CMPT 379 Compilers

Anoop Sarkar http://www.cs.sfu.ca/~anoop

10/27/10

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print yes if the input string is generated by the grammar, print no otherwise
- This problem is called recognition

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time

10/27/10

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

 $A \rightarrow BC$ $A \rightarrow a$

10/27/10 4

Epsilon Removal

• First step, remove epsilon rules

$$A \rightarrow B C$$

 $C \rightarrow \varepsilon \mid C D \mid a$
 $D \rightarrow b \quad B \rightarrow b$

• After ε-removal:

$$A \rightarrow B \mid B C D \mid B a \mid BC$$

 $C \rightarrow D \mid C D D \mid a D \mid C D \mid a$
 $D \rightarrow b \quad B \rightarrow b$

10/27/10

.

Removal of Chain Rules

• Second step, remove chain rules

$$A \rightarrow B C \mid C D C$$

 $C \rightarrow D \mid a$
 $D \rightarrow d \quad B \rightarrow b$

• After removal of chain rules:

$$A \rightarrow Ba|BD|aDa|aDD|DDa|DDD$$

 $D \rightarrow d \quad B \rightarrow b$

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of rules

$$A \rightarrow B a C d$$

• After removal of terminals from the rhs:

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

10/27/10

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

• After converting to binary form:

$$A \rightarrow B N_3$$
 $N_1 \rightarrow a$
 $N_3 \rightarrow N_1 N_4$ $N_2 \rightarrow d$
 $N_4 \rightarrow C N_2$

7

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:

$$S \rightarrow A X \mid Y B$$

 $X \rightarrow A B \mid B A \qquad Y \rightarrow B A$
 $A \rightarrow a \quad B \rightarrow a$

• Example input string: aaa

10/27/10

CKY Algorithm

Parse trees

10/27/10 11

CKY Algorithm

```
Input string input of size n
Create a 2D table chart of size n<sup>2</sup>
for i=0 to n-1
    chart[i][i+1] = A if there is a rule A \rightarrow a and input[i]=a
for j=2 to N
    for i=j-2 downto 0
       for k=i+1 to j-1
           chart[i][j] = A if there is a rule A \rightarrow B C and chart
             [i][k] = B and chart[k][j] = C
return yes if chart[o][n] has the start symbol
else return no
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is O $(|G|^2 n^3)$
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous **CFGs**
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars 10/27/10

13

GLR – Generalized LR Parsing

- Works for any CFG (just like CKY algorithm)
 - Masaru Tomita [1986]
- If you have shift/reduce conflict, just clone your stack and shift in one clone, reduce in the other clone
 - proceed in lockstep
 - parser that get into error states die
 - merge parsers that lead to identical reductions (graph structured stack)
- Careful implementation can provide O(n³) bound
- However for some grammars, parser will be exponential in grammar size

Parsing - Summary

- Parsing arbitrary CFGs using the CKY algorithm: $O(n^3)$ time complexity
- Chomsky Normal Form (CNF) provides the n³ time bound
- LR parsers can be extended to Generalized LR parsers to deal with arbitrary CFGs, complexity is still O(n³)

10/27/10

Parsing - Additional Results

- O(n²) time complexity for linear grammars
 - All rules are of the form $S \rightarrow aSb$ or $S \rightarrow a$
 - Reason for $O(n^2)$ bound is the linear grammar normal form: A → aB, A → Ba, A → B, A → a
- Left corner parsers
 - extension of top-down parsing to arbitrary CFGs
- Earley's parsing algorithm
 - O(n3) worst case time for arbitrary CFGs just like CKY
 - $-O(n^2)$ worst case time for unambiguous CFGs
 - O(n) for specific unambiguous grammars

 $_{10/27/10}$ (e.g. S \rightarrow aSa | bSb | ϵ)