Analyzing the Effectiveness of CNNs and GANs in Supersampling MRI Scans

Racheal Dylewski, Alan Hencey, Tanner Fry

Introduction

- Goal: Upscale MRI images
 - Input images: 25 x 25
 - Output images: 50 x 50
- Test image upscaling with different models
 - CNN
 - MSE loss, SSIM loss, SSIM and MSE combine, SSIM then MSE sequentially
 - GAN

Previous Work

 SRCNN that learns end-to-end mapping between low- and high-resolution images [1]

 First SRGAN using a perceptual loss function that consists of an adversarial loss and content loss [2]

CNN Architecture

- 7 Layers
 - 4 Convolutional Layer
 - **128**, 64, 64, 32
 - Flatten layer
 - Dense layer
 - 10,000 neurons
 - Reshape layer
 - Transform 10,000 to 50 x 50 x 4

CNN Loss Results

CNN Visual Results

GAN Architecture

Generator

- 5 Convolutional Layers
- 64, 32, 16, 8, 4
- After each convolutional layer is a batch normalization layer and a ReLU activation layer.
- After the first ReLU layer is a dropout layer.
- After the second ReLU layer is an upsampling layer.

GAN Architecture

- Discriminator
 - 4 Modules
 - Convolutional Layer
 - Leaky ReLU Layer
 - Dropout Layer
 - 0 8, 16, 32, 64
 - Flatten layer
 - Dense layer with one neuron with sigmoid activation

GAN Scoring Results

GAN Visual Results

Conclusion

- All models were provided some form of image upscaling success
 - CNN with SSIM then MSE loss provided best results
- Future contributions
 - Testing more
 - Architecture designs
 - Hyper-parameters
 - Loss configurations
 - Finding more data for dataset