FINS4792 Problem Set 1

Charlie Bradford z5114682

January 2020

Chapter 1 Problem Set

- 1. Call auction Graph total market demand and supply curves in price, quantity space for a call auction market where the following orders are submitted to a central auctioneer:
 - Limit orders to buy: 100 shares at \$3.00, 200 shares at \$4.00, 200 shares at \$3.50, and 500 shares at \$2.50.
 - Limit orders to sell: 500 shares at \$5.00, 600 shares at \$3.00, and 500 shares at \$4.00.
 - Market orders to buy: a total of 500 shares.
 - Market orders to sell: a total of 200 shares.

What is the market clearing price? What quantity of stock is traded? Are all orders that are executable at the market clearing price fully filled?

Figure 1: Supply and demand curves for call auction market, showing a clearing price of \$3.50 and a total volume cleared of 800 stocks. The order for 200 shares at \$3.50 is only filled for 100.

2. Continuous order-driven market Now suppose that the above orders arrive on the market over time, in the order of arrival that is listed above. Track the state of the LOB and the time, price, and quantity of any transactions that take place. Record the dollar bid-ask spread, that is, the difference between the lowest ask and the highest bid, in the continuous market as it evolves from t=5 onwards.

State 1				State 2				
Spread = N/A				Spread = N/A				
100	3.00			200	4.00			
				100	3.00			
	Stat	e 2			St	ate 3		
Š	Spread :	= N/A			Spread	d = N/L	A	
200	4.00			200	4.00			
200	3.50			200	3.50			
100	3.00			100	3.00			
				500	2.50			
State 5				State 6				
,	Spread:	= 1.00		Spread = 0.50				
200	4.00	5.00	500	200 0	4.00	3.00	600 100	
200	3.50			200 0	3.50	5.00	500	
100	3.00			100 0	3.00			
500	2.50			500	2.50			
	Stat	e 7		State 8				
,	Spread :	= 0.50		Spread = 1.50				
500	2.50	3.00	100	500 0	∞	3.00	100 0	
		4.00	500	2.50	3.00	4.00	500 100	
		5.00	500			5.00	500	
State 9			Final LOB					
Spread = 1.50			Spread = 1.50					
500 300	2.50	$-\infty$	200 0	300	2.50	4.00	100	
		4.00	100			5.00	500	
		5.00	500			5.00	500	

Table 1: Evolution of LOB in a continuous market as orders are placed.

3. Comparison: efficiency and market presence Consider again the two markets described in questions 1 and 2. Assume that the limit order prices are equal to the order placer's valuation for the block of shares submitted in the order, and think of market orders as placed by agents whose valuation is well outside the relevant range of trading prices. Which market is Pareto efficient, in the sense that at the end of the trading day there is no pair of agents who could both benefit by trading with each other? Intuitively, why?

In the call auction market 800 shares are traded, compared to the 1200 traded in the continuous order driven market. This is because the market (liquidity taking) orders are dealt with first, at prices that are significantly better than their valuations. This reduces the number of total number of fills as the spread is now significantly widened. The order driven market is more efficient, but only due to the specific ordering of the orders, which is not controllable. By modifying the call auction market so that market orders are not applied until an equilibrium price has been found from limit orders alone, a more efficient market could be created.

Chapter 2 Problem Set

1.

$$s \equiv \frac{S}{m}$$

$$= \frac{a-b}{(a+b)/2}$$

$$s_q = \frac{a_q - b_q}{(a_q + b_q)/2}$$

$$s_{100} = \frac{74.48 - 74.42}{(74.48 + 74.42)/2}$$

$$= \frac{0.06}{74.45}$$

$$= 0.008054$$

$$s_{500} = \frac{74.48 - 74.36}{(74.48 + 74.36)/2}$$

$$= \frac{0.12}{74.42}$$

$$= 0.01617$$

$$s_{1000} = \frac{76.00 - 74.36}{(76.00 + 74.36)/2}$$

$$= \frac{1.64}{75.16}$$

$$= 0.02182$$

$$s_{2000} = \frac{77.35 - 73.75}{(77.35 - 73.75)/2}$$

$$= \frac{3.60}{75.55}$$

$$= 47.65$$

The bid is deeper for larger orders.

$$2. \quad (a)$$

$$S_{9:30} = 102.31 - 99.50$$

$$= 2.81$$

$$s_{9:30} = \frac{2.81}{(102.31 + 99.50)/2}$$

$$= \frac{2.81}{100.905}$$

$$= 0.02785$$

$$S_{10:30} = 102.55 - 100.02$$

$$= 2.33$$

$$s_{10:30} = \frac{2.33}{(102.55 + 100.02)/2}$$

$$= \frac{2.33}{101.185}$$

$$= 0.02303$$

(b)

$$S^{e} = d(p - m)$$

$$S^{e}_{9:30} = 102.76 - 100.905$$

$$= 1.855$$

$$s^{e}_{9:30} = \frac{1.855}{100.905}$$

$$= 0.01838$$

(c) The quoted ask-side half-spread is lower (1.405) than the effective half spread (1.855) due to slippage caused by the large order side.

(d)

$$S_r = 2 \times d_t (p_t - m_{t+\Delta})$$

= 2 × (102.76 - 101.185)
= 3.15

- (e) The large order has impacted the market.
- 3. Examining the differences in effects of market orders of size q:

4. Roll's model (with all assumptions bar the one stipulated in the question):

$$a_t = m_t + \frac{S}{2}$$

$$b_t = m_t - \frac{S}{2}$$

$$p_t = m_t + \frac{S}{2}d_t$$

$$\Delta p_t = \frac{S}{2}\Delta d_t$$

$$S = 2\sqrt{-cov(\Delta p_{t+1}, \Delta p_t)}$$

Now, modifying this model:

$$E[a_t] = m_t + \lambda \frac{S}{2}$$

$$E[b_t] = m_t - \lambda \frac{S}{2}$$

$$E[p_t] = m_t + \lambda \frac{S}{2} d_t$$

$$E[\Delta p_t] = \lambda \frac{S}{2} \Delta d_t$$

$$S = 2\lambda \sqrt{-cov(\Delta p_{t+1}, \Delta p_t)}$$

FINS4792 Problem Set 2

Charlie Bradford z5114682

January 2020

1.

$$s \equiv \frac{S}{m}$$

$$= \frac{a-b}{(a+b)/2}$$

$$s_q = \frac{a_q - b_q}{(a_q + b_q)/2}$$

$$s_{100} = \frac{74.48 - 74.42}{(74.48 + 74.42)/2}$$

$$= \frac{0.06}{74.45}$$

$$= 0.008054$$

$$s_{500} = \frac{74.48 - 74.36}{(74.48 + 74.36)/2}$$

$$= \frac{0.12}{74.42}$$

$$= 0.01617$$

$$s_{1000} = \frac{76.00 - 74.36}{(76.00 + 74.36)/2}$$

$$= \frac{1.64}{75.16}$$

$$= 0.02182$$

$$s_{2000} = \frac{77.35 - 73.75}{(77.35 - 73.75)/2}$$

$$= \frac{3.60}{75.55}$$

$$= 47.65$$

The bid is deeper for larger orders.

2. (a)

$$S_{9:30} = 102.31 - 99.50$$

$$= 2.81$$

$$s_{9:30} = \frac{2.81}{(102.31 + 99.50)/2}$$

$$= \frac{2.81}{100.905}$$

$$= 0.02785$$

$$S_{10:30} = 102.55 - 100.02$$

$$= 2.33$$

$$s_{10:30} = \frac{2.33}{(102.55 + 100.02)/2}$$

$$= \frac{2.33}{101.185}$$

$$= 0.02303$$

(b)

$$S^{e} = d(p - m)$$

$$S^{e}_{9:30} = 102.76 - 100.905$$

$$= 1.855$$

$$s^{e}_{9:30} = \frac{1.855}{100.905}$$

$$= 0.01838$$

(c) The quoted ask-side half-spread is lower (1.405) than the effective half spread (1.855) due to slippage caused by the large order side.

(d)

$$S_r = 2 \times d_t (p_t - m_{t+\Delta})$$

= 2 × (102.76 – 101.185)
= 3.15

(e) The large order has impacted the market.

$$\begin{array}{c|c} q & {\rm Spread} \\ 50 & 0 \\ 150 & \$1.00 \\ 250 & \$1.00 \end{array}$$

Table 1: Caption

3.

Homework

April 9, 2020

1 Chapter 2

1.1 Question 5

[2]:			Trade Size (qt)	Price (pt)	Direction (dt)	Bid(bt) \
	Time					
	2020-04-07	09:06:04	20	66.7000	-1	66.90
	2020-04-07	09:06:11	25	66.6360	-1	66.65
	2020-04-07	09:06:26	18	66.6000	-1	66.60
	2020-04-07	09:07:18	273	66.4163	-1	66.50
	2020-04-07	09:07:36	27	66.5500	1	66.15

Ask (at)
Time
2020-04-07 09:06:04 67.00
2020-04-07 09:06:11 66.70
2020-04-07 09:06:26 66.65
2020-04-07 09:07:18 66.55
2020-04-07 09:07:36 66.55

1.1.1 Part A

```
[3]: data["absolute_spread"] = data["Ask (at)"] - data["Bid(bt)"]
     data["midpoint"] = (data["Ask (at)"] + data["Bid(bt)"])/2
     data["relative_spread"] = data["absolute_spread"] / data["midpoint"]
     data["log_spread"] = data["Ask (at)"].apply(np.log) - data["Bid(bt)"].apply(np.
     print("Average absolute spread: {}, \naverage relative spread: {}, \naverage log_
      →spread {}".format(data["absolute_spread"].mean(),
                      data["relative_spread"].mean(),
                      data["log_spread"].mean()))
     data.head()
    Average absolute spread: 0.10616570327552977,
    average relative spread: 0.0016086984772629698,
    average log spread 0.0016086998354762725
[3]:
                          Trade Size (|qt|) Price (pt)
                                                           Direction (dt) Bid(bt) \
     Time
     2020-04-07 09:06:04
                                          20
                                                  66.7000
                                                                         -1
                                                                               66.90
     2020-04-07 09:06:11
                                          25
                                                  66.6360
                                                                               66.65
                                                                         -1
     2020-04-07 09:06:26
                                          18
                                                  66.6000
                                                                         -1
                                                                               66.60
     2020-04-07 09:07:18
                                         273
                                                  66.4163
                                                                         -1
                                                                               66.50
     2020-04-07 09:07:36
                                                  66.5500
                                                                               66.15
                                          27
                                                                          1
                          Ask (at) absolute_spread midpoint relative_spread \
     Time
     2020-04-07 09:06:04
                              67.00
                                                        66.950
                                                0.10
                                                                        0.001494
     2020-04-07 09:06:11
                              66.70
                                                0.05
                                                        66.675
                                                                        0.000750
                                                0.05
                                                        66.625
     2020-04-07 09:06:26
                              66.65
                                                                        0.000750
     2020-04-07 09:07:18
                              66.55
                                                0.05
                                                        66.525
                                                                        0.000752
     2020-04-07 09:07:36
                              66.55
                                                0.40
                                                        66.350
                                                                        0.006029
                          log_spread
     Time
     2020-04-07 09:06:04
                            0.001494
                             0.000750
     2020-04-07 09:06:11
     2020-04-07 09:06:26
                            0.000750
     2020-04-07 09:07:18
                            0.000752
     2020-04-07 09:07:36
                            0.006029
[4]: for group in data["absolute_spread"].groupby(pd.Grouper(freq='0.5H',_

→closed='left')):
         print("Average starting at", group[0].time(), ":", sum(group[1])/
      \rightarrowlen(group[1]))
```

```
Average starting at 09:00:00 : 0.1136363636363634
Average starting at 09:30:00 : 0.11428571428571456
Average starting at 10:00:00 : 0.10657894736842248
Average starting at 10:30:00 : 0.087499999999974
Average starting at 11:00:00 : 0.09393939393939205
Average starting at 11:30:00 : 0.10641025641025618
Average starting at 12:00:00 : 0.2052631578947379
Average starting at 12:30:00 : 0.09705882352941127
Average starting at 13:00:00 : 0.08103448275861805
Average starting at 13:30:00 : 0.128000000000024
Average starting at 14:00:00 : 0.1153846153846132
Average starting at 14:30:00 : 0.0802631578947334
Average starting at 15:00:00 : 0.07586206896552077
Average starting at 15:30:00 : 0.11122448979592132
Average starting at 16:00:00 : 0.12241379310344817
Average starting at 16:30:00 : 0.1118644067796602
Average starting at 17:00:00 : 0.1000000000000019
```

1.1.2 Part B

```
Average absolute spread: 0.05308285163776443, average relative spread: 0.000804349238631478, average log spread 0.0008038286971465961
```

```
[5]:
                          absolute_half_spread relative_half_spread \
    Time
     2020-04-07 09:06:04
                                          0.050
                                                              0.000747
     2020-04-07 09:06:11
                                          0.025
                                                              0.000375
     2020-04-07 09:06:26
                                          0.025
                                                              0.000375
     2020-04-07 09:07:18
                                          0.025
                                                              0.000376
     2020-04-07 09:07:36
                                          0.200
                                                              0.003014
```

log_half_spread

```
Time
2020-04-07 09:06:04 0.000747
2020-04-07 09:06:11 0.000375
2020-04-07 09:06:26 0.000375
2020-04-07 09:07:18 0.000376
2020-04-07 09:07:36 0.003010
```

1.1.3 Part C

```
[6]: print("Day vwap =", np.mean(data["Trade Size (|qt|)"] * data['Price (pt) '])/

data['Trade Size (|qt|)'].mean())

for group in data.groupby(pd.Grouper(freq='3H', closed='right')):

    print("Total VWAP starting at", group[0].time(), ":", np.

dmean(group[1]["Trade Size (|qt|)"] * group[1]['Price (pt) '])/group[1]['Trade

Size (|qt|)'].mean())

sell = group[1].loc[group[1]["Direction (dt) "] == -1, ["Trade Size (|qt|)", 

Price (pt) ']]

print("Ask VWAP starting at", group[0].time(), ":", np.mean(sell["Trade Size

d(|qt|)"] * sell['Price (pt) '])/sell['Trade Size (|qt|)'].mean())

buy = group[1].loc[group[1]["Direction (dt) "] == 1, ["Trade Size (|qt|)", 

Price (pt) ']]

print("Bid VWAP starting at", group[0].time(), ":", np.mean(buy["Trade Size

d(|qt|)"] * buy['Price (pt) '])/buy['Trade Size (|qt|)'].mean(), "\n")
```

```
Day vwap = 65.9762592589728

Total VWAP starting at 09:00:00 : 66.00037952521801

Ask VWAP starting at 09:00:00 : 65.90238640544808

Bid VWAP starting at 09:00:00 : 66.09206370221254

Total VWAP starting at 12:00:00 : 66.05732484327085

Ask VWAP starting at 12:00:00 : 65.99628722148495

Bid VWAP starting at 12:00:00 : 65.93996300616956

Ask VWAP starting at 15:00:00 : 65.85991259218804

Bid VWAP starting at 15:00:00 : 66.08637827551495
```

1.1.4 Part D

```
[7]: data["price -1"] = data["Price (pt) "].shift()
data["d_price"] = data["Price (pt) "] - data["price -1"]
data["d_price -1"] = data["d_price"].shift()
```

Roll's measure = 0.10688644184158194

```
[8]: data["ln price -1"] = data["Price (pt) "].apply(np.log).shift()
data["ln d_price"] = data["Price (pt) "].apply(np.log) - data["ln price -1"]
data["ln d_price -1"] = data["ln d_price"].shift()
print("Roll's measure = ", 2 * np.sqrt(-1 * np.mean((data["ln d_price"] -□
→data["ln d_price"].mean()) * data["ln d_price -1"] - data["ln d_price -1"].
→mean())))
```

Roll's measure = 0.0028872720462376398

1.1.5 Part E

```
Change in midpoint starting at 2020-04-07 09:00:00 : 0.6
Change in midpoint starting at 2020-04-07 09:15:00 : 0.2
Change in midpoint starting at 2020-04-07 09:30:00 : 0.15
Change in midpoint starting at 2020-04-07 09:45:00 : -0.17
Change in midpoint starting at 2020-04-07 10:00:00 : 0.08
Change in midpoint starting at 2020-04-07 10:15:00 : 0.42
Change in midpoint starting at 2020-04-07 10:30:00 : 0.03
Change in midpoint starting at 2020-04-07 10:45:00 : 0.1
Change in midpoint starting at 2020-04-07 11:00:00 : -0.02
Change in midpoint starting at 2020-04-07 11:15:00 : -0.72
Change in midpoint starting at 2020-04-07 11:30:00 : -0.22
Change in midpoint starting at 2020-04-07 11:45:00 : 0.42
Change in midpoint starting at 2020-04-07 12:00:00 : 0.22
Change in midpoint starting at 2020-04-07 12:15:00 : -0.43
Change in midpoint starting at 2020-04-07 12:30:00 : 0.12
Change in midpoint starting at 2020-04-07 12:45:00 : 0.25
Change in midpoint starting at 2020-04-07 13:00:00 : 0.15
Change in midpoint starting at 2020-04-07 13:15:00 : 0.23
```

```
Change in midpoint starting at 2020-04-07 13:30:00 : -0.15
     Change in midpoint starting at 2020-04-07 13:45:00 : -0.25
     Change in midpoint starting at 2020-04-07 14:00:00 : 0.05
     Change in midpoint starting at 2020-04-07 14:15:00 : -0.02
     Change in midpoint starting at 2020-04-07 14:30:00 : -0.02
     Change in midpoint starting at 2020-04-07 14:45:00 : -0.15
     Change in midpoint starting at 2020-04-07 15:00:00 : 0.07
     Change in midpoint starting at 2020-04-07 15:15:00 : 0.03
     Change in midpoint starting at 2020-04-07 15:30:00 : 0.1
     Change in midpoint starting at 2020-04-07 15:45:00 : 0.35
     Change in midpoint starting at 2020-04-07 16:00:00 : -0.35
     Change in midpoint starting at 2020-04-07 16:15:00 : -0.03
     Change in midpoint starting at 2020-04-07 16:30:00 : -0.05
     Change in midpoint starting at 2020-04-07 16:45:00 : 0.17
     Change in midpoint starting at 2020-04-07 17:00:00 : -0.25
     Change in midpoint starting at 2020-04-07 17:15:00 : -0.6
[10]: new_data = pd.DataFrame(data=zip(midpoint_change, fraction_order_flow),
                              index=index,
                              columns=["midpoint_change", "order_flow"])
      new_data.head()
[10]:
                           midpoint_change order_flow
                                      0.60
      2020-04-07 09:00:00
                                            -0.001026
      2020-04-07 09:15:00
                                      0.20
                                              0.001441
      2020-04-07 09:30:00
                                      0.15
                                            -0.006406
      2020-04-07 09:45:00
                                     -0.17
                                              0.006327
      2020-04-07 10:00:00
                                      0.08
                                              0.006310
[11]: import statsmodels.formula.api as sm
      formula = "midpoint_change ~ order_flow - 1"
      reg = sm.ols(formula, new_data).fit()
      reg.summary()
     /usr/local/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19:
     FutureWarning: pandas.util.testing is deprecated. Use the functions in the
     public API at pandas.testing instead.
       import pandas.util.testing as tm
     /usr/local/lib/python3.7/site-packages/statsmodels/compat/pandas.py:23:
     FutureWarning: The Panel class is removed from pandas. Accessing it from the
     top-level namespace will also be removed in the next version
       data_klasses = (pandas.Series, pandas.DataFrame, pandas.Panel)
[11]: <class 'statsmodels.iolib.summary.Summary'>
                                       OLS Regression Results
      _____
```

Dep. Variable: midpoint_change R-squared (uncentered):

0.198

Model: OLS Adj. R-squared (uncentered):

0.174

Method: Least Squares F-statistic:

8.148

Date: Tue, 07 Apr 2020 Prob (F-statistic):

0.00739

Time: 10:48:44 Log-Likelihood:

-0.79268

No. Observations: 34 AIC:

3.585

Df Residuals: 33 BIC:

5.112

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
order_flow	-4.6202	1.619	-2.854	0.007	-7.913	-1.327
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.	475 Jarq 167 Prob	in-Watson: ue-Bera (JB): (JB): . No.	:	1.447 0.552 0.759 1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

The parameter λ is estimated to be -4.602 with a t-stat of -2.854 which is statistically significant. A 1% increase/decrease in relative order flow would effect a 4.602% decrease/increase in the midpoint price.

1.2 Question 6

```
[12]:
                            Type Bid (bt) Ask (at) Price (pt)
                                                                    Bid Size Ask Size \
      Time
      2020-04-07 09:02:25
                                       2.66
                                                  3.89
                                                               NaN
                                                                        100.0
                                                                                 1000.0
                               0
      2020-04-07 09:17:40
                               0
                                       2.65
                                                  3.33
                                                               NaN
                                                                        100.0
                                                                                  100.0
      2020-04-07 09:17:40
                               0
                                       2.67
                                                  3.54
                                                               NaN
                                                                       3400.0
                                                                                 5000.0
      2020-04-07 09:21:21
                               0
                                                  3.89
                                                                                 1000.0
                                       2.66
                                                               NaN
                                                                        100.0
      2020-04-07 09:25:01
                               0
                                       2.67
                                                  3.89
                                                               NaN
                                                                       3400.0
                                                                                 1000.0
                            Trade Size (|qt|) Unnamed: 8
      Time
      2020-04-07 09:02:25
                                                       NaN
                                           NaN
      2020-04-07 09:17:40
                                                       NaN
                                           NaN
      2020-04-07 09:17:40
                                           NaN
                                                       NaN
      2020-04-07 09:21:21
                                           NaN
                                                       NaN
      2020-04-07 09:25:01
                                           NaN
                                                       NaN
```

1.2.1 Part A

2020-04-07 09:17:40

```
[13]: data["absolute_spread"] = data["Ask (at)"] - data["Bid (bt)"]
      data["midpoint"] = (data["Ask (at)"] + data["Bid (bt)"]) / 2
      data["relative_spread"] = data["absolute_spread"] / data["midpoint"]
      data["log_spread"] = data["Ask (at)"].apply(np.log) - data["Bid (bt)"].apply(np.
       →log)
      data.head()
[13]:
                            Type Bid (bt) Ask (at) Price (pt)
                                                                   Bid Size Ask Size \
      Time
      2020-04-07 09:02:25
                                      2.66
                                                3.89
                                                              NaN
                                                                      100.0
                                                                                1000.0
      2020-04-07 09:17:40
                               0
                                      2.65
                                                3.33
                                                              NaN
                                                                      100.0
                                                                                 100.0
      2020-04-07 09:17:40
                               0
                                      2.67
                                                3.54
                                                              NaN
                                                                     3400.0
                                                                                5000.0
      2020-04-07 09:21:21
                               0
                                      2.66
                                                3.89
                                                                      100.0
                                                                                1000.0
                                                              NaN
      2020-04-07 09:25:01
                               0
                                      2.67
                                                3.89
                                                                     3400.0
                                                                                1000.0
                                                              NaN
                            Trade Size (|qt|) Unnamed: 8 absolute_spread midpoint \
      Time
      2020-04-07 09:02:25
                                          NaN
                                                      NaN
                                                                      1.23
                                                                                3.275
      2020-04-07 09:17:40
                                                      NaN
                                                                      0.68
                                                                                2.990
                                          NaN
      2020-04-07 09:17:40
                                                      NaN
                                                                      0.87
                                                                                3.105
                                          NaN
      2020-04-07 09:21:21
                                          NaN
                                                      NaN
                                                                      1.23
                                                                                3.275
      2020-04-07 09:25:01
                                                                      1.22
                                                                                3.280
                                          NaN
                                                      NaN
                            relative_spread log_spread
      Time
      2020-04-07 09:02:25
                                   0.375573
                                               0.380083
      2020-04-07 09:17:40
                                   0.227425
                                               0.228413
```

0.282048

0.280193

1.2.2 Part B

```
[15]: data = data.fillna(method='ffill')
      transaction_data = data.loc[data["Type"] == 1, data.columns.values]
      transaction_data["most_recent_trans"] = transaction_data["Price (pt)"].shift()
      transaction_data["Unnamed: 8"] = np.where(transaction_data["Price (pt)"] > __
       →transaction_data["midpoint"],
                                                  np.where(transaction_data["Price_{\sqcup}])
       →(pt)"] < transaction_data["midpoint"],</pre>
                                                            -1,
                                                            np.
       →where(transaction_data["Price (pt)"] > transaction_data["most_recent_trans"],
                                                                     1,
                                                                      -1
                                                                    )
                                                           )
                                                 )
      transaction_data.head()
```

```
[15]:
                           Type Bid (bt) Ask (at) Price (pt) Bid Size Ask Size \
      Time
      2020-04-07 09:30:02
                              1
                                     2.81
                                               3.24
                                                            2.99
                                                                     100.0
                                                                               100.0
      2020-04-07 09:30:02
                              1
                                     2.81
                                               3.24
                                                            2.99
                                                                     100.0
                                                                               100.0
      2020-04-07 09:32:28
                              1
                                     2.88
                                               3.15
                                                            3.03
                                                                     100.0
                                                                               100.0
      2020-04-07 09:33:35
                              1
                                     3.01
                                               3.03
                                                            3.03
                                                                    1600.0
                                                                               700.0
      2020-04-07 09:33:38
                              1
                                     3.01
                                               3.03
                                                            3.02
                                                                     100.0
                                                                               100.0
                           Trade Size (|qt|) Unnamed: 8 absolute_spread midpoint \
```

Time

```
2020-04-07 09:30:02
                                 500.0
                                                 -1
                                                                0.43
                                                                         3.025
2020-04-07 09:30:02
                                                                0.43
                                                                         3.025
                                 500.0
                                                 -1
2020-04-07 09:32:28
                                2400.0
                                                  1
                                                                0.27
                                                                         3.015
2020-04-07 09:33:35
                                 100.0
                                                  1
                                                                0.02
                                                                         3.020
2020-04-07 09:33:38
                                 100.0
                                                  1
                                                                0.02
                                                                         3.020
                     relative_spread log_spread most_recent_trans
Time
2020-04-07 09:30:02
                            0.142149
                                         0.142389
                                                                 NaN
2020-04-07 09:30:02
                            0.142149
                                         0.142389
                                                                2.99
2020-04-07 09:32:28
                            0.089552
                                                                2.99
                                        0.089612
2020-04-07 09:33:35
                            0.006623
                                        0.006623
                                                                3.03
2020-04-07 09:33:38
                            0.006623
                                         0.006623
                                                                3.03
```

