Example E5.1: Consider the following length-8 sequences defined for $0 \le n \le 7$:

(a)
$$\{x_1[n]\} = \{1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1\},$$
 (b) $\{x_2[n]\} = \{1 \ 1 \ 0 \ 0 \ 0 \ -1 \ -1\},$

(c)
$$\{x_3[n]\} = \{0 \ 1 \ 1 \ 0 \ 0 \ 0 \ -1 \ -1\}, (d) \{x_4[n]\} = \{0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1\}.$$

Answer: (a) $x_1[\langle -n \rangle_8] = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} = x_1[n]$. Thus, $x_1[n]$ is a periodic even sequence, and hence it has a real-valued 8-point DFT.

- (b) $x_2[\langle -n \rangle_8] = \begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix}$. Thus, $x_2[n]$ is neither a periodic even or a periodic odd sequence. Hence, its 8-point DFT is a complex sequence.
- (c) $x_3[\langle -n \rangle_8] = \begin{bmatrix} 0 & -1 & -1 & 0 & 0 & 1 & 1 \end{bmatrix} = -x_3[n]$. Thus, $x_3[n]$ is a periodic odd sequence, and hence it has an imaginary-valued 8-point DFT.
- (d) $x_4[\langle -n \rangle_8] = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} = x_4[n]$. Thus, $x_4[n]$ is a periodic even sequence, and hence it has a real-valued 8-point DFT.

Example E5.2: Let G[k] and H[k] denote the 7-point DFTs of two length-7 sequences, g[n] and h[n], $0 \le n \le 6$, respectively. If

$$G[k] = \{1 + j2, -2 + j3, -1 - j2, 0, 8 + j4, -3 + j, 2 + j5\}$$

and $h[n] = g[\langle n-3 \rangle_7]$, determine H[k] without computing the IDFT g[n].

Answer: $H[k] = DFT\{h[n]\} = DFT\{g[\{n-3>_7]\} = W_7^{3k}G[k] = e^{-j\frac{6\pi k}{7}}G[k]$

$$= \left[1+j2, \quad e^{-j\frac{6\pi}{7}}(-2+j3), \quad e^{-j\frac{12\pi}{7}}(-1-j2), \quad 0, \quad e^{-j\frac{24\pi}{7}}(8+j4), \quad e^{-j\frac{30\pi}{7}}(-3+j2), \quad e^{-j\frac{36\pi}{7}}(2+j5)\right]$$

Example E5.3: Let G[k] and H[k] denote the 7-point DFTs of two length-7 sequences, g[n] and h[n], $0 \le n \le 6$, respectively. If $g[n] = \{-3.1, 2.4, 4.5, -6, 1, -3, 7\}$ and $G[k] = H[\langle k-4 \rangle_7]$, determine h[n] without computing the DFT G[k].

Example E5.4: Let X[k], $0 \le k \le 13$, be a 14-point DFT of a length-14 real sequence x[n]. The first 8 samples are given by X[0] = 12, X[1] = -1+j3, X[2] = 3+j4, X[3] = 1-j5, X[4] = -2+j2, X[5] = 6+j3, X[6] = -2-j3, X[7] = 10. Determine the remaining samples of X[k]. Evaluate the following functions of x[n] without computing the IDFT of X[k]:

(a) x[0], (b) x[7], (c)
$$\sum_{n=0}^{13} x[n]$$
, (d) $\sum_{n=0}^{13} e^{j(4\pi n/7)} x[n]$, and (e) $\sum_{n=0}^{13} |x[n]|^2$.

Answer:
$$X[8] = X * [\langle -8 \rangle_{14}] = X * [6] = -2 + j3$$
, $X[9] = X * [\langle -9 \rangle_{14}] = X * [5] = 6 - j3$,

$$X[10] = X * [\langle -10 \rangle_{14}] = X * [4] = -2 - j2, X[11] = X * [\langle -11 \rangle_{14}] = X * [3] = 1 + j5,$$

$$X[12] = X * [\langle -12 \rangle_{14}] = X * [2] = 3 - i4, X[13] = X * [\langle -13 \rangle_{14}] = X * [1] = -1 - i3.$$

