A Generalized Functional Pruning Optimal Partitioning (GFPOP) Algorithm for Peak Detection in Large Genomic Data

Toby Dylan Hocking toby.hocking@nau.edu joint work with Guillem Rigaill, Guillaume Bourque, Paul Fearnhead

April 28, 2022

Problem: optimizing ChIP-seq peak detection

New functional pruning algorithm

Results on ChIP-seq benchmark

Chromatin immunoprecipitation sequencing (ChIP-seq)

Analysis of DNA-protein interactions.

Source: "ChIP-sequencing," Wikipedia.

Problem: find peaks in each of several samples

- Grey profiles are noisy aligned read count signals peaks are genomic locations with protein binding sites.
- ▶ Black bars are peaks called by MACS2 (Zhang et al, 2008) many false positives! (black bars where there is only noise)
- ► From a machine learning perspective, this is binary classification (positive=peaks, negative=noise).

Which macs parameter is best for these data?

Compute likelihood/loss of piecewise constant model

Idea: choose the parameter with a lower loss

PeakSeg: search for the peaks with lowest loss

Simple model with only one parameter (number of peaks).

Statistical model is a piecewise constant Poisson mean

Het We hender zought data $z_1,\ldots,z_n\in\mathbb{Z}_+$.

- ▶ Fix the number of segments $S \in \{1, 2, ..., n\}$.
- ▶ Optimization variables: S-1 changepoints $t_1 < \cdots < t_{S-1}$ and S segment means $u_1, \ldots, u_S \in \mathbb{R}_+$.
- Let $0 = t_0 < t_1 < \cdots < t_{S-1} < t_S = n$ be the segment limits.
- Statistical model: for every segment $s \in \{1, ..., S\}$, $z_i \stackrel{\text{iid}}{\sim} \mathsf{Poisson}(u_s)$ for every data point $i \in (t_{s-1}, t_s]$.
- ▶ PeakSeg up-down constraint: $u_1 \le u_2 \ge u_3 \le u_4 \ge \cdots$
- Want to find means u_s which maximize the Poisson likelihood: $P(Z = z_i | u_s) = u_s^{z_i} e^{-u_s} / (z_i!)$.
- ▶ Equivalent to finding means u_s which minimize the Poisson loss: $\ell(u_s, z_i) = u_s z_i \log u_s$.

Maximum likelihood changepoint detection with up-down constraints on adjacent segment means (PeakSeg)

$$\begin{array}{ll} \underset{0=t_0 < t_1 < \cdots < t_{S-1} < t_S = N}{\text{minimize}} & \sum_{s=1}^{S} \sum_{i=t_{s-1}+1}^{t_s} \ell(u_s, z_i) \\ \text{subject to} & u_{s-1} \leq u_s \ \forall s \in \{2, 4, \dots\}, \\ & u_{s-1} \geq u_s \ \forall s \in \{3, 5, \dots\}. \end{array}$$

- ▶ Simple: 1 parameter = number of segments $S \in \{1, 3, ...\}$.
- ▶ Hard optimization problem, naively $O(N^S)$ time.
- Previous unconstrained model: not always up-down changes.
- ▶ Interpretable: P = (S 1)/2 peaks (segments 2, 4, ...).
- ▶ H et al., ICML 2015: $O(SN^2)$ time approximate algorithm.
- ► H et al., arXiv 2017: O(SN log N) time optimal algorithm.

Maximum likelihood changepoint detection with up-down constraints on adjacent segment means (PeakSeg)

$$\begin{array}{ll} \underset{0=t_0 < t_1 < \cdots < t_{S-1} < t_S = N}{\text{minimize}} & \sum_{s=1}^{S} \sum_{i=t_{s-1}+1}^{t_s} \ell(u_s, z_i) \\ \text{subject to} & u_{s-1} \leq u_s \ \forall s \in \{2, 4, \dots\}, \\ & u_{s-1} \geq u_s \ \forall s \in \{3, 5, \dots\}. \end{array}$$

- ▶ Simple: 1 parameter = number of segments $S \in \{1, 3, ...\}$.
- ▶ Hard optimization problem, naively $O(N^S)$ time.
- Previous unconstrained model: not always up-down changes.
- ▶ Interpretable: P = (S 1)/2 peaks (segments 2, 4, ...).
- \blacktriangleright H et al., ICML 2015: $O(SN^2)$ time approximate algorithm.
- ► H et al., arXiv 2017: O(SN log N) time optimal algorithm.

