Chapitre 4: Introduction au filtrage

Justine Philippe

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- □ Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- □ Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

Que fait un filtre?

Le signal de sortie est **égal au signal d'entrée à certaines fréquences** nul à d'autres fréquences

A quoi sert un filtre?

Exemple: filtre ADSL

Pourquoi l'étudie-t-on maintenant?

On peut faire des filtres avec de simples circuits RLC

Exemple: Filtre passe-bas RC

A fréquence (ou pulsation) nulle, condensateur = circuit ouvert ; $u_S = u_E$ A fréquence (ou pulsation) infinie, condensateur = court-circuit ; $u_S = 0$

Pourquoi l'étudie-t-on maintenant?

On peut faire des filtres avec de simples circuits RLC

Exemple: Filtre passe-bas RC

Le signal de sortie est le même que le signal d'entrée, (déphasé et) nettoyé des « petites oscillations » / oscillations à hautes fréquences

Vue globale du cours d'électronique

Chapitre 1 et 2

Régime permanent et transitoire des circuits RLC en courant continu

Chapitre 3

Circuits RLC avec une **tension d'entrée sinusoïdale** (on n'a traité que le régime permanent)

Chapitre 4. Filtrage Circuits RLC avec une **tension d'entrée multifréquences** (= multi sinusoïdale)

Chapitre 5. Amplificateur opérationnel

Objectifs du chapitre

- ☐ Connaître le vocabulaire associé au filtrage
- Savoir faire une analyse spectrale simple :
 comportement d'un filtre RLC lorsque ω → 0 et ω → ∞
- ☐ Calculer la fonction de transfert d'un filtre passif
- □ Tracer les diagrammes de Bode associés [donc savoir utiliser des graphes semilog et des dB]

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- □ Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

Quelques définitions

Fonction de transfert
$$\underline{\mathbf{H}} : \underline{H} = \frac{\underline{u_S}}{\underline{u_E}}$$

Gain G:
$$G = |\underline{H}|$$

Déphasage
$$\Phi_{H}$$
 : $\Phi_{H} = Arg(\underline{H})$

(Exemple pour un circuit quelconque)

Les différents types de filtres :

Filtre qui laisse passer les basses fréquences et coupe les hautes fréquences

Les différents types de filtres :

Filtre qui laisse passer les hautes fréquences et coupe les basses fréquences

Les différents types de filtres :

Filtre qui coupe les basses et hautes fréquences et laisse passer le signal sur une bande de fréquence dite bande passante

Les différents types de filtres :

Filtre qui coupe le signal sur une plage de fréquence

Diagramme de Bode

Une représentation particulière du gain et du déphasage en fonction de la pulsation/fréquence

Décibels

$$G_{dB} = 20\log(G)$$

Exemples:

G	0,01	0,1	0,5	1	10	0
G _{dB}	-40	-20	-6,02	0	+20	-8

Propriété de la fonction log à savoir par cœur : $log(10^P) = P log(10) = P$

Echelle/papier semi log x

On utilise ce type d'échelle dans les diagrammes de Bode pour pouvoir comparer la réponse à basse et haute fréquence, sur plusieurs décades

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- □ Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

a) Fonction de transfert : $\underline{H} = \frac{\underline{u}_S}{\underline{u}_E} = \frac{1}{1+jRC\omega}$ (On a utilisé le diviseur de tension $\underline{u}_S = \frac{\underline{Z}_C}{\underline{Z}_R + \underline{Z}_C} \underline{u}_E$ puis simplifié en multipliant par jC ω au numérateur et au dénominateur)

b) Expression avec les variables usuelles ω_0 et x :

$$\underline{H} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\frac{\omega}{\omega_0}} = \frac{1}{1 + jx}$$

Avec
$$\begin{cases} \omega_0 = \frac{1}{RC} \\ x = \frac{\omega}{\omega_0} \end{cases}$$

c) Etude du gain G = |H|

$$G = \left| \underline{H} \right| = \left| \frac{1}{1 + jx} \right| = \frac{1}{\sqrt{1 + x^2}}$$

A quoi ressemble G en fonction de x?

Limite en x = 0 ? En x = $+\omega$? La fonction $\sqrt{\ }$ est croissante, donc ?

On obtient:

Notons que À x=0 : G=1 À x=1 : G= $1/\sqrt{2}$ À x $\rightarrow \infty$: G=0

JPH - CIR1/CNB1 - Chapitre 4

e) Diagrammes de Bode:

G_{dB} et Φ_H sur un graphe semilogarithmique

$$G_{dB} = 20 \log(G) = 20 \log\left(\frac{1}{\sqrt{1+x^2}}\right)$$

$$G_{dB} = -20 \log\left(\sqrt{1+x^2}\right) = -10 \log(1+x^2)$$

Et on a déjà calculé le déphasage :

$$\Phi_H = Arg(\underline{H}) = Arg(\frac{1}{1+jx}) = -\arctan x$$

Propriété de la fonction log à savoir par cœur : $log(A^B) = B log(A)$

Pour tracer la courbe du gain et la courbe de phase, on fait varier f

$$G_{dB} = -10\log(1+x^2)$$

X=f/f0	f0/10	f0/2	fO	2f0	10f0	100f0
G (dB)	-0,04	-0,97	-3	-7	-20	-40

$$\Phi_H = -\arctan x$$

f	f0/10	f0/2	f0	2f0	10f0	100f0
Φ (°)	-5,7	-26,6	-45	-63,4	-84,3	-89,4
Φ (rad)	-0,099	-0,463	-0,78	-1,10	-1,47	-1,57

Papier semi-log: 3 décades

Tracé du diagramme de Bode : le gain

Tracé du diagramme de Bode : la phase

En rouge : « diagramme de Bode asymptotique »

f) Diagrammes de Bode asymptotiques

Pour déterminer les équations des demi-droites du diag. Asymptotique, le plus simple est de revenir à la fonction de transfert complexe

$$\underline{H} = \frac{1}{1+jx} \ avec \ x = \frac{\omega}{\omega_0}$$

Lorsque $\omega \to 0$, $\underline{H} \sim 1 => G = |\underline{H}| \sim 1$ Donc la première asymptote est : $G_{dB} = 20 \log G \sim 0$

$$\underline{H} = \frac{1}{1+jx} \ avec \ x = \frac{\omega}{\omega_0}$$

Lorsque $\omega \rightarrow 0$, $\underline{H} \sim 1 => G = |\underline{H}| \sim 1$

Donc la première asymptote est : $G_{dB} = 20 \log G \sim 0$

Lorsque $\omega \to \infty$, $\underline{H} \sim 1/jx => G = |\underline{H}| \sim 1/x$

Donc la première asymptote est : $G_{dB} = 20 \log G = -20 \log x$

=> La pente est de -20 dB par décade

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

Définitions

Une décade correspond à l'intervalle de pulsation pour passer de la pulsation ω à la pulsation 10ω .

Une octave correspond à l'intervalle de pulsation pour passer de la pulsation ω à la pulsation 2ω .

La pente d'une droite dans la représentation du gain en tension G en fonction de $log(\omega)$ est exprimée en décibel /décade (dB/dec).

L'ordre d'un filtre est le degré du polynôme en x situé au dénominateur de la fonction de transfert complexe H

Définitions

Une pulsation de coupure à -3dB, notée ω_{c} d'un filtre est une pulsation pour laquelle

$$G(\omega) = \frac{Gmax}{\sqrt{2}}$$

En effet cela correspond à une diminution du gain de 3 dB :

$$G_{dB}(\omega_C) = 20 \log G_{max} - 20 \log \sqrt{2} = 20 \log G_{max} - 10 \log 2$$

$$G_{dB}(\omega_C) = G_{dB} max - 3$$

Définitions

La bande passante d'un filtre est l'intervalle (ou les intervalles) de pulsations pour lequel le gain G a une valeur supérieure au gain max -3 dB.

Une bande passante est donc comprise entre deux pulsations de coupures

Cela correspond à une transmission en tension de $1/\sqrt{2}$ et donc une transmission en puissance d'entrée de 1/2.

→ lorsqu'on a « perdu » la moitié de la puissance au travers du filtre, alors le signal est considéré comme perdu (il n'a pas transité vers la sortie)

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- □ Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

Circuit RLC

Quel type de filtre est-ce?

Quand $\omega \rightarrow 0$, condensateur = circuit ouvert

Quand $\omega \rightarrow +\infty$, bobine = circuit ouvert

Donc c'est un filtre qui coupe les basses et hautes fréquences ; c'est un filtre passe bande

Circuit RLC

a) Fonction de transfert :
$$\underline{H} = \frac{\underline{u_S}}{\underline{u_E}} = \frac{R}{R+j\left(L\omega - \frac{1}{C\omega}\right)}$$

b) Expression avec les variables usuelles ω_0 , x et Q

$$\underline{H} = \frac{1}{1 + jQ\left(x - \frac{1}{x}\right)} \quad avec \quad \begin{cases} \omega_0 = \frac{1}{\sqrt{LC}} \\ x = \frac{\omega}{\omega_0} \\ Q = \frac{L\omega_0}{R} \end{cases}$$

c) Etude du gain G = |H|

$$\underline{H} = \frac{1}{1 + jQ\left(x - \frac{1}{x}\right)}$$

$$G = |\underline{H}| = \frac{1}{1 + jQ\left(x - \frac{1}{x}\right)} = \frac{1}{1 + Q^2\left(x - \frac{1}{x}\right)^2}$$

$$G_{\text{max}}/\sqrt{2}$$

$$G_{\text{max}}/\sqrt{2}$$

$$0.8$$

$$G_{\text{max}}/\sqrt{2}$$

$$0.9$$

$$0.9$$

$$G_{\text{max}}/\sqrt{2}$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

Rmq. Quand Q augmente, le pic devient plus étroit

ISEN école d'ingénieurs

- d) Pulsations de coupure à -3 dB, bande passante
 - Gain maximum $G_{max} = 1$ pour x = 1
 - Pulsations réduites de coupures x_{c1} et x_{c2} pour $G = \frac{G_{max}}{\sqrt{2}}$

On trouve (preuve page suivante):

$$\begin{cases} x_{c1} = -\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}} \\ x_{c2} = +\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}} \end{cases}$$

Quand Q est élevé, Δx petit et filtre plus sélectif

• La bande passante est donc : $\Delta x_c = \frac{1}{Q}$

- Pulsations réduites de coupure x_{c1} et x_{c2} pour $G=G_{max}/\sqrt{2}$ Donc pour :

$$\frac{1}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}} = \frac{1}{\sqrt{2}}$$

$$\text{Équivalent à} \quad Q^2 \left(x - \frac{1}{x}\right)^2 = 1$$

$$\text{Soit } \left|x - \frac{1}{x}\right| = \frac{1}{Q}$$

En multipliant par x

$$|x^2 - 1| = \frac{x}{Q}$$

On a donc deux équations du second degré à résoudre : $x^2 \pm \frac{x}{0} - 1 = 0$

ISEN

école d'ingénieurs Le discriminant commun à ces deux équations est :

 $\Delta = \frac{1}{Q^2} + 4$

Discriminant positif, donc 2 solutions par équation. Sachant que x est une grandeur physique positive, on ne retient que les solutions positives, il y en a bien deux :

$$x_{c1} = \frac{1}{2} \left(-\frac{1}{Q} + \sqrt{\frac{1}{Q^2} + 4} \right)$$

$$x_{c2} = \frac{1}{2} \left(+\frac{1}{Q} + \sqrt{\frac{1}{Q^2} + 4} \right)$$

e) Etude du déphasage $\Phi_H = Arg(\underline{H})$

$$\Phi_{H} = Arg\left(\underline{H}\right) = Arg\left(\frac{1}{1 + jQ\left(x - \frac{1}{x}\right)}\right) = -\arctan\left(Q\left(x - \frac{1}{x}\right)\right)$$

Lorsque
$$x \to 0$$
, $\underline{H} \sim \frac{1}{-\frac{jQ}{x}} = \frac{jx}{Q}$

Donc le gain est : $G = \left| \frac{x}{H} \right| \sim \frac{x}{Q}$

$$\underline{H} = \frac{1}{1 + jQ\left(x - \frac{1}{x}\right)}$$

La 1ère asymptote du diagramme de Bode en gain est ainsi :

$$G_{dB} = 20 \log G \sim 20 \log x - 20 \log Q$$

Elle a une pente de +20 dB par décade

Pour le déphasage, on peut ainsi montrer qu'on a l'asymptote horizontale $\Phi_H = +\frac{\pi}{2}$

Lorsque x
$$\rightarrow \infty$$
, $\underline{H} \sim \frac{1}{jQx} = -\frac{j}{Qx}$
Donc le gain est : $G = |\underline{H}| \sim \frac{1}{Qx}$

$$\underline{H} = \frac{1}{1 + jQ\left(x - \frac{1}{x}\right)}$$

La 1ère asymptote du diagramme de Bode en gain est ainsi :

$$G_{dB} \sim -20 \log x - 20 \log Q$$

Elle a une pente de -20 dB par décade

Pour le déphasage, on peut ainsi montrer qu'on a l'asymptote horizontale $\Phi_H = -\frac{\pi}{2}$

Diagramme de Bode asymptotique du gain

Diagramme de Bode asymptotique de la phase

Sommaire

- Introduction
- Quelques définitions
- Un exemple de filtre du premier ordre
- □ Diagrammes de Bode : quelques précisions
- Un exemple de filtre du second ordre
- Analyse spectrale d'une grandeur périodique

Analyse spectrale d'une grandeur périodique

On ne traite que le cas de signaux sinusoïdaux,

Pourquoi?

Tout signal peut être décrit comme une somme de sinusoïdes

Analyse spectrale d'une grandeur périodique

Un théorème très utilisé : le théorème de Fourier

Tout signal périodique de période T peut s'écrire sous la forme d'une somme de fonctions sinusoïdales de pulsations multiples de la pulsation $\omega = \frac{2\pi}{T}$:

$$u(t) = c_0 + \sum_{n=1}^{+\infty} c_n \cos(n \omega t + \varphi_n)$$

Cette écriture est appelée décomposition en série de Fourier.

Tous les signaux périodiques sont des sommes de sinusoïdes

Sinusoïde de pulsation ω : « le fondamental » Les multiples : « les harmoniques »

Un signal triangulaire décomposé en sinusoïdes

Un signal triangulaire décomposé en sinusoïdes

Un signal triangulaire décomposé en sinusoïdes

Un signal rectangulaire décomposé en sinusoïdes

Un signal rectangulaire décomposé en sinusoïdes

Un signal rectangulaire décomposé en sinusoïdes

Récapitulatif (A savoir)

- Notion de filtrage
- Fonction de transfert
- Diagramme de Bode
- □ Filtres de premier et second ordre
- Analyse spectrale

Fin du chapitre 4

