Les espaces préhilbertiens

Table des matières

1	Pro	luits scalaires	2				
	1.1	Définition d'un produit scalaire					
	1.2	Exemples	2				
		1.2.1 Sur un \mathbb{R} -espace vectoriel quelconque muni d'une base	2				
		1.2.2 Sur \mathbb{R}^n	3				
			3				
			4				
	1.3	Identités remarquables	4				
	1.4		6				
2	Ort	nogonalité	7				
	2.1	Orthogonalité en dimension quelconque	8				
	2.2	En dimension finie	3				
	2.3	Distance d'un vecteur à un sous-espace vectoriel	.5				
	2.4	Procédé d'orthonormalisation de Gram-Schmidt	.9				
3	End	omorphismes d'un espace euclidien 2	3				
	3.1	Endomorphismes symétriques	13				
	3.2	Groupe orthogonal	24				
		3.2.1 Caractérisations d'un automorphisme orthogonal	24				
		3.2.2 Les rotations	25				
		3.2.3 Les symétries orthogonales	25				
		3.2.4 Matrices orthogonales	26				
		3.2.5 Orientation d'un espace vectoriel réel	8				
		3.2.6 Produit mixte	29				
4	Géo	métrie plane 3	0				
	4.1	Lien avec le cours sur les complexes	0				
	4.2	Le groupe orthogonal de degré 2	1				
	4.3	Les isométries vectorielles du plan	2				
	4.4	Angles orientés dans le plan	3				
	4.5	Les droites affines du plan usuel	35				

5	Géométrie dans l'espace				
	5.1	Le pro	oduit vectoriel (hors programme)		
	5.2	Droite	s et plans affines en dimension 3		
		5.2.1	Equation d'un plan		
		5.2.2	Système d'équations d'une droite		
	5.3	Le gro	supe orthogonal en dimension 3		

1 Produits scalaires

1.1 Définition d'un produit scalaire

Notation. Pour ce paragraphe, on fixe un \mathbb{R} -espace vectoriel que l'on note E.

Définition. Soit $\varphi : E \times E \longrightarrow \mathbb{R}$ une forme bilinéaire.

On dit que φ est une **forme bilinéaire définie** si et seulement si, pour tout $x \in E \setminus \{0\}, \varphi(x, x) \neq 0$.

Définition. Soit $\varphi \in L_2(E)$.

On dit que φ est une **forme bilinéaire positive** si et seulement si, pour tout $x \in E$, $\varphi(x, x) \geq 0$.

Définition.

Un produit scalaire est une forme bilinéaire symétrique définie positive,

c'est-à-dire une application $\varphi: E^2 \longrightarrow \mathbb{R}$ telle que, pour tout $x, y, z \in E$ et $\lambda \in \mathbb{R}$,

$$--\varphi(x,y) = \varphi(y,x);$$

$$- \varphi(\lambda x + y, z) = \lambda \varphi(x, z) + \varphi(y, z);$$

$$- x \neq 0 \Longrightarrow \varphi(x, x) > 0.$$

Définition. Un *espace préhilbertien réel* est un couple (E, φ) , où E est un \mathbb{R} espace vectoriel et où φ est un produit scalaire sur E.

1.2 Exemples

1.2.1 Sur un \mathbb{R} -espace vectoriel quelconque muni d'une base

Supposons que E est muni d'une base $e = (e_i)_{i \in I}$ $\varphi : E^2 \longrightarrow \mathbb{R}$

et notons $\varphi: \qquad E^2$ $\left(\sum x_i e_i, \sum \right)$

$$\left(\sum_{i\in I} x_i e_i, \sum_{i\in I} y_i e_i\right) \longmapsto \sum_{i\in I} x_i y_i.$$

Alors φ est un produit scalaire sur E.

Démonstration.

Soient $(x, y, z) \in E^3$ et $a \in \mathbb{R}$.

Notons
$$x = \sum_{i \in I} x_i e_i$$
, $y = \sum_{i \in I} y_i e_i$ et $z = \sum_{i \in I} z_i e_i$.

$$\varphi(ax+y,z) = \sum_{i \in I} (ax_i + y_i)z_i = a \sum_{i \in I} x_i z_i + \sum_{i \in I} y_i z_i = a\varphi(x,z) + \varphi(y,z)$$
 et
$$\varphi(x,ay+z) = \sum_{i \in I} x_i (ay_i + z_i) = a \sum_{i \in I} x_i y_i + \sum_{i \in I} x_i z_i = a\varphi(x,y) + \varphi(x,z),$$

donc $\varphi \in L_2(E)$

• $\varphi(y,x) = \sum_{i \in I} y_i x_i = \sum_{i \in I} y_i x_i = \varphi(x,y)$, donc $\varphi \in \mathcal{S}_2(E)$.

• $\varphi(x,x) = \sum_{i=1}^n x_i^2$, donc $\varphi(x,x) \ge 0$, ce qui prouve que φ est positive.

De plus, si $\varphi(x,x) = 0$, pour tout $i \in I$, $x_i = 0$, donc x = 0.

Ainsi, φ est une forme bilinéaire définie positive.

On a montré que (E,φ) est un espace préhilbertien.

1.2.2 Sur \mathbb{R}^n

Soit n un entier strictement positif. Lorsque $E = \mathbb{R}^n$ et que e est la base canonique de E, l'exemple précédent devient :

$$\varphi: \qquad \mathbb{R}^n \times \mathbb{R}^n \qquad \longrightarrow \quad \mathbb{R}$$
$$((\alpha_1, \dots, \alpha_n), (\beta_1, \dots, \beta_n)) \quad \longmapsto \quad \sum_{i=1}^n \alpha_i \beta_i$$

C'est le produit scalaire canonique de \mathbb{R}^n . \square

Remarque. Pour tout $X, Y \in \mathbb{R}^n$, $\varphi(X, Y) = {}^t XY$.

Sur $\mathcal{C}([a,b],\mathbb{R})$ 1.2.3

Notation. On fixe $a, b \in \mathbb{R}$ avec a < b. $\mathcal{C}([a, b], \mathbb{R})$ désigne le \mathbb{R} -espace vectoriel des applications continues de [a, b] dans \mathbb{R} .

Propriété. Pour tout $f, g \in \mathcal{C}([a, b], \mathbb{R})$, on pose $\varphi(f, g) = \int_{a}^{b} f(t)g(t)dt$. φ est un produit scalaire sur $\mathcal{C}([a,b],\mathbb{R})$.

$D\'{e}monstration.$

Soit $f, g, h \in \mathcal{C}([a, b], \mathbb{R})$ et $\alpha \in \mathbb{R}$.

 \diamond D'après la linéarité des intégrales, $\int_a^b (\alpha f + g)h = \alpha \int_a^b fh + \int_a^b gh$. De plus $\int_a^b fg = \int_a^b gf$, donc φ est une forme bilinéaire

nulle, donc, d'après le cours, f = 0. Ainsi φ est une forme bilinéaire définie.

On a montré que φ est une forme bilinéaire symétrique définie positive, donc que c'est un produit scalaire. Ainsi $(\mathcal{C}([a,b],\mathbb{R}),\varphi)$ est un espace préhilbertien. \square

1.2.4 Les espaces l^p

Définition. On dit qu'une suite (u_n) de réels est sommable si et seulement si la série $\sum u_n$ est absolument convergente.

Notation.

- \diamond Pour $p \in \mathbb{R}_+^*$, notons $l^p = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} / \sum |u_n|^p \text{ converge}\}.$
- \diamond Notons l^{∞} l'ensemble des suites bornées de réels.

Propriété. l^1 , l^2 et l^{∞} sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.

De plus si (a_n) et (b_n) sont dans l^2 , alors (a_nb_n) est un élément de l^1 .

Démonstration.

 \diamond Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites sommables de réels et soit $\alpha\in\mathbb{R}$.

Pour tout $n \in \mathbb{N}$, $|\alpha a_n + b_n| \leq |\alpha||a_n| + |b_n|$, or $\sum (\alpha |a_n| + |b_n|)$ converge,

donc $\sum (\alpha |a_n| + \beta |b_n|)$ est absolument convergente.

Ceci prouve que $\alpha(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} \in l^1$.

De plus, l^1 est non vide, donc c'est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

 \diamond Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux éléments de l^2 .

Soit $n \in \mathbb{N}$. $(|a_n| - |b_n|)^2 \ge 0$, donc $|a_n b_n| \le \frac{1}{2}(a_n^2 + b_n^2)$, ce qui prouve que $(a_n b_n)_{n \in \mathbb{N}}$ est dans l^1 .

De plus, $(a_n + b_n)^2 = a_n^2 + b_n^2 + 2a_nb_n$, donc $(a_n + b_n) \in l^2$. On en déduit facilement que l^2 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

 \diamond Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites bornées de réels et soit $\alpha\in\mathbb{R}$.

Pour tout $n \in \mathbb{N}$, $|\alpha a_n + b_n| \le |\alpha| |a_n| + |b_n| \le |\alpha| \sup_{j \in \mathbb{N}} |a_j| + \sup_{j \in \mathbb{N}} |b_j|$,

ainsi $\alpha(a_n)_{n\in\mathbb{N}}+(b_n)_{n\in\mathbb{N}}\in l^{\infty}$. De plus, l^{∞} est non vide, donc c'est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. \square

Propriété. Pour tout
$$(u_n), (v_n) \in l^2$$
, on pose $((u_n)|(v_n)) = \sum_{n \in \mathbb{N}} u_n v_n$.

 l^2 muni de (.|.) est un espace préhilbertien.

Démonstration.

Soit $(u_n), (v_n) \in l^2$. On a montré que $(u_n v_n) \in l^1$, donc $\sum u_n v_n$ est absolument convergente et $((u_n)|(v_n))$ est défini.

(.|.) est clairement bilinéaire, symétrique et positive.

Si
$$((u_n)|(u_n)) = 0$$
. Pour tout $j \in \mathbb{N}, 0 \le u_j^2 \le ((u_n)|(u_n)) = 0$, donc $(u_n) = 0$.

1.3 Identités remarquables

Notation. Dans ce paragraphe, E désigne un espace préhilbertien réel. Son produit scalaire sera noté (.|.).

Définition. Pour tout $x \in E$, la norme de x est $||x|| = \sqrt{(x|x)}$.

Formule. Pour tout $((x,y),\alpha) \in E^2 \times \mathbb{R}$,

La dernière formule porte le nom de *formule du parallélogramme* ou *formule de la médiane*, en raison de ses interprétations géométriques.

Les seconde, troisième et quatrième formules permettent de calculer (.|.) en ne connaissant que ||.||. Elles portent le nom de **formules de polarisation**, mais selon le programme, la formule de polarisation est :

$$2(x|y) = ||x + y||^2 - ||x||^2 - ||y||^2.$$

Remarque. Le cas particulier où $E = \mathbb{R}$ et où (.|.) est l'application $\begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & xy \end{array}$

permet de retrouver rapidement ces formules.

Par exemple, la relation

$$\forall (x, y) \in \mathbb{R}^2 \ (x + y)^2 - (x - y)^2 = 4xy$$

permet de retrouver la quatrième formule.

Exercice. Pour tout $x, y \in \mathbb{R}^2$, on pose $N(x, y) = \sqrt{x^2 + 2xy + 3y^2}$.

Déterminer un produit scalaire sur \mathbb{R}^2 dont la norme est N.

Solution : Analyse : Si un tel produit scalaire existe, une identité de polarisation indique qu'il est donné par :

 $\langle (x,y), (x',y') \rangle = \tfrac{1}{4} (N(x+x',y+y')^2 - N(x-x',y-y')^2) = xx' + xy' + x'y + 3yy', \\ \text{pour tout } x,x',y,y' \in \mathbb{R}^4.$

 $Synth\`ese$: On vérifie que l'application $\langle .,. \rangle$ ainsi définie est symétrique et bilinéaire. De plus, pour tout $x,y \in \mathbb{R}$,

 $\langle (x,y),(x,y)\rangle = x^2 + 2xy + 3y^2 \ge x^2 + 2xy + y^2 = (x+y)^2 \ge 0$, avec égalité si et seulement si x+y=0 et $3y^2=y^2$, donc si et seulement si y=x=0. Ainsi l'application $\langle .,. \rangle$ est définie positive. Il est clair que sa norme est N.

Théorème de Pythagore.

$$(x|y) = 0 \iff ||x + y||^2 = ||x||^2 + ||y||^2.$$

1.4 Inégalités de Cauchy-Schwarz et de Minkowski

Notation. On reprend les notations du paragraphe précédent.

Théorème. Inégalité de Cauchy-Schwarz:

$$\forall (x, y) \in E^2 \ |(x|y)| \le ||x|| ||y||.$$

De plus, il y a égalité dans cette inégalité si et seulement si x et y sont colinéaires.

Démonstration.

Pour tout $\lambda \in \mathbb{R}$, $0 \le ||\lambda x + y||^2 = \lambda^2 ||x||^2 + 2\lambda(x|y) + ||y||^2$.

- \diamond Premier cas : On suppose que $||x||^2 = 0$. Alors x = 0, donc |(x|y)| = 0 = ||x|| ||y||, et (x, y) est une famille liée, ce qu'il fallait démontrer.
- \diamond Deuxième cas : On suppose maintenant que ||x|| > 0. Alors le polynôme $X^2||x||^2 + 2X(x|y) + ||y||^2$ est de signe constant sur \mathbb{R} , donc il possède au plus une

 $|X^2||x||^2 + 2X(x|y) + ||y||^2$ est de signe constant sur \mathbb{R} , donc il possede au plus une racine réelle. Or il est de degré 2, donc son discriminant est négatif ou nul :

$$4(x|y)^2 - 4||x||^2||y||^2 \le 0$$
. On en déduit que $|(x|y)| \le ||x|| ||y||$.

♦ Etude du cas d'égalité dans le second cas :

Supposons que |(x|y)| = ||x|| ||y||. Alors le discriminant est nul, donc le polynôme possède effectivement une racine réelle, que l'on notera λ . Ainsi,

$$0 = \lambda^2 ||x||^2 + 2\lambda(x|y) + ||y||^2 = ||\lambda x + y||^2, \text{ donc } \lambda x + y = 0 \text{ et } (x, y) \text{ est bien lié.}$$

Réciproquement, si (x,y) est lié, sachant que $x \neq 0$, il existe $\lambda \in \mathbb{R}$ tel que $y = \lambda x$, donc $|(x|y)| = |\lambda| ||x||^2 = ||x|| ||y||$. \square

Exemple.
$$\forall (f,g) \in \mathcal{C}([a,b],\mathbb{R})^2 \mid \int_a^b fg \mid \leq \sqrt{\int_a^b f^2} \sqrt{\int_a^b g^2}.$$

Exercice. Montrer que, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $|\text{Tr}(M)| \leq \sqrt{n\text{Tr}(tMM)}$. Préciser quand cette inégalité est une égalité.

Solution:

• Pour tout $(M, N) \in \mathcal{M}_n(\mathbb{R})^2$, posons $\varphi(M, N) = \text{Tr}({}^tMN)$ et montrons que φ est un produit scalaire.

$$\Leftrightarrow \text{ Soient } (M, N, P) \in \mathcal{M}_n(\mathbb{R})^3 \text{ et } (\alpha, \beta) \in \mathbb{R}^2.$$

$$\varphi(\alpha M + \beta N, P) = \text{Tr}({}^t(\alpha M + \beta N)P) = \text{Tr}((\alpha^t M + \beta^t N)P)$$

$$= \alpha \text{Tr}({}^tMP) + \beta \text{Tr}({}^tNP) = \alpha \varphi(M, P) + \beta \varphi(N, P).$$

donc φ est linéaire par rapport à sa première variable. De même, on montre que φ est linéaire par rapport à sa seconde variable. Ainsi, φ est bilinéaire.

$$\diamond$$
 Soient $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ et $N = (n_{i,j}) \in \mathcal{M}_n(\mathbb{R})$.

$$\varphi(M, N) = \operatorname{Tr}({}^{t}MN) = \operatorname{Tr}({}^{t}({}^{t}NM)) = \operatorname{Tr}({}^{t}NM) = \varphi(N, M),$$

donc φ est une forme bilinéaire symétrique.

