

## ព្រះរាសាឈាខអ្រងនឹស ខាតិ សាសនា ព្រះមហាត្បត្រ

ង្រមាំ១អតុរូ តាំឧសម មួចមួយ



# 55537

មេរៀនសច្ចេម និខលំមាន់គំរួ សុទ្រាច់ខាទំនួយដល់សិស្សខ្នាត់នី១២ ೫೯೦೮-১೯೦೮



#### អារម្មកថា

មេរៀនសង្ខេប និងលំហាត់នៅក្នុងឯកសារនេះគឺគ្រាន់តែជាជំនួយស្មារតីដល់អ្នក សិក្សារូបវិទ្យាថ្នាក់ទី១២តែប៉ុណ្ណោះ វាមិនមែនជាឯកសារពេញលេញតាមកម្មវិធីសិក្សាថ្នាក់ ទី១២ទាំងស្រុងនោះទេ។

ខ្លឹមសារនៃមេរៀននីមួយៗចែកចេញជាពីរផ្នែកគឺមេរៀនសង្ខេប និងលំហាត់អនុវត្តន៍ៗ ខ្លឹមសារនៅក្នុងមេរៀនសង្ខេបត្រូវបានផ្ដោតសំខាន់លើ និយមន័យ ច្បាប់ និង រូបមន្ត សំខាន់ៗដើម្បីឱ្យអ្នកសិក្សាងាយយល់ និងចងចាំព្រមទាំងអាចយកទៅអនុវត្តក្នុងការ ដោះស្រាយលំហាត់បាន។ ម៉្យាងវិញទៀត នៅក្នុងឯកសារនេះបានកែលម្អនូវចំណុចខ្វះខាត មួយចំនួននៅក្នុងសៀវភៅសិក្សាគោលមុខវិជ្ជារូបវិទ្យារបស់ក្រសួងអប់រំ យុវជន និងកីឡា បោះពុម្ពលើកទី១ឆ្នាំ២០១០។

សុទ្ធតែមានលំហាត់អនុវត្តន៍ទាំងអស់ នៅចុងបញ្ចប់គ្រប់មេរៀនសង្ខេបទាំងអស់ ដើម្បីពង្រឹងចំណេះដឹង និងជំនាញដោះស្រាយលំហាត់របស់អ្នកសិក្សា។ រាល់ដំណោះស្រាយ នៃលំហាត់នីមួយៗបានបង្ហាញពីការប្រើប្រាស់ប្រព័ន្ធខ្នាត និងការគណនាតាមប្រមាណវិធី ត្ចលេខមានន័យ។

យើងខ្ញុំសង្ឃឹមថាលោកគ្រូ អ្នកគ្រូ និងអ្នកសិក្សាគ្រប់មជ្ឈដ្ឋាននឹងជួយផ្តល់យោបល់ និង ទិតៀនស្ថាបនា ចំពោះកង្វះខាត និងការឆ្គាំឆ្គងដែលអាចមានឡើងដើម្បីឱ្យឯកសារនេះ កាន់តែមានសង្គតិភាព និងល្អប្រសើរឡើងថែមទៀត។ យើងខ្ញុំរងចាំទទូលនូវការរិះគន់ដើម្បី កែលម្អពីទាំងឡាយដោយក្ដីសោមនស្សរីករាយបំផុត។

#### អ្នករៀបរៀង

- ១. លោក លាង សេងហាក់
- ២. លោក ដ៉ោ ប៉េងឡុង

#### អ្នកកែលមួ

- ១. លោក ដ៉ោ ប៉េងឡុង
- ២. លោក ទូច ចន្ទុទុំ
- ៣. លោកស្រី ខែក សំណាង
- ៤. លោក ធី សាវរិន



#### មាតិកា

| អាវម្មកថា                                                                 | i   |
|---------------------------------------------------------------------------|-----|
| មាតិកា                                                                    | ii  |
| កម្រិតពិប្រាកនៃមេវៀន                                                      | iii |
| មេរៀនធី១៖ ទ្រឹស្តីស៊ីលេនិចនៃឧស្ម័ន                                        | 1   |
| ទំពុភ១                                                                    | 5   |
| នេរៀមម្នុក៖ ឆរិរុទ្ធន័តិលេខតុំន្នឃាគួន                                    | 5   |
| ಕ್ಷಿಲಿ ಕಣಕ                                                                | 19  |
| នេរៀននី១៖ គោលអារស់្កងនៃ្លង់នៃលេក និទរលក៩ញ្ជ្រុំ                           | 19  |
| ខំពុភព អគ្គិសនី និខទាញេនិខ                                                | 24  |
| នេរៀនខ្លួក៖ ខ្លេនទូនងស្ងំទស្លាយន្ធន                                       | 24  |
| ទំពុភព អគ្គិសនីនិទទាញេនិទ                                                 | 33  |
| នេរៀមខ្នុក៖ <del>ឃុំ</del> ១ន់ឧទារំទអេ <b>ខ្យំ</b> ឧម្ពិធម្នៃខ្លាយ៉េខ្ងួន | 33  |
| ខំពុភព អគ្គិសនី និខទាញេនិខ                                                | 39  |
| នេរៀទន្ទុយ៖ អំឌំឃុចន់ឧស្មាំទ                                              | 39  |
| ខំពុភព អគ្គិសនីនិទទាញេនិទ                                                 | 46  |
| មេរៀននី៤៖ សៀគ្វីចរខ្ពស្លាស់                                               | 46  |





### កម្រិតពិបា្ញកនៃមេវៀន

| លេខរៀង | មេរៀន                              | ពិបាកខ្លាំង      | ពិបាកមធ្យម | មិនសូវពិបាក |
|--------|------------------------------------|------------------|------------|-------------|
| 9      | ទ្រឹស្តីស៊ីនេទិចនៃឧស្ម័ន 3         |                  |            |             |
| ď      | ច្បាប់ទីមួយ ទែម៉ូឌីណាមិច           | ប ទៃម៉ូឌីណាមិច 2 |            |             |
| ៣      | ម៉ាស៊ីន                            |                  |            | 3           |
| Ç      | គោលការណ៍តម្រូតនៃរលក និងរលកជញ្ជ្រុំ |                  |            | 3           |
| Ç      | អាំងទែផេរ៉ង់ និងឌីប្រាក់ស្យុង      |                  |            | 3           |
| Ъ      | ដែន និងកម្លាំងម៉ាញេទិច             |                  | 2          |             |
| ៧      | អាំងឌុចស្យុងអេឡិចត្រូម៉ាញេទិច      |                  |            | 3           |
| ផ      | អូតូអាំងឌុចស្យុង                   |                  |            | 3           |
| g      | សៀគ្វីចរន្តឆ្លាស់                  |                  |            | 3           |

សំគាល់៖ លេខ១ពិបាកខ្លាំង លេខ២ពិបាកមធ្យម និងលេខ៣មិនសូវពិបាក





#### ខំពុង១ ខែម៉ូឌីលានិច ទេរៀននី១៖ ទ្រឹស្តីស៊ីខេនិចនៃឧស្ម័ន

• ទំនាក់ទំនងសីតុណ្ហភាពដាច់ខាតនិងសីតុណ្ហភាពគិតជាសែលស៊្យុស

$$T = t + 273.15$$

T ជាសីតុណ្ហភាពដាច់ខាត(K), t ជាសីតុណ្ហភាពសែលស៊្យុស  $(^{\circ}C)$ 

- ក្នុងទ្រឹស្តីស៊ីនេទិចនៃឧស្ម័ន៖ ម៉ូលេគុលឧស្ម័នមានចលនាឥតឈប់ឈរ និងគ្មានសណ្តាប់ ធ្នាប់។ ទង្គិចរវាងម៉ូលេគុលនឹងធុងផ្ទុកវាជាទង្គិចខ្វាត។ សន្មតនៅចន្លោះពេលទង្គិច ម៉ូលេ-គុលមានចលនាត្រង់ស្មើ។ តម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលអាស្រ័យនឹង សីតុណ្ហភាព។
- សម្ពាធនៃឧស្ម័នសមាមាត្រនឹងចំនួនម៉ូលេគុលក្នុងមួយខ្នាតមាឌនិង តម្លៃមធ្យមនៃថាមពល  $\overline{ P = \frac{2}{3} \bigg( \frac{N}{V} \bigg) K_{av} = \frac{2}{3} \bigg( \frac{N}{V} \bigg) \frac{1}{2} m_o \Big( v^2 \Big)_{av} }$

P ជាសម្ពាធឧស្ម័ន(Pa), N ជាចំនួនម៉ូលេគុលឧស្ម័ន, V ជាមាឧធុង $(m^3)$   $m_{_0}$  ជាម៉ាសរបស់ម៉ូលេគុលឧស្ម័ននីមួយៗ(kg), v ជាល្បឿនរបស់ម៉ូលេគុលឧស្ម័ន(m/s)

• ឧស្ម័នបរិសុទ្ធ n ម៉ូលមានសម្ពាធ P , មាឌ V និងសីតុណ្ហភាព T នោះសមីការភាពនៃ ឧស្ម័នបរិសុទ្ធគឺ  $PV = Nk_BT = nRT$ 

P ជាសម្ពាធឧស្ម័ន (Pa) , V ជាមាឧឧស្ម័ន ( $m^3$ ) , T សីតុណ្ហភាពឧស្ម័ន (K)  $k_{\rm B}$  ជាថេរបុលស្មាន់  $k_{\rm B}$  =1.38×10 $^{-23}$ J/K , n ជាចំនូនម៉ូលឧស្ម័ន (mol) R ជាថេរសកលនៃឧស្ម័ន R =8.31J/(mol.K) , N ជាចំនួនម៉ូលេគុលឧស្ម័ន

- ទំនាក់ទំនងរវាងចំនួនម៉ូលឧស្ម័ន n និងចំនួនម៉ូលេគុលឧស្ម័ន N គឺ  $n=\frac{N}{N_A}$   $N_A$  ជាចំនួនអាវូកាដ្រួ  $N_A=6.022\times 10^{23}$  ម៉ូលេគុល/mol
- ទំនាក់ទំនងរវាងថេរបុលស្មាន់  $k_{_B}$ និងថេរសកលនៃឧស្ម័ន R គឺ  $R = k_{_B}N_{_A}$
- ថាមពលស៊ីនេទិចសរុប n ម៉ូល នៃឧស្ម័នគឺ  $K = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$

ល្បឿនប្រសិទ្ធ ឬ ឬសការេមធ្យមនៃល្បឿនការេ (**សៀវភៅគោល៖ ឬសការេនៃការេល្បឿនមធ្យម**) របស់ម៉ូលេគុលឧស្ម័ន

$$v_{rms} = \sqrt{\left(v^2\right)_{av}} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

 $v_{ms}$  ជាល្បឿនប្រសិទ្ធរបស់ម៉ូលេគុលឧស្ម័ន(m/s)m ជាម៉ាសមួយម៉ូលេគុលឧស្ម័ន(kg) M ជាម៉ាសម៉ូល(kg/mol)

- ទំនាក់ទំនងរវាង ម៉ាសមួយម៉ូលេគុលឧស្ម័ន f m និងម៉ាសម៉ូលf M គឺ  $igg| f M = f m_o imes f N_A$
- ទំនាក់ទំនងរវាងសម្ពាធគិតជាប៉ាស្កាល់(Pa) និងសម្ពាធគិតជាអាត់ម៉ូស្វ៊ែ(atm) គឺ

$$1atm = 1.013 \times 10^5 Pa$$

តែដើម្បីមានភាពងាយស្រួលក្នុងការគណនា ក្នុងឧទាហរណ៍ខាងក្រោម យើងយក  $1atm = 10^5 Pa$ 

<mark>ឧ្ទាហរណ៏១៖</mark> មួយម៉ូលេគុលឧស្ម័ននីដ្រ្ចសែនផ្សំឡើងពីអាតូមនីដ្រ្ទសែនពីរ។ គណនាម៉ាសម៉ូលេគុល នីដ្រូសែន។ ម៉ាសម៉ូលនីដ្រូសែនគឺ M=28 kg/kmol ។ គេឱ្យ  $N_{\rm A}=6.02 \times 10^{23}$ ម៉ូលេគុល/mol ចម្លើយ១៖ គណនាម៉ាសម៉ូលេគុលនីជ្រូសែន

តាមរូបមន្ត 
$$\mathbf{M} = \mathbf{m}_{o} \times \mathbf{N}_{A} \Longrightarrow \mathbf{m}_{o} = \frac{\mathbf{M}}{\mathbf{N}_{A}}$$

ដោយ  $M = 28 kg / kmol = 28 \times 10^{-3} kg / mol$  ,  $N_A = 6.02 \times 10^{23}$  ម៉ូលេគុល / mol

$$m_o = \frac{28 \times 10^{-3}}{6.02 \times 10^{23}} = 4.7 \times 10^{-26} \,\text{kg}$$

ដូចនេះ  $m_0 = 4.7 \times 10^{-26} \text{kg}$ 

<mark>ខ្វទាហរណ៏២៖</mark> គណនាមាឌឧស្ម័នអុកស៊ីសែន 3.2g ដែលផ្ទុកក្នុងធុងនៅសម្ពាធ 76cmHg និង សីតុណភាព 27°C ។

ចម្លើយ២៖ គណនាមាឌឧស្ម័នអុកស៊ីសែន

តាមសមីការភាពនៃឧស្ម័នបរិសុទ្ធ

$$PV = nRT$$

រំត 
$$n = \frac{m}{M} \Rightarrow PV = \frac{m}{M}RT$$

គេបាន 
$$V = \frac{m \times R \times T}{M \times P}$$

ដោយ M = 32g/mol, m = 3.2g,  $R = 8.31J/mol \cdot K$ , T = 27°C = 27 + 273 = 300K,  $P = 76cmHg = 1atm = 10^5 Pa$ 



$$V = \frac{3.2 \times 8.31 \times 300}{32 \times 10^5} = 0.0025 \text{m}^3$$

ដូចនេះ V = 0.0025m<sup>3</sup>

<mark>ខ្វទាហរណ៏៣៖</mark> រកល្បឿនប្រសិទ្ធ  $(v_{ms})$ នៃម៉ូលេគុលអាស្ងួតដោយម៉ាសម៉ូល M=28g/mol នៅ 300K ។ គេឱ្∫ R = 8.31J/mol⋅K

ចម្លើយ៣៖ គណនាល្បឿន  $(v_{rms})$ 

តាមរូបមន្ត 
$$v_{rms} = \sqrt{\frac{3RT}{M}}$$
 ដោយ  $R = 8.31 J/mol \cdot K$ 

$$T = 300K$$
,  $M = 28g / mol = 28 \times 10^{-3} kg / mol$ 

$$\Rightarrow v_{ms} = \sqrt{\frac{3 \times 8.31 \times 300}{28 \times 10^{-3}}} = 5.2 \times 10^{2} \,\text{m/s}$$

ដូចនេះ  $v_{ms} = 5.2 \times 10^2 \, \text{m/s}$ 

<mark>ឧ្ទទាបារណ៏៤៖</mark> គណនាសីតុណ្ហភាពដែលធ្វើឱ្យល្បឿនប្រសិទ្ធនៃម៉ូលេគុលអ៊ីដ្រូសែនស្មើ 331m/s ? គេឱ្យ  $M_{\rm H_2}=2.0{
m g/mol}$  ។

ចម្លើយ៤៖ គណនាសីតុណ្ហភាពដើម្បីបានល្បឿនប្រសិទ្ធ  $(v_{ms})$ 

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Leftrightarrow v_{rms}^2 = \frac{3RT}{M} \Rightarrow T = \frac{M \times v_{rms}^2}{3R}$$

ដោយ  $M_{\rm H_2} = 2.0 {\rm g/mol} = 2.0 \times 10^{-3} \, {\rm kg/mol}, \ v_{\rm ms} = 331 {\rm m/s}$  និង  $R = 8.31 {\rm J/mol} \cdot {\rm K}$ 

$$T = \frac{2.0 \times 10^{-3} \times (331)^2}{3 \times 8.31} = 8.8K$$

ដូចនេះ T = 8.8K

<mark>ខ្នទាបារណ៏់៩៖</mark> គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចនៃម៉ូលេគុលឧស្ម័ននៅសីតុណ្ហភាព*72*7°C ។ គេឱ្យ  $R=8.31 J/mol\cdot K$  និង  $N_{\rm A}=6.02\times 10^{23}$  ម៉ូលេគុល/mol ។

ចម្លើយ៤៖ គណនាថាមពលមធ្យមនៃម៉ូលេគុលឧស្ម័ននីមួយៗ

តាម 
$$K_{av} = \frac{3}{2}k_BT$$
 ដោយ  $R = k_BN_A \Rightarrow k_B = \frac{R}{N_A}$ 

$$K_{av} = \frac{3}{2} \frac{RT}{N_A}$$
 in  $T = 727 + 273 = 1000K$ 

$$\text{thrs} \ K_{av} = \frac{3}{2} \times \frac{8.31 \times 1000}{6.02 \times 10^{23}} = 2.07 \times 10^{-20} J$$

ដូចនេះ 
$$K_{av} = 2.07 \times 10^{-20} J$$



<mark>ខ្វទាហរណ៏៦៖</mark> រកតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលអុកស៊ីសែននីមួយៗក្នុងខ្យល់ នៅក្នុងបន្ទប់មានសីតុណ្ហភាព  $300 \mathrm{K}$  គិតជាអេឡិចត្រុង-វ៉ុល។ គេឱ្យ  $1\mathrm{eV} = 1.6 \times 10^{-19} \mathrm{J}$  និង  $k_{\rm B} = 1.38 \times 10^{-23} \text{J/K}$ 

ចម្លើយ៦៖ កេថាមពលស៊ីនេទិចមធ្យមរបស់ម៉ូលេគុលឧស្ម័នអុកស៊ីសែន

តាម 
$$K_{av} = \frac{3}{2}k_BT$$

ដោយ  $k_{_B}\,{=}\,1.38{\times}10^{-23}J\,/\,K$  ,  $T\,{=}\,300K$ 

$$\Longrightarrow K_{\rm av} = \frac{3}{2} \times 1.38 \times 10^{-23} \times 300 = 6.21 \times 10^{-21} J$$

ពៃ  $1eV = 1.6 \times 10^{-19} J$ 

គេបាន 
$$K_{av} = \frac{6.21 \times 10^{-21} J}{1.6 \times 10^{-19} J} = 0.039 eV$$

ដូចនេះ K<sub>av</sub> = 0.039eV

<mark>ខ្វទាបារណ៏៧៖</mark> មួយម៉ូលេគុលនីជ្រូសែននៅពេលស្ថិតនៅលើផ្ទៃដីវាកើតមានល្បឿនប្រសិទ្ធ នៅសីតុ-ណ្ហភាព 0°C ។ ប្រសិនបើវាផ្លាស់ទីឡើងត្រង់ទៅលើដោយគ្មានទង្គិចនឹងម៉ូលេគុលផ្សេងទៀត ចូរគណនាកម្ពស់ដែលវាឡើងដល់។ គេឱ្យម៉ាសមួយម៉ូលេគុលរបស់នីត្រូសែន  $m=4.65 \times 10^{-26}\,\mathrm{kg}$  $g = 10 \text{m/s}^2 \text{ 1}$ 

ចម្លើយ៧៖ គណនាកម្ពស់ដែលវាឡើងដល់

តាមច្បាប់រក្សាឋាមពលមេកានិច

$$K_{av} = U$$

$$\Rightarrow \frac{3}{2}k_BT = mgh$$

គេហ៊ុន 
$$h = \frac{3}{2} \frac{k_B T}{mg}$$

ដោយ 
$$m = 4.65 \times 10^{-26} kg$$
 ,  $k_{_B} = 1.38 \times 10^{-23} \, J \, / \, K$  ,  $g = 10 m \, / \, s^2$  , និង

$$T = 0 + 273 = 273K$$

ដូចនេះ 
$$h = \frac{3}{2} \frac{1.35 \times 10^{-23} \times 273}{4.65 \times 10^{-26} \times 10} = 12.2 \times 10^3 \,\mathrm{m}$$



#### ទុំជំង៦ ខែតំន្នបយាគួន **នេ**ទ្រើមម្ចុក្រ៖ ឆរិរតុម្ចតិតាមេនត្នំន្នឃានួន

- ប្រព័ន្ធគឺជាវត្ថុ ឬសំណុំវត្ថុ ដែលលើកយកមកសិក្សាធៀបនឹងវត្ថុដទៃ។
- កាលណាប្រព័ន្ធមួយផ្លាស់ប្តូរភាពដោយប្តូរតែកម្មន្ត និងកម្តៅជាមួយមជ្ឈដ្ឋានក្រៅ គេថា ប្រព័ន្ធនោះទទួលបំលែងទែម៉ូឌីណាមិច។
- បំលែងចំហាគឺជាបំលែង ដែលប្រព័ន្ធផ្លាស់ប្តូរភាពដើមទៅភាពស្រេចណាមួយខុសពីមុន។
- បំលែងបិទគឺជាបំលែង ដែលប្រព័ន្ធផ្លាស់ប្តូរភាពដើមទៅភាពស្រេចណាមួយរួចត្រឡប់មក រកភាពដើមវិញ។
- លំនាំមួយចំនួនក្នុងបំលែងទែម៉ូឌីណាមិច

| លំនាំទែម៉ូឌីណាមិច | លក្ខណៈរបស់លំនាំ |
|-------------------|-----------------|
| អ៊ីស្វករ          | មាឌថេរ          |
| អ៊ីស្វបារ         | សម្ពាធថេរ       |
| អ៊ីស្វទៃម         | សីតុណ្ហភាពថេរ   |

