Semidefinitní programování v geometrii počítačového vidění

Pavel Trutman

Vedoucí práce: Ing. Tomáš Pajdla, Ph.D.

Centrum strojového vnímání Katedra kybernetiky Fakulta elektrotechnická České vysoké učení technické v Praze

Obsah

- Motivace
- Metoda momentů a Lasserrova hierarchie
- Implementace
- Experimenty
 - Poloha a orientace kalibrované kamery (P3P)
 - Poloha a orientace kalibrované kamery s neznámou ohniskovou vzdáleností (P3.5Pf)
- Přínosy práce

Motivace

- Mnoho problémů v geometrii počítačového vidění vede na řešení soustav polynomiálních rovnic
- lacktriangle Tyto soustavy umíme řešit algebraicky (Algoritmus F_4 [1], Automatický generátor [3])
 - jsou vypočtena všechna komplexní řešení, nereálná jsou poté vyřazena
 - nevhodné na přeurčené soustavy na datech se šumem
- Aplikace metod z polynomiální optimalizace řeší tyto problémy
 - umíme najít pouze reálná řešení
 - do systému lze přidat polynomiální nerovnice
 - lze optimalizovat kriteriální polynomialní funkci na prostoru řešení

^[1] J.-C. Faugère. A new efficient algorithm for computing gröbner bases (f_4) .

^[3] Z. Kukelova, M. Bujnak, T. Pajdla. Automatic generator of minimal problem solvers.

- Založena na Lasserrově hierarchii [4]
- Problém polynomiální optimalizace (nekonvexní)

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) \ge 0$ $(i = 1, ..., k)$

$$h_j(x) = 0 \quad (j = 1, ..., l)$$
(1)

- lacktriangle Každý monom nahradíme novou proměnnou: $\ell_y(x^lpha)=y_lpha$
- Semidefinitní problém nekonečné dimenze (konvexní)

$$p^* = \min_{y \in \mathbb{R}^{\mathbb{N}^n}} \operatorname{vec}(f)^{\top} y$$
s.t.
$$y_{0...0} = 1$$

$$M(y) \succeq 0$$

$$M(g_i y) \succeq 0 \quad (i = 1, ..., k)$$

$$\operatorname{vec}(h)^{\top} y = 0 \quad \forall h \in \langle h_1, ..., h_l \rangle$$

$$(2)$$

- [4] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
- [5] J. B. Lasserre, M. Laurent, and P. Rostalski. Semidefinite characterization and computation of zero-dimensional real radical ideals.

- Založena na Lasserrově hierarchii [4]
- Problém polynomiální optimalizace (nekonvexní)

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) \ge 0$ $(i = 1, ..., k)$

$$h_j(x) = 0 \quad (j = 1, ..., l)$$
(1)

- lacktriangle Každý monom nahradíme novou proměnnou: $\ell_y(x^lpha)=y_lpha$
- lacktriangle Semidefinitní problém dimenze $\binom{n+2r}{n}$ pro stupeň relaxace $r\in\mathbb{N}$

$$p_{r}^{*} = \min_{y \in \mathbb{R}^{\mathbb{N}_{2r}^{n}}} \operatorname{vec}(f)^{\top} y$$
s.t.
$$y_{0...0} = 1$$

$$M_{r}(y) \succeq 0$$

$$M_{r-\left\lceil \frac{\deg(g_{i})}{2} \right\rceil}(g_{i}y) \succeq 0 \quad (i = 1, \dots, k)$$

$$\operatorname{vec}(h)^{\top} y = 0 \quad \forall h \in \left\{ h_{j} x^{\alpha} \mid j = 1, \dots, l, |\alpha| \leq 2r - \deg(h_{j}) \right\}$$

Konvergence zajištěna

$$p_r^* \le p_{r+1}^* \le p^*$$

$$\lim_{r \to +\infty} p_r^* = p^* \tag{4}$$

- [4] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
- [5] J. B. Lasserre, M. Laurent, and P. Rostalski. Semidefinite characterization and computation of zero-dimensional real radical ideals.

