Effective Program Debloating via Reinforcement Learning

Kihong Heo¹ Pardis Pashakhanloo¹ Woosuk Lee¹²
Mayur Naik¹

University of Pennsylvania¹ Hanyang University²

CCS 2018

Growth of SW Complexity

Linux Kernel

^{*}https://www.linuxcounter.net

Performance Maintainability Security

Performance Maintainability Security

Example: security vulnerability in GNU tar

Performance Maintainability Security

• Example: security vulnerability in GNU tar

Performance Maintainability Security

• Example: security vulnerability in GNU tar

General-purpose <u>tar</u>

Out-of-the-box Linux

Customized tar

BusyBox Utility Package*

^{*}https://busybox.net

General-purpose <u>tar</u>

- Out-of-the-box Linux
- 97 cmd line options

- BusyBox Utility Package*
- 8 cmd line options

^{*}https://busybox.net

General-purpose <u>tar</u>

- Out-of-the-box Linux
- 97 cmd line options
- 45,778 LOC
- 13,227 statements

- BusyBox Utility Package*
- 8 cmd line options
- 3,287 LOC
- 403 statements

^{*}https://busybox.net

General-purpose <u>tar</u>

- Out-of-the-box Linux
- 97 cmd line options
- 45,778 LOC
- 13,227 statements
- CVE-2016-6321

- BusyBox Utility Package*
- 8 cmd line options
- 3,287 LOC
- 403 statements
- No known CVEs

^{*}https://busybox.net

General-purpose <u>tar</u>

- Out-of-the-box Linux
- 97 cmd line options
- 45,778 LOC
- 13,227 statements
- CVE-2016-6321

- BusyBox Utility Package*
- 8 cmd line options
- 3,287 LOC
- 403 statements
- No known CVEs

^{*}https://busybox.net

Our Goal

General-purpose <u>tar</u>

- Out-of-the-box Linux
- 97 cmd line options
- 45,778 LOC
- 13,227 statements
- CVE-2016-6321

- BusyBox Utility Package*
- 8 cmd line options
 - 1,646
- 3,287 LOC
 - 518
- 403 statements
- No known CVEs

^{*}https://busybox.net

Chisel: an automated program debloating system

minimality: trim code as aggressively as possible

- minimality: trim code as aggressively as possible
- efficiency: scale to large programs

- minimality: trim code as aggressively as possible
- efficiency: scale to large programs
- robustness: avoid introducing new vulnerabilities

- minimality: trim code as aggressively as possible
- efficiency: scale to large programs
- robustness: avoid introducing new vulnerabilities
- naturalness: produce maintainable code

- minimality: trim code as aggressively as possible
- efficiency: scale to large programs
- robustness: avoid introducing new vulnerabilities
- naturalness: produce maintainable code
- generality: handle a variety of programs and specs

Example: tar-1.14

```
void read and(void *(do something)(void)) {
                                                                       enum read header status;
int absolute_names;
                                                                       while (...) {
int ignore_zeros_option;
                                                                           status = read_header();
struct tar_stat_info stat_info;
                                                                           switch (status) {
                                                                           case HEADER_SUCCESS: (*do_something)(); continue;
char *safer_name_suffix (char *file_name, int link_target) {
                                                                           case HEADER_ZERO_BLOCK:
                                                                             if (ignore zeros option) continue;
    int prefix len;
                                                                             else break;
    char *p;
    if (absolute names) {
                                                                           default: break;
        p = file_name;
    } else {
       /* CVE-2016-6321 */
       /* Incorrect sanitization if "file name" contains ".." */ }
                                                                   /* Supports all options: -x, -t, -P, -i, ... */
                                                                   int main(int argc, char **argv) {
    return p;
                                                                       int optchar;
                                                                       while (optchar = getopt_long(argc, argv) != -1) {
                                                                           switch(optchar) {
                                                                           case 'x': read and(&extract archive); break;
void extract archive() {
    char *file_name = safer_name_suffix(stat_info.file_name, 0);
                                                                           case 't': read and(&list archive); break;
    /* Overwrite "file name" if exists */
                                                                           case 'P': absolute names = 1; break;
                                                                           case 'i': ignore zeros option = 1; break;
                                                                           . . .
                                                                           }
void list_archive() { ... }
```

