

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 494 203 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

05.01.2005 Bulletin 2005/01

(51) Int Cl.7: G09G 3/32

(21) Application number: 04077476.2

(22) Date of filing: 01.08.2002

(84) Designated Contracting States:
DE FR GB

(30) Priority: 02.08.2001 JP 2001235387
03.12.2001 JP 2001368399

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
02255398.6 / 1 282 104

(71) Applicant: SEIKO EPSON CORPORATION
Tokyo 160-0811 (JP)

(72) Inventor: Kasai, Toshiyuki
Suwa-shi Nagano-ken, 392-8502 (JP)

(74) Representative: Cloughley, Peter Andrew et al
Miller Sturt Kenyon,
9 John Street
London WC1N 2ES (GB)

Remarks:

This application was filed on 06 - 09 - 2004 as a divisional application to the application mentioned under INID code 62.

(54) Driving of data lines used in a control circuit of a display device

(57) The display matrix section 200 has pixel circuits 210 arranged in the form of a matrix, a plurality of gate lines Y1, Y2 ... that extend in the row direction, and a plurality of data lines X1, X2 ... that extend in the column direction. The scan lines are connected to a gate driver 300, and the data lines are connected to a data line driver 400. A pre-charging circuit 600 or additional current generation circuit is installed for each data line as means for accelerating the charging or discharging of the data line. For each data line, charging or discharging is accelerated by pre-charging or current addition prior to the completion of the setting of the light emission level in the corresponding pixel circuit 210. A judgment circuit is provided, which judges the need to use the acceleration feature based on the amount of variation in current which will be caused by the variation in the data signal on the data lines.

Fig. 18

Description

[0001] The present invention relates to a technique for driving data lines used in control of unit circuits, such as pixel circuits of a display device.

[0002] In recent years, electro-optical devices using organic EL elements (organic electroluminescent elements) have been under development. Organic EL elements emit light themselves, and do not require back lighting. Accordingly, it is expected that such elements will make it possible to achieve display devices that have a lower power consumption, high visual field angle and high contrast ratio. Furthermore, in the present specification, the term "electro-optical device" refers to a device that converts an electrical signal into light. A typical example of an electro-optical device is a device that converts an electrical signal expressing an image into light representing an image; such a device is especially suitable as a display device.

[0003] Fig. 1 is a block diagram which illustrates the general structure of a display device using organic EL elements. This display device has a display matrix section 120, a gate driver 130, and a data line driver 140. The display matrix section 120 has a plurality of pixel circuits 110 that are arranged in the form of a matrix, and an organic EL element 114 is disposed in each pixel circuit 110. A plurality of data lines X1, X2 ... that extend along the column direction of the matrix, and a plurality of gate lines Y1, Y2 ... that extend along the row direction of the matrix, are respectively connected to the matrix of the pixel circuits 110.

[0004] In cases where a large display panel is constructed using the configuration shown in Fig. 1, the electrostatic capacitance C_d of each data line is fairly large. When the electrostatic capacitance C_d of the data lines is large, considerable time is required to drive the data lines. It has been very difficult to construct a large display panel using organic EL elements because the large number of organic EL elements require very high driving speed.

[0005] The above mentioned problem is not limited to display devices using organic EL elements, but is also common to display devices and electro-optical devices using current-driven light-emitting elements other than organic EL elements. Furthermore, this problem is not limited to light-emitting elements, but is also common to general electronic devices using current-driven elements that are driven by an electric current.

[0006] Accordingly, an object of the present invention to shorten the driving time of data lines used in unit circuits.

[0007] In order to attain the above and other related objects of the present invention, there is provided an electro-optical device which is driven by an active matrix driving method. The electro-optical device comprises: a unit circuit matrix in which a plurality of unit circuits each having a light-emitting element and a circuit for adjusting an emission level of light to be emitted by the light-emit-

ting element are arranged in the form of a matrix; a plurality of scan lines which are respectively connected to the unit circuits, and which are arranged along a row direction of the unit circuit matrix; a plurality of data lines which are respectively connected to the unit circuits, and which are arranged along a column direction of the unit circuit matrix; a scan line driving circuit, connected to the plurality of scan lines, for selecting one row of the unit circuit matrix; a data signal generating circuit for generating a data signal in accordance with the emission level of the light to be emitted by the light-emitting element, and outputting the data signal onto at least one data line among the plurality of data lines; and a charging/discharging accelerating section which is capable of

5 accelerating charging or discharging of a data line through which the data signal is supplied to at least one unit circuit that is present in the row selected by the scan line driving circuit.

[0008] In one embodiment of the present invention, 20 the charging/discharging accelerating section includes a pre-charging circuit that is capable of pre-charging the plurality of data lines. The charging/discharging accelerating section may include an additional current generation circuit for adding a current value to a current value of the data signal that corresponds to the emission level of the light to be emitted by the light-emitting element.

[0009] According to another aspect of the present invention, 25 an electronic device comprises: a plurality of current-driven elements whose operation is controlled according to a current value of the current flowing through the element; data lines for supplying a data signal that defines an operating state of a current-driven element; a data signal generating circuit for outputting 30 the data signal to the data lines; and a charging/discharging accelerating section configured to accelerate charging or discharging of a data line through which the data signal is supplied to the current-driven element.

[0010] The present invention is also directed to an 35 electro-optical device comprising: a current generating circuit for generating a current in response to an input signal; unit circuits each including an electro-optical element; data lines for supplying a current to each unit circuit; and accelerating means for accelerating variation in the current which is to be caused by variation in the input signal.

[0011] In one embodiment, an electro-optical device 40 includes a current generating circuit for generating a current in response to an input signal; unit circuits each including an electro-optical element; and data lines for supplying a current to each unit circuit. The electro-optical device is driven by causing a current value of the current to vary from a first current value to a second current value in response to variation in the input signal through a plurality of periods with different rates of variation in the current value over time.

[0012] The present invention is further directed to an 45 electro-optical device comprising: a current generating

circuit for generating a current in response to an input signal; unit circuits each including an electro-optical element; data lines for supplying a current to each unit circuit; and resetting means for resetting charges of a data line when the current on the data line is varied in response to the input signal.

[0013] These and other objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Fig. 1 is a block diagram which shows the general structure of a display device using organic EL elements.

[0015] Fig. 2 is a block diagram which shows the structure of a display device as one embodiment of the present invention.

[0016] Fig. 3 is a block diagram which shows the internal structure of the display matrix section 200 and data line driver 400.

[0017] Fig. 4 is a circuit diagram which shows the internal structure of a pixel circuit 210 in the first embodiment.

[0018] Figs. 5(a)-5(d) are timing charts which show the ordinary operation of a pixel circuit 210 in the first embodiment.

[0019] Fig. 6 is a circuit diagram which shows the internal structure of a single-line driver 410 in the first embodiment.

[0020] Figs. 7(a)-7(c) are explanatory diagrams which show the variation in the current value during the programming period Tpr in a case where an additional current generation circuit 430 is utilized.

[0021] Figs. 8(a)-8(c) are explanatory diagrams which show the variation in the charge quantity Qd of the data line Xm during the programming period Tpr.

[0022] Figs. 9(a) and 9(b) are graphs which show the relationship of a emission level G of light emitted by the organic EL element, a programming current Im and a charge quantity Qd of the data line.

[0023] Fig. 10 is a block diagram which shows the structure of a display device as a second embodiment of the present invention.

[0024] Fig. 11 is a circuit diagram which shows the internal structure of a pixel circuit 210a in the second embodiment.

[0025] Figs. 12(a)-12(d) are timing charts which shows the ordinary operation of a pixel circuit 210a in the second embodiment.

[0026] Fig. 13 is a circuit diagram which shows a single-line driver 41 a in the second embodiment.

[0027] Figs. 14(a) and 14(b) are graphs which show the relationship of the emission level G of the light emitted by the organic EL element, the programming current Im and the charge quantity Qd of the data line in the

second embodiment.

[0028] Figs. 15(a)-15(c) are explanatory diagrams which show the variation of the charge quantity Qd of the data line Xm during the programming period Tpr in the second embodiment.

[0029] Fig. 16 is a circuit diagram which shows a single-line driver 410b in a third embodiment of the present invention.

[0030] Figs. 17(a)-17(c) are explanatory diagrams which show the operation of the programming period Tpr in a case where the additional current generation circuit 430a of a third embodiment is utilized.

[0031] Fig. 18 is a block diagram which shows the structure of a display device as a fourth embodiment of the present invention.

[0032] Figs. 19(a)-19(d) are explanatory diagrams which show the operation of the programming period in the fourth embodiment.

[0033] Figs. 20(a)-20(c) are explanatory diagrams which illustrate a modification of the pre-charging period.

[0034] Figs. 21 (a)-21 (c) are explanatory diagrams which illustrate a modification of the pre-charging period.

[0035] Fig. 22 is a block diagram which illustrates a modification of the layout of the pre-charging circuit.

[0036] Fig. 23 is a block diagram which illustrates a modification of the layout of the pre-charging circuit.

[0037] Fig. 24 is a block diagram which illustrates a modification of the layout of the pre-charging circuit.

[0038] Fig. 25 is a block diagram which illustrates a modification of the layout of the pre-charging circuit.

[0039] Fig. 26 is a block diagram which illustrates a modification of the layout of the pre-charging circuit.

[0040] Fig. 27 is a perspective view which shows the structure of a personal computer as one example of electronic equipment to which the display device of the present invention is applied.

[0041] Fig. 28 is a perspective view which shows the structure of a cellular phone as one example of electronic equipment to which the display device of the present invention is applied.

[0042] Fig. 29 is a perspective view which shows the structure of the back side of a digital still camera as one example of electronic equipment to which the display device of the present invention is applied.

[0043] Fig. 30 is a block diagram which shows the structure of a magnetic RAM device as another embodiment of the present invention.

[0044] Fig. 31 is an explanatory diagram which shows the schematic structure of a magnetic RAM.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0045] Preferred embodiments of the present invention will be described in the following order:

A. First Embodiment (Current Addition 1)

- B. Second Embodiment (Current Addition 2)
- C. Third Embodiment (Current Addition 3)
- D. Modifications Utilizing Current Addition
- E. Fourth Embodiment (Pre-Charging)
- F. Modifications Relating to Timing of Pre-Charging
- G. Modifications Relating to Disposition of Pre-Charging Circuit
- H. Examples of Application to Electronic Equipment
- I. Other Modifications

A. First Embodiment (Current Addition 1)

[0046] Fig. 2 is a block diagram which shows the schematic structure of a display device as a first embodiment of the present invention. This display device has a controller 100, a display matrix section 200 (also called a "pixel section"), a gate driver 300, and a data line driver 400. The controller 100 generates gate driving signals and data line driving signals that are used to perform displays on the display matrix section 200, and respectively supplies these signals to the gate driver 300 and data line driver 400.

[0047] Fig. 3 shows the internal structure of the display matrix section 200 and data line driver 400. The display matrix section 200 has a plurality of pixel circuits 210 that are arranged in the form of a matrix, and each of these pixel circuits 210 has an organic EL element 220. There are provided a plurality of data lines Xm ($m = 1$ through M) that extend along the column direction of the matrix, and a plurality of gate lines Yn ($n = 1$ through N) that extend along the row direction of the matrix, and they are respectively connected to the matrix of the pixel circuits 210. The data lines are also referred to as "source lines", and the gate lines are also referred to as "scan lines". Furthermore, in the present specification, the pixel circuits 210 are also referred to as "unit circuits" or "pixels." The transistors inside the pixel circuits 210 are typically constructed as Thin Film Transistors.

[0048] The gate driver 300 selectively drives one of the plurality of gate lines Yn, and selects one row of pixel circuits. The data line driver 400 has a plurality of single-line drivers 410 that are used to drive the respective data lines Xm. These single-line drivers 410 supply data signals to the pixel circuits 210 via the respective data lines Xm. When the internal functions (described later) of the pixel circuits 210 are set in accordance with these data signals, the current values that flow through the organic EL elements 220 are controlled in accordance with these settings; as a result, the emission level of the light emitted by the organic EL elements 220 is controlled.

[0049] The controller 100 (Fig. 2) converts display data (image data) that represents a display state of the pixel region 220 into matrix data that expresses the emission levels of the light emitted by the respective organic EL elements 220. This matrix data includes gate line driving signals that are used for the successive selection of one row of pixel circuits, and data line driving

signals that indicate the levels of the data line signals that are supplied to the organic EL elements in the selected row of pixel circuits. The gate line driving signals and data line driving signals are respectively supplied to the gate driver 300 and data line driver 400. The controller 100 also controls the timing of the driving of the gate lines and data lines.

[0050] Fig. 4 is a circuit diagram which shows the internal structure of a pixel circuit 210. This pixel circuit 210 is disposed at the intersection point of the m-th data line Xm and n-th gate line Yn. The gate line Yn includes two sub-gate lines V1 and V2 in this embodiment.

[0051] The pixel circuit 210 is a current-program type circuit that adjusts the emission level of the organic EL element 220 in accordance with the current value that flows through the data line Xm. In concrete terms, this pixel circuit 210 has four transistors 211 through 214 and a storage capacitor 230 (also called a "memory capacitor") in addition to the organic EL element 220. The storage capacitor 230 holds an electric charge corresponding to a current of the data signal that is supplied via the data line Xm. In this way, the storage capacitor is used to adjust the emission level of the light emitted by the organic EL element 220. Specifically, the storage capacitor 230 corresponds to a voltage holding means for holding a voltage that corresponds to the current that flows through the data line Xm. The first through third transistors 211 through 213 are n-channel type FETs, and the fourth transistor 214 is a p-channel type FET.

[0052] The source of the first transistor 211 is connected to the drain of the second transistor 212, the drain of the third transistor 213, and the drain of the fourth transistor 214. The drain of the first transistor 211 is connected to the gate of the fourth transistor 214. The storage capacitor 230 is coupled between the source and gate of the fourth transistor 214. The source of the fourth transistor is also connected to the power supply voltage Vdd.

[0053] The source of the second transistor 212 is connected to the single-line driver 410 (Fig. 3) via the data line Xm. The organic EL element 220 is connected between the source of the third transistor 213 and the ground voltage.

[0054] The gates of the first and second transistors 211 and 212 are connected in common to the first sub-gate line V1. The gate of the third transistor 213 is connected to the second sub-gate line V2.

[0055] The first and second transistors 211 and 212 are switching transistors that are used in accumulating charges into the storage capacitor 230. The third transistor 213 is a switching transistor that is maintained in an "on" state during the light emission period of the organic EL element 220. The fourth transistor 214 is a driving transistor that is used to adjust the current value that

flows through the organic EL element 220. The current value of the fourth transistor 214 is controlled by the charge quantity (accumulated charge quantity) that is held in the storage capacitor 230.

[0056] Figs. 5(a)-5(d) are timing charts showing the ordinary operation of the pixel circuit 210. There are shown the voltage level of the first sub-gate line V1 (hereafter also referred to as the "first gate signal V1"), the voltage level of the second sub-gate line V2 (hereafter also referred to as the "second gate signal V2"), the current value Iout of the data line Xm (hereafter also referred to as the "data signal Iout"), and the current value IEL that flows through the organic EL element 220.

[0057] The driving period Tc is divided into a programming period Tpr and a light emission period Tel. Here, the "driving period Tc" refers to a period in which the light emission levels, or gradation levels, of all of the organic EL elements 220 in the display matrix section 200 are updated one at a time, and is the same as a so-called "frame period". The updating of emission levels is performed for each row of pixel circuits; the emission levels of N rows of pixel circuits are successively updated during the driving period Tc. For example, in a case where the emission levels of all of the pixel circuits are updated at 30 Hz, the driving period is approximately 33 ms.

[0058] The programming period Tpr is a period in which the light emission levels of the organic EL elements 220 are set inside the pixel circuits 210. In the present specification, the setting of the emission levels in the pixel circuits 210 is called "programming". For example, in a case where the driving period Tc is approximately 33 ms, and the total number N of gate lines Yn is 480 lines, the programming period Tpr is about 69 μ s (= 33 ms/480) or less.

