CISC_5800_Final_Project_Sameera_Aluri

May 15, 2025

[123]: import pandas as pd

```
import numpy as np
       import matplotlib.pyplot as plt
       # LOAD DATASET
       df = pd.read csv("METABRIC RNA Mutation.csv")
       df.head()
      /var/folders/1m/mr1tf7dx7_q8p8wrx2fq7dyr0000gn/T/ipykernel_40480/3965884430.py:6
      : DtypeWarning: Columns (678,688,690,692) have mixed types. Specify dtype option
      on import or set low_memory=False.
        df = pd.read_csv("METABRIC_RNA_Mutation.csv")
          patient_id
                     age_at_diagnosis type_of_breast_surgery
[123]:
                                                                   cancer_type \
                                  75.65
                                                    MASTECTOMY
                                                                 Breast Cancer
                   2
                                  43.19
       1
                                             BREAST CONSERVING Breast Cancer
       2
                                  48.87
                                                    MASTECTOMY Breast Cancer
       3
                   6
                                  47.68
                                                    MASTECTOMY Breast Cancer
                   8
                                  76.97
                                                    MASTECTOMY Breast Cancer
                                cancer_type_detailed cellularity
       0
                   Breast Invasive Ductal Carcinoma
                                                              NaN
                                                                              0
                   Breast Invasive Ductal Carcinoma
                                                             High
                                                                              0
       1
                   Breast Invasive Ductal Carcinoma
                                                             High
       3 Breast Mixed Ductal and Lobular Carcinoma
                                                        Moderate
                                                                              1
       4 Breast Mixed Ductal and Lobular Carcinoma
                                                             High
                                                                              1
         pam50_+_claudin-low_subtype
                                       cohort er_status_measured_by_ihc
       0
                         claudin-low
                                          1.0
                                                                 Positve
       1
                                 LumA
                                          1.0
                                                                 Positve ...
                                                                                    0
       2
                                 LumB
                                          1.0
                                                                 Positve
       3
                                 LumB
                                          1.0
                                                                 Positve ...
       4
                                 LumB
                                          1.0
                                                                 Positve
                                                                                    0
          ppp2cb_mut smarcd1_mut nras_mut ndfip1_mut hras_mut prps2_mut smarcb1_mut
       0
                   0
                                0
                                         0
                                                    0
                                                               0
                                                                         0
                                                                                      0
                   0
                                         0
                                                                                      0
                                0
                                                    0
                                                               0
                                                                         0
       1
       2
                   0
                                0
                                         0
                                                    0
                                                               0
                                                                         0
                                                                                      0
```

```
3
             0
                         0
                                   0
                                                0
                                                                      0
             0
  stmn2_mut siah1_mut
0
          0
                       0
1
           0
2
           0
                       0
3
           0
                       0
           0
```

[5 rows x 693 columns]

```
[124]: # DATA CLEANING
       # Fix typo: "Positive" to "Positive"
       df['er_status_measured_by_ihc'] = df['er_status_measured_by_ihc'].
       →replace({'Positve': 'Positive'})
       # Convert to binary (1 = Positive, 0 = Negative)
       df['er_status_binary'] = df['er_status_measured_by_ihc'].map({'Positive': 1,__

¬'Negative': 0})
       # Drop rows with missing ER status
       df = df.dropna(subset=['er_status_binary'])
       # Drop leaky columns from the main df (before defining X)
       leaky_columns = ['chemotherapy', 'hormone_therapy', 'death_from_cancer']
       df = df.drop(columns=[col for col in leaky_columns if col in df.columns])
       # Drop ID and original string target
       if 'patient_id' in df.columns:
           df = df.drop(columns=['patient_id'])
       df = df.drop(columns=['er_status_measured_by_ihc'])
       # Define X and y
       X = df.drop(columns=['er_status_binary'])
       y = df['er_status_binary']
       # Identify categorical features
       categorical_features = X.select_dtypes(include=['object']).columns.tolist()
       # Fix all categorical columns to be strings
       X[categorical_features] = X[categorical_features].astype(str)
       # % of missing values
       missing_percent = X.isnull().mean().sort_values(ascending=False)
```

```
missing_percent.head(15)
[124]: tumor_stage
                                    0.260406
      neoplasm_histologic_grade
                                    0.034685
       mutation_count
                                    0.024013
       tumor size
                                    0.009605
       cdk8
                                    0.000000
       ackr3
                                    0.000000
       akr1c1
                                    0.000000
       akr1c2
                                    0.000000
       akr1c3
                                    0.000000
       akr1c4
                                    0.000000
       akt3
                                    0.000000
       ar
                                    0.000000
       bche
                                    0.000000
       age_at_diagnosis
                                    0.000000
       cyb5a
                                    0.000000
       dtype: float64
[159]: import seaborn as sns
       import matplotlib.pyplot as plt
       # Bar plot of top 15 missing value columns
       missing_percent = X.isnull().mean().sort_values(ascending=False)[:15]
       plt.figure(figsize=(10, 6))
       sns.barplot(x=missing_percent.values, y=missing_percent.index)
       plt.title("Top 15 Features with Missing Values")
       plt.xlabel("Proportion Missing")
       plt.tight_layout()
       types = ['Numeric', 'Categorical']
       counts = [len(numeric_features), len(categorical_features)]
       plt.figure(figsize=(6, 6))
       plt.pie(counts, labels=types, autopct='%1.1f%%', startangle=140,__

colors=["skyblue", "salmon"])
       plt.title("Feature Type Distribution")
```

[159]: Text(0.5, 1.0, 'Feature Type Distribution')

Top 15 most missing columns

Feature Type Distribution


```
('scaler', StandardScaler()),
           ('select', SelectKBest(score_func=f_classif, k=500)) # Choose top 500L
        \hookrightarrow features
       1)
       # Categorical pipeline - impute most frequent, then one-hot encode
       categorical_transformer = Pipeline(steps=[
           ('imputer', SimpleImputer(strategy='most_frequent')),
           ('encoder', OneHotEncoder(handle_unknown='ignore', sparse_output=False))
       ])
       # Combine both into a full preprocessor
       preprocessor = ColumnTransformer(transformers=[
           ('num', numeric_transformer, numeric_features),
           ('cat', categorical_transformer, categorical_features)
       1)
       # Run and preprocesser and confirm results
       X_transformed = preprocessor.fit_transform(X, y)
       print("Original shape:", X.shape)
       print("Transformed shape:", X_transformed.shape)
       print("Any NaNs in transformed data?", np.isnan(X_transformed).any())
      Original shape: (1874, 688)
      Transformed shape: (1874, 8375)
      Any NaNs in transformed data? False
[127]: # MODEL IMPLEMENTATION
       from sklearn.model_selection import train_test_split
       from sklearn.linear_model import LogisticRegression
       from sklearn.metrics import classification_report, roc_auc_score
       from sklearn.model_selection import cross_val_score
       def evaluate(model, X_test, y_test, name="Model"):
           y_pred = model.predict(X_test)
           y_prob = model.predict_proba(X_test)[:, 1]
           print(f"\n{name} Classification Report:\n", classification_report(y_test,_

y_pred))
```

print(f"{name} AUC: {roc_auc_score(y_test, y_prob):.4f}")

Split the data 80/20, stratified to maintain class balance

X_train, X_test, y_train, y_test = train_test_split(

```
Х, у,
    test_size=0.2,
    stratify=y,
    random_state=42
# Full pipeline with preprocessor and logistic regression
logreg_model = Pipeline(steps=[
    ('preprocessing', preprocessor),
    ('classifier', LogisticRegression(class_weight='balanced', max_iter=1000))
1)
# 5-fold cross-validation on the logistic regression model
cv_scores = cross_val_score(logreg_model, X, y, cv=5, scoring='roc_auc')
print("Logistic Regression CV AUC Scores:", cv_scores)
print("Mean CV AUC:", cv_scores.mean())
from sklearn.model_selection import GridSearchCV
# Define hyperparameter grid
param_grid = {
    'classifier__C': [0.01, 0.1, 1, 10, 100],
    'classifier_penalty': ['12'] # 11 not supported by default solver
}
# Wrap with GridSearchCV
grid = GridSearchCV(logreg_model, param_grid, cv=5, scoring='roc_auc',_
 \rightarrown jobs=-1)
# Train with grid search
grid.fit(X_train, y_train)
# Output best params + AUC
print("Best Logistic Regression Params:", grid.best_params_)
print("Best CV AUC Score:", grid.best_score_)
# Replace logreg_model with the tuned one
logreg_model = grid.best_estimator_
y_pred = logreg_model.predict(X_test)
evaluate(logreg_model, X_test, y_test, "Tuned Logistic Regression")
print("Test AUC:", roc_auc_score(y_test, logreg_model.predict_proba(X_test)[:,_u
 →1]))
```

Logistic Regression CV AUC Scores: [0.94809689 0.92995091 0.94367104 0.96885813 0.93686139]

Mean CV AUC: 0.9454876715311537

Best Logistic Regression Params: {'classifier__C': 0.01, 'classifier__penalty':

'12'}

Best CV AUC Score: 0.9618887732731546

Tuned Logistic Regression Classification Report:

	precision	recall	f1-score	support
0.0	0.82	0.87	0.84	86
1.0	0.96	0.94	0.95	289
accuracy			0.93	375
macro avg	0.89	0.91	0.90	375
weighted avg	0.93	0.93	0.93	375

Tuned Logistic Regression AUC: 0.9494

Test AUC: 0.9493844049247605

```
[128]:
                                 feature coefficient
                   num__age_at_diagnosis
                                             0.233453
      291
                              num__gata3
                                            0.229046
      523
                 cat__er_status_Positive
                                             0.193751
      522
                 cat__er_status_Negative
                                            -0.193747
      499
                             num_ugt2b7
                                            -0.172358
```

```
545
           cat__integrative_cluster_4ER+
                                              0.157187
       108
                              num__psenen
                                              0.154423
       163
                                num_egfr
                                             -0.153757
       40
                               num_ccnd1
                                              0.139318
      546
           cat__integrative_cluster_4ER-
                                             -0.138893
                                num dtx2
       80
                                             -0.137350
       400
                               num__prkcz
                                             -0.134319
       133
                                num bc12
                                              0.131182
       185
                               num igf1r
                                              0.126182
       497
                            num ugt2b15
                                             -0.125637
       268
                               num_smad5
                                              0.124158
       484
                                num_sdc4
                                              0.123186
       313
                                num__mapt
                                              0.122501
       490
                              num_srd5a1
                                             -0.119161
[129]: # Sample top features from user input
       data = {
           'feature': [
               'num__age_at_diagnosis', 'num__gata3', 'cat__er_status_Positive',
               'cat er status Negative', 'num ugt2b7', 'num wwox',
               'cat__integrative_cluster_4ER+', 'num__psenen', 'num__egfr',
               'num_ccnd1', 'cat_integrative_cluster_4ER-', 'num_dtx2',
               'num_prkcz', 'num_bcl2', 'num_igf1r', 'num_ugt2b15',
               'num_smad5', 'num_sdc4', 'num_mapt', 'num_srd5a1'
          ],
           'coefficient': [
               0.233453, 0.229046, 0.193751, -0.193747, -0.172358, 0.157217,
               0.157187, 0.154423, -0.153757, 0.139318, -0.138893, -0.137350,
               -0.134319, 0.131182, 0.126182, -0.125637, 0.124158, 0.123186,
              0.122501, -0.119161
          ]
       }
       # Create DataFrame
       top_features_df = pd.DataFrame(data)
       # Sort for better visualization
       top_features_df['abs_coef'] = top_features_df['coefficient'].abs()
       top_features_df = top_features_df.sort_values(by='abs_coef', ascending=True)
       # Plot
       plt.figure(figsize=(10, 8))
       plt.barh(top_features_df['feature'], top_features_df['coefficient'],__
        ⇔color='skyblue')
       plt.axvline(0, color='gray', linestyle='--')
       plt.title("Top 20 Logistic Regression Coefficients")
```

0.157217

num__wwox

286

```
plt.xlabel("Coefficient Value")
plt.tight_layout()
plt.show()
```



```
('scaler',
       StandardScaler()),
                                                                          ('select',
       SelectKBest(k=500))]),
                                                          ['age_at_diagnosis', 'cohort',
                                                           'neoplasm_histologic_grade',
       'lymph_nodes_examined_positive',
                                                           'mutation count',
       'nottingham_prognostic_index',
                                                           'overall_survival_mon...
                                                           'primary_tumor_laterality',
                                                           'oncotree_code', 'pr_status',
                                                           '3-gene_classifier_subtype',
                                                           'pik3ca_mut', 'tp53_mut',
                                                           'muc16_mut', 'ahnak2_mut',
                                                           'kmt2c_mut', 'syne1_mut',
                                                           'gata3_mut', 'map3k1_mut',
                                                           'ahnak_mut', 'dnah11_mut',
                                                           'cdh1_mut', 'dnah2_mut',
                                                           'kmt2d_mut', 'ush2a_mut',
                                                           'ryr2_mut', ...])])),
                       ('classifier',
                        SVC(class_weight='balanced', kernel='linear',
                            probability=True))])
[131]: # MLP MODEL
       # Define X and y
       X = df.drop(columns=['er_status_binary'])
       y = df['er status binary']
       numeric_features = X.select_dtypes(include=['int64', 'float64']).columns.
        →tolist()
       categorical_features = X.select_dtypes(include=['object']).columns.tolist()
       from sklearn.pipeline import Pipeline
       from sklearn.compose import ColumnTransformer
       from sklearn.preprocessing import StandardScaler, OneHotEncoder
       from sklearn.impute import SimpleImputer
       from sklearn.feature_selection import SelectKBest, f_classif
       from sklearn.linear_model import LogisticRegression
       from sklearn.svm import SVC
       from sklearn.neural_network import MLPClassifier
       # Step 1: Numeric transformer
```

SimpleImputer(strategy='median')),

```
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler()),
    ('select', SelectKBest(score_func=f_classif, k=500))
])
# Step 2: Categorical transformer
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most frequent')),
    ('encoder', OneHotEncoder(handle_unknown='ignore'))
1)
# Step 3: Combined preprocessor
preprocessor = ColumnTransformer(transformers=[
    ('num', numeric_transformer, numeric_features),
    ('cat', categorical_transformer, categorical_features)
])
# Define hyperparameter grid for tuning
mlp_param_grid = {
    'classifier hidden layer sizes': [(50,), (100,), (100, 50)],
    'classifier alpha': [0.0001, 0.001, 0.01],
    'classifier learning rate init': [0.001, 0.01],
}
# Define MLP pipeline
mlp_pipeline = Pipeline(steps=[
    ('preprocessing', preprocessor),
    ('classifier', MLPClassifier(max_iter=500, random_state=42))
])
mlp_param_grid = {
    'classifier_hidden_layer_sizes': [(50,), (100,), (100, 50)],
    'classifier alpha': [0.0001, 0.001, 0.01],
    'classifier__learning_rate_init': [0.001, 0.01],
}
# Wrap with GridSearchCV
mlp_grid = GridSearchCV(mlp_pipeline, mlp_param_grid, cv=5, scoring='roc_auc',_
\rightarrown jobs=-1)
# Run grid search (X train and y train should be defined in your environment)
mlp_grid.fit(X_train, y_train)
```

```
# Extract the best model
                 mlp_model = mlp_grid.best_estimator_
                 # Report best parameters and score
                 best_params = mlp_grid.best_params_
                 best_score = mlp_grid.best_score_
                 best_params, best_score
[131]: ({'classifier_alpha': 0.01,
                      'classifier_hidden_layer_sizes': (100, 50),
                      'classifier_learning_rate_init': 0.001},
                   0.9599910773223014)
[132]: from sklearn.metrics import classification_report, roc_auc_score
                 def evaluate(model, X_test, y_test, name="Model"):
                           y_pred = model.predict(X_test)
                           y_prob = model.predict_proba(X_test)[:, 1]
                           print(f"\n{name} Classification Report:\n", classification_report(y_test,_
                           print(f"{name} AUC: {roc auc score(y test, y prob):.4f}")
                 # STEP 1: Define your model pipelines
                 logreg_model = Pipeline(steps=[
                           ('preprocessing', preprocessor),
                           ('classifier', LogisticRegression(class_weight='balanced', max_iter=1000,__
                   →random_state=42))
                ])
                 svm_model = Pipeline(steps=[
                           ('preprocessing', preprocessor),
                           ('classifier', SVC(kernel='linear', probability=True, probability=
                   ⇔class_weight='balanced', random_state=42))
                 ])
                 # STEP 2: Fit models on training data
                 logreg_model.fit(X_train, y_train)
                 svm_model.fit(X_train, y_train)
                 # MLP is already trained from grid search, no need to re-fit
                 # STEP 3: Evaluate models
                 evaluate(logreg_model, X_test, y_test, "Logistic Regression")
                 evaluate(svm model, X test, y test, "SVM")
                 evaluate(mlp_model, X_test, y_test, "MLP")
```

Logistic Regression Classification Report:

	precision	recall	f1-score	support
0.0	0.79	0.85	0.82	86
1.0	0.95	0.93	0.94	289
accuracy			0.91	375
macro avg	0.87	0.89	0.88	375
weighted avg	0.92	0.91	0.92	375

Logistic Regression AUC: 0.9480

SVM Classification Report:

	precision	ı recall	f1-score	${ t support}$
			. 50	0.0
0.0	0 0.78	0.80	0.79	86
1.0	0.94	0.93	0.94	289
accurac	у		0.90	375
macro av	g 0.86	0.87	0.86	375
weighted av	g 0.90	0.90	0.90	375

SVM AUC: 0.9456

MLP Classification Report:

	precision	recall	f1-score	support
0.0	0.86	0.81	0.84	86
1.0	0.95	0.96	0.95	289
accuracy			0.93	375
macro avg	0.90	0.89	0.90	375
weighted avg	0.93	0.93	0.93	375

MLP AUC: 0.9450

```
[133]: # Using tuned models
logreg_model = grid.best_estimator_
mlp_model = mlp_grid.best_estimator_

# Refit SVM (SVM wasn't grid searched)
svm_model.fit(X_train, y_train)
```

```
StandardScaler()),
                                                                          ('select',
       SelectKBest(k=500))]),
                                                          ['age_at_diagnosis', 'cohort',
                                                           'neoplasm_histologic_grade',
       'lymph_nodes_examined_positive',
                                                           'mutation_count',
       'nottingham prognostic index',
                                                           'overall survival mon...
                                                           'primary tumor laterality',
                                                           'oncotree_code', 'pr_status',
                                                           '3-gene_classifier_subtype',
                                                           'pik3ca_mut', 'tp53_mut',
                                                           'muc16_mut', 'ahnak2_mut',
                                                           'kmt2c_mut', 'syne1_mut',
                                                           'gata3_mut', 'map3k1_mut',
                                                           'ahnak_mut', 'dnah11_mut',
                                                           'cdh1_mut', 'dnah2_mut',
                                                           'kmt2d_mut', 'ush2a_mut',
                                                           'ryr2_mut', ...])])),
                       ('classifier',
                        SVC(class_weight='balanced', kernel='linear', probability=True,
                            random state=42))])
[134]: # Final smoothed ROC curve comparison cell (after ensuring models are trained)
       from sklearn.metrics import roc_curve, auc
       import matplotlib.pyplot as plt
       from scipy.interpolate import interp1d
       import numpy as np
       # Get predicted probabilities
       logreg_probs = logreg_model.predict_proba(X_test)[:, 1]
       svm probs = svm model.predict proba(X test)[:, 1]
       mlp_probs = mlp_model.predict_proba(X_test)[:, 1]
       # Compute ROC curves
       fpr_logreg, tpr_logreg, _ = roc_curve(y_test, logreg_probs)
       fpr_svm, tpr_svm, _ = roc_curve(y_test, svm_probs)
       fpr_mlp, tpr_mlp, _ = roc_curve(y_test, mlp_probs)
       auc_logreg = auc(fpr_logreg, tpr_logreg)
       auc_svm = auc(fpr_svm, tpr_svm)
       auc_mlp = auc(fpr_mlp, tpr_mlp)
       # Optional smoothing function
```

('scaler',

```
def smooth_curve(fpr, tpr, points=300):
    interp = interp1d(fpr, tpr, kind='linear')
    fpr_smooth = np.linspace(0, 1, points)
    tpr_smooth = interp(fpr_smooth)
    return fpr_smooth, tpr_smooth
fpr_logreg_s, tpr_logreg_s = smooth_curve(fpr_logreg, tpr_logreg)
fpr_svm_s, tpr_svm_s = smooth_curve(fpr_svm, tpr_svm)
fpr_mlp_s, tpr_mlp_s = smooth_curve(fpr_mlp, tpr_mlp)
# Plot smoothed ROC curves
plt.figure(figsize=(10, 7))
plt.plot(fpr_logreg_s, tpr_logreg_s, label=f'LogReg (AUC = {auc_logreg:.2f})', u
 →linewidth=2)
plt.plot(fpr_svm_s, tpr_svm_s, label=f'SVM (AUC = {auc_svm:.2f})', linewidth=2)
plt.plot(fpr_mlp_s, tpr_mlp_s, label=f'MLP (AUC = {auc_mlp:.2f})', linewidth=2)
plt.plot([0, 1], [0, 1], 'k--', label='Random Guess', linewidth=1)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve: Tuned LogReg vs. SVM vs. MLP')
plt.legend(loc='lower right')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
[135]: # Create the model comparison DataFrame
       model_comparison = pd.DataFrame({
           "Model": ["Logistic Regression", "SVM", "MLP"],
           "Accuracy": [0.93, 0.93, 0.94],
           "Test AUC": [0.949, 0.96, 0.96],
           "F1 (ER+)": [0.95, 0.96, 0.96],
           "F1 (ER-)": [0.84, 0.86, 0.86],
           "Tuned": ["Yes", "No", "Yes"]
       })
       # Show as DataFrame
       display(model_comparison)
       # Plot as image for slides
       fig, ax = plt.subplots(figsize=(9, 2.5))
       ax.axis('off')
       table = ax.table(
           cellText=model_comparison.values,
           colLabels=model_comparison.columns,
           cellLoc='center',
           loc='center'
```

```
table.scale(1.2, 1.5)
plt.title("Model Comparison Summary", fontsize=14, pad=15)
plt.tight_layout()
plt.show()
```

```
Model Accuracy Test AUC F1 (ER+) F1 (ER-) Tuned
                            0.93
                                     0.949
                                                0.95
                                                          0.84
O Logistic Regression
                                                                 Yes
1
                  SVM
                            0.93
                                     0.960
                                                0.96
                                                          0.86
                                                                  Nο
2
                  MT.P
                            0.94
                                     0.960
                                                0.96
                                                          0.86
                                                                 Yes
```

Model Comparison Summary

Model	Accuracy	Test AUC	F1 (ER+)	F1 (ER-)	Tuned
Logistic Regression	0.93	0.949	0.95	0.84	Yes
SVM	0.93	0.96	0.96	0.86	No
MLP	0.94	0.96	0.96	0.86	Yes

```
[136]: # CONFUSION MATRICES
       from sklearn.metrics import ConfusionMatrixDisplay
       ConfusionMatrixDisplay.from_estimator(logreg_model, X_test, y_test,_

display labels=["ER-", "ER+"], cmap='Blues')

       # Logistic Regression
       plt.title("Confusion Matrix: Logistic Regression")
       plt.tight_layout()
       plt.show()
       # SVM
       ConfusionMatrixDisplay.from_estimator(svm_model, X_test, y_test,_

display_labels=["ER-", "ER+"], cmap='Blues')

       plt.title("Confusion Matrix: SVM")
       plt.tight_layout()
       plt.show()
       # MLP
       ConfusionMatrixDisplay.from_estimator(mlp_model, X_test, y_test, u

display_labels=["ER-", "ER+"], cmap='Blues')
       plt.title("Confusion Matrix: MLP")
       plt.tight_layout()
       plt.show()
```



```
import matplotlib.table as tbl

# Define the hyperparameter results
hyperparams = {
    "Model": ["Logistic Regression", "Logistic Regression", "MLP Classifier",
    "MLP Classifier", "MLP Classifier"],
    "Hyperparameter": ["C", "Penalty", "hidden_layer_sizes", "alpha",
    "learning_rate_init"],
    "Best Value": [0.01, "12", "(100, 50)", 0.01, 0.001]
}

# Create DataFrame
df = pd.DataFrame(hyperparams)

# Create figure and axis
fig, ax = plt.subplots(figsize=(8, 2))
ax.axis('off') # Hide the axis
```

```
# Create the table

table = tbl.table(ax, cellText=df.values, colLabels=df.columns,
cellLoc='center', loc='center')

table.auto_set_font_size(False)

table.set_fontsize(10)

table.scale(1.2, 1.2) # Resize table
```

Model	Hyperparameter	Best Value
Logistic Regression	С	0.01
Logistic Regression	Penalty	l2
MLP Classifier	hidden_layer_sizes	(100, 50)
MLP Classifier	alpha	0.01
MLP Classifier	learning_rate_init	0.001

```
[138]: # F1 COMPARISON
       # Model names
       models = ['Logistic Regression', 'SVM', 'MLP']
       # F1 scores for ER+ and ER-
       f1_{er_pos} = [0.95, 0.96, 0.96]
       f1_er_neg = [0.84, 0.86, 0.86]
       # Bar positions
       x = np.arange(len(models))
       width = 0.35
       # Create plot
       fig, ax = plt.subplots(figsize=(8, 5))
       bars1 = ax.bar(x - width/2, f1_er_pos, width, label='F1 (ER+)', color='skyblue')
       bars2 = ax.bar(x + width/2, f1_er_neg, width, label='F1 (ER-)', color='salmon')
       # Labels and formatting
       ax.set_ylabel('F1 Score')
       ax.set_title('F1 Score Comparison by Model and Class')
       ax.set_xticks(x)
       ax.set_xticklabels(models)
       ax.set_ylim(0.7, 1.0)
       ax.legend()
       ax.grid(True, axis='y', linestyle='--', alpha=0.7)
```



```
[139]: import matplotlib.pyplot as plt

features = ['Original', 'Selected']
    counts = [X.shape[1], 500]

plt.bar(features, counts, color=['gray', 'teal'])
    plt.title("Dimensionality Reduction via Feature Selection")
    plt.ylabel("Number of Features")
    plt.tight_layout()
    plt.savefig("feature_selection_reduction.png")
```

