Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum I

Úloha č. 27

Název úlohy: Tepelné čerpadlo

Jméno: Vojtěch Votruba

Datum měření: 6. 4. 2023

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Teoretická část	0-2	
Výsledky a zpracování měření	0–9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 17	

Posuzoval: dne:

Pracovní úkoly

- 1. Při zapnutém kompresoru proměřte časovou závislost teplot v obou rezervoárech. Současně zaznamenávejte elektrický příkon kompresoru a časovou závislost tlaků v aparatuře. Graficky znázorněte.
- 2. Vyhodnotte chladicí a topný faktor zdroje tepla, graficky znázorněte závislosti $\varepsilon = \varepsilon(\Delta T)$ a $\tau = \tau(\Delta T)$
- 3. Při vypnutém kompresoru proměřte časovou závislost teploty vody v obou rezervoárech. Graficky znázorněte a závislost fitujte exponenciálou. Diskutujte koeficienty naměřené závislosti.
- 4. Ze změny teploty rezervoáru po vypnutí kompresoru určete dolní odhad tepelných ztrát.

1 Teoretická část

Ke splněni pracovních úkolů bylo využíváno laboratorní tepelné čerpadlo s vodou ukázané na obrázku 1.

Obrázek 1: Schéma tepelného čerpadla [1]

Základním principem je, že po zapnutí čerpadla se přenáší teplo z rezervoáru s výparníkem do rezervoáru se zkapalňovačem a vyrovnávají se tak teploty T_1 a T_2 .

K vypočtení tepla Q, které jednotlivé rezervoáry přijmou, resp. ztratí můžeme využít kalorimetrickou rovnici [1]

$$Q_{1,2} = m_{1,2}c\Delta T_{1,2},\tag{1}$$

kde c je měrná tepelná kapacita vody a ΔT příslušný rozdíl teplot. Hmotnost vody v rezervoáru m, můžeme zjistit pronásobením hustoty vody ρ a jejího objemu V.

"Zprostředkovatelem" přenosu tepla je zde chladivo, které je po okruhu tepelného čerpadla hnáno kompresorem. Začneme-li u výparníku: Chladivo se v jeho části okruhu přeměňuje do plynné fáze a odebírá tak příslušné skupenské teplo rezervoáru s teplotou T_1 . Jakmile pak dorazí ke zkapalňovači, je pára zchlazena a přeměňuje se na kapalinu, čímž naopak dodává skupenské teplo rezervoáru s teplotou T_2 . [1] Jako konkrétní chladivo v této aparatuře sloužil 1,1,1,2-tetrafluorethan (značka R134a). [1]

Práci W vykonanou kompresorem s průměrným příkonem P za čas $\Delta t = t_1 - t_0$ spočteme z definice[1] průměrného příkonu jako

$$W = P \cdot \Delta t. \tag{2}$$

případně neznáme-li průměrný příkon, využijeme jako definici[1]

$$W = \int_{t_0}^{t_1} P \mathrm{d}t. \tag{3}$$

Během celého procesu byl podle instrukcí měřen časový průběh tlaků p_1, p_2 na obou manometrech, příkon P na kompresoru a teploty T_1, T_2, T_3, T_4 u výparníku, zkapalňovače, kompresoru a okolí zkapalňovače (viz obrázek

Pro spočtení chladicího, resp. topného faktoru popisujícího efektivitu chladnutí, resp. ohřevu jednotlivých rezervoárů, využijeme jejich definici [1], tedy

$$\varepsilon = \frac{\Delta Q_1}{P \Delta t} = \frac{c m_1 \Delta T_1}{P \Delta t},\tag{4}$$

$$\varepsilon = \frac{\Delta Q_1}{P\Delta t} = \frac{cm_1 \Delta T_1}{P\Delta t}, \tag{4}$$

$$\tau = \frac{\Delta Q_2}{P\Delta t} = \frac{cm_2 \Delta T_2}{P\Delta t}, \tag{5}$$

kde ε , resp. τ jsou právě chladicí a topný faktor. Ostatní veličiny mají význam, který jim byl připsán výše. Δt zde značí rozdíl v časových intervalech jednotlivých záznamů příkonu a ΔT příslušný rozdíl teploty.

Podle prvního termodynamického zákona pak dále platí [1]

$$\Delta Q_1 + W = \Delta Q_2 + \Delta Q,\tag{6}$$

kde ΔQ jsou tepelné ztráty způsobeny nedokonalostí čerpadla. Tento vztah tedy můžeme využít k dolnímu odhadu tepelných ztrát podle prac. úkolu 4.

Výsledky a zpracování měření 2

2.1 Podmínky pokusu

Měření bylo provedeno v místnosti PI v budově MFF UK na Karlově. Změřené podmínky termo-hygro-barometrem při pokusu byly následující: Teplota $t=23.2(4)\,^{\circ}\mathrm{C}$, relativní vlhkost $\Phi=25(3)\%$, tlak $p=981(2)\,\mathrm{hPa}$. Za přesnou hodnotu hustoty vody při naměřené teplotě bylo převzato $\rho = 998 \,\mathrm{kg} \cdot \mathrm{m}^{-3}[2]$ a za přesnou měrnou tepelnou kapacitu hodnota $c = 4180 \frac{J}{Kkg}$.[2]

2.2 Přenos tepla

Časové závislosti teplot zaznamenával pomocí 4-kanálového teplotního dataloggeru Voltcraft s termočlánky typu K204 program na laboratorním počítači. Tlaky p_1, p_2 a příkon P byly manuálně zapisovány experimentátorem po odečtení z manometrů a zásuvkového měřiče spotřeby Solight DT26. Pro tuto část úlohy byla vybrána data odpovídající zapnutému kompresoru, tedy zhruba do $t=30\,\mathrm{min}$, kdy se rozdíl teplot ΔT blížil 45 K.

Naměřené hodnoty tlaků a příkonu byly pak zaneseny do tabulek 1 a 2, které jsou přiloženy na konci referátu. S ohledem na velké množství dat při měření teploty tato data zanesena nebyla, jsou ale přiložena k referátu v datovém souboru.

Všechny časové závislosti dále byly vyneseny do grafů 2, 3 a 4 na straně 3. K tomu byl použit software Origin konkrétně funkce Plot::X Y Error. Nejistota měření teploty byla určena součtem nejistoty teplotního dataloggeru 0.2 % z MH + 1 °C a nejistoty čidla, která činila 0.75% MH. Nejistota měření času pak byla stanovena podle odezvy čidla na 1 s.

V doprovodných měřeních byla nejistota měření tlaku odhadnuta jako velikost nejmenšího dílku (resp. jeho polovina v případě vysokotlakého barometru) na $\sigma_p=0,1$ bar. Relativní nejistota příkonu byla podle manuálu přístroje [3] stanovena na $\eta_P = 2\%$.

Dále bylo potřeba zjistit nejistotu měření času. Vzhledem k tomu, že bylo poměrné náročné odečíst ve stejný časový moment všechny tři hodnoty (p_1, p_2, P) , bylo odhadnuto $\sigma_t = 5$ s. V případě měření příkonu P se experimentátor snažil tuto hodnotu prioritizovat a odečíst ji co nejrychleji, proto její nejistota byla odhadnuta na nižších $\sigma_t = 2 \,\mathrm{s}$.

Obrázek 2: Závislost teplot T_1 a T_2 v příslušných rezevoárech na čase tpři zapnutém kompresoru

Obrázek 3: Závislost příkonu kompresoru ${\cal P}$ na čase t

Obrázek 4: Závislost tlaků p_1 a p_2 v příslušných manometrech na čase tpři zapnutém kompresoru

2.3 Chladicí a topný faktor

V rámci tohoto pracovního úkolu začněme vynesením závislostí $\varepsilon = \varepsilon(\Delta T)$ a $\tau = \tau(\Delta T)$. Oba faktory vypočteme pomocí vztahů (4) a (5). Za příslušný časový interval pak vezmeme hodnotu $\Delta t = 1$ min, což je převrácená hodnota vzorkovací frekvence, na kterou byl nastaven datalogger.

Hmotnost m v obou rezervoárech určíme jako $m=4\,\mathrm{dm^3}\cdot 998\,\mathrm{kg}\cdot\mathrm{m^{-3}}=4{,}0(1)\,\mathrm{kg}$, za nejistotu objemu zde bylo odhadnuto $\sigma_V=0.1\,\mathrm{dm^3}$.

Dále se kvůli tomu, že jsme použili vzorkovací frekvenci $\Delta t = 1$ min a příkon P byl měřen v intervalech po půlminutě, nabízí použít vždy příkon odpovídající měření mezi dvěma minutami. Faktory vypočtené z těchto hodnot nyní vyneseme do společného grafu 5.

Obrázek 5: Závislost chladicího a topného faktoru ε, τ na rozdílu teplot ΔT

Nejistotu určení chladicího (a analogicky i topného faktoru) jsme spočetli podle metody přenosu chyb [4] jako

$$\sigma_{\varepsilon} = \varepsilon \sqrt{\left(\left(\frac{\sigma_P}{P}\right)^2 + \left(\frac{\sigma_{\Delta t}}{\Delta t}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_{\Delta T_{1,2}}}{\Delta T_{1,2}}\right)^2},\tag{7}$$

kde zároveň $\sigma_{\Delta T_{1,2}}^2=\sigma_{T_{i+1}}^2+\sigma_{T_i}^2$ a $\sigma_{\Delta t}^2=\sigma_{t_1}^2+\sigma_{t_0}^2.$

Po vynesení těchto závislostí potřebujeme numericky zintegrovat závislost P(t), abychom mohli vyhodnotit celkový chladicí a topný faktor. K integraci využijeme znovu software Origin a jeho vestavěnou funkci Gadgets:Integrate. Ta nám vrátila hodnotu $W_{\text{celk.}} = 206(8)$ kJ, jak lze vidět na grafu 6. Bohužel Origin nám neposkytl nejistotu této integrace, byla tedy odhadnuta jako součet relativní nejistoty času a relativní nejistoty výkonu pro jednotlivá měření v grafu. Nyní použijeme vztahy (4) a (5), čímž získáváme

$$\varepsilon = 1.64(7),\tag{8}$$

$$\tau = 2, 0(1), \tag{9}$$

Za rozdíl teplot ΔT zde byly použity poslední hodnoty vyneseny do grafu 2. Nejistoty jsme určili podle metody přenosu chyb [4] jako

$$\sigma_{\varepsilon} = \varepsilon \sqrt{\left(\frac{\sigma_{\Delta T}}{\Delta T}\right)^2 + \left(\frac{\sigma_W}{W}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2}.$$
 (10)

Obrázek 6: Numerická integrace grafu podle obrázku 3

2.4 Chladnutí

V této podsekci jsme pouze znovu použili program *Origin*, tentokrát funkci *Analysis::Fitting:Exponential Fit.* Všechny použité vzorce a odhady chyb i princip měření jsou již popsány výše. Fit a naměřené hodnoty byly vyneseny do grafu 7.

Obrázek 7: Exponenciální fit teploty T v závislosti na čase t při vypnutém kompresoru

Konkrétní funkce, která byla použita, má tvar $y = a - be^{cx}$. Funkce nafitovaná na teplotu T_1 pak má parametry

$$a_1 = 285,0(4) \,\mathrm{K},$$
 (11)

$$b_1 = 11,3(4) \,\mathrm{K},$$
 (12)

$$c_1 = -0,000\,21(1)\,\mathrm{s}^{-1}. (13)$$

A funkce nafitovaná na teplotu T_2

$$a_2 = 298,4(1) \,\mathrm{K},\tag{14}$$

$$b_2 = -19.0(1) \,\mathrm{K},\tag{15}$$

$$c_2 = -0,000\,17(1)\,\mathrm{s}^{-1}. (16)$$

Na těchto parametrech je pozoruhodné například to, že v obou případech je parametr c velmi malý. To značí, že exponenciála není příliš strmá a mohli bychom závislost dobře aproximovat lineární funkcí pomocí Taylorova rozvoje. Ostatní parametry fitu vycházejí poměrně očekávatelně, jde přeci jen o jednoduchý exponenciální model.

