SAMB for "SnTe"

Generated on 2023-06-02 20:46 by MultiPie 1.1.2

- Generation condition

 - time-reversal type: electric
 - irrep: [A1]
 - spinful
- Unit cell:

$$a=4.559,\ b=6.0,\ c=4.57,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 4.559 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{a}_2 = \begin{pmatrix} 0 & 6.0 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 4.57 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	positio	n	symbol	position		
Γ	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	0)	X	$\left(\frac{1}{2}\right)$	0	0)

• Kets: dimension = 24

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(p_x,\uparrow) @Sn ₁	2	(p_x,\downarrow) @Sn ₁	3	(p_y,\uparrow) @Sn ₁	4	(p_y,\downarrow) @Sn ₁	5	(p_z,\uparrow) @Sn ₁
6	(p_z,\downarrow) @Sn ₁	7	(p_x,\uparrow) @Sn ₂	8	(p_x,\downarrow) @Sn ₂	9	(p_y,\uparrow) @Sn ₂	10	(p_y,\downarrow) @Sn ₂
11	(p_z,\uparrow) @Sn ₂	12	(p_z,\downarrow) @Sn ₂	13	(p_x,\uparrow) @Te ₁	14	(p_x,\downarrow) @Te ₁	15	(p_y,\uparrow) @Te ₁
16	(p_y,\downarrow) @Te ₁	17	(p_z,\uparrow) @Te ₁	18	(p_z,\downarrow) @Te ₁	19	(p_x,\uparrow) @Te ₂	20	(p_x,\downarrow) @Te ₂
21	(p_y,\uparrow) @Te ₂	22	(p_y,\downarrow) @Te ₂	23	(p_z,\uparrow) @Te ₂	24	(p_z,\downarrow) @Te ₂		

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	Sn_1	$\begin{pmatrix} \frac{1}{2} & \frac{3}{5} & \frac{3}{5} \end{pmatrix}$	[1,4]
	Sn_2	$\left(0 \frac{2}{5} \frac{1}{10}\right)$	[2,3]
S_2	Te_1	$\begin{pmatrix} \frac{1}{2} & \frac{7}{20} & \frac{2}{5} \end{pmatrix}$	[1,4]
	Te_2	$ \begin{pmatrix} 0 & \frac{13}{20} & \frac{9}{10} \end{pmatrix} $	[2,3]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	$m{b}@m{c}$	mapping
B_1	b_1	Te_1	Sn_1	1	1	$\begin{pmatrix} 0 & -\frac{1}{4} & -\frac{1}{5} \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{19}{40} & \frac{1}{2} \end{pmatrix}$	[1,4]
	b_2	Te_2	Sn_2	1	1	$ \begin{pmatrix} 0 & \frac{1}{4} & -\frac{1}{5} \end{pmatrix} @ \begin{pmatrix} 0 & \frac{21}{40} & 0 \end{pmatrix} $	[2,3]
B_2	b_3	Te_2	Sn_1	2	1	$\left(-\frac{1}{2} \frac{1}{20} \frac{3}{10}\right) @ \left(\frac{1}{4} \frac{5}{8} \frac{3}{4}\right)$	[1]
	b_4	Te_1	Sn_2	2	1	$\begin{pmatrix} \frac{1}{2} & -\frac{1}{20} & \frac{3}{10} \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{3}{8} & \frac{1}{4} \end{pmatrix}$	[2]
	b_5	Te_1	Sn_2	2	1	$\left(\begin{array}{ccc} -\frac{1}{2} & -\frac{1}{20} & \frac{3}{10} \end{array}\right) @ \left(\begin{array}{ccc} \frac{3}{4} & \frac{3}{8} & \frac{1}{4} \end{array}\right)$	[3]

 $continued \dots$

Table 4

	bond	tail	head	n	#	b@c	mapping
	b_6	Te_2	Sn_1	2	1	$\begin{pmatrix} \frac{1}{2} & \frac{1}{20} & \frac{3}{10} \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{5}{8} & \frac{3}{4} \end{pmatrix}$	[4]
B_3	b_7	Sn_2	Sn_1	1	1	$\left(-\frac{1}{2} -\frac{1}{5} -\frac{1}{2}\right)$ @ $\left(\frac{1}{4} \frac{1}{2} \frac{7}{20}\right)$	[1]
	b_8	Sn_2	Sn_1	1	1	$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{5} & \frac{1}{2} \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{17}{20} \end{pmatrix}$	[-2]
	b_9	Sn_2	Sn_1	1	1	$\left(\frac{1}{2} - \frac{1}{5} - \frac{1}{2}\right) @ \left(\frac{3}{4} - \frac{1}{2} - \frac{17}{20}\right)$	[-3]
	b_{10}	Sn_2	Sn_1	1	1	$\begin{pmatrix} \frac{1}{2} & -\frac{1}{5} & -\frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & \frac{7}{20} \end{pmatrix}$	[4]
$_{ m B_4}$	b ₁₁	Te_2	Te_1	1	1	$\begin{pmatrix} -\frac{1}{2} & \frac{3}{10} & -\frac{1}{2} \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{3}{20} \end{pmatrix}$	[1]
	b_{12}	Te_2	Te_1	1	1	$\begin{pmatrix} -\frac{1}{2} & \frac{3}{10} & \frac{1}{2} \end{pmatrix}$ @ $\begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{13}{20} \end{pmatrix}$	[-2]
	b_{13}	Te_2	Te_1	1	1	$\left(\frac{1}{2} \frac{3}{10} \frac{1}{2}\right) @ \left(\frac{3}{4} \frac{1}{2} \frac{13}{20}\right)$	[-3]
	b ₁₄	Te_2	Te_1	1	1	$\begin{pmatrix} \frac{1}{2} & \frac{3}{10} & -\frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & \frac{3}{20} \end{pmatrix}$	[4]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_1(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A_1,1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 3
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_3[\mathbb{Q}_2^{(a,A_1,2)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_3(\boldsymbol{k}) = \mathbb{X}_3[\mathbb{Q}_2^{(a,A_1,2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 4
$$\hat{\mathbb{Q}}_{1}^{(A_{1})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_1^{(s,B_2)}]$$

$$\hat{\mathbb{Z}}_4(\mathbf{k}) = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{U}_2[\mathbb{Q}_1^{(s,B_2)}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁,S₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_5(\boldsymbol{k}) = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_5[\mathbb{Q}_2^{(a,A_1,1)}(1,-1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{6}(\boldsymbol{k}) = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]$$

No. 7
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_1,2)}(1,-1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_7(\mathbf{k}) = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_1,2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 8
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_1^{(s,B_2)}]$$

$$\hat{\mathbb{Z}}_{8}(\mathbf{k}) = \mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(s,B_{2})}]$$

No. 9
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_{15}[\mathbb{G}_1^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_2[\mathbb{Q}_1^{(s,B_2)}]$$

$$\hat{\mathbb{Z}}_9(\mathbf{k}) = \mathbb{X}_{15}[\mathbb{G}_1^{(a,B_2)}(1,0)] \otimes \mathbb{U}_2[\mathbb{Q}_1^{(s,B_2)}]$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{10}(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_1)}]$$

No. 11
$$\hat{\mathbb{Q}}_2^{(A_1,1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{11}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_1)}]$$

No. 12
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{12} = \mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{0}^{(s,A_{1})}]$$

$$\hat{\mathbb{Z}}_{12}(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_2^{(a,A_1,2)}] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_1)}]$$

No. 13
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{Y}_4[\mathbb{Q}_1^{(s,B_2)}]$$

$$\hat{\mathbb{Z}}_{13}(\boldsymbol{k}) = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{U}_4[\mathbb{Q}_1^{(s,B_2)}]$$