[0059] In the programming period Tpr, the second gate signal V2 is first set at the L level, and the third transistor 213 is maintained in an "off" state. Next, while a current value Im that corresponds to the light emission level is caused to flow through the data line Xm, the first gate signal V1 is set at the H level, and the first and second transistors 211 and 212 are switched to an "on" state. The single-line driver 410 (Fig. 4) of this data line Xm functions as a constant current source that causes a constant current value Im corresponding to the light emission level to flow. As is shown in Fig. 5(c), this current value Im is set at a value that corresponds to the light emission level of the organic EL element 220 within a specified current value range Rl.

[0060] Accordingly, the storage capacitor 230 is to hold a charge corresponding to the current value Im that flows through the fourth transistor 214 (driving transistor). As a result, the voltage stored in the storage capacitor 230 is applied across the source and gate of the fourth transistor 214. In the present specification, the current values Im of the data signals used in the programming operation are called "programming current values Im".

[0061] When the programming is completed, the gate

driver 300 sets the gate signal V1 at the L level, and switches the first and second transistors 211 and 212 to an "off" state; furthermore, the data line driver 400 stops the data signal Iout.

- 5 **[0062]** In the light emission period Tel, the second gate signal V2 is set at the H level to put the third transistor 213 in an "on" state while the first gate signal V1 is maintained at the L level to put the first and second transistors 211 and 212 in an "off" state. Since a voltage that corresponds to the programming current value Im has been stored beforehand in the storage capacitor 230, a current that is about the same as the programming current value Im flows through the fourth transistor 214. Accordingly, a current that is about the same as the programming current value Im also flows through the organic EL element 220, so that light is emitted at a specific level that corresponds to this current value Im. A pixel circuit 210 of the type in which the voltage (i. e., charge) of the storage capacitor 230 is written by the current value Im is called a "current-programmable circuit".

- 10 **[0063]** Fig. 6 is a circuit diagram which shows the internal structure of one of the single-line drivers 410. This single-line driver 410 is equipped with a data signal generating circuit 420 (also called a "control current generator" or "current generating circuit"), and an additional current generation circuit 430 (also called an "additional current generator"). The data signal generating circuit 420 and additional current generation circuit 430 are connected in parallel between the data line Xm and the ground.

- 15 **[0064]** The data signal generating circuit 420 has a structure in which N series connections 421 of a switching transistor 41 and a driving transistor 42 are connected in parallel, where N is an integer equal to or greater than 2. In the example shown in Fig. 6, N is 6. A reference voltage Vref1 is applied in common to the gates of the six driving transistors 42. The ratio of the gain coefficients β of the six driving transistors 42 is set at 1 : 2 : 40 4 : 8 : 16 : 32. As is well known, the gain coefficient β is defined as $\beta = (\mu C_0 W/L)$. Here, μ is the carrier mobility, C_0 is the gate capacitance, W is the channel width, and L is the channel length. Each of the six driving transistors 42 functions as a constant current source. Since the current driving capacity of a transistor is proportional to the gain coefficient β , the ratio of the current driving capacities of the six driving transistors 42 is 1 : 2 : 4 : 8 : 16 : 32.

- 20 **[0065]** The on/off switching of the six switching transistors 41 is controlled by a 6-bit data driving signal Ddata (also called an "input signal") that is supplied from the controller 100 (Fig. 2). The least significant bit of the data driving signal Ddata is supplied to the series connection 421 with the smallest gain coefficient β (i. e., to the series connection in which the relative value of β is 1), and the most significant bit is supplied to the series connection 421 with the largest gain coefficient β (i. e., to the series connection in which the relative value of β is

32). As a result, the data signal generating circuit 420 functions as a current source that generates a current value I_m that is proportional to the value of the data driving signal D_{data} . The value of the data driving signal D_{data} is set at a value that indicates the emission level of the light to be emitted by the organic EL element 220. Accordingly, a data signal with a current value I_m that corresponds to the emission level of the light to be emitted by the organic EL element 220 is output from the data signal generating circuit 420.

[0066] The additional current generation circuit 430 is constructed by the series connection of a switching transistor 43 and a driving transistor 44. A reference voltage V_{ref2} is applied to the gate electrode of the driving transistor 44. The on/off switching of the switching transistor 43 is controlled by an additional current control signal D_p supplied from the controller 100. When the switching transistor 43 is in an "on" state, a predetermined additional current I_p corresponding to the reference voltage V_{ref2} is output on the data line X_m from the additional current generation circuit 430.

[0067] Figs. 7(a)-(c) are explanatory diagrams which show the variation of the current value in the programming period T_{pr} (Fig. 5) in a case where the additional current generation circuit 430 is used. At the point in time t_1 , the data signal generation circuit 430 begins to output the programming current I_m , and the additional current generation circuit 430 also begins to output the additional current I_p ; in this case, the current value I_{out} that is output from the single-line driver 410 is the sum of the programming current I_m and the additional current I_p , ($I_m + I_p$). In the period t_2 to t_4 after the additional current I_p is stopped at the point in time t_2 , only the programming current I_m constitutes the output current of the single-line driver 410. For example, the period t_1 to t_2 during which the additional current I_p flows is set at a period that is equal to approximately the initial 1/4 of the period t_1 to t_4 during which the programming current I_m flows. The reason that the period t_1 to t_2 during which the additional current I_p flows is set equal to the initial stage of the period during which the programming current I_m flows is to suppress the effects of the additional current I_p on the light emission level. The value of the additional current I_p is set, for example, at about a mean value of the maximum value and minimum value of the programming current I_m .

[0068] To be more accurate, the output current I_{out} shown in Fig. 7(a) indicates the current driving capability of the single-line driver 410, and the actual current value I_s on the data line X_m varies as indicated by the solid line in Fig. 7(b). Specifically, at the point in time t_1 , a transiently large current flows; however, this current gradually decreases, and approaches the current value ($I_m + I_p$). When the additional current generation circuit 430 is switched "off" at the point in time t_2 , the actual current I_s decreases even further. However, after the point in time t_2 , since the current value itself is small, the rate at which the data line capacitance C_d (Fig. 3)

is charged or discharged drops; as a result, the variation rate of the current is smaller than in the period from t_1 to t_2 . Furthermore, at the point in time t_3 , the actual current value I_s decreases to the programming current value I_m , and this programming current value I_m is maintained during the period from t_3 to t_4 . Accordingly, the pixel circuit 210 is programmed by the correct programming current value I_m within the programming period T_{pr} .

[0069] The utilization of such an additional current I_p can be also viewed as "the operation that varies the programming current value I_m from a first current value during the programming of the previous line to a second current value during the programming of the present line, through a plurality of periods (i. e., the period from t_1 to t_2 and the period from t_2 to t_3 in Fig. 7(a)) with different rates of variation in the current value over time". Furthermore, this variation from a first current value to a second current value is performed via a third current value ($I_m + I_p$) that is the sum of the programming current I_m during the present programming and the additional current I_p .

[0070] The one-dot chain line shown in Fig. 7(b) indicates the variation in the actual current value in a case in which an additional current I_p is not used, so that the current driving capability of the single-line driver 410 is fixed (Fig. 7(c)). In this case, the current value in the period from t_1 to t_2 is small compared to a case in which an additional current I_p is used; consequently, the variation rate of the current is also smaller. Accordingly, there may be cases in which the actual current I_s does not reach the programming current value I_m even at the point in time t_4 at which programming is to be completed. In such cases, there is a possibility that the pixel circuit 210 will not be programmed to the correct emission level. Or, the problem of a need to extend the programming period T_{pr} in order to achieve correct programming may arise. On the other hand, if an additional current I_p is used, correct programming can be accomplished within the programming period T_{pr} .

[0071] Figs. 8(a)-8(c) are explanatory diagrams which show the variation of the charge quantity Q_d of the data line X_m during the programming period T_{pr} . Figs. 8(a)-8(c) show the operation of Figs. 7(a)-7(c) from the standpoint of electric charge. To be more accurate, the points in time t_1 and t_4 shown in Fig. 7(c) correspond to the points in time at which the level of the first gate signal V_1 changes as shown in Fig. 8(a).

[0072] Generally, before the programming of the n -th row of pixel circuits is initiated, the charge Q_{c0} of the data line X_m depends on the programming current value I_m of the data line X_m in the programming of the $(n - 1)$ th row of pixel circuits. Figs. 9(a) and 9(b) show the relationship of the light emission level G of organic EL element, the current value I_m of the data line X_m (i. e., the programming current value) and the charge quantity Q_d of the data line. In the circuit structure of the first embodiment, the current I_m tends to increase with an in-

crease in the light emission level G (i. e., with an increase in the brightness), and the charge quantity Qd of the data line (i. e., the voltage Vd) tends to decrease with an increase in the emission level G . At the lowest emission level G_{min} , the charge quantity Qd corresponds to a voltage that is close to the power supply voltage Vdd , and at the highest emission level G_{max} , the charge quantity Qd corresponds to a voltage that is close to the ground voltage. Furthermore, in the example shown in Fig. 8(c), a case is envisioned in which the programming current value Im in the programming of the immediately preceding row (i. e., the $(n - 1)$ th row) is relatively large, so that the charge quantity Qd_0 prior to the initiation of the present programming is relatively small.

[0073] When programming is initiated at the point in time $t1$ in Figs. 8(a)-8(c), the data line Xm is charged or discharged by the output current $Iout$ ($= Im + Ip$) of the single-line driver 410, so that the charge quantity Qd increases at a relatively high rate. When the additional current Ip is eliminated at the point in time $t2$, the charging/discharging rate drops, and the variation in the charge quantity Qd also becomes more gradual. However, at the point in time $t3$ in the programming period Tpr , the charge quantity reaches Qdm that corresponds to the desired programming current value Im .

[0074] As may be seen from the above description, the additional current generation circuit 430 functions as a charging/discharging accelerating section that is used to accelerate the charging or discharging of the data line Xm . In the present specification, the term "acceleration of charging or discharging" refers to an operation that accelerates charging or discharging so that charging or discharging of the data line is completed in a shorter time than charging or discharging of the data line by the original desired current value alone (i. e., the programming current value Im in the case of the present embodiment). The additional current generation circuit 430 may also be viewed as a circuit that functions as an accelerating means for accelerating the variation in the current according to the variation in the data signal, or as a resetting means for resetting the charge quantity of the data line Xm to a specified value.

[0075] As is shown by the one-dot chain line in Fig. 8(c), the charging/discharging rate is maintained at a low rate in cases where there is no additional current Ip , so that in this example, the charge quantity does not reach the charge quantity Qdm corresponding to the desired programming current value Im even at the end $t4$ of the programming period Tpr . Accordingly, there is a high possibility that programming to the correct light emission level by supplying the correct programming current Im to the pixel circuit 210 cannot be achieved.

[0076] Thus, in the present embodiment, correct programming of the pixel circuit 210 can be accomplished by accelerating the charging or discharging of the data line using the additional current Ip . The programming time can be shortened, instead, so that the speed of the

driving control of the organic EL element 220 can be increased.

[0077] The acceleration of the charging or discharging of the data line using the additional current Ip is typically performed for all of the data lines Xm contained in the pixel circuit matrix. However, it is also possible to devise the system so that the acceleration of the charging or discharging of these data lines using the additional current Ip is selectively performed for only some of the data lines among the plurality of data lines contained in the pixel circuit matrix. For example, in a case where the charge quantity $Qd0$ (Fig. 8(c)) of the m -th data line Xm at the time that programming is initiated is sufficiently close to the charge quantity Qdm corresponding to the desired programming current Im , the additional current Ip need not be used. In concrete terms, for the respective data lines, the controller 100 may compare the programming current value in the $(n - 1)$ th row with the programming current value in the n -th row, and if the difference is less than a specified threshold value, the controller 100 may judge that the additional current Ip will not be utilized during the programming of the n -th row. Furthermore, the value of the additional current Ip may be varied in accordance with the difference in these programming current values. In other words, it is possible to devise the system so that it comprises a means for determining the current value of the additional current Ip in accordance with the difference between the previous value and present value of the programming current value Im , and a means for supplying the determined additional current value Ip to the respective data lines Xm . In this structure, the additional current value Ip can be used more effectively, so that an increased driving speed can be promoted.

[0078] Alternatively, it is also possible to judge that the additional current Ip will be utilized only in cases where the present programming current value Im is smaller than a specified threshold value, and that the additional current Ip will not be utilized in cases where the programming current value Im is larger than the threshold value. The reason for this is as follows: namely, in cases where the programming current value is large, the charging or discharging of the data lines Xm can be performed with a sufficient speed, so that the desired programming current value Im can be obtained at a sufficiently high speed without using the additional current Ip .

[0079] Instead of this, it is also possible to utilize the additional current Ip only in cases where the present programming current value (second current value) is smaller than the previous programming current value (first current value) and the sum of the present programming current value Im and additional current value Ip (this sum being the third current value) is smaller than the previous programming current value. These three current values can also be set in various other relationships. For example, the third current value may also be a current value that is intermediate between the first cur-

rent value and second current value. Furthermore, it would also be possible to set the absolute value of the current variation rate over time from the first current value to the third current value at a value that is larger than the absolute value of the current variation rate over time from the third current value to the second current value. Moreover, it would also be possible to set the absolute value of the difference between the first current value and the third current value at a value that is greater than the absolute value of the difference between the third current value and the second current value.

[0080] It is desirable that the above mentioned judgment as to whether or not to utilize the additional current I_p be performed for each data line. However, if the additional current I_p is always utilized regardless of the value of the programming current during the programming of the immediately preceding row, the advantage of simplified control of the display device as a whole is obtained.

[0081] Thus, in the present first embodiment, accurate programming can be accomplished in a short time by applying an additional current I_p to the programming current I_m in the initial stage of the programming period. Alternatively, the programming period can be shortened, so that the speed of the driving control of the organic EL elements 220 is increased. In particular, an increase in the speed of the driving control is required in cases where the size or resolution of the display panel is increased; accordingly, the above mentioned effects are more valuable in large display panels and high-resolution display panels.

B. Second Embodiment (Current Addition 2)

[0082] Fig. 10 is a block diagram which shows the schematic structure of a display device as a second embodiment of the present invention. This display device differs from the first embodiment in that a data line driver 400a is installed on the side of the power supply voltage V_{dd} . Furthermore, as will be described below, the internal structure of the single-line drivers 410a and the internal structure of the pixel circuits 210 also differ from those of the first embodiment.

[0083] Fig. 11 is a circuit diagram which shows the internal structure of one pixel circuit 210a. This pixel circuit 210a is a so-called Sarnoff type current-programmable circuit. This pixel circuit 210a has an organic EL element 220, four transistors 241 through 244, and a storage capacitor 230. Furthermore, the four transistors are p-channel type FETs.

[0084] The first transistor 241, storage capacitor 230 and second transistor 242 are connected in series in this order to the data line X_m . The drain of the second transistor 242 is connected to the organic EL element. The first sub-gate line V_1 is connected in common to the gates of the first and second transistors 241 and 242.

[0085] A series connection of the third transistor 243, fourth transistor 244 and organic EL element 220 is in-

terposed between the power supply voltage V_{dd} and the ground. The drain of the third transistor 243 and the source of the fourth transistor 244 are connected to the drain of the first transistor. The second gate line V_2 is connected to the gate of the third transistor 243. The gate of the fourth transistor 244 is connected to the source of the second transistor 242. The storage capacitor 230 is connected between the source and gate of the fourth transistor 244.

[0086] The first and second transistors 241 and 242 are switching transistors that are used in accumulating a desired charge in the storage capacitor 230. The third transistor 243 is a switching transistor that is maintained in an "on" state during the light emission period of the organic EL element 220. The fourth transistor 244 is a driving transistor that is used to control the current value that flows through the organic EL element 220. The current value of the fourth transistor 244 is controlled by the charge quantity that is held in the storage capacitor 230.

[0087] Figs. 12(a)-12(d) are timing charts that shows the ordinary operation of the pixel circuit 210a of the second embodiment. In this operation, the logic of the gate signals V_1 and V_2 is inverted from the operation of the first embodiment shown in Figs. 5(a)-5(d). Furthermore, in the second embodiment, as may be seen from the circuit structure shown in Fig. 11, a programming current I_m flows through the organic EL element 220 via the first and fourth transistors 241 and 244 during the programming period T_{pr} . Accordingly, in the second embodiment, the organic EL element also emits light during the programming period T_{pr} . Thus, in the programming period T_{pr} , the organic EL element 220 may emit light, or may not emit light as in the first embodiment.

