CIS263 Assignment Six

Dr. Denton Bobeldyk

Programmatically implement a B-Tree data structure based on the methods and pseudocode shown below. Populate the B-tree using all the letters of the alphabet using T = 2 and then T = 3. Be sure to select an insert sequence that properly demonstrates the full functionality of your B-tree implementation. The B-tree should output the contents of the tree in an easy-to-read format. You may work in a group of two to complete this assignment. Please make sure both students names appear in the comments at the top of the program and only one student submits the work.

Approved programming languages: C, C++, C#, Python, Java.

Hand-in:

- 1. The output demonstrating the functionality of your program
- 2. A file containing the implementation source code (no zip files).

Grading Rubric:

See blackboard for point breakdown.

Pseudo-code for B-Tree from the textbook:

```
B-Tree-Create (T)
1 x = ALLOCATE-NODE()
2 x.leaf = TRUE
3 \quad x.n = 0
4 DISK-WRITE(x)
5 T.root = x
B-Tree-Split-Child(x, i)
 1 z = ALLOCATE-NODE()
 y = x.c_i
 3 z.leaf = y.leaf
 4 z.n = t - 1
 5 for j = 1 to t - 1
 6
       z.key_i = y.key_{i+t}
 7 if not y.leaf
 8
       for j = 1 to t
 9
          z.c_j = y.c_{j+t}
10 y.n = t - 1
11 for j = x.n + 1 downto i + 1
12
    x.c_{j+1} = x.c_j
13 \quad x.c_{i+1} = z
14 for j = x.n downto i
15
       x.key_{j+1} = x.key_j
16 x.key_i = y.key_t
17 x.n = x.n + 1
18 DISK-WRITE(y)
19 DISK-WRITE(z)
20 DISK-WRITE(x)
B-Tree-Insert(T, k)
 1 \quad r = T.root
 2 if r.n == 2t - 1
 3
        s = ALLOCATE-NODE()
 4
        T.root = s
 5
        s.leaf = FALSE
 6
        s.n = 0
 7
        s.c_1 = r
 8
        B-Tree-Split-Child (s, 1)
        B-Tree-Insert-Nonfull (s, k)
10 else B-Tree-Insert-Nonfull (r, k)
```

```
B-Tree-Insert-Nonfull(x, k)
 1 \quad i = x.n
 2 if x . leaf
 3
        while i \ge 1 and k < x.key_i
 4
            x.key_{i+1} = x.key_i
 5
            i = i - 1
 6
        x.key_{i+1} = k
 7
        x.n = x.n + 1
 8
        DISK-WRITE(x)
9 else while i \ge 1 and k < x.key_i
10
            i = i - 1
11
        i = i + 1
12
        DISK-READ(x.c_i)
        if x.c_i.n == 2t - 1
13
14
             B-Tree-Split-Child(x, i)
15
            if k > x. key_i
16
                 i = i + 1
17
        B-Tree-Insert-Nonfull(x.c_i, k)
```