13.1 平面中的点集

钟柳强

华南师范大学数学科学学院,广东广州 510631

课本例题

例 1 记 $D = \{(x,y) | 2x \le x^2 + y^2 < 4\}$. 试指出点集 D 的内部 D° , 外点所成的集合和边界 ∂D .

 \mathbf{M} : 点集 D 的图形如图所示. 满足不等式

$$2x < x^2 + y^2 < 4$$

的点 (x,y) 都是 D 的内点,因此 D 的内部是两个圆 $(x-1)^2+y^2=1$ 和 $x^2+y^2=4$ 之间 (不含圆周) 的部分,即 $D^\circ=\{(x,y)|2x< x^2+y^2<4\}$;

D 的外点是大圆以外以及小圆以内的点;

D 的边界是这两个圆周, 即

$$\partial D = \{(x,y)|2x = x^2 + y^2\} \cup \{(x,y)|x^2 + y^2 = 4\}.$$

例 2 记 $D = \{(x,y)|2x \le x^2 + y^2 < 4\}$. 试指出点集 D 的导集和孤立点.

解: 点集 D 的图形如图所示. 注意到一个点集的内点当然是此点集的聚点, 而外点不是聚点; 又 D 的边界 ∂D 显然也是 D 的聚点. 因此, D 的导集是两个圆 $(x-1)^2+y^2=1$ 和 $x^2+y^2=4$ 之间 (包含圆周)的部分, 即 $D'=\{(x,y)|2x\leq x^2+y^2\leq 4\}$.

点集 D 的每一个点的任意邻域中都有 D 的无穷多个点, 因此 D 无孤立点.

例 3 空集 \emptyset 和 \mathbb{R}^2 既是开集又是闭集.

解: 容易看出 \mathbb{R}^2 既是开集又是闭集,因为其中的每一点都是内点,且 \mathbb{R}^2 包含了自己的每一个聚点. 上面已经论证过 \emptyset 是闭集,知 $\emptyset = \mathbb{R}^2 \setminus \mathbb{R}^2$,即空集作为 \mathbb{R}^2 的余集,是开集.

例 4 判断例 1 中的点集 D 是不是开集或闭集.

解: 点集 D 不是开集, 因为圆 $2x = x^2 + y^2$ 上的点属于 D 但却不是 D 的内点; 点集 D 也不是闭集, 因为圆 $x^2 + y^2 = 4$ 上的点是 D 的聚点却不属于 D.

例 5 判断例 1 中的点集 D 是不是区域.

解: 连通的开集 $D^{\circ} = \{(x,y)|2x < x^2 + y^2 < 4\}$ 是开域; 闭集 $D' = \{(x,y)|2x \le x^2 + y^2 \le 4\}$ 是闭域. 点集 D 是区域,因为 D 是由开域 $D^{\circ} = \{(x,y)|2x < x^2 + y^2 < 4\}$ 连同其部分边界 $\{(x,y)|2x = x^2 + y^2\}$ 所组成的点集,但 D 本身既不是开域也不是闭域.

例 6 设 $A = \{(1/n, 1/n^2) \mid n = 2, 3, \dots\}, B = ((0, 1) \times (0, 1)) \setminus A$. 试给出点集 A 和 B 的内部, 孤立点, 导集和边界.

解: 点集 A 显然没有内点,即 $A^{\circ} = \emptyset$; A 中的每一点都是 A 的孤立点,因为对于 $(1/n,1/n^2) \in A$,可取 $\delta = 1/n(n+1)$,则 $B_{\delta}(1/n,1/n^2)$ 中除去点 $(1/n,1/n^2)$ 外,再无 A 中的任何点. 坐标原点显然是 A 的一个聚点,且是唯一的一个聚点. A 中的每一点都是 A 的边界点,原点亦然,故 $\partial A = A \cup \{(0,0)\}$.

对于点集 B, 其中每一点 P(x,y) 都是 B 的内点, 因为可取 $\delta > 0$ 足够小, 使得 $B_{\delta}(x,y)$ 中没有 A 的任何点且完全包含在 B 中. 故点集 B 是开集. B 的边界是 $\partial B = ([0,1] \times [0,1]) \setminus ((0,1) \times (0,1)) \cup A$. 点集 B 显然没有孤立点. 容易看出, 点集 A 中的每一个点还是 B 的聚点, 实际上, 点集 B 的聚点全体构成了单位闭矩形 $[0,1] \times [0,1]$, 即 $B' = [0,1]^2$.

