Energy Based and Variational Methods in Neural Networks

Guide: Vineeth N Balasubramanian

Sahil Manocha

Department of Computer Science Indian Institute of Technology Hyderabad

Honors-I Presentation

- Introduction
 - Neural Networks
 - Boltzmann Machines
- Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- Future
 - Stochastic Backpropagation[1]
 - Goals

- Introduction
 - Neural Networks
 - Boltzmann Machines
- 2 Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- 3 Dissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Honors-I Presentation

Introduction

Neural Networks

Feed Forward Neural Networks

 Function approximators Given

$$X = \{x_1, x_2, \dots x_n\}$$
 and $y = \{y_1, y_2, \dots, y_n\}$ find $f : X \to y, f(x_i) = y_i$

 Training via gradient descent (backpropagation)

Figure: Image credits [3]

- Introduction
 - Neural Networks
 - Boltzmann Machines
- 2 Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Introduction

Neural Networks

Boltzmann Machines

- Associative NN like Hopfield Nets
- Stochastic Units
- Intractable probability density function

Figure: Image credits [4]

Introduction

Neural Networks

Restricted Boltzmann Machines

- Tractable conditional probability distribution
- Contrastive divergence training procedure

Figure: Image credits [5]

- Introduction
 - Neural Networks
 - Boltzmann Machines
- Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- 3 Dissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

RBM Energy

An energy function is defined in an RBM that is minimized in the training of the neural network:

$$E(\mathbf{v}, \mathbf{h}) = -(\mathbf{b}^T \mathbf{v} + \mathbf{c}^T \mathbf{h} + \mathbf{h}^T W \mathbf{v})$$

where the probability of a particular training example v is

$$P(\mathbf{v}) = \frac{\sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})}}{Z}, \quad \text{where } Z = \sum_{\mathbf{v},\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})}$$

- Introduction
 - Neural Networks
 - Boltzmann Machines
- Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- 3 Dissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Restricted Boltzmann Machine

Inference

- Marginal is intractable due to normalization
- Conditional probability simplifies

$$egin{aligned} P(\mathbf{h}|\mathbf{v}) &= \prod_{h_i} P(h_i|\mathbf{v}), \qquad P(\mathbf{v}|\mathbf{h}) = \prod_{v_i} P(v_i|\mathbf{h}) \ P(h_i = 1|\mathbf{v}) &= \sigma(c_i + \sum_j W_{ij}v_j) \ P(v_j = 1|\mathbf{h}) &= \sigma(b_j + \sum_i W_{ij}h_i) \end{aligned}$$

- Introduction
 - Neural Networks
 - Boltzmann Machines
- Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- 3 Dissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Restricted Boltzmann Machine

Training

The objective of training an RBM is to maximize the log likelihood over the training set. A stochastic gradient descent is performed to reduce the negative log likelihood over the training example. The gradient of the log likelihood is

$$\frac{\partial \ln P(\mathbf{v}^{(k)})}{\partial \theta} = -E_{p(\mathbf{h}|\mathbf{v}^{(k)})} \left[\frac{\partial E(\mathbf{v}^{(k)}, \mathbf{h})}{\partial \theta} \right] + E_{p(\mathbf{h}, \mathbf{v})} \left[\frac{\partial E(\mathbf{v}, \mathbf{h})}{\partial \theta} \right]$$

Restricted Boltzmann Machine

Training

The Contrastive Divergence method approximates the expectation of the gradient as the gradient at *fantasy particle* v'. This fantasy particle is obtained after some predetermined number of K gibbs sampling steps.

$$E_{p(\mathbf{h},\mathbf{v})}[\frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta}] \approx \frac{\partial E(\mathbf{v}',\mathbf{h}')}{\partial \theta}$$

There are several problems with the training procedure:

- Point estimate not an accurate approximation of expectation
 Remedy: Persistent Contrastive Divergence
- Let p_{data} be the source distribution. p_{model} has high probability at x where $p_{data}(x) \approx 0$.

Remedy: Diss-CD

- Introduction
 - Neural Networks
 - Boltzmann Machines
- 2 Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Diss-CD Introduction

Idea: Initialization of gibbs-chain using "dissimilar" point

What is **dissimilar**?

