$rank(A^TA) = rank(A)$ 的两种证明

Author: 秦昊隽 PB20020661

更推荐第一种方法.

Problem 0.1 若 $A \in \mathbb{R}^{m \times n}$, 则 $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.

Proof [第一种证明]

记 $W = \{x \in \mathbb{R}^n \mid Ax = 0\}$, 即 Ax = 0 的解空间. 容易验证: $W \in \mathbb{R}^n$ 的一个子空间.

记 $U = \{x \in \mathbb{R}^n \mid A^T A x = 0\}$, 同理: U 也是 \mathbb{R}^n 的一个子空间.

一方面 $\forall x \in W$, 满足 Ax = 0, 等式左乘 A^T 得到 $A^TAx = 0$. 即 $\forall x \in W$ 都满足 $x \in U$, 于是 $W \subseteq U$.

但另一方面 $\forall x \in U$, 满足 $A^TAx = 0$, 等式左乘 x^T 得到 $x^TA^TAx = (Ax)^TAx = 0$. 记 $Ax = \begin{bmatrix} b_1, b_2, ..., b_n \end{bmatrix}^T$,有 $\sum_{i=1}^n b_i^2 = 0$,得到 $b_i = 0 \ \forall i \ \heartsuit$,即 Ax = 0.所以 $\forall x \in U$ 都满足 $x \in W$,即 $U \subseteq W$ 综上我们得到 W = U.于是 $\dim W = \dim U \implies \operatorname{rank}(A) = \operatorname{rank}(A^TA)$.(这里我们用到了以下定理)

Theorem 0.1 (线性映射基本定理)

对于 $A \in \mathbb{R}^{m \times n}$,考虑线性方程 Ax = 0,记 $\ker(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$,则有 $\dim \ker(A) = n - \operatorname{rank}(A).$

C

Proof [第二种证明]

设 rank(A) = r, 考虑相抵标准型: $\exists P, Q$ 均为可逆矩阵, 使得

$$A = P \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} Q.$$

代入 $A^T A$ 中:

$$A^{T}A = Q^{T} \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} P^{T}P \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} Q.$$

我们对
$$P$$
 分块为 $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$, $(P_{11}$ 为 $r \times r$ 的方阵), 于是 $P^T P = \begin{bmatrix} P_{11}^T P_{11} + P_{21}^T P_{21} & * \\ * & * \end{bmatrix}$, 则有
$$A^T A = Q^T \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} \begin{bmatrix} P_{11}^T P_{11} + P_{21}^T P_{21} & * \\ * & * \end{bmatrix} \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} Q$$
$$= Q^T \begin{bmatrix} P_{11}^T P_{11} + P_{21}^T P_{21} & O \\ O & O \end{bmatrix} Q.$$

由于 Q 是可逆矩阵,我们得到 $\operatorname{rank}(A^TA) = \operatorname{rank}(P_{11}^TP_{11} + P_{21}^TP_{21})$. 下面欲证明: $\operatorname{rank}(P_{11}^TP_{11} + P_{21}^TP_{21}) = r$.

由分块知: $P_{11}^T P_{11} + P_{21}^T P_{21}$ 是一个 $r \times r$ 的矩阵. 假设 $\operatorname{rank}(P_{11}^T P_{11} + P_{21}^T P_{21}) < r$, 即存在非零的 x, 使得 $P_{11}^T P_{11} x + P_{21}^T P_{21} x = 0$:

两边左乘 x^T , 得到

$$x^{T} P_{11}^{T} P_{11} x + x^{T} P_{21}^{T} P_{21} x = (P_{11} x)^{T} P_{11} x + (P_{21} x)^{T} P_{21} x = 0.$$

同方法一 \heartsuit 处方法, 我们得到 $P_{11}x=0$ 且 $P_{21}x=0$,则P有非零解:

$$\begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = 0.$$

这与 P 是可逆矩阵矛盾! 故 $\operatorname{rank}(P_{11}^T P_{11} + P_{21}^T P_{21}) = r = \operatorname{rank}(A^T A)$.