# Extraction des concepts-clés à partir du fonds Charcot Approche PatternRank

## Ljudmila PETKOVIC<sup>1,2,3</sup>

prenom.nom@sorbonne-universite.fr

<sup>1</sup> Sorbonne Université, Faculté des Lettres, UFR Littératures françaises et comparée, ED 3
<sup>2</sup> Centre d'étude de la langue et des littératures françaises (CELLF), UMR 8599
<sup>3</sup> Observatoire des textes, des idées et des corpus (OBTIC)

Atelier OBTIC DataLab, BNF Paris, le 30 avril 2024









## Plan

- extraction des mots/phrases-clés les plus similaires à un document
- exploitation des plongements BERT
- △ la longueur des n-grammes à extraire n'est pas inférée en amont
- △ la grammaticalité des phrases n'est pas prise en compte
  - p. ex. «scientifique les planches»

- extraction des mots/phrases-clés les plus similaires à un document
- exploitation des plongements BERT
- la longueur des n-grammes à extraire n'est pas inférée en amont « keyphrase\_ngram\_range=(1, 3): uni-, bi- ou trigrammes
- ▲ la grammaticalité des phrases n'est pas prise en compte
  \* p ex «scientifique les planches»

- extraction des mots/phrases-clés les plus similaires à un document
- exploitation des plongements BERT
- 🛕 la longueur des n-grammes à extraire n'est pas inférée en amont
  - keyphrase\_ngram\_range=(1, 3): uni-, bi- ou trigrammes
  - la grammaticalité des phrases n'est pas prise en compte

- extraction des mots/phrases-clés les plus similaires à un document
- exploitation des plongements BERT
- 🔼 la longueur des n-grammes à extraire n'est pas inférée en amont
  - keyphrase\_ngram\_range=(1, 3): uni-, bi- ou trigrammes
- la grammaticalité des phrases n'est pas prise en compte » p. ex. «scientifique les planches»

- extraction des mots/phrases-clés les plus similaires à un document
- exploitation des plongements BERT
- 🔼 la longueur des n-grammes à extraire n'est pas inférée en amont
  - keyphrase\_ngram\_range=(1, 3): uni-, bi- ou trigrammes
- △ la grammaticalité des phrases n'est pas prise en compte
  - p. ex. «scientifique les planches»

- extraction des mots/phrases-clés les plus similaires à un document
- exploitation des plongements BERT
- 🛕 la longueur des n-grammes à extraire n'est pas inférée en amont
  - keyphrase\_ngram\_range=(1, 3): uni-, bi- ou trigrammes
- la grammaticalité des phrases n'est pas prise en compte
  - p. ex. «scientifique les planches»

- 1 entrée : un document
- 2 tokénisation du document en mots/phrases-clés candidates
- 3 génération des plongements du document et des mots/phrases-clés
- 4 calcul de la similarité cosinus document : mots/phrases-clés



Fig. 1 – Pipeline de la méthode keybert (GROOTENDORST, 2020).

- 1 entrée : un document
- 2 tokénisation du document en mots/phrases-clés candidates
- 3 génération des plongements du document et des mots/phrases-clés
- 4 calcul de la similarité cosinus document : mots/phrases-clés



Fig. 1 – Pipeline de la méthode keybert (GROOTENDORST, 2020).

- 1 entrée : un document
- 2 tokénisation du document en mots/phrases-clés candidates
- 3 génération des plongements du document et des mots/phrases-clés
- 4 calcul de la similarité cosinus document : mots/phrases-clés



Fig. 1 – Pipeline de la méthode keybert (GROOTENDORST, 2020).

- 1 entrée : un document
- 2 tokénisation du document en mots/phrases-clés candidates
- 3 génération des plongements du document et des mots/phrases-clés
- 4 calcul de la similarité cosinus document : mots/phrases-clés



Fig. 1 – Pipeline de la méthode keybert (GROOTENDORST, 2020).

## Maximal Marginal Relevance (MMR)

- paramètre de diversification des résultats
- basé sur la similarité cosinus

le degré de diversité entre 0 et 1

## Maximal Marginal Relevance (MMR)

- paramètre de diversification des résultats
- basé sur la similarité cosinus

le degré de diversité entre 0 et 1

## Liste des phrases-clés extraites avec keybert

#### Liste des mots vides appliquées : spaCy

| Phrase-clé                         | Score  | Phrase-clé                              | Score  |
|------------------------------------|--------|-----------------------------------------|--------|
| scientifique planches reproduction | 0.5093 | magnétisme applicable horticulture      | 0.7012 |
| postérieure cordon postérieur      | 0.5078 | droite corps envahie                    | 0.567  |
| cervico dorsale                    | 0.465  | action nitrite amyle                    | 0.5114 |
| sillon postérieur corne            | 0.4644 | trouve sabbat fans                      | 0.4422 |
| région cervicale figure            | 0.4572 | centimètres rotule circonférence        | 0.4194 |
| cirrhose cancer primitif           | 0.4355 | mère attaques hystérie                  | 0.4148 |
| altération cellules ganglionnaires | 0.4032 | chloral décembre règles                 | 0.4038 |
| anatomie pathologique moëlle       | 0.3931 | iconographie photographique salpetriere | 0.3977 |
| lcucocythcs substance granuleuse   | 0.3474 | poitrine apparent 11                    | 0.3388 |
| complètement détruite              | 0.334  | hystérogènes description attaques       | 0.332  |

<sup>(</sup>a) Corpus «Charcot».

Table 1 – Liste de dix phrases-clés les plus pertinentes selon keybert dans les deux corpus.

<sup>(</sup>b) Corpus «Autres».

- extraction des phrases-clés les plus similaires à un document
- préservation de leur grammaticalité grâce aux motifs POS



Fig. 2 – Extrait de l'état de l'art sur l'extraction des mots-clés, adapté de XIE et al. (2023)

- extraction des phrases-clés les plus similaires à un document
- préservation de leur grammaticalité grâce aux motifs POS



Fig. 2 – Extrait de l'état de l'art sur l'extraction des mots-clés, adapté de XIE et al. (2023)

- extraction des phrases-clés les plus similaires à un document
- préservation de leur grammaticalité grâce aux motifs POS



Fig. 2 – Extrait de l'état de l'art sur l'extraction des mots-clés, adapté de XIE et al. (2023)

- extraction des phrases-clés les plus similaires à un document
- préservation de leur grammaticalité grâce aux motifs POS



Fig. 2 – Extrait de l'état de l'art sur l'extraction des mots-clés, adapté de XIE et al. (2023)

- 1 entrée : un seul document texte tokenisé
- étiquetage des tokens avec les balises POS
- 3 sélection des phrases-clés candidates correspondant au modèle POS
- génération des plongements du document et des phrases-clés candidates par un modèle de langue
- calcul des similarités cosinus entre les plongements du document et des phrases-clés candidates + classement des phrases-clés
- 6 extraction des N phrases-clés les plus représentatives



Fig. 3 – Workflow de la méthode PatternRank (SCHOPF et al., 2022).

- 1 entrée : un seul document texte tokenisé
- 2 étiquetage des tokens avec les balises POS
- 3 sélection des phrases-clés candidates correspondant au modèle POS
- génération des plongements du document et des phrases-clés candidates par un modèle de langue
- calcul des similarités cosinus entre les plongements du document et des phrases-clés candidates + classement des phrases-clés
- 6 extraction des N phrases-clés les plus représentatives



Fig. 3 – Workflow de la méthode PatternRank (SCHOPF et al., 2022).

- 1 entrée : un seul document texte tokenisé
- étiquetage des tokens avec les balises POS
- 3 sélection des phrases-clés candidates correspondant au modèle POS
- génération des plongements du document et des phrases-clés candidates par un modèle de langue
- calcul des similarités cosinus entre les plongements du document et des phrases-clés candidates + classement des phrases-clés
- 6 extraction des N phrases-clés les plus représentatives



Fig. 3 – Workflow de la méthode PatternRank (SCHOPF et al., 2022).

- 1 entrée : un seul document texte tokenisé
- étiquetage des tokens avec les balises POS
- 3 sélection des phrases-clés candidates correspondant au modèle POS
- 4 génération des plongements du document et des phrases-clés candidates par un modèle de langue
- (5) calcul des similarités cosinus entre les plongements du document et des phrases-clés candidates + classement des phrases-clés
- 6 extraction des N phrases-clés les plus représentatives



Fig. 3 – Workflow de la méthode PatternRank (SCHOPF et al., 2022).

- 1 entrée : un seul document texte tokenisé
- étiquetage des tokens avec les balises POS
- 3 sélection des phrases-clés candidates correspondant au modèle POS
- 4 génération des plongements du document et des phrases-clés candidates par un modèle de langue
- s calcul des similarités cosinus entre les plongements du document et des phrases-clés candidates + classement des phrases-clés
- 6 extraction des N phrases-clés les plus représentatives



Fig. 3 – Workflow de la méthode PatternRank (SCHOPF et al., 2022).

- 1 entrée : un seul document texte tokenisé
- étiquetage des tokens avec les balises POS
- 3 sélection des phrases-clés candidates correspondant au modèle POS
- 4 génération des plongements du document et des phrases-clés candidates par un modèle de langue
- s calcul des similarités cosinus entre les plongements du document et des phrases-clés candidates + classement des phrases-clés
- 6 extraction des N phrases-clés les plus représentatives



Fig. 3 – Workflow de la méthode PatternRank (SCHOPF et al., 2022).

# Liste des phrases-clés avec keyphrase-vectorizers

| lieues loing 0.9369      |
|--------------------------|
| eins pernicieux 0.9292   |
| nat 0.9289               |
| ques syncopales 2 0.9278 |
| foit 0.9255              |
| ason cataleptise 0.9252  |
| nbre faidt 0.9245        |
| 0.9242                   |
| esfois 0.9235            |
| i culbute 0.9217         |
| frence                   |

(a) Corpus «Charcot».

(b) Corpus «Autres».

 $\label{lem:condition} \begin{tabular}{ll} Table 2-Liste des dix phrases-clés les plus pertinentes selon {\tt keyphrase-vectorizers} \ dans les \\ deux corpus. \end{tabular}$ 

- Lien Google Colab pré-requis :
  - \* mémoire RAM suffisantes
- Dépôt GitHub

- Lien Google Colab pré-requis :
  - bonne connexion Internet
  - mémoire RAM suffisante
- Dépôt GitHub

- Lien Google Colab pré-requis :
  - bonne connexion Internet
  - mémoire RAM suffisante
- Dépôt GitHub

- Lien Google Colab pré-requis :
  - bonne connexion Internet
  - mémoire RAM suffisante
- Dépôt GitHub

- Lien Google Colab pré-requis :
  - bonne connexion Internet
  - mémoire RAM suffisante
- Dépôt GitHub

# Passage à l'échelle

Pour traiter de grands corpus, il existe la possibilité de demander l'accès à la plateforme technologique MESU, hébergée par SACADO (Service d'Aide au Calcul et à l'Analyse de Données).

Elle est composée d'un supercalculateur, d'un environnement de virtualisation et d'un système de stockage de données.

# Passage à l'échelle

Pour traiter de grands corpus, il existe la possibilité de demander l'accès à la plateforme technologique MESU, hébergée par SACADO (Service d'Aide au Calcul et à l'Analyse de Données).

Elle est composée d'un supercalculateur, d'un environnement de virtualisation et d'un système de stockage de données.

# Passage à l'échelle

Pour traiter de grands corpus, il existe la possibilité de demander l'accès à la plateforme technologique MESU, hébergée par SACADO (Service d'Aide au Calcul et à l'Analyse de Données).

Elle est composée d'un supercalculateur, d'un environnement de virtualisation et d'un système de stockage de données.

#### Références I



BOUGOUIN, A., F. BOUDIN et B. DAILLE (2013). TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction. In: International Joint Conference on Natural Language Processing (IJCNLP), p. 543-551.



BROUSSOLLE, E., J. POIRIER, F. CLARAC et J.-G. BARBARA (2012). Figures and institutions of the neurological sciences in Paris from 1800 to 1950. Part III: Neurology. In: Revue Neurologique 168.4, p. 301-320.



CAMARGO, C. H. F., L. COUTINHO, Y. CORREA NETO, E. ENGELHARDT, P. MARANHÃO FILHO, O. WALUSINSKI et H. A. G. TEIVE (2024). Jean-Martin Charcot: the polymath. In: Arquivos de Neuro-psiquiatria 81, p. 1098-1111.



CAMPOS, R., V. MANGARAVITE, A. PASQUALI, A. JORGE, C. NUNES et A. JATOWT (2020). YAKE! Keyword extraction from single documents using multiple local features. In: *Information Sciences* 509, p. 257-289.



GARAUD, D. (22 fév. 2022a). Extraire automatiquement les concepts et mots-clés d'un texte (Part I: Les méthodes dites classiques). Oncrawl. (Visité le 09/04/2024).



GARAUD, D. (22 fév. 2022b). Extraire automatiquement les concepts et mots-clés d'un texte (Part II : approche sémantique). Oncrawl. (Visité le 09/04/2024).



GROOTENDORST, M. (2020). KeyBERT: Minimal keyword extraction with BERT. Version v0.3.0 (voir pp. 9-12).



#### Références II



KOEHLER, P. J. (2013). Charcot, La Salpêtrière, and Hysteria as Represented in European Literature. In: *Progress in Brain Research* 206, p. 93-122.



MAHATA, D., J. KURIAKOSE, R. SHAH et R. ZIMMERMANN (2018). Key2Vec: Automatic Ranked Keyphrase Extraction from Scientific Articles using Phrase Embeddings. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), p. 634-639.



MARMION, J.-F. (2015). Freud et la psychanalyse. Sciences Humaines.



MIHALCEA, R. et P. TARAU (2004). TextRank: Bringing Order into Text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Sous la dir. de D. LIN et D. WU. Barcelona, Spain: Association for Computational Linguistics, p. 404-411.



ROSE, S., D. ENGEL, N. CRAMER et W. COWLEY (2010). Automatic Keyword Extraction from Individual Documents. In: Text Mining: Applications and Theory, p. 1-20.



SCHOPF, T., S. KLIMEK et F. MATTHES (2022). PatternRank: Leveraging Pretrained Language Models and Part of Speech for Unsupervised Keyphrase Extraction. In: Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2022) – KDIR. INSTICC. SciTePress, p. 243-248 (voir pp. 16-25).



SPARCK JONES, K. (1972). A Statistical Interpretation of Term Specificity and its Application in Retrieval. In: Journal of documentation 28.1, p. 11-21.

#### Références III



WAN, X. et J. XIAO (août 2008). CollabRank: Towards a Collaborative Approach to Single-Document Keyphrase Extraction. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008). Sous la dir. de D. Scott et H. USZKOREIT. Manchester, UK: Coling 2008 Organizing Committee, p. 969-976.



XIE, B., J. SONG, L. SHAO, S. WU, X. WEI, B. YANG, H. LIN, J. XIE et J. SU (2023). From Statistical Methods to Deep Learning, Automatic Keyphrase Prediction: A Survey. In: Information Processing & Management 60.4, p. 103382 (voir pp. 16-19).