MATH 240: Discrete Structures - Assignment 1

Liam Scalzulli liam.scalzulli@mail.mcgill.ca

October 12, 2022

Problem 1

To do this we can simplify the right-hand side using set identities, ultimately showing that it is equivalent to the left-hand side.

$$\begin{split} C \setminus B &= (C \setminus B) \setminus (B \setminus A) \\ &= (C \cap \overline{B}) \cap \overline{(B \cap \overline{A})} & \qquad \text{[Definition } A \setminus B = A \cap \overline{B} \text{]} \\ &= (C \cap \overline{B}) \cap (\overline{B} \cup A) & \qquad \text{[De Morgan's Law: } \overline{A \cap B} = \overline{A} \cup \overline{B} \text{]} \\ &= C \cap \overline{B} \cap (\overline{B} \cup A) & \qquad \text{[Associative Law: } (A \cap B) \cap C = A \cap (B \cap C) \text{]} \\ &= C \cap \overline{B} & \qquad \text{[Absorption Law: } A \cap (A \cup B) = A \text{]} \\ &= C \setminus B \end{split}$$

Problem 2

Recall: A tautology is a statement which contains all true in the last column of its truth table.

(a)

p	q	\overline{q}	$p \implies q$	$p \implies q$	$\overline{q} \wedge (\overline{p} \implies \overline{q})$	$\big \; (\overline{q} \wedge (\overline{p \implies q})) \iff p$
\overline{T}	T	F	T	F	F	F
T	F	T	F	T	T	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T

 $\therefore (\overline{q} \wedge (\overline{p} \Longrightarrow \overline{q})) \iff p \text{ is } not \text{ a tautology.}$

(b)

p	q	r	$ q \implies r $	$p \implies (q \implies r)$	$p \implies q$	$(p \implies q) \implies r$	$\mid (p \implies (q \implies r)) \iff ((p \implies q) \implies r)$
\overline{T}	T	T	T	T	T	T	T
T	$\mid T \mid$	F	F	F	T	F	T
T	F	T	T	T	F	T	T
T	F	F	T	T	F	T	T
F	T	T	T	T	T	T	T
F	T	F	F	T	T	F	F
F	F	T	T	T	T	T	T
F	F	F	T	T	T	F	F

 $\therefore (p \implies (q \implies r)) \iff ((p \implies q) \implies r) \text{ is } not \text{ tautology}.$

Problem 3

To prove logical equivalence we can simplify either the left-hand side or the right-hand side using the laws of logic, ultimately showing that one side is equivalent to the other.

(a)

$$(p \iff q) \equiv (p \implies q) \land (q \implies p) \qquad \qquad [\text{Definition } (p \iff q) \equiv (p \implies q) \land (q \implies p)] \\ \equiv (\overline{p} \lor q) \land (\overline{q} \lor p) \qquad \qquad [\text{Definition } (p \implies q) \equiv \overline{p} \lor q]$$

$$\overline{p \oplus q} \equiv \overline{(p \wedge \overline{q}) \vee (\overline{p} \wedge q)}$$
 [Definition $p \oplus q \equiv (p \wedge \overline{q}) \vee (\overline{p} \wedge q)$]
$$\equiv \overline{(p \wedge \overline{q})} \wedge \overline{(\overline{p} \wedge q)}$$
 [De Morgan's Law: $\overline{p \vee q} \equiv \overline{p} \wedge \overline{q}$]
$$\equiv (\overline{p} \vee q) \wedge (q \vee \overline{p})$$
 [De Morgan's Law: $\overline{p \wedge q} \equiv \overline{p} \vee \overline{q}$]

$$\therefore p \iff q \equiv \overline{p \oplus q}$$

(b)

$$\begin{array}{ll} \overline{p} \equiv (\overline{p \vee \overline{q}}) \vee (\overline{p} \wedge \overline{q}) \\ \equiv (\overline{p} \wedge q) \vee (\overline{p} \wedge \overline{q}) \\ \equiv \overline{p} \wedge (q \vee \overline{q}) \\ \equiv \overline{p} \wedge 1 \\ \equiv \overline{p} \end{array} \qquad \begin{array}{ll} [\text{De Morgan's Law: } \overline{p \vee q} \equiv \overline{p} \wedge \overline{q}] \\ [\text{Distributive Law: } p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)] \\ [\text{Tautology: } p \vee \overline{p} \equiv 1] \\ \equiv \overline{p} \\ [\text{Identity Law: } p \wedge 1 \equiv p] \end{array}$$

Problem 4

Recall NOR: $(p\downarrow q)\equiv \overline{p}\wedge \overline{q}\equiv \overline{(p\vee q)}$ *as seen in class

(a) OR $(p \lor q)$

(b) AND $(p \wedge q)$

(c) NOT (\overline{p})

$$p \longrightarrow \overline{p \lor p} \equiv \overline{p} \land \overline{p} \equiv \overline{p}$$