Bölüm 11: Dosya Sistem Gerçekleştirilmesi

Dosya-Sistem Yapısı

- Dosya sistem yapısı
 - Mantıksal depolama birimi
 - İlgili bilgilerin toplanması
- Dosya sistemlerinin kaymanlara göre organize edilmesi
- File system (Dosya Sistemi) ikincil depolama diskine saklanması
 - Saklanacak veiya etkili ve uygun erişimin sağlanması kolayca bulunması.
- File control block(Dosya kontrol bloğu) Bir dosyayla ilgili bilginin depolama yapısıdır.

Katmanlı Dosya Sistemi

Dosya-Sistem Uygulaması

- Boot control block(Önyükleme kontrol bloğu) İşletim sistemini kurmak için ihtiyaç olan bilgiyi içerir.
- Volume control block(Birim kontrol bloğu) Birim detayı içerir.
- File Control Block (Dosya kontrol bloğu) (FCB) Dosya hakkında birçok bilgi içerir.

Tipik Dosya Kontrol Bloğu

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Bellek-içi Dosya Sistem Yapısı

- Aşağıdaki şekil işletim sistemi tarafından sağlanan gerekli dosya sistem yapısını gösterir.
- Şekil 12-3(a) dosya açılışını gösterir.
- Şekil 12-3(b) dosya okunmasını gösterir.

Bellek-içi Dosya Sistem Yapısı

Ayırma Yöntemleri

- Ayırma yöntemleri disk bloklarının nasıl ayrıldığını gösterir:
- Contiguous allocation (Bitişik ayırma)
- Linked allocation (Bağlantılı ayırma)
- Indexed allocation (Sıralı ayırma)

Bitişik Ayırma

- Her dosya disk üzerinde bitişik bloklar halinde yer kaplar.
- Basit Sadece başlangıç konumu (block #) ve uzunluğu (blokların sayısı) gereklidir.
- Harici parçalanma meydana gelir(First fit / Best fit)
- Dosyalar genişleyemezler.

Disk Alanında Bitişik Ayırma

directory

file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

Bağlantılı Ayırma

Her dosya disk bloklarının listesine bağlantılıdır: Bloklar disk üzerindeki herhangi bir yere yayılmış şekilde bulunabilir.

Bağlantılı Ayırma(Devam)

- Basit Sadece başlangıç adresine ihtiyacı olan.
- Boş alan yönetim sistemi Kullanılan alandan kayıp olmaz.
- Rastgele erişim olmaz.
- File-allocation table (FAT) (Dosya ayırma tablosu) MS-Dos tarafından kullanılan disk yeri ayrımı.

Bağlantılı Ayırma

Dosya-Ayırma Tablosu

Sıralı Ayırma

- İndeks tablosuna ihtiyaç duyar.
- Mantıksal görünüm.

Sıralı Ayırma Örneği

Sıralı Ayırma (Devam)

- İndeks tablosuna ihtiyaç duyar
- Rastgele erişim
- Index bloğunda ek yüke neden olarak, harici parçalanma olmadan dinamik erişim sağlar .

Boş Alan Yöneticisi

■ Bit vektörü (*n* blokları)

$$bit[i] = \bigotimes_{\mathbf{O}} 0 \Rightarrow block[i] \text{ free}$$

$$1 \Rightarrow block[i] \text{ occupied}$$

Boş – Alan Yöneticisi (Devam)

- Bit haritası ekstra alana ihtiyaç duyar
 - Örnek:

```
Blok boyutu = 2_{12} bytes .

disk boyutu = 2_{30} bytes (1 gigabyte)

n = 2_{30}/2_{12} = 2_{18} bits (or 32K bytes)
```

Bitişik dosyalara kolay ulaşım sağlanır.

Boş-Alan Yöneticisi (Devam)

- Bağlantılı liste (Boş liste)
 - Bitişik alanlar kolay sağlanamaz.
 - Yer kaybı olmaz.

Disk Üzerindeki Bağlantılı Boş Alan Listesi

Kurtarma

- Consistency checking (Sürekli Kontrol etme) Dizin yapısındaki veri ile diskteki veri bloklarını karşılaştırır ve uyumsuzlukları düzeltmeye çalışır.
- Disk üzerideki yedek veriyi başka bir depolama alanına aktarmak için sistem programlarına aktarır. (Manyetik şeritler, başka manyetik diskler, Optik)
- Kayıp olan dosya veya diski kurtararak yedekteki bilgileri eski durumuna getirir.

Log Yapılı Dosya Sistemleri

- Log structured (or journaling), dosya sistemine gelen her güncellemeyi dosya sistemi transaction(işlem) olarak kayıt eder.
- Tüm işlemler günlüğe yazılır.
 - Bir kere yapıldığı düşünülen her işlem günlüğe yazılır.
 - Ancak, dosya sistemi henüz güncellenmemiş olabilir.
- Eğer dosya sistemi çökerse, günlükte kalan tüm işlemler ilk normal açılışta gerçekleştirilir.

