# PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2002-164239

(43)Date of publication of application: 07.06.2002

(51)Int.Cl.

H01F 41/02 B22F 3/00 B22F 3/02 C22C 38/00 H01F 1/06

(21)Application number: 2001-

(71)Applicant: HITACHI METALS LTD

279656

(22)Date of filing:

14.09.2001

(72)Inventor: TOKORO HISATO

**UCHIDA KIMIO** 

(30)Priority

Priority number : 2000280104

Priority date: 14.09.2000

Priority country: JP

# (54) MANUFACTURING METHOD OF RARE EARTH SINTERED MAGNET, RING MAGNET, AND ARC SEGMENT MAGNET

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-performance rare earth sintered magnet that has a small content of oxygen, high density, and an improved degree of orientation as compared with the conventional one.

SOLUTION: In this manufacturing method of the rare earth sintered magnet, R-T-B based (R is at least one type of rare earth elements containing Y, Pr contained in R is 50 atom.% or higher, and T is a transition metal containing Fe and Co) alloy coarse powder for the rare earth sintered magnet is ground minutely to an average particle diameter of 1 to 10  $\mu m$  in a non-oxidizing atmosphere, and the obtained fine particle is collected into the non-oxidizing liquid



for manufacturing slurry. In this case, the non-oxidizing liquid includes at least one kind of oil selected from mineral, synthetic oils, and vegetable oils, and lubricants comprising at least one kind selected from monohydric alcohol ester of fatty acid, monohydric alcohol ester of polybasic acid, fatty acid ester of polyhydric alcohol, and their derivatives. Then, the formation is made by the slurry, and the obtained forming body is subjected to deoiling, sintered, and then heat-treated.

|  |  |  | , |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |

# **LEGAL STATUS**

[Date of request for examination]

17.01.2007

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

|  |  | , |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-164239 (P2002-164239A)

(43)公開日 平成14年6月7日(2002.6.7)

| (51) Int.Cl. <sup>7</sup> | 識別記号                        | ΓI              | テーマコード( <b>参考</b> )    |
|---------------------------|-----------------------------|-----------------|------------------------|
| H01F 41/02                |                             | H01F 41/02      | G 4K018                |
| B 2 2 F 3/00              |                             | B 2 2 F 3/00    | F 5E040                |
| 3/02                      |                             | 3/02            | L 5E062                |
| C 2 2 C 38/00             | 303                         | C 2 2 C 38/00   | 303D                   |
| H01F 1/06                 |                             | H01F 1/06       | A                      |
|                           |                             | 審查請求 未請求        | 請求項の数10 OL (全 13 頁)    |
| (21)出順番号                  | 特願2001-279656(P2001-279656) | (71)出顧人 0000050 | 983                    |
|                           |                             | 日立金加            | <b>其株式会社</b>           |
| (22)出顧日                   | 平成13年9月14日(2001.9.14)       | 東京都洋            | 整区芝浦一丁目 2 番 1 号        |
|                           |                             | (72) 発明者 所 久    | <b>L</b>               |
| 31)優先権主張番号                | 特願2000-280104(P2000-280104) | 埼玉県無            | 複谷市三ヶ尻5200番地日立金属株式     |
| (32)優先日                   | 平成12年9月14日(2000.9.14)       | 会社磁性            | 生材料研究所内                |
| 33)優先権主張国                 | 日本 (JP)                     | (72)発明者 内田 2    | <b>公</b> 德             |
|                           |                             | 埼玉県原            | 複谷市三ヶ尻5200番地日立金属株式     |
|                           |                             | 会社磁性            | 生材料研究所内                |
|                           |                             | Fターム(参考) 4K0    | 18 AA27 CA08 KA45      |
|                           |                             | 5E0             | 40 AAO4 BDO1 BDO3 NNO1 |
|                           |                             | 5E0             | 62 CC02 CC05 CD04 CG02 |

# (54) 【発明の名称】 希土類焼結磁石の製造方法およびリング磁石およびアークセグメント磁石

#### (57)【要約】

【課題】 低酸素含有量であり、高い焼結体密度を有し、従来に比べて配向度を高めた高性能の希土類焼結磁石を得られる製造方法を提供する。

【解決手段】 R-T-B系(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上、TはFe、Coを含む遷移金属)の希土類焼結磁石用合金租粉を非酸化性雰囲気中で平均粒径1~10μmに微粉砕し、得られた微粉を鉱油、合成油及び植物油から選択される少なくとも1種の油と、脂肪酸の1価アルコールエステル、多塩基酸の1価アルコールエステル、多価アルコールの脂肪酸エステル及びそれらの誘導体のうちから選択される少なくとも1種からなる潤滑剤とからなる非酸化性液中に回収してスラリーを作製し、次いで焼結し、熱処理することを特徴とする。



#### 【特許請求の範囲】

【請求項1】 R-T-B系(RはYを含む希土類元素 の少なくとも1種であり、Rに占めるPrが50原子%以 上、TはFe,Coを含む遷移金属)の希土類焼結磁石 用合金粗粉を非酸化性雰囲気中で平均粒径 1 ~10μ m に 微粉砕し、得られた微粉を鉱油、合成油及び植物油から 選択される少なくとも1種の油と、脂肪酸の1価アルコ ールエステル,多塩基酸の1価アルコールエステル,多 価アルコールの脂肪酸エステル及びそれらの誘導体のう ちから選択される少なくとも1種からなる潤滑剤とから 10 請求項8に記載のアークセグメント磁石。 なる非酸化性液中に回収してスラリーを作製し、次いで 前記スラリーにより成形し、得られた成形体を脱油し、 次いで焼結し、熱処理することを特徴とする希土類焼結 磁石の製造方法。

【請求項2】 前記潤滑剤の添加量は、(R-T-B系 合金微粉):(潤滑剤)=99.99~99.5重量部:0.01~ 0.5重量部となる範囲である請求項1に記載の希土類焼 結磁石の製造方法。

【請求項3】 重量%で、R(RはYを含む希土類元素 上である):28~33%,B:0.8~1.5%,Co:5%以 下(0を含む),Cu:0.3%以下(0を含む)及び残 部: Feの主要成分、ならびに不可避的不純物を含有す るR-T-B系焼結磁石からなるアークセグメント磁石 であって、

前記アークセグメント磁石の全重量に対し不可避的に含 有される酸素量が0.3%以下であり、厚みが1~4mmの 薄肉形状に形成され、密度が7.50 Mg/m³ (g/cm³ )以 上であり、室温において1.1MA/m (14kOe) 以上の保磁力 iHc及び96%以上の異方性付与方向の配向度(Br/4 π I max)を有することを特徴とするアークセグメント磁 石。

【請求項4】 平行異方性を有する請求項3に記載のア ークセグメント磁石。

【請求項5】 長さが40~100mmの長尺形状に形成され た請求項3又は4に記載のアークセグメント磁石。

(105)面からのX線回折ビーク強度: 【請求項6】 I (105) と (006) 面からのX線回折ピーク強度: I (006) との比率が、 I (105) / I (006) = 0.5~0.8で ある請求項3乃至5のいずれかに記載のアークセグメン ト磁石。

【請求項7】 重量%で、R(RはYを含む希土類元素 の少なくとも1種であり、Rに占めるPrが50原子%以 上である):28~33%,B:0.8~1.5%,Co:5%以 下(0を含む), Cu:0.3%以下(0を含む)及び残 部: Feの主要成分、ならびに不可避的不純物を含有す るR-T-B系焼結磁石からなるアークセグメント磁石 であって、

前記アークセグメント磁石の全重量に対し不可避的に含 有される酸素量が0.3%以下でり、かつ前記アークセグ

メント磁石はラジアル異方性が付与されたアーク断面形 状に形成され、内径が100mm以下であり、密度が7.50 Mg /m³ (q/cm³)以上であり、室温における保磁力iHcが 1.1MA/m (14kOe) 以上であり、室温におけるラジアル方 向の残留磁束密度(Br//)とラジアル方向に垂直な長さ 方向の残留磁束密度(Brl)とで定義する配向度: [(B r//)/(Br//+ Br⊥)×100(%)] が85.5%以上であること を特徴とするアークセグメント磁石。

【請求項8】 厚みが1~4mmの薄肉形状に形成された

【請求項9】 長さが40~100mmの長尺形状に形成され た請求項8又は9に記載のアークセグメント磁石。

【請求項10】 重量%で、R(RはYを含む希土類元 素の少なくとも1種であり、Rに占めるPrが50原子% 以上である):28~33%, B:0.8~1.5%, Co:5% 以下(0を含む), Си:0.3%以下(0を含む)及び 残部:Feの主要成分、ならびに不可避的不純物を含有 するR-T-B系焼結磁石からなるリング磁石であっ て、

の少なくとも1種であり、Rに占めるP r が 50原子%以 20 前記リング磁石の全重量に対し不可避的に含有される酸 素量が0.3%以下であり、かつ前記リング磁石は内径が1 00mm以下であり、ラジアル異方性を有し、密度が7.50 M a/m³ (q/cm³)以上であり、室温の保磁力iHcが1.1MA/ m (14kOe) 以上であり、室温におけるラジアル方向の残 留磁束密度(Br//) とラジアル方向に垂直な長さ方向の 残留磁束密度 (Br⊥) とで定義する配向度: [(Br//)/ (Br//+Br⊥)×100(%)] が85.5%以上であることを特 徴とするリング磁石。

#### 【発明の詳細な説明】

[0001] 30

【発明の属する技術分野】本発明は、高速回転を必要と する流体機械や工作機械、余剰電力をフライホイールの 運動エネルギーに変換して貯蔵する電力貯蔵装置等に好 適に用いられる、低酸素含有量であり、高い焼結体密度 を有し、従来に比べて配向度を高めた高性能の希土類焼 結磁石を得られる製造方法に関する。又本発明は、低酸 素含有量であり、高い焼結体密度を有し、従来に比べて 配向度を高めた、薄肉形状又は薄肉、長尺形状の平行異 方性又はラジアル異方性を有する高性能のR-T-B系 焼結アークセグメント磁石に関する。又本発明は、低酸 素含有量であり、高い焼結体密度を有し、従来に比べて ラジアル方向の配向度を高めた、ラジアル異方性を有す る髙性能のR-T-B系焼結リング磁石に関する。

#### [0002]

【従来の技術】R-T-B系焼結磁石(RはYを含む希 土類元素の少なくとも1種、Tは遷移金属)は、所定組 成のR-T-B系合金を粗粉砕し、次いでN2等の不活 性ガス中で微粉砕し、得られた平均粒径1~10μmの微 粉末を磁場中成形し、次いで焼結し、熱処理することに より製造される。また、特開平10-303008号に

