Contents

Problem 1											 										2
Problem 2											 										3
Problem 3											 										3
Problem 4											 										4
Problem 5											 										4
Problem 6											 										6
Problem 7																					8
Problem 8											 										8
Problem 9											 										ç
Problem 10											 										ç
Problem 11											 										ç
Problem 12											 										10
Problem 13											 										11
Problem 14	٠.										 										11
Problem 15											 										11
Problem 16											 										12
Problem 17	٠.										 										13
Problem 18											 										13
Problem 19																					13
Problem 20											 										14
Problem 21											 										14
Problem 22											 										16
Problem 23																					17
Problem 24																					17

Math 350 - Advanced Calculus Homework 10

Chan Nguyen

December 9, 2012

Problem 1

(a) Prove that if f and g are continuous on [a,b] if $m \le f(x) \le M$ for all x in [a,b] and if g is non-negative on [a,b] then

$$m \cdot \int_a^b g \le \int_a^b f \cdot g \le M \cdot \int_a^b g$$

Proof. Since $m \leq f(x) \leq M$ and g(x) is non-negative on [a,b], we have

$$mg(x) \le f(x) \cdot g(x) \le Mg(x)$$

Thus

$$m \int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M \int_{a}^{b} g(x)dx$$

(b) Use part (a) to prove that

$$\frac{1}{7\sqrt{2}} \le \int_0^1 \frac{x^6}{\sqrt{1+x^2}} dx \le \frac{1}{7}$$

Proof. Let

$$f(x) = \frac{1}{\sqrt{1+x^2}}$$
$$g(x) = x^6$$

Also

$$f'(x) = \frac{-1}{2} \cdot (1+x^2)^{-1/2-1} \cdot 2x = \frac{-x}{(1+x^2)^{3/2}} < 0 \text{ for all } x \in [0,1]$$

So f is decreasing on [0,1] and it attains min and max at two end points, $\frac{1}{\sqrt{2}} \le f(x) \le 1$. On the other hand,

$$\int_0^1 g(x) = \int_0^1 x^6 = \frac{x^7}{7} \Big|_0^1 = \frac{1}{7}$$

Apply part (a), it follows that

$$\frac{1}{7\sqrt{2}} \le \int_0^1 \frac{x^6}{\sqrt{1+x^2}} dx \le \frac{1}{7}$$

Problem 2 Prove that

$$\frac{3}{8} \le \int_0^{1/2} \sqrt{\frac{1-x}{1+x}} dx \le \frac{\sqrt{3}}{4}$$

Proof. We want to apply the Theorem from Problem 1., we need to find f and g that disguised in the form of $\sqrt{\frac{1-x}{1+x}}$. The most obvious choice is to complete the square, we have

$$\sqrt{\frac{1-x}{1+x}} = \sqrt{\frac{1-x}{1+x}} \cdot \frac{\sqrt{1-x}}{\sqrt{1-x}}$$
$$= \frac{1-x}{\sqrt{1-x^2}}$$

Let

$$f(x) = \frac{1}{\sqrt{1 - x^2}}$$
$$g(x) = 1 - x$$

Then g(x) > 0 for all $x \in [0, 1/2]$. And

$$\int_0^{1/2} g(x) = \left(x - \frac{x^2}{2}\right)\Big|_0^{1/2} = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$

On the other hand,

$$f'(x) = \frac{-x}{(1-x^2)^{3/2}} \ge 0 \text{ for all } x \in [0, 1/2]$$

So f is increasing so it attains min at x = 0 and max at $x = \frac{1}{2}$.

$$m = f(0) = \frac{1}{1 - 0^2} = 1$$

$$M = f(1/2) = \frac{1}{1 - \frac{1}{4}} = \frac{2}{\sqrt{3}}$$

Hence,

$$1 \le f(x) \le \frac{2}{\sqrt{3}}$$

combine with the integral of g(x), we obtain

$$1 \cdot \frac{3}{8} \le \int_{1}^{1/2} \sqrt{\frac{1-x}{1+x}} \le \frac{3}{8} \cdot \frac{2}{\sqrt{3}}$$
$$\Leftrightarrow \frac{3}{8} \le \int_{1}^{1/2} \sqrt{\frac{1-x}{1+x}} \le \frac{\sqrt{3}}{4}$$

Problem 3 Let f be integrable on [a, b], let c be in (a, b) and let

$$F(x) = \int_{a}^{x} f \quad , a \le x \le b$$

For each of the following statements, give either a proof or a counterexample

(a) If f is differentiable at c, then F is differentiable at c.

