Efron (1979) – Bootstrap Methods

Spencer Woody

UT-Austin, SDS 190

spencer.woody@utexas.edu

November 4, 2016

Overview

- Introduction
 - Theoretical Framework
 - Implementation of Bootstrap
- MSE of sample median
- 3 Error Rate Estimation in Discriminant Analysis
- 4 Regression Models
- 5 Relationship between Jackknife and Bootstrap

Problem Statement

We want to estimate the sampling distribution of a random variable R(X, F) given a sample size n

$$X = \{X_1, X_2, \dots X_n\}$$

 $X_i \stackrel{\text{iid}}{\sim} F, i = 1, 2, \dots, n$
 $X_i = x_i$ observed data

Jackknife

 $R(X,F) = t(X) - \theta(F)$, t(X) is some estimator of $\theta(F)$. some parameter of F which is of interest.

We obtain $\widehat{\text{Bias}}(t)$, $\widehat{\text{Var}}(t)$ by recomputing $t(\cdot)$ n times, each time leaving one observation from X out.

$$R'(X,F) = rac{t(X) - \hat{\mathsf{Bias}}(t) - heta(F)}{\left(\hat{\mathsf{Var}}(t)
ight)^{1/2}} \sim t_{n-1}$$

Bootstrap

- (1) Construct \hat{F} , discrete uniform with mass $\frac{1}{n}$ on each x_i
- (2) Draw the bootstrap sample of size n from \hat{F} . This is a resampling scheme.

$$X^* = \{X_1^*, X_2^*, \dots X_n^*\}$$

$$X_i^* \stackrel{\text{iid}}{\sim} \hat{F}, \ i = 1, 2, \dots, n$$

$$X_i^* = x_i^* \text{ realization of bootstrap sample}$$

(3) Approximate R(X, F) with $R^* = R(X^*, \hat{F})$.

Implementation of Bootstrap

I. Direct theoretical calculation

Use theoretical framework without creating simulations

II. Monte Carlo approximation with N simulations

- 1. Generate X^{*1}, \ldots, X^{*N}
- 2. Calculate $R^{*1} = R(X^{*1}, \hat{F}), \dots, R^{*N} = R(X^{*N}, \hat{F})$
- 3. Create histogram of R^{*1}, \dots, R^{*N} to make inferences on R(X, F)

Trivial theoretical calculation: Bernoulli

- $F \sim \text{Bernoulli}(\theta)$
- $X = \{X_1, X_2, \dots X_n\}$
- $X_i \stackrel{\text{iid}}{\sim} F$
- $R(X,F) = \bar{X} \theta$ (sample average pop. parameter)

Generate X^* and construct \hat{F} as described previously

- $X_i^* \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\bar{x})$
- $R(X,F) \approx R^*(X^*,\hat{F}) = \bar{X}^* \bar{x}$

$$\mathsf{E}(R^*) = 0 \qquad \mathsf{Var}(R^*) = \mathsf{Var}(\bar{X}^*) = \frac{\bar{x}(1-\bar{x})}{n}$$

 $ar{X}$ is unbiased in heta with variance $ar{x}(1-ar{x})/n$

Again, $X = \{X_1, X_2, \dots X_n\}$, $X_i \stackrel{\text{iid}}{\sim} F$. Suppose n is odd, n = 2m - 1

- $\theta(F)$ is the population median
- $t(X) = X_{(m)}$ is the sample median
- $R(X, F) = t(X) \theta(F)$

Generate bootstrap X^*

$$R^* = R(X^*, \hat{F}) = t(X^*) - \theta(\hat{F})$$

= $X^*_{(m)} - x_{(m)}$

Problem: Find expected MSE of t(X). Note that $R^* = X^*_{(m)} - x_{(m)}$

$$E_{F}((t(X) - \theta(F))^{2}) = E((R(X, F))^{2})$$

$$\approx E_{*}((R_{*})^{2})$$

$$= E_{*}(X_{(m)} - x_{(m)})^{2}$$

$$= \sum_{\ell=1}^{n} (x_{(\ell)} - x_{(m)})^{2} P(R^{*} = x_{(\ell)} - x_{(m)})$$

$$= \sum_{\ell=1}^{n} (x_{(\ell)} - x_{(m)})^{2} P(X_{(m)}^{*} = x_{(\ell)})$$

Find the distribution of random variable $X_{(m)}^{*}$

$$P(X_{(m)}^* > x_{(\ell)}) = P(x_{(\ell)} < X_{(m)}^*)$$

$$= P(\text{Binomial}(n, \ell/n) \le m - 1)$$

$$= \sum_{i=0}^{m-1} \binom{n}{j} \left(\frac{\ell}{n}\right)^j \left(\frac{n-\ell}{n}\right)^{n-j}$$

$$P(X_{(m)}^* = x_{(\ell)}) = P(X_{(m)}^* > x_{(\ell-1)}) - P(X_{(m)}^* > x_{(\ell)})$$

$$= \sum_{k=0}^{m-1} \binom{n}{k} \left(\frac{\ell-1}{n}\right)^k \left(\frac{n-\ell-1}{n}\right)^{n-k}$$

$$- \sum_{j=0}^{m-1} \binom{n}{j} \left(\frac{\ell}{n}\right)^j \left(\frac{n-\ell}{n}\right)^{n-j}$$

Now we can use this to estimate

$$E((R(X,F))^{2}) = E_{F}((t(X) - \theta(F))^{2})$$

$$\approx \sum_{\ell=1}^{n} (x_{(\ell)} - x_{(m)})^{2} P(X_{(m)}^{*} = x_{(\ell)})$$

No Monte Carlo sampling needed!

◆ロト ◆個ト ◆差ト ◆差ト 差 めらで

We have two unknown continuous PDFs F and G in \mathbb{R}^k space

$$X_i = x_i, \quad X_i \stackrel{\text{iid}}{\sim} F, \quad i = 1, 2, ..., m$$

 $Y_j = y_j, \quad Y_j \stackrel{\text{iid}}{\sim} G, \quad j = 1, 2, ..., n.$

Given our data X and Y we partition \mathbb{R}^k into two complementary regions A and B so as to ascribe a future observation z to F distribution if $z \in A$, or to G if $z \in B$.

$$\operatorname{error}_F = P_F(X \in B)$$
 $\widehat{\operatorname{error}}_F = \frac{\#\{x_i \in B\}}{m}$
 $R((X,Y),(F,G)) = \operatorname{error}_F - \widehat{\operatorname{error}}_F$

Given observed data x and y, the MLE of B is

$$B = \left\{ z : (\bar{y} - \bar{x})S^{-1}\left(z - \frac{\bar{x} + \bar{y}}{2}\right) > \log\frac{m}{n} \right\},\,$$

where
$$S = \left[\sum_{i} (x_i - \bar{x})(x_i - \bar{x})^T + \sum_{j} (y_j - \bar{y})(y_j - \bar{y})^T \right] / (m + n)$$

Estimating error using bootstrap

Construct bootstrap random samples

$$X_i^* = x_i^*, \quad X_i^* \stackrel{\text{iid}}{\sim} \hat{F}, \quad i = 1, 2, \dots, m$$

 $Y_j^* = y_j^*, \quad Y_j^* \stackrel{\text{iid}}{\sim} \hat{G}, \quad j = 1, 2, \dots, n.$

This yields a region B^* which is defined the same as before, except \bar{x}^* , \bar{y}^* , and S^* replace \bar{x} , \bar{y} , and S. One Monte Carlo simulation will produce

$$R^* = R((X^*, Y^*), (F^*, G^*)) = \frac{\#\{x_i \in B^*\}}{m} - \frac{\#\{x_i^* \in B^*\}}{m}.$$

