Cognitive Robotics 04. Motion Models

AbdElMoniem Bayoumi, PhD

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz

Where are we?

Bayes Filters: Framework

Given:

Stream of observations z and action data u:

$$d_{1:t} = \{u_1, z_1 \dots u_t, z_t\}$$

- Sensor model P(z|x)
- Action model P(x|u,x')
- Prior probability of the system state P(x)

Goal:

- Estimate the state X of a dynamical system
- Belief: posterior of the state

$$Bel(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Markov Assumption

$$p(z_{t} | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_{t} | x_{t})$$

$$p(x_{t} | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_{t} | x_{t-1}, u_{t})$$

z = observation

u = action

x = state

Bayes Filters

$$|Bel(x_t)| = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Bayes
$$= \eta P(z_t | x_t, u_1, z_1, ..., u_t) P(x_t | u_1, z_1, ..., u_t)$$

Markov
$$= \eta P(z_t \mid x_t) P(x_t \mid u_1, z_1, ..., u_t)$$

Total prob.
$$= \eta P(z_t | x_t) \int P(x_t | u_1, z_1, ..., u_t, x_{t-1})$$

$$P(x_{t-1} | u_1, z_1, ..., u_t) dx_{t-1}$$

Markov
$$= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, ..., u_t) \ dx_{t-1}$$

Markov =
$$\eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, ..., u_{t-1}, z_{t-1}) dx_{t-1}$$

$$= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Robot Motion

- Robot motion is inherently uncertain
- The error accumulates
- How can we model this uncertainty?

Dynamic Bayesian Network Controls, States, and Measurements

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p(x_t \mid x_{t-1}, u_t)$
- The term $p(x_t \mid x_{t-1}, u_t)$ specifies a posterior probability, that action u_t carries the robot from x_{t-1} to x_t
- $p(x_t \mid x_{t-1}, u_t)$ can be modeled based on the motion equations and the uncertain outcome of the movements

Coordinate Systems

- Configuration of a typical wheeled robot in 3D can be described by six parameters
- 3D Cartesian coordinates plus the three Euler angles for roll, pitch, and yaw
- For simplicity, we consider robots operating on a planar surface throughout this section
- The state space of such systems is 3D: (x,y,θ)

Typical Motion Models

- In practice, one mainly finds two types of motion models
- Odometry-based: when systems are equipped with wheel/joint encoders
- Velocity-based (dead reckoning):
 Calculate the new pose based on the velocities and the time elapsed

Example Wheel Encoders

- Measure how much a wheel turns and in which direction
- No absolute position measurement
- Increments can be integrated to pose

Black areas on transparent disk interrupt light falling on photo sensor

Source: http://www.active-robots.com/

Dead Reckoning

- Derived from "deduced reckoning"
- Mathematical procedure for determining the location of a vehicle
- Achieved by calculating the current pose of the vehicle based on its velocities and the elapsed time

Some Reasons for Motion Errors of Wheeled Robots

different wheel diameters

Odometry Model

- Motion from $(\bar{x},\bar{y},\bar{\theta})$ to $(\bar{x}',\bar{y}',\bar{\theta}')$
- Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$

$$\delta_{trans} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}$$

$$\delta_{rot1} = \tan 2(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$

$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

$$\bar{\delta}_{rot2}$$

$$\bar{\delta}_{rot1}$$

$$\delta_{rot1}$$

$$\delta_{trans}$$

The atan2 Function

Extends the inverse tangent and correctly copes with the signs of x and y:

$$\operatorname{atan2}(y,x) \ = \begin{cases} \operatorname{atan}(y/x) & \text{if } x > 0 \\ \operatorname{sign}(y) \left(\pi - \operatorname{atan}(|y/x|)\right) & \text{if } x < 0 \\ 0 & \text{if } x = y = 0 \\ \operatorname{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0 \end{cases}$$

Noise Model for Odometry

The measured motion is given by the true motion corrupted with noise:

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \varepsilon_{\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \varepsilon_{\alpha_3 |\delta_{trans}| + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|)} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \varepsilon_{\alpha_5 |\delta_{rot2}| + \alpha_6 |\delta_{trans}|} \end{split}$$

