

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

VIGILADA MINEDUCACIÓN - SNIES 1732

Faculty: Systems engineer

Course: Deep Learning

Topic: Maquinas de vectores de soporte (Super Vector Machine SVM)

Professor: Luis Fernando Castellanos Guarin

Email: Luis.castellanosg@usantoto.edu.co

Phone: 3214582098

Tipos de modelos de I.A Existen

- Regresión lineal
- Regresión logística.
- Árboles de decisión (clasificación y regresión).
- K-means
- Redes bayesianas
- Máquinas de vectores soporte (VSM)
- Deep learning

CONTENIDO

- 1. Que son las Maquinas de vectores de soporte (Super Vector Machine SVM)
- 2. Como funciona
- 3. Donde usar SVM
- 4. Ejercicio

Super Vector Machine SVM

Vectores de Soporte: son los puntos de datos más cercanos al hiperplano.

Hiperplano: es un plano de decisión que separa entre un conjunto de objetos.

Margen: es un espacio entre las dos líneas en los puntos más cercanos de la clase.

Super Vector Machine SVM

Support Vector Machine (SVM) es un algoritmo de aprendizaje automático supervisado que nació en 1960 y se optimizo hasta 1990.

Es capaz de realizar la clasificación, regresión e incluso la detección de valores atípicos

Ventajas frente a otros algoritmos:

- Ofrece una precisión muy alta comparado con otro clasificadores como la regresión logística y los arboles de decisión
- SVM es un algoritmo para encontrar clasificadores lineales en espacios transformados
- Resistentes al sobreajuste porque buscan una frontera de decisión específica (Hiperplano de margen máximo)
- Eficiente en el caso no lineal
 - No crean explícitamente el espacio transformado
 - La trasformación no lineal es implícita

Como funciona SVM

El algoritmo tiene dos objetivos:

- Separar los datos tipo K-MEANS
- Generar hiperplanos que busquen separar los conjuntos de datos
 - Pero, Solo uno separa los datos con menor error de clasificación.

Como funciona SVM

Al ver los datos en X, Y no es posible generar hIperplanos que puedan separar los datos de forma correcta

Utilizando una separación lineal que se llama "kernel" volviendo los datos a Z, X

Donde usar SVM

El algoritmos de SVM se usa para realizar:

- 1. Clasificación lineal con modelos lineales
- 2. Regresión lineal
- 3. Clasificación lineal multirespuesta
- 4. Regresión logística
- 5. Clasificación no lineal con modelos lineales

Por ejemplo en:

- Detección de rostros en cámaras fotográficas.
- Detección de cuerpos humanos en cámaras de seguridad
- Clasificación de correos electrónicos como Spam
- Clasificación de artículos de noticas y paginas web.
- PLN (minería de texto)

SVM – ejercicio - Bill authentication

Tomaremos un dataset con información del análisis de imágenes que fueron tomadas de billetes genuinos y falsificados. Para la digitalización, para este proceso fue necesaria una cámara industrial que se utiliza habitualmente para la inspección de impresión de billetes.

https://archive.ics.uci.edu/ml/datasets/banknote+authentication

https://github.com/luisFernandoCastellanosG/Machine_learning/blob/master/Databaset_para_trabajar_sklearn/b

ill authentication.csv

SVM- Bill authentication

pasos:

- 1. Cargar librerías
- 2. Cargar dataset desde github
- 3. Explorar y graficar datos
- 4. Separar los datos (train y test)
- 5. Crear instancia de algoritmo
- 6. Entrenar el algoritmo
- 7. Predecir valores
- 8. Calcular la exactitud del modelo
- 9. Es bueno el modelo?

Tipos de kernel

Tipos de kernel

Kernel Gausiano: efecto del radio

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/https://www.infor.uva.es/~calonso/MUI-TIC/MineriaDatos/SVM.pdf

Ejercicios

Tomar un dataset de alguno de los ejercicios que hemos trabajado anteriormente para clasificación y probarlo con tres algoritmos conocidos hasta hoy:

- Regresión logística.
- Arboles de decisión
- Redes bayesianas
- SVM

Mostar los resultados de las predicciones:

- A- dataset_titanic.csv
- B -mercadeo bancario.csv
- C-Sklearn.load_iris()
- D-Sklearn.Load_cancer()
- E-Sklearn.Load_wine()

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

