Correction du TD d'entraînement

Comportement d'un circuit à haute et basse fréquence

On considère le circuit ci-contre. On pose $e(t) = E_m \cos(\omega t) \frac{1}{e(t)}$ et $u(t) = U_m \cos(\omega t + \varphi)$.

1) Définir les signaux complexes $\underline{e}(t)$ et $\underline{u}(t)$ puis les amplitudes complexes \underline{E} et \underline{U} associées aux tensions e(t) et u(t), respectivement.

— Réponse ——

On utilise la relation pour passer des réels aux complexes, pour avoir

$$\underline{e}(t) = E_m e^{j\omega t}$$
 et $\underline{u}(t) = U_m e^{j(\omega t + \varphi)}$

Pour avoir les amplitudes complexes, on sépare le terme en ωt du terme de phase : on trouve donc

$$\underline{E} = E_m$$
 et $\underline{U} = U_m e^{j\varphi}$

Réponse -

S'il n'y avait pas la capacité, on pourrait facilement utiliser un pont diviseur de tension pour exprimer \underline{u} en fonction de \underline{e} , \underline{Z}_R et \underline{Z}_L . Pour se ramener à la situation du pont diviseur de tension, on détermine donc une première impédance équivalente issue de l'association en parallèle de L et C, après les avoir converties en complexes.

On peut déterminer $\underline{Z}_{eq, 1}$ avec les admittances $\underline{Y}_L = 1/\mathrm{j}L\omega$ et $\underline{Y}_C = \mathrm{j}C\omega$, et utiliser le pont diviseur de tension directement avec l'amplitude complexe : $\underline{U} = \frac{\underline{Z}_{eq,1}}{\underline{Z}_{eq,1} + \underline{Z}_R} E_m$. Ainsi,

$$\underline{U} = \frac{\frac{1}{jL\omega} + jC\omega}{\frac{1}{jL\omega} + R(\dots)} E_0 \times \frac{jC\omega + \frac{1}{jL\omega}}{jC\omega + \frac{1}{jL\omega}} \Leftrightarrow \underline{U} = \frac{1}{1 + jRC\omega + \frac{R}{jL\omega}} E_0$$

$$\Leftrightarrow \underline{U} = \frac{E_0}{1 + j\left(RC\omega - \frac{R}{L\omega}\right)}$$

où on a simplifié la fraction en multipliant par le terme orange d'abord, puis en utilisant que 1/j = -j.

____ <> ___

– Réponse –

On trouve l'amplitude réelle en prenant le module de l'amplitude complexe, et la phase en en prenant l'argument:

$$U_{m} = |\underline{U}| \Leftrightarrow U_{m} = \frac{E_{m}}{\sqrt{1 + \left(RC\omega - \frac{R}{L\omega}\right)^{2}}}$$

$$\varphi = \underbrace{\arg(E_m)}_{=0} - \arg\left(\frac{1}{L} + j\left(RC\omega - \frac{R}{L\omega}\right)\right)$$

$$\Leftrightarrow \tan \varphi = -\frac{RC\omega - \frac{R}{L\omega}}{1}$$

$$\Leftrightarrow \boxed{\varphi = \arctan\left(RC\omega - \frac{R}{L\omega}\right)}$$

$$\operatorname{avec} \boxed{\varphi \in \left] -\frac{\pi}{2}; \frac{\pi}{2}\right[}$$

car la partie réelle de l'argument calculé est positive.

4) Déterminer les valeurs limites de U_m à très basse et très haute fréquence. Tracer alors l'allure de $U_m(\omega)$. Ces résultats étaient-ils prévisibles par une analyse qualitative du montage?

- Réponse -

A très haute fréquence, i.e. $\omega \to \infty$, le dénominateur de l'amplitude réelle tend vers l'infini à cause du terme $RC\omega$, donc l'amplitude vers 0; c'est la même chose à très basse fréquence, i.e. $\omega \to 0^+$: le dénominateur tend vers l'infini et l'amplitude vers 0, mais cette fois à cause du terme en $\frac{R}{L_{\omega}}$. On a donc

$$\left[U_m \xrightarrow[\omega \to \infty]{} 0 \right] \quad \text{et} \quad \left[U_m \xrightarrow[\omega \to 0^+]{} 0 \right]$$

II. Dipôle inconnu

On pouvait prévoir ces résultats par l'étude directe du montage et des impédances en jeu : en effet,

$$\underline{Z}_C = \frac{1}{\mathrm{j}C\omega} \to |\underline{Z}_C| \xrightarrow[\omega \to 0]{} \infty \quad \text{ et } \quad |\underline{Z}_C| \xrightarrow[\omega \to \infty]{} 0$$

$$\underline{Z}_L = \mathrm{j}L\omega \to |\underline{Z}_L| \xrightarrow[\omega \to 0]{} 0 \quad \text{ et } \quad |\underline{Z}_L| \xrightarrow[\omega \to \infty]{} \infty$$

Dans les deux cas, le circuit équivalent est l'association en série d'une résistance avec une association en parallèle d'un interrupteur ouvert et d'un fil, c'est-à-dire un fil : or, la tension d'un fil est nulle.

- 🔷

II | Dipôle inconnu

Dans le montage ci-contre, le GBF délivre une tension e(t) sinusoïdale de pulsation ω , R est une résistance et D un dipôle inconnu. On note $u(t) = U_m \cos(\omega t)$ et $v(t) = V_m \cos(\omega t + \phi)$ les tensions aux bornes respectivement de R et D. On visualise e(t) à l'oscilloscope v(t) et u(t), et on obtient le graphe ci-dessous.

On utilise ces résultats graphiques pour déterminer les caractéristiques de D, sachant que $R=100\,\Omega.$

1) Déterminer V_m , U_m ainsi que la pulsation ω des signaux utilisés.

– Réponse ·

On trouve les amplitudes par lecture graphique des maxima :

$$V_m = 3.5 \,\mathrm{V}$$
 et $U_m = 5 \,\mathrm{V}$

On fait de même pour trouver la période $T = 6.3 \times 10^{-2}$ s, et on en déduit la pulsation :

$$\omega = \frac{2\pi}{T} = 100 \,\mathrm{rad \cdot s^{-1}}$$

– Réponse –

La tension v est en avance sur u, puisque quand v s'annule en descendant u s'annule aussi en descendant un peu plus tard que v. On peut aussi voir qu'à t=0, u est à son maximum alors que v y est déjà passé et est en train de diminuer. Par définition du déphasage, on a donc $\Delta \varphi_{v/u} > 0$.

Or,
$$\Delta \varphi_{v/u} = \varphi_v - \varphi_u$$
 et $u(t) = U_m \cos(\omega t)$ donc $\varphi_u = 0$. On trouve donc $\phi > 0$

On a deux manières de mesurer le déphasage :

 \diamond par définition, la pulsation est une vitesse angulaire, donc une durée se convertit en phase en la multipliant par ω . On peut donc déterminer le **déphasage** en mesurant le **retard temporel** entre les deux signaux **quand ils s'annulent avec la même pente**. Soit Δt cet écart : on mesure

$$\Delta t = 0.75 \times 10^{-2} \,\mathrm{s} \Leftrightarrow \Delta \varphi_{v/u} = \phi = \omega \Delta t \Leftrightarrow \phi = 0.75 \,\mathrm{rad} \approx \frac{\pi}{4} \,\mathrm{rad}$$

 \diamond On peut également mesurer $v(0) = V_m \cos(\phi)$ et avoir

$$\cos(\phi) = \frac{v(0)}{V_m} \Leftrightarrow \boxed{\phi = \arccos\left(\frac{v(0)}{V_m}\right)} \text{ avec } \begin{cases} v(0) = 2.5 \text{ V} \\ V_m = 3.5 \text{ V} \end{cases}$$

$$A.N. : \boxed{\phi \approx 0.77 \text{ rad}}$$

a – Déterminer les valeurs de X et Y à partir des résultats précédents.

Réponse -

On nous donne v(t) donc $\underline{V} = V_m e^{\mathrm{j}\phi}$, et on nous défini \underline{Z} son impédance. Pour faire le lien entre les deux, on utilise la définition de l'impédance complexe pour un dipôle de tension \underline{U} et traversé par un courant \underline{I} via loi loi d'Ohm généralisée :

$$V = ZI$$

Il faudrait donc pouvoir connaître \underline{I} . Heureusement, la loi d'OHM généralisée fonction évidemment avec les résistances, et comme il n'y a qu'une seule intensité qui traverse la maille, on peut utiliser

$$|\underline{U} = R\underline{I} \Leftrightarrow \underline{I} = \frac{\underline{U}}{R}|$$

Ainsi,

$$Z = |\underline{Z}| = \sqrt{X^2 + Y^2}$$
 et $Z = |\underline{Z}| = \left|\frac{\underline{V}}{\underline{I}}\right| = \left|R\frac{\underline{V}}{\underline{U}}\right|$

$$\Leftrightarrow \boxed{X^2 + Y^2 = R^2 \frac{V_m^2}{U_m^2}} \quad \text{avec} \quad \begin{cases} V_m = 3.5 \text{ V} \\ U_m = 5 \text{ V} \\ R = 100 \,\Omega \end{cases}$$

$$\text{A.N.} \quad : \quad \boxed{X^2 + Y^2 = 4900 \,\Omega^2}$$

L'autre équation permettant de résoudre ce système est bien évidemment la phase (question 1 puis question 2) :

$$\tan(\arg(\underline{Z})) = \frac{Y}{X} \quad \text{et} \quad \tan(\arg(\underline{Z})) = \tan\left(\arg(\underline{V}) - \arg(\underline{\underline{U}})\right) = \tan(\phi)$$

$$\Leftrightarrow \frac{Y}{X} = \tan\phi \quad \text{avec} \quad \phi = \frac{\pi}{4} \text{rad} \quad \text{soit} \quad \boxed{\frac{Y}{X} = 1}$$

On combine les deux équations pour trouver

$$Y = X$$
 et $2X^2 = 3900 \Omega^2$
A.N. : $X = Y = 49 \Omega$

b – Par quel dipôle (condensateur, bobine, résistance) peut-on modéliser D?

– Réponse -

La partie réelle est non nulle, donc on a au moins une résistance de $49\,\Omega$, et la partie imaginaire est positive : ça ne peut qu'être une inductance car $1/\mathrm{j}C\omega = -\mathrm{j}/C\omega$ et la partie imaginaire est donc négative. C'est donc l'association en série d'une résistance r et d'une inductance L. On trouve la valeur de L en calculant $L\omega = Y = 49\,\Omega$.

$$r = 49 \Omega$$
 et $L = 0.49 H$

III Oscillateur à quartz

Un quartz piézo-électrique se modélise par un condensateur (de capacité C_0) placé en parallèle avec un condensateur (de capacité C) en série avec une inductance L. On se place en régime sinusoïdal forcé de pulsation ω .

1) Donner l'impédance équivalente \underline{Z} de l'oscillateur.

_____ Réponse –

On calcule l'association en série de C et L d'abord, puis on fait l'association en parallèle de ce dipôle avec C_0 :

$$\begin{split} \underline{Z}_{\text{eq, 1}} &= \frac{1}{\text{j}C\omega} + \text{j}L\omega \\ \text{D'où} \quad \underline{Z} &= \frac{1}{\underline{Y}_{C_0} + \underline{Y}_{\text{eq, 1}}} \\ \Leftrightarrow \underline{Z} &= \frac{1}{\text{j}C_0\omega + \frac{1}{\frac{1}{\text{j}C\omega}} + \text{j}L\omega} \times \frac{\frac{1}{\text{j}C\omega} + \text{j}L\omega}{\frac{1}{\text{j}C\omega} + \text{j}L\omega} \\ \Leftrightarrow \underline{Z} &= \frac{\frac{1}{\text{j}C\omega} + \text{j}L\omega}{1 + \frac{C_0}{C} - LC_0\omega^2} \times \frac{\text{j}C\omega}{\text{j}C\omega} \end{split}$$

$$\Leftrightarrow \underline{Z} = \frac{1 - LC\omega^{2}}{jC\omega + jC_{0}\omega - jLCC_{0}\omega^{3}}$$

$$\Leftrightarrow \underline{Z} = -j\frac{1 - LC\omega^{2}}{(C + C_{0})\omega - LCC_{0}\omega^{3}}$$

$$\Leftrightarrow \underline{Z} = j\frac{LC\omega^{2} - 1}{\omega((C + C_{0}) - LCC_{0}\omega^{2})}$$

2) Trouver la pulsation pour laquelle l'impédance de l'ensemble est nulle, puis celle pour laquelle elle est infinie.

Réponse -

L'impédance est nulle si le numérateur est nul, c'est-à-dire

$$\underline{Z} = 0 \Leftrightarrow \omega = \omega_0 = \sqrt{\frac{1}{LC}}$$

À cette pulsation, assimilable à la pulsation propre d'un circuit RLC série, le dipôle est donc équivalent à un fil. On retrouvera ce résultat en étudiant la résonance dans le chapitre suivant.

L'impédance est infinie si le dénominateur est nul, c'est-à-dire

$$|\underline{Z}| \to \infty \Leftrightarrow \omega = \omega_0' = \sqrt{\frac{C + C_0}{LCC_0}}$$

Cette pulsation serait la pulsation propre d'une bobine L et d'un condensateur de capacité $C_{\text{eq}} = \frac{CC_0}{C+C_0}$, autrement dit l'association en série d'un condensateur C et d'un autre condensateur C_0 (les inverses des capacités s'ajoutent en série).

À cette pulsation (dite « de résonance », cf. chapitre suivant), la bobine et les condensateurs se chargent et déchargent alternativement, l'énergie arrivant dans le dipôle est piégée et n'est pas transmise au reste du circuit, comme le fait un interrupteur ouvert.

3) Tracer l'allure de $|\underline{Z}(\omega)|$.

Réponse

On regarde les cas limites à très haute et très basse fréquence :

$$|\underline{Z}| \xrightarrow[\omega \to \infty]{} 0$$
 et $|\underline{Z}| \xrightarrow[\omega \to 0^+]{} \infty$

En effet, à $\omega \to 0$, les condensateurs sont des interrupteurs ouverts donc l'impédance totale est celle d'un interrupteur ouvert. À l'inverse, à $\omega \to \infty$, les condensateurs sont des fils donc l'impédance totale est celle d'un fil : 0.

4) Comment la courbe précédente serait-elle modifiée si on prenant en compte les résistances de chacun des composants?

– Réponse –

Les résistances évitent les infinités par dissipation, mais également les valeurs nulles : on se retrouve avec la courbe en pointillés sur la figure précédente.

Déphasage, pulsation et impédance

1) On considère le circuit ci-contre en RSF. Déterminer l'expression de la pulsation ω de la tension sinusoïdale $e(t) = E\cos(\omega t)$ pour que le courant i(t) soit en phase avec e(t). Déterminer alors une condition sur R_2 , C et L pour que cela soit réalisable.

Indication : utiliser l'impédance équivalente constituée de C, L et R_2 .

- Réponse

Pour exprimer simplement i, il nous faut une seule maille avec une seule impédance équivalente \underline{Z}_{eq} : de cette manière, la loi des mailles nous donnera $\underline{E} = \underline{Z}_{eq}\underline{I}$ et on pourra facilement déterminer le déphasage entre i et e.

On calcule l'impédance équivalente de l'association en série de R_2 et L:

$$\underline{Z}_{\rm eq,1} = R_2 + jL\omega$$

Cette association est en parallèle avec C:

$$\underline{Z}_{\text{eq, 2}} = \frac{\underline{Z}_C \times \underline{Z}_{\text{eq, 1}}}{\underline{Z}_C + \underline{Z}_{\text{eq, 1}}} = \frac{\frac{1}{jC\omega}(R_2 + jL\omega)}{\frac{1}{jC\omega} + R_2 + jL\omega}$$
$$\Leftrightarrow \underline{Z}_{\text{eq, 2}} = \frac{R_2 + jL\omega}{1 + jR_2C\omega - LC\omega^2}$$

On a donc comme prévu avec la loi des mailles :

$$I = \frac{\underline{E}}{R_1 + \underline{Z}_{eq,2}}$$

L'intensité est en phase avec la tension si $\arg(R_1 + \underline{Z}_{eq,2}) = 0$. Pour étudier cet angle, on va l'écrire sous la forme [partie réelle + j partie imaginaire]; en effet, on aura alors

$$\arg(R_1 + \underline{Z}_{eq,2}) = 0 \Leftrightarrow \tan(\arg(R_1 + \underline{Z}_{eq,2})) = 0 \Leftrightarrow \boxed{\operatorname{Im}(R_1 + \underline{Z}_{eq,2}) = 0}$$

Ainsi:
$$R_{1} + \underline{Z}_{eq,2} = R_{1} + \frac{R_{2} + jL\omega}{1 - LC\omega^{2} + jR_{2}C\omega} \times \frac{1 - LC\omega^{2} - jR_{2}C\omega}{1 - LC\omega^{2} - jR_{2}C\omega}$$

$$= R_{1} + \frac{(R_{2} + jL\omega) \cdot (1 - LC\omega^{2} - jR_{2}C\omega)}{(1 - LC\omega^{2})^{2} + (R_{2}C\omega)}$$

$$= R_{1} + \frac{R_{2}(1 - LC\omega^{2}) - jR_{2}^{2}C\omega + jL\omega(1 - LC\omega^{2}) + LR_{2}C\omega^{2}}{(1 - LC\omega^{2})^{2} + (R_{2}C\omega)}$$

$$= R_{1} + \frac{R_{2}(1 - LC\omega^{2}) + LR_{2}C\omega^{2}}{(1 - LC\omega^{2})^{2} + (R_{2}C\omega)} + j\frac{jL\omega(1 - LC\omega^{2}) - jR_{2}^{2}C\omega}{(1 - LC\omega^{2})^{2} + (R_{2}C\omega)}$$

On cherche donc

$$\operatorname{Im}(R_1 + \underline{Z}_{eq,2}) = 0$$

$$\Leftrightarrow L\omega(1 - LC\omega^2) = R_2{}^2C\omega$$

$$\Leftrightarrow L - L^2C\omega^2 = R_2{}^2C$$

$$\Leftrightarrow L^2C\omega^2 = L - R_2{}^2C$$

$$\Leftrightarrow \omega^2 = \frac{1}{LC} - \frac{R_2{}^2}{L^2}$$

$$\Leftrightarrow \omega = \sqrt{\frac{1}{LC} - \frac{R_2{}^2}{L^2}}$$

Ceci est possible si le terme sous la racine est positif, soit

$$\frac{1}{LC} > \frac{R_2^2}{L_2}$$

$$\Leftrightarrow LC < \frac{L^2}{R_2^2}$$

$$\Leftrightarrow \frac{R_2^2C}{L} < 1$$

 \Diamond