 \diamond Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$. Pour tout $i \in \{1, \dots, n\}$, le $(i,i)^{\text{ème}}$ coefficient de

tMM
 est égal à $\sum_{j=1}^n m_{j,i} m_{j,i}$, donc $\varphi(M,M) = \sum_{i=1}^n \sum_{j=1}^n m_{i,j}^2$, ce qui prouve que φ est positive.

De plus, si $\varphi(M, M) = 0$, pour tout $(i, j) \in \{1, ..., n\}^2$, $m_{i,j} = 0$, donc M = 0. Ainsi, φ est un produit scalaire, auquel on peut appliquer l'inégalité de Cauchy-Schwarz, ainsi que le cas d'égalité :

• Soit $M \in \mathcal{M}_n(\mathbb{R})$. $|\text{Tr}(M)|^2 = |\varphi(I_n, M)|^2 \le \varphi(I_n, I_n)\varphi(M, M) = n\text{Tr}({}^tMM)$. Il y a égalité si et seulement si M et I_n sont colinéaires, c'est-à-dire si et seulement si M est une matrice scalaire.

Théorème. Inégalité de Minkowski, ou inégalité triangulaire.

$$\forall (x,y) \in E^2 \ \|x+y\| \le \|x\| + \|y\|.$$

De plus, il y a égalité dans cette inégalité si et seulement si x et y sont positivement colinéaires, c'est-à-dire si et seulement si y = 0 ou s'il existe $k \in \mathbb{R}_+$ tel que x = ky.

Démonstration.

- Soit $(x, y) \in E^2$. $||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y)$ $\leq ||x||^2 + ||y||^2 + 2|(x|y)|$ $\leq ||x||^2 + ||y||^2 + 2||x|| ||y||$ $= (||x|| + ||y||)^2$.
- Si y = 0, il y a égalité et x et y sont positivement colinéaires. On peut donc supposer pour la suite de la démonstration que $y \neq 0$.
- Supposons que x et y sont positivement colinéaires, c'est-à-dire qu'il existe $k \in \mathbb{R}_+$ tel que x = ky. Alors ||x + y|| = (k + 1)||y|| = ||x|| + ||y||.
- Réciproquement, supposons qu'il y a égalité dans l'inégalité de Minkowski.

Alors, dans la démonstration ci-dessus, toutes les inégalités sont des égalités.

Ainsi, (x|y) = |(x|y)| donc $(x|y) \ge 0$, et |(x|y)| = ||x|| ||y||, donc d'après le cas d'égalité de l'inégalité de Cauchy-Schwarz, x et y sont colinéaires. Or $y \ne 0$, donc il existe $k \in \mathbb{R}$ tel que x = ky. Ainsi, $(x|y) = k||y||^2$, or $||y|| \ne 0$ car $y \ne 0$ et $(x|y) \ge 0$, donc $k \in \mathbb{R}_+$.

Théorème. Soit E un espace préhilbertien réel.

Alors la norme associée à son produit scalaire est bien une norme.

Démonstration.

Notons (.|.) son produit scalaire et ||.|| la norme associée.

Soit $x, y \in E$ et $\lambda \in \mathbb{R}$.

- \Rightarrow $||x|| = \sqrt{(x|x)} \ge 0$ car (.|.) est positive.
- $\Rightarrow ||x|| = 0 \Longrightarrow (x|x) = 0 \Longrightarrow x = 0$, car (.|.) est définie.
- $\Leftrightarrow \|\lambda x\| = \sqrt{(\lambda x | \lambda x)} = |\lambda| \sqrt{(x|x)} = |\lambda| \|x\|.$
- $\diamond \ \|x+y\| \leq \|x\| + \|y\|,$ d'après l'inégalité de Minkowski. \Box

2 Orthogonalité

Notation. E désigne toujours un espace préhilbertien.

Son produit scalaire est noté $\langle .,. \rangle$ et la distance associée est notée d.

2.1 Orthogonalité en dimension quelconque

Définition. Soit $(x,y) \in E^2$.

x et y sont orthogonaux si et seulement si $\langle x, y \rangle = 0$. Dans ce cas, on note $x \perp y$.

Remarque.

La relation d'orthogonalité est symétrique, mais elle n'est ni réflexive, ni transititve.

Exemples.

- Dans \mathbb{R}^n muni de son produit scalaire canonique, les vecteurs de la base canonique sont deux à deux orthogonaux.
- Dans l'espace vectoriel $\mathcal{C}^0_{2\pi}(\mathbb{R},\mathbb{R})$ des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} , muni du produit scalaire $(f,g) \longmapsto \frac{1}{\pi} \int_0^{2\pi} f(t)g(t) \ dt$, les fonctions sin et cos sont des vecteurs unitaires orthogonaux. En effet,

$$\langle \sin, \cos \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(2t)}{2} dt = 0$$
 par imparité,
 $\|\sin\|^2 = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1 - \cos(2t)}{2} dt = 1$ et
 $\|\cos\|^2 = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1 + \cos(2t)}{2} dt = 1$.

Définition. Soit A une partie de E.

L'*orthogonal* de A est $A^{\perp} = \{x \in E / \forall y \in A \mid x \perp y\}$: c'est l'ensemble des vecteurs de E qui sont orthogonaux à tous les vecteurs de A.

Exemple. Soit $a \in E \setminus \{0\}$. Alors a^{\perp} est un hyperplan. En effet, c'est le noyau de la forme linéaire $x \longmapsto \langle x, a \rangle$.

Propriété. Soit A une partie de E. Alors A^{\perp} est un sous-espace vectoriel de E.

Démonstration.

$$A^{\perp} = \bigcap_{a \in A} a^{\perp}$$
. \square

Définition. Soient A et B deux parties de E. On dit qu'elles sont orthogonales si et seulement si tout vecteur de A est orthogonal à tout vecteur de B. On note alors $A \perp B$. Ainsi, $A \perp B \iff [\forall (a,b) \in A \times B, \ a \perp b]$.

Propriété. Soient A et B deux parties de E. $A \perp B \iff A \subset B^{\perp} \iff B \subset A^{\perp}$.

Démonstration.

$$\begin{array}{ll}
A \bot B &\iff [\forall (a,b) \in A \times B, \ a \bot b] \\
&\iff [\forall a \in A, \ (\forall b \in B \ , a \bot b)] \\
&\iff [\forall a \in A \ , a \in B^{\bot}] \\
&\iff A \subset B^{\bot}.
\end{array}$$

La seconde équivalence s'obtient en intervertissant les rôles joués par A et B. \Box

Propriété. Soient A et B deux parties de E. On dispose des propriétés suivantes :

$$- A \subseteq B \Longrightarrow B^{\perp} \subseteq A^{\perp},$$

$$- (A \cup B)^{\perp} = A^{\perp} \cap B^{\perp},$$

$$- A^{\perp} = (\operatorname{Vect}(A))^{\perp},$$

— et
$$A \subseteq (A^{\perp})^{\perp}$$
.

Démonstration.

 \diamond Supposons que $A \subseteq B$.

Soit $x \in B^{\perp}$. Pour tout $a \in A$, $a \in B$, donc $x \perp a$. Ainsi, $x \in A^{\perp}$.

On a donc prouvé que $B^{\perp} \subseteq A^{\perp}$.

 $\diamond x$ appartient à $(A \cup B)^{\perp}$ si et seulement si x est orthogonal à tout élément de $A \cup B$, donc si et seulement si x est orthogonal à tout élément de A (ie : $x \in A^{\perp}$) et à tout élément de B (ie : $x \in B^{\perp}$). Ainsi $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$.

$$\diamond A \subseteq \operatorname{Vect}(A), \operatorname{donc} \operatorname{Vect}(A)^{\perp} \subseteq A^{\perp}.$$

Réciproquement, soit $x \in A^{\perp}$.

Soit $y \in \text{Vect}(A)$. Il existe $(\alpha_a)_{a \in A} \in \mathbb{R}^{(A)}$ telle que $y = \sum_{a \in A} \alpha_a a$.

Ainsi
$$\langle x, y \rangle = \sum_{a \in A} \alpha_a \langle x, a \rangle = 0$$
, car $x \in A^{\perp}$.

On a montré que, pour tout $y \in \text{Vect}(A)$, $x \perp y$, donc $x \in \text{Vect}(A)^{\perp}$.

C'est vrai pour tout $x \in A^{\perp}$, donc $A^{\perp} \subseteq \text{Vect}(A)^{\perp}$.

$$\diamond \quad A \bot A^\bot, \text{ donc } A \subseteq (A^\bot)^\bot. \ \Box$$

Remarque. Soient F et G deux sous-espaces vectoriels de E.

$$F+G=\mathrm{Vect}(F\cup G),\,\mathrm{donc}\,\,(F+G)^\perp=F^\perp\cap G^\perp.$$

Cependant, en général,
$$(F \cap G)^{\perp} \neq F^{\perp} + G^{\perp}$$
 et $F^{\perp \perp} \neq F$.

Remarque. Un vecteur $x \in E$ est orthogonal à un sous-espace vectoriel F de E muni d'une base e si et seulement si x est orthogonal aux vecteurs de la base e.

En effet, supposons que $e = (e_i)_{i \in I}$ est une base de F. Si pour tout $i \in I$, $x \perp e_i$, alors $x \in \{e_i/i \in I\}^{\perp} = [\text{Vect}\{e_i/i \in I\}]^{\perp} = F^{\perp}$.

Exemple. Notons H le plan de \mathbb{R}^3 dont une équation cartésienne dans la base canonique est : x + y - z = 0.

Déterminons l'orthogonal de H, pour le produit scalaire canonique de \mathbb{R}^3 .

Une base de
$$H$$
 est $(X_1, X_2) = \left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right)$, donc $H^{\perp} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}^{\perp}$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
.
$$X \in H^\perp \Longleftrightarrow (X_1|X) = (X_2|X) = 0 \Longleftrightarrow \begin{cases} x-y &= 0 \\ y+z &= 0 \end{cases} \Longleftrightarrow \begin{cases} y &= x \\ z &= -x \end{cases},$$
 donc H^\perp est la droite vectorielle engendrée par $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

Exemples.

- Dans \mathbb{R}^n muni de son produit scalaire canonique, si $v = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$, alors v est orthogonal à l'hyperplan d'équation $a_1x_1 + \cdots + a_nx_n = 0$.
- Dans $C^0([-1,1],\mathbb{R})$ muni de son produit scalaire usuel, le sous-espace vectoriel \mathcal{P} des fonctions paires (et continues de [-1,1] dans \mathbb{R}) et le sous-espace vectoriel \mathcal{J} des fonctions impaires sont orthogonaux. En effet, pour tout $p \in \mathcal{P}$ et $j \in \mathcal{J}$, $\langle p,j \rangle = \int_{-1}^1 p(t)j(t) \ dt = 0$ par imparité.

Propriété. $\{0\}^{\perp} = E \text{ et } E^{\perp} = \{0\}.$

Démonstration.

- \diamond Tout vecteur de E est orthogonal à 0, donc $\{0\}^{\perp} = E$.
- \diamond Si $x \in E^{\perp}$, alors $\langle x, x \rangle = 0$, donc x = 0. \square

Définition. Soit I un ensemble quelconque et $(x_i)_{i\in I}$ une famille de vecteurs de E. Elle est dite orthogonale si et seulement si

$$\forall (i,j) \in I^2 \quad (i \neq j \Longrightarrow x_i \perp x_j).$$

Elle est dite *orthonormale* si et seulement si

$$\forall (i,j) \in I^2 \quad \langle x_i, x_j \rangle = \delta_{i,j}.$$

Exemple. Considérons à nouveau l'espace vectoriel $C_{2\pi}^0(\mathbb{R},\mathbb{R})$ des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} , muni du produit scalaire $(f,g) \longmapsto \frac{1}{\pi} \int_0^{2\pi} f(t)g(t) dt$. Pour tout $k \in \mathbb{N}^*$, notons $c_k : x \longmapsto \cos(kx)$ et $s_k : x \longmapsto \sin(kx)$. Montrons que la concaténation des familles $(c_k)_{k \in \mathbb{N}^*}$ et $(s_k)_{k \in \mathbb{N}^*}$ est orthonormale. Soit $k, h \in \mathbb{N}^*$.

concaténation des familles
$$(c_k)_{k\in\mathbb{N}^*}$$
 et $(s_k)_{k\in\mathbb{N}^*}$ est orthonormale. Soit $k,h\in\mathbb{N}^*$. $\langle c_k,c_h\rangle=\frac{1}{\pi}\int_0^{2\pi}\frac{\cos(k-h)x+\cos(k+h)x}{2}\,dx$, donc lorsque $k\neq h$, $\langle c_k,c_h\rangle=\frac{1}{2\pi}\Big[\frac{\sin(k-h)x}{k-h}+\frac{\sin(k+h)x}{k+h}\Big]_0^{2\pi}=0$, et lorsque $k=h$, $\|c_k\|^2=\frac{1}{\pi}\int_0^{2\pi}\frac{1+\cos(k+h)x}{2}\,dx=1$.

De même,
$$\langle s_k, s_h \rangle = \frac{1}{\pi} \int_0^{2\pi} \frac{\cos(k-h)x - \cos(k+h)x}{2} dx$$
, donc

lorsque
$$k \neq h$$
, $\langle s_k, s_h \rangle = \frac{1}{2\pi} \left[\frac{\sin(k-h)x}{k-h} - \frac{\sin(k+h)x}{k+h} \right]_0^{2\pi} = 0$, et lorsque $k = h$, $||s_k||^2 = \frac{1}{\pi} \int_0^{2\pi} \frac{1 - \cos(k+h)x}{2} dx = 1$. Enfin, $\langle c_k, s_h \rangle = \frac{1}{\pi} \int_0^{\pi} \cos(kx) \sin(hx) dx = 0$ par imparité.

Relation de Pythagore : Soit $n \in \mathbb{N}^*$ et (x_1, \dots, x_n) une famille orthogonale de vecteurs de E. Alors $\|\sum_{i=1}^n x_i\|^2 = \sum_{i=1}^n \|x_i\|^2$.

Cependant, lorsque $n \geq 3$, la réciproque est fausse.

Démonstration.

Dans \mathbb{R}^2 muni de son produit scalaire canonique, les vecteurs $x_1 = (1, 2)$, $x_2 = (0, 2)$ et $x_3 = (0, -1)$ vérifient la relation de Pythagore sans être deux à deux orthogonaux. \square

Propriété. Une famille orthogonale sans vecteur nul est libre.

En particulier, une famille orthonormale est toujours libre.

Démonstration.

Soit $(x_i)_{i \in I}$ une famille orthogonale sans vecteur nul.

Soit
$$(\alpha_i)_{i \in I} \in \mathbb{R}^{(I)}$$
 telle que $\sum_{i \in I} \alpha_i x_i = 0$.

