BIOST/STAT 571: Final Project (Part 1)

February 10, 2021

Final Project

• **Objective:** Develop a "new" method or approach with the aim of publishing in a statistical or applied journal

- Well Regarded Journals (not comprehensive list!!)
 - <u>Statistical Methods:</u> Biometrika, JASA T&M, JRSS-B, Biometrics
 - Applied Methods: JASA A&CS, Biometrics (Practice), Biostatistics, Statistics in Medicine, JRSS-C (Applied Statistics)
 - Computational: CSDA, Journal of Statistical Computation and Simulation, JCGS
 - Informatics: Bioinformatics, Genetic Epidemiology, PLoS Journals, Neuroimage
 - Applied Journals: Journal of Clinical Oncology, American Journal of Human Genetics, Nature Journals

What is a "New" Method?

De novo frameworks?

- Adaption of prior frameworks
 - Translation to new context
 - Extensions of existing frameworks
 - Bells and whistles and Cute tricks

- A "new" method does not truly need to be "new"
 - Very little in statistics is truly new

What Goes into Development of a New Method

- 1. The problem that is being solved
- 2. Methods and statistical framework for solving problem
- Justification and Evaluation of the method
 - Why are you solving this problem?
 - Why do you need a "new" or different approach?
 - Can you study the theoretical properties of your approach?
 - Computational considerations and algorithms?
 - Under what circumstances will your approach work? When will it fail?
 - What happens with real data?
- 4. Iterate through 1-3

How to Start Developing a "New" Method: Identifying a Problem

No universal approaches, but some options include the following:

- Motivation from data
 - Is there some characteristic of the data that the "usual" methods cannot handle?
 - Is there are question arising from the data that nobody has answered before?
 - Are there standard questions (from other data sets) for which methods do not exist?
- Motivation from previous methods
 - Under what situations do existing methods fail?
 - Are there situations that an existing approach cannot handle? Can we do better?
 - Can we apply/translate an existing method to a new context?
 - I found a cool trick. Can I try incorporating it into an existing method?

Building Your Method

Focus on specific aspects of the problem that you want to address

- Depends on what you're trying to do:
 - Better model
 - Better algorithms
 - Better theorys
 - Etc.

Justification and Evaluation a Method

- Why someone should care (most important part)
 - Sometimes, honest lies
- Theory and properties
 - Asymptotics usually
 - Finite sample theory rarely
- Simulations
- Data Applications
- Generally: No method universally wins, just want to show that yours *can* win and issue guidance

Paper Structure

- No definitive structure for papers: depends on context and the journal
- A Rough typical structure: (Not necessarily section headings!)
 - Introduction
 - Methods and theory
 - Results
 - Discussion
- Good idea: follow structure of relevant papers
- Bad Idea: follow structure of relevant papers
- Main idea: how would you explain and justify your approach to others?

Introduction

- By far the most important part of the paper
- What background material is necessary?
- What is the problem that you are solving?
- Why is the problem important?
- What related work has already been done?
- What is the approach that you are taking?

Methods

- (Sometimes) prior related work
- Proposed approaches and models
- Algorithms for implementation
- Theory:
 - Justification for your approach
 - Theoretical comparisons of your method to existing approaches
- This may take multiple sections in a paper

Results

- Empirical evaluation of your method (should back up what you say in the intro)
 - Comparisons with existing approaches and relevant metrics for evaluation
 - Comparisons of different options of your approach (e.g. should one use CV vs. AIC)
 - Sensitivity analysis
- Simulation scenarios (sometimes in methods) and simulation results
- Real data applications:
 - Show that your method works on real data
 - What insights does your method provide that are new or unusual?
 - For your final project:
 - Apply your method to real data
 - Do not need to give significant insights (or even work well, e.g. poor type I error control due to sample size)
 - Need to explain what you're seeing in terms of behavior of your method

Discussion/Conclusions

- What did you do in this paper and what did you show?
- Recap of when your method wins and when it loses.
- What are the options that go into your method? Recommendations for which to use?
- What are things that you would have liked to investigate further but are outside of the scope? Future research?
- What are things that others are likely to pick on? Pre-empt their comments.

Details of your Final Project

• Groups:

- Tentative groups <u>assigned</u> in next couple days
- Finalized groups by weekend

Grading:

- The paper will be evaluated on the basis of originality, scholarship (including appropriate literature citations), clarity, organization and relevance to class goals.
- Not all group members may receive same score: you will be asked for relative contributions (HW4)
- Creativity and thoroughness of evaluation count
- Due: 5pm on Thursday, March 18, 2021
 - E-mailed to: Instructor, TA's and ALL group members

Deliverable: The Paper

• Ideally: something publishable or that is close to publishable as a methods paper

• Length:

- No restriction as long as it is complete as a paper
- Expect about +/- 15-20 pages double spaced (not including any figures)

• Format:

- No set format, but probably good idea to follow usual structure
- Template: available next week

• Note:

- HW: can you do this?
- Project: what can you do?

Finding a Problem from Real Data

- There are many ways to come up with problems to solve
- Suggested approach: examination of a "complicated" data set
- Advantages to this:
 - Easy to motivate the work: importance
 - Natural data application
- Down-sides:
 - Real data can suck

Example Data Set: Longitudinal GvHD Microbiome Study

Bone Marrow Transplant and GvHD

- Bone marrow transplant is a standard therapy for many blood cancers, e.g. leukemia
 - Idea: transfer healthy blood-forming stem cells from a donor to you
- Graft-vs-host (GvHD) disease is a major complication:
 - The transferred (graft; from the donor) cells start attacking the body (host)
 - Results in considerable mortality
- Recently: evidence that gut microbiome may be closely related to development of GvHD

The Human Microbiome (Microbiota)

All the microbes that colonize a person

90% bacteria

Humans contain as many bacterial cells as human cells

 100x more bacterial genes than human genes

Found at nearly all body sites

 Composition varies by site and health status

Microbiome in Health and Human Disease

- Exposures
- Diet/Exercise
- Drugs/Alcohol/Smoking
- Treatment
- Outcomes (?)
- Asthma
- Cancer
- Diabetes
- Treatment Efficacy

Typical Gut Microbiome Experiment

• Get poo samples from individuals (e.g. healthy and affected subjects):

Typical Gut Microbiome Experiment

Microbiome Data at a Single Time Point

Microbiome data

- Taxon (e.g. species) is unit of analysis
- Sequence reads quantifying taxa

High dimensional

- Many taxa
- Count data
- Zero Inflated
- Over-dispersed
- Compositional

Biological structure

- Phylogeny
- Co-occurrence

Microbiome vs. GvHD Data Set

- Followed approximately patients from before transplant to 100 days after transplant
- Regular stool collection for each patient over time:
 - Microbiome profiling (multivariate data)
- Collection of hematologic markers: Not necessarily at same time as stool
- Demographic information
- Objective: study the relationship between microbiome and GvHD related variables
- Available online in next couple days

Friday

We will look more closely at the data set

We will talk about potentially problematic aspects of the data

We will discuss usual approaches to the data analysis