No. 14
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{14}(\mathbf{k}) = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_1)}]$$

No. 15
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{15} = \mathbb{X}_5[\mathbb{Q}_2^{(a,A_1,1)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_{15}(\mathbf{k}) = \mathbb{X}_5[\mathbb{Q}_2^{(a,A_1,1)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_0^{(s,A_1)}]$$

No. 16
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{16} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{0}^{(s,A_{1})}]$$

$$\hat{\mathbb{Z}}_{16}(\mathbf{k}) = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,A_{1})}]$$

No. 17
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{Q}_1^{(s,B_2)}]$$

$$\hat{\mathbb{Z}}_{17}(\mathbf{k}) = \mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_1^{(s,B_2)}]$$

No. 18
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0) [M_1, S_2]$$

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_{15}[\mathbb{G}_1^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_4[\mathbb{Q}_1^{(s,B_2)}]$$

$$\hat{\mathbb{Z}}_{18}(\mathbf{k}) = \mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{1}^{(s,B_2)}]$$

No. 19
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{19} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{19}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \\ &- \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 20
$$\hat{\mathbb{Q}}_2^{(A_1,1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{20} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{20}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \\ &- \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 21
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{21} = \mathbb{X}_3[\mathbb{Q}_2^{(a, A_1, 2)}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b, A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{21}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \\ &- \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 22
$$\hat{\mathbb{Q}}_{1}^{(A_{1})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{22} = \mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{Y}_6[\mathbb{Q}_1^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{22}(\pmb{k}) &= \frac{\mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{U}_5[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_2[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{U}_6[\mathbb{Q}_1^{(u,B_2)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_1)}]}{2} \\ &- \frac{\mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{F}_4[\mathbb{T}_1^{(k,B_2)}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_2^{(a,B_2)}] \otimes \mathbb{U}_8[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_3[\mathbb{T}_0^{(k,A_1)}]}{2} \end{split}$$

No. 23
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{23}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \\ &- \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 24
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{24} = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{24}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \\ &- \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 25
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{25} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{25}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \\ &- \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} - \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 26
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{26} = \mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_6[\mathbb{Q}_1^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{26}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 27
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{27} = \mathbb{X}_{15}[\mathbb{G}_1^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_6[\mathbb{Q}_1^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{27}(\boldsymbol{k}) &= \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 28
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{28} = \mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_2)}] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{28}(\pmb{k}) &= \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_1)}]}{2} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_2)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_2)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_1)}]}{2} \end{split}$$

No. 29
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{29} = \mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_2)}(1,1)] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{29}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &+ \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 30
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{30} = \mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{30}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &+ \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 31
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{31} = \mathbb{X}_{34} [\mathbb{M}_3^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_7 [\mathbb{T}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{31}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 32
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{32} = -\frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} + \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_{2})}]}{4}$$

$$\begin{split} \hat{\mathbb{Z}}_{32}(\mathbf{k}) &= -\frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} + \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{Q}_{3}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{Q}_{3}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{Q}_{1}^{(u,$$

No. 33
$$\hat{\mathbb{Q}}_3^{(A_1,1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{33} = -\frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{Y}_{8}[\mathbb{T}_{1}^{(b,B_{2})}]}{4}$$

$$\begin{split} \hat{\mathbb{Z}}_{33}(\textbf{\textit{k}}) &= -\frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{T}_{1}^{(u,A_{1})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{P}_{1}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(u,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{P}_{1}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{Q}_{1}^{(u,A_{1})}]\otimes\mathbb{Q}_{1}[\mathbb{$$

No. 34
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{34} = \mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{Y}_7[\mathbb{T}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{34}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_5[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_3[\mathbb{T}_0^{(k,A_1)}]}{2} + \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_6[\mathbb{Q}_1^{(u,B_2)}] \otimes \mathbb{F}_4[\mathbb{T}_1^{(k,B_2)}]}{2} \\ &+ \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_1)}]}{2} + \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_2[\mathbb{Q}_1^{(k,B_2)}]}{2} \end{split}$$

No. 35
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{35} = \mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{Y}_7[\mathbb{T}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{35}(\boldsymbol{k}) &= \frac{\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_5[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_3[\mathbb{T}_0^{(k,A_1)}]}{2} + \frac{\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_6[\mathbb{Q}_1^{(u,B_2)}] \otimes \mathbb{F}_4[\mathbb{T}_1^{(k,B_2)}]}{2} \\ &+ \frac{\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_1)}]}{2} + \frac{\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_2[\mathbb{Q}_1^{(k,B_2)}]}{2} \end{split}$$

No. 36
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{36} = \mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_8[\mathbb{T}_1^{(b,B_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{36}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{3}[\mathbb{T}_{0}^{(k,A_1)}]}{2} \\ &+ \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1}^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_1)}]}{2} \end{split}$$

No. 37
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{37} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{37}(\boldsymbol{k}) &= \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 38
$$\hat{\mathbb{Q}}_{2}^{(A_{1},1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{38} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{38}(\boldsymbol{k}) &= \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 39
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{39} = \mathbb{X}_3[\mathbb{Q}_2^{(a,A_1,2)}] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{39}(\mathbfit{k}) &= \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 40
$$\hat{\mathbb{Q}}_{1}^{(A_{1})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{40} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{40}(\textbf{\textit{k}}) &= \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_$$

No. 41
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{41} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{41}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{1}^{(u,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{1}^{(u,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{1}^{(u,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{1}^{(u,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(u,B_{1})}] \otimes \mathbb{F}$$

No. 42
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{42} = \mathbb{X}_7[\mathbb{Q}_2^{(a,A_2)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{42}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 43
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{43} = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{43}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 44
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{44} = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{44}(\boldsymbol{k}) &= \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 45
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{45} = \mathbb{X}_6[\mathbb{Q}_2^{(a,A_1,2)}(1,-1)] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{45}(\boldsymbol{k}) &= \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 46
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{46} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_2^{(a,B_1)}(1,-1)]\otimes\mathbb{Y}_{10}[\mathbb{Q}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{Q}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{46}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \end{split}$$

No. 47
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{47} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_2^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_1^{(b,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{47}(\textbf{\textit{k}}) &= \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(u,A_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(u,A_{1})}(1,-1)]\otimes\mathbb{Q}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}(1,-1)}\otimes\mathbb{Q}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{2}^{(u,A_{1})}(1,-1)}\otimes\mathbb{Q}_{9}[\mathbb{Q}$$

No. 48
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{48} = \mathbb{X}_{10}[\mathbb{Q}_2^{(a,A_2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{48}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 49 $\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{49} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)]\otimes\mathbb{Y}_{10}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)]\otimes\mathbb{Y}_{11}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{49}(\textbf{\textit{k}}) &= -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{1}^{(u,A_{1})}] \otimes$$

No. 50 $\hat{\mathbb{G}}_2^{(A_1)}(1,0)$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{50} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)]\otimes\mathbb{Y}_{10}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)]\otimes\mathbb{Y}_{11}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{50}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}]$$

No. 51
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{51} = -\mathbb{X}_{11}[\mathbb{G}_1^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{51}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 52
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{52} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{52}(\textbf{\textit{k}}) &= -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,B_{2})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(u,B_{2})}]}{4} \\ &$$

No. 53 $\hat{\mathbb{G}}_{2}^{(A_1)}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{53} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{53}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}]}{4} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{X$$

No. 54
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{54} = -\mathbb{X}_{16}[\mathbb{M}_1^{(a,A_2)}] \otimes \mathbb{Y}_{16}[\mathbb{T}_2^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{54}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 55
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{55} = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{55}(\textbf{\textit{k}}) &= -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{V}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{V}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(u,A_{1})}] \otimes \mathbb{V}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(u,A_{1})}] \otimes \mathbb{V}_{9}[\mathbb{Q$$

