Fundamentals of Materials Science Homework 19

Name: Xiao, Liyang Date: 05/07/2017 Student #: 15090215

Homework Problems:

1. Compute the mass fraction of α ferrite and cementite in pearlite.

Solution:

$$W_{\alpha} = \frac{C_{Fe_3C} - C_0}{C_{Fe_3C} - C_{\alpha}} = \frac{6.70 - 0.76}{6.70 - 0.022} = 0.89$$

$$W_{Fe_3C} = \frac{C_0 - C_{\alpha}}{C_{Fe_3C} - C_{\alpha}} = \frac{0.76 - 0.022}{6.70 - 0.022} = 0.11$$

2. What is the carbon concentration of an iron-carbon alloy in which the mass fractions of total ferrite is 0.94?

Solution:

$$W_{\alpha} = \frac{C_{Fe_3C} - C_0}{C_{Fe_3C} - C_{\alpha}} = \frac{6.70 - C_0}{6.70 - 0.022} = 0.94 \text{ ; } \therefore C_0 = 0.42$$

3. The proeutectoid phase could be proeutectoid ferrite or proeutectoid cementite depending on the different C content. What is the proeutectoid phase for an iron-carbon alloy in which the mass fractioin of total ferrite and total cementite are 0.92 and 0.08, respectively? Why?

$$W_{\alpha} = \frac{C_{Fe_3C} - C_0}{C_{Fe_3C} - C_{\alpha}} = \frac{6.70 - C_0}{6.70 - 0.022} = 0.92 \text{ ; } \cdot C_0 = 0.56$$

- : the proeutectoid phase is proeutectoid ferrite.
- 4. Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727°C (1341°F).
 - (a) What is the proeutectoid phase?
 - (b) How many kilograms each of total ferrite and cementite form?

- (c) How many kilograms each of pearlite and the proeutectoid phase form?
 - (d) Schematically sketch and label the resulting microstructure.

Solution:

(a)1.15 wt% C is between 0.76 and 2.14 wt% C, so the proeutectoid phase is proeutectoid cementite.

(b).
$$W_{\alpha} = \frac{C_{Fe_3C} - C_0}{C_{Fe_3C} - C_{\alpha}} = \frac{6.70 - 1.15}{6.70 - 0.022} = 0.83$$

$$W_{Fe_3C} = \frac{C_0 - C_{\alpha}}{C_{Fe_3C} - C_{\alpha}} = \frac{1.15 - 0.022}{6.70 - 0.022} = 0.17$$

$$\therefore M_{\alpha} = 1kg \times 0.83 = 0.83kg$$

$$M_{Fe,C} = 1kg \times 0.17 = 0.17kg$$

(c).
$$W_{pearlite} = \frac{6.7 - 1.15}{6.7 - 0.76} = 0.93$$

$$W_{proeutectoid} = \frac{1.15 - 0.76}{6.7 - 0.76} = 0.07$$

So,
$$m_{pearlite} = 1kg \times 0.93 = 0.93 \text{kg}$$

$$m_{proeutectoid} = 1kg \times 0.07 = 0.07$$
kg

(d)

5. Compute the mass fractions of proeutectoid ferrite and pearlite that form in an iron-carbon alloy containing 0.25 wt% C.

$$W_{proeutectoid} = \frac{0.76 - 0.25}{0.76 - 0.022} = 0.69$$

$$W_{pearlite} = \frac{0.25 - 0.022}{0.76 - 0.022} = 0.31$$

6. Consider 2.0 kg of a 99.6 wt% Fe-0.4 wt% C alloy that is cooled to a temperature just below the eutectoid. (a) How many kilograms of proeutectoid ferrite form? (b) How many kilograms of eutectoid ferrite form? (c) How many kilograms of cementite form?

Solution:

(a)
$$W_{proeutectoid} = \frac{0.76 - 0.4}{0.76 - 0.022} = 0.49$$

$$m_{proeutectoid} = 2kg \times 0.49 = 0.98$$
kg

(b)
$$W_{\text{total}} = \frac{6.7 - 0.4}{6.7 - 0.022} = 0.94$$

$$W_{eutectoid} = W_{total} - W_{proeutectoid} = 0.94 - 0.49 = 0.45$$

$$m_{cementite} = 2kg \times 0.45 = 0.9$$
kg

(c)
$$W_{\text{cementite}} = \frac{0.4 - 0.022}{6.7 - 0.022} = 0.06$$

$$m_{cementite} = 2kg \times 0.06 = 0.12$$
kg

7. For an iron-carbon alloy of composition 5 wt% C-95 wt% Fe, make schematic sketches of the microstructure that would be observed for conditions of very slow cooling at the following temperatures: 1175°C (2150°F), 1145°C (2095°F), and 700°C (1290°F). Label the phases and indicate their compositions (approximate).

8. 总结各种铁碳合金的室温平衡显微组织是什么,填写在下表中。

铁碳合金	亚共析钢	共析钢	过共析钢	亚共晶 白口铁	共晶白口铁	过共晶白 口铁
室温平衡显微组织	铁素体 + 珠光体	珠光体	珠光体 + 二次渗碳体	珠 + 二 碳 + 変 氏 女	莱氏体	莱氏体 + 一次渗碳 体

- 9. 自己画一个铁碳相图,可以用计算机绘制,也可以用笔和尺子绘制,看谁画得最 professional。但是不能去网上复制一个或者复印扫描书上的,一定是你自己亲笔画的。请在你绘制的铁碳相图中标出下面内容:
 - (1) 液相线和固相线
- (2) 三个恒温反应:包晶,共析,共晶。三个重要温度:1495°C,1148°C,727°C.
 - (3) 固溶线: C在奥氏体中和 C在铁素体中的固溶线。
 - (4) 单相区和两相区
- (5) 五个重要的成分点:含碳量为 0.22%, 0.77%, 2.11%, 4.3%, 6.7%的点。

10. 在亚共析钢、共析钢、过共析钢、亚共晶白口铁、共晶白口铁、过共晶白口铁、种典型的铁碳合金中,选择一个论述其平衡凝固过程中显微组织的演变,并描绘其结晶过程的示意图。

Solution:

共析钢: 0.76wt%C 降温至 1480℃时,液相中出现奥氏体。降低至 1400℃左右,液相全部变为奥氏体相。继续降温至 727℃,发生共析。奥氏体共析出铁素体和渗碳体,铁素体、渗碳体薄层交错相叠成为珠光体。

