Prof. Dr. Andreas Hildebrandt Dr. Marco Carnini

BIOINFORMATICS II - SS 16

3. Exercise sheet

To be delivered not later than 15-05-2016

	Exercise	Points
Practical	1	10
Practical	2	10
Theoretical	3	10
Theoretical	4	10

Exercise 1: Rotation - Ball (10 Points)

In many PDB, there are many different models for the same protein. Download the PDB file (http://tinyurl.com/cjjf9w) and extract the first model. Rotate the position of all the atoms around the axis x of an angle $\frac{\pi}{3}$ and save the obtained protein in a PDB file.

Exercise 2: Creation of a molecule – Ball (10 Points)

Create a molecule of ammonia. For the sake of this exercise, assume that ammonia (NH₃) is a planar molecule. Generate the bond lengths correctly, and assume that the angle between the bonds is $\frac{2\pi}{3}$. Save the molecule in a PDB file. You may want to revise how to use polar coordinates, and consult: http://tinyurl.com/znpf453

Exercise 3: The ∇ operator (10 Points)

Consider the following vector **F** and scalar *V*:

$$\mathbf{F} = [3x + y]\mathbf{i} + [z + 3x]\mathbf{j} + [x + y + z]\mathbf{k}$$

$$V = \frac{1}{(x^2 + y^2 + z^2)^3} - \frac{1}{(x^2 + y^2 + z^2)^3}$$

Calculate (if it is possible!) $\nabla \cdot \mathbf{F}$, $\nabla \times \mathbf{F}$, $\nabla \times V$, $\nabla \cdot V$, ∇V .

Exercise 4: Calculation of a potential (10 Points)

Remembering the definition of potential as:

$$\mathbf{F} = -\nabla V$$
.

determine a potential *V* that corresponds to the force:

$$\mathbf{F} = [6x - y\sin(xy)]\mathbf{i} + [z - x\sin(xy)]\mathbf{j} + \left[y + \frac{1}{1+z^2}\right]\mathbf{k}$$