# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ "ЛЭТИ" ИМ. В.И.УЛЬЯНОВА (ЛЕНИНА) Кафедра ВТ

# ОТЧЕТ

по практической работе "Оптимизация и многокритериальный выбор"

Выполнил студент гр.0306

Семёнов М.Д.

Санкт-Петербург 2022

# Оглавление

| Задание 1    | 3  |
|--------------|----|
| Задание 2    | 5  |
| Задание 3    | 7  |
| Приложение А | 15 |
| Приложение В | 17 |
| Приложение С | 19 |

**Цель работы**: научиться пользоваться статистическими функциями в R, находить дескриптивные статистики и строить отъюстированные диаграммы для нормального и равномерного распределений. На конкретных примерах рассмотреть, как применяются расчеты дескриптивных статистик и построение гистограмм.

# Задание 1

**Задача:** построить отъюстированную гистограмму для равномерного распределения.

# Исходные данные

Размер выборки n = 2750

Среднее значение хср = 10

Отклонения от среднего значения d =+/- 30%

### Результаты выполнение задания

Результаты выполнения задания 1 представлены на рисунках 1-4, код представлен в приложении A.

| T  | pocketCentres | pocketBounds | frequency |
|----|---------------|--------------|-----------|
| 1  | 6.750000      | 7.000000     | 0         |
| 2  | 7.295455      | 7.545455     | 241       |
| 3  | 7.840909      | 8.090909     | 257       |
| 4  | 8.386364      | 8.636364     | 223       |
| 5  | 8.931818      | 9.181818     | 247       |
| 6  | 9.477273      | 9.727273     | 247       |
| 7  | 10.022727     | 10.272727    | 238       |
| 8  | 10.568182     | 10.818182    | 260       |
| 9  | 11.113636     | 11.363636    | 264       |
| 10 | 11.659091     | 11.909091    | 268       |
| 11 | 12.204545     | 12.454545    | 263       |
| 12 | 12.750000     | 13.000000    | 242       |
| 13 | 13.295455     | 13.545455    | 0         |

Рисунок 1.Данные для юстировки

```
> cat("Всего подсчитано: ", sum(frequency))
Всего подсчитано: 2750>
> #строим гистограмму
```

Рисунок 2.Проверка правильности юстировки

Дескриптивные характеристики Среднее: 10.0401452677065 Дисперсия: 2.99247568959249 СКО: 1.72987736258744 Медиана: 10.085003657965 Дов. интервал: 10.04 +- 0.06, P = 95%

Рисунок 3. Дескриптивные характеристики



Рисунок 4. Гистограмма равномерного распределения

# Задание 2

**Задача:** построить отъюстированную гистограмму для нормального распределения.

# Исходные данные

Размер выборки n = 1250

Среднее значение хср = 100

CKO = 30

# Результаты выполнение задания

Результаты выполнения задания 2 представлены на рисунках 5-7, код представлен в приложении B.

|                                             | pocketCentres | pocketBounds           | frequency |
|---------------------------------------------|---------------|------------------------|-----------|
| 1                                           | 2.50000       | 10.00000               | 2         |
| 2                                           | 18.86364      | 26.36364               | 5         |
| 3                                           | 35.22727      | 42.72727               | 24        |
| 4                                           | 51.59091      | 59.09091               | 94        |
| 5                                           | 67.95455      | 75.45455               | 143       |
| 6                                           | 84.31818      | 91.81818               | 226       |
| 7                                           | 100.68182     | 108.18182              | 272       |
| 8                                           | 117.04545     | 124.54545              | 247       |
| 9                                           | 133.40909     | γ 140.90909            | 136       |
| 10                                          | 149.77273     | <sup>1</sup> 157.27273 | 65        |
| 11                                          | 166.13636     | 173.63636              | 30        |
| 12                                          | 182.50000     | 190.00000              | 4         |
| 13                                          | 198.86364     | 206.36364              | 2         |
| >                                           |               |                        |           |
| > cat("Всего подсчитано: ", sum(frequency)) |               |                        |           |
| Всего подсчитано: 1250>                     |               |                        |           |
| > #строим гистограмму                       |               |                        |           |

