2015 年春《操作系统》随堂测验(一)

班	.级			_ 学与	₹			姓	名			成:	绩	
			(随:	堂测验<	:一> 考	查《操	作系统	精髓与词	设 计原理	里》第 1	-6章)			
-,	填空题	(每空 2	分,共	30分)										
1,	基本指令	周期包	括	取指	阶段		和执行	阶段两部	部分。					
2、	在可能发	生多个	中断的	情况下,	一般不	有两种如	 上理方法	ž:	禁止	中断	<u>_</u>	和中断制	聚套 。	
3、	设 Cache	字取时	打间为 1	100ns,	Cache f	命中率)	与 90%,	内存存	字取时间]为 800	ns,则	内存的 ^s	P均存I	取时间为
	0.	9*100+0	0.1*(100	0+800)=	180ns_		_ •							
4、	在一个较	短的时	间间隔	内,程序	う集中 に	方问内存	字的某一	·块区域	,这称	为访问	的	局部性		原理。
5、	相对于多	:个程序	的串行	执行,	多道程序	亨并发表	丸行可显	と著提高	<u></u>	登源利 月]率	o		
6、	多道批处	理系统	注重于	提高资源	原利用率	室,而分	计时系统	注重于	减少用	户程序	的	向应时间	ij	°
7、	进程映像	的组成	元素包	括程序位	代码、村	目关数排	居集、村	記和	进程控	制块	o			
8、	操作系统	挂起一	个进程	的主要是	原因是_	内在	字不足_	o						
9、	UNIX 中	,父进和	星通过	系统调用]fo	ork()	创建-	子进程。						
10、	线程可分) 为两类	: 用户	级线程	和	内核级_	线和	呈。						
11、	临界区是	· 발指	访问	可临界资	逐源的那	了一部分	·程序		•					
12、	用硬件实	;现进程	互斥时	,中断	禁用适	于单 CP	U 系统	,多CF	VI 系统	可使用	专	用机器	指令_	o
13、	死锁的四	1个必要	条件是	: 互斥	·	占有且	.等待	、不	可抢占	和	_循环等	辞。		
14、	检测到列	E锁时,	将系统	从死锁	状态中的	灰复的ス	方法可以	人是: 杀	:死进程	和	_抢占资	张源 。		
二、	单项选择	誕 (每	空 2 分	,共30	分。将	所选答	案填入	下面的	表格中,	不得写	百在它处	<u>\.</u>)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.~	3. 在中跌	· 分类中	,被零	除属于	_A	; 打	印机无约	纸属于_	C	_; 内存	字数据 错	诗误属于	D_	o
A	. 程序中	断		B. 时轻	沖中断		C. I/	O中断		D.	硬件失	效中断		
4.下	列有关存	储器读	写速度	的排列,	正确的	勺是B	°							
A	. RAM>C	ache>硬	盘	B. Cach	ne>RAN	/ >硬盘	(C. Cache	>硬盘>	RAM	D	. RAM>	硬盘>	Cache
5. 高	速缓存(C	'ache)是	现代计	算机中:	重要的在	字储器ス	之一,追	通常一级	Cache	位于	_A	Þ.		
A	. CPU 芯片	ተ		B. RAN	1 芯片		C. 主	板		D. 7	硬盘			
6.下	列存储器	中,用	于加快	内存访问	可速度的	约是B	0							
A	. 寄存器			B. Cach	ne		C. 磁	盘		D.	磁带			
7.太	操作系统	和程序	员不可,	见,或和	者说无法	去控制和	口操作的	J存储器	是B	o				

