Conjuntos de datos y cargadores de datos

Roberto López Castro

Diego Andrade Canosa

Índice

- Introducción
- Datasets en Pytorch
- Dataloaders en Pytorch
- Transformaciones
- Data Augmentation
- Técnicas avanzadas de carga de datos
- Manejo de datasets desbalanceados
- Distributed Data Parallelism
- Aplicaciones del mundo real

Introducción a los Conjuntos de Datos

- (Pytorch) Colección de muestras de datos que se utilizan para entrenar o evaluar un modelo de ML.
- Contiene tanto los datos de entrada como las etiquetas correspondientes (si procede) para cada muestra.
- En PyTorch están representados por la clase *torch.utils.data.Dataset*

- PyTorch proporciona una amplia variedad de conjuntos de datos predefinidos, como MNIST, CIFAR-10, ImageNet, etc.
- Es posible crear conjuntos de datos personalizados para adaptarse a necesidades específicas.

Estructura de un Conjunto de Datos

- Dos elementos principales: los <u>datos de entrada</u> y las <u>etiquetas</u> correspondientes.
- Los datos de entrada pueden ser imágenes, texto, señales de audio, etc., dependiendo del problema y el tipo de datos que estemos tratando.
- Las etiquetas representan las salidas deseadas o las clases a las que pertenecen los datos de entrada.

- En PyTorch se representan como una clase que hereda de *torch.utils.data.Dataset* y proporciona implementaciones para los métodos __len__() y __getitem__().
 - ___len___() devuelve la longitud del conjunto de datos (número total de muestras).
 - <u>getitem</u> () se utiliza para acceder a una muestra específica y su etiqueta utilizando un índice.

- Algunos ejemplos de conjuntos de datos predefinidos en PyTorch son:
 - MNIST: Un conjunto de imágenes de dígitos escritos a mano, utilizado para reconocimiento de dígitos.
 - <u>CIFAR-10</u>: Un conjunto de imágenes en color de 10 clases diferentes, utilizado para clasificación de imágenes.
 - <u>ImageNet</u>: Un conjunto de imágenes de alta resolución clasificadas en miles de categorías, utilizado en desafíos de reconocimiento de imágenes.

Creación de un Conjunto de Datos Personalizado

- En PyTorch, también tenemos la flexibilidad de crear nuestros propios conjuntos de datos personalizados.
- Esto puede ser útil cuando tenemos datos en un formato específico o cuando queremos combinar diferentes fuentes de datos.
- Para crear un conjunto de datos personalizado, necesitamos crear una clase que herede de *torch.utils.data.Dataset* y proporcionar implementaciones para los métodos ___len__() y ___getitem__().

Creación de un Conjunto de Datos Personalizado

```
import torch
from torch.utils.data import Dataset
class CustomDataset(Dataset):
    def __init__(self, data, labels):
        self.data = data
        self.labels = labels
    def __len_(self):
        return len(self.data)
    def __getitem__(self, index):
        sample = self.data[index]
        label = self.labels[index]
        return sample, label
data = [...] # Datos de entrada
labels = [...] # Etiquetas correspondientes
custom_dataset = CustomDataset(data, labels)
sample, label = custom_dataset[0]
```


Introducción a los DataLoaders en PyTorch

• En PyTorch, los **DataLoaders** nos permiten cargar y gestionar eficientemente conjuntos de datos durante el entrenamiento de nuestros modelos.

- PyTorch proporciona la clase *torch.utils.data.DataLoader* para crear **DataLoaders** de manera sencilla.
- Al utilizar un **DataLoader**, podemos iterar sobre los datos en lotes, lo que facilita el procesamiento por lotes durante el entrenamiento.

