1991 年计算机数学基础

七、

1.

- (1) $(A-C) \cup B = A \cup B$ 的充分必要条件是 $A \cap C \subset B$ 。(证明见 1998 年第四题第 1 小题)。
- (2) 首先证明如下结论1。

结论一: 集合 A 满足方程 $\cup A = A$ 的充分必要条件是: A 是传递集且对任意 $x \in A$,存在 $y \in A$,使得 $x \in y$ 。

证明: 必要性。若 $\cup A = A$,则 $\cup A \subseteq A$ 。由教材定理 4.10 可知, A 是传递集。另一方面,由于 $A = \cup A$,从而对任意 $x \in A$,有 $x \in \cup A$,由 $\cup A$ 定义就有,存在 $y \in A$,使得 $x \in y$ 。

充分性。若 A 是传递集,则有 $\cup A \subseteq A$ 。同时,对任意 $x \in A$,由于存在 $y \in A$,使得 $x \in y$,所以有 $x \in \cup A$ 。由 x 的任意性可知 $A \subseteq \cup A$ 。从而就有 $\cup A = A$ 。

由结论一可知:

① $A = \emptyset$ 是方程 $\cup A = A$ 的一个解,且方程 $\cup A = A$ 不存在其它有限解。

证明: 由定义立即有 $A = \emptyset$ 是方程 $\cup A = A$ 的解。

下面说明, 若 $A \in \cup A = A$ 的解且 $A \neq \emptyset$, 则 A 必是无限集。

若 $A \neq \emptyset$,则存在 $x_0 \in A$ 。由结论一可知,存在 $x_1 \in A$,使得 $x_0 \in x_1$,再由结论一可知,存在 $x_2 \in A$,使得 $x_1 \in x_2$,从而存在集合列 x_0, x_1, \cdots ,满足 $x_i \in x_{i+1} \land x_i \in A (i=0,1,\cdots)$ 。由正则公理² 可知,这些 x_i 是互异的。这就是说,A 中至少有可数无穷个元素,从而 A 是无穷集。

② 若 A 是极限序数,则 A 是方程的一个解(极限序数的定义见教材定义 6.8)。

证明: 若 A 为一极限序数,则由序数性质知,A 是传递集,所以有 $\cup A \subseteq A$ 。下面证明 $A \subseteq \cup A$ 。 首先证明,对任意 $x \in A$,必有 $x^+ \in A$: 若不然,由序数三歧性有 $A \in x^+$ 或 $A = x^+$ 。若 $A \in x^+ = x \cup \{x\}$,则有 A = x 或 $A \in x$,这与 $x \in A$ 矛盾。若 $A = x^+$,则与 A 是极限序数矛盾。这就证明了对任意 $x \in A$,有 $x^+ \in A$ 。 另一方面,由 x^+ 定义知, $x \in x^+$,从而对任意 $x \in A$,有 $x \in x^+ \in A$, $x \in \cup A$ 。即 $A \subset \cup A$ 。

综合得, $A = \cup A$ 。

③ 对任意传递集 B, $A = B \cup \{B, \{B\}, \{\{B\}\}, \dots\}$ 是方程的一个解。 证明: 由结论一立即可得。

上面已经给出 $\cup A = A$ 的一些解的形式,但仍不能证明是否 $\cup A = A$ 的所有解都具有上述三种形式的一种。

¹感谢北京大学计算机系刘田教授给予的提示!

 $^{^2}$ 正则公理可以表述为"若 S 为一个非空集合,则必然存在 $x \in S$,使得 $x \cap S = \varnothing$ "。由正则公理可以证明:不存在集合 x_0, x_1, \cdots, x_n ,满足 $x_0 \in x_1 \in x_2 \in \cdots \in x_n \in x_0$ 。有关内容详见《公理集合论导引》(张锦文)第一章第11节。