Huber & Schüßler · Truderinger Straße 246 · 81825 München

Europäisches Patentamt

80298 München

Truderinger Straße 246 D-81825 München

Tel.: **49.89.437788-0 Fax: **49.89.43778899

munich@huber-schuessler.info www.huber-schuessler.com Dr. Bernard Huber Dipl.-Biologe Dr. Andrea Schüßler Dipl.-Chemikerin

In Zusammenarbeit mit Rechtsanwälten Dr. Wolfram Städtler Stephan Biagosch

6. April 2004

Aktenzeichen:

PCT/DE03/00124

Anmelder:

DKFZ

Unser Zeichen:

K 3125 - sch / tz

Auf den Bescheid vom 8. März 2004

1. Ansprüche

Hiermit wird mit einer Ersatzseite ein neuer Anspruch 4 eingereicht. Das Merkmal "antibakterielles Peptid oder Protein ist gestützt auf Seite 2, Zeile 18 sowie Seite 5, 1. Absatz der Beschreibung.

2. Neuheit

Anspruch 1 ist neu gegenüber D4.

D4 offenbart weder einen Transportvermittler, der die prokaryontische Zellmembran passiert, noch eine Peptid-Nukleinsäure (PNA), die die Transkription eines prokaryontischen Gens hemmt.

Das in D4 auf Seite 4 beschriebene bakterielle Transportmolekül ist ein zum

HypoVereinsbank München (BLZ 700 202 70) 4 410 221 220 IBAN DE 34 7002 0270 4410 2212 20 SWIFT (BIC): HYVEDEMMXXX

Deutsche Bank München (BLZ 700 700 24) 4 362 000 IBAN DE 85 7007 0024 0436 2000 00 SWIFT (BIC): DEUTDEDBMUC

Penetratin (Seite 3, letzter Absarz) homologes Peptid, das aus E. coli isoliert wurde, wovon sich die Bezeichnung "bakteriell" herleitet. Die drei in D4 spezifisch beschriebenen Transportvermittler können jedoch die bakterielle Zellwand nicht überwinden und sind deshalb nicht als Carrier-Moleküle für den Transport in Prokaryonten geeignet.

Ferner offenbart D4 keine PNA, die gegen ein prokaryontisches Gen gerichtet ist. Das in Beispiel 4 von D4 beschriebene c-myc Gen ist ein Onkogen viralen Ursprungs, das nur in Wirbeltieren vorhanden ist (siehe Ann. Rev. Genet. 1986. 20, Seiten 362-363). Folglich ist c-myc kein prokaryontisches Gen.

3. Erfinderische Tätigkeit

D4 beschreibt ein Konjugat zum Transport von PNA in eukaryontische Zellen. Wie oben ausgeführt, werden in D4 weder Transportvermittler, die die prokaryontische Zellwand passieren, noch eine PNA, die gegen ein prokaryontisches Gen gerichtet ist, offenbart.

Auch die in D8 beschriebenen Studien zur Hemmung der Transkription von Genen betreffen ausschließlich eukaryontische Gene.

Weder D4 noch D8 enthalten einen Hinweis auf die Hemmung der Transkription von prokaryontischen Genen. Folglich wird Anspruch 1 weder durch D4 noch durch die Kombination aus D4 und D8 nahegelegt.

Außerdem beschreibt die Erfindung ein neues Therapiekonzept, das von bisnerigen Strategien abweicht. Die erfindungsgemäßen Konjugate erzielen ihre besondere Effizienz auch durch die, insbesondere in den Ansprüchen 4, 5 und 6 beanspruchte, Doppelstrategie, bei der antibakterielle Peptide mit einer gegen ein prokaryontisches Gen gerichteten PNA konjugiert werden.

Patentanwalt

Anlage:

-Ersatzseite mit geänderten Anspruch 4

-Ann. Rev. Genet. (1986) 20:361-84

Geänderte Patentansprüche

- 1. Konjugat, das zur Behandlung prokaryontischer Infektionen geeignet ist und die folgenden Komponenten aufweist:
 - (a) einen die prokaryontische Zellmembran passierenden Transportvermittler; und
 - (b) eine in den Prokaryonten einzubringende und gegen diese gerichtete Peptid-Nukleinsäure (PNA), die die Transkription eines prokaryontischen Gens hemmt.
- 2. Konjugat nach Anspruch 1, wobei der Prokaryont ein Bakterium ist
- 3. Konjugat nach Anspruch 2, wobei das Bakterium ein humanpathogenes Bakterium ist.
- 4. Konjugat nach einem der Ansprüche 1 bis 3, wobei der autibakterielles
 Transportvermittler ein Peptid oder Protein ist, das die prokaryontische Zellmembran passieren kann.
- 5. Konjugat nach einem der Ansprüche 1 bis 4, wobei der Transportvermittler ein Phagen-Holin-Protein umfaßt, das eine der in Figur 3 dargestellten Aminosäuresequenzen umfaßt oder ein Fragment oder eine Variante davon, das (die) die prokaryontische Zellmembran passieren kann.
- 6. Konjugat nach einem der Ansprüche 1 bis 4, wobei der Transportvermittler ein Defensin umfaßt.
- 7. Konjugat nach einem der Ansprüche 1 bis 6, wobei die Peptid-Nukleinsäure (PNA) gegen ein Gen gerichtet ist, das eine Antibiotikum-Resistenz verleiht.
- 8. Konjugat nach Anspruch 7, wobei die Antibiotikum-Resistenz

Ann Rev Genet 1986 20 361-84 Copyright © 1986 by Annual Reviews Inc All rights reserved

THE myc ONCOGENE: ITS ROLE IN TRANSFORMATION AND ODIFFERENTIATION

Michael D. Cole

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

CONTENTS

INTRODUCTION	361
THE c-myc GENE AND PROTEIN	362
The c-myc Gene Structure	362
The c-myc Protein	363
A FAMILY OF myc-RELATED GENES	363
REGULATION OF c-myc EXPRESSION	365
Transcriptional and Posttranscriptional Regulation	365
Radia Turnover of c-mvc mr.na	366
Role of the First Exon in RNA Stability	366
MECHANISMS OF ONCOGENIC ACTIVATION	367
Levels of c-myc Expression in Tumor vs Normal Cells	367
1 Three Forms of DNA Rearrangements	368
Models of c-myc Activation by Translocation and Proviral Insertion	369
TRANSFORMING ACTIVITY OF THE c-myc ONCOGENE	372
myc Retroviruses	372
Mullisted Carcinovenesis	372
Target and Stage Specificity of Transformation	374
Mudators and Lumor Progression	375
GROWTH FACTORS AND c-myc EXPRESSION	376
CONCLUSION	270

INTRODUCTION

Much of the recent progress in understanding the origin of cancer has come from the study of cellular genes, termed "proto-oncogenes," that can induce unrestrained cell growth when mutated, incorporated within a retrovirus, or

expressed inappropriately. One proto-oncogene, c-myc, has been the focus of numerous studies that have uncovered many of the major mechanisms by which normal cellular genes can be activated in tumor cells, including proviral insertion, gene amplification, and chromosomal translocations. Moreover, the expression of the c-myc gene is tightly linked to the action of growth factors and with the entry of cells into the cell cycle, suggesting that c-myc expression may be a major component in the regulatory networks associated with normal cell proliferation. The frequent involvement of c-myc in neoplastic transformation and its close association with cellular growth control have prompted an ever-expanding body of literature for a gene whose function within the cell is essentially unknown. In this review I describe some of the basic features of the c-myc locus and then focus on the role of the c-myc gene in cell proliferation and transformation. I do not discuss in detail the specific features of chromosomal rearrangements associated with c-myc activation, since this subject has been reviewed quite recently (24). I also refer the reader to other recent reviews on the general topic of oncogenes (11, 119).

THE c-myc GENE AND PROTEIN

The c-myc Gene Structure

The c-myc gene was first identified as the transforming sequence within the avian retrovirus MC29, and like many other proto-oncogenes, c-myc was found to be conserved in evolution (reviewed in 119). Early cloning studies identified two exons within the avian, mouse, and human cellular genes that were homologous to the viral sequences. However, subsequent sequence analysis of a murine c-myc cDNA (109) and human genomic clones (9, 10) identified one of the most intriguing features of the gene, namely a long untranslated first exon of 400-500 bp without initiation codons, but with termination codons, in all reading frames. The sequence of the first exon is 70% conserved between mouse and human (10) (whereas the coding exons are >90% homologous), but there is no significant conservation of first-exon sequences between chicken and mammals (71). The c-myc promoter is also somewhat unique; it has two distinct transcription start sites containing TATAA sequences separated by 160 bp, designated P1 and P2 (9, 10). Conservation of these features between avian and mammalian genes has prompted several models that propose an important regulatory role for the untranslated c-myc first exon (see below).

The c-myc gene is highly conserved among diverse chordates: it has been found in the genomes of humans, rodents, chickens, and trout (118). There is

REGULATION OF c-myc EXPRESSION

Transcriptional and Posttranscriptional Regulation

Determining what regulates the c-myc gene has become central to understanding the role of c-myc in cell transformation and in the response of cells to mitogens. Unlike the ras oncogenes, which are activated as the result of mutations within the protein-coding regions, no amino acid changes are required for c-myc activation. Therefore, attention has focused on quantitative lifferences in the levels of c-myc expression in tumor vs normal cells. Investigations into the factors and sequences that control steady-state levels of c-myc mRNA point to a complex pattern of regulation at both transcriptional and posttranscriptional levels.

The most important findings for understanding the regulation of the c-myc gene have been the connections between c-myc mRNA levels, mitogen stimulation, and the rate of cell proliferation. Kelly et al (59) showed that c-myc RNA levels are very low in quiescent, serum-starved fibroblasts and primary lymphocytes, and rapidly increase up to 40-fold in response to mitogens. In particular, c-myc RNA levels increase dramatically after treatment with platelet-derived growth factor, a mitogen that induces a state of "competence" in quiescent fibroblasts without promoting entry into S phase (90). Thus, c-myc induction has been associated with the entry of cells into the cell cycle, in particular, for the transition from a quiescent Go state into G1. After an elevated transient induction by mitogens, mRNA in the stimulated cell returns to a level about 10-fold higher than that in quiescent cells. Initially, it had also been suggested that c-myc RNA levels might be modulated during the cell cycle, but it was subsequently shown that both RNA and protein levels are constant at all stages in growing cells (48, 117). Thus, the evel of c-myc expression correlates with the rate of cell proliferation, suggesting that higher levels of c-myc may increase the probability of the cell's entry into S phase. In support of this hypothesis, investigators found that chicken fibroblasts transformed by MC29 viruses, which results in very high levels of myc, have a shorter cell-cycle time than normal cells or those transformed by other oncogenic viruses (85).

Expression of the c-myc gene appears to be regulated at both transcriptional and posttranscriptional levels. At the transcriptional level, serum stimulation of quiescent fibroblasts leads to a transient three- to fourfold increase in the c-myc transcription rate within two hours (47). However, no differences in transcription rate have been demonstrated for populations of dividing vs quiescent cells. Furthermore, the increased transcription rate observed during the initial phases of serum stimulation is not sufficient to account for the 20-40-fold increase in c-myc RNA levels (59). This observation suggests that

posttranscriptional control accounts for the remainder of the increase. Indeed, recent studies showed that c-myc RNA levels can be modulated in the absence of any change in the transcription rate of the gene (12). For example, both teratocarcinoma cells induced to differentiate and lymphoma cells treated with interferon suppressed their c-myc RNA level at least 20-fold, without any change in transcription rate (31, 34, 61). Thus, it appears that the primary mode of c-myc mRNA regulation in the transition from quiescent to proliferating cells (and vice versa) is posttranscriptional. Nevertheless, transcriptional control of the c-myc gene may be important at certain stages of cell differentiation as discussed below. Other important observations are that the amount of c-myc protein correlates directly with the RNA level (49) and that protein half-life does not change with growth rate (88).

Rapid Turnover of c-myc mRNA

Posttranscriptional modulation of c-myc mRNA levels could result either from altered mRNA transport or stability in the nucleus or from changes in cytoplasmic stability. Several lines of evidence suggest that cytoplasmic mRNA stability is the point at which regulation occurs. First, the half-life of c-myc mRNA is very short, from 10-30 min depending on the cell type (30). Furthermore, the superinduction of c-myc RNA observed when cycloheximide (along with mitogens) is added to cells is due to RNA stabilization (70). Thus, c-myc mRNA turns over very rapidly in the cytoplasm, and the rate of turnover is increased under conditions that suppress c-myc mRNA levels. The decrease in RNA turnover associated with cycloheximide treatment could result from a block in the synthesis of a labile sequence-specific RNase, or from an arrest in translation of c-myc mRNA, which in turn may be linked in some way to degradation.

Role of the First Exon in RNA Stability

More than one line of evidence suggests that the long 5' untranslated exon of the c-myc gene contributes to the short RNA half-life and to posttranscriptional control of RNA levels. Some differences in the half-life of RNAs with or without the first exon have been noted in comparisons of cell lines expressing truncated or normal genes (89, 93). However, the differences measured in plasmacytomas were not substantial (20–30 min for c-myc RNA containing the first exon and 60 min for those lacking it), and there was no comparison of different c-myc RNA structures in the same cell line. Recent experiments from our laboratory suggest a more complex picture, in which the first exon is required only for modulation of RNA levels in growth arrest, but not for mediation of the normal turnover of the short-lived message. Viral promoter-driven c-myc genes that lack the first exon have the same short half-life as the endogenous three-exon RNA in growing fibroblasts (G. D. Schuler & M. D.

Cole, manuscript in preparation). However, the half-life of the endogenous gene transcripts decreases during growth arrest in confluent, serum-starved cells, while the half-life of the transcripts that lack the first exon remains constant. Furthermore, transcripts lacking the first exon are not stabilized by cycloheximide (which superinduces the normal mRNA). Thus, the first exon may be the primary target for posttranscriptional modulation of RNA levels, but c-myc RNAs containing only the second and third exons still have a very hort half-life. These results suggest the presence of a second region within the normal c-myc mRNA (in the 3' untranslated region or in the protein-coding region) that determines the rapid rate of RNA turnover.

The involvement of the first exon in modulation of RNA levels appears complex. Linkage of the c-myc promoter alone to a second gene, such as neo, does not confer the ability to modulate the gene by serum after transfection into fibroblasts (T. Jones, personal communication). Moreover, transcripts that contain virtually all of the first-exon sequences linked to neo are still not modulated by serum. Thus, the first exon appears to be necessary, but not sufficient, to modulate RNA-turnover rates in response to growth factors, and it does not appear to directly affect the short half-life of myc RNA.

MECHANISMS OF ONCOGENIC ACTIVATION

The c-myc proto-oncogene has been found to be "activated" by several different mechanisms that result in the unrestrained growth of tumor cells. The mechanisms of activation include proviral insertion, chromosomal translocation, and gene amplification. In fact historically, each of these mechanisms of proto-oncogene activation in tumor cells was first discovered through studies of the c-myc locus. Significantly, each of these mechanisms involves DNA rearrangements that lead to constitutive or elevated levels of c-myc expression, whereas, in contrast, few DNA rearrangements have been observed at the ras proto-oncogene loci. Thus, c-myc promotes tumor-cell growth via quantitative increases in protein level, rather than by qualitative changes in the protein, which are characteristic of ras activation. Despite intensive study, however, it is still unclear how each of these DNA rearrangements relates to the altered regulation and level of expression of the normal c-myc gene.

Levels of c-myc Expression in Tumor vs Normal Cells

Early studies with avian bursal lymphomas suggested that gene activation by retroviral insertion was associated with levels of c-myc RNA 10-100-fold higher than those in normal cells (50). However, subsequent studies of mouse plasmacytomas (PCs) and human Burkitt lymphomas (BLs) demonstrated that exceptionally high c-myc RNA levels are not always associated with DNA

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.