2.5 Tepelné ztráty

K dolnímu odhadu tepelných ztrát použijeme rovnici (6) a data naměřená při vyrovnávání aparatury. Ježto byl kompresor v této části vypnutý, bude platit, že člen W = 0. Dostáváme tedy

$$\Delta Q = \Delta Q_1 - \Delta Q_2,\tag{17}$$

$$\Delta Q = cm(\Delta T_1 - \Delta T_2). \tag{18}$$

Chladnutí bohužel probíhalo tak pomalu, že jsme se nedostali zpět na počáteční hodnoty. To nám ale nevadí, neboť podle 1. termodynamického zákona bereme rozdíl rozdílů. Použitím krajních hodnot z grafu 7 nám tedy vychází

$$\Delta Q = 64(7) \,\mathrm{kJ},\tag{19}$$

kde jsme nejistotu stanovili podle metody přenosu chyb jako

$$\sigma_{\Delta Q} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_{\Delta T_1 - \Delta T_2}}{\Delta T_1 - \Delta T_2}\right)^2},\tag{20}$$

kde $\sigma_{\Delta T_1 - \Delta T_2}^2 = \sigma_{\Delta T_1}^2 + \sigma_{\Delta T_2}^2$.

3 Diskuse výsledků

3.1 Přenos tepla

V této části měření závislosti vyšly poměrně očekávatelně. Rozdíl teplot se postupně zvyšoval a jejich trendové čáry následoval velmi dobře i naměřený tlak. Nedošlo tedy k žádným výrazným systematickým chybám a většina nejistoty byla obsažena pouze pomocí systematických chyb měřicích přístrojů.

Výjimku zde tvoří měření závislosti P = P(t). V úseku 250 s - 500 s to vypadá to, jako by vypadlo značné množství hodnot a křivku tak není lehké proložit polynomem i třeba 9. stupně (viz další sekce). Jedno z vysvětlení může být, že sestup hodnot byl opravdu tak rychlý, že ho experimentátor nestihnul dostatečně rychle zapsat. Pro zkvalitnění měření nebo alespoň k nalezení přesné příčný problému by pak mohlo pomoct nastavit vyšší vzorkovací frekvenci, což by vedlo k většímu množství naměřených dat v problematické oblasti.

3.2 Chladicí a topný faktor

Měření chladicího a topného faktoru byla bohužel zanesena poměrně velkou chybou vypočtenou z chyb měřicích přístrojů. V této části je také referát napadnutelný, neboť nejistota objemu σ_V byla zvolena poměrně arbitrárně. Experimentátor je ale přesvědčen, že by rozdíl $0.1\,\mathrm{dm}^3$ v rezervoáru díky rysce poznal.

Metoda numerické integrace pomocí *Origin* byla zvolena jako nejlepší metoda v poměru "cena/výkon". Byť by závislost šla proložit polynomem a ten pak jednoduše zintegrovat, my bohužel nemáme žádné informace o tom, jak by závislost ve skutečnosti měla vypadat. Předpokládat tedy polynomiální závislost by nemuselo vést k dobrému výsledku.

Na druhou stranu. Samotný topný a chladicí faktor nevyšly v rámci svých nejistot v dobré shodě. Podle [5] totiž platí $\tau - \varepsilon = 1$, nejistota integrace byla tedy pravděpodobně podhodnocená. Naštěstí z grafu alespoň je vidět, že ve většině bodech platí nerovnost $\tau > \varepsilon$.

3.3 Chladnutí

Fit, který vytvořil program *Origin* se zdá být velmi přesný i přes velké množství naměřených hodnot. Prokládat proces chladnutí exponenciální závislostí dává fyzikální smysl. Exponenciála se běžně objevuje v jevech typu: vybíjení, úbytek koncentrace apod. Proto můžeme tuto část měření označit za podařenou.

3.4 Tepelné ztráty

Velikost tepelných ztrát vyšla vzhledem k hodnotám, ve kterých se pohybujeme rozumně. Je jasné, že laboratorní tepelné čerpadlo nebude jako tepelný stroj příliš efektivní a tak není hodnota dolního odhadu překvapující.

