Non-Interactive Zero-Knowledge Proofs for Composite Statements

• Full Version: https://eprint.iacr.org/2018/557

Problem Statement

- proving the balance in Bitcoin is enough to exchange requires
 - 1. signature computation
 - 2. hash function evalutaion
- ullet How to fuse two primitive such that performing faster than Σ -protocol based approach or SNARK based approach?

Contribution

- A new NIZK (non-interactive zero-knowledge) proof of knowledge of x_1, x_2, x, y_1, y_2 s.t.
 - 1. $f_1(x_1, f_2(x_2)) = z$
 - 2. $f_1(x,y_1)=z_1\wedge f_2(x,y_2)=z_2$
 - 3. $f_1(x,y_1)=z_1ee f_2(x,y_2)=z_2$, where z,z_1,z_2 are public

by constructing

- 1. Σ -protocols for
 - o proof of addition of two points
 - o proof of double-discrete logs
 - proof of equliaty over different gorups
- 2. SNARKS to efficient handle commitments from Σ -protocols