

Uji Normalitas dan Homogenitas Data

TIM AJAR STATISTIK KOMPUTASI 2022/2023

Outlines

Uji Homogenitas

Asumsi-asumsi statistik parametrik

Asumsi yang harus dipenuhi sebelum melakukan analisis

Asumsi-asumsi statistik parametrik #1

Analisis data dengan statistik parametrik -> Estimasi parameter populasi berdasarkan nilai statistik -> Ada asumsi yang harus dipenuhi

Asumsi Umum

Sampel acak

Data terdistribusi normal

Aturan independen

Asumsi-asumsi statistik parametrik #2

Untuk analisis -> korelasi dan regresi (sederhana dan berganda)

Asumsi yang harus dipenuhi

- 1. Data sampel acak
- 2. Data yang dihubungkan berasal dari pasangan yang sama \rightarrow dari responden yang sama
- 3. Distribusi normal → Cek dengan uji normalitas
- 4. Hubungan antara variabel dependen dan independen adalah linier → Uji linieritas regresi
- 5. Multikolinieritas \rightarrow cek hubungan antar independen variabel \rightarrow regresi ganda
- 6. Heteroskedastisitas → ketidakkonsistenan varians dan std pada pengamatan waktu tertentu

Asumsi-asumsi statistik parametrik #2

Untuk analisis perbedaan -> Uji t, ANOVA one-way, ANOVA two-way, ANCOVA

Asumsi yang harus dipenuhi

- 1. Data dari dua kelompok diambil secara acak
- 2. Data terdistribusi secara normal
- 3. Data bersifat independen
- 4. Varians dari kedua populasi adalah homogen

Uji Normalitas

Apakah populasi benar-benar terdistribusi secara normal?

Uji Normalitas

Apa itu uji normalitas?

"Prosedur yang digunakan untuk mengetahui apakah data berasal dari populasi yang terdistribusi secara normal atau berada pada sebaran yang normal"

- Digunakan untuk mengukur data berskala ordinal, interval, ataupun rasio
- Jika $L_{hitung} < L_{tabel}$ maka sampel berasal dari populasi yang terdistribusi normal
- Metode uji
 - Uji Kolmogorov-Smirnov
 - Uji Liliefors
 - Uji Chi-squared

Kasus

Pengukuran motivasi berprestasi 50 orang guru adalah sebagai berikut, 79, 84, 89, 80, 76, 91, 87, 89, 86, 83, 87, 84, 82, 80, 78, 86, 87, 90, 83, 92, 79, 90, 86, 84, 82, 83, 84, 86, 77, 82, 83, 78, 86, 84, 89, 79, 82, 80, 84, 77, 87, 82, 89, 91, 87, 84, 90, 86, 83, 80

Didapatkan,

$$\bar{x} = 84.140; S = 4.131$$

Langkah 1

Urutkan Data

76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 80, 80, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 86, 86, 86, 86, 86, 86. 87. 87. 87. 87. 89. 89. 89. 89. 90. 90. 90. 91. 91. 92

Langkah 2

Tentukan frekuensi tiap data, frekuensi kumulatif, dan nilai Z tiap data

No	Skor	Frekuensi (fo)	Frekuensi Kumulatif (fk)	fo/n	fk/n	Z-Score
1	76	1	1	0.02	0.02	-1.97
2	77	2	3	0.04	0.06	-1.73
3	78	2	5	0.04	0.1	-1.49
4	79	3	8	0.06	0.16	-1.24
5	80	4	12	0.08	0.24	-1.00
6	82	5	17	0.1	0.34	-0.52
7	83	5	22	0.1	0.44	-0.28
8	84	7	29	0.14	0.58	-0.03
9	86	6	35	0.12	0.7	0.45
10	87	5	40	0.1	0.8	0.69
11	89	4	44	0.08	0.88	1.18
12	90	3	47	0.06	0.94	1.42
13	91	2	49	0.04	0.98	1.66
14	92	1	50	0.02	1	1.90

Contoh Perhitungan Z-Score

$$Z_1 = \frac{x_1 - \bar{x}}{s} = \frac{76 - 84.140}{4.131} = -1.97$$

$$Z_8 = \frac{x_1 - \bar{x}}{s} = \frac{84 - 84.140}{4.131} = -0.03$$

$$Z_{12} = \frac{x_1 - \bar{x}}{s} = \frac{90 - 84.140}{4.131} = 1.42$$

Langkah 3

Tentukan Peluang Z

- Tentukan nilai peluang berdasarkan nilai $Z \rightarrow$ Kita notasikan sebagai $F(Z_i)$
- Nilai $F(Z_i)$ didapatkan dari tabel Z sesuai dengan nilai nilai $Z \rightarrow NORM.S.DIST$