Soit
$$j \in I$$
. $\alpha_j < x_j, x_j > = < x_j, \sum_{i \in I} \alpha_i x_i > = 0$, or $< x_j, x_j > \neq 0$, donc $\alpha_j = 0$. \square

Propriété. Supposons que E admet une base orthonormée notée $(e_i)_{i\in I}$.

Si
$$x = \sum_{i \in I} \alpha_i e_i \in E$$
 et $y = \sum_{i \in I} \beta_i e_i \in E$, alors $< x, y > = \sum_{i \in I} \alpha_i \beta_i$, $||x||^2 = \sum_{i \in I} \alpha_i^2$ et $x = \sum_{i \in I} < e_i, x > e_i$.

Démonstration.

$$\diamond < x, y > = < \sum_{i \in I} \alpha_i e_i, \sum_{j \in I} \beta_j e_j > = \sum_{(i,j) \in I^2} \alpha_i \beta_j < e_i, e_j > = \sum_{i \in I} \alpha_i \beta_i.$$

$$\diamond$$
 En particulier, lorsque $y = x, \langle x, x \rangle = \sum_{i=1}^{n} \alpha_i^2$

$$\diamond$$
 Soit $j \in I$. $\langle e_j, x \rangle = \langle e_j, \sum_{i \in I} \alpha_i e_i \rangle = \sum_{i \in I} \alpha_i \langle e_j, e_i \rangle = \alpha_j$,

donc
$$x = \sum_{i \in I} \alpha_i e_i = \sum_{i \in I} \langle e_i, x \rangle e_i$$
. \square

Propriété. Supposons que E est muni d'une base $e = (e_i)_{i \in I}$.

Alors il existe un unique produit scalaire sur E pour lequel e est une base orthonormée.

Démonstration.

• Existence. D'après l'exemple étudié au 1.2.1, page 2, l'application

$$\varphi: \qquad E^2 \qquad \longrightarrow \quad \mathbb{R}$$

$$\left(\sum_{i \in I} x_i e_i, \sum_{i \in I} y_i e_i\right) \quad \longmapsto \quad \sum_{i \in I} x_i y_i \quad \text{est un produit scalaire sur } E.$$

De plus, pour tout
$$(h, k) \in I^2$$
, $\varphi(e_h, e_k) = \sum_{i \in I} \delta_{i,h} \delta_{i,k} = \delta_{h,k}$,

donc e est orthonormée pour ce produit scalaire.

• Unicité. Soit ψ un produit scalaire sur E pour lequel e est orthonormée. D'après la première formule de la propriété précédente, $\psi = \varphi$. \square

Remarque. En particulier, dans un \mathbb{R} -espace vectoriel de dimension 2, pour toute base $(\vec{\imath}, \vec{\jmath})$, il existe un produit scalaire pour lequel $(\vec{\imath}, \vec{\jmath})$ est une base orthonormée.

Ceci semble contredire la notion intuitive d'orthogonalité de deux vecteurs du plan basée sur la notion d'angle droit.

En fait, à chaque produit scalaire est associée une notion d'angle droit, et pour deux vecteurs quelconques mais non liés, on peut choisir un produit scalaire pour lequel ils forment un angle droit.

Si notre intuition est "choquée" par ce qui précède, c'est que nous vivons dans un espace physique où la notion de distance est fixée (tout au moins en première approximation). Changer de distance est donc contraire à notre intuition. Or la notion de distance contient celle d'angle droit, comme angle formés par un rayon et une tangente d'un même cercle.

Propriété. Soient $n \in \mathbb{N}^*$ et $(E_i)_{1 \leq i \leq n}$ une famille de n sous-espaces vectoriels de E que l'on suppose deux à deux orthogonaux.

Alors ils forment une somme directe que l'on note $E_1 \bigoplus^{\perp} \cdots \bigoplus^{\perp} E_n = \bigoplus_{1 \le i \le n}^{\perp} E_i$.

$D\'{e}monstration.$

Soit
$$(x_1, \ldots, x_n) \in E_1 \times \cdots \times E_n$$
 tel que $\sum_{i=1}^n x_i = 0$. Soit $j \in \{1, \ldots, n\}$.

Pour tout
$$i \in \{1, ..., n\}$$
 tel que $i \neq j, \langle x_j, x_i \rangle = 0$, donc $||x_j||^2 = \langle x_j, \sum_{i=1}^n x_i \rangle = 0$.

Ainsi, $x_j = 0$ pour tout $j \in \{1, ..., n\}$, ce qui prouve que la somme est directe. \Box

Définition. Soient F et G deux sous-espaces vectoriels de E.

G est un **supplémentaire** orthogonal de F si et seulement si $E = F \stackrel{\perp}{\oplus} G$.

Exemple. Dans $C^0([-1,1],\mathbb{R})$ muni de son produit scalaire usuel, le sous-espace vectoriel \mathcal{P} des fonctions paires et le sous-espace vectoriel \mathcal{J} des fonctions impaires sont supplémentaires orthogonaux.

Propriété. Soit F un sous-espace vectoriel de E.

F admet au plus un supplémentaire orthogonal. Il s'agit de $F^\perp.$

Démonstration.

Supposons que G est un supplémentaire orthogonal de F, et montrons que $G = F^{\perp}$.

- $G \perp F$, donc $G \subseteq F^{\perp}$.
- Réciproquement, soit $x \in F^{\perp}$.

E = F + G, donc il existe $(f, g) \in F \times G$ tel que x = f + g.

 $F \perp G$, donc $\langle g, f \rangle = 0$. Ainsi, $||f||^2 = \langle f, f \rangle + \langle g, f \rangle = \langle x, f \rangle$, or $x \in F^{\perp}$, donc $\langle x, f \rangle = 0$. On en déduit que $||f||^2 = 0$, ce qui prouve que f = 0, puis que $x = q \in G$.

Ainsi $F^{\perp} \subseteq G$. \square

Remarque. Il est possible qu'un sous-espace vectoriel de E n'admette aucun supplémentaire orthogonal. Par exemple, munissons $E = \mathbb{R}^{(\mathbb{N})}$ du produit scalaire

$$< .,.>: E^2 \longrightarrow \mathbb{R}$$

$$((x_n),(y_n)) \longmapsto \sum_{n \in \mathbb{N}} x_n y_n,$$

et notons $F = \{(x_n) \in E / \sum_{n \in \mathbb{N}} x_n = 0\}$. F est un sous-espace vectoriel de E.

Soit
$$(y_n) \in F^{\perp}$$
. Pour tout $(x_n) \in \mathbb{R}^{(\mathbb{N})}$ tel que $\sum_{n \in \mathbb{N}} x_n = 0$, $\sum_{n \in \mathbb{N}} x_n y_n = 0$.

Soit $p \in \mathbb{N}$. Choisissons pour $(x_n)_{n \in \mathbb{N}}$ la suite dont tous les coefficients sont nuls, sauf le $p^{\text{ème}}$ qui est égal à 1, et le $(p+1)^{\text{ème}}$ qui est égal à -1.

$$(x_n) \in F$$
, donc $0 = \sum_{n \in \mathbb{N}} x_n y_n = y_p - y_{p+1}$.

Ainsi, pour tout $p \in \mathbb{N}$, $y_{p+1} = y_p$, ce qui prouve que (y_n) est une suite constante. Or elle est presque nulle, donc nécessairement, $(y_n) = 0$.

On a donc prouvé que $F^{\perp} = \{0\}$, or $F \neq E$, donc F^{\perp} n'est pas un supplémentaire de F. Ainsi F n'admet aucun supplémentaire orthogonal.

On peut également remarquer que $(F^{\perp})^{\perp} = \{0\}^{\perp} = E \neq F$.

De plus, si l'on pose $G = \text{Vect}((\delta_{0,n})_{n \in \mathbb{N}})$, on a $F \cap G = \{0\}$, donc $(F \cap G)^{\perp} = E$, mais $F^{\perp} + G^{\perp} = G^{\perp} \neq E$, car $(\delta_{0,n})_{n \in \mathbb{N}} \notin G^{\perp}$.

2.2En dimension finie

Propriété. On suppose que E est de dimension finie.

Pour tout $x \in E$, on note $\begin{array}{cccc} <x,.>:&E&\longrightarrow&\mathbb{R}\\ &y&\longmapsto&<x,y> \end{array}$ Alors, l'application $\begin{array}{cccc} E&\longrightarrow&L(E,\mathbb{R})\\ x&\longmapsto&<x,.> \end{array}$ est un isomorphisme.

$D\'{e}monstration.$

• < ... > est linéaire par rapport à sa seconde variable, donc, pour tout $x \in E$, $\langle x,. \rangle \in L(E,\mathbb{R})$. Ainsi, l'application $x \longmapsto \langle x,. \rangle$ est bien définie de E dans $L(E,\mathbb{R})$. Pour la suite de la démonstration, on notera $f: E \longrightarrow L(E,\mathbb{R})$

- Soit $(x, y, a, b) \in E \times E \times \mathbb{R} \times \mathbb{R}$. Pour tout $z \in E$, $f(ax + by)(z) = \langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle = (af(x) + bf(y))(z)$, donc f(ax + by) = af(x) + bf(y), ce qui prouve que f est une application linéaire.
- Soit $x \in E$ tel que f(x) = 0.

Pour tout $y \in E$, $\langle x, y \rangle = f(x)(y) = 0$, donc $x \in E^{\perp} = \{0\}$. Ainsi, x = 0 ce qui prouve que le noyau de f est réduit à $\{0\}$.

• f est donc une application linéaire injective. De plus, $dim(E) = dim(L(E, \mathbb{R}))$, donc f est un isomorphisme. \square

Théorème. On ne suppose pas que E est de dimension finie.

Si F est un sous-espace vectoriel de dimension finie de E, alors F^{\perp} est l'unique supplémentaire orthogonal de F. De plus $F = (F^{\perp})^{\perp}$.

Démonstration.

• Soit $x \in E$. Notons $\varphi: F \longrightarrow \mathbb{R}$ $y \longmapsto \langle x, y \rangle$.

 $\varphi \in L(F,\mathbb{R})$, donc, d'après la propriété précédente appliquée à F, il existe $f \in F$ tel que $\varphi = \langle f, . \rangle_{/F}$.

Ceci signifie que, pour tout $y \in F$, $\langle x, y \rangle = \langle f, y \rangle$, donc que $x - f \in F^{\perp}$.

Ainsi $x = f + (x - f) \in F + F^{\perp}$. Ceci prouve que $E = F + F^{\perp}$.

Or $F \cap F^{\perp} = \{0\}$, donc F^{\perp} est un supplémentaire de F dans E. De plus, on a déjà établi qu'il n'y a pas d'autre supplémentaire orthogonal de F, donc F^{\perp} est l'unique supplémentaire orthogonal de F.

• $E = F^{\perp} \stackrel{\perp}{\oplus} F$, donc F est un supplémentaire orthogonal de F^{\perp} , or le seul éventuel supplémentaire orthogonal de F^{\perp} est $(F^{\perp})^{\perp}$. Ainsi $F = (F^{\perp})^{\perp}$. \square

Exemple. Reprenons l'exemple où H est le plan de \mathbb{R}^3 dont une équation cartésienne dans la base canonique est : x+y-z=0.

Si l'on pose
$$N = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
, $H = \{X \in \mathbb{R}^3 / (N|X) = 0\} = \{N\}^{\perp} = \text{Vect}(N)^{\perp}$.

Or $\operatorname{Vect}(N)$ est de dimension finie, donc on peut appliquer le théorème précédent. Ainsi, $H^{\perp} = (\operatorname{Vect}(N)^{\perp})^{\perp} = \operatorname{Vect}(N)$.

On retrouve bien le même résultat que précédemment.

Définition.

On appelle espace euclidien tout espace préhilbertien de dimension finie.

Hypothèse : jusqu'à la fin de ce paragraphe, on suppose que E est un espace euclidien de dimension n > 0. On notera < ., . > son produit scalaire et ||.|| la norme euclidienne associée.

Propriété.

Si F et G sont deux sous-espaces vectoriels de E, alors $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Démonstration.

$$F^{\perp} + G^{\perp} = (F^{\perp} + G^{\perp})^{\perp^{\perp}} = (F^{\perp} \cup G^{\perp})^{\perp^{\perp}} = (F^{\perp^{\perp}} \cap G^{\perp^{\perp}})^{\perp} = (F \cap G)^{\perp}. \square$$

Propriété. Si F est un sous-espace vectoriel de E, alors $dim(F^{\perp}) = dimE - dimF$.

Propriété. Soit $e = (e_1, \dots, e_n)$ une base orthonormée de E.

Soient x et y des vecteurs de E dont les coordonnées dans la base e sont données sous forme de vecteurs colonnes notés X et Y. Alors $\langle x, y \rangle =^t YX =^t XY$.

Démonstration.

Notons
$$x = \sum_{i=1}^{n} x_i e_i$$
 et $y = \sum_{i=1}^{n} y_i e_i$. Ainsi

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad \text{et } Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Donc
$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = {}^{t}XY = {}^{t}YX. \square$$

Remarque. Si $e = (e_1, \dots, e_n)$ est une base orthonormée de E, pour tout $u \in L(E)$, pour tout $i, j \in \mathbb{N}_n$, $[\max(u, e)]_{i,j} = \langle e_i, u(e_j) \rangle$.

La fin de ce paragraphe est hors programme.

Définition. La matrice du produit scalaire dans la base e est égale à

$$\max(\langle .,. \rangle, e) = (\langle e_i, e_j \rangle)_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in S_n(\mathbb{R}).$$

Propriété. e est orthogonale si et seulement si mat(<.,.>,e) est diagonale. e est orthonormée si et seulement si $mat(<.,.>,e)=I_n$.

Formule. Soit e une base quelconque de E. On note Ω la matrice de < .,. > dans la base e. Soient x et y deux vecteurs de E, dont les coordonnées dans e sont données sous la forme des vecteurs colonnes X et Y de \mathbb{R}^n . Alors

$$\langle x, y \rangle = {}^{t}X\Omega Y = {}^{t}Y\Omega X = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} x_{i}y_{j}\omega_{i,j}.$$

Démonstration.

Posons
$$X = \begin{pmatrix} x_{1,1} \\ \vdots \\ x_{n,1} \end{pmatrix}$$
, $Y = \begin{pmatrix} y_{1,1} \\ \vdots \\ y_{n,1} \end{pmatrix}$ et $\Omega = (\omega_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$.
 $\langle x, y \rangle = \left\langle \sum_{i=1}^n x_{i,1} e_i, \sum_{j=1}^n y_{j,1} e_j \right\rangle = \sum_{i=1}^n x_{i,1} \left\langle e_i, \sum_{j=1}^n y_{j,1} e_j \right\rangle$

$$= \sum_{i=1}^n \sum_{j=1}^n x_{i,1} y_{j,1} \langle e_i, e_j \rangle = \sum_{i=1}^n \sum_{j=1}^n x_{i,1} \omega_{i,j} y_{j,1}$$

$$= {}^t X \Omega Y,$$

d'après la formule pour le produit de trois matrices. De plus, une matrice carrée d'ordre 1 est toujours symétrique, donc ${}^tX\Omega Y={}^t({}^tX\Omega Y)={}^tY{}^t\Omega X$. \square

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie, muni d'une base $e = (e_1, \dots, e_n)$ et soit φ une forme bilinéaire sur E.

La matrice de φ dans la base e est $\max(\varphi, e) = (\varphi(e_i, e_j))_{1 \leq i, j \leq n} \in \mathcal{M}_n(\mathbb{K})$. Pour tout $x, y \in E$, en posant $X = \max_e(x)$ et $Y = \max_e(y)$, $\varphi(x, y) = {}^t X \Omega Y$. φ est symétrique si et seulement si $\Omega \in S_n(\mathbb{K})$.

