

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”

Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”

Jawaharlal Nehru

“Step Out From the Old to the New”

IS 7422-2 (1974): Symbols and abbreviations for use in geological maps, sections and subsurface exploratory logs, Part 2: Igneous rocks [WRD 5: Geological Investigation and Subsurface Exploration]

“ज्ञान से एक नये भारत का निर्माण”

Satyanareshwar Gangaram Pitroda

“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”

Bhartṛhari—Nītiśākām

“Knowledge is such a treasure which cannot be stolen”

BLANK PAGE

PROTECTED BY COPYRIGHT

Indian Standard

SYMBOLS AND ABBREVIATIONS FOR USE IN GEOLOGICAL MAPS, SECTIONS AND SUBSURFACE EXPLORATORY LOGS

PART II IGNEOUS ROCKS

(Second Reprint JUNE 1984)

UDC 003.62 : 550.81 : 528.9 : 552.3

© Copyright 1975

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Indian Standard

SYMBOLS AND ABBREVIATIONS FOR USE IN GEOLOGICAL MAPS, SECTIONS AND SUBSURFACE EXPLORATORY LOGS

PART II IGNEOUS ROCKS

Subsurface Exploration Sectional Committee, BDC 49

Chairman

SHRI V. S. KRISHNASWAMY

Representing

Geological Survey of India, Lucknow

Members

CHIEF ENGINEER

National Projects Construction Corporation Ltd,
New Delhi

SHRI S. K. AGGARWAL (Alternate)

CHIEF ENGINEER (IRRIGATION) Irrigation & Power Department, Government of
Rajasthan

SHRI K. N. DADINA

In personal capacity (*P-820, Block P, New Alipore,
Calcutta*)

SHRI K. R. DATYE

In personal capacity (*No. 2 Rehem Mansion, First
Floor, Colaba Cause-Way, Bombay 400001*)

SHRI V. R. DEUSKAR

Irrigation & Power Department, Government of
Maharashtra, Koyna

SHRI S. M. BHALERAO (Alternate)

DIRECTOR (CSMRS) Central Water & Power Commission, New Delhi

**SUPERINTENDING ENGINEER,
CHENAB INVESTIGATION (Alternate)**

SHRI H. DOSHI Christensen-Longyear (India) Ltd, Bombay

SHRI V. L. GORIANI (Alternate)

Cementation Co Ltd, Bombay

SHRI S. N. K. IYENGAR

Public Works Department, Government of Gujarat,
Ahmedabad

SHRI J. F. MISTRY

SHRI H. C. PARMAR (Alternate)

Ministry of Irrigation & Power, New Delhi

SHRI K. S. S. MURTHY

Rodio Foundation Engineering Ltd; and Hazarat
& Co, Bombay

SHRI A. M. NERUKAR

Hindustan Construction Co Ltd, Bombay

SHRI A. N. JANGLE (Alternate)

Voltas Limited, Bombay

SHRI B. K. PANTHAKY

SHRI M. S. DIWAN (Alternate)

(Continued on page 2)

SHRI N. K. PILLAI

SHRI A. N. INDURKAR (Alternate)

© Copyright 1975

INDIAN STANDARDS INSTITUTION

This publication is protected under the *Indian Copyright Act* (XIV of 1957) and
reproduction in whole or in part by any means except with written permission of the
publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)

Members

SHRI C. GOPALASWAMY RAO

REPRESENTATIVE

REPRESENTATIVE

SHRI R. K. SABHARWAL

SHRI S. S. SAHI

SHRI M. M. ANAND (*Alternate*)

SHRI S. SATAPATHI

Secretary

DEPUTY SECRETARY (*Alternate*)

SHRI D. P. SENGUPTA

SHRI DEVENDRA SHARMA (*Alternate*)

SHRI H. D. SHARMA

SHRI P. S. YOG

SHRI D. AJITHA SIMHA,
Director (Civ Engg)

Representing

Public Works & Electrical Department, Government
of Mysore, Bangalore

Engineering Research Laboratories, Hyderabad

Government of Himachal Pradesh

Larsen & Toubro Ltd, Bombay

Public Works Department, Government of Punjab,
Chandigarh

Irrigation & Power Department, Government of
Orissa, Bhubaneswar

Central Board of Irrigation & Power, New Delhi

Central Building Research Institute (CSIR), Roorkee

Irrigation Research Institute, Roorkee

Irrigation Department, Government of Uttar Pradesh,
Lucknow

Director General, ISI (*Ex-officio Member*)

Secretary

SHRI G. RAMAN

Deputy Director (Civ Engg), ISI

Abbreviations, Symbols and Notations for Use in Geological Maps Panel,
BCD 49 : P5

Convenor

SHRI V. S. KRISHNASWAMY

Geological Survey of India, Lucknow

Members

SHRI M. S. JAIN

Geological Survey of India, Lucknow

SHRI B. N. KUKKU (*Alternate I*)

SHRI S. K. SHOME (*Alternate II*)

Indian Standard

SYMBOLS AND ABBREVIATIONS FOR USE IN GEOLOGICAL MAPS, SECTIONS AND SUBSURFACE EXPLORATORY LOGS

PART II IGNEOUS ROCKS

0. FOREWORD

0.1 This Indian Standard (Part II) was adopted by the Indian Standards Institution on 2 April 1974, after the draft finalized by the Subsurface Exploration Sectional Committee had been approved by the Civil Engineering Division Council.

0.2 In all spheres of engineering construction, data on the nature of the geological formations constituting the foundations are indispensable. Often, the data are given on maps or in geological sections using symbols and abbreviations. Geological maps and sections are also required for other activities, such as mining and mineral prospecting. Such maps and sections are, therefore, being prepared by various agencies in the country. In the absence of any standard for the guidance of the engineering geologist or engineer, different symbols and abbreviations are being used by different agencies, resulting in entirely different representations of the same geological data. The data collected and presented by one agency for a particular purpose is often useful to other agencies investigating for a different job. It, therefore, becomes essential for all agencies to follow the same practice. This standard has been prepared to fulfil this need.

0.2.1 This standard (Part II) deals with igneous rocks while other parts are as follows:

Part I Abbreviations

Part III Sedimentary rocks

Part IV Metamorphic rocks

Part V Line symbols for formation contacts and structural features

0.3 The symbolization of rock types is based on the principles laid down by the International Organization for Standardization. For the rock types to be covered for symbolization, classification of igneous rocks as adopted by United States Bureau of Reclamation for engineering purposes has been used.

0.4 In the formulation of this standard due weightage has been given to international co-ordination among the standards and practices prevailing in different countries in addition to relating it to the practices in the field in this country.

0.5 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS : 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard (Part II) covers symbols for igneous rocks for use in geological maps, sections and logs of bore holes, test pits, exploratory drifts and shafts for river valley projects. Rock types covered in the standard are restricted to those commonly met with in engineering practice.

2. BASIC PRINCIPLES OF SYMBOLIZATION

2.1 In order to represent a type of rock on a map or on a plan, the corresponding surface should be covered by the symbols representing the rock in question. The surfaces occupied by rocks of different types should be separated by a continuous thin line if in nature there is a clear demarcation between the different types.

2.2 The graphic symbols should be used in black and white for the representation of rocks and minerals. Additional letter symbols may be used to designate other characteristics like age.

2.3 There is a great variety of rocks and it is impossible to have an individual symbol for each of the rock types that are found in nature. For this reason the symbols are developed for the most important and frequently occurring rock types. For listing the rock types one of the simpler systems used for classification of rocks has been followed; however the tables of symbols for rock types are not meant to provide a standard system of classification. The symbolization is based on the following principles:

- a) In order to characterize the properties of rocks, elementary symbols are chosen, which should:
 - 1) be as simple as possible and, therefore, easily traceable;
 - 2) express the nature of the rock; and
 - 3) be of such a dimension that several elementary symbols can be placed next to each other.

*Rules for rounding off numerical values (*revised*).

- b) Principal rock types are represented by the juxtaposition of several identical elementary symbols; the variations of the above are shown by the adiution of the elementary symbols which characterize the principal constituents.
- c) In order to characterize the loose form of rock, symbols should be arranged with no determined order; a systematic staggered arrangement should represent the consolidated form of a rock.
- d) The individual elements or the rows of symbols should be arranged either parallel to the stratification of foliation where applicable or parallel to the margin of the map or the geological formation under portrayal, as found convenient. The procedure adopted should be indicated on the plan.

2.3.1 The basic symbols given in this standard should not be used for other representations. Within the framework of these principles, symbols for other rocks not covered in this standard may be developed and intimation may be made to the Indian Standards Institution. Similarly for any characteristic not represented by a symbol, a new symbol may be chosen.

3. GRAPHIC SYMBOLS FOR IGNEOUS ROCKS

3.1 Basic Symbols — The basic symbols of the principal types of igneous rocks are given in Table 1.

3.2 Symbols for Rock Types

3.2.1 For developing symbols for different rock types from these basic symbols the following points should be kept in view:

- a) A distinction in the grain size of rocks may be shown by the smaller or greater size of the basic symbols.
- b) To indicate porphyritic texture the basic symbol is replaced at intervals by a larger symbol of the same type.
- c) The symbols representing plutonic rocks are derived from a cross or the letter ; for volcanic rocks, the basic symbol chosen is a right angle placed on its point The symbols for feldspathoidal rocks are always asymmetrical
- d) In the symbols for alkaline rocks with the exception of feldspathoidal rocks, an open space is always left at the point of intersection of the lines

TABLE 1 BASIC SYMBOLS OF THE PRINCIPAL TYPES OF IGNEOUS ROCKS
(Clause 3.1)

PLUTONIC ROCKS					VOLCANIC ROCKS				
Sl No.	Rock Group	Group Symbol	More Differentiated Rock Types	Symbol	Rock Group	Group Symbol	More Differentiated Rock Types	Symbol	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
1)	Alkali-granite	- +			Alakali-rhyolite	✓ ✓			
2)	Very acid granite	+ +			Leucorhyolite	✓ ✓			
3)	Granite	+	Normal granite	+			Rhyolite	✓	
			Granodiorite	+	Rhyolite	✓	Rhyodacite	✓ ✓	
			Quartz-diorite	• •			Dacite	✓ ✓	
4)	Syenite	+ +	Alkali-syenite	= +			Alka li trachyte	✓	
			Syenite	± +	Trachyte	△	Trachyte	✓	
			Monzonite	± +			Latite	△	

5)	Diorite	+			Andesite	✓		
6)	Gabbro	+	Gabbro	+	Basalt	✓		
			Norite	+				
			Anorthosite	Y				
7)	Feldspathoidal plutonic rocks	Y	Nepheline-syenite	Y	Feldspathoidal volcanic rocks	✓	Phonolite	Y
			Essexite/Theralite	Y			Feldspathoidal basalt	▼
			Ijolite	Y				
8)	Ultra basic rock	■			Pikrite	✓		
					Pikrite-basalt			

- e) To indicate the very acid character of a rock, a point is placed at the centre of the symbol, the lines being interrupted around the

point of intersection

- f) With increasing basicity, the lines are thickened so that the darker appearance of the rock is reflected in the symbol.

- g) The various types of ultrabasic rocks may be represented by the greater or lesser length of lines in relation to the black

square

3.2.2 The symbols for different rock types commonly met with in engineering practice are given in Table 2. Symbols for rock types not given in Table 2 may be developed using the basic symbols given in Table 1 on the basis of the principles laid down in **2** and **3.2.1**.

3.2.3 Where features are too small for graphical representation either an asterisk may be given against the feature and explained in the legend or the name of the rock written out.

TABLE 2 SYMBOLS FOR IGNEOUS ROCK TYPES

(Clause 3.2.3)

ESSENTIAL MINERALS FELDSPARS	CHIEF FELDSPARS IN ROCK		ALKALI FELDSPARS PREDOMINATE			ALKALI AND SODA-LIME FELDSPARS ABOUT EQUAL		SODA-LIME FELDSPARS PREDOMINATE				Some alkali feldspar may occur	FELDSPARS ABSENT		
	SODA-LIME FELDSPARS IN NORMAL ROCK		OLIGOCLASE TO ANDESINE(WHERE ALBITE IS PRESENT, PREFIX "ALKALI" IS USED)		ALBITE	OLIGOCLASE TO ANDESINE		OLIGOCLASE AND ANDESINE		LABRADORITE, BYTOWNITE AND ANORTHITE		ANDESINE TO BYTOWNITE	SOME SODA-LIME FELDSPAR MAY BE PRESENT	SOME SODA-LIME FELDSPAR MAY CONSTITUTE UPTO 10% OF ROCK	
Other minerals whose presence is necessary or whose virtual absence is characteristic - Signifies presence in significant amounts - Signifies virtual absence	+ QUARTZ (> 5%)	- QUARTZ (< 5%)	NEPHELINE OR LEUCITE (-QUARTZ)	+ QUARTZ (> 5%)	- QUARTZ (< 5%)	+ QUARTZ (> 5%)	- QUARTZ (< 5%)	+ QUARTZ (> 5%)	- QUARTZ (< 5%)	- OLIVINE	+ OLIVINE	+ LEUCITE OR + NEPHELINE	+ NEPHELINE OR + LEUCITE OR + ANALCITE	- NEPHELINE - LEUCITE - OLIVINE + PYROXENE OR + HORNBLende	
TYPICAL MODES OF OCCURRENCE	RHYOLITE ASH	TRACHYTE ASH	PHONOLITE OR LEUCITE PHONOLITE ASH	QUARTZ LATITE (DELENITE) ASH	LATITE (TRACHYAN- DESITE) BRECCIA	DACITE ASH	ANDESITE ASH	BASALT ASH	OLIVINE BASALT ASH	TEPHRITE OR BASANITE ASH	Some soda-lime feldspar may occur	SOME SODA-LIME FELDSPAR MAY BE PRESENT	SOME SODA-LIME FELDSPAR MAY CONSTITUTE UPTO 10% OF ROCK		
Uniform or irregular beds, deposits or accumulations of volcanic ejecta	RHYOLITE BRECCIA	TRACHYTE BRECCIA	PHONOLITE OR LEUCITE PHONOLITE BRECCIA	QUARTZ LATITE (DELENITE) BRECCIA	LATITE (TRACHYAN- DESITE) BRECCIA	DACITE BRECCIA	ANDESITE BRECCIA	BASALT BRECCIA	OLIVINE BASALT BRECCIA	TEPHRITE OR BASANITE BRECCIA					
	RHYOLITE TUFF	TRACHYTE TUFF	PHONOLITE OR LEUCITE PHONOLITE TUFF	QUARTZ LATITE (DELENITE) TUFF	LATITE (TRACHYAN- DESITE) TUFF	DACITE AGGLOMERATE	ANDESITE AGGLOMERATE	BASALT TUFF	OLIVINE BASALT TUFF	TEPHRITE OR BASANITE TUFF					
	RHYOLITE AGGLO- MERATE	TRACHYTE AGGLO- MERATE	PHONOLITE OR LEUCITE PHONOLITE AGGLOMERATE	QUARTZ LATITE (DELENITE) AGGLOMERATE	LATITE (TRACHYAN- DESITE) AGGLOMERATE	DACITE AGGLOMERATE	ANDESITE AGGLOMERATE	BASALT AGGLOMERATE	OLIVINE BASALT AGGLOMERATE	TEPHRITE OR BASANITE AGGLOMERATE					
Surface flows; shallow small intrusives	ACIDIC GLASSES AND RARE PHONOLITIC GLASSES												ULTRA BASIC GLASSES		
	OBSIDIAN	- PERLITE	- PUMICE	() () () () () ()	- PITCHSTONE	() () () () () ()	OBSIDIAN	- PUMICE	() () () () () ()	- SCORIA	SCORIA	VARIOLITE	TACHYLITE () () () () () ()		
Surface flows; shallow dykes, sills, sheets, marginal zones of hypabyssal intrusives	RHYOLITE	TRACHYTE	PHONOLITE OR LEUCITE PHONOLITE	QUARTZ LATITE (DELENITE)	LATITE (TRACHYAN- DESITE)	DACITE	ANDESITE	BASALT	OLIVINE BASALT (Rarely porphyritic)	TEPHRITE	NEPHELINE LEUCITE BASALT	AUGITITE # * *	LIMBURITE	MICRITE PICTITE BASALT	
	INTERMEDIATE GLASSES														
Hypabyssal and shallow dykes, sills, laccoliths, interiors of thick surface flows	RHYOLITE PORPHYRY GRANO PORPHYRY (QUARTZ PORPHYRY)	TRACHYTE PORPHYRY	PHONOLITE PORPHYRY OR LEUCITE PORPHYRY	QUARTZ PORPHYRY (DELENITE) PORPHYRY	LATITE PORPHYRY (TRACHYAN- DESITE) PORPHYRY	DACITE PORPHYRY	ANDESITE PORPHYRY	DIABASE	OLIVINE DIABASE (Rarely porphyritic)	THERALITE ESSEXITE					
Deep-seated dykes and laccoliths as well as border zones of larger intrusive masses. Composition same as that of related granitic rock	GRANITE PORPHYRY GRANOPHREY	SVENITE PORPHYRY	NEPHELINE SVENITE PORPHYRY OR LEUCITE SVENITE PORPHYRY	QUARTZ MONZONITE (ADAMELLITE PORPHYRY)	MONZONITE PORPHYRY	MONZONITE PORPHYRY (TONALITE) PORPHYRY	DIORITE PORPHYRY	DIABASE	OLIVINE DIABASE (Rarely porphyritic)	THERALITE ESSEXITE	UOLITE	PYROXENITE HORNBLEN- DITE # * *	PERIDOTITE PICTITE DUNITE		
Deep-seated dykes in part hypabyssal (esp. lamprophyres)	APLITES (Aplitic segregations)	APLITE	SVENITE APLITE BOSTONITE	NEPHELINE SVENITE APLITE	QUARTZ MONZONITE APLITE (ADAMELLITE APLITE)	MONZONITE APLITE	MALCHITE	DIORITE APLITE	GABBRO APLITE NORITE APLITE						
Acidic and basic differentials (segregations) from parent magma															
Mainly associated with granites, syenites, monzonites and diorites	LAMPRO- PHRES (Basic seg- regations)	LAMPROPHYRE	MINETTE VOGESENITE				QUARTZ KERSANTITE	KERSANTITE SPESSARTITE CAMPTONITE	KERSANTITE SPESSARTITE ODINITE	OLIVINE KERSANTITE					
Deep-seated dykes and irregular masses of all sizes, related to large intrusive bodies, where concentrations of gases and vapours were present during solidification	GRANITE PEGMATITE	SVENITE PEGMATITE	NEPHELINE SVENITE PEGMATITE	QUARTZ MONZONITE (ADAMELLITE) PEGMATITE	MONZONITE PEGMATITE	MONZONITE PEGMATITE (TONALITE) PEGMATITE	DIORITE PEGMATITE	GABBRO PEGMATITE NORITE PEGMATITE	OLIVINE GABBRO PEGMATITE						
Large deep-seated intrusives, such as batholiths, stocks, laccoliths and dykes	GRANITE	SVENITE	NEPHELINE SVENITE MONZONITE OR SODALITE SVENITE	QUARTZ MONZONITE (ADAMELLITE)			MONZONITE (MONZONITE) GRANODORITE	DIORITE	GABBRO	OLIVINE GABBRO	UOLITE	PYROXENITE HORNBLEN- DITE # * *	PERIDOTITE DUNITE		
	CHARNOVITE										MISSOURITE				

INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

Base Units

QUANTITY	UNIT	SYMBOL
Length	metre	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Amount of substance	mole	mol

Supplementary Units

QUANTITY	UNIT	SYMBOL
Plane angle	radian	rad
Solid angle	steradian	sr

Derived Units

QUANTITY	UNIT	SYMBOL	DEFINITION
Force	newton	N	1 N = 1 kg.m/s ²
Energy	joule	J	1 J = 1 N.m
Power	watt	W	1 W = 1 J/s
Flux	weber	Wb	1 Wb = 1 V.s
Flux density	tesla	T	1 T = 1 Wb/m ²
Frequency	hertz	Hz	1 Hz = 1 c/s (s ⁻¹)
Electric conductance	siemens	S	1 S = 1 A/V
Electromotive force	volt	V	1 V = 1 W/A
Pressure, stress	pascal	Pa	1 Pa = 1 N/m ²

INDIAN STANDARDS INSTITUTION

Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002

Telephones : 26 60 21, 27 01 31

Telegrams : Manaksantha

Regional Offices :

Western : Novelty Chambers, Grant Road	BOMBAY 400007	89 65 28
Eastern : 5 Chowringhee Approach	CALCUTTA 700072	27 50 98
Southern : C.I.T. Campus	MADRAS 600113	41 24 42
Northern : B69, Phase VII	S.A.S. NAGAR (MOHALI) 160051	8 78 26

Branch Offices :

'Pushpak', Nurmohamed Shaikh Marg, Khanpur 'F' Block, Unity Bldg, Narasimha-raja Square	AHMADABAD 380001	2 03 91
Gangotri Complex, Bhadbhada Road, T.T. Nagar 22E Kalpana Area	BANGALORE 560002	22 48 05
5-8-56C L. N. Gupta Marg	BHOPAL 462003	6 27 16
R 14 Yudhister Marg, C Scheme	BHUBANESHWAR 751014-5 36 27	
117/418 B Sarvodaya Nagar	HYDERABAD 500001	22 10 83
Palliputra Industrial Estate	JAIPUR 302005	6 98 32
Hantex Bldg (2nd Floor), Rly Station Road	KANPUR 208005	4 72 92
	PATNA 800013	6 28 08
	TRIVANDRUM 695001	32 27