Introduction to Computer Animation

Wen-Chieh (Steve) Lin

Department of Computer Science and

Institute of Multimedia Engineering

What is animation?

- Making things move
- Bring things to life
- An expressive art form
 - young but well evolved (approximately 100 years)
- Traditionally "films" or "cartoons"

Brief History of Animation

Animation Heritage—Early Devices

- Persistence of vision
 - Shadow puppets
 - Flipbook
 - Thaumotrope (1800s)
 - Phenakistiscope (1830)
 - Zoetrope (1834)

Animation Heritage—Early Devices

- Photograph
 - Muybridge (1885)

Film projector (Edison, 1891)

Early "Traditional" Animation

- First animation using a camera
 - 1896, Georges Melies, moving tables
 - 1900, J. Stuart Blackton, added smoke
- First celebrated cartoonist
 - Winsor McCay
 - Little Nemo (1911)
 - Gertie the Dinosaur (1914)

Early Technical Developments

- 1910, Bray and Hurd
 - Patented translucent cels (formerly celluloid was used, but acetate is used now) used in layers for compositing
 - Patented gray-scale drawings
 - Patented using pegs for registration (alignment) of overlays
 - Patented the use of large background drawings and panning camera

Disney

- Advanced animation more than anyone else
- First to have sound in 1928, Steamboat Willie
- First to use storyboards
- First to attempt realism
- Invented multiplane camera
 - Creating illusion of depth
 - Zooming
 - Parallax
 - Motion blur

Side note: Parallax

Disney's Multiplane Camera

Computer Animation Techniques

Computer Animation

- Uses computer algorithms and techniques to produce animation
- Brings new meaning to animation
 - Interactive (games, virtual reality, education tools)
 - Mix into live action (digital special effects)
 - Part of digital production

Luxo Jr. (Pixar, 1986)

Digital Production Pipeline

- Story
- Storyboards
 CoCo
- Visual development
- Character design
- Scene layout
- Modeling
- Animation
- Shading and texturing
- Lighting
- Rendering
- Post production

Toy Story

• First full-length CG film

How Pixar's 'Toy Story 4' Was Animated

Computer Animation Techniques

- Keyframing
- Skeletal Animation
 - Kinematics
 - Motion capture
 - Motion editing
- Dynamics and Simulation
- Behavior Animation

Keyframing

Keyframing

Specify only the important frames, interpolate the frames in-between

What and how to interpolate is important

"The Illusion of Life"

What is a key?

- For a bouncing ball
 - 3D Positions
 - Orientation?
 - Squishedness?

What is a key?

- For characters?
 - 3D Position and orientation
 - Joint angles of the skeleton
 - Facial features
 - Hair/fur?
 - Clothing?
- Scene components?
 - Camera
 - Lights
 - Snow

Frozen (Pixar, 2013)

Example: Keys in Pixar Characters

Skeletal Animation

Kinematics

The study or specification of motion, independent of the underlying physics that created the motion

Articulated Figure:
A figure made up of a series of links (bones) connected at joints

Forward Kinematics

Given the character's state, calculate its pose

$$X = f(\theta)$$

$$\theta_2 \qquad X = \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \\ l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \end{bmatrix}$$

Inverse Kinematics

Given the character's pose, calculate its state

$$\theta = f^{-1}(X)$$

Example: Forward Kinematics

Maya tutorial

Example: Inverse Kinematics & Keyframing

 Takeo Igarashi, Tomer Moscovich, John F. Hughes, "Spatial Keyframing for Performance-driven Animation," SCA 2005

- Associate a key pose with a 3D position
- Interpolate in pose space
- Video

Motion Capture

- Live action recording
 - track motion of reference points
 - convert to joint angles to drive an articulated 3D model
 - drive a deformable surface

Motion Capture in Films

I, Robot

Avatar by Weta Digital

Facial Motion Capture: FACET by Weta Digital

- Facial Mocap in King Kong
- Dawn of The Planet of The Apes (猩球崛起)
- War for The Planet of The Apes
 - SIGGRAPH 2017 talk (14:21)
- Academy® Scientific and Technical Award Technical Achievement, 2017

Motion Capture in Games

NBA2K24

Quantic Dream—Beyond Two Souls (2013)

Motion Editing

- Get a specific motion
 - from capture, keyframes
 - specific character, action, style
- Want something else while preserving original
 - which part to preserve is case dependent
 - cannot characterize/distinguish motions well enough

Motion Retargeting Video

Skeleton-Aware Networks for Deep Motion Retargeting

Skeleton-Aware Networks

Optimization-based Motion Synthesis

Video

Motion Synthesis Using Motion Graph

- Build motion graph that connects multiple short motion clips
- Synthesizing motion by traversing the graph

Motion Graph Example

video

Interactive Avatar Control Lee, Chai, Reitsma, Hodgins, Pollard, SIGGRAPH'02

Deep Learning for Motion Control and Synthesis

- "Neural State Machine for Character-Scene Interactions," SIGGRAPH Asia 2019
- https://youtu.be/7c6oQP1u2eQ

MoGlow: Probabilistic and controllable Motion Synthesis, SIGGRAPH Asia 2020

Dynamics and Simulation

Dynamics and Simulation

- Generate motion based on physical laws (e.g., Newton's laws, Fluid dynamics)
- Simulated physical phenomena
 - gravity
 - momentum
 - collision
 - friction
 - fluid flow (liquid, gas, turbulence)
 - flexibility, elasticity, fracture

Dynamics – Particle Systems

Particle Systems [Reeves83]

Represent "fuzzy" objects (such as fire, smoke) as a collection of particles

Particles contain local state

- Position
- Velocity
- Age
- Lifespan
- Rendering properties

Dynamics – Simulated Flames

Duc Quang Nguyen, Ronald Fedkiw and Henrik Wann Jensen, SIGGRAPH 2002

Realflow: Commercial fluid simulation software

Simulated Snow in Animation

Dynamics – Rigid Bodies

Rigid Bodies

- Integration
- Collisions
- Constraints

Dynamics – Deformable Objects

Deformable Objects

- FFD
- Elastics
- Finite Elements

Doug James & Dinesh Pai, SIGGRAPH 2002

Dynamics – Deformable Objects

Skinning

Skeleton-driven deformation

McAdams, SIGGRAPH 2011

Thin Skin Elastodynamics

- Duo Li, Shinjiro Sueda, Debanga R. Neog,
 Dinesh K. Pai
- Siggraph 2013

Dynamics – Cloth

Cloth Simulation

- Stable Integration
- Material Properties

Kaldor, James, and Marschner, SIGGRAPH'08

Simulated Cloth in Films

Star Wars

Stuart Little

Cloth Simulation in CoCo

https://youtu.be/U8U2xyyEhjs

Dynamics + Control

da Silva, Abe, and Popović, SIGGRAPH 2008

Adversarial Skill Embeddings, SIG 2022

Adversarial Imitation Learning & Unsupervised Reinforcement Learning

Musculotendon Simulation of Hand

Dynamics simulation + control

Shinjiro Sueda et al., SIGGRAPH 2008

Movie (goto 1:15)

Side-by-Side Reality Check

We compare the simulated tendons of the thumb to several real thumb photographs

Behavioral Animation

- Animating by describing an actor's behavior
- An actor's behavior defines how the actor interacts with other actors and the environment


```
TRex()
if(player is close)
        eatPlayer()
else if(can see player)
        chasePlayer()
else
        wander()
```

PSCrowd Demo:

real-time crowd engine for PS3

Real-time crowd behavior engine for PS3

Behavioral Animation (cont.)

Useful for crowd animations

The Lion King, Stampede Scene (1994)

The Lion King, Stampede Scene (2019)

The Making of Lion King 2019

https://www.youtube.com/watch?v=94e9Y45E
 Isw

Summary

- Keyframing: interpolating between keyframes
- Skeletal animation: human and animals
 - Kinematics: representing and posing a character
 - Motion capture
 - Motion editing
 - Motion synthesis
- Dynamics and simulation:
 - passive objects
 - active objects with force/torque control
- Behavior animation: group and crowd