Restricting determiners

Conservativity and negative counterparts

PATRICK D. ELLIOTT ~ HEINRICH-HEINE UNIVERSITY DÜSSELDORF

Does semantics have a 'too many tools' problem? \sim September 20, 2024, Noto

https://patrickdelliott.com/pdf/tmt2024.pdf

Introduction

- The simple, but powerful tools commonly assumed in formal semantics, e.g., arbitrary functional types and higher-order functions, leads to an expressivity problem.
- A particular manifestation of this problem: a broad class of universally unattested non-conservative determiners can easily be expressed as higher-order functions.
- My approach:
 - Perhaps higher-order functions are the wrong tool.
 - Expanding the set of possible individuals will allow determiner meanings to be recast as predicates of pluralities.

1

Roadmap

- Background:
 - · Determiner meanings in GQ-theory.
 - Conservativity.
 - Warming up with numeral semantics.
- Negative individuals.
 - · Introducing the main formal innovation.
 - Incorporating plurality and maximality.
- Application to numerals.
- Extension to other determiners.
 - The non-expressibility of non-conservative determiners.
 - Any conservative determiner is expressible.

Background

Generalized quantifier theory

- A determiner-meaning in GQ-theory is modeled as a binary relation between sets of individuals *A*, *B* (Barwise & Cooper 1981, Keenan & Stavi 1986):
 - *A*: the restrictor.
 - *B*: the scope.
- (1) a. $some(A, B) \iff A \cap B \neq \emptyset$
 - b. $every(A, B) \iff A \subseteq B$
 - c. exactly three $(A, B) \iff \#(A \cap B) = 3$
 - d. $most(A, B) \iff \#(A \cap B) > \#(A B)$

Conservativity

- A cherished semantic universal: all attested determiner-meanings in natural language are *conservative*.
- (2) An NL determiner *Det* is conservative iff: $Det(A, B) \iff Det(A, A \cap B)$
- A corollary: A B may not effect the truth of Det(A, B), if Det is conservative.

Non-conservative determiners

• The conservativity universal is substantive; non-conservative determiners are easily expressible, e.g., the Härtig quantifier *I*.

(3)
$$I(A, B) \iff \#A = \#B$$

- Assume
 - $A = \{a\}; \#A = 1$
 - $B = \{b\}; \#B = 1$
 - $A \cap B = \emptyset; \#(A \cap B) = 0$
- #A = #B
- $\#A \neq \#(A \cap B)$

Non-conservative determiners cont.

• Another example of a non-conservative determiner: reverse "every" (Knowlton et al. 2021).

(4)
$$\mathbf{yvere}(A, B) \iff B \subseteq A$$

- Assume:
 - $B = \{b, a\}$
 - $A = \{a\}$
 - $A \cap B = \{a\}$
- B ⊈ A
- $(A \cap B) \subseteq A$

Determiners as higher-order functions

 The 'textbook' treatment of determiners in compositional semantics integrates them as higher-order functions via currying (Heim & Kratzer 1998).

$$[some] := \lambda A \in D_{\langle e,t \rangle} . \lambda B \in D_{\langle e,t \rangle} . some \begin{pmatrix} \{x \in D \mid A(x) = 1\}, \\ \{x \in D \mid B(x) = 1\} \end{pmatrix}$$

- Such meanings are easily integrated into the compositional regime thanks to arbitrary functional types.
 - This leads to an *expressivity* problem, since lexical entries for non-conservative determiners can easily be stated.
 - Nevertheless, the GQ-theoretic approach is the de facto standard in formal semantics.

Existing approaches to conservativity

- Most prominent approach to limiting the expressivity of higher-order functions in the literature: the structural account (Romoli2005).
- Mention Romoli.

Warming up: numeral semantics

- There's an alternative to GQ-theory, developed specifically for bare numerals.
 - Numerals are decomposed into cardinality predicates + covert existential quantification over pluralities (Link 1987, Verkuyl 1993, Carpenter 1998).
- (5) Three boys sneezed.

 $\exists X, X \text{ is a plurality of boys, } \#X = 3, \text{ each of } X \text{ sneezed.}$

- Ingredients (Winter 2001):
 - Numerals as predicates of pluralities (in the sense of Link 1983).
 - ER: Existential Raising.
 - Δ : The distributivity operator.

Warming up cont.

