获得的答案

Consider the language $A = \left\{0^{2^n} \mid n \geq 0\right\}$, consisting of all strings of 0_S whose length is a power of 2.

Turing machine M_2 decides a language A.

The state diagram for M_2 is as follows.

In this state diagram the label $0 \rightarrow x$, R, appears on the transition from q_4 to q_3 . This label signifies that, the state q_4 with head reading 0, the machine goes to state q_3 , writes x, and moves the head to the right. In the similar manner, other transitions also occur.

a. 0

Run the machine M_2 on the input 0. The starting configuration is q_10 . The sequence of configurations that the machine enters when started on the input string is as follows:

$$q_10$$
 (At $q_1, 0 \rightarrow \sqcup, R$ goes to the q_2)
 $\sqcup q_2 \sqcup$ (At $q_2, \sqcup \rightarrow R$ goes to the accept state)

The state q_1 on 0, the machine goes to state q_2 , writes \square and moves the head to the right. The state q_2 on \square , the machine goes to state q_{accept} , then halts.

As $\,{
m M}_2$ enters $\,q_{\it accept}\,$ state the input 0 is accepted.

b. 00

Run the machine M_2 on the input 00. The starting configuration is q_100 . The sequence of configurations that the machine enters when started on the input string is as follows:

The state q_1 on 0, the machine goes to state q_2 , writes \square and moves the head to the right. The state q_2 on 0, the machine goes to state q_3 , writes \square and moves the head to the right. moves the head to the right. The state q_3 on \square , the machine goes to state q_5 , moves the head to the left. The state q_5 on x, the machine goes to state q_s , moves the head to the left. The state q_s on \square , the machine goes to state q_2 , moves the head to the right. The state q_2 on x, the machine goes to state q_2 itself, moves the head to the right. The state q_2 on \square , the machine goes to state q_{accept} , then halts.

Finally, $\,{
m M}_2$ enters $\,q_{\it accept}$ state. Thus, the input 00 is accepted.

c. 000

Run the machine M_2 on the input 000. The starting configuration is q_1000 . The sequence of configurations that the machine enters when started on the input string is as follows:

 $(At q_1, 0 \rightarrow \sqcup, R \text{ goes to the } q_2)$ $q_1 000$ (At $q_2,0 \rightarrow x$,R goes to the q_3) $\Box q_2 00$ (At q_3 ,0 \rightarrow R goes to the q_4) $\sqcup xq_30$ $\sqcup x \circ q_4 \sqcup (At q_4, \sqcup \to R \text{ goes to the } q_{\text{reject}})$ ⊔x0⊔q_{reject}

The state q_1 on 0, the machine goes to state q_2 , writes \square and moves the head to the right. The state q_2 on 0, the machine goes to state q_3 , writes x and moves the head to the right. The state q_4 on 0, the machine goes to state q_4 , moves the head to the right. The state q_4 on [___], the machine goes to state $q_{\it reject'}$ moves the head to the right.

Finally, $\,{\rm M}_{2}$ enters $\,q_{\rm reject}$ state. Thus, input 000 is rejected.

d. 000000

Run the machine M_2 on the input 000000. The starting configuration is $q_1000000$. The sequence of configurations that the machine enters when started on the input string is as follows:

```
q_1000000
                        (At q_1, 0 \rightarrow \sqcup, R \text{ goes to the } q_2)
                        (At q_2,0\rightarrow x,R goes to the q_3)
\sqcup q_200000
                        (At q_3,0 \rightarrowR goes to the q_4)
\Box x q_3 0000
⊔x0q₄000
                        (At q_4,0 \rightarrowx,R goes to the q_3)
\sqcup x 0 x q_3 00
                        (At q_3,0 \rightarrowR goes to the q_4)
\sqcup x 0x0q_40
                        (At q_4,0 \rightarrowx,R goes to the q_3)
                        (At q_3, \sqcup \to L goes to the q_5)
\sqcup x 0 x 0 x q_3 \sqcup
                        (At q_5, x \to L goes to the q_5)
\sqcup x 0 x 0 q_5 x \sqcup
                        (At q_5, 0 \rightarrow L goes to the q_5)
\sqcup x 0 x q_5 0 x \sqcup
                        (At q_5, x \to L goes to the q_5)
\sqcup x 0q_5 x 0x \sqcup
                        (At q_5, 0 \rightarrowL goes to the q_5)
\Box x q_5 0 x 0 x \Box
                        (At q_5, x \to L goes to the q_5)
\sqcup q_5 x 0 x 0 x \sqcup
                        (At q_5, \sqcup \to R \text{ goes to the } q_2)
q_5 \sqcup x0x0x \sqcup
                        (At q_2, \mathbf{x} \to \mathbf{R} \text{ goes to the } q_2)
\sqcup q_2 x 0 x 0 x \sqcup
                        (At q_2, 0 \rightarrow x, R \text{ goes to the } q_3)
\Box xq_20x0x\Box
                       (At q_3, x \rightarrow R goes to the q_3)
\sqcup xxq_3x0x \sqcup
                       (At q_3, 0 \rightarrow R \text{ goes to the } q_4)
\sqcup x \times q_3 0 \times \sqcup
\sqcup xxx0q_4x \sqcup
                        (At q_4, x \rightarrow R \text{ goes to the } q_4)
\sqcup xxx0xq_4 \sqcup
                        (At q_4, \sqcup \to R \text{ goes to the } q_{\text{reject}})
\sqcup xxx0x \sqcup q_{reject}
```

Finally, $\,\mathrm{M}_{2}$ enters $\,\mathrm{q}_{\mathrm{reject}}$ state. Hence, the input 000000 is rejected.