記載されているように、Rの元素としてPrを50原子 %以上用いたR-T-B系合金は液体窒素冷却温度近傍 でスピン再配列を示すことなく高い磁気特性を保持可能 であることが知られており、高速回転を必要とする流体 機械や工作機械、余剰電力をフライホイールの運動エネ ルギーに変換して貯蔵する電力貯蔵装置等に用ることが 検討されている。これらの用途において、残留磁束密度 Brおよび最大エネルギー積(BH)maxを高めるには含有酸 素量の低減が極めて重要である。このため、本出願人は 前記微粉の酸化の進行を阻止する作用の顕著な鉱油や合 成油を発見し、それら油中に前記微粉を回収してスラリ 一化し、このスラリーを成形し、次いで得られた成形体 を脱油し、焼結し、熱処理することにより低酸素含有 量、高密度型の高性能R-T-B系焼結磁石を得られる 製造プロセスを提案した(特許第2731337号等参照)。 この製造プロセスは前記微粉末及び成形体を前記油で被 覆し大気と遮断することにより酸化の進行を実質的に抑 えられるという特徴を有し、脱油し、焼結して得られた R-T-B系焼結体の含有酸素量が微粉砕前のR-T-B系合金粗粉に相当する低水準に保持される。よってR -T-B系焼結体中のR元素が酸化物化し、実質的に滅 失して生じる有効希土類量の減少が小さく抑えられ、粒 界相を形成する希土類リッチ相は健全に保持される。有 効希土類量の実質的な滅失が小さい分だけR含有量を低 く設定できるので従来に比べて余剰のRリッチ相及び希 土類酸化物が低減でき、同時に強磁性相のR2Fei4 B型結晶粒(主相)の体積比率を高められるのでBr, (B H)maxが顕著に向上する。

#### [0003]

【発明が解決しようとする課題】しかし低酸素含有量、高密度型の高性能R-T-B系焼結磁石を得られる前記製造プロセス(特許第2731337号等参照)を適用しても、本発明者らが期待したほどBr及び(BH)maxは高くならなかった。この現象を本発明者らが詳細に調査した結果、前記スラリーの磁場配向性が十分ではなく、改良の余地を残していることがわかった。この問題に鑑み、本発明者らは既に、鉱油等の非酸化性油と非イオン性又は陰イオン性界面活性剤とを所定比率で配合してなる油中に前記微粉を回収し、得られたスラリーが良好な磁場配向性を有し、もってこのスラリーにより磁場中成形し、次いで順次脱油、焼結及び熱処理を行うことにより従来に比べてBr及び(BH)maxを高めた希土類焼結磁石が得られることを知見し、その製造方法(特願2000-196345号)を出願した。

【0004】本発明者らは、非イオン性又は陰イオン性 界面活性剤以外で、それらと類似の効果を得られるスラ リー改質剤を求めて鋭意検討した結果、スラリー改質剤 として後述の潤滑剤が好適であることを発見した。この ように、本発明が解決しようとする課題は、低酸素含有 量であり、高い焼結体密度を有し、従来に比べて配向度 50 を高めた高性能の希土類焼結磁石を得られる製造方法を提供することである。又、本発明が解決しようとする別の課題は、低酸素含有量であり、高い焼結体密度を有し、従来に比べて配向度を高めた、薄肉形状又は薄肉、長尺形状の平行異方性又はラジアル異方性を有する高性能のR-T-B系焼結アークセグメント磁石に関する。又、本発明が解決しようとする別の課題は、低酸素含有量であり、高い焼結体密度を有し、従来に比べてラジアル方向の配向度を高めた、ラジアル異方性を有する高性能のR-T-B系焼結リング磁石に関する。

#### [0005]

【課題を解決するための手段】上記課題を解決した本発 明の希土類焼結磁石の製造方法は、R-T-B系(Rは Yを含む希土類元素の少なくとも1種であり、Rに占め るPrが50原子%以上、TはFe, Coを含む遷移金 属)の希土類焼結磁石用合金粗粉を非酸化性雰囲気中で 平均粒径 1 ~10μmに微粉砕し、得られた微粉を鉱油、 合成油及び植物油から選択される少なくとも1種の油 と、脂肪酸の1価アルコールエステル,多塩基酸の1価 アルコールエステル, 多価アルコールの脂肪酸エステル 及びそれらの誘導体のうちから選択される少なくとも1 種からなる潤滑剤とからなる非酸化性液中に回収してス ラリーを作製し、次いで前記スラリーにより成形し、得 られた成形体を脱油し、次いで焼結し、熱処理すること を特徴とする。前記潤滑材の添加量は、(R-T-B系 合金微粉): (潤滑剤)=99.99~99.5重量部:0.01~ 0.5重量部となる範囲であることが好ましい。RがPr 系のものとNd系の磁束量の温度依存性を図6に示す。 Nd系のR-T-B系希土類焼結磁石の方では約130 K以下になると磁束量が低下する。対してPr系では8 0 K近傍まで環境温度を下げても磁束量が増加しつづけ ており、高速回転を必要とする流体機械や工作機械、余 剰電力をフライホイールの運動エネルギーに変換して貯 蔵する電力貯蔵装置等に適用しても髙特性のものを得る 事が可能である。

【0006】又、本発明のアークセグメント磁石は、重量%で、R(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上である): 28~33%,B: 0.8~1.5%,Co: 5%以下(0を含む),Cu: 0.3%以下(0を含む)及び残部: Feの主要成分、ならびに不可避的不純物を含有するR-T-B系焼結磁石からなるアークセグメント磁石であって、前記アークセグメント磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、厚みが1~4 mmの薄肉形状に形成され、密度が7.50 Mg/m³(g/cm³)以上であり、室温において1.1MA/m(14kOe)以上の保磁力iHc及び96%以上の異方性付与方向の配向度( $Br/4\piI$  max)を有することを特徴とする。前記アークセグメント磁石は、平行異方性を有するものとすることが可能であり、また形状として長さが40~100mmの長尺形状に形成され

たものを製造可能である。この配向性の良好なアークセグメント磁石においては、(105)面からのX線回折ビーク強度: I (105) と (006) 面からのX線回折ビーク強度: I (006) との比率が、I (105) / I (006) = 0.5~0.8であるという特徴を持つ。

【0007】又、本発明の他のアークセグメントリング 磁石は、重量%で、R(RはYを含む希土類元素の少な くとも1種であり、Rに占めるPrが50原子%以上であ る):28~33%, B:0.8~1.5%, Co:5%以下(0 を含む), C u :0.3%以下(0 を含む)及び残部:F eの主要成分、ならびに不可避的不純物を含有するR -T-B系焼結磁石からなるアークセグメント磁石であっ て、前記アークセグメント磁石の全重量に対し不可避的 に含有される酸素量が0.3%以下でり、かつ前記アーク セグメント磁石はラジアル異方性が付与されたアーク断 面形状に形成され、内径が100mm以下であり、密度が7.5 0 Mg/m³ (g/cm³ )以上であり、室温における保磁力 iH cが1.1MA/m (14kOe) 以上であり、室温におけるラジア ル方向の残留磁束密度 (Br//) とラジアル方向に垂直な 長さ方向の残留磁束密度(Brl)とで定義する配向度: [(Br//)/(Br//+ Br ± )×100(%)] が85.5%以上である ことを特徴とする。前記アークセグメント磁石は、厚み が $1\sim4$  mmの薄肉形状、さらには長さが $40\sim100$ mmの長 尺形状に形成することが可能である。

【0008】又本発明のリング磁石は、重量%で、R(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上である):28~33%, B:0.8~1.5%, Co:5%以下(0を含む), Cu:0.3%以下(0を含む)及び残部:Feの主要成分、ならびに不可避的不純物を含有するR-T-B系焼結磁石からなるリング磁石であって、前記リング磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、かつ前記リング磁石は内径が100mm以下であり、ラジアル異方性を有し、密度が7.50 Mq/m³(q/cm³)以上であり、室温の保磁力iHcが1.1MA/m(14k0e)以上であり、室温におけるラジアル方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とって定義する配向度:[(Br//)/(Br//+Br1)×100(%)]

【0009】 【発明の実施の形態】本発明者らは前記スラリーの改質 用潤滑剤として、炭化水素鎖(C.H.)からなる親油基と、化学結合の電荷分布に偏りがあって電気的極性を有する、一〇H、一〇〇H、一〇〇一、>NH2などの極性基とで構成されている有機化学物質を検討した。鉱油、合成油あるいは植物油と前記潤滑剤とを所定重量比率で配合してなる液中にR-T-B系合金微粉を回収しスラリー化すると、前記潤滑剤の極性基が前記微粉粒子に吸着し、又前記潤滑剤の親油基が保護膜の役割を果たす。その吸着力の源は極性基の電気的引力であるが、

場合によってはR-T-B系合金微粉粒子の構成元素と 反応して化学吸着することもある。このため、極性基の 種類によって潤滑剤と前記微粉粒子との吸着の強さ、及 び前記微粉粒子表面への単位面積当りの吸着分子数が変 化し、脱油工程及びそれに続く焼結工程後の残留炭素量 が顕著に変化することがわかった。また同じ極性基を有 していても親油基の炭素数が多くなれば潤滑剤自体の分 子量が大きくなり、揮発性が低くなって残留炭素量が増 加する現象が見られた。こうして本発明者らは、第一に 10 極性基及び親油基の種類とR-T-B系焼結体炭素量と の関係、第二に極性基及び親油基の種類と磁気特性との 関係に着目し、上記課題を解決するにふさわしい潤滑剤 を詳細に検討した。その結果、焼結体含有炭素量の増加 が非常に小さく抑えられ、高いiHcを得られ、かつ量産 に好適な高い成形体強度の得られる、 [化1]の基本構 造式の潤滑剤を発見した。 [化1] において、Ri, R 」'は炭化水素基である。

【0010】 【化1】

O R1'
|
R1- C = 0

【0011】本発明に好適な潤滑剤の極性基はCOO (エステル結合)に限られ、親油基の炭素数は5個以上20個以下の潤滑剤が好ましい。ここでCOO基は潤滑剤の1分子中に1個ないし2個以上含んでいてもよい。また親油基の炭化水素鎖(C,H,)も2個以上含んでいてもよい(m,nは正の整数である)が、一つの親油基中の炭素

数は5個以上20個以下が好ましい。親油基中の炭素量が 5個未満では十分な潤滑性が得られず、磁気特性を改善 することが困難である。又親油基中の炭素量が20個超で は潤滑剤の分子量が過大となり沸点が上昇し、揮発性が 低下して残留炭素量が0.1重量%超になり、iHcの低下を 招く。あるいは潤滑が過剰になり成形体強度を低下させ てしまう。親油基の炭化水素は飽和、不飽和のいずれで もよい。具体的には、本発明に用いる潤滑剤は脂肪酸の 1価アルコールエステル、多塩基酸の1価アルコールエス テル、多価アルコールの脂肪酸エステル及びそれらの誘 導体のうちから選択される少なくとも1種である。潤滑 剤の添加量は、R-T-B系合金微粉との比率で表わさ れる。配合比率は、(R-T-B系合金微粉): (潤滑 剤)=99.99~99.5重量部:0.01~0.5重量部とすること が好ましく、99.99~99.7重量部:0.01~0.3重量部がよ り好ましい。潤滑剤の添加量が前記範囲未満では添加効 果が得られず、前記範囲を超えると成形体強度及びiHc が顕著に低下する。なお、R-T-B系合金微粉と潤滑 剤に対する前記油の配合重量比率は特に限定されず、R - T-B系合金微粉表面をくまなく被覆できるとともに スラリー中にR-T-B系合金微粉と潤滑剤とが良好に 50 分散し、スラリーの磁場配向性が向上するので好まし

い。潤滑剤の添加時期は微粉砕前のR-T-B系合金粗 粉に添加してもよいし、スラリー作製時点で添加しても よい。

【0012】潤滑剤として適用可能なものを下記する。 例えば脂肪酸の一価アルコールエステルではカプリン酸 メチル、ミリスチン酸メチル、ラウリン酸メチル、ステ アリン酸メチル、オイレン酸メチル、あるいはこれらエ ステルのメチル基の代わりにブチル基、プロビル基、エ チルヘキシル基がついているものがある。また、多塩基 酸の一価アルコールエステルでは、アジピン酸ジオレイ ル、アジピン酸ジイソデシル、アジピン酸ジイソブチ ル、フタル酸ジトリデシル、フタル酸2-エチルヘキシ ル、フタル酸ジイソノニル、フタル酸ジデシル、フタル 酸ジアルキル等がある。また、多価アルコールの脂肪酸 およびその誘導体では、ソルビタントリオレエート等が ある。多価アルコールの脂肪酸およびその誘導体のもの よりは脂肪酸の一価アルコールエステル、または多塩基 酸の一価アルコールエステルの方が若干ではあるが磁石 の配向性を向上させやすい。

【0013】R元素としてPrを主とした希土類焼結磁 20 石では、R2Fe14B金属間化合物(RはYを含む希 土類元素の少なくとも1種であり、Rに占めるPrが50 原子%以上である)を主相とする場合、主要成分組成 を、重量%で、R:28~33%. B:0.8~1.5%、M<sub>1</sub>:  $0\sim 0.6\%$  (M, UNb, Mo, W, V, Ta, Cr, Ti,Zr及びHfから選択される少なくとも1種であ る), M<sub>2</sub>:0~0.6% (M<sub>2</sub>はA1,Ga及びCuか ら選択される少なくとも1種)及び残部Fe(但し、R +B+Fe+M<sub>1</sub> +M<sub>2</sub> = 100重量%とした場合)とす るのが好ましい。以下、単に%と記すのは重量%を意味 30 するものとする。R量は28~33%が好ましい。良好な耐 食性を具備するために、R量は28~32%がより好まし く、28~31%が特に好ましい。R量が28%未満では所定 のiHcを得られず、33%超ではBrが著しく低下する。 所定のBr及び配向度を得るために、RはPr、又はP rとDy、又はNdとDyとPr及び不可避的R成分か らなることが好ましい。即ちRに占めるPrを50原子% 以上とし、Dy含有量を0.3~10%にするのが好まし い。又Rに占めるPrを90原子%以上とし、Dy含有量 を0.5~8%にするのがより好ましい。Rに占めるPr が50原子%未満では液体窒素温度付近でスピン再配列が 顕著になり、磁気特性が大きく低下する。Dy含有量が 0.3%未満ではDyの含有効果が得られず、10%超ではB rが低下し所定の配向度を得られない。 B量は0.8~1.5 %が好ましく、0.85~1.2%がより好ましい。B量が0.8 %未満では1.1MA/m (14kOe) 以上のiHcを得ることが困 難であり、B量が1.5%超ではBrが著しく低下する。 Nb, Mo, W, V, Ta, Cr, Ti, Zr及びHf の少なくとも1種からなる高融点金属元素M<sub>1</sub>を0.01~ 0.6%含有することが磁気特性を高めるために好まし

い。M<sub>1</sub> を0.01~0.6%含有することにより、焼結過程 での主相結晶粒の過度の粒成長が抑制され、1.1MA/m(1 4kOe) 以上のiHcを安定して得ることができる。しか し、M<sub>1</sub>を0.6%超含有すると逆に主相結晶粒の正常な 粒成長が阻害され、Brの低下を招く。又M」含有量が0. 01%未満では磁気特性を改良する効果が得られない。M 2 元素 (A1, Ga及びCuの少なくとも1種) の含有 量は0.01~0.6%が好ましい。Alの含有により iHcが向 上し、耐食性が改善されるが、A 1 含有量が0.6%超で はBrが大きく低下し、0.01%未満ではiHc及び耐食性を 高める効果が得られない。より好ましいA1含有量は0. 05~0.3%である。Gaの含有によりiHcが顕著に向上す るが、Ga含有量が0.6%超ではBrが大きく低下し、0.0 1%未満ではiHcを高める効果が得られない。より好まし いGa含有量は0.05~0.2%である。Cuの微量添加は 耐食性の改善及びiHcの向上に寄与するが、C u 含有量 が0.3%超ではBrが大きく低下し、0.01%未満では耐食 性及びiHcを高める効果が得られない。より好ましいC u含有量は0.05~0.3%である。Coの含有により耐食 性が改善され、キュリー点が上昇し、希土類焼結磁石の 耐熱性が向上するが、Сο含有量が5%超では磁気特性 に有害なFe-Co相が形成され、あるいはR2(F e, Co)」。B相が形成されてBr及びiHcが大きく低 下する。従って、Сo含有量は5%以下が好ましい。― 方、Co含有量が0.5%未満では耐食性及び耐熱性の向 上効果が得られない。よって、Co含有量は0.5~5% が好ましい。Coを0.5~5%及びCuを0.01~0.3%含 有するときに1.1MA/m(14kOe)以上の室温のiHcを得ら れる第2次熱処理の許容温度が広がる効果を得られ、特 に好ましい。A 1を0.01~0.3%含有させると保磁力向 上に寄与するとともに、熱処理温度のばらつきによる保 磁力の変動を低減することが可能である。またNbを0.01 ~0.08%含有させると焼結過程での結晶粒成長を抑制 し、粗大粒の形成を抑制することができる。不可避に含 有される酸素量は0.3%以下が好ましく、0.2%以下がよ り好ましく、0.18%以下が特に好ましい。酸素含有量を 0.3%以下に低減することにより焼結体密度を略理論密 度まで髙めることができる。R2 Fe14 B金属間化合 物を主相とする場合の焼結体密度はPr2Fe14B金 属間化合物の理論密度(7.54Mq/cm³)に近い7.50Mq/cm ³以上が得られる。又不可避に含有される炭素量は0.10 %以下が好ましく、0.07%以下がより好ましい。炭素含 有量の低減により希土類炭化物の生成が抑えられ、有効 希土類量が増大し、iHc及び(BH)max等を高めることがで きる。又不可避に含有される窒素量は0.15%が好まし い。窒素量が0.15%を超えるとBrが大きく低下する。本 発明の磁石には公知の表面処理被膜(Niめっき等)が 被覆され、実用に供されるが、R量が28~32%でかつ窒 素量が0.002~0.15%のときに良好な耐食性が付与され 50 るのでより好ましい。又、原料合金としてCaを還元剤

40

とする還元拡散法により作製したものを用いて本発明の磁石を作製した場合、所定のiHc及び配向度を得るために、前記磁石の全重量を100重量%としてCa含有量を0.1重量%以下(0を含まず)に抑えることが好ましく、0.03重量%以下(0を含まず)に抑えることがより好ましい。

【0014】本発明の希土類焼結磁石の製造方法におけ る原料合金の微粉砕は不活性ガスを粉砕媒体とするジェ ットミル等による乾式粉砕装置または酸化を阻止できる 条件に設定された湿式ボールミル等の湿式粉砕装置を用 いて行うことができる。例えば、酸素濃度が0.1体積% 未満、より好ましくは0.01体積%以下の不活性ガス雰囲 気中でジェットミル微粉砕後、大気に触れないように前 記不活性ガス雰囲気中から直接微粉を所定配合比率の鉱 油、合成油及び植物油から選択される少なくとも1種の 油と潤滑剤とからなる非酸化性液中に回収し、スラリー 化する。前記微粉の平均粒径は 1~10 µmが好ましく、 3~6 μmがより好ましい。平均粒径が1 μm未満では 微粉の粉砕効率が大きく低下し、10μm超ではiHc及び 配向度が大きく低下する。回収したスラリーを成形原料 として、所定の成形装置により磁場中成形する。成形体 の酸化による磁気特性の劣化を阻止するために、成形直 後から脱油までの間前記液中で保存することが望まし い。成形体を常温から焼結温度まで急激に昇温すると成 形体の内部温度が急激に上昇し、成形体に残留する油と 成形体を構成する希土類元素とが反応して希土類炭化物 を生成し磁気特性が劣化する。この対策として、温度10 0~500°C、真空度13.3Pa (10<sup>-1</sup> Torr) 以下で30分間以 上加熱する脱油処理を施すことが望ましい。脱油処理に より成形体に残留する油が十分に除去される。なお、脱 油処理の加熱温度は100~500°Cであれば一点である必要 はなく二点以上であってもよい。また13.3Pa(10<sup>-</sup> <sup>†</sup> To rr) 以下で室温から500℃までの昇温速度を10℃/分以 下、より好ましくは5℃/分以下とする脱油処理を施す ことによっても脱油が効率よく行われる。

【0015】鉱液油、合成油又は植物油として、脱油及び成形性の点から、分留点が350℃以下のものがよい。 又室温の動粘度が10cSt以下のものがよく、5 cSt以下のものがさらに好ましい。

