Handout 1: Calculus Review

STA 131B

For more details, please see a calculus text.

1. Series

a)
$$1 + a + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}$$
 if $a \neq 1$.

b)
$$1 + a + a^2 + \dots = \sum_{i=0}^{\infty} a^i = \lim_{n \to \infty} \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a}$$
 if $|a| < 1$.

c)
$$\sum_{i=1}^{\infty} i a^{i-1} = \sum_{i=1}^{\infty} \frac{d}{da} a^i = \frac{d}{da} \frac{a}{1-a} = \frac{1}{(1-a)^2}$$
,

$$\sum_{i=2}^{\infty} i(i-1)a^{i-2} = \sum_{i=2}^{\infty} \frac{d^2}{d^2a}a^i = \frac{d^2}{d^2a} \sum_{i=2}^{\infty} a^i = \frac{d^2}{d^2a} \left(\frac{a^2}{1-a}\right) = \frac{2}{(1-a)^3} \text{ for } |a| < 1.$$

- d) $\sum_{i=0}^{\infty} \frac{a^i}{i!} = e^a = \exp(a)$.
- e) $\sum_{k=0}^{n} {n \choose k} a^k b^{n-k} = (a+b)^n$ (Binomial Theorem).

2. Limits

- a) $\lim_{n\to\infty} (1+\frac{a}{n})^n = e^a$.
- b) $\lim_{x\to\infty} e^{-x}x^a$ for all a>0.

3. Differentiation of an inverse function

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}.$$

4. Integration by parts

$$\int_{a}^{b} u(x)dv(x) = -\int_{a}^{b} v(x)du(x) + \lim_{x \to b} u(x)v(x) - \lim_{x \to a} u(x)v(x),$$

or for differentiable functions f and q,

$$\int_{a}^{b} f(x)g'(x)dx = -\int_{a}^{b} f'(x)g(x)dx + f(x)g(x)|_{a}^{b}.$$

5. Gamma function Definition: $\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx$ for $\alpha > 0$.

- a) For $\alpha > 1$, $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$.
- b) For $\alpha > 0$, let $[\alpha]$ = greatest integer not exceeding α . Then by (a),

$$\Gamma(\alpha) = (\alpha - 1)(\alpha - 2) \cdots (\alpha - [\alpha])\Gamma(\alpha - [\alpha]).$$

For example $\Gamma(5.3) = (4.3)(3.3)(2.3)(1.3)(0.3)\Gamma(0.3)$. Thus if we know $\Gamma(p)$ for all $0 , then we can calculate <math>\Gamma(\alpha)$ for all $\alpha > 0$.

c)
$$\Gamma(1) = \int_0^\infty e^{-x} dx = 1.$$

$$\Gamma(n+1) = \int_0^\infty e^{-x} x^n = n!.$$

d) For any nonnegative integer n,

$$\frac{1}{n!} \int_{a}^{\infty} e^{-x} x^{n} dx = \sum_{l=0}^{n} e^{-a} \frac{a^{l}}{l!}.$$

e)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

6. Beta function

Definition: $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ for a > 0, b > 0.

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

7. Multiple integrals

Let $g_i: \mathbb{R}^n \to \mathbb{R}$ be functions, i = 1, ..., n and let $g: \mathbb{R}^n \to \mathbb{R}$ be the function $x = (x_1, ..., x_n) \to y = (y_1, ..., y_n), y_i = g_i(x_1, ..., x_n), i = 1, ..., n$. Denote the inverse function of g by h, $x_i = h_i(y_1, ..., y_n), i = 1, ..., n$ for functions $h_i: \mathbb{R}^n \to \mathbb{R}$. Assume: Partial derivatives $\frac{\partial g_i}{\partial x_j}$ exist for all i, j and the matrix $[(\frac{\partial g_i}{\partial x_j})]_{i,j}$ has a non-zero determinant. Then

$$J_g = \det\left[\left(\frac{\partial g_i}{\partial x_j}\right)\right]_{i,j}$$

is called the Jacobian of the function (transformation) g. J_g is a function $\mathbb{R}^n \to \mathbb{R}$ (in x). It holds that

$$J_g = \det \left[\left(\frac{\partial g_i}{\partial x_j} \right) \right]_{i,j} = \frac{1}{\det \left[\left(\frac{\partial h_i}{\partial y_j} \right) \right]_{i,j}} = \frac{1}{J_h},$$

where J_h is a function of y.

a) Change of variables formula: For $B \subset \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$,

$$\int \cdots \int_{B} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}$$

$$= \int \cdots \int_{g(B)} f(h_{1}(y_{1}, \dots, y_{n}), \dots, h_{n}(y_{1}, \dots, y_{n})) \frac{1}{|J_{g}|} dy_{1} \dots dy_{n}$$

$$= \int \cdots \int_{g(B)} f(h_{1}(y_{1}, \dots, y_{n}), \dots, h_{n}(y_{1}, \dots, y_{n})) |J_{h}| dy_{1} \dots dy_{n}.$$

b) Application - Transformation to poloar coordinates: Problem: Evaluate $\Gamma(\frac{1}{2})=\int_0^\infty e^{-u}u^{-1/2}du$. Let $u=x^2$. Then $\Gamma(\frac{1}{2})=2\int_0^\infty e^{-x^2}dx$. Now write

$$\left(\Gamma\left(\frac{1}{2}\right)\right)^{2} = 4\int_{0}^{\infty} \int_{0}^{\infty} e^{-x_{1}^{2}} e^{-x_{2}^{2}} dx_{1} dx_{2}$$

and transform (x_1, x_2) to polar coordinates (r, θ) :

$$x_1 = r\cos(\theta), \qquad x_2 = r\sin(\theta), \qquad r^2 = x_1^2 + x_2^2, \qquad \cos(\theta) = \frac{x_1}{r}$$
$$g: (x_1, x_2) \in (0, \infty)^2 \to (r, \theta) \in (0, \infty) \times \left(0, \frac{\pi}{2}\right)$$
$$J_h = \det \begin{bmatrix} \frac{\partial x_1}{\partial r} & \frac{\partial x_2}{\partial r} \\ \frac{\partial x_1}{\partial \theta} & \frac{\partial x_2}{\partial \theta} \end{bmatrix} = \det \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -r\sin(\theta) & r\cos(\theta) \end{bmatrix} = r.$$

Hence $(\Gamma(\frac{1}{2}))^2 = 4 \int_0^\infty \int_0^{\pi/2} e^{-r^2} r d\theta dr = 2\pi \int_0^\infty e^{-r^2} r dr = \pi \int_0^\infty e^{-t} dt = \pi$, substituting $t = r^2$. Thus $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.