Week 1

Tensors

1.1 Course Motivation

3/28: • Motivation for the course and an overview of Guillemin and Haine (2018).

1.2 Defining Tensors and Their Operations

3/30: • Plan:

- More (multi)linear algebra.

 \bullet Let V be an n-dimensional real vector space.

• Dual space (of V): The set of all homomorphisms from V to \mathbb{R} . Also known as $\operatorname{Hom}(V,\mathbb{R}), V^*$.

– A homomorphism of vector spaces (such as any $\varphi \in V^*$) is just a linear map or, specifically, a linear functional.

• Linear functional: A linear map from a vector field to its field of scalars (often \mathbb{R} or \mathbb{C}).

• Dual basis (for V^*): The set of linear transformations from V to \mathbb{R} defined by

$$e_j \mapsto \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

where e_1, \ldots, e_n is a basis of V. Denoted by e_1^*, \ldots, e_n^* .

• Check: e_1^*, \ldots, e_n^* are a basis for V^* .

– Are they linearly independent? Let $c_1e_1^* + \cdots + c_ne_n^* = 0 \in \text{Hom}(V, \mathbb{R})$. Then

$$c_i = (c_1 e_1^* + \dots + c_n e_n^*)(e_i) = 0 \in \mathbb{R}$$

as desired.

- Span? Let $\varphi \in \text{Hom}(V, \mathbb{R})$. Then we can verify that

$$\varphi(e_1)e_1^* + \dots + \varphi(e_n)e_n^* = \varphi$$

 \blacksquare We prove this by verifying the previous statement on the basis of V (if two linear transformations have the same action on the basis of a vector space, they are equal).

• With a choice of basis for V, we obtain an **isomorphism** $\varepsilon: V \to V^*$ defined by $e_i \mapsto e_i^*$ for all i.

• **Isomorphism** (between V, W): A bijective (equiv., invertible) linear map between two vector spaces V, W. Denoted by $V \cong W$.

- The dual space is known as such because $(V^*)^* \cong V$, where the isomorphism is **canonical**.
 - The canonical isomorphism $I: V \to (V^*)^*$ is given by $v \mapsto I_v$, where $I_v: V^* \to \mathbb{R}$ is the linear functional defined by

$$I_v(\varphi) = \varphi(v)$$

for all $\varphi \in V^*$.

- Some incomplete thoughts on the proof are commented out in the .tex file. See also this link.
- Canonical (map): A map between objects that arises naturally from the definition or construction of the objects.
- Canonical (map of vector spaces): A map between vector spaces such that no choice of bases is needed to describe it.
 - Equivalently, such a map as described on any choice of bases will be equal to the canonical map.
- Pullback (of A): The linear transformation from $W^* \to V^*$, where V, W are vector spaces and $A: V \to W$, defined as follows. Also known as transpose. Denoted by A^* . Given by

$$A^*(\varphi) = \varphi \circ A$$

- This object is also known as the transpose because the matrix of A^* is the transpose of the matrix of A, provided V, W are real vector spaces.
- Claim: A^* is linear.
- One more property of dual spaces: functoriality.
- Functoriality: If $A: V \to W$ and $B: W \to U$, then $B^*: U^* \to W^*$ and $A^*: W^* \to V^*$. The functoriality statement is that $(B \circ A)^* = A^* \circ B^*$.
- Let v_1, \ldots, v_n be a basis for V and w_1, \ldots, w_m be a basis for W. Then $[A]_{v_1, \ldots, v_n}^{w_1, \ldots, w_m} = A$ is the matrix of the linear transformation A with respect to these bases. Then if v_1^*, \ldots, v_n^* and w_1^*, \ldots, w_m^* are the corresponding dual bases, then $[A^*]_{v_1^*, \ldots, v_n^*}^{w_1^*, \ldots, w_n^*} = A^T$. We can and should verify this for ourselves.
- This is over the real numbers, so A^* is just the transpose because there are no complex numbers of which to take the conjugate!
- A generalization: Tensors.
- k-tensor: A multilinear map

$$T: \underbrace{V \times \cdots \times V}_{k \text{ times}} \to \mathbb{R}$$

• Multilinear (map T): A function T such that

$$T(v_1, \dots, v_i^1 + v_i^2, \dots, v_k) = T(v_1, \dots, v_i^1, \dots, v_k) + T(v_1, \dots, v_i^2, \dots, v_k)$$
$$T(v_1, \dots, \lambda v_i, \dots, v_k) = \lambda T(v_1, \dots, v_i, \dots, v_k)$$

for all $(v_1, \ldots, v_k) \in V^k$.

- The determinant is an n-tensor!
- 1-tensors are just covectors.
- $\mathcal{L}^{k}(V)$: The vector space of all k-tensors on V.

- Calculating dim $\mathcal{L}^k(V)$. (Answer not given in this class.)
- Let $A: V \to W$. Then $A^*: \mathcal{L}^k(W) \to \mathcal{L}^k(V)$.
 - Check $(A \circ B)^* = B^* \circ A^*$.
- Multi-index of n of length k: A k-tuple (i_1, \ldots, i_k) where each $i_j \in \mathbb{N}$ satisfies $1 \leq i_j \leq n$ $(j = 1, \ldots, k)$. Denoted by I.
- Let e_1, \ldots, e_n be a basis for V.
- **Tensor product** (of $T_1 \in \mathcal{L}^k(V)$, $T_2 \in L^l(V)$): The function from V^{k+l} to \mathbb{R} defined by

$$(v_1, \ldots, v_{k+l}) \mapsto T_1(v_1, \ldots, v_k) T_2(v_{k+1}, \ldots, v_{k+l})$$

Denoted by $T_1 \otimes T_2$.

