Bayesian Optimization for Automatically Generating Neural Networks to Model Customer Churn

By Patrick Di Rita

Data

Goal: predict customer churn (exited field) with high accuracy

CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
15634602	Hargrave	619	France	Female	42	2	0	1	1	1	101348.88	1
15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
15619304	Onio	502	France	Female	42	8	159660.8	3	1	0	113931.57	1
15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0

CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Geography_Germany	Geography_Spain	Gender_Male	Exited
619	42	2	0	1	1	1	101348.88	0	0	0	1
608	41	1	83807.86	1	0	1	112542.58	0	1	0	0
502	42	8	159660.8	3	1	0	113931.57	0	0	0	1
699	39	1	0	2	0	0	93826.63	0	0	0	0

- 80/20 train/test split, scaled to standard normal
- Training further split into 80/10/10 train/val/hyp sets

Model: Artificial Neural Network

Control parameters:

ANN:

Input layer: 11 nodes

1 hidden layer: 6 nodes

Dropout: 10%

Activation: Sigmoid

ADAM Optimizer:

Learning rate: 0.001

Batch size: 10

Workers: 4

Weight Decay: 0

- Model fitting:
 - Neural network trained to minimize Binary Cross Entropy loss function

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

- Model evaluation:
 - Trained network evaluated by measuring area under the ROC curve (AUC)

Bayesian optimization setup

Goal: use Bayesian optimization to optimize ADAM hyperparameters as well as ANN architecture hyperparameters

Implementation framework: PyTorch, GPyTorch, BoTorch, Ax stack

Surrogate model: Gaussian process with Matern 5/2 kernel

Optimization objective: Maximize AUC on hyp set

Acquisition function:

Control: Expected Improvement

Experimental: Bandit acquisition function

Bayesian optimization setup (cont.)

ADAM hyperparameter search space:

lr: [1e-6, .4] – log scale

batch size: [1, 100]

workers: [0, 16]

weight decay: [0, .5]

epochs: 100 – fixed

ANN hyperparameter search space:

hidden layers: [1, 10]

first hidden dim: [3, 100]

hidden growth: [.1, 2]

dropout: [0, .9]

activation: [ReLU, LReLU, tanh]

SOBOL random initialization

T rounds of Bayesian optimization:

- 1. Train network on nominated parameterization
- 2. Evaluate network on hyp set
- 3. Update model with observation

Train final model using best parameterization on full training data

Evaluate on test set to compare models

Bandit acquisition function

Intuition:

At each nomination step within the Bayesian optimization loop, optimize a set of acquisition functions rather than just one, and choose a nomination from the set with probability proportional to the cumulative rewards of its corresponding acquisition function. In other words, turn the acquisition function choice into its own multi-armed bandit problem

Reasoning:

There is no guarantee that an acquisition function chosen at the beginning of an experiment will remain optimal over the duration of the experiment

Observing points from a set of acquisition functions will lead to greater observation diversity and exploration of the search space

Bandit acquisition function implementation


```
def run bandit acquisition(experiment, acq funcs, num trials, search space, w, lmb):
acq rewards = np.zeros(len(acq funcs))
reward_history = []
acq choices = []
for i in range(num trials):
    print(f'-----BANDIT TRIAL {i}-----')
    trial nominations = []
    for acq name, acq in acq funcs.items():
        print(f'---Generating nomination for {acq name}---')
       if acq_name == 'ucb':
            nomination = acq(experiment=experiment, data=experiment.eval(), acqf constructor=get UCB)
        else:
            nomination = acq(experiment=experiment, data=experiment.eval())
        trial nominations.append((nomination, nomination.gen(1)))
   if i:
       for j in range(len(acq funcs)):
            currNom, currPoint = trial nominations[j]
            model_posterior_mean = currNom.predict(currPoint.arms)[0]['auc'][0]
            acq rewards[j] = w * acq rewards[j] + model posterior mean
        reward history.append(acq rewards)
    chosen_idx = select_acq(acq_rewards, lmb)
    chosen nom, chosen point = trial nominations[chosen idx]
    acq choices.append(list(acq funcs.items())[chosen idx][0])
    print(f'Chosen acquisition function: {acq choices[-1]}')
   batch = experiment.new_trial(generator_run=chosen_point)
for j in range(len(acq funcs)):
    currNom, currPoint = trial_nominations[j]
    model posterior mean = currNom.predict(currPoint.arms)[0]['auc'][0]
    acq rewards[j] = w * acq rewards[j] + model posterior mean
reward history.append(acq rewards)
return reward history, acq choices
```

1. Optimize all acquisition functions and get their nominations

- 2. Update reward history based on cumulative rewards of each acquisition function
- 3. Choose a nomination with probability proportional to cumulative rewards
- 4. Add chosen nomination to experiment and evaluate at that point

Results and analysis

Control Architecture + Control ADAM: 0.8569

Control Architecture + Optimized ADAM (EI): 0.8650

Optimized Architecture + Optimized ADAM (EI): 0.8709

Optimized Architecture + Optimized ADAM (Bandit): 0.8734

Optimal parameters:

ANN: ADAM Optimizer:

Hidden layers: 5 Learning rate: 0.00169

First hidden dim: 15 Batch size: 65

Dropout: .082 Workers: 5

Hidden growth: 1.779 Weight Decay: 0

Activation: TanH

Conclusion

- Bayesian optimization is a viable and efficient option for neural architecture search and hyperparameter optimization
- The proposed bandit acquisition function was able to outperform vanilla Expected Improvement, confirming the original hypothesis
- The improvement was not by a huge margin, but the bandit-optimized model performed better than any other models found on Kaggle
- Further work is to apply this same framework to a harder dataset, as ANNs reach the limit of this dataset very easily