Optimal fit of m_{π} vs. $(m_{peac}^2 g)^{1/3}$.

Jaime Fabián Nieto Castellanos

March 14, 2021

Several experiments were made in order to determine the most proper way to fit the data of m_{π} vs. $(m_{pcac}^2g)^{1/3}$. Functions of the form $\sqrt{a+bx^3}$, $\sqrt{a+bx^2}$, $\sqrt{a+bx^4}$, $\sqrt{a+bx^c}$, $a+bx^2$, $a+bx^c$, where $x=(m_{pcac}^2g)^{1/3}$ and a,b and c are fit parameters were used. The best results were obtained with functions of the form

$$y = a + bx^{c},$$

$$y = \sqrt{a + bx^{c}},$$

$$y = \sqrt{a + bx^{3}}.$$

Results of the pion decay constant F_{π} are shown as well. Everything was done for $\beta = 4.0$

Experiments 1

(a) $y = a + bx^c$ was fitted, $m_{pcac} > 0$. $a = 0.298 \pm 0.0018$, $b = 3.7842 \pm 0.0304$, c = 2.0, $m_{\pi} = 0.2980(18)$ for variance and $a = 0.2984 \pm 0.0017$, $b = 3.7777 \pm 0.028$, c = 2.0, $m_{\pi} = 0.2984(17)$ for chi squared.

(b) $y = a + bx^c$ was fitted, $m_{pcac} > 0$. $a = 0.2892 \pm 0.0047$, $b = 3.4319 \pm 0.1535, c = 1.8969 \pm 0.0475, m_{\pi} = 0.2892(47)$ for variance and $a = 0.2878 \pm 0.0044$, $b = 3.3815 \pm 0.1315$, $c = 1.8969 \pm 0.0475$, $m_{\pi} = 0.2878(44)$ for chi squared.

(c) $y = \sqrt{a + bx^c}$ was fitted, $m_{pcac} > 0$. $a = 0.0578 \pm 0.0045$, $b = 3.9498 \pm 0.082$, $c = 2.0 \ m_{\pi} = 0.2404(94)$ for variance and for chi squared

(d) $y = \sqrt{a + bx^c}$ was fitted, $m_{pcac} > 0$. $a = 0.1068 \pm 0.0013$, $b = 11.238 \pm 0.1228, c = 3.0 \ m_{\pi} = 0.3269(21)$ for variance and $a = 0.0559 \pm 0.0046, \ b = 3.9763 \pm 0.0799, \ c = 2.0, \ m_{\pi} = 0.2364(97) \quad a = 0.1077 \pm 0.0014, \ b = 11.1881 \pm 0.1152, \ c = 3.0, \ m_{\pi} = 0.3281(21)$ for chi squared

(e) $y = \sqrt{a + bx^c}$ was fitted, $m_{pcac} > 0$. $a = 0.1265 \pm 0.0032$, $b = 35.3606 \pm 1.4906$, $c = 4.0 \ m_{\pi} = 0.3557(46)$ for variance and for chi squared

(f) $y = \sqrt{a + bx^c}$ was fitted, $m_{pcac} > 0$. $a = 0.0964 \pm 0.0014$, $b = 7.9435 \pm 0.275, c = 2.6832 \pm 0.0319 \ m_{\pi} = 0.3105(23)$ for variance $a = 0.1286 \pm 0.0035, b = 34.8539 \pm 1.4156, c = 4.0, m_{\pi} = 0.3586(49)$ and $a = 0.0965 \pm 0.0012, b = 7.9065 \pm 0.2137, c = 2.6832 \pm 0.0319$ $m_{\pi} = 0.3106(19)$ for chi squared

(g) A function of the form $y = \sqrt{a + bx^c}$ was fitted. $m_{pcac} > 0$. $c = 3.4651 \pm 0.7174$, $m_{\pi} = 0.6689 \pm 0.0232$ for variance and $c = 1.9228 \pm 0.7116$, $m_{\pi} = 0.6097 \pm 0.0854$ for chi squared.

(i) A function of the form $y = \sqrt{a + bx^c}$ was fitted. $m_{pcac} > 0$. $c = 3.0663 \pm 0.2013, m_{\pi} = 0.4065 \pm 0.0075$ for variance and $c = 2.783 \pm 0.3346, m_{\pi} = 0.3979 \pm 0.017$ for chi squared.

(k) A function of the form $y = \sqrt{a + bx^c}$ was fitted. $m_{pcac} > 0$. $c = 2.8691 \pm 0.1585, \, m_{\pi} = 0.322 \pm 0.0074$ for variance and $c = 2.9509 \pm 0.1014, \, m_{\pi} = 0.3305 \pm 0.0045$ for chi squared.

