Dynamic General Equilibrium Model for Climate Resilient Economic Development (DGE-CRED) Technical Report

Christoph Schult and Andrej Drygalla Halle Institute for Economic Research

March 2020

1 Introduction

This report is a guide on how to use the spatial small open economy dynamic general equilibrium model for climate change and adaptation simulations. In general the model belongs to the class of real business cycle models, because no nominal rigidities are explicitly considered. Nevertheless, it is possible to extend the model to feature also nominal rigidities. The model structure is depicted in Figure 1. Regional climate variables (precipitation, wind speed, temperature and sea level) are exogenous to

economic variables. Regional sectoral production functions depend on regional climate variables. The model is meant to reflect small open economies and therefore the climate system is unaffected by the domestic economic system.

The model consists of an arbitrary number of regions and sectors. Regional differentiation is only provided on the supply side and not on the demand side. Representative households consume sectoral goods and supply capital and labour to the firms in the regions. Households also demand goods and services from the rest of the world. Firms use capital and labour to produce sectoral goods with sectoral and regional specific constant elasticity of substitution production functions.

The government collects taxes, consumes and can use its funds to finance adaptation measures for specific regions and sectors. So far, adaptation measures will reduce overall damage by all climate variables at the same time. The effectiveness of government expenditure in one specific region and sector can vary.

One can use the model to conduct scenario simulations to evaluate the costs and benefits for different adaptation measures. It is important to understand that the model is not meant to produce explicit forecasts for an economy. The model is meant to simulate long-run developments considering the impact of potential changes in climate variables and their effect on the supply side of the economy. the user is able to define scenarios for different climate variables and adaptation measures. Therefore, it is possible to disentangle the effect of specific climate variable changes on the economy. Further, the model is able to quantify upper limits for costs of adaptation measures to reduce damages by climate change. E.g., it is possible to evaluate the impact of temperature increases on different sectors and the overall impact on total gross value added. The discounted cumulative difference between a scenario without a temperature increase and with temperature increase can be used to determine the upper bound for the costs to reduce the damage caused by a temperature increase.

In the following Section 2 the derivation of the model equations is explicitly described. Readers who are interested in using the model can skip the model section and can directly go to Section 3.

2 Model

2.1 Households

As depicted in Figure 1 the demand side is represented by representative households h providing labour N and capital K to domestic firms f. Households maximize discounted utility over an infinite horizon by choosing consumption $C_t(h)$, capital $K_{k,r,t+1}(h)$, investments $I_{k,r,t}(h)$, labour $N_{k,r,t}(h)$ and foreign net bond holdings B_{t+1} to maximize utility constrained by the budget constraint and the law of motion for sectoral and regional capital. Therefore, the Lagrangian eq. 1 of the representative household is

$$\sum_{t=0}^{\infty} \beta^{t} \left[\left(\frac{C_{t}(h)^{1-\sigma^{C}}}{1-\sigma^{C}} - \sum_{k=1}^{K} \sum_{r=1}^{R} \phi_{k,r}^{L} \frac{N_{k,r,t}(h)^{1+\sigma^{L}}}{1+\sigma^{L}} \right) - \lambda_{t}(h) \left(P_{t} C_{t}(h) \left(1 + \tau^{C} \right) + \sum_{k=1}^{K} \sum_{r=1}^{R} P_{k,r,t} I_{k,r,t}(h) \right) \right. \\
\left. + P_{t}^{f} B_{t}(h) - \sum_{k=1}^{K} \sum_{r=1}^{R} \left(1 - \tau^{L} \right) W_{k,r,t} N_{k,r,t}(h) - \sum_{k=1}^{K} \sum_{r=1}^{R} P_{k,r,t} r_{k,r,t} \left(1 - \tau^{K} \right) K_{k,r,t}(h) - B_{t+1}(h) \right) \\
\left. - \sum_{k=1}^{K} \sum_{r=1}^{R} \lambda_{t}(h) \omega_{k,r,t}^{I}(h) \left\{ K_{k,r,t+1} - \left(1 - \delta \right) K_{k,r,t} - I_{k,r,t} S \left(\frac{I_{k,r,t}}{I_{k,r,t-1}} \right) \right\} \right]. \tag{1}$$

