万字长文讲透量产智能驾驶系统方案

导读:

谈到汽车智能化,大部分人想到的是智能驾驶。实际上,智能化有两大发展方向:驾驶自动化(Driving Automatization)和座舱智能化(Cockpit Intelligentization),前者能将人从动态驾驶任务中释放出来,后者促成座舱数字化、信息化、多功能化,但最终会融合在一起,结合网联化,推动汽车向"第三生活空间"转变。本文重点解析ADAS/AD功能和一些常见的系统方案。

ADAS/AD功能汇总

ADAS/AD 功能 ,总体上分为行车功能(Driving Function)和泊车功能(Parking Function)。由于行车功能远比泊车功能多,因此行车功能又可进一步分为主动安全和NCAP、舒适性驾驶辅助、监督自动驾驶、无监督自动驾驶等;泊车功能也可分为泊车辅助及代客泊车等类型。除此之外,在监督自动驾驶/无监督自动驾驶功能中,又可从软件架构视角,区分出感知功能、定位功能、规划功能、决策功能、控制功能等。前者是面向客户功能配置视角,每个功能都是独立的应用程序;而后者则是从数据流视角(dataflow)将自动驾驶系统划分出不同的处理环节。

1.1 行车功能

1.1 碰撞避免功能(即主动安全和NCAP相关功能)

前向预警相关

- FCW: Front Collision Warning, 前向碰撞预警;
- PCW: Pedestrian Collision Warning, 行人碰撞预警;
- LDW: Lane Departure Warning, 车道偏离预警;

侧后预警相关

- BSW: Blind Spot Warning, 盲点报警
- DOW: Doors Opening Warning, 开门报警
- LCA: Lane Changing Assist, 变道辅助
- RCTA: Rear Crossing Traffic Alert,后向十字交通预警
- RCW: Rear Collision Warning, 后向碰撞预警

- SCW: Side Collision Warning, 侧向碰撞预警
- AEB-R: AEB Reverse 后向AEB

制动相关

- AEB: Autonomous Emergency brake, 自动紧急制动;
- AEB-V: AEB-Vehicle, AEB车辆;
- AEB-P: AEB-Pedestrian, AEB行人;
- AEB-C: AEB-Cyclist, AEB骑车人;
- AEB-Junction: AEB 十字路口,即FCTA/B加上RCTA/B,Front Crossing Traffic Alert/Brake,前向十字交通路口报警/制动;Rear Crossing Traffic Alert/Brake,后向十字交通路口报警/制动;
- AEB-Reserve:后向AEB

转向相关

- LDW: Lane Departure Warning, 车道偏离预警;
- LKA: Lane Keeping Assist , 车 道 保 持 辅 助 ; 也 叫 LDP , 即 Lane Departure Prevention , 车道偏离修正
- LCC: Lane Centering Control, 车道居中控制;
- ELK: Emergent Lane Keeping, 紧急车道保持;
- EMA:紧急避让辅助;
- AES: Automatic Emergency Steering, 自动紧急转向避让;

交通标志相关

- TSR: Traffic Sign Recognition, 交通标志识别;
- ISA: Intelligent Speed Adaptation, 智能车速控制;

车灯控制相关

- IHC: Intelligent High-beam Control,智能远光灯控制;也叫AHBC, Automated High-Beam Control
- ADB: Adaptive Driving Beam, 自适应大灯系统;也叫Matrix Beam, 矩阵大灯控制

1.2 舒适性驾驶辅助

- ACC: Adaptive Cruise Control 自适应巡航;
- FSRA: Full Speed Range ACC 全速域自适应巡航;
- ACC S&G: ACC stop&go,即FSRA;
- iACC:智能自适应巡航(带限速控制);
- TACC: Traffic-Aware Cruise Control 特斯拉的ACC;
- TJA: Traffic Jam Assit 交通拥堵辅助;
- ICA: Integrated Cruise Assist 集成巡航辅助(TJA全速域升级版);
- ALC: Automated Lane Change, 转向灯自动变道;
- HWA: Highway Assist, 高速公路辅助, 一般包括ALC功能; 甚至有些feature无需驾驶员进行转向灯确认,直接变道;
- SHWA: Super-HWA,可脱手得高速公路辅助,需要高精度定位系统(高精地图+GNSS等方案);
- NOA: Navigate on Autopilot, 导航自动驾驶辅助(L2+), 特斯拉的类似HWA的功能;

