Cálculo de Varias Variables Práctica Calificada: Funciones Vectoriales

20 de Setiembre 2024

Resuelva los siguientes problemas mostrando todos los pasos.

Nombre:		
---------	--	--

- 1. Producto escalar de funciones vectoriales: Dadas las funciones vectoriales
 - $\mathbf{r}_1(t) = \langle 2t^2, 3\sin(t), 4e^t \rangle$,
 - $\mathbf{r}_2(t) = \langle 5\cos(t), t, 3\ln(t+1) \rangle$,

Encuentre el producto escalar $\mathbf{r}_1(t) \cdot \mathbf{r}_2(t)$.

- 2. Producto vectorial de funciones vectoriales: Dadas las funciones vectoriales
 - $\mathbf{r}_1(t) = \langle t^2, 4t, 1 \rangle$,
 - $\mathbf{r}_2(t) = \langle 1, 2\cos(t), 2\sin(t) \rangle$,

Calcule el producto vectorial $\mathbf{r}_1(t) \times \mathbf{r}_2(t)$.

- 3. Derivadas e Integrales de funciones vectoriales: Sea la función vectorial
 - $\mathbf{r}(t) = \langle t^3, 3e^t, 3\sin(t) \rangle$,
 - $\mathbf{r}(t) = \langle \frac{4}{5} \cos t, \sin t 1, -\frac{3}{5} \cos t \rangle$
 - (a) Encuentre la derivada $\mathbf{r}'(t)$.
 - (b) Calcule la integral $\int \mathbf{r}(t) dt$.
- 4. Vectores tangente unitario, normal y binormal: Para la función vectorial
 - (a) $\mathbf{r}(t) = \langle e^t, 2t^2, 3t^3 \rangle,$
 - (b) $\mathbf{r}(t) = \langle \frac{4}{5} \cos t, \sin t 1 \rangle$,

Encuentre los vectores tangente unitario $\mathbf{T}(t)$, normal unitario $\mathbf{N}(t)$ y binormal $\mathbf{B}(t)$.

5. Planos normal, osculador y rectificante: Dada la curva parametrizada por

$$\mathbf{r}(t) = \langle \cos(t), \sin(t), \ln(t+1) \rangle$$

Encuentre las ecuaciones de los planos normal, osculador y rectificante en $t = \frac{\pi}{2}$.