CRYPTOGRAPHY AND ENCRYPTION (CY 371)

Dr Eric Affum

Abstract Algebra and Number Theory

• Every secure transaction depends on modern cryptography

Plaintext and Ciphertext

• Most encryption is based heavily on number theory and Abstract algebra

Concepts

- The Division Algorithm –Helps to generate quotient and remainder
- The Euclidian Algorithm Finding the GCD
- Extended Euclidian algorithm- To find multiplicative inverse
- Modular Arithmetic –
- Groups, rings, Field and Finite Fields
- Polynomial Arithmetic for better security
- Prime Numbers- RSA, Elliptic curve, Diffie Helman Algorithm
- Fermat's and Euler's Theorem
- Testing for Primality.
- The Chinese Remainder Theorem.
- Discrete Logarithm
- NB: All these are for the cryptography for classical computers

Prime Numbers

- Prime Numbers: Has exactly two divisors
- If N is a prime number, then the divisors are 1 and N.
- All numbers have prime factors.

Numbers	10	11	100	37	308	14688
Prime Factorization	2 ¹ x 5 ¹	1 ¹ x 11 ¹	2º x 5º	1 ¹ x 37 ¹	2 ² x 7 ¹ x 11 ¹	2 ⁵ x 3 ³ x 17 ¹
Prime Numbers	2, 5	1, 11	2, 5	1, 37	2, 7, 11	2, 3, 17

- A prime number is a number greater than 1 with only two factors- itself and one
- It cannot be divided further by any other numbers without leaving a remainder

Prime Numbers – Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- ★ 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.
- ★ 33 is a composite number.

Divisors of 2: 1 and 2

Prime Numbers – Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- ★ 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.
- ★ 33 is a composite number.

Divisors of 9: 1, 3 and 9

Facts About Primes

•Only even prime: 2

Smallest prime number: 2

• Is 1 a prime number? No

Why prime numbers in cryptography

- Many encryption algorithms are based on prime numbers
- Very fast to multiply two large prime numbers
- Extremely computer-intensive to do reverse.
- Factoring very large prime numbers is very hard. i.e. takes computers a long time.

Are they prime numbers?

- **★** 5393
- **★** 27644437
- ★ 4398042316799
- ★ 1125899839733759
- ★ 18014398241046527
- ★ 1298074214633706835075030044377087

Note: Cryptographic algorithms use large prime numbers.

Modular Arithmetic

- System of arithmetic for integers.
- Wrap around after reaching a certain value called modulus.

Central mathematical concept in cryptography

Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n
 - where integer *n* is called the **modulus**
- b is called a **residue** of a mod n
 - since with integers can always write: a = qn + b
 - usually chose smallest positive remainder as residue
 - ie. $0 \le b \le n-1$
 - process is known as modulo reduction
 - eg. $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$
- a & b are congruent if: a mod n = b mod n
 - when divided by *n*, a & b have same remainder
 - eg. 100 = 34 mod 11

Modular Arithmetic Operations

- can perform arithmetic with residues
- uses a finite number of values, and loops back from either end $Z_n = \{0, 1, ..., (n-1)\}$
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point, ie
 - •a+b mod $n = [a \mod n + b \mod n] \mod n$

Congruence

- In cryptography, congruence (≡) instead of equality (=).
- Example:
- $15 \equiv 3 \pmod{12}$
- $23 \equiv 11 \pmod{12}$
- $\bullet 33 \equiv 3 \pmod{10}$
- $10 \equiv -2 \pmod{12}$
- $a \equiv b \pmod{m}$
- i.e. a ≡ km + b
- Why ≡ ?

Congruence

Valid and Invalid Congruence

★
$$38 \equiv 2 \pmod{12}$$
 ✓

★ $38 \equiv 14 \pmod{12}$ ✓

★ $5 \equiv 0 \pmod{5}$ ✓

★ $10 \equiv 2 \pmod{6}$ ×

★ $13 \equiv 3 \pmod{13}$ ×

★ $2 \equiv -3 \pmod{5}$ ✓

★ $-8 \equiv 7 \pmod{5}$ ✓

★ $-8 \equiv 7 \pmod{5}$ ✓

★ $-3 \equiv -8 \pmod{5}$

Congruence

No. of Wraps (Quotient)	Remaining thread (Remainder)	Congruence
1	25	35 ≡ 25 mod 10
2	15	35 ≡ 15 mod 10
3	5	35 ≡ 5 mod 10

Properties of Modular Arithmetic Operations

```
1. [(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n
   [(a mod n) - (b mod n)] mod n = (a - b) mod n
3. [(a mod n) x (b mod n)] mod n = (a \times b) mod n
   e.g.
   [(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2 (11 + 15) \mod 8
                                       = 26 \mod 8
                                       = 2
   [(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4 (11 - 15) \mod 8
                                       = -4 \mod 8
                                       = 4
   [(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5 (11 \times 15) \mod 8
                                       = 165 \mod 8
                                       = 5
```

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
		4						
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

+	0	1	2	3	4	5	6	7
		0						
1	0	1	2	3	4	5	6	7
		2						
3	0	3	6	1	4	7	2	5
		4						
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Modular Arithmetic Properties

Property	Expression
Commutative laws	$(w+x) \bmod n = (x+w) \bmod n$
Commutative laws	$(w \times x) \bmod n = (x \times w) \bmod n$
Associative laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
Associative laws	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$
identities	$(1 \times w) \mod n = w \mod n$
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$

Modular Arithmetic Properties

Properties of Modular Arithmetic

Property	Expression			
Commutative Laws	$(a + b) \mod n = (b + a) \mod n$ $(a \times b) \mod n = (b \times a) \mod n$			
Associative Laws	[(a + b) + c] mod n = [a + (b + c)] mod n [(a x b) x c] mod n = [a x (b x c)] mod n			
Distributive Laws	[a x (b + c)] mod n = [(a x b) + (a x c)] mod n			
Identities	$(0 + a) \mod n = a \mod n$ $(1 \times a) \mod n = a \mod n$			
Additive Inverse	For each a∈Z _n , there exists a '-a' such that a + (-a) ≡ 0 mod n			

Modular Exponentiation

- It is a type of exponentiation performed over modulus
- a^b mod m or a^b (mod m)
- Examples:
- 2³³ mod 30
- 3¹⁰⁰ mod 29

```
Solve 233 mod 30.
23<sup>3</sup> mod 30 = -7<sup>3</sup> mod 30 || 23 mod 30 can be 23 or -7.
                 = -7^3 \mod 30
                 = -7^2 \times -7 \mod 30
                 = 49 \times -7 \mod 30
                 = -133 \mod 30
                 = -13 \mod 30
                 = 17 \mod 30
233 mod 30
              = 17
```

Solve 31⁵⁰⁰ mode 30

```
Solve 31^{500} mod 30.

31^{500} mod 30 = 1^{500} mod 30 = 1 mod 30 = 1
```

```
Solve 242329 mod 243.
242^{329} \mod 243 = -1^{329} \mod 243
                    = -1^{329} \mod 243 \parallel -1^{328} \times -1^{1}
                    = -1 \mod 243
                    = 242
242^{329} \mod 243 = 242
```

```
Solve 887 mod 187.
881 mod 187
                      = 88
88<sup>2</sup> mod 187
                      = 88^{1} \times 88^{1} \mod 187 = 88 \times 88 = 7744 \mod 187 = 77
                      = 88^2 \times 88^2 \mod 187 = 77 \times 77 = 5929 \mod 187 = 132
884 mod 187
88<sup>7</sup> mod 187
                      = 88^4 \times 88^2 \times 88^1 \mod 187 = (132 \times 77 \times 88) \mod 187
                      = 894,432 mod 187
88<sup>7</sup> mod 187
```

```
What is "the last two digits" of 295?
29<sup>1</sup> mod 100
                     = 29 \text{ or } -71
29<sup>2</sup> mod 100
                     = 29^{1} \times 29^{1} \mod 100 = 29 \times 29 = 841 \mod 100 = 41 \text{ or } -59
                     = 29^2 \times 29^2 \mod 100 = 41 \times 41 = 1681 \mod 100 = 81 \text{ or } -19
294 mod 100
295 mod 100
                     = 29^4 \times 29^1 \mod 100
                     = -19 \times 29 \mod 100
                     = -551 \mod 100
                     = -51 \mod 100
                     = 49
295 mod 100
                     = 49
```

```
Solve 3100 mod 29.
3^1 \mod 29 = 3 \mod 29 = 3 \text{ or } -26.
32 mod 29
                   = 3^1 \times 3^1 \mod 29 = 3 \times 3 \mod 29 = 9 \mod 29 = 9 \text{ or } -20.
3⁴ mod 29
                   = 3^2 \times 3^2 \mod 29 = 9 \times 9 \mod 29 = 81 \mod 29 = 23 \text{ or } -6.
38 mod 29
                   = 3^4 \times 3^4 \mod 29 = -6 \times -6 \mod 29 = 36 \mod 29 = 7 \text{ or } -22.
316 mod 29
                   = 3^8 \times 3^8 \mod 29 = 7 \times 7 \mod 29 = 49 \mod 29 = 20 \text{ or } -9.
3<sup>32</sup> mod 29
                   = 3^{16} \times 3^{16} \mod 29 = -9 \times -9 \mod 29 = 81 \mod 29 = 23 \text{ or } -6.
364 mod 29
                   = 3^{32} \times 3^{32} \mod 29 = -6 \times -6 \mod 29 = 36 \mod 29 = 7 \text{ or } -22.
3100 mod 29
                   = 3^{64} \times 3^{32} \times 3^{4} \mod 29.
                   = 7 \times -6 \times -6 \mod 29
                   = 252 \mod 29
                   = 20
```