【0016】以下、実施例により本発明を説明するが、それら実施例により本発明が限定されるものではない。(実施例1)重量%で、Pr:29.5%、Dy:1.0%、B:0.9%、Co:2.0%、Ga:0.1%、Cu:0.1%及び残部:Fe からなるR-T-B系合金粗粉を、酸素濃度が体積比で10ppm以下に調整した窒素ガス雰囲気中でジェットミル微粉砕し、得られた平均粒径4.0μmの微粉をこの窒素ガス雰囲気中で大気に触れることなく鉱油(出光興産(株)製、商品名:出光スーパーゾルPA-3の)中に回収しスラリー化した。なお、平均粒径はSympatec社製レーザー回折型粒径分布測定装置(商品名:へ

ロス・ロードス) により測定した。次いで得られたスラ リーに所定量のオレイン酸メチルを添加し、攪拌機によ り混合した。スラリーの配合内訳を前記微粉:70重量 部、鉱油:29.9重量部、オレイン酸メチル:0.10重量部 とした。このスラリーを所定の金型キャビティに注入 し、配向磁場強度: 1.0MA/m (13kOe), 成形圧力: 98M Pa(1.0ton/cm²)の条件で横磁場の圧縮成形を行い、15 mm×25mm×10mmの直方体状の成形体を得た。ま た、配向方向は10mm辺方向とした。この成形体の室 温強度を3点曲げ試験により測定した。なお、成形体の1 5mm×25mmの面が上下面になるように曲げ試験機の 治具にセットし、10mmの辺に平行に加圧し3点曲げ強 度を測定した。結果を表1に示す。また同様にして成形 した別の成形体を真空度約66.5Pa (5×10<sup>-1</sup> Torr), 2 00°Cの条件で3時間加熱して脱油し、次いで同雰囲気中 で1050℃まで昇温し、次いで1050℃で2時間保持して焼 結し、その後室温まで冷却した。得られた焼結体をアル ゴン雰囲気中で900℃で2時間加熱し、次いで室温まで急 冷する第1次熱処理を行い、続いてアルゴン雰囲気中で 480℃で1時間加熱し、次いで室温まで冷却する第2次熱 処理を行い、約10mm角のR-T-B系焼結磁石を得 た。得られた焼結磁石を7mm角に加工し、磁気特性測 定用試料とした。次に、室温(20°C)において11.9MA/m (150kOe) のパルス磁場を前記試料の異方性付与方向に 沿って印加し、磁気特性を測定した。磁気特性は11.9MA /mのパルス磁場を印加したときの磁化の強さの最大値 (4π L<sub>ax</sub> ) を求め、配向度を (Br/4π L<sub>ax</sub> ) で定義 し、評価した。結果を表1に示す。又得られた焼結磁石

(実施例2~4)オレイン酸メチルの代わりにステアリン酸メチル、アジビン酸ジイソデシル、ステアリン酸2-エチルヘキシルを各々添加した以外は、実施例1と同様にして各3種のスラリーを作製した。以降このスラリーを用いた以外は実施例1と同様にして各R-T-B系焼結磁石を作製し評価した。結果を表1に示す。

の含有炭素量の分析値を表1に示す。

(比較例1) オレイン酸メチルを添加せずに、実施例1のR-T-B系微粉と鉱油とからなるスラリーを作製し、以降このスラリーを用いた以外は実施例1と同様にしてR-T-B系焼結磁石を作製し評価した。結果を表1に示す。

(比較例2)オレイン酸メチルに替えて、実施例1のスラリーにオレイルアルコールを0.1重量部添加した以外は実施例1と同様の手順でR-T-B系焼結磁石を作製し評価した。結果を表1に示す。

(比較例3) オレイン酸メチルに替えて、実施例1のスラリーにオレイルアミンを0.1重量部添加した以外は実施例1と同様の手順でR-T-B系焼結磁石を作製し評価した。結果を表1に示す。

(比較例4)オレイン酸メチルに替えて、実施例1のス ラリーに酢酸メチルを0.1重量部添加した以外は実施例

1と同様の手順でR-T-B系焼結磁石を作製し評価し た。結果を表1に示す。

(比較例5)オレイン酸メチルに替えて、実施例1のス ラリーにベヘニン酸メチルを0.1重量部添加した以外は 実施例1と同様の手順でR-T-B系焼結磁石を作製し 評価した。結果を表1に示す。

【0017】実施例1の成形体強度は比較例1(潤滑剤 無添加)に比べてやや低いが工業生産上なんら問題を発 生しないレベルであることが実証された。実施例1のオ レイン酸メチル、比較例2のオレイルアルコール、比較 10 例3のオレイルアミンは各々親油基が同一(炭素数17 個)であり、極性基だけが異なる(順に-C〇〇-、-〇H、>NH2)。実施例1及び比較例2.3から明ら かなように成形体強度は潤滑剤の極性基の種類に依存す ることがわかる。又磁気特性は、実施例1及び比較例

2, 3ではいずれも配向度 (Br/4π L...) は同程度で \*

\*あるが、実施例1に比べて比較例2,3のiHcが低下し ている。比較例1を基準にすると、添加した潤滑剤の残 留により焼結体炭素量が増加し、iHcが低下する程度が 異なることから焼結体炭素量も極性基の種類に依存して いると判断される。又、比較例4、5は潤滑剤の極性基 を-COO-とし、親油基中の炭化水素鎖の炭素数を変 えたものである。比較例4の結果から、炭化水素鎖が短 い場合には配向度(Br/4π Imax )の改善が認められな いので、前記微粉間の潤滑性向上には寄与していないと 判断される。一方、比較例5から、炭化水素鎖が長い場 合には配向度(Br/4π Imax )がみられるものの、焼結 体炭素量が増加してしまいiHcの低下が大きいことがわ

[0018] 【表1】

|          | 漢滑潮                      | 観油基中<br>の炭素数<br>(値) | Br/4π I <sub>max</sub> (%) | (BH)max<br>(kJ/m <sup>3</sup> )<br>(MGOe) | iHc<br>(MA/m)<br>(kOe) | 焼結体<br>炭素量<br>(wt%) | 成形体<br>強度<br>(MPa) |
|----------|--------------------------|---------------------|----------------------------|-------------------------------------------|------------------------|---------------------|--------------------|
| 実施例<br>1 | オレイン酸<br>メデル             | 17                  | 96.5                       | 377<br>47.3                               | 1.26<br>15.8           | 0.067               | 0.81               |
| 実施例<br>2 | ステアリン<br>酸メテル            | 17                  | 96.2                       | 374<br>47.0                               | 1.26<br>15.8           | 0.067               | 0.81               |
| 実施例<br>3 | アジピン<br>職ジイリ<br>デジル      | 20                  | 96.7                       | 377<br>47.4                               | 1.27<br>15.9           | 0.067               | 0.79               |
| 実施例<br>4 | ステアリン<br>酸 2・エチ<br>あヘキシル | 25                  | 96.4                       | 375<br>47.1                               | 1.25<br>15.7           | 0.068               | 0.79               |
| 比較例<br>1 | 無澤加                      |                     | 95.1                       | 361<br>45.4                               | 1.27<br>15.9           | 0.065               | 1.34               |
| 比較例<br>2 | オレイル<br>アルコール            | 17                  | 96.3                       | 373<br>46.9                               | 1.20<br>15.1           | 0.088               | 0.34               |
| 比較例<br>3 | オレイル<br>フミン              | 17                  | 96.0                       | 373<br>46.8                               | 1.18<br>14.8           | 0.089               | 0.37               |
| 比較例      | 野職<br>メチル                | 1                   | 95.2                       | 363<br>45.6                               | 1.17<br>14.7           | 9.066               |                    |
| 比較例<br>5 | ペペニン<br>酸メチル             | 22                  | 96.8                       | 378<br>47.5                               | 1.17<br>14.7           | 0.093               |                    |

【0019】以下に他の実施例として平行異方性を有す る、R-T-B系焼結アークセグメント磁石を作製し、 評価した実施例を説明する。

(実施例5)重量%で、主要成分組成が Pr:30.2 %, Dy: 0.3%, Co: 1.6%, Cu: 0.1%, A1: 0.12%, Ga:0.08%、Nb:0.18%, B:1.0%及び 残部FeからなるR-T-B系原料合金粗粉(320メッシュア ンダー)を酸素濃度が1ppm以下(体積比)のアルゴン雰 囲気中でジェットミル粉砕し、得られた平均粒径3.5μ mの微粉を用いた以外は実施例1と同様にしてスラリー を作製した。このスラリーを図1のスラリー供給装置15 の原料タンク13に充填した。次に、スラリー供給管6を シリンダー(図示省略)で下降させ、アークセグメント 形状のキャビティ3の底面近傍位置(下パンチ2の上面 近傍位置)で停止させた。次に、ポンプ10を作動させて 原料タンク13からスラリーを配管11を通してスラリー供 給管6からキャビティ3に吐出しながらスラリー供給管 6 をシリンダー(図示省略)でキャビティ3 の上端部位

した。次いでスラリー供給管6をシリンダー (図示省 略)で上昇させてキャビティ3から引き抜いた後、供給 ヘッド9をシリンダー4により左方向に移動し、次いで 水平方向に1.0MA/m(13kOe)の配向磁場を印加しながら上 パンチ(図示省略)及び下パンチ2により98MPa(1ton /cm²)の圧力を加えて横磁場圧縮成形を行い、アーク セグメント成形体を得た。以降は実施例1と同様にして 成形体を脱油後、焼結し、熱処理した。次いで得られた 40 焼結磁石素材表面の焼結肌が無くなるまで加工し、次い で平均膜圧15μmのエポキシ樹脂膜をコーティングし た図3に示す厚みT<sub>1</sub> = 2.8mm、長さL<sub>1</sub> = 80.0mm、中 心角 θ 1 = 45° の薄肉、長尺形状のR-T-B系焼結ア ークセグメント磁石30を得た。加工前の前記素材のしょ 方向の反りは1mm未満であり小さく、異方性付与方向の 配向度(Br/4 π I max)が良好であった。アークセグメ ント焼結磁石30の異方性は↑方向(紙面にほぼ垂直方 向) に付与されている。前記アークセグメント磁石30か ら試料を切り出し、磁気異方性付与方向の磁気特性を室 置まで上昇し、キャビティ3に所定量のスラリーを充填 50 温(20℃)で測定した結果、配向度(Br/4π I m a x )

= 96.8%、iHc=1.27MA/m(16.0kOe)及び(BH)max=378.1 \*kJ/m³ (47.5MCOe)という高い値が得られた。又、密度は7.54 Mq/m³ (q/cm³) であり、酸素量は0.14重量%、炭素量は0.05重量%及び窒素量は0.02重量%であった。又、試料を理学電気(株)製のX線回折装置(RU-200BH)にセットし、2 θ − θ 走査法により X線回折(C u K α l線;λ=0.15405rmを使用)した結果、主な回折ピークは主相であるR₂ T₁₄ B型金属間化合物の、2 θ=29.08° の(004)面,38.06° の(105)面、及び44.34° の(006)面であり、(006)面からの X線回折ピーク強度:I(00 106)を100%として、I (105) /I (006)=0.66であった。

(実施例6) キャビティ3の厚み及びスラリーの充填量を変えた以外は実施例5と同様にして、表2の長さ L<sub>1</sub>,厚みΤ<sub>1</sub>及びθ<sub>1</sub>の寸法を有する薄肉、長尺形状の焼結アークセグメント磁石を作製した。これらの磁石\* \* は、磁気異方性付与方向の配向度(Br/4π I max) = 9
 6.4~96.7%、iHc=1.23~1.25MA/m(15.4~15.7kOe)、(BH)max=376.5~378.8kJ/m³ (47.3~47.6MGOe)という高い磁気特性を有し、密度は7.54 Mq/m³ (q/cm³)であり、酸素量は0.13~0.14重量%、炭素量は0.06重量%及び窒素量は0.02~0.03重量%であった。又、実施例5の場合と同様にしてX線回折した結果、I(105)/I(006) = 0.67~0.68であった。

(比較例6)比較例1のスラリーを成形原料とした以外は実施例6と同様に横磁場成形法を適用し、T=1.0~4.0mmのR-T-B系焼結アークセグメント磁石用成形体の成形を試みたが、成形体に亀裂が発生し、亀裂の無い健全な成形体を得られなかった。

【0020】 【表2】

|       | L, (mm) | T, (mm) | θ, (°) |
|-------|---------|---------|--------|
| 実施例 6 |         | 1.0     |        |
|       | 7 2     | 2. 1    | 5 5    |
|       |         | 4.0     |        |

【0021】以下にラジアル異方性を有する、R-T-B系焼結アークセグメント磁石を作製し、評価した実施例を説明する。

(実施例7) ラジアル異方性を有するアークセグメント 焼結磁石用成形体の内径寸法及びラジアル配向磁場強度 (Hap)を変化させて、最終的に長さし2 = 65mm、厚みT2 = 2.5mm、θ2 = 40°及び表3の内径を有する図4の 焼結アークセグメント磁石40を作製し、内径とHap及びラジアル方向の配向度(%)との関係を調査した。調査 結果を表3に示す。なお、このアークセグメント焼結磁 30石の製造は、成形条件及び成形体寸法を変えた以外は実施例5と同様にして順次脱油、焼結、熱処理、加工及び表面処理を行った。表3よりラジアル方向の高い配向度を有することがわかる。又、表3のアークセグメント磁石はいずれも角形比(Hk/iHc)が87.5%超であり、iHcは1.1MA/m(14kOe)超であり、酸素量は0.13~0.14重量%であり、炭素量は0.05~0.06重量%であり、窒素量は0.003~0.004重量%であった。

(比較例7)比較例1のスラリーを成形原料とした以外は実施例7と同様の形状を有する焼結アークセグメント 磁石用成形体の成形を試みたが、成形体亀裂が発生し、焼結アークセグメント磁石を作製することができなかった。

[0022]

【表3】

| アークセグメント<br>内径(mm) | Hap<br>(kA/m)<br>(kOe) | 配向度<br>(%) |
|--------------------|------------------------|------------|
| 100                | 708. 3<br>8. 9         | 92. 6      |
| 50                 | 612. 8<br>7. 7         | 92. 2      |
| 30                 | 461. 6<br>5. 8         | 91. 9      |
| 10                 | 310. 4<br>3. 9         | 91. 7      |

【0023】次に、ラジアルリングの実施例について説明する。

(実施例8)重量%で、主要成分組成がPr:27.4%, Dy: 3.1%, B: 1.05%, Ga: 0.08%, Nb: 0.2 %, Al:0.05%, Cu:0.13%, Co:2.0%及び残 部FeからなるR-T-B系原料合金粗粉(320メッシュアンタ '-) を酸素濃度が1ppm未満(体積比)のアルゴン雰囲 気中でジェットミル粉砕し、得られた平均粒径3.8μm の微粉を用いた以外は実施例1と同様にしてスラリーを 作製した。得られたスラリーを、図2 に示す成形機のキ ャビティ59(ダイス51及び52の内径:60mm、コア53の外 径:45mm、ダイス強磁性部51の長さ:34mm、充填深さ: 34mm)に充填後、成形圧力:78.4MPa(0.8ton/cm²)及び ラジアル方向の配向磁場強度:約238.7kA/m(3kOe)の条 件でラジアル磁場中成形し、成形体を得た。成形体を真 空度が約66.5Pa(5×10<sup>-1</sup> Torr)、200℃の条件で1時間 加熱し脱油後、続いて約4.0×10<sup>-3</sup> Pa(3×10<sup>-5</sup> Tor r)、1060°Cの条件で2時間焼結後室温まで冷却し焼結体 50 を得た。次に、アルゴン雰囲気中で900℃で1時間加熱後

)

550℃まで冷却し、次いで550℃で2時間加熱後さらに室 温まで冷却する熱処理を行った。次に所定寸法に加工 後、電著により平均膜厚12μmのエボキシ樹脂膜をコー ティングし、外径48mm、内径39mm及び高さ11mmのラジア ル異方性を有するラジアルリングを得た。次に、図5に 示すように、作製した前記ラジアルリング70の任意の位 置から接線方向5mm×長さ方向6.5mm×ラジアル方向2.8 mmの直方体を切り出した。直方体の切り出し要領につい て図5(b)により説明する。ラジアルリング70の中心 点Oから半径方向に直線OPQを引く。点Pは内周面との 接点であり、点Qは外周面との接点である。次に、接点 Pにおける接線RPSを引き、接線RPSの長さが接点Pを中 心にして5 mmになるようにする。次に、接線RPSに垂直 に直線RT(長さ2.8mm)及び直線SU(長さ2.8mm)を引 く。次に、接線RPSに平行に直線TU(長さ5mm)を引 く。長方形RSUTにおけるRPS方向及びTU方向がラジアル リング70の接線方向であり、RT方向およびSU方向をラジ アルリング70のラジアル方向と定義する。又、長方形RS UTの厚み方向がラジアルリング70の長さ方向であり6.5m mの長さに切り出した。この切り出し要領により合計4 個の直方体を切り出した後、それらの各方向を一致させ て貼りあわせた直方体を得た。この直方体により下記の 磁気特性を測定した。なお、測定対象のラジアルリング\*

\*から前記寸法の直方体が切り出せない場合は、寸法が異 なる以外は前記の切り出し要領に従い複数の直方体を切 り出した後、それらの各方向を一致させて貼りあわせて 寸法を調整すればよい。前記直方体の室温(20℃)にお けるラジアル方向の残留磁束密度 (Br//)、保磁力iH c、最大エネルギー積(BH)max及び角形比(Hk/iHc)を測定 した。 $Hkは4\piI$ (磁化の強さ)-H(磁界の強さ)曲 線の第2象限において、0.9Brに相当するHの値であ り、HkをiHcで除した角形比(Hk/iHc)は4πI-H減磁 曲線の矩形性を示している。次に、前記直方体の室温 (20°C) における長さ方向の残留磁束密度 (Br⊥) を測 定後、[(Br//)/(Br//+ Br⊥)×100(%)]により定義す るラジアルリングの配向度を求めた。又ラジアルリング の密度を測定した。それらの測定結果を表4に示す。又 前記ラジアルリングの酸素量は0.13重量%であり、炭素 量は0.05重量%であり、窒素量は0.003重量%であっ た。

(比較例8)実施例8のスラリーに替えて、比較例1のスラリーによりラジアル磁場中成形した以外は実施例8) と同様にして比較例のラジアルリングを作製し、評価した。結果を表4に示す。

[0024]

## 【表4】

|          | 密度<br>(Mg/m³)<br>(g/cm³) | Br//<br>(T)<br>(kG) |                | (BH) max<br>(kJ/m <sup>3</sup> )<br>(MGOe) | (Hk/iHc)<br>(%) | 配向度 (%) |
|----------|--------------------------|---------------------|----------------|--------------------------------------------|-----------------|---------|
| 実施例<br>8 | 7. 55                    | 1. 27<br>12. 7      | 1. 46<br>18. 4 | 303<br>40. 0                               | 96. 4           | 89. 9   |
| 比較例<br>8 | 7. 55                    | 1. 20<br>12. 0      | 1. 46<br>18. 4 | 267<br>35. 3                               | 87. 1           | 85. 2   |

【0025】表4の実施例8及び比較例8の結果より、本発明によれば、密度が7.50g/cm³以上、ラジアル方向におけるBr//が1.20T (12.0kG)より高く、iHcが1.40MA/m(14kOe)超、(BH)maxが270kJ/m³ (34.0MGOe)以上、(Hk/iHc)が87.5%以上、及びラジアル方向の配向度が85.5%以上という、従来にない高い磁気特性を有するラジアルリングを提供できることがわかる。

【0026】(実施例9)図2の成形機のダイス51,52 及びコア53等の寸法を変化させてラジアル異方性を有す る成形体リングの内径寸法を変化させ、ラジアル配向磁 場強度(Hap)を変えたときのHap、最終的に得られたラジ アルリングの内径及びラジアル方向の配向度(%)の関 係を調査した。Hapは表5に示すようにラジアル異方性 を有する成形体リングすなわちラジアルリングの内径が 小さくなるほど低下する。ラジアルリングの内径が100m mのときのHapは磁場発生用電源及びコイルの発熱等によ

り716.2kA/m(9 kOe)が上限であった。前記成形体リングの内径、外径(外径=内径+(8~20mm))及びHapを変えたラジアル磁場成形条件とした以外は実施例8と同様にして順次脱油、焼結、熱処理、加工及び表面処理を行い、表5に示す内径寸法を有するラジアルリングを作製した。表5のいずれのラジアルリングもラジアル方向の配向度が高いことがわかる。又、いずれのラジアルリングも角形比(Hk/iHc)は87.5%超であり、1.1MA/m(14kOe)超のiHcを有し、酸素量は0.14~0.16重量%であり、炭素量は0.04~0.05重量%であり、窒素量は0.003~0.004重量%であった。

(比較例9)比較例1のスラリーを成形原料とした以外は実施例9と同様にして表5のラジアルリングを作製し、ラジアル方向の配向度を求めた。

[0027]

【表5】

| Hap<br>(kA/m) | ラジアルリング<br>内径 | 配向度<br>(%) |       |  |  |
|---------------|---------------|------------|-------|--|--|
| (k0e)         | (mm)          | 実施例 9      | 比較例 9 |  |  |
| 716.2         | 100           | 92.9       | 85.3  |  |  |
| 636.6         | 5 0           | 92.7       | 85.1  |  |  |
| 453.6<br>5.7  | 3 0           | 91.7       | 85.0  |  |  |
| 270.6         | 1 0           | 90.1       | 84.9  |  |  |