Рисунок 5. Результаты выполнения задания 2

| у Д∈           | скриптивные характеристики |
|----------------|----------------------------|
| Среднее:       | 99.3417399636751           |
| Дисперсия:     | 886.206729155336           |
| СКО:           | 29.7692245306346           |
| Медиана:       | 100.299156999379           |
| Дов. интервал: | 99.34 + -1.65, P = $95%$   |

Рисунок 6.Результаты выполнения задания 2



Рисунок 7. Результаты выполнения задания 2

# Задание 3

**Задача:** на конкретном примере применить расчет дескриптивных статистик и построить отъюстированную гистограмму.

### Исходные данные

Задание 7.3

Сложение нормальных распределений по среднему

1 Построить отьюстированную гистограмму распределений

для суммы нормальных распределений N1( a1, в1) и N2 ( a2, в2),

где a1 - среднее и в1 — СКО распределения N1

где a2 - среднее и в2 — СКО распределения N2

- 2\_Расчитать дескриптивные параметры. Объм выборки= 1000
- 3\_Проследить на дополнительных гистограммах как изменится суммарная гистограмма, когда вторая гистограмма сдвигается вправо по среднему а2 на 30, на 60, на 90, на 120, но при сохранении СКО

Построить графики изменения дискриптивных статистик

# Результаты выполнение задания

Результаты выполнения задания 3 представлены на рисунках 8-19, код представлен в приложении С.

| р       | ocketCentres | pocketBounds | frequency |
|---------|--------------|--------------|-----------|
| 1       | 61.25        | 75.0         | 0         |
| 2       | 88.75        | 102.5        | 0         |
| 2 3 4 5 | 116.25       | 130.0        | 3         |
| 4       | 143.75       | 157.5        | 38        |
| 5       | 171.25       | 185.0        | 98        |
| 6       | 198.75       | 212.5        | 204       |
| 7       | 226.25       | 240.0        | 263       |
| 8       | 253.75       | 267.5        | 217       |
| 9       | 281.25       | 295.0        | 121       |
| 10      | 308.75       | 322.5        | 42        |
| 11      | 336.25       | 350.0        | 13        |
| 12      | 363.75       | 377.5        | 1         |
| 13      | 391.25       | 405.0        | 0         |
| 14      | 418.75       | 432.5        | 0         |
| Bcer    | о подсчитано | : 1000       |           |

Рисунок 8. Результаты выполнения задания 3

```
> freqs2 = histAndInfo(V2, pockets, 45, 375,
+ xAxisName = "Центры карманов",
                        yAxisName = "Частоты попадания",
+
                        mainName = "Гистограмма распределения частот V2",
+
+ I
                        color = "Red"
+ )
   pocketCentres pocketBounds frequency
1
            31.25
                           45.0
2
            58.75
                           72.5
                                         0
3
            86.25
                         100.0
                                         6
          113.75
                         127.5
                                        36
5
                         155.0
          141.25
                                        93
6
          168.75
                          182.5
                                       212
7
                          210.0
                                       258
          196.25
8
                          237.5
                                      222
          223.75
9
          251.25
                          265.0
                                      119
10
          278.75
                          292.5
                                       43
11
           306.25
                          320.0
                                         9
                          347.5
                                         1
12
           333.75
13
           361.25
                          375.0
                                         0
           388.75
                          402.5
Всего подсчитано: 1000
```

Рисунок 9. Результаты выполнения задания 3

```
> freqs3 = histAndInfo(V3, pockets, 15, 345,
                        xAxisName = "Центры карманов",
+
                        yAxisName = "Частоты попадания",
                        mainName = "Гистограмма распределения частот V3",
+
+
                        color = "Blue"
+
   pocketCentres pocketBounds frequency
1
             1.25
                          15.0
2
            28.75
                          42.5
                                        0
3
            56.25
                          70.0
                                        5
4
            83.75
                          97.5
                                       39
5
          111.25
                         125.0
                                       99
6
          138.75
                                      207
                         152.5
7
          166.25
                         180.0
                                      230
8
          193.75
                         207.5
                                      225
9
          221.25
                         235.0
                                      129
10
          248.75
                         262.5
                                       51
11
          276.25
                         290.0
                                       13
12
          303.75
                         317.5
                                        2
          331.25
                                        0
13
                          345.0
14
          358.75
                          372.5
                                        0
Всего подсчитано:
                    1000
```