- (6) a. $[[three]] = \lambda X \cdot \# X = 3$ b. $\Delta(P) := \lambda X \cdot \forall x \leq_{At} X, P(X)$ c. $ER(Q) := \lambda P \cdot \exists X [Q(X) \land P(X)]$
- (7) Three boys sneezed.

$$ER(\lambda X . \text{ [[three]] } (X) \land \text{[[boys]] } (X))(\Delta(\text{[[sneezed]])})$$

 $\Rightarrow \exists X [\#X = 3, *boy(X), \forall x \leq_{At} X [sneezed(x)]]$

- Resulting truth-conditions equivalent to those resulting from the GQ-theoretic determiner **three**.
- Other determiners cannot be reanalyzed in this way, given standard assumptions.

Roadmap

- Goal: a compositional regime for (plural) determiners, in which non-conservative meanings are not expressible.
- · Basic ingredients:
 - Existential raising.
 - Distributivity.
 - Determiners as predicates.
- Making sense of determiners-as-predicates will require a re-jigging of the role of *individuals* in semantics.
- Concretely, I'll exploit an idea due to Bledin (2024) that the domain of individuals encodes a distinction between positive and negative information.

Negative individuals

Polarizing the domain

- Main innovation of Bledin (2024): the move from a domain of ordinary individuals to a polarized domain (see also Akiba 2009).
- The polarized domain D^{\pm} contains, for each individual $x \in D$:
 - x^+ : x's positive counterpart.
 - x^- : x's negative counterpart (pronounced "not x").

$$D := \{a, b, c\}$$

$$D^{\pm} = \{a^+, a^-, b^+, b^-, c^+, c^-, \dots\}$$

 Ordinary individuals are in a one-to-one relationship with their positive/negative counterparts.

What is a negative individual?

- Negative individuals can be thought of as a formal device for encoding an individual's non-participation.
 - If Jimmy happens to be swimming, then Jimmy is not swimming, and if Jimmy is not swimming, then Jimmy is swimming.

Constructing the polarized domain

- I'll model pluralities as i-sums (Link 1983).
- The polarized domain D^{\pm} is constructed in three steps:
 - Take the smallest set containing x^+ and x^- , for every individual $x \in D$.
 - Close the resulting set under sum-formation ⊕.
 - Remove incoherent pluralities (Akiba 2009).

Constructing the polarized domain cont.

- (8) A plurality *X* is incoherent, if there is some $x \in D$, s.t., $x^+ \leq_{At} X$ and $x^- \leq_{At} X$
- Importantly, this means that D^{\pm} is not closed under \oplus .
 - $a^+ \oplus b^+$ is coherent.
 - $a^+ \oplus b^+ \oplus b^-$ is incoherent.
- The resulting structure is a sub-lattice with multiple maximal elements, given a base domain with multiple elements.

Plurality cont.

$$D := \{a, b, c\}$$

$$D^{\pm} := \left\{ \begin{array}{c} a^{+} \oplus b^{+} \oplus c^{+}, \\ a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{+}, \\ a^{-} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \\ a^{-} \oplus b^{-} \oplus c^{-}, \\ a^{+} \oplus b^{+}, a^{+} \oplus b^{-}, a^{-} \oplus b^{+}, a^{-} \oplus b^{-}, \\ a^{+} \oplus c^{+}, a^{+} \oplus c^{-}, a^{-} \oplus c^{+}, a^{-} \oplus c^{-}, \\ b^{+} \oplus c^{+}, b^{+} \oplus c^{-}, b^{-} \oplus c^{+}, b^{-} \oplus c^{-}, \\ a^{+}, a^{-}, b^{+}, b^{-}, c^{+}, c^{-} \end{array} \right\}$$

Plurality cont.

- The resulting plural polarized domain, which from here on we'll refer to as D^{\pm} , thus contains many different pluralities, alongside positive/negative atoms:
 - Wholly-positive pluralities, e.g., $a^+ \oplus b^+$; "a and b"
 - Wholly-negative pluralities, e.g., $a^- \oplus b^-$; "not a and not b"
 - Mixed-polarity pluralities, e.g., $a^+ \oplus b^-$; "a and not b"
 - A useful convention when talking about pluralities in the polarized domain:
 - $X^+ = \{ x \in D \mid x^+ \leq_{At} X \}$
 - $X^- = \{ x \in D \mid x^- \leq_{At} X \}$
- E.g.,:
 - $(a^+ \oplus b^-)^+ = \{a\}$
 - $(a^+ \oplus b^-)^- = \{b\}$

