10/26/01 Monday 880.05 Class · Hondouts: None · Problem Set - Any questions Flow for This week! 1. Rigidly got to the coherent state path integral 2. Repeat the process for termions It or in both cases put off all but the recessory details until later (or the notes or problem sets) 3. Consider the case of a dilute Fermi gas with went interestors as a prototype example To Apply the suprem rules and evaluate in the T=0 limit Chas is poo Summary of coherent state results we'll need: [laix] is a to Boson - complex numbers. | Fermion - Grossmann numbers 02/07=0/67 < plat = < 1/0, (6/0)= 20/00 ded: <6/07= (0/0) + <0/20/02/02/07= <0/0/07=800 1= ST do do = 2000 = 10 (0) = 20 do finitions) TO A= Sty do do e 254 2 (-31 A12) $<\phi|A|ct_{\alpha}(a_{\alpha})|\phi\rangle = A|(b_{\alpha}, \phi_{\alpha})|e^{-\frac{\pi}{\alpha}}\phi_{\alpha}|a_{\alpha}|$ If $d\eta^* d\eta$, $e^{\eta^* H_i \eta_j + \delta^*_i \eta_j + \delta^*_i \eta^*_i} = \{ d_i + i \} e^{\delta^*_i H_i \eta^*_i}$

13 = = \$ (at 10) = TH= (at 10), al (7=(17))
< 1= < 0 | = \$ (0 | e \$ (at = < 0) | e \$ (at = < 1) | e \$ (at = <1131>= 6 x 2510 1= (1 15 d) E = 1 d | 157<5

< [A (0 + 0) [5] 7 = e & (A () + 1)

	. 1 01
	10126109
	At this point it would be opportune to present the
; ; ;	analogous formula for Grassmann (anti-commuting) variables. Ite following is taken largely from Nagele at Orland, ext 15)
**************************************	vortables. Ite following is taken largely from Nagele at Orland, set 15)
100 AUG	
	So we'll start with a quick introduction to the
	essentials of Grassmann numbers, integrals, and all Plat.
	· We are really dealing with alaxbras of anticommuting
com constant and constant constant constant	numbers, but for our purposes (For now at least)
	we can simply regard the following definitions and
· · · · · · · · · · · · · · · · · · ·	manipulations as a convenient and efficient matternation construction that builds in all of the
**************************************	minus signs associated with antisymmetry.
	The se on need to intract the shorical
· · · · · · · · · · · · · · · · · · ·	- Standard reference: Brézin, LeGullou, Einn-Justin, Phys.
<i></i>	Rev. D15 (1977) 1544; 1588.
y	
	· An n-dimensional Grassman algebra is defined by
	a set of generators { } a = 1,, n Plat
	satisfy anti-commutation relations!
	$\left\{ \left\{ \left$
<u></u>	· Note that these are not like field operator
	enti-commutation relation where one could get a
	non-zero result - these always precisely anticommute.
	and the same of the
	"An immediate consequence is that
	$\xi_{a}^{2}=0$ for $\forall \alpha$
	10x 7x
	so tese are somewhat unusual objects.
·	20 Lase as arrange and

	P0/26/04
	· We form a basis of the algebra by considering all idestrict products of the openentors. a number in the algebra is a linear combination
	distinct products of the operators.
······································	a number 10 the algebra is a linear combination
	[1], [2], [2], [2], [2], [2], [2]
	with complex coefficients with a conventional ordering of the coefficients of < of < < o
	the conficients of < of < < < < < < < < < < < < < < < <
	'We'll need to define complex conjugates, which we do
	"We'll need to define complex conjugates, which we do when n is even by just assigning half of the generators is to how corresponding & among the other half. The properties of complex conjugation are predictable:
· · · · · · · · · · · · · · · · · · ·	Ex to have corresponding & among the other hatt
	The properties or complex conjugation are predictable.
	$\left[\left(\frac{2}{3} \right)^{\frac{1}{3}} = \frac{2}{3} \right]$
	If $\lambda \in \mathbb{C}$ (a complex number), then $(\lambda, \lambda)^* = \lambda^* \{ \chi \}$
	al $(\xi_{\alpha_1} - \xi_{\alpha_n})^* = \xi_{\alpha_n}^* \cdot \xi_{\alpha_1}^*$
	Let's see what happens with only two generators, ? and st, so the basis is [81, 3, 3*, 8*83]
······································	A Punction of & must be Theor:
	because $\{2=1. \text{ So Taylor series always truncate.}\}$