4 Závěr

Podařilo se nám proměřit kýžené závislosti teploty, tlaku, výkonu, chladicího a topného faktoru a graficky je znázornit. Pomocí numerické integrace jsme pak stanovili celkový chladicí a topný faktor na hodnoty

$$\varepsilon = 1.64(7),\tag{21}$$

$$\tau = 2,0(1). (22)$$

Dále jsme časové průběhy teplot získané při vyrovnávání celé soustavy tepelného čerpadla proložili exponenciální křivkou, diskutovali její parametry a celý fit graficky znázornili.

Posledním úkolem, co jsme splnili, byl dolní odhad tepelných ztrát, který jsme stanovili na

$$\Delta Q = \Delta Q = 64(7) \,\text{kJ},\,$$

Reference

- [1] (XXVII) Tepelné čerpadlo [online]. [cit. 2023-04-19]. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/zadani/127
- [2] MIKULČÁK, J., F. ZEMÁNEK, B. KLIMEŠ, J. ŠIROKÝ a V. ŠŮLA. Matematické, fyzikální, chemické tabulky a vzorce pro střední školy. Praha: Státní pedagogické nakladatelství, n.p., 1988.
- [3] Návod k použití digitálního měřiče spotřeby elektrické energie Solight DT26 [online]. [cit. 2023-04-19]. Dostupné z: https://www.solight.cz/documents/dt26_cz%20n%C3%A1vod.pdf
- [4] ENGLICH, Jiří. Úvod do praktické fyziky. Praha: Matfyzpress, 2006. ISBN 80-86732-93-2.
- [5] Coefficient of performance. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2023-04-20]. Dostupné z: https://en.wikipedia.org/wiki/Coefficient_of_performance

Tabulka 2: Naměřené hodnoty příkonu Pv čase t

t/s	P/W
0(2)	125(3)
30(2)	125(3)
60(2)	127(3)
90(2)	128(3)
120(2)	130(3)
150(2)	133(3)
180(2)	134(3)
210(2)	136(3)
240(2)	137(3)
270(2)	138(3)
300(2)	139(3)
330(2)	139(3)
360(2)	138(3)
390(2) $420(2)$	126(3)
450(2)	126(3) $126(3)$
480(2)	126(3) $125(3)$
510(2)	125(3) 126(3)
540(2)	124(2)
570(2)	124(2) 128(3) 127(3)
600(2)	127(3)
	126(3)
630(2) $660(2)$	126(3) 126(3) 127(3)
690(2)	127(3)
720(2)	128(3)
750(2)	128(3)
780(2)	128(3)
810(2)	126(3)
840(2)	126(3)
870(2)	127(3)
900(2)	128(3)
930(2)	128(3)
960(2)	127(3)
990(2)	126(3)
1020(2)	126(3)
1050(2)	127(3)
1080(2)	127(3)
1110(2)	126(3)
1140(2)	$ \begin{array}{c} 125(3) \\ 125(2) \\ 125(3) \end{array} $
1170(2)	125(2)
1200(2)	125(3)
1230(2)	126(3)
1260(2)	126(3)
1290(2)	125(2)
1320(2)	124(2)
1350(2)	124(2)
1380(2)	125(2)
1410(2)	125(3)
1440(2)	124(2)
1470(2) 1500(2)	123(2) $123(2)$
1500(2) $1530(2)$	123(2) $123(2)$
1560(2) $1560(2)$	123(2) $124(2)$
1500(2) $1590(2)$	124(2) $123(2)$
1690(2)	123(2) 122(2)

1620(2) 122(2)

Tabulka 1: Naměřené hodnoty tlaku p v čase t. p_1 značí tlak na nízkotlakém manometru a p_2 tlak na vysokotlakém manometru

t/s	p_1/bar	p_2/bar
0(5)	4,8(1)	5,0(1)
120(5)	3,2(1)	6,6(1)
330(5)	3,0(1)	9,4(1)
510(5)	2,5(1)	10(1)
690(5)	2,3(1)	10,7(1)
870(5)	2,0(1)	11,6(1)
1110(5)	1,9(1)	12,1(1)
1230(5)	1,8(1)	12,5(1)
1410(5)	1,7(1)	12,8(1)
1590(5)	1,7(1)	13,1(1)