计算机组成原理

定点乘除法运算

王浩宇,教授

haoyuwang@hust.edu.cn

https://howiepku.github.io/

串行乘法基本原理

分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

 0.1101×0.1011 1101

1101

 $0 \ 0 \ 0 \ 0$

1101

0.10001111

符号位单独处理

乘数的某一位决定是否加被乘数

4个位积一起相加

乘积的位数扩大一倍

笔算乘法改进

$$A \cdot B = A \cdot 0.1011$$
 $= 0.1A + 0.00A + 0.001A + 0.0001A$
 $= 0.1A + 0.00A + 0.001(A + 0.1A)$
 $= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$
 $= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$

改进后的笔算乘法过程(竖式)

A = -0.1101 B = 0.1011

部分积	乘数	说明
0.0000	1011	初态,部分积 = 0
0.1101		乘数为1,加被乘数
$egin{array}{c} 0.1101 \ 0.0110 \ 0.1101 \ \end{array}$	1101	→1,形成新的部分积 乘数为1,加被乘数
$egin{array}{c} 1.0011 \ 0.1001 \ 0.0000 \end{array}$	1 1 1 1 0 =	$\rightarrow 1$,形成新的部分积 乘数为 0 ,加 0
$egin{array}{c} 0.1001 \ 0.0100 \ 0.1101 \ \end{array}$	11 111 <u></u>	→ 1 , 形成新的部分积 乘数为 1 , 加 被乘数
$egin{array}{c} 1.0001 \ 0.1000 \ \end{array}$	111 1111	→1 ,得结果

串行乘法基本原理

- 乘法运算 = 加法+移位。
 - 若乘数数值位n = 4, 则累加 4 次, 移位4 次;

■ 乘法过程

- 由乘数的末位决定被乘数是否与原部分积相加;
 - 被乘数只与部分积的高位相加
- 部分积右移一位形成新的部分积;
- 同时乘数右移一位(末位移丢);
- 空出高位存放部分积的低位。

■ 硬件构成

■ 3个具有移位功能的寄存器、一个全加器

串行乘法的硬件配置

A、X、Q 均 n+1 位,移位和加受末位乘数控制

常用的串行乘法运算

- 原码乘法(符号位和数值位必须分开计算)
 - 原码一位乘
 - 一次判断1位, 需判断n次(乘数位数为n);
 - 原码两位乘***
 - 一次判断2位,可提高乘法的运算速度;
- 补码乘法(符号位和数值位可以等同处理)
 - <u>补码─位乘</u>
 - 结果修正法——需区分乘数正负号,复杂
 - Booth算法——比较法,符号位直接参与运算

原码一位乘法

- 设 $X = X_f . X_1 X_2 ... X_n$, $Y = Y_f . Y_1 Y_2 ... Y_n$, 乘积的符号位为 P_f , $\bigcup P_f = X_f \oplus Y_f$, |P| = |X| . |Y|
- 求 P 的运算规则如下
 - 被乘数和乘数均取绝对值参加运算,符号位单独考虑;
 - 被乘数取双符号位, 部分积的长度同被乘数, 初值为0;
 - 从乘数的最低位Yn开始判断:
 - 若Y_n=1,则部分积加上被乘数 | X | ,然后右移一位;
 - 若Y_n=0,则部分积加上0,然后右移一位。
 - 重复,判断n次

例1. 若X=0. 1101, Y=-0. 1011, 用原码一位乘法求[XY]_原

【解答】
$$|X|=00.1101$$
(用双符号位表示), $|Y|=0.1011$ (用单符号位) 部分积 乘数 Y_n 说 明 00.0000 0.1011 $+00.1101$ 0.101 0.101 0.1101 0.1101 0.1101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.10001

0

原码两位乘法***

■原码乘

■ 符号位和数值位部分分开运算;

■两位乘

■ 每次用乘数的2位判断原部分积是否加和如何加被乘数;

