

(a) Consider the statistical functional $T(\nu)$ which returns the second moment of ν (in other words,

 $T(
u)=E[X^2]$ where X is u-distributed), and let heta=T(
u). Is the plug-in estimator of heta biased? Is it consistent?

(b) Now consider the estimator $\hat{\theta}$ of θ which is defined to be the sum of (i) the square of the plug-in estimator of the mean of ν and (ii) the plug-in estimator of the variance of ν . Is $\hat{\theta}$ biased? Is it consistent?

(a) The plug-in estimator of heta is $rac{1}{n}\sum_{i=1}^n X_i^2$, which is unbiased by linearity of expectation and consistent by the law of large numbers.

(b) We have

$$\begin{split} \hat{\theta} &= \overline{X}^2 + \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \\ &= \overline{X}^2 + \frac{1}{n} \sum_{i=1}^n X_i^2 - 2\overline{X} \frac{1}{n} \sum_{i=1}^n X_i + \overline{X}^2 \\ &= \frac{1}{n} \sum_{i=1}^n X_i^2. \end{split}$$

Therefore, this estimator is actually the same as the estimator in (a), and it is therefore also unbiased and

consistent.

(a) X_1, X_2, \ldots are i.i.d. Bernoulli random variables with unknown p and estimator

$$\widehat{p} = rac{1}{n} \sum_{i=1}^n X_i$$

(b) X_1, X_2, \ldots are i.i.d. $\mathcal{N}(\mu, \sigma^2)$, with unknown μ and σ^2 and estimator

$$\widehat{\sigma}^2 = rac{\displaystyle\sum_{i=1}^n (X_i - ar{X})^2}{n}$$

(c) X_1,X_2,\ldots are i.i.d. uniform random variables on an unknown bounded interval. For $n\geq 100$ we estimate the mean using

$$\widehat{\mu} = rac{\displaystyle\sum_{i=1}^{100} X_i}{100}$$

(d) X_1,X_2,\ldots are i.i.d. $\mathcal{N}(\mu,\sigma^2)$, with unknown μ and σ^2 . For $n\geq 100$ we estimate the standard deviation using

$$\widehat{\sigma} = \sqrt{rac{\sum_{i=1}^{100} (X_i - \overline{X})^2}{99}}$$

- (a) **Unbiased and consistent**. The expectation of \hat{p} is (1/n)(np)=p, and the variance converges to 0 since \hat{p} is an average of i.i.d., finite-variance random variables. Therefore, the mean squared error converges to 0 as $n\to\infty$.
- (b) **Biased and consistent**. The estimator is biased because its value is always slightly smaller than the unbiased estimator (which has n-1 instead of n in the denominator). The estimator is nevertheless consistent, since the bias and the variance both converge to 0 as $n\to\infty$.
- (c) **Unbiased and inconsistent**. The mean of $\widehat{\mu}$ is $(1/100)(100\mu)=\mu$, so the estimator is unbiased. The variance isn't zero and doesn't depend on n, so it cannot converge to 0 as $n\to\infty$. Therefore, the estimator is inconsistent.
- (d) **Biased and inconsistent**. This estimator is inconsistent for the same reason as (c). The bias is trickier. Since the variance of $\widehat{\sigma}$ is positive, then we have

$$\mathbb{E}[\hat{\sigma}^2] - \mathbb{E}[\hat{\sigma}]^2 > 0$$
, which implies that

$$\mathbb{E}[\hat{\sigma}]^2 < \mathbb{E}[\hat{\sigma}^2] = \mathbb{E}\left[rac{1}{99}\sum_{i=1}^{100}(X_i-\overline{X})^2
ight] = \sigma^2$$

Thus the bias of $\widehat{\sigma}$ is negative.

Example

Draw 500 independent observations from an exponential distribution with parameter 1. Plot the function \widehat{F} which maps x to the proportion of observations at or to the left of x on the number line. We call \widehat{F} the **empirical CDF**. Compare the graph of the empirical CDF to the graph of the CDF of the exponential distribution with parameter 1.

This example suggests an idea for estimating $\hat{\theta}$: since the unknown distribution ν is typically close to the measure $\hat{\nu}$ which places mass $\frac{1}{n}$ at each of the observed observations, we can build an estimator of $T(\nu)$ by plugging $\hat{\nu}$ into T.

Definition (Plug-in estimator)

The **plug-in estimator** of heta=T(
u) is $\hat{ heta}=T(\widehat{
u})$.

The estimator
$$\hat{\theta}_n$$
 is said to be a *consistent estimator* of θ if, for any positive number ε ,
$$\lim_{n\to\infty}P(|\hat{\theta}_n-\theta|\leq\varepsilon)=1$$
 or, equivalently,
$$\lim_{n\to\infty}P(|\hat{\theta}_n-\theta|>\varepsilon)=0.$$
 The notation $\hat{\theta}_n$ expresses that the estimator for θ is calculated by using a sample of size n . For example, \overline{Y}_2 is the average of two observations whereas \overline{Y}_{100} is the average of the 100 observations contained in a sample of size $n=100$. If $\hat{\theta}_n$ is an unbiased estimator, the following theorem can often be used to prove that the estimator is consistent.

$$\lim_{n\to\infty}V(\hat{\theta}_n)=0.$$

Suppose that
$$\hat{\theta}_n$$
 converges in probability to θ and that $\hat{\theta}'_n$ converges in probability to θ' .

a $\hat{\theta}_n + \hat{\theta}'_n$ converges in probability to $\theta + \theta'$. **b** $\hat{\theta}_n \times \hat{\theta}'_n$ converges in probability to $\theta \times \theta'$.

c If $\theta' \neq 0$, $\hat{\theta}_n/\hat{\theta}_n'$ converges in probability to θ/θ' .

Suppose that
$$U_n$$
 has a distribution function that converges to a standard normal distribution function as $n \to \infty$. If W_n converges in probability to 1, then the distribution function of U_n/W_n converges to a standard normal distribution function

d If $g(\cdot)$ is a real-valued function that is continuous at θ , then $g(\hat{\theta}_n)$ converges in

distribution function as $n \to \infty$. If W_n converges in probability to 1, then the distribution function of U_n/W_n converges to a standard normal distribution function.