编译 原理 课后题答案

第二章

P36-6

(1)

 $L(G_1)$ 是 $0^{\circ}9$ 组成的数字串

(2)

最左推导:

 $N \Rightarrow ND \Rightarrow NDD \Rightarrow NDDD \Rightarrow DDDD \Rightarrow 01DD \Rightarrow 012D \Rightarrow 012D \Rightarrow 0127$

 $N \Rightarrow ND \Rightarrow DD \Rightarrow 3D \Rightarrow 34$

 $N \Rightarrow ND \Rightarrow NDD \Rightarrow DDD \Rightarrow 5DD \Rightarrow 56D \Rightarrow 568$

最右推导:

 $N \Rightarrow ND \Rightarrow N7 \Rightarrow ND7 \Rightarrow N27 \Rightarrow ND27 \Rightarrow N127 \Rightarrow D127 \Rightarrow 0127$

 $N \Rightarrow ND \Rightarrow N4 \Rightarrow D4 \Rightarrow 34$

 $N \Rightarrow ND \Rightarrow N8 \Rightarrow ND8 \Rightarrow N68 \Rightarrow D68 \Rightarrow 568$

P36-7

G(S)

 $O \rightarrow 1|3|5|7|9$

 $N \to 2|4|6|8|0$

 $D \rightarrow 0 | N$

 $S \rightarrow O|AO$

 $A \rightarrow AD | N$

P36-8

文法:

 $E \to T|E + T|E - T$

 $T \rightarrow F | T * F | T / F$

 $F \rightarrow (E)|i$

最左推导:

 $E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow i + T \Rightarrow i + T * F \Rightarrow i + F * F \Rightarrow i + i * F \Rightarrow i + i * i$ $E \Rightarrow T \Rightarrow T * F \Rightarrow F * F \Rightarrow i * F \Rightarrow i * (E) \Rightarrow i * (E + T) \Rightarrow i * (T + T) \Rightarrow i * (F + T)$ $\Rightarrow i * (i + T) \Rightarrow i * (i + F) \Rightarrow i * (i + i)$

最右推导:

$$E \Rightarrow E + T \Rightarrow E + T * F \Rightarrow E + T * i \Rightarrow E + F * i \Rightarrow E + i * i \Rightarrow T + i * i \Rightarrow F + i * i \Rightarrow i + i * i$$

$$E \Rightarrow T \Rightarrow F * T \Rightarrow F * F \Rightarrow F * (E) \Rightarrow F * (E + T) \Rightarrow F * (E + F) \Rightarrow F * (E + i)$$

$$\Rightarrow F * (T + i) \Rightarrow F * (F + i) \Rightarrow F * (i + i) \Rightarrow i * (i + i)$$

P36-9

句子 iiiei 有两个语法树:

 $S \Rightarrow iSeS \Rightarrow iSei \Rightarrow iiSei \Rightarrow iiiei$ $S \Rightarrow iS \Rightarrow iiSeS \Rightarrow iiSei \Rightarrow iiiei$

P36-10

/*****

 $S \to TS \mid T$

 $T \rightarrow (S) \mid ()$

P36-11

/*****

L1:

 $S \rightarrow AC$

 $A \rightarrow aAb \mid ab$

 $C \to cC \mid \varepsilon$

L2:

 $S \rightarrow AB$

 $A \to aA \mid \varepsilon$

 $B \rightarrow bBc \mid bc$

L3:

 $S \rightarrow AB$

 $A \rightarrow aAb \mid \varepsilon$

 $B \to aBb \mid \varepsilon$

L4:

 $S \to A \mid B$

 $A \rightarrow 0A1 \mid \varepsilon$

 $B \rightarrow 1B0 \mid A$

第三章习题参考答案

P64 - 7

(1)

确定化:

	0	1
{X}	ф	{1, 2, 3}
ф	ф	ф
{1, 2, 3}	{2, 3}	{2, 3, 4}
{2, 3}	{2, 3}	{2, 3, 4}
$\{2, 3, 4\}$	{2, 3, 5}	{2, 3, 4}
{2, 3, 5}	{2, 3}	$\{2, 3, 4, Y\}$
$\{2, 3, 4, Y\}$	{2, 3, 5}	{2, 3, 4, }

最小化:

$$\begin{array}{l} \text{FRZ} \text{ TYPL:} \\ \{0,1,2,3,4,5\}, \{6\} \\ \{0,1,2,3,4,5\}_0 = \{1,3,5\} \\ \{0,1,2,3,4\}, \{5\}, \{6\} \\ \{0,1,2,3,4\}_0 = \{1,3,5\} \\ \{0,1,2,3\}, \{4\}, \{5\}, \{6\} \\ \{0,1,2,3\}_0 = \{1,3\} \\ \{0,1,2,3\}_0 = \{1,3\} \\ \{0,1,2,3\}_0 = \{1,3\} \\ \{0,1,2,3\}_0 = \{1,3\} \\ \{0,1,2,3\}_1 = \{1,2,4\} \\ \{0,1\}, \{2,3\}, \{4\}, \{5\}, \{6\} \\ \{0,1\}_0 = \{1\} \\ \{0,1\}_1 = \{1,2\} \\ \{2,3\}_0 = \{3\} \\ \{2,3\}_1 = \{4\} \\ \{0\}, \{1\}, \{2,3\}, \{4\}, \{5\}, \{6\} \\ \end{array}$$

P64 - 8

- (1)
- $(1 \mid 0)^* 01$
- (2)
- $(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^*(0|5)|(0|5)$
- (3)
- $0^{*}1(0|10^{*}1)^{*}|1^{*}0(0|10^{*}1)^{*}$

P64 - 12

(a)

确定化:

	a	b
{0}	{0, 1}	{1}
{0, 1}	{0, 1}	{1}
{1}	{0}	ф
ф	ф	ф

给状态编号:

	a	b
0	1	2
1	1	2
2	0	3
3	3	3

最小化:

已经确定化了,进行最小化

最小化:

 $\{\{0,1\}, \{2,3,4,5\}\}$

$${0,1}_a = {1}$$
 ${0,1}_b = {2,4}$

$${2,3,4,5}_a = {1,3,0,5}$$
 ${2,3,4,5}_b = {2,3,4,5}$

$${2,4}_a = {1,0}$$
 ${2,4}_b = {3,5}$

$${3,5}_a = {3,5}$$
 ${3,5}_b = {2,4}$

 $\{\{0,1\},\{2,4\},\{3,5\}\}$

$${0,1}_a = {1}$$
 ${0,1}_b = {2,4}$

$${2,4}_a = {1,0}$$
 ${2,4}_b = {3,5}$

$${3,5}_a = {3,5}$$
 ${3,5}_b = {2,4}$

P64 - 14

(2):

确定化:

	0	1
$\{X, 1, Y\}$	{1, Y}	{2}
{1, Y}	{1, Y}	{2}
{2}	{1, Y}	ф
ф	ф	ф

给状态编号:

	0	1
0	1	2
1	1	2
2	1	3
3	3	3

最小化:

$$\{0,1\},\{2,3\}$$

$${0,1}_0 = {1}$$

$$\{0,1\}_1 = \{2\}$$

$$\{2,3\}_0=\{1,3\}$$

$$\{2,3\}_1 = \{3\}$$

$$\{0,1\},\{2\},\{3\}$$

第四章

P81 - 1

(1) 按照 T, S 的顺序消除左递归

G'(S)

 $S \rightarrow a \, |^{\wedge} | \, (T)$

 $T \rightarrow ST'$

 $T' \rightarrow ST' \mid \varepsilon$

递归子程序:

```
procedure S;
begin
    if sym='a' or sym='^'
         then abvance
         else if sym='('
             then begin
                  advance;T;
                  if sym=')' then advance;
                      else error;
                   end
             else error
end;
procedure T;
begin
    S; T'
end;
procedure T^{\prime};
begin
    if sym=','
         then begin
             advance;
             S;T'
         end
end;
其中:
sym: 是输入串指针 IP 所指的符号
advance: 是把 IP 调至下一个输入符号
error:是出错诊察程序
(2)
FIRST(S) = \{a, \hat{,} (\}
FIRST(T) = \{a, \hat{,} (\}
FIRST(T') = \{,, \varepsilon\}
FOLLOW(S) = \{),,,,\#\}
FOLLOW(T) = \{\}
\texttt{FOLLOW}(T') \!=\! \{)\,\}
预测分析表
```

	a	^	()	,	#
S	$S \rightarrow a$	$S \rightarrow^{\wedge}$	$S \rightarrow (T)$			
T	$T \rightarrow ST'$	$T \rightarrow ST'$	$T \rightarrow ST'$			
T'				$T' \rightarrow \varepsilon$	$T' \rightarrow , ST'$	

是 LL(1) 文法

P81 - 2

文法:

$$E \to TE'$$
 $E' \to +E \mid \varepsilon$
 $T \to FT'$
 $T' \to T \mid \varepsilon$
 $F \to PF'$
 $F' \to *F' \mid \varepsilon$
 $P \to (E) \mid a \mid b \mid^{\wedge}$
(1)
FIRST (E) = {(, a, b, ^} }
FIRST (T) = {(, a, b, ^} , \varepsilon }
FIRST (T) = {(, a, b, ^}, \varepsilon }
FIRST (T) = {(, a, b, ^} , \varepsilon }
FIRST (F) = {(, a, b, ^} , \varepsilon }
FIRST (F) = {(, a, b, ^} , \varepsilon }
FIRST (F) = {(, a, b, ^} , \varepsilon }
FOLLOW (E) = {\#, }
FOLLOW (E') = {\#, }
FOLLOW (F') = {(, a, b, ^} + ,), \#}
FOLLOW (F') = {(, a, b, ^, +,), \#}
FOLLOW (F') = {(, a, b, ^, +,), \#}
FOLLOW (F') = {(, a, b, ^, +,), #}
FOLLOW (P) = {*, (a, b, ^, +,), #}
FOLLOW (P) = {*, (a, b, ^, +,), #}
FOLLOW (P) = {*, (a, b, ^, +,), #}
FOLLOW (P) = {*, (a, b, ^, +,), #}
FOLLOW (P) = {*, (a, b, ^, +,), #}
FOLLOW (P) = {*, (a, b, ^, +,), #}
FIRST (T) \text{ FIRST (\$\varepsilon \text{ FIRST (\$\varepsilo

E			$E \setminus TE!$	
	+	*	()
0)				

		\	,	a	2		""
Е		$E \rightarrow TE'$		$E \rightarrow TE'$	$E \rightarrow TE'$	$E \rightarrow TE'$	
E'	$E' \rightarrow +E$		$E' \rightarrow \varepsilon$				$E' \to \varepsilon$
T		$T \rightarrow FT'$		$T \rightarrow FT'$	$T \rightarrow FT'$	$T \rightarrow FT'$	