【0028】表5より、本発明によれば、内径が100mm 以下の従来にない高性能ラジアルリングを提供できることがわかる。

【0029】(実施例10)重量%で、主要成分組成がPr:30.2%, Dy:0.3%, Co:1.6%, Cu:0.1%, Al:0.12%, Ga:0.08%、Nb:0.18%, B:1.0%及び残部FeからなるR-T-B系原料合金粗粉(320メッシュァンダ-)を酸素濃度が1ppm以下(体積比)のアルゴン雰囲気中でジェットミル粉砕し、得られた平均粒径3.5μmの微粉を用いた以外は実施例1と同様にしてスラリーを作製した。得られたスラリーにより、以降は実施例9と同様にしてラジアル異方性を有する焼結リング磁石を作製した。

(比較例10) 実施例10の微粉を用いた以外は比較例 1と同様にしてスラリーを作製した。このスラリーを用いた以外は実施例10と同様にしてラジアル異方性を有する焼結リング磁石を作製した

実施例10及び比較例10で作製したラジアルリングを 総磁束量が飽和する条件で各々対称8極着磁し、両者の 総磁束量を測定し、比較した。その結果、実施例10の ラジアルリングの総磁束量が比較例10のラジアルリン グの総磁束量よりも高かった。この総磁束量の差は両者 のラジアル異方性付与方向の配向度の差によることが実 証された。又、実施例10のラジアルリングは液体窒素 温度に保持した場合でもスピン再配列を示さず、良好な 低温磁気特性を保持していた。

【0030】以下に極異方性を有する、R-T-B系焼結リング磁石を作製し、評価した実施例を説明する。

(実施例11) 重量%で、主要成分組成がPr:29.5%, Dy:1.0%, B:1.05%、Ga:0.08%、Nb:0.2%, Al:0.05%, Cu:0.13%, Co:2.0%及び 40 残部FeからなるR-T-B系原料合金粗粉 (320メッシュスアンダー)を酸素濃度が1ppm未満 (体積比)の窒素雰囲気中でジェットミル粉砕し、得られた平均粒径3.8μmの微粉を用いた以外は実施例1と同様にしてスラリーを作製した。得られたスラリーを、図2に示す成形機のキャビティ59に充填後、成形圧力:78.4MPa(0.8ton/cm²)及び100Vのバルス磁場で極異方となるよう磁場中成形し、成形体を得た。成形体を真空度が約66.5Pa(5×10 \*\* 1\* Torr)、200°Cの条件で1時間加熱し脱油後、続いて約4.0×10\*\* 3\* Pa(3×10\*\* 5\* Torr)、1060°Cの条件で2時 50

間焼結後室温まで冷却し焼結体を得た。次に、アルゴン 雰囲気中で900℃で1時間加熱後550℃まで冷却し、次い で550℃で2時間加熱後さらに室温まで冷却する熱処理を 行った。次に所定寸法に加工後、電着により平均膜厚12 μmのエポキシ樹脂膜をコーティングし、外径48mm、内 径30mm及び高さ11mmの8極の極異方性を有する極異方り ングを得た。次に上記の極異方リングの外径面での磁極 間中央部が測定できるようX線回折用の試料を切り出 し、その試料を理学電気(株)製のX線回折装置(RU-200B H)にセットし、 $2\theta - \theta$ 走査法によりX線回折した。X線源には $CuK\alphal$ 線( $\lambda=0.15405nm$ )を用い、ノイ ズ (バックグラウンド) は装置に内蔵されたソフトによ り除去した。主な回折ビークは主相である $R_2$   $T_{1.4}$  B 型金属間化合物の、2 0 = 29.08°の(004)面、38.06° の(105)面、44.34°の(006)面であり、(006)面からのX 線回折ピーク強度: I(006)を100%として、I(004)/I(00 6)=0.33, I(105)/I(006)=0.63であった。結果を表6 に示す。表中のBoは磁極部での表面磁束密度を示す。 (比較例11) 実施例11のスラリーに替えて、比較例 1のスラリーにより極異方方向へ磁場中成形した以外は 実施例11と同様にして比較例の極異方リングを作製し た。以後は実施例11と同様に比較例11の極異方リン グのX線回折を行なった。結果を表6に示す。主な回折 ピークは実施例 1 1 と同様であったが、I(004)/I(006) =0.32, I(105)/I(006)=0.96であった。又前記極異方 リングの酸素量は0.13重量%であり、炭素量は0.05重量 %であり、窒素量は0.003重量%であった。

[0031]

【表6】

|     | 密度<br>(Mg/m³)        | Bo<br>(T)    | I (105)/<br>I (006) |
|-----|----------------------|--------------|---------------------|
|     | (g/cm <sup>2</sup> ) | (kG)         |                     |
| 実施例 | 7. 53                | 0. 55        | 0.63                |
| 11  |                      | <u>5. 50</u> |                     |
| 比較例 | 7. 53                | 0. 52        | 0. 96               |
| 1 1 |                      | 5. 20        |                     |

[0032] 表4の実施例11及び比較例11の結果より、本発明によれば、極異方性を有し、密度が7.50 Mq/m³ (q/cm³)以上であり、リング外径面での磁極間中心部表面位置で観測した(105)面からのX線回折ビーク強度: I (105)と(006)面からのX線回折ビーク強度: I (006)との比率が、I (105)/I (006)=0.5

19

~0.8である極異方リングを提供できることがわかる。 【0033】以下に全体が軸垂直方向へ一方向に配向した(以後、平行異方性という)、R-T-B系焼結リング磁石を作製し、評価した実施例を説明する。

19

(実施例12)実施例1と同様にしてスラリーを作製し た。得られたスラリーを、図2に示す成形機のキャビテ ィ59(ダイス51及び52の内径:60mm、コア53の外径:45m m、ダイス強磁性部51の長さ:34mm、充填深さ:34mm)に 充填後、成形圧力: 78.4MPa(0.8ton/cm²)及び軸垂直方 向へ一方向に磁場強度:約238.7kA/m(3kOe)をかけた条 件で磁場中成形し、成形体を得た。以後は実施例11と 同様にして平行異方性を有する平行異方性リングを得 た。次に、図5に示すように、作製した前記平行異方性 リング70の配向方向に沿って切り出し、接線方向5mm× 長さ方向6.5mm×径方向2.8mmの直方体を得た。直方体の 切り出し要領については図5(b)により説明する。平 **行異方性リング70の中心点〇から半径方向に配向方向に** 垂直に直線OPQを引く。点Pは内周面との接点であり、 点Qは外周面との接点である。次に、接点Pにおける接 線RPSを引き、接線RPSの長さが接点Pを中心にして5mm 20 になるようにする。次に、接線RPSに垂直に直線RT (長 さ2.8mm) 及び直線SU(長さ2.8mm) を引く。次に、接線 RPSに平行に直線TU(長さ5mm)を引く。長方形RSUTに おけるRPS方向及びTU方向が平行異方性リング70の接線 方向であり、RT方向およびSU方向を平行異方性リング70 の配向方向と定義する。又、長方形RSUTの厚み方向が平 行異方性リング70の長さ方向であり6.5mmの長さに切り \*

\*出した。この切り出し要領により合計4個の直方体を切り出した後、それらの各方向を一致させて貼りあわせた直方体を得た。この直方体により下記の磁気特性を測定した。なお、測定対象の平行異方性リングから前記寸法の直方体が切り出せない場合は、寸法が異なる以外は前記の切り出し要領に従い複数の直方体を切り出した後、それらの各方向を一致させて貼りあわせて寸法を調整すればよい。前記直方体の室温(20°C)における配向方向の残留磁束密度(Br//)、保磁力iHc、最大エネルギー(磁化の強さ)-H(磁界の強さ)曲線の第2象限において、0.98㎡に相当するHの値であり、HkをiHcで除した角形比(Hk/iHc)は4πI-H減磁曲線の矩形性を示して

(比較例12)実施例12のスラリーに替えて、比較例 1のスラリーにより配向方向へ磁場中成形した以外は実 施例12と同様にして比較例の平行異方性リングを作製 し、評価した。結果を表7に示す。

[0034]

【表7】

| ,   |             | ····  |        |          |          |       |
|-----|-------------|-------|--------|----------|----------|-------|
|     | 密度          | Br//  | iHc    | (BH) max | (Hk/iHc) | 配向度   |
|     | (Mg/m²)     | (T)   | (MA/m) | (kJ/m 3) | (%)      | (%)   |
|     | (g/cm³)     | (kG)  | (kQe)  | (MGOa)   |          |       |
| 実施例 | 7. 54       | 1.32  | 1. 31  | 338      | 96. 4    | 92. 3 |
| 12  |             | 13. 2 | 16. 4  | 42. 4    |          |       |
| 比較例 | 7. 54       | 1. 28 | 1. 34  | 305      | 87. 1    | 89. 4 |
| 12  | <del></del> | 12.8  | 16. 9  | 48. 3    |          |       |

【0035】表7の実施例12及び比較例12の結果より、本発明によれば、密度が7.50q/cm³以上、配向方向におけるBr//が1.30T (13.0kG)以上、iHcが1.3MA/m(16.4kOe)以上、(BH)maxが310kJ/m³(39.0MCOe)以上、(Hk/iHc)が87.5%以上、及び配向方向の配向度が85.5%以上という、従来にない高い磁気特性を有する平行異方性リングを提供できることがわかる。

[0036]

【発明の効果】以上記述の通り、本発明のよれば、低酸素含有量であり、高い焼結体密度を有し、従来に比べて配向度を高めた高性能の希土類焼結磁石を得られる製造方法を提供することができた。又、低酸素含有量であり、高い焼結体密度を有し、従来に比べて配向度を高めた、薄肉形状又は薄肉、長尺形状の平行異方性又はラジアル異方性を有する高性能のR-T-B系焼結アークセグメント磁石を提供することができた。又、低酸素含有

量であり、高い焼結体密度を有し、従来に比べてラジアル方向の配向度を高めた、ラジアル異方性を有する高性能のR-T-B系焼結リング磁石を提供することができた。

【図面の簡単な説明】

【図1】本発明に用いる成形装置の一例を示す要部断面 40 図である。

【図2】本発明に用いる成形装置の他の例を示す要部断 面図である。

【図3】平行異方性を有する本発明のアークセグメント 磁石の一例を示す斜視図である。

【図4】ラジアル異方性を有する本発明のアークセグメント磁石の一例を示す斜視図である。

【図5】本発明のリング磁石の評価用試料の切り出し要領を説明する斜視図(a)、要部断面図(b)である。 【図6】磁束量の温度依存性を示す図である。





【図6】



# 【符号の説明】

1 ダイス、2 下バンチ、3 キャビティ、4 移動手段、5 供給ヘッド、6 スラリー供給管、7 ブレート、8 摺動板、9 供給ヘッド本体、1 0 スラリー供給手段、11 配管、12 制御装置、13 タンク、15 スラリー供給装置、30,40 アークセグメント磁石、51 ダイス強磁性部、52 ダイス非磁性部、53 コア、54 上パンチ、55 下パンチ、56 上部コイル、57 下部コイル、58 プレスフレーム、59 キャビティ、70,90 ラジアルリング。

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第2区分 【発行日】平成19年3月1日(2007.3.1)

【公開番号】特開2002-164239(P2002-164239A) 【公開日】平成14年6月7日(2002.6.7) 【出願番号】特願2001-279656(P2001-279656) 【国際特許分類】

【手続補正書】

【提出日】平成19年1月17日(2007.1.17)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】 R-T-B系(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上であり、TはFe又はFe及びCoである)の希土類焼結磁石用合金粗粉を非酸化性雰囲気中で平均粒径 $1\sim10\mu$ mに微粉砕し、得られた微粉を鉱油、合成油及び植物油から選択される少なくとも1種の油と、脂肪酸の1価アルコールエステル、多塩基酸の1価アルコールエステル、多価アルコールの脂肪酸エステル及びそれらの誘導体のうちから選択される少なくとも1種からなる潤滑剤とからなる非酸化性液中に回収してスラリーを作製し、次いで前記スラリーにより成形し、得られた成形体を脱油後焼結し、得られた焼結体を熱処理することを特徴とする希土類焼結磁石の製造方法。

【請求項2】 前記潤滑剤の添加量は、(R-T-B系合金微粉): (潤滑剤) = 99.9 9~99.5重量部:0.01~0.5重量部となる範囲である請求項1に記載の希土類焼結磁石の製造方法。

【請求項3】 重量%で、R (RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上である):28~33%、B:0.8~1.5%、Co:5%以下(0を含む)、Cu:0.3%以下(0を含む)及び残部:Feの主要成分、ならびに不可避的不純物を含有するR-T-B系 (TはFe又はFe及びCoである) 焼結磁石からなるアークセグメント磁石であって、

前記アークセグメント磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、厚みが $1\sim4$  mmの薄肉形状に形成され、密度が7.50 Mg/m³ (g/cm³)以上であり、室温において1.1MA/m(14kOe)以上の保磁力 iHc及び96%以上の異方性付与方向の配向度( $Br/4\pi \ L_{ax}$ )を有することを特徴とするアークセグメント磁石。

【請求項4】 平行異方性を有する請求項3に記載のアークセグメント磁石。

【請求項5】 長さが40~100mmの長尺形状に形成された請求項3又は4に記載のアー

クセグメント磁石。

【請求項 6 】 (105) 面からの X 線回折ピーク強度: I (105) と (006) 面からの X 線回折ピーク強度: I (006) との比率が、 I (105) /I (006)  $=0.5\sim0.8$ である請求項 3 乃至 5 のいずれかに記載のアークセグメント磁石。

【請求項7】 重量%で、R (RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上である):  $28\sim33\%$ 、B:  $0.8\sim1.5\%$ 、Co: 5%以下 (0を含む)、Cu: 0.3%以下 (0を含む)及び残部: Feの主要成分、ならびに不可避的不純物を含有するR-T-B系 (TはFe又はFe及びCoである)焼結磁石からなるアークセグメント磁石であって、

前記アークセグメント磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、かつ前記アークセグメント磁石はラジアル異方性が付与されたアーク断面形状に形成され、内径が1.00m以下であり、密度が $7.50~Mg/m^3~(g/cm^3~)$ 以上であり、室温における保磁力iHcが1.1MA/m~(14kOe)以上であり、室温におけるラジアル方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br//)とで定義する配向度:  $[(Br//)/(Br//+Br_\perp)\times 100(\%)]$  が85.5%以上であることを特徴とするアークセグメント磁石。

【請求項8】 厚みが $1 \sim 4$  mmの薄肉形状に形成された請求項 $\underline{7}$ に記載のアークセグメント磁石。

【請求項9】 長さが $40\sim100$ mmの長尺形状に形成された請求項7又は8に記載のアークセグメント磁石。

前記リング磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、かつ前記リング磁石は内径が100mm以下であり、ラジアル異方性を有し、密度が7.50 Mg/m³ (g/cm³) 以上であり、室温の保磁力iHc % 1.1 MA/m (14kOe) 以上であり、室温におけるラジアル方向の残留磁束密度 (Br//) とラジアル方向に垂直な長さ方向の残留磁束密度 (Br//) とで定義する配向度:  $[(Br//)/(Br//+Br_\perp)\times 100(\%)]$  が85.5%以上であることを特徴とするリング磁石。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 2

【補正方法】変更

【補正の内容】

[0002]

【従来の技術】

これらの用途において、残留磁束密度Brおよび最大エネルギー積(BH)maxを高めるには 含有酸素量の低減が極めて重要である。このため、本出願人は前記微粉の酸化の進行を阻 止する作用の顕著な鉱油や合成油を発見し、それら油中に前記微粉を回収してスラリー化 し、このスラリーを成形し、次いで得られた成形体を脱油し、焼結し、熱処理することに より低酸素含有量、高密度型の高性能R-T-B系焼結磁石を得られる製造プロセスを提案した(特許第2731337号等参照)。この製造プロセスは前記微粉末及び成形体を前記油で被覆し大気と遮断することにより酸化の進行を実質的に抑えられるという特徴を有し、脱油し、焼結して得られたR-T-B系焼結体の含有酸素量が微粉砕前のR-T-B系合金粗粉に相当する低水準に保持される。よってR-T-B系焼結体中のR元素が酸化物化し、実質的に減失して生じる有効希土類量の減少が小さく抑えられ、粒界相を形成する希土類リッチ相は健全に保持される。有効希土類量の実質的な減失が小さい分だけR含有量を低く設定できるので従来に比べて余剰のRリッチ相及び希土類酸化物が低減でき、同時に強磁性相のR2Fe14B型結晶粒(主相)の体積比率を高められるのでBr, (BH)maxが顕著に向上する。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0005

【補正方法】変更

【補正の内容】

[0005]

【課題を解決するための手段】

上記課題を解決した本発明の希土類焼結磁石の製造方法は、R-T-B系(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上であり、TはFe 又はFe及びCoである)の希土類焼結磁石用合金粗粉を非酸化性雰囲気中で平均粒径1~10 $\mu$ mに微粉砕し、得られた微粉を鉱油、合成油及び植物油から選択される少なくとも1種の油と、脂肪酸の1価アルコールエステル、多塩基酸の1価アルコールエステル、多価アルコールの脂肪酸エステル及びそれらの誘導体のうちから選択される少なくとも1種からなる潤滑剤とからなる非酸化性液中に回収してスラリーを作製し、次いで前記スラリーにより成形し、得られた成形体を脱油後焼結し、得られた焼結体を熱処理することを特徴とする。

前記潤滑材の添加量は、(R-T-B系合金微粉):(潤滑剤)=99.99~99.5重量部:0.01~0.5重量部となる範囲であることが好ましい。RがPr系のものとNd系の磁束量の温度依存性を図6に示す。Nd系のR-T-B系希土類焼結磁石の方では約130K以下になると磁束量が低下する。対してPr系では80K近傍まで環境温度を下げても磁束量が増加しつづけており、高速回転を必要とする流体機械や工作機械、余剰電力をフライホイールの運動エネルギーに変換して貯蔵する電力貯蔵装置等に適用しても高特性のものを得る事が可能である。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 6

【補正方法】変更

【補正の内容】

[0006]

又、本発明のアークセグメント磁石は、重量%で、R(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上である): $28\sim33\%$ 、B: $0.8\sim1.5\%$  、Co:5%以下(0を含む)、Cu:0.3%以下(0を含む)及び残部:Feの主要成分、ならびに不可避的不純物を含有するR-T-B系(TはFe又はFe及びCoである) 焼結磁石からなるアークセグメント磁石であって、前記アークセグメント磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、厚みが $1\sim4$  mmの薄肉形状に形成され、密度が7.50 Mg/m³(g/cm³)以上であり、室温において1.1MA/m(14kOe)以上の保磁力 iHc及び96%以上の異方性付与方向の配向度(1.1MA/m(1.1MA/m(1.1MA/m(1.1MA/m(1.1MA/m)を有することを特徴とする。

前記アークセグメント磁石は、平行異方性を有するものとすることが可能であり、また 形状として長さが40~100mmの長尺形状に形成されたものを製造可能である。この配向性 の良好なアークセグメント磁石においては、 (105) 面からの X線回折ピーク強度: I (105) と (006) 面からの X線回折ピーク強度: I (006) との比率が、 I (105) / I (006) = 0.5~0.8であるという特徴を持つ。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 7

【補正方法】変更

【補正の内容】

[0007]

又、本発明の他の $\underline{r}$  -  $\underline{r}$  -

前記アークセグメント磁石は、厚みが $1 \sim 4$  mmの薄肉形状、さらには長さが $40 \sim 100$  mmの長尺形状に形成することが可能である。

### 【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 8

【補正方法】変更

【補正の内容】

[0008]

又本発明のリング磁石は、重量%で、R(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上である):28~33%,B:0.8~1.5%,Co:5%以下(0を含む),Cu:0.3%以下(0を含む)及び残部:Feの主要成分、ならびに不可避的不純物を含有するR-T-B系<u>(TはFe又はFe及びCoである)</u>焼結磁石からなるリング磁石であって、前記リング磁石の全重量に対し不可避的に含有される酸素量が0.3%以下であり、かつ前記リング磁石は内径が100mm以下であり、ラジアル異方性を有し、密度が7.50 Mg/m³(g/cm³)以上であり、室温の保磁力iHcが1.1MA/m(14k0e)以上であり、室温におけるラジアル方向の残留磁束密度(Br//)とラジアル方向に垂直な長さ方向の残留磁束密度(Br」とで定義する配向度:[(Br//)/(Br//+Br」)×100(%)]が85.5%以上であることを特徴とする。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 3

【補正方法】変更

【補正の内容】

[0013]