1.3 泊车辅助

- AVM: Around View Monitoring 全景环视监控
- APA: Automated Parking Assist 自动泊车辅助
- FAPA: Fusion APA, 带视觉感知的融合泊车辅助
- RPA: Remote Parking Assist 远程泊车辅助
- MPP: Memory Parking Pilot 记忆泊车
- HPP: Home-zone Parking Pilot 家庭区域泊车(与MPP同一功能不同称谓)
- Summon:召唤(从车外操控车辆自动泊车和恢复行使,或在指定地点取回车辆)

1.4 监督性自动驾驶

- TJP: Traffic Jam Pilot, 交通拥堵领航(L3)
- HWP: Highway Pilot, 高速公路领航(封闭道路, L3)
- City-Pilot: CP, 城市领航(开放道路, L4);或者UP, Urban Pilot;

• AVP: Automated Valet Parking, 自动代客泊车(L4)

1.5 其他

• Localization:定位系统,如GNSS定位,或者Visual Localization视觉定位;

• Mapper:建图系统,如视觉众包建图、激光雷达建图等功能;

• Digital Map:数字地图系统,如ADAS地图(比如eHorizon电子地平线等)、高精地图

(HD-MAP)等

另外,L0-L2级自动驾驶,本文习惯用ADAS表征;L2+级自动驾驶,用ADAS/AD表征,以示过

渡;L3-L4级自动驾驶,用AD表征。

观察ADAS/AD方案的几个维度

根据上一篇文章《ADAS/AD专题-1万字讲透面向量产的整车电子电气架构演进》的论述,我们了解了分布式、域集中式及中央集中式架构下不同ECU的形态。本文将结合"自动驾驶分级"+"电子电气架构形态"两个因素组成的大框架下,梳理并盘点ADAS/AD方案。其中,自动驾驶分级从功能维度评判ADAS/AD功能的复杂度,电子电气架构架从硬件维度评判ECU/芯片等

零部件的复杂度。

2.1 从自动驾驶分级维度划分ADAS/AD功能

LO-L2级ADAS系统,主要为了实现以下功能:

安全报警: FCW、SCW、RCW、PCW、LDW、BSW、DOW、TSR、LCA、RCTA、FCTA...

安全控制: AEB、LKA、ELK、IHC、ADB...

舒适辅助: ACC、iACC、LCC、TJA、ICA...

泊车辅助: APA、FAPA...

L2+级ADAS/AD系统,主要为了实现以下功能:

舒适性驾驶辅助: HWA、SHWA、NOA...

泊车辅助: RPA...

L3级AD系统,主要为了实现以下功能:

监督性自动驾驶: TJP、HWP、CP、MPP、HPP...

L4级AD系统,主要为了实现以下功能:

无监督自动驾驶: Robotaxi、AVP...

2.2 从电子电气架构维度划分ADAS/AD控制器

LO-L2级ADAS系统,主要为了实现以下功能:

分布式EEA下常见的ADAS控制器,如下图所示:

图1 隶属不同E/E架构下的控制器形态

其中,上图各种缩写的释义为:

芯片缩写释义:

- MCU: Micro Controller Unit, 微控制器单元, 即单片机;
- MPU: Micro Processor Unit,微处理器单元,需要额外的外部RAM/ROM支持才能正常运行,如LPDDR4x、Nor-Flash、eMMC、UFS等。习惯上一般也常将MPU这类角色的芯片,叫做SOC(System On Chip,片上系统);
- MMIC: Microwave and Milimeter IC, 单片微波集成电路。毫米波雷达主要组件;

分布式控制器缩写释义:

- FCM: Front Camera Module,前视摄像头总成,有单目(Mono)、双目(Stereo)、双焦(Bi-Focals)和三焦(Tri-Focals)4种形态;
- FCR: Front Central Radar,前雷达模块,有MRR(中距Mid-Range)和 LRR(长距 Long-Range)2种形态。一般1R1V方案(后续会详细解释该方案)中常选择MRR作为前雷达模块,5R1V方案中,常选择LRR作为前雷达;
- SRRs: Side-Rear Radars,侧后雷达模块(左、右,一般左master右slave),有SRR(短距Short-Range)和 MRR(中距Mid-Range)2种形态;SRR常为24G毫米波,MRR常为77-79G毫米波。这里SRR缩写就有两个含义,可能是指侧后雷达模块,也可能是指短距离毫米波雷达,因此加s区分侧后雷达模块(SRRs);

- AVM: Around-View Module,全景环视模块,纯粹显示功能(Display Function)的全景环视模块一般不存在,而是在信息娱乐系统(IVI,即车机)中实现。带视觉感知功能(Perception Function)的AVM,可能会作为单独的控制器存在,比如BMW;也可能集成到大型的域控制器中,图像可转发到IVI中。另外,AVM还表示Around View Monitoring环视监控功能,也就是说AVM既可以表征控制器实体,也可表征全景环视功能;
- Park-ECU: Parking Assist ECU, 泊车辅助控制器;驱动超声波传感器(USS, Ultrasonic Sensor)的总成;可单独存在,也可被整合到其他域控制器中,具体看系统架构策略和供应商策略;
- Fusion Park ECU: 融合泊车控制器;整合了12颗超声波传感器,以及4个鱼眼环视摄像头的总成,也是一种方案,可以做融合泊车;
- Vision DMS: Driver Monitoring System based on vision,基于视觉检测的主动型驾驶员监控系统;除此之外还有基于转向/制动等底盘信息的被动型DMS系统;
- MAP ECU:数字地图控制器,包括ADAS地图和HD地图;

域集中式控制器缩写释义:

- ADAS DCU: ADAS Domain Controller Unit, 高级驾驶辅助域控制器单元;
- AD HPC: Autonomous Driving High Performance Computer,自动驾驶高性能计算机;

中央集中式控制器缩写释义:

- ZCU: Zonal Controller Unit, 区控制器单元;
- VCC: Vehicle Central Computer, 车载中央计算机;

2.3 ADAS/AD控制器与自动驾驶等级的关系

ADAS/AD控制器与自动驾驶等级的关系如下图:

图2 ADAS/AD控制器与自动驾驶分级的关系

ADAS/AD方案汇总

ADAS/AD系统方案的含义很广,本文只结合以上"自动驾驶分级"+"电子电气架构分级"的交叉维度来介绍,一般可将ADAS/AD系统方案划分为:L0到L2级分布式系统方案、L2+到L4级集中式系统方案(包括域集中式和中央集中式)。

3.1 LO-L2级分布式系统方案

在LO-L2级ADAS,一般有四大基本ADAS子系统。如图2所示:

	前向ADAS系统	侧后ADAS系统	泊车辅助系统	全景环视系统
零部件组成	FCM、FCR	SRRs	Park ECU, USS, Fisheye	AVM、Fisheye
传感器方案	 Vision Only方案,即单FCM Radar Only方案,即单FCR 1R1V方案,即私有CAN连接的FCM+FCR 	• SRR-LH为主模块 • SRR-RH为从模块	Park ECU + 12 USS Park ECU + 12 USS + 4 Fisheye	AVM + Fisheye
实现功能	FCW/PCW/LDW/TSR/AEB/LKA/IHC/ISA/ ACC/TJA/ICA	BSW/DOW/LCA/RCTA	APA/FAPA/RPA	AVM
		FCM FCR SRRs		Fisheye・4 USS・12

图3 LO-L2级常见ADAS方案

- 前向ADAS系统。一般由单FCR,或者单FCM组成;当前主流配置是FCR+FCM组成的 1R1V方案,能够支持到TJA/ICA的L2 ADAS(单车道驾驶辅助)。后续伴随视觉检测能力 的提高,在L0-L2级ADAS/AD定位的车型上,有向单FCM发展趋势,因为车道线等横向控 制所需感知信息,只有视觉能提供;省掉雷达能降低系统成本。
- 侧后ADAS系统。一般由侧后方两个SRRs组成,实现大部分侧后向ADAS功能。
- 自动泊车系统。即泊车控制器+12颗超声波传感器(USS)组成的APA(自动泊车辅助)系统;实现功能主要是APA和FAPA等。
- 全景环视系统。即由全景环视控制器(实际现在该控制器目前已很少见,该零部件实体已经被吸收合并到其他控制器节点上了;主要由车机、泊车控制器或者域控制器所取代)+ 四个鱼眼摄像头组成。实现AVM功能(Around View Monitoring,环视监控)。

