Applications linéaires & matrices

Olivier Nicole

24 mars 2021

Définition 1 – Applications linéaires

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels. Une application linéaire (ou morphisme ou, plus rarement, homomorphisme) de $(E, +, \bullet)$ dans $(F, +, \bullet)$ est une fonction φ de E dans F qui vérifie les deux propriétés suivantes :

- 1 (additivité) $\forall u, v \in E$, on a : $\varphi(u + v) = \varphi(u) + \varphi(v)$;
- 2 (homogénéité) $\forall \lambda \in \mathbb{K}, \forall \mathbf{u} \in \mathbf{E}, \text{ on a} : \varphi(\lambda \bullet \mathbf{u}) = \lambda \bullet \varphi(\mathbf{u}).$

L'ensemble des applications linéaires de $(E, +, \bullet)$ et $(F, +, \bullet)$ est noté $\mathcal{L}(E, F)$.

Applications linéaires 00000

Définition 2 – Endomorphismes

Soit $(E, +, \bullet)$ un \mathbb{K} -espace vectoriel. Une application linéaire de $(E, +, \bullet)$ dans $(E, +, \bullet)$ dans lui même est appelée un endomorphisme.

L'ensemble des endomorphismes de $(E, +, \bullet)$ est noté $\mathcal{L}(E)$.

Applications linéaires 00000

Définition 3 – Isomorphismes

Un isomorphisme est une application linéaire bijective. L'ensemble des isomorphismes entre un espace vectoriel $(E, +, \bullet)$ et un autre $(F, +, \bullet)$ est noté Isom(E, F).

Définition 4 – Automorphismes

Un automorphisme est un morphisme bijectif. L'ensemble des automorphismes d'un espace linéaire $(E, +, \bullet)$ est noté $\mathcal{GL}(\mathbf{E})$.

Applications linéaires

Définition 5 – Forme linéaire

Une application linéaire d'un \mathbb{K} -espace vectoriel dans l'espace $(\mathbb{K},+,ullet)$ est appelée une forme linéaire.

Applications linéaires 00000

> Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels et φ une fonction de E dans F. Alors φ est une application linéaire de $(E, +, \bullet)$ dans $(F, +, \bullet)$ si et seulement si, pour tout scalaire $\lambda \in \mathbb{K}$, tout couple de vecteurs $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}^2$, on a : $\varphi(\mathbf{u} + \lambda \bullet \mathbf{v}) = \mathbf{E}^2$ $\varphi(\mathbf{u}) + \lambda \bullet \varphi(\mathbf{v}).$

Noyau

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi \in$ $\mathcal{L}(\mathbf{E},\mathbf{F})$. On appelle noyau de φ , qu'on note $\mathrm{Ker}\,(\varphi)$ les antécédents de 0. C'est à dire

$$\operatorname{Ker}(\varphi) = \{ \mathbf{x} \in \mathbf{E} \mid \varphi(\mathbf{x}) = 0 \}$$

Le noyau est donc une partie de l'ensemble E.

Le noyau d'un morphisme de $\mathcal{L}(E,F)$ est un sous-espace vectoriel de E.

On peut donc se contenter de montrer qu'une partir de *E* est le noyau d'un morphisme pour savoir que c'est un sous-espace vectoriel. C'est une manière très compacte et pratique de prouver qu'un ensemble est un sous espace vectoriel.

Noyau

Exemple 1

On prend $E = \mathbb{R}^3$. Montrer que l'ensemble F = $\{(x,y,z)\in\mathbb{R}^3\ |\ x+2y=0\}$ est un sous espace vectoriel de *E*.

Exemple 2

Soit E l'espace vectoriel des fonctions \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} . On se donne une équation différentielle y'' + ay' + by = 0. Prouver que l'ensemble F des solutions est un espace vectoriel.

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi\in\mathcal{L}(E,F)$. φ est injective si et seulement si $\mathrm{Ker}\,(\varphi)=\{0\}$.

Définition 7 – Image d'un morphisme

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi \in$ $\mathcal{L}(\mathbf{E}, \mathbf{F})$. On appelle image de φ , qu'on note Im (φ) l'ensemble des images des éléments de \mathbf{E} par φ . C'est à dire

$$\operatorname{Im}(\varphi) = \{ \varphi(\mathbf{x}) \mid \mathbf{x} \in \mathbf{E} \}$$

L'image est donc une partie de l'ensemble F.

Image et rang

Définition 8 - Rang

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi\in\mathcal{L}(E,F)$. On appelle rang de φ , qu'on note $\operatorname{rg}(\varphi)$ la dimension de son image.

$$\operatorname{rg}(\varphi) = \dim(\operatorname{Im}(\varphi))$$

On définit de la même façon le rang d'une matrice.

Théorème 2 – Théorème du rang (morphismes)

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels de dimension finie et $\varphi \in \mathcal{L}(E, F)$.

$$\dim \mathbf{E} = \operatorname{rg}(\varphi) + \dim \operatorname{Ker}(\varphi)$$

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels de dimension finie et $\varphi \in \mathcal{L}(E, F)$.

