# Modeling the Sociodynamics of Applause

#### Midterm Presentation

#### Participants:

Ahmed Aly

Department of Applied Mathematics and Statistics, Johns Hopkins University Department of Sociology, Johns Hopkins University

October 17, 2012

### **Outline**

- Problem Description
- 2 Deliverables
- 3 Mathematical Background and Related Work
- 4 Approach
- Milestones
- 6 Recap
- Future Steps



Congress



State of the Union

# Value and Application

#### Ideally, the Model:

- Measures approval/acceptance of subject,
- 2 Can be applied to get a create a full blown applause,
- Oescribes the transfer of ideas and the rate of approval,

### Meet the Sponsors

Because the project is in research phase the sponsors have been chosen to be in an academic setting

- Department of Applied and Mathematics and Statistics at JHU
  is well known for its multi-faceted and verastile research as well as
- Department of Sociology at JHU

its industrial connections

is well known for its research in group psychology, social interactions, and group dynamics

Once a model is produced more industrial sponsors such as google, facebook, HBO, etc. can be added.

#### Goals

The main goal is to model the dynamics applause in an audience and to establish the critical mass needed to start a full blown applause.

#### Deliverables:

- A simple model of the individual,
- 2 An integrated model of the crowd,
- 3 A simulation to demostrate behavior given parameter changes,
- Technical reports and presentations summarizing the work.

#### **Related Work**

Diffusion of Innovations by Everett Rogers

Details the behavior and adoption of innovations and categorizes adopters.



Categories of Innovativeness

# **Key Observations**

- Members in the crowd are compelled to clap if crowd is clapping,
- The greater the intensity and duration of applause the greater the approval,
- After a full blown applause, there is a wait period in which clapping would be too late and full applause can not be generated,
- Willingness of individual members to clap depends on percieved intensity, stimulus, emotional state, and resistance to the crowd.

# **Key Assumptions**

- Stimulus (speech, opinion, performance, etc.) is average and constant,
- Clapping is only a result of a positive response other reasons are disregarded,
- 9 Psychological state of individual is stochastic

## First Objective

We will model individual as a open loop system.

- 3 factors to consider:
  - 1 mood (happy, sad, angry, etc.),

resistance and connectivity with the crowd,

social inhibition.

### First Objective

Let N be the population that claps, I be intensity and T be duration then we can think of the individual as:



Scheme of the Individual

## **Second Objective**

The second objective is to integrate the indivual models to examine the behavior of the population.

The critical mass/threshold needed to start a full-blown applause will be determined.

### **Simulation**

The simulation will be coded using Matlab with R documentation

### **Time Permitted**

If time permits we will examine recordings of speeches, performances, etc. We will determine the average intensity of a clap.

#### Milestones

#### Milestones

- Work Statement, Sep 28,2012,
- 2 Midterm Presentation, Oct 17,2012,
- Progress Report, Oct 26,2012,
- Final Presentation, Nov 6,2012,
- 5 Final Report, Nov 30,2012.

#### **Deliverables**

#### Deliverables:

- A simple model of the individual,
- 2 An integrated model of the crowd,
- 3 A simulation to demostrate behavior given parameter changes,
- Technical reports and presentations summarizing the work.

## To be Done (Objectives):

- Derive a function from observations for individual models,
- 2 Derive a function that integrates individual models,
- Integrate models,
- Algorithm for simulation.

### To be Done (Deliverables):

- 1 Progress Report, Oct 26,2012,
- Final Presentation, Nov 6,2012,
- Final Report, Nov 30,2012.

### **Future Steps**

- Get feedback
- 2 Establish Individual Model

#### THANK YOU