STA 235H - Multiple Regression: Overview and Analysis

Fall 2021

McCombs School of Business, UT Austin

Before we start...

Feedback/Questions on the JITT:

- Students not very familiar with STA 301 topics. E.g.:
 - Took it a year ago.
 - Online classes did not facilitate learning.
 - Didn't take STA 301.

No need to remember everything from STA 301

Intuition about regression + R basics

Check the course website for resources!

Today

- Quick multiple regression review
 - Continuation from last week (outliers, comparing effect sizes)
- Interpreting regressions:
 - Interaction models
- Potential issues in regressions:
 - Multicollinearity
 - Heteroskedasticity

Let's introduce an example: The Bechdel Test

• Three criteria:

- 1. At least two named women
- 2. Who talk to each other
- 3. About something besides a man

Do movies pass the test?

Is it convenient for my movie to pass the Bechdel test?

- I'm a profit-maximizing investor and want to know whether it's in my best interest to switch a male for a female character.
 - What is the simplest model you would fit?

Is it convenient for my movie to pass the Bechdel test?

- I'm a profit-maximizing investor and want to know whether it's in my best interest to switch a male for a female character.
 - What is the simplest model you would fit?

$$Revenue = lpha + eta Bechdel + arepsilon$$

Is this right?

What should we do before we ran any model?

Inspect your data!

vtable() can be of help

Look at the data

Look at the data

What can you say about this variable?

Logarithms to the rescue?

What to do with outliers?

1. Check them!

• Make sure there's no coding error; try to understand what's happening there.

2a. If they are wrongly coded:

• You can remove them, always adding a note of why you did so. Issues with the analysis will come from sample selection.

2b. If they are correctly coded:

• Run analysis both with and without outliers (don't just drop them!). E.g. Results do not depend exclusively on a few observations.

Let's analyze some models

- How do you interpret these results?
- What are the units for the dependent variable?

A side note on log-transformed variables...

$$\log(y) = \hat{\beta}_0 + \hat{\beta}_1 x$$

A side note on log-transformed variables...

$$\log(y)=\hat{eta}_0+\hat{eta}_1x$$
 $\log(y_1)-\log(y_0)=\hat{eta}_0+\hat{eta}_1(x+1)-(\hat{eta}_0+\hat{eta}_1x)$ $\log(rac{y_1}{y_0})=\hat{eta}_1$ $\log(1+rac{y_1-y_0}{y_0})=\hat{eta}_1$

A side note on log-transformed variables...

$$\log(y)=\hat{eta}_0+\hat{eta}_1x$$
 $\log(y_1)-\log(y_0)=\hat{eta}_0+\hat{eta}_1(x+1)-(\hat{eta}_0+\hat{eta}_1x)$ $\log(rac{y_1}{y_0})=\hat{eta}_1$ $\log(1+rac{y_1-y_0}{y_0})=\hat{eta}_1$

$$ightarrow rac{\Delta y}{y} = \exp(\hat{\hat{eta}}_1) - 1$$

Let's analyze some models

ullet $(e^eta-1)\cdot 100 o$ A movie that passes the Bechdel test is associated with a 36% decrease in Revenue

Negative effect of including more women?

What gives?

FiveThirtyEight

Politics

Sports

Science

Podcasts

Video

APR. 1. 2014, AT 1:52 PM

The Dollar-And-Cents Case Against Hollywood's Exclusion of Women

By Walt Hickey

Filed under Movies

Get the data on GitHub

A Walmart employee puts Lionsgate's "The Hunger Games: Catching Fire" Blu-ray Combo Pack and DVD on the rack prior to the midnight release at Walmart on March 6, 2014 in Orange, California. JEROD HARRIS / GETTY IMAGES

More variables

- Bechdel test could be capturing the effect of other variables:
 - What type of movies are the ones that pass the test?
 - What is their **budget**?

More variables

```
lm(log(Adj Revenue) ~ bechdel test + log(Adj Budget) + Metascore + imdb, data = bechdel)
##
                 Estimate Std. Error t value Pr(>|t|)
                   1.3798
  (Intercept)
                             0.5126 2.6921
                                             0.0072
## bechdel test
                   0.2275 0.0665 3.4229
                                            0.0006
## log(Adj Budget)
                   0.8594 0.0256 33.6160
                                            0.0000
## Metascore
                   0.1012 0.0293 3.4512
                                            0.0006
## imdb
                   0.0864 0.0517 1.6716
                                            0.0948
```

Positive and significant!

Comparing effect sizes

- Another investor says that it's better to bring in a better actor because it will increase ratings.
- How do you compare effect sizes?
 - How does one more point on IMDB compare to passing/failing the Bechdel test?

Standardized Partial Coefficients

• Main idea: Transform everything to the same scale (standard deviations)

• Will this change our estimates? How?

Transform the data

```
##
                Estimate Std. Error t value Pr(>|t|)
                           0.0328 537.0138
## (Intercept)
                17.5882
                                           0.0000
## bechdel test
                                  3.4229
                0.1129 0.0330
                                           0.0006
## log Adj Budget 1.1122 0.0331 33.6160
                                           0.0000
## Metascore
                  0.1676 0.0486
                                  3.4512
                                           0.0006
## imdb
                  0.0812
                            0.0486
                                   1,6716
                                            0.0948
```

What are the units on bechdel_test now? Does it make sense?

Transform the data

```
##
                Estimate Std. Error t value Pr(>|t|)
                17.5882
                           0.0328 537.0138
## (Intercept)
                                          0.0000
## bechdel test
                                  3.4229
               0.1129 0.0330
                                          0.0006
## log Adj Budget 1.1122 0.0331 33.6160
                                          0.0000
## Metascore
                 0.1676 0.0486 3.4512
                                          0.0006
## imdb
                 0.0812
                           0.0486
                                  1,6716
                                           0.0948
```

• What are the units on bechdel test now? Does it make sense?

Transform the data

```
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 17.5882
                            0.0328 537.0138
                                            0.0000
## bechdel test
                0.1129 0.0330 3.4229
                                           0.0006
## log Adj Budget 1.1122 0.0331 33.6160
                                           0.0000
                  0.1676 0.0486
## Metascore
                                   3.4512
                                           0.0006
## imdb
                  0.0812
                            0.0486
                                   1,6716
                                            0.0948
```

What are the units on bechdel_test now? Does it make sense?

Main takeaway points

- Data can tell different stories depending on how you handle it.
 - Open Does that mean that we can get data to say anything?

Main takeaway points

- Data can tell different stories depending on how you handle it.
 - Does that mean that we can get data to say **anything**?

"If you torture the data long enough, it will confess to anything"

• Assumptions and measures matter.

Main takeaway points

- Data can tell different stories depending on how you handle it.
 - Does that mean that we can get data to say anything?

"If you torture the data long enough, it will confess to anything"

- Assumptions and measures matter.
- Plot your data!

References

- Heiss, A. (2020). "Course: Program Evaluation for Public Service". Slides for Regression and Inference.
- Ismay, C. & A. Kim. (2021). "Statistical Inference via Data Science". Chapter 10.
- Keegan, B. (2018). "The Need for Openess in Data Journalism". Github Repository