 素酸化物を含有するガスにオゾンやアンモニアを共存さ せることにより硫黄酸化物または窒素酸化物の除去が一 層向上すること、さらに、水性媒体にアルカリ物質、過

も、除去効率が高められることを突き止めた。これらの 地検を基にさらに検討を重ね、本発明を完成させた。す なわち、本発明は、(1) 硫黄酸化物または窒素酸化物 を含有するガスをハニカム状活性炭と接触させ、且つ間 欠的にまたは連続的に水性媒体を該ハニカム状活性炭に 接触させるガスの処理法、 (2) 硫黄酸化物または窒素 酸化物を含有するガスにオゾンまたはアンモニアを共存 させる(1)のガスの処理法、(3)水性媒体が、アル カリ水溶液である(1)のガスの処理法、(4)水性媒 体が、過酸化水素水である(1)のガスの処理法、およ び(5)水性媒体が、微生物を含有するものである (1) のガスの処理法、である。

[0005]

【発明の実施の形態】硫黄酸化物や窒素酸化物は、主と して石油や石炭を燃焼させる際に発生するもので、火力 発電所、各種内燃機関、ボイラー、自動車などから排出 される。本発明のハニカム状活性炭の原料は、特に限定 されないが、例えば木粉、椰子殼などの植物原料、無煙 炭、石油ピッチ、コークスなどの化石系原料、フェノー 20 ル樹脂、酢酸ビニール樹脂等の各種合成樹脂原料があげ られる。これらの活性炭原料は、例えば、固定床、移動 床で炭化・賦活される。賦活には、例えば、水蒸気、塩 化水素、一酸化炭素、二酸化炭素、酸素などを用いるガ ス賦活、アルカリ、酸又は塩化亜鉛などを用いる薬品賦・ 活等があげられるが、そのいずれによって賦活されたも のでもよい。ハニカム状活性炭は、種々の方法、たとえ ば、(a) 活性炭原料の粉末とバインダーとを必要によ り添加剤とを水と共に練合し、ハニカム状に成型した 後、炭化・賦活し、必要により酸や水などで脱灰処理す る方法、(b)粉末状活性炭とバインダーと、必要によ り、添加剤とを水とともに練合し、ハニカム状に成型 し、必要に応じて、乾燥および/または焼成する方法な どで得ることができる。前記バインダーとしては、ハニ カム状活性炭の製造方法に応じて、有機系パインダーお よび無機系バインダーから選択できる。有機系バインダ 一としては、熱可塑性樹脂、熱硬化性樹脂、タール、ピ ッチなどが例示できる。無機系バインダーには、例え ば、木節粘土、活性白土などの粘土鉱物、シリカ、アル ミナなどが含まれる。これらのバインダーは、単独また は二種類以上を組み合わせて使用してもよい。また、成 型助剤として、例えば、多糖類、セルロース誘導体、天 然樹脂、界面活性剤などが使用できる。ハニカム状活性 炭の炭素含有量は、特に制限されないが、例えば、30 %以上が好ましい。本発明で用いられるハニカム状活性 炭の比表面積は、例えば、100~2500m²/g、 好ましくは、200~2000m² /gである。ハニカ ム状活性炭のセル数は、例えば、20~1000個/in. 、好ましくは、50~1000個/in'である。ハニカ ム状活性炭の横断面の開口率は硫黄酸化物や窒素酸化物 酸化水素、酸化能を有する微生物を加えることによって 50 の除去効率を損なわず、圧力損失の増加を抑制できる範

3

囲、例えば、50~80%、好ましくは、55~75% 程度である。

【0006】ハニカム状活性炭層に硫黄酸化物や窒素酸 化物を含有するガスを接触させる場合のガスの線流速 は、0.1~1.0m/秒、好ましくは、0.15~ 5.0m/秒で、空間速度は、500~500,000 /時、好ましくは、1,000~200.000/時で ある。ハニカム状活性炭層に対する水性媒体の量は、ハ ニカム状活性炭の体積1リットル当たり、少なくとも1 ml/分である。ガスの流れ方向と散水方向は、向流ま 10 たは並流のいずれであってもよい。散水方向は、通常下 向流である。なお、散水は、連続的、又は間欠的のいず れであってもよい。ハニカム状活性炭に接触させる水性 媒体としては、水でよいが、水にアルカリ、過酸化水 素、微生物等を加えたものがより好ましい。アルカリと しては、たとえば水酸化ナトリウム、水酸化カリウムな どがあげられ0.001~3.0重量%程度の溶液とし て用いられる。過酸化水素は0.001~1.0重量% 溶液となるように添加される。水性媒体の温度は通常0 ~90℃、好ましくは10~60℃である。水性媒体中 20 のアルカリ量、過酸化水素量は、ガス中の硫黄酸化物や 窒素酸化物の量に対して当量以上あればよい。微生物は 硫黄酸化物や窒素酸化物を硫酸態や硝酸態に変化させる 能力を有する微生物であればよく、例えば、硝化バクテ リアなど自然界に通常存在するものが挙げられる。ま た、ガスに添加するオゾン量、アンモニア量もガス中の 硫黄酸化物や窒素酸化物に対して化学的に当量以上あれ ばよい。ハニカム状活性炭に散布して、流下した水性媒 体は、きわめて低濃度の硫酸、硝酸又は、それらの塩を 含んでいるが、必要により中和して、下水に流すことが 30 できる。

