Recommender System for Supermarket Dealer to build Warehouse

(Data Science Capstone-IBM Professional Certification)

Anandhavalli Muniasamy May 15, 2019

1. Introduction

Recommender systems are ending up being an essential business tool in ecommerce, as more and more companies are implementing this function into their website. Recommender systems usually are kinds of collective filtering that include predictive designs, heuristic search, data collection, user interaction and design upkeep. The system generally has to be upgraded regularly with recently added ratings, products and users. In shorts a recommender system is an information filtering technology created to figure out choices that are most likely to the customer's tastes. After the best items have been determined they are recommended to the user. Recommender systems connect with users on their choices and form a profile of each customer typically based upon scores of items. The various profiles are compared with each other with aid of an algorithm and are utilized to quote and forecast the items that are most likely to the user's tastes. Simply put recommender systems are a kind of heuristic search that uses gathered and stored information of users and or choices to predicts and suggest what items users will like.

1.1 Background

This project mainly focusses on the supermarket dealer in one of the boroughs of Toronto (Scarborough). This dealer provides places such as: Different types of Restaurants, Bakery, Breakfast Spot, Brewery and Café with fresh and high-quality supermarket products. The dealer wants to build a warehouse for the products which are buy from villagers and farmers inside the borough, so that they will support more customers and also bring better "Quality of Service" to the old customers.

1.2 Problem

If the warehouse is close to those old and famous restaurants, then the vegetables and other products would be delivered to the restaurant in the right time and there would be no delay so the restaurant cooks can start their job from the morning and the Quality of Service will be high and this contractor will gain more reputation and income.

The problem here is how to find the best place for building the warehouse neighbourhood? This project aims to help the dealers to find the nearest place of the warehouse to its customers in order to minimize the cost of transportation, which neighbourhood (particularly Scarborough) would be a better choice for the dealer to build the warehouse in that neighbourhood.

1.3 Interest

Obviously, supermarket dealers would be very interested in accurate finding the suitable place to build their warehouse in borough, for competitive advantage and business values. Others who are interested in this recommender system are customers.

2. Data acquisition and cleaning

2.1 Data Source & Description

Data that might contribute to building recommender system for supermarket dealer include :

- Data set 1: Postal Codes of different regions inside Scarborough to find the list of neighborhoods. The dataset will be consider from https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M.
- Data set 2: The data about different venues in different neighborhoods of that specific borough will be collected from "Foursquare" locational information (https://foursquare.com/). Foursquare is a local search-and-discovery service mobile app which provides search results for its users (Wikipedia). A typical request from Foursquare will provide us with the following information:

[Postal Code] [Neighborhood(s)] [Neighborhood Latitude] [Neighborhood Longitude] [Venue] [Venue Summary] [Venue Category] [Distance (meter)]

2.2 Data cleaning

Data pre-processing starts with fetching data from the internet url (https://en.wikipedia.org/wiki/List of postal codes of Canada: M) and extracting the raw table inside that webpage.

In the Neighborhood column the information is ending with \n this needs to be removed. All the rows in the Borough column containing Not assigned must be deleted. If the Neighborhood is Not assigned then the Borough is assigned as the neighbourhood itself.

Each Postal Code can contain multiple neighborhoods, so combining all the neighborhoods into single line separated by comma (,). So there is no duplicity in the Postal Code i.e there is only one occurrence of each postal code in the dataset.

Converting the received html content into a soup object from "bs4" package for easier extraction of necessary information. Finding the table containing the postal codes and neighborhood of Toronto.

By iterating through all the rows of the table, the content can be accessed and stored as a list. Pre-processing ends with a creation of a DataFrame using the list containing Postal Codes, Borough and Neighborhood of Toronto.

2.3 Feature selection

Geo-locational information about that specific borough and the neighbourhoods in that borough which comprises the latitude and longitude numbers of that borough. In this project,, it is assumed that it is "Scarborough" in Toronto. This is easily provided for us by the dealer because the dealer has already made up his mind about the borough. The Postal Codes that fall into that borough (Scarborough) would also be sufficient for this analysis. In fact, we will first find neighborhoods inside Scarborough by their corresponding Postal Codes.

Data about different venues in different neighborhoods of that specific borough. In order to gain that information, "Foursquare" locational information will be useful. By locational information for each venue, it means basic and advanced information about that venue. As basic information, we can obtain its precise latitude and longitude and also its distance from the centre of the neighborhood. But we are looking for advanced information such as the category of that venue and whether this venue is a popular one in its category or maybe the average price of the services of this venue

3 Exploratory Data Analysis

3.1 Methodology - Work flow

HTTP requests would be made to this Foursquare API server using zip codes of the Seattle city neighborhoods to pull the location information (Latitude and Longitude).