Distributivity

- I'll assume that distributive predicates are still true of ordinary individuals.
- Composition with elements of D^{\pm} is mediated by the distributivity operator Δ , which has the following definition (ignoring homogeneity):
- (9) Polarized distributivity operator:

$$\Delta(P):=\lambda X\in D^{\pm}\,.\,\forall x\in X^{+},P(x)=1$$

$$\wedge\,\forall x'\in X^{-},P(x')=0$$

• $\Delta(\mathbf{swim})(a^+ \oplus b^+ \oplus c^-) \iff a, b \text{ both swim and } b \text{ doesn't swim}$

Plural marking and maximality

- How do NPs come to introduce elements of D^{\pm} ?
- I'll assume that the contribution of plural marking is to take the maximal elements of D^{\pm} , such that every atomic part is the pos/neg counterpart of an individual with the NP-property.

$$[10) \quad [boy] = \{a, b, c\}$$

$$(11) \quad [boys] = \mathbf{Max} \le \{X \in D^{\pm} \mid \forall x \in X^{+} \cup X^{-}, [boy] (x) \}$$

$$= \begin{cases} a^{+} \oplus b^{+} \oplus c^{+}, \\ a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{+}, \\ a^{-} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \\ a^{-} \oplus b^{-} \oplus c^{-} \end{cases}$$

Maximal pluralities express boolean functions

 A useful isomorphism: elements of [boys] express total mappings from boys to truth-values, depending on whether he participated in some yet-to-be-named eventuality (Amir Anvari, p.c.).

$$a^+ \oplus b^+ \oplus c^- \approx \begin{bmatrix} a \to 1 \\ b \to 1 \\ c \to 0 \end{bmatrix}$$

- More generally, elements of D^{\pm} are isomorphic to partial functions from D to $\{1,0\}$.
 - I'll come back to this correspondence later.

Application to numerals

Warming up: numeral semantics

- We can reconstruct a semantics for numerals as predicates of elements of D^{\pm} .
- Idea: numerals place cardinality constraints on the number of individuals with positive counterparts in a plurality.
- Importantly, since maximality is inherent in plural marking, numerals must have an *at least* semantics (cf. Winter 2001).

(12) **two** :=
$$\{X \in D^{\pm} \mid \#X^{+} \ge 2\}$$

Numeral semantics cont.

(13)
$$\mathbf{two} := \{X \in D^{\pm} \mid \#X^{+} \ge 2\}$$

$$(14) \quad \mathbf{two} \cap \llbracket \mathbf{boys} \rrbracket$$

$$= \mathbf{Max}_{\le} \{X \in D^{\pm} \mid \#X^{+} \ge 2, \forall x \in X^{+} \cup X^{-}, \mathbf{boy}(x)\}$$

$$= \begin{cases} a^{+} \oplus b^{+} \oplus c^{+}, \\ a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-} \oplus c^{-}, \\ \hline a^{-} \oplus b^{-} \oplus c^$$

Numeral semantics cont.

- Together with existential raising (*ER*) and distributivity (Δ), delivers at least truth-conditions:
- (15) Two boys sneezed.

$$ER(\mathbf{two} \cap \llbracket \mathbf{boys} \rrbracket)(\Delta(\mathbf{sneezed}))$$

$$\Rightarrow \Delta(\mathbf{sneezed})(a^+ \oplus b^+ \oplus c^+)$$

$$\vee \Delta(\mathbf{sneezed})(a^+ \oplus b^+ \oplus c^-)$$

$$\vee \Delta(\mathbf{sneezed})(a^+ \oplus b^- \oplus c^+)$$

$$\vee \Delta(\mathbf{sneezed})(a^- \oplus b^+ \oplus c^+)$$

Complex numerals

 This strategy generalizes to complex numeral expressions, which can all be treated as predicates of pluralities:

- (16) **exactly 2** := $\{X \in D^{\pm} \mid \#X^{+} = 2\}$
- (17) **between 3 and 5** := $\{X \in D^{\pm} \mid 3 \le \#X^{+} \le 5\}$
- (18) **less than 3** := $\{X \in D^{\pm} \mid \#X^{+} < 3\}$
 - Incorporating negative individuals immediately improves over a classical treatment of numerals as predicates with ER in some important respects:
 - Avoids van Benthem's problem with distributive predicates.
 - Avoids unwanted existential entailments for less than n
 - Allows "zero" to be treated as a numeral.

van Benthem's problem

- In a classical setting, existential quantification renders upper-bounds inert; the following are equivalent (van Benthem 1986).
 - $\exists X [\#X = 2, X \in *boy, \forall x \in X, P(x)]$
 - $\exists X [\#X \ge 2, X \in *boy, \forall x \in X, P(x)]$
- Thanks to maximality in NP-extensions, this problem doesn't arise:

(19) exactly
$$2 \cap [boys] =$$

$$\begin{cases}
a^{+} \oplus b^{+} \oplus c^{+}, \\
a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, \\
a^{-} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-},
\end{cases}$$

 ER derives the attested truth-conditions; in my Sinn und Bedeutung poster, I applied this to the problem of cumulative readings (Brasoveanu 2013).

Unwanted existential entailments

- In a classical setting, the predicative treatment of "less than *n*" leads to unwanted existential entailments (Buccola & Spector 2016).
 - $\exists X [\#X < n, X \in *boy(X), P(X)]$
- This is because there are no pluralities with cardinality 0; the minimal pluralities are atoms.
- This problem doesn't arise here, thanks to wholly negative pluralities.

(20)
$$| \mathbf{less than 2} \cap [\mathbf{boys}] | =$$

$$\begin{cases} a^{+} \oplus b^{+} \oplus c^{+}, \\ a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{+}, \\ a^{-} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \\ a^{-} \oplus b^{-} \oplus c^{-} \end{cases}$$

- In a classical setting, a predicative treatment of "zero NPs" isn't viable; since the minimal pluralities are atoms, a predicative treatment of "zero" leads to a necessary contradiction.
- A treatment of "zero" is straightforward here, with the proviso that it must have an *exactly* semantics to avoid a necessary tautology (Bylinina & Nouwen 2018).

(21) **zero** =
$$\{X \in D \pm \mid \#X = 0\}$$

(22)
$$zero \cap [boys] =$$

$$\left\{
\begin{array}{c}
a^{+} \oplus b^{+} \oplus c^{+}, \\
a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, \\
a^{-} \oplus b^{-} \oplus c^{-}, a^{-} \oplus b^{-} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-},
\end{array}
\right\}$$

On the bottom element

- Buccola & Spector (2016) entertain extending Link's plural ontology with a *bottom element* \bot , s.t., $\#\bot = 0$, in order to solve the existential entailment problem with *less than n*
- Bylinina & Nouwen (2018) consider the same move, in order to give a principled semantics for "zero".
- In the current setting, *maximal*, *wholly negative pluralities* play the same role as the bottom element.
 - This however was not tailored as a solution for these problems, but falls out as a happy accident.
 - Ask me about presupposition projection for an independent argument that negative individuals are preferable to the bottom element.

Connection to GQ theory

 Tellingly, none of the problems I've noted arise on a GQ-theoretic treatment of numerals either, since GQ-theory makes no reference to pluralities:

(23) **less than 3**
$$(R,S) \iff \#(R \cap S) < 3$$

- (23) of course holds if $R \cap S$ is empty.
- Negative individuals allow us to retain *both* the expressive advantages of GQ-theory, and the advantages of treating numerals as predicates of pluralities.

Connection to GQ theory cont.

- In the following section, I'll demonstrate that negative individuals are not just handy for numeral semantics.
- Not just numerals, but all conservative determiners may be defined as predicates of pluralities.
- The LF for quantificational statements generalizes the compositional strategy developed for numerals.
- Furthermore, non-conservative determiners are not expressible as
 predicates of pluralities; if all determiners are predicates, the
 conservativity universal is explained.

Determiners and conservativity

A unified LF for quantificational statements

Defining some basic determiners

- We've already seen that with negative individuals, we can easily define both bare and complex numerals as predicates of pluralities.
- This strategy can easily be extended to existential/universal determiners, by placing constraints on X⁺ and X⁻.

(24) **some** =
$$\{X \in D^{\pm} \mid X^{+} \neq \emptyset\}$$

(25) **all** =
$$\{X \in D^{\pm} \mid X^{-} = \emptyset\}$$

(26) **no** =
$$\{X \in D^{\pm} \mid X^{+} = \emptyset\}$$

(27) **not all** =
$$\{X \in D^{\pm} \mid X^{-} \neq \emptyset\}$$

Defining some basic determiners cont.

