Chuyên đề 1 : ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VỀ ĐỒ THỊ CỦA HÀM SỐ

Chủ đề 1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ

A.TÓM TẮT SÁCH GIÁO KHOA

I. NHẮC LẠI:

Giả sử K là một khoảng (một đoạn hoặc một nửa khoảng) và f là một hàm số xác định trên K.

- ightharpoonup f đồng biến trên $K \Leftrightarrow (\forall x_1, x_2 \in K: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)).$
- ightharpoonup f nghịch biến trên $K \Leftrightarrow (\forall x_1, x_2 \in K: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)).$

II. ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ XÉT TÍNH ĐƠN ĐIỆU:

1. Điều kiện cần:

Định lí 1: Giả sử hàm số f có đạo hàm trên khoảng K.

- a) Nếu hàm số f đồng biến trên khoảng K thì $f'(x) \ge 0$ với mọi $x \in K$.
- b) Nếu hàm số f nghịch biến trên khoảng K thì $f'(x) \le 0$ với mọi $x \in K$.

2. Điều kiện đủ:

Định lí 2 : (điều kiện đủ để hàm số đơn điệu trên một khoảng)

Giả sử hàm số f có đạo hàm trên khoảng K.

- a) Nếu f'(x) > 0 với mọi $x \in K$ thì hàm số f đồng biến trên khoảng K.
- b) Nếu f'(x) < 0 với mọi $x \in K$ thì hàm số f nghịch biến trên khoảng K.
- c) Nếu f'(x) = 0 với mọi $x \in K$ thì hàm số f không đổi trên khoảng K.

Chú ý:

Khoảng K trong định lí trên có thể được thay bởi một đoạn hay nửa khoảng. Khi đó ta phải bổ sung thêm giải thiết "Hàm số liên tục f trên đoạn hay nửa khoảng đó". Tức là ta có:

- Nếu hàm số f liên tục trên đoạn [a,b] và có đạo hàm f'(x) >0 trên khoảng (a,b) thì hàm số f đồng biến trên [a,b].
- Nếu hàm số f liên tục trên đoạn [a,b] và có đạo hàm f'(x) <0 trên khoảng (a,b) thì hàm số f nghịch biến trên [a,b].

3. Mở rộng:

Trong trường hợp phương trình y'=0 có hữu hạn nghiệm, thì ta có định lí mở rông sau:

Định lí 3: * f tăng trên $K \Leftrightarrow f'(x) \ge 0, \forall x \in K$

* f giảm trên $K \Leftrightarrow f'(x) \le 0, \forall x \in K$

B. PHƯƠNG PHÁP GIẢI TOÁN

Dạng 1: Tìm khoảng tặng, giảm của hàm số y = f(x)

1. PHƯƠNG PHÁP:

- + Tìm miền xác định.
- + Tìm y'
- +Tìm các điểm mà tại đó có đạo hàm bằng 0 hay tại đó hàm số không có đạo hàm.
- + Xét dấu y' bằng bảng biến thiên.
- + Dựa vào định lí trên để kết luận tính tăng, giảm của hàm số.
- 2. VÍ DU: Xét chiều biến thiên của hàm số:

a)
$$y = x^4 - 8x^2 + 3$$

a)
$$y = x^4 - 8x^2 + 3$$
 b) $y = 2x - \sqrt{x^2 - 4x - 5}$

<u>Giải</u>

a)
$$y = x^4 - 8x^2 + 3$$

Tập xác định: D=R.

$$y' = 4x^3 - 16x$$

$$y' = 0 \Leftrightarrow 4x(x^2 - 4) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 2 \end{bmatrix}$$

Bảng biến thiên:

X	-∞		-2		0		2		$+\infty$
y'		-	0	+	0	-	0	+	
у					→ \		> _		<i>></i>

b)
$$y = 2x - \sqrt{x^2 - 4x - 5}$$

Tập xác định: $D = (-\infty; -1] \cup [5; +\infty);$

$$\begin{aligned} y' &= 2 - \frac{x-2}{\sqrt{x^2 - 4x - 5}} = \frac{2\sqrt{x^2 - 4x - 5} - x + 2}{\sqrt{x^2 - 4x - 5}}, \forall x \in (-\infty; -1) \cup (5; +\infty); \\ y' &= 0 \Leftrightarrow 2\sqrt{x^2 - 4x - 5} = x - 2 \Leftrightarrow \begin{cases} x - 2 \ge 0 \\ 4(x^2 - 4x - 5) = (x - 2)^2 \end{cases} \\ \Leftrightarrow \begin{cases} x \ge 2 \\ 2x^2 - 12x - 24 = 0 \end{cases} \Leftrightarrow x = 2 + 2\sqrt{3} \end{aligned}$$

Bảng biến thiên:

X	+∞ -	-1	5	$2+2\sqrt{3}$	+∞
y'	+		_	0	+
у	*			→ /	

Vậy: Hàm số tăng trong khoảng $(-\infty; -1), (2+2\sqrt{3}; +\infty)$

Hàm số giảm trong khoảng $(5; 2+2\sqrt{3})$.

Dạng 2: Chứng minh hàm số tăng (giảm) trên đoạn hay nửa khoảng

1. PHƯƠNG PHÁP:

Để chứng minh hàm số tăng (giảm) trên [a; b] (hay [a; b) hay (a; b]) ta thực hiện các bước sau:

- + Bước 1: Chứng minh trong (a; b) hàm số tăng (giảm).
- +Bước 2: Chứng minh hàm số liên tục trên đoạn hay nửa khoảng đã cho.

Kết luận: Hàm số tăng (giảm) trên đoạn hay nửa khoảng đã cho.

2. VÍ DŲ:

Chứng minh rằng hàm số $f(x) = \frac{1}{\sqrt{3}}x + \sqrt{16 - x^2}$ nghịch biến trên [2; 4].

Giải

Ta có: * f(x) là hàm số liên tục trên [2; 4] (1)

*
$$f'(x) = \frac{1}{\sqrt{3}} - \frac{x}{\sqrt{16 - x^2}} = \frac{\sqrt{16 - x^2} - \sqrt{3}x}{\sqrt{3}\sqrt{16 - x^2}}$$
;

$$f'(x) = 0 \Leftrightarrow \sqrt{16 - x^2} = \sqrt{3}x \Leftrightarrow \begin{cases} x \ge 0 \\ 16 - x^2 = 3x^2 \end{cases} \Leftrightarrow x = 2$$

Với
$$x \in (2; 4)$$
 thì $\sqrt{16-x^2} - \sqrt{3}x < 0$ nên f'(x) <0, do đó hàm số nghịch biến trong (2; 4)

Từ (1) và (2) suy ra f là hàm số nghịch biến trên đoạn [2; 4]

Dạng 3: Định giá trị tham số để hàm số đơn điệu trên tập hợp X cho trước

1. PHƯƠNG PHÁP:

B1: Tim y'

B2: Đặt điều kiên cho bài toán:

+ Hàm số tăng trên $D \Leftrightarrow y' \ge 0, \forall x \in D$.

+ Hàm số giảm trên $D \Leftrightarrow y' \leq 0, \forall x \in D$.

 $(Chú \ \acute{y} : {\rm Trong} \ diều kiện trên dấu bằng xảy ra khi phương trình <math>\ y'=0 \ có \ hữu hạn$ nghiệm, nếu phương trình $\ y'=0 \ có \ vô hạn nghiệm thì trong điều kiện sẽ không có dấu bằng).$

Trong thực hành ta thường sử dụng:

Nếu biểu thức g(x) quyết định dấu của y' không chứa x thì trong điều kiện trên không có dấu bằng.

B3: Từ điều kiện trên sừ dụng các kiến thức về dấu nhị thức, tam thức suy ra giá tri tham số cần tìm.

* **Chú ý 1**: Cho
$$f(x) = ax^2 + bx + c(a \neq 0)$$
 ta có:
+ $f(x) \geq 0, \forall x \in \mathbb{R} \Leftrightarrow \Delta \leq 0 \text{ và } a \geq 0.$
+ $f(x) \leq 0, \forall x \in \mathbb{R} \Leftrightarrow \Delta \leq 0 \text{ và } a \leq 0.$

* Chú ý 2 : Đối với hàm số lượng giác ta cần nhớ :

$$+ |a\sin x| \le |a|, \forall x \in R$$

+
$$|\operatorname{asinx} + \operatorname{bcosx}| \le \sqrt{a^2 + b^2}, \forall x \in \mathbb{R}$$

2. VÍ DU:

Tìm m để các hàm số sau tăng trên từng khoảng xác định của nó:

a)
$$y = \frac{mx + 7m - 8}{x - m}$$
; b) $y = \frac{2x^2 + x + 3m - 5}{x - 1}$;

<u>Giải</u>

a) Tập xác định : $D = R \setminus \{m\}$.

$$y' = \frac{-m^2 - 7m + 8}{\left(x - m^2\right)} \ . \ Dấu \ y' \ là dấu của biểu thức \ -m^2 - 7m + 8 \, .$$

Hàm số tăng trên từng khoảng xác định

 \Leftrightarrow y'> 0 với mọi x \in D.

$$\Leftrightarrow$$
 $-m^2 - 7m + 8 > 0$

$$\Leftrightarrow$$
 $-8 < m < 1$.

Vậy m thỏa mãn yêu cầu bài toán \Leftrightarrow −8 < m < 1.

b) Tập xác định : $D = R \setminus \{1\}$.

$$y' = \frac{2x^2 - 4x - 3m + 4}{(x - 1)^2}$$

Dấu của y' chính là dấu của $g(x) = 2x^2 - 4x - 3m + 4$.

Hàm số tăng trên từng khoảng xác định.

 \Leftrightarrow y'> 0 với mọi x \in D.

$$\iff \begin{cases} a \geq 0 \\ \Delta' \leq 0 \end{cases} \Leftrightarrow 4 - 2(-3m + 4) \leq 0 \Leftrightarrow 6m - 4 \leq 0 \Leftrightarrow m \leq \frac{2}{3}$$

Vậy m thõa mãn yêu cầu bài toán \Leftrightarrow m $\leq \frac{2}{3}$.

Dạng 4 : Chứng minh bất đẳng thức $F(x) \ge 0$ với mọi $x \in K$

1. PHƯƠNG PHÁP:

Chứng minh hàm số F(x) liên tục và đơn điệu trên K.

Áp dụng định nghĩa sự đơn điệu suy ra bất đẳng thức cần chứng minh.

2.VÍ DŲ:

Chứng minh các bất đẳng thức sau:

a.
$$\sin x < x$$
 với mọi $x > 0$ b. $\cos x > 1 - \frac{x^2}{2}$ với mọi $x \neq 0$.

<u>Giải</u>

a) cách 1:

Với mỗi x > 0, xét hàm số f(t) = t-sint trên [0; a] với a > x.

Ta có : * f(t) liên tục trên [0; a].

*
$$f'(t) = 1 - \cos t \ge 0, \forall t \in (0; a).$$

* Phương trình f'(t) = 0 có hữu hạn nghiệm $t \in (0; a)$.

Vậy f(t) đồng biến trên [0; a].

Do đó f(x) > f(0) (vì x > 0) $\Rightarrow x - \sin x > 0$ hay $\sin x < x$.

Vậy ta luôn có $\sin x < x$ với mọi x>0

Cách 2:

* khi $x \ge \pi$: thì $\sin x \le 1 < \pi \le x$ nên $\sin x < x$ với mọi $x \ge \pi$ (1).