Contoh Perhitungan

$$Z_1 = -1.97; F(Z_1) = 0.0244$$

 $Z_8 = -0.03; F(Z_8) = 0.4865$
 $Z_{12} = 1.42; F(Z_{12}) = 0.9220$

Langkah 3

Tentukan Peluang Z

Hasil Keseluruhan

No	Skor	Frekuensi (fo)	Frekuensi Kumulatif (fk)	fo/n	fk/n	Z-Score	F(Z)
1	76	1	1	0.02	0.02	-1.97	0.0244
2	77	2	3	0.04	0.06	-1.73	0.0420
3	78	2	5	0.04	0.1	-1.49	0.0686
4	79	3	8	0.06	0.16	-1.24	0.1067
5	80	4	12	0.08	0.24	-1.00	0.1581
6	82	5	17	0.1	0.34	-0.52	0.3022
7	83	5	22	0.1	0.44	-0.28	0.3913
8	84	7	29	0.14	0.58	-0.03	0.4865
9	86	6	35	0.12	0.7	0.45	0.6737
10	87	5	40	0.1	0.8	0.69	0.7556
11	89	4	44	0.08	0.88	1.18	0.8803
12	90	3	47	0.06	0.94	1.42	0.9220
13	91	2	49	0.04	0.98	1.66	0.9516
14	92	1	50	0.02	1	1.90	0.9715

Langkah 4

Menghitung selisih perbandingan antara frekuensi relatif dan banyaknya data fk/n dengan nilai masing-masing F(Z)

Contoh Perhitungan

$$Data_{1} = \frac{fk}{n} - F(Z_{1})$$

$$= \frac{1}{50} - 0.0244$$

$$= -0.0044$$

No	Skor	Frekuensi (fo)	Frekuensi Kumulatif (fk)	fo/n	fk/n	Z-Score	F(Z)	fk/n - F(Z)
1	76	1	1	0.02	0.02	-1.97	0.0244	-0.0044
2	77	2	3	0.04	0.06	-1.73	0.0420	0.0180
3	78	2	5	0.04	0.1	-1.49	0.0686	0.0314
4	79	3	8	0.06	0.16	-1.24	0.1067	0.0533
5	80	4	12	0.08	0.24	-1.00	0.1581	0.0819
6	82	5	17	0.1	0.34	-0.52	0.3022	0.0378
7	83	5	22	0.1	0.44	-0.28	0.3913	0.0487
8	84	7	29	0.14	0.58	-0.03	0.4865	0.0935
9	86	6	35	0.12	0.7	0.45	0.6737	0.0263
10	87	5	40	0.1	0.8	0.69	0.7556	0.0444
11	89	4	44	0.08	0.88	1.18	0.8803	-0.0003
12	90	3	47	0.06	0.94	1.42	0.9220	0.0180
13	91	2	49	0.04	0.98	1.66	0.9516	0.0284
14	92	1	50	0.02	1	1.90	0.9715	0.0285

Langkah 5

Menghitung koefisien hitung Kolmogorov-Smirnov (D_{hitung})

Contoh Perhitungan

$$D = \frac{fo}{n} - \left(\frac{fk}{n} - F(Z)\right)$$

$$D_1 = \frac{1}{50} - \left(\frac{1}{50} - 0.0244\right)$$

$$D_1 = 0.02 - (-0.0044)$$

$$D_1 = 0.0244$$

No	Skor	Frekuensi (fo)	Frekuensi Kumulatif (fk)	fo/n	fk/n	Z-Score	F(Z)	fk/n - F(Z)	D
1	76	1	1	0.02	0.02	-1.97	0.0244	-0.0044	0.0244
2	77	2	3	0.04	0.06	-1.73	0.0420	0.0180	0.0220
3	78	2	5	0.04	0.1	-1.49	0.0686	0.0314	0.0086
4	79	3	8	0.06	0.16	-1.24	0.1067	0.0533	0.0067
5	80	4	12	0.08	0.24	-1.00	0.1581	0.0819	-0.0019
6	82	5	17	0.1	0.34	-0.52	0.3022	0.0378	0.0622
7	83	5	22	0.1	0.44	-0.28	0.3913	0.0487	0.0513
8	84	7	29	0.14	0.58	-0.03	0.4865	0.0935	0.0465
9	86	6	35	0.12	0.7	0.45	0.6737	0.0263	0.0937
10	87	5	40	0.1	0.8	0.69	0.7556	0.0444	0.0556
11	89	4	44	0.08	0.88	1.18	0.8803	-0.0003	0.0803
12	90	3	47	0.06	0.94	1.42	0.9220	0.0180	0.0420
13	91	2	49	0.04	0.98	1.66	0.9516	0.0284	0.0116
14	92	1	50	0.02	1	1.90	0.9715	0.0285	-0.0085

Langkah 6

Bandingkan D_{hitung} terbesar/ $max(D_{hitung})$ dengan D_{tabel} sesuai

dengan significance level (α)

Contoh Perhitungan

Misal $\alpha=0.05$ dan data sejumlah 50, maka, $D_{0.05;50}=0.18845$

Nilai terbesar dari D_{hitung} adalah, $max(D_{hitung}) = 0.0937$

Bandingkan $\max(D_{hitung})$ dengan D_{tabel} $D_{hitung} = 0.0937 < D_{tabel} = 0.18845$

Sehingga, di disimpulkan, populasi terdistribusi normal

J.L. 50	√n						
OVER 50	1.94947	1.62762	1.51743	1.35810	1.22385	1.13795	1.07275
50	0.27051	0.22585	0.21460	0.18845	0.16982	0.15790	0.14886
45	0.28482	0.23780	0.22621	0.19842	0.17881	0.16626	0.15673
40	0.30169	0.25188	0.23993	0.21017	0.18939	0.17610	0.16601
35	0.32187	0.26898	0.25649	0.22424	0.20184	0.18748	0.17655
30	0.34672	0.28988	0.27704	0.24170	0.21756	0.20207	0.19029
25	0.37843	0.31656	0.30349	0.26404	0.23767	0.22074	0.20786
20	0.42085	0.35240	0.32866	0.29407	0.26473	0.24587	0.23152
19	0.43119	0.36116	0.33685	0.30142	0.27135	0.25202	0.23731
18	0.44234	0.37063	0.34569	0.30936	0.27851	0.25867	0.24356
17	0.45440	0.38085	0.35528	0.31796	0.28627	0.26587	0.25035
16	0.46750	0.39200	0.36571	0.32733	0.29471	0.27372	0.25774
15	0.48182	0.40420	0.37713	0.33760	0.30397	0.28233	0.26585
14	0.49753	0.41760	0.38970	0.34890	0.31417	0.29181	0.27477
13	0.51490	0.43246	0.40362	0.36143	0.32548	0.30233	0.28466
12	0.53422	0.44905	0.41918	0.37543	0.33815	0.31408	0.29573
11	0.55588	0.46770	0.43670	0.39122	0.35242	0.32734	0.30826
10	0.58042	0.48895	0.45662	0.40925	0.36866	0.34250	0.32257
9	0.60846	0.51330	0.47960	0.43001	0.38746	0.36006	0.33907
8	0.64098	0.54180	0.50654	0.45427	0.40962	0.38062	0.35828
7	0.67930	0.57580	0.53844	0.48343	0.43607	0.40497	0.38145
6	0.72479	0.61660	0.57741	0.51926	0.46799	0.43526	0.41035
5	0.78137	0.66855	0.62718	0.56327	0.50945	0.47439	0.44697
4	0.85046	0.73421	0.68887	0.62394	0.56522	0.52476	0.49265
3	0.92063	0.82900	0.78456	0.70760	0.63604	0.59582	0.56481
2	0.97764	0.92930	0.90000	0.84189	0.77639	0.72614	0.68377
1		0.99500	0.99000	0.97500	0.95000	0.92500	0.90000
n\ ^α	0.001	0.01	0.02	0.05	0.1	0.15	0.2

Uji Normalitas – Demo Python

https://colab.research.google.com/drive/184SqwfZJQdKoSxYnXZZPWczKHHt2B42s?usp=sharing

Uji Homogenitas

Apakah sampel dari populasi tidak jauh keberagamannya?

Uji Homogenitas

Apa itu uji normalitas?

"Prosedur uji statistik yang digunakan untuk memperlihatkan bahwa dua atau lebih kelompok data sampel berasal dari populasi yang memiliki varians yang sama"

- Digunakan untuk mencari tahu apakah dari beberapa sampel memiliki nilai varians yang sama atau tidak
- Contoh: Penelitian pemahaman mahasiswa terhadap suatu materi → homogen berarti karakteristik sama → berasal dari tingkat yang sama
- Metode uji
 - Harley
 - Cochran
 - Levene
 - Barlett

Uji Homogenitas – Harley #1

Konsep

- Uji homogentias paling sederhana

 Perbandingan varians terbesar dengan varians terkecil
- Umumnya digunakan untuk uji varians dari 2 kelompok

$$F = \frac{Varians\ terbesar}{varians\ terkecil} = \frac{S_{terbesar}^2}{S_{terkecil}^2}$$

• Untuk mengetahui apakah dua kelompok homogen atau tidak, jika $F_{hitung} < F_{tabel}$ maka varians dari kelompok yang dibandingkan tidak signifikan, atau homogen

