Adders, Subtractors, & Multipliers

Michael Brodskiy

Professor: S. Shazli

January 30, 2023

- The Half Adder
 - Specification
 - * 2 Inputs (X, Y)
 - * 2 Outputs (C, S)

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- The Full Adder
 - A combinational circuit that adds 3 input bits to generate a sum bit and a carry bit ("half adder with carry in")
 - Specification:
 - * Three Inputs (X, Y, Z)
 - * Two Outputs (S, C)

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- \bullet Implementations of Multi-bit Adders:
 - Ripple Carry Adder
 - * The carry ripples from one column to the next, and then from one stage to the next
 - * Composed of n 1-bit full adders
 - $\ast\,$ Carries ripple from LSB stage to MSB stage
 - Delay: $n \cdot$ (delay of single FA stage)
 - · Area required is linear in n
 - 4-bit Ripple Carry Adder
 - * Composed of 4 1-bit Full Adders
 - Assume gate delay = T nanoseconds

- -8T to compute the last carry
- Total delay = 8 + 1 = 9T
- 1 delay from first half adder
- An adder/subtractor is built using full adders and XOR gates
- Binary Multiplication
 - Multiplication is achieved by adding a list of shifted multiplicands according to the digits of the multiplier