1.3 Question 7

1.3.1 Part A

```
[16]: transaction_data["absolute_half_spread"] = transaction_data["absolute_spread"] /___
      transaction_data["relative_half_spread"] = transaction_data["relative_spread"] /__
      transaction_data["log_half_spread"] = transaction_data["Ask (at)"].apply(np.log)__
                                           - transaction_data["midpoint"].apply(np.log)
      data = transaction_data[["Bid (bt)",
                                "Ask (at)",
                                "Price (pt)",
                                "Trade Size (|qt|)",
                                "Unnamed: 8",
                                "absolute_half_spread",
                                "relative_half_spread",
                                "log_half_spread"
                             ].rename(columns = {"Bid (bt)": "bid",
                                                  "Ask (at)": "ask",
                                                  "Price (pt)": "price",
                                                  "Trade Size (|qt|)": "size",
                                                  "Unnamed: 8": "direction"
                                                 }
                                      )
      data.head()
```

```
[16]: bid ask price size direction \setminus Time
```

```
2020-04-07 09:30:02 2.81 3.24
                                        2.99
                                               500.0
                                                             -1
      2020-04-07 09:30:02 2.81
                                 3.24
                                        2.99
                                               500.0
                                                              -1
      2020-04-07 09:32:28 2.88
                                 3.15
                                        3.03
                                              2400.0
                                                              1
      2020-04-07 09:33:35 3.01
                                 3.03
                                        3.03
                                               100.0
                                                              1
      2020-04-07 09:33:38 3.01 3.03
                                        3.02
                                               100.0
                                                              1
                           absolute_half_spread relative_half_spread \
      Time
      2020-04-07 09:30:02
                                          0.215
                                                             0.071074
      2020-04-07 09:30:02
                                          0.215
                                                             0.071074
      2020-04-07 09:32:28
                                          0.135
                                                             0.044776
      2020-04-07 09:33:35
                                          0.010
                                                             0.003311
      2020-04-07 09:33:38
                                          0.010
                                                             0.003311
                           log_half_spread
      Time
      2020-04-07 09:30:02
                                  0.068662
      2020-04-07 09:30:02
                                  0.068662
      2020-04-07 09:32:28
                                  0.043803
      2020-04-07 09:33:35
                                  0.003306
      2020-04-07 09:33:38
                                  0.003306
     1.3.2 Part B
[17]: | vwap = (data["price"] * data["size"]).sum() / data["size"].sum()
      data["buy_size"] = np.where(data["direction"] == 1, data["size"], 0)
      data["sell_size"] = np.where(data["direction"] == -1, data["size"], 0)
      vwap_b = (data["price"] * data["buy_size"]).sum() / data["buy_size"].sum()
      vwap_s = (data["price"] * data["sell_size"]).sum() / data["sell_size"].sum()
      print(f"VWAP: {vwap:.4f}, VWAP Buy: {vwap_b:.4f}, VWAP Sell: {vwap_s:.4f}")
     VWAP: 3.0534, VWAP Buy: 3.0647, VWAP Sell: 3.0454
[18]: | for group in data.groupby(pd.Grouper(freq="3H", closed="left")):
          local = group[1].copy()
          local["buy_size"] = np.where(local["direction"] == 1, local["size"], 0)
          local["sell_size"] = np.where(local["direction"] == -1, local["size"], 0)
```

vwap_b = (local["price"] * local["buy_size"]).sum() / local["buy_size"].sum()
vwap_s = (local["price"] * local["sell_size"]).sum() / local["sell_size"].

vwap = (local["price"] * local["size"]).sum() / local["size"].sum()

⇒sum()

```
print(f"Time: {group[0]}, VWAP: {vwap:.4f}, VWAP Buy: {vwap_b:.4f}, VWAP_

→Sell: {vwap_s:.4f}")
```

```
Time: 2020-04-07 09:00:00, VWAP: 3.0180, VWAP Buy: 3.0357, VWAP Sell: 3.0036 Time: 2020-04-07 12:00:00, VWAP: 3.0868, VWAP Buy: 3.0932, VWAP Sell: 3.0812 Time: 2020-04-07 15:00:00, VWAP: 3.0689, VWAP Buy: 3.0801, VWAP Sell: 3.0649
```

1.3.3 Part C

```
[23]: data["lagged_price"] = data["price"].shift()
    rolls_estimate = 2 * np.sqrt(data["price"].cov(data["lagged_price"]))

    data["log_price"] = data["price"].apply(np.log)
    data["lagged_log_price"] = data["log_price"].shift()
    rolls_estimate_log = 2 * np.sqrt(data["log_price"].cov(data["lagged_log_price"]))

    print(rolls_estimate, rolls_estimate_log)
```

0.09289507177090663 0.03060879601340561

```
[37]: lag_log_p = []
log_p = []
lag_p = []
p = []
for group in data.groupby(pd.Grouper(freq="15T", closed="left")):
    lag_log_p.append(group[1]["lagged_log_price"][-1])
    log_p.append(group[1]["log_price"][-1])
    lag_p.append(group[1]["lagged_price"][-1])
    p.append(group[1]["price"][-1])

rolls_estimate_log_15 = 2 * np.sqrt(np.cov((lag_log_p, log_p))[0][1])
rolls_estimate_15 = 2* np.sqrt(np.cov((lag_p, p))[0][1])
```

0.09230911280958287 0.030409739390525905

1.3.4 Part D

```
[55]: data["midprice"] = (data["ask"] + data["bid"]) / 2

midprices = []
    cumm_flow = []
    index = []
```

```
mid = data["midprice"][0]
    for group in data.groupby(pd.Grouper(freq="15T", closed="left")):
       midprices.append(round(group[1]["midprice"][-1] - mid, 4))
       cumm_flow.append(round((group[1]["price"] * group[1]["direction"]).sum(), 4))
       mid = group[1]["midprice"][-1]
       index.append(group[0])
    new_data = pd.DataFrame(data=zip(midprices, cumm_flow),
                       index=index,
                        columns=["midpoint_change", "cumm_flow"])
    formula = "midpoint_change ~ cumm_flow - 1"
    reg = sm.ols(formula, new_data).fit()
    reg.summary()
[55]: <class 'statsmodels.iolib.summary.Summary'>
                               OLS Regression Results
    ______
    Dep. Variable:
                     midpoint_change R-squared (uncentered):
    0.069
    Model:
                               OLS
                                   Adj. R-squared (uncentered):
    0.032
    Method:
                    Least Squares F-statistic:
    1.857
    Date:
                   Tue, 07 Apr 2020 Prob (F-statistic):
    0.185
    Time:
                           11:19:05
                                   Log-Likelihood:
    19.952
    No. Observations:
                                    AIC:
    -37.90
    Df Residuals:
                                25
                                    BIC:
    -36.65
    Df Model:
                                 1
    Covariance Type: nonrobust
    _____
                 coef std err
                                t P>|t| [0.025
    ______
               0.0004 0.000 1.363
                                          0.185 -0.000
    cumm_flow
                             17.527 Durbin-watson.
0.000 Jarque-Bera (JB): 87.343
1.08e-19
    Omnibus:
                             17.527 Durbin-Watson:
                                                              2.948
    Prob(Omnibus):
                             -0.384 Prob(JB):
    Skew:
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

1.4 Question 8

1.4.1 Part A

The optimal return would be $q(m_t - m_0)$. As we must choose some proportion k of the order to purchase, and purchase at an average price of $\bar{p} = m_0 + \lambda kq$, the actual return is $kq(m_t - \bar{p})$. This gives a shortfall of:

Shortfall =
$$q(m_t - m_0) - kq(m_t - \bar{p})$$

= $qm_t - qm_0 - kqm_t + kq\bar{p}$
= $qm_t - qm_0 - kqm_t + kq(m_0 + \lambda kq)$
= $qm_t - qm_0 - kqm_t + kqm_0 + \lambda k^2q^2$
= $q(1 - k)(m_t - m_0) + \lambda k^2q^2$

1.4.2 Part B

$$\frac{d\text{Shortfall}}{dk} \equiv 0$$

$$= -qm_t + qm_0 + 2\lambda kq^2$$

$$k^* = \frac{m_t - m_0}{2\lambda q}$$

1.4.3 Part C

$$egin{aligned} rac{\partial k^*}{\partial (m_t - m_0)} &> 0 \ & rac{\partial k^*}{\partial q} &< 0 \ & rac{\partial k^*}{\partial \lambda} &< 0 \end{aligned}$$

2 Chapter 3

2.1 Question 1

2.1.1 Part A

$$a_t = \mu_{t-1} + \frac{k}{\bar{q}} + s_t^a$$

$$b_t = \mu_{t-1} - \frac{k}{\bar{q}} - s_t^b$$

$$S_t \equiv 2\frac{k}{\bar{q}} + s_t^a + s_t^b$$

Where \bar{q} is the average order size.

2.2 Part B

As above:

$$a_t = \mu_{t-1} + \frac{kp}{\bar{q}} + s_t^a$$

$$b_t = \mu_{t-1} - \frac{kp}{\bar{q}} - s_t^b$$

$$S_t \equiv 2\frac{kp}{\bar{q}} + s_t^a + s_t^b$$

2.2.1 Part C

Within this framework, the observations would imply that order-processing costs are constant per dollar of value traded.

2.3 Question 2

2.3.1 Part A

Perfectly competitive dealers with no order processing costs will post bid and ask offers at $\mu=15$

2.3.2 Part B

In order to still make 0 profit with 10% informed traders, the spread must be widened by $0.10(v^H - v^L) = 1$, giving:

$$a = 15 + 0.5$$

= 15.5
 $b = 15 - 0.5$
= 14.5

2.3.3 Part C

An uninformed trader will lose, on average \$0.50. An informed trader will expect to make \$4.50.

2.3.4 Part D

In order to account for insider traders, market makers have to increase their spread, money which is effectively taken from uninformed traders.

2.4 Question 3

Consider the one-period Glosten-Milgrom model, where the security's true value v can be high v (v) or low v. With probability 0.5 each. Market makers are competitive and risk neutral, and do not know v. In each period, a single trader comes to the market: with probability 1, he is a noise trader, who buys or sells one unit with probability 0.5 each; with probability he is an informed trader, who observes a signal about security's true value. With probability v (2, 1] the signal is accurate, that is, it coincides with the true value of the security. With probability 1, instead, the signal is mistaken, so that the insider assigns the wrong value to the security. Hence, measures the accuracy of the signal observed by the informed trader: for close to 1, the informed would be similar to a noise trader; for v 1, the insider trader would be perfectly informed.

- c. Derive the bid-ask spread as a function of signal's informativeness. How does this result compare with the case of perfectly informed insider trading? Is the market more or less illiquid? Intuitively, why?
- d. Verify whether, given the bid and ask prices derived at point b, the insider is actually willing to buy when his signal equals vH and sells when it is vL, that is, whether this strategy yields positive expected profits in equilibrium.

2.4.1 Part A

The dealers expected profit trading with an uniformed trader, and informed trader:

$$p_{u} = \frac{a-b}{2}$$

$$p_{i} = (1-\rho)\frac{a-b}{2} + \rho(v^{H} - a)$$

$$p = \pi p_{i} + (1-\pi)p_{u}$$

$$= \pi(1-\rho)\frac{a-b}{2} + \pi\rho(v^{H} - a) + (1-\pi)\frac{a-b}{2}$$

$$= (1-\pi+\pi(1-\rho))\frac{a-b}{2} + \pi\rho(v^{H} - a)$$

$$= (1-\pi\rho)\frac{a-b}{2} + \pi\rho(v^{H} - a)$$

2.4.2 Part B

$$0 = (1 - \pi \rho)(a - \mu) + \pi \rho(v^{H} - a)$$

$$= (1 - \pi \rho)a - (1 - \pi \rho)\mu + \pi \rho v^{H} - \pi \rho a$$

$$= (1 - 2\pi \rho)a - (1 - \pi \rho)\mu + \pi \rho v^{H}$$

$$a = \frac{(1 - \pi \rho)\mu - \pi \rho v^{H}}{1 - 2\pi \rho}$$

$$= \frac{(1 - \pi \rho)\mu - \pi \rho(\mu + \frac{v^{H} - v^{L}}{2})}{1 - 2\pi \rho}$$

$$= \frac{(1 - \pi \rho)\mu - \pi \rho \mu + \pi \rho(\frac{v^{H} - v^{L}}{2})}{1 - 2\pi \rho}$$

$$= \mu + \frac{\pi \rho(\frac{v^{H} - v^{L}}{2})}{1 - 2\pi \rho}$$

$$b = \mu - \frac{\pi \rho(\frac{v^{H} - v^{L}}{2})}{1 - 2\pi \rho}$$

2.4.3 Part C

$$S = 2\frac{\pi\rho(\frac{v^H - v^L}{2})}{1 - 2\pi\rho} \tag{1}$$

$$=\frac{\pi\rho(v^H-v^L)}{1-2\pi\rho}\tag{2}$$

$$\frac{\partial S}{\partial \rho} = \frac{(1 - 2\pi\rho)(\pi(v^H - v^L)) - (\pi\rho(v^H - v^L))(1 - 2\pi)}{(1 - 2\pi\rho)^2}$$
(3)

$$=\frac{\pi(1-\rho)(v^H-v^L)}{(1-2\pi\rho)^2}$$
 (4)

2.4.4 Part D

The expected profit of the trader is

$$p = \rho(\frac{v^H - v^L}{2} - \frac{a - b}{2}) - (1 - \rho)(\frac{a - b}{2}) \tag{5}$$

$$= \rho \frac{v^H - v^L}{2} - \rho \frac{a - b}{2} - \frac{a - b}{2} + \rho \frac{a - b}{2} \tag{6}$$

$$= \rho \frac{v^H - v^L}{2} - \frac{a - b}{2} \tag{7}$$

$$0 \le \rho \frac{v^H - v^L}{2} - \frac{a - b}{2} \tag{8}$$

$$a - b \le \rho(v^H - v^L) \tag{9}$$

The strategy makes a profit if ρ times the difference between the high and low values is greater than the spread.

2.5 Question 4

2.5.1 Part A

In this market a there is a $(1-\pi)+\phi\pi$ chance that a participant will traded. The profit made of noise traders is $\frac{a-b}{2}$ and the loss incurred from informed traders is $\frac{v^H-v^L}{2}-\frac{a-b}{2}$. This yields a total profit by market makers of:

$$p = (1 - \pi)\frac{a - b}{2} - \phi\pi(\frac{v^H - v^L}{2} - \frac{a - b}{2})$$

In a perfectly competitive market, this equals 0, giving

$$0 = (1 - \pi)\frac{a - b}{2} - \phi\pi(\frac{v^H - v^L}{2} - \frac{a - b}{2})$$
 (10)

$$= (1 - \pi)(a - \mu) - \phi \pi (\frac{v^H - v^L}{2} - a + \mu)$$
 (11)

$$= (1 - \pi)a - (1 - \pi)\mu - \phi\pi \frac{v^H - v^L}{2} - \phi\pi a + \phi\pi\mu$$
 (12)

$$= (1 - \pi - \phi \pi)a - (1 - \pi - \phi \pi)\mu - \phi \pi \frac{v^H - v^L}{2}$$
 (13)

$$(1 - \pi - \phi \pi)a = (1 - \pi - \phi \pi)\mu + \phi \pi \frac{v^H - v^L}{2}$$
(14)

$$a = \frac{(1 - \pi - \phi \pi)\mu + \phi \pi \frac{v^H - v^L}{2}}{1 - \pi - \phi \pi}$$
 (15)

$$= \mu + \frac{\phi \pi \frac{v^H - v^L}{2}}{1 - \pi - \phi \pi} \tag{16}$$

$$b = \mu - \frac{\phi \pi \frac{v^H - v^L}{2}}{1 - \pi - \phi \pi} \tag{17}$$

2.5.2 Part B

$$p = \frac{v^H - v^L}{2} - \frac{\phi \pi \frac{v^H - v^L}{2}}{1 - \pi - \phi \pi} - c \tag{18}$$

$$= \left(1 - \frac{\phi\pi}{1 - \pi - \phi\pi}\right) \frac{v^H - v^L}{2} - c \tag{19}$$

2.5.3 Part C

$$\phi = 0 \tag{20}$$

$$0 \le \left(1 - \frac{0}{1 - \pi - 0}\right) \frac{v^H - v^L}{2} - c \tag{21}$$

$$c \le \frac{v^H - v^L}{2} \tag{22}$$

2.5.4 Part D

$$\phi = 1 \tag{23}$$

$$0 \le \left(1 - \frac{\pi}{1 - \pi - \pi}\right) \frac{v^H - v^L}{2} - c \tag{24}$$

$$c \le \left(1 - \frac{\pi}{1 - 2\pi}\right) \frac{v^H - v^L}{2} \tag{25}$$

2.5.5 Part E

The traders will be indifferent about trading when the expected profit is zero. I.e.

$$c = \left(1 - \frac{\phi\pi}{1 - \pi - \phi\pi}\right) \frac{v^H - v^L}{2}$$

It obviously depends quite significantly on the π , the assumed proportion of informed traders, and the potential profit, $\frac{v^H - v^L}{2}$. Determing ϕ based on c:

$$c = \left(1 - \frac{\phi\pi}{1 - \pi - \phi\pi}\right) \frac{v^H - v^L}{2} \tag{26}$$

$$= \frac{v^H - v^L}{2} - \frac{\phi \pi}{1 - \pi - \phi \pi} \frac{v^H - v^L}{2} \tag{27}$$

$$(1 - \pi - \phi \pi)c = (1 - \pi - \phi \pi)\frac{v^H - v^L}{2} - \phi \pi \frac{v^H - v^L}{2}$$
 (28)

$$(1-\pi)c - (1-\pi)\frac{v^H - v^L}{2} = \pi\phi c - 2\pi\phi \frac{v^H - v^L}{2}$$
 (29)

$$\phi = \frac{(1-\pi)c - (1-\pi)\frac{v^H - v^L}{2}}{\pi c - 2\pi\frac{v^H - v^L}{2}}$$
(30)

2.5.6 Part F

