Math 347 Worksheet

Worksheet 11: Permutations of n elements

November 7, 2018

- 1) Consider S_n the set of permutations of n elements.
 - (i) Prove that any element $s \in S_n$ can be written as the composite

$$s = t^1 \circ \dots t^k$$
,

where each t^i is a transposition.

Solution. For any $n \geq 2$ we denote by [n] the set $\{1, \ldots, n\}$, we let $t_{i,j}^n$ denote the permutation that swaps the numbers i and j, we also denote by e^n the identity function on [n].

We proceed by induction, the base case of n=2 is trivially true, i.e. the only non-trivial permutation of two elements is $t_{1,2}$ and we have

$$e^2 = t_{1,2} \circ t_{1,2}$$
.

Suppose that we proved the theorem for n. Consider σ a permutation of $\{1, \ldots, n+1\}$. There are two possibilities:

a) $\sigma(n+1) = n+1$, in this case the function¹

$$\sigma|_{[n]}:[n]\to[n]$$

is a permutation and by the induction hypothesis one has

$$\sigma|_{[n]} = \prod_{k \in K} t_{i_k, j_k}^n$$

for some finite set K. This gives that

$$\sigma = \prod_{k \in K} t_{i_k, j_k}^n,$$

and prove the result for n + 1, in this case.

b) $\sigma(n+1) = m$, for $m \neq n+1$. Then we consider the permutation

$$t_{m,n+1}^{n+1} \circ \sigma$$
.

However, this reduces to the first case, and we are finished with the proof.

(ii) Fix $\ell \in [n]$. Prove that the transpositions in the above can all be taken to be

$$t^i = t_{\ell,j}$$

for some $j \in [n]$, where $t_{\ell,j}$ is the transposition that swaps ℓ and j.

¹See Exercise 1 from Homework 4 for what this notation means.

Solution. It is enough to prove that for any $i, j \in [n]$ one can write

$$t_{i,j}^n = t_{\ell,i}^n \circ t_{\ell,j} \circ t_{\ell,i},$$

which is clear by inspection.

Indeed, by (i) we can write any σ as a product

$$\prod_{k \in K} t^n_{i_k,j_k} = \prod_{k \in K} t^n_{\ell,i_k} \circ t_{\ell,j_k} \circ t_{\ell,i_k}.$$

2) Prove that for any element $s \in S_n$ there exists $k \leq n$ such that²

$$s^k = e$$
.

Solution. Suppose by contradiction that there exists $\sigma \in S_n$ such that for all $i \in [n]$

$$\sigma^{n+1}(i) = i.$$

This implies that the set

$$\{i, \sigma(i), \sigma^2(i), \dots, \sigma^{n+1}(i)\}\tag{1}$$

has n+1 distinct elements³. However, the σ is a function from [n] to [n], which implies that the set (1) is a subset of [n], which is a contradiction.

3) Draw a functional digraph of an element $s \in S_n$. What does the condition from the previous exercise mean in terms of the graph?

Solution. It means that every path in the digraph has length less than or equal to n.

- 4) For a natural number n a partition of n is a way of writing n as a sum of positive numbers.
 - (i) list the partitions of 6;

(ii) prove that the number of partitions of n with k parts equals the number of partitions of n with largest part k.

Solution. (Use Young diagrams.)

- 5) (Extra) Consider a square in \mathbb{R}^2 with vertices (1,1), (1,-1), (-1,-1) and (-1,1). Let r be the function $r: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation of 90 degrees, let $s: \mathbb{R}^2 \to \mathbb{R}^2$ be the function that reflects the points around the line x = y (Make a drawing.). Let D_4 be the set of functions obtained by considering compositions of r or s any number of times.
 - (a) prove that D_4 is finite and compute its size;
 - (b) prove that any element $a \in D_4$ preserves the square;
 - (c) prove that D_4 is not equal to S_n for any n. Can you find an n such that $D_4 \subset S_n$?

²Here s^k means one composes s with itself k times.

³Justify this to yourself if it is unclear.