Введение в искусственный интеллект. Машинное обучение

Тема: Вероятностный подход к классификации

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

План лекции

- Вероятностная постановка задач машинного обучения
- Оптимальный байесовский классификатор
- Наивный байесовский классификатор
- 🐠 Логистическая регрессия
- Перекрестная энтропия (cross entropy)

Определения в одномерном случае

- ullet Пусть дана некоторая вероятностная мера P
- Х случайная величина
- ullet $F(x) = F_X(x) := P(X < x)$ функция распределения
- $p(x) = p_X(x) := \frac{d}{dx} F_X(x)$ плотность распределения

Дискретный случай

$$P(x_i) = p_i$$

плотности не существует

Непрерывный случай

 $P(x_i) = 0$, но если рассмотреть окрестность, то вероятность уже не нулевая

 $p(x_i) \geq 0$

Определения в многомерном случае

- ullet Пусть дана некоторая вероятностная мера P
- ullet $X = (X_1, ..., X_n)$ многомерная случайная величина
- ullet $F(x_1,...,x_n) = F_X(x) := P(X_i < x_i \;$ для всех ${\rm i}) {\rm ф}$ ункция распределения
- ullet $p(x)=p_X(x):=rac{\partial^n}{\partial x_1...\partial x_n}F_X(x)$ плотность распределения

Математическое ожидание

Математическое ожидание (непрерывный случай)

Пусть $X \sim p(x)$. Тогда

$$EX := \int x dF(x) = \int x p(x) dx$$

Математическое ожидание

Математическое ожидание (непрерывный случай)

Пусть $X \sim p(x)$. Тогда

$$EX := \int x dF(x) = \int x p(x) dx$$

Математическое ожидание (дискретный случай)

Пусть
$$P(X=x_i)=p_i$$
. и $\sum\limits_{i=0}^{+\infty}p_i=1$. Тогда

$$EX := \sum_{i=0}^{+\infty} p_i x_i$$

Дисперсия

Дисперсия

$$DX := E(X - EX)^2$$

Дисперсия

Дисперсия

$$DX := E(X - EX)^2$$

Среднеквадратическое отклонение

$$\sigma = \sqrt{DX}$$

Условная вероятность

Определение

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$
$$p(x|y) := \frac{p(x,y)}{p(y)}$$

Условная вероятность

Определение

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$
$$p(x|y) := \frac{p(x,y)}{p(y)}$$

Формула полной вероятности

$$p(x) = \int\limits_{Y} p(x|y)p(y)dy$$
 или $p(x) = \sum\limits_{y \in Y} p(x|y)P(y)$

Условная вероятность

Определение

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$
$$p(x|y) := \frac{p(x,y)}{p(y)}$$

Формула полной вероятности

$$p(x) = \int\limits_{Y} p(x|y)p(y)dy$$
 или $p(x) = \sum\limits_{y \in Y} p(x|y)P(y)$

Теорема Байеса

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\int\limits_X p(y|x)p(x)dx}$$

Предположение

Предположение

Пусть известно совместное распределение p(x,y) на $X \times Y$.

Предположение

Предположение

Пусть известно совместное распределение p(x,y) на $X \times Y$.

Вероятностная постановка задач машинного обучения

Предположения

Пусть известно совместное распределение p(x,y) на $X \times Y$ Пусть задана функция потерь L(a(x),y)

Определение

Средняя величина потерь для алгоритма a(x)

$$R(a) = \iint L(a(x), y) dP(x, y) = \iint L(a(x), y) p(x, y) dxdy$$

Задача

Найти такой $a^*(x)$, что $a^*(x) = \arg\min_{x \in \mathbb{R}^n} R(x)$.

Будем называть модель a^* оптимальной и R^* — значение оптимального среднего риска.

Классификация

Вопрос

Каким образом задаётся совместное распределение p(x,y)?

Классификация

Вопрос

Каким образом задаётся совместное распределение p(x,y)?

Вопрос

Как разделить объекты разных классов при известном совместном распределении p(x,y)?

Пример

Бинарная классификация

Дано: $p(x|y=-1) \sim N(\mu=0,\sigma=1)$, $p(x|y=1) \sim N(\mu=2,\sigma=1)$ К какому классу отнести объект x=0?