读者可以根据定义,逐一验证这些结论,并在 \mathbb{R}^2 中画出这些点集的图形.

思考题

- 1. 不是开集的点集是否一定是闭集? 不是闭集的点集是否一定是开集?
- 2. 一个点集的边界点是否一定是这个点集的聚点? 反之又如何?
- 3. 在 \mathbb{R} 中如何定义一个集合的内点? \mathbb{R} 中的集合可以视为 \mathbb{R}^2 中位于 x 轴上的点集, 其内点是否也是 \mathbb{R}^2 中的内点?
 - 4. 点集 $\{(x,y) \in \mathbb{R}^2 | xy \ge 0\}$ 是否是区域?

习题

- 1. 用 Cauchy 不等式证明向量的三角形不等式和距离的三角形不等式.
- 证明. (1) 设向量 $\mathbf{r_1} = (x_1, y_1), \mathbf{r_2} = (x_2, y_2),$ 则向量 $\mathbf{r_1} + \mathbf{r_2} = (x_1 + x_2, y_1 + y_2),$ 下证: $\|\mathbf{r_1} + \mathbf{r_2}\| \le \|\mathbf{r_1}\| + \|\mathbf{r_2}\|.$

事实上,由 Cauchy 不等式 $|r_1 \cdot r_2| \leq ||r_1|| \cdot ||r_2||$,得

$$||\mathbf{r_1} + \mathbf{r_2}||^2 = (x_1 + x_2)^2 + (y_1 + y_2)^2$$

$$= x_1^2 + 2x_1x_2 + x_2^2 + y_1^2 + 2y_1y_2 + y_2^2$$

$$= ||\mathbf{r_1}||^2 + ||\mathbf{r_2}||^2 + 2\mathbf{r_1} \cdot \mathbf{r_2}$$

$$\leq ||\mathbf{r_1}||^2 + ||\mathbf{r_2}||^2 + 2||\mathbf{r_1}|| \cdot ||\mathbf{r_2}||$$

$$= (||\mathbf{r_1}|| + ||\mathbf{r_2}||)^2.$$

故

$$||r_1 + r_2|| \leq ||r_1|| + ||r_2||.$$

(2) 在 \mathbb{R}^2 上, 任意两点 $P_1(x_1,y_1), P_2(x_2,y_2)$ 之间的距离就是差向量 $\overrightarrow{OP_1} - \overrightarrow{OP_2} = \overrightarrow{P_2P_1}$ 的长度,记作 $\|P_1 - P_2\|$,即 $\|P_1 - P_2\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$,下证:对 \mathbb{R}^2 上的任意三个点 $P_1(x_1,y_1), P_2(x_2,y_2)$ 和 $P_3(x_3,y_3)$,成立 $\|P_1 - P_2\| \leq \|P_1 - P_3\| + \|P_3 - P_2\|$.

解法一:如图, $P_1(x_1,y_1), P_2(x_2,y_2)$ 和 $P_3(x_3,y_3)$ 为平面上不共线的三个点 (共线时不等式的等号 显然成立).

令向量 $\overrightarrow{P_3P_1} = r_1$, $\overrightarrow{P_2P_3} = r_2$, 则向量 $\overrightarrow{P_2P_1} = r_1 + r_2$, 由上面证明的结论 $||r_1 + r_2|| \le ||r_1|| + ||r_2||$, 得

$$||P_1 - P_2|| \le ||P_1 - P_3|| + ||P_3 - P_2||.$$

解法二: 由 Cauchy 不等式的三角形式: $\sqrt{a^2+b^2}+\sqrt{c^2+d^2} \ge \sqrt{(a+c)^2+(b+d)^2}$, 得

$$||P_1 - P_3|| + ||P_3 - P_2|| = \sqrt{(x_1 - x_3)^2 + (y_1 - y_3)^2} + \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$\geqslant \sqrt{(x_1 - x_3 + x_3 - x_2)^2 + (y_1 - y_3 + y_3 - y_2)^2}$$

$$= \sqrt{(x_2 - x_2)^2 + (y_2 - y_2)^2}$$

$$= ||P_1 - P_2||.$$

故

$$||P_1 - P_2|| \le ||P_1 - P_3|| + ||P_3 - P_2||.$$

2. 设 $E \subset \mathbb{R}^2$. 证明 E 是有界集的充分必要条件是 $d(E) < \infty$.

证明. (必要性) E 是有界集, 则存在某一点 $P_0(x_0, y_0)$ 和某个正数 R, 使得 $E \subset U(P_0; R)$, 对 $\forall P_1, P_2 \in E$, 由距离的三角不等式, 得

$$||P_1 - P_2|| \le ||P_1 - P_0|| + ||P_0 - P_2|| \le R + R = 2R.$$

则

$$d(E) = \sup\{||P_1 - P_2|||P_1, P_2 \in E\} \le 2R < \infty.$$

必要性得证.

(充分性) 对任意固定的 $P_0 \in E$, 对 $\forall P \in E$, 有

$$||P_0 - P|| \le d(E) = \sup\{||P_1 - P_2|||P_1, P_2 \in E\} < \infty,$$

故

$$P \in U(P_0, d(E)),$$

由 P 的任意性,有

$$E \subset U(P_0, d(E)).$$

故 E 为有界集.

充分性得证.

- 3. 在平面上画出下列点集的图形,说明这些点集是开集,闭集,区域或有界集等,并写出这些点集的 内点, 聚点和边界点所成的点集:
 - (1) $E = (0,1] \times [1/2,3/2);$

(2)
$$E = \{(x,y)|x^2 = y^2\}$$
;

(3) $E = \{(x, y) | x^2 \neq y^2 \}$;

(4)
$$E = \{(x,y)|x^2 + y^2 \le 2x\}$$
;

(5)
$$E = \{(x,y)|x^2 + y^2 \le 2x \ \exists x^2 + y^2 \ge 2y\}$$
; (6) $E = \{(x,y)|x,y \in \mathbb{N}\}$.

- **解: (1)** 点集 E 不是开集,因为点集 $\{(x,y)|0 < x \le 1, y = 1/2\}$ 和点集 $\{(x,y)|x = 1, 1/2 \le y < 3/2\}$ 上的点属于 E 但却不是 E 的内点;

点集 E 也不是闭集, 因为点集 $\{(x,y)|0 \le x \le 1, y = 3/2\}$ 和点集 $\{(x,y)|x = 0, 1/2 \le y \le 3/2\}$ 上 的点是 E 的聚点却不属于 E.

(1). 图中阴影部分为点集 E.

点集 E 是区域,因为 E 是由开域 $E^\circ = (0,1) \times (1/2,3/2)$ 连同其部分边界 $\{(x,y)|0 < x \le 1, y = 1/2\}$, $\{(x,y)|x = 1,1/2 \le y < 3/2\}$ 所组成的点集,但 E 本身既不是开域也不是闭域.

点集 E 是有界集,因为 $E \subset [0,1] \times [1/2,3/2]$.

内点所成的点集: $E^{\circ} = (0,1) \times (1/2,3/2)$

聚点所成的点集: $E' = [0,1] \times [1/2,3/2]$

边界点所成的点集: $\partial E = [0,1] \times [1/2,3/2] \setminus (0,1) \times (1/2,3/2)$

(2) 点集 E 不是开集, 因为点集 E 的任何一个点都不是它的的内点;

(2). 图中两条直线构成点集 E.

点集 E 是闭集, 因为点集 E 的所有聚点都属于 E.

点集 E 不是区域, 因为点集 E 不具有连通性.

点集 E 是无界集, 因为对 $\forall P_0(x_1, y_0)$ 和任意的 R, 都有 E 不含于 $U(P_0, R)$.

内点所成的点集: E 没有内点集.

聚点所成的点集: E' = E

边界点所成的点集: $\partial E = E$

(3) 点集 E 是开集, 因为点集 E 的任何一个点都是它的的内点;

(3). 图中阴影部分为点集 E.

点集 E 不是闭集, 因为点集 $E = \{(x,y)|x^2 = y^2\}$ 上的点是 E 的聚点却不属于 E.

