第四节 单纯形法的计算步骤

- 4.1 单纯形表与计算步骤
- 4.2 示例与练习

4.1 单纯形表与计算步骤

(1) 单纯形表

单纯形表基本结构

$c_j \rightarrow$			c_1	• • •	c_m	c_{m+1}	• • •	c_n	۵
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	• • •	x_m	x_{m+1}	• • •	x_n	θ_i
c_1	x_1	b_1	1	• • •	0	$a_{1,m+1}$	•••	a_{1n}	$ heta_1$
c_2	x_2	b_2	0	•••	0	$a_{2,m+1}$	•••	a_{2n}	θ_2
•	:	•	•	••	•	•	••	•	
C_m	x_m	b_m	0	• • •	1	$a_{m,m+1}$	•••	a_{mn}	θ_m
σ_j =	$= c_j$ -	$-z_j \rightarrow$	0	• • •	0	$c_{m+1} - \mathbf{c_B} \mathbf{p}_{m+1}$	• • •	$c_n - \mathbf{c_B} \mathbf{p}_n$	

(2) 计算步骤 (max型问题)

步骤一,找出初始可行基,确定初始基可行解,建立初始单纯形表。

步骤二,查看各非基变量的检验数 σ_j 。若所有 $\sigma_j \leq 0$,则已达到最优,停止计算。否则,转下一步。

步骤三,若在 $\sigma_j > 0$ 中有某个 σ_k 对应 α_k 的系数列向量 $\mathbf{p}_k \leq \mathbf{0}$,则此问题无界,停止计算。否则,转入下一步。

步骤四,根据 $\max(\sigma_j > 0) = \sigma_k$ 确定换入变量 x_k ,按 θ 规则 $\theta = \min(b_i/a_{ik} | a_{ik} > 0) = b_l/a_{lk}$,确定 x_l 为换出变量,转下一步。

步骤五,以 a_{lk} 为主元进行迭代, x_k 所对应的列向量变为单位向量:

$$\mathbf{P}_{k} = \begin{bmatrix} a_{1k} \\ \vdots \\ [a_{lk}] \\ \vdots \\ a_{mk} \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \longleftarrow 第l行$$

将 $\mathbf{x}_{\mathbf{B}}$ 列中的 x_{l} 换为 x_{k} ,同时 $\mathbf{c}_{\mathbf{B}}$ 列中的 c_{l} 换为 c_{k} ,得到新的单纯形表。重复步骤二至步骤五,直到算法终止。

◆ 最小化问题的迭代规则(min 型问题)

上述算法若用于最小化问题(min 型问题),则判断入基变量、解的最优性时,与max 型问题相反:

情况 1: 若所有 $\sigma_j \geq 0$,则达到最优;若同时有某个非基变量检验数 $\sigma_k = 0$,则有无穷多最优解;

情况 2: 根据 $min(\sigma_i < 0) = \sigma_k$, 确定换入变量 x_k ;

情况 3: 若有某个 $\sigma_k < 0$ 所对应变量 x_k 的系数列向量

 $\mathbf{p}_k \leq \mathbf{0}$,则问题无界;

最小比值规则(θ规则)保持不变。

4.2 示例

运用单纯形表, 求解下述线性规划问题

$$\min z = -10x_1 - 15x_2 - 12x_3$$

$$\begin{cases} 5x_1 + 3x_2 + x_3 \le 9 \\ -5x_1 + 6x_2 + 15x_3 \le 15 \\ 2x_1 + x_2 + x_3 \le 5 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + x_3 \le 5 \\ x_i \ge 0 \end{cases}$$

解,首先,标准化,得到:

$$\min z = -10x_1 - 15x_2 - 12x_3 + 0x_4 + 0x_5 + 0x_6$$

$$\begin{cases} 5x_1 + 3x_2 + x_3 + x_4 &= 9 \\ -5x_1 + 6x_2 + 15x_3 + x_5 &= 15 \\ 2x_1 + x_2 + x_3 + x_6 &= 5 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + x_3 + x_6 &= 5 \\ x_i \ge 0 \end{cases}$$

直接得到一个基: x_4, x_5, x_6 ,列出初始单纯形表:

初始单纯形表:

$c_j \rightarrow$			-10	-15	-12	0	0	0	
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	U_i
0	x_4	9	5	3	1	1	0	0	3
0	x_5	15	-5	[6]	15	0	1	0	2.5
0	x_6	5	2	1	1	0	0	1	5
$\sigma_j \rightarrow$			-10	-15	-12	0	0	0	

注意,是求最小化问题,因此应该是负检验数中的最小者入基,所以是 x_2 入基;而出基变量仍然按照最小比值规则(θ 规则)确定,因此 x_5 出基。

得到下一步单纯形表:

$c_j \rightarrow$			-10	-15	-12	0	0	0	۵
c_{B}	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	$ heta_i$
0	x_4	1.5	[7.5]	0	-6.5	1	-1/2	0	1/5
-15	x_2	2.5	-5/6	1	2.5	0	1/6	0	_
0	x_6	2.5	17/6	0	-1.5	0	-1/6	1	15/17
$\sigma_j ightarrow$			-45/2	0	51/2	0	2.5	0	

x_1 入基, x_4 出基,得到新的单纯形表:

	c_j .	\rightarrow	-10	-15	-12	0	0	0	O
c_{B}	$\mathbf{X}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	$ heta_i$
-10	x_1	1/5	1	0	-13/15	2/15	-1/15	0	
-15	x_2	8/3	0	1	16/9	1/9	1/9	0	
0	x_6	29/15	0	0	43/45	-17/45	1/45	1	
$\sigma_j o$			0	0	6	3	1	0	