Estimating error using cross validation

Leave one observation of x out. Construct \tilde{B} similar to before

$$\tilde{B} = \left\{ z : (\bar{y} - \bar{x})S^{-1}\left(z - \frac{\bar{x} + \bar{y}}{2}\right) > \log\frac{m}{n} \right\}.$$

Assign removed value according to this boundary. Repeat this m times, $\widetilde{\text{error}}_F$ is the proportion of times we wrongly assign the removed value. Do we decrease m to m-1 in this equation after leaving one out? NO.

$$\tilde{R} = \widetilde{\text{error}}_F - \widehat{\text{error}}_F$$

Comparison of two methods

$$F: X \sim N\left(\binom{-\frac{1}{2}}{0}, I\right), \quad G: Y \sim N\left(\binom{\frac{1}{2}}{0}, I\right)$$

Random Variable	m = n = 10			m = n = 20			
	Mean	(S.E.)	S.D.	Mean	(S.E.)	S.D.	Remarks
Error Rate Diff. (4.4) R	.062	(.003)	.143	.028	(.002)	.103	Based on 1000 trials
Bootstrap Expectation E_*R^*	.057	(.002)	.026	.029	(.001)	.015	Based on 100 trials; $N = 100$ Bootstrap
			[.023]			[.011]	Replications per trial. (Figure in
Bootstrap Standard $SD_*(R^*)$ Deviation	.131	(.0013)	.016	.097	(.002)	.010	brackets is S.D. if $N = \infty$.)
Cross-Validation Diff. \tilde{R}	.054	(.009)	.078	.032	(.002)	.043	Based on 40 trials

Figure: Error rate differences

Regression models

General regression model

$$Y_i = g_i(\beta) + \epsilon_i, \quad i = 1, 2, \dots, n$$
 (1)

$$\epsilon_i \stackrel{\text{iid}}{\sim} F$$
 (2)

F is centered at zero somehow (either mean or median). We observe Y=y Now we estimate β using, for example, least squares,

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - g_i(\beta))^2$$
 (3)

and we want to estimate the sampling distribution of $\hat{\beta}$.

Regression models

Use Monte Carlo sampling. Construct \hat{F} by

$$\hat{F}$$
: mass $\frac{1}{n}$ at $\hat{\epsilon}_i = y_i - g_i(\hat{\beta})$ (4)

The bootstrap sample is

$$Y_i^* = g_i(\hat{\beta}) + \epsilon_i^*, \quad \epsilon_i^* \stackrel{\text{iid}}{\sim} \hat{F}$$
 (5)

Now every realization of the bootstrap gives a value $\hat{\beta}^*$ which is found from the same minimization from before

$$\hat{\beta}^* = \arg\min_{\beta} \sum_{i=1}^{n} (y_i^* - g_i(\beta))^2$$
 (6)

We can use $\hat{\beta}^{*1}, \hat{\beta}^{*2}, \dots \hat{\beta}^{*N}$ to estimate the sampling distribution of $\hat{\beta}$.

 Spencer Woody (SDS 190)
 Efron (1979)
 November 4, 2016
 18 / 21

Relationship between Jackknife and Bootstrap

Shotgun method?

"I also wish to thank the many friends who suggested names more colorful than *Bootstrap*, including *Swiss Army Knife*, *Meat Axe*, *Swan-Dive*, *Jack-Rabbit*, and my personal favorite, the *Shotgun*, which, to paraphrase Tukey, 'can blow the head off any problem if the statistician can stand the resulting mess."" – Bradley Efron, 1979.

Thank you!

Questions

- Email: spencer.woody@utexas.edu
- Presentation: github.com/spencerwoody

Paper

Efron, B. "Bootstrap Methods: Another Look at the Jackknife." *The Annals of Statistics*. 1979. Vol. 7, No. 1, 1-26.