Classification

Fall 2014

STAT 560

- For statisticians, these are synonyms
- Background: Two class (binary) version.
- Using "Training data" from Class 1 and Class 2
- Develop a "rule" for assigning new data to a Class
- Predicting whether a patient will develop breast cancer or remain healthy, given genetic information
- ► Predicting whether or not a user will like a new product, based on user covariates and a history of his/her previous ratings

There are a number of

- approaches
- philosophies
- ► thoughts

Often statistics vs EE-CS

EE-CS variations

- patten recognition
- artificial intelligence
- neural networks
- data mining
- machine learning

- Statistics viewpoint
 - Model "classes" with probability distributions
 - Use to study class differences and find rules
- ► EE-CS viewpoint
 - Data are set of numbers
 - Develop rules distinguish between these

Classification Basics

- ▶ Dat: $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ with the measurements of p (continuous) variables $\mathbf{x} \in \mathbb{R}^p$ and their class labels $y_i = 1, ..., K$ (categorical).
- ▶ Assume $\mathbf{x}|(y=k) \sim F_k$, for different distributions $\{F_i\}$.
- ▶ Binary class problems, $\mathbf{x}_{11}, \dots, \mathbf{x}_{1n_1} \sim F_1$ and $\mathbf{x}_{21}, \dots, \mathbf{x}_{2n_2} \sim F_2$.
- Classification aims to classify a new observation, or several new observations into one of those classes.
- ▶ A *classifier* is a function $\phi: \mathcal{X} \to \{1, \dots, K\}$.

(Iris Setosa(b), Iris Versicolour (r), Iris Virginica(g))

(Iris Versicolour (r), Iris Virginica(g))

An example of classifier given by a linear hyperplain.

$$\phi(\mathbf{z}): \mathbb{R}^2 \to \{\text{versicolor}(\mathbf{r}), \text{ virginica}(\mathbf{g})\}, \text{ where}$$

$$\phi(\mathbf{z}): \mathbb{R}^2 \to \{\text{versicolor}(\mathbf{r}), \, \text{virginica}(\mathbf{g})\}, \, \text{where}$$

$$\phi(\mathbf{z}) = \left\{ \begin{array}{l} \text{versicolor}, \, \mathbf{b}^\mathsf{T} \mathbf{z} > 0 \\ \text{virginica}, \, \mathbf{b}^\mathsf{T} \mathbf{z} \leq 0 \end{array} \right. \, \mathbf{b} = \begin{pmatrix} -0.32 \\ 1.58 \end{pmatrix}$$

Another linear classifier $\phi(\mathbf{z}): \mathbb{R}^2 \to \{\text{versicolor(r), virginica(g)}\}$, where $\phi(\mathbf{z}) = \left\{ \begin{array}{l} \text{versicolor,} \, \mathbf{b}^\mathsf{T} \mathbf{z} > 0 \\ \text{virginica,} \, \mathbf{b}^\mathsf{T} \mathbf{z} \leq 0 \end{array} \right. \, \mathbf{b} = \left(\begin{smallmatrix} -5.28 \\ 2.68 \end{smallmatrix} \right)$

Example: Classifiers

The previous example on classifying Fisher's iris data is an example of linear classifier. A linear classifier $\phi(\mathbf{x})$ is a function of linear combinations of input vecot \mathbf{x} and is of the form

$$\phi(\mathbf{x}) = h(b_0 + \mathbf{b}^\mathsf{T} \mathbf{x})$$

In binary classification when K=2, the linear classifier leads to the classification by a hyperplain. In general, a classifier can be of a higher order, for example, a quadratic classifier of the form

$$\phi(\mathbf{x}) = h(b_0 + \mathbf{v}^\mathsf{T}\mathbf{x} + \mathbf{x}^\mathsf{T}\mathbf{C}\mathbf{x})$$

or more general.

Example: Linear Classifier

Example: Linear Classifier Decision Boundary

Example: Mean Difference

Example: Projection on MD

Linear Classifier

▶ Mean Difference (also known as Centroid Method):

$$\textbf{b} \propto \boldsymbol{\bar{\textbf{x}}}_1 - \boldsymbol{\bar{\textbf{x}}}_2$$

Example 2: MD

Linear Classifiers

▶ Mean Difference:

$$\bm{b} \propto \bm{\bar{x}}_1 - \bm{\bar{x}}_2$$

▶ Mean Difference on scaled data - Naive Bayes:

$$\boldsymbol{b} \propto \mathsf{Diag}(\boldsymbol{S})^{-1}(\boldsymbol{\bar{x}}_1 - \boldsymbol{\bar{x}}_2)$$

Example 2: Naive Bayes

Example 2: Naive Bayes

why not adjusting for whole variance-covariance?