- ចំណាំ៖ លំនាំអាដ្យាបាទិចគឺជាលំនាំដែលគ្មានបណ្តូរកម្តៅ (មិនស្រូប និងមិនបញ្ចេញ កម្ដៅ)។
- កម្មន្តក្នុងលំនាំមួយចំនូន

| លំនាំ    | កិម្មន្ត                                                    | ក្រាប P V                                  |
|----------|-------------------------------------------------------------|--------------------------------------------|
| អ៊ីស្វករ | ដោយក្នុងលំនាំអ៊ីស្ងករ មាឌឧស្ម័នថេរ<br>នាំឱ្យ<br>កម្មន្ត W=0 | P • • • • • • • • • • • • • • • • • • •    |
|          |                                                             | $V_i = V_f$                                |
| អ៊ីសូបារ | កម្មន្ត $W = P(V_f - V_i)$                                  | <i>P</i> <b>↑</b>                          |
|          | កម្មន្តជាផ្ទៃឆ្នូតក្រោមក្រាប                                | $P_i = P_f = P$ $W = P(V_f \setminus V_f)$ |
|          | * W ជាកម្មន្តដែលបានធ្វើដោយ ឧស្ម័ន                           |                                            |
|          | (J) <sup>1</sup>                                            | $V_i$ $V_f$ $V$                            |
|          | * P <sub>f</sub> ជាសម្ពាធស្រេចរបស់ឧស្ម័ន(Pa) ។              |                                            |
|          | * P <sub>i</sub> ជាសម្ពាធដើមរបស់ឧស្ម័ន(Pa)។                 |                                            |

| សម្ពាធ          | * $V_f$ ជាមាឧស្រេចរបស់ឧស្ម័ន (m³) ។  * $V_i$ ជាមាឧដើមរបស់ឧស្ម័ន (m³) ។  កម្មន្តក្នុងលំនាំសម្ពាធប្រែប្រួលជាផ្ទៃឆ្នូតដូច |                   |
|-----------------|------------------------------------------------------------------------------------------------------------------------|-------------------|
| ្រែ<br>ប្រែប្រល | ក្នុងរូប                                                                                                               |                   |
| ស្មើ            | 1                                                                                                                      | <i>P</i> <b>↑</b> |
| 114             | $W=W_1+W_2$<br>ដែល $W_1=P_i\left(V_f-V_i\right)$ និង $W_2=rac{1}{2}ig(P_f-P_iig)ig(V_f-V_iig)$                        | $P_f$ $P_i$ $W_2$ |
|                 | $W = \frac{1}{2} (P_f + P_i) (V_f - V_i)$ $U$                                                                          | $V_i$ $V_f$       |
| អ៊ីសូទែម        | កម្មន្តក្នុងលំនាំអ៊ីស្ងូទែម                                                                                            | <i>P</i> <b>♦</b> |
|                 | $(T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                             | $V_i$ $V_f$ $V$   |

ក្នុងបំលែងទែម៉ូឌីណាមិច • ច្បាប់ទីមួយទៃម៉ូឌីណាមិច៖ កម្ដៅដែលស្រ្ទបដោយប្រព័ន្ធស្មើនឹងផលបូកកម្មន្តដែលបានធ្វើដោយប្រព័ន្ធ និងបម្រែបម្រូលថាមពលក្នុងនៃប្រព័ន្ធ។

$$Q = \Delta U + W$$

Qកម្តៅស្រ្ទបដោយប្រព័ន្ធគិតជា(J),  $\Delta U$ ជាបម្រែបម្រួលថាមពលក្នុងនៃប្រព័ន្ធ គិតជា(J), W ជាកម្មន្តដែលបានបង្កើតឡើងដោយប្រព័ន្ធគិតជា(J)។



សិក្សាសញ្ញារបស់ Q, Wនិង ΔU

| U      | ಐ     |                                                                      |
|--------|-------|----------------------------------------------------------------------|
| អញ្ញាត | សញ្ញា | អត្ថន័យ                                                              |
| Q      | +     | កាលណាប្រព័ន្ធទទួលកម្ដៅ។                                              |
| Q      | _     | កាលណាប្រព័ន្ធបំភាយកម្ដៅទៅមជ្ឈដ្ឋានក្រៅ។                              |
| W      | +     | កាលណាឧស្ម័នក្នុងប្រព័ន្ធធ្វើកម្មន្តដោយខ្លួនឯង។                       |
| W      | _     | កាលណាឧស្ម័នក្នុងប្រព័ន្ធទទូលកម្លាំងពីមជ្ឈដ្ឋានក្រៅដើម្បីធ្វើកម្មន្ត។ |
| ΔU     | +     | មានន័យថាថាមពលក្នុងកើនឡើង។                                            |
| ΔU     | _     | មានន័យថាថាមពលក្នុងថយចុះ។                                             |

ច្បាប់ទីមួយទែម៉ូឌីណាមិច ចំពោះលំនាំពិសេសៗបី

| លំនាំ                   | លក្ខណ:របស់លំនាំ | លទ្ធផល          |
|-------------------------|-----------------|-----------------|
| អាដ្យាបាទិច             | Q = 0           | $\Delta U = -W$ |
| អ៊ីសូករ                 | W = 0           | $\Delta U = Q$  |
| បំលែងបិទ និង អ៊ីស្ងូទែម | $\Delta U = 0$  | Q = W           |

- ថាមពលក្នុងនៃឧស្ម័នបរិសុទ្ធគឺជាថាមពលស៊ីនេទិចសរុបរបស់ម៉ូលេគុលនៃឧស្ម័ននោះ។
- ថាមពលក្នុង nម៉ូល នៃឧស្ម័នបរិសុទ្ធម៉ូណូអាតូម  $U=\frac{3}{2}nRT$

ជាចំនូនម៉ូលរបស់ឧស្ម័ន(mol), ជាថាមពលក្នុងគិតជា(J), n T ជាសីតុណ្ហភាពរបស់ឧស្ម័ន (K), R ជាថេរសកលនៃឧស្ម័ន  $R=8.31 J/mol\cdot K$ 

• បម្រែបម្រួលថាមពលក្នុង n ម៉ូលនៃឧស្ម័នបរិសុទ្ធម៉ូណូអាតូម  $\Delta \, U = \frac{3}{2} \, nR \Delta T = \frac{3}{2} \, nR (T_f - T_i)$ 

$$\Delta U = \frac{3}{2} nR\Delta T = \frac{3}{2} nR(T_f - T_i)$$

 $\Delta U$  ជាបម្រែបម្រួលថាមពលក្នុងនៃឧស្ម័នបរិសុទ្ធម៉ូណ្ងូអាតូម គិតជា(J)

 $T_f$  ជាសីតុណ្ហភាពស្រេចរបស់ឧស្ម័ន គិតជា(K)T<sub>i</sub> ជាសីតុណ្ហភាពដើមរបស់ឧស្ម័ន គិតជា(K)

<mark>ខ្វទាហរណ៏១៖</mark> តើផ្ទៃដែលបានគូសក្រោមក្រាប P-V ស្មើប៉ុន្មាន? តើកម្មន្តដែលបានធ្វើពីភាព A →

B ស្មើប៉ុន្មាន?



ចម្លើយ១៖ រកផ្ទៃក្រោមក្រាប P-V

តាមផ្ទៃនៃរូបជាផ្ទៃចតុកោណកែង

$$\mathfrak{F}$$
 ទី ង = 2.0atm = 2.0×10<sup>5</sup> Pa

$$\text{Uight} = (4.0-2.0)\ell = 2.0\ell = 2.0 \times 10^{-3}\,\text{m}^3$$

$$\Rightarrow$$
 A = 2.0 × 10<sup>5</sup> × 2.0 × 10<sup>-3</sup> = 4.0 × 10<sup>2</sup> J

កម្មន្តពីភាព A ទៅភាព B (ជាលំនាំអ៊ីសូបារ)

$$W = P\Delta V = P(V_B - V_A)$$

ដោយ P = 2.0atm = 
$$2.0 \times 10^5$$
 Pa,  $V_B = 4.0 \times 10^{-3} m^3$ ,  $V_A = 2.0 \times 10^{-3} m^3$ 

$$\Rightarrow$$
 W = 2.0 × 10<sup>5</sup>(4.0 × 10<sup>-3</sup> – 2 × 10<sup>-3</sup>) = 4.0 × 10<sup>2</sup> J

ដូចនេះកម្មន្តពីភាព A ទៅភាព B គឺស្មើផ្ទៃរបស់រូប។

<mark>ខ្វទាហរណ៏២៖</mark> គណនាកម្មន្តសរុបក្នុងបំលែងបិទABCA?



ចម្លើយ២៖ រកកម្មន្តក្នុងបំលែងបិទ ABCA

$$\mathbf{W}_{\mathrm{ABCA}} = \mathbf{W}_{\mathrm{AB}} + \mathbf{W}_{\mathrm{BC}} + \mathbf{W}_{\mathrm{CA}}$$

 $\text{i}\, \text{\"n} W_{AB}$ 

$$W_{AB} = P_A(V_B - V_A) + \frac{1}{2}(P_B - P_A)(V_B - V_A)$$

ដោយ  $P_A = 2.0$ atm  $= 2.0 \times 10^5 \, Pa$  ,  $P_B = 1.0$ atm  $= 1.0 \times 10^5 \, Pa$  ,  $V_B = 5.0 \, m^3$  ,  $V_A = 2.0 \, m^3$ 





$$\Rightarrow W_{AB} = 1.0 \times 10^{5} (5.0 - 2.0) + \frac{1}{2} (1.0 \times 10^{5} - 2.0 \times 10^{5}) (5.0 - 2.0) = 4.5 \times 10^{5} J$$

 $\text{i}\, \overline{\text{n}} W_{BC}$ 

$$W_{BC} = P_B(V_C - V_B) = 1.0 \times 10^5 (2.0 - 5.0) = 3.0 \times 10^5 J$$

រកW<sub>CA</sub> (ជាលំនាំអ៊ីស្ងករ)

$$W_{CA} = 0$$

ដូចនេះ 
$$W_{ABCA} = 4.5 \times 10^5 + 3.0 \times 10^5 + 0 = 1.5 \times 10^5 J$$

<mark>ខ្វតាហរណ៏៣៖</mark> ឧស្ម័នបរិសុទ្ធមួយធ្វើបំលែងជាបំលែងបិទពីភាព A ទៅភាព B រួចទៅភាព C ហើយ ទៅភាព D ទៀតក្រោយមកត្រឡប់ទៅភាពAវិញដូចបានបង្ហាញក្នុងរូប។គណនា

P(atm)

2.0

1.0

1.0

ក.កម្មន្តAB, BC, CD, DA

ខ.កម្មន្តសរុបក្នុងបំលែងបិទ

គ.កម្ដៅដែលទទូលបាន(ក្នុងបំលែងបិទ)។



កម្មន្តពីភាពAទៅភាពB(លំនាំអ៊ីសូបារ)

$$W_{AB} = P_A(V_B - V_A)$$

ដោយ 
$$P_{A} = 2.0 \times 10^{5} \, Pa$$
 ,  $V_{B} = 2.5 \times 10^{-3} \, m^{3}$  ,

$$V_A = 1.0 \times 10^{-3} \,\mathrm{m}^3$$

$$\Rightarrow$$
 W<sub>AB</sub> = 2.0×10<sup>5</sup> (2.5×10<sup>-3</sup> -1.0×10<sup>-3</sup>) = 3.0×10<sup>2</sup> J

កម្មន្តពីភាព B ទៅភាព C (លំនាំអ៊ីស្ងករ)

$$W_{BC} = 0$$

កម្មន្តពីភាពCទៅភាពD(លំនាំអ៊ីស្ងូបារ)

$$W_{CD} = P_C(V_D - V_C)$$

ដោយ 
$$V_{\rm D}=1.0\times 10^{-3}\,{\rm m}^3$$
 ,  $V_{\rm C}=2.5\times 10^{-3}\,{\rm m}^3$  ,  $P_{\rm C}=1.0{\rm atm}=1.0\times 10^5\,{\rm Pa}$ 

$$\Rightarrow W_{AB} = 1.0 \times 10^{5} (1.0 \times 10^{-3} - 2.5 \times 10^{-3}) = -1.5 \times 10^{2} J$$

កម្មន្តពីភាពDទៅភាពA (លំនាំអ៊ីស្ទករ)

$$W_{DA} = 0$$

#### ខ. កម្មន្តសរុបក្នុងបំលែងបិទ

$$W_{ABCD} = W_{AB} + W_{BC} + W_{CD} + W_{DA}$$
  
= 3.0 ×10<sup>2</sup> + 0 - 1.5×10<sup>2</sup> + 0 = 1.5×10<sup>2</sup> J

#### គ. កម្ដៅដែលឧស្ម័នទទួលបាន

តាមច្បាប់ទីមួយទៃម៉ូឌីណាមិច Q = ΔU + W ដោយបំលែងជាបំលែងបិទនាំឱ្យ ΔU = 0





ដូចនេះ 
$$Q = W = 1.5 \times 10^2 \text{ J}$$

<mark>ខ្វទាបារណ៏៍៤៖</mark> គេធ្វើកម្មន្ត 25kJ លើប្រព័ន្ធឧស្ម័ន។ ក្រោយមកកម្ដៅ 1.5kcal បានភាយចេញពីប្រព័ន្ធ។ គណនាបម្រែបម្រួលថាមពលក្នុង។ (lcal = 4.186J)

ចម្លើយ៤៖ គណនាបម្រែបម្រូលលថាមពលក្នុង

តាមច្បាប់ទីរទែម៉ូឌីណាមិច

$$Q = \Delta U + W$$

$$\Rightarrow \Delta U = Q - W$$

ដោយ 
$$Q = -1.5$$
kcal  $= -1.5 \times 4.186 \times 10^3 = -6.279 \times 10^3$  J

$$W = -25kJ = -25 \times 10^3 J$$

$$\Rightarrow \Delta U = -6.279 \times 10^3 - (-25 \times 10^3)$$

$$=18.721\times10^{3}$$

ដូចនេះ ΔU =19×10³J

 ${f g}$ ទាហរណ៏ ${f k}{f s}$  មួយម៉ូលនៃឧស្ម័ន  ${f O}_2$ (សន្មតថាវាជាឧស្ម័នបរិសុទ្ធ) ។

- ក. ឧស្ម័នរីកនៅសីតុណ្ហភាពថេរ T = 310K ពីមាឌដើម  $V_{
  m i}$ =  $12\ell$  ទៅ  $V_{
  m f}$  =  $19\ell$  ៗ គណនាកម្មន្តក្នុងដំណើរការរីករបស់ឧស្ម័ន។
- ខ. ឧស្ម័នរួមមាំឧនៅសីតុណ្ហភាពថេរ T = 310K ពីមាឧ $V_{\rm i}$ =19 $\ell$  ទៅ  $V_{\rm f}$  =12 $\ell$  ។ គណនាកម្មន្តក្នុងដំណើរការរួមមាឌ។

$$ln19 = 2.9, \ ln12 = 2.4, \ ln\frac{19}{12} = 0.46, \ ln\frac{12}{19} = -0.46, \ R = 8.31 J/mol \cdot K$$

ចម្លើយ៥៖

ក. កម្មន្តក្នុងដំណើរការពង្រីក

ដោយ T = ថេរ នោះវាជាលំនាំអ៊ីសូទែម

$$W = nRT \ln \left( \frac{V_f}{V_i} \right)$$

ដោយ R = 8.31J/mol·K

$$n=1.0$$
 mol,  $T=310K,\, V_f=19\,\ell$  ,  $\,\,V_i=12\,\ell$ 

$$\Rightarrow W = 1.0 \times 8.31 \times 310 \ln \left(\frac{19}{12}\right) = 1200J = 1.2kJ$$

ខ. កម្មន្តក្នុងដំណើរការបង្គ្រម

$$W=nRT\ln\left(rac{V_f}{V_i}
ight)$$
ដោយ  $R=8.31\,J/mol\,K$ 

$$n$$
 = 1.0mol,  $T$  = 310K,  $V_f$  = 19  $\ell$  ,  $V_i$  = 12  $\ell$ 

$$\Rightarrow W = 1.0 \times 8.31 \times 310 \ln \left(\frac{12}{19}\right) = -1200 \,\ell = -1.2 \text{kJ}$$

<mark>ឧ្ធទាហរណ៏៦៖</mark> ក្នុងប្រព័ន្ធទែម៉ូឌីណាមិចប្រព័ន្ធទទូលកម្មន្ត200រនិងទទូលកម្ដៅ500រ។

រកបម្រែបម្រួលថាមពលក្នុង។

ចម្លើយ៦៖ គណនាបម្រែបម្រួលថាមពលក្នុង

តាមច្បាប់ទីរទែម៉ូឌីណាមិច

ដោយQ = +500រ ប្រព័ន្ធទទូលកម្ដៅ

W = -200J ប្រព័ន្ធទទូលកម្មន្ត

 $\Rightarrow \Delta U = 500J - 200J = 700J$ 

ដូ<mark>ចនេះបម្រែបម្រ</mark>ូលថាមពលក្នុងគឺ 700J

<mark>ឧទាហរណ៏៧៖</mark> ចូរគណនាបម្រែបម្រួលថាមពលក្នុងរបស់ប្រព័ន្ធ៖

ក.ប្រព័ន្ធស្រុបបរិមាណកម្ដៅ 500cal និងធ្វើកម្មន្ត 400J

ខ.ប្រព័ន្ធស្រុបបរិមាណកម្ដៅ 300cal និងទទូលកម្មន្ត 420J

គ. បរិមាណកម្ដៅ1200calត្រូវបានបំភាយចេញពីប្រព័ន្ធនៅពេលមាឌថេរ

គេឱ្យ 1cal = 4.19J

ចម្លើយ៧៖ គណនាបម្រែបម្រួលថាមពលក្នុងរបស់ប្រព័ន្ធ

ក.ប្រព័ន្ធស្រ្ទបបរិមាណកម្ដៅ 500cal និងធ្វើកម្មន្ត 400J

តាមច្បាប់ទីមួយទៃម៉ូឌីណាមិច

$$Q = \Delta U + W \Rightarrow \Delta U = Q - W$$

ដោយ 
$$Q = 500cal = 500 \times 4.19J = 2095J$$
 និង  $W = 400J$ 

$$\Delta U = 2095 - 400 = 1700J$$

ខ.ប្រព័ន្ធស្រុបបរិមាណកម្ដៅ 300cal និងរងកម្មន្ត 420J

តាមច្បាប់ទីមួយទែម៉ូឌីណាមិច

$$Q = \Delta U + W \Rightarrow \Delta U = Q - W$$

ដោយ 
$$Q = 300$$
cal  $= 300 \times 4.19$ J  $= 1257$ J និង  $W = -420$ J

$$\Delta U = (+1257J) - (-420J) = 1677J \ \Delta U = 1257J - (-420J) = 1680J$$

គ. បរិមាណកម្ដៅ1200cal ត្រូវបានបំភាយចេញពីប្រព័ន្ធនៅពេលមាឌថេរ

តាមច្បាប់ទីមួយទៃម៉ូឌីណាមិច

$$Q = \Delta U + W \Rightarrow \Delta U = Q - W$$

ដោយ 
$$Q = -1200$$
cal  $= -1200 \times 4.19$ J  $= -5030$ J និង  $W = 0$ J

$$\Delta U = -5030J - 0 = -5030J$$

<mark>ខ្ញុទាហរណ៏៨៖</mark> ចូរគណនាបម្រែបម្រួលថាមពលក្នុងរបស់ប្រព័ន្ធ៖

ក.ប្រព័ន្ធធ្វើកម្មន្ត 5.0J ខណ:វារីកអាដ្យាបាទិច

ខ.ខណៈប្រព័ន្ធរួមអាដ្យាបាទិច កម្មន្ត 801 ត្រូវបានធ្វើលើឧស្ម័ន

ចម្លើយ៨៖ គណនាបម្រែបម្រូលថាមពលក្នុងរបស់ប្រព័ន្ធ

facebook.com/moeys.gov.kh



ក.ប្រព័ន្ធធ្វើកម្មន្ត 5.0J ខណ:វារីកអាដ្យាបាទិច តាមច្បាប់ទីមួយ ទៃម៉ូឌីណាមិច  $Q = \Delta U + W \Rightarrow \Delta U = Q - W$ ដោយ Q = 0J, W = 5.0J $\Delta U = 0J - 5.0J = -5.0J$ 

ខ.ខណៈប្រព័ន្ធរួមអាដ្យាបាទិច កម្មន្ត 801 ត្រូវបានធ្វើលើឧស្ម័ន តាមច្បាប់ទីមួយ ទៃម៉ូឌីណាមិច  $Q = \Delta U + W \Rightarrow \Delta U = Q - W$ 

ដោយ 
$$Q = 0J$$
 ,  $W = -80J$ 

$$\Delta U = (0J) - (-80J) = 80J$$



#### ត្ថប៉ង្ស ខេត្ត់ន្ទ្ឋឃានួន

#### នេរៀមថ្នុយ៖ សូមវិទ

#### ស៊ិចកាកណ្វ

• ម៉ាស៊ីនកម្ដៅ



- $\mathbf{Q}_{\scriptscriptstyle h}$  បរិមាណកម្ពៅបានពីប្រភពក្ដៅផ្ដល់ឱ្យម៉ាស៊ីន(ថាមពលសរុប)( $\mathbf{J}$ )
- W កម្មន្តដែលឧស្ម័នធ្វើ(បានការ) (J)
- Q បរិមាណកម្ដៅដែលបំភាយទៅ ប្រភពត្រជាក់ឬមជ្ឈដ្ឋានក្រៅ(បរិមាណ កម្ដៅមិនបានការ) (J)
  - lacktriangle តុល្យការថាមពល  $Q_h = Q_c + W$
  - $\bullet$  ទិន្នផលកម្ដៅនៃម៉ាស៊ីន $e = \frac{W}{Q_h}$
  - ullet កម្មន្តដែលឧស្ម័នធ្វើ  $W = Q_h Q_C$
  - ullet ទិន្នជលកម្ដៅនៃម៉ាស៊ីនស  $e = \frac{W}{Q_h} = \frac{Q_h Q_c}{Q_h} = 1 \frac{Q_c}{Q_h}$
  - ទ្រឹស្តីបទកាកណូ៖ បើម៉ាស៊ីនមួយដំណើរការរវាងធុងពីរ ដែលមានសីតុណ្ហភាពថេរមាទិន្នផលអតិបរិមា ដំណើរនេះមានភាពរេវែស៊ីប ហើយម៉ាស៊ីនទាំងអស់ដំណើរការនៅចន្លោះ សីតុណ្ហភាពដូចគ្នាមានទិន្នផលដូចគ្នា

$$e = 1 - \frac{Q_c}{Q_h} = 1 - \frac{T_c}{T_h}$$

• ផលធៀប៖

 $T_c$  ជាសីតុណ្ហភាពប្រភពត្រជាក់ (K)

 $T_h$  ជាសីតុណ្ហភាពប្រភពក្ដៅ(K)

#### ម៉ាស៊ីនសាំង និងម៉ាស៊ូត

- ម៉ូទ័របន្ទុះបូនវគ្គ៖ វគ្គស្រុប វគ្គបណ្ណែន វគ្គបន្ទុះនិងបន្ទូរ វគ្គបញ្ចេញ។
- ម៉ាស៊ីនម៉ូទ័រ



តុល្យការថាមពល

$$Q_h = W_M + Q_{c_1}$$

$$W_{M} = W_{U} + Q_{c_{2}}$$

- $\mathbf{W}_{_{\mathrm{M}}}$  ជាកម្មន្តមេកានិចគិតជាស៊ូល(J), $\mathbf{W}_{_{\mathrm{U}}}$ ជាកម្មន្តបានការ គិតជាស៊ូល (J),
- បរិមាណកម្ដៅដែលបំភាយទៅ ប្រភពត្រជាក់ឬមជ្ឈដ្ឋានក្រៅ (បរិមាណកម្ដៅ មិនបានការ)គិតជាស៊ូល(J)
- បរិមាណកម្ដៅដែលបាត់បង់ដោយសារកកិត(បរិមាណកម្ដៅមិនបានការ)គិត ជាស៊ូល (J)
- ightarrow ទិន្នជលកម្ដៅនៃម៉ាស៊ីន៖  $e_c = rac{W_M}{Q_L}$

$$e_{c} = \frac{W_{M}}{Q_{h}}$$

ightarrow ទិន្នផលគ្រឿងបញ្ចូន ឬទិន្នផលមេកានិច៖  $e_{\mathrm{M}} = rac{W_{\mathrm{U}}}{W_{\mathrm{M}}}$ 

$$e_{M} = \frac{W_{U}}{W_{M}}$$

$$ightarrow$$
 ទិន្នដលបានការនៃម៉ាស៊ីន៖  $e = \frac{W_U}{Q_h} = \frac{W_U}{W_M} imes \frac{W_M}{Q_h} = e_M imes e_c$ 

• ម៉ាស៊ីនម៉ាស៊ូតមានទិន្នផលខ្ពស់ជាងម៉ាស៊ីនសាំង។

ម៉ាស៊ីនកម្ដៅស្រុបកម្ដៅ200រពីធុងក្ដៅដើម្បីធ្វើកម្មន្តនិងបំភាយកម្ដៅ160រទៅធុងត្រ ឧទាហរណ៏១៖ ជាក់។ គណនាទិន្នផលកម្ដៅនៃម៉ាស៊ីន

ចម្លើយ១៖ គណនាទិន្នផលកម្ដៅនៃម៉ាស៊ីន

តាមរូបមន្ត

$$e = \frac{W}{Q_h}$$
ដោយ  $Q_h = W + Q_c$ 
 $\Rightarrow W = Q_h - Q_c$ 
នោះ  $e = \frac{Q_h - Q_c}{Q_h} = 1 - \frac{Q_c}{Q_h}$ 
ដោយ  $Q_c = 160J, Q_h = 200J$ 
 $e = 1 - \frac{160}{200} = 0.20 = 20\%$ 

<mark>ខ្វទាបារណ៏២៖</mark> ម៉ាស៊ីនមួយមានទិន្នផលកម្តៅ35%។ គណនា៖

- ក. កម្មន្តដែលបានធ្វើ ប្រសិនបើវាស្រុបកម្ដៅ15លធុងក្ដៅ។
- ខ. កម្តៅភាយចេញទៅធុងត្រជាក់។

ចម្លើយ២៖ ក.គណនាកម្មន្តដែលបានធ្វើក្នុងមួយខូប

តាមទិន្នផលកម្ពៅ 
$$e = \frac{W}{O_b}$$

$$\Rightarrow \qquad \qquad W = e \times Q_{h}$$

$$\Rightarrow$$
  $W=e\times Q_h$  ដោយ  $Q_h=150J$  ,  $e=0.35$   $W=0.35\times 150=52J$ 

ខ. គណនាកម្ដៅQc

តាមតុល្យការថាមពល

$$Q_h = W + Q_C \Rightarrow Q_C = Q_h - W$$
  
 $Q_C = 150J - 52.5J = 98J$ 

<mark>ខ្ញុំទាហរណ៏៣៖</mark> ម៉ាស៊ីនកាកណ្ឌធ្វើការរវាងធុងក្ដៅពីរនៅ500K និង300K។

- ក. រកទិន្នជលកម្ដៅនៃម៉ាស៊ីនកាកណ្ហ។
- ខ. ប្រសិនបើវាស្រូបកម្ដៅ200kJពីធុងក្ដៅ។គណនាកម្មន្តដែលបានធ្វើ។

ចម្លើយ៣៖ ក.រកទិន្នផលកម្ដៅនៃម៉ាស៊ីនកាកណ្វ

តាមរូបមន្ត 
$$e = 1 - \frac{T_c}{T_L}$$

ដោយ 
$$T_c = 300K, T_h = 500K$$

$$e = 1 - \frac{300}{500} = 0.4 = 40\%$$



ខ. គណនាកម្មន្ត

តាម 
$$e = \frac{W}{Q_h} \Rightarrow W = e \times Q_h$$
ដោយ  $Q_h = 200 \text{kJ}, e = 0.4 \text{J}$ 
 $\Rightarrow W = 0.4 \times 200 = 80 \text{kJ}$ 

<mark>ខ្វទាហរណ៏៍៤៖</mark> ម៉ាស៊ីនពិតធ្វើការរវាងធុងក្ដៅពីរ500K និង300K។ វាបំភាយកម្ដៅ500kJពីធុងក្ដៅ និងធ្វើ កម្មន្ត150kJក្នុងរាល់ខ្ទប។

- ក. គណនាទិន្នផលកម្ដៅនៃម៉ាស៊ីន
- ខ. គណនាទិន្នដលកម្ដៅនៃម៉ាស៊ីនពិត

ចម្លើយ៤៖ ក. គណនាទិន្នផលកម្ដៅនៃម៉ាស៊ីនពិត

តាមរូបមន្ត

$$e = 1 - \frac{T_c}{T_h}$$
  
ដោយ  $T_c = 300$ K,  $T_h = 500$ K  
 $e = 1 - \frac{300}{500} = 0.4 = 40\%$ 

ខ. គណនាទិន្នផលពិតនៃម៉ាស៊ីន

តាមរូបមន្ត 
$$e = \frac{W}{Q_h}$$
 ដោយ  $W = 150 \text{kJ}, \ Q_h = 500 \text{kJ}$   $e = \frac{150}{500} = 0.3 = 30\%$ 

#### ចំណាំ៖

- ម៉ាស៊ីននេះមិនមែនជាម៉ាស៊ីនអ៊ីដេអាល់ទេព្រោះទិន្នផលកម្ដៅនៃម៉ាស៊ីនពិតមានតែ30%ទេ ចំណែកឯទិន្នផលនៃម៉ាស៊ីនអ៊ីដេអាល់មាន40%។
- យើងមិនអាចប្រើរូបមន្ត e =  $1-\frac{T_c}{T_c}$  ព្រោះវាជារូបមន្តទិន្នផលកម្ដៅនៃម៉ាស៊ីនអ៊ីដេអាល់ មិនមែនម៉ាស៊ីនពិតទេ។

<mark>ខ្វទាហរណ៏៩៖</mark> ម៉ាស៊ីនកាកណូដែលមានប្រភពត្រជាក់7.0°C ហើយមានទិន្នផលកម្ដៅ50% ។ ម៉ា-ស៊ីននេះមានទិន្នផលកម្ដៅកើនឡើងដល់ 70% ។ តើសីតុណ្ហភាពនៃប្រភពក្ដៅកើនឡើងបានប៉ុន្មាន អង្សាសេ°C?

ចម្លើយ៩៖ រកកំណើនសីតុណ្ហភាព∆th (នៅប្រភពក្ដៅ) ក្នុងករណីដំបូង



$$e=1-\frac{T_c}{T_h}\Rightarrow \frac{T_c}{T_h}=1-e$$
 
$$\Rightarrow T_h=\frac{T_c}{1-e}$$
 ដោយ  $T_c=7+273=280\mathrm{K},\,e=0.50$  
$$T_h=\frac{280}{1-0.50}=560\mathrm{K}$$
 ក្នុងករណីស្រេច 
$$e'_c=1-\frac{T_c}{T'_h}=T'_h=\frac{T_c}{1-e'_c}$$
 ដោយ  $e'_c=0.70$  
$$T'_h=\frac{280}{1-0.70}=933.33$$
 
$$\Delta T_h=T'_h-T_h=933.33-560=373.33\mathrm{K}$$
 ដោយកំណើនសីគុណ្ណភាពជា K និង °C មានគម្លៃស្មើគ្នា 
$$\Delta t_h=\Delta T_h=373.33^\circ\mathrm{C}$$

<mark>ខ្ញុទាហរណ៏៦៖</mark> ម៉ូទ័រម៉ាស៊ីនម៉ាសូតនៃរថយន្តមួយដែលទិន្នផលកម្ដៅ0.43ហើយវាស្រ្គបបរិមាណកម្ដៅ 4.0MJ។ គណនា៖

- ក. កម្មន្តមេកានិចដែលបានពីពីស្តុង
  - ខ. បរិមាណកម្ដៅដែលបញ្ចេញទៅក្នុងបរិយាកាស។
  - គ. កម្មន្តបានការ បើគេដឹងថាទិន្នផលគ្រឿងបញ្ជូន0.82។

ចម្លើយ៦៖ ក. គណនាកម្មន្តមេកានិច

ទិន្នជលកម្ពៅ 
$$e_c = \frac{W_M}{Q_h}$$
 
$$\Rightarrow W_M = e_c \times Q_h$$
 ដោយ  $Q_h = 4.0 MJ = 4.0 \times 10^6 J, e_c = 0.43$   $W_M = 0.43 \times 4.0 \times 10^6 = 1.7 \times 10^6 J$ 

ខ. គណនាបរិមាណកម្ដៅដែលបំភាយចេញ តាមតុល្យការថាមពល

$$Q_h = W_M + Q_c \Rightarrow Q_c = Q_h - W_M$$
  
 $Q_c = 4.0 \times 10^6 - 1.7 \times 10^6 = 2.3 \times 10^6 J$ 

គ. គណនាកម្មន្តបានការ

ទិន្នផលគ្រឿងទទួល 
$$e_M = \frac{W_U}{W_M}$$
 
$$\Rightarrow W_U = e_M \times W_M$$
 ដោយ  $e_M = 0.82, \ W_M = 1.7 \times 10^6 \ J$  
$$W_U = 0.82 \times 1.7 \times 10^6 = 1.4 \times 10^6 \ J$$

<mark>ខ្វតាហរណ៏៧៖</mark> គណនាទិន្នផលអតិបរិមា របស់ម៉ាស៊ីនកម្ដៅដែលធ្វើការរវាងសីតុណ្ហភាព100°C និង 400°C ។

<mark>ចម្លើយ៧៖</mark> គណនាទិន្នផលអតិបរិមា របស់ម៉ាស៊ីនកម្ដៅ

ម៉ាស៊ីនដែលមានទិន្នផលអតិបរិមា គឺជាម៉ាស៊ីនកាកណ្ង

តាមរូបមន្ត 
$$e = 1 - \frac{T_c}{T_h}$$

ដោយ 
$$T_c = 100 + 273 = 373K$$
,  $T_h = 400 + 273 = 673K$ 

គេបាន 
$$e = 1 - \frac{373}{673} = 0.446$$

ខ្វតាហរណ៏៨៖ ម៉ាស៊ីនចំហាយទឹកធ្វើការរវាងសីតុណ្ហភាព 220°C និងសីតុណ្ហភាព 35°C បានផ្ដល់អានុភាព 8.0hp ។ ប្រសិនបើទិន្នផលរបស់វាស្មើនឹង 30 %នៃទិន្នផលម៉ាស៊ីនកាកណ្ដដែលធ្វើការរវាងសីតុណ្ហភាពពីរដូចខាងលើ។ តើមានបរិមាណកម្ដៅប៉ុន្មានកាឡូរីដែលស្រូបដោយធុងទឹកក្ដៅរាល់វិនាទី? តើមានបរិមាណកម្ដៅប៉ុន្មានកាឡូរីដែលបញ្ចេញឱ្យធុងទឹកត្រជាក់រាល់វិនាទី? គេឱ្យ 1.0hp = 746W និង 1.0cal = 4.2J

<mark>ចម្លើ៍ឃ៨៖</mark> បរិមាណកម្ដៅស្រុបដោយធុងទឹកក្ដៅរាល់វិនាទី

-ទិន្នផលកម្ដៅម៉ាស៊ីនចំហាយទឹកស្មើនឹង30%នៃទិន្នផលម៉ាស៊ីនកាកណ្វ

$$e' = 0.30e = 0.30 \left( 1 - \frac{T_c}{T_h} \right)$$

ដោយ 
$$T_c = 35 + 237 = 308K$$
,  $T_h = 220 + 273 = 493K$ 

គេបាន e'= 
$$0.30 \left(1 - \frac{308}{493}\right) = 0.1125$$

តាម 
$$e' = \frac{W}{Q_h} \Longrightarrow Q_h = \frac{W}{e'}$$

រីត 
$$P = \frac{W}{t} \Rightarrow W = Pt$$

ដោយ 
$$P = 8.0hp = 8.0 \times 746 = 5968W$$
,  $t = 1.0s$ 

នោះ 
$$W = 5968 \times 1.0 = 5968J$$

ដូចនេះ 
$$Q_h = \frac{5968}{0.1125} = 53048.89J = \frac{53048.89}{4.2} = 12660J$$

$$Q_h = 13000$$
cal = 13kcal

បរិមាណកម្ដៅបញ្ចេញឱ្យធុងទឹកត្រជាក់រាល់វិនាទី តាមសមីការតុល្យការថាមពល

$$\begin{aligned} Q_h &= W + Q_c \Rightarrow Q_c = Q_h - W \\ &= Q_h - Q_h e^c \\ &= Q_h (1 - e^c) \end{aligned}$$

# ខំពុង៣ នេះ ខេត្ត ខេត្ត

- រលកគឺជាការបណ្ឌូនថាមពលពីចំណុចមួយទៅចំណុចផ្សេងទៀតតាមរយ:មជ្ឈដ្ឋានណាមួ យ។
- គោលការណ៍តម្រុតនៃរលក៖ កាលណារលកពីរ ឬច្រើនដាលកាត់គ្នាក្នុងមជ្ឈដ្ឋានតែមួយ បម្លាស់ទីសរុបនៃរាល់ចំណុចណាក៏ដោយនៃរលកស្មើនឹងផលបូកវ៉ិចទ័រនៃបណ្ដារចំណុចបម្លាស់ទីរ លកទោលទាំងនោះ រលកបែបនេះហៅថារលកលីនេអ៊ែរ ឬរលកតម្រូត។
  - សំណង់ប្រណែលសមីការនៃចលនាស៊ីនុយសូអ៊ីតមានរាង៖

$$y = a \sin(\omega t + \phi)$$

y ជាអេឡុឯកាស្យុង(m), ωt + φ ជាជាសនៅខណ:(t), a ជាអំព្លីទុត(m), ω ជាពុលសាស្យុង(rad/s), φ ជាជាសដើម(rad) ។

ដើម្បីសម្រួលក្នុងការសិក្សាចលនាស៊ីនុយសូអ៊ីត ត្រូវបានតាងដោយវ៉ិចទ័រ  $\overline{OA}$  មួយដែលគេកំណត់ដូចខាងក្រោម៖

- ទិស៖ បង្កើតបានមុំ ωt + φ ធៀបទៅនឹងអ័ក្សណាមួយ
   ដែលគេជ្រើសរើសជាគល់នៃជា។
- គល់៖ ចំណុច O ណាមួយនៅលើអ័ក្ស។
- ម៉ូឌុល៖ អំព្លីទុតនៃចលនា។



• ករណីពិសេស



• ផលបូកអនុគមន៍ស៊ីនុយសូអ៊ីតពីរ ឧបមាថា នៅពេលជាមួយគ្នាចំណុច M មួយទទួលចលនាស៊ីនុយសូអ៊ីតពីរ ដែលមានទិស  $y_1 = a_1 \sin(\omega t + \phi_1)$  និង  $y_2 = a_2 \sin(\omega t + \phi_2)$ 

តាមគោលការណ៍តម្រុត៖

$$y = y_1 + y_2 = a\sin(\omega t + \phi)$$

> ផលសងជាស

$$\Delta\varphi=\varphi_2-\varphi_1$$

$$ightarrow$$
 អំព្លីទុត  $a = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos(\phi_2 - \phi_1)}$ 

ជាសដើមរបស់រលកតម្រុត

$$tan\phi = \frac{a_1 sin\phi_1 + a_2 sin\phi_2}{a_1 cos\phi_1 + a_2 cos\phi_2}$$

• ផលបូកអនុគមន៍ស៊ីនុយសូអ៊ីតច្រើនជាឯពីរ



ឧបមាថា នៅពេលជាមួយគ្នាចំណុច M មួយទទួលនូវចលនាស៊ីនុយសូអ៊ីតចំនួន n ដែលមានប្រេកង់ ជំហានរលក និងខូប  $T=rac{2\pi}{\omega}$  ដូចគ្នាតែជាសខុសគ្នាគឺ

$$\begin{aligned} y_1 &= a_1 \sin \left(\omega t + \varphi_1\right) \\ y_2 &= a_2 \sin \left(\omega t + \varphi_2\right) \\ &\cdots \\ y_n &= a_n \sin \left(\omega t + \varphi_n\right) \end{aligned}$$

តាមគោលការណ៍តម្រតនៃរលកយើងបាន៖

$$y = y_1 + y_2 + y_3 + \dots + y_n = a \sin(\omega t + \phi)$$

$$ightarrow$$
 អំព្លីទុត  $a = \sqrt{a_x^2 + a_y^2}$ 

ដែល 
$$a_x = a_1 \cos \phi_1 + a_2 \cos \phi_2 + \dots + a_n \cos \phi_n$$

និង 
$$a_y = a_1 \sin \phi_1 + a_2 \sin \phi_2 + \dots + a_n \sin \phi_n$$

- ជាសដើមរបស់រលកតម្រត $\left| \begin{array}{c} ext{tan} \phi_{o} = rac{|a_{y}|}{|a_{x}|} \end{array} \right|$
- ∙សម្គាល់៖

$$\circ \quad a_{y} > 0, a_{x} > 0 \Longrightarrow \phi = \phi_{o}$$
 (I)

$$\circ \quad a_{_{\boldsymbol{y}}} > 0, \, a_{_{\boldsymbol{x}}} < 0 \Longrightarrow \boldsymbol{\phi} = \boldsymbol{\pi} - \boldsymbol{\phi}_{_{\boldsymbol{0}}} \quad (II)$$

$$\circ \quad a_{y} < 0, a_{x} < 0 \Longrightarrow \phi = \pi + \phi_{o} \quad (III)$$

$$\circ \quad a_{y} < 0, \ a_{x} > 0 \Longrightarrow \phi = -\phi_{o} \quad (IV)$$
$$= 2\pi - \phi_{o}$$

• រលកជញ្ជ្រំ៖ បើរលកស៊ីនុយសូអ៊ីតពីរ ដែលមានអំព្លីទុតនិងជំហានរលកដូចគ្នាផ្លាស់ទីតាម ទិសដៅផ្ទុយគ្នា នោះតម្រូតនៃរលកទាំងពីរបង្កើតបានជារលកជញ្ជ្រុំ។









Antinode (A) ជាពោះ និង Node (N) ជាថ្នាំង

យើងតាងអនុគមន៍រលកទីមួយដាលពីឆ្វេងទៅស្ដាំ  $y_1 = A\sin(kx - \omega t)$ និងអនុគមន៍រលកទីពីរដាលពីស្តាំទៅឆ្វេង y2 = Asin(kx + ωt)។ នៅពេលត្រតរលកទាំងពីរ គេបាន៖

$$y = y_1 + y_2 = A\sin(kx - \omega t) + A\sin(kx + \omega t) = A[\sin(kx - \omega t) + \sin(kx + \omega t)]$$

ដោយប្រើរូបមន្ត sina + sinb = 
$$2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

2Asinkx ជាកន្សោមអំព្លីទុតនៃរលកជញ្ជ្រំ



ទីតាំងពោះរបស់រលកជញ្ជ្រុំ ត្រង់ទីតាំងពោះជាទីតាំងដែលមានអំព្លីទុតអតិបរិមា 2Asinkx មានតម្លៃអតិបរមាលុះត្រាតែ sinkx = ±1

$$\Rightarrow kx = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$$

$$\Rightarrow$$
 x =  $\frac{\lambda}{4}$ ,  $\frac{3\lambda}{4}$ ,  $\frac{5\lambda}{4}$ , ... =  $n\frac{\lambda}{4}$ ជាទីតាំងពោះ (អំព្លីទុតអតិបរមា)ដែល  $n=1,3,5,7$  ...

