Thesis (Phase 2) Mid Term

presented by : **Deepak Chahal**

Under the guidance of **Dr. Jagadheep D.**

Spectroscopic Modelling of Cold ATLASGAL Dust Clumps

Department of Earth & Space Sciences (Astronomy & Astrophysics)

Indian Institute of Space Science & Technology
Thiruvanathpurum, India

INDEX

- Thesis Phase I
- Characterization of Dust Emission
- Core Density gas Tracers
 - HCN: Hyperfine fitting
 - HCO+: Infall Tracer
 - CH₃OH Spectrum
- Future Work

Project

* **AIM**: To study *physical properties* & *kinematics* of dense clumps selected from ATLASGAL 870 μm survey.

-	S.N	Name	α (J2000) (h,m,s)	δ (J2000) (°'")	V _{LSR} (km/s)
	1	AG 36.826-00.039	18:58:41.31	03:26:49.60	60.2
	2	AG 36.794-00.204	18:59:13.11	03:20:36.80	78.1
	3	AG 36.899-00.409	19:00:08.48	03:20:35.70	80
	4	AG 41.077-00.124	19:06:49.15	07:11:14.10	63.3
_	5	AG 41.049-00.247	19:07:12.48	07:06:19.30	66
	6	AG 46.174-00.524	19:17:49.80	11:31:07.50	50.1
	7	AG 46.426-00.237	19:17:16.48	11:52:30.50	52.3
_	8	AG 47.031-00.244	19:16:41.18	12:38:05.90	54.9
_	9	AG 47.051-00.251	19:16:42.03	12:39:20.70	56
	10	AG49.253-00.41	19:23:21.22	14:17:22.10	66.1

• Sources were mapped in multiple molecules such as ¹²CO, ¹³CO, C¹⁸O & high gas tracers HCO⁺, H¹³CO⁺, HCN, CH₃OH.

Thesis Phase I

Low dense gas tracers: CO & it isotopologues

WCSMOSAIC

Smoothing & **Fitting**

non-LTE

Modelling in **CASSIS**

4/23

Thesis Phase I

Low dense gas tracers: CO & it isotopologues

SED Model

Background Subtraction

Modified Black body

20201	4.5				- 2.25
3°20'	1 46	98		70	- 2.00
<u> </u>				933	- 1.75
Declination (J2000)				100	- 1.50 (Fig. 1.50)
clinatio 10'					- 1.50 exid/kj)
Dec				1	- 1.00
05'	_				- 0.75
					- 0.50
	285°10'	05'	00,	284°55'	_
		ight Ascensi	on (J2000)		

$$Ω (πθ2FWHM) /4log2$$
 $μH2 2.8$
 $R 100$
 $κ0 5.04 cm2/g$
 $β 2$
 $λ0 500 μm$

$$S(v) - I_{bkg}(v) = \Omega B(v, T_d)(1 - e^{-\tau})$$

$$\tau_{v} = \mu_{H2} m_{H} \kappa_{v} N(H_{2})/R$$

$$\kappa_{v} = \kappa_{0} (v / v_{0})^{\beta}$$

SED Fitting

FREQUENCY (Hz)

11 / 23

SED Fitting Results

T_{dust} ranges from 15-20 K

N(H₂) ranges from 7×10²¹ - 2×10²² cm⁻²

HCN: Hyperfine Fitting

- HCN (J=4-3): $n_{crit} \sim 10^5 10^6 \text{ cm}^{-3}$
- relatively abundant

J	F	J'	F'	Frequency (GHz)
4	4	3	4	354.503893
4	3	3	2	354.505316
4	5	3	4	354.505458
4	4	3	3	354.505503
4	3	3	4	354.505841
4	3	3	3	354.507447

HCN: Hyperfine Fitting

HCN: LTE Hyperfine Fitting

HCN: non-LTE Hyperfine Fitting

• Estimate of $n(H_2) \sim 5 \times 10^4 \text{ cm}^{-3}$ ($R_{eff} = 0.62 \text{ pc} \& N(H_2) = 2.1 \times 10^{22} \text{ cm}^{-2}$)

HCO⁺: The Infall Tracer

HCO⁺: Radiative Modelling

$$V_{in} = V_{thick} - V_{thin}$$
 ~ 0.5 – 0.75 km/s

$$V_{
m in} pprox rac{\sigma^2}{v_{
m red} - v_{
m blue}} \ln \left(rac{1 \, + \, e T_{
m BD}/T_D}{1 \, + \, e \, T_{
m RD}/T_D}
ight) \sim \,$$
 1.12 km/s

FRONT
$$\tau_f(v) = \tau_0 \exp\left[-(v - v_{\rm LSR} - v_{\rm in})^2/2\sigma^2\right]$$

 $\tau_r(v) = \tau_0 \exp\left[-(v - v_{\rm LSR} + v_{\rm in})^2/2\sigma^2\right]$

HCO⁺: Radiative Modelling

Core Gas Tracers

CH₃OH: LTE Radiative Modelling

• **J=7-6** hyperfine transition; several series of lines closely packed.

Properties of Core

Density profile

$$n(r) = n_o(r/r_o)^{\alpha}$$

$$N(r) = \int n.dl$$

• Theory of low mas star formation from singular **isothermal sphere** predicts powerlaw index : $n \alpha r^{-2}$

Future Work

- Modelling of all other 1-2 sources which are in different evolutionary stages:
 - CO & its isotopologue maps
 - Dust emission maps
 - HCN, HCO⁺, CH₃OH, N₂H⁺ maps
 - Density profiles

Thank you!!