A Window into Symmetric Function Theory

George H. Seelinger

ghs9ae@virginia.edu

UVA Math Club Lightning Round

2 March 2021

• Permutations σ : $\{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$:

• Permutations σ : $\{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Permutations σ : $\{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$:

• Stacking = composition

• Permutations σ : $\{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Stacking = composition

• Permutations σ : $\{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Stacking = composition

• S_n is a "group"

Polynomials

• $f \in \mathbb{Q}[x_1, \dots, x_n]$ multivariate polynomial

Polynomials

• $f \in \mathbb{Q}[x_1, \dots, x_n]$ multivariate polynomial

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} (5x_1^2 + 5x_2^2 + 8x_3^2) = 8x_1^2 + 5x_2^2 + 5x_3^2$$

Polynomials

• $f \in \mathbb{Q}[x_1, \dots, x_n]$ multivariate polynomial

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} (5x_1^2 + 5x_2^2 + 8x_3^2) = 8x_1^2 + 5x_2^2 + 5x_3^2$$

• $\sigma \in S_n$ acts as $\sigma.f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$

Symmetric Polynomials

• Polynomials $f \in \mathbb{Q}[x_1, \dots, x_n]$ satisfying $\sigma.f = f$?

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}[x_1, \dots, x_n]$ satisfying $\sigma.f = f$?
- Symmetric polynomials (n = 3)

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1x_2 + x_1x_3 + x_2x_3 \quad h_2 = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$$

$$e_3 = x_1x_2x_3 \quad h_3 = x_1^3 + x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + \cdots$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}[x_1, \dots, x_n]$ satisfying $\sigma.f = f$?
- Symmetric polynomials (n = 3)

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1x_2 + x_1x_3 + x_2x_3 \quad h_2 = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$$

$$e_3 = x_1x_2x_3 \quad h_3 = x_1^3 + x_1^2x_2 + x_1^2x_3 + x_1x_2^2 + \cdots$$

• $\{f \in \mathbb{Q}[x_1, \dots, x_n] \mid \sigma.f = f \, \forall \sigma \in S_n\}$ forms a vector space, $\Lambda_{\mathbb{Q}}$.

Combinatorics of Symmetric Polynomials

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Combinatorics of Symmetric Polynomials

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Symmetric functions are polynomials in the e_1, e_2, \ldots , or in the h_1, h_2, \ldots

$$3h_2h_1^2 - h_2^2 + 6h_3h_1 = 3h_{(211)} - h_{(22)} + 6h_{(31)}$$

Combinatorics of Symmetric Polynomials

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Symmetric functions are polynomials in the e_1, e_2, \ldots , or in the h_1, h_2, \ldots

$$3h_2h_1^2 - h_2^2 + 6h_3h_1 = 3h_{(211)} - h_{(22)} + 6h_{(31)}$$

Basis of $\Lambda_{\mathbb{Q}}$?

Definition

 $n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

Definition

 $n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

$$5 \rightarrow \square \square \qquad \qquad 2 + 2 + 1 \rightarrow \square \square$$

$$4 + 1 \rightarrow \square \square \qquad \qquad 2 + 1 + 1 + 1 \rightarrow \square$$

$$3 + 2 \rightarrow \square \square \qquad \qquad 1 + 1 + 1 + 1 \rightarrow \square$$

$$3 + 1 + 1 \rightarrow \square \square$$

Partitions by themselves are interesting!

Partitions by themselves are interesting!

• How many partitions of n? No known closed-form formula!

Partitions by themselves are interesting!

- How many partitions of n? No known closed-form formula!
- 2 Many interesting connections to number theory (Ramanujan).

Partitions by themselves are interesting!

- 1 How many partitions of n? No known closed-form formula!
- Many interesting connections to number theory (Ramanujan).
- **3** Generating function for $p(n) = \text{number of partitions of } n \text{ is inverse of Euler } \phi \text{ function.}$

Definition

Filling of partition diagram of λ with numbers such that

Definition

Filling of partition diagram of λ with numbers such that

strictly increasing down columns

Definition

Filling of partition diagram of λ with numbers such that

- strictly increasing down columns
- weakly increasing along rows

Definition

Filling of partition diagram of λ with numbers such that

- strictly increasing down columns
- weakly increasing along rows

Collection is called SSYT(λ).

Definition

Filling of partition diagram of λ with numbers such that

- 1 strictly increasing down columns
- weakly increasing along rows

Collection is called SSYT(λ).

