

ELEC-E8103 Modelling, Estimation and Dynamic Systems

System Identification

Houari Bettahar

Department of Electrical Engineering and Automation

Aalto University, School of Electrical Engineering

Email: firstname.lastname@aalto.fi

Learning goals

Course Learning Outcomes

- Select proper modeling approach for specific practical problems,
- Formulate mathematical models of physical systems,
- Construct models of systems using modeling tools such as MATLAB and Simulink,
- Estimate the parameters of linear and nonlinear static systems from measurement data,
- Identify the models of linear dynamic systems from measurement data

Recap

School of Electrical

Engineering

Learning goals

- Learn the procedure of System Identification through Matlab Toolbox for system modeling
 - Experimental design and data collection for modelling
 - Model structure and order
 - Parameter estimation
 - Model validation

Prior knowledge

- Signal processing: filtering, detrend....
- Cross-correlation, autocorrelation
- Linear dynamic system: Bode diagram, zeros and poles

Experimental design

- A two-stage approach.
- 1. Preliminary experiments:
- 2. Data collection for model estimation:

1. Preliminary experiments: Transient analysis

Useful for obtaining qualitative information about system:

- indicates dead-times (delay), static gain, rise time
- aids sampling time selection (rule-of-thumb: 4-10 samples per rise time)
 - Sampling that is considerably faster than the system dynamics leads to data redundancy
 - Sampling that is considerably slower than the system dynamics leads to serious difficulties in determining the parameters that describe the dynamics

1. Preliminary experiments:

test linearity by a sequence of step response tests

1. Preliminary experiments:

Friction can be detected by using small step increases in input

Output moves every two or three steps.

- 2. Data collection for model estimation:
- Input signal should excite all relevant frequencies
- good choice is often a binary sequence with random hold times (e.g., PRBS)

- Chirp signal → works very well for nonlinear systems
- Trade-off in selection of signal amplitude
 - large amplitude gives high signal-to-noise ratio, low parameter variance

Preprocessing of data

- Preproscessing by removing undesired information
 - Mean of the input and output data

Preprocessing of data

Outlier

- Obvious error data, most obvious in residual
- Remove by hand or algorithm

Preprocessing of data

- Removing disturbances
 - Low frequency distrubances
 - High pass filter
 - High frequency distrubances
 - Low-pass filter
 - Distrubance at certain frequency
 - Stop-band filter

Learning goals

- Learn the procedure of System Identification through Matlab Toolbox for system modeling
 - Experimental design and data collection for modelling
 - Preliminary experiments
 - Data collection and data preprocessing
 - Model structure and order: ARX, ARMAX, OE, BJ
 - Parameter estimation
 - Model validation

- Do we know anything about the system apriori?
 - Black-Box model: Flexible structure, is a method for the development of models based on process data.
 - Grey-Box models: Tailor-made structures, made to incorporate prior knowledge: Structured differential equation with some parameters unknown
- Is the output a linear or a nonlinear function of the input?
- Do we want to describe also how disturbances affect the output?

- Linear dynamic model, with components describing the relation of
 - -y(k) and u(k)
 - -y(k) and e(k)
- Before estimate the parameters, we need to select
 - The model structure
 - The model order

Polynomial models

A linear time discrete model can be written as

$$y(k) = G(q, \theta)u(k) + H(q, \theta)e(k)$$

- -e(k) is the white noise, assuming $w(k)=H(q,\theta)e(k)$
- $-\theta$ is the model parameter
- q is the shift operator, y(k) = qy(k-1), $y(k-1) = q^{-1}y(k)$

$$G(q,\theta) = \frac{q^{\frac{1}{n_k}}(b_1 + b_2q^{-1} + \dots + b_{n_b}q^{\frac{1}{n_b+1}})}{1 + f_1q^{-1} + \dots + f_{n_f}q^{\frac{1}{n_f}}} = \frac{B(q)}{F(q)}$$

$$H(q,\theta) = \frac{1 + c_1q^{-1} + \dots + c_{n_c}q^{\frac{1}{n_c}}}{1 + d_1q^{-1} + \dots + d_{n_d}q^{\frac{1}{n_d}}} = \frac{C(q)}{D(q)}$$

- The parameter vector θ contains the coefficient $\{b_k\}$, $\{f_k\}$, $\{c_k\}$, $\{d_k\}$
- The different variations of the model is the so-called model structure
- n_b , n_c , n_d , n_f , determines the order of the polynomial transfer function
- n_k determines the time delay

Polynomial models

- Flexibility: Approximates a wide range of functions, simple to complex, including linear, quadratic, cubic, and higher-order relationships.
- Nonlinearity: Captures nonlinear behavior in real-world systems.
- Simplicity: Simple and computationally efficient, ideal for practical applications with limited computational resources.
- Interpretability: Easy to interpret, especially with low-degree polynomials, aiding understanding of system relationships.

Common model structures

Why do we need to have a strategy for model structure selection?

Let's assume we will have maximum 3rd order polynomial

Drawbacks of higher-order system selection

Overfitting:

- Captures noise, not underlying system dynamics.
- Performs poorly on unseen data due to memorized noise.

Increased Computational Complexity:

- Needs more data for accurate parameter estimation.
- Challenging in data collection, especially for complex models (expensive)

Sensitivity to Noise:

Small input fluctuations cause significant prediction variations.

Limited Robustness:

- Sensitive to system changes and disturbances.
- Less robust compared to simpler models.

Drawbacks of inappropriate model structure selection:

- Leads to inaccurate representations of system behavior.
- Results in poor predictions and reduced model effectiveness.
- Obstruct understanding of the underlying patterns in the data.
- Obstruct achieving desired performance outcomes.

Comments on ARMAX

Model for both input and noise, which enters the system early

$$A(q)y(k) = B(q)u(k) + C(q)e(k)$$

- Has interesting special cases
 - Autoregressive (AR) model: uses a linear combination of past observations to predict future values

$$A(q)y(k) = e(k)$$

$$(1 + a_1q^{-1} + \dots + a_{n_a}q^{-n_a})y(k) = e(k)$$

 Moving average (MA) model: calculates the average of a subset of the data points within a specified window of time. This window "moves" through the data set as new observations become available

$$y(k) = C(q)e(k) = (1 + c_1q^{-1} + \dots + c_{n_c}q^{-n_c})e(k)$$

 ARMA model: is a combination of the Autoregressive (AR) model and the Moving Average (MA) model.

$$A(q)y(k) = C(q)e(k)$$

Parameter estimation of model structures based on prediction error

- Goal
 - For a given model structure
 - Find the best parameter set θ
 - $\varepsilon(k) = y(k) \hat{y}(k)$ is somehow minimized
 - $\hat{y}(k)$ is the model prediction
- How to calculate the prediction?
 - Known conditions:
 - Input values
 - Previous output values

Prediction

For linear time discrete model

$$y(k) = G(q,\theta)u(k) + H(q,\theta)e(k)^{\overline{G(q,\theta)}}$$

- Multiply both side by $H^{-1}(q,\theta)$ and rearrange, we have y(k) $= (1 H^{-1}(q,\theta))y(k) + H^{-1}(q,\theta)G(q,\theta)u(k) + e(k)$ Notice, the noise term is white.
- The prediction of y(k) is $\hat{y}(k|\theta) = (1 H^{-1}(q,\theta))y(k) + H^{-1}(q,\theta)G(q,\theta)u(k)$

So we can use the u(k) and old y(k) to predict new y(k)

Prediction using ARX

The prediction is

$$\hat{y}(k) = \overbrace{-(a_1q^{-1} + \dots + a_{n_a}q^{-n_a})}^{1 - H^{-1}(q,\theta)} y(k) + \overbrace{q^{-n_k}(b_1 + b_2q^{-1} + \dots + b_{n_b}q^{-n_b+1})}^{H^{-1}(q,\theta)G(q,\theta)} u(k)$$

- In a more compact form: $\hat{y}(k|\theta) = \theta^T \varphi(k)$
- where

$$\theta = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_a} \\ b_1 \\ \vdots \\ b_{n_b} \end{bmatrix} \qquad \qquad \phi(k) = \begin{bmatrix} -y(k-1) \\ -y(k-2) \\ \vdots \\ -y(k-n_a) \\ u(k-n_k) \\ \vdots \\ u(k-n_k-n_b+1) \end{bmatrix}$$

$SSE(\beta) = (Y - X\beta)^{T}(Y - X\beta)$ $\hat{\beta} = (X^{T}X)^{-1}X^{T}Y$

Parameter estimation using Linear Regression

If the problem is a linear regression, e.g. in the case of ARX

$$\hat{y}(k|\theta) = \theta^T \varphi(k) = \varphi(k)^T \theta$$

The error for sample k is:

$$\varepsilon(k,\theta) = y(k) - \varphi(k)^T \theta$$

The loss function is:

$$V_N(\theta) = \frac{1}{N} \sum_{k=1}^N \varepsilon^2(k, \theta) = \frac{1}{N} \varepsilon_N^T \varepsilon_N = \frac{1}{N} (y_N - \varphi_N \theta)^T (y_N - \varphi_N \theta)$$

- $-\varepsilon_N$, y_N , φ_N are column vectors of size N of $\varepsilon(k,\theta)$, y(k) and $\varphi(k)^T$.
- The best estimation $\hat{\theta}$ is found if $\frac{d}{d\theta}V_N(\theta)=0$, and we have

$$\hat{\theta} = (\varphi_N^T \varphi_N)^{-1} \varphi_N^T y_N \quad \text{or} \quad \hat{\theta} = \rho_{\varphi_N \varphi_N}^{-1} \rho_{\varphi_N y_N}$$

 ρ : covariance matrix

ARX example

For a simple ARX model

$$y(k) = a_1 y(k-1) + b_1 u(k) + e(k)$$

The parameter set

$$\theta = \begin{bmatrix} a \\ b \end{bmatrix} \qquad \varphi = \begin{bmatrix} y(k-1) \\ u(k) \end{bmatrix} \qquad \qquad \varphi_N = \begin{bmatrix} \varphi^T(1) \\ \vdots \\ \varphi^T(N) \end{bmatrix} = \begin{bmatrix} y(-1) & u(0) \\ \vdots & \vdots \\ y(-N) & u(-N+1) \end{bmatrix}$$

$$\varphi_N^T = \begin{bmatrix} y(-1) & \cdots & y(-N) \\ u(0) & \cdots & u(-N+1) \end{bmatrix} \quad \varphi_N^T \varphi_N = \begin{bmatrix} y(-1) & \cdots & y(-N) \\ u(0) & \cdots & u(-N+1) \end{bmatrix} \begin{bmatrix} y(-1) & u(0) \\ \vdots & & \vdots \\ y(-N) & u(-N+1) \end{bmatrix}$$

The estimated parameter is

$$\hat{\theta} = \begin{bmatrix} \sum_{k=1}^{N} y^2(-k) & \sum_{k=1}^{N} y(-k)u(-k+1) \\ \sum_{k=1}^{N} u(-k)y(-k+1) & \sum_{k=1}^{N} u^2(-k+1) \end{bmatrix}^{-1} \begin{bmatrix} \sum_{k=1}^{N} y(-k)y(-k+1) \\ \sum_{k=1}^{N} u(-k+1)y(-k+1) \end{bmatrix}$$

Minimizing the prediction error

For general case, we calculate the prediction error as usual:

$$\varepsilon(k,\theta) = y(k) - \hat{y}(k|\theta)$$

With N data samples, the estimation of total error, or loss is:

$$V_N(\theta) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon^2(k, \theta)$$

The goal is to find

$$\widehat{\theta}_N = \arg\min_{\theta} V_N(\theta)$$

• BTW, we may use any arbitrary positive, scalar-valued function $\ell(\varepsilon)$ as a measure and minimize

$$V_N(\theta) = \frac{1}{N} \sum_{k=1}^{N} \ell(\varepsilon(k, \theta))$$

Model order and prediction error

- If the prediction error has to be compared with model data
 - A larger model will do a better job
 - It also models the particular disturbance
 - But it will do worse with new data

 Alternative methods to estimate the prediction error penalizing model order p, of the general form:

$$\min_{p,\theta} f(p,N) \sum_{k=1}^{N} \varepsilon^{2}(k,\theta)$$

Akaike's information criterion (AIC)

$$\min_{p,\theta} \left(1 + \frac{2p}{N} \right) \sum_{k=1}^{N} \varepsilon^{2}(k,\theta)$$

Final prediction error (FPE)

$$\min_{p,\theta} \left(\frac{1 + p/N}{1 - p/N} \frac{1}{N} \right) \sum_{k=1}^{N} \varepsilon^{2}(k,\theta)$$

 Rissanen's minimal description length

$$\min_{p,\theta} \left(1 + \frac{2p}{N} \log N \right) \sum_{k=1}^{N} \varepsilon^{2}(k,\theta)$$

Model validation

- Check if a model can be accepted for the intended use
 - Closely related to model quality
- Model quality
 - Stability
 - Input-output properties with different measurements
 - Bode diagram, simulation
 - Compare bode plot of the model vs. spectral analysis
 - Except for closed-loop system
 - Ability to reproduce system behavior
 - Compare simulated output vs. new measured data
 - Residual analysis

Engineering

Model structure and order selection

- Residual analysis
- Zeros and Poles cancellation
- Variance of estimated parameter

Residual analysis: whiteness and independence tests

The autocorrelation of

$$\varepsilon(k) = y(k) - \hat{y}(k|\hat{\theta}_N)$$
$$\hat{\rho}_{\varepsilon\varepsilon}(\tau) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon(k)\varepsilon(k-\tau)$$

- Should lie within a confidence interval around zero
 - Large components indicates unmodelled disturbance

• The cross-correlation between $\varepsilon(k)$ and u(k)

$$\hat{\rho}_{\varepsilon u}(\tau) = \frac{1}{N} \sum_{k=1}^{N} \varepsilon(k+\tau) u(k)$$

- Should lie within a confidence interval around zero
 - Large components indicate deficiency in system model
 - Model order problem

Examples of residual analysis

Model is acceptable

Error in system model

Error in disturbance model

Delay too long

Nalto University
School of Electrical
Engineering

Zeros and Poles

Variance of estimated parameter

The variance of the model parameter

$$P_N = E[(\theta - \theta_0)(\theta - \theta_0)^T] \approx \frac{1}{N} \lambda \bar{R}^{-1}$$

- $-\lambda$ is the variance of the disturbance
- $\bar{R} = E[\psi(k, \theta_0)\psi^T(k, \theta_0)]$
- $\psi(k,\theta_0) = \frac{d}{d\theta} \hat{y}(k,\theta)$

The variance should be at most 25% of the parameter value

Example 1

$$-A(q) = 1 - 1.397 (\pm 0.02608)q^{-1} + 0.5866 (\pm 0.01946)q^{-2}$$

$$-B(q) = 0.2026 (\pm 0.01475)q^{-2} - 0.02881 (\pm 0.01828)q^{-3}$$

$$-C(q) = 1 - 0.9909 (\pm 0.1401)q^{-1} + 0.2294 (\pm 0.1311)q^{-2}$$

Example 2

$$-A(q) = 1 - 1.425 (\pm 0.01208)q^{-1} + 0.6122 (\pm 0.01146)q^{-2}$$

$$-B(q) = 0.1113 (\pm 0.002952)q^{-1} + 0.08808 (\pm 0.003689)q^{-2}$$

$$-C(q) = 1 - 0.3811 (\pm 0.04841)q^{-1}$$

Delay estimation

Test ARX with different orders

data1 = iddata(y1,u1,1)
nk = delayest(data1)

Model structure and order selection strategy

Summary

- System identification is an iterative procedure in multiple steps
 - Experiment design
 - Preliminary experiments exams basic system behavior
 - Experiments test should excite the system
 - Take care of frequency band and sampling
 - Preprocess the data before identification
 - Remove mean, trends, and outlier
 - Filter if needed
 - Select the model structure
 - Parameters variance,
 - zeros and poles,
 - Residual analysis
 - Parameters estimation
 - Prediction error
 - Model validation
 - Cross-validation
 - Residual analysis