Configuraciones comunes del DataLoader

- El DataLoader ofrece va adaptarlo a nuestras necesario
- Algunas configuraciones
 - <u>Tamaño del lote</u> (batch si cada lote que se utiliza pa

```
# Configuraciones comunes del DataLoader

batch_size = 64

shuffle = True

num_workers = 4

drop_last = False # Descartar el último lote incompleto

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,

num_workers=num_workers, drop_last=drop_last)
```

- <u>Aleatorización</u>: Permite mezclar los datos en cada época (epoch) para evitar el sesgo del orden de los datos.
- <u>Multiprocesamiento</u>: Habilita la carga de datos en paralelo utilizando múltiples hilos de ejecución para acelerar el proceso de carga.
- <u>Último lote incompleto</u>: Maneja automáticamente el último lote que puede tener un tamaño menor al tamaño del lote especificado.

Iteración sobre un DataLoader

- Una vez que tenemos un **DataLoader**, podemos iterar sobre él en un bucle para obtener los lotes de datos para el entrenamiento.
- En cada iteración, el **DataLoader** nos devuelve un lote de datos.
- Podemos acceder a las muestras de datos y sus etiquetas correspondientes utilizando la sintaxis de desempaquetado.
- Podemos realizar operaciones en cada lote, como pasar los datos a un modelo para la propagación hacia adelante y el cálculo de pérdidas.

Creando un DataLoader en PyTorch

```
import torch
from torch.utils.data import DataLoader
dataset = CustomDataset(data, labels) # Suponiendo que tienes un conjunto de
datos personalizado
batch_size = 32
shuffle = True # Aleatorizar las muestras
num_workers = 4 # Utilizar 4 hilos de ejecución para la carga de datos
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers)
# Iterar sobre el DataLoader
for batch in dataloader:
    inputs, labels = batch
    la propagación hacia adelante
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    # Realizar el cálculo de pérdida y otras operaciones de entrenamiento
```


Técnicas Avanzadas de Carga de Datos

- Además de los DataLoaders básicos, PyTorch ofrece algunas técnicas avanzadas de carga de datos.
- Estas técnicas permiten una mayor personalización y flexibilidad en el manejo de los conjuntos de datos.

Batch Sampling

- El muestreo de lotes personalizado se puede lograr mediante la implementación de la clase Sampler en PyTorch.
- Esto permite controlar cómo se seleccionan y ordenan los lotes de datos durante el entrenamiento.
- Es útil cuando se tienen requisitos especiales de orden o agrupamiento de los datos.

Data Shuffling

- El mezclado de datos es una técnica importante para evitar el sesgo en el orden de los datos de entrenamiento.
- PyTorch proporciona la opción shuffle en el DataLoader para mezclar aleatoriamente los datos en cada época de entrenamiento.
- Esto ayuda a garantizar una distribución más equitativa y aleatoria de los datos en cada lote.

Data Loading en Dispositivos Múltiples

- Cuando se trabaja con dispositivos múltiples, como GPUs, se puede utilizar la clase DataParallel para facilitar la carga de datos en paralelo en cada dispositivo.
- Esto ayuda a optimizar la eficiencia y el rendimiento de la carga de datos al distribuir la carga en diferentes dispositivos.
- La clase DataParallel se encarga automáticamente de dividir los lotes de datos y enviarlos a los dispositivos correspondientes.
- DataParallel! = Distributed Data Parallel (a continuación)
- single-process multi-thread (a wrapper of scatter + paralllel_apply + gather) vs. multi-process parallelism (different machines)

Carga Eficiente de Datos

- Utiliza la opción *num_workers* en el **DataLoader** para cargar datos en paralelo en múltiples subprocesos.
- Ajusta el tamaño del lote (*batch size*) para equilibrar la utilización de la memoria y el rendimiento del modelo.
- Si es posible, almacena los datos en una unidad de almacenamiento rápida, como un SSD, para acelerar la carga de datos.

Transformaciones en PyTorch

- En PyTorch, las transformaciones son operaciones aplicadas a los datos para modificarlos o prepararlos antes de utilizarlos en el modelo.
- Pueden incluir el reescalado de las imágenes, la normalización de los valores, la aplicación de técnicas de aumento de datos, entre otros.
- PyTorch proporciona la clase *torchvision.transforms* que ofrece una amplia variedad de transformaciones comunes para trabajar con conjuntos de datos de imágenes.
- Las transformaciones se pueden aplicar tanto a <u>nivel de conjunto de</u> datos como a <u>nivel de muestra</u>.