- Claims:
 - 1. $T_1 \otimes T_2 \in L^{k+l}(V)$.
 - 2. $A^*(T_1 \otimes T_2) = A^*(T_1) \otimes A^*(T_2)$.
- e_I^* : The function $e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*$, where $I = (i_1, \dots, i_k)$ is a multi-index of n of length k.
- Claim: Letting I range over all n^k multi-indices of n of length k, the e_I^* are a basis for $\mathcal{L}^k(V)$.
- If $V = \mathbb{R}$, then $V = \text{Re}_1$. If $V = \mathbb{R}^2$, then $V = \text{Re}_1 \oplus \text{Re}_2$.
- We know that $L^1(V) = V^* = Re_1^*$. Thus, $e_1^* \otimes e_2^* : V \times V \to \mathbb{R}$. Thus, for example,

$$(e_1^* \otimes e_2^*)((1,2),(3,4)) = e_1^*(1,2) \cdot e_2^*(3,4) = 1 \cdot 4 = 4$$

1.3 The Tensor Product and Permutations

- 4/1: Plan: More multilinear algebra.
 - Properties of the tensor product.
 - Sign of a permutation.
 - Alternating tensors (lead into differential forms down the road).
 - Recall: V is an n-dimensional vector space over \mathbb{R} with basis e_1, \ldots, e_n . $\mathcal{L}^k(V)$ is the vector space of k-tensors on V. $\{e_I^* \mid I \text{ a multiindex of } n \text{ of length } k\}$ is a basis for $\mathcal{L}^k(V)$.
 - For example, if $V = \mathbb{R}^2$ and $T \in \mathcal{L}^2(V)$, then

$$T(a_1e_1 + a_2e_2, b_1e_1 + b_2e_2) = a_1b_1T(e_1, e_1) + a_1b_2T(e_1, e_2) + a_2b_1T(e_2, e_1) + a_2b_2T(e_2, e_2)$$

- A basis of $\mathcal{L}^2(V)$ is

$$\{e_1^* \otimes e_1^*, e_1^* \otimes e_2^*, e_2^* \otimes e_1^*, e_2^* \otimes e_2^*\}$$

- Recall that some basic properties are

$$e_1^* \otimes e_2^*((1,2),(3,4)) = 1 \cdot 4 = 4$$
 $e_2^* \otimes e_1^*((1,2),(3,4)) = 2 \cdot 3 = 6$

- It follows by the initial decomposition of T that

$$T = a_1b_1e_1^* \otimes e_1^* + a_1b_2e_1^* \otimes e_2^* + a_2b_1e_2^* \otimes e_1^* + a_2b_2e_2^* \otimes e_2^*$$

• Important consequence: To know the action of T on an arbitrary pair of vectors, you need only know its action on the basis; a higher-dimensional generalization of the earlier property.

• Note that

$$e_I^*(e_J) = \delta_{IJ} = \begin{cases} 1 & I = J \\ 0 & I \neq J \end{cases}$$

- Basic properties of the tensor product.
 - 1. Right-distributive: If $T_1 \in \mathcal{L}^k(V)$ and $T_2, T_3 \in \mathcal{L}^{\ell}(V)$, then

$$T_1 \otimes (T_2 + T_3) = T_1 \otimes T_2 + T_1 \otimes T_3$$

2. Left-distributive: If $T_1, T_2 \in \mathcal{L}^k(V)$ and $T_3 \in \mathcal{L}^{\ell}(V)$, then

$$(T_1 + T_2) \otimes T_3 = T_1 \otimes T_3 + T_2 \otimes T_3$$

3. Associative: If $T_1 \in \mathcal{L}^k(V)$, $T_2 \in \mathcal{L}^{\ell}(V)$, and $T_3 \in \mathcal{L}^m(V)$, then

$$T_1 \otimes (T_2 \otimes T_3) = (T_1 \otimes T_2) \otimes T_2 = T_1 \otimes T_2 \otimes T_3$$

4. Scalar multiplication: If $T_1 \in \mathcal{L}^k(V)$, $T_2 \in \mathcal{L}^{\ell}(V)$, and $\lambda \in \mathbb{R}$, then

$$(\lambda T_1) \otimes T_2 = \lambda (T_1 \otimes T_2) = T_1 \otimes (\lambda T_2)$$

- Note that the tensor product is not commutative.
- Aside: Defining the sign of a permutation.
- S_A : The set of all automorphisms of A (bijections from A to A), where A is a set.
- S_n : The set $S_{[n]}$.
- Given $\sigma_1, \sigma_2 \in S_n, \, \sigma_1 \circ \sigma_2 \in S_n$.
 - Thus, S_n is a **group**.
- Transposition: A function in S_n such that

$$k \mapsto \begin{cases} j & k = i \\ i & k = j \\ k & k \neq i, j \end{cases}$$

for some $i, j \in [n]$. Denoted by $\tau_{i,j}$.