2.3 Distance d'un vecteur à un sous-espace vectoriel

Définition. Soit F un sous-espace vectoriel de E tel que $F \bigoplus F^{\perp} = E$. On appelle **projection orthogonale** sur F, la projection sur F parallèlement à F^{\perp} . Dans ce chapitre, elle est notée p_F .

Remarque. On utilisera souvent le fait que le projecteur associé à p_F est $Id_E - p_F = p_{F^{\perp}}$. En particulier, pour tout $x \in E$, $x - p_F(x) = p_{F^{\perp}}(x) \in F^{\perp}$.

Formule. Soit F un sous-espace vectoriel de E que l'on suppose muni d'une base orthonormée $e = (e_i)_{i \in I}$. On suppose de plus que $F \oplus F^{\perp} = E$.

Alors, pour tout
$$x \in E$$
, $p_F(x) = \sum_{i \in I} \langle e_i, x \rangle e_i$.

En particulier, si F est un sous-espace vectoriel de dimension finie de E, muni d'une

base orthonormée
$$e = (e_1, \dots, e_n)$$
, alors, pour tout $x \in E$, $p_F(x) = \sum_{i=1}^n \langle e_i, x \rangle e_i$.

$D\'{e}monstration.$

Soit
$$x \in E$$
. $p_F(x) = \sum_{i \in I} \langle e_i, p_F(x) \rangle e_i$ car $(e_i)_{i \in I}$ est une base orthonormale de F .

Or, pour tout
$$i \in I$$
, $\langle e_i, p_F(x) \rangle = \langle e_i, (p_F(x) - x) + x \rangle = \langle e_i, x \rangle$
car $p_F(x) - x \in F^{\perp}$, donc $p_F(x) = \sum_{i \in I} \langle e_i, x \rangle e_i$. \square

Remarque. Soit F un sous-espace vectoriel de E tel que $F \bigoplus F^{\perp} = E$. Pour tout $x \in E$, $p_F(x) = x - p_{F^{\perp}}(x)$, donc on peut calculer $p_F(x)$ en passant par $p_{F^{\perp}}(x)$. C'est pertinent lorsque F est un hyperplan de E.

Exemple. Considérons à nouveau l'espace vectoriel $E = \mathcal{C}^0_{2\pi}(\mathbb{R}, \mathbb{R})$ des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} , muni du produit scalaire

 $(f,g) \longmapsto \frac{1}{\pi} \int_0^{2\pi} f(t)g(t) \ dt$. En posant pour tout $k \in \mathbb{N}^*$, $c_k : x \longmapsto \cos(kx)$ et $s_k : x \longmapsto \sin(kx)$, on a vu que la concaténation des familles $(c_k)_{k \in \mathbb{N}^*}$ et $(c_k)_{k \in \mathbb{N}^*}$ est orthonormale. Posons également $c_0 : x \longmapsto \frac{1}{\sqrt{2}}$.

Fixons $n \in \mathbb{N}^*$. On vérifie facilement que $B_n = (c_0, c_1, \dots, c_n, s_1, \dots, s_n)$ est une famille orthonormée de E. Posons

$$E_n = \operatorname{Vect}(B_n)$$

$$= \{x \longmapsto \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)) / a_0, a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R} \}.$$

Alors, pour tout $f \in \stackrel{k=1}{E}$, c'est-à-dire pour toute application f continue et 2π -périodique,

le projeté orthogonal de f sur E_n est $p_{E_n}(f) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k c_k + b_k s_k)$, où pour tout

$$k \in \{0, ..., n\}, \ a_k = \langle f, c_k \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(kt) \ dt \ (y \text{ compris pour } k = 0) \text{ et où}$$

pour tout
$$k \in \mathbb{N}_n$$
, $b_k = \langle f, s_k \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(kt) dt$.

On dit que $p_{E_n}(f)$ est le développement de f en série de Fourier à l'ordre n.

Exemple. On se place dans $E = \mathbb{R}^3$ muni sa structure euclidienne canonique.

On note
$$F = \text{Vect}(u_1, u_2)$$
, où $u_1 = (1, 1, 0)$ et $u_2 = (1, 0, 1)$.

On souhaite calculer $p_F(u_3)$, où $u_3 = (0, 1, 1)$.

On pourrait orthonormaliser (u_1, u_2) selon le procédé de Gram-Schmidt puis appliquer la formule précédente, mais il y a plus simple :

 (u_1, u_2) étant libre, c'est une base de F.

Il existe donc $a, b \in \mathbb{R}$ tels que $p_F(u_3) = au_1 + bu_2$.

$$u_3 - p_F(u_3) \in F^{\perp}$$
, donc $\langle u_1, u_3 \rangle = \langle u_1, p_F(u_3) \rangle$ et $\langle u_2, u_3 \rangle = \langle u_2, p_F(u_3) \rangle$.

Ainsi, $a\|u_1\|^2 + b\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle$ et $a\langle u_2, u_1 \rangle + b\|u_2\|^2 = \langle u_2, u_3 \rangle$, donc (a, b) vérifie le système d'équations $\begin{cases} a+2b &= 1\\ 2a+b &= 1 \end{cases}$. Les formules de Cramer donnent $a=\frac{1}{3}=b$, donc

$$p_{F}(u_{3}) = \frac{1}{3}(u_{1} + u_{2}) = \left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right).$$
En fait, il y a encore plus simple : $p_{F}(u_{3}) = u_{3} - p_{F^{\perp}}(u_{3})$, or $p_{F^{\perp}}(u_{3}) = \left\langle \frac{c}{\|c\|}, u_{3} \right\rangle \frac{c}{\|c\|}$, où (cf 5.1) $c = u_{1} \wedge u_{2} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \wedge & 0 & -1 \\ 0 & 1 & -1 \end{vmatrix}$, donc $p_{F}(u_{3}) = \begin{vmatrix} 0 & 1 \\ 1 & -\frac{1}{3}(-2) & -1 \\ 1 & -1 \end{vmatrix}$

Théorème de la projection orthogonale :

Soient $a \in E$ et F un sous-espace vectoriel de dimension finie de E. Alors,

$$d(a, F) = d(a, p_F(a)).$$

De plus, pour tout $y \in F \setminus \{p_F(a)\}, d(a, y) > d(a, F)$.

Ainsi, $p_F(a)$ est le vecteur de F le plus proche de a (cf figure).

On dispose de la formule suivante : $||a||^2 = ||p_F(a)||^2 + d(a, F)^2$.

Enfin, si (e_1, \ldots, e_n) est une base **orthonormée** de F, on dispose de l'**inégalité** de

Bessel:
$$||a||^2 \ge \sum_{i=1}^n < e_i, a >^2$$
.

Remarque. À part pour le dernier point, le théorème et sa démonstration sont valables en supposant seulement que F est un sous-espace vectoriel de E tel que $F \oplus F^{\perp} = E$.

Démonstration.

• $a = p_F(a) + (a - p_F(a))$, avec $p_F(a) \in F$ et $a - p_F(a) \in F^{\perp}$.

Soit $x \in F$. $||x - a||^2 = ||(x - p_F(a)) + (p_F(a) - a)||^2$,

donc d'après le théorème de Pythagore (appliqué au triangle rectangle représenté en gras sur la figure),

(1) : $||x - a||^2 = ||x - p_F(a)||^2 + ||p_F(a) - a||^2$.

Ainsi, pour tout $x \in F \setminus \{p_F(a)\}, \|x - a\|^2 > \|p_F(a) - a\|^2$.

Ceci démontre que $\{\|x-a\|/x \in F\}$ admet $\|p_F(a)-a\|$ comme minimum,

donc $d(a, F) = ||p_F(a) - a||$.

- La formule (1) devient, lorsque x = 0: $||a||^2 = ||p_F(a)||^2 + ||p_F(a) a||^2$, donc $||a||^2 = ||p_F(a)||^2 + d(a, F)^2$.
- On sait que $p_F(a) = \sum_{i=1}^n \langle e_i, a \rangle e_i$, car (e_1, \dots, e_n) est une base **orthonormée**

de
$$F$$
, donc $||p_F(a)||^2 = \sum_{i=1}^n \langle e_i, a \rangle^2$,

Ainsi,
$$||a||^2 = ||p_F(a)||^2 + ||p_F(a) - a||^2 \ge ||p_F(a)||^2 = \sum_{i=1}^n \langle e_i, a \rangle^2$$
. \square

Figure.

Exemple. Reprenons l'exemple où $E = \mathbb{R}^3$ muni sa structure euclidienne canonique, $F = \text{Vect}(u_1, u_2)$ avec $u_1 = (1, 1, 0)$ et $u_2 = (1, 0, 1)$. On pose $u_3 = (0, 1, 1)$ et on souhaite calculer $d(F, u_3)$.

D'après un calcul précédent, $d(F, u_3) = ||u_3 - p_F(u_3)|| = ||p_{F^{\perp}}(u_3)|| = ||\frac{2}{3}| \begin{vmatrix} 1 \\ -1 \\ -1 \end{vmatrix}| = \frac{2}{\sqrt{3}}.$

Exemple. Prenons $E = \mathcal{C}([0,1],\mathbb{R})$, muni du produit scalaire défini par $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$.

• Soit $n \in \mathbb{N}$. Notons E_n l'ensemble des applications de [0,1] dans \mathbb{R} qui sont polynômiales de degré inférieur ou égal à n. C'est un sous-espace vectoriel de E de dimension n+1.

Notons p_n la projection orthogonale sur E_n .

Soit $f \in E$. $p_n(f)$ est le polynôme de degré inférieur ou égal à n qui est le plus proche de l'application f au sens de la distance associée au produit scalaire choisi sur E. On dit que $p_n(f)$ est une approximation de f au sens des moindres carrés.

- $E_n \subset E_{n+1}$, donc $d(f, E_{n+1}) \leq d(f, E_n)$. Ainsi, $p_{n+1}(f)$ est une approximation de f qui est meilleure que $p_n(f)$.
- On peut même montrer que $d(p_n(f), f) \underset{n \to +\infty}{\longrightarrow} 0$, ce qui signifie que l'approximation peut être choisie aussi bonne que l'on veut (au sens des moindres carrés) à condition de choisir n suffisamment grand. C'est une conséquence du théorème de Stone-Weierstrass (programme de seconde année).

Propriété. Soit $a \in E \setminus \{0\}$. On pose $H = a^{\perp}$. H est un hyperplan dont a est un vecteur **normal**. Pour tout $x \in E$, $p_H(x) = x - \frac{\langle x, a \rangle}{\|a\|^2} a$ et, en notant s_H la symétrie orthogonale par rapport à H, $s_H(x) = x - 2\frac{\langle x, a \rangle}{\|a\|^2} a$.

Propriété. On suppose que E est de dimension finie $n \geq 1$. Soit \mathcal{H} un hyperplan affine de E, passant par un point A et dirigé par l'hyperplan vectoriel H: Si \overrightarrow{n} est un vecteur non nul de H^{\perp} , on dit que \overrightarrow{n} est un vecteur normal à \mathcal{H} . Dans ce cas, pour tout $M \in E$, $d(M, \mathcal{H}) = \frac{|\langle \overrightarrow{n}, \overrightarrow{AM} \rangle|}{\|\overrightarrow{n}\|}$.

Si \mathcal{H} a pour équation cartésienne $\sum_{i=1}^{n} \alpha_i x_i = c$ dans un repère orthonormé, pour tout

$$M \in E$$
, $d(M, \mathcal{H}) = \frac{|\sum_{i=1}^{n} \alpha_i x_i - c|}{\sqrt{\sum_{i=1}^{n} \alpha_i^2}}$, où (x_1, \dots, x_n) sont les coordonnées de M dans le

repère.

$D\'{e}monstration.$

$$d(M, \mathcal{H}) = \inf_{P \in \mathcal{H}} \|\overrightarrow{MP}\|, \text{ or } \mathcal{H} = A + H = \{A + x / x \in H\},$$

$$donc \ d(M, \mathcal{H}) = \inf_{x \in H} \|(A + x) - M\| = \inf_{x \in H} \|x - \overrightarrow{AM}\| = d(\overrightarrow{AM}, H),$$

$$ainsi \ d(M, \mathcal{H}) = \|p_{H^{\perp}}(\overrightarrow{AM})\| = \left|\frac{\langle \overrightarrow{m}, \overrightarrow{AM} \rangle}{\|\overrightarrow{m}\|}\right|.$$

 \diamond Supposons que \mathcal{H} admette pour équation cartésienne $\sum_{i=1}^{n} \alpha_i x_i = c$.

Notons $(x_{i,M})_{1 \leq i \leq n}$ les coordonnées de M et $(x_{i,A})_{1 \leq i \leq n}$ celles de A. Posons également

$$\overrightarrow{n} = \sum_{i=1}^{n} \alpha_i e_i$$
. Alors la formule précédente s'écrit

$$d(M, \mathcal{H}) = \frac{1}{\sqrt{\sum_{i=1}^{n} \alpha_i^2}} \Big| \sum_{i=1}^{n} \alpha_i (x_{i,M} - x_{i,A}) \Big|, \text{ or } A \in \mathcal{H}, \text{ donc } \sum_{i=1}^{n} \alpha_i x_{i,A} = c, \text{ donc}$$
$$\Big| \sum_{i=1}^{n} \alpha_i x_{i,M} - c \Big|$$
$$d(M, \mathcal{H}) = \frac{1}{\sqrt{\sum_{i=1}^{n} \alpha_i^2}}. \quad \Box$$

2.4 Procédé d'orthonormalisation de Gram-Schmidt

Théorème. Orthonormalisation de Gram-Schmidt.

Soient $n \in \mathbb{N}^*$ et $(x_k)_{k \in \{1,\dots,n\}}$ une famille **libre** de vecteurs de E. Alors il existe une unique famille orthonormale de vecteurs $(e_k)_{k \in \{1,\dots,n\}}$ telle que, pour tout $k \in \{1,\dots,n\}$,

i) $e_k \in \operatorname{Vect}(x_1, \dots, x_k)$

ii) et
$$\langle e_k, x_k \rangle \in \mathbb{R}_+^*$$
.

De plus, pour tout $k \in \{1, ..., n\}$, e_k est positivement colinéaire à la projection orthogonale de x_k sur l'orthogonal de $\mathrm{Vect}(x_1, ..., x_{k-1})$. C'est-à-dire que la famille $(e_k)_{k \in \{1, ..., n\}}$ est récursivement définie par les relations suivantes :

$$e_k = \frac{E_k}{\|E_k\|}$$
, où $E_k = x_k - \sum_{i=1}^{k-1} \langle e_i, x_k \rangle e_i$.

$D\'{e}monstration.$

- Existence.
- \diamond Soit $k \in \{1, \ldots, n\}$. Posons $F_k = \text{Vect}(x_1, \ldots, x_k)$ et $F_0 = \{0\}$.

Notons p_k la projection orthogonale sur F_k et posons $E_k = x_k - p_{k-1}(x_k)$.

Ainsi, E_k désigne la projection orthogonale de x_k sur l'orthogonal de F_{k-1} .

 \diamond Supposons que $E_k = 0$. Alors $x_k = p_{k-1}(x_k) \in F_{k-1}$, ce qui est faux car (x_1, \dots, x_k) est un système libre. Ainsi $E_k \neq 0$ et on peut poser $e_k = \frac{E_k}{\|E_k\|} \in F_k$.

