ΦΥΛΛΑΔΙΟ 1 ΣΧΟΛΗ ΣΗΜΜΥ

Γραμμική Άλγεβρα - 1° Εξάμηνο 2017-18 Διανυσματικά γινόμενα - Ορίζουσες

- **1.** Να αποδείξετε ότι για τα διανύσματα $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \Delta^3$ ισχύουν:
 - (i) $\mathbf{a} \neq \mathbf{0}, \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$ kal $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \Rightarrow \mathbf{b} = \mathbf{c}$
 - (ii) $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0} \Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$. Ισχύει η αντίστροφη συνεπαγωγή;
 - (iii) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c}) = (\mathbf{a}, \mathbf{b}, \mathbf{c})\mathbf{a}$
 - (iv) $(\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}) = (\mathbf{a}, \mathbf{b}, \mathbf{c})^2$
 - (v) a,b,c είναι μη συνεπίπεδα $\Leftrightarrow a \times b, b \times c, c \times a$ είναι μη συνεπίπεδα
- **2.** Δίνονται τα διανύσματα $\mathbf{a} = \mathbf{i} 2\mathbf{j} + 3\lambda\mathbf{k}$, $\mathbf{b} = \mathbf{j} + \lambda\mathbf{k}$, $\mathbf{c} = \lambda\mathbf{j} + \mathbf{k}$, $\lambda \in \mathbb{R}$. Να προσδιορίσετε τις τιμές του λ για τις οποίες τα παραπάνω διανύσματα είναι συνεπίπεδα.
- 3. Να αποδείξετε ότι για οποιαδήποτε διανύσματα a,b,c,d ισχύει η ισότητα:
 - $(\alpha) (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).$
 - $(\beta) (\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = (\mathbf{a}, \mathbf{c}, \mathbf{d}) \mathbf{b} (\mathbf{b}, \mathbf{c}, \mathbf{d}) \mathbf{a} = (\mathbf{a}, \mathbf{b}, \mathbf{d}) \mathbf{c} (\mathbf{a}, \mathbf{b}, \mathbf{c}) \mathbf{d}.$
- **4.** Τα σημεία A, B, Γ και Δ έχουν διανύσματα θέσης ως προς το καρτεσιανό σύστημα αναφοράς Οχχζ, **a,b,c** και **d**, αντίστοιχα. Να αποδείξετε ότι:

A, B, Γ, Δ συνεπίπεδα
$$\Leftrightarrow$$
 $(\mathbf{a}, \mathbf{b}, \mathbf{c}) - (\mathbf{b}, \mathbf{c}, \mathbf{d}) + (\mathbf{c}, \mathbf{d}, \mathbf{a}) - (\mathbf{d}, \mathbf{a}, \mathbf{b}) = 0$.

5. Τα σημεία A, B και Γ έχουν διανύσματα θέσης ως προς το καρτεσιανό σύστημα αναφοράς Οχυζ, **a,b,** και **c**, αντίστοιχα.

Να αποδείξετε ότι το εμβαδόν του τριγώνου ΑΒΓ είναι:

$$E(AB\Gamma) = \frac{1}{2} |(\mathbf{a} \times \mathbf{b}) + (\mathbf{b} \times \mathbf{c}) + (\mathbf{c} \times \mathbf{a})|.$$

6. Αν **a,b** είναι δύο μη συγγραμμικά μοναδιαία διανύσματα, να προσδιορίσετε το διάνυσμα **u** που ικανοποιεί την εξίσωση

$$(\mathbf{a} \cdot \mathbf{u})\mathbf{b} + 4\mathbf{a} = 2\mathbf{u}$$
.

7. Να αποδείξετε ότι η εξίσωση $\mathbf{x} + \mathbf{x} \times \mathbf{a} = \mathbf{b}$, όπου \mathbf{a}, \mathbf{b} είναι γνωστά διανύσματα, έχει μοναδική λύση ως προς \mathbf{x} , η οποία και να βρεθεί.

- 8. Αν το διάνυσμα \mathbf{w} ικανοποιεί την εξίσωση $\mathbf{a} \times (\mathbf{w} \times \mathbf{a}) + \mathbf{w} = \mathbf{b}$, όπου a,b είναι γνωστά διανύσματα, τότε:
 - Nα αποδείξετε ότι: $\mathbf{a} \cdot \mathbf{w} = \mathbf{a} \cdot \mathbf{b}$ και $\mathbf{w} \times \mathbf{a} = \left(\frac{1}{1 + |\mathbf{a}|^2}\right) (\mathbf{b} \times \mathbf{a})$. (i)
 - (ii) Να προσδιορίσετε τη λύση της εξίσωσης.

9. (Βασική άσκηση)

Θεωρούμε τρίγωνο ΑΒΓ με βαρύκεντρο (σημείο τομής διαμέσων) το σημείο Θ . Αν Δ είναι το μέσο της πλευράς ΒΓ και Οχυζ είναι Καρτεσιανό σύστημα αναφοράς, να αποδείξετε ότι:

- (α) **OB** + **O** Γ = 2 · **O** Δ
- (β) OA + OB + OΓ = $3 \cdot OO$
- (γ) $\Theta A + \Theta B + \Theta \Gamma = 0 \Leftrightarrow \Theta$ βαρύκεντρο του τριγώνου $AB\Gamma$

Υπολογισμός οριζουσών (Με χρήση ιδιοτήτων των οριζουσών)

- **10.** Να υπολογιστεί η ορίζουσα του πίνακα $A = \begin{bmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1-a & 1 & 1 \\ 1 & 1 & 1+b & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$.
- **11.** Να λύσετε την εξίσωση: $\begin{vmatrix} x & a & b & c \\ a & x & b & c \\ a & b & x & c \end{vmatrix} = 0.$
- **12.** Να υπολογίσετε την ορίζουσα του $n \times n$ πίνακα:

(Απάντηση:
$$|A| = (a_1 + a_2 + ... + a_n) x^{n-1}$$
)

13. Να υπολογίσετε την ορίζουσα του $n \times n$ πίνακα $\mathbf{A} = (\alpha_{ij})$, αν είναι

Παράδοση φυλλαδίου 1: Μέχρι 6 Νοεμβρίου 2017