Proof. Recall the Fundamental Theorem of Calculus,

Theorem. If f is integrable on [a,b] and define F on [a,b] by $F(x)=\int_a^x f$. If f is continuous at c in [a,b], then F is differentiable at c and F'(c)=f(c).

From theorem we see that this is true because f is differentiable at c which implies f is continuous at c.

(b) If f is differentiable at c, then F' is continuous at c.

Proof. This is also true because F'(c) = f(c) where f is continuous at c, so is F'(c).

(c) If f' is continuous at c, then F' is continuous at c.

Proof. If f' is continuous at c, then first, f has to be differentiable at c so f is continuous at c which implies F' is continuous at c.

Problem 4 Around 1671, Newton discovered the approximation rule for the integral of a continuous function f,

$$\int_{a}^{b} f \approx \frac{b-a}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$

where

$$f_i = f(a + \frac{(b-a)i}{3})$$
 for $i = 0, 1, 2, 3$

Prove that this Newton approximation gives exact value if $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ is a polynomial function of degree ≤ 3 .

Proof. Integrate f(x) by regular method we obtain,

$$\int_{a}^{b} f(x) = \int_{a}^{b} a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3}$$

$$= \left(a_{0}x + \frac{a_{1}}{2}x^{2} + \frac{a_{2}}{3}x^{3} + \frac{a_{3}}{4}x^{4}\right)\Big|_{a}^{b}$$

$$= a_{0}(b - a) + \frac{a_{1}}{2}(b^{2} - a^{2}) + \frac{a_{2}}{3}(b^{3} - a^{3}) + \frac{a_{3}}{4}(b^{4} - a^{4})$$

To use Newton method, first we need to compute f_0, f_1, f_2, f_3

$$f_0 = f(a+0) = f(a)$$

$$f_1 = f(a+(b-a)/3)$$

$$f_2 = f(a+2(b-a)/3)$$

$$f_3 = f(a+3(b-a)/3) = f(b)$$

Substitute into the original expression to obtain,

$$\int_{a}^{b} f \approx \frac{b-a}{8} \cdot (f_{0} + 3f_{1} + 3f_{2} + f_{3})$$

$$= \frac{b-a}{8} \cdot (f(a) + 3f(a + (b-a)/3) + 3f(a + 2(b-a)/3) + f(b))$$

$$= \frac{b-a}{8} \cdot \left[(a_{0} + a_{1}a + a_{2}a^{2} + a_{3}a^{3}) + 3(a_{0} + a_{1}(a + (b-a)/3) + a_{2}(a + (b-a)/3)^{2} + a_{3}(a + (b-a)/3)^{3}) + 3(a_{0} + a_{1}(a + 2(b-a)/3) + a_{2}(a + 2(b-a)/3)^{2} + a_{3}(a + 2(b-a)/3)^{3}) + (a_{0} + a_{1}b + a_{2}b^{2} + a_{3}b^{3}) \right]$$

To avoid lengthy expression, we manipulate each coefficient a_0, a_1, a_2, a_3 one by one, For a_0 ,

$$a_0 + 3a_0 + 3a_0 + a_0 = 8a_0$$

For a_1 ,

$$a_1 \left(a + 3a + 3 \cdot \frac{b - a}{3} + 3a + 3 \cdot \frac{2(b - a)}{3} + b \right)$$

$$= a_1 (7a + 3(b - a) + b)$$

$$= a_1 (4a + 4b)$$

For a_2 ,

$$a_2 \left[a^2 + 3 \cdot \left(a + \frac{b-a}{3} \right)^2 + 3 \cdot \left(a + \frac{2(b-a)}{3} \right)^2 + b^2 \right]$$
$$= a_2 \left(\frac{8a^2}{3} + \frac{8ab}{3} + \frac{8b^2}{3} \right)$$

For a_3 ,

$$a_3 \left[a^3 + 3 \cdot \left(a + \frac{b-a}{3} \right)^3 + 3 \cdot \left(a + \frac{2(b-a)}{3} \right)^3 + b^3 \right]$$
$$= a_3 (2a^3 + 2a^2b + 2ab^2 + 2b^3)$$

Put altogether, we have

$$\int_{a}^{b} f \approx \frac{b-a}{8} \cdot (f_0 + 3f_1 + 3f_2 + f_3)$$

$$= \frac{b-a}{8} \left[8a_0 + a_1(4a+4b) + a_2 \left(\frac{8a^2}{3} + \frac{8ab}{3} + \frac{8b^2}{3} \right) + a_3(2a^3 + 2a^2b + 2ab^2 + 2b^3) \right]$$

$$= a_0(b-a) + \frac{a_1}{2}(b^2 - a^2) + \frac{a_2}{3}(b^3 - a^3) + \frac{a_3}{4}(b^4 - a^4)$$

Problem 5 Let

$$f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(a) Prove that f is integrable on [0, 1].

Proof. Fix $\epsilon > 0$, choose a partition. Let $P = \{t_0, t_1, t_2, \dots, t_n\}$ be a partition of [0, 1] such that $t_i - t_{i-1} < \epsilon$. Also, let

$$m_i = \inf\{f(x) : t_{i-1} \le x \le t_i\}$$

 $M_i = \sup\{f(x) : t_{i-1} \le x \le t_i\}$

Note that $m_1 = \{0, t_1\} = 0$ because f(x) = 0 only if x = 0, where $m_i = 1$ for all $1 < i \le n$. But $M_i = 1$ for all $i, 1 \le i \le n$ because f(x) = 1 for all $x \ne 0$. Hence,

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}) < 0 + (n-1) \cdot \epsilon$$
$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}) < n \cdot \epsilon$$

It follows that

$$U(f, P) - L(f, P) < (n - n + 1)\epsilon = \epsilon$$

Since ϵ is arbitrarily chosen, f is integrable on [0, 1].

(b) Compute $\int_0^1 f$.

Proof. It's obvious that
$$\int_0^1 f = 1$$
.

Problem 6 Let $f(x) = x^2$, and let a < b.

1. Prove that f is integrable on [a, b] by finding, for any $\epsilon > 0$, a partition P of [a, b] such that

$$U(f,P) - L(f,P) < \epsilon$$

Proof. The tricky part in this problem is $f(x) = x^2$, so we need to consider two cases: 0 < a < b (a < b < 0) and a < 0 < b since the $\inf\{f(x)\}$ and $\sup\{f(x)\}$ will be different for each of these cases.

Case 1: 0 < a < b,

Fix $\epsilon > 0$. Let $P = \{t_0, t_1, \dots, t_n\}$ be a partition of [a, b] where each interval is of equal length $\frac{b-a}{n}$.

$$L(f, P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} t_{i-1}^2 (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} \left(\frac{(i-1)(b-a)}{n} \right)^2 \cdot \frac{b-a}{n}$$

$$= \left(\frac{b-a}{n} \right)^3 \sum_{i=1}^{n} (i-1)^2$$

$$= \left(\frac{b-a}{n} \right)^3 \cdot \frac{n(n-1)(2n-1)}{6}$$

Similarly,

$$U(f, P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} t_{i-1}^2 (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} \left(\frac{i(b-a)}{n}\right)^2 \cdot \frac{b-a}{n}$$

$$= \left(\frac{b-a}{n}\right)^3 \sum_{i=1}^{n} i^2$$

$$= \left(\frac{b-a}{n}\right)^3 \cdot \frac{n(n+1)(2n+1)}{6}$$

Then

$$U(f,P) - L(f,P) = \left(\frac{b-a}{n}\right)^3 \cdot \frac{n(n+1)(2n+1)}{6} - \left(\frac{b-a}{n}\right)^3 \cdot \frac{n(n-1)(2n-1)}{6}$$

$$= \left(\frac{b-a}{n}\right)^3 \cdot \frac{6n^2}{6}$$

$$= (b-a)^3 \cdot \frac{n^2}{n^3}$$

$$= (b-a)^3 \cdot \frac{1}{n}$$

But $\lim_{n \to \infty} (b-a)^3 \cdot \frac{1}{n} = 0 < \epsilon$ Thus for sufficiently large n we have $U(f,P) - L(f,P) < \epsilon$.

