Optimizarea funcțiilor de pierdere. Algoritmul coborârii pe gradient.

Radu Ionescu raducu.ionescu@gmail.com Facultatea de Matematică și Informatică Universitatea din București

Varietatea intra-clasă

Poziția camerei

Iluminare

Deformare

Ocluzie

Background confuz

Variație intra-clasă

Similaritatea inter-clasă

Clasificator liniar pentru mai multe clase

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (m_i de) estée x_i resteorectorul áteatras șt uris și exicente a asiochiată (suceată) (intreg), motând vectorul de scoruri cu: $s=f(x_i,W)$ funcția de pierdere a clasificatorului

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

SVM are forma:

Pierderile:

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1

Funcția de pierdere pentru SVM multi-clasă:

Filind dat un exemplu (x_0 de) estée x_i resteoverterul atsatras șt uris și exiente a asiobiată (x_0 de) (x_0 de), motând vectorul de scoruri cu: $s = f(x_i, W)$ fluncția de pierdere a clasificatorului SVIM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1) = \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

= 2.9

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1
Pierderile:	2.9	0	

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (x_0, d_0) estée x_i estéoverterul ătsătră și uris și ețienteta esiobietă (x_0, d_0) (întreg), motând vectorul de scoruri cu: $s = f(x_i, W)$ fluncția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0$$

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1
Pierderile:	2.9	0	10.9

Funcția de pierdere pentru SVM multi-clasă:

Filind dat un exemplu (x_i, d_i) este x_i este vectorul ălsătră și uris și exichteta estobială (sucială (întreg), motând vectorul de scoruri cu: $s = f(x_i, W)$ fluncția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1) + \max(0, 2.5 - (-3.1) + 1) = \max(0, 5.3) + \max(0, 5.6)$$

$$= 5.3 + 5.6$$

= 10.9

Pierderile:

0 2 5	
. 9 2.5	
.0 -3.1	
	0 -3.1

Funcția de pierdere pentru SVM multi-clasă:

Filind dat un exemplu (x_i, d_i) este x_i restrovertærut ätsäträs sturis si exienteta asiobiata asrociata (întreg), motand vectorul de scoruri cu: $s = f(x_i, W)$ fluncția de pierdere a clasificatorului SVIM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L = (2.9 + 0 + 10.9)/3$$
$$= 4.6$$

Clasificatorul Softmax (Regresia Logistică Multinomială)

5.1

-1.7

pisică

maşină

broască

scoruri = log-probabilitățile nenormalizate ale claselor

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 unde $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

Vrem să maximizăm the log-probabilitatea, sau (pentru o funcție de pierdere) să mințipți a clasei corecte:

$$|L_i = -\log P(Y = y_i|X = x_i)|$$

În concluzie:
$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

Clasificatorul Softmax (Regresia Logistică Multinomială)

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

probabilități nenormalizate

Q: Care sunt valorile minime/maxime pe care le poate avea funcție de pierdere L_i?

pisică 3.2 exp mașină 5.1 $\xrightarrow{\text{exp}}$ 164.0 $\xrightarrow{\text{normalizare}}$ 0.13 $\xrightarrow{\text{l}_i = -\log(0.13)}$ = 0.89 broască -1.7 0.18

log-probabilități nenormalizate

probabilități

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Presupunem scorurile: [10, -2, 3]

[10, 9, 9] [10, -100, -100] Si $u_i = 0$ Q: Dacă perturbăm vectorul de trăsături cu valori mici (schimbând scorurile rezultate), ce se întâmplă cu funcția de pierdere în cele două cazuri?

Optimizarea funcțiilor de pierdere

Până acum avem:

- O mulţime de perechi (x,y)
- O funcție de atribuire a scorului: s=f(x;W)=Wx
- O funcție de pierdere:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ Score function $f(x_i, W)$ data loss L $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Cu regularizare

Algoritm: Coborârea pe gradient

Algoritm: Coborârea pe gradient

Într-o singură dimensiune, derivata unei funcții este:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

În mai multe dimensiuni, **gradientul** este un vector cu derivate parțiale.

W actual:	W + h (dim 1):	gradientul dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[?, ?, ?, ?, ?, ?, ?, ?,
0.33,] loss 1.25347	0.33,] loss 1.25322	?,]

W actual:	W + h (dim 2):	gradientul dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11 + 0.0001 ,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]

Evaluarea gradientului

1) Metoda numerică Alegem un h pozitiv aproape de 0 și folosim formula:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- Obţinem o valoare aproximativă
- Foarte încet de calculat
- 2) Metoda analitică Folosim analiza numerică pentru a determina formula gradientului în funcție X și W

Evaluarea gradientului (Python)

```
def f(x):
    y = 0.5 * (x**4) - 2 * (x**2) + x + 5
    return y
# 1) Metoda numerică
h = 0.001
gradient = (f(x + h) - f(x)) / h
# 2) Metoda analitică
def f_prime(x):
    y_prime = 2 * (x**3) - 4 * x + 1
    return y_prime
gradient = f_prime(x)
```

W actual: gradientul dW: [0.34,[-2.5, -1.11, 0.6, 0.78, dW = ...0, 0.12, (o funcție de x și W) 0.2, 0.55, 0.7, 2.81, -0.5, -3.1, 1.1, -1.5, 1.3, 0.33,...] -2.1,...] loss 1.25347

În concluzie:

- Gradientul numeric: aproximativ, încet, ușor de scris
- Gradientul analitic: exact, rapid, înclinat spre greșeli

=>

În practică: Folosim întotdeauna gradientul analitic, dar verificăm implementarea cu gradientul numeric. Acest proces se numește **verificarea gradientului (gradient checking)**

Algorimtul coborârii pe gradient (Python)

```
def GD(W0, X, goal, learningRate):
   perfGoalNotMet = true
   W = WO
   while perfGoalNotMet:
      gradient = eval_gradient(X, W)
      W \text{ old} = W
      W = W - learningRate * gradient
      perfGoalNotMet = sum(abs(W - W_old)) > goal
```


direcția negativă a gradientului

Coborârea pe gradient cu mini-batch

Utilizăm doar o mică parte a mulțimii de antrenare pentru a calcula gradientul:

```
while perfGoalNotMet:

X_batch = select_random_subsample(X)
   gradient = eval_gradient(@loss, X_batch, W)
   . . .
```

Mărimea mini-batch-ului este de obicei formată din 64/128/256 exemple e.g. AlexNet (Krizhevsky ILSVRC ConvNet) folosește 256 exemple

Exemplu de progres al optimizării în timpul antrenării unei rețele neuronale.

(Funcția de pierdere calculată pe mini-batch-uri scade în timp)

De la extragere "manuală" către învățare

vector ce descrie statistici despre imagine, e.g. bag of visual words

Privim algoritmul ca un graf computațional

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$ $y = 5$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

vrem:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

vrem:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

q = x + y

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

q = x + y

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem:

Regula de înlănțuire:

$$\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem:

Regula de înlănțuire:

$$\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

 ∂x

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ \hline f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{array} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{array}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \qquad f(x) = rac{1}{x} \qquad o \qquad rac{df}{dx} = -1/x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a \qquad f_c(x) = c + x \qquad o \qquad rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1 + e^{-x}}$$

funcția sigmoidă

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

Tipare ce apar în propagarea înapoi a gradientului

Poartă add: distribuie gradientul

Poartă max: rutează gradientul

Poartă ori: comută gradientul

Atunci când se ramifică, gradienții se adună

Propagare înainte/înapoi pentru poarta ori (Python)

Gradienții pentru cod vectorial

Operații vectoriale

$$\frac{\partial L}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial L}{\partial f}$$

matricea Jacobiană

Vector de input == 4096-dimensional ==

f(x) = max(0,x)(pe componente) Vector de output 4096-dimensional

Q: care este mărimea matricii Jacobiene? [4096 x 4096]

Operații vectoriale

În practică procesăm un întreg mini-batch (e.g. 100) de exemple la un pas:

Vector de input 4096-dimensional f(x) = max(0,x)(pe componente) Vector de output 4096-dimensional

Astfel, matricea Jacobiană ar avea [409,600 x 409,600] elemente

Până acum...

- Rețelele neuronale vor fi foarte mari: nici o speranță să scriem formula de mână pentru toți parameterii (folosim gradientul analitic)
- Backpropagare = aplicarea recursivă a regulii de înlănţuire (chain rule) de-a lungul unui graf computaţional pentru calcularea gradienţilor parametrilor / intrărilor
- Implementările mențin o structură de graf în care nodurile implementează funcțiile **forward()** / **backward()**
- forward: calculează rezultatul unei operații și salvează în memorie intrările / rezultatele intermediare necesare la calcularea gradientului
- backward: aplicarea regulii de înlănţuire pentru calcularea gradientului funcţiei de pierdere în raport cu intrările

Rețele neuronale: fără paralela cu neurologia

(Înainte) Funcție liniară de scoring: f=Wx

(**Acum**) Rețea neuronală cu 2 nivele: $f = W_2 \max(0, W_1 x)$

Rețele neuronale: fără paralela cu neurologia

(Înainte) Funcție liniară de scoring: f=Wx

(**Acum**) Rețea neuronală cu 2 nivele: $f = W_2 \max(0, W_1 x)$

sau cu 3 nivele:

$$f=W_3\max(0,W_2\max(0,W_1x))$$

Antrenarea unei rețele cu două niveluri necesită ~11 linii de cod (Python)

```
X = \text{np.array}([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
Y = np.array([[0,1,1,0]]).T
W0 = 2 * np.random.random((3,4)) - 1
W1 = 2 * np.random.random((4,1)) - 1
for i in range(5000):
    # forward pass
    11 = 1 / (1 + np.exp(-np.matmul(X, W0)))
    12 = 1 / (1 + np.exp(-np.matmul(11, W1)))
    # backward pass
    delta_12 = (Y - 12) * (12 * (1 - 12))
    delta_11 = np.matmul(delta_12, W1.T) * (11 * (1 - 11))
    # gradient descent
    W1 = W1 + np.matmul(l1.T, delta_12)
    W0 = W0 + np.matmul(X.T, delta l1)
```

Arhitectura rețelei cu două niveluri implementată anterior

