

of the accredited test laboratory

TÜV Nr.:M/EMV-08/154

about

the following EMC - test/- research

Applicant:

KEBA AG

Gewerbepark Urfahr

A-4041 Linz

Product:

RFID Module; XE020

Serial Number:

FCC ID:

U870001

Standard:

47 CFR Ch. I Part 15 (September 20, 2007)

RSS-210 Issue 7 (June 2007)

TÜV AUSTRIA SERVICES GMBH Test laboratory for EMC

Supervisor of EMC-laboratory

Ing. Wilhelm Seier

30.04.2008

Ing. Michael Emminger

Checked by

Copy Nbr.:

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of

TÜV AUSTRIA SERVICES GMBH.

The results of this test report only refer to the provided equipment.

TÜV AUSTRIA SERVICES GMBH

Office:

Deutschstraße 10 A-1230 Vienna +43(0)1 610 91-0 pzw@tuv.at

Division:

Medical Technology/ Communication Technology/ EMC

Department: Testing Body for

Communication Technology/ EMC

TÜV ®

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory

Notified Body 0408 IC 4413

Chairman of the Supervisory Board: KR Dipl.-Ing. Johann MARIHART

Management: Dipl.-Ing. Dr. Hugo EBERHARDT Mag. Christoph WENNINGER

Registered Office: Krugerstrasse 16 1015 Vienna/Austria

Branch Office: Dornbirn, Graz, Innsbruck, Klagenfurt, Linz, Salzburg, St. Pölte Wels, Wien 1, Wien 20, Wien 23, Brixen (I) und Filderstadt (D)

Company Register Court / - Number: Vienna / FN 288476 f

Banking Connections: BA CA 52949 001 066 **IBAN** AT13120005294900106 BIC BKAUATWW RBI 001-04.093.282 IBAN AT15310000010409328 **BIC RZBAATWW**

UID ATU63240488 DVR 3002476

Contents

	Designation	page
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	
4.1.	Conducted emission	6
4.2	Radiated emission	7-8
4.3	Operation within the band 13,110 – 14,010 MHz	9-10
Appendix	Designation	pages
1	Test equipment used	3
2	Photodocumentation	10
3	Measurement diagrams	3

Applicant 1.

Company:

KEBA AG

Department:

Development center

Address:

Gewerbepark Urfahr

A-4041 Linz

Contact person:

Mr. Dipl.-Ing. Markus Dobersberger

EUT received on:

02.11.2006

Tests were performed on: 02.11.2006 to 02.11.2006

2. Description of EUT

EUT:

RFID Module; XE020

Serial Number:

.

Manufacturer:

KEBA AG

Gewerbepark Urfahr

A-4041 Linz

Description:

Keba provided the following configuration for the measurements:

Pre-production model

Operating mode:

The measurements were carried out at the following running states:

normal operation

3. Standards / Final result

Name	Title	Deviation	Result
47 CFR Ch. I Part 15 (September 20, 2007)	Radio Frequency Devices	none	PASS
RSS-210 Issue 7 (June 2007)	Low Power Licence-Exempt Radiocommunuication Devices (All Frequency Bands)	none	PASS

PASS EUT passed FAIL EUT failed

4. Test results

4. 1. Conducted emission on the DC line

Because the module will only be used in Products of the manufacturer itself (limited modular approval) this measurement was exempted and the final product must meet this requirement on it AC mains power supply line.

