TD de Maths - Groupes

Exercice 1

- Dans $G = \mathbb{R} *x \mathbb{R}$ on définit la loi de composition interne dans G : (x,y) *(x',y') = (xx',xy'+y). Montrer que (G,*) est un groupe non abélien.
- Dans $G = \mathbb{R} \setminus \{-1\}$ on définit la loi de composition interne dans G : x * y = x + y + xyMontrer que (G, *) est un groupe abélien. Résoudre dans ce groupe a * x = b. Exemple : 3 * x = 1.

Exercice 2

- Dans \mathbb{R} on définit la loi de composition interne : $x * y = \sqrt[3]{x^3 + y^3}$. Montrer que (\mathbb{R} , *) est un groupe abélien isomorphe à (\mathbb{R} , +).
- Dans l'intervalle]-1,+1[montrer que $x \star y = \frac{x+y}{1+xy}$ définit une loi de composition interne.

Montrer que]-1,+1[muni de cette loi est un groupe isomorphe à (\mathbb{R} ,+) (penser à $x \to \operatorname{th} x$)

Exercice 3

Soient n un naturel non nul et $U = \left\{ e^{i\frac{2k\pi}{n}} / k \in \mathbb{Z} \right\}$

Montrer que (U,\times) est un groupe. Quel est son ordre?

Trouver un groupe additif isomorphe à (U,\times) .

Dans le cas particulier n=12, déterminer l'orbite et l'ordre de chaque élément du groupe U. faire une figure

Revenant au cas général, déterminer suivant k et n l'ordre de $x_k = e^{i\frac{2k\pi}{n}}$ dans le groupe U.

Exercice 4

Soit F l'ensemble des 6 fonctions f_i suivantes :

$$f_1(x) = x, f_2(x) = 1 - x, f_3(x) = \frac{1}{x}, f_4(x) = \frac{1}{1 - x}, f_5(x) = 1 - \frac{1}{x}, f_6(x) = \frac{x}{x - 1}$$

Montrer que f_1, f_2 et f_3 sont des bijections de $E = \mathbb{R} - \{-1, 1\}$ dans lui-même.

En déduire qu'il en est de même pour f_4 , f_5 et f_6 .

Faire la table de l'opération \circ dans F.

Montrer que (F, \circ) est un groupe et déterminer tous les sous-groupes.

Montrer que (F, \circ) est isomorphe à S_3 .

Exercice 5

Soient (E, \star) et (F, \otimes) deux groupes et $f: E \to F$ un morphisme de groupes

• Soit H un sous-groupe de E.

On considère l'ensemble $\overrightarrow{f}(H) = \{y \in F \mid \exists x \in H \mid y = f(x)\}\$ des images par f des éléments de H.

Montrer que $\overrightarrow{f}(H)$ est un sous-groupe de F.

• Soit *K* un sous-groupe de *F*.

On considère l'ensemble $f(K) = \{x \in E \mid f(x) \in K\}$ des éléments de E dont l'image appartient à K.

Montrer que f(K) est un sous-groupe de E.

- Soit $x \in E$. Montrer que l'ordre de f(x) dans (F, \otimes) est un diviseur de l'ordre de x dans (E, \star)
- Trouver tous les morphismes de groupe de $\mathbb{Z}/7\mathbb{Z}$ dans $\mathbb{Z}/13\mathbb{Z}$
- Trouver tous les morphismes de groupe de $\mathbb{Z}/3\mathbb{Z}$ dans $\mathbb{Z}/12\mathbb{Z}$