

# INTRO

- Do off-the-court factors impact a school's men's basketball results for an individual season? If so, which factors are most important in predicting the results of a season?
- We took data from the top 8 conferences in men's college basketball and looked at a bunch of variables including revenue and enrollment





#### DATA SOURCE

- Compiled Data from the U.S. Department of Education Equity in Athletics Data Analysis
- Original Data was compiled for Sports Analytics Company for Research into all Division 1 College Athletics Programs
  - 50 variables, including profits for all sports
- Cut Down to 8 variables for this project



## DATA PREVIEW

|    | A                                           | В        | С                          | D          | E        | F                   | G ∢                            | ▶ I          | J                                   | К                                        | L             |
|----|---------------------------------------------|----------|----------------------------|------------|----------|---------------------|--------------------------------|--------------|-------------------------------------|------------------------------------------|---------------|
| 1  | School Name                                 | Conf_Cat | Years in<br>Confere<br>nce | Enrollment | Type_Cat | Football<br>Revenue | Men's<br>Basketball<br>Revenue | MBB Profit   | Line 14:<br>Grand Total<br>Revenues | Men's<br>Basketball<br>Arena<br>Capacity | MBB Winning % |
| 2  | Clemson University                          | 1        | 69                         | 25,822     | 1        | \$68,912,760        | \$8,035,346                    | \$0          | \$140,436,882                       | 9000                                     | 51.52%        |
| 3  | Boston College                              | 1        | 17                         | 14,890     | 2        | \$38,009,926        | \$8,333,993                    | -\$340,040   | \$95,703,917                        | 8606                                     | 39.39%        |
| 4  | Georgia Institute of Technology             | 1        | 43                         | 36,489     | 1        | \$28,788,322        | \$9,258,729                    | \$1,048,678  | \$93,696,369                        | 8600                                     | 37.50%        |
| 5  | University of Miami                         | 1        | 18                         | 17,811     | 2        | \$74,206,277        | \$9,978,355                    | \$41,699     | \$148,497,805                       | 7972                                     | 70.27%        |
| 6  | Wake Forest University                      | 1        | 69                         | 8,789      | 2        | \$28,341,365        | \$10,061,485                   | \$98,888     | \$84,889,487                        | 14665                                    | 71.43%        |
| 7  | University of Notre Dame                    | 1        | 9                          | 12,681     | 2        | \$136,688,613       | \$10,817,411                   | \$0          | \$215,302,668                       | 9149                                     | 68.57%        |
| 8  | Virginia Tech                               | 1        | 18                         | 36,383     | 1        | \$52,962,813        | \$12,456,695                   | \$4,051,993  | \$109,216,783                       | 10052                                    | 63.89%        |
| 9  | University of Pittsburgh                    | 1        | 9                          | 28,391     | 1        | \$47,178,220        | \$12,968,545                   | \$2,033,868  | \$122,722,495                       | 12508                                    | 34.38%        |
| 10 | University of Virginia                      | 1        | 69                         | 25,018     | 1        | \$48,118,214        | \$14,598,575                   | \$2,324,773  | \$128,298,742                       | 14593                                    | 60.00%        |
| 11 | North Carolina State University             | 1        | 69                         | 36,304     | 1        | \$52,241,521        | \$15,377,713                   | \$5,370,999  | \$102,387,569                       | 19557                                    | 74.36%        |
| 12 | Florida State University                    | 1        | 31                         | 45,493     | 1        | \$78,697,218        | \$16,987,326                   | \$5,882,862  | \$162,146,012                       | 12100                                    | 54.84%        |
| 13 | University of Louisville                    | 1        | 8                          | 21,430     | 1        | \$34,994,931        | \$21,853,488                   | \$0          | \$139,978,924                       | 22090                                    | 40.63%        |
| 14 | University of North Carolina at Chapel Hill | 1        | 69                         | 30,101     | 1        | \$55,604,225        | \$31,965,031                   | \$19,519,663 | \$119,569,409                       | 21750                                    | 74.36%        |
| 15 | Syracuse University                         | 1        | 9                          | 21,322     | 2        | \$50,242,311        | \$34,157,191                   | \$19,334,920 | \$105,631,408                       | 35446                                    | 48.48%        |
| 16 | Duke University                             | 1        | 69                         | 16,780     | 2        | \$64,725,236        | \$45,108,538                   | \$17,088,650 | \$150,517,681                       | 9314                                     | 82.05%        |
| 17 | West Virginia University                    | 2        | 10                         | 25,474     | 1        | \$19,787,210        | \$8,371,424                    | -\$1,356,711 | \$97,067,706                        | 14000                                    | 48.48%        |
| 18 | Kansas State University                     | 2        | 26                         | 20,229     | 1        | \$50,528,678        | \$10,163,782                   | \$2,510,671  | \$100,822,204                       | 12528                                    | 45.16%        |
| 19 | Oklahoma State University                   | 2        | 26                         | 24,660     | 1        | \$49,465,735        | \$11,360,616                   | \$3,862,472  | \$101,526,357                       | 13611                                    | 50.00%        |
| 20 | Texas Christian University (TCU)            | 2        | 10                         | 11,938     | 2        | \$71,767,270        | \$12,670,472                   | \$2,292      | \$138,998,636                       | 8500                                     | 61.76%        |
| 21 | Baylor University                           | 2        | 26                         | 20,626     | 2        | \$48,492,390        | \$13,308,914                   | \$0          | \$111,131,098                       | 10347                                    | 79.41%        |
| 22 | University of Oklahoma                      | 2        | 26                         | 28,052     | 1        | \$132,659,502       | \$14,034,622                   | \$1,628,567  | \$186,948,657                       | 11528                                    | 54.29%        |
| 23 | Texas Tech University                       | 2        | 26                         | 40,666     | 1        | \$60,218,700        | \$15,290,989                   | \$3,432,306  | \$103,708,791                       | 15300                                    | 72.97%        |
| 24 | Iowa State University                       | 2        | 26                         | 30,708     | 1        | \$55,861,324        | \$15,676,249                   | \$8,233,209  | \$86,775,037                        | 14376                                    | 62.86%        |
| 25 | University of Kansas                        | 2        | 26                         | 27,685     | 1        | \$39,077,010        | \$17,126,971                   | \$1,618,077  | \$124,842,549                       | 16300                                    | 85.00%        |
| 26 | University of Texas at Austin               | 2        | 26                         | 51,892     | 1        | \$161,532,860       | \$23,637,212                   | \$7,782,313  | \$230,503,008                       | 10763                                    | 64.71%        |
| 27 | DePaul University                           | 3        | 9                          | 21,922     | 2        | N/A                 | \$7,614,927                    | \$0          | \$33,627,815                        | 10387                                    | 48.39%        |

