

第二章 逻辑代数

秦磊华 计算机学院

问题提出:

- 1.为什么要引入逻辑代数?
 - ■代数的作用: 使一个含有未知量的数学问题得到解决(有规律、有方法);
 - ■逻辑代数的作用:?
- 2.逻辑代数有哪些规则?
- 3.逻辑代数有哪些表现形式?
- 4.逻辑代数如何应用?

一个由逻辑变量集K, 常量0和1以及"或"、"与"、"非"三种基本运算所构成的 封闭系统 $L=\{K,+,\cdot,^-,0,1\}$ 。

•常量: 0,1分别表示逻辑值为假和真;

•变量: 变化的逻辑量(取值不同于一般代数中的取值范围)

	序号	名称	GB/T 4728.12-1996		国外流行图形符号
			限定符号	国标图形符号	国外孤11 图形有写
	1	与门	&	_ & _	
	2	或门	≥1	→ ≥1	→
	3	非门	逻辑非入和出		→ →
	4	与非门		- & -	
	5	或非门		≥1 ≥1	→

6	与或非门		- & ≥1 	
7	异或门	=1	=1	***
8	同或门	=	= - = 1	***
9	集电极开路 OC 门、漏极 开路 OD 门		&	
10	缓冲器	\triangleright		

公理1交换律

对于任意逻辑变量A、B,有

$$A + B = B + A$$
; $A \cdot B = B \cdot A$

$$A \cdot B = B \cdot A$$

公理2 结合律

对于任意的逻辑变量A、B、C,有

$$(A + B) + C = A + (B + C) (A - B) - C = A - (B - C)$$

$$\begin{array}{c|c} C & & \\ \hline A & & \\ \hline \end{array}$$

公理3 分配律

对于任意的逻辑变量A、B、C,有:

$$A + (B - C) = (A + B) - (A + C) ; A - (B + C) = A - B + A - C$$

- ■画图
- 工程意义?

公理4 0—1 律

对于任意逻辑变量A,有

$$A + 0 = A$$
; $A - 1 = A$

$$A + 1 = 1$$
; $A - 0 = 0$

重要结论! 关于逻辑门封锁与开放

公理4 0—1 律

对于任意逻辑变量A,有

$$A + O = A$$
; $A - 1 = A$

$$A + 1 = 1 ; A - 0 = 0$$

74LS138: 3-8译码器

公理5 互补律

对于任意逻辑变量A,存在唯一的A,使得

$$\overline{A} + A = 1$$
 $\overline{A} \cdot A = 0$

1) 基本逻辑运算-或运算

"或"运算表				
Α	В	F		
0		0		
0	_	1		
	0	1		
1	1	1		

"或"运算法则:

$$0+0=0$$
 $1+0=1$

$$0+1=1$$
 $1+1=1$

$$F = A \lor E$$

2) 基于逻辑运算-与运算

"与"运算表			
A B	F		
0 0	0		
0 1	0		
1 0	0		
1 1	1		
	П		

"与"运算法则:

$$0 \cdot 0 = 0 \qquad 1$$

$$1 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 1 = 1$$

与门

3) 基于逻辑运算-非运算

4) 符合逻辑运算-与非逻辑

$$F = \overline{A \cdot B \cdot C \cdots}$$

$$F = \overline{\overline{A \cdot B} \cdot 1} = \overline{\overline{A \cdot B}} = A \cdot B$$
 与门 使用2个与非门 $F = \overline{\overline{A \cdot 1} \cdot \overline{B \cdot 1}} = \overline{\overline{A} \cdot \overline{B}} = A + B$ 或门 使用3个与非门 $\overline{F = \overline{A \cdot 1} = \overline{A}}$ 非门 使用1个与非门

因此,与非门又称为通用门

5)复合逻辑运算-或非逻辑

$$F = \overline{A + B + C + \cdots}$$

$$F = \overline{A+0} + \overline{B+0} = \overline{A+B} = A \cdot B$$
 与门 使用3个或非门

$$F = \overline{A + B} + 0 = \overline{A + B} = A + B$$
 或门 使用2个或非门

$$F = \overline{A+0} = \overline{A}$$
 非门 使用1个或非门

或非门同样是通用门

harmon from the first the same

6)复合逻辑运算-异或运算

$$F = A \oplus B = \overline{A}B + A\overline{B}$$

$$A \oplus 0 = A \qquad A \oplus 1 = \overline{A}$$

$$A \oplus A = 0 \qquad A \oplus \overline{A} = 1$$

异或运算是两变量运算,若需多变量进行异或运算如何进行?

harden of the state of the stat

6)复合逻辑运算-异或运算

磁盘阵列: (Redundant Arrays of Independent Disks, RAID) (Redundant Arrays of Inexpensive Disks, RAID)

7)复合逻辑运算-同或运算

$$F = A \odot B = \overline{A} \cdot \overline{B} + AB$$

定理1

$$0 + 0 = 0$$
 $1 + 0 = 1$ $0 \cdot 0 = 0$ $1 \cdot 0 = 0$
 $0 + 1 = 1$ $1 + 1 = 1$ $0 \cdot 1 = 0$ $1 \cdot 1 = 1$

定理的证明只能使用前面出现的公理:

交换律(1)、结合律(2)、分配律(3)、0-1律(4)、互补律(5)

定理2 A + A = A ; $A \cdot A = A$ 等幂律

证明
$$A + A = (A + A) \cdot 1$$
 公理4
$$= (A + A) \cdot (A + \overline{A})$$
 公理5
$$= A + (A \cdot \overline{A})$$
 公理3
$$= A + 0$$
 公理5
$$= A$$
 公理4

定理3 A + A · B = A ; A · (A + B) = A 吸收律(项、变量)

= A·(1+B) 公理3

= A·1 公理4

= A 公理4

= A + A · B 定理2

= A 定理1(前式)

定理4 A +
$$\overline{A}$$
·B = A + B A · $(\overline{A}$ +B) = A·B 消去律

证明
$$A + \overline{AB} = (A + \overline{A}) \cdot (A + B)$$
 公理3
$$= 1(A + B)$$
 公理5
$$= A + B$$
 公理4

请仿效证明定理4的第二式

定理5 $\overline{A} = A$

证明
$$\Rightarrow$$
 $A = X$

因而
$$\overline{A} \cdot X = 0$$
 $\overline{A} + X = 1$

但是
$$\overline{A} \cdot A = 0$$
 $\overline{A} + A = 1$

根据公理5的唯一性有: X=A

定理6 $\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

摩根定理

证明 由于
$$(\overline{A} \cdot \overline{B}) + (A + B) = (\overline{A} \cdot \overline{B} + A) + B$$
 公理2

$$=(\overline{B}+A)+B$$
 定理4

$$=A+(\overline{B}+B)$$
 公理1,2

而且
$$(\overline{A} \cdot \overline{B}) \cdot (A + B) = \overline{A} \cdot \overline{B} \cdot A + \overline{A} \cdot \overline{B} \cdot B$$
 公理2

$$=0+0$$
 公理1,5

根据公理5的唯一性可得 $A+B=A\cdot B$

定理7
$$A \cdot B + A \cdot \overline{B} = A$$
 $(A + B) \cdot (A + \overline{B}) = A$ 并项律

证明
$$A \cdot B + A \cdot \overline{B} = A \cdot (B + \overline{B})$$
 公理3
$$= A \cdot 1$$
 公理5
$$= A$$
 公理4

定理8 A·B +
$$\overline{A}$$
·C +B·C = A·B + \overline{A} ·C (A+B)·(\overline{A} +C)·(B+C) =(A+B)·(\overline{A} +C)

