WDWR 24411

Rozważamy następujące zagadnienie planowania produkcji:

• Przedsiębiorstwo wytwarza 4 produkty P1,...,P4 na następujących maszynach: 4 szlifierkach, 2 wiertarkach pionowych, 3 wiertarkach poziomych, 1 frezarce i 1 tokarce. Wymagane czasy produkcji 1 sztuki produktu (w godzinach) w danym procesie obróbki zostały przedstawione w poniższej tabeli:

	P1	P2	P3	P4
Szlifowanie	0,4	0,6		
Wiercenie pionowe	0,2	0,1		0,6
Wiercenie poziome	0,1		0,7	
Frezowanie	0,06	0,04		0,05
Toczenie	_	$0,\!05$	0,02	_

• Dochody ze sprzedaży produktów (w zł/sztukę) modelują składowe wektora losowego $\mathbf{R} = (R_1, \dots, R_4)^T$. Wektor losowy \mathbf{R} opisuje 4-wymiarowy rozkład t-Studenta z 4 stopniami swobody, którego wartości składowych zostały zawężone do przedziału [5; 12]. Parametry $\boldsymbol{\mu}$ oraz $\boldsymbol{\Sigma}$ niezawężonego rozkładu t-Studenta są następujące:

$$\mu = \begin{pmatrix} 9 \\ 8 \\ 7 \\ 6 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 16 & -2 & -1 & -3 \\ -2 & 9 & -4 & -1 \\ -1 & -4 & 4 & 1 \\ -3 & -1 & 1 & 1 \end{pmatrix}.$$

• Istnieją ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu:

	P1	P2	P3	P4
Styczeń	200	0	100	200
Luty	300	100	200	200
Marzec	0	300	100	200

- Istnieje możliwość składowania do 200 sztuk każdego produktu w danym czasie w cenie 1 zł/sztukę za miesiąc. Jednak w danym miesiącu można składować albo produkty z grupy P1, P2, albo P3, P4. W chwili obecnej (grudzień) w magazynach znajduje się 50 sztuk produktu P3 i 50 sztuk produktu P4.
- Przedsiębiorstwo pracuje 6 dni w tygodniu w systemie dwóch zmian. Każda zmiana trwa 8 godzin. Można założyć, że każdy miesiąc składa się z 24 dni roboczych.
- 1. Zaproponować jednokryterialny model wyboru w warunkach ryzyka z wartością średnią jako miarą zysku. Wyznaczyć rozwiązanie optymalne.
- 2. Jako rozszerzenie powyższego zaproponować dwukryterialny model zysku i ryzyka z wartością średnią jako miarą zysku i odchyleniem przeciętnym jako miarą ryzyka. Dla decyzji $\mathbf{x} \in Q$ odchylenie przeciętne jest definiowane jako $\delta(\mathbf{x}) = \sum_{t=1}^{T} |\mu(\mathbf{x}) r_t(\mathbf{x})| p_t$, gdzie $\mu(\mathbf{x})$ oznacza wartość średnią, $r_t(\mathbf{x})$ realizację dla scenariusza t, p_t prawdopodobieństwo scenariusza t.
 - a. Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-zysk.
 - b. Wskazać rozwiązania efektywne minimalnego ryzyka i maksymalnego zysku. Jakie odpowiadają im wartości w przestrzeni ryzyko-zysk?
 - c. Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego rzędu. Wyniki skomentować, odnieść do ogólnego przypadku.