13:01 2018年10月30日

## 图的矩阵表示

- 一. 有向图的邻接矩阵和可达矩阵
  - 1) 有向图点与点的关系常译作邻接
  - 1. 有向图邻接矩阵adjacence matrix
    - 设D=<V,E>是有向图,V={v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>}
    - 1) · 邻接矩阵(adjacence matrix): A(D)=[a<sub>ij</sub>]<sub>n×n</sub>, a<sub>ii</sub> = 从v<sub>i</sub>到v<sub>i</sub>的边数
    - 2) 可以表示环和平行边
      - 每行和为出度: Σ<sup>n</sup><sub>i=1</sub>a<sub>ii</sub>=d<sup>+</sup>(v<sub>i</sub>)
      - 每列和为入度: Σ<sup>n</sup><sub>i=1</sub>a<sub>ii</sub>=d<sup>-</sup>(v<sub>i</sub>)
    - 3) 握手定理:  $\Sigma_{i=1}^n \Sigma_{j=1}^n \mathbf{a}_{ij} = \Sigma_{i=1}^n \mathbf{d} (\mathbf{v}_j) = \mathbf{m}$ 
      - 环个数: Σn<sub>i=1</sub>a<sub>ii</sub>
    - 4) 交换部分行后再对应地交换部分列,得到的新方阵是置换等价的
  - 2. 有向图邻接矩阵与通路数
    - ・ 设A(D)=A=[a<sub>ii</sub>]<sub>n×n</sub>, A<sup>r</sup>=A<sup>r-1</sup>•A,(r≥2), A<sup>r</sup>=[a<sup>(r)</sup><sub>ii</sub>]<sub>n×n</sub>,  $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ii}]_{n \times n}$
    - 1) · 定理4: a<sup>(r)</sup>;;=从v;到v<sub>j</sub>长度为r的通路总数且  $\Sigma_{i=1}^n \Sigma_{i=1}^n \mathbf{a}^{(r)} = 长度为r的通路总数$ 且 Σn<sub>i=1</sub>a(r)<sub>ii</sub>=长度为r的回路总数
      - ·推论: b<sup>(r)</sup>;;=从v;到v;长度≤r的通路总数
    - 且 Σn<sub>i=1</sub>Σn<sub>i=1</sub>b(r)<sub>ii</sub>=长度≤r的通路总数 2) 且 Σ<sup>n</sup><sub>i=1</sub>b<sup>(r)</sup>ii=长度≤r的回路总数. #
      - ・ 证明: (归纳法) (1)r=1: a<sup>(1)</sup>;;=a;;, 结论显然.
        - (2) 设r≤k时结论成立, 当r=k+1时,
        - a<sup>(k)</sup>;,●a<sup>(1)</sup>;j=从v<sub>i</sub>到v<sub>i</sub>最后经过v<sub>t</sub>的长度为 k+1的通路总数,
      - $\mathbf{a}^{(k+1)}_{ii} = \sum_{t=1}^{n} \mathbf{a}^{(k)}_{it} \bullet \mathbf{a}^{(1)}_{ti} = 从 \mathbf{v}_{i} 到 \mathbf{v}_{i}$ 的长度为



- · v<sub>2</sub>到v<sub>4</sub>长度为3和4的通路数:1,2
- v₂到v₄长度≤4的通路数:4
- v<sub>4</sub>到v<sub>4</sub>长度为4的回路数:5
- v₄到v₄长度≤4的回路数:



- 长度=4的通路(不含回路)数:16
- 长度≤4的通路和回路数: 53, 15



3. 可达矩阵reachability matrix

- ·设D=<V,E>是有向图,V={v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>},
- 可达矩阵: P(D)=[p<sub>ii</sub>]<sub>n×n</sub>,

1) 
$$\mathbf{p}_{ij} = \begin{cases} \mathbf{1}, \ \ \mathsf{M} \mathbf{v}_i \mathbf{v} \mathbf{v}_j \\ \mathbf{0}, \ \ \mathsf{M} \mathbf{v}_i \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}_j \end{cases}$$

- · 主对角线元素都是1: ∀v;∈V, 从v;可达v;
- 强连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的可达矩阵
- ∀i≠j, p<sub>ij</sub>=1 ⇔ b<sup>(n-1)</sup><sub>ij</sub> > 0

2) 
$$P(D) = \begin{bmatrix} P(D_1) & & & & & & & & & \\ & P(D_2) & & & & & & \\ & & & P(D_k) \end{bmatrix}$$

- i. 可达,即有长度n-1或更短的通路
- 3) 计算方法: warshall算法求B+, 非零项改成1, **主对角线改成1**

## 二. 无向图的相邻矩阵和连通矩阵

- 1) 无向图点与点的关系常译作相邻
- 1. 无向图相邻矩阵adjacence matrix
  - 设G=<V,E>是无向简单图,V={v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>}
  - 相邻矩阵(adjacence matrix): A(G)=[a;i]nxn'

1) 
$$a_{ii}=0,$$
  $a_{ij}=\begin{cases} 1,\ v_i = v_j 相邻, i \neq j \\ 0,\ v_i = v_j \land n \end{cases}$ 

- A(G)对称: a<sub>ii</sub>=a<sub>ii</sub>
- 每行(列)和为顶点度: Σ<sup>n</sup><sub>i=1</sub>a<sub>ii</sub>=d(v<sub>i</sub>)
  - 握手定理: Σ<sup>n</sup><sub>i=1</sub>Σ<sup>n</sup><sub>j=1</sub>a<sub>ij</sub>=Σ<sup>n</sup><sub>i=1</sub>d(v<sub>j</sub>)=2m
- 3) 无向图的adjacence matrix一定对称,有向图不一定
- 2. 无向图相邻矩阵与通路数
  - 设A<sup>r</sup>=A<sup>r-1</sup>•A,(r≥2), A<sup>r</sup>=[a<sup>(r)</sup>ii]<sub>n×n</sub>,  $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ij}]_{n \times n}$
  - 定理10.5: a<sup>(r)</sup>;i=从v<sub>i</sub>到v<sub>i</sub>长度为r的通路总数
  - 1) 且  $\Sigma_{i=1}^n a^{(r)} =$ 长度为r的回路总数.#
    - 推论1: a<sup>(2)</sup>;;=d(v;). #
    - 推论2: G连通⇒距离d(v<sub>i</sub>,v<sub>i</sub>)=min{r|a<sup>(r)</sup>ii≠0}.
- 3. 连通矩阵connectivity matrix
  - 设G=<V,E>是无向简单图,  $V = \{v_1, v_2, ..., v_n\},$
  - •连通矩阵: P(G)=[p<sub>ij</sub>]<sub>n×n</sub>,

- · 主对角线元素都是1: ∀v<sub>i</sub>∈V, v<sub>i</sub>与v<sub>i</sub>连通
- 连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的连通矩阵 2)
  - 设B<sub>r</sub>=A+A<sup>2</sup>+...+A<sup>r</sup>= [b<sup>(r)</sup><sub>ii</sub>]<sub>n×n</sub>, 则∀i≠j, p<sub>ii</sub>=1 ⇔  $b^{(n-1)}_{ii} > 0$



0 0 0 0 0 1

(完全) 关联矩阵incidence matrix

- 1) 点与边的关系称为关联
- 2) 关联矩阵不能表示环,因此有环图无法定义关联矩阵
- 1. 有向图关联矩阵
  - 设D=<V,E>是无环有向图, V={v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>},  $E=\{e_1,e_2,...,e_m\}$
  - ・ 关联矩阵(incidence matrix): M(D)=[mii]nxm,
  - 1) **1**, v<sub>i</sub>是e<sub>i</sub>的起点 m<sub>ii</sub> = √ 0, v<sub>i</sub>与e<sub>i</sub>不关联 -1, v<sub>i</sub>是e<sub>i</sub>的终点



- 2) 1 0  $\nu_1$ 0 0  $M(D) = v_2$ 1 0 0 -1 $v_3$ 0 0 0
  - 每列和为零: Σ<sup>n</sup><sub>i=1</sub>m<sub>ii</sub>=0
  - 每行绝对值和为d(v): d(v<sub>i</sub>)=Σ<sup>m</sup><sub>i=1</sub>m<sub>ii</sub>, 其中 1的个数为d+(v),
- 3) -1的个数为d·(v)
  - 握手定理: Σ<sup>n</sup><sub>i=1</sub>Σ<sup>m</sup><sub>i=1</sub>m<sub>ii</sub>=0
  - 平行边: 相同两列

## 2. 无向图关联矩阵

- 设G=<V,E>是无环无向图, V={v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>},  $E=\{e_1,e_2,...,e_m\}$
- · 关联矩阵(incidence matrix): M(G)=[mii]n×m′



- 每列和为2: $\Sigma^{n}_{i=1}m_{ij}$ =2 ( $\Sigma^{n}_{i=1}\Sigma^{m}_{j=1}m_{ij}$ =2m)
- 每行和为d(v): d(v<sub>i</sub>)=Σ<sup>m</sup><sub>j=1</sub>m<sub>ij</sub>
- · 每行所有1对应的边构成断集: [{v<sub>i</sub>}, {v<sub>i</sub>}]
- 平行边: 相同两列
  - 伪对角阵: 对角块是连通分支



- i. 断集不一定是割集,而且不一定极小
- 3. 定理10.1:**连通图关联矩阵秩=n-1** 
  - 1) 做行加法不改变矩阵秩,关联矩阵行变换一定能通过把其他行都加上某一行,使 该行变为全0,因此秩<=n-1
  - 2) 做列交换和行交换不改变矩阵秩,而连通图至少有n-1条边,所以一定能交换出 对角线为1的n-1行子阵, 因此秩>=n-1
  - 3) 综上, 夹逼得出秩=n-1
  - 4) 推论:任意n阶图关联矩阵秩=n-w, w为最大连通子图数
- 4. 无向图基本关联矩阵

- · 设G=<V,E>是无环无向图, V={v<sub>1</sub>,v<sub>2</sub>,...,v<sub>n</sub>}, E={e<sub>1</sub>,e<sub>2</sub>,...,e<sub>m</sub>}
- 参考点: 任意1个顶点
- · 基本关联矩阵(fundamental incidence matrix):从M(G)删除参考点对应的行,记作  $M_f(G)$
- 2) · 定理10.2: G连通⇒r(M<sub>f</sub>(G))=n-1. #
  - 推论1:
  - G有p个连通分支⇒r(M<sub>f</sub>(G))=n-p, 其中M<sub>t</sub>(G)是从M(G)的每个对角块中删 除任意1行而得到的. #
    - a) 不连通矩阵要把连通分支 (行变换) 放进对角块, 从块中删
- 3) G连通⇔r(M(G))=r(M<sub>f</sub>(G))=n-1.
- 5. 无向图基本关联矩阵与生成树
  - · 定理10.3: G连通,

 $M'_f$ 是 $M_f$ (G)中任意n-1列组成的方阵,

1) M'<sub>f</sub>中各列对应的边集是{e<sub>i1</sub>,e<sub>i2</sub>,..., e<sub>i(n-1)</sub>},

T是导出子图G[ $\{e_{i1},e_{i2},...,e_{i(n-1)}\}$ ],则

T是G的生成树⇔ $M'_f$ 的行列式 $|M'_f|$ ≠0.

i. 即n-1条边对应的矩阵满秩 (因为行列式为零,说明不连通或有回)



٧.

vi.

vii.

viii.

ix.

X.

xi. ------我是底线------