

Bone Abnormality Detection from X-Rays using Deep Learning

MSc in Data Science / NCSR Demokritos
Deep Learning

Kastelianou Olympia 2022202004006 dit2006dsc@office365.uop.gr

Introduction

- The main objective of this project is to build a deep learning model that given a
 patient study containing X-Ray images, decides if the study is normal or abnormal.
- Two different architectures used, a CNN that created from scratch and one pretrained CNN (ResNet50).
- The MURA dataset used for the to train and evaluate of the models.

MURA dataset:

- 40.561 multi-view radiographic images
- 14.863 studies from 12.173 patients
- 7 study types Elbow, Finger, Forearm, Hand, Humerus, Shoulder, and Wrist
- Each study contains one or more images and is manually labeled by radiologists as either normal or abnormal.

MURA dataset:

- 40.561 multi-view radiographic images
- 14.863 studies from 12.173 patients
- 7 study types Elbow, Finger, Forearm, Hand, Humerus, Shoulder, and Wrist
- Each study contains one or more images and is manually labeled by radiologists as either normal or abnormal.

* https://stanfordmlgroup.github.io/competitions/mura/

MURA dataset

MURA dataset is already separated into a **training dataset** and a validation dataset.

image2.png

image3.png

* https://stanfordmlgroup.github.io/competitions/mura/

MURA dataset

MURA dataset is already separated into a training dataset and a **validation dataset**. The validation dataset will be used as test dataset.

```
Image_paths.csv Image_pat
```


Data preprocessing:

- Create column "patient_study_type"
- Create column "class" (0: negative, 1: positive)
- Split the original train dataset into train (90%) and validation set (10%) based on type and class.

Data preprocessing:

- Create column "patient_study_type"
- Create column "class" (0: negative, 1: positive)
- Split the original train dataset into train (90%) and validation set (10%) based on type and class

Image generators:

- Two different generators for the training set were created. The first being a plain only to load the dataset as-is and a second being an augmented:
 - Random flipping the images horizontally / vertical
 - Random rotation of the images up to 5 degrees
 - Shuffling images

Two models:

- Convolutional neural model (CNN)
- ResNet50 Pre-trained Model

Callbacks:

- EarlyStopping: Override implementation of keras in order to get best epoch instead of last when max epochs are reached
- ReduceLROnPlateau: Guarantees that the maximum accuracy will be reached

Convolutional neural model (CNN):

- Input Layer: 224X224X3
- Conv2d Layer:
 - Filters: They grow exponentially within each layer so as to get more details from each layer
- MaxPool2d: Reduce dimensions
- Dropout: Eliminate chances of overfitting
- Flatten: So that the output layer takes a vector
- Output: Dense with activation function Sigmoid

Convolutional neural model (CNN):

- Input Layer: 224X224X3
- Conv2d Layer:
 - Filters: They grow exponentially within each layer so as to get more details from each layer
- MaxPool2d: Reduce dimensions
- Dropout: Eliminate chances of overfitting
- Flatten: So that the output layer takes a vector
- Output: Dense with activation function Sigmoid

ResNet50 Pre-trained Model:

- Get the Resnet model with its weights, without the top Layer
- Create an MLP to replace the top layer of Resnet
- Train only the MLP for a number of epochs
- Train the whole network with a very small Learning Rate, so that pretrained weights are not vanished

Models Compilation:

loss: binary_crossentropy

metrics: accuracy

optimizer: Adam

Train parameters:

- batch_size = 32
- epochs_upper = 8 (for MLP only)
- epochs = 20
- epochs_trial = 1
- trials = 1
- IMG_HEIGHT = 224
- IMG_WIDTH = 224

Hyperparameter Tuning

Bayesian Optimization of Keras Tuner used instead of brute forcing all possible combinations of hyperparameters.

Given more resources the search space of the hyperparameters would be the following:

- CNN

- Layers:[2, 3, **4**, 5]
- Kernel_Size:[(2, 2), (3, 3), (4, 4)]
- Strides:[(1, 1), (2, 2), (3, 3)]
- Dropout Rate: [0.0, 0.1, 0.2, **0.3**, 0.4]

MLP Layer of Resnet

- Layers:[2, **3**, 4, 5]
- Units:[256, **512**, 1024]
- Dropout Rate: [0.0, 0.1, 0.2, **0.3**, 0.4]

Accuracy per model per set

Results

The overall probability of abnormality for the study (patient_study_type) is calculated based on the average and the max probabilities.

Model	Validation - Accuracy (%)	Test - Accuracy (%)
CNN non-Augmented Original	68.4	68.4
CNN non-Augmented AVG	69.1	69.1
CNN non-Augmented MAX	68.5	67.0
ResNet non-Augmented Original	81.3	76.8
ResNet non-Augmented AVG	81.4	79.3
ResNet non-Augmented MAX	81.3	76.8
CNN Augmented Original	69.4	69.4
CNN Augmented AVG	70.4	70.4
CNN Augmented MAX	69.4	65.6
ResNet Augmented Original	81.0	77.9
ResNet Augmented AVG	81.1	81.2
ResNet Augmented MAX	81.2	77.9

Thank you!

