

Higher National Diploma in Data Science.

Machine Learning.

Credit Card Fraud Detection

COHNDDS231F

05/30/2023

Nethmi Sarandi (COHNDDS23.1F-008)

ACKNOWLEDGEMENT

I want to express my sincere gratitude to Mr.Chameera De Silva, who served as my lecturer, for his insightful advice and encouragement in helping me finish my project.

Also, I want to thank my family and friends for helping me out by giving me access to the resources and information I needed to complete my assignment.

Finally, I'd like to thank all of my colleagues and everyone else who helped make this study a success.

Table of Contents

Acknowledgment	i
Table of contents	ii
Table of Figures	ii
Introduction	1
Table for Variables and Their Definitions	2
Code explanation	4
Conclusion	27
Summary	28
Table of Figures	
Figure 1: Importing Libraries	4
Figure 2: Mounting google drive	4
Figure 3: Loading the data set	4
Figure 4: Printing first columns	5
Figure 5: Data set shape	5
Figure 6: Data types	6
Figure 7: Find missing values	7
Figure 8: Descriptive summary	7
Figure 9: Check unique values	8
Figure 10: Correlation analysis	8
Figure 11: Heat map	9
Figure 12: Descriptive summary of age	9
Figure 13: Descriptive summary of balance	10

Figure 14: Descriptive summary of duration	10
Figure 15: Value count of jobs	11
Figure 16: Count vs job plot.	12
Figure 17: Value count of default	12
Figure 18: Count vs default plot.	12
Figure 19: Value count of martial.	13
Figure 20: Count vs martial plot.	13
Figure 21: Value count of customer has a personal loan or not	14
Figure 22: Count vs customer has a personal loan or not plot	14
Figure 23: Value count of the client has a housing loan or not	15
Figure 24: Count vs client has housing loan or not plot	15
Figure 25: Value count of education	16
Figure 26: Count vs education plot	16
Figure 27: Value count of contact	17
Figure 28: Count vs contact plot.	17
Figure 29: Value count of month	18
Figure 30: Count vs month plot.	18
Figure 31: Value count of target	19
Figure 32: Count vs target plot.	19
Figure 33: Histogram of age	20
Figure 34: Distribution of age	21
Figure 35: job vs target catplot	22
Figure 36: Martial vs target catplot	23
Figure 37: Education vs target catplot	24
Figure 38: Converting the categorical variable to numerical variable	25

Figure 39: After converting the categorical variable to the numerical variable	25
Figure 40: Divide features and target into train and test data	25
Figure 41: View the shape of x_train, x_test	25
Figure 42: Create a logistic model	26
Figure 43: Make predictions of the test data	26
Figure 44: Accuracy of the model	26

Introduction

Bank term deposits, referred to by the terms fixed deposits or certifications of deposit, are a common choice for investments for both consumers and businesses, and they play an important part in the worldwide financial environment. By providing an interest rate that is fixed for a set length of time, term deposits provide a secure and reliable means to grow savings, making them a desirable option for those who are wary of risk.

This study report's goal is to look at the nuances of bank term deposit subscriptions and the variables that lead people and companies to choose this type of investment. This paper intends to offer beneficial insights for financial institutions, investors and policymakers by looking at the present trends, customer habits and market conditions around bank term deposit subscriptions.

Membership in bank term deposits has grown in importance among both people and businesses as a financial option. Depending on a number of variables, such as the rate of interest, market conditions, and personal goals in life, this form of investment might have distinct characteristics. Financial institutions that want to draw in new clients and hold onto current ones have to recognize these factors. Bank term deposits allow investors an easy way to make consistent profits on their investments. However, it is essential to take into account how inflation may affect the future value of these investments. The price spectrum for bank term deposits is shaped in part by policymakers' policies and incentives that support the banking sector's stability and expansion.

As a result, when making options concerning bank short-term deposit subscriptions, it's critical to be educated regarding current trends and client behavior. Businesses, financiers, and politicians can all profit from the possibilities offered by this kind of financial investment by doing this.

Table for Variables and Their Definitions

Variables	Definitions									
Age	Table for Variables, Their Definitions									
Job	The occupation or job category of the individual									
Marital	The marital status of the individual, such as married, single, divorced, or in a registered partnership.									
Education	The educational background or level of education of the individual, such as primary school, secondary school, tertiary education, or unknown.									
Default	This binary attribute indicates whether the individual has credit in default (yes) or not (no).									
Balance	The current balance (in euros) of the individual's bank account.									
Housing	This binary attribute indicates whether the individual has a housing loan (yes) or not (no).									
Loan	This binary attribute indicates whether the individual has a personal loan (yes) or not (no).									
Contact	This describes the communication type used to contact the individual, either cellular (cellular) or by telephone (telephone).									
Day	This represents the day of the month on which the individual was last contacted.									
Month	This indicates the month in which the individual was last contacted.									
Duration	This represents the duration (in seconds) of the last contact between the individual and the marketing team.									
Campaign	This represents the number of contacts made during the current marketing campaign for this individual.									
Pdays	This represents the number of days that passed by after the individual was last contacted from a previous campaign (999 means the individual was not previously contacted).									
Previous	This represents the number of contacts made before the current marketing campaign for this individual.									