其中,前两个系统常称之为行车ADAS系统(Driving ADAS System),有时候这种行车ADAS方案也常被称作3R1V方案,3 Radar 1 Vision方案;后两个常称之为泊车ADAS系统(Parking ADAS System)。

3.2 L2+级域集中式系统方案

域控制器的作用,就是为了整合以上分散的ADAS系统,整合原本分散系统所独占的传感器数据。

根据不同整合程度,存在如下几种典型L2+级域集中式系统方案。这几种典型方案不能代表所有方案,但是具备表征意义。举个例子,就像画PPT的曲线一样,拖动几个关键控制点,就能控制曲线的形状。下面介绍的几个方案就类似"关键控制点",而多种多样的系统方案就像类似"曲线本身"。

3.2.1 多雷达域集中式方案

	5R1V域集中式方案	5R5V城集中式方案
軍部件组成 (1)	DCU、1FCR、2 SRRs、2 SFRs、1 FCM	DCU、1 FCR、2 SRRs、2 SFRs、1 FCM (or 1 front dummy camera)
传感器方案	只整合行车功能(Driving Function) • 1 Front Radar + 4 Corner Radars + 1 Front Camera	整合行车+部分泊车功能(Driving + Parking Function),如AVM 1 Front Radar + 4 Corner Radars + 1 Front Camera + 4 Fisheye Cameras
实现功能	FCW/PCW/LDW/TSR/AEB/LKA/IHC/ISA/ ACC/TJA/ICA	HWA和MPP
	DCU FCM FCR SRRs SFRs*	DCU FCM FCR SRRs SFRs*

所谓"多雷达"主要是指5雷达方案,常见的有5R1V、5R2V和5R5V方案,是一种较为典型的雷达中心化方案(Radar-centric ADAS Solution)。

5R1V方案主要有三个特点:

- 主要传感器都是智能传感器(Smart Sensor),包括5个雷达和1个前视摄像头,可以直接 提供结构化数据给DCU,因此5R1V的DCU主要是一颗TC397之类的大型MCU,负责实现5 个雷达和1个摄像头的结构化数据的多传感器融合算法,以及对应的TJA/ICA/HWA功能;
- 依靠5雷达形成360°的环境感知,然后融合视觉信息,支持更加复杂的功能;
- 毫米波雷达作为一种主动型传感器,测距测速精度较好,天气适应性好。

另外,5R1V在奔驰和宝马车上,也存在一个变种,就是5R2V方案。2V主要是指Stereo立体双目摄像头(区分Bi-Focals双焦摄像头),比如博世的SVC2/SVC3、维宁尔SVS4等。

5R5V方案有可能是实质上的5R1V+4V方案,即DCU仍旧是单MCU芯片组成的小型DCU,1V是前视摄像头总成,而4V代表的4鱼眼摄像头是由单独的环视感知控制器处理的。

但是未来主流的5R5V,可能会是DCU中直接增加一颗MPU,来负责前向视觉+环视视觉的视觉感知。前视摄像头也会变成Dummy Camera,不再是前视摄像头总成。

3.2.2 多视觉的域集中式方案

	5R12V域集中式方案	1R8V域集中式方案
零部件组成	DCU、1FCR、2 SRRs、2 SFRs	DCU、1 FCR if needed (for safe-stop)
传感器方案	 1 Front Radar + 4 Corner Radars + 3 Front Cameras + 4 Side Cameras + 1 Rear Camera + 4 Fisheye Cameras 3 Front Cameras主要是指Tri-Focals三目摄像头,也可能是双目摄像头 (Stereo or Bi-Focals) SFRs,即Side Front Radars,侧前毫米波雷达 	Front Tri-Focals,前向三目摄像头 Comer Cameras,侧前摄像头 Wing Cameras,侧后摄像头 Rear Cameras,后向摄像头 FCR
实现功能	HWA¥ūRPA	NOA-Highway, NOA-City
	DCU Camera * 8 FCR SRRs SFRs* FEC * 4 USS * 12	DCU Cameras*8 FCR

