Weighted Model Counting Without Parameter Variables

Paulius Dilkas Vaishak Belle

University of Edinburgh, Edinburgh, UK

SAT 2021

The Problem of Computing Probability

ProbLog

```
0.001 :: burglary.
0.002 :: earthquake.
0.95 :: alarm
                  :- burglary, earthquake.
0.94 :: alarm :- burglary, \+ earthquake.
0.29 :: alarm :- \+ burglary, earthquake.
0.001 :: alarm
              :- \+ burglary . \+ earthquake .
0.9
     :: johnCalls :- alarm.
0.05
     :: johnCalls :- \+ alarm.
0.7
     :: marvCalls :- alarm.
0.01
     :: maryCalls :- \+ alarm.
```

Bayesian Network

BLOG

```
random Boolean Burglary ~ BooleanDistrib (0.001);
random Boolean Earthquake ~ BooleanDistrib (0.002);
random Boolean Alarm ~

if Burglary then

if Earthquake then BooleanDistrib (0.95)
else BooleanDistrib (0.94)
else
if Earthquake then BooleanDistrib (0.29)
else BooleanDistrib (0.001);
random Boolean JohnCalls ~

if Alarm then BooleanDistrib (0.9)
else BooleanDistrib (0.05);
random Boolean MaryCalls ~

if Alarm then BooleanDistrib (0.7)
else BooleanDistrib (0.01);
```

Markov Random Field

The Problem of Computing Probability

Weighted Model Counting (WMC)

- Generalises propositional model counting (#SAT)
- Applications:
 - graphical models
 - probabilistic programming
 - neural-symbolic artificial intelligence
- ► Main types of algorithms:
 - using knowledge compilation
 - using a SAT solver
 - manipulating pseudo-Boolean functions

Example

$$w(x) = 0.3, w(\neg x) = 0.7,$$

 $w(y) = 0.2, w(\neg y) = 0.8$

$$WMC(x \lor y) = w(x)w(y) + w(x)w(\neg y) + w(\neg x)w(y) = 0.44$$

An Alternative Formulation

Correctness

Experimental Results

An Alternative Formulation

Correctness

Experimental Results

Formalising the Intuition from Before

For any propositional formula ϕ over a set of variables X and $p, q \in \mathbb{R}$, let $[\phi]_q^p \colon 2^X \to \mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) := egin{cases} p & ext{if } Y \models \phi \\ q & ext{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Definition (Pseudo-Boolean Projection (PBP))

A PBP instance is a tuple (F, X, ω) , where X is the set of variables, F is a set of two-valued pseudo-Boolean functions $2^X \to \mathbb{R}$, and $\omega \in \mathbb{R}$ is the scaling factor.

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause

$$q \Rightarrow x$$

 $\neg x$

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause	In CNF
$\neg x \Rightarrow p$	$x \lor p$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$
$x \Rightarrow q$	$\neg x \lor q$
$q \Rightarrow x$	$x \vee \neg q$
$\neg x$	$\neg X$

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause	In CNF	Pseudo-Boolean Function
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$ $\neg x \lor q$	$[x]_{0.8}^{0.8}$
$x \Rightarrow q$ $q \Rightarrow x$	$x \lor q$ $x \lor \neg q$	[*]1
¬ <i>X</i>	$\neg x$	$[\neg x]_0^1$

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause	In CNF	Pseudo-Boolean Function	
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$	•
$p \Rightarrow \neg x$	$\neg x \lor \neg p$	r 10.8	$[x]_{0.2}^{0.8}$
$x \Rightarrow q$ $q \Rightarrow x$	$\neg x \lor q$ $x \lor \neg q$	$[x]_1^{0.8}$	
$\neg X$	$\neg x$	$[\neg x]_0^1$	$[\neg x]_0^1$

An Alternative Formulation

Correctness

Experimental Results

An Alternative Formulation

Correctness

Experimental Results

Experimental Results

Experimental Results

- DQMR
- Grid
- Mastermind
 - Non-binary
- Other binary
- * Random Blocks

Experimental Results

- DQMR
- Grid
- Mastermind
- Non-binary
- Other binary
- Random Blocks

An Alternative Formulation

Correctness

Experimental Results