

# 青风带你玩蓝牙 nRF52832 V2.0

# 淘宝地址: http://qfv5.taobao.com/

| 青风带你玩蓝牙 nRF52832 系列教程       | 2  |
|-----------------------------|----|
| 作者: 青风                      |    |
| 作者: 青风                      |    |
| 出品论坛: www.qfv8.com          |    |
| 淘宝店: http://qfv5.taobao.com |    |
| QQ 技术群: 346518370           |    |
| 硬件平台:青云 QY-nRF52832 开发板     |    |
| 第 10 章 蓝牙 ibeacon 的应用       |    |
| 10.1 蓝牙 ibeacon 的基本介绍       | 3  |
| 10.2 蓝牙 ibeacon 代码解析        |    |
| 10.3 蓝牙 ibeacon 的应用         |    |
| 10.3.1 蓝牙 ibeacon 的微信摇一摇    |    |
| 10.3.2 蓝牙测距                 | 14 |



# 青风带你玩蓝牙 nRF52832 系列教程

-----作者: 青风

出品论坛: www.qfv8.com 青风电子社区





作者: 青风

出品论坛: www.qfv8.com

淘宝店: http://qfv5.taobao.com

QQ 技术群: 346518370

硬件平台: 青云 QY-nRF52832 开发板

# 第 10 章 蓝牙 ibeacon 的应用

## 10.1 蓝牙 ibeacon 的基本介绍

iBeacon 是苹果在 2013 年 WWDC 上推出一项基于蓝牙 4.x (Bluetooth LE | BLE | Bluetooth Smart) 的精准微定位技术,iBeacon 是基于蓝牙 Bluetooth Low Energy 低功耗蓝牙传输技术一种应用。iBeacon 基站不断向四周发送蓝牙信号,当智能设备进入设定区域时,就能够收到信号。

iBeacon 设备只使用了广播通信信道,因此没有 BLE 的后续连接相关步骤,所有这种情况使得 ibeacon 的功耗相当的低,一块纽扣电池就能工作长达 2 年时间,而且在设备不断对外发射信号情况下。

正如 beacon 英文信标、灯塔的字面意思,这种设备以一定的时间间隔发送数据包,并且发送的数据被可以被像手机这样的设备获取。同时与信标的远近可以根据信标的信号强度大小来判断,距离越远,信标信号约弱。其中"iBeacon"一词专指苹果自家的Beacon 平台。实际上,该技术并非苹果公司专有,市面上还有很多其他的Beacon 服务及设备。每个公司都会定制自己相应的广播包格式。

根据 Beacon 的这种特性,其在消息推送、移动支付、室内定位等方面都有广泛的应用。

比如在 Beacon 的系统框架下,消息推送的应用十分方便,比如:用户手机上的特定应用可以发现用户正位于博物馆的某展区附近,然后将与该展区相关的富信息"拉取"到手机当中,例如文字介绍、音频、视频、链接、相关文物等信息。比如推送如下的图片:



又或者结合室内导航和消息推送的应用: 当你走入一家大型商场的店铺,同时这也意味着你已经进入了这家店铺的 iBeacon 信号区域。然后 iBeacon 基站便可以向你的手机传输各种信息,比如优惠券或者是店内导航信息,甚至当你走到某些柜台前面时,iBeacon 还会提供个性化的商品推荐信息。也就是说用户如果在 iBeacon 基站的信息区域内,用户可以通过手中的智能手机便能够获取个性化的信息推送通知。更近一步,如果你需要购买这个商品,ibeacon 还可以通过 app 向用户同推送支付二维码,实现支付功能。

这个应用里,iBeacon 仅仅提供位置服务,推送消息功能需要您去开发一款 APP 软件,并安装到用户手机中,在后台挂载相应服务程序。例如进入 iBeacons 广播范围的用户手机收到商场打折促销信息,信息是由手机上的应用去获取的,而不是保存在 iBeacons 里。具体实现过程是:当 APP 软件接收到 iBeacon 广播的位置信息后,经过一定计算来获取自己的当前位置,当计算出来的位置符合您设定的特定条件时,APP 向您的广告数据服务器请求对应内容并呈现给用户,到此完成一条消息的推送。也就是说要实现动态的信息推送,至少需要一个 APP 软件和一个数据服务器。当然如果仅向用户呈现固定内容,则数据服务器不是必须的。

同时 iBeacon 可以分清楚不同的距离概念,比如近(near),适中(medium)和远(far),从而使得 iBeacon + 蓝牙基于位置服务中远远好于 GPS + WiFi 组合。在平均 20 平米 1 个 beacon 的部署密度情况下。定位精度保持在分米级别。而且 beacon 硬件和施工成本相当低。在很多场景下与现有室内导航技术相比的技术优势明显。

## 10.2 蓝牙 ibeacon 代码解析

ibeacon 的核心就是广播, ibeacon 不需要连接, app 所有信息获取的信息都是以广播形式广播出去。

我们关注的就是ibeacon广播哪些信息。你需要广播哪些信息?技术要求默认的需要哪些信息? Beacon编码格式"帧格式",我们以 Apple 的 iBeacon 定义为基础进行介绍。Apple 的 iBeacon 定义



可以用下表表示:

25.

| AD Field | Type | Company ID | iBeacon | iBeacon | UUID    | Major | Minor | TX Power |
|----------|------|------------|---------|---------|---------|-------|-------|----------|
| Length   |      |            | Туре    | Length  | iBeacon |       |       |          |

上面的参数可以解释如下:

AD Field Length 表示 advertisement Data 的长度,表示有用的广播信息长度。

Type 表示 advertisement type, 也就是广播类型

Company ID 数据字段以两字节的公司 ID 码开始。SIG 将这些 ID 码发放给公司,并且能知道应用程序如何解析这些字段。上图的 0x004C 就是 apple 公司的 ID。0x0059 是 Nordic Semiconductor 公司的 ID。

IBeacon type 指明了其类型是"proximity beacon",即 0x02。

IBeacon Length 长度字段描述了剩下的字段的长度。

IBeacon UUID 表示该设备服务分配的私有任务的 128bit 的基础 UUID。

Major 和 Minor 字段包含了位置信息,Major 字段表示分组号,通常指示了建筑物。Minor 指示的是该分组内的单元编号,通常指示建筑物里的位置信息。两个参数可以表示哪个分组里的哪个ibeacon。

Tx Power 字段表示 app 通过 ibeacon 发送信号强度估算出的在 1m 的时候的 RSSI 强度。

那么对于 ibeacon 的数据,通过广播形式广播出去,那么其主要设置就是主函数里广播初始化部分(首先请先阅读之前关于广播初始化的教程)所有定义的参数必须在广播初始化的时候进行配置,SDK 里提供了函数 ble advdata set 对广播参数进行配置,代码如下所示:

```
01. static void advertising init(void)
02. {
03.
       uint32 t
                    err code;
04.
       ble advdata t advdata;
05.
                    flags = BLE GAP ADV FLAG BR EDR NOT SUPPORTED;//广播类型
       uint8 t
06.
07.
       ble advdata manuf data t manuf specific data;
08.
       manuf specific data.company identifier = APP COMPANY IDENTIFIER;//公司 ID 号
09.
       .....
10.
       .....
11.
       manuf specific data.data.p data = (uint8 t*) m beacon info;//数据结构体
12.
                                   = APP BEACON INFO LENGTH://数据长度
       manuf specific data.data.size
13.
14.
       // 初始化广播参数
15.
       memset(&m adv params, 0, sizeof(m adv params));
16.
17.
       m adv params.properties.type =
18.
       BLE GAP ADV TYPE NONCONNECTABLE NONSCANNABLE UNDIRECTED;
19.
       m adv params.p peer addr
                                    = NULL;
                                               // Undirected advertisement.
20.
       m adv params.filter policy
                                 = BLE_GAP_ADV_FP_ANY;
21.
                                   = NON CONNECTABLE ADV INTERVAL;
       m adv params.interval
22.
                                              // Never time out.
       m adv params.duration
                                   = 0;
23.
24.
       err code = ble advdata encode(&advdata, m adv data.adv data.p data,
```

&m\_adv\_data.adv\_data.len);

55.