(a)
$$x[0] = \frac{1}{14} \sum_{k=0}^{13} X[k] = \frac{32}{14} = 2.2857,$$

(b)
$$x[7] = \frac{1}{14} \sum_{k=0}^{13} (-1)^k X[k] = -\frac{12}{14} = -0.8571,$$

(c)
$$\sum_{n=0}^{13} x[n] = X[0] = 12$$
,

(d) Let $g[n] = e^{j(4\pi n/7)}x[n] = W_{14}^{-4n}x[n]$. Then DFT $\{g[n]\} = DFT\{W_{14}^{-4n}x[n]\} = X[\rangle k - 4\rangle_{14}]$ = $\begin{bmatrix} X[10] & X[11] & X[12] & X[13] & X[0] & X[1] & X[2] & X[3] & X[4] & X[5] & X[6] & X[7] & X[8] & X[9] \end{bmatrix}$

Thus,
$$\sum_{n=0}^{13} g[n] = \sum_{n=0}^{13} e^{j(4\pi n/7)} x[n] = X[10] = -2 \Box j2$$
,

(e) Using Parseval's relation, $\sum_{n=0}^{13} |x[n]|^2 = \frac{1}{14} \sum_{k=0}^{13} |X[k]|^2 = \frac{498}{14} = 35.5714.$

Example E5.5: Consider the sequence x[n] defined for $0 \le n \le 11$,

$$\{x[n]\}=\{3, -1, 2, 4, -3, -2, 0, 1, -4, 6, 2, 5\},\$$

with a 12-point DFT given by X[k], $0 \le k \le 11$. Evaluate the following functions of X[k] without computing the DFT:

(a)
$$X[0]$$
, (b) $X[6]$, (c) $\sum_{k=0}^{11} X[k]$, (d) $\sum_{k=0}^{11} e^{-j(2\pi k/3)} X[k]$, and (e) $\sum_{k=0}^{11} |X[k]|^2$.

Answer: (a)
$$X[0] = \sum_{n=0}^{11} x[n] = 13$$
, (b) $X[6] = \sum_{n=0}^{11} (-1)^n x[n] = -13$,

(c)
$$\sum_{k=0}^{11} X[k] = 12 \cdot x[0] = 36$$
, (d) The inverse DFT of $e^{-j(4\pi k/6)}X[k]$ is $x[\langle n-4\rangle_{12}]$. Thus,

$$\sum_{k=0}^{11} e^{-j(4\pi k/6)} X[k] = 12 \cdot x[<0-4>_{12}] = 12 \cdot x[8] = -48.$$

(e) From Parseval's relation,
$$\sum_{k=0}^{11} |X[k]|^2 = 12 \cdot \sum_{n=0}^{11} |x[n]|^2 = 1500.$$

Example E5.6: The even samples of the 11-point DFT of a length-11 real sequence are given by X[0] = 4, X[2] = -1 + j3, X[4] = 2 + j5, X[6] = 9 - j6, X[8] = -5 - j8, and $X[10] = \sqrt{3} - j2$. Determine the missing odd samples.

Answer: Since x[n] is a real sequence, its DFT satisfies $X[k] = X * [\langle -k \rangle_N]$ where N = 11 in this case. Therefore, $X[1] = X * [\langle -1 \rangle_{11}] = X * [10] = \sqrt{3} + j2$, $X[3] = X * [\langle -3 \rangle_{11}] = X * [8] = -5 + j8$, $X[5] = X * [\langle -5 \rangle_{11}] = X * [6] = 9 + j6$, $X[7] = X * [\langle -7 \rangle_{11}] = X * [4] = 2 - j5$, $X[9] = X * [\langle -9 \rangle_{11}] = X * [2] = -1 - j3$.

Example E5.7: The following 6 samples of the 11-point DFT X[k], $0 \le k \le 10$, are given: X[0] = 12, X[2] -3.2 - j2, X[3] = 5.3 - j4.1, X[5] = 6.5 + j9, X[7] = -4.1 + j0.2, and X[10] = -3.1 + j5.2. Determine the remaining 5 samples.

