Theo-II: Analytische Mechanik und Thermodynamik (PTP2)

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Christian Angrick

Universität Heidelberg Sommersemester 2020

Übungsblatt 4

Besprechung in den virtuellen Übungsgruppen am 18. Mai 2020 Bitte schicken Sie maximal 2 Aufgaben per E-Mail zur Korrektur an Ihre Tutorin / Ihren Tutor!

1. Teilchen im expandierenden Universum

Die Lagrange-Funktion eines Teilchens der Masse *m* im expandierenden Universum homogener Massendichte ist durch

 $L = \frac{m}{2}\dot{\vec{x}}^2 - m\,\Phi(\vec{x})$

gegeben, wobei $\Phi(\vec{x})$ das Newton'sche Gravitationspotential ist. Die Expansion des Universums wird durch die Einführung von sog. *mitbewegten Koordinaten* \vec{q} mit $\vec{x} \equiv a(t) \vec{q}$ beschrieben, wobei sich der Skalenfaktor a(t) für ein räumlich flaches Universum, das nur Materie beinhaltet, aus der Differentialgleichung

 $\frac{\dot{a}}{a} = H_0 a^{-3/2}$

mit der Randbedingung a(t = 0) = 0 und der Hubble-Konstanten H_0 ergibt.

a) Drücken Sie die Lagrange-Funktion als Funktion der mitbewegten Koordinaten \vec{q} aus. Verwenden Sie dabei die Funktion

 $f = \frac{m}{2} a \dot{a} \vec{q}^2,$

um die Lagrangefunktion auf die Form

$$L' = L - \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{m}{2}a^2\dot{\vec{q}}^2 - m\,\varphi(\vec{q})$$

zu bringen.*

- b) Berechnen Sie die zu L' gehörige Hamilton-Funktion, und identifizieren Sie Erhaltungsgrößen im Fall eines freien Teilchens in einem Universum ohne Dichtefluktuationen, für das $\varphi \equiv 0$ ist.
- c) Berechnen Sie $\vec{q}(t)$ unter den Annahmen, dass das Teilchen bei t_0 startet, was einem Wert a_0 des Skalenfaktors entspricht, und dass $\varphi \equiv 0$ ist. Was passiert im Limes $t \to \infty$ mit $\vec{q}(t)$ und mit $\vec{x}(t)$? Interpretieren Sie das Ergebnis.

2. Zylinderförmiges Potential

Eine Punktmasse m befinde sich in einem zylindersymmetrischen Potential, sodass ihre potentielle Energie durch $V(\rho, \varphi, z) \equiv V(\rho)$ gegeben ist, wobei ρ die Radialkoordinate in Zylinderkoordinaten ist. Identifizieren Sie die Lagrange- und Hamilton-Funktion sowie die Erhaltungsgrößen dieses Systems.

^{*}Hinweis: Identifizieren Sie das Potential φ einfach durch "übrig gebliebene" Terme nach der Transformation auf L'.

3. Brachistochrone

Auf dem 2. Übungsblatt haben Sie berechnet, dass die Zeit, die eine reibungsfrei unter dem Einfluss der Gravitationskraft entlang einer Kurve z = -f(x) gleitende Punktmasse braucht, um sich von $x = x_0$ nach $x = x_E$ zu bewegen, durch

$$T[f] = \frac{1}{\sqrt{2g}} \int_{x_0}^{x_E} dx \sqrt{\frac{1 + [f'(x)]^2}{f(x)}}$$

gegeben ist, wenn die Punktmasse zu Beginn weder potentielle noch kinetische Energie besitzt.

- a) Interpretieren Sie das Funktional T[f] als Wirkung zu einer Lagrange-Funktion $L(t, q, \dot{q})$, indem Sie die Ersetzungen $t \to x$, $q \to f$ und $\dot{q} \to f'$ vornehmen. Finden Sie die entsprechende Hamilton-Funktion, und leiten Sie aus der Tatsache, dass die Lagrange-Funktion nicht explizit von x abhängt, eine Differentialgleichung 1. Ordnung für f(x) her, indem Sie eine Größe E finden, die für die Bahn mit minimalem T[f] erhalten ist.
- b) Zeigen Sie, dass

$$f(\varphi) = \frac{1 - \cos \varphi}{4gE^2}$$
 und $x(\varphi) = \frac{\varphi - \sin \varphi}{4gE^2}$

die Differentialgleichung löst, wobei E die Erhaltungsgröße aus Aufgabenteil a) ist und g die Gravitationsbeschleunigung. Die durch $f(\varphi)$ und $x(\varphi)$ beschriebene Kurve wird als Brachistochrone (Kurve zu geringster Zeit) bezeichnet.

4. Verständnisfragen

- a) Was sind zyklische Koordinaten, und wofür sind sie wichtig?
- b) Was besagt das Hamilton'sche Prinzip?
- c) Ist die Lagrange-Funktion eindeutig bestimmt? Begründen Sie Ihre Aussage und zeigen Sie gegebenenfalls, wie Lagrange-Funktionen verändert werden dürfen.