56.



```
APP ERROR CHECK(err code);
26.
27.
28.
      err code = sd ble gap adv set configure(&m adv handle, &m adv data, &m adv params);
29.
      APP ERROR CHECK(err code);
30. }
  下面就对这段广播内容进行解释:
  第5行:设置广播类型为BR/EDR not supported
  第8行:设置公司 ID.
  第 9-10 行:设置制造商的信息数据结构体和广播数据长度
   关于广播公司 ID 和制造商的信息数据在广播数据文件 ble advdata.h 代码中,通过一个结构体
进行定义,一个公司的 ID 编号,一个上制造商的信息:
31.
     typedef struct
32. {
33.
      uint16_t
                  company_identifier;
                                       /*公司 ID 号编码*/
34.
      uint8 array t
                                        /*添加的制造商信息. */
                  data;
35. } ble advdata manuf data t;
   其中制造商的信息数据在通过一个结构体在主函数 main.c 中进行了声明,如下代码所示:
36. static uint8_t m_beacon_info[APP_BEACON_INFO_LENGTH] =
   Information advertised by the Beacon. */
37. {
38.
      APP DEVICE TYPE,
                         // 制造商特定的信息。在这个实现中指定设备类型。
39.
      APP ADV DATA LENGTH, // 制造商特定的信息。在这个实现中指定制造商特定数据的长
   度。
      APP BEACON_UUID,
40.
                          // 128 位的 UUID 的值
41.
      APP MAJOR VALUE,
                          // Major 值表示分组位置
42.
      APP MINOR VALUE,
                          // Minor 值表示分组里的位置值
43.
      APP MEASURED RSSI // Beacon 测试的 TX 功率值
44.
45. };
    主函数中,对以上几个参数进行复赋值,如下所示:
46. #define APP BEACON INFO LENGTH
                                         0x17 //广播信息长度
47. #define APP ADV DATA LENGTH
                                         0x15 //广播数据长度
48. #define APP DEVICE TYPE
                                         0x02
                                               //设备类型
49. #define APP MEASURED_RSSI
                                         0xC3
                                               //1m 距离下 rssi 的大小
                                         0x0059 //公司 ID 号
50. /#define APP COMPANY IDENTIFIER
                                        0x00, 0x0A // major 的值
51. #define APP MAJOR VALUE
52. #define APP_MINOR_VALUE
                                        0x00, 0x07 // minor 的值
53. #define APP BEACON UUID
                                        0x01, 0x12, 0x23, 0x34, \
54.
                                        0x45, 0x56, 0x67, 0x78, \
```

第15-22 行,设置广播类型和广播参数,关于广播参数的设置,这里就不再累述,大家参考之前 广播初始化的教程

第24行:广播数据编码,通过 ble\_advdata\_encode 进行广播数据的编码,把之前设置的广播数据

0x89, 0x9a, 0xab, 0xbc, \

0xcd, 0xde, 0xef, 0xf0 //UUID 的值



放入 ibeacon 广播中。

第28行:广播参数配置,通过协议栈底层函数 sd\_ble\_gap\_adv\_set\_configure 配置广播射频模式

程序设置完毕后,下载到 ibeacon 或者开发板中,通过手机 APP nrf connect 可以观察广播包如下图 所示,图中可以查看广播包以上的几个字段:

| Raw    | data:    |                                                                                                                                 |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------|
|        |          | DDEEFF001020304C305095146445                                                                                                    |
| Detai  | ls:      |                                                                                                                                 |
| LEN.   | TYPE     | VALUE                                                                                                                           |
| 2      | 0x01     | 0x04                                                                                                                            |
| 26     | 0xFF     | 0x590002150112233445566778899AAB<br>BCCDDEEFF001020304C3                                                                        |
| 5      | 0x09     | 0x5146445A                                                                                                                      |
| TYPE - | the data | f EIR packet (Type + Data) in bytes,<br>a type as in https://www.bluetooth.org/en-us<br>assigned-numbers/generic-access-profile |
|        |          | ОК                                                                                                                              |