For
$$\lambda = (2, 1)$$
,

Associate a polynomial to $SSYT(\lambda)$.

Associate a polynomial to $SSYT(\lambda)$.

1 1	1 1	2 2	1 2	1 3	2 3	1 3	1 2
2,	3,	3,	2,	3,	3,	2,	3

Associate a polynomial to SSYT(λ).

$$s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Associate a polynomial to $SSYT(\lambda)$.

$$s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in SSYT} x^{T} \text{ for } x^{T} = \prod_{i \in T} x_{i}$$

Associate a polynomial to SSYT(λ).

$$s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \mathsf{SSYT}} x^T \text{ for } x^T = \prod_{i \in T} x_i$$

• s_{λ} is a symmetric function

Associate a polynomial to SSYT(λ).

$$s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$$

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \mathsf{SSYT}} x^T \text{ for } x^T = \prod_{i \in T} x_i$$

- ullet s_{λ} is a symmetric function
- \bullet Schur functions form a basis for $\Lambda_{\mathbb{O}}$

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

Harmonic polynomials

M =polynomials killed by all symmetric differential operators.

Explicitly, for

$$\Delta = \det \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

Explicitly, for

$$\Delta = \det \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

M is the vector space given by

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

Explicitly, for

$$\Delta = \det \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

M is the vector space given by

$$M = \operatorname{sp}\left\{ \left(\partial_{x_1}^a \partial_{x_2}^b \partial_{x_3}^c \right) \Delta \mid a, b, c \ge 0 \right\}$$

= $\operatorname{sp}\left\{ \Delta, 2x_1(x_2 - x_3) - x_2^2 + x_3^2, 2x_2(x_3 - x_1) - x_3^2 + x_1^2, x_3 - x_1, x_2 - x_3, 1 \right\}$

1 S_3 action on M fixes vector subspaces!

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

1 S_3 action on M fixes vector subspaces!

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

② Break M up into smallest S_n fixed subspaces

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

2 Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{} \oplus \underbrace{\mathsf{sp}\{2x_{1}(x_{2}-x_{3})-x_{2}^{2}+x_{3}^{2},2x_{2}(x_{3}-x_{1})-x_{3}^{2}+x_{1}^{2}\}}_{} \oplus \underbrace{\mathsf{sp}\{x_{3}-x_{1},x_{2}-x_{3}\}}_{} \oplus \underbrace{\mathsf{sp}\{1\}}_{}$$

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

② Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_{1}(x_{2}-x_{3})-x_{2}^{2}+x_{3}^{2},2x_{2}(x_{3}-x_{1})-x_{3}^{2}+x_{1}^{2}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_{3}-x_{1},x_{2}-x_{3}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

1 How many times does an S_n fixed subspace occur?

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

② Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_{1}(x_{2}-x_{3})-x_{2}^{2}+x_{3}^{2},2x_{2}(x_{3}-x_{1})-x_{3}^{2}+x_{1}^{2}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_{3}-x_{1},x_{2}-x_{3}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

• How many times does an S_n fixed subspace occur? Frobenius:

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

② Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_{1}(x_{2}-x_{3})-x_{2}^{2}+x_{3}^{2},2x_{2}(x_{3}-x_{1})-x_{3}^{2}+x_{1}^{2}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_{3}-x_{1},x_{2}-x_{3}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

9 How many times does an S_n fixed subspace occur? Frobenius:

$$e_1^3 = (x_1 + x_2 + x_3)^3 = s_1 + s_1 + s_1 + s_1$$

$$\mathsf{sp}\{\Delta, 2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2, x_3-x_1, x_2-x_3, 1\}$$

② Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_{1}(x_{2}-x_{3})-x_{2}^{2}+x_{3}^{2},2x_{2}(x_{3}-x_{1})-x_{3}^{2}+x_{1}^{2}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_{3}-x_{1},x_{2}-x_{3}\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

1 How many times does an S_n fixed subspace occur? Frobenius:

$$e_1^3 = (x_1 + x_2 + x_3)^3 = s_1 + s_1 + s_1 + s_1$$

Schur basis expansion counts multiplicity of irreducible S_n fixed subspaces!

Upshot

1 Schur functions $\leftrightarrow S_n$ -invariant subspaces.

Upshot

- **1** Schur functions \leftrightarrow S_n -invariant subspaces.
- ② Via Frobenius characteristic map, questions about S_n -action on vector spaces get translated to questions about Schur expansion coefficients in symmetric functions.

