Probabilidades

Wagner H. Bonat Elias T. Krainski Fernando P. Mayer

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

27/02/2018

Sumário

Probabilidades

Definições

- Fenômeno aleatório: situação ou acontecimento cujos resultados não podem ser previstos com certeza.
- Espaço amostral: conjunto de todos os resultados possíveis de um fenômeno aleatório, denotado por Ω .
- Eventos: subconjuntos de Ω , denotado por A, B, ...
- Conjunto vazio: conjunto sem eventos, denotado por ∅.
- União $A \cup B$: ocorrência de pelo menos um dos eventos A ou B.
- Intersecção A ∩ B: ocorrência simultânea de A e B.
- Eventos disjuntos ou mutuamente exclusivos: $A \cap B = \emptyset$.
- Eventos complementares: $A \cup A^c = \Omega$ e $A \cap A^c = \emptyset$.

Definição de probabilidade

- Probabilidade é uma função $P(\cdot)$ que atribui valores numéricos aos eventos do espaço amostral, de tal forma que
 - $0 \le P(A) \le 1, \quad \forall A \in \Omega;$
 - **ω** P(Ω) = 1;
- Exemplos triviais: lançamento de uma moeda e lançamento de um dado.
- ullet Regra da adição de probabilidades. Sejam A e B eventos em Ω . Então

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Mostre que

$$P(A) = 1 - P(A^c).$$

Probabilidade condicional

• Definição: Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é representado por P(A|B) e dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, para $P(B) > 0$.

- Caso P(B) = 0 definimos P(A|B) = P(A).
- Regra do produto: Sejam A e B eventos em Ω , Então

$$P(A \cap B) = P(A|B)P(B)$$
, com $P(B) > 0$.

• Exemplo usando dado (ver Exemplo 2.3 livro).

Independência de eventos

 Definição: Dois eventos A e B são independentes, se a informação da ocorrência ou não de B não altera a probabilidade de ocorrência de A. Isto é,

$$P(A|B) = P(A), \quad P(B) > 0,$$

ou ainda da seguinte forma

$$P(A \cap B) = P(A)P(B).$$

Exemplo 2.4.

Exemplo 2.4

• Uma empresa produz peças em duas máquinas I e II, que podem apresentar desajustes com probabilidade 0.05 e 0.10; respectivamente. No início do dia de operação um teste é realizado e, caso a máquina esteja fora de ajuste, ela ficará sem operar nesse dia passando por revisão técnica. Para cumprir o nível mínimo de produção pelo menos uma das máquinas deve operar. Você diria que a empresa corre o risco de não cumprir com suas metas de produção?

Partição do espaço amostral

• Definição: Os eventos $C_1, C_2, ..., C_k$ formam uma partição do espaço amostral, se eles não tem intersecção entre si e se sua união é igual ao espaço amostral. Isto é,

$$C_i \cap C_j = \emptyset$$
 para $i \neq j$ e $\bigcup_{i=1}^k C_i = \Omega$.

• Figura 2.4 e exemplo 2.5.

Exemplo 2.5

• Suponha que um fabricante de sorvetes recebe 20% de todo o leite que utiliza de uma fazenda F₁, 30% de uma outra fazendo F₂ e 50% de F₃. Um órgão de fiscalização inspecionou as fazendas de surpresa e observou que 20% do leite produzido por F₁ estava adulterado por adição de água, enquanto que para F₂ e F₃, essa proporção era de 5% e 2%, respectivamente. Na indústria de sorvetes os galões de leite são armazenados em um refrigerador sem identificação das fazendas. Para um galão escolhido qual a probabilidade do leite estar adulterado?

Teorema de Bayes

• Suponha que os eventos $C_1, C_2, ..., C_k$ formem uma partição de Ω e que suas probabilidades sejam conhecidas. Suponha, ainda, que para um evento A, se conheçam as probabilidades $P(A|C_i)$ para todos i=1,2,...,k. Então, para qualquer j,

$$P(C_j|A) = \frac{P(A|C_j)P(C_j)}{\sum_{i=1}^k P(A|C_i)P(C_i)}, \quad j = 1, 2, ..., k.$$

Demonstração e Exemplo 2.6.

Exercícios recomendados

- Seção 2.1 Ex. 1, 2, 3, 4 e 5.
- Seção 2.2 Ex. 1, 2, 3, 4, 5, 6 e 7.
- Seção 2.3 Ex. 1, 3, 8, 9, 11, 13, 15 e 19.
- Próxima aula Exercícios e tira dúvidas.