Linear Classifiers

Mean Difference:

$$\mathbf{b} \propto \mathbf{\bar{x}}_1 - \mathbf{\bar{x}}_2$$

▶ Mean Difference on scaled data - Naive Bayes:

$$\mathbf{b} \propto \mathsf{Diag}(\mathbf{S})^{-1}(\mathbf{ar{x}}_1 - \mathbf{ar{x}}_2)$$

Linear Discrimnant Anlysis (a.k.a. Fisher's LDA):

$$\mathbf{b} \propto \mathbf{S}^{-1}(\mathbf{\bar{x}}_1 - \mathbf{\bar{x}}_2).$$

Example 2: LDA

Major Assumption for LDA

Class covariances are the same.

 \bar{z}_1, \bar{z}_2 : projection means s_1^2, s_2^2 : scatter for projections.

Fisher;s LDA direction b_{LDA} maximizes the ratio of the between-class projection variation to the within-class projection variation:

$$\mathbf{b}_{LDA} = rg \max rac{(ar{z}_1 - ar{z}_2)^2}{s_1^2 + s_2^2}.$$

Fisher Linear Discrimination

- ▶ For a direction vector $\mathbf{b} \in \mathbb{R}^p$
- ▶ Project the data onto the a line generated by **v**:
 - $\qquad \qquad \mathsf{Class} \ 1: \ \mathbf{b}^T \mathbf{x}_{11}, \dots, \mathbf{b}^T \mathbf{x}_{1n_1}$
 - $\qquad \qquad \mathsf{Class} \ 2: \ \mathbf{b}^T \mathbf{x}_{21}, \dots, \mathbf{b}^T \mathbf{x}_{2n_2}$
- ▶ Then, the projection means are:

► Class 1:
$$\bar{z}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{v}^T \mathbf{x}_{1i} = \mathbf{b}^T \left(\frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{x}_{1i} \right) = \mathbf{b}^T \bar{\mathbf{x}}_1$$

- the projection scatters are:
 - ► Class 1:

$$s_1^2 = \sum_{i=1}^{n_1} (\mathbf{b}^T \mathbf{x}_{1i} - \mathbf{b}^T \bar{\mathbf{x}}_1)^2$$

$$= \sum_{i=1}^{m} \mathbf{b}^T (\mathbf{x}_{1i} - \bar{\mathbf{x}}_1) (\mathbf{x}_{1i} - \bar{\mathbf{x}}_1)^T \mathbf{b}$$

$$= \mathbf{b}^T \mathbf{S}_1 \mathbf{b}$$

- $Class 2: s_2^2 = \mathbf{b}^T \mathbf{S}_2 \mathbf{b}$
- ▶ Thus, \mathbf{b}_{LDA} maximizes $\frac{(\mathbf{b}^T \bar{\mathbf{x}}_1 \mathbf{b}^T \bar{\mathbf{x}}_2)^2}{\mathbf{b}^T \mathbf{S}_1 \mathbf{b} + \mathbf{b}^T \mathbf{S}_2 \mathbf{b}} = \frac{\mathbf{b}^T (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2) (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)^T \mathbf{b}}{\mathbf{b}^T (\mathbf{S}_1 + \mathbf{S}_2) \mathbf{b}}$.

Linear Classifiers

Mean Difference:

$$\textbf{b} \propto \boldsymbol{\bar{x}}_1 - \boldsymbol{\bar{x}}_2$$

Mean Difference on scaled data - Naive Bayes:

$$\mathbf{b} \propto \mathsf{Diag}(\mathbf{S})^{-1}(\mathbf{ar{x}}_1 - \mathbf{ar{x}}_2)$$

► Fisher's LDA:

$$\mathbf{b} \propto \mathbf{S}^{-1}(\mathbf{\bar{x}}_1 - \mathbf{\bar{x}}_2).$$

So far, these classifiers are introduced without any distributional assumption of the samples.

Bayesian Decision Theory

- ▶ Prior: p(y), distribution of class lables
- ▶ Likelihood: $\mathbf{x}|(Y = k) \sim F_k$
- ► After seing the feature **x**, what would be your action in assigining the class lable to this sample?

