DM Maths – Graphe

Exercice 1:

Partie 1 (graphique n°1):

(G, B, D, F) est un chemin hamiltonien de longueur 3.

• Partie 2 (graphique n°2) :

(D, G, B, D) est un circuit de longueur 3.

• Partie 3 (graphique n°3):

(D,A,C,E,D) est un circuit de longueur 4.

Exercice 2:

Pré-exercice:

Calcul de la matrice (matrice n^2 1), de la matrice à la puissance 3 (matrice n^2 2) et le graphe du tableau (graphique n^4 4).

Matrice n°2

Matrice n°1

	Α	В	С	D	E	F		Α	В	С	D	Е	F
Α	0	0	1	0	0	1	Α	0	0	0	0	1	0
В	0	0	1	0	1	1	В	0	0	0	0	1	0
С	0	0	0	0	0	0	С	0	0	0	0	0	0
D	0	0	0	0	1	0	D	0	0	0	0	0	0
E	0	0	1	0	0	0	E	0	0	0	0	0	0
F	0	0	0	1	0	0	F	0	0	1	0	0	0

Graphique n°4

Partie 1:

Il y a trois chemins de longueur 3:

Le premier : (A,F,D,E),Le Second : (B,F,D,E),Le dernier : (F,D,E,C).

Partie 2 (matrice n°3):

Il n'existe pas de chemin de longueur 5 car M^5 ne présente aucun « 1 » dans sa matrice.

Partie 3 (matrice n°4):

Il n'y a aucun circuit car il faudrait qu'au moins chaque ligne possède un « 1 ». Or, la ligne C ne possède aucun prédécesseur.

Matrice n°3

F

	Α	В	С	D	E	F
Α	0	0	0	0	0	0
В	0	0	0	0	0	0
С	0	0	0	0	0	0
D	0	0	0	0	0	0
Ε	0	0	0	0	0	0

0

Matrice n°4

	Α	В	С	D	E	F
Α	0	0	1	0	0	1
В	0	0	1	0	1	1
С	0	0	0	0	0	0
D	0	0	0	0	1	0
E	0	0	1	0	0	0
F	0	0	0	1	0	0

Exercice 3:

0

Partie 1:

M, matrice d'adjacence du graphe - Voir matrice n°5.

0

0

Partie 2:

Premier calcul: $M + M^2 + M^3 + M^4 - Voir matrice n^6$.

Résultat du calcul : M^ - Voir matrice n°7.

Partie 3 (graphique n°5):

Pour réaliser la fermeture transitive, on a besoin de l'arc (D,E).

Matrice n°5

	Α	В	С	D	Ε
Α	0	0	0	0	1
В	1	0	1	0	1
С	0	0	0	0	0
D	1	0	1	0	0
E	0	0	0	0	0

Matrice n°6

	Α	В	С	D	E
Α	0	0	0	0	1
В	1	0	1	0	2
С	0	0	0	0	0
D	1	0	1	0	1
E	0	0	0	0	0

Matrice n°7

	Α	В	С	D	E
Α	0	0	0	0	1
В	1	0	1	0	1
С	0	0	0	0	0
D	1	0	1	0	1
Е	0	0	0	0	0

Graphique n°5