[0088] Fig. 13 is a circuit diagram that shows one of the single-line drivers 410a of the second embodiment. This single-line driver 410a is connected to the power supply voltage (V_{dd}) side of the data line X_m . As a result, this embodiment differs from the first embodiment shown in Fig. 6 in that the driving transistor 42 of the data signal generating circuit 420a and the driving transistor 44 of the additional current generation circuit 430a are both constructed from p-channel type FETs. The remaining structure is the same as that of the first embodiment.

[0089] Figs. 14(a) and 14(b) show the relationship of the emission level G of the light emitted by the organic EL element, the current value I_m of the data line X_m and the charge quantity Q_d of the data line in the second embodiment. In the second embodiment, conversely from the first embodiment, the single-line drivers 410a are installed on the power supply voltage (V_{dd}) side of the data lines X_m ; accordingly, the relationship between the emission level G and charge quantity Q_d (i. e., voltage V_d) of each data line X_m is the inverse of that in the first embodiment. Specifically, the charge quantity Q_d (i. e., the voltage V_d) of each data line tends to rise as the emission level G increases (i. e., as the brightness in-

creases). At the lowest emission level G_{min} , the charge quantity Q_d corresponds to a voltage that is close to the ground voltage, while at the highest emission level G_{max} , the charge quantity Q_d corresponds to a voltage that is close to the power supply voltage V_{dd} .

[0090] Figs. 15(a)-15(c) are explanatory diagrams that show the variation of the charge quantity Q_d of each data line X_m during the programming period T_{pr} in the second embodiment. This variation is essentially the same as the variation in the first embodiment shown in Figs. 8(a)-8(c). However, the fact that the charge quantity Q_{d0} prior to the initiation of programming in Fig. 15(c) is relatively small means that (conversely from the first embodiment) the programming current value I_m in the programming of the immediately preceding row (i.e., the $(n - 1)$ th row) is relatively small.

[0091] The display device of this second embodiment has effects similar to those of the first embodiment. Specifically, accurate programming of the pixel circuits 210a can be accomplished in a short time by adding an additional current I_p to the programming current I_m in the initial stage of the programming period T_{pr} . The programming time can be shortened, instead, so that the speed of the driving control of the organic EL elements 220 can be increased.

C. Third Embodiment (Current Addition 3)

[0092] Fig. 16 is a circuit diagram that shows one of the single-line driver circuits 410b in a third embodiment of the present invention. The data signal generating circuit 420 inside this single-line driver 410b is the same as that of the first embodiment shown in Fig. 6; however, the structure of the additional current generation circuit 430b differs from that of the first embodiment. Specifically, this additional current generation circuit 430b has two sets of series connections of a switching transistor 43 and driving transistor 42, and these series connections are connected in parallel with each other. For example, the ratio of the gain coefficients c of the two driving transistors 44 is set at 1 : 2. The additional current control signal D_p is a two-bit signal in this embodiment. In cases where this additional current generation circuit 430b is used, the additional current value I_p can be arbitrarily set at any of four levels corresponding to the four values 0 through 3 that can be represented by the additional current control signal D_p .

[0093] Figs. 17(a)-17(c) are explanatory diagrams that show the operation during the programming period T_{pr} in a case where the additional current generation circuit 430b of the third embodiment is utilized. Here, the additional current value I_p varies from a higher first level I_{p2} to a lower second level I_{p1} . As a result, there is a possibility that the data lines can be charged or discharged more quickly than in the first embodiment or second embodiment. As may be seen from this example, in cases where an additional current is utilized, the system may be arranged so that the additional current

value is varied in two or more stages, thus varying the output current I_{out} of the data lines X_m in three or more stages.

[0094] In a case where the additional current generation circuit 430b of Fig. 16 is used, as in the case of the first embodiment, the level of the additional current value I_p can be determined in accordance with the programming current value for the immediately preceding row and the programming current value for the present row. If this is done, then appropriate additional current values that are suited to the programming current values can be selectively utilized.

[0095] It should be noted here that the additional current generation circuit 430b utilizing multiple additional current values I_p can be applied to the second embodiment.

D. Modifications Utilizing Current Addition

20 Modification D1:

[0096] The additional current generation circuit need not be installed within the single-line driver 410; this circuit may be installed in some other position as long as the circuit is connected to the corresponding data line X_m . Furthermore, instead of installing one additional current generation circuit for each data line X_m , it is also possible to install one additional current generation circuit commonly for a plurality of data lines.

30 Modification D2:

[0097] It would also be possible to arrange the system so that no additional current generation circuit is installed, and so that a current value that is larger than the programming current value I_m is generated by the data signal generation circuit 420 during the initial stage of the programming period, and the current value is then switched to the programming current value I_m after a specified period of time has elapsed.

[0098] As may be seen from the respective embodiments and modifications described above, it is generally sufficient to cause a current that is larger than the programming current value I_m to flow through the data lines in the initial stage of the programming period when an additional current is utilized. By doing this, it is possible to accelerate the charging or discharging of the data lines, so that accurate programming and high-speed driving are possible.

50 E. Fourth Embodiment (Pre-Charging)

[0099] Fig. 18 is a block diagram which illustrates the structure of a display device as a fourth embodiment of the present invention. In this display device, a pre-charging circuit 600 is installed for each of the data lines X_m ($m = 1$ through M) of the display device of the first embodiment shown in Fig. 3. The remaining structure is

the same as that shown in Fig. 3. However, the electrostatic capacitance C_d of the data lines is omitted for the sake of convenience of illustration. Furthermore, circuitry that does not have an additional current generation circuit 430 (Fig. 6) may be used as the single-line drivers 410.

[0100] Pre-charging circuits 600 are respectively connected to each data line X_m in a position between the display matrix section 200 and the data line driver 400. These pre-charging circuits 600 are each constructed from a series connection of a pre-charging power supply V_p which is a constant voltage source, and a switching transistor 610. In this example, the switching transistor 610 is an n-channel type FET, and the source of this transistor is connected to the corresponding data line X_n . A pre-charging control signal Pre is input in common to the gate of each switching transistor 610 from the controller 100 (Fig. 2). The voltage of the pre-charging power supply V_p is set, for example, at the driving power supply voltage V_{dd} (Fig. 4) of the pixel circuits 210. However, a power supply circuit that allows arbitrary adjustment of the pre-charging voltage V_p may also be employed.

[0101] The pre-charging circuits 600 are used to shorten the time required for programming by performing charging or discharging of the respective data lines X_m prior to the completion of programming. In other words, the pre-charging circuits 600 function as charging/discharging accelerating sections that are used to accelerate the charging or discharging of the data lines X_m . Furthermore, the pre-charging circuits 600 may also be viewed as circuits that function as accelerating means for accelerating the variation in the current that accompanies the variation in the data signals, or as resetting means for resetting the charge quantities of the data lines X_m to specified values.

[0102] Figs. 19(a)-19(d) are explanatory diagrams which show the operation during the programming period T_{pr} in the fourth embodiment. In this example, the pre-charging control signal Pre is at the H level during the period from t_{11} to t_{12} prior to the execution of programming in the period from t_{13} to t_{15} , so that pre-charging or pre-discharging is performed by the pre-charging circuits 600 during this period. As a result of this pre-charging, the charge quantities Q_d of the data lines X_m reach a specific value corresponding to the pre-charging voltage V_p (Fig. 18). In other words, the data lines X_m reach a voltage that is more or less equal to the pre-charging voltage V_p . Afterward, when programming is performed in the period from t_{13} to t_{15} , the charge quantities Q_d of the data lines X_n reach a charge quantity Q_{dm} corresponding to the desired programming current value I_m at the point in time t_{14} within the programming period T_{pr} .

[0103] The one-dot chain line in Fig. 19(d) indicates the variation in the charge quantities in a case where no pre-charging or additional current is utilized. In this case, the charge quantities of the data lines do not reach

a charge quantity Q_{dm} corresponding to the desired programming current value I_m even at the end of the programming period T_{pr} . Accordingly, there is a possibility that programming to the correct emission levels by supplying the correct programming current I_m to the pixel circuits 210 cannot be accomplished.

