APPENDIX 2

Detailed Monte Carlo Simulation Results for Solana Quantum Risk Assessment

Simulation Type	Monte Carlo Risk Analysis
Total Iterations	10
Successful Runs	9 (90.0%)
Confidence Level	95%
Analysis Period	2025-2050
Runtime	5.0 seconds
Date Generated	September 14, 2025

Prepared by Marc Johnson

CONFIDENTIAL — FOR AUTHORIZED DISTRIBUTION ONLY

TABLE OF CONTENTS

1.	SIMULATION PARAMETERS AND METHODOLOGY	3
2.	■ SOLANA QUANTUM IMPACT MONTE CARLO SIMULATION REPORT	4
	2.1 ■ Key Findings	5
	2.2 ■ Detailed Economic Impact Analysis	6
	2.3 ■■ Quantum Computing Development Timeline	7
	2.4 ■ Solana Network Vulnerability Assessment	8
	2.5 ■■ Attack Scenario Analysis	9
	2.6 ■ Comprehensive Risk Assessment	10
	2.7 Statistical Analysis	11
	2.8 ■■ Quantum-Safe Migration Strategy	12
	2.9 ■ Technical Appendix	13

Page 3 of 29 2025-09-14

1. SIMULATION RESULTS OVERVIEW

This technical appendix provides detailed results from the Monte Carlo simulation assessing quantum computing threats to the Solana blockchain.

The simulation ran 10 iterations with a 95% confidence level. Processing completed in 5.0 seconds with 9 successful iterations.

Key findings indicate that quantum computers capable of breaking Solana's Ed25519 cryptography are projected to emerge between 2028-2033. The economic impact analysis shows potential losses ranging from \$6B to \$85B depending on attack severity and network preparedness.

The following sections detail the simulation methodology, results, and comprehensive risk assessment.

Page 5 of 29 2025-09-14

1. SIMULATION PARAMETERS AND METHODOLOGY

This section details the comprehensive parameters and methodology used in the Monte Carlo simulation for assessing quantum computing threats to the Solana blockchain.

Core Simulation Parameters

Parameter	Value	Description
Total Iterations	10	Number of Monte Carlo simulation runs
Successful Iterations	9	Successfully completed simulation runs
Failed Iterations	1	Failed or incomplete simulation runs
Confidence Level	95%	Statistical confidence level for results
Random Seed	42	Fixed seed for reproducibility
CPU Cores Used	10	Parallel processing cores utilized
Time Horizon	2025-2050	Simulation period analyzed
Time Step	30 days	Temporal resolution of simulation

Quantum Computing Parameters

Parameter	Value	Description
CRQC Threshold	~4,000 logical qubits	Required for breaking 256-bit ECC
Physical-to-Logical Ratio	1,000:1	Error correction overhead
Gate Speed	1 MHz	Quantum gate operation frequency
Circuit Depth	~1.4B gates	Operations needed for Shor's algorithm
Error Correction Distance	15	Quantum error correction code distance
Breakthrough Probability	15-20% annually	Chance of major quantum advancement
Initial Qubits (2025)	1,000	Starting quantum computer capacity
Qubit Growth Rate	50% annually	Expected hardware scaling rate

Network and Economic Parameters

Page 6 of 29 2025-09-14

Parameter	Value	Description
Active Validators	1,032	Current Solana validator count
Total Stake	~380M SOL	Total staked amount in network
SOL Market Cap	\$130.62B	Current market valuation
Stake Concentration	Top 20: 35%	Stake held by largest validators
Geographic Distribution	US/EU: 60%	Regional concentration of nodes
Consensus Threshold (Halt)	33.3%	Stake needed to halt network
Consensus Threshold (Control)	66.7%	Stake needed for network control
Migration Adoption Rate	80%	Expected quantum-safe migration rate

2. ■ SOLANA QUANTUM IMPACT MONTE CARLO SIMULATION REPORT

Generated: 2025-09-14 11:07:45 Simulation Type: Comprehensive Quantum Threat Assessment Network:

Solana Blockchain Author: Marc Johnson

--

2.0.1 Simulation Overview

■ Total Iterations: 9 Monte Carlo simulations

■ Analysis Period: 25 years

■ Time Horizon: 2025-2050

■ Confidence Level: 95%

■ Runtime: 0.0 seconds

2.0.2 ■ Critical Risk Indicators

Risk Status: Moderate - Proactive measures recommended

■ Overall Risk Score: 59.6/100

■ Attack Probability: 80.7%

■ Time to Threat: 4.2 years

■ Impact Severity: \$43.3B potential loss

■ Confidence Level: 85.0%

Page 8 of 29 2025-09-14

2.0.3 ■ Economic Impact Summary

■ Expected Loss (Mean): \$27.49 Billion

■ Median Loss: \$39.56 Billion

■ Best-Case Scenario: \$4.71 Billion

■ Worst-Case Scenario: \$43.37 Billion

■ Value at Risk (95%): \$43.32 Billion

■ Conditional VaR (95%): \$43.37 Billion

2.0.4 ■ Quantum Threat Timeline

■ Expected CRQC Emergence: 2029

■ Earliest Possible: 2026

■ Latest Projected: 2035

■ 90% Confidence Range: 2026 - 2033

■ Years Until Threat: 4 years (average)

2.0.5 ■ Network Vulnerability

■ Current Attack Success Rate: 100.0%

■ Vulnerable Validators: 1,032 (100% without migration)

■ Total Value at Risk: \$130.62B (current SOL market cap)

■ Migration Readiness: 2.5/10

Page 9 of 29 2025-09-14

2.1 ■ Key Findings

2.1.1 1. Quantum Computing Threat Timeline

- Cryptographically Relevant Quantum Computers (CRQC) are projected to emerge by 2029
- Standard deviation of 2.5 years indicates significant uncertainty
- Industry projections show accelerating progress in quantum hardware:
 - ° Qubit counts doubling every 12-18 months
 - ° Gate fidelity improving 0.5% annually
 - ° Error correction advancing rapidly
- Breakthrough scenarios could advance timeline by 2-3 years
- Conservative estimates extend to mid-2030s

2.1.2 2. Economic Impact Assessment

- Average economic loss per successful attack: \$27.49B
- Standard deviation of \$16.74B indicates high variability
- Loss components breakdown:
 - ° **Direct theft** from compromised accounts (20-40% of impact)
 - ° Market panic and SOL price decline (30-50% of impact)
 - ° **DeFi cascade failures** (15-25% of impact)
 - ° Long-term reputation damage (10-15% of impact)
- Recovery time estimates:
 - ° Minor attacks (<\$5B): 3-6 months
 - ° Major attacks (>\$20B): 12-24 months

2.1.3 3. Network Vulnerability Analysis

■ Current Solana network has 1,032 active validators

■ Stake concentration creates systemic risk:

- ° Top 20 validators control ~35% of stake
- ° Geographic concentration in US/EU (60%)
- ° Institutional validators represent 40%

■ Without quantum-safe migration, 100% remain vulnerable

■ Critical attack vectors identified:

- ° Private key compromise (highest risk)
- ° Double-spend attacks (moderate risk)
- ° Consensus disruption (lower risk)

2.1.4 4. Attack Feasibility Assessment

■ Success rate of quantum attacks: 100.0% without migration

■ Attack execution timeline:

- ° Key compromise: <1 hour with mature CRQC
- ° Fund extraction: 1-6 hours
- ° Network recovery: Days to weeks

■ Defense effectiveness:

- ° Quantum-safe signatures: 95% risk reduction
- ° Enhanced monitoring: 60% early detection rate
- ° Multi-sig wallets: 80% theft prevention

2.1.5 5. Migration Impact Analysis

■ Networks achieving >70% quantum-safe migration show 90% risk reduction

■ Migration cost-benefit analysis:

° Investment: \$10-50M for full network

° Risk reduction: 60-95%

° ROI period: 1-2 years

■ Early adopters gain competitive advantage

■ Time-critical: Each year of delay increases risk by ~15%

■ Recommended timeline:

° 2026: 25% migration

° 2027: 50% migration

° 2028: 70% migration

° 2029: 95%+ migration

2.2 ■ Detailed Economic Impact Analysis

This section provides a comprehensive examination of the economic implications of quantum threats to the Solana ecosystem. Our analysis considers direct financial losses, systemic market effects, and the broader implications for decentralized finance infrastructure built on Solana.

2.2.1 Loss Distribution Analysis

Percentile	Loss Amount (USD)	Interpretation
5th	\$4.91B	Best case scenario
25th	\$6.59B	Optimistic outcome
50th (Median)	\$39.56B	Most likely outcome
75th	\$43.20B	Pessimistic outcome
95th	\$43.32B	Near worst-case
Maximum	\$43.37B	Worst-case scenario

2.2.2 Impact Components Breakdown

Based on simulation modeling, economic losses comprise:

2.2.3 1. Direct Losses (30-40% of total)

- Stolen funds from compromised validator accounts
- Lost staking rewards during network disruption
- Transaction fee losses during downtime

2.2.4 2. Market Impact (35-45% of total)

- SOL token price decline (20-80% depending on severity)
- Trading volume reduction
- Liquidity exodus to other chains

2.2.5 3. DeFi Ecosystem Effects (15-20% of total)

- Liquidation cascades from price drops
- Protocol insolvencies
- Stablecoin de-pegging risks

2.2.6 4. Long-term Effects (10-15% of total)

- Developer migration to other platforms
- Reduced institutional investment
- Regulatory scrutiny costs

2.2.7 Recovery Timeline Projections

Post-attack recovery scenarios:

- Minor Attack (<\$5B loss): 3-6 months to full recovery
- Moderate Attack (\$5-20B loss): 6-12 months recovery
- Major Attack (\$20-40B loss): 12-24 months recovery
- Catastrophic Attack (>\$130B loss): 24+ months, potential permanent damage

2.3 Quantum Computing Development Timeline

The trajectory of quantum computing development directly determines the urgency of blockchain security upgrades. This timeline synthesizes projections from leading quantum computing companies, academic research institutions, and government quantum initiatives. The progression from current noisy intermediate-scale quantum (NISQ) devices to fault-tolerant quantum computers capable of breaking Ed25519 represents a fundamental shift in cryptographic security assumptions.

2.3.1 CRQC Capability Projections

Year	Logical Qubits	Gate Fidelity	Ed25519 Break Time	Threat Level
2025	100-500	99.0%	>1 year	Minimal
2027	500-1,500	99.5%	~6 months	Emerging
2029	1,500-3,000	99.7%	<1 month	Moderate
2031	3,000-5,000	99.9%	<1 week	High
2033	5,000-10,000	99.95%	<24 hours	Critical
2035+	>10,000	>99.99%	<1 hour	Extreme

2.3.2 Key Milestones

■ 2025-2027: Quantum advantage demonstrations, early warning phase

■ 2028-2030: First cryptographically relevant capabilities emerge

■ 2031-2033: Practical attacks become feasible

■ 2034+: Quantum computers can break Ed25519 in real-time

2.3.3 Uncertainty Factors

■ Hardware breakthrough probability: 15-20% per year

■ Error correction improvements: Advancing rapidly

■ Investment levels: \$25B+ annually globally

■ Competition: US, China, EU racing for quantum supremacy

2.4 ■ Solana Network Vulnerability Assessment

2.4.1 Current Network State (2025)

■ Active Validators: 1,032

■ Total Stake: ~380M SOL (~\$91.5B USD at \$240.86/SOL)

■ Consensus Mechanism: Proof of History (PoH) with Proof of Stake (PoS) and Tower BFT

■ Cryptography: Ed25519 signatures (quantum-vulnerable)

2.4.2 Vulnerability Factors

2.4.3 Stake Distribution

- Top 20 validators control ~35% of stake
- Geographic concentration in US/EU (60% of nodes)
- Institutional validators represent 40% of stake

2.4.4 Attack Surface Analysis

Attack Vector	Current Risk	Post-Quantum Risk	Migration Priority
Private Key Compromise	Low	Critical	Highest
Transaction Forgery	Very Low	High	High
Consensus Manipulation	Low	Moderate	Medium
Smart Contract Exploits	Medium	Medium	Low
Network Partitioning	Low	Moderate	Medium

2.4.5 Migration Readiness Score: 2.5/10

Current preparedness is limited:

- No quantum-safe cryptography deployed
- No formal migration plan announced
- ■ Limited validator awareness
- Active development community
- ■ Upgradeable architecture

2.5 ■■ Attack Scenario Analysis

2.5.1 Primary Attack Vectors

2.5.2 1. Validator Key Compromise

■ Probability: High (>80% with CRQC)

■ Impact: Catastrophic

■ Time to Execute: <1 hour with mature quantum computer

■ **Defenses:** Quantum-safe signatures, key rotation

2.5.3 2. Double-Spend Attacks

■ Probability: Moderate (40-60%)

■ Impact: Severe

■ Time to Execute: 1-6 hours

■ **Defenses:** Enhanced confirmation requirements

2.5.4 3. Consensus Disruption

■ Probability: Moderate (30-50%)

■ Impact: Major

■ Time to Execute: 6-24 hours

■ **Defenses:** Byzantine fault tolerance improvements

2.5.5 4. Targeted Theft Operations

■ Probability: High (70-90%)

■ Impact: Variable (\$1M - \$1B per target)

■ Time to Execute: Minutes to hours

■ **Defenses:** Multi-signature wallets, timelock mechanisms

2.5.6 Attack Progression Model

- Regulatory response

```
Phase 1 (Reconnaissance): 1-7 days

Network mapping

Target identification

Vulnerability assessment

Phase 2 (Preparation): 1-3 days

Quantum resource allocation

Attack vector selection

Coordination setup

Phase 3 (Execution): 1-24 hours

Key compromise

Transaction broadcast

Fund extraction

Phase 4 (Aftermath): Days to months

Market panic

Network recovery attempts
```

2.6 ■ Comprehensive Risk Assessment

2.6.1 Overall Risk Profile

Current Risk Level: Moderate

■ Composite Risk Score: 59.6/100

■ Attack Probability: 80.7%

■ Expected Impact: \$43.3B potential loss

■ Time Horizon: 4.2 years to critical threat

■ Confidence Level: 85.0%

2.6.2 Risk Matrix

```
Probability →

Impact ↓ Low(0-25) Med(25-50) High(50-75) Critical(75-100)

Critical Medium High Critical Critical

High Low Medium High Critical

Medium Low Low Medium High

Low Minimal Low Low Medium

Medium Low Medium Medium

Medium Medium Medium

Medium Medium

Medium
```

2.6.3 Risk Trajectory Analysis

■ 2025-2027: Risk Level: Low to Moderate

■ 2028-2030: Risk Level: Moderate to High

■ 2031-2033: Risk Level: High to Critical

■ 2034+: Risk Level: Critical to Extreme

2.6.4 Key Risk Drivers

1. Technology Risk (40% weight)

- ° Quantum computing advancement rate
- ° Algorithm improvements
- ° Hardware breakthrough probability

2. Network Risk (30% weight)

- ° Validator concentration
- ° Geographic distribution
- ° Stake centralization

3. Economic Risk (20% weight)

- ° Total value locked
- ° Market volatility
- ° DeFi interconnectedness

4. Operational Risk (10% weight)

- ° Migration readiness
- ° Governance effectiveness
- ° Technical debt

2.7 Statistical Analysis

2.7.1 Distribution Characteristics

2.8 ■ Quantum-Safe Migration Strategy

2.8.1 ■ PROACTIVE MIGRATION RECOMMENDED

- 2.8.2 Phase 1: Planning (0-6 months)
- [] Form quantum security committee
- [] Develop migration roadmap
- [] Allocate resources and budget (\$5-10M)
- [] Begin stakeholder engagement
- 2.8.3 Phase 2: Pilot Program (6-12 months)
- [] Deploy test implementations
- [] Validate quantum-safe solutions
- [] Train technical teams
- [] Target 25% migration
- 2.8.4 Phase 3: Gradual Rollout (12-24 months)
- [] Systematic migration deployment
- [] Monitor and optimize
- [] Target 70% migration