Foursquare API search feature is enabled to collect the nearby places of the neighborhoods. Due to http request limitations the number of places per neighborhood parameter would reasonably be set to 100 and the radius parameter would be set to 700.

Folium- Python visualization library is used to visualize the neighborhoods cluster distribution of Seattle city over an interactive leaflet map.

Extensive comparative analysis of two randomly picked neighborhoods is carried out to derive the desirable insights from the outcomes using python's scientific libraries Pandas, NumPy and Scikit-learn.

Unsupervised machine learning algorithm K-mean clustering is applied to form the clusters of different categories of places residing in and around the neighborhoods. These clusters from each of those two chosen neighborhoods would be analyzed individually collectively and comparatively to derive the conclusions.

3.2 Identifying Neighborhoods inside "Scarborough"

Postal Codes of different regions inside Scarborough to find the list of neighborhoods are identified from https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M and then retrieved data in the table from this site for processing

Scarborough / Coordinates

43.7764° N, 79.2318° W

image source: google.com

3.2 Connecting to Foursquare and Retrieving Locational Data for Each Venue in Every Neighborhood

After finding the list of neighborhoods, we then connect to the Foursquare API to gather information about venues inside each and every neighborhood. For each neighborhood, we have chosen the radius to be 1000 meter. It means that we have asked Foursquare to find venues that are at most 1000 meter far from the center of the neighborhood. Here the distance is measured by latitude and longitude of venues and neighborhoods, and it is not the walking distance for venues.

3.3 Processing the Retrieved Data and Creating a Data Frame for All the Venues inside the Scarborough

When the data is completely gathered, we perform processing on that raw data to find our desirable features for each venue. Our main feature is the category of that venue. After this stage, the column "Venue's Category" is One-hot encoded and different venues will have different feature-columns. After On-hot encoding we integrate all restaurant columns to one column "Total Restaurants" and all food joint columns to "Total Joints" column. We assumed that different restaurants use the Same raw groceries. This assumption is made for simplicity and due to not having a very detailed dataset about different venues. Now, the dataset is fully ready to be used for machine learning (and statistical analysis) purposes.

3.4 Applying one of Machine Learning Techniques (K-Means Clustering)

K-means clustering method is used to cluster neighborhoods. We think that 5 clusters are enough and can cover the complexity of our problem. After clustering we update our dataset and create a column representing the group for each neighborhood to recommend the nearest neighborhood.

4. Results & Discussion

• Venues in for each neighborhood in Scarborough are listed below:

Steeles West, Scarborough Village, Woburn, Highland Creek, Rouge Hill, Port Union, Birch Cliff, Maryvale, Wexford, Agincourt North, Milliken, Cedarbrae, Tam O'Shanter, Cliffcrest, Cliffside, Morningside, West Hill, Rouge, Malvern, Agincourt, Ionview, Kennedy Park, Dorset Park, Scarborough Town Centre, Wexford Heights, Upper Rouge, Clairlea, Golden Mile, Oakridge.

• Identifying Postal Codes (and then Neighborhoods) in "Scarborough"

sca	rborough_	data			
	Destant	Dannich	Neighbourkood	1 -414	Laurituda
	Postcode	Borough	Neighbourhood	Latitude	Longitude
0	M1W	Scarborough	Steeles West	43.799525	-79.318389
1	M1J	Scarborough	Scarborough Village	43.744734	-79.239476
2	M1G	Scarborough	Woburn	43.770992	-79.216917
3	M1C	Scarborough	Highland Creek, Rouge Hill, Port Union	43.784535	-79.160497
4	M1N	Scarborough	Birch Cliff	43.692657	-79.264848
5	M1R	Scarborough	Maryvale, Wexford	43.750072	-79.295849
6	M1V	Scarborough	Agincourt North, Milliken	43.815252	-79.284577
7	M1H	Scarborough	Cedarbrae	43.773136	-79.239476
8	M1T	Scarborough	Tam O'Shanter	43.781638	-79.304302
9	M1M	Scarborough	Cliffcrest, Cliffside	43.716316	-79.239476
10	M1E	Scarborough	Morningside, West Hill	43.763573	-79.188711
11	M1B	Scarborough	Rouge, Malvern	43.806686	-79.194353
12	M1S	Scarborough	Agincourt	43.794200	-79.262029
13	M1K	Scarborough	Ionview, Kennedy Park	43.727929	-79.262029
14	M1P	Scarborough	Dorset Park, Scarborough Town Centre, Wexford	43.757410	-79.273304
15	M1X	Scarborough	Upper Rouge	43.836125	-79.205636
16	M1L	Scarborough	Clairlea, Golden Mile, Oakridge	43.711112	-79.284577

• Identifying Postal Codes (and then Neighborhoods) in "Scarborough"

• Categories are nearly 56 unique categories in Scarborough.