- Theorem: An element of S_n can be written as the product of transpositions (i.e., for all $\sigma \in S_n$, there exist $\tau_1, \ldots, \tau_m \in S_n$ such that $\sigma = \tau_1 \circ \cdots \circ \tau_m$).
- Sign (of $\sigma \in S_n$): The number (mod 2) of transpositions whose product equals σ . Denoted by $(-1)^{\sigma}$, sign (σ) .
- Theorem: The sign of σ is well-defined. Additionally,

$$(-1)^{\sigma_1 \sigma_2} = (-1)^{\sigma_1} \cdot (-1)^{\sigma_2}$$

- Example: Consider the identity permutation. $(-1)^{\sigma} = +1$. We can think of this as the product of zero transpositions or, for instance, as the product of the two transpositions $\tau_{1,2} \circ \tau_{1,2}$. Another example would be $\tau_{2,3} \circ \tau_{1,2} \circ \tau_{1,2} \circ \tau_{2,3}$.
- Theorem: Let X_i be a rational or polynomial function for each $i \in \mathbb{N}$. Then

$$(-1)^{\sigma} = \prod_{i < j} \frac{X_{\sigma(i)} - X_{\sigma(j)}}{X_i - X_j}$$

• Example: For the permutation $\sigma = (1, 2, 3)$, we have

$$(-1)^{\sigma} = \frac{X_{\sigma(1)} - X_{\sigma(2)}}{X_1 - X_2} \cdot \frac{X_{\sigma(1)} - X_{\sigma(3)}}{X_1 - X_3} \cdot \frac{X_{\sigma(2)} - X_{\sigma(3)}}{X_2 - X_3}$$

$$= \frac{X_2 - X_3}{X_1 - X_2} \cdot \frac{X_2 - X_1}{X_1 - X_3} \cdot \frac{X_3 - X_1}{X_2 - X_3}$$

$$= \frac{-(X_1 - X_2)}{X_1 - X_2} \cdot \frac{-(X_1 - X_3)}{X_1 - X_3} \cdot \frac{X_2 - X_3}{X_2 - X_3}$$

$$= -1 \cdot -1 \cdot 1$$

$$= +1$$

which checks out with the fact that $\sigma = \tau_{1,2} \circ \tau_{2,3}$.

- Claims to verify with the above formula:
 - 1. $sign(\sigma) \in \{\pm 1\}.$
 - 2. $sign(\tau_{i,j}) = -1$.
 - 3. $\operatorname{sign}(\sigma_1 \sigma_2) = \operatorname{sign}(\sigma_1) \operatorname{sign}(\sigma_2)$.

1.4 Chapter 1: Multilinear Algebra

From Guillemin and Haine (2018).

3/31: • Guillemin and Haine (2018) defines real vector spaces, the operations on them, their basic properties, and the zero vector.

- Linearly independent (vectors v_1, \ldots, v_k): A finite set of vectors $v_1, \ldots, v_k \in V$ such that the map from \mathbb{R}^k to V defined by $(c_1, \ldots, c_k) \mapsto c_1 v_1 + \cdots + c_k v_k$ is injective.
- Spanning (vectors v_1, \ldots, v_k): We require that the above map is surjective.
- Guillemin and Haine (2018) defines basis, finite-dimensional vector space, dimension, subspace, linear map, and kernel.
- Image (of $A: V \to W$): The range space of A, a subspace of W. Also known as im(A).
- Guillemin and Haine (2018) defines the matrix of a linear map.
- Inner product (on V): A map $B: V \times V \to \mathbb{R}$ with the following three properties.
 - Bilinearity: For vectors $v, v_1, v_2, w \in V$ and $\lambda \in \mathbb{R}$, we have

$$B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)$$

and

$$B(\lambda v, w) = \lambda B(v, w)$$

- Symmetry: For vectors $v, w \in V$, we have B(v, w) = B(w, v).
- Positivity: For every vector $v \in V$, we have $B(v,v) \geq 0$. Moreover, if $v \neq 0$, then B(v,v) > 0.
- **W-coset**: A set of the form $\{v + w \mid w \in W\}$, where W is a subspace V and $v \in V$. Denoted by v + W.
 - If $v_1 v_2 \in W$, then $v_1 + W = v_2 + W$.
 - It follows that the distinct W-cosets decompose V into a disjoint collection of subsets of V.

• Quotient space (of V by W): The set of distinct W-cosets in V, along with the following definitions of vector addition and scalar multiplication.

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$
 $\lambda(v + W) = (\lambda v) + W$

Denoted by V/W.

• Quotient map: The linear map $\pi: V \to V/W$ defined by

$$\pi(v) = v + W$$

- $-\pi$ is surjective.
- Note that $\ker(\pi) = W$ since for all $w \in W$, $\pi(w) = w + W = 0 + W$, which is the zero vector in V/W.
- If V, W are finite dimensional, then

$$\dim(V/W) = \dim(V) - \dim(W)$$

- Proposition 1.2.9: Let $A: V \to U$ be a linear map. If $W \subset \ker(A)$, then there exists a unique linear map $A^{\sharp}: V/W \to U$ with the property that $A = A^{\sharp} \circ \pi$, where $\pi: V \to V/W$ is the quotient map.
 - This proposition rephrases in terms of quotient spaces the fact that if $w \in W$, then A(v+w) = Av.
 - Another way of thinking about it is that π cuts out all of the information that A will lose anyway, and A^{\sharp} retains all information necessary to reconstruct A.
- **Dual space** (of V): The set of all linear functions $\ell: V \to \mathbb{R}$, along with the following definitions of vector addition and scalar multiplication.

$$(\ell_1 + \ell_2)(v) = \ell_1(v) + \ell_2(v) \qquad (\lambda \ell)(v) = \lambda \cdot \ell(v)$$

Denoted by V^* .