Interesting algebraic combinatorics questions

Interesting algebraic combinatorics questions

• Is a symmetric function Schur positive?

Interesting algebraic combinatorics questions

- 1 Is a symmetric function Schur positive?
- 2 What do the Schur expansion coefficients count?

Break M up into smallest S_n fixed subspaces

$$\underbrace{\sup\{\Delta\}}_{\text{deg}=2} \oplus \underbrace{\sup\{2x_1(x_2-x_3)-x_2^2+x_3^2,2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\text{deg}=2} \oplus \underbrace{\sup\{x_3-x_1,x_2-x_3\}}_{\text{deg}=1} \oplus \underbrace{\sup\{x_3-x_1,x_2-x_2\}}_{\text{deg}=1} \oplus \underbrace{\sup\{x_3-x_1,x_2-x_2\}}_{\text{deg}=1} \oplus \underbrace{\sup\{x_3-x_1,x_2-x_2\}}_{\text{deg}=1} \oplus \underbrace{\sup\{x_3-x_1,x_2-x_2\}}_{\text{deg}=1} \Big$$

Break M up into smallest S_n fixed subspaces

Solution: minimal S_n -fixed subspace of degree $d\mapsto q^ds_\lambda$ (graded Frobenius)

$$?? = q^3s + q^2s + qs + s$$

Break M up into smallest S_n fixed subspaces

Solution: minimal S_n -fixed subspace of degree $d\mapsto q^ds_\lambda$ (graded Frobenius)

$$?? = q^3s + q^2s + qs + s$$

Capturing even more information...

• $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ satisfying $\sigma(x_i)=x_{\sigma(i)},\ \sigma(y_j)=y_{\sigma(j)}.$

- $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ satisfying $\sigma(x_i)=x_{\sigma(i)},\ \sigma(y_j)=y_{\sigma(j)}$.
- ullet Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

- $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ satisfying $\sigma(x_i)=x_{\sigma(i)},\ \sigma(y_j)=y_{\sigma(j)}.$
- ullet Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

- $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ satisfying $\sigma(x_i)=x_{\sigma(i)},\ \sigma(y_j)=y_{\sigma(j)}$.
- ullet Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$\textit{M}_{2,1} = \underbrace{\mathsf{sp}\{\Delta_{2,1}\}}_{\mathsf{deg}=(1,1)} \oplus \underbrace{\mathsf{sp}\{y_3-y_1,y_1-y_2\}}_{\mathsf{deg}=(0,1)} \oplus \underbrace{\mathsf{sp}\{x_3-x_1,x_1-x_2\}}_{\mathsf{deg}=(1,0)} \oplus \underbrace{\mathsf{sp}\{1\}}_{\mathsf{deg}=(0,0)}$$

Capturing even more information...

- $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ satisfying $\sigma(x_i)=x_{\sigma(i)},\ \sigma(y_j)=y_{\sigma(j)}.$
- ullet Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} = \underbrace{\mathsf{sp}\{\Delta_{2,1}\}}_{\mathsf{deg}=(1,1)} \oplus \underbrace{\mathsf{sp}\{y_3 - y_1, y_1 - y_2\}}_{\mathsf{deg}=(0,1)} \oplus \underbrace{\mathsf{sp}\{x_3 - x_1, x_1 - x_2\}}_{\mathsf{deg}=(1,0)} \oplus \underbrace{\mathsf{sp}\{1\}}_{\mathsf{deg}=(0,0)}$$

Minimal S_n -invariant subspace with bidegree $(a,b)\mapsto q^at^bs_\lambda$

Capturing even more information...

- $\mathbb{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$ satisfying $\sigma(x_i)=x_{\sigma(i)},\ \sigma(y_j)=y_{\sigma(j)}.$
- ullet Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$\textit{M}_{2,1} = \underbrace{\mathsf{sp}\{\Delta_{2,1}\}}_{\mathsf{deg}=(1,1)} \oplus \underbrace{\mathsf{sp}\{y_3-y_1,y_1-y_2\}}_{\mathsf{deg}=(0,1)} \oplus \underbrace{\mathsf{sp}\{x_3-x_1,x_1-x_2\}}_{\mathsf{deg}=(1,0)} \oplus \underbrace{\mathsf{sp}\{1\}}_{\mathsf{deg}=(0,0)}$$