Poutcome	This describes the outcome of the previous marketing campaign, which can be success, failure, nonexistent, or unknown.
Target	This is the target variable or the outcome variable. It indicates whether the individual subscribed to a term deposit (yes) or not (no) as a result of the marketing campaign.

Code Explanation

Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import os
sb.set()
```

Figure 1: Importing libraries

Mounting Google Drive

```
from google.colab import drive
drive.mount("/content/drive")

Mounted at /content/drive
```

Figure 2: Mounting google drive

Load data set

```
data=pd.read_csv("/content/drive/MyDrive/Machine learning/bank-full.csv")
```

Figure 3: Loading the data set

Head

Figure 4: Printing first columns

View data set details

Shape

We have 45211 rows and 17 columns in our banking dataset.

```
data.shape
(45211, 17)
```

Figure 5: Data set shape

Data types of columns

There are 7 columns being of integer type and 10 columns being of object type.

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45211 entries, 0 to 45210
Data columns (total 17 columns):
               Non-Null Count
    Column
                               Dtype
               45211 non-null
                               int64
 0
    age
    job
               45211 non-null object
 1
 2
    marital
               45211 non-null
                               object
    education
                               object
 3
               45211 non-null
    default
 4
               45211 non-null
                               object
 5
    balance
               45211 non-null
                               int64
    housing
               45211 non-null
                               object
 6
    loan
 7
               45211 non-null
                               object
 8
    contact
               45211 non-null
                               object
                               int64
 9
    day
               45211 non-null
 10
    month
               45211 non-null
                               object
    duration
 11
                               int64
               45211 non-null
    campaign 45211 non-null
 12
                               int64
    pdays
               45211 non-null
                               int64
 13
    previous 45211 non-null
 14
                               int64
 15
    poutcome
               45211 non-null
                               object
    Target
               45211 non-null
                               object
 16
dtypes: int64(7), object(10)
memory usage: 5.9+ MB
```

Figure 6: Data types

Find missing values

There are no null values in the data set.

```
data.isnull().sum()
age
              0
job
              0
marital
              0
education
              0
default
              0
balance
              0
housing
              0
loan
              0
contact
              0
day
              0
month
              0
duration
              0
campaign
              0
pdays
              0
previous
              0
poutcome
              0
Target
              0
dtype: int64
```

Figure 7: Find missing values

Descriptive summary in data set

Figure 8: Descriptive summary

Check unique values

```
# printing unique value of categorical data
for col in data.columns:
   if data[col].dtype == 'object':
       unique_values = pd.unique(data[col])
       print(f'{col} : {unique_values}\n')
'student']
marital : ['married' 'single' 'divorced']
education : ['tertiary' 'secondary' 'unknown' 'primary']
default : ['no' 'yes']
housing : ['yes' 'no']
loan : ['no' 'yes']
contact : ['unknown' 'cellular' 'telephone']
month : ['may' 'jun' 'jul' 'aug' 'oct' 'nov' 'dec' 'jan' 'feb' 'mar' 'apr' 'sep']
poutcome : ['unknown' 'failure' 'other' 'success']
Target : ['no' 'yes']
```

Figure 9: Check unique values

Correlation analysis

Figure 10: Correlation analysis

Figure 11: Heat map

Descriptive summary of age, balance and duration

01. Age

```
data["age"].describe()
count
         45211.0000000
            40.936210
mean
std
            10.618762
min
            18.000000
25%
            33.000000
50%
            39.000000
75%
            48.000000
            95.000000
max
Name: age, dtype: float64
```

Figure 12: Descriptive summary of age

02. Balance

```
data["balance"].describe()
count
         45211.000000
          1362.272058
mean
std
          3044.765829
min
        -8019.000000
25%
            72.000000
50%
           448.000000
75%
          1428.000000
        102127.000000
max
Name: balance, dtype: float64
```

Figure 13: Descriptive summary of balance

03.Duration

```
data["duration"].describe()
count
        45211.000000
mean
          258.163080
std
          257.527812
min
            0.000000
25%
          103.000000
50%
          180.000000
75%
          319.000000
         4918.000000
max
Name: duration, dtype: float64
```

