Лекція 9. Класифікація множин.

Усі розглянуті досі нескінченні множини виявилися зчисленними множинами. Тому виникає запитання: а чи існують нескінченні множини, які не є зчисленними ? Відповідь отримаємо далі.

Континуальні множини

Теорема 2 (Кантор). Множина дійсних чисел з інтервалу (0, 1) не ε зчисленною.

Доведення. Дійсно, доведемо, що множина X = (0, 1) дійсних чисел, які задовольняють нерівність 0 < x < 1, не є зчисленною.

Доведення проведемо методом від протилежного. Припустимо, що X зчисленна й існує деяка бієкція з множини X в множину N, тобто елементи множини X можуть бути записані у вигляді деякої послідовності $x_1, x_2, x_3, ...$, елементи якої попарно різні.

$$x_1 = 0, x_1^{(1)} x_2^{(1)} x_3^{(1)} \dots$$

$$x_2 = 0, x_1^{(2)} x_2^{(2)} x_3^{(2)} \dots$$

$$x_3 = 0, x_1^{(3)} x_2^{(3)} x_3^{(3)} \dots$$

•••

Крім того, розглянемо дійсне число θ , яке визначимо так: перед комою поставимо 0, потім як j-й десятковий знак θ_j виберемо довільне ціле число між 1 і 9, яке відрізняється від j-го десяткового знака $x_j^{(j)}$ числа x_j . Таким способом (його називають діагональним методом Кантора) ми утворюємо нескінченний дріб, що визначає деяке число $\theta = 0, \theta_1 \theta_2 \theta_3 \dots$ Зрозуміло, що справедлива нерівність $0 < \theta < 1$. Для довільного натурального j виконується таке. Оскільки j-й десятковий знак числа θ відрізняється від j-го десяткового знака числа x_j (тобто $\theta_j \neq x_j^{(j)}$), то число θ не співпадає ні з одним з чисел послідовності x_1, x_2, x_3, \dots Ми отримали суперечність. Це й доводить теорему.

Теорема 2а. Множина нескінченних двійкових послідовностей не ϵ зчисленною.

$$x_1 = x_1^{(1)} x_2^{(1)} x_3^{(1)} \dots$$

$$x_2 = x_1^{(2)} x_2^{(2)} x_3^{(2)} \dots$$

$$x_3 = x_1^{(3)} x_2^{(3)} x_3^{(3)} \dots$$

Будемо множини, які рівнопотужні множині (0, 1), називати континуальними множинами. Континуальною множиною є також множина всіх дійсних чисел \mathbf{R} , оскільки $f(x) = \ln \frac{x}{1-x}$ є бієктивним відображенням із множини (0, 1) в множину \mathbf{R} .

Дійсно, нехай для елементів x_1, x_2 із множини (0, 1) виконується $x_1 \neq x_2$. Припустимо, що $\ln \frac{x_1}{1-x_1} = \ln \frac{x_2}{1-x_2}$. Тоді отримуємо $\frac{x_1}{1-x_1} = \frac{x_2}{1-x_2}$, $x_1 - x_1 x_2 = x_2 - x_1 x_2$, а значить $x_1 = x_2$ – суперечність. Отже, відображення, що розглядаємо, є ін'єктивним.

Це відображення також є сюр'єктивним, бо з рівняння $\ln \frac{x}{1-x} = y$ маємо $x = \frac{e^y}{e^y + 1}$. Слід зауважити, що $0 < \frac{e^y}{e^y + 1} < 1$, тобто наведений розв'язок рівняння дійсно належить до множини (0, 1).

Покажемо, що множина (0, 1) рівнопотужна множині (a,b) для будь-яких дійсних чисел a,b, a < b. Дійсно, відповідна бієкція задається виразом f(x) = (b-a)x + a.

3 останнього факту й транзитивності поняття рівнопотужності випливає, що множини точок двох інтервалів (a,b) та (c,d) рівнопотужні між собою.

Також покажемо, що множина (0,1)х(0,1) рівнопотужна множині (0,1). Потрібне бієктивне відображення задаємо виразом $f((0,a_1a_2...;0,b_1b_2...))=0,a_1b_1a_2b_2...$

Наведемо без доведення таку теорему.

Теорема 3. Нехай X та Y – дві довільні множини. Тоді

- 1) або існує ін'єкція X в Y, або існує ін'єкція Y в X (обидві обставини не виключають одна одну);
- 2) якщо існує одночасно ін'єкція X в Y та ін'єкція Y в X, то існує також бієкція X на Y.

Наслідок 1. Для заданих множин X та $Y \in тільки три можливості:$

- а) існує ін'єкція X в Y і не існує ін'єкція Y в X. В цьому випадку говорять, що Y має потужність строго більшу потужності X, або що X має потужність, строго меншу потужності Y;
- б) існує ін'єкція Y в X і не існує ін'єкція X в Y. Тоді X має потужність строго більшу потужності Y або Y має потужність, строго меншу потужності X;
- в) існує бієкція X в Y. У цьому випадку кажуть, що X і Y мають однакову потужність або рівнопотужні.

Теорема 4. Для будь-якої множини X, множина P(X) її підмножин не є рівнопотужною множині X.

Доведення. Доведення проведемо методом від протилежного. Припустимо, що існує множина A, яка рівнопотужна множині P(A), тобто є деяка бієкція $f:A \to P(A)$. Розглянемо множину $B = \{x \in A \mid x \notin f(x)\}$. Зрозуміло, що $B \in \mathbb{R}$ підмножиною множини A, а значить B належить до P(A). Оскільки відображення f бієктивне (а зокрема сюр'єктивне), то існує такий елемент $g \in A$, що g(g) = B.

Розглянемо два можливі випадки.

Якщо $y \in B$, то з рівності B = f(y) маємо $y \in f(y)$. Тоді, згідно з визначенням множини B, маємо $y \notin B$. Таким чином, у першому випадку отримали суперечність.

Якщо ж $y \notin B$, то, за визначенням множини B, маємо $y \in f(y)$. Тоді рівність f(y) = B дає $y \in B$. У другому випадку також отримали суперечність.

Отже початкове припущення помилкове, і, для будь-якої множини X, P(X) не ϵ рівнопотужною множині X.

Виходячи з останньої теореми, для нескінченних множин існує нескінченна кількість класів рівнопотужних множин.

На завершення сформулюємо континуум-гіпотезу. Згідно цієї гіпотези, клас множини $P(\mathbf{N})$ іде одразу за класом множини \mathbf{N} (тобто між ними не можна вставити проміжний клас). Узагальнена континуум-гіпотеза полягає в припущенні, що при довільній множині X клас множини P(X) іде безпосередньо за класом множини X.

Доведено (П. Коен, 1963 р.), що континуум-гіпотеза не має рішення — її неможливо ані довести, ані спростувати, можна тільки прийняти її або протилежне їй твердження як аксіому.