第一行:长度 2,表示后 2 个字节,第一个字节 TYPE 为 0x01,表示广播类型为:设备被发现能力类型。第二个字节 value 的值 0x04 表示 BR/EDR not supported。

第二行:长度 26,表示广播广播数据长度 26 字节。字节 TYPE 为 0xFF,表示用户定义设备数据,后面的 value 值就是我们前面宏定义已经赋值的数据参数值。 下表是 Type 类型的定义:

| AD Data Type               | Data Type Value | Description                   |  |  |
|----------------------------|-----------------|-------------------------------|--|--|
| Flags                      | 0x01            | Device discovery capabilities |  |  |
| Manufacturer Specific Data | 0xFF            | User defined                  |  |  |

主函数中,调用初始化广播函数 advertising\_init(), 当函数 advertising\_start()启动广播后,就可以实现广播信息的发出,也就是信标的广播包的广播,代码如下所示:

```
57. int main(void)
58. {
59.
       uint32 t err code;
       // 初始化
60.
61.
       .....
62.
63.
64.
       ble stack init();//协议栈初始化
65.
       advertising_init();//广播初始化
66.
67.
       // 输出 BLE Beacon 开始
       NRF LOG INFO("BLE Beacon started\r\n");
68.
69.
        advertising start();//开始广播
70.
```



```
71. //进入主循环
72. for (;; )
73. {
74. if (NRF_LOG_PROCESS() == false)
75. {
76. power_manage();
77. }
78. }
```

如果需要 ibeacon 里需要继续添加其他信息,比如添加广播名称,电量之类的信息,如何处理了?在前面的教程里讲过广播包的大小为 31 字节,这里已经分配给了 ibeacon 的固有编码。如果需要在广播里广播更多的信息,则需要利用广播回包来实现。当主机接收到一个广播包时,它将发送一个叫做"扫描请求"(Scan Request)的请求来获得更多的广播数据。下面以广播发出广播名称为例。

广播名称的设置在 GAP 初始化那节已经讲过,首先需要在 gap 初始化中定义设备 名称,使用 sd ble gap device name set 函数,定义设备名称"QFDZ",如下所示:

```
01. #define DEVICE NAME
                                               "QFDZ"
02.
03. static void gap_params_init(void)
04. {
05.
        uint32 t
                                err code;
06.
        ble_gap_conn_sec_mode_t sec_mode;
07.
08.
        BLE GAP CONN SEC MODE SET OPEN(&sec mode);
09.
10.
         err code = sd ble gap device name set(&sec mode,
11.
                                                (const uint8 t*)DEVICE NAME,
12.
                                                strlen(DEVICE NAME));
13.
        APP ERROR CHECK(err code);
14. }
15.
```

在广播初始化函数里,添加 scanrsp 扫描回包。scanrsp 扫描回包和数据包 advdata 数据类型一样,都 是 使 用 宏 定 义 ble\_advdata\_t 结 构 体 。 在 扫 描 回 包 中 , 声 明 名 称 类 型 为 BLE\_ADVDATA\_FULL\_NAME 广播全名。同时通过 ble\_advdata\_set 同时配置广播包和扫描回包参数。具体代码如下:

```
01. // Build and set advertising data. 把广播包发送出去
02. memset(&advdata, 0, sizeof(advdata));
03.
04. advdata.name_type = BLE_ADVDATA_NO_NAME;
05. advdata.flags = flags;
06. advdata.p_manuf_specific_data = &manuf_specific_data;
07.
```



```
08.
       err code = ble advdata set(&advdata, NULL);
09.
       APP_ERROR_CHECK(err_code);
10.
11.
        memset(&scanrsp, 0, sizeof(scanrsp));
                                = BLE ADVDATA FULL NAME;
12.
       scanrsp.name type
13.
        err code = ble advdata set(&advdata, &scanrsp);
14.
15.
     // 初始化广播参数
16.
       memset(&m_adv_params, 0, sizeof(m_adv_params));
17.
18.
       m adv params.type
                               = BLE GAP ADV TYPE ADV SCAN IND;
19.
       m adv params.p peer addr = NULL; // Undirected advertisement.
20.
       m_adv_params.fp
                                = BLE_GAP_ADV_FP_ANY;
21.
       m_adv_params.interval
                              = NON_CONNECTABLE_ADV_INTERVAL;
22.
                               = APP CFG NON CONN ADV TIMEOUT;
       m adv params.timeout
注意同时设置广播参数类型,需要把:
```