• **Dual basis** (of e_1, \ldots, e_n a basis of V): The basis of V^* consisting of the n functions that take every $v = c_1 e_1 + \cdots + c_n e_n$ to one of the c_i . Denoted by e_1^*, \ldots, e_n^* . Given by

$$e_i^*(v) = c_i$$

for all $v \in V$.

• Claim 1.2.12: If V is an n-dimensional vector space with basis e_1, \ldots, e_n , then e_1^*, \ldots, e_n^* is a basis of V^*

Proof. We will first prove that e_1^*, \ldots, e_n^* spans V^* . Let $\ell \in V^*$ be arbitrary. Set $\lambda_i = \ell(e_i)$ for all $i \in [n]$. Define $\ell' = \sum_{i=1}^n \lambda_i e_i^*$. Then

$$\ell'(e_j) = \sum_{i=1}^{n} \lambda_i e_i^*(e_j) = \lambda_j \cdot 1 = \ell(e_j)$$

for all $j \in [n]$. Therefore, since ℓ, ℓ' take identical values on the basis of $V, \ell = \ell'$, as desired. We now prove that e_1^*, \ldots, e_n^* is linearly independent. Let $\sum_{i=1}^n \lambda_i e_i^* = 0$. Then for all $j \in [n]$,

$$\lambda_j = \left(\sum_{i=1}^n \lambda_i e_i^*\right)(e_j) = 0$$

as desired. \Box

• Transpose (of A): The map from W^* to V^* defined by $\ell \mapsto \ell \circ A$ for all $\ell \in W^*$. Denoted by A^* .

• Claim 1.2.15: If e_1, \ldots, e_n is a basis of V, f_1, \ldots, f_m is a basis of W, e_1^*, \ldots, e_n^* and f_1^*, \ldots, f_m^* are the corresponding dual bases, and $[a_{i,j}]$ is the $m \times n$ matrix of A with respect to $\{e_j\}, \{f_i\}$, then the linear map A^* is defined in terms of $\{f_i^*\}, \{e_i^*\}$ by the transpose matrix $(a_{j,i})$.

Proof. Let $[c_{j,i}]$ be the $n \times m$ matrix of A^* with respect to $\{f_i^*\}, \{e_j^*\}$. We seek to prove that $a_{i,j} = c_{j,i}$ $(1 \le i \le m, 1 \le j \le n)$.

By the definition of $[a_{i,j}]$ and $[c_{j,i}]$, we have that

$$A^* f_i^* = \sum_{k=1}^n c_{k,i} e_k^*$$

$$Ae_j = \sum_{k=1}^m a_{k,j} f_k$$

It follows that

$$[A^*f_i^*](e_j) = \left[\sum_{k=1}^n c_{k,i} e_k^*\right](e_j) = c_{j,i}$$

and

$$[A^*f_i^*](e_j) = f_i^*(Ae_j) = f_i^*\left(\sum_{k=1}^m a_{k,j} f_k\right) = a_{i,j}$$

so transitivity implies the desired result.

4/4: • V^k : The set of all k-tuples (v_1, \ldots, v_k) where $v_1, \ldots, v_k \in V$ a vector space.

- Note that

$$V^k = \underbrace{V \times \dots \times V}_{k \text{ times}}$$

where "x" denotes the Cartesian product.

- **Linear** (function in its i^{th} variable): A function $T: V^k \to \mathbb{R}$ such that the map from V to \mathbb{R} defined by $v \mapsto T(v_1, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_k)$ is linear, where all v_i save v_i are fixed.
- **k-linear** (function T): A function $T: V^k \to \mathbb{R}$ that is linear in its i^{th} variable for i = 1, ..., k. Also known as **k-tensor**.
- $\mathcal{L}^{k}(V)$: The set of all k-tensors in V.
 - Since the sum $T_1 + T_2$ of two k-linear functions $T_1, T_2 : V^k \to \mathbb{R}$ is just another k-linear function, and λT_1 is k-linear for all $\lambda \in \mathbb{R}$, we have that $\mathcal{L}^k(V)$ is a vector space.
- Convention^[1]: 0-tensors are just the real numbers. Mathematically, we define

$$\mathcal{L}^0(V) = \mathbb{R}$$

- Note that $\mathcal{L}^1(V) = V^*$.
- Defines multi-indices of n of length k.
- Lemma 1.3.5: If $n, k \in \mathbb{N}$, then there are exactly n^k multi-indices of n of length k.
- T_I : The real number $T(e_{i_1}, \ldots, e_{i_k})$, where $T \in \mathcal{L}^k(V)$, e_1, \ldots, e_n is a basis of V, and I is a multi-index of n of length k.
- Proposition 1.3.7: The real numbers T_I determine T, i.e., if T, T' are k-tensors and $T_I = T'_I$ for all I, then T = T'.

