MODELIZACIÓN DE PATRONES NEURONALES A PARTIR DE SEÑALES EEG

"Reservoir Computing Echo State Network"

José Javier Gutiérrez Gil

jogugil@alumni.uv.es

Tutora: Yolanda Vives

VNIVERSITAT Grau en Ciència de Dades

DÖVALÈNCIA Escola Tècnica Superior d'Enginyeria (ETSE-UV)

Tabla de contenidos

- 3. MyRC (ESN)
- 4. Resultados
- 5. Conclusiones y Discusión

Introducción: Estado del arte

Tendencia temporal en investigaciones sobre el procesamiento y uso del EEG.

Research Area	Record Count ($\%$ of 65,195)
Neurosciences Neurology	51,641 (79.210%)
Computer Science	33,204 (50.930 %)
Engineering	32,400 (49.697%)
Radiology Nuclear Medicine Medical Imaging	31,437 (48.220%)
Mathematical Computational Biology	27,990 (42.933%)
Behavioral Sciences	23,667 (36.302 %)
Communication	22,608 (34.678%)
Psychology	21,867 (33.541 %)
Mathematics	20,288 (31.119%)
Science Technology Other Topics	12,882 (19.759%)
Physiology	6,735 (10.331 %)
Psychiatry	6,269 (9.616 %)
Pediatrics	6,099 (9.355 %)
Ophthalmology	5,694 (8.734%)
Instruments Instrumentation	4,895 (7.508%)
Automation Control Systems	4,438 (6.807%)

Área de conocimiento (WoS)

Investigaciones última década sobre el procesamiento EEG con RC-ESN

Neurociencia y Deep learning

J. Neural Eng. 16 (2019) 051001 (37pp): Deep learning-based electroencephalo-graphy analysis: a systematic review

Objetivos: EEG - RC ESN

1. Desarrollo del framework

Fase 1: Estudio tipo de Datos EEG

Fase 2: Lectura y Preprocesa-do de los Datos

RNN y ESN Model

RNN y ESN Model

Fase 3: Uso de Reservoir Computing para Obtener la

Dinámica Temporal de las Señales de

- 2. Uso del framework con:
 - Datos sintéticos

Reservoir

Update the readout layer

Output

- Datos reales

Diagrama principal del proceso de desarrollo de RC ESN para señales EEG

Uso de Aprendizaje

No Supervisado

Reconstrucción y

Predicción de Señales

Aprendizaje Super-

visado con Readout

(SVM, MLP, Ridge)

Señales EEG: Datos sintéticos

Enfoque Basado en Bandas de Frecuencia

Procesos estocásticos

Incorporación de Patrones Específicos de Edad

Diferencia Amplitud y Frecuencia en onda Beta

Dinámica Temporal : Autorregresivo

20 Sujetos jóvenes Adultos 20 Sujetos Mayores

n_subjects_per_group = 20 n_samples_per_subject = 1000 n_channels = 10

Señales EEG: Datos reales

MyRC (ESN): API-Framework

MyRC (ESN): Config-API

Hiperparámetro	Relación
Cantidad de Neuronas en el Reservorio (N)	$x(t) \in R_N$
Conectividad del Reservorio	$W_{\mathrm{res}} y W_{\mathrm{f} \mathrm{b}}$
Radio espectral	ρ (rho): Magnitud máxima de los valores propios de la matriz de pesos de la capa interna del RC
Función de Activación	f (·) controla la no linealidad de las dinámicas del reservorio
Fuga (α) (leak):	Tasa a la que la actividad de las neuronas en el reservorio decaen con el tiempo.
Ruido (σ)	componente estocástica en las ecuaciones de estado de las neuronas
Dimensión PCA	Redución número neuronas en el estado del RC
Ouput RC	Salida del RC (last, mean, ridge)

MyRC (ESN): Métricas

Gráficos de recurrencia

Momentos en los que un sistema dinámico retorna a estados similares.

Para una serie temporal $(\{X_i\}_{i=1}^N)$, la gráfica recurrente se define como una matriz (R) donde cada elemento $(R_{i,i})$ se determina de la siguiente manera:

$$R_{i,j} = \Theta(\epsilon - ||x_i - x_j||)$$

Θ es la función escalón de Heaviside, que es 1 si el argumento es positivo y 0 en caso contrario.

A: señal aleatoria (m = 4 y d = 1), B: determinista (m = 2 y d = 3) y C: caótica (m = 2 y d = 16). Mateos Salgado, Erik & Domínguez, Benjamín. (2011). [9]

Potencial de memoria

Instante de tiempo t en el cual la distancia euclidiana entre el estado inicial y_0 y el estado y_t de la serie temporal cae por debajo de un umbral de tolerancia ϵ

$$t = \min \{ t \in N || y_t - y_0 || < \varepsilon \}$$

t indica primer momento en el cual se detecta que el sistema retorna a un estado similar a la situación inicial. (duración de los patrones recurrentes en los datos de EEG)

RESULTADOS: RECON - PREDICCIÓN

Datos sintéticos

Resultados: No supervisado (datos reales)

Matriz similitud

Gráficos de Recurrencia

Adultos Mayores

Potencial de memoria

Métrica	Valor
Mean young	8.13
Mean older	5.52
T-statistic	2.09
P-value	0.0428

Con un p-valor menor 0.05 podemos indicar que existe suficiente significancia estadística para indicar una diferencia entre las dos clases.

Resultados: No supervisado (K-means)

Métricas agrupación datos reales con eliminación artefactos mediante Kmeans (0:Grupo jóvenes adultos; 1: Grupo Mayores)

Matriz confusión datos reales con eliminación artefactos(0:Grupo jóvenes adultos; 1: Grupo Mayores).

Resultados: Supervisado (datos reales)

Conjunto de train: 80% Conjunto de test: 20%

Readaout:mlp (Multi-Layer Perceptron Classifier)

Clase	Precisión	Recall	F1-score	Soporte
0	0.80	0.57	0.67	7
1	0.79	0.92	0.85	12
Exactitud	0.79			
Promedio macro	0.79	0.74	0.76	19
Promedio ponderado	0.79	0.79	0.78	19

0: Jóvenes adultos

1: Adultos mayores

Conclusiones

Ben	ef	<u>ici</u>	<u>os</u>

☐ Robustez ante ruido.	
☐ Obtención dinámica temporal series temporales.	
☐ No se necesita obtención de características(Temporales/Frecuencial	es).
☐ Menor capacidad computo	
☐ Facilidad de implementación	

<u>Desventajas</u>

☐ Gran sensibilidad ante valores hiperparámetros.
 ☐ Dependencia al tipo de dato y a las características de los mismos.

Web del Proyecto MyRC (GitHub)

https://github.com/jogugil/MyRC

Discusión: Trabajo futuro

Estudio extensivo basado en los resultados y teorías de neurociencia sobre la distinción entre jóvenes adultos y mayores
Búsqueda automática de hiperparámetros óptimos del Reservoir Computing ESN
Importancia de hiperparámetros en la resolución del problema neurocientífico
Pruebas con la implementación de DeepMyRC para la resolución de este problema u otros similares
Técnicas de extracción características del estado interno del RC-ESN como entrada al readout.
Utilización de la implementación del API del RC para la resolución de otro tipo de problemas asociados al procesado de señales EEG

Bibliografía

- [1] H. Jaeger, "The" echo state" approach to analysing and training recurrent neural networks-with an erratum note'," Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, vol. 148, 01 2001
- [2] G. Tanaka, T. Yamane, J.-B. H´eroux, R. Nakane, N. Kanazawa, S. Takeda, and A. Hirose, "Recent advances in physical reservoir computing: A review," Neural Networks, vol. 115, pp. 100–123, 201
- [3] M. Luko sevi cius and H. Jaeger, "Reservoir computing approaches to recurrent neural network training," Computer science review, vol. 3, no. 3, pp. 127–149, 2009.
- [4] L. Lin, C. Jin, Z. Fu, B. Zhang, G. Bin, and S. Wu, "Predictinghealthy older adult's brain age based on structural connectivity networks using artificial neural networks," Computer Methods and Programs in Biomedicine, vol. 125, 12 2015
- [5] A. B. Arrieta, S. Gil-Lopez, I. L. na, M. N. Bilbao, and J. D. Ser, "On the post-hoc explainability of deep echo state networks for timeseries forecasting, image and video classification," in Proceedings of the International Conference on Deep Learning Applications. Location, Country: TECNALIA, Basque Research and Technology Alliance (BRTA), University of the Basque Country (UPV/EHU), 2024
- [6] C. L. Webber Jr and J. P. Zbilut "Recurrence quantification analysis of nonlinear dynamical systems," Tutorials in contemporary nonlinearmethods for the behavioral sciences, vol. 94, no. 2005, pp. 26–94, 200
- [7] Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Design of deep echo state networks, Neural Networks, Volume 108, 2018, Pages 33-47, ISSN 0893-6080,
- https://doi.org/10.1016/j.neunet.2018.08.002.(https://www.sciencedirect.com/science/article/pii/S0893608018302223)
- [8] Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Deep reservoir computing: A critical experimental analysis, Neurocomputing, Volume 268, 2017, Pages 87-99, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2016.12.089.
- (https://www.sciencedirect.com/science/article/pii/S0925231217307567)
- [9] Mateos Salgado, Erik & Dominguez, Benjamin. (2011). Análisis de recurrencia visual de temperatura periférica en la evaluación de un tratamiento psicológico del dolor basado en un diseño N = 1. Psicología y Salud. 21. 111-117.