Week 8 - Class Worksheet

Scan: Outliers

Dr. Anil Dolgun

Last updated: 18 June, 2020

Required Packages

The following packages and the function will be required or may come in handy.

```
library(readr)
library(dplyr)
library(outliers)
library(MVN)

cap <- function(x){
    quantiles <- quantile( x, c(.05, 0.25, 0.75, .95 ) , na.rm = T)
    x[ x < quantiles[2] - 1.5*IQR(x, na.rm = T) ] <- quantiles[1]
    x[ x > quantiles[3] + 1.5*IQR(x, na.rm = T) ] <- quantiles[4]
    x
}</pre>
```

Exercises

Wilt Data

The following exercises 1-4 will be based on wilt data set which is taken from

http://archive.ics.uci.edu/ml/datasets/wilt (http://archive.ics.uci.edu/ml/datasets/wilt) containing 4839 observations and 6 variables. The data set was split by training.csv (../data/training.csv) and testing.csv (../data/testing.csv) data sets, for the purpose of this exercise training and testing sets will be joined together. It is expected to do checks on the type of the data and using the suitable transformations if necessary.

class: Diseased trees or all other land cover

Mean_Green: Mean green (G) value

Mean_Red: Mean red (R) value

Mean_NIR: Mean near infrared (NIR) value

GLCM_pan: Mean gray level co-occurrence matrix (GLCM) texture index

SD_pan: Standard deviation

Here is a quick look of the wilt data:

```
class GLCM_pan Mean_Green Mean_Red Mean_NIR SD_pan w 120.3628 205.5000 119.39535 416.581420.67632
```

classGLCM_panMean_GreenMean_RedMean_NIR SD_pan

W	124.7396	202.8000	115.33333	354.333316.70715
W	134.6920	199.2857	116.85714	477.857122.49671
W	127.9463	178.3684	92.36842	278.473714.97745
W	135.4315	197.0000	112.69048	532.952417.60419
W	118.3480	226.1500	138.85000	608.900029.07280

- Join the training.csv (../data/training.csv) and testing.csv (../data/testing.csv) data sets, and rename the combined data frame as wilt.
- Identify the univariate outliers of Mean_Green, Mean_Red, Mean_NIR and GLCM_pan variables from wilt data set using Tukey's method of outlier detection.
- Use z-score approach via scores() function to extract outliers of Mean_Green,

 Mean_Red, Mean_NIR and GLCM_pan variables. Find the location of the outliers. How
 many outliers are there per variable? Use summary() function to find out about the
 variables.
- Replace the outliers of Mean_Green, Mean_Red, Mean_NIR and GLCM_pan variables using capping method. You can use sapply() function to apply capping across the variables or you can do it individually. Use summary() function to see min and max values of the variables.

Ozone Data

The following exercises 5-8 will be based on ozone.csv (../data/ozone.csv) data set which is taken from http://rstatistics.net/wp-content/uploads/2015/09/ozone.csv (http://rstatistics.net/wp-content/uploads/2015/09/ozone.csv) containing 366 observations and 13 variables. Variables are self explanatory however it is expected to do checks on the type of the data and using the suitable transformations if necessary.

Here is a quick look of the ozone data:

Month Day_o	of_monthDay_of_	_weekozone_	_readingpressure	_heightWind_	_speedHur	midityTem	perature_Sandburg
1	1	4	3.01	5480	8	20	NA
1	2	5	3.20	5660	6	NA	38

1	2	5	3.20	5660	6	NA	38
1	3	6	2.70	5710	4	28	40
1	4	7	5.18	5700	3	37	45
1	5	1	5.34	5760	3	51	54
1	6	2	5.77	5720	4	69	35

Temperature_ElMonteInversion_base_heightPressure_gradientInversion_temperatureVisibility

NA	5000	-15	30.56	200
NA	NA	-14	NA	300
NA	2693	-25	47.66	250
NA	590	-24	55.04	100
45.32	1450	25	57.02	60
49.64	1568	15	53.78	60

- Investigate ozone_reading variable across Month and Wind_speed using univariate and bivariate box plots and scatter plots. Before taking the next step, subset the ozone data set with these variables and remove NA values, make appropriate adjustments.
- Use mvn() function to remove the outliers, use 2 different ways while doing this. First way will be manually removing the outliers when you find them. Second way will be simply using an argument inside the mvn() function.
- Data Challenge: Create a subset of ozone with ozone_reading and Temperature_Sandburg variable. Use one of the cut(), case_when() or ifelse() functions in mutate() to create a new temperature variable. You can get creative and do it in a different way. The new temperature variable is going to be categorical and grouped with 10 degrees difference. Investigate the outliers using Tukey's method of outlier detection. The subset should look like this:

ozone_readingTemperature_Sandburgtemp

3.01	NANA
3.20	38(30,40]
2.70	40(30,40]
5.18	45(40,50]
5.34	54(50,60]
5.77	35(30.401

Bonus Exercise: Use capping method to replace outliers in the ozone data set that you subsetted in question 5. Compare the methods you used in question 6. Which one would you pick and why? Share your own approach with your code on the discussion board. Best solution(s) will be immortalised as example solutions in this worksheet.

Finished?

8

If you have finished the above tasks, work through the weekly list of tasks posted on the Canvas announcement page.

Return to Course Website (../index.html)