证明

$$A \cdot B + \overline{A} \cdot C + B \cdot C$$

 $= A \cdot B + \overline{A} \cdot C + B \cdot C \cdot (A + \overline{A})$ 公理 5
 $= A \cdot B + \overline{A} \cdot C + B \cdot C \cdot A + B \cdot C \cdot \overline{A}$ 公理 3
 $= A \cdot B + A \cdot B \cdot C + \overline{A} \cdot C + \overline{A} \cdot B \cdot C$ 公理 1
 $= A \cdot B(1 + C) + \overline{A} \cdot C(1 + B)$ 公理 3

$$= A \cdot B + \overline{A} \cdot C$$

公理 1,4

$$(A+B)\cdot(\overline{A}+C)\cdot(B+C) = (A+B)\cdot(\overline{A}+C)$$

 $(A+B)\cdot(\overline{A}+C)\cdot(B+C)$
 $= (A+B)(\overline{A}+C)(A+B+C)(\overline{A}+B+C)$ 定理7
 $= (A+B)(A+B+C)(\overline{A}+C)(\overline{A}+B+C)$
 $= (A+B)(\overline{A}+C)$ 定理3

规则1:代入规则

- ◆任何一个含有变量A的逻辑等式,如果将所有出现A的位置都代之以同一个逻辑函数F,则等式仍然成立:
- ◆代入规则的正确性: 任何逻辑函数都和逻辑变量一样, 只有0和1两种可能的取值;
- $A(B+C)=AB+AC \rightarrow A (B+(C+D)) = AB+A (C+D);$
- ◆代入规则的意义:可将逻辑代数公理、定理中的变量用任意逻辑函数代替,推导出更多的等式;
- ◆代入规则使用时必须注意同一变量的全代入。

规则2:反演规则

•将逻辑函数表达式F中所有的"•"变成"+","+"变成"•";"0"变成"1","1"变成"0";原变量变成反变量,反变量变成原变量。保持原函数中运算顺序不变,得到的新函数为原函数的反函数 F。。

$$F = \overline{A} \cdot B + C \cdot \overline{D}$$

$$\overline{F} = (A + \overline{B}) \cdot (\overline{C} + D)$$

规则3:对偶规则

◆若将逻辑函数表达式F中所有的"•"变成"+","+"变成"•", "0"变成"1","1"变成"0",并保持原函数中的运算顺序不变, 则所得到的新的逻辑表达式称为函数F的对偶式,并记作F'

$$\mathbf{F} = \mathbf{A} \mathbf{B} + \overline{\mathbf{B}} (\mathbf{C} + \mathbf{0})$$
 ; $\mathbf{F'} = (\mathbf{A} + \mathbf{B})(\overline{\mathbf{B}} + \mathbf{C} \cdot \mathbf{1})$

◆若两个逻辑函数表达式F和G相等,则其对偶式F'和G'也相等;利用对偶规则可以使定理、公式的证明减少一半。

$$A + (B \cdot C) = (A + B) \cdot (A + C) ; A \cdot (B + C) = A \cdot B + A \cdot C$$
 公理3

定理8 A·B +
$$\overline{A}$$
·C +B·C = A·B + A· \overline{C} (A+B)·(\overline{A} +C)·(B+C) =(A+B)·(\overline{A} +C)

1.逻辑函数的定义

- •逻辑函数和逻辑变量一样,取值只有0和1两种可能;
- •函数和变量之间的关系:"或"、"与"、"非";
- 任何逻辑电路的功能都可由相应的逻辑函数完全描述,故可借助逻辑代数表达式分析研究电路。

partitude de la company de la

2.逻辑函数的表示方法

1)逻辑表达式

$$F = f(A, B) = \overline{A}B + A\overline{B}$$

逻辑表达式中的运算优先级

2.逻辑函数的表示方法

2) 真值表

$$F = A \overline{B} + \overline{A} C$$

函数F的真值表			
ABC	F		
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0	0 1 0 1		
101	1 0		
111	0		

寻找快速填写真值表的方法!

2.逻辑函数的表示方法

3) 卡诺图

- ◆卡诺图是由逻辑变量所有取值组合的小方格所构成的平面图;
- ◆用图形描述逻辑函数的方法,在逻辑函数化简中十分有用;

2.逻辑函数的表示方法

3) 卡诺图

$$F = \overline{A}BC + AB\overline{C}$$

2.逻辑函数的表示方法

3) 卡诺图

AB				
CD	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

AB				
CD	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	1	1	1	1
10	1	0	1	0

$$F(A,B,C,D) = AB + CD + \overline{AB}C$$

2.逻辑函数的表示方法

4)波形图

F=AB