PROBLEM PG

AN ADTENDED WORKING AT THE FREQUENCY f=3 GHz HAS A RADIATION REDITIONER EQUAL TO $R=50\,\mathrm{L}$, A RADIATION EFFICIENCY $e_1=1$ AND 4 GAIN $G_R=9\,\mathrm{d}B$

PTOMUSIAS

- A) EFFECTIVE AREA
- B) EFFECTIVE HEIGHT

SOLUMON

A) WE JINIT BY CHLOUDDING THE WAVELENGTH $\lambda = C = \frac{3.40^{\frac{3}{3}}}{3.40^{\frac{3}{9}}} = 0.1 \text{ m}$

WE OBJECTIVITY GED

THE TEXT GIVES THE COIN IN A LOCALITHMIC SCALE GIB = 9 dB

AND WE CAN EASILY OBTAIN G IN THE LINEAR SCALE

GB= 10 log10 G = GB

IN OOR PROBLEM G = 10 TO = 7,943

THE SHE AND THE SERVERS FROM THE CORN :

 $G = \frac{G_{TT}}{\lambda^2} A_e$ $A_e = G \frac{\lambda^2}{4\pi}$

12 OUR PROBLEM A = 7,993 O,01 = 0,0063 m2

B) IN ORDER TO SERIUF THE EFFECTIVE HEIGHT, LET UT CONTINER THE
EQUIVACUT CIRCUIT OF A RECEIVING ANTENDA

THE EFFECTIVE HEIGHT IS $R = \frac{V_A}{E}$ where E is the Electric Field Illumination of paramaments

IF THE CONJUGATE NATION OF CONDITION IS FOLFILLED ZA = 3/2 = R+jX

AND THE MAXIMUM POWER BECINFRED TO THE LOOD IT

$$P = \frac{1}{2} R |I|^2 = \frac{1}{2} R \left[\frac{V_A}{2R} \right]^2 = \frac{1}{8} \frac{|V_A|^2}{R}$$
where since $V_A = h \in \mathbb{R}$

Since y_{1} course state of y_{2} can the of leading rawood mountains the y_{1} course y_{2} and y_{3} course y_{4} and y_{5} and y_{6} course y_{6} and y_{7} course y_{6} and y_{7}

WE OBTAIN I L'IEI = Ae 1 |EI = A' = 4 R Ae

IN THE GHT PYCOSPERS ALL MOUNTED TOURNS ENFRONCE THE CHE ALLA CLUB

$$A = 2\sqrt{\frac{R}{\gamma}}A_{e} = 2\sqrt{\frac{R}{\gamma}}G\frac{3}{\gamma} = 2\sqrt{\frac{R}{\gamma}}G\frac{3}{\gamma} = \frac{\lambda}{\pi}\sqrt{\frac{R}{\gamma}}G\frac{3}{\gamma}$$

AND THE DONFEDOX RESULT IS

$$h = \frac{0.1}{17} \sqrt{\frac{50.7943}{120}} = 0.0579 \text{ m}$$