Student	Number:		

NATIONAL UNIVERSITY OF SINGAPORE

MA1101R - Linear Algebra I

(Semester 1 : AY2014/2015)

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Write down your matriculation/student number clearly in the space provided at the top of this page. This booklet (and only this booklet) will be collected at the end of the examination.
- 2. Please write your matriculation/student number only. Do not write your name.
- 3. This examination paper contains **SIX** questions and comprises **NINETEEN** printed pages.
- 4. Answer **ALL** questions.
- 5. This is a CLOSED BOOK (with helpsheet) examination.
- 6. You are allowed to use two A4 size helpsheets.
- 7. You may use scientific calculators. However, you should lay out systematically the various steps in the calculations)

Examiner's Use Only				
Questions	Marks			
1				
2				
3				
4				
5				
6				
Total				

Question 1 [15 marks]

(a) [6 marks]

Let \boldsymbol{A} be a 4×5 matrix such that its row echelon form is

$$m{R} = egin{pmatrix} 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (i) Write down a basis for the row space of A.
- (ii) Extend the basis found in (i) to a basis for \mathbb{R}^5 . (Just write down the additional vectors.)
- (iii) Find a basis for the nullspace of \boldsymbol{A} . Show your working.

Show your working below.

(i)
$$\{(1, 1, 0, 1, 0), (0, 0, 1, 1, 0), (0, 0, 0, 0, 1)\}$$

(ii) $\{(0,1,0,0,0),(0,0,0,1,0)\}.$

(There are many possible answers. Common ones are $\{(0, \bigoplus, *, *, *), (0, 0, 0, \bigotimes, *)\}$ where \bigoplus, \bigotimes are non-zero.)

(iii) Let x_1, x_2, x_3, x_4, x_5 be the variables in the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$.

To find the general solution of the system, set $x_2 = t, x_4 = s$.

Then $x_5 = 0, x_3 = -s, x_1 = -t - s$.

So
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -t - s \\ t \\ -s \\ s \\ 0 \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

A basis for nullspace of \boldsymbol{A} is $\left\{ \begin{pmatrix} -1\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\-1\\1\\0 \end{pmatrix} \right\}$.

(b) [6 marks]

Let

$$\mathbf{B} = \begin{pmatrix} x & x(x-1) & 0 \\ 0 & x-1 & (x-1)(x+1) \\ 0 & 0 & x+1 \end{pmatrix}.$$

Find all values of x such that:

(ii) $rank(\boldsymbol{B})=2$; (iii) $rank(\boldsymbol{B})=3$. (i) $rank(\boldsymbol{B})=1$;

Justify your answer.

Show your working below.

When $x \neq 0, 1, -1$, rank(\mathbf{B})=3 (as \mathbf{B} is in row echelon form with 3 pivot columns).

When
$$x \neq 0, 1, -1$$
, $tank(\mathbf{B}) = 3$ (as \mathbf{B} is in row echelon for When $x = 0$, then $\mathbf{B} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$. So $rank(\mathbf{B}) = 2$.

When $x = 1$, then $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. So $rank(\mathbf{B}) = 2$.

When $x = -1$, then $\mathbf{B} = \begin{pmatrix} -1 & 2 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. So $rank(\mathbf{B}) = 2$.

When
$$x = 1$$
, then $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. So rank $(\mathbf{B}) = 2$.

When
$$x = -1$$
, then $\mathbf{B} = \begin{pmatrix} -1 & 2 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. So rank $(\mathbf{B}) = 2$.

- (i) $rank(\boldsymbol{B})=1$: no such x.
- (ii) $rank(\mathbf{B})=2$: x=0,1 or -1.
- (iii) rank(\mathbf{B})=3: $x \neq 0, 1$ and -1.

(c) [3 marks]

Give an example of a 3×4 matrix C with no identical columns such that

the column space of
$$C$$
 is span $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$.

(You are not required to justify your answer.)

What is the nullity of C?

Show your working below.

There are plenty of examples, the condition is that all columns of C must be

(distinct) scalar multiples of
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

(distinct) scalar multiples of
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
. For example, $\mathbf{C} = \begin{pmatrix} 1 & 2 & 3 & 4\\1 & 2 & 3 & 4\\1 & 2 & 3 & 4 \end{pmatrix}$.

Nullity(
$$C$$
) = 4- rank(C) = 4 - 1 = 3.

PAGE 5 MA1101R

Question 2 [15 marks]

(a) [6 marks]

Let $V = \{(x, y, z, w) \mid x = y + z, w = 2y\}$ be a subspace of \mathbb{R}^4 .

- (i) Write down an explicit form of a general vector in V.
- (ii) Express V in linear span form.
- (iii) Write down a basis for V and dim V.

Show your working below.

- (i) One can directly write down (y+z,y,z,2y) with $y,z\in\mathbb{R}$. Alternatively, one can also solve the two equations to get $(\frac{1}{2}t+s,\frac{1}{2}t,s,t)$ with $s,t\in\mathbb{R}$. (There are many ways to express the general vector in V.)
- (ii) For any $\boldsymbol{v} \in V$,

$$\mathbf{v} = (y+z, y, z, 2y) = y(1, 1, 0, 2) + z(1, 0, 1, 0).$$

So
$$V = \text{span}\{(1, 1, 0, 2), (1, 0, 1, 0)\}.$$

(There are many possible answers depending on the choice of the explicit form of the general vector.)

(iii) Basis for $V : \{(1, 1, 0, 2), (1, 0, 1, 0)\}$ with dim V = 2.

(Again the basis may vary according to the answers obtained in (i) and (ii).)

(b) [6 marks]

Let $S = \{u, v\}$ and $T = \{u - v, u + 2v\}$ be two bases for a vector space U.

- (i) Find the transition matrix from T to S.
- (ii) Find the transition matrix from S to T.
- (iii) Given the coordinate vector of $\boldsymbol{w} \in U$ with respect to T is $[\boldsymbol{w}]_T = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find $[\boldsymbol{w}]_S$.

Show your working below.

(i)
$$[\boldsymbol{u} - \boldsymbol{v}]_S = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

$$[\boldsymbol{u} + 2\boldsymbol{v}]_S = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

So the transition matrix from T to S is $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$.

- (ii) The transition matrix from S to T is $\mathbf{P}^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$.
- (iii) $[\boldsymbol{w}]_S = P[\boldsymbol{w}]_T = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$

PAGE 7 MA1101R

Question 2

(c) [3 marks]

Let $\{u_1, u_2, u_3, u_4\}$ be a basis for \mathbb{R}^4 .

Suppose $U_1 = \text{span}\{u_1, u_2\}$ and $U_2 = \text{span}\{u_3, u_4\}$. Is it possible that

$$U_1 \cup U_2 = \mathbb{R}^4?$$

Justify your answer.

Show your working below.

No.

We have $\mathbf{u}_3 \notin U_1$ but $\mathbf{u}_1 \in U_1$. So $\mathbf{u}_1 + \mathbf{u}_3 \notin U_1$.

We have $\mathbf{u}_3 \in U_2$ but $\mathbf{u}_1 \notin U_2$. So $\mathbf{u}_1 + \mathbf{u}_3 \notin U_2$.

Hence $\boldsymbol{u}_1 + \boldsymbol{u}_3 \not\in U_1 \cup U_2$.

So $U_1 \cup U_2 \neq \mathbb{R}^4$.

(Other justification possible.)

Question 3 [15 marks]

(a) [6 marks]

Find the least squares solutions of the linear system Ax = b where

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$,

and hence find the smallest possible value of ||Ax - b|| from among all $x \in \mathbb{R}^2$.

Show your working below.

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}.$$

$$\mathbf{A}^T \mathbf{b} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

Solving
$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$
:
 $\mathbf{x} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{4}{3} \end{pmatrix}$

So the least squares solution is $\begin{pmatrix} \frac{2}{3} \\ \frac{1}{2} \end{pmatrix}$.

The smallest $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ is when $\mathbf{x} = \begin{pmatrix} \frac{2}{3} \\ \frac{4}{2} \end{pmatrix}$:

$$= \left\| \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{2}{3} \\ \frac{4}{3} \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} \frac{3}{2} \\ \frac{2}{3} \\ -\frac{4}{3} \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{pmatrix} \right\| = \frac{1}{\sqrt{3}}.$$

(b) [4 marks]

Let
$$\boldsymbol{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\boldsymbol{v} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ and $\boldsymbol{w} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

- (i) Find an orthogonal basis $\{u', v'\}$ for $V = \text{span}\{u, v\}$ such that u = u'.
- (ii) Find the projection of \boldsymbol{w} onto the subspace V.

Show your working below.

(i)
$$\mathbf{u}' = \mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.
 $\mathbf{v}' = \mathbf{v} - \left(\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$
 $= \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}$.

(Any non-zero scalar multiple of $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ can be the answer for \boldsymbol{v}' .)

(ii)

$$\operatorname{proj}_{V} \boldsymbol{w} = \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u}'}{\|\boldsymbol{u}'\|^{2}}\right) \boldsymbol{u}' + \left(\frac{\boldsymbol{w} \cdot \boldsymbol{v}'}{\|\boldsymbol{v}'\|^{2}}\right) \boldsymbol{v}'$$
$$= \frac{2}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\\frac{1}{2}\\\frac{1}{2} \end{pmatrix}$$

(c) [5 marks]

Suppose the set $\{v_1, v_2, v_3\}$ is an orthonormal basis for \mathbb{R}^3 .

Show that the set $\left\{\frac{1}{\sqrt{2}}\boldsymbol{v}_1 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2, \frac{1}{\sqrt{2}}\boldsymbol{v}_1 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2, \boldsymbol{v}_3\right\}$ is also an orthonormal basis for \mathbb{R}^3 .

Show your working below.

Just need to check (i) pairwise orthogonality; (ii) norm equals 1.

(i)
$$\left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) \cdot \left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) = \frac{1}{2}\boldsymbol{v}_1 \cdot \boldsymbol{v}_1 - \frac{1}{2}\boldsymbol{v}_2 \cdot \boldsymbol{v}_2 = \frac{1}{2} - \frac{1}{2} = 0$$
 (since $\boldsymbol{v}_1, \boldsymbol{v}_2$ have norm 1).

$$\left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) \cdot \boldsymbol{v}_3 = \frac{1}{\sqrt{2}}\boldsymbol{v}_1 \cdot \boldsymbol{v}_3 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2 \cdot \boldsymbol{v}_3 = 0$$
 (since $\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3$ are orthogonal to each other).

Similarly.

$$\left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) \cdot \boldsymbol{v}_3 = \frac{1}{\sqrt{2}}\boldsymbol{v}_1 \cdot \boldsymbol{v}_3 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2 \cdot \boldsymbol{v}_3 = 0.$$

(ii)
$$\left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) \cdot \left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 - \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) = \frac{1}{2}\boldsymbol{v}_1 \cdot \boldsymbol{v}_1 - \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 + \frac{1}{2}\boldsymbol{v}_2 \cdot \boldsymbol{v}_2 = \frac{1}{2} - 0 + \frac{1}{2} = 1.$$

So
$$\left\| \frac{1}{\sqrt{2}} \boldsymbol{v}_1 - \frac{1}{\sqrt{2}} \boldsymbol{v}_2 \right\| = 1.$$

$$\left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) \cdot \left(\frac{1}{\sqrt{2}}\boldsymbol{v}_1 + \frac{1}{\sqrt{2}}\boldsymbol{v}_2\right) = \frac{1}{2}\boldsymbol{v}_1 \cdot \boldsymbol{v}_1 + \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 + \frac{1}{2}\boldsymbol{v}_2 \cdot \boldsymbol{v}_2 = \frac{1}{2} + 0 + \frac{1}{2} = 1.$$

So
$$\left\| \frac{1}{\sqrt{2}} \boldsymbol{v}_1 + \frac{1}{\sqrt{2}} \boldsymbol{v}_2 \right\| = 1.$$

$$\|\boldsymbol{v}_3\| = 1$$
 is given.

Question 4 [15 marks]

(a) [6 marks]

Let \mathbf{A} be the matrix $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- (i) Find all the eigenvalues of A. Explain how you get your answer.
- (ii) Find a basis for the eigenspace of \boldsymbol{A} associated with each of the eigenvalues. Show your working.

Show your working below.

- (i) Since \boldsymbol{A} is an upper triangular matrix, the eigenvalues are just the diagonal entries of \boldsymbol{A} , namely 1 and 2.
- (ii) Eigenspace for $\lambda = 1$ (E_1):

$$(\mathbf{I} - \mathbf{A} \mid \mathbf{0}) = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 = s, x_4 = t, x_3 = -t, x_2 = 0.$$

So
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} s \\ 0 \\ -t \\ t \end{pmatrix} = s \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

So a basis for E_1 is $\{(1,0,0,0)^T, (0,0,-1,1)^T\}$.

Eigenspace for $\lambda = 2$ (E_2) :

$$x_2 = s, x_3 = t, x_4 = 0, x_1 = s.$$

So
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} s \\ s \\ t \\ 0 \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

So a basis for E_2 is $\{(1, 1, 0, 0)^T, (0, 0, 1, 0)^T\}$.

(b) [4 marks]

Suppose \boldsymbol{B} is a 2×2 matrix such that

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \mathbf{B} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}.$$

Find a matrix C such that $C^2 = B$.

Explain how you obtain your answer.

Show your working below.

Since C is a square root of B, the eigenvalues of C must be square roots of eigenvalues of B with the same corresponding eigenvectors.

So we may set

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} C \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

(Note that the diagonal entries on the right hand side can be ± 2 and ± 1 .)

So

$$C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}.$$

(c) [5 marks]

Let M be a non-invertible 3×3 symmetric matrix such that

$$M \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \text{ and } M \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}.$$

What are the eigenvalues of M?

Write down a basis for \mathbb{R}^3 consisting entirely of eigenvectors of M.

Justify your answers.

Show your working below.

M is not invertible, so we deduce that 0 is an eigenvalue of M.

From
$$M \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, we get 2 is an eigenvalue of M with eigenvector $\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

From
$$M \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

we get
$$-1$$
 is an eigenvalue of M with eigenvector $v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

So all the eigenvalues of M are 2, -1, 0.

To find the required basis, we need to find an eigenvector associated to the eigenvalue 0.

Let such a vector be
$$v_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
.

Since M is symmetric, the eigenvectors associated with distinct eigenvalues are orthogonal to each other.

So $v_1 \cdot v_3 = 0$ which gives a + b = 0 and hence a = -b.

Also $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0$ which gives a - b + c = 0 and hence c = b - a = 2b.

So
$$v_3 = \begin{pmatrix} -b \\ b \\ 2b \end{pmatrix} = b \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$
. We may simply let it be $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$.

Hence a basis consisting entirely of eigenvectors can be given by

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\2 \end{pmatrix} \right\}$$

Question 5 [15 marks]

(a) [6 marks]

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ x+y \\ x-y \end{pmatrix}.$$

- (i) Write down the standard matrix for T.
- (ii) Find the kernel of T. Show your working.
- (iii) Suppose $S: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation with standard matrix $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$. Write down the formula for the composition $S \circ T$.

Show your working below.

$$(i) \quad \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

(ii)
$$\begin{pmatrix} 2x \\ x+y \\ x-y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ giving } x = 0, y = 0.$$
 So $\ker(T) = \{\mathbf{0}\}.$

(iii) The standard matrix of $S \circ T$ is

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}.$$

So $S \circ T : \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$S \circ T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x + y \\ 2y \end{pmatrix}.$$

PAGE 15 MA1101R

Question 5

(b) [4 marks]

Given that $F: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation, P is a plane in \mathbb{R}^3 given by the equation x+y+z=0, and ℓ is a line in \mathbb{R}^3 given by the set $\{(t,t,t)\mid t\in\mathbb{R}\}$.

Suppose F maps the plane P onto the line ℓ and maps the line ℓ to the origin.

Show that the linear transformation F^2 (i.e. $F \circ F$) is the zero transformation.

Show your working below.

```
Take a basis \{u_1, u_2\} for the plane P.

Take the basis \{u_3\} for the line \ell where u_3 = (1, 1, 1).

Note that u_3 is a normal vector to the plane P, and hence \{u_1, u_2, u_3\} is a basis for \mathbb{R}^3.

Now F(u_1) = k_1 u_3 (since F maps P to \ell)

and F^2(u_1) = k_1 F(u_3) = 0 (since F maps \ell to 0).

Similarly F(u_2) = k_2 u_3

and F^2(u_2) = k_2 F(u_3) = 0.

Also F^2(u_3) = 0.

Since F^2 maps a basis \{u_1, u_2, u_3\} for \mathbb{R}^3 to 0, it maps every vector in \mathbb{R}^3 to 0.

Hence F^2 must be the zero transformation.
```

PAGE 16 MA1101R

Question 5

(c) [5 marks]

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation.

Suppose $\{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 , and $\{T(u_1), T(u_2), T(u_3)\}$ spans \mathbb{R}^2 .

Show that the standard matrix of T is of full rank.

Show your working below.

Let the standard matrix of T be \mathbf{A} , a 2 × 3 matrix.

Let $P = (u_1 \ u_2 \ u_3)$, i.e. the 3×3 matrix formed by the 3 column vectors u_1, u_2, u_3 .

 \boldsymbol{P} is invertible since $\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3$ are linearly independent.

Now let $Q = (T(u_1) \ T(u_2) \ T(u_3)) = (Au_1 \ Au_2 \ Au_3) = A(u_1 \ u_2 \ u_3) = AP$.

Since $\{T(\boldsymbol{u}_1), T(\boldsymbol{u}_2), T(\boldsymbol{u}_3)\}$ spans \mathbb{R}^2 , we have rank $(\boldsymbol{Q}) = 2$.

i.e. $rank(\mathbf{AP}) = 2$, which implies $rank(\mathbf{A}) = 2$, since **P** is invertible.

Hence \boldsymbol{A} is full rank.

PAGE 17 MA1101R

Question 6 [15 marks]

Determine whether each of the following parts is true or false. Justify your answer.

(a) [3 marks]

If A is a square matrix, then its row space is equal to its column space.

Show your working below.

False.

Example
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
.

The row space is $span\{(1,0)\}$ while the column space is $span\{(1,1)\}$.

(b) [3 marks]

The set $W = \{(a, b, c, abc) \mid a, b, c \in \mathbb{R}\}$ is not a subspace of \mathbb{R}^4 .

Show your working below.

True.

W is not closed under vector addition, and hence not a subspace of \mathbb{R}^4 .

For example, take (1, 1, 0, 0) and $(0, 0, 1, 0) \in W$.

The sum $(1, 1, 1, 0) \notin W$.

(W is also not closed under scalar multiplication.)

(c) [3 marks]

```
Let u, v be non-zero vectors in some vector space.
If \operatorname{span}\{u\} \cap \operatorname{span}\{v\} = \operatorname{span}\{u, v\}, then \operatorname{span}\{u\} = \operatorname{span}\{v\}.
```

Show your working below.

True.

```
 \operatorname{span}\{\boldsymbol{u}\} \cap \operatorname{span}\{\boldsymbol{v}\} \subseteq \operatorname{span}\{\boldsymbol{u},\boldsymbol{v}\} \quad \text{(i)}.   \operatorname{span}\{\boldsymbol{u}\} \cap \operatorname{span}\{\boldsymbol{v}\} \subseteq \operatorname{span}\{\boldsymbol{v}\} \subseteq \operatorname{span}\{\boldsymbol{u},\boldsymbol{v}\} \quad \text{(ii)}.  Since the two sets on the extreme left and right of both (i) and (ii) are equal, the intermediate set must also be equal to these sets. Hence  \operatorname{span}\{\boldsymbol{u}\} = \operatorname{span}\{\boldsymbol{v}\}.
```

(d) [3 marks]

There is no 3×3 matrix of rank 2 with only 1 eigenvalue.

Show your working below.

False.

Example
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

The matrix has only one eigenvalue 0 and has rank 2.

PAGE 19 MA1101R

Question 6

(e) [3 marks]

Let A be a 3×2 matrix with two columns c_1 and c_2 , and b is a non-zero 3×1 column vector orthogonal to c_1 and c_2 . Then the linear system Ax = b is inconsistent.

Show your working below.

True.

Since **b** is orthogonal to c_1 and c_2 , so $b \notin \text{span}\{c_1, c_2\}$.

This implies b is not in the column space of A.

Hence Ax = b is inconsistent.

PAGE 20 MA1101R