Eleven Tools in Feedback Control

Xu Chen

Department of Mechanical Engineering
University of Washington

Contents

- Basics: Arithmetic of LTI systems, Goals of feedback, Loop shaping, Tradeoffs
- Fundamental limitations
 - Bandwidth
 - Waterbed
 - Unstable zeros
 - Magnitude-phase relationship
- Practical control engineering
 - Sampling time
 - Delays
 - Time-frequency relationship

Arithmetic of feedback loops

Arithmetic of feedback loops

Arithmetic of feedback loops

Goals of feedback

Desired: ~1

Complementary Sensitivity Function

Goals of feedback

Complementary Sensitivity Function

Goals of feedback

Tradeoffs

$$y = \begin{cases} \frac{PC}{1+PC} & \frac{1}{1+PC} \end{cases} \begin{cases} \frac{\circ PC}{1+PC} & \frac{\$}{4} & \frac{r}{d_0} \end{cases}$$

Sensitivity Function:

$$S$$
, $(I + PC)^{\circ 1}$

Complementary Sensitivity Function:

T,
$$PC(I + PC)^{\circ 1}$$

 $S + T = I$

Fundamental Constraint:

$$S + T = I$$

Loop shaping

High-gain feedback

High-gain feedback

small gain in S
←→

high gain in **PC**

High-gain feedback

Typical high-gain control for performance at low frequency

Typical low-gain control for robustness at high frequency

Local high-gain feedback

Typical feedback design

x-axis in linear scale

Typical feedback design

Theorem (basic Bode's Integral): Let S(s) = 1 = (1 + L(s)). If L(s)and S(s) are both rational and stable. Then

$$\frac{1}{o} \int_{0}^{Z_{1}} \ln jS(j!)jd! = \frac{\circ 1}{2}k_{s}$$

$$k_{s} = \lim_{s! = 1} sL(s)$$

Theorem (basic Bode's Integral): Let S(s) = 1 = (1 + L(s)). If L(s)and S(s) are both rational and stable. Then

$$\frac{1}{0} \int_{0}^{Z_{1}} \ln jS(j!) jd! = \frac{1}{2} k_{s}$$

$$k_s = \lim_{s \neq 1} sL(s)$$

Special case: If the relative degree of L(s) larger than or equal to 2, then

$$\frac{1}{o} \int_{0}^{Z_{1}} \ln jS(j!) jd! = 0$$

Bandwidth limitation

Hence it is inevitable to have the error-amplification region.

Waterbed effect: pushing down **S** in one region causes amplification in some other region.

Waterbed Effect

Waterbed Effect

General Bode's Integral

Theorem (general Bode's Integral): Let S(s) = 1 = (1 + L(s)). If S(s) is stable and L(s) has unstable poles $fp_kg_{k=1}^q$. Then

$$\frac{1}{o} \sum_{0}^{Z_{1}} \ln jS(j!)jd! = \sum_{k=1}^{X^{q}} p_{k}$$

Proof: complex analysis, analytic functions, Cauchy Integral

• Example: $P = sP_{else} \rightarrow$ constant inputs can't impact the output

- Example: $P = sP_{else} \rightarrow$ constant inputs can't impact the output
- More consequences:
 - S always has magnitudes larger than one

- Example: $P = sP_{else} \rightarrow$ constant inputs can't impact the output
- More consequences:
 - S always has magnitudes larger than one Proof:

$$P(x_0) = 0$$
) $S(x_0) = 1 = (1 + 0 £ C(x_0)) = 1$

- Example: $P = sP_{else} \rightarrow$ constant inputs can't impact the output
- More consequences:
 - S always has magnitudes larger than one Proof:

$$P(x_0) = 0$$
) $S(x_0) = 1 = (1 + 0 £ C(x_0)) = 1$

Closed-loop stability) S(s) is analytic on the right-half complex plane

- Example: $P = sP_{else} \rightarrow$ constant inputs can't impact the output
- More consequences:
 - S always has magnitudes larger than one Proof:

$$P(x_0) = 0$$
) $S(x_0) = 1 = (1 + 0 £ C(x_0)) = 1$

Closed-loop stability) S(s) is analytic on the right-half complex plane

Maximum modulus theorem)

$$S(j!) > 1$$
 for some!

- Example: $P = sP_{else} \rightarrow$ constant inputs can't impact the output
- More consequences:
 - S always has magnitudes larger than one
 - Not able to perform accurate system ID
 - High-gain instability
 - Step responses can have initial undershoot
 - etc

Resonance and anti-resonance

- Typical in mechanical systems.
- Usually identified experimentally.