 \diamond Soit $(h,k) \in \{1,\ldots,n\}^2$ avec h < k. $e_h \in F_h \subset F_{k-1}$ et $e_k \in F_{k-1}^{\perp}$, donc $< e_h, e_k >= 0$.

Ainsi la famille (e_k) est orthonormale.

$$\Rightarrow$$
 Soit $k \in \{1, ..., n\}$. $\langle x_k, e_k \rangle = \frac{1}{\|E_k\|} \langle x_k, E_k \rangle$,

or $\langle x_k, E_k \rangle = \langle E_k + p_{k-1}(x_k), E_k \rangle = ||E_k||^2 \text{ car } p_{k-1}(x_k) \in F_{k-1} \text{ et } E_k \in F_{k-1}^{\perp}.$ Ainsi $\langle x_k, e_k \rangle = ||E_k|| \in \mathbb{R}_+^*.$

• Unicité.

 \diamond Soit $(f_k)_{k \in \{1,...,n\}}$ une seconde famille orthonormale telle que, pour tout $k \in \{1,...,n\}$, $f_k \in \text{Vect}(x_1,...,x_k)$ et $< f_k, x_k > \in \mathbb{R}_+^*$.

 \diamond Soit $k \in \{1, \ldots, n\}$. Pour tout $h \in \{1, \ldots, k\}$, $f_h \in F_k$, donc $\operatorname{Vect}(f_1, \ldots, f_k) \subset F_k$. De plus, les deux familles (f_1, \ldots, f_k) et (x_1, \ldots, x_k) étant libres, $\dim(\operatorname{Vect}(f_1, \ldots, f_k)) = k = \dim(F_k)$, donc, pour tout $k \in \{1, \ldots, n\}$, $\operatorname{Vect}(f_1, \ldots, f_k) = F_k$.

 \diamond Soit $k \in \{1, \dots, n\}$. $f_k \in \{f_1, \dots, f_{k-1}\}^{\perp} = \operatorname{Vect}(\{f_1, \dots, f_{k-1}\})^{\perp} = F_{k-1}^{\perp}$, donc f_k et e_k appartiennent à $F_k \cap F_{k-1}^{\perp}$. Cet espace est l'orthogonal de F_{k-1} pour la restriction du produit scalaire à F_k , donc $\dim(F_k \cap F_{k-1}^{\perp}) = \dim(F_k) - \dim(F_{k-1}) = 1$, ainsi, cet espace est une droite vectorielle.

On en déduit qu'il existe $a \in \mathbb{K}$ tel que $f_k = ae_k$.

- \Leftrightarrow $\langle f_k, x_k \rangle = a \langle e_k, x_k \rangle \text{ donc } a \in \mathbb{R}_+^*.$
- \diamond Enfin $1 = ||f_k|| = a$, donc $f_k = e_k$, ce qui prouve l'unicité. \square

Exercice. On note $E = \mathbb{R}_2[X]$ (ensemble des polynômes à coefficients réels de degré inférieur ou égal à 2).

Pour tout $(P,Q) \in E^2$, on pose

$$\langle P, Q \rangle = P(1)Q(1) + P(0)Q(0) + P(-1)Q(-1).$$

- 1°) Montrer que $(P,Q) \longrightarrow \langle P,Q \rangle$ est un produit scalaire sur E.
- **2°)** Déterminer une base orthonormée de E, notée (P_0, P_1, P_2) , telle que, pour tout $i \in \{0, 1, 2\}$, $deg(P_i) = i$.

Solution.

 $\mathbf{1}^{\circ}\big)$ On vérifie que <.,.> est une forme bilinéaire symétrique.

Soit $P \in E$. $P(P) = P(1)^2 + P(0)^2 + P(-1)^2$, donc $P(P) = P(1)^2 + P(0)^2 + P(-1)^2$.

De plus, si < P, P >= 0, alors P admet 0, 1 et -1 comme racines, or P est de degré inférieur ou égal à 2, donc P est nul. Ceci prouve que < .,. > est définie positive.

Ainsi, < .,. > est une forme bilinéaire symétrique définie positive, donc c'est un produit scalaire sur E.

On notera ||.|| la norme associée.

- ${\bf 2}^{\circ})$ On applique le procédé d'orthonormalisation de Gram-Schmidt à la base canonique $(1,X,X^2)$ de E .
- $||1||^2 = 3$, donc on pose $P_0 = \frac{1}{\sqrt{3}}$.
- Notons E_1 le polynôme obtenu en enlevant à X sa projection orthogonale sur $\operatorname{Vect}(P_0)$. $E_1 = X \langle P_0, X \rangle P_0 = X \frac{1}{3} \langle 1, X \rangle = X \frac{1}{3} (1 + 0 + (-1)) = X$.

De plus, $||E_1||^2 = 1^2 + |0|^2 + (-1)^2 = 2$, donc on pose $P_1 = \frac{X}{\sqrt{2}}$.

• Notons E_2 le polynôme obtenu en enlevant à X^2 sa projection orthogonale sur $\text{Vect}(P_0, P_1)$.

$$E_2 = X^2 - \langle P_0, X^2 \rangle P_0 - \langle P_1, X^2 \rangle P_1$$

$$= X^2 - \frac{1}{3} \langle 1, X^2 \rangle - \frac{1}{2} \langle X, X^2 \rangle X$$

$$= X^2 - \frac{1}{3} (1^2 + 0^2 + (-1)^2) - \frac{1}{2} (1 \cdot (1^2) + (-1) \cdot (-1)^2) X$$

$$= X^2 - \frac{2}{3}.$$
 De plus, $||E_2||^2 = (1^2 - \frac{2}{3})^2 + \frac{2^2}{3} + ((-1)^2 - \frac{2}{3})^2 = \frac{1}{9} + \frac{4}{9} + \frac{1}{9} = \frac{6}{9} = \frac{2}{3}$, donc on pose $P_2 = \frac{\sqrt{3}X^2}{\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}}$. Interprétation matricielle du procédé de Gram-Schmidt.

Soient $n \in \mathbb{N}^*$ et $x = (x_k)_{k \in \{1,\dots,n\}}$ une base de E.

Alors il existe une unique base orthonormée $e = (e_1, \ldots, e_n)$ de E telle que la matrice de passage de e vers x est triangulaire supérieure, ses coefficients diagonaux étant de plus strictement positifs.

Démonstration.

Notons \mathcal{T} l'ensemble des matrices triangulaires supérieures et \mathcal{T}^+ l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux sont strictement positifs. Soit $e = (e_1, \ldots, e_n)$ une base orthonormée de E.

Avec les notations de l'énoncé du procédé d'orthonormalisation de Gram-Schmidt,

- $i) \iff P_x^e \in \mathcal{T} \iff P_e^x \in \mathcal{T} \text{ et}$
- $(ii) \iff \forall i \in \{1,\ldots,n\}$, $[P_e^x]_{i,i} > 0$ (en effet, $[P_e^x]_{i,i} = \langle e_i, x_i \rangle$ car la base e est orthonormée).

Ainsi,
$$[i)$$
 et $[i)$ $\iff P_e^x \in \mathcal{T}^+ \iff P_x^e \in \mathcal{T}^+$. \square

Propriété. Supposons que E est de dimension finie.

- \diamond E admet au moins une base orthonormée.
- \diamond Si (e_1,\ldots,e_p) est une famille orthonormale de E, on peut la compléter en une base orthonormale de E.

$D\'{e}monstration.$

Si (e_1, \ldots, e_p) est une famille orthonormale de E, on note $F = \text{Vect}(e_1, \ldots, e_p)$. F^{\perp} admet au moins une base orthonormale (e_{p+1},\ldots,e_n) . On vérifie que (e_1,\ldots,e_n) est une base orthonormale de E. \square

Théorème. Orthonormalisation de Gram-Schmidt pour une famille infinie Soient $(x_k)_{k\in\mathbb{N}^*}$ une famille **libre** de vecteurs de E. Alors il existe une unique famille orthonormale de vecteurs $(e_k)_{k\in\mathbb{N}^*}$ telle que, pour tout $k\in\mathbb{N}^*$,

- i) $e_k \in \operatorname{Vect}(x_1, \dots, x_k)$
- ii) et $\langle e_k, x_k \rangle \in \mathbb{R}_+^*$.

De plus, pour tout $k \in \mathbb{N}^*$, e_k est positivement colinéaire à la projection orthogonale de x_k sur l'orthogonal de $\text{Vect}(x_1,\ldots,x_{k-1})$. C'est-à-dire que la famille $(e_k)_{k\in\mathbb{N}^*}$ est récursivement définie par les relations suivantes :

$$e_k = \frac{E_k}{\|E_k\|}$$
, où $E_k = x_k - \sum_{i=1}^{k-1} \langle e_i, x_k \rangle e_i$.

$D\'{e}monstration.$

Il suffit d'adapter la démonstration du cas d'une famille finie. □

Exemple. Considérons un produit scalaire noté < .,. > sur $E = \mathbb{R}[X]$. Le procédé d'orthonormalisation de Gram-Schmidt appliqué à la base canonique $(X^n)_{n \in \mathbb{N}}$ fournit une base orthonormée de polynômes (P_n) vérifiant i) et ii).

D'après i), $P_n \in \mathbb{R}_n[X]$, donc $deg(P_n) \leq n$, mais si $deg(P_n) < n$,

alors $\operatorname{Vect}(P_0, \ldots, P_n) \subset \mathbb{R}_{n-1}[X]$, donc (P_0, \ldots, P_n) n'est pas libre, ce qui est faux. Ainsi, pour tout $n \in \mathbb{N}$, $\operatorname{deg}(P_n) = n$.

Une telle famille de polynômes, de degrés étagés et formant une base orthonormée de $\mathbb{R}[X]$, s'appelle une famille de polynômes orthogonaux.

La théorie des polynômes orthogonaux est assez riche : elle constitue le sujet de quelques problèmes de concours, souvent pour un produit scalaire particulier de $\mathbb{R}[X]$, de la forme $(P,Q) \longmapsto \int_I \varphi(t) P(t) Q(t) dt$, où φ est une fonction continue positive, définie sur l'intervalle I, qui dépend du problème.

3 Endomorphismes d'un espace euclidien

On suppose pour toute cette partie que E est un espace euclidien de dimension $n \geq 1$.

3.1 Endomorphismes symétriques

Définition. Soit $u \in L(E)$. u est un **endomorphisme symétrique** si et seulement si pour tout $(x, y) \in E^2$, < u(x), y > = < x, u(y) >.

Propriété. Soient e une base **orthonormée** de E et $u \in L(E)$.

Alors u est symétrique si et seulement si mat(u, e) est symétrique.

Démonstration.

Notons M = mat(u, e).

 \diamond Supposons d'abord que $M = {}^tM$.

Soit $x, y \in E$. Posons $X = \Psi_e^{-1}(x) \in \mathbb{R}^n$ et $Y = \Psi_e^{-1}(y)$.

e étant orthonormée, $\langle u(x), y \rangle = {}^t(MX)Y = {}^tX{}^tMY = {}^tXMY = \langle x, u(y) \rangle$, donc u est symétrique.

 $\diamond~$ Réciproquement, supposons que u est symétrique.

Soit $i, j \in \{1, ..., \}$: $M_{i,j}$ est égal à la i-ème coordonnée de $u(e_j)$, or e est orthonormée, donc $M_{i,j} = \langle u(e_j), e_i \rangle = \langle e_j, u(e_i) \rangle = M_{j,i}$, ce qui prouve que M est symétrique. \square

Notation. On notera S(E) l'ensemble des endomorphismes symétriques de E. C'est un sous-espace vectoriel de L(E).

Propriété. Une projection est un endomorphisme symétrique si et seulement si c'est une projection orthogonale.

Démonstration.

Soient F et G deux sous-espaces vectoriels de E qui sont supplémentaires.

Notons p la projection sur F parallèlement à G.

• Supposons que p est un endomorphisme symétrique.

Soit $f \in F$ et $g \in G$. Alors $\langle f, g \rangle = \langle f, g \rangle = 0$, donc $F \perp G$ et $g \in G$ est une projection orthogonale.

• Réciproquement, supposons que p est une projection orthogonale.

Il existe une base orthonormée de F notée (e_1, \ldots, e_r) et une base orthonormée de G notée (e_{r+1}, \ldots, e_n) . $G = F^{\perp}$, donc la réunion de ces deux bases est une base orthonormée de E notée $e = (e_1, \ldots, e_n)$.

La matrice de p dans e est diagonale, donc symétrique, et e est orthonormée, donc p est un endomorphisme symétrique. \Box

Propriété. Une symétrie est un endomorphisme symétrique si et seulement si c'est une symétrie orthogonale.

$D\'{e}monstration.$

Soient F et G deux sous-espaces vectoriels de E qui sont supplémentaires. Notons p la projection sur F parallèlement à G et s la symétrie par rapport à F parallèlement à G. Soit e une base orthonormée de E.

s=2p-Id, donc $\max(s,e)=2\max(p,e)-I_n$. Ainsi $\max(s,e)$ est symétrique si et seulement si $\max(p,e)$ est symétrique, donc s est symétrique si et seulement si p est symétrique, c'est-à-dire si et seulement si $G=F^{\perp}$, donc si et seulement si s est une symétrie orthogonale. \square

Remarque. On notera qu'une symétrie n'est donc pas en général un endomorphisme symétrique.

Propriété. Si $u \in S(E)$ et si F est un sous-espace vectoriel stable par u, alors F^{\perp} est aussi stable par u.

Démonstration.

Soit $x \in F^{\perp}$. Soit $y \in F$.

$$< u(x), y> = < x, u(y)> = 0$$
, car $x \in F^{\perp}$ et $u(y) \in u(F) \subset F$. \square

Vous verrez en seconde année le

Théorème spectral : Soit u un endomorphisme de E.

Si u est symétrique, il existe au moins une base orthonormée de vecteurs propres de u. On dit que u est diagonalisable en base orthonormée.

3.2 Groupe orthogonal.

3.2.1 Caractérisations d'un automorphisme orthogonal.

Définition. Soit $u \in L(E)$. On dit que u est un **automorphisme orthogonal** ou une **isométrie vectorielle** si et seulement si l'une des propriétés suivantes est vérifiée.

— (i) : conservation du produit scalaire : $\forall x, y \in E, \langle u(x), u(y) \rangle = \langle x, y \rangle$;

- (ii) : conservation de la norme : $\forall x \in E, \|u(x)\| = \|x\|$.
- (iii) : si e est une base orthonormée de E, en posant M = mat(u, e), M inversible et $M^{-1} = {}^tM$.

$D\'{e}monstration.$

- \diamond $(i) \Longrightarrow (ii)$: évident.
- \diamond $(ii) \Longrightarrow (i)$: en utilisant une identité de polarisation.
- \diamond $(i) \iff \forall X, Y \in \mathbb{R}^n, \ ^t(MX)(MY) = ^tXY,$

donc
$$(i) \iff \forall Y \in \mathbb{R}^n, \ [\forall X \in \mathbb{R}^n, \ ^tX[^tMMY - Y] = 0],$$

donc
$$(i) \iff \forall Y \in \mathbb{R}^n$$
, $[\forall X \in \mathbb{R}^n, \ ^tX[^tMMY - Y] = 0]$, ainsi $(i) \iff \forall Y \in \mathbb{R}^n, \ ^tMMY - Y \in (\mathbb{R}^n)^{\perp} = \{0\} \iff ^tMM = I_n \iff (iii). \square$

Notation. On note O(E) l'ensemble des automorphismes orthogonaux de E.

Propriété. O(E) est un sous-groupe de $(GL(E), \circ)$.

On l'appelle le groupe orthogonal de E.

Propriété. Si $u \in O(E)$, $Sp_{\mathbb{R}}(u) \subset \{1, -1\}$.

$D\'{e}monstration.$

Soit
$$\lambda \in Sp_{\mathbb{R}}(u)$$
. Il existe $x \in E \setminus \{0\}$ tel que $u(x) = \lambda x$. $||x||^2 = ||u(x)||^2 = \lambda^2 ||x||^2$ et $||x||^2 \neq 0$, donc $\lambda^2 = 1$. \square

Propriété. Soit $u \in O(E)$.

Si F est un sous-espace vectoriel stable par u, alors F^{\perp} est aussi stable par u.

$D\'{e}monstration.$

Soit $x \in F^{\perp}$. Soit $y \in F : \langle u(x), y \rangle = \langle u(x), u(u^{-1}(y)) \rangle = \langle x, u^{-1}(y) \rangle$, car u conserve le produit scalaire.

De plus, $u(F) \subset F$, mais u étant inversible, dim(u(F)) = dim(F), donc u(F) = F, puis $F = u^{-1}(F)$. En particulier $u^{-1}(y) \in F$ et $x \in F^{\perp}$,

donc
$$\langle u(x), y \rangle = \langle x, u^{-1}(y) \rangle = 0$$
, pour tout $y \in F$, donc $u(x) \in F^{\perp}$. \square

3.2.2Les rotations.

Propriété. Si $u \in O(E)$, alors $det(u) \in \{-1, 1\}$, mais la réciproque est fausse.

$D\'{e}monstration.$

Soit e une base orthonormée de E. Notons M = mat(u, e). On sait alors que M est inversible et que $M^{-1} = {}^tM$, donc $\det(M) = \det(M^{-1}) = \frac{1}{\det(M)}$,

donc
$$det(u)^2 = det(M)^2 = 1$$
. \Box

Définition. Soit $u \in O(E)$.

On dit que u est une **rotation** si et seulement si det(u) = 1.

u est une **isométrie vectorielle indirecte** ou négative si et seulement si det(u) = -1.

Propriété. L'ensemble des rotations de E, noté SO(E), est un sous-groupe de O(E), appelé groupe spécial orthogonal.

L'ensemble des isométries indirectes de E est noté $O^-(E) = O(E) \setminus SO(E)$. Il n'a pas de structure particulière.

Définition. On note $SL(E) = \{u \in GL(E)/\det(u) = 1\}$. C'est un sous-groupe de GL(E), appelé le groupe spécial linéaire de E. SO(E) est un sous-groupe strict de SL(E).

3.2.3 Les symétries orthogonales

Propriété. La symétrie par rapport à F parallèlement à G (où $F \oplus G = E$) est un automorphisme orthogonal si et seulement si c'est une symétrie orthogonale (ie : $G = F^{\perp}$).

$D\'{e}monstration.$

Soit e une base orthonormée de E. Posons $M = \max(s, e)$. s est un automorphisme orthogonal si et seulement si ${}^tM = M^{-1}$, mais s est une symétrie, donc $M^{-1} = M$. Ainsi, s est un automorphisme orthogonal si et seulement si c'est un endomorphisme symétrique. On sait que c'est le cas si et seulement si s est une symétrie orthogonale.

Propriété. Soit F un sous-espace vectoriel de E.

Notons s la symétrie orthogonale par rapport à F.

 $s \in SO(E)$ si et seulement si dim(E) - dim(F) est paire.

En particulier, si F est un hyperplan, $s \in O^-(E)$ et, dans ce cas, s est appelée une **réflexion**,

et si dim(F) = dim(E) - 2, s est une rotation, et dans ce cas, s est appelée un retournement.

Remarque. Lorsque n=3, les retournements sont donc les symétries orthogonales par rapport à une droite.

Exercice. Soient a et b deux vecteurs unitaires distincts de E.

Il existe une unique réflexion de E, notée $s_{a,b}$, qui échange a et b.

 $s_{a,b}$ est la réflexion par rapport à l'hyperplan orthogonal au vecteur b-a, donc

$$\forall x \in E \ s_{a,b}(x) = x - 2 < e, x > e, \text{ où } e = \frac{1}{\|b - a\|}(b - a).$$

$D\'{e}monstration.$

Au tableau. □

Définition. On dit que deux sous-espaces vectoriels F et G de E sont perpendiculaires lorsque F^{\perp} et G^{\perp} sont orthogonaux, c'est-à-dire lorsque $G^{\perp} \subset F$.

3.2.4 Matrices orthogonales.

Propriété. Soit $M \in \mathcal{M}_n(\mathbb{R})$. C'est une *matrice orthogonale* si et seulement si l'une des propriétés suivantes est vérifiée.

$$- {}^{t}MM = I_n;$$

- $-M^tM=I_n$;
- M est inversible et $M^{-1} = {}^t M$.

Propriété. L'ensemble des matrices orthogonales est un sous-groupe de $GL_n(\mathbb{R})$ appelé le **groupe orthogonal de degré** n et noté O(n).

Propriété. Pour tout $M \in O(n)$, $det(M) \in \{-1, 1\}$.

Définition. Les matrices orthogonales de déterminant égal à 1 sont appelées les *matrices de rotations*.

Les matrices orthogonales de déterminant égal à -1 sont appelées les matrices orthogonales gauches ou indirectes.

L'ensemble des matrices de rotations est un sous-groupe de O(n), appelé **groupe** spécial orthogonal de degré n et noté SO(n).

L'ensemble des matrices orthogonales indirectes est noté $O^-(n) = O(n) \setminus SO(n)$. Il n'a pas de structure particulière.

Définition. $SL(n) = \{M \in \mathcal{M}_n(\mathbb{R})/\det(M) = 1\}$ est un sous-groupe de $GL_n(\mathbb{R})$, appelé le groupe spécial linéaire de degré n. Il contient strictement SO(n).

Propriété. Soit $M \in \mathcal{M}_n(\mathbb{R})$.

 $M \in O(n)$ si et seulement si la famille de ses vecteurs colonnes (ou de ses vecteurs lignes) est orthonormale dans \mathbb{R}^n muni de son produit scalaire canonique.

$D\'{e}monstration.$

Notons $M=(m_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$. La $j^{\text{ème}}$ colonne de M, notée C_j , a pour coordonnées $(m_{i,j})_{1\leq i\leq n}$, donc (C_1,\ldots,C_n) est orthonormée si et seulement si , pour tout $(i,j)\in\{1,\ldots,n\}^2$, $\delta_{i,j}=< C_i, C_j>={}^tC_iC_j$, mais tC_iC_j est le $(i,j)^{\text{ème}}$ coefficient de la matrice tMM (plus généralement, le $(i,j)^{\text{ème}}$ coefficient de AB vaut L_iC_j , où L_i est la $i^{\text{ème}}$ ligne de A et où C_j est la $j^{\text{ème}}$ colonne de B), donc (C_1,\ldots,C_n) est orthonormée si et seulement si ${}^tMM=I_n$. \square

Propriété. Soient e une base orthonormée de E et e' une base quelconque de E. e' est orthonormée si et seulement si la matrice de passage de e à e' est orthogonale.

Démonstration.

Notons $e = (e_1, \ldots, e_n)$, $e' = (e'_1, \ldots, e'_n)$ et $P_e^{e'} = (p_{i,j})$. e' est orthonormée si et seulement si, pour tout $(i, j) \in \{1, \ldots, n\}^2$,

 $\delta_{i,j} = \langle e'_i, e'_j \rangle = \sum_{k=1}^n p_{k,i} p_{k,j}$ (car e est orthonormée), donc si et seulement si les vecteurs

colonnes de $P_e^{e'}$ constituent une famille orthonormée de \mathbb{R}^n , c'est-à-dire si et seulement si $P_e^{e'} \in O(E)$. \square

Propriété. Soient $u \in L(E)$ et e une base orthonormée de E.

Les propriétés suivantes sont équivalentes.

- $-u \in O(E)$;
- mat $(u, e) \in O(n)$;
- -u(e) est une base orthonormée.

$D\'{e}monstration.$

♦ En notant $M = \max(u, e)$, et en tenant compte du fait que e est orthonormée, on sait déjà que $u \in O(E)$ si et seulement si $tM = M^{-1}$, donc si et seulement si $M \in O(n)$. ♦ $\max(u, e) = P_e^{u(e)}$, donc toujours en tenant compte du fait que e est orthonormée, $\max(u, e) \in O(n)$ si et seulement si u(e) est une base orthonormée de E. \square

Exemple. Les matrices de permutations de $\mathcal{M}_n(\mathbb{R})$ sont des automorphismes orthogonaux de \mathbb{R}^n (muni de son produit scalaire canonique), car elles transforment la base canonique de \mathbb{R}^n en une base orthonormée, constituée des mêmes vecteurs dans un ordre différent.

Propriété. (Hors programme) Dans une matrice orthogonale droite, chaque coefficient est égal à son cofacteur.

Dans une matrice orthogonale gauche, chaque coefficient est l'opposé de son cofacteur.

$D\'{e}monstration.$

Soit $M \in SO(n)$.

 $M^tCof(M) = \det(M)I_n = I_n$, donc ${}^tCof(M) = M^{-1} = {}^tM$, ainsi Cof(M) = M. De même, lorsque $M \in O^-(M)$, on montre que Cof(M) = -M. \square

Exemple. La matrice $\frac{1}{3}\begin{pmatrix} -2 & 1 & 2\\ 2 & 2 & 1\\ 1 & -2 & 2 \end{pmatrix}$ est une matrice orthogonale gauche.

$D\'{e}monstration.$

On vérifie que ses vecteurs constituent une famille orthonormée de \mathbb{R}^3 et que le cofacteur de position (1,1) vaut $\frac{2}{3}$. \square

Propriété. Soit M une matrice de $\mathcal{M}_n(\mathbb{R})$.

Si M est symétrique, il existe $P \in O(n)$ et D diagonale telles que $M = PDP^{-1} = PD^tP$.

Démonstration.

Notons u l'endomorphisme canoniquement associé à M et c la base canonique de \mathbb{R}^n . C'est une base orthonormée (pour le produit scalaire canonique de \mathbb{R}^n) et

 $\operatorname{mat}(u,c)=M\in\mathcal{S}_n(\mathbb{R})$, donc $u\in S(\mathbb{R}^n)$. D'après le théorème spectral, il existe une base orthonormée f constituée de vecteurs propres de u.

Notons $P = P_c^f$. $P \in O(n)$, car c et f sont orthonormées.

Notons D = mat(u, f). D est diagonale car f est une base de vecteurs propres.

D'après les formules de changement de base, $M = PDP^{-1} = PD^tP$. \square

3.2.5 Orientation d'un espace vectoriel réel.

Dans ce paragraphe, E est un \mathbb{R} -espace vectoriel de dimension finie n > 0, pour le moment non muni d'une structure euclidienne.

Notation. On note \mathcal{B} l'ensemble des bases de E et on considère sur \mathcal{B} la relation binaire \mathcal{R} définie de la manière suivante :

$$\forall (e, e') \in \mathcal{B}^2 \quad e\mathcal{R}e' \iff \det(P_e^{e'}) > 0.$$

Remarque. Avec les notations précédentes, $\det(P_e^{e'}) = \det_e(e')$. En effet,

$$\det_{e}(e') = \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma) \prod_{j=1}^{n} e_{j}^{*}(e'_{\sigma(j)}) = \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma) \prod_{j=1}^{n} P_{j,\sigma(j)} = \det(P_{e}^{e'}).$$

Propriété. \mathcal{R} est une relation d'équivalence sur \mathcal{B} .

Propriété. \mathcal{B}/\mathcal{R} est formé de deux éléments qui sont appelés les *orientation*s de E. "Orienter E", c'est choisir l'une de ces deux orientations qui devient l'ensemble des *bases directes* (ou positives), l'autre orientation étant alors l'ensemble des *bases indirectes* (ou négatives, ou rétrogrades).

$D\'{e}monstration.$

E possède au moins une base $e = (e_1, \ldots, e_n)$. Alors $e' = (-e_1, e_2, \ldots, e_n)$ n'est pas en relation par \mathcal{R} avec e. Notons \mathcal{O} et \mathcal{O}' les classes d'équivalence de e et e' respectivement. $\mathcal{O} \neq \mathcal{O}'$ (sinon, on aurait $e\mathcal{R}e'$). Montrons que ce sont les seules orientations.

Soit e'' une base de E. On veut montrer que $e'' \in \mathcal{O}$ ou $e'' \in \mathcal{O}'$. Supposons que $e'' \notin \mathcal{O}$. Alors $\det(P_{e'}^{e''}) = \det(P_{e'}^{e}) \times \det(P_{e'}^{e''}) > 0$, donc $e'' \in \mathcal{O}'$. \square

Hypothèse: jusqu'à la fin de ce chapitre, on suppose que E est un espace euclidien orienté de dimension n > 0.

Définition. Soit D une droite vectorielle incluse dans E que l'on oriente en choisissant un vecteur unitaire $\overrightarrow{k} \in D$. "Orienter l'hyperplan D^{\perp} par le vecteur \overrightarrow{k} de D", c'est choisir comme orientation de D^{\perp} l'ensemble des bases (e_1, \ldots, e_{n-1}) de D^{\perp} telles que $(e_1, \ldots, e_{n-1}, \overrightarrow{k})$ est une base directe de E.

Remarque. On utilise souvent le procédé précédent pour orienter un plan lorsque E est de dimension 3.

Propriété. Soient e et e' deux bases orthonormées de E. On suppose que e est directe. Alors e' est directe si et seulement si $P_e^{e'} \in SO(n)$.

Propriété. Soient $u \in L(E)$ et e une base orthonormée directe de E. Les propriétés suivantes sont équivalentes.

- $-u \in SO(E)$;
- $\operatorname{mat}(u, e) \in SO(n)$;
- -u(e) est une base orthonormée directe.

3.2.6 Produit mixte.

Dans tout ce paragraphe, E désigne un espace euclidien **orienté** de dimension n > 0.

Propriété. Si e et e' sont deux bases orthonormées directes, $\det_e = \det_{e'}$.

$D\'{e}monstration.$

Soit $x \in E^n$. $\det_e(x) = \det_e(e')\det_{e'}(x)$, mais $\det_e(e') = \det(P_e^{e'}) = 1$, car $P_e^{e'} \in SO(n)$, donc $\det_e(x) = \det_{e'}(x)$. \square

Définition. Soit $(x_1, \ldots, x_n) \in E^n$.

Le **produit mixte** de (x_1, \ldots, x_n) est $\det_e(x_1, \ldots, x_n)$, où e est une base orthonormée directe quelconque de E. Il est noté $\det(x_1, \ldots, x_n)$ ou encore $[x_1, \ldots, x_n]$.

Remarque.

Si on change l'orientation de l'espace E, le produit mixte est changé en son opposé.

Propriété.

On suppose que n=2. L'aire d'un parallélogramme ABCD vaut $|\det(\overrightarrow{AB}, \overrightarrow{AD})|$.

Propriété. On suppose que n=3. Le volume d'un parallélépipède dont les côtés correspondent aux vecteurs u, v, et w vaut $|\det(u, v, w)|$.

4 Géométrie plane

Notation. Dans ce chapitre, sauf indication du contraire, E désigne un espace euclidien orienté de dimension 2 et \mathcal{E} est un plan affine dirigé par E (on dit que \mathcal{E} est le plan usuel).

On notera <.,.> le produit scalaire et $\|.\|$ la norme euclidienne associée.

