\mathcal{GP} Write Up 5

September 26, 2018

Convolutions on the Kernel matrix. Co-variance function is stationary.

1. Convolutions on a Kernel matrix naive way

Lets say we have an image $y\in\mathbb{R}^{n\times n}$. Then the kernel matrix will be of size $K\in\mathbb{R}^{n^2\times n^2}$. We are trying to approximate for v that is y=Kv, where $v\in\mathbb{R}^{n\times n}$.

Lets take for example an image y with n=2. Then:

$$y \approx \begin{bmatrix} k(0,0) & k(0,-1) & k(-1,0) & k(-1,-1) \\ k(0,1) & k(0,0) & k(-1,1) & k(-1,0) \\ k(1,0) & k(1,-1) & k(0,0) & k(0,-1) \\ k(1,1) & k(1,0) & k(0,1) & k(0,0) \end{bmatrix} \begin{bmatrix} v_{0,0} \\ v_{0,1} \\ v_{1,0} \\ v_{1,1} \end{bmatrix}$$
(1)

To implement convolutions in the naive way we can consider a filter of the size $\mathbb{R}^{1\times 4}$, with stride as one and zero padding, the convolution goes over a row in one stride. The computational complexity of this method is $O(n^4)$.

2. Convolutions on a Kernel

If we look at the above kernel we see that some elements k(i,j) are repeated. We can avoid these and write the kernel matrix like so.

$$K' = \begin{bmatrix} k(-1, -1) & k(-1, 0) & k(-1, 1) \\ k(0, -1) & k(0, 0) & k(0, 1) \\ k(1, -1) & k(1, 0) & k(1, 1) \end{bmatrix}$$
(2)

and

$$v = \begin{bmatrix} v_{1,1} & v_{1,0} \\ v_{0,1} & v_{0,0} \end{bmatrix} \tag{3}$$

and we say

$$y \approx K' * v \tag{4}$$

For any $y \in \mathbb{R}^{n \times n}$ we have $K' \in \mathbb{R}^{(2n-1) \times (2n-1)}$.

The following is an illustration for $y \in \mathbb{R}^{3 \times 3}$, $K' \in \mathbb{R}^{5 \times 5}$ and $v \in \mathbb{R}^{3 \times 3}$. This does not need any zero padding and we have to perform the above convolution with stride one.

$$v = \begin{bmatrix} v_{2,2} & v_{2,1} & v_{2,0} \\ v_{1,2} & v_{1,1} & v_{1,0} \\ v_{0,2} & v_{0,1} & v_{0,0} \end{bmatrix}$$
 (5)

-3 - 1 0 1 3	-2 - 1 0 1 2
- ? \(\(\lambda \(\lambda \) \(\lambda \(\lambda \) \(\lambda \(\lambda \) \) \(\lambda \(\lambda \) \(\lambda \) \(\lambda \(\lambda \) \) \(\lambda \) \(\	$-2 \begin{array}{ c c c c c c c c c c c c c c c c c c c$
-1 (1-1)-2) (1-1) (1-1) (1-1) (1-1)	$- 1 \qquad k(-1)-2) \qquad k(-1)-2) \qquad k(-1)-2) \qquad k(-1)-2) \qquad k(-1)-2)$
0 (0,2) (0(0,1) (0(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)	$ \bigcirc \ \ \ \ \ \ \ \ \ \ \ \$
1 k(1,-2) k(4,-1) k(1,0) k(1,0) k(1,02)	1 k(1,-2) k(4,-1) k(10) k(10) k(10)
2 h(23-2) h(23-1) h(230) h(331) h(332)	2 (2,-2) h(2,-1) h(2,0) h(2,1) h(2,2)
\ -2 -1 0 1 2	
-? \(\(\alpha\)_2,2) \(\(\alpha\)_2,2) \(\alpha\)_2,30 \(\alpha\)_2,30 \(\alpha\)_2,30 \(\alpha\)_2,30 \(\alpha\)_2,30 \(\alpha\)_2,30 \(\alpha\)_2,30 \(\alpha\)_2,30	
$-2 \left(\frac{(2.5)}{(2.5)} \frac{(2.5)}{(2.5)} \frac{(2.5)}{(2.5)} \frac{(2.5)}{(2.5)} \frac{(2.5)}{(2.5)} \right) $ $-1 \left(\frac{(2.5)}{(2.5)} \frac{(2.5)}{($	
(1,2) (1,1) (1,0)	
$- 1 \qquad k(-1)-2) k(-1)-1 \qquad \frac{(0_{(1,2)})}{(k(-1,0))} \frac{(0_{(1,2)})}{(k(-1))} \frac{(0_{(1,2)})$	

The computational complexity is still $O(n^4)$ however we have decreased the space complexity from $O(n^4)$ to $O(n^2)$.

From the above illustrations we can see that we **don't have to pad** the kernel with zeros. However if we make a stronger assumption of the co-variance function being *isotropic*, do we have to pad with **zeros**?

With isotropic covariance function we can simplify the kernel matrix as:

$$K_{iso} = \begin{bmatrix} k(0,0) & k(0,1) & k(0,2) \\ k(1,0) & k(1,1) & k(1,2) \\ k(2,0) & k(2,1) & k(2,2) \end{bmatrix}$$

$$(6)$$