*** Applied Machine Learning Fundamentals *** Mathematical Foundations

Daniel Wehner

SAPSE

November 18, 2019

Find all slides on GitHub

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda November 18, 2019

- Introduction
- 2 Linear Algebra

Vectors

Matrices

Eigenvectors and Eigenvalues

Miscellaneous

Statistics

Random Variables and Common Distributions

Basic Rules of Probability

Expectation and Variance

Kullback-Leibler Divergence

Optimization

Introduction

Cost Functions and Convexity

Constrained Optimization and Lagrange

Multipliers

Numerical Optimization

6 Wrap-Up

Summary

Self-Test Questions

Lecture Outlook

Recommended Literature and further Reading

Section: Introduction

Introduction

Math is a significant portion of data science / machine learning!

You will need it to understand:

- Statistical machine learning
- How optimization for learning / empirical risk minimization works,
- How linear algebra, calculus and statistics are used to make learning and inference more efficient

Math is important!

Section: Linear Algebra

What is a Vector?

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

$$\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Multiplication by a Scalar

$$c\mathbf{x} = c \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix}$$

$$2\mathbf{v} = 2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Addition of Vectors

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}$$

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Linear Combination of Vectors

$$u = c_1 v^{(1)} + c_2 v^{(2)} + \dots + c_n v^{(n)}$$
 (1)

Vector Transpose, inner and outer Product

• Vector transpose:

$$\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 $\mathbf{v}^{\mathsf{T}} = \begin{bmatrix} 3 & 1 \end{bmatrix}$

• Inner product / dot product / scalar product:

$$\mathbf{v} \cdot \mathbf{w} \equiv \mathbf{v}^{\mathsf{T}} \mathbf{w} \equiv \langle \mathbf{v}, \mathbf{w} \rangle = \sum_{j=1}^{m} v_{j} w_{j}$$

$$= \begin{bmatrix} 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = (3 \cdot 2) + (1 \cdot 4) = 10$$
(2)

Vector Transpose and inner and outer Product (Ctd.)

• Outer product:

$$\mathbf{v}\mathbf{w}^{\mathsf{T}} = \left[\begin{array}{cc} 3 \\ 1 \end{array} \right] \left[\begin{array}{cc} 2 & 4 \end{array} \right] = \left[\begin{array}{cc} 6 & 12 \\ 2 & 4 \end{array} \right]$$

The inner product yields a scalar value, the results of an outer product is a matrix!

Length of a Vector

• Length of a vector (Frobenius norm):

$$||x|| = \sqrt{x^{\mathsf{T}}x} \tag{3}$$

$$||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}|| \tag{4}$$

$$||x+y|| \leqslant ||x|| + ||y|| \tag{5}$$

Example:

$$\|\mathbf{v}\| = \sqrt{3^2 + 1^2} = 10$$

Angle between Vectors

• The angle between two vectors is given by:

$$\cos \angle(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|} = \frac{\sum_{j=1}^{m} x_j \cdot y_j}{\sqrt{\sum_{j=1}^{m} (x_j)^2} \cdot \sqrt{\sum_{j=1}^{m} (y_j)^2}}$$

$$\cos \angle(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|} = \frac{10}{\sqrt{10} \cdot \sqrt{20}} \approx 0.71$$
(6)

• Inner product: $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos \angle(\mathbf{x}, \mathbf{y})$

Projection of Vectors

- How is the projection of x onto y defined?
- Formally, we have:

$$p = \|\mathbf{v}\| \cos \angle(\mathbf{v}, \mathbf{w})$$

$$= \|\mathbf{v}\| \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|}$$

$$= \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}$$

Note that p is not a vector!

What is a Matrix?

General case ($\mathbb{R}^{n \times m}$):

$$m{X} = \left[egin{array}{ccccc} X_{11} & X_{12} & \dots & X_{1m} \ X_{21} & X_{22} & \dots & X_{2m} \ dots & dots & \ddots & dots \ X_{n1} & X_{n2} & \dots & X_{nm} \end{array}
ight]$$

$$\mathbf{M} = \left[\begin{array}{ccc} 3 & 4 & 5 \\ 1 & 0 & 1 \end{array} \right] \qquad \mathbb{R}^{2 \times 3}$$

$$\mathbf{N} = \left[\begin{array}{cccc} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad \mathbb{R}^{3 \times 3}$$

$$m{P} = \left[egin{array}{ccc} 10 & 1 \ 11 & 2 \end{array}
ight] \qquad \qquad \mathbb{R}^{2 imes}$$

Matrix Transpose and Addition

Transpose of a matrix:

$$\mathbf{M}^{\mathsf{T}} = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 3 & 1 \\ 4 & 0 \\ 5 & 1 \end{bmatrix} \tag{8}$$

Addition of matrices:

$$\mathbf{X} + \mathbf{Y} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} + \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} X_{11} + Y_{11} & X_{12} + Y_{12} \\ X_{21} + Y_{21} & X_{22} + Y_{22} \end{bmatrix}$$
(9)

Matrix Multiplication

Multiplication by scalars:

$$c\mathbf{X} = c \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \end{bmatrix} = \begin{bmatrix} c \cdot X_{11} & c \cdot X_{12} & c \cdot X_{13} \\ c \cdot X_{21} & c \cdot X_{22} & c \cdot X_{23} \end{bmatrix}$$
(10)

Matrix-vector multiplication:

$$z = Xy = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} X_{11} \cdot y_1 + X_{12} \cdot y_2 \\ X_{21} \cdot y_1 + X_{22} \cdot y_2 \end{bmatrix}$$
(11)

Matrix Multiplication (Ctd.)

• Matrix-matrix multiplication:

$$Z = XY$$

$$= \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \end{bmatrix} \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \\ Y_{31} & Y_{32} \end{bmatrix}$$

$$= \begin{bmatrix} X_{11}Y_{11} + X_{12}Y_{21} + X_{13}Y_{31} & X_{11}Y_{12} + X_{12}Y_{22} + X_{13}Y_{32} \\ X_{21}Y_{11} + X_{22}Y_{21} + X_{23}Y_{31} & X_{21}Y_{12} + X_{22}Y_{22} + X_{23}Y_{32} \end{bmatrix} (12)$$

Matrix Inversion

- Matrix inversion is defined for square matrices $X \in \mathbb{R}^{n \times n}$
- A matrix X multiplied by its inverse X^{-1} gives the identity matrix:

$$\mathbf{X}^{-1}\mathbf{X} = \mathbf{X}\mathbf{X}^{-1} = \mathbf{I} \tag{13}$$

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$
 (14)

• If X^{-1} exists, we say that X is non-singular

Matrix Inversion (Ctd.)

• It holds that (C is the cofactor matrix):

$$\boldsymbol{X}^{-1} = \frac{1}{\det(\boldsymbol{X})} \boldsymbol{C}^{\mathsf{T}} \tag{15}$$

- A condition for invertability is that the determinant has to be different than zero
- Example:

$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $\det(\mathbf{X}) = 0$ $\mathbf{X}^{-1} = ?$

Matrix Inversion Example

$$m{X} = \left[egin{array}{ccc} 1 & ^{1/2} \ -1 & 1 \end{array}
ight] \qquad m{X}^{-1} = \left[egin{array}{ccc} ^{2/3} & ^{-1/3} \ ^{2/3} & ^{2/3} \end{array}
ight]$$

Please verify!

$$XX^{-1} = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = X^{-1}X$$

Use for example the Gauss-Jordan algorithm to find the inverse!

Matrix Pseudoinverse

- Question: How can we invert a matrix $X \in \mathbb{R}^{n \times m}$ which is not squared?
- Left pseudoinverse X[#]X:

$$\mathbf{X}^{\#}\mathbf{X} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_{m}$$
 (16)

• Right pseudoinverse XX#:

$$XX^{\#} = XX^{\mathsf{T}}(XX^{\mathsf{T}})^{-1} = I_n \tag{17}$$

Eigenvectors and Eigenvalues

- ullet Some vectors $oldsymbol{v}$ only change their length when multiplied by a matrix $oldsymbol{X}$
- Example:

$$\left[\begin{array}{cc} 4 & -1 \\ 2 & 1 \end{array}\right] \left[\begin{array}{c} 1 \\ 2 \end{array}\right] = 2 \left[\begin{array}{c} 1 \\ 2 \end{array}\right]$$

- These vectors are called eigenvectors, the scaling factors are known as eigenvalues
- More general:

$$Wv = \lambda v \tag{18}$$

Eigenvectors form a Basis

• Let us assume that there are *n* eigenvectors with corresponding eigenvalues:

$$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$$

 $\lambda_1, \lambda_2, \ldots, \lambda_n$

• Theorem:

- For an $n \times n$ matrix with eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, if they correspond to **distinct** eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent
- Hence, any vector can be expressed as a linear combination of eigenvectors:

$$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n$$

Symmetric Matrices

• A squared $n \times n$ matrix X is symmetric, iff

$$\forall i,j: \qquad X_{ij} = X_{ji} \tag{19}$$

$$\boldsymbol{X} = \boldsymbol{X}^{\mathsf{T}} \tag{20}$$

- Some properties:
 - The inverse X^{-1} is also symmetric
 - Eigen-decomposition: X can be decomposed into $X = QDQ^T$, where the columns of Q are the eigenvectors of X, and D is a diagonal matrix whose entries are the corresponding eigenvalues

Positive (semi-)definite Matrices

A squared symmetric matrix X^{n×n} is positive definite, iff for any vector y ∈ Rⁿ:

$$\mathbf{y}^{\mathsf{T}}\mathbf{X}\mathbf{y} > 0 \tag{21}$$

• Or positive semi-definite, iff $y^{T}Xy \ge 0$

Such matrices are important in machine learning. For instance, the covariance matrix is always positive semi-definite.

Section: Statistics

Introduction Linear Algebra Statistics Optimization Wrap-Up

Random Variables and Common Distributions Basic Rules of Probability Expectation and Variance Kullback-Leibler Divergence

Random Variables

• What is a random variable?

Random Variables

- What is a random variable?
 - It's a random number determined by chance (according to a distribution)
 - Random variables in machine learning: input data, output data, noise
- What is a probability distribution?

Random Variables

- What is a random variable?
 - It's a random number determined by chance (according to a distribution)
 - Random variables in machine learning: input data, output data, noise
- What is a probability distribution?
 - Describes the probability that a random variable is equal to a certain value
 - It can be given by the physics of an experiment (e.g. throwing dice)
 - Discrete vs. continuous distributions

Uniform Distribution

Every outcome is equally probable within a bounded region $\ensuremath{\mathfrak{R}}$

$$p(x) = 1/\Re$$
(22)

Discrete Distributions

The random variables take on discrete values

Examples:

• When throwing a die, the possible values are given by a countably finite set:

$$x_i \in \{1, 2, 3, 4, 5, 6\}$$

• The number of sand grains at the beach (countably infinite set):

$$x_i \in \mathbb{N}$$

Discrete Distributions (Ctd.)

• All probabilities sum up to 1:

$$\sum_{i} p(x_i) = 1$$

- Discrete distributions are particularly important in classification
- A discrete distribution is described by a probability mass function (also called frequency function)

Bernoulli Distribution

• A Bernoulli random variable only takes on two values (e.g. 0 and 1):

$$x \in \{0, 1\} \tag{23}$$

$$p(x=1|\mu) = \mu \tag{24}$$

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$
 (25)

$$\mathbb{E}\{x\} = \mu \tag{26}$$

$$var\{x\} = \mu(1 - \mu) \tag{27}$$

• The only parameter is μ , i. e. the distribution is completely defined by this parameter

Binomial Distribution

- Binomial variables are a sequence of *n* repeated Bernoulli variables
- **Example**: What is the probability of getting $m \in \mathbb{N}$ heads in n trials?

$$Bin(m|n,\mu) = \binom{n}{m} \mu^m (1-\mu)^{n-m}$$
(28)

$$\mathbb{E}\{m\} = n\mu \tag{29}$$

$$var\{m\} = n\mu(1-\mu) \tag{30}$$

Binomial Distribution (Ctd.)

Continuous Distributions

The random variables take on continuous values

- Continuous distributions are discrete distributions where the number of discrete values goes to infinity while the probability of each value goes to zero
- It's described by a probability density function which integrates to 1:

$$\int_{-\infty}^{+\infty} p(x) \, \mathrm{d}x = 1$$

Introduction Linear Algebra Statistics Optimization Wrap-Up

Random Variables and Common Distributions Basic Rules of Probability Expectation and Variance Kullback-Leibler Divergence

Gaussian Distribution

Central Limit Theorem

Central Limit Theorem:

The distribution of the sum of n i. i. d. (independent and identically distributed) random variables becomes increasingly Gaussian as n increases.

- The Gaussian distribution is one among the most important distributions
- Gaussians are often a good model
- Working with Gaussians leads to analytical solutions for complex operations

Multivariate Gaussian Distribution

$$\rho_D(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
(32)

For clarification: ${\pmb x}$ and ${\pmb \mu}$ are vectors while ${\pmb \Sigma}$ is a matrix. The probability given by ${\mathcal N}({\pmb x}|{\pmb \mu},{\pmb \Sigma}) \in [0;1]$ is still a scalar value!

Basic Rules of Probability

• Joint distribution:

$$p(x,y) \tag{33}$$

• Marginal distribution:

$$p(y) = \int_{x} p(x, y) \, \mathrm{d}x \tag{34}$$

Conditional distribution:

$$p(y|x) = \frac{p(x,y)}{p(x)} \tag{35}$$

Basic Rules of Probability (Ctd.)

• Probabilistic independence:

$$p(x, y) = p(x)p(y) \tag{36}$$

• Chain rule of probabilities:

$$p(x_1, ..., x_n) = p(x_1 | x_2, ..., x_n) p(x_2, ..., x_n)$$

= $p(x_1 | x_2, ..., x_n) p(x_2 | x_3, ..., x_n) ... p(x_{n-1} | x_n) p(x_n)$ (37)

Bayes' rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \tag{38}$$

Expectation

$$\mathbb{E}_{x \sim p(x)}\{f(x)\} = \mathbb{E}_x\{f\} = \mathbb{E}\{f\} = \sum p(x)f(x) \qquad \text{discrete case}$$
 (39)

$$= \int_{x} p(x)f(x) dx \qquad \text{continuous case} \qquad (40)$$

Approximate expectation:

$$\mathbb{E}\{f\} = \int_{X} p(x)f(x) \, \mathrm{d}x \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$
 (41)

Expectation (Ctd.)

- Some rules of expectations:
 - $\mathbb{E}\{a\mathbf{x}\}=a\mathbb{E}\{\mathbf{x}\}$
 - $\mathbb{E}\{\boldsymbol{x} + \boldsymbol{y}\} = \mathbb{E}\{\boldsymbol{x}\} + \mathbb{E}\{\boldsymbol{y}\}$
 - $\mathbb{E}\{xy\} = \mathbb{E}\{x\}\mathbb{E}\{y\}$ (if x and y are independent)
 - $\mathbb{E}\{\sum_i a_i x_i\} = \sum_i a_i \mathbb{E}\{x_i\}$
- Expectations of functions:
 - $\mathbb{E}\{g(\mathbf{x})\} = \int_{\mathbf{x}} p(\mathbf{x})g(\mathbf{x}) d\mathbf{x}$
 - In general: $\mathbb{E}\{g(\mathbf{x})\} \neq g(\mathbb{E}\{\mathbf{x}\})$

Variance and Covariance

- Covariances give a measure of correlation: (how much variables change together)
- Scalars:

$$cov\{x, y\} = \mathbb{E}_{x,y}\{(x - \mathbb{E}_x\{x\})(y - \mathbb{E}_y\{y\})\}$$

$$= \mathbb{E}_{x,y}\{xy\} - \mathbb{E}_x\{x\}\mathbb{E}_y\{y\}$$
(42)

Vector notation:

$$\operatorname{cov}\{x, y\} = \mathbb{E}_{x, y}\{(x - \mathbb{E}_{x}\{x\})(y - \mathbb{E}_{y}\{y\})^{\mathsf{T}}\}$$
(43)

Kullback-Leibler Divergence

• The Kullback-Leibler (KL) divergence is a similarity measure between two distributions *p* and *q*:

$$\mathsf{KL}(p\|q) = \sum_{x} p(x) \cdot \log \frac{p(x)}{q(x)} \tag{44}$$

- Some properties:
 - It is not a distance metric: $KL(p||q) \neq KL(q||p)$
 - It is non-negative: $KL(p||q) \ge 0$
 - If $\forall x : p(x) = q(x) \Rightarrow \mathsf{KL}(p||q) = 0$

Section: Optimization

Motivation

- In every machine learning problem, you will have:
 - 1 An objective function you want to optimize
 - 2 Data you want to learn from
 - Opening Parameters which need to be learned
 - 4 Assumptions about the problem and the data
- We would like to have general solutions to the problem of learning
- Different algorithms embody different objective functions and assumptions

Every machine learning problem is an optimization problem!

Unconstrained Optimization

You know how to do that, don't you?

Constrained Optimization

Formalization:

$$\min_{\theta} \mathcal{J}(\theta) = \dots \qquad \longleftarrow \text{cost function / objective}$$
s. t. $f(\theta) = 0 \qquad \longleftarrow \text{equality constraints}$

$$g(\theta) \geqslant 0 \qquad \longleftarrow \text{inequality constraints}$$

What should an ideal optimization problem, i.e. the cost function and constraints look like?

Constrained Optimization (Ctd.)

$$\min_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) = \dots \qquad \qquad \longleftarrow \text{convex function}$$
 s. t. $f(\boldsymbol{\theta}) = 0 \qquad \qquad \longleftarrow \text{linear function}$ $g(\boldsymbol{\theta}) \geqslant 0 \qquad \longleftarrow \text{convex set}$

convex

Cost Functions

non-convex

$y = f_{c}(x)$

Convexity – Convex Sets

• A set $C \subseteq \mathbb{R}^n$ is convex, if $\forall x, y \in C$ and $\forall \alpha \in [0, 1]$

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in C \tag{45}$$

• This is the equation line segment between x and y

Convexity - Convex Functions

• A function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is convex, if $\forall x, y \in \text{dom}(f)$ and $\forall \alpha \in [0, 1]$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leqslant \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \tag{46}$$

• Examples are linear functions $f(x) = a^{T}x + b$ and quadratic functions $f(x) = x^{T}Ax + b^{T}x + c$

Convexity (Ctd.)

- Why are convex cost functions so appealing?
- Local solutions are global optima
- Efficient implementations of optimizers are available

Constrained Optimization

• How to solve this optimization problem?

$$\min_{x,y} \mathcal{J}(x,y) = 2y + x$$

subject to (s.t.):

$$f(x, y) = y^2 + xy - 1 = 0$$

- Convert the problem to an unconstrained one
- This is done using Lagrange multipliers α

The Concept of Lagrange Multipliers

General Lagrange function: $\mathcal{L}(x, y, \lambda) = \mathcal{J}(x, y) + \lambda f(x, y)$

Step **1**: Differentiate w. r. t. x, y and λ :

$$\min_{x,y} \mathcal{J}(x,y) = 2y + x$$

s. t.:

$$f(x, y) = y^2 + xy - 1 = 0$$

II.
$$\nabla_{\mathbf{y}} \mathcal{L} = 2 + 2\lambda \mathbf{y} + \lambda \mathbf{x}$$

$$11. \quad \nabla_y z = z + z \wedge y + \lambda x$$

III.
$$\nabla_{\lambda} \mathcal{L} = y^2 + xy - 1$$

I. $\nabla_{\mathbf{v}} \mathcal{L} = 1 + \lambda \mathbf{v}$

The Concept of Lagrange Multipliers (Ctd.)