b

T'	$T' \rightarrow \varepsilon$		$T' \rightarrow T$	$T' \rightarrow \varepsilon$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \rightarrow \varepsilon$
F			$F \rightarrow PF'$		$F \rightarrow PF'$	$F \rightarrow PF'$	$F \rightarrow PF'$	
F'	$F' \rightarrow \varepsilon$	$F' \rightarrow *F'$	$F' \rightarrow \varepsilon$	$F' \to \varepsilon$				
P			$P \rightarrow (E)$		$P \rightarrow a$	$P \rightarrow b$	$P \rightarrow ^{\wedge}$	

```
(4)
procedure E;
begin
   if sym='(' or sym='a' or sym='b' or sym='^'
        then begin T; E' end
        else error
end
procedure E';
begin
   if sym='+'
        then begin advance; E end
        else if sym<>')' and sym<>'#' then error
end
procedure T;
begin
   if sym='(' or sym='a' or sym='b' or sym='^'
        then begin F; T' end
        else error
end
procedure T';
begin
   if sym='(' or sym='a' or sym='b' or sym='^'
        then T
        else if sym='*' then error
end
procedure F;
begin
   if sym='(' or sym='a' or sym='b' or sym='^'
        then begin P; F' end
        else error
end
procedure F';
begin
   if sym='*'
        then begin advance; F' end
end
procedure P;
```

```
begin
     if sym='a' or sym='b' or sym='^'
           then advance
           else if sym='(' then
           begin
                 advance; E;
                 if sym=')' then advance
                        else error
           end
           else error
end;
P81 - 3
/*****
(1) 是,满足三个条件。
(2) 不是,对于 A 不满足条件 3。
(3) 不是, A、B均不满足条件 3。
(4) 是,满足三个条件。
******
                                                 第五章
P133 - 1
E \Longrightarrow E + T \Longrightarrow E + T * F
短语: E+T*F, T*F,
直接短语: T*F
句柄: T*F
P133 - 2
文法:
S \rightarrow a |^{\wedge}|(T)
T \rightarrow T, S \mid S
(1)
最左推导:
S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow (a,S) \Rightarrow (a,(T)) \Rightarrow (a,(T,S)) \Rightarrow (a,(S,S)) \Rightarrow (a,(a,S)) \Rightarrow (a,(a,A))
S \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow ((T,S),S) \Rightarrow ((T,S,S),S) \Rightarrow ((S,S,S),S) \Rightarrow ((T,S,S),S)
\Rightarrow (((T,S),S,S)),S) \Rightarrow (((S,S),S,S),S) \Rightarrow (((a,S),S,S),S) \Rightarrow (((a,a),S,S),S)
\Rightarrow (((a,a),^{\wedge},S),S) \Rightarrow (((a,a),^{\wedge},(T)),S) \Rightarrow (((a,a),^{\wedge},(S)),S) \Rightarrow (((a,a),^{\wedge},(a)),S)
\Rightarrow (((a,a),^{\land},(a)),a)
最右推导:
```

```
S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (T,(T)) \Rightarrow (T,(T,S)) \Rightarrow (T,(T,a)) \Rightarrow (T,(S,a)) \Rightarrow (T,(a,a))
\Rightarrow (S,(a,a)) \Rightarrow (a,(a,a))
S \Rightarrow (T,S) \Rightarrow (T,a) \Rightarrow (S,a) \Rightarrow ((T),a) \Rightarrow ((T,S),a) \Rightarrow ((T,(T)),a) \Rightarrow ((T,(S)),a)
\Rightarrow ((T,(a)),a) \Rightarrow ((T,S,(a)),a) \Rightarrow ((T,^{\land},(a)),a) \Rightarrow ((S,^{\land},(a)),a) \Rightarrow (((T,^{\land},(a)),a)) \Rightarrow ((T,^{\land},(a)),a) \Rightarrow ((T,^{\land},(a)),a
\Rightarrow (((T,S),^{\land},(a)),a) \Rightarrow (((T,a),^{\land},(a)),a) \Rightarrow (((T,a),a),a) \Rightarrow (((T,a),a),a)
 (2)
 (((\underline{\mathbf{a}}, a), \hat{\ }, (a)), a)
 (((\underline{S}, a), \hat{}, (a)), a)
 (((T, \underline{a}), \hat{a}), (a)), a)
 (((\underline{T,S}), \hat{,} (a)), a)
 ((\underline{(T)}, \hat{}, (a)), a)
 ((\underline{S}, \hat{\ }, (a)), a)
 ((T, ^, (a)), a)
 ((T, S, (a)), a)
 ((T, (a)), a)
 ((T, (\underline{S})), a)
 ((T, (T)), a)
 ((T, S), a)
 ((T), a)
 (S, a)
 (\underline{\mathsf{T}},\underline{\mathsf{S}})
(T)
S
    "移进-归约"过程:
                                        栈
                                                                                输入串
步骤
                                                                                                                                            动作
                                                            (((<u>a</u>,a), ^,(a)),a)# 预备
0
                  #
                  #(
                                                            ((a, a), \hat{}, (a)), a) #
                                                                                                                                                                进
1
                   #((
                                                             (\underline{\mathbf{a}}, a), \hat{\ }, (a)), a) #
                                                                                                                                                                进
3
                  #(((
                                                                               a, a), ^, (a)), a)# 进
4
                  #(((a
                                                                                ,a), ^,(a)),a)# 进
                  #(((S
                                                                                ,a), ^, (a)),a)#
                                                                                                                                                            归
5
                                                                                ,a),^,(a)),a)#
                  #((T
6
                                                                                                                                                             归
7
                                                                                a), ^, (a)), a)#
                  #(((T,
                                                                                                                                                                进
                                                                              ), ^, (a)), a)#
8
                  #(((T, a
                                                                                                                                                                进
9
                  #(((T, S
                                                                              ), ^, (a)), a)#
                                                                                                                                                                归
10 #(((T
                                                                               ), ^, (a)), a)#
                                                                                                                                                                归
                                                                                , ^, (a)), a)# 进
11 #(((T)
                                                                                , ^, (a)), a)# 归
12 #((S
                                                                                , ^, (a)), a)# 归
13 #((T
                                                                                    (a)),a)#
14 #((T,
                                                                                                                                                                进
15 #((T, ^
                                                                                , (a)), a)#
                                                                                                                                                                进
16 #((T, S
                                                                                , (a)), a)#
                                                                                                                                                                归
17 #((T
                                                                                , (a)), a)#
                                                                                                                                                                归
```