对于最小化问题,所有非基变量检验数都非负,则就达到了最优。

最优解为

$$\mathbf{x}^* = (x_1, x_1, x_1, x_1, x_1, x_1, x_1)^{\mathrm{T}} = (\frac{1}{5}, \frac{8}{3}, 0, 0, 0, \frac{29}{15})^{\mathrm{T}}$$

最优函数值为

$$z^* = -42$$

◆ 关于初始可行基:

单纯形法需要获取一个初始可行基,上述例子在添加松弛变量之后,可以直接得到一个可行基。但多数情况下,并不能顺利的直接获取可行基。

若将上例的第三个约束:

$$2x_1 + x_2 + x_3 \le 5$$

修改为:

$$2x_1 + x_2 + x_3 \ge 5$$

则模型标准化之后得到:

$$\min z = -10x_1 - 15x_2 - 12x_3 + 0x_4 + 0x_5 + 0x_6$$

$$\begin{cases} 5x_1 + 3x_2 + x_3 + x_4 &= 9 \\ -5x_1 + 6x_2 + 15x_3 + x_5 &= 15 \\ 2x_1 + x_2 + x_3 &- x_6 = 5 \end{cases}$$

$$\begin{cases} x_1 + 3x_2 + x_3 + x_4 &= 9 \\ -5x_1 + 6x_2 + 15x_3 + x_5 &= 15 \\ 2x_1 + x_2 + x_3 &- x_6 = 5 \end{cases}$$

考虑用观察法寻找一个基。如果 x_6 为基变量,则基可行解中 $x_6 = -5 < 0$,不可行。

进一步观察到 x_3 , x_4 , x_5 的列向量线性无关,似乎可选 x_3 , x_4 , x_5 为基变量,则其初始单纯形表为:

	$c_j \rightarrow$	•	-10	-15	-12	0	0	0	
c_{B}	X _B	b	x_1	x_2	x_3	x_4	x_5	x_6	
0	$ x_4 $	9	5	3	1	1	0	0	
0	X_5	15	-5	6	15	0	1	0	
-12	$ x_3 $	5	2	1	1	0	0	1	
	$\sigma_j \rightarrow$	•							

将基矩阵化为单位矩阵,即需要把 x_3 的列化为 $(0,0,1)^T$ 的形式:

初始单纯形表_单位基矩阵

	c_j –	>	-10	-15	-12	0	0	0	А
$\mathbf{c}_{\mathbf{B}}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	O_i
0	χ_4	4	3	2	0	1	0	1	
0	χ_5	-60	-35	-9	0	0	1	15	
-12	X_3	5	2	1	1	0	0	-1	
	σ_j –	>							

结果得到初始基解为: $x_3 = 5$, $x_4 = 4$, $x_5 = -60 < 0$, 是不可行解。可见,观察法有可能轻易找到一个基,但不一定能同时保证这是可行基。

第5节将彻底解决初始可行基的问题。

课堂练习,

$$\max z = \frac{3}{4}x_4 - 20x_5 + \frac{1}{2}x_6 - 6x_7$$
s.t.
$$\begin{cases} x_1 + \frac{1}{4}x_4 - 8x_5 - x_6 + 9x_7 = 0 \\ x_2 + \frac{1}{2}x_4 - 12x_5 - \frac{1}{2}x_6 + 3x_7 = 0 \\ x_3 + x_6 = 1 \\ x_i \ge 0 \end{cases}$$

$c_{i ightarrow}$			0	0	0	3/4	-20	1/2	-6	
$c_{\rm B}$	X _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
0	x_1	0	1	0	0	1/4	-8	-1	9	0
0	x_2	0	0	1	0	[1/ 2]	-12	-1/2	3	0
0	x_3	1	0	0	1	0	0	1	0	_
	c _i =z _i		0	0	0	3/4	-20	1/2	-6	
	$c_{j o}$		0	0	0	3/4	-20	1/2	-6	θ_i
c_{B}	X _B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	\bigcup_{i}
0	x_1	0	1	-1/2	0	0	-2	-3/4	15/2	-
3/4	x_4	0	0	2	0	1	-24	-1	6	-
0	x_3	1	0	0	1	0	0	[1]	0	1
	c_i - z_i		0	-3/2	0	0	-2	5/4	-21/2	
	c_{i}	<u>, </u>	0	0	0	3/4	-20	1/2	-6	θ_i
$c_{\rm B}$	$\mathbf{x}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	O_i
0	x_1	3/4	1	-1/2	3/4	0	-2	0	15/2	
3/4	x_4	1	0	2	1	1	-24	0	6	
1/2	x_6	1	0	0	1	0	0	[1]	0	
	c_{i} - z_{i}		0	-3/2	-5/4	0	-2	0	-21/2	