[0104] Thus, in the present embodiment, the correct light emission levels can be set for the pixel circuits 210 by the pre-charging which accelerates the charging or discharging of the data lines.

[0105] In cases where the data line driver 400 is installed on the ground voltage side of the data lines X_m , the charge quantities Q_d of the data lines increase with a decrease in the programming current value I_m as is shown in Figs. 9(a) and 9(b) above, so that the voltage V_d is also large. In this case, it is desirable that the pre-charging voltage V_p be set at a relatively high voltage level corresponding to the relatively small programming current value I_m (i. e., the relatively low light emission level).

[0106] On the other hand, in cases where the data line driver 400 is installed on the power supply voltage side of the data lines X_m , the charge quantities Q_d of the data lines decrease with a decrease in the programming current value I_m as is shown in Fig. 14(a)-14(c) above, so that the voltage V_d is also small. In this case, it is desirable that the pre-charging voltage V_p be set at a relatively low voltage level corresponding to the relatively small programming current value I_m (i. e., the relatively low light emission level).

[0107] In concrete terms, it is desirable that the pre-charging voltage V_p be set so that the data lines can be pre-charged to a voltage level corresponding to a low light emission range equal to or lower than the center value of the light emission level. In particular, it is desirable to set the pre-charging voltage V_p so that the data lines can be pre-charged to a voltage level corresponding to a light emission level in the vicinity of the lowest non-zero light emission level. Here, the term "a light emission level in the vicinity of the lowest non-zero light emission level" refers to, for example, a range of 1 to 10 in a case where the overall range is 0 to 255. If this is done, then programming can be performed at a sufficiently high speed even in cases where the programming current value I_m is small.

[0108] As in the case of the respective embodiments and modifications using an additional current described above, the judgment as to whether or not to perform pre-charging can also be made in accordance with the programming current value for the immediately preceding row and the programming current value for the present row. For example, in a case where the charge quantity Q_{d0} (Fig. 19(c)) of the m-th data line X_m at the time that programming is initiated is sufficiently close to the desired programming current I_m , pre-charging need not be performed for this data line X_m . Alternatively, it would also be possible to judge that pre-charging will be utilized only in cases where the present programming cur-

rent value I_m is smaller than a specified threshold value, and that pre-charging will not be utilized in cases where the present programming current value I_m is greater than this threshold value. The reason for this is as follows: namely, in cases where the programming current value I_m is large, the charging or discharging of the data lines X_m can be performed at a sufficiently high speed; accordingly, the desired programming current value I_m can be reached even if pre-charging is not performed.

[0109] Furthermore, in cases where a judgment is made as to whether or not pre-charging should be performed for each data line, pre-charging can be performed selectively. However, if pre-charging is always performed for all of the data lines, the advantage of simplification of the control of the overall display device is obtained.

[0110] Incidentally, a color display device is ordinarily equipped with pixel circuits of the three color components R, G and B. In this case, it is desirable to construct the device so that the pre-charging voltage V_p can be independently set for each color. In concrete terms, it is desirable to provide three pre-charging power supply circuits so that respectively appropriate pre-charging voltages V_p can be set for the R data line, B data lines and G data lines. Furthermore, in cases where pixel circuits of three color components are connected to the same data line, it is desirable to use a variable power supply circuit that allows alteration of the output voltage as the pre-charging power supply circuit. If the system is devised so that pre-charging voltages V_p can be set separately for the respective colors, the pre-charging operation can be performed more efficiently.

F. Modifications Relating to Timing of Pre-Charging

[0111] Figs. 20(a)-20(c) are explanatory diagrams which show a modification of the pre-charging period. In this example, the period T_{pc} during which the pre-charging signal Pre is "on" (also called the "pre-charging period T_{pc} ") is extended to a time that overlaps with the initial stage of the period during which the first gate signal V_1 is "on". In this case, the two switching transistors 211 and 212 used to charge or discharge the storage capacitor 230 (Fig. 4) are in an "on" state during the latter half of the pre-charging period T_{pc} ; consequently, this storage capacitor 230 can be pre-charged at the same time as the data line X_m . Accordingly, in cases where the electrostatic capacitance of the storage capacitor cannot be ignored relative to the electrostatic capacitance C_d of the data line X_m , the time required for the subsequent return to programming can be shortened.

[0112] On the other hand, if the system is devised so that pre-charging is performed prior to the initiation of actual programming as shown in Figs. 19(a)-19(d), the effect of pre-charging on the accumulated charge quantity of the storage capacitor can be suppressed to an even lower level.

[0113] It should be also noted, in Figs. 20(a)-20(c), the programming current I_m is maintained at 0 until the pre-charging period T_{pc} is completed. The reason for this is as follows: if the programming current I_m is caused to flow during the pre-charging period T_{pc} , a portion of this current will also flow through the pre-charging circuits 600, so that wasteful power consumption results. However, in cases where the amount of power consumed by this operation is negligible, the system may be devised so that the programming current I_m flows during the pre-charging period T_{pc} .

[0114] Figs. 21(a)-21(c) are explanatory diagrams which illustrate another modification of the pre-charging period. In this example, the pre-charging period T_{pc} is initiated after the first gate signal V_1 has been switched "on". In this case as well, the storage capacitor 230 can be pre-charged at the same time as the data line X_m . In this example as well, it is desirable that the programming current I_m be maintained at 0 until the pre-charging period T_{pc} is completed.

[0115] As may be seen from the above description, the pre-charging period may be set prior to the period during which the programming of the pixel circuits is performed (example of Figs. 19(a)-19(c)), or may be set as a period that includes a portion of the initial stage of the period during which the programming of the pixel circuits is performed (e. g., as in the cases illustrated in Figs. 20(a)-20(c) and 21(a)-21(c)). Here, the term "period during which programming is performed" refers to a period in which the gate signal V_1 is in an "on" state, and the switching transistors that connect the data line X_m and storage capacitor 230 (e. g., 211 and 212 in Fig. 4) are in an "on" state. In other words, it is desirable that pre-charging be performed during a specified pre-charging period prior to the completion of the programming period. If this is done, the pre-charging is performed prior to the completion of the accumulation of a charge (storage of a voltage) in the storage capacitor 230; accordingly deviation of the accumulated charge quantity of the storage capacitor 230 from the desired value due to pre-charging can be prevented.

G. Modifications Relating to Layout of Pre-Charging Circuit

[0116] Figs. 22 through 25 shows various modifications of the layout of the pre-charging circuits 600. In the example shown in Fig. 22, a plurality of pre-charging circuits 600 are installed within the display matrix section 200b. This structure is obtained by adding the pre-charging circuits 600 to the display matrix section 200 of the first embodiment shown in Fig. 3. In the example shown in Fig. 23, a plurality of pre-charging circuits 600 are installed within the data line driver 400c. The example shown in Fig. 24 is also an example in which a plurality of pre-charging circuits 600 are installed within the display matrix section 200d. The structure shown in Fig. 24 is obtained by adding the pre-charging circuits 600

to the display matrix section 200a of the second embodiment shown in Fig. 10. In the example shown in Fig. 25, a plurality of pre-charging circuits 600 are installed within the data line driver 400e. The operations of the circuits shown in Figs. 22 through 25 are more or less the same as the operation of the above mentioned fourth embodiment.

[0117] In cases where the pre-charging circuits 600 are installed within the display matrix section 200 as in the examples shown in Figs. 22 and 24, the pre-charging circuits 600 are also constructed from TFTs similar to those of the pixel circuits. On the other hand, in cases where the pre-charging circuits 600 are installed outside the display matrix section 200, for example, the pre-charging circuits 600 can be constructed from TFTs inside a display panel that contains the display matrix section 200, or pre-charging circuits 600 can be formed inside an IC that is separate from the display matrix section 200.

