CS 435: Introduction to Cryptography

Spring 2020

Homework 2

Professor Somesh Jha

Due: Feb 26 (Midnight)

- 1. Exercise 2.4 from the textbook.
- 2. Prove Theorem 2.9 using definition II (equation (2.1) in the textbook).
- 3. Consider a scheme OTP' = (Gen, Enc, Dec) where $\mathcal{K} = \{0,1\}^{\ell}$, $\mathcal{M} = \{0,1\}^{2\ell}$ and $\mathcal{C} = \{0,1\}^{2\ell}$. Gen generates a random ℓ -bit string as a key, $\operatorname{Enc}_k(m) = kk^R \oplus m$ (where k^R is the reverse of ℓ -bit string k) and $\operatorname{Dec}_k(c) = kk^R \oplus c$.

Does the scheme work? Prove using definition III (indistinguishability game) that this scheme is not perfectly secret.

- 4. Let f(n) be a negligible function and k a positive integer. Prove the following:
 - (a) $f(\sqrt{n})$ is negligible.
 - (b) $f(\frac{n}{k})$ is negligible.
 - (c) $f(n^{1/k})$ is negligible.