

玻尔共振

物理实验中心 理学院 廖飞 2021年春

实验目的

- 1.观察测量自由振动中振幅与周期的关系
- 2.研究阻尼振动并测量阻尼系数
- 3. 研究受迫振动的幅频特性和相频特性
- 4. 用频闪法测定动态物理量——相位差

实验原理

- 1. 强迫力及受迫振动
 - 周期性外力
 - 振动因强迫力而起

2. 受迫振动的运动方程

$$J\frac{d^{2}\theta}{dt^{2}} = -k\theta - b\frac{d\theta}{dt} + M_{0}\cos\omega t$$
小力的力矩

阻尼力力矩

J 是摆轮的转动惯量, -kθ 是弹性力矩, M₀是策动力力矩的幅值 ω 是策动力的角频率.

实验原理

3. 受迫振动方程的通解

$$\theta = \theta_1 e^{-\beta t} \cos(\omega_f t + \alpha) + \theta_2 \cos(\omega t + \varphi_0)$$

与初始条件有关 一定时间后衰减为零 强迫力矩对摆轮做功 向振动体传送能量 最后达到稳定振动态

当稳定时:

$$\theta_2 = \frac{m}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}$$

$$\varphi = tg^{-1} \frac{2\beta\omega}{\omega_0^2 - \omega^2} = tg^{-1} \frac{\beta T_0^2 T}{\pi (T^2 - T_0^2)}$$

振幅与初状态无关

ω-角频率 T₀-系统固有周期

 ω_0 -系统固有角频率 T-振动周期

β-阻尼系数 m-外力力矩

实验原理

4. 受迫振动的幅频响应及相频响应曲线

$$\omega_r = \sqrt{\omega_0^2 - 2\beta^2}$$

$$\theta_r = \frac{m}{2\beta\sqrt{\omega_0^2 - 2\beta^2}}$$

共振时:

$$\frac{\omega_r = \sqrt{\omega_0 - 2\rho}}{\theta_r} = \frac{m}{2\beta\sqrt{\omega_0^2 - 2\beta^2}}$$

$$\frac{\partial}{\partial \omega}[(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2] = 0$$

$$\frac{\partial}{\partial \omega}[(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2] = 0$$

$$\frac{\partial}{\partial \omega}[(\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2] = 0$$

$$\frac{\partial}{\partial \omega}[(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2] = 0$$
 极值条件

- 1.ω₀ or T:
- 2.β:
- 3.**\phi**:
- **4.0**:

实验仪器

- 1. ZKY-BG 玻尔共振实验仪
- 2. 玻尔共振测试仪

实验步骤

搭建实验平台:

1. 实验连线,调整模式

自由振动实验:

- 2. 选择实验模式
- 3. 转动摆轮,测量并记录数据

$$\ln \frac{\theta_i}{\theta_i} = \ln \frac{\theta_0 e^{-\beta(iT)}}{\theta_0 e^{-\beta(jT)}} = (i - j)\beta T$$

阻尼振动实验

- 4. 选择阻尼振动模式
- 5.测量并记录数据

测绘幅频响应及相频响应曲线

- 6. 选择受迫振动模式
- 7. 测量幅值, 周期, 相位差

数据记录

表1 固有频率测量

	1	2	3	4	5	6
幅值θ						
周期T						

数据记录

表2 阻尼系数测量

阻尼档: 阻尼2

No.	幅值 θ (°)	No.	幅值 (θ (°)	$\ln \frac{\theta_i}{\theta_{i+5}}$
θ_1		θ_6		
θ_2		θ_7		
θ_3		θ ₈		

θ_{5}	θ_{10}		
θ ₄	θ_{9}		

$$\overline{T} = \underline{\hspace{1cm}} sec.$$

$$\beta = \underline{\qquad} sec.^{-1}$$

$$5 \beta T = \ln \frac{\theta_i}{\theta_{i+5}}$$

实验步骤及数据记录

表3 受迫振动及其幅频和相频特性曲线测量

序号	调速旋钮 刻度	强迫力 周期T(s)	相位差 Φ (度)	振幅 Θ(度)	ω
1	4 2.5				
2	3.5				
3	4.5				
4	5.5				
5	6.5				
6	7.0				
7	8.5				

讨论及扩展

- 1. 核磁共振中的共振概念.
- 2. 实验误差分析
- 3. 超材料单元结构的谐振特性/磁共振无线充电中的共振理论