No. 56
$$\hat{\mathbb{G}}_2^{(A_1)}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{56} = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{56}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{0}^{(u,B_{2})}]}{4} \\ &+ \frac{\mathbb{X}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}(1,1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{0}^{(u,B_{2})}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{0}^{(u,B_{2})}]}{4} \\ &+ \frac{\mathbb{X}_{9}[\mathbb{Q}_{1$$

No. 57
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{57} = -\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_2)}(1,1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{57}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 58
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{58} = -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{58}(\textbf{\textit{k}}) &= -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{11}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}]\otimes\mathbb{Q}_{10}[\mathbb{$$

No. 59
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{59} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{59}(\textbf{\textit{k}}) &= \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2})}(1,-1)] \otimes \mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2})}(1,-1)] \otimes \mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\mathbb{Q}[\mathbb{Q}[\mathbb{Q}_{1}^{(u,B_{2$$

No. 60
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{60} = -\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{2}^{(b,A_{2})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{60}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(u,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,A_{1})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,A_{1})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{V}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,A_{1})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{1}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{1}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{1}^{(u,A_{1})}]}{2} \\ &- \frac{\mathbb{X}_{10}[\mathbb{Q}_{1}^{($$

No. 61
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{61} = \mathbb{X}_{34} [\mathbb{M}_{3}^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_{13} [\mathbb{T}_{0}^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{61}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \\ &+ \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 62
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\begin{split} \hat{\mathbb{Z}}_{62} &= -\frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \tilde{\mathbb{Z}}_{62}(\pmb{k}) &= -\frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{8} \\ &= \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} \\ &= \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{8} \\ &= \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} \\ &= \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{8} - \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\$$

No. 63
$$\hat{\mathbb{Q}}_3^{(A_1,1)}(1,-1)$$
 [M₁, B₂]

$$\begin{split} \hat{\mathbb{Z}}_{63} &= \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{63}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{8} + \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{8} \\ &+ \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} + \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} - \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(k,B_{2})}]}{8} \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]} \\ &- \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{0}^{(k,B_{$$

$$\begin{split} & \boxed{ No. \, 64 } \quad & \boxed{ \mathring{Q}_{3}^{(A_{1},2)}(1,-1) \, [M_{1},B_{2}] } \\ & \boxed{ \mathring{Z}_{64} = \frac{\sqrt{5}\mathbb{X}_{26} [\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{14} [\mathbb{T}_{1}^{(b,B_{1})}] }{4} - \frac{\sqrt{3}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{14} [\mathbb{T}_{1}^{(b,B_{1})}] }{4} \\ & + \frac{\sqrt{5}\mathbb{X}_{31} [\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{15} [\mathbb{T}_{1}^{(b,B_{2})}] }{4} + \frac{\sqrt{3}\mathbb{X}_{32} [\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{15} [\mathbb{T}_{1}^{(b,B_{2})}] }{4} \\ & + \frac{\sqrt{5}\mathbb{X}_{26} [\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{10} [\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{26} [\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{26} [\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11} [\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{26} [\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11} [\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{26} [\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11} [\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & - \frac{\sqrt{3}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & - \frac{\sqrt{3}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{2}^{(k,A_{2})}] }{8} \\ & - \frac{\sqrt{3}\mathbb{X}_{27} [\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{0}^{(k,A_{2})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{31} [\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{0}^{(k,A_{1})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{31} [\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{0}^{(k,A_{1})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{31} [\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{0}^{(k,A_{1})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{31} [\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12} [\mathbb{T}_{0}^{(u,B_{2})}] \otimes \mathbb{F}_{12} [\mathbb{T}_{0}^{(k,A_{1})}] }{8} \\ & + \frac{\sqrt{5}\mathbb{X}_{31} [\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{$$

No. 65
$$\hat{\mathbb{G}}_4^{(A_1,1)}(1,-1)$$
 [M₁, B₂]

$$\begin{split} \hat{\mathbb{Z}}_{65} &= -\frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{Y}_{14}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &+ \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{Y}_{15}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\hat{\mathbb{Z}}_{65}(\mathbf{k}) = -\frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{8} \\ - \frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{8} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{8} \\ + \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{8} + \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} \\ + \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} + \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{8} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}$$

No. 66
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{66} = \mathbb{X}_{22}[\mathbb{M}_{3}^{(a, A_2, 2)}(1, -1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{2}^{(b, A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{66}(\pmb{k}) &= \frac{\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 67
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{67} = \mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_2,1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{67}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 68 $\hat{\mathbb{Q}}_2^{(A_1,1)}(1,0)$ [M₁, B₂]

 $\hat{\mathbb{Z}}_{68} = \mathbb{X}_{35} [\mathbb{T}_2^{(a, A_1, 1)}(1, 0)] \otimes \mathbb{Y}_{13} [\mathbb{T}_0^{(b, A_1)}]$

$$\hat{\mathbb{Z}}_{68}(\boldsymbol{k}) = \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_1^{(u,B_2)}] \otimes \mathbb{F}_{11}[\mathbb{T}_1^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_0^{(k,A_1)}]}{2} \\ + \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{7}[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{9}[\mathbb{T}_0^{(k,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{9}[\mathbb{T}_0^{(k,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{V}_{9}[\mathbb{Q}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}] \otimes \mathbb{V}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]}{2} \\ + \frac{\mathbb{X}_{95}[\mathbb{T}_0^{(u,A_1)}]$$

No. 69 $\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$ [M₁, B₂]

 $\hat{\mathbb{Z}}_{69} = \mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{Y}_{13}[\mathbb{T}_0^{(b,A_1)}]$

$$\begin{split} \hat{\mathbb{Z}}_{69}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \\ &+ \frac{\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 70 $\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{70} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{70}(\textbf{\textit{k}}) &= \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{T}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{T}_{12}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}(1,0)] \otimes \mathbb{T}_{12}[\mathbb{T}_{1}^{(u,B_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}(1,0)]$$

No. 71
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{71} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{T}_1^{(b,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{71}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{0}^{(k,A_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{2}^{(u,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u,B_{2})}] \otimes \mathbb{T}_{3}[\mathbb{T}_{2}^{(u,B_{2})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_{2}^{(u$$

No. 72
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{72} = \mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{16}[\mathbb{T}_2^{(b,A_2)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{72}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{23}[\mathbb{T}_{2}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{1}^{(k,B_1)}]}{2} + \frac{\mathbb{X}_{23}[\mathbb{T}_{2}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{T}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2}^{(k,A_2)}]}{2} \\ &+ \frac{\mathbb{X}_{23}[\mathbb{T}_{2}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{1}^{(k,B_1)}]}{2} + \frac{\mathbb{X}_{23}[\mathbb{T}_{2}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{2}^{(k,A_2)}]}{2} \end{split}$$

No. 73
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{73} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{73}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 74
$$\hat{\mathbb{Q}}_2^{(A_1,1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{74} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{74}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 75
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{75} = \mathbb{X}_3[\mathbb{Q}_2^{(a,A_1,2)}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{75}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{T}_{19}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{T}_{19}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\mathbb{T}_{19}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\mathbb{T}_{19}[\mathbb{T}_{1}^{(u,B_{2})}]}{2$$

No. 76
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{76} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{Y}_{18}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{76}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 77
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{77} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{Y}_{18}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{77}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 78
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{78} = \mathbb{X}_7[\mathbb{Q}_2^{(a,A_2)}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{78}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2}$$

No. 79
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{79} = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{79}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 80
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{80} = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\hat{\mathbb{Z}}_{80}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 81
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{81} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\hat{\mathbb{Z}}_{81}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{E}_{19}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{E}_{19}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{E}_{19}[\mathbb{T}_{1}^{(u,B_{2})}]}$$

No. 82
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{82} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_2^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{Q}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{Q}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{82}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 83
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{83} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_2^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{Q}_1^{(b,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{Q}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{83}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 84
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{84} = \mathbb{X}_{10}[\mathbb{Q}_2^{(a,A_2)}(1,-1)] \otimes \mathbb{Y}_{20}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{84}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2}$$

No. 85
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{85} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)]\otimes\mathbb{Y}_{18}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)]\otimes\mathbb{Y}_{19}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{85}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 86 $\hat{\mathbb{G}}_2^{(A_1)}(1,0)$ [M₁, B₃]

$$\hat{\mathbb{Z}}_{86} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)]\otimes\mathbb{Y}_{18}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)]\otimes\mathbb{Y}_{19}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{86}(\boldsymbol{k}) &= \frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 87
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{87} = -\mathbb{X}_{11}[\mathbb{G}_1^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{87}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{T}_{18}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} \otimes \mathbb{T}_{18}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{T}_{18}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} \otimes \mathbb{T}_{18}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{T}_{18}[\mathbb{T}_{1}^{(u,B_{1})}]}$$

No. 88
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{88} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{88}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 89
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{89} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{89}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 90
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{90} = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2}^{(b,A_{2})}]$$

$$\hat{\mathbb{Z}}_{90}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2}$$

No. 91
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{91} = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{91}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 92
$$\hat{\mathbb{G}}_2^{(A_1)}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{92} = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{92}(\boldsymbol{k}) &= \frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 93
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{93} = -\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_2)}(1,1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{93}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_2)}(1,1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_1)}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_2)}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_1)}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_1)}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}]}{2} \\ -\frac{\mathbb{X}_{19}[\mathbb{M}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}]}{2} \\ -\frac{\mathbb{X}_{19}[\mathbb{T}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}]}{2} \\ -\frac{\mathbb{X}_{19}[\mathbb{T}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}(1,1)]}{2} \\ -\frac{\mathbb{X}_{19}[\mathbb{T}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_2)}(1,1)]}{2} \\ -\frac{\mathbb{X}_{19}[\mathbb{T}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{X}_{19}[\mathbb{T}_{1}^{(u,B_2)}(1,1)]}{2} \\ -\frac{\mathbb{X}_{19}[\mathbb{T}_{1}^{(u,B_2)}(1,1)] \otimes \mathbb{X}_{19}[\mathbb{$$

No. 94
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{94} = -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{94}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 95
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{95} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{95}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 96
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{96} = -\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2}^{(b,A_{2})}]$$

$$\hat{\mathbb{Z}}_{96}(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{T}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{T}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{T}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{T}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{T}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(u,B_{1})}]}{2} \\ -\frac{\sqrt{2}\mathbb{X}_{20$$

No. 97
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{97} = \mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_1)}(1,-1)] \otimes \mathbb{Y}_{21}[\mathbb{T}_{0}^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{97}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(u,A_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(u,A_{1})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(u,B_{2})}]}$$

No. 98
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\begin{split} \hat{\mathbb{Z}}_{98} &= -\frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{98}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{Q}_{0}^{(k,A_{1})}]}$$

No. 99
$$\hat{\mathbb{Q}}_3^{(A_1,1)}(1,-1)$$
 [M₁, B₃]

$$\begin{split} \hat{\mathbb{Z}}_{99} &= \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{99}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} + \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{T}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{T}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(u,B_{2},2)}(1,-1)]$$

No. 100
$$\hat{\mathbb{Q}}_3^{(A_1,2)}(1,-1)$$
 [M₁, B₃]

$$\begin{split} \hat{\mathbb{Z}}_{100} &= \frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &+ \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\hat{\mathbb{Z}}_{100}(\boldsymbol{k}) = \frac{\sqrt{10}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} + \frac{\sqrt{10}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ - \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ + \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{V}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{Q}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{Q}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{Q}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]}{8} \\ + \frac{\sqrt{$$

No. 101
$$\hat{\mathbb{G}}_4^{(A_1,1)}(1,-1)$$
 [M₁, B₃]

$$\begin{split} \hat{\mathbb{Z}}_{101} &= -\frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{Y}_{22}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &+ \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{Y}_{23}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{101}(\textbf{\textit{k}}) &= -\frac{\sqrt{10}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{T}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{Q}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{Q}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{Q}_{14}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{Q}_{14}[\mathbb{Q}_{0}^{($$

No. 102
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{102} = \mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_2,2)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{102}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}$$

No. 103
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{103} = \mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_2,1)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{103}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{20}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(u,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(u,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(u,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{14}[\mathbb{Q}_{1}^{(u,B_{1})}]}$$

No. 104
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{104} = \mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{Y}_{21}[\mathbb{T}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{104}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{17}[\mathbb{T}_0^{(k,A_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_1^{(k,B_2)}]}{2}$$

No. 105
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{105} = \mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{Y}_{21}[\mathbb{T}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{105}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_{2}^{(a,A_{1},2)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{15}[\mathbb{Q}_{1}^{(k,B_{2})}]}$$

No. 106
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{106} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{Y}_{22}[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_{23}[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{106}(\boldsymbol{k}) &= \frac{\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 107
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{107} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{Y}_{22}[\mathbb{T}_1^{(b,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_{23}[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{107}(\boldsymbol{k}) &= \frac{\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{28}[\mathbb{T}_{2}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{19}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{33}[\mathbb{T}_{2}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 108
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{108} = \mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{24}[\mathbb{T}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{108}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{20}[\mathbb{T}_2^{(k,A_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{14}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_1^{(k,B_1)}]}{2}$$

No. 109
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{109} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_{25}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{109}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 110
$$\hat{\mathbb{Q}}_2^{(A_1,1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{110} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1,1)}] \otimes \mathbb{Y}_{25}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{110}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1},1)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(u,A_{1},1)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(u,A_{1},1)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}$$

No. 111
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{111} = \mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{Y}_{25}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\hat{\mathbb{Z}}_{111}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{2}^{(a,A_{1},2)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 112
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{112} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{Y}_{26}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{Y}_{27}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{112}(\boldsymbol{k}) &= \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 113
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{113} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{Y}_{26}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{Y}_{27}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{113}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{8}[\mathbb{Q}_{2}^{(a,B_{1})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{9}[\mathbb{Q}_{2}^{(a,B_{2})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 114
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{114} = \mathbb{X}_7[\mathbb{Q}_2^{(a,A_2)}] \otimes \mathbb{Y}_{28}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{114}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2}^{(a,A_{2})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2}$$

No. 115
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{115} = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_{25}[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{115}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 116
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{116} = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{Y}_{25}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\hat{\mathbb{Z}}_{116}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{1}^{(u,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(u,A_{1},1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1}^{(u,B_{1},1)}]}{2} \otimes \mathbb{F}_{27}[\mathbb{Q}_{1}^{(u,B_{1},1)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{1}^{(u,B_{1},1)}]}$$

No. 117
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{117} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{Y}_{25}[\mathbb{Q}_{0}^{(b,A_{1})}]$$

$$\hat{\mathbb{Z}}_{117}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(a,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(u,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(u,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2}^{(u,A_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(u,B_{2})}]}$$

No. 118
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{118} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_2^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{Q}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{Q}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{118}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 119
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{119} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_2^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_{26}[\mathbb{Q}_1^{(b,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_2^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_{27}[\mathbb{Q}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{119}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{12}[\mathbb{Q}_{2}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{14}[\mathbb{Q}_{2}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 120
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{120} = \mathbb{X}_{10}[\mathbb{Q}_2^{(a,A_2)}(1,-1)] \otimes \mathbb{Y}_{28}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{120}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_2^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{24}[\mathbb{Q}_2^{(k,A_2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_2^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{26}[\mathbb{T}_1^{(k,B_1)}]}{2}$$

No. 121
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{121} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)]\otimes\mathbb{Y}_{26}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)]\otimes\mathbb{Y}_{27}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{121}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 122
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{122} = \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)]\otimes\mathbb{Y}_{26}[\mathbb{Q}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)]\otimes\mathbb{Y}_{27}[\mathbb{Q}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{122}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{13}[\mathbb{G}_{1}^{(a,B_{1})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} - \frac{\mathbb{X}_{15}[\mathbb{G}_{1}^{(a,B_{2})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 123
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{123} = -\mathbb{X}_{11}[\mathbb{G}_1^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{28}[\mathbb{Q}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{123}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{1}^{(u,B_{1})}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{1})}]}{2} \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(u,B_{1})}]}$$

No. 124
$$\hat{\mathbb{Q}}_1^{(A_1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{124} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{124}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 125
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{125} = \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{125}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{17}[\mathbb{M}_{1}^{(a,B_{1})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{18}[\mathbb{M}_{1}^{(a,B_{2})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 126
$$\hat{\mathbb{Q}}_2^{(A_1,2)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{126} = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_2)}] \otimes \mathbb{Y}_{32}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{126}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{E}_{22}[\mathbb{Q}_{1}^{(a,B_{1})}] \otimes \mathbb{E}_{22}[\mathbb{Q}_{1}^{(a,B_{1})}]}{2} + \frac{\mathbb{E}_{22}[\mathbb{Q}_{1}^{(a,B_{1})}]}{2} + \mathbb{E}_{22}[\mathbb{Q}_{1}^{(a,B_{1})}]}$$

No. 127
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{127} = -\frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)]\otimes\mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)]\otimes\mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{127}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 128
$$\hat{\mathbb{G}}_2^{(A_1)}(1,1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{128} = \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)]\otimes\mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)]\otimes\mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{128}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{24}[\mathbb{M}_{1}^{(a,B_{1})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{29}[\mathbb{M}_{1}^{(a,B_{2})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 129
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{129} = -\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_2)}(1,1)] \otimes \mathbb{Y}_{32}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{129}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{19}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2}$$

No. 130
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{130} = -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{130}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 131
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{131} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{131}(\boldsymbol{k}) &= \frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{25}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{30}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 132
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{132} = -\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_2)}(1,-1)] \otimes \mathbb{Y}_{32}[\mathbb{T}_{2}^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{132}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{20}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{E}_{20}[\mathbb{Q}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{E}_{10}[\mathbb{Q}_{1}^{(u,B_{2})}] \otimes \mathbb{E}_{20}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} - \frac{\mathbb{E}_{20}[\mathbb{Q}_{1}^{(u,B_{1})}] \otimes \mathbb{E}_{20}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} - \frac{\mathbb{E}_{20}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} - \frac{\mathbb{E}_{20}[\mathbb{Q}_{1}^{($$

No. 133
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{133} = \mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{Y}_{29}[\mathbb{T}_{0}^{(b,A_{1})}]$$

$$\hat{\mathbb{Z}}_{133}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{0}^{(k,A_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{3}^{(a,A_{1})}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{23}[\mathbb{Q}_{1}^{(k,B_{2})}]}$$

No. 134
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₄]

$$\begin{split} \hat{\mathbb{Z}}_{134} &= -\frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} + \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{134}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)]\otimes\mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &= -\frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)]\otimes\mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &= -\frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)]\otimes\mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} + \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)]\otimes\mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ \end{split}$$

No. 135
$$\hat{\mathbb{Q}}_3^{(A_1,1)}(1,-1)$$
 [M₁, B₄]

$$\begin{split} \hat{\mathbb{Z}}_{135} &= \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &- \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{5}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{135}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} + \frac{\sqrt{6}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{10}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]}{8} \\ &- \frac{\sqrt{10}\mathbb{X}_{32}[\mathbb{M}_{3}^{(u,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb$$

No. 136
$$\hat{\mathbb{Q}}_3^{(A_1,2)}(1,-1)$$
 [M₁, B₄]

$$\begin{split} \hat{\mathbb{Z}}_{136} &= \frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &+ \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} + \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{136}(\boldsymbol{k}) &= \frac{\sqrt{10}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} + \frac{\sqrt{10}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &- \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1}^{(k,B_{1})}]}{8} - \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{2}^{(k,A_{2})}]}{8} \\ &+ \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} + \frac{\sqrt{10}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \\ &+ \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{1}^{(k,B_{2})}]}{8} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{0}^{(k,A_{1})}]}{8} \end{split}$$

No. 137
$$\hat{\mathbb{G}}_4^{(A_1,1)}(1,-1)$$
 [M₁, B₄]

$$\begin{split} \hat{\mathbb{Z}}_{137} &= -\frac{\sqrt{5}\mathbb{X}_{26}[\mathbb{M}_{3}^{(a,B_{1},1)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{3}^{(a,B_{1},2)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{T}_{1}^{(b,B_{1})}]}{4} \\ &+ \frac{\sqrt{5}\mathbb{X}_{31}[\mathbb{M}_{3}^{(a,B_{2},1)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1}^{(b,B_{2})}]}{4} \end{split}$$

No. 138
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{138} = \mathbb{X}_{22}[\mathbb{M}_3^{(a,A_2,2)}(1,-1)] \otimes \mathbb{Y}_{32}[\mathbb{T}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{138}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(u,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{M}_{3}^{(u,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(u,B_{1})}]}$$

No. 139
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{139} = \mathbb{X}_{21}[\mathbb{M}_3^{(a,A_2,1)}(1,-1)] \otimes \mathbb{Y}_{32}[\mathbb{T}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{139}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{2}^{(k,A_{2})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1}^{(u,B_{2})}]}{2} \otimes \mathbb{F}_{22}[\mathbb{Q}_{1}^{(k,B_{1})}]}$$

No. 140
$$\hat{\mathbb{Q}}_2^{(A_1,1)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{140} = \mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{Y}_{29}[\mathbb{T}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{140}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{25}[\mathbb{T}_0^{(k,A_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{T}_2^{(a,A_1,1)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}{2}$$

No. 141
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{141} = \mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{Y}_{29}[\mathbb{T}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{141}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{25}[\mathbb{T}_0^{(k,A_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_2^{(u,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_2^{(u,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_2^{(u,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{36}[\mathbb{T}_2^{(a,A_1,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_2^{(u,B_2)}]}{2} \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}] \otimes \mathbb{F}_{23}[\mathbb{Q}_1^{(k,B_2)}]}$$

No. 142
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{142} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{Y}_{30}[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_{31}[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{142}(\boldsymbol{k}) &= \frac{\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{26}[\mathbb{T}_1^{(k,B_1)}]}{2} + \frac{\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{24}[\mathbb{Q}_2^{(k,A_2)}]}{2} \\ &+ \frac{\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{27}[\mathbb{T}_1^{(k,B_2)}]}{2} + \frac{\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_0^{(k,A_1)}]}{2} \end{split}$$

No. 143
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{143} = \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{Y}_{30}[\mathbb{T}_1^{(b,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{Y}_{31}[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{143}(\boldsymbol{k}) &= \frac{\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{26}[\mathbb{T}_1^{(k,B_1)}]}{2} + \frac{\mathbb{X}_{28}[\mathbb{T}_2^{(a,B_1)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{24}[\mathbb{Q}_2^{(k,A_2)}]}{2} \\ &- \frac{\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{27}[\mathbb{T}_1^{(k,B_2)}]}{2} - \frac{\mathbb{X}_{33}[\mathbb{T}_2^{(a,B_2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_0^{(k,A_1)}]}{2} \end{split}$$

No. 144
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{144} = \mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{Y}_{32}[\mathbb{T}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{144}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{Q}_0^{(u,A_1)}] \otimes \mathbb{F}_{28}[\mathbb{T}_2^{(k,A_2)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{T}_2^{(a,A_2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_1^{(u,B_2)}] \otimes \mathbb{F}_{22}[\mathbb{Q}_1^{(k,B_1)}]}{2}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_1,1)}$	M_1	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \end{pmatrix}$
\mathbb{X}_3	$\mathbb{Q}_2^{(a,A_1,2)}$	M_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{Q}_0^{(a,A_1)}(1,1)$	M_1	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_5	$\mathbb{Q}_2^{(a,A_1,1)}(1,-1)$	M_1	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix} $

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_6	$\mathbb{Q}_2^{(a,A_1,2)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_7	$\mathbb{Q}_2^{(a,A_2)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_8	$\mathbb{Q}_2^{(a,B_1)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_9	$\mathbb{Q}_2^{(a,B_2)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{10}	$\mathbb{Q}_2^{(a,A_2)}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{11}	$\mathbb{G}_{1}^{(a,A_2)}(1,0)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{12}	$\mathbb{Q}_2^{(a,B_1)}(1,-1)$	M_1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{bmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{13}	$\mathbb{G}_{1}^{(a,B_{1})}(1,0)$	M_1	$\begin{bmatrix} 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{bmatrix}$
\mathbb{X}_{14}	$\mathbb{Q}_2^{(a,B_2)}(1,-1)$	M_1	$\begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}t}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}t}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}t}{4} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
\mathbb{X}_{15}	$\mathbb{G}_1^{(a,B_2)}(1,0)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 6

	I		
symbol	type	group	form
\mathbb{X}_{16}	$\mathbb{M}_{1}^{(a,A_{2})}$	M_1	$egin{pmatrix} 0 & 0 & -rac{i}{2} & 0 & 0 & 0 \ 0 & 0 & 0 & -rac{i}{2} & 0 & 0 \ rac{i}{2} & 0 & 0 & 0 & 0 \ 0 & rac{i}{2} & 0 & 0 & 0 & 0 \ 0 & rac{i}{2} & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{17}	$\mathbb{M}_1^{(a,B_1)}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{18}	$\mathbb{M}_{1}^{(a,B_{2})}$	M_1	$egin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 &$
\mathbb{X}_{19}	$\mathbb{M}_1^{(a,A_2)}(1,1)$	M_1	$\begin{pmatrix} -\frac{\sqrt{30}}{30} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{20} \\ 0 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{15} \end{pmatrix}$
\mathbb{X}_{20}	$\mathbb{M}_{1}^{(a,A_{2})}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{21}	$\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)$	M_1	$\begin{pmatrix} -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix}$
\mathbb{X}_{22}	$\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{23}	$\mathbb{T}_2^{(a,A_2)}(1,0)$	M_1	$\begin{bmatrix} 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0\\ 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12}\\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0\\ 0 & -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0\\ -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{bmatrix}$
\mathbb{X}_{24}	$\mathbb{M}_1^{(a,B_1)}(1,1)$	M_1	$\begin{bmatrix} 0 & \frac{\sqrt{3}0i}{30} & 0 & \frac{\sqrt{3}0}{20} & 0 & 0 \\ -\frac{\sqrt{3}0i}{30} & 0 & \frac{\sqrt{3}0}{20} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}0}{20} & 0 & -\frac{\sqrt{3}0i}{15} & \frac{\sqrt{3}0}{20} & 0 \\ \frac{\sqrt{3}0}{20} & 0 & \frac{\sqrt{3}0i}{15} & 0 & 0 & -\frac{\sqrt{3}0}{20} \\ 0 & 0 & \frac{\sqrt{3}0}{20} & 0 & 0 & \frac{\sqrt{3}0i}{30} \\ 0 & 0 & 0 & -\frac{\sqrt{3}0}{20} & -\frac{\sqrt{3}0i}{30} & 0 \end{bmatrix}$
\mathbb{X}_{25}	$\mathbb{M}_{1}^{(a,B_{1})}(1,-1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
X26	$\mathbb{M}_3^{(a,B_1,1)}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 \\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{5} & -\frac{\sqrt{5}}{10} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{5} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \end{pmatrix} $
\mathbb{X}_{27}	$\mathbb{M}_3^{(a,B_1,2)}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \end{pmatrix} $
\mathbb{X}_{28}	$\mathbb{T}_2^{(a,B_1)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0\\ -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0\\ 0 & \frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12}\\ 0 & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{29}	$\mathbb{M}_1^{(a,B_2)}(1,1)$	$ m M_1$	$ \begin{pmatrix} 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{20} & 0\\ \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20}\\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30}\\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{pmatrix} $
\mathbb{X}_{30}	$M_1^{(a,B_2)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{31}	$\mathbb{M}_3^{(a,B_2,1)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{5}}{5} & 0 & \frac{\sqrt{5}i}{10} & -\frac{\sqrt{5}}{10} & 0\\ \frac{\sqrt{5}}{5} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & \frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \end{pmatrix}$
\mathbb{X}_{32}	$\mathbb{M}_{3}^{(a,B_{2},2)}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0\\ 0 & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6}\\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0\\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0\\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6}\\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \end{pmatrix} $
\mathbb{X}_{33}	$\mathbb{T}_2^{(a,B_2)}(1,0)$	$ m M_1$	$\begin{bmatrix} 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{bmatrix}$
\mathbb{X}_{34}	$\mathbb{M}_{3}^{(a,A_{1})}(1,-1)$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{35}	$\mathbb{T}_2^{(a,A_1,1)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X36	$\mathbb{T}_2^{(a,A_1,2)}(1,0)$	$ m M_1$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{Y}_2	$\mathbb{O}^{(s,B_2)}$	S_1	$\left(\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ 2 & \end{array}\right)$
\mathbb{Y}_3	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$\left(\begin{array}{cc} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{array}\right)$
\mathbb{Y}_4	$\mathbb{Q}_1^{(s,B_2)}$	S_2	$\left(\begin{array}{cc} \sqrt{2} & -\frac{\sqrt{2}}{2} \end{array}\right)$
\mathbb{Y}_5	$\mathbb{Q}_0^{(b,A_1)}$	B_1	$\left(\begin{array}{cc} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{array}\right)$
\mathbb{Y}_6	$\mathbb{Q}_1^{(b,B_2)}$	B_1	$\left(\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ 2 & \end{array}\right)$
\mathbb{Y}_7	$\mathbb{T}_0^{(b,A_1)}$	B_1	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix}$ $\begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ 2 & -\sqrt{2} \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} \sqrt{2}i & \sqrt{2}i \\ 2 & 2 \end{pmatrix}$
\mathbb{Y}_8	$\mathbb{T}_1^{(b,B_2)}$	B_1	$\begin{pmatrix} 2 & 2 \\ \sqrt{2}i & -\frac{\sqrt{2}i}{2} \end{pmatrix}$
\mathbb{Y}_9	$\mathbb{Q}_0^{(b,A_1)}$	B_2	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{10}	$\mathbb{Q}_1^{(b,B_1)}$	B_2	
\mathbb{Y}_{11}	$\mathbb{Q}_1^{(b,B_2)}$	B_2	$ \begin{vmatrix} \left(\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \right) \\ \left(\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \right) \end{vmatrix} $
\mathbb{Y}_{12}	$\mathbb{Q}_2^{(b,A_2)}$	B_2	$\left \begin{array}{cccc} \left(\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{array} \right) \right $
\mathbb{Y}_{13}	$\mathbb{T}_0^{(b,A_1)}$	B_2	
\mathbb{Y}_{14}	$\mathbb{T}_1^{(b,B_1)}$	B_2	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} \end{array}\right)$
\mathbb{Y}_{15}	$\mathbb{T}_1^{(b,B_2)}$	B_2	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_{16}	$\mathbb{T}_2^{(b,A_2)}$	B_2	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} \end{array}\right)$
\mathbb{Y}_{17}	$\mathbb{Q}_0^{(b,A_1)}$	B_3	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Table 7

symbol	type	cluster	form
\mathbb{Y}_{18}	$\mathbb{Q}_1^{(b,B_1)}$	B_3	
\mathbb{Y}_{19}	$\mathbb{Q}_1^{(b,B_2)}$	B_3	$\left \begin{array}{cccc} \left(\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right) \right $
\mathbb{Y}_{20}	$\mathbb{Q}_2^{(b,A_2)}$	B_3	$\left \begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{array} \right $
\mathbb{Y}_{21}	$\mathbb{T}_0^{(b,A_1)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_{22}	$\mathbb{T}_1^{(b,B_1)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} \end{array}\right)$
\mathbb{Y}_{23}	$\mathbb{T}_1^{(b,B_2)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & \frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_{24}	$\mathbb{T}_2^{(b,A_2)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} \end{array}\right)$
\mathbb{Y}_{25}	$\mathbb{Q}_0^{(b,A_1)}$	B_4	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{26}	$\mathbb{Q}_1^{(b,B_1)}$	B_4	$\left[\begin{array}{cccc} \left(\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{array}\right)\right]$
\mathbb{Y}_{27}	$\mathbb{Q}_1^{(b,B_2)}$	$_{ m B_4}$	$\left \begin{array}{ccc} \left(\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right) \right $
\mathbb{Y}_{28}	$\mathbb{Q}_2^{(b,A_2)}$	$_{ m B_4}$	$\left \begin{array}{cccc} \left(\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{array} \right) \right $
\mathbb{Y}_{29}	$\mathbb{T}_0^{(b,A_1)}$	B_4	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_{30}	$\mathbb{T}_1^{(b,B_1)}$	B_4	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} \end{array}\right)$
\mathbb{Y}_{31}	$\mathbb{T}_1^{(b,B_2)}$	$_{ m B_4}$	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & \frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_{32}	$\mathbb{T}_2^{(b,A_2)}$	B_4	$\left(\begin{array}{cccc} \underline{i} & -\underline{i} & \underline{i} & -\underline{i} \\ \end{array}\right)$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{U}_2	$\mathbb{Q}_1^{(s,B_2)}$	S_1	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $

Table 8

symbol	type	cluster	form
\mathbb{U}_3	$\mathbb{Q}_0^{(s,A_1)}$	S_2	$ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{U}_4	$\mathbb{Q}_1^{(s,B_2)}$	S_2	$ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix} $
\mathbb{U}_5	$\mathbb{Q}_0^{(u,A_1)}$	B_1	$ \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \end{pmatrix} $
\mathbb{U}_6	$\mathbb{Q}_1^{(u,B_2)}$	В1	$ \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \end{pmatrix} $
\mathbb{U}_7	$\mathbb{T}_0^{(u,A_1)}$	B_1	$ \begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 \end{pmatrix} $
U ₈	$\mathbb{T}_1^{(u,B_2)}$	В1	$ \begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & \frac{i}{2} \\ \frac{i}{2} & 0 & 0 & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \end{pmatrix} $
\mathbb{U}_9	$\mathbb{Q}_0^{(u,A_1)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_{10}	$\mathbb{Q}_1^{(u,B_2)}$	B_2	$ \begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} $

Table 8

symbol	type	cluster	form
\mathbb{U}_{11}	$\mathbb{T}_0^{(u,A_1)}$	B_2	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{U}_{12}	$\mathbb{T}_1^{(u,B_2)}$	B_2	$ \begin{bmatrix} 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & \frac{i}{2} & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \end{bmatrix} $
\mathbb{U}_{13}	$\mathbb{Q}_0^{(u,A_1)}$	B_3	$ \begin{pmatrix} \frac{i}{2} & 0 & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{U}_{14}	$\mathbb{T}_1^{(u,B_2)}$	B_3	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} & 0 & 0 \\ \frac{\sqrt{2}i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{U}_{15}	$\mathbb{Q}_0^{(u,A_1)}$	B_4	$ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} & 0 \end{pmatrix} $
\mathbb{U}_{16}	$\mathbb{T}_1^{(u,B_2)}$	B ₄	$ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{2} \\ 0 & 0 & \frac{\sqrt{2}i}{2} & 0 \end{pmatrix} $

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_1)}$	B_1	$c_{001} + c_{002}$
\mathbb{F}_2	$\mathbb{Q}_1^{(k,B_2)}$	B_1	$c_{001} - c_{002}$

Table 9

symbol	typo	cluster	form
	$\mathbb{T}_0^{(k,A_1)}$		
\mathbb{F}_3	$\mathbb{T}_1^{(k,B_2)}$	B_1	$s_{001} + s_{002}$
\mathbb{F}_4	1 (1-4)	B_1	$s_{001} - s_{002}$
\mathbb{F}_5	$\mathbb{Q}_0^{(k,A_1)}$	B_2	$\frac{\sqrt{2}c_{003}}{c^2} + \frac{\sqrt{2}c_{004}}{c^2} + \frac{\sqrt{2}c_{005}}{c^2} + \frac{\sqrt{2}c_{006}}{c^2}$
\mathbb{F}_6	$\mathbb{Q}_1^{(k,B_1)}$	B_2	$\frac{\sqrt{2}c_{003}}{2} - \frac{\sqrt{2}c_{004}}{2} + \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_7	$\mathbb{O}^{(k,B_2)}$	B_2	$\frac{\sqrt{2}c_{003}}{2} - \frac{\sqrt{2}c_{004}}{2} - \frac{\sqrt{2}c_{005}}{2} + \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_8	$\mathbb{Q}_2^{(k,A_2)}$	B_2	$\frac{\sqrt{2}c_{003}}{2} + \frac{\sqrt{2}c_{004}}{2} - \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_9	$\mathbb{T}_0^{(k,A_1)}$	$_{\mathrm{B}_{2}}$	$\frac{\sqrt{2s_{003}}}{2} + \frac{\sqrt{2s_{004}}}{2} + \frac{\sqrt{2s_{005}}}{2} + \frac{\sqrt{2s_{006}}}{2}$
\mathbb{F}_{10}	$\mathbb{T}_1^{(k,B_1)}$	B_2	$\frac{\sqrt{2}s_{003}}{2} - \frac{\sqrt{2}s_{004}}{2} + \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{006}}{2}$
\mathbb{F}_{11}	$\mathbb{T}_1^{(k,B_2)}$	$_{\mathrm{B}_{2}}$	$\frac{\sqrt{2}s_{003}}{2} - \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} + \frac{\sqrt{2}s_{006}}{2}$
\mathbb{F}_{12}	$\mathbb{T}_2^{(k,A_2)}$	$_{\mathrm{B}_{2}}$	$\frac{\sqrt{2}s_{003}}{2} + \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{006}}{2}$
\mathbb{F}_{13}	$\mathbb{Q}_0^{(k,A_1)}$	B_3	$\frac{\sqrt{2}c_{007}}{2} + \frac{\sqrt{2}c_{008}}{2} + \frac{\sqrt{2}c_{009}}{2} + \frac{\sqrt{2}c_{010}}{2}$
\mathbb{F}_{14}	$\mathbb{Q}_1^{(k,B_1)}$	B_3	$\frac{\sqrt{2}c_{007}}{2} - \frac{\sqrt{2}c_{008}}{2} + \frac{\sqrt{2}c_{009}}{2} - \frac{\sqrt{2}c_{010}}{2}$
\mathbb{F}_{15}	$\bigcap^{(k,B_2)}$	B_3	$\frac{\sqrt{2}c_{007}}{2} - \frac{\sqrt{2}c_{008}}{2} - \frac{\sqrt{2}c_{009}}{2} + \frac{\sqrt{2}c_{010}}{2}$
\mathbb{F}_{16}	$\mathbb{Q}_2^{(k,A_2)}$	B_3	$\frac{\sqrt{2}c_{007}}{2} + \frac{\sqrt{2}c_{008}}{2} - \frac{\sqrt{2}c_{009}}{2} - \frac{\sqrt{2}c_{010}}{2}$
\mathbb{F}_{17}	$\mathbb{T}_{0}^{(k,A_1)}$	B_3	$\frac{\sqrt{2}s_{007}}{2} - \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} + \frac{\sqrt{2}s_{010}}{2}$
\mathbb{F}_{18}	$\mathbb{T}_1^{(k,B_1)}$	B_3	$\frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{010}}{2}$
\mathbb{F}_{19}	$\mathbb{T}^{(k,B_2)}$	B_3	$\frac{\sqrt{2s_{007}}}{2} + \frac{\sqrt{2s_{008}}}{2} + \frac{\sqrt{2s_{009}}}{2} + \frac{\sqrt{2s_{010}}}{2}$
\mathbb{F}_{20}	$\mathbb{T}_2^{(k,A_2)}$	B_3	$\frac{\sqrt{2}s_{007}}{2} - \frac{\sqrt{2}s_{008}}{2} + \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{010}}{2}$
\mathbb{F}_{21}	$\mathbb{O}^{(k,A_1)}$	B_4	$\frac{\sqrt{2}c_{011}}{2} + \frac{\sqrt{2}c_{012}}{2} + \frac{\sqrt{2}c_{013}}{2} + \frac{\sqrt{2}c_{014}}{2}$
\mathbb{F}_{22}	$\mathbb{Q}_1^{(k,B_1)}$	B_4	$\frac{\sqrt{2}c_{011}}{2} - \frac{\sqrt{2}c_{012}}{2} + \frac{\sqrt{2}c_{013}}{2} - \frac{\sqrt{2}c_{014}}{2}$
\mathbb{F}_{23}	\bigcap (k,B_2)	$_{ m B_4}$	$\frac{\sqrt{2}c_{011}}{2} - \frac{\sqrt{2}c_{012}}{2} - \frac{\sqrt{2}c_{013}}{2} + \frac{\sqrt{2}c_{014}}{2}$
\mathbb{F}_{24}	$\mathbb{Q}_2^{(k,A_2)}$	B_4	$\frac{\sqrt{2}c_{011}}{2} + \frac{\sqrt{2}c_{012}}{2} - \frac{\sqrt{2}c_{013}}{2} - \frac{\sqrt{2}c_{014}}{2}$
\mathbb{F}_{25}	$\mathbb{T}_0^{(k,A_1)}$	B_4	$\frac{\sqrt{2}s_{011}}{2} - \frac{\sqrt{2}s_{012}}{2} - \frac{\sqrt{2}s_{013}}{2} + \frac{\sqrt{2}s_{014}}{2}$
\mathbb{F}_{26}	$\mathbb{T}_1^{(k,B_1)}$	B_4	$\frac{\sqrt{2}s_{011}}{2} + \frac{\sqrt{2}s_{012}}{2} - \frac{\sqrt{2}s_{013}}{2} - \frac{\sqrt{2}s_{014}}{2}$
\mathbb{F}_{27}	$\mathbb{T}_1^{(k,B_2)}$	B_4	$\frac{\sqrt{2}s_{011}}{2} + \frac{\sqrt{2}s_{012}}{2} + \frac{\sqrt{2}s_{013}}{2} + \frac{\sqrt{2}s_{014}}{2}$
\mathbb{F}_{28}	$\mathbb{T}_2^{(k,A_2)}$	B_4	$\frac{\sqrt{2}s_{011}}{2} - \frac{\sqrt{2}s_{012}}{2} + \frac{\sqrt{2}s_{013}}{2} - \frac{\sqrt{2}s_{014}}{2}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_1^{(B_1)}$	1	B_1	_	_	\overline{x}
3	$\mathbb{Q}_1^{(B_2)}$	1	B_2	_	_	y
4	$\mathbb{Q}_2^{(A_1,1)}$	2	A_1	1	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
5	$\mathbb{Q}_2^{(A_1,2)}$	2	A_1	2	_	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
6	$\mathbb{O}_{2}^{(A_{2})}$	2	A_2	_	_	$\sqrt{3}xy$
7	$\mathbb{Q}_2^{(B_1)}$	2	B_1	_	_	$\sqrt{3}xz$
- 8	$\mathbb{Q}_2^{(B_2)}$	2	B_2	_	_	$\sqrt{3}yz$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_2)}$	1	A_2	_	_	Z
2	$\mathbb{G}_1^{(B_1)}$	1	B_1	_	_	Y
3	$\mathbb{G}_1^{(B_2)}$	1	B_2	_	_	X
4	$\mathbb{G}_3^{(A_1)}$	3	A_1	_	_	$\sqrt{15}XYZ$
5	$\mathbb{G}_3^{(A_2,1)}$	3	A_2	1	_	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
6	$\mathbb{G}_3^{(A_2,2)}$	3	A_2	2	_	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$
7	$\mathbb{G}_3^{(B_1,1)}$	3	B_1	1	_	$-\frac{Y(3X^2-2Y^2+3Z^2)}{2}$
8	$\mathbb{G}_3^{(B_1,2)}$	3	B_1	2	_	$-\frac{\sqrt{15}Y(X-Z)(X+Z)}{2}$
9	$\mathbb{G}_{2}^{(B_{2},1)}$	3	B_2	1	_	$\frac{X(2X^2-3\tilde{Y}^2-3Z^2)}{2}$
10	$\mathbb{G}_3^{(B_2,2)}$	3	B_2	2		$\frac{\sqrt{15}X(Y-Z)(Y+Z)}{2}$

 \bullet Group info.: Generator = $\{2_{001}|\frac{1}{2}0\frac{1}{2}\},\ \{m_{010}|\frac{1}{2}0\frac{1}{2}\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} \frac{1}{2}0\frac{1}{2}\}$	$\{2_{001} \frac{1}{2}0\frac{1}{2}\}$
$\{m_{010} \frac{1}{2}0\frac{1}{2}\}$	$\{m_{010} \frac{1}{2}0\frac{1}{2}\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} \frac{1}{2}0\frac{1}{2}\}$	3	$\{m_{010} \frac{1}{2}0\frac{1}{2}\}$	4	$\{m_{100} 0\}$		

Table 14: Character table (point-group part).

	1	2_{001}	m_{010}	m_{100}
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

Table 15: Parity conversion.

	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
A:	(A_2)	B_2 (B_1)	$B_1 (B_2)$	$A_2(A_1)$

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	B_1	B_2
A_1	A_1	A_2	B_1	B_2
A_2		A_1	B_2	B_1
B_1			A_1	A_2
B_2				A_1

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-.$

A_1	A_2	B_1	B_2
_	_	_	_

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -1 & -1 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4
$\mathbb{Q}_0^{(A_1)}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\mathbb{Q}_1^{(B_1)}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$
$\mathbb{Q}_1^{(B_2)}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
$\mathbb{Q}_2^{(A_2)}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$