1 Ověřování základních vlastností OZ

Budeme pracovat s OZ 1458:

• Stejnosměrné zesílení: $A_0 \approx 200000$ (ideálně ∞).

• Vstupní odpor: $R_{in} \approx 1[M\Omega]$ (ideálně ∞).

• Výstupní odpor: $R_{out} \approx 75[\Omega]$ (ideálně 0).

• Rozsah výstupního napětí: od $-U_{SAT}$ do $+U_{SAT}$, $U_{SAT} \approx U_{napjec}$ -(12)[V].

Dynamické vlastnosti OZ

U OZ 1458 dochází při plném zesílení A_0 k jeho poklesu o 3[dB] už u frekvence $F_0 \approx 5[Hz]$ a tranzitní kmitočet $F_t \approx 1[MHz]$. Tranzitní kmitočet F_t je frekvence, při které dochází k poklesu zesílení na 0[dB] neboli zesílení 1. Zhruba platí empirický vztah

$$A_0 \cdot F_{Ku} = F_t$$

kde F_{Ku} je kmitočet při daném zesílení, na kterém dochází k poklesu zesílení o 3[dB].

Další důležitý parametr je mezní rychlost přeběhu neboli Slew rate SR, který udává maximální strmost výstupní hrany. Jde tedy o jednotky V/s, ale většinou se z praktických důvodů používá $V/\mu s$ a u OZ 1458 je $SR\approx 0.5$ - $[V/\mu s]$. Platí tedy $SR=\frac{\Delta_u}{\Delta_t}$ a měření lze realizovat pomocí osciloskopu a obdélníkového signálu na vstupu zesilovače. Jak je vidět na obr. ??, je potřebné neměřit strmost hrany od jejího začátku po konec, protože by bylo měření zkreslené přechodovými ději.

Simulované proudy a napětí v obvodech

Sledovač

Invertující zesilovač

Neinvertující zesilovač

Rychlost Přeběhu

Simulace

| Non-citat Visualization | Non-citat Visualization | Non-citat Visualization | Non-citation | N

$$SR_{up} = \frac{\Delta_u}{\Delta_t} = \frac{U_2 - U_1}{t_2 - t_1} = \frac{4.5 - 0.5}{(33.133 - 25.979) \cdot 10^{-6}} = 559128[V/s] = 0.559128[V/\mu s]$$

$$\begin{array}{l} SR_{down} = \frac{\Delta_u}{\Delta_t} = \frac{U_2 - U_1}{t_2 - t_1} = \frac{0.5 - 4.5}{(58.196 - 50.967) \cdot 10^{-6}} = \\ = -553327 [V/s] = -0.553327 [V/\mu s] \end{array}$$

Reálné měření

$$\begin{array}{l} SR_{down} = \frac{\Delta_u}{\Delta_t} = \frac{U_2 - U_1}{t_2 - t_1} = \frac{-0.79 - 0.5}{2.216 \cdot 10^{-6} - 632 \cdot 10^{-9}} = \\ = -814394 [V/s] = -0.814394 [V/\mu s] \end{array}$$

Základní časové průběhy

Neinvertující zesilovač

Invertující zesilovač

Reálné změřené časové průběhy jsou níže na obr. 1. Tři výstupní průběhy se odlišují hodnotami odporu $R_1 = (1, 10, 100[k\Omega])$ zatím co $R_2 = 1[k\Omega]$ zůstává stejný. Zesílení tak teoreticky dosahuje hodnot

 $|A_0| = (2, 11, 101)$ což je pravda dokud nedojde k saturaci.

$$\begin{split} f = 1[kHz], \, U_{(}ss-in) &= 2.06[V], \, U_{(}ss-out) = 28.6[V] \\ A = \frac{U_{(}ss-out)}{U_{(}ss-in)} &= \frac{28.6}{2.06} = 13.88[-] \end{split}$$

 $1[kHz], U_{\ell}(ss - in) = 4[V], U_{\ell}(ss - out) = 28[V]$ Pokud by nedošlo k saturaci, tak by zesílení A mělo být stejné jako na průběhu vedle A = 13.59[V]. Jediná změna mezi těmito průběhy je totiž amplitudová Vstupní napětí U_{ss_in} . Takhle bychom se však stejným vzorcem dostali k hodnotě A=7, což je však pravda jen v jednom konkrétním bodě.

Průběhy při různých frekvencích

Neinvertující zapojení OZ

Invertující zapojení OZ

Napětová převodní charakteristika

1.1 Závěr

-	$SR_{up}[V/\mu s]$	$SR_{down}[V/\mu s]$
simulace	0.5591	0.5533
měření	0.9947	0.8144

Table 1:

Při měření mezní rychlosti přeběhu jsme došli ke čtyřem výsledkům (ze simulace a z reálného měření). Ze simulace vychází $RS_{up} = 0.5591[V/\mu s], RS_{down} = 0.5533[V/\mu s]$. Zatím co z reálného měření vyšlo $RS_{up} = 0.9947$ - $[V/\mu s], RS_{down} = 0.8144[V/\mu s]$. Vzhledem k velké odchylce jsem nahlédl do datasheet OZ 1458 (www.st.com/resource/en/datasheet/mc1458.pdf strana 6), kde je typická rychlost přeběhu při napájení $\pm 10[V]$ $SR = 0.8[V/\mu s]$, minimální $0.2[V/\mu s]$ a maximální není uvedena. Předpokládám proto, že Simulace počítala s modelem, který je podle datasheetu sice možný, ale ne úplně typický.

Reálné průběhy na straně 3. Na obrázku A i B je zobrazen vstupní a výstupní signál stejného zapojení se stejnou frekvencí f=1kHz ale jinou amplitudou vstupního resp. výstupního signálu. Pokud by nedošlo k saturaci, tak by zesílení A mělo být u obou průběhů stejně A=13.59[V]. Na obrázku B však dochází k saturaci a signál je tak omezen na napětí v intervalu $\pm 14.3[V]$.

Při měření frekvenčního rozsahu (strana 4 obr. 1) je vidět, jak se se vzrůstající frekvencí snižuje zesílení a posouvá fáze. Navíc je při frekvencích nad 1kHz vidět, že se k výstupnímu signálu přidává stejnosměrná složka, která je pravděpodobně způsobena asymetrií výstupu zesilovače. Na grafu závislosti zesílení na frekvenci je vidět, že první měření, které je oproti maximu sníženo o 3[dB], je na frekvenci 150kHz.

Při simulaci invertujícího zapojení s odporem $R_1 = 100[k\Omega]$ je jasně vidět chyba simulátoru. Tato chyba způsobuje, že zapojení, které by mělo mít při nulové frekvenci zesílení A = 40[dB], má zesílení hluboko v záporných číslech. Tato chyba je však viditelná i u druhých dvou průběhů, kde se viditelně projevuje na vysokých frekvencích.

Mimo saturaci se zesílení v napěťové převodní charakteristice zobrazí jako směrnice, v simulaci je to zřetelně viditelné. V našem reálném měření je směrnice sice viditelná také, ale je velmi nepřesná.