Noncommutative Algebra

A.B. Atanasov

January 23, 2016

1 A-algebras

Let A be a \mathbb{K} -algebra, with \mathbb{K} a field. We will study specific cases of A-modules. An A-mod is called simple if it has no nontrivial proper submodule.

Theorem 1 (Schur's Lemma). If M, L are simple A-modules and $\phi \in Hom_A(M, L)$, then either ϕ is an isomorphism or $M \neq L$ and $\phi = 0$.

Proof. Follows directly from the fact that image and kernel of ϕ are submodules

From this it follows that $\operatorname{End}_A(L)$ is a division algebra over \mathbb{K} An A-mod E is semisimple iff $E=\oplus_i L_i$ with L_i simple. Consider $A'=\operatorname{End}_A(E)$ with an elemeth $\phi\in A'$ so that $\phi(am)=a\phi(m)$. Then E is a bimodule over A,A'.

$$A \times E \times A' \to E, \quad (a, m, \phi) \mapsto \phi(am)$$
 (1)

A' is called the commutant of A, so A'' is the double commutant. There is a canonical map $\rho A \to A''$

How big is the image of A in A''?

Theorem 2 (Jacobson Density). If E is semisimple over A, then the image of ρ is dense in the sense that for any $f \in End_{A''}(E), x_1, \ldots, x_n \in E$, then $\exists a \in A : ax_1 = f(x_1)$. If x_i generated E then this makes ρ surjective.

Proof. For n=1 consider $x \in E$, show f(x)=ax. $E=Ax \oplus E'$ so take $\pi: E \to Ax \subseteq E$, which is A-linear. Then $f(x)=f(\pi(x))=\pi(f(x))=ax$ Now consider E^n , which is still semisimple. So $A'_n:=\operatorname{End}_A(E^n)=\operatorname{Mat}(n,A')$. Then $A''_n:=\operatorname{End}_{A'}(E^n)$ so define $F^{\oplus n}(x_1\ldots x_n)=(f(x_1),\ldots,f(x_n))=a(x_1,\ldots x_n)$.

This is the classical Burnside-Wedderburn theorem.

Let E be a simple faithful A-module with A finite dimensional. That is, $A \to \operatorname{End}_{\mathbb{K}}(E)$ is injective. So $D = \operatorname{End}_A(E)$ is a division algebra. E is finite dimensional over D. Then $A = \operatorname{End}_D(E) = \operatorname{Mat}(n, D)$. So in the case of $\mathbb{K} = \overline{\mathbb{K}} : A = \operatorname{Mat}(n, \mathbb{K})$. Let $\phi \in D$, so $\mathbb{K}(\phi) = \mathbb{K}$.

2 Group Algebras and Representations

A direct sum of siple modules is closed under quotients so A semisimple iff the left regular representation $A \times A \to A$ is semisimple. If G is a finite group and \mathbb{K} is a field, consider $A = \mathbb{K}G$. It is semisimple if |G| is not divisible by the characteristic of \mathbb{K}

Since M is an A-module and A is simple, then for any $N\subseteq M,$ we can write $M=N\oplus N'.$

$$0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0 \tag{2}$$

We want to show it splits. Pick $\pi': M \to N$ any K-linear map.

$$\pi = \frac{1}{|G|} \sum_{g \in G} g \pi' g^{-1}$$

Then $h\pi h^{-1} = \pi$. Now $\pi|_{N}(x) = x$, so we have splitting.

Second Proof (Weyl's Unitary Trick). Let $\mathbb{K} = \mathbb{C}$, so pick a G-equivalent metric on M so obtained from any metric $\langle v, w \rangle'$ on M.

$$\langle v, w \rangle = \sum_{g \in G} \langle gv, gw \rangle' \Rightarrow \langle gv, gw \rangle = \langle v, w \rangle$$
 (3)

So we can take $N' = N^{\perp}$

Term. $\mathbb{K}G$ -modules \Leftrightarrow G-representation. A simple G module is called irreducible.

For the first few weeks we will study G modules for finite groups G.

When the characteristic doesn't divide |G|, $\mathbb{K}G$ is semisimple, so we can completely decompose it as a direct sum of irreducibles $\mathbb{K}G = \bigoplus_{i=1}^{N} L_i^{r_i}$.

Observe that there are only finitely many irreducible modules since the group algebra is finite dimensional.

Define

$$E = \bigoplus_{i=1}^{N} L_i \tag{4}$$

By Schur's Lemma, the endomorphism algebra of each L_i over itself is a division algebra over \mathbb{K} . $\mathbb{K}G$ acting on E is faithful, and so by Jacobson's density theorem,

$$\operatorname{End}_{G}(E) = \mathbb{K} \times \cdots \times \mathbb{K}$$
 So $\mathbb{K}G = \operatorname{End}_{\mathbb{K} \times \cdots \times \mathbb{K}}(E) = \prod_{i=1}^{N} \operatorname{End}_{\mathbb{K}}(L_{i})$

Theorem 3. If G is a finite group then there are finitely many classes of irreducible G-representations, regardless of characteristic. For non-problematic characteristics, then $\mathbb{K}G \to \prod_{i=1}^N End_{\mathbb{K}}(L_i)$ is an isomorphism.

So for two G, H-representation U, V we get $G \times H$ acts on $U \otimes V$ by $(g, h)(u \otimes v) = gu \otimes hv$. This means so then $G \times G$ acts on $u \otimes v$ when they are both in G-representations. Define G acting on $U \otimes V$ by $g(u \otimes v) = gu \otimes gv$. This is the tensor product representation of U, V.

In order to do this more generally for an algebra A we need to be able to embed A into $A \times A$ (in a diagonal way) $\Delta : A \to A \times A$. When we can do this, A is called a bi-algebra. We have shown that the group algebra of any finite group is a bi-algebra.

The representation ring of G over \mathbb{K} , $\operatorname{Rep}_{\mathbb{K}}(G)$ is equal to $\bigoplus_{i=1}^{N} \mathbb{Z}[L_i]$. We define the product of two elements to be $[L_i][L_j] = \sum_k r_{ij}^k [L_k]$ iff $L_i \otimes L_j = \bigoplus_k L_k^{r_{ij}^k}$. This is a commutative ring since tensor product is commutative. The identity of the multiplication is the trivial representation. Associativity of tensor product makes this ring associative.

3 Matrix Coefficients

Let U be a simple G-module and pick a basis u_i for U. Then $\forall g \in G$, $gu_i = \sum_{i=1}^{\dim(U)} a_i^j(g)u_j$. Then $a_i^j(g)$ are the matrix coefficients of U. So $\mathbb{C}G = \prod \operatorname{End}_{\mathbb{C}}(L_i) = \prod \operatorname{Mat}(n_i, \mathbb{C})$.

Let U,V be two irreps. Let $f:U\to V$ be a $\mathbb C$ -linear map. Let the matrix representation be F_i^j

$$F = E_j^k \Rightarrow \sum_{g \in G} a_i^j(g) b_k^l(g^{-1}) = 0 \tag{6}$$