Figure 8.1 Illustration of the calculation of δ_j for hidden unit j by backpropagation of the δ 's from those units k to which unit j sends connections. The black arrows denote the direction of information flow during forward propagation, and the red arrows indicate the backward propagation of error information.

where the δ 's are often referred to as *errors* for reasons we will see shortly. Using (8.5), we can write

$$\frac{\partial a_j}{\partial w_{ji}} = z_i. ag{8.9}$$

Substituting (8.8) and (8.9) into (8.7), we then obtain

$$\frac{\partial E_n}{\partial w_{ii}} = \delta_j z_i. \tag{8.10}$$

Equation (8.10) tells us that the required derivative is obtained simply by multiplying the value of δ for the unit at the output end of the weight by the value of z for the unit at the input end of the weight (where z=1 for a bias). Note that this takes the same form as that found for the simple linear model in (8.4). Thus, to evaluate the derivatives, we need calculate only the value of δ_j for each hidden and output unit in the network and then apply (8.10).

As we have seen already, for the output units, we have

$$\delta_k = y_k - t_k \tag{8.11}$$

Section 5.4.6

provided we are using the canonical link as the output-unit activation function. To evaluate the δ 's for hidden units, we again make use of the chain rule for partial derivatives:

$$\delta_j \equiv \frac{\partial E_n}{\partial a_j} = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$
 (8.12)

where the sum runs over all units k to which unit j sends connections. The arrangement of units and weights is illustrated in Figure 8.1. Note that the units labelled k include other hidden units and/or output units. In writing down (8.12), we are making use of the fact that variations in a_j give rise to variations in the error function only through variations in the variables a_k .

If we now substitute the definition of δ_j given by (8.8) into (8.12) and make use of (8.5) and (8.6), we obtain the following *backpropagation* formula:

Exercise 8.1

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k, \tag{8.13}$$

which tells us that the value of δ for a particular hidden unit can be obtained by propagating the δ 's backwards from units higher up in the network, as illustrated