- It can easily be verified that these entries give rise to the right truth-conditions.
- In particular, there is always a unique maximal NP plurality in D^{\pm} with no negative parts, and a unique maximal NP plurality in D^{\pm} with no positive parts.
- (28) All boys sneeze. $\Rightarrow ER(\mathbf{all} \cap \llbracket \text{boys} \rrbracket)(\Delta(\llbracket \text{sneeze} \rrbracket)) \Rightarrow \Delta(\llbracket \text{sneeze} \rrbracket)(a^+ \oplus b^+ \oplus c^+)$
- (29) No boys sneeze. $\Rightarrow ER(\mathbf{no} \cap [[boys]])(\Delta([[sneeze]])) \Rightarrow \Delta([[sneeze]])(a^- \oplus b^- \oplus c^-)$

Proportional determiners

 This strategy extends to proportional determiners via cardinality comparisons.

(31) exactly half =
$$\{X \in D^{\pm} \mid \#X^{+} = \#X^{-}\}$$

(32) most \cap [boys] =
$$\begin{cases} a^{+} \oplus b^{+} \oplus c^{+}, \\ a^{+} \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{+}, a^{-} \oplus b^{+} \oplus c^{-}, \\ a \oplus b \oplus c^{+}, a \oplus b^{+} \oplus c^{-}, a^{+} \oplus b^{-} \oplus c^{-}, \end{cases}$$

(30) $\mathbf{most} = \{ X \in D^{\pm} \mid \#X^{+} > \#X^{-} \}$

Defining non-conservative determiners

- What would it take to define a non-conservative determiner in this system?
 - Take the Härtig quantifier *I*:

(33)
$$I(A,B) \iff \#A = \#B$$

• In the current system, a *Det* is a predicate that composes with a plural NP via intersective modification. Therefore:

$$(Det \cap [NP]) \subseteq [NP]$$

- The NP itself delimits possible determiner meanings; each plurality $X \in [NP]$ encodes information, for each $x \in A$, about whether x is true or false of B.
 - See (Westerståhl 2024) for a related notion of restricted quantification.

Defining non-conservative determiners cont.

- In order to define *I*, we need to access just the scope set *B* independently of the restrictor *A*.
- It's clearly not possible to access *B* by taking a subset of [NP]:
 - Given a maximal NP plurality *X*:
 - $\bullet \quad X^+ \cup X^- = A$
 - X⁺ ∩ X⁻ = Ø
 - $X^+ = A \cap B$
 - $X^- = A B$
- A standard conceptualization of conservativity is that it rules out determiner meanings which make reference to the scope, not relative to the restrictor.

Maximal pluralities and complete answers

- In a sentence of the form [Det NP VP], each element of [NP] corresponds to a *complete answer* to the question, "who of NP did VP?".
- Selecting a subset of [NP] will invariably deliver a proposition that is relevant (in the sense of von Fintel & Heim 2023), relative to the partition induced by "who of *A* did *B*?".
- Conjecture: conservative, but not non-conservative determiners make Det(A, B) relevant to "who of A did B?".

Non-conservative determiners are not expressible

- Let *R* be an arbitrary restrictor.
- Consider $\operatorname{Max}\{X \in D^{\pm} \mid \forall x \in X^{+} \cup X^{-}, R(x)\}.$
- As we've seen, this set is isomorphic to the set of functions $\mathbb{R} := \{f \mid f : R \mapsto \{1,0\}\}$
 - Assuming $R := \{a, b\}$

$$\mathbb{R} = \left[\overbrace{\begin{bmatrix} a \to 1 \\ b \to 1 \end{bmatrix}}^{a^+ \oplus b^+}, \overbrace{\begin{bmatrix} a \to 1 \\ b \to 0 \end{bmatrix}}^{a^+ \oplus b^-}, \overbrace{\begin{bmatrix} a \to 0 \\ b \to 1 \end{bmatrix}}^{a^- \oplus b^+}, \overbrace{\begin{bmatrix} a \to 0 \\ b \to 0 \end{bmatrix}}^{a^- \oplus b^-}$$

Non-conservative determiners are not expressible cont.

