વિકલિતના ઉપયોગો

Life is good only for two things - discovering mathematics and teaching mathematics.

- Siméon Poisson

Each problem I solved became a rule which served afterwards to solve other problems.

- Des Cartes

1.1 પ્રાસ્તાવિક:

આપણે વિષયના વિકલિતની વ્યાખ્યા આપી અને તેના વિકલિત શોધવાની કેટલીક રીતો વિશે પણ અભ્યાસ કર્યો છે. ધોરણ XI, સિમેસ્ટર II ના વિકલિતના પ્રકરણના પ્રાસ્તાવિકમાં આપણે વક્રના સ્પર્શકના ઢાળ તરીકે વિકલિતની સંકલ્પનાની સાહજિક સમજ દાખલ કરી હતી. હવે આપણે આ ઉપયોગ અને એક રાશિના બીજી રાશિને સાપેક્ષ બદલાવાનો દર, પ્રદેશમાં આવેલ કોઈક ઘટક આગળ વિધેયના આસન્ન મૂલ્યની પ્રાપ્તિ, વક્રના સ્પર્શક તથા અભિલંબનાં સમીકરણ, વક્રોના લંબચ્છેદી હોવાની શરત, વધતાં તથા ઘટતાં વિધેયો અને વિધેયનાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધવાં વગેરે વિકલિતના અન્ય ઉપયોગો વિશે માહિતી મેળવીશું. આ ગણિતીય સંકલ્પનાઓનો ઉપયોગ ભૌતિકવિજ્ઞાન, અર્થશાસ્ત્ર, સામાજિક વિજ્ઞાન, જીવવિજ્ઞાન, રસાયણશાસ્ત્ર વગેરેમાં ઈપ્ટતમ મૂલ્ય શોધવાના પ્રશ્નોમાં થાય છે. દ-કાર્તે અને ન્યૂટન બંનેએ આ સંકલ્પનાઓનો ઉપયોગ કરી મેઘધનુષ્યની રચના, આકાર, રંગો વિશેની સમજૂતી આપી હતી. ભૂસ્તરશાસ્ત્રીઓ ખનિજ તેલના સંશોધન માટે પૃથ્વીના પડળોની રચનાનો અભ્યાસ કરવા માટે કલન શાસ્ત્રનો ઉપયોગ કરે છે.

1.2 62:

ધારો કે એક કણની રેખીય ગતિના માર્ગનું સૂત્ર s=f(t) છે. s એ t સમયે સ્થાનાંતર એટલે કે ઊગમબિંદુથી દિશાયુક્ત અંતર દર્શાવે છે. જો t_1 તથા t_2 સમયે સ્થાનાંતરો અનુક્રમે s_1 તથા s_2 હોય તો, t_2-t_1 સમયગાળા દરમિયાન પદાર્થનો સરેરાશ વેગ ગુણોત્તર $\frac{s_2-s_1}{t_2-t_1}$ દ્વારા મળે છે. $\Delta s=s_2-s_1$ તથા $\Delta t=t_2-t_1$ કહીએ, તો સરેરાશ વેગ $\frac{\Delta s}{\Delta t}$ થાય. જો $t_2 \to t_1$, તો લક્ષ લેતાં આપણને t_1 સમયે પદાર્થકણનો તાત્ક્ષણિક વેગ(Instantaneous Velocity) મળે.

તાત્થણિક વેગ
$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

આમ સ્થાનાંતર s=f(t) નો સમય t ને સાપેક્ષ બદલાવાનો દર(Rate) એ કણનો t સમયે તાત્ક્ષણિક વેગ છે. એ જ રીતે કોઈપણ વિધેય y=f(x) માટે, y નો x ને સાપેક્ષ બદલાવાનો દર $\frac{dy}{dx}$ છે.

અન્ય ઉદાહરણ તરીકે ગોલકની ત્રિજ્યા r હોય અને ઘન ϕ V = f(r), હોય તો $\frac{d{
m V}}{dr}$ ત્રિજ્યાને સાપેક્ષ ઘન ϕ ળના બદલાવાનો દર છે.

સતત વક y=f(x) પર $P(x,\ f(x))$ અને Q(x+h,f(x+h)) બે ભિન્ન બિંદુઓ છે.(આકૃતિ 1.1)

છેદિકા
$$\overset{\longleftrightarrow}{PQ}$$
નો ઢાળ $=\dfrac{f(x+h)-f(x)}{x+h-x}$ $=\dfrac{f(x+h)-f(x)}{h}$ જેમ $h\to 0$, તેમ વક પર રહીને $Q\to P$. વક સતત હોવાથી,

P આગળ વકના સ્પર્શકનો ઢાળ =
$$\lim_{Q \to P}$$
 (છેદિકા $\overset{\longleftrightarrow}{PQ}$ નો ઢાળ) = $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ = $f'(x)$

 \therefore વક y = f(x) ના P(x, f(x)) બિંદુ આગળના સ્પર્શકનો ઢાળ f'(x) છે.

વ્યવહારમાં ઘણા પ્રશ્નોમાં સમયને સાપેક્ષ દર આવશ્યક હોય તેવી સમસ્યાઓનો અભ્યાસ કરવામાં આવે છે. આ સંજોગોમાં ચલ x, y વગેરે સમય t નાં વિધેય હોય છે.

સાંકળ નિયમથી સૂત્ર $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ આ પ્રકારના દર શોધવા માટે સહાયક થશે.

ઉદાહરણ 1 : ગોલકના ઘનફળનો ત્રિજ્યાને સાપેક્ષ બદલાવાનો દર શોધો. r=3 સેમી હોય ત્યારે આ દર શોધો.

63લ ઃ ગોલક માટે ઘનફળ $V=rac{4}{3}\pi r^3$, જ્યાં r= ગોલકની ત્રિજ્યા છે.

$$\therefore \quad \frac{dV}{dr} = \frac{4}{3}\pi(3r^2) = 4\pi r^2$$

$$\therefore \left(\frac{d\mathbf{V}}{dr}\right)_{r=3} = 4\pi \times 9 = 36\pi \text{ à H}^3/\text{à H}$$

 \therefore જ્યારે ગોલકની ત્રિજ્યા 3 સેમી હોય ત્યારે ત્રિજ્યાને સાપેક્ષ તેના ઘનફળના બદલાવાનો દર 36π સેમી $^3/$ સેમી છે. ઉદાહરણ 2: એક ગોલકના ઘનફળનો સમયને સાપેક્ષ બદલાવાનો દર 16π સેમી 3 /સે છે. જયારે તેની ત્રિજયા 2 સેમી હોય ત્યારે તેના પૃષ્ઠફળનો સમયને સાપેક્ષ બદલાવાનો દર શોધો.

ઉકેલ : ગોલકનું ઘનફળ $V=rac{4}{3}\pi r^3$, જ્યાં r ગોલકની ત્રિજ્યા છે.

ઘનફળમાં સમયને સાપેક્ષ ફેરફાર થાય છે. તેથી r તથા V એ સમય t નાં વિધેય છે.

$$\therefore \frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} = \frac{4}{3}\pi \times 3r^2 \frac{dr}{dt}$$
$$= 4\pi r^2 \frac{dr}{dt}$$

$$\therefore 16\pi = 4\pi r^2 \frac{dr}{dt} \qquad \left(\frac{dV}{dt} = 16\pi \text{ Åtl}^3/\text{Å}\right)$$

$$\therefore \quad \frac{dr}{dt} = \frac{4}{r^2} \text{ apply}$$

હવે ગોલકનું પૃષ્ઠફળ $\mathbf{S}=4\pi r^2$

$$\therefore \frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$$

$$= 8\pi r \frac{dr}{dt}$$

$$= 8\pi r \cdot \frac{4}{r^2}$$

$$= \frac{32\pi}{r}$$

$$= \frac{32\pi}{2} = 16\pi \text{ ÀH}^2/\text{À}$$

(r=2)

$$\therefore \left(\frac{ds}{dt}\right)_{r=2} = 16\pi સેમી^2/સે$$

 \therefore ગોલકના પૃષ્ઠ φ ળના બદલાવાનો દર r=2 સેમી હોય ત્યારે 16π સેમી 2 /સે છે.

ઉદાહરણ 3 : શાંત સરોવરમાં એક પથ્થર નાખવામાં આવે છે અને પાણીમાં વર્તુળાકાર વમળ સર્જાય છે. વર્તુળાકાર વમળો ત્રિજ્યાની 5 સેમી/સે ઝડપે આગળ વધે છે. જ્યારે ત્રિજ્યા 10 સેમી હોય ત્યારે આ વર્તુળોનું ક્ષેત્રફ્રળ કેટલી ઝડપે વધે છે ?

ઉકેલ : વર્તુળનું ક્ષેત્રફળ $A=\pi r^2$, જ્યાં r વર્તુળની ત્રિજ્યા છે.

$$\therefore \frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$$
$$= 2\pi r \frac{dr}{dt}$$

હવે r = 10 સેમી તથા $\frac{dr}{dt} = 5$ સેમી/સે

- $\therefore \frac{dA}{dt} = 2\pi \times 10 \times 5 = 100\pi$ સેમી²/સે.
- ∴ વર્તુળાકાર વમળો દ્વારા ઘેરાયેલ ક્ષેત્રફળ 100π સેમી²/સે ની ઝડપે વધે છે.

જો $\frac{dy}{dx} > 0$ હોય તો અને તો જ આપણે કહીએ કે જેમ x વધે છે તેમ y વધે છે.

તથા $\frac{dy}{dx} < 0$ હોય તો અને તો જ આપણે કહીએ છીએ કે જેમ x વધે છે તેમ y ઘટે છે.

આપણે આગળ વધતા(ઘટતા) વિધેયની સંકલ્પના જોઈશું. $\frac{dy}{dx} > 0$ તો y એ x નું વધતું વિધેય છે તથા $\frac{dy}{dx} < 0$ તો y એ x નું ઘટતું વિધેય છે.

ઉદાહરણ 4 : ગોળાકાર બલૂનમાં એવી રીતે હવા ભરવામાં આવે છે કે તેનું ઘનફળ 80 સેમી³/સે ના દરથી વધે છે. જ્યારે તેનો વ્યાસ 32 સેમી હોય ત્યારે તેની ત્રિજ્યા કેટલા દરથી વધે છે ?

6 કેલ : જો ગોલકની ત્રિજ્યા r હોય તો તેનું ઘનફળ $V=rac{4}{3}\pi r^3$

$$\therefore \quad \frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} = \frac{4}{3}\pi(3r^2) \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}$$

હવે
$$\frac{d\mathbf{V}}{dt} = 80$$
 સેમી 3 /સે, $r = \frac{32}{2} = 16$ સેમી

$$\therefore 80 = 4\pi \cdot 256 \frac{dr}{dt}$$

$$\therefore \quad \frac{dr}{dt} = \frac{5}{64\pi} સેમિ/સે$$

 \therefore બલૂનની ત્રિજયા $\frac{5}{64\pi}$ સેમી/સે ના દરથી વધે છે.

ઉદાહરણ 5 : એક 5 મી લાંબી નિસરણી દિવાલે ટેકવી છે. સીડીનો નીચેનો છેડો જમીન પર દિવાલથી દૂર 3 સેમી/સેના દરથી દૂર લઈ જવામાં આવે છે. આ વખતે સીડીનો નીચલો છેડો દિવાલથી 4 મી દૂર છે. દિવાલ પર નિસરણીની ઊંચાઈ કેટલા દરથી ઘટે છે ?

ઉકેલ : ધારો કે નિસરણીની લંબાઈ / છે. A દિવાલ પર નિસરણીનું અંત્યબિંદુ છે.

નિસરણી જમીનને C આગળ સ્પર્શે છે. \overline{AB} દિવાલનો એક ભાગ દર્શાવે છે.

આકૃતિ 1.2 પરથી,
$$x^2 + y^2 = l^2$$
.

$$\therefore 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$\therefore \quad x \, \frac{dx}{dt} + y \, \frac{dy}{dt} = 0$$

હવે
$$l = 5$$
 મી, $y = 4$ મી

$$\therefore x = \sqrt{l^2 - y^2}$$
$$= \sqrt{25 - 16}$$
$$= 3 \text{ He}$$

આકૃતિ 1.2

વળી
$$\frac{dy}{dt} = 3 સેમી/સે$$

 $(t \ a \ a \ h \ y \ a \ a \ d)$ હોવાથી $\frac{dy}{dt} > 0 \ \dot{\vartheta}$.)

$$\therefore \quad \frac{dy}{dt} = 0.03 \text{ મી/સ}$$

$$\therefore 3 \frac{dx}{dt} + 4(0.03) = 0$$

$$\therefore \quad \frac{dx}{dt} = -0.04$$

 $\left(t$ વધે તેમ x ઘટતો હોવાથી $\frac{dx}{dt} < 0$ છે.)

∴ સીડીની ઊંચાઈ 4 સેમી/સેના દરથી ઘટે છે.

ઉદાહરણ 6 : વક્ક $y=x^3+7$ પર એવું બિંદુ શોધો જ્યાં આગળ y નો સમયને સાપેક્ષ બદલાવાનો દર એ x ના સમયને સાપેક્ષ બદલાવાના દર કરતાં 3 ગણો હોય અને શૂન્યેતર હોય.

ઉક્રેલ:
$$\frac{dy}{dt} = 3 \frac{dx}{dt}$$
 (આપેલ છે.) (i) $y = x^3 + 7$ આપેલ છે.

$$\therefore \frac{dy}{dt} = 3x^2 \frac{dx}{dt}$$
 (ii)

∴ (i) અને (ii) પરથી 3
$$\frac{dx}{dt}$$
 = $3x^2 \frac{dx}{dt}$

$$\therefore x^2 = 1 \qquad \left(\frac{dx}{dt} \neq 0\right)$$

- ∴ x = 1 અથવા -1
- \therefore અનુરૂપ y=8,6
- .. વક્ર $y = x^3 + 7$ પરનાં બિંદુઓ (1, 8) તથા (-1, 6) આગળ y ના બદલાવાનો દર x ના બદલાવાના શૂન્યેતર દર કરતાં 3 ગણો છે.

ઉદાહરણ 7 : રાષ્ટ્રીય ધોરીમાર્ગ પર એક ગાડી પૂર્વ તરફ 60 કિમી/કલાકની ગતિથી જાય છે. એક કર્મી બસ દક્ષિણ તરફ 50 કિમી/કલાકની ઝડપે જાય છે. બંને આ રસ્તાના છેદ તરફ ગતિ કરી રહી છે. ગાડી આ જંકશનથી 600 મી દૂર છે તથા બસ ત્યાંથી 800 મી દૂર છે. બંને ગાડીઓ એકબીજાની નજીક કયા દર થી જઈ રહી છે તે દર શોધો.

ઉકેલ : C બંને રસ્તાનું છેદબિંદુ છે. કોઈપણ સમયે B ગાડીની સ્થિતિ તથા A બસની સ્થિતિ દર્શાવે છે. ધારો કે કોઈ પણ સમયે BC = x તથા AC = y. ગાડી તથા બસ વચ્ચેનું આ સમયે અંતર AB = z છે.

આકૃતિ 1.3

આકૃતિ 1.3 પરથી
$$x^2 + y^2 = z^2$$
.

ગાડી તથા બસ એકબીજાની નજીક જતા હોવાથી x તથા y એ t નાં ઘટતા વિધેય છે.

અાથી
$$\frac{dx}{dt} = -60$$
 કિમી /કલાક તથા $\frac{dy}{dt} = -50$ કિમી /કલાક

$$x = 0.6$$
 કિમી તથા $y = 0.8$ કિમી

$$\therefore z = \sqrt{(0.6)^2 + (0.8)^2} = 1$$
 કિમી

હવે
$$x^2 + y^2 = z^2$$

$$\therefore 2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt}$$

$$\therefore \frac{dz}{dt} = \frac{1}{z} \left(x \frac{dx}{dt} + y \frac{dy}{dt} \right)$$
$$= \frac{1}{1} \left(0.6 \left(-60 \right) + 0.8 (-50) \right)$$
$$= -76 \left[\frac{3}{2} \right] \left(\frac{3}{2} \right)$$

∴ બસ તથા ગાડી 76 કિમી/કલાકની ઝડપે એકબીજાની નજીક જઈ રહ્યા છે.

ઉદાહરણ 8: એક વસ્તુના x એકમ ઉત્પાદનનો ખર્ચ (રૂપિયામાં) સૂત્ર $C(x) = 0.005x^3 - 0.02x^2 + 10x + 10000$ દ્વારા મળે છે. જ્યારે 20 એકમનું ઉત્પાદન કરવામાં આવે ત્યારે સીમાંત ખર્ચ શોધો.

[સીમાંત ખર્ચ (Marginal cost) એટલે કુલ ખર્ચનો નિર્ગમ(Ouptut) x ને સાપેક્ષ દર]

$$\therefore$$
 સીમાંત ખર્ચ $\frac{dC}{dx} = (0.005)3x^2 - (0.02)2x + 10$

$$\therefore \left(\frac{dC}{dx}\right)_{x=20} = (0.005)1200 - (0.02)40 + 10$$

$$= 6 - 0.8 + 10$$

$$= 15.2$$

∴ માંગેલ સીમાંત ખર્ચ ₹ 15.2 છે.

ઉદાહરણ 9: એક વસ્તુના x એકમના વેચાણમાંથી થતી કુલ આવક $R(x) = 10x^2 + 20x + 1500$ દ્વારા મળે છે. x = 5 હોય ત્યારે સીમાંત આવક શોધો.

[સીમાંત આવક (Marginal revenue) એટલે વેચાયેલા કુલ એકમોને સાપેક્ષ કુલ આવકનો દર.]

$$634 : R(x) = 10x^2 + 20x + 1500$$

$$\therefore \quad \frac{d\mathbf{R}}{dx} = 20x + 20$$

$$\therefore \left(\frac{d\mathbf{R}}{dx}\right)_{x=5} = 100 + 20 = 120$$

∴ સીમાંત આવક ₹ 120 છે.

ઉદાહરણ 10 : એક સમઘનનું કદ 12 સેમી³⁄સે ના દરથી વધે છે. જ્યારે ઘનની ધારની લંબાઈ 10 સેમી હોય ત્યારે તેના પૃષ્ઠફળના વધવાનો દર શોધો.

634 જો સમઘનની ધારની લંબાઈ x હોય તો તેનું ઘનફળ $V=x^3$.

$$\therefore \quad \frac{dV}{dt} = \frac{dV}{dx} \frac{dx}{dt}$$
$$= 3x^2 \frac{dx}{dt}$$

પરંતુ
$$\frac{d\mathbf{V}}{dt} = 12 સેમી^3/સે$$

$$\therefore$$
 12 = $3x^2 \frac{dx}{dt}$

$$\therefore \quad \frac{dx}{dt} = \frac{4}{x^2}$$

હવે સમઘનનું પૃષ્ઠફળ $S = 6x^2$

$$\therefore \frac{dS}{dt} = \frac{dS}{dx} \frac{dx}{dt}$$

$$= 12x \frac{dx}{dt}$$

$$= 12x \times \frac{4}{x^2}$$

$$= \frac{48}{x}$$

$$\therefore \quad \left(\frac{dS}{dt}\right)_{x=10} = \frac{48}{10} \ \text{Re}^{2/R}$$

∴ સમઘનના પૃષ્ઠફળના વધવાનો દર 4.8 સેમી²/સે છે.

ઉદાહરણ 11 : પાણીની એક ટાંકી ઊંધા શંકુ આકારની છે. તેના પાયાની ત્રિજ્યા 4 મી તથા ઊંચાઈ 6 મી છે. ટાંકીને સફાઈ માટે 2 મી³/મિનિટના દરથી ખાલી કરવામાં આવી રહી છે. જ્યારે પાણીની ઊંડાઈ 3 મી હોય ત્યારે પાણીની સપાટીની ઊંચાઈ ઘટવાનો દર શોધો.

63લ : ધારો કે કોઈપણ ક્ષણે પાણીથી બનતા શંકુની ઊંચાઈ તથા ત્રિજ્યા અનુક્રમે h તથા r છે.

ત્રિકોણોની સમરૂપતા પરથી, $\frac{OA}{BC} = \frac{OD}{BD}$

$$\therefore \quad \frac{4}{r} = \frac{6}{h}$$

$$\therefore \quad \frac{r}{h} = \frac{2}{3}$$

$$\therefore$$
 $r = \frac{2h}{3}$

કોઈપણ ક્ષણ t સમયે ટાંકીમાં સમાયેલા પાણીનું કદ

$$V = \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3}\pi \left(\frac{4h^2}{9}\right) h$$
$$= \frac{4\pi h^3}{27}$$

$$\therefore \quad \frac{dV}{dt} = \frac{4\pi}{27} \left(3h^2 \frac{dh}{dt} \right)$$

$$\therefore \quad \frac{dV}{dt} = \frac{4\pi h^2}{9} \ \frac{dh}{dt}$$

$$\therefore \quad \frac{dh}{dt} = \frac{9}{4\pi h^2} \frac{dV}{dt}$$

પરંતુ
$$\frac{d\mathbf{V}}{dt} = -2$$
 મી 3 /મિનિટ

$$\therefore \quad \frac{dh}{dt} = \frac{9}{4\pi h^2} \ (-2)$$

$$\therefore \quad \left(\frac{dh}{dt}\right)_{h=3} = \frac{-9}{2\pi(9)}$$
$$= -\frac{1}{2\pi} \text{ Hilita}$$

 \therefore પાણીની ઊંચાઈ $rac{1}{2\pi}$ મી/મિનિટના દરે ઘટે છે.

(५६ घटे छे)

स्वाध्याय 1.1

- 1. એક સમઘનનું પૃષ્ઠફળ 12 સેમી²/સે ના દરથી વધે છે. જ્યારે સમઘનની ધારની લંબાઈ 5 સેમી હોય ત્યારે તેના ઘનફળના વધવાનો દર શોધો.
- 2. જો શંકુની ઊંચાઈ અચળ હોય તો તેના ઘનફળનો ત્રિજ્યાને સાપેક્ષ બદલાવાનો દર શોધો.
- જો શંકુની ઊંચાઈ અચળ હોય તો તેની વક્રસપાટીના ક્ષેત્રફળનો ત્રિજ્યાને સાપેક્ષ બદલાવાનો દર શોધો.
- 4. ગોલકનું કદ 8 સેમી³∕સે ના દરથી વધે છે. જ્યારે ત્રિજ્યા 4 સેમી હોય ત્યારે તેના પૃષ્ઠફળના વધવાનો દર શોધો.
- 5. એક બંધ અર્ધગોલકનું ઘનફળ 4 સેમી³/સે ના દરથી વધે છે. જ્યારે તેની ત્રિજ્યા 4 સેમી હોય ત્યારે તેના પૃષ્ઠફળના વધવાનો દર શોધો.
- 6. એક નળાકારને એવી રીતે ગરમ કરવામાં આવે છે કે જેથી તેની ત્રિજ્યા હંમેશા તેની ઊંચાઈ કરતાં બમણી રહે છે. જ્યારે ત્રિજ્યા 3 સેમી હોય ત્યારે તેના ઘનફળના વધારાનો દર શોધો. ત્રિજ્યા વધવાનો દર 2 સેમી/સે છે. નળાકારના કુલ પૃષ્ઠફળના વધારાનો દર પણ આ સમયે શોધો.
- 7. શાંત સરોવરમાં એક પથ્થર નાખવામાં આવે છે અને 4 સેમી/સે ના દરથી વધતી ત્રિજ્યાવાળાં વમળો પેદા કરે છે. જ્યારે વમળની ત્રિજ્યા 10 સેમી હોય ત્યારે તેમનાથી ઘેરાયેલા ક્ષેત્રફળના વધારાનો દર શોધો.
- 8. લંબચોરસ આકારની એક તકતી વિસ્તરી રહી છે. તેની લંબાઈ x ના વધારાનો દર 1 સેમી/સે છે. તેની પહોળાઈ y, 0.5 સેમી/સે ના દરથી ઘટી રહી છે. જ્યારે x=4 સેમી અને y=3 સેમી હોય ત્યારે તકતીનાં (1) ક્ષેત્રફળ (2) પરિમિતિ (3) વિકર્શના બદલાવાના દર શોધો.
- 9. 7.5 મી લાંબી એક સીડી દિવાલે ટેકવી છે. સીડી ભીંત પર 3 સેમી/સે ના દરથી સરકી રહી છે. જ્યારે સીડીનો નીચલો છેડો દિવાલથી 6 મી દૂર હોય ત્યારે સીડીની ઊંચાઈ ઘટવાનો દર શોધો.
- 10. સીમેન્ટ કોંક્રીટનું એક મિશ્રણ 8 સેમી 3 /સેના દરથી જમીન પર પડી રહ્યું છે અને તેનાથી એક શંકુ બને છે. આ શંકુની ઊંચાઈ કોઈપણ ક્ષણે તેની ત્રિજ્યા કરતાં $\frac{1}{4}$ ગણી છે. જ્યારે ત્રિજ્યા 8 સેમી હોય ત્યારે શંકુની ઊંચાઈ વધવાનો દર શોધો.
- 11. એક વસ્તુના x એકમના ઉત્પાદનનો કુલ ખર્ચ (રૂપિયામાં) $C(x) = 0.005x^3 0.004x^2 + 20x + 1000 દ્વારા મળે છે. <math>x = 10$ હોય ત્યારે સીમાંત ખર્ચ શોધો.
- 13. 2 મી ઊંચો એક માણસ 4 મી/મિનિટના દરે પ્રકાશના સ્રોતથી દૂર જઈ રહ્યો છે. પ્રકાશના સ્રોતની જમીનથી ઊંચાઈ 6 મી છે. તેના પડછાયાની લંબાઈ કેટલી ઝડપથી બદલાઈ રહી છે ?
- 14. ત્રિકોશનું ક્ષેત્રફળ 4 સેમી²/સે ના દરથી વધી રહ્યું છે. તેના વેધની લંબાઈ 2 સેમી/સે ના દરથી વધી રહી છે. જ્યારે તેના વેધની લંબાઈ 20 સેમી હોય તથા ક્ષેત્રફળ 30 સેમી² હોય ત્યારે તેના આધારની લંબાઈના બદલાવાનો દર શોધો.
- 15. એક ત્રિકોશની બે બાજુઓની લંબાઈ 4 મી તથા 5 મી (અચળ) છે. તેમની વચ્ચેના ખૂશાનું માપ 0.05 રેડિયન/સે ના દરે વધી રહ્યું છે. જ્યારે તેમની નિશ્ચિત બાજુઓ વચ્ચેના ખૂશાનું માપ $\frac{\pi}{3}$ હોય ત્યારે ત્રિકોશના ક્ષેત્રફળનો વધવાનો દર શોધો.

વિકલિતના ઉપયોગો

- 16. એક ત્રિકોણની બે બાજુઓનાં માપ 10 મી તથા 15 મી છે. તેમની વચ્ચેના ખૂણાનું માપ 0.01 રેડિયન/સેના દરે વધી રહ્યું છે. જ્યારે તેની 10 મી તથા 15 મી નિશ્ચિત લંબાઈની બાજુઓ વચ્ચેના ખૂણાનું માપ $\frac{\pi}{3}$ હોય ત્યારે ત્રીજી બાજુ વધવાનો દર શોધો.
- 17. ગોળાકાર ફૂગ્ગાની ત્રિજ્યા 0.3 સેમી/સેના દરથી વધે છે. જ્યારે ત્રિજ્યા 5 સેમી હોય ત્યારે તેના પૃષ્ઠફળના વધવાનો દર શોધો.
- 18. જો $y = 3x x^3$ તથા x પ્રતિસેકંડ 3 એકમના દરે વધે તો x = 2 હોય ત્યારે વકના ઢાળનો વધવાનો દર શોધો.
- 19. એક પદાર્થ વક્ક $y=x^3$ પર ગિત કરે છે. વક્ક પરના જે બિંદુએ તેનો y-યામ એ સમયને સાપેક્ષ x-યામ કરતાં ત્રણ ગણા દરથી વધે તે બિંદુઓ શોધો.
- **20.** $y^2 = 4x$ પરના જે બિંદુ આગળ x-યામ તથા y-યામ સમાન દરથી વધે છે તે બિંદુ શોધો.

1.3 વધતાં તથા ઘટતાં વિધેયો

આપણે ત્રીજા સિમેસ્ટરમાં જોયું કે $f(x) = a^x$, $a \in \mathbb{R}^+$, $x \in \mathbb{R}$ એ a > 1 માટે x નું વધતું વિધેય છે. એનો અર્થ એ કે જેમ x ની કિંમત વધે છે તેમ f(x) ની કિંમત પણ વધે છે. આ અવલોકન આપણે $f(x) = a^x$ ના આલેખ પરથી કર્યું હતું. પરંતુ આ પદ્ધતિ હંમેશા બધાં વિધેયો માટે શક્ય પણ નથી કે અનુકૂળ પણ નથી. આથી આપણે તેના માટે એક કસોટી મેળવીશું.

 $f(x) = 2x + 3, x \in \mathbb{R}$ નો વિચાર કરીએ. દેખીતું જ છે કે,

$$\begin{aligned} x_1 < x_2 &\Rightarrow 2x_1 < 2x_2 \\ &\Rightarrow 2x_1 + 3 < 2x_2 + 3 \\ &\Rightarrow f(x_1) < f(x_2), \ \forall x_1, \, x_2 \in \ \mathbf{R} \end{aligned}$$
 આમ, f એ \mathbf{R} પર વધતું વિષેય છે.

આપણે જોયું છે કે $\left(0,\frac{\pi}{2}\right)$ પર sine વધતું વિધેય છે. $f(x)=x^2, x\in \mathbb{R}$ લઈએ. (આકૃતિ 1.5)

પહેલા ચરણમાં જેમ x વધે છે તેમ $f(x) = x^2$ વધે છે. જેમ x એ Y-અક્ષની જમણી બાજુ આગળ વધે છે તેમ y યામ વધતો જાય છે. પરંતુ Y-અક્ષની ડાબી બાજુ જેમ x વધે છે, તેમ y ઘટે છે.

હવે આપણે આ સંકલ્પના વિધિવત્ વ્યાખ્યાયિત કરીએ.

આકૃતિ 1.5

- વ્યાખ્યા : ધારો કે (a, b) એ એક વિધેયના પ્રદેશનો ઉપગણ છે.
- (1) જો $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$, $\forall x_1, x_2 \in (a, b)$ તો આપણે એમ કહીએ છીએ કે f એ (a, b) પર વધતું વિધેય છે અને તેને સંકેતમાં $f \uparrow$ દ્વારા દર્શાવીએ છીએ.
- (2) જો $x_1 < x_2 \Rightarrow f(x_1) < f(x_2), \forall x_1, x_2 \in (a, b)$ તો f એ (a, b) પર ચુસ્ત વધતું વિષેય કહેવાય છે.
- (3) જો $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$, $\forall x_1, x_2 \in (a, b)$ તો f એ (a, b) પર ઘટતું વિધેય કહેવાય છે અને તેને સંકેતમાં $f \downarrow$ દ્વારા દર્શાવાય છે.
- (4) જો $x_1 < x_2 \Rightarrow f(x_1) > f(x_2), \ \forall x_1, x_2 \in (a, b) \ d) f એ (a, b) પર યુસ્ત ઘટતું વિષેય કહેવાય છે.$

જો f એ R ના પ્રત્યેક વિવૃત અંતરાલ પર વધતું (ઘટતું, ચુસ્ત વધતું, ચુસ્ત ઘટતું) વિધેય હોય તો તે R પર વધતું (અનુક્રમે ઘટતું, ચુસ્ત વધતું, ચુસ્ત ઘટતું) વિધેય કહેવાય છે. જો f નો પ્રદેશ D એ Rનો કોઈપણ ઉપગણ હોય તો D પર વધતા (ઘટતાં, ચુસ્ત વધતાં, ચુસ્ત ઘટતાં) વિધેય વિશે આ રીતે સમજણ આપી શકાય.

નીચેના આલેખ જુઓ :

આકૃતિ 1.6, [0, 1), [1, 2),...માં f(x) = [x] નો આલેખ દર્શાવે છે. તે R માં વધતું વિધેય છે.

નોંધ: આપણે અવલોકન કરીએ કે વધતું વિધેય એટલે ખરેખર ઘટતું નહિ તેવું વિધેય એવો અર્થ થાય છે.

આકૃતિ 1.7 માં એક ચુસ્ત વધતા વિધેયનો આલેખ દર્શાવેલ છે.

આકૃતિ
$$1.8$$
 એ $f(x)=\left\{ \begin{array}{ll} 2-x & 0\leq x\leq 1\\ 1 & 1< x<2\\ 3-x & x\geq 2 \end{array} \right.$ નો આલેખ દર્શાવે છે.

અહીં $x \ge 0$ માટે f ઘટતું વિધેય છે.

નોંધ : 1 < x < 2 માટે f વધતું કે ઘટતું નહિ તેવું અચળ વિધેય છે.

 $f(x) = x^2, x < 0$ ઘટતા વિધેયનો આલેખ દર્શાવે છે. (આકૃતિ 1.9)

કોઈ બિંદુ આગળ વધતું કે ઘટતું વિધેય :

ધારો કે વિવૃત અંતરાલ I એ વિધેયfના પ્રદેશનો ઉપગણ છે. ધારો કે $x_0\in I$. ધારો કે h>0 એટલો નાનો છે કે જેથી $(x_0-h,x_0+h)\subset I$.

જો f એ (x_0-h,x_0+h) માં વધતું વિધેય હોય તો આપણે કહીએ છીએ f એ x_0 આગળ વધતુ વિધેય છે.

જો f એ (x_0-h,x_0+h) માં ઘટતું વિધેય હોય તો આપણે કહીએ છીએ f એ x_0 આગળ ઘટતું વિધેય છે.

જો f એ (x_0-h,x_0+h) માં ચુસ્ત વધતું વિધેય હોય તો આપણે કહીએ છીએ f એ x_0 આગળ ચુસ્ત વધતું વિધેય છે.

જો f એ (x_0-h,x_0+h) માં ચુસ્ત ઘટતું વિધેય હોય તો આપણે કહીએ છીએ f એ x_0 આગળ ચુસ્ત ઘટતું વિધેય છે.

જો પ્રત્યેક $x_0 \in I$ આગળ f વધતું વિધેય (ઘટતું, ચુસ્ત ઘટતું, ચુસ્ત વધતું) હોય તો f એ I પર વધતું (અનુક્રમે ઘટતું, ચુસ્ત ઘટતું, ચુસ્ત વધતું) વિધેય છે તેમ કહેવાય છે.

હવે આપણે વિષેય વધતું છે કે ઘટતું તે નક્કી કરવાની કેટલીક કસોટીઓ મેળવીશું.

પ્રમેય 1.1:f એ [a, b] પર સતત અને (a, b)માં વિકલનીય છે.

- (1) જો પ્રત્યેક $x \in (a, b)$ માટે $f'(x) \ge 0$ તો $f \ge (a, b)$ માં વધતું વિધેય છે.
- (2) જો પ્રત્યેક $x \in (a, b)$ માટે $f'(x) \le 0$ તો f એ (a, b) માં ઘટતું વિધેય છે.
- (3) જો પ્રત્યેક $x \in (a, b)$ માટે f'(x) > 0 તો f એ (a, b) માં ચુસ્ત વધતું વિધેય છે.
- (4) જો પ્રત્યેક $x \in (a, b)$ માટે f'(x) < 0 તો f એ (a, b) માં ચુસ્ત ઘટતું વિધેય છે.
- (5) જો પ્રત્યેક $x \in (a, b)$ માટે f'(x) = 0 તો f એ (a, b) માં અચળ વિધેય છે.

સાબિતી : ધારો કે $x_1 \in (a, b), x_2 \in (a, b)$ તથા $x_1 < x_2$ f એ [a, b] પર સતત અને (a, b) માં વિકલનીય હોવાથી $c \in (x_1, x_2) \subset (a, b)$ મળે જેથી $f(x_2) - f(x_1) = (x_2 - x_1) f'(c), \ \forall x_1, x_2 \in (a, b)$

- (1) પ્રત્યેક $x \in (a, b)$ માટે $f'(x) \ge 0$ હોવાથી $f'(c) \ge 0$ કારણકે $c \in (x_1, x_2) \subset (a, b)$ $x_2 x_1 > 0$ કારણ કે $x_1 < x_2$
- :. $f'(c) (x_2 x_1) \ge 0$
- $\therefore f(x_2) f(x_1) \ge 0$
- $\therefore f(x_1) \le f(x_2)$
- $\therefore x_1 < x_2 \Rightarrow f(x_1) \le f(x_2), \quad \forall x_1, x_2 \in (a, b)$
- ∴ f એ (a, b) પર વધતું વિધેય છે
- (2) પ્રત્યેક $x \in (a, b)$ માટે $f'(x) \le 0$ હોવાથી $f'(c) \le 0$
- $\therefore x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2), \quad \forall x_1, x_2 \in (a, b),$
- \therefore f એ (a, b) પર ઘટતું વિધેય છે.
- (3) પ્રત્યેક $x \in (a, b)$ માટે f'(x) > 0 હોવાથી f'(c) > 0
- $\therefore x_1 < x_2 \Rightarrow f(x_1) < f(x_2), \quad \forall x_1, x_2 \in (a, b),$
- \therefore f એ (a, b) પર ચુસ્ત વધતું વિધેય છે.
- (4) પ્રત્યેક $x \in (a, b)$ માટે f'(x) < 0 હોવાથી f'(c) < 0
- $\therefore x_1 < x_2 \Rightarrow f(x_1) > f(x_2), \quad \forall x_1, x_2 \in (a, b),$
- \therefore f એ (a, b) પર ચુસ્ત ઘટતું વિધેય છે.
- (5) જો પ્રત્યેક $x \in (a, b)$ માટે f'(x) = 0 તો f'(c) = 0 $f(x_2) f(x_1) = 0, \quad \forall x_1, x_2 \in (a, b)$
- $\therefore f(x_2) = f(x_1) \qquad \forall x_1, x_2 \in (a, b)$
- \therefore f એ (a, b) પર અચળ વિધેય છે.

નોંધ : અનિયત સંકલનમાં સ્વૈર અચળ કેવી રીતે આવ્યો હતો તે યાદ કરીએ.

પ્રમેય પહેલાની ટિપ્પણીઓ પરથી સ્પષ્ટ છે કે (a, b) માં $f'(x) \ge 0$ કે $f'(x) \le 0$ તદ્દ્નુસાર f એ [a, b]માં વધતું વિધેય છે કે ઘટતું વિધેય છે.

આ જ પ્રકારની ટિપ્પણી ચુસ્ત વધતાં કે ચુસ્ત ઘટતાં વિધેયોને પણ લાગુ પડે છે.

ઉદાહરણ 12 : સાબિત કરો કે $\left(-\frac{\pi}{2},\,\frac{\pi}{2}\right)$ માં sine વિધેય ચુસ્ત વધતું વિધેય છે.

Geq:
$$\frac{d}{dx} \sin x = \cos x$$

$$\Re x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \, \mathrm{d} x \cos x > 0.$$

 $\therefore \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ માં sine વિષય ચુસ્ત વધતું વિષય છે.

ઉદાહરણ 13 : સાબિત કરો કે $f(x) = \left(\frac{1}{2}\right)^x$ એ \mathbb{R} પર ચુસ્ત ઘટતું વિધેય છે.

634:
$$f(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$$

:.
$$f'(x) = -2^{-x} \log 2 < 0$$
 stag. $\frac{1}{2} \log_{\rho} 2 > 0$ dul $2^{-x} > 0$.

$$\therefore$$
 f એ Rના કોઈપણ વિવૃત અંતરાલ (a, b) પર યુસ્ત ઘટતું વિધેય છે.

$$\therefore \quad f(x) = \left(\frac{1}{2}\right)^x એ R પર ચુસ્ત ઘટતું વિધેય છે.$$

ઉદાહરણ 14: સાબિત કરો કે $f(x)=tanx, x\in \mathrm{R}-\left\{(2k-1)\frac{\pi}{2}\;\middle|\;k\in\mathrm{Z}\right\}$ એ પ્રત્યેક ચરણમાં ચુસ્ત વધતું વિધેય છે.

$$Geq : f(x) = tanx$$

$$\therefore f'(x) = sex^2x > 0$$

$$\forall x \in R - \left\{ (2k-1)\frac{\pi}{2} \mid k \in Z \right\}.$$

$$f(x) = tanx$$
 એ $\left(0, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \pi\right), \dots$ જેવા પ્રત્યેક અંતરાલમાં ચુસ્ત વધતું વિધેય છે.

$$\therefore f(x) = tanx પ્રત્યેક ચરણમાં ચુસ્ત વધતું વિધેય છે.$$

ઉદાહરણ 15 : સાબિત કરો કે $f\colon \mathbf{R} \to \mathbf{R}, f(x) = ax + b$ એ a>0 માટે ચુસ્ત વધતું વિધેય છે તથા a<0 માટે ચુસ્ત ઘટતું વિધેય છે.

$$Geq : f(x) = ax + b$$

$$\therefore f'(x) = a$$

$$\therefore$$
 જો $a>0$ તો $f'(x)>0$. તેથી f એ R પર ચુસ્ત વધતું વિધેય છે.

$$\therefore$$
 જો $a < 0$ તો $f'(x) < 0$. તેથી f એ R પર ચુસ્ત ઘટતું વિધેય છે.

ઉદાહરણ તરીકે f(x) = 5x + 7 ચુસ્ત વધતું વિધેય છે તથા f(x) = -2x + 3 ચુસ્ત ઘટતું વિધેય છે.

ઉદાહરણ 16 : સાબિત કરો કે $f(x)=x^3, x\in \mathbb{R}$ એ \mathbb{R} પર વધતું વિધેય છે.

634:
$$f'(x) = 3x^2 \ge 0$$

$$\therefore$$
 f એ R ના કોઈપણ અંતરાલ (a, b) પર વધતું વિધેય છે.

ઉદાહરણ 17 : સાબિત કરો કે $f \colon \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 3x^2 + 5x$ એ \mathbb{R} પર ચુસ્ત વધતું વિધેય છે.

$$634: f(x) = x^3 + 3x^2 + 5x$$

$$f'(x) = 3x^2 + 6x + 5$$

$$= 3x^2 + 6x + 3 + 2$$

$$= 3(x+1)^2 + 2 > 0, \quad \forall x \in \mathbb{R}$$

∴ f એ R પર ચુસ્ત વધતું વિધેય છે.

ઉદાહરણ 18 : R ના જે અંતરાલમાં $f: R \to R$, $f(x) = x^2 - 6x + 15$ ચુસ્ત વધતું અને જે અંતરાલમાં ચુસ્ત ઘટતું વિધેય હોય તે અંતરાલો નક્કી કરો.

$$Geq : f(x) = x^2 - 6x + 15$$

$$\therefore f'(x) = 2x - 6$$

જો x < 3 હોય, તો 2x < 6 અને તેથી f'(x) < 0.

 \therefore f એ અંતરાલ ($-\infty$, 3) પર ચુસ્ત ઘટતું વિધેય છે.

જો x > 3 હોય તો, 2x > 6 અને તેથી f'(x) > 0.

 \therefore f એ અંતરાલ (3, ∞) પર ચુસ્ત વધતું વિધેય છે.

ઉદાહરણ 19 : વિધેય $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 6x^2 - 36x + 2$ જે અંતરાલોમાં વધે છે અને જેમાં ઘટે છે તે અંતરાલો નક્કી કરો.

$$634: f(x) = x^3 - 6x^2 - 36x + 2$$

$$f'(x) = 3x^2 - 12x - 36$$

$$= 3(x^2 - 4x - 12)$$

$$= 3(x - 6)(x + 2)$$

∴
$$x + 2 < 0$$
 તથા $x - 6 < 0$

$$f'(x) = 3(x-6)(x+2) > 0$$

∴
$$f$$
 એ ($-\infty$, -2)માં વધતું વિધેય છે.

(ખરેખર તો ચુસ્ત વધતું)

$$f'(x) = 3(x-6)(x+2) < 0$$

$$\therefore f'(x) > 0$$

∴
$$f$$
 એ $(6, ∞)$ માં વધતું વિધેય છે.

ઉદાહરણ 20 : વિધેય $f(x) = tan^{-1}(sinx + cosx)$, $x \in (0, \pi)$ કયા અંતરાલમાં વધે છે અને કયા અંતરાલમાં ઘટે છે તે નક્કી કરો.

$$Geq : f(x) = tan^{-1}(sinx + cosx)$$

$$f'(x) = \frac{1}{1 + (sinx + cosx)^2} \times (cosx - sinx)$$
$$= \frac{cosx - sinx}{1 + (sinx + cosx)^2}$$

(1) $\Re x \in \left(0, \frac{\pi}{4}\right)$, $\operatorname{dicos} x > \sin x$

$$\left(\cos x \in \left(\frac{1}{\sqrt{2}}, 1\right)$$
 અને $\sin x \in \left(0, \frac{1}{\sqrt{2}}\right)\right)$
વળી, $1 + (\sin x + \cos x)^2 > 0$

$$\therefore x \in \left(0, \frac{\pi}{4}\right) \text{ this } f'(x) > 0.$$

$$\therefore$$
 f એ $\left(0, \frac{\pi}{4}\right)$ માં વધતું વિધેય છે.

(2) જો
$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
 તો $\cos x < \sin x$. આથી $\cos x - \sin x < 0$. વળી જો $x \in \left(\frac{\pi}{2}, \pi\right)$ તો $\cos x < 0$, $\sin x > 0$

:.
$$cosx - sinx < 0$$
. $x = \frac{\pi}{2}$ Hid $cosx - sinx = 0 - 1 = -1 < 0$

$$\therefore \quad \text{wh } x \in \left(\frac{\pi}{4}, \ \pi\right), \ \text{wh } f'(x) < 0$$

$$\therefore \quad \left(\frac{\pi}{4}, \; \pi\right) \; \text{ માં } \; f \; \text{ઘટતું} \; \; \text{વિષેય } \; \text{છે}.$$

ઉદાહરણ 21 : સાબિત કરો કે $f(x) = x^{100} + sinx - 1$ એ $x \in (0, \pi)$ પર વધતું વિધેય છે.

$$634: f(x) = x^{100} + sinx - 1$$

$$f'(x) = 100x^{99} + cosx$$

જો
$$x \in \left(0, \frac{\pi}{2}\right)$$
, તો $x^{99} > 0$ તથા $cos x > 0$. તેથી $f'(x) > 0$.

$$x = \frac{\pi}{2}$$
 માટે $x^{99} > 0$ તથા $cosx = 0$. તેથી $f'(x) > 0$.

જો
$$x \in \left(\frac{\pi}{2}, \pi\right), x^{99} > 1$$
 તથા $-1 < cos x < 0$.

$$\therefore f'(x) > 0.$$

$$\therefore$$
 f એ $(0, \pi)$ પર (ચુસ્ત) વધતું વિધેય છે.

ઉદાહરણ 22 : સાબિત કરો કે $f(x) = \log \sin x$ એ $\left(0, \frac{\pi}{2}\right)$ માં વધતું વિધેય છે.

$$634: f(x) = \log \sin x$$

$$\therefore \quad \left(0, \, \frac{\pi}{2}\right) \, \, \text{ii} \, \, f'(x) = \frac{1}{sinx} \times cosx = cotx > 0.$$

$$\therefore$$
 f એ $\left(0, \frac{\pi}{2}\right)$ માં વધતું વિધેય છે.

ઉદાહરણ 23 : વિધેય $f(x) = \frac{x}{\log x}$, x > 1 જે અંતરાલમાં વધે છે અથવા જે અંતરાલમાં ઘટે છે તે અંતરાલો નક્કી કરો.

$$Geq: f(x) = \frac{x}{\log x}$$

$$f'(x) = \frac{\log x - x \cdot \frac{1}{x}}{(\log x)^2} = \frac{\log x - 1}{(\log x)^2}$$

(1)
$$\Re x < e$$
, $\operatorname{di} \log x < \log e = 1$

$$\log x - 1 < 0.$$
વળી $(\log x)^2 > 0$

$$\therefore f'(x) < 0.$$

(2) જો
$$x > e$$
, તો $\log x > 1$. આથી $\log x - 1 > 0$ અને $(\log x)^2 > 0$

$$\therefore f'(x) > 0.$$

ઉદાહરણ 24 : સાબિત કરો કે $f(x)=rac{tanx}{x}$ એ $\left(0,rac{\pi}{2}\right)$ પર વધતું વિધેય છે.

$$634: f(x) = \frac{tanx}{x} = \frac{sinx}{xcosx}$$

$$f'(x) = \frac{x\cos x \cdot \cos x - \sin x (\cos x - x\sin x)}{(x\cos x)^2}$$

$$= \frac{x(\cos^2 x + \sin^2 x) - \sin x \cos x}{(x\cos x)^2}$$

$$= \frac{x - \sin x \cos x}{(x\cos x)^2}$$

 $0 < x < \frac{\pi}{2}$ હોવાથી $0 < \sin x < x$ તથા $0 < \cos x < 1$

- \therefore 0 < sinx cosx < x
- ∴ $x \sin x \cos x > 0$. aળી $(x\cos x)^2 > 0$
- $\therefore f'(x) > 0$
- \therefore $f એ <math>\left(0, \frac{\pi}{2}\right)$ માં વધતું વિધેય છે.

