## **Data Representation**

### Introduction

 Most operating systems and programming languages assume that experienced users are familiar with how information is stored in a computer. Without this knowledge, nothing but very basic use of a computer is possible. It would be also impossible to understand many of the fundamental design concepts of digital computers.

### Introduction(cont.)

#### How is data represented in a computer?

Computer systems operate using two voltage levels (usually 0v and +5v). With two such levels, we can represent exactly two different values, zero and one. All kinds of information processed by the computer are expressed using only these two values.



#### Numbering systems: Decimal System



## Numbering Systems: Decimal Numbering System (cont.)



#### **Decimal Numbering**

$$0-1-2-3-4-5-6-7-8-9$$
10 digits

Weight:  $10^0 - 10^1 - 10^2 - 10^3 - 10^4 - \dots$ 

Weight: 1 - 10 - 100 - 1000 - 10000 - ...

## The Binary Numbering System

| Number of digits | Decimal(10)<br>10                                                                          | Binary(2)<br>2                                                                       |
|------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Symbols          | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9                                                               | 0, 1                                                                                 |
| Weights          | 10 <sup>0</sup> , 10 <sup>1</sup> , 10 <sup>2</sup> , 10 <sup>3</sup> ,  1, 10, 100, 1000, | 2 <sup>0</sup> , 2 <sup>1</sup> , 2 <sup>2</sup> , 2 <sup>3</sup> ,  1, 2, 4, 8, 16, |

### The Binary Numbering System

|                      | $(1010)_2$ | $(1010)_{10}$ , | mple | Exar |
|----------------------|------------|-----------------|------|------|
|                      | 1          | 10              | 100  | 1000 |
| 1000+10              | 0          | 1               | 0    | 1    |
| one thousand and ten |            |                 |      |      |
|                      | 1          | 2               | 4    | 8    |
| $8+2 \rightarrow 10$ | 0          | 1               | 0    | 1    |

# The Binary Numbering System Binary to Decimal(cont.)

$$(13)_{10} = (?)_2$$
  
 $13 = 8 + 4 + 1 \rightarrow (1101)_2$ 

```
13/2 = 6 remainder 1
```

$$6/2 = 3$$
 remainder 0

$$3/2 = 1$$
 remainder 1

$$1/2 = 0$$
 remainder 1



## The Binary Numbering System Binary → Decimal

$$(52)_{10} = (?)_2$$
  
 $52 = ?+?+..+? \rightarrow (?)_2$ 

$$52/2 = 26$$
 remainder 0

$$26/2 = 13$$
 remainder 0

$$13/2 = 6$$
 remainder 1

$$6/2 = 3$$
 remainder 0

$$3/2 = 1$$
 remainder 1

$$1/2 = 0$$
 remainder 1



## Hexadecimal Numbering System

| Number of digits | Decimal(10) 10                          | Binary(2) 2 | Hexadecimal(16)                                                   |
|------------------|-----------------------------------------|-------------|-------------------------------------------------------------------|
| Symbols          | 0, 1, 2, 3, 4,<br>5, 6, 7, 8, 9         | 0, 1        | 0, 1, 2, 3, 4,<br>5, 6, 7, 8, 9, A,<br>B, C, D, E, F              |
| Weight           | $10^0, 10^1, 10^2, \dots$ $1, 10, 100,$ |             | 16 <sup>0</sup> , 16 <sup>1</sup> , 16 <sup>2</sup> , 1, 16, 256, |

## Hexadecimal Numbering System Hexadecimal ↔ Decimal

$$(5378)_{10} = (?)_{16}$$

$$5378/16 = 336 \text{ remainder 2}$$

$$336/16 = 21 \text{ remainder 0}$$

$$21/16 = 1 \text{ remainder 5}$$

$$1/16 = 0 \text{ remainder 1}$$

$$(1502)$$

$$\frac{1}{1} = \frac{5}{1} = \frac{0}{1} = \frac{2}{1}$$

## Hexadecimal Numbering System Hexadecimal ↔ Decimal

$$(7739)_{10} = (?)_{16}$$
  
7739=?+?+..+?  $\rightarrow$  (?)<sub>16</sub>

```
7739/16 = 483 remainder 11→ B
483 /16 = 30 remainder 3
30/16 = 1 remainder 14→ E
1/16 = 0 remainder 1
```

```
(1E3B)

check

1 E 3 B

16^3 16^2 16^1 16^0

4096 + 14*256 + 3*16 + 11*1 \rightarrow 7739
```

### **Binary** ← **Hexadecimal**

$$(7739)_{10} = (1E3B)_{16} = (?)_2$$

$$(1) \to (0001)$$

$$(\mathbf{E}) \rightarrow (1110)$$

$$(3) \to (0011)$$

$$(B) \rightarrow (1011)$$

 $(1E3B)_{16} = (\underline{0001} \underline{1110} \underline{0011} \underline{1011})_2$ 

| Decimal | Binary | Hexadecimal |
|---------|--------|-------------|
| 0       | 0000   | 0           |
| 1       | 0001   | 1           |
| 2       | 0010   | 2           |
| 3       | 0011   | 3           |
| 4       | 0100   | 4           |
| 5       | 0101   | 5           |
| 6       | 0110   | 6           |
| 7       | 0111   | 7           |
| 8       | 1000   | 8           |
| 9       | 1001   | 9           |
| 10      | 1010   | Α           |
| 11      | 1011   | В           |
| 12      | 1100   | С           |
| 13      | 1101   | D           |
| 14      | 1110   | Е           |
| 15      | 1111   | F           |

