Cognoms i Nom: UNA POSSIBLE SOLUCIÓ

Doc. Identitat:

Totes les respostes han d'estar degudament justificades

1) Donat un sensor que genera un senyal amb les següents característiques

	Mínim	Màxim
Voltatge de sortida (Volts)	1,7	4,0
Freqüència senyal de sortida (KHz)	0,07	0,9

Determinar el nombre de bits del Convertidor Analògic Digital (CAD), i la freqüència de mostreig, mínimes necessàries per treballar amb una resolució de 0,01 Volts/divisió, i satisfer el criteri de Nyquist.

Utilitzem el mòdul CAD del PIC18F4550. Vref+= 5 Volts, Vref-= 0 Volts, Fosc= 20 MHz

(1 p.)

Determinar nombre de bits

La resolució mínima desitjada ens la faciliten de forma absoluta (0,01 V/div), i no de forma relativa (en percentatge). Si volem 0,01 Volts/div., i el rang de tensions a l'entrada del CAD és V_{ref+}-V_{ref-} = 5-0= 5 Volts, tenim

Nombre divisions= $5/0.01 = 500 \text{ div.} \rightarrow \text{n bits} = \log_2(500) = 8.96 \rightarrow \text{Caldran com a mínim 9 bits.}$

Si utilitzem 9 bits, la resolució efectiva seria de 5/512= 0,0097 Volts/div.

De fet, com treballem amb un CAD de 10 bits, tenim una resolució de 5/1024= 0,0048 Volts/div

Determinar frequència de mostreig

Segons el criteri de Nyquist cal mostrejar el senyal, com a mínim, al doble de la freq. màxima del senyal. fmax= 0,9 KHz → fmostreig > 1,8 KHz o el que és el mateix Tmostreig<1/fmostreig= 0,555 mseg= 555 μseg.

2) Volem configurar el CAD d'un PIC18F4550 que funciona amb un oscil·lador extern a 20MHz. Amb quins valors hem de configurar els bits ADCS2:ADCS0 i els bits ACQT2:ACQT0 per tal que la conversió es realitzi correctament? (1,5 p.)

El TAD ha de ser sempre superior a 0,8 µseg. Per tant:

TAD= X*Tosc= X/Fosc> = 0.8 μ seg \rightarrow X >= 0.8 μ seg * 20 M Hz >= 16

Podem configurar els bits ADCS2:ADCS0 amb qualsevol valor superior a 16 (16, 32 o 64), valors 101, 010 i 110 respectivament.

Com que el temps d'adquisició TACQ ha de ser superior a 2,45 microsegons tenim

TACQ = Mult*TAD > $2,45 \mu seg$

Si suposem que hem triat un divisor de 16 per fixat el

TAD tenim que TAD = $0.8 \mu seg$

Mult * 0,8 μ seg > 2,45 μ seg \rightarrow Mult > 2,45/0,8 > 3,06 Qualsevol combinació de ACQT2:ACQT0 on el

multiplicador deTAD sigui superior a 3 funcionarà.

Per tant les valors 010, 011, 100, 101, 110, 111 són vàlids.

Més gran fem el TAD o el TACO, més gran serà el TConversió (temps necessari per adquirir una mostra amb el CAD).

bit 7 ADFM: A/D Result Format Select bit

> 1 = Right justified 0 = Left justified

bit 6 Unimplemented: Read as '0'

ACQT2:ACQT0: A/D Acquisition Time Select bits

111 = 20 TAD 110 = 16 TAD

101 = 12 TAD 100 = 8 TAD

011 = 6 TAD010 = 4 TAD

001 = 2 TAD000 = 0 TAD(1)

bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits

111 = FRC (clock derived from A/D RC oscillator)(1)

110 = Fosc/64

101 = Fosc/16

100 = Fosc/4

011 = FRC (clock derived from A/D RC oscillator)(1)

010 = Fosc/32 001 = Fosc/8 000 = Fosc/2

REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADCS2 ADFM ACQT2 ACQT1 ACQT0 ADCS1 ADCS0

bit 5-3

3) Volem connectar un PIC18F450 a una sèrie de 8 LEDS RGB tipus ShiftBrite com el que hem utilitzat al laboratori. Els LEDS estan connectats entre si seguin una configuració sèrie tal i com mostra la figura.

Explica quants bits haurem de transmetre des del PIC abans d'activar el senyal latch per tal de que tots els leds s'actualitzin a l'hora. (1,5 p.)

