

Convolution with even-sized kernels and symmetric padding

WHY NOT

Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, Luping Shi

Code

Wide-DenseNet C2sp

- Exploration of convolution kernel sizes (C2, C3, C4, C5)
- Quantify the shift problem in even-sized kernels (C2, C4)
- Proposing symmetric padding convolutions (C2sp, C4sp)
- The advantages of this approach:
- + Improved classification accuracy (CIFAR, ImageNet)
- + Improved image quality of GANs (CIFAR, LSUN, CelebA-HQ)
- Less parameters, FLOPs, training memory and time

Problem Formulation

- Even-sized kernels: rarely adopted, inferior to C3
- No central point, resulting in 0.5 pixel shift for each convolution layer
- The shift is cumulative in deep nets, small feature maps:

- The information erosion of padding
- Zero-padding erode the information

$$Q_n = rac{1}{hw} \sum_{m{p} \in h imes w} |\mathcal{F}_n(m{p})|$$
 , $Q_n < Q_{n-1}$

- Asymmetry accelerates the erosion
- Provides explanations for degradation in deep CNNs (e.g., ResNet paper)

Introducing symmetry by group-padding strategy

Symmetric Padding

Exploration of Kernel Sizes

C2sp

- Model: ResNet & DenseNet, Dataset: CIFAR10/100
- C2 is inferior to C3 and saturate much faster as the network deepens
- C2sp save 30%-50% parameters and FLOPs compared with C3
- Edge effect dominate the information erosion (C4, C5)

Improved Performance

Classification results:

Madal (ImagaNat)	Error	Params	FLOPs
Model (ImageNet)	(%)	(M)	(M)
ResNet-50 C3	23.8	25.5	4089
ResNet-50 C2sp	24.0	19.3	3062
DenseNet-121 C3	24.6	8.0	2834
DenseNet-121 C2sp	25.1	6.7	2143
ResNet-50 0.5x C3	26.8	6.9	1127
ResNet-50 0.5x C2	29.8	5.3	870
ResNet-50 0.5x C2sp	27.3	5.3	870
ResNet-50 0.5x C2sp optim	26.8	5.8	573
ShuffleNet v2 2.0x	26.6	7.4	591
MoibleNet v2 1.4x	25.8	6.1	582

•	Image	generation	tasks	(GAN))
---	--------------	------------	-------	-------	---

Model	CIFAR10	LSUN	CelebA
C5	26.54 ± 1.38	30.84 ± 1.13	33.90 ± 3.77
C3	24.12 ± 0.47	36.04 ± 7.10	43.39 ± 5.78
C4	26.45 ± 1.50	39.17 ± 5.52	37.93 ± 7.54
C4sp	24.86 ± 0.41	24.61 ± 2.45	30.22 ± 3.02
C2	ľ	Non-convergenc	e
C2sp	23.35 ± 0.26	27.73 ± 6.76	31.25 ± 4.86

Model (CIFAR10)	Error	Params
	(%)	(M)
NASNet-A	3.41	3.3
PNASNet-5	3.41	3.2
AmoebaNet-A	3.34	3.2
Wide-DenseNet C3	3.81	3.4

2.65 3.3 NASNet-A + cutout Wide-DenseNet C2sp + cutout + mixup

3.54

CelebA-HQ

Training Overheads

C2sp vs other compact CNN building blocks

*Naïve Tensorflow high-level implementation, can be further optimized

- [1] Wu, B., et al. Shift: A zero flop, zero parameter alternative to spatial convolutions. ICCV'18.
- [2] Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR'18.
- [3] He, K., Sun, J. Convolutional neural networks at constrained time cost. CVPR'15.