R元素としてPrを主とした希土類焼結磁石では、 $R_2$   $Fe_1$  4 B金属間化合物(Rは Yを含む希土類元素の少なくとも 1 種であり、Rに占めるPrが50原子%以上である)を主相とする場合、主要成分組成を、重量%で、 $R:28\sim33\%$ .  $B:0.8\sim1.5\%$ 、 $M_1:0\sim0.6\%$ ( $M_1$  はN b,M o,W, V, T a,C r,T i,Z r 及びH f から選択される少なくとも 1 種である),  $M_2:0\sim0.6\%$ ( $M_2$  はA l,G a 及びG u から選択される

少なくとも 1 種)及び残部F e (但し、R+B+F e  $+M_1+M_2=100$ 重量%とした場合)とするのが好ましい。以下、単に%と記すのは重量%を意味するものとする。

R量は28~33%が好ましい。良好な耐食性を具備するために、R量は28~32%がより好ましく、28~31%が特に好ましい。R量が28%未満では所定のiHcを得られず、33%超ではBェが著しく低下する。所定のBェ及び配向度を得るために、RはPェ、又はPェとDy、又はNdとDyとPェ及び不可避的R成分からなることが好ましい。即ちRに占めるPェを50原子%以上とし、Dy含有量を0.3~10%にするのが好ましい。又Rに占めるPェを90原子%以上とし、Dy含有量を0.5~8%にするのがより好ましい。Rに占めるPェが50原子%未満では液体窒素温度付近でスピン再配列が顕著になり、磁気特性が大きく低下する。Dy含有量が0.3%未満ではDyの含有効果が得られず、10%超ではBrが低下し所定の配向度を得られない。

B量は $0.8\sim1.5\%$ が好ましく、 $0.85\sim1.2\%$ がより好ましい。B量が0.8%未満では1.1M A/m (14kOe) 以上のiHcを得ることが困難であり、B量が1.5%超ではBrが著しく低下する。

Nb, Mo, W, V, Ta, Cr, Ti, Zr及びHfの少なくとも1種からなる高融点金属元素 $M_1$ を0.01~0.6%含有することが磁気特性を高めるために好ましい。 $M_1$ を0.01~0.6%含有することにより、焼結過程での主相結晶粒の過度の粒成長が抑制され、1.1MA/m (14kOe)以上のiHcを安定して得ることができる。しかし、 $M_1$ を0.6%超含有すると逆に主相結晶粒の正常な粒成長が阻害され、Brの低下を招く。又 $M_1$ 含有量が0.01%未満では磁気特性を改良する効果が得られない。

 $M_2$  元素(A I, G a 及び C u の少なくとも 1 種)の含有量は $0.01\sim0.6\%$  が好ましい。 A I の含有により iHcが向上し、耐食性が改善されるが、 A I 含有量が0.6% 超ではBrが大きく低下し、0.01% 未満ではiHc及び耐食性を高める効果が得られない。より好ましい A I 含有量は $0.05\sim0.3\%$ である。 G a の含有により iHcが顕著に向上するが、 G a 含有量が0.6% 超ではBrが大きく低下し、0.01% 未満ではiHcを高める効果が得られない。より好ましい G a 含有量は $0.05\sim0.2\%$ である。 C u の微量添加は耐食性の改善及びiHcの向上に寄与するが、 C u 含有量が0.3% 超ではBrが大きく低下し、0.01% 未満では耐食性及びiHcを高める効果が得られない。より好ましい C u 含有量は $0.05\sim0.3\%$ である。

Coo含有により耐食性が改善され、キュリー点が上昇し、希土類焼結磁石の耐熱性が向上するが、Co含有量が5%超では磁気特性に有害なFe-Co相が形成され、あるいは $R_2$ (Fe, Co)。 B相が形成されてBr及びiHcが大きく低下する。従って、Co含有量は5%以下が好ましい。一方、Co含有量が0.5%未満では耐食性及び耐熱性の向上効果が得られない。よって、Co含有量は0.5~5%が好ましい。

Co を0.5~5%及びCu を0.01~0.3%含有するときに1.1MA/m (14kOe) 以上の室温のiHcを得られる第2次熱処理の許容温度が広がる効果を得られ、特に好ましい。

不可避に含有される酸素量は0.3%以下が好ましく、0.2%以下がより好ましく、0.18%以下が特に好ましい。酸素含有量を0.3%以下に低減することにより焼結体密度を略理論密度まで高めることができる。 $R_2$  Fe<sub>14</sub> B金属間化合物を主相とする場合の焼結体密度は $Pr_2$  Fe<sub>14</sub> B金属間化合物の理論密度( $7.54g/cm^3$ )に近い $7.50g/cm^3$  以上が得られる。

又不可避に含有される炭素量は0.10%以下が好ましく、0.07%以下がより好ましい。炭素含有量の低減により希土類炭化物の生成が抑えられ、有効希土類量が増大し、iHc及び(BH)max等を高めることができる。

又不可避に含有される窒素量は0.15% 以下が好ましい。窒素量が0.15% を超えるとBrが大きく低下する。本発明の磁石には公知の表面処理被膜(N i めっき等)が被覆され、実用に供されるが、R量が $28\sim32\%$ でかつ窒素量が $0.002\sim0.15\%$ のときに良好な耐食性が付与されるのでより好ましい。

又、原料合金としてCaを還元剤とする還元拡散法により作製したものを用いて本発明の磁石を作製した場合、所定のiHc及び配向度を得るために、前記磁石の全重量を100重量%としてCa含有量を0.1重量%以下(0を含まず)に抑えることが好ましく、0.03重量%以下(0を含まず)に抑えることがより好ましい。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 5

【補正方法】変更

【補正の内容】

 $[0\ 0\ 1\ 5]$ 

<u>鉱油</u>、合成油又は植物油として、脱油及び成形性の点から、分留点が350℃以下のものがよい。又室温の動粘度が10cSt以下のものがよく、5 cSt以下のものがさらに好ましい。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 0

【補正方法】変更

【補正の内容】

[0030]

以下に極異方性を有する、R-T-B系焼結リング磁石を作製し、評価した実施例を説明する。

(実施例11)

重量%で、主要成分組成がPr: 29.5%,Dy: 1.0%,B: 1.05%、Ga: 0.08%、Nb: 0.2%,Al: 0.05%,Cu: 0.13%,Co: 2.0%及び残部Fe からなるR-T-B系原料合金粗粉(320メッシュアンダー)を酸素濃度が1 ppm未満(体積比)の窒素雰囲気中でジェットミル粉砕し、得られた平均粒径 $3.8\mu$  mの微粉を用いた以外は実施例 1 と同様にしてスラリーを作製した。得られたスラリーを、図2 に示す成形機のキャビティ59 に充填後、成形圧力:78.4MPa(0.8ton/cm²)及び100 Vのパルス磁場で極異方性が付与されるよう磁場中成形し、成形体を得た。成形体を真空度が約66.5Pa( $5\times10^{-1}$ Torr)、200 Co 条件で1 時間加熱し脱油後、続いて約 $4.0\times10^{-3}$  Pa( $3\times10^{-5}$ Torr)、1060Co 条件で2 時間焼結後室温まで冷却し焼結体を得た。次に、アルゴン雰囲気中で900Cで1 時間加熱後550Cまで冷却し、次いで550Cで2時間加熱後さらに室温まで冷却する熱処理を行った。次に所定寸法に加工後、電着により平均膜 $2\mu$  mのエポキシ樹脂膜をコーティングし、外径20mm及び高さ201mmの208 極の極異方性リングを得た。

次に上記の極異方性リングの外径面における磁極間中央部から X線回折用の試料を切り出し、その試料を理学電気 (株)製の X 線回折装置 (RU-200BH) にセットし、  $2\theta-\theta$  走査法により X 線回折した。 X 線源には Cu  $K\alpha$  1 線  $(\lambda=0.15405 \text{rm})$  を用い、ノイズ (N) クグラウンド)は装置に内蔵されたソフトにより除去した。主な回折ピークは主相である R 2 T 1 4 B型金属間化合物の、  $2\theta=29.08$  の (004)面、 38.06 の (105)面、 44.34 の (006)面であり、 (006)面からの X 線回折ピーク強度:I(006)を 100%として、I(004)/I(006)=0.33,I(105)/I(006)=0.63であった。結果を表 6 に示す。表中の B  $\alpha$  は磁極部で 測定した表面磁東密度を示す。

(比較例11)

実施例 1 1 のスラリーに替えて、比較例 1 のスラリーにより極異方性が付与されるよう 磁場中成形した以外は実施例 1 1 と同様にして比較例の極異方性リングを作製した。以後は実施例 1 1 と同様に比較例 1 1 の極異方性リングの 1 3 線回折を行なった。結果を表 1 6 に示す。主な回折ピークは実施例 1 1 と同様であったが、1(004)/1(006)=0.32, 1(105)/1(006)=0.96であった。 又前記極異方性リングの酸素量は11 3 重量%であり、炭素量は11 3 であり、炭素量は11 3 であり、

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 2

【補正方法】変更

【補正の内容】

[0032]

表 4 の実施例 1 1 及び比較例 1 1 の結果より、本発明によれば、極異方性を有し、密度が7.50 Mg/m³ (g/cm³)以上であり、リング外径面での磁極間中心部表面位置で<u>測定</u>した (105) 面からの X 線回折ピーク強度: I (006) との比率が、 I (105) / I (006) =0.5~0.8である極異方性リングを提供できることがわかる。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 6

【補正方法】変更

【補正の内容】

[0036]

【発明の効果】

以上記述の通り、本発明<u>に</u>よれば、低酸素含有量であり、高い焼結体密度を有し、従来 に比べて配向度を高めた高性能の希土類焼結磁石を得られる製造方法を提供することがで きる。

又、低酸素含有量であり、高い焼結体密度を有し、従来に比べて配向度を高めた、薄肉形状又は薄肉、長尺形状の平行異方性又はラジアル異方性を有する高性能のR-T-B系焼結アークセグメント磁石を提供することができる。

又、低酸素含有量であり、高い焼結体密度を有し、従来に比べてラジアル方向の配向度を高めた、ラジアル異方性を有する高性能のR-T-B系焼結リング磁石を提供することができる。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】符号の説明

【補正方法】追加

【補正の内容】

【符号の説明】

1 ダイス、2 下パンチ、3 キャビティ、4 シリンダー、6 スラリー供給管、9 供給ヘッド、10 ポンプ、11 配管、13 タンク、15 スラリー供給装置、30,40 アークセグメント磁石、51 ダイス強磁性部、52 ダイス、53 コア、59 キャビティ、70 ラジアルリング。

【手続補正13】

【補正対象書類名】図面

【補正対象項目名】図6

【補正方法】変更

【補正の内容】



|  |  | , |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |