

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Gráficos

Olímpio Rudinin Vissoto Leite

■ Tipos de gráficos

Veja os principais tipos de gráficos.

Gráfico de linha

O gráfico de linha é usado para informar a variação de uma grandeza em função de outra. O gráfico abaixo relaciona *população* com o *tempo*, mostrando a evolução da população brasileira.

Examine-o cuidadosamente, antes de responder as perguntas a seguir:

- a) Quantos habitantes havia no Brasil em 1970?
- b) Em que década a população brasileira ultrapassou os 100 milhões de habitantes?
- c) Quanto cresceu a população brasileira de 1940 a 1990?

Resolução:

- a) 93 milhões.
- b) na década de 1970
- c) 110 milhões.

Gráficos de barras

Os gráficos de barras contêm, geralmente, informações relativas a diversas grandezas.

Nesse tipo de gráfico, as barras podem ser horizontais ou verticais.

Gráfico de barras verticais

O gráfico a seguir, de barras verticais, mostra os países com maior população do mundo em 2000 e a previsão da população para o ano 2025:

Países com maior população (milhões de habitantes)

- a) Qual o país com a maior população do mundo, hoje e, provavelmente, em 2025?
- b) Qual dos países deverá ter maior crescimento populacional, em milhões de habitantes?

Resolução:

- a) China.
- b) Índia, pois deverá ter um crescimento de 330 milhões de habitantes.

Gráfico de barras horizontais

O gráfico de barras horizontais a seguir mostra o tempo de digestão de alguns alimentos.

Analisando esse gráfico, responda:

- a) Quantos minutos o organismo humano gasta para digerir um pedaço de frango?
- b) O que é mais digestível: um filé de peixe ou um filé bovino?
- c) Uma hora antes das refeições, é preferível ingerir um doce ou uma fruta? Por quê?

Resolução:

- a) 1h15min.
- b) Filé de peixe.
- c) Fruta, pois é digerida mais rapidamente.

Gráfico de setores circulares

O gráfico de setores circulares, também chamado atualmente de gráfico de "pizza", é usado principalmente para informar o que acontece com as partes de um todo.

Veja o exemplo:

Esse gráfico mostra os momentos do voo em que são mais frequentes os acidentes de avião, considerando um total de 100 ocorrências. Analisando as informações, responda:

- a) Em que momento do voo é mais comum a ocorrência de acidentes?
- b) Em cada 100 acidentes aéreos, quantos ocorrem no momento da aterrissagem?
- c) Ocorrem mais acidentes na decolagem ou na aterrissagem de um avião?

Resolução:

- a) Na aproximação do aeroporto e na descida.
- b) 26
- c) Aterrissagem.

Gráficos sobrepostos

A construção de dois ou mais gráficos sobrepostos permite uma comparação mais eficaz das grandezas envolvidas.

Exemplo:

Os gráficos referem-se a dados coletados durante um ano em Cuiabá (MT). A curva mostra a variação de temperatura; as barras, as precipitações atmosféricas (chuvas) em milímetros:

Analisando esses gráficos, responda:

- a) Em que meses ocorreram as temperaturas mais elevadas?
- b) Em que mês choveu menos?
- c) Que relação pode ser estabelecida entre a temperatura e as precipitações atmosféricas (chuvas)?

Resolução:

- a) Janeiro, março e dezembro.
- b) Julho.
- c) Quanto maior a temperatura, maior a precipitação de chuvas.

Pictogramas

Os gráficos que usam desenhos para representar os dados da informação são chamados de pictogramas. Nesses gráficos, as figuras variam de tamanho ou quantidade.

Uma pesquisa feita entre mil alunos mostrou o meio de transporte que eles utilizam para se dirigirem à escola. Os resultados estão apresentados a seguir:

Observando o gráfico, responda:

- a) Qual o meio de transporte mais usado?
- b) Quantos alunos vão à escola de bicicleta?
- c) Quantos alunos não vão andando?

Resolução:

- a) Ônibus.
- b) 150
- c) 700

Construção e análise de um gráfico cartesiano

Para fixar um referencial cartesiano em um plano, desenhar duas retas reais perpendiculares e de mesma origem (eixos). A reta real horizontal é chamada de eixo x (das abscissas) e a reta real vertical, de eixo y (das ordenadas).

Fixado um referencial cartesiano em um plano, todo ponto desse plano é representado por um par ordenado (a, b) de números reais e todo par ordenado (a, b) de números reais está associado a um ponto do plano.

Indicamos, por exemplo, P (a, b), onde P é o ponto do plano associado aos números reais a e b. Esses números são chamados de *coordenadas do ponto*.

Exemplos:

1. No referencial cartesiano abaixo, localizamos os pontos A (3, 4), B (1, -3), C (-2, 4) e D (-2, -3):

2. Representar graficamente, num referencial cartesiano, a equação x + y = 4.

Solução:

A tabela a seguir mostra algumas duplas de números que satisfazem a equação, associadas a pontos da "curva":

Observe, no exemplo acima, que os pontos estão alinhados, sugerindo serem de uma reta.

Assim, a curva associada à equação x + y = 4, num referencial cartesiano, é uma reta:

3. Construir o gráfico da equação $y = x^2$, num referencial cartesiano.

Solução:

A tabela abaixo mostra alguns pares ordenados que satisfazem a equação, associadas a pontos importantes da curva. Nesse caso, os valores atribuídos a x não foram escolhidos por acaso. Aprendemos a escolher valores adequados para x, estudando os gráficos de diversas equações.

Х	Υ
0	0
-0,5	0,25
-1	1
0,5	0,25
1	1
-2	4
2	4
-1,5	2,25
1,5	2,25

Como analisar um gráfico?

Inicialmente, identificamos o tipo de curva associada à equação dada; em seguida, estudamos as propriedades dessa curva.

Nas questões geométricas, as unidades dos eixos do referencial cartesiano devem ser representadas por segmentos de mesma medida.

Exemplos:

1. O gráfico a seguir mostra o espaço percorrido por um foguete, em função do tempo.

Observe a diferença entre as medidas dos segmentos utilizados como unidade para x e para y.

A análise de um gráfico também pode ser feita a partir da definição de referencial cartesiano.

2. O gráfico cartesiano abaixo mostra o espaço S (em quilômetros) percorrido por um automóvel, em função do tempo t (em minutos):

Observar o gráfico e responder:

- a) Entre que instantes o carro esteve parado?
- b) Qual a velocidade escalar média desenvolvida pelo carro entre o início e o fim da viagem?

Solução:

- a) Entre 30min e 60min, o espaço percorrido permaneceu constante (40km). Logo, o carro esteve parado durante esse intervalo de tempo.
- b) O carro percorreu um total de 80km em 120min ou 2h. Logo, a sua velocidade escalar média foi de:

$$v = \frac{\text{espaço percorrido}}{\text{intervalo de tempo}} = \frac{80 \text{km}}{2 \text{h}} = 40 \text{km/h}$$

Exercícios

1. Medições realizadas mostram que a temperatura, no interior da Terra, aumenta, aproximadamente, 3°C a cada 100m de profundidade. Num certo local, a 100m da superfície, a temperatura é de 25°C, como mostra a figura a seguir. Nessas condições:

- a) Qual é a temperatura a 1 500m de profundidade?
- b) A que profundidade se encontra uma fonte de água mineral a 46°C?
- 2. Os segmentos tomados como unidade, nos eixos dos Referenciais Cartesianos a seguir, representam a medida de 1cm. Assim, calcule a área de cada figura, em cm².

3. Complete as tabelas a seguir, desenhe os eixos do Referencial Cartesiano, localize os pontos associados aos pares ordenados e desenhe o gráfico cartesiano que representa cada equação.

a)
$$y = x - 2$$

Х	-3	-2	-1	0	1	2	3
у							

b) $y = x^2 - 4$ (a curva obtida é uma *parábola*)

Х	-3	-2	-1	0	1	2	3
у							

c)
$$y = \sqrt{x}$$

X	0	1	2	3	4	5
у			1,4	1,7		2,2

4. As tabelas a seguir mostram alguns dados sobre as exportações das empresas brasileiras para os Estados Unidos, no ano de 2007:

Faixas de valor das exportações	Número de empresas	_	Unidades da Federação	Número de empresas
Até US\$1 milhão	6 211		SP	3 206
Entre US\$1 e 10 milhões	1 253		RS	811
Entre US\$10 e 50 milhões	326		MG	753
Entre US\$50 e 100 milhões	39		SC	538
Acima de US\$100 milhões	34	_	Outras	2 555
Total	7 863	_	Total	7 863

A partir dos dados anteriores, esboce um gráfico de barras verticais e outro de pizza, escolhendo um tipo para cada tabela. Lembre-se que o gráfico de barras é mais bem interpretado quando existe uma comparação de categorias e o gráfico de pizza é mais eficaz para a visualização de cada uma das partes dentro de um todo.

5. Previsto na Constituição Brasileira, o salário-mínimo é um direito do trabalhador e deve ser capaz de atender às necessidades básicas dele e da sua família. Ele é unificado, ou seja, tem o mesmo valor em todo o país, e seu valor sofre reajustes para que o poder aquisitivo do trabalhador não seja diminuído com o passar do tempo. O gráfico a seguir mostra o valor do salário-mínimo e o rendimento médio do trabalhador brasileiro para o mês de setembro, no período compreendido entre 2001 e 2008.

a) Em qual ano o salário-mínimo alcançou seu maior valor? E o rendimento médio?

b) Considerando que o gráfico representa os valores de maneira proporcional, utilize uma régua e descubra qual ano apresentou a maior diferença entre os valores do salário-mínimo e do rendimento médio.

c) Quantas vezes o valor do salário-mínimo, em setembro de 2008, é maior do que o valor do salário-mínimo em setembro de 2002?

Gabarito

Gráficos

- 1.
- a) A temperatura, a 1 500m de profundidade é cerca de 67°C.
- b) A profundidade é de aproximadamente 800m.
- 2.
- a) $A = 9cm^2$
- b) $A = 18cm^2$
- c) $A = 6cm^2$
- d) $A = 18cm^2$
- e) $A = 19.5 \text{cm}^2$
- f) $A = 12cm^2$
- g) $A = 12,56 \text{cm}^2$
- 3.
- a) y = x 2

х	-3	-2	-1	0	1	2	3
				-2			

b) $y = x^2 - 4$ (a curva obtida é uma *parábola*)

x	-3	-2	-1	0	1	2	3
у	5	0	-3	-4	-3	0	5

c) $y = \sqrt{x}$

x	0	1	2	3	4	5
у	0	1	1,4	1,7	2	2,2

4.

Participação das Unidades da Federação nas exportações para os EUA

- 5.
- a) 2008; 2002.
- b) 2002.
- c) Aproximadamente 2,1 vezes maior

Matemática Elementar II: situações de matemática do ensino médio no dia a dia