Învățare Automată Tema 2 - 2024

1. Explorarea Datelor

a. Analiza echilibrului de clase

Clasele sunt distribuite proporțional pe setul de test fata de cel de antrenare.

b. Vizualizarea seriilor de timp

2. Modele de Retele

0.25

- a. MLP
 - i. **Patients**

```
def create_mlp_model(input_dim, layers, units, activation='relu',
learning rate=0.001):
  model = Sequential()
  model.add(Dense(units=units, activation=activation,
input_dim=input_dim))
   for _ in range(layers):
       model.add(Dense(units=units, activation=activation))
  model.add(Dense(units=7, activation='softmax'))
  model.compile(optimizer=Adam(learning_rate=learning_rate),
loss='categorical crossentropy', metrics=['accuracy'])
   return model
```

Model:

- 1. Input Layer:
 - Dense(units=units, activation=activation, input_dim=input_dim): Un strat dens (fully connected) cu numărul de neuroni specificat prin units, funcția de activare specificată prin activation, și dimensiunea intrării determinată de input_dim.
- 2. Hidden Layers:

 Dense(units=units, activation=activation): În fiecare iterare a buclei, se adaugă un strat dens cu numărul de neuroni specificat prin units și funcția de activare specificată prin activation.

3. Output Layer:

 Dense(units=7, activation='softmax'): Un strat dens cu 7 neuroni (presupunând că avem 7 clase de ieșire), cu activare softmax pentru clasificare multiclasă.

Parametrii selectati:

Optimizator: adam

Batch size: 24 Epochs: 25

loss: categorical_crossentropy

Learning Rate: 0.001

Activation: relu

Rezultate:

Cel mai mic loss este pentru 7 layere si 32 units pentru setul de validare, iar pentru train pentru 5 layers si 128 units. Se observa ca au aceeasi tendinta de scadere toate.

Cele mai bune rezultate pentru 5 layere si 64 units pentru acuratete. Am realizat si matricea de confuzie.

Clasa 6 a fost prezisa cel mai bine, asa cum reiese si din tabel.

ii. PTB Diagnostic ECG

```
def create_mlp_model_2(input_dim, layers, units, activation='relu',
learning_rate=0.001):
   model = Sequential()
   model.add(Dense(units=units, activation=activation,
input_dim=input_dim))
```

Model:

ca mai sus

Parametrii:

Optimizator: adam

Batch size: 24

Epochs: 15

loss: binary_crossentropy

Learning Rate: 0.001

Activation: relu

Rezultate:

Valori relativ asemănătoare pe partea de Train Loss, la partea de validation e greu de spus ce configuratie este cea mai buna.

Cele mai bune rezultate pentru 3 layers cu 256 units, am realizat matricea de confuzie pentru acea configuratie

b. Convolutional

i. PTB Diagnostic ECG

```
def create_conv_model(kernel_size):
    model = Sequential()
    model.add(Conv1D(32, kernel_size, activation='relu',
    input_shape=(x_train_ptb.shape[1], 1)))
    model.add(BatchNormalization())
    model.add(Conv1D(64, kernel_size, activation='relu',
    kernel_regularizer=12(0.001)))
```

```
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Conv1D(128, kernel_size, activation='relu',
kernel_regularizer=12(0.001)))
model.add(BatchNormalization())
model.add(GlobalAveragePooling1D())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer="adam", loss='binary_crossentropy',
metrics=['accuracy'])
return model
```

Model:

4. Input Layer:

Conv1D(32, kernel_size, activation='relu',
input_shape=(x_train_ptb.shape[1], 1)): Un strat convoluțional 1D cu
32 de filtre și dimensiunea nucleului specificată prin kernel_size.
Funcția de activare este ReLU, iar forma de intrare este
determinată de dimensiunea datelor de antrenament x_train_ptb.

5. Hidden Layers:

- BatchNormalization(): Normalizare batch pentru stabilizarea și accelerarea procesului de antrenare.
- Conv1D(64, kernel_size, activation='relu', kernel_regularizer=12(0.001)): Un al doilea strat convoluțional 1D cu 64 de filtre, activare ReLU și regularizare L2 pentru a preveni overfitting-ul.
- BatchNormalization(): Normalizare batch.
- Dropout(0.5): Dropout cu rata de 0.5 pentru regularizare și reducerea overfitting-ului.
- Conv1D(128, kernel_size, activation='relu', kernel_regularizer=12(0.001)): Un al treilea strat convoluțional 1D cu 128 de filtre, activare ReLU și regularizare L2.
- BatchNormalization(): Normalizare batch.
- GlobalAveragePooling1D(): Pooling global pentru reducerea dimensionalității și extragerea caracteristicilor globale.

6. Output Layers:

- Dense(64, activation='relu'): Un strat dens cu 64 de neuroni și activare ReLU.
- Dropout(0.5): Dropout cu rata de 0.5.

• Dense(1, activation='sigmoid'): Un strat dens cu un singur neuron și activare sigmoid pentru a produce o probabilitate binară (folosit pentru clasificarea binară).

Parametrii:

• Optimizator: adam

Batch size: 32Epochs: 25

• loss: binary_crossentropy

• Learning Rate: 0.001

• Activation: relu

• Weight decay: kernel_regularizer=12(0.001)

Rezultate:

Se observa ca cel mai bun rezultat este pentru kernel_size = 5 pentru toate metricile

