Mathematics Specialist Test 2 2019 Marking Key

Question 1. (2 marks)

Sketch the set of points z, in the complex plane, that satisfy the equation |z - 3i| = |z - 3|

Question 2. (4 marks)

Evaluate $(1+i)^7 + (1-i)^7$ using de Moivre's rule.

$$\left(\sqrt{2} \cos \frac{\pi}{4} \right)^{7} + \left(\sqrt{2} \cos \left(\frac{\pi}{4} \right)^{7} \right) \\
 = 8\sqrt{2} \cos \left(\frac{\pi}{4} \right) + 8\sqrt{2} \cos \left(\frac{\pi}{4} \right) \\
 = 8\sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) + 8\sqrt{2} \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right) \right) \\
 = 8\sqrt{2} \left(2\cos \left(\frac{\pi}{4} \right) + \cos \left(\frac{\pi}{4} \right)$$

Question 3(a)

Solution

$$\frac{\left(\frac{z+i}{\overline{z}}\right) = \frac{a+(b+1)i}{a-bi} \times \frac{a+bi}{a+bi} \dots (1)}{a^2+b^2} = \frac{a^2-b(b+1)+ai}{a^2+b^2} \dots (2)$$

Hence if the real part is zero then it must be true that: $a^2 - b(b+1) = 0$ i.e. $a^2 - b^2 - b = 0$

Specific Behaviours

- ✓ Forms correct expression equivalent to (1)
- ✓ Forms the correct expression equivalent to (2)
- \checkmark Forms the equation relating a, b stating the real part is zero

Question 3(b)(i)

Solution

$$\frac{-2i}{\overline{z}} = \frac{2cis(-\frac{\pi}{2})}{rcis(-\theta)} = \frac{2}{r}cis\left(\theta - \frac{\pi}{2}\right)$$

Specific Behaviours

- ✓ converts -3i into polar from correctly
- \checkmark writes the correct expression for \overline{z} in polar form
- \checkmark divides polar forms correctly in terms of r, θ

Question 3(b)(ii)

(ii) arg(z+r) in terms of θ .

(3 marks)

Let $z = \overrightarrow{OP} = rcis\theta$ and $r = \overrightarrow{PQ}$. OPQR is a rhombus with side length r.

Then the complex number $z + r = \overline{OQ}$ is a diagonal in the rhombus. It is a property that a diagonal bisects the angles in a rhombus.

$$\therefore s \angle QOR = \frac{1}{2}s\angle POR$$
 i.e. $arg(z+r) = \frac{\theta}{2}$

Specific behaviours

- \checkmark indicates the vector position for z+r correctly
- ✓ identifies z+r as the diagonal of a rhombus
- \checkmark writes the correct expression for arg(z+r)

Question 4(a)

Solution

$$z^3=8cis(0)$$

$$z_0 = 2cis0$$

$$z_1 = 2cis\frac{2\pi}{3}$$

$$z_2 = 2cis(-\frac{2\pi}{3})$$

Specific Behaviours

- expresses z^3 as 8cis0
- ✓ states first root in correct polar form
- \checkmark states the other 2 roots correctly using the argument separation $\frac{2\pi}{3}$

Question 4(b)

Solution

$$P(z) = (z^3 - 8)(z^5 + z + 3)$$

Specific Behaviours

determines Q(z) correctly

Question4(c)

Solution

$$z = -\frac{1}{2} \pm \frac{\sqrt{11}}{2}i$$
 and $z = -\frac{1}{2} \pm \frac{\sqrt{11}}{2}i$

Specific Behaviours

- ✓ states $z = 2, -1 \pm \sqrt{3}i$ as solutions ✓ states $z = -\frac{1}{2} \pm \frac{\sqrt{11}}{2}i$ as solutions

(6 marks)

Two complex numbers are $u = \sqrt{3} + i$ and $v = 3 \operatorname{cis} \left(-\frac{\pi}{4} \right)$.

(a) Determine the argument of uv.

(2 marks)

$$arg(u) = \frac{\pi}{6}$$

$$\arg(uv) = \frac{\pi}{6} - \frac{\pi}{4} = -\frac{\pi}{12}$$

Specific behaviours

- \checkmark argument of u
- ✓ argument

(b) Simplify $|v \times \bar{v} \times u^{-1}|$.

Solution	
$ v \times \bar{v} \times \left \frac{1}{u}\right = v ^2 \times \left \frac{1}{u}\right = 9 \times \frac{1}{2}$	
$=\frac{9}{2}$	

Specific behaviours

- \checkmark evaluates $|v \times \bar{v}|$
- ✓ correct magnitude

(c) Determine z in polar form if $5zu = v^2$.

Solution

$$z = \frac{v^2}{5u} = \frac{1}{5} \times \frac{9 \operatorname{cis}\left(-\frac{\pi}{2}\right)}{2 \operatorname{cis}\left(\frac{\pi}{6}\right)}$$
$$z = \frac{9}{10} \operatorname{cis}\left(-\frac{2\pi}{3}\right)$$

Specific behaviours

- \checkmark indicates v^2 in polar form
- \checkmark simplifies z

 $compToTrig(v^2/(5u))$

 $\frac{9}{10} \cdot \left(\cos\left(\frac{-2\cdot\pi}{3}\right) + \sin\left(\frac{-2\cdot\pi}{3}\right) \cdot i\right)$

(a) Let $r \operatorname{cis} \theta$ be a point in the complex plane. Determine, in terms of r and θ , the polar form of this point after it is rotated by $\frac{\pi}{4}$ about the origin and then reflected in the real axis.

(2 marks)

Solution
$$z \to z_1 = r \operatorname{cis}\left(\theta + \frac{\pi}{4}\right)$$

$$z_1 \to \overline{z_1} = r \operatorname{cis}\left(-\theta - \frac{\pi}{4}\right)$$

Specific behaviours

- ✓ rotation
- √ conjugate
- (b) Let $f(w) = -i\overline{w} + 1 + i$.
 - (i) Complete the following table.

(3 marks)

W	1 + 2i	-3 + i	-1 - 4i
f(w)	-1	4i	5 + 2 <i>i</i>

Solution	
See table	
Specific behaviours	
√√√ each point	

(ii) Sketch each point, w, and join it with a dotted line to its image, f(w), on the diagram below. (1 mark)

Solu	tion
See diagram	
Specific be	ehaviours
✓ plots points	

(iii) Describe the geometric transformation that f(w) represents.

(2 marks)

Solution	
Reflection in the line $Re(z) + Im(z) = 1$	L

Specific behaviours

- √ reflection
- √ line of reflection

Question 7

(8 marks)

A sketch of the locus of a complex number z is shown below. Write equations or inequalities in terms of z (without using x = Re(z) or y = Im(z)) for each of the following:

(a)

(3 marks)

| t=(-1-2i)| くし

(1) | 2+1+2i| くし

Vorms inequality using the modulus. Vuses adifference between 2 and -1-2i Vuses vadius as I unit (constant on lits)

(b)

(2 marks)

Arg (2+i) = 3tt V forms an equation stating argument = 3tt V states the argument of 2+i

The sketch in (a) is repeated below, with only the circle indicated.

Sun $\theta = \sqrt{5}$ 0 = 0.4636. $x = \frac{\pi}{2} - 20 = 0.6435$ $Arg(z) = \pi + 0.6435 = 3.79 \text{ (neavest 0.01)}$

From the locus from part(a), determine the Minimum value for arg(z) correct to 0.01, where

 $0 \le \arg(z) \le 2\pi$.

Vindicates how max value occers usy target.

I uses approp. Ing to determine O correctly

Veralvates minimum value for arg(2) correctly

Solution

By De Moivre's theorem we have

$$\cos 4\theta + i\sin 4\theta = (\cos \theta + i\sin \theta)^4$$

Expanding and taking real parts gives

$$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$$

$$=\cos^{4}\theta - 6\cos^{2}\theta(1-\cos^{2}\theta) + (1-\cos^{2}\theta)^{2}$$

$$=\cos^4\theta - 6\cos^2\theta + 6\cos^4\theta + 1 - 2\cos^2\theta + \cos^4\theta$$

$$= 8\cos^4\theta - 8\cos^2\theta + 1$$

Mathematical behaviours	Marks	
uses De Moivre's theorem appropriately	1	
 expands the fourth power of the expression correctly takes the real parts of each side 	1	
• replaces $\sin^2 \theta = 1 - \cos^2 \theta$ and simplifies to obtain the result	1	
	1	

Question 8(b)

(5 marks)

Solution

Let $x = \cos \theta$ where $0 \le \theta \le \pi$. Then by part (a) we have $p(x) = p(\cos \theta) = \cos 4\theta$. Hence the maximum and minimum values of p(x) are ± 1 .

At maximum values $\cos 4\theta = 1 \Rightarrow 4\theta = 2n\pi$ so that $\theta = 0, \frac{\pi}{2}$ or π within the range.

Since $x = \cos \theta$ we have $x = 0, \pm 1$.

At minimum values $\cos 4\theta = -1 \Rightarrow 4\theta = (2n+1)\pi$ so that $\theta = \frac{\pi}{4}$ or $\frac{3\pi}{4}$ within range whence

$$x = \pm \frac{1}{\sqrt{2}} .$$

In summary, the maximum value of p(x) is 1, and occurs at x = 1.0 or -1

and the minimum value of p(x) is -1, and occurs at $x = \pm 1/\sqrt{2}$

Mathematical behaviours	Marks	
• derives 1 and -1 as the extreme values of $p(x)$	1	
• determines the correct values of θ at the maximum	1	
• infers the corresponding correct values of x		
• determines the correct values of θ at the minimum	1	
• infers the corresponding correct values of x	1	
	1	