직렬 및 병렬 저항회로

그림 2.1 두 저항의 직렬회로 (전류, 전압의 기준방향에 유의)

$$v_1 = R_1 i, \quad v_2 = R_2 i$$
 (2.1)

$$v = v_1 + v_2$$
 (2.2)

$$v = (R_1 + R_2)i$$

$$\therefore i = \frac{v}{R_1 + R_2} \tag{2.3}$$

$$R = R_1 + R_2$$
 (2.4)

2.1 직렬회로와 병렬회로

$$i = \frac{v}{R} = \frac{v}{R_1 + R_2}$$
 (2.5)

전압분배의 법칙

$$v_{1} = \frac{R_{1}}{R_{1} + R_{2}} v = \frac{R_{1}}{R} v$$

$$v_{2} = \frac{R_{2}}{R_{1} + R_{2}} v = \frac{R_{2}}{R} v$$
(2.6)

$$i = \frac{v}{R_1 + R_2 + R_3} \tag{2.7}$$

$$R = R_1 + R_2 + R_3 \tag{2.8}$$

$$v_k = \frac{R_k}{R}v$$
 (k = 1, 2, 3) (2.9)

(b) $G = G_1 + G_2$

그림 2.2 두 저항의 병렬회로 (전류, 전압의 기준방향에 유의)

$$i_1 = G_1 v, \quad i_2 = G_2 v$$
 (2.10)

$$i = i_1 + i_2$$
 (2.11)

$$i = (G_1 + G_2)v$$

$$\therefore v = \frac{i}{G_1 + G_2} \qquad (2.12)$$

$$G = G_1 = G_2$$
 (2.13)

2.1 직렬회로와 병렬회로

$$v = \frac{i}{G} = \frac{i}{G_1 + G_2} \tag{2.14}$$

전류분배의 법칙

$$i_{1} = \frac{G_{1}}{G_{1} + G_{2}} i = \frac{G_{1}}{G} i$$

$$i_{2} = \frac{G_{2}}{G_{1} + G_{2}} i = \frac{G_{2}}{G} i$$
(2.15)

$$v = \frac{i}{G_1 + G_2 + G_3} \tag{2.16}$$

$$G = G_1 + G_2 + G_3 \tag{2.17}$$

$$i_k = \frac{G_k}{G}i$$
 $(k = 1, 2, 3)$ (2.18)

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}, \quad \stackrel{\rightleftharpoons}{=} \quad R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$
 (2.19a)

$$R = R_1 /\!\!/ R_2 = \frac{R_1 R_2}{R_1 + R_2}$$
 (//은 병렬연결을 의미한다) (2.19b)

$$i_1 = \frac{R_2}{R_1 + R_2} i$$
, $i_2 = \frac{R_1}{R_1 + R_2} i$ (2.20)

$$R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots}$$
 (2.21)

그림 2.3 세 회로에서 v 또는 i가 같으면 N 내의 전류, 전압분포는 세 회로에서 동일함

2.1 직렬회로와 병렬회로

그림 2.4의 각 회로에서 모든 전류, 전압과 등가입력저항을 구하라.

그림 2.4 예제 2.1의 회로

2.1 직렬회로와 병렬회로

그림 2.4의 각 회로에서 모든 전류, 전압과 등가입력저항을 구하라.

그림 2.4 예제 2.1의 회로

2.1 직렬회로와 병렬회로

그림 2.4의 각 회로에서 모든 전류, 전압과 등가입력저항을 구하라.

그림 2.4 예제 2.1의 회로

2.2 직병렬회로

그림 2.5 등가저항의 반복대치에 의한 직병렬회로해석

2.2 직병렬회로

그림 2.5 등가저항의 반복대치에 의한 직병렬회로해석

2.2 직병렬회로

그림 2.5 등가저항의 반복대치에 의한 직병렬회로해석

2.3 사다리꼴회로

그림 2.6 사다리꼴회로

2.3 사다리꼴회로

그림 2.7의 저항회로에서 출력전류 :1을 가정하여 위의 본문에서 제시한 방법으로 회로 각부의 전류, 전압을 구하라. 단, 모든 전압은 접지점을 기준으로 한다.

그림 2.7 예제 2.2의 회로

2.4 전원변환

그림 2.8 전원변환

2.4 전원변환

그림 2.8 전원변환

2.4 전원변환

그림 2.9(a)의 저항회로에서 전원변환을 반복 적용함으로써 v_L 을 구하라.

풀 이

$$v_L = (12i_g + 0.6v_g) \times \frac{3}{12 + 5 + 3} = 1.8i_g + 0.09v_g$$
 (2.23)

2.4 전원변환

그림 2.9 예제 2.3의 회로

2.4 전원변환

그림 2.9 예제 2.3의 회로