Figure 1 Commonly used glycosylating agents

Figure 2 Donor bound solid-phase carbohydrate synthesis

the store than their than the self the stars

Figure 3 Acceptor bound solid-phase carbohydrate synthesis

- a) oligonucleotides
- b) oligopeptides

c) oligosaccharides

Automated Oligosaccharide Synthesizer

Figure 6

Double-Walled Cooled Reaction Vessel

Figure 8 2D-NMR comparison of resin bound and solution phase pentamer

and a stable such that the same of

in the species of the

Automated Synthesis of the Phytoalexin Elicitor **B-Glucan Using Glycosyl Phosphates**

Prior syntheses:

Garegg et al. Angew. Chem. Int. Ed. 1983, 22, 793; van Boom et al. Chem. Eur. J. 1995, 1, 16;

on polymer support using trisaccharide blocks: Nicolaou et al. *Angew. Chem. Int. Ed.* 1998, *37*, 1559. on soluble support: van Boom et al. Recl. Trav. Chim. Pays-Bas 1993, 112, 464;

Figure 10

Automated Oligosaccharide Synthesis

Chemical Issues:

- Choice of Resin (Merrifield's, Argopore, Tentagel)
- Linker: HO
- **Glycosylation Protocol**
- Deprotection Protocol
- Capping Cycle
- Cleavage Method
- Purification Technique

Practical Issues:

- Scale (µmol-mmol)
- Cycle Development/Time
- Temperature Control Device

Automated Oligosaccharide Synthesis with Glycosyl Phosphates: Coupling Cycle

Figure 11

Cycle Time per residue 110 min

Solid Support Oligosaccharide Synthesis: Glycosyl Phosphate Donors

53% overall yield

Advantages: • excess reagents drive reactions to completion

purification only at the end of the synthesis

Automated Hexasaccharide Synthesis Using Glycosyl Phosphates Figure 13

Crude HPLC Profile of the Hexamer Synthesis

Figure 14

Automated Oligomannoside Synthesis: Coupling Cycle

Equivalents

Reagent/Solvent

		-	•				
30 min	5 min	30 min	5 min	30 mln	5 min	30 min	5 min
10		10					
Donor TMSOTf	CH ₂ O ₁₂	Donor TMSOTf	CH ₂ Cl ₂ THF	NaOMe	CH ₂ Cl ₂ THF	NaOMe	OH ₂ O ₂
Coupling	Washing	Coupling	Washing	Deprotection	Washing	Deprotection	Washing
<u> </u>					٠		

Cycle Time per residue 140 mln

Solid-Phase Oligosaccharide Synthesis

Coupling Cycle Development

42% yield

74% yield

(manual synthesis: 9%)

stepwise yield: 94% stepwise yield: 94%

HR-MAS HMQC-Analysis of Pentamannosides

HPLC Purification of the Heptamannoside

Figure 19

Automated Synthesis of a Decamannoside Using Trichloroacetimidates

stepwise yield: 94.9%

Automated Synthesis of Leishmania Cap Tetrasaccharide

66% yield

Automated Synthesis of GlcA Trisaccharide

Cycle:

Time: 8.5 h

Donor: 5.0 eq

Activator: 0.5 eq TMSOTf

Deprotection: 0.5 M NH₂NH₂•H₂O

Automated Synthesis of polyglucosamines

Figure 22

