

Model Optimization and Tuning Phase Report

Date	24 June 2025
Team ID	SWUID20250176341
Project Title	Machine Learning Approach for Employee Performance Prediction
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression	<pre># 1. Linear Regression Model model_lr = LinearRegression() model_lr.fit(X_train, y_train) pred_test = model_lr.predict(X_test) mae_lr = mean_absolute_error(y_test, pred_test) mse_lr = mean_squared_error(y_test, pred_test) r2_lr = r2_score(y_test, pred_test) print("\nLinear Regression:") print("MAE:", mae_lr) print("MSE:", mse_lr) print("R2 Score:", r2_lr)</pre>	Linear Regression: MAE: 0.04347336915994117 MSE: 0.004133703766872829 R ² Score: 0.8012302992785618
Random Forest	<pre># 2. Random Forest Model model_rf = RandomForestRegressor(random_state=42) model_rf.fit(X_train, y_train) pred = model_rf.predict(X_test) mae_rf = mean_absolute_error(y_test, pred) mse_rf = mean_squared_error(y_test, pred) r2_rf = r2_score(y_test, pred) print("\nRandom Forest:") print("MAE:", mae_rf) print("MSE:", mse_rf) print("R2 Score:", r2_rf)</pre>	Random Forest: MAE: 0.03253990252410063 MSE: 0.0035580692923302647 R ² Score: 0.8289097602855915


```
# 3. XGBoost Model
model_xgb = XGBRegressor(random_state=42, verbosity=
model_xgb.fit(X_train, y_train)
pred3 = model_xgb.predict(X_test)

mae_xgb = mean_absolute_error(y_test, pred3)
mse_xgb = mean_squared_error(y_test, pred3)
r2_xgb = r2_score(y_test, pred3)

print("\nXGBoost:")
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric			
Random Forest	Model Compari Model Linear Regression Random Forest XGBoost ✓ Random Forest mo F2 Score: 0.9046454	0.0325 0.0339 odel and featur	MSE 0.0041 0.0036 0.0037	R ² Score 0.8012 0.8289 0.8220 uccessfully.

Final Model Selection Justification (2 Marks):

Final Model	Reasoning	
Random Forest	The Random Forest Regressor was selected as the final model due to its strong predictive performance, low mean absolute error, and robustness against overfitting. It effectively handled both numerical and categorical features without the need for extensive scaling or transformation. Its ability to manage complex, non-linear relationships in the employee productivity data made it a reliable and efficient choice aligned with the project's goals.	