סיכומי הרצאות ⁻ חדו"א 1א

מיכאל פרבר ברודסקי

תוכן עניינים

2	נוסחאות כלליות	1
2	חסמים עליונים ותחתונים	2
2		3
2	הגדרת הגבול	
3	חשבון גבולות	
3	טענות על גבולות 3.3	
3	3.4 מבחן ה[(שורש)(מנה)] (הגבולי)?	
3	סדרות מונוטוניות סדרות מונוטוניות	
4	תתי סדרות	
4	מבולות חלקיים	

1 נוסחאות כלליות

בינום:

א"ש הממוצעים:

 $rac{a_1+\ldots+a_n}{n}\geq \sqrt[n]{a_1\cdot\ldots\cdot a_n}\geq rac{n}{rac{1}{a_1}+\ldots+rac{1}{a_n}}$ לכל $(1+x)^n\geq 1+nx$ מתקיים $x>-1,n\in\mathbb{N}$

א"ש ברנולי:

 $|a+b| \le |a| + |b|$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

א"ש המשולש:

2 חסמים עליונים ותחתונים

 $.x \leq M$, $x \in A$ יקרא חסם מלעיל של A אם לכל M יקרא חסם מלרע של A אם לכל A יקרא חסם מלרע של A

אקסיומת השלמות: לכל קבוצה לא ריקה וחסומה מלעיל קיים חסם עליון קטן ביותר, ונסמן $\sup A$ אותו ב־

a < b < a < b כך ש־a < a < b כד שימושית: אם $b = \sup A$ אז לכל b < b < b < b

|b-a|<arepsilon בך ש־ $a\in A$ קיים קיים אברה: נאמר ש־B אם לכל אם לכל אם ולכל הגדרה: נאמר ש־

 $s(a,b)\cap S
eq \emptyset$, $a< b\in \mathbb{R}$ לכל R צפופה ב־ $S\subseteq \mathbb{R}$ צפופה ב

 $.q \in (a,b)$ טענה: לכל a < b קיים q כך ש־

a>0הוכחה: נניח ש־0. a>0 היי a>0 פ"- a>0. יהי a>0 המספר הקטן ביותר כך ש־a>0. יהי a<0 המספר הקטן אז a>0 אז בנוסף, בנוסף, $a+\frac{1}{k}<a+(b-a)=b$ ולכן $a+\frac{m-1}{k}<a+(b-a)=b$ וסיימנו. אם $a>\frac{m-1}{k}<a+(b-a)=b$ בנוסף, אם בוסף, אז a>0 בנוסיף אם $a+\frac{1}{k}<a+(b-a)=b$ ולכן אם $a+\frac{1}{k}<a+(b-a)=b$ בנוסיף את בנוסיף את בנוסיף את בוסיף את בוסי

[a,b]ענה: \mathbb{Q} צפופה ב־ \mathbb{R} ו־ $[a,b] \cap \mathbb{Q}$ צפופה ב

3 סדרות

 $\left(a_{n}\right)_{n=1}^{\infty}$ או $\left(a_{n}\right)$ דות סדרות ב

 $a_n \leq M$, אם כך שלכל M כל אם **מלעיל** אם **מלעיל** אם מדרה אסומה נאמר

 $M \leq a_n$, אם כך שלכל M כל מלרע, אם היים M כל שלכל מסדרה אסומה נאמר

 $|a_n| \leq M$, אם כך שלכל M כד שסדרה אם ליים אם נאמר שסדרה אסומה

3.1 הגדרת הגבול

 $a_n o L$ אם: או $\lim_{n o \infty} a_n = L$ ונסמן, ונסמן, הוא (a_n) או נאמר שהגבול של

 $\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. |a_n - L| < \varepsilon$

 $\lim_{n \to \infty} a_n = \infty$ אם, אם, אוו $\lim_{n \to \infty} a_n = \infty$ ונסמן, הוא או (a_n) אוו נאמר שהגבול של

 $\forall M > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. a_n > M$

L=L' אז $\lim_{n o\infty}a_n=L,\lim_{n o\infty}a_n=L'$ משפט (יחידות הגבול): אם

 $:\!L$ את בשבילו את בריך לדעת בשבילו את סדרות קושי: זהו תנאי שקול להתכנסות, שלא צריך לדעת בשבילו

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall m, n \geq n_0. |a_m - a_n| < \varepsilon$$

3.2 חשבון גבולות

יהיו $a_n o a, b_n o b$ ש־ל סדרות (a_n), (b_n) יהיו

- $a_n + b_n \to a + b \bullet$
 - $a_n \cdot b_n \to a \cdot b \bullet$
- $b \neq 0$ אם $b_n \neq 0$ אם $\frac{a_n}{b_n} o \frac{a}{b}$

$$rac{1}{b_n}
ightarrow\infty$$
 אז $b=0$ לכל n לכל $b_n
eq 0$ אז b

- $|a_n| \to |a| \bullet$
- n לכל $a_n \geq 0$ אם $\sqrt{a_n} o \sqrt{a}$

3.3 טענות על גבולות

 $a \leq b$ אז: $a_n \leq b_n$ שינה: יהיו $a_n \leq b$ סדרות מתכנסות כך שי $a_n \in b$ אז:

 $x_n o \infty$ אז $y_n o \infty$ ו ו $x_n o y_n$ אז הרחבה:

 $|a_n| > r$, $n > n_0$ כך שלכל n_0 כיים n_0 אז קיים $a_n \to L
eq 0$ טענה: תהי $a_n \to L \neq 0$ טענה:

 $a_n o 0$ אז $0 \le a_n^{1/n} \le lpha$, שלכל השורש: אם קיים 0 < lpha < 1 כלל השורש: אם קיים

3.4 מבחן ה[(שורש)(מנה)] (הגבולי)?

 $\lim_{n \to \infty} a_n = 0$ אזי $(a_n)^{1/n} \le \alpha$ ע די $0 \le \alpha < 1$ וקיים $a_n \ge 0$ וקיים $a_n \ge 0$ לכל השורש $\lim_{n \to \infty} a_n^{1/n} = L$ ו וו $\lim_{n \to \infty} a_n^{1/n} = L$ ו השורש הגבולי: $a_n > 0$ ווו $\lim_{n \to \infty} a_n^{1/n} = L$

- $\lim_{n\to\infty}a_n=0$ th L<1 on ullet
- $\lim_{n \to \infty} a_n = \infty$ th L > 1 DN •

,אזי, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$ ר ו $a_n > 0$ אזי, אזי,

- $\lim_{n o \infty} a_n = 0$ th L < 1 on ullet
- $\lim_{n \to \infty} a_n = \infty$ th L > 1 on ullet

3.5 סדרות מונוטוניות

 $a_n o \sup a_n$: אזי: אזי: מונוטונית עולה וחסומה מלעיל. אזי: מונוטונית טענה:

 $a_n o \infty$: אזי: מונוטונית עולה ולא חסומה מלעיל. אזי: מונוטונית עולה ולא

3.6 תתי סדרות

 (a_n) סדרה ו־ (n_k) סדרה של טבעיים. אז ממש של טבעיים (ח (n_k) סדרה ו- $(a_{n_k})_{k=1}^\infty$ ונסמן ב־ $(a_{n_k})_{k=1}^\infty$

משפט הירושה: תהי (a_n) סדרה ו (a_n) תת־סדרה.

- $a_{nk} \to L$ th $a_n \to L$ dh ullet
- עולה אז מונוטונית עולה אז מונוטונית a_n אם a_n
 - אם a_{n_k} אם חסומה a_n •

משפט בולצנו־ויירשטראס: לכל סדרה חסומה יש תת־סדרה מתכנסת ומונוטונית. אם הסדרה לא חסומה יש תת־סדרה מונוטונית מתבדרת ל־ $\infty\pm$.

3.6.1 גבולות חלקיים

, החלקיים, הגבולות הגבול את ל $\hat{\mathcal{P}}\left(a_n\right)$ ב נסמן בי $.a_{n_k}\to L$ אם קיימת הגבולות יקרא יקרא יקרא יקרא יקרא ילרה: . $\pm\infty$ החלקיים הגבולות הגבולות הגבולות את קבוצת הגבולות ונסמן בי

 $\limsup a_n = \overline{\lim} a_n = \sup \hat{\mathcal{P}}\left(a_n\right), \qquad \liminf a_n = \underline{\lim} a_n = \inf \hat{\mathcal{P}}\left(a_n\right) \qquad \exists i \in \mathcal{P}\left(a_n\right)$

טענה: יש גבול אבול הרחב איש במובן הרחב מתכנסת (a_n) יש טענה:

טענה: חסומה אינה חסומה מלעיל/מלרע אינה $-\infty/\infty$ גבול אינה מלעיל

 $\inf a_n \leq \liminf a_n \leq \limsup a_n \leq \sup a_n$ טענה: בסדרה חסומה