点集 E 不是区域, 因为点集 E 不具有连通性.

点集 E 是无界集,因为对 $\forall P_0(x_1,y_0)$ 和任意的正数 R,都有 E 不含于 $U(P_0,R)$.

内点所成的点集: $E^{\circ} = E$.

聚点所成的点集: $E' = \mathbb{R}^2$

边界点所成的点集: $\partial E = \{(x,y)|x^2 = y^2\}$

(4) 点集 E 不是开集, 因为点集 $\{(x,y)|x^2+y^2=2x\}$ 上的点属于 E 但却不是 E 的内点;

点集 E 是闭集, 因为点集 E 的所有聚点都属于 E.

点集 E 是区域,因为 E 是由开域 $E^{\circ} = \{(x,y)|x^2+y^2<2x\}$ 连同其边界 $\{(x,y)|x^2+y^2=2x\}$ 所组成的点集,且 E 是闭域.

点集 E 是有界集,因为 $E \subset \{(x,y)|x^2+y^2 \leq 2x\}$.

内点所成的点集: $E^{\circ} = \{(x,y)|x^2 + y^2 < 2x\}$

聚点所成的点集: E' = E

边界点所成的点集: $\partial E = \{(x,y)|x^2 + y^2 = 2x\}$

(5) 点集 E 不是开集,因为点集 $\{(x,y)|x^2+y^2=2x\}$ 和点集 $\{(x,y)|x^2+y^2=2y\}$ 上的点属于 E 但却不是 E 的内点;

点集 E 是闭集, 因为点集 E 的所有聚点都属于 E.

(4). 图中阴影部分为点集 E.

(5). 图中阴影部分为点集 E.

点集 E 是区域,因为 E 是由开域 $E^{\circ} = B_1(1,0) \setminus \bar{B}_1(0,1)$ 连同其边界 $(\bar{B}_1(1,0) \setminus B_1(1,0)) \setminus (B_1(1,0) \setminus \bar{B}_1(1,0))$ 所组成的点集,且 E 是闭域.

点集 E 是有界集,因为 $E \subset \bar{B}_1(1,0)$.

内点所成的点集: $E^{\circ} = B_1(1,0) \setminus \bar{B}_1(0,1)$

聚点所成的点集: E' = E

边界点所成的点集: $\partial E = (\bar{B}_1(1,0) \setminus B_1(1,0)) \setminus (B_1(1,0) \setminus \bar{B}_1(1,0))$

(6) 点集 E 不是开集, 因为点集 E 的任何一个点都不是它的的内点;

(6). 图中无数多个点构成点集 E.

点集 E 是闭集, 因为点集 E 没有聚点, 即 E' 为空集, 而空集是任何集合的子集, 此时可将 E 视为闭集.

点集 E 不是区域, 因为点集 E 不具有连通性.

点集 E 是无界集, 因为对 $\forall P_0(x_1, y_0)$ 和任意的 R, 都有 E 不含于 $U(P_0, R)$.

内点所成的点集: E 没有内点.

聚点所成的点集: E 没有聚集.

边界点所成的点集: $\partial E = E$

4. 证明 $U(P_0)$ 是开集.

证明. (对于圆领域) 对 $\forall P \in U(P_0) = B_{\epsilon}(P_0)$, 取 $\delta = \epsilon - \|P - P_0\| > 0$, 则 $B_{\delta}(P) \subset B_{\epsilon}(P_0)$, 即知 P 是 $U(P_0)$ 的内点,故 $U(P_0)$ 是开集;

(对于方领域) 对 $\forall P(x,y) \in U(P_0) = (x_0 - \epsilon, x_0 + \epsilon) \times (y_0 - \epsilon, y_0 + \epsilon)$, 取 $\delta = \min\{\epsilon - |x - x_0|, \epsilon - |y - y_0|\} > 0$, 则 $U(P) = (x - \delta, x + \delta) \times (y - \delta, y + \delta) \subset U(P_0)$, 即知 $P \neq U(P_0)$ 的内点,故 $U(P_0)$ 是开集.

