1 Einleitung

Hier fehlt das erste Kapitel, was allerdings nur motivierend seien soll. Stattdessen ein Kommentar:

Diese Mitschrift enthält weniger / schlechtere Bilder als die Mitschrift von Dr. Kopfer, allerdings befindet sich in Kapitel 7 interessantes Wissen / Beispiele aus den Übungsblättern. Das hier ist weitesgehend live während der VL mitgeschrieben worden. D.h. Fehler sind zu erwarten. Wer solche findet kann mir diese gerne an mh@mssh.dev schicken.

Viele Grüße, Manuel

2 Statistische Modelle

Der Stichprobenraum \mathcal{X} : Die möglichen Beobachtungsergebnisse bilden eine Menge.

Beispiel 1. $\mathcal{X} = \{0, \dots, N\}, \mathcal{X} = \mathbb{N}, \mathcal{X} = \mathbb{R}^d$

Wieso \mathcal{X} und nicht Ω ? \mathcal{X} ist das Bild eines Zufallsexperiments $\mathcal{X}: \Omega \to \mathcal{X}$.

Die Wahrscheinlichkeitsverteilung auf \mathcal{X} ist unbekannt, daher betrachten wir eine Familie von W.-verteilungen.

Definition 2. Ein statistisches Modell ist ein Tripel $\mathcal{M} = (\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\theta}: \theta \in \theta))$. Wobei

- \mathcal{X} : Stichprobenraum,
- $\mathcal{F}: \sigma\text{-Algebra auf } \mathcal{X},$
- $(\mathbb{P}_{\theta}: \vartheta \in \theta)$: Familie von W-Maßen auf \mathcal{X} .

Bemerkung 3. Wenn man $(\mathbb{P}_{\theta}: \theta \in \theta)$ schlecht wählt, wird das stat. Verfahren unsinnig! Die Grundaufgabe des Statistikers besteht in der Wahl des geeigneten Modells!

Definition 4. Ein statistisches Modell \mathcal{M} heißt parametrisch falls $\theta \subseteq \mathbb{R}^d$ für ein $d \in \mathbb{N}$.

 \mathcal{M} heißt diskret, falls \mathcal{X} diskret mit $\mathcal{F} = \mathcal{P}(\mathcal{X})$. Dann hat \mathbb{P}_{ϑ} eine Zähldichte: $\zeta_{\vartheta} \colon x \mapsto \mathbb{P}_{\vartheta}[\{x\}]$.

 \mathcal{M} heißt absolut-stetig, falls $\mathcal{X} \subset \mathbb{R}^d$ mit $\mathcal{F}=\mathcal{B}(\mathcal{X})$ und \mathbb{P}_{ϑ} eine Dichtefunktion ζ_{ϑ} hat.

M heißt Standartmodell, falls es diskret oder absolut-stetig ist.

Sei $(E, \mathcal{E}, \mathbb{Q}_{\vartheta}: \vartheta \in \theta)$ ein stat. Modell und $n \geq 2$.

$$(\mathcal{X},\mathcal{F},(\mathbb{P}_{\vartheta}\!\!:\!\vartheta\in\theta)):=\!\left(E^{n},\mathcal{E}^{\otimes n}\!,\mathbb{Q}_{\vartheta}^{\ \otimes n}\!\!:\!\vartheta\in\theta\right)$$

ist das zugehörige n-fache Produktmodell.

 $X_k: \mathcal{X} \to E$ ist die k-te Koordinate und beschreit den Ausgang des k-ten Experiments. Insbesondere sind X_1, \ldots, X_n u.i.v. (unabhängig und identisch verteilt) bzgl. \mathbb{P}_{ϑ} mit Verteilung \mathbb{Q}_{ϑ} .

3 Schätzer

Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$ stat. Modell und (Σ, ζ) ein Ereignisraum.

Eine bel. Zufallsvariable

$$\delta: (\mathcal{X}, \mathcal{F}) \to (\Sigma, \zeta)$$

heißt Statistik.

Sei $\tau:\theta\to\Sigma$ eine Abbildung. $\tau(\vartheta)\in\Sigma$ heißt Kenngröße. Eine Statistik $T:\mathcal{X}\to\Sigma$ heißt Schätzer für τ .

Ende Vorlesung 1

Bemerkung 5.

- i. Statistik = ZV (im mathematischen Sinne), aber Zufallsvariable = unvorhersehbares Ereignis hervorgerufen durch Zufall. Eine Statistik = Vom Statistiker bestimmte Abbildung.
- ii. Schätzer vs. Statistik: Ein Schätzer T ist eine Statistik, die speziell für die Schätzung von τ zugeschnitten ist.
- iii. Was hat T mit τ zu tun? Es gibt nicht nur einen Schätzer T für $\tau(\vartheta)$. Daher ist es nicht formalisiert um nicht zu restrektiv zu sein.
- iv. Man spricht auch von Punktschätzern um von Bereichsschätzern abzugrenzen. (Kapitel: Konfidenzbereiche)

Beispiel 6. $\mathcal{X} = \{0,1\}^n$, $\mathbb{P}_{\vartheta} = \operatorname{Ber}_{\vartheta}^{\otimes n} \operatorname{mit } \vartheta \in [0,1] \text{ unbekannt.}$

$$\operatorname{Ber}_{\vartheta}(1) = \vartheta = 1 - \operatorname{Ber}_{\vartheta}(0).$$

Gesucht: $\tau(\vartheta) = \vartheta$.

Sei $X = \{X_1, \ldots, X_n\}$ die Stichprobe.

$$\Rightarrow T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

ist ein Schätzer für ϑ . Ein anderer Schätzer ist $S(X) = \frac{1}{2}$.

Aus dem Gesetz der großen Zahlen

$$\lim_{n\to\infty} T = \vartheta, \mathbb{P} - f.s.$$

aber

$$\lim_{n\to\infty} S = \frac{1}{2}.$$

Außer im "Glücksfall" $\vartheta=\frac{1}{2}$ ist T der "bessere" Schätzer als S.

- Was sind Qualitätskriterien?
- Wie Schätzer finden?

3.1 Maximum-Likelihood

• Die Idee ist einen Schätzer T zu wählen, s.d. die Dichtefunktion so groß wie möglich ist(D.h. wir sind im Standardfall). Methode zur Bestimmung eines Schätzer: andere Methode: Momentenmethode

Definition 7. Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\eta}: \vartheta \in \theta))$ ein stat. Standartmodell. Die Likelihoodfunktion ist

$$\rho: \mathcal{X} \times \theta \to [0, \infty)$$
 mit

$$\rho(x,\vartheta) = \rho_{\vartheta}(x),$$

wobei ρ_{ϑ} die Dichtefunktion von \mathbb{P}_{ϑ} ist.

Die Likelihood-Funktion zum Beobachtungswert $x \in X$ ist

$$\rho_x := \rho(x, \cdot) : \theta \to [0, \infty]$$
$$\vartheta \mapsto \rho(x, \vartheta).$$

Definition 8. Ein Schätzer $T: \mathcal{X} \to \theta$ für ϑ heißt Maximum-Likelihood-Schätzer (M-L-Schätzer) wenn $\rho(x, T(x)) = \max_{\vartheta \in \theta} \rho(x, \vartheta)$ für jedes $x \in \mathcal{X}$.

 $\Rightarrow T(x)$ ist eine Maximalstelle der Funktion ρ_x auf θ .

Beispiel 9. (Schätzung von Erfolgswahrscheinlichkeit)

Sei ϑ der Wirkungsgrad eines Medikaments.

 X_1, \ldots, X_n Stichprobe, $X_k \in \{0, 1\}$ (1\(\text{\text{\text{gesund}}}\)

Sei $x \in \{0, ..., n\}$ Zahl der geheilten Personen.

Modell: Binomialmodell: $\mathcal{X} = \{0, \dots, n\}, \mathcal{F} = \mathcal{P}(\{0, \dots, n\}), \mathbb{P}_{\vartheta} = \operatorname{Bin}_{n,\vartheta}, \vartheta \in [0, 1]$

d.h.
$$\rho_{\vartheta}(x) = (n, k) \vartheta^x (1 - \vartheta)^{n-x}$$

Was ist der M-L-Schätzer?

Da $y \mapsto \ln y$ monoton wachsend, reicht es das Maximum von $\ln \rho_x(\vartheta)$ zu bestimmen.

$$\Rightarrow : \frac{d}{d\vartheta} \ln \rho_x(\vartheta) = \frac{d}{d\vartheta} (x \ln \vartheta + (n-x) \ln(1-\vartheta)) = \frac{x}{\vartheta} - \frac{n-x}{1-\vartheta} = \frac{x-\vartheta x - n\vartheta + \vartheta x}{\vartheta (1-\vartheta)} = \frac{x-n\vartheta}{\vartheta (1-\vartheta)} = \frac{1}{\vartheta} (1-\vartheta)$$

Also $x = n\vartheta$.

Maximum ? Ja weil für $\vartheta \leqslant \frac{x}{n}$ ist ρ_x wachsend, für $\vartheta \geqslant \frac{x}{n}$ ist ρ_x fallend.

 $\Rightarrow T(x) = \frac{x}{n}$ ist (der) ML-Schätzer für ϑ im Binomialmodell

Beispiel 10. (Physikalische Messungen)

In jeder physikalischen Messung gibt es Messfehler.

Annahme:

Messungen sind u.i.v. ZV X_1, \ldots, X_n , n Zahl der Messungen mit $X_i \sim \mathcal{N}(\underline{m}, \underline{\sigma^2})$, wobei m, σ unbekannt.

$$\Rightarrow M = (\mathbb{R}^d, \mathcal{B}^{\otimes n}, \mathcal{N}(m, \sigma^2), m \in \mathbb{R}, \sigma > 0)$$

d.h.
$$\rho_{\vartheta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

Der M-L-Schätzer für (m, σ^2) ist

$$T(x) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i, \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2\right)$$

Beweis: Übung

Weitere Beispiele: Blatt 1+ Präsenzblatt (kont. Version German Tank Problem)

3.2 Erwartungstreue und quadratische Fehler

Ein erstes elementares Qualitätskriterium.

Definition 11. Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$ ein stat. Modell und $\tau: \theta \to \mathbb{R}$ eine relle Kenngröße.

Ein Schätzer $T: \mathcal{X} \to \mathbb{R}$ für τ heißt erwartungstreu

wenn

$$\mathbb{E}_{\vartheta}[T] = \tau \forall \vartheta \in \theta$$

sonst, ist

$$\mathbb{B}_{\vartheta}[T] := \mathbb{E}_{\vartheta}[T] - \tau(\vartheta).$$

der Bias oder systematischer Fehler von T.

M-L-Schätzer sind nicht unbedingt erwartungstreu!!!!

Der M-L-Schätzer für die Varianz im Gauß Modell(Bsp. Physikalische Messungen) ist nicht erwartungstreu.

Satz 12. (Schätzung von Erwartungswert und Varianz bei rellen Produktmodellen)

Sei
$$n \ge 2$$
 und $\mathcal{M} = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$...

Sei $m(\vartheta) := \mathbb{E}_{\vartheta}[X]$ und $\nu(\vartheta) := \operatorname{Var}_{\vartheta}[X]$ für jedes $\vartheta \in \theta$ definiert.

Der Stichprobenmittelwert

$$M := \frac{1}{n} \sum_{k=1}^{n} X_k$$

und die korrigierte Stichprobenvarianz

$$V^* := \frac{1}{n-1} \sum_{k=1}^{n} (X_k - M)^2$$

 $sind\ erwartungstreu\ f\ddot{u}r\ (m,v).$

Beweis. Sei $\vartheta \in \theta$ fest.

1)
$$\mathbb{E}_{\vartheta}[M] = \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{\vartheta}[X_k] = \frac{1}{n} \operatorname{nm}(\vartheta) = m(\vartheta).$$

2) Sei $V = \frac{n-1}{n}V^*$ Stichprobenvarianz.

$$\mathbb{E}_{\vartheta}[V] \xrightarrow{\overline{\lim}} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[X_{k} - M]^{2} \xrightarrow{\overline{\mathbb{E}_{\vartheta}[X_{k} - M] = 0}} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Var}[X_{k} - M]$$

$$\xrightarrow{\overline{X_{k}i.i.d.}} \operatorname{Var}_{\vartheta} \left[X_{1} - \frac{1}{n} \sum_{k=1}^{n} X_{k} \right] = \operatorname{Var}_{\vartheta} \left[X_{1} \cdot \frac{n-1}{n} - \frac{1}{n} \sum_{k=2}^{n} X_{k} \right]$$

$$\xrightarrow{\overline{X_{k}i.i.d.}} \left(\frac{n-1}{n} \right)^{2} \operatorname{Var}_{\vartheta}[X_{1}] + \left(\frac{1}{n} \right)^{2} \operatorname{Var}_{\vartheta}[X_{1}] = \left(\frac{n-1}{n} \right)^{2} \nu(\vartheta) + \frac{n-1}{n^{2}} \nu(\vartheta) = \frac{n-1}{n} \nu(\vartheta)$$

$$\Rightarrow \mathbb{E}_{\vartheta}[V^{*}] = \nu(\vartheta).$$

Bemerkung 13. 1) Für große n sind $\frac{1}{n}$ und $\frac{1}{n-1}$ fast gleich. \Rightarrow V ist asymptotisch erwartungstreu. 2) $\mathbb{E}_{\vartheta}[V] = \frac{n-1}{n} \nu(\vartheta) < \nu(\vartheta), \nu(\vartheta) > 0.$

Der Schätzer V unterschätzt systematisch die Varianz.

Das heißt da

$$\sum_{i=1}^{5} (x_i - \bar{x}) = 0$$

ist $x_1 - \bar{x}$ ist durch die anderen diff. schon bestimmt. Daher Normalisieren mit $\frac{1}{n-1}$.

3) Wenn der Erwartungswert bekannt $\mathbb{E}_{\vartheta}[X] = \mu$, dann ist V erwartungstreuer Schätzer für die Varianz!!

Erwartungstreue ist wünschenswert, aber nicht immer "besser".

Beispiel 14. (Vorsetzung Binomialmodell)

$$\mathcal{X} \!=\! \{0,\ldots,n\}, \! \theta \!=\! [0,1], \mathbb{P}_{\vartheta} \!=\! \operatorname{Bin}_{n,\vartheta}.$$

 $T(x)=\frac{x}{n}$ ist Ml-Schätzer für θ .

$$\mathbb{E}_{\vartheta}[T] = \frac{1}{n} \mathbb{E}_{\vartheta}[X] = \vartheta \Rightarrow \text{Erwartungstreu}$$

Anderer Schätzer

 $S(x) = \frac{x+1}{n+2}$ nicht erwartungstreu

$$\mathbb{B}_{\vartheta}[S] = \frac{n\vartheta + 1}{n+2} - \vartheta = \frac{1 - 2\vartheta}{n+2} > 0$$

Aber was ist mit der mittleren quadraitschen Abweichung?

Definition 15. Der mittlere quadratische Fehler eines Schätzers T für τ ist

$$\mathbb{F}_{\vartheta}[T] := \mathbb{E}[(T - \tau(\vartheta))^2] = \operatorname{Var}_{\vartheta}[T] + \mathbb{B}_{\vartheta}[T]^2$$

Wir wollen beide Terme gleichzeitig minimieren.

$$\mathbb{F}_{\vartheta}[T] = \frac{1}{n^2} \mathrm{Var}_{\vartheta}[X] = \frac{1}{n^2} n \vartheta (1 - \vartheta) = \frac{\vartheta (1 - \vartheta)}{n}$$

$$\operatorname{Var}_{\vartheta}[S] = \frac{1}{(n+2)^2} \operatorname{Var}_{\vartheta}[X]$$

$$\Rightarrow \mathbb{F}_{\vartheta}[S] = \frac{n\vartheta(1-\vartheta) + (1-2\vartheta)^2}{(n+2)^2}$$

Für Zentrale Werte von ϑ : S ist besser als T.

Es gilt für
$$(\left|\vartheta - \frac{1}{2}\right| \le \frac{1}{\sqrt{8}} \approx 0.35)$$
.

Erwartungstreue ist also nicht alles, bleibt aber wichtig (Siehe Kapitel "Beste Schätzer")

3.3 Konsistenz von Schätzern

Ein weiteres Qualitätskriterium ist die Konsistenz.

- Sei $\mathcal{M}=(\mathcal{X},\mathcal{F},(\mathbb{P}_{\vartheta}))$ ein stat. Modell und $\tau:\theta\to\mathbb{R}$ eine relle Kenngröße.
- Wiederholung der Messung: Sei $(X_n)_{n\geqslant 1}$ eine Folge von ZV auf $(\mathcal{X}, \mathcal{F})$ X_n ist n-te Messung mit Werten in (E, \mathcal{E}) $(z.B. \mathcal{X} = E^n)$
- Sei für $n \geqslant 1$ $T_n: \mathcal{X} \to \mathbb{R}$ ein Schätzer für τ

Definition 16. Die Schätzfolge $(T_n)_{n\geqslant 1}$ für τ heißt konsistent, wenn $\forall \epsilon > 0, \vartheta \in \theta$

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta}[|T_n - \tau(\vartheta)| \le \epsilon] = 1$$

oder:

$$\forall \epsilon, \vartheta \in \theta : \lim_{n \to \infty} \mathbb{P}_{\vartheta}[|T_n - \tau(\theta)| \ge \epsilon] = 0$$

"Konvergenz im Maß (Stochastische Konvergenz)"

Im folgenden:

Standartfall mit unabhängigen Beobachtungen

$$\Rightarrow (\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta})) = (E^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}, (\mathbb{Q}_{\vartheta}^{\otimes \mathbb{N}}))$$

Satz 17. Im unendlichen Produktmodell seien:

$$M_n = \frac{1}{n} \sum_{k=1}^{n} X_k, V_n^{\star} = \frac{1}{n-1} \sum_{k=1}^{n} (X_k - M_n)^2$$

die Erwartungstreuen Schätzer für m bzw. v.

Dann sind die Folgen $(M_n)_{n\geqslant 1}, (V_n^*)_{n\geqslant 1}$ konsistent.

Beweis. 1.) Nach dem (schwachen) Gesetz der großen Zahlen

$$\begin{split} &\frac{1}{n} \sum_{k=1}^{n} X_{k} \xrightarrow{\mathbb{P}_{\vartheta}} \mathbb{E}_{\vartheta}[X_{1}] = m(\vartheta). \\ &2.) \; Sei \; \tilde{V}_{n} = \frac{1}{n} \sum_{k=1}^{n} (X_{k} - m(\vartheta))^{2}, V_{n} := \frac{n-1}{n} V_{n}^{*} \\ &\Rightarrow V_{n} = \tilde{V} - (M_{n} - m(\vartheta))^{2} \; \underbrace{(\textit{Verschiebungsformel / Verschiebungssatz)}}_{\tilde{V} \xrightarrow{\mathbb{P}_{\vartheta}} v(\vartheta) \; und \; (M_{n} - m(\vartheta))^{2} \xrightarrow{\mathbb{P}_{\vartheta}} 0 \; (beides \; Nach \; g.G.Z.) \\ &V_{n} \xrightarrow{\mathbb{P}_{\vartheta}} v(\vartheta) \; und \; damit \; V_{n}^{*} = \frac{n}{n-1} V_{k} \xrightarrow{\mathbb{P}_{\vartheta}} v(\vartheta). \end{split}$$

Auch M-L-Schätzer sind konsistent:

Satz 18. (Konsistenz von M-L-Schätzern)

Sei $(E,\mathcal{E},\mathbb{Q}_{\vartheta})$ eine einparametriges Standartmodell $(d.h.\ \theta \subseteq \mathbb{R})$, mit Likelihood-Funktion ρ . Es gelte:

- θ ist offenes Intervall in \mathbb{R} und für $\vartheta \neq \vartheta'$ ist $\mathbb{Q}_{\vartheta} \neq \mathbb{Q}_{\vartheta'}$.
- $\forall n \geqslant 1 \ \forall x \in E^n \ ist$

$$\rho^{\otimes n}(x,\vartheta) = \prod_{k=1}^{n} \rho(x_k,\vartheta)$$

unimodal, d.h. \exists ML-Schätzer $T_n: E_n \to \mathbb{R}$ s.d $\vartheta \mapsto \rho^{\otimes n}(x, \vartheta)$ ist wachsend für $\vartheta < T_n(x)$ und fallend für $\vartheta > T_n(x)$.

Dann ist die Schätzfolge konsistent für ϑ .

Beweis. (grob)

Wir wollen zeigen, dass $\forall \epsilon > 0, \vartheta \in \theta$

$$\mathbb{P}_{\vartheta}[\vartheta - \epsilon \leqslant T_n \leqslant \vartheta + \epsilon] \xrightarrow{n \to \infty} 1$$

Sei $\vartheta \in \theta$ und $\varepsilon > 0 (\vartheta \pm \varepsilon \in \theta)$

$$\{x: \vartheta - \epsilon \leqslant T_n(x) \leqslant \vartheta + \varepsilon\} \supseteq \{x: \rho_{\vartheta - \varepsilon}^{\otimes n}(x) < \rho_{\vartheta}^{\otimes n}(x), \rho_{\vartheta + \varepsilon}^{\otimes n}(x) < \rho_{\vartheta}^{\otimes n}(x)\}$$

$$\supseteq \! \left\{ x \!:\! \log \! \left(\frac{\rho_{\vartheta}^{\otimes n}(x)}{\rho_{\vartheta + \varepsilon}^{\otimes n}(x)} \right) \! > \! 0, \log \! \left(\frac{\rho_{\vartheta}^{\otimes n}(x)}{\rho_{\vartheta - \varepsilon}^{\otimes n}(x)} \right) \! > \! 0 \right\}$$

"+"-Fall Sei $f(x) = \frac{\rho_{\vartheta}}{\rho_{\vartheta+\varepsilon}}(x)$ und wir nehmen an, dass $\mathbb{E}_{\vartheta}[\log f] < \infty$.

Dann gilt nach dem G.d.g.Z. (\mathcal{L}^1 –Version: X_i p.w. u.i.v. und in \mathcal{L}^1 , dann $\frac{1}{n}\sum_{i=1}^n X_i \to \mathbb{E}[X_1]$)

$$\frac{1}{n} \log \frac{\rho_{\vartheta}^{\otimes n}}{\rho_{\vartheta + \varepsilon}^{\otimes n}}(X) = \frac{1}{n} \sum_{i=1}^{n} \log(X_i) \xrightarrow{\mathbb{P}_{\vartheta}} \mathbb{E}_{\vartheta}[\log f]$$

 $\mathbb{E}_{\vartheta}[\log f] = \int \log f \rho_{\vartheta}(x) \mathrm{dx} = \int \log \frac{\rho_{\vartheta}}{\rho_{\vartheta + \varepsilon}}(x) \rho_{\vartheta}(x) \mathrm{dx} =: H(\mathbb{Q}_{\vartheta}; \mathbb{Q}_{\vartheta + \varepsilon}) \text{ (reltative Entropie)}$

Es gilt $H(\mathbb{Q}_{\vartheta}; \mathbb{Q}_{\vartheta}) > 0$, da wir angenommen haben, dass $\mathbb{Q}_{\vartheta} \neq \mathbb{Q}_{\vartheta'}$ für $\vartheta \neq \vartheta'$. (Beweis Blatt 2) $\Rightarrow \exists \delta > 0$ s.d.

$$\mathbb{P}_{\vartheta} \left[\frac{1}{n} \log \frac{\rho_{\vartheta}^{\otimes n}}{\rho_{\vartheta + \varepsilon}^{\otimes n}} > \delta \right] \xrightarrow{n \to \infty} 1$$

"-" Fall genau so...

 $\Rightarrow \exists \delta > 0 \text{ s.-d.}$

$$\mathbb{P}_{\vartheta} \Big[\underbrace{\frac{1}{n} \log \frac{\rho_{\vartheta}^{\otimes n}}{\rho_{\vartheta \pm \varepsilon}^{\otimes n}} > \delta}_{\leq \left\{x : \log \left(\frac{\rho_{\vartheta}^{\otimes n}(x)}{\rho_{\vartheta \pm \varepsilon}^{\otimes n}(x)}\right) > 0\right\} \subseteq \left\{x : \vartheta - \epsilon \leqslant T_n(x) \leqslant \vartheta + \varepsilon\right\}}_{\leq \left\{x : \vartheta - \epsilon \leqslant T_n(x) \leqslant \vartheta + \varepsilon\right\}}$$

Der Fall $\mathbb{E}_{\vartheta}[\log f] = \infty$ siehe Georgii.

3.4 Beste Schätzer

Wir konzentrieren uns jetzt auf Klasse von Schätzern, die

- erwartungstreu
- am wenigsten streuen (Varianz ist minimal)

Definition 19. Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$ ein stat. Modell. Ein erwartungstreuer Schätzer T für eine reelle Kenngröße $\tau(\vartheta)$ heißt varianzminimierend/bester Schätzer, falls für jeden weiteren erwartungstreuen Schätzer S

$$\operatorname{Var}_{\vartheta}[T] \leqslant \operatorname{Var}_{\vartheta}[S] \forall \vartheta \in \theta.$$

Definition 20. (Regulär) Ein einparametrisches Standartmodell ($\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta)$) heißt regulär, falls

- i. θ ist ein offenes Intervall in \mathbb{R} .
- ii. Die Likelihoodfunktion ρ ist auf $\mathcal{X} \times \theta$ strikt positiv und nach ϑ stetig differenzierbar.
- iii. Für jedes $\vartheta \in \theta$ ex. die Varianz:

$$I(\vartheta) := \operatorname{Var} \left[\frac{d}{d\vartheta} \underbrace{\log \rho(x, \vartheta)}_{\text{diffbar}} \right]$$

und ist nicht 0. Außerdem gilt die Vertauschungsregel:

$$\int \frac{d}{d\vartheta} \rho(x,\vartheta) d\mathbf{x} = \frac{d}{d\vartheta} \int \rho(x,\vartheta) d\mathbf{x}.$$

Ende Vorlesung 3

Bemerkung 21. i. $I(\vartheta)$ heißt auch Fisher-Information des Modells und $U_{\vartheta}(x) := \frac{d}{d\vartheta} \log \rho(x,\vartheta)$ die Score Funktion. $I(\vartheta) = \operatorname{Var}_{\vartheta}[U_{\vartheta}]$

ii. $\mathbb{E}[U_{\vartheta}] = 0$, denn

$$\mathbb{E}[U_{\vartheta}] = \int_{\mathcal{X}} \frac{d}{d\vartheta} \log \rho(x, \vartheta) \rho(x, \vartheta) dx$$

$$=\!\int_{\mathcal{X}}\!\frac{d}{d\vartheta}\rho(x,\vartheta)\!=\!\frac{d}{d\vartheta}\underbrace{\int\rho(x,\vartheta)\mathrm{d}\mathbf{x}}\!=\!0$$

$$\Rightarrow I(\vartheta) = \mathbb{E}[U_{\vartheta}^2]$$

iii. Was bedeutet I? Falls I=0 auf $\theta_0 \subseteq \theta$, d.h. $U_{\vartheta}(x)=0$ für $\vartheta \in \theta_0, \forall x \in \mathcal{X}$. $\Rightarrow \rho(x,\vartheta)=\text{const}$ für alle $x \in \mathcal{X}$ auf θ_0 . Also kann keine Beobachtung die Parameter in θ_0 unterscheiden.

I ist additiv für unabhängige Beobachtungen

Satz 22. Sei $(\mathcal{X},\mathcal{F},(\mathbb{P}_{\vartheta}:\vartheta\in\theta))$ ein <u>reguläres Modell</u> mit Fisher Information I. Dann hat das Produktmodell $\mathcal{M}^{\otimes n}$ die Fisher Information $I^{\otimes n}=n\cdot I$.

Beweis. Die Likelihoodfkt. von $\mathcal{M}^{\otimes n}$ ist

$$\rho_{\vartheta}^{\otimes n}(x_1,\ldots,x_n) = \prod_{k=1}^n \rho_{\vartheta}(x_k)$$

und

$$U_{\vartheta}^{\otimes n}(x_1, \dots, x_n) = \frac{d}{d\vartheta} \sum_{k=1}^n \log \rho_{\vartheta}(x_k) = \sum_{k=1}^n \frac{\frac{d}{d\vartheta} \rho_{\vartheta}(x_k)}{\rho_{\vartheta}(x_k)} = \sum_{k=1}^n U_{\vartheta}(x_k)$$

 $Dann\ I^{\otimes n}(\vartheta) = \text{Var}[U_{\vartheta}^{\otimes n}] = \text{Var}[\sum_{k=1}^{n} U_{\vartheta}(x_k)] = \sum_{k=1}^{n} \text{Var}[U_{\vartheta}(x_k)] = n \cdot I$

Die Fisher Information kann benutzt werden für die Abschätzung der $\operatorname{Var}_{\vartheta}[T]$ für reguläre erwartungstreue Schätzer T,

$$\int T(x) \frac{d}{d\vartheta} \rho(x,\vartheta) d\mathbf{x} = \frac{d}{d\vartheta} \underbrace{\int T(x) \rho(x,\vartheta) d\mathbf{x}}_{\mathbb{E}_{\vartheta}[T]}$$

Satz 23. (Informationsungleichung). Sei \mathcal{M} ein <u>reguläres</u> stat. Modell., $\tau:\theta \to \mathbb{R}$ eine zu schätzende stetig diff'bare Funktion mit $\tau' \neq 0$ und T ein regulärer erwartungstreuer Schätzer für τ .

i. Es gilt

$$\operatorname{Var}_{\vartheta}[T] \ge \frac{\tau'(\vartheta)^2}{I(\vartheta)} f \ddot{\mathbf{u}} r \text{ alle } \vartheta \in \theta. \text{ (Cram\'e} r - \operatorname{Rao} - \operatorname{Ungleichung)}$$

ii. Gleichheit gilt für alle $\vartheta \in \theta$ g.d.w.

$$T - \tau(\vartheta) = \frac{\tau'(\vartheta)}{I(\vartheta)} U_{\vartheta} \forall_{\vartheta}$$

d.h. wenn das Modell die Likelihoodfunktion

$$\rho(x,\vartheta) = \exp(a(\vartheta)T(x) - b(\vartheta))h(x)$$

Wobei

- $a: \theta \to \mathbb{R}$ ist Stammfunktion von $\frac{I}{\tau'}$
- $h: \mathcal{X} \to (0, \infty)$ messbar.
- $b(\vartheta) := \log(\int e^{a(\vartheta)T(x)}h(x)dx)$ (Normierugsfunktion)

Beweis. (i) $\operatorname{Cov}_{\vartheta}[T, U_{\vartheta}] := \mathbb{E}[T \cdot U_{\vartheta}] - \mathbb{E}[T]\mathbb{E}[U_{\vartheta}] \xrightarrow{\mathbb{E}[U_{\vartheta}] = 0} \mathbb{E}[T \cdot U_{\vartheta}]$

$$= \int_{\mathcal{X}} T(x)U_{\vartheta}(x)\rho(x,\vartheta) dx = \int_{\mathcal{X}} T(x)\frac{d}{d\vartheta}\rho(x,\vartheta) dx$$

$$= \frac{d}{d\vartheta} \mathbb{E}_{\vartheta}[T] \xrightarrow{T \text{ erwartungstrue}} \tau'(\vartheta)$$

$$\tau'(\vartheta)^2 = \operatorname{Cov}_{\vartheta}[T, U_{\vartheta}]^2 \le \operatorname{Var}_{\vartheta}[T] \cdot \underbrace{\operatorname{Var}_{\vartheta}[U_{\vartheta}]}_{I(\vartheta)}$$

$$\Rightarrow$$
Var $[T] \ge \frac{\tau'(\vartheta)^2}{I(\vartheta)}$

(ii)

Es gilt Gleichheit g.d.w. $\exists \lambda \geq 0$ s.d.

$$(T - \mathbb{E}_{\vartheta}[T])^2 = \lambda (U_{\vartheta})^2 \mathbb{P}_{\vartheta} - f.s.$$

Es gilt
$$\mathbb{E}[T - \mathbb{E}[T]] = \operatorname{Var}_{\vartheta}[T]$$
 und $\mathbb{E}_{\vartheta}[\lambda \cdot U_{\vartheta}^2] = \lambda \mathbb{E}[U_{\vartheta}^2] = \lambda \cdot I(\vartheta)$

$$\Rightarrow \lambda = \frac{\tau'(\vartheta)^2}{I(\vartheta)^2} \ge 0$$

$$\Rightarrow T - \underbrace{\mathbb{E}_{\vartheta}[T]}_{\tau(\vartheta)} = \frac{\tau'(\vartheta)}{I(\vartheta)} \cdot U_{\vartheta} \qquad \mathbb{P}_{\vartheta} f.s.$$

$$Da \ \rho(x,\vartheta) > 0 \ gilt \Rightarrow T - \tau(\vartheta) = \frac{\tau'(\vartheta)}{I(\vartheta)} \cdot U_{\vartheta} \qquad f.s.$$

$$Also$$

$$\frac{d}{d\vartheta} \log \rho(x,\vartheta) = \frac{I(\vartheta)}{\tau'(\vartheta)} (T(x) - \tau((\vartheta)))$$

Unbestimmte Integration in ϑ liefert

$$\log \rho(x,\vartheta) - \underbrace{h(x)}_{\text{Integrationskonstante}} = a(\vartheta)T(x) - \underbrace{b(\vartheta)}_{=\int \frac{I(\tilde{\vartheta})}{\tau(\tilde{\vartheta})}\tau(\tilde{\vartheta})d\tilde{\vartheta}}$$

$$\Rightarrow \rho(x, \vartheta) = \exp\{a(\vartheta)T(x) - b(\vartheta)\}h(x)$$

$$Da \int_{\mathcal{X}} \rho(x, \vartheta) dx = 1 \Rightarrow b(\vartheta) = \log \int e^{a(\vartheta)T(x)} h(x) dx.$$

Für die Umkehrung sei $\rho(x,\vartheta) = \exp\{a(\vartheta)T(x) - b(\vartheta)\}h(x)$

Fur the Umkenrung set
$$\rho(x, \vartheta) = \exp\{a(\vartheta)I(x) - b(\vartheta)\}h(x)$$

Dann ist $U_{\vartheta}(x) = \frac{d}{d\vartheta}\log\rho(x, \vartheta) = a'(\vartheta)T(x) - b'(\vartheta) = \frac{I(\vartheta)}{\tau'(\vartheta)}T(x) - \underbrace{\frac{I(\vartheta)}{\tau'(\vartheta)}}_{(*)} \cdot \tau(\vartheta)$

$$\Rightarrow T(x) - \tau(\vartheta) = \frac{\tau'(\vartheta)}{I(\vartheta)} U_{\vartheta}$$

Warum qilt (*) ?

$$(b(\vartheta)) = \log \int e^{a(\vartheta)T(x)} h(x) dx$$

$$b'(\vartheta) = \frac{a'(\vartheta) \int T(x) e^{a(\vartheta)T(x)} h(x) dx}{\int e^{a(\vartheta)T(x)} h(x) dx} = \underbrace{\frac{a'(\vartheta) \int T(x) e^{a(\vartheta)T(x) - b(\vartheta)} h(x) dx}{\int \underbrace{e^{a(\vartheta)T(x) - b(\vartheta)} h(x)}_{=\rho(x,\vartheta)} dx} = a'(\vartheta) \mathbb{E}_{\vartheta}[T] = a'(\vartheta) \tau(\vartheta)$$

$$= \frac{I(\vartheta)}{\tau'(\vartheta)} \tau(\vartheta)$$

ad(**) Wann gilt Gleichheit ?

$$c(\vartheta) = \frac{\tau'(\vartheta)}{I(\vartheta)}$$

$$\begin{split} &0 \leq \operatorname{Var}[T - c(\vartheta)U_{\vartheta}] = \operatorname{Var}[T] - 2c(\vartheta)\operatorname{Cov}[T, U_{\vartheta}] + c(\vartheta)^{2}\operatorname{Var}[U_{\vartheta}] = \operatorname{Var}[T] - 2c(\vartheta)\tau'(\vartheta) + c(\vartheta)^{2}I(\vartheta) \\ &= \operatorname{Var}[T] - 2\frac{\tau'(\vartheta)^{2}}{I(\vartheta)} + \frac{\tau'(\vartheta)^{2}}{I(\vartheta)} = \operatorname{Var}[T] - \frac{\tau'(\vartheta)^{2}}{I(\vartheta)} \\ &\Rightarrow \operatorname{Var}[T] \geq \frac{\tau'(\vartheta)^{2}}{I(\vartheta)} \end{split}$$

Gleichheit gilt g.d.w.
$$T(x) - c(\vartheta)U_{\vartheta}(x) = \mathbb{E}_{\vartheta}[T] = \tau(\vartheta) \mathbb{P}_{\vartheta} - f.s.$$
 ...

Bemerkung 24. Wenn T erwartungstreu regulärer Schätzer, s.d. Gleichheit in Cramèr-Rao gilt, dann ist T bester Schätzer, (zumindestens für reguläre Schätzer).

Wann existieren solche Schätzer?

Für die exponentielle Familien!

Definition 25. Sei \mathcal{M} ein einparametriges Standartmodell mit θ offen. Wenn die Likelihoodfkt. der Form

$$\rho(x,\vartheta) = \exp\{a(\vartheta)T(x) - b(\vartheta)\}h(x)$$

12

mit Funktionen $a: \theta \to \mathbb{R}, a' \neq 0$

$$h: \mathcal{X} \to (0, \infty)$$
 und $b = \log(\int e^{a(\vartheta)T(x)}h(x)dx)$

dann heißt \mathcal{M} exponentielles Modell und $(\mathbb{P}_{\vartheta}, \vartheta \in \theta)$ heißt exponentielle Familie bzgl. eine Statistik $T: \mathcal{X} \to \mathbb{R}$ $f.s. \operatorname{nicht konstant}$

Beispiel 26. (Poisson-Verteilung)

 \mathbb{P}_{ϑ} hat die Dichte ...

i.e.
$$T(x)=x$$
, $a(\theta)=\log\theta$

Da T erwartungstreu ist, ist T ein bester Schätzer für ϑ .

Ende Vorlesung 4

KEINE OFFIZIELLEN MUSTERLÖSUNGEN ZU DEN ÜBUNGSBLÄTTERN!

Proposition 27. (Eigenschaften von exponentiellen Modellen)

- a) $b(\vartheta)$ ist $auf \theta$ stetiq diff'bar mit $b'(\vartheta) = a'(\vartheta) \mathbb{E}_{\vartheta}[T]$ (Insbesondere existient der Erwartngswert von T).
- b) Jede Statistik $S: \mathcal{X} \to \mathbb{R}$ mit existieremden $\mathbb{E}_{\vartheta}[S]$ ist regulär. Insbesondere sind M und T regulär und $\tau(\vartheta) := \mathbb{E}_{\vartheta}[T]$ ist stetig diff'bar mit $\tau'(\vartheta) = a'(\vartheta) \cdot \operatorname{Var}_{\vartheta}[T] \neq 0 \forall \vartheta \in \theta$.
- c) Es gilt $I(\vartheta) = a'(\vartheta)\tau'(\vartheta)\forall \vartheta \in \theta$.

Wir beweisen die Prop. nach folgenden Korollar

Folgerung 28. (Existenz von besten Schätzern)

Für jedes exponentielle Modell M ist die zugrundeliegende Statistik T für

$$\tau(\vartheta) := \mathbb{E}_{\vartheta}[T] = \frac{b'(\vartheta)}{a'(\vartheta)}$$

und es gilt $I(\vartheta) = a'(\vartheta)\tau'(\vartheta)$

$$\operatorname{Var}_{\vartheta}[T] = \frac{\tau'(\vartheta)}{a'(\vartheta)} \forall \vartheta \in \theta.$$

Beweis. Nach der obigen Prob. 27 ist M und T regulär. Da $\operatorname{Var}_{\vartheta}[T] = \frac{\tau'(\vartheta)}{a'(\vartheta)} = \underbrace{\frac{\tau'(\vartheta)^2}{I(\vartheta)}}_{\geq \operatorname{Cramer-Rao}}$ folgt aus Satz 23 die Behauptung.

Beweis. (Von Prop. 27)

Wir nehmen an, dass $a(\vartheta) = \vartheta$ (Da $a'(\vartheta) \neq 0$ folgt die allg. Aussage mit Kettenregel).

(Sonst
$$\left(\tilde{\vartheta} = a(\vartheta) \Rightarrow \frac{d}{d\vartheta}(\ldots) = a'(\vartheta) \frac{d}{d\tilde{\vartheta}}(\ldots)\right)$$
)

Sei S in \mathcal{L}^1

Sei
$$u_S(\vartheta) := e^{b(\vartheta)} \mathbb{E}_{\vartheta}[S] = \int_{\mathcal{X}} S(x) h(x) e^{\vartheta T(x)} dx.$$

 $u_S(\vartheta)$ ist (reell)-analytisch in ϑ , denn für $\vartheta+t\in\theta$ und $a_k=\int_{\mathcal{X}}\frac{S(x)h(x)T(x)^k}{k!}e^{\vartheta T(x)}\mathrm{dx}$

gilt

$$(*)\sum_{k=0}^{\infty} |a_k| |t|^k \leq \sum_{k=0}^{\infty} \frac{|t|^k}{k!} \int_{\mathcal{X}} |S(x)| h(x) |T(x)|^k e^{\vartheta T(x)} dx$$

$$\xrightarrow{\text{mon. Konv.}} \int_{\mathcal{X}} |S(x)| h(x) e^{\vartheta T(x)} \sum_{k=0}^{\infty} \frac{|t|^k}{k!} |T(x)|^k dx$$

$$= \int_{\mathcal{X}} |S(x)| h(x) \underbrace{e^{\vartheta T(x) + \text{tT}(x)}}_{\leq \left\{e^{\vartheta T(x) + \text{tT}(x)}, \text{tT}(x) > 0\atop e^{\vartheta T(x) - \text{tT}(x)}, \text{tT}(x) < 0\right\}}_{\leq \left\{e^{\vartheta T(x) - \text{tT}(x)}, \text{tT}(x) < 0\right\}} dx$$

$$\int_{\mathcal{X}} |S(x)| h(x) e^{(\vartheta + t)T(x)} dx + \int_{\mathcal{X}} |S(x)| h(x) e^{(\vartheta - t)T(x)} dx < \infty$$

Da
$$S \in \mathcal{L}^1(\mathbb{P}_{\vartheta+1})$$
.

$$\Rightarrow u_S(\vartheta + t) = \int_{\mathcal{X}} S(x)h(x)e^{(\vartheta + t)T(x)} dx \xrightarrow{\underline{(**)}} \sum_{k=0}^{\infty} t^k a_k.$$

(**) gilt, da
$$e^{\mathrm{tT}(x)}\!=\!\sum_{k=0}^{\infty}t^k\!\frac{T(x)^k}{k!}.$$

und Summe und Integral vertauscht werden dürfen wegen (*).

Also ist $u_S(\vartheta)$ analytisch und ist seine Taylorreihe, d.h.

$$u_S'(\vartheta) = a_1 = \int_{\mathcal{X}} S(x)T(x)h(x)e^{\vartheta T(x)} d\mathbf{x} = e^{b(\vartheta)} \mathbb{E}_{\vartheta}[ST]$$
$$u_S''(\vartheta) = a_2 = \int_{\mathcal{X}} S(x)T(x)^2 h(x)e^{\vartheta T(x)} d\mathbf{x} = e^{b(\vartheta)} \mathbb{E}_{\vartheta}[ST^2]$$

$$\begin{split} & \underline{\operatorname{Für}} \ S = 1 \text{: gilt also } u_1(\vartheta) = e^{b(\vartheta)}, \ u_1'(\vartheta) = e^{b(\vartheta)} \mathbb{E}_{\vartheta}[T], \ u_1''(\vartheta) = e^{b(\vartheta)} \mathbb{E}_{\vartheta}[T^2]. \\ & \Rightarrow b'(\vartheta) = \frac{d}{d\vartheta} \log u_1(\vartheta) = \frac{u_1'(\vartheta)}{u_1(\vartheta)} = \mathbb{E}_{\vartheta}[T] =: \tau(\vartheta). \\ & \Rightarrow \mathbf{a}) \end{split}$$

$$\tau'(\vartheta) = b''(\vartheta) = \frac{u_1''(\vartheta)}{u_1(\vartheta)} - \left(\frac{u_1'(\vartheta)}{u_1(\vartheta)}\right)^2$$
$$= \mathbb{E}_{\vartheta}[T^2] - (\mathbb{E}_{\vartheta}[T])^2 = \text{Var}[T]$$

Allgemeine S (Regularität)

b)

$$\frac{d}{d\vartheta} \int_{\mathcal{X}} S(x) \rho(x,\vartheta) d\mathbf{x} = \frac{d}{d\vartheta} \mathbb{E}_{\vartheta}[S] = \frac{d}{d\vartheta} [e^{-b(\vartheta)} u_S(\vartheta)]$$

$$= (u_S'(\vartheta) - u_S(\vartheta)b'(\vartheta))e^{-b(\vartheta)} = \mathbb{E}_{\vartheta}[ST] - \mathbb{E}_{\vartheta}[S] \underbrace{\mathbb{E}_{\vartheta}[T]}_{=:\tau(\vartheta)}$$

$$\mathbb{E}_{\vartheta} \left[S \left(\underbrace{T - \tau(\vartheta)}_{=(a'(\vartheta))U_{\vartheta}: \text{Satz 23 (ii)}} \right) \right] = \mathbb{E}_{\vartheta}[SU_{\vartheta}]$$

$$= \int_{\mathcal{X}} S(x) \frac{d}{d\vartheta} \rho(x,\vartheta) d\mathbf{x}$$

 \Rightarrow S regulär $\Rightarrow \mathcal{M}$ regulär (Vertauschungsregel gilt).

 \Rightarrow T regulär.

c) Da $U_{\vartheta} = T - \tau(\vartheta)$

$$\Rightarrow I(\vartheta) = \operatorname{Var}_{\vartheta}[U_{\vartheta}] = \operatorname{Var}[T] = \tau'(\vartheta) > 0 \text{ (da T f.s. nicht konstant)}$$

(*) \mathcal{M} regulär:

- θ offen,
- $\rho(x, \vartheta) > 0$ und nach ϑ stetig diff'bar
- $I(\vartheta) > 0$ und Vertauschungsregel

Beispiel 29. (Binomialverteilung)

$$\rho(x,\vartheta) = \binom{n}{x} \vartheta^x (1-\vartheta)^{n-x}$$

$$T(x) = \frac{x}{n} (ML - Schätzer)$$

$$a(\vartheta) = n \log \left(\frac{\vartheta}{1 - \vartheta}\right)$$

$$b(\vartheta) = -n \ln (1 - \vartheta)$$

$$h(x) = \binom{n}{x}$$

 $\Rightarrow T$ ist bester Schätzer mit $\operatorname{Var}_{\vartheta}[T] = \frac{1}{a'(\vartheta)} = \frac{\vartheta(1-\vartheta)}{n}$ (Folgerung 28)

Bemerkung 30. (Produktmodelle)

Sei $\mathcal{M} = (\mathcal{X}, \mathcal{F}, \mathbb{P}_{\vartheta} : \vartheta \in \theta)$ ein exp. Modell bzgl. einer Statistik $T : \mathcal{X} \to \mathbb{R}$. So ist $\mathcal{M}^{\otimes n}$ mit Statistik $T_n(x_1, \dots, x_n) = \frac{1}{n} \sum_{k=1}^n T(x_k)$ und T_n ist bester Schätzer für $\tau(\vartheta) := \mathbb{E}_{\vartheta}[T]$

Beweis. $\rho^{\otimes n}(x,\vartheta) = \prod_{k=1}^n \rho(x,\vartheta)$

$$=\exp(n a(\vartheta)T_n - \operatorname{nb}(\vartheta)) \prod_{k=1}^n h(x_k)$$

und $\mathbb{E}_{\vartheta}[T_n] = \mathbb{E}_{\vartheta}[T]$ Aus Folgerung 28 folgt die Behauptung.

3.5 Bayes-Schätzer

 \mathcal{M} Standartmodell.

- Diesmal ist das Ziel nicht die Minimierung $\mathbb{F}_{\vartheta}[T]$ für alle ϑ , sondern die Minimierung von dem in ϑ gemittelten quadratischen Fehler.
- Für gegebenes ϑ und Schätzer T von $\tau(\vartheta)$ sei

 $L(\vartheta, T)$ eine "Verlustfunktion"

$$z.B.L(\vartheta,T) = |T(x) - \tau(\vartheta)|^2$$

Dann ist $R(\vartheta, T) := \mathbb{E}_{\vartheta}[L(\vartheta, T)]$ das Risiko und wir wollen es minimieren.

• Aus irgendwelchen Daten nehmen wir an, dass die Werte von ϑ nicht unbed. gleichhäufig sind, aber haben eine Verteilungsdichte $a(\vartheta)$ (a priori Verteilung).

Definition 31.

i. Das Bayesrisiko des Schätzers T bzgl. α und L ist gegeben durch

$$r(\alpha, T) := \int_{\theta} \alpha(\vartheta) R(\vartheta, T) d\vartheta = \int_{\theta} \int_{\mathcal{X}} \alpha(\vartheta) \rho(x, \vartheta) L(\vartheta, T(x)) dx d\vartheta$$

ii. Ein Schätzer T heißt <u>Bayes-Schätzer</u> von $\tau(\vartheta)$ bzgl. α und L falls für alle anderen Schätzer S von $\tau(\vartheta)$

$$r(\alpha, T) \le r(\alpha, S)$$
.

Man kann $\alpha(\vartheta)\rho(x,\vartheta)$ so interpretieren

- a) zunächst zieht man ϑ gemäß der Dichte α und dann zieht man x gemäß der Likelihoodfunktion $\rho(x,\vartheta)$.
- b) Wenn x gezogen ist, verändert dies die Information über α . Statt $\alpha(\vartheta)$ haben wir $\rho(x, \vartheta)\alpha(\vartheta)$.

Man definiert "a posteriori-Dichte"-Dichte

$$\Pi_x(\vartheta) := \underbrace{\frac{\alpha(\vartheta)\rho(x,\vartheta)}{\int_{\theta}\alpha(\tilde{\vartheta})\rho(x,\tilde{\vartheta})d\tilde{\vartheta}}}_{=:\theta_{\alpha}}$$

("bedingte Verteilung der Parameter auf Beobachtung x")

Satz 32. Für den Spezialfall $L(\vartheta, T) = |T(x) - \tau(\vartheta)|^2$ ist der Bayes-Schätzer T von $\tau(\vartheta)$ mit $\mathbb{E}_{\alpha}[\tau^2] < \infty$ bzgl. α ist gegeben durch

$$T(x) := \mathbb{E}_{\Pi_x}[\tau] = \int_{\mathcal{A}} \tau(\vartheta) \Pi_x(\vartheta) d\vartheta \quad \forall x \rho_a f.s.$$

Beweis. Sei
$$r(\alpha, S) = \int_{\theta} \int_{\mathcal{X}} \alpha(\vartheta) \rho(x, \vartheta) |S(x) - \tau(\vartheta)|^2 dx d\vartheta$$

$$\Rightarrow r(\alpha,S) - r(\alpha,T) = \frac{\text{Fubini}}{\int_{\mathcal{X}} \int_{\theta} \rho_{\alpha}(x) \Pi_{x}(\vartheta) [|S(x) - \tau(\vartheta)|^{2} - (T(x) - \tau(\vartheta))^{2}] d\vartheta \mathrm{dx}}$$

$$=\!\int_{\mathcal{X}}\!\!\int_{\theta}\!\rho_{\alpha}(x)\Pi_{x}(\vartheta)[S(x)^{2}-2S(x)\tau(\vartheta)-T(x)^{2}+2T(\vartheta)\tau(\vartheta)]d\vartheta\mathrm{d}x$$

 $Da \int \Pi_x d\vartheta = 1$

$$\underbrace{\overset{\text{def.}T}{=}} \int_{\mathcal{X}} \rho_{\alpha}(x) \left[\underbrace{S(x)^2 - 2S(x)T(x) - T(x)^2}_{(S(x) - T(x))^2} \right] d\vartheta dx$$

 \Rightarrow T ist Bayes Schätzer. Gleichheit gilt genau dann wenn $S(x) = T(x) \rho_{\alpha}$ f.s.

Beispiel 33. (Auto Versicherung)

 $\vartheta =$ Schadenshäufigkeit pro Jahr.

Anfangsbewertung $U_{[0,1]} \Rightarrow \alpha(\vartheta) = 1$ auf [0,1].

Nach n Jahren hat der Kunde x Schaden produziert.

$$\Rightarrow \Pi_x(\vartheta) = \frac{1 \cdot \operatorname{Bin}_{n,\vartheta}(x)}{\operatorname{Normalisierung}} = \frac{\binom{n}{x} \vartheta^x (1 - \vartheta)^{n - x}}{\int_0^1 \binom{n}{x} \underbrace{\vartheta^x (1 - \vartheta)^{n - x} d\tilde{\vartheta}}_{= \operatorname{Beta Fkt. \, mit \, dem}}} = \frac{\vartheta^x (1 - \vartheta)^{n - x}}{B(x + 1, n - x + 1)}$$

Schätzer für $\tau(\vartheta) = \vartheta$

$$T(x) = \int_0^1 \frac{\vartheta^x (1 - \vartheta)^{n - x}}{B(x + 1, n - x + 1)} \vartheta d\vartheta = \frac{x + 1}{n + 2}.$$

(Aus Beispiel ...)

4 Konfidenzbereiche

Beispiel 34. Betrachten wir das Binomialmodell

 $\mathcal{X} = \{0, \dots, n\} = \#\text{Erfolge in } n \text{ unab. Versuchen}$

 $\mathbb{P}_{\vartheta} = \operatorname{Bin}_{n,\vartheta}$

 \Rightarrow Likelihoodfkt. $= \rho(x, \vartheta) = \binom{n}{x} \vartheta^x (1 - \vartheta)^{n-x}$

 \Rightarrow Wir haben gesehen, dass ML Schätzer ist gegeben durch $T(x) = \frac{x}{n}$.

Es gibt zwei Personen, Hans und Otto, die die folgenden Ergebnisse bekommen in n=100 Messungen:

<u>Hans:</u> 40 Mal Erfolg \Rightarrow Schätzung $T_H = 0.4$

Otto: 55 Mal Efolg \Rightarrow Schätzung $T_H = 0.55$

Frage: Wer hat Recht? Keiner!

Was dann? Um seriöse Aussagen zu machen, müssen wir Abweichungen zulassen.

<u>z.B.</u> Hans sagt "Mit W'keit 0.9 ist $\vartheta \in [0.32; 0.49]$ "

Otto sagt "Mit W'keit 0.9 ist $\vartheta \in [0.46; 0.64]$ "

Frage: Wie kommen die beiden auf ihre Aussagen?

Definition 35. Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$ ein stat. Modell, Σ eine bel. Menge, $\tau: \theta \to \Sigma$ eine unbekannte Größe und $0 < \alpha < 1$.

Eine Abbildung

$$C: \mathcal{X} \to \mathcal{P}(\Sigma)$$

$$x \mapsto C(x) \subset \Sigma$$

 $hei\beta t$ Konfidenzbereich für τ zum Irrtumsniveau α , wenn

$$\inf_{\vartheta \in \theta} \mathbb{P}_{\vartheta}[x \in X : \tau(\vartheta) \in C(x)] \ge 1 - \alpha.$$

Falls $\Sigma = \mathbb{R}$ und jedes C(x) ein Intervall ist, dann spricht man von Konfidenzintervall.

Bemerkung 36.

i. Wir wollen C(x) möglichst klein, aber auch α möglichst klein. Diese zwei Wünsche konkurieren. Je kleiner $\alpha \Rightarrow$ desto größer wird C(x).

$$\alpha = 0 \Rightarrow C(x) = \Sigma$$

$$\alpha = 1 \Rightarrow C(x) = \text{ein Punkt}$$

ii. Mögliches Missverständnis!

 $\vartheta \in [0.32, 0.49] = C(0.4)$ mit $\alpha = 0.1$. Das bedeutet <u>nicht</u> dass ϑ in 90% der Fälle in dem Interval liegt: ϑ ist unbekannt, aber nicht zufällig.

Das bedeutet, dass in 90% der Beobachtungen (also aller x) ist das $\theta \in C(x)$.

Konstruktion von Konfidenzbereichen

Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$ ein stat. Modell. Nehmen wir den Fall $\tau(\vartheta) = \vartheta \Rightarrow \Sigma = \theta$.

Für jedes $\vartheta \in \theta$, sei C_{ϑ} eine Untermenge s.d.

$$\mathbb{P}_{\vartheta}[C_{\vartheta}] \geqslant 1 - \alpha$$

und C_{ϑ} so klein wie möglich. (z.B. Standartmodell)

$$C = \{(x, \vartheta) \in \mathcal{X} \times \theta : x \in C_{\vartheta}\}\$$

Um für eine geg. $x \in \mathcal{X} C(x)$ zu bestimmen, muss man den vertikalen Schnitt betrachten, d.h.

$$C(x) = \{ \vartheta \in \theta \colon x \in C_{\vartheta} \}$$

$$\Rightarrow \mathbb{P}_{\vartheta}[x \in \mathcal{X} : \vartheta \in C(x)] = \mathbb{P}_{\vartheta}[x \in \mathcal{X} : \vartheta \in C_{\vartheta}] \ge 1 - \alpha.$$

 $\Rightarrow C$ ist Konfidenzbereich für ϑ zum Irrtumniveau α .

Beispiel 37. (Schätzung mittlere Lebenszeit von radioaktiven Zerfall)

$$\mathcal{M} = \{\mathbb{R}_{+}\mathcal{B}, \mathbb{P}_{\vartheta}\} \text{ mit } \mathbb{P}_{\vartheta} = \underbrace{\frac{1}{\vartheta}}_{\text{Ereignisrate}, \vartheta = \text{mittlere Lebensdauer}} e^{-\frac{x}{\vartheta}} , x \ge 0$$
Sei $x > 0$ Messung

Sei x > 0 Messung.

Für geg. ϑ suchen wir $C_{\vartheta} s.d.$

$$\mathbb{P}_{\vartheta}[C_{\vartheta}] \ge 1 - \alpha$$

$$\alpha = \int_{x^*}^{\infty} \frac{1}{\vartheta} e^{-x/\vartheta} dx$$

$$\Rightarrow x^* = -\vartheta \log \alpha$$

$$\Rightarrow C_{\vartheta} = [0, -\vartheta \log \alpha]$$

$$\Rightarrow C(x) = \{\vartheta : x \in C_{\vartheta}\}.$$

$$x \in C_{\vartheta} \Rightarrow x = -\vartheta \log \alpha \Rightarrow \vartheta = -\frac{x}{\log \alpha}$$

$$C(x) = \left[-\frac{x}{\log \alpha}, \infty\right)$$

Ende Vorlesung 6

Wiederholung des Beispieles der Bayesschätzer

Beispiel 38. (Auto Versicherung, zweiter Versuch)

Neukunde hat $\vartheta \in [0,1]$ W-keit mindestens einen Schaden pro Jahr zu produzieren (unbekannt).

Vorbewertung (a priori) des Risikos ist $\mathcal{U}_{[0,1]} \Rightarrow \alpha(\vartheta) = 1$ auf [0,1].

Nach n Jahren hat der Kunde x Schaden produziert.

Hier steht was anderes??

Beispiel 39. Beispiel 37

Jetzt machen wir $n \ge 2$ unabhängige Messungen und sei $x = \frac{1}{n} \sum_{i=1}^{n} x_i$ die mittlere Lebenszeit der Messungen (empirisch).

Dann wegen $\rho_{\vartheta}(x) = \gamma_{\frac{1}{\vartheta},1}(x)$ (Gamma-Verteilung)

$$\gamma_{b,p}(x) = \begin{cases} \frac{b^p}{\Gamma(p)} x^{p-1} e^{-bx} & x > 0\\ 0 & \text{sonst} \end{cases}$$

und $\gamma_{b,r}(x) * \gamma_{b,s}(x) = \gamma_{b,r+s}(x)$ (Faltungshalbgruppe) haben wir:

$$\rho_{\vartheta}^{(n)}(X) = \gamma_{\frac{1}{\vartheta},n}(x) = \left(\frac{x}{\vartheta}\right)^{n-1} \frac{e^{-x/\vartheta}}{(n-1)!} \frac{1}{\vartheta}, x > 0.$$

Für $n \ge 2$ haben wir eine obere Schranke. Nach dem finden des Konfidenzintervalles durch n teilen.

Definition 40. Sei \mathbb{Q} ein W.maß auf $(\mathbb{R}, \mathcal{B})$ und $0 < \alpha < 1$. Jede Zahl $q \in \mathbb{R}$ mit

$$\mathbb{Q}[(-\infty,q]] \geq \alpha \ \ und \ \ \mathbb{Q}[[q,\infty)] \geq 1-\alpha$$

ist ein $\underline{\alpha}$ -Quantiel von $\mathbb Q$. Ein $\underline{\frac{1}{2}}$ -Quantiel heißt $\underline{\mathrm{Median}}$. Ein $\underline{(1-\alpha)}$ -Quantil heißt $\underline{\alpha}$ -Fraktil. Ein $\underline{\frac{1}{4}}$ -Quantil heißt unteres Quartiel. Ein $\underline{\frac{3}{4}}$ -Quantil heißt oberes Quartiel.

Im abs. stetigen Fall $\mathbb{Q}[(-\infty,q]] = \alpha = \int_{-\infty}^q \rho(x) dx$. Wenn Dichte $\rho(x) > 0 \Rightarrow$ eindeutig.

Anwendung: Konfidenzintervalle für den Mittelwert im Gauß'schen Produktmodell. Sei das Modell $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta)) = (\mathbb{R}^n, \mathcal{B}^n, \mathcal{N}_{m,v}^{\otimes n})$

Gesucht: Konfidenzintervall für m:

Für jedes $m \in \mathbb{R}$ wird Menge C_m gesucht, s.d. $\mathcal{N}_{m,v}^{\otimes n}(C_m) \ge 1 - \alpha$ und dann $C(x) = \{m \in \mathbb{R} : x \in C_m\}$. Sei für jedes $m \in \mathbb{R}$ die Statistik

$$T_m := \frac{M - m}{\sqrt{V^*/n}}$$

wobei:

$$M = \frac{1}{n} \sum x_k, V^* = \frac{1}{n-1} \sum (x_k - M)^2.$$

Wir behaupten: Dann hängt die Verteilung

$$Q := \mathcal{N}_{m,v}^{\otimes n} \circ T_m^{-1}$$

nicht von (m, v) ab. $((Q,T_m)$ ist ein Pivot für m).

Beweis. Sei $S_{m,v} := \left(\frac{X_k - m}{\sqrt{v}}\right)_{k=1,\ldots,m}$. Dann, da $X_k \sim m + \sqrt{v}Z_k, Z_k \sim \mathcal{N}(0,1)x$

$$\mathcal{N}_{m,v}^{\otimes n} \circ \mathcal{S}_{m,v}^{-1} = \mathcal{N}_{0,1}^{\otimes n}$$

Dazu $(M \circ S_{m,v})(x) = \frac{1}{n} \sum_{k=1}^{n} \frac{X_k - m}{\sqrt{v}} = \frac{M - m}{\sqrt{v}}$

$$(M \circ S_{m,v})(x) = \frac{1}{n} \sum_{k=1}^{n} \left(\frac{X_k - m}{\sqrt{v}} - \frac{M - m}{\sqrt{v}} \right)^2 = V^* / v$$

$$\Rightarrow (T_0 \circ \mathcal{S}_{m,v})(x) = \frac{M-m}{\sqrt{v}} \frac{1}{\sqrt{V^*/v \cdot n}} = T_m.$$

 \Rightarrow Deshalb

$$\mathcal{N}_{m,v}^{\otimes n} \circ T_m^{-1} = \mathcal{N}_{m,v}^{\otimes n} \circ S_{m,v}^{-1} \circ T_0^{-1} = \mathcal{N}_{0,1}^{\otimes n} \circ T_0^{-1} =: Q$$

Welche Verteilung hat Q?

Die Student-t-Verteilung mit (n-1)-Freiheitsgraden t_{n-1} :

Für X, Y_1, \dots, Y_n unabh. $N_{0,1}$ -Z.V.

$$\frac{\mathbf{X}}{\sqrt{\frac{\frac{1}{\mathbf{n}} - \sum_{i=1}^{n} Y_i^2}{\mathbf{Chi} - \mathbf{Quadrat} := \gamma\left(\frac{n}{2}, \frac{1}{2}\right)}}} \text{ ist } t_n\text{-verteilt.}$$

Ende Vorlesung 7

Für gegebenes α , sei $-x^*$, das $\frac{\alpha}{2}$ -Quantil (wegen Symmetrie ist x^* das $\frac{\alpha}{2}$ -Fraktil).

Setzen wir $C_m = T_m^{-1}((-x^*, x^*))$, denn

$$\mathcal{N}_{m,v}^{\otimes n}(C_m) = Q((-x^*, x^*)) \ge 1 - \alpha$$

für alle m, v.

Satz 41. (Konfidenzintervall für den Mittelwert im Gaußmodell)

Sei das n-Produktmodell mit unbekanntem Erwartungswert m und unbekannter Varianz v. Sei $x^* := F_Q^{-1}(1 - \alpha/2)$, mit $Q \sim t_{n-1}$ $(F_Q(x) = [(-\infty, x]))$.

$$\Rightarrow C(x) = \left(M - x^* \sqrt{V^*/n}, M - x^* \sqrt{V^*/n}\right) \ ein \ Konfidenzintervall \ f\"{u}r \ m \ zum \ Irrtumsniveau \ \alpha.$$

Anwendung: (Bestimmung der Lichtgeschwindigkeit von Michelson und Morely)

Im Jahr 1879 hat Michelson 5 mal eine Reihe von 20 Messungen durchgeführt zur Bestimmung der Lichgeschwindigkeit.

Annahme: Messungen sind Normalverteilt mit unbekannten m, v.

<u>Aufgabe</u>: Wie kann man für jede Reihe $(x_{k,1}, \ldots, x_{k,20}), k = 1, \ldots, 5$ ein Konfidenzintervall für m zum Irrtumsniveau $\alpha = 0.02$ bestimmen?

Lösung: Anwenden des Satzes:

1.
$$x^* = (1 - \alpha/2) - \text{Quantil von } t_{n-1} \text{ mit } n = 20.$$

 ≈ 2.54

2. Berechnen
$$M(X_{k,1}, \dots, X_{k,20}) = \begin{cases} 299909 \left[\frac{\text{km}}{s}\right] \\ 299856 \left[\frac{\text{km}}{s}\right] \\ 299845 \left[\frac{\text{km}}{s}\right] \\ 299821 \left[\frac{\text{km}}{s}\right] \\ 299832 \left[\frac{\text{km}}{s}\right] \end{cases}$$

$$3. \text{ Berechnen von } \sqrt{V^*(X_{k,1},\ldots,X_{k,20})} = \begin{cases} 102\left[\frac{\mathrm{km}}{s}\right] \\ 60\left[\frac{\mathrm{km}}{s}\right] \\ 77\left[\frac{\mathrm{km}}{s}\right] \\ 59\left[\frac{\mathrm{km}}{s}\right] \\ 53\left[\frac{\mathrm{km}}{s}\right] \end{cases}$$

$$\Rightarrow C(X_{k,1},\ldots,X_{k,20}) = \begin{cases} (299851,\ 299966) \\ (299821,\ 299890) \\ (299801,\ 299888) \\ (299787,\ 299854) \\ (299802,\ 299862) \end{cases}$$

Aufgabe 2) Bestimmen von Konfidenzintervall mit $\alpha = 0.02$ mit allen Daten.

$$x^* = (1 - \alpha/2)$$
-Quantil von $t_4 \approx 2.36$

$$M_{\rm alle} = 299852\,{\rm \frac{km}{s}}$$

$$\sqrt{V_{\text{alle}}^*} = 34 \frac{\text{km}}{s}$$

 $\Rightarrow C(\text{alle}) = (299816, 299888)$

Tatsächlich: 299792

Konfidenzintervalle im Binomialmodell

Sei das Binomialmodell $\mathcal{X} = \{0, \dots, n\}, \mathbb{P}_{\vartheta} = \text{Bin}(n, \vartheta), \vartheta \in (0, 1).$

Ges.: Konfidenzintervall für ϑ

3 Methoden:

1. Tchebyschev:

Der beste Schätzer für ϑ ist $T(x) = \frac{x}{x}$.

Ansatz $C(x) = \left(\frac{x}{n} - \varepsilon, \frac{x}{n} + \varepsilon\right)$ mit $\varepsilon > 0$. Die Bedingung ist

$$\mathbb{P}_{\vartheta} \left[x : \left| \frac{x}{n} - \vartheta \right| \right]$$

$$\mathbb{P}_{\vartheta}\!\!\left[\left|X-n\vartheta\right|\!\ge\!\varepsilon n\right]\!\le\!\frac{\mathrm{Var}_{\vartheta}\!\left[x\right]}{\varepsilon^2n^2}\!=\!\frac{n\vartheta(1-\vartheta)}{n^2\varepsilon^2}\!\le\!\frac{1}{4n\varepsilon^2}\!\le\!\alpha$$

Für
$$\varepsilon \ge \frac{1}{\sqrt{4n\alpha}}$$

$$\alpha = 0.05, n = 1000 \Rightarrow \varepsilon \ge 0.07$$

2. Normalapproximation

$$\frac{x}{n} \cong \mathcal{N}\left(\vartheta, \frac{\vartheta(1-\vartheta)}{n}\right)$$
 für $n \gg 1$

$$\mathbb{P}_{\vartheta} \left[\left| \frac{x}{n} - \vartheta \right| \ge \varepsilon \right] = \mathbb{P}_{\vartheta} \left[\left| \underbrace{\frac{x - n\vartheta}{\sqrt{n\vartheta(1 - \vartheta)}}}_{\approx \sim \mathcal{N}(0, 1)} \right| \ge \varepsilon \sqrt{\frac{n}{\vartheta(1 - \vartheta)}} \right]$$

$$\Rightarrow \varepsilon_{\vartheta} \ge -\sqrt{\frac{\vartheta(1-\vartheta)}{n}}\Phi^{-1}(\alpha/2) = \sqrt{\frac{\vartheta(1-\vartheta)}{n}}\Phi^{-1}(1-\alpha/2) = \sqrt{\frac{\vartheta(1-\vartheta)}{n}}\left(\frac{\alpha}{2} - \operatorname{Fraktil}\operatorname{von}\mathcal{N}(0,1)\right).$$

Da $\vartheta(1-\vartheta) \leq \frac{1}{4}$ nehmen wir an

$$\varepsilon \ge \max_{\vartheta} \varepsilon_{\vartheta} = \frac{1}{\sqrt{4n}} \Phi^{-1} (1 - \alpha/2).$$

Für
$$\alpha=0.05, n=1000 \Rightarrow \Phi^{-1}(1-\alpha/2)=1.96$$

 $\Rightarrow \varepsilon \geq 0.03$

3. Verwendung von Quantielen

Lemma: Sei $n \ge 1, \mathcal{X} = \{0, \dots, n\}$

a)
$$\forall \vartheta \in (0,1): x \mapsto \text{Bin}(n,\vartheta)(\{x\})$$
 strikt wachsend auf $\{0,\ldots,(n+1)\vartheta - 1\}$ danach strikt fallend $\Rightarrow \mathbf{x} = (n+1)\vartheta$

b) $\forall x \neq 0 \ \vartheta \mapsto \text{Bin}(n, \vartheta)[\{x, \dots, n\}]$ auf [0, 1] stetig und strikt wachsend. Und es gilt

Bin
$$(n, \vartheta)(\{x, \dots, n\}) = \underbrace{\beta_{x, n-x+1}}_{f_{p,q}(x) = \frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1}} ([0, \vartheta])$$

Das benutzen wir nun als 3. Methode.

Abbildung 1.

Wir schneiden für jedes $\vartheta \in (0,1)$ $\alpha/2$ von oberen/unterem Teil der Verteilung ab.

$$C_{\vartheta} = \{x_{-}(\vartheta), \dots, x_{+}(\vartheta)\}$$

wobei
$$x_{-}(\vartheta) = \max \{x \in \mathcal{X} : \operatorname{Bin}_{n,\vartheta}(\{0,\ldots,x-1\}) \leq \alpha/2\}$$

$$x_{+}(\vartheta) = \min \{x \in \mathcal{X}: \operatorname{Bin}_{n,\vartheta}(\{x+1,\ldots,n\}) \leq \alpha/2 \}$$

Und $C(x) = \{\vartheta : x \in C_{\vartheta}\}$ zu finden müssen wir $x \in C_{\vartheta}$ nach ϑ auflösen.

$$x \leqslant x_{+}(\vartheta) \Leftrightarrow \operatorname{Bin}_{n,\vartheta}(\{x,\ldots,n\}) \geq \alpha/2$$

$$=\beta_{x,n-x+1}([0,\vartheta])$$

$$x \ge x_{-}(\vartheta) \Leftrightarrow \operatorname{Bin}_{n,\vartheta}(\{0,\ldots,x\}) \ge \alpha/2$$

$$=1-\beta_{x,n-x+1}([0,\vartheta])$$

d.h.
$$\beta_{x,n-x+1}([0,\vartheta]) > \alpha/2$$
 und $\beta_{x,n-x+1}([0,\vartheta]) < 1 - \alpha/2$

Seien $\vartheta_-, \vartheta_+ \alpha/2$ Quantil/Fractile von $\beta_{x,n-x+1}$ (eindeutig wegen Lemma b))

 $C(x) = (\vartheta_-, \vartheta_+)$ ist Konfidenzintervall für α , weil

$$\mathbb{P}_{\vartheta}[x:\vartheta \in C(x)] = \mathbb{P}_{\vartheta}[x:\vartheta_{-}(x) < \vartheta < \vartheta_{+}(\vartheta)] = \mathbb{P}_{\vartheta}[x:x_{-}(\vartheta) < x < x_{+}(\vartheta)]$$

 $\geq 1 - \alpha$.

Ende Vorlesung 8

Satz 42. Im Binomial modell, $\mathcal{X} = \{0, \dots, n\}, \mathbb{P}_{\vartheta} = \operatorname{Bin}_{n,\vartheta}, 0 < \vartheta < 1$ ist

$$C(x) = (\vartheta_{-}(x), \vartheta_{+}(x))$$

wobei

$$\vartheta_{-}(x) = \alpha/2$$
 Quantil von $\beta_{x,n-x+1}$

$$\vartheta_{+}(x) = \alpha/2$$
 Fraktil von $\beta_{x+1,n-x}$

 $ein\ Konfidenzintervall\ fpr\ \vartheta\ zum\ Irrtumsniveau\ \alpha.\ F\"{u}r\ \alpha=0.05\ und\ n=1000,\ \varepsilon(x)=\tfrac{\vartheta_+(x)\,-\,\vartheta_-(x)}{2}$

Abbildung 2.

Beweis. (voherigem Lemma)

a)

Sei $x \ge 1$

$$\frac{\operatorname{Bin}_{n,\vartheta}(\{x\})}{\operatorname{Bin}_{n,\vartheta}(\{x-1\})} = \frac{\binom{n}{x}\vartheta^x(1-\vartheta)^{n-x}}{\binom{n}{x-1}\vartheta^{x-1}(1-\vartheta)^{n-x+1}} = \frac{(n-x+1)\vartheta}{x(1-\vartheta)} > 1 \Leftrightarrow x < (n+1)\vartheta$$

b)

Seien U_1, \ldots, U_n u.i.v. mit $\mathcal{U}_{[0,1]}$.

Dann $S_{\vartheta} := \sum_{k=1}^{n} \mathbb{1}_{[0,\vartheta]}(U_k)$ ist binomial verteilt $\operatorname{Bin}(n,\vartheta)$.

$$\operatorname{Bin}(n,\vartheta)(\{x,\ldots,n\}) = \underbrace{\mathbb{P}[S_{\vartheta} \geqslant x]}_{\operatorname{mind}.x} \underbrace{\operatorname{der}U_{i} \text{ liegen in } [0,\vartheta]}$$

Seien $U_{(1)} < U_{(2)} < U_{(3)} < \dots < U_{(n)}$ mit $\{U_1, \dots, U_n\} = \{U_{(1)}, \dots, U_{(n)}\}$

$$\Rightarrow \mathbb{P}[S_{\vartheta} \geqslant x] = \mathbb{P}[U_{(x)} \leqslant \vartheta]$$

$$= n! \int_0^1 \dots \int_0^1 \mathbb{1}_{[0,\vartheta]}(t_x) \mathbb{1}_{\{t_1 < t_2 < \dots < t_n\}} dt_1 \dots dt_n$$

$$= n! \int_0^\vartheta \left(\int_0^{t_x} \dots \int_0^{t_x} \mathbb{1}_{\{t_1 < t_2 < \dots < t_x\}} dt_1 \dots dt_{x-1} \right) \left(\int_{t_x}^1 \dots \int_{t_x}^1 \mathbb{1}_{\{t_x < \dots < t_x\}} dt_{x+1} \dots dt_n \right) dt_x$$

Ende Vorlesung 9

5 Normalverteilung, χ^2 ,t,F-Verteilung

Lemma 43. Sei $X \subseteq \mathbb{R}^n$ offen, \mathbb{P} ein W'maß auf (X, B(X)) mit Dichte ρ bzgl. \mathcal{L} .

Sei $T: X \to Y$ ($Y \subseteq \mathbb{R}^n$ offen) ein Diffeomorphismus (d.h. stetig differenziebare Bijektion, stetig differenzierbare Umkehrabbildung).

 $Dann\ hat\ \mathbb{P}\circ T^{-1}\ die\ Dichte$

$$\rho_T(y) = \rho(T^{-1}(y)) |\det \mathrm{D}T^{-1}(y)| \, \forall y \in Y$$

$$\textbf{\textit{Beweis.}} \ \ \mathbb{P} \circ T^{-1}(A) = \int_{T^{-1}(A)} \rho(x) \mathrm{d}x = \underbrace{\overset{\mathrm{Trafo.}}{=}} \int_{A} \rho(T^{-1}(y)) |\det \mathrm{DT}^{-1}(y)| \, \mathrm{d}y$$

Satz 44. Seien $X_1, ..., X_n$ u.i.v. $\sim \mathcal{N}(0,1)$ und $X = (X_1, ..., X_n)^t$.

Sei $B \in \mathbb{R}^{n \times n}$ eine reguläre (det $B \neq 0$) Matrix und $m \in \mathbb{R}^n$. Dann Y = BX + m hat die Dichte

$$\phi_{m,c}(y) = \frac{1}{(2\pi)^{1/2} |\det c|^{1/2}} \exp\left(-\frac{1}{2}(y-m)^t C^{-1}(y-m)\right)$$

wobei $C = B \cdot B^t$,

und $\mathbb{E}[Y_k] = m_k$, $\operatorname{Cov}[Y_k, Y_l] = C_{k,l} \quad 1 \leq k, l \leq n$.

Bemerkung 45. C ist symmetrisch (und pos. definit) \Rightarrow diagonalisierbar.

Notation $\forall n \times n$ pos. def. symmetrisch Matrix C und $m \in \mathbb{R}^n$ schreiben wir $\mathcal{N}_n(m,C)$ für W-Maße auf \mathbb{R}^n mit Dichtefunktion $\Phi_{m,c}(x)$.

Beweis. Die Dichte von X ist

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x_{i}^{2}} = \frac{1}{2\pi}^{n/2} e^{-\frac{1}{2}\sum_{i=1}^{n}x_{i}^{2}} = \frac{1}{2\pi}^{n/2} e^{-\frac{1}{2}x^{T}x} = \Phi_{0,E}$$

 $Lemma43 \Rightarrow Y hat Dichte$

$$\begin{split} &\Phi_{0,E}(B^{-1}(y-m))|\det B^{-1}| \\ =& \frac{1}{\sqrt{2\pi^n}} \frac{1}{\sqrt{|\det C|}} \exp\biggl(-\frac{1}{2}(y-m)^T C^{-1}(y-m)\biggr) \\ &\mathbb{E}[Y_i] = \mathbb{E}\biggl[\sum_{k=1}^n B_{i,k} X_k + m_i\biggr] = \sum_{j=1}^n B_{i,k} \mathbb{E}[X_k] + m_i = m_i \\ &\operatorname{Cov}[Y_k, Y_l] = \sum_{i,j=1}^n B_{k,i} B_{l,j} \underbrace{\operatorname{Cov}[X_i, X_j]}_{=\emptyset_{i,j}} = \sum_{i=1}^n B_{k,i} B_{l,i} = C_{k,l} \end{split}$$

Ein paar Eigenschaften:

- 1. $\mathcal{N}(0, E) \circ R^{-1} = \mathcal{N}(0, E)$ (Y = RX) für R orthogonal (d.h. $R^{-1} = R^T \Rightarrow |\det R| = 1$) Drehungen + Drehspiegelungen.
- 2. Sei $X \sim \mathcal{N}(m, C)$, $A \in \mathbb{R}^{k \times n}$ eine Matrix mit Rang k und $a \in \mathbb{R}^k$ $\Rightarrow Y = Ax + a \sim \mathcal{N}_k(Am + a, ACA^t)$

Besondere Verteilungen:

 Γ -Verteilung

 β -Verteilung

Chi-Quadrat \dots

Satz 46.

$$X \sim N(0,1) \Rightarrow X^2 \sim \Gamma_{\frac{1}{2},\frac{1}{2}}$$

Beweis: Siehe Blatt 4 Aufgabe 1.

Satz 47. Seien α , r, d > 0

$$X \sim \Gamma_{\alpha,r}, Y \sim \Gamma_{\alpha,s}$$

$$\Rightarrow X + y \sim \Gamma_{\alpha,r+s}$$

$$\frac{X}{X+y} \sim \beta_{r,s}$$

und sind unabhängig. Beweis: Übung

Folgerung 48. $\Gamma_{\alpha,r} * \Gamma_{\alpha,s} = \Gamma_{\alpha,r+s}$ (Faltungshalbgruppe)

Aus Satz 46 + Korollar48 folgt sofort

Satz 49. (Chi-Quadrat Verteilung)

Seien X_1, \ldots, X_n u.i.v. $\sim \mathcal{N}(0,1)$

$$\Rightarrow Y = \sum X_k^2 \sim \Gamma_{1/2,n/2} =: \chi_n^2$$

Chi-Quadrat Vert. mit n Freiheitsgraden

$$\gamma_{1/2,n/2}(x) = \frac{x^{n/2-1}}{\Gamma(n/2)2^{n/2}}e^{-x/2}$$

Satz 50. (Fisher-Verteilung)

Seien $X_1, \ldots X_m, Y_1, \ldots, Y_n$ u.i.v. $\mathcal{N}(0,1)$

Dann hat $F_{m,n} := \frac{\frac{1}{m} \sum_{k=1}^{m} X_k^2}{\frac{1}{m} \sum_{k=1}^{n} Y_k^2}$ Dichte

$$f_{m,n}(x) = \frac{m^{m/2} \cdot n^{n/2}}{\underbrace{B(m/2, n/2)}_{\int_0^1 x^{m/2-1} (1-x)^{n/2-1} dx}} \frac{x^{m/2-1}}{(n+mx)^{(m+xn)/2}}$$

Beweis. $X = \sum_{k=1}^{m} X_k^2 \sim \Gamma_{1/2, m/2} Satz 49$

$$Y = \sum_{k=1}^{n} Y_k^2 \sim \Gamma_{1/2, n/2}$$
 Satz 49

$$\Rightarrow \frac{X}{X+Y} \sim \beta_{m/2}, n/2 \text{ Satz } 47$$

Außerdem
$$F: m, n = \frac{n}{m} \frac{X}{Y} = \frac{n}{m} \frac{Z}{1-Z} = T(Z)$$

$$T(x) = \frac{n}{m} \frac{x}{1-x} : (0,1) \to (0,\infty)$$

$$T^{-1}(y) = \frac{\text{my}}{n + \text{mv}}$$

Lemma 43

$$\Rightarrow \! f_{m,n} \! = \beta_{m/2,n/2}\!\!\left(\frac{\mathrm{my}}{n+\mathrm{my}}\right) \! \cdot \! \frac{\mathrm{mn}}{(n+\mathrm{my})^2}$$

$$= \frac{1}{B(m/2, n/2)} \left(\frac{\text{my}}{n + \text{my}}^{m/2 - 1} \left(\frac{n}{n + \text{my}} \right)^{n/2 - 1} \frac{\text{mn}}{(n + \text{my})^2} \right) \qquad \Box$$

Definition 51. Die Verteilung $F_{m,n}$ auf $(0,\infty)$ mit Dichtefunktion $f_{m,n}$ heißt <u>Fisher-Verteilung</u> mit m und n Freiheitsgraden.

Bemerkung 52. $\forall m, n \in \mathbb{N} \ F_{m,n} = \beta_{m/2}, n/2 \circ T^{-1}$

$$T(x) = \frac{m}{n} \frac{x}{1-x}, d.h.$$

$$F_{m,n}((0,c]) = \beta_{m/2,n/2}\left(\left[0, \frac{\mathrm{mc}}{n+\mathrm{mc}}\right]\right)$$

Satz 53. (Student Verteilung)

Seien $X, Y_1, \dots, Y_n u.i.v.$ $\mathcal{N}_{0,1}$. Dann hat

$$T := \frac{X}{\sqrt{\frac{1}{n} \sum_{k=1}^{n} Y_k^2}}$$

Dichte

$$\tau_n(x) = \frac{1}{\left(1 + \frac{x^2}{x}\right)^{\frac{n+1}{2}}} \frac{1}{\sqrt{n}B(1/2, n/2)}$$

Beweis. Blatt 4, Aufgabe 1, oder

$$T^2 \sim F_{1,n} \xrightarrow{\text{Lemma43}} |T| = \sqrt{|T|} \ hat \ Dichte$$

$$f_{1,n}(y^2)2y$$

T und -T haben gleiche Verteilung (wegen Symmetrie von $\mathcal{N}_{0,1}$)

 \Rightarrow T hat Dichte $f_{1,n}(y^2)|y|$

Abbildung 3.

$$|y|f_{1,n}(y^2) = \frac{n^{n/2}}{B(1/2, n/2)} \frac{|y|^{2(1/2)-1}}{(n+y^2)^{\frac{(n+1)}{2}}} |y|$$

$$= \frac{|y|^{-1}}{\left(1 + \frac{y^2}{n}\right)^{\frac{n+1}{2}} n^{\frac{1}{2}}} |y| \frac{1}{B(1/2, n/2)} = \tau_n(y)$$

Definition 54. Das W-Maß t_n mit Dichte τ_n heißt Student-t-Verteilung mit n Freiheitsgraden.

Satz 55. (Student/Gosset 1908)

Sei
$$\mathcal{M} = (\mathbb{R}^n, \mathcal{B}^n, (\mathcal{N}_{m,v}^{\otimes n}, m \in \mathbb{R}, v > 0))$$

Dann gilt

 $i.\ M\ und\ V^*\ sind\ unabhängig$

ii.
$$M \sim \mathcal{N}_{m,v/n}, \frac{n-1}{n}V^* \sim \chi_{n-1}^2$$

iii.
$$\sqrt{n}(M-m)/\sqrt{V^*} \sim t_{n-1}$$

Beweis. (i)

$$X = (X_1, \dots, X_n)^t \ (m = 0, v = 1 \rightarrow \frac{X_k - m}{\sqrt{v}})$$

$$O = \begin{pmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \dots & \frac{1}{\sqrt{n}} \\ * & & \end{pmatrix} \text{ orthogonale } n \times n \text{ Matrix }$$

$$Y = OX \Rightarrow M = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{X_k}{\sqrt{n}} = \frac{1}{\sqrt{n}} Y_1$$

|Y| = |X| weil O orthogonal

$$\Rightarrow (n-1)V^* = \sum_{k=1}^n (X_k - M)^2 = \sum_{k=1}^n X_k^2 - nM^2$$

$$=|Y|^2-Y_1^2=\sum_{k=1}^n Y_k^2$$

$$Y \sim \mathcal{N}(0, E) \Rightarrow Y_k \ u.i.v. \left(\sim \mathcal{N}\left(0, \frac{1}{n}\right) \right).$$

Ende Vorlesung 10

6 Testtheorie

Beispiel 56. (Test faire Münze)

Sei $p \in (0,1)$ die W'keit, dass ein Münzwurf Kopf (1) ist.

Werfen n-mal die Münze $X = (X_1, \dots, X_n)$ und

$$T(x) = \frac{1}{n} \sum_{k=1}^{n} X_k$$

ist bester Schätzer.

Aber: Mit W'keit 1 ($p \notin \mathbb{Q}$) ist $T(x) \neq p$.

Frage:

Wie können wir entscheiden ob die Münze fair ist oder nicht, d.h. die Hypothese $p=\frac{1}{2}$ testen?

In diesem Fall muss man zwischen Nullhypothese H_0 : $p=\frac{1}{2}$ und Alternative H_1 : $p\neq\frac{1}{2}$ entscheiden.

Fehler: Es gibt zwei Möglichkeiten einen Fehler zu machen:

- 1. Verwerfe H_0 , obwohl H_0 vorliegt: Fehler 1. Art
- 2. Nehme H_0 an, obwohl H_1 vorliegt: Fehler 2. Art

<u>Gesucht:</u> Ein Test, dessen W'keit einen Fehler 1. Art unterhalb eines geg. Irrtumsniveau $\alpha \in [0, 1]$ liegt.

z.B.: Falls $\left|T(X)-\frac{1}{2}\right|>\frac{1}{\sqrt{n}}$ nehmen wir H_1 an, sonst H_0 .

Was ist ein Test? Wie sollte man Entscheidungverfahren durchführen?

Stat. Entscheidungsverfahren:

1. Formulierung des stat. Modells

$$(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$$

2. Formulierung von Nullhypothese und Alternative zerlegt θ in θ_0 und θ_1 s.d.

 $\vartheta \in \theta_0 \Leftrightarrow \vartheta$ ist akzeptabel, gewünschter Normalfall

 $\vartheta \in \theta_1 \Leftrightarrow \vartheta$ ist problematisch, Abweichung vom Normalfall

3. Wahl eines Irrtumsniveau

Wähle $\alpha \in [0, 1]$ und fordert, dass Fehler 1. Art höchstens mit W'keit α passiert.

4. Wahl einer Entscheidungsregel

Man wähle eine Statistik $\varphi: \mathcal{X} \to [0, 1]$ wie folgt

 $\rightarrow \varphi(x)$ ist Grad mit dem man sich für die Alternative entscheidet.

$$\varphi(x) = 0 \Leftrightarrow \text{Nehme die Nullhypothese}$$

 $\varphi(x) = 1 \Leftrightarrow$ Vewerfe die Nullhypothese und nehme Alternative

 $\varphi(x) \Leftrightarrow \text{Nehme die Nullhypothese mit } W' \text{keit } 1 - \varphi(x)$

5. Durchführung des Experiments

Wieso erst jetzt? Sonst Täuschung fast unvermeidbar.

Beispiel:

- Nullhypothese und Alternative an Daten anpassen.
- Niveau und Entscheidungsregel geeignet auswählen.

Definition 57. Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\vartheta}: \vartheta \in \theta))$ ein stat. Modell und $\theta = \theta_0 \cup \theta_1$ eine Zerlegung von θ in Nullhypothese und Alternative.

- a) Jede Statistik $\varphi: \mathcal{X} \to [0,1]$ heißt Test von der θ_0 gegen θ_1 .
- b) Ein Test φ heißt nicht randomisiert, falls $\varphi(x) \in \{0, 1\} \forall x \in \mathcal{X}$.

 In diesem Fall heißt $\{x \in \mathcal{X} : \varphi(x) = 1\}$ Ablehnungsbreich oder kritischer Bereich.
- c) Falls $\varphi(x) \notin \{0,1\}$ für ein $x \in \mathcal{X}$ $\Rightarrow \varphi$ ist randomisiert.
- d) Effektives Niveau von φ ist

$$\sup_{\vartheta \in \theta_0} \mathbb{E}_{\vartheta}[\varphi]$$

d.h. das sup von W'keiten Fehler erster Art zu begehen.

e) Ein Test φ hat (Irrtums-)niveau α wenn

$$\sup_{\vartheta \in \theta_0} \mathbb{E}_{\vartheta}[\varphi] \leqslant \alpha$$

f) Gütefunktion G_{φ} : $\theta \rightarrow [0, 1]$

$$\vartheta \mapsto G_{\varphi}(\vartheta) := \mathbb{E}_{\vartheta}[\varphi].$$

g) Macht von φ bei ϑ : für $\vartheta \in \theta_1$: $G_{\varphi}(\vartheta) = W$ 'keit mit der die Alternative erkannt wird, wenn sie vorliegt $\Rightarrow \beta_{\varphi}(\vartheta) = 1 - G_{\varphi}(\vartheta)$ für alle $\vartheta \in \theta_1$ ist die W'keit für Fehler 2. Art.

Wie soll man φ wählen?

- a) $G_{\varphi}(\vartheta) \leqslant \alpha$ für alle $\vartheta \in \theta_0$. \Rightarrow Irrtums W'keit für Fehler 1. Art $\leqslant \alpha$.
- b) $G_{\varphi}(\vartheta)$ so groß wie möglich $\forall_{\vartheta \in \theta_1} \Rightarrow$ Fehler 2. Art minimieren.

Definition 58. Ein Test φ von θ_0 gegen θ_1 hei β t bester Test zum Niveau α , wenn Niveau(φ)= α und \forall Tests ψ mit Niveau(ψ) = α gilt $G_{\varphi}(\vartheta) \geq G_{\psi}(\vartheta) \forall \vartheta \in \theta_1$. Auf englisch: UMP-Test=uniform most powerful test.

Beispiel 59. (Faire Münze)

Wir werfen n mal eine Münze

- 1. $\mathcal{X} = \{0, \dots, n\}, \mathbb{P}_p = \operatorname{Bin}_{n,p} \text{ mit } p \in [0, 1].$
- 2. $\theta_0 = \left\{ \frac{1}{2} \right\} \text{ und } \theta_1 = [0, 1] \setminus \left\{ \frac{1}{2} \right\}$
- 3. $\alpha \in (0,1)$ fest z.B.: $\alpha = 0.05$ (5% Fehler 1. Art möglich)
- 4. $\varphi(x) = \mathbb{1}_{\{|x-\frac{n}{2}|>c\}}$

Jetzt wollen wir c berechnen s.d. der Test Niveau α hat.

Niveau(
$$\varphi$$
):= sup _{$\vartheta \in \theta_0$} $\mathbb{E}_{\vartheta}[\varphi] = \mathbb{E}_{\frac{1}{2}}[\varphi]$

$$= \mathbb{E}_{\frac{1}{2}} \Big[\mathbbm{1}_{\left\{ \left| x - \frac{n}{2} \right| \geq c \right\}} \Big] = \mathrm{Bin}_{n, \frac{1}{2}} \Big[\left\{ 0, \dots, \left\lfloor \frac{n}{2} - c \right\rfloor \right\} \Big] + \mathrm{Bin}_{n, \frac{1}{2}} \Big[\left\{ \left\lceil \frac{n}{2} + c \right\rceil, \dots, n \right\} \right] \leqslant \alpha$$

Sei $k_-=\frac{\alpha}{2}$ Quantil von $\text{Bin}_{n,\frac{1}{2}}$ und k_+ das (1- $\alpha/2$)-Quantil von $\text{Bin}_{n,\frac{1}{2}}=n-k_-$

$$\varphi\left(x\right) = \begin{cases} 0 & x \in [k_{-}, k_{+}] \\ 1 & \text{sonst} \end{cases}$$

hat Niveau α

Beispiel 60. $\alpha = 0.05$

$$\begin{pmatrix} n & k_{-} & \text{Eff. Niveau} \\ 10 & 2 & 2 \cdot 0.0107 = 0.021 \\ 20 & 6 & 0.041? \\ 50 & 18 & 0.033 \\ 100 & 40 & 0.035 \\ 1000 & 469 & 0.046 \\ 1000000 & 499020 & 0.0499 \end{pmatrix}$$

ì	10	0	0.5987	0.3487	0.1969	0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
ı	T.	1	0.9139	0.7361	0.5443	0.3758	0.2440	0.1493	0.0860	0.0464	0.0233	0.0107
ı	T.	2	0.9885	0.9298	0.8202	0.6778	0.5256	0.3828	0.2616	0.1673	0.0996	0.0547
١		3	0.9990	0.9872	0.9500	0.8791	0.7759	0.6496	0.5138	0.3823	0.2660	0.1719
ı		4	0.9999	0.9984	0.9901	0.9672	0.9219	0.8497	0.7515	0.6331	0.5044	0.3770
ı		5	1.0000	0.9999	0.9986	0.9936	0.9803	0.9527	0.9051	0.8338	0.7384	0.6230
ı		6		1.0000	0.9999	0.9991	0.9965	0.9894	0.9740	0.9452	0.8980	0.8281
ı		7			1.0000	0.9999	0.9996	0.9984	0.9952	0.9877	0.9726	0.9453
ł		8				1.0000	1.0000	0.9999	0.9995	0.9983	0.9955	0.9893
ı		9						1.0000	1.0000	0.9999	0.9997	0.9990
1	11	n I								1.0000	1.0000	1.0000

Abbildung 4.

Frage: Können wir nicht einfach einen Test anderer Form wählen

$$\tilde{\varphi}(x) = \mathbb{1}_{\{1,\ldots,k-1\}\cup\{k_++1,\ldots,n-1\}}$$

Dann wäre $\tilde{\varphi}$ ein Test mit kleinerem Niveau als φ .

<u>Problem:</u> Wenn x = n, dann $\tilde{\varphi}(x) = 0$ und die Nullhypothese $H_0: p = \frac{1}{2}$ wird behalten \to nicht gut!

Auch
$$G_{\tilde{\varphi}}(p=1) = \mathbb{E}_{p=1}[\tilde{\varphi}(x)] = \operatorname{Bin}_{n,1}(\mathbb{1}_{\{1 \leq x \leq k_{-}-1\} \cup \{k_{+}+1 \leq x \leq n-1\}}) = 0 < G_{\tilde{\varphi}}(p=\frac{1}{2}).$$

D.h. im Fall von sehr starker Unfairness nehmen wir mit $\tilde{\varphi} H_0$ an!

Um diese Absurdität zu vermeiden:

Definition 61. Ein Test φ heißt unverfälscht zum Niveau α wenn

$$G_{\varphi}(\vartheta_0) \leqslant \alpha \leqslant G_{\varphi}(\vartheta_1) \forall \vartheta_0 \in \theta_0, \vartheta_1 \in \theta_1,$$

d.h. man entscheidet sich mit größerer W'keit für die Alternative wenn sie richtig ist, als wenn sie falsch ist.

Ende Vorlesung 11

6.1 Neyman-Pearson-Test

Jetzt betrachten wir eine besondere Situation, wo wir nur zwischen W'maßen \mathbb{P}_0 und \mathbb{P}_1 entscheiden müssen.

Annahme:

 $(\mathcal{X}, \mathcal{F}, \mathbb{P}_0, \mathbb{P}_1)$ d.h. $\theta = \{0, 1\}$, Standardmodell

Nullhypothese $\theta_0 = \{0\}$ Alternative $\theta_1 = \{1\}$

Seien ρ_0, ρ_1 die Dichte von $\mathbb{P}_0, \mathbb{P}_1$.

Gesucht: Ein bester Test φ von \mathbb{P}_0 gegen \mathbb{P}_1 .

<u>Idee:</u>

Man entscheidet sich für die Alternative, wenn $\rho_1(x)$ hinreichend größer ist als $\rho_0(x)$.

Deshalb definiert man den Likelihood-Quotienten

$$R(x) = \begin{cases} \frac{\rho_1(x)}{\rho_0(x)} & \rho_0(x) > 0\\ \infty & \rho_0(x) = 0 \end{cases}$$

Hinreichend groß bedeutet, dass R(x) größer als ein vorgegebener Schwellenwert c ist.

⇒ Wir kriegen einen Test der Form

$$\varphi(x) = \begin{cases} 1 & R(x) > c \\ 0 & R(x) < c \end{cases} \tag{1}$$

Abbildung 5.

Definition 62. Ein Test dieser Form heißt Neyman-Pearson-Test zum Schwellenwert c.

Satz 63. (Neyman-Pearson-Lemma 1932)

Sei $(\mathcal{X}, \mathcal{F}, \mathbb{P}_0, \mathbb{P}_1)$ ein Standardmodell mit

Nullhypothese: $H_0: \theta = \{0\}$ und

Alternative: $H_1: \theta = \{1\}$ und

 $\alpha \in (0,1)$ ein vorgegebenes Niveau. Dann gilt:

- $\exists Neyman-Pearson-Test \varphi mit \mathbb{E}_0[\varphi] = \alpha.$
- Jeder N-P-Test φ mit $\mathbb{E}_0[\varphi] = \alpha$ ist ein bester Test zum Niveau α , und jeder beste Test ψ zum Niveau α ist ununterscheidbar von einem N-P-Test.

Bemerkung 64. Im Beweis werden wir sehen:

Sei c ein α -Fraktil von $\mathbb{P}_0 \circ R^{-1}$. Dann

$$\gamma = \left\{ \begin{array}{ll} \frac{\alpha - \mathbb{P}_0[R > c]}{\mathbb{P}_0[R = c]} & \mathbb{P}_0[R = c] > 0 \\ 0 & \mathbb{P}_0[R = c] = 0 \end{array} \right.$$

Dann

$$\varphi(x) = \begin{cases} 1 & R(x) > c \\ \gamma & R(x) = c \\ 0 & R(x) < c \end{cases}$$

Beweis.

Sei c ein bel. α -Fraktil von $\mathbb{P}_0 \circ R^{-1}$, d.h.

Abbildung 6.

 $\mathbb{P}_0[R(x) \geqslant c] \geqslant \alpha, \mathbb{P}_0[R(x) > c] \leqslant \alpha$

Da $\mathbb{P}_0[R(x) = \infty] = 0$ existiert so ein c.

$$\mathbb{P}_0[R(x) = c] = \mathbb{P}_0[R(x) \geqslant c] - \mathbb{P}_0[R(x) > c] \geqslant \alpha - \mathbb{P}_0[R(x) > c]$$

1. Fall:

$$\mathbb{P}_0[R(x) = c] = 0 \Rightarrow \varphi(x) = \mathbb{1}_{\{R(x) > c\}}$$

ist ein N-P-Test mit $\mathbb{E}_0[\varphi] = \mathbb{P}_0[R(x) > c] = \alpha$.

<u>2. Fall:</u>

 $\mathbb{P}_0[R(x)=c]>0$, dann mit

$$\gamma = \frac{\alpha - \mathbb{P}_0[R(x) > c]}{\mathbb{P}_0[R(x) = c]} \in [0, 1]$$

$$\varphi(x) = \begin{cases} 1 & R(x) > c \\ \gamma & R(x) = c \\ 0 & R(x) < c \end{cases}$$

ist ein N-P-Test mit Nivea

$$\mathbb{E}_0[\varphi] = \mathbb{P}_0[R(x) > c] + \gamma \cdot \mathbb{P}_0[R(x) = c] = \alpha.$$

Damit existiert so ein Test.

(ii): Sei φ ein N-P-Test mit $\mathbb{E}_0[\varphi] = \alpha$ und Schwellenwert c und ψ ein Test zum Niveau α .

$$\mathbb{E}_1[\varphi] - \mathbb{E}_1[\psi] = \int \varphi(x) - \psi(x) \rho_1(x) dx$$

1. Fall:

Falls $\varphi(x) > \psi(x) \Rightarrow \varphi(x) > 0$ und deshalb $R(x) \ge c$, d.h. $\rho_1(x) \ge c\rho_0(x)$.

2. Fall:

Falls $\varphi(x) < \psi(x) \Rightarrow \varphi(x) < 1$ und deshalb $R(x) \leq c$ d.h. $\rho_1(x) \leq c\rho_0(x)$.

$$\Rightarrow \forall x \underbrace{(\varphi(x) - \psi(x))\rho_1(x)}_{f_1(x)} \geqslant c(\varphi(x) - \psi(x))\rho_0(x)$$

$$\Rightarrow \mathbb{E}_1[\varphi] - \mathbb{E}_1[\psi] \geqslant c \int \underbrace{\varphi(x) - \psi(x)\rho_0(x)}_{f_0(x)} \mathrm{d}\mathbf{x} = c \underbrace{(\mathbb{E}_0[\varphi] - \mathbb{E}_0[\psi])}_{=\alpha} \geqslant 0$$

 $\Rightarrow \varphi$ ist ein bester Test zum Niveau α .

Ununterscheidbar: Sei ψ ein bester Test mit Niveau α .

$$\Rightarrow \int \varphi(x) - \psi(x)\rho_0(x)dx = 0$$

 $\Rightarrow f_1(x) = \operatorname{cf}_0(x)$ bis auf x aus Lebesgue-Nullmenge N.

$$d.h.: (\varphi(x) - \psi(x))(\rho_1(x) - c\rho_0(x)) = 0 \forall x \notin N$$

 $\Rightarrow \varphi = \psi$ für alle $x \notin N$ mit $R(x) \neq c$

 \Rightarrow Behauptung.

Beispiel 65. (Entscheidung zwischen zwei möglichen Werten einer (vermutlich) fairen Münze) Sei p die W'keit, dass bei einem Münzwurf Zahl rauskommt.

Jemand behauptet, dass die Münze nicht fair ist, sondern p=3/4 gilt.

Er ruft die Polizei, die mit $\underline{n=10}$ Würfen entscheiden soll, was der Fall ist mit Irrtumsniveau $\alpha=0.01$

$$H_0: p = \frac{1}{2}$$
 gegen $H_1: p = \frac{3}{4}$.

$$\Rightarrow \mathbb{P}_0 = \operatorname{Bin}_{n,\frac{1}{2}} \text{ und } \mathbb{P}_1 = \operatorname{Bin}_{n,\frac{3}{4}}.$$

$$\Rightarrow R(x) = \frac{\text{Bin}_{n,\frac{3}{4}(x)}}{\text{Bin}_{n,\frac{1}{2}(x)}} = \frac{\binom{n}{x} \frac{3^x}{4^n}}{\binom{n}{x} \frac{1}{2^n}} = \frac{3^x}{2^n}$$

ist streng monoton steigend.

Ein Test der Form

$$\varphi(x) = \begin{cases} 0 & x < a \\ \gamma & x = a \\ 1 & x > a \end{cases}$$

ist äquivalent zu

$$\varphi(x) = \begin{cases} 0 & R(x) < c \\ \gamma & R(x) = c \\ 1 & R(x) > c \end{cases}$$

mit $a = R^{-1}(c)$.

Sei a ein α -Fraktil von $\mathbb{P}_0 = \operatorname{Bin}_{10,\frac{1}{\alpha}}$

$$\mathbb{P}_0[X \geqslant a] \geqslant \alpha \text{ und } \mathbb{P}_0[X > a] \leqslant \alpha$$

Da $\mathrm{Bin}_{10,\frac{1}{2}}(\{10\}) \,{\cong}\, 0.001 \,{\leqslant}\, 0.01$

und $\operatorname{Bin}_{10,\frac{1}{2}}(\{9\},\{10\}) \,{\cong}\, 0.0107 \,{\geqslant}\, 0.01$

 $\Rightarrow a = 9$

$$\gamma = \frac{\alpha - \operatorname{Bin}_{10,\frac{1}{2}}(\{10\})}{\operatorname{Bin}_{10,\frac{1}{2}}(\{9\})} \approx 0.924$$

$$\varphi(x) = \begin{cases} 0 & x < 9 \\ 0.924 & x = 9 \\ 1 & x > 9 \end{cases}$$

Seien $\mathbb{P}_0, \mathbb{P}_1$ zwei W'maße mit Dichten ρ_0, ρ_1 . Dann

$$H(\mathbb{P}_0|\mathbb{P}_1) = \mathbb{E}_{\mathbb{P}_0} \left[\ln \frac{\rho_0}{\rho_1} \right] = \begin{cases} \int \rho_0 \ln \frac{\rho_0}{\rho_1} dx & \text{falls } \mathbb{P}_0[\rho_1 = 0] \\ \infty & \text{sonst.} \end{cases}$$

heißt <u>relative Entropie</u> von \mathbb{P}_0 bzgl. \mathbb{P}_1 . Insbesondere $H(\mathbb{P}_0|\mathbb{P}_1) \geqslant 0$ und $H(\mathbb{P}_0|\mathbb{P}_1) = 0 \Leftrightarrow \mathbb{P}_0 = \mathbb{P}_1$. (Siehe Blatt 1 oder 2?)

Die statistische Bedeutung von H: Je größer $H(\mathbb{P}_0|\mathbb{P}_1)$ desto schneller wächst auch die Macht von optimalen Tests von \mathbb{P}_0 gegen \mathbb{P}_1 mit der Anzahl der Beobachtungen. Das ist ein Teil vom folgenden Satz

Satz 66. (Lemma von Stein '52)

Sei $(E, \mathcal{E}, \mathbb{Q}_0, \mathbb{Q}_1)$ ein stat. Standardmodell

$$H_0: \theta = \{0\}, H_1: \theta = \{1\} \text{ und sei } (\mathcal{X}, \mathcal{F}, \mathbb{P}_{\vartheta}: \vartheta \in \{0, 1\}) = (E^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}, \mathbb{Q}_{\vartheta}^{\otimes \mathbb{N}}: \{0, 1\})$$

 $\forall n > 1 \ Sei \ \varphi_n \ ein \ N - P - Test \ mit \ \mathbb{E}_0[\varphi] = \alpha, \ der \ nur \ von \ den \ ersten \ n \ Beobachtungen \ X_1, \ldots, X_n \ abhängt. \ Dann$

$$\frac{\ln(1-\mathbb{E}_1[\varphi_n])}{n} \xrightarrow{n\to\infty} -H(\mathbb{Q}_0|\mathbb{Q}_1),$$

d.h.

$$\mathbb{E}_{1}[\varphi_{n}] \approx 1 - \underbrace{e^{-nH(\mathbb{Q}_{0}|\mathbb{Q}_{1})}}_{=\begin{cases} 1 & H=0 \\ 0 & H>0 \end{cases}}.$$

Ende Vorlesung 12

Beweis des Lemmas in Georgii.

Beispiel 67. (Test für den Erwartungswert zweier Normalverteilungen bei bekannter Varianz)

Sei $\mathbb{Q}_0 = \mathbb{N}_{m_0,v}, \mathbb{Q}_{m_1,v}$ mit $m_0 < m_1$ und v > 0 fix.

 $H_0: m = m_0$, gegen $H_1: m = m_1$

$$\Rightarrow R_n = \exp\left(-\frac{1}{2v}\sum_{k=1}^n\left((x_k - m_1)^2 - (x_k - m_0)^2\right)\right)$$

$$=\exp\left(-\frac{n}{2v}(2(m_0-m_1)M_n+m_1^2-m_0^2)\right)$$

mit $M_n = \frac{1}{n} \sum x_k$

$$\Rightarrow h_n := \frac{-1}{n} \ln R_n = \frac{m_0 - m_1}{v} M_n + \frac{m_1^2 - m_0^2}{2v}$$

 \Rightarrow N-P-Test von m_0 gegen m_1 nach n Beobachtungen

$$\varphi_n(x) := \mathbb{1}_{\{M_n > b_n\}}$$

$$\operatorname{mit} \mathbb{P}_0 \left[\underbrace{M_n > b_n}_{N_{m_0, v/n}((b_n, \infty))} \right] \stackrel{!}{=} \alpha$$

$$\mathcal{N}_{m_0,v/n}((b_n,\infty)) = 1 - \Phi\left(\frac{b_n - m_0}{\sqrt{v/n}}\right)$$

$$\Rightarrow b_n = m_0 + \sqrt{v/n} \Phi^{-1} (1-\alpha)$$

Dann die rel. Entropie:

$$H(\mathbb{P}_0|\mathbb{P}_1) = \mathbb{E}_0[h_n] = m_0 \frac{m_0 - m_1}{v} + \frac{m_1^2 - m_0^2}{2v} = \frac{(m_0 - m_1)^2}{2v}$$

Stein's Lemma:

$$\mathbb{E}_1[1-\varphi_n] \approx \exp\left(-n\frac{(m_0-m_1)^2}{2v}\right)$$

Beispiel 68.

$$\mathbb{Q}_0: \mathbb{Q}_0(\{0\}) = \mathbb{Q}_0(\{1\}) = \frac{1}{2}$$

$$\mathbb{Q}_1: \mathbb{Q}_0(\{1\}) = \frac{1}{4}, \mathbb{Q}_1(\{1\}) = \frac{3}{4}$$

Sei
$$S_n = \sum x_k$$
 und $q_n \cong (1 - \alpha)$ -Quantil von $\operatorname{Bin}_{n, \frac{1}{2}}$

$$\Rightarrow \varphi_n(s) = \begin{cases} 0 & s < q_n \\ \gamma_n & s = q_n \\ 1 & s > q_n \end{cases}$$

mit
$$\gamma_n = \frac{\alpha - \text{Bin}_{n,\frac{1}{2}}(\{q_{n+1},\dots,n\})}{\text{Bin}_{n,\frac{1}{2}}(\{q_n\})}$$

$$\Rightarrow \mathbb{E}_0[\varphi_n] = \alpha$$

$$\Rightarrow \mathbb{E}_1[\varphi_n] = \gamma_n \operatorname{Bin}_{n,\frac{3}{4}}(\{q_n\}) + \operatorname{Bin}_{n,\frac{3}{4}}(\{q_{n+1},\dots,n\})$$

und
$$H(\mathbb{Q}_0|\mathbb{Q}_1) = \frac{1}{2}\ln(8/3)$$

Stein's Lemma :

$$\mathbb{E}_1[\varphi_n]1 - (3/8)^{n/2}$$

6.2 Beste einseitige Tests

Die Neyman-Pearson-Tests sind oft zu einfach für Anwendungen. Das ist aber der Grundstein für komplexere Tests (wenn wir eine geeignete Monotonie gilt).

Definition 69. (Likelihood-Quotient $R_{\vartheta':\vartheta}(x)$)

Sei $(\mathcal{X}, \mathcal{F}, \mathbb{P}_0: \vartheta \in \theta)$ ein Standardmodell mit $\theta \subseteq \mathbb{R}$. Das Modell hat <u>wachsende Likelihood-Quotienten</u> bzgl. einer Statistik

$$T: \mathcal{X} \to \mathbb{R}$$
 wenn für alle $\theta < \theta'$

$$R_{\vartheta':\vartheta} := \frac{\rho_{\vartheta'}}{\rho_{\vartheta}}$$

ist eine wachsende Funktion für T, d.h.

$$R_{\vartheta':\vartheta}(x) = f_{\vartheta':\vartheta}(T(x))$$
 mit

 $f_{\vartheta':\vartheta}(y)$ wachsend in y.

Bemerkung 70. Jedes (einparametrige) exponentielle Modell hat wachsende Likelihood-Quotienten (bzgl. T oder -T).

In der Tat

$$R_{\vartheta':\vartheta}(x) = \exp[(a(\vartheta') - a(\vartheta))T(x)] \frac{e^{b(\vartheta)}}{e^{b(\vartheta')}}$$

und $\vartheta \mapsto a(\vartheta)$ ist strikt monoton.

$$\left\{ \begin{array}{ll} \text{wenn a wachsend} & \text{bzgl T} \\ \text{wenn a fallend} & \text{bzgl.} & -T \end{array} \right.$$

Erinnerung:

In den exponentiellen Modellen sind unter anderem

- i. Binomialmodell
- ii. Poisson
- iii. Normalverteilung mit fester Varianz oder festem Erwartungswert
- iv. Alle Produktmodelle von (i)-(iii)

Was ist ein einseitiger Test?

 $H_0: \vartheta \leqslant \vartheta_0 \text{ gegen } \vartheta > \vartheta_0 \text{ (linksseitig)}$

 $H_0: \vartheta \geqslant \vartheta_0 \text{ gegen } \vartheta < \vartheta_0 \text{ (rechtsseitig)}$

Was ist ein beidseitiger Test?

 $H_0: \vartheta \in [\vartheta_{0,1}, \vartheta_{0,2}]$ gegen $H_1: \vartheta \notin [\vartheta_{0,1}, \vartheta_{0,2}].$

Satz 71.

Sei $(\mathcal{X}, \mathcal{F}, \mathbb{P}_{\vartheta}: \vartheta \in \theta)$ mit $\theta \subseteq \mathbb{R}$ ein Standardmodell mit wachsenden Likelihood-Quotienten bzgl. T und $\vartheta_0 \in \theta$, $0 < \alpha < 1$.

Dann ex. ein bester Test φ zu dem Niveau α ($\mathbb{E}_{\vartheta_0}[\varphi] \leqslant \alpha$) für $H_0: \vartheta \leqslant \vartheta_0$ gegen $H_1: \vartheta > \vartheta_0$ der Form

$$\varphi(x) = \begin{cases} 1 & T(x) > c \\ \gamma & T(x) = c \\ 0 & T(x) < c \end{cases}$$
 (2)

Außerdem ist die Gütefunktion G_{φ} monoton wachsend.

 $c = \alpha$ -Fraktil von $\mathbb{P}_{\vartheta_0} \circ T^{-1}$

$$\gamma \ \textit{l\"{o}st} \ G_{\varphi}(\vartheta_0) = \mathbb{P}_{\vartheta_0}[T > c] + \gamma \mathbb{P}_{\vartheta_0}[T = c] \stackrel{!}{=\!\!\!=} \alpha$$

Beweis.

