

A Spatial Optimization Framework to Customize Timber Supply and Harvest Decisions for the Korean Forest Service: A Case Study

Geonhwi Jung^{1*}, Joowon Park¹, Nahyun Park¹, Bomok Choi¹, Mooyoung Lim¹, Kay Zin Lin Min¹, Bomi Kim², Seungwan Cho³, Sandor Toth^{4†}

¹Department of Forestry, Kyungpook National University
²Forest Ecosystem Restoration Division, Korea Forest Service
³Technology Transfer and Commercialization Office, Korea Arboreta and Gardens Institute
⁴School of Environmental and forest Sciences, University of Washington

July 2nd, 2025

Objective and Importance

• Background

☐ Subjective Forest Planning

: Forest planning in South Korea tends to be guided by the personal experiences and subjective judgment of individual managers.

☐ Lack of Scientific and Data-Driven Approaches

: The absence of standardized scientific criteria and objective data frameworks leads to arbitrary and inefficient decision-making in forest planning.

Production—Consumption Mismatch

: Forest resource production and consumption are not efficiently linked at the regional level, limiting both economic value creation and sustainable forest management.

• Objective

This study aims to overcome subjectivity and inefficiencies in South Korea's forest planning by applying a spatial optimization model that integrates timber production and consumption and supports legal, sustainable, and data-driven decision-making.

Main Findings

Methodology

Restriction	Explanation	
Legal	Public service forest	
Physical	Areas with slope exceeding 40°	
Environmental	Adjacent areas within 30 meters of rivers	
logistical	Areas beyond 300 meters from forest roads)	

Estimation of Total and Harvestable Timber Volume

Classification by Management Objectives

Revenue-Cost Analysis by Objective Type

Application of Optimization Model

Derivation of Harvest Plan

- Stand volume + Constraints (Legal, Physical, Environmental, Logistical) → Harvestable timber volume
- Sawtimber (construction/furniture)
- vs. Pulp & Chipwood (pulp, boards)
- Revenues
- Timber and carbon credits
- Costs
- Afforestation
- Thinning
- Harvesting & Skidding
- Transportation (via Dijkstrabased network analysis)
- Discount rate: 5%

- Algorithm
- Gurobi MILP (Mixed-Integer Linear Programming)
- Objective: Maximize net profit
- Constraints
- Legal cutting age
- 10-year harvest volume fluctuation limits
- Ending condition: minimum residual growing stock (e.g., $\geq 200 \text{ m}^3/\text{ha}$)

Results summary

- Harvested area: 16,425 ha (Sawtimber: 7,171 ha; Pulp: 9,254 ha), Unharvested area: 7,495 ha
- Avg. annual harvest volume: 63,000 m³/year (range: 45,000–81,000 m³)
- First 30 years: High volume ($\approx 80,000 \text{ m}^3/\text{year}$), focused on age class V–VII
- Later periods: Gradual decline due to legal & sustainability constraints

□ Boundary

<Harvest status (Left) and Assigned management objectives(Right)>

<Spatial distribution of Harvested stands from period J1 to J10>

Harvesting area, Harvesting volume per ha, Remaining volume per ha

j = period, The 100-year management period is divided into 10 segments of 10 years each e.g., j1 = years 1-10, j2 = years 11-20

Implications

Problemc	Approach	Implication
 Forest planning relies heavily on experience and intuition 	 Introduced legal, ecological, and logistical constraints as explicit parameters in the model 	Enables the transition to model-based decision-making at the Korea Forest Service
Lack of spatial harvest allocation strategies	Applied spatial optimization and Dijkstra-based transport modeling	 Improves timber flow efficiency by linking production sites to nearby processing facilities
Weak linkage between harvest plans and consumption	Integrated actual consumption zones into harvest scheduling	Enhances domestic timber utilization and addresses supply—demand mismatches
Limited technical basis for long-term forest strategy development	Simulated 100-year spatially explicit harvest scenarios considering sustainability targets	Provides a foundation for Korea's national long-term forest strategy

Conclusion/Next Steps

Conclusion

- ☐ This study demonstrates how spatial optimization can address limitations in Korea's forest planning: subjective decision-making, inefficiencies in timber logistics, and the absence of data-driven tools.
- By integrating national forest inventory data with legal, ecological, and logistical constraints, we developed a model that generates spatially explicit harvest schedules over a 100-year.
- The model generates spatially explicit harvest plans that comply with legal cutting age rules, prioritize overstocked stands in the short term, and gradually align with long-term sustainability targets. These outputs provide not only operational clarity but also a scalable foundation for policy implementation.

Next Steps

- Implement stand clustering to reduce transport costs by grouping harvest stands with shared skid trails and similar timber utilization goals.
- ☐ Introduce variable cutting intensity scenarios (e.g., 30%, 50%, 70%, 100%) based on different silvicultural methods (thinning, selective cutting, clear cutting).