Example: tar-1.14

Global variable declarations removed

```
int absolute names;
int ignore zeros option;
struct tar stat info stat info;
char *safer name suffix (char *file name, int link target) {
    int prefix len;
    char *p;
    if (absolute names) {
        p = file_name;
    } else {
       /* CVE-2016-6321 */
       /* Incorrect sanitization if "file name" contains ".." */
                      Code containing CVE removed
    return p;
void extract archive() {
    char *file name = safer name suffix(stat info.file name, 0);
    /* Overwrite "file name" if exists */
void list archive() { ... }
```

Overwriting functionalities removed

```
void read and(void *(do something)(void)) {
   enum read header status;
   while (...) {
        status = read header();
        switch (status) {
        case HEADER SUCCESS: (*do something)(); continue;
        case HEADER ZERO BLOCK:
          if (ignore zeros option) continue;
          else break;
        default: break:
                 Unnecessary functionalities removed
/* Supports all options: -x, -t, -P, -i, ... */
int main(int argc, char **argv) {
    int optchar;
   while (optchar = getopt long(argc, argv) != -1) {
        switch(optchar) {
        case 'x': read and(&extract archive); break;
        case 't': read and(&list archive); break;
        case 'P': absolute names = 1; break;
        case 'i': ignore zeros option = 1; break;
        . . .
        }
                     Unsupported options removed
```

Talk Outline

- Motivation
- System Architecture
- Evaluation
- Conclusion

2. How to effectively reduce programs?

1. How to provide high-level specification?


```
#!/bin/bash
function compile {
  clang -o tar.debloat tar-1.14.c
  return $?
# tests for the desired functionalities
function desired {
  # 1. archiving multiple files
  touch foo bar
  ./tar.debloat cf foo.tar foo bar
  rm foo bar
  ./tar.debloat xf foo.tar
  test -f foo -a -f bar || exit 1
  # 2. extracting from stdin
  touch foo
  ./tar.debloat cf foo.tar foo
  rm foo
  cat foo.tar | ./tar.debloat x
  test -f foo || exit 1
  # other tests
  return 0
```

```
# tests for the undesired functionalities
function undesired {
  for test_script in `ls other_tests/*.sh`
  do
     { sh -x -e $test_script; } >& log
     grep 'Segmentation fault' log && exit 1
  done
  return 0
}
compile || exit 1
core || exit 1
non_core || exit 1
```

```
#!/bin/bash
function compile {
  clang -o tar.debloat tar-1.14.c
  return $?
# tests for the desired functionalities
function desired {
  # 1. archiving multiple files
  touch foo bar
  ./tar.debloat cf foo.tar foo bar
  rm foo bar
  ./tar.debloat xf foo.tar
  test -f foo -a -f bar || exit 1
  # 2. extracting from stdin
  touch foo
  ./tar.debloat cf foo.tar foo
  rm foo
  cat foo.tar | ./tar.debloat x
  test -f foo || exit 1
  # other tests
  return 0
```

1. The program is compilable.

```
# tests for the undesired functionalities
function undesired {
  for test_script in `ls other_tests/*.sh`
  do
      { sh -x -e $test_script; } >& log
      grep 'Segmentation fault' log && exit 1
  done
  return 0
}
compile || exit 1
core || exit 1
non_core || exit 1
```

```
function compile {
  clang -o tar.debloat tar-1.14.c
  return $?
# tests for the desired functionalities
function desired {
  # 1. archiving multiple files
  touch foo bar
  ./tar.debloat cf foo.tar foo bar
  rm foo bar
  ./tar.debloat xf foo.tar
  test -f foo -a -f bar || exit 1
  # 2. extracting from stdin
  touch foo
  ./tar.debloat cf foo.tar foo
  rm foo
  cat foo.tar | ./tar.debloat x
  test -f foo || exit 1
  # other tests
  return 0
```

#!/bin/bash

2. The program produces the same results with the desired functionalities. (e.g., using regression test suites)

```
# tests for the undesired functionalities
function undesired {
  for test_script in `ls other_tests/*.sh`
  do
      { sh -x -e $test_script; } >& log
      grep 'Segmentation fault' log && exit 1
  done
  return 0
}
compile || exit 1
core || exit 1
non_core || exit 1
```

```
#!/bin/bash
```

3. The program does not crash with the undesired functionalities. (e.g., using Clang sanitizers)

```
# 1. archiving multiple files
touch foo bar
./tar.debloat cf foo.tar foo bar
rm foo bar
./tar.debloat xf foo.tar
test -f foo -a -f bar || exit 1
# 2. extracting from stdin
touch foo
./tar.debloat cf foo.tar foo
rm foo
cat foo.tar | ./tar.debloat x
test -f foo || exit 1
# other tests
return 0
```

```
# tests for the undesired functionalities
function undesired {
  for test_script in `ls other_tests/*.sh`
  do
      { sh -x -e $test_script; } >& log
      grep 'Segmentation fault' log && exit 1
  done
  return 0
}

compile || exit 1
  core || exit 1
  non_core || exit 1
```