સ્વાધ્યાય 1.2

- 1. સાબિત કરો કે $cot: \mathbf{R} \{k\pi \mid k \in \mathbf{Z}\} \to \mathbf{R}$ પ્રત્યેક ચરણમાં ઘટતું વિધેય છે.
- 2. સાબિત કરો કે (0, π) માં cosine ઘટતું વિધેય છે.
- 3. સાબિત કરો કે $\left(0,rac{\pi}{2}
 ight)$ માં sec વધતું વિધેય છે.
- 4. સાબિત કરો કે $\left(\frac{\pi}{2}, \pi\right)$ માં cosec વધતું વિધેય છે.
- 5. સાબિત કરો કે a > 1 તો $f(x) = a^x$ વધતું વિધેય છે.
- 6. જો $x \in \mathbb{R}^+$ તો $f(x) = \log_e x$ વધતું વિધેય છે તેમ સાબિત કરો.
- 7. જે અંતરાલમાં f વધે છે કે ઘટે છે તે નક્કી કરો :
 - (1) $f: R \to R$, f(x) = 3x + 7
 - (2) $f: R \to R$, f(x) = 8 5x
 - (3) $f: R \to R$, $f(x) = x^2 2x + 5$
 - (4) $f: R \to R$, $f(x) = 9 + 3x x^2$
 - (5) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 3x + 10$
 - (6) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^4 4x^3 12x^2 + 5$
 - (7) $f:(0,\pi)\to \mathbb{R}, \quad f(x)=\sin x+\cos x$
 - (8) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -2x^3 9x^2 12x + 1$
 - (9) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+1)^3 (x-3)^3$
 - $(10) f: \left(0, \frac{\pi}{2}\right) \to \mathbb{R}, \quad f(x) = \log \cos x$

- (11) $f: \left(\frac{\pi}{2}, \pi\right) \to \mathbb{R}, \quad f(x) = \log |\cos x|$
- (12) $f: R \{0\} \to R$, $f(x) = e^{\frac{1}{x}}$
- **8.** જો I વિવૃત અંતરાલ હોય અને I \cap [-1, 1] = \emptyset , તો સાબિત કરો કે $f(x) = x + \frac{1}{x}$ એ I પર ચુસ્ત વધતું વિધેય છે
- 9. સાબિત કરો કે $f(x) = x^3 3x^2 + 3x + 100$ એ R પર વધતું વિધેય છે.
- 10. સાબિત કરો કે $f(x) = x^{100} + sinx 1$ એ (0, 1) પર વધતું વિધેય છે.
- 11. જે અંતરાલમાં $f(x) = \frac{3}{10}x^4 \frac{4}{5}x^3 3x^2 + \frac{36}{5}x + 11$ વધતું વિધેય છે કે ઘટતું વિધેય છે તે અંતરાલો નક્કી કરો.
- **12.** $f: R \to R, f(x) = \frac{4sinx 2x xcosx}{2 + cosx}$ એ કયા અંતરાલમાં વધે છે અને કયા અંતરાલમાં ઘટે છે તે નક્કી કરો.
- 13. સાબિત કરો કે $f(x) = x^x$, $x \in \mathbb{R}^+$ એ $x > \frac{1}{e}$ માટે વધતું વિધેય અને $0 < x < \frac{1}{e}$ માટે ઘટતું વિધેય છે.
- 14. જે અંતરાલોમાં $f(x) = \sin^4 x + \cos^4 x$ વધતું વિધેય છે કે ઘટતું વિધેય છે તે નક્કી કરો. $x \in \left(0, \frac{\pi}{2}\right)$.
- 15. a ની જે કિંમતો માટે $x \in \mathbb{R}$ માટે $f(x) = ax^3 3(a+2)x^2 + 9(a+2)x 1$ ઘટતું વિધેય હોય તે કિંમતો શોધો.
- **16.** a ની જે કિંમતો માટે $f(x) = ax^3 9ax^2 + 9x + 25 એ R પર વધતું વિધેય હોય તે કિંમતો મેળવો.$
- 17. સાબિત કરો x > 0 માટે $f(x) = (x 1)e^x + 1$ વધતું વિધેય છે.
- 18. સાબિત કરો કે $\left(0, \frac{\pi}{2}\right)$ પર $f(x) = x^2 x \sin x$ વધતું વિધેય છે.
- 19. વિકલિત કસોટીનો ઉપયોગ કર્યા વગર અને માત્ર વ્યાખ્યાના આધારે સાબિત કરો કે $f: \mathbf{R} \to \mathbf{R}, f(x) = x^2$ એ $x \in \mathbf{R}^+$ માટે વધતું વિધેય છે.
- **20.** સાબિત કરો કે $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x + 2^{-x}$ એ $x \in (0, \infty)$ માટે વધતું વિધેય છે તથા $x \in (-\infty, 0)$ માટે ઘટતું વિધેય છે.
- 21. જે અંતરાલોમાં નીચેનાં વિધેય ચુસ્ત વધે છે કે ચુસ્ત ઘટે છે તે નક્કી કરો :
 - (1) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 6x^2 36x + 2$
 - (2) $f: R \to R$, $f(x) = x^4 4x$
 - (3) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)(x-2)^2$
 - (4) $f: R \to R$, $f(x) = 2x^3 12x^2 + 18x + 15$
 - (5) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = x\sqrt{x+1}$
 - (6) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = x^{\frac{1}{3}} (x+3)^{\frac{2}{3}}$
 - (7) $f:(0, \pi) \to R, f(x) = 2x + \cot x$
 - (8) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2\cos x + \sin^2 x$
 - (9) $f: R \to R$, $f(x) = \log(1 + x^2)$

(10)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^6 + 192x + 10$

(11)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = xe^x$

$$(12) f: \mathbf{R} \to \mathbf{R}, \qquad f(x) = x^2 e^x$$

(13)
$$f: \mathbb{R}^+ \to \mathbb{R}^+, \quad f(x) = \frac{\log x}{\sqrt{x}}$$

(14)
$$f: \mathbb{R}^+ \to \mathbb{R}^+, \quad f(x) = x \log x$$

*

1.4 ભૂમિતિમાં વિકલિતના ઉપયોગો

(1) સ્પર્શક અને અભિલંબ (Tangent and Normal) : આપણે જાણીએ છીએ કે જો y = f(x) એ (a, b) માં વિકલનીય વિષય હોય તો $f'(x_0)$ એ વક y = f(x) પરના $x_0 \in (a, b)$ માટે $(x_0, f(x_0))$ બિંદુ આગળ સ્પર્શકનો ઢાળ છે.

વક્ક y = f(x) નો $(x_0, f(x_0))$ બિંદુ આગળનો સ્પર્શક (x_0, y_0) માંથી પસાર થતી તથા $f'(x_0)$ ઢાળવાળી રેખા છે, જ્યાં $y_0 = f(x_0)$. જો (x_0, y_0) આગળનો વક્કનો સ્પર્શક શિરોલંબ હોય તો તેને ઢાળ ન હોય.

જો સ્પર્શક શિરોલંબ ન હોય તો (x_0, y_0) આગળ વક્ર y = f(x) ના સ્પર્શકનું સમીકરણ

 $y-y_0=f'(x_0)(x-x_0)$ છે. જો (x_0,y_0) આગળનો સ્પર્શક શિરોલંબ હોય તો તેનું સમીકરણ $x=x_0$ છે.

નોંધ : સ્પર્શક વક્કને ફરી છેદે તે શક્ય છે. $y=\sin x, x\in \mathbb{R}$ ના સ્પર્શકો y=1 તથા y=-1 આલેખને અનંત બિંદુઓમાં છેદે છે. (સ્પર્શ છે.)

વક્ક y=f(x)નો $(x_0,\,y_0)$ આગળ અભિલંબ એ સ્પર્શકને બિંદુ $(x_0,\,y_0)$ આગળની લંબરેખા છે. જો સ્પર્શક સમક્ષિતિજ ન હોય તો, $f'(x_0)\neq 0$. પરસ્પર લંબ રેખાઓના ઢાળ $m_1,\,m_2$ માટે $m_1\,m_2=-1$ હોવાથી $(x_0,\,y_0)$ આગળ અભિલંબનો ઢાળ $-\frac{1}{f'(x_0)}$ છે.

$$(x_0, y_0)$$
 આગળ અભિલંબનું સમીકરણ $y - y_0 = -\frac{1}{f'(x_0)} (x - x_0)$ છે. $(f'(x_0) \neq 0)$

જો $f'(x_0)=0$ હોય તો (x_0,y_0) આગળના અભિલંબનું સમીકરણ $x=x_0$ છે. જો (x_0,y_0) આગળનો સ્પર્શક શિરોલંબ હોય તો (x_0,y_0) આગળના અભિલંબનું સમીકરણ $y=y_0$ છે.

ઉદાહરણ $25: y = x^3 - 2x + 4$ ના (1, 3) બિંદુએ સ્પર્શક તથા અભિલંબના ઢાળ શોધો.

ઉકેલ : વકનું સમીકરણ $y = x^3 - 2x + 4$ છે.

$$\frac{dy}{dx} = 3x^2 - 2$$

$$\therefore \quad \left(\frac{dy}{dx}\right)_{x=1} = 1$$

 $y = x^3 - 2x + 4 પરના (1, 3) બિંદુ આગળ સ્પર્શકનો ઢાળ 1 છે.$ તથા અભિલંબ સ્પર્શકને લંબ હોવાથી (1, 3) આગળ તેનો ઢાળ -1 છે. $(m_1m_2 = -1)$

ઉદાહરણ $26: x^2 + y^2 = a^2$ પરના (x_1, y_1) બિંદુ આગળ સ્પર્શક તથા અભિલંબનાં સમીકરણ શોધો.

ઉકેલ : વકનું સમીકરણ $x^2 + y^2 = a^2$ છે.

- $\therefore 2x + 2y \frac{dy}{dx} = 0$
- $\therefore \quad \frac{dy}{dx} = -\frac{x}{y}, \text{ set } y \neq 0.$
- \therefore (x_1, y_1) આગળ સ્પર્શકનું સમીકરણ

$$y - y_1 = -\frac{x_1}{y_1} (x - x_1)$$

 $(y_1 \neq 0)$

$$yy_1 - y_1^2 = -xx_1 + x_1^2$$

$$xx_1 + yy_1 = x_1^2 + y_1^2$$

પરંતુ (x_1, y_1) વર્તુળ $x^2 + y^2 = a^2$ પર છે. તેથી $x_1^2 + y_1^2 = a^2$

x = a

 $(y_1 \neq 0)$

 $(a \neq 0)$

- $x^2 + y^2 = a^2$ પરના (x_1, y_1) બિંદુએ સ્પર્શકનું સમીકરણ $xx_1 + yy_1 = a^2$ છે.
- જો $y_1 = 0$, તો વર્તુળ પર અનુરૂપ બે બિંદુઓ A(a, 0) તથા A'(-a, 0) મળે છે.
- \therefore આ બિંદુઓ A તથા A' આગળના સ્પર્શક શિરોલંબ છે તથા તેમનાં સમીકરણ અનુક્રમે x=a તથા x=-a છે. સમીકરણ $xx_1+yy_1=a^2$ માં પણ $(x_1,\ y_1)=(a,\ 0)$ અથવા $(-a,\ 0)$ અનુક્રમે લેતાં,

$$xa + 0 = a^2$$
 એટલે કે $xa = a^2$ અથવા $-xa = a^2$ મળે છે.

- \therefore A તથા A' આગળના સ્પર્શકો અનુક્રમે x=a તથા x=-a છે.
- \therefore (x_1, y_1) આગળ $x^2 + y^2 = a^2$ ના સ્પર્શકનું સમીકરણ $xx_1 + yy_1 = a^2$ છે. $x^2 + y^2 = a^2$ નો અભિલંબ $xx_1 + yy_1 = a^2$ ને લંબ છે તથા (x_1, y_1) માંથી પસાર થાય છે.
- $x^2 + y^2 a^2$ માં આખલબ $xx_1 + yy_1 a^2$ મ લખ છ તથા (x_1, y_1) માથા $\therefore \quad \text{તેનું સમીકરણ } xy_1 yx_1 = x_1y_1 y_1x_1 = 0 \text{ છ}.$

$$(x_1, y_1)$$
 માંથી પસાર થતી $ax + by + c = 0$ ને લંબ રેખાનું સમીકરણ

 $bx - ay = bx_1 - ay_1 \, \vartheta.$

- \therefore (x_1, y_1) બિંદુએ $x^2 + y^2 = a^2$ ના અભિલંબનું સમીકરણ $xy_1 yx_1 = 0$ છે. તે વર્તુળના કેન્દ્ર (0, 0) માંથી પસાર થાય છે.
 - ∴ વર્તુળનો અભિલંબ ત્રિજ્યાને સમાવતી રેખા છે.

ઉદાહરણ 27 : $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ ના $x = a\cos^3\theta$, $y = a\sin^3\theta$ માટેના બિંદુએ સ્પર્શક તથા અભિલંબનાં સમીકરણ શોધો.

$$\theta \in \left[0, \frac{\pi}{2}\right). \tag{a > 0}$$

ઉકેલ : સૌપ્રથમ જુઓ કે $x^{\frac{2}{3}} + y^{\frac{2}{3}} = (a\cos^3\theta)^{\frac{2}{3}} + (a\sin^3\theta)^{\frac{2}{3}}$ $= a^{\frac{2}{3}} (\cos^2\theta + \sin^2\theta)$

$$=a^{\frac{2}{3}}$$

 $\therefore (a\cos^3\theta, a\sin^3\theta) \approx x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} \text{ up } \Theta.$

$$e\hat{a}, \quad \frac{2}{3}x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{1}{3}}\frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}} = \frac{-(a\sin^3\theta)^{\frac{1}{3}}}{(a\cos^3\theta)^{\frac{1}{3}}} = -tan\theta$$

- \therefore બિંદુ $(a\cos^3\theta, a\sin^3\theta)$ આગળ સ્પર્શકનું સમીકરણ $y a\sin^3\theta = -\frac{\sin\theta}{\cos\theta} (x a\cos^3\theta)$ છે.
- $\therefore y\cos\theta a\sin^3\theta \cos\theta = -x\sin\theta + a\sin\theta\cos^3\theta$

$$\therefore x\sin\theta + y\cos\theta = a\sin\theta \cos\theta (\sin^2\theta + \cos^2\theta)$$
$$= a\sin\theta \cos\theta$$

$$\therefore$$
 $\theta \in \left[0, \frac{\pi}{2}\right)$ માટે $(acos^3\theta, \, asin^3\theta)$ આગળ સ્પર્શકનું સમીકરણ

$$x\sin\theta + y\cos\theta = a\sin\theta \cos\theta \ \vartheta.$$

$$\therefore$$
 $(a\cos^3\theta, a\sin^3\theta)$ આગળ અભિલંબનું સમીકરણ

$$x\cos\theta - y\sin\theta = a\cos^{3}\theta \cos\theta - a\sin^{3}\theta \sin\theta$$
$$= a(\cos^{4}\theta - a\sin^{4}\theta)$$
$$= a(\cos^{2}\theta - \sin^{2}\theta)(\cos^{2}\theta + \sin^{2}\theta)$$
$$= a\cos^{2}\theta$$

 \therefore $(a\cos^3\theta, a\sin^3\theta)$ આગળ અભિલંબનું સમીકરણ $x\cos\theta - y\sin\theta = a\cos 2\theta$ છે.

~~નોંધ :~~ યાદ કરીએ કે
$$(x_1, y_1)$$
માંથી $ax + by + c = 0$ ને લંબ રેખાનું સમીકરણ $bx - ay = bx_1 - ay_1$ છે.

ઉદાહરણ $28: y^2 = 4ax$ પરના $(at^2, 2at)$ બિંદુએ સ્પર્શક તથા અભિલંબનાં સમીકરણ શોધો.

ઉકેલ : વકનું સમીકરણ $y^2 = 4ax$ છે.

$$\therefore \quad 2y \, \frac{dy}{dx} = 4a$$

$$\therefore 2(2at)\frac{dy}{dx} = 4a$$

$$\therefore \quad \text{wi } t \neq 0, \text{ di } \frac{dy}{dx} = \frac{1}{t}$$

 \therefore $(at^2, 2at)$ આગળ સ્પર્શકનું સમીકરણ,

$$y - 2at = \frac{1}{t}(x - at^2)$$

 $(t \neq 0)$

$$\therefore ty - 2at^2 = x - at^2$$

 \therefore $y^2 = 4ax$ પરના $(at^2, 2at)$ બિંદુએ સ્પર્શકનું સમીકરણ,

$$x - ty + at^2 = 0$$

 $(t \neq 0)$

આકૃતિ 1.11

$$\therefore$$
 $(at^2, 2at)$ આગળ અભિલંબનું સમીકરણ $tx + y = t(at^2) + 2at$.

:.
$$tx + y - 2at - at^3 = 0$$
 એ $(at^2, 2at)$ બિંદુએ $y^2 = 4ax$ ના અભિલંબનું સમીકરણ છે. $(t \neq 0)$

જો t=0 તો $(0,\ 0)$ આગળ સ્પર્શક શિરોલંબ છે અને તેનું સમીકરણ x=0 છે. t=0 આગળનો અભિલંબ x=0 ને લંબ છે અને $(0,\ 0)$ માંથી પસાર થાય છે.

તેનું સમીકરણ
$$y = 0$$
 છે.

નોંધ : આ જ સમીકરણો સ્પર્શક તથા અભિલંબના વ્યાપક સમીકરણમાં t=0 મૂકવાથી પણ મળે.

ઉદાહરણ 29 : $y = \sqrt{3x-2}$ ના 4x - 2y + 5 = 0 ને સમાંતર સ્પર્શકનું સમીકરણ મેળવો.

334:
$$4x - 2y + 5 = 0$$
 th and $m = -\frac{a}{b} = -\frac{4}{-2} = 2$ છે.

 \therefore $y = \sqrt{3x-2}$ ના માંગેલ સ્પર્શકનો ઢાળ 2 છે.

$$\therefore \quad \frac{dy}{dx} = 2 \tag{i}$$

અહીં, $y = \sqrt{3x-2}$ એ વકનું સમીકરણ હોવાથી,

$$\frac{dy}{dx} = \frac{1 \cdot 3}{2\sqrt{3x - 2}} = 2 \tag{(i) પરથી}$$

 \therefore 9 = 16(3x - 2)

ધારો કે (x_0, y_0) સ્પર્શબિંદુ છે.

$$\therefore x_0 = \frac{1}{3} \left(\frac{9}{16} + 2 \right) = \frac{41}{48}, \quad y_0 = \sqrt{3 \times \frac{41}{48} - 2}$$
$$= \sqrt{\frac{41}{16} - 2} = \frac{3}{4}$$

:
$$\left(\frac{41}{48}, \frac{3}{4}\right)$$
 આગળ વકના સ્પર્શકનું સમીકરણ $y - \frac{3}{4} = 2\left(x - \frac{41}{48}\right)$ છે. $(m = 2)$

 \therefore 24y - 18 = 48x - 41

 $y = \sqrt{3x-2}$ ના 4x - 2y + 5 = 0 ને સમાંતર સ્પર્શકનું સમીકરણ 48x - 24y = 23 છે.

[ચકાસો કે 48x - 24y = 23 એ 4x - 2y + 5 = 0 ને સમાંતર છે અને 4x - 2y + 5 = 0 સાથે સંપાતી નથી.]

ઉદાહરણ 30 : $x^2+y^2-2x-3=0$ ના X-અક્ષ ને સમાંતર સ્પર્શકોનાં સમીકરણ મેળવો.

ઉકેલ : વકનું સમીકરણ
$$x^2 + y^2 - 2x - 3 = 0$$

$$\therefore 2x + 2y \frac{dy}{dx} - 2 = 0$$
 (i)

સ્પર્શક X-અક્ષને સમાંતર હોવાથી તેનો ઢાળ 0 છે.

$$\therefore \frac{dy}{dx} = 0$$

$$\therefore 2x - 2 = 0 \tag{(i) પરથી}$$

 $\therefore x = 1$

$$ea, x^2 + v^2 - 2x - 3 = 0$$

$$1 + v^2 - 2 - 3 = 0$$

$$\therefore y^2 = 4$$

$$\therefore v = \pm 2$$

 \therefore (1, 2) તથા (1, -2) આગળ વર્તુળના સ્પર્શકોનાં સમીકરણ $y = \pm 2$ છે અને તે X-અક્ષને સમાંતર છે.

ઉદાહરણ 31 : $y = x^3 - 11x + 5$ પરનાં જે બિંદુએ સ્પર્શકનું સમીકરણ y = x - 11 હોય તે બિંદુ મેળવો

ઉકેલ : વકનું સમીકરણ $y = x^3 - 11x + 5$ છે.

$$\therefore \quad \frac{dy}{dx} = 3x^2 - 11 \tag{i}$$

અહીં, y = x - 11 નો ઢાળ 1 છે.

∴ સ્પર્શકનો ઢાળ 1 છે.

$$\therefore \frac{dy}{dx} = 1$$

∴
$$3x^2 - 11 = 1$$
 ((i) પરથી)

$$3x^2 = 12$$

$$\therefore x^2 = 4$$

$$\therefore x = \pm 2$$

$$\therefore$$
 $\Re x = 2$, $\operatorname{ch} y = x^3 - 11x + 5 = -9$. $\Re x = -2$, $\operatorname{ch} y = x^3 - 11x + 5 = 19$

$$\therefore$$
 (2, -9), આગળ સ્પર્શકનું સમીકરણ $y + 9 = 1(x - 2)$ છે. (ઢાળ = 1)

$$\therefore y = x - 11.$$

 \therefore (-2, 19) આગળના સ્પર્શકનું સમીકરણ y = x - 11 ના હોઈ શકે કારણ કે (-2, 19) એ y = x - 11 પર નથી.

$$\therefore$$
 (2, -9) આગળના સ્પર્શકનું સમીકરણ $y = x - 11$ છે.

ઉદાહરણ 32 : સાબિત કરો કે $y = 7x^3 + 11$ ના x = 2 તથા x = -2 આગળના સ્પર્શકો પરસ્પર સમાંતર છે.

ઉકેલ : વકનું સમીકરણ
$$y = 7x^3 + 11$$
 છે.

.. જો
$$x = \pm 2$$
 તો $\frac{dy}{dx} = 21x^2 = 84$
જો $x = 2$ તો $y = 7x^3 + 11 = 67$ તથા તે જ રીતે જો $x = -2$ તો $y = -45$.

$$\therefore$$
 (2, 67) તથા (-2, -45) આગળના સ્પર્શકોનાં સમીકરણ અનુક્રમે $y-67=84(x-2)$ તથા $y+45=84(x+2)$ છે. ($m=84$)

:. 84x - y = 101 તથા 84x - y + 123 = 0 એ અનુક્રમે (2, 67) તથા (-2, -45) આગળના સ્પર્શકનાં સમીકરણો છે. તેમના ઢાળ સમાન છે તથા બંને રેખાઓ ભિન્ન છે.

∴ તે સ્પર્શકો પરસ્પર સમાંતર છે.

ઉદાહરણ $33: x^2 = 4y$ ના (1, 2)માંથી પસાર થતાં અભિલંબનું સમીકરણ શોધો.

ઉકેલ : વકનું સમીકરણ
$$x^2 = 4y$$
 છે.

$$\therefore$$
 2x = 4 $\frac{dy}{dx}$

$$\therefore \quad \frac{dy}{dx} = \frac{x}{2}$$

$$(x_0, y_0)$$
 આગળ અભિલંબનો ઢાળ $-\frac{2}{x_0}$ છે. $(x_0 \neq 0)$

$$\therefore$$
 સ્પર્શબિંદુ (x_0, y_0) આગળ અભિલંબનું સમીકરણ $y - y_0 = -\frac{2}{x_0}(x - x_0)$ (i)

આ અભિલંબ (1, 2)માંથી પસાર થાય તો 2 $-y_0 = -\frac{2}{x_0}$ (1 $-x_0$)

$$\therefore x_0 \left(2 - \frac{x_0^2}{4}\right) = -2 + 2x_0 \qquad (x_0^2 = 4y_0)$$

$$\therefore 8x_0 - x_0^3 = -8 + 8x_0$$

$$\therefore x_0^3 = 8$$

$$\therefore x_0 = 2, y_0 = \frac{x_0^2}{4} = 1$$

$$\therefore$$
 (2, 1) આગળ અભિલંબનું સમીકરણ $y-1=-\frac{2}{2}(x-2)=-x+2$ છે. (i) પરથી)

x + y = 3 એ $x^2 = 4y$ ના (1, 2) માંથી પસાર થતા અભિલંબનું સમીકરણ છે.

ાોધ: (1) જો $x_0 = 0$, તો $y_0 = 0$. (x_0, y_0) આગળ અભિલંબનું સમીકરણ x = 0 છે. તે (1, 2)માંથી પસાર ન થાય.

(2) અહીં અભિલંબ (1, 2)માંથી પસાર થાય છે અને તે (1, 2) આગળનો અભિલંબ નથી, તે (2, 1) આગળનો અભિલંબ છે અને (1, 2) એ $x^2 = 4y$ પર નથી.

ઉદાહરણ 34 : સાબિત કરો કે $\sqrt{x} + \sqrt{y} = \sqrt{c}$ ના કોઇપણ સ્પર્શકના અક્ષો પરના અંતઃખંડોનો સરવાળો અચળ છે. (c>0), જ્યાં $x \neq 0$ અને $y \neq 0$.

ઉકેલ : વકનું સમીકરણ $\sqrt{x} + \sqrt{y} = \sqrt{c}$ છે.

$$\therefore \quad \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \, \frac{dy}{dx} = 0$$

$$\therefore \quad \frac{dy}{dx} = -\sqrt{\frac{y}{x}}$$
 (x \neq 0)

$$(x_1, y_1)$$
 આગળ સ્પર્શકનું સમીકરણ $y - y_1 = -\sqrt{\frac{y_1}{x_1}} (x - x_1)$

$$\therefore \quad \frac{y}{\sqrt{y_1}} - \frac{y_1}{\sqrt{y_1}} = -\frac{x}{\sqrt{x_1}} + \frac{x_1}{\sqrt{x_1}}$$
 $(x_1 \neq 0, y_1 \neq 0)$

$$\therefore \quad \frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \sqrt{x_1} + \sqrt{y_1} = \sqrt{c} \qquad ((x_1, y_1) \ \partial \sqrt{x} + \sqrt{y} = \sqrt{c} \ \ \text{upper solution})$$

$$\therefore$$
 તે અક્ષોને $(\sqrt{x_1}\sqrt{c}, 0)$ તથા $(0, \sqrt{y_1}\sqrt{c})$ માં છેદે છે.

$$\therefore$$
 અક્ષો પરના અંતઃખંડોનો સરવાળો $\sqrt{x_1}\,\sqrt{c}\,+\,\sqrt{y_1}\,\sqrt{c}\,=\,\sqrt{c}\,(\sqrt{x_1}\,+\,\sqrt{y_1}\,)$
$$=\,\sqrt{c}\,\sqrt{c}$$

$$=\,c$$

 \therefore $\sqrt{x} + \sqrt{y} = \sqrt{c}$ ના કોઈપણ સ્પર્શકના અક્ષો પરના અંતઃખંડનો સરવાળો અચળ છે.

નોંધ: જો $x_1=0$ અથવા $y_1=0$, તો વક્ર પરના બિંદુઓ (0,c) અથવા (c,0) મળે. આ બિંદુઓ આગળના સ્પર્શકો અનુક્રમે x=0 અને y=0 છે. તેમને અંતઃખંડો ના મળે.

ઉદાહરણ 35 : સાબિત કરો કે $x=acos\theta+a\theta$ $sin\theta$, $y=asin\theta-a\theta$ $cos\theta$ પ્રચલ સમીકરણવાળા વક્કના કોઈ પણ અભિલંબનું ઊગમબિંદુથી અંતર અચળ છે. $\theta\neq\frac{k\pi}{2},\ k\in Z$

ઉકેલ:
$$x = a\cos\theta + a\theta \sin\theta \text{ અને } y = a\sin\theta - a\theta \cos\theta \text{ હોવાથી,}$$
$$\frac{dx}{d\theta} = -a\sin\theta + a\sin\theta + a\theta \cos\theta = a\theta \cos\theta$$
$$\frac{dy}{d\theta} = a\cos\theta - a\cos\theta + a\theta \sin\theta = a\theta \sin\theta$$

$$\therefore \quad \frac{dy}{dx} = \frac{\sin \theta}{\cos \theta} \qquad (\cos \theta \neq 0)$$

$$\therefore$$
 θ -બિંદુ આગળ અભિલંબનો ઢાળ $-\frac{\cos\theta}{\sin\theta}$ છે. ($\sin\theta \neq 0$)

$$\therefore$$
 θ -બિંદુ આગળ અભિલંબનું સમીકરણ $(y - a\sin\theta + a\theta \cos\theta) = -\frac{\cos\theta}{\sin\theta} (x - a\cos\theta - a\theta \sin\theta)$ છે.

$$\therefore y\sin\theta - a\sin^2\theta + a\theta \sin\theta \cos\theta = -x\cos\theta + a\cos^2\theta + a\theta \sin\theta \cos\theta$$

$$\therefore x\cos\theta + y\sin\theta = a(\cos^2\theta + \sin^2\theta) = a$$

$$\therefore x\cos\theta + y\sin\theta = a$$

તેનું ઊગમબિંદુથી લંબઅંતર
$$p$$
 હોય, તો $p=\frac{\mid c\mid}{\sqrt{a^2+b^2}}$
$$=\frac{\mid -a\mid}{\sqrt{\cos^2\theta+\sin^2\theta}}$$

$$=\mid a\mid \ \hat{\mathbf{v}}\ \$$
અચળ છે.

(જો
$$\theta = \frac{k\pi}{2}$$
 હોય તો ?)

(2) બે વકો વચ્ચેના ખુણાનું માપ :

બે છેદતાં વક્કો વચ્ચેના ખૂશાનું માપ તેમના છેદબિંદુ આગળ દોરેલા સ્પર્શકો વચ્ચેના ખૂશાના માપ તરીકે લેવાય છે. એક પરિણામ : $x \in (a, b)$ તથા y = f(x) તથા y = g(x) એ બે વક્કોનાં સમીકરણો છે અને f(x) તથા g(x) એ (a, b) માં વિકલનીય છે. જો આ વક્કો એકબીજાને (x_0, y_0) આગળ છેદે તો તેમની વચ્ચેના ખૂશાનું માપ α નીચેના સૂત્ર દ્વારા અપાય છે. $x_0 \in (a, b)$.

$$tan(x) = \left| \frac{f'(x_0) - g'(x_0)}{1 + f'(x_0) g'(x_0)} \right|$$

સમજૂતી

આપણે જાણીએ છીએ કે જો બે રેખાના ઢાળ m_1 તથા m_2 હોય તો તેમની વચ્ચેના ખૂણાનું માપ α નીચેના સૂત્રથી મળે છે :

$$tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

 (x_0, y_0) બિંદુ આગળ સ્પર્શકોના ઢાળ અનુક્રમે $f'(x_0)$ તથા $g'(x_0)$ છે.

આથી $m_1 = f'(x_0)$ તથા $m_2 = g'(x_0)$. આથી ઉપરોક્ત પરિણામ મળે.

જો $f'(x_0)$ $g'(x_0)=-1$, તો $\alpha=\frac{\pi}{2}$ અને આપણે કહીએ છીએ કે વક્કો લંબચ્છેદી છે.

જો $f'(x_0)=g'(x_0)$, તો વક્કો એકબીજાને (x_0,y_0) આગળ સ્પર્શે છે તેમ કહેવાય.

ઉદાહરણ 36 : સાબિત કરો કે પ્રત્યેક છેદબિંદુ આગળ $x^2 - y^2 = 5$ અને $4x^2 + 9y^2 = 72$ લંબચ્છેદી છે.

😘લ ઃ સૌ પ્રથમ આપણે બંને વક્રોનાં (લંબાતિવલય તથા ઉપવલય) છેદબિંદુ શોધીએ.

$$x^2 - y^2 = 5$$
, $4x^2 + 9y^2 = 72$

$$x^2 - y^2 = 5$$
 પરથી, $4x^2 - 4y^2 = 20$ (ii)

(i) અને (ii) ઉકેલતાં $13y^2 = 52$

∴
$$y^2 = 4$$
. તેથી, $y = \pm 2$

$$x^2 - 4 = 5$$
 $(x^2 - y^2 = 5)$

$$\therefore x^2 = 9. \quad \text{def}, x = \pm 3$$

 \therefore છેદબિંદુઓના યામ (3, 2), (3, -2), (-3, -2), (-3, 2) છે.

પ્રથમ વક્ર માટે $2x - 2y \frac{dy}{dx} = 0$

$$x^2 - y^2 = 5$$
 ના (x, y) આગળના સ્પર્શકનો ઢાળ m_1 હોય તો $m_1 = \frac{x}{y}$. $(y \neq 0)$

બીજા વક માટે $8x + 18y \frac{dy}{dx} = 0$

$$x$$
. (x, y) આગળ $4x^2 + 9y^2 = 72$ ના સ્પર્શકનો ઢાળ $m_2 = -\frac{4x}{9y}$ $(y \neq 0)$

$$\therefore m_1 m_2 = -\frac{4x^2}{9y^2} = -\frac{36}{36} = -1$$

.. પ્રત્યેક છેદબિંદુ આગળ વક્રો લંબચ્છેદી છે. (લંબાતિવલય અને ઉપવલય)

ઉદાહરણ 37 : સાબિત કરો કે વક્રો
$$y = ax^3$$
 તથા $x^2 + 3y^2 = b^2$ લંબચ્છેદી છે.

ઉકેલ :
$$y=ax^3$$
 માટે સ્પર્શકનો ઢાળ m_1 હોય તો $m_1=\frac{dy}{dx}=3ax^2$

$$x^2 + 3y^2 = b^2$$
 used $2x + 6y \frac{dy}{dx} = 0$

$$\therefore$$
 $x^2 + 3y^2 = b^2$ ના સ્પર્શકનો ઢાળ m_2 હોય તો $m_2 = \frac{dy}{dx} = -\frac{x}{3y}$

$$m_1m_2=(3ax^2)\left(-rac{x}{3y}
ight)=-rac{ax^3}{y}=-1$$
 કારણ કે છેદબંદુ આગળ $y=ax^3$

[બંને વક્કો છેદે છે જ કારણ કે
$$x^2 + 3y^2 = b^2$$
 માં $y = ax^3$ લેતાં $x^2 + 3a^2x^6 = b^2$ નો ઉકેલ છે.]

ઉદાહરણ 38 : વર્તુળો
$$x^2 + y^2 - 4x - 1 = 0$$
 તથા $x^2 + y^2 - 2y - 9 = 0$ વચ્ચેના ખૂણાનું માપ શોધો.

ઉકેલ : વર્તુળોનાં સમીકરણ
$$x^2 + y^2 - 4x - 1 = 0$$
 તથા $x^2 + y^2 - 2y - 9 = 0$ છે.

$$\therefore$$
 તેમના છેદબિંદુ આગળ $x^2 + y^2 = 4x + 1 = 2y + 9$.

$$\therefore 4x - 2y = 8$$

$$\therefore$$
 2x - y = 4

$$\therefore y = 2x - 4$$

:. સમીકરણ
$$x^2 + y^2 - 4x - 1 = 0$$
 માં $y = 2x - 4$ મૂકતાં $x^2 + (2x - 4)^2 - 4x - 1 = 0$

$$\therefore$$
 5x² - 20x + 15 = 0

$$x^2 - 4x + 3 = 0$$

∴
$$x = 3$$
 અથવા 1. તેમને અનુરૂપ અનુક્રમે $y = 2x - 4 = 2$ અથવા -2

$$x^2 + y^2 - 4x - 1 = 0 \text{ uzell } 2x + 2y \frac{dy}{dx} - 4 = 0 \text{ det}$$
 (i)

$$x^2 + y^2 - 2y - 9 = 0$$
 પરથી $2x + 2y\frac{dy}{dx} - 2\frac{dy}{dx} = 0$. (ii)

(1) (3, 2) આગળ:
$$6+4\frac{dy}{dx}-4=0$$
, $6+4\frac{dy}{dx}-2\frac{dy}{dx}=0$ (i) તથા (ii) પરથી)

$$\therefore x^2 + y^2 - 4x - 1 = 0 \text{ -1.} \text{ evelsal sin } m_1 = -\frac{1}{2}.$$

$$x^2 + y^2 - 2y - 9 = 0$$
 ના સ્પર્શકનો ઢાળ $m_2 = -3$.

$$\therefore \tan \alpha = \left| \frac{-\frac{1}{2} + 3}{1 + \frac{3}{2}} \right| = 1 \qquad \left(\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \right)$$

$$\alpha = \frac{\pi}{4}$$

(2)
$$(1, -2)$$
 આગળ: $2 - 4 \frac{dy}{dx} - 4 = 0$ તથા $2 - 4 \frac{dy}{dx} - 2 \frac{dy}{dx} = 0$ ((i) તથા (ii) પરથી)

$$m_1 = -\frac{1}{2}, m_2 = \frac{1}{3}$$

$$\therefore \tan \alpha = \left| \frac{\frac{-\frac{1}{2} - \frac{1}{3}}{1 - \frac{1}{6}}}{1 - \frac{1}{6}} \right| = 1$$

$$\alpha = \frac{\pi}{4}$$

 \therefore બંને છેદબિંદુ આગળ વક્કો વચ્ચેના ખૂણાનું માપ $\frac{\pi}{4}$ છે.

ઉદાહરણ 39 : વક $x^2 - xy + y^2 = 3$ નો (-1, 1) આગળનો અભિલંબ વક્કને ફરી ક્યાં છેદશે ?

ઉકેલ :
$$x^2 - xy + y^2 = 3$$
 એ વકનું સમીકરણ છે.

$$\therefore 2x - \left(x\frac{dy}{dx} + y\right) + 2y\frac{dy}{dx} = 0$$

:. (-1, 1) Sun
$$-2 - \left(-\frac{dy}{dx} + 1\right) + 2\frac{dy}{dx} = 0$$

$$\therefore 3 \frac{dy}{dx} = 3$$

$$\therefore$$
 (-1, 1) આગળના સ્પર્શકનો ઢાળ $\frac{dy}{dx} = 1$.

તેથી, (-1, 1) આગળ અભિલંબનો ઢાળ -1 છે.

$$\therefore$$
 (-1, 1) આગળ અભિલંબનું સમીકરણ $y - 1 = -1(x + 1)$ છે.

$$x + y = 0$$
 એ $(-1, 1)$ આગળ અભિલંબનું સમીકરણ છે.

છેદબિંદુઓ શોધવા માટે આપણે હવે,

$$x + y = 0$$
 તથા $x^2 - xy + y^2 = 3$ ઉકેલીએ.

$$y = -x$$
 મૂકતાં $x^2 - xy + y^2 = 3$ પરથી, $3x^2 = 3$

$$\therefore x = \pm 1$$

હવે x=-y, હોવાથી અભિલંબનું વક્ક સાથેનું બીજું છેદબિંદુ (1,-1) છે કારણકે $x\neq -1$ છે.

[(-1, 1) આગળ અભિલંબ દોરવામાં આવ્યો છે એટલે કે તે અભિલંબનું પાદબિંદુ છે. આથી છેદબિંદુ માટે $x \neq -1]$

ઉદાહરણ 40 : સાબિત કરો કે
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 $(a^2 \neq b^2)$ અને $xy = c^2$ લંબચ્છેદી બની શકે નહિ. $(c \neq 0)$

ઉકેલ : આપેલ વક્કો પૈકી એક વકનું સમીકરણ
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 છે.

$$\therefore \quad \frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\therefore$$
 (x, y) આગળ વકના સ્પર્શકનો ઢાળ $m_1=\frac{dy}{dx}=\frac{b^2x}{a^2y}$ (કેમ $y\neq 0$) બીજા વકનું સમીકરણ $xy=c^2$ છે.

$$\therefore x \frac{dy}{dx} + y = 0$$

$$\therefore$$
 (x, y) આગળ વકના સ્પર્શકનો ઢાળ $m_2 = -\frac{y}{x}$

:.
$$m_1 m_2 = \left(\frac{b^2 x}{a^2 y}\right) \left(-\frac{y}{x}\right) = -\frac{b^2}{a^2} \neq -1$$
 single if $a^2 \neq b^2$.

નોંધ : જો $a^2 = b^2$ તો બંને વક્કો લંબચ્છેદી છે. આથી લંબાતિવલય $x^2 - y^2 = a^2$ તથા $xy = c^2$ લંબચ્છેદી છે. એ ચકાસી શકાય કે વક્કો પરસ્પર છેદે છે.

સ્વાધ્યાય 1.3

- 1. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ પરના (x_1, y_1) બિંદુએ સ્પર્શકનું સમીકરણ મેળવો.
- 2. $y^2 = 4ax$ પરના (x_1, y_1) બિંદુએ સ્પર્શકનું સમીકરણ મેળવો.
- 3. $y = x^3 + 5x + 2$ પરના (2, 20) બિંદુએ સ્પર્શકનો ઢાળ મેળવો.
- **4.** $y^2 = 4x$ પર (1, 2) બિંદુ આગળ અભિલંબનો ઢાળ મેળવો.
- 5. $y^2 = 16x$ ના 4x y = 1 ને સમાંતર સ્પર્શકનું સમીકરણ મેળવો.
- **6.** $y^2 = 8x$ ના 2x y 1 = 0 ને લંબ અભિલંબનું સમીકરણ મેળવો.
- 7. સાબિત કરો કે જો વક્કો $\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1$ તથા $\frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1$ પરસ્પર છેદતાં હોય તો તે લંબચ્છેદી છે. $(\lambda_1 \neq \lambda_2)$
- સાબિત કરો કે $x = a\cos^3\theta$, $y = a\sin^3\theta$ પ્રચલ સમીકરણવાળા વક્રના કોઈ પણ સ્પર્શકના અક્ષો વચ્ચે કપાયેલા રેખાખંડની લંબાઈ અચળ છે.
- 9. સાબિત કરો કે $2x^2 + y^2 = 3$ તથા $y^2 = x$ લંબચ્છેદી છે.
- **10.** સાબિત કરો કે $x^2 + y^2 = ax$ તથા $x^2 + y^2 = by$ લંબચ્છેદી છે.
- 11. (1) y = sinx ના $(\frac{\pi}{2}, 1)$ આગળના સ્પર્શકનું સમીકરણ મેળવો.
 - (2) આ સ્પર્શક વક્રને ફરી ક્યાં છેદે છે ?
- 12. $x=cos\theta,\ y=sin\theta$ $\theta\in[0,2\pi)$ પ્રચલ સમીકરણવાળા વક્ર પરના $\theta=\frac{\pi}{4}$ ને સંગત બિંદુએ સ્પર્શકનું સમીકરણ મેળવો.
- 13. $y = 4x^3 2x^5$ ના ઊગમબિંદુમાંથી પસાર થતા સ્પર્શકનું સમીકરણ મેળવો.
- 14. બિંદુ (2, 3) એ $y^2 = ax^3 + b$ પર છે. (2, 3) આગળ આ વકના સ્પર્શકનો ઢાળ 4 છે. a અને b શોધો.
- 15. xy + ax + by = 2 પરના (1, 1) બિંદુ આગળ સ્પર્શકનો ઢાળ 2 છે. a અને b મેળવો.
- 16. $x = a(\theta \sin\theta), y = a(1 \cos\theta)$ ના કોઈપણ સ્પર્શકનું સમીકરણ મેળવો
- 17. જો $8k^2 = 1$ તો પરવલય $y^2 = x$ અને લંબાતિવલય xy = k લંબચ્છેદી છે તેમ સાબિત કરો.
- **18.** $y = x x^2$ નો (1, 0) આગળનો અભિલંબ વક્રને ફરી ક્યાં છેદશે ?
- 19. જો $y = ax^2 + bx$ ના (1, 1) આગળના સ્પર્શકનું સમીકરણ y = 3x 2 હોય તો a તથા b મેળવો.
- **20.** $x^3 + y^3 = 6xy$ પરના (3, 3) બિંદુએ સ્પર્શકનું સમીકરણ મેળવો. કયા બિંદુઓએ સ્પર્શક સમક્ષિતિજ કે શિરોલંબ છે?
- **21.** સાબિત કરો કે $xy = c^2$, $c \neq 0$ તથા $x^2 y^2 = k^2$ $k \neq 0$ એકબીજાને કાટખૂલે છેદે છે. (ઉદાહરણ 40 સાથે સરખાવો)
- 22. નીચેના વક્રો પરનાં આપેલ બિંદુઓએ સ્પર્શકનાં સમીકરણ શોધો ઃ
 - (1) $\frac{x^2}{16} \frac{y^2}{9} = 1$
- $\left(-5, \frac{9}{4}\right)$ આગળ
- (2) $\frac{x^2}{9} + \frac{y^2}{36} = 1$
- $(-1, 4\sqrt{2})$ આગળ
- (3) $v^2 = x^3 (2 x)$
- (1, 1) આગળ
- (4) $v^2 = 5x^4 x^2$
- (1, 2) આગળ
- (5) $2(x^2 + y^2)^2 = 25(x^2 y^2)$ (3, 1) આગળ
- 23. $x^2y^2 + xy = 2$ પરના જે બિંદુઓએ સ્પર્શકનો ઢાળ -1 હોય તેવાં બિંદુઓ શોધો.

24. નીચેના વક્રો વચ્ચેના ખુણાનું માપ શાધો.

(1)
$$y = x^2$$
, $y = (x - 2)^2$ (2) $x^2 - y^2 = 3$, $x^2 + y^2 - 4x + 3 = 0$

25.
$$y = cos(x + y)$$
 ના $x + 2y = 0$ ને સમાંતર સ્પર્શકોનાં સમીકરણ શોધો.

26.
$$y = \frac{1}{x-1}$$
, $x \neq 1$ ના $x + y + 7 = 0$ ને સમાંતર સ્પર્શકોનાં સમીકરણ શોધો.

27. સાબિત કરો
$$\frac{x}{a} + \frac{y}{b} = 2$$
 એ $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ ને પ્રત્યેક $n \in \mathbb{N} - \{1\}$ માટે સ્પર્શે છે તથા સ્પર્શબિંદુના યામ (a, b) છે.

28. X અક્ષ એ $y = ax^3 + bx^2 + cx + 5$ ને P(-2, 0) આગળ સ્પર્શ છે અને Y-અક્ષને Q આગળ છેદે છે. Q આગળ સ્પર્શકનો ઢાળ 3 છે. a, b, c મેળવો.

1.5 આસન્ન મુલ્યો તથા વિકલ

ત્રાટિ ઃ ધારો કે f એ $(a,\ b)$ માં વિકલત્તીય વિધેય છે તથા $x\in(a,\ b),\ x+h\in(a,\ b)$. આપણે જાણીએ છીએ

$$\hat{s} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x).$$

∴ જો *h* 'ખૂબ નાનો' હોય તો,

$$\frac{f(x+h)-f(x)}{h}=f'(x)+u(h) \ \text{જ્યાં} \ u(h) \ \text{એ } h \ \text{નું} \ \text{વિધેય છે તથા જેમ } h \to 0 \ \text{તેમ } u(h) \to 0.$$

$$\therefore f(x+h) - f(x) = f'(x)h + u(h)h.$$

ધારો કે
$$f(x+h)-f(x)=\Delta f(x)$$
 તથા $h=(x+h)-x=\Delta x$.

 \therefore અહીં x માં થતા 'નાના' પરિવર્તન Δx ને અનુરૂપ $\Delta f(x)$ એ f(x) માં થતું 'નાનું' પરિવર્તન છે.

∴
$$\Delta f(x) = f'(x)\Delta x + u(\Delta x)\Delta x$$

 $f'(x)\Delta x$ તે $y = f(x)$ તો વિકલ કહે છે તથા તેને સંકેત dy દ્વારા દર્શાવાય છે. વળી, $\Delta f(x) = \Delta y$.
 $\Delta y = dy + u(\Delta x)\Delta x$

 $u(\Delta x)\Delta x$ તુલનાત્મક રીતે ઘણો નાનો હોવાથી તેને અવગણી શકાય. આથી આપણે કહીએ છીએ કે dy એ Δy નું આસન્ન મૂલ્ય છે.

$$dy \simeq \Delta y$$
.
 હવે $dy = f'(x)\Delta x$ (i)
 વિધેય $y = x$ માટે $f'(x) = 1$.
 $dx = 1 \cdot \Delta x$

 \therefore નિરપેક્ષ ચલ માટે $\Delta x = dx$.

$$\therefore$$
 $dy = f'(x)\Delta x = f'(x)dx$

$$f'(x) = \frac{(dy)}{(dx)}$$

$$\frac{dy}{dx} = \frac{(dy)}{(dx)}$$

ડાબી બાજુમાં y=f(x) નો વિકલિત દર્શાવ્યો છે, તે ગુણોત્તર નથી, પરંતુ જમણી બાજુએ આપણી પાસે y ના વિકલ તથા x ના વિકલનો ગુણોત્તર $\frac{(dy)}{(dx)}$ છે.

 Δy એ f(x)ની ગણતરીમાં આવતી ત્રુટિ છે.

$$\therefore \Delta y \simeq dy = f'(x)dx.$$

$$\forall x \in f(x) + f'(x)\Delta x.$$

વિકલનું ભૌમિતિક અર્થઘટન :

આકૃતિ 1.13

ધારો કે $A(x_0, f(x_0))$ એ વક y = f(x) પર બિંદુ છે.

 $\mathbf{B}(x_0 + \Delta x_0, f(x_0 + \Delta x_0))$ પણ વક્ક પરનું અન્ય બિંદુ છે. A આગળ વક્ક y = f(x) ના સ્પર્શક પર B માંથી દોરેલ શિરોલંબ રેખા પર બિંદુ C આવેલ છે.

A આગળ વક્રના સ્પર્શકનું સમીકરણ $y-y_0=f'(x_0)\,(x-x_0)\,\vartheta$. $\left(f'(x_0)\,\,$ એ સ્પર્શકનો ઢાળ છે $\right)$ C માટે $x=x_0+\Delta x_0$

$$\therefore$$
 C નો y -યામ, $y=y_0+(x_0+\Delta x_0-x_0)f'(x_0)$
$$=f(x_0)+f'(x_0)\Delta x_0$$

$$=f(x_0)+(dy)_{(x_0,y_0)}$$

CD = C નો y-યામ
$$-f(x_0) = (dy)_{(x_0, y_0)}$$

BD =
$$f(x_0 + \Delta x_0) - f(x_0) = \Delta f(x_0) = \Delta y_0$$

$$\therefore \quad CD = (dy)_{(x_0, y_0)}, BD = \Delta y_0$$

$$\therefore \quad \mathbf{BC} = \left| \Delta y_0 - dy_{(x_0, y_0)} \right|$$

હવે જેમ B વક્ર પર રહીને Aની નજીક અને વધુ નજીક જાય છે, તેમ BC ightarrow 0. આથી $dy \simeq \Delta y$.

 $f(x_0 + \Delta x_0) = f(x_0) + f'(x_0) \Delta x_0$ એ વક y = f(x) ના સ્પર્શકના ઉપયોગથી મળતી $x = x_0 + \Delta x_0$ આગળ f(x) ની સુરેખ આસન્ન કિંમત છે.

આપણે નીચેનાં ઉદાહરણોમાં $f(x_0+\Delta x_0)\simeq f(x_0)+f'(x_0)\,\Delta x_0$ પરથી $f(x_0+\Delta x_0)$ નું આસન્ન મૂલ્ય મેળવીશું. ઉદાહરણ $41:\sqrt{101}$ તથા $\sqrt{99}$ નાં આસન્ન મૂલ્ય વિકલના ઉપયોગથી મેળવો.

ઉકેલ : ધારો કે
$$f(x) = \sqrt{x}$$
. $x \in \mathbb{R}^+$

વિકલિતના ઉપયોગો

ધારો કે
$$x = 100$$
 અને $x + \Delta x = 101$

(આપણે $\sqrt{100}$ જાણીએ છીએ.)

તેથી $\Delta x = 1$.

 $(\Delta x = x + \Delta x - x = 101 - 100)$

$$f'(x) = \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{100}} = \frac{1}{20} = 0.05$$

હવે
$$f(x + \Delta x) \simeq f(x) + f'(x) \Delta x$$

$$f(101) \simeq f(100) + f'(100) \Delta x$$
$$= \sqrt{100} + (0.05) (1) = 10.05$$

$$∴$$
 $\sqrt{101}$ નું આસન્ન મૂલ્ય 10.05 છે.

$$\sqrt{99}$$
 શોધવા માટે $x = 100$ લો. $x + \Delta x = 99$, $\Delta x = -1$ ($\Delta x = 99 - 100 = -1$)

$$\therefore \quad \sqrt{99} = f(99) \approx f(100) + f'(100) \Delta x$$

$$= \sqrt{100} + (0.05)(-1)$$

$$= 10 - 0.05 = 9.95$$

 $\sqrt{99}$ નું આસન્ન મૂલ્ય 9.95 છે.

x	આસન્ન મૂલ્ય	ખરેખર સન્નિક્ટ કિંમત	
$\sqrt{101}$	10.05	10.0498756	
√99	9.95	9.94987437	
$\sqrt{102}$	10.1	10.0995049	
√ 98	9.9	9.89949483	

આપણે જોઈ શકીએ છીએ કે જેમ $\Delta x \to 0$, તેમ તેમ આસન્ન મૂલ્ય સાચી કિંમતની વધુ ને વધુ નજીક જાય છે. અહીં ખરેખરી કિંમત આસન્ન મૂલ્ય કરતાં નાની જ છે કારણ કે સ્પર્શક $y = \sqrt{x}$ એટલે કે $y^2 = x$ ના આલેખની ઉપર રહે છે.

ઉદાહરણ 42 : $(65)^{\frac{1}{3}}$ નું આસન્ન મૂલ્ય શોધો.

[નોંધ : હવેથી આપણે 'વિકલનના ઉપયોગથી' એવા શબ્દસમૂહનો ઉપયોગ કરીશું નહિ, પરંતુ તે ગર્ભિત છે.]

ઉકેલ : ધારો કે
$$f(x) = x^{\frac{1}{3}}$$
. $x \in \mathbb{R}^+$

$$x = 64$$
, $x + \Delta x = 65$. તેથી $\Delta x = 1$

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}} = \frac{1}{3(64)^{\frac{2}{3}}} = \frac{1}{48}$$
. $\text{quad } \Delta f(x) \simeq f'(x) \Delta x = \frac{1}{48}$ (1) $= \frac{1}{48}$

$$\therefore (65)^{\frac{1}{3}} \simeq (64)^{\frac{1}{3}} + \Delta f(x) \simeq 4 + \frac{1}{48} = \frac{193}{48}$$

$$\therefore$$
 (65) $^{\frac{1}{3}}$ નું આસન્ન મૂલ્ય $\frac{193}{48}$ છે.

ઉદાહરણ 43 : tan 46°નું આસન્ને મૂલ્ય મેળવો.

ઉકેલ : ધારો કે
$$f(x) = tanx$$
 તથા $x = \frac{\pi}{4}$. $x \in \mathbb{R} - \left\{ (2k-1)\frac{\pi}{2} / k \in Z \right\}$ (45° = $\frac{\pi}{4}$ R)

$$\Delta x = 1 \cdot \frac{\pi}{180} = \frac{\pi}{180}^{R}$$

:.
$$f'(x) = sec^2x = (\sqrt{2})^2 = 2$$

$$\therefore \quad \Delta f(x) \simeq f'(x) \, \Delta x = 2 \cdot \frac{\pi}{180} = \frac{\pi}{90}$$

$$\therefore tan46^{\circ} \approx tan45^{\circ} + \Delta f(x)$$

$$\approx 1 + \frac{\pi}{90}$$

$$\therefore$$
 tan 46°નું આસન્ન મૂલ્ય 1 + $\frac{\pi}{90}$ છે.

ઉદાહરણ
$$44:(1) \cos^{-1}(-0.49)$$
 (2) $\sec^{-1}(-2.01)$ નાં આસન્ન મૂલ્ય મેળવો.

ઉકેલ : (1) ધારો કે
$$f(x) = cos^{-1}x$$
, $x \in [-1, 1]$, $x = -0.5$, $\Delta x = 0.01$

$$f'(x) = \frac{-1}{\sqrt{1-x^2}} = -\frac{1}{\sqrt{1-\frac{1}{4}}} = -\frac{2}{\sqrt{3}}, \quad \Delta f(x) \simeq f'(x) \, \Delta x = -\frac{1}{50\sqrt{3}}$$

$$cos^{-1} (-0.49) \simeq cos^{-1} (-0.5) + \Delta f(x)$$

$$= \pi - cos^{-1} (0.5) + \Delta f(x)$$

$$\simeq \frac{2\pi}{3} - \frac{1}{50\sqrt{3}}$$

બીજી રીત : ધારો કે
$$f(x) = cos^{-1}x$$
, $x \in [-1, 1]$, $x = 0.5$, $\Delta x = -0.01$

$$cos^{-1} (-0.49) = \pi - cos^{-1} (0.49)$$

$$\approx \pi - (cos^{-1} (0.5) + f'(x) \Delta x)$$

$$= \pi - \frac{\pi}{3} - \left(-\frac{2}{\sqrt{3}}\right) (-0.01)$$

$$= \frac{2\pi}{3} - \frac{1}{50\sqrt{3}}$$

$$: cos^{-1}(-0.49)$$
 નું આસન્ન મૂલ્ય $\frac{2\pi}{3} - \frac{1}{50\sqrt{3}}$ છે.

(2) ધારો કે
$$f(x) = sec^{-1}x$$
, $|x| \ge 1$. $x = 2$, $\Delta x = 0.01$

$$f'(x) = \frac{1}{|x|\sqrt{x^2-1}} = \frac{1}{2\sqrt{3}}, \ \Delta f(x) \simeq f'(x) \ \Delta x = \frac{1}{200\sqrt{3}}$$

$$sec^{-1} (-2.01) = \pi - sec^{-1} (2.01)$$

$$\approx \pi - (sec^{-1}2 + f'(x) \Delta x)$$

$$= \pi - \left(\frac{\pi}{3} + \frac{1}{200\sqrt{3}}\right)$$

$$= \frac{2\pi}{3} - \frac{1}{200\sqrt{3}}$$

$$\therefore \ sec^{-1} \ (-2.01)$$
નું આસન્ન મૂલ્ય $\frac{2\pi}{3} \ -\frac{1}{200\sqrt{3}}$ છે.

ઉદાહરણે 45 : આસન્ન મૂલ્ય શોધો (1) $\log_e 10.01$ (2) $\log_{10} 10.1$ (3) $\log_e (e+0.1)$

$$(\log_{10}e = 0.4343, \log_e 10 = 2.3026)$$

ઉકેલ : (1) ધારો કે
$$f(x) = \log_e x$$
, $x \in \mathbb{R}^+$

ધારો કે
$$x = 10$$
, $\Delta x = 0.01$, $f'(x) = \frac{1}{x} = \frac{1}{10} = 0.1$

$$\therefore \quad \Delta f(x) \simeq f'(x) \, \Delta x = 0.001$$

$$\log_e(10.01) \simeq \log_e 10 + f'(x) \Delta x$$
= 2.3026 + 0.001
= 2.3036

∴ $\log_e(10.01)$ નું આસન્ન મૂલ્ય 2.3036 છે. (ખરેખર તો $\log_e 10.01 = 2.30358459....)$

(2) ધારો કે
$$f(x) = \log_{10} x = \frac{\log_e x}{\log_e 10} = \log_e x \cdot \log_{10} e, x \in \mathbb{R}^+$$

= (0.4343) $\log_e x$

ધારો કે
$$x = 10$$
, $\Delta x = 0.1$

$$\therefore f'(x) = \frac{0.4343}{x} = \frac{0.4343}{10} = 0.04343$$

$$\Delta f(x) \simeq f'(x) \Delta x = (0.04343) (0.1) = 0.004343$$

$$\log_{10}(10.1) \simeq \log_{10}10 + f'(x) \Delta x$$
= 1.004343

∴
$$\log_e(10.1)$$
નું આસન્ન મૂલ્ય 1.004343 છે.
(ખરેખર તો $\log_{10}(10.1) = 1.00432137....)$

(3) ધારો કે
$$f(x) = \log_e x$$
, $x \in \mathbb{R}^+$. $x = e$, $\Delta x = 0.1$

:.
$$f'(x) = \frac{1}{x} = \frac{1}{e}$$
, $\Delta f(x) \simeq f'(x) \Delta x = \frac{(0.1)}{(e)} = \frac{1}{10e}$

$$\log_e(e+0.1) \simeq \log_e e + f'(x) \Delta x$$

$$= 1 + \frac{1}{10e} = 1.03678794$$

∴
$$\log_e(e+0.1)$$
નું આસન્ન મૂલ્ય $1+\frac{1}{10e}$ છે. (ખરેખર કિંમત 1.0361274....)

ઉદાહરણ 46 : ગોલકની ત્રિજ્યાના માપનમાં x % ત્રુટિ પ્રવેશે તો તેના ઘનફળ તથા પૃષ્ઠફળના માપનમાં આશરે કેટલી ત્રુટિ પ્રવેશે ?

6કેલ : ગોલકની ત્રિજ્યાના માપનમાં x % ત્રુટિ છે.

$$\therefore \quad \Delta r = \frac{xr}{100}.$$

ગોલકનું ઘનફળ $V=rac{4}{3}\pi r^3$

$$\therefore \quad \frac{dV}{dr} = \frac{4}{3}\pi(3r^2) = 4\pi r^2$$

$$\therefore$$
 ધનફળ V માં ત્રુટિ Δ V નું આસન્ન મૂલ્ય $= \frac{d\mathrm{V}}{dr}\,\Delta r$ $= 4\pi r^2 \cdot \frac{xr}{100}$ $= \frac{4}{3}\pi r^3 \cdot \frac{3x}{100} = \frac{3x\mathrm{V}}{100}$

 $=\frac{4}{3}\pi r^3\cdot\frac{3x}{100}=\frac{3x\mathrm{V}}{100}$. ગોલકના ઘનફળમાં પ્રવેશતી ત્રુટિનું આસન્ન મૂલ્ય 3x % છે. ગોલકનું પૃષ્ઠફળ $\mathrm{S}=4\pi r^2$

$$\therefore \quad \frac{dS}{dr} = 8\pi r$$

$$\therefore$$
 પૃષ્ઠફળ S માં ત્રુટિ ΔS નું આસન્ન મૂલ્ય $= \frac{dS}{dr} \Delta r$ $= 8\pi r \cdot \frac{xr}{100}$ $= 2(4\pi r^2) \frac{x}{100}$ $= \frac{2xS}{100}$

∴ પૃષ્ઠફળની ગણતરીમાં પ્રવેશતી ત્રુટિનું આસન્ન મૂલ્ય 2x % છે.

ઉદાહરણ 47 : ગોલકની ત્રિજ્યા 7 મી છે અને તેના માપનમાં 0.02 મી જેટલી ત્રુટિ છે. ગોલકના ઘનફળમાં આશરે કેટલી ત્રુટિ આવશે ?

ઉકેલ : ગોલકનું ઘનફળ
$$V = \frac{4}{3}\pi r^3$$

$$r=7$$
 મી, $\Delta r=0.02$ મી

$$\therefore \quad \frac{dV}{dr} = 4\pi r^2$$

$$\therefore \quad \Delta V \simeq \frac{dV}{dr} \, \Delta r$$

$$= 4\pi r^2 \cdot \Delta r$$

$$=4\pi(49)(0.02)$$

$$= 3.92 \pi \text{ H}^3$$

 \therefore ગોલકના ઘનફળમાં આશરે 3.92 π મી 3 ત્રુટિ પ્રવેશશે.

ઉદાહરણ 48 : જ્યારે સમઘનની બાજુ x સેમી હોય તથા બાજુની લંબાઈમાં 2 % નો વધારો થાય તો, તેના પૃષ્ઠ $\mathfrak s$ ળમાં આશરે કેટલા ટકા વધારો થાય ?

ઉકેલ : સમઘનનું પૃષ્ઠફળ
$$S = 6x^2$$
, $\Delta x = \frac{2x}{100}$

$$\therefore \quad \frac{dS}{dx} = 12x$$

$$\therefore \quad \Delta S \simeq \frac{dS}{dx} \, \Delta x$$

$$= 12x \cdot \frac{2x}{100}$$

$$=\frac{4(6x^2)}{100}=\frac{4S}{100}$$

∴ સમઘનના પૃષ્ઠફળમાં પ્રવેશતી ત્રુટિનું આસન્ન મૂલ્ય 4 % છે.

ઉદાહરણ 49 : નિશ્ચિત ત્રિજ્યાવાળા વર્તુળમાં અંતર્ગત ત્રિકોશ માટે સાબિત કરો કે $\frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 0$ જયાં da, db, dc એ બાજુઓની લંબાઈમાં 'નાની' ત્રુટિ છે.

ઉદ્દેલ : sine સૂત્ર પ્રમાણે
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
.

a = 2RsinA, b = 2RsinB, c = 2RsinC, જ્યાં R અચળ છે.

$$\therefore \frac{da}{dA} = 2R\cos A, \frac{db}{dB} = 2R\cos B, \frac{dc}{dC} = 2R\cos C$$

$$\therefore$$
 $da = \frac{da}{dA} \Delta A = 2R\cos A \Delta A$ વગેરે

$$\therefore \frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 2R(\Delta A + \Delta B + \Delta C)$$

$$= 2R(\Delta(A + B + C))$$

$$= 2R \Delta(\pi)$$

$$\therefore \frac{da}{\cos A} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 0$$

ઉદાહરણ 50 : એક વર્તુળાકાર તકતીને ગરમ કરતાં તેની ત્રિજ્યામાં થતો વધારો 0.1 સેમી છે. જ્યારે તેની ત્રિજ્યા 5 સેમી હોય ત્યારે તેના ક્ષેત્રફળમાં આશરે કેટલો વધારો થશે ?

ઉકેલ : વર્તુળનું ક્ષેત્રફળ $A=\pi r^2$

$$\therefore \frac{dA}{dr} = 2\pi r$$

$$\therefore \quad \Delta A \simeq \frac{dA}{dr} \, \Delta r = 2\pi r \, \Delta r = 2\pi (5)(0.1)$$

- ∴ ΔA નું આસન્ન મૂલ્ય = π સેમી²
- \therefore ક્ષેત્રફળનાં વધારાનું આસન્ન મૂલ્ય π સેમી 2 છે.

ઉદાહરણ 51 : જો y = f(x) = cosx, હોય તો, તેનો વિકલ dy મેળવો અને $x = \frac{\pi}{6}$ તથા $\Delta x = 0.01$ હોય ત્યારે dy મેળવો.

$$\mathbf{G}(x) = \cos x$$

:.
$$f'(x) = -\sin x$$
. All $f'(\frac{\pi}{6}) = -\sin \frac{\pi}{6} = -\frac{1}{2} = -0.5$

:.
$$dy = f'(x) \Delta x = (-0.5)(0.01)$$

$$\therefore dy = -0.005$$

ઉદાહરણ 52 : સાબિત કરો કે h 'ખૂબ નાનો' હોય તો $sinh \simeq h$.

ઉકેલ : ધારો કે
$$f(x) = sinx$$
, $x = 0$, $x + \Delta x = h$

$$\therefore f'(x) = \cos x = \cos 0 = 1$$

$$\therefore f(x + \Delta x) \simeq f(x) + f'(x) \, \Delta x$$

$$\therefore f(h) \simeq f(0) + f'(0) h$$

 $(h = \Delta x)$

$$\therefore$$
 $sinh \simeq sin0 + cos0 \cdot h$

- \therefore sinh $\simeq h$
- \therefore h ખૂબ નાનો હોય તો sinh નું આસન્ન મૂલ્ય h છે.

स्वाध्याय 1.4

નીચેનાં આસન્ન મૂલ્ય શોધો. (1 to 12) :

- 1. $\sqrt{0.37}$ 2. $(0.999)^{\frac{1}{10}}$
- 3. $(80)^{\frac{1}{4}}$
- 4. $(255)^{\frac{1}{4}}$

- 5. $(399)^{\frac{1}{2}}$
- 6. $(32.1)^{\frac{1}{5}}$
- 7. cos 29º
- 8. sin61°

- 9. tan31°
- **10.** log_e(100.1)
- **11.** log₁₀(10.01)
- 12. $(16.1)^{\frac{1}{4}}$
- 13. શંકુની ત્રિજ્યા તેની ઊંચાઈ કરતાં બમણી હોય તથા તેની ત્રિજ્યા 10 સેમી હોય અને ત્રિજ્યામાં ત્રુટિ 0.01 સેમી હોય ત્યારે શંકુના ઘનફળમાં પ્રવેશતી ત્રુટિનું આસન્ન મૃલ્ય શોધો.
- 14. ગોલકની ત્રિજ્યા માપવામાં Δr જેટલી ત્રુટિ આવે તો તેના ઘનફળના માપમાં આશરે કેટલી ત્રુટિ આવે ?
- 15. ગતિશક્તિનું સૂત્ર $k=\frac{1}{2}mv^2$. દળ અચળ છે. અચળ દળ માટે ગતિશક્તિ ઊર્જામાં આશરે 1 % વધારો થાય તો તેને માટે કારણભૂત ઝડપનો વધારો કેટલો હશે ?
- 16. ત્રિકોશનું ક્ષેત્રફળ $A=\frac{1}{2}absinC$ સૂત્ર દ્વારા ગણવામાં આવ્યું. જો $C=\frac{\pi}{6}$ તથા C ના માપમાં x %, ત્રુટિ આવે તથા a તથા b અચળ હોય તો ક્ષેત્રફળના માપમાં પ્રવેશતી ત્રુટિનું આસન્ન મૂલ્ય કેટલું ?
- **17.** $f(x) = x^3 2x^2 3x + 1$ હોય તો f(3.01) નું આસન્ન મૂલ્ય શોધો.
- 18. $f(x) = 2x^2 3x + 5$ હોય તો f(1.05) નું આસન્ન મૂલ્ય શોધો.
- 19. જ્યારે સમઘનની ધારની લંબાઈ 0.2 સેમી જેટલી વધે તથા તે સમયે ધારની લંબાઈ 10 સેમી હોય તો તે ઘનફળના મૂલ્યમાં પ્રવેશતી ત્રુટિનું આસન્ન મૂલ્ય શોધો.

- 20. શંકુની ઊંચાઈ અચળ રહે છે અને તેની ત્રિજ્યા 2 % જેટલી વધે છે. ત્રિજ્યા 8 સેમી તથા ઊંચાઈ 6 સેમી હોય ત્યારે શંકુના કુલ પૃષ્ઠફળમાં થતા વધારાનું આસન્ન મૂલ્ય મેળવો.
- **21.** $\cos \frac{\pi}{3}$ ના જ્ઞાત મૂલ્ય પરથી $\cos \frac{11\pi}{36}$ નું આસન્ન મૂલ્ય મેળવો.

1.6 મહત્તમ તથા ન્યુનતમ મુલ્યો

આપણે વિકલ કલનના કેટલાક ઉપયોગો જોયા. હવે આપણે ઈષ્ટતમ મૂલ્યોના પ્રશ્નોમાં તેનો મહત્ત્વનો ઉપયોગ જોઈશું. આપણે પેટીનું મહત્તમ ઘનફળ મેળવવા ઈચ્છતા હોઈએ, ફળોનો રસ સમાવતા ડબ્બા બનાવવાની ન્યૂનતમ પડતર કિંમત જાણવા ઈચ્છતા હોઈએ કે ન્યૂનતમ ખર્ચ કે મહત્તમ નફો મેળવવા ઈચ્છતા હોઈએ એવા પ્રશ્નોના ઉકેલ માટે વિકલ કલનનો ઉપયોગ હવે આપણે જોઈશું.

વ્યાખ્યા : જો કોઈ પ્રદેશ D_f પર વ્યાખ્યાયિત વિધેય f માટે $c \in D_f$ હોય તથા $\forall x \in D_f$, $f(c) \geq f(x)$, હોય તો f ને c આગળ વૈશ્વિક(Global) અથવા નિરપેક્ષ(Absolute) મહત્તમ(Maximum) મૂલ્ય છે તેમ કહેવાય છે. જો $f(c) \leq f(x)$, $\forall x \in D_f$, $c \in D_f$ તો f ને c આગળ નિરપેક્ષ અથવા વૈશ્વિક ન્યૂનતમ(Minimum) મૂલ્ય છે તેમ કહેવાય છે.

આ સંજોગોમાં f(c) ને અનુક્રમે f નું \mathbf{D}_f માં મહત્તમ મૂલ્ય કે ન્યૂનતમ મૂલ્ય કહેવાય છે. f નાં મહત્તમ કે ન્યૂનતમ મૂલ્યને \mathbf{D}_f પર f નાં આત્યંતિક(Extreme) મૂલ્ય પણ કહે છે.

વ્યાખ્યા : એક વિષય અંતરાલ I પર વ્યાખ્યાયિત છે. જો કોઈક h > 0 માટે $(c - h, c + h) \subset I$ અને $\forall x \in (c - h, c + h)$ $f(c) \geq f(x)$ હોય તો f ને c આગળ સ્થાનીય(local) મહત્તમ મૂલ્ય છે તેમ કહેવાય છે. વિષય f અંતરાલ I પર વ્યાખ્યાયિત છે. જો કોઈક h > 0 માટે $(c - h, c + h) \subset I$ અને $f(c) \leq f(x)$ $\forall x \in (c - h, c + h)$ તો f ને c આગળ સ્થાનીય ન્યૂનતમ મૂલ્ય છે તેમ કહેવાય છે.

નોંધ : જો I સંવૃત અંતરાલ હોય તો સ્થાનીય મહત્તમ કે સ્થાનીય ન્યૂનતમ મૂલ્યો અંતરાલના અંત્યબિંદુઓએ ના મળે કારણ કે $(c-h,c+h)\subset I$ એવી શરત છે.

આમ છતાં વૈશ્વિક મહત્તમ કે વૈશ્વિક ન્યુનતમ મૂલ્ય અંતરાલના અત્યબિંદુઓ આગળ સંભવી શકે.

 $f(x)=sinx,\ x\in \mathbf{R}$ ની વૈશ્વિક મહત્તમ કિંમત $1,x=(4n+1)\,rac{\pi}{2},\,n\in Z$ આગળ મળે છે તથા વૈશ્વિક ન્યૂનતમ કિંમત $-1,\,x=(4n+3)rac{\pi}{2},\,n\in Z$ આગળ મળે છે.

 $f(x)=x^2, x\in \mathbb{R}$ નો વિચાર કરો. $x\in \mathbb{R}$ માટે $x^2\geq 0$. તેથી f(0)=0 એ વૈશ્વિક તથા સ્થાનીય ન્યૂનતમ કિંમત છે. પરંતુ f ને વૈશ્વિક મહત્તમ મૂલ્ય નથી. જો f નો મર્યાદિત પ્રદેશ [-3,5] લેવામાં આવે તો તેની વૈશ્વિક મહત્તમ કિંમત f(5)=25 મળે.

આકૃતિ 1.14

વિકલિતના ઉપયોગો

આકૃતિ 1.16

 $[a,\ a']$ માં x=a આગળ વૈશ્વિક ન્યૂનતમ મૂલ્ય મળે છે તથા x=d આગળ વૈશ્વિક મહત્તમ મૂલ્ય મળે છે. f(b) સ્થાનીય મહત્તમ તથા f(c) અને f(e) સ્થાનીય ન્યૂનતમ મૂલ્યો છે. વૈશ્વિક ન્યૂનતમ મૂલ્ય અંતરાલના અંત્યબિંદુ આગળ મળે છે તથા વૈશ્વિક મહત્તમ મૂલ્ય અંતરાલના અંદરના બિંદુએ મળે છે.

હવે આપશે નીચેનું પ્રમેય સાબિતી વગર સ્વીકારીશું.

આત્યંતિક મૂલ્ય પ્રમેય : જો વિધેય f એ [a, b] પર સતત હોય તો f ને કોઈક $c \in [a, b]$ આગળ વૈશ્વિક મહત્તમ મૂલ્ય મળે તથા કોઈક $d \in [a, b]$ આગળ વૈશ્વિક ન્યૂનતમ મૂલ્ય મળે.

આકૃતિ 1.17(a) માં વિધેય બંને નિરપેક્ષ મહત્તમ તથા નિરપેક્ષ ન્યૂનતમ મૂલ્યો અંતરાલના અંદરના બિંદુએ ધારણ કરે છે. આકૃતિ 1.17(b) માં વિધેય નિરપેક્ષ મહત્તમ મૂલ્ય [a, b] ના અંદરના બિંદુએ ધારણ કરે છે, જ્યારે નિરપેક્ષ ન્યૂનતમ મૂલ્ય d=b આગળ ધારણ કરે છે. આકૃતિ 1.17(c) માં બે બિંદુઓએ નિરપેક્ષ મહત્તમ મૂલ્ય (a, b) માં મળે છે.

અહીં વિધેયનો પ્રદેશ [1, 4] છે. પરંતુ વિધેય x=2 આગળ અસતત છે. તેનો વિસ્તાર [0, 4). છે. કોઈપણ $x\in[1,4]$ માટે $f(x)\neq 4$. વિધેયને મહત્તમ મૂલ્ય નથી. આથી આપણે આત્યંતિક મૂલ્ય માટે વિધેયના સાતત્યની શરત મૂકી છે. જો કે અસતત વિધેયને પણ મહત્તમ કે ન્યૂનતમ મૂલ્ય મળી તો શકે. (જુઓ આકૃતિ 1.18)

આકૃતિ 1.19 માં જેનો આલેખ છે તે વિધેય (0, 4), પર સતત છે. પરંતુ તેને નિરપેક્ષ મહત્તમ કે નિરપેક્ષ ન્યૂનતમ મૂલ્ય નથી. તેનો વિસ્તાર (1, ∞) છે. આથી આત્યંતિક મૂલ્ય પ્રમેયમાં પ્રદેશ સંવૃત અંતરાલની શરત પણ મૂકી છે.

વિધેય $f(x)=x, x\in(0,2)$ ને મહત્તમ કે ન્યૂનતમ મૂલ્ય નથી, પરંતુ [0,2] માં f(x)=x ને મહત્તમ મૂલ્ય f(2)=2 અને ન્યૂનતમ મૂલ્ય f(0)=0 છે. f(x)=x માટે, જો $x_1\in(0,2)$ હોય, તો $x_1<2$ માટે $x_1<\left(\frac{x_1+2}{2}\right)<2$.

જુઓ કે આકૃતિ $1.19(\mathbf{a})$ માં $f\left(\frac{x_1+2}{2}\right)=\frac{x_1+2}{2}$ મળે જેથી $f(x_1)$ કરતાં મોટું મૂલ્ય $f\left(\frac{x_1+2}{2}\right)$ મળે છે, જ્યાં $x_1\in(0,2)$. આમ કોઈપણ f(x) મહત્તમ ન હોઈ શકે.

તે જ રીતે $f\!\left(\frac{x_1}{2}\right)\!<\,f(x_1)$ હોવાથી કોઈપણ f(x) ન્યૂનતમ ન હોઈ શકે.

 $\overline{\mathrm{AC}}$ નું મધ્યબિંદુ B તથા $\overline{\mathrm{AO}}$ નું મધ્યબિંદુ D છે. આમ કોઈપણ A માટે મળતા $f(x_1)$ ના મૂલ્ય કરતાં B આગળ મોટું મૂલ્ય $f\!\left(\frac{x_1+2}{2}\right)$ મળે છે. અને D આગળ નાનું મૂલ્ય $f\!\left(\frac{x_1}{2}\right)$ મળે છે. આમ fને મહત્તમ કે ન્યૂનતમ મૂલ્યો નથી.

આકૃતિ 1.20 જુઓ. f ને x=c આગળ સ્થાનીય મહત્તમ છે, (c-h,c) માં f વધતું વિધેય છે. આથી (c-h,c) માં f'(x)>0. (c,c+h) માં f ઘટતું વિધેય છે અને તેથી (c,c+h) માં f'(x)<0. x એ (c-h,c+h) માં c માંથી પસાર થાય છે ત્યારે f'(x) ધનમાંથી ઋણ બને છે તથા f'(c)=0.

તે જ રીતે x=d આગળ f ને સ્થાનીય ન્યૂનતમ છે તથા f' ઋણમાંથી ધન બને છે તથા f'(d)=0.

આથી આપણે નીચેના પ્રમેયનું વિધાન સાબિતી વગર સ્વીકારીશું.

પ્રમેય 1.2 (ફર્માનું પ્રમેય) : જો f ને c આગળ સ્થાનીય મહત્તમ કે સ્થાનીય ન્યૂનતમ મૂલ્ય હોય તથા f એ c આગળ વિકલનીય હોય તો f'(c)=0.

આ માત્ર આવશ્યક શરત છે અને તે પર્યાપ્ત નથી. $f(x) = x^3$, માટે f'(0) = 0 પરંતુ f ને x = 0 આગળ સ્થાનીય મહત્તમ કે સ્થાનીય ન્યૂનતમ મૂલ્ય નથી. આવા બિંદુને નતિબિંદુ કહે છે. તેના નતિબિંદુ આગળ આલેખ વકના સ્પર્શકને ઓળંગે છે.

અહીં (0, 0) આગળ સમક્ષિતિજ સ્પર્શક છે.

Pierre Fermat (1601-1665) ફેંચ વકીલ હતા તથા ગણિત તેમનો શોખ હતો. તેમના નામ પરથી આ પ્રમેયનું નામ આપ્યું છે તે Des Cartes ઉપરાંત વૈશ્લેષિક ભૂમિતિના શોધક હતા.

વળી f ને c આગળ આત્યંતિક મૂલ્ય હોય અને તે x=c આગળ વિકલનીય ના હોય તે પણ શક્ય છે.

 $f(x) = |x|, x \in \mathbb{R}$ ને x = 0 આગળ વૈશ્વિક તથા સ્થાનીય ન્યૂનતમ મૂલ્ય છે પરંતુ આ વિધયx = 0 આગળ સતત છે અને વિકલનીય નથી.

નિર્ણાયક(Critical) સંખ્યા : વિધેય f ના પ્રદેશ \mathbf{D}_f માં આવેલ જે સંખ્યા c માટે f'(c)=0 અથવા f એ x=c આગળ વિકલનીય ન હોય તે સંખ્યા c ને વિધેય f ની નિર્ણાયક સંખ્યા અથવા નિર્ણાયક બિંદુ કહે છે.

આમ જો f ને x=c આગળ સ્થાનીય ન્યૂનતમ કે સ્થાનીય મહત્તમ મૂલ્ય હોય તો c એ f ની નિર્ણાયક સંખ્યા છે. ઉપરની ચર્ચાના આધારે આપણને નીચેની પ્રથમ વિકલિત કસોટી મળે.

પ્રથમ વિકલિત કસોટી : ધારો કે f એ $\mathbf{I}=(a,b)$ પર વ્યાખ્યાયિત વિધેય છે. $c\in \mathbf{I}$ એ f ની નિર્ણાયક સંખ્યા છે. f એ c આગળ સતત છે.

- (1) જો એવી ધન સંખ્યા h મળે કે જેથી $(c-h,\,c+h)\subset I$ તથા $(c-h,\,c)$ માં f'(x)>0 તથા $(c,\,c+h)$ માં f'(x)<0 તો f ને x=c આગળ સ્થાનીય મહત્તમ મૂલ્ય છે.
- (2) જો ધન સંખ્યા h મળે જેથી $(c h, c + h) \subset I$ અને (c h, c) માં f'(x) < 0 તથા (c, c + h) માં f'(x) > 0 તો f + x = c આગળ સ્થાનીય ન્યૂનતમ મૂલ્ય છે.
- (3) જો કોઈપણ h > 0 માટે $(c h, c + h) \subset I$ હોય અને $x \in (c h, c + h)$ માટે f'(x) નિશાની ન બદલે તો f + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે. આવા c + h = c માટે ન્યૂનતમ કે મહત્તમ મૂલ્ય ન મળે.

જો કોઈક h > 0 માટે f'(x) (c નિર્ણાયક સંખ્યા છે.)

(c-h,c) માં ધન હોય તથા $(c,c+h)$ માં ઋણ હોય તો	f(c) સ્થાનીય મહત્તમ છે.
$(c-\mathit{h},\mathit{c})$ માં ઋણ હોય તથા $(\mathit{c},\mathit{c}+\mathit{h})$ માં ધન હોય તો	f(c) સ્થાનીય ન્યૂનત્તમ છે.

કેટલીક વાર પ્રથમ વિકલિત કસોટીનો ઉપયોગ અનુકૂળ ન રહે. આવા સંજોગોમાં નીચેની દ્વિતીય વિકલિત કસોટી ઉપયોગી છે.

દ્વિતીય વિકલિત કસોટી : ધારો કે વિધેય f અંતરાલ $\mathbf{I}=[a,\,b]$ પર વ્યાખ્યાયિત છે. ધારો કે $c\in(a,\,b)$. ધારો કે f''(c) નું અસ્તિત્વ છે.

- (1) જો f''(c) < 0 તથા f'(c) = 0 તો f + 1 = c આગળ સ્થાનીય મહત્તમ મૂલ્ય છે.
- (2) જો f''(c) > 0 તથા f'(c) = 0 તો f + c આગળ સ્થાનીય ન્યૂનતમ મૂલ્ય છે.
- (3) જો f'(c) = f''(c) = 0 તો કસોટી કોઈપણ તારણ આપવામાં નિષ્ફળ જાય છે.

નોંધ : f''(c) < 0 તથા f'(c) = 0 નો અર્થ એ કે f'(x) એ x = c આગળ તેની નિશાની ધનમાંથી ઋણમાં બદલે છે.

 $\therefore f(x) + x = c \text{ આગળ સ્થાનીય મહત્તમ મુલ્ય છે.}$

તે જ રીતે જો f''(c) > 0 તથા f'(c) = 0 તો આપણે f તે x = c આગળ સ્થાનીય ન્યૂનતમ મૂલ્ય છે એવા તારણ પર આવી શકીએ.

ઉદાહરણ 53 : $f(x) = x^{\frac{3}{5}}(4-x), x \in \mathbb{R}^+ \cup \{0\}$ ની નિર્ણાયક સંખ્યાઓ શોધો.

$$334: f(x) = 4x^{\frac{3}{5}} - x^{\frac{8}{5}}$$

$$f'(x) = \frac{12}{5} x^{-\frac{2}{5}} - \frac{8}{5} x^{\frac{3}{5}}$$
$$= \frac{4}{5} \left(\frac{3}{2} - 2x^{\frac{3}{5}} \right)$$
$$= \frac{4}{5} \left(\frac{3 - 2x}{x^{\frac{2}{5}}} \right)$$

- \therefore જો $x=rac{3}{2}$ તો f'(x)=0 તથા x=0 આગળ f'(x)નું અસ્તિત્વ નથી. પરંતુ $0\in D_{f'}$
- ∴ નિર્ણાયક સંખ્યાઓ 0 તથા $\frac{3}{2}$ છે.

ઉદાહરણ 54:f(x)=|x| નાં સ્થાનીય મહત્તમ તથા સ્થાનીય ન્યૂનતમ મૂલ્યો શોધો. $x\in R$

6કેલ : f એ x=0 આગળ વિકલનીય નથી. $0\in D_f$. આથી 0 નિર્ણાયક બિંદુ છે. વળી x=0 આગળ દ્વિતીય વિકલિત પણ નથી જ.

$$\therefore f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

$$\therefore f'(x) = 1 \quad \text{wii} \quad x > 0$$

તથા
$$f'(x) = -1$$
 જ્યાં $x < 0$.

 $x \rightarrow 0$ માંથી પસાર થાય ત્યારે f'(x) ઋણમાંથી ધન થાય છે તથા x=0 આગળ વિકલનીય નથી. એટલે કે $x \rightarrow (-h, 0)$ માંથી પસાર થઈ (0, h) માં કિંમતો ધારણ કરે (h>0) તો f'(x) ઋણમાંથી ધન બને.

$$\therefore$$
 f ને $x=0$ આગળ સ્થાનીય ન્યૂનતમ મૂલ્ય $f(0)=0$ મળે. f ને સ્થાનીય મહત્તમ મૂલ્ય નથી.

નોંધ : દેખીતું છે કે $f(x) = |x| \ge 0 \quad \forall x \in \mathbb{R}$

f ને સ્થાનીય તથા વૈશ્વિક ન્યૂનતમ મૂલ્ય x=0 આગળ મળે.

સંવૃત્ત અંતરાલ [a, b] પર વ્યાખ્યાયિત વિધેયનાં આત્યંતિક મૂલ્યો શોધવા માટે

- (1) f ના સ્થાનીય મહત્તમ તથા સ્થાનીય ન્યૂનતમ મૂલ્યો મેળવવા.
- (2) [a, b] ના અંત્યબિંદુઓએ f નાં મૂલ્યો મેળવો.
- (1) તથા (2) માં મળેલા મૂલ્યોમાં મોટામાં મોટું મૂલ્ય વૈશ્વિક મહત્તમ મૂલ્ય છે તથા નાનામાં નાનું મૂલ્ય એ વૈશ્વિક ન્યૂનતમ મૂલ્ય છે.

ઉદાહરણ $55: f(x) = 3x^4 - 16x^3 + 18x^2, x \in [-1, 4]$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો અંગે પરીક્ષણ કરો.

$$3x^4 - 16x^3 + 18x^2$$

$$f'(x) = 12x^3 - 48x^2 + 36x$$
$$= 12x(x^2 - 4x + 3)$$
$$= 12x(x - 3)(x - 1)$$

- $\therefore f'(x) = 0 \Rightarrow x = 0 \text{ and } 1 \text{ and } 3.$
- $f''(x) = 36x^2 96x + 36$
- f''(0) = 36 > 0, f''(1) = -24 < 0, f''(3) = 72 > 0
- :. f(0) સ્થાનીય ન્યૂનતમ છે અને સ્થાનીય ન્યૂનતમ f(0)=0.

x=1 આગળ f ને સ્થાનીય મહત્તમ છે તથા સ્થાનીય મહત્તમ f(1)=5.

f ને x = 3 આગળ સ્થાનીય ન્યૂનતમ છે તથા સ્થાનીય ન્યૂનતમ f(3) = -27.

સ્થાનીય મહત્તમ તથા ન્યૂનતમ મૂલ્યો અંતરાલના અંદરના બિંદુએ એટલે કે (-1, 4) માં મળે. પરંતુ વૈશ્વિક મહત્તમ તથા વૈશ્વિક ન્યૂનતમ માટે f(-1) તથા f(4) શોધીએ.

$$f(-1) = 37 \text{ dul } f(4) = 32$$

આમ
$$f(0) = 0$$
, $f(1) = 5$, $f(3) = -27$, $f(-1) = 37$, $f(4) = 32$

- \therefore વૈશ્વિક મહત્તમ f(-1) = 37 અંતરાલના અંત્યબિંદુએ મળે છે.
- f(3) = -27 વૈશ્વિક ન્યૂનતમ છે તથા તે અંતરાલના અંદરના બિંદુ 3 આગળ મળે છે.

ઉદાહરણ $56: f(x) = x^3 - 12x + 1$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો. $x \in [-3, 5]$

$$34: f(x) = x^3 - 12x + 1$$

$$f'(x) = 3x^2 - 12 = 3(x - 2)(x + 2)$$

$$f'(x) = 0 \implies x = \pm 2$$
$$f''(x) = 6x$$

$$f''(2) = 12 > 0$$

:.
$$f(2) = 8 - 24 + 1 = -15$$
 એ સ્થાનીય ન્યૂનતમ મૂલ્ય છે.

$$f''(-2) = -12 < 0$$

$$f(-2) = -8 + 24 + 1 = 17$$
 એ સ્થાનીય મહત્તમ મૂલ્ય છે.

વધુમાં
$$f(-3) = -27 + 36 + 1 = 10$$
 તથા $f(5) = 125 - 60 + 1 = 66$, $f(2) = -15$, $f(-2) = 17$

- f(5) = 66 એ $f + \frac{1}{9}$ વૈશ્વિક મહત્તમ મૂલ્ય છે.
 - f(2) = -15 એ $f + \frac{1}{2}$ વૈશ્વિક ન્યૂનતમ મૂલ્ય છે.

ઉદાહરણ $57: x \in [-2, 2]$ માટે $f(x) = 3x^5 - 5x^3 - 1$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો.

634:
$$f'(x) = 15x^4 - 15x^2$$

= $15x^2(x^2 - 1)$
= $15x^2(x - 1)(x + 1)$

$$f'(x) = 0 \implies x = 0$$
 અથવા $x = \pm 1$

$$f''(x) = 60x^3 - 30x$$

$$f''(1) = 30 > 0$$

$$f(1) = -3$$
 એ f નું સ્થાનીય ન્યૂનતમ મૂલ્ય છે.

$$f''(-1) = -30 < 0$$

$$f(-1) = 1$$
 એ f નું સ્થાનીય મહત્તમ મૂલ્ય છે.

હવે
$$f''(0) = 0$$

 \therefore x = 0 આગળ દ્વિતીય વિકલિત કસોટી નિષ્ફળ જાય છે.

$$f'(x) = 15x^2 (x - 1)(x + 1)$$

$$\Re x \neq 0 \text{ d) } x^2 > 0$$

જો
$$-1 < x < 1$$
 તો $x + 1 > 0$ અને $x - 1 < 0$

∴
$$-1 < x < 1$$
 માટે $f'(x) < 0$ $(x \neq 0)$

 \therefore x એ (-1, 1) માં કિંમતો ધારણ કરે છે ત્યારે f'(x) ની નિશાની બદલાતી નથી.

$$f(2) = 96 - 40 - 1 = 55$$

$$f(-2) = -96 + 40 - 1 = -57. \text{ det } f(1) = -3, f(-1) = 1.$$

$$f(2) = 55$$
 એ વૈશ્વિક મહત્તમ તથા $f(-2) = -57$ એ વૈશ્વિક ન્યુનતમ મૃલ્ય છે.

ઉદાહરણ $58: x \in [-\pi, \pi]$ માટે f(x) = x - 2cosx નાં મહત્તમ તથા ન્યુનતમ મુલ્યો શોધો.

$$Geq: f(x) = x - 2cosx$$

$$\therefore f'(x) = 1 + 2sinx$$

$$\therefore f'(x) = 0 \implies sin x = -\frac{1}{2}$$

$$\therefore x = -\frac{\pi}{6}, \frac{-5\pi}{6},$$

 $x \in (-\pi, \pi)$

હવે
$$f''(x) = 2\cos x$$

:.
$$f''(-\frac{\pi}{6}) = 2\cos(-\frac{\pi}{6}) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} > 0$$

$$\therefore f\left(-\frac{\pi}{6}\right) = -\frac{\pi}{6} - 2\cos\left(-\frac{\pi}{6}\right) = -\frac{\pi}{6} - 2 \times \frac{\sqrt{3}}{2} = -\frac{\pi}{6} - \sqrt{3}$$

$$\therefore$$
 $x = -\frac{\pi}{6}$ આગળ $f + \frac{\pi}{6}$ સ્થાનીય ન્યૂનતમ મૂલ્ય $f\left(-\frac{\pi}{6}\right) = -\frac{\pi}{6} - \sqrt{3}$ છે.

$$\therefore f''\left(-\frac{5\pi}{6}\right) = 2\cos\left(-\frac{5\pi}{6}\right) = 2\cos\frac{5\pi}{6} = 2\cos\left(\pi - \frac{\pi}{6}\right)$$
$$= -2\cos\frac{\pi}{6}$$
$$= -2\left(\frac{\sqrt{3}}{2}\right) = -\sqrt{3} < 0$$

∴ કવે
$$f\left(-\frac{5\pi}{6}\right) = -\frac{5\pi}{6} + 2\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3} - \frac{5\pi}{6}$$
 સ્થાનીય મહત્તમ મૂલ્ય છે.
$$f(\pi) = \pi - 2\cos\pi = \pi + 2$$

$$f(-\pi) = -\pi - 2\cos(-\pi) = -\pi - 2\cos\pi = -\pi + 2$$

$$f(\pi) = \pi + 2$$
 વૈશ્વિક મહત્તમ મૂલ્ય છે.

$$\therefore f\left(-\frac{\pi}{6}\right) = -\sqrt{3} - \frac{\pi}{6}$$
 વૈશ્વિક ન્યૂનતમ મૂલ્ય છે.

ઉદાહરણ $59: f(x) = 4x + \cot x$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો. $x \in (0, \pi)$

ઉકેલ :
$$f'(x) = 4 - cosec^2x = 0$$
 લઈએ.

$$\therefore cosec^2x = 4$$

$$\therefore \sin^2 x = \frac{1}{4}$$

હવે f''(x) = -2cosecx (-cosecx cotx)= $2cosec^2x cotx$

:.
$$f''(\frac{\pi}{6}) = 8\sqrt{3} > 0$$
, $f''(\frac{5\pi}{6}) = -8\sqrt{3} < 0$

 \therefore $x=\frac{\pi}{6}$ આગળ f ને સ્થાનીય ન્યૂનતમ મૂલ્ય મળે તથા સ્થાનીય ન્યૂનતમ મૂલ્ય $f\left(\frac{\pi}{6}\right)=\frac{2\pi}{3}+\sqrt{3}$

 $x=rac{5\pi}{6}$ આગળ f ને સ્થાનીય મહત્તમ મૂલ્ય મળે તથા સ્થાનીય મહત્તમ $f\Big(rac{5\pi}{6}\Big)=rac{10\pi}{3}-\sqrt{3}$.

[વૈશ્વિક ન્યૂનતમ કે વૈશ્વિક મહત્તમ કેમ નહી ?]

ઉદાહરણ 60 : સાબિત કરો કે આપેલ ક્ષેત્રફળવાળા તમામ લંબચોરસોમાં ચોરસની પરિમિતિ ન્યૂનતમ છે.

 \mathfrak{G} લ ઃ ધારો કે આપેલ ક્ષેત્રફળ \mathbf{A} છે અને લંબચોરસની બાજુઓની લંબાઈ x તથા y છે.

$$\therefore$$
 A = xy

હવે લંબચોરસની પરિમિતિ p = 2x + 2y

$$=2x+\frac{2A}{r}$$

હવે
$$\frac{dp}{dx} = 0 \Rightarrow 2 - \frac{2A}{x^2} = 0$$

$$\therefore x^2 = A$$

$$\therefore x = \sqrt{A}$$

(લંબચોરસની બાજુની લંબાઈ x > 0)

$$\therefore y = \frac{A}{x} = \frac{A}{\sqrt{A}} = \sqrt{A}$$

x = y હોવાથી આપેલ લંબચોરસ એ ચોરસ છે.

 $x \in (0, \pi)$

$$\operatorname{quil} \frac{d^2 p}{dx^2} = 0 - 2A(-2x^{-3}) = \frac{4A}{x^3} > 0$$

∴ આપેલ ક્ષેત્રફળવાળા લંબચોરસોમાં ચોરસની પરિમિતિ ન્યૂનતમ છે.

 $-1/4: (x+y)^2 = (x-y)^2 + 4xy = (x-y)^2 + 4A$

 $\therefore (x+y)^2$ એટલે કે x+y ન્યૂનતમ હોવા માટે x=y કારણ કે $(x-y)^2 \ge 0$ તથા A અચળ છે. આ જ રીતે આપેલ ક્ષેત્રફળવાળા લંબચોરસોમાં ચોરસની પરિમિતિ ન્યૂનતમ છે.

ઉદાહરણ $61: y^2 = 8x$ પર A(10, 4)ની સૌથી નજીકનું બિંદુ P તથા ન્યૂનતમ અંતર AP મેળવો.

ઉકેલ : પરવલયનાં પ્રચલ સમીકરણ $(at^2, 2at)$ છે.

અહીં 4a = 8 પરથી a = 2.

 \therefore પરવલય પરનું કોઈપણ બિંદુ $P(2t^2, 4t)$ છે.

હવે
$$AP^2 = (2t^2 - 10)^2 + (4t - 4)^2$$

= $4t^4 - 40t^2 + 100 + 16t^2 - 32t + 16$

$$\text{then } f(t) = 4t^4 - 24t^2 - 32t + 116$$

$$f'(t) = 16t^3 - 48t - 32$$

$$= 16(t^3 - 3t - 2)$$

$$= 16(t + 1)(t^2 - t - 2)$$

$$= 16(t + 1)^2(t - 2)$$

$$f'(t) = 0 \implies t = -1$$
 અથવા $t = 2$

ધારો કે
$$t \in (-1 - h, -1 + h)$$
, $h > 0$. ધારો કે $t = -1 + t_1$
તો $-1 - h < -1 + t_1 < -1 + h$ એટલે કે $-h < t_1 < h$

$$f'(t) = 16(t+1)^2(t-2)$$

$$= 16t_1^2(-3+t_1) < 0 \text{ wei } 0 < t_1 < 3$$

 \therefore (-1-h, -1+h) માં f'(t) ની નિશાની બદલાતી નથી.

∴ f + i = -1 આગળ આત્યંતિક મૂલ્ય નથી.

$$f''(t) = 48t^2 - 48$$

$$f''(2) = 192 - 48 = 144 > 0$$

$$\therefore$$
 $t = 2$ માટે $f(t)$ સ્થાનીય ન્યૂનતમ છે.

:. AP² ન્યૂનતમ છે. t = 2 માટે P (8, 8) મળશે.

$$AP = \sqrt{(10-8)^2 + (8-4)^2}$$
$$= \sqrt{4+16}$$
$$= 2\sqrt{5}$$

∴ P(8, 8) એ A(10, 4) ની સૌથી નજીકનું પરવલય પરનું બિંદુ છે તથા ન્યૂનતમ અંતર $AP = 2\sqrt{5}$ છે.

ઉદાહરણ 62 : r ત્રિજ્યાવાળા અર્ધવર્તુળમાં અંતર્ગત લંબચોરસનું મહત્તમ ક્ષેત્રફળ શોધો.

ઉકેલ : આપણે X-અક્ષ ઉપરના અર્ધતલમાં વર્ત્**ળ** લઈએ.

પ્રથમ ચરણમાં લંબચોરસનું એક શિરોબિંદુ A(x, y) લો. દેખીતું જ અન્ય શિરોબિંદુ B(x, 0), C(-x, 0) તથા D(-x, y) છે.

 $(t=-1+t_1)$

$$\therefore$$
 AD = 2x, AB = y

$$\therefore$$
 લંબચોરસનું ક્ષેત્રફળ $f(x) = 2xy$

વળી,
$$x^2 + y^2 = r^2$$

$$\therefore \quad y = \sqrt{r^2 - x^2} \qquad (y > 0)$$

$$\therefore f(x) = 2x\sqrt{r^2 - x^2}$$

$$f'(x) = 2\sqrt{r^2 - x^2} + \frac{2x(-2x)}{2\sqrt{r^2 - x^2}}$$

$$= 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}}$$

$$= \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$$

$$\therefore f'(x) = 0 \Rightarrow r^2 = 2x^2 \Rightarrow x = \frac{r}{\sqrt{2}}$$

$$y = \sqrt{r^2 - x^2} = \sqrt{r^2 - \frac{r^2}{2}} = \frac{r}{\sqrt{2}}$$

$$\therefore \quad x = y = \frac{r}{\sqrt{2}}$$

·· અર્ધવર્તુળમાં અંતર્ગત માંગેલ લંબચોરસ એ ચોરસ છે

$$f''(x) = 2\left[(r^2 - 2x^2) \left(-\frac{1}{2} \right) (r^2 - x^2)^{-\frac{3}{2}} (-2x) + \frac{(-4x)}{\sqrt{r^2 - x^2}} \right]$$

$$f''\left(\frac{r}{\sqrt{2}}\right) = \frac{-8 \times \frac{r}{\sqrt{2}}}{\frac{r}{\sqrt{2}}} = -8 < 0$$

 \therefore ચોરસનું ક્ષેત્રફળ મહત્તમ છે અને મહત્તમ ક્ષેત્રફળ $A=2xy=2\cdot\frac{r}{\sqrt{2}}\cdot\frac{r}{\sqrt{2}}=r^2$ છે.

નોંધ : (1) A = 2xy

$$qv(1, x^2 + y^2) = (x - y)^2 + 2xy$$
$$= (x - y)^2 + A. qv(1, x^2 + y^2) = r^2$$

 \therefore A = $r^2 - (x - y)^2$ મહત્તમ થવા માટે $(x - y)^2$ ન્યૂનતમ થાય તે જરૂરી છે. $(x - y)^2 \ge 0$ હોવાથી $(x-y)^2$ નું ન્યૂનતમ મૂલ્ય x=y માટે 0 છે. આથી મહત્તમ $A=r^2$

(2) ધારો કે
$$x = r\cos\theta$$
, $y = r\sin\theta$

$$(x^2 + y^2 = r^2$$
 નાં પ્રચલ સમીકરણ)

$$\therefore A = 2xy = 2r^2 \sin\theta \cos\theta = r^2 \sin 2\theta$$

$$\therefore$$
 $sin 2\theta = 1$ એટલે કે $\theta = \frac{\pi}{4}$ હોય ત્યારે A મહત્તમ છે.

$$\therefore$$
 મહત્તમ ક્ષેત્રફળ = r^2 તથા $x = rcos\theta = \frac{r}{\sqrt{2}}$, $y = rsin\theta = \frac{r}{\sqrt{2}}$

ઉદાહરણ 63:R ત્રિજ્યાવાળા ગોલકમાં નળાકાર અંતર્ગત છે. સાબિત કરો કે તેની ઊંચાઈ $\frac{2R}{\sqrt{3}}$ હોય ત્યારે તેનું ઘનફળ મહત્તમ છે.

634 : ધારો કે નળાકારની ત્રિજ્યા તથા ઊંચાઈ અનુક્રમે r તથા h છે.

$$R^2 = r^2 + \frac{h^2}{4}$$

નળાકારનું ધનકળ $V = \pi r^2 h$

$$\therefore V = \pi \left(R^2 - \frac{h^2}{4}\right) h$$
$$= \pi R^2 h - \frac{\pi}{4} h^3$$

$$\therefore \quad \frac{dV}{dh} = \pi R^2 - \frac{3\pi}{4} h^2$$

$$\therefore \quad \frac{dV}{dh} = \frac{\pi}{4} (4R^2 - 3h^2)$$

$$\therefore \quad \frac{dV}{dh} = 0 \implies h = \frac{2R}{\sqrt{3}}$$

$$\text{qull, } \frac{d^2V}{dh^2} = \frac{\pi}{4}(-6h) = \frac{-3\pi h}{2} = -\sqrt{3}\pi R < 0$$

આકૃતિ 1.24

 \therefore જ્યારે નળાકારની ઊંચાઈ $h=rac{2\mathrm{R}}{\sqrt{3}}$ હોય ત્યારે તેનું ઘનફળ મહત્તમ થાય.

મહત્તમ ધનફળ
$$\pi r^2 h = \pi \left(R^2 - \frac{h^2}{4} \right) h$$

$$= \pi \left(R^2 - \frac{R^2}{3} \right) \frac{2R}{\sqrt{3}}$$

$$= \frac{4\pi R^3}{3\sqrt{3}}$$

ઉદાહરણ 64 : 1 લીટર તેલ સમાવતો એક નળાકાર ડબ્બો બનાવવાનો છે. ન્યૂનતમ ખર્ચ થાય તે માટે તેની ત્રિજ્યા તથા ઊંચાઈ શોધો.

😘 લાકુ કુલા લાગાવવાનું ખર્ચ ન્યૂનતમ થાય તે માટે તેમાં ઓછામાં ઓછું પતરું વપરાવું જોઈએ.

ડબ્બાનું કુલ પૃષ્ઠફળ $S=2\pi r^2+2\pi rh$

વળી નળાકારનું કદ $V=\pi r^2 h$. તેમાં 1 લી = 1000 સેમી 3 તેલ સમાય છે.

$$\therefore V = \pi r^2 h = 1000$$

$$\therefore h = \frac{1000}{\pi r^2}$$

$$S = 2\pi r^2 + 2\pi r \times \frac{1000}{\pi r^2}$$
$$= 2\pi r^2 + \frac{2000}{r}$$

$$\therefore \quad \frac{dS}{dr} = 4\pi r - \frac{2000}{r^2} = 0 \Rightarrow r^3 = \frac{500}{\pi}$$

$$\therefore \quad r = \left(\frac{500}{\pi}\right)^{\frac{1}{3}} \text{ Aul}$$

$$\frac{d^2S}{dr^2} = 4\pi + \frac{4000}{r^3} > 0$$

આકૃતિ 1.25

 \therefore કુલ પૃષ્ઠફળ અને તેથી ખર્ચ ન્યૂનતમ થાય તે માટે $r=\left(\frac{500}{\pi}\right)^{\frac{1}{3}}$ સેમી અને

$$h = \frac{1000(\pi)^{\frac{2}{3}}}{\pi_{(500)^{\frac{2}{3}}}} = 2\left(\frac{500}{\pi}\right)^{\frac{1}{3}} \Re 1 = 2r$$

ખર્ચ ન્યુનતમ કરવા માટે તેની ઊંચાઈ તેના વ્યાસ જેટલી હોવી જોઈએ.

ઉદાહરણ 65: y = 2x - 3 પરનું ઊગમબિંદુથી સૌથી નજીકનું બિંદુ શોધો.

634 ધારો કે M = (x, 2x - 3) આપેલ રેખા પરનું કોઈપણ બિંદુ છે.

$$OM^2 = x^2 + (2x - 3)^2$$
$$= 5x^2 - 12x + 9$$

ધારો કે
$$f(x) = 5x^2 - 12x + 9$$

$$f'(x) = 10x - 12 = 0 \implies x = \frac{6}{5}$$

વળી,
$$f''(x) = 10 > 0$$

$$\therefore x = \frac{6}{5}, y = 2x - 3 = \frac{12}{5} - 3 = -\frac{3}{5},$$

 $M = \left(\frac{6}{5}, -\frac{3}{5}\right)$ હોય તો અંતર OM ન્યૂનતમ છે.

$$OM^2 = \sqrt{\frac{36}{25} + \frac{9}{25}} = \sqrt{\frac{45}{25}} = \frac{3\sqrt{5}}{5} = \frac{3}{\sqrt{5}}$$

આકૃતિ 1.26

$$p = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} = \left| \frac{0 + 0 - 3}{\sqrt{4 + 1}} \right| = \frac{3}{\sqrt{5}}$$

.. OM એ y = 2x - 3 નું ઊગમબિંદુથી ન્યૂનતમ અંતર છે તથા M લંબપાદ છે.

સ્વાધ્યાય 1.5

नीयेनां विषेयोनां महत्तम तथा न्यूनतम मूस्यो शोषो : (1 थी 15)

1.
$$f(x) = 5 - 3x + 5x^2 - x^3$$

$$x \in \mathbb{R}$$

2.
$$f(x) = x^4 - 6x^2$$

$$x \in R$$

3.
$$f(x) = x^{\frac{1}{3}}(x+3)^{\frac{2}{3}}$$

$$x \in \mathbb{R}^+$$

$$4. \quad f(x) = 2\cos x + \sin^2 x$$

$$x \in \mathbb{R}$$

5.
$$f(x) = \log_{\rho}(1 + x^2)$$

$$x \in \mathbb{R}$$

$$6. \quad f(x) = xe^{-x}$$

$$x \in [0, 2]$$

7.
$$f(x) = \frac{\log_e x}{x}$$

$$x \in [1, 3]$$

8.
$$f(x) = \sqrt{16-x^2}$$

$$|x| \leq 4$$

9.
$$f(x) = \frac{x}{x+1}$$

$$x \in [1, 2]$$

10.
$$f(x) = sinx + cosx$$

$$x \in [0, 2\pi]$$

11.
$$f(x) = \frac{\cos x}{\sin x + 2}$$

$$x \in [0, 2\pi]$$

12.
$$f(x) = x\sqrt{1-x}$$

13.
$$f(x) = 3x^4 - 8x^3 + 12x^2 - 48x + 125$$
 $x \in [0, 3]$

14.
$$f(x) = \sin 2x$$
 $x \in [0, 2\pi]$

15.
$$f(x) = 2x^3 - 24x + 107$$
 $x \in [1, 3]$

- 16. એક બારી લંબચોરસ પર અર્ધવર્તુળ ગોઠવેલ હોય તે આકારની છે. બારીની કુલ પરિમિતિ 10 મી છે. બારીમાંથી હવાની મહત્તમ આવનજાવન થાય તે માટે બારીનાં પરિમાણ શોધો.
- 17. r ત્રિજ્યાવાળા ગોલકમાં અંતર્ગત મહત્તમ ઘનફળવાળા લંબવૃત્તીય શંકુની ઊંચાઈ $\frac{4r}{3}$ છે તેમ સાબિત કરો.
- 18. એવી બે ધન સંખ્યાઓ શોધો જેનો સરવાળો 16 હોય તથા જેમના ઘનનો સરવાળો ન્યૂનતમ હોય.
- 19. એવી બે ધન સંખ્યાઓ x, y શોધો જેથી x + y = 35 તથા ગુણાકાર x^2y^5 મહત્તમ થાય.
- **20.** આપેલ તિર્યક ઊંચાઈ l અને મહત્તમ ઘનફળવાળા શંકુનો અર્ધશિર્ષકોણ $tan^{-1}\sqrt{2}$ છે તેમ સાબિત કરો.
- 21. ચોરસ આધારવાળી એક ખુલ્લી પેટી બનાવવાની છે. જો તેનું કુલ પૃષ્ઠફળ c^2 હોય તો સાબિત કરો કે તેનું મહત્તમ ધનફળ $\frac{c^3}{6\sqrt{3}}$ છે. (c અચળ)
- 22. વર્તુળ $x^2 + y^2 = 25$ પર એવું બિંદુ શોધો જેનું (12, 9)થી અંતર ન્યૂનતમ થાય તથા એવું બિંદુ પણ શોધો જેનું (12, 9)થી અંતર મહત્તમ થાય. ભૌમિતિક રીતે સમજાવો.
- 23. એક વર્તુળના પરિઘ તથા ચોરસની પરિમિતિનો સરવાળો અચળ છે સાબિત કરો કે જ્યારે વર્તુળની ત્રિજ્યા તથા ચોરસની બાજુની લંબાઈનો ગુણોત્તર 1:2 હોય ત્યારે તેમના ક્ષેત્રફળનો સરવાળો ન્યૂનતમ છે.
- 24. ચોરસ આધારવાળી એક ખુલ્લી ટાંકી બનાવવાની છે. તેમાં 4000 લી પાણી સમાવવાનું છે. ખર્ચ ન્યૂનતમ કરવા માટે ટાંકીનાં પરિમાણ શોધો.
- **25.** $f(x) = x^3 + 3ax^2 + 3bx + c$ નું મહત્તમ મૂલ્ય x = -1 માટે મળે છે તથા ન્યૂનતમ મૂલ્ય 0 એ x = 1 માટે મળે છે. a, b, c મેળવો. $x \in \mathbb{R}$
- 26. કાટકોણ ત્રિકોણના કર્ણની લંબાઈ 10 સેમી છે. તેનું મહત્તમ ક્ષેત્રફળ શોધો.

પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 66 : ધારો કે g(x) નું સૂત્ર આપણે જાણતા નથી. પરંતુ $g'(x)=\sqrt{x^2+12}$, $\forall x\in \mathbb{R}$ તથા g(2)=4. તો g(1.95)નું આસન્ન મૂલ્ય શોધો.

ઉકેલ ઃ અહીં
$$x=2$$
. $\Delta x=1.95-2=-0.05$

$$g(x + \Delta x) \simeq g(x) + g'(x) \Delta x$$

$$g(1.95) \simeq g(2) + g'(2) (-0.05)$$

$$= 4 - (0.05)4$$

$$= 4 - 0.2 = 3.8$$

વિકલિતના ઉપયોગો

ઉદાહરણ $67: y = 1 + x^2$ તથા $y = -1 - x^2$ ના સામાન્ય સ્પર્શકનું સમીકરણ તથા સ્પર્શબિંદુના યામ મેળવો.

ઉકેલ : ધારો કે \overrightarrow{PQ} એ $y = 1 + x^2$ ને P આગળ

તથા $y = -1 - x^2$ ને Q આગળ સ્પર્શ છે.

ધારો કે P નો x-યામ a છે.

$$y = 1 + x^2 \Rightarrow \frac{dy}{dx} = 2x$$

∴ P આગળ સ્પર્શકનો ઢાળ = 2a.

$$\therefore \quad \frac{1+a^2}{a} = 2a$$

$$\therefore 1 + a^2 = 2a^2$$

$$\therefore a^2 = 1$$

$$\therefore a = \pm 1$$

તે રીતે R = (-1, 2) તથા S(1, -2) છે.

$$\overrightarrow{PQ}$$
 નું સમીકરણ $y-2=2(x-1)$

 $(a \circ a = 2a = 2)$

$$\therefore y - 2 = 2x - 2$$

$$\therefore 2x - y = 0$$

તે જ રીતે સ્પર્શક $\overset{\longleftrightarrow}{RS}$ નું સમીકરણ 2x + y = 0.

 \therefore સામાન્ય સ્પર્શકોનાં સમીકરણ 2x - y = 0 અને 2x + y = 0 છે.

ઉદાહરણ 68 : પદાર્થકણની ગતિનું સમીકરણ $s = f(t) = t^3 - 6t^2 + 9t$ છે. s મીટરમાં તથા t સેકંડમાં છે.

- (1) t=2 સમયે તાત્ક્ષણિક વેગ શોધો.
- (2) પદાર્થ સ્થિર ક્યારે થશે ?
- (3) પ્રથમ 5 સેકંડમાં પદાર્થકણે કાપેલ અંતર શોધો.

$$\frac{ds}{dt} = f'(t) = 3t^2 - 12t + 9$$

- (1) t = 2 સમયે તાત્ક્ષણિક વેગ = $[f'(t)]_{t=2} = 12 24 + 9 = -3$ મી/સે
- (2) જ્યારે કણ સ્થિર હોય ત્યારે તાત્ક્ષણિક વેગ 0 થાય.

$$3t^2 - 12t + 9 = 0$$

$$t^2 - 4t + 3 = 0$$

$$\therefore$$
 કણ $t=1$ તથા $t=3$ સમયે સ્થિર થશે.

(3)
$$f'(t) = 3(t-1)(t-3)$$

t < 1 તથા t > 3 માટે f'(t) ધન છે. આમ t < 1 તથા t > 3 માટે f(t) વધે અને $t \in (1, 3)$ માટે f(t) ઘટે છે. પદાર્થ કણની ગતિ ત્રણ ભાગમાં વહેંચાઈ જાય છે; (0, 1), (1, 3), (3, 5).

(⇔ સ્પર્શક છે.)

- ∴ કાપેલ કુલ અંતર $s_1+s_2+s_3$, જ્યાં $s_1=|f(1)-f(0)|=4,\ s_2=|f(3)-f(1)|=|0-4|=4$ $s_3=|f(5)-f(3)|=20$
- ∴ કરો કાપેલ કુલ અંતર 20 + 4 + 4 = 28 મી

નોંધ : |f(5) - f(0)| = 20 એ કાપેલ કુલ અંતર નથી.

ઉદાહરણ 69 : એક લંબચોરસ મેદાનમાં પ્રદર્શન યોજવાનું છે. લંબચોરસ મંડપની ત્રણ બાજુઓ 80 મી કાપડથી બંધ કરવી છે. ચોથી બાજુ ખુલ્લી રાખવી છે. આ મંડપનાં પરિમાણો કેવી રીતે નક્કી કરવા કે જેથી મહત્તમ ક્ષેત્રફળ આવૃત્ત કરી શકાય ?

ઉકેલ : આપેલ છે કે
$$2x + y = 80$$

$$A = xy = x(80 - 2x) = 80x - 2x^2$$

$$\therefore \quad \frac{dA}{dx} = 0 \implies 80 - 4x = 0 \implies x = 20$$

$$\therefore \quad \frac{d^2 A}{dx^2} = -4 < 0$$

જો લંબાઈ y = 80 - 2x = 80 - 40 = 40 મી હોય તથા પહોળાઈ 20 મી હોય તો આવૃત્ત ક્ષેત્રફળ મહત્તમ થાય.

 \therefore આવૃત્ત મહત્તમ ક્ષેત્રફળ $40 \times 20 = 800$ મી 2 થાય.

માત્ર માહિતી માટે :

x એકમનો ઉત્પાદન ખર્ચ C(x) છે. C(x) ખર્ચ વિધેય છે.

C'(x) સીમાંત ખર્ચ છે.

 $c(x) = \frac{C(x)}{x}$ પ્રત્યેક એકમની (એકમદીઠ) કિંમત છે.

c(x) સરેરાશ મૂલ્ય વિધેય છે.

$$c'(x) = \frac{xC'(x) - C(x)}{x^2}$$

∴ ન્યૂનતમ સરેરાશ ખર્ચ માટે c'(x) = 0.

$$\therefore xC'(x) = C(x)$$

$$\therefore C'(x) = \frac{C(x)}{x} = c(x)$$

જો સરેરાશ ખર્ચ ન્યૂનતમ હોય તો સીમાંત ખર્ચ = સરેરાશ ખર્ચ

યાદ રાખો : જ્યારે નકો મહત્તમ થાય ત્યારે સીમાંત આવક $\frac{d\mathbf{R}}{dx}$ = સીમાંત ખર્ચ $\frac{d\mathbf{C}}{dx}$

તથા R''(x) < C''(x) હોય.

જો એકમદીઠ વેચાણ મૂલ્ય p(x) હોય અને x એકમ વેચાતા હોય તો p ને માંગનું વિધેય કહે છે.

કુલ આવક R(x) = xp(x)

 $\mathbf{R}(x)$ ને આવકનું વિધેય કહે છે. $\mathbf{R}'(x)$ સીમાંત આવકનું વિધેય છે.

જો P(x) નફાનું વિધેય હોય તો

P(x) = R(x) - C(x)

મહત્તમ નફા માટે P'(x) = 0

 $\therefore R'(x) = C'(x)$

∴ મહત્તમ નફા માટે સીમાંત આવક = સીમાંત ખર્ચ

qvil P''(x) = R''(x) - C''(x) < 0

∴ મહત્તમ નફા માટે R"(x) < C"(x)

ઉદાહરણ : એક કંપની x બૉલપેન બનાવવાની કિંમત $C(x)=3000+2x+0.001x^2$ અંદાજે છે.

- (1) 1000 બૉલપેન બનાવવાનો કુલ ખર્ચ, સરેરાશ ખર્ચ અને સીમાંત ખર્ચ શોધો.
- (2) કેટલા ઉત્પાદન માટે સરેરાશ ખર્ચ ન્યૂનતમ થાય તથા તે ન્યૂનતમ સરેરાશ ખર્ચ કેટલું હશે ?

ઉંકેલ : (1) સરેરાશ ખર્ચનું વિધેય
$$c(x) = \frac{C(x)}{x}$$
$$= \frac{3000 + 2x + 0.001x^2}{x}$$
$$= \frac{3000}{x} + 2 + 0.001x છે.$$

સીમાંતખર્ચ C'(x) = 2 + 0.002x

- ∴ 1000 બૉલપેનના ઉત્પાદન માટે કુલ ખર્ચ $C(1000) = 3000 + 2000 + \frac{1}{1000} \times (1000)^2$ = ₹ 6000
- ∴ પ્રતિપેન સરેરાશ ખર્ચ $c(x) = \frac{6000}{1000} = ₹ 6$ સીમાંત ખર્ચ $C'(x) = 2 + \frac{2}{1000} \times 1000 = ₹ 4$
- (2) ન્યૂનતમ સરેરાશ ખર્ચ માટે :

સીમાંત ખર્ચ = સરેરાશ ખર્ચ
$$C'(x) = c(x)$$

$$\therefore 2 + 0.002x = \frac{3000}{x} + 2 + 0.001x$$

$$\therefore 0.001x = \frac{3000}{x}$$

$$x^2 = 3000 \times 1000$$

$$\therefore x = \sqrt{3 \times 10^6} = \sqrt{3} \times 10^3 = 1730$$

∴ ખર્ચ ન્યૂનતમ કરવા માટે 1730 બૉલપેન બનાવવી જોઈએ.

ન્યૂનતમ સરેરાશ ખર્ચ =
$$c(1730)$$
 = $\frac{3000}{1730}$ + 2 + (0.001)(1730)
= $\frac{300}{173}$ + 2 + 1.73
= 1.73 + 2 + 1.73
= ₹ 5.46

ઉદાહરણ 70: xy = 8 પરનું P(3, 0) ની સૌથી નજીકનું પૂર્ણાંક યામવાળું બિંદુ શોધો તથા ન્યૂનતમ અંતર મેળવો.

ઉકેલ : ધારો કે xy = 8 પર બિંદુ $Q\left(x, \frac{8}{x}\right)$ છે.

$$PQ^2 = (x-3)^2 + \frac{64}{x^2}$$

$$412) \ \ f(x) = (x-3)^2 + \frac{64}{x^2}$$

$$f'(x) = 2(x-3) - \frac{128}{x^3} = 0 \implies x-3 = \frac{64}{x^3}$$

$$x^4 - 3x^3 - 64 = 0$$

$$\therefore (x-4)(x^3+x^2+4x+16)=0$$

$$(x^3 + x^2 + 4x + 16 = 0$$
 નો પૂર્ણાંક ઉકેલ નથી. ચકાસો !)

$$\therefore x = 4$$

$$f''(x) = 2 - \frac{(128)(-3)}{x^4}$$

$$\therefore f''(4) = 2 + \frac{(128)(3)}{256} = \frac{7}{2} > 0$$

$$\therefore$$
 $x = 4$ માટે $f(x)$ ન્યૂનતમ છે.

ન્યૂનતમ અંતર
$$PQ = \sqrt{1+4} = \sqrt{5}$$

ઉદાહરણ $71: y^2 = 2x$ પર (1, 4) ની સૌથી નજીકનું બિંદુ શોધો તથા ન્યૂનતમ અંતર શોધો.

ઉકેલ :
$$y^2 = 2x = 4ax$$
. આથી $a = \frac{1}{2}$

∴
$$y^2 = 2x$$
 પરનું પ્રચલ બિંદુ $P(\frac{1}{2}t^2, t)$ છે.

$$PQ^{2} = \left(\frac{1}{2}t^{2} - 1\right)^{2} + (t - 4)^{2}$$

$$= \frac{1}{4}t^{4} - t^{2} + 1 + t^{2} - 8t + 16$$

$$= \frac{1}{4}t^{4} - 8t + 17$$

$$4121 \ \ f(t) = \frac{1}{4}t^4 - 8t + 17$$

$$f'(t) = 0 \implies t^3 - 8 = 0 \implies t = 2$$

$$f''(t) = 3t^2 = 12 > 0$$

$$t = 2$$
 માટે $f(t)$ ન્યૂનતમ છે.

$$\therefore$$
 ન્યૂનતમ અંતર $PQ = \sqrt{1+4} = \sqrt{5}$.

ઉદાહરણ 72ઃ 45 સેમી × 24 સેમી લંબચોરસ પતરાના દરેક ખૂણેથી ચાર એકરૂપ ચોરસ કાપી ખુલ્લી પેટી બનાવવામાં આવે છે. પેટીનું ઘનફળ મહત્તમ થાય તે માટે પતરામાંથી કાપવામાં આવતા ચોરસની લંબાઈ શોધો.

63લ : ધારો કે દરેક ખૂશેથી કાપવામાં આવતા ચોરસની લંબાઈ x છે. તો પેટીની લંબાઈ, પહોળાઈ તથા ઊંચાઈ અનુક્રમે (45-2x), (24-2x) તથા x થશે.

પેટીનું ધનફળ
$$V = (45 - 2x)(24 - 2x)x$$

$$=4x^3-138x^2+1080x$$

$$\frac{d\mathbf{V}}{dx} = 0 \implies 12x^2 - 276x + 1080 = 0 \implies x^2 - 23x + 90 = 0$$

પરંતુ x = 18 હોય તો પહોળાઈ 24 - 2x = 24 - 36 < 0

 $\therefore x \neq 18$ અને તેથી x = 5

દરેક ખૂણેથી કપાતા ચોરસની લંબાઈ 5 સેમી છે.

$$q \circ \left(\frac{d^2 V}{dx^2} = 24x - 276 = 120 - 276 < 0 \right)$$

x = 5 માટે ઘનફળ મહત્તમ છે.

સ્વાધ્યાય 1

- 1. શંકુ આકારની ગરણીની નીચેના છિદ્રમાંથી 5 સેમી 3 /સેના દરથી પાણી ટપકી રહ્યું છે. પાણીથી બનતા શંકુની ત્રાંસી ઊંચાઈ 4 સેમી છે. શંકુના અર્ધશિરઃકોણનું માપ $\frac{\pi}{6}$ છે. પાણીથી બનતા શંકુની ત્રાંસી ઊંચાઈ ઘટવાનો દર શોધો.
- 2. એક પતંગ 40 મી ઊંચાઈએ ઉડે છે. દોરીની લંબાઈ 50 મી છે. તે સમયે પતંગનો સમક્ષૈતિજ વેગ 25 મી/સે છે. તે સમયે દોરી છોડવાનો દર શોધો.
- 3. ત્રિકોણની ઊંચાઈ 2 સેમી/મિનિટના દરે વધે છે. તેનું ક્ષેત્રફળ 5 સેમી²/મીના દરે વધે છે. જ્યારે ઊંચાઈ 10 સેમી હોય અને ક્ષેત્રફળ 100 સેમી² હોય ત્યારે આધારની લંબાઈના ફેરફારનો દર શોધો.
- 4. જે અંતરાલમાં $f(x) = 2x^3 3x^2 36x + 25$, $x \in \mathbb{R}$ (1) ચુસ્ત વધે છે કે (2) ચુસ્ત ઘટે છે તે અંતરાલ નક્કી કરો.
- 5. જે અંતરાલમાં $f(x) = (x+1)^3(x-3)^3, x \in \mathbb{R}$ (1) ચુસ્ત વધે છે કે (2) ચુસ્ત ઘટે છે તે નક્કી કરો.
- **6.** સાબિત કરો કે $f(x) = x^{101} + sinx 1$, $x \in \mathbb{R}$ એ |x| > 1 માટે વધતું વિધેય છે.
- 7. $f(x) = x^4 + 32x$ જે અંતરાલમાં વધે છે કે ઘટે છે તે નક્કી કરો. $x \in \mathbb{R}$
- 8. જે અંતરાલમાં $f(x)=x^2e^{-x}$ વધે છે કે ઘટે છે તે અંતરાલ નક્કી કરો. $x\in \mathbb{R}$
- 9. સાબિત કરો કે વક્કો $xy = a^2$ તથા $x^2 + y^2 = 2a^2$ એકબીજાને સ્પર્શે છે.
- 10. વક $y = be^{-\frac{x}{a}}$ Y -અક્ષને જે બિંદુએ છેદે ત્યાં સ્પર્શકનું સમીકરણ મેળવો.
- 11. વક્રો $y^2 = 4ax$ તથા $x^2 = 4ay$ વચ્ચેના ખૂશાનું માપ શોધો.
- 12. સાબિત કરો કે $y=6x^3+15x+10$ ના કોઈપણ સ્પર્શકનો ઢાળ 12 હોઈ શકે નહીં. $x\in R$
- **13.** ઉપવલય $x^2 + 2y^2 = 9$ પરના જે બિદુંઓએ સ્પર્શકનો ઢાળ $\frac{1}{4}$ હોય તે બિંદુઓ શોધો.
- 14. f(x) = x 2sinx નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો. $x \in [0, 2\pi]$
- **15.** $f(x) = 1 e^{-x}$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો. $x \ge 0$
- **16.** $f(x) = x^2 + \frac{2}{x}$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો. $x \neq 0$
- 17. f(x) = 4x tanx કયાં વધે અને ક્યાં ઘટે છે તે નક્કી કરો તથા તેનાં મહત્તમ અને ન્યૂનતમ મૂલ્યો મેળવો. $-\frac{\pi}{2} < x < \frac{\pi}{2}$

$18. \ f(x) = x - \frac{1}{2}$	$+\sqrt{1-x}$,	0 < x	< 1	માટે	જ્યાં	વધે	છે	કે	ઘટે	છે	તે	નક્કી	કરો	તથા	તેનાં	મહત્તમ	તથા	ન્યૂનતમ
મૂલ્યો શોધો																		

- 19. $f(x) = x^{\frac{2}{3}} (6-x)^{\frac{1}{3}}, x \in [0, 6]$ માટે નિર્ણાયક સંખ્યાઓ શોધો. વિધેય કયાં વધે છે કે ઘટે છે તે નક્કી કરો તથા તેનાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો પણ મેળવો.
- **20.** $f(x) = \sin^4 x + \cos^4 x$ નાં મહત્તમ તથા ન્યૂનતમ મૂલ્યો શોધો. $x \in \left[0, \frac{\pi}{2}\right]$.
- 21. સાબિત કરો કે $f(x)=\left(\frac{1}{x}\right)^x$ ને $x=\frac{1}{e}$ આગળ સ્થાનીય મહત્તમ મૂલ્ય મળે છે. $x\in \mathbb{R}^+$
- 22. સાબિત કરો કે નિશ્ચિત ક્ષેત્રફળ વાળા લંબચોરસોમાં ચોરસની પરિમિતિ ન્યૂનતમ છે.
- 23. સાબિત કરો કે વર્ત્ણમાં અંતર્ગત તમામ લંબચોરસમાં ચોરસનું ક્ષેત્રફળ મહત્તમ છે.
- 24. અચળ લંબાઈના કર્શવાળા કાટકોણ ત્રિકોણનું ક્ષેત્રફળ મહત્તમ હોય તો તે ત્રિકોણ સમદ્વિભૂજ હોય તેમ સાબિત કરો.
- 25. કાટકોણ ત્રિકોણના કર્ણ પરના એક બિંદુના કાટખૂણો બનાવતી બાજુઓથી લંબઅંતર a તથા b છે. $(a,\ b$ અચળ) સાબિત કરો કે કર્ણની ન્યૂનતમ લંબાઈ $(a^{\frac{2}{3}} + b^{\frac{2}{3}})^{\frac{3}{2}}$ છે.
- **26.** જો લંબવૃતીય શંકુનું પૃષ્ઠફળ અચળ હોય તો તેનો અર્ધશિરઃકોણ $sin^{-1}\frac{1}{3}$ હોય ત્યારે તેનું ઘનફળ મહત્તમ થાય તેમ સાબિત કરો.
- 27. નીચેના વક્રો છેદે તો તેમની વચ્ચેના ખૂણાનું માપ શોધો.

(1)
$$xy = 6$$
, $x^2y = 12$

(2)
$$y = x^2$$
, $x^2 + y^2 = 20$

(3)
$$2y^2 = x^3$$
, $y^2 = 32x$ $(x, y) \neq (0, 0)$ (4) $y^2 = 4ax$, $x^2 = 4by$

(4)
$$y^2 = 4ax$$
, $x^2 = 4by$

(5)
$$y^2 = 8x$$
, $x^2 = 27y$

(6)
$$x^2 + y^2 = 2x$$
, $y^2 = x$

- 28. (1) સાબિત કરો કે વક્રો $x^2 = 4y$ તથા $x^2 + 4y = 8$ એ (2, 1) આગળ તથા (-2, 1) આગળ એક બીજાને કાટખૂરો છેદે છે.
 - (2) સાબિત કરો કે $x^2 = y$ તથા $x^3 + 6y = 7$ એ (1, 1) આગળ લંબચ્છેદી છે.
- 29. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c), (d)માંથી યોગ્ય વિકલ્પ પસંદ કરીને 🔲 માં લખો :
 - (1) સમભૂજ ત્રિકોણની બાજુ $\sqrt{3}$ સેમી/સેના દરથી વધે છે. જ્યારે તેની બાજુની લંબાઈ 12 સેમી હોય ત્યારે તેનો ક્ષેત્રફળ વધવાનો દર છે.
 - (a) 12 સેમી²/સે
- (b) 18 સેમી²/સે
- (c) 3√3 સેમી²/સે
- (d) $10 \text{ à} \text{ H}^2/\text{ à}$
- (2) પદાર્થકણે t સમયમાં કાપેલ અંતર s માટે $s = t^3 6t^2 + 6t + 8$ છે. જ્યારે પ્રવેગ 0 હોય ત્યારે વેગ છે.
 - (a) 5 સેમી/સે
- (b) 2 સેમી/સે
- (c) 6 સેમી/સે
- (d) -6 સેમી/સે
- (3) ગોલકનું ઘનફળ π સેમી 3 /સે ના દરે વધે છે. જ્યારે ત્રિજ્યા 3 સેમી હોય ત્યારે ત્રિજ્યા વધવાનો દરછે.
 - (a) $\frac{1}{36}$ સેમી/સે
- (b) 36 સેમી/સે
- (c) 9 સેમી/સે
- (d) 27 સેમી/સે

(4)	સાદા લોલકનો આવર્તકાળ	માપવામાં આશરે 4 % ર્	ાુટિ આવે છે. તો લંબાઈ	માપવામાં ત્રુટિ છે.			
	(સૂચન : $T = 2\pi \sqrt{\frac{l}{g}}$)						
	(a) 4 %	(b) 8 %	(c) 2 %	(d) 6 %			
(5)	$(31)^{\frac{1}{5}}$ નું આસન્ન મૂલ્ય	છે.					
	(a) 2.01	(b) 2.1	(c) 2.0125	(d) 1.9875			
(6)	નળાકારની ઊંચાઈ તથા ત્રિ ત્રુટિ પ્રવેશે.	જ્યા સમાન છે. ઊંચાઈ મ	ાાપવામાં 2 % ત્રુટિ પ્રવેશે	છે. ઘનફળના માપમાં ઃ	આશર <u>ે</u>		
	(a) 6 %	(b) 4 %	(c) 3 %	(d) 2 %			
(7)	(at ² , 2at) પ્રચલ સમીકરણ	વાળા વક્રનો સ્પર્શક	આગળ X-અક્ષને લંબ છે	$t \in \mathbb{R}$			
	(a) (4a, 4a)	(b) (a, 2a)	(c) (0, 0)	(d) (<i>a</i> , −2 <i>a</i>)			
(8)	જો રેખા $y = mx + 1$ એ	$y^2 = 4x$ ને સ્પર્શ તો m	=				
	(a) 0	(b) 1	(c) -1	(d) 2			
(9)	$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} \text{ upple}$	$\left(\frac{a}{2\sqrt{2}}, \frac{a}{2\sqrt{2}}\right)$ બિંદુએ અભિ	મલંબનું સમીકરણ છે.				
	(a) 2x + y = 0	(b) $y = 1$	(c) $x = 0$	(d) $x = y$			
(10)	$f(x) = x^x$ એ માં ઘ	ટે છે. $x ∈ R^+$					
	(a) (0, e)	(b) $\left(0, \frac{1}{e}\right)$	(c) (0, 1)	(d) (0, ∞)			
(11)	f(x) = 2 x-2 +3	x - 4 એ અંતરાલ (2,	4) માં છે. $x \in \mathbb{R}$	\$			
	(a) ઘટે છે	(b) વધે છે	(c) અચળ છે	(d) નક્કી ન થઈ શકે.			
(12)	$f(x) = x^7 + 5x^3 + 125$, x ∈ R એ					
	(a) (0, ∞) માં ઘટે છે.		(b) (-∞, 0) માં ઘટે છે.				
	(c) R પર વધે છે.		(d) R માં વધતું કે ઘટતું વિધેય નથી.				
(13)	$f(x) = x + \frac{1}{x} નું સ્થાની$	ય મહત્તમ મૂલ્ય છે.	$x \neq 0$				
	(a) 2	(b) −2	(c) 4	(d) -4			
(14)	$\frac{x}{\log x}$ નું સ્થાનીય ન્યૂનતમ	ત મૂલ્ય છે. $x \in \mathbb{R}$	+				
	(a) −1	(b) 0	(c) $\frac{1}{e}$	(d) <i>e</i>			
(15)	$\log_e 4 = 1.3868$, dì $\log_e 4$,4.01 ની આસન્ન કિંમત	છે.				
	(a) 1.3867	(b) 1.3869	(c) 1.3879	(d) 1.3893			
(16)	વર્તુળનો પરિઘ 20 સેમી છે	અને તે માપવામાં 0.02 સે	મી ત્રુટિ છે. ક્ષેત્રફળમાં ત્રુિ	ટે આશરે % છે.			

(c) **π**

(a) 0.02

(b) 0.2

(d) $\frac{1}{\pi}$

```
(17) રેખા y = x એ વક y = x^2 + bx + c ને (1, 1), આગળ સ્પર્શ તો .....
     (a) b = 1, c = 2 (b) b = -1, c = 1 (c) b = 1, c = 1 (d) b = 0, c = 1
(18) જો ..... તો y = ae^x, તથા y = be^{-x} લંબચ્છેદી છે. (a \neq 0, b \neq 0)
     (a) a = \frac{1}{h}
                                 (b) a = b (c) a = -\frac{1}{b} (d) a + b = 0
(19) y = 5x^5 + 10x + 15 નો સ્પર્શક .....
      (a) હંમેશા શિરોલંબ છે.
     (b) હંમેશા સમક્ષિતિજ છે.
     (c) X-અક્ષની ધનદિશા સાથે લઘુકોણ બનાવે છે.
      (d) X-અક્ષની ધનદિશા સાથે ગુરૂકોણ બનાવે છે.
(20) f(x) = 2x + \cot^{-1}x - \log|x + \sqrt{1 + x^2}| \dots  \hat{\Theta}. x \in \mathbb{R}
      (a) (-∞, 0) માં ઘટતું વિધેય
                                                          (b) (0, ∞) માં ઘટતું વિધેય
     (c) અચળ વિધેય
                                                          (d) R પર વધતું વિધેય
(21) બે શૂન્યેતર સંખ્યાઓનો સરવાળો 12 છે. તેમના વ્યસ્તનો ન્યૂનતમ સરવાળો ..... છે.
                                                                                   (d) \frac{1}{3}
     (a) \frac{1}{10}
                                 (b) \frac{1}{4}
                                                          (c) \frac{1}{2}
(22) f(x) = x^2 + 4x + 5 નું ન્યૂનતમ મૂલ્ય ...... છે. x \in \mathbb{R}
      (a) 2
                                 (b) 4
                                                          (c) 1
                                                                                    (d) -1
(23) f(x) = 5\cos x + 12\sin x નું મહત્તમ મૂલ્ય ..... છે. x \in \mathbb{R}
      (a) 13
                                 (b) 12
                                                                                    (d) 17
(24) f(x) = 3\cos x + 4\sin x નું ન્યૂનતમ મૂલ્ય ...... છે. x \in \mathbb{R}
                                                          (c) -5
     (a) 7
                                 (b) 5
                                                                                    (d) 4
(25) f(x) = x \log x નું ન્યૂનતમ મૂલ્ય ..... છે. x \in \mathbb{R}^+
                                                                                   (d) -\frac{1}{e}
     (a) 1
                                 (b) 0
                                                          (c) e
(26) f(x) = \sqrt{3}\cos x + \sin x, x \in \left[0, \frac{\pi}{2}\right] એ x = ... માટે મહત્તમ છે.
                               (b) \frac{\pi}{3} (c) \frac{\pi}{2}
     (a) \frac{\pi}{6}
                                                                                    (d) 0
(27) f(x) = (x-a)^2 + (x-b)^2 + (x-c)^2 ની ન્યૂનતમ કિંમત x = ..... માટે મળે. x \in \mathbb{R}
                                 (b) a + b + c (c) \frac{a + b + c}{2}
      (a) \sqrt[3]{abc}
                                                                                    (d) 0
(28) f(x) = (x + 2) e^{-x} ..... પર વધે છે. x \in \mathbb{R}
```

વિકલિતના ઉપયોગો 53

(c) $(2, \infty)$

(a) $(-\infty, -1)$ (b) $(-1, -\infty)$

(d) R^+

(29) $y^2 = x$ dul $x^2 = y$	ના ઊગમબિંદુ સિવાયના	છેદબિંદુ આગળ તેમની વ	ાચ્ચેના ખૂણાનું માપ	છે. 🔲
(a) $tan^{-1}\frac{4}{3}$	(b) $tan^{-1}\frac{3}{4}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$	
$(30) y = x^2 - 2x + 3 + 1$	બિંદુએ અભિલંબ	Y-અક્ષ ને સમાંતર છે.		
(a) (0, 3)	(b) (-1, 2)	(c) (1, 2)	(d) (3, 6)	
$(31) (3t^2 + 1, t^3 - 1) 3$				
$t \in \mathbb{R}$		ar i as a cigi	· · · · · · · · · · · · · · · · · · ·	
			1	
(a) $\frac{1}{2}$	(b) -2	(c) 2	(d) $-\frac{1}{2}$	
$(32) 3x^2 - y^2 = 8 + 12$, –2) બિંદુએ અભિલંબનું	સમીકરણ છે.		
(a) x + 2y = -2	(b) $x - 3y = 8$	(c) $3x + y = 4$	(d) x + y = 0	
$(33) x = e^t \cos t, y = e^t \sin t$	nt વક પરના $t=\frac{\pi}{4}$ ને	સંગત બિંદુએ સ્પર્શક X-	અક્ષની ધનદિશા સાથે	માપનો
ખૂશો બનાવે છે. $t \in$	R			
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) 0	(d) $\frac{\pi}{3}$	
(34) y = cosx $(34) (0, 1)$) બિંદએ સ્પર્શકનં સમીક	રણ છે.		
(a) x = 0	(b) $y = 0$	(c) $x = 1$	(d) $y = 1$	
	`		() / -	
$(35) y = sinx \text{ up-n } \left(\frac{\pi}{2}, 1\right)$	·) બિંદુએ અભિલંબનું સ [ા]	મીકરણ છે.		
(a) $x = 1$	(b) $x = 0$	(c) $y = \frac{\pi}{2}$	(d) $x = \frac{\pi}{2}$	
$(36) x^2 + y^2 - 2x - 3 =$	= 0 પરના બિંદુએ	સ્પર્શક સમક્ષિતિજ છે.		
(a) $(0, \pm \sqrt{3})$	(b) $(2, \pm \sqrt{3})$	(c) (1, 2), (1, -2) (d) (3, 0)	
(37) $y^2 = x$ પરના જે બિંદુ	એ સ્પર્શક X-અક્ષની ધન	.દિશા સાથે $\frac{\pi}{4}$ માપનો ખ	ાૂણો બનાવે તે બિંદુ	છે. 🔲
(a) $(\frac{1}{4}, \frac{1}{2})$	(b) (2, 1)	(c) (0, 0)	(d) (-1, 1)	
(38) એક શંકુનું ઊંચાઈ તેના	આધારના વ્યાસ જેટલી છે	છે તેનું કદ 50 સેમી³∕સે ન	ાા દરે વધે છે. જો આધારન્	ું ક્ષેત્રફળ -
1 ਮੀ ² ਫ਼ੀਪ ਜੀ ਜੇਜੀ ਇ	ત્રેજ્યાનો વૃદ્ધિદર છે	``````````````````````````````````````		
	_		(4) 4 2 20 b)	
	(b) 0.25 સેમી/સે		(d) 4 સેમી/સે	
(39) x = માટે $f(x) =$				R 📋
(a) $-3, -\frac{1}{3}$	(b) 3, $\frac{1}{3}$	(c) $-3, \frac{1}{3}$	(d) 3, $-\frac{1}{3}$	
(40) શંકુની ત્રિજ્યા 4 સેમી/	સે ના દરથી વધે છે. તેન્	તી ઊંચાઈ 3 સેમી/સે ના	દરથી ઘટે છે. જ્યારે તેર્ન	ી ત્રિજ્યા
		તેર્યક સપાટીનો વૃદ્ધિદર .		
(a) 30 % समा ² /स	(b) 10 સેમી ² /સે	(c) 20π સેમી 2 /સે	(a) 22 n સમા ² /સ	
(41) ગોલકના પૃષ્ઠફળનો તેન	ી ત્રિજ્યાને સાપેક્ષ વૃદ્ધ િ ા	દર છે.		
(a) 8 π (વ્યાસ)	(b) 3 π (વ્યાસ)	(c) 4 π (ત્રિજયા)	(d) 8 π (ત્રિજયા)	
(42) જે નળાકારની ઊંચાઇ	તેની ત્રિજ્યા જેટલી હોય	. તેના કદનો ત્રિજ્યાને સ	ાપેક્ષ દર છે.	
(a) 4 (આધારનું ક્ષેત્રફળ	૫) (b) 3 (આધારનું ક્ષેત્ર	ાફળ) (c) 2 (આધારનું ક્ષે	ત્રફળ) (d) (આધારનું ક્ષે	ત્રફળ)

54 ગણિત 12 - IV

વિકલિતના ઉપયોગો

સારાંશ

આ પ્રકરણમાં આપશે નીચેના મુદા શીખ્યા :

- (1) દરમાપક તરીકે વિકલિત
- (2) વધતાં તથા ઘટતાં વિધેયો
- (3) ભૂમિતિમાં વિકલિતના ઉપયોગ : સ્પર્શક તથા અભિલંબ
- (4) બે વક્કો વચ્ચેના ખુણાનું માપ
- (5) વિકલ તથા આસન્ન મૂલ્યો
- (6) મહત્તમ તથા ન્યુનતમ મુલ્યો
- (7) ઇપ્ટતમ મૂલ્યો (મહત્તમ, ન્યૂનતમ)ના પ્રશ્નો તથા વ્યવહારુ ઉપયોગો.

RAMANUJAN

He was born on 22na of December 1887 in a small village of Tanjore district, Madras.

He failed in English in Intermediate, so his formal studies were stopped but his self-study of mathematics continued.

He sent a set of 120 theorems to Professor Hardy of Cambridge. As a result he invited Ramanujan to England.

Ramanujan showed that any big number can be written as sum of not more than four prime numbers.

He showed that how to divide the number into two or more squares or cubes.

when Mr Litlewood came to see Ramanujan in taxi number 1729, Ramanujan said that 1729 is the smallest number which can be written in the form of sum of cubes of two numbers in two ways,

i.e.
$$1729 = 9^3 + 10^3 = 1^3 + 12^3$$

since then the number 1729 is called Ramanujan's number.

