Spick Physikprüfung Patrick Günthard

Masseinheiten 1

jeweils nach SI

Name	Bez.	\mathbf{SI}
Leistung	P	W
Energie	E	J
Kraft	F	N

Andere Einheiten 1PS = 735,49875W

$\mathbf{2}$ Leistung

Grundformel

$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t}$$
 und

$$P = \vec{F} * \vec{v}$$

Wirkungsgrad

Grundformel

$$\begin{array}{l} \eta = \frac{\Delta E_{ab}}{\Delta E_{zu}} = \frac{P_{ab} \cdot \Delta t}{P_{zu} \cdot \Delta t} \Rightarrow \eta = \frac{P_{ab}}{P_{zu}} \\ \text{Regel: } \eta \leq 1 \end{array}$$

Energie 4

Bewegungsenergie

$$E_{kin} = \frac{1}{2}mv^2$$

Potenzielle Energie

$$E_{pot} = m * g * h$$

Beispiel: Im freien Fall ist $E_{pot} = E_{kin}$

Energieerhaltungssatz 4.3

Grundformel

$$E = E_1 + E_2 + E_3 + \ldots + E_n$$
 und immer $\Delta E = 0$

Hydrostatik 5

Grundformel

- g: Erdbeschleunigung
- $\rho_{Fluessigkeit}$: Dichte der Flüssigkeit in kg
- $\bullet\,$ h: Höhe der Flüssigkeitssäule in m

 $\rho = \rho_{Fluessigkeit} * g * h$

Abstrakt:

$$Druck = \frac{Kraft}{Flaeche}; \rho = \frac{F}{A}$$

 $Druck = \frac{Kraft}{Flaeche}; \ \rho = \frac{F}{A}$ $Der\ hydrostatische\ Druck\ am\ Boden\ ist\ trotz\ unter$ schiedlicher Füllmengen in allen drei Gefäßen gleich $gro\beta$.