

BE REVOLUTIONARY™

Objective

To predict claim cost for each policy ID using a set of 20 predictors

What methods did we consider?

- Initial exploration of the claim cost variable with respect to the other features showed us that about only 6.8% of the policies have a claim. So, we clearly had a 0 inflated target variable
- We thought of two modeling strategies Single Stage and Two Stage
- **Single Stage Model**
 - **Linear Regression**
 - LightGBM
 - Neural Networks
 - Random Forest
 - Tweedie Model
- Two Stage Model
 - Random Forest Light GBM
 - Poisson Light GBM
 - Poisson Inverse Gaussian (Chosen Model)

What method did we choose in the end and why?

- The distribution of claim cost (claimcst0) is heavily concentrated around 0 and rightly skewed.
- Generalized Linear Models (GLMs) were preferred instead of Ordinary Least Squares to address the normality violations.
- Concerns with single model for claimcst0 prediction
- Opted for alternative approach (De Jong, 2008)
- claimcst0 = Frequency * Severity = numclaims *
- **Adopted Two-Stage Model:**
 - Predicts **Frequency** of claims (numclaims)
 - Predicts average **Severity** of a claim (claimcst0/numclaims)

What method did we choose in the end and why?

Predict 'Frequency':

- Defined as number of claims for each policyholder.
- Count data for each policyholder.
- Options: Poisson Regression, Negative Binomial Regression.
- Training data: Mean = 0.073, Variance = 0.078.
- Chosen approach: Poisson Regression.
- Predict 'Severity':
 - Defined as claim cost divided by the number of claims.
 - Claim cost distribution (claimcst0): Strongly right-skewed.
 - Options: Gamma Regression, Inverse Gaussian Regression.
 - Gamma Regression had dispersed predictions; Inverse Gaussian Regression chosen due to better results, avoiding extreme predictions on the right tail.

Model	GINI Index	
Training	0.23827	
Kaggle (Public)	0.19932	
Kaggle (Private)	0.20366	

Variable Selection

- Stage 1: Predicting numclaims
 - We had 13 categorical variables in the dataset!
 - Not all categorical variables had sufficient number of observations in each category
 - We ran chi-sq tests to check how many of those categorical variables are related
 - We also ran a one-sample t-test to check for significant variables

Chi-Sq test variables

vehicle body	
vehicle age	
gender	
area	
age category	

One sample t-test variables

exposure	
area	
age category	
term length	

We used a stepwise regression technique with all the variables of the Final Select column

Final Select

vehicle age	
gender	
area	
age category	
term length	
exposure	
vehicle value	
	_

Variable Selection

- Stage 2: Predicting severity
 - We followed the same process for predicting severity as we did for predicting numclaims
 - The final model consisted of Chi-sq test variables and one sample t-test variables

Chi-sq test variables

vehicle body
vehicle age
gender
area
age category

One sample t-test variables

exposure
gender
area
age category
term length
driving history score

Final Select

vehicle value
gender
area
age category
term length
driving history score

We used a stepwise regression technique with all the variables of the Final Select column

What variables help explain pure premium?

Final Models after stepwise regression:

Frequency Model numclaims ~ exposure + age category + area + vehicle value + vehicle age + vehicle value: vehicle age + area: vehicle value

Severity Model (claimcst0/numclaims) ~ gender + vehicle age + age category

What variables help explain pure premium?

What variables help explain pure premium?

Relative importance of Variables

Frequency Model

agecat5 agecat6 agecat4 agecat2 agecat3 agecat1 veh value areaB:veh_value areaF:veh_value areaB -2.5 0.0 Importance

Severity Model

References

- 1. De Jong, Piet, and Gillian Z. Heller. Generalized linear models for insurance data. Cambridge University Press, 2008.
- 2. Ye, Chenglong, et al. "Combining predictions of auto insurance claims." Econometrics 10.2 (2022): 19.
- 3. Noll, Alexander, Robert Salzmann, and Mario V. Wuthrich. "Case study: French motor third-party liability claims." Available at SSRN 3164764 (2020)

Additional Questions?

- What other variables not in the data set do you think might be useful?
 - Income
 - Accident/Maintenance history
- Any concerns about the resulting model?
- What questions do you have about the data?