Any data point not arising out of the source distribution is treated as dissimilar. For MNIST digits, this can be a triangle image.

- Introduction
 - Neural Networks
 - Boltzmann Machines
- 2 Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Diss-CD

Algorithm

Algorithm 1 Dissimilar Contrastive Divergence Algorithm

Input: RBM(W, b, c), Training data S, Dissimilar data \bar{S} , Number of Gibbs cycles K, Number of hidden units n, Number of visible units m

Output: DissCD trained RBM

Initialize
$$W \sim \left[-\frac{\sqrt{6}}{\sqrt{n+m}}, \frac{\sqrt{6}}{\sqrt{n+m}} \right], \ b=0, \ c=0$$
 for all $\mathbf{pos_v} \in S$, $\mathbf{neg_v} \in \overline{S}$ do $V^{(0)} \leftarrow \mathbf{pos_v}, \ V \leftarrow \mathbf{neg_v}$ $H \leftarrow \mathrm{SAMPLEHGIVENV}(V)$ for $j=1$ to K do $V \leftarrow \mathrm{SAMPLEHGIVENV}(V)$ end for $V' \leftarrow V$ w_{ij} = $w_{ij} + p(h_i=1|V^{(0)})v_j^{(0)} - p(h_i=1|V')v_j'$ $b_j = b_j + v_j^{(0)} - v_j'$ $c_i = c_i + p(h_i=1|V^{(0)}) - p(h_i=1|V')$

end for

- Introduction
 - Neural Networks
 - Boltzmann Machines
- 2 Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Diss-CD

Empirical Justification

Figure: Visible layer initialized to 10 examples from triangle dataset. Sampled after every 2 Gibbs cycles on PCD trained net.

Figure: Visible layer initialized to 10 examples from triangle dataset. Sampled after every 2 Gibbs cycles on Diss-CD trained net.

- Introduction
 - Neural Networks
 - Boltzmann Machines
- Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- 4 Future
 - Stochastic Backpropagation[1]
 - Goals

Diss-CD

Anomaly Detection

Figure: Anomaly Detection Pipeline

Honors-I Presentation

Diss-CD

Results

Reconstruction Errors

	PCD	Diss-CD
Silhouttes	367.7	465.6
CIFAR10	199.7	251.2
Triangles	85.7	113.6
MNIST	56.6	48.1

Table: Reconstruction Error comparison between PCD and Diss-CD trained RBMs on different datasets (Higher is better for anomaly detection). Only for MNIST, Diss-CD gives a lower reconstruction error!

Conclusions

- Diss-CD, a semi-supervised method of training RBMs, shows promise for applications in anomaly detection.
- Performance of Diss-CD depends on the choice of dissimilar data.
- Oiss-CD gives accurate reconstructions of training data when sampling from the net.

Diss-CD Next Step?

- RBM hard to train for gaussian stochastic units
- Unable to achieve convergence.
- Return with more insight

- Introduction
 - Neural Networks
 - Boltzmann Machines
- 2 Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- 3 Dissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- Future
 - Stochastic Backpropagation[1]
 - Goals

Bonnet's Theorem

Let f(x): $\mathbb{R}^d \to \mathbb{R}$ be a integrable and twice differentiable function. The gradient of the expectation of f(x) under a Gaussian distribution $\mathcal{N}(x|\mu,\Sigma)$ with respect to the mean μ can be expressed as the expectation of the gradient of f(x).

$$\nabla_{\mu_i} \mathbb{E}_{\mathcal{N}(\mu, \Sigma)}[f(x)] = \mathbb{E}_{\mathcal{N}(\mu, \Sigma)}[\nabla_{x_i} f(x)]$$

Price's Theorem

Let f(x): $\mathbb{R}^d \to \mathbb{R}$ be a integrable and twice differentiable function. The gradient of the expectation of f(x) under a Gaussian distribution $\mathcal{N}(x|\mu,\Sigma)$ with respect to the covariance Σ can be expressed in terms of the expectation of the Hessian of f(x) as:

$$\nabla_{\Sigma_{i,j}} \mathbb{E}_{\mathcal{N}(\mu,\Sigma)}[f(x)] = \frac{1}{2} \mathbb{E}_{\mathcal{N}(\mu,\Sigma)}[\nabla^2_{x_i,x_j}f(x)]$$

