

Deep models for temporal data with applications to electrocardiography

Daniel Gedon

Department of Information Technology, Uppsala University.

Half-time seminar March 25, 2022

Outline

Introduction

Modeling with temporal data

Dynamical system view

Prediction view

Outlook

Outline

Introduction

Modeling with temporal data

Dynamical system view

Prediction view

Outlook

Deep models for temporal data with applications to electrocardiography

-- Model 2

Success of deep learning based on:

- powerful computers
- large data sets
- ⇒ Many natural data sets are collected over time

Introduction

In this talk: Different types of modeling temporal data

Part 1:

[Paper I] Deep State Space Models for Nonlinear System Identification

D. Gedon, N. Wahlström, T. Schön, L. Ljung

19th IFAC Symposium on System Identification (SYSID), 2021

Part 2:

[Paper II] Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble

A.H. Ribeiro, D. Gedon, D. Teixeira, M.H. Ribeiro, A.L. Pinho Ribeiro, T. Schön, W. Meira Jr. Computing in Cardiology (CinC), 2020

[Paper III] First Steps Towards Self-Supervised Pretraining of the 12-Lead ECG

D. Gedon, A.H. Ribeiro, N. Wahlström, T. Schön

Computing in Cardiology (CinC), 2021

[Paper IV] Artificial Intelligence-Based ECG Diagnosis of Myocardial Infarction in Emergency Department Patients

S. Gustafsson*, D. Gedon*, E. Lampa, A.H. Ribeiro, M. Holzmann, T. Schön, J. Sundström

NeurIPS Workshop, 2021

Submitted to Circulation, 2022

+ Ongoing work

Outline

Introduction

Modeling with temporal data

Dynamical system view

Prediction view

Outlook

Modeling with temporal data

Dynamical system view

- time-series to time-series
- Model: replicate system dynamics

Prediction view

- time-series to point
- Model: Classifier / Regressor

Outline

Introduction

Modeling with temporal data

Dynamical system view

Prediction view

Outlook

Dynamical system view - General

- Dynamical system view = System identification
- ullet From input-output data to one-step ahead predictor $f_\phi(\cdot)$

$$\{(\mathbf{u}_t, \mathbf{y}_t)\}_{t=1}^T \quad \Rightarrow \quad \hat{\mathbf{y}}_{t+1} = f_{\phi}(\mathbf{u}_{1:t}, \mathbf{y}_{1:t})$$

One way to achieve this:

[Paper I] Deep State Space Models for Nonlinear System Identification

SSM given as

$$\mathbf{h}_t = f_{\theta}(\mathbf{h}_{t-1}, \mathbf{u}_t, \mathbf{y}_t).$$

$$\mathbf{\hat{y}}_{t+1} = g_{\theta}(\mathbf{h}_t).$$

- deep SSM as extension of classic SSM with Neural Networks
- show that deep SSM are useful for system identification
- Pedagogical paper: explain deep SSM to system identification community

Dynamical system view - Deep SSM

Recurrent Neural Network (RNN)

- Recursive propagation of hidden state.
- Dirac delta function as state transition distribution.

Variational Autoencoder (VAE)

- Decoder: $p_{ heta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}^{dec}, \boldsymbol{\sigma}^{dec}),$ $[\boldsymbol{\mu}^{\mathrm{dec}}, \boldsymbol{\sigma}^{\mathrm{dec}}] = \mathrm{NN}^{\mathrm{dec}}_{\theta}(\mathbf{z}).$
- Prior: $p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I})$.
- $\begin{array}{l} \bullet \;\; \mathsf{Encoder:} \;\; q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}\left(\mathbf{z}|\boldsymbol{\mu}^{\mathrm{enc}}, \boldsymbol{\sigma}^{\mathrm{enc}}\right), \\ \left[\boldsymbol{\mu}^{\mathrm{enc}}, \boldsymbol{\sigma}^{\mathrm{enc}}\right] = \mathrm{NN}_{\phi}^{\mathrm{enc}}(\mathbf{x}). \end{array}$

Dynamical system view - Deep SSM

- Require a temporal extension of the VAE.
 → combine RNN and VAE
- Prior: update with RNN output, $p_{\theta}(\mathbf{z}_t|\mathbf{h}_t) = \mathcal{N}\left(\mathbf{z}_t|\boldsymbol{\mu}_t^{\text{prior}}, \boldsymbol{\sigma}_t^{\text{prior}}\right), \\ [\boldsymbol{\mu}_t^{\text{prior}}, \boldsymbol{\sigma}_t^{\text{prior}}] = \text{NN}_{\theta}^{\text{prior}}(\mathbf{h}_t).$

[Paper I] studies six variants of deep SSM

Inference network

Generative network

Dynamical system view - Deep SSM results

Linear Gaussian system:

$$\begin{split} \mathbf{x}_{k+1} &= \begin{bmatrix} 0.7 & 0.8 \\ 0 & 0.1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} -1 \\ 0.1 \end{bmatrix} \mathbf{u}_k + \mathbf{v}_k, \\ \mathbf{y}_k &= \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k + \mathbf{w}_k, \\ \mathbf{v}_k &\sim \mathcal{N}\left(0, 0.5 \cdot \mathbf{I}\right), \ \mathbf{w}_k \sim \mathcal{N}\left(0, 1\right). \end{split}$$

Toy Problem: Linear Gaussian System

Nonlinear Narendra-Li benchmark:

- highly nonlinear dynamics
- two states

Dynamical system view - Deep SSM results

Dynamical system view - Ongoing work

Ongoing work: Deep Learning for System Identification Survey

- Deep SSM is just one method
- Lots of overlap between system identification and deep learning method
- Example: general modeling procedure

Outline

Introduction

Modeling with temporal data

Dynamical system view

Prediction view

Outlook

Prediction view = obtain a point prediction

 $\mathbb{R}^t o \mathbb{R}$ for regression

 $\mathbb{R}^t o \mathbb{Z}$ for classification

Prediction view - General

Problems we are facing:

• Data of varying length

[Paper II] Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble

• Lots of unlabeled data

[Paper III] First Steps Towards Self-Supervised Pretraining of the 12-Lead ECG

Model improvements

[Paper IV] Artificial Intelligence-Based ECG Diagnosis of Myocardial Infarction in Emergency Department Patients

- Label noise
- Uncertain predictions

Ongoing work

[Paper II] Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble

Model of choice: adapted ResNet

⇒ Requires fixed input size

Prediction view - Varying length

How to deal with varying input size?

How to combine predictions?

Prediction view - Varying length

Can we use this method to improve overall performance?

Prediction view - Lots of unlabeled data

[Paper III] First Steps Towards Self-Supervised Pretraining of the 12-Lead ECG

- Most data is collected without high quality labels
- Raw data itself contains lots of information
- How to utilize this information?
- \Rightarrow Use self-supervised methods
 - Generate label from the signal itself
 - 1. Self-supervised pre-training (lots of data)
 - 2. Fine tuning on downstream task (limited data)

Prediction view - Lots of unlabeled data

- Completion based generation of labels.
- Input: Replace subsequences of chosen length with zero.
- Output: Predict masked subsequences.

• Problem: How many samples to mask? Too easy vs too hard completion.

Model architecture

U-ResNet: ResNet based encoder-decoder + U-Net skip connections.

Prediction view - Model improvements

[Paper IV] Artificial Intelligence-Based ECG Diagnosis of Myocardial Infarction in Emergency Department Patients

- \Rightarrow Solve difficult real world problem.
 - Myocardial Infarctions (MIs):
 - 9M deaths/year, 200M disability-adjusted life years/year, and rising.
 - False negatives: 10-50,000 missed cases/year at EDs in the United States.
 - False positives: Less than half of those hospitalized for a suspected MI are diagnosed.
 → High burden on public health.
 - ECG:
 - ST-elevation MI (STEMI) → detect in ECG
 - ullet non-ST-elevation-MI (NSTEMI) ightarrow require blood testing

Prediction view - Model improvements

Splitting of the data set:

Highly unbalanced data set:

	Control	STEMI	NSTEMI
Absolute	484,992	1,818	5,416
Relative	98.5%	0.4%	1.1%

Results from model improvement on smaller data set

Prediction view - Model improvements

Final results

Numeric results on test sets

		Random	Temporal
AUROC (↑)	Control	0.86 (0.004)	0.90 (0.005)
	STEMI	0.99 (0.002)	0.99 (0.001)
	NSTEMI	0.83 (0.004)	0.87 (0.006)
	MI	0.86 (0.004)	0.90 (0.004)
Brier (↓)	Control	0.18 (0.000)	0.18 (0.000)
	STEMI	0.05 (0.000)	0.05 (0.000)
	NSTEMI	0.05 (0.000)	0.05 (0.000)

ROC curve.

Top: temporal split. Bottom: random split.

Prediction view - Model improvements

Model analysis

 $\mathsf{Grad}\text{-}\mathsf{CAM}\ \mathsf{plots} \to \mathsf{identify}\ \mathsf{patterns}\ \mathsf{of}\ \mathsf{the}\ \mathsf{model}$

STEMI

- ST-segment elevation
- typical for humans

STEMI

- Down-sloping T-wave
- untypical for humans

NSTEMI

- ST-segment depression
- humans would not suspect a MI

Outline

Introduction

Modeling with temporal data

Dynamical system view

Prediction view

Outlook

Outlook - Ongoing work

Further real-world data problems:

- 1. Label noise
 - Chagas prediction
 - Self-reported noisy labels
 - Mismatch of training and test label quality
- 2. Uncertain predictions
 - Predict electrolyte values
 - Regression
 - Use Gaussian/Laplace approximations

Figure from N. Pilia et al. "ECG as a tool to estimate potassium and calcium concentrations in the extracellular space," CinC, 2017

Outlook - Ongoing work

Inspired by self-supervised models:

- Self-supervised as specific unsupervised model
- Try to understand properties of unsupervised models
- Specifically analyse simple overparametrized models

Contact

Daniel Gedon, Uppsala University

E-mail: daniel.gedon@it.uu.se

GitHub: https://github.com/dgedon

Twitter: @danigedon

Supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.