A. 寄存器	B. 高速缓存	C. 磁盘	D. 内存
8.在进程控制块的所有属性	上 中,能够区别于其它进	注程的唯一属性是D	_0
A. PC 值	B. UID	C. PPID	D. PID
9.设一个信号量的初值为 2	,现在的值为-3,则共	有A个进程申请	使用该信号量所保护的资源。
A. 5	B. 2	C. 3	D. 6
10. 下列资源中,B_	不是可重用资源。		
A. 设备	B. 信号	C. 信号量	D. 文件
11. 下列方法中,不属于死	正锁预防方法的是A	·o	
A. 银行家算法	B. 剥夺资源	C. 规定资源申请顺序	D. 一次性分配所有资源
12. 一个进程的上下文是护	旨该进程的C 。		
A. 进程控制块 PCB	B. 代码和数据	C. 运行时 CPU 寄存器	的值 D. 状态和优先级
13. 当用户进程执行到一条	杀 创建子进程的指令时,	CPU 的执行模式将由用	户态切换到 D 。
A. 运行态	B. 阻塞态	C. 阻塞挂起态	D. 系统态
14. I/O 操作的三种处理方	式分别是:编程 I/O、_	_A和C。	
A. 中断驱动 I/O	B. 总线驱动 I/O	C. 直接内存	产存取 D. 高速缓存
三、计算与简答题(每题)	20分, 共40分)		
1. Job1、Job2、Job3 优先级	递减, 优先级高的作业可	可抢占优先级低的作业的	CPU 但不能抢占 I/O 设备 I1、I2。
访问 CPU 和 I1、I2 的顺序	和时间如下。求多道程原	亨并发执行时的 CPU 利用	用率, I1 资源利用率和 I2 资源利用
率。			
Job1: I2-30ms, CPU-10ms,	I1-30ms, CPU-10ms		

Job2: I1-20ms, CPU-20ms, I2-40ms

Job3: CPU-30ms, I1-20ms

解:按优先级递减,多道并发运行轨迹:

Job1:	I2-30	2-30		I1-30		C-10		
Job2:	I1-20	C-10		C-10		I2-40		
Job3:	C-20				C-10	I1-20		

总运行 90ms, Job1=80ms, Job2=90ms, Job3=90ms, CPU 利用率=70/90=77.78%,

I1 利用率=70/90=77.78%, I2 利用率=70/90=77.78%

```
    CPU
    J3-20
    J2-10
    J1-10
    J2-10
    J1-10

    I1
    J2-20
    空闲
    J1-30
    J2-40

    I2
    J1-30
    空闲
    J2-40
```

2.写出 semWait 和 semSignal 原语的伪代码定义。

```
答: semWait 原语:
```

```
semWait(semaphore s)
{
    s.count——;
    if (s.count < 0)
    { 将当前进程放入 s.queue;
        阻塞当前进程;
    }
}
```

semSignal 原语

```
semSignal(semaphore s)
{
    s.count++;
    if (s.count <= 0)
    { 从 s.queue 中移除进程 P;
        将进程 P 插入就绪队列;
    }
}
```

- 3、4个进程 P1~P4, 3 种资源 R1~R3。设系统资源分配状况如下:
- 问: 1) 系统现在是否处于安全状态? 若是,请给出一个包含所有进程的安全序列。
 - 2) 进程 P2 发出请求向量 request2(1, 0, 1), 系统能把资源分配给它吗? 为什么?
 - 3) 若 P2 申请资源后, P3 发出请求 request3(0,0,1), 系统能把资源分配给它吗? 为什么?

进程	Claim 矩阵			Allo	ocatio	n 矩阵	Available 向量		
	R1	R2	R3	R1	R2	R3	R1	R2	R3
P1	3	2	2	1	0	0	1	1	2
P2	6	1	3	5	1	1			
P3	3	1	4	2	1	1			
P4	4	2	2	0	0	2			

- 答: 答: 1) 处于安全状态。安全序列<P2,P1,P3,P4>。
- 2) 能。有安全序列<P2,P1,P3,P4>。
- 3) 不可以。将处于不安全状态。
- 4、桌上一只盘子,最多放 2 个水果,每次只能放入或取出一个,爸爸向盘子中方苹果,妈妈放桔子,两个 儿子专吃桔子,两个女儿专吃苹果,用信号量实现爸爸、妈妈、女儿和儿子的同步与互斥。

解:四人之间的关系:1爸爸,妈妈要互斥使用盘子,所以两者之间是互斥关系;2爸爸放的苹果,女儿吃, 所以两者是同步关系;3妈妈放的桔子,儿子吃,所以两者也是同步关系。

```
struct semaphore s=1, sp=0, so=0;
    void father (void)
              while(TRUE){
                             have an apple;
                             semWait(s);
                             put an apple;
                             semSignal(sp);}
    void mother (void)
              while(TRUE){
                             have an orange;
                             semWait(s);
                             put an orange;
                             semSignal(so);}
    void son (void)
         {
              while(TRUE){
                             semWait(sp);
                             get an orange;
                             semSignal(s);
                             eat an orange;}
    void daught (void)
         {
               while(TRUE){
                             semWait(sp);
                             get an apple;
                             semSignal(s);
                             eat an apple;}
```