Работа 1.3.1 Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Трунов Владимир Б01-103

12 декабря 2021 г.

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используется: прибор лермантова, проволока из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

Определение модуля Юнга по измерениям растяжения проволоки (рис.1)

1. $d = (0.73 \pm 0.01)$ mm.

Так как данные о диаметре проволоки были написаны на установке, будем считать их погрешность равной погрешности микрометра (т.е. $\sigma_d = 0,01$ мм)

2. Измеряем площадь поперечного сечения проволоки

$$S = rac{\pi(\overline{d})^2}{4} = 0,41 \; \mathrm{mm}^2$$
 $\sigma_S = S\sqrt{2\left(rac{\sigma_d}{d}
ight)^2} = 0,008 \; \mathrm{mm}^2$ $S = (0,41 \pm 0,008) \; \mathrm{mm}^2$

3. Измеряем длинну проволоки $l=176~{\rm cm}$

P, H	7,92	10,38	12,84	15,29	17,75	20,21	22,66	25,17	27,568
Δl , cm	1,3	1,3	1,1	1,2	1,2	1,2	1,1	1,2	1,2
$\sigma_{\Delta l}$	0,028	0,028	0,024	0,026	0,024	0,026	0,026	0,024	0,026
P, H	7,92	10,38	12,84	15,29	17,75	20,21	22,66	25,17	27,568
Δl , cm	1,2	1,3	1,1	1,2	1,2	1,2	1,2	1,2	0
$\sigma_{\Delta l}$	0,026	0,028	0,024	0,026	0,026	0,026	0,026	0,026	0
P, H	7,92	10,38	12,84	15,29	17,75	20,21	22,66	25,17	27,568
Δl	1,4	1,3	1,2	1,2	1,2	1,2	1,2	1,2	1,2
$\sigma_{\Delta l}$	0,03	0,028	0,026	0,026	0,026	0,026	0,026	0,026	0,026
P, H	7,92	10,38	12,84	15,29	17,75	20,21	22,66	25,17	27,568
Δl , cm	1,3	1,2	1,3	1,1	1,5	1,1	1	1,2	0
$\sigma_{\Delta l}$	0,028	0,026	0,028	0,024	0,03	0,026	0,026	0,026	0

Таблица 1: Зависимость удлинения проволоки от нагрузки

	Значение	σ	ε
k	$1,73*10^3 \text{ H/M}$	$0.027 * 10^3 \text{ H/m}$	0,016
Е	$18,3*10^{10} \Pi\text{a}$	$0.7 * 10^{10} \Pi\text{a}$	0,04

Таблица 2: Значения к и Е

4. Направляем зрительную трубу на зеркальце так, чтобы мы четко видели шкалу, тогда свет от шкалы будет падать примерно перпендикулярно шкале на зеркало, поэтому

$$\Delta l = \frac{nr}{2h}$$

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

где $r=15~{\rm cm}$ - длина рычага, разница показаний шкалы - n, расстояние от шкалы до проволоки - $h=(138\pm0,1)~{\rm cm}.$

- 5. Исходя из того, что $\sigma_{\rm предел}=900~{\rm H/mm^2}$ получаем, что предельный вес, который можно повесить, чтобы не выйти за пределы $P_{\rm предел}=0, 3\sigma_{\rm предел}S\approx 110, 7H.$
- 6. Снимем зависимость удлинения проволоки от массы грузов при увеличении и уменьшении нагрузки 2-3 раза (табл.1).
- 7. Построим график зависимости удлинения проволоки от нагрузки. В недеформированном состоянии проволока, как правило, изогнута, и при малых нагрузках её "удлинение" определяется не растяжением, а выпрямлением. Найдем уравнение получившийся прямой по МНК. По наклону прямой определим жесткость проволоки, а по ней модуль Юнга (табл.2). Начальный участок графика при обработке следует исключить.
- 8. По найденной графически жёсткости проволоки найдем модуль Юнга по формуле

$$E = \frac{k \cdot l_0}{S}$$

$$\sigma_E = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2}$$

Обсуждение результатов и выводы

В ходе работы мы определили модуль Юнга для проволоки:

•
$$E = (18, 3 \cdot 10^{10} \pm 0, 7 \cdot 10^{10}) \text{ } \Pi \text{a}, (\varepsilon = 4\%)$$

Полученный модуль Юнга в пределах погрешности совпадает с табличным значением модуля Юнга железа. Можно сделать вывод, что исследуемым материалом было железо. На точность результата достаточно сильно влияет погрешность измерений параметров установки (длина проволоки, ее диаметр и т.д).