NCTU-EE IC LAB - Fall 2017

Lab04 Exercise

Design: ALU

Data Preparation

1. Extract test data from TA's directory:

% tar xvf ~iclabta01/Lab04.tar

2. Ask the TA if you have any question.

Design Description

A calculator with two stages will be implemented. In the first stage, the calculator will receive five 5-bit signed numbers which are out of order. Then, it reorders data into numerically descending manner first. In the second stage, four arithmetical operations will be applied with following modes:

• Mode 0:

Sum up the first, the third and the fifth number.

• Mode 1:

Square all the input numbers. Then, sum up them and take a square root.

• Mode 2:

Take a square root of the absolute value of the first number to the fourth power minus the fifth number to the fourth power.

• Mode 3:

The second number is divided by the fourth number. (the fourth wouldn't be 0)

First stage	Second stage
1 15 15 (sorting) 15 -6 → 1 -12 -6 15 -12	 Mode 0 15 + 1 + (-12) = 4 Mode 1 (15²+15²+1²+ (-6)²+ (-12)²)¹/²=25 Mode 2 (15⁴- (-12)⁴) ¹/²=172 Mode 3 15/(-6) =-3

Input and Output

Input signal	Bit width	Definition
clk	1	Clock
rst_n	1	Asynchronous active-low reset
in_valid	1	Enable input signal
mode	2	Output mode
in_number1	5	Input number1 (number doesn't mean it's order)
in_number2	5	Input number2 (number doesn't mean it's order)
in_number3	5	Input number3 (number doesn't mean it's order)
in_number4	5	Input number4 (number doesn't mean it's order)
in_number5	5	Input number5 (number doesn't mean it's order)

Output signal	Bit width	Definition
out_valid	101	Enable output check
out_number	10	Output number nentation

Specification

- 1. Top module name: **ALU**(design file name: **ALU**.v)
- 2. It is **asynchronous** reset and **active-low** architecture.
- 3. The reset signal would be given only once at the beginning of simulation. All output signals should be reset after the reset signal is asserted.
- 4. The clock period of the design must be shorter than **5ns**.
- 5. After 2 cycles of rst_n, in_valid will pull up.
- 6. Input data will be given continuously when in_valid pull up.
- 7. out_number should output **continuously** when out_valid pull up.
- 8. The synthesis result of data type **cannot** include any latches.
- 9. After synthesis, you can check ALU.area and ALU.timing. The area report is valid when the slack in the end of timing report should be **non-negative**.
- 10. You must output your answer within **50 cycles**.
- 11. In mode 3, the **quotient** will be **rounding to the nearest integer**. For -2.49 and 2.51, they will be -2 and 3 separately.
- 12. The **square root** will be **rounding down**. For 2.51, it will be 2.

Block Diagram

Note

1. Grading policy:

RTL and Gate-level simulation correctness: 70%

Performance: 30%

20% Latency

10% Area

2. Please upload the following file on e3 platform before 12:00 p.m. on Oct. 23:

Stem Integration of

- ALU_iclabxx.v (xx is your account number)
- oo.txt (oo is clock period of your design)
- 3. Template folders and reference commands:

01_RTL/ (RTL simulation) //01_run

02_SYN/ (Synthesis) ./01_run_dc

(Check the design if there's latch or not in syn.log)

(Check the design's timing in /Report/ **ALU.***timing*)

(Gate-level simulation) ./01_run 03_GATE /

Example Waveform

Input signal

Output signal