Typical Distributions for Probabilistic Motion Models

Normal distribution

$$\varepsilon_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$

Triangular distribution

$$\varepsilon_{\sigma^{2}}(x) = \begin{cases} 0 \text{ if } |x| > \sqrt{6\sigma^{2}} \\ \frac{\sqrt{6\sigma^{2}} - |x|}{6\sigma^{2}} \end{cases}$$

Error Distribution with Zero Mean and Given Variance

- For a normal distribution
 - 1. Algorithm **prob_normal_distribution**(a,b):
 - 2. return $\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$
- For a triangular distribution
 - 1. Algorithm **prob_triangular_distribution**(*a,b*):
 - 2. return $\max \left\{ 0, \frac{1}{\sqrt{6} \ b} \frac{|a|}{6 \ b^2} \right\}$

query point

↑ std. deviation

Calculating the Posterior Given x, x', and Odometry

poses odometry

1. Algorithm motion_model_odometry
$$(\![m{x},m{x'}\!]ar{m{x}},ar{m{x'}}\!]$$

2.
$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

3.
$$\delta_{rot1} = atan2(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$
 from odometry

4.
$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

5.
$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$

$$\mathbf{6.} \qquad \hat{\delta}_{rot1} = \operatorname{atan2}(y' - y, x' - x) - \hat{\theta}$$

6.
$$\hat{\delta}_{rot1} = atan2(y'-y, x'-x) - \hat{\theta}$$
 values of interest (**x**,**x**')

7.
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

8.
$$p_1 = \text{prob}(\delta_{\text{rot1}} - \hat{\delta}_{\text{rot1}}, \alpha_1 | \delta_{\text{rot1}} | + \alpha_2 \delta_{\text{trans}})$$

9.
$$p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \delta_{\text{trans}} + \alpha_4 (|\delta_{\text{rot1}}| + |\delta_{\text{rot2}}|))$$

10.
$$p_3 = \operatorname{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_5 \mid \delta_{rot2} \mid +\alpha_6 \delta_{trans})$$

11. return
$$p_1 \cdot p_2 \cdot p_3$$

Application

- Repeated application of the motion model for short movements
- Typical banana-shaped distributions obtained for the 2D projection of the 3D posterior

Sample-Based Density Representation

Sample-Based Density Representation

How to Sample from a Normal Distribution?

- Sampling from a normal distribution
 - 1. Algorithm **sample_normal_distribution**(b):

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

Normally Distributed Samples

10⁶ samples

How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution
 - Algorithm sample_normal_distribution(b):

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

- Sampling from a triangular distribution
 - 1. Algorithm **sample_triangular_distribution**(b):

2. return
$$\frac{\sqrt{6}}{2} [\text{rand}(-b, b) + \text{rand}(-b, b)]$$

For Triangular Distribution

10³ samples

10⁵ samples

10⁴ samples

10⁶ samples

How to Obtain Samples from Arbitrary Functions?

Rejection Sampling

- Sampling from arbitrary distributions
- Sample x from a uniform distribution from [-b,b]
- Sample *c* from [0, max f]
- if f(x) > c
 otherwise

keep the sample reject the sample

Rejection Sampling

Sampling from arbitrary distributions:

1. Algorithm sample_distribution(f, b):
2. repeat
3. $x = \operatorname{rand}(-b, b)$ 4. $y = \operatorname{rand}(0, \max\{f(x) \mid x \in [-b, b]\})$ 5. until $y \leq f(x)$ 6. return x

Example

Sampling from

$$f(x) = \begin{cases} abs(x) & x \in [-1; 1] \\ 0 & otherwise \end{cases}$$

Sample Odometry Motion Model

Algorithm sample_motion_model(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$
 old pose

- 1. $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
- 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 \delta_{trans} + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_{5} | \delta_{rot2} | + \alpha_{6} \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
- 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$

sample_normal_distribution

- $\mathbf{6.} \quad \theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
- 7. Return $\langle x', y', \theta' \rangle$

Sampling from Motion Model

Examples (Odometry-Based)