```
c = [x / n_p for x in range(n_p)]
ask = [ask_f(x) for x in c]
bid = [bid_f(x) for x in c]
profit = [profit_f(x) for x in c]

import matplotlib.pyplot as ppt
print("c, Bid, Ask, Profit")
for x, a, b, p in zip(c, ask, bid, profit):
    print(f"{x:3.3f}, {b:5.2f}, {a:5.2f}, {p:5.2f}")
ppt.plot(c, list(zip(ask, bid, profit)))
ppt.legend(["Ask", "Bid", "Profit"])
ppt.show()
```

```
c, Bid, Ask, Profit
0.000, 10.00, 20.00, 0.00
0.100, 10.10, 19.90, 0.00
0.200, 10.20, 19.80, 0.00
0.300, 10.30, 19.70, -0.00
0.400, 10.40, 19.60, -0.00
0.500, 10.50, 19.50, 0.00
0.600, 10.60, 19.40, 0.00
0.700, 10.70, 19.30, -0.00
0.800, 10.80, 19.20, -0.00
0.900, 10.90, 19.10, -0.00
```


2.6 Question 5

2.7 Part A

$$0 = (1 - \pi) \begin{cases} \frac{a - b}{2} & \frac{a - b}{2} \le \delta \\ 0 & \end{cases} - \pi \left(\frac{v^H - v^L}{2} - \frac{a - b}{2} \right)$$
 (31)

$$\pi \left(\frac{v^H - v^L}{2} - a + \mu \right) = (1 - \pi) \begin{cases} a - \mu & a - \mu \le \delta \\ 0 \end{cases}$$
 (32)

$$\pi\left(\frac{v^H - v^L}{2}\right) - \pi a + \pi \mu = \begin{cases} (1 - \pi)a - (1 - \pi)\mu & a - \mu \le \delta \\ 0 \end{cases} \tag{33}$$

$$\pi\left(\frac{v^H - v^L}{2}\right) = \begin{cases} a - \mu & a - \mu \le \delta \\ \pi a - \pi \mu \end{cases} \tag{34}$$

$$\pi\left(\frac{v^H - v^L}{2}\right) = (a - \mu) * \begin{cases} 1 & a - \mu \le \delta \\ \pi \end{cases}$$
 (35)

$$\pi\left(\frac{v^H - v^L}{2}\right) = a - \mu - (a - \mu) * \begin{cases} 0 & a - \mu \le \delta \\ 1 - \pi \end{cases}$$
(36)

$$a = \mu + \pi \left(\frac{v^H - v^L}{2}\right) + (a - \mu) * \begin{cases} 0 & a - \mu \le \delta \\ 1 - \pi \end{cases}$$
 (37)

$$b = \mu - \pi \left(\frac{v^H - v^L}{2}\right) - (b - \mu) * \begin{cases} 0 & b - \mu \le \delta \\ 1 - \pi \end{cases}$$
 (38)

2.7.1 Part B

ppt.show()

2.8 Question 6

Expected profit from trading with a noise trader:

$$p_u = \frac{a-b}{2}$$

Expected profit from trading with an informed trader:

$$p_i = \frac{a-b}{2} - \begin{cases} 2a+1 & v \ge a \\ 0 & b < v < a \\ \frac{b}{b+2} & v \le b \end{cases}$$

Given perfectly competitive markets:

$$0 = (1 - \pi)\frac{a - b}{2} + \pi \left(\frac{a - b}{2} - \begin{cases} 2a + 1 & v \ge a \\ 0 & b < v < a \\ \frac{b}{b + 2} & v \le b \end{cases}\right)$$
(39)

$$= (1-\pi)\frac{a-b}{2} + \pi \frac{a-b}{2} - \pi \begin{cases} 2a+1 & v \ge a \\ 0 & b < v < a \\ \frac{b}{b+2} & v \le b \end{cases}$$
 (40)

$$= \frac{a-b}{2} - \pi \begin{cases} 2a+1 & v \ge a \\ 0 & b < v < a \\ \frac{b}{b+2} & v \le b \end{cases}$$
 (41)

$$= a - \mu - \pi \begin{cases} 2a + 1 & v \ge a \\ 0 & v < a \end{cases}$$
 (42)

$$a = \mu + \pi \begin{cases} 2a + 1 & v \ge a \\ 0 & v < a \end{cases} \tag{43}$$

$$= \mu + F(a)\pi(2a+1) \tag{44}$$

$$b = \mu - (1 - F(b))\pi \frac{b}{b+2} \tag{45}$$

```
[64]: F = lambda x : (1 - (1 / (x + 1) ** 2))
      def get_a(pi):
          ask_f = lambda x : 1 + F(x) * pi * (2 * a + 1)
          bid_f = lambda x : 1 - (1-F(x)) * pi * (x / (x + 1))
          a = 1
          e = 1e-20
          1 = 0.1
          while abs(a-ask_f(a)) > e:
              if a > ask_f(a):
                  a = 1
              else:
                  a += 1
              1 = 1 - 1/100
              if 1 < e:
                  return float("inf")
          return a
      def get_b(pi):
          ask_f = lambda x : 1 + F(x) * pi * (2 * a + 1)
```

```
bid_f = lambda x : 1 - (1-F(x)) * pi * (x / (x + 1))
   b = 1
    e = 1e-20
    1 = 0.1
    while abs(b-bid_f(b)) > e:
        if b > bid_f(b):
           b -= 1
        else:
            b += 1
        1 = 1 - 1/100
        if 1 < e:
            return float("-inf")
    return b
np = 100_000
prev = 1
print("Critical pi")
for x in range(int(np * 0.434), np):
   curr = get_a(x/np)
    if curr == float("inf"):
        print(prev)
       break
    prev = x/np
    # print(f"{x/np:5.3f}, {get_a(x/np):5.3f}, {get_b(x/np):5.3f}")
```

Critical pi 0.43782

2.9 Question 7

The price pressure of inventory holdings scales with the illiquidity of the holdings. Thus small cap, illiquid stocks produce greater price pressure than large cap, liquid stocks.

2.10 Question 8

2.10.1 Part B

$$p = \kappa_l (1 - \pi) \frac{a - b}{2} - \kappa_i \pi (0.5 - \frac{a - b}{2})$$
(46)

$$0 = \kappa_l(1 - \pi)(a - 0.5) - \kappa_i \pi (0.5 - a + 0.5)$$
(47)

$$= \kappa_l (1 - \pi) a - \kappa_l (1 - \pi) * 0.5 - \kappa_i \pi + \kappa_i \pi a \tag{48}$$

$$= (\kappa_l(1-\pi) + \kappa_i\pi)a - \kappa_l(1-\pi) * 0.5 - \kappa_i\pi$$
(49)

$$a = \frac{\kappa_l(1-\pi) * 0.5 + \kappa_i \pi}{\kappa_l(1-\pi) + \kappa_i \pi}$$
(50)

$$=\frac{\kappa(1-\pi)*0.5+\kappa\pi}{\kappa(1-\pi)+\kappa\pi}\tag{51}$$

$$= (1 - \pi) * 0.5 + \pi \tag{52}$$

$$=\mu + \pi \frac{v^H - v^L}{2} \tag{53}$$

$$b = \mu - \pi \frac{v^H - v^L}{2} \tag{54}$$

If k_i increases then the spread decreases, else it increases. This makes sense as fewer informed traders lead to a narrow spread.

2.11 **Question 12**

2.11.1 Part A

The most correlated values are market cap and trading volume. Be careful not to induce omitted variable bias.

2.11.2 Part B

```
[24]: data["turnover"] = data["vo"] / data["ibnosh"]
  data["l_vola"] = data["vola"].apply(np.log)

formulas = ["spread ~ vola + " for _ in range(6)]
  formulas[0] += "mktcap"
  formulas[1] += "vp"
  formulas[2] += "np.log(mktcap)"
  formulas[3] += "l_vola"
  formulas[4] += "turnover"
  formulas[5] += "turnover + np.log(p)"
```

```
[25]: sm.ols(formulas[0], data).fit().summary()
```

[25]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: R-squared: 0.001 spread Model: OLS Adj. R-squared: -0.000 Least Squares F-statistic: Method: 0.8616 Date: Mon, 13 Apr 2020 Prob (F-statistic): 0.423 Time: 14:14:32 Log-Likelihood: 527.13 No. Observations: 1514 AIC: -1048.

Df Residuals: 1511 BIC: -1032.

Df Model: 2
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0707	0.009	8.262	0.000	0.054	0.088
vola	0.1540	0.146	1.053	0.293	-0.133	0.441
mktcap	-3.882e-07	5.72e-07	-0.679	0.497	-1.51e-06	7.33e-07
Omnibus:	:=======	 1906.	659 Durbii	======= n-Watson:		1.960
Prob(Omnib	ous):	0.	000 Jarque	e-Bera (JB)	:	241272.541
Skew:		6.	759 Prob(.	JB):		0.00
Kurtosis:		63.	348 Cond.	No.		2.61e+05

${\tt Warnings}:$

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.61e+05. This might indicate that there are strong multicollinearity or other numerical problems.

[26]: sm.ols(formulas[1], data).fit().summary()

[26]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	spread	R-squared:	0.001
Model:	OLS	Adj. R-squared:	-0.000
Method:	Least Squares	F-statistic:	0.7522
Date:	Mon, 13 Apr 2020	Prob (F-statistic):	0.472
Time:	14:14:33	Log-Likelihood:	527.02
No. Observations:	1514	AIC:	-1048.
Df Residuals:	1511	BIC:	-1032.
Df Model:	2		
Covariance Type:	nonrobust		
=======================================	=======================================		=======================================
С	oef std err	t P> t	[0.025 0.975]

	coef	std err	t	P> t	[0.025	0.975]
Intercept vola vp	0.0705 0.1578 -2.288e-08	0.009 0.146 4.65e-08	8.234 1.079 -0.492	0.000 0.281 0.622	0.054 -0.129 -1.14e-07	0.087 0.444 6.82e-08
Omnibus: Prob(Omnib	ous):	1906. 0.			·) :	1.960 241216.870

Skew:	6.759	Prob(JB):	0.00
Kurtosis:	63.341	Cond. No.	3.21e+06

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.21e+06. This might indicate that there are strong multicollinearity or other numerical problems.

[27]: sm.ols(formulas[2], data).fit().summary()

[27]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: Model:	.	OLS	R-squared:			0.037
Method:		_	F-statisti		0	29.35
Date:	Mon, 1	-	Prob (F-st			13e-13
Time:			Log-Likeli	nooa:		555.11
No. Observations:			AIC:			-1104.
Df Residuals:			BIC:		,	-1088.
Df Model:		2				
Covariance Type:		nonrobust				
==	coef	std err	 t	======= P> t	[0.025	=====
0.975]						
Intercept 0.234	0.1972	0.019	10.516	0.000	0.160	
vola	-0.2471	0.153	-1.616	0.106	-0.547	
0.053 np.log(mktcap) -0.015	-0.0206	0.003	-7.575	0.000	-0.026	
Omnibus:		1911.255	Durbin-Wat	son:		1.948
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Ber	a (JB):	248788.377	
Skew:		6.776	Prob(JB):			0.00
Kurtosis:		64.320	Cond. No.			197.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

11 11 11

[32]: sm.ols(formulas[3], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().

→summary()

[32]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: R-squared: spread 0.015 Model: OLS Adj. R-squared: 0.013 Method: Least Squares F-statistic: 11.17 Date: Prob (F-statistic): Mon, 13 Apr 2020 1.53e-05 Time: 14:16:46 Log-Likelihood: 536.03 No. Observations: 1512 AIC: -1066. Df Residuals: 1509 BIC: -1050.

Df Model: 2
Covariance Type: nonrobust

coef std err P>|t| Γ0.025 ------0.2145 0.063 -3.428 0.001 -0.337 -0.092 Intercept 0.297 0.000 0.774 vola 1.3561 4.570 1.938 -0.0713 0.016 -4.576 0.000 l_vola -0.102 -0.041 ______ Durbin-Watson: 1.969 Omnibus: 1922.264 Prob(Omnibus): 0.000 Jarque-Bera (JB): 254553.921 Skew: 6.859 Prob(JB): 0.00 Cond. No. Kurtosis: 65.067 233. ______

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.0111

[33]: sm.ols(formulas[4], data).fit().summary()

[33]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

 Dep. Variable:
 spread
 R-squared:
 0.013

 Model:
 OLS
 Adj. R-squared:
 0.012

 Method:
 Least Squares
 F-statistic:
 10.17

 Date:
 Mon, 13 Apr 2020
 Prob (F-statistic):
 4.12e-05

Time:	14:17:01	Log-Likelihood:	536.38
No. Observations:	1514	AIC:	-1067.
Df Residuals:	1511	BIC:	-1051.

Df Model: 2
Covariance Type: nonrobust

========	=======					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0777	0.009	9.054	0.000	0.061	0.095
vola	0.1832	0.145	1.264	0.206	-0.101	0.467
turnover	-0.0011	0.000	-4.365	0.000	-0.002	-0.001
========	=======					
Omnibus:		1910	.272 Durk	oin-Watson:		1.959
Prob(Omnibus):	0	.000 Jaro	ue-Bera (JB)):	244110.763
Skew:		6	.778 Prob	(JB):		0.00
Kurtosis:		63	.711 Cond	l. No.		642.
========	=======	=======	========	.=======		========

Warnings:

 $\cite{black} \cite{black} 1]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[34]: sm.ols(formulas[5], data).fit().summary()

[34]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	============		==========
Dep. Variable:	spread	R-squared:	0.042
Model:	OLS	Adj. R-squared:	0.040
Method:	Least Squares	F-statistic:	22.16
Date:	Mon, 13 Apr 2020	Prob (F-statistic):	4.80e-14
Time:	14:17:05	Log-Likelihood:	558.89
No. Observations:	1514	AIC:	-1110.
Df Residuals:	1510	BIC:	-1088.

Df Model: 3
Covariance Type: nonrobust

========						======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0103	0.013	0.787	0.431	-0.015	0.036
vola	0.6449	0.158	4.074	0.000	0.334	0.955
turnover	-0.0014	0.000	-5.657	0.000	-0.002	-0.001
np.log(p)	0.0265	0.004	6.750	0.000	0.019	0.034
========	=======	========			========	======

Omnibus: 1894.980 Durbin-Watson: 1.975

```
      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      237768.376

      Skew:
      6.684
      Prob(JB):
      0.00

      Kurtosis:
      62.920
      Cond. No.
      714.
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

```
[36]: formulas = ["ami100 ~ vola + " for _ in range(6)]
    formulas[0] += "mktcap"
    formulas[1] += "vp"
    formulas[2] += "np.log(mktcap)"
    formulas[3] += "l_vola"
    formulas[4] += "turnover"
    formulas[5] += "turnover + np.log(p)"
```

[37]: sm.ols(formulas[0], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().

→summary()

[37]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: ami100 R-squared: 0.028 Model: 0.027 OLS Adj. R-squared: Method: Least Squares F-statistic: 21.79 Mon, 13 Apr 2020 Prob (F-statistic): 4.70e-10 Date: Time: 14:18:12 Log-Likelihood: -2473.7 No. Observations: 1512 AIC: 4953. Df Residuals: 1509 BIC: 4969.

Df Model: 2
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 0.0477 0.062 0.765 0.445 -0.075 0.170 vola 6.7531 1.066 6.332 0.000 4.661 8.845 mktcap -5.158e-06 4.16e-06 -1.241 0.215 -1.33e-05 3e-06

 Omnibus:
 2048.488
 Durbin-Watson:
 2.037

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 420909.886

 Skew:
 7.529
 Prob(JB):
 0.00

Kurtosis: 83.339 Cond. No. 2.62e+05

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.62e+05. This might indicate that there are strong multicollinearity or other numerical problems.
- [39]: sm.ols(formulas[1], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().

 →summary()
- [39]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

_____ ami100 R-squared: Dep. Variable: 0.029 Model: OLS Adj. R-squared: 0.027 Least Squares F-statistic: Method: 22.34 Mon, 13 Apr 2020 Prob (F-statistic): Date: 2.75e-10 Time: 14:18:19 Log-Likelihood: -2473.2 No. Observations: 1512 AIC: 4952. Df Residuals: 1509 BIC: 4968.

Df Model: 2
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Tntomoont	0.0513	0.062	0.822	0.411	-0.071	0.174
Intercept	0.0515	0.062	0.022	0.411	-0.071	0.174
vola	6.7404	1.065	6.331	0.000	4.652	8.829
vp	-5.455e-07	3.38e-07	-1.615	0.106	-1.21e-06	1.17e-07
========	=========		=======	=======	========	========
Omnibus:		2048.	863 Durb	in-Watson:		2.038
Prob(Omnib	us):	0.	000 Jarq	ue-Bera (JB):	421467.063
Skew:		7.	531 Prob	(JB):		0.00
Kurtosis:		83.	393 Cond	. No.		3.22e+06
========			=======		========	=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.22e+06. This might indicate that there are strong multicollinearity or other numerical problems.
- [40]: sm.ols(formulas[2], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().
 summary()

[40]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:		ami100	R-squared:			0.105
Model:	T	OLS	Adj. R-squ			0.104
Method: Date:		_	F-statisti		3 ·	88.71 78e-37
Time:	Mon, 1	_	Prob (F-st			2411.2
No. Observations:		1512	Log-Likeli AIC:	nood:		4828.
Df Residuals:		1512	BIC:			4828. 4844.
Df Model:		1509	DIC:			4044.
		_				
Covariance Type:		nonrobust				
==						
	coef	std err	t	P> t	[0.025	
0.975]					_	
 Intercent	1.4203	0.134	10.569	0.000	1 157	
Intercept 1.684	1.4203	0.134	10.569	0.000	1.157	
vola	2.3582	1.092	2.160	0.031	0.216	
4.500	2.3302	1.032	2.100	0.031	0.210	
	-0.2237	0 019	-11.478	0.000	-0.262	
-0.185	-0.2201	0.013	-11.470	0.000	-0.202	
					=======	
Omnibus:		2058.855				2.048
Prob(Omnibus):		0.000	-	a (JB):	45699	93.827
Skew:			Prob(JB):			0.00
Kurtosis:		86.815	Cond. No.			198.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[41]: sm.ols(formulas[3], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().

→summary()

[41]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ami100	R-squared:	0.027
Model:	OLS	Adj. R-squared:	0.026
Method:	Least Squares	F-statistic:	21.28

Date: Mon, 13 Apr 2020 Prob (F-statistic): 7.66e-10 Time: 14:18:30 Log-Likelihood: -2474.2 No. Observations: 1512 AIC: 4954. Df Residuals: BIC: 4970. 1509

Df Model: 2
Covariance Type: nonrobust

========	=======	========			========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept vola l vola	-0.3049 8.3003 -0.0853	0.458 2.173 0.114	-0.666 3.820 -0.748	0.506 0.000 0.454	-1.203 4.038 -0.309	0.594 12.562 0.138
1_V01a ========	-0.0055 =======	0.114	-0.740 	0.454 ========	-0.309	0.130
Omnibus:		2048	3.463 Dur	bin-Watson:		2.041
Prob(Omnibus):	(0.000 Jar	que-Bera (JB) :	420060.081
Skew:		7	7.530 Pro	b(JB):		0.00
Kurtosis:		83	3.255 Con	d. No.		233.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[42]: sm.ols(formulas[4], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().

→summary()

[42]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

_____ Dep. Variable: ami100 R-squared: 0.043 Model: OLS Adj. R-squared: 0.042 Method: Least Squares F-statistic: 33.98 Date: Mon, 13 Apr 2020 Prob (F-statistic): 3.69e-15 Time: 14:18:37 Log-Likelihood: -2461.9 No. Observations: 1512 AIC: 4930. Df Residuals: 1509 BIC: 4946.

Df Model: 2
Covariance Type: nonrobust

______ [0.025 coef std err P>|t| Intercept 0.1016 0.063 1.626 0.104 -0.021 0.224 0.000 4.976 vola 7.0429 1.054 6.684 9.110 0.002 -5.026 0.000 -0.0091 -0.013 -0.006 turnover

Omnibus:	2056.778	Durbin-Watson:	2.051
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):	430276.072
Skew:	7.581	Prob(JB):	0.00
Kurtosis:	84.240	Cond. No.	643.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[43]: sm.ols(formulas[5], data.replace([np.inf, -np.inf], np.nan).dropna()).fit().

summary()

[43]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: ami100 R-squared: 0.044 Adj. R-squared: Model: OLS 0.042 Method: Least Squares F-statistic: 23.13 Date: Mon, 13 Apr 2020 Prob (F-statistic): 1.22e-14 Time: 14:18:42 Log-Likelihood: -2461.2 No. Observations: AIC: 1512 4930. Df Residuals: 1508 BIC: 4952.

Df Model: 3
Covariance Type: nonrobust

______ t P>|t| [0.025 coef std err ______ Intercept 0.1899 0.097 1.962 0.050 3.97e-05 0.380 5.505 0.000 1.169 vola 6.4369 4.143 8.731 -0.012 turnover -0.0087 0.002 -4.698 0.000 -0.005 np.log(p) -0.0345 0.029 -1.194 0.232 -0.091 0.022 ______ Omnibus: 2056.461 Durbin-Watson: 429910.948 Prob(Omnibus): 0.000 Jarque-Bera (JB):

 Skew:
 7.579
 Prob(JB):
 0.00

 Kurtosis:
 84.205
 Cond. No.
 716.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

```
[54]: data["fin"] = pd.get_dummies(data["gics"])[40]
sm.ols(formulas[3] + " + fin", data.replace([np.inf, -np.inf], np.nan).dropna()).

→fit().summary()
```

[54]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: ami100 R-squared: 0.066 Model: OLS Adj. R-squared: 0.064 Method: Least Squares F-statistic: 35.68 2.82e-22 Date: Mon, 13 Apr 2020 Prob (F-statistic): Time: 14:25:30 Log-Likelihood: -2443.4 No. Observations: 1512 AIC: 4895.

1508 BIC:

4916.

Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975] ______ Intercept -0.1014 0.450 -0.225 0.822 -0.984 6.4719 2.142 3.021 0.003 vola 2.270 10.674 l_{vola} -0.0104 0.112 -0.093 0.926 -0.230 0.210 0.6290 0.079 7.920 0.000 0.473 fin 0.785 _____ Omnibus: 2072.817 Durbin-Watson: 2.063 0.000 Jarque-Bera (JB): 473049.769 Prob(Omnibus): Skew: 7.654 Prob(JB): 0.00 88.290 Cond. No. 234.

Warnings:

Df Residuals:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

[55]: sm.ols(formulas[4] + " + fin", data.replace([np.inf, -np.inf], np.nan).dropna()).

ofit().summary()

[55]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

 Dep. Variable:
 ami100 R-squared:
 0.078

 Model:
 0LS Adj. R-squared:
 0.076

 Method:
 Least Squares F-statistic:
 42.49

 Date:
 Mon, 13 Apr 2020 Prob (F-statistic):
 2.35e-26

Time: 14:25:38 Log-Likelihood: -2433.9
No. Observations: 1512 AIC: 4876.
Df Residuals: 1508 BIC: 4897.

Df Model: 3
Covariance Type: nonrobust

=========	:=======		:=======	:========	=======	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0023	0.063	0.037	0.971	-0.121	0.125
vola	6.4670	1.037	6.234	0.000	4.432	8.502
turnover	-0.0078	0.002	-4.367	0.000	-0.011	-0.004
fin	0.5964	0.079	7.549	0.000	0.441	0.751
========	=======		========	========	=======	=======
Omnibus:		2079.3	00 Durbin	-Watson:		2.074
Prob(Omnibus	s):	0.0	000 Jarque	-Bera (JB):		480755.833
Skew:		7.6	96 Prob(J	B):		0.00
Kurtosis:		88.9	089 Cond.	No.		645.
=========	========					========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[58]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: ami100 R-squared: 0.082 Model: OLS Adj. R-squared: 0.079 Method: Least Squares F-statistic: 33.58 Date: Mon, 13 Apr 2020 Prob (F-statistic): 7.26e-27 14:27:52 Time: Log-Likelihood: -2430.7No. Observations: 1512 AIC: 4871. Df Residuals: 1507 BIC: 4898.

Df Model: 4
Covariance Type: nonrobust

______ std err P>|t| Γ0.025 coef ______

 1.922
 0.055
 -0.004

 4.456
 0.000
 2.888

 -3.740
 0.000
 -0.010

 Intercept 0.1823 0.095 0.368

 5.1590
 1.158
 4.456

 -0.0068
 0.002
 -3.740

 vola 7.430 -0.003 turnover -0.0068

np.log(p)	-0.0727	0.029	-2.527	0.012	-0.129	-0.016
fin	0.6304	0.080	7.880	0.000	0.473	0.787
=========	:========	========	=======	========	=======	========
Omnibus:		2079.98	7 Durbi	.n-Watson:		2.074
Prob(Omnibus	s):	0.00	0 Jarqu	ue-Bera (JB):		483087.654
Skew:		7.69	9 Prob((JB):		0.00
Kurtosis:		89.20	3 Cond.	No.		723.
=========	:=======	========	=======	:=======	=======	========

Warnings:

 $\cite{black} \cite{black} 1]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

The impact of *fin* appears positive, indicating financial stocks were less liquid.

2.11.3 Part E

[81]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Covariance Type: nonrobust ====================================
0.975]

Omnibus: Prob(Omnibus): Skew: Kurtosis:		1851.623 0.000 6.395 62.267	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.	ca (JB):	1.995 231906.399 0.00 1.45e+03
np.log(p):nfin 0.019	0.0109	0.004	2.742	0.006	0.003
-0.000 np.log(p):fin 0.097	0.0762	0.011	7.140	0.000	0.055
-0.008 turnover:nfin	-0.0006	0.000	-2.467	0.014	-0.001
0.564 turnover:fin	-0.0099	0.001	-8.596	0.000	-0.012
2.028 vola:nfin	0.2226	0.174	1.280	0.201	-0.118
0.053 vola:fin	1.4296	0.305	4.684	0.000	0.831
0.072 nfin	0.0269	0.013	2.011	0.044	0.001

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.45e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [82]: hypothesis = "(vola:fin = vola:nfin)"
 reg.f_test(hypothesis)
- [83]: hypothesis = "(turnover:fin = turnover:nfin)"
 reg.f_test(hypothesis)
- [84]: hypothesis = "(np.log(p):fin = np.log(p):nfin)"
 reg.f_test(hypothesis)

3 Chapter 4

3.1 Question 1

3.1.1 Part A

The parameter λ is derived:

$$p(q) = \mu + \frac{cov(v,q)}{var(q)}q\tag{55}$$

$$= \mu + \frac{\beta \sigma_v^2}{\beta (\sigma_v^2 + \sigma_\eta^2) + \sigma_u^2} q \tag{56}$$

An increase in the informed investors error increases σ_{η}^2 , increasing market depth. Shifting the response curve up and to the left.

3.1.2 Part B

$$E[v|s] = \mu + \frac{cov(v,s)}{var(s)}(s-\mu)$$
(57)

$$=\mu + \frac{\sigma_v^2}{\sigma_v^2 + \sigma_v^2} \tag{58}$$

The investor wishes to maximise his value:

$$\max_{x} E[x * (v - p)|s] = \max_{x} x E[v - p|s]$$
(59)

$$= \max_{x} x(E[v|s] - \mu - \lambda x) \tag{60}$$

$$= \max_{x} x \left(\mu + \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2} (s - \mu) - \mu - \lambda x\right) \tag{61}$$

$$= \max_{x} x \left(\frac{\sigma_v^2}{\sigma_v^2 + \sigma_n^2} (s - \mu) - \lambda x \right) \tag{62}$$

$$0 \equiv \frac{d}{dx}x(\frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}(s - \mu) - \lambda x)$$
(63)

$$=\frac{\sigma_v^2}{\sigma_v^2 + \sigma_n^2}(s - \mu) - 2\lambda x \tag{64}$$

$$x = \frac{1}{2\lambda} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_n^2} (s - \mu) \tag{65}$$

$$\beta = \frac{1}{2\lambda} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2} \tag{66}$$

Thus beta is decreasing in σ_{η}^2

3.1.3 Part C

$$\lambda = \frac{\beta \sigma_v^2}{\beta (\sigma_v^2 + \sigma_u^2) + \sigma_u^2} \tag{67}$$

$$\beta = \frac{1}{2\lambda} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2} \tag{68}$$

$$=\frac{1}{2\frac{\beta\sigma_v^2}{\beta(\sigma_v^2+\sigma_\eta^2)+\sigma_v^2}}\frac{\sigma_v^2}{\sigma_v^2+\sigma_\eta^2} \tag{69}$$

$$=\frac{\beta(\sigma_v^2 + \sigma_\eta^2) + \sigma_u^2}{2\beta\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2} \tag{70}$$

$$\beta^2 = \frac{\beta(\sigma_v^2 + \sigma_\eta^2) + \sigma_u^2}{2\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2} \tag{71}$$

$$=\frac{\beta\sigma_v^2 + \beta\sigma_\eta^2 + \sigma_u^2}{2\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2} \tag{72}$$

$$= \left(\frac{\beta \sigma_v^2 + \beta \sigma_\eta^2}{2\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}\right) + \left(\frac{\sigma_u^2}{2\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}\right) \tag{73}$$

$$= \left(\frac{\beta}{2}\right) + \left(\frac{\sigma_u^2}{2\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}\right) \tag{74}$$

$$= \left(\frac{\sigma_u^2}{\sigma_v^2} \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}\right) \tag{75}$$

$$\beta = \frac{\sigma_u}{\sigma_v} \sqrt{\frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}} \tag{76}$$

$$\lambda = \frac{\sigma_v}{2\sigma_u} \sqrt{\frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}} \tag{77}$$

3.2 Question 2

3.2.1 Part A

Set
$$u = u_1 + u_2$$
, $\sigma_u = \sqrt{\sigma_{u1}^2 + \sigma_{u2}^2}$

$$E[v|q] = \mu + \frac{\beta \sigma_v^2}{\beta \sigma_v^2 + \sigma_{u1}^2 + \sigma_{u2}^2}$$
 (78)

$$x = \frac{1}{2\lambda}(v - \mu) \tag{79}$$

$$x = \frac{1}{2\lambda}(v - \mu)$$

$$\lambda = \frac{\sigma_v}{2\sqrt{\sigma_{u1}^2 + \sigma_{u2}^2}}$$
(80)

$$\beta = \frac{\sqrt{\sigma_{u1}^2 + \sigma_{u2}^2}}{\sigma_v} \tag{81}$$

3.2.2 Part B

$$E[v|q] = \mu + \frac{\beta \sigma_v^2}{\beta \sigma_v^2 + \sigma_{u2}^2}$$
(82)

$$x = \frac{1}{2\lambda}(v - \mu) \tag{83}$$

$$x = \frac{1}{2\lambda}(v - \mu)$$

$$\lambda = \frac{\sigma_v}{2\sigma_{u2}}$$
(83)

$$\beta = \frac{\sigma_{u2}}{\sigma_v} \tag{85}$$

3.2.3 Part C

The difference depends on the ratio of σ_{u1} : σ_{u2} . If the latter is larger then depth and aggresiveness is increased, else, the opposite.

3.3 Question 3

3.3.1 Part A

From each traders perspective:

$$p = \mu + \lambda(x_i + (N - 1)\beta(v - \mu) + u)$$
(86)

$$E[p] = \mu + \lambda(x_i + (N-1)\beta(v - \mu))$$
(87)

$$E[x_i(v-p)] = E[x_i(v-\mu - \lambda(x_i + (N-1)\beta(v-\mu)))]$$
 (88)

$$= E[x_i((v - \mu)(1 - (N - 1)\beta) - \lambda x_i)]$$
 (89)

$$\frac{d}{dx_i}x_i((v-\mu)(1-(N-1)\beta) - \lambda x_i) = (v-\mu)(1-(N-1)\beta) - 2\lambda x_i$$
(90)

$$0 = (v - \mu)(1 - (N - 1)\beta) - 2\lambda x_i \tag{91}$$

$$2\lambda x_i = (v - \mu)(1 - (N - 1)\beta) \tag{92}$$

$$x_{i} = \frac{(1 - (N - 1)\beta)}{2\lambda}(v - \mu) \tag{93}$$

$$\beta = \frac{(1 - (N - 1)\beta)}{2\lambda} \tag{94}$$

$$2\lambda\beta = 1 - (N-1)\beta\tag{95}$$

$$(2\lambda + (N-1))\beta = 1 \tag{96}$$

$$\beta = \frac{1}{2\lambda + (N-1)}\tag{97}$$

Thus β is decreasing in N

3.3.2 Part B

$$p(q) = \mu + \lambda q \tag{98}$$

$$=\mu + \frac{\beta \sigma_v^2}{\beta \sigma_v^2 + \sigma_u^2} \tag{99}$$

$$\frac{1}{\lambda} = \beta + \frac{\sigma_u^2}{\beta \sigma_v^2} \tag{100}$$

$$= \frac{1}{2\lambda + (N-1)} + \frac{\sigma_u^2}{\frac{1}{2\lambda + (N-1)}\sigma_v^2}$$
 (101)

$$= \frac{1}{2\lambda + (N-1)} + \frac{(2\lambda + (N-1))\sigma_u^2}{\sigma_v^2}$$
 (102)

$$\frac{2\lambda + (N-1)}{\lambda} - 1 = \frac{(2\lambda + (N-1))^2 \sigma_u^2}{\sigma_v^2}$$
 (103)

$$\frac{\lambda + (N-1)}{\lambda} = \frac{(2\lambda + (N-1))^2 \sigma_u^2}{\sigma_v^2} \tag{104}$$

$$1 + \frac{(N-1)}{\lambda} = \frac{(2\lambda + (N-1))^2 \sigma_u^2}{\sigma_v^2}$$
 (105)

$$\lambda + (N-1) = \frac{\lambda(2\lambda\sigma_u + (N-1)\sigma_u)^2}{\sigma_v^2}$$
(106)

$$\lambda \sigma_v^2 + (N-1)\sigma_v^2 = \lambda (2\lambda \sigma_u + (N-1)\sigma_u)^2$$
(107)

$$\lambda \sigma_v^2 + (N-1)\sigma_v^2 = \lambda (4\lambda^2 \sigma_u^2 + 4\lambda \sigma_u^2 (N-1) + (N-1)^2 \sigma_u^2)$$
 (108)

$$(N-1+\lambda)\sigma_{\nu}^{2} = 4\lambda^{2}\sigma_{\nu}^{2}(N-1+\lambda) + \lambda(N-1)^{2}\sigma_{\nu}^{2}$$
(109)

$$(N-1+\lambda)(\sigma_v^2 - 4\lambda^2 \sigma_u^2) = \lambda(N-1)^2 \sigma_u^2 \tag{110}$$

$$\frac{1}{\lambda} = \frac{N+1}{\sqrt{N}} \frac{\sigma_u}{\sigma_v} \tag{111}$$

Thus market depth is increasing with N.

3.3.3 Part C

As above.

3.3.4 Part D

$$E[x_i(v-p)] = E[x_i((v-\mu)(1-(N-1)\beta) - \lambda x_i)]$$
(112)

$$=\frac{1}{(N+1)\lambda}\tag{113}$$

3.4 Question 4

3.4.1 Part A

$$var(v-p) = var(v-\mu - \lambda(x+u))$$
(114)

$$= var(v - \mu - \lambda(\beta(v - \mu) + u)) \tag{115}$$

$$= var(v - \mu - \lambda \beta(v - \mu) - \lambda u) \tag{116}$$

$$= var((1 - \lambda \beta)(v - \mu) - \lambda u) \tag{117}$$

$$= (1 - \lambda \beta)^2 \sigma_v^2 + \lambda^2 \sigma_u^2 \tag{118}$$

$$= (1 - \frac{\beta^2 \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2})^2 \sigma_v^2 + (\frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2})^2 \sigma_u^2$$
 (119)

$$= \left(\frac{\sigma_u^2}{\beta^2 \sigma_v^2 + \sigma_u^2}\right)^2 \sigma_v^2 + \left(\frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2}\right)^2 \sigma_u^2 \tag{120}$$

$$= \left(\frac{\sigma_u^2 \sigma_v}{\beta^2 \sigma_v^2 + \sigma_u^2}\right)^2 + \left(\frac{\beta \sigma_v^2 \sigma_u}{\beta^2 \sigma_v^2 + \sigma_u^2}\right)^2 \tag{121}$$

$$= (\beta^2 \sigma_v^2 + \sigma_u^2) \left(\frac{\sigma_u \sigma_v}{\beta^2 \sigma_v^2 + \sigma_u^2}\right)^2 \tag{122}$$

$$=\frac{\sigma_u^2 \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2} \tag{123}$$

Trader's aggresivenes serves to correct the difference v - p, minimising its variance.