Пример

Бинарная классификация

Дано: $p(x|y=-1) \sim N(\mu=0,\sigma=1)$, $p(x|y=1) \sim N(\mu=2,\sigma=1)$ К какому классу отнести объект x=0?

Выводы

• Для того, чтобы задать распределение p(x, y) необходимо задать P(y).

Пример

Бинарная классификация

Дано: $p(x|y=-1) \sim N(\mu=0,\sigma=1)$, $p(x|y=1) \sim N(\mu=2,\sigma=1)$ К какому классу отнести объект x=0?

Выводы

- Для того, чтобы задать распределение p(x, y) необходимо задать P(y).
- Функция потерь тоже может сильно влиять на решающее правило

Вывод

Рассмотрим простейшую функцию потерь индикатор ошибки $L(a(x),y)=[a(x)\neq y]$ и запишем средний риск

$$R(a) = \iint L(a(x), y)p(x, y)dxdy = \int\limits_X \sum_Y [a(x) \neq y]p(x|y)P(y)dx =$$

Вывод

Рассмотрим простейшую функцию потерь индикатор ошибки $L(a(x),y)=[a(x)\neq y]$ и запишем средний риск

$$R(a) = \iint L(a(x), y)p(x, y)dxdy = \int\limits_X \sum_Y [a(x) \neq y]p(x|y)P(y)dx =$$

$$= \int_{X} \sum_{Y} (1 - [a(x) = y]) p(x|y) P(y) dx = \int_{X} \sum_{Y} p(x|y) P(y) dx - \int_{X} \sum_{Y} [a(x) = y] p(x|y) P(y) dx$$

Вывод

Рассмотрим простейшую функцию потерь индикатор ошибки $L(a(x),y)=[a(x)\neq y]$ и запишем средний риск

$$R(a) = \iint L(a(x), y)p(x, y)dxdy = \iint_X \sum_Y [a(x) \neq y]p(x|y)P(y)dx =$$

$$= \int_{X} \sum_{Y} (1 - [a(x) = y]) p(x|y) P(y) dx = \int_{X} \sum_{Y} p(x|y) P(y) dx - \int_{X} \sum_{Y} [a(x) = y] p(x|y) P(y) dx$$

Откуда получаем, что

$$\arg\min_{a} R(a) = \arg\max_{a} \int_{X} \sum_{Y} [a(x) = y] p(x|y) P(y) dx = \arg\max_{y} p(x|y) P(y)$$

Функция потерь

Если $L(a(x),y)=\lambda_y\geq 0$, если $a(x)\neq y$

Теорема

Минимум средних потерь при функции потерь L(a(x), y) достигается байесовским классификатором

$$a(x) = \underset{y}{\operatorname{arg\,max}} \lambda_y p(y|x) = \underset{y}{\operatorname{arg\,max}} \lambda_y P(y) p(x|y)$$

Функция потерь

Если $L(a(x),y)=\lambda_y\geq 0$, если $a(x)\neq y$

Теорема

Минимум средних потерь при функции потерь L(a(x), y) достигается байесовским классификатором

$$a(x) = \underset{y}{\operatorname{arg\,max}} \lambda_y p(y|x) = \underset{y}{\operatorname{arg\,max}} \lambda_y P(y) p(x|y)$$

Следствие

Оптимальное правило классификации при одинаковых штрафах за ошибку максимизирует апостериорную вероятность класса

Оптимальный байесовский бинарный классификатор

Следствие

Для бинарного классификатора при $Y=\{-1,1\}$ разделяющая поверхность может быть записана в следующем виде:

$$\lambda_{+}P(y = +1|x) = \lambda_{-}P(y = -1|x),$$

а сам классификатор:

$$a(x) = \operatorname{sign}(\lambda_+ P(y = +1|x) - \lambda_- P(y = -1|x)) = \operatorname{sign}\left(\frac{P(y = +1|x)}{P(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

• Распределения в реальной жизни никогда не известны

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

• Восстановить плотность распределения по входным данным

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

- Восстановить плотность распределения по входным данным
- Сделать предположение о параметрическом семействе функции распределения и по данным настроить параметры

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

- Восстановить плотность распределения по входным данным
- Сделать предположение о параметрическом семействе функции распределения и по данным настроить параметры
- Уменьшать эмпирический риск в надежде, что средний риск тоже будет уменьшен

Время для вопросов

Классификация двух многомерных нормальных распределений

Распределения

Пусть $Y=\{0,1\}$, $X=\mathbb{R}^n$ и

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_y)}} exp\left(-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right),$$

где μ_y — вектор математического ожидания в классе y, а Σ_y — ковариационная матрица распределения x в классе y

Разделяющая поверхность

$$0 = \ln \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)} = \ln \frac{p_1}{p_0} + \ln \frac{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_1)}} exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)\right)}{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_0)}} exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0)\right)} = \ln \frac{p_1}{p_0} + \ln \frac{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_0)}} exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0)\right)}{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_0)}} exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0)\right)} = \ln \frac{p_1}{p_0} + \ln \frac{p_1}{p$$

Классификация двух многомерных нормальных распределений

Распределения

Пусть $Y=\{0,1\}$, $X=\mathbb{R}^n$ и

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_y)}} exp\left(-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right),$$

где μ_y — вектор математического ожидания в классе y, а Σ_y — ковариационная матрица распределения x в классе y

Разделяющая поверхность

$$0 = \ln \frac{p_1}{p_0} + \frac{1}{2} \ln \frac{\det K_0}{\det K_1} + \frac{1}{2} (x - \mu_0)^T \Sigma_0^{-1} (x - \mu_0) - \frac{1}{2} (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1)$$

Квадратичный дискриминант и линейный дискриминант

Разделяющая поверхность в общем случае

$$a(x) = \frac{1}{2}x^{T}Ax + (w, x) - b = 0,$$

где
$$A = \Sigma_0^{-1} - \Sigma_1^{-1},$$
 $w = \mu_1^T \Sigma_1^{-1} - \mu_0^T \Sigma_0^{-1},$ $b = \ln \frac{\rho_1}{\rho_0} + \frac{1}{2} \ln \frac{\det \Sigma_0}{\det \Sigma_1} - \mu_1^T \Sigma_1^{-1} \mu_1 + \mu_0^T \Sigma_0^{-1} \mu_0.$

Разделяющая поверхность при $\Sigma_0 = \Sigma_1$

$$a(x) = (w, x) - b = 0$$

где
$$w=(\mu_1-\mu_0)^T\Sigma^{-1}, \ b=\ln\frac{\rho_1}{\rho_0}-\frac{1}{2}(\mu_1-\mu_0)^T\Sigma^{-1}(\mu_0+\mu_1).$$

Квадратичный дискриминант и линейный дискриминант¹

Наивный байесовский классификатор

Предположение

Все признаки являются независимыми случайными величинами $p(x|y) = \prod\limits_i p_i(x_i|y)$

Наивный байеовский классификатор

$$a(x) = \underset{y \in Y}{\operatorname{arg max}} P(y) \prod_{i} p(x_i|y)$$

Восстановление одномерной плотности гораздо более простая задача, чем восстановление многомерной.

Наивный байесовский гауссовский классификатор

Наивный байесовский классификатор

$$a(x) = \arg\max_{y \in Y} P(y) \prod_{i} p(x_i|y)$$

Дополнительное предположение

$$p_i(x_i|y) = \frac{1}{\sqrt{2\pi}\sigma_y} exp\left(\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

Наивный байесовский гауссовский классификатор

Наивный байесовский классификатор

$$a(x) = \underset{y \in Y}{\operatorname{arg max}} P(y) \prod_{i} p(x_i|y)$$

Дополнительное предположение

$$p_i(x_i|y) = \frac{1}{\sqrt{2\pi}\sigma_y} exp\left(\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

Настройка параметров

P(y) и параметры распределений μ и σ настраиваются по обучающему множеству

Другие реализации наивного байесовского классификатора в scikit-learn

- BernoulliNB
- CategoricalNB
- MultinomialNB

Определение

Пусть
$$X=(X_1,...,X_m)$$
 и $n_1+...n_m=n$, а $p_1,...,p_m\geq 0$ и $\sum p_i=1$.

$$P(X_1 = x_1, ..., X_m = x_m) := \frac{n!}{x_1! ... x_m!} p_1^{x_1} ... p_m^{x_m}$$