Velocity-Based Model

Motion Equation

- Robot moves from (x, y, θ) to (x', y', θ')
- Velocity information $u=(v,\omega)$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x_c + \frac{v}{\omega} \sin(\theta + \omega \Delta t) \\ y_c - \frac{v}{\omega} \cos(\theta + \omega \Delta t) \\ \omega \Delta t \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \omega\Delta t \end{pmatrix}$$

Noise Model for the Velocity-Based Model

 The measured motion is given by the true motion corrupted with noise

$$\hat{v} = v + \mathcal{E}_{\alpha_1|v| + \alpha_2|\omega|}$$

$$\hat{\omega} = \omega + \varepsilon_{\alpha_3|\nu| + \alpha_4|\omega|}$$

 Discussion: What is the disadvantage of this noise model?

Noise Model for the Velocity-Based Model

- The $(\hat{v}, \hat{\omega})$ -circle constrains the final orientation (2D manifold in a 3D space)
- Better approach:

$$\begin{split} \hat{v} &= v + \mathcal{E}_{\alpha_1 | v | + \alpha_2 | \omega |} \\ \hat{\omega} &= \omega + \mathcal{E}_{\alpha_3 | v | + \alpha_4 | \omega |} \\ \hat{\gamma} &= \mathcal{E}_{\alpha_5 | v | + \alpha_6 | \omega |} \\ \uparrow \end{split}$$

term to account for the final rotation

Motion Including 3rd Parameter

$$x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$$

$$y' = y + \frac{\hat{v}}{\hat{\omega}}\cos\theta - \frac{\hat{v}}{\hat{\omega}}\cos(\theta + \hat{\omega}\Delta t)$$

$$\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$$

to account for the final rotation

Equation for the Velocity Model

$$x_{t-1} = (x, y, \theta)^T$$

$$x_t = (x', y', \theta')^T \qquad \text{some constant}$$

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix}$$

some constant (the center of the circle lies on a ray half way between x and x' and is orthogonal to the line between x and x')

Equation for the Velocity Model

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

some constant

Center of circle:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix}$$

Allows us to solve the equations to:

$$\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$$

Sampling from Velocity Model

Algorithm sample_motion_model_velocity(u_t, x_{t-1}): 1: $\hat{v} = v + \mathbf{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)$ 2: $u = (v, \omega)$ $\hat{\omega} = \omega + \mathbf{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)$ 3: $\hat{\gamma} = \mathbf{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)$ 4: $x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$ 5: $y' = y + \frac{\hat{v}}{\hat{\omega}}\cos\theta - \frac{\hat{v}}{\hat{\omega}}\cos(\theta + \hat{\omega}\Delta t)$ 6: $\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$ 7: return $x_t = (x', y', \theta')^T$ 8:

Posterior Probability for Velocity Model

Algorithm motion_model_velocity(x_t, u_t, x_{t-1}): 1: $\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta} \qquad u = (v, \omega)$ 2: $x^* = \frac{x + x'}{2} + \mu(y - y')$ 3: // instantaneous center of rotation $y^* = \frac{y + y'}{2} + \mu(x' - x)$ 4: $r^* = \sqrt{(x-x^*)^2 + (y-y^*)^2}$ // distance to center 5: $\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$ 6: $\hat{v} = \frac{\Delta \theta}{\Delta t} r^*$ 7: $\hat{\omega} = \frac{\Delta \theta}{\Delta t}$ 8: // compute motion error (deviation from control u) $\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$ 9: return $\operatorname{prob}(v-\hat{v},\alpha_1v^2+\alpha_2\omega^2)$ · $\operatorname{prob}(\omega-\hat{\omega},\alpha_3v^2+\alpha_4\omega^2)$ 10: $\cdot \operatorname{\mathbf{prob}}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)$

Examples (Velocity-Based)

Map-Consistent Motion Model

Approximation: $p(x'|u,x,m) = \eta p(x'|m)p(x'|u,x)$

Summary

- We discussed motion models for odometrybased and velocity-based systems
- Calculations are done in fixed time intervals
- We discussed ways to calculate the posterior probability p(x'|x, u)
- We also described how to sample from p(x'| x, u)
- In practice, the parameters of the motion models have to be learned

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz