IMPORTING ALL ESSENTIAL LIBRARIES

```
In [90]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

FUNCTION WHICH WILL BE USED IN DATA PREPROCESSING

analyzing 1.1 dataset


```
Out[11]: Unnamed: 0
          population_growth_rate
          Population_Density
          growth_rate
          dtype: int64
Out[12]: (75, 5)
In [13]:
Out[13]: Unnamed: 0
                                       int64
                                       int64
          popu1ation_growth_rate
                                      object
                                     float64
          Population_Density
          growth_rate
          dtype: object
Out[15]:
             Unnamed: 0 year total_population Population_Density population_growth_rate
                                1.441.719.852
                     1 2023
                                1,428,627,663
                                                      434.60
                                                                          0.81%
                     2 2022
                                1,417,173,173
                                                      431.11
                                                                          0.68%
                     3 2021
                                1,407,563,842
                                                                          0.80%
                                                      424.79
                                                                          0.96%
                     4 2020
                               1,396,387,127
```

```
In [21]:
```

Out[21]:

yea	r total_population	Population_Density	population_growth_rate
0 2024	1441719852	438.58	0.92
1 2023	1428627663	434.60	0.81
2 2022	1417173173	431.11	0.68
3 2021	1407563842	428.19	0.80
4 2020	1396387127	424.79	0.96

In [22]:

year vs population density

Out[23]: Text(0.5, 1.0, 'year vs Population_density')

year vs population_growth_rate

Out[24]: Text(0.5, 1.0, 'year vs population_growth_rate')

year vs population

pair plot for out data1

In [26]:

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[26]: <seaborn.axisgrid.PairGrid at 0x2452c151e50>

analysing 1.4 dataset(rural population historical data

In [27]:		,				
In [28]:						
Out[28]:	Unnamod: 0	voar	Population	norcent of total	Chango	

	Unnamed: 0	year	Population	percent_of_total	Change
0	0	2022	908,804,812	64.13	-0.06%
1	1	2021	909,384,771	64.61	0.08%
2	2	2020	908,684,959	65.07	0.26%
3	3	2019	906,325,664	65.53	0.35%
4	4	2018	903,131,481	65.97	0.44%

```
In [29]:
Out[29]: (63, 5)
Out[30]: Unnamed: 0
        year
        Population
        percent_of_total
        Change
        dtype: int64
In [31]:
In [36]: -----
Out[36]:
            year Population percent_of_total Change
         0 2022 908804812
                                64.13
                                       -0.06
         1 2021 909384771
                                        0.08
                                64.61
         2 2020 908684959
                                65.07
                                        0.26
         3 2019 906325664
                                65.53
                                        0.35
         4 2018 903131481
                                65.97
                                        0.44
In [37]:
Out[37]: year
                             int64
         Population
                             int64
        percent_of_total
                           float64
         Change
                           float64
         dtype: object
```

YEAR VS POPULATION IN RURAL

```
In [38]: sbn.relplot(x="year",y="Population",kind="scatter",hue="year",data=data2)
plt.title("year vs population in rural")
```

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[38]: Text(0.5, 1.0, 'year vs population in rural')

YEAR VS PERCENT OF TOTAL POPULATION

pairplot for data2

```
In [40]: sbn.pairplot(data2,hue="year")
```

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[40]: <seaborn.axisgrid.PairGrid at 0x2452cd29910>

analyzing 1.5 dataset(Urban population historical data)

In [41]:		 	 	
In [42]:	 1//			

Out[42]:

	Unnamed: 0	year	Population	percent_of_total	Change
0	0	2022	508,368,361	35.87	2.02%
1	1	2021	498,179,071	35.39	2.13%
2	2	2020	487,702,168	34.93	2.26%
3	3	2019	476,786,386	34.47	2.32%
4	4	2018	465,871,825	34.03	2.36%

```
In [43]:
Out[43]: (63, 5)
In [44]:
Out[44]: Unnamed: 0
         year
         Population
         percent_of_total
         Change
         dtype: int64
In [46]: li=removing_comma(data3, "Population")
In [47]: ch=removing_percent(data3, 'Change')
In [48]:
Out[48]:
             year Population percent_of_total Change
          0 2022 508368361
                                   35.87
                                           2.02
          1 2021 498179071
                                   35.39
                                           2.13
          2 2020 487702168
                                   34.93
                                           2.26
                                           2.32
          3 2019 476786386
                                   34.47
          4 2018 465871825
                                   34.03
                                           2.36
```

YEAR VS POPULATION IN URBAN

```
In [49]: sbn.relplot(x="year",y="Population",kind="scatter",hue="year",data=data3)
```

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
self._figure.tight_layout(*args, **kwargs)

Out[49]: Text(0.5, 1.0, 'year vs population in urban')

YEAR VS PERCENT OF TOTAL POPULATION

In [50]: sbn.relplot(x="year",y="percent_of_total",kind="scatter",hue="year",data=da")
C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa rning: The figure layout has changed to tight self._figure.tight_layout(*args, **kwargs)

Out[50]: Text(0.5, 1.0, 'year vs percent of total population')

PAIRPLOT FOR DATA3

In [51]:

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[51]: <seaborn.axisgrid.PairGrid at 0x2452e968850>

rural vs urban (pop vs pop)

```
In [52]: plt.title("rural population vs urban population")
    plt.scatter(data2["Population"],data3["Population"],c=data2["year"])
    plt.xlabel("rural population")
Out[52]: Text(0, 0.5, 'urban population')
```


PERCENT OF TOTAL POPULATION

```
In [53]: plt.title("rural vs urban")
    plt.scatter(data2["percent_of_total"],data3["percent_of_total"],c=data2["ye
    plt.xlabel("rural ")
Out[53]: Text(0, 0.5, 'urban ')
```

```
rural vs urban
  35.0
  32.5
  30.0
urban
  27.5
  25.0
  22.5
  20.0
  17.5
             65.0
                     67.5
                              70.0
                                       72.5
                                               75.0
                                                        77.5
                                        rural
```

analysis of DATASET 1.6-2.0

```
In [55]: data4.head()
Out[55]:
             Unnamed: 0 year Birth_Rate Growth_Rate
                      0 2024
                                 16.750
                                            -1.170%
                      1 2023
                                 16.949
                                            -1.250%
                                            -1.230%
                      2 2022
                                 17.163
                      3 2021
                                 17.377
                                            -1.220%
                      4 2020
                                 17.592
                                            -1.200%
In [56]: |li=removing_percent(data4, "Growth_Rate")
```

```
In [58]:
In [59]:
In [60]:
Out[60]:
      Unnamed: 0 year Death_Rate Growth_Rate
         0 2024
                    0.770%
         1 2023
               7.416
                    0.490%
         2 2022
               7.380
                    0.490%
         3 2021
               7.344
                    0.480%
         4 2020
               7.309
                    0.490%
In [61]: li=removing_percent(data5, "Growth_Rate")
In [62]:
In [63]:
In [64]:
In [65]:
Out[65]:
      Unnamed: 0 year Fertility_Rate Growth_Rate
         0 2024
                2.122
                    -0.790%
         1 2023
                2.139
                    -0.930%
         2 2022
                2.159
                    -0.920%
         3 2021
                2.179
                    -0.950%
                2.200
                    -0.900%
         4 2020
In [66]:
In [67]: li=removing_percent(data6, "Growth_Rate")
In [69]:
```

In [70]:			1/1					
Out[70]:		Unna	med: 0	year	Infant_Mortality_Rate	Growth_Rate		
	0	Oillia	0	2024	25.799	-3.080%	_	
	1		1	2023	26.619	-3.890%		
	2		2	2022	27.695	-3.740%		
	3		3	2021	28.771	-3.610%		
	4		4	2020	29.848	-3.480%	Ď	
In [71]:								
In [72]:	li:	-remo	ving_p	ercer	nt(data7,"Growth_R	ate")		
In [73]:				c"c				
In [74]:		•		•	10.11			
In [75]:		- ^ -	1//					
Out[75]:								
	_	Unna			Life_Expectancy			
	0		0	2024	70.62 70.42			
	2		2	2023	70.42			
	3		3	2021	69.96			
	4		4	2020	69.73			
In [76]:			0.5.1111		0.11.7			
In [77]:	dat	ta_ul	timate	=pd.n	nerge(data4,data5, nerge(data_ultimat nerge(data_ultimat	e,data6,on=		
In [78]:		-						
Out[78]:		V007	Dirth	Data	hirth rate grounds rate	Dooth Boto	doath rate grouth rate	Fortility Data
	0	year 2024	Birth_	5.750	-1.17	7.473	death_rate_growth_rate 0.77	2.122
	1	2023		5.949	-1.25	7.416	0.49	2.122
	2	2022		.163	-1.23	7.380	0.49	2.159
	3	2021	17	.377	-1.22	7.344	0.48	2.179
	4	2020	17	.592	-1.20	7.309	0.49	2.200

YEAR VS BIRTH RATE

Out[79]: Text(0.5, 1.0, 'year vs birth_rate')

YEAR VS BIRTH RATE GROWTH RATE

In [80]: sbn.relplot(x="year",y="birth_rate_growth_rate",kind="scatter",hue="year",d

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[80]: Text(0.5, 1.0, 'year vs birth_rate_growth rate')

YEAR VS DEATH RATE

YEAR VS death_rate_growth_rate

```
In [82]: sbn.relplot(x="year",y="death_rate_growth_rate",kind="scatter",hue="year",d.
plt.title("year vs death rate growth rate")

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
    self._figure.tight_layout(*args, **kwargs)
```

Out[82]: Text(0.5, 1.0, 'year vs death rate growth rate')

YEAR VS FERTILITY_RATE

In [83]: sbn.relplot(x="year",y="Fertility_Rate",kind="scatter",hue="year",data=data

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[83]: Text(0.5, 1.0, 'year vs fertility rate')

In [84]: 🗀

Out[84]:

ye	ar	Birth_Rate	birth_rate_growth_rate	Death_Rate	death_rate_growth_rate	Fertility_Rate
 0 202	24	16.750	-1.17	7.473	0.77	2.122
1 202	23	16.949	-1.25	7.416	0.49	2.139
2 202	22	17.163	-1.23	7.380	0.49	2.159
3 202	21	17.377	-1.22	7.344	0.48	2.179
4 202	20	17.592	-1.20	7.309	0.49	2.200

YEAR VS INFANT MORTALITY RATE

In [85]: sbn.relplot(x="year",y="Infant_Mortality_Rate",kind="scatter",hue="year",da

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[85]: Text(0.5, 1.0, 'year vs Infant_Mortality_Rate')

YEAR VS Life_Expectancy

```
In [86]: sbn.relplot(x="year",y="Life_Expectancy",kind="scatter",hue="year",data=dat
```

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[86]: Text(0.5, 1.0, 'year vs Life_Expectancy')

PAIR PLOT FOR ULTIMATE DATA

Tn [87]:

C:\Users\win10\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[87]: <seaborn.axisgrid.PairGrid at 0x24530268e90>

In []: