UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

Ecuaciones Diferenciales II $_{\text{TAREA }1}$

Integrantes

JAVIERA ARIAS GUTIÉRREZ CLAUDIO CORREA BARRÍA Docente Freddy Paiva Vejar

Problema.

Hallar $u \in C^1(\Omega)$ donde Ω es un abierto a definir en la solución del ejercicio:

$$u_x + u_y + u = e^{(x+2y)}$$
$$u(x,0) = 0$$

Solución.

a) Vía parametrización (s, τ) :

Sea $\Omega\subseteq\mathbb{R}^2$ un abierto donde la solución estará bien definida y sea de clase $C^1(\Omega)$. Reescribimos la

$$\frac{\partial u}{\partial \tau} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \tau} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \tau}$$

Y sea $x=x(s,\tau)~$ y $y=y(s,\tau)$, parametrizaremos nuestra curva inicial como

$$\Gamma_0 = \{(x, y, u) : (x(s), y(s), u(s)) = (s, 0, 0), s \in I \subseteq \mathbb{R}\}$$

El sistema característico asociado a la EDP será

$$\frac{\frac{\partial x}{\partial \tau} = 1}{x(s,0) = s}$$

$$\begin{cases} \frac{\partial y}{\partial \tau} = 1\\ y(s, 0) = 0 \end{cases}$$

$$\frac{\partial x}{\partial \tau} = 1 \\ x(s,0) = s$$

$$\frac{\partial y}{\partial \tau} = 1 \\ y(s,0) = 0$$

$$\frac{\partial u}{\partial \tau} = e^{x+2y} - u \\ u(s,0) = 0$$

Resolviendo tenemos

$$x(s,\tau) = \tau + c_1(s)$$

$$y(s,\tau) = \tau + c_2(s)$$

Aplicando dato inicial

$$x(s,0) = c_1(s) = s$$

$$y(s,0) = c_2(s) = 0$$

Así

$$\begin{cases} x(s,\tau) = \tau + s \\ y(s,\tau) = \tau \end{cases}$$

ahora reemplazando, nos queda

$$\frac{\partial u}{\partial \tau} = e^{s+3\tau} - u$$

$$u(s,0) = 0$$

Reescribimos como

$$u_{\tau} + u = e^{s+3\tau}$$

Resolvemos la EDO usando el Factor Integrante: $\Phi(\tau)=e^{\tau}$, se tiene que

$$e^{\tau}u_{\tau} + e^{\tau}u = e^{s+3\tau}e^{\tau}$$

$$\Leftrightarrow \Phi[ue^{\tau}] = e^{s+4\tau}$$

$$\Leftrightarrow \int \Phi[ue^{\tau}]d\tau = \int e^{s+4\tau}d\tau$$

$$\Leftrightarrow ue^{\tau} = \frac{1}{4}e^{s+4\tau} + C(s)$$

$$\Leftrightarrow u(s,\tau) = \frac{1}{4}e^{s+3\tau} + e^{-\tau}C(s)$$

Aplicando el dato inicial

$$u = (s,0) = \frac{1}{4}e^s + C(s) = 0$$

$$C(s) = -\frac{1}{4}e^s$$

$$\Rightarrow u(s,\tau) = \frac{1}{4}(e^{s+3\tau} - e^{s-\tau}) \quad s,\tau \in \Gamma \subseteq \mathbb{R}^2.$$

Volvemos a las variables originales

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} s \\ \tau \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} s \\ \tau \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Entonces

$$s(x,y) = x - y$$

$$\tau(x,y) = y$$

$$\Rightarrow u(x,y) = \frac{1}{4}(e^{x+2y} - e^{x-2y})$$

$$\Leftrightarrow u(x,y) = \frac{e^x}{4}(e^{2y} - e^{-2y}) \quad x, y \in \Omega.$$

Como u(x,y) está bien definida para todo \mathbb{R}^2 , entonces $\Omega = \mathbb{R}^2$. Ahora, veamos que u(x,y) es único:

$$\left|\begin{array}{cc} a(\Gamma_0(s)) & x'(s) \\ b(\Gamma_0(s)) & y'(s) \end{array}\right| = \left|\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right| = -1 \neq 0,$$

donde a y b son funciones que acompañan a u_x y u_y respectivamente. Entonces u(x,y) es una solución única en Ω .

Problema.

Hallar $u \in C^1(\Omega)$ donde Ω es un abierto a definir en la solución del ejercicio:

$$u_x + u_y + u = e^{(x+2y)}$$
$$u(x,0) = 0$$

Solución.

b) Vía cambio de variable:

Su sistema característico es

$$\frac{dx}{1} = \frac{dy}{1} = \frac{du}{e^{x+2y} - u}$$

Encontramos una Integral Primera,

$$\phi(x, y, u) = x - y = c$$

Aplicaremos el cambio de variable v(s,t) = u(x,y)

$$s = x - y$$

$$t = y$$

Vemos que $\left|\frac{\partial(s,t)}{\partial(x,y)}\right|=\begin{vmatrix}1&-1\\0&1\end{vmatrix}=1\neq 0$, entonces es invertible.

$$u_x = \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} = v_s$$

$$u_y = \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial t} = -v_s + v_t$$

Reemplazando en la EDP tenemos

$$v_s - v_s + v_t + v = e^{s+3t}$$

$$\Leftrightarrow v_t + v = e^{s+3t}$$

usando Factor Integrante $\phi(t) = e^t$ resulta

$$\begin{split} e^t v_t + e^t v &= e^{s+4t} \\ \Rightarrow e^t v &= \int e^{s+4t} dt \\ \Leftrightarrow e^t v &= \frac{1}{4} e^{4t+s} + C(s) \\ \Leftrightarrow v(s) &= \frac{1}{4} e^{3t+s} + e^{-t} C(s) \quad , s \in \mathbb{R}. \end{split}$$

Volviendo a las variables originales, nos queda

$$u(x,y) = \frac{1}{4}e^{3y + (x-y)} + e^{-y}C(x-s)$$

$$\Leftrightarrow u(x,y) = \frac{1}{4}e^{2y+x} + e^{-y}C(x-y)$$

Por el Dato de Cauchy

$$u(x,0) = \frac{1}{4}e^x + C(x) = 0$$

 $C(x) = -\frac{1}{4}e^x$

finalmente

$$\begin{split} u(x,y) &= \frac{1}{4}e^{2y+x} + e^{-y}(-\frac{1}{4}e^{x-y}) \\ \Leftrightarrow u(x,y) &= \frac{1}{4}e^{2y+x} - \frac{1}{4}e^{x-2y} \\ \Leftrightarrow u(x,y) &= \frac{1}{4}e^x(e^{2y} - e^{-2y}), \qquad (x,y) \in \mathbb{R}^2. \end{split}$$

Vemos que u(x,y) está bien definida para todo \mathbb{R}^2 , entonces $\Omega=\mathbb{R}^2$. Y u(x,y) es único, ya que:

$$\begin{vmatrix} a(\Gamma_0(s)) & x'(s) \\ b(\Gamma_0(s)) & y'(s) \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0,$$

con a y b funciones que acompañan a u_x y u_y respectivamente.

Gráfico.

Notamos que el gráfico va aumentando considerablemente, tanto así que si cambiamos los límites, visualizamos un gráfico que forma la misma figura.

Aquí mostramos el gráfico en dos tamaños distintos:

