

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/042980

International filing date: 23 December 2004 (23.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/532,205
Filing date: 23 December 2003 (23.12.2003)

Date of receipt at the International Bureau: 27 June 2005 (27.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

133468

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

June 16, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/532,205
FILING DATE: *December 23, 2003*
RELATED PCT APPLICATION NUMBER: *PCT/US04/42980*

Certified by

Under Secretary of Commerce
for Intellectual Property
and Director of the United States
Patent and Trademark Office

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No.

EU404288861US

U.S. PTO
60/532205

122303

INVENTOR(S)

Given Name (first and middle [if any])

Family Name or Surname

Residence
(City and either State or Foreign Country)Neil
JamesBerinstein
TartagliaToronto, Ontario, Canada
Toronto, Ontario, Canada Additional inventors are being named on the 1 separately numbered sheets attached hereto**TITLE OF THE INVENTION (500 characters max)****MODIFIED KSA AND USES THEREOF**

Direct all correspondence to:

CORRESPONDENCE ADDRESS Customer Number

Type Customer Number here →

Place Customer Number
Bar Code Label here

OR

Firm or
Individual Name

Patrick J. Halloran

Address

Aventis Pasteur, Inc.

Address

Discovery Drive, Knerr Building

City

Swiftwater

State

PA

ZIP

18370

Country

USA

Telephone

570-839-5446

Fax

570-895-2702

ENCLOSED APPLICATION PARTS (check all that apply) Specification Number of Pages

39

 CD(s), Number

 Drawing(s) Number of Sheets

22

 Other (specify)

 Application Data Sheet. See 37 CFR 1.76**METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT** Applicant claims small entity status. See 37 CFR 1.27.FILING FEE
AMOUNT (\$) A check or money order is enclosed to cover the filing fees

\$160.00

 The Commissioner is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: _____ Payment by credit card. Form PTO-2038 is attached.

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

 No. Yes, the name of the U.S. Government agency and the Government contract number are: _____

Respectfully submitted,

SIGNATURE

Date 12/23/2003

TYPED or PRINTED NAME Patrick J. Halloran

TELEPHONE 570-839-5446

REGISTRATION NO.
(if appropriate)
Docket Number:

41,053

API-03-17-PR

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C. 20231.

PROVISIONAL APPLICATION COVER SHEET
Additional Page

PTO/SB/16 (02-01)

Approved for use through 10/31/2002 OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number **API-03-17-PR**

INVENTOR(S)/APPLICANT(S)		
Given Name (first and middle [if any])	Family or Surname	Residence (City and either State or Foreign Country)
Mark	Parrington	Toronto, Ontario, Canada
Dennis	Panicalli	Boston, Massachusetts
Linda	Gritz	Boston, Massuchettes

Number 2 of 2

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

MODIFIED KSA AND USES THEREOF

FIELD OF THE INVENTION

The present invention relates to a nucleic acid encoding a polypeptide and the use of
5 the nucleic acid or polypeptide in preventing and / or treating cancer. In particular, the
invention relates to improved vectors for the insertion and expression of foreign genes
encoding tumor antigens for use in immunotherapeutic treatment of cancer.

BACKGROUND OF THE INVENTION

10 There has been tremendous increase in last few years in the development of cancer
vaccines with Tumour-associated antigens (TAAs) due to the great advances in identification
of molecules based on the expression profiling on primary tumours and normal cells with the
help of several techniques such as high density microarray, SEREX, immunohistochemistry
(IHC), RT-PCR, in-situ hybridization (ISH) and laser capture microscopy (Rosenberg,
15 Immunity, 1999; Sgroi et al, 1999, Schena et al, 1995, Offringa et al, 2000). The TAAs are
antigens expressed or over-expressed by tumour cells and could be specific to one or several
tumours for example CEA antigen is expressed in colorectal, breast and lung cancers. Sgroi et
al (1999) identified several genes differentially expressed in invasive and metastatic
carcinoma cells with combined use of laser capture microdissection and cDNA microarrays.
20 Several delivery systems like DNA or viruses could be used for therapeutic vaccination
against human cancers (Bonnet et al, 2000) and can elicit immune responses and also break
immune tolerance against TAAs. Tumour cells can be rendered more immunogenic by
inserting transgenes encoding T cell co-stimulatory molecules such as B7.1 or cytokines
IFNgamma, IL2, GM-CSF etc. Co-expression of a TAA and a cytokine or a co-stimulatory
25 molecule can develop effective therapeutic vaccine (Hodge et al, 95, Bronte et al, 1995,
Chamberlain et al, 1996).

There is a need in the art for reagents and methodologies useful in stimulating an
immune response to prevent or treat cancers. The present inventions provides such reagents
and methodologies which overcome many of the difficulties encountered by others in
30 attempting to treat cancers such as cancer. In particular, the present invention provides an
expression vector for expressing multiple tumor antigens and/or co-stimulatory components.

Such expression vectors are desired by those of skill in the art to improve anti-tumor immunity in cancer patients.

SUMMARY OF THE INVENTION

5 The present invention provides an immunogenic target for administration to a patient to prevent and / or treat cancer. In one embodiment, a single expression vector encoding the immunogenic targets CEA and p53 is provided (multiantigen expression vector). In another embodiment, a modified KSA sequence and vectors for expressing modified KSA are provided. Expression vectors encoding co-stimulatory components such as B7.1, LFA-3 and/or ICAM-1 in combination with CEA, p53 and/or KSA are also provided. In one embodiment, an ALVAC vector encoding CEA, p53, B7.1, LFA-3 and ICAM-1 is provided. In another embodiment, an ALVAC vector encoding modified KSA, B7.1, LFA-3 and ICAM-1 is provided. In yet another embodiment, an ALVAC vector encoding CEA, p53, modified KSA, B7.1, LFA-3 and ICAM-1 is provided. In certain embodiments, the 10 expression vectors are administered to a patient as a nucleic acid contained within a plasmid or other delivery vector, such as a recombinant virus. The expression vector may also be administered in combination with an immune stimulator, such as a co-stimulatory molecule 15 or adjuvant.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Donor plasmid useful in producing the ALVAC vector vcp2086.

Figure 2. Comparison of nucleotide sequence of CAP(6D) and CAP(6D)-1,2. Differences between the sequences are underlined.

Figure 3. A. Comparison of the amino acid sequences of wild-type KSA and modified 25 KSA. B. DNA sequence encoding modified KSA

Figure 4. Construction of modified KSA plasmids.

Figure 5. A. Plasmid map of pT2255KSAV-1. B. DNA sequence of pT2255KSAV-1.

Figure 6. Plasmid maps of pALVAC.Tricom(C3)#33 and pT2255KSA(Val)LM.

DETAILED DESCRIPTION

30 The present invention provides reagents and methodologies useful for treating and / or preventing cancer. All references cited within this application are incorporated by reference.

Deposited December 23, 2003

In one embodiment, the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens ("TA") to prevent and / or treat cancer. In certain embodiments, one or more TAs may be combined. In preferred embodiments, the immune response results from expression of a TA in a host cell following 5 administration of a nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a peptide or polypeptide, for example.

As used herein, an "antigen" is a molecule (such as a polypeptide) or a portion thereof that produces an immune response in a host to whom the antigen has been administered. The immune response may include the production of antibodies that bind to at least one epitope of 10 the antigen and / or the generation of a cellular immune response against cells expressing an epitope of the antigen. The response may be an enhancement of a current immune response by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increased cellular response (i.e., increased T cells). An antigen that produces an immune response may alternatively be referred to as being 15 immunogenic or as an immunogen. In describing the present invention, a TA may be referred to as an "immunogenic target".

TA includes both tumor-associated antigens (TAAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen. A TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells 20 or an antigen that is expressed on normal cells during fetal development. A TSA is an antigen that is unique to tumor cells and is not expressed on normal cells. TA further includes TAAAs or TSAs, antigenic fragments thereof, and modified versions that retain their antigenicity.

TAs are typically classified into five categories according to their expression pattern, 25 function, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gp100); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed 'self' antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV). For the purposes of practicing the present invention, a suitable 30 TA is any TA that induces or enhances an anti-tumor immune response in a host to whom the TA has been administered. Suitable TAs include, for example, gp100 (Cox et al., *Science*, 264:716-719 (1994)), MART-1/Melan A (Kawakami et al., *J. Exp. Med.*, 180:347-352 (1994)), gp75 (TRP-1) (Wang et al., *J. Exp. Med.*, 186:1131-1140 (1996)), tyrosinase (Wolfel

- et al., *Eur. J. Immunol.*, 24:759-764 (1994); WO 200175117; WO 200175016; WO 200175007), NY-ESO-1 (WO 98/14464; WO 99/18206), melanoma proteoglycan (Hellstrom et al., *J. Immunol.*, 130:1467-1472 (1983)), MAGE family antigens (i.e., MAGE-1, 2,3,4,6,12, 51; Van der Bruggen et al., *Science*, 254:1643-1647 (1991); U.S. Pat. Nos. 5 6,235,525; CN 1319611), BAGE family antigens (Boel et al., *Immunity*, 2:167-175 (1995)), GAGE family antigens (i.e., GAGE-1,2; Van den Eynde et al., *J. Exp. Med.*, 182:689-698 (1995); U.S. Pat. No. 6,013,765), RAGE family antigens (i.e., RAGE-1; Gaugler et al., *Immunogenetics*, 44:323-330 (1996); U.S. Pat. No. 5,939,526), N-acetylglucosaminyltransferase-V (Guilloux et al., *J. Exp. Med.*, 183:1173-1183 (1996)), p15 10 (Robbins et al., *J. Immunol.* 154:5944-5950 (1995)), β -catenin (Robbins et al., *J. Exp. Med.*, 183:1185-1192 (1996)), MUM-1 (Coulie et al., *Proc. Natl. Acad. Sci. USA*, 92:7976-7980 (1995)), cyclin dependent kinase-4 (CDK4) (Wolfel et al., *Science*, 269:1281-1284 (1995)), p21-ras (Fossum et al., *Int. J. Cancer*, 56:40-45 (1994)), BCR-abl (Bocchia et al., *Blood*, 85:2680-2684 (1995)), p53 (Theobald et al., *Proc. Natl. Acad. Sci. USA*, 92:11993-11997 15 (1995)), p185 HER2/neu (erb-B1; Fisk et al., *J. Exp. Med.*, 181:2109-2117 (1995)), epidermal growth factor receptor (EGFR) (Harris et al., *Breast Cancer Res. Treat.* 29:1-2 (1994)), carcinoembryonic antigens (CEA) (Kwong et al., *J. Natl. Cancer Inst.*, 85:982-990 (1995) U.S. Pat. Nos. 5,756,103; 5,274,087; 5,571,710; 6,071,716; 5,698,530; 6,045,802; EP 263933; EP 346710; and, EP 784483); carcinoma-associated mutated mucins (i.e., MUC-1 20 gene products; Jerome et al., *J. Immunol.*, 151:1654-1662 (1993)); EBNA gene products of EBV (i.e., EBNA-1; Rickinson et al., *Cancer Surveys*, 13:53-80 (1992)); E7, E6 proteins of human papillomavirus (Ressing et al., *J. Immunol.*, 154:5934-5943 (1995)); prostate specific antigen (PSA; Xue et al., *The Prostate*, 30:73-78 (1997)); prostate specific membrane antigen (PSMA; Israeli, et al., *Cancer Res.*, 54:1807-1811 (1994)); idiotypic epitopes or 25 antigens, for example, immunoglobulin idotypes or T cell receptor idotypes (Chen et al., *J. Immunol.*, 153:4775-4787 (1994)); KSA (U.S. Patent No. 5,348,887), kinesin 2 (Dietz, et al. Biochem Biophys Res Commun 2000 Sep 7;275(3):731-8), HIP-55, TGF β -1 anti-apoptotic factor (Toomey, et al. Br J Biomed Sci 2001;58(3):177-83), tumor protein D52 (Bryne J.A., et al., Genomics, 35:523-532 (1996)), H1FT, NY-BR-1 (WO 01/47959), NY-BR-62, NY- 30 BR-75, NY-BR-85, NY-BR-87, NY-BR-96 (Scanlan, M. Serologic and Bioinformatic Approaches to the Identification of Human Tumor Antigens, in *Cancer Vaccines 2000*, Cancer Research Institute, New York, NY), including "wild-type" (i.e., normally encoded by

Deposited December 23, 2003

the genome, naturally-occurring), modified, and mutated versions as well as other fragments and derivatives thereof. Any of these TAs may be utilized alone or in combination with one another in a co-immunization protocol.

In certain cases, it may be beneficial to co-immunize patients with both TA and other antigens, such as angiogenesis-associated antigens ("AA"). An AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and / or continued development of blood vessels. For example, an AA may be expressed on an endothelial cell ("EC"), which is a primary structural component of blood vessels. Where the cancer is cancer, it is preferred that that the AA be found within or near blood vessels that supply a tumor. Immunization of a patient against an AA preferably results in an anti-AA immune response whereby angiogenic processes that occur near or within tumors are prevented and / or inhibited.

Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Bernardini, et al. *J. Urol.*, 2001, 166(4): 1275-9; Starnes, et al. *J. Thorac. Cardiovasc. Surg.*, 2001, 122(3): 518-23), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Starnes, et al. *J. Thorac. Cardiovasc. Surg.*, 2001, 122(3): 518-23), EPH receptors (i.e., EPHA2; Gerety, et al. 1999, *Cell*, 4: 403-414), epidermal growth factor receptor (i.e., EGFR; Ciardello, et al. *Clin. Cancer Res.*, 2001, 7(10): 2958-70), basic fibroblast growth factor (i.e., bFGF; Davidson, et al. *Clin. Exp. Metastasis* 2000, 18(6): 501-7; Poon, et al. *Am J. Surg.*, 2001, 182(3):298-304), platelet-derived cell growth factor (i.e., PDGF-B), platelet-derived endothelial cell growth factor (PD-ECGF; Hong, et al. *J. Mol. Med.*, 2001, 8(2):141-8), transforming growth factors (i.e., TGF- α ; Hong, et al. *J. Mol. Med.*, 2001, 8(2):141-8), endoglin (Balza, et al. *Int. J. Cancer*, 2001, 94: 579-585), Id proteins (Benezra, R. *Trends Cardiovasc. Med.*, 2001, 11(6):237-41), proteases such as uPA, uPAR, and matrix metalloproteinases (MMP-2, MMP-9; Djonov, et al. *J. Pathol.*, 2001, 195(2):147-55), nitric oxide synthase (Am. J. Ophthalmol., 2001, 132(4):551-6), aminopeptidase (Roushhati, E. *Nature Cancer*, 2: 84-90, 2002), thrombospondins (i.e., TSP-1, TSP-2; Alvarez, et al. *Gynecol. Oncol.*, 2001, 82(2):273-8; Seki, et al. *Int. J. Oncol.*, 2001, 19(2):305-10), k-ras (Zhang, et al. *Cancer Res.*, 2001, 61(16):6050-4), Wnt (Zhang, et al. *Cancer Res.*, 2001, 61(16):6050-4), cyclin-dependent kinases (CDKs; *Drug Resist. Updat.* 2000, 3(2):83-88), microtubules (Timar, et al. 2001. *Path. Oncol. Res.*, 7(2): 85-94), heat shock proteins (i.e., HSP90 (Timar, *supra*)), heparin-binding factors (i.e., heparinase; Gohji, et al. *Int. J. Cancer*, 2001, 95(5):295-301), synthases

(i.e., ATP synthase, thymidilate synthase), collagen receptors, integrins (i.e., $\alpha\beta 3$, $\alpha\beta 5$, $\alpha 1\beta 1$, $\alpha 2\beta 1$, $\alpha 5\beta 1$), the surface proteoglycan NG2, AAC2-1, or AAC2-2, among others, including "wild-type" (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof. Any of these targets
5 may be suitable in practicing the present invention, either alone or in combination with one another or with other agents.

In certain embodiments, a nucleic acid molecule encoding an immunogenic target is utilized. The nucleic acid molecule may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that
10 contained in a DNA insert in an ATCC Deposit. The term "nucleic acid sequence" or "nucleic acid molecule" refers to a DNA or RNA sequence. The term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinyl-cytosine, pseudoisocytosine, 5-(carboxyhydroxymethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-
15 carboxymethylaminomethyl-2-thiouracil, 5-carboxy-methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudoouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine,
20 5' -methoxycarbonyl-methyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine, among others.

An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not be linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and / or, (4) does not occur in
25 nature as part of a larger polynucleotide sequence. Preferably, the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would
30

interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use. As used herein, the term "naturally occurring" or "native" or "naturally found" when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature and are not manipulated by man. Similarly, "non-naturally occurring" or "non-native" as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.

The identity of two or more nucleic acid or polypeptide molecules is determined by comparing the sequences. As known in the art, "identity" means the degree of sequence relatedness between nucleic acid molecules or polypeptides as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the related sequence to hybridize to the nucleic acid sequence or isolated nucleic acid molecule. In defining such sequences, the term "highly stringent conditions" and "moderately stringent conditions" refer to procedures that permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids. Examples of "highly stringent conditions" for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42°C. (see, for example, Sambrook, Fritsch & Maniatis, *Molecular Cloning: A Laboratory Manual* (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson *et al.*, *Nucleic Acid Hybridisation: A Practical Approach* Ch. 4 (IRL Press Limited)). The term "moderately stringent conditions" refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50°C. By way of example, moderately stringent conditions of 50°C in 0.015 M sodium ion will allow about a 21% mismatch. During hybridization, other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-

Deposited December 23, 2003

pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate, NaDODSO₄, (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The concentration and types of these additives can be changed without substantially affecting the 5 stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH.

In preferred embodiments of the present invention, vectors are used to transfer a nucleic acid sequence encoding a polypeptide to a cell. A vector is any molecule used to 10 transfer a nucleic acid sequence to a host cell. In certain cases, an expression vector is utilized. An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and / or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present. Expression vectors 15 typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide. Flanking sequences may be homologous (i.e., from the same species and / or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.

A flanking sequence is preferably capable of effecting the replication, transcription and / or translation of the coding sequence and is operably linked to a coding sequence. As 20 used herein, the term operably linked refers to a linkage of polynucleotide elements in a functional relationship. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. However, a flanking sequence 25 need not necessarily be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence may still be considered operably linked to the coding sequence. Similarly, an enhancer sequence may be located upstream or downstream from the coding sequence and affect 30 transcription of the sequence.

In certain embodiments, it is preferred that the flanking sequence is a transcriptional regulatory region that drives high-level gene expression in the target cell. The transcriptional

regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element, or combinations thereof. The transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e., responsive to interaction with a compound such as tetracycline). The source of a transcriptional regulatory region may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell. A wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.

Suitable transcriptional regulatory regions include the CMV promoter (i.e., the CMV-immediate early promoter); promoters from eukaryotic genes (i.e., the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adenovirus gene promoters; the SV40 early promoter region (Bernoist and Chambon, 1981, *Nature* 290:304-10); the promoter contained in the 3' long terminal repeat (LTR) of Rous sarcoma virus (RSV) (Yamamoto, *et al.*, 1980, *Cell* 22:787-97); the herpes simplex virus thymidine kinase (HSV-TK) promoter (Wagner *et al.*, 1981, *Proc. Natl. Acad. Sci. U.S.A.* 78:1444-45); the regulatory sequences of the metallothioneine gene (Brinster *et al.*, 1982, *Nature* 296:39-42); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff *et al.*, 1978, *Proc. Natl. Acad. Sci. U.S.A.*, 75:3727-31); or the tac promoter (DeBoer *et al.*, 1983, *Proc. Natl. Acad. Sci. U.S.A.*, 80:21-25). Tissue- and / or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift *et al.*, 1984, *Cell* 38:639-46; Ornitz *et al.*, 1986, *Cold Spring Harbor Symp. Quant. Biol.* 50:399-409 (1986); MacDonald, 1987, *Hepatology* 7:425-515); the insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, *Nature* 315:115-22); the immunoglobulin gene control region which is active in lymphoid cells (Grosschedl *et al.*, 1984, *Cell* 38:647-58; Adames *et al.*, 1985, *Nature* 318:533-38; Alexander *et al.*, 1987, *Mol. Cell. Biol.*, 7:1436-44); the mouse mammary tumor virus control region in testicular, breast, lymphoid and mast cells (Leder *et al.*, 1986, *Cell* 45:485-95); the albumin gene control region in liver (Pinkert *et al.*, 1987, *Genes and Devel.* 1:268-76); the alpha-feto-protein gene control region in liver (Krumlauf *et al.*, 1985, *Mol. Cell. Biol.*, 5:1639-48; Hammer *et al.*, 1987, *Science* 235:53-58); the alpha 1-

antitrypsin gene control region in liver (Kelsey *et al.*, 1987, *Genes and Devel.* 1:161-71); the beta-globin gene control region in myeloid cells (Mogram *et al.*, 1985, *Nature* 315:338-40; Kollias *et al.*, 1986, *Cell* 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead *et al.*, 1987, *Cell* 48:703-12); the myosin light chain-2 gene control region in skeletal muscle (Sani, 1985, *Nature* 314:283-86); the gonadotropin releasing hormone gene control region in the hypothalamus (Mason *et al.*, 1986, *Science* 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I. *Semin Oncol* 1996 Feb;23(1):154-8; Siders, *et al.* *Cancer Gene Ther* 1998 Sep-Oct;5(5):281-91), among others. Other suitable promoters are known in the art.

As described above, enhancers may also be suitable flanking sequences. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5' and 3' to controlled coding sequences. Several enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha-feto-protein and insulin). Similarly, the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are useful with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a position 5' or 3' to nucleic acid coding sequence, it is typically located at a site 5' from the promoter. Other suitable enhancers are known in the art, and would be applicable to the present invention.

While preparing reagents of the present invention, cells may need to be transfected or transformed. Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art (i.e., Graham *et al.*, 1973, *Virology* 52:456; Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual* (Cold Spring Harbor Laboratories, 1989); Davis *et al.*, *Basic Methods in Molecular Biology* (Elsevier, 1986); and Chu *et al.*, 1981, *Gene* 13:197). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.

In certain embodiments, it is preferred that transfection of a cell results in transformation of that cell. A cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid. Following transfection, the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an

episomal element without being replicated, or may replicate independently as a plasmid. A cell is stably transformed when the nucleic acid is replicated with the division of the cell.

The present invention further provides isolated immunogenic targets in polypeptide form. A polypeptide is considered isolated where it: (1) has been separated from at least 5 about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is naturally found when isolated from the source cell; (2) is not linked (by covalent or noncovalent interaction) to all or a portion of a polypeptide to which the "isolated polypeptide" is linked in nature; (3) is operably linked (by covalent or noncovalent interaction) to a polypeptide with which it is not linked in nature; or, (4) does not occur in 10 nature. Preferably, the isolated polypeptide is substantially free from any other contaminating polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic or research use.

Immunogenic target polypeptides may be mature polypeptides, as defined herein, and 15 may or may not have an amino terminal methionine residue, depending on the method by which they are prepared. Further contemplated are related polypeptides such as, for example, fragments, variants (i.e., allelic, splice), orthologs, homologues, and derivatives, for example, that possess at least one characteristic or activity (i.e., activity, antigenicity) of the immunogenic target. Also related are peptides, which refers to a series of contiguous amino acid residues having a sequence corresponding to at least a portion of the polypeptide from 20 which its sequence is derived. In preferred embodiments, the peptide comprises about 5-10 amino acids, 10-15 amino acids, 15-20 amino acids, 20-30 amino acids, or 30-50 amino acids. In a more preferred embodiment, a peptide comprises 9-12 amino acids, suitable for presentation upon Class I MHC molecules, for example.

A fragment of a nucleic acid or polypeptide comprises a truncation of the sequence 25 (i.e., nucleic acid or polypeptide) at the amino terminus (with or without a leader sequence) and / or the carboxy terminus. Fragments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence. In preferred embodiments, truncations and/or deletions comprise about 10 amino acids, 20 amino acids, 30 30 amino acids, 40 amino acids, 50 amino acids, or more. The polypeptide fragments so produced will comprise about 10 amino acids, 25 amino acids, 30 amino acids, 40 amino acids, 50 amino acids, 60 amino acids, 70 amino acids, or more. Such polypeptide fragments

may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic target polypeptides.

A variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence. Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules. In preferred embodiments, the variants have from 1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, insertions, additions and/or deletions.

An allelic variant is one of several possible naturally-occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms. A splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript. An ortholog is a similar nucleic acid or polypeptide sequence from another species. For example, the mouse and human versions of an immunogenic target polypeptide may be considered orthologs of each other. A derivative of a sequence is one that is derived from a parental sequence those sequences having substitutions, additions, deletions, or chemically modified variants. Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).

"Similarity" is a concept related to identity, except that similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% (15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.

Substitutions may be conservative, or non-conservative, or any combination thereof. Conservative amino acid modifications to the sequence of a polypeptide (and the corresponding modifications to the encoding nucleotides) may produce polypeptides having

Deposited December 23, 2003

- functional and chemical characteristics similar to those of a parental polypeptide. For example, a "conservative amino acid substitution" may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that position 5 and, in particular, does not result in decreased immunogenicity. Suitable conservative amino acid substitutions are shown in **Table I**.

Table I

Original Residues	Exemplary Substitutions	Preferred Substitutions
Ala	Val, Leu, Ile	Val
Arg	Lys, Gln, Asn	Lys
Asn	Gln	Gln
Asp	Glu	Glu
Cys	Ser, Ala	Ser
Gln	Asn	Asn
Glu	Asp	Asp
Gly	Pro, Ala	Ala
His	Asn, Gln, Lys, Arg	Arg
Ile	Leu, Val, Met, Ala, Phe, Norleucine	Leu
Leu	Norleucine, Ile, Val, Met, Ala, Phe	Ile
Lys	Arg, 1,4 Diamino-butrylic Acid, Gln, Asn	Arg
Met	Leu, Phe, Ile	Leu
Phe	Leu, Val, Ile, Ala, Tyr	Leu
Pro	Ala	Gly
Ser	Thr, Ala, Cys	Thr
Thr	Ser	Ser
Trp	Tyr, Phe	Tyr
Tyr	Trp, Phe, Thr, Ser	Phe
Val	Ile, Met, Leu, Phe, Ala, Norleucine	Leu

- A skilled artisan will be able to determine suitable variants of polypeptide using well-known techniques. For identifying suitable areas of the molecule that may be changed without destroying biological activity (i.e., MHC binding, immunogenicity), one skilled in the art may target areas not believed to be important for that activity. For example, when similar polypeptides with similar activities from the same species or from other species are known, one skilled in the art may compare the amino acid sequence of a polypeptide to such 10 similar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved among similar polypeptides. It will be appreciated that changes in areas of the molecule that are not conserved relative to such similar polypeptides 15

- would be less likely to adversely affect the biological activity and/or structure of a polypeptide. Similarly, the residues required for binding to MHC are known, and may be modified to improve binding. However, modifications resulting in decreased binding to MHC will not be appropriate in most situations. One skilled in the art would also know that,
- 5 even in relatively conserved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity. Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.
- 10 Other preferred polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence. In one embodiment, polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence. An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. To affect O-linked glycosylation of a polypeptide, one would modify serine and / or threonine residues.

25 Additional preferred variants include cysteine variants, wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set. Cysteine variants are useful when polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.

30 In other embodiments, the isolated polypeptides of the current invention include fusion polypeptide segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide

variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a linker or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically from about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for 5 a protease to allow for the separation of the fused moieties. It will be appreciated that once constructed, the fusion polypeptides can be derivatized according to the methods described herein. Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immunoglobulin binding domains (i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding 10 domains (e.g., a maltose binding domain), and/or a "tag" domain (i.e., at least a portion of α -galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies). This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the sequence of interest polypeptide from the host 15 cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a co-stimulatory components such as the chemokines CXCL10 (IP-10), CCL7 (MCP-3), or 20 CCL5 (RANTES), for example.

A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum. These sequences, referred to as transduction or transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), *Drosophila* antennapedia (see Schutze-Redelmeier et al. 1996 J. 25 Immunol. 157:650), or human period-1 protein (hPER1; in particular, SRRHHCRSKAKRSRHH).

In addition, the polypeptide or variant thereof may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer. Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow 30 for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an

enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide or variant thereof.

- 5 In certain embodiments, it may be advantageous to combine a nucleic acid sequence encoding an immunogenic target, polypeptide, or derivative thereof with one or more co-stimulatory component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention. The co-stimulatory component may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example.
- 10 Suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutloff, et al. *Nature* 1999, 397: 263–265; Peach, et al. *J Exp Med* 1994, 180: 2049–2058) such as the CD28 binding polypeptides B7.1 (CD80; Schwartz, 1992; Chen et al, 1992; Ellis, et al. *J. Immunol.*, 156(8): 2700-9) and B7.2 (CD86; Ellis, et al. *J. Immunol.*, 156(8): 2700-9); polypeptides which bind members of the integrin family (i.e., LFA-1 (CD11a / CD18); Sedwick, et al. *J Immunol* 1999, 162: 1367–1375; Wülfing, et al. *Science* 1998, 282: 2266–2269; Lub, et al. *Immunol Today* 1995, 16: 479–483) including members of the ICAM family (i.e., ICAM-1, -2 or -3); polypeptides which bind CD2 family members (i.e., CD2, signalling lymphocyte activation molecule (CDw150 or “SLAM”; Aversa, et al.
- 15 *J Immunol* 1997, 158: 4036–4044)) such as CD58 (LFA-3; CD2 ligand; Davis, et al. *Immunol Today* 1996, 17: 177–187) or SLAM ligands (Sayos, et al. *Nature* 1998, 395: 462–469); polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. *Eur J Immunol* 1997, 27: 2524–2528); polypeptides which bind to members of the TNF receptor (TNFR) family (i.e., 4-1BB (CD137; Vinay, et al. *Semin Immunol* 1998, 10: 481–489),
- 20 OX40 (CD134; Weinberg, et al. *Semin Immunol* 1998, 10: 471–480; Higgins, et al. *J Immunol* 1999, 162: 486–493), and CD27 (Lens, et al. *Semin Immunol* 1998, 10: 491–499)) such as 4-1BBL (4-1BB ligand; Vinay, et al. *Semin Immunol* 1998, 10: 481–48; DeBenedette, et al. *J Immunol* 1997, 158: 551–559), TNFR associated factor-1 (TRAF-1; 4-1BB ligand; Saoulli, et al. *J Exp Med* 1998, 187: 1849–1862, Arch, et al. *Mol Cell Biol* 1998, 18: 558–565), TRAF-2 (4-1BB and OX40 ligand; Saoulli, et al. *J Exp Med* 1998, 187: 1849–1862; Oshima, et al. *Int Immunol* 1998, 10: 517–526, Kawamata, et al. *J Biol Chem* 1998, 273: 5808–5814), TRAF-3 (4-1BB and OX40 ligand; Arch, et al. *Mol Cell Biol* 1998,

18: 558-565; Jang, et al. *Biochem Biophys Res Commun* 1998, 242: 613-620; Kawamata S., et al. *J Biol Chem* 1998, 273: 5808-5814), OX40L (OX40 ligand; Gramaglia, et al. *J Immunol* 1998, 161: 6510-6517), TRAF-5 (OX40 ligand; Arch, et al. *Mol Cell Biol* 1998, 18: 558-565; Kawamata, et al. *J Biol Chem* 1998, 273: 5808-5814), and CD70 (CD27 5 ligand; Couderc, et al. *Cancer Gene Ther.*, 5(3): 163-75). CD154 (CD40 ligand or "CD40L"; Gurunathan, et al. *J. Immunol.*, 1998, 161: 4563-4571; Sine, et al. *Hum. Gene Ther.*, 2001, 12: 1091-1102) may also be suitable.

One or more cytokines may also be suitable co-stimulatory components or "adjuvants", either as polypeptides or being encoded by nucleic acids contained within the 10 compositions of the present invention (Parmiani, et al. *Immunol Lett* 2000 Sep 15; 74(1): 41-4; Berzofsky, et al. *Nature Immunol.* 1: 209-219). Suitable cytokines include, for example, interleukin-2 (IL-2) (Rosenberg, et al. *Nature Med.* 4: 321-327 (1998)), IL-4, IL-7, IL-12 (reviewed by Pardoll, 1992; Harries, et al. *J. Gene Med.* 2000 Jul-Aug;2(4):243-9; Rao, et al. *J. Immunol.* 156: 3357-3365 (1996)), IL-15 (Xin, et al. *Vaccine*, 17:858-866, 1999), IL-16 15 (Cruikshank, et al. *J. Leuk Biol.* 67(6): 757-66, 2000), IL-18 (*J. Cancer Res. Clin. Oncol.* 2001. 127(12): 718-726), GM-CSF (CSF (Disis, et al. *Blood*, 88: 202-210 (1996)), or IFN.

As mentioned above, interferons may also be suitable cytokines for use in practicing the present invention. There are three main classes of interferon (alpha interferon (IFN- α), beta interferon (IFN- β) and gamma interferon (IFN- γ)) and at least 22 subtypes from among 20 these. Many of these are available commercially. For instance, IFNs are commercially available as INFERGEN® (interferon alfacon-1; Intermune), Viraferon® (Schering-Plough), Roferon-A® (Roche) Wellferon® (Glaxo SmithKline), IFN α 2b (Schering Canada, Pointe-Claire, Quebec), IFN beta-1b (Betaseron®; Berlex Laboratories), Avonex® (IFN beta-1a; Biogen); and Rebif® (IFN beta-1a ;Serono, Pfizer), Actimmune® (Interferon gamma-1b; 25 Intermune). Preparations containing multiple IFN species in a single preparation are also available (i.e., IFN-alpha N3 or *Alferon N*). Variant and modified IFNs are also well-known (i.e., Maral, et al. *Proc Am Soc Clin Oncol* 22: page 174, 2003 (abstr 698); pegylated interferon alpha / Pegasys® (Roche); Peg Intron® (Schering Plough)). Other cytokines may also be suitable for practicing the present invention, as is known in the art. Other cytokines 30 may also be suitable for practicing the present invention, as is known in the art.

Chemokines may also be utilized. For example, fusion proteins comprising CXCL10 (IP-10) and CCL7 (MCP-3) fused to a tumor self-antigen have been shown to induce anti-

tumor immunity (Biragyn, et al. *Nature Biotech.* 1999, 17: 253-258). The chemokines CCL3 (MIP-1 α) and CCL5 (RANTES) (Boyer, et al. *Vaccine*, 1999, 17 (Supp. 2): S53-S64) may also be of use in practicing the present invention. Other suitable chemokines are known in the art.

- 5 It is also known in the art that suppressive or negative regulatory immune mechanisms may be blocked, resulting in enhanced immune responses. For instance, treatment with anti-CTLA-4 (Shrikant, et al. *Immunity*, 1996, 14: 145-155; Sutmuller, et al. *J. Exp. Med.*, 2001, 194: 823-832), anti-CD25 (Sutmuller, *supra*), anti-CD4 (Matsui, et al. *J. Immunol.*, 1999, 163: 184-193), the fusion protein IL13Ra2-Fc (Terabe, et al. *Nature Immunol.*, 2000, 1: 515-520), and combinations thereof (i.e., anti-CTLA-4 and anti-CD25, Sutmuller, *supra*) have been shown to upregulate anti-tumor immune responses and would be suitable in practicing the present invention.

- Any of these components may be used alone or in combination with other agents. For instance, it has been shown that a combination of CD80, ICAM-1 and LFA-3 ("TRICOM") 15 may potentiate anti-cancer immune responses (Hodge, et al. *Cancer Res.* 59: 5800-5807 (1999)). Other effective combinations include, for example, IL-12 + GM-CSF (Ahlers, et al. *J. Immunol.*, 158: 3947-3958 (1997); Iwasaki, et al. *J. Immunol.* 158: 4591-4601 (1997)), IL-12 + GM-CSF + TNF- α (Ahlers, et al. *Int. Immunol.* 13: 897-908 (2001)), CD80 + IL-12 (Fruend, et al. *Int. J. Cancer*, 85: 508-517 (2000); Rao, et al. *supra*), and CD86 + GM-CSF + 20 IL-12 (Iwasaki, *supra*). One of skill in the art would be aware of additional combinations useful in carrying out the present invention. In addition, the skilled artisan would be aware of additional reagents or methods that may be used to modulate such mechanisms. These reagents and methods, as well as others known by those of skill in the art, may be utilized in practicing the present invention.

- 25 Additional strategies for improving the efficiency of nucleic acid-based immunization may also be used including, for example, the use of self-replicating viral replicons (Caley, et al. 1999. *Vaccine*, 17: 3124-2135; Dubensky, et al. 2000. *Mol. Med.* 6: 723-732; Leitner, et al. 2000. *Cancer Res.* 60: 51-55), codon optimization (Liu, et al. 2000. *Mol. Ther.*, 1: 497-500; Dubensky, *supra*; Huang, et al. 2001. *J. Virol.* 75: 4947-4951), *in vivo* electroporation 30 (Widera, et al. 2000. *J. Immunol.* 164: 4635-3640), incorporation of CpG stimulatory motifs (Gurunathan, et al. *Ann. Rev. Immunol.*, 2000, 18: 927-974; Leitner, *supra*), sequences for targeting of the endocytic or ubiquitin-processing pathways (Thomson, et al. 1998. *J. Virol.*

72: 2246-2252; Velders, et al. 2001. *J. Immunol.* 166: 5366-5373), prime-boost regimens (Gurunathan, *supra*; Sullivan, et al. 2000. *Nature*, 408: 605-609; Hanke, et al. 1998. *Vaccine*, 16: 439-445; Amara, et al. 2001. *Science*, 292: 69-74), and the use of mucosal delivery vectors such as *Salmonella* (Darji, et al. 1997. *Cell*, 91: 765-775; Woo, et al. 2001. *Vaccine*, 19: 2945-2954). Other methods are known in the art, some of which are described below.

Chemotherapeutic agents, radiation, anti-angiogenic compounds, or other agents may also be utilized in treating and / or preventing cancer using immunogenic targets (Sefti, et al. Oncogene 2000 Dec 27;19(56):6566-73). For example, in treating metastatic breast cancer, useful chemotherapeutic agents include cyclophosphamide, doxorubicin, paclitaxel, docetaxel, navelbine, capecitabine, and mitomycin C, among others. Combination chemotherapeutic regimens have also proven effective including cyclophosphamide + methotrexate + 5-fluorouracil; cyclophosphamide + doxorubicin + 5-fluorouracil; or, cyclophosphamide + doxorubicin, for example. Other compounds such as prednisone, a taxane, navelbine, mitomycin C, or vinblastine have been utilized for various reasons. A majority of breast cancer patients have estrogen-receptor positive (ER+) tumors and in these patients, endocrine therapy (i.e., tamoxifen) is preferred over chemotherapy. For such patients, tamoxifen or, as a second line therapy, progestins (medroxyprogesterone acetate or megestrol acetate) are preferred. Aromatase inhibitors (i.e., aminoglutethimide and analogs thereof such as letrozole) decrease the availability of estrogen needed to maintain tumor growth and may be used as second or third line endocrine therapy in certain patients.

Other cancers may require different chemotherapeutic regimens. For example, metastatic colorectal cancer is typically treated with Camptosar (irinotecan or CPT-11), 5-fluorouracil or leucovorin, alone or in combination with one another. Proteinase and integrin inhibitors such as the MMP inhibitors marimastate (British Biotech), COL-3 (Collagenex), Neovastat (Aeterna), AG3340 (Agouron), BMS-275291 (Bristol Myers Squibb), CGS 27023A (Novartis) or the integrin inhibitors Vitaxin (Medimmune), or MED1522 (Merck KgaA) may also be suitable for use. As such, immunological targeting of immunogenic targets associated with colorectal cancer could be performed in combination with a treatment using those chemotherapeutic agents. Similarly, chemotherapeutic agents used to treat other types of cancers are well-known in the art and may be combined with the immunogenic targets described herein.

- Many anti-angiogenic agents are known in the art and would be suitable for co-administration with the immunogenic target vaccines (see, for example, Timar, et al. 2001. *Pathology Oncol. Res.*, 7(2): 85-94). Such agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF), transforming growth factor beta (TGF- β)), cytokines (i.e., interferons such as IFN- α , - β , - γ , platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-III, collagen XVIII fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-F1-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activator-inhibitors such as PAI-1; pigment epithelium derived factor (PEDF)), Tumstatin (available through ILEX, Inc.), antibody products (i.e., the collagen-binding antibodies HUIV26, HUI77, XL313; anti-VEGF; anti-integrin (i.e., Vitaxin, (Lxsys))), and glycosidases (i.e., heparinase-I, -III). "Chemical" or modified physiological agents known or believed to have anti-angiogenic potential include, for example, vinblastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al. 2002, *Nature Med.*, 8: 128-135), CEP-1055 (available from Cephalon, Inc.), flavone acetic acid, Bay 12-9566 (Bayer Corp.), AG3340 (Agouron, Inc.), CGS 27023A (Novartis), tetracycline derivatives (i.e., COL-3 (Collagenix, Inc.)), Neovastat (Aeterna), BMS-275291 (Bristol-Myers Squibb), low dose 5-FU, low dose methotrexate (MTX), irsofladine, radicicol, cyclosporine, captopril, celecoxib, D45152-sulphated polysaccharide, cationic protein (Protamine), cationic peptide-VEGF, 20 Suramin (polysulphonated naphthyl urea), compounds that interfere with the function or production of VEGF (i.e., SU5416 or SU6668 (Sugen), PTK787/ZK22584 (Novartis)), Distamycin A, Angiozyme (ribozyme), isoflavonoids, staurosporine derivatives, genistein, EMD121974 (Merck KgaA), tyrophostins, isoquinolones, retinoic acid, carboxyamidotriazole, TNP-470, octreotide, 2-methoxyestradiol, aminosterols (i.e., squalamine), glutathione analogues (i.e., N-actetyl-L-cysteine), combretastatin A-4 (Oxigene), Eph receptor blocking agents (*Nature*, 414:933-938, 2001), Rh-Angiostatin, Rh-Endostatin (WO 01/93897), cyclic-RGD peptide, accutin-disintegrin, benzodiazepenes, humanized anti-avb3 Ab, Rh-PAI-2, amiloride, p-amidobenzamidine, anti-uPA ab, anti-uPAR Ab, L-phenylalanin-N-methylamides (i.e., Batimistat, Marimastat), AG3340, and minocycline. 30 Many other suitable agents are known in the art and would suffice in practicing the present invention.

The present invention may also be utilized in combination with "non-traditional" methods of treating cancer. For example, it has recently been demonstrated that administration of certain anaerobic bacteria may assist in slowing tumor growth. In one study, *Clostridium novyi* was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. *P.N.A.S. USA*, 98(26): 15155-15160, 2001). In combination with chemotherapy, the treatment was shown to cause tumor necrosis in the animals. The reagents and methodologies described in this application may be combined with such treatment methodologies.

Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques. Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adeno-associated virus (AAV), herpes virus, and poxvirus, among others. It is understood in the art that many such viral vectors are available in the art. The vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as *Molecular Cloning: A Laboratory Manual* (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), *Gene Expression Technology* (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, CA), and *PCR Protocols: A Guide to Methods and Applications* (Innis, et al. 1990. Academic Press, San Diego, CA).

Preferred retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retroviruses. Examples of suitable retroviral vectors include, for example, Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), SIV, BIV, HIV and Rous Sarcoma Virus (RSV). A number of retroviral vectors can incorporate multiple exogenous nucleic acid sequences. As recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided by, for example, helper cell lines encoding retrovirus structural genes. Suitable helper cell lines include Ψ 2, PA317 and PA12, among others. The vector virions produced using such cell lines may then be used to infect a tissue cell line, such as NIH 3T3 cells, to produce large quantities of chimeric retroviral virions. Retroviral vectors may be administered by traditional methods (i.e., injection) or by implantation of a "producer cell line" in proximity to the target cell population (Culver, K., et al., 1994, *Hum. Gene Ther.*, 5 (3): 343-79; Culver, K., et al., *Cold Spring Harb. Symp. Quant.*

Biol., 59: 685-90); Oldfield, E., 1993, *Hum. Gene Ther.*, 4 (1): 39-69). The producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following 5 infection of the target cell, expression of the nucleic acid of the vector occurs.

Adenoviral vectors have proven especially useful for gene transfer into eukaryotic cells (Rosenfeld, M., et al., 1991, *Science*, 252 (5004): 431-4; Crystal, R., et al., 1994, *Nat. Genet.*, 8 (1): 42-51), the study eukaryotic gene expression (Leviero, M., et al., 1991, *Gene*, 101 (2): 195-202), vaccine development (Graham, F. and Prevec, L., 1992, *Biotechnology*, 10: 363-90), and in animal models (Stratford-Perricaudet, L., et al., 1992, *Bone Marrow Transplant.*, 9 (Suppl. 1): 151-2 ; Rich, D., et al., 1993, *Hum. Gene Ther.*, 4 (4): 461-76). Experimental routes for administrating recombinant Ad to different tissues *in vivo* have included intratracheal instillation (Rosenfeld, M., et al., 1992, *Cell*, 68 (1): 143-55) injection 10 into muscle (Quantin, B., et al., 1992, *Proc. Natl. Acad. Sci. U.S.A.*, 89 (7): 2581-4), peripheral intravenous injection (Herz, J., and Gerard, R., 1993, *Proc. Natl. Acad. Sci. U.S.A.*, 15 90 (7): 2812-6) and stereotactic inoculation to brain (Le Gal La Salle, G., et al., 1993, *Science*, 259 (5097): 988-90), among others.