(h) A function of the form $y = \sqrt{a + bx^c}$ was fitted. $m_{pcac} > 0$. $c = 3.2848 \pm 0.4176, m_{\pi} = 0.4684 \pm 0.0111$ for variance and $c = 3.8378 \pm 0.6821, m_{\pi} = 0.4892 \pm 0.0143$ for chi squared

(j) A function of the form $y = \sqrt{a + bx^c}$ was fitted. $m_{pcac} > 0$. $c = 2.7049 \pm 0.0456, m_{\pi} = 0.3525 \pm 0.0038$ for variance and $c = 2.7325 \pm 0.0753, m_{\pi} = 0.3575 \pm 0.0067$ for chi squared.

(l) A function of the form $y = \sqrt{a + bx^c}$ was fitted. $m_{pcac} > 0$. $c = 2.5818 \pm 0.0323$, $m_{\pi} = 0.2798 \pm 0.0036$ for variance and $c = 2.5528 \pm 0.0539$, $m_{\pi} = 0.2807 \pm 0.0066$ for chi squared.

(m) A function of the form $y = a + bx^c$ was fitted. $m_{pcac} > 0$. $c = 3.0182 \pm 0.7033$, $m_{\pi} = 0.664 \pm 0.0259$ for variance and $c = 1.7735 \pm 0.7512$, $m_{\pi} = 0.6196 \pm 0.0806$ for chi squared.

(o) A function of the form $y = a + bx^c$ was fitted. $m_{pcac} > 0$. $c = 2.4945 \pm 0.2091$, $m_{\pi} = 0.3984 \pm 0.0095$ for variance and $c = 2.2133 \pm 0.3326$, $m_{\pi} = 0.3874 \pm 0.0206$ for chi squared.

(q) A function of the form $y=a+bx^c$ was fitted. $m_{pcac}>0$. $c=2.2171\pm0.169,\ m_{\pi}=0.3114\pm0.01$ for variance and $c=2.2766\pm0.1222,\ m_{\pi}=0.3197\pm0.007$ for chi squared.

(n) A function of the form $y = a + bx^c$ was fitted. $m_{pcac} > 0$. $c = 2.7568 \pm 0.4221, m_{\pi} = 0.4622 \pm 0.0136$ for variance and $c = 3.132 \pm 0.6695, m_{\pi} = 0.4806 \pm 0.0183$ for chi squared.

(p) A function of the form $y = a + bx^c$ was fitted. $m_{pcac} > 0$. $c = 1.9056 \pm 0.0561$, $m_{\pi} = 0.3284 \pm 0.0065$ for variance and $c = 1.9209 \pm 0.0809$, $m_{\pi} = 0.3325 \pm 0.0098$ for chi squared.

(r) A function of the form $y=a+bx^c$ was fitted. $m_{pcac}>0$. $c=1.7062\pm0.047,\ m_{\pi}=0.2489\pm0.0073$ for variance and $c=1.6732\pm0.0557,\ m_{\pi}=0.2469\pm0.0093$ for chi squared.

(s) A function of the form $y=\sqrt{a+bx^3}$ was fitted. $m_{pcac}>0$. (t) A function of the form $y=\sqrt{a+bx^3}$ was fitted. $m_{pcac}>0$. $m_{\pi}=0.65356\pm0.01149$ for variance and $m_{\pi}=0.6821\pm0.01744$ for $m_{\pi}=0.46083\pm0.00521$ for variance and $m_{\pi}=0.46838\pm0.00775$ for chi squared

(u) A function of the form $y = \sqrt{a + bx^3}$ was fitted. $m_{pcac} > 0$. (v) A function of the form $y = \sqrt{a + bx^3}$ was fitted. $m_{pcac} > 0$. $m_{\pi} = 0.40426 \pm 0.00317$ for variance and $m_{\pi} = 0.40679 \pm 0.00629$ for $m_{\pi} = 0.36969 \pm 0.00309$ for variance and $m_{\pi} = 0.37412 \pm 0.00402$ for chi squared.

(w) A function of the form $y = \sqrt{a + bx^3}$ was fitted. $m_{pcac} > 0$. (x) A function of the form $y = \sqrt{a + bx^3}$ was fitted. $m_{pcac} > 0$. $m_{\pi} = 0.32665 \pm 0.00334$ for variance and $m_{\pi} = 0.33234 \pm 0.00218$ for $m_{\pi} = 0.3098 \pm 0.00439$ for variance and $m_{\pi} = 0.31667 \pm 0.00538$ for chi squared.

Figure 1: Result obtained by fitting $y = \sqrt{a + bx^c}$. For variance $F_{\pi} = 0.6888(35)$, while for chi squared $F_{\pi} = 0.6818(41)$

Figure 2: Result obtained by fitting $y = a + bx^c$. For variance $F_{\pi} = 0.7049(87)$, while for chi squared $F_{\pi} = 0.7021(90)$

Figure 3: Result obtained by fitting $y = a + bx^3$. For variance $F_{\pi} = 0.6766(22)$, while for chi squared $F_{\pi} = 0.6700(22)$.