

Universidade Tecnológica Federal do Paraná Campus Apucarana Engenharia da Computação

Projeto de de Controlador Através de Espaço de Estados

Alunos:
Carlos Eduardo Ribeiro
Iago Macarini
Murilo Vital Rondina
Vinicius Tavares

Professor: Adalberto Zanatta Neder Lazarini

Fevereiro 2025

Universidade Tecnológica Federal do Paraná Campus Apucarana Engenharia da Computação

Relatório

Relatório referente ao terceiro projeto da disciplina de controle digital do Curso de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Conteúdo

1	Intr	rodução	1
2	Metodologia e Resultados		
	2.1	Definição do Sistema	2
	2.2	Análise de Controlabilidade	2
	2.3	Resposta Dinâmicas em Malha Aberta	3
	2.4	Projeto do Controlador por Regulação	5
		Projeto do Controlador de Rastreio	
3	3 Conclusão		11
4	Mat	terial Complementar	12

1 Introdução

Os Motores de Corrente Contínua são amplamente utilizados em diversas áreas, inicialmente com técnicas de controle simples e limitadas. No entanto, com o avanço da tecnologia e do conhecimento, surgiram novos métodos e ferramentas de controle, ampliando significativamente as aplicações desses motores.

Este relatório apresenta o desenvolvimento de um projeto de controle focado na regulação e no rastreamento da velocidade angular de um Motor de Corrente Contínua. O trabalho abrange desde a modelagem do sistema em espaço de estados até a implementação prática dos controladores, utilizando e validando os conceitos aprendidos na disciplina de Controle Digital.

Na seção a seguir, são definidos os objetivos do projeto, que exploram vários aspectos do sistema, incluindo sua estabilidade e o comportamento sob diferentes condições de operação. A metodologia adotada inclui o uso do software Matlab, que serviu como a principal ferramenta para a implementação prática dos conceitos teóricos.

Ao longo do relatório, é dada ênfase à representação gráfica do sistema por meio de diagramas de blocos, utilizando o Simulink. Isso oferece uma visualização clara das interações entre os componentes do sistema. Os resultados obtidos são apresentados em gráficos, facilitando a compreensão do comportamento do sistema e o desempenho dos controladores projetados.

Por fim, o projeto de controle demonstrou ser eficaz ao melhorar as capacidades dos Motores de Corrente Contínua, superando suas limitações iniciais. A aplicação de técnicas modernas de controle possibilitou não apenas uma regulação eficiente, mas também um rastreamento preciso da velocidade angular.

2 Metodologia e Resultados

O desenvolvimento deste trabalho foi baseado nos conceitos e técnicas aprendidos ao longo da disciplina. O software Matlab foi utilizado como ferramenta principal, proporcionando uma forma eficaz de automatizar os processos matemáticos e analíticos, o que será detalhado nas próximas seções.

2.1 Definição do Sistema

Os parâmetros do motor considerados são:

- $J = 0.2 \,\mathrm{kg} \cdot \mathrm{m}^2$
- $b = 0.7 \,\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}$
- $K_g = 0.4 \, \text{V/rad/s}$
- $K_t = 0.1 \,\mathrm{N \cdot m/A}$
- $R_a = 10 \,\Omega$
- $L_a = 1 \,\mathrm{H}$

O sistema dinâmico é representado pelo modelo de espaço de estados:

$$A = \begin{bmatrix} -\frac{b}{J} & \frac{K_t}{J} \\ -\frac{K_g}{L_a} & -\frac{R_a}{L_a} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{L_a} \end{bmatrix}, \quad C = 1, \quad D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.2 Análise de Controlabilidade

A matriz de controlabilidade foi calculada como:

$$C = \begin{bmatrix} B & A \cdot B \end{bmatrix}$$

O posto da matriz de controlabilidade foi verificado por meio do determinante e do posto da matriz, confirmando que o sistema é controlável.

2.3 Resposta Dinâmicas em Malha Aberta

Figura 1: Sistema impulso em malha aberta

Fonte: Autoria própria

Figura 2: Sistema degrau em malha aberta

Fonte: Autoria própria

Foram obtidas as respostas do sistema em malha aberta para os seguintes casos:

2.4 Projeto do Controlador por Regulação

Os ganhos do controlador foram projetados por alocação de polos, considerando os polos desejados em s = -5 e s = -6. Utilizou-se o método acker(A, B, p) para determinar os ganhos $K = [K_1, K_2]$, garantindo estabilidade.

A resposta do sistema regulado foi analisada para condições iniciais $x_0 = [105, 0]$.

Figura 5: Sistema regulado com ganho e condição inicial de 105.

Figura 6: Sistema em malha aberta com condição inicial de 105.

Fonte: Autoria própria

Foram obtidas as respostas do sistema degrau de malha aberta com condições inicias de 105 e sistema degrau com ganho e condições iniciais de 105:

2.5 Projeto do Controlador de Rastreio

Para rastrear a referência w, foi projetado um controlador adicional incluindo um ganho h e os ganhos h_1 , h_2 determinados via realocação de polos com tempo de estabelecimento menor que 0,8s e sem overshoot.

Figura 9: Sistema de rastreio de referência para uma entrada degrau.

Figura 10: Sistema de rastreio de referência para uma entrada arbitrária (gerador de pulso).

Fonte: Autoria própria

Foram obtidas as respostas dos sistemas de rastreio para uma entrada degrau e pulso:

3 Conclusão

O projeto demonstrou a viabilidade de controle de um motor CC via técnicas de realocação de polos no espaço de estados. O controlador regulador estabilizou o sistema para diferentes entradas e condições iniciais, enquanto o controlador de rastreio permitiu um seguimento preciso da referência, sem overshoot e com tempo de resposta adequado.

A implementação prática demonstrou que os métodos utilizados foram

eficazes na obtenção de um sistema estável e de resposta rápida. A modelagem correta e a utilização de ferramentas computacionais como o MATLAB e o Simulink foram essenciais para garantir a precisão dos resultados.

O sistema projetado demonstrou estabilidade e desempenho satisfatório dentro dos critérios especificados, sendo uma abordagem válida para aplicações em controle de motores de corrente contínua.

4 Material Complementar

Link para os arquivos utilizados no desenvolvimento do relatório, clique aqui.