

数据结构与算法设计

周可

Mail: zhke@hust.edu.cn

华中科技大学, 武汉光电国家研究中心

Preface

n次多项式求解——秦九韶算法

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$= (a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_1) x + a_0$$

$$= ((a_n x^{n-2} + a_{n-1} x^{n-3} + \dots + a_2) x + a_1) x + a_0$$

$$= \dots$$

$$= (\dots (a_n x + a_{n-1}) x + a_{n-2}) x + \dots + a_1) x + a_0$$

秦九韶算法求解n次多项式只需n次乘法和n次加法

算法时间复杂度从 $O(n^2)$ 降低到O(n)

Analysis of algorithms

The theoretical study of computer-program performance and resource usage.

- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.

Running time

- The running time depends on the <u>input</u>: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek <u>upper bounds</u> on the running time, because everybody likes a guarantee.

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- T(n) = expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (bogus)

• Cheat with a slow algorithm that works fast on *some* input.

Machine-independent time

What is insertion sort's worst-case time?

- It depends on the speed of our computer:
 - relative speed (on the same machine),
 - absolute speed (on different machines).

BIG IDEA:

- Ignore machine-dependent constants.
- Look at *growth* of T(n) as $n \to \infty$.

"Asymptotic Analysis"

Asymptotic notation (Θ, O, Ω)

<u>Asymptotic notation</u> can be used to characterize the running times of algorithms.

Engineering:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

Θ-notation

Math:

```
\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}
```

- A function f(n) belongs to the set $\Theta(g(n))$ if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n.
- \triangleright f (n) \in Θ g(n)): indicate that f(n) is a member of Θ (g(n))
- \triangleright Instead, we use $f(n) = \Theta(g(n))$ to express the same notion.

- That is, for all $n \ge n_0$, the function f(n) is equal to $\Theta(g(n))$ within a constant factor.
- ➤ Here, we say that g(n)) is an **asymptotically tight bound** (渐进紧确界) for f(n).

We write $f(n) = \Theta(g(n))$ if there exists positive constants n_0 , c_1 , and c_2 such that at and to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive.

- Example Prove $\frac{1}{2}n^2 3n = \Theta(n^2)$
- To do so, we must determine positive constants c_1 , c_2 , and n_0 such that

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
 for all $n \ge n_0$.

▶ Dividing by n² yields

$$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2 \ .$$

Here, choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$, we can prove it.

NA A A A

- How from an asymptotically positive function(渐进 正函数) to asymptotically tight bounds (渐进紧确界)
 - ➤ Ignore the lower-order terms and the constant, just leave the **highest-order term**, and ignore the coefficient of the highest-order term, then we get the asymptotically tight bound formula:
 - ightharpoonup Example: $f(n) = an^2 + bn + c = \Theta(n^2)$
- In general, for any polynomial $p(n) = \sum_{i=0}^d a_i n^i$ where the a_i are constants and $a_d > 0$, we have $p(n) = \Theta(n^d)$

[定理4.1 大 Θ 比率定理]对于函数f(n)和g(n),若 $\lim_{n\to\infty}\frac{g(n)}{f(n)}$ 和

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$
都存在,则 $f(n)=\Theta(g(n))$,当且仅当存在确定的常数

$$c_1$$
和 c_2 ,有 $\lim_{n\to\infty}\frac{g(n)}{f(n)} \leq c_1$ 利 $\lim_{n\to\infty}\frac{f(n)}{g(n)} \leq c_2$ 。

O-notation

Math:

```
O(g(n)) = \{f(n): \text{there exist positive constants} 
 c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n)
 f \text{ or all } n \geq n_0 \}
```

- > O-notation describes an upper bound. We use it to bound the worst case running time of an algorithm,
- ightharpoonup If f(n) = O(g(n)), O(g(n)) is an asymptotic upper bound on f(n).
- \triangleright f(n) = $\Theta(g(n))$ implies f(n) = O(g(n))

Math:

 $O(g(n)) = \{f(n): \text{there exist positive constants}$ $c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n)$ $f \text{ or all } n \ge n_0 \}$

We write f(n) = O(g(n)) if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or below cg(n).

[定理4.2 大O比率定理]对于函数f(n)和g(n),若 $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ 存

在,则f(n)=O(g(n)),当且仅当存在确定的常数c,

有
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\leq \boldsymbol{c}_o$$

证明:

- 1) m = O(g(n)),则存在c > O及某个 n_o ,使得对
- 于所有的 $n \ge n_0$,有 $f(n)/g(n) \le c$,因此 $\lim_{n \to \infty} \frac{f(n)}{g(n)} \le c_o$
- 2)假定 $\lim_{n\to\infty}\frac{f(n)}{g(n)}\leq c$,它表明存在一个 n_0 ,*使得对于所* $f(n)\geq n_0$,有 $f(n)\leq c$ g(n)。证毕。

e.g.
$$\lim_{n \to \infty} \frac{5n+2}{n} = 5$$
 $\Longrightarrow 5n+2 = O(n)$
 $\lim_{n \to \infty} \frac{7n^2 + 5n + 2}{n^2} = 7$ $\Longrightarrow 7n^2 + 5n + 2 = O(n^2)$
 $\lim_{n \to \infty} \frac{5 \times 2^n + n^2}{2^n} = 5$ $\Longrightarrow 5 \times 2^n + n^2 = O(2^n)$