Notch filters

Notch filtering: one common technique to handle resonances

Fundamental constraint in notch filtering: introduces phase delays to the system

Theorem (Bode's Phase Formula): If L is a minimum-phase transfer function, then

$$\setminus L(j!) = \sum_{i=1}^{Z_{-1}} \frac{d \ln j L(e^{\int !}) j}{d \int} \sqrt{(\int) d \int}$$

where

$$\sqrt{(\int)} = \frac{1}{\sigma} \ln \frac{e^{j\int j=2} + e^{\circ j\int j=2}}{e^{j\int j=2} \circ e^{\circ j\int j=2}}$$
:

Theorem (Bode's Phase Formula): If L is a minimum-phase transfer function, then

$$\setminus L(j!) = \sum_{i=1}^{J} \frac{d \ln i L(e^{\int !})i}{d \int} \sqrt{(\int)d \int}$$

where

Slope of magnitude response

$$\sqrt{(\int)} = \frac{1}{\sigma} \ln \frac{e^{j \int j=2} + e^{\circ j \int j=2}}{e^{j \int j=2} \circ e^{\circ j \int j=2}}$$
:

Theorem (Bode's Phase Formula): If L is a minimum-phase transfer function, then

$$\setminus L(j!) = \sum_{i=1}^{J} \frac{d \ln j L(e^{\int !})j}{d \int} \sqrt{(\int)d \int}$$

where

Slope of magnitude response

$$\sqrt{(\int)} = \frac{1}{\sigma} \ln \frac{e^{j\int j=2} + e^{\circ j\int j=2}}{e^{j\int j=2} \circ e^{\circ j\int j=2}}$$
:

Approximately an impulse at 0

$$\sqrt{\left(\int\right)} = \frac{1}{\sigma} \ln \frac{e^{j\int j=2} + e^{\circ j\int j=2}}{e^{j\int j=2} \circ e^{\circ j\int j=2}}:$$

Theorem (Bode's Phase Formula): If L is a minimum-phase transfer function, then

$$\label{eq:local_$$

Discrete-time plant delay

Discrete-time plant delay

Discrete-time plant delay

Estimate rise time from "bandwidth"

Estimate rise time from "bandwidth"

 $!_n = 200 \text{ rad/sec}$

Estimate rise time from "bandwidth"

 $!_n = 200 \text{ rad/sec}$

Estimate "bandwidth" from rise time

Estimate "bandwidth" from rise time

Estimate "bandwidth" from rise time

Bandwidth and rise time: practical application

Step response of a high-order closed-loop system

Bandwidth and rise time: practical application

Step response of a high-order closed-loop system

Bandwidth °
$$\frac{2}{0.25 \pm 10^{\circ 3} \pm 2^{\circ}} = 1273 \text{ Hz}$$

Bandwidth and rise time: practical application

Step response of a high-order closed-loop system

$$\frac{2}{0.25 \pm 10^{\circ 3} \pm 2^{\circ}} = 1273 \text{ Hz}$$

#11

Sampling-time selection

- Rule of thumb:
 - Sampling frequency $10 \sim 20$ bandwidth (in Hz)

Sampling-time selection

- Rule of thumb:
 - Sampling frequency

Sampling-time selection

Intuition: 20 = the number of letters in "sampling frequencies"

- Rule of thumb:
 - Sampling frequency

 $10 \sim 20$ bandwidth (in Hz)

Example:

Tample:

$$P = k$$

$$C = \frac{! \frac{2}{n}}{s^2 + 2^a! \frac{1}{n}} \frac{1}{k}$$

$$S = \frac{1}{1 + PC} = \frac{s^2 + 2^a! \frac{1}{n}s}{s^2 + 2^a! \frac{1}{n}s + ! \frac{2}{n}}$$

$$T = 1 \circ S = \frac{! \frac{2}{n}}{s^2 + 2^a! \frac{1}{n}s + ! \frac{2}{n}}$$

Sampling frequency = 6 x bandwidth

Sampling frequency = $10 \times \text{ bandwidth}$

Sampling frequency = 20 x bandwidth

Sampling frequency = 40 x bandwidth

Related active research field

- Flexible loop shaping
- Vibration rejection and motion control
- MIMO loop shaping
- Delay compensation
- Adaptive control
- Nonlinear control and breaking the waterbed effect