Delta Debugging (DD)

[Zeller and Hildebrandt, 2002]

Delta Debugging (DD)

[Zeller and Hildebrandt, 2002]

Oracle O takes a program and returns Pass or Fail

Delta Debugging (DD)

[Zeller and Hildebrandt, 2002]

- Oracle O takes a program and returns Pass or Fail
- Given a program P, find a 1-minimal P* such that $O(P^*) = Pass$
- 1-minimal: removing any element of P^* does not pass O

Delta Debugging (DD)

[Zeller and Hildebrandt, 2002]

- Oracle O takes a program and returns Pass or Fail
- Given a program P, find a 1-minimal P* such that $O(P^*) = Pass$
- 1-minimal: removing any element of P* does not pass O
- Time complexity: O(|P|2)

DD: Key Challenges

[Zeller and Hildebrandt, 2002]

- Oracle O takes a program and returns Pass or Fail
- Given a program P, find a 1-minimal P* such that $O(P^*) = Pass$
- 1-minimal: removing any element of P* does not pass O
- Time complexity: O(|P|2)

DD: Key Challenges

[Zeller and Hildebrandt, 2002]

- Oracle O takes a program and returns Pass or Fail
- Given a program P, find a 1-minimal P* such that $O(P^*) = Pass$
- 1-minimal: removing any element of P* does not pass O
- Time complexity: O(|P|2)

• Learn a policy for DD using reinforcement learning (RL)

- Learn a policy for DD using reinforcement learning (RL)
- Guide the search based on the prediction of the learned policy

- Learn a policy for DD using reinforcement learning (RL)
- Guide the search based on the prediction of the learned policy
- Still guarantee 1-minimality and O(|P|²) time complexity

- Learn a policy for DD using reinforcement learning (RL)
- Guide the search based on the prediction of the learned policy
- Still guarantee 1-minimality and O(|P|²) time complexity
- Discard nonsensical programs upfront (e.g., invalid syntax, no main, uninitialized variables, etc)

Example

```
/* mkdir-5.2.1 */
int xstrtol(char *s, char **ptr, int strtol_base, strtol_t *val,
            char *valid_suffixes) {
1: err = 0:
2: assert(0 <= strtol_base && strtol_base <= 36);</pre>
 3: p = ptr ? ptr : &t_ptr;
4: q = s;
5: while(ISSPACE (*q)) ++q;
6: if (*q == '-') return LONGINT_INVALID;
7: errno = 0;
8: tmp = strtol(s, p, strtol_base);
9: if (*p == s) { ... }
10: if (!valid_suffixes) { ... }
11: if (**p != '\0') { ... }
12: *val = tmp;
                                                  : removed code
13: return err;
```

Example

```
/* mkdir-5.2.1 */
int xstrtol(char *s, char **ptr, int strtol_base, strtol_t *val,
            char *valid_suffixes) {
1: err = 0;
2: assert(0 <= strtol_base && strtol_base <= 36);</pre>
 3: p = ptr ? ptr : &t_ptr;
 4: q = s;
 5: while(ISSPACE (*q)) ++q;
6: if (*q == '-') return LONGINT_INVALID;
7: errno = 0;
8: tmp = strtol(s, p, strtol_base);
9: if (*p == s) { ... }
10: if (!valid_suffixes) { ... }
11: if (**p != '\0') { ... }
12: *val = tmp;
                                                  : removed code
13: return err;
```

Minimal Desired Program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

Unguided Delta-Debugging

Guided Delta-Debugging

Guided Delta-Debugging

Guided Delta-Debugging

•••

Guided Delta-Debugging

•••

•••

•••

•••

Guided Delta-Debugging

P* should include 6 and 12

•••

•••

•••

•••

•••

65 1 2 3 4 5 6 7 8 9 10 11 12 13 ✓

1 1 2 3 4 5 6 7 8 9 10 11 12 13 **X**

•••

•••

Guided Delta-Debugging

• • •

1 1 2 3 4 5 6 7 8 9 10 11 12 13 **X**

•••

•••

5,169 trials (4,872 failures)

Guided Delta-Debugging

• • •

1,174 trials (901 failures)

