

Politechnika Wrocławska

Architektura Systemów Komputerowych Wykład 2

Dr inż. Radosław Michalski Katedra Inteligencji Obliczeniowej, Wydział Informatyki i Zarządzania Politechnika Wrocławska Wersja 1.1, wiosna 2018

Źródła i licencja

Najbardziej aktualna wersja tego wykładu znajduje się tu: https://github.com/rmhere/lecture-comp-arch-org

Opublikowany jest on na licencji Creative Commons Attribution NonCommercial ShareAlike license 4.0 (CC BY-NC-SA 4.0).

Zawartość tego wykładu

Logika Boole'a

Układy logiczne

Rodzaje bramek logicznych

Pozostałe układy

Skrót

- działanie tylko na dwóch wartościach: prawda/fałsz (1/0)
- każdą funkcję da się przedstawić jako tablicę prawdy
- ▶ kolejność: NOT, AND, OR

Postacie wyrażeń

Dwie postacie wyrażeń:

► alternatywna postać normalna

$$F(A, B, C) = AC + AB + BC$$

koniunkcyjna postać normalna

$$F(A, B, C) = (A + C)(A + B)(B + C)$$

Tożsamości boolowskie

- Komputery to układy implementujące logikę Boole'a
- ▶ Upraszczanie funkcji boolowskich zmniejsza obwód logiczny
- ▶ Środkiem do tego są tożsamości boolowskie

Tożsamości boolowskie

Idempotentność

$$A + A = A \qquad A \cdot A = A$$

Przemienność

$$A + B = B + A$$
 $A \cdot B = B \cdot A$

Łączność

$$(A + B) + C = A + (B + C)$$
 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Rozdzielność

$$(A + B) \cdot (A + C) = A + B \cdot C$$

 $A \cdot (B + C) = A \cdot B + A \cdot C$

Tożsamości boolowskie c.d.

Pochłanianie

$$A + A \cdot B = A$$
 $A \cdot (A + B) = A$

Własności stałych

$$A + 0 = A$$
 $A \cdot 0 = 0$
 $A + 1 = 1$ $A \cdot 1 = A$

▶ Własności negacji

$$A + \overline{A} = 1$$
 $A \cdot \overline{A} = 0$

► Podwójna negacja

$$\overline{\overline{A}} = A$$

Prawo De Morgana

$$\overline{A+B}=\overline{A}\cdot\overline{B}$$

$$\overline{A\cdot B}=\overline{A}+\overline{B}$$

Minimalizacja funkcji boolowskich - Metoda Karnaugha

- Narysuj mapę Karnaugha dla zmiennych łączonych
- Mapa musi używać kodu Graya
- Znajdź pola sąsiednie logicznie
- Znajdź grupy wartości (od największej do najmniejszej)
- Dokonaj minimalizacji poprzez znalezienie części wspólnej

Metoda Karnaugha - przykłady

- ► Przykład dla trzech zmiennych
- ► Przykład dla czterech zmiennych

Wprowadzenie

Układy cyfrowe:

- układy elektroniczne
- poziomowi napięcia przypisywana interpretacja
- typowo: dwa poziomy (wysoki i niski) 0 i 1
- zakresy interpretacji
- separacja pomiędzy poziomami

Dlaczego wygodniej?

- bramki logiczne dwustanowe
- tranzystory uprościły wprowadzenie bramek logicznych
- typowa bramka logiczna to dioda oraz tranzystory
- można zastosować logikę Boole'a
- zjawisko hazardu

Audriusa - 7400, CC BY-SA 3.0

Układy kombinacyjne i sekwencyjne

- układ kombinacyjny
 - stan wyjść zależy od stanu wejść
- układ sekwencyjny
 - stan wyjść zależy od stanu wejść i stanu układu
 - prosty układ stanu: przerzutnik (ang. flip-flop)

Układy asynchroniczne i synchroniczne

- układ asynchroniczny
 - stan wyjść zmienia się możliwie szybko
 - podatne na hazard (niejednoczesna zmiana stanu)
- układ synchroniczny
 - regulowany zegarem
 - zegar może zmieniać stan wewnętrzny nawet bez zmiany wejść

Układy TTL

- ► TTL transistor-transistor logic
- złożone z tranzystorów bipolarnych
- wprowadzone w latach 60-tych XX w.
- zasilane napięciem 5V
- ► logiczne "0" 0 V ... 0.8 V
- ▶ logiczna "1" 2,4 V... 5 V
- wiele wariantów (mały pobór mocy, większa prędkość)
- wymagają stałego zasilania (inaczej niż CMOS)

NOT

Funkcja logiczna: $Q = \overline{A}$

Tablica prawdy:

A	Q
0	1
1	0

Symbol:

public domain

AND

Funkcja logiczna: $Q = A \cdot B$

Tablica prawdy:

A	В	Q
0	0	0
0	1	0
1	1	1
1	0	0

Symbol:

public domain

Układ: 7408

OR

Funkcja logiczna: Q = A + B

Tablica prawdy:

A	В	Q
0	0	0
0	1	1
1	1	1
1	0	1

Symbol:

public domain

NAND

Funkcja logiczna: $Q = \overline{A \cdot B}$

Tablica prawdy:

A	В	Q
0	0	1
0	1	1
1	1	0
1	0	1

Symbol:

public domain

NOR

Funkcja logiczna: $Q = \overline{A + B}$

Tablica prawdy:

A	В	Q
0	0	1
0	1	0
1	1	0
1	0	0

Symbol:

public domain

XOR

Funkcja logiczna: $Q = A \oplus B$

Tablica prawdy:

A	В	Q
0	0	0
0	1	1
1	1	0
1	0	1

Symbol:

public domain

XNOR

Funkcja logiczna: $Q = \overline{A \oplus B}$

Tablica prawdy:

	Α	В	Q
	0	0	1
Ī	0	1	0
	1	1	1
	1	0	0

Symbol:

public domain

Pozostałe układy

Przerzutniki

- posiadają swój stan
- pozwalają na wprowadzenie układu sekwencyjnego
- ▶ docelowo: pamięć
- synchroniczne/asynchroniczne

Charakterystyka przerzutnika JK: $Q_{nast} = J\overline{Q} + \overline{K}Q$

J	K	Operacja	Q _{nast}
0	0	utrzymaj stan	Q
0	1	resetuj	0
1	0	ustaw	1
1	1	przemień	$\overline{\mathrm{Q}}$

Slajd końcowy

Pytania? Komentarze?

Jeśli masz pomysł jak poprawić lub wzbogacić te wykłady, proszę zgłoś to jako issue w tym repozytorium:

https://github.com/rmhere/lecture-comp-arch-org