Transformaciones en al Conjunto de import torchvision.transforms as transforms

Datos

Transformaciones en al Conjunto de import torchvision.datasets import CIFARIO

 Podemos aplicar transform datos utilizando la clase to transform.

- Las transformaciones se aplican ai momento de cargar los datos del conjunto de datos.
- Al aplicar transformaciones al conjunto de datos, podemos realizar operaciones como reescalado, recorte, normalización, etc., en todas las muestras del conjunto de datos.

Transformaciones en el Conjunto de Datos

Geometry		Tr Tr
Resize(size[, interpolation, max_size,])	Resize the input image to the given size.	Ge Co
v2.Resize(size[, interpolation, max_size,])	[BETA] Resize the input to the given size.	M Co Au
v2.ScaleJitter(target_size[,scale_range,])	[BETA] Perform Large Scale Jitter on the input according to "Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation".	Fu
v2.RandomShortestSize(min_size[, max_size,])	[BETA] Randomly resize the input.	
v2.RandomResize(min_size, max_size[,])	[BETA] Randomly resize the input.	
RandomCxop(size[, padding, pad_if_needed,])	Crop the given image at a random location.	
v2.RandomCrop(size[, padding,])	[BETA] Crop the input at a random location.	
RandomResizedCxop(size[,scale,ratio,])	Crop a random portion of image and resize it to a given size.	
v2.RandomResizedCrop(size[, scale, ratio,])	[BETA] Crop a random portion of the input and resize it to a given size.	

https://pytorch.org/vision/stable/transforms.html

Transformaciones en la Muestra

- También podemos aplicar transformaciones a nivel de muestra utilizando la clase *torchvision.transforms*.
- Las transformaciones a nivel de muestra se aplican durante el proceso de obtención de la muestra utilizando el método __getitem__() de la clase del conjunto de datos.
- Esto nos permite aplicar transformaciones específicas a cada muestra individualmente.
- Las transformaciones a nivel de muestra pueden incluir la conversión de la imagen a tensores, la normalización de los valores, la aplicación de técnicas de aumento de datos, entre otros.

Transformaciones en la Muestra

```
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
class CustomDataset(Dataset):
   def __init__(self, data, labels, transform=None):
       self.data = data
       self.labels = labels
       self.transform = transform
   def __getitem__(self, index):
        sample = self.data[index]
        label = self.labels[index]
       if self.transform:
           sample = self.transform(sample)
       return sample, label
transform = transforms.Compose([
   transforms.RandomHorizontalFlip(), # Volteo horizontal aleatorio
   transforms.RandomCrop(32, padding=4), # Recorte aleatorio de tamaño 32x32
   transforms.ToTensor(), # Conversión de la imagen a un tensor
1)
dataset = CustomDataset(data, labels, transform=transform)
```


Combinación de Transformaciones

- En PyTorch, podemos combi aplicarlas secuencialmente a
- Podemos utilizar la clase **tor** para combinar transformacio compuesta.
- Las transformaciones se <u>apli</u> especifican en la transforma

```
import torchvision.transforms as transforms

# Definir transformaciones individuales
resize_transform = transforms.Resize((256, 256))
crop_transform = transforms.RandomCrop(224)
to_tensor_transform = transforms.ToTensor()

# Combinar las transformaciones en una transformación compuesta
composed_transform = transforms.Compose([
    resize_transform,
    crop_transform,
    to_tensor_transform
])

# Aplicar la transformación compuesta a una muestra de datos
transformed_sample = composed_transform(sample)
```

• Al combinar transformaciones, podemos construir flujos de transformación personalizados que se ajusten a nuestras necesidades específicas.