4.1 Lien avec le cours sur les complexes

Notation. On fixe une base orthonormée directe de E, notée $e = (\vec{\imath}, \vec{\jmath})$.

On choisit une origine $O \in \mathcal{E}$ et on note $R = (O, \vec{\imath}, \vec{\jmath})$; c'est un repère orthonormé direct de \mathcal{E} .

Avec ces notations, on a vu lors du cours sur les complexes que l'on pouvait associer à tout point $M = O + x\vec{\imath} + y\vec{\jmath}$ du plan usuel \mathcal{E} (resp : tout vecteur $\overrightarrow{u} = x\vec{\imath} + y\vec{\jmath}$ de E) le complexe z = x + iy, appelé l'affixe du point M (resp : l'affixe du vecteur \overrightarrow{u}).

Maintenant que l'on dispose de la théorie de l'algèbre linéaire, enrichie de la théorie des espaces euclidiens orientés, les arguments géométriques admis pendant le cours sur les complexes sont acquis. C'est donc le moment de réviser le cours sur les complexes et de s'assurer de l'absence de cercles vicieux entre les différentes définitions et les différents théorèmes.

En particulier, en faisant de l'analyse réelle, nous étions parvenus à construire les fonctions cos et sin, à définir le nombre π et à valider le schéma suivant (cf page 17) :

Nous avions montré que sur ce schéma, $\theta \in [0, 2\pi[$ représente la longueur de l'arc de cercle joignant le complexe 1 au complexe $e^{i\theta}$.

Notation. Pour tout $\alpha \in \mathbb{R}$, on notera $u_{\alpha} = \cos(\alpha)\vec{i} + \sin(\alpha)\vec{j}$. C'est donc l'unique vecteur d'affixe $e^{i\alpha}$.

Le groupe orthogonal de degré 2

- $\diamond~$ On notera $R=(O,\vec{\imath},\vec{\jmath})$ un repère orthonormé direct de ${\mathcal E}$ et l'on posera $e=(\vec{\imath},\vec{\jmath}).$
- \diamond Pour tout $\alpha \in \mathbb{R}$, on notera $u_{\alpha} = \cos(\alpha)\vec{i} + \sin(\alpha)\vec{j}$ (on verra que u_{α} est l'unique vecteur unitaire tel que l'angle entre \vec{i} et u_{α} est égal à α).

Propriété.

$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle/ \theta \in \mathbb{R} \right\}. O^{-}(2) = \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \middle/ \theta \in \mathbb{R} \right\}.$$

$D\'{e}monstration.$

Soit
$$M \in O(2)$$
. Notons $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Les colonnes de M constituent une base orthonormée de \mathbb{R}^2 , donc $a^2+c^2=b^2+d^2=1$ et ab + cd = 0. On en déduit qu'il existe $(\theta, \phi) \in \mathbb{R}^2$ tel que $a = \cos(\theta)$, $c = \sin(\theta)$, $b = \cos(\phi), d = \sin(\phi), \text{ et que } \cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi) = 0.$

Ainsi,
$$\cos(\theta - \phi) = 0$$
, puis $\theta - \phi \equiv \frac{\pi}{2} [\pi]$.
Si $\phi \equiv \theta - \frac{\pi}{2} [2\pi]$, alors $M = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ et réciproquement, on vérifie qu'une

telle matrice est dans $O^-(2)$, et si $\phi \equiv \theta - \frac{3\pi}{2} [2\pi]$, alors $M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et réciproquement, on vérifie qu'une telle matrice est dans SO(2). \square

Notation. Pour tout $\theta \in \mathbb{R}$, on note

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{et } S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Formule. Pour tout $(\theta, \alpha) \in \mathbb{R}^2$,

$$R_{\theta} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \begin{pmatrix} \cos(\theta + \alpha) \\ \sin(\theta + \alpha) \end{pmatrix} \quad \text{et } S_{\theta} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \begin{pmatrix} \cos(\theta - \alpha) \\ \sin(\theta - \alpha) \end{pmatrix}.$$

On verra que la première formule signifie que la rotation d'angle θ transforme le vecteur u_{α} en $u_{\alpha+\theta}$.

Pour interpréter la seconde formule, on peut remarquer que $\frac{1}{2}(\alpha+(\theta-\alpha))=\frac{\theta}{2}$, donc u_{α} et $u_{\theta-\alpha}$ sont symétriques selon la droite dirigée par $u_{\frac{\theta}{2}}$, ce qui signifie que S_{θ} correspond à la réflexion d'axe $\mathbb{R}u_{\underline{\theta}}$.

Formules: pour tout $(\theta, \varphi) \in \mathbb{R}^2$,

- $-R_{\theta}R_{\varphi}=R_{\theta+\varphi}$;
- $-R_{\theta}S_{\varphi} = S_{\theta+\varphi};$
- $-S_{\theta}S_{\varphi} = R_{\theta-\varphi};$ $-S_{\theta}R_{\varphi} = S_{\theta-\varphi}.$

Démonstration.

Soit $(\theta, \varphi) \in \mathbb{R}^2$. $R_{\theta}S_{\varphi} \in O^-(2)$, donc il existe $\alpha \in \mathbb{R}$ tel que $R_{\theta}S_{\varphi} = S_{\alpha}$.

De plus, la première colonne de $R_{\theta}S_{\varphi}$ est $R_{\theta}\begin{pmatrix} \cos\varphi\\ \sin\varphi \end{pmatrix} = \begin{pmatrix} \cos(\theta+\varphi)\\ \sin(\theta+\varphi) \end{pmatrix}$,

donc $\alpha \equiv \theta + \varphi$ [2 π].

Ainsi, $R_{\theta}S_{\varphi} = S_{\theta+\varphi}$.

Les autres formules se démontrent de manière analogue. □

Formule. Pour tout $(\theta, \varphi) \in \mathbb{R}^2$, $S_{\theta}^{-1} = S_{\theta}$ et $S_{\alpha}^{-1} R_{\theta} S_{\alpha} = R_{-\theta}$.

Propriété. L'application $(\mathbb{R},+) \longrightarrow (SO(2),\times)$ est un morphisme surjectif de groupes. On en déduit que $(SO(2), \times)$ est un groupe commutatif.

Propriété. L'application $R_{\theta} \longmapsto e^{i\theta}$ est un isomorphisme entre les groupes $(SO(2), \times)$ et U.

4.3 Les isométries vectorielles du plan

Propriété. Soient $s \in O^-(E)$. Il existe $\theta \in \mathbb{R}$ tel que $mat(s,e) = S_\theta$. s est la réflexion par rapport à la droite vectorielle $\mathbb{R}u_{\frac{\theta}{2}}$.

Démonstration.

e étant orthonormée, $\operatorname{mat}(s,e) \in O^{-}(2)$, donc d'après le paragraphe précédent, Il existe $\theta \in \mathbb{R}$ tel que $\operatorname{mat}(s,e) = S_{\theta}$.

D'après les formules du paragraphe précédent, $S_{\theta}^2 = R_{\theta-\theta} = R_0 = I_2$, donc $s^2 = Id_E$, ce qui prouve que s est une symétrie. Mais s est une isométrie vectorielle, donc s est une symétrie orthogonale et, si l'on note D l'ensemble des vecteurs invariants par s, D est de codimension impaire, c'est-à-dire que dim(D) = 1. Ainsi s est une réflexion selon l'axe D.

Pour déterminer D, il suffit de trouver un vecteur invariant par s, or d'après les formules du paragraphe précédent, $s(u_{\alpha}) = u_{\theta-\alpha}$, pour tout $\alpha \in \mathbb{R}$. On en déduit en particulier $s(u_{\frac{\theta}{2}}) = u_{\frac{\theta}{2}}$, donc $D = \mathbb{R}u_{\frac{\theta}{2}}$. \square

Corollaire. Les éléments de $O^-(E)$ sont les réflexions de E, c'est-à-dire les symétries orthogonales par rapport à une droite.

Définition. On suppose que E est orienté. Soit $r \in SO(E)$.

La matrice de r dans une base orthonormée directe de E ne dépend pas du choix de cette base. Si cette matrice vaut R_{θ} , θ est appelé l'angle de la rotation r, déterminé à 2π près. Si on change d'orientation, cette mesure est changée en son opposé.

Démonstration.

e est orthonormée, donc $\mathrm{mat}(r,e) \in SO(2)$. Ainsi, il existe $\theta \in \mathbb{R}$ tel que $\mathrm{mat}(r,e) = R_{\theta}$. Soit e' une seconde base orthonormée de E. Notons $P = P_e^{e'}$.

 \diamond Supposons que e' est aussi directe. Alors $P \in O^+(2)$, donc il existe $\alpha \in \mathbb{R}$ tel que $P = R_{\alpha}$.

Ainsi, $mat(r, e') = P^{-1}mat(r, e)P = R_{-\alpha}R_{\theta}R_{\alpha} = R_{\theta}.$

Ceci prouve que la matrice de r dans une base orthonormée directe de E ne dépend pas du choix de cette base.

 \diamond Supposons maintenant que e' est indirecte. Alors $P \in O^-(2)$, donc il existe $\alpha \in \mathbb{R}$ tel que $P = S_{\alpha}$. Ainsi, $\text{mat}(r, e') = P^{-1} \text{mat}(r, e) P = S_{\alpha} R_{\theta} S_{\alpha} = R_{-\theta}$.

Ceci prouve que si on change d'orientation, la mesure de r est changée en son opposé. \Box

4.4 Angles orientés dans le plan

Définition. Soient u et u' deux vecteurs unitaires de E.

Il existe une unique rotation de E qui transforme u en u'.

L'angle de cette rotation est par définition l'angle orienté du vecteur u vers le vecteur u'. Il sera noté $\widehat{(u,u')}$.

On dispose des formules suivantes : $\cos(\widehat{u,u'}) = \langle u,u' \rangle$ et $\sin(\widehat{u,u'}) = \det(u,u')$.

Remarque. Ainsi la notion d'angle orienté ne dépend que de la structure de plan euclidien orienté et non du choix d'une base.

Démonstration.

 \diamond Dans la base e, la somme des carrés des coordonnées de u vaut 1, car u est unitaire, donc il existe $\alpha \in \mathbb{R}$ tel que $u = \cos \alpha \vec{i} + \sin \alpha \vec{j}$. De même, il existe $\alpha' \in \mathbb{R}$ tel que $u' = \cos \alpha' \vec{i} + \sin \alpha' \vec{j}$.

Soit $\theta \in \mathbb{R}$. Notons r_{θ} la rotation de E d'angle θ . On sait que le vecteur colonne des coordonnées de $r_{\theta}(u)$ dans la base e vaut $R_{\theta}\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \begin{pmatrix} \cos(\theta + \alpha) \\ \sin(\theta + \alpha) \end{pmatrix}$, donc $r_{\theta}(u) = u'$ si et seulement si $\theta + \alpha \equiv \alpha'$ [2 π].

Ainsi, il existe une unique rotation de E qui transforme u en u' et l'angle de cette rotation vaut $\alpha' - \alpha$ (à 2π près).

$$< u, u' > = \cos \alpha \cos \alpha' + \sin \alpha \sin \alpha' = \cos(\alpha' - \alpha) = \widehat{\cos(u, u')} \text{ et } \det(u, u') = \cos \alpha \sin \alpha' - \sin \alpha \cos \alpha' = \widehat{\sin(\alpha' - \alpha)} = \widehat{\sin(u, u')}. \square$$

Définition. Soient x et y deux vecteurs non nuls de E. L'angle orienté des vecteurs x et y est l'angle de l'unique rotation qui transforme $\frac{x}{\|x\|}$ en $\frac{y}{\|y\|}$.

Cet angle est noté $\widehat{(x,y)}$. On dispose des formules suivantes :

$$\widehat{(x,y)} = \frac{\langle x,y \rangle}{\|x\| \|y\|} \text{ et } \sin \widehat{(x,y)} = \frac{\det(x,y)}{\|x\| \|y\|}.$$

Remarque. Dans le cours sur les complexes, page 27, on a montré que si A, B, C sont trois points distincts du plan usuel, d'affixes respectifs $a, b, c \in \mathbb{C}$,

alors
$$(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \arg\left(\frac{b-c}{a-c}\right) [2\pi].$$

Vérifiez maintenant que la démontration alors utilisée est en cohérence avec cette définition d'un angle orienté entre deux vecteurs non nuls.

Propriété. Les x_i désignant des vecteurs non nuls de E, on a les formules suivantes :

- \diamond Relation de Chasles : $(\widehat{x_1, x_2}) + (\widehat{x_2, x_3}) = (\widehat{x_1, x_3})$.
- $\diamond \quad \widehat{(x_2, x_1)} = -\widehat{(x_1, x_2)}.$
- $\diamond \widehat{(x_1, x_2)} = 0 \Longleftrightarrow \mathbb{R}_+ x_1 = \mathbb{R}_+ x_2 \text{ et } \widehat{(x_1, x_2)} = \pi \Longleftrightarrow \mathbb{R}_+ x_1 = \mathbb{R}_- x_2.$
- \diamond Si r est une rotation, $(r(\widehat{x_1}), r(\widehat{x_2})) = (\widehat{x_1}, \widehat{x_2})$.
- \diamond Si s est une réflexion, $(s(x_1), s(x_2)) = -(x_1, x_2)$.

Démonstration.

Convenons de noter r_{θ} la rotation d'angle θ . Posons, pour tout $i \in \{1, 2, 3\}, y_i = \frac{x_i}{\|x_i\|}$.

c'est-à-dire
$$(\widehat{x_1, x_2}) + (\widehat{x_2, x_3}) = (\widehat{x_1, x_3}).$$

 $\Leftrightarrow r_{(\widehat{y_1, y_2})}(y_1) = y_2, \text{ donc } y_1 = r_{(\widehat{y_1, y_2})}^{-1}(y_2) = r_{-(\widehat{y_1, y_2})}(y_2).$

$$\diamond$$
 $\widehat{(x_1, x_2)} = 0$ si et seulement si la rotation d'angle 0, égale à Id_E , transforme $\frac{x_1}{\|x_1\|}$

en
$$\frac{x_2}{\|x_2\|}$$
, donc si et seulement si $x_2 = \frac{\|x_2\|}{\|x_1\|} x_1$. Ainsi, $\widehat{(x_1, x_2)} = 0 \iff \mathbb{R}_+ x_1 = \mathbb{R}_+ x_2$.

De même, $\widehat{(x_1,x_2)} = \pi$ si et seulement si la rotation d'angle π , égale à $-Id_E$, transforme $\frac{x_1}{\|x_1\|}$ en $\frac{x_2}{\|x_2\|}$, donc si et seulement si $x_2 = -\frac{\|x_2\|}{\|x_1\|}x_1$.

Ainsi, $(\widehat{x_1, x_2}) = 0 \iff \mathbb{R}_+ x_1 = \mathbb{R}_- x_2$.

 \diamond Si r est une rotation, elle correspond dans le plan complexe à une similitude directe (laissant fixe 0), on a déjà vu qu'elle conserve les angles. De même, si s est une réflexion, elle correspond dans le plan complexe à une similitude indirecte (laissant fixe 0), on a déjà vu qu'elle transforme un angle en son opposé. \Box

Exercice. Les x_i désignant des vecteurs non nuls de E, montrer que

si
$$(\widehat{x_1, x_2}) = (\widehat{x_3, x_4})$$
, alors $(\widehat{x_1, x_3}) = (\widehat{x_2, x_4})$.