Implementace

- Balíček Polyopt
 - programovací jazyk Python
 - implementace momentové metody
 - implementace vlastního nástroje na řešení semidefinitních problémů: algoritmus vnitřních bodů s využitím bariérové funkce, dle [8]
- Implementace momentové metody v MATLABu
 - využití nastoje MOSEK [7] na řešení semidefinitních problémů
 - využití toolboxu YALMIP [6] jako interface

- [6] Johan Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB.
- [7] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28).
- [8] Y. Nesterov. Introductory lectures on convex optimization: A basic course.

- Řešení soustav polynomiálních rovnic
- Aplikace na minimálních problémech z geometrie počítačového vidění
 - Poloha a orientace kalibrované kamery (P3P)
 - Poloha a orientace kalibrované kamery s neznámou ohniskovou vzdáleností (P3.5Pf)
- Testování na reálné 3D scéně
 - robustně zrekonstruovaná
 - 67 kamer, 145 001 bodů v prostoru
- Porovnání různých implementací

- balíček Polyopt
- implementace v MATLABu s využitím nástroje MOSEK [7]
- optimalizační nástroj Gloptipoly [2]
- [2] D. Henrion, J. B. Lasserre, and J. Löfberg. Gloptipoly 3: Moments, optimization and semidefinite programming.
- [3] Z. Kukelova, M. Bujnak, T. Pajdla. Automatic generator of minimal problem solvers.
- [7] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28).

Poloha a orientace kalibrované kamery (P3P)

- Jedna rovnice čtvrtého stupně
- Jedna neznámá
- Vybrán nejlepší výsledek z 1000 různých konfigurací pro každou z 67 kamer (RANSAC-like)

🔷 60 % řešení je reálných

Poloha a orientace kalibrované kamery s neznámou ohniskovou vzdáleností (P3.5Pf)

8/10

- Devět rovnic třetího stupně
- Čtyři neznámé
- Vybrán nejlepší výsledek z 100 různých konfigurací pro každou z 20 vybraných kamer (RANSAC-like)

48 % řešení je reálných

Reference
Automatický generátor [3]
Polyopt
Implementace v MATLABu s nástrojem MOSEK [7]
Gloptipoly [2]

Přínosy práce

- Metoda momentů
 - porozumění metodě
 - implementace metody v Pythonu a MATLABu
 - použití metody na problémy z geometrie počítačového vidění
 - aplikace na úlohy z robotiky: řešení inverzní kinematické úlohy
- Nástroj na řešení semidefinitních problémů
 - implementace v Pythonu
 - porozumění typům semidefinitních problémů vznikajících využitím Lasserrovy hierarchie
 - využití implementace v rámci formální verifikace algoritmů v konvexní optimalizaci,
 D. Henrion, LAAS–CNRS v Toulouse
- Srovnání implementace momentové metody se současnými nástroji
 - stabilita odpovídá algebraickým metodám
 - nemůže konkurovat algebraickým metodám v rychlosti

Použitá literatura

- [1] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases (f_4) . Journal of pure and applied algebra, 139(1-3):61-88, July 1999.
- [2] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg. Gloptipoly 3: Moments, optimization and semidefinite programming. Optimization Methods Software, 24(4–5):761–779, August 2009.
- [3] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Automatic generator of minimal problem solvers. In Proceedings of The 10th European Conference on Computer Vision, ECCV 2008, October 12–18 2008.
- [4] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. Society for Industrial and Applied Mathematics Journal on Optimization, 11:796–817, 2001.
- [5] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. Semidefinite characterization and computation of zero-dimensional real radical ideals. Foundations of Computational Mathematics, 8(5):607–647, October 2008.
- [6] Johan Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
- [7] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28), 2015. http://docs.mosek.com/7.1/toolbox/index.html [Online; accessed 2017-04-25].
- [8] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

P3P: Histogram reprojekčních chyb

P3P: Histogram výpočetních časů

P3P: Histogram stupňů relaxovaných monomů

P3.5Pf: Histogram reprojekčních chyb

P3.5Pf: Histogram výpočetních časů

P3.5Pf: Histogram stupňů relaxovaných monomů

P3.5Pf: Histogram relativních chyb ohniskových vzdáleností