Backpropagation

By applying chain rule, we get:

$$\nabla_{\theta} \mathbb{E}_{\mathcal{N}(\mu, \Sigma)}[f(x)] = \mathbb{E}_{\mathcal{N}(\mu, \Sigma)} \left[\mathbf{g}^{T} \frac{\partial \mu}{\theta} + \frac{1}{2} \operatorname{Tr} \left(H \frac{\partial \Sigma}{\partial \theta} \right) \right]$$

g : gradientH: hessian

29 / 37

Relation to RBM

GB-RBM

Energy Function

$$E(v,h) = \sum_{i=1}^{V} \frac{(v_i - b_i)^2}{2\sigma_i^2} - \boldsymbol{c}^T \boldsymbol{h} - \sum_{j=1}^{V} \sum_{i=1}^{H} \frac{v_i}{\sigma_i} h_j w_{ij}$$

Probability

$$P(v) = \sum_{h} \frac{1}{Z} e^{-E(v,h)} = \sum_{h} \frac{1}{Z} e^{-\sum_{i=1}^{V} \frac{(v_i - b_i)^2}{2\sigma_i^2} + c^T h + \sum_{j=1}^{V} \sum_{i=1}^{H} \frac{v_i}{\sigma_i} h_j w_{ij}}$$

$$P(v) = \frac{1}{Z}e^{-F(v)}$$

where F(v) is free energy

GB-RBM

Free Energy

$$F(v) = -log(\sum_{\boldsymbol{h}} e^{-\sum_{i=1}^{V} \frac{(v_i - b_i)^2}{2\sigma_i^2} + \boldsymbol{c_h}^T \boldsymbol{h} + \sum_{j=1}^{V} \sum_{i=1}^{H} \frac{v_i}{\sigma_j} h_j w_{ij}})$$

Simplifying the term within the *log*

$$\sum_{\mathbf{h}} e^{-\sum_{i=1}^{V} \frac{(v_i - b_i)^2}{2\sigma_i^2} + \mathbf{c}^T \mathbf{h} + \sum_{j=1}^{H} \sum_{i=1}^{V} \frac{v_i}{\sigma_i} h_j w_{ij}}$$

$$= e^{-\sum_{i=1}^{V} \frac{(v_i - b_i)^2}{2\sigma_i^2}} \times \prod_{i} \left(e^{c_j + \sum_{i=1}^{V} \frac{v_i}{\sigma_i} w_{ij}} + 1 \right)$$

Substituting, we get

$$F(v) = \sum_{i=1}^{V} \frac{(v_i - b_i)^2}{2\sigma_i^2} - \sum_{j} log(e^{c_i + \sum_{i=1}^{V} \frac{v_i}{\sigma_i} w_{ij}} + 1)$$

- Introduction
 - Neural Networks
 - Boltzmann Machines
- Restricted Boltzmann Machines
 - Energy
 - Inference
 - Training
- Oissimilar Contrastive Divergence
 - Introduction
 - Algorithm
 - Justification
 - Application
- Future
 - Stochastic Backpropagation[1]
 - Goals

Big Picture

Objectives

To generate adversarial examples, a "measure" of dissimilarity is required. Instead of learning a distance metric, we wish to learn a "divergence". [2]

Bigger Picture

For Now

- To explore machine learning from a bayesian perspective
- Find methods to learn probability distribution over well-behaved manifolds

References I

Daan Wierstra Danilo Jimenez Rezende Shakir Mohamed. "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". In: *ICML* (2014). DOI: arXiv:1401.4082[stat.ML]. URL: https://arxiv.org/abs/1401.4082.

Max Welling Diederik P Kingma. "Auto-Encoding Variational Bayes". In: The International Conference on Learning Representations (ICLR) (2014). DOI: arXiv:1312.6114[stat.ML]. URL: https://arxiv.org/abs/1312.6114.

Technobium.com. URL:

http://technobium.com/wordpress/wp-content/uploads/2015/04/MultiLayerNeuralNetwork.png.

References II

Wikipedia. URL: https://en.wikipedia.org/wiki/File: Boltzmannexamplev2.png.

Wikipedia. URL: https://en.wikipedia.org/wiki/File: Restricted_Boltzmann_machine.svg.