Adeno-associated virus (AAV) demonstrates high-level infectivity, broad host range and specificity in integrating into the host cell genome (Hermonat, P., et al., 1984, *Proc. Natl. Acad. Sci. U.S.A.*, 81 (20): 6466-70). And Herpes Simplex Virus type-1 (HSV-1) is yet another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al., 1991, *Trends Neurosci.*, 14 (10): 428-32; Glorioso, et al., 1995, *Mol. Biotechnol.*, 4 (1): 87-99; Glorioso, et al., 1995, *Annu. Rev. Microbiol.*, 49: 675-710).

Poxvirus is another useful expression vector (Smith, et al. 1983, *Gene*, 25 (1): 21-8; Moss, et al., 1992, *Biotechnology*, 20: 345-62; Moss, et al., 1992, *Curr. Top. Microbiol. Immunol.*, 158: 25-38; Moss, et al. 1991. *Science*, 252: 1662-1667). Poxviruses shown to be useful include vaccinia, NYVAC, avipox, fowlpox, canarypox, ALVAC, and ALVAC(2), among others.

Vaccinia virus is the prototypic virus of the pox virus family and, like other members 30 of the pox virus group, is distinguished by its large size and complexity. The DNA of vaccinia virus is similarly large and complex. Several types of vaccinia are suitable for use in

practicing the present invention. One such vaccinia-related virus is the Modified Vaccinia Virus Ankara (MVA), as described in, for example, U.S. Pat. Nos. 5,185,146 and 6,440,422.

Another suitable vaccinia-related virus is NYVAC. NYVAC was derived from the Copenhagen vaccine strain of vaccinia virus by deleting six nonessential regions of the genome encoding known or potential virulence factors (see, for example, U.S. Pat. Nos. 5,364,773 and 5,494,807). The deletion loci were also engineered as recipient loci for the insertion of foreign genes. The deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L-K1L); and, large subunit, 10 ribonucleotide reductase (I4L). NYVAC is a genetically engineered vaccinia virus strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with virulence and host range. NYVAC has been shown to be useful for expressing TAs (see, for example, U.S. Pat. No. 6,265,189). NYVAC (vP866), vP994, vCP205, vCP1433, placZH6H4Lreverse, pMPC6H6K3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-15 2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.

ALVAC-based recombinant viruses (i.e., ALVAC-1 and ALVAC-2) are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103). 20 ALVAC(2) is identical to ALVAC(1) except that ALVAC(2) genome comprises the vaccinia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al., 1995a, 1995b, 1991; Chang et al., 1992; Davies et al., 1993). Both ALVAC(1) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975). ALVAC was deposited under the 25 terms of the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.

Another useful poxvirus vector is TROVAC. TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvirus which is licensed for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553. 30

"Non-viral" plasmid vectors may also be suitable in practicing the present invention. Preferred plasmid vectors are compatible with bacterial, insect, and / or mammalian host

cells. Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (Invitrogen, San Diego, CA), pBSII (Stratagene, La Jolla, CA), pET15 (Novagen, Madison, WI), pGEX (Pharmacia Biotech, Piscataway, NJ), pEGFP-N2 (Clontech, Palo Alto, CA), pETL (BlueBacII, Invitrogen), pDSR-alpha (PCT pub. No. WO 90/14363) and pFastBacDual (Gibco-BRL, Grand Island, NY) as well as Bluescript[®] plasmid derivatives (a high copy number COLE1-based phagemid, Stratagene Cloning Systems, La Jolla, CA), PCR cloning plasmids designed for cloning Taq-amplified PCR products (e.g., TOPOTM TA cloning[®] kit, PCR2.1[®] plasmid derivatives, Invitrogen, Carlsbad, CA). Bacterial vectors may also be used with the current invention. These vectors include, for example, *Shigella*, *Salmonella*, *Vibrio cholerae*, *Lactobacillus*, *Bacille calmette guérin (BCG)*, and *Streptococcus* (see for example, WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/21376). Many other non-viral plasmid expression vectors and systems are known in the art and could be used with the current invention.

Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus-ligand-DNA complexes, direct injection of DNA, CaPO₄ precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles *in vitro* and *in vivo*. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., et al., 1981, *Trends Biochem. Sci.*, 6: 77). The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations. Examples of lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine.

Deposited December 23, 2003

An immunogenic target may also be administered in combination with one or more adjuvants to boost the immune response. Exemplary adjuvants are shown in Table II below:

Table II
Types of Immunologic Adjuvants

5

Type of Adjuvant	General Examples	Specific Examples/References
1 Gel-type	Aluminum hydroxide/phosphate ("alum adjuvants")	(Aggerbeck and Heron, 1995)
	Calcium phosphate	(Relyveld, 1986)
2 Microbial	Muramyl dipeptide (MDP)	(Chedid et al., 1986)
	Bacterial exotoxins	Cholera toxin (CT), <i>E.coli</i> labile toxin (LT)(Freytag and Clements, 1999)
	Endotoxin-based adjuvants	Monophosphoryl lipid A (MPL) (Ulrich and Myers, 1995)
	Other bacterial	CpG oligonucleotides (Corral and Petray, 2000), BCG sequences (Krieg, et al. <i>Nature</i> , 374:576), tetanus toxoid (Rice, et al. <i>J. Immunol.</i> , 2001, 167: 1558-1565)
3 Particulate	Biodegradable polymer microspheres	(Gupta et al., 1998)
	Immunostimulatory complexes (ISCOMs)	(Morein and Bengtsson, 1999)
	Liposomes	(Wassef et al., 1994)
4 Oil-emulsion and surfactant-based adjuvants	Freund's incomplete adjuvant	(Jensen et al., 1998)
	Microfluidized emulsions	MF59 (Ott et al., 1995)
	Saponins	SAF (Allison and Byars, 1992) (Allison, 1999)
5 Synthetic	Muramyl peptide derivatives	QS-21 (Kensil, 1996) Murabutide (Lederer, 1986) Threony-MDP (Allison, 1997)
	Nonionic block copolymers	L121 (Allison, 1999)
	Polyphosphazene (PCPP)	(Payne et al., 1995)
	Synthetic polynucleotides	Poly A:U, Poly I:C (Johnson, 1994)

The immunogenic targets of the present invention may also be used to generate antibodies for use in screening assays or for immunotherapy. Other uses would be apparent to one of skill in the art. The term "antibody" includes antibody fragments, as are known in

- 10 the art, including Fab, Fab₂, single chain antibodies (Fv for example), humanized antibodies, chimeric antibodies, human antibodies, produced by several methods as are known in the art. Methods of preparing and utilizing various types of antibodies are well-known to those of

skill in the art and would be suitable in practicing the present invention (see, for example, Harlow, et al. *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988; Harlow, et al. *Using Antibodies: A Laboratory Manual, Portable Protocol No. 1*, 1998; Kohler and Milstein, *Nature*, 256:495 (1975)); Jones et al. *Nature*, 321:522-525 (1986); 5 Riechmann et al. *Nature*, 332:323-329 (1988); Presta (*Curr. Op. Struct. Biol.*, 2:593-596 (1992); Verhoeyen et al. (*Science*, 239:1534-1536 (1988); Hoogenboom et al., *J. Mol. Biol.*, 227:381 (1991); Marks et al., *J. Mol. Biol.*, 222:581 (1991); Cole et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, p. 77 (1985); Boerner et al., *J. Immunol.*, 147(1):86-95 (1991); Marks et al., *Bio/Technology* 10, 779-783 (1992); Lonberg et al., 10 *Nature* 368 856-859 (1994); Morrison, *Nature* 368 812-13 (1994); Fishwild et al., *Nature Biotechnology* 14, 845-51 (1996); Neuberger, *Nature Biotechnology* 14, 826 (1996); Lonberg and Huszar, *Intern. Rev. Immunol.* 13 65-93 (1995); as well as U.S. Pat. Nos. 4,816,567; 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and, 5,661,016). The antibodies or derivatives therefrom may also be conjugated to therapeutic moieties such as cytotoxic drugs 15 or toxins, or active fragments thereof such as diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, among others. Cytotoxic agents may also include radiochemicals. Antibodies and their derivatives may be incorporated into compositions of the invention for use *in vitro* or *in vivo*.

Nucleic acids, proteins, or derivatives thereof representing an immunogenic target 20 may be used in assays to determine the presence of a disease state in a patient, to predict prognosis, or to determine the effectiveness of a chemotherapeutic or other treatment regimen. Expression profiles, performed as is known in the art, may be used to determine the relative level of expression of the immunogenic target. The level of expression may then be correlated with base levels to determine whether a particular disease is present within the 25 patient, the patient's prognosis, or whether a particular treatment regimen is effective. For example, if the patient is being treated with a particular chemotherapeutic regimen, an decreased level of expression of an immunogenic target in the patient's tissues (i.e., in peripheral blood) may indicate the regimen is decreasing the cancer load in that host. Similarly, if the level of expression is increasing, another therapeutic modality may need to 30 be utilized. In one embodiment, nucleic acid probes corresponding to a nucleic acid encoding an immunogenic target may be attached to a biochip, as is known in the art, for the detection and quantification of expression in the host.

Deposited December 23, 2003

It is also possible to use nucleic acids, proteins, derivatives therefrom, or antibodies thereto as reagents in drug screening assays. The reagents may be used to ascertain the effect of a drug candidate on the expression of the immunogenic target in a cell line, or a cell or tissue of a patient. The expression profiling technique may be combined with high throughput screening techniques to allow rapid identification of useful compounds and monitor the effectiveness of treatment with a drug candidate (see, for example, Zlokarnik, et al., *Science* 279, 84-8 (1998)). Drug candidates may be chemical compounds, nucleic acids, proteins, antibodies, or derivatives therefrom, whether naturally occurring or synthetically derived. Drug candidates thus identified may be utilized, among other uses, as pharmaceutical compositions for administration to patients or for use in further screening assays.

Administration of a composition of the present invention to a host may be accomplished using any of a variety of techniques known to those of skill in the art. The composition(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a "pharmaceutical composition"). The pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of DNA, viral vector particles, polypeptide or peptide, for example. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.

The pharmaceutical composition may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term "pharmaceutically acceptable carrier" or "physiologically acceptable carrier" as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition. A "pharmaceutical composition" is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide. The terms "effective amount" and "therapeutically effective amount" each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide for the induction or enhancement of an anti-tumor immune response in a host which protects

Deposited December 23, 2003

the host from the development of a tumor and / or allows the host to eliminate an existing tumor from the body.

For oral administration, the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others.

- 5 Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal, infusion, or intraperitoneal administration. Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at 10 ordinary temperatures but liquid at the rectal temperature.

The dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. For example,

- 15 a poxviral vector may be administered as a composition comprising 1×10^6 infectious particles per dose. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods.

A prime-boost regimen may also be utilized (WO 01/30382 A1) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting

- 20 step in which the targeted immunogen is administered in another form. The form of the targeted immunogen in the priming and boosting steps are different. For instance, if the priming step utilized a nucleic acid, the boost may be administered as a peptide. Simmilarly, where a priming step utilized one type of recombinant virus (i.e., ALVAC), the boost step may utilize another type of virus (i.e., NYVAC). This prime-boost method of administration 25 has been shown to induce strong immunological responses.

While the compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants). When administered as a combination, the individual components can be 30 formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.

Injectable preparations, such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution, among others. For instance, a viral vector such as a poxvirus may be prepared in 0.4% NaCl. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

For topical administration, a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days during which no doses is applied. Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (*e.g.*, liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.

The pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, *e.g.*, lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents

commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.

Pharmaceutical compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes.

5 In preferred embodiments, the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host. Alternatively, the composition may be administered directly into a lymph node (intranodal) or tumor mass (i.e., intratumoral administration). For example, the dose could be administered subcutaneously at days 0, 7, and 14. Suitable methods for immunization using 10 compositions comprising TAs are known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), HER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der Bruggen et al., 1991), p97 (Hu et al., 1988), and carcinembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al., 1992; Kaufman et al., 1991), among others.

15 Preferred embodiments of administratable compositions include, for example, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs. Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parenteral, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile suspensions or emulsions. For example, a recombinant poxvirus may be in admixture 20 with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like. The composition may also be provided in lyophilized form for reconstituting, for instance, in isotonic aqueous, saline buffer. In addition, the compositions can be co-administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or 25 anti-cancer agents.

A kit comprising a composition of the present invention is also provided. The kit can include a separate container containing a suitable carrier, diluent or excipient. The kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or 30 sequential-administration. Additionally, the kit can include instructions for mixing or combining ingredients and/or administration.

U.S. Express Mail No. EU404288861US
Deposited December 23, 2003

A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration.

EXAMPLES

Example 1

Vectors

A. Construction of the Multi-Antigen Construct vcp2086

5 An expression vector was constructed in the ALVAC(2) vector using standard techniques. DNA sequences encoding LFA-3 (Wallner, et al. (1987) J. Exp. Med. 166:923-932), ICAM-1 (Staunton, et al. (1988) Cell 52:925-933) and B7.1 (Chen, et al. (1992) Cell 71:1093-1102) were inserted into the C3 locus of ALVAC. LFA-3, ICAM-1 and B7.1 form an expression cassette known as TRICOM. DNA sequences encoding CEA-CAP1(6D) and 10 p53 were inserted into the ALVAC donor plasmid pNC5LSPCEAp53 as shown in Figure 1. This donor plasmid was then used with the ALVAC-TRICOM vector to generate vcp2086 (ALVAC-CEA-p53-TRICOM).

B. Construction of the Multi-Antigen Construct Containing CEA-CAP1-6D-1,2

15 An expression vector is constructed in the ALVAC(2) vector using standard techniques. DNA sequences encoding LFA-3 (Wallner, et al. (1987) J. Exp. Med. 166:923-932), ICAM-1 (Staunton, et al. (1988) Cell 52:925-933) and B7.1 (Chen, et al. (1992) Cell 71:1093-1102) are inserted into the C3 locus of ALVAC. LFA-3, ICAM-1 and B7.1 form an expression cassette known as TRICOM. DNA sequences encoding CEA-CAP1(6D)-1,2 20 (Fig. 2) and p53 are inserted into the ALVAC donor plasmid essentially as shown in Figure 1. In this vector, CEA-CAP1-6D is removed and CEA-CAP1-6D-1,2 (Fig. 2) is inserted using standard techniques. This donor plasmid was then used with the ALVAC-TRICOM vector to generate vcp2086 (ALVAC-CEA-p53-TRICOM).

EXAMPLE 2

Immunogenicity of Multiantigen Vectors

This series of experiments was designed to confirm the immunogenicity of the multiantigen expression vectors. As an example, vcp2086 was administered to the double transgenic mouse strain "CEA/A2K^bdbTg". These mice express both the chimeric 30 HLA.A2kb Class I molecule as well as the human CEA gene as a "self" antigen. The potential to generate strong immunogenicity in this model depends upon the ability of the expression vectors to break tolerance and generate a T cell response to the self antigen CEA.

Detection of anti-p53 responses is evaluated in the context of p53 being a foreign antigen, and therefore the issue of tolerance may not apply to p53 in this model.

5 **A. Study MAD68**

This experiment was designed as a dose titer of the multiantigen constructs. As a vector control, animals were immunized with the ALVAC(2) parental vector over an identical dose range. Analysis of immunogenicity is based on an ELISPOT assay to detect IFN- γ production by peptide-specific T cells present in cultures from individual CEAxHLA.A2Kb Tg mice immunized with the indicated recombinant viruses. Groups of 10 three individual mice were tested for each recombinant at a particular dose. Replicate cultures for all data points were tested against a control peptide to determine background response levels of the ELISPOT assay. The average of the three individual mice in each group was determined for comparison between groups. As a positive control, each individual culture group was tested using the mitogens PMA/ionomycin to induce IFN- γ from total 15 spleen cells.

Individual spleen cells from the different groups (vcp2086 or ALVAC(2) parental vector at 1×10^8 ; 2×10^7 ; 2×10^6 ; 2×10^5 pfu/mouse) were harvested and re-stimulated *in vitro* with CEA or p53 peptides (**Table III**).

20 **TABLE III**
CEA and p53 Peptides

Peptide	Internal ID	Amino Acid Sequence
CEA-24	3205	LLTFWNPPT
CEA-233	1815	VLYGPDAPTI
CEA-691	571	IMIGVLVGV
CEA-78	3209	QIIGYVIGT
P53-139-147	3211	KTCPVQLWV
P53-149-157	3213	STPPPGTRV
P53-101-111	3215	KTYQGSYGFRL
P53-216	3217	VVVPYEPPEV

Duplicate bulk cultures were stimulated *in vitro* in a second round with peptide pulsed activated B cells. At the 2×10^5 pfu/mouse, responses above parental control vector reactivity was observed following separate stimulation with peptides CEA-78, CEA-233, CEA-591, p53-101, and p53-216. The strongest responses were detected using CEA-233 or 5 p53-216.

Intracellular cytokine staining (ICS) was performed following stimulation with the most reactive epitopes (CEA-233 and p53-216). The percent positive CD8+ lymphocytes was increased relative to control at the 2×10^5 pfu/mouse dose level for both CEA-233 and p53-216.

10 CTL activity was also measured following immunization of CEA/HLA.A2kb mice with vcp2086 (ALVAC-CEA-p53-TRICOM) or the parental ALVAC(2) vector. The following immunization protocol was utilized. On day 0, animals were administered 2×10^5 pfu/mouse of vcp2086 or the 2×10^7 pfu/mouse of the ALVAC(2) parental vector. On day 14, the mice were boosted with 2×10^7 pfu/mouse of vcp2086 or the ALVAC(2) parental vector. 15 On day 15, spleen cells were isolated from five mice in each immunization group. On day 35, CTL were re-stimulated with peptides. On days 41, 50 and 55, ELISPOT assays were performed to detect IFN- γ producing T cells. Responses above control were observed for CEA-233 in studies MAD-69 and MAD-70. Responses above control were observed for p53-216 in study MAD-70.

20 CTL assays were also performed to detect cytotoxic T cells specific for CEA or p53. Cytotoxicity above control levels was observed following stimulation with CEA-233 or p53-216.

The data indicates that the multiantigen vector vcp2086 (ALVAC-CEA-p53-TRICOM) is capable of inducing anti-CEA and anti-p53 immune responses. It is shown that 25 tolerance can be broken using ALVAC recombinants expressing CEA.

EXAMPLE 3

Modified Tumor Antigen KSA

A. Construction of Modified KSA

30 The tumor antigen KSA has been previously described (see, for example, Bjork, et al. J. Biol. Chem. 268:24232; Linnenbach, et al. Mol. and Cell. Biol. 13:1507; Szala, et al. PNAS 87:3542-3546; Balzar, et al. Journal of Molecular Medicine (1999), 77:699-712; and,

U.S. Pat. No. 5,348,887). A modified version of KSA was synthesized in order to increase the capacity of the antigen to generate an immune response by, for example, increasing the ability of KSA to bind MHC molecules. KSA may be modified by changing any of several amino acids to effect the desired change in the antigen. The sequences of the wild-type KSA (GenBank M33011; Szala, et al. PNAS 87:3542-3546) and KSA containing a particular modification utilized herein are aligned in Figure 3 (sequence 1 represents M33011; sequence 2 represents the modified sequence; the modified sequences are indicated by an underline). In this manner, the T-cell epitope QLDPKFITSI (175-184) was converted to QLDPKFITSV. Synthesis of the modified KSA sequence is described below.

10

B. Expression Constructs

The cDNA clone in plasmid pRW971 encoding the GA733-2 carcinoma-associated antigen (KSA) was obtained from A. Linnenbach, The Wistar Institute, Philadelphia, PA. A XmaI-Spe I fragment containing the H6 promoter-KSA sequence was isolated from pRW971 and inserted into XmaI-SpeI sites on pBluescript to generate pBlu-KSA-1(R) (Figure 4A). To convert the codon ATT (Ile) at aa 184 of KSA to codon GTG (Val), the pBlu-KSA-1 was subjected to mutagenesis using a Stratagene kit and primers 8109 (CAAAATTATCACCGAGT(GTG)TTGTATGAGAATAATG) and 8110 (CATTATTCTCATACAA(CAC)ACTCGTGATAAATTTG). The resulted plasmid mutant 20 was designated pBlue-KSA-Val # 1 (Figure 4A). A XmaI-SpeI fragment was isolated from pBlue-KSA-Val #1 and inserted into the XmaI-SpeI sites on pT2255 generating pT2255-KSAV-1 (Figure 4B). A detailed plasmid map DNA sequence of pT2255-KSAV-1 are shown in Figures 5A and B, respectively.

The cDNA encoding LFA-3 was isolated at the National Cancer Institute by PCR amplification of Human Spleen Quick-Clone cDNA (Clontech Inc.) using the published sequence (Wallner et al. J. Exp. Med. 166:923-932, 1987). The cDNA encoding ICAM-1 was isolated at the National Cancer Institute by PCR amplification of cDNA reverse-transcribed from RNA from an Epstein-Barr Virus-transformed B cell line derived from a healthy male, using the published sequence (Staunton et al. Cell 52:925-933, 1988). The cDNA encoding 30 B7.1 was isolated at the National Cancer Institute by PCR amplification of cDNA derived from RNA from the human Raji cell line (ATCC # CCL 86), using the published sequence (Chen et al. Cell 71:1093-1102, 1992).

As previously described elsewhere, vCP1468 (ALVAC(2)) was generated by insertion of the vaccinia virus E3L and K3L genes into the C6 site of parental ALVAC using the donor plasmid pMPC6H6K3E3. vCP2041 was generated by insertion of the LFA-3, ICAM-1 and B7.1 genes into the C3 sites of the recombinant ALVAC vCP1468 (ALVAC(2)) using the donor plasmid pALVAC.Tricom(C3) #33 (Figure 6). vCP2055 was generated by insertion of the KSA gene into the C5 sites of the recombinant ALVAC vCP2041 using the donor plasmid pT2255KSA(Val)LM (Figure 6). Tables 2-4 further describe the arrangement of this expression vector.

