

학습 목표

재귀함수를 이용한 핵심적인 예시들의 알고리즘을 이해하고 구현할 수 있다

Data Structures in Python Chapter 4

- Recursion Concepts
- Recursion Stack and Memoization
- Recursive Algorithms
- Recursive Graphics
- Exercise Stacking boxes

Agenda

- Recursion and Stack
- More Examples and Algorithms
 - Radix Conversion
 - The Fibonacci Sequence
 - The Towers of Hanoi

Radix Conversion

- Radix is the base of number representation.
- Examples:
 - Decimal, 10
 - Binary, 2
 - Octal, 8
 - Hexadecimal, 16

Decimal	Binary	Octal	Hexadecimal
20	101002	24 ₈	14 ₁₆
7	1112	7 ₈	7 ₁₆
32	1000002	40 ₈	20 ₁₆

Radix Conversion

- Radix conversion by division from larger base to a smaller base.
- Example: Convert a decimal number into other bases
 - radix(99, 2) 1100011
 - radix(99, 3)10200
 - radix(99, 4)1203
 - radix(99, 5) 344
 - radix(99, 6)243
 - radix(99, 7)201
 - radix(99, 8) 143
 - radix(99, 9)120

Radix Conversion

- Radix conversion from other bases to decimal
 - Digits are multiplied by powers of the base or 10, 8, 2, or whatever.
 - Decimal numbers multiply digits by powers of 10

$$9507_{10} = 9 \times 10^3 + 5 \times 10^2 + 0 \times 10^1 + 7 \times 10^0$$

Octal numbers - power of 8

$$1567_8 = 1 \times 8^3 + 5 \times 8^2 + 6 \times 8^1 + 7 \times 8^0$$
$$= 512 + 320 + 48 + 7 = 887_{10}$$

Binary numbers - power of 2

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 8 + 4 + 0 + 1 = 13₁₀

Radix Conversion Example:

- Convert 5 from base 10 to base 2.
 - 1. Divide 5 by new base 2, then quotient 2 and remainder 1
 - 2. Divide quotient 2 by 2, then quotient 1 and remainder 0
 - Divide quotient 1 by 2, then quotient 0 and remainder 1
 Stop when the quotient is 0.

- Convert 99 from base 10 to base 8.
 - 1. Divide 99 by new base 8, then quotient 12 and remainder 3
 - 2. Divide quotient 12 by 8, then quotient 1 and remainder 4
 - Divide quotient 1 by 8, then quotient 0 and remainder 1
 Stop when the quotient is 0.

$$99_{10} = 143_8$$

Possible Solutions:

- We could either
 - store remainders in a list by appending.
 - must continue the output until we get the quotient = 0
 - reverse the list
 - return the result as a compact string from the list.
- Iterative Algorithm
 - while the decimal number > 0
 - Divide the decimal number by the new base.
 - Set the decimal number = decimal number divided by the base.
 - Store the remainder to the left of any preceding remainders.

Recursive Algorithm

- Base case:
 - if decimal number == 0, do nothing (or return "")
- Recursive case
 - if decimal number > 0
 - solve a simpler version of the problem
 - use the quotient as the argument to the next call
 - store the current remainder (number % base) in the correct place

```
def radix(num, base):
    if num == 0:
        return ''
    return radix(num//base, base) + str(num % base)
```

- Note: This code above does not convert a decimal to a hexadecimal. It is left as an exercise.
- Question: Let's suppose that radix(99, 4) is called for the first time:
 - How many more times would radix() be called to have the first meaningful letter by str(num % base)
 - What is the value of string or num?

- The famous towers of Hanoi consists of n discs and three poles.
 - The discs are of different size and have holes to fit themselves on the poles.
 - Initially all the discs are on one pole, e.g., pole A.
 - The task is to move all n discs to another pole, while obeying the following rules.
 - Move only one disc at a time.
 - Never place a larger disc on a smaller one.
 - One legend says that the world will end when a certain group of monks accomplishes this task in a temple with 64 golden discs on three diamond needles. But how can the monks accomplish the task at all, playing the rules?
 - To solve the problem, our goal is to issue a sequence of instructions for moving the discs.

- Examples:
 - https://www.youtube.com/watch?v=q6RicK1FCUs
 - https://sikaleo.tistory.com/29 (한국어)

- Recursive algorithm:
 - Move the top n-1 discs from start to spare (using end), recursively.
 - 2. Move the **remaining (largest)** disc from **start to end**.
 - Move the n-1 discs from spare to end (using start), recursively.

- Recursive algorithm:
 - Move the top n-1 discs from start to spare (using end), recursively.
 - 2. Move the **remaining (largest)** disc from **start to end**.
 - Move the n-1 discs from spare to end (using start), recursively.

One disc case:

(1) move a disc from A to B.

- Recursive algorithm:
 - Move the top n-1 discs from start to spare (using end), recursively.
 - 2. Move the **remaining (largest)** disc from **start to end**.
 - 3. Move the n-1 discs from spare to end (using start), recursively.

Two disc case:

- (1) move a disc from A to C using B.
- (2) move a disc from A to B.
- (3) move a disc from C to B using A.

since it is not the end(or destination)

Three discs case:

- (1) move two discs from A to C using B.
- (2) move a disc from A to B.
- (3) move two discs from C to B using A

for n discs

since it is not the end(or destination)

This is a recursive step.