P133 - 3

(2)

	a	`	()	,
a				>	>
^				>	>
(<	<	<	=	<
)				>	>
,	<	<	<	>	>

 G_6 是算符文法,并且是算符优先文法

(3)优先函数

	a	`	()	,
f	4	4	2	4	4
g	5	5	5	2	3

$$g_{a}$$
 g_{\wedge} $g_{(4)}$ $g_{(4)}$

P134 - 5

 g_a

 g_{\wedge}

(1)

	S	A	a	b
$\{0, 2, 5, 7, 10\}$	{1, 2, 5, 7, 8, 10	$\{2, 3, 5, 7, 10\}$	{11}	{6}
	}			
{1, 2, 5, 7, 8, 10	{2, 5, 7, 8, 10}	{2, 3, 5, 7, 9, 10	{11}	{6}
}		}		
$\{2, 3, 5, 7, 10\}$	{2, 4, 5, 7, 8, 10	$\{2, 3, 5, 7, 10\}$	{11}	{6}
	}			
$\{2, 5, 7, 8, 10\}$	$\{2, 5, 7, 8, 10\}$	{2, 3, 5, 7, 9, 10	{11}	{6}
		}		
{2, 3, 5, 7, 9, 10	{2, 4, 5, 7, 8, 10	{2, 3, 5, 7, 10}	{11}	{6}
}	}			
{2, 4, 5, 7, 8, 10	$\{2, 5, 7, 8, 10\}$	{2, 3, 5, 7, 9, 10	{11}	{6}
}		}		
{11}	ф	ф	ф	ф
{6}	ф	ф	ф	ф

构造 LR(0)项目集规范族也可以用 GO 函数来计算得到。所得到的项目集规范族与上图中的项目集一样:

```
I_0 = \{ S' \rightarrow S : S \rightarrow AS : S \rightarrow b : A \rightarrow SA : A \rightarrow a \}
GO(I_0, a) = \{ A \longrightarrow a \cdot \} = I_1
GO(I_0, b) = \{ S \longrightarrow b \} = I_2
GO(I_0, S) = \{ S' \rightarrow S \cdot , A \rightarrow S \cdot A, A \rightarrow SA, A \rightarrow A \cdot A \cdot SA \cdot S \rightarrow AS, S \rightarrow b \} = I_3
GO(I_0, A)={ S \rightarrow A \cdot S, S \rightarrow A \cdot S, S \rightarrow b, A \rightarrow A \cdot S, A \rightarrow a}=I_4
GO(I_3, a) = \{ A \longrightarrow a \cdot \} = I_1
GO(I_3, b) = \{ S \longrightarrow b \cdot \} = I_2
GO(I_3, S)={ A \rightarrow S \cdot A, S \rightarrow AS, S \rightarrow b, A \rightarrow SA, A \rightarrow a}=I_5
\mathrm{GO}\left(I_{3}\,,\ \mathrm{A}\right) = \left\{ \begin{array}{ccc} A \rightarrow SA\cdot, & S \rightarrow A\cdot S \,, & S \rightarrow \cdot AS \,, & S \rightarrow \cdot b \,, & A \rightarrow \cdot SA \,, & A \rightarrow \cdot a \, \right\} = I_{6}
GO(I_4, a) = \{ A \longrightarrow a \cdot \} = I_1
GO(I_4, b) = \{ S \longrightarrow b \} = I_2
GO(I_4, S) = \{ S \rightarrow AS \cdot, A \rightarrow S \cdot A, S \rightarrow AS, S \rightarrow b, A \rightarrow SA, A \rightarrow a \} = I_7
GO(I_4, A) = \{ S \rightarrow A \cdot S, S \rightarrow A \cdot S, S \rightarrow b, A \rightarrow B \cdot A \rightarrow A \cdot A \} = I_4
GO(I_5, a) = \{ A \longrightarrow a \cdot \} = I_1
GO(I_5, b) = { S \longrightarrow b \cdot } = I_2
GO(I_5, S) = \{ A \rightarrow S \cdot A, S \rightarrow A, S \rightarrow A, S \rightarrow B, A \rightarrow SA, A \rightarrow A \} = I_5
GO(I_5, A)={ A \rightarrow SA \cdot , S \rightarrow A \cdot S \cdot S \rightarrow A \cdot S \rightarrow A \cdot S \cdot S \rightarrow A \cdot S \cdot S \rightarrow A 
GO(I_6, a) = \{ A \longrightarrow a \cdot \} = I_1
GO(I_6, b) = \{ S \longrightarrow b \} = I_2
GO(I_6, S) = \{ S \rightarrow AS \cdot, A \rightarrow S \cdot A, S \rightarrow AS \cdot, S \rightarrow b, A \rightarrow SA \cdot, A \rightarrow a \} = I_7
GO(I_6, A) = \{ S \rightarrow A \cdot S, S \rightarrow \cdot AS, S \rightarrow \cdot b, A \rightarrow \cdot SA, A \rightarrow \cdot a \} = I_4
GO(I_7, a) = \{ A \longrightarrow a \cdot \} = I_1
GO(I_7, b) = \{ S \longrightarrow b \cdot \} = I_2
GO(I_7, S) = \{ A \rightarrow S \cdot A, S \rightarrow AS, S \rightarrow b, A \rightarrow SA, A \rightarrow a \} = I_5
GO(I_7, A) = \{A \rightarrow SA \cdot , S \rightarrow A \cdot S, S \rightarrow A \cdot S, S \rightarrow A \cdot S, S \rightarrow b, A \rightarrow SA, A \rightarrow a \} = I_6
项目集规范族为 C=\{I_1, I_2, I_3, I_4, I_5, I_6, I_7\}
```