3.4.2 Part B

$$var(p-u) = var(\mu + \lambda(x+u) - u)$$
(124)

$$= var(\mu + \lambda x - (1 - \lambda)u) \tag{125}$$

$$= var(\mu + \lambda \beta(v - \mu) - (1 - \lambda)u)$$
(126)

$$= var((1 - \lambda \beta)\mu + \lambda \beta v - (1 - \lambda)u)$$
(127)

$$= \left(\frac{\beta \sigma_v^2}{\beta^2 \sigma_v^2 + \sigma_u^2}\right)^2 (\beta^2 \sigma_v^+ \sigma_u^2) \tag{128}$$

$$=\frac{\beta^2 \sigma_v^4}{\beta^2 \sigma_v^2 + \sigma_u^2} \tag{129}$$

4 Chapter 5

```
[1]:
           Time Tradesize Traprice Tradedir
                                                Bid
                                                      Ask
    t
    1 09:06:04
                       20
                            66.7000
                                          -1 66.90 67.00
    2 09:06:11
                       25
                            66.6360
                                          -1
                                              66.65 66.70
    3 09:06:26
                            66.6000
                                          -1 66.60 66.65
                       18
    4 09:07:18
                      273
                            66.4163
                                          -1 66.50 66.55
    5 09:07:36
                       27
                            66.5500
                                           1 66.15 66.55
[2]: data['l_Traprice'] = data['Traprice'].shift()
    data['l_Tradedir'] = data['Tradedir'].shift()
    data['d_Traprice'] = data['Traprice'] - data['l_Traprice']
    import statsmodels.formula.api as sm
    reg = sm.ols("d_Traprice ~ Tradedir + l_Tradedir - 1", data).fit()
    reg.summary()
    /usr/local/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19:
    FutureWarning: pandas.util.testing is deprecated. Use the functions in the
    public API at pandas.testing instead.
      import pandas.util.testing as tm
    /usr/local/lib/python3.7/site-packages/statsmodels/compat/pandas.py:23:
    FutureWarning: The Panel class is removed from pandas. Accessing it from the
    top-level namespace will also be removed in the next version
     data_klasses = (pandas.Series, pandas.DataFrame, pandas.Panel)
[2]: <class 'statsmodels.iolib.summary.Summary'>
                                    OLS Regression Results
    ______
    ======
    Dep. Variable:
                              d_Traprice R-squared (uncentered):
    0.333
                                    OLS
                                          Adj. R-squared (uncentered):
    Model:
    0.330
    Method:
                           Least Squares F-statistic:
    128.7
                        Wed, 13 May 2020
                                         Prob (F-statistic):
    Date:
    4.61e-46
    Time:
                                10:06:35
                                         Log-Likelihood:
    587.57
    No. Observations:
                                    518
                                          AIC:
    -1171.
    Df Residuals:
                                    516
                                          BIC:
    -1163.
    Df Model:
                                      2
    Covariance Type:
                      nonrobust
```

	-0.0437 Errors ass (data['Bi = data['m = data[']] = data[0.004 122. 00. 15.	-11063 .000 .225 .901 ne cov	.355 Durbi Jarqu Prob(Cond. arianc	No. ======= e matrix of t	=======================================	-0.036
Omnibus: Prob(Omnibus): Skew: Kurtosis: ===================================	Crrors ass (data['Bi	122. 00. 15. ume that th d'] + data[id'] - data d_mid'].shi	063 000 225 901 ne cov	Durbi Jarqu Prob(Cond. ===== arianc	m-Watson: e-Bera (JB): JB): No. ===================================	=======================================	2.516 3596.694 0.00 1.64
Prob(Omnibus): Skew: Kurtosis: ===================================	(data['Bi = data['m = data[' = data['	0. -0. 15. ====== ume that th d'] + data[id'] - data d_mid'].shi	000 225 901 ne cov	Jarqu Prob(Cond. ===== arianc]) / 2 '].shi	e-Bera (JB): JB): No e matrix of t	he errors	3596.694 0.00 1.64
Skew: Kurtosis: ===================================	(data['Bi = data['m = data[' = data['	-0. 15. ====== ume that th d'] + data d'] - data d_mid'].shi	225 .901 	Prob(Cond.	JB): No e matrix of t	======================================	0.00 1.64
<pre>Kurtosis: ===================================</pre>	(data['Bi = data['m = data['] = data[15. ======= ume that th d'] + data[id'] - data d_mid'].shi	901 ne cov ['Ask' a['mid ift()	Cond. ====== arianc]) / 2 '].shi	No. ======= e matrix of t	he errors	1.64
Warnings: [1] Standard E specified. """ data['mid'] = data['d_mid'] data['ld_mid'] data['ld_mid']	(data['Bi = data['m = data['] = data[ume that th d'] + data[id'] - data d_mid'].shi	ecov	arianc]) / 2	e matrix of t	he errors	
[1] Standard E specified. """ data['mid'] = data['d_mid'] data['ld_mid'] data['l2d_mid']	(data['Bi = data['m = data['] = data[d'] + data[id'] - data d_mid'].shi	['Ask' a['mid ift()]) / 2 '].shi		he errors	is correctl
<pre>data['d_mid'] data['ld_mid'] data['l2d_mid']</pre>	= data['m = data['] = data[id'] - data d_mid'].shi	a['mid ift()	'].shi			
data['12_Trade data['13_Trade	edir'] = d	ata['Traded	dir'].) shift(
	- 1", Tradedir ~				id + l_Traded d_mid + l_Tra		
<pre>→13_Tradedir reg = [sm.ols(</pre>	_	f], data).f	fit()	for f	in range(2)]		
reg[0].summary	r()						
<class 'statsm<="" td=""><td>nodels.iol</td><td>ib.summary.</td><td>. Summa</td><td>ry'></td><td></td><td></td><td></td></class>	nodels.iol	ib.summary.	. Summa	ry'>			
		C		_	on Results =======		
=====							
Dep. Variable:		d_	_mid	R-squ	ared (uncente	red):	
0.129 Model:			OLS	iδΔ	R-squared (un	centered).	
0.119			OLD	Auj.	n-squareu (un	centeren).	
Method:		Least Squa	ares	F-sta	tistic:		
12.61		•					
Date:	We	d, 13 May 2	2020	Prob	(F-statistic)	:	

[3]

[4]

[4]

2.78e-13

Time:

Log-Likelihood:

10:06:36

759.40

No. Observations: 515 AIC:

-1507.

Df Residuals: 509 BIC:

-1481.

Df Model: 6
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
ld_mid 12d_mid 13d_mid 1_Tradedir 12_Tradedir	-0.1481 -0.0702 0.0805 0.0142 0.0075	0.044 0.044 0.041 0.003 0.003	-3.358 -1.592 1.954 5.057 2.437	0.001 0.112 0.051 0.000 0.015	-0.235 -0.157 -0.000 0.009 0.001	-0.061 0.016 0.162 0.020 0.013
13_Tradedir ====================================	0.0027 =======: :	0.003 		•	-0.003 	0.008

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[5]: reg[1].summary()

[5]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

======

Dep. Variable: Tradedir R-squared (uncentered):

0.261

Model: OLS Adj. R-squared (uncentered):

0.252

Method: Least Squares F-statistic:

29.97

Date: Wed, 13 May 2020 Prob (F-statistic):

8.24e-31

Time: 10:06:37 Log-Likelihood:

-652.84

No. Observations: 515 AIC:

1318.

Df Residuals: 509 BIC:

1343.

Df Model: 6
Covariance Type: nonrobust

=========	=======		=======			========
	coef	std err	t	P> t	[0.025	0.975]
ld_mid l2d_mid l3d_mid l_Tradedir l2_Tradedir l3_Tradedir	0.5068 0.7703 -0.1092 0.3588 0.0502 0.2029	0.684 0.684 0.640 0.044 0.048 0.046	0.741 1.126 -0.171 8.227 1.056 4.443	0.459 0.261 0.865 0.000 0.291 0.000	-0.838 -0.574 -1.366 0.273 -0.043 0.113	1.851 2.115 1.148 0.444 0.144 0.293
Omnibus: Prob(Omnibus): Skew: Kurtosis:		31.966 0.000 0.109 2.256	Jarque Prob(•		1.998 12.909 0.00157 26.2

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

4.1 Question 3

4.1.1 Part A

```
[6]: data = pd.read_excel("data_2/Ch5_ex3_data.xls", index_col='t')
fig = data['inventories'].plot() # Yes there is evidence of mean revesion
```

[7]: data.head()

[7]:	price	tradesize	signedtr	inventories	Delta_p	Delta_q	Delta_d	\
t								
1	1.4794	-1.00	-1	1.00	NaN	NaN	NaN	
2	1.4797	-2.00	-1	3.00	0.0003	-1.00	0.0	
3	1.4795	-28.00	-1	1.00	-0.0002	-26.00	0.0	
4	1.4794	-0.50	-1	-1.50	-0.0001	27.50	0.0	
5	1.4790	-0.75	-1	-0.75	-0.0004	-0.25	0.0	

Delta_i q

t

1 NaN NaN

2 2.00 -2.00

```
3 -2.00 -28.00
```

4.1.2 Part B

```
[8]: data['Delta_z'] = -data['q'].shift()
formula = "Delta_p ~ q + Delta_q + Delta_z + Delta_d - 1"
reg = sm.ols(formula, data).fit()
reg.summary()
```

[8]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

======

Dep. Variable: Delta_p R-squared (uncentered):

0.214

Model: OLS Adj. R-squared (uncentered):

0.212

Method: Least Squares F-statistic:

75.54

Date: Wed, 13 May 2020 Prob (F-statistic):

3.30e-43

Time: 10:06:41 Log-Likelihood:

5298.3

No. Observations: 833 AIC:

-1.059e+04

Df Residuals: 830 BIC:

-1.058e+04

Df Model: 3
Covariance Type: nonrobust

=======	coef	std err	t	P> t	[0.025	0.975]
q Delta_q Delta_z Delta_d	1.582e-05 3.901e-06 -1.192e-05 0.0001	2.14e-06 1.97e-06 2.13e-06 1.55e-05	7.400 1.983 -5.595 7.564	0.000 0.048 0.000 0.000	1.16e-05 3.98e-08 -1.61e-05 8.69e-05	2e-05 7.76e-06 -7.74e-06 0.000
Omnibus: Prob(Omni Skew: Kurtosis:	•	227.9 0.0 0.5 18.0	00 Jarque 17 Prob(J	•) :	2.163 7896.812 0.00 1.63e+16

^{4 -2.50 -0.50}

^{5 0.75 -0.75}

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.38e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

4.2 Question 5

```
[9]: data = pd.read_excel("data_2/Ch5_AGF_data.xls", header=1, index_col="t")
      data.head()
 [9]:
            Time
                  Tradesize Traprice Tradedir
                                                          Ask
                                                   Bid
      t.
      1 09:06:04
                              66.7000
                                             -1 66.90 67.00
                         20
      2 09:06:11
                         25
                              66.6360
                                             -1 66.65 66.70
      3 09:06:26
                         18
                              66.6000
                                             -1
                                                 66.60 66.65
      4 09:07:18
                         273
                                             -1
                              66.4163
                                                 66.50 66.55
                              66.5500
                                                 66.15 66.55
      5 09:07:36
                         27
[13]: data['delta_p'] = data['Traprice'] - data['Traprice'].shift()
      data['delta_q'] = data['Tradesize'] - data['Tradesize'].shift()
      data['delta_d'] = data['Tradedir'] - data['Tradedir'].shift()
      data.head()
[13]:
                                                          Ask delta_p delta_q \
            Time Tradesize Traprice Tradedir
                                                   Bid
      1 09:06:04
                         20
                              66.7000
                                                 66.90 67.00
                                                                   NaN
                                                                            NaN
      2 09:06:11
                         25
                              66.6360
                                                 66.65 66.70 -0.0640
                                                                            5.0
      3 09:06:26
                              66.6000
                                             -1 66.60 66.65 -0.0360
                                                                           -7.0
                         18
      4 09:07:18
                         273
                              66.4163
                                             -1 66.50 66.55 -0.1837
                                                                          255.0
      5 09:07:36
                         27
                              66.5500
                                              1 66.15 66.55
                                                               0.1337
                                                                         -246.0
         detla_d delta_d
      t
      1
            NaN
                     NaN
      2
            0.0
                     0.0
      3
            0.0
                     0.0
      4
            0.0
                     0.0
      5
            2.0
                     2.0
[14]: import statsmodels.formula.api as sm
      formula = "delta_p ~ Tradedir + Tradesize + delta_d + delta_q"
      reg = sm.ols(formula, data).fit()
      reg.summary()
```

[14]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable):	d	elta_p	R-sq	uared:		0.337	
Model:			OLS	Adj.	Adj. R-squared:			
Method:		Least S	quares	F-sta	atistic:		65.28	
Date:		Wed, 13 Mag	y 2020	Prob	(F-statistic)	:	1.28e-44	
Time:		10	:18:30	Log-l	Likelihood:		589.34	
No. Observati	ons:		518	AIC:			-1169.	
Df Residuals:			513	BIC:			-1147.	
Df Model:			4					
Covariance Ty	rpe:	non	robust					
========	coe	f std er	====== r	t	P> t	[0.025	0.975]	
Intercent	0 0049	2 0 00	 5	. 020	0.300	0.014	0.004	

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0048	0.005	-1.039	0.300	-0.014	0.004
Tradedir	0.0155	0.004	3.848	0.000	0.008	0.023
Tradesize	9.583e-06	5.36e-06	1.789	0.074	-9.39e-07	2.01e-05
delta_d	0.0432	0.004	11.205	0.000	0.036	0.051
delta_q	-6.492e-06	4.25e-06	-1.528 	0.127	-1.48e-05	1.86e-06
Omnibus:		 121.	720 Durbi	n-Watson:		2.534
Prob(Omnib	us):	0.	000 Jarqu	e-Bera (JB)):	3725.170
Skew:		-0.	185 Prob(JB):		0.00
Kurtosis:		16.	132 Cond.	No.		1.79e+03
========	========	========		========		========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.79e+03. This might indicate that there are strong multicollinearity or other numerical problems.

4.2.1 Part A

For a very small transaction the spread is equal to the quoted spread.

4.2.2 Part B

```
[16]: hypothesis_0 = "(Tradedir = 0), (delta_q = 0)"
reg.f_test(hypothesis_0)
```

We can reject the null hypothesis that both d_t and Δq_t are 0

4.2.3 Part C

```
[18]: hypothesis_1 = "(Tradedir = 0), (delta_d = 0)"
reg.f_test(hypothesis_1)
```

```
[19]: hypothesis_2 = "(Tradesize = 0), (delta_q = 0)"
reg.f_test(hypothesis_2)
```

The null hypothesis that trade size effects are not significant cannot be rejected.

4.2.4 Part D

In chapter 2, we explored the concept of price movement being a function of trade volumen, however the evidence here does not support trade size effects being statistically significant effecters of price change.

4.3 Chapter 8

4.3.1 Question 1

In this new situation the four order patterns are:

$$p(b,s) = \frac{1-\pi}{4} \tag{130}$$

$$p(s,b) = \frac{1-\pi}{4} {(131)}$$

$$p(b,b) = \frac{\pi}{2} + \frac{1-\pi}{4} \tag{132}$$

$$=\frac{1+\pi}{4}\tag{133}$$

$$p(s,s) = \frac{1+\pi}{4} \tag{134}$$

$$E[v|b,s] = \mu \tag{135}$$

$$E[v|s,b] = \mu \tag{136}$$

$$E[v|b,b] = \frac{\frac{\pi}{2}}{\frac{1+\pi}{4}}v_H + \frac{\frac{1-\pi}{4}}{\frac{1+\pi}{4}}\mu$$
 (137)

$$=\frac{2\pi}{1+\pi}v_H + \frac{1-\pi}{1+\pi}\mu\tag{138}$$

$$E[v|s,s] = \frac{2\pi}{1+\pi}v_L + \frac{1-\pi}{1+\pi}\mu\tag{139}$$

(140)

This does not effect the bid and ask prices of dealers in opaque markets, which are still:

$$a^{O} = \mu + \pi(v_H - \mu)$$

$$b^{O} = \mu - \pi(\mu - v_I)$$

However in in the case of two buy orders the ask will be set to that shown in equation (9) and in the case of two sell orders the bid will be set to that in equation (10).

4.3.2 **Question 2**

$$E[(p_1^T - v)^2] = (1 - \pi^2)(\frac{v_H - v_L}{2})^2$$

The second period transparant devation depends on whether or not an informed trader is present in the market.

$$\begin{split} E[(p_2^T - v)^2] &= \pi 0 + (1 - \pi) (\frac{v_H - v_L}{2})^2 \\ \frac{E[(p_1^T - v)^2]}{2} &+ \frac{E[(p_2^T - v)^2]}{2} = \frac{(1 - \pi^2) (\frac{v_H - v_L}{2})^2}{2} + \frac{(1 - \pi) (\frac{v_H - v_L}{2})^2}{2} \\ &= \frac{(\frac{v_H - v_L}{2})^2}{2} ((1 - \pi^2) + (1 - \pi)) \end{split}$$

For the opaque regime, Eqn. (8.10) gives:

$$s_1^O = (2\pi - 1)(v_H - v_L)$$

$$E[(p_1^O - v)^2)] = \left(\frac{s_1^O}{2}\right)^2$$

$$= (2\pi - 1)^2 \left(\frac{v_H - v_L}{2}\right)^2$$

Using the fact that expected profits are 0 ($TC^O = \pi(v_H - v_L)$), we can calculate the spread in the second period.

$$\frac{1}{2}s_{1}^{O} + \frac{1}{2}s_{2}^{O} = TC^{O}$$

$$s_{1}^{O} + s_{2}^{O} = 2TC^{O}$$

$$(2\pi - 1)(v_{H} - v_{L}) + s_{2}^{O} = 2\pi(v_{H} - v_{L})$$

$$s_{2}^{O} = 2\pi(v_{H} - v_{L}) - (2\pi - 1)(v_{H} - v_{L})$$

$$= (2\pi - 2\pi + 1)(v_{H} - v_{L})$$

$$= v_{H} - v_{L}$$

$$E[(p_{2}^{O} - v)^{2}] = \left(\frac{s_{2}^{O}}{2}\right)^{2}$$

$$= \left(\frac{v_{H} - v_{L}}{2}\right)^{2}$$

$$\frac{E[(p_{1}^{O} - v)^{2}]}{2} + \frac{E[(p_{2}^{O} - v)^{2}]}{2} = \frac{(2\pi - 1)^{2}(\frac{v_{H} - v_{L}}{2})^{2}}{2} + \frac{(\frac{v_{H} - v_{L}}{2})^{2}}{2}$$

$$= \frac{(2\pi - 1)^{2} + 1}{2}\left(\frac{v_{H} - v_{L}}{2}\right)^{2}$$

5 Chapter 9

5.1 Question 1

5.1.1 Part A

$$1+R=\frac{\mu_{t+1}}{\mu_t}+d\mu_t$$

Part B

$$1 + R = \frac{\mu_{t+1}(1 + \frac{s}{2}) + d\mu_t}{\mu_t(1 - \frac{s}{2})}$$
$$= (1 + r)\frac{1 + \frac{s}{2}}{1 - \frac{s}{2}} - \frac{d\frac{s}{2}}{1 - \frac{s}{2}}$$

Part C

$$R - r = (1 + R) - (1 + r)$$

$$= (1 + r)\frac{1 + \frac{s}{2}}{1 - \frac{s}{2}} - \frac{d\frac{s}{2}}{1 - \frac{s}{2}} - (1 + r)$$

$$= (1 + r)\left(\frac{1 + \frac{s}{2}}{1 - \frac{s}{2}} - \frac{d\frac{s}{2}}{1 - \frac{s}{2}} - 1\right)$$

$$= (1 + r)\left(\frac{1 + \frac{s}{2}}{1 - \frac{s}{2}} - \frac{d\frac{s}{2}}{1 - \frac{s}{2}} - \frac{1 - \frac{s}{2}}{1 - \frac{s}{2}}\right)$$

$$= (1 + r)\left(\frac{s - d\frac{s}{2}}{1 - \frac{s}{2}}\right)$$

$$= s\frac{(1 + r)(1 - \frac{d}{2})}{1 - \frac{s}{2}}$$

5.2 Question 2

5.2.1 Part A

$$1 + r = \frac{\mu_{t+1}(1 - \frac{s}{2}) + D}{\mu_{t}(1 + \frac{s}{2})}$$

$$= \frac{\mu_{t}(1 - \frac{s}{2}) + \bar{D}}{\mu_{t}(1 + \frac{s}{2})}$$
Because expected dividends and irr are constant
$$\mu_{t}(1 + \frac{s}{2})(1 + r) = \mu_{t}(1 - \frac{s}{2}) + \bar{D}$$

$$\bar{D} = \mu_{t}(1 + \frac{s}{2})(1 + r) - \mu_{t}(1 - \frac{s}{2})$$

$$= \mu_{t}\left((1 + \frac{s}{2})(1 + r) - (1 - \frac{s}{2})\right)$$

$$= \mu_{t}\left(1 - \frac{s}{2}\right)\left((1 + r)\frac{1 + \frac{s}{2}}{1 - \frac{s}{2}} - 1\right)$$

$$\mu_{t} = \frac{\bar{D}}{(1 - \frac{s}{2})R}$$

Part B

$$E[r_t - r] = E[r_t] - r$$
$$= 0$$

Part C The new expected price is

$$\mu_t^* = rac{ar{D}}{\left(1 - rac{s^*}{2}
ight) \left((1 + r)rac{1 + rac{s^*}{2}}{1 - rac{s^*}{2}} - 1
ight)}$$

$$1 + r_{\tau - 1} = \frac{\mu(1 - \frac{s^*}{2}) + \bar{D}}{\mu_t(1 + \frac{s}{2})}$$

$$E[r_{\tau - 1} - r] = \frac{\mu(1 - \frac{s^*}{2}) + \bar{D}}{\mu_t(1 + \frac{s}{2})} - \frac{\mu(1 - \frac{s}{2}) + \bar{D}}{\mu_t(1 + \frac{s}{2})}$$

$$= \frac{\mu(1 - \frac{s^*}{2}) + \bar{D} - \mu(1 - \frac{s}{2}) - \bar{D}}{\mu_t(1 + \frac{s}{2})}$$

$$= \frac{\mu^{\frac{s}{2}} - \mu^{\frac{s^*}{2}}}{\mu_t(1 + \frac{s}{2})}$$

$$= \frac{s - s^*}{2 + s}$$

5.2.2 Part D

Returns of a security are not determined by it's liquidity so there should be no difference. ## Question 3

$$E[R_j] = \frac{E[s_j]}{h} + \lambda_M \left(\beta_1 - \frac{\beta_3 + \beta_4 - \frac{\beta_2}{h}}{h} \right)$$

5.3 Question 4

Both supply and demand by arbitrageurs are increased by a factor of *K*

$$y(P_{A1}) + K \int_{0}^{\hat{\varphi}} \frac{i}{K} di = K(1 - \hat{\varphi})$$

$$1 + \delta(P_{A1} - V) + K \int_{0}^{\hat{\varphi}} \frac{i}{K} di = K(1 - \hat{\varphi})$$

$$1 + \delta(P_{A1} - V) + \frac{\hat{\varphi}^{2}}{2} = K(1 - \hat{\varphi})$$

$$\delta V - \delta P_{A1} = 1 + \frac{\hat{\varphi}^{2}}{2} - K(1 - \hat{\varphi})$$

$$V - P_{A1} = \frac{1}{\delta} + \frac{1}{\delta} \frac{\hat{\varphi}^{2}}{2} - \frac{K}{\delta} (1 - \hat{\varphi})$$

$$\frac{\partial (V - P_{A1})}{\partial K} = -\frac{1 - \hat{\varphi}}{\delta}$$

Thus as the mass of arbitrageurs gets larger, mispricing at time 1 is reduced.

5.4 Question 5

5.4.1 Part A

The primary requirements of the model are:

$$\hat{\varphi} = rac{M_0 - \kappa M_1}{\kappa M_1}$$
 $y(P_{A1}) + \int_0^{\hat{\varphi}\varphi(i)di} = (1 - \varphi)$
 $y(P_{A0}) = \varphi$

These identities give the result

$$M_1 = \frac{1}{\delta}(\hat{\varphi} - \frac{\hat{\varphi}^2}{2})$$

At time 0, market clearing requires $y(P_{A0}) = \hat{\varphi}$. Substituting into the given equation:

$$\hat{arphi} = 1 - \delta_0 (V - P_{A0})$$

$$= 1 - \delta_0 M_0$$

$$M_0 = \frac{1 - \hat{arphi}}{\delta_0}$$

5.4.2 Part B

$$\begin{split} M_0 &= \frac{1 - \hat{\varphi}}{0.4} \\ M_1 &= \frac{\hat{\varphi} - \frac{\hat{\varphi}^2}{2}}{0.1} \\ \hat{\varphi} &= \frac{M_0 - 0.1 M_1}{0.1 M_1} \\ &= \frac{\frac{1 - \hat{\varphi}}{0.4} - \hat{\varphi} + \frac{\hat{\varphi}^2}{2}}{\hat{\varphi} - \frac{\hat{\varphi}^2}{2}} \\ &= \frac{2.5 - 3.5 \hat{\varphi} + \frac{\hat{\varphi}^2}{2}}{\hat{\varphi} - \frac{\hat{\varphi}^2}{2}} \\ &= \frac{5 - 7 \hat{\varphi} + \hat{\varphi}^2}{2 \hat{\varphi} - \hat{\varphi}^2} \\ 2 \hat{\varphi}^2 - \hat{\varphi}^3 &= 5 - 7 \hat{\varphi} + \hat{\varphi}^2 \\ 0 &= \hat{\varphi}^3 - \hat{\varphi}^2 - 7 \hat{\varphi} + 5 \end{split}$$

```
[21]: import numpy as np
  coeff = [1, -1, -7, 5]
  phi = np.roots(coeff)[-1]
  MO = (1 - phi) / 0.4
  M1 = (phi - (phi ** 2) / 2) / 0.1
  print(phi, MO, M1)
```

 $0.693225133872129 \ 0.7669371653196774 \ 4.529445907561134$

Repeating for the case kappa = 0.3

$$\hat{\varphi} = \frac{M_0 - 0.3M_1}{0.3M_1}$$

$$= \frac{\frac{1 - \hat{\varphi}}{0.4} - 3(\hat{\varphi} - \frac{\hat{\varphi}^2}{2})}{3(\hat{\varphi} - \frac{\hat{\varphi}^2}{2})}$$

$$= \frac{2.5 - 5.5\hat{\varphi} + 3\frac{\hat{\varphi}^2}{2}}{3\hat{\varphi} - 3\frac{\hat{\varphi}^2}{2}}$$

$$= \frac{5 - 11\hat{\varphi} + 3\hat{\varphi}^2}{6\hat{\varphi} - 3\hat{\varphi}^2}$$

$$6\hat{\varphi}^2 - 3\hat{\varphi}^3 = 5 - 11\hat{\varphi} + 3\hat{\varphi}^2$$

$$0 = 3\hat{\varphi}^3 - 3\hat{\varphi}^2 - 11\hat{\varphi} + 5$$

```
[25]: coeff = [3, -3, -11, 5]
  phi = np.roots(coeff)[-1]
  M0 = (1 - phi) / 0.4
  M1 = (phi - (phi ** 2) / 2) / 0.1
  print(phi, M0, M1)
```

0.4261256711287521 1.4346858221781196 3.353341273312874

Increasing κ increases initial mispricing however reduces final mispricing. This makes sense as an increased κ will encourage abitrageurs to wait until period 1 as they anticipate mispricings to increase.

5.5 Question 6

5.5.1 Part A

If $1-2\psi<0$ then the spread is increasing in ϕ , if it is > 0 then the spread in decreasing in ϕ , if it is 0 then the spread is not affected by changes in ϕ . ### Part B An increase in ϕ implies two opposing effects, that a dealer needs to post lower ask prices to entice an investor into buying the stock, and that the dealer is able to increase their ask price as they expected payoff of the asset is higher. The first effect dominates when $\psi<\frac{1}{2}$, the latter dominates when $\psi>\frac{1}{2}$. They are equal when $\psi=\frac{1}{2}$

[]:[