Key Questions

Validation

- Check the robustness of the reduced program
 - preventing newly introduced security holes
- Sound static buffer overflow analyzer (Sparrow)
 - #alarms in tar: 1,290 → 19 (feasible for manual inspection)
- Random fuzzer (AFL)
 - no crashing input found in 3 days for tar

Augmentation

- Augment the test script with crashing inputs by AFL
- Typically converges in up to 3 iterations in practice
- But, may be incomplete

```
/* grep-2.19 */
void add_tok (token t) {
    /* removed in the first trial and restored after augmentation */
    if (dfa->talloc == dfa->tindex)
        dfa->tokens = (token *) realloc (/* large size */);
    *(dfa->tokens + (dfa->tindex++)) = t;
}
```

Talk Outline

- Motivation
- System Architecture
- Evaluation
- Conclusion

Experimental Setup

- 10 widely used **UNIX utility programs** (13—90 KLOC)
 - each program has a known CVE
 - remove unreachable code by static analysis upfront
- Specification:
 - supporting the same cmd line options as BusyBox
 - with the test suites by the original developers

Program	Original	Chisel	Hand-written
bzip-1.05	6,316	1,575	2,342
chown-8.2	3,422	186	141
date-8.21	4,100	913	107
grep-2.19	10,816	1,071	355
gzip-1.2.4	4,069	1,042	1,058
mkdir-5.2.1	1,746	142	94
rm-8.4	3,470	73	89
sort-8.16	7,206	379	89
tar-1.14	12,780	538	403
uniq-8.16	1,923	192	51
Total	55,848	6,111	4,729

Program	Original	Chisel	Hand-written
bzip-1.05	6,316	1,575	2,342
chown-8.2	3,422	186	141
date-8.21	4,100	913	107
grep-2.19	10,816	1,071	355
gzip-1.2.4	4,069	1,042	1,058
mkdir-5.2.1	1,746	142	94
rm-8.4	3,470	73	89
sort-8.16	Reachable code by	379	89
tar-1.14	static analysis	538	403
uniq-8.16	1,923	192	51
Total	55,848	6,111	4,729

Program	Original	Chisel	Hand-written
bzip-1.05	6,316	1,575	2,342
chown-8.2	3,422	186	141
date-8.21	4,100	913	107
grep-2.19	10,816	1,071	355
gzip-1.2.4	4,069	1,042	1,058
mkdir-5.2.1	1,746	142	94
rm-8.4	3,470	73	89
sort-8.16	Reachable code by	Chisel	89
tar-1.14	static analysis	reduced 89%	403
uniq-8.16	7,923	1.2	51
Total	55,848	6,111	4,729

Program	Original	Chisel	Hand-written
bzip-1.05	6,316	1,575	2,342
chown-8.2	3,422	186	141
date-8.21	4,100	913	107
grep-2.19	10,816	1,071	355
gzip-1.2.4	4,069	1,042	1,058
mkdir-5.2.1	1,746	142	94
rm-8.4	3,470	73	89
sort-8.16	Reachable code by	Chisel	Comparabl
tar-1.14	static analysis	reduced 89%	hand-write versions
uniq-8.16	1,923	1-2	
Total	55,848	6,111	4,729

		#ROP Gadgets			# A	larms	
Program	CVE	Original	Reduc	ed	Original	Red	uced
bzip-1.05	X	662	298	(55%)	1,991	33	(98%)
chown-8.2	V	534	162	(70%)	47	1	(98%)
date-8.21	✓	479	233	(51%)	201	23	(89%)
grep-2.19	V	1,065	411	(61%)	619	31	(95%)
gzip-1.2.4	V	456	340	(25%)	326	128	(61%)
mkdir-5.2.1	X	229	124	(46%)	43	2	(95%)
rm-8.4	X	565	95	(83%)	48	0	(100%)
sort-8.16	V	885	210	(76%)	673	5	(99%)
tar-1.14	/	1,528	303	(80%)	1,290	19	(99%)
uniq-8.16	X	349	109	(69%)	60	1	(98%)
Total		6,752	2,285	(66%)	5,298	243	(95%)

Remove 4 and 2 CVEs in undesired and desired functionalities. 4 CVEs are not easily fixable by reduction (e.g., race condition).