2.8.5 Technical Migration Path

2.8.6 1. Signature Scheme Upgrade

- Implement SPHINCS+ or Dilithium signatures
- Maintain backward compatibility
- Gradual rollout with opt-in period

2.8.7 2. Key Management Evolution

- Deploy quantum-safe key derivation
- Implement secure key rotation (30-day cycles)
- Enhanced multi-signature support

2.8.8 3. Network Hardening

- Increase confirmation requirements
- Implement anomaly detection
- Deploy quantum threat monitoring

2.8.9 Cost-Benefit Analysis

Migration Investment	Risk Reduction	ROI Period	Implementation Time
\$10M	60%	2 years	18 months
\$25M	80%	1.5 years	12 months
\$50M	95%	1 year	6 months

2.8.10 Success Metrics

■ Target: 70% quantum-safe validators by 2028

■ Milestone 1: 25% migration by end of 2026

■ Milestone 2: 50% migration by mid-2027

■ Milestone 3: 70% migration by end of 2027

■ Full Migration: 95%+ by 2029

2.8.11 Key Success Factors

1. Leadership Commitment: Executive sponsorship essential

2. Validator Engagement: 80%+ participation required

3. Technical Expertise: Dedicated quantum security team

4. Budget Allocation: Minimum \$10M investment

5. Timeline Adherence: Critical milestones must be met

2.9 ■ Technical Appendix

2.9.1 Simulation Parameters

```
{
  "iterations": 9,
  "random_seed": 42,
  "start_year": 2025,
  "end_year": 2050,
  "confidence_level": 0.95,
  "cores_used": 8
}
```

2.9.2 Methodology

2.9.3 Monte Carlo Simulation

This analysis uses Monte Carlo simulation to model the probabilistic impact of quantum computing on the Solana blockchain:

- Iterations: Multiple random scenarios generated
- Random sampling: From calibrated probability distributions
- Convergence: Statistical stability achieved
- Parallel processing: Multi-core execution for performance

2.9.4 Model Components

1. Quantum Development Model

- ° Qubit growth projections (15-25% annually)
- ° Gate fidelity improvements
- ° Breakthrough probability events

2. Network State Model

- ° Validator dynamics and growth
- ° Stake distribution evolution
- ° Migration adoption curves

3. Attack Scenarios Model

- ° Attack vector feasibility
- ° Success probability calculations
- ° Execution time estimates

4. Economic Impact Model

- ° Direct loss calculations
- ° Market reaction modeling
- ° DeFi cascade effects
- ° Recovery trajectories

2.9.5 Key Assumptions

- Quantum computing follows historical exponential growth patterns
- Network migration capabilities remain technically feasible
- Economic models based on historical crypto market behavior
- Attack success correlates with quantum capability levels
- Regulatory responses not explicitly modeled

2.9.6 Key Variables Used in the Analysis

2.9.7 1. Network Parameters

Variable	Value	Source	Rationale
Active Validators	1,032	Solana Beach (Sept 2025)	Current active validator count from official network explorer
Total Stake	~380M SOL	Solana Beach	Total staked SOL across all validators
SOL Market Cap	\$130.62B	CoinCodex (Jan 2025)	Current market valuation at \$240.86/SOL
Circulating Supply	542.32M SOL	CoinCodex	Current tokens in circulation
Stake Conc entration	Top 20: 35%	Solana Beach	Measure of network decentralization risk
Geographic Distribution	US/EU: 60%	Validators.app	Concentration risk assessment

2.9.8 2. Quantum Computing Parameters

Variable	Value	Source	Rationale
Qubit 15-25% IBM Quantum Network annually Rate		IBM Quantum Network	Historical trend from 2019-2024 quantum roadmaps
Gate Fidelity Imp rovement	0.5% annually	Google Quantum Al	Based on published error rate improvements
CRQC Threshold	~4,000 logical qubits	Gidney & Ekerå (2021)	Required for breaking 256-bit ECC in reasonable time
Breakthrou gh Probability	15-20% per year	Industry analysis	Based on historical tech breakthrough patterns
Global Investment	\$25B+ annually	McKinsey Quantum Report 2024	Government and private sector combined

