Orthogonal Range Searching in 2D using Ball Inheritance

Mads Ravn

Computer Science, Aarhus University

2015

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
 - First Subsection
 - Ball Inheritance
- Second Main Section
 - Another Subsection

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
 - First Subsection
 - Ball Inheritance
- Second Main Section
 - Another Subsection

Orthogonal Range Searching

Preleminaries

- Alle koordinater er unikke
- Rank space
- *n* er en potens af 2

Orthogonal Range Searching

Vi er givet n punkter fra \mathbb{R}^2 som vi ønsker at indsætte i en datastruktur sådan at vi kan svare effektivt på forespørgslen $q = [x_1, x_2] \times [y_1, y_2]$.

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
 - First Subsection
 - Ball Inheritance
- Second Main Section
 - Another Subsection

kd-træ

kd-træ

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\sqrt{n}+k)$ tid

Givet n punkter: Punkterne bliver sorteret efter x eller y på skift. Median bliver fundet og punkterne mindre end medianen bliver givet til venstre barn og punkterne højere end medianen bliver givet til højre barn. Et punkt per blad i træet.

Opbygning af kd-træ

Det $\lceil \frac{n}{2} \rceil$ 'te element bliver valgt som median. Dette element fungerer som en skille-linje mellem de to punkt-mængder.

Medianen bliver låst fast på denne plads i arrayet.

Søgning i kd-træ

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
 - First Subsection
 - Ball Inheritance
- Second Main Section
 - Another Subsection

First Slide Title Optional Subtitle

- My first point.
- My second point.

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
 - First Subsection
 - Ball Inheritance
- Second Main Section
 - Another Subsection

Ball Inheritance

Given a perfect balanced binary tree, each ball include a list of the balls passing through. Consider each ball to have $\lg n$ copies - one for each level in the tree.

- Introduction
 - Orthogonal Range Searching
 - Previous data structures
 - First Subsection
 - Ball Inheritance
- Second Main Section
 - Another Subsection

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

$\mathsf{Theorem}$

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.