Рисунок 10. Результаты выполнения задания 3

```
> freqs4 = histAndInfo(V4, pockets, -15, 315,
                        xAxisName = "Центры карманов",
+
                        yAxisName = "Частоты попадания",
+
                        mainName = "Гистограмма распределения частот V4",
+
                        color = "Brown"
+
+ )
   pocketCentres pocketBounds frequency
          -28.75
                         -15.0
                                        0
1
2
           -1.25
                          12.5
                                        0
3
           26.25
                          40.0
                                       10
4
           53.75
                          67.5
                                       30
5
                                       91
           81.25
                          95.0
6
          108.75
                         122.5
                                      206
                         150.0
7
          136.25
                                      273
8
          163.75
                         177.5
                                      223
9
          191.25
                         205.0
                                      115
10
                         232.5
          218.75
                                       41
11
          246.25
                         260.0
                                       11
12
                                        0
          273.75
                         287.5
13
          301.25
                         315.0
                                        0
14
          328.75
                         342.5
                                        0
Всего подсчитано:
                    1000
```

Рисунок 11. Результаты выполнения задания 3

```
freqs5 = histAndInfo(V5, pockets, -45, 275,
                       xAxisName = "Центры карманов",
                       yAxisName = "Частоты попадания"
+
                       mainName = "Гистограмма распределения частот V5",
+
                       color = "Pink"
+
   pocketCentres pocketBounds frequency
                   -45.000000
1
       -58.33333
2
       -31.66667
                   -18.333333
                                       0
3
                                       8
        -5.00000
                     8.333333
4
        21.66667
                    35.000000
                                      19
5
        48.33333
                    61.666667
                                      90
6
        75.00000
                    88.333333
                                     185
7
       101.66667
                   115.000000
                                     246
8
       128.33333
                   141.666667
                                     232
9
       155.00000
                   168.333333
                                     143
                                      57
10
       181.66667
                   195.000000
11
       208.33333
                   221.666667
                                      18
12
       235.00000
                   248.333333
                                       2
                                       0
                   275.000000
13
       261.66667
                                       0
14
       288.33333
                   301.666667
Всего подсчитано: 1000
```

Рисунок 12. Результаты выполнения задания 3

|                | Дескриптивные | характеристики V1     |
|----------------|---------------|-----------------------|
| Среднее:       |               | 229.02949145776       |
| Дисперсия:     |               | 1676.03550772551      |
| ско:           |               | 40.9394126450968      |
| Медиана:       |               | 229.218865684145      |
| Дов. интервал: | 229.03        | 3 + - 2.54, $P = 95%$ |

Рисунок 13. Результаты выполнения задания 3

```
Дескриптивные характеристики V2 Среднее: 199.093206334455 Дисперсия: 1679.1496439309 СКО: 40.9774284689864 Медиана: 197.882029411404 Дов. интервал: 199.09 +- 2.54, P = 95%
```

Рисунок 14. Результаты выполнения задания 3

Дескриптивные характеристики V3 Среднее: 170.732065896029 Дисперсия: 1801.68186866592 СКО: 42.4462232556198 Медиана: 169.999341041458 Дов. интервал: 170.73 +- 2.63, P = 95%

Рисунок 15. Результаты выполнения задания 3

Дескриптивные характеристики V4
Среднее: 139.34751987058
Дисперсия: 1596.97343253532
СКО: 39.9621499989092
Медиана: 139.815566624717
Дов. интервал: 139.35 +- 2.48, P = 95%

Рисунок 16. Результаты выполнения задания 3

Дескриптивные характеристики V5 Среднее: 110.869480889756 Дисперсия: 1633.44284924262 СКО: 40.4158737285565 Медиана: 110.820398778203 Дов. интервал: 110.87 +- 2.51, P = 95%

Рисунок 17. Результаты выполнения задания 3



Рисунок 18. Результаты выполнения задания 3



Рисунок 19. Результаты выполнения задания 3



Рисунок 20. Результаты выполнения задания 3



Рисунок 21. Результаты выполнения задания 3



Рисунок 22. Результаты выполнения задания 3



Рисунок 23. Результаты выполнения задания 3

# Приложение А

```
Код программы для задания 1.
#Семёнов Михаил 0306
#равномерное n = 2750, хср = 10, d = +/-30\%
n <- 2750
# Численное значение d
d = 10/100*30
#Найдем а и b
a = 10 - d
b = 10 + d
pockets <- 12
sequence <- runif(n, a, b)
#выводим последовательность
print(paste(sequence))
#выводим дескриптивные характеристики:
mn <- mean(sequence)
chars <- c(mn, var(sequence), sd(sequence), median(sequence), paste(c(round(mn, digits =
2), " +- ", round(sqrt(var(sequence) / n)* 1.96, digits = 2), ", P = 95%"), collapse = ""))
rowNames <- c("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames
colnames(dataframe) <- c("Дескриптивные характеристики")
dataframe
```

```
#получаем данные для юстировки
leftBound <- a
rightBound <- b
pocketBounds <- seq(leftBound, rightBound, length.out = pockets)</pre>
step = (rightBound - leftBound) / pockets
pocketCentres <- seq(leftBound - step/2, rightBound - step/2, length.out = pockets)</pre>
frequency = seq(0,0,length.out=pockets + 1)
frequency[1] = length(sequence[sequence < pocketBounds[1]])</pre>
for(i in 2:pockets)
 frequency[i] = length(sequence[sequence >= pocketBounds[i-1] & sequence <
pocketBounds[i]])
frequency[pockets + 1] = length(sequence[sequence >= pocketBounds[pockets]])
pocketCentres[pockets + 1] = pocketCentres[pockets] + pocketCentres[pockets] -
pocketCentres[pockets - 1]
pocketBounds[pockets + 1] = pocketBounds[pockets] + pocketBounds[pockets] -
pocketBounds[pockets - 1]
#выводим данные для юстировки
dataframe=data.frame(pocketCentres, pocketBounds, frequency)
print(dataframe)
cat("Всего подсчитано: ", sum(frequency))
#строим гистограмму
barplot(frequency, col = "red", names.arg = round(pocketCentres), xlab = "Центры
карманов", ylab = "Частота", main = "Гистограмма распределения частот")
```

# Приложение В

```
Код программы для задания 2.
#Семёнов Михаил 0306
#нормальное n = 1250, xcp = 100, CKO = 30
#Генерируем случайную последовательность:
n <- 1250
theorMean <- 100
theorSd <- 30
pockets <- 12
sequence <- rnorm(n, theorMean, theorSd)</pre>
#выводим последовательность
print(paste(sequence))
#выводим дескриптивные характеристики:
mn <- mean(sequence)
chars <- c(mn, var(sequence), sd(sequence), median(sequence), paste(c(round(mn, digits =
2), " +- ", round(sqrt(var(sequence) / n)* 1.96, digits = 2), ", P = 95%"), collapse = ""))
rowNames <- c("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames</pre>
colnames(dataframe) <- c("Дескриптивные характеристики")
dataframe
#получаем данные для юстировки
leftBound <- theorMean - 3*theorSd
```

rightBound <- theorMean + 3\*theorSd

```
pocketBounds <- seq(leftBound, rightBound, length.out = pockets)</pre>
step = (rightBound - leftBound) / pockets
pocketCentres <- seq(leftBound - step/2, rightBound - step/2, length.out = pockets)
frequency = seq(0,0,length.out=pockets)
frequency[1] = length(sequence[sequence < pocketBounds[1]])</pre>
for(i in 2:pockets)
 frequency[i] = length(sequence[sequence >= pocketBounds[i-1] & sequence <
pocketBounds[i]])
frequency[pockets + 1] = length(sequence[sequence >= pocketBounds[pockets]])
pocketCentres[pockets + 1] = pocketCentres[pockets] + pocketCentres[pockets] -
pocketCentres[pockets - 1]
pocketBounds[pockets + 1] = pocketBounds[pockets] + pocketBounds[pockets] -
pocketBounds[pockets - 1]
#выводим данные для юстировки
dataframe=data.frame(pocketCentres, pocketBounds, frequency)
print(dataframe)
cat("Всего подсчитано: ", sum(frequency))
#строим гистограмму
barplot(frequency, col = "blue", names.arg = round(pocketCentres), xlab = "Центры
карманов", ylab = "Частота", main = "Гистограмма распределения частот")
```

