



# Introduction to Simulation

**Output Analysis** 

# **Background Reading**

#### Relevant sections of the book:

- 11.1
- **•** 11.2
- **11.3**
- 11.4 (parts)
- 11.5 (parts)





## **A Question**

#### Let *X* be the random variable

"Result from throwing a die"



Question: What is the expected value E(X)?

Would you throw the die just once and take the result as your answer?

## What Are We Doing Wrong?

## We have been leaving something out in our simulations

- We have made one observation only
- Example the average length of the queue in the bank:



# Example

#### Consider our bank example

- Observe the average queue length 0 < T < 2000
- Simulate with different sets of random numbers (with the same distribution!)





# Example

#### Consider our bank example

- Observe the queue length at T = 2000
- Repeat the simulation using different sets of random numbers

#### **Results:**

**2**, 12, 3, 7, 0, 10, 2, 5

Which is the "right" answer?



## What Are We Doing Wrong?

#### Real systems behave randomly

They contain random variables

#### Our simulation results are also random

They depend on random numbers

#### Running a simulation means taking one sample of a RV

■ ⇒ We need a more sophisticated approach!

## Mean & Sample Variance

Consider a random variable Y

Take a set of observations  $Y_i$  i=1...n

The *Sample Mean* is defined as:  $\bar{Y} = \frac{1}{n} \sum Y_i$ 

The *Sample Variance* is defined as:  $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ 

Then  $S^2 \approx \text{var}(Y)$ 

(The sample variance approximates the actual variance in Y)

#### **Bias**

Given a value  $\theta$  and an estimator for it  $\hat{\theta}$ 

In general, we may have  $E(\hat{\theta}) = \theta + b$  (i.e. the estimator may be biased)

## Bias means we have a systematic error

Our estimate will be too large / too small

Many statistical methods assume (require) that b=0

#### Student's t-Distribution

#### Introduced by W. Gosset (a.k.a. "Student")

- Has one parameter f ("degrees of freedom")
- Used for hypothesis testing
- Tables of values are available





W. Gosset 1876-1937

#### Student's *t*–Distribution

#### Given:

- A measure of the real system  $\theta$
- An estimator  $\hat{\theta}$  for  $\theta$
- An estimator  $\hat{\sigma}(\hat{\theta})$  for  $\sigma(\theta)$

If  $\theta = E(\hat{\theta})$  then the value

$$t = \frac{\theta - \hat{\theta}}{\hat{\sigma}(\hat{\theta})}$$

is t-distributed with n - 1 d.o.f.

## What are we doing?



## Choose a level of significance $\alpha$

#### Rearrange the expression

$$0 - t_{\alpha/2,f} \le \frac{\theta - \hat{\theta}}{\hat{\sigma}(\hat{\theta})} \le 0 + t_{\alpha/2,f}$$

#### to obtain the confidence interval

$$\hat{\theta} - \hat{\sigma}(\hat{\theta}) \cdot t_{\alpha/2,f} \le \theta \le \hat{\theta} + \hat{\sigma}(\hat{\theta}) \cdot t_{\alpha/2,f}$$

What does the confidence interval mean?

$$\hat{\theta} - \hat{\sigma}(\hat{\theta}) \cdot t_{\alpha/2,f} \le \theta \le \hat{\theta} + \hat{\sigma}(\hat{\theta}) \cdot t_{\alpha/2,f}$$

The value of  $\theta$  lies in the c.i. with certainty  $1-\alpha$ 

This is the preferred way to present the results of a simulation

#### Reminder:

- $\theta$  is the (theoretical) output of the simulation model
- $\hat{\theta}$  is the result of a (finite) simulation experiment

How to obtain  $\hat{\sigma}(\hat{\theta})$  ?

Answer: Use the approximation  $\frac{S}{\sqrt{n}} \approx \hat{\sigma}(\hat{\theta})$ 

$$\frac{S}{\sqrt{n}} \approx \hat{\sigma}(\hat{\theta})$$

## Improving accuracy:

We have 
$$\frac{S}{\sqrt{n}} \approx \hat{\sigma}(\hat{\theta})$$

#### If we wish to halve the width of the the c.i. ...

• ... we must use 4*n* samples!

## This can imply:

High accuracy can be expensive in simulation!

## Example: Throwing a coin (interpret the result as 0 or 1)

- ullet heta is the (true, theoretical) expected value
- $\hat{\theta}$  is the result of a (finite) experiment

| # Throws | Lower | Mean  | Upper |
|----------|-------|-------|-------|
| 10       | 0.302 | 0.545 | 0.788 |
| 100      | 0.416 | 0.493 | 0.570 |
| 1000     | 0.479 | 0.503 | 0.527 |
| 10000    | 0.496 | 0.503 | 0.511 |
| 100000   | 0.499 | 0.501 | 0.503 |
| 1000000  | 0.499 | 0.500 | 0.501 |



## A confidence interval is only accurate if:

- $\hat{\theta}$  is an unbiased estimator of  $\theta$
- $\hat{\sigma}^2(\hat{\theta})$  is an unbiased estimator of  $\sigma^2(\hat{\theta})$

## If the observations are not independent...

- ... then the estimator will be biased
- ... the confidence interval will be shifted

# Example

#### Consider a simple queue

- One arrival stream
- One server

#### Intervals:

- Arrivals: Exponential distribution, mean = 13s
- Service: Normal distribution,  $\mu = 10s$ ,  $\sigma = 2s$

How does the queue length behave over time?

