Experimental Physics EP1 MECHANICS

- Gravity -

Rustem Valiullin

https://www.physgeo.uni-leipzig.de/en/fbi/applied-magnetic-resonance

Kepler's law

Law 1: All planets are moving in elliptical orbits with the Sun being in at one of the focuses.

Law 2: A line joining the Sun and a planet sweeps out equal areas in equal times.

Law 3: The square of the period of a planet is proportional to the cube of the planet's distance from the Sun.

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
$$a^2 = b^2 + c^2$$

$$a^2 = b^2 + c^2$$

Born

December 27, 1571

Weil der Stadt near Stuttgart,

Germany

Died

November 15, 1630) (aged 58) Regensburg, Bavaria, Germany

Residence

Württemberg; Styria; Bohemia;

Upper Austria

Fields

Astronomy, astrology, mathematics

and natural philosophy

Institutions University of Linz

Alma mater University of Tübingen

Known for

Kepler's laws of planetary motion

Kepler conjecture

Second and third Kepler's law

$$\vec{\tau} = \vec{r} \times \vec{F} = \vec{r} \times \left(F \frac{\vec{r}}{r} \right) = 0$$

$$\vec{\tau} = \frac{d\vec{L}}{dt} = \frac{d(\vec{r} \times m\vec{v})}{dt} = 0$$

$$dA = \frac{1}{2} |\vec{r} \times d\vec{s}| = \frac{1}{2} |\vec{r} \times \vec{v} dt| = \frac{L}{2m} dt$$

$$\frac{GmM}{r^2} = \frac{mv^2}{r} = mr\omega^2$$

$$\frac{GM}{4\pi^2} = \frac{r^3}{T^2} = \text{const}$$

$$T_{Venus} = 224.7 d$$
 $T_{Mars} = 686.98 d$

Newton's law of gravity

1687: Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

$$\vec{F}_{12} = -G \frac{m_1 m_2}{r_{12}^2} \, \hat{r}_{12} \qquad \qquad \hat{r}_{12} = \frac{\vec{r}}{r}$$

$$\hat{r}_{12} = \frac{r}{r}$$

Universal gravitational constant:
$$G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$$

$$m_1$$

$$a_{planet} = \frac{v^2}{R} = R \left(\frac{2\pi}{T}\right)^2$$

$$\frac{R^3}{T^2} = const \equiv K$$

$$M$$
 R_{planet}

$$F_{cf} = m \frac{4\pi^2 K}{R^2}$$

$$F_{cf} = m \frac{4\pi^2 K}{R^2}$$
 $F_g = -m \frac{4\pi^2 K}{R^2}$

$$F_g = -G \frac{mM}{R^2} = -\frac{4\pi^2 K}{M} \frac{mM}{R^2}$$

Measuring the gravitational constant

The **Cavendish experiment**, performed in 1797–98 by British scientist Henry Cavendish (not exactly shown below)

$$k\theta = FL = \frac{GmM}{r^2}L$$

$$F = G \frac{mM}{r^2}$$

$$\tau = 2F\frac{L}{2} \qquad \tau = k\theta$$

$$T = 2\pi \sqrt{\frac{m}{k_s}} \qquad \qquad T = 2\pi \sqrt{\frac{I}{k}}$$

$$I = \sum ml^2 = 2m\left(\frac{L}{2}\right)^2 = \frac{mL^2}{2}$$

$$k\theta = FL = \frac{GmM}{r^2}L$$
 $T = 2\pi\sqrt{\frac{mL^2}{2}\frac{\theta r^2}{GmML}} = 2\pi\sqrt{\frac{L\theta r^2}{2GM}}$

$$G = \frac{2\pi^2 L \theta r^2}{MT^2}$$

Cavendish's value for the Earth's density, 5.448 g cm⁻³

$$\Rightarrow$$
 G = 6.74 \times 10⁻¹¹ m³ kg⁻¹ s⁻²

Our "Cavendish experiment"

Gravitational force: extended objects

$$\begin{cases} \vec{F}_g = -\frac{GmM}{r^2} \hat{\mathbf{r}} & r > R \\ \vec{F}_g = 0 & r < R \end{cases}$$

$$\begin{cases} \vec{F}_g = -\frac{GmM}{r^2} \hat{\mathbf{r}} & r > R \\ \\ \vec{F}_g = -\frac{GmMr}{R^3} \hat{\mathbf{r}} & r < R \end{cases}$$

An object within a spherical shell

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

$$s_{seg} = R \varphi_R$$

$$\frac{\sin \varphi}{R} = \frac{\sin \alpha}{r} \qquad \Rightarrow \frac{\varphi}{R} \approx \frac{\alpha}{r} \Big|_{\text{small angles}}$$

$$\varphi + \alpha + (180^\circ - \varphi_R) = 180^\circ$$

$$\varphi_R = \alpha + \varphi = \varphi(1 + r/R)$$

$$s_{seg} = \varphi(R + r)$$

$$\Rightarrow m_{seg} \sim A_{seg} \sim (R+r)^2 = \text{distance}^2$$

$$F=Krac{m_{seg}}{r^2}=K'$$
 - the same from both sides

An object within a planet

$$F = \frac{GmM(r)}{r^2}$$

$$\vec{F} = -\frac{GmM_{tot}r}{R^3}\hat{\mathbf{r}}$$

$$F = \frac{GmM(r)}{r^2} \qquad \begin{cases} M(r) = \frac{4}{3} \rho \pi r^3 \\ M_{tot} = \frac{4}{3} \rho \pi R^3 \end{cases}$$

Does not contribute

$$F = -kx = ma$$

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

Interaction with ring

$$dF = \frac{GM}{s^2} dm$$

$$dF = \frac{GM}{s^2} dm \qquad dF_x = -\frac{GM}{s^2} dm \cos \alpha$$

$$F_x = -\int \frac{GM \cos \alpha}{s^2} dm = \frac{GMm_{\text{ring}}}{s^2} \cos \alpha$$

$$s^2 = a^2 + x^2$$

$$s^2 = a^2 + x^2 \qquad \cos \alpha = \frac{x}{s}$$

integration over the ring

$$F_{x} = \frac{GMm_{\text{ring}}}{s^{2}} \frac{x}{s} = \frac{GMm_{\text{ring}}x}{\left(a^{2} + x^{2}\right)^{3/2}}$$

An object outside a hollow sphere

$$dF_{x} = -\frac{GM}{s^{2}}\cos\alpha\frac{1}{2}m_{\text{shell}}\sin\theta d\theta$$

Now we have to integrate over all angles θ_r but keep in mind that s and α are functions of θ .

$$s^2 = r^2 + R^2 - 2rR\cos\theta \qquad \Rightarrow sds = rR\sin\theta d\theta$$

$$R^{2} = s^{2} + r^{2} - 2rs\cos\alpha \implies \cos\alpha = \frac{s^{2} + r^{2} - R^{2}}{2rs}$$

$$dF_x = -\frac{GMm_{\text{shell}}}{4r^2R} \left(1 + \frac{r^2 - R^2}{s^2} \right) ds$$

$$\begin{cases} \theta = 0 & s = r - R \\ \theta = \pi & s = r + R \end{cases}$$
 integration limits

Extended objects: results

Hollow sphere:

$$F_{x} = -\frac{GMm_{\text{shell}}}{4r^{2}R} \int_{r-R}^{r+R} \left(1 + \frac{r^{2} - R^{2}}{s^{2}} \right) ds = -\frac{GMm_{\text{shell}}}{4r^{2}R} \left(s \Big|_{r-R}^{r+R} - \frac{r^{2} - R^{2}}{s} \Big|_{r-R}^{r+R} \right) = -\frac{GMm_{\text{shell}}}{r^{2}}$$