Sei $R_{\vartheta':\vartheta}(x) = f_{\vartheta':\vartheta}(T(x))$

mit $f_{\vartheta':\vartheta}(y)$ monoton wachsend in y.

$$\theta_0 = (-\infty, \vartheta_0], \theta_1 = (\vartheta_0, \infty)$$

Zuerst berechnen wir c und γ . Aus N-P – Lemma konstruieren wir ein φ der Form 2 mit $c = \alpha$ -Fraktil von $\mathbb{P}_{\vartheta_0} \circ T^{-1}$ und $\gamma \in [0,1]$ kommt aus der Gleichung

$$\alpha = \mathbb{P}_{\vartheta_0}[T(x) > c] + \gamma \mathbb{P}_{\vartheta_0}[T(x) = c]$$

Sei $\vartheta < \vartheta'$

Wenn $R_{\vartheta':\vartheta} = f_{\vartheta':\vartheta}(T) > f_{\vartheta':\vartheta}(c)$

 $\Rightarrow T > c \Rightarrow \varphi = 1$

Wenn $R_{\vartheta':\vartheta} = f_{\vartheta':\vartheta}(T) < f_{\vartheta':\vartheta}(c)$

 $\Rightarrow T < c \Rightarrow \varphi = 0$

 $\Rightarrow \varphi$ ist ein N-P-test

von ϑ gegen ϑ' .

Insbeos
ndere für $\vartheta = \vartheta_0$ und bel. $\vartheta' > \vartheta_0$ folgt aus N - P – Lemma, das
s φ ein bester Test für ϑ_0 gegen jede
s $\vartheta' \in \theta_1$ zum Niveau α .

Noch zu zeigen, dass Niveau von φ als Test θ_0 gegen θ_1 α ist, d.h.

$$G_{\varphi}(\vartheta) \leqslant \alpha \forall \vartheta \in \theta_0$$

Da $G_{\varphi}(\vartheta_0) = \alpha$ müssen wir zeigen, dass G_{φ} monoton wachsend ist.

Für $\vartheta < \vartheta',$ folt aus dem N-P-Lemma, dass φ ein bester Test zu dem Niveau $\beta := G_{\varphi}(\vartheta)$ ist

 $\Rightarrow G_{\varphi}(\vartheta') \geqslant G_{\psi}(\vartheta')$ für alle Tests ψ mit Niveau β

$$G_{\varphi}(\vartheta') = \beta = G_{\varphi}(\vartheta)$$

 $\Rightarrow G_{\varphi}$ ist monoton wachsend.

Bemerkung 72. Für einen rechtsseitigen Test

 $H_0: \vartheta \geqslant \vartheta_0$ gegen $H_1: \vartheta < \vartheta_0$

müssen wir nur < und > in φ tauschen. D.h. $\vartheta \mapsto -\vartheta$ und $T \mapsto -T$ (Anmerkung von Manuel: Nicht wirklich, $\theta = [0, 1]$ als Gegenbsp.)

Beispiel 73. (Einseitiger Gauß-Test, bekannte Varianz)

Sei $(\mathbb{R}^n, \mathcal{B}^n, \mathcal{N}_{m,v}^{\otimes n} : m \in \mathbb{R}, v \text{ fest})$

Zu Testen H_0 : $m \leq m_0$ gegen H_1

Der Ablehnungsbereich ist

$$\{M_n > m_0 + \sqrt{v/n}\Phi^{-1}(1-\alpha)\}$$

Übung!

Beispiel 74. (Einseitiger Chi-Quadrat Test (bekannter Erwartungswert)

Seien $X_1, \ldots, X_n \sim \mathcal{N}(m, v)$ m fest und v > 0.

Testen: $H_0: v \geqslant v_0$ gegen $H_1: v < v_0$.

Dieses Modell ist exponentiell bzgl. der Statistik

$$T_n(x) = \sum_{k=1}^{n} (x_k - m)^2$$

In der Tat, die Likelihoodfunktion

$$\rho_{\vartheta}(x) = \exp\left(\underbrace{-\frac{1}{2v}}_{a(v)} T(x) - \frac{n}{2} \ln(2\pi v)\right)$$

a(v) ist wachsend in v.

 $\Rightarrow R_{v':v}(x) = \frac{\rho_{v'}(x)}{\rho_{v}(x)}$ ist wachsend in $T_n(x)$.

 \Rightarrow Rechtsseitiger Test

$$\varphi(x) = \begin{cases} 1 & T_n(x) < c \\ 0 & T_n(x) > c \end{cases}$$

c berechnen:

$$G_{\varphi}(v_0) \stackrel{!}{=\!\!\!=\!\!\!=} \alpha$$

$$G_{\varphi}(v_0) = \mathbb{E}_{v_0}[\varphi] = \mathbb{P}_{v_0}[T_n < c]$$

$$\mathbb{P}_{v_0}[T_n < c] = \underbrace{\mathbb{P}_{\vartheta_0} \left[\frac{T_n}{v_0} < \frac{c}{v_0} \right]}_{X_k \sim \mathcal{N}_{m, v_0}} \stackrel{!}{=} \alpha$$

$$Y_k = \frac{X_k - m}{\sqrt{v_0}} \sim \mathcal{N}_{0,1}$$

$$\frac{T_n(x)}{v_0} = \sum_{k=1}^n Y_k^2 \sim \chi_n^2$$

$$\Rightarrow c = v_0 \cdot (\alpha - \text{Quantil von } \chi_n^2)$$

 \Rightarrow Ablehnungsbreich

$$\{x: T_n(x) < v_0(\alpha - \text{Quantl von } \chi_n^2)\}$$

Vorlesung über R mit Hilfe von RStudio.

```
#Programmier-Crashkurs R
#Author: M. Braun
#1 Allgemeines
#1.1 Einrichtung
#Download auf rstudio.com (Open Source)
#Empfehlung: Eigenes .R-Script für jedes Projekt
#1.2 Literatur
#Youtube: Statistik am PC, DataCamp, etc.
#M. Luhmann: R für Einsteiger
#G. Grolemund, H. Wickham: R for Data Science
#2 Grundbefehle
#2.1 Rechenoperationen
7+3
7-3
7*3
7/3
sqrt(7)
exp(7)
sin(7)
floor(7.5)
floor(pi)
?floor
#2.2 Variablen
#Zuweisung
x <- 4
y <- x^2
plot(x,y)
curve(sin(x), from=0, to=2*pi)
#Überschreiben
x < - x+3
#Überblick
ls()
#Löschen
rm(x)
```

```
rm(y)
rm(list=ls())
#Ausgeben
x <- 2
y <- x^2
print("Hallo Welt")
print(x)
print(paste("Das Quadrat von", x, "ist", y))
#2.3 Schleifen und Bedingungen
i <- 1
#if-Bedingung
#Standard !=, <, <=, >, >=
if(i == 5){
  print(paste("Deine Glückszahl ist", i))
} else{
  print("Nö!")
}
#for-Schleife
for(j in 1:10){
  if(!j %% 2){
   print(paste(j, "ist eine gerade Zahl"))
  } else{
    if(j == 5){
      print("Hallo Welt!")
    } else{
      print("Hi.")
    }
 }
}
rm(j)
#while-Schleife
while(i < 60){
 print(i^3)
 i <- i+1
}
rm(i)
#2.4 Funktionen
#Parameter festlegen
square <- function(a){</pre>
 b <- a<sup>2</sup>
  #Rückgabe des Wertes
  return(b)
}
square(2)
#Auflistung und Zählen natürlicher Zahlen
list.smaller <- function(p){</pre>
  q < -1
```

```
counter <- 0
  while(q < p){</pre>
    print(paste(q, "ist kleiner als", p))
    q < - q+1
    counter <- counter+1</pre>
  print(paste("Insgesamt sind", counter, "nat@rliche Zahlen kleiner als", p))
list.smaller(1000)
#BMI berechnen
bmi <- function(weight, height){</pre>
  if(height > 5){
   height <- height/100
  #BMI = Gewicht[kg]/Größe[m]
  result <- weight/(height)^2
  return(result)
}
#Funktion aufrufen
bmi(80,180)
bmi(80,1.80)
#Alter berechnen
age <- function(year){</pre>
  a <- 2021 - year
  return(a)
age(1993)
#Lassen Sie dem PC bei umständlichen Berechnungen Zeit
#Bauen Sie ggf. 'Checkpoints' ein
k < -6
for(n in 1:10<sup>k</sup>){
  if(!n %% 10){
    print(paste("Die Marke", n, "ist erreicht!"))
  print(n)
#3 Verwalten von Daten
#3.1 Vektoren
#Vektor zuweisen
vector \leftarrow c(1,2,3,4,5,6,7,8,9,10)
vector2 <- c(1:10)
vector
table(vector)
vec <- integer(400)</pre>
vect <- (1:200)/2
```

```
#Auf Elemente zurückgreifen
vector[1] + vector[5]
#Bei Tabellen bspw. tabelle[zeile,spalte]
#Rechenoperationen auf alle Elemente anwenden
vector <- log(vector)</pre>
vector <- sin(vector)</pre>
#Vektoren zusammenfügen
vector <- append(vector, c(1))</pre>
vector <- append(vector, c(12:24))</pre>
vector <- append(c(12:24), vector)</pre>
#Grundfunktionen
sum(vector)
length(vector)
mean(vector)
sd(vector)
max(vector)
min(vector)
median(vector)
#Plotten
hist(vector)
barplot(vector)
plot(vector)
boxplot(vector)
#3.2 Erzeugen von Zufallszahlen
#Gleichverteilung
gleich <- runif(100, -1, 1)
gleich
barplot(gleich)
#Normalverteilung
normal <- rnorm(100, 1, 3)
normal
barplot(normal)
mean(normal)
sd(normal)
hist(normal)
#3.3 Data Frames
#Data Frames können alle möglichen Daten zusammenbündeln
person <- c("Lisa", "Kunibert", "Herbert", "Moritz", "Irmgard")</pre>
age <- c(36, 66, 90, 41, 50)
vaccine <- c("Johnson", "Astra", "Astra", "Biontech", "Johnson")</pre>
df <- data.frame(person,age, vaccine)</pre>
#3.4 Tabellen einlesen
scorer <- read.table("scorer.txt")</pre>
```

```
scorer
nrow(scorer)
length(scorer)
#Operationen auf Spalten durchführen
with(scorer, mean(V3))
with(scorer, sd(V3))
#Abschließendes Beispiel
data <- read.table("bmi-data.txt")</pre>
#Berechnung des Durchschnitts-BMI's separiert nach Geschlechtern
experiment <- function(maximum){</pre>
  #Counter für die Geschlechter
  females <- 0
 males <- 0
  #Fehlercounter
  error <- 0
  #Durchschnitts-BMI's initialisieren
  fbmi <- 0
 mbmi <- 0
  #Falls Eingabe zu groß
  if(maximum > nrow(data)){
    print(paste("Es wurden nur", nrow(data), "Personen untersucht."))
    print(paste("Sie haben mit", maximum, "eine zu hohe Zahl eingetippt."))
 } else {
    for(i in 1:maximum){
      if(i <= nrow(data)){</pre>
        if(data[i,1] == "w"){
          females <- females + 1
          fbmi <- fbmi + bmi(data[i,2], data[i, 3])</pre>
        } else {
          if(data[i,1] == "m"){
            males <- males + 1
            mbmi <- mbmi + bmi(data[i,2], data[i, 3])</pre>
          } else {
            error <- error + 1
        }
      }
    }
    print(paste("Es wurden", females, "Frauen und", males, "Männer, also insg-
esamt", nrow(data)-error, "Personen untersucht."))
    fbmi <- fbmi/females</pre>
    mbmi <- mbmi/males</pre>
    print(paste("Der durchschnittliche weibliche BMI ist", fbmi))
    print(paste("Der durchschnittliche m\u00e4nnliche BMI ist", mbmi))
    print(paste("Es sind", error, "Fehler aufgetreten"))
}
experiment(7)
experiment(10)
```

7 Bonus: Interessantes Wissen aus den Blättern

7.1 Blatt 01

Bemerkung 75. (Momentenmethode):

- Gegeben seien X_1, \ldots, X_n u.i.v. Zufallsvariablen.
- Wir kennen die Verteilung, gesu cht sind Schätzungen von einem oder mehreren Parametern.
- Bestimmen der ersten k theoretischen Momente $\mathbb{E}(X^j)$ der Verteilung und ermitteln einen Zusammenhang zu den gesuchten Parametern.
- Ersetzen der theoretischen Momente durch $\frac{1}{n}\sum X_i^j$ und lösen nach den gesuchten Parametern auf

7.2 Blatt 03

Es sei $(\mathcal{X}, \mathcal{F}, \mathbb{P}_{\vartheta}: \vartheta \in \theta)$ ein stat. Modell.

Definition 76. Wir nennen eine Statistik $T: \mathcal{X} \to \Sigma$ mit abzählbarem Wertebereich Σ :

a) suffizient, falls für alle $s \in \Sigma$ eine Verteilung Q_s auf $(\mathcal{X}, \mathcal{F})$ existiert, s.d.

$$\mathbb{P}_{\vartheta}[\cdot|T=s] = Q_s$$

 $f\ddot{u}r \ alle \ \vartheta \in \theta \ mit \ \mathbb{P}_{\vartheta}[T=s] > 0 \ und$

b) vollständig, falls keine nicht identisch verschwindende Funktion $g: \Sigma \to \mathbb{R}$ existiert, s.d. $\mathbb{E}_{\vartheta}[g(T)] = 0$ für alle $\vartheta \in \theta$.

Für eine eine relle Schätzfunktion τ :

Satz 77. (Satz von Rao-Backwell)

Es sei T suffizient und S ein Erwartungstreuer Schätzer für τ . Wir definieren $g_S: \Sigma \to \mathbb{R}$ durch $g_S(s) := \mathbb{E}_{Q_s}[S]$. Der Schätzer $g_S(T)$ ist erwartungstreu für τ und für alle $\vartheta \in \theta$ gilt:

$$\operatorname{Var}_{\vartheta}[g_S(T)] \leqslant \operatorname{Var}_{\vartheta}[S].$$

Satz 78. (Satz von Lehmann-Scheffè)

Es sei $g: \Sigma \to \mathbb{R}$ gegeben und T sei suffizient und vollständig. g(T) ist ein bester Schätzer für τ , falls g(T) erwartungstreu für τ ist.

Beispiel 79. Dichten in Exponentiellen Familien:

- $f_{\vartheta}(x) = \frac{\vartheta^x}{x!} \exp(-\vartheta), x \in \mathbb{N}_0 \text{ und } \vartheta > 0.$
- Inverse Gammaverteilung 1: $f_{\alpha}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{(-\alpha+1)} \exp(-\beta/x) \mathbb{1}_{(0,\infty)}(x)$, wobei $\beta > 0$ bekannt, $x \in \mathbb{R}$ und $\alpha > 0$.

• Inverse Gammaverteilung $2: f_{\alpha}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{(-\alpha+1)} \exp(-\beta/x) \mathbb{1}_{(0,\infty)}(x)$, wobei $\alpha > 0$ bekannt, $x \in \mathbb{R}$ und $\beta > 0$.

Kein Element einer Exponentiellen Familie:

- $f_{\vartheta}(x) = \exp(-2\log(\vartheta) + \log(2x))\mathbb{1}_{(0,\vartheta)}(x)$, wobei $x \in \mathbb{R}, \vartheta > 0$.
- Laplace-Verteilung: $f_{\vartheta}(x) = \frac{1}{2} \exp(-|x \vartheta|)$, wobei $x, \vartheta \in \mathbb{R}$.

7.3 Blatt 05

7.4 Blatt 06: Zusammenhang zwischen Konfidenzbereichen und Tests

Für ein stat. Modell $(\mathcal{X},\mathcal{F},\mathbb{P}_{\vartheta}\!:\!\vartheta\in\theta)$ gilt

- Ist $C: \mathcal{X} \to \mathcal{P}(\theta)$ ein Konfidenzbereich für ϑ zum Niveau 1α und $\vartheta_0 \in \theta$, so ist $K := \{x \in \mathcal{X}: \vartheta_0 \notin C(x)\}$ der kritische Bereich eines Tests von der Hypothese $\theta_0 = \{\vartheta\}$ gegen die Alternative $\theta_1 = \{\vartheta: \vartheta \neq \vartheta_0\}$ zum Niveau α .
- Es sei für jedes $\vartheta \in \theta$ K_{ϑ} der kritische Bereich eines Tests von der Hypothese H_0 mit $\theta_0 = \{\vartheta\}$ gegen die Altenative H_0 mit $\{\tilde{\vartheta} : \tilde{\vartheta} \neq \vartheta_0\}$ zum Niveau α . Dann ist $C = \{(x, \vartheta) \in \mathcal{X} \times \vartheta : x \in K_{\vartheta}^c\}$. ein Konfidenzbereich zum Niveau 1α für ϑ .