CS 302 Recitation 1

October 12, 2020

0.0.1 Some Notation

- State with double circle corresponds to a final state.
- ε^* : ECLOSE function from lecture slides. For simplicity, we use a set as input, instead of calling function for each state and take union of results. For example, $\varepsilon^*(\{q_0,q_1\})$ means $ECLOSE(q_0) \cup ECLOSE(q_1)$

Problem 1.1. For alphabet $\Sigma = \{0, 1\}$, design a DFA/NFA accepts all strings that consecutive letters are never the same.

Problem 1.2. Give the transition table for DFA.

	0	1
$\rightarrow *q_0$	q_1	q_3
$*q_1$	q_2	q_3
q_2	q_2	q_2
$*q_3$	q_1	q_2

Problem 2. For the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, draw a DFA accepts the language $A = \{x \mid x \in \Sigma^* \ and \ x \mid 3\}$

Problem 3. For alphabet $\Sigma = \{0, 1, 2\}$, design a DFA/NFA accepts all strings that includes "01", but does not include "20".

Problem 4.1. Eliminate the ε -transitions from the given ε -NFA.

- 1. $\bullet \ \varepsilon^*(\{q_0\}) = \{q_0\} = S$ $\delta(S, a) = \{q_1\} = S_a$ $\varepsilon^*(S_a) = \{q_0, q_1\}$ $\delta(S, b) = \emptyset$
- 2. $\bullet \ \varepsilon^*(\{q_1\}) = \{q_0, q_1\} = S$ $\delta(S, a) = \{q_1\} = S_a$ $\varepsilon^*(S_a) = \{q_0, q_1\}$ $\delta(S, b) = \{q_2\} = S_b$ $\varepsilon^*(S_b) = \{q_2\}$
- 3. $\bullet \ \varepsilon^*(\{q_2\}) = \{q_2\} = S$ $\delta(S, a) = \{q_3\} = S_a$ $\varepsilon^*(S_a) = \{q_0, q_1, q_3\}$ $\delta(S, b) = \emptyset$
- 4. $\bullet \ \varepsilon^*(\{q_3\}) = \{q_0, q_1, q_3\} = S$ $\delta(S, a) = \{q_1\} = S_a$ $\varepsilon^*(S_a) = \{q_0, q_1\}$ $\delta(S, b) = \{q_2\} = S_b$ $\varepsilon(S_b) = \{q_2\}$

Problem 4.2. Create an equivalent DFA for the NFA in the previous step.

1.
$$\bullet$$
 $\delta(\{q_0\}, a) = \{q_0, q_1\} = S_1$

•
$$\delta(\{q_0\},b)=\emptyset$$

2.
$$\bullet$$
 $\delta(S_1, a) = \{q_0, q_1\} = S_1$

•
$$\delta(S_1, b) = \{q_2\} = S_2$$

3.
$$\bullet \ \delta(S_2, a) = \{q_0, q_1, q_3\} = S_3$$

•
$$\delta(S_2, b) = \emptyset$$

4. •
$$\delta(S_3, a) = \{q_0, q_1\} = S_1$$

•
$$\delta(S_3, b) = \{q_2\} = S_2$$

$$\begin{array}{c|cccc} & & a & b \\ \hline \rightarrow S_0 & S_1 & S_4 \\ S_1 & S_1 & S_2 \\ S_2 & S_3 & S_4 \\ *S_3 & S_1 & S_2 \\ S_4 & S_4 & S_4 \end{array}$$

Problem 5. Create a DFA equivalent for the given NFA.

- 2. $\bullet \ \varepsilon^*(S_1) = \{q_0, q_1\} = S_1$ $\delta(S_1, a) = \{q_0, q_1\} = S_1$ $\delta(S_1, b) = \{q_0\} = S_2$ $\delta(S_1, c) = \{q_1\} = S_3$
- 3. $\delta(S_2, a) = \{q_0, q_1\} = S_1$ $\delta(S_2, b) = \emptyset$ $\delta(S_2, c) = \emptyset$
- 4. $\delta(S_3, a) = \emptyset$ $\delta(S_3, b) = \{q_0\} = S_2$ $\delta(S_3, c) = \{q_1\} = S_3$

			b	
•	$ \begin{array}{c} $	S_1	S_2	S_3
	S_1	S_1	S_2	S_3
	S_2	S_1	S_4	S_4
	S_3	S_4	S_2	S_3
	S_4	S_4	S_4	S_4

Problem 6. Create an NFA no more than 5 states that accepts the language $L = \{abab^n \mid n \geq 0\} \cup \{aba^n \mid n \geq 0\}$

	0	1
p	$\{q,s\}$	q
q	$\{r\}$	$\{q,r\}$
r	$\{s\}$	$\{p\}$
p	Ø	$\{p\}$

Problem 6. Convert the given NFA to DFA

	0	1	
p	$\{q,s\}$	q	
q	$\{r\}$	$\{q,r\}$	
r	$\{s\}$	$\{p\}$	
s	Ø	$\{p\}$	
$\{q,s\}$	$\{r\}$	$\{p,q,r\}$	
$\{q,r\}$	$\{r,s\}$	$\{p,q,r\}$	
$\{p,q,r\}$	$\{q,r,s\}$	$\{p,q,r\}$	
$\{q,r,s\}$	$\{r,s\}$	$\{p,q,r\}$	
$\{r,s\}$	$\{s\}$	$\{p\}$	
0	Ø	Ø	