- 5. 证明 P_0 是 E 的聚点等价于在 P_0 的任何一个邻域 $U^{\circ}(P_0)$ 中都有 E 的点.
- **证明.** (必要性) P_0 是 E 的聚点,根据聚点的定义, P_0 的任何一个邻域 $U(P_0)$ 中都含有 E 中无穷多个点,从而在 P_0 的任何一个邻域 $U^{\circ}(P_0)$ 中必有 E 的点. 必要性得证.
- (充分性) (反证法) 假设 P_0 不是 E 的聚点,则在 P_0 的某一个邻域中只有 E 的有限个点,记为 P_1,P_2,\cdots,P_n ,设 $\delta = \min_{k=1,2,\cdots,n} \{\|P_k-P_0\|\}$,则 $U^\circ(P_0;\delta) \cap E = \emptyset$,与题设矛盾,故假设不成立, P_0 是 E 的聚点. 充分性得证.
- 6. 证明开集和闭集的下述性质: 开集的余集是闭集, 闭集的余集是开集; 有限个开集的交 (并) 是开集, 有限个闭集的并 (交) 是闭集.
- **证明.** (1) 不妨设 E 是开集,则下证 E^c 是闭集,即对 E^c 的任一聚点 P_0 ,都有 $P_0 \in E^c$. 事实上,对 E^c 的任一聚点 P_0 , P_0 的任一邻域都有不属于 E 的点,这样, P_0 就不可能是 E 的内点,从而 $P_0 \notin E$,于是 $P_0 \in E^c$,故 E^c 是闭集.
- (2) 不妨设 E 是闭集,则下证 E^c 是开集,即 E^c 中的每一点都是 E^c 的内点. 用反证法: 假设 E^c 不是开集,由开集的定义知 E^c 中至少有一个点不是 E^c 的内点,设这个点为 P_0 ,根据内点的定义知,对点 P_0 的任何邻域 $U(P_0)$,都有 $U(P_0)$ 不含与 E^c ,即 $U(P_0)$ 中含有 E 中的点,因此, P_0 为 E 的聚点,由 E 是闭集知 $P_0 \in E$,这与 $P_0 \in E^c$ 矛盾,故假设不成立,从而 E^c 是开集.

注 1 下面在证明有限个开集的交 (并) 是开集, 有限个闭集的并 (交) 是闭集的过程中, 我们取"有限个"集合的个数为 n=2.

- (3) 不妨设 F_1, F_2 为闭集,则下证 $F_1 \cup F_2$ 与 $F_1 \cap F_2$ 都为闭集.
 - (i) 事实上,设 P 为 $F_1 \cup F_2$ 的聚点,由实数完备性章节聚点的等价定义,存在一个各点互不相同的收敛于 P 的点列 $\{P_n\} \subset F_1 \cup F_2$,因而 F_1 和 F_2 至少有一个集合含有 $\{P_n\}$ 的无穷多项,不妨设 $\{P_{n_k}\} \subset F_1$,于是也有 $\{P_{n_k}\} \Rightarrow P(k \Rightarrow \infty)$,从而 P 为 F_1 的聚点,又因为 F_1 为闭集,所以 $P \in F_1$,故 $P \in F_1 \cup F_2$,从而 $F_1 \cup F_2$ 为闭集.
 - (ii) 同理,设 P 为 $F_1 \cap F_2$ 的聚点,则存在一个各点互不相同的收敛于 P 的点列 $\{P_n\} \subset F_1 \cap F_2$,于是,点列 $\{P_n\} \subset F_1$,且 $\{P_n\} \Rightarrow P$,从而 P 为 F_1 的聚点;点列 $\{P_n\} \subset F_2$,且 $\{P_n\} \Rightarrow P$,从而 P 为 F_2 的聚点.又因为 F_1 , F_2 为闭集,所以 $P \in F_1$ 且 $P \in F_2$,故 $P \in F_1 \cap F_2$,从而 $F_1 \cap F_2$ 为闭集.
- (4) 不妨设 E_1, E_2 为开集,则下证 $E_1 \cup E_2$ 与 $E_1 \cap E_2$ 都为开集.
 - (i) 事实上,对 $\forall A \in E_1 \cup E_2$,有 $A \in E_1$ 或 $A \in E_2$,不妨设 $A \in E_1$,则存在点 A的某邻域 U(A),使得 $U(A) \subset E_1$,从而有 $U(A) \subset E_1 \cup E_2$,因此, $E_1 \cup E_2$ 为开集.

- (ii) 对 $\forall B \in E_1 \cap E_2$, 有 $B \in E_1$ 且 $B \in E_2$, 由于 E_1, E_2 为开集, 则存在点 B 的某邻域 $U(B, \delta_1)$, 使得 $U(B, \delta_1) \subset E_1$, 也存在点 B 的某邻域 $U(B, \delta_2)$, 使得 $U(B, \delta_2) \subset E_2$, 取 $\delta = \min\{\delta_1, \delta_2\}$, 则点 B 的邻域 $U(B, \delta) \subset E_1 \cap E_2$, 所以 $E_1 \cap E_2$ 为开集.
- 7. 试叙述 \mathbb{R} 中开集的定义, 并证明若 A 和 B 是 \mathbb{R} 中的开集, 则 $A \times B$ 亦然.
- \mathbf{M} : (1) 如果点集 E 的每一个点都是 E 的内点,则称 E 为开集.
- (2) $\forall P(x,y) \in A \times B \ (\sharp \mapsto x \in A, y \in B),$

A 是开集, 则 $\exists x$ 的一个 ϵ 邻域, 使得 $U(x,\epsilon) \subset A$,

B 是开集则 ∃y 的一个 δ 邻域, 使得 $U(y, \delta) \subset B$,

则有 $(x - \epsilon, x + \epsilon) \times (y - \delta, y + \delta) \subset A \times B$,

即存在点 P 的邻域 $U(P) \subset A \times B$,

由 P 的任意性可知, $A \times B$ 也是开集

8. 设 x_0 是 $A \subset \mathbb{R}$ 的聚点, y_0 是 $B \subset \mathbb{R}$ 的聚点, 证明 (x_0, y_0) 是 $A \times B$ 的聚点.

证明. 任取点 $P(x_0, y_0)$ 的一个领域 $(x - \epsilon, x + \epsilon) \times (y - \delta, y + \delta) \subset A \times B$,

因为 x_0 是 A 的聚点, 则对 $\forall \epsilon > 0, U(x - \epsilon, x + \epsilon)$ 中含有 A 的无穷多个点,

又因为 y_0 是 B 的聚点, 则则对 $\forall \delta > 0, U(y - \delta, y + \delta)$ 中含有 B 的无穷多个点.

于是, 对 $\forall \epsilon > 0, \forall \delta > 0, (x_0, y_0)$ 的领域 $(x - \epsilon, x + \epsilon) \times (y - \delta, y + \delta)$ 中含有 $A \times B$ 的无穷多个点, 所以 (x_0, y_0) 是 $A \times B$ 的聚点.

9. 证明: 任意点集 E 与其边界 ∂E 的并集 $E \cup \partial E$ 是闭集.

证明. 先证明, 若 $P \in E$ 的聚点, 则 P 不是 E 的内点就是 E 的边界点.

因为 P 是 E 的聚点,则对任意点 P 的邻域 U(P) 都含有 E 的无穷多个点,从而,对任意点 P 的邻域 U(P),都有 $U(P)\cap E\neq\emptyset$,

- (1) 若 P 的邻域中存在某个邻域 U(P), 使得 $U(P) \subset E$, 则 $P \in E$ 的内点;
- (2) 若 P 不是 E 的内点,则由上面得出的结论:对任意点 P 的邻域 U(P),都有 $U(P) \cap E \neq \emptyset$ 可知, P 也不是 E 的外点,从而 P 是 E 的边界点.

则 $E \cup \partial E$ 的所有聚点都包含在 $E \cup \partial E$ 中, 于是 $E \cup \partial E$ 是闭集.

$$y = \begin{cases} x_1^2 (1 + \frac{1}{x^2}) & \text{if } x_2 \neq 0 \\ 0 & \text{if } x_2 = 0 \end{cases} \quad \text{for all}(x_1, x_2) \in \mathbb{R}^2$$
 (1)

$$f(x_1, x_2) = \begin{cases} x_1^2 (1 + \frac{1}{x_2}) & \text{if } x_2 \neq 0, \\ 0 & \text{if } x_2 = 0. \end{cases}$$
 (2)