We already have done this two discs case before.

for n discs:

- (1) move **n 1 discs** from A to C using B.
- (2) move a disc from A to B.
- (3) move n 1 discs from C to B using A

```
def hanoi(n, start, end, spare):
    if n >= 1:
        hanoi(n - 1, start, spare, end)
        print(f"move disc {n} from {start} to {end}")
        hanoi(n - 1, spare, end, start)

if __name__ == '__main__':
    hanoi(3, 'A', 'B', 'C')
```


- Recursive algorithm:
 - Move the top n-1 discs from start to spare (using end), recursively.
 - Move the remaining (largest) disc from start to end.
 - Move the n-1 discs from spare to end (using start), recursively.

(3) It becomes a **3 disc case**. Go back to step 1. Treat the **spare as start** and the **start as spare**.

The Towers of Hanoi - Algorithm

• Question: How many moves and recursive calls made?

```
def hanoi(n, start, end, spare):
    if n >= 1:
        hanoi(n - 1, start, spare, end)
        print(f"move disc {n} from {start} to {end}")
        hanoi(n - 1, spare, end, start)

if __name__ == '__main__':
    hanoi(3, 'A', 'B', 'C')
```


The Towers of Hanoi - Coding Exercise

- Idea: It is hard to check the correctness of the previous hanoi().
 - Let us use a list to present a disc in a pole and display the result as shown below. The number in a list represents the size of the disc. tower() prints the current status of the tower in a list format. Test the cases such as n = 1, 2, 3, 4, 5, 6.

```
def hanoi(n, start, end, spare):
   if n >= 1:
       None
def tower(A, B, C):
   print(None)
if __name__=='__main__':
                                            start-[1, 2, 3]
                                                             end-[]
                                                                            spare-[]
   n = 3
                                            start-[2, 3]
                                                             end-[1]
                                                                            spare-[]
                                            start-[3]
                                                             end-[1]
                                                                            spare-[2]
   A = [* range(1, n+1)]
                                            start-[3]
                                                                            spare-[1, 2]
                                                            end-[]
   B = []
                                            start-[]
                                                            end-[3]
                                                                            spare-[1, 2]
   C = []
                                            start-[1]
                                                            end-[3]
                                                                            spare-[2]
   tower(A, B, C)
                                            start-[1]
                                                            end-[2, 3]
                                                                            spare-[]
   hanoi(n, A, B, C)
                                            start-[]
                                                            end-[1, 2, 3]
                                                                            spare-[]
```

The Towers of Hanoi - Time complexity

- Recursive algorithm:
 - Move the top n-1 discs from start to spare.
 - Move the remaining (largest) disc from start to end.
 - Move the n-1 discs from spare to end.

$$hanoi(n) = \begin{cases} 1 & \text{if } n = 1\\ 2 \cdot hanoi(n-1) + 1 & \text{if } n > 1 \end{cases}$$

Exercise: How many years will take to move 64 discs?

- (1) hanoi(1) = 1
- (2) hanoi(2) = 3
- (3) hanoi(3) = 7
- (4) hanoi(4) = 15
- (5) hanoi(5) = 31
- (6) hanoi(32) = 4,294,967,295
- (7) hanoi(64) = 18,446,744,073,709,600,000

```
hanoi(n = 4)

hanoi(4)

= 2*hanoi(3) + 1

= 2*(2*hanoi(2) + 1) + 1

= 2*(2*(2*hanoi(1) + 1) + 1) + 1

= 2*(2*(2*1 + 1) + 1) + 1

= 2*(2*(3) + 1) + 1

= 2*(7) + 1 = 15
```

The Towers of Hanoi - Time complexity

Solving the recurrence equation of the Hanoi Tower.

```
    T(n) = 2T(n-1) + 1
    T(n-1) = 2T(n-2) + 1
    T(n-2) = 2T(n-3) + 1
    T(n) can be rewritten some substitutions
```

$$T(n) = 2(2(2T(n-3) + 1) + 1) + 1$$

= $2^3 T(n-3) + 2^2 + 2^1 + 1$

. . .

Expand this T(n) until it has T(n-k) term since we know T(1) = 1.

After generalization

$$T(n) = 2^{k} T(n-k) + 2^{k-1} + 2^{k-2} + \dots + 2^{k-2} + 1$$

Since base condition T(1) = 1, and then n - k = 1, k = n - 1

- Replace k with k = n 1.
- $T(n) = 2^{n-1} T(0) + 2^{n-2} + 2^{n-3} + ... 2^2 + 2^1 + 1 = 2^n 1$
- The time complexity is O(2ⁿ)
- For 5 discs, n = 5, it will take $2^5 1 = 31$ moves.

The Towers of Hanoi - Time complexity

Write a recursive function to compute the number of disc's move first. Then
compute the number of years to move 64 discs, while assuming that a group of
monks really work diligently to move the disc fast like a computer clock speed or
one disc per nano second (10⁻⁹ sec). Show your code and computation below:

```
def hanoi(n):
    if n <= 1:
        return 1
    return
if name == ' main ':
    for n in [1, 2, 3, 4, 5, 10, 32, 64]:
                                                  1 1
        t = hanoi(n)
        print(n, t)
                                                  4 15
                                                  5 31
                                                  10 1023
                                                  32 4294967295
                                                  64 18446744073709551615
                                                  35096.55 years
```

Summary

- Recursion simplifies program structure at a cost of function calls (using the system stack).
- Understand and learn how to implement the recursive functions for different applications.

학습 정리

1) Radix 변환은 변환하고자 하는 수를 밑수(base, radix)로 계속 나누는 방식으로 작동된다

2) 하노이 탑(Hanoi Tower) 문제는 재귀 용법으로 접근하면 간단히 풀 수 있는 전형적인 문제이다