10126/09 We define dematives by but we have to anticommute the & until it is to the right of \$ \$ (\x \x) = 91 (- \x \x \x) = - \x \x A(2×,3)= aot ay 8+ ay 3* + ay 3* 5 , Plen 35 A(3* E) = 01 - 013 3x 3×A(3x,3) = ay + a123 3 × 3 A({xx}) = - 012 = - 3 3 × A(xxxx) which illustrates that 30x and \$\frac{3}{2}\$ (as well as their generalizations to n-dimensional algebra) anti-commute Ok, so what about integrals?.

We can't do anything like the Riemannian sum as for archivery variables.

So he define integrals as anti-derivatives, which has the effect of making integrals the same as derivatives!

i.e. since \$\frac{2}{5}\frac{5}{5}=1, the definite integral of 1 is zero: 1981=0 503 8 = 1 (Don't worry if this seems wourd; you just need to know the rules, but don't treat "of" as an infinitesimal, It's not!)

10/26/01 As with derivatives, you need to anti-commute dix and Ex so they are adjacent, - Integration for complex conjugate variables is what you would imagine? 18× 2 = 0 and 185× 8×=1 . So The integral exactly removes the corresponding variable (of not available) OK, we can apply these rules to f(8) as A(8,5) as (d) f() = /0? (fo+f,) = fo.0+f.1=f. (13 A(2x,3) =) ds (a0+0,8+0,5+0,2\$) = a1-0,28* (12x A(x, 8) = Q1 + Q12 8 - We can define a S-Function as (with γ another Grassmann variable) $S(\xi,\xi') = \int_{0}^{\infty} \int_{0}^{\infty} e^{m(\xi-\xi')} = \int_{0}^{\infty} \int_{0}^{\infty} (1-\eta(\xi-\xi')) = -(\xi-\xi')$ $= \int_{0}^{\infty} \int_{0}^{\infty} e^{m(\xi-\xi')} = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{m(\xi-\xi')} dx$ Check: SOS' S(8,8') (8) = - SOS' (8-8') (Fot f38') = Fo + f2 = f(8) · Finally, we define the scalar product of Grassmann Functions (Flathy <Flat = \delta \text{2} \delta \text{2} \text{ \text{Fig} = \delta \text{2} \delta \delta \text{2} \delta \text{2} \delta \text{2} \delta \text{2} = (96,98 (T-6,8) (Lx+ Lx3, (do +048x)

= - Soly of sx & to do + Soly of tx dr flx = tx do + tx dr

(121) 10/26/09 OK, now we can generalize to 2n generators and Buik about Gaussian integrals. Suppose he have just ? at ?* This (with "a" a number (83, 93 E gas = (98, 98 (1-8, 08) = 0 The get "a" instead of "Ha" as in the ordinary Ganssian Now try Esses & St. 1 class try this! JOE 95 95 5 - 8, 41, 63 = \ 05\frac{1}{2} 05\frac{1}{2 expand = \ \(\frac{1}{2} \langle \frac{1}{2} = 51 (H, H22 - H21 H12 - H12 H21 + H22 H11) = H11H22-H12H21 = det H · So, again, the determinant is in the numerator rather The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization, including Grassmann "sources" Mi at 7t; is

The generalization of the generalization

This works for H Hermitian.
The proof Cuhich requires showing how to change Grossmann variables,
is given in Negele + Orland Section 15.

Poldera

So he see Plat the boson and fermion Gaussian integral formulas are quite similar, with the main distinction being Edet HJT in the former and Edet HJT in the former and who have restrictions on H for bosons (positive definite) to ensure Plat the integral converges.

No restrictions on H for formions, since we can expand the exponential easier and it terminates at first order, so we get a Pinite integral no matter

This distinction embodies the difference that the Pauli principle makes - 0, or 1 occupation numbers for fermions versus 0, 1,2,... for bosons.

. This shows up in Amon interacting Grand Concorned portition function evaluated in the occupation number basis

$$Z_{\mathbf{G}}^{\circ} = T_{\mathbf{r}} e^{-\beta (f_{\mathbf{G}} - \mu)} = \prod_{\alpha} \sum_{n_{\alpha}} e^{-\beta (f_{\alpha} - \mu)} n_{\alpha}$$

where na = 0,1 for fermions, and na=0,1,2,... for bosons.

=> fermions: Z= [(1+eB(Ea-M)) . Just the terms

bosons! Z8 = 1 (1+ Z (0-0(Exp))")

What "a" is,

For fermions, Early can be anything, but for bosons, Early >0 for all or or the partition function is not finite. In A-you must be possitive definate for bosons but not fermions.

10/26/09 Example: Dilute Fermi Gas with Short-Ronge Interaction

This is a good example to use for practicing poturbation. Theory exponsions and intinite summentions. It ties in maly with effective held teary and lets us explore pairing has be consider large scattering length, we are forced to do stochastic evaluations, he wo also do it in 1D.

The physical system could be a collection of cotions contined magnetically or optically (it makes a difference, see below).

we consider be trap to be constant (Therefore a constant every contribution) as very bry, so effectively infinite,

. We take the two-body interaction to be (in three dimensions)

V(x-x1) = >8(x-x1)

spin-independent for now (some matrix element between any combination of spin-up and spin dum)

if 200 = repulsive, 2<0 = attractive

v= 95+1 "spin" states in general (3> t is allowed -or spin at isospin)

we'll find soon that there are problem with a dilta function.

Goal: Find the ground-state engy per porticle as a function of directly and/or the free-energy at finite temperature.
Also find the pressure and consider stability.

Plan: First pass will be perturbation leary about the noninteracting

· No guarantee that this is a useful thing to do.

· To treat a bulk, unitorm medium, put la system in a large box of sibe I looked be 10 or 30) and · Uniform and infinite > physical properties are translationally invariant · apply periodic bounding conditions on the single-particle wine furctions: (dans makes: momentum expensions) with V= 13 the volume of the box and The is the spring. · For spn-1/2 quantized day a given zaxis M= [2] [Nw = [1]] and Mary = Exp with (ap) = 10,13 Periodic boundary conditions imply discrete mounta $k_{i} = \frac{2\pi n_{i}}{L}$, i = x, y, z, $n_{i} = 0, \pm 1, \pm 2, \dots$ The states are normalized of JAFRAX) TRIA BX = If = i(R-R).X To Man BX = + SER/ BX Soon = SER/ flow . The usual "first-quantized" Hamittonian for N particles is 1 FI = 2 6 + \$1 2 3 (2-2) = 2 - 20 + 1 2 8 (2-2) with the harning that this A is actually ill-defined without a regularization renormalization scheme.

In second quantization, this takes the form $H = \hat{T} + \hat{V} = \sum_{k=1}^{n} \frac{dk}{2m} dk_{\alpha} dk_{\alpha} + \sum_{k=1}^{n} \sum_{k=1}^{n} \frac{d}{dk_{\alpha}} dk_{\alpha} dk_$

Start with Z = Selfton for) Por 1/2 In 1/2 In 1/2 In 1/2 Z = Selfton for) Por 1/2 In 1/2 In 1/2 Well deal with Fermions only here, so the 21's and 41's ore Grossmann functions (think of New as Grossmann variables 7 1/2 1/2 1/2 1/2 1/2 1/2 corresponding to discrete values of 1, x, y, and 2). Do our "usual" procedure: Degraphic 2 to include sources 7(4) at 1/2 capted to 41' at 21', respectively. There are Grossmann sources; with some indices [In 1/2 Selfty Por 1/2 1/2 1/2 1/2 1/2 1/2 [In 1/2 Selfty Por 1/2 1/2 1/2 1/2 1/2 1/2 Degraphic 2 to include sources 7(4) at 1/2 1/2 1/2 [In 1/2 Selfty Por 1/2 1/2 1/2 1/2 1/2 1/2 [In 1/2 Selfty Por 1/2 1/2 1/2 1/2 1/2 1/2 [In 1/2 Selfty 1/2 1/2 1/2 1/2 1/2 1/2 1/2 Degraphic to the Grossmann sources 1 + 2 1/2 1/2 [In 1/2 Selfty 1/2 1/2 1/2 1/2 1/2 1/2 [In 1/2 Selfty 1/2 1/2 1/2 1/2 1/2 [In 1/2 Selfty 1/2 1/2 1/2 1/2 [In 1/2 Selfty 1/2 1/2 1/2 [In 1/2 Selfty 1/2 1/2 1/2 [In 1/2 Selfty 1/2	10/26/09 OK, Let's apply The path integral formalism to this problem.
Dere x= [x, t) or y' y' z = 2 yt y a (implus sometion) where x= [x, t) or y' y' z = 2 yt y a (implus sometion) whill deal with Fermions only here, so the y's at y''s ore Grossmann Functions (think of them as Grossmann veriables y in your on a space time lattice with i)), k, l corresponding to discrete values of x, x, y, or of z). Do our "usual" procedure: Degraphic 2 to include sources y(x) at y'x appeal to y' or y' no y' respectively. These are Grossmann sources, with spin indices Engry = (Elyty) = (E+ floor for youther) + ytan year) where \(\Sigma \) is the Euclidean action (including the clemical potential) \[\Sigma \) Remove the inference on the process of functional derivatives with respect to the Grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the finite of the grossmann sources: \(\frac{1}{2} \) is the grossmann sources: \(\frac{1}{2}	Start will
Where $x = \{\bar{x}, \bar{y}\}$ and $f^{+}f^{-} = \sum_{n=1}^{\infty} f^{+}f^{-} a$ (implied signation) Note with mothers and here, so the f^{+} all f^{+} are Grossmann functions (think of them as Grossmann variables f^{+} fight on a space time lattice with f^{+} f^{+} f^{-} corresponding to discrete values f^{+} f^{-} $f^$	7 = [8/4"m4x) e = 2 (3 1t x 2t x
· We'll deal with Fermions only here, so the 21's and 41's accessment functions (think of them as Gravesmann variables 4 jule, 21 for an a spacetime lattice with i,), k, l corresponding to discrete values of 7, x, y, and 7). Do our "usual" procedure: Do our "usual" procedure: Do our "usual" procedure: Test are Grassmann sources, with rain indices Em, not = (8144) e = (4160) (including the chemical potential) where \(\varepsilon \) is the Euclidean action (including the chemical potential) \[\sum_{\text{em}} \text{1} \text{2} \text{2} \text{2} \text{2} \text{3} \text{4} \text{2} \text{3} \text{4} \text{4} \text{2} \text{3} \text{4} \text{4} \text{3} \text{4} \te	
· We'll deal with Fermions only here, so the 21's and 41's accessment functions (think of them as Gravesmann variables 4 jule, 21 for an a spacetime lattice with i,), k, l corresponding to discrete values of 7, x, y, and 7). Do our "usual" procedure: Do our "usual" procedure: Do our "usual" procedure: Test are Grassmann sources, with rain indices Em, not = (8144) e = (4160) (including the chemical potential) where \(\varepsilon \) is the Euclidean action (including the chemical potential) \[\sum_{\text{em}} \text{1} \text{2} \text{2} \text{2} \text{2} \text{3} \text{4} \text{2} \text{3} \text{4} \text{4} \text{2} \text{3} \text{4} \text{4} \text{3} \text{4} \te	where $x = (x, \tau)$ and $2t^{*}2t = 2 2t^{2}2t$ (implied symmation)
variables tight on a space time lattice with i,j,k, corresponding to discrete values of 1,x,y, and 2). Do our "usual" procedure: Degenvalue 2 to include sources 1(x) at 1(x) coupled to 4t as 4 respectively. These are Grossmann sources, with spin indices [ZM, Mt] = (B[44] e - (Ex + (Bar(ax * 1/2x)4x) + 4/2x)1(x)] where \(\Sigma \) is the Euclidean action (including the chemical patritial) \[\Sigma \) \(\Sigma \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\f	
Corresponding to discrete values of T, x, y, and 7). Do our "usual" procedure: Degenerative 2 to include sources 1(x) at 1 (x) coupled to 4 at 4 respectively. Thex are Grossmann sources, with spin indices [Z[n,n+] = (E[4+4] e = + (Earlor nation) including the clemical potential) where \(\xi \) is the Euclidean action (including the clemical potential) \[\xi = \begin{align*} & \text{Ar}\\ \gamma^2 \left* \frac{1}{4} \text{Correspondents from in favor of functional derivatives with respect to the Grassmann sources: \(\text{A} - \frac{5}{4} \text{Ar} \) in the process of the first form of the first fraction of the first frac	are Grasmann tunctions (think of them as Grassmann
Degeneralize 2 to include sources 1(x) at 1(x) capted to 4 as 4, respectively. These are Grassmann sources, with spin indices [Z[n,nt] = (E[44]) e = (E+(Bir(ax nation) + 4tan) na) where \(\xi \) is the Euclidean action (including the clemical patential) \[\[\sigma \xi \] is the Euclidean action (including the clemical patential) \[\sigma \xi \] is the Euclidean action (including the clemical patential) \[\sigma \xi \] is the Euclidean action (including the clemical patential) \[\sigma \xi \] is the feature of \frac{1}{2m} - \mu) \frac{1}{2m} \fr	
Test are Grassmann sources, with spin indices [Z[n,nt] = (S[4t4] e - (E + (Par (at year) + 4tx))] Where \(\sigma \) is the Euclidean action (including the chemical potential) [SE = \(\frac{1}{2} \) (3\frac{1}{2} \) (3\frac{1} \) (3\frac{1}{2} \) (3\frac{1}{2} \) (3\frac{1}	Do our "usual" procedure:
Engint = (8144) e = \$\frac{1}{6}\tangle \frac{1}{16}\tangle	O generalize 2 to include sources n(x) at ntx) coupled to 4th as 4, respectively.
where S_E is the Euclidean action (including the demical potential) $S_E = \int_{AT} \int_{0}^{3} \sqrt{\frac{1}{4}} x (\frac{1}{6T} - \frac{1}{2m} - \mu) \frac{1}{4} x (\frac{1}{4} + \frac{1}{4} \frac{1}{4} x + \frac{1}{4} \frac{1}{4} x + \frac{1}{4} \frac{1}{4} x + \frac{1}{4} \frac{1}{4} x + \frac{1}{4} \frac{1}{4} \frac{1}{4} x + \frac{1}{4} \frac{1}{4}$	· Tese are Grassmann sources, with spin indices
$S_{E} = \int_{AT} \int_{0}^{3} \sqrt{4} x \left(\frac{1}{2} - \frac{1}{2m} - \mu \right) \frac{1}{4} x + \frac{1}{2} \frac{1}{2m} \frac{1}{4m} \frac{1}{4$	[= [= [=] = [=] = = = = = = = = =
SE = Jar / 32 (4x) (at - Im - m) + (x) + 3 2xx 4 px 7 px 1 xx) = 40-7 D Remore the inferrection term in favor of functional derivatives with respect to the Grassmann sources: 4 - 32 4+ > 37 2[m, n+] = e for fox 3 for an logar loga	
Remove the interaction term in favor of functional derivatives with respect to the Grassmann sources: 7 - 5 4 - 5 5 7 Z[n, n+] = e for fox 3/5 2/5 2/5 2/5 2/5 2/5 2/5 2/5 2/5 2/5 2	(P) (P) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
with respect to the Grassmann sources: $7 - \frac{1}{3} + \frac$	
$\left\{ \sum_{i=1}^{n} \lambda_{i} \lambda_{i}^{+} \right\} = \left\{ \sum_{i=1}^{n} \lambda_{i}^{+} \lambda_{$	
· ne're using show = = = = = = = = = = = = = = = = = = =	(3) (3) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5
	· ne've using show e - (40 mb = e - 540 mb + 2/1x) and 57 m) e - 570 mb = e - 570 m

