Knowledge Engeneering und Lernen in Spielen

Anomalies of game tree search

Tobias Ludwig

Übersicht

- Motivation
- Übersicht bisheriger Studien
- Berechnungsmodell
 - □ KRK Endspiel
 - Evaluationsfunktion
 - MiniMax Algorithmus
- Versuche
- Fazit
- Quellen

Wie kann es sein, dass bei weitere Erhöhung der Suchtiefe mit MiniMax plötzlich schlechtere Werte erziehlt werden?

Definition "pathology"

- Schlechtere Ergebnisse bei weiterer Erhöhung der Suchtiefe
 - □ Suchbaumsymptomatik
 - MiniMax Paradigma

Übersicht bisheriger Studien

- MiniMax Paradigma Beal (1980)
- Abhängigkeit von Nachbarknoten (1982)
- Schwache Abhängigkeiten in Spielen (1984)
- Spielbaum durchsetzt mit frühen Endpositionen
- Evaluationsfunktion darf nicht unterschätzen

- Akzeptanz des empirischen Erfolgs von MiniMax in Spielen
- Vereinfachungen, Annahmen

Berechnungsmodell

- KRK Endspiel
- Absolut richtige Evaluationsfunktion
- Veränderbare Qualität der Funktion
- Effizienter MiniMax Algorithmus bis Suchtiefe 32 (Halbzüge)

KRK Endspiel

- Weiß besitzt König und Turm
- Schwarz besitzt König
- Ziel: Weiß soll Schwarz mit möglichst wenigen Zügen matt setzen
- Bezugsspieler: Weiß (Min-Spieler)
- Unter Berücksichtigung der Symmetrie: 28.056 versch. Positionen

Absolut richtige Evaluationsfunktion

- Hinzufügen von Rauschen (Gauß)
- μ: richtige Evaluation
- σ: Standardabweichung
- Fehler = μ x

$$P(x) = e^{-(x-\mu)^2/(2\cdot\sigma^2)}$$

- Für jede Tiefe ein Array
- Für jede Tiefe wir ein 2-Halbzüge MiniMax berechnet
- Als Heuristik der Blätter werde die Werte der vorherigen Stufe verwendet
- Stufe 2 verwendet die korrumpierten Daten der Datenbank für Stufe 0

Messen der Qualität

 Vergleich der Qualität der Evaluationsfunktion und der Qualität der durch MiniMax bestimmten Werte

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_i)^2}$$

Einfluss der Suchtiefe

Ergebnis bisheriger Tests

- Suchbaum Symptomatik vorhanden trotz
 - Abhängigkeiten von Nachbarknoten
 - □ Präsenz früher Endsituationen

Wie kann das sein?

Betrachtung der Heuristik

- Systematischer Fehler
 - Negativ: pessimistisch
 - □ Positiv: optimistisch

$$bias = \frac{1}{N} \sum_{i=1}^{N} (\mu_i - x_i)$$

- Korrumpierte Heuristik
 - □ Nicht symmetrisch wie addiertes Rauschen
 - vorwiegend optimistisch

Systematischer Fehler

Anderung der Bewertungsfunktion

Ohne Berücksichtigung des systematischen **Fehlers**

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_i)^2}$$

Mit Berücksichtigung **Fehlers**

Mit Berücksichtigung des systematischen
$$\sigma' = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - (\mu_i + bias))^2}$$
 Fehlers

Korrigierte Ergebr

6.0

0.251 0.501

100f

2.001

3.001

20.001

Search vs Knowledge

Praktische Tests KRK

- MiniMax exemplarisch beweisbar
- Es gibt Spiele (Klasse: pearl's game), die trotz Berücksichtigung des systematischen Fehlers eine Suchbaumsymptomatik aufweisen (Nau)

Pearl Game

- Schachbrettartiges Spielfeld
- Werte der Felder: zufällig 1 und 0
- 2 Spieler
 - □ Es wird abwechselnd gespielt
 - Spieler 1 teilt das Feld vertikal
 - □ Spieler 2 teilt das Feld horizontal
 - □ Jeweils eine Hälfte wird verworfen
- Der Wert des letzten Feldes entscheidet

Quellen

- Sadikov, A., Bratko, I., Kononenko, I. (2003) Search versus Knowledge: An Empirical Study of Minimax on KRK, In: H.J. van den Herik, H. lida and E. Heinz (eds.) Advances in Computer Games: Many Games, Many Challenges, Kluwer Academic Publishers, ISBN 1-4020-7709-2, pp. 33-44
- Beal, D.F. and Smith, M.C. (1994). Random Evaluations in Chess. ICCA Journal, Vol. 17, No. 1, pp. 3
- Dana S. Nau: An Investigation of the Causes of Pathology in Games. Artificial Intelligence 19(3): 257-278 (1982)

Vielen Dank für die Aufmerksamkeit!

