大豆根系微生物的基因鉴定与基因功能预测 第九届生物信息设计与技能竞赛

水哥微生物小队 张子栋 张敦彪 颜旭 姚代洪

> 华中农业大学 信息学院

2023年9月27日

目录

- 1 背景
- ② 湿实验过程
- ③ 数据分析
 - 数据预处理
 - 物种鉴定
 - 功能预测

- 1 背景
- 2 湿实验过程
- ③ 数据分析

背景

• 根系微生物

根系微生物可以对植物生长和健康产生积极影响。研究根系微生物对于促进植物生长健康、提高作物产量质量、维护土壤生态系统健康以及发掘新的生物资源具有重要意义。

- 高通量培养
 - 一种用于微生物培养和筛选的技术,通过该技术可以大大提高 微生物的培养效率和筛选速率。
- 16S rRNA 物种鉴定与功能预测

16S rRNA 序列由高度保守的不可变区和相对可变的可变区组成,可以将研究序列与 16S rRNA 数据库中的序列进行比对,确定研究序列与已知物种或菌株的相似性,并进行进一步的鉴定。

- 1 背景
- ② 湿实验过程
- 3 数据分析

湿实验过程

- 培养基制作
- ② 获取大豆根系菌群
- ③ 分液与流式细胞分选
- PCR 扩增与电泳鉴定
- ⑤ 产物回收与浓度测定

- 1 背景
- 2 湿实验过程
- ③ 数据分析
 - 数据预处理
 - 物种鉴定
 - 功能预测

数据分析

数据预处理

通过合并双端序列、拆分标签序列和引物序列获得扩增子序列进行后续的生信分析。

图: 数据预处理流程

流程

- 去除重复序列,获得序列丰度
- ❷ 降噪 (UNOISE 算法) 鉴定 ASV, 从头 (de novo) 去除嵌合体

挑选代表性序列

OTU (Operational Taxonomic Units)

OTU 是一种聚类方式,通常在 97% 的相似水平下聚类生成 OTU,选择每个聚类群中最高丰度序列作为代表性序列。

ASV (Amplicon Sequence Variants)

ASV 则在 100% 相似水平进行聚类,精度更高,结合降噪算法去除噪声序列所以在增加样本时,结果具有一致性。

物种注释

在挑选代表序列并从头(de novo)去除嵌合体后,进行物种注释(基于 RDP 数据库),构建 ASV 表。

[A1	В1	C1	D1
ASV_1	73	0	0	0
ASV_2	0	108	0	0
ASV_3	0	0	82	0
ASV_n	1	0	0	91

ASV table

	Candidate	Purity	Count	Taxonomy
ASV_1	L1P3A5	98.7	73	Ensifer
ASV_2	L1P2G3	99.99	108	Bacillus
ASV_3	L1P1C9	100	82	Rhizobium
ASV_n	L1P7H1	99.99	91	Bacillus
	ASV_2 ASV_3	ASV_1 L1P3A5 ASV_2 L1P2G3 ASV_3 L1P1C9	ASV_1 L1P3A5 98.7 ASV_2 L1P2G3 99.99 ASV_3 L1P1C9 100	ASV_1 L1P3A5 98.7 73 ASV_2 L1P2G3 99.99 108 ASV_3 L1P1C9 100 82

Annotated ASV list

物种树

基于 ASV 表绘制物种树。

(a) 根内菌种

(b) 根际菌种

功能预测

使用 PICRUSt2 进行功能预测 (ASV 序列、丰度文件作为输入), 预测基于多个基因家族数据库 (KEGG 同源基因、KO 直系同源物、EC 酶分类编号)。结果使用 R 包 ggpicrust2 进行可视化。

图: 基因功能预测部分结果

功能预测

图: 根内、根际微生物功能差异

总结

综合以上步骤,我们开发了一套在微生物层面培养、鉴定并进行功能预测的高通量方法。湿实验部分包括样本的获取、高通量培养和样本储存,干实验部分包括从二代测序下机数据到扩增子分析、物种鉴定和功能预测。

为了保证结果的可重复性, 我们使用 Git 进行代码管理。

代码获取: Bluuur/BiC-Microbiome-Pipeline (github.com)

谢谢!

请老师批评指正!