10

Table 2. Authentic Gene Product(s)

Gene	Molecular Weight (kD)	Known Processing Events	Subcellular Localization
E3L	21.5; runs as 25	also a 20 kDa protein from internal initiation	nuclear
K3L	10	not relevant	not relevant
LFA-3	55-70	glycosylation	cell surface (transmembrane)
ICAM-1	90-110	glycosylation	cell surface (transmembrane)
B7.1	60	glycosylation	cell surface (transmembrane)
KSA	40	glycosylation	transmembrane

Table 3: Promoter(s)

Gene	Promoter
E3L	vaccinia E3L
K3L	vaccinia H6
LFA-3	vaccinia 30K
ICAM-1	vaccinia I3
B7.1	sE/L
KSA	vaccinia H6

15

Table 4: Donor Plasmids

Name	Size (bp)	Vector	Antibiotic Resistance Gene	Map Attached
pMPC6H6K3E3	7,400	pBS-SK	Amp	No
pALVAC.Tricom(C3) #33	10,470	pBS-SK	Amp	Yes
pT2255KSA(Val)LM	9,515	pBS-SK	Amp	Yes

- CEF cells were infected with the expression vector using standard techniques. The modified KSA expressed in the CEF cells was analyzed by Western blot. The modified KSA is a glycoprotein with 314 amino acids. The protein expressed by ALVAC was shown to be
- 5 40 Kd on Western blot (data not shown). Thus, the modified KSA protein is expressed from the ALVAC expression vector.
- It is also possible to incorporate the modified KSA coding sequence into an expression vector encoding other tumor antigens. For instance, it may be beneficial to insert the modified KSA sequence into ALVAC-CEA-p53-TRICOM to effectuate expression of
- 10 CEA, p53, KSA, and the co-stimulatory components from a single vector.

EXAMPLE 4

Multi-Antigen Cancer Vaccine

- The vectors described herein are useful for generating anti-cancer immune responses.
- 15 The vectors are especially useful for generating anti-cancer immune responses where the tumor expresses multiple tumor antigens. For instance, a colorectal cancer may express CEA, p53 and KSA. In such a case, it may be useful to administer ALVAC-CEA-p53-TRICOM alone or in combination with the ALVAC vector vCP2055 to generate an anti-tumor immune response. The vector or vectors may be administered in separate
- 20 pharmaceutically acceptable compositions or as a single pharmaceutically acceptable composition. Where multiple vectors are utilized, the vectors may be administered at a single site or at separate sites within the host. As such, an anti-tumor immune response is generated which decreases or halts tumor growth by the anti-tumor activity of immune cells such as cytotoxic T cells of the host.

25

While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in

U.S. Express Mail No. EU404288861US

Deposited December 23, 2003

the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed.

CLAIMS

What is claimed is:

1. An expression vector useful for immunizing a host comprising nucleic acid sequences encoding modified KSA.
- 5 2. The expression vector of claim 1 wherein the vector is a plasmid or a viral vector.
3. The expression vector of claim 2 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
4. The expression vector of claim 3 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
- 10 5. The expression vector of claim 4 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
6. The expression vector of claim 1 further comprising at least one additional tumor-associated antigen.
- 15 7. The expression vector of claim 6 wherein the vector is a plasmid or a viral vector.
8. The expression vector of claim 7 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
9. The expression vector of claim 8 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, MVA, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
- 20 10. The expression vector of claim 9 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
11. The expression vector of claim 1 further comprising at least one nucleic sequence encoding an angiogenesis-associated antigen.
- 25 12. The expression vector of claim 11 wherein the vector is a plasmid or a viral vector.
13. The expression vector of claim 12 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
14. The expression vector of claim 13 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, MVA, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
- 30 15. The expression vector of claim 14 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).

Deposited December 23, 2003

16. The expression vector of claim 6 further comprising at least one nucleic sequence encoding an angiogenesis-associated antigen.
17. The expression vector of claim 16 wherein the vector is a plasmid or a viral vector.
18. The expression vector of claim 17 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
5
19. The expression vector of claim 17 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, MVA, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
20. The poxvirus of claim 18 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
10
21. The expression vector of claim 1, 6, 11 or 16 further comprising at least one nucleic acid sequence encoding a co-stimulatory component.
22. The expression vector of claim 21 wherein the co-stimulatory component is selected from the group consisting of B7.1, LFA-3 and ICAM-1.
15
23. The expression vector of claim 22 or 23 wherein the vector is a plasmid or a viral vector.
24. The expression vector of claim 23 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
20
25. The expression vector of claim 24 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, MVA, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
26. The poxvirus of claim 25 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
25
27. A composition comprising an expression vector in a pharmaceutically acceptable carrier, said vector comprising nucleic acid sequences encoding modified KSA.
28. The expression vector of claim 27 wherein the vector is a plasmid or a viral vector.
30
29. The expression vector of claim 28 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
30. The expression vector of claim 29 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, MVA, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
31. The poxvirus of claim 30 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).

Deposited December 23, 2003

32. A method for preventing or treating cancer comprising administering to a host an expression vector comprising nucleic acid sequences encoding modified KSA.
33. The expression vector of claim 32 wherein the vector is a plasmid or a viral vector.
34. The expression vector of claim 33 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
- 5 35. The expression vector of claim 34 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, MVA, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
- 10 36. The poxvirus of claim 35 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
36. An isolated DNA molecule comprising the modified KSA coding sequence illustrated in Figure 3.
36. An isolated DNA molecule comprising a nucleotide sequence encoding modified KSA having the amino acid sequence shown in Figure 3.
- 15 37. An isolated DNA molecule comprising CEA, p53, and modified KSA coding sequences, the CEA sequence being CEA-CAP1-6D-1,2 as illustrated in Figure 2, the p53 sequence being the p53 sequence illustrated in Figure 1, and the modified KSA sequence being that shown in Figure 3.

FIGURE 1
Plasmid sequence of pNC5LSPCERap53 (pMC30B5) for vCP2086

5 1 GCGCTTT CGTCTCG CGCGTTT CGGTGAT GACGGTG AAAACTT CTGACAC ATGCAGC TCCCGGA GACGGTC
CGGAAAA CGCAGAC GCGAAA GCGCAT CGCGCAC TTTCGGA GACTGTC TACCTCG AGCGCTT CTGCCAG
ACAGCTT GTCTGTA AGCGGAT GCGGGGA GCAGACA ACCCGGT CAGGGCG CGTCAGC GGTTGTT GGCGGGT
71 71 TGTGCAA CGACAT CGTCCTA CGCGCC CGTCGTT TGCGCA GTCCCGC CGAGTC CCACAAAC CGGCCCA
GTGCGGG CGTGGCTT AACATAG CGCGCAT AGAGCG ATTGTAC TGAGAGT GCACAT ATCGGGT GTGAAAT
141 141 CAAGCCC GCGGAA TTGATAC CGCGTAG TCTGTT TACATAG ACTCTCA CGTGGTA TACGCCA CACTTAA
ACCGCCG AGATCCG TTAGGAG AAAATAC CGCATCA CGGCCCA TTGGCCA TCCAGGC CGCCAA TGTGCG
10 211 TACATCG CGTGGCTT TTATAGT CGCGTAG CGCGCAT AGCGGT AGCGGT AGCGGT AGCGGT AGCGGT
281 281 GAGGGGC GATGAGT GCGGCC TCTTCA TACATCG CGCGCAT CGGAAGG GCGGGAT TGCTGCA AGGGAT
CTTCGGC CTAGCG CGCCCG AGAACG ATATAGC CGCGCAT CGCGCAT AGCGGT AGCGGT AGCGGT AGCGGT
351 351 TAATGTC GGTAACG CGGAGGT TTTCGA CGTACCA CGTGTAA AAMGACG GCGGAGT CGCAAGC TTGGCTG
ATTCACG CCTATTC GGTCCCCA AAAAGGT CAGTGTG CGAACAT TTGCTG CGGGCA CGGGTC CGGGTC ACCGGAC

Left Arm
421 421 CAGGTAT TCTAACAC TAGGAAT AGATGAA ATTATGT GCGAAGG AGATACC TTTAGAT ATGGATC TGATTTA
GTCCTAA AGATTT ATTCCTA TCTACTT TAATACA CGTCTTC TCTATGG AAATCTA TACCTAG ACTAAAT
20 491 Left Arm
491 491 TTGGCTT TTTCATA ATCTAACAC ATACATTG CACTATA CTATACCG TTCTTGA CGAACGT CGCCATTA
AAACCAA AAAAGT TAGTATT AGATGTT TGATAAA GTGAGT GATAAGG AGAAACG TTGTCAG CGGTGAT
Left Arm
561 561 GTAGATAG AGACTTA TACTTGT TAACCAT AGTACAT TTAGCG CGTCATC TTCTICA TCTAAA CAGATT
CATCATC TCTGAAAT ATGAAAC ATTGTTA TCATACG AAATGCC CGACGAG AGAAAGT AGATTTT GTCTAA
Left Arm
631 631 ACAACAA TAATCAT CGTGTGTC ATCTAACAC TTCTTCA TAATGAT TCAATTA CTCTTCT TCTAAA
TCTGTT ATTAGCA CGACGAG TAGAGTA ATTCAAA TAATGATA AGTATTAA GAAAGAA AGAAGT
Left Arm
30 701 Left Arm
701 701 ACATCAT CTGAATC AATAAAC ATAGAAC GGTTAG AGCGGTTA ATCTCCA TTGTTAA ATATACT AACCGGT
TGTTAGA GACTTAG TTATTTG TACTTGT CCATATC TGCGAT TAGAGGT AACATTAT TATATGA TTGCGCA
Left Arm
771 771 TGTCAT GATGTAC TTTTTTTT CATTATA TAGGATA TGATCAT TTGATAG CTTTAA AGCGGCC GTGATTA
ACGGATA CTACATG AAAAAA GTATAAT ATCTTAA AACATCA GAAATTA TGCGGG CCACTAT
35 841 Left Arm
841 841 ACTAGTC ATAAAAA CCCGGGA TQATTC TAGACTG GAGTATAA AAACATAT ATCAGAG CAACCCCA AACCGAC
TGATCAG TATTTCG GGGCCCT AGCTGAG ATCTGAG CTCCTT TTGTTAG TAGTCTC TTGTTGGG TTGGTGC

40 CEA
911 911 ACTCCAA TCTGAT GCGCACA GTGGCCC CAGCTGA GAGACCA GGAGAGG TTCCAGA TCGAGAG ACTGTGA
TGAGGTT AGTACTA CGCGCTG CACCGGG GTGAGCT CTCTGGT CCTCTTC AGGGCTC AGCTCTC TGACACT
CEA
45 981 GlyIle ProAla SerGlyThr AlaGly AlaaSer ValPhe CysAlaTyr ThrGly AsnAsn
TGCTCTT GACTATE GAATTTG TGCGGCC AGTGGCG AGTTAG AGACAAA ACAGGGC TAGGTCC CGTGT
ACGAGAGA CTGATAC CTTAATAA CGCCGG TGCGAT TTCAATC CTGTGTT TGTCGGT ATCCAGG GCAATAA
CEA
50 1051 SerLeuSer AsnAsn ArgGly ThrlAlaLeu AsnSer ValPhe CysAlaTyr ThrGly AsnAsn
ATTGGC GTGATTG TGGGAGT AAAAGGA ACTTGTG TGTTGGT CTGCGGT ATCCCAT TGATAGG CGAAAGA
TAAACCG CACTAA ACCGCTA TTTCCTCT TGACACAC AACACAA GACGCCA TAGGGTA ACTATGC GGTCTT
CEA
AsnPro LeuAsnLeu AslAla PheLeuVal GluGln GluProLeu GlySer IleArg TrpSerTyr
55 1121 TACTCGG GGGATGG GTTGGAGT GCGGAGT GGCAGGGG GAGGGT AGGTCCG CTCCCGA AAGGTTA GAGGAGT
ATGACGC CCTTAC CAATCTC CGCTCTA CGTCATC CTTCACAC TCCACAG GAGGGT TTCCATT CTGCTCA
CEA
.GlnPro SerPro AsnSerAla SerHis LeuAsnLeu AspAla GlySer LeuTyrSer SerArg AsnAla
1191 1191 CTGGGGG GGAATAT ATGGGGG TGTCGGG CCCATAG AGGGCAT CCAGGGT GACTGGG TCACTGC GGTTG
GACCCCC CCTTAC TACCCCCC ACAGGCC GGTATAC TCTGTGA GGTCACA CTGACCC AGTGAGC CAAACCG
CEA
.ProPro SerIlele ProThr AspPro GlyTyrLeu ValAsp LeuThr ValProAsp SerArg AsnAla
1261 1261 ATCTACT GTGTTCT CGGCTTCC ACATACA TAAAGCA TGGCTTC TGGCGTC ATTTCCTT GTGACAT TGATAGG
TGAGTGA CTCAAGA CCTAAGG TGTATGT ATCCGAG ACCGAG TAAAGAA CACTGTA ACTTATC TCACCTC
CEA
.SerValser AsnGln IleGly CysValYer AlsArg AlaaSer AsnArgThr ValAsn PheLeu ThrLeuThr
65 1331 GTCTCTT TGCCATT GGACAGC TGCAAGC TGGGGCT GACTGGG AGGTCT GACCTT TACCCAC CACAGGT
GACGCCA CGGGTA CCTGTTG AGCTGG ACCGCTA CTGGAGA CTGGTAA ATGGGTT GTGTC
CEA
.ArgAsn GlyAsn SerLeuGln LeuArg ProSer ValProLeu SerGln GlyAsn ValTrpTrp LeyTyr
70 1401 AGGTGTT GTTCTGA GCCTCAG GTTCAAGA GGTGAGG CGCACAG CATCTT GTCCCTC ACGGGTT TGGAGTT
TCCAACA CAAAGCT CGGAGTC CAAGTGT CGCTCTC CGGTGTC GTAGGAA CAGGGAGG TGCCCAA ACCTCAA

CEA

1471 .ThrThr AsnGlnAla GluPro GluCys ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CTCTAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

5 AsnSerSer IleSer ProLys ProLeuGlu AlaSer ValThr IleThrLys ValThr ThrArg SerHisGly-
1541 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

10 .SerAla SerAsn AsnAlaGln CysThr TyrLeu GlySerAsn LysGlu ThrIle AsnSerIle PheLeu-
1611 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

15 .GluGln ThrHisGln GlnIle AspGly AspIleLeu TrpSer TyrGln AlaProPro AsnSer AlaAla-
1681 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

20 HisCysSer LeuSer LeuAsn ValGlyPro ArgFyr TyrThr TyrSerPro SerIle ThrPro AspAspPro-
1751 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

25 .GlyTyr LeuVal AsnLeuIle ValPro AspSer HisAspVal SerLeu GluAsn GlnIleGly CysGlu-
1821 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

30 .ThrPro GlyValAsp AsnArg ThrVal SerLeuLeu ThrLeu ThrArg AsnAspAsn SerLeu GlnIle-
1961 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

35 .ThrLeu AlaVal AlaAspGlu AspGlu ProPhe AspLys AsnSer ThrIle PheProLys ProPro-
2031 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

40 .GluTyr ValThrIle ThrThr ValThr ValThr AsnArg LeuGly ThrAsp SerAsnHis AlaGln CysThr-
2101 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

45 TyrSerGly SerAsn AsnVal ThrIleLeu ProPhe LeuGlnThr SerGln GlnPhe ThrGlyAsn-
2171 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

50 .ValPhe TrpSer TyrGlnAla ProPro AsnSer AlaAsnHis CysSer LeuAsnGlu GlySer-
2241 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

55 .ArgTyr SerThrAsn LeuPro SerThr ProLys GlyTyr LeuValAsn LeuIle ValSer-
2381 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

60 .AspSerArg ArgAla SerVal ProLysGln ThrGluGly TyrSerAla ThrAsp AsnArg ThrValAsn-
2451 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

65 .PheLeu ThrLeu ThrArgAsn GlyAsn SerLeu LeuLeuArg ProSer ValPro LeuSerGln AsnAsn-
2521 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

70 .ValTrp TrpLeuFyr ThrAla AspGln ThrGluPro GluCys ThrPhe AlaValAsn AspLys AspGlu-
2591 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

75 .ValGlu AsnVal LeuAspSer LysIle SerIleSer ProLys ProLeuGluProLys AspGlu-
2661 . ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn GTTGCTT GAGATGG AGGACCTT GGGCAGC TCCGGGG AAACAGT TATTTGT TTAACTTC TAGTCCTG GCTGTGA CAACGAC CCCCCAA CCCCTCG AGGCCCC TTGTCA ATAACAA AATTGAC ATCGGA CAGACAT CEA

.GlnIle LeuLeuSer AlaAsn ProTyr IleLeuGlu ArgGly SerTyr AlaProGln ProThr AlaGln
 2731 TTGAGT CCTATTA CATATCC TATAATT TGACGGT TGCCATC CACTCTT TCACCTT TGATCCA GCTGTAG
 AACTCAA GGATAAT GTATAGG ATATCAA ACTYGCCA AGCTTAG GTGAGAA AGTGGAA ACATGGT CGACATC
 CEA
 5 GlnIthrGly IleVal TyrGly IleIleGln ArgAsn GlyAsp ValArgGlu GlyLys TyrTrp SerTyrGly-
 2801 CCAAAA GATGCTG GGGCAGA TTGTGGA CAAGTAG AAAGCACC TCCTTCC CCTCTGC GACATC AACCGCG
 GGTTTTT CTACGAC CCCGCTT AACACCT GTTCATC TTCTGTG AGGAAGG GGAGGAGC CTGTAAC TTGCGCG
 CEA
 ..Phleu HisGln ProLeuAsn HisVal LeuLeuLeu LeuValGlu LysGly GluLys ValAsnPro ProThr-
 10 2871 TGATGTC AATAGTG AGCTTGG CAGTGTG GGGCGGG TTCCAGA AGGTGAG AAGTGTG GCTGTGA GCAGGAG
 ACCTAAG TTATCAC TCGAACCC GTCAACCA CCGGCCC AAAGCTCT TCCAATC TTCACTC CGACACT CGTCCTC
 CEA
 .SerGlu IleThrLeu LysAla ThrThr ProProAsn TrpPhe ThrLeu LeuSerAla ThrLeu LeuLeu
 15 2941 CCTCTGC CAGGGGA TGCAACCA TCCTGIGG GGAGGGG CGAGGGG AGACTCC ATTATTG ATATTCG AAAA
 GGAGACG GTCCCCCT AGCTGGT AGAACCC CCTCCCC GGCTCCG TCTGAGG TAATAAA TATAAGG TTTTTT
 E/L Promoter
 20 ArgGlnTrp ProIle CysTrp ArgHisPro ProAla SerPro SerGluMet
 H6 promoter
 3011 AAAATAA AAAATTC AATTTTT GTGACCC TGACGCT CGACGGG TCCCCC GGGTCTT TTATTCCT ATACTA
 25 TTTTAT TTTAAAG TTAAAAA CAGCTGG ACCTGCA GCTGCCT AGGGGGG CCCAAGA ATAAGA TATGAAT
 E/L Promoter
 3081 AAAAGTG AAAATPA ATACAAA GGTCTT GAGGGTT GTGTGTTA ATTGAAA GGAGGAA ATAATCA TAATTA
 30 TTTTCAG TTTTTT TAATGTTT CCAAGAA CTCCCAA CACATT TAACCTT CGCTCTT TAATTGT ATTIAAT
 P53
 H6 promoter
 35 MetGlu GluProGln SerAsp ProSer ValGluPro-
 3151 TTTCATT ATCGCGA TATCCGT TAAGTTT GTATGCTT ATAGGGG GAGGGCG AGTCAGA TCCTAGC TGCGAGC
 AAAGATA TAGCGCT ATAGCAA ATTCAAA CATAACA TTACCTC CTGGCGC TAGCTCT AGGATCG CAGCTCG
 p53
 40 ..ProLeu SerGln GluThrPhe SerAsp LeuIrrp LysLeuLeu ProGlu AsnAsn ValLeuSer ProLeu-
 3221 CCCCTCT GAGTCAG GAAACAT TTTCAGA CCTATGC AAACACT TTCTGAA AACACAC GTTCTGT CCCCTCT
 GGGGAGA CTAGTC CTTTGTA AAAGCTT GGATACC TTGGATG AAGGACT TTGTGTT CAAGACA GGGGAA
 p53
 45 ..ProSer GlnAlaMet AspAsp LeuMet LeuSerPro AspAsp IleGlu GlnIthrPhe ThrGlu AspPro
 3291 CGCGCTT CAGGGAA TTGGATG TTGGATG CTGCTCC CGAGCGA TATTGAA CAATGGT TCACGCA AGACCCA
 CGGAGGG GTTCGCTT ACCTACT AAACACT QACAGGG GCCTGTG ATAACCT GTTACCA AGTGCAT CTGGGT
 p53
 50 GlyProAsp ProArg MetProGlu AlaAla ProPro ValAlaPro AlaPro AlaAla ProThrPro-
 3361 GGTCCAG ATGAAAG TCCCTAGA ATGGCAG AGGCTGTG TCCCCCC GTGGCCC CTGCAAC AGCAGCT CCTACAC
 CCAGGTC TACTCG AGGGCT TACGGTC TCCGACG AGGGGGG CACCGGG GACGTGG TGTCGA GGATGTG
 p53
 55 ..AlaAla ProAla ProAlaPro SerTrp ProLeu SerSerSer ValPro SerGln LysThrThr GlnGly-
 3431 CGGGGGG CCCCCCA CGACGGC CCTCTCTG TCATCTT CTGCTCC TTCCCAA AAAACCT ACCAGCT
 GGGCCCG GGGACGT GGTGGAC CGGGGAC AGTAAAGA GACAGGG AAAGGTC TTTGGGA TGTTCCC
 p53
 60 ..SerTyr GlyPheArg LeuGly PheLeu HisSerGly ThrIla LysSer ValThrCys ThrTyr SerPro
 3501 CAGCTAC GGTTCCTC GTCTGGG CTTCCTG CATTCTC GGACAGC CAAGTCT GTGACTT GCAGCTA CTCCCT
 GTGGATG CAAJAGG CAGACCC GAAGAAC GTAAAGC CCTGTCG GTTCAAGA CACTGAA CTGGCAT GAGGGGA
 p53
 65 ..AlaLeuAsn LysMet PheCys GlnLeuIla LysThr CysPro ValGlnLeu TrpVal AspSer ThrProPro-
 3571 GCGCCCTCA ACAAGAT GTTTTCG CAACTGG CCAAGAC CTGCCCC GTGCAGC TGTTGGGT TGATTTCC ACACCCC
 CGGGAGT TGTTCTA CAAAGC GTTGGAC GGTTCTC GACCGGG CACGTGG ACACCCA ACTAAAG TGTTGGG
 p53
 70 ..ProGly ThrArg ValArgAla MetAla PheLys GlnSer GlnHis MetThr GluValVal ArgArg-
 3641 CGGGGGG CACCCGG CTTGGGGG CCATGCG CACATAC AAGCTAG CACAGCA CATGAGC GAGGTTG TGAGGGG
 GCGGGGCC GTGGGGG CAGGGCG GGTACCG GTAGATG TTGCTCA GTGTCGT GTACTGC CTCCAAC ACTCCG
 p53

.CysPro HisHisGlu ArgCys SerAsp SerAspGly LeuAla ProPro GlnHisLeu IleArg ValGlu
 3711 CTGGCCCG CACCATG AGCGCTG CTGAGAT AGGGATG GTCTGGC CCCCTCT CAGCATC TTATTCG AGTGGAA
 GACGGGG TGCGTAC TCGCGAC GAGCTTA TCCTCAC CAGACCG GGGAGGA GTGCGTA AATAGGC TCACCTT
 p53

GlyAsnLeu ArgVal GluTyr LeuAspAsp ArgAsn ThrPhe ArgHisSer ValVal ValPro TyrGluPro.
 3781 GGAAATT TGCGTGT GGAGTAT TTGAGTG ACAGAAAT CACTTTT CGACATA GTGTTGGT GTGCCCC TTATGAGC
 CCTTTAA ACCACA CCTCTAA AACCTAC TTGCTTT TTGAAAAA GCTGTAT CACCCA CCACGGG ATATCGC
 p53

.ProGlu ValGly SerAspCys ThrThr IleHis TyrAsnTyr MetCys AsnSer SerCysMet GlyGly.
 3851 CGCGCTGA GGTTGGC TCTGACT GTACCAAC CATCCAC TACACT ACATGTC TAACAGT TCCTGCA TGGGCG
 GCGGACT CCACACG AGACTGA CATTTG TGAGGTG ATGTTGA TGTAACAC ATTGTCGA AGGAGCT ACCGGCC
 p53

.MetAsn ArgArgPro IleLeu ThrIle IleThrLysLeu SerSer GlyAsnLeu LeuGlyArg
 3921 CATGAAAC CGCGGGC CCATCATC CACATC ATCACAA TGAGAGA CTCCAGT SGTAATC TACTGGG AGCGAAC
 GTACTTG GCCTCCG GGTAGGA GTGAGTAG TAGTGTG ACCTCTT GAGGTCA CCATTAG ATGACCC TGCCCTG
 p53

SerPheGlu ValIarg ValCys AlaCysPro GlyArg AspArg ArgThrGlu GluGlu AsnLeu ArgLysLys.
 3991 AGCTTTG AGGTGCG TTGTTGT GCGTTC CTGGGGM AGACCGG CGCACAG AGGAAGA GAATCTC CGCAAGA
 TCGAACAC TCCACCC ACAAAAC CGAGACG GACCCCTC TCGGGC GCGTGTG CTCTTCG CTAGAG GCGTCT
 p53

.GlyGlu ProHis HisGluLeu ProPro GlySer ThrLysArg AlaLeu ProAsn AsnThrSer SerSer.
 4061 AAGGGAA GCCTCAC CACGAACG TCGCCCC AGGGAGC ACTAAAGC GAGCCT GCCCCAC AACACCA GCTCTCG
 TTCCCCCT CGGAGTC GTGCTGG AGGGGGG CCTCTCTG TTGTTGC CGGGTTG CTGTTGA CGGGTTG TTGTTG GTGAGGNG
 p53

.ProGln ProLySlys LysPro LeuAsp GlyGluTyr PheThr LeuGln IleArgGly ArgGlu ArgPhe
 4131 TCCCCCG CCAAAGA AGAACCC ACTGGAT GGAGAAAT ATTCACG CCTTCAG ATTCGGT GCGCTGA GCGCTTC
 AGGGGTC GGTTTCT CTTTGG TGACCTA CCTCTTG TAAAGTG GGAAGTC TAGGCCA CGCGACT CGGGAG
 p53

GluMetPhe ArgGlu LeuAsn GluLalaieu GluIleu LysAsp AlaGlnAla GlyIlys GluPro GlyGlySer.
 4201 GAGAGTT TCAGGAGG GCTGAAT GAGGCT TGGAACT CAAAGAT GCGCAGG CTGGGAA GGAGCGA GGGGGGA
 CTCTACA AGCGCTT CGACCTTA CTCCCGA ACCCTGA GTTCTCA CGGGTTC GACCCCT CCTCGGT CCCCCCT
 p53

.ArgAla HisSer SerHisLeu LysSer LysLysSer ThrSer ArgHis LysLysLeu MetPhe.
 4271 GCAGGGC TCACCC AGCCACC TGAAAGT CAAAAAGG GTGCACT CTACCTC CGCGCAT AAAAACAC TTATGTT
 CGTCCCCG AGTGGCG TCGGTGG ACTCTAG GTTTTTC CGCTGCA GATGGAG GCGCGTA TTTTTTG AGTACAA
 p53

.LysThr GluGlyPro AspSer Asp***
 4341 CAAGACA GAAGGG CTGACTC AGACGTA ACGGCTT TTATGAT TTCTTTC AAAGATG TAGTTTA CATCTGC CCCTTTT
 50 4411 ATATGTC TTAAAGT TTGTTGCA TATACATA AGAAAGT AAAGGAA TTGTTAC ATCAAT ATGAGACG AAAAACAC
 TTGAAAAA GTAGGCT GAGCACT TTCTTTC TACCATC ATTACA GCTGGCA AGATCAA TTCTTCC CAGTCT
 Right Arm
 4481 TTATTC ATTTCA AAACAGT ATATGAT TTCTTTC AAAGATG TAGTTTA CATCTGC CCCTTTG
 AAATAGT TTAAAGT TTGTTGCA TATACATA AGAAAGT AAAGGAA TTGTTAC ATCAAT ATGAGACG AAAAACAC
 Right Arm
 4551 TTGAAAAA GTAGGCT GAGCACT TTCTTTC TACCATC ATTACA GCTGGCA AGATCAA TTCTTCC CAGTCT
 AACCTTT CATCGGA CTCTGGA AGAAAGT ATGTCAT TTATGT CGACGCT TCTAGTT AAAAGG GTCAGAA
 Right Arm
 60 4621 GGACATT TTATTC TTAAAGG TAGTGTG CTACATC TTCAAT ATTCCA GATGTTA CAGCGAT CATTAA
 CCTTGTA AAATAAA AAAATC ATCACAG GATGTTA AAAGGT TTACATC GTCCGTA TTAAAT TTGTTA
 Right Arm
 4691 GGAGTAC GTCCCAT TTATTCG AGCAAGT CAGTATC AGCACCT TTGTTCA ATAGAGG TTAAACC ATITGTTA
 65 4761 CCTCTATG CAGGGTA CAATAGG TGGTTGA ATACATC GTCTCAA TTGCTTA GGCAACAA ACTTTAT AGATGTA CGGGCGT
 Right Arm
 4831 ATGAGCC ATATGAA GTTAAAC CAATTTA ACTTTGT TAAGGT AGTCGC AACACAA AAGGAGT AAAGCTT
 TACTCGG TTATCTT CAAATTG GTTAAAT TGAAACAA ATTCATC TGAGCGG TTGTTG TTCTCTA TTTCGGA
 Right Arm
 4901 CGCTGT AAAGAAC ATTTGTTT ACATAGT TATTTCTT CAAACAGA TTCTTCA CTATTTT GTAGTCG TTCTCTA
 GCGACAA TTCTTG TAACAAA TTGATCA ATAAAGA GTTGTCT AGAAAGT GATAAAA CATCAGC AGAGAGT

		Right Arm
4971	ACACCGC ATCATGC AGACAAG AAGTGTG GCATTC GAACTA CAGGGTT AGCTCCA TACCTCA TCAAGAT TGTGGG TAGTAGC TCTGTC TCACCA CGTAAGT CATTGAT GTCCAAA TGAGGAT ATGGAGT AGTTCTA	
		Right Arm
5	TTTATA GCCTGG TATTCTT GAACATT TTCAAG ACAGGCC TTTCAGG AGGAGAT TGTFAGG TACCATA TTCCGTC AAAATAT CGGAGCC ATAAGAA CTTGTAA TGTCGGT AAAGTTC TCTCTCA ACATCTC ATGGTAT AAGGCAC	
		Right Arm
5111	TTAGGGT CGAATCC ATTGTC AAAACC TATTAGG AGATGCA TTGTCAT TATCCAT GATAGCC TCAAGA AATCCC GCITAGG TAACAGG TTTTGG ATAATTC TCTACGT AACAGTA ATAGGTA CTATCGG AGITGCT	
10	CGTATAT GTAAGCC ATCTGGA ATGTATA ATTITGT TTGTTTC AACAAAC GCTCGTG AACAGT TCTATAC GCATATA CAITCGG TAAAGA TACATAT TAAACCA ACAAAAG TTGTTG CGGACAC TTGTCGA AGATAGT	
		Right Arm
15	TTTTCA TTTCTT CATGATT ATATAG TTTACCGG ATATATA GTATACA AAGAGT TATAGTA ATCTCAT AAAAGT AAAAGAA GTACTAC TTATAC AAATGCC TTATAT CATAATG TTTCAA ATATCAT TAGAGTA	
		Right Arm
5321	ATATCT GAAACAC ATACATA AACATC GAAGAAT TACAGCA TTGCGTT GAGATTA ATGGCTT TTATATG TTATAGA CTTGTCG TGATGAT TTGTCAC CTTCCTA ATGGTAC AGACCAA CCTTATT TACGGA AATAAAC	
		Right Arm
20	TCATAGT TTACAAA TTGGCG TAACTCT CACTCTT TACAGG ATTCAG ATCTGT TTTATCC AACAGT AGTATCA AATGTT AACGGTC AACAGGTTA ATGAGAA ATGCTTA TAACGTC TTAGACA AATAAGG TTGGTCA	
		Right Arm
5461	GATTTTT GTATAAT ATAACIG GTATOC ATCTTC GATAGAA TOCTGTT ATTTAC ATTTTG CACCTAT CTAAAAA CATAATTA TTATGAT TACAGGA TAAAGG CTATCTT AGCAGAA TAANATT TAANAC CTGGATA	
25	TAATGTA CATCTGT CAAATCT ATCTTC CAACTGA CTITAGA TTACGAT GCGAAAT AGCATT ATACTA ATTCAT GTAGACA GTTTCAG TAGAAG GTTGACTA AAATAC ATTCGTA CGCTTTA TGTTAA TAGTGT	
		Right Arm
5601	TGTCGTA CCCAAAT ATCATGA CAAAGAT CTCTTAA ATACGTA ATCTTAT TATCTCT TGCNTAT TGTATAT ACAGAT GGGTTAA TAGTACT GTCTAA GAGAATI TAGCAT TAGATAA ATAGAGA AGCTATA AGCATTA	
		Right Arm
5671	AGTAATG GTAAAGA GTATACG ATACAG TAGATAG ATACAG TGATATA ATATTTT AACCCCA TTCTGTA TCATTTA CATTCTT CATATGC TTATGTC ATATCTA TGCTGAC ATCTGT ATATATA TTGGGTT AAGGACT	
		Right Arm
35	GTAAAAAT AATTACG ATATTAC ATTCTT TTTATAA TTITTTAT GTTTAG TTTATG TTAGGT ATACAAA CATTITA TTATAGC TATAATC TAAAGG AATAAT AAAAAAA CAAACAT AATAAAC AATOCAT TTATGTT	
		Right Arm
5811	AATTAGT TTATTTG GTGTTATA TTAAAG CGTCGTT AGAAGTA AGCTTAA TTACAT ATTATCG CTTAGGT TTATAC ATAAATAA CACATAT AAATTTC GCAGCAA TTCTTAT TGAGCAT ATTGTA ATGAGC GAAATCA	
40	TTTGATG TATTITGA ATCCCTT CTTTAA TGATATA TTITTCG ATATGAT ATTATATA GTCTCAT CCAAAGT AAACATC ATATAATC TAGGAA AAAAAAT ACCTTAT AAAAGG TTACGTA TAATATAT CGAAGTA GTTTCICA	
		Right Arm
45	ATAACAT TTACAT TCAGAAT TGCGGCC GCAATTC ATACGTC ATACGAT GTACATAC CTGTTTC CTGTTG TTGTTG AATTGTA AGTCCTC AGCGCCG CGTGTAG TTAGTC CAGTAC CAAAGAC GACACAC	
		Right Arm
6021	AAATGTT TATCCGG TCACAT TCCACAC AACATAC GAGGCCG AAGCATA AGTGTAA AAGCTTG GGGTGCC TTTACAA ATAGGGC AGTGTAA AGGTGTT TTGTTAT CTGGCG TTCTGAT TTACAT TTGCGAC CCCACCG	
50	TTAATGG TGAGGAC ACTCATC TAAATGG CTTGTTG CTGTCCTC CTACATC CCCGCTT TCCAGTC GGAAACAT CTGTTG ATTACTC ATCTGAT TGAGTGT ATTACCA GCACAGC GAGTGC GGGCGAA AGTGTAC CCCTTTC GAGACGA	
6161	CGCACGCT GCATTTAA TGAACTC CGCAACG CGGGGGG AGAACGC TTGTTGG TATTGGG CGCTCTT CGCTTC CGTGTGA CCTATTAT ATCTTAC CGCTGGT CGGCCCTC TTCTCGG CAAACCG ATAAACC CGGAGNA GGGGAG	
		Right Arm
6231	CTCGCTC ACTGCTG CGCTGCG CTCCGTC GTTCGGC TTGGCG AGCGGTA TCAGCTC ACTCCAA GGGGTTA GGGGAGC TGACTGA CGCTGCG GNGCCGC CAGCCGC CGCCGGC TGCGCAT AGTCGAG TGAGTTT CGGCCAT	
55	ATACAGT TATCCAC AGAATCA GGCGATA AACCGAC AGAACAC ATGTTGAG CAAAGGG CGACCAA AAGGCCA	
6301	TATGCCA ATAGGTG TCTTGTG CCTCTTA GTGGCGC TTCTGTT TACACTC GTTTCG CTTGCGT TTCCGCT GGAAACCA TAAAGG CGGGCGT TTGTTGG CTTCTG TACAGG TCCGCCCG CCTGAGC GAGGATC AAAAAAA	
6371	CTTGGG ATTITTC CGGGCGA AGACGGC CAAACAG GTACATC AGGGGGG GGAGACTG CTGCTAG TTGTTTT TOGAGCG CTCAGTC AGAGGTG GGGAAAC CGCACAG GACTGAT AGATAC CAGGGGT TTCCCCC TTGAGAC	
		Right Arm
60	AGCTGG AGTTCAG TCTCCAC CCTTGTG GGTCTTC CTGATAT TTCTATG GTCCCGA AAGGGGG ACCTTCG 6511 AGGGAGC AGCGGAG AGGACAA CGCTGG ACGGCGA ATGGCTT ATGGACAA GGGGAA AGAGGAA AGCCCTT	
		Right Arm
6581	GGGTGGC GTCTTTC CATAGCT CACCGCTG TTGCTGT TACCGGT TACCTGT CGCCCTT TCTCCCT TCGGGAA CGGACAC CGGAAAGA GTATGCA GTGGGAC ATCCATAA GTGTCGA GCCACAT CGACAA CGGAGGT TGACCC	
6651	CTGTTGAT CACGACAC CGGGCGT CGACGCC GACCGCT CGCCCTT ATCCGGT AACTATC GTCTGTA GTCCAAC GACACAC GTCCTGTG GGGGGGG AGTGGCG CTGGGCA CGGGGA TGGCCA TTGATAG CAGAACI CAGGTGG	
6721	CGGGGAT CACACAA CTTATCG CACTCG CAGACAGC CACTGTT AACAGGA TTAGCAG AGCGGAG TTGTTAG GGGCAATC TTGTCGT GAATAGC GTGTCG GTAGACA TTGTCCTT ATTCGTC TGCTTC CATTACAT	
		Right Arm
70	GGGGTGC TACAGAG TTCTTGA AGTGGTG GCCTAAC TACGCT ACATGAG AGGACA GTATTTG GTATCTG CGGGAGC AGTGTCTC AAGAACG TCACCAA CGGATTC ATGCGCA TGTCATC TTCTCTG CATAAAC CATAGAC	
6861	CGCTCTG CTGAAAC CAGTAC CTTCGA AAAAGAG TTGTTAG CTCTTGA TTGGCA ACAAAC CACCCCT GGGAGAC GACTTCG GTCAATG GAAGCCT TTTCCTC AACCATC GAGAACT AGGGCGT TTGTTG GTGGOGA	

6931	GGTAGCG GTGTTT TTTGTG TCAAGAC AGCAGAT TACGCC AGAAAAAA AAGGATA TCAAGAA GATCCC CCATGCC CACCAA AAAACA AGCTTCG TCGTCTA ATGGGG TCCTTTT TTCCCTA ATGTTCTT CTAGAAA
7001	TGATCTT TTCTACG GGGTCG AGCTCTA GTGGAAC GAAACT CACGTTA AGGGATA TTGGTCA TGAGATT ACTAGAA AAGATGC CCCAGAC TCGAGCT CACCTTG CTTTTG GTGCAAT TCCCTAA AACAGT ACTCTAA
5	ATCAAAA AGGATCT TCACCTA GATCCCTT TTAAATT AAAAATG AAGTTTT AAATCAA TCTAAAG TATATAT TAGTTTT TCTTGA AGTGTAT CTAGGAA AATTAAA TTITTCG TTCAAAA TTATGTT AGATTTC ATATATA GAGTAAA CTTGGTC TGACAGT TACCAAAT GTCTTAAT CAGTGGAG GCACCTTA TCTCAGC GATCTGT CTATTTG CTCATTG GAAACAG ACTGTCA ATGGTTA CGAAATTG GTCACTC CGTGGAT AGAGTGG CTAGACA GATAAAG
<hr/>	
10	7211 GTTICATC CATAGTT GCTTGCAC TCCCCGT CGTGTAG ATAACTA CGATACG GGAGGGC TTACCAT CTGGGCC CAAGTAG GTATCAA CGGACTG AGGGGCA GCACATC TATITGAT GCTATGC CCTCCCG AATGGTA CGGGCC
15	7281 CAGTGTG GCAATGA TACCGGG AGACCCA CGCTCAC CGGCTCC AGATTTA TCAGCAA TAAACCA GCCAGG GTCACGA CGTACT ATGGGGC CTGGGGT CGGAGTCG GCGCAGG TCTAAAT AGTGTGTT ATTGGT CGGTTGG Amp resistance gene
7351	GGAAAGGG CGCGAGG CAGAAGT GGTCTCG CAACCTT ATCCGGC TCCATCC AGTCTAT TAATTTGTT TGCCCGG CCTTGGCC CGGTGCG TCITCTCA CCAGGAG GTTGAAGA TAGGCGG AGGTAGG TCAGATA ATTAACA ACGGGCC
20	7421 AAGTGT AGTAAAGT AGTTCG CAGTTAA TAGTTTG CGCAAGG TTGTGTC CATTGTG CAAGGCA TGCTGGT TTCGATC TCATTCGA TCAAGGG TCIACTT AATCAAC CGGTTGA AACAAG GTAAAGA TGTCGGT AGCACCA
7491	GTCACGG TCTGTGT TTGTGTT GCTTCACTG CGGTTCTG CCAACGA TCAAGGC GAGTTAC ATGATCC CAGTGGC AGCAGCA ACCATCA CGAAGT AACTGCA GCCTAACG GTTTGCT AGTTCGG CCTCAATG TACTGG
25	7561 CCCATGT TGTTGCA AAAAGGG GTTACGT CCTCTGG TCCTCGG ATCGTTG TCAAGAG TAATGTT GCGCGAG GGGTACA ACACGGT TTTTGG CACTCGA GGACCC AGAGGGC TAGAAC ACGTCTTC ATTCAAC CGGCGTC Amp resistance gene
30	7631 TTGATCT ACTCATG TTGTTAG CGACGAG GCTTAATG TCTCTTA CTGTCAT GCTACATC GTAAAGT GTTCTTC AACATAG TGAGTAC CAATACG GTCTGTA CGTATTA AGAAAGT GACAGTA CGTAAAG CATTCTA CGAAGAG Amp resistance gene
7701	TGTGTGTG GGTGAGT ACTCAAC CGACTCA TTCTGAG AATATGGT TATGCGG CGACCGA GTTGCTC TTGCGGCS AACATCA CGCACTCA TGAGTAC AGAACCTC TTCTAC ATACGGG CTGCGCTA CAACGAG AACGGGC
35	7771 GCGCTAA TACGGGA TAATACC CGGGCAC ATAGCAG AACTTTA AAAGTGC TCATCAT TGGAAA CGTTCTT CGCAGGT ATGCCCT ATTATG CGCGGTG TATGTCG TTGAAT TTTCAGG AGTACTG ACCTTTT GCAAGAA Amp resistance gene
7841	CGGGGG AAAACTC TCAAGGA TCTTACG GCTGTGAG AGATCTCA GTTGTGAT GIAACCC ACTUGTG CACCCAA GCGCCCGC TTGGAG AGTTCTT AGAATGG CGACACAC TCTGGT CAAGCTA CATTGGG TGAGCAC GTGGGGT Amp resistance gene
40	7911 CTGATCT TCAGCAT CTTTTACG TTTCACG AGGGTTT CTGGGTG AGCAAAA ACAGGAAG GCGAAA TGCCGCA GACTAGA AGTGGTA AGAAATG AAAGTGG TGCGAAA GACCCAC TGTTTT TGTCCTT CGTTTTT ACGGCGT Amp resistance gene
45	7981 AAAAAGG GAATAAG GGCAGCA CGGAAAT GTTGAAT ACTCTATA CTCTTCC TTITTCG ATATATA TGAAGG TTTTCC CTTATTC CGCGCTG GCTCTA CAACCTA TGAGAT GAGAAGG AAAAGT TATAATA ATCTGTT
<hr/>	
8051	TTTATCA GGGTTAT TGCTCA TGAGGG ATACATA TTGGAAT GTATTTA GAAAAT AAACAAA TAGGGGT AAATAGT CCCAATA ACAGAGT ACTCGCC TATGTTA AAATCTA CATAATAA CTTTTA TTGTTT ATCCCA TCCCGGC ACATTC CCCGAAAG AGTGCCTA CCTGAGC TCTAGAA AACCTAT ATTATCA TGACATT AACCTAT AGGGGGG TGTAAGG GGGCTTT TCAGGT GGACTGC AGATTTG TTGGTAA TAATAGT ACTGTTA TTGGATA AAAAATTA GGCGTAT CACGAG TTGTTAT CGCGATA
50	8121 8191 TTGCTA CGGCGATA GTGCTC