Aplicación de Transformaciones en un DataLoader

- Podemos aplicar transformaciones a un **DataLoader** utilizando el parámetro *transform* al crear la instancia del **DataLoader**.
- Las transformaciones se aplican al momento de cargar los datos en el **DataLoader**.
- Esto nos permite aplicar transformaciones <u>personalizadas</u> a los datos <u>en cada lote</u> mientras se cargan en el **DataLoader**.

Beneficios de las Transformaciones en PyTorch

- Realizar operaciones de <u>preprocesamiento</u> y a<u>umento de datos</u> de manera eficiente.
- <u>Preparar</u> los datos antes de introducirlos en el modelo.
- Aplicar técnicas de <u>aumento de datos</u>, como la rotación, el recorte, el cambio de brillo, etc., para enriquecer el conjunto de datos y mejorar la generalización del modelo.
- Son flexibles y personalizables, lo que nos permite <u>adaptarlas</u> a nuestras <u>necesidades</u> específicas.

Carga y Transformación de Datos

- Lab 1: 01_dataloaders.ipynb
- Lab 2: 01_transformations.ipynb

Utilizar Transformaciones Adecuadas

- Asegúrate de elegir las transformaciones adecuadas para tus datos y tareas específicas.
- Considera las transformaciones de reescalado, recorte, volteo, rotación, normalización y otras según sea necesario.
- <u>Experimenta</u> con diferentes transformaciones para <u>mejorar el</u> <u>rendimiento</u> y la precisión del modelo.

Visualización y Análisis de Datos

- Visualiza algunas muestras de datos para comprender mejor su formato, distribución y características.
- Utiliza bibliotecas como matplotlib, seaborn o tensorboard para trazar histogramas, gráficos de dispersión, etc.
- Analiza las estadísticas de los datos, como la media, la desviación estándar, para ajustar las transformaciones o la normalización.

Verificación de los DataLoaders

- Verifica que los **DataLoaders** estén funcionando correctamente antes de comenzar el entrenamiento o la evaluación.
- Itera sobre los **DataLoaders** y visualiza algunas imágenes y etiquetas para asegurarte de que los datos se carguen correctamente.
- Realiza un seguimiento de las estadísticas clave, como el tamaño del lote y el número de clases, para confirmar la coherencia de los datos -> Data augmentation + balanceo de datos

Data Augmentation

- Data augmentation es una técnica comúnmente utilizada para aumentar la <u>cantidad y variedad</u> de datos de entrenamiento.
- Consiste en aplicar transformaciones aleatorias a las imágenes durante el entrenamiento para introducir variabilidad.
- Esto ayuda a mejorar la generalización del modelo y a reducir el sobreajuste.

Tipos de Data Augmentation

- Existen diferentes tipos de data augmentation que se pueden aplicar a las imágenes, como:
 - Rotación: rotar la imagen en un ángulo aleatorio.
 - Volteo horizontal: voltear la imagen horizontalmente.
 - <u>Cambio de brillo, contraste y saturación</u>: ajustar los niveles de brillo, contraste y saturación de la imagen.
 - Recorte y redimensionamiento aleatorio: recortar y redimensionar la imagen a tamaños aleatorios.
 - Ruido aleatorio: agregar ruido aleatorio a la imagen.
 - ...

Implementación de Data Augmentation en PyTorch

- En PyTorch, la data augmentation se puede implementar utilizando la clase *transforms* de la biblioteca *torchvision*.
- Puedes combinar y encadenar diferentes transformaciones para crear una secuencia de data augmentation.
- Asegúrate de aplicar la data augmentation solo en el conjunto conjunto de datos de entrenamiento y no en el conjunto de datos de prueba o validación.

Ejemplo de Data Augmentation en PyTorch

• Lab3: 01_augmentation.ipynb

Manejo de Conjuntos de Datos Desbalanceados

- En muchas aplicaciones del mundo real, los conjuntos de datos pueden estar desbalanceados, lo que significa que hay una diferencia significativa en el número de muestras entre las diferentes clases.
- Esto puede llevar a un <u>sesgo en el entrenamiento</u> del modelo hacia las <u>clases dominantes</u> y afectar su rendimiento en las clases minoritarias.

