Основные понятия теории множеств: 4/8

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2019

Конечные множества

Говорят, что X имеет n элементов (или X имеет мощность n), где $n \in \mathbb{N}$, если $X \sim n$. Далее, X называют конечным, если $X \sim n$ для некоторого $n \in \mathbb{N}$, и бесконечным в противном случае.

В силу принципа Дирихле, для любых $\{n,m\}\subseteq \mathbb{N}$, если $n\sim m$, то n=m. В дальнейшем мы будем предполагать, что

$$\forall x (x \in \mathbb{N} \to \mathsf{Card}(x)).$$

Иными словами, натуральные числа суть кардиналы. В частности, для $n \in \mathbb{N}$ верно |n|=n, а $X \sim n$ можно переписать как |X|=n.

Из принципа Дирихле также следует, что $\mathbb N$ бесконечно. Кроме того, для любых $\{m,n\}\subseteq \mathbb N$,

$$m \leqslant n \iff m \leqslant n.$$

Поэтому введённый нами ранее порядок на натуральных числах совпадёт с порядком на мощностях конечных множеств.

Предложение

Пусть X бесконечно. Тогда |X| > n для всех $n \in \mathbb{N}$.

Доказательство.

Несложная индукция по n.

Подробности см. на доске.

Пусть X конечно и $|Y| \leqslant |X|$. Тогда Y конечно.

Доказательство.

Поскольку X конечно, то |X|=n для некоторого $n\in\mathbb{N}$. Разумеется, Y должно быть конечным, поскольку иначе $n=|X|\geqslant |Y|>n$.

«Сложное доказательство».

Не ограничивая общности, можно считать, что X=n и $Y\subseteq X$, где $n\in\mathbb{N}$. Используя рекурсию, определим $f:\subseteq\mathbb{N}\to Y$ по правилу

$$f(m) :=$$
 «наименьший элемент $Y \setminus \text{range}(f \upharpoonright_m)$ ».

Нетрудно понять, что $f:\subseteq \mathbb{N}\xrightarrow[\text{нa}]{1-1} Y$, причём dom (f)=m для некоторого $m\leqslant n$.

Пусть $f:X \xrightarrow{\mathsf{нa}} Y$, причём X конечно. Тогда $|Y| \leqslant |X|$.

Доказательство.

Не ограничивая общности, мы можем считать, что X=n, где $n\in\mathbb{N}$. Определим $h:Y\to n$ по правилу

$$h(y) :=$$
 «наименьший элемент $f^{-1}[\{y\}]$ ».

Легко понять, что $h: Y \xrightarrow{1-1} n$. Стало быть, $|Y| \leqslant |n| = n$.

Пусть X и Y конечны. Тогда $X \cup Y$, X imes Y и X^Y конечны, причём

$$\begin{aligned} |X \cup Y| &= |X| + |Y \setminus X|, \\ |X \times Y| &= |X| \cdot |Y| \quad \text{if} \quad |X^Y| &= |X|^{|Y|}. \end{aligned}$$

Доказательство.

Простая индукция по |Y|.

Подробности см. на доске.

Давайте называть X счётным, если $|X| = |\mathbb{N}|$. Говорят, что X более чем счётно, если $|X| > |\mathbb{N}|$, и не более чем счётно, если $|X| \leqslant |\mathbb{N}|$.

Давайте называть X счётным, если $|X|=|\mathbb{N}|$. Говорят, что X более чем счётно, если $|X|>|\mathbb{N}|$, и не более чем счётно, если $|X|\leqslant |\mathbb{N}|$.

— Ho...

Давайте называть X счётным, если $|X|=|\mathbb{N}|$. Говорят, что X более чем счётно, если $|X|>|\mathbb{N}|$, и не более чем счётно, если $|X|\leqslant |\mathbb{N}|$.

— Но. . . должно же быть $|X| \not> |\mathbb{N}| \ ! \dots$

Давайте называть X счётным, если $|X|=|\mathbb{N}|$. Говорят, что X более чем счётно, если $|X|>|\mathbb{N}|$, и не более чем счётно, если $|X|\leqslant |\mathbb{N}|$.

— Но... должно же быть $|X| \geqslant |\mathbb{N}| \ ! \dots$

Давайте называть X счётным, если $|X|=|\mathbb{N}|$. Говорят, что X более чем счётно, если $|X|>|\mathbb{N}|$, и не более чем счётно, если $|X|\leqslant |\mathbb{N}|$.

— Но... должно же быть $|X| \geqslant |\mathbb{N}| \ ! \dots$

Предложение (в ZFC)

Пусть X бесконечно. Тогда существует счётное $Y\subseteq X$.

Доказательство.

