

Our Customers (Dec 2024)

World leading energy companies & research organisations

Nanobubble Enhanced Oil Recovery (EOR)

Nanobubbles (50–200 nm) are stable Gas-Filled Particles in Water

- They enhance oil recovery through:
 - Wettability alteration, interfacial tension (IFT) reduction, penetration into tight pores, capillary pressure modulation
- Why use them?

They're stable, small enough for nanopores, and can carry active gases.

Potential for "Unconventionals"!
 InspIOR & chip design to support testing up to 10.000 psi and 130 °C
 Nanobubbles are prepared using a proprietary process available only at UTA facilities.

InspIOR® - Turnkey Microfluidic Technology Platform

Developed for Oil & gas, carbon management, hydrogen, geothermal

- Fast & accurate fluid testing, chemicals screening and flow in porous media analysis
- Specifically designed for highpressure high-temperature microfluidics applications
- Fully automated system
- Based on 10+ years of microfluidic research & development

What is Microfluidics?

Miniaturized fluid control for faster, smarter lab workflows

 Microfluidics is the science of manipulating tiny amounts of fluids—often nanoliters—through channels thinner than a human hair.

It enables fast, precise, and automated experiments on a compact chip.

Nanobubble EOR - Some Experimental Studies (Only 1 on MF?)

NO.	REFERENCE & YEAR	INSTITUTION	SYSTEM	METHOD	P RANGE	T RANGE	HIGHLIGHTS
1	Shoukry et al. (2025)	University of Wyoming	CO₂ Nanobubbles	Micromodel (glass, WW/OW)	~2–6 bar	25-40 °C	Direct observation of NB transport in high- pressure chips
2	Cai et al. (2024)	China Univ. of Petroleum (East China)	CO₂ NB + Pickering	Coreflood (ultra-tight cores)	Up to 10 bar	25 °C	66% recovery; pore blocking, wettability shift
3	Elnaggar et al. (2025)	University of Wyoming	N ₂ Nanobubbles	Core imbibition (Berea/carbonate)	1–15 bar	25–60 °C	Enhanced spontaneous imbibition due to NB stability
4	Li et al. (2024)	Southwest Petroleum Univ.	CO₂ Nanobubbles	Coreflood (low-perm sandstone)	~8 bar	30 °C	Pressure buildup indicates NB mobility control
5	Wang et al. (2023)	China Univ. of Geosciences	CO₂ Nanobubbles	Sandpack flooding	~10 bar	25–50 °C	Nanobubble-assisted sweep efficiency improved by 20–30%
6	Zhou et al. (2023)	Univ. of Sci. & Tech. Beijing	CO₂ Nanobubbles	Coreflood (tight carbonate)	~5–12 bar	25–60 °C	NB reduced IFT and improved injectivity
7	Zhang et al. (2025)	Xi'an Shiyou Univ. / CUP Beijing	CO₂ Nanobubbles	Coreflood (Berea sandstone)	5–15 bar	30–60 °C	Tracked NB diffusion vs CO₂ gas; improved recovery
8	Ahmed et al. (2022)	King Fahd Univ. of Petroleum	CO₂ Nanobubbles	Micromodel (glass, low- perm net)	3–5 bar	Room temp	Bubble retention and pathway alteration
9	Wen et al. (2024)	Daqing Oilfield Lab	CO₂ Nanobubbles	Coreflood (field core, sandstone)	10 bar	40–60 °C	NB performance benchmarked vs gas/surfactant
10	Chen et al. (2023)	China Univ. of Mining & Tech	N ₂ Nanobubbles	Coreflood (tight sandstone)	5–12 bar	25–50°C	High stability N ₂ NB $ ightarrow$ 10–15% uplift in recovery

Design 1: Multi-Zone Injectivity Screening

Purpose: Fast & Automated Detection of Pore Entry Threshold of Nanobubbles

- Chip Design:
 - Different zones with decreasing channel size (e.g. 1 μm, 0.5 μm, 0.2 μm, 0.1μm)
 - Each zone has an outlet and microvalve
 - Inlet pressure measured at constant flow rate

- What we learn:
 - Detect mobility cutoff pore size
 - Identify collapse, retention, or plugging
 - Compare against brine baseline
 - Build injectivity map
 - Vary p,T, salinity, NB concentration, NB size, flow rate (shear rate)

 FXL recommends keeping channel width > 5 µm and varying edge depth for better visual access

Design 1: Multi-Zone Injectivity Screening

Micromodel (K1>k2>k3>k4)

Design 1: Multi-Zone Injectivity Screening (Draft)

Channel Width

0.30 µm

0.60 µm

0.90 µm

1.00 µm

2.00 µm

3.00 µm

FXL recommends keeping channel width $> 5 \mu m$ and varying edge depth for better visual access

Design 1: Multi-Zone Injectivity Screening (Draft)

FXL recommends keeping channel width > 5 μ m and varying edge depth for better visual access

Design 1: Multi-Zone Injectivity Screening

Interpretation Matrix

ΔP Observation	Possible Interpretation	
Low ΔP	Nanobubbles freely enter — no blockage or collapse	
Moderate ΔP increase	Partial retention, bubble-induced flow resistance	
Sharp ΔP rise at specific zone	Pore entry cutoff reached → plugging or size exclusion	
Rising ΔP over time (in same zone)	Progressive accumulation → bubble jamming or adhesion	
Sudden ΔP drop	Bubble collapse or coalescence relieved obstruction	
High ΔP from Zone 1 onward	Global plugging — bubbles too large or unstable	

NB too small to be visual in microscope.

Design 2: "Knudsen-Analogue" Diffusion of Nanobubbles

Purpose: Fast & Automated Detection of NB Diffusion

- Bottom channel: Contains nanobubbleladen brine (source)
- Top channel: Contains plain brine (sink)
- Middle: Nanochannels

- FXL recommends keeping channel width
 5 µm and varying edge depth for better visual access
- NB detection via UV-VIS to be tested and calibrated at UTA premises!

- What we learn:
 - Identify the smallest pore size nanobubbles can penetrate.
 - Calculate effective diffusivity from breakthrough time.
 - Detect collapse or retention in nanochannels.
 - Assess injectability in tight formations

Nanobubble – Detection Methods (inline, low volume)

Method	Principle	Detects	Notes
DLS (Dynamic Light Scattering)	Measures size distribution of particles	Size + presence	Standard for nanobubbles; microfluidic version currently developed by FXL; R&D state
UV-Vis Spectroscopy (Transmission)	Measures total extinction (scattering +abs)	Presence (quantitative)	Inline-compatible; expected range 450–600 nm; available at FXL up to ~300 bar; upgrade to 700 bar with nanobubbles to be tested at UTA
Conductivity	Non-conductive phase displaces ions	Presence (quantitative)	Δ may be small; affected by ionic strength; needs to be tested; available at FXL; cheap
Conv. Microscope	Visual	Size + presence	Challenging to implement; need to test at UTA

Other methods not considered due to larger sample volumes required...

Design 2: "Knudsen-Analogue" Diffusion of Nanobubbles

Experimental Setup Sketch – Challenging due to Analytics and dp Requirements

Micromodel e.g. 200 nm channels

S: Sensor (UV-Vis or DLS) to be tested and calibrated at UTA

Design 2: "Knudsen-Analogue" Diffusion of Nanobubbles

Interpretation Matrix

Observation	Possible Interpretation	
Bubbles appear quickly	Free diffusion through pores	
Bubbles appear slowly	Hindered diffusion	
No bubbles appear	Size exclusion or collapse	
Signal reaches low plateau	Partial transport, some retention	

Visualize and quantify how NB displaces oil in a nanostructure micromodel.

- Inlet / outlet port:
 - Inject / produce oil / brine / NB
- Nanopores:
 - Based on MICP data to resemble real geometrical features of rock

- What we learn:
 - Oil recovery efficiency
 - Displacement mechanism
 - Sweep pattern and front behavior
 - "Residual" oil saturation
 - Effect of pore geometry

FXL recommends keeping channel width
 5 µm and varying edge depth for better visual access

Experimental Setup Sketch

Micromodel with MICP data-based structure Homogeneous, vertically or horizontally layered

FXL recommends keeping channel width > 5 μ m and varying edge depth for better visual access

FXL recommends keeping channel width > 5 μ m and varying edge depth for better visual access. Continuous path from left to right / (start with conventional chips e.g. sandstone) May be second step after understanding injectivity. Other data than MICP available? MICP/TS/NMR/FIB-SEM

Interpretation Matrix

Observation	Possible Interpretation		
High oil recovery compared to brine	Nanobubbles enhance recovery via wettability or IFT reduction		
Uniform displacement	Efficient sweep; improved flow		
Fingering or bypass	Mobility mismatch or channelling; nanobubbles less effective		
Early breakthrough with low recovery	Poor displacement efficiency; limited bubble function		
Oil detachment from surfaces	Wettability alteration likely caused by nanobubbles		
Formation of oil emulsions in effluent	Interfacial disturbance or emulsification during flow		
Oil remains trapped in corners or dead ends	Insufficient capillary disruption; trapped residual oil		

Way Ahead?

Next Steps and Action Point

- Feedback draft chip designs anything we missed or should improve?
- What can FXL do to further support process?
- Timeline experimentation at UTA

Adaptive Microfluidics: Systems that learn, optimize & transform labs

fluidXlab GmbH

A Member of the HOT Energy Group

Am Stollen 19B
38640 Goslar, Germany
+49 151 424 407 39
info@fluidxlab.com
www.fluidxlab.com

