Lecture 0 – Course Overview COSE212: Programming Languages

Jihyeok Park

2024 Fall

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr
- Class: COSE212 01 (English)

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr
- Class: COSE212 01 (English)
- Homepage: https://plrg.korea.ac.kr/courses/cose212/

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr
- Class: COSE212 01 (English)
- Homepage: https://plrg.korea.ac.kr/courses/cose212/
- Teaching Assistant:
 - Jungyeom Kim (김준겸) kimjg1119@korea.ac.kr
 - Seongmin Ko (고성민) 2018320221@korea.ac.kr

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr
- Class: COSE212 01 (English)
- Homepage: https://plrg.korea.ac.kr/courses/cose212/
- Teaching Assistant:
 - Jungyeom Kim (김준겸) kimjg1119@korea.ac.kr
 - Seongmin Ko (고성민) 2018320221@korea.ac.kr
- Discussion & Questions: https://campuswire.com/c/G2CA06AE4

Passcode:

Grading

- 4 Homework Assignments: 30%
 - Programming assignments in Scala (submission in **Blackboard**)
 - You can utilize or refer to any other materials (e.g., ChatGPT), but you MUST write your OWN solution.
 - Cheating is strictly prohibited. Cheating will get you an F.

Grading

- 4 Homework Assignments: 30%
 - Programming assignments in Scala (submission in <u>Blackboard</u>)
 - You can utilize or refer to any other materials (e.g., ChatGPT), but you MUST write your OWN solution.
 - Cheating is strictly prohibited. Cheating will get you an F.
- Midterm exam: 30%
 - October 23 (Wed.) 18:30 21:00 (150 min.)
 - In classroom, closed book, closed notes
- Final exam: 30%
 - December 18 (Wed.) 18:30 21:00 (150 min.)
 - In classroom, closed book, closed notes

Grading

- 4 Homework Assignments: 30%
 - Programming assignments in Scala (submission in <u>Blackboard</u>)
 - You can utilize or refer to any other materials (e.g., ChatGPT), but you MUST write your OWN solution.
 - Cheating is strictly prohibited. Cheating will get you an F.
- Midterm exam: 30%
 - October 23 (Wed.) 18:30 21:00 (150 min.)
 - In classroom, closed book, closed notes
- Final exam: 30%
 - December 18 (Wed.) 18:30 21:00 (150 min.)
 - In classroom, closed book, closed notes
- Attendance: 10%
 - Please use **Blackboard** to attend the class **by yourself**.

Schedule

Weak	Contents	Weak	Contents
1	Introduction	9	Continuations
2	Syntax and Semantics	10	First-Class Continuations
3	Identifiers and First-Order Functions	11	Type Systems
4	First-Class Functions and Recursion	12	Algebraic Data Types
5	Mutable Variables	13	Parametric Polymorphism
6	Garbage Collection	14	Subtype Polymorphism
7	Lazy Evaluation	15	Type Inference
8	Midterm Exam (Oct. 23 - Wed.)	16	Final Exam (Dec. 18 - Wed.)

On the four days listed below, there will be no offline lectures. Instead, lecture videos will be uploaded to <u>Blackboard</u>.

- Sep. 16 (Mon.) / 18 (Wed.) 추석
- Oct. 9 (Wed.) 한글날
- Nov. 20 (Wed.) External Schedule

Course Materials

Self-contained lecture notes.

https://plrg.korea.ac.kr/courses/cose212/

Course Materials

Self-contained lecture notes.

https://plrg.korea.ac.kr/courses/cose212/

 Reference: "Introduction to Programming Languages" written by Jaemin Hong and Sukyoung Ryu

https://hjaem.info/itpl

To learn essential concepts of programming languages

• Why?

To learn essential concepts of programming languages

• Why? After this course, you will be able to:

- Why? After this course, you will be able to:
 - learn new programming languages quickly.
 - evaluate and pick the best language for a given task.
 - design your own specialized languages for specific tasks.

- Why? After this course, you will be able to:
 - learn new programming languages quickly.
 - evaluate and pick the best language for a given task.
 - **design** your own **specialized languages** for specific tasks.
- How?

- Why? After this course, you will be able to:
 - learn new programming languages quickly.
 - evaluate and pick the best language for a given task.
 - **design** your own **specialized languages** for specific tasks.
- How? You will learn how to:
 - design programming languages in a mathematical way.
 - implement their interpreters using Scala.

- Why? After this course, you will be able to:
 - learn new programming languages quickly.
 - evaluate and pick the best language for a given task.
 - design your own specialized languages for specific tasks.
- How? You will learn how to:
 - design programming languages in a mathematical way.
 - implement their interpreters using Scala.
- However, note that:
 - You will NOT learn particular programming languages.
 - You will NOT learn how to write programs in those languages.
 - This is NOT an introductory course. You should have a strong understanding of introductory computer science courses. (i.e., theory of computation, discrete mathematics, and data structures)

Interpreters vs Compilers

• An **interpreter** takes and executes a program to produce the result.

- Good for understanding program behavior, easy to implement.
- For example, scala, python, bash, desktop calculator, etc.
- You will implement interpreters of various languages in this course.

Interpreters vs Compilers

• An **interpreter** takes and executes a program to produce the result.

- Good for understanding program behavior, easy to implement.
- For example, scala, python, bash, desktop calculator, etc.
- You will implement interpreters of various languages in this course.
- A **compiler** takes a program and produces another program.

- Good for **speed**, but more **complex**.
- For example, scalac, gcc, javac, etc.
- If you're interested in compilers, take COSE312: Compilers.

Roadmap: Growing a Language

We will grow a language step by step from a simple arithmetic language to a complex language with various features.

Roadmap: Growing a Language

We will grow a language step by step from a simple arithmetic language to a complex language with various features.

- Part 1: Untyped Languages
 - Syntax, Semantics, Identifiers
 - Functional Functions, Closures, Recursion
 - Imperative Mutation, Sequences, Garbage Collection
 - Advanced Lazy Evaluation, Continuations

Roadmap: Growing a Language

We will grow a language step by step from a simple arithmetic language to a complex language with various features.

Part 1: Untyped Languages

- Syntax, Semantics, Identifiers
- Functional Functions, Closures, Recursion
- Imperative Mutation, Sequences, Garbage Collection
- Advanced Lazy Evaluation, Continuations

Part 2: Typed Languages

- Type Systems Types, Typing Rules, Typed Languages
- Algebraic Data Types Variants, Pattern Matching
- Polymorphism Parametric Polymorphism, Subtype Polymorphism
- Type Inference Type Variables, Type Unification

Next Lecture

Basic Introduction of Scala

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr