From Diophantine equations to PDEs

Simon L. Rydin Myerson 21 August 2024

Chalmers University of Technology

Download these slides:

 ${\tt maths.fan/chalmers.pdf}$

- 1. Analytic toolkit for Diophantine equations and inequalities
 - 1.1 Main example: the circle method for Manin's conjecture
 - 1.2 Comments on other work
- 2. Applying that toolkit to harmonic analysis and dispersive PDEs
 - 2.1 Main example: cluster estimates for the Laplace-Beltrami operator on flat tori
 - 2.2 Comments on other work
- 3. Vision and future plans

Diophantine equations

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.

- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results. No completely general result possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\}.$
- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.
- Let's make this rigorous.

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results. No completely general result possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\}.$
- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.
- Let's make this rigorous.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\} \le (2B+1)^s$.

Heuristics

- Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- That is, let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}}B^{s-\sum d_i}$.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\} \le (2B+1)^s$.

Heuristics

- Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- That is, let \vec{X} be a uniform random variable on $[-B, B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]$, which is typically $\times c_{\vec{f}} B^{s \sum d_i}$.
- But: if $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_f(B) = 1$ as $\vec{x} = \vec{0}$ "mod 2^{∞} ".
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Predict

$$egin{aligned} N_{ec{f}}(B)-1 &= (1+o(1))(2B)^s \mathbb{P}[ec{f}(ec{X}) \in [0,1)^R] \ & \cdot \prod_{p} \lim_{N o \infty} p^{NR} \mathbb{P}[p^N \mid ec{f}(ec{X}_p)]. \end{aligned}$$

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}} B^{s-\sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 1$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

$$N_{\vec{f}}(B) = \frac{(1+o(1))(2B)^{s} \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^{R}] \prod_{p} \lim_{N \to \infty} p^{NR} \mathbb{P}[p^{N} \mid \vec{f}(\vec{X}_{p})].$$

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff $a \ll b$ iff |a| < Cb for some constant C. Also write $a \asymp b$ iff $a \ll b \ll a$. And put $a \sim b$ iff $a/b \to 1$ as $B \to \infty$. And put a = o(b) iff $a/b \to 0$ as $B \to \infty$.

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B, B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]$, which is typically $\times c_{\vec{f}} B^{s \sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 1$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

$$N_{\vec{f}}(B) = \frac{(1 + o(1))(2B)^{s} \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^{R}] \prod_{p} \lim_{N \to \infty} p^{NR} \mathbb{P}[p^{N} \mid \vec{f}(\vec{X}_{p})].$$

• This is the *quantitative Hasse principle*; the *Manin-Peyre conjecture* is a more sophisticated version needed for $s \le 2 \sum d_i$ or \vec{f} singular.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff $a \ll b$ iff |a| < Cb for some constant C. Also write $a \asymp b$ iff $a \ll b \ll a$. And put $a \sim b$ iff $a/b \to 1$ as $B \to \infty$. And put a = o(b) iff $a/b \to 0$ as $B \to \infty$.

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}}B^{s-\sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 1$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

$$N_{\vec{f}}(B) = (1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R] \prod_{p} \lim_{N \to \infty} p^{NR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)].$$

• This is the quantitative Hasse principle; the Manin-Peyre conjecture is a more sophisticated version needed for $s \le 2 \sum d_i$ or \vec{f} singular.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff $a \ll b$ iff |a| < Cb for some constant C. Also write $a \asymp b$ iff $a \ll b \ll a$. And put $a \sim b$ iff $a/b \to 1$ as $B \to \infty$. And put a = o(b) iff $a/b \to 0$ as $B \to \infty$.