### Приложение С

Код программы для задания 3.

```
#функция принимает на вход:
# sqnc - исследуемую последовательность,
# pckts - количество значимых карманов,
# IBound - начало первого значимого кармана,
# rBound - конец последнего значимого кармана,
# xAxisName - имя оси X ("X" по умолчанию),
# vAxisName - имя оси Y ("Y" по умолчанию),
# mainName - имя гистограммы ("Histogram" по умолчанию),
# color - цвет, которым закрашивать гистограмму ("Red" по умолчанию);
#вычисляет центры карманов, их границы и частоты попадания в них элементов
sequence;
#эти данные выводятся на экран в виде таблицы, затем строится гистограмма;
#в гистограмме и таблице присутствуют два дополнительных кармана:
#в первои - количество элементов, меньших IBound, в последнем - количество
элементов, превосходящих rBound;
#функция возвращает:
# frequency - вектор частот попадания элементов sequence карманы.
histAndInfo <- function(sqnc, pckts, IBound, rBound, xAxisName = "X", yAxisName = "Y",
mainName = "Histogram", color = "Red") {
 #юстируем
 step = (rBound-IBound)/ pckts
 pocketBounds = seq(IBound,rBound + step, by = step)
 pocketCentres = seq(IBound - step/2, rBound + step/2, by = step)
 frequency = seq(0,0,length.out=pckts + 2)
```

```
frequency[1] = length(sqnc[sqnc < pocketBounds[1]])</pre>
 for(i in 2:(pckts + 1))
 frequency[i] = length(sqnc[sqnc >= pocketBounds[i-1] & sqnc < pocketBounds[i]])</pre>
 frequency[pckts + 2] = length(sqnc[sqnc >= pocketBounds[pckts + 1]])
 #выводим данные для юстировки
 dataframe=data.frame(pocketCentres, pocketBounds, frequency)
 print(dataframe)
 cat("Всего подсчитано: ", sum(frequency), "\n")
 #строим гистограмму
 barplot(frequency, col = color,
     names.arg = round(pocketCentres, 2),
     xlab = xAxisName,
     ylab = yAxisName,
     main = mainName
 )
 return (frequency)
}
#размер выборки
n <- 1000
#желаемое количество столбцов гистограмм плюс 1
pockets <- 12
N < -rnorm(n, 100, 30)
N1 <- rnorm(n, 130, 30)
```

N2 <- rnorm(n, 100, 30) N3 <- rnorm(n, 70, 30) N4 <- rnorm(n, 40, 30) N5 <- rnorm(n, 10, 30) #Выведем распределение: print(N) #Выведем распределение: print(N1) #Выведем распределение: print(N2) #Выведем распределение: print(N3) #Выведем распределение: print(N4) #Выведем распределение: print(N5) #Вычисляем сумму: #V1 = N + N1#V2 = N + N2#V3 = N + N3#V4 = N + N5#V5 = N + N5

V1 < -rep(0, n)

$$V1[i] = h[i] + h1[i]$$

$$V2[i] = h[i] + h2[i]$$

$$V3[i] = h[i] + h3[i]$$

$$V4[i] = h[i] + h4[i]$$

for (i in 1:n)

$$V5[i] = h[i] + h5[i]$$

#Результат сложения 1:

print(V1)

#Результат сложения 2:

print(V2)

#Результат сложения 3:

print(V3)

#Результат сложения 4:

print(V4)

#Результат сложения 5:

```
print(V5)
#выводим дескриптивные характеристики V1:
mn <- mean(V1)
chars <- c(mn, var(V1), sd(V1), median(V1), paste(c(round(mn, digits = 2), " +- ",
round(sqrt(var(V1) / n)* 1.96, digits = 2), ", P = 95%"), collapse = ""))
rowNames <- с("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames
colnames(dataframe) <- c("Дескриптивные характеристики V1")
dataframe
#выводим дескриптивные характеристики V2:
mn <- mean(V2)
chars <- c(mn, var(V2), sd(V2), median(V2), paste(c(round(mn, digits = 2), " +- ",
round(sgrt(var(V2) / n)^* 1.96, digits = 2), ", P = 95\%"), collapse = ""))
rowNames <- c("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames
colnames(dataframe) <- c("Дескриптивные характеристики V2")
dataframe
#выводим дескриптивные характеристики V2:
mn <- mean(V3)
chars <- c(mn, var(V3), sd(V3), median(V3), paste(c(round(mn, digits = 2), " +- ",
round(sqrt(var(V3) / n)* 1.96, digits = 2), ", P = 95%"), collapse = ""))
rowNames <- c("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
```

```
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames</pre>
colnames(dataframe) <- с("Дескриптивные характеристики V3")
dataframe
#выводим дескриптивные характеристики V4:
mn <- mean(V4)
chars <- c(mn, var(V4), sd(V4), median(V4), paste(c(round(mn, digits = 2), " +- ",
round(sgrt(var(V4) / n)^* 1.96, digits = 2), ", P = 95\%"), collapse = ""))
rowNames <- c("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames</pre>
colnames(dataframe) <- c("Дескриптивные характеристики V4")
dataframe
#выводим дескриптивные характеристики V5:
mn <- mean(V5)
chars <- c(mn, var(V5), sd(V5), median(V5), paste(c(round(mn, digits = 2), " +- ",
round(sqrt(var(V5) / n)* 1.96, digits = 2), ", P = 95%"), collapse = ""))
rowNames <- c("Среднее:", "Дисперсия:", "СКО:", "Медиана:", "Дов. интервал:")
dataframe=data.frame(chars)
row.names(dataframe) <- rowNames</pre>
colnames(dataframe) <- c("Дескриптивные характеристики V5")
dataframe
#Гистограммы:
```

```
freqs1 = histAndInfo(V1, pockets, 75, 405,
           xAxisName = "Центры карманов",
           yAxisName = "Частоты попадания",
           mainName = "Гистограмма распределения частот V1",
           color = "Green"
)
freqs2 = histAndInfo(V2, pockets, 45, 375,
            xAxisName = "Центры карманов",
            yAxisName = "Частоты попадания",
            mainName = "Гистограмма распределения частот V2",
            color = "Red"
)
freqs3 = histAndInfo(V3, pockets, 15, 345,
            xAxisName = "Центры карманов",
            yAxisName = "Частоты попадания",
            mainName = "Гистограмма распределения частот V3",
            color = "Blue"
)
freqs4 = histAndInfo(V4, pockets, -15, 315,
            xAxisName = "Центры карманов",
            yAxisName = "Частоты попадания",
            mainName = "Гистограмма распределения частот V4",
            color = "Brown"
```

```
)
freqs5 = histAndInfo(V5, pockets, -45, 275,
            xAxisName = "Центры карманов",
            yAxisName = "Частоты попадания",
            mainName = "Гистограмма распределения частот V5",
            color = "Pink"
)
#Построение графиков
means <-c(mean(V1),mean(V2),mean(V3),mean(V4),mean(V5))
vars<- c(var(V1),var(V2),var(V3),var(V4),var(V5))</pre>
sds < -c(sd(V1), sd(V2), sd(V3), sd(V4), sd(V5))
medians <-c(median(V1),median(V2),median(V3),median(V4),median(V5))
numbs <-c(1,2,3,4,5)
plot(numbs,means,col="blue",xlab = "Номер измерения",ylab = "Среднее")
lines(numbs,means)
plot(numbs,vars,col="red",xlab = "Номер измерения",ylab = "Дисперсия")
lines(numbs, vars)
plot(numbs,sds,col="green",xlab = "Номер измерения",ylab = "СКО")
lines(numbs,sds)
plot(numbs,medians,col="brown",xlab = "Номер измерения",ylab = "Медиана")
lines(numbs,medians)
```