Households receive utility by consuming goods, where the inter temporal elasticity of consumption is defined by σ^C . Dis-utility from labour is sector and region specific $\phi_{k,r}^L$, the inverse Frisch elasticity σ^L is identical for all sectors and regions. Households spent money either on consumption goods $P_t C_t(h)$ (1 + τ^C), regional and sector specific investment $P_{k,r,t}I_{k,r,t}(h)$ and need to repay foreign bonds $B_{t+1}(h)$. They receive income from labour $W_{k,r,t} N_{k,r,t}(h)$ (1 - τ^L), capital renting $P_{k,r,t} r_{k,r,t} K_{k,r,t}(h)$ (1 - τ^K) and can use their borrowed money from the foreign economy $B_t(h)$. The first order conditions to the problem are the behavioral equations. As is standard in teh literature we replace the Lagrange multiplier λ_t by the marginal utility of consumption $\frac{C_t(h)^{-\sigma^C}}{P_t(1+\tau^C)}$ derived from the first order condition (FOC) of the above problem with respect to (w.r.t.) consumption. Households supply labour according to the FOC w.r.t. labour eq. 2 for each sector and region depending on the wage $W_{k,r,t}$ and the marginal dis-utility of labour for the specific sector and region

$$\phi_{k,r}^{L} N_{k,r,t}(h)^{\sigma^{L}} = \lambda_{t}(h) W_{k,r,t} (1 - \tau_{k,r,t}^{L}).$$
(2)

The household also needs to decide how much of its income it wants to consume or invest into capital. The famous Euler equation eq. 3 is obtained by taking the first derivative of the Lagrangian w.r.t. sector and region specific capital

$$\lambda_{t+1}(h) \beta \left(P_{k,r,t+1} \, r_{k,r,t+1} + (1-\delta) \, \omega_{k,r,t+1}^{I} \right) = \lambda_{t}(h) \, \omega_{k,r,t}^{I}. \tag{3}$$

Further, the household also faces investment adjustment cost $S(\frac{I_{k,r,t}}{I_{k,r,t-1}}) = 3 - exp\left\{\sqrt{\phi^K/2}\left(\frac{I_{k,r,t}}{I_{k,r,t-1}} - 1\right)\right\}$ exp $\left\{-\sqrt{\phi^K/2}\left(\frac{I_{k,r,t}}{I_{k,r,t-1}} - 1\right)\right\}$, which are sector and region specific. The specification of the investment adjustment cost function is the same as proposed and estimated by Christiano et al. (2014) for the US. The marginal value of sectoral and regional investment $\omega^I_{k,r,t}$ is determined by

$$P_{k,r,t} \lambda_{t}(h) = \lambda_{t}(h) \omega_{k,r,t}^{I} \left(S(\frac{I_{k,r,t}}{I_{k,r,t-1}}) - \frac{\partial S(\frac{I_{k,r,t}}{I_{k,r,t-1}})}{\partial I_{k,r,t}} \frac{I_{k,r,t}}{I_{k,r,t-1}} \right) + \beta \lambda_{t+1}(h) \omega_{k,r,t+1}^{I} \frac{\partial S(\frac{I_{k,r,t+1}}{I_{k,r,t}})}{\partial I_{k,r,t}} \left(\frac{I_{k,r,t+1}}{I_{k,r,t}} \right)^{2}$$
(4)

Households have access to the international financial market to purchase and sell internationally traded bonds. We only consider net foreign positions.

$$\lambda_{t+1} \,\beta \, S_{t+1}^f \,\phi_{t+1}^B \, \left(1 + r^f_{t+1}\right) = \lambda_t \tag{5}$$

The required interest rate will increase if the foreign debt relative to GDP increases and current net exports relative to GDP will decrease.

$$\phi_{t+1}^{B} = exp\left(-\phi^{B}\left(S_{t+1}^{f} r_{t+1}^{f} \frac{B_{t}}{Y_{t+1}} + \frac{NX_{t}}{Y_{t}}\right)\right)$$
 (6)

- 2.2 Firms
- 2.3 Government
- 2.4 Climate variables
- 2.5 Rest of the world

3 How to use the model?

3.1 Usage

- 1. In order to use the model you need to install Dynare (at least version 4.5.5) and Matlab (at least 2018b) or Octave on your computing machine.
- 2. You need to download the repository from Github.
- 3. The script RunSimulations.m has to be executed in order to run simulations for different scenarios. Make sure that the scenarios and model parameters are defined in the file Model Simulation and Calibration K Sectors and R Regions.xlsx. We need to adopt the number of sectors and regions in the file IWH_CRED_Model.mod.
- 4. The simulation results are stored in the file Results Scenarios K Sectors and R Regions.xlsx.

4 Folder structure

- 1. The main file containing all necessary mod files is IWH_CRED_Model.mod. This file includes the following files stored in the ModFiles folder:
 - (a) IWH_CRED_Model_Declarations.mod declares all endogenous and exogenous variables if the model and structural parameters.
 - (b) IWH_CRED_Model_Parameters.mod assigns values to the structural parameters of the model.
 - (c) IWH_CRED_Model_Equations.mod contains the equations of the model.
 - (d) IWH_CRED_Model_LatexOutput.mod produces latex output for documentation of the declared variables and model equations.
 - (e) IWH_CRED_Model_SteadyState.mod computes initial and terminal condition for the dynamic simulation.
 - (f) IWH_CRED_Model_Simulations.mod starts the dynamic simulation.
- 2. Subroutines responsible for finding the initial and terminal conditions are located in the subfolder Functions:
 - (a) Calibration.mat finds the initial conditions to reflect a specific year of the economy.
 - (b) FIndA.mat looks for exogenous productivity shocks across sectors and regions to meet the terminal conditions.
 - (c) FIndK.mat looks for a capital allocation across sectors and regions to fulfill the static equations of the model.
 - (d) rng.mat random number generator function necessary for Octave users.
- 3. To define scenarios and structural parameters one needs to create an Excel workbook located in the subfolder ExcelFiles:
 - (a) Model Simulation and Calibration for K Sectors and R regions.xlsx has multiple sheets:
 - i. initial Start
 - ii. terminal Terminal
 - iii. parameters to define rigidity parameters Dynamics
 - iv. elasticity parameters and tax rates Structural Parameters
 - v. coefficients for regional and sector specific damage functions Climate Damage Functions
 - vi. Baseline scenario and other optional scenario sheets defining long-run values of climate variables
 - (b) Results Scenarios K Sectors and R regions.xlsx has as many sheets as Scenarios defined in the previous Excel file.

- 4. The latex files produced by IWH_CRED_Model_LatexOutput.mod are stored in LatexFiles.
 - $(a) \ \ the \ system \ of \ dynamic \ equations \ as \ implemented \ in \ Matlab \ \verb|IWH_CRED_Model_Dynamic|, \ \ \verb|IWH_CRED_Model_Dynamic|, \ \ \verb|IWH_CRED_Mod$
 - (b) names of endogenous, exogenous variables and parameters IWH_CRED_Model_latex_definitions
 - (c) the system of dynamic equations in original form without auxiliary variables for leads and lags IWH_CRED_Model_original, IWH_CRED_Model_original_content
- 5. The file to run different simulations is RunSimulations.m.
- 6. A Matlab function to find solutions to the static system of equations is IWH_CRED_Model_steady_state.m.

References

Christiano, L. J., Motto, R. & Rostagno, M. (2014), 'Risk shocks', American Economic Review 104(1), 27–65.

A Model Equations

A.1 Regional Industries

Damage function

$$D_{k,r_{t}} = exp\left(-\phi^{G_{k,n}^{A}} G_{k,n}^{A}\right) \left(a_{1,k,r} T_{rt} + a_{2,k,r} (T_{rt})^{a_{3,k,r}} + a_{1,k,r} SL_{t} + a_{2,k,r} (SL_{t})^{a_{3,k,r}} + a_{1,k,r} W_{rt}^{S} + a_{2,k,r} (W_{rt}^{S})^{a_{3,k,r}} + a_{1,k,r} PERC_{rt} + a_{2,k,r} (PERC_{rt})^{a_{3,k,r}}\right)$$

$$(7)$$

TFP

$$A_{k,r_t} = \rho_{k,r}^A A_{k,r_{t-1}} + (1 - \rho_{k,r}^A) \exp\left(\eta_{A,k,r_t}\right)$$
(8)

capital specific productivity

$$A_{k,r_{t}}^{K} = \rho_{k,r}^{A^{K}} \, A_{k,r_{t-1}}^{K} + (1 - \rho_{k,r}^{A^{K}}) \exp \left(\eta_{A^{K},k,n_{t}} \right) \tag{9}$$

labour specific productivity

$$A_{k,r_{t}}^{N} = \rho_{k,r}^{A^{N}} \, A_{k,r_{t-1}}^{N} + (1 - \rho_{k,r}^{A^{N}}) \exp \left(\eta_{A^{N},k,n_{t}} \right) \tag{10} \label{eq:10}$$

Price of regional sectoral goods

$$\frac{P_{k,r_t}}{P_{k_t}} = \omega_{k,r}^{\frac{1}{\eta^C}} \left(\frac{Y_{k,r_t}}{Y_{k_t}}\right)^{\frac{(-1)}{\eta^C}} \tag{11}$$

Production function

$$Y_{k,r_{t}} = A_{k,r_{t}} \left(1 - D_{k,r_{t}} \right) \left(\alpha_{k,r}^{K} \frac{\frac{1}{\eta_{k,r}^{N,K}}} \left(A_{k,r_{t}}^{K} K_{k,r_{t-1}} \right) \frac{\eta_{k,r}^{N,K} - 1}{\eta_{k,r}^{N,K}} + \alpha_{k,r}^{N} \frac{\frac{1}{\eta_{k,r}^{N,K}}}{\eta_{k,r}^{N,K}} \left(A_{k,r_{t}}^{N} PoP_{t} N_{k,r_{t}} \right) \frac{\eta_{k,r}^{N,K} - 1}{\eta_{k,r}^{N,K}} \right) \frac{\eta_{k,r}^{N,K} - 1}{\eta_{k,r}^{N,K}}$$

$$(12)$$

Firms FOC capital

$$r_{k,r_t} = \alpha_{k,r}^{K} \frac{\frac{1}{N,K}}{\eta_{k,r}^{K}} A_{k,r_t}^{K} \frac{\eta_{k,r}^{N,K-1}}{\eta_{k,r}^{N,K}} \left(\frac{K_{k,r_{t-1}}}{Y_{k,r_t}}\right)^{\frac{-1}{N,K}}$$

$$(13)$$

Firms FOC labour

$$\frac{W_{k,r_t}}{P_{k,r_t}} = \alpha_{k,r}^N \frac{\frac{1}{\eta_{k,r}^{N,K}}}{Y_{k,r_t}} \left(\frac{A_{k,r_t}^N PoP_t N_{k,r_t}}{Y_{k,r_t}} \right)^{\frac{-1}{\eta_{k,r}^{N,K}}}$$
(14)

A.2 Retailer for Aggregation

Relative price of sectoral output

$$\frac{P_{kt}}{P_t} = \omega_k^{\frac{1}{\eta^C}} \left(\frac{Y_{kt}}{Y_t}\right)^{\frac{(-1)}{\eta^C}} \tag{15}$$

Sectoral CES aggregation

$$Y_{kt} = \left(\sum_{r}^{R} \omega_{k,r} \frac{\frac{1}{\eta_{k}^{C}}}{\eta_{k}^{C}} Y_{k,r_{t}} \frac{\eta_{k}^{C-1}}{\eta_{k}^{C}}\right)^{\frac{\eta_{k}^{C}}{\eta_{k}^{C-1}}}$$
(16)

A.3 Households

Households FOC labour

$$\frac{W_{k,r_t} \left(1 - \tau^N\right) \left(\frac{C_t}{PoP_t}\right)^{\left(-\sigma^C\right)}}{1 + \tau^C} = \phi^L N_{kt}^{\sigma^L}$$
(17)

Households FOC capital

$$\frac{\left(\frac{P_{t+1} C_{t+1}}{P^{oP_{t+1}}}\right)^{\left(-\sigma^{C}\right)}}{1+\tau^{C}} \beta P_{k,r_{t+1}} r_{k,r_{t+1}} \left(1-\tau^{K}\right) + \beta \omega_{k,r_{t+1}}^{I} \left(1-\delta\right) = \omega_{k,r_{t}}^{I}$$
(18)

Households FOC investment

$$P_{k,r_{t}} \frac{\left(\frac{P_{t} C_{t}}{Po P_{t}}\right)^{\left(-\sigma^{C}\right)}}{1+\tau^{C}} = \omega_{k,r_{t}}^{I} \left(1 - \frac{\phi^{K}\left(\frac{I_{k,r_{t}}}{I_{k,r_{t-1}}} - 1\right)}{I_{k,r_{t-1}}}\right) + \frac{\phi^{K} \omega_{k,r_{t+1}}^{I} \beta P_{k,r_{t+1}} \left(\frac{I_{k,r_{t+1}}}{I_{k,r_{t}}} - 1\right) I_{k,r_{t+1}}^{2}}{I_{k,r_{t}}^{2}}$$
(19)

Households LOM capital

$$K_{k,r_t} = K_{k,r_{t-1}} (1 - \delta) + \max(0, I_{k,r_t} \left(1 - \frac{\phi^K}{2} \left(\frac{I_{k,r_t}}{I_{k,r_{t-1}}} - 1 \right)^2 \right))$$
 (20)

Households FOC foreign bonds

$$\left(\frac{P_{t+1} C_{t+1}}{PoP_{t+1}}\right)^{\left(-\sigma^{C}\right)} \beta \left(1 + r^{f}_{t+1}\right) = \left(\frac{P_{t} C_{t}}{PoP_{t}}\right)^{\left(-\sigma^{C}\right)} - \phi^{B} \left(B_{t} - (\bar{B})\right)$$

$$(21)$$

A.4 Climate Variables

Temperature
$$T_{rt} = T_{0,r} + \eta_{T,r_t} \tag{22}$$

Wind speed
$$W_{r\ t}^{S} = W_{0,r}^{S} + \eta_{W^{S},r,t} \tag{23} \label{eq:23}$$

Percipitation
$$PERC_{rt} = PERC_{0,r} + \eta_{PERC,r_t}$$
 (24)

Sea level
$$SL_t = SL_0 + \eta_{SL_t} \tag{25}$$

A.5 Trade

Trade balance $NX_{t} = \left(-\left(B_{t} - \left(1 + r^{f}_{t}\right) B_{t-1}\right)\right) \tag{26}$

Net exports
$$NX_t = \rho^{NX} NX_{t-1} + Y_t \left(1 - \rho^{NX}\right) \exp\left(\eta_{NX_t}\right) \omega^{NX} \tag{27}$$

A.6 Government

Budget constraint

$$P_{t}G_{t} + P_{t}\left(1 + r^{f}_{t}\right)BG_{t} = P_{t}BG_{t} + C_{t}P_{t}\tau^{C} + N_{k,r_{t}}W_{k,r_{t}}\tau^{N} + K_{k,r_{t}}r_{k,r_{t}}P_{k,r_{t}}\tau^{K}$$

$$\tag{28}$$

Government foreign debt $BG_t = \eta_{BG_t} \tag{29}$

A.7 Aggregates

National price level
$$P_{t} = exp\left(\eta_{P_{t}}\right) \tag{30}$$

National population $PoP_{t} = \rho^{PoP} \ PoP_{t-1} + \left(1 - \rho^{PoP}\right) \ PoP_{0} \exp\left(\eta_{PoP_{t}}\right) \tag{31}$

Resource constraint
$$Y_t = C_t + I_t + G_t - NX_t$$
 (32)

Sector labour

$$N_{kt} = \sum_{r}^{R} N_{k,r_t} \tag{33}$$

Sector wage bill

$$N_{kt} W_{kt} = \sum_{r}^{R} N_{k,r_t} W_{k,r_t}$$
(34)

Sector investment

$$P_{kt} I_{kt} = \sum_{r}^{R} P_{k,r_t} I_{k,r_t}$$
 (35)

Sector capital stock

$$P_{kt} K_{kt} = \sum_{r}^{R} P_{k,r_t} K_{k,r_t}$$
(36)

National investment

$$P_t I_t = \sum_{k}^{K} P_{kt} I_{kt}$$
 (37)

National capital

$$P_t K_t = \sum_{k}^{K} P_{kt} K_{kt-1} \tag{38}$$

National output $P_t Y_t = P_{kt} Y_{kt}$ (39)

National labour share

$$N_t = \sum_{k}^{K} N_{kt} \tag{40}$$

Table 1: Endogenous

Variable	IAT _E X	Description
P	P	price level
K	K	capital stock
C	C	consumption
PoP	PoP	population
В	B	international traded bonds
BG	BG	government debt
NX	NX	net exports
rf	rf	foreign interest rate
G	G	government expenditure
I	I	private investment
Y	Y	GDP
N	N	labour
SL	SL	sea level
PERC_1	$PERC_r$	regional percipitation
T_1	T_r	regional temperature
WS_1	W_r^S	regional wind speed
Y_1	Y_k	sector GDP
K_1	K_k	sector capital
$N_{-}1$	N_k	sector employment
$I_{-}1$	I_k	sector private investment
P_1	P_k	sector price index
W_{-1}	W_k	sector wage index
$Y_{-}1_{-}1$	$Y_{k,n}$	regional sector GDP
D_1_1	$D_{k,n}$	regional sector damages
K_1_1	$K_{k,n}$	regional sector capital
$N_{-}1_{-}1$	$N_{k,n}$	regional sector employment
$W_{-}1_{-}1$	$W_{k,n}$	regional sector wages
A_1_1	$A_{k,n}$	regional sector TFP
$A_N_1_1$	$A_{k,n}^{N}$	regional sector labour specific TFP
$A_K_1_1$	$A_{k,n}^{K}$	regional sector capital specific TFP
$I_{-}1_{-}1$	$I_{k,n}$	regional sector private investment
P_1_1	$P_{k,n}$	regional sector price index
$omegaI_1_1_1$	$\omega_{k,n}^{I'}$	shadow value of regional private sector investment
r_1_1	$r_{k,n}$	regional sector rental rate on capital

Table 2: Exogenous

Variable	L AT _E X	Description
exo_P	η_P	exogeneous price index evolution
exo_PoP	η_{PoP}	exogeneous population
exo_SL	η_{SL}	exogeneous sea level
exo_NX	η_{NX}	exogenous net exports
exo_BG	η_{BG}	exogenous structural balance
exo_1_1	$\eta_{A,k,n}$	exogenus TFP
$exo_N_1_1$	$\eta_{A^N,k,n}$	exogenous labour specific TFP
$exo_K_1_1$	$\eta_{A^K,k,n}$	exogenous capital specific TFP
exo_T_1	$\eta_{T,n}$	exogenus regional temperature
exo_PERC_1	$\eta_{PERC,n}$	exogenus regional percipitation
exo_WS_1	$\eta_{W^S,n}$	exogenus regional wind speed

Table 3: Parameters

Variable	IATEX	Description
omega_1_p	ω_k	sector capital share
$etaC_1_p$	η^C	intratemporal elasticity of substitution
$phiY_1_1_p$	$\frac{P_{k,n,0} Y_{k,n,0}}{P_0 Y_0}$	share of regional and sectoral output
$phiN_1_1_p$	$N_{k,n,0}$ $W_{k,n,0}N_{k,n,0}$	share of regional and sectoral employment
$\tt phiW_1_1_p$	$\frac{W_{k,n,0} N_{k,n,0}}{P_{k,n,0} Y_{k,n,0}}$ $\frac{P_{k,n,0} Y_{k,n,0}}{P_{k,n,0}}$	share of regional and sectoral employment
$phiP_{-}1_{-}1_{-}p$	$\frac{P_{k,n,0}}{P_0}$	share of regional and sectoral employment

Table 3 – Continued

Variable	ĿŒŢ	Description
phiL_1_1_p	$\phi_{k,n}^L$	coefficient of disutility to work
omega_1_1_p	$\omega_{k,n}$	sector capital share
alphaK_1_1_p	$\alpha_{k,n}^{K}$	distribution parameter capital share
alphaN_1_1_p	$\alpha_{h,n}^{N}$	distribution parameter labour share
etaNK_1_1_p	$rac{lpha_{k,n}^{N,K}}{\eta_{k,n}^{N,K}}$	elasticity of substitution between labour and capital
A_1_1_p	$A_{k,n}$	sector long-run TFP
A_N_1_1_p	$A_{k,n}^N$	sector labour specific TFP
A_K_1_1_p	$A_{k,n}^{K,n}$	sector capital specific TFP
a_T_1_1_p		intercept of damage function temperature
a_T_1_1_p a_T_2_1_1_p	$a_{1,k,n}$	slope of damage function temperature
a_T_3_1_1_p	$a_{2,k,n}$ $a_{3,k,n}$	exponent of damage function temperature
a_P_1_1_1_p	$a_{1,k,n}$	intercept of damage function percipitation
a_P_2_1_1_p	$a_{2,k,n}$	slope of damage function percipitation
a_P_3_1_1_p	$a_{3,k,n}$	exponent of damage function percipitation
a_W_1_1_1_p	$a_{1,k,n}$	intercept of damage function wind speed
a_W_2_1_1_p	$a_{2,k,n}$	slope of damage function wind speed
a_W_3_1_1_p	$a_{3,k,n}$	exponent of damage function wind speed
a_SL_1_1_1_p	$a_{1,k,n}$	intercept of damage function sea level
a_SL_2_1_1_p	$a_{2,k,n}$	slope of damage function sea level
a_SL_3_1_1_p	$a_{3,k,n}$	exponent of damage function sea level
beta_p	β	discount factor
delta_p	$rac{\delta}{\sigma^L}$	capital depreciation rate
sigmaL_p	$\sigma^{C} = \sigma^{C}$	inverse Frisch elasticity
sigmaC_p	η^C	intertemporal elasticity of substitution
etaC_p	ϕ^B	intratemporal elasticity of substitution coefficient of foreign adjustment cost
phiB_p	$\overset{arphi}{\phi}^{K}$	coefficient of investment adjustment cost
phiK_p tauC_p	$ au^C_{ au^C}$	consumption tax
tau0_p tauN_p	$ au^N$	labour tax
tauK_p	$ au^K$	capital tax
omegaNX_p	ω^{NX}	share of net exports relative to domestic GDP
rhoNX_p	ρ^{NX}	persistency in net exports
rhoA_p	o^A	persistency in TFP
rhoPoP_p	o^{PoP}	persistency in population
rhoSL_p	$ ho^{SL}$	persistency in sea level
inbsectors_p	K	number of sectors
$inbregions_p$	R	number of regions
${\tt lCalibration_p}$	l^{Calib}	logical indiactor whether model is calibrated or not
T0_1_p	$T_{0,n}$	initial regional temperature
PERCO_1_p	$PERC_{0,n}$	initial regional percipitation
WSO_1_p	$W_{0,n}^S$	initial regional wind speed
TT_1_p	$T_{T,n}$	terminal regional temperature
PERCT_1_p	$PERC_{T,n}$	terminal regional percipitation
WST_1_p	$W_{T,n}^{S}$	terminal regional wind speed
SLO_p	SL_0	initial sea level
PoP0_p	POP_0	initial population
Y0_p	Y_0	initial output
PO_p	P_0	initial price level initial employment
NO_p	$Y_0 \\ SL_0$	terminal sea level
SLT_p PoPT_p	PoP_0	terminal sea level terminal population
YT_p	Y_0	terminal output
NT_p	Y_0	terminal employment
	± ()	terminar employment