The circle method

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- Set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\|_{\infty} \le P\}, \, \vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i.$

$$N_{\vec{f}}(P) = \int_0^1 \cdots \int_0^1 \sum_{\substack{\vec{x} \in \mathbb{Z}^n \\ \|\vec{x}\|_{\infty} \le B}} e^{2\pi i \vec{t} \cdot \vec{f}(\vec{x})} d\vec{t}$$

The Birch-Davenport circle method

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\|_{\infty} \le B\}.$
- \vec{f} is smooth if $\vec{f}=0$ defines a smooth s-R dimensional complex manifold in \mathbb{C}^s away from the origin.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\|_{\infty} \leq B\}.$
- \vec{f} is smooth if $\vec{f}=0$ defines a smooth s-R dimensional complex manifold in \mathbb{C}^s away from the origin.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Hope for s > 2dR. Much work on the range for s if R = 1. For $R \ge 2$:

- (d, R, s) = (2, 2, 11) by Munshi (2015) s = 10, Li-RM-Vishe, soon!
- $d = 2, s \ge 9R$, RM (2018)
- $d = 3, s \ge 25R$, RM (2019)
- (d, R, s) = (3, 2, 39) by Northey and Vishe (2024)

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B)\sim cB^{s-dR}$ as above if \vec{f} is smooth, $d_1=\cdots=d_R=d$, $s\geq (d-1)2^{d-1}R(R+1)+R$.

Few generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1=2, d_2=3, s\geq 29$.
- If $d_1, \ldots, d_R \leq d$, Browning–Heath-Brown (2017) handle around $d^3 R^2 2^D$ variables, improving on Schmidt (1985).

The circle method: current work

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim c B^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Few generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If $d_1, \ldots, d_R \leq d$, Browning–Heath-Brown (2017) handle around $d^3 R^2 2^D$ variables, improving on Schmidt (1985).
- In the culmination of work announced at the 2021 Hausdorff circle method school, I achieve $s \geq R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim c B^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Few generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If $d_1, \ldots, d_R \leq d$, Browning–Heath-Brown (2017) handle around $d^3 R^2 2^D$ variables, improving on Schmidt (1985).
- In the culmination of work announced at the 2021 Hausdorff circle method school, I achieve $s \geq R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim c B^{s-dR}$ as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

- If $d_1, \ldots, d_R \leq d$, Browning-Heath-Brown (2017) handle around $d^3R^22^D$ variables, improving on Schmidt (1985).
- In the culmination of work announced at the 2021 Hausdorff circle method school, I achieve $s \ge R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

Key ideas: *p*-adic repulsion, multilinear repulsion, a way to extract lower-order terms in exponential sums.

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim c B^{s-dR}$ as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

- If $d_1, \ldots, d_R \leq d$, Browning-Heath-Brown (2017) handle around $d^3R^22^D$ variables, improving on Schmidt (1985).
- In the culmination of work announced at the 2021 Hausdorff circle method school, I achieve $s \ge R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

Key ideas: *p*-adic repulsion, multilinear repulsion, a way to extract lower-order terms in exponential sums.

Further work

- I will give the first analogue of Birch's result for Diophantine inequalities |f_i(x)| ≤ 1 with real coefficients and differing degrees.
- Counting equations that have solutions, within families of equations parametrized by solutions to quadratic or cubic equations (Serre's problem).
 - Quadratic forms with restricted variables: prime and almost-prime variables with Blomer-Grimmelt-Li;
 - future work with Naomi Bazlov (Warwick), Junxian Li (UC Davis), Alisa Sedunova (Purdue).
 - The elliptic sieve with Loughran, Nakahara, and Bhakta (2023) for rank 1 elliptic curves;
 - working on generalisations with Edison Au-Yeung (Warwick),
 Subham Bhakta (IISER), Shparlinski (UNSW).