Check 
$$\rightarrow (2^0 + 2^1 + 2^3) + (2^4 + 2^5) + (2^9 + 2^{10} + 2^{11}) + (2^{12})$$
  
=  $(1+2+8)+(16+32)+(512+1024+2048)+(4096)=7739$ 

# Non-integer number representation (Decimal)



# Non-integer number representation (Binary)

$$(101.101)_{2}$$

$$2^{2} \quad 2^{1} \quad 2^{0} \quad 2^{-1} \quad 2^{-2} \quad 2^{-3}$$

$$4 \quad 2 \quad 1 \quad 1/2 \quad 1/4 \quad 1/8$$

$$(101.101)_{2} = (4+1+0.5+0.125)_{10} = (5.625)_{10}$$

### **Decimal addition**

```
1 5 12 9
   1529
```

## Binary addition

weight

### Binary addition (cont.)



### Hexadecimal addition (cont.)

$$(5 \quad 8 \quad 4)_{16}$$

$$(7 \quad 1 \quad 9)_{16}$$

$$(12)_{10} (9)_{10} (13)_{10}$$

$$(C)_{16} (9)_{16} (D)_{16}$$

$$(C \quad 9 \quad D)_{16}$$

### Hexadecimal addition (cont.)

## Negative Number Representation

- There are three formats for representing negative numbers in base-r system
  - Sign-magnitude
  - r's complement
  - (r-1)'s complement

### Negative Number Representation Sign-magnitude

#### Sign-magnitude

This type uses one bit for the sign (0 = positive, 1 = negative) and the remaining bits represent the magnitude of the number.

| Decimal value | Positive     | Negative     |
|---------------|--------------|--------------|
| 1             | 0001         | <b>1</b> 001 |
| 3             | 0011         | <b>1</b> 011 |
| 4             | 0100         | <b>1</b> 100 |
| 5             | <b>0</b> 101 | <b>1</b> 101 |

## 2's complement (Overview)

Given a number N in base r having n digits, the (r)'s complement of N is defined by  $= (r^n)$  -N.

For example if n = 4bits:

The 2's complement of 
$$(0010)_2$$
 is  $2^4 - 2 = 14 = (1110)_2$   
The 2's complement of  $(0110)_2$  is  $2^4 - 6 = 10 = (1010)_2$ 

$$2^{4}-6 = 16-6 =$$

$$= (1+15)-6$$

$$= 1+(15-6)= 1+(1111)_{2}-(0110)_{2}= 1+(1001)_{2}=(1010)_{2}$$

## 2's complement (Ex)



- 2's complement of  $(0011)_2 = 1 + (1100)_2 = (1101)_2$ 
  - 0 1 0 1
  - 1 1 0 1
  - 0 0 1 0
    - $\rightarrow$  (0 0 1 0)

## 2's complement (Ex)



2's complement of  $(00101)_2 = 1 + (11010)_2 = (11011)_2$ 

- 0 1 0 1 1
- 1 1 0 1 1 +
- 0 0 1 1 0
  - $\rightarrow \quad (0 \quad 0 \quad 1 \quad 1 \quad 0)_2$

## 2's complement (Ex)

Subtract 
$$5-9 \rightarrow (00101)_2 - (01001)_2 \rightarrow (00101)_2 - (01001)_2 - (4)_{10} = -(4)_{10} = -(00100)$$
  
2's complement of  $(01001)_2 = 1 + (10110)_2 = (10111)_2$   
0 0 1 0 1

2's complement of  $(11100)_2 = 1 + (00011) = (00100) \rightarrow -(00100)$ 

## 2's complement (cont.)

| Decimal | 4bit (+ve) | 4bit (-ve) |
|---------|------------|------------|
| 1       | 0001       | 1111       |
| 2       | 0010       | 1110       |
| 3       | 0011       | 1101       |
| 4       | 0100       | 1100       |
| 5       | 0101       | 1011       |
| 6       | 0110       | 1010       |
| 7       | 0111       | 1001       |

Weights of 2's complement (3 bit) are: -4 2 1

Weights of 2's complement (4 bit) are: -8 4 2 1

Weights of 2's complement (n bit ) are :  $-2^{n-1} 2^{n-2} 2^{n-3} \dots 2^1 2^0$ 

Ex using 2's complement  $(1010)_2$  is -8 + 2 = -6

## 2's complement (cont.) (Fast method)

Example (using 2's complement)

$$(1001)_2 \rightarrow -8+1=-7$$
  
 $(0101)_2 \rightarrow 4+1=5$   
 $(101)_2 \rightarrow -4+1=-3$   
 $(011)_2 \rightarrow 1+2=3$ 

## 2's complement (cont.) (Fast method- cont.)

Using 2's complement (4-bits)

$$Max \rightarrow (0111)_2 = +7$$

$$Min \rightarrow (1000)_2 = -8$$

Using 2's complement (3-bits)

$$Max \rightarrow (011)_2 = +3$$

$$Min \rightarrow (100)_2 = -4$$

Using 2's complement (n-bits)

$$Max \to +(2^{n-1})-1$$

$$Min \rightarrow -(2^{n-1})$$