#### DATA & VARIABLES

- 9 independent variables: conference (Conf\_Cat), years in conference (Conf\_Years), school enrollment (Enrollment), private/public university (Type\_Cat), football revenue (FB\_Rev), men's basketball revenue (MBB\_Rev), total revenue (Total\_Rev), men's basketball expenses (MBB\_Expense), men's basketball arena capacity (MBB\_Arena\_Cap)
  - oquantified conferences 1–8 and public schools (1) vs private schools (2)
- dependent variable: men's basketball winning percentage

| Conferences   | & Categories |
|---------------|--------------|
| ACC           | 1            |
| Big 12        | 2            |
| Big East      | 3            |
| BIG-10        | 4            |
| Mountain West | 5            |
| PAC-12        | 6            |
| SEC           | 7            |
| WCC           | 8            |

## PAIRED DATA



#### ORIGINAL MODEL

```
Call:
lm(formula = MBB\_Win\_Perc \sim ., data = data)
Residuals:
    Min
              10
                  Median
                               3Q
                                       Max
-0.44357 -0.09320 0.00254 0.13578 0.29816
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
              4.407e-01 1.287e-01
                                    3.424 0.00103 **
Conf_Cat
              4.518e-03 1.005e-02
                                    0.450 0.65442
           2.257e-05 5.537e-04
Conf Years
                                    0.041
                                          0.96759
Enrollment
           2.555e-09 1.738e-06
                                    0.001 0.99883
            1.596e-02 5.645e-02
                                    0.283 0.77817
Type_Cat
FB Rev
             -1.022e-03 1.226e-03
                                   -0.834
                                           0.40727
                                           0.08488 .
MBB_Rev
        8.970e-03 5.133e-03
                                    1.747
MBB_Expense -3.520e-03 7.637e-03
                                   -0.461
                                           0.64628
Total_Rev
            7.857e-04 1.007e-03
                                    0.780
                                           0.43795
MBB_Arena_Cap -1.725e-06 4.732e-06
                                   -0.365 0.71650
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 0.1674 on 71 degrees of freedom
  (15 observations deleted due to missingness)
Multiple R-squared: 0.1151, Adjusted R-squared: 0.002878
F-statistic: 1.026 on 9 and 71 DF, p-value: 0.4284
```