#### Simulation experiment:

• 100 samples (replications),  $\alpha = 0.05$ 

# **Example**



## Bias due to Autocorrelation

Consider the  $Y_i$  from one simulation run (time series):





#### Bias due to Autocorrelation

#### Positive autocorrelation ...

- leads to under–estimation of *S*<sup>2</sup>
- leads to over-optimistic confidence intervals
- Example: Most queues

#### Negative autocorrelation ...

- leads to over–estimation of S<sup>2</sup>
- leads to under-optimistic confidence intervals
- Example: Some inventory systems

⇒ Don't use time series for confidence intervals!

# **Independent Replications**

#### The method of independent replications:

- Run the simulation R times
- Use independent sets of random numbers for each run
- Make the observations  $Y_r$ , r=1...R
- Compute  $\hat{\theta}$  and  $S^2$  from the  $Y_r$
- Compute a confidence interval from  $\hat{\theta}$  and  $S^2$

Independence ensures that  $\widehat{\theta}$  is unbiased

## **Terminating Simulations**

### A terminating simulation is one...

- which runs up to a specified time
- which has known initial conditions
- in which the initial conditions are important

## **Examples:**

- Will the satellite survive for 5 years?
- How full is the bank 2 hours after opening time?

## Non-Terminating Simulations

## A non-terminating simulation is one...

- which runs for an indefinite period
- in which the steady-state behaviour is of interest
- in which the initial conditions are not important

#### **Examples**:

- Any continuously running system
- Computer centre, traffic system, ...



## Non-Terminating Simulations

#### Difficulties with non-terminating simulations:

- Initial bias
- How long to run the simulation?
- Trade off between replication and duration



## In a non-terminating simulation

- We are interested in the steady-state behaviour
- The values at the beginning will usually be untypical ("initial bias")
- Example: Queue in bank (starting empty):



#### Solution:

- Delete values from transient phase
- Choose  $T_0$  after transient phase is over
- Observe from  $T_0$  to  $T_E$

## How to choose $T_0$ (and $T_p$ )?



# How long is the transient phase in a non-terminating simulation?





## A difficult question!



# **Ensemble Averages**

## Using just one run to find $T_0$ is dangerous

Compute ensemble averages

Perform independent replications to obtain

$$Y_{r,i}$$
  $i = 1...n$ ,  $r = 1...R$ 

Compute average values across replications

$$Y_i = \frac{1}{R} \sum_{r=1}^{R} Y_{r,i}$$
  $i = 1 \dots n$ 

Test the sequence  $Y_i$  for the end of the transient phase

# **Ensemble Averages**

## Compute ensemble averages:



## Non-Terminating Simulations

Increasing *R* will make the c.i. narrower

It will not reduce the initial bias, i.e.

• ...we will get a better c.i. around  $\theta + b$ !

A computing time tradeoff is necessary between

• ...increasing  $T_F$  and increasing R

#### Solution:

• R > 25 is not useful



## Utilization of a machine ("Nassbank") at Q-Cells:

Test dependency of utilization on service time reduction



## Simulation experiment:

- 25 replications
- 99% confidence interval





#### Intersection of Gustav-Adolf-Straße and Bundesstraße 1

Analyse the effect of allowing left turns to the north



## Simulation experiment for waiting time for westbound traffic:

- 50 replications
- 90% confidence interval



#### Magdeburg Buckau

 Analyze the effect of a planned street to disburden an existing one of through traffic when developing new industrial areas



#### Magdeburg Buckau

 Analyze the effect of a planned street to disburden an existing one of through traffic when developing new industrial areas



Probability of choosing the new street when varying the industry density adjacent to the new street:

10 replications, 90% confidence interval



## The Sims - Almost Normal Family Life

#### You have to compute confidence intervals:

- For how long will the father be unemployed on average?
- How much money will be spent on damaged school property?







## Star Trek - USS Enterprise in Danger



#### You have to compute confidence intervals:

- What will the shield energy level be after 2 hours?
- How many antimatter particles will hit the shield?





## **Learning Goals**

#### Learning questions:

- How is the sample variance of a set of random samples defined?
- What is the method of independent replications?
- How is a confidence interval computed?
- What does a confidence interval signify?
- How would you reduce the width of a confidence interval?
- What are terminating and non-terminating simulations?
- What is initial bias? How can it be avoided?
- What is an ensemble average?