Вычислить объемы тел, ограниченных поверхностями;

4111.
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x}{h} .$$
4112.
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} .$$
4112.1.
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} .$$
4113.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c} .$$
4114.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^4}{c^4} = 1.$$
4115.
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 + \frac{z^4}{c^4} = 1.$$

Пользуясь подходящей заменой переменных, вычислить объемы тел, ограниченных поверхностями (параметры предполагаются положительными):

4116.
$$\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c}\right)^2 = \frac{x}{h} + \frac{y}{k} \ (x \ge 0, \ y \ge 0, \ z \ge 0)$$
.

4116.1. $\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c}\right)^2 = \frac{x}{h} - \frac{y}{k} \ (x \ge 0, \ y \ge 0, \ z \ge 0)$.

4117. $\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c}\right)^4 = \frac{xyz}{abc} \ (x \ge 0, \ y \ge 0, \ z \ge 0)$.

4118. $\left(\frac{x}{a} + \frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1 \ (x \ge 0, \ y \ge 0, \ z \ge 0)$.

4118.1. $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} + \sqrt{\frac{z}{c}} = 1 \ (x \ge 0, \ y \ge 0, \ z \ge 0)$.

4118.2. $\sqrt[3]{\frac{x}{a}} + \sqrt[3]{\frac{y}{b}} + \sqrt[3]{\frac{z}{c}} = 1 \ (x \ge 0, \ y \ge 0, \ z \ge 0)$.

4118.3. $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1$.

4119. $z = x^2 + y^3, \ z = 2 \ (x^2 + y^2), \ xy = a^2, \ xy = 2a^2, \ x = 2y, \ 2x = y \ (x > 0, \ y > 0)$.

4120. $x^2 + z^2 = a^2, \ x^2 + z^2 = b^2, \ x^2 - y^2 - z^2 = 0$

4121. $(x^3 + y^2 + z^2)^3 = \frac{a^6z^3}{x^3 + y^3}$.

4122. $\left(\frac{x^3}{a^2} + \frac{y^2}{b^3} + \frac{z^2}{c^2}\right)^2 = \frac{z}{h} \cdot e^{-\frac{z^2/c^3}{x^2/a^2 + y^3/b^3 + z^2/c^3}}$.