260-2017-02-06

Rick Gilmore 2017-02-08 08:44:51

Ease on down, ease on down

Propagation is the way...

Today's Topics

- Driving force and equilibrium potential
- Action potential propagation

Driving force and equilibrium potential

- "Driving Force" on a given ion depends on its equilibrium potential.
- Driving force larger if membrane potential far from equilibrium potential for ion.
- Equilibrium potential
 - Voltage that keeps current (inside/outside) concentrations the same
 - Voltage membrane potential will approach if **only** that ion flows

Equilibrium potentials calculated under typical conditions

Ion	[inside]	[outside]	Voltage
K+	$\sim\!\!150~\mathrm{mM}$	$\sim 4~\mathrm{mM}$	\sim -90 mV
Na+	$\sim\!\!10~\mathrm{mM}$	$\sim\!\!140~\mathrm{mM}$	$\sim +55\text{-}60~\text{mV}$
Cl-	$\sim\!\!10~\mathrm{mM}$	$\sim\!\!110~\mathrm{mM}$	- 65-80 mV

Action potential and driving forces

Rising phase

- Membrane permeability to Na+ increases
- Na+ inflow
- Na+ driving force (toward +55 mV) dominant

Falling phase

- High Na+ permeability ends
- Permeability to K+ increases
- K+ outflow
- K+ driving force (toward -90 mV) dominant

AP propagation

• Propagation

- move down axon, away from soma, toward axon terminals.
- Unmyelinated axon
 - Each segment "excites" the next

AP propagation is like

AP propagation

- Myelinated axon
 - AP "jumps" between Nodes of Ranvier, saltatory conduction
 - Nodes of Ranvier == unmyelinated sections of axon
 - voltage-gated Na+, K+ channels exposed
 - Current flows through myelinated segments

Question

- Why does AP flow in one direction, away from soma?
 - Soma does not have (many) voltage-gated Na+ channels.
 - Soma is not myelinated.
 - Refractory periods mean polarization only in one direction.

Question

- Why does AP flow in one direction, away from soma?
 - Soma does not have (many) voltage-gated Na+ channels.
 - Soma is not myelinated.
 - Refractory periods mean polarization only in one direction.

Conduction velocities

Information processing

- AP amplitudes don't vary (much)
 - All or none
- AP frequency and timing vary
 - Rate vs. timing codes

Review for Exam 1

Exam 1 Study Guide

References