- M a compact Riemannian manifold, Δ_M Laplace-Beltrami operator.
- Let dim M=d; analogous to $\Delta=\sum_{i=1}^d \frac{\partial^2}{\partial x^2}$ on \mathbb{R}^d .
- Let $(\psi_j)_j$ be an orthonormal basis of eigenfunctions, $\Delta_M \psi_j = -\lambda_j^2 \psi_j$.
- $F(\Delta_M)\psi_i = F(\lambda_i)\psi_i$ (functional calculus).
- If $f = \sum_j \widehat{f_j} \psi_j$ put $\mathbf{1}_{(-1,1)} \left(\frac{\sqrt{-\Delta} \lambda}{\delta} \right) f = \sum_{j:|\lambda_j \lambda| < \delta} \widehat{f_j} \psi_j$.
- The universal estimate of Sogge (1988):

$$||P_{\lambda,1}||_{L^2 \to L^p} \lesssim \lambda^{\frac{d-1}{2}(\frac{1}{2} - \frac{1}{p})} + \lambda^{\frac{d-1}{2} - \frac{d}{p}}.$$

• For $p < \frac{2(d+1)}{d-1}$ the first term is bigger (geodesic-focusing regime).

- ullet M a compact Riemannian manifold, Δ_M Laplace-Beltrami operator.
- Let dim M=d; analogous to $\Delta=\sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$ on \mathbb{R}^d .
- Let $(\psi_j)_j$ be an orthonormal basis of eigenfunctions, $\Delta_M \psi_j = -\lambda_j^2 \psi_j$.
- $F(\Delta_M)\psi_j = F(\lambda_j)\psi_j$ (functional calculus).
- If $f = \sum_j \widehat{f_j} \psi_j$ put $\mathbf{1}_{(-1,1)} \left(\frac{\sqrt{-\Delta} \lambda}{\delta} \right) f = \sum_{j:|\lambda_j \lambda| < \delta} \widehat{f_j} \psi_j$.
- The universal estimate of Sogge (1988):

$$||P_{\lambda,1}||_{L^2 \to L^p} \lesssim \lambda^{\frac{d-1}{2}(\frac{1}{2} - \frac{1}{p})} + \lambda^{\frac{d-1}{2} - \frac{d}{p}}.$$

- For $p < \frac{2(d+1)}{d-1}$ the first term is bigger (geodesic-focusing regime).
- For fixed $p < \frac{2(d+1)}{d-1}$, the function $\lambda \mapsto \|P_{\lambda,\log^{-1}\lambda}\|_{L^2 \to L^p}$ detects the curvature of the manifold (Huang-Sogge 2024)).
- We can really "hear the curvature of a drum"!

- Let $\mathbb{T}^3 = \mathbb{R}^3/\mathbb{Z}^3$, $\Delta = \sum_{1}^3 \frac{\partial^2}{\partial x_i^2}$, $f_{\vec{k}}(\vec{x}) = e^{2\pi i \vec{k} \cdot \vec{x}}$, $\lambda_{\vec{k}} = \|\vec{k}\|_2$ $(\vec{k} \in \mathbb{Z}^3)$.
- Define $P_{\lambda,\delta} = \mathbf{1}_{(-1,1)} \left(\frac{\sqrt{-\Delta} \lambda}{\delta} \right)$.
- The Fourier transform on \mathbb{T}^3 is given by

$$\widehat{f}_{\vec{k}} = \int_{\mathbb{T}^3} f(\vec{x}) e^{-2\pi i \vec{k} \cdot \vec{x}} \, d\vec{x} \qquad (\vec{k} \in \mathbb{Z}^3).$$

- We study the $L^2 \to L^p$ operator norms of $P_{\lambda,\delta}$, with a focus on narrow spectral windows (small δ).
- Our goal is to establish bounds of the form, for suitable $C(p, \lambda, \delta)$,

$$\|P_{\lambda,\delta}f\|_p \leq C(p,\lambda,\delta)\|f\|_2.$$

- Let $\mathbb{T}^3 = \mathbb{R}^3/\mathbb{Z}^3$, $\Delta = \sum_1^3 \frac{\partial^2}{\partial x_*^2}$, $f_{\vec{k}}(\vec{x}) = e^{2\pi i \vec{k} \cdot \vec{x}}$, $\lambda_{\vec{k}} = \|\vec{k}\|_2$ $(\vec{k} \in \mathbb{Z}^3)$.
- Define $P_{\lambda,\delta} = \mathbf{1}_{(-1,1)} \left(\frac{\sqrt{-\Delta} \lambda}{\delta} \right)$.
- The Fourier transform on \mathbb{T}^3 is given by

$$\widehat{f}_{\vec{k}} = \int_{\mathbb{T}^3} f(\vec{x}) e^{-2\pi i \vec{k} \cdot \vec{x}} \, d\vec{x} \qquad (\vec{k} \in \mathbb{Z}^3).$$

- We study the $L^2 \to L^p$ operator norms of $P_{\lambda,\delta}$, with a focus on narrow spectral windows (small δ).
- Our goal is to establish bounds of the form, for suitable $C(p, \lambda, \delta)$,

$$\|P_{\lambda,\delta}f\|_{p} = \left(\int_{\mathbb{T}^{3}} \left(\sum_{\substack{\vec{k} \in \mathbb{Z}^{3} \\ -\delta < \|\vec{k}\|_{2} - \lambda < \delta}} \widehat{f}_{\vec{k}}e^{2\pi i\vec{k}\cdot\vec{x}}\right)^{p} d\vec{x}\right)^{\frac{1}{p}} \leq C(p,\lambda,\delta)\|f\|_{2}.$$

• An exponential sum; a polynomial in integers $||k||_2^2 = k_1^2 + k_2^2 + k_3^2$.

Conjecture (Germain-Myerson 2022)

For $\lambda^{-1} \lesssim \delta \leq 1$ and $p \geq 2$, we conjecture that

$$\|P_{\lambda,\delta}\|_{L^2\to L^p}\lesssim (\lambda\delta)^{\frac{1}{2}-\frac{1}{p}}+\lambda^{1-\frac{3}{p}}\delta^{\frac{1}{2}}+1.$$

• Provided $\delta \geq \lambda^{-1}$, we expect

$$\|P_{\lambda,\delta}\|_{L^2\to L^p}\lesssim \begin{cases} \lambda^{1-\frac{3}{p}}\delta^{\frac{1}{2}} & \text{if } p\geq 6, \text{ or } 4\leq p\leq 6 \text{ and } \delta\geq \lambda^{2-\frac{p}{2}},\\ (\lambda\delta)^{\frac{1}{2}-\frac{1}{p}} & \text{otherwise}. \end{cases}$$

- Joint with Pierre Germain (Imperial College London).
- Goal: prove the conjecture for $\delta \geq \lambda^{-1/2}$, possibly with a loss $\lambda^{o(1)}$.
- Builds on weaker result for \mathbb{T}^d and relatively strong results for generic non-rectangular d-tori (Germain-Myerson, 2022).

Harmonic analysis: future work

- Spectral projector estimates in less traditional settings:
 - hyperbolic spaces with Vedran Sohinger (Warwick),
 - nilmanifolds with Hajer Bahouri (Sorbonne), Veronique Fischer (Bath),
 - Simple Lie groups with Damaris Schindler (Göttingen).
- Bigger picture: Strichartz estimates, applications to PDE.

- Push the boundaries of analytic number theory, outward from Diophantine problems to harmonic analysis and applications to nonlinear dispersive PDE.
- I work to build these connections and show them to the world.
- Passionate about mentoring students through research projects and dissertations. Everyone can contribute to mathematical research.
- Collaborative and open approach: group meetings, inter-group idea exchange.

Number theory and the sea

Motivation

• Wind driven waves on the ocean!

Motivation

- Wind driven waves on the ocean $[-L, L]^2$
- \bullet Zakharov–Filonenko: There is a simple theory in the big box limit $L \to \infty.$
- But it assumes waves don't have time to cross the box. Can't build a box big enough to test it experimentally.
- Let's do better!

Related problem

Nonlinear Schrödinger equation on a large torus

$$-2\pi i \frac{\partial}{\partial t} f + \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right) f = |f|^2 f \qquad \vec{x} \in (\mathbb{R}/L\mathbb{Z})^2$$

Faou-Germain-Hani, Buckmaster-Germain-Hani-Shatah derived a simpler equation for L large, f and t small.

Number theory and the sea

Related problem (Nonlinear Schrödinger equation)

$$-2\pi i \frac{\partial}{\partial t} f + \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right) f = |f|^2 f \qquad \vec{x} \in (\mathbb{R}/L\mathbb{Z})^2$$

Faou-Germain-Hani, Buckmaster-Germain-Hani-Shatah derived a simpler equation for L large, f and t small

Related problem (Nonlinear Schrödinger equation)

$$-2\pi i \frac{\partial}{\partial t} f + \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right) f = |f|^2 f \qquad \vec{x} \in (\mathbb{R}/L\mathbb{Z})^2$$

Faou-Germain-Hani, Buckmaster-Germain-Hani-Shatah derived a simpler equation for L large, f and t small

$$\begin{split} f(\vec{x},t) &= \sum_{\vec{u} \in \mathbb{Z}^2} a_{\vec{u}}(t) e(\vec{u} \cdot \vec{x}/L) \qquad e(s) = e^{2\pi i s} \\ -2\pi i \partial_t a_{\vec{u}} &= L^{-4} \sum_{\substack{\vec{p},\vec{q},\vec{r} \in \mathbb{Z}^2\\ \vec{p}+\vec{q}=\vec{r}+\vec{u}\\ |\vec{p}|^2 + |\vec{q}|^2 = |\vec{r}|^2 + |\vec{u}|^2}} a_{\vec{p}} a_{\vec{q}} \vec{a}_{\vec{r}} \quad + \quad \text{oscillatory terms} \\ -2\pi i \partial_t a_{\vec{u}} &= L^{-4} \int \delta_{\vec{p}+\vec{q}=\vec{r}+\vec{u}} \delta_{|\vec{p}|^2 + |\vec{q}|^2 = |\vec{r}|^2 + |\vec{u}|^2} a_{\vec{p}} a_{\vec{q}} \vec{a}_{\vec{r}} \ d\vec{p} \ d\vec{q} \ d\vec{r} \end{split}$$

Count weighted solutions to a quadratic equation; use the circle method

Water waves \rightarrow some different counting problems. New techniques? With Jalal Shatah (NYU), Tristan Buckmaster (NYU).

Related problem (Nonlinear Schrödinger equation)

$$-2\pi i \frac{\partial}{\partial t} f + \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right) f = |f|^2 f \qquad \vec{x} \in (\mathbb{R}/L\mathbb{Z})^2$$

Faou-Germain-Hani, Buckmaster-Germain-Hani-Shatah derived a simpler equation for L large, f and t small

$$\begin{split} f(\vec{x},t) &= \sum_{\vec{u} \in \mathbb{Z}^2} a_{\vec{u}}(t) e(\vec{u} \cdot \vec{x}/L + |\vec{u}|^2 t/L^2) \qquad e(s) = e^{2\pi i s} \\ -2\pi i \partial_t a_{\vec{u}} &= L^{-4} \sum_{\substack{\vec{p},\vec{q},\vec{r} \in \mathbb{Z}^2 \\ \vec{p}+\vec{q}=\vec{r}+\vec{u} \\ |\vec{p}|^2 + |\vec{q}|^2 = |\vec{r}|^2 + |\vec{u}|^2}} a_{\vec{p}} a_{\vec{q}} \overline{a}_{\vec{r}} \quad + \quad \text{oscillatory terms} \\ -2\pi i \partial_t a_{\vec{u}} &= C L^{-4} \int \delta_{\vec{p}+\vec{q}=\vec{r}+\vec{u}} \delta_{|\vec{p}|^2 + |\vec{q}|^2 = |\vec{r}|^2 + |\vec{u}|^2} a_{\vec{p}} a_{\vec{q}} \overline{a}_{\vec{r}} \, d\vec{p} \, d\vec{q} \, d\vec{r} \end{split}$$

Count weighted solutions to a quadratic equation; use the circle method

Water waves \rightarrow some different counting problems. New techniques? With Jalal Shatah (NYU), Tristan Buckmaster (NYU).