A What happens if we move the mass M into the spherical shell? (integration limits)

$$F_{x} = -\frac{GMm_{\text{shell}}}{4r^{2}R} \int_{R-r}^{R+r} \left(1 + \frac{r^{2} - R^{2}}{s^{2}}\right) ds = -\frac{GMm_{\text{shell}}}{4r^{2}R} \left(s\Big|_{R-r}^{R+r} - \frac{r^{2} - R^{2}}{s}\Big|_{R-r}^{R+r}\right) = 0$$

B What if object is not empty? (integrate over all shells)

$$F_x = -\int \frac{GM}{r^2} dm_{\text{shell}}$$

$$F_x = -\frac{GM}{r^2} \int dm_{\text{shell}}$$

What causes tides

$$F_{S} = \frac{GmM_{S}}{r_{S}^{2}} \qquad F_{M} = \frac{GmM_{M}}{r_{M}^{2}}$$

$$\frac{F_{S}}{F_{M}} = \frac{M_{S}r_{M}^{2}}{M_{M}r_{S}^{2}}$$

$$M_S = 1.98 \times 10^{30} \text{ kg}$$
 $M_M = 7.35 \times 10^{22} \text{ kg}$
 $r_S = 1.49 \times 10^8 \text{ km}$ $r_M = 3.84 \times 10^5 \text{ km}$

$$F_S/F_M \approx 200$$

$$dF = \frac{dF(r)}{dr}dr \quad dF = \frac{2Gm_1m_2}{r^3}dr$$

$$\frac{dF}{F} = -\frac{2dr}{r} = \frac{4R_{Earth}}{r}$$

$$\frac{\Delta F_S}{\Delta F_M} = \frac{F_S}{F_M} \frac{R_M}{R_S} \approx 0.4$$

Gravitational potential energy

$$dW = \vec{F} \cdot d\vec{s} \qquad dW_{arc} = 0$$

$$dW_{arc} = 0$$

$$dW = \vec{F} \cdot d\vec{r} = F(r)dr$$

$$\Delta U = -W = -\int_{r_1}^{r_2} \left(-\frac{GmM}{r^2} \right) dr = -GmM \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

Let us choose r₁ such that $U(r_1)=0$

$$U = -\frac{GmM}{r}$$

$$E = \frac{1}{2}mv^2 - \frac{GmM}{r}$$

$$E = -\frac{1}{2}mv^2$$

$$\frac{GmM}{r^2} = \frac{mv^2}{r}$$

$$\frac{GmM}{r} = mv^2$$

Escape velocity

$$\frac{1}{2}mv^2 - \frac{GmM}{R} = -\frac{GmM}{r}$$

$$v = \sqrt{\frac{2GM}{R} - \frac{2GM}{r}}$$

$$v_{esc} = \sqrt{\frac{2GM}{R}}$$

1 a.m.u. =
$$1.66 \cdot 10^{-27} \text{ kg}$$

 $k_B = 1.38 \cdot 10^{-23} \text{ J/K}$

Hydrogen ~ 1 Oxygen ~ 16 Sun - 617.7 km/s

Mercury - 4.25 km/s

Venus - 10.46 km/s

Earth - 11.186 km/s

Moon - 2.38 km/s

Mars - 5.027 km/s

Jupiter - 59.5 km/s

Saturn - 35.5 km/s

Uranus - 21.3 km/s

Neptune - 23.5 km/s

Pluto - 1.27 km/s

To remember!

- > Three empirical Kepler' laws:
- Planets are moving in elliptical orbits.
- Line joining the Sun and a planet sweeps out equal areas in equal times.
- The square of the period of a planet is proportional to the cube of the planet's distance from the Sun.
- > The Newton's law of gravitation:

 Every particle attracts every other particle with a force directly proportional to their masses and inversely proportional to the square of the distance between them.

