Lenguajes Formales y Computabilidad Teoremas: Combo 5

Nicolás Cagliero

June 28, 2025

Lema. Sea $\Sigma = \{@, \%, !\}$. Sea

$$f: S_1 \times S_2 \times L_1 \times L_2 \to \omega$$

con $S_1,S_2\subseteq\omega$ y $L_1,L_2\subseteq\Sigma^*$ conjuntos no vacíos y sea \mathcal{G}_a una familia Σ -indexada de funciones tal que

$$\mathcal{G}_a: \omega \times S_1 \times S_2 \times L_1 \times L_2 \times \Sigma^* \to \omega$$

para cada $a \in \Sigma$. Si f y cada \mathcal{G}_a son Σ-efectivamente computables, entonces $R(f,\mathcal{G})$ lo es.

Proof.

$$R(f,\mathcal{G}): S_1 \times S_2 \times L_1 \times L_2 \times \Sigma^* \to \omega$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\varepsilon) = f(\vec{x},\vec{\alpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$$

Ahora quiero un procedimiento que compute a $R(f,\mathcal{G})$. Sean x,y,α,β,γ datos de entrada:

- 1. Corro el procedimiento efectivo de f con datos de entrada x, y, α, β y guardo el resultado en x_0 . Hago la asignación $\sigma \leftarrow \gamma$ y la asignación $A \leftarrow \varepsilon$.
- 2. Si $\sigma \neq \varepsilon$ entonces hago la asignación $\gamma_1 \leftarrow [\sigma]_1$ y hago la asignación $\sigma \leftarrow^{\frown} \sigma$.

Si
$$\gamma_1 = @$$
 voy a 3.
Si $\gamma_1 = %$ voy a 4.
Si $\gamma_1 = !$ voy a 5.

Si $\sigma = \varepsilon$, devuelvo x_0

- 3. Corro el procedimiento efectivo de $\mathcal{G}_{@}$ con datos de entrada $x_0, x, y, \alpha, \beta, A$ y guardo el resultado en x_0 . Hago la asignación $A \leftarrow A.@$ y voy a 2.
- 4. Corro el procedimiento efectivo de $\mathcal{G}_{\%}$ con datos de entrada $x_0, x, y, \alpha, \beta, A$ y guardo el resultado en x_0 . Hago la asignación $A \leftarrow A.\%$ y voy a 2.
- 5. Corro el procedimiento efectivo de $\mathcal{G}_!$ con datos de entrada $x_0, x, y, \alpha, \beta, A$ y guardo el resultado en x_0 . Hago la asignación $A \leftarrow A.!$ y voy a 2.

Lema (Lema de cuantificación acotada). Sea Σ un alfabeto finito. Sea $P: S \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m \to \omega$ un $predicado \Sigma$ -p.r., con $S, S_1, \dots, S_n \subseteq \omega$ y $L_1, \dots, L_m \subseteq \Sigma^*$ no vacíos. Supongamos $\overline{S} \subseteq S$ es Σ -p.r. Entonces $\lambda x \vec{x} \vec{\alpha} [(\forall t \in \overline{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha})]$ es Σ -p.r.

Proof. Sea

$$\tilde{P} = P\big|_{\overline{S} \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m} \cup C_1^{1+n,m}\big|_{(\omega - \overline{S}) \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m}$$

Nótese que \tilde{P} tiene dominio $\omega \times S_1 \times \cdots \times S_n \times L_1 \times \cdots \times L_m$ y es Σ -p.r. Ya que

$$\lambda x \vec{x} \vec{\alpha} [(\forall t \in \overline{S})_{t \le x} P(t, \vec{x}, \vec{\alpha})] = \lambda x \vec{x} \vec{\alpha} \left[\prod_{t=0}^{x} \tilde{P}(t, \vec{x}, \vec{\alpha}) \right]$$

$$=\lambda xy\vec{x}\vec{\alpha}\left[\prod_{t=x}^{y}\tilde{P}(t,\vec{x},\vec{\alpha})\right]\circ[C_{0}^{1+n,m},p_{1}^{1+n,m},\ldots,p_{1+n+m}^{1+n,m}]$$

el Lema de la sumatoria implica que $\lambda x \vec{x} \vec{\alpha}[(\forall t \in \overline{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha})]$ es Σ -p.r. Ya que

$$\lambda x \vec{x} \vec{\alpha} [(\exists t \in \overline{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha})] = \neg \lambda x \vec{x} \vec{\alpha} [(\forall t \in \overline{S})_{t \leq x} \neg P(t, \vec{x}, \vec{\alpha})]$$
tenemos que $\lambda x \vec{x} \vec{\alpha} [(\exists t \in \overline{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha})]$ es Σ -p.r.