История лямбда-исчисления

- ▶ Фреге, 1893. Все функции одноместные. Сложение: $a+b=(+_a)(b)$, одноместная функция, возвращающая другую одноместную функцию: $(+_5)(4)=9$, $(+_5)((+_3)7)=15$
- ▶ Анонимные функции. Что такое, например, возведение в квадрат?
 - Возведение в квадрат чего? $f(x) = x^2$.
 - ightharpoonup A зачем тут f и почему x?
 - ightharpoonup Давайте напишем это как-то так: \hat{x}^2 (Principa Mathematica, 1910)
 - От имени толк бывает: в Фортране переменные I..N целые, остальные плавающие.
- ▶ Алонзо Чёрч, 1930+ попытка построить исчисление для матлогики Последовательное превращение записи: $\land x.x^2$, $\lambda x.x^2$. Точка тоже из Principa Mathematica: $(\exists a).\varphi(a)$.
- Тезис Чёрча сформулирован впервые про лямбда-исчисление
- ▶ 1936 лямбда-исчисление в современном варианте (для программирования)
- ▶ 1940 просто-типизированное лямбда-исчисление

Лямбда-исчисление, синтаксис

$$\Lambda ::= (\lambda x. \Lambda) |(\Lambda \Lambda)| x$$

Мета-язык:

- Мета-переменные:
 - ightharpoonup A...Z мета-переменные для термов.
 - х, y, z мета-переменные для переменных.
- Правила расстановки скобок аналогичны правилам для кванторов:
 - Лямбда-выражение ест всё до конца строки
 - Аппликация левоассоциативна

- ▶ $a \ b \ c \ (\lambda d.e \ f \ \lambda g.h) \ i \equiv \left(\left(((a \ b) \ c) \ \left(\lambda d.((e \ f) \ (\lambda g.h)) \right) \right) \ i \right)$
- ▶ $0 := \lambda f.\lambda x.x;$ $(+1) := \lambda n.\lambda f.\lambda x.n f (f x);$ $(+2) := \lambda x.(+1) ((+1) x)$

Альфа-эквивалентность

$$FV(A) = \begin{cases} \{x\}, & A \equiv x \\ FV(P) \cup FV(Q), & A \equiv P Q \\ FV(P) \setminus \{x\}, & A \equiv \lambda x.P \end{cases}$$

Примеры:

- $M := \lambda b. \lambda c. a \ c \ (b \ c); \ FV(M) = \{a\}$
- $N := x (\lambda x.(x (\lambda y.x))); FV(N) = \{x\}$

Определение

 $A =_{\alpha} B$, если и только если выполнено одно из трёх:

- 1. $A \equiv x$, $B \equiv y$, $x \equiv y$;
- 2. $A \equiv P_a Q_a$, $B \equiv P_b Q_b$ u $P_a =_{\alpha} P_b$, $Q_a =_{\alpha} Q_b$;
- 3. $A \equiv (\lambda x. P)$, $B \equiv (\lambda y. Q)$, $P[x := t] =_{\alpha} Q[y := t]$, где t не входит в A и B.

Определение

$$L = \Lambda/_{=\alpha}$$

Альфа-эквивалентность, пример

- 1. $A \equiv x$, $B \equiv y$, $x \equiv y$;
- 2. $A \equiv P_a Q_a$, $B \equiv P_b Q_b$ in $P_a =_{\alpha} P_b$, $Q_a =_{\alpha} Q_b$;
- 3. $A \equiv (\lambda x.P)$, $B \equiv (\lambda y.Q)$, $P[x:=t] =_{\alpha} Q[y:=t]$, где t не входит в A и B.

Лемма

$$\lambda a.\lambda b.a\ b =_{\alpha} \lambda b.\lambda a.b\ a$$

Доказательство.

Бета-редукция

Интуиция: вызов функции.

λ -выражение	Python
$\lambda f.\lambda x.f x$	def one(f,x): return f(x)
$(\lambda x.x \ x) \ (\lambda x.x \ x)$	(lambda x: x x) (lambda x: x x)
	<pre>def omega(x): return x(x); omega(omega)</pre>

Бета-редукция

Интуиция: вызов функции.

λ -выражение	Python
$\lambda f.\lambda x.f x$	def one(f,x): return f(x)
$(\lambda x.x \ x) \ (\lambda x.x \ x)$	(lambda x: x x) (lambda x: x x)
	<pre>def omega(x): return x(x); omega(omega)</pre>

Определение

Терм вида $(\lambda x.P)$ Q — бета-редекс.

Определение

 $A \rightarrow_{\beta} B$, если:

- 1. $A \equiv (\lambda x.P) \; Q, \; B \equiv P \; [x:=Q]$, при условии свободы для подстановки;
- 2. $A\equiv (P\ Q)$, $B\equiv (P'\ Q')$, при этом $P\to_\beta P'$ и Q=Q', либо P=P' и $Q\to_\beta Q'$;
- 3. $A \equiv (\lambda x.P), B \equiv (\lambda x.P'), \mu P \rightarrow_{\beta} P'.$

Бета-редукция, пример

Пример

 $(\lambda x.x \ x) \ (\lambda n.n) \rightarrow_{\beta} (\lambda n.n) \ (\lambda n.n) \rightarrow_{\beta} \lambda n.n$

Пример

 $(\lambda x.x \ x) \ (\lambda x.x \ x) \rightarrow_{\beta} (\lambda x.x \ x) \ (\lambda x.x \ x)$

Нормальная форма

Определение

Лямбда-терм N находится в нормальной форме, если нет $Q\colon \mathsf{N} o_{eta} Q.$

Пример

В нормальной форме:

 $\lambda f.\lambda x.x (f (f \lambda g.x))$

Нормальная форма

Определение

Лямбда-терм N находится в нормальной форме, если нет $Q\colon N o_eta Q.$

Пример

В нормальной форме:

$$\lambda f.\lambda x.x (f (f \lambda g.x))$$

Пример

Не в нормальной форме (редексы подчёркнуты):

$$\begin{array}{l} \lambda f.\lambda x.(\lambda g.x)\; (f\; (f\; x))\\ (\underline{(\lambda x.x)}\; (\lambda x.x))\; (\underline{(\lambda x.x)}\; (\lambda x.x)) \end{array}$$

Определение

 $(widtharpoonup_{eta})$ — транзитивное и рефлексивное замыкание $(extstyle ilde _{eta})$.

Булевские значения

$$T:=\lambda x.\lambda y.x\ F:=\lambda x.\lambda y.y$$
 Тогда: $Or:=\lambda a.\lambda b.a\ T\ b:$ $Or\ F\ T=\underbrace{((\lambda a.\lambda b.a\ T\ b)\ F)}_{\beta}\ T\to_{\beta} (\lambda b.F\ T\ b)\ T\to_{\beta} F\ T\ T=\underbrace{(\lambda x.\lambda y.y)}_{\beta}\ T\ \to_{\beta} (\lambda y.y)}_{\beta}\ T\to_{\beta} T$

$$f^{(n)}(x) = \begin{cases} x, & n = 0 \\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = \lambda f.\lambda x.f^{(n)}(x)$

Пример

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент: $Inc = \lambda n.\lambda f.\lambda x.n f (f x)$

$$(\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ \overline{0} = (\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ (\lambda f'.\lambda x'.x') \rightarrow_{\beta}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = \lambda f \cdot \lambda x \cdot f^{(n)}(x)$

$$\overline{3} = \lambda f. \lambda x. f(f(f(x)))$$
Muking Markett: Inc. — \lambda n \lambda f \lambda x n f (f x)

Инкремент:
$$Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$$

$$(\lambda n.\lambda f.\lambda x.n f (f x)) \overline{0} = (\lambda n.\lambda f.\lambda x.n f (f x)) (\lambda f'.\lambda x'.x') \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = \lambda f.\lambda x.f^{(n)}(x)$

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент: $Inc = \lambda n.\lambda f.\lambda x.n f(f(x))$

$$(\lambda n.\lambda f.\lambda x.n f (f x)) \overline{0} = (\lambda n.\lambda f.\lambda x.n f (f x)) (\lambda f'.\lambda x'.x') \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta}$$

$$\ldots \lambda f.\lambda x.(\lambda x'.x') (f x) \rightarrow_{\beta}$$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = \lambda f.\lambda x.f^{(n)}(x)$

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент: $Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$
 $(\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ \overline{0} = (\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ (\lambda f'.\lambda x'.x') \rightarrow_{\beta}$

...
$$\lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta}$$

... $\lambda f.\lambda x.(\lambda x'.x') (f x) \rightarrow_{\beta}$
... $\lambda f.\lambda x.f x = \overline{1}$

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n} = \lambda f.\lambda x.f^{(n)}(x)$

Пример

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент: Inc = λ n. $\lambda f.\lambda x.n$ f (f x)

T: Inc =
$$\lambda n.\lambda f.\lambda x.n \ f$$
 (f x)
 $(\lambda n.\lambda f.\lambda x.n \ f$ (f x)) $\overline{0} = (\lambda n.\lambda f.\lambda x.n \ f$ (f x)) $(\lambda f'.\lambda x'.x') \rightarrow_{\beta}$

...
$$\lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta}$$

... $\lambda f.\lambda x.(\lambda x'.x') (f x) \rightarrow_{\beta}$

$$\dots \lambda f. \lambda x. f \ x = \overline{1}$$

Декремент: $Dec = \lambda n.\lambda f.\lambda x.n (\lambda g.\lambda h.h (g f)) (\lambda u.x) (\lambda u.u)$

Упорядоченная пара и алгебраический тип

Определение

 $Pair(a, b) := \lambda s.s \ a \ b$ $Fst := \lambda p.p \ T$ $Snd := \lambda p.p \ F$

Пример

 $\mathit{Fst}(\mathit{Pair}(a,b)) = (\lambda p.p \ T) \ \lambda s.s \ a \ b \twoheadrightarrow_{\beta} (\lambda s.s \ a \ b) \ T \twoheadrightarrow_{\beta} a$

Определение

 $InL \ L := \lambda p. \lambda q. p \ L$ $InR \ R := \lambda p. \lambda q. q \ R$ $Case \ t \ f \ g := t \ f \ g$

Теорема Чёрча-Россера

Теорема (Чёрча-Россера)

Для любых термов N, P, Q, если N $\twoheadrightarrow_{\beta}$ P, N $\twoheadrightarrow_{\beta}$ Q, и P \neq Q, то найдётся $T: P \twoheadrightarrow_{\beta} T$ и Q $\twoheadrightarrow_{\beta} T$.

Теорема

Если у терма N существует нормальная форма, то она единственна

Доказательство.

Пусть не так и $N woheadrightarrow_{\beta} P$ вместе с $N woheadrightarrow_{\beta} Q$, $P \neq Q$. Тогда по теореме Чёрча-Россера существует $T \colon P woheadrightarrow_{\beta} T$ и $Q woheadrightarrow_{\beta} T$, причём $T \neq P$ или $T \neq Q$ в силу транзитивности $(woheadrightarrow_{\beta})$

Бета-эквивалентность, неподвижная точка

Пример

$$\Omega = (\lambda x.x~x)~(\lambda x.x~x)$$
 не имеет нормальной формы: $\Omega
ightarrow_{eta} \Omega$

Определение

 $(=_{eta})$ — транзитивное, рефлексивное и симметричное замыкание (\to_{eta}) .

Теорема

Для любого терма N найдётся такой терм R, что $R=_{eta} N$ R.

Доказательство.

Пусть
$$Y = \lambda f.(\lambda x.f~(x~x))~(\lambda x.f~(x~x))$$
. Тогда $R:=Y~N$:

$$Y N =_{\beta} (\lambda x.N (x x)) (\lambda x.N (x x)) =_{\beta} N ((\lambda x.N (x x)) (\lambda x.N (x x)))$$

Интуиционистское И.В. (натуральный, естественный вывод)

ightharpoonup Формулы языка (секвенции) имеют вид: $\Gamma \vdash \alpha$. Правила вывода:

ightharpoonup Аксиома: $\frac{\text{посылка 1}}{\Gamma.\alpha\vdash\alpha}$ (аннотация) $\frac{\Gamma.\alpha\vdash\alpha}{\Gamma.\alpha\vdash\alpha}$ (акс.)

Правила введения связок: $\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \quad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta}, \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \quad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \& \beta}$

Пример доказательства:

$$rac{A \& B dash A \& B}{A \& B dash B} ext{ (акс.)}{ (удал \&) } rac{A \& B dash A \& B}{A \& B dash A} ext{ (удал \&)}{ (введ \&)}$$

Эквивалентность натурального и гильбертовского выводов

Определение

$$|\alpha|_{\perp} = \left\{ \begin{array}{l} X, & \alpha \equiv X \\ |\sigma|_{\perp} \star |\tau|_{\perp}, & \alpha \equiv \sigma \star \tau \\ |\sigma|_{\perp} \to \perp, & \alpha \equiv \neg \sigma \end{array} \right. \qquad |\alpha|_{\neg} = \left\{ \begin{array}{l} X, & \alpha \equiv X \\ |\sigma|_{\neg} \star |\tau|_{\neg}, & \alpha \equiv \sigma \star \tau \\ A \& \neg A, & \alpha \equiv \perp \end{array} \right.$$

Теорема

- 1. $\Gamma \vdash_n \alpha$ тогда и только тогда, когда $|\Gamma|_{\neg} \vdash_h |\alpha|_{\neg}$.
- 2. $\Gamma \vdash_{\mathbf{h}} \alpha$ тогда и только тогда, когда $|\Gamma|_{\perp} \vdash_{\mathbf{n}} |\alpha|_{\perp}$.

Доказательство.

Индукция по структуре

Определение

Импликационный фрагмент интуиционистской логики:

$$\frac{\Gamma,\varphi \vdash_{\rightarrow} \varphi}{\Gamma,\varphi \vdash_{\rightarrow} \varphi} \qquad \frac{\Gamma,\varphi \vdash_{\rightarrow} \psi}{\Gamma \vdash_{\rightarrow} \varphi \rightarrow \psi} \qquad \frac{\Gamma \vdash_{\rightarrow} \varphi \qquad \Gamma \vdash_{\rightarrow} \varphi \rightarrow \psi}{\Gamma \vdash_{\rightarrow} \psi}$$

Теорема

Если $\Gamma \vdash \alpha$, то $\Gamma \vdash_{\rightarrow} \alpha$.

Доказательство.

Определим модель Крипке:

- ▶ миры замкнутые множества формул: $\alpha \in \Gamma$ т.и.т.т. $\Gamma \vdash_{\rightarrow} \alpha$,
- ▶ порядок (⊆),
- ightharpoonup $\Gamma \Vdash X$ т.и.т.т. $X \in \Gamma$.

Из корректности моделей Крипке следует, что что если $\Gamma \vdash \alpha$, то $\Gamma \Vdash \alpha$. Требуемое следует из того, что $\Gamma \vdash \alpha$ влечёт $\Gamma \vdash_{\rightarrow} \alpha$.

$$\Gamma \Vdash \alpha$$
 т.и.т.т. $\Gamma \vdash_{\rightarrow} \alpha$

Индукция по структуре lpha.

- $ightharpoons lpha \equiv X$. Утверждение следует из определения;
- $ightharpoonup \alpha \equiv \varphi \rightarrow \psi$.
 - ▶ Пусть $\Gamma \Vdash \varphi \to \psi$. То есть, $\Gamma \subseteq \Delta$ и $\Delta \Vdash \varphi$ влечёт $\Delta \vdash \psi$. Возьмём Δ как замыкание $\Gamma \cup \{\varphi\}$. Значит, $\Delta \vdash_{\to} \varphi$ и, по индукционному предположению, $\Delta \Vdash \varphi$. Тогда $\Delta \Vdash \psi$. По индукционному предположению, $\Delta \vdash_{\to} \psi$. То есть, $\Gamma, \varphi \vdash_{\to} \psi$, откуда

