Лабораторная работа №2

Тема: «Исследование нелинейных электрических цепей»

Цель работы: Определение вольтамперных характеристик нелинейных элементов, исследование режимов работы неразветвленных и разветвленных нелинейных электрических цепей.

Теоретическая часть

Резисторы, вольтамперные характеристики (BAX) которых не являются прямыми линиями, называются нелинейными резисторами или в более общем определении нелинейными элементами (HЭ). ВАХ НЭ получаются экспериментально, подключив НЭ к регулируемому источнику питания и измеряя напряжение на зажимах НЭ и ток через НЭ.

Нелинейные электрические цепи постоянного тока содержат один или несколько нелинейных элементов с нелинейными вольтамперными характеристиками.

Нелинейными элементами в цепях постоянного тока могут быть полупроводниковые диоды, стабилитроны, тиристоры, транзисторы, лампы накаливания.

В нелинейных цепях не выполняется принцип наложения. Поэтому нельзя применять методы контурных токов, узловых напряжений и т.п. Расчеты ведутся графическими методами с использованием нелинейных характеристик.

Статическое и дифференциальное сопротивление нелинейного резистора

Статическое сопротивление $R_{\rm cr} = U/I$. В точке b (рисунок 2.1) $R_{\rm cr} = {\rm tg}\alpha \cdot (m_U/m_I)$ (рисунок 2.1).

Дифференциальное сопротивление на малом линейном участке *ab*

$$R_{ extsf{ди}\Phi} = rac{dU}{dI} = ext{tg}\,eta rac{m_U}{m_I}.$$

Рисунок 2.1 – Расчет статического и дифференциального сопротивления

На малом частке *ab* нелинейный резистор можно заменить линейной моделью и пользоваться линейными методами расчета.

Последовательное соединение линейного и нелинейного резистора.

При последовательном соединении для каждого значения тока суммируются напряжения на линейном и нелинейном элементах (рисунок 2.2).

Рисунок 2.2 – Схема последовательного соединения линейного и нелинейного резисторов

Заданы ВАХ нелинейного элемента $I = f\left(U_{\text{нэ}}\right)$ и линейного резистора. Суммируя напряжения, находим результирующую ВАХ $I = f\left(U_{\text{нэ}} + U_{R}\right)$. На результирующей ВАХ (рисунок 2.3) находим точку q и ток в точке m.

Второй способ расчета состоит в следующем. По схеме (рисунок 2.2) имеем уравнение $U_{\rm H9}=E$ - $I\cdot R$ или I=E/R- $U_{\rm H9}/R$. Это уравнение для тока называется нагрузочной прямой.

Построим график ВАХ и нагрузочную прямую (рисунок 2.4). Точка пересечения называется рабочей точкой. Определяем для нее ток и напряжение $U_{\mbox{\tiny H3}}$.

Рисунок 2.3 – Построение результирующей ВАХ последовательного соединения

Рисунок 2.4 – Расчет рабочей точки на нагрузочной прямой

Сложную цепь с одним НЭ можно заменить активным двухполюсником и эквивалентным генератором (рисунок 2.5).

Рисунок 2.5 – Замена сложной линейной цепи эквивалентным генератором

Последовательное соединение двух нелинейных элементов.

Описание схемы моделирования

Схема моделирована, представлена на рисунке 2.1. Модели нелинейных элементов обозначены НЭ1, НЭ2, НЭ3, НЭ4, имеют в своем составе диоды, стабилитроны, транзисторы, резисторы и формируют несколько видов вольтамперных характеристик (ВАХ).

Рисунок 2.1 – Схема моделирования нелинейных элементов

Модели нелинейных элементов подключаются к внешнему источнику напряжения E_0 с помощью ключей (1)...(4). К нелинейным элементам подключены источники напряжения $E_1...E_4$.

Резистор R1 является нагрузкой нелинейных элементов и может отключаться ключом (5). Переключатель (6) позволяет включить последовательно нелинейные элементы НЭ3 и НЭ4. Ключ (7) отключает источник напряжения E_0 от нелинейных элементов НЭ2...НЭ4. Резисторы R1И, R2И, R3И, R4И служат для измерения токов в ветвях цепи.

Моделирование ВАХ нелинейных элементов, используемых в работе

1) Подключите к источнику напряжения E_0 нелинейный элемент НЭ1 без нагрузки, замкнув ключи (1) и (5). При этом остальные ключи должны находиться в разомкнутом состоянии. Напряжение источников напряжения $E_1...$ E_4 должно быть установлено на нулевое значение. Переключатель (6) должен быть замкнут на землю.

Исследуем ВАХ нелинейного элемента НЭ1 в диапазоне напряжений от -20В до +20В. Для этого в режиме «Анализ — Анализ постоянного тока — Переходные характеристики постоянного тока» необходимо установить начальное (-20В) и конечное значение (+20В) напряжение источника питания (рисунок 2.2) и получить ВАХ нелинейного элемента для выбранного диапазона (рисунок 2.3).

Рисунок 2.2 – Установка диапазона моделирования ВАХ

Скопируйте и занести полученный график ВАХ НЭ1 в отчет по лабораторной работе.

Рисунок 2.3 – ВАХ НЭ1 с нагрузочной прямой

- 2) По соответствующему номеру варианта выбирете из таблицы 2.1 значения нагрузки R1 и напряжения E_0 и рассчитайте координаты нагрузочной прямой. Используя встроенные средства рисования программы Tina-Ti, постройте нагрузочную прямую и найдите ток в цепи при включении нагрузки.
- 3) Включите нагрузку R1, установите заданное в таблице 2.1 значение E_0 и в режиме «Анализ-Анализ постоянного тока-Таблица результатов» определите входной ток I_0 . Сравните полученное значение с результатом расчета.
- 4) Для нелинейных элементов НЭ2...НЭ4 повторите исследования по пп. 1-3.

Таблица 2.1

Параметр	№ варианта											
	1	2	3	4	5	6	7	8	9	10	11	12
E_0	6	8	10	-6	-8	-10	6	8	10	-6	-8	-10
<i>R</i> 1	120	100	80	80	120	100	80	100	120	100	120	80
НЭ-А	НЭ2	НЭ2	НЭ2	НЭ1	НЭ3	НЭ3	НЭ1	НЭ1	НЭ4	НЭ4	НЭ2	НЭ3
д-ЕН	НЭ1	НЭ4	НЭ3	НЭ2	НЭ1	НЭ4	НЭ3	НЭ4	НЭ2	НЭ1	НЭ3	НЭ2

Соединения нелинейных элементов

5) Для каждого варианта представленного в таблице 2.1 заданы номинальные значения источника напряжения E_0 , линейного резистора R1 и модели (НЭ-А, НЭ-Б) нелинейных элемнтов, включенных параллельно.

Включите параллельно нелинейно модели НЭ-А и НЭ-Б согласно варианта и повторите исследования по пп. 1-3.

- 6) Включите последовательно нелинейные модели НЭ3 и НЭ4. Повторите исследования по пп. 1-3.
- 7) Подключите модель нелинейного элемента НЭ-А. Включите соответствующий выбранному нелинейному элементу источник напряжения (E_1 E_4) и сделайте его параметры переменными, например E_3 = -5, 0, +5B. В режиме «Анализ Анализ постоянного тока Переходные характеристики постоянного тока» зарегистрируйте смещение ВАХ по оси напряжений. Один из вариантов смещения ВАХ представлен на рисунке 2.4.

Рисунок 2.4 – BAX HЭ3 при разных значениях напряжения смещения

Отмените переменный параметр источника напряжения, использовав REMOVE на вкладке PARAMETER STEPPING/

Исследование разветвленной цепи с тремя нелинейными элементами

Рисунок 2.5 – Схема разветвленной нелинейной цепи

Соберите схему согласно рисунку 2.5, разместив в каждой ветви схемы по одному нелинейному элементу НЭ2, НЭ3 и НЭ4. При помощи ключа (7) отключите источник напряжения E_0 . Значения источников напряжения E_2 , E_3 , и E_4 в вольтах и с учетом их полярности для каждого варианта представлены в таблице 2.2.

Таблица 2.2

Параметр	№ варианта											
	1	2	3	4	5	6	7	8	9	10	11	12
E_2	10	10	6	10	10	10	-10	-10	-6	-8	-10	8
E_3	0	-8	-6	-10	0	0	0	0	10	8	-10	0
E_4	8	0	0	0	-6	6	-6	10	0	0	0	10

- 9) Используя режим «Анализ Анализ постоянного тока Таблица результатов постоянного тока» определите токи в измерительных резисторах R2И, R3И, R4И и запишите токи во всех ветвях с учетом их направлений в отчет по лабоарторной работе. Найдите напряжение между узлами U_{ab} . Проверьте выполнение первого закона Кирхгофа.
- 10) С помощью ключа (7) подключите источник напряжения E_0 . В режиме «Анализ Анализ постоянного тока Переходные характеристики постоянного

тока» смоделируйте BAX трех параллельно включенных нелинейных элементов из п.8 (рисунок 2.6).

Рисунок 2.6 – ВАХ параллельного соединения трех нелинейных элементов

По вольтамперной характеристике для нулевого значения тока определите напряжение U_{ab} и сравните с полученным ранее (п.9) значением.

Исследование последовательного соединения нелинейных элементов

Для выбранного варианта (таблица 2.1) соберите схему последовательного соединения нелинейных элементов учетом указанных значений E_0 и R1. Определите токи и напряжения в последовательном соединении нелинейных элементов. Постройте результирующую ВАХ для последовательного соединения нелинейных элементов.