

ch14: Computer Vision

Image Segmentation

naive idea及问题(P5-P7)

- Sliding Window
- Fully Convolutional

Upsampling (P9-12)

Unpooling

• Transposed Convolution

Convolution Matrix

We can express a convolution operation using a **matrix multiplication** by rearranging the kernel matrix into a general matrix.

• Transposed Convolution Matrix

Transpose the convolution matrix C (4×16) to C^T (16×4). We can matrix-multiply C^T (16×4) with a column vector (4×1) to generate an output matrix (16×1).

U-Net (P15)

Object Detection

Single Object (P19)

• Object detection = Classification + Localization

R-CNN (P22)

Fast R-CNN (P23)

• Idea: Pass the image through convnet before cropping!

Faster R-CNN (P24)

• Insert a Region Proposal Network (RPN) to predict proposals

Region Proposal Network (P25-26)

 Imagine an anchor box of fixed size at each point in the feature map

• In practice use K different anchor boxes of different size / scale at each point 每个关注像素点周围有K个大小不同的box,选择不同的范围

 Sort the K*20*15 boxes by their "objectness" score, take top ~300 as our proposals

Image Captioning

Encoder-Decoder with Attention (P31)

• Each context vector will attend to different image regions

CNN with Self-Attention (P33-34)

• We can also apply self-attention to CNN features.

Vision Transformer (ViT) (P36)

Vision Transformers for Object Detection (P36)

BEIT: Pre-Trained Models for Images (P39)

• Backbone Network: Standard Transformer