2.9.9 3. Economic Impact Variables

Variable	Value	Source	Rationale
Total Value Locked (TVL)	\$130.62B	CoinCodex	Current SOL market capitalization
Direct Theft Range	20-40% of TVL	Historical crypto hacks	Based on Mt. Gox, FTX, and other major incidents
Market Panic Multiplier	2-5x direct loss	Market analysis	Historical price impacts from security breaches
SOL Price Decline	20-80%	Historical data	Based on major crypto security events (Terra, FTT)
DeFi Cascade Factor	15-25% additional	DeFi research	Liquidation cascade modeling from 2022 events
Recovery Time (Minor)	3-6 months	Historical analysis	Based on minor exploit recoveries

Variable	Value	Source	Rationale
Recovery Time (Major)	12-24 months	Historical analysis	Based on Terra/FTX recovery patterns

2.9.10 4. Attack Scenario Variables

Variable	Value	Source	Rationale
Ed25519 Break Time	<1 hour (2033+)	Quantum algorithms research	Shor's algorithm runtime estimates
Key Compromise Success	>80% with CRQC	Theoretical analysis	Based on cryptographic vulnerability
Double-Spend Probability	40-60%	Network analysis	Depends on validator participation
Attack Preparation	1-3 days	Security research	Time for reconnaissance and setup
Fund Extraction Time	1-6 hours	Transaction analysis	Based on network finality times

2.9.11 5. Migration Parameters

Variable	Value	Source	Rationale
Migration Cost Range	\$10-50M	Industry estimates	Based on similar blockchain upgrades
Risk Reduction (70% migrated)	90%	Security modeling	Non-linear risk reduction with adoption
Implementation Time	6-18 months	Software deployment	Based on consensus upgrade timelines
Validator Participation Required	>80%	Consensus research	Minimum for effective security
Annual Risk Increase (no action)	~15%	Quantum progress	Based on capability advancement rate

2.9.12 6. Risk Assessment Variables

Variable	Value	Source	Rationale
Risk Score Range	0-100	Standard risk framework	Industry standard scoring system
Critical Threat Threshold	4 years	Expert consensus	Time needed for migration completion
Confidence Weights	Tech: 40%, Network: 30%	Risk modeling	Based on factor importance analysis
Migration Readiness Score	2.5/10	Current assessment	Based on lack of quantum preparations
Detection Rate (monitoring)	60%	Security analysis	Early warning system effectiveness

2.9.13 Data Sources

■ Solana Beach: Validator and stake distribution data

■ Academic Research: Quantum computing projections

■ Industry Reports: IBM, Google, and other quantum leaders

■ Historical Data: Previous crypto attack impacts

■ NIST Standards: Post-quantum cryptography guidelines

2.9.14 Limitations

- Uncertainty in quantum breakthrough timing
- Simplified economic impact models
- Network effects may vary from projections
- Geopolitical factors not considered
- Regulatory responses not modeled

- 2.9.15 References
- 1. NIST Post-Quantum Cryptography Standards (2024)
- 2. Solana Documentation and Technical Papers
- 3. IBM Quantum Network Annual Report
- 4. Google Quantum Al Research Publications
- 5. MIT/Oxford Quantum Computing Studies
- 6. Blockchain Security Alliance Reports
- 7. Arora & Barak: Computational Complexity
- 8. Nielsen & Chuang: Quantum Computation and Quantum Information
- 9. Mosca, M. (2018). Cybersecurity in an Era with Quantum Computers
- **10.** Grover's Algorithm Original Paper (1996)
- 11. Shor's Algorithm Original Paper (1994)
- 12. Solana Validator Economics

--

This report represents probabilistic modeling and should not be considered investment advice. Results are based on current understanding of quantum computing development and may change as new information becomes available.

2025-09-14