Contrôle de cours 1 (1 heure)

Nom:

Prénom:

Classe:

N.B.: Le barème est sur 20. Il y a en tout quatre questions de cours.

1 Polynômes

Cours 1 : divisibilité et division euclidienne (3 points)

Soit $(E,F) \in (\mathbb{R}[X])^2$. On suppose de plus que E n'est pas le polynôme nul.

1. Donner la définition mathématique de $E \mid F$ ainsi qu'un exemple avec E = 2X - 1 et F de degré 2.

Si EIF alons F=EQ over Q E(RIXI) <u>Exemple</u>: E=2x-1 et F=(4x2-

2. (a) Énoncer soigneusement le théorème de la division euclidienne de F par E.

I!(QR)E(R[XJ)2, F=EQ+R avec deg(E)>deg(R)

(b) Trouver le quotient et le reste de la division euclidienne de $F = X^3 - 3X^2 + 5X - 7$ par E = X - 1.

Cours 2: racines (6 points)

Les questions sont indépendantes.

1. Soit $P \in \mathbb{R}[X]$ de degré strictement supérieur à 3. Mettre les symboles \Longrightarrow , \Longleftrightarrow à la place des pointillés.

a) 1 racine de $P \iff (X-1) \mid P$. b) $(X-1)^2 \mid P \iff P(1) = 0$ c) $P(0) = 0 \iff (X^2 - X) \mid P(0) = 0$

2. Soient $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$ telle que P(a) = P'(a) = P''(a) = 0 et $P^{(3)}(a) \neq 0$. Quel est l'ordre exact de multiplicité de la racine a? À quoi cet énoncé est-il équivalent en termes de divisibilité? Traduire ensuite à l'aide de quantificateurs

ce que vous avez écrit.

La sacine a est d'ondre de multipliaité exactement egale le qui signifie que (X-a)P, (X-a) 1P, (X-a) 1P et (X-a) 1P

#XCII, (x-a)P,(x-a)P,(x-a)31P et

70 E IR (x) P(x) = (x-430

3. Donner un exemple d'un polynôme de $\mathbb{R}[X]$, de degré 6 qui admet -1 comme racine d'ordre de multiplicité exactement 3 et tel que $P(0) = P'(0) = 0$. On ne vous demande pas de justifier.
$\int P(X) = (X+1)(X+1)(X+1)X^{2}(X+2) = (X+1)^{3}(X+2)X^{2}$
4. Soit $P(X) = X^3(X+2)^2(X^2-X-6)(X^2+X+1)$.
(a) Donner le degré de P en expliquant brièvement comment vous l'avez obtenu. Se le plus élevé dans chaque (el proprié de P) (b) Écrire P comme produit de polynômes irréductibles dans $\mathbb{R}[X]$ (justifier brièvement). Donner ensuite toutes les racines réelles de P .
(x^2-X-6) admet -2 et 3 comme parine donc en peut $P(x)=x^3(x+2)(x+2)(x-3)(x+2)(x^2+X+1)$ l'errice sous la forme Soit S l'essembles des nauhes néelles de P : $(x-3)(x+2)$ $S=\{0,-2,3\}$ (x^2+X+1) n'admet pas
de navernes néel
2 Équations différentielles
Cours 3 (7 points)
Soit l'équation différentielle (E_0) $a(t)y'(t)+b(t)y(t)=0$ où a et b sont deux fonctions définies et continues sur \mathbb{R} . On suppose de plus que la fonction a ne s'annule pas sur \mathbb{R} . On note S_0 l'ensemble de toutes les solutions de (E_0) . Un professeur demande à un élève d'expliciter précisément l'ensemble S_0 au tableau. L'élève note alors :
$S_0 = \left\{egin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ke^{-F(t)} \end{array}, k \in \mathbb{R} ight\}.$ Cette égalité est notée (\star) par la suite.
1. Le professeur demande à l'élève d'être plus précis et d'écrire F en fonction de a et de b. Qu'écrit l'élève? Vous donnerez aussi F' en fonction de a et de b. Sont $f(t) = \int \frac{b(t)}{a(t)}$, une paintire de $\frac{b(t)}{a(t)}$. Done $f'(t) = \frac{b(t)}{a(t)}$
2. Nous cherchons à présent à démontrer ce théorème rigoureusement.
(a) Soit $y_0 \in S_0$ une solution de (E_0) .
On introduit la fonction dérivable sur $\mathbb{R}: z: t \mapsto y_0(t)e^{F(t)}$. Calculer la dérivée de z sur \mathbb{R} . En déduire que z est une fonction constante et conclure sur la forme de y_0 . At $E\mathbb{R}: z'(t) = y_0(t)e^{f(t)} + y_0(t) \times F(t) \times e^{f(t)}$
= 90(+lef(+) + 90(+)x b(+) xef(+)
$= \frac{e^{F(t)}}{a(t)} \left(\frac{y_0(t)a(t) + y_0(t)b(t)}{y_0(t)b(t)} \right) \text{on } a(t) \frac{y_0(t)y_0(t)=0}{a(t)}$ $= e^{F(t)} \cdot 0 = 0 \text{for } y_0 \in S_0$
Done on en deduit que z'est constante la derivée d'une constante
On a close all= $y(t)e^{f(t)}=K=y(t)=Ke^{-f(t)}$ est egale a O) => $y_0(t)=Ke^{-\frac{f(t)}{2(t)}}$
Pose 40 est de la forme 40= Ke-Sb(+)

(b) Quelle inclusion de l'égalité (*) venez-vous de démontrer?

(c) Montrer l'autre inclusion de l'égalité (*).

3. Résoudre (E_0) $(t^4 + 1)y' + 2t^3y = 0$ dans \mathbb{R} .

Développements limités

Cours 4 (4 points)

Donner les développements limités au voisinage de 0 à l'ordre 3 de

 $f(\infty) = 1 + \infty + \frac{x^2}{2!} + \frac{x^3}{2!} + o(\infty^3)$

 $4. \ i(x) = \ln(1+x)$

 $(3x) = x + 3x^{2} + 3x^{3} +$