Figure 14: Descriptive summary of duration

Visualize the dataset

The count of each type of jobs

```
#the count of each type of jobs
job_count = data['job'].value_counts()
job count
blue-collar
                 9732
management
                 9458
technician
                  7597
admin.
                  5171
services
                 4154
retired
                  2264
self-employed
                 1579
entrepreneur
                  1487
unemployed
                  1303
housemaid
                  1240
student
                  938
                   288
unknown
Name: job, dtype: int64
```

Figure 15: Value count of jobs

Figure 16: Count vs job plot

The count of default

```
#the count of default
default_count = data['default'].value_counts()
default_count

no     44396
yes     815
Name: default, dtype: int64
```

Figure 17: Value count of default

Count vs default

Figure 18: Count vs default plot

The count of martial

Figure 19: Value count of martial

Martial vs Count

Figure 20: Count vs martial plot

The count customer has personal loan or not

Figure 21: Value count of customer has personal loan or not

Plot customer has a personal loan or not

Figure 22: Count vs customer has a personal loan or not plot

The count client has housing loan or not

```
#the count lient has housing loan or no
housing_count = data['housing'].value_counts()
housing_count

yes     25130
no     20081
Name: housing, dtype: int64
```

Figure 23: Value count of client has housing loan or not

Client has housing loan or not plot

Figure 24: Count vs client has housing loan or not plot

The count of education

```
#the count of education
education_count = data['education'].value_counts()
education_count

secondary 23202
tertiary 13301
primary 6851
unknown 1857
Name: education, dtype: int64
```

Figure 25: Value count of education

Count vs education plot

Figure 26: Count vs education plot

The count of contact

Figure 27: Value count of contact

Count vs contact plot

Figure 28: Count vs contact plot

The count of months

```
month_count = data['month'].value_counts()
month_count
may
       13766
        6895
jul
aug
        6247
jun
        5341
nov
        3970
        2932
apr
feb
        2649
        1403
jan
oct
         738
         579
sep
mar
         477
         214
dec
Name: month, dtype: int64
```

Figure 29: Value count of month

Count vs month plot

Figure 30: Count vs month plot

The count of target

```
#the count of target
target_count = data['Target'].value_counts()
target_count

no     39922
yes     5289
Name: Target, dtype: int64
```

Figure 31: Value count of target

Count vs target plot

Figure 32: Count vs target plot

Histogram of age

Figure 33: Histogram of age

Distribution of age

Figure 34: Distribution of age

Job vs target catplot

Figure 35: job vs target catplot

Marital vs target catplot

Figure 36: Martial vs target catplot

Education vs target catplot

Figure 37: Education vs target catplot

Logistic Regression

Converting the categorical variable to numerical variable

Figure 38: Converting the categorical variable to numerical variable

df.	head	()															
	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	Target
0	58			2		2143					8	261					
1	44	9	2			29			2	5	8	151				3	
2	33	2				2			2		8	76					
3	47			3		1506			2	5	8	92				3	
4	33		2						2		8	198					

Figure 39: After converting the categorical variable to numerical variable

Divide features and target into train and test data

```
#Divide features and target into train and test data
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 0,stratify=y)
```

Figure 40: Divide features and target into train and test data

View the shape of x-train, x_test

```
from sklearn.metrics import accuracy_score
from sklearn import metrics
from sklearn.metrics import roc_curve
from sklearn.metrics import recall_score, confusion_matrix, precision_score, f1_score, accuracy_score, classification_report

(9043, 16)
```

Figure 41: View the shape of x_train, x_test

Create a logistic regression model

Figure 42: Create a logistic model

Make predictions on the test data

Figure 43: Make predictions of the test data

Accuracy of the model

```
#accuracy of the model
accuracy=(np.diag(confusion_matrix(y_test,y_pred)).sum())/len(y_test)*100/100
accuracy
0.8858785801172178
```

Figure 44: Accuracy of the model

Conclusion

- Deposits have been used by people between the ages of 30 and 40.
- The vast majority of these people work in the blue-collar sector.
- Deposits are used more frequently by married persons than by single and divorced people.
- Most of these people have accepted housing loans rather than personal loans.
- Most of them have only completed their secondary schooling.
- The model's accuracy is 0.88, which translates to 88% when expressed as a percentage.

Summary

Data from a Portuguese banking institution's direct marketing efforts are being used.

On phone conversations, the marketing campaigns were based. In order to determine if the product (bank term deposit) would be subscribed to (or not), it was frequently necessary to make multiple contacts with the same client. I did some visualization part and create a logistic model.