Answer: The N-point DFT X[k] of a length-N real sequence x[n] satisfy X[k] = $X * [\langle -k \rangle_N]$. Here N = 11. Hence, the remaining 5 samples are X[1] = $X * [\langle -1 \rangle_{11}] = X * [10] = -3.1 - j5.2$, X[4] = $X * [\langle -4 \rangle_{11}] = X * [7] = -4.1 - j0.2$, X[6] = $X * [\langle -6 \rangle_{11}] = X * [5] = 6.5 - j9$, X[8] = $X * [\langle -8 \rangle_{11}] = X * [3] = 5.3 + j4.1$, X[9] = $X * [\langle -9 \rangle_{11}] = X * [2] = -3.2 + j2$.

Example E5.8: A length-10 sequence x[n], $0 \le n \le 9$, has a real-valued 10-point DFT X[k], $0 \le k \le 9$. The first 6 samples of x[n] are given by: x[0] = 2.5, x[1] = 0.7 - j0.08, x[2] = -3.25 + j1.12, x[3] = -2.1 + j4.6, x[4] = 2.87 + j2, and x[5] = 5. Determine the remaining 4 samples.

Answer: A length-N periodic even sequence x[n] satisfying x[n] = $x * [\langle -n \rangle_N]$ has a real-valued N- point DFT X[k]. Here N = 10. Hence, the remaining 4 samples of x[n] are given by $x[6] = x * [\langle -6 \rangle_{10}] = x * [4] = 2.87 - j2$, $x[7] = x * [\langle -7 \rangle_{10}] = x * [3] = -2.1 - j4.6$, $x[8] = x * [\langle -8 \rangle_{10}] = x * [2] = -3.25 - j1.12$, and $x[9] = x * [\langle -9 \rangle_{10}] = x * [1] = 0.7 + j0.08$.

Example E5.9: The 8-point DFT of a length-8 complex-valued sequence v[n] = x[n] + jy[n] is given by

 $\{V[k]\} = \{-2+j3, 1+j5, -4+j7, 2+j6, -1-j3, 4-j, 3+j8, j6\}.$

Without computing the IDFT of V[k], determine the 8-point DFTs X[k] and Y[k] of the real sequences x[n] and y[n], respectively.

Answer: v[n] = x[n] + j y[n]. Hence, $X[k] = \frac{1}{2} \{V[k] + V * \langle -k \rangle_{8}] \}$ is the 8-point DFT of x[n], and $Y[k] = \frac{1}{2j} \{V[k] - V * \langle -k \rangle_{8}] \}$ is the 8-point DFT of y[n]. Now, $V * [\langle -k \rangle_{8}] = [-2 - j3, -j6, 3 - j8, 4 + j, -1 + j3, 2 - j6, -4 - j7, 1 - j5]$. Therefore,

$$X[k] = \begin{bmatrix} -0.2, & 0.5 - j0.5, & -0.5 - j0.5, & 3 + j3.5, & -1, & 3 - j3.5, & -0.5 + j0.5, & 0.5 + j0.5 \end{bmatrix}$$

$$Y[k] = \begin{bmatrix} 3, & 5.5 - j0.5, & 7.5 + j3.5, & 2.5 + j & -3, & 2.5 - j, & 7.5 - j3.5, & 5.5 + j0.5 \end{bmatrix}$$

Example E5.10: Determine the 4-point DFTs of the following length-4 sequences, $0 \le n \le 3$, defined for by computing a single DFT: $\{g[n]\} = \{-2, 1, -3, 4\}$, $\{h[n]\} = \{1, 2, -3, 2\}$.

Answer:
$$v[n] = g[n] + jh[n] = [-2 + j, 1 + j2, -3 - j3, 4 + j2]$$
. Therefore,
$$\begin{bmatrix} V[0] \\ V[1] \\ V[2] \\ V[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} -2 + j \\ 1 + j2 \\ -3 - j3 \\ 4 + j2 \end{bmatrix} = \begin{bmatrix} j2 \\ 1 + j7 \\ -10 - j6 \\ 1 + j \end{bmatrix}, i.e., \{V[k]\} = [j2, 1 + j7, -10 - j6, 1 + j].$$

Thus,
$$\{V * [\langle -k \rangle_4]\} = [-j2, 1-j, -10+j6, 1-j7].$$

Therefore, $G[k] = \frac{1}{2} \{V[k] + V * [\langle -k \rangle_4]\} = [0, 1+j3, -10, 1-j3]$ and $H[k] = \frac{1}{2j} \{V[k] - V * [\langle -k \rangle_4]\} = [2, 4, -6, 4].$