Bayesian Decision Theory

- Prior: p(y), distribution of class lables
- ▶ Likelihood: $\mathbf{x}|(Y = k) \sim F_k$
- ▶ After seing the feature **x**, what would be your action in assigning the class lable to this sample? Bayes rule assign the class which provides highest posterior probability:

$$\phi(\mathbf{x}) = \arg\max_{k=1,\dots,K} P(Y = k|\mathbf{x})$$

How to compute the posteior probability?

Bayesian Decision Theory

- Prior: p(y), distribution of class lables
- ▶ Likelihood: $\mathbf{x}|(Y = k) \sim F_k$
- ▶ After seing the feature **x**, what would be your action in assigning the class lable to this sample? Bayes rule assign the class which provides highest posterior probability:

$$\phi(\mathbf{x}) = \arg\max_{k=1,\dots,K} P(Y = k|\mathbf{x})$$

▶ How to compute the posteior probability? Bayes Theorem!

Bayesian Decision Theory: 1-d example

- ► Factory Production Line: I (x%) , II (100-x%)
- $ilde{X}|(Y = I) \sim N(\mu_1, \sigma_1^2), X|(Y = II) \sim N(\mu_2, \sigma_2^2).$
- After seing the feature x, what would be your action in assigning the class lables to this sample? Need Example here

Bayesian Decision Theory: 1-d example

Posteir probability:

$$P(Y = i|\mathbf{x}) = \frac{f_i(\mathbf{x})\pi_i}{f_1(\mathbf{x})\pi_1 + f_2(\mathbf{x})\pi_2}$$

- ▶ In English, $posterior = \frac{likelihood \times prior}{marginal of features}$
- Choose Production Line I if and only if

$$f_1(x)\pi_1 > f_2(x)\pi_2$$

Bayesian Decision Theory: 1-d example

▶ Case I: $\pi_1 = \pi_2, \sigma_1 = \sigma_2$ choose I if

$$|x - \mu_1| < |x - \mu_2|$$

▶ Case II: $\pi_1 = \pi_2, \sigma_1 \neq \sigma_2$ choose I if

$$\left(\frac{x-\mu_1}{\sigma_1^2}\right)^2 < \left(\frac{x-\mu_2}{\sigma_2^2}\right)^2 + 2\log(\sigma_2/\sigma_1)$$

▶ Case III: $\pi_1 \neq \pi_2, \sigma_1 = \sigma_2$ choose I if

$$(\frac{x-\mu_1}{\sigma_1^2})^2 < (\frac{x-\mu_2}{\sigma_2^2})^2 + 2\log(\pi_1/\pi_2)$$

Bayesian Decision Theory

- Assume that there are K different populations with $P(Y = i) = \pi_i$ and $\sum_{i=1}^{K} \pi_i = 1$.
- For each population, assume

$$\mathbf{x}|(Y=i)\sim f_i(\mathbf{x}).$$

After seeing the features from the mixture of the K populations, Bayes theorem provides the posterior probability that the observed x was from the population i:

$$P(Y = i|\mathbf{x}) = \frac{f_i(\mathbf{x})\pi_i}{f_1(\mathbf{x})\pi_1 + \dots f_K(\mathbf{x})\pi_K}$$

Assign the class label which gives the highest posterior probability.

Bayesian Decision Theory- Normal Density

- Now assume multivariate normal distributions: $\mathbf{x}|(Y=i) \sim N_p(\mu_i, \Sigma_i)$.
- ▶ Marginal distribution of features: $\mathbf{X} \sim f(\mathbf{x})$, a mixture of multivariate normals.
- ► Then, Bayes rule:

$$arg \max P(Y = i | \mathbf{x}) = = arg \max \frac{f_i(\mathbf{x})\pi_i}{f_1(\mathbf{x})\pi_1 + \dots f_K(\mathbf{x})\pi_K}$$
$$= arg \max f_i(\mathbf{x})\pi_i(\mathbf{x})$$

where

$$f_i(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}|\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_i)^T \Sigma_i^{-1}(\mathbf{x} - \mu_i)\right)$$

Bayesian Decision Theory- Normal Density

One can write the Bayes rule in the following format:

$$\phi(\mathbf{x}) = \arg\min\{\log|\Sigma_i| + (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) - 2\log(\pi_i)\}$$

- Special cases under common covariance assumption: $\Sigma_i = \Sigma$ and $\pi_i = 1/K$.
- ▶ Bayes rule compares Mahalanobis distance

$$d_{MH}^{2}(\mathbf{x}, \mu_{i}) = (\mathbf{x} - \mu_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \mu_{i})$$

and assigns \mathbf{x} to the nearest class based on this distance measure.

