19. Lineare Differentialgleichungen m-ter Ordnung

In diesem Paragraphen: $I \subseteq \mathbb{R}$ ein Intervall, $a_0, a_1, \ldots, a_{m-1}, b \in C(I, \mathbb{R}), x_0, y_0, \ldots, y_{m-1} \in \mathbb{R}$. Die Differentialgleichung $y^{(m)} + a_{m-1}(x)y^{(m-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$ heißt eine **lineare** Differentialgleichung m-ter Ordnung.

Setze $Ly := y^{(m)} + a_{m-1}(x)y^{(m-1)} + \ldots + a_1(x)y' + a_0(x)y$. Dann schreibt sich obige Gleichung in der Form

$$Ly = b(x)$$

.

Diese Gleichung heißt **homogen**, falls $b \equiv 0$, anderenfalls **inhomogen**. Das zur Gleichung Ly = b gehörende System (S) aus § 18 lautet

$$z' = A(x)z + b_0(x)$$

mit
$$b_0(x) = (0, \dots 0, b(x))$$
 und $A(x) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 0 & 0 & 0 & & 1 \\ -a_0(x) & \dots & \dots & -a_{m-1}(x) \end{pmatrix}$

Die Beweise der folgenden Sätze 19.1 bis 19.4 folgen aus den Paragraphen 16 und 18.

Satz 19.1 Das Anfangswertproblem
$$\begin{cases} Ly = b(x) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(m-1)}(x_0) = y_{m-1} \end{cases}$$
 hat auf I genau eine Lösung.

Wie in § 16: Ist $J \subseteq I$ ein Intervall und $\hat{y}: J \to \mathbb{R}$ eine Lösung von Ly = b auf J, so existiert eine Lösung $y: I \to \mathbb{R}$ der Gleichung Ly = b auf I mit $\hat{y} = y|_J$.

Daher betrachten wir immer Lösungen $y: I \to \mathbb{R}$.

Die zu Ly = b gehörende homogene Gleichung lautet: (H) Ly = 0.

Satz 19.2

Sei y_s eine spezielle Lösung der Gleichung Ly=b und $y:I\to\mathbb{R}$ eine Funktion.

Dann: y ist eine Lösung von $Ly = b \iff \exists y_0 : I \to \mathbb{R} : y_0$ ist eine Lösung von (H) und $y = y_0 + y_s$.

 $\mathbb{L} := \{ y : I \to \mathbb{R} : y \text{ löst (H) auf } I \}.$

Satz 19.3

- (1) \mathbb{L} ist ein reeller Vektorraum, dim $\mathbb{L} = m$.
- (2) Für $y_1, \ldots, y_k \in \mathbb{L}$ sind äquivalent:
 - (i) y_1, \ldots, y_k sind linear unabhängig in \mathbb{L} ;
 - (ii) $\forall x \in I \text{ sind } (y_j(x), y_j'(x), \dots, y_j^{(m-1)}(x)) \quad (j = 1, \dots k) \text{ linear unabhängig in } \mathbb{R}^m;$
 - (iii) $\exists x \in I : (y_j(x), y_j'(x), \dots, y_j^{(m-1)}(x)) \quad (j = 1, \dots, k)$ sind linear unabhängig in \mathbb{R}^m .

Definition

Seien $y_1, \ldots, y_m \in \mathbb{L}$. y_1, \ldots, y_m heißt ein **Lösungssystem** (LS) von (H) und

$$W(x) := \begin{vmatrix} y_1(x) & \dots & y_m(x) \\ y'_1(x) & \dots & y'_m(x) \\ \vdots & & \vdots \\ y_1^{(m-1)}(x) & \dots & y_m^{(m-1)}(x) \end{vmatrix}$$

heißt Wronskideterminante.

Sind y_1, \ldots, y_m linear unabhängig in \mathbb{L} , so heißt y_1, \ldots, y_m ein **Fundamentalsystem** (FS) von (H).

Satz 19.4

Sei $y_1, \ldots y_m$ ein Lösungssystem von (H).

- (1) $W(x) = W(\xi)e^{-\int_{\xi}^{x} a_{m-1}(t)dt} \ (x, \xi \in I)$
- (2) $y_1, \dots y_m$ ist ein Fundamentalsystem von (H) $\iff W(x) \neq 0 \, \forall x \in I \iff \exists \xi \in I : W(\xi) \neq 0$

Satz 19.5 (Reduktionsverfahren von d'Alembert (m = 2))

Sei y_1 eine Lösung von (*) $y'' + a_1(x)y' + a_0(x)y = 0$ und $y_1(x) \neq 0 \,\forall x \in I$. Sei z eine Lösung von $z' = -(a_1(x) + \frac{2y_1'(x)}{y_1(x)})z$, $z \neq 0$ und $y_2(x) := y_1(x) \int z(x) dx$.

Dann ist y_1, y_2 ein Fundamentalsystem von (*).

Nachrechnen:
$$y_2$$
 löst (*). $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} y_1 & y_1 \int z dx \\ y'_1 & y'_1 \int z dx + y_1 z \end{vmatrix} =$

$$y_1 y'_1 \int z dx + y_1^2 z - y_1 y'_1 \int z dx = \underbrace{y_1^2}_{>0} z \xrightarrow{19.4} y_1, y_2 \text{ sind linear unabhängig in } \mathbb{L}.$$

Beispiel

Length (**)
$$y'' + \frac{2x}{1-x^2}y' - \frac{2}{1-x^2}y = 0$$
 $(I = (1, \infty)); y_1(x) = x$ $z' = -(\frac{2x}{1-x^2} + \frac{2}{x})z = -\frac{2x^2 + 2(1-x^2)}{x(1-x^2)}z = \frac{2}{x(x^2-1)}z$ (***)
$$\int \frac{2}{x(x^2-1)}dx = \log(1 - \frac{1}{x^2})$$

§ 7
$$\implies$$
 allgemeine Lösung von (***): $z(x) = ce^{\log(1-\frac{1}{x^2})} = c(1-\frac{1}{x^2})$ $(c \in \mathbb{R})$

$$z(x) = 1 - \frac{1}{x^2} \implies \int z(x)dx = x + \frac{1}{x} \implies y_2(x) = x(x + \frac{1}{x}) = 1 + x^2$$

Fundamentalsystem: y_1, y_2 . Allgemeine Lösung von (**): $y(x) = c_1 x + c_2 (1 + x^2)$ $(c_1, c_2 \in \mathbb{R})$

Satz 19.6

Sei y_1, \ldots, y_m ein FS von (H). W sei die Wronskideterminante von y_1, \ldots, y_m und für $k=1,\ldots,m$ sei $W_k(x)$ die Determinante, die aus W(x) entsteht, indem man in W(x) die k-te Spalte ersetzt durch $(0,\ldots,0,b(x))^T$. Dann ist

$$y_s := \sum_{k=1}^m y_k \int \frac{W_k}{W} dx$$

eine spezielle Lösung von $L_y = b(x)$.

Beweis

§16, §18

$$y'' + \frac{2x}{1-x^2}y' - \frac{2}{1-x^2}y = x^2 - 1$$

$$W(x) = \begin{vmatrix} x & x^2 + 1 \\ 1 & 2x \end{vmatrix} = 2x^2 - (x^2 + 1) = x^2 - 1$$

$$W_1(x) = \begin{vmatrix} 0 & x^2 + 1 \\ x^2 - 1 & 2x \end{vmatrix} = -(x^2 + 1)(x^2 - 1) \implies \frac{W_1(x)}{W(x)} = -(x^2 + 1)$$

$$\implies \int \frac{W_1}{W} dx = -\frac{1}{3}x^3 - x$$

$$W_2(x) = \begin{vmatrix} x & 0 \\ 1 & x^2 - 1 \end{vmatrix} = x(x^2 - 1) \implies \frac{W_2(x)}{W(x)} = x \implies \int \frac{W_2}{W} dx = \frac{1}{2}x^2$$

$$\implies y_s(x) = -\frac{1}{3}x^4 - x^2 + (x^2 + 1)\frac{1}{2}x^2 = \frac{1}{6}x^4 - \frac{1}{2}x^2.$$

Allgemeine Lösung der inhomogenen Gleichung:

$$y(x) = c_1 x + c_2(x^2 + 1) + \frac{1}{6}x^4 + \frac{1}{2}x^2(c_1, c_2 \in \mathbb{R})$$