	1a	4a 2	2a	3a	4b	2b	8a	12a	6a	3b	12b	6b	24a	8b	12c	6c	12d	6d	24b	24c	24d
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1 -	-1	1	1	1	1	-1	-1	1	1	1	1	1	-1	-1	1	1	1	1	1
χ_3	1	-1	1	1	1	1	-1	-1	1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1
χ_4	1	1 -	-1	1	1	1	-1	1	-1	1	1	1	-1	-1	1	-1	1	1	-1	-1	-1
χ_5	1	-1 -	-1	$E(3)^{2}$	1	1	1	$-E(3)^2$	$-E(3)^2$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	-E(3)	-E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	E(3)
χ_6	1	-1 -	-1	E(3)	1	1	1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	E(3)	E(3)	1	$-E(3)^{2}$	$-E(3)^{2}$	$E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$
χ_7	1	-1	1	$E(3)^{2}$	1	1	-1	$-E(3)^{2}$	$E(3)^2$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^{2}$	-1	-E(3)	E(3)	E(3)	E(3)	-E(3)	$-E(3)^{2}$	-E(3)
χ_8	1	-1	1	E(3)	1	1	-1	-E(3)	E(3)	$E(3)^2$	E(3)	E(3)	-E(3)	-1	$-E(3)^{2}$	$E(3)^2$	$E(3)^2$	$E(3)^2$	$-E(3)^{2}$	-E(3)	$-E(3)^2$
χ_9	1	1 -	-1	$E(3)^2$	1	1	-1	$E(3)^2$	$-E(3)^{2}$	E(3)	$E(3)^2$	$E(3)^2$	$-E(3)^{2}$	-1	E(3)	$-\dot{E}(3)$	E(3)	E(3)	-E(3)	$-E(3)^{2}$	-E(3)
χ_{10}	1	1 -	-1	E(3)	1	1	-1	E(3)	-E(3)	$E(3)^2$	E(3)	E(3)	-E(3)	-1	$E(3)^2$	$-E(3)^{2}$	$E(3)^2$	$E(3)^2$	$-E(3)^{2}$	-E(3)	$-E(3)^{2}$
χ_{11}	1	1	1	$E(3)^2$	1	1	1	$E(3)^2$	$E(3)^2$	E(3)	$E(3)^2$	$E(3)^2$	$E(3)^2$	1	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	E(3)
χ_{12}	1	1	1	E(3)	1	1	1	E(3)	E(3)	$E(3)^2$	E(3)	E(3)	E(3)	1	$E(3)^2$	$E(3)^2$	$E(3)^2$	$E(3)^2$	$E(3)^2$	E(3)	$E(3)^2$
χ_{13}	2	0	0	$\hat{2}$	-2	2	0	ò	ò	$\mathbf{\hat{2}}^{'}$	-2	$\hat{2}$	ò	0	0	O	-2	$\hat{2}$	0	O	0
χ_{14}	2	0	0 2	$2*E(3)^2$	-2	2	0	0	0	2 * E(3)	$-2*E(3)^2$	$2*E(3)^2$	0	0	0	0	-2 * E(3)	2 * E(3)	0	0	0
χ_{15}	2	0	0	2 * E(3)	-2	2	0	0	0	$2*E(3)^{2}$	-2 * E(3)	2 * E(3)	0	0	0	0	$-2*E(3)^{2}$		0	0	0
χ_{16}	2	0	0	2	0	-2	$-E(8) - E(8)^3$	0	0	2	0	-2	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	0	0	0	$-\hat{2}$	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	$E(8) + E(8)^3$
χ_{17}	2	0	0	2		-2	$E(8) + E(8)^{3}$	0	0	2	0	-2	$E(8) + E(8)^{3}$	$-E(8) - E(8)^3$	0	0	0	-2	$E(8) + E(8)^{3}$	$-E(8) - E(8)^3$	$-E(8) - E(8)^3$
χ_{18}	2	0	0 2	$2*E(3)^2$	0	-2	$-E(8) - E(8)^3$	0	0	2 * E(3)	0	$-2*E(3)^2$	$-E(24) - E(24)^{19}$	$E(8) + E(8)^{3}$	0	0	0	-2 * E(3)	$-E(24)^{11} - E(24)^{17}$	$E(24) + E(24)^{19}$	$E(24)^{11} + E(24)^{17}$
χ_{19}	2	0		$2 * E(3)^2$	0	-2	$E(8) + E(8)^{3}$	0	0	2*E(3)	0	$-2*E(3)^2$	$E(24) + E(24)^{19}$	$-E(8) - E(8)^3$	0	0	0	-2 * E(3)	$E(24)^{11} + E(24)^{17}$	$-E(24) - E(24)^{19}$	$-E(24)^{11}-E(24)^{17}$
χ_{20}	2	0		2 * E(3)			$-E(8) - E(8)^3$	0	0	$2*E(3)^2$	0	-2 * E(3)	$-E(24)^{11} - E(24)^{17}$	$E(8) + E(8)^3$	0	0	0	$-2*E(3)^2$	$-E(24) - E(24)^{19}$	$E(24)^{11} + E(24)^{17}$	$E(24) + E(24)^{19}$
χ_{21}	2	0		2 * E(3)		-2	$E(8) + E(8)^3$	0	0	$2*E(3)^2$	0	-2 * E(3)	$E(24)^{11} + E(24)^{17}$	$-E(8) - E(8)^3$	0	0	0	$-2*E(3)^2$	$E(24) + E(24)^{19}$	$-E(24)^{11} - E(24)^{17}$	$-E(24) - E(24)^{19}$