Задача

Найдем оптимальный байесовский классификатор для двух классов в случае, когда $p(x|y) \sim Poly(n, p_1^y, ..., p_m^y)$

$$p(y = +1|x) = p(y = -1|x)$$

$$p(y = +1|x) = p(y = -1|x)$$

$$p(x|y = +1)p(y = +1) = p(x|y = -1)p(y = -1)$$

$$p(y = +1|x) = p(y = -1|x)$$

$$p(x|y = +1)p(y = +1) = p(x|y = -1)p(y = -1)$$

$$\frac{n!}{x_1! \dots x_m!} p_{+1,1}^{x_1} \dots p_{+1,m}^{x_m} p(y = +1) = \frac{n!}{x_1! \dots x_m!} p_{-1,1}^{x_1} \dots p_{-1,m}^{x_m} p(y = -1)$$

$$p(y = +1|x) = p(y = -1|x)$$

$$p(x|y = +1)p(y = +1) = p(x|y = -1)p(y = -1)$$

$$\frac{n!}{x_1!...x_m!}p_{+1,1}^{x_1}...p_{+1,m}^{x_m}p(y = +1) = \frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y = -1)$$

$$p_{+1,1}^{x_1}...p_{+1,m}^{x_m}p(y = +1) = p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y = -1)$$

Найдем разделяющую поверхность:

$$p(y = +1|x) = p(y = -1|x)$$

$$p(x|y = +1)p(y = +1) = p(x|y = -1)p(y = -1)$$

$$\frac{n!}{x_1!...x_m!}p_{+1,1}^{x_1}...p_{+1,m}^{x_m}p(y = +1) = \frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y = -1)$$

$$p_{+1,1}^{x_1}...p_{+1,m}^{x_m}p(y = +1) = p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y = -1)$$

$$x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} + \ln p(y = +1) = x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m} + \ln p(y = -1)$$

Вывод 1

Разделяющая поверхность линейна

$$\frac{p(y=+1|x)}{p(y=-1|x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=-1)} = \frac{\frac{n!}{x_1!...x_m!}p_{+1,1}^{x_1}...p_{+1,m}^{x_m}p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=+1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)p(y=-1)}{\frac{n!}{x_1!}p_{-1,1}^{x_m}p(y=-1)} = \frac{p(x|y=-1)p(y=-1)p(y=-1)p(y=-1)}{\frac{n!}$$

$$\frac{p(y=+1|x)}{p(y=-1|x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=-1)} = \frac{\frac{n!}{x_1!...x_m!}p_{+1,1}^{x_1}...p_{+1,m}^{x_m}p(y=+1)}{\frac{n!}{x_1!...x_m!}p_{-1,1}^{x_1}...p_{-1,m}^{x_m}p(y=-1)} = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{+1,m} - x_1 \ln p_{-1,1} + ... + x_m \ln p_{-1,m}\right) = \frac{p(y=+1)}{p(y=-1)} \exp\left(x_1 \ln p_{+1,1} + ... + x_m \ln p_{-1,1} + ... + x_m$$

$$\begin{split} \frac{\rho(y=+1|x)}{\rho(y=-1|x)} &= \frac{\rho(x|y=+1)\rho(y=+1)}{\rho(x|y=-1)\rho(y=-1)} = \frac{\frac{n!}{x_1!...x_m!}\rho_{+1,1}^{x_1}...\rho_{+1,m}^{x_m}\rho(y=+1)}{\frac{n!}{x_1!...x_m!}\rho_{-1,1}^{x_1}...\rho_{-1,m}^{x_m}\rho(y=-1)} = \\ &= \frac{\rho(y=+1)}{\rho(y=-1)} exp\left(x_1\ln\rho_{+1,1}+...+x_m\ln\rho_{+1,m}-x_1\ln\rho_{-1,1}+...+x_m\ln\rho_{-1,m}\right) = \\ &= \frac{\rho(y=+1)}{\rho(y=-1)} exp\left(\sum_{i=1}^m x_i\ln\frac{\rho_{+1,i}}{\rho_{-1,m}}\right) = exp\left(\sum_{i=1}^m x_i\ln\frac{\rho_{+1,i}}{\rho_{-1,i}}+\ln\frac{\rho(y=+1)}{\rho(y=-1)}\right) = e^{(w,x)}, \end{split}$$
 где $x=(x_1,...,x_m,1), \ w=(\ln\frac{\rho_{+1,1}}{\rho_{-1,1}},...,\ln\frac{\rho_{+1,m}}{\rho_{-1,m}},\ln\frac{\rho(y=+1)}{\rho(y=-1)}).$