图5 L2+级多视觉ADAS/AD方案

多雷达方案继续演化,会形成视觉感知+雷达感知冗余360°感知,如5R12V方案(或5R11V,如果前向Tri-Focals换成Bi-Focals)。由于大量使用摄像头,数量也远多于雷达,因此也勉强叫做"多视觉"方案。

除了5R12V方案,还有类似特斯拉和Mobileye的真正的视觉中心化ADAS/AD解决方案(Camera-centric ADAS/AD Solution),比如特斯拉的1R8V方案。由于视觉处理对算力需求很大,特斯拉很早就是用了英伟达的大算力计算平台PX2(特供版);甚至感觉算力不理想,自己又开发了芯片以及对应的FSD Computer,用来处理视觉信息。

另外,虽然特斯拉宣称HW3.0叫FSD(Full Self Driving,全自动驾驶),个人感觉就是基于视觉的L2+ ADAS/AD系统。

3.2.3 L2+级传感器架构简介

下图是L2+级ADAS/AD系统最大化的传感器架构方案,固定化的5R-12V-12USS方案(后续如果前视摄像头分辨率由2MP跳8MP后,可以去掉Wide Camera,形成5R-11V-12USS方案)。架构上限就是"坚决不上激光雷达"。只要上了激光雷达(一般是前向激光雷达),就是L3级AD系统的传感器架构;上了5-6个激光雷达,就是L4级AD系统的传感器架构(参考BMW方案,如图7所示)。

图6 L2+级ADAS/AD系统的最大化传感器架构

下面逐个盘点各个传感器的作用:

• 前视主摄像头(Main Camera, x1):主摄像头在L0-L2阶段对应FCM总成,即单目前视方案;在L2+域控方案中,作为dummy Camera,采用LVDS与域控制器连接。常见的HFOV主要有30°-50°-60°-100°-120°等核心设计值,一般较为圆整化。实际工程实现值,会根据具体光学镜头的不同,有48°/52°(设计值50°)、28°(设计值30°)等规格。摄像

头色彩矩阵(Patten)通常为RCCB或RCCC,有向RYYCy发展的趋势。RYYCy没有Clear,色彩信息未丢失,可以保证色彩还原性能。检测距离150-170米。

- 前视窄角摄像头(Narrow Camera, x1):30°左右的前视摄像头,用来观察红绿灯/车辆/行人等关键目标。一般与前视主摄像头会采用相同的图像传感器(比如同为1.3MP,或同为2MP,甚至同为8MP的Image sensor),缩小FOV后,像素密度变大,检测距离相对Main Camera更远;Patten常为RCCB或RCCC。检测距离250米。
- 前视广角摄像头(Wide Camera, x1): HFOV约140°, 类似特斯拉的三焦视摄像头中的广角摄像头。在上了8MP摄像头后, Main Camera的FOV都能达到120°了, Wide Camera可能就不需要了。
- 侧前(左右两颗)摄像头(Corner Camera, x2): HFOV约70°-80°, 后续会升级到约100°; 类似特斯拉的B柱摄像头,向侧前方看,主要关注近距离车辆cut-in和自车变道需求。Patten常为RCCB或RCCC。
- 侧后(左右两颗)摄像头(Wing Camera, x2; wing意为视场角像飞机机翼一样往侧后延申): HFOV约80°-90°, 后续可能会统一到100°。Patten常为RCCB或RCCC; 关注侧边和侧后方目标, 满足变道需求。
- 后视摄像头(Rear Camera):同前向Main Camera,用于后方目标检测。