ទីតាំងថ្នាំងរបស់រលករលកជញ្ជ្រំ ត្រង់ទីតាំងជាទីតាំងដែលមានអំព្លីទុតស្វន្យ

$$2Asinkx = 0$$

$$sinkx = 0$$

$$\Rightarrow kx = 0, \pi, 2\pi, 3\pi ...$$

$$\Rightarrow$$
  $x=0,rac{\lambda}{2},\lambda,rac{3\lambda}{2},...=nrac{\lambda}{2}$ ជាទីតាំងថ្នាំង  $\Big($ អំព្លីទុតស្មើស្ងន្យ $\Big)$ ដែល  $n=0,1,2,3,4,...$ 

<mark>ខ្វទាបារណ៏១៖</mark> បម្លាស់ទីនៃរលកមួយឲ្យដោយសមីការ y = 0.10sin(0.10x – 0.10t) (m) គណនាអំព្លីទុតនៃរលក ចំនួនរលក ជំហានរលក ខូបនៃរលក និងល្បឿនដំណាលរលក។ ចម្លើយ១៖ យើងមានសមីការរាង y = Asin(kx – ωt)

អំពី្លទុតនៃវលក A = 0.10m , ចំនួនវលក k = 0.1 rad/m,   
ជំហានរលក 
$$\lambda=\frac{2\pi}{k}=\frac{2\pi}{0.10}=20\pi$$
 m, ខូបនៃវលក T =  $\frac{2\pi}{\omega}=\frac{2\pi}{0.10}=20\pi$  s   
ហ្បឿនដំណាលរលក v =  $\frac{\lambda}{T}=\frac{20\pi}{20\pi}=1.0$ m/s

<mark>ខ្វទាបារណ៏២៖</mark> គណនាប្រេកង់ និងល្បឿនដំណាលរលក ដែលសមីការរលកឱ្យដោយ

$$y = 0.60\sin\left[2\pi\left(\frac{x}{55} - \frac{t}{0.05}\right)\right]$$
 (m)

ចីឡើយ២៖ យើងមានសមីការរាង y = Asin(kx – ωt)

ប្រេកង់ 
$$f = \frac{1}{T}$$

ដោយ T = 0.05s

$$f = \frac{1}{0.05} = 20$$
Hz

ល្បឿនដំណាលរលក

$$v = \frac{\lambda}{T} = \frac{55}{0.05} = 1100 \text{m/s}$$

<mark>ឧ្ធទាបារណ៏៍៣៖</mark> រករលកតម្រុតនៃលំយោល

$$\tilde{n}$$
.  $y_1 = 4.0\sin(5\pi t + \frac{\pi}{6})$  (cm)





2. 
$$y_1 = 7.0\sin(10\pi t)$$
 (cm)  
 $y_2 = 8.0\sin(10\pi t + \frac{\pi}{2})$  (cm)  
 $y_3 = 9.0\sin(10\pi t - \frac{\pi}{2})$  (cm)

ចម្លើយ៣៖ ក.តាមគោលការណ៍តម្រូត

**ខ**.តាមគោលការណ៍តម្រត

- \*  $a_x = a_1 \cos \phi_1 + a_2 \cos \phi_2 + a_3 \cos \phi_3 = 7.0 \cos 0 + 8.0 \cos \frac{\pi}{2} + 9.0 \cos \left(-\frac{\pi}{2}\right) = 7.0 \text{cm}$
- \*  $a_y = a_1 \sin \phi_1 + a_2 \sin \phi_2 + a_3 \sin \phi_3 = 7.0 \sin 0 + 8.0 \sin \frac{\pi}{2} + 9.0 \sin \left(-\frac{\pi}{2}\right) = -1.0 \text{cm}$
- \* អំពី្លីទុត a =  $\sqrt{a_x^2 + a_y^2} = \sqrt{7^2 + (-1)^2} = 7.1$ cm
- \* ជាសដើមរបស់រលកតម្រុត  $tan \phi = \frac{a_y}{a_x}$  $\phi = \tan^{-1}\left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{-1}{7}\right) = -0.14 \text{rad}$  $y = 7.1 \sin(10\pi t - 0.14) \text{ cm}$

<mark>ខ្ញុទាហរណ៏៤៖</mark> រលកពីរដាលតាមទិសដៅផ្ទុយគ្នា កាត់គ្នា និងបង្កើតជារលកជញ្ជ្រុំ។ សមីការរលកនី-មួយៗ

$$y_1 = 4.0 \sin(3.0x - 2.0t)$$
 (cm)  
 $y_2 = 4.0 \sin(3.0x + 2.0t)$  (cm)

- ក. គណនាបម្លាស់ទីអតិបរមារបស់ភាគល្អិតនៅត្រង់ទីតាំង x = 2.3cm។
- ខ. រកទីតាំងពោះ និងទីតាំងថ្នាំងនៃរលកជញ្ជ្រំ។

ចម្លើយ៤៖ ក. គណនាបម្លាស់ទីអតិបរិមាត្រង់ទីតាំង x = 2.3cm

$$y=y_1+y_2=a sin(kx-\omega t)+a sin(kx+\omega t)$$
  $y=a[sin(kx-\omega t)+sin(kx+\omega t)]=(2a sinkx)cos\omega t$  បម្លាស់ទីអតិបរិមា  $y_m=(2a sinkx)=2\times 4.0 sin(3.0\times 2.3)=4.6 cm$ 

ខ. រកទីតាំងពោះ និងទីតាំងថ្នាំងនៃរលកជញ្ជ្រំ

ជំហានរលក 
$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{3}$$
 (cm)

- > ទីតាំងពោះ  $x = \frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}, \dots = \frac{2\pi}{12}, \frac{6\pi}{12}, \frac{10\pi}{12}, \dots, (cm)$ > ទីតាំងថ្នាំង  $x = 0, \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}, \dots = 0, \frac{2\pi}{6}, \frac{2\pi}{3}, \frac{6\pi}{6}, \dots (cm)$

#### ខំពុង៣ អគ្គិសនី និខមាញេនិច នេរៀនខ្នាំ១៖ ខែនទ្ធ១ងស្ដិចស្ដាញនិន

- មេដែកមានប៉ូលពីរ គឺប៉ូលជើង(N) និងប៉ូលត្បូង(S) ។
- អន្តរកម្មម៉ាញេទិច៖ មេដែកពីរមានប៉ូលដូចគ្នាដាក់ជិតគ្នាច្រានគ្នាចេញ និងប៉ូលខុសគ្នាទាញគ្នាចូល។
- ប្រភពរបស់ដែនម៉ាញេទិចគឺ មេដែក ផែនដី និងចរន្តអគ្គិសនី។
- មេដែកជាអង្គធាតុដែលអាចឆក់ដែកបាន។
- មេដែកចែកចេញជាពីរគឺ មេដែកធម្មជាតិ (ដូចជាសំណាក Fe<sub>3</sub>O<sub>4</sub>) និងមេដែកសិប្បនិម្មិត (មនុស្សបង្កើតឡើងដោយយករបារដែកថែប ឬម្ជុលដែកថែបទៅបន្ស៊ីឱ្យក្លាយជាមេដែក)។
- មេដែកសិប្បនិម្មិតមាន របារមេដែក ម្ជុលមេដែក និងមេដែករាង U ឬរាងក្រចកសេះ។ល។
- ដែនម៉ាញេទិចនៃចរន្តត្រង់
  - ករណីក្នុងខ្យល់ ឬសុញ្ញាកាល

$$B = \mu_{o} \frac{I}{2\pi d}$$



- ជាដែនម៉ាញេទិចបង្កើតដោយចរន្តត្រង់ គិតជាតេស្លា (T)
- ជាចម្ងាយពីខ្សែចម្លងទៅចំនុចM គិតជា(m)
- ជាអាំងតង់ស៊ីតេចរន្តអគ្គិសនីឆ្លងកាត់ខ្សែចម្លងត្រង់គិតជាអំពែ (A)
- $\mu_{\rm o}$  ជាជម្រាបម៉ាញេទិចនៃខ្យល់ ឬសុញ្ញាកាល  $\mu_{\rm o} = 4\pi \times 10^{-7} \, {
  m T\cdot m/A}$
- ករណីក្នុងមជ្ឈដ្ឋានណាមួយ

$$B = \mu_{o} \mu_{r} \frac{I}{2\pi d}$$

 $\mu_{
m r}$  ជាជម្រាបម៉ាញេទិចធៀបនៃមជ្ឈដ្ឋាន

- ដែនម៉ាញេទិចនៃចរន្តវង់ (កាំ R )
  - \* ករណីវង់មួយស្ពៀ  $B = \mu_0 \frac{I}{2R}$

R ជាកាំរង្វង់នៃស្ពៀ គិតជា(m)



- ករណីវង់ N ស្ពៀ  $B = \mu_0 \frac{NI}{2R}$ 
  - R ជាកាំរង្វង់មធ្យមរបស់ស្ពៀ N គិតជា (m)



ដែនម៉ាញេទិចនៃសូលេណូអ៊ីត $(\ell \geq 5R)$ 

ស្វលេណូអ៊ីត(បូប៊ីនវែង) 
$$B = \mu_0 nI = \mu_0 \frac{N}{\ell} I$$



- 👃 របៀបរកចំនួនស្ពៀN (តាមប្រវែងសូលេណូអ៊ីត  $\ell$  )
  - ករណីមិនគិតកម្រាស់អ៊ីសូឡង់ស្រោបខ្សែ

$$\ell = N \times d \Rightarrow N = \frac{\ell}{d}$$
 ដែល  $d$  ជាអង្គត់ផ្ចិត ខ្សែចម្លង គិតជា  $(m)$ 

• ករណីខ្សែស្រោបដោយអ៊ីសូឡង់ដែលមានកម្រាស់ e

$$\ell = N \times (d+2e) \Rightarrow N = \frac{\ell}{(d+2e)}$$

ករណីខ្សែស្រោបដោយអ៊ីសូឡង់ដែលមានកម្រាស់e ហើយរុំច្រើនស្រទាប់ ឬច្រើនជាន់

$$N = \frac{\ell \cdot x}{(d+2e)}$$

- B ដែនម៉ាញេទិចគិតជា(T), I ចរន្តអគ្គិសនីគិតជា(A),
- កាំសូលេណូអ៊ីតគិតជា(m)
- អង្កត់ផ្ចិតសូលេណូអ៊ីតគិតជា(m),  $\ell$  ប្រវែងសូលេណូអ៊ីតគិតជា(m),
- N ចំនួនស្ពៀ, d ជាអង្គត់ផ្ទិតខ្សែចម្លង គិតជា(m), n ជាចំនួនស្ពៀក្នុងមួយម៉ែត្រ
- ជាកម្រាស់អ៊ីសូឡង់ គិតជា (m)
- x ជាចំនួនស្រទាប់ ឬជាន់
- ប្រវែងខ្សែចម្លងដែលរុំជាស្ងូលេណូអ៊ីត

 $\ell' = 2\pi RN$ 

• កម្លាំងអេឡិចត្រូម៉ាញេទិច៖

$$\vec{\mathbf{F}} = \vec{\mathbf{I}\ell} \times \vec{\mathbf{B}}$$

- តាមការពិសោធបង្ហាញឱ្យឃើញថាកម្លាំងអេឡិចត្រូម៉ាញេទិច មាន៖
  - ចំណុចចាប់ស្ថិតត្រង់ចំណុចកណ្ដាលនៃភាគខ្សែដែលស្ថិតក្នុងដែន
  - \* ទិសកែងនឹងប្លង់កំណត់ដោយវ៉ិចទ័រBីនិងចរន្ត I
  - \* ទិសដៅកំណត់តាមវិធានដៃស្ដាំ (ដំបូងម្រាមទាំង4 លាទៅតាមទិសដៅចរន្ត I ហើយ

បត់តាមវ៉ិចទ័រ B មេដៃកន្វែកឱ្យកែងនឹងម្រាមដៃ នោះមេដៃចង្អួលទិសដៅនៃកម្លាំងអេឡិចត្រូ ម៉ាញេទិច)

៖ ម៉ូឌុលកម្លាំងអេឡិចត្រូម៉ាញេទិច F=IℓBsinθ B ដែនម៉ាញេទិចគិតជា(T), I ជាអាំងស៊ីតេចរន្តគិតជា(A)

 $\ell$  ប្រវែងខ្សែចម្លងគិតជា(m),



បើសិនជាខ្សែចម្លងកែងនឹង  $ec{\mathbf{B}}(\mathbf{\theta} = 90^\circ)$  គេបានម៉ូឌុលកម្លាំងអេឡិត្រម៉ាញេទិច

$$F \!=\! I\ell B$$

អំពើទៅវិញទៅមករវាងចរន្តត្រង់ពីរ





- \* ខ្សែចម្លងវែងត្រង់ពីរដាក់ស្របគ្នា ឆ្លងកាត់ដោយចរន្តអគ្គិសនីមានទិសដៅដូចគ្នា ខ្សែចម្លងទាំងពីរទាញគ្នាចូលទៅវិញទៅមក។
- \* ខ្សែចម្លងវែងត្រង់ពីរដាក់ស្របគ្នា ឆ្លងកាត់ដោយចរន្តអគ្គិសនីមានទិសដៅផ្ទុយគ្នា ខ្សែចម្លងទាំងពីរច្រានគ្នាចេញ។
- ខ្សែចម្លងវែង  $\ell$  ត្រង់ពីរស្របគ្នា ស្ថិតនៅចម្ងាយពីគ្នា a ហើយឆ្លងកាត់ដោយចរន្តរៀងគ្នា  $\mathbf{I}_{\mathbf{I}}$ និង ${f I}_{\scriptscriptstyle 2}$  នោះកម្លាំងដែលខ្សែចម្លងទាំងពីរមានអំពើលើគ្នាគឺ

$$F_{12} = F_{21} = \frac{\mu_{o} I_{1} I_{2} \ell}{2\pi a}$$

ℓ ជាប្រវែងខ្សែចម្លងត្រង់គិតជា (m)

 $I_1,I_2$ ជាអាំងតង់ស៊ីតេចរន្តឆ្លងកាត់ខ្សែចម្លងទី១ និងខ្សែចម្លងទី២រៀងគ្នាគិតជា $(\mathbf{A})$ a ចម្ងាយរវាងខ្សែចម្លងទី១ និងខ្សែចម្លងទី២គិតជា (m)

កម្លាំងអេឡិចត្រូម៉ាញេទិច ៖កាលណាផង់ផ្ទុកបន្ទុកអគ្គិសនី q ផ្លាស់ទីក្នុងដែនម៉ាញេទិច B ដោយល្បឿន  $\vec{v}$ ,  $\alpha=(\vec{v},\vec{B})$  នោះផង់រងន្ទវកម្លាំងអេឡិចត្រូម៉ាញេទិច ៖

$$\vec{F}_{m} = q(\vec{v} \times \vec{B})$$

មានម៉ូឌុល  $F_{\rm m} = |\mathbf{q}| \times \mathbf{v} \times \mathbf{B} \sin \alpha$ 

ករណី q>0នោះ $ec{\mathsf{f}}_{\scriptscriptstyle m}$ មានទិសដៅដូចមេដៃ ករណី  $_{
m q}\!<\!0$  នោះ $_{
m F_m}$ មានទិសដៅផ្ទុយពីមេដៃ



• ផង់ផ្ទុកបន្ទុកអគ្គិសនី  $_{q}$  ផ្លាស់ទីដោយល្បឿន  $ec{v}$  ចូលក្នុងដែនម៉ាញេទិច  $ec{\mathbf{B}}$   $(ec{v} \perp ec{\mathbf{B}})$ នោះចលនាផង់ជាចលនាវង់ស្មើលើរង្វង់មួយដែលមានកាំ

$$R = \frac{mv}{|q|B}$$

- R ជាកាំរង្វង់ចលនាវង់ស្មើរបស់ផង់គិតជា(m) ,
- v ជាល្បឿនរបស់ផង់គិតជា(m/s),
- q ជាបន្ទុករបស់ផង់គិតជា (C) ,B ជាដែនម៉ាញេទិច(T)
- ខូបនៃចល់នាវង់ស្មើជារយៈពេលចាំបាច់ដែលផង់ផ្លាស់ទីបានមួយជុំរង្វង់ពេញ។ រូបមន្តខូប

$$T = \frac{2\pi R}{V} = \frac{2\pi m}{|q|B}$$

្រេកង់នៃចលនាវង់ស្មើជាចំនូនជុំដែលផង់ផ្លាស់ទីបានក្នុងមួយវិនាទី

$$N = \frac{1}{T} = \frac{|q|B}{2\pi m}$$

លំងាកម៉ាញេទិច α

$$\alpha$$
(rad) =  $\frac{\ell}{R} = \frac{\ell |q| B}{m v_o}$ 

ដេផ្លិចស្យុងម៉ាញេទិច

$$Z = D \tan \alpha = \frac{D\ell |q| B}{mv_o}$$



- ស្ប៉ិចក្រាបអាចឱ្យគេញែកផង់ផ្ទុកអគ្គិសនី ដែលមានបន្ទុកក្នុងមួយខ្នាតនៃម៉ាស $rac{|\mathbf{q}|}{\mathbf{m}}$ 
  - ខុស់ៗគ្នា។ នៅពេលផង់ចេញពីបន្ទប់លំងាក គេបានធៀបផលធៀប

$$\frac{|\mathbf{q}|}{\mathbf{m}} = \frac{2\mathbf{V}}{\mathbf{B}^2 \mathbf{R}^2}$$

<mark>ខ្វទាហរណ៏១៖</mark> ខ្សែចម្លងត្រង់ប្រវែងអនន្តឆ្លងកាត់ដោយចរន្ត I = 0.50A ដែលមជ្ឈដ្ឋានជុំវិញជាខ្យល់។

- ក. គណនាអាំងឌុចស្យុងម៉ាញ៉េទិចត្រង់ចំណុច M ចម្ងាយ 2.0m ពីខ្សែចម្លង។
- ខ. គេដឹងថាត្រង់ចំណុច N មានអាំងឌុចស្យុង $10^{-8} {
  m T}$  ។ ចូរគណនាចម្ងាយពីចំណុច N ទៅខ្សែចម្លង។ គេឱ្យ  $\mu_o = 4\pi \times 10^{-7} \, T \cdot m \, / \, A$

ចម្លើយ១៖ ក.គណនាអាំងឌុចស្យុងម៉ាញ៉េទិចត្រង់ចំណុច M

តាមរូបមន្ត

$$B = \mu_o \frac{I}{2\pi d}$$
 sings  $I = 0.50A$ ,  $d = 2.0m$ ,  $\mu_o = 4\pi \times 10^{-7} \, T \cdot m/A$  
$$B = 4\pi \times 10^{-7} \, \frac{0.50}{2\pi \times 2.0} = 5.0 \times 10^{-8}$$

ខ. គណនាចម្ងាយពីចំណុចNទៅខ្សែចម្លង

តាមរូបមន្ត B = 
$$\mu_{\rm o} \frac{\rm I}{2\pi \rm d}$$
  $\Rightarrow$  d =  $\frac{\mu_{\rm o} \rm I}{2\pi \rm B}$  (B =  $10^{-8}$  T) d =  $\frac{4\pi \times 10^{-7} \times 0.50}{2\pi \times 10^{-8}}$  =  $10$ m

<mark>ខ្ញុទាហរណ៏២៖</mark> ខ្សែចម្លងវង់មួយមានផ្ទិតO មានកាំR=10cm។ ឆ្លងកាត់ដោយចរន្តដែលមាន អាំងតង់ស៊ីតេ10A ។ គណនាតម្លៃអាំងឌុចស្យុងម៉ាញ៉េទិចត្រង់ផ្ទិត0បង្កើតដោយចរន្តក្នុងខ្សែចម្លង ដែលមជ្ឈដ្ឋានជុំវិញជាខ្យល់។ គេឱ្យ  $\mu_{\rm o} = 4\pi \times 10^{-7} \, T \cdot m \, / \, A$ ចម្លើយ២៖ តម្លៃអាំងឌុចស្យុងម៉ាញ៉េទិចត្រង់ផ្ទិតOបង្កើតដោយចរន្តក្នុងសៀគ្វីវង់

តាមរូបមន្ត 
$$B = \mu_0 \frac{I}{2R}$$

ដោយ 
$$I=10A,~R=10cm=0.10m,~\mu_o=4\pi\times 10^{-7}\,T\cdot m/\,A$$

$$B = 4\pi \times 10^{-7} \frac{10}{2 \times 0.10} = 6.3 \times 10^{-5} T$$

<mark>ខ្ញុទាបារណ៏៣៖</mark> ស្វលេណូអ៊ីតគ្មានស្នូលមួយត្រូវមានរុំចំនួន 2000 ស្ពៀ ហើយមានអង្កត់ផ្ចិត 2.0cm និង ប្រវែង 60cm ។ ប្រសិនបើស្ងលេណូអ៊ីតឆ្លងកាត់ដោយចរន្តអគ្គិសនី 5.0A ។ គណនា

- ក ដែនម៉ាញេទិចឆ្លងកាត់សូលេណូអ៊ីត
- ខ ប្រវែងខ្មែចម្លងដែលរុំជាសួលេណូអ៊ីត

ចម្លើយ៣ ៖ ក គណនាដែនម៉ាញេទិចឆ្លងកាត់សូលេណូអ៊ីត។

តាមរូបមន្ត 
$$B = \mu_o \frac{N}{\ell} I$$

$$\text{com} \ I = 5.0 \text{A}, \ \mu_o = 4\pi \times 10^{\text{-7}} \ T \cdot m / \ \text{A}, \ N = 2000, \ \ell = 60 \text{cm} = 0.60 \text{m}$$

$$B = 4\pi \times 10^{-7} \, \frac{2000}{0.60} \times 5 = 0.021 T$$

ខ គណនាប្រវែងខ្សែចម្លងដែលរុំជាស្ងូលេណូអ៊ីត



តាមរូបមន្ត 
$$L = 2\pi RN = \pi DN$$
  
ដោយ  $D = 2.0 \text{cm} = 2.0 \times 10^{-2} \text{ m}$   
 $\Rightarrow L = 3.14 \times 2.0 \times 10^{-2} \times 2000 = 130 \text{m}$ 

<mark>ខ្វទាហរណ៏៤៖</mark> បូប៊ិនសំប៉ែតមួយមានចំនូនស្ពៀ  $N\!=\!100$  ឆ្លងកាត់ដោយចរន្តមានអាំងតង់ស៊ីតេ m I = 10A ហើយស្ពៀមានកាំមធ្យមm R = 20cm។ ចូរគណនាតម្លៃអាំងឌុចស្យុងម៉ាញ៉េទិចត្រង់ផ្ចិត ប្វចិន។ បើស្នួលប្វចិ៍នជាលោហ:មានជម្រាបម៉ាញ៉េទិចធៀប  $\mu_{
m r}$  =1000 ។

ចម្លើយ៤៖ គណនាអាំងឌុចស្យុងម៉ាញ៉េទិចត្រង់ផ្ចិតបូប៊ីន

តាមរូបមន្ត B = 
$$\mu_{\rm o}\mu_{\rm r}N\frac{I}{2R}$$
   
 ដោយ  $I=10A,~R=20{\rm cm}=0.20{\rm m},~\mu_{\rm o}=4\pi\times10^{-7}\,{\rm T\cdot m/A},~\mu_{\rm r}=1000,~N=100$    
  $B=4\pi\times10^{-7}\times1000\times100\frac{10}{2\times0.20}=\pi{\rm T}$ 

<mark>ខ្វទាហរណ៏៩៖</mark> ខ្សែចម្លងមួយមានប្រវែង  $\ell = 25 \mathrm{cm}$  ឆ្លងកាត់ដោយចរន្ត  $\mathrm{T} = 4.0 \mathrm{A}$ ស្ថិតក្នុងដែនម៉ាញ៉េទិច ឯកសណ្ឋានដែលមានអាំងឌុចស្យូង B = 2.0T ។ គណនាកម្លាំងអេឡិចត្រ្ទម៉ាញេទិចដែលមានអំពើ លើរបារក្នុងករណីដែលខ្សែចម្លងផ្គុំបានមុំ  $\theta_{\rm l}=30^{\rm o}$  ,  $\theta_{\rm 2}=60^{\rm o}$  ,  $\theta_{\rm 3}=90^{\rm o}$  ជាមួយអាំងឌុចស្យុង ម៉ាញេទិច។ ចម្លើយ៤៖ គណនាកម្លាំងអេឡិចត្រូម៉ាញេទិចដែលមានអំពើលើរបារ

តាមរូបមន្ត  $F = I\ell B \sin \theta$ 

ដោយ  $\ell = 25$ cm = 0.25m, I = 4.0A, B = 2.0T

- \* កិរណី $\theta_1 = 30^{\circ}$  នាំឱ្យ  $F_1 = 4 \times 0.25 \times 2.0 \sin 30^{\circ} = 1.0 N$
- \* កិរុណី  $\theta_2 = 60^{\circ}$  នាំឱ្យ  $F_2 = 4 \times 0.25 \times 2.0 \sin 60^{\circ} = 1.7 N$
- \* កិរុណី  $\theta_3 = 90^{\circ}$  នាំឱ្យ  $F_3 = 4 \times 0.25 \times 2.0 \sin 90^{\circ} = 2.0 \text{N}$

<mark>ខ្ញុទាហរណ៏៦៖</mark> គណនាកម្លាំងឡូរ៉ិនដែលមានអំពើលើប្រ<sub>ុំ</sub>តុងកំពុងផ្លាស់ទីដោយល្បឿន  $v=4.0\times 10^6\,\mathrm{m/s}$  ចូលក្នុងដែនម៉ាញេទិចដែលមានទិសដៅកែងនឹងអាំងឌុចស្យុងម៉ាញេទិច  $B = 2.0T \, 1$ 

ចម្លើយ៦៖ គណនាកម្លាំងឡូរ៉ិនដែលមានអំពើលើប្រឹត្តង

<mark>ខ្វទាបារណ៏៧៖</mark> អ៊ីយ៉ុងនៃផង់អាល់ហ្វា (He<sup>2+</sup>) មួយផ្លាស់ទីឆ្លងកាត់ ហើយកែងនឹងដែនម៉ាញេទិច  ${
m B}=4.22 imes 10^{-1}\,{
m T}$  ។ ប្រសិនបើកាំគន្លងរបស់ផង់ដែលងាកក្នុងដែនម៉ាញេទិច គឺ  $1.5 imes 10^{-3} {
m m}$  ។ គណនាល្បឿនរបស់អ៊ីយ៉ុងនៃផង់អាល់ហ្វា។ គេឱ្យម៉ាសផង់អាល់ហ្វា  $\mathrm{m}=6.65 \times 10^{-27} \mathrm{kg}$  ។







ចម្លើយ៧ ៖ គណនាល្បឿនរបស់ផង់អាល់ហ្វា

តាមរូបមន្ត 
$$R=\frac{mv}{|q|B}$$
   
 នាំឱ្យ  $\Rightarrow v=\frac{R\,|q|B}{m}$    
 ដោ  $m=6.65\times 10^{-27}\,kg$  ,  $|q|=+2e=2\times 1.6\times 10^{-19}\,C$  ,  $R=1.5\times 10^{-3}\,m$  ,  $B=4.22\times 10^{-1}\,T$    
  $v=\frac{1.5\times 10^{-3}\times 2\times 1.6\times 10^{-19}\times 4.22\times 10^{-1}}{6.65\times 10^{-27}}=3.1\times 10^4\,m/s$ 

 ${f g}$ ទាហរណ៏ ${f d}{f e}$  គណនាផលធៀបបន្ទុកលើម៉ាសនៃផង់មួយដែលផ្លាស់ទីដោយល្បឿន $3.6{ imes}10^5{
m m/s}$ ហើយមានកាំកំណោង 7.4×10<sup>-2</sup>m នៅពេលវាផ្លាស់ទីចូល ហើយកែងនឹងដែនម៉ាញេទិច  $B = 0.61T \, 1$ 

ចម្លើយ៨ ៖ គណនាផលធៀបបន្ទុកលើម៉ាសនៃផង់

តាមរូបមន្ត 
$$R=\frac{mv}{|q|B}$$
 គេបាន  $\frac{|q|}{m}=\frac{v}{B\times R}$  ដោយ  $R=7.4\times 10^{-2}\, m,\, B=0.61T,\, v=3.6\times 10^5\, m/s$  នោះ  $\frac{|q|}{m}=\frac{3.6\times 10^5}{0.61\times 7.4\times 10^{-2}}=8.0\times 10^7\, C/kg$ 

<mark>ឧ្ទាហរណ៏៩៖</mark> ក្នុងបំពង់កាំរស្មីកាតូត (CRT) អេឡិចត្រុងត្រូវបានពន្លឿនពីនៅស្ងៀម ក្រោមផលសង់ប៉ូតង់ស្យែល $1.4 \times 10^3 \mathrm{V}$  ។អេឡិចត្រុងនេះបានផ្លាស់ទីឆ្លងកាត់ដែនម៉ាញេទិច  $B = 2.2 \times 10^{-2} T$  ។សន្ទតិថា អេឡិចត្រុងផ្លាស់ទីកែងនឹងដែនម៉ាញេទិច។គណនាកាំនៃគន្លងរបស់អេឡិចត្រុង។

ចម្លើយ៩ ៖ គណនាកាំនៃគន្លងរបស់អេឡិចត្រុង។

តាមរូបមន្ត 
$$R=rac{mv}{|q|B}$$
 តាមច្បាប់រក្សាថាមពល  $rac{1}{2}mv^2=|q|V$  គេបាន  $v=\sqrt{rac{2|q|V}{m}}$ 

ដោយ 
$$|\mathbf{q}| = 1.6 \times 10^{-19} \,\mathrm{C}, V = 1.4 \times 10^3 \,\mathrm{V}, m = 9.1 \times 10^{-31} \,\mathrm{kg}$$
 នាំឱ្យ  $v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 1.4 \times 10^3}{9.1 \times 10^{-31}}} = 2.22 \times 10^7 \,\mathrm{m/s}$ 

$$V = 9.1 \times 10^{-31}$$

$$R = \frac{9.1 \times 10^{-31} \times 2.22 \times 10^{7}}{10^{-3} \times 10^{-3}} = 5.7 \times 10^{-3} \text{ m}$$

$$\text{ISI: } R = \frac{9.1 \times 10^{-31} \times 2.22 \times 10^7}{1.6 \times 10^{-19} \times 2.2 \times 10^{-2}} = 5.7 \times 10^{-3} \, \text{m}$$



<mark>ខ្វទាហរណ៏១០៖</mark> ខ្សែចម្លងវែងពីស្រេបគ្នាស្ថិតនៅចម្ងាយ 10cmពីគ្នា ហើយឆ្លងកាត់ដោយចរន្ត 6.0A និង 4.0A ។ គណនាកម្លាំងដែលធ្វើលើខ្សែD ប្រវែង1.0m (ដូចរូបខាងស្តាំ) ប្រសិនបើចរន្ត

- ក. ចរន្តឆ្លងកាត់ខ្សែចម្លងមានទិសដៅស្របគ្នា។
- ខ. ចរន្តឆ្លងកាត់ខ្សែចម្លងមានទិសដៅផ្ទុយគ្នា។

ចម្លើយ១០ ៖ គណនាកម្លាំងដែលធ្វើលើខ្សែ D

ក. ចរន្តឆ្លងកាត់ខ្សែចេម្លងមានទិសដៅស្របគ្នា ដែនម៉ាញេទិចដែលបង្កើតដោយ ខ្សែ C នៅត្រង់ខ្សែ**D** 

$$B_{_D} = \mu_{_O} \frac{I_{_C}}{2\pi d}$$

ដោយ 
$$I_{\rm C}=6.0$$
A,  $d=10$ cm  $=0.10$ ,  $\mu_{\rm o}=4\pi\times10^{-7}\,T\cdot m\,/\,A$ 

គេបាន 
$$B_{\mathrm{D}} = 4\pi \times 10^{-7} \, \frac{6.0}{2\pi \times 0.10} = 1.2 \times 10^{-5} \, \mathrm{T}$$

នាំឱ្យគេបាន 
$$\mathbf{F} = \mathbf{I}_{\mathrm{D}} \ell \mathbf{B}_{\mathrm{D}} \sin \theta, \, (\theta = 90^{\circ}) \, \vec{\mathsf{n}}$$
ព្រោះ  $\vec{\ell} \perp \vec{\mathbf{B}}$ 

$$\begin{split} F = I_{_D} \ell B_{_D} \sin\theta = 4.0 \times 1.0 \times 1.2 \times 10^{-5} \sin 90^\circ = 48 \times 10^{-6} \, N \\ \text{(ខ្សែចម្លងទាំងពីរទាញគ្នាចូល)} \end{split}$$

ខ. ចរន្តឆ្លងកាត់ខ្សែចម្លងមានទិសដៅផ្ទុយគ្នា។

ដោយសារចរន្តឆ្លងកាត់ខ្សែចម្លងមានទិសដៅផ្ទុយគ្នា នោះកម្លាំងមានអំពើលើខ្សែD ក៏មានទិសដៅផ្ទុយពីមុន(ច្រានគ្នាចេញ) តែមានតម្លៃដូចមុន គឺ  $F = 48 \times 10^{-6} \, N$  ។

 ${}^{2}$ ទាហរណ៏១១៖ អ៊ីយ៉ុង  ${}^{58}$ Ni ដែលមានបន្ទុក ${}_{+\mathrm{e}}$  និងមានម៉ាសស្មើ  $9.62{ imes}10^{-26}\mathrm{kg}$ ត្រូវបានពន្លឿនក្រោមតង់ស្យុង 3000V ហើយបានងាកក្នុងដែនម៉ាញេទិច 0.12T ។ ក.គណនាកាំកំណោងនៃគន្លងអ៊ីយ៉ុងៗ

ខ.គណនាផលសងកាំកំណោងរវាងអ៊ីយ៉ុង <sup>58</sup>Ni និង <sup>60</sup>Ni ។ (សន្មតថាផលធៀបម៉ាសគឺ 58:60)

ចម្លើយ១១ ៖ក.គណនាកាំកំណោងនៃគន្លងអ៊ីយ៉ុង។

តាមរូបមន្ត 
$$\frac{|q|}{m} = \frac{2V}{B^2R^2} \Rightarrow R = \sqrt{\frac{2mV}{|q|B^2}}$$

ដោយ 
$$m=9.62\times 10^{-26}\,kg$$
 ,  $B=0.12T$  ,  $\,V=3000V, \left|q\right|=+1.6\times 10^{-19}C$ 

គេពុន 
$$R = \sqrt{\frac{2 \times 9.62 \times 10^{-26} \times 3000}{1.6 \times 10^{-19} \times (0.12)^2}} = 0.50 \text{m}$$

ខ.គណនាផលសងកាំកំណោងរវាងអ៊ីយ៉ុង ⁵8Ni និង <sup>60</sup>Ni

តាង ${f R}_1$  និង  ${f R}_2$  ជាកាំកំណោងនៃអ៊ីយ៉ុង  $^{58}$ Ni និង  $^{60}$ Ni រៀងគ្នា។

យើងមាន
$$R_1 = \sqrt{\frac{2m_1V}{|q|\,B^2}}~$$
 និង $R_2 = \sqrt{\frac{2m_2V}{|q|\,B^2}}$ 



គេបាន 
$$\frac{R_2}{R_1} = \sqrt{\frac{m_2}{m_1}} = \sqrt{\frac{60}{58}} = 1.017$$

 $\texttt{ISI:} \; \textbf{R}_2 = 1.017 \textbf{R}_1 = 1.017 (0.501 \text{m}) = 0.510 \text{m}$ 

ដូចនេះផលសងកាំកំណោងរវាងអ៊ីយ៉ុង  $^{58}$ Ni និង  $^{60}$ Ni គឺ

$$R_2 - R_1 = 0.510 - 0.501 = 9.0 \times 10^{-3} \, \text{m}$$



## ខំពុង៣ អគ្គិសនីនិទទាំញេនិច នេះរៀមម្នាក់អង់ខេង្រែអាចដែននិង ៖ កាន្ទម

- បម្រែបម្រូលភ្លុចម៉ាញេទិចឆ្លងកាត់ផ្ទៃនៃសៀគ្វីខ្សែចម្លង អាចបង្កើតនូវចរន្តអគ្គិសនី ហៅថា ចន្តេអាំងឌ្វី។ ចន្តេនេះកើតមានតែក្នុងពេលដែលមានបម្រែបម្រួលភ្លុចម៉ាញេទិចប៉ុណ្ណោះ។
- ភ្លុចម៉ាញេទិចគឺជាចំនួនខ្សែដែនម៉ាញេទិចឆ្លងកាត់ផ្ទៃបិទមួយ។ បើអាំងឌុចស្យុងម៉ាញេទិច B បង្កើតបានមុំ 🛭 ជាមួយខ្សែកែងនឹងផ្ទៃ នោះភ្លួចម៉ាញេទិចអាចគណនាតាមរូបមន្ត៖

$$\Phi = BA\cos\theta$$

- Φ ភ្លុចម៉ាញេទិចត្រូវបាន គិតជាវេប៊ែ (Wb)
- B ជាម៉ូឌុលនៃវ៉ិចទ័រអាំងឌុចស្យុងម៉ាញេទិច $ar{B}$  គិតជា តេស្លា $ar{m{\varpi}}$
- A ជាផ្ទៃបិទ ដែលវ៉ិចទ័រ  $\vec{B}$  ឆ្លងកាត់  $(m^2)$
- $\theta$  ជាមុំផ្គុំឡើងរវាង  $ar{B}$  ជាមួយខ្សែកែងនឹងផ្ទៃ គិតជាដឺក្រេ ( $^\circ$  )
- កាលណាភ្លុចម៉ាញេទិចឆ្លងកាត់ផ្ទៃនៃសៀគ្វីដែលមាន N ស្ដៀ បម្រែបម្រួល  $\Delta\Phi$ ក្នុងរយៈពេលΔι នោះកម្លាំងអគ្គិសនីចលករអាំងឌ្វី ឱ្យតាមរូបមន្ត៖

$$E = -N\frac{\Delta\Phi}{\Delta t} = -N\frac{\Phi_f - \Phi_i}{t_f - t_i}$$

- E ជាកម្លាំងអគ្គីសនីចលករអាំងឌ្វី គិតជារ៉ុល(V)
- N ជាចំនួនស្ពៀរបស់របុំខ្សែចម្លង
- $\Phi_{_{\mathrm{f}}}$  ជាភ្លុចម៉ាញេទិចស្រេច (Wb)
- $\Phi_{i}$  ជាភ្លូចម៉ាញេទិចដើម (Wb)
- t<sub>f</sub> ជារយៈពេលស្រេច (s)
- t<sub>i</sub> ជារយៈពេលដើម (s)
- ច្បាប់ទ្បិនពោលថាចរន្តអាំងខ្វីមានទិសដៅយ៉ាងណាឱ្យផលរបស់វាប្រឆាំងនឹងបុព្វហេតុ ឬចរន្តអាំងខ្វីបង្កើតនូវដែនម៉ាញេទិចមួយថ្មី ដែលបង្កើតវា ដើម្បីប្រឆាំងនឹងបម្រែបម្រួលភ្លុចម៉ាញេទិចដែលឆ្លងកាត់វា។
- ullet បើរបារខ្សែចម្លងមានប្រវែង  $\ell$  ផ្លាស់ទីដោយល្បឿន  $\overline{ ext{v}}$  ក្នុងដែនម៉ាញេទិចឯកសណ្ឋាន $\overline{ ext{B}}$ ដែលមានកម្លាំងអគ្គិសនីចលករអាំងខ្វីដែលកើតក្នុងខ្សែចម្លងគឺ



$$|E| = vB\ell \sin \alpha$$

ករណី  $\vec{v}$  កែង  $\vec{B}$  នោះ  $\alpha=90^{\circ} \Rightarrow \sin\alpha=1$ 

$$|E| = vB\ell$$
 ហើយ  $I = \frac{|E|}{R} = \frac{vB\ell}{R}$ 

- |E| ជាកម្លាំងអគ្គិសនីចលករអាំងឌ្វី (V)
- v ជាល្បឿនរបារពេលផ្លាស់ទីកែងនឹងដែនម៉ាញេទិច (m/s)
- ℓ ជាប្រវែងរបារខ្សែចម្លង (m)
- R រេស៊ីស្តង់ខ្សែចម្លង (Ω)
- I អាំងតង់ស៊ីតេចរន្តអាំងឌី (A)
- ជនិតាអគ្គីសនីជាឧបករណ៍ ដែលបំលែងថាមពលមេកានិចដើម្បីផលិតនូវថាមពលអគ្គីសនីៗ កន្សោមកម្លាំង អគ្គីសនីចលករ៖

$$e(t) = NBA\omega \sin \omega t = E_m \sin \omega t$$

ដែល  $E_{\mathrm{m}} = \mathrm{NBA}\omega$  ជាកម្លាំងអគ្គីសនីចលករអតិបរិមាគិតជាវ៉ុល (V)

N ជាចំនួនស្ពៀនៃបូប៊ីន, B អាំងឌុចស្យងម៉ាញេទិច (T), A ផ្ទៃរបស់ប្ងូប៊ីន (m²),  $\omega$  ល្បឿនមុំនៃប្ងូប៊ីន (rad/s)

ម៉ូទ័រជាឧបករណ៍ ដែលបំលែងថាមពលអគ្គិសនីទៅជាថាមពលមេកានិច។

<mark>ខ្ញុទាហរណ៏១៖</mark> របុំខ្សែចម្លងមួយរាងជារង្វង់មាន*5*0 ស្ពៀ និងមានកាំ 3.0cm ។ គេដាក់របុំនេះក្នុងដែន ម៉ាញេទិចតែធ្វើយ៉ាងណាឱ្យខ្សែដែនម៉ាញេទិចកែងនឹងផ្ទៃមុខកាត់របុំខ្សែចម្លង។ ឧបមាថាដែលម៉ា-ញេទិចប្រែប្រួលពី 0.10T ទៅ 0.35T ក្នុងរយៈពេល 2ms ។ កម្លាំងអគ្គិសនីចលករអាំងឌ្វីក្នុងរប៉ុខ្សែ ចម្លង។

ចម្លើយ១៖ កម្លាំងអគ្គិសនីចលករអាំងធ្វីក្នុងរបុំខ្សែចម្លង

 $\Rightarrow |\mathbf{E}| = \mathbf{N} \frac{\left| (\mathbf{B}_{f} - \mathbf{B}_{i}) \pi \mathbf{R}^{2} \cos^{\circ} \mathbf{0} \right|}{\mathbf{t}_{f} - \mathbf{t}_{i}} = \mathbf{N} \frac{\left| (\mathbf{B}_{f} - \mathbf{B}_{i}) \pi \mathbf{R}^{2} \right|}{\mathbf{t}_{f} - \mathbf{t}_{i}}$ 

ដោយ  $B_f = 0.35T$ ,  $B_i = 0.10T$ , R = 3.0cm = 0.030m,  $t_f - t_i = 2.0ms = 0.0020s$ , N = 50



$$|E| = 50 \frac{\left| (0.35 - 0.10) \times 3.14 \times 0.03^2 \right|}{0.0020} = 18V$$

 $rac{f g}{f g}$ ទាហរណ៏f U t st របុំខ្សែចម្លងមួយមានf 50 ស្ពៀត្រ្គf fបានទាញពីមុខនៃមេដែកក្នុងរយ:ពេលf 0.02 s នាំឱ្យ ភ្លុចម៉ាញេទិចឆ្លងកាត់របុំខ្សែចម្លងប្រែប្រួលពី  $3.1 \times 10^{-4} \, \mathrm{Wb}$  ទៅ  $0.1 \times 10^{-4} \, \mathrm{Wb}$  ៗគណនាកម្លាំង អគ្គិសនីចលករអាំងឌ្វីក្នុងរបុំខ្សែចម្លង។

ចម្លើយ២៖កម្លាំងអគ្គិសនីចលករអាំងឌ្វីក្នុងរបុំខ្សែចម្លង

<mark>ខ្ញុទាហរណ៏៣៖</mark> របុំខ្សែចម្លង*5.*0Ω មួយមាន100 ស្ពៀ និងមានអង្កត់ផ្ចិត 6.0cm។ គេសិករបារមេដែក ចូលក្នុងរបុំខ្សែចម្លង ភ្លុចអតិបរិមាឆ្លងកាត់ផ្ទៃនៃរបុំខ្សែចម្លង។ រួចទុកឱ្យនៅស្ងៀម នៅខណ: ដែលស៊ករបារមេដែកចូល ពេលនោះ គេឃើញថាបន្ទុកអគ្គិសនី $1.0 imes 10^{-4} \mathrm{C}$ ផ្លាស់ទីឆ្លងកាត់កាវ៉ាណូម៉ែត595Ω ដែលភ្ជាប់នឹងចុងសងខាងនៃរបុំខ្សែចម្លង។ គណនាដែនម៉ាញេទិចរវាងប៉ូលទាំងពីរនៃរបារមេដែក។

ចម្លើយ៣៖ គណនាដែនម៉ាញេទិចរវាងប៉ូលទាំងពីរនៃរបារមេដែក

តាមរូបមន្ត 
$$|E|=N\frac{|\Phi_{\rm f}-\Phi_{\rm i}|}{\Delta t}=N\frac{|\Phi_{\rm i}|}{\Delta t}=N\frac{BA}{\Delta t}$$
 ពីព្រោះ  $\Phi_{\rm f}=0$  ហើយតាមច្បាប់អូម  $|E|=RI=R\frac{\Delta q}{\Delta t}$  នាំឱ្យគេបាន  $R\frac{\Delta q}{\Delta t}=N\frac{BA}{\Delta t}\Rightarrow B=\frac{R\Delta q}{AN}$  ដោយ  $R=595+5=600\Omega,\,A=\pi\frac{d^2}{4}=\pi\frac{0.060^2}{4}=2.83\times 10^{-3}\,{\rm m}^2,\,\Delta q=1.0\times 10^{-4}\,{\rm C},\,N=100$   $B=\frac{600\times 1.0\times 10^{-4}}{2.83\times 10^{-3}\times 100}=0.21T$ 

<mark>ខ្វទាហរណ៏៍៤៖</mark> ទម្រខ្សែចម្លងពីរដាក់ឱ្យស្របគ្នាក្នុងប្លង់ដេកដែលចុងទាំងពីររបស់វាភ្ជាប់គ្នាដោយ អេស៊ីស្តង់  $R=2.0\Omega$  ហើយទម្រទាំងពីរនៅឃ្លាតគ្នាចម្ងាយ  $20{
m cm}$  ។ របារលោហ:  ${
m MN}$ មួយដាក់ឱ្យកែងលើទម្រទាំងពីរ។ ប្លង់ទម្រកែងនឹងដែនម៉ាញ៉េទិចឯកសណ្ឋានមានអាំងឌុចស្យង B = 0.020 T ។ គេរុញរបារ MN ឱ្យផ្លាស់ទីលើទម្រទាំងពីរដោយល្ប្បឿន 50 m/s ។ គណនាអាំងតង់ស៊ីតេចន្តេអាំងឌ្វីឆ្លងកាត់រេស៊ីស្តង់ បើរបារ និងទម្រមានរេស៊ីស្តង់អាចចោលបាន។



ចម្លើយ៤៖ គណនាអាំងតង់ស៊ីតេចរន្តអាំងឌី្ល្លងកាត់រេស៊ីស្កង់

គេមាន 
$$I=\frac{|E|}{R}$$
 កម្លាំងអគ្គិសនីចលករអាំងខ្វី  $|E|=vB\ell$  ដោយ  $B=0.020T,\ v=50m/s,\ \ell=20cm=0.20m,\ R=2.0\Omega$  
$$|E|=0.02\times50\times0.2=0.2V\ |E|=0.020\times50\times0.20=0.20V$$
 នាំឱ្យ  $I=\frac{0.20}{2.0}=0.10A$ 

<mark>ខ្ញុំទាហរណ៏៤៖</mark> ស៊ុមខ្សែចម្លងមួយមានរាងចតុកោណកែងមានចំនួនស្ពៀ N = 30 ស៊ុមនេះស្ថិតនៅក្នុងដែន ម៉ាញេទិចឯកសណ្ឋានចន្លោះប៉ូលមេដែករាងបដែលអាំងឌុចស្យុង B=0.20T ដោយប្លង់ស៊ុមកែងនឹងខ្សែអាំងឌុចស្យូង។ ដោយដឹងថាវិមាត្រ  $a=20{
m cm}\,,\,\,b=10{
m cm}\,$ គេទាញស៊ុមឱ្យផ្លាស់ទីស្របខ្លួនវាយ៉ាងរហ័សចេញពីចន្លោះប៉ូលមេដែកដោយប្រើរយៈពេលតែ  $\Delta t = 0.010s \, \, \mathrm{I}$ 

- ក. គណនាកម្លាំងអគ្គិសនីចលករអាំងឌ្វីក្នុងស៊ុម។
- ខ. បើស៊ុមជាសៀគ្វីបិទមានរេស៊ីស្តង់ R  $\stackrel{ extstyle}{=}10\Omega$  គណនាចរន្តអាំងខ្វី។

ចម្លើយ៤៖ ក. គណនាកម្លាំងអគ្គិសនីចលករអាំងធ្វីដែលកកើតក្នុងស៊ុម

គេមាន
$$|E|=Nrac{|\Delta\Phi|}{\Delta t}=Nrac{A|B_f-B_i|}{\Delta t}$$
 ដោយ  $N=30,~A=a\times b=20\times 10=200cm^2=0.020m^2$  
$$B_f=0,~B_i=0.20T,~\Delta t=0.010s$$
 នាំឱ្យ  $|E|=30rac{0.020\times |0-0.20|}{0.010}=12V$ 

ខ. គណនាចរន្តអាំងឱ្វ

គេមាន 
$$I = \frac{|E|}{R} = \frac{12}{10} = 1.2A$$
,  $R=10\Omega$ 

<mark>ខ្វទាហរណ៏៦៖</mark> ខ្សែចម្លងមួយប្រវែង1.6mត្រូវបានរុំជាបូប៊ីនមួយមានកាំ 3.2cm។ បើបូប៊ីនវិលដោយ ល្បឿន 95 ជុំក្នុងមួយនាទី ក្នុងដែនម៉ាញេទិចដែលមានតម្លៃ 0.070T ចូរគណនាតម្លៃអតិបរិមានៃ កម្លាំងអគ្គិសនីចលករអាំងឌី្វ។

ចម្លើយ៦៖ គណនាតម្លៃអតិបរិមានៃកម្លាំងអគ្គិសនីចលករអាំងឱ្យ

គេមាន 
$$\begin{split} E_m &= \text{NBA}\omega \\ \text{ ដោយ } L = 1.6\text{m}, \ R = 3.2\text{cm} = 3.2\times 10^{-2}\,\text{m}, \ B = 0.070\text{T}, \ f = \frac{95}{60} = 1.58\text{Hz} \\ A &= \pi R^2 = 3.14\times (3.2\times 10^{-2}) = 3.22\times 10^{-3}\,\text{m}^2 \\ \text{ in } N &= \frac{1}{2\pi R} = \frac{1.6}{2\times 3.14\times 3.2\times 10^{-2}} = 8\,\text{Isy} \end{split}$$

$$E_{m} = 8 \times 0.070 \times 3.21 \times 10^{-3} \times 10 = 0.018V$$

<mark>ខ្នទាបារណ៏៧៖</mark> នៅពេលជនិតាអគ្គិសនីវិលបាន1500ជុំ/mn ផលិតបានកម្លាំងអគ្គិសនីចលករអតិ បរិមា 100V ។គណនា ចំនួនជុំក្នុង1 នាទី (ជុំ/mn) ប្រសិនបើវាអាចផលិតកម្លាំងអគ្គិសនីចលករ អតិបរិមា 120V ។

ចម្លើយ៧៖ គណនាចំនួនជុំក្នុង១នាទី  $(N_2)$ 

ពីព្រោះតែកម្លាំងអគ្គិសនីចលករអតិបរិមាសមាមាត្រនឹង ចំនួនជុំក្នុងមួយនាទី

េយីឯទាញជាន 
$$\frac{E_1}{E_2} = \frac{N_1}{N_2} \Rightarrow N_2 = N_1 \frac{E_2}{E_1}$$
  $N_2 = (1500) \frac{120}{100} = 1800$  ងុំ  $/mn$ 

<mark>ខ្ញុទាហរណ៍៨៖</mark> ទម្រអង្គធាតុចម្លងពីរដាក់ឱ្យស្របគ្នាក្នុងប្លង់ ដេកដែលចុងទាំងពីររបស់វាភ្ជាប់គ្នាដោយរេស៊ីស្កង់ R = 12.5Ω ទម្រទាំងពីរនៅឃ្លាតគ្នាចម្ងាយ 0.45m ។ របារលោហ: មួយដាក់ឱ្យកែងលើទម្រទាំងពីរ(ដូចរូប ខាងស្តាំ)។ប្លង់ទម្រកែងនឹងដែនម៉ាញ៉េទិចឯកសណ្ឋាន



មានអាំងឌុចស្យុង B = 0.75T ។ គេទាញរបារលោហៈ ឱ្យផ្លាស់ទីលើទម្រទាំងពីរ គេទទួលបានចរន្តអគ្គិសនី I = 0.155A ។ គណនាកម្លាំងអគ្គិសនីចលករអាំងខ្វី និងល្បឿនរបស់របារលោហ: ។គេមិនគិតកកិតរវាងទម្រ និងរបារ ហើយ របារ និង ទម្រមានរេស៊ីស្តង់អាចចោលបាន។

ចម្លើយ៨៖គណនាកម្លាំងអគ្គិសនីចលករអាំងឱ្

តាមរូបមន្ត 
$$|E|$$
 = RI ដោយ R = 12.5 $\Omega$  , I = 0.155A

គេបាន 
$$|E| = (12.5)(0.155) = 1.94V$$

គណនាល្បឿនរបស់របារលោបា: (វ៉ិចទ័រល្បឿន កែងនឹងវ៉ិចទ័រដែនម៉ាញេទិច)

តាមរូបមន្ត 
$$|E| = Bv\ell \Rightarrow v = \frac{|E|}{B\ell} = \frac{RI}{B\ell}$$

ដោយ 
$$B = 0.75T$$
,  $\ell = 0.45m$ 

គេបាន 
$$v = \frac{12.5 \times 0.155}{0.75 \times 0.45} = 5.7 \text{m/s}$$

<mark>ខ្នទាបារណ៍៩៖</mark> រប៉ុខ្សែចម្លងមួយមានកាំ 3.2cm និងប្រវែង1.6m ។ ដើម្បីបង្កើតកម្លាំងអគ្គិសនីចលករ អាំងឌ្វីខ្សែចម្លងត្រូវបានបង្វិល 95 ជុំ /mn ក្នុងដែនម៉ាញេទិច  $\mathbf{B} = 0.070 \mathrm{T}$  ។ គណនាកម្លាំង អគ្គិសនីចលករអាំងឌ្វីអតិបរិមា។

#### ចម្លើយ៩៖ គណនាកម្លាំងអគ្គិសនីចលករអាំងខ្វីអតិបរិមា

តាមរូបមន្ត 
$$E_m = NBA\omega$$

ដោយ 
$$\omega = 2\pi f$$
 ,  $N = \frac{L}{2\pi R}$  ,  $A = \pi R^2$  នោះ  $\Rightarrow E_m = \frac{L}{2\pi R} B \cdot \pi R^2 \cdot 2\pi f = \pi L B R f$ 

$$f = 95 \ \mathring{t}_i^4 \ / \, mn = \frac{95}{60} \ \mathring{t}_i^4 \ / \, s \ , \ B = 0.070T, \ R = 3.2cm = 3.2 \times 10^{-2} \, m, \ L = 1.6m$$

រគ បាន 
$$E_{\rm m} = 3.14 \times 1.6 \times 0.070 \times 3.2 \times 10^{-2} \times \frac{95}{60} = 1.8 \times 10^{-2} \, V$$



### ខំពុង៣ អគ្គិសនី និខមរញេនិច គេរៀមថ្នយ៖ អំដំឃុចផឯទទាំ១

- បាតុភូតអូតូអាំងឌុចស្យុងកើតមានកាលណាមានបម្រែបម្រូលចរន្តនៅក្នុងសៀគ្វីដែលមានបូ ប៊ីនមានអាំងឌុចតង់ L។
- ចន្តេអូតូអាំងឌ្វីកើតក្នុងបូប៊ីនប្រឆាំងនឹងបម្រែបម្រួលនៃចន្តេនៅក្នុងសៀគ្វី។ ឧទាហរណ៍៖ បាតុភូតអូតូអាំងឌុចស្យុងកើតមាននៅពេលគេបិទសៀគ្វីធ្វើឱ្យអំពូលដែលតជាស៊េរីជាមួយ នឹងបូប៊ីនមិនភ្លឺតាមរបប ធម្មតា ភ្លាមទេ។
- អាំងឌុចតង់ ជាមេគុណសមមាត្ររវាង Φ និង i អាស្រ័យនឹងលក្ខណ:ធរណីមាត្រនៃសៀគ្វី៖  $\Phi = Li$ 
  - Φ ជាភ្លុចម៉ាញេទិច (Wb)
  - L ជាអាំងឌុចតង់ គិតជាហង់រី (H)
  - i ជាចរន្តអគ្គិសនី (A)
- កម្លាំងអគ្គិសនីចលករអូតូអាំងឌ្វី ដែលកើតមានក្នុងបូប៊ីនឱ្យដោយកន្សោម៖

$$e = -L \frac{\Delta i}{\Delta t}$$
  $\underline{U}$   $e = -L \frac{di}{dt}$ 

- ជាកម្លាំងអគ្គីសនីចលករអូតូអាំងឌ្វី (V)
- ជាអាំងឌុចតង់ (H)
- ជាកន្សោមចរន្តអគ្គិសនី (A)
- អាំងឌុចតង់នៃសូលេណូអ៊ីតដែលគ្មានស្នូលដែកឱ្យដោយរូបមន្ត៖

$$\boxed{ L = \mu_0 \frac{N^2}{\ell} A } \qquad \text{ iin } A = \pi R^2 = \pi \frac{D^2}{4}$$

- អាំងឌុចតង់ (H), Φជាភ្លុចម៉ាញេទិច (Wb)
- ជាចរន្តអគ្គិសនី (A) , A ផ្ទៃមុខកាត់ស្ងូលេណូអ៊ីត (m²) ,
- ប្រវែងសូលេណូអ៊ីត (m), N ជាចំនួនស្ដៀសូលេណូអ៊ីត
- កាំស្ងលេណូអ៊ីត (m), Dអង្កត់ផ្ចិតស្ងលេណូអ៊ីត (m)
- តង់ស្យុង  $V_{AB}$  រវាងគោលនៃប្ងូច៊ីន (r,L) ឱ្យដោយ  $V_{AB}=ri+L\frac{di}{dt}$ r ជារេស៊ីស្តង់ក្នុងរបស់បូប៊ីន (Ω)



- ជាកន្សោមចរន្តអគ្គិសនី (A)
- អាំងឌុចតង់ (H)

V<sub>AB</sub> ជាតង់ស្យុង រវាងគោលនៃបូប៊ិន (V)

- ថេរពេល  $(\tau)$  ក្នុងសៀគ្វី (R,L) ឱ្យដោយរូបមន្ត  $\tau = \frac{L}{R}$ 
  - T ជាថេរពេលក្នុងសៀគ្វី (R, L) (s)
  - R ជារេស៊ីស្តង់សរុបរបស់សៀគ្វី (R, L) (Ω)
- សមីការចរន្តអគ្គិសនីនៅខណ: t ក្នុងសៀគ្វី(R,L)

$$i(t) = I_p \left( 1 - e^{-\frac{t}{\tau}} \right)$$

ដែល  $I_p = \frac{E}{R}$ ជាអាំងតង់ស៊ីតេចរន្តក្នុងរបបអចិន្ត្រៃយ៍ គិតជាអំពែ (A)

- τ ជាថេរពេលក្នុងសៀគ្វី (R, L) (s)
- t ជាខណ:ពេលមួយ (s)
- i(t) ជាកន្សោមចរន្តអគ្គិសនី (A)
- ក្នុងករណីបើកកុងតាក់ (ចំហសៀគ្វី)៖

$$i(t) = I_p e^{-\frac{t}{\tau}}$$

ullet ថាមពលម៉ាញេទិច  $E_L$  ក្នុងបូប៊ីនមួយដែលមានអាំងឌុចតង់ L ឆ្លងកាត់ដោយចរន្ត ដែលមានអាំងតង់ស៊ីតេចរន្ត i ស្មើ

$$E_{L} = \frac{1}{2}Li^{2}$$

- $E_L$  ជាថាមពលអេឡិចត្រូម៉ាញេទិចក្នុងបូប៊ីនគិតជាស៊ូល (J)
- ជាតម្លៃចន្តេអគ្គិសនី គិតជាអំពែ (A)
- អាំងឌុចតង់របស់បូប៊ីនគិតជា(H)
- ក្នុងរយៈពេលនៃលំយោលអគ្គិសនីស៊េរីមិនថយនៃសៀគ្វី (L,C)តង់ស្យុងរវាងគោលនៃ កុងដង់សាទ័រគោរពតាមសមីការឌីផេរ៉ង់ស្យែល៖

$$\ddot{V}_{c} + \frac{1}{LC}V_{c} = 0$$

- ជាអាំងឌុចតង់របស់បូប៊ីន (H) L
- ជាកាប៉ាស៊ីតេ របស់កុងដង់សាទ័រ (F) C

Vc ជាក់ន្សោមតង់ស្យងរបស់គោលកុងដង់សាទ័រ (V)

• អនុគមន៍  $V_c(t) = V_m \cos(\omega_o t + \phi_0)$  ជាចម្លើយរបស់សមីការឌីផេរ៉ង់ស្យែល  $\frac{d^2V_c(t)}{dt^2} + \frac{1}{LC}V_c(t) = 0$  ហើយ  $\omega_o = \frac{2\pi}{T} = \frac{1}{\sqrt{LC}}$ 

 $\omega_{\circ}$  ពុលសាស្យូងផ្ទាល់របស់លំយោលអគ្គិសនី (rad/s)

 $T_o$  ជាខូបផ្ទាល់របស់លំយោលអគ្គិសនីដែល  $T_o=2\pi\sqrt{LC}$  គិតជា (s)

V<sub>m</sub> តម្លៃតង់ស្យុងអតិបរិមា (V)

φ<sub>0</sub> ជាជាសដើមរបស់លំយោ<u>លអគ្គិសនី (ra</u>d)

• ប្រេកង់ផ្ទាល់របស់លំយោលអគ្គិសនី៖  $f_0 = \frac{1}{2\pi\sqrt{LC}}$  (Hz)។

• ឋាមពលកុងដង់សាទ័រ៖  $E_c = \frac{1}{2}CV^2 = \frac{1}{2}\frac{q^2}{C} = \frac{1}{2}qV$ 

q បន្ទុកអគ្គិសនី គិតជាគូឡុំ (C)

- កន្សោមបន្ទុកនៃកុងដង់សាទ័រ  $q(t) = q_m \cos\left(\frac{2\pi}{T_o}t + \varphi_0\right)$  ជាបន្ទុកអតិបរិមារបស់កុងដង់សាទ័រគិតជាកូឡុំ (C)
- កន្សោមអាំងតង់ស៊ីតេចរន្ត  $i(t)=i_{m}cos(\frac{2\pi}{T_{o}}t+\varphi_{0}+\frac{\pi}{2})=-i_{m}sin\left(\frac{2\pi}{T_{o}}t+\varphi_{o}\right)$

ដែល i<sub>m</sub> ជាតម្លៃអាំងតង់ស៊ីតេចរន្តអតិបរិមាក្នុងសៀគ្វី(L,C) គិតជាអំពែ(A)

• ទំនាក់ទនងរវាង អាំងតង់ស៊ីតេចរន្តអតិបរិមា  $i_m$ និងបន្ទុកអតិបរិមារបស់កុងដង់សាទ័រ  $q_m$  គឺ

$$i_m = q_m \frac{2\pi}{T_o} = CV_m \frac{2\pi}{T_o}, \ q_m = CV_m$$

• ក្នុងករណីសៀគ្វីអ៊ីដេអាល់ (LC)ថាមពលនៃសៀគ្វីរក្សាតម្លៃថេរ

$$E_{LC} = E_L + E_C = \frac{1}{2}Li^2 + \frac{1}{2}CV_c^2 = IGI$$

 $E_{LC}$  ថាមពលសរុបនៃសៀគ្វី(LC)  $\left(J\right)$ 

 $\mathbf{E}_{\mathsf{L}}$  ថាមពលម៉ាញេទិចក្នុងបូប៊ីន $\left( \mathsf{J} \right)$ 



 $\mathbf{E}_{\mathsf{C}}$  ថាមពលអគ្គិសនី ក្នុងកុងដង់សាទ័រ  $\left(\mathbf{J}
ight)$ 

• តែកាលណាប៊េ  $V_C = V_L$ , i = 0 ឬ កាលណា ប៊េ  $V_C = 0$ ,  $i = i_m$  នោះគេអាចសរសេរ៖  $E_{LC} = \frac{1}{2}CV_m^2 = \frac{1}{2}Li_m^2$ 

 ${\color{red} {\it g}}$ ទាហរណ៍១៖ ស្វលេណូអ៊ីតមួយមានប្រវែង  $\ell=1.0 {
m m}$  មានអង្កត់ផ្ចិត D  $=4.0 {
m cm}$  និងមានចំនួនស្ពៀ

N = 100 ។ ឃ័ា  $\mu_0 = 4\pi \times 10^{-7} (T \cdot m/A)$ 

- គណនាអាំងឌុចតង់នៃសូលេណូអ៊ីត
- គេធ្វើឱ្យចរន្តប្រែប្រួល i = (5.0t + 2.0) (A) ឆ្លងកាត់ស្ងលេណូអ៊ីត។ គណនាកម្លាំងអគ្គិសនីចលករអូតូអាំងឌ្វី ដែលកើតមានក្នុងសូលេណូអ៊ីត។

ចម្លើយ១៖ ក. គណនាអាំងឌុចតង់នៃសូលេណូអ៊ីត

តាមរូបមន្ត 
$$L=\mu_0\frac{N^2}{\ell}A$$
 ដោយ  $\mu_o=4\pi\times10^{-7}\,(T\cdot m/A)$ ,  $N=100$ ,  $A=\pi\frac{D^2}{4}=\pi\frac{0.040^2}{4}=1.256\times10^{-3}m^2$   $\ell=1.0m$  
$$L=4\times3.14\times10^{-7}\,\frac{100^2\times1.256\times10^{-3}}{1.0}=1.6\times10^{-5}H$$

ខ. គណនាកម្លាំងអគ្គិសនីចលករអូតូអាំងខ្វី

គេធ្វើឱ្យចរន្តប្រែប្រួល i = 5.0t + 2.0 ឆ្លងកាត់ស្ងូលេណូអ៊ីត

តាមរូបមន្ត 
$$e = -L \frac{di(t)}{dt}$$

ដោយ 
$$L=1.577 mH=1.577 \times 10^{-5} H, \ \frac{di(t)}{dt}=\frac{d(5.0t+2.0)}{dt}=5.0 A/s$$
  $e=-(1.577 \times 10^{-5}) \times 5.0=-7.9 \times 10^{-5} V$ 

<mark>ខ្វទាហរណ៍២៖</mark> ក.គណនាអាំងឌុចតង់របស់ស្ងលេណ្ធអ៊ីតដែលមានចំនួនស្ពៀ300 ។ ប្រសិនបើប្រវែង ស្ងួលេណូអ៊ីត 25cm និងផ្ទៃមុខកាត់របស់ស្ងួលេណូអ៊ីត 4.0cm²។

ខ. គណនាកម្លាំងអគ្គិសនីចលករអូតូអាំងឌ្វីក្នុងស្វលេណ្វអ៊ីត បើចរន្តថយចុះដោយ អត្រា 50 A/s។ គេឱ្យ  $\mu_o = 4\pi \times 10^{-7} \, T \cdot m/A$ 

ចម្លើយ២៖ ក.អាំងឌុចតង់របស់ស្ងូលេណូអ៊ីត

តាមរូបមន្ត 
$$L=\mu_0\frac{N^2}{\ell}A$$
   
ដោយ  $\mu_0=4\pi\times 10^{-7}~(T.m)/A, N=300, A=4.0cm^2=4.0\times 10^{-4}m^2$  , 
$$\ell=25cm=0.25m$$
 
$$L=4\pi\times 10^{-7}\frac{300^2}{0.25}4.0\times 10^{-4}=0.18\times 10^{-3}H$$

ខ.គណនាកម្លាំងអគ្គិសនីចលករអូតូអាំងឌ្វីក្នុងសូលេណូអ៊ីត





<mark>ខ្ញុទាហរណ៍៣៖</mark> ក. គេផ្ទុកកុងដង់សាទ័រមួយដែលមានកាប៉ាស៊ីតេ C = 1.0μF ក្រោមតង់ស្យុង V=E=2.0V ។ គណនាថាមពលដែលស្តុកក្នុងកុងដង់សាទ័រនៅពេលផ្ទុក។

ខ. កុងដង់សាទ័រដែលផ្ទុករួចនោះ ត្រូវបានគេតភ្ជាប់ទៅនឹងគោលនៃបូប៊ីនមួយ ដែល មានអាំងឌុចតង់ L = 0.10H និងមានរេស៊ីស្តង់ក្នុងអាចចោលបាន។ គណនាអាំងតង់ស៊ីតេចរន្តអតិ បរិមាi<sub>m</sub>ៗ

ចម្លើយ៣៖ ក. គណនាថាមពលដែលផ្ទុកក្នុងកុងដង់សាទ័រនៅពេលផ្ទុក

តាមរូបមន្ត 
$$E_C=rac{1}{2}CV_c^2$$
 ដោយ  $C=1.0\mu F=1.0 imes10^{-6}F$  និង  $V=E=2.0V$   $E_C=rac{1}{2} imes1.0 imes10^{-6} imes2.0^2=2.0 imes10^{-6}$  J

ខ. គណនាអាំងតង់ស៊ីតេចន្ទេអតិបរិមា

តាមច្បាប់រក្សាថាមពល 
$$E_C=E_L=rac{1}{2}Li_m^2$$
 នាំឱ្យ  $i_m=\sqrt{rac{2E_c}{L}}=\sqrt{rac{2 imes 2.0 imes 10^{-6}}{0.10}}=6.3 imes 10^{-3}A$ 

<mark>ខ្ញុទាហរណ៍៤៖</mark> បូប៊ីនមួយមានពស៊ីស្តង់ក្នុង R = r = 6.0Ω និងមានអាំងឌុចតង់ L។ គណនាអាំងឌុចតង់ បើថេរពេលមានតម្លៃ  $\tau = 2.0 \times 10^{-3} \mathrm{s}$ ។

ចម្លើយ៤៖ គណនាអាំងឌុចតង់

តាមរូបមន្ត 
$$\tau=\frac{L}{R}\Rightarrow L=\tau\times R$$
 ដោយ  $R=r=6.0\Omega$ និង  $\tau=2.0\times 10^{-3}s$  នាំឱ្យ  $L=2.0\times 10^{-3}\times 6.0=12\times 10^{3}H$ 

<mark>ខ្វទាហរណ៍៩៖</mark> គណនាអាំងឌុចតង់ របស់សៀគ្វីលំយោលអគ្គិសនី LC ដែលមានប្រេកង់ f = 120Hz នៅពេលកុងដង់សាទ័រ C = 8.0μF ។

ចម្លើយ៤៖ គណនាអាំងឌុចតង់ (L)

តាមរូបមន្ត 
$$f=\frac{1}{2\pi\sqrt{LC}}\Rightarrow L=\frac{1}{f^24\pi^2C}$$
 ដោយ  $f=120$ Hzនិង  $C=8.0\mu F=8.0\times 10^{-6}$ F នាំឱ្យ  $L=\frac{1}{120^2\times 4\times 3.14^2\times 8.0\times 10^{-6}}=0.22$ H

<mark>ខ្វទាបារណ៍៦៖</mark> គេមានសៀគ្វីដូចរូបខាងក្រោមដែលមានរេស៊ីស្តង់ $55\Omega$  ចំនូនបួន និងបូច៊ីន  $37 ext{mH}$ មួយ ភ្ជាប់ទៅនឹងបាតេរី 6.0V ។

ក.គណនារេស៊ីស្តង់សមមូលនៃសៀគ្វី។ ខ.គណនាថេរពេលនៃសៀគ្គី ក្រោយ ពេលបិទកុងតាក់។

គ.គណនាអាំងតង់ស៊ីតេចរន្តនៅខណ: ពេល  $t=2\tau$  ,  $t=\infty$ ក្រោយពេលបិទ





ចម្លើយ៦៖ ក.គណនារេស៊ីស្តង់សមមូល

តាមរូបមន្ត 
$$R_{eq} = R + \left(\frac{2R \times R}{2R + R}\right) = \frac{3R^2 + 2R^2}{3R} = \frac{5}{3}R = \frac{5}{3} \times 55 = 91.7 = 92\Omega$$

ខ.គណនាថេរពេលនៃសៀគ្គី

តាមរូបមន្ត 
$$au=\frac{L}{R_{\rm eq}}$$
 ដោយ  $R_{\rm eq}=91.7\Omega$  ,  $L=37mH=0.037H$ 

គេបាន 
$$\tau = \frac{0.037}{91.7} = 4.0 \times 10^{-4} s$$

គ.គណនាអាំងតង់ស៊ីតេចវន្តនៅខណ:ពេល  $t=2\tau$ ,  $t=\infty$ 

យើងមាន 
$$i(t) = I_p \left( 1 - e^{-\frac{t}{\tau}} \right) = \frac{E}{R_{eq}} \left( 1 - e^{-\frac{t}{\tau}} \right)$$

្វើ 
$$t = 2\tau$$
 នោះ  $i = \frac{6.0}{91.7} \left( 1 - e^{-\frac{2\tau}{\tau}} \right) = 0.057A$ 

្វើ 
$$t = \infty$$
 នោះ  $i = \frac{6.0}{91.7} \left( 1 - e^{-\frac{\infty}{\tau}} \right) = 0.065A$ 

<mark>ខ្ញុទាហរណ៍៧៖</mark> សូលេណូអ៊ីតមួយមានប្រវែង1.5m និងមាន 470 ស្ដៀក្នុង1.0m ផ្ទុកថាមពលម៉ាញេទិច 0.31J នៅពេលមានចរន្តអគ្គិសនី 12A ឆ្លងកាត់វា។ គេឱ្យ

$$\mu_{\rm o} = 4\pi \times 10^{-7} \, T \cdot m / \, A$$

- ក. គណនាអាំងឌុចតង់របស់សូលេណូអ៊ីត
- ខ. គណនាផ្ទៃមុខកាត់របស់សួលេណូអ៊ីត

ចម្លើយ៧៖ ក.គណនាអាំងឌុចតង់របស់សួលេណូអ៊ីត

តាមរូបមន្ត 
$$E_L = \frac{1}{2}Li^2 \Rightarrow L = \frac{2E_L}{i^2}$$

ដោយ 
$$E_L = 0.31J$$
;  $i = 12A$ 

គេបាន 
$$L = \frac{2(0.31)}{(12)^2} = 0.0043H$$

ខ.គណនាផ្ទៃមុខកាត់របស់សូលេណូអ៊ីត

តាមរូបមន្ត 
$$L = \mu_o n^2 A \ell \Rightarrow A = \frac{L}{\mu_o n^2 \ell}$$

ដោយ L = 0.0043H , 
$$\ell$$
 = 1.5m ,  $\mu_{\rm o}$  =  $4\pi \times 10^{-7}$  T.m / A ,  $n$  =  $470$  ស្តៀ / m

គេហ៊ុន 
$$A = \frac{(0.0043)}{(4\pi \times 10^{-7})(470)^2(1.5)} = 1.0 \times 10^{-2} \,\text{m}^2$$

<mark>ខ្ញុទាហរណ៍៨៖</mark> ស្វលេណ្វអ៊ីតប្រវែង 0.75m មានចំនូន 455 ស្ដៀក្នុង1.0m និងមានផ្ទៃមុខកាត់  $1.81 \times 10^{-3}\,\mathrm{m^2}$  ។ចរន្តឆ្លងកាត់ស្ងលេណូអ៊ីតកើនពីស្វន្យ រហូតដល់  $2.0\mathrm{A}$  ក្នុងរយៈពេល  $45.5\mathrm{ms}$  ។ គណនាអាំងឌុចតង់នៃស្ងលេណូអ៊ីតនិងកម្លាំងអគ្គិសនីចលករអូតូអាំងឌ្វីកើតមានក្នុងស្ងលេណូអ៊ីត។





#### ចម្លើយ៨៖ គណនាអាំងឌុចតង់នៃសូលេណូអ៊ីត

តាមរូបមន្ត 
$$L = \mu_0 n^2 A \ell$$

ដោយ 
$$A\!=\!1.81\times10^{-3}m^2$$
 ,  $\ell=0.75m$  ,  $\mu_{\!_0}=4\pi\times10^{-7}\,T.m\,/\,A$  ,  $n=455$  ស្ត្រី  $/m$ 

្រោប្តាន 
$$L = (4\pi \times 10^{-7})(455)^2(1.81 \times 10^{-3})(0.75) = ~3.5 \times 10^{-4} \, \mathrm{H}$$

គណនាកម្លាំងអគ្គិសនីចលករអូតូអាំងខ្វីកើតមានក្នុងសូលេណូអ៊ីត

តាមរូបមន្ត 
$$e = -L \frac{\Delta i}{\Delta t}$$

ដោយ 
$$L=0.000353H$$
,  $\Delta i=i_2-i_1=2.0-0=2.0A$ ,  $\Delta t=45.5ms=45.5\times 10^{-3}\,s$ 

$$\text{IFIS} \quad e = -353 \times 10^{-6} \, \frac{2.0}{45.5 \times 10^{-3}} = -16 \times 10^{-3} \, V$$



### ខំពុង៣ អគ្គិសនីនិខមាញេនិច មេរៀននី៤៖ សៀគ្លីចរន្តន្ទាស់

- ចរន្តឆ្លាស់ ជាចរន្តអគ្គិសនីដែលប្តូរទិសដៅពីរដងក្នុងមួយខូប។
- ចរន្តឆ្លាស់ដែលងាយជាងគេ គឺចរន្តឆ្លាស់ស៊ីនុយសូអ៊ីតដែលមានអាំងតង់ស៊ីតេខណ:i(t) នៅខណ: t មានកន្សោម  $i(t) = I_m \sin(\omega t + \varphi)$ 
  - i(t) ជាកន្សោមចរន្ត ;  $\omega$  ជាពុលសាស្យុង គិតជា (rad/s)
  - $I_{\mathrm{m}}$  ជាអំព្លីទុតឬអាំងតង់ស៊ីតេចរន្តអតិបរិមា គិតជា(A)
  - arphi ជាជាសដើមរបស់ចរន្តឆ្លាស់ស៊ីនុយសូអ៊ីត $({
    m rad})$
- ចន្តេឆ្លាស់មានផលបី គឺ ផលគីមី ផលកម្ដៅ និងផលម៉ាញេទិច។
- អាំងតង់ស៊ីតេប្រសិទ្ធនៃចរន្តឆ្លាស់ជាអាំងតង់ស៊ីតេចរន្តជាប់ដែលឆ្លងកាត់រេស៊ីស្តង់ ដូចគ្នាហើយក្នុងរយៈពេលដូចគ្នាមានភាយបរិមាណកម្ដៅស្មើគ្នា។ គេបាន

$$I = \frac{I_{m}}{\sqrt{2}}$$

- ជាអាំងតង់ស៊ីតេប្រសិទ្ធគិតជា(A) ,
- $I_{m}$  ជាអាំងតង់ស៊ីតេអតិបរិមាគិតជា (A)
- ullet កន្សោមតង់ស្យុងខណ: មានកន្សោម  $V(t) = V_{\mathrm{m}} \sin \omega t$

V(t)ជាក់ន្សោមតង់ស្យុង(V)  $V_{_{m}}$ ជាតង់ស្យុងអតិបរិមាគិតជា (V)

• តង់ស្យងប្រសិទ្ធ ស្មើនឹងតង់ស្យងថេរមួយរវាងចុងទាំងពីរនៃរេស៊ីស្តង់សុទ្ធមួយដែលក្នុង រយៈពេលដូចគ្នាញ៉ាំងឱ្យមានបរិមាណកម្ដៅស្មើគ្នា។គេបាន

$$V = \frac{V_{m}}{\sqrt{2}}$$

V ជាតង់ស្យុងប្រសិទ្ធគិតជា(V)

• កំណាត់សៀគ្វីមានតែអាំងឌុចតង់សុទ្ធ មានអាំប៉េដង់៖

 $Z_{\rm L} = {\rm L}\omega$  ហើយអាំងតង់ស៊ីតេចរន្ត យឺតជាស $\frac{\pi}{2}$ 

ជាឯតង់ស្យុង ។

 $Z_L$  ជាអាំប៉េដង់បូប៊ីន  $(\Omega)$ 

L ជាអាំងឌុចតង់របស់បូប៊ីន (H)



# ករណីបូប៊ីនមានរេស៊ីស្តង់ $Z_L = \sqrt{R_L^2 + \left(L\omega\right)^2}$ ដែល $R_L$ ជារេស៊ីស្តង់របស់បូប៊ីន។

• កំណាត់សៀគ្វីមានតែរេស៊ីស្តង់សុទ្ធ មានអាំប៉េដង់

 $Z_R = R$  ហើយអាំងតង់ស៊ីតេចរន្ត

និងតង់ស្យុងស្របជាសគ្នា។

 $Z_{_{R}}$  ជាអាំប៉េដង់រេស៊ីស្តង់សុទ្ធ គិតជា $(\Omega)$ 

R ជារេស៊ីស្តង់របស់រេស៊ីស្តរ គិតជា(Ω)



• កំណាត់សៀគ្វីមានតែកុងដង់សាទ័រសុទ្ធ មានអាំប៉េដង់

$$Z_{c} = \frac{1}{C\omega}$$
 ហើយអាំងតង់ស៊ីតេចរន្ត លឿនជាស  $\frac{\pi}{2}$  ជាងតង់ស្យង ។

 $Z_{c}$  ជាអាំប៉េដង់កុងដង់សាទ័រសុទ្ធ គិតជា  $(\Omega)$ 

ជាកាប៉ាស៊ីតេរបស់កុងដង់សាទ័រ គិតជា (F)



• កំណាត់សៀគ្វី(RC)មានរេស៊ីស្តង់ និង កុងដង់សាទ័រតជាស៊េរី មានអាំប៉េដង់

$$Z = \sqrt{R^2 + \left(\frac{1}{C\omega}\right)^2}$$

ហើយអាំងតង់ស៊ីតេចរន្តលឿនជាសជាងតង់ស្យុងarphi ដែល

$$\tan \varphi = \frac{\frac{1}{C\omega}}{R} = \frac{1}{RC\omega}$$



• កំណាត់សៀគ្វី (RL) មានបូប៊ីន និងរេស៊ីស្តង់ តជាស៊េរី មានអាំប៉េដង់  $Z = \sqrt{R^2 + \left(L\omega\right)^2}$ 

ហើយអាំងតង់ស៊ីតេចរន្ត យឺតជាសជាងតង់ស្យងarphi ដែល

$$\tan \varphi = \frac{L\omega}{R}$$



• កំណាត់សៀគ្វី (RLC) មានបូប៊ីន (L) កុងដង់សាទ័ (C) និងរេស៊ីស្តង់ (R) តជាស៊េរីមាន អាំប៉េដង<u>់</u>





$$Z = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$$

គម្លាតជាសរវាង អាំងតង់ស៊ីតេចរន្ត និងតង់ស្យុងអាចគណនាតាមរូបមន្ត



$$\tan \varphi = \frac{L\omega - \frac{1}{C\omega}}{R} \quad \text{if} \quad \cos \varphi = \frac{R}{Z}$$

- \* បើ $L\omega > \frac{1}{C\omega}$  ចរន្តយឺតជាសជាឯតឯ់ស្យុង។
- \* បើ  $L\omega < \frac{1}{C\omega}$  ចរន្តលឿនជាសជាឯតង់ស្យុង។
- \* បើ  $L\omega = \frac{1}{C\omega}$  ចរន្តស្របជាសជាមួយតង់ស្យុង។

ដូចនេះ Z=R ,  $\varphi=0$  អាំងតង់ស៊ីតេចរន្តមានតម្លៃអតិបរិមាហើយ  $\mathrm{i}(t)$  និង  $\mathrm{V}(t)$ ស្របជាសគ្នា។

• អានុភាពមធ្យមផ្ទេរក្នុងសៀគ្វីមួយជាផលធៀបរវាងថាមពលសរុបនឹងរយ:ពេលផ្ទេរ ពោះ។

$$P = \frac{W}{t}$$
 ទាំឱ្យ  $P = VI\cos \varphi$ 

 $\cos \varphi$  ជាកត្តាអានុភាព

ជាអានុភាពមធ្យម(W)

W ជាថាមពលសរុប(J)

VI ជាអានុភាពទំនង(W)

- ត្រង់ស្ទូម៉ាទ័រជាឧបករណ៍សម្រាប់ដំឡើង ឬបន្ថយតង់ស្យុងចរន្តឆ្លាស់។
- រូបមន្តផលធៀបបំលែងត្រង់ស្ងូម៉ាទ័រ ៖

$$\frac{V_2}{V_1} = \frac{n_2}{n_1} = K$$



• រូបមន្តផលធៀបបំលែងត្រង់ស្វូម៉ាទ័រអ៊ីដេអាល់ (ទិន្នផល100% ដែល )៖

$$\frac{V_2}{V_1} = \frac{n_2}{n_1} = \frac{I_1}{I_2} = K$$

 $\mathbf{V}_{\!\scriptscriptstyle 2}$  ជាតង់ស្យុងប្រសិទ្ធនៅរប៉ុំមធ្យម (V)

 $V_{_{\rm I}}$  ជាតង់ស្យុងប្រសិទ្ធនៅរប៉ំបឋម (V)

 $\mathbf{I}_{_{1}}$  ជាអាំងតង់ស៊ីតេចរន្តប្រសិទ្ធនៅរប៉៌ុបឋម (A)

 ${f I}_2$  ជាអាំងតង់ស៊ីតេចរន្តប្រសិទ្ធនៅរប៉៌ុមធ្យម (A)

n<sub>2</sub> ជាចំនួនស្ពៀនៅរប៉ុំមធ្យម

 $\mathbf{n}_{\scriptscriptstyle 1}$  ជាចំន្ទនស្ពៀនៅរប៉ុបឋម

K ជាផលធៀបបំលែងរបស់ត្រង់ស្ទូម៉ាទ័រ

- បើ K>1 ត្រង់ស្វូម៉ាទ័រនោះជាប្រជាប់ដំឡើងតង់ស្យុងហៅថា ស្ងួករ៉ុលទ័រ។
- បើ K < 1 ត្រង់ស្ងូម៉ាទ័រនោះជាប្រដាប់បន្ថយតង់ស្យុងហៅថា ស៊ូវ៉ុលទ័រ។
- ទិន្នផលត្រង់ស្វូម៉ាទ័រ ឱ្យដោយរូបមន្ត  $Rd = \frac{Pe_2}{Pe_1}$
- ullet តុល្យភាពអានុភាពនៃត្រង់ស្វូ៖  $Pe_1 = Pe_2 + P_3$ ដែល  $Pe_2 = V_2I_2$  និង  $Pe_1 = V_1I_1$

 $\operatorname{Pe}_2$ ជាអានុភាពច្រកចេញនៃត្រង់ស្ទូ (នៅរប៉ុំមធ្យម) គិតជាវ៉ាត់ (W)

 $Pe_{_1}$ ជាអានុភាពច្រកចូលនៃត្រង់ស្វូ (នៅរប៉ុំបឋម) គិតជាវ៉ាត់ (W)

 $P_{_{\!J}}$ ជាអានុភាពខាតបង់ គិតជាវ៉ាត់(W)



 ${rac{{f g}}{{f g}}}$ មារណ៍១៖ តង់ស្យុងចេញរបស់ប្រភពចរន្តឆ្លាស់ ឱ្យដោយ  ${
m V}({
m t})$ = $(200{
m V})\sin \omega$ t ។ គណនា ចរន្តប្រសិទ្ធ ពេលភ្ជាប់ទៅនឹង រេស៊ីស្តង់ R =100Ω។

ចម្លើយ១៖ គណនាចរន្តប្រសិទ្ធ

 ${\color{red} {\it g}}$ ទាហរណ៍ ${\color{red} {\it b}}$ សៀគ្វី  ${\it AC}$  ឫប៊ីនសុទ្ធ ដែលមានអាំងឌុចតង់  ${\it L}=25.0 {\it mH}$  និងតង់ស្យុងប្រសិទ្ធ m V = 150
m V  $^{\circ}$  គណនាអាំប៉េដង់នៃសៀគ្វី AC និងចរន្តប្រសិទ្ធ ប្រសិនបើប្រេកង់សៀគ្វី m f = 60.0 Hzៗ

ចម្លើយ២៖ គណនាអាំប៉េដង់នៃសៀគ្គី AC

កំណាត់សៀគ្វីមានតែបូប៊ីនសុទ្ធ មានអាំប៉េដង់  $Z_L = L\omega = 2\pi f L$ 

ដោយ 
$$L = 25.0 \text{mH} = 25.0 \times 10^{-3} \text{H}$$
 និង  $f = 60.0 \text{Hz}$ 

$$Z_L = 2\pi fL = 2 \times 3.14 \times 60(25 \times 10^{-3}) = 9.42\Omega$$

ចរន្តប្រសិទ្ធ I = 
$$\frac{V}{Z_L}$$
 =  $\frac{150}{9.42}$  = 15.9A

<mark>ខ្ញុទាហរណ៍៣៖</mark> កុងដង់សាទ័រ មានកាប៉ាស៊ីតេC=8.00μFត្រូវបានភ្ជាប់ ទៅនឹងប្រភពចរន្តឆ្លាស់ ដែលមានប្រេកង់  $\mathbf{f} = 60.0 \mathrm{Hz}$  និងតង់ស្យុងប្រសិទ្ធ  $\mathbf{V} = 150 \mathrm{V}$  ។ គណនាអាំប៉េដង់និង ចរន្តប្រសិទ្ធរបស់សៀគ្វី។

ចម្លើយ៣៖ គណនាអាំប៉េដង់ និងចន្តេប្រសិទ្ធនៃសៀគ្នី

កំណាត់សៀគ្វីមានតែកុងដង់សាទ័រសុទ្ធ មានអាំប៉េដង់  $\mathbf{Z}_{\mathrm{C}} = \frac{1}{C_{\mathrm{CO}}}$ 

$$in \omega = 2\pi f \Rightarrow Z_C = \frac{1}{2\pi f C}$$

ដោយ  $C = 8.00 \mu F = 8.00 \times 10^{-6} F$  និង f = 60.0 Hz

$$Z_{\rm C} = \frac{1}{2 \times 3.14 \times 60.0 \times 8.00 \times 10^{-6}} = 332\Omega$$

អាំងតង់ស៊ីតេប្រសិទ្

$$I = \frac{V}{Z_C} = \frac{150}{332} = 0.452A$$

 ${\bf g}$ ទាហរណ៍៤៖ ស្យៀគ្គី ចរន្តឆ្លាស់ RLC តជាស៊េរីមា R = 425 $\Omega$ , L = 1.25H, C = 3.50 $\mu$ F,  $\omega$  = 377rad/s និង V<sub>m</sub> =150V ។

- ក. កំណត់  $Z_L$  , $Z_C$  ,Z
- ខ. គណនាចរន្តអតិបរិមារបស់សៀគ្វី
- គ. គណនាគម្លាតជាសរវាងចរន្ត និងតង់ស្យុង
- ឃ. គណនាតង់ស្យុងអតិបរិមានិង កន្សោមតង់ស្យុងរវាងគោលនៃធាតុនីមួយៗ

ចម្លើយ៤៖ ក. កំណត់  $Z_L$  , $Z_C$  ,Z

តាម 
$$Z_L = L\omega$$
 ,  $Z_C = \frac{1}{C\omega}$  ,  $Z = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$ 

ដោយ  $R = 425\Omega$ , L = 1.25H,  $C = 3.50 \mu F = 3.50 \times 10^{-6}$  F,  $\omega = 377 rad/s$ 

$$Z_L = L\omega = (1.25)(377) = 471\Omega$$

$$Z_{\rm C} = \frac{1}{C\omega} = \frac{1}{3.50 \times 10^{-6} \times 377} = 758\Omega$$

$$Z = \sqrt{425^2 + \left(471 - 758\right)^2} = 513\Omega$$

ខ. គណនាចរន្តអតិបរិមារបស់សៀគ្វី

$$I_{\rm m} = \frac{V_{\rm m}}{Z} = \frac{150}{513} = 0.292A$$

គ. គណនាគម្លាតជាស រវាងចរន្ត និងតង់ស្យង

$$\tan \varphi = \frac{\left(L\omega - \frac{1}{C\omega}\right)}{R}$$

$$\varphi = \tan^{-1} \left( \frac{\left( L\omega - \frac{1}{C\omega} \right)}{R} \right) = \tan^{-1} \left( \frac{471 - 758}{425} \right) = -0.594 \text{ rad} \quad \text{ad}$$

ឃ. គណនាតង់ស្យងអតិបរិមារវាងគោលនៃធាតុនីមួយៗ

$$V_{R max} = I_{max}R = (0.292)(425) = 124V$$

$$V_{Lmax} = I_{max}Z_{L} = (0.292)(471) = 138V$$

$$V_{Cmax} = I_{max} Z_{C} = (0.292)(758) = 221V$$

កន្សោមតង់ស្យុង រវាងគោលនៃធាតុនីមួយៗ

$$V_{R}(t) = V_{R \max} \sin(\omega t) = 124 \sin(377t) \text{ (V)}$$

$$V_{L}(t) = V_{Lmax} \sin(\omega t + \frac{\pi}{2}) = 138\cos(377t) \text{ (V)}$$

$$V_{C}(t) = V_{Cmax} \sin(\omega t - \frac{\pi}{2}) = -221\cos(377t)$$
 (V)





<mark>ខ្វទាហរណ៍៤៖</mark> សៀគ្វី RLC តជាស៊េរី ដែលមានរេស៊ីស្កង់ 40.0Ω កុងដង់សាទ័រ*5*.00μFនិងបូប៊ីន 3.00mH 1

- ក.គណនាអាំប៉េដង់នៃសៀគ្វី នៅពេលប្រេកង់នៃប្រភពស្មើ 60 Hz និង 10kHz ។
- ខ. ប្រសិនបើតង់ស្យងប្រសិទ្ធនៃប្រភព V = 120V ។ គណនាអាំងតង់ស៊ីតេចរន្តប្រសិទ្ធ  $_{
  m I}$ ក្នុងករណីប្រេកង់នៃប្រភពនីមួយៗខាងលើ។

#### ចម្លើយ េះ ក. គណនាអាំប៉េដង់នៃសៀគ្វី

តាមរូបមន្ត 
$$Z = \sqrt{R^2 + \left(Z_L - Z_C\right)^2}$$
 តែ  $Z_L = L\omega$  និង  $Z_C = \frac{1}{C\omega}$  គេបាន  $Z = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$ 

ដោយ  $L = 3.00 \text{mH} = 3.00 \times 10^{-3} \text{H}, C = 5.00 \mu\text{F} = 5.00 \times 10^{-6} \text{F}, R = 40.0\Omega, \omega = 2\pi\text{f}$ 

$$\text{ISI: } Z = \sqrt{40.0^2 + \left(3.00 \times 10^{-3} \times 2\pi f - \frac{1}{5.00 \times 10^{-6} \times 2\pi f}\right)}$$

- ប៊ើ f = 60.0Hz គេហ្ន

$$Z = \sqrt{40.0^2 + \left(3.00 \times 10^{-3} \times 2\pi \times 60.0 - \frac{1}{5.00 \times 10^{-6} \times 2\pi \times 60.0}\right)} = 531\Omega$$

- ប៊ើ  $f = 10.0 \text{kHz} = 1.00 \times 10^4 \text{Hz}$  គេហ៊ុន

$$Z = \sqrt{40.0^2 + \left(3.00 \times 10^{-3} \times 2\pi \times 1.00 \times 10^4 - \frac{1}{5.00 \times 10^{-6} \times 2\pi \times 1.00 \times 10^4}\right)} = 190\Omega$$

ខ.គណនា រ ក្នុងករណីប្រេកង់នៃប្រភពនីមួយៗដូចខាងលើ

តាមរូបមន្ត 
$$I = \frac{V}{Z}$$
 តែ  $V = 120V$ 

-ចំពោះ 
$$f = 60 \,\text{Hz}$$
 គេបាន  $I = \frac{120}{531} = 0.226 \,\text{A}$ 

-ចំពោះ 
$$f = 10 \text{kHz}$$
 គេបាន  $I = \frac{120}{190} = 0.633 \text{ A}$ 

<mark>ខ្វតាហរណ៍៦៖</mark> សៀគ្វី RLC តជាស៊េរី ដូចមុន ដែលមានរេស៊ីស្តង់ 40Ω កុងដង់សាទ័រ 5.0μF និងប្ងូប៊ីន 3.0mH 1

- ក. គណនាប្រេកង់វេសូណង់
- ខ. ចូរគណនាអាំងតង់ស៊ីតេប្រសិទ្ធ I ប្រសិនបើតង់ស្យុងប្រសិទ្ធនៃប្រភព V=220Vចម្លើយ៦៖ ក.គណនាប្រេកឯរេសូណង់

តាមរូបមន្ត 
$$f_o = \frac{1}{2\pi\sqrt{LC}}$$





គេបាន 
$$f_o = \frac{1}{2\pi\sqrt{3.0\times10^{-3}\times5.0\times10^{-6}}} = 1.3\times10^3 Hz$$

ខ. ចូរគណនា I

តាមរូបមន្ត 
$$I = \frac{V}{R}$$

គេបាន 
$$I = \frac{220}{40} = 5.5 A$$

<mark>ខ្វទាហរណ៍៧៖</mark> សៀគ្វី RLC តជាស៊េរី ដែលមានរេស៊ីស្តង់ 40Ω កុងដង់សាទ័រ 7.0μF និងប្ងចិ៍ន 4.0mH និងតង់ស្យងប្រសិទ្ធរបស់ប្រភព V = 120V ។

- ក. គណនាកត្តាអានុភាព និងមុំជាស ចំពោះប្រេកង់ f = 60Hz
- ខ. គណនាអានុភាពមធ្យម នៅប្រេកង់ f = 60Hz
- គ. គណនាអានុភាពមធ្យម នៅប្រេកឯ់វេស្វណង់

ចម្លើយ៧៖ ក. គណនាកត្តាអានុភាព និងមុំជាស ចំពោះប្រេកង់ f=60 Hz

តាមរូបមន្ត 
$$\cos \varphi = \frac{R}{Z}$$
  
តែ  $Z = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$ 

ដោយ  $L=4.0 mH=4.0\times 10^{-3} \, H,~C=7.0 \mu F=7.0\times 10^{-6} \, F,~R=40 \Omega,~\omega=2\pi\times 60=120 \pi rad$ 

$$\text{ISI: } Z = \sqrt{40^2 + \left(4 \times 10^{-3} \times 2 \times 3.14 \times 60 - \frac{1}{7 \times 10^{-6} \times 2 \times 3.14 \times 60}\right)^2} = 380\Omega$$
 
$$Z = \sqrt{40.0^2 + \left(4.0 \times 10^{-3} \times 120\pi - \frac{1}{7.0 \times 10^{-6} \times 120\pi}\right)} = 380\Omega$$
 
$$\text{IRGS: } \cos \varphi = \frac{40}{380} = 0.1052$$

មុំជាស
$$\varphi = \cos^{-1}(0.1052) = 84^{\circ}$$

ខ. គណនាអានុភាពមធ្យមនៅប្រេកង់ f = 60Hz

តាមរូបមន្ត 
$$P = VI\cos\varphi$$
 តែ  $I = \frac{V}{Z}$  
$$P = \frac{V^2}{Z}\cos\varphi = \frac{(120)^2}{380} \times 0.1052 = 4.0W$$

គ. គណនាអានុភាពមធ្យម នៅប្រេកឯ់វេស្មណង់

តាមរូបមន្ត  $P = VI\cos\varphi$  ចំពោះនៅត្រង់ប្រេកង់វេស្វូណង់ $\cos\varphi = 1$ 

គេបាន 
$$P = VI = \frac{V^2}{Z} = \frac{(120)^2}{380} = 38W$$

<mark>ខ្វទាហរណ៍៤៖</mark> សៀគ្វី RLC តជាស៊េរី ដែលមានតង់ស្យងអតិបរិមានៃគោលរេស៊ីស្តង់ បូប៊ីន និងកុងដង់សាទ័រ ស្មើ 24V 180V និង120V រៀងគ្នា។ ចូរគណនាមុំជាសរវាង ចរន្តនិងតង់ស្យុងនៃសៀគ្វី។ តើចរន្តលឿន ឬយឺតជាសជាងតង់ស្យុង ចម្លើយ៨៖ ក. គណនាមុំជាសរវាង ចរន្តនិងតង់ស្យងនៃសៀគ្វី

តាមរូបមន្ត 
$$\tan\varphi=\frac{V_L-V_C}{V_R}$$
 ដោយ  $V_L=180V$  ,  $V_C=120V$  ,  $V_R=24V$  គេបាន  $\tan\varphi=\frac{180-120}{24}=2.5$  នាំឱ្យ  $\varphi=\tan^{-1}(2.5)=68^\circ$  ចរន្តយឺតជាសជាឯតង់ស្យុង។

<mark>ខ្វទាហរណ៍៩៖</mark> សៀគ្វី RLC តជាស៊េរីដែលមានរេស៊ីស្តង់ 500Ω កុងដង់សាទ័រ 7.00μF និងប្ងប៊ីន 4.00H ។ សៀគ្វីយោលក្រោមតង់ស្យងអតិបរិមា 36.0V ហើយមានប្រេកង់ 60.0Hz ។ គណនាតង់ស្យងអតិបរិមារវាងគោលនៃធាតុនីមួយៗ។ ចម្លើយ៩៖ គណនាតង់ស្យងអតិបរិមារវាងគោលនៃធាតុនីមួយៗ។

គណនា 
$$Z_L$$
,  $Z_C$ 

ដោយ 
$$L = 4.00H$$
,  $C = 7.00\mu F = 7.00 \times 10^{-6} F$ ,  $f = 60.0Hz$ 

$$\text{tris} \ Z_{\rm L} = L\omega = L(2\pi f) = \quad 4.00 \times 2\pi \times 60.0 = 1508\Omega$$

និង 
$$Z_c = \frac{1}{C(2\pi f)} = \frac{1}{7.00 \times 10^{-6} \times 2\pi \times 60.0} = 378.9\Omega$$

$$\lim_{m} I_{m} = \frac{V_{m}}{Z} = \frac{V_{m}}{\sqrt{R^{2} + (Z_{L} - Z_{C})^{2}}} = \frac{36}{\sqrt{500^{2} + (1508 - 378.9)^{2}}} = 0.0292A$$

តាមរូបមន្ត 
$$V_{Rm} = I_m R$$
 ,  $V_{Lm} = I_m Z_L$  ,  $V_{Cm} = I_m Z_C$ 

គេបាន 
$$V_{\rm Rm}=500\times0.00292=14.6V,\ V_{\rm m}=1508\times0.00292=44.0V$$
 
$$V_{\rm Cm}=378.9\times0.0292=11.1V$$