Mise en place d'une expérience à très basse température et étude d'effets quantiques dans des systèmes nanométriques

Félix Piédallu

Filière PNS 2014-2015

Sous la direction de Takis Kontos et Laure Bruhat

- 1 L'expérience
 - Injection de paires de Cooper dans un nanotube de carbone
 - Interaction avec un rayonnement micro-ondes
 - Nécessités de qualité d'environnement et de mesure
- 2 Le cryostat à dilution
 - Principe du cryostat
 - La dilution sèche
- Schéma de câblage du cryostat
- 4 Le câblage DC
 - Choix des matériaux
 - Thermalisation électronique
 - Blindage des câbles
- 5 Le câblage RF
 - Choix des matériaux
 - Fabrication d'un câble coaxial
- 6 Caractérisation des câbles coaxiaux

Introduction L'expérience Le cryostat à dilution Schéma de câblage du cryostat Le câblage DC Le câblage RF Caractérisation des câbles coaxiaux

O O O OOOOO

Introduction

Hybrid Quantum Circuits

Nanotubes de carbone dans une cavité résonnante, soumis à des radiations micro-ondes

Contexte du stage

Câblage d'une expérience dans un cryostat à dilution

Cryostat à dilution sèche

Injection de paires de Cooper dans un nanotube de carbone

Source : injection de paires de Cooper intriquées

Grilles rapides : connectées au résonateur, injection de rayonnement μ Ondes

Sorties : mesure du courant à travers chaque puits quantique

Électrodes en contact avec le nanotube de carbone (SWNT)

- $lue{}$ Fréquence de résonance propre de la cavité $\sim 6.65 \mathrm{GHz}$
- Variation des potentiels des puits quantiques
 - → Modification de l'impédance de la cavité
 - → Modification des courants dans les puits quantiques

Blocage de Coulomb (courant dans un puits quantique)

Impédance de la cavité

Nécessités de qualité d'environnement et de mesure

Nécessités de qualité d'environnement et de mesure

Cohérence spatiale

- Pas de bruit thermique
- Cryostat
- Lignes électroniques thermalisées

Bon rapport signal/bruit

Choix cohérent des matériaux

Connaissance parfaite des conditions de mesure

Caractérisation des câbles

- Extraction de l'³He du mélange dans le réservoir $(Pp_{^3\text{He}} \gg Pp_{^4\text{He}})$
- Réinjection de l'³He dans la chambre de mélange
- Dilution de l'³He dans la phase diluée Réaction endothermique → Puissance calorifique

Schéma du cryostat à dilution et diagramme de phase du mélange d'Hélium

		Le cryostat à dilution	Schéma de câblage du cryostat	Le câblage RF	
		•			
191 (C	at a				

La dilution sèche

- Lignes Haute Fréquence
 - Grilles Rapides
 - Source (de paires de Cooper intriquées)
 - Remontée (mesure de l'impédance de la cavité)
- Lignes Continues
 - Potentiels des puits quantiques (Grilles)
 - Mesures de courant

Limiter le bruit thermique des câbles

→ Résistivité élevée

Conserver un bon rapport signal/bruit

→ Atténuateurs

L'inverse en remontée (Peu d'atténuation)

Choix des matériaux

Choix des matériaux

300 K
ightarrow 800 mK Câbles coaxiaux
 800 mK
ightarrow 20 mK Manganin (résistif)
 20 mK
ightarrow porte-échantillons Câbles peu résistifs

Aperçu des câbles DC

Thermalisation à chaque étage

- Diminuer le bruit électronique au fur et à mesure
- Presses dorées à chaque étage
- Stycast (époxy cryogénique)
- Câbles résistifs pour isolation thermique

Fils de Manganin "stycastés"

Thermalisation électronique

Boîtier de thermalisation électronique

- Dernière thermalisation à 20mK (Méandres)
- Filtre passe-bas (premier filtrage)

Boîtier de thermalisation non soudé

Boîtier de filtrage micro-ondes

- Filtrage micro-ondes grâce à l'Eccosorb
- Compartimentage du boîtier
 - ightarrow Impression 3D de prises

Boîtier modélisé, puis une fois installé

- Protection au rayonnement des étages supérieurs
- Protection au champ magnétique

Tresse connectée aux boîtiers de thermalisation et de filtrage

Choix des matériaux

Descente jusqu'à 20mK

Cuivre-Béryllium (impédance élevée)

Étage 20mK

Cuivre (faible impédance)

Remontée à 4K

Niobium-Titane (très faible impédance)

Remontée (après ampli à 4K)

Cuivre-Béryllium

Les différents câbles coaxiaux

Introduction L'expérience Le cryostat à dilution Schéma de câblage du cryostat Le câblage DC Le câblage RF Caractérisation des câbles coaxiaux

Fabrication d'un câble coaxial

Dénudage

Dénudage d'un câble coaxial

Fabrication d'un câble coaxial

Soudure de la pin centrale

Dénudage d'un câble coaxial

Introduction L'expérience Le cryostat à dilution Schéma de câblage du cryostat Le câblage DC Le câblage RF Caractérisation des câbles coaxiaux

Fabrication d'un câble coaxial

Prise extérieure

Dénudage d'un câble coaxial

Fabrication d'un câble coaxial

Emboutissage de l'isolant

Dénudage d'un câble coaxial

Introduction L'expérience Le cryostat à dilution Schéma de câblage du cryostat Le câblage DC Le câblage RF Caractérisation des câbles coaxiaux

Fabrication d'un câble coaxial

Cintrage du câble

Câbles coaxiaux cintrés en place

	Schéma de câblage du cryostat	Le câblage RF	Caractérisation des câbles coaxiaux