Vovk's aggregating algorithm Mixable and unmixable loss functions

Yoav Freund

January 13, 2025

Section 3.5 in "Prediction, Learning and Games"

Outline

Log Loss and Absolute loss

The general prediction game

Vovk's algorithm

mixable loss functions

The convexity condition

Log loss

Square loss

Square loss using simple averaging

Summary table

What we are going to investigate

- Different loss functions and their regret bounds.
- Vovk's Meta Algorithm and it's analysis
- Instead of associating a loss with an action, we have experts that make predictions, and use the following protocol
 - Each expert makes a prediction
 - The algorithm makes a prediction
 - nature chooses an outcome
 - each expert, and the algorithm suffer a loss that is a function of the prediction and the outcome.
- ► The goal is to minimize the regret.

Absolute loss

- ▶ Prediction: $p \in [0, 1]$ outcome $x \in \{0, 1\}$
- \blacktriangleright Loss: $\lambda(p, x) = |x p|$
- N experts, expert *i* at time *t* outputs $q_i^t \in [0, 1]$
- ► Cumulative loss of expert *i* at time *t*: $L_i^t = \sum_{s=1}^t \lambda(q_i^s, x^s)$
- Experts algorithm (Hedge):
 - Assign weights: $\mathbf{w}_i^t = \frac{1}{N} \exp(-\eta L_i^{t-1})$
 - ► Master prediction: $\mathbf{q}_{M}^{t} = \frac{\sum_{i=1}^{N} q_{i}^{t} \mathbf{w}_{i}^{t}}{\sum_{i=1}^{N} q_{i}^{t} \mathbf{w}_{i}^{t}}$
- Regret Bound for known horizon.
 - ▶ Set η according to T: $\eta \approx \sqrt{\frac{2 \ln N}{T}}$
 - Regret bound:

$$L_A \leq \min_i L_i + \sqrt{2T \ln N} + \ln N$$

Is there an advantage to the algorithm relative to DTOL?

Binary log-loss

- ▶ Prediction: $p \in [0, 1]$ outcome $x \in \{0, 1\}$
- ► Loss: $\lambda(p, x) = -x \log p (1 x) \log(1 p)$
- N experts, expert *i* at time *t* outputs $q_i^t \in [0, 1]$
- ► Cumulative loss of expert *i* at time *t*: $L_i^t = \sum_{s=1}^t \lambda(q_i^s, x^s)$
- Experts algorithm:
 - Assign weights: $\mathbf{w}_i^t = \frac{1}{N} \exp(-L_i^{t-1})$
 - Master prediction: $q_M^t = \frac{\sum_{i=1}^N q_i^t w_i^t}{\sum_{i=1}^N w_i^t}$
- Regret Bound:

$$L_A^T \leq \min_i L_i^T + \ln N$$

Exponential Weights algorithm for log loss = Bayes Algorithm

- ▶ Prediction: $p \in [0, 1]$ outcome $x \in \{0, 1\}$
- ► Loss = $\lambda(p, x) = -x \log p (1 x) \log(1 p)$
- N distribution models, model i at time t assigns probability $q_i^t(x_i^t) \in [0, 1]$ to outcome x^s
- Cumulative loss of expert *i* at time *t*: $L_i^t = \sum_{s=1}^t \lambda(q_i^s, x^s)$ Same as minus log likelihood of model *i*: $L_i^t = -\log \prod_{s=1}^{t-1} q_i^s(x^s)$
- algorithm:
 - Assign weights to experts: $\mathbf{w}_i^t = \frac{1}{N} \exp(-L_i^{t-1})$
 - Assign posterior over models= $\mathbf{w}_{i}^{t} = \frac{1}{N} \prod_{s=1}^{t-1} q_{i}^{s}(\mathbf{x}_{i}^{s})$
 - ▶ prediction: $q_M^t = \frac{\sum_{i=1}^N q_i^t w_i^t}{\sum_{i=1}^N w_i^t}$
 - same as posterior average

Vovk's general prediction game

 Γ - prediction space. Ω - outcome space. On each trial t = 1, 2, ...

- 1. Each expert $i \in \{1 \dots N\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_N^t \rangle$, makes its own prediction γ^t
- 3. Nature chooses an outcome $\omega^t \in \Omega$
- 4. Each expert incurs loss $\ell_t(i) = \lambda(\omega^t, \gamma_i^t)$ The learner incurs loss $\ell_t(A) = \lambda(\omega^t, \gamma^t)$

Achievable loss bounds

- ► $L_A \doteq \sum_{t=1}^{T} \ell_t(A)$ total loss of algorithm
- ► $L_i \doteq \sum_{t=1}^{T} \ell_t(i)$ total loss of expert i
- Goal: find an algorithm which guarantees that

$$(a,c) \in [0,\infty), \ L_A \leq aL_{\min} + c \ln N$$

For any sequence of events.

 \blacktriangleright We say that the pair (a, c) is achievable.

The set of achievable bounds

- Fix loss function λ : Ω × Γ → [0, ∞)
- The pair (a, c) is achievable if there exists some prediction algorithm such that for any N > 0, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\min} + c \ln N$$

Analysis for specific loss functions

- ▶ Outcomes: $\omega^1, \omega_2, \dots \omega^t \in [0, 1]$
- ▶ Predictions: $\gamma^1, \gamma^2, \dots \gamma^t \in [0, 1]$

Log loss (Entropy loss)

Þ

$$\lambda_{\mathsf{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0, 1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.
- Not symmetric $\exists p, q \ \lambda(p,q) \neq \lambda(q,p)$.
- No triangle inequality $\exists p_1, p_2, p_3 \ \lambda(p_1, p_3) > \lambda(p_1, p_2) + \lambda(p_2, p_3)$

$$L_A^T \leq \min_i L_i^T + \ln N$$

Square loss (Breier Loss)

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)
- Corresponds to regression.

.

$$L_A^T \leq \min_i L_i^T + \frac{1}{2} \ln N$$

Hellinger Loss

$$\lambda_{\mathsf{hel}}(\omega,\gamma) = \frac{1}{2} \bigg(\big(\sqrt{\omega} + \sqrt{\gamma} \big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma} \Big)^2 \bigg)$$

- ► If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Loss is bounded.
- Defines a metric.
- $ightharpoonup \lambda_{hel}(p,q) pprox \lambda_{ent}(p,q)$ when p pprox q and $p,q \in (0,1)$
- .

$$L_A^T \leq \min_i L_i^T + \frac{1}{\sqrt{2}} \ln N$$

Absolute loss

$$\lambda(\omega,\gamma) = |\omega - \gamma|$$

- Probability of making a mistake if predicting 0 or 1 using a biased coin
- If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, then the optimal prediction is

$$\gamma^t = \begin{cases} 1 & \text{if } q > 1/2, \\ 0 & \text{otherwise} \end{cases}$$

Structureless bounded loss

- ▶ Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \geq 0$, $\sum_{i=1}^N p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$
- ▶ Loss is the dot product: $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.
- For hedge loss the regret is $\Omega(\sqrt{T \log N})$.
- ► For the log loss the regret is O(log N)
- Which losses behave like entropy loss and which behave like hedge loss?

Some technical requirements

- ► There should be a topology on the prediction set Γ such that
- Γ is compact.
- ▶ $\forall ω \in Ω$, the function γ → λ(ω, γ) is continuous
- ► There is a universally reasonable prediction $\exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) < \infty$
- ► There is no universally optimal prediction $\neg \exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) = 0$

Vovk's meta-algorithm

- Fix an achievable pair (a, c) and set $\eta = a/c$
- 1

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)} \right)$$

If choice of γ_t always exists, then the total loss satisfies:

$$\sum_{t} \lambda(\omega^{t}, \gamma^{t}) \leq -c \ln \sum_{i} W_{i}^{T+1} \leq aL_{\min} + c \ln N$$

Vovk's result: yes! a good choice for γ_t always exists!

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

The separation curve is $\left\{\left.\left(a(\eta),\frac{a(\eta)}{\eta}\right)\right|\eta\in[0,\infty]\right\}$

Mixable Loss Functions

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln N$$

- Vovk's algorithm with $\eta = 1/c$ achieves this bound.
- $ightharpoonup \lambda_{ent}, \lambda_{sq}, \lambda_{hel}$ are mixable
- $ightharpoonup \lambda_{abs}, \lambda_{dot}$ are not mixable

The convexity condition

- requirement for loss to be $(1, 1/\eta)$ mixable
- $\forall \langle (\gamma_1, W_1), \dots, (\gamma_N, W_N) \rangle$ $\exists \gamma \in \Gamma$ $\forall \omega \in \Omega:$

$$\lambda(\omega, \gamma) - rac{1}{\eta} \ln \sum_i W_i \le -rac{1}{\eta} \ln \left(\sum_i W_i e^{-\eta \lambda(\omega, \gamma_i)}
ight)$$

Can be re-written as:

$$e^{-\eta\lambda(\omega,\gamma)} \geq \sum_i \left(rac{W_i}{\sum_j W_i}
ight) e^{-\eta\lambda(\omega,\gamma_i)}$$

► Equivalently - the image of the set Γ under the mapping $F(\gamma) = \langle e^{-\eta \lambda(\omega, \gamma)} \rangle_{\omega \in \Omega}$ is concave.

convexity condition: Pictorially

Example: Suppose $\Omega = \{0, 1\}, \Gamma = [0, 1]$. then

$$F(\gamma) = \left\langle e^{-\eta\lambda(0,\gamma)}, e^{-\eta\lambda(1,\gamma)} \right\rangle$$

Vovk Algorithm for log loss

- ▶ The log loss is mixable with $\eta = 1$
- ► The image of [0, 1] through $F(\gamma) = \langle e^{-\eta \lambda(0,\gamma)}, e^{-\eta \lambda(1,\gamma)} \rangle$ is a straight line segment.
- ► The only satisfactory prediction is

$$\gamma = \frac{\sum_{i} \mathbf{W}_{i} \gamma_{i}}{\sum_{i} \mathbf{W}_{i}}$$

We are back to the online Bayes algorithm.

Vovk algorithm for square loss

- ▶ The square loss is mixable with $\eta = 2$.
- Prediction must satisfy

$$1-\sqrt{-rac{1}{2}\ln\sum_{i}V_{i}^{t}e^{-2(1-
ho_{i}^{t})^{2}}}\leq
ho^{t}\leq\sqrt{-rac{1}{2}\ln\sum_{i}V_{i}^{t}e^{-2(
ho_{i}^{t})^{2}}}$$

where $V_i^t = \frac{W_i^t}{\sum_s W_i^s}$.

$$L_A \leq L_{\min} + \frac{1}{2} \ln N$$

Simple prediction for square loss

We can use the prediction

$$\gamma = \frac{\sum_{i} W_{i} \gamma_{i}}{\sum_{i} W_{i}}$$

- ▶ But in that case we must use $\eta = 1/2$ when updating the weights.
- Which yields the bound

$$L_A \leq L_{\min} + 2 \ln N$$

Summary of bounds for mixable losses

Loss	c values: $(\eta = 1/c)$	
Functions:	$\operatorname{pred}_{\operatorname{wmean}}(v,x)$	$\operatorname{pred}_{\operatorname{Vovk}}(v,$
$L_{\mathrm{SQ}}(p,q)$	2	1/2
$L_{ent}(p,q)$	1	1
$L_{\mathbf{hel}}(p,q)$	1	$1/\sqrt{2}$

Figure 2. (c, 1/c)-realizability: c values for loss and prediction