以上这些摄像头,也常称为Driving Cameras (行车摄像头,多用于行车功能)。

- 前向鱼眼摄像头(Front Fisheye Camera):鱼眼环视摄像头之一,用于全景环视功能的 Display (给 人 看 的 , 显 示 功 能 , HMI) , 以 及 融 合 泊 车 功 能 的 视 觉 Detection (给 "车"看的,视觉感知,目标检测);常用色彩矩阵为RGGB,因为有色彩 还原需求。若使用8MP摄像头,并使用像素合并技术降低到2MP使用,则可以选择 RYYCy。
- 左侧鱼眼摄像头(Left Fisheye Camera):同上。
- 右侧鱼眼摄像头(Right Fisheye Camera):同上。
- 后向鱼眼摄像头 (Rear Fisheye Camera):同上。

以上这四颗鱼眼摄像头,也常称为Parking Cameras(泊车摄像头,多用于泊车功能);当然 L2+阶段各个传感器不断融合,目前Driving Camera和Parking Camera的界限已经渐渐模糊 了。泊车功能也常用前视摄像头做记忆泊车;行车功能也常用侧边鱼眼摄像头检测车道线做safet stop。

除以上视觉传感器,还有很多主动型传感器:

- 前向毫米波雷达(Front Central Radar):一般为LRR,负责前方目标检测,具备良好的测距测速性能,也不容易被遮挡;
- 侧前/侧后角雷达(Side-Front Radar, x2): 车辆四角,一般由SRR或MRR充当。可以提供 双模检测模式, Long Range Mode和Short Range Mode;长距离模式FOV小,检测距 离远;短距离模式FOV大,检测距离近。在域控制器方案中,雷达不分Master和Slave。在 分布式方案中,一般左侧雷达为Master,右侧雷达为Slave。
- 超声波传感器(USS):12颗,侧边4个长距离,前后8个短距的。

除了以上传感器,L2+及以上ADAS/AD系统还需要GNSS定位、IMU(一般信号来源于安全气囊控制器或者ESP系统)、高精地图等不同感知数据。

3.2.4 高精地图

高精地图不仅仅是ADAS/AD系统的一个功能,实际上是一个产业。不仅要面临技术上的挑战,更多的是在商业模式上的挑战。如何保证高精地图的鲜度(实时性),如何"众包",流量费用谁出,接口不统一,激光雷达建图费用高,视觉建图精度稍差,再加上测绘资质等,这么多的挑战,是需要更多时间去探索的。

3.2.5 高精度定位

当前的高精定位都是融合定位,GNSS、IMU、VSLAM等。当前L2+ ADAS系统,定位比高精地图更具紧迫性。

3.3 L3-L4级域集中式系统方案

该级别系统方案,传感器架构相对固定。但是HPC方案很多,且暂时未量产,因此需要继续观察。但是该级别的系统方案的落地,大概率会并入到智能网联汽车的实施潮流中,即形成智能驾驶/智能座舱/智能网联/电子电气架构/软件定义汽车等几条Pipeline的需求齐头并进的势头。其中,智能驾驶实现驾驶的自动化;智能座舱实现座舱的智能化;智能网联实现高效、安全的V2X互联;电子电气架构实现车载计算的集中化和软硬件分离;软件定义汽车实现汽车价值转移,即软件驱动汽车业务。

3.4 常见的ADAS/AD系统方案案例

3.4.1 L0到L2级ADAS/AD系统方案

前向ADAS方案:

 FCM方案:博世MPC2/SVC2/MPC3/SVC3、维宁尔MVS3/SVS3/MVS4/SVS4、安波福 IFV151/IFV300/IFV400、大陆MFC400/MFC500; • FCR方案:博世MRR1.0/MRR1.5/LRR3/LRR4、安波福ESR2.5/MRR、大陆ARS系列等

侧后ADAS方案:

• SRRs方案:博世MRR rear/corner、安波福SRR3等

图7 博世提供的分布式架构ADAS系统

泊车方案:略

全景环视方案:略

3.4.2 L2+级到L4级AD系统方案

宝马方案:可裁剪方案,完整覆盖L0-L4方案。其中,L2方案作为备份(包括mPAD DCU,都会作为基础设施,不会从车上remove掉),在L3或L4级,通过增加HPC以及相应传感器来支持对应级别功能(例如L3上hPAD HPC,L4上uPAD HPC)。这种叠罗汉方式非常老道,便于增加方案灵活性,覆盖从低到高整个车型序列。

宝马方案一个很明显的特征就是:L3上前向激光雷达,L4照着5雷达方案复制一份5激光雷达方案。L3以下没有激光雷达的影子。

宝马的芯片方案,就使用盟友们的芯片了。英特尔的Denverton和Xeon,提高系统DMIPS算力;Mobileye的Eye5,负责视觉感知(CV版的EyeQ5,即传统的黑盒方案,使用Mobileye自己的算法)和其他需要TOPS算力的算法(Open版的EyeQ5,允许宝马实现自己的算法)。当然从使用EyeQ5芯片的数量上来看,显然算力还不够,2颗甚至3颗EyeQ5的往上堆。EyeQ6出来后可能会好些,方案会"简约"很多,最好MCU+双EyeQ6,或者MCU+Intel CPU+双EyeQ6,不仅实现当前功能,把冗余计算也cover住。

图8 宝马ADAS/AD系统方案平台

戴姆勒方案: 戴姆勒方案很保守,还是基于5R5V,当然前视为双目,再加上一个后视摄像头,形成了5R7V方案。同样的,上了L3,就会配一个前向激光雷达。还有一个特点是,直接配一个路面湿度传感器,来检测路面状态。不靠视觉来检测路面积水等路面信息了。

不知道跟宝马分手后,戴姆勒使用了英伟达的ORIN芯片,会不会增加更多视觉传感器来提高感知能力。

图9 戴姆勒的L3级AD方案

大众方案:大众集团的方案,在ADAS/AD方面需要持续关注奥迪的进展,前几年的zFAS方案受到法规影响未顺利量产,后续持续跟进;而电子电气架构和软件定义汽车这两条pipeline,大众MEB平台则较为激进。相关具体信息,会通过资料分享形式逐步放出。

特斯拉方案:特斯拉方案作为明星方案,网络上的解读很多,这里只罗列一些截图,进行简单信息展示,就不重复评论了。相关具体信息,会通过资料分享形式逐步放出。

HW Release Sequence and Timeline

Hardware Level	Release Date Model S/X	Release Date Model 3
MCU1 & HW0	22-Jun-2012	n/a
HW1	17-Sep-2014	n/a
HW2.0	1-Oct-2016	n/a
MCU2	1-March-2018	28-Jul-2017*
HW2.5	1-Aug-2017	28-Jul-2017*
HW3	22-Mar-2019	12-Apr-2019**
HW4	Q3-2021 (Estimate)	Q3-2021 (Estimate)

^{*} Start of Model 3 production, but different hardware than S/X with the same CPU as S/X.

图10 特斯拉ADAS控制器与信息娱乐系统迭代历史

³ 我爱露营车

^{**} There have been a small number of cars in the summer of 2019 that got HW2.5 AP processor instead of HW3.

Item	HW1	HW2.0	HW2.5	HW3
Front Cameras	1	3 – Narrow 35°	, Main 50°, Wide a	ingle 120°
Side Cameras	0	2 – 90°		
Side Rearward Cameras	0	2 – 60°		
Rear	Not used for AP	1 – 150°, RGGI	B*	
Inside (Model 3)	n/a	n/a	1, RGGB*	
Front/Side Camera Filters	Monochrome	RCCC*	RCCB*	
Radar	Bosch, 525 ft ra	ange	Continental, 558	8 ft range
Sonar sensors	12, each with 16 ft range	12 – each with	26 ft range	
Core Processors	Mobileye EyeQ3	1 – Nvidia Parker SoC** 1 – Nvidia Pascal GPU 1 – Infineon TriCore CPU	2 – Nvidia Parker SoC** 1 – Nvidia Pascal GPU 1 – Infineon TriCore CPU	2 – Tesla chips, each including 12 Exynos 64- bit ARM cores, 2 GPUs, 2 neural network processors and 1 lockstep CPU
RAM	256 MB	6 GB	8 GB	8 GB x 2
Flash Memory				4 GB x 2
Processing Power	1x	40x	40x w/redundancy	420x w/redundancy
Frames per second	36	110	110	2300
Estimated Power	25W	250W (Idle 40W)	300W	220W 小我爱露营车
Steering Rack	Single Power	Single Power	Redundant Pow	ver pro支配百千