Métodos de Manejo de Datos Desbalanceados

- Oversampling: aumentar la cantidad de muestras en las clases minoritarias mediante duplicación o generación sintética de datos.
- <u>Undersampling</u>: reducir la cantidad de muestras en las clases dominantes al eliminar o submuestrear datos.
- <u>Uso de pesos de clase</u>: asignar pesos diferentes a las clases durante el entrenamiento para equilibrar su influencia en la función de pérdida.

Implementación en PyTorch

- Oversampling y Undersampling: se pueden aplicar transformaciones personalizadas a los conjuntos de datos o utilizar bibliotecas como imbalanced-learn.
- <u>Uso de pesos de clase</u>: se pueden especificar los pesos de clase al calcular la función de pérdida o utilizar la opción *class_weight* en algunas funciones de pérdida incorporadas de PyTorch.

Implementación en PyTorch

• Lab4: 01_unbalanced.ipynb

Distributed Data Parallelism

- Distributed Data Parallelism es una técnica avanzada para entrenar modelos en PyTorch en múltiples GPUs o nodos de manera eficiente.
- Permite distribuir el modelo y los datos entre varios dispositivos para acelerar el entrenamiento y mejorar el rendimiento.

Beneficios de Distributed Data Parallelism

- Distribuir el entrenamiento en varias GPUs o nodos tiene varios beneficios:
- <u>Mayor velocidad</u> de entrenamiento al aprovechar el poder de procesamiento de múltiples dispositivos.
- <u>Capacidad</u> para entrenar modelos más grandes que no cabrían en una sola GPU.
- Mejor <u>escalabilidad</u> al utilizar múltiples recursos de hardware para el entrenamiento.

Configuración de Distributed Data Parallelism

- Para utilizar Distributed Data Parallelism en PyTorch:
- 1. Configurar el entorno de ejecución para la distribución, como definir el número de GPUs o nodos disponibles.
- 2. Crear una instancia del modelo y envolverlo con la clase torch.nn.parallel.DistributedDataParallel.
- 3. Configurar la inicialización y sincronización entre los procesos distribuidos.
- 4. Dividir los datos y las tareas de entrenamiento entre los dispositivos utilizando el **DataLoader** y la función de entrenamiento personalizada.

Ejemplo de Uso de Distributed Data Parallelism

- Lab5: 01_DDP.ipynb
- Más en profundidad en el siguiente curso de Pytorch

Aplicaciones del Mundo Real

- PyTorch y sus capacidades de manipulación de conjuntos de datos y carga de datos son ampliamente utilizadas en diversas aplicaciones del mundo real.
- Aquí presentamos algunos ejemplos de cómo PyTorch se utiliza en diferentes dominios:

Aplicación 1: Visión por Computadora

- En visión por computadora, PyTorch se utiliza para entrenar y desplegar modelos de reconocimiento de objetos, detección de objetos, segmentación semántica, entre otros.
- PyTorch permite cargar grandes conjuntos de datos de imágenes y aplicar transformaciones y técnicas de aumento de datos para mejorar el rendimiento del modelo.

Aplicación 2: Procesamiento del Lenguaje Natural (NLP)

- En el procesamiento del lenguaje natural, PyTorch es ampliamente utilizado para tareas como clasificación de texto, generación de texto, traducción automática y análisis de sentimientos.
- PyTorch permite cargar y procesar conjuntos de datos de texto, aplicar técnicas de tokenización y atención, y entrenar modelos de lenguaje con arquitecturas complejas como Transformers.

Aplicación 3: Aprendizaje por Refuerzo

- En el aprendizaje por refuerzo, PyTorch se utiliza para entrenar agentes que toman decisiones secuenciales en entornos dinámicos.
- PyTorch proporciona herramientas para construir modelos de agentes de aprendizaje profundo, como redes neuronales y funciones de pérdida personalizadas, y permite cargar y procesar datos de transiciones de estados y recompensas.

