656

$$F = \frac{1}{4\pi\epsilon_0} \frac{2e \cdot 79e}{r^2}$$
 より、 (電気に関するクーロンの法則)

無限遠から金の原子核の中心からx[m]まで近づくのに必要なエネルギーWは、

$$W = \int_{x}^{\infty} \frac{1}{4\pi\epsilon_{0}} \frac{2e \cdot 79e}{r^{2}} dr$$
 (α 粒子,金の原子核の電荷は $2e$,79 e)
$$= \frac{158e^{2}}{4\pi\epsilon_{0}} \int_{\infty}^{x} \frac{1}{r^{2}} dr$$

$$= \frac{158e^{2}}{4\pi\epsilon_{0}} \left[-r^{-1} \right]_{\infty}^{x}$$

$$= \frac{158e^{2}}{4\pi\epsilon_{0}} \left(\frac{1}{\infty} - \left(-\frac{1}{x} \right) \right)$$

$$= \frac{158e^{2}}{4\pi\epsilon_{0}} \frac{1}{x}$$

いま、 α 粒子の運動エネルギーが 8.45×10^{-13} /なので、