

对偶理论及对偶单纯形法 Duality Theory and Dual Simplex Method

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- 对偶线性规划
- 対偶理论
- 对偶单纯形法

对偶线性规划的例子

-)(营养问题)某种混合饲料由*m*种配料混合而成。要求其必须含有*m*种不同的营养成分,且每份饲料中第*i* 种营养成分的含量不低于*b_i*(*i*=1,2...*m*).又已知每单位的第*j* 种配料中第*i* 种营养成分的量为*a_{ij}*. 每单位第*j* 种配料的价格为*c_j*. 试问:在保证营养的前提下,应如何配方,使混合饲料的费用最小?
- 某企业打算生产各种单一的营养成分,并与这些配料 竞争市场份额.假设该企业对第 / 种营养成分的定价 为 w_i,则在保证具有价格优势的前提下,应如何定价, 可使企业收益最大?

对偶线性规划的例子

max

$$\sum_{i=1}^{m} b_i w_i$$

 $b^T w$

s.t. $A^T w \leq c$

max

s.t.
$$a_{1,j}w_1 + a_{2,j}w_2 + \dots + a_{m,j}w_m \le c_j; (1 \le j \le n)$$

 $w_1, w_2, \dots, w_m \ge 0$

 $\min \quad z = c^T x$

min

$$z = \sum_{j=1}^{n} c_j x_j$$

 $a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,n}x_n \ge b_i$

s.t.

$$(i = 1, 2, \dots, m)$$
$$x_1, x_2, \dots, x_n \ge 0$$

s.t.
$$Ax \ge b$$

$$x \ge 0$$

对偶问题举例

minimize
$$f_0(x)$$

subject to $Ax \leq b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

$$f^*(y) = \sup_{x \in \operatorname{\mathbf{dom}} f} (y^T x - f(x))$$

strong duality

weak duality

对偶问题举例

- 1. P. D. Joseph and J. T. Tou, "On linear control theory," AIEE Trans. Applicat. Ind., vol. 80, pp. 193-196, 1961
- 2. M. Athans, "The role and use of the stochastic linear-quadratic-Gaussian problem in control system design," IEEE Trans. Automat. Contr., vol. AC-16, pp. 529–552, 1971

标准形式的对偶问题定义

ightharpoonup 对于标准LP问题 min $c^T x$

$$s.t.$$
 $Ax = b$

$$x \ge 0$$

▶ 其对偶形式为:

$$\max b^T w$$

s.t.
$$A^T w \leq c$$

非标准形式:

min
$$c^T x$$
 min $c^T x + o^T y$
s.t. $Ax \ge b$ s.t. $[A -I] \begin{pmatrix} x \\ y \end{pmatrix} = b$
 $x \ge 0, y \ge 0$

原问题与对偶问题之间的联系

P	D
约束i	变量i
目标函数	约束右端项

min

$$c^T x$$

s.t.
$$a_i^T x = b_i$$

$$a_i^T x \ge b_i$$

$$x_j \ge 0$$

$$x_i \geq 0$$

$$b^T w$$

s.t.
$$w_i \geq 0$$

$$w_i \ge 0$$

$$A_j^T w \le c_j$$

$$A_j^T w = c_j$$

例:写出如下问题的对偶形式

min
$$z = 5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 - x_4 = 2$
 $x_1 + x_2 + 2x_3 - x_5 = 1$
 $x_j \ge 0, j = 1, 2, 3, 4, 5$

$$\min \quad c^T x$$

 $\max b^T w$

$$s.t.$$
 $Ax = b$

s.t.
$$A^T w \leq c$$

Outline

- 对偶线性规划
- 対偶理论
- 对偶单纯形法

定理(1/3)

$$c^T x \ge b^T w$$

▶ 证明:

$$Ax = b, w \ge 0$$

$$w^T A x = w^T b$$

$$A^T w \le c, x \ge 0$$
 $x^T A^T w \le x^T c$

$$x^T A^T w \le x^T c$$

▶ 定理3: x, w分别为(P) (D)的可行解, 且 $c^T x = b^T w$ 则x,w分别为各自的最优解

定理(2/3)

定理4: (P)和(D)同时有最优解 同时有可行解。

(P) (D)	有最优解	无界	无解
有最优解	1	X	×
无界	X	X	2
无解	X	2	3

$$(P) \begin{cases} \min & c^{T} x \\ s.t. & Ax = b \\ x \ge 0 \end{cases}$$

$$(D) \begin{cases} \max & b^{T} w \\ s.t. & A^{T} w \le c \end{cases}$$

定理5: 若(P)(D)均可行,则二者最优目标值相等

定理(3/3)

定理5(互补松紧性): 设x 和w 分别为 (P) 和 (D) 的可行解,则它们分别为 (P) 和 (D) 的最优解 $(A^Tw - c)^Tx = 0$ 。

$$(P) \begin{cases} \min & c^{T} x \\ s.t. & Ax = b \\ x \ge 0 \end{cases}$$

$$(D) \begin{cases} \max & b^{T} w \\ s.t. & A^{T} w \le c \end{cases}$$

注意:线性规划的对偶间隙是0!

对偶理论的经济学解释

列奥尼德·康托 罗维奇 (1975)

边际成本/边际价格

$$(P)$$
 c t Ax b 成本最小

$$(P) \begin{cases} s.t. & Ax \ge b \\ & x \ge 0 \end{cases}$$

$$(D) \begin{cases} \max b^T w & \frac{\partial z^*}{\partial b_i} = w_i^* \\ s.t. & A^T w \le c \\ w \ge 0 & \text{最优成本对 需求的导数} \end{cases}$$

需求增加一个单位时最优成本的增加量

影子价格

$$(D) \begin{cases} \min b^T w & \frac{\partial z^*}{\partial b_i} = w_i^* \\ s.t. & A^T w \ge c \\ w \ge 0 & \text{最大利润对 资源的导数} \end{cases}$$

假定第i种资源的市场价为 λ_i ,资源买卖量为 Δb_i

Outline

- 对偶线性规划
- 対偶理论
- 对偶单纯形法

对偶可行基

在标准LP问题中,若某个基*B*使得 $W^T = C^T_B B^{-1}$ 满足 $W^T A \leq C^T$. 则称 B为一个对偶可行基

$$\zeta^T = c_B^T B^{-1} A - c^T \le 0$$

$$w^T A - c^T \le 0$$

$$A^T w \leq c$$

对偶可行≠原始 问题可行

单纯形法 Vs. 对偶单纯形法

单纯形法的实质: 从一个原始可行基出发,在保持基原始可行的前提下,不断进行基迭代. 直到找到一个对偶可行基。

$$\overline{b} \ge 0 \to \zeta^T \le 0$$

对称问题: 从一个对偶可行基出发,在保持基对偶可 行前提下,不断进行基迭代. 直至发现一个原始可行 基.

对偶单纯形法基本步骤

- 得到初始对偶可行基
- **> 求** $\overline{b}_r = \min{\{\overline{b}_i \mid i = 1, 2, ..., m\}}$
- ト 若 $\overline{b}_r \geq 0$. 停, 已得到最优解. 否则继续
- ▶ 若 $\overline{a}_{r_i} \ge 0, j = 1, 2, ..., n$. 则问题无可行解. 停
- $\Rightarrow \frac{\zeta_k}{\overline{a}_{rk}} = \min\{\frac{\zeta_j}{\overline{a}_{rj}} \mid \overline{a}_{rj} < 0, j = 1, 2, ..., n\}$
- x_k 入基, x_B 出基. 自新的对偶可行解开始迭代

对偶单纯形法举例

例: 求解线性规划问题

第二步,建立单纯形表

$$\min \quad z = 4x_1 + 2x_2 + 6x_3$$

s.t.
$$2x_1 + 4x_2 + 10x_3 \ge 24$$

 $5x_1 + x_2 + 5x_3 \ge 8$
 $x_i \ge 0, j = 1, 2, 3$

解:第一步,化为标准形式

min
$$z = 4x_1 + 2x_2 + 6x_3$$

s.t. $2x_1 + 4x_2 + 10x_3 - x_4 = 24$
 $5x_1 + x_2 + 5x_3 - x_5 = 8$
 $x_i \ge 0, j = 1, 2, 3, 4, 5$

■ 最小比列

\mathcal{Z}	_4	-2	-6	0	0	0 大元
$\overline{x_4}$	-2	-4 *	-10	1	0	−24 ←
			- 5			

Z	-4	- 2	- 6	0	0	0
x_2	-2	-4	-10	1	0	-24
\mathcal{X}_{5}	-5	-1	- 5	0	1	-8

名 旦

对偶单纯形法举例

$\boldsymbol{\mathcal{Z}}$	_3	0	-1	-1/2	0	12
\mathcal{X}_2	1/2	1	5/2	-1/4	0	6
X_3	-9/2	0	-5/2	-1/4 $-1/4$	1	_2

→ 最小比列

Z	- 3	0	-1	-1/2	0	12 负最
						6 大元
X_5	-9/2	0	$-5/2^{*}$	-1/4	1	-2

$\boldsymbol{\mathcal{Z}}$	_4	- 2	-6	0	0	0
			-10			
x_5	_5	-1	- 5	0	1	-8

对偶单纯形法举例

思考:

- 1. 和两阶段法比较, 哪个更简便?
- 2. 什么样的问题适 合用对偶单纯形 法求解?
- 3. 怎样获得初始对偶可行基?

Z	-3	0	- 1	-1/2	0	12
$\overline{x_2}$	1/2	1	5/2	-1/4	0	6
\mathcal{X}_3	-9/2	0	-5/2	-1/4	1	_2

					-2/5	l
x_2	-4	1	0	-1/2	1	4
\mathcal{X}_3	9/5	0	1	1/10	1 -2/5	4/5

$$\overline{b} = B^{-1}b \ge 0$$
,已得最优解。

作业

▶ P77 23(1)题