Minimal S_n -invariant subspace with bidegree $(a,b)\mapsto q^at^bs_\lambda$

• Define ∇ by $\nabla \tilde{H}_{\mu} = \mathcal{B}_{\mu}(q,t) \tilde{H}_{\mu}$ for eigenvalue $\mathcal{B}_{\mu}(q,t) \in \mathbb{Q}[q,t]$.

$$\nabla \tilde{\textit{H}}_{2,1} = \textit{qt} \tilde{\textit{H}}_{2,1}$$

• Define ∇ by $\nabla \tilde{H}_{\mu} = \mathcal{B}_{\mu}(q,t) \tilde{H}_{\mu}$ for eigenvalue $\mathcal{B}_{\mu}(q,t) \in \mathbb{Q}[q,t]$.

$$\nabla \tilde{\textit{H}}_{2,1} = \textit{qt} \tilde{\textit{H}}_{2,1}$$

•
$$\hat{M} = \left\{ f \in \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \sum_{1 \leq j \leq n} \partial_{x_j}^a \partial_{y_j}^b f(x, y) = 0 \right\}.$$

• Define abla by $abla ilde{\mathcal{H}}_{\mu} = \mathcal{B}_{\mu}(q,t) ilde{\mathcal{H}}_{\mu}$ for eigenvalue $\mathcal{B}_{\mu}(q,t) \in \mathbb{Q}[q,t]$.

$$abla ilde{ heta}_{2,1} = qt ilde{ heta}_{2,1}$$

- $\hat{M} = \left\{ f \in \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \sum_{1 \le j \le n} \partial_{x_j}^a \partial_{y_j}^b f(x, y) = 0 \right\}.$
- $\hat{M} \rightarrow \nabla e_n$

$$\nabla e_3 = (q^3 + q^2t + qt^2 + t^3 + qt)s_1 + (q^2 + qt + t^2 + q + t)s_1 + s_1$$

ullet Define abla by $abla ilde{\mathcal{H}}_{\mu} = B_{\mu}(q,t) ilde{\mathcal{H}}_{\mu}$ for eigenvalue $B_{\mu}(q,t) \in \mathbb{Q}[q,t]$.

$$abla ilde{ heta}_{2,1} = qt ilde{ heta}_{2,1}$$

- $\hat{M} = \left\{ f \in \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \sum_{1 \le j \le n} \partial_{x_j}^a \partial_{y_j}^b f(x, y) = 0 \right\}.$
- $\hat{M} \rightarrow \nabla e_n$

$$\nabla e_3 = (q^3 + q^2t + qt^2 + t^3 + qt)s_1 + (q^2 + qt + t^2 + q + t)s_1 + s_1$$

Open question

ullet Define abla by $abla ilde{H}_{\mu} = B_{\mu}(q,t) ilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q,t) \in \mathbb{Q}[q,t]$.

$$abla ilde{ heta}_{2,1} = qt ilde{ heta}_{2,1}$$

- $\hat{M} = \left\{ f \in \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \sum_{1 \le j \le n} \partial_{x_j}^a \partial_{y_j}^b f(x, y) = 0 \right\}.$
- $\hat{M} \rightarrow \nabla e_n$

$$\nabla e_3 = (q^3 + q^2t + qt^2 + t^3 + qt)s_1 + (q^2 + qt + t^2 + q + t)s_1 + s_1$$

Open question

What is the Schur expansion of ∇e_n ?

• Define abla by $abla ilde{\mathcal{H}}_{\mu} = \mathcal{B}_{\mu}(q,t) ilde{\mathcal{H}}_{\mu}$ for eigenvalue $\mathcal{B}_{\mu}(q,t) \in \mathbb{Q}[q,t]$.

$$abla ilde{ heta}_{2,1} = qt ilde{ heta}_{2,1}$$

•
$$\hat{M} = \left\{ f \in \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \sum_{1 \le j \le n} \partial_{x_j}^a \partial_{y_j}^b f(x, y) = 0 \right\}.$$

• $\hat{M} \rightarrow \nabla e_n$

$$\nabla e_3 = (q^3 + q^2t + qt^2 + t^3 + qt)s_{\Box} + (q^2 + qt + t^2 + q + t)s_{\Box} + s_{\Box}$$

Open question

What is the Schur expansion of ∇e_n ?

Recover earlier story by taking t = 0 and $y_i = 1$ for all y_i 's.