DLD Sessional - 01

Introduction to Basic Gates

email: tasfia.cse@aust.edu

Basic Gates

- AND gate
- OR gate
- NOT gate

An IC

IC number of Basic Gates

- 7408 2-Input AND gate
- 7432 2-Input OR gate
- 7404 2-Input NOT gate

AND, OR

1	Name	Graphic symbol	Algebraic function	Truth table		
			- VIII	х	у	F
	AND	r	F = xy	0	0	0
335	AND			0	t	0
				1	0	0
	COMPR		0	1	1	l
		\sum_{y}^{x}	F = x + y	х	y	F
	OB			0	0	0
٠.	OR			0	1	1
				1	0	1
				1	1	1

NOT

AND

2 INPUT AND GATE

OR

2 INPUT OR GATE

NOT

NOT GATE

Additional Gates

- NAND
- NOR
- XOR

XOR

Name

Graphic symbol

Algebraic function

Truth table

Exclusive-OR (XOR)

$$y \longrightarrow I$$

$$\begin{array}{ccc}
-F & F = xy' + x'y \\
&= x \oplus y
\end{array}$$

x	у	F
0	0	0
0	1	1
1	0	1
1	1	0

Report

- Question/Answer
- IC Diagram
- IC Requirement
- Truth Table
- Circuit Diagram