## mas550 homework

20208209 오재민

2020년 10월 6일

## **Problem** (2.2.3).

- (a)  $f(U_i)$ 's are iid because  $P(\bigcap_i (f \circ U_i) \in B_i) = P(\bigcap_i \{U_i \in f^{-1}(B_i)\}) = \prod_i P(U_i \in f^{-1}(B_i)) = \prod_i P(f(U_i) \in B_i)$ . Also, for borel set B,  $P(f(U_i) \in B) = P(U_i \in f^{-1}(B_i))$  are all same for i.  $Ef(U_i) = \int_0^1 f(x) dx, \ E|f(U_i)| = \int_0^1 |f(x)| dx < \infty.$ Now, by WLLN,  $\frac{\sum f(U_i)}{n}$  converges to  $\int_0^1 f(x) dx$  in probability.
- (b)  $P(|I_n I| > a/n^{0.5}) \le \frac{n}{a^2} E|I_n I|^2 = \frac{n}{a^2} Var(I_n) = Var(\sum f(U_i))/na^2 = Var(f(U_i))/a^2 = \left[\int_0^1 f(x)^2 dx \left(\int_0^1 f(x) dx\right)^2\right]/a^2.$

## **Problem** (2.2.5).

Note that  $P(X_i \le a) = 0$  for all a < e.

$$xP(X_i > x) = \frac{e}{\log x} \to 0 \text{ as } x \to \infty.$$

$$E|X_i| = EX_i = \int_e^\infty P(X_i > x) dx = \int_e^\infty \frac{e}{x \log x} dx = \infty$$
 since  $X_i \ge 0$  almost surely.

But  $\mu_n = \int_{|X_i| \le n} X_i dP \uparrow EX_i = \infty$  by monotone convergence theorem. Now, theorem 2.2.12 says  $\frac{s_n}{n} - \mu_n$  converges to 0 in probability.