Greatest Common Divisor (GCD)

- A common problem in number theory
- GCD (a,b) of a and b is the largest integer that divides evenly into both a and b
 - eg GCD(60,24) = 12
- Define gcd(0, 0) = 0
- Often want no common factors (except 1) define such numbers as relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

GCD

	12	33		
Divisors	1, 2, 3, 4, 6, 12	1, 3, 11, 33		
Common Divisors	1, 3			
Greatest Common Divisor (GCD)	3			
∴ GCD(12, 33) = 3		•		

GCD

_			
	25	150	
Divisors	1, 5, 25	1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150	
Common Divisors	1, 5, 25		
Greatest Common Divisor (GCD)	25		
∴ GCD(25, 150) = 25		•	

GCD

	13	31	
Divisors	1, 13	1, 31	
Common Divisors	1		
Greatest Common Divisor (GCD)		1	

:: GCD(13,31) = 1

GCD- Euclidean Algorithm

GCD- Euclidean Algorithm

GCD- Euclidean Algorithm

Euclid's Algorithm for finding GCD

• Prerequisite: a>b

Euclid_GCD (a, b)

• If b = 0 then

Return a;

• Else

Return Euclid's_GCD (b, a mod b)

Euclid's Algorithm

```
Example 1: Find the GCD (50, 12).
Solution:
Here a=50, b=12
GCD(a, b) = GCD(b, a mod b)
                                     = GCD(12, 2)
GCD (50, 12)
              = GCD (12, 50 mod 12)
                                     = GCD(2, 0) = 2
GCD(12, 2) = GCD(2, 12 \mod 2)
GCD(50, 12) = 2
```

Euclid's Algorithm

```
Example 2: Find the GCD (83, 19).
Solution:
Here a=83, b=19
GCD(a, b) = GCD(b, a mod b)
GCD (83, 19)
              = GCD (19, 83 \mod 19) = GCD(19, 7)
GCD (19, 7)
              = GCD (7, 19 mod 7)
                                   = GCD(7, 5)
GCD (7, 5)
                                   = GCD(5, 2)
              = GCD (5, 7 \mod 5)
GCD (5, 2)
              = GCD (2, 5 mod 2)
                                   = GCD(2, 1)
GCD (2, 1)
              = GCD (1, 2 mod 1)
                                   = GCD(1, 0) = 1
GCD (83, 19)
```

•A number is said to be relatively prime if they have no prime factor in common, and their only prime factor is 1

•If **GCD(a, b)=1**, then **a** and **b** are relatively prime numbers

Co-prime

Question 1: Are 4 and 13 relatively prime?

Solution:

	4	13	
Divisors	1, 2, 4	1, 13	
Common Divisors	Common Divisors		
Greatest Common Divisor (GCD)		ı	

GCD(4, 13) = 1

Yes, 4 and 13 are relatively prime numbers.

Question 2: Are 15 and 21 relatively prime?

Solution:

	15	21	
Divisors	1, 3, 5, 15	1, 3, 7, 21	
Common Divisors	1, 3		
Greatest Common Divisor (GCD)	3	5	

GCD(15, 21) = 3

No, 15 and 21 are not relatively prime numbers.

a	b	GCD(a, b)	Relatively Prime?	Remarks
11	17	1	Yes	'a' and 'b' are prime
11	21	1	Yes	'a' is prime and 'b' is composite
12	77	1	Yes	'a' and 'b' are composite

```
Denoted as Φ(n).

Φ(n) = Number of positive integers less than 'n' that are relatively prime to n.
```

Euler's Totient Function Relatively prime numbers

Manual Approach when the number is small

Example 3: Find $\Phi(8)$.

Solution:

Here n=8.

Numbers less than 8 are 1, 2, 3, 4, 5, 6, and 7.