Maximum likelihood changepoint detection with up-down constraints on adjacent segment means (PeakSeg)

$$\begin{array}{ll} \underset{0=t_0 < t_1 < \cdots < t_{S-1} < t_S = N}{\text{minimize}} & \sum_{s=1}^{S} \sum_{i=t_{s-1}+1}^{t_s} \ell(u_s, z_i) \\ \text{subject to} & u_{s-1} \leq u_s \ \forall s \in \{2, 4, \dots\}, \\ & u_{s-1} \geq u_s \ \forall s \in \{3, 5, \dots\}. \end{array}$$

- ▶ Simple: 1 parameter = number of segments $S \in \{1, 3, ...\}$.
- ▶ Hard optimization problem, naively $O(N^S)$ time.
- Previous unconstrained model: not always up-down changes.
- ▶ Interpretable: P = (S 1)/2 peaks (segments 2, 4, ...).
- \triangleright H et al., ICML 2015: $O(SN^2)$ time approximate algorithm.
- ► H et al., arXiv 2017: O(SN log N) time optimal algorithm.

Dynamic programming with up-down constraints is highly accurate for both broad and sharp data/pattern types

H et al., arXiv 2017. Test AUC (larger values indicate more accurate peak detection)

- ▶ 4-fold cross-validation: train on 3/4 of labels, test on 1/4.
- ► All models trained by learning a scalar significance threshold / penalty parameter, which is varied to compute ROC/AUC.
- MACS is highly inaccurate in all data sets.
- ► HMCanBroad is accurate for broad but not sharp pattern.
- Unconstrained PDPA algorithm not as accurate as up-down constrained algorithms (CDPA, GPDPA).

Problem: optimizing ChIP-seq peak detection

New functional pruning algorithm

Results on ChIP-seq benchmark

Previous work on the Segment Neighborhood problem

	no pruning	functional pruning
unconstrained	Dynamic Prog. Algo.	Pruned DPA
	exact $O(SN^2)$	exact $O(SN \log N)$
	Auger and L. 1989	Rigaill 2010
up-down constrained	Constrained DPA	Generalized PDPA
	inexact $O(SN^2)$	exact $O(SN \log N)$
	H et al 2015	H et al 2017

All algorithms solve the **Segment Neighborhood** "constrained" problem: most likely mean m_i for data z_i , subject to the constraint of S segments (S-1 changes).

$$\begin{aligned} & \underset{\mathbf{m} \in \mathbb{R}^N}{\text{minimize}} & & \sum_{i=1}^N \ell(m_i, z_i) \\ & \text{subject to} & & \sum_{i=1}^{N-1} I[m_i \neq m_{i+1}] = S-1, \end{aligned}$$

...up-down constraints on m.

Previous work on the Optimal Partitioning problem

	no pruning	functional pruning
unconstrained	Opt. Part. Algo.	FPOP
	exact $O(N^2)$	exact $O(N \log N)$
	Jackson et al 2005	Maidstone et al 2016
up-down constrained		Generalized FPOP
		exact $O(N \log N)$
		This work

All algorithms solve the **Optimal Partitioning** "penalized" problem: most likely mean m_i for data z_i , penalized by a non-negative penalty $\lambda \in \mathbb{R}_+$ for each change:

$$\underset{\mathbf{m} \in \mathbb{R}^N}{\text{minimize}} \quad \sum_{i=1}^N \ell(m_i, z_i) + \lambda \sum_{i=1}^{N-1} I[m_i \neq m_{i+1}]$$

subject to ...up-down constraints on m.

Dynamic programming and functional pruning

Classical dynamic programming for optimal partitioning (Jackson et al 2005) computes the vector of optimal loss values up to N data points, $O(N^2)$ time because each DP iteration needs to consider all O(N) possible changepoints and cost values.

$$C_1$$
 C_2 \cdots C_{N-1} C_N

Functional pruning optimal partitioning (Maidstone 2016) computes a vector of loss functions, $O(N \log N)$ because each DP iteration only considers $O(\log N)$ candidate changepoints (the others — which will never be optimal — are pruned).

$$C_1(m_1)$$
 $C_2(m_2)$ ··· $C_{N-1}(m_{N-1})$ $C_N(m_N)$

Contribution of this work: a new algorithm that applies the functional pruning technique to the up-down constrained model.

Constrained optimal partitioning problem

$$\begin{aligned} & \underset{\mathbf{c} \in \mathbb{R}^N, \ \mathbf{s} \in \{0,1\}^N}{\text{minimize}} & \sum_{i=1}^N \ell(m_i, z_i) + \lambda \sum_{i=1}^{N-1} I(c_i \neq 0) \\ & \mathbf{c} \in \{-1, 0, 1\}^{N-1} \end{aligned} \end{aligned} \\ & \text{subject to} & \text{no change: } c_t = 0 \Rightarrow m_t = m_{t+1} \text{ and } s_t = s_{t+1} \\ & \text{go up: } c_t = 1 \Rightarrow m_t \leq m_{t+1} \text{ and } (s_t, s_{t+1}) = (0, 1), \\ & \text{go down: } c_t = -1 \Rightarrow m_t \geq m_{t+1} \text{ and } (s_t, s_{t+1}) = (1, 0). \end{aligned}$$

Generalized Functional Pruning Optimal Partitioning (GFPOP) algorithm for up-down constrained model

Recursively compute two vectors of real-valued cost functions:

$$\overline{C}_1(m_1)$$
 ··· $\overline{C}_N(m_N)$ optimal cost in peak state $s=1$ $\underline{C}_1(m_1)$ ··· $\underline{C}_N(m_N)$ optimal cost in background state $s=0$

$$\overline{C}_{t+1}(\mu) = \ell(\mu, z_i) + \min\{\overline{C}_t(\mu), \underline{C}_t^{\leq}(\mu) + \lambda\},$$

$$\underline{C}_{t+1}(\mu) = \ell(\mu, z_i) + \min\{\underline{C}_t(\mu), \overline{C}_t^{\geq}(\mu) + \lambda\},$$

$$\text{where } f^{\leq}(\mu) = \min_{x \leq \mu} f(x),$$

$$f^{\geq}(\mu) = \min_{x \geq \mu} f(x).$$

$$\underline{C}_t$$

$$\underline{C}_t$$

$$\underline{C}_t$$

Problem: optimizing ChIP-seq peak detection

New functional pruning algorithm

Results on ChIP-seq benchmark

Benchmark of large genomic data sequences

http://github.com/tdhock/feature-learning-benchmark

- ▶ 4951 data sequences ranging from $N = 10^3$ to $N = 10^7$.
- ▶ Ran GFPOP with penalty $\lambda \in (\log N, N)$, resulting in a range of models with different numbers of peaks, for each data set.
- ► Each data set has **labels** which can be used to determine an appropriate number of peaks.

One ChIP-seq data set with N = 1,254,751 (only 82,233 shown).

Visually labeled regions (H et al., Bioinformatics 2017).

Penalty too large, too few peaks, 2 false negative labels.

Penalty too small, too many peaks, 3 false positive labels.

Models with 34-236 peaks have no label errors (midpoint=135).

Segment Neighborhood model too slow for $O(\sqrt{N})$ peaks

 $N = number\ of\ data\ to\ segment\ (log\ scale)$

- Previous GPDPA: O(S) dynamic programming iterations, each is $O(N \log N)$ time/space.
- If we want $S = O(\sqrt{N})$ segments then the algorithm is $O(N\sqrt{N}\log N)$ time/space too much for large data.
- For example $N = 10^7$ data. Each $O(N \log N)$ DP iteration takes 1 hour, 80 GB. Overall if we want $S = O(\sqrt{N}) = 2828$ segments we need means 220 TB of storage space and 17 weeks of computation time!

GFPOP Implementation stores cost functions on disk

- Disk storage is only a constant factor slower than memory!
- ▶ Both are $O(N \log N)$ time.
- ▶ Memory implementation: $O(N \log N)$ memory! (too big)
- ▶ Disk implementation: $O(\log N)$ memory (< 1GB), $O(N \log N)$ disk.

Time/space to solve one penalty is $O(N \log N)$

Total time/space = O(NI) where I is the number of intervals (candidate changepoints) stored in every optimal cost function $\overline{C}_t(\mu)$.

 $I = O(\log N)$ intervals.

Overall $O(N \log N)$ complexity.

But how to compute model with $O(\sqrt{N})$ peaks?

Binary search algorithm using GFPOP to compute most likely model with at most P^* peaks

- 1: Input: data $\mathbf{z} \in \mathbb{R}^N$, target peaks P^* .
- 2: $\overline{L}, \overline{p} \leftarrow \mathsf{GFPOP}(\mathbf{z}, \lambda = 0) \ // \ \mathsf{max} \ \mathsf{peak} \ \mathsf{model}$
- 3: $\underline{L}, p \leftarrow \mathsf{GFPOP}(\mathbf{z}, \lambda = \infty) \ // \ \mathsf{0} \ \mathsf{peak} \ \mathsf{model}$
- 4: While $p \neq P^*$ and $\overline{p} \neq P^*$:
- 5: $\lambda = (\overline{L} \underline{L})/(\underline{p} \overline{p})$
- 6: $L_{\text{new}}, p_{\text{new}} \leftarrow \mathsf{GFPOP}(\mathbf{z}, \lambda)$
- 7: If $p_{\text{new}} \in \{p, \overline{p}\}$: return model with p peaks.
- 8: If $p_{\text{new}} < P^*$: $p \leftarrow p_{\text{new}}$
- 9: Else: $\overline{p} \leftarrow p_{\text{new}}$
- 10: If $p = P^*$: return model with p peaks.
- 11: Else: return model with \overline{p} peaks.

Example run of binary search algorithm using GFPOP

One data set with $P^* = 93$ peaks and N = 146, 186 data.

iteration	p	\overline{p}	λ	p_{new}	L_{new}
1			0	68752	-2570319
1			∞	0	14239212
2	0	68752	244.4952	4361	1980119
3	0	4361	2811.0738	188	3676671
4	0	188	56183.7271	55	5330310
5	55	188	12433.3766	98	4108354
6	55	98	28417.5941	72	4584042
7	72	98	18295.6895	83	4336773
8	83	98	15227.9249	90	4218815
9	90	98	13807.6282	95	4146172
10	90	95	14528.5052	92	4188881
11	92	95	14236.0863	94	4160179
12	92	94	14350.6622	93	4174480

12 DP iterations much fewer than $93 \times 2 = 186$ which would be required for Segment Neighborhood!

Only $O(\log N)$ runs of GFPOP to compute $O(\sqrt{N})$ peaks

Binary search only a log factor slower than solving one penalty

For $N = 10^7$ only several hours of computation! (compare with weeks for Segment Neighborhood algorithm)

Conclusions

- Previous GPDPA was $O(N\sqrt{N}\log N)$ much too complex to compute a zero-error model with $O(\sqrt{N})$ peaks for $N=10^7$ data.
- ▶ Proposed GFPOP with binary search is $O(N(\log N)^2)$ time, $O(\log N)$ memory, $O(N \log N)$ disk optimal models are now possible to compute for large data.
- ► C++ code with R interface: PeakSegPipeline::PeakSegFPOP_disk https://github.com/tdhock/PeakSegPipeline
- Future work: changepoint detection in large ecological data?
- Contact me: toby.hocking@nau.edu
- ► Thanks!

For some data the desired number of peaks does not exist!

One data set with $P^* = 75$ and N = 66,031 data.

iteration	p	\overline{p}	λ	p_{new}	L_{new}
1			0	29681	-1495863.85
1			∞	0	1200631.42
2	0	29681	90.85	3445	-1245181.37
3	0	3445	709.96	401	-446632.57
4	0	401	4107.89	51	3105.03
5	51	401	1284.96	168	-230152.31
6	51	168	1993.65	97	-120725.83
7	51	97	2691.98	68	-53946.18
8	68	97	2302.75	81	-86423.80
9	68	81	2498.28	77	-76891.10
10	68	77	2549.44	71	-61722.09
11	71	77	2528.17	74	-69330.62
12	74	77	2520.16	76	-74374.78
13	74	76	2522.08	76	-74374.78
Maalal	40.004	والمستوارين	71 -		76

No model exists between $\underline{p}=74$ and $\overline{p}=76$, so algo stops and returns the simpler model with 74 peaks.