GRIP – The Sparks Foundation Data Science and Business Analytics Internship

Prediction using Decision Tree Algorithm

Name: Tejdeep Sai Iddum

Contact: linkedin.com/in/tejdeep-sai-iddum-61025a1a6

Aim:

- Create the Decision Tree classifier and visualize it graphically.
- The purpose is if we feed any new data to this classifier, it would be able to predict the right class accordingly.

Procedure:

In this task we shall

- Import the necessary libraries
- Load the dataset
- Perform basic analysis on the given dataset to observe and gain insight
- Define a Decision Tree algorithm
- Visualize the Decision Tree

In [46]:

```
# Importing libraries in Python
import pandas as pd
import matplotlib.pyplot as plt
```

In [47]:

```
# Loading the iris dataset
from sklearn.datasets import load_iris
iris = load_iris()
data = pd.read_csv("C:/Users/User/Downloads/iris.csv")
```

In [48]:

```
# Obtaining the first 5 values from the dataset
data.head()
```

Out[48]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [49]:

```
# Obtaining the data type for each column
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtype	es: float64(4),	int64(1), object	t(1)

memory usage: 6.5+ KB

localhost:8888/lab 1/4

In [50]:

Checking if null values are present in the dataset
data.isnull().sum()

Out[50]:

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

In [51]:

Obtaining basic statistical details of the dataset
data.describe()

Out[51]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

localhost:8888/lab 2/4

In [52]:

```
# Plotting histogram for each column to obtain the distribution of data
num_bins = 10
data.hist(bins=num_bins, figsize=(20,15))
plt.show()
```


In [53]:

```
# Defining the decision tree algorithm
from sklearn.tree import DecisionTreeClassifier
dtree=DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
dtree = dtree.fit(iris.data, iris.target)
```

localhost:8888/lab 3/4

In [54]:

Visualization of Decision Tree

import graphviz

dot_data = tree.export_graphviz(dtree, out_file=None, feature_names=iris.feature_names, c
lass_names=iris.target_names, filled=True, rounded=True, special_characters=True)
graph = graphviz.Source(dot_data)

In [55]:

graph

Out[55]:

localhost:8888/lab 4/4

Result:

From the given task we were able to

- Identify patterns in the data distribution for each column
- Create and visualize the Decision Tree algorithm

We can now feed any new/test data to this classifier which would be able to predict the right class accordingly.