Need Example Here!!

Bayesian Decision Theory- Normal Density

▶ One can write the Bayes rule in the following format:

$$\phi(\mathbf{x}) = \arg\min(b_{0i} + \mathbf{b}_i^\mathsf{T} \mathbf{x} + \mathbf{x}^\mathsf{T} \mathbf{C}_i \mathbf{x}), \text{ where}$$

$$b_{0i} = \frac{1}{2} \mu_i^{\mathsf{T}} \Sigma_i^{-1} \mu_i + \frac{1}{2} \log |\Sigma_i| - \log(\pi_i),$$

$$\mathbf{b}_i = -\Sigma_i^{-1} \mu_i$$

$$\mathbf{C}_i = \frac{1}{2} \Sigma_i^{-1}.$$

- Quadratic Discriminant Analysis: Bayes rule classifier under unequal covariance
- Linear Discriminant Analysis: Bayes rule classifier under equal covariance

$$\phi(\mathbf{x}) = \arg\min(b_{0i} + \mathbf{b}_i^\mathsf{T} \mathbf{x}).$$

Two class- Quadratic Discriminant Analysis

▶ The Bayes rule assigns **x** into class 1 if

$$b_{01} + \mathbf{b}_1^{\mathsf{T}}\mathbf{x} + \mathbf{x}^{\mathsf{T}}\mathbf{C}_1\mathbf{x} \leq b_{02} + \mathbf{b}_2^{\mathsf{T}}\mathbf{x} + \mathbf{x}^{\mathsf{T}}\mathbf{C}_2\mathbf{x}$$

Example Here

Two class - Linear Discriminant Analysis

- Assume the equal covariance $\Sigma_1 = \Sigma_2$.
- ▶ Then, the Bayes rule assigns **x** into class 1 if

$$\underbrace{(\mu_2 - \mu_1)^\mathsf{T} \Sigma^{-1}}_{} (\mathbf{x} - \frac{\mu_1 + \mu_2}{2}) < \log(\pi_1/\pi_2)$$
 $\iff \mathbf{b}^\mathsf{T} (\mathbf{x} - \mu) < \log(\pi_1/\pi_2), \text{ where } \mathbf{b} = \Sigma^{-1} (\mu_2 - \mu_1).$

- Special case: If $\Sigma = \mathbf{I}$, then $\mathbf{b} = (\mu_2 \mu_1)$.
- Special case: If $\Sigma = \text{Diagonal Matrix}$, then $\mathbf{b} = \text{Diag}(\Sigma)^{-1}(\mu_2 \mu_1)$.

Fisher's LDA

- ▶ LDA is often referred to as Fisher's LDA.
- His original work does not involve any distributional assumption, and develops LDA in a fashion similar to a geometric understanding of PCA.
- LDA direction seeks to maximizes the between group separation relative to the within-group variance of the projected scores.

Sample Bayes Rule Classifier

▶ In practice, we do not know the parameters (μ_i, Σ_i, π_i) . Given observations

$$\{(\mathbf{x}_{ij},i), i=1,\ldots,K, j=1,\ldots,n_i, n=\sum_{i=1}^K n_i\},$$

a sample version of the classifier is obtained by replacing parameters by their estimates, $\hat{\mu}_i = \bar{\mathbf{x}}_i, \hat{\Sigma}_i = \mathbf{S}_i$, and $\hat{\Sigma} = \mathbf{S}_P$ (pooled sample covariance matrix). Also, use $\hat{\pi}_i = n_i/n$.

Binary LDA and QDA classifiers

► QDA:

$$\phi(\mathbf{x}) = \arg\min_{i=1,2} (b_{0i} + \mathbf{b}_i^{\mathsf{T}} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \mathbf{C}_i \mathbf{x})$$

▶ LDA: assign **x** into class 1 if

$$\mathbf{b}^{\mathsf{T}}(\mathbf{x} - \frac{\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2}{2}) < \log(\frac{n_1}{n_2})$$

where
$$\mathbf{b} = \mathbf{S}_P^{-1}(\bar{\mathbf{x}}_2 - \bar{\mathbf{x}}_1), \mathbf{S}_P = \frac{1}{n-2}\left((n_1-1)\mathbf{S}_1 + (n_2-1)\mathbf{X}_2\right)$$

LDA vs QDA Examples