Пусть η — какая-нибудь функция выбора для $\mathfrak{P}(X)\setminus\{\varnothing\}$. Используя рекурсию, определим $f:\mathbb{N}\to X$ по правилу

$$f(n) := \eta(X \setminus \text{range}(f \upharpoonright_n)).$$

Как легко видеть, $f: \mathbb{N} \xrightarrow{1-1} X$. Значит, $Y:= \operatorname{range}(f)$ будет счётным подмножеством X.

В дальнейшем мы будем предполагать, что

$\mathsf{Card}\left(\mathbb{N}\right)$.

Иными словами, $\mathbb N$ является кардиналом. Таким образом, $|\mathbb N|=\mathbb N$. Когда речь идёт о кардиналах, вместо $\mathbb N$ часто пишут $leph_0$.

Следствие (в ZFC)

 $|X|>leph_0$ тогда и только тогда, когда X бесконечно и несчётно.

Предложение

 $|X|\leqslant leph_0$ тогда и только тогда, когда X конечно или счётно.

Доказательство.

Тривиально.

 \Longrightarrow Не ограничивая общности, здесь можно считать, что $X\subseteq\mathbb{N}$. Предположим, что X бесконечно. Используя рекурсию, определим $f:\mathbb{N}\to X$ по правилу

$$f(n) :=$$
 «наименьший элемент $X \setminus \text{range}(f \upharpoonright_n)$ ».

Нетрудно проверить, что $f: \mathbb{N} \xrightarrow[\mathsf{ha}]{1-1} X$.

Следствие (в ZFC)

 $|X| \geqslant \aleph_0$ тогда и только тогда, когда $|X| \leqslant \aleph_0$.

Пусть $f: X \xrightarrow{\text{на}} Y$, причём X не более чем счётно. Тогда Y не более чем счётно.

Доказательство.

Не ограничивая общности, можно считать, что $X\subseteq \mathbb{N}$. Определим h : $Y\to X$ по правилу

$$h(y) :=$$
 «наименьший элемент $f^{-1}[\{y\}]$ ».

Легко понять, что $h: Y \xrightarrow{1-1} X$. Стало быть, $|Y| \leqslant |X| \leqslant \aleph_0$.

В частности, мы получаем полезный критерий:

Следствие

Непустое X не более чем счётно тогда и только тогда, когда существует сюрьекция из $\mathbb N$ на X.

Ещё одно полезное наблюдение:

Следствие

Пусть R — отношение эквивалентности на X, причём X не более чем счётно. Тогда $X_{/R}$ не более чем счётно.

Пусть X и Y не более чем счётны. Тогда $X \times Y$ не более чем счётно.

Доказательство.

Не ограничивая общности, мы можем считать, что $X,Y\subseteq\mathbb{N}$. Стало быть, нужно установить счётность $\mathbb{N}\times\mathbb{N}$. Определим $\nu:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ по правилу

$$\nu(n,m) := 2^n \cdot (2m+1) - 1.$$

Нетрудно проверить, что ν будет биекцией между $\mathbb{N} \times \mathbb{N}$ и $\mathbb{N}.$

Разумеется, теперь уже легко установить счётность \mathbb{N}^2 , \mathbb{N}^3 , \mathbb{N}^4 и так далее (или $\mathbb{N} \times \mathbb{N}$, $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ и так далее).

Следствие

Пусть X и Y не более чем счётны. Тогда $X \cup Y$ не более чем счётно.

Доказательство.

Поскольку X и $Y\setminus X$ равномощны некоторым подмножествам соответственно $\mathbb{N}\times\{0\}$ и $\mathbb{N}\times\{1\}$, то $X\cup(Y\setminus X)=X\cup Y$ равномощно подмножеству $\mathbb{N}\times\mathbb{N}$, а потому не более чем счётно.

Следствие

Пусть X конечно, причём его элементы не более чем счётны. Тогда $\bigcup X$ не более чем счётно.

Доказательство.

Простая индукция по |X|.

Подробности см. на доске.

Теорема

Пусть f — бесконечная последовательность бесконечных последовательностей. Тогда $\bigcup \{ \operatorname{range}(f_n) \mid n \in \mathbb{N} \}$ не более чем счётно.

Доказательство.

Определим $g: \mathbb{N} \times \mathbb{N} \to \bigcup \left\{ \operatorname{range} \left(f_n \right) \mid n \in \mathbb{N} \right\}$ по правилу

$$g(n,m) := (f(n))(m).$$

Легко понять, что g сюрьективна.

Следствие (в ZFC)

Пусть X не более чем счётно, причём его элементы также не более чем счётны. Тогда $\bigcup X$ не более чем счётно.

Доказательство.