[0118] Fig. 26 shows an example of another display device equipped with a pre-charging circuit 600. In this display device, instead of the plurality of single-line drivers 410 and plurality of pre-charging circuits 600 used in the structure shown in Fig. 23, a single single-line driver 410, a single pre-charging circuit 600 and a shift register 700 are installed. Furthermore, switching transistors 250 are installed for each data line of the display matrix section 200f. One terminal of each switching transistor 250 is connected to the corresponding data line Xm, and the other terminal is connected in common to the output signal line 411 of the single-line driver 410. The pre-charging circuit 600 is also connected to this output signal line 411. The shift register 700 supplies on/off control signals to the switching transistors 250 of the respective data lines Xm; as a result, the data lines Xm are successively selected one at a time.

[0119] In this display device, the pixel circuits 210 are updated in point succession. Specifically, only one pixel circuit 210, which is located at the intersection point of one gate line Yn selected by the gate driver 300 and one data line Xm selected by the shift register 700, is updated in a single programming pass. For example, M pixel circuits 210 on the n-th gate line Yn are successively programmed one at a time; then, after this programming is completed, the M pixel circuits 210 on the next (n + 1)th gate line are programmed one at a time. In contrast, in the respective embodiments and modifications described above, the operation differs from that of the display device shown in Fig. 26 in that one row of pixel circuits are programmed at the same time (i. e., in line succession).

[0120] In cases where programming of the pixel circuits is performed in point succession in the manner of the display device shown in Fig. 26, as in the case of the above mentioned fourth embodiment, correct programming of the pixel circuits 210 can be accomplished by pre-charging the data lines prior to the completion of the programming of the respective pixel circuits, or, the

speed of the driving control of the organic EL elements 220 can be increased by shortening the programming time.

[0121] A feature that the device shown in Fig. 26 shares with the above mentioned embodiments and modifications is that the pre-charging circuit 600 can accelerate the charging or discharging of a plurality of data lines Xm (m = 1 through M). However, the pre-charging circuit 600 shown in Fig. 26 does not charge or discharge a plurality of data lines simultaneously; instead, this pre-charging circuit 600 can only charge or discharge the data lines one at a time. As may be seen from this description, the expression "can accelerate the charging or discharging of a plurality of data lines" as used in the present specification does not refer only to cases in which the circuit can accelerate the charging or discharging of a plurality of data lines simultaneously, but also includes cases in which the circuit can accelerate the charging or discharging of a plurality of data lines one at a time in succession.

[0122] In the example of Fig. 26, the pre-charging of data lines is performed in a display device in which programming is performed in point succession. However, the above mentioned additional current generation circuit 25 may also be utilized as a means for accelerating the charging or discharging of the data lines in such a device. For example, the single-line driver 410 shown in Fig. 26 has the circuit structure shown in Fig. 6; accordingly, an additional current Ip can be generated using the additional current generation circuit 430. However, there is no need to construct the circuit so that both pre-charging and an additional current can be simultaneously utilized; a circuit structure that allows the utilization of one or the other is sufficient.

35 H. Examples of Application to Electronic Equipment

[0123] The above mentioned display devices utilizing organic EL elements can be applied to various types of electronic equipment such as mobile personal computers, cellular phones, and digital still cameras.

[0124] Fig. 27 is a perspective view of a mobile type personal computer. The personal computer 1000 is equipped with a main body 104 that has a keyboard 1010, and a display unit 1060 that uses organic EL elements.

[0125] Fig. 28 is a perspective view of a cellular phone. This cellular phone 2000 is equipped with a plurality of operating buttons 2020, a receiver 2040, a transmitter 2060, and a display panel 2080 using organic EL elements.

[0126] Fig. 29 is a perspective view of a digital still camera 3000. The connections with external devices are shown in simplified form. While an ordinary camera exposes a film by means of a light image of the object of imaging, this digital still camera 3000 generates an imaging signal by the photo-electric conversion of a light image of the object of imaging by means of an imaging

element such as a CCD (charge-coupled device). Here, a display panel 3040 using organic EL elements is disposed on the back of the case 3020 of the digital still camera 3000, and a display is performed on the basis of imaging signals from the CCD. Accordingly, the display panel 3040 functions as a finder that displays the object of imaging. Furthermore, a light-receiving unit 3060 that includes an optical lens and a CCD is disposed on the observation side (back surface side in the figure) of the case 3020.

[0127] Here, when the photographer presses the shutter button 3080 while observing an image of the object of imaging displayed on the display panel 3040, the imaging signal of the CCD at this point in time is transferred and stored in the memory of a circuit board 3100. Furthermore, in this digital still camera, a video signal output terminal 3120 and data communications input-output terminal 3140 are disposed on the side surface of the case 3020. Furthermore, as is shown in the figure, a television monitor 4300 is connected to the video signal output terminal 3120, and a personal computer 4400 is connected to the data communications input-output terminal 3140, if necessary. Moreover, imaging signals stored in the memory of the circuit board 3100 are output to the television monitor 4300 or personal computer 4400 by specific operations.

[0128] Examples of electronic devices other than the personal computer shown in Fig. 27, cellular phone shown in Fig. 28 and digital still camera shown in Fig. 29 includes television sets, view finder type and monitor direct viewing type video tape recorders, car navigation devices, pagers, electronic notebooks, desktop calculators, word processors, work stations, television telephones, POS terminals, and devices with a touch panel. The above mentioned display devices using organic EL elements may be used as a display section in these various types of electronic equipment.

I. Other Modifications

Modification I1:

[0129] Although all of the transistors are constructed from FETs in the various embodiments and modifications described above, some or all of the transistors may be replaced by bipolar transistors or other types of switching elements. The gate electrodes of FETs and the base electrodes of bipolar transistors correspond to the "control electrodes" in the present invention. In addition to thin-film transistors (TFTs), silicon base transistors may also be used as these various types of transistors.

Modification I2:

[0130] In the various embodiments and modifications described above, the display matrix section 200 had a single matrix of pixel circuits; however, the display ma-

trix section 200 may also have plural matrices of pixel circuits. For example, in cases where a large panel is constructed, the system may be devised so that the display matrix section 200 is divided into a plurality of adjacent regions, and one pixel circuit matrix is installed for each region. Furthermore, three pixel circuit matrices corresponding to the three colors R, G and B may be installed inside one display matrix section 200. In cases where a plurality of pixel circuit matrices (a plurality of unit circuit matrices) are present, the above mentioned embodiments or modifications can be applied to each matrix.

Modification I3:

[0131] In the pixel circuits used in the various embodiments and modifications described above, the programming period Tpr and light emission period Tel are separated as shown in Figs. 5(a)-5(d). However, it is also possible to use pixel circuits in which the programming period Tpr is present within a portion of the light emission period. In the case of such pixel circuits, programming of the light emission level is performed in the initial stage of the light emission period Tel; afterward, the light emission continues at the same level. In a device using such pixel circuits as well, correct light emission levels can be set in the pixel circuits by accelerating the charging or discharging of the data lines by an additional current or pre-charging. The programming period can be shortened instead so that the speed of the driving control of the organic EL elements can be increased.

Modification I4:

[0132] Although the various embodiments and modifications described above are related to display devices with current-programmable pixel circuits, the present invention can also be applied to display devices that have voltage-programmable pixel circuits. In the case of voltage-programmable pixel circuits, programming (setting of light emission levels) is performed in accordance with the voltage levels of the data lines. Acceleration of the charging or discharging of the data lines utilizing an additional current or pre-charging can also be performed in a display device that has voltage-programmable pixel circuits.

[0133] However, in the case of display devices that use current-programmable pixel circuits, the programming current value is extremely small when the light emission level is low; consequently, there is a possibility that considerable time will be required for programming. Accordingly, the effect of accelerating the charging or discharging of the data lines is more prominent in cases where the present invention is applied to display devices that use current-programmable pixel circuits.

Modification I5:

[0134] In the various embodiments and modifications described above, the emission levels of the light emitted by the organic EL elements are adjustable; however, the present invention can also be applied to display devices in which, for example, a black and white display (two-way display) is performed by generating a constant current. Furthermore, the present invention can also be used in cases where organic EL elements are driven using a passive matrix driving method. However, in the case of display devices in which multilevel adjustment is possible, and display devices using an active matrix driving method, the requirements for increased speed of driving are stronger; accordingly, the effect of the present invention is more prominent in the case of such display devices. Furthermore, the present invention is not limited to display devices in which the pixel circuits are arranged in the form of a matrix; the present invention can also be used in cases where other arrangements are employed.