GCD	Relatively Prime?
GCD (1, 8) = 1	✓
GCD (2, 8) = 2	×
GCD (3, 8) = 1	✓
GCD (4, 8) = 4	×

GCD	Relatively Prime?
GCD (5, 8) = 1	✓
GCD (6, 8) = 2	×
GCD (7, 8) = 1	✓

$$\therefore \Phi(8) = 4$$

	Criteria of 'n'	Formula
	'n' is prime.	$\Phi(n) = (n-1)$
Φ(n)	n = p x q. 'p' and 'q' are primes.	$\Phi(n) = (p-1) \times (q-1)$
	n = a x b. Either 'a' or 'b' is composite. Both 'a' and 'b' are composite.	$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$ where p_1, p_2, \dots are distinct primes.

Example 1: Find $\Phi(5)$.

Solution:

Here n=5.

'n' is a prime number.

$$\Phi(n) = (n-1)$$

$$\Phi(5) = (5-1)$$

$$\Phi(5) = 4$$

So, there are 4 numbers that are lesser than 5 and relatively prime to 5.

Example 3: Find $\Phi(35)$.

Solution:

Here n=35.

'n' is a product of two prime numbers 5 and 7.

Let us assign p=5 and q=7.

$$\Phi(n) = (p-1) \times (q-1)$$

$$\Phi(35) = (5-1) \times (7-1)$$

$$\Phi(35) = 4 \times 6$$

$$\Phi(35) = 24$$

So, there are 24 numbers that are lesser than 35 and relatively prime to 35.

scascademy ora

Example 4: Find Φ(1000).

Solution:

Here $n = 1000 = 2^3 \times 5^3$.

Distinct prime factors are 2 and 5.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$$

$$\Phi(1000) = 1000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)$$

$$\Phi(1000) = 1000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right)$$

$$\Phi(1000) = 400$$

Example 5: Find Φ(7000).

Solution:

Here $n = 7000 = 2^3 \times 5^3 \times 7^1$

Distinct prime factors are 2, 5 and 7.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right) \dots$$

$$\Phi(7000) = 7000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right)$$

$$\Phi(7000) = 7000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) \left(\frac{6}{7}\right)$$

 $\Phi(7000) = 2400$

• If 'p' is a prime number and 'a' is a positive integer not divisible by 'p' then $a^{p-1} \equiv 1 \pmod{p}$

```
Example 1: Does Fermat's theorem hold true for p=5 and a=2?
Solution:
Given: p=5 and a=2.
a^{p-1} \equiv 1 \pmod{p}
2^{5\cdot 1} \equiv 1 \pmod{5}
2^4 \equiv 1 \pmod{5}
16 \equiv 1 \pmod{5}
Therefore, Fermat's theorem holds true for p=5 and a=2.
```

```
Example 2: Prove Fermat's theorem holds true for p=13 and a=11.
Solution
a^{p-1} \equiv 1 \pmod{p}
11^{13-1} \equiv 1 \pmod{13}
11^{12} \equiv 1 \pmod{13}
-2^{12} \equiv 1 \pmod{13}
-2^{4x3} \equiv 1 \pmod{13}
3^3 \equiv 1 \pmod{13}
27 \equiv 1 \pmod{13}
Therefore, Fermat's theorem holds true for p=13 and a=11.
```

Example 3: Prove Fermat's theorem does not hold for p=6 and a=2.

Solution:

```
a^{p-1} \equiv 1 \pmod{p}
2^{6-1} \equiv 1 \pmod{6}
2^5 \equiv 1 \pmod{6}
32 \equiv 1 \pmod{6}
```

 $32 \equiv 1 \pmod{6}$

Therefore, Fermat's theorem does not hold true for p=6 and a=2.

•For every positive integer 'a' and 'n', which are said to be relatively prime, then

$$a^1 \equiv 1 \pmod{n}$$

Example 1: Prove Euler's theorem hold true for a=3 and n=10.

Solution:

```
Given: a=3 and n=10.
      \equiv 1 \pmod{n}
3^{\Phi(10)} \equiv 1 \pmod{10}
\Phi(10) = 4
     = 1 (mod 10)
     \equiv 1 \pmod{10}
81
Therefore, Euler's theorem holds true for a=3 and n=10.
```

```
Example 2: Does Euler's theorem hold true for a=2 and n=10?
Solution:
Given: a=2 and n=10.
a^{\Phi(n)} \equiv 1 \pmod{n}
2^{\Phi(10)} \equiv 1 \pmod{10}
\Phi(10) = 4
      \equiv 1 \pmod{10}
      \equiv 1 \pmod{10}
Therefore, Euler's theorem does not hold for a=2 and n=10.
```

```
Example 3: Does Euler's theorem hold true for a=10 and n=11?
Solution:
Given: a=10 and n=11.
       \equiv 1 \pmod{n}
10^{\Phi(11)} \equiv 1 \pmod{11}
\Phi(11) = 10
10^{10} \equiv 1 \pmod{11}
-110
       \equiv 1 \pmod{11}
       \equiv 1 \pmod{11}
Therefore, Euler's theorem holds for a=10 and n=11.
```

Primitive Root

• A number α is a primitive root modulo n if every number coprime to n is congruent to a power of α modulo n

- Def.
- ' α ' is said to be a primitive root of prime number 'p', if $\alpha^1 \mod p$, $\alpha^2 \mod p$, $\alpha^{p-1} \mod p$ are distinct.

NB: this concept is important for Diffie helman key exchange algorithm.

Primitive Root

Example 1: Is 2 a primitive root of prime number 5? Solution:

21 mod 5	2 mod 5	2	✓
2 ² mod 5	4 mod 5	4	✓
2 ³ mod 5	8 mod 5	3	√
24 mod 5	16 mod 5	1	✓

Yes, 2 is a primitive root of prime number 5.

Primitive Root

Example 3: Is 2 a primitive root of prime number 7?

Solution:

21 mod 7	2 mod 7	2	✓
2 ² mod 7	4 mod 7	4	✓
2 ³ mod 7	8 mod 7	1	✓
24 mod 7	16 mod 7	2	×
25 mod 7	4 mod 7	4	×
26 mod 7	8 mod 7	1	×

No, 2 is not a primitive root of 7.

Multiplicative Inverse

• Let's understand multiplicative inverse

•
$$5 \times 5^{-1} = 1$$

•
$$5 \times \frac{1}{5} = 1$$

• A
$$\times \frac{1}{A} = 1$$

•
$$A \times A^{-1} = 1$$

Multiplicative Inverse

- Real change comes when modulus arithmetic is involved
- Under mod n
- $A \times A^{-1} \equiv 1 \mod n$
- $3 \times ? \equiv 1 \mod 5$
- 2 is the multiplicative inverse of 1 mod 5
- $3 \times 2 \equiv 1 \mod 5$
- $2 \times ? \equiv 1 \mod 11$
- $5 \times ? \equiv 1 \mod 10$
- NB: numbers which are not reactively prime have no multiplicative invers

• Example: What is the multiplicative index of 11 mod 13

Q	A	В	R	Tı	T ₂	T		1
1	13	11	2				1	1 13
								2
								2
esoacade	emy ora							

Q	Α	В	R	T ₁	T ₂	T
1	13	11	2	0	1	
esoacade	emv. org				_	

Q	Α	В	R	T ₁	T ₂	T
1	13	11	2	0	1	-1
		٠				

Q	Α	В	R	T ₁	T ₂	Т	
1	13	11	2	0	1	-1	
5	11	2	1	1	-1		

Α	В	R	T ₁	T ₂	Т	
13	, 11	2	0	1	-1	
n [*]	2	_1	1	-1	6	
2	1	0	-1	6	-13	
1	0	Х	6	-13	Х	
	11	13 11 11 2 2 1	13 11 2 11 2 1 2 1 0	13 11 2 0 11 2 1 1 2 1 0 -1 1 0 X 6	13 11 2 0 1 1 1 -1 2 1 0 X 6 -13	13 11 2 0 1 -1 11 2 1 1 -1 6 2 1 0 -1 6 -13 1 0 X 6 -13 X

• Therefore 6 is the M.I of 11 mod 13

Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) is used to solve a set of different congruent equations with one variable but different moduli which are relatively prime as shown below:

$$X \equiv a_1 \pmod{m_1}$$

$$X \equiv a_9 \pmod{m_9}$$

. . .

$$X \equiv a_n \pmod{m_n}$$

CRT states that the above equations have a unique solution of the moduli are relatively prime.

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + ... + a_nM_nM_n^{-1}) \mod M$$

Example 1: Solve the following equations using CRT

$$X \equiv 2 \pmod{3}$$

$$X \equiv 3 \pmod{5}$$

$$X \equiv 2 \pmod{7}$$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$X \equiv a_1 \pmod{m_1}$$
 $X \equiv 2 \pmod{3}$
 $X \equiv a_2 \pmod{m_2}$ $X \equiv 3 \pmod{5}$
 $X \equiv a_3 \pmod{m_3}$ $X \equiv 2 \pmod{7}$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

Given		To Find		
a ₁ = 2	m ₁ = 3	M ₁	M ₁ -1	
$a_2 = 3$	m ₂ = 5	M ₂	M ₂ -1	М
a ₃ = 2	m ₃ = 7	M ₃	M ₃ -1	

Given		To Find		
a ₁ = 2	m ₁ = 3	M ₁	M ₁ -1	
α ₂ = 3	m ₂ = 5	M ₂	M ₂ -1	M=105
a ₃ = 2	m ₃ = 7	M ₃	M ₃ -1	

Solution:

 $M = m_1 \times m_2 \times m_3$

 $M = 3 \times 5 \times 7$

M = 105

Giv	ven	To Find			
$a_1 = 2$	$m_1 = 3$	$M_1 = 35$	M ₁ -1		
a ₂ = 3	m ₂ = 5	M ₂ = 21	M ₂ -1	M=105	
a ₃ = 2	m ₃ = 7	M ₃ = 15	M ₃ -1		

$$M_1 = \frac{M}{m_1}$$

$$M_1 = \frac{105}{3}$$

$$M_1 = 35$$

$$M_2 = \frac{M}{m_2}$$

$$M_2 = \frac{105}{5}$$

$$M_2 = 21$$

$$M_3 = \frac{M}{m_3}$$

$$M_3 = \frac{105}{7}$$

$$M_3 = 15$$

Given		To Find		
a ₁ = 2	m ₁ = 3	$M_1 = 35$	M ₁ -1	
a ₂ = 3	m ₂ = 5	M ₂ = 21	M ₂ -1	M=105
a ₃ = 2	m ₃ = 7	M ₃ = 15	M ₃ -1	

$$M_1 \times M_1^{-1} = 1 \mod m_1$$

 $35 \times M_1^{-1} = 1 \mod 3$
 $35 \times 2 = 1 \mod 3$
 $M_1^{-1} = 2$

$$M_2 \times M_2^{-1} = 1 \mod m_2$$

 $21 \times M_2^{-1} = 1 \mod 5$
 $21 \times 1 = 1 \mod 5$
 $M_2^{-1} = 1$

$$M_3 \times M_3^{-1} = 1 \mod m_3$$

$$15 \times M_3^{-1} = 1 \mod 7$$

$$15 \times 1 = 1 \mod 7$$

$$M_3^{-1} = 1$$

Example 1: Solve the following equations using CRT

$$X \equiv 2 \pmod{3}$$

$$X \equiv 3 \pmod{5}$$

$$X \equiv 2 \pmod{7}$$

Solution:

a ₁ = 2	m ₁ = 3	$M_1 = 35$	M ₁ -1 = 2	
a ₂ = 3	m ₂ = 5	M ₂ = 21	M ₂ -1= 1	M=105
a ₃ = 2	m ₃ = 7	M ₃ = 15	$M_3^{-1}=1$	

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$= (2x35x2 + 3x21x1 + 2x15x1) \mod 105$$

$$= 233 \mod 105$$

$$X = 23$$

5 Mod
$$17 \equiv \frac{1}{12}$$

Figure 17

Mod $17 \equiv 12$

Mod $17 \equiv 12$

- 5 power 9, 25, 41, 57, 71=12
- One direction is easy, and one direction is difficult.
- i.e. Important property of one way function.

- $g^x \mod p$
- $2^x \mod 7 = 4$; X=2, 5, etc.,
- For smaller value of 'p' is may be easy to find X
- If 'p' is very large, then the finding 'X' is hard
- If 'p' is large, then the time and the effort to find 'X' is very hard.
- The strength of one-way function is depending on how much time it takes to break it.

```
Example 1: Solve \log_2 9 \mod 11.
Solution:
Here p=11, g=2, X=9
\log_a X \equiv n \pmod{p}
X \equiv g^n \pmod{p}
9 \equiv 2^n \pmod{11}
Try 'n' = 1, 2, 3, ...
9 \equiv 2^6 \pmod{11}
Answer is 6.
```

Factoring- Fermant's Algorithm

- Used to find prime factors of a number
- To factor '10'
- n= X . Y
- Works well when X and Y are close

• n=
$$X^2 - Y^2$$

$$\bullet X^3 = n + Y^2$$

•
$$X = \sqrt{n + Y^2}$$

Try different value of Y from 1 up

Factoring- Fermant's Algorithm

Question 1: Factor n = 187.

Solution:

$$X = \sqrt{n + Y^2}$$

$$X = \sqrt{187 + Y^2}$$

$$X = \sqrt{187 + 1^2} = \sqrt{188} \neq Integer$$

$$X = \sqrt{187 + 2^2} = \sqrt{191} \neq Integer$$

$$X = \sqrt{187 + 3^2} = \sqrt{196} = 14$$

$$X = 14$$
 and $Y = 3$

Recall:

$$n = X^2 - Y^2$$

$$n = (X+Y)(X-Y)$$

$$n = (14+3)(14-3)$$

$$n = (17)(11)$$

$$187 = 17 \times 11$$

The prime factors of 187 are 17 and 11.

Fermat's Primality Test

• To test if a given number is prime number or not.

```
ls 'p' prime?  
Test: a^p - a \rightarrow 'p' \text{ is prime if this is a multiple of 'p' for all } 1 \leq a < p.
```

Drawback-Time consuming

Fermat's Primality Test

Question 1: Is 5 prime?

Solution:

 a^{P} - $a \rightarrow p'$ is prime if this is a multiple of p' for all $1 \le a < p$.

$$1^5 - 1 = 1 - 1 = 0$$

$$2^5 - 2 = 32 - 2 = 30$$

$$3^5 - 3 = 243 - 3 = 240$$

$$4^5 - 4 = 1024 - 4 = 1020$$

∴ 5 is prime

Fermat's Primality Test

Question 2: Is 3753 prime? Solution: a^{p} - $a \rightarrow p'$ is prime if this is a multiple of p' for all $1 \le a < p$ 1³⁷⁵³- 1 2³⁷⁵³- 2 3^{3753} - 3 43753- 4

Group

- A group G denote by {G, .}, is a set under some operation (.) of elements or "numbers" if the following properties
 - Closure
 - associative law: (a.b).c = a.(b.c)
 - has identity e: e.a = a.e = a
 - has inverses a^{-1} : $a \cdot a^{-1} = e$

It may be finite or infinite

- if commutative a.b = b.a
 - then forms an abelian group

Groups and Abelian Groups

	Property		Explanation
	Closure		a, b ∈ G, then (a • b) ∈ G.
dno.	dno	Associative	a • (b • c) = (a • b) • c for all a, b, c ∈ G.
Abelian Group	Identity element		(a • e) = (e • a) = a for all a, e ∈ G.
Abe		Inverse element	(a • a') = (a' • a) = e for all a, a' ∈ G.
	Commutative		(a • b) = (b • a) for all a, b ∈ G.

Group

Question: Is (Z, +) a group?

Solution:

$$Z = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$$

CAIN Property	Explanation	Satisfied?
Closure	If a, b ∈ G, then (a • b) ∈ G. If a = 5, b = -2 ∈ Z then (a + b) = -3 ∈ Z	_
Associative	$a \bullet (b \bullet c) = (a \bullet b) \bullet c \text{ for all } a, b, c \in G.$ 5 + (3 + 7) = (5 + 3) + 7 \in Z	✓
Identity element	$(a \bullet e) = (e \bullet a) = a \text{ for all } a \in G.$ $(5 + 0) = (0 + 5) = 5 \text{ for all } a \in G.$	✓
Inverse element	$(a \bullet a') = (a' \bullet a) = e \text{ for all } a, a' \in G.$ $(5 + -5) = (-5 + 5) = 0 \text{ for all } 5, -5 \in \mathbb{Z}$	✓
Commutative	(a • b) = (b • a) for all a, b ∈ G.	

Group and Abelian group

Solution:

 $Z = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$ is an abelian group.

CAIN Property	Explanation	Satisfied?
Closure	✓	
Associative	✓	
Identity element	✓	
Inverse element	$(a \bullet a') = (a' \bullet a) = e \text{ for all } a, a' \in G.$ $(5 + -5) = (-5 + 5) = 0 \text{ for all } 5, -5 \in \mathbb{Z}$	✓
Commutative	$(a \bullet b) = (b \bullet a)$ for all $a, b \in G$. $(5 + 9) = (9 + 5)$ for all $9, 5 \in Z$.	

Notations

 $N \rightarrow Set$ of all natural numbers.

 $W \rightarrow Set$ of all whole numbers.

 $Z \rightarrow Set of all integers.$

 $C \rightarrow Set$ of all complex numbers.

 $Q \rightarrow Set$ of all rational numbers.

 $R \rightarrow Set$ of all real numbers.

 $Z^+ \rightarrow Set$ of all positive integers.

 $Z \rightarrow Set$ of all negative integers.

A group G denoted by $\{G, \bullet\}$, is said to be a cyclic group, if it contains at-least one generator element.

Question 1: Prove that (G, *) is a cyclic group, where $G = \{1, \omega, \omega^2\}$.

Solution:

•	1	ω	ω^2	$1^1 = 1$ $1^2 = 1^*1 = 1$
1	1	ω	ω2	1 ⁵ = 1*1*1 = 1
ω	ω	ω^2	1	14 = 1*1*1*1 = 1
ω^2	ω2	1	ω	

Question 1: Prove that (G, *) is a cyclic group, where $G = \{1, \omega, \omega^2\}$.

Solution:

*	1	ω	ω^2	$1^1 = 1$ $1^2 = 1^*1 = 1$	ω^1	
1	1	ω	ω2	$1^3 = 1^*1^*1 = 1$	$\omega^3 = \omega^{2*}\omega$	= 1
ω	ω	ω^2	1	14 = 1*1*1*1 = 1	$\omega^4 = \omega^{3*}\omega$	= ω
ω^2	ω^2	1	ω			

Question 1: Prove that (G, *) is a cyclic group, where G = {1, ω , ω^2 }.

Solution:

1	1	ω	ω2	$1^1 = 1$ $1^2 - 1^*1 = 1$	$\omega^1 = \omega$ $\omega^2 - \omega^* \omega = \omega^2$	$(\omega^2)^1 = \omega^2$ $(\omega^2)^2 = \omega^4 = \omega^{3*}\omega = \omega$
				$1^3 = 1^*1^*1 = 1$	$\omega^3 = \omega^{2*}\omega = 1$	$(\omega^2)^3 = \omega^6 = \omega^{3*}\omega^3 = 1$
ω	ω	ω^2	1	1* = 1*1*1*1 = 1	$\omega^4 = \omega^{3*}\omega = \omega$	$(\omega^2)^4 = \omega^8 = \omega^{3*}\omega^{3*}\omega^2 = \omega^2$
ω2	ω^2	1	ω			

Question 1: Prove that (G, *) is a cyclic group, where $G = \{1, \omega, \omega^2\}$.

Solution:

Composition Table

The generators of (G, *) are ω and ω^2 .

 \therefore (G, *) is a cyclic group.

Question 2: When does group G with operation 'x', is said to be a cyclic group?

Solution:

Let us take an element χ

$$G = {$$

Question 2: When does group G with operation 'x', is said to be a cyclic group?

Solution:

Let us take an element x

G = { ,
$$\chi^{-4}$$
, χ^{-3} , χ^{-2} , χ^{-1} , 1, χ , χ^{2} , χ^{3} , χ^{4} , }

= Group generated by χ

If $G = \langle \chi \rangle$ for some χ , then we call G a cyclic group.

Question 1: Prove that (G, *) is a cyclic group, where $G = \{1, \omega, \omega^2\}$.

Solution:

*	1	ω	ω^2
1	1	ω	ω²
ω	ω	ω^2	1
ω ²	ω ²	1	φ

Question 3: When does group G with operation '+', is said to be a cyclic group?

Solution:

Let us take an element y

$$G = {$$

Question 3: When does group G with operation '+', is said to be a cyclic group?

Solution:

Let us take an element y

$$G = \{ \ldots, -4y, -3y, -2y, -y, 0, y, 2y, 3y, 4y, \ldots \}$$

= Group generated by y

If G = (y) for some y, then we call G a cyclic group.

Rings

A ring R denoted by $\{R, +, *\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, $c \in R$ the following axioms are obeyed:

- Group (A1-A4), Abelian Group(A5).
- ❖ Closure under multiplication (M1): If a, b ∈ R then ab ∈ R
- Associativity of multiplication (M2): a (bc) = (ab) c for all a, b, c ∈ R
- Distributive laws (M3):

$$a(b+c) = ab + ac$$
 for all $a, b, c \in R$

$$(a + b) c = ac + bc$$
 for all $a, b, c \in R$

Commutative Rings

A ring is said to be commutative, if it satisfies the following additional condition:

Commutativity of multiplication (M4): ab = ba for all $a, b \in R$

Integral Domain

An integral domain is a commutative ring that obeys the following axioms:

Multiplicative identity (M5): There is an element $1 \in R$ such that a1 = 1a = a for all $a \in R$.

No zero divisors (M6): If $a, b \in R$ and ab = 0, then either a = 0 or b = 0.

Fields

A field F , sometimes denoted by $\{F, +, *\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, $c \in F$ the following axioms are obeyed:

(A1-M6): F is an integral domain; that is, F satisfies axioms A1 - A5 and M1 - M6.

(M7) Multiplicative inverse: For each a in F, except O, there is an element a-1 in F such that

$$aa^{-1} = (a^{-1})a = 1$$

Note: $a/b = a(b^{-1})$.

Familiar examples of Fields:

- Rational numbers
- Real numbers
- Complex numbers

Groups, Rings and Fields

dn	roup				
Gro	Abelian G	би	re Ring	e	
		ä,	utativ	omai	
			ommi	ral D	Field
			ŭ	ntegi	i ř
			,	-	
	Group	Group Abelian Group	Group Abelian Group	Abelian Group Aking Commutative Ring	Abelian Group Abelian Group Commutative Ring Integral Domain

Finite Fields

- A finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.
- As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
- The most common examples of finite fields are given by the integers (mod p) when p is a prime number.

Application areas:

Mathematics and computer science - Number theory, Algebraic geometry, Galois theory, Finite geometry, Cryptography and Coding theory.

Thank You!