图11 不同Autopilot硬件版本的系统参数汇总

Feature	No AP	AP1	AP*	EAP*	FSD*
Front Collision Avoidance	Yes	Yes	Yes	Yes	Yes
Lane Departure Warning	Yes	Yes	Yes	Yes	Yes
Lane Departure Avoidance	Yes*	No	Yes	Yes	Yes
Emergency Lane Departure Avoidance	Yes*	No	Yes	Yes	Yes
Side Collision Avoidance	Yes*	No***	Yes	Yes	Yes
TACC	No	Yes	Yes	Yes	Yes
Autosteer, accelerate and brake	No	Yes	Yes	Yes	Yes
Autopark	No	Yes	No	Yes	Yes
Auto Lane Change	No	Yes**	No	Yes	Yes
Read Speed Signs	No	Yes	Future	Future	Future
Summon	No	Yes	No	Yes	Yes
Smart Summon	No	No	No	Yes	Yes
Navigate on Autopilot	No	No	No	Yes	Yes
Respond to Traffic lights and stop signs	No	No	No	No	Yes
Full Self Driving	No	No	No	No	Future

^{*} Requires HW2.0 or later or all Model 3 vehicles

图12 各个Autopilot版本所实现的功能列表

^{**} AP1 requires confirmation when traffic safe

^{***} Was available prior to v8.0 software, but not was all that effective and was removed

Part Numbers

Part Number Structure 1234567-89-A Base Number Varient Version

Item	Model	Part Number
MCU1 with display, early cars, no longer available	S/X	1004777-00-A
MCU1 with updated display and LTE, the latest version	S/X	1045006-00-J
MCU2 with display	S/X	1451809-S0-B
Autopilot ECU 2.0	S/X	1078321-00-C (MS) 1078321-70-C 1078321-70-D 1078321-70-G
Autopilot ECU 2.5	S/X	1125800-70-C 1125800-70-G
Autopilot ECU 3.0	S/X	1655000-00-F* 1655000-70-F
MCU & Autopilot ECU **	3	1098058-S0-L

^{*} The 00 variant has HDMI port, perhaps for development

图13 特斯拉信息娱乐系统和autopilot的各个硬件版本的版本号

^{**} Model 3 MCU and Autopilot ECU are two boards in the same module and are functionally similar to 位为设置富年computer and Autopilot ECU 2.5

图14 特斯拉FSD Computer

Mobileye方案: Mobileye坚定提供视觉中心化方案,并计划通过建立雷达+激光雷达的子系统来保证冗余,并顺利支持到L3-L4级自动驾驶。

图15 Mobileye自动驾驶技术路线图和产品方案图谱

Unique Elements of Mobileye's Approach

Camera centric approach to enable True Redundancy

- + Cost-optimized ADAS and AV
- + Robust CV allows two separate sub-systems for AV

REM HD maps global coverage at scale

- + Leveraging our strong position in ADAS
- + Already operational and is proving to be a true segment disruption

RSS formal model for safety

- + Allowing useful and human-like + RSS for ADAS- "Vision Zero" driving experience

图16 视觉中心化方案以及雷达/激光雷达子系统保证冗余

The Perception Challenge

Breaking down the MTBF into MTBF, of independent sub-systems

How do we maximize independency?

验 我爱露营车

图17 由纯视觉+其他传感器组成的双感知系统

图18 上述观点的继续补充

博世方案:5R5V方案

图19 博世的L2+ ADAS/AD方案建议

后记

未来两年,前装ADAS/AD系统方案逐步从L2+迈入L3,正值驾驶责任从驾驶员转向车辆之际,也是各大OEM/Tier1/Tier2迎面直上、迎接挑战的时刻。虽然新方案层出不穷,虽然要handle很多的新事物,如新技术(OTA、AI、数据闭环等)、新功能(HWP、AVP等)、新架构(集中式EEA)、新传感器、新芯片、新通信协议、新开发理念(SOTIF)等等,但是仍旧相信同仁们会攻坚克难,最终顺利实现高级别自动驾驶的前装量产。