BLE\_GAP\_ADV\_TYPE\_NONCONNECTABLE\_NONSCANNABLE\_UNDIRECTED 没有连接的非定向广播类型改为

BLE\_GAP\_ADV\_TYPE\_NONCONNECTABLE\_SCANNABLE\_UNDIRECTED 有扫描回包的非定向广播类型。这样才能实现广播回包。

通过手机 APP nrf connect 可以观察 beacon 信息如下图所示,下图显示广播的信息包括了: mac 地址,广播 type 类型,广播 flags 格式,公司 ID 号,应类型 type,ibeacon 信息长度,UUID 号,Major 和 Minor 的值,RSSI 在 1m 左右的大小,广播扫描回包显示的广播名称:



| Access Address | Type TxAdd RxAdd PDU-Leng |               |       | AdvA AdvData |           |                   |              | CRC   | RSSI   | FCS      |        |                         |              |      |       |       |          |     |    |  |
|----------------|---------------------------|---------------|-------|--------------|-----------|-------------------|--------------|-------|--------|----------|--------|-------------------------|--------------|------|-------|-------|----------|-----|----|--|
|                |                           |               |       | Add Rx       |           | Contract Contract | gth          |       |        |          |        | 02 15 01 12 23 34 45 56 |              |      |       |       | (dBm)    |     |    |  |
| 0x8E89BED6     | ADV_DISCOVER_             | IND           | 6     | 1            | 0 ;       | 16                | 0xFA5ACD6F2  | 1D2 6 | 7 78 8 | 9 9A     | AB BC  | CD DE                   | EF F         | 0 01 | 02 03 | 04 C3 | 0xCA96E6 | -69 | OK |  |
| Access Address | Adv PDU Type              |               |       | PDU Hea      |           |                   | ScanA        | (C)   | AdvA   |          | CRC    |                         | RSSI<br>dBm) | FCS  |       |       |          |     |    |  |
| 0x8E89BED6     | ADV SCAN REQ              | Type          | TxAdd | RxAdd        | PDU-Lengt | 1000              | 72050299E6AA | OVENS | ACD6F2 | 1 D2     | 0x0A6  | 100                     | -42          | OK   |       |       |          |     |    |  |
| ONOLOGOLDO     | ADV_DCAR_KEX              |               |       |              |           | UA                | 72030233EGAA | ONING | ACDULZ | IUL      | ONORO  |                         |              | OK   |       |       |          |     |    |  |
| Access Address | Adv PDU Type              | Adv DDII Tuno |       | Adv          | PDU Hea   | der               |              | AdvA  | ScanR  | spData   |        | CRC                     | RSSI         |      |       |       |          |     |    |  |
| Access Address |                           | Type          | TxAdd | RxAdd        | PDU-Lengt | h                 | Auva         | 05 0  | 9 51   | 10000000 | - C    | (dBm)                   | 1103         | 1    |       |       |          |     |    |  |
| 0x8E89BED6     | ADV_SCAN_RSP              | 4             | 1     | 0            | 12        | 0xH               | FA5ACD6F21D2 | 46 4  | 4 5A   | 0x2      | A94A33 | -69                     | OK           | 1    |       |       |          |     |    |  |



## 10.3 蓝牙 ibeacon 的应用

### 10.3.1 蓝牙 ibeacon 的微信摇一摇

现在我们来谈一谈微信摇一摇周边,"摇一摇周边"是什么了?摇一摇周边是微信针对低功耗蓝牙硬件(支持 iBeacon 协议)提供的连接入口。在手机蓝牙打开的状态下,当用户在微信中打开摇一摇室,如果周围有 iBeacon 设备,会自动出现周边入口。摇一摇周边是微信基于低功耗蓝牙技术的 O2O 入口级应用,作为微信在线下的全新功能,为线下商户提供近距离连接用户的能力,并支持线下商户向周边用户提供个性化营销、互动及信息推荐等服务。

**2015** 年 **1** 月 **28** 日,"微信摇一摇周边"开启自助申请入口的测试。测试期间,商户可通过摇周边的商户申请平台进行自助接入。

2015年4月12日,在微信公开课第三季长沙站现场,微信团队宣布"微信摇一摇周边"正式对外开放。拥有微信认证的公众帐号商户,均可通过摇周边的商户申请平台或者微信公众平台后台申请入驻。联合微信支付、公众帐号、微信卡包,摇周边为更多商家提供了便捷连接用户和精准近场服务的能力「1]。

那么"摇一摇周边"的业务特点:

1) 精准定位线下用户,提供个性化服务

利用 iBeacon 设备特有的精准定位能力,而且设备体积小,成本低,易安装;用户摇一摇时,可以根据位置和其他相关信息,提供高度个性化的服务,提升体验;

2) 开放的页面内容,为用户提供更酷更丰富的体验

HTML5 页面采用 URL 模式接入,商家可自定义所有互动形式;支持微信 JS-SDK。基于 iBeacon 的接口将陆续开放;

3) 大微信体系

摇一摇入口拥有日均千万级以上的访问用户;与微信公众平台,微信支付,卡券,微信连 WiFi 等产品无缝打通。

微信摇一摇周边目前平台开放了哪些接口?目前微信硬件开发如下几个接口:

- 1)设备管理接口:通过该接口可以申请设备 ID,查询设备列表,配置设备与页面的绑定关系:
  - 2) 页面管理接口:可以新增,编辑,查询以及删除页面;
- 3)信息获取接口:可以获取摇一摇的设备以及用户信息,包括: UMM(UUID、Major、Minor),设备距离以及用户的 Company ID。
- **4**)数据统计接口:以设备为纬度,可以统计单个设备周边操作的人数,次数,点击要周边的人数,次数;



淘宝地址: http://qfv5.taobao.com/

**5**) 一键关注接口: 商户可以在摇出来的页面直接调用摇一摇关注接口,实现关注公众号的功能。

目前微信摇周边功能申请是无需费用,由于 iBeacon 协议是开放协议,商户可以自行通过任意渠道购买支持 iBeacon 设备(譬如搜索"iBeacon 设备"或者在电商网站购买),微信无任何限制。如果对 iBeacon 设备完全不了解,可以参考 iBeacon 设备厂商。对应公众号:已经通过资质认证的订阅号或服务号即可申请。对应企业号:已经认证成功的企业号即可申请。下图为商户或企业接入微信摇一摇的基本步骤:



对应申请步骤表述如下:公众号:登录 MP 平台->添加功能插件->添加"摇一摇周边"功能插件;企业号:登录企业号->服务中心->摇一摇周边

一:注册:也可直接在 PC 侧登录"摇一摇周边"的申请入口:https://zb.weixin.qq.com;





登录后,填写基本资料,提交申请;



审核周期为3个工作日;

二:服务提供者把第一步拿到的 IBeaconId 设置到 IBeacon 设备上,让 IBeacon 设备广播该 IBeaconId,下面我们以微信提供的一组测试 ID 为例,来设置我们的设备,测试设备 ID 如下图 所示:

# 可将下文的测试ID配置在iBeacon中,体验"摇一摇·周边"产品流程。

UUID: FDA50693-A4E2-4FB1-AFCF-C6EB076478

25

Major: 10 Minor: 7

| 01. | 代码中, | 我们需要修改 | UUID 号和 | major 和 | minor 的值: |
|-----|------|--------|---------|---------|-----------|
|     |      |        |         |         |           |

| 02. #define APP_BEACON_INFO_LENGTH | 0x17                                            |
|------------------------------------|-------------------------------------------------|
| 03. #define APP_ADV_DATA_LENGTH    | 0x15                                            |
| 04. #define APP_DEVICE_TYPE        | 0x02                                            |
| 05. #define APP_MEASURED_RSSI      | 0xC3                                            |
| 06. #define APP_COMPANY_IDENTIFIER | 0x004c //改成 apple 公司的 ID                        |
| 07. #define APP_MAJOR_VALUE        | 0x00, 0x0A //修改成测试 major                        |
| 08. #define APP_MINOR_VALUE        | 0x00, 0x07 // 修改成测试的 minor                      |
| 09. #define APP_BEACON_UUID        | 0xFD, 0xA5, 0x06, 0x93, \                       |
| 10.                                | 0xA4, 0xE2, 0x4F, 0xB1, \                       |
| 11.                                | $0$ xaf, $0$ xcf, $0$ xc6, $0$ xeb, $\setminus$ |
| 12.                                | 0x07, 0x64, 0x78, 0x25 //修改成测试 UUID             |
| 13.                                |                                                 |
|                                    |                                                 |

第三步. 设置好参数后,下载程序。用户在该 IBeacon 设备的信号范围内打开微信摇一摇周边,微信 App 拿到该 IBeaconld;



第四步. 微信通过第三步拿到的 IBeaconld,向微信后台拉取相应的服务,展示在摇出来的结果上。



第五步. 用户点击摇出来结果,在微信内嵌的浏览器上,会带上用户信息跳转到服务提供者在第一步申请服务时填的 url,进入应用页面:



通过上面的设置,可以把 ibeacon 应用在微信摇一摇周边中,摇一摇周边是微信面向线下场景的全新 O2O 入口级应用,可以广泛用于餐饮、广告、展览会议、博物馆景区、商城等领域。商户可根据不同行业场景向周边用户提供如摇红包、摇优惠、摇关注、摇签到、摇投票、摇导航、摇互动、摇支付等个性化营销、互动及信息推荐等服务。因此具有广泛的应用前景。

## 10.3.2 蓝牙测距

手机上装了很多 App store 上的蓝牙 4.0 BLE 的软件, 其中 AirLocate 是苹果公司推出 iBeacon 的测试软件, Locate iBeacons 是一款第三方的软件, 能实 iBeacon 的距离定位和校准,下面我们来看看 Locate iBeacons 实现的距离显示和室内定位。

#### 1: 软件安装:

手机上安装 Locate iBeacons, 你的 iphone 至少是 4s 或以上, 系统必须是 ios7.0 以上, iphone4s ios7.0 以后的系统才支持蓝牙 4.0BLE。



打开 keil 工程代码,修改下面几个参数

修改 UUDI , MAJOR , MINOR, 设置如下:

UUDI: e2c56db5-dffb-48d2-b060-d0f5a71096e0

MAJOR:1

MINOR:2

```
#define PERIPHERAL LINK COUNT
                                                                                           /**< Number
32
33
     #define IS SRVC CHANGED CHARACT PRESENT 0
                                                                                            /**< Inclu
34
35
    #define APP_CFG_NON_CONN_ADV_TIMEOUT
                                                                                            /**< Time
36
    #define NON_CONNECTABLE_ADV_INTERVAL
                                                    MSEC_TO_UNITS(100, UNIT_0_625_MS) /**< The a
37
38
    #define APP_BEACON_INFO_LENGTH
#define APP_ADV_DATA_LENGTH
#define APP_DEVICE_TYPE
                                                                                            /**< Total
39
                                                                                            /**< Lengt
40
                                                    0x15
                                                    0x02
                                                                                            /**< 0x02
41
               APP MEASURED
                                                                                            /**< The E
    #define APP_COMPANY_IDENTIFIER
                                                    0x004c
                                                                                            /**< Compa
43
                                                                                            /**< Major
    #define APP_MAJOR_VALUE
#define APP_MINOR_VALUE
#define APP_BEACON_UUID
                                                    0x00, 0x01
44
45
                                                    0x00, 0x02
                                                                                          /**< Minor
46
                                                    0xe2, 0xc5, 0x6d, 0xb5,
                                                    0xdf, 0xfb, 0x48, 0xd2,
0xb0, 0x60, 0xd0, 0xf5,
47
48
49
                                                                                           /**< Propi
                                                    0xa7, 0x10, 0x96, 0xe0
50
51
     #define DEAD_BEEF
                                                    OxDEADBEEF
                                                                                            /**< Value
52
53
    #define APP_TIMER_PRESCALER
                                                                                           /**< Value
    #define APP_TIMER_OP_QUEUE_SIZE
54
                                                                                           /**< Size
/**< Posit
                                                    0x10001080
                                                                                           /**< Addre
   #endif
59
60
   static ble_gap_adv_params_t m_adv_params;
static uint8_t m_beacon_info[APP_BEACON_INFO_LENGTH] =
                                                                                           /**< Param
61
62
                                                                                           /**< Infor
63 □ {
                                  // Manufacturer specific information. Specifies the device
64
          APP_DEVICE_TYPE,
```

修改够编译通过。



点击 Locate iBeacons 进入如下界面,如果你的基站已经打开,即可看到如图所示的设备,下图中 就直接显示了你的手机与 iBeacon 基站间的距离,这个距离可能随着不同的硬件设备而有所差异,所以需要校准,请看下一步如何校准。 这里为



什么一打开这个软件就实现了距离显示了呢,主要是该软件内默认添加了苹果公司发布的 UUID,我们亦可以修改基站的 uuid,然后在该软件中添加该 uuid,同样也能实现该功能的,这个做起来就要深入开发了。



### 校准, 点击第一行, 进入下一步。





校准提示, 把你的 iphone 放到距离 iBeacon 基站约 1 米处, 按下 Calibrate ,并且保持 30 秒到 1 分钟, 过程如下面图。







### 校准完毕, 下面图显示聚焦校准完毕了, 显示 RSSI 为-57db, 这个为参考值。



### 重新 工程代码,修改基站的 RSSI,如下图所示,点击修改,修改成你校准的值:

```
28 lude "bsp.h"
29 lude "app_timer.h"
30
/**< Number of central links used by the application. When ch /**< Number of peripheral links used by the application. When
        ine IS_SRVC_CHANGED_CHARACT_PRESENT 0
                                                                                                                                             /**< Include or not the service_changed characteristic. if no
                                                                            0 /**< Time for which the device must be advertising in non-con MSEC_TO_UNITS(100, UNIT_0_625_MS) /**< The advertising interval for non-connectable advertiseme
                                                                                                                                             /**< Total length of information advertised by the Beacon. */
/**< Length of manufacturer specific data in the advertisemen
/**< 0x02 refers to Beacon. */
                                                                                                                                          /**< Length of menuracturer specific data in the advertisem
/**< The Beacon's measured RSSI at 1 meter distance in dBm.
/**< Company identifier for Nordic Semiconductor ASA. as per
/**< Minor value used to identify Beacons. */
/**< Minor value used to identify Beacons. */
                                                                             0x02
0xC3
                                                                             0x004e
0x00, 0x01
0x00, 0x02
0xe2, 0xc5, 0x6d, 0xb5,
0xdf, 0xfb, 0x48, 0xd2,
0xb0, 0x60, 0xd0, 0xf5,
0xe7, 0x10, 0x96, 0xe0
                                                                                                                                            /**< Proprietary UUID for Beacon. */
                                                                                                                                            /**< Value used as error code on stack dump, can be used to i
                                                                             OxDEADBEEF
                                                                                                                                             /**< Value of the RTC1 PRESCALER register. */ /**< Size of timer operation queues. */
                                                                                                                                            /**< Position of the MSB of the Major Value in m_beacon_info /**< Address of the UICR register used by this example. The m
                                                                            18
0x10001080
```

### 编译后重新下载, 然后回到 Locate iBeacons 软件 显示距离如下:





