CLAIMS

We claim:

1. An optical device comprising:

5

two face-to-face freestanding membranes each supported near a top surface on one of two bonded substrates for defining a resonant cavity between said two membranes;

10

each of said substrates having an entire bulk-portion opposite said cavity etched off as a bulk micro-machining opening extended from each of said membranes through a bottom surface of said substrates.

15

2. The optical device of claim 1 wherein:

said resonant cavity defining a distance of $N(\lambda/4)$ between said two freestanding membranes where N is a positive integer and λ is a wavelength of an optical signal.

20

3. The optical device of claim 1 wherein:

25

said two freestanding membranes having identical layer structure formed by a same set of manufacturing processes carried out on a single substrate wafer.

4. The optical device of claim 1 wherein:

30

said resonant cavity is surrounded by a cavity wall formed with two cavity spacers stacked and bonded for disposing said two freestanding membranes face-to-face across said resonant cavity.

5.	The optical device of claim 4 wherein:
	each of said two cavity spacers having an identical layer structure and a same thickness.
6.	The optical device of claim 4 wherein:
	each of said two cavity spacers having an identical layer structure formed by a same set of manufacturing processes on a single substrate wafer.
7.	The optical device of claim 1 wherein:
	each of said two freestanding membranes having multiple layers.
8.	The optical device of claim 1 wherein:
	each of said two freestanding membranes having odd number of layers.
9.	The optical device of claim 1 wherein:
	each of said two freestanding membranes having odd number of layers arranged with a symmetrical layer structure symmetrical to a central layer.
10.	The optical device of claim 1 wherein:
	each of said two freestanding membranes having an electrically conductive layer provided for controlling said membranes.

5

10

15

20

25

11. An optical device comprising:

a substrate having a through-hole; and

two face-to-face freestanding membranes disposed in said through-hole formed as membrane layers extended across said through hole and supported on said substrate for providing a resonant cavity between said two membranes.

12. The optical device of claim 11 wherein:

said resonant cavity defining a distance of $N(\lambda/4)$ between said two freestanding membranes where N is a positive integer and λ is a wavelength of an optical signal.

13. The optical device of claim 11 wherein:

said two freestanding membranes having identical layer structure formed by a same set of manufacturing processes carried out on a single substrate wafer.

14. The optical device of claim 11 wherein:

said resonant cavity is surrounded by a cavity wall formed with two cavity spacers stacked and bonded for disposing said two freestanding membranes face-to-face across said resonant cavity.

15. The optical device of claim 14 wherein:

each of said two cavity spacers having an identical layer structure and a same thickness.

30

	16.	The optical device of claim 14 wherein:
5		each of said two cavity spacers having an identical layer structure formed by a same set of manufacturing processes on a single substrate wafer.
	17.	The optical device of claim 11 wherein:
10		each of said two freestanding membranes having multiple layers.
	18.	The optical device of claim 11 wherein:
15		each of said two freestanding membranes having odd number of layers.
	19.	The optical device of claim 11 wherein:
20		each of said two freestanding membranes having odd number of layers arranged with a symmetrical layer structure symmetrical to a central layer.
	20.	The optical device of claim 11 wherein:
25		each of said two freestanding membranes having an electrically conductive layer provided for controlling said membranes.
20	21.	A substrate comprising:
30		a through-hole in said substrate; and
35		a freestanding membrane disposed in said through-hole formed as a membrane layer extended across said through hole and supported on said substrate.

	22.	The substrate of claim 21 wherein:
5		said free standing membrane disposed near a top surface of said substrate; and
		a chamber spacer disposed on said top surface surrounding said membrane.
	23.	The substrate of claim 21 wherein:
		said free standing membrane disposed near a top surface of said substrate; and
15		a chamber spacer having a thickness of $N(\lambda/8)$ disposed on said top surface surrounding said membrane where N is a positive integer and λ is a wavelength of an optical signal.
20	24. comprising:	A method of forming an optical device on a substrate
		a) forming a membrane layer on a top surface of said substrate; and
25		b) applying a bulk micro-machining process for etching off an entire bulk portion of said substrate below said membrane layer whereby said membrane layer becoming a
		freestanding membrane layer above said entire bulk portion.
30	25.	The method of claim 24 wherein:
		said step a) of forming a membrane layer further comprising a step of forming said membrane layer with a bulk-etch protection bottom layer on said top surface of said substrate.