4. 2. Radiated emission

Limits according to 15.209 and A2.7 (Table 2+3)

	Detector	Quasi Peak
Frequency range	Limit	Measurement distance
0,009 – 0,490 MHz	2400μV / f(kHz)	300 m
0,490 – 1,705 MHz	24000μV / f(kHz)	30 m
1,705 - 30 MHz	30	30 m
30 – 88 MHz	100	3 m
88 – 216 MHz	150	3 m
216 – 960 MHz	200	3 m
Above 960 MHz	500	3 m
	nit was increased for a constant mo	easurement distance of 3m with a

Operating mode	Measuring result				
Normal operation	Measurement diagram 1-3				

Test report number: M/EMV-08/154

Date: 30. 04. 2008

Test result:

4. 2.1.) Measurement in the frequency range 9 kHz to 1000 MHz

Frequency	Level	Limit	Margin	Height	Azimuth	Polarization
MHz	dBµV/m	dBµV/m	dB	cm	deg	
216,95	33,3	46,0	12,7	100	169	VERTICAL

4.3. 15.225 Operation within the band 13,110 – 14,010 MHz RSS-210 A2.6 13,110 – 14,010 MHz

Limits:

15.225 (a) + A2. 6 (a):

The field strength of any emissions within the band 13,553-13,567 MHz shall not exceed 15.848 microvolts/meter ($84 \text{ dB}_{\mu}\text{V/m}$) at 30 meters.

15.225 (b) and A2.6 (b):

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (50,5 dB μ V/m) at 30 meters.

15.225 (c) and A2.6 (c):

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter (40,5 dBµV/m) at 30 meters.

15.225 (d) and A2.6 (d):

30 microvolts/m (29,5 dB μ V/m) at 30 m, outside the band 13.110-14.010 MHz

Test result:

The field strength at 13,56 MHz in 3 m distance was measured as 52,3 dB μ V/m. Extrapolated with 40 dB per decade to 30 meters distance it would be 12,3 dB μ V/m.

15.225 (e) and A2.6:

The frequency tolerance of the carrier signal shall be maintained within \pm 0,01 % of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation of the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Measurement results:

Test conditions		Transmitter frequency			
		13,56 MHz			
T _{nom} (20)°C	V _{nom} (12)VDC	13,560243 MHz			
T _{nom} (20)°C	V _{min} (10,2)VDC	13,560293 MHz			
T _{nom} (20)°C	V _{max} (13,8)VDC	13,560214 MHz			
T _{min} (-20)°C	V _{nom} (12)VDC	13,560243 MHz			
T _{max} (50)°C	V _{nom} (12)VDC	13,560157 MHz			
Maximum deviation from nominal frequency under extreme test conditions (%)		0,00216 %			
Measurement uncertainty		<u>+</u> 10 Hz			

Appendix 1 Test equipment used

\boxtimes	Anechoic Chamber with 3m measurement distance	NT-100		Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
	Stripline according to ISO 11452-5	NT-108		ESVP - Test receiver 20 - 1000 MHz	NT-201
\boxtimes	MA 240 - Antenna mast 1 - 4 m height	NT-110		ESPC - Test receiver 9 kHz - 2,5 GHz	NT-203
\boxtimes	DS 412 - Turntable 0 - 400 ° Azimuth	NT-111	\boxtimes	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
	HD 100 Controller Mast+Turntable	NT-112		Digital Radio Tester CTS55	NT-208
	HUF-Z2 - Bicon. Antennna 20 - 300 MHz	NT-120		Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121		CMTA - Radiocommunication analyzer ; 0,1 - 1000 MHz	NT-210
	HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122		3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123		Radiocommunicationanalyzer Marconi 2945A	NT-212
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124		2855S - Communication analyzer	NT-213
	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125		Mixer M28HW 26,5 GHz - 40 GHz	NT-214
	3116 - Horn Antenna 18 - 40 GHz	NT-126		Diode Detector 0,01 GHz - 26,5 GHz	NT-215
	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127		RubiSource T&M Timing reference	NT-216
	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128		Radiocommunicationanalyzer SWR 1180 MD	NT-217
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129		Mixer M19HWD 40 GHz – 60 GHz	NT-218
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130		Mixer M12HWD 60 GHz – 90 GHz	NT-219
	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131		TDS - 540 DSO Digital scope	NT-220
	Loop Antenna H-Field	NT-132		TPS 2014 Digital scope	NT-222
	Horn Antenna 500 MHz - 2900 MHz	NT-133		Artificial Ear according to IEC 60318	NT-224
	Horn Antenna 500 MHz - 6000 MHz	NT-133/1		1 kHz Sound calibrator	NT-225
	Log. per. Antenna 800 MHz - 2500 MHz	NT-134		B10 - Harmonics and flicker analyzer	NT-232
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135		SRM-3000 Spectrumanalyzer	NT-233
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137		E-field probe SRM 75 MHz – 3 GHz	NT-234
	Conical Dipol Antenna PCD8250	NT-138		Hall-Teslameter ETM-1	NT-241
	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139		EFA-3 H-field- / E-field probe	NT-243
	HZ-1 Antenna tripod	NT-150		E-field measuring instrument EMR-200; 100 kHz – 3 GHz	NT-244
	BN 1500 Antenna tripod	NT-151		E-field probe 100 kHz – 3 GHz	NT-245
	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156		Magneticfield-Sensor 300 kHz – 30 MHz	NT-246
	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-172		E-field probe 3 MHz – 18 GHz	NT-247

Division Medical Technology/ Communication Technology/ EMC

Department: EMC

Test report number: M/EMV-08/154

Page: 1 of 3

Date: 30.04.2008

Appendix 1 (continued) Test equipment used

H-field probe 27 MHz – 1 GHz	NT-248		T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331	Division Medical Technology/
ELT-400 1 Hz – 400 kHz	NT-249		500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332	Communication Technology/ EMC
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250		AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333	Department: EMC
FCC-203I EM Injection clamp	NT-251		APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Test report number: M/EMV-08/154
FCC-203I-DCN Ferrite decoupling network	NT-252		Preamplifier 1 GHz - 4 GHz	NT-335	Page: 2 of 3
PR50 Current Probe	NT-253		Preamplifier for GPS MKU 152 A	NT-336	Date: 30.04.2008
PR630 Current Probe	NT-254		Preamplifier 100 MHz – 23 GHz	NT-337	Checked by:
Fluke 87 V True RMS Multimeter	NT-260		DC Block 10 MHz – 18 GHz Model 8048	NT-338	
Model 2000 Digital Multimeter	NT-261		2-97201 Electronic load	NT-341	
Fluke 87 V Digital Multimeter	NT-262/1	\boxtimes	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301		VDS 200 Mobil-impuls-generator	NT-350	
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302		LD 200 Mobil-impuls-generator	NT-351	
ESH3-Z4 T-Artificial network	NT-303		MPG 200 Mobil-Impuls-Generators	NT-352	
PHE 4500/B Power amplifier	NT-304		EFT 200 Mobil-impuls-generator	NT-353	
EZ10 T-Artificial Network	NT-305		AN 200 S1 Artificial Network	NT-354	
ENY22 Artificial Network	NT-308		FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
ENY41 Artificial Network	NT-309		PHE 4500 - Mains impedance network	NT-401	
SMG - Signal generator 0,1 - 1000 MHz	NT-310		IP 6.2 Coupling filter for data lines (Surge)	NT-403	
PM 5518 TXVPS Video generator	NT-311		TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
RefRad Reference generator	NT-312		ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313		IP 4 - Capacitive clamp (Burst)	NT-411	
40 MHz Arbitrary Generator TGA1241	NT-315		Highpass-Filter 100 MHz – 3 GHz	NT-412	
PEFT - Burst generator up to 4 kV	NT-320		Highpass-Filter 600 MHz – 4 GHz	NT-413	
ESD 30 System up to 25 kV	NT-321		Highpass-Filter 1250 MHz – 4 GHz	NT-414	
PSURGE 4.1 Surge generator	NT-324		Highpass-Filter 1800 MHz – 16 GHz	NT-415	
TRANSIENT 1000 Immunity test system	NT-325		Highpass-Filter 3500 MHz – 18 GHz	NT-416	
VCS 500-M6 Surge-Generator	NT-326		RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	
BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330		RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	

Appendix 1 (continued) Test equipment used

RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419		95242-1 – Current probe 10 MHz – 400 MHz	NT-468
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421		94106-1L-1 – Current probe 20 Hz – 450 MHz	NT-471
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423		PC P4 3 GHz Test computer	NT-500
RF-Attenuator 30 dB	NT-424		PC P4 1700 MHz Notebook	NT-505
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425		PC Intel Centrino 1600 MHz Notebook	NT-506
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426		Monitoring camera with Monitor	NT-511
RF-Attenuator 6 dB	NT-428	\boxtimes	ES-K1 Version 1.71 SP2 Test software	NT-520
RF-Attenuator 0 dB - 81 dB	NT-429		SRM-TS Version 1.3 software for SRM-3000	NT-522
WRU 27 - Band blocking 27 MHz	NT-430		SPS-PHE Test software V2.4c voltage fluctuations/harmonics	NT-525
WHJ450C9 AA - High pass 450 MHz	NT-431		SPS-EM Test software V2.4c EN61000-4-11	NT-527
WHJ250C9 AA - High pass 250 MHz	NT-432		Noise power test apparatus according to EN 55014	NT-530
RF-Load 150 W	NT-433		Vertical coupling plane (ESD)	NT-531
Impedance transducer 1:4; 1:9; 1:16	NT-435		Test cable #4 for EN 61000-4-6	NT-553
RF-Attenuator DC – 18 GHz 6 dB	NT-436		Test cable #3 for conducted emission	NT-554
RF-Attenuator DC – 18 GHz 6 dB	NT-437		Test cable #5 ESD-cable (2x470k)	NT-555
RF-Attenuator DC – 18 GHz 10 dB	NT-438		Test cable #6 ESD-cable (2x470k)	NT-556
RF-Attenuator DC – 18 GHz 20 dB	NT-439		Test cable #8 Sucoflex 104EA	NT-559
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440		Test cable #9 (for outdoor measurements)	NT-580
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441		Test cable #10 (for outdoor measurements)	NT-581
Power Divider 6 dB/1 W/50 Ohm	NT-443		Test cable #13 Sucoflex 104PE	NT-584
Directional coupler 0,1 MHz – 70 MHz	NT-444		Test cable #21 for SRM-3000	NT-592
Directional coupler 0,1 MHz – 70 MHz	NT-445		Shield chamber	NT-600
Tube imitations according to EN 55015	NT-450	\boxtimes	Climatic chamber	M-1200
FCC-801-M2-50A Coupling decoupling network	NT-459		Control and simulation equipment for EUT	
FCC-801-M5-25 Coupling decoupling network	NT-460			
FCC-801-AF10 Coupling decoupling network	NT-461			
FCC-801-S25 Coupling decoupling network	NT-462			
FCC-801-T4 Coupling decoupling network	NT-463			
FCC-801-C1 Coupling decoupling network	NT-464			
F-16A - Current probe 1kHz - 70MHz	NT-465			

Division Medical Technology/ Communication Technology/ EMC

Department: EMC

Test report number: M/EMV-08/154

Page: 3 of 3

Date: 30.04.2008

Checked by: ___

x x MES Keba_F1_finFCC

MES Keba_F1_preFCC

LIM FCC ClassB F QP/AV

FCC ClassB F QP/AV FCC ClassB, field strength 3m

Measurement diagram:
____of 3
Date: 30.04.2008
checked by:____

Department: EMC

Test report reference:

Division Medical Technology/ Communication Technology/ EMC

x x MES Keba_F3_fin
 MES Keba_F3_pre
 LIM FCC ClassB F QP/AV

FCC ClassB F QP/AV FCC ClassB, field strength 3m

Measurement diagram:
2 of 3

Date: 30.04.2008

checked by:

Department: EMC
Test report reference:
M/EMV-08/154

Division Medical Technology/ Communication Technology/ EMC

