

N85-32409

INTERFACIAL BONDING STABILITY

UNIVERSITY OF CINCINNATI

J. Boerio

IN-SITU ELLIPSOMETRY

Figure 2. Sample cell for in-situ ellipsometry of metals exposed to water.

PRECEDING PAGE BLANK NOT FILMED

Figure 8. In-situ ellipsometry for (Δ) - polished aluminum and (o) - polished aluminum primed with γ -MPS undergoing hydration in water at 40°C .

Figure 4. In-situ ellipsometry for EVA/Al in water at 40°C; no pr

Figure 5. In-situ ellipsometry for EVA/Al in water at 40°C;
A-11861 primer.

AUGER ELECTRON SPECTRA

Figure 1. Auger electron survey spectrum from back surface of silicon wafer.

RELIABILITY PHYSICS

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 2. Aluminum and silicon Auger electron spectra from back surface of silicon wafer.

Figure 3: Aluminum Auger electron spectra from back surface of silicon wafer.

Conclusions

1. γ -MPS is an effective primer for bonding EVA to aluminum.
2. Ellipsometry is an effective in-situ technique for monitoring the stability of polymer/metal interfaces.
3. The aluminized back surface of silicon wafers contain significant amounts of silicon and may have glass-like properties.