Fundamental Mathematics

Content

- Differential equations and physics
- Array and vector
- Vector analysis

Differential equation

Linear differential equation

Differential equation defined by linear polynomial in the unknown function and its derivatives

- y' + ay = 0 { a is constant, eq.1.1}
 - If $y_{(x)}$ satisfy above, $y_{(x)}$ is called as **solution**
 - Solve above equation to obtain $y_{(x)}$
 - Before that, y is called as unknown function
- Mission: solve function y' + ay = 0 { a is constant, eq.1.1}
 - Use nature of exponential function
 - $(e^{ax})' = ae^{ax}$
 - Multiple e^{ax} to {eq.1.1: $y^{\prime} + ay = 0$ }
 - $e^{ax}y' + ae^{ax}y = 0$
 - Recall the differential for products
 - $(g_{(x)}h_{(x)})' = g_{(x)}h_{(x)}' + g_{(x)}'h_{(x)}$
 - \circ {eq.1.1: $y^{\prime} + ay = 0$ } should be
 - $\bullet \ (e^{ax}y)^{'}=0 \rightarrow e^{ax}y=c \ \{ \text{c is arbitrary constant} \}$
 - Solution w/o constant: a general solution
 - If c has some specific value \rightarrow a particular solution
- Shape of function depends arbitrary constant {Initial value problem}
 - We may don't know the arbitrary constant itself
 - We may know the value(y_0) on specific point(x_0)
 - y_0 : Initial value or initial condition
 - $y' + ay = 0, y_0 = y(x_0) = ce^{-ax_0}$
 - $lacksquare c = y_0 e^{ax_0}$
 - o General form of {eq.1.1: $y^{\prime} 4$ ay = 0} should be

$$y = y_0 e^{-a(x-x_0)}$$

Homogeneous differential

• Think about following equation

$$\circ \ y^{'} + ay = r_{(x)}$$
 {eq.1.7}

• A differential equation is homogeneous when

•
$$f_{(x,y)}dy=-g(x,y)dx$$
 $ightarrow f_{(x,y)}+g_{(x,y)}rac{dx}{dy}=0$

- If $r_{(x)} = 0$, {eq.1.7 } is homogeneous
- o If not, a differential equation is inhomogeneous
 - lacksquare If $r_{(x)}
 eq 0$, {eq.1.7} is inhomogeneous
- A general solution of inhomogeneous function {eq.1.7} is

$$y = (\int r_{(x)}e^{ax}dx + c)e^{-ax}$$

■ Multiple e^{ax} to {eq.1.7}

$$y' + aye^{ax} = r_{(x)}e^{ax} \rightarrow (ye^{ax})' = r_xe^{ax}$$

- Take integral
 - $ye^{ax}=\int r_{(x)}e^{(ax)}dx+c$ {c is constant}
 - $y = (\int r_{(x)}e^{(ax)}dx + c)e^{-ax}$

Example: RL circuit

- \Box Derive current I(t) of RL circuit
 - \square Initial condition: I(0) = 0
- □ Voltage of R (V_R) and L (V_L) are:

- $\square V_R = RI(t), V_L = L \frac{dI(t)}{dt}, E = V_R + V_L$, thus $\frac{dI(t)}{dt} + \frac{R}{L}I(t) = \frac{E}{L}$
- □ Equation is same as eq.1.7 ->
- □ From general solution: $I(t) = \left(\int \frac{E(t)}{L} e^{\left(\frac{R}{L}\right)t} dt + c\right) e^{-\left(\frac{R}{L}\right)t}$,
- $\Box E$ is constant: $I(t) = \frac{E}{R} + ce^{-\left(\frac{R}{L}\right)t}$
- Apply initial condition, and final result should be

$$\square I(t) = \frac{E}{R} \left(1 - e^{-\left(\frac{R}{L}\right)t} \right)$$

2023/10/5

Quiz

$$egin{aligned} &\circ y^{'}-y=0\ &a=-1,y=ce^x \ ext{ (c is arbitrary constatn)} \ &\circ y^{'}+y=0\ &a=1,y=ce^{-x} \ ext{ (c is arbitrary constatn)} \end{aligned}$$

• Solve a initial value problem of following equations

$$egin{aligned} c &= y_0 e^{ax_0}, y = y_0 e^{-a(x-x_0)} \ &\circ y^{'} + y = 0, y_{(0)} = 2 \ &a = 1, y = c e^{-x} \ &c = 2, y = 2 e^{-x} \ &\circ y^{'} - 2 y = 0, y_{(1)} = 2 \ &a = -2, y = c e^{2x} \ &c = rac{2}{e^2}, y = 2 e^{2(x-1)} \end{aligned}$$

Generalize

Homogeneous differential eq.

□ Similarly, variable coeff. diff. equation

$$y' + f(x)y = r(x)$$
 (eq.1.14)

Homogeneous case

$$y' + f(x)y = 0$$
(eq.1.15)

 \square Assume F(x) as primitive function of f(x)

$$(e^{F(x)})' = e^{F(x)}F'(x) = f(x)e^{F(x)}$$

 \square Multiply $e^{F(x)}$ to eq.1.15

Leibniz product rule

$$e^{F(x)}y' + e^{F(x)}f(x)y = e^{F(x)}y' + (e^{F(x)})'y = (e^{F(x)}y)' = 0$$

- □ Thus: $e^{F(x)}y = c$ (c is constant)
- □ General solution for homogeneous eq. y' + f(x)y = 0

$$\square y = ce^{-F(x)}$$

2023/10/17

7

Inhomogeneous case

$$y' + f(x)y = r(x)$$
 (eq.1.14)

 \blacksquare Multiply $e^{F(x)}$ to eq.1.14

$$e^{F(x)}y' + e^{F(x)}f(x)y = (e^{F(x)}y)' = e^{F(x)}r(x)$$

■ Take integral

$$e^{F(x)}y = \left(\int r(x)e^{F(x)}dx + c\right)$$

 \Box General solution for inhomogeneous eq. y' + f(x)y = r(x)

$$\square y = \left(\int r(x)e^{F(x)}dx + c\right)e^{-F(x)}$$

Solution of differential equation

- Constant coefficient 1st order differential equation
 - \circ Homogeneous: $y^{'}+ay=0 \leftrightarrow y=ce^{-ax}$ {c is constant}
 - Inhomogeneous:

$$y^{'}+ay=r_{(x)}\leftrightarrow y=(\int r_{(x)}e^{ax}dx+c)e^{-ax}$$

- Variable coefficient 1st order differential equation

 - $\begin{array}{l} \blacksquare \text{ Homogeneous: } y^{'}+f_{(x)}y=0 \leftrightarrow y=ce^{-F_{(x)}} \\ \blacksquare \text{ Inhomogeneous: } y^{'}+f_{(x)}y=r_{(x)} \leftrightarrow y=(\int r_{(x)}e^{F_{(x)}}dx+c\big)e^{-F_{(x)}} \end{array}$
- Variation of constants
- Method of indeterminate coefficient

Variation of constants

Can solve linear (inhomogeneous) differential equation

- Difficulty to solve high order equation
- Equation becomes complex for high order equation
- Strategy
 - i. Change given inhomogeneous equation to homogeneous
 - ii. Solve general solution for the homogeneous equation
 - iii. Replace constant c to function u(x)
 - iv. Substitute u(x) to given inhomogeneous equation
 - \circ Calculate general solution of u(x)
 - v. Substitute u(x) to solution of homogeneous equation
- Example: get general solution of : $y^{'}+f_{(x)}y=r_{(x)}$ {eq.1.7}
 - i. Change given inhomogeneous equation to homogeneous

$$\circ y^{'}+f_{(x)}y=0$$

ii. Solve general solution for the homogeneous equation

$$\circ$$
 Use this relationship: $\left(e^{F(x)}
ight)'=e^{F_{(x)}}F_{(x)}^{'}=e^{F_{(x)}}f_{(x)}$

$$\circ \ e^{F_{(x)}} y^{'} + e^{F_{(x)}} f_{(x)} y = e^{F(x)} y^{'} + e^{F_{(x)}} (e^{F(x)})^{'} y = 0$$

$$\circ$$
 thus, $\left(e^{F(x)}y
ight)'=0 o e^{F(x)}y=c$ {c is constant}

iii. Replace constant c to function u(x)

$$\circ \ y = c e^{-F(x)} \to y = u_{(x)} e^{-F(x)} \to u_{(x)} = y e^{+F(x)}$$

iv. Substitute u(x) to given inhomogeneous equation

$$\circ \ \left(u_{(x)} e^{-F(x)}
ight)' + f_{(x)} u_{(x)} e^{-F(x)} = r_{(x)}$$

$$\circ \ u_{(x)}^{'}e^{-F(x)} - f_{(x)}u_{(x)}e^{-F(x)} + f_{(x)}u_{(x)}e^{-F(x)} = r_{(x)}$$

$$\begin{array}{l} \circ \ \, \left(u_{(x)}e^{-F(x)}\right)' + f_{(x)}u_{(x)}e^{-F(x)} = r_{(x)} \\ \circ \ \, u_{(x)}^{'}e^{-F(x)} - f_{(x)}u_{(x)}e^{-F(x)} + f_{(x)}u_{(x)}e^{-F(x)} = r_{(x)} \\ \circ \ \, u_{(x)}^{'} = r_{(x)}e^{F(x)} \to u_{(x)} = \int r_{(x)}e^{F_{(x)}}\,dx + C \; \text{\{c is constant\}} \end{array}$$

v. Substitute u(x) to solution of homogeneous equation

$$\circ y = u_{(x)}e^{-F(x)} = (\int r_{(x)}e^{F_{(x)}}dx + C)e^{-F(x)}$$

Method of indeterminate coefficient

With some assumptions, we can easily solve differential equation

Guess the candidate of particular solution

If the right side of an equation is

- n-order polynormal: candidate should be n-polynormal
- sine function: candidate should be in sine
- exponential: candidate should be in exponential
- Example 1: get general solution of: $y^{'}+3y=x^2-1$ {eq.1.23}
 - \circ Assume particular solution is $y_p = lpha x^2 + eta x + \gamma$
 - $lpha,eta,\gamma$ are constant. Substitute y_p to {eq.1.23}

$$ullet y_p^{'}+3y_p=(2lpha x+eta)+3(lpha x^2+eta x+\gamma)=x^2-1$$

• This equation should satisfy following conditions

•
$$x^2:2lpha=1, x:2lpha+3eta=0, x^0:eta+3\gamma=-1$$
, thus

$$y_p = \frac{1}{3}x^2 - \frac{2}{9}x - \frac{7}{27}$$

- If one particular solution is clear, general solution can be easily solved.
- \circ Example: get general solution of : $y^{'}+f_{(x)}y=r_{(x)}$
 - lacktriangledown Assume particular solution y_p , general solution y, and its difference $y_h=y-y_p$ is

$$ullet y_h^{'} + f_{(x)} y_h = (y-y_p)^{'} + f_{(x)} (y-y_p) = y^{'} + f_{(x)} y - (y_p^{'} + f_{(x)} y_p) = r_{(x)} - r_{(x)} = 0$$

- This is homogeneous: $y_h = ce^{-F_{(x)}}$
- $ullet y = y_p + y_h = y_p + ce^{-F_{(x)}}$ {c is constant}
 - we can use this as theorem
- general solution of {eq.1.23} : $y = \frac{1}{3}x^2 \frac{2}{9}x \frac{7}{27} + ce^{-3x}$

- Example2: get general solution of : $y^{'}+2y=\cos(x)$ {eq.1.25}
 - \circ Assume particular solution is $y_p = lpha \cos x + eta \sin x$
 - α, β are constant. Substitute y_p to {eq.1.25}
 - $ullet y_p^{'} + 2y_p = -lpha \sin x + eta \cos x + 2(lpha \cos c + eta \sin x) = \cos x$
 - This equation should satisfy following conditions
 - ullet $\cos x:2lpha+eta=1,\sin x:-lpha+2eta=0$, thus
 - $\circ \ y_p = \frac{2}{5}\cos x + \frac{1}{5}\sin x$
 - $y = \frac{2}{5}\cos x + \frac{1}{5}\sin x + ce^{-2x}$
- Example 3: get general solution of : $y^{'}-y=2e^{2x}$ {eq.1.28}
 - \circ Assume particular solution is $y_p = lpha e^{2x}$
 - α is constant. Substitute y_p to {eq.1.28}
 - $ullet y_p^{'}-y_p=2lpha e^{2x}-lpha e^{2x}=lpha e^{2x}=2e^{2x},$ thus
 - $y_p = 2e^{2x}$
 - $y = 2e^{2x} + ce^x$
 - However, this is not true for all of solution
- ullet Example: get general solution of : $y^{'}-2y=2e^{2x}$ {eq.1.29}
 - \circ Assume particular solution is $y_p = lpha e^{2x}$
 - α is constant. Substitute y_p to {eq.1.29}
 - $ullet y_p^{'}-y_p=2lpha e^{2x}-2lpha e^{2x}=0 o {
 m wrong}$ assumption
 - \circ Assume particular solution is $y_p = lpha x e^{2x}$
 - α is constant. Substitute y_p to {eq.1.29}
 - $ullet y_{p}^{'}-y_{p}=(lpha e^{2x}+2lpha xe^{2x})-2lpha xe^{2x}=2e^{2x}$
 - $ilde{y_p}=2xe^{2x}$
 - $y = (2x+c)e^{2x}$
 - \circ If general solution is $\mathbf{y}' + \mathbf{a}\mathbf{y} = \mathbf{k}\mathbf{e}^{-\mathbf{a}\mathbf{x}}$, particular solution should be $y_p = kxe^{-ax}$

• Exerceis(1)

- Solve general solutions for following equations
 - by Variation of constants method

$$\begin{array}{l} \bullet \quad y^{'}-xy=x\\ \text{a. } f_{(x)}=-x, F_{(x)}=-\frac{1}{2}x^{2}, r_{(x)}=x\\ \text{b. } u_{(x)}=\int r_{(x)}e^{F_{(x)}}dx+c,\\ y=u_{(x)}e^{-F_{(x)}}=(\int xe^{-\frac{1}{2}x^{2}}dx+c_{1})e^{\frac{1}{2}x^{2}}=-1+c_{2}e^{\frac{x}{2}} \end{array}$$

{c1, c2 is constant}

$$y^{'}+\frac{y}{x}=x^{2}+2x$$
a. $f_{(x)}=\frac{1}{x},F_{(x)}=\ln x,$
 $r_{(x)}=x^{2}+2x$
b. $y=\frac{\int (x^{2}+2x)xdx+c_{1}}{x}=\frac{x^{3}}{4}+\frac{2x^{2}}{3}+\frac{c_{2}}{x}$

by Method of indeterminate coefficient

$$2y' + 3y = 3x^2 + x$$

lacksquare Assuming the particular solution: $y_p = lpha x^2 + eta x + \gamma$

• Substitute:
$$2(2\alpha x+\beta)+3(\alpha x^2+\beta x+\gamma)=3x^2+x$$
 $3\alpha=3, 4\alpha+3\beta=1, 2\beta+3\gamma=0$ $\alpha=1, \beta=-1, \gamma=\frac{2}{2}$

$$f_{(x)} = \frac{3}{2}, F_{(x)} = \frac{3}{2}x$$

 $lacksymbol{\bullet}$ particular solution: $y_p = x^2 - x + rac{2}{3}$

ullet general solution: $y_p=x^2-x+rac{2}{3}+ce^{-rac{3}{2}x}$ {c: const}

$$y' + 4y = 3e^{-x}$$

$$y_p = \alpha e^{-x}$$

$$-\alpha e^{-x} + 4\alpha e^{-x} = 3e^{-x}, \alpha = 1$$

$$f_{(x)} = 4, F_{(x)} = 4x$$

$$y_p = e^{-x}, y = e^{-x} + ce^{-4x}$$

Euler's formula

• The trigonometric functions (sin cos) and complex exponential function satisfy following relationship

$$e^{ix} = \cos x + i \sin x$$

- e: base of natural logarithm, i(or j): imaginary unit
- Euler's formula is useful for circuit analysis, cause
 - Easy to take integral, differential

$$rac{d}{dx}e^{\lambda x}=\lambda e^{\lambda x}, \int e^{\lambda x}dx=rac{1}{\lambda}e^{\lambda x}+c$$
 {c: constant}

- Phasor: expression of sine func. in complex exponent
 - $A\cos wx = \Re A\cos wx + iA\sin wx$
 - Calculate circuit in complex exponent, then convert to original sine functions

2nd order differential equation

• Introduce 2nd order differential equation

$$\circ y^{''} + ay^{'} + by = r_{(x)}$$
 {a, b are constants, eq.3.1}

• If
$$r_{(x)}=0$$
, {eq.3.1} is homogeneous

• If
$$r_{(x)} \neq 0$$
, {eq.3.1} is inhomogeneous

- Inhomogeneous form is very tough for hand calculation
 - \circ If r(x) is constant, sine, or exponential we can use method of indeterminate coefficient
 - In physics, circuits, we can use this assumption

Characteristic equation

• If
$$r_{(x)}=0$$
 and $y_{(x)}=ce^{\lambda x}$ (c, λ : constant), eq.3.1 is
$$\circ \ y^{''}+ay^{'}+by=(\lambda^2+a\lambda+b)ce^{\lambda x}=0, ce^{\lambda x}\neq 0 \ {
m thus}$$

•
$$\lambda^2 + a\lambda + b = 0$$
: characteristic equation

 \circ Solution and $\lambda=rac{-a\pm\sqrt{a^2-4b}}{2}$ changes depend on discriminant function (a^2-4b)

• $a^2-4b>0:\lambda_1,\lambda_2$ in real. Solutions: $c_1e^{\lambda x},c_2e^{\lambda x}$

• $a^2-4b=0: \lambda=-\frac{a}{2}$. Solutions: $c_1e^{\lambda x}, c_2xe^{\lambda x}$

• $a^2-4b<0:\lambda_1,\lambda_2$ in imaginary value.

• $\lambda_1 = \alpha + i\beta, \lambda_2 = \alpha - i\beta$

• Solutions: $c_1 e^{\lambda x}$, $c_2 e^{\lambda x}$

Linearity of solution

- Use linearity of solution
- Theorem: if $y_{(x)}$ and $w_{(x)}$ are the solution of linear equation {eq.3.1}, sum $c_1y_{(x)}+c_2w_{(x)}$ is also the solution
- Proof: since $y_{(x)}$ and $w_{(x)}$ are the solution, it should satisfy

$$\circ y^{''} + ay^{'} + by = 0, w^{''} + aw^{'} + bw = 0,$$

• Multiply const c₁ and c₂ and get its sum

$$ullet c_1 y^{''} + c_1 a y^{'} + c_1 b y + c_2 w^{''} + c_2 a w^{'} + c_2 b w = 0$$

$$\circ \ \left(c_1 y + c_2 w
ight)^{''} + a (c_1 y + c_2 w)^{'} + b (c_1 y + c_2 w) = 0$$

- \circ So, $c_1 y_{(x)} + c_2 w_{(x)}$ is also the solution
- Solution is the sum of exponents, comes from characteristic equation

General solution

• Theorem: General solution of 2nd order homogeneous differential equation is

$$a^2-4b=0:y_{(x)}=c_1e^{\lambda_1x}+c_2xe^{\lambda_1x}, \lambda_1$$
: multiple root of char. eq

$$a^2-4b \neq 0: y_{(x)}=c_1e^{\lambda_1x}+c_2e^{\lambda_2x}, \lambda_1, \lambda_2$$
: roots of char. eq

• Proof: if y(x) is the solution of {eq.3.1}, multiply $e^{-\lambda x}$

$$\circ e^{-\lambda x}y^{"} + e^{-\lambda x}ay^{'} + e^{-\lambda x}by = 0$$

$$\circ \ \left(e^{-\lambda x}y
ight)'' + (a+2\lambda)(e^{-\lambda x}y)^{'} + (\lambda^2+a\lambda+b)e^{-\lambda x}y = 0$$

lacksquare If we assume $\lambda 1$ is root of char. eq., $\lambda_1^2 + a\lambda_1 + b = 0$, thus

•
$$(e^{-\lambda x}y)^{''} + (a+2\lambda)(e^{-\lambda x}y)^{'} = 0$$

$$\circ~u^{''}+(a+2\lambda_1)u^{'}=0$$
, when $e^{-\lambda x}y_{(x)}=u_{(x)}$

• Case
$$a^2 - 4b = 0$$
: $\lambda = -\frac{a}{2}$, thus $u^{''} = 0$

$$u(x) = c_1 + c_2 x, ext{ thus } y_{(x)} = c_1 e_{\lambda_1 x} + c_2 x e^{\lambda_1 x}$$

• Case
$$a^2 - 4b \neq 0$$
:

$$ullet v^{'}+(a+2\lambda_1)v=0, ext{when}v=u^{'}, ext{ solve this then}$$

•
$$v = Ce^{-(a+2\lambda_1)x}$$
, C is constant. Then integrate this

$$lacksquare u_{(x)} = c_1 - rac{C}{a+2\lambda_1} e^{-(a+2\lambda_1)x}$$
 , thus

•
$$y=c_1e^{\lambda_1x}-c_2e^{\lambda_2x}$$
, since $(a+\lambda_1)$ si the solution λ_2 . $(c_2=\frac{C}{a+2\lambda_1},\lambda_2=a+\lambda_1)$

• Transform from/to sine to/from exponent

• Case
$$(a^2 - 4b < 0)$$
:

$$y_{(x)} = c_1 e^{(A+iB)x} + c_2 e^{(A-iB)x}$$

$$ullet y_{(x)} = c_1 e^{Ax} (\cos Bx + i \sin Bx) + c_2 e^{Ax} (\cos Bx - i \sin Bx)$$

$$ullet = (c_1 + c_2)e^{Ax}\cos Bx + i(c_1 - c_2)e^{Ax}\sin Bx$$

$$= d_1 e^{Ax} \cos Bx + d_2 e^{Ax} \sin Bx$$

Exercise(2)

- Solve characteristic equation and general solutions for following equations
 - by Method of indeterminate coefficient

$$y'' + 2y' + y = 0$$

• since
$$\mathbf{r}_{(\mathbf{x})}$$
 = 0, assume $y=ce^{\lambda x}.c,\lambda$: unknown

$$(\lambda^2 + 2\lambda + 1)ce^{\lambda x} = 0$$

$$ullet$$
 characteristic. eq $\lambda^2+2\lambda+1=0
ightarrow \lambda=-1$

• general solution:
$$y = c_1 e^{-x} + c_2 x e^{-x}$$

$$y'' + 2y' + 3y = 0$$

• since
$$\mathbf{r}_{(\mathbf{x})} = 0$$
, assume $y = ce^{\lambda x}.c, \lambda$: unknown

$$(\lambda^2 + 2\lambda + 3)ce^{\lambda x} = 0$$

$$ullet$$
 characteristic. eq $\lambda^2+2\lambda+3=0
ightarrow \lambda=-1\pm\sqrt{2}i$

$$lacksquare$$
 general solution: $y=c_1e^{-(1+\sqrt{2}i)x}+c_2e^{-(1-\sqrt{2}i)x}$

$$y'' - 4y' - 5y = 0$$

$$ullet$$
 characteristic. eq $\lambda^2-4\lambda-5=0
ightarrow \lambda=-1,5$

$$ullet$$
 general solution: $y=c_1e^{5x}+c_2e^{-x}$ {c1, c2: constant}

2nd order differential equation

• Introduce 2nd order differential equation

$$\circ y^{''}+ay^{'}+by=r_{(x)}$$
 (a, b are constants) {eq.2.12}

• If
$$r(x) = 0$$
, {eq.2.12} is homogeneous {eq.2.2}

• If
$$r(x) \neq 0$$
, {eq.2.12} is inhomogeneous

- Inhomogeneous form is very tough for hand calculation
 - If r(x) is constant, sine, or exponential we can use **method of indeterminate coefficient**
 - Variation of constants
 - Method of indeterminate coefficient

Structure of solution for inhomogeneous equation

- Theorem:
 - \circ Assume solution $u_{(x)}$ for $u^{''}+au^{'}+bu=0$ and particular solution $y_p(x)$ for $y^{''}+ay^{'}$ $by = r_{(x)}$
 - \circ General solution for $y^{''}+ay^{'}+by=r(x)$ is $y(x)=y_{\scriptscriptstyle \mathcal{D}}(x)+u(x)$
- Proof:
 - \circ Calculate differential for y(x)+u(x)
 - 1st order diff: $(y(x) + u(x))^{'} = y^{'}(x) + u^{'}(x)$ 2nd order diff: $(y(x) + u(x))^{''} = y^{''}(x) + u^{''}(x)$

 - y(x) is general solution; u(x) is solution for homogeneous
 - y(x) + u(x) is also the solution for {eq.2.12}

$$ullet (y+u)^{''} + a(y+u)^{'} + b(y+u) = y^{''} + ay^{'}by + u^{''} + au^{'} + bu = r(x)$$

- Next, assume $y_1(x) y_2(x)$ is solution for inhomogeneous equation {eq.2.1}
 - $ullet \left(y_1-y_2
 ight)^{''}+a(y_1-y_2)^{'}+b(y_1-y_2)=\left(y_1^{''}+ay_1^{'}+by_1
 ight)-\left(y_2^{''}+ay_2^{'}+by_1^{'}
 ight)$ $bu_2) = r(x) - r(x) = 0$
- $y(x) = y_p(x) + u(x)$
 - \circ General solution for inhomogeneous equation y(x) is sum of particular solution for inhomogeneous $y_p(x)$ and general solution for homogenesis $\mathbf{u}(\mathbf{x})$
- General solution for inhomogeneous equation
 - $\circ y(x) = y_p(x) + u(x)$
 - \circ Need particular solution for inhomogeneous eq. u(x)
- We can calculate solution for inhomogeneous eq. with sum assumption
 - Method of indeterminate coefficient
 - Variation of constants need to calculate array

Method of indeterminate coefficient(exponent)

- Solve general solution y(x) of : $y^{''}+y^{'}+2y=e^{2x}$
 - \circ Get general solution $Y_0(x)$ for homogeneous equation
 - y'' + y' + 2y = 0
 - Its characteristic equation:

•
$$\lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0, \lambda = -1, -2$$

- $y_0(x) = c_1 e^{-x} + c_2 e^{-2x}$
- Get particular solution $y_n(x)$ for inhomogeneous equation
 - Assume $y_p(x) = Ae^{2x}$, (A is const., e^{2x} is right side)
 - \bullet $4Ae^{2x} + 3 \cdot 2Ae^{2x} + 2 \cdot Ae^{2x} = e^{2x}, A = \frac{1}{12}$
 - $y(x) = y_0(x) + y_p(x) = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{12} e^{\frac{12}{2x}}$
- Solve general solution y(x) of : $y'' + 3y' + 2y = e^{-x}$
 - \circ Get general solution $Y_0(x)$ for homogeneous equation
 - $y_0(x) = c_1 e^{-x} + c_2 e^{-2x}$

- \circ Get particular solution $y_p(x)$ for inhomogeneous equation
 - Assume $y_p(x) = Ae^{-x}$, (A is const., e^{-x} is right side)
 - $Ae^{-x} 3Ae^{-x} + 2 \cdot Ae^{-x} = 0??$
 - Assume $y_p(x) = Axe^{-x}$, (A is const., e^{-x} is right side)
 - $\bullet (-Ae^{-x} Ae^{-x} + Axe^{-x}) + 3(Ae^{-x} Axe^{-x}) + 2Axe^{-x} = e^{-x} \to A = 1$
 - $y(x) = y_0(x) + y_p(x) = c_1 e^{-x} + c^2 e^{-2x} + x e^{-x}$
- Solve particular solution of : $y'' + 3y' + 2y = \cos x$
 - \circ Ex1: Assume particular solution is $y_p = lpha \cos x + eta \sin x$
 - lacksquare α , β are sonstant. Substitute y_p to equation
 - ullet $lpha=rac{1}{10},eta=rac{3}{10},thusy_p=rac{1}{10}\cos x+rac{3}{10}\sin x$
 - Ex2: Solve it in imaginary space, then take real part
 - Assume target solution is $u^{''}+3u^{'}+2u=e^{ix}$ {according to Euler formula:}
 - $\bullet \quad e^{ix} = \cos x + i \sin x$
 - ullet Assume particular solution is $u_p=Ae^{ix}$ {A is const}
 - $A = \frac{1}{10} \frac{3}{10}i, u_p = (\frac{1}{10}\cos x + \frac{3}{10}\sin x)$
 - $y_p = \mathbb{R}\{u_p\} = \frac{1}{10}\cos x + \frac{3}{10}\sin x$
- Solve particular solution of : $y^{''}+3y^{'}+2y=x^2$
 - \circ Assume particular solution is $y_p = lpha x^2 + eta x + \gamma$
 - α , β , γ , are sonstant. Substitute y_p to equation
 - $2\alpha x^2 + (6\alpha + 2\beta)x + (2\alpha + 3\beta + 2\gamma) = x^2$
 - This equation should satisfy following conditions
 - ullet $x^2:2lpha=1,x:6lpha+2eta=0,x^0:2lpha+3eta+2\gamma=0$, thus
 - $y_p = \frac{1}{2}x^2 \frac{3}{2}x \frac{7}{4}$
- Solve particular solution of : $y^{''} + y^{'} = x^2$
 - Get general solution $y_0(x)$ for homogeneous equation
 - Characteristic equation: $\lambda(\lambda + 1) = 0$
 - $y_0(x) = c_1 + c_2 e^{-x}$
 - Particular solution: cannot fix coefficient cx⁰
 - \circ Assume particular solution is $y_p = lpha x^3 + eta x^2 + \lambda x$
 - α , β , γ are constant. Substitute y_p to equation
 - $3\alpha x^2 + (6\alpha + 2\beta)x + (2\beta + \gamma) = x^2$
 - This equation should satisfy following conditions
 - $x^2: 3\alpha = 1, x: 6\alpha + 2\beta = 0, x^0: 2\beta + \gamma = 0$, thus
 - $y_p = rac{1}{3}x^2 x + 2, y = rac{1}{3}x^2 x + 2 + c_1 + c_2e^{-x}$

• Use initial condition to calculate particular solution

$$y'' + ay' + by = r(x)$$
, use $y(0) = A$, $y'(0) = B$. (A,B: const)

• If one particular solution y_p is known, general solution y(x):

•
$$y(x) = c_1 \phi(x) + c_2 \psi(x) + y_p$$
 $\varphi(x)$ and $\psi(x)$: shape of basic functions

• Calculate c_1 and c_2 using initial conditions

o Generally, solve next simultaneous equation

$$\bullet \begin{bmatrix} \phi(0) & \psi(0) \\ \phi^{'}(0) & \psi^{'}(0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} A - y_p(0) \\ B - y_p(0) \end{bmatrix}$$

• Solve particular solution y(x)

$$\circ \ y^{''} + 3y^{'} + 2y = e^{2x}, y(0) = 0, y^{'} = 1$$

$$\circ$$
 Get general solution $y(x)=c_1e^{-x}+c_2e^{-2x}+rac{1}{12}e^{2x}$

$$y(0) = c_1 + c_2 + \frac{1}{12} = 0$$

$$y'(0) = -c_1 - 2c_2 + \frac{1}{6} = 1, ext{thus} c_1 = \frac{2}{3}, c_2 = -\frac{3}{4}$$
 $y(x) = \frac{2}{3}e^{-x} - \frac{3}{4}e^{-2x} + \frac{1}{12}e^{2x}$

$$y(x) = \frac{2}{3}e^{-x} - \frac{3}{4}e^{-2x} + \frac{1}{12}e^{2x}$$

Example 1: LC circuit

- \square Derive current I(t) of LC circuit
 - Initial conditions:

$$\Box$$
 For $t = 0$, $A(0) = I(0) = 2$,

$$I'(0) = 0$$

 \square Voltage of L (V_L) C (V_C) are:

$$(I(t) = Q'(t))$$

I(t)

A(t)

$$\square V_L = L \frac{dI(t)}{dt}, V_C = \frac{Q(t)}{C}, LI'(t) + \frac{Q(t)}{C} = 0$$

 \square For the current I(t), $I''(t) + \frac{I(t)}{IC} = 0$

$$\Box I''(t) + \frac{I(t)}{LC} = 0$$
 (E'(t) = 0), assume $I(t) = ce^{\lambda t}$

- □ Characteristic equation: $\lambda^2 + \frac{1}{LC} = 0$, $\lambda = \pm \sqrt{\frac{1}{LC}}i = \pm \omega i$,
- □ General solution $I_q(t)$:

$$\Box I_g(t) = (c_1 e^{\omega i t} + c_2 e^{-\omega i t}) = (d_1 \cos \omega t + d_2 \sin \omega t)$$

- □ Select θ which satisfy $\cos \theta = \frac{d_2}{\sqrt{d_1^2 + d_2^2}}$, $\sin \theta = \frac{d_1}{\sqrt{d_1^2 + d_2^2}}$
 - $\square I_g(t) = \sqrt{d_1^2 + d_2^2} \sin(\omega t + \theta),$
- $\Box I_p(0) = \sqrt{d_1^2 + d_2^2} \sin(\theta) = 2, I_p'(0) = \sqrt{d_1^2 + d_2^2} \cos(\theta) = 0$
 - $\square I_p(t) = 2\sin(\omega t + \pi/2)$ (it will oscillate, "resonance")

Frequency $f = 1/(2\pi\sqrt{LC})$

Example 2: RLC circuit

- \square Derive current I(t) of RLC circuit
 - \square Initial condition: I(0) = 0
- □ Voltage of R (V_R) L (V_L) C (V_C) are:

- $\square V_R = RI(t), V_L = L \frac{dI(t)}{dt}, V_C = \frac{Q(t)}{C}, LI'(t) + RI(t) + \frac{Q(t)}{C} = E(t)$
- □ For the current I(t), $I''(t) + \frac{R}{L}I'(t) + \frac{I(t)}{LC} = \frac{E'(t)}{L}$ (I(t) = Q'(t))
- □ (You will learn this in electric circuit class)
- Solve this equation
 - $\Box \operatorname{For} E(t) = V (V \text{ is constant})$
 - \square For E(t) = Vt (V is constant)
- $\Box I''(t) + \frac{R}{L}I'(t) + \frac{I(t)}{LC} = 0 \ (E'(t) = 0), \text{ assume } I(t) = ce^{\lambda t}$
 - □ Characteristic equation: $\lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC} = 0$

 - $\square R^2 > \frac{4L}{C}: I(t) = e^{-\frac{Rt}{2L}} \left(c_1 e^{t\sqrt{R^2 4L/C}/2L} + c_2 e^{-t\sqrt{R^2 4L/C}/2L} \right)$
 - $\square R^2 = \frac{4L}{c}$: $I(t) = e^{-\frac{Rt}{2L}}(c_1 + c_2 t)$
 - $\square R^2 < \frac{4L}{C}: I(t) = e^{-\frac{Rt}{2L}} \left(c_1 e^{t\sqrt{4L/C R^2}/2L} + c_2 e^{-t\sqrt{4L/C R^2}/2L} \right)$

 $I''(t) + \frac{R}{L}I'(t) + \frac{I(t)}{LC} = V \text{ assume particular solutions are } I_{p1}(t), I_{p2}(t), I_{p3}(t)$

General solutions are

$$\square R^2 > \frac{4L}{C}: I(t) = e^{-\frac{Rt}{2L}} \left(c_1 e^{t\sqrt{R^2 - 4L/C}/2L} + c_2 e^{-t\sqrt{R^2 - 4L/C}/2L} \right) + I_{p1}(t)$$

$$\square R^2 = \frac{4L}{C}: I(t) = e^{-\frac{Rt}{2L}}(c_1 + c_2t) + I_{p2}(t)$$

Exercise

•
$$y^{''} + 3y^{'} + 2y = \cos x$$

• $\lambda = -1, -2$
• $y_0 = c_1e^{-x} + c_2e^{-2x}$ (c_1, c_2 : constants)
• asssume particular solution $y_p = \alpha \cos x + \beta \sin x$ (α, β : constant)
• $(-\alpha \cos x - \beta \sin x) + 3(-\alpha \sin x + \beta \cos x) + 2(\alpha \cos x + \beta \sin x) = \cos x$
• $(-\alpha + 3\beta + 2\alpha) \cos x + (-\beta - 2\alpha + 2\beta) \sin x = \cos x$
• $\alpha = \frac{1}{10}, \beta = \frac{3}{10}$
• $y_p = \frac{1}{10} \cos x + \frac{3}{10} \sin x$
• $y = \frac{1}{10} \cos x + \frac{3}{10} \sin x + c_1e^{-x} + c_2e^{-2x}$
• $y^{''} - 2y^{'} + 3y = x^2$
• $\lambda = 1 \pm \sqrt{2}i$
• $y_0 = c_1e^{1+\sqrt{2}i} + c_2e^{1-\sqrt{2}i}$ (c_1, c_2 : const)
• Assume particular solution $y_p = \alpha x^2 + \beta x + \gamma$ (α, β, γ : const)
• $2\alpha - (2\alpha x + \beta) + 3(\alpha x^2 + \beta) = x^2$
• $\alpha = \frac{1}{3}, \beta = \frac{4}{9}, \gamma = \frac{2}{27}$
• $y = y_0 + y_p = c_1e^{1+\sqrt{2}i} + c_2e^{1-\sqrt{2}i} + \frac{1}{3}x^2 + \frac{4}{9}x + \frac{2}{27}$
• $y^{''} - 2y^{'} - 3y = e^x$
• $\lambda = -1, 3$
• $y_0 = c_1e^{(3x)} + c_2e^{(-x)}$ (c_1, c_2 : const)

$$\circ$$
 Assume particular solution $y_p = Ae^x$ (A: const)

$$egin{aligned} \circ & A = -rac{1}{4} \ & \circ & y = c_1 e^{(3x)} + c_2 e^{(-x)} + -rac{1}{4} e^x \ & \bullet & y^{''} - 2y^{'} - 3y = e^{-x} \end{aligned}$$

$$\delta \lambda = -1, 3$$

$$y_0 = c_1 e^{(3x)} + c_2 e^{(-x)}$$
 (c₁, c₂: const)

 $\circ~$ Assume particular solution $y_p = Axe^{-x}$ (A: const)

$$\circ \ \mathbf{y}_{p}^{'} = \mathbf{A}(\mathbf{1} - \mathbf{x})\mathbf{e}^{-\mathbf{x}}$$

$$\mathbf{y}_{\mathbf{p}}^{''} = \mathbf{A}(\mathbf{x} - \mathbf{2})\mathbf{e}^{-\mathbf{x}}$$

•
$$A = -\frac{1}{4}$$

$$y = y_0 + y_p = c_1 e^{(3x)} + c_2 e^{(-x)} - \frac{1}{4} e^{-x}$$

Solve particular solution

$$egin{array}{ll} ullet \ y^{''} + 3y^{'} + 2y = \cos x \ &\circ \ \lambda = -1, -2 \end{array}$$

$$y_0=c_1e^{-x}+c_2e^{-2x}$$
 (c $_1$, c $_2$: constants)

$$\circ$$
 asssume particular solution $y_p = \alpha \cos x + \beta \sin x$ (α, β : constant)

$$\circ \ (-\alpha \cos x - \beta \sin x) + 3(-\alpha \sin x + \beta \cos x) + 2(\alpha \cos x + \beta \sin x) = \cos x$$

$$\circ (-\alpha + 3\beta + 2\alpha)\cos x + (-\beta - 2\alpha + 2\beta)\sin x = \cos x$$

$$\circ \ \alpha = \frac{1}{10}, \beta = \frac{3}{10}$$

$$y_p = \frac{1}{10}\cos x + \frac{3}{10}\sin x$$

$$y_p = \frac{1}{10} \cos x + \frac{3}{10} \sin x$$
 $y_p = \frac{1}{10} \cos x + \frac{3}{10} \sin x + c_1 e^{-x} + c_2 e^{-2x}$

$$\circ \ y^{'}(x) = -c_{1}e^{-x} - 2c_{2}e^{-2x} - rac{1}{10}\sin x + rac{3}{10}\cos x$$

$$\circ y(\pi)=0, y^{'}(\pi)=1$$

$$\circ \ c_1 = \frac{3}{2}, c_2 = \frac{3}{2}e^{\pi}$$

$$\circ \ y(x) = \frac{1}{10}\cos x + \frac{3}{10}\sin x + \frac{3}{2}e^{-x+\pi} + \frac{3}{2}e^{-2(x-\pi)}$$

Array and vector

Motivation

• div
$$\mathbf{D} = \rho$$

•
$$\iint \mathbf{D} \cdot d\mathbf{S} = \iiint \rho dV$$
 (Gauss's eq of electric field)

• div
$$\mathbf{B} = \rho$$

$$\circ \iint \mathbf{B} \cdot d\mathbf{S} = \iiint div \mathbf{B} dV$$
 (Gauss's eq of magnetic field)

$$\circ \ rot \mathbf{H} = i + rac{\delta D}{\delta t} : \oint \mathbf{H} \cdot d\mathbf{r} = \iint (i + rac{\delta \mathbf{D}}{\delta t}) \cdot \mathbf{S}$$
 Ampele's law $\circ \ div \mathbf{E} = -rac{\delta B}{\delta t} : \oint \mathbf{E} \cdot d\mathbf{r} = -rac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S}$ Faraday's law

$$\circ~div{f E}=-rac{\delta B}{\delta t}:\oint {f E}\cdot d{f r}=-rac{\delta}{\delta t}\iint {f B}\cdot d{f S}$$
 Faraday's law

Scalar and Vector

- Scalar: Value (only)
- Vector: Value (length) and its direction
- Vector from point P to Q is: \vec{PQ}
 - P: start point, Q: end point
 - \circ if $\vec{P'Q'}$ is equal to \vec{PQ} , \vec{PQ} and $\vec{P'Q'}$ is in the same class
 - \circ If two points are the same, it is zero vector \vec{PP}, \vec{QQ}
- To show the vector, we use **bold and italic**
- Vector: ${m a}=\vec{PQ}$
- Zero vector $\boldsymbol{\theta} = \overrightarrow{PP}$

Add, sub, extension

• Assume $m{a} = \vec{OA}, \, m{b} = \vec{OB}, \, m{c} = \vec{OC}$, where O, A, B, C composes parallelogram

$$\circ$$
 Define: $-\boldsymbol{a} = -\vec{OA} = \vec{AO}$

$$\circ$$
 Define: $oldsymbol{a} + oldsymbol{b} = ec{OA} + ec{OB} = ec{OC}$

$$\circ$$
 Define: $oldsymbol{a} - oldsymbol{b} = ec{OA} - ec{OB} = ec{OC}'$

• For real value λ , its product to the vector \boldsymbol{a} is

$$\circ \quad a\lambda = \lambda a$$

- If the three points P, Q, R are on the same line: $\vec{PQ} = \lambda \vec{PR}$
- If the two vectors are in parallel: $a\lambda = b$
 - Geometric vector space
 - Vector space: more general and abstract

Vector space

- \bullet L is called vector space if element of L satisfy following definition and notation
 - Addition: result of a + b is unique $(a, b \in L)$
 - Scalar multiply: result of $a\lambda$ is unique ($a \in \lambda \in R$)
- Both satisfy following:

• Association law: (a + b) + c = a + (b + c)

• Exchange law: a + b = b + a

• Identity element: a + o = a

• inverse element: a + -a = o

Component

• Vector \mathbf{a} is also defined by its components $[a_1, ..., a_n]$

o n: its dimension

• For the xyz-coordinate system, $\mathbf{a} = [\mathbf{a}_x, \mathbf{a}_y, \mathbf{a}_z]$

• This also satisfy the rules of vector space

• Or, using unit vector \mathbf{i} , \mathbf{j} , \mathbf{k} for xyz-coord system

•
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
, where $a_1 = |a_x|$, $a_2 = |a_y|$, $a_3 = |a_z|$

• Length: $|\mathbf{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$, unit vector $\mathbf{u} = \mathbf{a}/|\mathbf{a}|$

Inner product

• For two vectors $\mathbf{a} = \vec{OA}$, $\mathbf{b} = \vec{OB}$, $\mathbf{a} \cdot \mathbf{b} = c = |\mathbf{a}| |\mathbf{b}| \cos \theta$ is called as inner product in scaler value $\theta = \angle AOB$

• Inner products has following characteristics

$$\circ \ \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{a}$$

$$\circ \ \boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}$$

$$\circ \ \lambda \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \lambda \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b})$$

• For unit vector i, j, k

$$\circ \ \boldsymbol{i} \cdot \boldsymbol{i} = \boldsymbol{j} \cdot \boldsymbol{j} = \boldsymbol{k} \cdot \boldsymbol{k} = 1$$

$$\circ \ \mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$$

Outer product

• Assume right-hand side coordinate system

• For $\mathbf{a} = \vec{OA}, \mathbf{b} = \vec{OB}, \mathbf{c} = \mathbf{a} \times \mathbf{b}$: outer product

$$\circ |\mathbf{c}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

• Angle of c: perpendicular to the surface of |a||b|

• If \boldsymbol{a} and \boldsymbol{b} are in parallel (sin $\theta = 0$), \boldsymbol{a} or $\boldsymbol{b} = \boldsymbol{o}$, $c = \boldsymbol{o}$

• Theorem:

$$\circ \ \boldsymbol{a} \times \boldsymbol{a} = \boldsymbol{o}$$

$$\circ \ \boldsymbol{a} \times \boldsymbol{b} = -\boldsymbol{b} \times \boldsymbol{a}$$

$$ullet$$
 $\lambda oldsymbol{a} imes oldsymbol{b} = oldsymbol{a} imes \lambda oldsymbol{b} = \lambda (oldsymbol{a} imes oldsymbol{b})$

$$\circ \ \boldsymbol{i} \cdot \boldsymbol{i} = \boldsymbol{j} \cdot \boldsymbol{j} = \boldsymbol{k} \cdot \boldsymbol{k} = ***0 ***$$

\circ $i \cdot j = k, j \cdot k = i, k \cdot i = j$

Vector area

- Vector area: vector combining an area quality w/ dimension
- Assume surface S on signed area in two dimension system
 - \circ Vector S can be expressed with its unit vector n

$$\mathbf{S} = \mathbf{S} \, \mathbf{n}$$

- Rotation of vector *n* express the sign
 - anticlockwise (right-hand screw): plus
 - clockwsise (left-hand screw): minus
- $\circ~$ If S is subset of $S_i,$ the vector area $\boldsymbol{\mathcal{S}}$ can be

$$lacksquare S = \sum S_i oldsymbol{n}_i$$

Projection

- Area vector is used to calculate surface integral
 - Treat flus of a vector filed through a surface
 - \circ Projection area A on plane S can be calculated by dot product with target plane unit normal m

$$lacksquare A = m{S} \cdot m{m}$$

 \circ If the two surface has same xy and angle θ for z-coordinate

$$\circ A = |S| \cos \theta$$

О

Volume

• Volume *V* can be calculated by area vector

• Calculate volume *V* of tilted cylinder

■ Bottom plane: *D*

■ Area vector: **S**

■ Direction: **A**

• Assume its angle: θ

• Hight $h = |\mathbf{A}| \cos \theta$

$$\circ$$
 Volume $V = h |oldsymbol{S}| = |oldsymbol{A}| |oldsymbol{S}| \cos heta = |oldsymbol{A}| |oldsymbol{S}|$

• Volume $V = |{m A}||{m S}|$ xpress the amount of flow ${m A}$ which punctulate the plane ${\it D}$

Vector analysis

Derivation for vector function

- Vector function $\mathbf{F}(t)$: vector \mathbf{F} is a function of scalar t
 - \circ if vector \mathbf{F} is continuous to the t: \mathbf{F} is continuous
- Assume vector $\mathbf{F}(t) = \vec{OP}$, where O is origin(fixed point)
 - o Point P draw a curved line

Characeristics

- ullet A limit: if vector $m{A}$ satisfy $\lim_{n o\infty}|m{A}_n-m{A}|=0$ for $m{A}_0$... $m{A}_{
 m n}$
 - $\circ \ \lim_{n o \infty} oldsymbol{A}_n = oldsymbol{A},$ and $oldsymbol{A}$ is a limit of $oldsymbol{A}_0 \ldots oldsymbol{A}_{
 m n}$
- A limit: if vector function ${\pmb F}$ (t) has const. vector ${\pmb A}$, and it satisfy $\lim_{t o t_0} |{\pmb F}(t) {\pmb A}| = 0$ for ${\sf t} o {\sf t}_0$
 - $\circ \lim_{t \to t_0} extbf{\emph{F}}(t) = extbf{\emph{A}} ext{ and } extbf{\emph{A}} ext{ is a limit of } extbf{\emph{F}}(t) ext{ for } t o t_0$
 - \circ For $extbf{\emph{F}}(t) = F_1(t) extbf{\emph{i}} + F_2(t) extbf{\emph{j}} + F_3(t) extbf{\emph{k}}, extbf{\emph{A}} = A_1 extbf{\emph{i}} + A_2 extbf{\emph{j}} + A_3 extbf{\emph{k}}$
 - $lacksquare \lim_{t o t_0} oldsymbol{F}_1(t) = A_1, \lim_{t o t_0} oldsymbol{F}_2(t) = A_2, \lim_{t o t_0} oldsymbol{F}_3(t) = A_3$
- Continuity: if vector function F(t) satisfy $\lim_{t\to t_0} F(t) = F(t_0)$ for $t\to t_0$, F(t) is continuous.
- Derivative: if $\lim_{\Delta t \to 0} \frac{\Delta F}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta F(t_0 + \Delta t) F(t_0)}{\Delta t}$ is available, this is called as differential coefficient $F(t_0)$
 - For each t, the vector function $\vec{F}(t_0)$ or $\frac{d\vec{F}}{dt}$ is called as derivative or derivative vector
 - Similary, derivative can be taken as $\mathbf{F}'(t_0)$ and $\mathbf{F}^{(n)}(t_0)$
- Geometric meaning
 - \circ Assume $\vec{OP} = extbf{\emph{F}}(t), \vec{OQ} = extbf{\emph{F}}(t+\Delta)$

$$\frac{d\mathbf{F}}{dt}$$

$$\mathbf{P}$$

$$\mathbf{F}(t_0)$$

$$\mathbf{F}(t_0 + \Delta t)$$

$$ullet$$
 $\Delta extbf{\emph{F}} = extbf{\emph{F}}(t+\Delta t) - extbf{\emph{F}}(t) = ec{PQ}$

■ Take $\Delta t \rightarrow 0$ then ΔF becomes tangent

Theorems for derivation

• Vector function F(t) and G(t), scalar function f(t), satisfy followings

• (sum):
$$\frac{d}{dt}(\mathbf{F} + \mathbf{G}) = \frac{d}{dt}\mathbf{F} + \frac{d}{dt}\mathbf{G}$$

• (scalar prod):
$$\frac{d}{dt}(f\mathbf{F}) = \frac{df}{dt}\mathbf{F} + f\frac{d}{dt}\mathbf{F}$$

• (inner prod):
$$\frac{d}{dt}(\mathbf{F} \cdot \mathbf{G}) = \frac{d\mathbf{F}}{dt} \cdot \mathbf{G} + \frac{d\mathbf{G}}{dt} \cdot \mathbf{F}$$

• (outer prod):
$$\frac{d}{dt}(\mathbf{F} \times \mathbf{G}) = \frac{d\mathbf{F}}{dt} \times \mathbf{G} + \frac{d\mathbf{G}}{dt} \times \mathbf{F}$$

• (sum):
$$\frac{d}{dt}(\mathbf{F} + \mathbf{G}) = \frac{d}{dt}\mathbf{F} + \frac{d}{dt}\mathbf{G}$$

• (scalar prod): $\frac{d}{dt}(f\mathbf{F}) = \frac{df}{dt}\mathbf{F} + f\frac{d}{dt}\mathbf{F}$
• (inner prod): $\frac{d}{dt}(\mathbf{F} \cdot \mathbf{G}) = \frac{d\mathbf{F}}{dt} \cdot \mathbf{G} + \frac{d\mathbf{G}}{dt} \cdot \mathbf{F}$
• (outer prod): $\frac{d}{dt}(\mathbf{F} \times \mathbf{G}) = \frac{d\mathbf{F}}{dt} \times \mathbf{G} + \frac{d\mathbf{G}}{dt} \times \mathbf{F}$
• For $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$, $\frac{d\mathbf{F}}{dt} = \frac{dF_1}{dt} \mathbf{i} + \frac{dF_2}{dt} \mathbf{j} + \frac{dF_3}{dt} \mathbf{k}$
• If \mathbf{F} is constant, $\frac{d\mathbf{F}}{dt}$ is \mathbf{o} , or perpendicular s.t. $\mathbf{F} \cdot \frac{d\mathbf{F}}{dt} = 0$

• If
$$F$$
 is constant, $\frac{dF}{dt}$ is o , or perpendicular s.t. $F \cdot \frac{dF}{dt} = 0$

High order derivatives, partial difference

• High order derivatives can defined as similar to 1st order

$$\circ \frac{d^2 \mathbf{F}}{dt^2}, \frac{d^3 \mathbf{F}}{dt^3}, \dots \frac{d^n \mathbf{F}}{dt^n}$$

$$egin{array}{l} \circ rac{d^2oldsymbol{F}}{dt^2},rac{d^3oldsymbol{F}}{dt^3},\ldotsrac{d^noldsymbol{F}}{dt^n} \ \circ ext{ For }oldsymbol{F}=F_1oldsymbol{i}+F_2oldsymbol{j}+F_3oldsymbol{k},rac{d^noldsymbol{F}}{dt^n}=rac{d^nF_1}{dt^n}oldsymbol{i}+rac{d^nF_2}{dt^n}oldsymbol{j}+rac{d^nF_3}{dt^n}oldsymbol{k}. \end{array}$$

Partial difference also defined like derivation

$$\circ \ \, \boldsymbol{A} = \boldsymbol{A}(u,v), \tfrac{\delta \boldsymbol{A}}{\delta u}, \tfrac{\delta \boldsymbol{A}}{\delta v}, \tfrac{\delta^2 \boldsymbol{A}}{\delta v^2}, \tfrac{\delta^2 \boldsymbol{A}}{\delta v \delta u}, \tfrac{\delta^2 \boldsymbol{A}}{\delta u \delta v}, \tfrac{\delta^2 \boldsymbol{A}}{\delta u \delta v}, \tfrac{\delta^2 \boldsymbol{A}}{\delta u^2}$$

• Total difference of ${m A}(u,v)$ can be defined as

$$\delta oldsymbol{A}(u,v) = rac{\delta oldsymbol{A}}{\delta v} du + rac{\delta oldsymbol{A}}{\delta u} dv$$

• It approx. small delta of δA by small delta of du, dv

$$lacksquare$$
 For $m{A}=A_1m{i}+A_2m{j}+A_3m{k}, \deltam{A}=\delta A_1m{i}+\delta A_2m{j}+\delta A_3m{k}$

Gradient of scalar

• Scalar function: f(x, y, z) can be defined in unique

• This field is called scalar field *f*

• Distribution of temperature, mass, voltage

• Vector function: $\mathbf{F}(x, y, z)$ can be defined in unique

• This field is called vector field **F**

• Electric field, magnetic field, gravity field

• Gradient of scalar: grad $f=
abla f=rac{\partial f}{\partial x}m{i}+rac{\partial f}{\partial y}m{j}+rac{\partial f}{\partial z}m{k}$

∘ ∇ Hamilton operator

 $\nabla (f+g) = \nabla f + \nabla g, \ \nabla \lambda f = \lambda \nabla f, \ \nabla (fg) = g \nabla f + f \nabla g$

 $lacksymbol{ ilde{\phi}}
abla \phi(f) = rac{d\phi}{df}
abla f, ext{ where } \phi(\mathbf{f}) ext{ is a funtion of } \mathbf{f}$

Equipotential surface

• If group of points P(x, y, z) satisfy f(x, y, z) = c (c: const), P is called equipotential surface

 $\circ~$ In the case of $f(x,y,z)=x^2+y^2+z^2$

Surface of sphere

• In electro-magnetics, electron (q) create divergence of electric lines (electric field: E), and electric line create equipotential voltage (V)

Divergence of vector

- For vector $m{F}(x,y,z) = F_1(x,y,z) m{i} + F_2(x,y,z) m{j} + F_3(x,y,z) m{k}$ • div $m{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \nabla \cdot m{F}$ is called as divergence
- Vector **F**, **G** scalar f satisfy following conditions

$$\circ \operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div}(\mathbf{F}) + \operatorname{div}(\mathbf{G})$$

$$\circ \operatorname{div}(f\mathbf{G}) = \operatorname{grad}(f) \cdot \mathbf{G} + f \operatorname{div}\mathbf{G}$$

$$\circ \,\, \mathrm{div}\, \mathrm{grad}(f) = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$$

- Physical meaning
 - $\operatorname{div} \mathbf{F} > 0$: something spout (flow out)
 - $\operatorname{div} \mathbf{F} < 0$: something swallowed (flow in)

• div
$$\mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \nabla \cdot \mathbf{F}$$

- Assume flow \mathbf{F} of small box dxdydz
 - Assume flow **F** of area $d\mathbf{S}_1 = (-dydz, 0,0)$ at $x \frac{dx}{2}$
 - Assume flow **F** of area $d\mathbf{S}_2 = (+dydz, 0,0)$ at $x + \frac{dx}{2}$

$$\bullet \quad \mathbf{F} \cdot d\mathbf{S} = \mathbf{F} \cdot d\mathbf{S}_2 + \mathbf{F} \cdot d\mathbf{S}_1$$

$$ullet = F_1(x + rac{dx}{2}, y, z)(dydz, 0, 0) + F_1(x - rac{dx}{2}, y, z)(-dydz, 0, 0)$$

$$=\frac{\partial F_1}{\partial x}dxdydz$$

■ Diff. flow in (the red arrow) and out (the gray arrow)

Rotation of vector

• For vector $m{F}(x,y,z) = F_1(x,y,z) m{i} + F_2(x,y,z) m{j} + F_3(x,y,z) m{k}$, rot $m{F} = (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}) m{i} + (\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}) m{j} + (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}) m{k} = \nabla \times m{F}$ is called as rotation

- rot $\mathbf{F} = (\operatorname{rot}_1 \mathbf{F})\mathbf{i} + (\operatorname{rot}_2 \mathbf{F})\mathbf{j} + (\operatorname{rot}_3 \mathbf{F})\mathbf{k}$
- Vector **F**, **G**, scalar f satisfy following conditions
 - $\circ rot(\mathbf{F} + \mathbf{G}) = rot(\mathbf{F}) + rot(\mathbf{G})$
 - $\circ \operatorname{rot}(f\mathbf{G}) = \operatorname{grad}(f) \times G + f \nabla \times G$
- · Physical meaning
 - rot F > 0: right-hand side (screw) rotation
 - rot **F**< 0: left-hand side (screw) rotation

Physical meaning of rotation

- Focus 3rd term (k) of rotation

 - If $\frac{\partial F_2}{\partial x} > 0$, it generates right-hand side rotation If $-\frac{\partial F_1}{\partial y} > 0$, it generates right-hand side rotation
 - \circ If $(\frac{\partial \tilde{F}_2^s}{\partial x} \frac{\partial F_1}{\partial y}) k > 0$ means right-hand side rotation is available

Examples

Examples

- \Box For r = xi + yj + zk,
 - \square (Q1) Calculate div r
 - \square (A1) div $\mathbf{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$
 - (Volume is positive for all xyz)
 - \square (Q2) Calculate rot r

(No rotating vector here)

Examples

- \Box For $\boldsymbol{v} = -y\boldsymbol{i} + x\boldsymbol{j}$,
 - \square (Q1) Calculate div \boldsymbol{v}
 - \square (A1) div $\boldsymbol{v} = \frac{\partial (-y)}{\partial x} + \frac{\partial x}{\partial y} = 0$
 - □ This equation is $x^2 + y^2 = c$ (c: const.)
 - No flow in/out, rotation
 - □ (Q2) Calculate rot v

$$\Box (A2) \text{ rot } \boldsymbol{v} = \left(\frac{\partial 0}{\partial y} - \frac{\partial x}{\partial z}\right) \boldsymbol{i} + \left(\frac{\partial (-y)}{\partial z} - \frac{\partial 0}{\partial x}\right) \boldsymbol{j} + \left(\frac{\partial x}{\partial x} - \frac{\partial (-y)}{\partial y}\right) \boldsymbol{k} = 2\boldsymbol{k}$$

14

2023/12/13

Exercise

• Assume **a**, **b** is constant vector, $|\mathbf{r}(t)| = r(t)$, calculate its derivation

$$\circ r\mathbf{r} + (\mathbf{a} \cdot \mathbf{r})\mathbf{b}$$

$$\qquad (r\mathbf{r} + (\mathbf{a} \cdot \mathbf{r})b)$$

$$\mathbf{\cdot } (\mathbf{r}\mathbf{r} + (\mathbf{a} \cdot \mathbf{r})b)'$$

$$\mathbf{\cdot } = \mathbf{r}'\mathbf{r} + r\mathbf{r}' + (\mathbf{a} \cdot \mathbf{r}')\mathbf{b}$$

$$\circ \frac{\mathbf{r}}{r^2}$$

$$ullet = rac{\mathbf{r}^{'}}{r^2} - rac{\mathbf{r}}{r^3}$$

• Calculate gradient for following functions

$$\circ \ f = xz^3 - x^2y$$
, calculate ∇f at point P(1,-2,2)

•
$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

$$= (z^3 - 2xy)\mathbf{i} + (-x^2)\mathbf{j} + (3xz^2)\mathbf{k}$$

$$= (8+4)\mathbf{i} + (-1)\mathbf{j} + 12\mathbf{k} = 12\mathbf{i} - 1\mathbf{j} + 12\mathbf{k}$$

$$\circ \ f = x^2y^2 - 2xz^3$$
, calculate ∇f at point P(1,-2,1)

•
$$6\mathbf{i} - 4\mathbf{j} - 6\mathbf{k}$$

• Calculate divergence of following functions

$$\begin{array}{ccc} \circ & x^2y\mathbf{i} - 2y^2z^2\mathbf{j} + 3z^3x^3\mathbf{k} \\ & \bullet & div\mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \\ & \bullet & = 2xy - 4yz^2 + 9z^2x^3 \end{array}$$

• Calculate rotation of following functions

Integral of Vector

Curvilinear Vector

- Assume a smooth curve C from point A to B, and scalar function f(P) = f(x, y, z) is continuous in curve C
 - Think curve C can divide into several arcs $\Delta s_1 \dots \Delta s_2$
 - Points A_n divide a curve, these weight are points P_n
 - Assume limit of $n \to \infty$, $\Delta s_i \to 0$; curvilinear inntegral
 - $lacksquare \lim_{n o\infty,\Delta s_i o 0}\sum_{i=1}^n f(P_i)\Delta s_i=\int_C f(P)ds=\int_C f(x,y,z)ds$
 - Point D on curve C is function of the length (s) of arc arc(AD)

- Point D on curve C is function of the length(s) of ${\rm arc} \hat{AD}$
 - o (Any) point D can be expressed as function of length s

$$\mathbf{r} = \mathbf{r}(s) = x(s)\mathbf{i} + y(s)\mathbf{j} + z(s)\mathbf{k}$$

$$ullet$$
 $\int_C f(x,y,z) ds = \int_A^B f(x(s),y(s),z(s)) ds$

• If we use general parameter *t* to express the curve *C*;

$$\circ \mathbf{r} = \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

$$\circ ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

$$\circ \int_C f(x,y,z) ds = \int_lpha^eta f(x(s),y(s),z(s)) \sqrt{(rac{dx}{dt}^2 + rac{dy}{dt}^2 + rac{dz}{dt}^2)} dt$$

Experssions of curvilinear integral

- Several expressions are available for curvilinear integral
 - $\circ \int_C f ds = \int_A^B f ds = \int_{AB} f ds$ $\circ \int_{AB} f ds = - \int_{RA} f ds$
- If point P is on the curve C, $\int_{AB}fds=\int_{AP}fds+\int_{PR}fds$
- If the curve C is a closed curve, $\oint_C f ds = \oint_{AB} f ds$

Example of curvilinear integral

- Calculate curvilinear integral of $f(x, y, z) = y^2z + z^2x + x^2y$
 - Route 1: $O(0, 0, 0) \rightarrow O(3, 0, 0) \rightarrow R(3, 1, 0) \rightarrow P(3, 1, 2)$
 - ullet $\int_{R1}fds=\int_{O}^{Q}fds+\int_{Q}^{R}fds+\int_{R}^{P}fds$
 - $egin{array}{ll} ullet &=\int_0^3 f(x,0,0) dx + \int_0^1 f(3,y,0) dy + f_0^2 f(3,1,z) dz \ &=rac{65}{2} \end{array}$
 - Route 2: \overrightarrow{OP}
 - $\vec{OP} = \mathbf{r} = 3t\mathbf{i} + t\mathbf{j} + 2t\mathbf{k}(0 \le t \le 1)$ $ds = \sqrt{(sdt)^2 + (1dt)^2 + (2dt)^2} = \sqrt{14}dt$

Curvilinear integral for vector

- Assume a smooth curve C from point A to B, and vector function $\mathbf{F}(P) = \mathbf{F}(x, y, z)$ is continuous in curve C
 - o **r**(s) is a position vector from origin O to the point P on C
 - Assume $\mathbf{t} = \frac{d\mathbf{r}}{ds}$ is a tangent of curve C at point P
 - Curvilinear integral for the vector \mathbf{F} : $\int_C \mathbf{F} \cdot \mathbf{t} ds$
 - Assume function of C: $\mathbf{r}(s) = \mathbf{x}(s)\mathbf{i} + \mathbf{y}(s)\mathbf{j} + \mathbf{z}(s)\mathbf{k}$, $\mathbf{F} = \mathbf{F}_1\mathbf{i} + \mathbf{F}_2\mathbf{j} + \mathbf{F}_3\mathbf{k}$
 - ullet $\int_C \mathbf{F} \cdot \mathbf{t} ds = \int_C (rac{F_1 dx}{ds} + rac{F_1 dy}{ds} + rac{F_1 dz}{ds})$
 - Scalar $\mathbf{F} \cdot \mathbf{t}$ is a tangent component of the vector \mathbf{F}

Characteristics of curvilinear integral for vector

- Curvilinear integral for vector has following characteristics
 - For scalar field f(x, y, z) and vector field $\mathbf{F}(x, y, z)$

 - $\int_C \mathbf{F}(x,y,z) d\mathbf{r} = \mathbf{i} \int_C \mathbf{F}_1 dx + \mathbf{j} \int_C \mathbf{F}_2 dy + \mathbf{k} \int_C \mathbf{F}_3 dz$

$$\begin{array}{l} \bullet \int_C \mathbf{F} \times d\mathbf{r} = \int_C \mathbf{F} \times \mathbf{r} ds = \mathbf{i} \int_C (F_2 dz - F_3 dy) + \mathbf{j} \int_C (F_3 dz - F_1 dy) + \mathbf{k} \int_C (F_1 dz - F_2 dy) \end{array}$$

Exercise

- Calculate curvilinear integral $\int_C y d{f r}$
 - C: $x = a \cos(t)$, $y = a \sin(t)$, z = ht, $(0 \le t \le 2\pi)$
- Solution

Potential

- If scalar function $\varphi(x, y, z)$ is aviable for $\mathbf{F}(x, y, z) = \operatorname{grad}\varphi$; φ is called as potential or scalar potential of \mathbf{F}
- Potential has following characteristics:
 - Assume vector field $\mathbf{F}(x, y, z)$ has potential φ

•
$$\int_A^B \mathbf{F} \cdot d\mathbf{r} = -\int_A^B
abla arphi \cdot d\mathbf{r} = arphi(A) - arphi(B)$$

• If curve C is a closed curve

Surface integral for scalar

- Assume smooth curved surface S
 - Scalar function f(P) = f(x, y, z) is continuous in S
 - Assume S can be divided into small area $\Delta S_1 \dots \Delta S_n$, and any point of $P_1 \dots P_n$
 - $lacksquare ext{If } \lim_{n o\infty,\Delta S_i o 0} \sum_{i=1}^n f(P_i) \Delta S_i ext{ is available, this is called surface integral for scalar } \int_S f(x,y,z) dS$
 - If f(P) = 1, $\int_{S} f(x, y, z) dS$ is area of S.
- for the curved surface, outside is the front.

Formula of surface integral

$$\circ \int_S f(x,y,z) dS = \iint_D f(x,y,g(x,y)) \sqrt{p^2+q^2+1} dx dy$$

$$\circ = \iint_D f(x, y, g(x, y)) \frac{dxdy}{|\mathbf{n} \cdot \mathbf{k}|}$$

• where, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, **n** is unit normal vector of *S*, *D* is projective of *S* to *xy*-coordinate

Proof

- Think small surface dS on S, its projective in xy-coordinate can express dydx
- Define angle of unit normal vectors \mathbf{n} , \mathbf{k} as γ
 - \circ dS|cos λ | = dxdy
- $\mathbf{n}=rac{\pm 1}{\sqrt{p^2+q^2+1}}$ when $p=rac{\partial z}{\partial x}, q=rac{\partial z}{\partial y}$
- Thus, $|\cos \gamma| = |\mathbf{n} \cdot \mathbf{k}| = \frac{1}{\sqrt{p^2 + q^2 + 1}}$ $dS = \frac{dxdy}{|\cos \gamma|} = \frac{dxdy}{|\mathbf{n} \cdot \mathbf{k}|}$
- $\int_{S} f(x,y,z) dS = \iint_{D} f(x,y,g(x,y)) \frac{dxdy}{|\mathbf{n}\cdot\mathbf{k}|}$ (z = g(x, y))

Surface integral for vector

- For vector field **F** and unit vector **n** of surface Sintegral of these inner products is called as surface integral of vector
 - $\circ \int_{S} \mathbf{F} \cdot \mathbf{n} dS$
 - F_n is a **n** component of vector $\mathbf{F}(\mathbf{F} \cdot \mathbf{n} = F_n)$
 - Assume $\mathbf{n}dS = d\mathbf{S}$, $d\mathbf{S}$ is called area vector
 - $\int_S \mathbf{F} \cdot \mathbf{n} dS = \int_S F_n dS = \int_S \mathbf{F} \cdot d\mathbf{S} = \oint \mathbf{F} \cdot \mathbf{n} dS$ (If S is closed surface)
 - For $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{i} + F_3 \mathbf{k}$
 - ullet $\int \mathbf{F} \cdot \mathbf{n} dS = \iint_S (F_1 dy dz + F_2 dz dx + F_3 dx dy)$
 - Several expressions for surface integral of vectors
 - $ullet \int \mathbf{F} dS = \mathbf{i} \int_S F_1 dS + \mathbf{j} \int_S F_2 dS + \mathbf{k} \int_S F_3 dS$
 - $\int_{S} \mathbf{F} \times \mathbf{b} dS = \int_{S} \mathbf{F} \times d\mathbf{S}$

Formula of surface integral

- If surface S is given for z = g(x, y), surface integral of F(x, y, z) on S can be expressed as follows,
 - $\circ \int_S \mathbf{F}(x,y,z) dS = \iint_D \mathbf{F}(x,y,g(x,y)) \sqrt{p^2+q^2+1} dx dy$
 - where, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, D is projective of S to xy-coordinate

Surface integral in physics

- In scalar: $\int_{S} \rho(x,y,z) dS$
 - In the case ρ is a function of mass density on surface S
 - Its integral: total mass of surface S
- In vector: $\int_S \mathbf{v}(x,y,z) \cdot dS$
 - In the case v is a function of liquid velocity on surface S
 - Its integral: total amount of liquid flow per unit time

Volume integral

- Connect divergence on vector field and flow at the surface
 - Assume volume *V* surrounded by surface *S*
 - lacksquare Volume integral of scalar f: $\int_V f(x,y,z) dV$
 - lacksquare Volume integral of vector $f F: \int_V {f F}(x,y,z) dV$
 - ullet $\int_V \mathbf{F}(x,y,z) dV = \mathbf{i} \int_V F_1 dV + \mathbf{j} \int_V F_2 dV + \mathbf{k} \int_V F_3 dV$
- Preliminary
 - For volume V surrounded by surface S, $\mathbf{n} = \&\cos; \alpha \mathbf{i} + \&\cos; \mathbf{j} + \&\cos; \mathbf{k}$, following equation satisfies,

$$egin{aligned} & \circ \int_{V} rac{\partial f}{\partial x} dV = \int_{S} f \cos lpha dS \ & \int_{V} rac{\partial f}{\partial y} dV = \int_{S} f \cos eta dS \ & \int_{V} rac{\partial f}{\partial z} dV = \int_{S} f \cos \gamma dS \end{aligned}$$

Proof

- Proof $\int_V \frac{\partial f}{\partial z} dV = \int_S f \cos \gamma dS$
- Assume two points P₁, P₂ on S
 - $z_2 \ge z_1$: z_2 coves upper side of S, z_1 coves lower side if S
- $\int_V \frac{\partial f}{\partial z} dV$ means volume difference in z-axis, thus
 $\int_V \frac{\partial f}{\partial z} dV = \iiint_V \frac{\partial f}{\partial z} dx dy dz = \iint_D \int_{z_1}^{z_2} \frac{\partial f}{\partial z} dz dx dy$ $=\iint_{D}[f]_{z_{1}}^{z_{2}}dxdy=\iint_{D}f(x,y,z_{2})-f(x,y,z_{1})dxdy$
- ullet For z-axis, ${
 m z}_2$ is upper ($dS\cos\gamma=dxdy$), ${
 m z}_1$ is lower thus ($dS\cos\gamma=$ -dxdy

$$\circ \iint_D f(x,y,z_1) dx dy = -\int_{S_1} f(x,y,z) dS$$

$$egin{array}{l} \circ \int_{V} rac{\partial f}{\partial z} dV = \int_{S_{2}} f \cos \gamma dS + \int_{S_{1}} f \cos \gamma dS \ = \int_{S} f \cos \gamma dS \end{array}$$

Divergence theorem(Dauss' theorem)

- Connect divergence on vector field and flow at the surface
 - Assume volume V surrounded bt surface S w/unit vector

•
$$\int_V div \mathbf{F} dV = \int_V
abla \cdot \mathbf{F} dV = \int_S \mathbf{F} \cdot \mathbf{n} dS$$

- Physical meaning
 - $\int_S \mathbf{F} \cdot \mathbf{n} : amount of flow which path through the area S$ $\int_V div \mathbf{F} dV : amount of flow out$

Extension of Gauss' theorem

- Assume the point P on close surface S, express vector from origin O(0, 0, 0) to P as $\stackrel{\rightarrow}{P} = \mathbf{r}, \mathbf{n}$ is unit normal vector of S
- Following equation satisfy the following

$$\circ \int_{S} rac{\mathbf{r}}{r^{3}} \cdot \mathbf{n} dS = egin{cases} 0 ext{(when O is outside of S)} \ 2\pi ext{(when O is on the surface S)} \ 4\pi ext{(when O is inside of S)} \end{cases}$$

$$\int_{S} \frac{\mathbf{r}}{r^3} \cdot \mathbf{n} dS = 4\pi \qquad \int_{S} \frac{\mathbf{r}}{r^3} \cdot \mathbf{n} dS = 2\pi$$

$$\int_{S} \frac{\mathbf{r}}{r^3} \cdot \mathbf{n} dS = 2\pi$$

Exercise

- ullet For function $f(x,y,z)=x^2-yz+z^2$, calculate its curvilinear integral $\int_C f ds$
 - Case 1: C is a line from $P_1(1,2,0)$ to $P_2(1,2,3)$

- Case 2: C is a line from $P_1(0,0,0)$ to $P_2(1,2,3)$
 - $x = t, y = 2t, z = 3t (0 \le t \le 1)$

•
$$ds = \sqrt{1^2 + 2^2 + 3^2} dt = \sqrt{14} dt$$

$$\int_C f(x(s) + y(s) + z(s)) ds = \int_0^1 (t^2 - 6t^2 + 9t^2) \sqrt{14} dt = 4\sqrt{14} \int_0^1 t^2 dt = rac{4\sqrt{14}}{3}$$

- Assume the surface function 2x + 2y + z 4 = 0, and its intercepts are points A, B, C and ABC create surface S
 - \circ Calculate surface integral of $f(x,y,z)=4x-y^2+2x-12$

• S:
$$2x + 2y + z - 4 = 0$$
, $f = 4x - y^2 + 2z - 12$

$$ullet$$
 Surface dunction: $z=g(x,y)=4-2x-2y$ $p=rac{\partial z}{\partial x}=-2, q=rac{\partial z}{\partial y}=-2$ $dS=\sqrt{p^2+q^2+1}dxdy=3dxdy$

•
$$f(x, y, g(x, y)) = -(y + 2)^2$$

- Assume the surface function: x + y + z 1 = 0, and its intercepts are points P, Q, R and PQR craete surface S
 - \circ Calculate surface integral $\int_S \mathbf{F} \times \mathbf{n} dS$ for $\mathbf{F} = y\mathbf{k}$

Surface function
$$S=g(x,y)=1-x-y$$
 $p=\frac{\partial z}{\partial x}=-1, q=\frac{\partial z}{\partial y}=-1$

• unit normal vector of S is :
$$\mathbf{n} = \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$$

$$\begin{split} & \quad \mathbf{F} \times \mathbf{n} = \mathbf{i} \int_C (F_2 dz - F_3 dy) + \mathbf{j} \int_C (F_3 dz - F_1 dy) + \mathbf{k} \int_C (F_1 dz - F_2 dy) \\ & \quad = \mathbf{i} (0 \cdot \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \cdot y) + \mathbf{j} (y \cdot \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \cdot 0) + \mathbf{k} (0 \cdot \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \cdot 0) \\ & \quad - \frac{y}{\sqrt{3}} (\mathbf{i} - \mathbf{y}) \end{split}$$

$$ullet$$
 $dS=\sqrt{p^2+q^2+1}dxdy=\sqrt{3}dxdy$, thus

$$\begin{array}{l} \bullet \quad \int_{S} \mathbf{F} \times \mathbf{n} dS = - \iint_{D} \frac{y}{\sqrt{3}} (\mathbf{i} - \mathbf{y}) \sqrt{3} dx dy \\ = -(\mathbf{i} - \mathbf{j}) \int_{0}^{1} \int_{0}^{1} 1 - x)_{0} y dx dy \\ -(\mathbf{i} - \mathbf{j}) \int_{0}^{1} \frac{1 - x^{2}}{2} dx \\ -(\mathbf{i} - \mathbf{j}) \left[\frac{1 - x^{3}}{6}\right]_{0}^{1} = \frac{\mathbf{i} - \mathbf{j}}{6} \end{array}$$

• Assume the volume and surface of unit sphere as V, S, and $\mathbf{F} = ax\mathbf{i} + by\mathbf{j} + cz\mathbf{k}$.

Calculate integral $\int_S \mathbf{F} \cdot \mathbf{n} dS$

$$\begin{array}{l} \circ \ \mathbf{F} \cdot \mathbf{n} dS = \int_V \nabla \cdot \mathbf{F} dV \\ \int_V (\frac{\partial F_1}{x} + \frac{\partial F_2}{y} + \frac{\partial F_3}{z}) dV \\ \int_V (a+b+c) dV \\ = (a+b+c) \int_V dV = \frac{4\pi}{3} (a+b+c) \ \text{Volume of unit sphere r= 1} \ \text{, V} = 4\pi r^2/3 \end{array}$$