Grado en Ingeniería Informática – Curso 2012/13 – Grupo 126 Circuitos Electrónicos – $\underline{1}^{er}$ control intermedio – 30 de octubre de 2011

Apellidos______ Nombre____

- 1.- Para el siguiente circuito de dos terminales:
 - a) (2 puntos) Deducir la ecuación característica (voltaje de salida en función de la corriente de salida).
 - b) (1 punto) Identificar en dicha ecuación el voltaje equivalente de Thévenin y la resistencia equivalente.
 - c) (1 punto) Obtener la corriente equivalente de Norton a partir de su definición (corriente de salida en cortocircuito), y comparar el resultado con el cociente de los parámetros deducidos en el apartado anterior, I_N = V_{Th}/R_{eq}.

2.- (3 puntos) Dado el siguiente circuito, obtener la expresión temporal de la corriente $i_2(t)$.

Datos:
$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $C = 15\mu F$, $v_1(t) = 18V \cdot cos(10^5 rad \cdot s^{-1} \cdot t)$, siendo $\omega = 10^5 rad \cdot s^{-1}$.

- **3.-** Para el filtro de la siguiente figura, suponiendo que v_i es el fasor tensión asociado a una señal de tipo sinusoidal:
 - a) (1 punto) Obtener la expresión de la ganancia de voltaje, $A_v(j\omega) = v_o/v_i$.
 - b) (1 punto) Expresar $A_v(j\omega)$ en forma polar (módulo-argumento).
 - c) (1 punto) Deducir la o las frecuencias de corte de $A_v(j\omega)$.

Sugerencia: Emplear no más de 20 minutos para la resolución del ejercicio 1, y no más de 15 minutos para cada uno de los otros dos.