¹See the definition of the tensor product and ensuing note for a justification of this convention (just a few lines down).

Proof. We induct on n. For the base case n = 1, $T \in (\mathbb{R}^k)^*$ and we have already proven this result. Now suppose inductively that the assertion is true for n - 1. For each e_i , let T_i be the (k - 1)-tensor defined by

$$(v_1, \ldots, v_{n-1}) \mapsto T(v_1, \ldots, v_{n-1}, e_i)$$

Then for an arbitrary $v = c_1 e_1 + \cdots + c_n e_n$,

$$T(v_1, \dots, v_{n-1}, v) = \sum_{i=1}^n c_i T_i(v_1, \dots, v_{n-1})$$

so the T_i 's determine T. Applying the inductive hypothesis completes the proof.

• **Tensor product**: The function $\otimes : \mathcal{L}^k(V) \times \mathcal{L}^{\ell}(V) \to \mathcal{L}^{k+\ell}(V)$ defined by

$$(T_1 \otimes T_2)(v_1, \dots, v_{k+\ell}) = T_1(v_1, \dots, v_k)T_2(v_{k+1}, \dots, v_{k+\ell})$$

for all $T_1 \in \mathcal{L}^k(V)$ and $T_2 \in \mathcal{L}^\ell(V)$.

• Note that by the definition of 0-tensors as real numbers, if $a \in \mathbb{R}$ and $T \in \mathcal{L}^k(V)$, then

$$a \otimes T = T \otimes a = aT$$

- Proposition 1.3.9: Associativity, distributivity of scalar multiplication, and left and right distributive laws for the tensor product.
- Decomposable (k-tensor): A k-tensor T for which there exist $\ell_1, \ldots, \ell_k \in V^*$ such that

$$T = \ell_1 \otimes \cdots \otimes \ell_k$$

- Defines e_I^* .
- Theorem 1.3.13: V a vector space with basis e_1, \ldots, e_n and $0 \le k \le n$ implies the k-tensors e_I^* form a basis of $\mathcal{L}^k(V)$.

Proof. Spanning: Let $T \in \mathcal{L}^k(V)$ be arbitrary. Define

$$T' = \sum_{I} T_{I} e_{I}^{*}$$

Since

$$T'_J = T'(e_{j_1}, \dots, e_{j_k}) = \sum_I T_I e_I^*(e_{j_1}, \dots, e_{j_k}) = T_J e_J^*(e_{j_1}, \dots, e_{j_k}) = T_J$$

for all J, Proposition 1.3.7 asserts that T = T'. Therefore, since every $T_I \in \mathbb{R}$, $T = T' \in \text{span}(e_I^*)$.

Linear independence: Suppose

$$T = \sum_{I} c_I e_I^* = 0$$

for some set of constants $c_I \in \mathbb{R}$. Then

$$0 = T(e_{j_1}, \dots, e_{j_k}) = \sum_{I} c_I e_I^*(e_{j_1}, \dots, e_{j_k}) = c_J$$

for all J, as desired.

• Corollary 1.3.15: If dim V = n, then dim $(\mathcal{L}^k(V)) = n^k$.

Proof. Follows immediately from Lemma 1.3.5.

• Pullback (of T by the map A): The k-tensor $A^*T: V^k \to \mathbb{R}$ defined by

$$(A^*T)(v_1,\ldots,v_k) = T(Av_1,\ldots,Av_k)$$

where V, W are finite-dimensional vector spaces, $A: V \to W$ is linear, and $T \in \mathcal{L}^k(W)$.

- Proposition 1.3.18: The map $A^*: \mathcal{L}^k(W) \to \mathcal{L}^k(V)$ defined by $T \mapsto A^*T$ is linear.
- Identities:

4/13:

- If $T_1 \in \mathcal{L}^k(W)$ and $T_2 \in \mathcal{L}^m(W)$, then

$$A^*(T_1 \otimes T_2) = A^*(T_1) \otimes A^*(T_2)$$

- If U is a vector space, $B: U \to V$ is linear, and $T \in \mathcal{L}^k(W)$, then $(AB)^*T = B^*(A^*T)$. Hence,

$$(AB)^* = B^*A^*$$

• Σ_k : The set containing the natural numbers 1 through k. Given by

$$\Sigma_k = \{1, 2, \dots, k\}$$

- Permutation of order k: A bijection on Σ_k . Denoted by σ .
- **Product** (of σ_1, σ_2): The composition $\sigma_1 \circ \sigma_2$, i.e., the map

$$i \mapsto \sigma_1(\sigma_2(i))$$

Denoted by $\sigma_1 \sigma_2$.

- Inverse (of σ): The permutation of order k which is the inverse bijection of σ . Denoted by σ^{-1} .
- Permutation group (of Σ_k): The set of all permutations of order k. Also known as symmetric group on k letters. Denoted by S_k .
- Lemma 1.4.2: The group S_k has k! elements.
- Transposition: A permutation of order k defined by

$$\ell \mapsto \begin{cases} j & \ell = i \\ i & \ell = j \\ \ell & \ell \neq i, j \end{cases}$$

for all $\ell \in \Sigma_k$, where $i, j \in \Sigma_k$. Denoted by $\tau_{i,j}$.

- Elementary transposition: A transposition of the form $\pi_{i,i+1}$.
- Theorem 1.4.4: Every $\sigma \in S_k$ can be written as a product of (a finite number of) transpositions.

Proof. We induct on k.

For the base case k = 2, the identity permutation of S_2 is the "product" of zero transpositions, and the only other permutation is a transposition (the "product" of one transposition, namely itself).

Now suppose inductively that we have proven the claim for k-1. Let $\sigma \in S_k$ be arbitrary. Suppose $\sigma(k) = i$. Then $\tau_{i,k}\sigma(k) = k$. Since $(\tau_{i,k}\sigma)|_{\Sigma_{k-1}} \in S_{k-1}$, we have by the inductive hypothesis that $(\tau_{i,k}\sigma)|_{\Sigma_{k-1}} = \tau_1 \cdots \tau_m$ for some set of permutations $\tau_1, \ldots, \tau_m \in S_{k-1}$. For each τ_j $(1 \leq j \leq m)$, define $\tau'_i \in S_k$

$$\tau_j'(\ell) = \begin{cases} \tau_j(\ell) & \ell < k \\ \ell & \ell = k \end{cases}$$

It follows that

$$\tau_{i,k}\sigma = \tau_1' \cdots \tau_m'$$
$$\sigma = \tau_{i,k}\tau_1' \cdots \tau_m'$$

as desired. \Box

• Theorem 1.4.5: Every transposition can be written as a product of elementary transpositions.

Proof. Let $\tau_{i,j} \in S_k$, and let i < j WLOG. Then we have that

$$\tau_{i,j} = \prod_{\ell=i}^{i-1} \tau_{\ell,\ell+1}$$

as desired. \Box

- Corollary 1.4.6: Every permutation can be written as a product of elementary transpositions.
- Sign (of σ): The number ± 1 assigned to σ by the expression

$$\prod_{i < j} \frac{x_{\sigma(i)} - x_{\sigma(j)}}{x_i - x_j}$$

where x_1, \ldots, x_k are coordinate functions on \mathbb{R}^k . Denoted by $(-1)^{\sigma}$.

• Claim 1.4.9: The sign defines a group homomorphism $S_k \to \{\pm 1\}$. That is, for $\sigma_1, \sigma_2 \in S_k$, we have

$$(-1)^{\sigma_1 \sigma_2} = (-1)^{\sigma_1} (-1)^{\sigma_2}$$

Proof. For all i < j, define p, q such that p is the lesser of $\sigma_2(i), \sigma_2(j)$ and q is the greater of $\sigma_2(i), \sigma_2(j)$. Formally,

$$p = \begin{cases} \sigma_2(i) & \sigma_2(i) < \sigma_2(j) \\ \sigma_2(j) & \sigma_2(j) < \sigma_2(i) \end{cases} \qquad q = \begin{cases} \sigma_2(j) & \sigma_2(i) < \sigma_2(j) \\ \sigma_2(i) & \sigma_2(j) < \sigma_2(i) \end{cases}$$

It follows that if $\sigma_2(i) < \sigma_2(j)$, then

$$\frac{x_{\sigma_{1}\sigma_{2}(i)}-x_{\sigma_{1}\sigma_{2}(j)}}{x_{\sigma_{2}(i)}-x_{\sigma_{2}(j)}} = \frac{x_{\sigma_{1}(p)}-x_{\sigma_{1}(q)}}{x_{p}-x_{q}}$$

and if $\sigma_2(j) < \sigma_2(i)$, then

$$\frac{x_{\sigma_1\sigma_2(i)} - x_{\sigma_1\sigma_2(j)}}{x_{\sigma_2(i)} - x_{\sigma_2(j)}} = \frac{x_{\sigma_1(q)} - x_{\sigma_1(p)}}{x_q - x_p} = \frac{x_{\sigma_1(p)} - x_{\sigma_1(q)}}{x_p - x_q}$$

Therefore,

$$\begin{split} (-1)^{\sigma_1 \sigma_2} &= \prod_{i < j} \frac{x_{\sigma_1 \sigma_2(i)} - x_{\sigma_1 \sigma_2(j)}}{x_i - x_j} \\ &= \prod_{i < j} \frac{x_{\sigma_1 \sigma_2(i)} - x_{\sigma_1 \sigma_2(j)}}{x_{\sigma_2(i)} - x_{\sigma_2(j)}} \cdot \frac{x_{\sigma_2(i)} - x_{\sigma_2(j)}}{x_i - x_j} \\ &= \prod_{i < j} \frac{x_{\sigma_1(p)} - x_{\sigma_1(q)}}{x_p - x_q} \cdot \prod_{i < j} \frac{x_{\sigma_2(i)} - x_{\sigma_2(j)}}{x_i - x_j} \\ &= (-1)^{\sigma_1} (-1)^{\sigma_2} \end{split}$$

as desired. \Box

• Proposition 1.4.11: If σ is the product of an odd number of transpositions, then $(-1)^{\sigma} = -1$, and if σ is the product of an even number of transpositions, then $(-1)^{\sigma} = +1$.

Proof. Follows from the fact that $(-1)^{\sigma} = -1$ (see Exercise 1.4.ii).

• T^{σ} : The k-tensor defined by

$$T^{\sigma}(v_1,\ldots,v_k) = T(v_{\sigma^{-1}(1)},\ldots,v_{\sigma^{-1}(k)})$$

where $T \in \mathcal{L}^k(V)$, V is an n-dimensional vector space, and $\sigma \in S_k$.

• Proposition 1.4.14:

1. If
$$T = \ell_1 \otimes \cdots \otimes \ell_k \ (\ell_i \in V^*)$$
, then $T^{\sigma} = \ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}$.

Proof. If $v_1, \ldots, v_k \in V$, then

$$T^{\sigma}(v_{1},...,v_{k}) = T(v_{\sigma^{-1}(1)},...,v_{\sigma^{-1}(k)})$$

$$= [\ell_{1} \otimes \cdots \otimes \ell_{k}](v_{\sigma^{-1}(1)},...,v_{\sigma^{-1}(k)})$$

$$= \ell_{1}(v_{\sigma^{-1}(1)}) \cdots \ell_{k}(v_{\sigma^{-1}(k)})$$

$$= \ell_{\sigma(1)}(v_{1}) \cdots \ell_{\sigma(k)}(v_{2})$$

$$= [\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}](v_{1},...,v_{k})$$

as desired. Note that we can justify the fourth equality by nothing that if $\sigma^{-1}(i) = q$, then the i^{th} term in the product is $\ell_{\sigma(q)}(v_q)$, so since σ is a bijection, the product can be arranged to the form on the right-hand side of equality four.

2. The assignment $T \mapsto T^{\sigma}$ is a linear map from $\mathcal{L}^k(V) \to \mathcal{L}^k(V)$.

$$Proof.$$
 See Exercise 1.4.iii.

3. If $\sigma_1, \sigma_2 \in S_k$, we have $T^{\sigma_1 \sigma_2} = (T^{\sigma_1})^{\sigma_2}$.

Proof. Let $T = \ell_1 \otimes \cdots \otimes \ell_k^{[2]}$. Then

$$T^{\sigma_1} = \ell_{\sigma_1(1)} \otimes \cdots \otimes \ell_{\sigma_1(k)} = \ell'_1 \otimes \cdots \otimes \ell'_k$$

and thus

$$(T^{\sigma_1})^{\sigma_2} = \ell'_{\sigma_2(1)} \otimes \cdots \otimes \ell'_{\sigma_2(k)}$$

Let $\sigma_2(i)=j$. Then since $\ell_p'=\ell_{\sigma_1(p)}$ by definition, we have that $\ell_{\sigma_2(j)}'=\ell_{\sigma_1(\sigma_2(j))}$. Therefore,

$$(T^{\sigma_1})^{\sigma_2} = \ell'_{\sigma_2(1)} \otimes \cdots \otimes \ell'_{\sigma_2(k)}$$

$$= \ell_{\sigma_1(\sigma_2(1))} \otimes \cdots \otimes \ell_{\sigma_1(\sigma_2(k))}$$

$$= \ell_{\sigma_1\sigma_2(1)} \otimes \cdots \otimes \ell_{\sigma_1\sigma_2(k)}$$

$$= T^{\sigma_1\sigma_2}$$

as desired. \Box

- Alternating (k-tensor): A k-tensor $T \in \mathcal{L}^k(V)$ such that $T^{\sigma} = (-1)^{\sigma}T$ for all $\sigma \in S_k$.
- $\mathcal{A}^k(V)$: The set of all alternating k-tensors in $\mathcal{L}^k(V)$.
 - Proposition 1.4.14(2) implies that $(T_1 + T_2)^{\sigma} = T_1^{\sigma} + T_2^{\sigma}$ and $(\lambda T)^{\sigma} = \lambda T^{\sigma}$; it follows that $\mathcal{A}^k(V)$ is a vector space.

 $^{^{2}}$ What gives us the right to assume T is decomposable?

• Alternation operation: The function from $\mathcal{L}^k(V) \to \mathcal{L}^k(V)$ defined by

$$T \mapsto \sum_{\tau \in S_k} (-1)^{\tau} T^{\tau}$$

Denoted by Alt.

• Proposition 1.4.17: For $T \in \mathcal{L}^k(V)$ and $\sigma \in S_k$, we have that

1. Alt
$$(T)^{\sigma} = (-1)^{\sigma}$$
 Alt T .

Proof. We have that

$$\operatorname{Alt}(T)^{\sigma} = \left(\sum_{\tau \in S_k} (-1)^{\tau} T^{\tau}\right)^{\sigma}$$

$$= \sum_{\tau \in S_k} (-1)^{\tau} (T^{\tau})^{\sigma} \qquad \text{Proposition 1.4.14(2)}$$

$$= \sum_{\tau \in S_k} (-1)^{\tau} T^{\tau\sigma} \qquad \text{Proposition 1.4.14(3)}$$

$$= (-1)^{\sigma} \sum_{\tau \in S_k} (-1)^{\tau\sigma} T^{\tau\sigma}$$

$$= (-1)^{\sigma} \sum_{\tau \sigma \in S_k} (-1)^{\tau\sigma} T^{\tau\sigma}$$

$$= (-1)^{\sigma} \operatorname{Alt} T$$

as desired. \Box

2. If $T \in \mathcal{A}^k(V)$, then Alt T = k!T.

Proof. Since $T \in \mathcal{A}^k(V)$, we know that $T^{\sigma} = (-1)^{\sigma}T$. Therefore,

Alt
$$T = \sum_{\tau \in S_k} (-1)^{\tau} T^{\tau} = \sum_{\tau \in S_k} (-1)^{\tau} (-1)^{\tau} T = \sum_{\tau \in S_k} T = k! T$$

where the last equality holds because the cardinality of S_k is k!.

3. $Alt(T^{\sigma}) = Alt(T)^{\sigma}$.

Proof. We have that

$$\operatorname{Alt}(T^{\sigma}) = \sum_{\tau \in S_k} (-1)^{\tau} T^{\tau \sigma} = (-1)^{\sigma} \sum_{\tau \in S_k} (-1)^{\tau \sigma} T^{\tau \sigma} = (-1)^{\sigma} \operatorname{Alt}(T) = \operatorname{Alt}(T)^{\sigma}$$

as desired. \Box

4. The alternation operation is linear.

Proof. Follows by Proposition 1.4.14. \Box

- Repeating (multi-index I): A multi-index I of length k such that $i_r = i_s$ for some $r \neq s$.
- Strictly increasing (multi-index I): A multi-index I of length k such that $i_1 < i_2 < \cdots < i_r$.
- I^{σ} : The multi-index of length k defined by

$$I^{\sigma} = (i_{\sigma(1)}, \dots, i_{\sigma(k)})$$

• If I is non-repeating, there is a unique $\sigma \in S_k$ such that I^{σ} is strictly increasing.

• ψ_I : The following k-tensor. Given by

$$\psi_I = \text{Alt}(e_I^*)$$

• Proposition 1.4.20:

1.
$$\psi_{I^{\sigma}} = (-1)^{\sigma} \psi_I$$
.

Proof. We have that

$$\psi_{I^{\sigma}} = \operatorname{Alt}(e_{I^{\sigma}}^*) = \operatorname{Alt}[(e_I^*)^{\sigma}] = \operatorname{Alt}(e_I^*)^{\sigma} = (-1)^{\sigma} \operatorname{Alt}(e_I^*) = (-1)^{\sigma} \psi_I$$

as desired. \Box

2. If I is repeating, then $\psi_I = 0$.

Proof. Suppose $I=(i_1,\ldots,i_k)$ is such that $i_r=i_s$ for some distinct $r,s\in\Sigma_k$. Then $e_I^*=e_{I^{\tau_{i_r,i_s}}}^*$, so

$$\psi_I = \psi_{I^{\tau_{i_r,i_s}}} = (-1)^{\tau_{i_r,i_s}} \psi_I = -\psi_I$$

Therefore, we must have $\psi_I = 0$, as desired.

3. If I and J are strictly increasing, then

$$\psi_I(e_{j_1}, \dots, e_{j_k}) = \begin{cases} 1 & I = J \\ 0 & I \neq J \end{cases}$$

Proof. We have by definition that

$$\psi_I(e_{j_1},\ldots,e_{j_k}) = \sum_{\tau} (-1)^{\tau} e_{I^{\tau}}^*(e_{j_1},\ldots,e_{j_k})$$

This combined with the facts that

$$e_{I^{\tau}}^*(e_{j_1},\dots,e_{j_k}) = \begin{cases} 1 & I^{\tau} = J \\ 0 & I^{\tau} \neq J \end{cases}$$

 I^{τ} is strictly increasing iff $I^{\tau}=I$, and the above equation is nonzero iff $I^{\tau}=I=J$ implies the desired result.

• Conclusion 1.4.22: If $T \in \mathcal{A}^k(V)$, then we can write T as a sum

$$T = \sum_{I} c_{I} \psi_{I}$$

with I's strictly increasing.

Proof. Let $T \in \mathcal{A}^k(V)$ be arbitrary. By Theorem 1.3.13,

$$T = \sum_{I} a_{J} e_{J}^{*}$$

for some set of $a_J \in \mathbb{R}$. It follows since $\mathrm{Alt}(T) = k!T$ that

$$T = \frac{1}{k!} \sum a_J \operatorname{Alt}(e_J^*) = \sum b_J \psi_J$$

We can disregard all repeating terms in the sum since they are zero by Proposition 1.4.20(2); for every non-repeating term J, we can write $J = I^{\sigma}$, where I is strictly increasing and hence $\psi_J = (-1)^{\sigma} \psi_I$. \square

• Claim 1.4.24: The c_I 's of Conclusion 1.4.22 are unique.

Proof. For J strictly increasing, we have

$$T_J = T(e_{j_1}, \dots, e_{j_k}) = \sum_I c_I \psi_I(e_{j_1}, \dots, e_{j_k}) = c_J$$

• Proposition 1.4.26: The alternating tensors ψ_I with I strictly increasing are a basis for $\mathcal{A}^k(V)$.

 ${\it Proof.} \ \, {\rm Spanning:} \ \, {\rm See} \ \, {\rm Conclusion} \ \, 1.4.22.$

Linear independence: See Claim 1.4.24.

• We have that

$$\dim \mathcal{A}^k(V) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

- Hint in proving this claim: "Show that every strictly increasing multi-index of length k determines a k-element subset of $\{1, \ldots, n\}$ and vice versa." (Guillemin & Haine, 2018, p. 16).
- Note also that if k > n, every multi-index has a repeat somewhere, meaning that dim $\mathcal{A}^k(V) = \binom{n}{k} = 0$.