$$\frac{\rho(y=+1|x)}{\rho(y=-1|x)} = \frac{\rho(x|y=+1)\rho(y=+1)}{\rho(x|y=-1)\rho(y=-1)} = \frac{\frac{n!}{x_1!\dots x_m!}\rho_{+1,1}^{x_1}\dots\rho_{+1,m}^{x_m}\rho(y=+1)}{\frac{n!}{x_1!\dots x_m!}\rho_{-1,1}^{x_1}\dots\rho_{-1,m}^{x_m}\rho(y=-1)} =$$

$$= \frac{\rho(y=+1)}{\rho(y=-1)}ex\rho\left(x_1\ln\rho_{+1,1}+\dots+x_m\ln\rho_{+1,m}-x_1\ln\rho_{-1,1}+\dots+x_m\ln\rho_{-1,m}\right) =$$

$$= \frac{\rho(y=+1)}{\rho(y=-1)}ex\rho\left(\sum_{i=1}^m x_i\ln\frac{\rho_{+1,i}}{\rho_{-1,m}}\right) = ex\rho\left(\sum_{i=1}^m x_i\ln\frac{\rho_{+1,i}}{\rho_{-1,i}}+\ln\frac{\rho(y=+1)}{\rho(y=-1)}\right) = e^{(w,x)},$$
где $x=(x_1,\dots,x_m,1),\ w=(\ln\frac{\rho_{+1,1}}{\rho_{-1,1}},\dots,\ln\frac{\rho_{+1,m}}{\rho_{-1,m}},\ln\frac{\rho(y=+1)}{\rho(y=-1)}).$
Учитывая, что $p(y=+1|x)+\rho(y=-1|x)=1$, получаем, что $\frac{\rho(y=+1|x)}{1-\rho(y=+1|x)}=e^{(w,x)}.$

$$\frac{\rho(y=+1|x)}{\rho(y=-1|x)} = \frac{\rho(x|y=+1)\rho(y=+1)}{\rho(x|y=-1)\rho(y=-1)} = \frac{\frac{n!}{x_1!\dots x_m!}\rho_{+1,1}^{x_1}\dots\rho_{+1,m}^{x_m}\rho(y=+1)}{\frac{n!}{x_1!\dots x_m!}\rho_{-1,1}^{x_1}\dots\rho_{-1,m}^{x_m}\rho(y=-1)} =$$

$$= \frac{\rho(y=+1)}{\rho(y=-1)}exp\left(x_1\ln\rho_{+1,1}+\dots+x_m\ln\rho_{+1,m}-x_1\ln\rho_{-1,1}+\dots+x_m\ln\rho_{-1,m}\right) =$$

$$= \frac{\rho(y=+1)}{\rho(y=-1)}exp\left(\sum_{i=1}^m x_i\ln\frac{\rho_{+1,i}}{\rho_{-1,m}}\right) = exp\left(\sum_{i=1}^m x_i\ln\frac{\rho_{+1,i}}{\rho_{-1,i}}+\ln\frac{\rho(y=+1)}{\rho(y=-1)}\right) = e^{(w,x)},$$
где $x=(x_1,\dots,x_m,1),\ w=(\ln\frac{\rho_{+1,1}}{\rho_{-1,1}},\dots,\ln\frac{\rho_{+1,m}}{\rho_{-1,m}},\ln\frac{\rho(y=+1)}{\rho(y=-1)}).$
Учитывая, что $p(y=+1|x)+p(y=-1|x)=1$, получаем, что $\frac{\rho(y=+1|x)}{1-\rho(y=+1|x)}=e^{(w,x)}.$ Откуда

$$p(y = +1|x) = \frac{1}{1 + e^{-(w,x)}}$$

$$p(y = +1|x) = \frac{1}{1 + e^{-(w,x)}}$$

$$p(y = +1|x) = \frac{1}{1 + e^{-(w,x)}}$$

$$p(y = +1|x) = \frac{1}{1 + e^{-(w,x)}}$$

$$p(y = -1|x) = 1 - p(y = +1|x) = \frac{1}{1 + e^{(w,x)}}$$

Вывод 2

$$p(y|x) = \sigma((w,x)y),$$

где
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 — сигмоида

Мультиномиальное распределение: логистическая регрессия

Вывод 1

Разделяющая поверхность линейна

Вывод 2

$$p(y|x) = \sigma((w,x)y),$$

где
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 — сигмоида

Мультиномиальное распределение: логистическая регрессия

Вывод 1

Разделяющая поверхность линейна

Вывод 2

$$p(y|x) = \sigma((w,x)y),$$

где
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 — сигмоида

Определение

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся сигмоидой от линейной функции по входу называется логистической регрессией

\exists кспонентное семейство распределений 2

Определение

Будем говорить, что распределение принадлежит экспонентныму семейству распределений, если плотность распределения может быть записана в следующем виде:

$$p(x|\theta) = h(x)g(\theta)exp(\eta(\theta)T(x))$$

Примеры экспонентных распределений: равномерное, нормальное, гипергеометрическое, пуассоновское, биноминальное, Г-распределение и др.

Линейность байесовского классификатора

Предположения

$$T(x) = x$$

Линейность байесовского классификатора

Предположения

- T(x) = x
- $p(x|y) = h(x)g_y(\theta_y)exp(\eta_y(\theta_y)x)$

Теорема о линейности байесовского классификатора

Если для бинарной классификации плотности распределений имеют следующий вид

$$p(x|y) = h(x)g_y(\theta_y)exp(\eta_y(\theta_y)x)$$

и среди признаков есть константа, то выполнено:

- lacktriangle Разделяющая поверхность линейна $(w,x)=\ln rac{\lambda_-}{\lambda_+}$
- ② $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1 + e^{-z}}$ логистическая функция (сигмоид)

$$\frac{p(y=+1|x)}{p(y=-1|x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)p(y=+1)}{p(y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)p(y=1)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)x} = \frac{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)x} = \frac{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)x} = \frac{p(x|y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)}{p(x|y=-1)h(x)g_-(\theta_-)x} = \frac{p(x|y=-1)h(x)g_-(\theta_-)x}{p(x|y=-1)h(x)g_-(\theta_-)x} = \frac{p(x|y=-1)h(x)g_-(x)g_$$

$$\frac{p(y=+1|x)}{p(y=-1|x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_+(\theta_+)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(x|y=+1)p(y=+1)}{p(y=-1)p(y=+1)} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_+(\theta_+)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_+(\theta_+)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_+(\theta_+)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_+(\theta_+)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_-(\theta_-)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_+(\theta_-)\exp{(\eta_-(\theta_-)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_+(\theta_-)\exp{(\eta_-(\theta_-)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} = \frac{p(y=+1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}}{p(y=-1)h(x)g_-(\theta_-)x}$$

(выражение перед экспонентой можно внести в скалярное произведение, так как среди признаков есть константа)

$$= \frac{p(y=+1)g_{+}(\theta_{+})}{p(y=-1)g_{-}(\theta_{-})} exp(\eta_{+}(\theta_{+})x - \eta_{-}(\theta_{-})x) = e^{(w,x)}$$

$$\frac{p(y=+1|x)}{p(y=-1|x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp{(\eta_+(\theta_+)x)}}{p(y=-1)h(x)g_-(\theta_-)\exp{(\eta_-(\theta_-)x)}} =$$

(выражение перед экспонентой можно внести в скалярное произведение, так как среди признаков есть константа)

$$= \frac{p(y=+1)g_{+}(\theta_{+})}{p(y=-1)g_{-}(\theta_{-})} exp(\eta_{+}(\theta_{+})x - \eta_{-}(\theta_{-})x) = e^{(w,x)}$$

Из полученного выражения и того, что p(y=+1|x)+p(y=-1|x)=1 получаем, что $p(y|x)=\sigma(\langle w,x\rangle y)$, где $\sigma(z)=\frac{1}{1+e^{-z}}$.

$$\frac{p(y=+1|x)}{p(y=-1|x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(y=-1)h(x)g_-(\theta_-)\exp(\eta_-(\theta_-)x)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=1)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)p(y=1)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)p(y=1)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_+(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=+1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)} = \frac{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+(\theta_+)x)}{p(x|y=-1)h(x)g_-(\theta_+)g_-(\theta_+)g_-(\theta_+)} = \frac{p(x|y=-1)h(x)g_-(\theta_+)\exp(\eta_+)g_-(\theta_+)g_$$

(выражение перед экспонентой можно внести в скалярное произведение, так как среди признаков есть константа)

$$= \frac{p(y=+1)g_{+}(\theta_{+})}{p(y=-1)g_{-}(\theta_{-})} exp(\eta_{+}(\theta_{+})x - \eta_{-}(\theta_{-})x) = e^{(w,x)}$$

Из полученного выражения и того, что p(y=+1|x)+p(y=-1|x)=1 получаем, что $p(y|x)=\sigma(\langle w,x\rangle y)$, где $\sigma(z)=rac{1}{1+arrho-z}$. Для бинарной классификации разделяющая поверхность оптимального байесовского классификатора имеет вид: $\frac{p(y=+1|x)}{p(y=-1|x)}-\frac{\lambda_-}{\lambda_-}=e^{(w,x)}-\frac{\lambda_-}{\lambda_-}=0,$ что и завершает доказательство.

Время для вопросов

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

Задача

Пусть p(x)=p(x| heta) — параметрическая модель распределения

Принцип максимума правдоподобия

$$L(\theta, X_{train}) = \prod_{i} p(x_i|\theta) \to \max_{\theta}$$

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

$$L(\theta, X_{train}) = \prod_{i} p(x_i|\theta) \to \max_{\theta}$$

Необходимое условие максимума

$$\frac{\partial}{\partial \theta} L(\theta, X_{train}) = 0$$

Логарифмическая функция потерь

$$L = \log \prod_{i=1}^{m} p(x_i, y_i) \rightarrow \max_{w}$$

Логарифмическая функция потерь

$$L = \log \prod_{i=1}^{m} p(x_i, y_i) \to \max_{w}$$

Подставим в формулу выражение для логистической регрессии $p(x,y)=p(y|x)\cdot p(x)=\sigma(\langle w,x\rangle)\cdot p(x)$:

$$L = \sum_{i=1}^{m} \log \sigma(\langle w, x_i \rangle y_i) + p(x_i) \rightarrow \max_{w}$$

Логарифмическая функция потерь

$$L = \log \prod_{i=1}^{m} p(x_i, y_i) \to \max_{w}$$

Подставим в формулу выражение для логистической регрессии $p(x,y)=p(y|x)\cdot p(x)=\sigma(\langle w,x\rangle)\cdot p(x)$:

$$L = \sum_{i=1}^{m} \log \sigma(\langle w, x_i \rangle y_i) + p(x_i) \to \max_{w}$$

Максимизация L эквивалентна следующей задаче минимизации:

$$R = \sum_{i=1}^{m} \log(1 + \exp(-\langle w, x_i \rangle y_i)) \rightarrow \min_{w}$$

Бинарная перекрестная энтропия

Бинарная кросс энтропия

Пусть Y = $\{0, 1\}$, $p_i = \sigma(\langle w, x_i \rangle)$. Тогда функция потерь логистической регрессии будет:

$$ce = -\sum_i (y_i log(p_i) + (1-y_i) log(1-p_i))$$

Бинарная перекрестная энтропия

Бинарная кросс энтропия

Пусть Y = {0, 1}, $p_i = \sigma(\langle w, x_i \rangle)$. Тогда функция потерь логистической регрессии будет:

$$ce = -\sum_i (y_i log(p_i) + (1-y_i) log(1-p_i))$$

Замечание

Однослойная нейронная сеть с функцией активации сигмоида и лосс-функцией кросс энтропия — логистическая регрессия.

Takeaways

- В некоторых случаях при известном распределении оптимальный классификатор может быть вычислен аналитически
- Для разделения двух гауссиан достаточно квадратичной модели, а иногда и линейной
- Наивный байесовский классификатор довольно простая модель, которая работает
- Принцип максимума правдоподобия рабочий инструмент для подбора параметров, если плотность задана некоторым параметрическим семейством

Время для вопросов

