

Лабораторная работа 5.2.1 Опыт Франка-Герца

Студенты:

Панченко Наталья
Исламов Сардор
Физтех-школа физики и исследований им. Ландау
Московский Физико-Технический Институт

Аннотация. Методом электронного возбуждения измерить энергию первого уровня атома гелия в динамическом и статическом режимах.

Теоретическое введение

Опыт Франка-Герца подтверждает существование дискретных уровней энергии атомов.

Рис. 1: Схема опыта Франка и Герца

Разреженный одноатомный газ заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданном между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду, электроны сталкиваются с атомами гелия. Если энергии электрона недостаточна, чтобы возбудить/ионизировать атом, то происходит упругое столкновение, электрон не теряет энергию (так как его масса в тысячи раз меньше массы атома). При большой разности потенциалов энергия электрона достаточна для возбуждения атомов, и происходит неупругое столкновение, кинетическая энергия передаётся одному из атомных электронов, в результате чего происходит либо возбуждение (переход одного из атомных электронов на свободный энергетический уровень) либо ионизация (отрыв электрона от атома).

Рис. 2: Зависимость фототока коллектора от напряжения на аноде

Между коллектором (третий электрод лампы) и анодом поддерживается небольшое задерживающее напряжение. При увеличении потенциала анода ток в лампе сначала растёт. Когда энергия электронов становится достаточной для возбуждения атомов, ток коллектора резко уменьшается. Это происходит потому, что при неупругих соударениях с атомами электроны теряют свою энергию и не могут преодолеть задерживающее напряжение (около 1 В) между анодом и коллектором. При дальнейшем увеличении потенциала ток коллектора вновь возрастает: электроны, испытавшие неупругие соударения, при дальнейшем движении к аноду успевают набрать энергию, достаточную для преодоления задерживающего потенциала. Следующее замедление роста тока происходит в момент, когда часть электронов неупруго сталкивается с атомами два раза. Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящих друг от друга на равные расстояния, равные энергии первого возбуждённого состояния. Кинетическая энергия электрона 1 уровня равна:

$$E = \overline{e}\Delta V [eV], \tag{1}$$

где ΔV – разность между двумя пиками (см. рис.2).

Экспериментальная установка

Рис. 3: Схема экспериментальной установки

Для опыта используется серийная лампа ионизационного манометра ЛМ-2, заполненная гелием до давления ~ 1 Торр. Источником электронов является вольфрамовый катод, нагреваемый переменным током. Напряжение накала подаётся от стабилизируемого источника питания С. Ток накала контролируется амперметром А. В качестве анода используется двойная спираль, окружающая катод. Роль коллектора играет полый металлический цилиндр, соосный с катодом и анодом. Ускоряющее напряжение подаётся на анод от выпрямителя В. Источник задерживающего напряжения - батарея 4,5 В; величина напряжения регулируется потенциометром П2 и измеряется вольтметром V2. Ток в цепи коллектора регистрируется микроамперетром.

Ход работы

Динамический метод. Масштабы: по оси х - 5 В/дел, по оси у - 10 мВ/дел.

Рис. 4: 4 В

$$\Delta V = 2.6 \Rightarrow E = 13eV \tag{2}$$

Рис. 5: 6 В

$$\Delta V = 2.8 \Rightarrow E = 14eV \tag{3}$$

Рис. 6: 8 В

$$\Delta V = 2.7 \Rightarrow E = 13.5 eV \tag{4}$$

Статический метод. Отобразим значения, полученыые статическим методом на графике (рис. 7)

V_a , B	0.0	3.7	10.3	15.06	18.0	21.1	21.75	22.2
I_k , мк A	0.0	0.06	0.2	0.31	0.37	0.42	0.429	0.434
V_a , B	23.0	23.2	23.4	23.5	23.9	24.0	24.3	24.6
I_k , мк A	0.436	0.439	0.445	0.449	0.452	0.45	0.374	0.373
V_a , B	24.9	25.5	26.6	27.6	29.0	30.0	31.3	34.5
I_k , мк A	0.38	0.392	0.42	0.448	0.49	0.52	0.55	0.63
V_a , B	37.0	37.3	37.7	38.3	38.8	39.3	39.8	40.0
I_k , мк A	0.661	0.665	0.665	0.677	0.674	0.671	0.663	0.658
V_a , B	41.0	41.4	42.5	43.7	44.3	46.9	48.3	50.0
I_k , мк A	0.649	0.644	0.639	0.634	0.633	0.643	0.653	0.666
V_a , B	53.0	56.0	62.0	64.0	65.0	66.0	67.0	70.6
I_k , мк A	0.695	0.73	0.77	0.777	0.778	0.779	0.78	0.798

Таблица 1: ВАХ для V = 4V

V_a , B	0.0	3.5	12.2	16.9	20.7	22.7	23.0	23.5	24.6	24.7
I_k , MKA	0.0	0.027	0.22	0.337	0.42	0.442	0.442	0.445	0.448	0.29
V_a , B	16.9	20.7	22.7	23.0	23.5	24.6	24.7	25.0	27.6	29.2
I_k , мк A	0.337	0.42	0.442	0.442	0.445	0.448	0.29	0.28	0.315	0.37
V_a , B	23.0	23.5	24.6	24.7	25.0	27.6	29.2	31.6	33.8	35.3
I_k , мк A	0.442	0.445	0.448	0.29	0.28	0.315	0.37	0.445	0.51	0.55

Таблица 2: ВАХ для V = 6V

V_a , B	0.0	2.9	7.0	13.2	17.2	19.7	23.5	24.8	25.0
I_k , MKA	0.0	0.002	0.058	0.2	0.3	0.356	0.41	0.41	0.21
V_a , B	13.2	17.2	19.7	23.5	24.8	25.0	25.8	26.5	28.4
I_k , MKA	0.2	0.3	0.356	0.41	0.41	0.21	0.186	0.18	0.198
V_a , B	23.5	24.8	25.0	25.8	26.5	28.4	29.2	31.1	32.3
I_k , мкА	0.41	0.41	0.21	0.186	0.18	0.198	0.22	0.297	0.326

Таблица 3: ВАХ для V = 8V

Рис. 7: ВАХ

Из графика можем определить расстояние между максимумами и, соответственно, энергии возбуждения первого уровня:

U_2, V	4	6	8	
$\Delta E, eV$	14.17	13.67	13.49	

Выводы

В ходе работы был воспроизведён опыт Франка-Герца, подтверждающий наличие дискретных уровней возбуждения атомов. Вольт-амперная характеристика трёхэлектродной вакуумной лампы была измерена двумя способами - динамическим и статическим. По этим ВАХ были экспериментально определены потенциалы возбуждения атомов гелия (одноатомный газ, заполняющий лампу). По теоретическим данным это 21,6 эВ, наши значения ~ 14eV, результаты совпадают по порядку величины.