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

▶ Пусть $\Gamma \vdash_{\rightarrow} \varphi \rightarrow \psi$. Проверим $\Gamma \Vdash \varphi \rightarrow \psi$. Пусть $\Gamma \subseteq \Delta$ и пусть $\Delta \Vdash \varphi$. По индукционному предположению, $\varphi \in \Delta$. То есть, $\Delta \vdash_{\rightarrow} \varphi$ и $\Delta \vdash_{\rightarrow} \varphi \rightarrow \psi$. Тогда

$$\frac{\Delta \vdash_{\rightarrow} \varphi \quad \Delta \vdash_{\rightarrow} \varphi \rightarrow \psi}{\Delta \vdash_{\rightarrow} \psi}$$

По индукционному предположению, $\Delta \Vdash \psi$, отчего $\Gamma \Vdash \varphi \to \psi$.

Определение

Просто-типизированное лямбда-исчисление (по Карри).

Определение

Просто-типизированное лямбда-исчисление (по Карри). Типы: au ::= lpha | (au o au).

Определение

Просто-типизированное лямбда-исчисление (по Карри). Типы: $\tau ::= \alpha | (\tau \to \tau)$. Язык: $\Gamma \vdash A : \varphi$

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x. A : \varphi \rightarrow \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \rightarrow \psi}{\Gamma \vdash BA : \psi}$$

Пример: тип чёрчевских нумералов

Пусть
$$\Gamma = f : \alpha \to \alpha, x : \alpha$$

$$\frac{ \frac{\Gamma \vdash x : \alpha}{\Gamma \vdash f : \alpha} \xrightarrow{Ax} \frac{Ax}{\Gamma \vdash f : \alpha \to \alpha} \xrightarrow{Ax} \underset{\Gamma \vdash f : \alpha \to \alpha}{App} \frac{Ax}{\Gamma \vdash f : \alpha \to \alpha} \xrightarrow{Ax} \underset{App}{\underbrace{f : \alpha \to \alpha, x : \alpha}} \xrightarrow{f : \alpha \to \alpha \vdash \lambda x. f \ (f \ x) : (\alpha \to \alpha)} \underset{\lambda}{\lambda} }{\underbrace{\frac{f : \alpha \to \alpha \vdash \lambda x. f \ (f \ x) : (\alpha \to \alpha)}{\vdash \lambda f. \lambda x. f \ (f \ x) : (\alpha \to \alpha) \to (\alpha \to \alpha)}} \lambda$$

Изоморфизм Карри-Ховарда

λ -исчисление	исчисление высказываний
Выражение	доказательство
Тип выражения	высказывание
Тип функции	импликация
Упорядоченная пара	Конъюнкция
Алгебраический тип	Дизъюнкция
Необитаемый тип	Ложь

Изоморфизм Карри-Ховарда: отрицание

Определение

Ложь (\bot) — необитаемый тип; failwith/raise/throw: $\alpha \to \bot$; $\neg \varphi \equiv \varphi \to \bot$ Например, контрапозиция: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

$$\frac{\overline{\Phi \vdash a : \alpha} \quad Ax \quad \overline{\Phi \vdash f : \alpha \to \beta} \quad Ax}{\Phi \vdash f : a : \beta} \quad \overline{\Phi \vdash n : \beta \to \bot} \quad Ax}$$

$$\frac{f : \alpha \to \beta, n : \beta \to \bot, a : \alpha \vdash n \ (f \ a) : \bot}{f : \alpha \to \beta, n : \beta \to \bot \vdash \lambda a^{\alpha}. n \ (f \ a) : \neg \alpha} \quad \lambda}$$

$$\frac{f : \alpha \to \beta \vdash \lambda n^{\beta \to \bot}. \lambda a^{\alpha}. n \ (f \ a) : \neg \beta \to \neg \alpha}{\lambda} \quad \lambda}$$

$$\frac{f : \alpha \to \beta \vdash \lambda n^{\beta \to \bot}. \lambda a^{\alpha}. n \ (f \ a) : \neg \beta \to \neg \alpha}{\lambda} \quad \lambda}{\lambda f^{\alpha \to \beta}. \lambda n^{\beta \to \bot}. \lambda a^{\alpha}. n \ (f \ a) : (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)} \quad \lambda$$

Снятие двойного отрицания: $((\alpha \to \bot) \to \bot) \to \alpha$, то есть $\lambda f^{(\alpha \to \bot) \to \bot}$.? : α . f угадывает, что передать x : $\alpha \to \bot$. Тогда надо по f угадать, что передать x.

Исчисление по Чёрчу и по Карри

Определение

Просто-типизированное лямбда-исчисление по Карри.

$$\frac{\Gamma, x: \varphi \vdash x: \varphi}{\Gamma, x: \varphi \vdash x: \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x. A: \varphi \rightarrow \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \rightarrow \psi}{\Gamma \vdash BA: \psi}$$

Просто-типизированное лямбда-исчисление по Чёрчу.

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \rightarrow \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \rightarrow \psi}{\Gamma \vdash BA : \psi}$$

Исчисление по Чёрчу и по Карри

Определение

Просто-типизированное лямбда-исчисление по Карри.

$$\frac{\Gamma, x: \varphi \vdash x: \varphi}{\Gamma, x: \varphi \vdash x: \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x: \varphi \vdash A: \psi}{\Gamma \vdash \lambda x. A: \varphi \rightarrow \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A: \varphi \qquad \Gamma \vdash B: \varphi \rightarrow \psi}{\Gamma \vdash BA: \psi}$$

Просто-типизированное лямбда-исчисление по Чёрчу.

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \ x \not\in \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \to \psi} \ x \not\in \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \to \psi}{\Gamma \vdash BA : \psi}$$

По Карри По Чёрчу
$$\lambda f.\lambda x.f \ (f \ x): (\alpha \to \alpha) \to (\alpha \to \alpha) \quad \lambda f^{\alpha \to \alpha}.\lambda x^{\alpha}.f \ (f \ x): (\alpha \to \alpha) \to (\alpha \to \alpha)$$

Исчисление по Чёрчу и по Карри

Определение

Просто-типизированное лямбда-исчисление по Карри.

$$\frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma, x : \varphi \vdash A : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x.A : \varphi \rightarrow \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \rightarrow \psi}{\Gamma \vdash BA : \psi}$$

Просто-типизированное лямбда-исчисление по Чёрчу.

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi}.A : \varphi \to \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \varphi \to \psi}{\Gamma \vdash BA : \psi}$$

По Карри	По Чёрчу
	$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f (f x) : (\alpha \to \alpha) \to (\alpha \to \alpha)$ $\lambda f^{\beta \to \beta} . \lambda x^{\beta} . f (f x) : (\beta \to \beta) \to (\beta \to \beta)$

Комбинаторы S,K

Определение

Комбинатор — лямбда-терм без свободных переменных

Определение (исходная идея Моисея Шейнфинкеля, 1924)

 $S:=\lambda x.\lambda y.\lambda z.x$ z (y z), $K:=\lambda x.\lambda y.x$, $I:=\lambda x.x$ (verSchmelzung, Konstanz-исходно «С» у Шейнфинкеля, Identität)

Теорема

Пусть N — некоторый замкнутый лямбда-терм. Тогда найдётся выражение M, состоящее из комбинаторов S,K, что N = $_{\beta}$ M

Комбинаторы S,K

Определение

Комбинатор — лямбда-терм без свободных переменных

Определение (исходная идея Моисея Шейнфинкеля, 1924)

 $S:=\lambda x.\lambda y.\lambda z.x$ z (y z), $K:=\lambda x.\lambda y.x$, $I:=\lambda x.x$ (verSchmelzung, Konstanz-исходно «С» у Шейнфинкеля, Identität)

Теорема

Пусть N — некоторый замкнутый лямбда-терм. Тогда найдётся выражение M, состоящее из комбинаторов S,K, что N = $_{\beta}$ M

$$I =_{\beta} S K K$$

$$K := \lambda x^{\alpha} . \lambda y^{\beta} . x \qquad \alpha \to \beta \to \alpha$$

$$S := \lambda x^{\alpha \to \beta \to \gamma} . \lambda y^{\alpha \to \beta} . \lambda z^{\alpha} . x \ z \ (y \ z) \qquad (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$$