- $Det(\mathbb{R}) \subseteq \mathbb{R}$ (determiners are restrictive modifiers).
- For example, "most" picks out the smallest subset of \mathbb{R} containing every function that maps more elements of R to 1 than 0.
 - $f^+ = \{x \in \mathbf{dom}(f) \mid f(x) = 1\}$
 - $f^- = \{x \in \mathbf{dom}(f) \mid f(x) = 0\}$
- (34) $\operatorname{most} \operatorname{boys} \approx \{ f \mid f : \operatorname{boy} \mapsto \{1, 0\}, f^+ > f^- \}$

$$\left\{ \begin{bmatrix} a \to 1 \\ b \to 1 \\ c \to 1 \end{bmatrix}, \begin{bmatrix} a \to 1 \\ b \to 1 \\ c \to 0 \end{bmatrix}, \begin{bmatrix} a \to 1 \\ b \to 0 \\ c \to 1 \end{bmatrix}, \begin{bmatrix} a \to 0 \\ b \to 1 \\ c \to 1 \end{bmatrix} \right\}$$

Non-conservative determiners are not-expressible

- How does $Det(\mathbb{R})$ combine with the scope $S: D \mapsto \{1, 0\}$.
- $ER + \Delta$ leads to the requirement there is an $f \in Det(\mathbb{R})$, s.t., f and S agree on Dom(f).
- The resulting truth-conditions of a quantificational statement can be reformulated in terms of Boolean functions:

$$\exists f \in Det(\mathbb{R}), \forall x \in \mathbf{dom}(f)(f(x) \iff S(x))$$

Informal demonstration cont.

$$\exists f \in Det(\mathbb{R}), \forall x \in \mathbf{dom}(f)(f(x) \iff S(x))$$

- It's obvious from this formulation that S R cannot effect the resulting truth-conditions, since as long as $Det(\mathbb{R}) \subseteq \mathbb{R}$, any choice of f is s.t., $\mathbf{dom}(f) = R$
- To determine whether f and S agree on $\mathbf{Dom}(f)$, we only need to look at $\mathbf{Dom}(f) \cap S$, i.e., $R \cap S$.
 - Any determiner expressible in this way must be conservative.

Any conservative determiner is expressible

• Let R_{Cons} be a conservative determiner.

$$R_{Cons}(A, B) \iff R_{Cons}(A, A \cap B)$$

- R_{Cons} gives rise to a set of boolean functions as follows:
 - $f^+ \cup f^- \approx (A \cap B) \cup (A B) \approx A$
 - $f^+ \approx A \cap B$
- (35) $\{f \mid \exists X \in D, f : X \mapsto \{1, 0\}, R_{Cons}(f^+ \cup f^-, f^+)\}$

• This is isomorphic to a subset of D^{\pm} .

Example: Most as a property of Boolean functions

(36)
$$\begin{cases} f \middle| \exists X \in D, f : X \mapsto \{1, 0\}, \\ \mathbf{most}(f^{+} \cup f^{-}, f^{+}) \end{cases}$$
(37)
$$\begin{cases} f \middle| \exists X \in D, f : X \mapsto \{1, 0\}, \\ \#((f^{+} \cup f^{-}) \cap f^{+}) > \#((f^{+} \cup f^{-}) - f^{+}) \end{cases}$$
(38)
$$\equiv \begin{cases} f \middle| \exists X \in D, f : X \mapsto \{1, 0\}, \\ \#f^{+} > \#f^{-} \end{cases}$$
(39)
$$\equiv \begin{cases} f \middle| \exists X \in D, f : X \mapsto \{1, 0\}, \\ \#f^{+} > \#f^{-} \end{cases}$$
(40)
$$\begin{cases} f \middle| f : \mathbf{boy} \to \{1, 0\}, \#f^{+} > \#f^{-} \}$$
(41)
$$\exists f : \mathbf{boy} \mapsto \{1, 0\}, \#f^{+} > \#f^{-}, \\ \forall x \in \mathbf{boy}[f(x) \iff \mathbf{sneeze}(x)] \end{cases}$$

Extensions and open issues

Semantic singularity and collective predication

- The current framework struggles to account for the distinction between:
 - "No boy" vs. "no boys"
 - "Some boy" vs. "some boys"
 - "Every boy" vs. "all boys"
- No worse than GQ-theory, but it order to give a uniform semantics for determiners, we need a more sophisticated notion of plurality/singularity.

Semantic singularity and collective predication cont.

- Relatedly, how to account for collective predication?
 - (42) Some boys met in the park.
 - (43) #Some boy met in the park.
- A natural move is to also consider positive/negative counterparts of i-sums, e.g., $(a \oplus b \oplus c)^-$ (Justin Bledin, p.c.).
 - singular NPs range over maximal sums of *atomic* counterparts; plural NPs range over maximal sums of *plural* counterparts.
 - Exploring the ramifications of this set-up, and its applications to semantic singularity/plurality and collective predication is the next step in this research program.