Uji Homogenitas – Harley #2

Contoh

No	Kelompok A	Kelompok B
1	47	42
2	51	44
3	50	50
4	49	46
5	46	43
6	50	48
7	53	50
8	48	47

Hipotesis
$$H_0: S_A^2 = S_B^2 \\ H_1: S_A^2 \neq S_B^2$$

Langkah 1

Hitung varians masing-masing kelompok

$$S_A^2 = 5.571$$

 $S_B^2 = 7.238$

Langkah 2

Uji homogentias

$$F = \frac{Varians\ terbesar}{varians\ terkecil} = \frac{S_{terbesar}^2}{S_{terkecil}^2} = \frac{7.238}{5.571} = 1.299$$

Langkah 3

Bandingan F_{hitung} dengan F_{tabel}

Misal
$$\alpha=0.05$$
 dan $df=7$, maka $F_{tabel}=4.99$ Maka, $F_{hitung}=1.299 < F_{tabel}=4.99$ Sehingga, kelompok A dan B homogen

Uji Homogenitas – Harley #2

Tabel F_{max} untuk Uji Harley

k adalah jumlah kelompok

	k										
n - 1	2	3	4	5	6	7	8	9	10	11	12
2	199	448	729	1036	1362	1705	2069	2432	2813	3204	3605
3	47.5	85	120	151	184	216*	249*	281*	310*	337*	361*
4	23.2	37	49	59	69	79	89	97	106	113	120
5	14.9	22	28	33	38	42	46	50	54	57	60
6	11.1	15.5	19.1	22	25	27	30	32	34	36	37
7	8.89	12.1	14.5	16.5	18.4	20	22	23	24	26	27
8	7.50	9.9	11.7	13.2	14.5	15.8	16.9	17.9	18.9	19.8	21
9	6.54	8.5	9.9	11.1	12.1	13.1	13.9	14.7	15.3	16.0	16.6
10	5.85	7.4	8.6	9.6	10.4	11.1	11.8	12.4	12.9	13.4	13.9
12	4.91	6.1	6.9	7.6	8.2	8.7	9.1	9.5	9.9	10.2	10.6
15	4.07	4.9	5.5	6.0	6.4	6.7	7.1	7.3	7.5	7.8	8.0
20	3.32	3.8	4.3	4.6	4.9	5.1	5.3	5.5	5.6	5.8	5.9
30	2.63	3.0	3.3	3.4	3.6	3.7	3.8	3.9	4.0	4.1	4.2
60	1.96	2.2	2.3	2.4	2.4	2.5	2.5	2.6	2.6	2.7	2.7
œ	1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Level of significance $\alpha = 0.01$

Level of significance $\alpha = 0.05$

	k										
n - 1	2	3	4	5	6	7	8	9	10	11	12
2	39.0	87.5	142	202	266	333	403	475	550	626	704
3	15.4	27.8	39.2	50.7	62.0	72.9	83.5	93.9	104	114	124
4	9.6	15.5	20.6	25.2	29.5	33.6	37.5	41.1	44.6	48.0	51.4
5	7.15	10.8	13.7	16.3	18.7	20.8	22.9	24.7	26.5	28.2	29.9
6	5.82	8.38	10.4	12.1	13.7	15.0	16.3	17.5	18.6	19.7	20.7
7	4.99	6.94	8.44	9.70	10.8	11.8	12.7	13.5	14.3	15.1	15.8
8	4.43	6.00	7.18	8.12	9.03	9.78	10.5	11.1	11.7	12.2	12.7
9	4.03	5.34	6.31	7.11	7.80	8.41	8.95	9.45	9.91	10.3	10.7
10	3.72	4.85	5.67	6.34	6.92	7.42	7.87	8.28	8.66	9.01	9.34
12	3.28	4.16	4.79	5.30	5.72	6.09	6.42	6.72	7.00	7.25	7.48
15	2.86	3.54	4.01	4.37	4.68	4.95	5.19	5.40	5.59	5.77	5.93
20	2.46	2.95	3.29	3.54	3.76	3.94	4.10	4.24	4.37	4.49	4.59
30	2.07	2.40	2.61	2.78	2.91	3.02	3.12	3.21	3.29	3.36	3.39
60	1.67	1.85	1.96	2.04	2.11	2.17	2.22	2.26	2.30	2.33	2.36
00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publication Ltd., 1993.

^{*}The third-digit figures for n - 1 = 3 are uncertain.

Uji Homogenitas – Demo Python

https://colab.research.google.com/drive/184SqwfZJQdKoSxYnXZZPWczKHHt2B42s?usp=sharing