Solution : D'après la relation de Chasles,

$$\widehat{(x_1, x_3)} = \widehat{(x_1, x_2)} + \widehat{(x_2, x_3)} = \widehat{(x_2, x_3)} + \widehat{(x_3, x_4)} = \widehat{(x_2, x_4)}.$$

Définition. On ne suppose plus que E est de dimension 2, mais seulement que E est un espace préhilbertien. Soient x et y deux vecteurs non nuls de E.

On appelle angle non orienté ou écart angulaire des vecteurs x et y la quantité

$$\widehat{(x,y)} = \arccos\left(\frac{\langle x,y \rangle}{\|x\|\|y\|}\right) \in [0,\pi].$$

- Lorsque $\widehat{(x,y)} \in]0, \frac{\pi}{2}[$, cet angle est dit aigu;
- Lorsque $(x, y) \in]\frac{\pi}{2}, \pi[$, cet angle est dit obtus;
- Lorsque $(x,y) = \frac{\pi}{2}$ (i.e lorsque $x \perp y$), on dit que c'est un angle droit;
- Lorsque $(x, y) \in \{0, \pi\}$, on dit que c'est un angle plat :
 - lorsque (x, y) = 0, x et y sont positivement colinéaires,
 - lorsque $\widehat{(x,y)} = \pi$, x et y sont colinéaires de sens contraire.

Démonstration.

D'après l'inégalité de Cauchy-Schwarz, $\frac{\langle x,y\rangle}{\|x\|\|y\|} \in [-1,1]$, donc $\widehat{(x,y)}$ est correctement défini. \Box

Remarque. D'après une identité de polarisation,

$$\widehat{(x,y)} = \arccos\left(\frac{\|x+y\|^2 - \|x-y\|^2}{4\|x\|\|y\|}\right).$$

Propriété. Soit E un espace préhilbertien et $x, y \in E \setminus \{0\}$. Pour tout $\lambda, \mu \in \mathbb{R}^*$, si λ et μ ont le même signe, alors $(x, y) = (\lambda x, \mu y)$, et si λ et μ sont de signes contraires, alors $(\lambda x, \mu y) = \pi - (x, y)$.

4.5 Les droites affines du plan usuel

On se place à nouveau dans un plan affine \mathcal{E} .

Propriété. Les droites affines de \mathcal{E} ont pour équation : ux + vy + w = 0, où $(u, v) \neq 0$. Le vecteur de coordonnées (u, v) est orthogonal à la droite.

Les droites non parallèles à \vec{j} admettent une équation de la forme y = px + q, p étant appelé la pente de la droite.

Propriété. La droite passant par le point de coordonnées (x_0, y_0) et orthogonale au vecteur (u, v) a pour équation $u(x - x_0) + v(y - y_0) = 0$.

Propriété. La droite passant par le point de coordonnées (x_0, y_0) et dirigée par le vecteur (u, v) a pour équation $-v(x - x_0) + u(y - y_0) = 0 = \begin{vmatrix} u & x - x_0 \\ v & y - y_0 \end{vmatrix}$.

Propriété. La droite passant par les points (supposés distincts) de coordonnées (x_0, y_0) et (x_1, y_1) a pour équation $\begin{vmatrix} x - x_0 & x_1 - x_0 \\ y - y_0 & y_1 - y_0 \end{vmatrix} = 0$.

5 Géométrie dans l'espace

Tout au long de ce chapitre (sauf précision du contraire), E désigne un espace euclidien orienté de dimension 3 (on notera < ., .> son produit scalaire et ||.|| la norme euclidienne associée) et \mathcal{E} est un espace affine de direction E. On dit que \mathcal{E} est l'espace usuel.

On fixe également un repère de \mathcal{E} , noté R = (O, e), où e est une base orthonormée directe de E, notée $e = (\vec{\imath}, \vec{\jmath}, \vec{k})$ ou $e = (e_1, e_2, e_3)$ selon les cas.

5.1 Le produit vectoriel (hors programme).

Remarque. On rappelle que det désigne le produit mixte, c'est-à-dire le déterminant dans n'importe quelle base orthonormée directe.

Définition. Soit $(a,b) \in E^2$. Il existe un unique vecteur c de E tel que

$$\forall x \in E \quad \det(a, b, x) = < c, x > .$$

Il est appelé "produit vectoriel de a et b" et est noté $a \wedge b$. On a donc

$$\forall x \in E \ \det(a, b, x) = \langle a \wedge b, x \rangle$$
.

$D\'{e}monstration.$

L'application $\varphi: E \longrightarrow L(E, \mathbb{R})$ est un isomorphisme et $x \longmapsto \langle x, . \rangle$

 $\det(a,b,.)=(x\longmapsto\det(a,b,x))$ est un élément de $L(E,\mathbb{R})$, donc il existe un unique $c\in E$ tel que $\det(a,b,.)=< c,.>.$

Propriété. L'application $E^2 \longrightarrow E \atop (a,b) \longmapsto a \wedge b$ est bilinéaire et antisymétrique.

Démonstration.

Pour tout $a, b \in E$, $a \wedge b = \varphi^{-1}(\det(a, b, .))$, or φ^{-1} est linéaire et det est trilinéaire et antisymétrique. Ceci permet de conclure. \Box

Propriété. Soit $(a, b) \in E^2$. (a, b) est un système lié si et seulement si $a \wedge b = 0$. **Démonstration.**

Si (a, b) est lié, pour tout $x \in E$, (a, b, x) est lié, donc $\det(a, b, x) = 0$. Ainsi, $a \wedge b = 0$. Si (a, b) est libre, il existe $x \in E$ tel que (a, b, x) est libre (théorème de la base incomplète). $\langle a \wedge b, x \rangle = \det(a, b, x) \neq 0$, donc $a \wedge b \neq 0$. \square

Propriété. Soit a et b deux vecteurs indépendants entre eux.

Alors $a \wedge b$ est un vecteur orthogonal à a et b tel que $(a, b, a \wedge b)$ est une base directe de l'espace. De plus $||a \wedge b|| = ||a|| ||b|| \sin \phi$, où ϕ est l'angle non orienté entre a et b.

$D\'{e}monstration.$

- $\diamond \langle a \wedge b, a \rangle = \det(a, b, a) = 0$ et de même, $\langle a \wedge b, b \rangle = 0$, donc $a \wedge b$ est un vecteur orthogonal à a et b. De plus, $\det(a, b, a \wedge b) = \langle a \wedge b, a \wedge b \rangle > 0$, donc $(a, b, a \wedge b)$ est une base directe de l'espace.
- \diamond En appliquant le procédé de Gram-Schmidt à la famille libre (a,b), on obtient une famille orthonormée (e_1,e_2) telle que $a=\|a\|e_1$ et $b=\|b\|((\cos\varphi)e_1+(\sin\varphi)e_2)$, où φ est l'angle orienté entre e_1 et b, pour une certaine orientation du plan $\mathrm{Vect}(a,b)$. φ et φ ont le même cosinus, donc ils sont égaux ou opposés modulo 2π , ce qui prouve que $|\sin\varphi|=\sin\varphi$.

On complète (e_1, e_2) en une base orthonormée directe $e = (e_1, e_2, e_3)$ de E. Ainsi, il existe $\lambda \in \mathbb{R}$ tel que $a \wedge b = \lambda e_3$, où $|\lambda| = ||a \wedge b||$.

$$||a \wedge b||^{2} = \langle a \wedge b, a \wedge b \rangle$$

$$= \det(a, b, a \wedge b)$$

$$= \det(||a||e_{1}, ||b||((\cos \varphi)e_{1} + (\sin \varphi)e_{2}), \lambda e_{3})$$

$$= \begin{vmatrix} ||a|| & ||b|| \cos \varphi & 0 \\ 0 & ||b|| \sin \varphi & 0 \\ 0 & 0 & \lambda \end{vmatrix}$$

$$= ||a|| ||b|| \lambda \sin \varphi,$$

donc $||a \wedge b||^2 = ||a|| ||b|| |\lambda| |\sin \varphi| = ||a|| ||b|| |\sin \varphi| ||a \wedge b||$, donc $||a \wedge b|| = ||a|| ||b|| \sin \phi$.

Formule. Identité de Lagrange :

Pour tout $(a,b) \in E^2$, $\langle a,b \rangle^2 + ||a \wedge b||^2 = ||a||^2 ||b||^2$.

Propriété. $e_1 \wedge e_2 = e_3$ $e_2 \wedge e_3 = e_1$ $e_3 \wedge e_1 = e_2$.

Démonstration.

Soit
$$x = \sum_{i=1}^{3} x_i e_i \in E$$
. $\det(e_1, e_2, x) = \det(e_1, e_2, x_3 e_3) = x_3 = \langle e_3, x \rangle$,

donc $e_1 \wedge e_2 = e_3$. Les autres formules se démontrent de la même façon. \square

Formule. Coordonnées du produit vectoriel. Pour tout $(a,b) \in E^2$,

Si
$$a = \begin{bmatrix} \alpha_1 \\ \alpha_2 \text{ et } b = \\ \alpha_3 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$
 alors $a \wedge b = \begin{bmatrix} \begin{vmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{vmatrix} \\ -\begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_3 & \beta_3 \end{vmatrix} \\ \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} \end{bmatrix}$

$D\'{e}monstration.$

Démonstration.

Soit
$$x = \sum_{i=1}^{3} x_i e_i \in E$$
. $\det(a, b, x) = \begin{vmatrix} \alpha_1 & \beta_1 & x_1 \\ \alpha_2 & \beta_2 & x_2 \\ \alpha_3 & \beta_3 & x_3 \end{vmatrix}$.

Si l'on développe ce déterminant selon la dernière colonne, on obtient

$$\det(a,b,x) = \begin{vmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{vmatrix} x_1 - \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_3 & \beta_3 \end{vmatrix} x_2 + \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} x_3,$$

So Fon developpe ce determinant selon la dernière colo
$$\det(a,b,x) = \begin{vmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{vmatrix} x_1 - \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_3 & \beta_3 \end{vmatrix} x_2 + \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} x_3,$$

$$\det(a,b,x) = \langle c,x \rangle, \text{ où } c = \begin{vmatrix} \begin{vmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{vmatrix} - \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_3 & \beta_3 \end{vmatrix}. \square$$

$$= \begin{vmatrix} \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix}$$

5.2 Droites et plans affines en dimension 3

5.2.1Equation d'un plan

Propriété. Les plans affines de \mathcal{E} ont pour équation : ux + vy + wz + t = 0, où $(u,v,w)\neq 0.$

Le vecteur de coordonnées (u, v, w) est orthogonal (on dit aussi normal) au plan. La direction du plan est le plan vectoriel d'équation ux + vy + wz = 0.

Propriété. Deux plans de \mathcal{E} d'équations ux+vy+wz+t=0 et u'x+v'y+w'z+t'=0sont parallèles si et seulement si les vecteurs normaux de coordonnées (u, v, w) et

$$(u', v', w')$$
 sont colinéaires, donc si et seulement si $\begin{bmatrix} u \\ v \\ w \end{bmatrix} \begin{pmatrix} u' \\ v' = 0.$

Propriété. Le plan passant par le point de coordonnées (x_0, y_0, z_0) et orthogonal au vecteur (u, v, w) a pour équation $u(x - x_0) + v(y - y_0) + w(z - z_0) = 0$.

Propriété. Le plan passant par le point de coordonnées (x_0, y_0, z_0) et dirigé par deux vecteurs indépendants de coordonnées (u,v,w) et (u',v',w') a pour équation

cartésienne
$$\begin{vmatrix} x - x_0 & u & u' \\ y - y_0 & v & v' \\ z - z_0 & w & w' \end{vmatrix} = 0.$$

5.2.2Système d'équations d'une droite

Propriété. Une droite affine de \mathcal{E} admet un système d'équations de la forme :

$$\begin{cases} ux + vy + wz + t &= 0 \\ u'x + v'y + w'z + t' &= 0 \end{cases}$$
, où $ux + vy + wz + t = 0$ et $u'x + v'y + w'z + t' = 0$ sont les équations de deux plans affines non parallèles.

les équations de deux plans affines non parallèles. Cette droite est dirigée par le vecteur $\begin{vmatrix} u & u' \\ v \wedge & v' \end{vmatrix}$. En effet, ce vecteur est non nul car les deux plans ne sont pas parallèles et il est dans la direction de chacun des deux

plans, car il est orthogonal aux normales de ces plans.

Propriété. (hors programme) Les droites non parallèles au plan $\text{Vect}(\vec{\imath}, \vec{\jmath})$ admettent un système d'équations de la forme $\begin{cases} x = az + c \\ y = bz + c' \end{cases}$

Démonstration.

Soit \mathcal{D} une droite, de direction D non parallèle au plan $\text{Vect}(\vec{\imath}, \vec{\jmath})$.

Notons (c, c', c'') les coordonnées d'un point C fixé dans \mathcal{D} .

Soit
$$\overrightarrow{u} = \begin{bmatrix} a \\ b \end{bmatrix}$$
 un vecteur directeur de D . $d \neq 0$ car $D \not\subset \text{Vect}(\vec{\imath}, \vec{\jmath})$, donc quitte à

diviser
$$\overrightarrow{u}$$
 par d , on peut supposer que $d=1$. Ainsi,
$$M = \begin{vmatrix} x \\ y \in \mathcal{D} \end{vmatrix} \iff \exists t \in \mathbb{R} \quad M = C + t \overrightarrow{u}$$

$$\iff \exists t \in \mathbb{R} \quad \begin{cases} x = ta + c \\ y = tb + c' \\ z = t + c'' \end{cases} \iff \begin{cases} x = a(z - c'') + c \\ y = b(z - c'') + c' \end{cases}$$

5.3 Le groupe orthogonal en dimension 3

Théorème. Réduction des matrices orthogonales :

On suppose ici que E est un espace euclidien de dimension $n \geq 1$.

Si $u \in O(E)$, il existe une base orthonormale \mathcal{B} de E telle que

$$\max(u, \mathcal{B}) = \begin{pmatrix} I_{k_1} & 0 & \dots & \dots & 0 \\ 0 & -I_{k_2} & 0 & \dots & 0 \\ 0 & 0 & \tau_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \tau_p \end{pmatrix}$$

où
$$\tau_i = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}$$
 avec $\sin \theta_i \neq 0$ et $k_1 + k_2 + 2p = n$.

Démonstration.

En seconde année. \square

Notation. Soient ω un vecteur non nul de E et $\theta \in \mathbb{R}$. On désigne par $r(\omega, \theta)$ l'unique rotation de E qui laisse invariant ω et qui induit sur le plan ω^{\perp} , orienté selon le vecteur ω , la rotation d'angle θ .

Propriété. Soient ω un vecteur non nul de E et $\theta \in \mathbb{R}$. Il existe une base orthonormée directe e de E telle que $\max(r(\omega, \theta), e) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Plus précisément, on

peut choisir e=(i,j,k) où (i,j) est une base orthonormée directe du plan ω^{\perp} , orienté selon le vecteur ω et où $k=\frac{\omega}{\|\omega\|}$.

Théorème. Si $r \in SO(E)$, il existe $\omega \in E \setminus \{0\}$ et $\theta \in \mathbb{R}$ tels que $r = r(\omega, \theta)$.

Remarque. Soit $u \in O^-(E)$. $\det(-u) = (-1)^3 \det(u) = 1$, donc $-u \in SO(E)$. Ainsi, on peut décrire géométriquement une isométrie indirecte, en déterminant $\omega \in E \setminus \{0\}$ et $\theta \in \mathbb{R}$ tels que $u = -r(\omega, \theta)$.