On note $n = \dim F$ et $m = \dim F$

- \blacksquare Si n > m, φ ne peut pas être injectif et le noyau est au moins de dimension n-m.
- \blacksquare Si n < m, φ ne peut pas être surjectif et l'image est au plus de dimension n.
- Si φ est injective, alors $n \leq m$.
- Si φ est surjective, alors $n \ge m$.
- Si φ est bijective, alors n = m.

Soit *u* un endomorphisme. Il y a équivalence entre.

- 1 u est bijectif
- u est injectif
- u est surjectif

Définition 9 – Matrice

Soient $m, n \in \mathbb{N}$. On appelle une matrice d'éléments de \mathbb{K} à mlignes et à n colonnes une famille d'éléments $(a_{i,j})_{1 \le i \le m, 1 \le i \le n}$ de \mathbb{K} indexée par les couple (i,j) où i varie entre 1 et m, et j varie entre 1 et n.

On dit aussi que $(a_{i,j})_{1 < j < m, 1 < j < n}$ est une matrice de taille $m \times m$ n.

On note $\mathcal{M}_{m,n}$ l'ensemble des matrices de tailles $m \times n$ d'élément de K.

Enfin, lorsque m = n, on dit que les matrices de $\mathcal{M}_{m,n}$ sont carrées de taille m. Dans ce cas, on note simplement $\mathcal{M}_n(\mathbb{K})$.

Lien entre matrice carrée et endomorphisme

Définition 10

Soit E un K-espace vectoriel de dimension n et (e_1, e_2, \dots, e_n) une base de E. Soit $\varphi \in \mathcal{L}(E)$. On peut décrire entièrement φ par une matrice de $\mathcal{M}_n(\mathbb{K})$, où la colonne *i* contient la décomposition de $\varphi(e_i)$ dans la base (e_1, e_2, \dots, e_n) . On dit que cette matrice est la matrice de φ dans la base (e_1, \ldots, e_n) .

Définition 11

On note $I_n \in \mathcal{M}_n(\mathbb{K})$ la matrice de dimension $n \times n$

$$I_{n} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Proposition 5

Soit E un \mathbb{K} -espace vectoriel de dimension n. La matrice I_n représente l'endomorphisme Id_F de n'importe quelle base dans elle-même.

Définition 12 – Somme de matrices

Soient $m, n \in \mathbb{N}$. Soient $A \in \mathcal{M}_{m,n}$ et $B \in \mathcal{M}_{m,n}$. On note $A:=(a_{i,j})_{1\leq i\leq m,1\leq j\leq n}$ et $B:=(b_{i,j})_{1\leq i\leq m,1\leq j\leq n}$. La matrice $(a_{i,j}+b_{i,j})_{1\leq i\leq m,1\leq j\leq n}$ est appelée la somme des deux matrices A et B. On la note $\overline{A} + B$.

Définition 13 - Produit interne

Soient $m, n, o \in \mathbb{N}$ trois entiers positifs. Soient $A \in \mathcal{M}_{m,n}$ et $B \in$ $\mathcal{M}_{n,o}$. On note $A := (a_{i,j})_{1 < i < m, 1 < j < n}$ et $B := (b_{i,j})_{1 < j < n, 1 < k < o}$. La matrice $(c_{i,i}) \in \mathcal{M}_{m,o}$ définie par :

$$c_{i,j} := \sum_{k=1}^n a_{i,k} \cdot b_{k,j},$$

pour $1 \le i \le m$ et $1 \le j \le o$, est appelée le produit entre A et B, et est notée $A \times B$.

Proposition 6 - Associativité de la multiplication

Soient $m, n, o, p \in \mathbb{N}$ quatre entiers. Soient $A \in \mathcal{M}_{m,n}$, $B \in$ $\mathcal{M}_{n,o}$, $C \in \mathcal{M}_{o,p}$ trois matrices à valeur dans \mathbb{K} . Alors:

$$A \times (B \times C) = (A \times B) \times C.$$

Soit E, F, G trois \mathbb{K} -espaces vectoriels munis respectivement de trois bases $(e_i)_{i \in [\![1,n]\!]}$, $(f_i)_{i \in [\![1,m]\!]}$ et $(g_i)_{i \in [\![1,p]\!]}$. Soient deux applications linéaires $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,G)$, .

$$E \xrightarrow{u} F \xrightarrow{v} G$$

Soit M la matrice de u dans les bases $(e_i)_{i \in \llbracket 1, m \rrbracket}$ et $(f_i)_{i \in \llbracket 1, m \rrbracket}$ et N la matrice de v dans les bases $(f_i)_{i \in \llbracket 1, m \rrbracket}$ et $(g_i)_{i \in \llbracket 1, p \rrbracket}$. Alors

$$N \times M$$

est la matrice de

$$V \circ U$$

dans les bases $(e_i)_{i \in [1,n]}$ et $(g_i)_{i \in [1,p]}$.

On remarque qu'on fait la multiplication dans le même sens que la composition.

Définition 14 - Matrice inversible

Soit A, une matrice carrée de dimension n. On dit que A est inversible s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$A \times B = B \times A = I_n$$

B est appelé inverse de A et est noté A^{-1} .

Soit E et F deux \mathbb{K} -espace vectoriels de dimension n. Soit e et f respectivement des bases de E et F. Soit $\varphi \in \mathcal{L}(E,F)$ et E la matrice de E dans les bases E et E dans E inversible si et seulement si E est un isomorphisme de E dans E.