hw3.md 3/22/2022

DP-elimination

Matouš Mařík

One of the preprocessing steps can be to eliminate some of the variables using so-called DP-elimination (or DP-resolution). In particular, assume we have a CNF φ and a variable x which we want to eliminate. Denote

```
 \phi0 = \{C \in \phi \mid \neg x \in C\} 
\phi1 = \{C \in \phi \mid x \in C\} 
\phir = \{C \in \phi \mid C \cap \{x, \neg x\} = \emptyset\}
```

Namely, $\phi 0$ consists of the clauses containing negative literal $\neg x$, $\phi 1$ consists of the clauses containing positive literal x, ϕr contains the rest of the clauses. Let us now define

```
\phi dp = \{Res(C0, C1) \mid C0 \in \phi0, C1 \in \phi1\}
```

where Res(C0, C1) denotes the clauses originating from C0 and C1 by resolution. Show that ϕ is equisatisfiable with $\phi' = \phi r \wedge \phi dp$.

Splnitelná $arphi \implies$ splnitelná arphi'

- nechť α je nějaké úplné ohodnocení φ , které jí splňuje tedy je jejím (úplným modelem) ... $\alpha \models \varphi$
- potom určitě $\alpha \models \varphi_r$, neboť jsou to původní klauzule z φ
- ullet stačí ukázat, že i $lpha \models arphi_{dp}$
 - \circ každou klauzuli $C_r \in arphi_{dp}$ lze přímo odvodit rezolucí z arphi, tedy $arphi dash C_r$
 - \circ každý model formule je modelem i rezolucí odvozených klauzulí, tedy $arphi \models C_r$
 - \circ z toho plyne že $\alpha \models \varphi_{dp}$

Splnitelná $arphi' \Longrightarrow \mathsf{splnitelná}\, arphi$

- jsou splnitelné $\varphi_r \wedge \varphi_{dp}$, je třeba dokázat, že z toho vyplývá, že jsou splnitelné $\varphi_0 \wedge \varphi_1$
- ullet lpha' je úplný model splňující arphi', který neobsahuje proměnnou x
 - \circ triviálně $\alpha' \models \varphi_r$
- nechť C_n je jakákoliv z klauzulí $C_0\setminus \{\neg x\}$ (kde $C_0\in \varphi_0$ ze zadání), nebo z klauzulí $C_1\setminus \{x\}$ (kde $C_1\in \varphi_1$ ze zadání), která <u>není</u> modelem α' splněna
 - \circ pokud takovou klauzuli nelze najít, pak $lpha' \models arphi_0 \wedge arphi_1$
 - o pro zbytek bodů se BÚNO předpokládá, že $C_n\equiv C_{n,0}\setminus\{\neg x\}$, kde $C_{n,0}$ je nějaká konkrétní $C_0\in\varphi_0$
- ullet protože $lpha'\modelsarphi'\implieslpha'\modelsarphi_{dp}$, pak $\mathrm{Res}(C_{n,0},C_1)$ jsou modelem splněny pro všechny $C_1\inarphi_1$
- protože $\alpha' \nvDash C_n$ (protože tak byla vybrána C_n), pak musí platit $\alpha' \models C_1 \setminus \{x\}$ a to pro všechny $C_1 \in \varphi_1$, z čehož vyplývá, že platí $\alpha' \models \varphi_1$
- ullet model lpha který vznikne rozšířením modelu lpha' tak, že lpha(x)=0 splňuje arphi
 - \circ protože model lpha obsahující $\neg x$ splní všechny klauzule z $arphi_0$

hw3.md 3/22/2022

 díky CNF tvaru formule rozšířený model určitě splňuje všechny klauzule, které splňoval původní model