* khi $x \in [0; \pi)$, xét hàm số $f(x) = x - \sin x$ trên $[0; \pi)$ ta có:

+ f liên tục trên $[0; \pi)$.

$$+ f'(x) = 1 - \cos x > 0 \ \forall \ x \in (0; \pi).$$

Vậy f đồng biến trên $[0; \pi)$.

Do đó: $\forall x \in (0; \pi)$ thì f(x) > f(0) hay $x - \sin x > 0$ hay $\sin x < x$ (2).

Từ (1) và (2) suy ra $\sin x < x$ với mọi x > 0.

b) Ta có:
$$\cos x > 1 - \frac{x^2}{2} \Leftrightarrow \frac{x^2}{2} + \cos x - 1 > 0$$
 (*)

Xét hàm số $f(x) = \frac{x^2}{2} + \cos x - 1$.

TH1: x > 0:

Ta có: + f'(x) = x - sinx >0, $\forall x \in (0; +\infty)$ (do câu a).

+ f liên tục trên $[0; +\infty)$.

Do đó: f đồng biến trên $[0; +\infty)$

Suy ra với x > 0 thì $f(x) > f(0) \Rightarrow \frac{x^2}{2} + \cos x - 1 > 0 \Rightarrow (*)$ đúng với mọi x > 0.

TH2: x < 0, đặt t = -x thì t > 0. Áp dụng kết quả của TH1, ta có :

$$\frac{t^2}{2} + \cos t - 1 > 0 \Rightarrow \frac{(-x)^2}{2} + \cos(-x) - 1 > 0 \Rightarrow \frac{x^2}{2} - \cos x - 1 > 0$$

$$\frac{t^2}{2} + \cos t - 1 > 0 \Rightarrow \frac{(-x)^2}{2} + \cos(-x) - 1 > 0 \Rightarrow \frac{x^2}{2} - \cos x - 1 > 0.$$

 \Rightarrow (*) đúng với mọi x < 0.

Vậy (*) đúng với mọi $x \neq 0$.

Dạng 5 : Dùng tính đơn điệu của hàm số để giải phương trình – hệ phương trình.

1. PHƯƠNG PHÁP :

a) Để chứng minh phương trình F(x)=0cos nghiệm duy nhất ta thực hiện:

Bước 1: Chỉ ra một nghiệm của phương trình hay dùng tính chất hàm số liên tục để chứng minh phương trình có nghiệm.

 $Bu\acute{o}c\ 2$: Chứng minh F(x) là hàm số liên tục và luôn tăng hay luôn giảm suy ra phương trình F(x)=0 nếu có nghiệm thì nghiệm đó là duy nhất.

Kết luận: Phương trình F(x)=0 có nghiệm duy nhất.

b) Nếu hàm số f(x) liên tục và tăng (hay giảm) trên X thì với $u,v \in X$ ta có $f(u)=f(v) \Leftrightarrow u=v$.

2. VÍ DŲ:

Giải phương trình
$$9(\sqrt{4x+1}-\sqrt{3x-2})=x+3$$
 (1)

Giải

Điều kiện :
$$x \ge \frac{2}{3}$$
.

$$(1) \Leftrightarrow \frac{9[(4x+1)-(3x-2)]}{\sqrt{4x+1}+\sqrt{3x-2}} = x+3 \Leftrightarrow \sqrt{4x+1}+\sqrt{3x-2}-9=0 \quad (2)$$

Xét hàm số
$$f(x) = \sqrt{4x+1} + \sqrt{3x-2} = 9$$

Ta có f'(x) =
$$\frac{4}{2\sqrt{4x+1}} + \frac{3}{2\sqrt{3x-2}} > 0$$
 với mọi x > $\frac{2}{3}$.

$$\Rightarrow$$
 f(x) tăng và liên tục trên $\left[\frac{2}{3};+\infty\right)$

⇒(2) nếu có nghiệm thì nghiệm đó là duy nhất.

Mặt khác f(6) = 0 nên x = 6 là một nghiệm của (2).

Vậy (2) có nghiệm duy nhất là x = 6.

Do đó (1) có nghiệm duy nhất là x = 6.