复习题:

1,	设数据元素的集合 D = {1 2 3 4 5},则满足下列关系 R 的数据结构中为线性结构的是 ()
	A)R={ (1, 2) , (3, 4) , (5, 1) }
	B)R= $\{(1, 3), (4, 1), (3, 2), (5, 4)\}$
	$C)R=\{(1, 2), (2, 3), (4, 5)\}$
	D)R={(1, 3), (2, 4), (3, 5)}
2,	设数据结构 X=(D, R), 其中 A={1, 2, 3, 4}, R={<1, 2>, <2, 3>, <4, 1>}, 则该数
	据结构X为()
	A. 线性结构 B. 树型结构 C. 图型结构 D. 集合
3,	与数据元素本身的形式、内容、相对位置、个数无关的是数据的 (C) 。
	A 存储结构 B.存储实现 C.逻辑结构 D.运算实现
4. ۱	while (i <= n) {i = i * 2; } 的时间复杂度是 (log n)
5.	设数组 data[m]作为循环队列 SQ 的存储空间,front 为队头指针,rear 为队尾指针,则执行出
队排	操作后其头指针 front 值为(D)
Α.	front=front+1 B. front=(front+1)%(m-1)
C.	front=(front-1)%m D. front=(front+1)%m
6.	对稀疏矩阵进行压缩存储目的是(c)。
Α.	便于进行矩阵运算 B. 便于输入和输出 C. 节省存储空间 D. 降低运算的时间复杂度
7.	不带头结点的单链表 head 为空的判定条件是(A)。
	head = = NULL B . head->next = = NULL head->next = = head D . head! = NULL
8.	设某棵二叉树中只有度数为 0 和度数为 2 的结点且度数为 0 的结点数为 n,则这棵二叉中共有
()个结点。

(A)2n (B) n+l (C) 2n-1 (D) 2n+l
9. 下列程序段的时间复杂度为(C)
for(i=0;i <n;i++)< td=""></n;i++)<>
for(j=i;j < n;j + +)
s[i][j]=0;
A.O(1) B.O(n) C.O(n^2) D.O(nlogn)
10. 下列关于最小生成树的说法中,正确的是()。
I.最小生成树的代价唯一
Ⅱ.所有权值最小的边一定会出现在所有的最小生成树中
Ⅲ. 使用普里姆 (Prim) 算法从不同顶点开始得到的最小生成树一定相同
IV. 使用普里姆算法和克鲁斯卡尔 (Kruskal) 算法得到的最小生成树总不相同
A 仅I
В仅工
C仅I、 皿
D仅I、IV
11. 已知某二叉树的后序遍历序列是 dabec,中序遍历序列 debac,则前序遍历的结果是
A.acbed B.decab C.deabc D.cedba
12. 对稀疏矩阵进行压缩存储目的是()。
A. 便于进行矩阵运算 B. 便于输入和输出 C. 节省存储空间 D. 降低运算的时间复杂度
13. 设有 8000 个待排序的记录关键字,如果需要用最快的方法选出其中最小的 10 个记录关键字,则用下列()方法可以达到此目的。 A. 快速排序 B. 堆排序 C.归并排序 D. 插入排序 14. 一棵非空的二叉树的先序遍历序列与后序遍历序列正好相同,则该二叉树一定满足(C)。
A. 所有的结点均无左孩子或空树 B. 所有的结点均无右孩子或空树

- C. 只有一个叶子结点或空树
- D. 是任意一棵二叉树
- 15. 如果求一个连通图中以某个顶点为根的高度最小的生成树,应采用(B)。
- A. 深度优先搜索算法

B. 广度优先搜索算法

C. 求最小生成树的 prim 算法

- D. 拓扑排序算法
- 16. 由两个栈共享一个存储空间的好处是: (B)。
- A. 减少存取时间,降低下溢发生的机率
- B. 节省存储空间,降低上溢发生的机率
- C. 减少存取时间,降低上溢发生的机率
- D. 节省存储空间,降低下溢发生的机率

注:双向栈是指两个栈共享同一存储空间,两个栈的栈底设在向量空间的两端,让两个栈各自向中间延伸,超过向量空间的一半时,只要另一个栈的元素不多,那么前者就可以占用后者的部分存储空间。只有当整个向量空间被两个栈占满(即两个栈顶相遇)时,才会发生上溢,因此两个栈共享一个长度为 m 的向量空间。