Polde101"	
· We note ar lives easier here by moving the Grasmann feelds brought down by the derivatives all the way to the right, we can do this since all of the Grassmann variables in the exponents appear in pairs.	
(3) Complete the square in the remaining path integra 'We'll carry this out with schematic" notation, which means we'll drop the explicit x=(x,T) indices. Since we will keep spin indices, one could also imagine those to stand for discrete time and space indices as will	
= (21/4) = (21/4) + 1/4 1/2 + 1/4 1/2 = (21/4) = (21/4) + 1/4 1/2 = (2	
· We get the third line by shifting variables—the Jacoba is 1—to 4/2=4/2+ Dop Mp. A prod that we can change Grassmann variables like this is given in Needle and Orland, but it should be plausit from simple examples like: [14+14] (4+1)(4+14) = [34+14] 174	
with anti-periodic boundary conditions. (1) Now we can do perturbation fleary in powers of \(\lambda\) as usual.	

which & function to take at \= 11.

	30/36/09	<u>6</u>)
	Let's check Plat it works:	······································
	i) boundary condition (D°(×p;×'T') = Spt V ≥ e'k(x-x') = (Ex-µ)p (Ex-µ)T'(1.	$-U_o^{\mathbf{k}}$
	since the first & function will be satisfied for O=Y < B.	
-	$\left\{ \mathcal{Y}_{pb}(\vec{x}_0, \vec{x}_1 \vec{n}) = \mathcal{S}_{pb} + \mathcal{S}_{e}(\vec{k}_1 \vec{x}_2) e^{(\epsilon_{k}^{\circ} - \mu)\vec{n}'}(-n_{k}^{\circ}) \right\}$	
	But Exerp) (1-10) = Exerp) (1- 24/2)	
~~	$= 6 - 6(6k - h) \left(\frac{66(6k - h)^{+1}}{66(6k - h)} \right) = 0.5$	
	$\Rightarrow \left[\mathcal{D}_{p,b}^{\circ} \left(\vec{x} p, \vec{x}' \gamma' \right) = - \mathcal{D}_{p}^{\circ} \left(\vec{x} 0, \vec{x}' \gamma' \right) \right] \text{os expected} .$	
	ii) satisfies the differential equation:	
	[Sap(====================================	7
	$= (g^{\alpha \beta}g^{\beta \chi})^{\frac{1}{2}} \leq (-\xi_{F}^{\mu} - \mu) + \frac{3m}{2} - \mu) \in (\xi_{F}, \chi_{-\chi_{J}})^{\frac{1}{2}} - \xi_{F}^{\mu} - \mu)(\mu_{-\chi_{J}})$	
	+ Sop Spi + & e (xx/) - (x-y)(1-ne) + S(n-7') ne	
	$= S_{\alpha\beta}(h\gamma) + \sum_{i} e^{i} \hat{\mathbf{r}} \cdot (\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}')$	1
	= 8~ 5'(22) 5(1-7') . /	
	where we've used [376(7-71) = S(7-71)] and 376(7-7) = -3(7-	, γ)
-	In PS#2 you'll derive the result for 9° by solving the	

· For completeness, me include yet another derivation using, field operators

(Recall Ho = Z & at at)

=> you (xT, x'P') is the same as before,

10/26/09	B
- Let's try the perturbative expansion of he we relate to our thermodynamic observable	12/70, which
$\int \Omega(v,T,\mu) - \Omega_0(v,T,\mu) = -\frac{1}{2}(\ln z - \ln z_0)$	= -1/3ln7/70
The replica method proof that In 2120 Follow Keeping only the connected diagrams go as in the model portition function case to (2/20), which we construct simply by into Grassmann path integrals over 4; as 4; wi	
To find out the precise Feynman rules, how to carry out a couple orders of the expansion of	sever, we'll rock usion explicitly. Into big 18 11
where the integral in the second exponential is	a shorthard for
Snt grang - Son, los, Sons los, nt (x,) Do	$(\varepsilon X)_{\mathfrak{P}} \mathcal{N}(\tau_{\varepsilon} X, \tau_{\varepsilon} X)$
The X and T dependence is actually rather easy to will use the schematic form and just trace the sp	in indices.
other expansion we'll nant to do is the Grahith we can write as $ \frac{1}{2} \int_{-\frac{\pi}{2}}^{2} \left(\frac{1}{2} \int_{-\frac{\pi}{2$	9°1 7 7 7 7 7 7 7 7 7
and only connected diagrams survive.	

10/26/09 et's do the leading order of Dap First: = + Do (ZT; ZT) + O(X) · notice how the minus sign was eliminated after anticommuting En through Mt - We didn't botter putting in the space and time coordinates in the expansion, since they just get set equal to those in the functional derivatives.

Note that there is no by in Int you, in contrast to the GM case where we had SJATJ with the same I's. Since we can tell the X end from the X' end The Feynman rule will be to assign the to a ZITIP Z.T.X = Dap(ZT; ZIT) = Ept(ZT; ZIT) * [NOTE: Different conventions are used by different authors, which lead to minus signs for worse) difference in the rule.

The final answers for observables, of course, should be the same. when we go to the next order, it, there is only one connected diagram: (teeping only the terms surviving 1/1/11/20 at the onl) The second set of diagrams is just a visual aid to help with the spin aloxbra. > the tros ends of ... one the some space-time point X...

	10/26/09	(3)
	Now do the ax) part of \$\frac{2}{20} (or ln2/20; it is the same to that order sin ln(1+E) = E for E small)	بل. د
	10= (-> (81x 51x 51x 51x 51x) (5; Jax 17 10° 11 5, Jax 17 91° 5, 37 5, 37 5, Jax 17 91° 5, 37 5	
	00	9
	are the two distinct ways to match up the functional derivations the corresponding Grassmann variables. The net sign change from articommuting is given by (-1) # of line crossing >> + for the first and - for the second	
	(-1) # of line crossings ⇒ + for the first and - for the second set The first set is the "direct" term, while the second set is the "exchange" term.	ord
	- There are two ways of doing each type of term > kills are	
		1
	= - \(\langle (\delta_{\text{to}} \delta_{\text{to}} \delta_{to	
	$ \left(2 \right) = -2 \times \left(-\frac{\lambda}{3} \right) \frac{1}{6!} \mathcal{S}_{\alpha \delta_{1}} \mathcal{S}_{\alpha \gamma_{2}} \mathcal{S}_{\beta \delta_{2}} \mathcal{S}_{\beta \gamma_{1}} \right) \mathcal{J}_{\chi} \mathcal{J}_{\gamma \mathcal{S}_{\gamma}}(\chi, \chi^{+}) \mathcal{J}_{\gamma_{2} \delta_{2}}^{\circ}(\chi_{\gamma} \chi^{+}) $	
	$= + \frac{\lambda}{2} \left(\mathcal{E}_{\mathcal{S}_{1}} \mathcal{E}_{\mathcal{S}_{1}} \mathcal{E}_{\mathcal{S}_{1}} \mathcal{E}_{\mathcal{S}_{2}} \mathcal{E}_{\mathcal{S}_{3}} \mathcal{E}_{\mathcal{S}_{3}} \mathcal{E}_{\mathcal{S}_{3}} \right) \left(\int_{0}^{b} d\tau \left(d^{3}x \right) \mathcal{Y}(0,0^{\dagger}) \mathcal{Y}(0,0^$	
)	· So are spin sums gives 12 (direct) and the other gives 12 (exchan and there is a inions sign between them. (Whe used dopon the vertex gives - I and the two is cancelled. · We're written \$100,00) as an alternative to using the 12 infinitesing in \$10 to becide what to do at equal time.	ge) ~ Sop.)
	in to becide what to do at equal time,	<u> </u>

•	70/26/09
	· From page , $H^{\circ}(0;0^{+}) = \int_{PF}^{d^{+}} d^{+} (-n_{k}^{\circ})$ · Since there are no remaining dependencies of x or 7, $\int_{0}^{\infty} d^{-} d^{+} d^{-} d^{-}$
	or [1= 10+ V= (1-1)(N) (N) + (1) + (1)
	· but $y = n_k $ (or $\sqrt{2} n_k^2$) is just the density (the thermal exercaged density).
	· Pure is no u dependence in Re O(1) term, so in R T=0 limit, [N=31=3Ro] and [No=Eo+µN]
	$F = E_0 + E_1 = \frac{3}{5} \frac{1}{3} \frac{1}{N} \cdot N + \sqrt{\frac{3}{3}} \left(1 - \frac{1}{N}\right) e^2$
	or $\frac{N}{E_{10}} + \frac{N}{E_{11}} = \frac{3}{3} \frac{131_{3}^{2}}{131_{4}^{2}} + \frac{3}{3} (1 - \frac{1}{12}) $
	This result agrees with a simple perturbative columnation
	· Note that he got the correct arsher immediately for the exchange part without any change of variables or tricky integration regions.
	· Note that he got the correct answer immediately for the exchange part without any change of variables or tricky integration regions. · The collection hard be considerably tricker if he didn't have a delta function interaction (i.e., if it had finite or infinite range) but the generalization of our procedure is relatively easy.
***************************************	· Note also that we rather trivially ended up in momentum space because of the \$10°(0,0°)'s.
	· Generalizing from $\frac{\sqrt{2}}{2m}$ to $\frac{\sqrt{2}}{2m} + U(x)$, with a buckground field $U(x)$ is simple (see later),

10/26/09	
OK, so what about the Feynman drayrum and rules?	
One restex, the lines	
⇒ vertex • ->	
· Te "-" comes from the minus syn in hount of the action in	
The exponent of the path integral. The concellation of the 5 in front of the X is like the 4! Factor	
in our model, we get 2 instead of 4! because the two ends of each line (noninteracting Green's function) are different and	
we keep direct and exchange separate.	
· Each line gets Dalx,x') with x at x' determined by the retires (or orternal points) to connects.	
Each xitex gets a space-time point x; and he integrate Satx; at Pe end,	
· The vertices have two incoming lines and two outgoing lines.	
"The spin suns follow the fermion lines around, until they close on themselves, yielding a net factor of N. It early vertex there	
are two choices of directions to go, One may to tollow the spin is to split apart the virtex:	
78 + 78	-
804 gez 2 ge	
50 Pc d/agrins ar () - 0 + ()	
The sea state con while sea of Endiffert	
There is a relative sign, which we can account for in different mays. One convenient way is to just do the spin sums and substitute	
-> For every Example factor.	
Note: If there are son dependent interactions, one simply inserts the appropriate	k.
The matrice on the variles.	

(136)	
N=	
If we now return to calculating the single-particle	
Sircen's function (from page (110):	
a take t	
$\Rightarrow (-y) \Rightarrow (+1)$	
The soin sums are indicated by the or labol trians	
To both cases we say in the S. consisting the	
outside lines the outside lines but the direct	
term has an additional some sum in the totale	
=> factor & (-V) by our Francis rides.	
3	
. The rest of the diagram is evaluated trivially:	
Jap (x1, x, 1,) = - , /0, x 1 1 (x, x) (9x(-y) + /1) (x, x) (x, x) (x, x, y)	
1 C 100 +) 40/ +) (3k/ 0) 07	
$-15 \times 10^{-1} $	
tor a unitorm system	
. The structure here is of the form 4° (- 5) 4°, where we	
suggress the interactions and spin indices. Any contribution	
to I at any order will always have yo's bracketing a	
piece in the middle, which we call the "self-energy"	··· = ···
(It is conventionally defined with a minus sign at T+O).	
In the present case 2 is a constant and diagonal in spin.	
More generally it is a function of the space-time points	
and is spin dependent,	
· We'll talk much more about the self-energy and the proper"	
selt energy below.	
	obbligh If we now return to calculating the single particle Green's function (from page (110)): It spin sums are indicated by the exploded diagrams. In both cases we end up the Sup connecting the outside lines, the outside lines but he direct term has an additional spin sum in the todaple. It rest of the diagram is evaluated trivially. It rest of the diagram is evaluated trivially. As before I ((x, x)) = I((g, t)) = (fin) (-x) I((x, x)) I ((x, x)) I (

10/26/09

If we substitute

Bap(xr, x'r) = Sap = = (E/=x) (2-n2) - 6(2-n2)

into the equation for Dop, we initially have to sum over a different variable to, to, ... for each propagator line.

· But all of the Xx dependence will then be explicit:

(3x2 6 15 6 15 5) = (21) 33 (15 15).

momentum conservation,

ine also have a 21 to 21 factor, which just says

That F3 is both entering and exiting the virtex, so

it doesn't add any new constraint.

- This pattern will repeat with any diagram, which means we can eliminate all x integrations from the start and replace them directly with momentum sums (which become integrate as V >00) in the propagators. The feynman rules will include the prescription to conserve momentum at the vertices.
- · To deal with the time dependence we will end up doing something similar and switch to frequency space.

 · We have to be a bit more careful, since the time interval is from 0 to β and we have periodic for antiperiodic in this case) boundary conditions.

 · We'll come back to this.