		#ROP	Gadgets	;	#Al	arms		
Program	CVE	Original	Reduced		Original Red		luced	
bzip-1.05	X	662	298	(55%)	1,991	33	(98%)	
chown-8.2	•	534	162	(70%)	47	1	(98%)	
date-8.21	•	479	233	(51%)	201	23	(89%)	
grep-2.19	•	1,065	411	(61%)	619	31	(95%)	
gzip-1.2.4	•	456	340	(25%)	326	128	(61%)	
mkdir-5.2.1	X	229	124	(46%)	43	2	(95%)	
rm-8.4	X	565	95	(83%)	48	0	(100%)	
sort-8.16	•	885	210	(76%)	673	5	(99%)	
tar-1.14	•	1,528	303	(80%)	1,290	19	(99%)	
uniq-8.16	X	349	109	(69%)	60	1	(98%)	
Total		6,752	2,285	(66%)	5,298	243	(95%)	

Remove 4 and 2 CVEs in undesired and desired functionalities. 4 CVEs are not easily fixable by reduction (e.g., race condition).

	, district and some	#ROP	Gadgets	5	#Alarms			
Program	CVE	Original	Reduced		Original	Reduced		
bzip-1.05	X	662	298	(55%)	1,991	33	(98%)	
chown-8.2	•	534	162	(70%)	47	1	(98%)	
date-8.21	/	479	233	(51%)	201	23	(89%)	
grep-2.19	~	1,065	411	(61%)	619	31	(95%)	
gzip-1.2.4	/	456	340	(25%)	326	128	(61%)	
mkdir-5.2.1	X	229	124	(46%)	43	2	(95%)	
rm-8.4	X	565	95	(83%)	48	0	(100%)	
sort-8.16	•	Redu	ıced pote	ential	673	5	(99%)	
tar-1.14	/		ack surfa		1,290	19	(99%)	
uniq-8.16	X	349		(69%)	60	1	(98%)	
Total		6,752	2,285	(66%)	5,298	243	(95%)	

Remove 4 and 2 CVEs in undesired and desired functionalities. 4 CVEs are not easily fixable by reduction (e.g., race condition).

	_UD						
Managari (Mara	#ROP	#ROP Gadgets			#Alarms		
CVE	Original	Priginal Reduced		Original	Redu	uced	
×	662	298	(55%)	1,991	33	(98%)	
•	534	162	(70%)	47	1	(98%)	
•	479	233	(51%)	201	23	(89%)	
•	1,065	411	(61%)	619	31	(95%)	
•	456	340	(25%)	326	128	(61%)	
×	229	124	(46%)	43	2	(95%)	
×	565	95	(83%)	48	0	(100%)	
•	Redu	iced pote	ential	Make it	feasibl	e for	
•		attack surface manual alarm inspe					
X	349		(69%)	60		(98%)	
	6,752	2,285	(66%)	5,298	5,298 243 (95)		
	X V V X	CVE Original X 662 V 534 V 479 1,065 X 229 X 565 Reduction X 349	CVE Original Reduce X 662 298 V 534 162 V 479 233 V 1,065 411 V 456 340 X 229 124 X 565 95 V Reduced pote attack surfaces X 349 19	CVE Original Reduced X 662 298 (55%) V 534 162 (70%) V 479 233 (51%) V 1,065 411 (61%) V 456 340 (25%) X 229 124 (46%) X 565 95 (83%) Peduced potential attack surface 349 9 (69%)	CVE Original Reduced Original ✗ 662 298 (55%) 1,991 ✗ 534 162 (70%) 47 ✓ 479 233 (51%) 201 ✓ 1,065 411 (61%) 619 ✓ 456 340 (25%) 326 ✗ 229 124 (46%) 43 ✗ 565 95 (83%) 48 ✓ Reduced potential attack surface Make it manual ala ✗ 349 1,9 (69%) 60	CVE Original Reduced Original Reduced X 662 298 (55%) 1,991 33 V 534 162 (70%) 47 1 V 479 233 (51%) 201 23 V 1,065 411 (61%) 619 31 V 456 340 (25%) 326 128 X 229 124 (46%) 43 2 X 565 95 (83%) 48 0 V Reduced potential attack surface Make it feasible manual alarm instance 549 60 60 1	

Grammar-based reducer ran out of time for 2 programs

7x and 4x faster than C-Reduce and Perses

Conclusion

- Chisel: automated software debloating system
 - tractable search via learning-guided delta debugging
 - security hardening by removing undesired features
 - robustness via static & dynamic analyses
 - https://github.com/aspire-project/chisel
- In the paper,
 - reduction algorithm details
 - learning a debloating policy
 - engineering issues and design choices

Acknowledgment: Total Platform Cyber Protection (TPCP)