考察下式:

因为
$$\lim_{n\to\infty}\frac{n^9+3n^2}{2^n}=0$$
, 所以 $n^9+3n^2=O(2^n)$

是否合适?显然这不是一个好的上界估计。

原因在于: 极限值不是一个正常数(见O的定义)。

Ω -notation

Math:

```
\Omega(g(n)) = \{f(n): \text{there exist positive constants} 
 c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n)
 f \text{ or all } n \ge n_0 \}
```

- \triangleright Ω -notation gives a *lower bound* on the *best-case* running time of an algorithm.
- When we say that the running time of an algorithm is $\Omega(g(n))$, we mean that no matter what particular input of size n is chosen for each value of n, the running time on that input is at least a constant times g(n), for sufficiently large n.

Math:

$$\Omega(g(n)) = \{f(n): \text{there exist positive constants}$$

 $c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n)$
 $f \text{ or all } n \ge n_0 \}$

We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or above cg(n).

[定理1.3 大 Ω 比率定理] 对于函数 f(n)和 g(n),若 $\lim_{n\to\infty}\frac{g(n)}{f(n)}$ 存在,

则 $f(n)=\Omega(g(n))$, 当且仅当存在确定的常数c, 有

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}\leq \boldsymbol{C}_{o}$$

注:

这里,当n充分大时, $g(n) \leq cf(n)$ 意味着 $f(n) \geq \frac{1}{c}g(n)$,由此不难看出上述判别规则的正确性。

Comparison of Asymptotic notations (Θ, O, Ω)

o-notation

o denotes an upper bound that is NOT asymptotically tight.

```
o(g(n)) = \{f(n): for \ any \ positive \ constant \ c > 0,
there exists a constant n_0 > 0 such that 0 \le f(n)
< cg(n) \ for \ all \ n \ge n_0 \}
```

- For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.
- The main difference between O-notation and o-notation is that in f(n) =O(g(n)), the bound $0 \le f(n) \le c(g(n))$ holds for **some** constant c > 0, but in f(n) = o(g(n)), the bound $0 \le f(n) < c(g(n))$ holds for **all** constants c > 0.

Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

O和o的区别

O:
$$f(n) = O(g(n)) \Leftrightarrow \exists c, n_0 : (n \ge n_0 \Rightarrow f(n) \le cg(n))$$

$$f(n) = o(g(n)) \Leftrightarrow \forall c, \exists n_0 : (n \ge n_0 \Rightarrow f(n) < cg(n))$$
O:

在o表示中,当n趋于无穷时,f(n)相对于 g(n)来说已经不重要了。

5. ω -notation

ω denotes a lower bound that is NOT asymptotically tight.

$$\omega(g(n)) = \{f(n): for \ any \ positive \ constant \ c > 0,$$
there exists a constant $n_0 > 0$ such that $0 \le cg(n)$
 $< f(n) \ for \ all \ n \ge n_0 \}$

For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$.

The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

That is, f(n) becomes arbitrarily large relative to q(n) as n approaches infinity.

Ω和ω的区别

$$\Omega: f(n) = \Omega(g(n)) \Leftrightarrow \exists c, n_0 : (n \ge n_0 \Rightarrow cg(n) \le f(n))$$

$$f(n) = \omega(g(n)) \Leftrightarrow \forall c, \exists n_0 : (n \ge n_0 \Rightarrow cg(n) < f(n))$$

$$\omega:$$

在ω表示中,当n趋于无穷时,f(n)相对于g(n)来说变得无穷大了。

Properties of those notations

Transitivity: 传递性

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity: 自反性

$$f(n) = \Theta(f(n)),$$

$$f(n) = O(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Symmetry: 对称性

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry: 转置对称性

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

算法时间复杂度的分类

根据上界函数的特性,可以将算法分为:多项式时间算法和指数时间算法。

➤ 多项式时间算法: 可用多项式(函数)对计算时间限界的算法。常见的多项式限界函数有:

▶ 指数时间算法: 计算时间用指数函数限界的算法。常见的 指数时间限界函数:

- 当n取值较大时,指数时间算法和多项式时间算法在计算时间上非常悬殊。
 - □计算时间的典型函数曲线比较

□ 计算时间函数值的比较

表1.1 典型函数的值

logn	n	nlogn	n²	n³	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65536
5	32	160	1024	32768	4294967296

□ 对算法复杂性的一般认识

- ➤ 当数据集的规模很大时,要在现有的计算机系统上运行具有 比 O (nlogn) 复杂度还高的算法是比较困难的。
- ▶指数时间算法只有在n取值非常小时才实用。
- ▶ 要想在顺序处理机上扩大所处理问题的规模,有效的途径 是降低算法的计算复杂度,而不是(仅仅依靠)提高计算机 的速度。

作业

- 1) 3.1-1
- 2) 3.1-2
- 3) 3.1-4

Thank You! Q&A