Step **②**: Set equations to zero:

I.
$$1 + \lambda y$$
 $\stackrel{!}{=} 0$

II.
$$2 + 2\lambda y + \lambda x \stackrel{!}{=} 0$$

III.
$$y^2 + xy - 1 \stackrel{!}{=} 0$$

Step **3**: Substitute:

$$1. \quad \lambda = -\frac{1}{y}$$

$$I. \rightarrow II. \quad x = 0$$

II.
$$\rightarrow$$
 III. $y = \pm 1$

Numerical Optimization

- Different numerical optimization algorithms exist for optimizing a function numerically on a computer if we can't solve it analytically
- Gradient descent: Incrementally update an estimate of the parameters:

$$\theta_{new} \longleftarrow \theta_{old} + \alpha \delta \theta$$
 (47)

- After each update: $\mathcal{J}(\boldsymbol{\theta}_{\textit{new}}) < \mathcal{J}(\boldsymbol{\theta}_{\textit{old}})$
- The algorithms differ in the number of iterations required, the computational cost, the convergence guarantees, the robustness with noisy cost functions and their memory usage

Numerical Optimization Algorithms

- Gradient-based methods:
 - Gradient descent (with constant, variable step size α)
 - (L-)BFGS (Broyden-Fletcher-Goldfarb-Shanno)
 - Conjugate gradient descent
- Non-gradient based methods:
 - Genetic algorithms
 - Non-Linear simplex
 - Nelder-Mead

Numerical techniques may not find the global optimum!

Gradient Descent

- Most basic algorithm (and most commonly used)
- Go into the direction of the steepest descent
- ullet The gradient points in the direction of the maximum (o subtract gradient)

$$\boldsymbol{\theta}^{(new)} \longleftarrow \boldsymbol{\theta}^{(old)} - \alpha \nabla_{\boldsymbol{\theta}} \mathfrak{J}(\boldsymbol{\theta}^{(old)}) \tag{48}$$

- The parameter updates tend to 'zig-zag' down the valley (see next slide)
- Gradient descent is a 1st-order method

Gradient Descent (Ctd.)

Initialization

Initialization also matters...

Newton's Method

• We want to solve: (H is the Hessian, g the Jacobian)

$$\delta \theta = \underset{\delta \theta}{\operatorname{arg \, min}} \left[c + \mathbf{g}^{\mathsf{T}} \delta \theta + \frac{1}{2} \delta \theta^{\mathsf{T}} \mathbf{H} \delta \theta \right]$$
Taylor series expansion (49)

We have to differentiate and set to zero:

$$\nabla_{\delta\theta} \left[c + \mathbf{g}^{\mathsf{T}} \delta\theta + \frac{1}{2} \delta\theta^{\mathsf{T}} \mathbf{H} \delta\theta \right] = \mathbf{g} + \mathbf{H} \delta\theta \stackrel{!}{=} \mathbf{0}$$
 (50)

Which yields the solution:

$$\delta \boldsymbol{\theta} = -\boldsymbol{H}^{-1} \boldsymbol{g} \tag{51}$$

Newton's Method (Ctd.)

Want to learn more about Optimization?

- Deep Learning book chapters 4.3, 4.4 and 8
 (Link chapters 4.3, 4.4, Link chapter 8) are highly recommended
- Boyd & Vandenberghe, Convex Optimization (Link)
- Stanford convex optimization course (Link)
- MOOC on constrained optimization (Link)

Section: Wrap-Up

Introduction Linear Algebra Statistics Optimization Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Readir

Summary

Introduction Linear Algebra Statistics Optimization Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Readin

Self-Test Questions

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Recommended Literature and further Reading

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Mathematical Foundations

Date: November 18, 2019

Contact:

Daniel Wehner SAPSE daniel.wehner@sap.com

Do you have any questions?