Modifications I6:

[0135] Although the embodiments and modifications described above are directed to display devices using organic EL elements, the present invention can also be applied to display devices and electronic devices using light-emitting elements other than organic EL elements. For example, the present invention can also be applied to devices that have other types of light-emitting elements, such as LEDs and FEDs (field emission displays) in which the light emission level can be adjusted in accordance with the driving current value.

Modification I7:

[0136] The present invention can also be applied to other current-driven elements other than light-emitting elements. Examples of such current-driven elements include magnetic RAM (MRAM). Fig. 30 is a block diagram showing the structure of a memory device utilizing magnetic RAM.

[0137] This memory device has a memory cell matrix section 820, a word line driver 830, and a bit line driver 840. The memory cell matrix section 820 has a plurality of magnetic memory cells 810 that are arranged in the form of a matrix. A plurality of bit lines X1, X2 ... that extend along the column direction, and a plurality of word lines Y1, Y2 ... that extend along the row direction, are respectively connected to the matrix of the magnetic memory cells 810. As may be seen from a comparison of this Fig. 30 with Fig. 3 of the first embodiment, the memory cell matrix section 810 corresponds to the display matrix section 200. Furthermore, the magnetic memory cells 810 correspond to the pixel circuits 210, the word line driver 830 corresponds to the gate driver 300, and the bit line driver 840 corresponds to the data

line driver 400.

[0138] Fig. 31 is an explanatory diagram which shows the structure of one magnetic memory cell 810. This magnetic memory cell 810 has a structure in which a barrier layer 813 made of an insulating material is interposed between two electrodes 811 and 812 made of ferromagnetic metal layers. The magnetic RAM is devised so that data is stored by utilizing the following phenomenon: namely, when a tunnel current is caused to flow between the two electrodes 811 and 812 via the barrier layer 813, the magnitude of this tunnel current depends on the orientations of the magnetizations M1 and M2 of the upper and lower ferromagnetic metals. In concrete terms, the stored data is judged as "0" or "1" by measuring the voltage (or resistance) between the two electrodes 811 and 812.

[0139] One electrode 812 is utilized as a reference layer in which the orientation of the magnetization M2 is fixed, while the other electrode 811 is utilized as a data storage layer. For example, the storage of information is accomplished by causing a data current I_{data} to flow through the bit line Xm (writing electrode), and varying the orientation of the magnetization of the electrode 811 by means of the magnetic field that is generated in accordance with this current. The reading of stored information is accomplished by causing a current to flow in the opposite direction through the bit line Xm (reading electrode), and magnetically reading out the tunnel resistance or voltage.

[0140] The memory device illustrated in Figs. 30 and 31 is one example of a device using such magnetic RAM, and various magnetic RAM structure and methods for recording and reading out information have been proposed.

[0141] The present invention can also be applied to electronic devices using current-driven elements that are not light-emitting elements, such as the above mentioned magnetic RAM. Specifically, the present invention can be applied in general to electronic devices using current-driven elements.

[0142] Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims

1. An electro-optical device which is driven by an active matrix driving method, comprising:
55 a unit circuit matrix in which a plurality of unit circuits are arranged in the form of a matrix, each unit circuit including a current-driven light-emitting element, in which the light-emission level depends on a current value flowing

through the element, and a circuit for adjusting an emission level of light to be emitted by the current-driven light-emitting element; a plurality of scan lines which are respectively connected to the unit circuits, and which are arranged along a row direction of the unit circuit matrix; a plurality of data lines which are respectively connected to the unit circuits, and which are arranged along a column direction of the unit circuit matrix; a scan line driving circuit, connected to the plurality of scan lines, for selecting one row of the unit circuit matrix; a data signal generating circuit for generating a data signal in accordance with the emission level of the light to be emitted by the current-driven light-emitting element, and outputting the data signal onto at least one data line among the plurality of data lines; **characterised by:**

a charging/discharging accelerating section which is capable of accelerating charging or discharging of a data line through which the data signal is supplied to at least one unit circuit that is present in the row selected by the scan line driving circuit; and a judgment circuit for judging a need to use the accelerating section on the basis of an amount of the variation in current which is to be caused by the variation in the data signal.

2. An electro-optical device comprising:

a current generating circuit for generating a current in response to an input signal; unit circuits each including an electro-optical element; data lines for supplying a current to each unit circuit; accelerating means for accelerating variation in the current which is to be caused by variation in the input signal; and a judgment circuit for judging a need to use the accelerating means on the basis of an amount of the variation in current which is to be caused by the variation in the input signal.

3. A driving method for an electro-optical device comprising:

providing a current generating circuit for generating a current in response to an input signal; providing unit circuits each including an electro-optical element; providing data lines for supplying a current to

each unit circuit; and causing a current value of the current to vary from a first current value to a second current value in response to variation in the input signal through a plurality of periods with different rates of variation in the current value over time.

- 5 4. A driving method for an electro-optical device according to claim 3, wherein the operation of causing the current value to vary from the first current value to the second current value is performed via a third current value which is set by a pre-charging circuit for setting the data line at a specific voltage.
- 10 15 5. A driving method for an electro-optical device according to claim 3, wherein the operation of causing the current value to vary from the first current value to the second current value is performed via a third current value which is set by an additional current generation circuit which constitutes a portion of current paths of the current that flows through the data line.
- 20 25 6. A driving method for an electro-optical device according to claim 5, wherein the third current value is determined as a function of the second current value and a current value that flows through the additional current generation circuit.
- 30 35 7. A driving method for an electro-optical device according to claim 5, wherein the third current value is determined as a function of the first current value and a current value that flows through the additional current generation circuit.
- 40 8. A driving method for an electro-optical device according to any of claims 3 through 7, wherein the second current value is smaller than the first current value.
- 45 9. A driving method for an electro-optical device according to claim 7, wherein the third current value is set between the first current value and the second current value.
- 50 10. A driving method for an electro-optical device according to claim 9, wherein an absolute value of the rate of variation in the current value over time from the first current value to the third current value is greater than an absolute value of the rate of variation in the current value over time from the third current value to the second current value.
- 55 11. A driving method for an electro-optical device according to claim 10, wherein an absolute value of a difference between the first current value and the third current value is greater than an absolute value of a difference between the third current value and

the second current value.

12. A driving method for an electro-optical device according to any of claims 3 through 11, wherein the first current value and the second current value are current values that correspond to values of the input signal. 5

13. A driving method for an electro-optical device according to any of claims 3 through 12, wherein a judgment is made on the basis of a difference between the first current value and the second current value as to whether or not it is necessary to perform the operation of causing the current value to vary from the first current value to the second current value through a plurality of periods with different rates of variation in the current value over time, and if the operation is judged to be necessary, the first current value is caused to vary to the second current value through the plurality of periods. 10 15 20

14. An electro-optical device which is driven by the driving method according to any of claims 3 through 13.

15. An electronic device comprising: 25

- a current generating circuit for generating a current in response to an input signal;
- unit circuits each including a current-driven element; 30
- data lines for supplying a current to each unit circuit;
- accelerating means for accelerating variation in the current which is to be caused by variation in the input signal; and 35
- a judgment circuit for judging a need to use the accelerating means on the basis of an amount of the variation in the current which is to be caused by the variation in the input signal. 40

16. A piece of electronic equipment comprising the electro-optical device according to any of claims 1, 2 and 14 as a display device.

45

50

55

16

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5(a) v_1

Fig. 5(b) v_2

Fig. 5(c) I_{out}

Fig. 5(d) I_{EL}

Fig. 7(a)

Fig. 7(b)

Fig. 7(c)

Fig.9(a)

Fig.9(b)

Fig. 10

Fig. 11

Fig. 12(a)

v_1

Fig. 12(b)

v_2

Fig. 12(c)

i_{out}

Fig. 12(d)

i_{EL}

Fig. 13

Fig. 14(a)

Fig. 14(b)

Fig. 15(a)

Fig. 15(b)

Fig. 15(c)

$Qd = Vd \cdot Cd$

$Qd0$ small \leftrightarrow previous I_m small

Qdm large \leftrightarrow present I_m large

Fig. 16

Fig. 18

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig.31