Не ограничивая общности, можно считать, что $X \neq \varnothing$ и $\varnothing \not\in X$. Для каждого $U \in X$ определим

$$\operatorname{\mathsf{Sur}}(U) := \Big\{ f \mid f : \mathbb{N} \xrightarrow{\mathsf{Ha}} U \Big\}.$$

Как мы знаем, $Sur(U) \neq \varnothing$ для всех $U \in X$. Возьмём

$$\mathscr{S} := \{ \mathsf{Sur}(U) \mid U \in X \}.$$

Пусть η — функция выбора для \mathscr{S} . Её можно превратить в последовательность (последоват-ей), а затем применить теорему выше.

Подробности см. на доске.

Теорема

Пусть X не более чем счётно и непусто. Тогда X^* счётно.

Доказательство.

По условию найдётся $\xi:\mathbb{N} \xrightarrow{\mathsf{Ha}} X$. Очевидно, для всех $f \in \mathbb{N}^*$ верно $f \circ \xi \in X^*$. Рассмотрим $\rho: \mathbb{N}^* \to X^*$, действующую по правилу

$$\rho(f) := f \circ \xi.$$

Легко понять, что $\rho: \mathbb{N}^* \xrightarrow{\mathsf{Ha}} X^*$. Поэтому достаточно показать, что \mathbb{N}^* счётно и X^* бесконечно.

Доказательство (продолжение).

Пусть $\nu: \mathbb{N} \times \mathbb{N} \xrightarrow[\text{Ha}]{\text{Ha}} \mathbb{N}$. Разумеется, можно построить left : $\mathbb{N} \to \mathbb{N}$ и right : $\mathbb{N} \to \mathbb{N}$ такие, что

$$left(\nu(n,m)) = n$$
 u $right(\nu(n,m)) = m$.

Далее, используя рекурсию, можно определить последовательность последовательностей f, удовлетворяющую следующим условиям:

$$f_0(i) = \varnothing$$

 $f_{n+1}(i) = f_n(\operatorname{left}(i)) \cup \{(n, \operatorname{right}(i))\}.$

Как нетрудно убедиться, для любого $n \in \mathbb{N}$,

$$range(f_n) = \{g \mid g : n \to \mathbb{N}\}.$$

Поэтому $\bigcup \{ \mathsf{range} \, (f_n) \mid n \in \mathbb{N} \} = \mathbb{N}^*.$ Стало быть, \mathbb{N}^* счётно.

Доказательство (последние штрихи).

Осталось проверить, что X^* бесконечно. Зафиксируем какой-нибудь $x \in X$. Определим $h: \mathbb{N} \to X^*$ по правилу

$$h(n) := n \times \{x\},$$

т.е. h(n) представляет собой последовательность длины n из x. При этом $h: \mathbb{N} \xrightarrow{1-1} X^*$, а потому X^* не может быть конечным.

Для произвольного X обозначим

$$\mathcal{P}_{\mathsf{fin}}(X) := \{ Y \mid Y \subseteq X \text{ и } Y \text{ конечно} \}.$$

Отметим, что в теореме Кантора нельзя заменить ${\mathfrak P}$ на ${\mathfrak P}_{\mathsf{fin}}$:

Следствие

Пусть X счётно. Тогда $\mathcal{P}_{\mathsf{fin}}(X)$ счётно.

Доказательство.

Рассмотрим $\xi: X^* \to \mathcal{P}_{\mathsf{fin}}(X)$, действующую по правилу

$$\xi(f) := \operatorname{range}(f).$$

Легко видеть, что ξ будет сюрьекцией.

Teopeмa (в ZFC)

Пусть X бесконечно, а Y не более чем счётно. Тогда $|X \cup Y| = |X|$.

Доказательство.

Не ограничивая общности, можно считать, что $X \cap Y = \emptyset$. При этом у X имеется некое счётное подмножество Z. Ясно, что $Y \cup Z$ счётно.

Пусть $f:Y\cup Z\xrightarrow[\text{на}]{1-1}Z$. Определим $g:X\cup Y\to X$ по правилу

$$g(x) := egin{cases} f(x) & ext{ec.nu } x \in Y \cup Z, \\ x & ext{uhave.} \end{cases}$$

Легко понять, что $g: X \cup Y \xrightarrow[\text{Ha}]{1-1} X$.

Следствие (в ZFC)

Пусть X более чем сч., а Y не более чем сч. Тогда $|X \setminus Y| = |X|$.

Доказательство.

Возьмём $U:=X\cap Y$ и $V:=X\setminus U$. Ясно, что U не более чем счётно, а V бесконечно. Значит, $|X\setminus Y|=|V|=|U\cup V|=|X|$.