Conclusion

- Potential applications:
 - Presupposition projection.
 - Homogeneity and non-maximality.
 - Complement anaphora.

 $\mathcal{F}in$

References i

Barwise, Jon & Robin Cooper. 1981. **Generalized quantifiers and natural language.** *Linguistics and Philosophy* 4(2). 159–219. https://doi.org/10.1007/BF00350139.

https://doi.org/10.1007/BF00350139 (20 September, 2021).

van Benthem, Johan. 1986. *Essays in Logical Semantics*. (Studies in Linguistics and Philosophy). Springer Netherlands.

https://doi.org/10.1007/978-94-009-4540-1.

https://www.springer.com/gp/book/9789027720924 (18 September, 2020).

References ii

- Bledin, Justin. 2024. **Composing menus.** Unpublished draft. Johns Hopkins University.
 - Brasoveanu, Adrian. 2013. **Modified Numerals as Post-Suppositions.** *Journal of Semantics* 30(2). 155–209. https://doi.org/10.1093/jos/ffs003. https://doi.org/10.1093/jos/ffs003 (13 February, 2022).
- Buccola, Brian & Benjamin Spector. 2016. **Modified numerals and maximality.** *Linguistics and Philosophy* 39(3). 151–199. https://doi.org/10.1007/s10988-016-9187-2.

http://link.springer.com/10.1007/s10988-016-9187-2 (10 September, 2024).

References iii

- Bylinina, Lisa & Rick Nouwen. 2018. On "zero" and semantic plurality. Glossa-an International Journal of Linguistics: a journal of general linguistics 3(1). https://doi.org/10.5334/gjgl.441. http://www.glossa-journal.org//articles/10.5334/gjgl.441/.
- Carpenter, Bob. 1998. *Type-logical semantics*. (Language, Speech, and Communication). Cambridge, Mass: MIT Press. 575 pp.
- Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. (Blackwell Textbooks in Linguistics 13). Malden, MA: Blackwell. 324 pp.
- Keenan, Edward L. & Jonathan Stavi. 1986. A semantic characterization of natural language determiners. *Linguistics and Philosophy* 9(3). 253–326. https://doi.org/10.1007/BF00630273. https://doi.org/10.1007/BF00630273 (13 September, 2024).

References iv

Knowlton, Tyler Zarus et al. 2021. **Determiners are "conservative"** because their meanings are not relations: evidence from verification. *Semantics and Linguistic Theory* 30, 206.

https://doi.org/10.3765/salt.v30i0.4815.

https://journals.linguisticsociety.org/proceedings/index.php/SALT/article/view/30.206 (19 September, 2024).

Link, Godehard. 1983. **The logical analysis of plurals and mass terms - A Lattice-Theoretic Approach.** In Paul Portner & Barbara H. Partee (eds.), *Formal semantics: The essential readings*, 127–147. Blackwell.

References v

- Link, Godehard. 1987. **Generalized Quantifiers and Plurals.** In Peter Gärdenfors (ed.), *Generalized Quantifiers: Linguistic and Logical Approaches*, 151–180. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-3381-1_6. https://doi.org/10.1007/978-94-009-3381-1_6 (19 April, 2024).
- Verkuyl, Henk J. 1993. A Theory of Aspectuality: The Interaction between Temporal and Atemporal Structure. 1st edn. Cambridge University Press. https://doi.org/10.1017/CB09780511597848. https://www.cambridge.org/core/product/identifier/9780511597848/type/book (19 September, 2024).
- von Fintel, Kai & Irene Heim. 2023. Intensional semantics.
 Unpublished textbook. MIT. file:///home/patrl/Downloads/fintel-heim-2023-IntensionalSemantics.pdf.

References vi

Westerståhl, Dag I. 2024. Generalized quantifiers. In

Edward N. Zalta & Uri Nodelman (eds.), *The Stanford Encyclopedia of Philosophy*, Fall 2024.

https://plato.stanford.edu/archives/fall2024/entries/generalized-quantifiers.

Winter, Yoad. 2001. *Flexibility principles in boolean semantics* - the interpretation of coordination, plurality, and scope in natural *language*. (Current Studies in Linguistics 37). Cambridge Massachussetts: The MIT Press. 297 pp.