9 Septembre 1999 Durée : 2 heures Documents autorisés

AUTOMATES

Exercice 1:

1°) Minimiser l'automate suivant :

Solution:

$$\begin{cases}
 1,2,3 \} (0) & \{4,5\} (1) \\
 0 \to (1); 1 \to (0) & 0 \to (0); 1 \to (1) & 0 \to (1); 1 \to (0) \\
 \{1\} (2) & \{2,3\} (3) & \{4,5\} (4)
 \end{cases}$$

$$\begin{cases}
 0 \to (3); 1 \to (4) & 0 \to (4); 1 \to (3) \\
 \{1\} & \{2,3\} & \{4,5\}
\end{cases}$$

d'où finalement l'automate minimal:

2°) Donner une expression régulière représentant le langage accepté par cet automate.

Solution:

Il faut résoudre le système suivant :

$$\begin{cases} D = \varepsilon \\ I = D1 + I0 + P1 = I0 + P1 + 1 \\ P = D0 + P0 + I1 = P0 + I1 + 0 \\ \text{d'où finalement P} = (0 + 10 * 1)^{+} \end{cases} \Rightarrow \begin{cases} I = (P1 + 1)0 * \\ P = P(0 + 10 * 1) + 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10 * 10 * 1 + 0 \\ \text{P} = P(0 + 10 * 1) + 10$$

3°) Donner une grammaire engendrant le langage accepté par cet automate.

Solution:

Racine D; Règles: D
$$\rightarrow$$
 1I; D \rightarrow 0P; I \rightarrow 0I; I \rightarrow 1P; P \rightarrow 0P; P \rightarrow 1P; P \rightarrow ϵ

Exercice 2:

Considérons le langage défini sur le vocabulaire $\{a,b\}$ qui est l'ensemble des mots de longueur pair tels que le nombre de a sur la première moitié du mot est égal au nombre de a sur la deuxième moitié du mot (la propriété étant évidemment aussi vraie pour les b).

1°) Construire l'APND qui accepte ce langage.

Solution:

Etat initial *e*; Etat final *f*; Vocabulaire de pile : {A}.

	а	b	ε
e	(e,a,ε) (e,A)	(e,b,ε) (e,ε)	$(e,\varepsilon,\varepsilon)(d,\varepsilon)$
d	$(d,a,A)(d,\varepsilon)$	$(d,b,\varepsilon)(d,\varepsilon)$	$(d,\varepsilon,Z)(f,\varepsilon)$

- 2°) Construire la machine de Turing qui accepte ce même langage en utilisant un algorithme basé sur le principe suivant :
- marquer les a et les b de la première moitié en A et B, et ceux de la seconde moitié en α et β (pour trouver la moitié du mot, il suffit de marquer la première lettre, puis la dernière, puis la deuxième, puis l'avant dernière, etc)
- ensuite, il suffit de comparer le nombre de A au nombre de α .

Solution: Etat final: f

	a	b	A	В	α	β	#
q_0	(q_1,A,\rightarrow)	(q_1,B,\rightarrow)					$(f\!,\!\#,\rightarrow)$
q_1	(q_1,a,\rightarrow)	(q_1,b,\rightarrow)			(q_2,α,\leftarrow)	(q_2,β,\leftarrow)	$(q_2,\#,\longleftarrow)$
q_2	(q_3,α,\leftarrow)	(q_3,β,\leftarrow)					
q_3	(q_4,a,\leftarrow)	(q_4,b,\leftarrow)	(q_5,A,\rightarrow)	(q_5,B,\rightarrow)			
q_4	(q_4,a,\leftarrow)	(q_4,b,\leftarrow)	(q_0,A,\rightarrow)	(q_0,B,\rightarrow)			
q_5	(q_5,a,\rightarrow)			(q_5,B,\rightarrow)	(q_6,a,\leftarrow)	(q_5,β,\rightarrow)	(f,#,←)
q_6	(q_6,a,\leftarrow)		(q_5,a,\rightarrow)	(q_6,B,\leftarrow)		(q_6,β,\leftarrow)	
f	(f,a, ←)		(p,A,→)	(f,B, ←)		(f,β, ←)	
p							