[0007]

【実施例】以下に実施例、実験例をあげて本発明を具体 的に説明するが、本発明はそれらによって限定されるも のではない。

【0008】実施例1

比表面積900m*/g、セル数300個/in²、直径40mmΦ、高さ20mm、開口率70%のハニカム状活性炭を内径40mmΦのカラムに400mm高となるように積層し、このカラムを2本用意した。これらのカ 40ラムに次のようなガスを<u>ガス流線速0.5m/</u>秒、温度*

* 25℃で流通した。

カラムNo. 1:SO2 5ppm カラムNo. 2:SO2 5ppm および NH2,

ルノANO. 2:SO2 Sppm およひ NH₃ 10ppm

カラムNo. 1では、ガス流通50時間後、SO₂がリークし始めたので、ハニカム状活性炭層の上部から40℃の温水250mlを10分間かけて均一に散水した。この操作によってSO₂除去能が回復し、SO₂のリークが止まった。また、この操作を繰り返すことによって、SO₂を1ヶ月以上連続的に除去できた。カラムNo. 1に比べて、SO₂除去性能が良好であった。しかし、ガス流通100時間後、SO₂がリークし始めたので、カラムNo. 1と同様に250mlの温水を10分間かけて散布した結果、SO₂除去能が回復し、SO₂のリークが止まった。この48時間毎に同様の散水操作を繰り返すことによって、SO₂を1ヶ月以上連続的に除去できた。

【0009】実施例2

20 実施例1と同様のBET比表面積900mm²/gのハニカム状活性炭を40mmφのカラムに800mm積層したカラムを4本用意した。これらのカラムに次ぎに示すガスを25℃でガス線流速0.5m/秒で流通してそれぞれNOxの除去率を測定した。

カラムNo. 3:NO 2ppm含有の大気

カラムNo. 4:NO 2ppmおよびO。 2ppm 含有の大気

カラムNo. 5:NO₂ 2ppm およびNH₃ 2ppm含有の大気

カラムNo. 6:NO 2ppm、Os 2ppmおよびNHs 2ppm含 有の大気カラムNo. 3は、ガス流通開始後10時間目NOx除去率が35%に低下したので、後の実験を中止した。カラムNo. 4、5および6については、NOxの除去率が80%以上になった122時間目および152時間目に、ハニカム状活性炭層の上部から40℃の温水500mlを20分間かけて均一に散布した。この操作によってNOxの除去性能が回復した。その結果を〔表1〕に示した。

[0010]

【表1】

	各時間におけるNOxの除去率(%)							
カラムNo.	30時間	60時間	90時間	120時間	150時間	180時間	210時間	240時間
4	95	88	83	79	93	89	82	76
5	97	91	88	84	78	97	90	88
6	98	90	89	84	79	97	88	88

〔表1〕から、NOxを含むガスに、オソン、アンモニア、オゾンとアンモニアを共存させることによりNOx除去率が高まり、またハニカム状活性炭に温水を散布することにより、低下したNOx除去率が回復することが明らかである。

【0011】 実施例3

実施例1と同様の比表面積900mm² /gのハニカム 状活性炭を40mmφのカラムに800mm積層したも のを4本用意した。これらカラムのそれぞれにNO₂を 50 2ppm含有する大気(25℃、相対温度85%)をガ

معيد پرخيا ، پرسمنس

特開2002-253926

5

ス線流速度0.5m/秒で流通してそれぞれについてN0xの除去率を測定した。

カラムNo. 7:そのまま

カラムNo. 8:100時間毎に0.1規定のNaOH 250mlをハニカム状活性炭層の上部から10分間かけて均一に散布した。

カラムN o. 9:100時間毎にマレイン酸プラント排 水の活性汚泥処理糟の微生物を含む濾過水250mlを* *ハニカム状活性炭層の上部から10分間かけて均一に散布した。

カラムNo.10:100時間毎に過酸化水素870mg/1含有の水溶液を1.5ml/分の流量でハニカム 状活性炭層の上部から連続的に均一に散布した。

[0012]

【表2】

	各時間におけるNOxの除去率(%)								
カラムNo.	30時間	60時間	90時間	120時間	150時間	180時間	210時間	240時間	
7	88	83	77	73	60	56	47	35	
8	86	83	75	89	87	83	90	85	
9	97	82	11	88	87	87	91	89	
10	99	97	98	96	98	97	98	97	

(表2) から明らかなように、散布水にアルカリ物質 (NaOH)、微生物または過酸化水素を加えておくことにより、NOx除去率が向上し、除去能が長期に亘り持続した。

%[0013]

【発明の効果】本発明によれば、排ガスや大気中に含まれる硫黄酸化物および/または窒素酸化物を長期に亘り、効率的に除去することができる。

フロントページの続き

(51) Int. Cl. 1

識別記号

FΙ

テーマコード(参考)

B O 1 J 20/30