• only 2 significant predictors: intercept & MBB revenue

• Interpretation of Slope: As total revenue increases by \$1 million, the winning percentage is expected to increase by 0.07857%, holding all other variables in the model constant.

#### PROCESS TO REDUCED MODEL: BEST SUBSET REGRESSION

| X<br><chr></chr>                                                                          | <b>r2</b><br><dbl></dbl> | adjr2<br>«dbl» | AIC<br><dbl></dbl> | BIC<br><dbl></dbl> | r2press<br><dbl></dbl> | Cp<br><dbl></dbl> |
|-------------------------------------------------------------------------------------------|--------------------------|----------------|--------------------|--------------------|------------------------|-------------------|
| MBB_Rev                                                                                   | 0.1029232                | 0.093379792    | -73.39222          | -65.69918          | 0.06739601             | -4.2247161        |
| Type_Cat MBB_Rev                                                                          | 0.1091770                | 0.090019531    | -72.06382          | -61.80643          | 0.05015541             | -2.8366298        |
| Conf_Cat Type_Cat MBB_Rev                                                                 | 0.1122669                | 0.083319121    | -70.39739          | -57.57564          | 0.03465980             | -1.1389661        |
| Conf_Cat Conf_Years Type_Cat MBB_Rev                                                      | 0.1130322                | 0.074044600    | -68.48018          | -53.09409          | 0.01385079             | 0.7861566         |
| Conf_Cat Conf_Years Type_Cat MBB_Rev MBB_Expense                                          | 0.1133328                | 0.064073514    | -66.51272          | -48.56228          | -0.01340984            | 2.7567434         |
| Conf_Cat FB_Rev MBB_Rev MBB_Expense Total_Rev MBB_Arena_Cap                               | 0.1137947                | 0.041940162    | -54.29030          | -35.13471          | -0.07828786            | 4.1010231         |
| Conf_Cat Type_Cat FB_Rev MBB_Rev MBB_Expense Total_Rev MBB_Arena_Cap                      | 0.1150331                | 0.030173247    | -52.40358          | -30.85354          | -0.12876150            | 6.0016622         |
| Conf_Cat Conf_Years Type_Cat FB_Rev MBB_Rev MBB_Expense Total_Rev MBB_Arena_Cap           | 0.1150538                | 0.016726421    | -50.40547          | -26.46098          | -0.16017053            | 8.0000022         |
| Conf_Cat Conf_Years Enrollment Type_Cat FB_Rev MBB_Rev MBB_Expense Total_Rev MBB_Arena_Ca | 0.1150538                | 0.002877527    | -48.40547          | -22.06653          | -0.18417435            | 10.0000000        |

9 rows | 1-1 of 7 columns

- Best R<sup>2</sup>: model 8 & 9 (highest) Best Radj<sup>2</sup>: model 1 (highest) Best Rpress<sup>2</sup>: model 1 (highest) Best Cp: model 8 (closest to k+1) Best AIC: model 1 (lowest) Best BIC: model 1 (lowest)
- We choose model 1 as our best model because it fits 4/6 optimality criterion

#### PROCESS TO REDUCED MODEL: STEPWISE SELECTION AND BACKWARD ELIMINATION

- Stepwise Selection
  - Only added MBB Revenue
- Backward Elimination
  - Removed all variables except for MBB Revenue

