شبکههای عصبی و یادگیری عمیق دکتر صفابخش

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

تمرین چهارم شبکه CNN

۲۰ اردیبهشت ۱۴۰۳

شبکههای عصبی و یادگیری عمیق

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

سوال اول - نظری

نحوه اشتراک گذاری پارمترها در لایه های کانولوشنی باعث ویژگی Equivariance نسبت به Translation می شود. این ویژگی را شرح دهید و کاربرد آنرا توضیح دهید.

سوال دوم - نظری

شبکههای عمیق از عدم تفسیرپذیری رنج میبرند. تلاش برای حل این مشکل، دو ایده Deconvolutional و -Up و Deconvolutional مظرح شده است. بررسی کنید و توضیح دهید هرکدام از دو روش، به چه صورت منجر به تفسیرپذیری میشوند؟

سوال سوم - نظری

معماری شبکه کانولوشنی زیر را درنظر بگیرید:

شكل ١: شبكه كانولوشني مورد بررسي در سوال سوم

- ابعاد ورودي 1×785 و خروجي شبكه 1×1
 - لايه ورودي X با Zero-padding با طول ۱
- ReLU با یک کرنل 2×1 و تابع فعالسازی Conv1 و لایه کانولوشنی یکبعدی
 - Average-polling(AVGPOOL1) لايه •
 - m ReLU با تابع فعالسازی FC1 و لایه تمام متصل
 - Sigmoid کاملا متصل است و تابع فعالسازی FC1 کاملا متصل است و تابع فعالسازی

وزن لایه FC1 به Z را با W_{ij}^A ، بایاس FC1 را با W_{ij}^A به FC1 را با W_{ij}^A ، بایاس FC1 را با W_{ij}^A به FC1 وزن لایه FC1 را با W_{ij}^A بایاس FC1 را با W_{ij}^C بایاس W_{ij}^C بایاس لایه کانولوشنی را با W_{ij}^C نشان میدهیم. دادههای مجموعه آموزش به صورت W_{ij}^C و بایاس لایه کانولوشنی را با W_{ij}^C نشان میدهیم. دادههای مجموعه آموزش به کانولوشنی و خروجیهای لایههای شبکه به ترتیب W_{ij}^C و بایاس W_{ij}^C بایاس و خروجی می می می می شود:

$$cost(X,Y) = \sum_{n} cost(X^{(n)}, Y^{(n)}) = \sum_{n} (-Y^{(n)}log(z(X^{(n)})) - (1 - Y^{(n)})log(1 - z(X^{(n)})))$$

باتوجه به مفروضات بالا، به پرسشهای زیر پاسخ دهید:

- ۱. تعداد پارامترهای شبکه بالا را با ذکر جزئیات محاسبه کنید.
- ۲. برای فقط یک نمونه آموزشی، مقدار $\frac{\partial Cost}{\partial W_{i}^{C}}$ و $\frac{\partial Cost}{\partial W_{i}^{C}}$ را با جزئیات محاسبه کنید.