乘数 y _{n-1} y _n	新的部分积	
0 0	加 "0" —— 2	
0 1	加1倍的被乘数 → 2	右移两位
10	加 2 倍的被乘数 2	再加1倍
11	加 3 倍的被乘数 → 2	的被乘数

先 减 1 倍 的被乘数 再 加 4 倍 的被乘数

原码两位乘法***

- 先 减 1 倍 的被乘数
- 再 加 4 倍 的被乘数
- WHY?
- +(4X-X) 来代替+3X运算,在本次运算中只执行-X, 而+4X 则归并到下一步执行
 - 因为下一步运算时,前一次的部分积已右移了两位, 上一步欠下的+4X, 在本步已变成 +X

原码两位乘法运算规则***

■运算规则如下

- 符号位单独运算,最后的符号 $P_f = X_f \oplus Y_f$ 。
- 部分积和被乘数均采用三位符号位;
- 乘数末位增加1位C, 其初值为0, <u>运算过程见表</u>;

■乘数字长与运算步骤

- 若乘数字长为偶数(不含符号),最多做n/2+1次加法,需做n/2次移位,最后一步不移位;
- 若尾数字长n为奇数(不含符号),增加一位符号0,最多做n/2+1次加法,需做n/2+1次移位, 最后一步右移一位

■ WHY?

原码两位乘运算规则表***

Y_{n-1}	Y _n	С	操作
0	0	0	加0,右移两位,0→C
0	1	0	加 X ,右移两位,0 → C
1	0	0	加2 X ,右移两位,0 →C
1	1	0	减 X ,右移两位,1 → C
0	0	1	加 X , 右移两位, 0 → C
0	1	1	加2 X ,右移两位,0 →C
1	0	1	减 X ,右移两位,1 → C
1	1	1	加0,右移两位,1 →C

例.若X=-0.1101, Y=0.0110,用原码两位乘法求[XY]原

【解答】|X|=000.1101, 2|X|=001.1010(用三符号表示), |Y|=00.0110(用双符号位)

```
部分积
                     乘数 C
                                      说
                                           明
  000.0000
                   0 0. 0 1 1 0 0
 +001.1010
                                    Y_{n-1}Y_nC=100
                                                加2|X|
  001.1010
                      0 0. 0 1 0
                                   右移两位 0 →C
\rightarrow 0 0 0, 0 1 1 0 1 0
                                   Y_{n-1}Y_nC=010
                                                加IXI
 +000.1101
  001.001110
                                   右移两位
\rightarrow 000.01001110
                          0 0.0
                                                0 →C
                                                加0
                                   Y_{n-1}Y_nC=000
                                   最后一步不移位
```

由于Pf=Xf⊕Yf=0⊕1=1,|P|=|X|*|Y|=0. 01001110,[XY]原= 1.01001110

14

定点乘法运算

- ■原码一位乘法
- ■原码两位乘法
- ■补码一位乘法

补码一位乘法

以定点小数为例

- ■设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \dots x_n$,乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \dots y_n$
 - ■若被乘数任意,乘数为正
 - 同原码乘法规则,但加法和移位操作按补码规则运算;
 - 乘积的符号自然形成;
 - 公式为: $[xy]_{\dot{i}_1} = [x]_{\dot{i}_2}$ (0. $y_1y_2 \dots y_n$)

算术移位

- ■若被乘数任意、乘数为负
 - 乘数[归] 补,去掉符号位,操作同 ①
 - 运算完成后,需对结果加[-x]_补校正
 - 公式为: $[xy]_{\dot{1}\dot{1}} = [x]_{\dot{1}\dot{1}} (0. y_1y_2 ... y_n) [x]_{\dot{1}\dot{1}}$

统一的补码乘法公式

 $[xy]_{\nmid h} = [x]_{\nmid h} \quad (0, y_1y_2 \dots y_n) - [x]_{\nmid h}, y_0$

补码一位乘法运算的证明

■ 补码与真值的转换

设
$$[X]_{i} = X_0.X_1X_2....X_n$$

(1) 当X>0时, X₀=0,

$$[X]_{\lambda h} = 0. X_1 X_2 X_n = \sum_{i=0}^{n} x^i 2^{-i} = X$$

(2) 当X<0时, X₀=1,

$$[X]_{\lambda h} = 1. X_1 X_2 X_n = 2+X$$

=>

$$X = 1. X_1 X_2 ... X_n - 2 = -1 + 0. X_1 X_2 ... X_n = -1 + \sum_{i=1}^{n} x^i 2^{-i}$$

因此,
$$X = -X_0 + \sum_{i=1}^n x^i 2^{-i}$$
 真值与补码之间的关系

补码一位乘法运算的证明

■ 补码的右移

- 正数右移一位,相当于乘1/2(即除2)
- 负数用补码表示时,右移一位也相当于乘1/2
- 在补码运算的机器中,一个数不论其正负,连同符号位向右移 一位,若符号位保持不变,就等于乘1/2

■ 证明

$$X = -X_0 + \sum_{i=1}^{n} x^i 2^{-i}$$

$$\frac{1}{2} X = -\frac{1}{2} X_{0} + \frac{1}{2} \sum_{i=1}^{n} x^{i} 2^{-i}
= -X_{0} + \frac{1}{2} X_{0} + \frac{1}{2} \sum_{i=1}^{n} x^{i} 2^{-i}
= -X_{0} + \frac{1}{2} \sum_{i=0}^{n} x^{i} 2^{-(i+1)}$$

写成补码形式,即得[½X]_{*} = X₀. X₀ X₁X₂....X_n

如果要得到[2-iX]_补. 只要将[X]_补连同符号右移i位即可

补码一位乘法运算

设[x]** =
$$x_0 x_1 x_2 \cdots x_n$$
 [y]** = $y_0 \cdot y_1 y_2 \cdots y_n$ [x · y]** (被乘数、乘数符号任意)

= $[x]_{*}(0.y_1 \cdots y_n) - [x]_{*} \cdot y_0$
= $[x]_{*}(y_1 2^{-1} + y_2 2^{-2} + \cdots + y_n 2^{-n}) - [x]_{*} \cdot y_0$ [2-1 = 20 - 2-1]

= $[x]_{*}(-y_0 + y_1 2^{-1} + y_2 2^{-2} + \cdots + y_n 2^{-n})$ [2-2 = 2-1 - 2-2]

= $[x]_{*}(-y_0 + (y_1 - y_1 2^{-1}) + (y_2 2^{-1} - y_2 2^{-2}) + \cdots + (y_n 2^{-(n-1)} - y_n 2^{-n})]$

= $[x]_{*}[(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \cdots + (y_n - y_{n-1}) 2^{-(n-1)} + (0 - y_n) 2^{-n}]$

附加位 $y_{n+1} = 0$

补码一位乘法运算

- 开始时,部分积为 0,即 $[z_0]_{i_1} = 0$
- 每一步都是在前次部分积的基础上,由 $(y_{i+1} y_i)$ (i = 0, 1, 2, ..., n) 决定对 $[x]_{i+1}$ 的操作,再右移一位,得到新的部分积
- 如此重复 n+1步,最后一步不移位,便得到 $[x\cdot y]_{i}$

Booth算法运算规则

- 符号位参加运算,运算的 数均以补码表示
- 被乘数一般取双符号位参 加运算
- 乘数可取单符号位
- 乘数末位增设附加位Y_{n+1},且 初值为0
- 按右表操作
- 最后一步不移位,仅根据Y₀与 Y₁的比较结果作相应的运算

Y _n	Y _{n+1}	操作
(高位)	(低位)	
0	0	部分积右移一位
0	1	部分积加[X] _补 ,
		右移一位
1	0	部分积加[-X] _补 ,
		右移一位
1	1	部分积右移一位

例. 若X=-0. 1101, Y=0. 1011, 用补码一位乘法求[XY]_补

[解答] [X]_补=11.0011, [-X]_补=00.1101(<mark>用双符号表示</mark>), [Y]_补=0.1011(<mark>用单符号位</mark>)

因此,[XY]_补= 1. 01110001

例.若X=-0.10010, Y=0.10101,用补码一位乘法求[XY]_补

因此,[XY]_补= 1. 1010000110

定点除法运算

- 原码除法(恢复余数法)
- 原码除法(加减交替法)
- 补码除法***

原码除法算法原理

分析笔算除法

$$x = -0.1011 \quad y = 0.1101$$

$$0.1101$$

$$0.1101$$

$$0.10110$$

$$0.01101$$

$$0.001101$$

$$0.0001101$$

$$0.00001101$$

$$求 x \div y$$

- ✓商符单独处理
- ?心算上商(比较大小)
- ?余数不动低位补"0"减右移一位的除数

$$x \div y = -0.1101$$
 商符 心算求得
余数 = -0.0000111

笔算除法和机器除法的比较

笔算除法

商符单独处理

心算上商

余数 不动 低位补 "0" 减右移一位 的除数

机器除法

符号位异或形成

$$|x| - |y| > 0$$
 上商 1

$$|x| - |y| < 0$$
 上商 0

余数 左移一位 低位补 "0" 减 除数

除法的数据约定

■约定

- 小数定点除法 | x | < | y | , 整数定点除法 | x | > | y |
 - 避免商溢出
- 被除数不等于 0, 除数不能为 0

定点除法运算

- 机器除法运算的特点: 先减, 后判
- 方法一:不够减,恢复原来的余数。然后再进行减运算,叫恢复余数法特点:运算次数不固定,控制复杂,早期使用
- 方法二:不够减时,不必恢复余数本次余数为正,商1,下次右移一位做减法运算本次余数为负,商0,下次右移一位做加法运算这种方法称为加减交替法,也称不恢复余数法运算次数固定,控制简单,目前广泛使用

原码恢复余数法

■ 运算规则:

- 被除数(或余数)的绝对值减去除数的绝对值;
 - 机器内部用补码的加法运算实现 + [|Y|]_补
- 判別余数正负:
 - 若为正数, 上商1;
 - 若为负数,上商0,并恢复余数; + [|Y|]_¾
- 余数和商共同左移一位;
 - 下次减除数,按低位对齐;
- 重复上述过程(左移n次,上商n+1次)。

例. x = -0.1011, y = -0.1101, 用原码恢复余数法求X/Y

AZ: $[x]_{\mathbb{R}} = 1.1011$ $[y]_{\mathbb{R}} = 1.1101$ $[|y/]_{\mathbb{H}} = 0.1101$ $[-|y/]_{\mathbb{H}} = 1.0011$

(1)
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

2	被除数(余数)	商	说明
	0.1011	0.0000	
	1.0011		$+[-[y/]_{ eqh}$
	1.1110	0	余数为负,上商0
	0.1101		恢复余数 +[[y/] _补
Shirt the Acceptance	0.1011	0	恢复后的余数
逻辑左移	1.0110	0	←1
	1.0011		$+[-[y/]_{ eqh}$
	0.1001	0 1	余数为正,上商1
	1.0010	0 1	←1
	1.0011		$+[-[y/]_{\stackrel{>}{lpha}}$
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

例. x = -0.1011, y = -0.1101, 用原码恢复余数法求X/Y

被除数(余数)	商	说明
$\begin{array}{c c} \hline 0.0101 \\ \hline \end{array}$	011	余数为正,上商1
$\begin{smallmatrix}0&.&1&0&1&0\\1&.&0&0&1&1\end{smallmatrix}$	011	$+[- y/]_{*}$
1.1101	0110	余数为负,上商0
0.1101		恢复余数 +[[y/] _补
0.1010	$0\ 1\ 1\ 0$	恢复后的余数
1.0100	0110	←1
1.0011		$+[-\lfloor y/ floor]_{ ext{?}}$
0.0111	01101	余数为正,上商1
$\frac{/x/}{/y/} = 0.1101$	$\cdot \left[\frac{x}{y}\right]_{\mathbb{R}}$	= 0.1101

共上商 5 次,移位4次 第一次上商判溢出

原码加减交替法

恢复余数法运算规则

若第i次求的余数为 R_i ,下一次求的余数为 R_{i+1} ,则

余数 $R_i > 0$ 商1, R_i 左移一位,然后减Y,得到 R_{i+1} $R_{i+1} = 2R_i - |y|$

余数 R_i <0 商0,恢复余数,左移一位,然后减Y,

$$R_{i+1} = 2(R_i + |y|) - |y| = 2R_i + |y|$$

不恢复余数法运算规则

上商"1"

$$2R_i - |y|$$

加减交替

上商"0"

$$2R_i + |y|$$

把恢复余数, 左移, 减Y三个步骤简化成左移, 加Y两个步骤

原码加减交替法的运算规则

■ 运算规则:

- 符号位不参加运算, 取双符号位;
- 用被除数减去除数:
 - 当余数为正时,商上1,余数左移一位,再减去除数;
 - 当余数为负时,商上0,余数左移一位,再加上除数。
- 根据余数的正负,再做如上处理(上商、加减除数)
- 最后一次余数若为负值,还应加上除数以得到正确的余数 (最后一次上商为0而又需得到正确余数,则在这最后一次仍需恢复 余数)
- 运算中, 共左移n次, 相当于乘2ⁿ, 最后的余数应为R_n*2⁻ⁿ 余数的符号与被除数一致

例. x = -0.1011, y = -0.1101, 用原码加减交替法求X/Y

被除数 (余数)	商	说明	
0.1011	0.0000		$[x]_{\text{g}} = 1.1011$
$\underline{1.0011}$		$+[-[y/]_{i}$	[] 11101
1.1110	0	余数为负,上商0	$$ [y] _{\mathbb{R}} = 1.1101
1.1100	0	←1	$[y/]_{n} = 0.1101$
0.1101		$+[[y/]_{ eqh}$	
0.1001	0 1	余数为正,上商1	$[- y/]_{\lambda} = 1.0011$
1.0010	$0\ 1$	←1	
1.0011		+[-/y/] _补	
0.0101	011	余数为正,上商1	
0.1010	011	←1	
1.0011		+[- [y/] _{*\}	
1.1101	0110	余数为负,上商 0	
1.1010	$0\ 1\ 1\ 0$	←1	
0.1101		$+[[y/]_{ eqh}$	
0.0111	01101	余数为正,上商1	

例. x = -0.1011, y = -0.1101, 用原码加减交替法求X/Y

②
$$\frac{|x|}{|y|} = 0.1101$$

$$\therefore [\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次 (n为商的精度)

第一次上商判溢出(1—溢出)

移n次,加n+1次

用移位的次数判断除法是否结束(是否达到要求的精度)

补码加减交替法***(选学)

- 当除数和被除数用补码表示时,判别是否够减,要比较它们绝对值的大小,因此,若两数同符号,要用减,若异号,则要用加。
- 对于判断是否够减,及确定本次上商1还是0的规则,还与 结果的符号有关。
- 当商为正时,商的每一位上值与原码表示一致;当商为负时,商的各位应是补码形式的值,一般先按反码值上商,除法完成后,再用最低位加1,形成正确的补码值。

如何判断是否够减?如何上商?如何确定商符?

补码加减交替法——商值的确定

① 比较被除数和除数绝对值的大小

x与y同号

$$x = 0.1011$$
 $[x]_{*} = 0.1011$ $[x]_{*} = 0.1000$ "够减"

$$x = -0.0011$$
 $[x]_{*} = 1.1101$ $[x]_{*} = 1.1101$ $[x]_{*} = 1.1101$ $[x]_{*} = 1.1101$ $[x]_{*} = 0.1011$ $[x]_{*} = 0.1011$ $[x]_{*} = 0.1011$ $[x]_{*} = 0.1011$ $[x]_{*} = 0.1000$ "不够减"

补码加减交替法——商值的确定

x与y异号

$$x = 0.1011$$
 $[x]_{\uparrow h} = 0.1011$ $[x]_{\uparrow h} = 0.1000$ $[x]_{\uparrow h} = 0.1011$ $[x]_{\uparrow h} = 0.1011$

$[x]_{ih}$ 和 $[y]_{ih}$	求 $[R_i]_{i}$	$[R_i]_{{\uparrow} \downarrow}$ 与 $[y]_{{\uparrow} \downarrow}$
同号	$[x]_{ eqh} - [y]_{ eqh}$	同号,"够减"
异号	$[x]_{ eqh} + [y]_{ eqh}$	异号,"够减"

补码加减交替法——商值的确定

末位恒置"1"法

$$[x]_{\dagger}$$
与 $[y]_{\dagger}$ 同号 $\times . \times \times \times \times 1$

正商

0. 原码 1

按原码上商

"够减"上"1" "不够减"上"0"

 $[x]_{}^{}$ 与 $[y]_{}^{}$ 异号 $\times . \times \times \times \times 1$

负商 1. 反码 1

按反码上商

"够减"上"0"

"不够减"上"1"

小结

[x] _补 与[y] _补	商	$[R_i]_{{ ext{$\lambda$}}}$ 与 $[y]_{{ ext{$\lambda$}}}$		商值
同 号	正	够减 (同号) 不够减(异号)	1 0	原码上商
异号	负	够减 (异号) 不够减 (同号)	0 1	反码上商

简化为

$[R_i]_{{ ext{ iny }}}$ 与 $[y]_{{ ext{ iny }}}$	商值
同号	1
异 号	0

补码加减交替法——商符的形成

除法过程中自然形成

补码加减交替法——新余数的形成

加减交替

$[R_i]_*$ 和 $[y]_*$	商	新余数
同号	1	$2[R_i]_{\nmid h} + [-y]_{\nmid h}$
异号	0	$2[R_i]_{\nmid i} + [y]_{\nmid i}$

补码加减交替法的运算规则

■ 运算规则

- 符号位参加运算,除数和被除数均用双符号位补码表示;
- 第一步的运算
 - 被除数与除数同号,被除数减去除数;
 - 被除数与除数异号,被除数加上除数;
- 后续步骤的运算
 - 余数与除数同号,商上1,余数左移一位减去除数;
 - 余数与除数异号,商上0,余数左移一位加上除数。
- 重复步骤 ,包括符号位在内,共做n+1步。
- 如果对商的精度没有特殊要求,一般可采用"末位恒置1"法, 此法操作简单,易于实现,且最大误差仅为2⁻⁻。

若要求商的精度较高,可按②再进行一次操作,以求得商的第n位。 当除不尽时,若商为负,要在商的最低一位加1,使商从反码值转变 成补码值;若商为正,最低位不需加1。

例.设x = -0.1011, y = 0.1101, 求 $[\frac{x}{y}]_{\uparrow}$ 并还原真值

被除数(余数)	商	说明	$[x]_{k} = 1.0101$
1.0101	0.0000		$[y]_{\stackrel{>}{\Rightarrow}_{1}} = 0.1101$
0.1101		异号做加法	
0.0010	1	同号上"1"	$[-y]_{\nmid h} = 1.0011$
0.0100	1	←1	
1.0011		+[-y ⁻] _补	
1.0111	10	异号上"0"	
0.1110	10	←1	
_0.1101		+[y] _{ネト}	
1.1011	100	异号上"0"	X .
1.0110	100	←1	$\therefore \left[\frac{x}{y}\right]_{\not=\downarrow} = 1.0011$
0.1101		+[y] _补	则 $\frac{x}{y} = -0.1101$
0.0011	1001	同号上"1"	y = 0.1101
0.0110	10011	←1 末位恒置	1 "1"