50.012 Networks

Lecture 9: TCP Part I

2021 Term 6

Assoc. Prof. CHEN Binbin

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte stream:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size

- full duplex data:
 - bi-directional data flow in same connection
 - MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

TCP segment structure

32 bits **URG**: urgent data counting source port # dest port # (generally not used) by bytes sequence number of data ACK: ACK # (not segments!) acknowledgement number valid head not receive window PSH: push data now used len # bytes (generally not used) checksum Urg data pointer rcvr willing to accept RST, SYN, FIN: options (variable length) connection estab (setup, teardown commands) application data Internet (variable length) checksum² (as in UDP)

TCP seq. numbers, ACKs

sequence numbers:

-byte stream "number" of first byte in segment's data

acknowledgements:

- —seq # of next byte expected from other side
- -cumulative ACK
- Q: how receiver handles outof-order segments
 - —A: TCP spec doesn't say, up to implementor

TCP seq. numbers, ACKs

simple telnet scenario

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- longer than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent
 measurements, not just
 current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- typical value: $\alpha = 0.125$

TCP round trip time, timeout

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT —> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT: DevRTT = $(1-\beta)*DevRTT +$ $\beta*|SampleRTT-EstimatedRTT|$ (typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT

safety margin"

 Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/TCP_RTT.php

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
 - pipelined segments
 - cumulative acks
 - single retransmission timer
- retransmissions triggered by:
 - timeout events
 - duplicate acks

let's initially consider simplified TCP sender:

- ignore duplicate acks
- ignore flow control, congestion control

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for the oldest unacked segment
 - expiration interval:
 TimeOutInterval

timeout:

- retransmit segment that caused timeout
- restart timer

ack rcvd:

- if ack acknowledges previously unacked segments
 - update what is known to be ACKed
 - start timer if there are still unacked segments

TCP sender (simplified)

TCP: retransmission scenarios

prematare timeou

TCP: retransmission scenarios

cumulative ACK

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver	TCP receiver action
arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
arrival of in-order segment with expected seq #. One other segment has ACK pending	immediately send single cumulative ACK, ACKing both in-order segments
arrival of out-of-order segment higher-than-expect seq. # . Gap detected	immediately send duplicate ACK, indicating seq. # of next expected byte
arrival of segment that partially or completely fills gap	immediate send ACK, provided that segment starts at lower end of gap

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending lost packet
- detect lost segments via duplicate ACKs.
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 4
ACKs for same data
("triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

 likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

Revisit: TCP Congestion Control