(3) 不是 SLR 文法

状态 3, 6, 7 有移进归约冲突

状态 3: FOLLOW(S')={#}不包含 a, b

状态 6: FOLLOW(S)={#, a, b} 包含 a, b, ; 移进归约冲突无法消解

状态 7: FOLLOW(A)={a,b} 包含 a,b; 移进归约冲突消解

所以不是 SLR 文法。

(4) 构造例如 LR(1)项目集规范族

见下图:

对于状态 5,因为包含项目 $[A \to AS \cdot a/b]$,所以遇到搜索符号 a 或 b 时,应该用 $A \to AS$ 归约。又因为状态 5 包含项目 $[A \to a a/b]$,所以遇到搜索符号 a 时,应该移进。因此存在"移进—归约"矛盾,所以这个文法不是 LR(1) 文法。

第六章

P164 - 5

P164 - 7

S→L1 | L2 {S. va1:=L1. va1+(L2. va1/2
$$^{L2.length}$$
)}
S→L {S. va1:=L. va1}
L→L1B {L. va1:=2*L1. va1 + B. va1;
L. length:=L1. length+1}
L→B {L. va1:=B. c;
L. length :=1}
B→0 {B. c:=0}
B→1 {B. c:=1}

第七章

P217 - 1

$$a*(-b+c) \qquad ab@c+* \\ a+b*(c+d/e) \qquad abcde/+*+ \\ -a+b*(-c+d) \qquad a@bc@d+*+ \\ \neg A \lor \neg (C \lor \neg D) \qquad A \neg CD \neg \lor \neg \lor \\ (A \land B) \lor (\neg C \lor D) \qquad AB \land C @ D \lor \lor \\ (A \lor B) \land (C \lor \neg D \land E) \qquad AB \lor CD @ E \land \lor \land \\ if \quad (x+y)*z = 0 \quad then \quad (a+b) \uparrow c \quad else \quad a \uparrow b \uparrow c \quad xy+z*0= ab+c \uparrow abc \uparrow \uparrow \quad Y$$

或 xy+z*0= P1 jez ab+c↑ P2 jump abc↑↑

P217 - 3

-(a+b)*(c+d)-(a+b+c)的

三元式序列:

- (1) +, a, b
- (2) @, (1), -
- (3) +, c, d
- (4) *, (2), (3)
- (5) +, a, b
- (6) +, (5), c
- (7) -, (4), (6)

间接三元式序列:

三元式表:

- (1) +, a, b
- (2) @, (1), -
- (3) +, c, d
- (4) *, (2), (3)
- (5) +, (1), c
- (6) -, (4), (5)

间接码表:

- (1)
- (2)
- (3)
- (4)
- (1)
- (5)
- (6)

四元式序列:

- (1) +, a, b, T_1
- (2) @, T_1 , -, T_2
- (3) +, c, d, T_3
- (4) *, T_2 , T_3 , T_4
- (5) +, a, b, T_5
- (6) +, T_5 , c, T_6
- (7) -, T_4 , T_6 , T_7

P218 - 4

自下而上分析过程中把赋值句翻译成四元式的步骤:A:=B*(-C+D)

- 步骤 输入串 栈 PLACE 四元式
- (1) A := B*(-C+D)
- (2) :=B*(-C+D) i A
- (3) B*(-C+D) i := A-
- (4) *(-C+D) i:=i A-B
- (5) *(-C+D) i := E A-B
- (6) *(-C+D) i:=E A-B

```
(7)
          (-C+D)
                        i:=E*
                                       A-B-
(8)
         -C+D)
                        i:=E*(
                                       A-B--
(9)
         C+D)
                                       A-B---
                        i:=E*(-
(10)
         +D)
                        i:=E*(-i
                                       A-B---C
                                                      (@, C, -, T_1)
(11)
         +D)
                        i:=E*(-E
                                       A-B---C
(12)
         +D)
                        i:=E*(E
(13)
         D)
                        i:=E*(E+
(14)
                        i := E*(E+i
                                       A-B--T-D
                                                     (+, T_1, D, T_2)
(15)
              )
                        i := E * (E + E)
              )
(16)
                        i := E(E)
(17)
                        i := E * (E)
(18)
                        i := E + E
(19)
                        i := E
                                      ^{\text{A-}}T_{3}
(20) A
```

产生的四元式:

$$(@, C, -, T_1)$$

$$(+, T_1, D, T_2)$$

$$(+, T_1, D, T_2)$$

 $(*, B, T_2, T_3)$
 $(:=, T_3, -, A)$

P218 - 5

/******

设A: 10*20, B、C、D: 20, 宽度为w=4则

$$T1:=i * 20$$

T1:=T1+j

T2:=A-84

T3:=4*T1

Tn:=T2[T3] //这一步是多余的

T4 := i + j

T5:=B-4

T6:=4*T4

T7:=T5[T6]

T8 := i * 20

T8 := T8 + j

T9 := A - 84

T10:=4*T8

T11:=T9[T10]

T12 := i + j

T13:=D-4

T14:=4*T12

T15 := T13[T14]

T16:=T11+T15

T17:=C-4

T18:=4*T16

```
T19:=T17[T18]
```

T20:=T7+T19

Tn:=T20

*******/

P218 - 6

- 100. (jnz, A, -, 0)
- 101. (j, -, -, 102)
- 102. (jnz, B, -, 104)
- 103. (j, -, -, 0)
- 104. (jnz, C, -, 103)
- 105. (j, -, -, 106)
- 106. (jnz, D, -, 104) --假链链首
- 107. (j, -, -, 100) -- 真链链首

假链: {106,104,103}

真链: {107,100}

P218 - 7

- 100. (j<, A, C, 102)
- 101. (j, -, -, 0)
- 102. (j<, B, D, 104)
- 103. (j, -, -, 101)
- 104. (j=, A, '1', 106)
- 105. (j, -, -, 109)
- 106. (+, C, '1', T1)
- 107. (:=, T1, -, C)
- 108. (j, -, -, 100)
- 109. (j≤, A, D, 111)
- 110. (j, -, -, 100)
- 111. (+, A, '2', T2)
- 112. (:=, T2, -, A)
- 113. (j, -, -, 109)
- 114. (j, -, 100)

P219 - 12

/*******

(1)

MAXINT - 5

MAXINT - 4

MAXINT - 3

MAXINT - 2

MAXINT - 1

 ${\tt MAXINT}$

(2)翻译模式

```
方法 1:
 for E1 := E2 to E3 do S
S \rightarrow F \operatorname{do} MS_1
F \to \operatorname{For} I := E_1 \text{ to } E_2
I \rightarrow id
M \to \varepsilon
S \to F \text{ do } MS_1
                        {backpatch(S1.nextlist, nextquad);
                        backpatch (F. truelist, M. quad);
                        emit(F.place ':=' F.place '+' 1);
                        emit('j \le,' F. place',' F. end',' M. quad);
                        S.nextlist := F.falselist;
F \rightarrow \text{For } I := E_1 \text{ to } E_2
                             {F. falselist:= makelist(nextquad);
                        emit( 'j>, ' E1.place ', ' E2.place ',0' );
                        emit(I.Place ':=' E1.place);
                        F. truelist := makelist(nextquad);
                        emit('j,-,-,-');
                        F. place := I. place;
                        F. end := E2. place;
I \rightarrow id
                        {p:=lookup(id.name);
                         if p \Leftrightarrow nil then
                          I. place := p
                          else error}
M \to \varepsilon
                        {M. quad := nextquad}
******
方法 2:
    S→ for id:=E1 to E2 do S1
    S \rightarrow F S1
    F \rightarrow \text{ for id}:=E1 \text{ to } E2 \text{ do}
 F \rightarrow forid := E1toE2 do
    INITIAL=NEWTEMP;
    emit( ':=,' E1.PLACE', -,' INITIAL);
    FINAL=NEWTEMP;
    emit( ':=,' E2.PLACE', -,' FINAL);
    p:= nextquad+2;
    emit('j ,' INITIAL',' FINAL',' p);
    F. nextlist:=makelist(nextquad);
    emit('j, -, -, -');
```

第九章

P270 - 9

(1) 传名

即当过程调用时,其作用相当于把被调用段的过程体抄到调用出现处,但必须将其中出现的任一形式参数都代之以相应的实在参数。

A:=2; B:=3; A:=A+1; A:=A+(A+B); print A; ∴A=9

(2) 传地址

即当程序控制转入被调用段后,被调用段首先把实在参数抄进相应的形式参数的形式单元中,过程体对形参的任何引用或赋值都被处理成对形式单元的间接访问。当被调用段工作完毕返回时,形式单元(都是指示器)所指的实参单元就持有所希望的值。

- $\widehat{1}$ A:=2;B:=3;T:=A+B
- ②把 T, A, A 的地址抄进已知单元 J1, J2, J3

```
③x:=J1;y:=J2;z:=J3 //把实参地址抄进形式单元,且 J2=J3
④Y↑:=y↑+1
```

Z↑:=z↑+x↑ // Y↑: 对 y 的间接访问 Z↑: 对 z 的间接访问

⑤print A

A=8

(3) 得结果

每个形参均对应两个单元,第一个存放实参地址,第二个存放实参值,在过程体中对形参的 任何引用或赋值都看成是对它的第二个单元的直接访问,但在过程工作完毕返回前必须把第

- 二个单元的内容放到第一个单元所指的那个实参单元中
- $\widehat{1}$ A:=2;B:=3;T:=A+B
- ②把 T, A, A 的地址抄进已知单元 J1, J2, J3
- $\Im x1:=J1; x2:=T;$

y1:=J2;y2:=A;

z1:=J3;z2:=A; //将实参的地址和值分别放进两个形式单元中

④y2:=y2+1; z2:=z2+x2; //对形参第二个单元的直接访问

⑤x1 ↑: =x2; y1 ↑:=y2; z1 ↑:=z2 //返回前把第二个单元的内容存放到第一个单元所 指的实参地址中

©print A

A=7

(4) 传值

即被调用段开始工作时,首先把实参的值写进相应的形参单元中,然后就好像使用局部变量一样使用这些形式单元

A := 2;

B:=3:

X := A + B

y := A

z := A

y := y+1

z := z + x

print A

A=2

过程调用不改变A的值

第十章

P306-1

P306-2

read A,B

F:=1

C:=A*A

 \boldsymbol{B}_1

D:=B*B

 $\quad \text{if C<D goto} \quad L_1 \\$

.____

E:=A*A

F:=F+1

E:=E+F

 \boldsymbol{B}_2

write E

halt

.....

 L_1 : E:=B*B

F:=F+2

E:=E+F B_3

write E

if E>100 goto L_2

halt
$$B_4$$

 $L_2: F:=F-1$

goto
$$L_1$$
 B_5

基本块为 B_1 、 B_2 、 B_3 、 B_4 、 B_5

P307-4

B2 有回路, 所以{B2}是循环, B2 既是入口节点, 又是出口节点

- (1) 代码外提:不存在不变运算,故无代码外提
- (2) 强度削弱: A:=K*I B:=J*I *→+
- (3) 删除基本归纳变量: I<100 可以用 A<100*K 或 B<100*J 代替

P307-5

{B2,B3}是循环,B2是入口节点,也是出口节点

- (1) 代码外提: B:=J+1
- (2) 删除归纳变量