填空题:

- 17. 一棵树 T 采用孩子兄弟链表存储,如果树 T 中某个结点为叶子结点,则该结点在二叉链表中所对应的结点一定是孩子指针为空/左子树为空
- 18. 采用邻接表存储的图的深度优先遍历类似于二叉树的 先序遍历
- 19 对于一个有 n 个节点的有向连通图,其存在 2 个环,且所有顶点出度之和为 D,则其存在 _____条边
- 20 ———kruscal————算法适合于求稀疏图的最小生成树。
- 21. 逻辑结构主要用于算法设计,而存储结构用于指导算法编程实现
- **22.** 算法的时间复杂度不仅与问题的规模有关,在同一个问题规模下,与输入数据有关。即与输入数据所有的可能取值范围、输入各种数据或数据集的概率有关。
- 23. 一个栈的输入序列为 a,b,c,d, 若在入栈的过程中允许出栈,则可能得到不同的出栈序列个数遵循卡特兰数,请给出一个不可以等的出站序列,如: bdac
- 24. 矩阵的 location 计算,树的结点关系计算
- 25. 图的度、出度、入度计算

应用题:

26. 给出下列邻接表表示的图的深度/广度优先遍历(从 V0 开始),并做到图和邻接表的相互转换

- 27. 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有深度遍历和广度遍历,深度遍历有前序、中序以及后序三种遍历方法,广度遍历即我们平常所说的层次遍历。请基于栈完成二叉树的先序深度遍历,基于队列完成树的广度优先遍历。
- 28. 树的孩子兄弟表示法,在森林、树、二叉树之间架起了桥梁;那么二叉树的遍历和图的拓扑排序有何区别与联系?顺序存储结构是如何表示元素的逻辑关系的?链式存储呢?二叉树的线索化概念与意义如何?
- 29. 什么是哈夫曼树?对于哈夫曼树,哈夫曼树处理哈夫曼编码,还有哪些应用?对于哈夫曼编码,加权路径长度的物理含义是什么?给定一组权值,比如19,21,2,3,6,7,10,32,如何构建哈夫曼树?构建出的哈夫曼树唯一吗?如果不唯一,那这些哈夫曼树有何共同点?
- **30.** 什么是连通图的最小生成树?在实际中有哪些具体应用,请举例。构建最小生成树有几种方法?对于稠密图、稀疏图各选择什么算法比较好?具体如何构建?请用两种方法求下图的最小生成树,给出步骤。

- 31. 直接插入排序、shell 排序、冒泡排序、快速排序、简单选择排序、堆排序、基数排序,哪些排序算法是稳定的?哪些算法一趟结束后能够确定一个元素的最终位置?他们的时间、空间复杂度如何?请使用上述排序算法对如下序列给出每趟排序后的输出: 20,125,164,18,21,306,430,210
- 32. 哈希既是一种存储方法,也是一种查找方法,将一块连续的存储空间的索引作为哈希地址,通过哈希函数确定记录的存储位置,并用同样的方法进行查找,这块连续的存储空间叫做哈希表(散列表)。哈希表的装填因子如何计算?对于关键字序列,38,25,74,63,52,48,假定采用散列函数 h (key) = key%7 计算散列地址,并散列存储在散列表 A 【0....6】中,若采用线性探测方法解决冲突,则在该散列表上进行等概率成功查找的平均查找长度为多少?
- 33. 完成如下算法的程序设计、结构声明,函数实现。
- 1) 给定一个顺序存储的线性表,请设计一个函数删除所有值大于 min 而且小于 max 的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变。
- 2) 给定 10 个整数: (4,3,1,2,6,5,0,9,8,7) 存放在 A 数组中,使用直接插入排序,完成从小到大排序。
- 3) typedef struct

```
keyType key; // 查找表中每个数据元素的值 // 如果需要,还可以添加其他属性 }ElemType; 
typedef struct {
    ElemType *elem; // 存放查找表中数据元素的数组 int length; // 记录查找表中数据的总数量 }SSTable; 
完成折半查找算法的实现。
```

https://max.book118.com/html/2018/1218/6011001015001240.shtm
https://www.cnblogs.com/nonlinearthink/p/11856915.html
https://yongdanielliang.github.io/animation/animation.html