Case 2: a < 0 < b, Fix $\epsilon > 0$, but this time we consider divide [a,b] into two partitions $P_1 = \{a,0\}$ and $P_2 = \{0,b\}$ then $P = P_1 \cup P_2$ where each subinterval length of P_1, P_2 is defined as $\frac{a}{n/2}, \frac{b}{n/2}$ respectively.

$$L(f, P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} t_{i-1}^2 (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} \left(\frac{(i-1)(b-a)}{n} \right)^2 \cdot \frac{b-a}{n}$$

$$= \left(\frac{b-a}{n} \right)^3 \sum_{i=1}^{n} (i-1)^2$$

$$= \left(\frac{b-a}{n} \right)^3 \cdot \frac{n(n-1)(2n-1)}{6}$$

Similarly,

$$U(f, P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} t_{i-1}^{2} (t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} \left(\frac{i(b-a)}{n}\right)^{2} \cdot \frac{b-a}{n}$$

$$= \left(\frac{b-a}{n}\right)^{3} \sum_{i=1}^{n} i^{2}$$

$$= \left(\frac{b-a}{n}\right)^{3} \cdot \frac{n(n+1)(2n+1)}{6}$$

2. Use your work on part (a) to compute $\int_a^b f$.

Proof.

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}$$

Problem 7 If $f(x) = \int_0^x \sqrt{t + t^6} dt$. Find f'(3).

Proof. From Fundamental Theorem of Calculus, we have that

$$f'(x) = \sqrt{x + x^6}$$

Hence,

$$f'(3) = \sqrt{3 + 3^6}$$

Problem 8 Let $f(x) = \int_1^x (1 + \sin(\sin(t))) dt$. Compute f'(x) and prove that f is increasing.

Proof. From Fundamental Theorem of Calculus, we have that

$$f'(x) = (1 + \sin(\sin(x)))$$

To prove that f is increasing, note that

$$\begin{array}{ll} -1 & \leq \sin(x) & \leq 1 \\ \Leftrightarrow \sin(-1) & \leq \sin(\sin(x)) & \leq \sin(1) \\ \Leftrightarrow \sin(-1) + 1 \leq 1 + \sin(\sin(x)) \leq \sin(1) + 1 \end{array}$$

So f'(x) > 0 for all x which implies f(x) is increasing.

Problem 9 Find the derivatives of the following functions.

(a)
$$F(x) = \int_x^b \frac{1}{1 + t^2 + \sin^2(t)} dt$$

Proof.
$$F'(x) = \frac{1}{1 + x^2 + \sin^2(x)}$$

(b)
$$F(x) = \int_a^b \frac{x}{1 + t^2 + \sin^2(t)} dt$$

Proof.
$$F'(x) = \frac{1}{1 + x^2 + \sin^2(x)}$$

Problem 10 Prove that

$$\int_0^x \frac{1}{1+t^2} dt = c + \int_{1/x}^0 \frac{1}{1+t^2} dt$$

for some constant c.

Proof. The equation is equivalent to

$$\int_0^x \frac{1}{1+t^2}dt - \int_{1/x}^0 \frac{1}{1+t^2}dt = c$$
$$\int_0^x \frac{1}{1+t^2}dt + \int_0^{1/x} \frac{1}{1+t^2}dt = c$$

Let $F(x) = \int_0^x \frac{1}{1+t^2} dt + \int_0^{1/x} \frac{1}{1+t^2} dt$ We want to show that F'(x) = 0 so that F(x) = c. By the First Fundamental Theorem of Calculus, we have

$$\int_0^x \frac{1}{1+t^2} dt - \int_{1/x}^0 \frac{1}{1+t^2} dt = \frac{1}{1+x^2} + \frac{1}{1+(1/x)^2} \cdot \frac{-1}{x^2}$$
$$= \frac{1}{1+x^2} - \frac{1}{x^2} \cdot \frac{x^2}{x^2+1}$$
$$= 0$$

Problem 11 Prove that if h is continuous, f and g are differentiable and

$$F(x) = \int_{f(x)}^{g(x)} h$$

then $F'(x) = h(g(x)) \cdot g'(x) - h(f(x)) \cdot f'(x)$.

Proof. We have

$$F(x) = \int_{f(x)}^{g(x)} h$$

$$= \int_{f(x)}^{0} h + \int_{0}^{g(x)} h$$

$$= \int_{0}^{g(x)} h - \int_{0}^{f(x)} h$$

$$= h(g(x)) \cdot g'(x) - h(f(x)) \cdot f'(x)$$

Problem 12 Find all the continuous functions f satisfying

$$\int_{0}^{x} f = (f(x))^{2} + C$$

for some constant C.

Proof. By the First Fundamental Theorem of Calculus, we have if

$$F(x) = \int_{a}^{x} f$$

and if f is continuous then F'(x) = f(x).

Let $F(x) = (f(x))^2 + C \Rightarrow F'(x) = 2f(x)f'(x)$, it follows that if f is continuous, then

$$F'(x) = f(x) \Leftrightarrow 2f(x)f'(x) = f(x) \Leftrightarrow f'(x) = \frac{1}{2}$$

Integrate f'(x) we obtain

$$f(x) = \int f'(x)dx = \int \frac{1}{2}dx = \frac{1}{2}x + k$$

for some $k \in \mathbb{R}$. To solve for k, we substitute f(x) into the original equation, we have

$$\int_0^x \left(\frac{1}{2}t + k\right) dt = \left(\frac{x}{2} + k\right)^2 + C$$

$$\Leftrightarrow \left(\frac{1}{2} \cdot \frac{t^2}{2} + kt\right) \Big|_0^x = \frac{x^2}{4} + xk + k^2 + C$$

$$\Leftrightarrow \frac{x^2}{4} + kx = \frac{x^2}{4} + kx + k^2 + C$$

$$\Leftrightarrow k^2 = -C$$

$$\Leftrightarrow k = \sqrt{-C}$$

Therefore

$$f(x) = \frac{x}{2} + \sqrt{-C} \text{ for } C \le 0$$

Problem 13 Prove that if f and g have continuous derivatives on [a, b], then

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g$$

Proof. By Algebra Integral Theorem, we have

$$\int_a^b (fg' + f'g) = \int_a^b fg' + \int_a^b f'g$$

Moreover from Chain Rule, we know that

$$(f \cdot g)' = f'g + fg'$$

Apply the Second Fundamental Theorem of Calculus to $(f \cdot g)$, to obtain

$$\int_{a}^{b} (fg' + f'g) = (f \cdot g)(b) - (f \cdot g)(a) = f(b)g(b) - f(a)g(a)$$

which implies

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g$$

Problem 14 Let $f(x) = \log |x|$ for $x \neq 0$. Prove that $f'(x) = \frac{1}{x}$ for $x \neq 0$.

Proof. Using the definition of log(x), we have

$$\int_{1}^{x} \frac{1}{t} dt = \log(x)$$

So there are two cases,

If
$$x > 0$$
, then $f'(x) = [\log(x)]' = \frac{1}{x}$.
If $x < 0$, then $f'(x) = [\log(-x)]' = \frac{1}{-x} \cdot -1 = \frac{1}{x}$.

Problem 15 Let e be the number such that $\log(e) = 1$. Prove that $\frac{5}{2} < e < 3$.

Proof. Consider the definition of log(x),

$$\log(x) = \int_{1}^{x} \frac{1}{t} dt$$

and using a constant lower and upper bound for 1/t on the interval [1, x] it follows that

$$1 - \frac{1}{x} \le \log(x) \le x - 1$$

for all x > 0. Taking inverse functions this becomes

$$1 + x \le e^x \le \frac{1}{1 - x}$$

for all x < 1.

Choose $n \ge 1$, substitute $x \leftarrow x/n$ and raise to the power n to get

$$\left(1 + \frac{x}{n}\right)^n \le e^{\frac{x}{n}n} = e^x \le \left(1 - \frac{x}{n}\right)^{-n}$$

for all x < n. For x = 1 and n = 6 this becomes

$$\frac{5}{2} < \left(1 + \frac{1}{6}\right)^6 \le e \le \left(1 - \frac{1}{6}\right)^{-6} < 3.$$

Problem 16

- (a) Prove that $\frac{\log(x)}{x} \le \frac{1}{\sqrt{x}} \int_1^x \frac{1}{t^{3/2}} dt$ for all $x \ge 1$.
- (b) Prove that $\lim_{x \to \infty} \frac{\log(x)}{x} = 0$.

Proof. From the definition of log(x),

$$\log(x) = \int_{1}^{x} \frac{1}{t} dt$$

Since 1 is the $\sup\{f(t): m_{i-1} \le t \le m_i\}$, it follows that

$$\int_{1}^{x} \frac{1}{t} dt \le U(f, P) < x - 1$$

So

$$\log(x) < x - 1 < x \Rightarrow \frac{\log(x)}{x} < 1$$

On the other hand, we have

$$\log(x) \leq \sqrt{x} \text{ because } \int_1^x \frac{1}{t} dt < \int_1^x \frac{1}{\sqrt{t}} dt$$

Or another way to prove this fact is to consider $\log(x) < x$ for all $x > 0 \Rightarrow \log(x) = 2\log\sqrt{x} < 2\sqrt{x}$.

Our goal is to apply Squeeze's Theorem (Sandwich's Lemma) to $\lim_{x\to\infty}\frac{\log(x)}{x}$. In fact,

$$\frac{1}{x} \le \frac{\log(x)}{x} \le \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$$

where

$$\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$$

Therefore,

$$\lim_{x \to \infty} \frac{\log(x)}{x} = 0$$

(c) Prove that $\lim_{x\to\infty} \frac{\log(x)}{x^n} = 0$ for any n>0.

Proof. Consider

$$\lim_{x \to \infty} \left[\frac{\log(x)}{x} \cdot \frac{1}{x^{n-1}} \right]$$

From part (b), we know that $\frac{\log(x)}{x} < 1$ and as $x \to \infty$, it's obvious that $\frac{1}{x^{n-1}} \to 0$. So

$$\lim_{x \to \infty} \frac{\log(x)}{x^n} = 0$$

<u>Problem 17</u> Prove that if f is differentiable and f'(x) = f(x) for all real number x, then there is a number c such that $f(x) = c \cdot \exp(x)$ for all x.

Let $g(x) = \frac{f(x)}{e^x}$, $e^x \neq 0 \ \forall x \in \mathbb{R}$. Then

$$g'(x) = \frac{e^x f'(x) - f(x)e^x}{(e^x)^2} = \frac{e^x [f(x) - f(x)]}{e^{2x}} = 0$$

So

$$g(x) = \int g'(x)dx = \int 0dx = c$$

Problem 18 Let $f(x) = \int_0^x f$, then prove that f(x) = 0 for all x.

Proof. Since f(x) is defined by $f(x) = \int_0^x f$, f is continuous on [a,b]. Moreover, by the First Fundamental Theorem of Calculus, we have

$$f(x) = f'(x)$$

So $f(x) = ce^x$ by Problem 17, and integrate f(x) over [0, x] yields

$$\int_0^x ce^t dt = ce^x - ce^0 = ce^x - c = ce^x$$

which implies

$$c(e^x - 1) = ce^x \Leftrightarrow c = 0$$

Thus $f(x) = 0 \cdot e^x = 0$.

Problem 19 Prove that

$$\lim_{x \to \infty} \frac{x^n}{\exp(x)} = 0$$

for any n > 0.

Proof. Consider the definition of log(x),

$$\log(x) = \int_{1}^{x} \frac{1}{t} dt$$

and using a constant lower and upper bound for 1/t on the interval [1, x] it follows that

$$\log(x) \le x - 1 < x \text{ for all } x > 0$$

Raise to the power e of both sides, the inequality becomes

$$x < \exp(x) \Rightarrow \frac{x}{\exp(x)} < 1 \text{ for all } x > 0$$

Next consider

$$\lim_{x \to \infty} \frac{x}{\exp(x)} = \lim_{x \to \infty} \frac{\frac{x}{2} \cdot 2}{\exp(x/2) \cdot \exp(x/2)}$$
$$= \lim_{x \to \infty} \left[\frac{x/2}{\exp(x/2)} \right] \cdot \frac{1}{\exp(x/2)}$$
$$= 0$$

because
$$\lim_{x\to\infty}\frac{1}{\exp(x/2)}=0$$
 and $\frac{x/2}{\exp(x/2)}<1$. Now write $\frac{x^n}{\exp(x)}$ as

$$\frac{(x/n)^n \cdot n^n}{\exp(x/n)^n} = \left[\frac{x/n}{\exp(x/n)}\right]^n \cdot n^n$$

Since n^n is just a constant, Algebra Limit Theorem allows us to write

$$\lim_{x \to \infty} \left[\frac{x/n}{\exp(x/n)} \right]^n \cdot n^n = n^n \cdot \lim_{x \to \infty} \left[\frac{x/n}{\exp(x/n)} \right]^n = n^n \cdot 0 = 0$$

Problem 20 Let $f(x) = \frac{\exp(x)}{x^n}$ for x > 0.

- (a) Find the minimum value of f(x) for x > 0, and conclude that $f(x) > \frac{\exp(n)}{n^n}$ for all x > n.
- (b) Using the expression for f'(x) found in (a), prove that $f'(x) > \frac{\exp(n+1)}{(n+1)^{n+1}}$, for x > n+1.

Problem 21 Let
$$f(x) = \frac{1}{\sqrt{1+x^2}}$$
 and let $F(x) = \int_0^x f$.

(a) Prove that F is uniformly continuous on \mathbb{R} .

Proof. Consider

$$\int_0^x \frac{1}{\sqrt{1+t^2}} dt$$

First we integrate f(x) by substitution. Let $t = \tan(u)$, so $dt = \sec^2(u)du$. Substitute into F(x) to obtain,

$$F(x) = \int_0^{\tan(u)} f$$

$$= \int_0^x \frac{\sec^2(u)}{\sqrt{1 + \tan^2(u)}}$$

$$= \int_0^x \sec(u) du$$

$$= \log(\sec(u) + \tan(u)) \Big|_0^x$$

$$= \log(t + \sqrt{1 + t^2}) \Big|_0^x$$

$$= \log(x + \sqrt{1 + x^2}) - \log(0 + \sqrt{1 + 0^2})$$

$$= \log(x + \sqrt{1 + x^2})$$

Since $\sqrt{1+x^2}>0$ for all $x\in\mathbb{R}$, we have that f(x) is continuous on \mathbb{R} . By Fundamental Theorem of Calculus, F(x) is differentiable on \mathbb{R} . By Mean Value Theorem, there is a number $c\in\mathbb{R}$ such that

$$F'(c) = \frac{f(x) - f(y)}{x - y}$$

but

$$F'(x) = f(x) = \frac{1}{\sqrt{1+x^2}} > 0 \quad \forall x \in \mathbb{R}$$

which implies F'(c) > 0. And this satisfies Lipschitz condition because

$$|f(x) - f(y)| \le F'(c)|x - y|$$

where F'(c) > 0. As we shown in class if F(x) is a Lipschitz function then f is uniformly continuous. If we haven't proved it, then the proof should be straightforward as follows,

Given $\epsilon > 0$, choose $\delta = \frac{\epsilon}{K}$. If $x, y \in \text{dom}(f)$ satisfy $|x - y| < \delta$, then

$$|f(x) - f(y)| < K \cdot \frac{\epsilon}{K} = \epsilon$$

In fact, compute the integral is redundant in this case.

(b) Prove that F(-x) = -F(x).

Proof. To show that F(-x) = -F(x) is the same as F(-x) + F(x) = 0. So we have

$$F(-x) + F(x) = \log(-x + \sqrt{1 + x^2}) + \log(x + \sqrt{1 + x^2})$$

$$= \log((-x + \sqrt{1 + x^2}) \cdot (x + \sqrt{1 + x^2})$$

$$= \log(x^2 + 1 - x^2)$$

$$= \log(1) = 0$$

Another way to prove is consider the definition

$$F(x) = \int_0^x \frac{1}{\sqrt{1+x^2}} \cdot dx$$

Then

$$F(-x) + F(x) = \int_0^{-x} \frac{1}{\sqrt{1+x^2}} + \int_0^x \frac{1}{\sqrt{1+x^2}}$$
$$= -\int_0^x \frac{1}{\sqrt{1+x^2}} + \int_0^x \frac{1}{\sqrt{1+x^2}}$$
$$= 0$$

which implies F(-x) = F(x).

(c) Prove that F is increasing on \mathbb{R} .

Proof. Follows from (a) since $F'(x) = f(x) = \frac{1}{\sqrt{1+x^2}} > 0$ for all $x \in \mathbb{R}$.

(d) Prove that $F(x) \ge \log(\sqrt{x})$ for all $x \ge 1$.

Proof. For $x \ge 1$, we have $x + \sqrt{1 + x^2} \ge \sqrt{x}$, it follows that $F(x) = \log(x + \sqrt{1 + x^2}) \ge \log(\sqrt{x})$ because $\log(x)$ is a decreasing function $(\log(x)' = \frac{1}{x} > 0 \text{ for } x \ge 1)$.

To prove it using the first Fundamental Theorem of Calculus, we note that

$$G(x) = \log(\sqrt{x}) = \int_{1}^{\sqrt{x}} \frac{1}{t} dt$$

So

$$G'(x) = \frac{1}{\sqrt{x}} \cdot (\sqrt{x})' = \frac{1}{\sqrt{x} \cdot \sqrt{x}} \cdot \frac{1}{2} = \frac{1}{2x}$$

where

$$F'(x) = f(x) = \frac{1}{\sqrt{x^2 + 1}}$$

For all $x \ge 1$, we have that $F'(x) \ge G'(x)$ since $\sqrt{x^2 + 1} \le 2x \Leftrightarrow x^2 + 1 \le 4x^2$. Thus $F(x) \ge G(x)$.

(e) Prove that F takes on all real numbers: if y is any number, there is a number x such that F(x) = y.

Proof. Since $\sqrt{x^2+1} > |x| \Rightarrow x + \sqrt{x^2+1} > 0$, so that $F(x) = \log(x + \sqrt{x^2+1})$ is defined on \mathbb{R} . If F(x) = y then

$$y = \log(x + \sqrt{x^2 + 1})$$

$$\Leftrightarrow e^y = x + \sqrt{x^2 + 1}$$

$$\Leftrightarrow e^y - x = \sqrt{x^2 + 1}$$

$$\Leftrightarrow (e^y - x)^2 = x^2 + 1$$

$$\Leftrightarrow e^{2y} - 2e^y x + x^2 = x^2 + 1$$

$$\Leftrightarrow e^{2y} - 1 = 2e^y x$$

$$\Leftrightarrow x = \frac{e^{2y} - 1}{2e^y}$$

To prove it without using $\log(x+\sqrt{x^2+1})$, notice that the derivative of F(x) is $f(x)=\frac{1}{\sqrt{1+x^2}}>0$ for all $x\geq 1$, so it is increasing on $[1,\infty)$ which implies F(x) is one to one. Moreover, f is continuous so F is differentiable which is continuous. Hence F(x) is also onto or if y is any number, there is a number x such that F(x)=y.

Problem 22 Let F be the function constructed in Problem 21. Let S(x) be defined by S(x) = y if and only if F(y) = x (that is, S is the inverse function of F).

(a) Prove that S is differentiable.

Proof. From Problem 21, we know that F(x) is differentiable because f(x) is continuous, and F(x) is also one-one. Since S(x) is the inverse of F(x), by Inverse Differentiation Theorem (proved in class), we have S(x) is also differentiable.

(b) Prove that $S'(x) = \sqrt{1 + S^2(x)}$ for all numbers x.

Proof. Since S(x) is the inverse of F(x), we have F(S(x)) = x. Take the derivative of from both side we have $[F(S(x))]' = 1 \Rightarrow F'(S(x)) \cdot S'(x) = 1 \Rightarrow S'(x) = \frac{1}{F'(S(x))}$. Moreover since F'(x) = f(x), we have

$$S'(x) = \frac{1}{1/\sqrt{1+S^2(x)}} = \sqrt{1+S^2(x)}$$

(c) Prove that S''(x) = S(x).

Proof. We have

$$S''(x) = (\sqrt{1 + S^{2}(x)})'$$

$$= \frac{1}{2}(1 + S^{2}(x))^{-1/2} \cdot 2S(x)S'(x)$$

$$= \frac{S(x)S'(x)}{\sqrt{1 + S^{2}(x)}}$$

$$= \frac{S(x) \cdot \sqrt{1 + S^{2}(x)}}{\sqrt{1 + S^{2}(x)}}$$

$$= S(x)$$

<u>Problem 23</u> Let S be the function constructed in Problem 22 and let C(x) = S'(x). Prove that $S(x) + C(x) = \exp(x)$ for all x.

Proof. Let g(x) = S(x) + C(x) = S(x) + S'(x), we have

$$g'(x) = S'(x) + S''(x) = S'(x) + S(x) = g(x)$$

By Problem 17, it follows that $g(x) = \exp(x)$.

Problem 24 If f has n derivatives at a, then

$$P_{n,a} = f(a) + \frac{1}{1!}f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \dots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

is called the Taylor polynomial of degree n for f at a.

Find the Taylor polynomial of degree n for $f(x) = \log(1+x)$ at a = 0.

Proof. We have

$$f^{(k)} = \log^{(k)}(1+x)$$

so

$$f^{(k)}(0) = \log^{(k)}(1) = (-1)^{k-1}(k-1)!$$

Therefore the Taylor polynomial of degree n for f at 0 is

$$P_{n,0}(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}x^n}{n}$$