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Agincourt	4	4	4	4	4	4
Agincourt North, Milliken	2	2	2	2	2	2
Birch Cliff	4	4	4	4	4	4
Cedarbrae	7	7	7	7	7	7
Clairlea, Golden Mile, Oakridge	10	10	10	10	10	10
Cliffcrest, Cliffside	2	2	2	2	2	2
Dorset Park, Scarborough Town Centre, Wexford Heights	8	8	8	8	8	8

• Grouping the neighbourhood is based on one-hot encoding method.

sc	carb_onehot.head()																
	Neighborhood	American Restaurant	Athletics & Sports	Auto Garage	BBQ Joint	Bakery	Bank	Bar	Breakfast Spot	Brewery	Bus Line	Bus Station	Café	Caribbean Restaurant	Chinese Restaurant	Coffee Shop	Colle Stadio
0	Steeles West	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
1	Steeles West	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
2	Steeles West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	Steeles West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	Steeles West	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
				_													

SC	arb_grouped.h	nead(7)														
	Neighborhood	American Restaurant	Athletics & Sports	Auto Garage	BBQ Joint	Bakery	Bank	Bar	Breakfast Spot	Brewery	Bus Line	Bus Station	Café	Caribbean Restaurant	Chinese Restaurant	Co
0	Agincourt	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.25	0.000000	0.000000	0.000000	0.00	0.000000	0.000000	
1	Agincourt North, Milliken	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.00	0.000000	0.000000	0.000000	0.00	0.000000	0.000000	
2	Birch Cliff	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.00	0.000000	0.000000	0.000000	0.25	0.000000	0.000000	
3	Cedarbrae	0.000000	0.142857	0.0	0.0	0.142857	0.142857	0.0	0.00	0.000000	0.000000	0.000000	0.00	0.142857	0.000000	
4	Clairlea, Golden Mile, Oakridge	0.000000	0.000000	0.0	0.0	0.111111	0.000000	0.0	0.00	0.000000	0.222222	0.111111	0.00	0.000000	0.000000	
5	Cliffcrest, Cliffside	0.333333	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.00	0.000000	0.000000	0.000000	0.00	0.000000	0.000000	
6	Dorset Park, Scarborough Town Centre.	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.00	0.111111	0.000000	0.000000	0.00	0.000000	0.111111	

• Also, find the top 10 venues per neighborhood.

eig	hborhoods_venu	ues_sorted									
	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Agincourt	Skating Rink	Breakfast Spot	Lounge	Clothing Store	Vietnamese Restaurant	Coffee Shop	Grocery Store	General Entertainment	Fried Chicken Joint	Fast Food Restaurant
1	Agincourt North, Milliken	Park	Playground	Chinese Restaurant	Grocery Store	General Entertainment	Fried Chicken Joint	Fast Food Restaurant	Electronics Store	Discount Store	Department Store
2	Birch Cliff	General Entertainment	Skating Rink	Café	College Stadium	Vietnamese Restaurant	Clothing Store	Grocery Store	Fried Chicken Joint	Fast Food Restaurant	Electronics Store
3	Cedarbrae	Hakka Restaurant	Athletics & Sports	Thai Restaurant	Bakery	Bank	Fried Chicken Joint	Caribbean Restaurant	College Stadium	Grocery Store	General Entertainment
4	Clairlea, Golden Mile, Oakridge	Bakery	Bus Line	Ice Cream Shop	Bus Station	Park	Soccer Field	Intersection	Metro Station	Construction & Landscaping	Cosmetics Shop

• Scarborough Data frame covers the following labels & data

sca	rb_merged												
	Postcode	Borough	Neighbourhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Mo Comm Ven
0	M5R	Central Toronto	The Annex, Yorkville	43.672710	-79.405678	1	Café	Coffee Shop	Sandwich Place	Pizza Place	Jewish Restaurant	Indian Restaurant	F
1	M4Y	Downtown Toronto	Church and Wellesley	43.665860	-79.383160	1	Japanese Restaurant	Coffee Shop	Gay Bar	Sushi Restaurant	Restaurant	Gastropub	Nighto
2	M5V	Downtown Toronto	CN Tower, King and Spadina, Railway Lands, Sou	43.628947	-79.394420	1	Airport Service	Airport Lounge	Airport Terminal	Harbor / Marina	Boutique	Airport	Airp Fc Co
3	M6K	West Toronto	Exhibition Place, Parkdale Village	43.636847	-79.428191	1	Coffee Shop	Café	Breakfast Spot	Bar	Grocery Store	Furniture / Home Store	Ital Restaur:

Applying one of Machine Learning Techniques (K-Means Clustering)

The complete dataset for applying k-means clustering analysis purpose are as follows:

sca	rbor	ough	one	hot

	Bakery	Breakfast Spot	Diner	Fish Market	Food & Drink Shop	Fruit & Vegetable Store	Grocery Store	Noodle House	Pizza Place	Sandwich Place	Total Restaurants	Total Joints
Neighborhood												
Agincourt	2	1	0	0	0	0	0	1	1	2	21	0
Agincourt North, Milliken	1	0	0	0	0	0	0	1	2	0	13	2
Birch Cliff	0	0	1	0	0	0	0	0	0	0	2	0
Cedarbrae	3	0	0	0	0	0	1	0	1	0	7	3
Clairlea, Golden Mile, Oakridge	2	0	1	0	0	0	1	0	1	1	1	0
Cliffcrest, Cliffside	0	0	0	0	0	0	0	0	3	0	1	1
Dorset Park, Scarborough Town Centre, Wexford Heights	2	0	0	0	0	0	1	0	1	1	14	3
Highland Creek, Rouge Hill, Port Union	0	1	0	0	0	0	0	0	0	0	1	1
Ionview, Kennedy Park	0	0	0	0	0	0	2	0	1	1	6	1
Maryvale, Wexford	0	1	0	1	0	0	3	0	3	0	8	1
Morningside, West Hill	0	0	0	0	1	0	0	0	1	1	3	3
Rouge, Malvern	1	0	0	0	0	1	0	0	0	1	7	0
Scarborough Village	0	0	0	0	0	0	0	0	1	1	3	0
Steeles West	2	1	0	0	0	0	1	0	1	1	7	1
Tam O'Shanter	1	0	0	0	0	0	0	1	2	2	13	1
Woburn	0	0	0	0	0	0	0	0	0	0	3	0

We focus on the centers of clusters and compare them for their "Total Restaurants" and their "Total Joints". The group which its center has the highest "Total Sum" will be our best recommendation to the dealer. {Note: Total Sum = Total Restaurants + Total Joints + Other Venues.} This algorithm although is pretty straightforward yet is strongly powerful.

	Bakery	Breakfast Spot	Diner	Fish Market	Food & Drink Shop	Fruit & Vegetable Store	Grocery Store	Noodle House	Pizza Place	Sandwich Place	Total Restaurants	Total Joints	Total Sum
G5	2.000000	1.000000	0.000000	0.0	0.000000	0.00	0.000000	1.000000	1.000000	2.000000	21.000000	0.000000	28.000000
G1	1.333333	0.000000	0.000000	0.0	0.000000	0.00	0.333333	0.666667	1.666667	1.000000	13.333333	2.000000	20.333333
G4	0.000000	1.000000	0.000000	1.0	0.000000	0.00	3.000000	0.000000	3.000000	0.000000	8.000000	1.000000	17.000000
G3	1.500000	0.250000	0.000000	0.0	0.000000	0.25	1.000000	0.000000	0.750000	0.750000	6.750000	1.250000	12.500000
G2	0.285714	0.142857	0.285714	0.0	0.142857	0.00	0.142857	0.000000	0.857143	0.428571	2.000000	0.714286	5.000000

Visualize the clusters after applying k-means algorithm:

Examine the five clusters created for finding the best neighbourhood.

ca	rb_merged	.loc[scar	rb_merg	ed['Cluste	er Label:	5'] ==	0, SC	arb_merge	d.column	5[[1] +	list(ran	ge(5,	scarb_mer	ged.shape	[1]))]]
	Postcode	Longitude	Cluste Label	_ comm		d Most mmon Venue	3rd M Comi Ve	mon Com		5th Most Common Venue	6th M Comn Ver	ion	7th Most Common Venue	8th Most Common Venue	9th Mo Commo Ven
0	M1W	-79.318389)	0 Chin Restau		Coffee Shop	Fast F Restau		etics F Shop	harmacy	Pizza Pl	ace	Breakfast Spot	Grocery Store	Japane Restaura
2	M1G	-79.216917	7	0 Coffee S		Korean taurant	Vietnan Restau	nese Be	lth & auty Groo rvice	ery Store	Gen Entertainm		Fried Chicken Joint	Fast Food Restaurant	Electron Sto
3	M1C	-79.180497	7	0		amese taurant		offee H. Shop Restau	akka Groo urant	ery Store	Gen Entertainm	eral ent	Fried Chicken Joint	Fast Food Restaurant	Electron St
4	M1N	-79.284848	3	0 Gen Entertainn	eral (Skating Rink				etnamese estaurant	Cloth St	ing ore	Grocery Store	Fried Chicken Joint	Fast Fo Restaur
5	M1R	-79.295849	9	o Sandv		Auto Garage		noke Shop Shop	ping Mall	Breakfast Spot	Disco St	unt	College	onstruction & andscaping	Cosmet Sh
ar	b_merged.	loc[scarb	_merged	d['Cluster	Labels'] == 1	, scar	b_merged.c	olumns[[1] + li	st(range(5, sca	arb_merged.	shape[1]))]]
	Postcode	Longitude	Cluster Labels	1st Most Common Venue	2nd Mo Commo Venu	n C	rd Most ommon Venue	4th Most Common Venue	5th Mos Commo Venu	n Com	mon Co	n Most mmon Venue	8th Most Common Venue	9th Most Common Venue	10th Mo Comm Ven
5	M1X	-79.205636	1	NaN	Na	N	NaN	NaN	Nal	N	NaN	NaN	NaN	NaN	N
ar	b_merged.	loc[scarb	_mergeo	d['Cluster	Labels'] == 2	, scar	b_merged.c	olumns[[1] + li	st(range(5, sca	arb_merged.	shape[1]))]]
	Postcode	Longitude	Cluster Labels	1st Most Common Venue	2nd Mo: Commo Venu	n C	rd Most ommon Venue	4th Most Common Venue	5th Mos Commo Venu	n Co		th Most ommor Venue	Common	9th Most Common Venue	10th Mo Comm Ven
	M1B	-79.194353	2	Fast Food Restaurant	Vietnames Restaura		Train Station	Hakka Restaurant	Grocer Stor		General ainment	Fried Chicker Join	Store	Discount Store	Departme Sto
ar	b_merged.	loc[scarb	_mergeo	d['Cluster	Labels'] == 3	, scar	b_merged.c	olumns[[1] + li	st(range(5, sca	arb_merged.	shape[1]))]]
F	ostcode l	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	Co	d Most mmon Venue	4th Most Common Venue	5th Most Common Venue		on Com	Most mon enue	8th Most Common Venue	9th Most Common Venue	10th Mo Comm Ven
	M1H -	79.239476	3	Hakka Restaurant	Athletics & Sports		Thai taurant	Bakery	Bank	Chic	ried Carib ken Resta oint		College Stadium	Grocery Store	Gene Entertainme
ar	b_merged.	loc[scarb	_mergeo	d['Cluster	Labels'] == 4	, scar	b_merged.c	olumns[[1] + li:	st(range(5, sca	arb_merged.	shape[1]))]]
	Postcode	Longitude	Cluster Labels	1st Most Common Venue	2nd Mo Commo Ven	on Co	d Most mmon Venue	4th Most Common Venue	5th Mos Common Venue	n Comm	on Co	n Most mmon Venue	8th Mos Common Venue	n Common	Comm
					Constructi		ealth &	Vietnamese	Clothing	g Groo	erv G	eneral	Fried Chicker	n Fast Food	l Electron
1	M1J	-79.239476	4	Playground	Landscapi		Beauty Service	Restaurant	Store		oré Enterta	inment	Join	t Restauran	

Decision Making and Reporting Results

	Neighborhood	Group
0	Agincourt	5
1	Agincourt North, Milliken	1
2	Birch Cliff	2
3	Cedarbrae	3
4	Clairlea, Golden Mile, Oakridge	2
5	Cliffcrest, Cliffside	2
6	Dorset Park, Scarborough Town Centre, Wexford \dots	1
7	Highland Creek, Rouge Hill, Port Union	2
8	Ionview, Kennedy Park	3
9	Maryvale, Wexford	4
10	Morningside, West Hill	2
11	Rouge, Malvern	3
12	Scarborough Village	2
13	Steeles West	3
14	Tam O'Shanter	1
15	Woburn	2

• Best Neighbourhood is G5 group.

5. Conclusions

In this study, the analysis can be concluded as the best group is G5. Second best is G1 and third best group is G4. These models can be very useful in helping supermarket dealer to find best neighbourhood in Scarborough.

6. Future directions

Models in this study mainly focused on k-means clustering method. In future I am interested to apply other clustering methods to carry out comparative analysis to find the best model for this neighbourhood analysis problem.