En total haurem de transmetre 32 * 8 = 256 bits sincronitzats amb el senyal de clock que es propagaran a traves de tots els mòduls LED abans d'activar el senyal de LATCH. Sempre haurem de fer la transmissió del bit mes significatiu al menys significatiu. I enviar primer la informació (32 bits) associada als LEDs més allunyats del microcontrolador.

4) Descriu el 4 tipus d' Endpoints que podem trobar en el protocol USB.

(1,5 p.)

En el bus USB existeixen 4 tipus de End Ponts que son:

CONTROL: Serveix per enviar paquets de control de petita mida. L'amplada de banda esta garantida (10%) i existeix control de errors i retransmissió de paquet en cas de error.

INTERRUPCIÓ: El màster pregunta periòdicament al Slave per dades a emetre/rebre. Els paquets enviats son de petita mida. L'amplada de banda esta garantida i existeix control de errors i retransmissió de paquet en cas de error.

BULK. Serveix per enviar grans volums de dades però que no tenen restricció de temps. S'aplica control de errors i retransmissions però l'amplada de banda no està garantida. S'agafa la disponible en aquell moment.

ISOCRÓNICA. Serveix per enviar dades a intervals i durada constant (típic streaming de àudio o vídeo). NO hi ha control de errors ni retransmissions es garanteix com a mínim el 20% de l'amplada de banda del bus.

Cognoms i Nom: UNA POSSIBLE SOLUCIÓ	Doc. Identitat:
-------------------------------------	-----------------

Totes les respostes han d'estar degudament justificades

5) Configurar el mòdul EUSART adequadament per a transmetre informació en el següent format:

Comunicació asíncrona full-duplex, 8 bits de dades, sense bit de paritat, 1 start bit, 1 stop bit, Baud rate= 19200 bits/seg. Fosc= 8 MHz.

Calculeu l'error relatiu (%) en la velocitat de comunicació per a la configuració seleccionada.

(2 p.)

TRISCbits.RC6= 1 // Configurem els dos pins associats a l'EUSART com sortida TRISCbits.RC7= 1

TXSTA= 0bx0100?xx // TX9=0 8 bits dades, TXEn=1 TX habilitada, SYNC=0 Comunicació Asíncrona, BRGH=? RCSTA= 0b101x0xxx // SPEN=1 Port sèrie habilitat, RX9=0 8 bits de dades, SREN=1 RX habilitada, Addres Detect deshabilitat.

BAUDCON= 0bxx00?x00 // RXDPT=0, TXCKP=0 Polaritats senyals no invertides, BRG16= ?; WUE=0, ABDEN=0 funcions extenses no habilitades

// x= don't care; ?= valor a determinar

La velocitat de comunicació de l'EUSART es determina a partir dels bits de configuració SYNC, BR16, BRGH i el valor **n** del registre SPBRGH:SPBRG (16 bits), segons la formula Baud rate= Fosc/[a*(n+1)] on a={4, 16, 64} segons la configuració.

Segons la taula hi ha 3 opcions possibles: (1) SYNC=0, BRG16=1, BRGH=1 \rightarrow a=4; (2) SYNC=0, BRG16=1, BRGH=0 o SYNC=0, BRG16=0, BRGH=1 \rightarrow a=16; (3) SYNC=0, BRGH=0 \rightarrow a=64.

Baud rate= Fosc/[a*(n+1)] on a= $\{4, 16, 64\} \rightarrow$ n= (Fosc/(a*Baud rate))-1= 103,16; 25,04; 5,51 respectivement.

Els valors adequats per SPBRGH:SPBRG serien n= 103; 25; 6 respectivament per a={4, 16, 64}. Per cada cas el baud rate real és 19230,76; 19230,76; 17857,19; el que suposa un error de 0,1%; 0,1%; -7%. Les millors opcions són la 1, la 2a, i la 2b.

Per tant les configuracions serien

- Opció (1) BRG16=1, BRGH=1 i SPBRGH= 0, SPBRG= 103
- Opció (2a) BRG16=1, BRGH=0 i SPBRGH= 0, SPBRG= 25
- Opció (2b) BRG16=0, BRGH=1 i SPBRG= 25

REGISTER 20-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
-								

REGISTER 20-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D

REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN

TABLE 20-1: BAUD RATE FORMULAS

Configuration Bits		BRG/EUSART Mode	Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/LUSART WIOGE	Baud Rate I of fidia	
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]	
0	0	1	8-bit/Asynchronous	Fosc/[16 (n + 1)]	
0	1	0	16-bit/Asynchronous	1 050/[10 (11 + 1)]	
0	1	1	16-bit/Asynchronous		
1	0	×	8-bit/Synchronous	Fosc/[4 (n + 1)]	
1	1	x	16-bit/Synchronous		

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

- 6. Tenim dos sistemes A i B que han d'intercanviar blocs d'informació de 1500 Bytes, fent de vegades d'emissor A i d'altres B. Indicar pels protocols de comunicació RS-232 (115200 bauds), SPI (1,5 M bauds), I2C (100 K bauds) i USB (1,5 M bauds). En el context descrit indicar:
 - 1) Nombre, nom i funció dels senyals (cables) que connecten els dos sistemes
 - 2) Nombre mínim de bits que cal intercanviar entre A i B per transmetre 1500 Bytes d'informació segons cada protocol, i temps mínim necessari per fer l'intercanvi (suposem que no hi ha esperes, pauses o errors durant la comunicació)
 - 3) Avantatges, inconvenients i/o limitacions de cada protocol

(2,5 p.)

RS-232 (configurat a baud rate 115200 bauds)

- 1- 3 Cables: RX (Recepció), TX (Transmissió) i GND (Massa)
- 2- Cada byte (caràcter) necessita, com a mínim, de 1 start bit+8 bits+1 stop bit.

Caldrà intercanviar 10*1500=15000 bits. Temps transmissió= 15000 bits / 115200 bits/s = 0,130 s

3- Avantatges: Sobrecàrrega mínima pel protocol. Full-duplex. Hardware simple. Els dos sistemes poden iniciar la comunicació i transmetre simultàniament. Permet comunicació a gran distància. Inconvenients: Comunicació punt a punt, no està orientada a una estructura tipus bus. Velocitat baixa. No hi ha detecció d'errors.

SPI (CLK a 1,5 M bauds)

- 1- 4 Cables: MOSI o SDO (Master Output Slave Input o Serial Data Output), MISO o SDI (Master Input Slave Input o Serial Data Input), SCLK (Serial Clock) i GND (Massa).
- 2- S'envia únicament la informació, per tant 8 bits *1500= 12000 bits.

Temps transmissió= 12000 bits/ 1,5 M bits/s = 8 ms

3- Av.: Cap sobrecàrrega deguda al protocol. Hardware molt simple. Ràpid. Inc.: Sistema màster-slave on el màster sempre és el mateix sistema, per tant la transmissió no podrà ser iniciada pel slave. Comunicació a distància reduïda, habitualment dintre del mateix circuit. No hi ha detecció d'errors.

I2C (configurat a baud rate 100 K bauds)

- 1- 3 cables: SDA (Serial Data), SCL (Serial Clock), GND (Massa)
- 2- Per la transmissió cal: 1 start bit+ 7 bits @+ 1 bit Acció (R o W)+ ACK + (8 bits+1 bit ACK)*1500+ 1 Stop bit= 13511 bits. Temps transmissió= 13511 bits/ 100 k bits/s= 0,135 s
- 3- Av.: Hi ha detecció d'errors. Els dos sistemes poden iniciar l'intercanvi d'informació agafant el rol de MASTER en el bus. Possibilitat de comunicació en bus. Inc.: Sobrecàrrega pel protocol, Half-duplex, Relativament lent, Orientat a comunicació a distància curta.

USB (1,5 M bauds -> USB 1.1 Low Speed)

- 1- 4 cables: D+ i D- (parell diferencial per la dada), Vcc (Alimentació), GND (Massa).
- 2- En el protocol USB per transmetre informació cal enviar els següents paquets (exemple transmissió del Màster cap al slave): Paquet IN (35 bits), Paquet DATAO (amb 1203 bytes, 9659 bits), Paquet ACK (19 bits), Paquet DATA1 (amb 297 bytes, 2411 bits), Paquet ACK (19 bits) = 12143 bits.

Temps transmissió= 12143 bits / 1,5 M bits/s = 8,09 ms

3- Av.: Estructura bus, detecció errors. Un dels sistemes serà el MASTER i l'altre SLAVE que hauria de demanar transaccions d'informació tipus INTERRUPT. Distància màxima 5 metres. Inc.: Sobrecàrega per protocol (poca), half-duplex, Hardware complexe però permet polivalència a les comunicacions.