Trivial source character table of $G \cong C3 \times QD16$ at $p = 3$:							
Normalisers N_i		N_1				N_2	
p-subgroups of G up to conjugacy in G		P_1				P_2	
Representatives $n_j \in N_i$	1a $4a$ $2a$ $4b$ $2b$	8a	8b	1a $2a$	4a $2b$	8a	4b $8b$
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{11} + 0 $	$0 + 0 \cdot \chi_{21} 3 3 3 3$	3	3	0 0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 3 -3 -3 3$	3	3	0 0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 3 -3 3 3$	-3	-3	0 0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 3 3 -3 3$	-3	-3	0 0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 6 0 0 -6 6$	0	0	0 0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 6 0 0 -6$	$3 - 3 * E(8) - 3 * E(8)^3$	$3*E(8) + 3*E(8)^3$	0 0	0 0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+1\cdot\chi_{21}\mid 6 0 0 -6$	$3*E(8) + 3*E(8)^3$	$-3*E(8) - 3*E(8)^3$	0 0	0 0	0	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot $	$0 + 0 \cdot \chi_{21}$ 1 -1 -1 1	1	1	1 -1	-1 1	1	1 1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}$ 1	-1	-1	1 -1	1 1	-1	$1 \qquad -1$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 1 -1 1 1 1$	-1	-1	1 1	-1 1	-1	$1 \qquad -1$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot $	$_{0}+0\cdot\chi_{21}$ 1 1 1 1 1	1	1	1 1	1 1	1	1 1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 2 0 0 -2$	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	2 0	0 -2	$-E(8) - E(8)^3$	$0 E(8) + E(8)^3$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $	$_{0}+0\cdot\chi_{21}\mid 2 0 0 -2$	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	2 0	0 -2	$E(8) + E(8)^3$	$0 - E(8) - E(8)^3$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} \end{vmatrix} $			0	2 0	0 2	0	-2 0

 $P_1 - Group([()]) \simeq 1$

 $P_2 = Group([(1,4,14)(2,8,21)(3,11,25)(5,15,29)(6,16,30)(7,18,32)(9,22,36)(10,23,37)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(28,41,47)(35,45,48)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2,6,10)(3,19,13,35)(4,8,16,23)(5,24,17,9)(7,28,20,12)(11,33,27,45)(12,24,32)(22,45)(23,34)(24,34,43)(23,34,44)(24,38,46)(25,43,44)(34,44)(24,38,46)(25,43,44)(34,44)(24,38,46)(25,43,44)(24,38,46)(25,43,44)(24,38,46)(25,43,44)(34,44)(24,38,46)(25,43,44)(34,44)(24,38,46)(25,43,44)(34,44)(24,38,46)(25,43,44)(34,44)(24,38,46)(25,43$