Deposited December 23, 2003

FIGURE 2A

		1	50
	mCEA (6D)	ATGGAGTCTC CCTCGGGCCC TCCCCACAGA TGGTGCATCC CCTGGCAGAG	
5	mCEA (6D, 1st&2nd)	ATGGAGTCTC CCTCGGGCCC TCCCCACAGA TGGTGCATCC CCTGGCAGAG	
		51	100
	mCEA (6D)	GCTCCTGCTC ACAGCCTCAC TTCTAACCTT CTGGAACCCG CCCACCACGT	
	mCEA (6D, 1st&2nd)	GCTCCTGCTC ACAGCCTCAC TTCTAACCTT CTGGAACCCG CCCACCACGT	
10		101	150
	mCEA (6D)	CCAAGCTCAC TATTGAATCC ACGCCGTTCA ATGTCGCAGA GGGGAAGGAG	
	mCEA (6D, 1st&2nd)	CCAAGCTCAC TATTGAATCC ACGCCGTTCA ATGTCGCAGA GGGGAAGGAG	
15		151	200
	mCEA (6D)	GTGCTTCTAC TTGTCCACAA TCTGCCCCAG CATCTTTTG GCTACAGCTG	
	mCEA (6D, 1st&2nd)	GTGCTTCTAC TTGTCCACAA TCTGCCCCAG CATCTTTTG GCTACAGCTG	
20		201	250
	mCEA (6D)	GTACAAGGT GAAAGAGTGG ATGGCAACCG TCAAATTATA GGATATGTAA	
	mCEA (6D, 1st&2nd)	GTACAAGGT GAAAGAGTGG ATGGCAACCG TCAAATTATA GGATATGTAA	
25		251	300
	mCEA (6D)	TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACTGGG TCGAGAGATA	
	mCEA (6D, 1st&2nd)	TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACTGGG TCGAGAGATA	
30		301	350
	mCEA (6D)	ATATACCCCA ATGCATCCCT GCTGATCCAG AACATCATCC AGAATGACAC	
	mCEA (6D, 1st&2nd)	ATATACCCCA ATGCATCCCT GCTGATCCAG AACATCATCC AGAATGACAC	
35		351	400
	mCEA (6D)	AGGATTCTAC ACCCTACACG TCATAAAGTC AGATCTTGTG AATGAAGAAG	
	mCEA (6D, 1st&2nd)	AGGATTCTAC ACCCTACACG TCATAAAGTC AGATCTTGTG AATGAAGAAG	
40		401	450
	mCEA (6D)	CAACTGGCCA GTTCCGGGTA TACCCGGAGC TGCCCAAGCC CTCCATCTCC	
	mCEA (6D, 1st&2nd)	CAACTGGCCA GTTCCGGGTA TACCCGGAGC <u>TCCTTAAGCC TTCTATTAGC</u>	
45		451	500
	mCEA (6D)	AGCCAACAAT CCAAACCCGT GGAGGACAAAG GATGCTGTGG CCTTCACCTG	
	mCEA (6D, 1st&2nd)	TCCAATAATA <u>GTAAAGCTGT CGAAGACAAA GATGCCGTG CTTTTACATG</u>	
50		501	550
	mCEA (6D)	TGAACCTGAG ACTCAGGACG CAACCTACCT GTGGTGGGTA AACAACTCAGA	
	mCEA (6D, 1st&2nd)	TGAACCTGAG ACTCAGGACG CAACCTACCT GTGGTGGGTA AACAACTCAGA	
55		551	600
	mCEA (6D)	CGAGCCGAA ACTCAAGACG CAACATATCT CTGGTGGGTA AACAACTCAGT	
	mCEA (6D, 1st&2nd)	CGAGCCGAA ACTCAAGACG CAACATATCT CTGGTGGGTA AACAACTCAGT	
60		601	650
	mCEA (6D)	ACTCTATTCA ATGTACAAG AAATGACACA GCAAGCTACA AATGTGAAAC	
	mCEA (6D, 1st&2nd)	ACTCTATTCA <u>ACCTGTTTA ACCTGACCG GAAACGACACA GCAAGCTACA AATGTGAAAC</u>	

FIGURE 2B

		651		700
	mCEA (6D)	CCAGAACCCA	GTGAGTGCCA	GGCGCAGTGA
5	mCEA (6D, 1st&2nd)	CCAAAATCCA	GT <u>CAGCGCCA</u>	GG <u>GGGCTCTGA</u>
		701		750
	mCEA (6D)	TCTATGGCCC	GGATGCCCCC	ACCATTTC
	mCEA (6D, 1st&2nd)	<u>T</u> TT <u>A</u> CGGACC	CGATGCT <u>CC</u> T	AC <u>AAT</u> AGCC
10	mCEA (6D)	TCAGGGAAA	ATCTGAACCT	CTCTTGCCAC
	mCEA (6D, 1st&2nd)	TCAGGGAAA	ATCTGA <u>TCT</u>	<u>GAGCTGT</u> CAT
		751		800
15	mCEA (6D)	ACAGACTCT	TGGTTTGTC	ATGGGACTTT
	mCEA (6D, 1st&2nd)	<u>CCA</u> AT <u>CAGC</u>	TGGTTTGTC	ATGGCA <u>CTTT</u>
		801		850
	mCEA (6D)	TCTTAT <u>CC</u> C	CAACATCA	GTGAATAATA
20	mCEA (6D, 1st&2nd)	<u>T</u> TT <u>C</u> AT <u>CC</u> C	CA <u>A</u> TT <u>TA</u> CC	GTGA <u>AA</u> ATA
		851		900
	mCEA (6D)	GCCCAT <u>AA</u> T	CAGAC <u>ACT</u> GG	CCTCA <u>AT</u> AGG
	mCEA (6D, 1st&2nd)	<u>G</u> CT <u>C</u> ACA <u>AA</u> T	<u>CG</u> GA <u>CA</u> <u>CC</u> GG	<u>AC</u> TC <u>AA</u> <u>CC</u> GC
25		901		950
	mCEA (6D)	AGTCTATGAG	CCACCCAAAC	CCTTCATCAC
	mCEA (6D, 1st&2nd)	<u>C</u> GT <u>G</u> TATGAG	CA <u>CC</u> AA <u>AA</u> AC	<u>C</u> ATT <u>C</u> AT <u>AA</u> C
		951		1000
30	mCEA (6D)	TGGAGGATGA	GGATGCTGTA	GCCTTA <u>AC</u> CT
	mCEA (6D, 1st&2nd)	<u>T</u> GG <u>A</u> GG <u>A</u> ATGA	<u>GG</u> AC <u>CG</u> <u>CA</u> TT	<u>GC</u> AT <u>TA</u> AC <u>CT</u>
		1001		1050
35	mCEA (6D)	1051		
	mCEA (6D, 1st&2nd)	ACAA <u>CC</u> T <u>AC</u> C	TGTGGTGGGT	AA <u>AA</u> AT <u>CA</u> G
		1051		1100
40	mCEA (6D)	AC <u>AA</u> CT <u>TA</u> C	T <u>CC</u> AA <u>AT</u> G <u>AC</u> A	AC <u>AG</u> GG <u>AC</u> CC
	mCEA (6D, 1st&2nd)	<u>C</u> TT <u>G</u> C <u>AG</u> <u>TT</u> G	<u>T</u> CT <u>AA</u> T <u>G</u> AT <u>TA</u>	<u>AC</u> CG <u>CA</u> <u>CT</u> TT
		1101		1150
45	mCEA (6D)	1101		
	mCEA (6D, 1st&2nd)	GCT <u>G</u> C <u>AG</u> CTG	T <u>CC</u> AA <u>AT</u> G <u>AC</u> A	AC <u>AG</u> GG <u>AC</u> CC
		1151		1200
	mCEA (6D)	GA <u>AA</u> AT <u>GA</u> T <u>GT</u>	AG <u>GA</u> CC <u>CT</u> AT	GA <u>GT</u> GT <u>GG</u> AA
	mCEA (6D, 1st&2nd)	<u>G</u> CA <u>AT</u> G <u>AT</u> G	<u>T</u> GA <u>GT</u> GT <u>GG</u> CA	<u>T</u> TC <u>GA</u> AA <u>AT</u> G <u>A</u>
50		1201		1250
	mCEA (6D)	GACCAC <u>AG</u> CG	ACCC <u>AG</u> GT <u>CA</u> T	CCT <u>GA</u> AT <u>GT</u> GC
	mCEA (6D, 1st&2nd)	<u>G</u> AT <u>C</u> ACT <u>CC</u> G	<u>AC</u> CC <u>T</u> GT <u>TT</u> AT	<u>C</u> CT <u>TA</u> AT <u>GT</u> TT
		1251		1300
	mCEA (6D)	CA <u>CC</u> AT <u>TT</u> CC	CC <u>CT</u> CA <u>T</u> ACA	CC <u>TA</u> TT <u>AC</u> CG
	mCEA (6D, 1st&2nd)	<u>AA</u> CT <u>AT</u> T <u>AT</u> CT	<u>C</u> CA <u>TC</u> AT <u>ACA</u> CA	<u>T</u> CC <u>GG</u> GT <u>GT</u> G

Deposited December 23, 2003

FIGURE 2C

		1301	1350
	mCEA (6D)	TCTCCGTCCA TCGACGCTCT AACCCACCTG CACAGTATTTC TTGCGTGTATT	
5	mCEA (6D, 1st&2nd)	TTTCTTGCCA TGCA <u>G</u> CAT <u>CC</u> AAC <u>CC</u> CCCTG CACAGTACTC CTGGCTGATT	
		1351	1400
	mCEA (6D)	GATGGGAACA TCCAGCAACA CACACAAGAG CTCTTTATCT CCAACATCAC	
	mCEA (6D, 1st&2nd)	GAT <u>GG</u> AAACA <u>T</u> TCAGCAG <u>CA</u> T <u>AC</u> TA <u>CA</u> AGAG <u>TT</u> AT <u>TT</u> TATA <u>AA</u> GCAACAT <u>AC</u>	
10		1401	1450
	mCEA (6D)	TGAGAAGAAC AGCGGACTCT ATACCTGCCA GGCCAA <u>TA</u> AC TCAGCCAGTG	
	mCEA (6D, 1st&2nd)	TGAGAAGAAC AGCGGACTCT ATAC <u>T</u> TGCCA GGCCAA <u>TA</u> AC TCAGCCAGTG	
15		1451	1500
	mCEA (6D)	GCCACAGCAG GACTACAGTC AA <u>GA</u> CA <u>AT</u> CA CAGTCTCTGC GGAGCTGCC	
	mCEA (6D, 1st&2nd)	G <u>T</u> CA <u>CA</u> GCAG GACTACAG <u>TC</u> <u>AA</u> AC <u>AA</u> AT <u>AA</u> CT <u>GT</u> TT <u>CC</u> GC GGAGCTGCC	
		1501	1550
20	mCEA (6D)	AAGCCCTCCA TCTCCAGCAA CAA <u>CT</u> CCAAA CCCGTGGAGG ACAAGGATGC	
	mCEA (6D, 1st&2nd)	AAGCCCTCCA TCTCCAGCAA CAA <u>CT</u> CCAAA CCCGTGGAGG ACAAGGATGC	
		1551	1600
	mCEA (6D)	TGTGGCCTTC AC <u>CT</u> GTGAAC CTGAGGCTCA GAA <u>CA</u> CA <u>AC</u> ACC <u>AC</u> TAC <u>CT</u> GTGGT	
	mCEA (6D, 1st&2nd)	TGTGGCCTTC AC <u>CT</u> GTGAAC CTGAGGCTCA GAA <u>CA</u> CA <u>AC</u> ACC <u>AC</u> TAC <u>CT</u> GTGGT	
25		1601	1650
	mCEA (6D)	GGGTAA <u>AT</u> GG TCAGAGC <u>TC</u> CCAGTCAGTC CCAGGCTGCA GCTGTCC <u>AT</u>	
	mCEA (6D, 1st&2nd)	GGGTAA <u>AT</u> GG TCAGAGC <u>TC</u> CCAGTCAGTC CCAGGCTGCA GCTGTCC <u>AT</u>	
30		1651	1700
	mCEA (6D)	GG <u>CA</u> ACAGGA CC <u>CT</u> CA <u>CT</u> CT ATT <u>CA</u> AT <u>GT</u> CA CAA <u>GA</u> AA <u>AT</u> G <u>CG</u> CA <u>AG</u> AGC	
	mCEA (6D, 1st&2nd)	GG <u>CA</u> ACAGGA CC <u>CT</u> CA <u>CT</u> CT ATT <u>CA</u> AT <u>GT</u> CA CAA <u>GA</u> AA <u>AT</u> G <u>CG</u> CA <u>AG</u> AGC	
35		1701	1750
	mCEA (6D)	CT <u>AT</u> GT <u>AT</u> GT G <u>GA</u> AT <u>CC</u> AG <u>GA</u> ACT <u>CA</u> GT <u>GA</u> G TG <u>CA</u> AA <u>CC</u> GC AG <u>TG</u> AC <u>CC</u> AG	
	mCEA (6D, 1st&2nd)	CT <u>AT</u> GT <u>AT</u> GT G <u>GA</u> AT <u>CC</u> AG <u>GA</u> ACT <u>CA</u> GT <u>GA</u> G TG <u>CA</u> AA <u>CC</u> GC AG <u>TG</u> AC <u>CC</u> AG	
40		1751	1800
	mCEA (6D)	TCAC <u>CC</u> GT <u>GA</u> TG <u>CT</u> CT <u>CT</u> TAT GGG <u>CC</u> GG <u>AC</u> G <u>AC</u> CC <u>CA</u> T <u>CA</u> T TT <u>CC</u> CC <u>CC</u> CA	
	mCEA (6D, 1st&2nd)	TCAC <u>CC</u> GT <u>GA</u> TG <u>CT</u> CT <u>CT</u> TAT GGG <u>CC</u> GG <u>AC</u> G <u>AC</u> CC <u>CA</u> T <u>CA</u> T TT <u>CC</u> CC <u>CC</u> CA	
45		1801	1850
	mCEA (6D)	GACT <u>CG</u> T <u>CT</u> T AC <u>CT</u> TT <u>CG</u> GG AG <u>CG</u> GA <u>CC</u> TC AAC <u>CT</u> CT <u>CC</u> T GCC <u>AC</u> TC <u>CG</u> GC	
	mCEA (6D, 1st&2nd)	GACT <u>CG</u> T <u>CT</u> T AC <u>CT</u> TT <u>CG</u> GG AG <u>CG</u> GA <u>CC</u> TC AAC <u>CT</u> CT <u>CC</u> T GCC <u>AC</u> TC <u>CG</u> GC	
50		1851	1900
	mCEA (6D)	CT <u>CT</u> AA <u>CC</u> CA T <u>CC</u> CC <u>CG</u> AG <u>GT</u> AT <u>TC</u> TT <u>GG</u> GG T <u>AT</u> CA <u>AT</u> GGG AT <u>AC</u> CC <u>GC</u> AG <u>C</u>	
	mCEA (6D, 1st&2nd)	CT <u>CT</u> AA <u>CC</u> CA T <u>CC</u> CC <u>CG</u> AG <u>GT</u> AT <u>TC</u> TT <u>GG</u> GG T <u>AT</u> CA <u>AT</u> GGG AT <u>AC</u> CC <u>GC</u> AG <u>C</u>	
		1901	1950
	mCEA (6D)	AA <u>CA</u> CA <u>CA</u> CA AG <u>TT</u> CT <u>CT</u> TTT AT <u>CG</u> CC <u>AA</u> AA T <u>CA</u> CG <u>CC</u> AA TA <u>AT</u> AC <u>GG</u> GG	
	mCEA (6D, 1st&2nd)	AA <u>CA</u> CA <u>CA</u> CA AG <u>TT</u> CT <u>CT</u> TTT AT <u>CG</u> CC <u>AA</u> AA T <u>CA</u> CG <u>CC</u> AA TA <u>AT</u> AC <u>GG</u> GG	

FIGURE 2D

	1951	2000
5	mCEA (6D) ACCTATGCCT GTTTTGTCTC TAACTTGGCT ACTGGCCGCA ATAATTCCAT	
	mCEA (6D, 1st&2nd) ACCTATGCCT GTTTTGTCTC TAACTTGGCT ACTGGCCGCA ATAATTCCAT	
	2001	2050
	mCEA (6D) AGTCAAGAGC ATCACAGTCT CTGCATCTGG AACTTCTCCT GGTCCTCTCAG	
10	mCEA (6D, 1st&2nd) AGTCAAGAGC ATCACAGTCT CTGCATCTGG AACTTCTCCT GGTCCTCTCAG	
	2051	2100
	mCEA (6D) CTGGGCCAC TGTCGGCATC ATGATTGGAG TGCTGGTTGG GGTTGCTCTG	
	mCEA (6D, 1st&2nd) CTGGGCCAC TGTCGGCATC ATGATTGGAG TGCTGGTTGG GGTTGCTCTG	
15	2101	
	mCEA (6D) ATATAG	
	mCEA (6D, 1st&2nd) ATATAG	

FIGURE 3

A. Amino Acid Sequence Comparison of "Wild-Type KSA" (1) and Modified KSA (2)

5 1 MAPPQVLAFGLLLAATATFAAAQEECVCEYKLAVNCFVNNNRQCQCTSVAQNTVIC
2 MAPPQVLAFGLLLAATATFAAAQEECVCEYKLAVNCFVNNNRQCQCTSVAQNTVIC

10 1 SKLAAKCLVMKAEMNGSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAQCNGTSTCWC
2 SKLAAKCLVMKAEMNGSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAQCNGTSTCWC

15 1 VNTAGVRRTDKDTEITCSERVRTWIIIELKHKAREKPYDSKSLRTLQKEITTRYQDL
2 VNTAGVRRTDKDTEITCSERVRTWIIIELKHKAREKPYDSKSLRTLQKEITTRYQDL

20 1 PKFITSILYENNVITIDLVQNSQKTQNDVDIADVAVYFEKDVKGESLPHSKKMDLTNV
2 PKFITSVLYENNVITIDLVQNSQKTQNDVDIADVAVYFEKDVKGESLPHSKKMDLTNV

25 1 GEQLDDPGQTTLIYYVDEKAPEFSMQGLKAGVIAVIVVVVIAVVAGIVVVLVISRKKRMA
2 GEQLDDPGQTTLIYYVDEKAPEFSMQGLKAGVIAVIVVVVIAVVAGIVVVLVISRKKRMA

30 1 KYEKAEIKEGMEMHRELENA
2 KYEKABIKEGMEMHRELENA

B. DNA Sequence of Modified KSA

25 atggcgcccccgaggcttcgcgttccggcttctgcgttgcggcgacggcgactttgcgcagtcaggaa
gaatgttgtctgtaaaaactacaagctggcgtaactgtctttgtataataatcgtaatgcgcgttgcgttca
gttgggtcacaataactgtcatttgcataagctggctgcggaaatgttgggtatgcggcataatgtatggc
tcaaaaacttggagaagagcaaaacctgaaaggcccctccagaacaatgtggctttatgtatccgtactgcgt
gagagccggctttaaaggccaagcagtgcacccgcacccacgtgcgtgggtgtgtacactgtgtgggtcaga
agaacagacaaggacactgaaataacctgtctgacgcgttgacactactgtgtatcatcattgaaactaaacac
30 aaagcaagaaaaaaccttatgtatgataaaagggttgcggactgcacttcagaaggagatcacaacgcgttatcaa
ctggatccaaatattcacgagtgttgtatgagaataatgttatcactattgtatctggttcaaaaattttct
caaaaaactcagaatgtatggacatagctgtatggcttattttttggaaaatgtttaagggtgtaccccttg
tttcatttcaagaaaatggacactgtacatggggacaactggatctggatctggatctggatcaactttatatt
tatgttgtatgaaaaagcaccctgaaatttcaatgcagggtctaaaaggctgttattgtgttattgtgttgc
35 gtgtatgcaggatgttgtatgatggatctggatcaatgcaggatctggatcaatgcataa

FIGURE 4A
Construction of Modified KSA Plasmid

FIGURE 4B
Construction of Modified KSA Plasmid

FIGURE 5

A. Plasmid Map of Modified KSA Expression Vector

5

B. DNA Sequence of Modified KSA Expression Vector

Promoter H6 for KSAV	9930-9515
KSAV	1-945
Left arm	1002-1422
Right arm	4070-5590
Right arm fragment	9012-9299

MetAlaProPro GlnValLeu AlaPheGly LeuLeuLeuAla AlaAlaThr.
1 ATGGCCCCCC CGCAGGTCCT CGCGTTCCGGG CTCTCGCTT CGCGCGGCAC
TACCGCGGGG GCGCTCAGGA GCGCAAGCCC GAAGACGGAAC GGGCGCGCTG
.AlaThrPhe AlaAlaAlaGln GluGluCys ValCysGlu AsnTyrLysLeu.
51 GCGGACTTTT GCGCAGCTC AGGAAGAATG TGCTCTGTGAA AACTCAAGC
CCGGTCAAAGA CGGGCTCGAG TCTCTCTTCA ACAGACACTT TTGATGTTCG
.AlaValAsn CysPheVal AsnAsnAsnArg GlnCysGln CysThrSer
15 101 TGGCCGTAAA CTGCTTTGTG AAAATAATAC GTCAAATGCCA GTGTACTTCA
ACCGGCAATT GACGAAACAC TTATTATAG CAGTTACGGT CACATGAAGT
ValGlyIleAlaGln AsnThrVal IleCysSer LysLeuIalaala LysCysLeu.
151 GTTGGTGAC AAAACTCTG CATTGCTCA AAGCTGGCTG CCAAATGTTT
20 CAACCCGGT TTTTATGACA GTAAACGAGT TTGACACCAC GTTTTACAAA
.ValMetLys AlaGluMetAsn GlySerLys LeuGlyArg ArgAlaLysPro.
201 GGTGATGAAG GCAGAAATGA ATGGCTCAA ACTTGGGAGA AGAGCAAAC
CCACTACTTC CGTCTTTACT TACCGAGTT TGAAACCTCT TCTCGTTTG
.GluGlyAla LeuGlnAsn AsnAspGlyLeu TyrAspPro AspCysAsp
25 CTGAAGGGGC CCTCCAGAAC AATGATGGGC TTATGATGCC TGACTGCAT
GACTTCCCGG GGAGGTCTT TTACTACCGG AAATACTAGG ACTGAGGCTA
GluSerGlyLeu PheLysAla LysGlnCys AsnGlyThrSer ThrCysTrp.
301 GAGAGGGC TCCTTAAGGC CAAGCAGTGC AACGGCACCT CACAGTGCCTG
CTCTCGGGG AAATACTCC GTTCTGAGC TTGCGGTGGA GTGACGACGAC
.CysValAsn ThrAlaGlyVal ArgArgThr AspLysAsp ThrGluIleThr.
30 351 GTGTGTGAAC ACTGCTGGGG TCAGAAGAAC AGACAAGGAC ACTGAAATAA
CACACACTTG TGACGACCCC AGTCTCTCTG TCTGTTCTG TGACTTTATT

..CysSerGlu ArgValArg ThrTyrTrpIle IleIleGlu LeuLeuHis
 401 CCTGCTCTGA GCGAGTGAGA ACCTACTGGG TCATCATGG AACTAAAACAC
 GGACGAGACT CGCTCACTCT TGATGACCT AGTGTAACT TGATTTTG
 LysAsnArgGlu LysProTyr AspSerLys SerLeuArgThr AlaLeuGln.
 451 AAAAGCAAGAG AAAAACCTTA TGATAGTAAA AGTTTGCGGA CTGCACCTCA
 TTTCTGTTCTC TTTTGGAAAT ACTATCATT TCAAACGCC GACGTGAAGT
 .LysGluIle ThrThrArgTyr GluLeuAsp ProLysPhe IleThrSerVal.
 501 GAAGGAGATC ACAACCGGTT ATCAACTGGG TCCAAAATT ATCACGAGTG
 CTTCCCTCTAG TGTTGCGGCA TAGTTGACCT AGGTTTTAAA TAGTGTCTAC
 ..LeuTyrGlu AsnAsnVal IleThrIleAsp LeuValGln AsnSerSer
 551 TGTGTGATGA GAATAATGTT ATCACTATG ATCTGGTTCA AAATTCTCT
 ACACACATACT CCTTATTACAA TAGTGTAAAC TAGACCCAAGT TTTAAGAAGA
 GlnLysThrGln AsnAspVal AspIleAla AspValAlaTyr TyrPheGlu.
 601 CAAAAAAACTC AGAAATGATG GGACATAGT GATGTTGCTT ATTATTTGA
 GTTTTTGAG TCTTACTACA CCTGTTATCGA CTACACCGAA TAATAAAAATC
 .LysAspVal LysGlyGluSer LeuPheHis SerLysLys MetAspLeuThr.
 651 AAAAGATGTT AAAGGTGAAT CCTTGTTCA TTCTAAGAAA ATGGACCTGA
 TTTCTACAA TTTCTGACTA GGAAACAAAGT AAGATTCTTT TACCTGGAC
 ..ValAsnGly GluGlnLeu AspLeuAspPro GlyGlnThr LeuIleTyr
 701 CAGTAATGG GGAACAACTG GATCTGGATC CTGGTCACAC TTTAATTAT
 GTCATTTACG CCTTGTGTCG CTAGACCTAG GACCAGTTTG AAATTAAATA
 TyrValAspGlu LysAlaPro GluPheSer MetGlnGlyLeu LysAlaGly.
 751 TAATGTTGATG AAAAGGACCC TGAATTCCTCA ATGCAGGGTC TAAAAGCTGG
 ATACAACTAC TTTTCGTTG ACTTAAGACT TACGTCCCCAG ATTTCGACC
 ..ValIleAla ValIleVal ValValIle AlaValVal AlaGlyIleVal.
 801 TGTTATTGCT GTTATTGTTG TTGTGTTGAT AGCAAGTTGTT GTCTGGAAATTG
 AACATAACGA CAATAACACC AACACCCACTA TGTCACACAA CGACCTTAAC
 ..ValLeuVal IleSerArg LysLysArgMet AlaLysTyr GluLysAla
 851 TTGTTGCTGTT TATTTCCAGA AAAGAGAGAA TGCGAAAGATG TGAGAAGGCT
 AACACGACCA AATAAGGCTC TTCTCTCTT ACCGGTTTCACT ACTCTCCGA
 GluGlyLysGlu MetGlyGlu MetHisArg GluLeuAsnAla ***
 901 GAGATTAAGG AGATGGGTGA GTATGCAATGG GAACTCATGG CATAAGAACG
 CTCATTTTC CTCATCCACT CTACGTATCC CTGAGTTAC GTATTCCTCG
 951 TTATCGATCAC CGTCGGACCTC GAGGAATTCT TTTTATGAT TAACTAGTTA
 AATAGCTATG CGAGCTGGAG CTCTTAAAGA AAATAACTA ATTGATCAAT
 1001 ATACACGGCCG CTATAAAAGA TCTAAATGC ATAATTTCTA AATAATGAAA
 TTAGTGGCCG GAATATTCTTC AGATTTTACG TATTTAAAGAT TTATTAACCT
 1051 AAAAAGTACA TCATGACCA CGCGTTAGTA TATTTTCAA TGAGGATTTAA
 TTTTCATGATG AGTACTCGTT GCGCAATCAT ATAATATGTT ACCTCTAAAT
 1101 CGCTCTATAC CGTTCTATGT TTATGATTC AGATGATGTT TTAGAAAAGA
 GCGAGGATATG CCAAGATACA AATAACTAAG TCTACTACAA AAATTTCTT
 1151 AAGTTATTGA ATATGAAAAC TTAAATGGAAG ATGAAGATGAG CGACGATGAT
 TTCATAAATCT TATACTTTG AAATTTACTC TACTCTACI GTGCTACTA
 1201 TATTTGTTGA AATCTGTTT AGATGAGGA GATGACGGC TAAAGTATAC
 ATAAACACAT TTAGACAAAC TTCTACTCTT CTACTGGCGG ATTTCATATG
 1251 TATGGTTACA AATGATTAAGT CTATACACT AATGGCGACT TGTCGAAGAA
 ATACCAATGT TTCAATTCA GATATGATGA TTACCGCTGA ACACGTTCTT
 1301 GGATAGTAT AGTGAAGAATG TTGTTAGATT ATGATTATGA AAAACCAAAAT
 CCATATCATCA TCACCTTTAC AACAATCTAA TACTAATACT TTTGGTTTA
 1351 AAATCAGATC CATATCTAA GGTATCTCTT TTGACATAA TTTCATCTAT
 TTATGCTGAG TATAGATGTTT CCATAGAGGA AACGTGTATT AAAGTAGATA
 1401 TCTCTAGTTA GAATACCTGC AGCCAACTT GGCACGTGCC GTGTTTAC
 AGGATCAAAT CCTTATGGACG TGCGTTCGAA CGGTGACCGG CAGCAAAATG
 1451 AACGCTGTGA CTGGGAAAC CCTGGCGTTA CCAACACTTAA TCGCCTTGCA
 TTGCGACCT GACCCCTTGG GACCCCAAT GGGTGAATT AGCGGACCGT
 1501 GCACATCCCC CTTTCGCGAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA
 CGTGTAGGGG GAAAGCGGTG GACCCGATTA TCGCTTCTCC GGGCGTGGCT
 1551 TCGCCCTTCC CAACAGTTGC GCAGCTGAA TGGCGAATGG CGCCTGATGC

Deposited December 23, 2003

		AGCGGGAAAGG	GTTGTCACG	CGTCGGACTT	ACCGCTTACCC	GCGGACTACAG	
1601		GGATTTTCT	CCTTACCAT	CTGTGGGTA	TTTACACCCG	CATATGGTGC	
		CCATAAAAAGA	GGAATCGCTA	GACACGCCAT	AAAGTGTGCG	GTATACCACG	
1651		ACTCTCAGTA	CAATCTGCTC	TGATGCCGCA	TAGTTAACGCC	AGCCCCGACA	
5		5	TGAGAGTCAT	GTTAGACGAG	ACTACCGCT	ATCAATTCTGG	TCGGGGCTGT
		CCCGCCAACA	CCCGCTGACG	CGCCCTGACG	GGCTTGTCTG	CTCCCGCAT	
		GGGGCGGTGT	GGGGGACTGC	CGGGGACTGC	CCGAACAGAC	GAGGGCCGTA	
		CCGCCTAACAG	ACAAGCTGTG	ACCGCTCCG	GGAGCTGCTA	GTGTAGAGG	
		GGCGAACATGTC	TGTTGCCACAC	TGGCGAGGCC	CTCGAGCTA	CACAGTCTCC	
10	1801	TTTCACCGT	CATACCGAA	ACCGCGAGA	CGAAAGGGCC	TGGTGTATACG	
		AAAGATGGCA	GTAGTGGCTT	TGGCGCTCT	CTTTCCTCCG	AGCAACTATGC	
		1851	CCATTATTTA	TAGGTTAACT	TCATGATAAT	ATATGGTTCT	TAGACGCTAG
		GGATAAAAAT	ATCCAAATTAC	AGTACTATTA	TTACCAAAGA	ATCTGAGTC	
15	1901	GTGGCACTTT	TCGGGGAAAT	GTGCGGGAA	CCCTTATTTG	TTTATTTTC	
		CACCGTGAA	AGCCGGCTT	CAAGCCCTT	GGGGATAAAC	AAATAAAAAG	
		1951	TAATATACATT	CAAAATATGT	TCCGCTCATG	AGACAATAAC	CTCTGATAAT
		ATTATATGAA	GTTTATACAT	AGGCAGTAC	TCTGTTATTG	GGACTATTG	
		2001	GCCTCAATAA	TATTGAAAAA	GGAGAGTAT	GAGTATTCAA	CATTTCCTG
		CGAAGTTATT	TAATCTTTT	CCTCTCTATA	CTCATATACTT	GTAAAGGCAC	
20	2051	TGCCCTTAT	TCCCTTTTT	GGCGCATTTT	GCCTTCTCTGT	TTTTGCTCAC	
		AGCGGGATA	AGGGAAAAAA	CGCCGTTAAA	CGGAAGGACA	AAAACGAGTG	
		2101	CCAGAACCG	TGGTGAAGAT	AAAGATGCT	GAAGATCAGT	TGGGTGACCG
		GGTCTTTCGG	ACCACCTTCA	TTTCTACTGA	CTTCTACTCA	ACCCACGTC	
25	2151	AGTGGGTTAC	ATCGAACATG	ATCTCAACAG	CGGTAAGATC	CTTGAGAGTT	
		TCACCCAATG	TAGCTGACC	TAGAGTTGTC	GCCTACTTAG	GAACCTCTAA	
		2201	TTGCCCCCGA	AGAACGTTTT	CCAACTGATGA	GCACCTTTAA	AGTCTGCTA
		AAAGCGGGCT	TCTTCAAAA	GGTTACTACT	CGTAAATT	TCAGACGAT	
		2251	TGTTGGCGCG	TATTATCCCG	TATTGACGCC	GGCGAAGAGC	AACTCGCTG
30	2301	ACACCGCGCC	ATAATAGGCC	ATAACTGCCG	CCGGTTCTCG	TTGAGGCCAG	
		CCGCATACAC	TATCTCTAGA	ATGACTTGGT	TGAGTACTCA	CCAGTCACAG	
		GGCGTATGTG	ATAAGACTCT	TACTGAACCA	ACTCATGAGT	GGTCAGTGT	
		2351	AAAGACATAT	TACGGATGCC	ATGACAGTA	GAGAATTATG	CAGTGTGCCC
		TTTCTGAGA	ATGCTTACCO	TACTGTCATT	CTCTTAATAC	GTACGACAGG	
35	2401	ATAACCATGA	GTGATAACAC	TCCGGCCAAC	TTACTCTGTA	CAACGATCTG	
		TATTGTTACT	CATCTATGTG	ACGCCGGTGT	ATAGAAGACT	GTGCTAGCC	
		2451	AGGACCGAAG	GAGCTAACCG	CTTTTTGCA	CAACATGGG	GATCATGTA
		CTCGGCTTCC	CTCGATTGGC	GGAAAACGTT	GTGTAACCCC	CTAGTACATT	
40	2501	CTCGGCTTGA	TCGTGTTGGAA	CCGGAGCTGA	ATGAAAGCCAT	ACAAACGAC	
		GAGCGGAAT	AGCAACCCCT	GGCCTGACT	TACTTCGGTA	TGTTTGTCTG	
		2551	GAGCGTACAC	CCACGATGCC	TCTAGGAT	SCAACAAACGT	TGCGCAAACT
		CTCGCACTGT	GGTCTACTGG	ACATCGTTAC	CGTGTGTC	ACCGCTTGA	
		2601	ATTAATCTGG	GAACACTTCA	CTCTGACTTC	CGGCCAACAA	TTAATAGACT
		2651	TAATTGACCG	CTTGATGAAT	GAGATCGAG	GGCCCTTGT	ATTATCTGA
45		GGATGGAGGC	GGATAAAAGTT	GCAGGACCA	TCTCGCTC	GGCCCTTCGG	
		CCTACCTCCG	CCTATTTCAC	CGTCTGGTG	AGAGCAGGAC	CGGGAAAGGC	
		2701	GCTGGCTGGT	TTATTGCTGA	TAATCTGGA	GGCGGTGAGC	GTGGGTCTCG
		CGACCGACCA	ATAAACGACT	ATTAGACCT	CGGCCACTCG	ACCCAGAGC	
		2751	CGGTATCATT	GCAGCCTGG	GGCCGAGATGG	TAAGCCCTCC	CGTATGCTAG
50	2801	GCCATAGTA	CGTCGTGACC	CCGGCTTAC	ATTGGGAGG	GCATAGCATC	
		TTATCTACAC	GACGGGGAGT	CAGGGAACTA	TGGATGAAACG	AAATAGACAG	
		2851	AAATAGATGTG	CTGCCCCCTCA	GTCCGGTTGAT	ACCTACTTGC	TTTATCTGTC
		ATCGCTGAGA	TAGTGGCTC	ACTGATTAAG	CATGGTAA	TGTCAGACCA	
		2901	TAAGCTACTA	TATACCTT	TAAGTGTATT	AAAACCTCAT	TTTAATT
55		55	TCATAATGAGT	ATATATGAAA	TCTAACTAAA	TTTGAAGTA	AAAATTAAT
		2951	AAAGGATCTA	GGTGAAGATC	CTTTTGATA	ATCTCATGAC	CRAAATCCCT
		3001	TTTCTAGAT	CACTCTAG	GGAAAACAT	TAGAGTACTG	GTITTTAGGG
		TAACGTGAGT	TTTCGTTCCA	CTGAGCGCTA	GACCCCGTAG	AAAAGATCAA	

Deposited December 23, 2003

		ATTGCACTCA	AAAGCAAGGT	GACTCGCAGT	CTGGGGCATC	TTTTCTTAGTT	
3051		AGGATCTTCT	TGAGATCCTT	TTTTCTGGC	CGTAATCTGC	TGCTTGCAAA	
		TCCTAGAAGA	ACTCTAGGAA	AAAAGACGC	SCATTAGACG	ACGAACGTTT	
3101		CAAAAGAAC	ACCGCTACCA	CCGGGTGTTT	TTTGGCCGGA	TCAAGAGCTA	
5		GTTTTTTG	TGGCGATGTT	CGCCACAAA	CAAAGGCC	AGTCTCGAT	
		CCAACTCIT	TTCCGAAGGT	AACTGGCTTC	ACGAGGGC	AGATAACAAA	
		GGTTGAGAAA	AAAGCTTCCA	TTGACCGAAG	TCTGCTCGCG	TCTATGGTTT	
3151		TACTGCTT	CTAGTGTAGC	CGTAGTTAGG	CCACCACTTC	AAGAACCTCG	
		ATGACAGGAA	GATCACATCG	GCATCAATCC	GTTGGTGAAG	TTCTTGAGAC	
3201		TAGCACCGCC	TACATACCTC	GCTCTGCTAA	TCCTGTTTAC	AGTGGCTGCT	
10	3251	ATCGTGGCG	ATGTATGGAG	CGAGACGATT	AGGACAATGG	TCACCGACGA	
		CGGTACCCG	TATAAGTCGTT	TCTTACCGGG	TTGGACTCAA	GACGATAGTT	
3301		ACCGGATAAG	GCGCAGCGGT	CGGGCTGAAC	GGGGGGTTCG	TGACACACAG	
15	3351	TGGCTTATTC	CGCGTCGCCA	GGCCGACTTG	CCCCCCAAAGG	ACGTGTTGCG	
		CCAGCTTGG	GGCAACGACC	TACACCGAA	TGAGATACCT	ACAGCGTGG	
		GGTCGAACCT	CGCTTGTGTT	ATGTCGCTTG	ACTCTATGGA	TGTCGCACTC	
3401		CTATGAGAAA	GCGCCACGCT	TCCCGAAGGG	AGAAAGGGG	ACAGGTATCC	
		GATACTCTT	CGCGCTCGA	AGGGCTTCCC	TCTTCCGCC	TGTCATAGG	
20	3451	GGTAAGCGGC	AGGGTCGGAA	CAGGGAGAGG	CACGGAGGAG	CTTCCAGGGG	
		CCATTGCGCC	TCCCGACCTT	GTCCCTCTGC	GTGCTCCCTC	GAAGGTCCCC	
		GAACACCTCG	GTATCTTAT	AGTCTGTGCG	GGTTTCCGCA	CCTCTGACTT	
3551		CTTGTGGCCG	CATAGAAATA	TACAGACAGC	CCAAAGGGGT	GGAGACTGAA	
25	3601	GGCGCTGAT	TTTGTGTATG	CTGTCAGGG	GGGCGGAGCC	TATGAAAAAA	
		CTCGCAGCTA	AAAAACACTAC	GAGCAGTCCC	CCCGCCCTGG	ATACCTTTT	
		CGCCGACCAA	CGCGCCCTTT	TACGGTTCTC	GGCCCTTTG	TGCCCTTTTG	
3651		GGGGCTGTG	CGCGGGAAA	ATGCCAAGGA	CGGAAAACG	ACCGGAAAAC	
		CTCACATGTT	CTTCCCTGCG	TTATCCCTG	ATTCGTGTA	TAACCGTATT	
3701		GAGTGTACAA	GAAGAAGGAC	ATAGAGGGAC	TAAGACACCT	ATTGGCATAA	
30	3751	ACCGCTTTG	AGTAGCTGA	TACCGCTTC	CCGAGCGGAA	CGACGAGGG	
		TGGCGGAAAC	TCACTCTGACT	ATGGCAGGG	GGTGCCTGCTT	GTGCGCTCGC	
		3801	CAAGCAGTC	GTGAGCGAGG	AAGCAGGAAGA	CGGCCAATA	CGAAACCCG
		GTGCGCTAGT	CACTCGCTCC	CTGCGCTTC	CGCGGGTTAT	GGTTTGGGG	
3851		CTCTCCCCCG	GGCTTGGGCC	ATTCAATTAT	CGACGCTGGCA	CGACAGGTT	
35	3901	GAAGGGGGGG	CGCAACCGGC	TAAGTAAATTA	CGTCGACCGT	GTGTCAAA	
		CCCGACTGGA	AAGCGGGCAG	TGAGCGCAAC	SCAATTAATG	TGAGTTAGCT	
		GGGGCTGACCT	TTCCCGCTG	ACTCGCTTG	CGTTAAATTG	ACTCAATCGA	
3951		CACTCATTAG	GCACCCCAAG	CTTACACTT	TATGCTTCG	GTCTGTATGT	
		GTGAGTAATC	CGTGGGTCC	GAATATGTAA	ATACCGAAGGC	CGAGCATACA	
40	4001	TGTGGTGAAT	TGTGAGCGGA	TAACAAATTTC	ACACAGGAAA	CAGCTATGAC	
		ACACACCTTA	ACACTCCCT	ATGTTAAAG	TGTGCTTTT	GTGAGTACTG	
		ACTGATTAGC	AATTGAAATTG	CGCCGGCAAT	TCTGAATGTT	AAATGTTATA	
4051		GTACTTAATC	TAACTTAAC	GGCCGGTTA	AGACCTAACAA	TTTACATAT	
45	4101	CTTGGATGTA	AGCTATAAT	ATGCACTGGA	AAAATAATCC	ATTAAAGAA	
		GAACACCTTA	TCGATTTATTA	TACGTAACCT	TTTTATTTAGG	TAATTTCTT	
		4151	AGGATTCAAA	TACATACAAA	CTTAACGAT	AAATATGTTAA	CTAAGCTTAT
		TCCTAAGT	ATGATGTTT	GGATTCGCTA	TTATACAAATT	GATTGAAATA	
4201		TCTTAACGAC	GTCTTAAATA	TACACAAATA	ACACATAATT	TGTATAAAC	
		AGAATTGCTG	CGAATTTAT	ATGTGTTTAT	TGTATTA	AAACATATTG	
50	4251	TAACAAATAA	CTAAACATA	AAAATAATAA	AAAGGAATGT	AAATATGTTAA	
		ATTTGTTATT	GATTTGTAT	TTTTTATTAT	TTCCCTTACA	TTATAGCATT	
		4301	TTATTTACT	CAGGAATGGG	GTAAATATT	TATATCAGT	GTATACCTAT
		AAATAAAATGA	GTCTCTTACCC	CAATTATAA	ATATAGTGC	CATATAGATA	
4351		ACTGTTATG	TATACTCTT	ACAAACTTA	TTACGAATAT	GCAAGAGATA	
55	4401	TGACAATAGC	ATAGAGAAA	TGTTATGAT	ATGCTTATA	CGTCTCTAT	
		ATAAGATTAC	GTATTTAAGA	GAATCTTGT	ATGATAATTG	GGTAGCACAT	
		TATTCTAATG	CATAAAATCT	CTTAAAGACAG	TACTTATAAC	CCATGCTGTA	
4451		AGTGATAAT	GCTATTTCGC	ATCGTTACAT	AAAGTCAGTT	GGAAAGATGG	

		TCACTATTAA	CGATAAAGCG	TAGCAATGTA	TTTCAGTCAA	CCTTCTACCC
4501		ATTGACAGA	TGTAACTTAA	TAGGTGCAA	ATGGTTAAC	ACAGCATTC
		TAAACTGTCT	ACATTGAATT	ATCCACGTT	TTACAATTAA	TTGTCGTAAG
4551		TATCGGAAGA	TAGGATACCA	GTATTATTAA	ACAAAATCA	CTGGTGGAT
5		ATAGCCTCTT	ATCCATGTC	CAATATAATA	TGTTTTAGT	GACCAACCTA
4601		AAAACAGATT	CTGCAATTAT	CGTAAAGAT	GAAGATTACT	GCGAATTGT
		TTTGTCTAA	GACGTTATAA	GCATTCTCA	CTTCTAATGA	CGCTTAAACCA
4651		AAACTATGAC	AATAAAAAGC	CATTATCTC	AACGACATCG	TGTAATTCT
		TTTGTACTTG	TTATTTTCG	GTAAAATAGG	TTGCTGTAGC	ACATTAAGAA
10	4701	CCATGTTTA	TGTATGTTG	TCAGATATTA	TGAGATTACT	ATAAACTTTT
		GGTACAAAAAT	ACATACACAA	AGTCTATAAT	ACTCTTAATGA	TATTTGAAAAA
	4751	TGTTACTCTA	TATTCGCTAA	ACTATTTAA	TCATGAAGAA	AATGAAAAAG
		ACATGAAT	ATAAGGCATT	TGATATAATT	AGTACTCTT	TTACTTTTC
15	4801	TATAGAAGCT	GGTCACGAGC	GGTTGTTGAA	AACACACAA	TTATCACATTC
		ATATCTTCA	CAAGTGTCTCC	CCAAACACTT	TGTTGTTTTT	AATATGTAAG
4851		AAAGTGGCTT	ACATATCACTG	CTGTGAGGCT	ATCATGGATA	ATGACATGCA
		TTCTACCGA	TGTATATGCA	GACACTCCGA	TAGTACCTAT	TACTGTTACG
4901		ATCTCTTAAAT	AGGTTTTGG	ACATGTGATT	CGACCCCTAAC	ACGGAAATATG
		TAGAGTTTA	TCCAAAACC	TGTTACCTAA	CCTGGGATTG	TGCCCTTATAC
20	4951	GTACTCTACA	ATCTCCCTC	GRAATGGCTG	TAATGTTCAA	GAATACCGAG
		CATGAGATGT	TAGAGGAGAA	CTTACCGAC	ATTACAAGTT	TTATAGGCTC
5001		GCTATTTAAA	TCTTGTAGAG	GTATGGAGCT	AAACCTGTAC	TTACTGAATG
		CGATATTTTT	AGAATCTACTC	CATACCTCGA	TGTTGGACATC	AATGACTTAC
5051		CAACACTCTT	TGTCGTATG	ATCGCGTGT	GAGAGACGAC	TACAAAATAG
25		GTGTTGAAGA	ACAGACGTAC	TAGGCCACAA	CTCTCTGCTG	ATGTTTTATC
5101		TGAAAGATGT	GTTGAAGAAT	AACTTGTAA	ACAATGTTCT	TTACAGCGGA
		ACTTTCTAGA	CAACCTCTTA	TTGATACATT	TGTTACAAAGA	AATGTCGCT
5151		GGCTTCTACTC	CTTGTGTTT	GGCAGCTTAC	CTTAAACAAAG	TTAATTTGGT
		CCGAAATGAG	GAACACACAA	CCGTCGAATG	GAATTGTTTC	AATTAACCCA
30	5201	TAACACTCTA	TTGGCTCAT	CGGGCGATG	AGATATTCTA	AACACGGATC
		ATTGGAAGAT	AACCGAGTAA	GGCCGCTACA	TCTATAAAATG	TTGTGCTAG
5251		GGTTAACTCC	TCTACATATA	GGCGTATCAA	ATAAAAAATT	AACATGGTT
		CCAATGGAGG	AGATGTTAT	CGGCATAGTT	TATTTTTAA	TGTTACCAA
5301		AAACACTCTAT	TGAAACAAAGG	TGCTGTATCT	GACTTGTGTTG	AAACATGGG
35		TTTGAAGATA	ACTTGTCTTC	ACGACTATGA	CTGAAACGACC	TATTGACCC
5351		ATGTACTCT	TTAATGATCG	CTGTACAAATC	TGAAATATT	GAATATGTA
		TACATGAGGA	AATTACTAGC	GACATGTGAT	ACCTTTATAA	CTTATACAT
5401		GCACACTACT	TAACAAATAT	AAATGTCTCA	GAACCTGGGAA	AAATTGATCT
		CGTGTGATGA	ATTTTTTTA	TTTACAGGT	CTGACCCCT	TTIAACTAGA
40	5451	TGCCAGCTGT	AATTCTAGGT	AGAAAAGAAG	TGTCAGGCT	ACTTTTCAAC
		ACGGTGCACA	TAAAGTACCA	TCTTTCTTC	ACGAGCTCGA	TGAAAAGTIG
5501		AAAGGAGCAG	ATGTAACAA	CACTCTTGA	AGAAAATGGAA	AATCATATAC
		TTTCTCTGTC	TACATTGTGAT	GTAGAAACTT	TCTTACCTT	TGATGATATG
45	5551	TGTTTGGAA	TGTTAAAG	AAAGTACTC	TGAGACACAA	AAAGGGTAGC
		ACAAAACCTT	AACAAATTTC	TTTCACATGAG	ACTCTGTGTT	TTCTCCATCG
5601		TGAAGTGGTA	CTCTCAAAAGG	TAGGTGACTA	ATTAGCTATA	AAAGGATCC
		ACTTCACCAT	GAGAGTTTCC	ATGCACTGAT	TAATCGATAT	TTTCTCTAGG
5651		TAGAGGATCA	TTATTTAACO	TAACACTAAAT	GGAAAAGCTA	TTTACAGGTA
		ATCTCTCTAGT	AATAAATTC	ATTGATTAA	CCTTTCTGAT	AAATGTCCAT
50	5701	CATACGGTGT	TTTCGGAAT	CAAATGATTC	TGATTTTGAG	GATTTTATCA
		GTATGCCC	AAAGACCTTA	GTTTACTAAG	ACTAAAACCT	CTAAAAATAGT
5751		ATACAATAAT	GACAGTCTA	ACTGGTAAA	AGAAAAGCC	ACAAATTATCA
		TATGTTATTA	CTGTCAGGAT	TGACCATTT	TCTTTCTGTT	TGTTAATAGT
5801		TGGCTAACAA	TTTTTATTAT	ATTGTTGTA	TGCAATGTTG	TCTTACGTT
55		ACCGATTGTT	AAAAAATATAA	TAACATCAT	ACGTATCACC	AGAAATGCAA
5851		TCTTTATTTA	AAGTTAATGT	GTAAAGATTA	AATGGAGTAA	TTGGATCCCC
		AGAAATAAT	TTCATTAACA	CAATTCTAAT	TTACCTCATT	ACCTAGGGG
5901		CATCGATGGG	GAATTCACTG	GGCGTGTGTT	TACAACGTCG	TGACTGGAA

		GTAGCTTACCC	CTTAAGTGAC	CGGCGACAAA	ATGTCGAGC	ACTGACCCCTT
5951		AACCCCTGGG	TTACCCAAT	TAATCCCTT	CGACGACATC	CCCTTTCCGC
		TTGGGACCGC	AATGGGTGAA	ATTAGCGGAA	CGTCGTGAG	GGGGAAAGCG
6001		CAGCTGGCT	AATAGCGAAG	AGGCCGCGAC	CGATCGCCCT	TCCCAACAGT
5		GTGCGACCGA	TTATCGCTC	TCGGGGCTG	CCTAGCGGA	AGGGTTGTC
6051		TGCGCAGCCT	GAATGGCGAA	TGGCGCTTTG	CTGGTTTCC	GGCACCAAGAA
		ACCGCTCGGA	CTTACCGCTT	ACCGCGAAC	GGACCAAAGG	CCGTGGCTT
6101		GGCGTCCCGG	AAAGCTGCT	GGAGTCGCT	CTTCTGAGG	CGCATACTGT
		CGCCACGGCC	TTTCGACCGA	CCTCACGGCTA	GAAGGACTCC	GGCTATGACA
10	6151	CGTCGTCTCC	TCAAATGCGC	AGATGCAAGG	TTACGATGCG	CCCATCTACA
		CGACGAGGGG	AGTTTGACCG	TCTACCTGCC	ATCTCTACG	GGGTAGATGT
6201		CCACACCTAA	CTATCTCATT	ACCGCTAAC	CGCCGTTTGT	TCCCAACGGAG
		GGTGTCATG	ATAAGGTTAA	TGCGGTTTAG	GGGCAAAACA	AGGGTGCCTC
15	6251	AATCCGACGG	GTTGTTACTC	GTCACATT	ATGTTGATG	AAAGCTGGCT
		TTAGCGCTGC	CAAACATGAG	CGAGTGTAA	TTACGATCAG	TTTCGACCGA
6301		ACAGGAAGGC	CAGACGGGA	TTATTTTGAA	TTGGGTTAAC	TCGGCTTTTC
		TGTCCTTCGG	GTCTCGCTT	AATAAAAACT	ACCGCAATTG	AGCCGCAAAAG
6351		ATCTGTTGG	CAACGGGGC	TGGGGTGGGT	ACGGCCAGGA	CAGTCGTTTG
		TAGACACCCAC	GTGGCCCG	ACCCACCAA	TCGGGTCT	GTAGCAAAAC
20	6401	CCCTCTGAAT	TTGACCTGAG	CGCATTTTTA	CCGCCCGGAG	AAAACCGCTT
		GGCAGACTAA	AACTGACTC	CGCTAAAT	GGCGGGCCTC	TTTTGGCGGA
6451		CGGGGTGATG	GTGTCGCTT	GGAGTGACGG	CAGTTATCTG	GAAGATCAGG
		GGCGCAACTC	CACCGACGAA	CCTCAGCTGC	GTCAATAGAC	CTTCTAGTGC
6501		ATATGTCGGC	GATGAGCGGC	ATTTCTCGT	ACGTCCTCTT	GCTGCATAAA
		TATACACCCG	CTACTCGCCG	TAAAAGGCC	TGCAAGACAA	CGACGTATT
25	6551	CCGACTACAC	AAATACCGGG	TTTCATGTT	CCCACTCGG	TTATGATGA
		GGCTGATG	TTTACTGCT	AAAGGTACAA	CGGTGAGGGA	AAATTACTACT
6601		TTTCAGCGCG	GCTGTACTGG	AGGCTGAAGT	TCAGATGTC	GGCGAGTTGC
		AAAGTCGGG	CGACATGACC	TCCGACTCTCA	AGTCTACACG	CCGCTCAACG
30	6651	GTGACTACTT	ACGGGTAACA	TTTCTTTAT	GGCAGGTGA	AACGCAAGTC
		CACTGATGGA	TGCCCCATGT	CAAAAGATA	CGTCCTCACT	TTGGCTCCAG
6701		GCCGACGGCA	CCGGCCCTT	CCGGGTGAA	ATTATCGATG	ACGCTGGTGG
		CGCTGCGCTT	GGCGGGAAA	GGCCGACTT	TAATAGCTAC	TCCGACCAACC
6751		TTATGCGCTT	CGCGTCACAC	TAAGCTGTA	CTCGAAAAC	CCGAAACTGT
		AATAACGGCTA	GCGCAGTGTG	ATGCGACACT	GCAGCTTTG	GGCTTIGACA
35	6801	GGAGGCCGA	AATCCCAGAAT	CTCTATCGT	CGTGGTTGA	ACTGCACACC
		CCCTGGGGCT	TTAGGGCTTA	GAGATGAC	CCACCAACT	TGACGTGTTG
6851		GGCGACGGCA	CGCTGATGAA	AGCAGAGGC	TGCGATGTC	TTTCGCGGA
		CGGCTGCCGT	CGGACTAACT	TGCTCTTCG	ACGGTACAGC	CAAAGGCCT
40	6901	GGTGGCGGTT	GAAAATGGTC	TGCTGCTGCT	GAACGGCAAG	CCGTTGCTGA
		CCACGCTTAA	CTTTTACAGC	ACGACGACCA	CTTCCGTT	GGCAACGACT
6951		TTGGAGGGCT	TAACCGCTC	GACCATCATC	CTCTGCATGG	TCAGGTCATG
		AAAGCTCGCA	ATTGGCACTG	CTCTGACTAG	GAGACGTACC	AGTCAGTAC
45	7001	GATGAGCAGA	CGATGGTC	GGATATCTG	CTGATGAAAC	AGAACAACTT
		CTACTCGCT	GCTCACCGT	CCTATAGGAC	GACTACTTCG	TCTTGTGTTAA
7051		TAACGGCTG	CGCTGTTG	ATTATCGGA	CCATCCGTG	TGGTACACCG
		ATTGCGGCAC	GCGACAAGCG	TAATAGGCTT	GGTAGGCAC	ACCATGTGCG
7101		TGTCGACCGC	CTTGGCGCTG	TAATGTTGG	ATGAGGCAA	TATTGAAACC
		ACACGCTGGC	GATGCCGAC	ATACACCAAC	TACTCCGTT	ATAACTTTGG
50	7151	CACGGCATGG	TGCAATGAA	TCTCTGAC	GATGATCCG	GCCTGGCTACC
		GTGCGTAC	ACGGTTACTT	AGCAGACTGG	CTACTAGGCG	CGACCGATGG
7201		GGCGATGAC	GAACCGCTAA	CGGAATGTT	CGACGGGAT	CGTAATCACC
		CGCGTACTCG	CTTGGCGATT	GGCTTACCA	CGTCCGCTA	GCATTAGTGG
7251		CGAGTCGTG	ATCTGGTC	CTGGGGATG	AATCAGGCA	CGCGCTTAAT
		GCTCACTA	GTAGACGAGC	GACCCCTTA	TTAGTCCGGT	GGCGCGATTA
55	7301	CACGACGGC	TGATTCGCTG	GATCAAAAT	GTGCGATCCT	CCGGCCCGGT
		GTGCTGGCG	ACATAGCGAC	CTAGTTTAA	CAGCTAGGAA	GGCGGGGCCA
7351		GCAGTATGAA	GGCGGGCGAG	CGGACACCA	GGCCACCGAT	ATTATTTGCC

Deposited December 23, 2003

		CGTCATCACTT	CCGCCGCCTC	GGCTGTGGTG	CCGGTGGCTA	TAATAAACCG
7401		CGATGTCAGC	CGCGCTGGAT	GAAGACCCAGC	CCTTCTCCGC	TGTGCCGAAA
		GCTACATCGG	CGCGCACCTA	CTTCTGGTC	GGAGGGGCC	ACACGGCTTT
7451		TGGTCCCATCA	AAAATGCGT	TTCGTACTCT	GGAGAGACGC	GCCCCTGTAT
5		ACCAAGGTAGT	TTTTTACCGA	AAAGCAGATGGA	CCTCTCTGCG	CGGGCGACTA
	7501	CCTTTCGCAA	TACGCCAACG	CGATGGTAA	CAGTCCTTGGC	GGTTTCGCTA
	7551	GGAAACGCTT	ATGGGGTGC	GCTACCCATT	GTCAAGAACCC	CCAAAGCGAT
	AATACTGGCA	GGCCTTTCTG	CACTATCCCC	TTTACAGGGG	CGGCTTCGTC	
	TTATGACCGT	CCGAAAGCA	GTCAAGGGG	CAAATGTCCC	GCGAAGCGAG	
10	7601	TGGGACTGGT	TGGTAGTCG	GGCTGATTTAA	TATGATGAAA	ACGGCAACCC
	ACCCCTGACCC	ACCTAGTCAG	CGACTAATT	ATACTACTTT	TCCCGTTGGG	
	7651	GTGGTGGGT	TACCGCGGTG	ATTTTGGGAA	TACGCCGAAC	GATCGCCAGT
	CACCGCCGA	ATGCCGCAC	AAAAACCGCT	ATGCGGCTTG	CTAGCGGTCA	
15	7701	TCTGTATGAA	GGCGTCTGGC	TTTGGCCACC	GCACGCCGCA	TCCAGGGCTG
	AGACATACTT	GCCGACGACCA	AAACCGCTGG	CGTGCCTGGT	AGGTCGGCAG	
	7751	ACCGGAAACAA	ACACCCAGCA	CGAGTTTTTC	CAGTCCGTT	TATCCGGCA
	TGCCCCTCGT	TTGGTGGTCGT	CGTCAAAAG	GTCAAGGCAA	ATAGGCCGT	
	7801	ACCATCGAA	GTGAGCACCGC	AAATACCTGT	CGCTCATAGC	TAACAGGAC
	TTGGTAGCTT	CACTGGTCG	TTATGACCAA	GGCGATATCG	CTATTGCTG	
20	7851	TCTCTGACTG	GATGGTGGCG	CTGGATGGTA	AGCCGCTGGC	AAGCGGTGAA
	AGGAGCTGAC	CTACCAACCG	GACCTACCAT	TCGGCGACCC	TTGCCCACTT	
	7901	GTGCCCTCTGG	ATGTCGCTCC	AAACAGTAA	CAGTTGATTO	AACTCCTGAA
	CACCGAGGAC	TACAGCGAGG	GGTTTCCATT	GTCAACTAAC	TTGACCGACT	
25	7951	ACTACCGAC	CCGGAGGAGC	CGGGGAAACT	CTGGCTCAC	GTACCGCTAG
	7TATGGCGTC	GGCCCTCTCG	GGCCCGTTGA	GGCGAGTGT	CATGGCCATC	
	8001	TGCAACCGAA	CGCGACCGCA	TTGGTCAAGA	CGGGGACCAT	CGCCCGCTGG
	8051	ACGTTGGCTT	GGCGTGGCT	ACCATGCTTC	GGCCCGTGT	GTGCGCGACC
30	8101	CACCCGTCATC	CGCGATCTGA	CCACCGGCAA	ATAGGATTT	TGATCGAGC
	GGTGGCGTAG	GGCCTAGACT	GGTGGTCTG	TTACCTAAA	AAGTACGCTG	
	8151	TGGGATAATAA	GGCTTGGCAA	TTAACCGCC	AATGAGCTT	TCTTTCACAG
	ACCACTATT	CGCAACCGT	AAATGGCGG	TCAGTCGAA	AAGAAAGTGT	
35	8201	ATGTTGGATTG	GGCATATAAAA	AAACATGCTG	ACGCCGGCTGC	GGGATCAGTT
	TACACCTAAC	CGCTATTGTT	GGTGGACGAC	TGCGGGGACG	CGCTAGTCAA	
	8251	CACCCGTCGA	CCGCTGGATA	ACGACATGG	CGTAAGTGA	GGGACCCGCA
	GTGGGACAGT	GGGGACCTAT	GGCTGTGCG	GGATTCACCT	CCTCTGGGGT	
40	8301	TTGACCCCTAA	CGCCTGGGT	GAACGCTGGA	AGGGGGGGG	CCATTACCAAG
	AACTGGGATT	GGGGACCCAG	CTTGGACGCT	TCCGCCGCC	GTAATGGTC	
	8351	CGGCTTCGTC	GCACAAACGT	CACTGGCGT	CTATGTAAC	GACTACGCCA
	8401	GTCTGATTAG	ACCGGTCACG	CTGGCAGCA	TCAGGGAAA	ACCTTATTAA
	CGACTAATGC	TGGCGAGTC	GGACCGCTGT	AGTCCCCTTT	TGGAATAAAT	
45	8451	TCAGCGGAA	AACTTACCG	ATTGATGGTA	GTGGTCAAAT	GGCGATTAC
	AGTCGGCCCT	TTGGATGGCC	CACTACCTT	CACCAAGTTTA	CGCTTAATGG	
	8501	GTGGATGTTG	AAAGTGGAG	CGATACACG	CATCGGCGC	GGATTTGGCT
	CAACTACAAAC	TTCACCGCTC	GCTATGTTGC	GTAGGCCGCG	CCTAACCGGA	
	8551	GAACATGCCAG	CTGGCGCAGG	TAGCAGAGCG	GGTAAACTGG	CTCGGATTAG
50	8601	CTTGAACGGTC	GACCGCGTCC	ATCGTCTGCG	CCATTGAC	GAGCCCTAAC
	GGCGCAAGA	AAACTATCCC	GACCGCTTA	CTGCCGCTG	TTTGACCGC	
	8651	CGCGCGTCT	TTTGGATGGG	CTGGGGAAAT	GACCGCGCGAC	AAAATCTGGG
	TGGGATCTGC	CATTGTCAGA	CACTGATAC	CCGTACGCT	TCCCGAGCGA	
	ACCCCTAGACG	GTAAACAGCT	GTACATATGG	GGCATGAGA	AGGGCTCGCT	
55	8701	AAACAGCTCTG	CGCTGGGGA	CGCGCGAATT	GAATTATGGC	CCACCCAGT
	TTGGCCAGAC	GGCGACCCCT	GGCGCTTAA	CTTAAATACCG	GTGTGGTCA	
	8751	GGCGCGGCGA	CTTCCAGTTG	AAACATCAGCC	GTACAGTC	ACAGCAACTG
	CGCGCCGCTG	GAAGGTCAAG	TTGTAGTCGG	CGATGTCAGT	TSTCGTTGAC	
	8801	ATGGAAACCA	GCCATGCCA	TCTGTCGAC	GGCGAAGAAG	GCACATGGCT

Deposited December 23, 2003

		TACCTTTGGT	CGGTAGCGGT	AGACGACGTG	CGCCTTCCTTC	CGTGTACCGA
8851		GAATATCGAC	GGTTTCCATA	TGGGGATTGG	TGGCGACGAC	TCCCTGGAGCC
		CTTATAGCTG	CCAAAGGTAT	ACCCCTAAC	ACCGCTGCTG	AGGACCTCGG
8901		CGTCAGTATC	GGCGGAATTG	CAGCTGAGGG	CCGGTCGCTA	CCATTACCAAG
5		GCAGTCATAG	CCGCCCTTAAG	GTGCACTCGC	GGCCAGGGAT	GTTAATGGTC
8951		TGGTCTGGT	GTCAAAAATA	ATATAAACCG	GGCAGGGGGG	ATCCGGAGCT
		AACCAGACCA	CAGTTTTTAT	TATTATTCGC	CGGTCCCCCC	TAGGCCTCGA
9001		TATCCGAGAT	CAATGATCGC	TGACAATCT	GGAAATATTG	AAATATGTAG
		ATAGCGCTTA	GTACTAGCG	ACATGTTAGA	CTTTATAAC	TTTATACATC
10	9051	CACACTACTT	AAAAAAAATA	AAATGTCCAG	AACIGGGAAA	AATTGATCTT
		GTGTGATGAA	TTTTTTTAT	TTTACAGGTG	TTGACCCCTT	TTAATAGAA
9101		GCCAGCTGTG	ATTCATGGT	GGAAAAGAAGT	GCTCAGGCTA	CTTTTCAAACA
		CGGTCGACAT	TAAGTACCAT	CTTTCTTC	CGAGTCCGAT	GAAAAGTTGT
9151		AAAGGACAGA	TGTAAAACTAC	ATCTTGTAA	GAATGGAAA	ATCATATACT
15		TTCCCTCGGT	ACATTTGATO	TAGAAACCTT	CTTACCTTT	TAGTATATGA
9201		TTTTTGAAAT	TGATTTAAAGA	AAAGTACTCT	GAGACACAAA	AGAGGTAGCT
		CAAAACCTTA	ACTAATTCT	TTCAATGAGA	CTCTGTGTTT	TCTCCATCGA
9251		GAAGTGGTAC	TCTCAAAGGT	ACGTGACTAA	TTAGCTATAA	AAAGGATCCG
		CTTCACCATG	AGAGTTTCCA	TGCACTGATT	AATCGATATT	TTCCCTAGGC
20	9301	GTACCCCTGA	GTCTAGAAC	GATCCGGGT	TAATTAAATTA	GTATTAGAC
		CATGGGAGCT	CAGATCTTAG	CTAGGGCCCA	ATTAATTAAAT	CAATAATCTG
9351		AAAGTGAAAA	CGAAACTATT	TGTAGCTTAA	TTAATAGAG	CTTCTTTATT
		TTCCACTTTT	GCTTTGATAA	ACATCGAAAT	ATTAATCTC	GAAGAAATAA
25	9401	CTATACCTAA	AAACTGAAAA	TAATACAAA	GGTCTTGAG	GTTGTTGTTA
		GATATGAATT	TTTCACTTTT	ATTTATGTTT	CCAAGAAC	CCACACAAAT
9451		AATTGAAAGC	GAGAAATAAT	CATAAATTAT	TTCATTATCG	CGATATCCGT
		TTAACCTTTCG	CTCTTTATTA	GTATTTAATA	AAGTAATAGC	GCTATAGGCA
9501		TAAGTTGTA	TCGTA			
		ATTCAAAACAT	AGCAT			

30

FIGURE 6

5