#### REDUCED MODEL: SIMPLE LINEAR REGRESSION

```
Call:
lm(formula = MBB_Win_Perc ~ MBB_Rev, data = data)
Residuals:
    Min
              10 Median
-0.44098 -0.10004 0.00514 0.13058 0.28528
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.482490
                    0.034033 14.177 < 2e-16 ***
                    0.002247
           0.007378
                               3.284 0.00144 **
MBB_Rev
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1617 on 94 degrees of freedom
Multiple R-squared: 0.1029, Adjusted R-squared: 0.09338
F-statistic: 10.78 on 1 and 94 DF, p-value: 0.001438
Analysis of Variance Table
Response: MBB_Win_Perc
         Df Sum Sq Mean Sq F value Pr(>F)
         1 0.28204 0.282045 10.785 0.001438 **
Residuals 94 2.45830 0.026152
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

- Best Subset Regression, Stepwise Selection, and Backward
   Elimination all chose model 1 (with only 1 predictor: MBB revenue)
   as the best model
- Interpretation of Estimates:
  - o If a school had \$0 revenue from men's basketball, they would be expected to win 48.25% of their games.
  - As men's basketball revenue increases by \$1 million, the winning percentage is expected to increase by as much as 0.7%.

#### TESTING THE MODEL: FULL VS REDUCED

- $H_0$ : Reduced model is adequate.
  - $H_a$ : Full model is adequate.
- F test statistic:  $\frac{(2.2458-1.988)/(9-1)}{1.988/(96-(9+1))} = 1.394$
- F critical value: qf(0.05, 8, 86, lower.tail=F) = 2.048
- ullet Decision: F test < F critical so we fail to reject  $H_{f 0}$
- Conclusion: We do not have enough evidence to show the full model is adequate, so we can use the reduced model.

#### TESTING THE MODEL: SIGNIFICANCE OF ESTIMATES

- $H_0$ :  $\beta_j = 0$ ; the  $j^{th}$  predictor is not significant  $H_a$ :  $\beta_j \neq 0$ ; the  $j^{th}$  predictor is significant
- MBB\_Rev p-value: 0.00144
- Decision: p-value much less than  $\alpha = 0.05$ , so we reject  $H_0$
- Conclusion: We have evidence that MBB revenue is a significant predictor.

#### PREDICTIONS

- using Villanova as a test predictor: MBB revenue was \$20.513366 million
- our model predicted Nova to have a win percentage of 63.38%
  - actual was 78.95%, so 19.7% error

```
#Predict using NOVA!
```{r}
test = data.frame(MBB_Rev=20.513366)
predict(new_fit, test)

1
0.6338475
```

- Prediction Interval: We are 95% confident that the true winning percentage of an NCAA men's basketball team with \$21,513,366 revenue due to men's basketball is between 30.95% and 95.82%.

  1 0.6338475 0.3094646 0.9582305
- Confidence Interval: We are 95% confident that the true increase in winning percentage per \$1 million increase in men's basketball revenue is between 58.78% and 67.99%.

  1 0.6338475 0.5877517 0.6799433

## **ASSUMPTIONS**

• Linearity & Constant Variance satisfied





#### NORMALITY

- Normality satisified
  - Wilk-Shapiro value = 0.97759
  - op-value = 0.099



## OUTLIERS

- 3 outliers, but not super far
- None were also influential









#### INFLUENTIAL POINTS

- 4 influential points initially, then remove the most influential
- now 5 influential points, so we removed all 5
- then many more influential points
  - Back to the original data set since the overall model was generally the same

#### SUMMARY AND CONCLUSIONS

- Reconsider Initial Research Questions:
  - Do off-the-court factors impact a school's men's basketball results for an individual season?
  - If so, which factors are most important in predicting the results of a season?

#### SUMMARY AND CONCLUSIONS CONT'D

- Linear regression indicates that it is possible to predict the results of a season through off-court values
- Win Percentage = 0.48249 0.007378(MBB Revenue)
- However, we cannot predict a team's winning percentage with much precision
  - Our adjusted R<sup>2</sup> value for the linear regression model is only about 9.3%
  - We can say that a team's men's basketball revenue and their winning percentage are lightly linearly correlated
  - Our tests indicated that no other variables were able to predict men's basketball winning percentage with any significance

#### LOOKING FORWARD

- Look at time-series data to see how revenues over time are correlated to a team's success over the years
- Incorporate more variables and smaller schools (schools that are in smaller conferences with less money) in order to help those schools with tighter budgets
- We plan to investigate this relationship with additional skills and model capabilities in the future

#### THANK YOU AND WORKS CITED

#### Works Cited

"2021-2022 Division 1 Athletics Information." *Equity in Athletics*, ope.ed.gov/athletics/#/. Accessed 11 Dec. 2023.