

Porovnávání dvou kmitočtů a jejich odchylky

Martin Zlámal

© Datum poslední revize 2. listopadu 2013 \LaTeX

1 Zadání

- 1. Změřte odchylku síťového kmitočtu při poměru kmitočtů 1: 1.
- 2. Sledujte odchylku síťového kmitočtu během 30 min.
- 3. Stanovte střední hodnotu kmitočtu a velikost kolísání.
- 4. Pozorujte Lissajousovy obrazce pro různé poměry kmitočtů.

2 Teoretický úvod

Osciloskop v režimu XY

Osciloskop v režimu XY umožňuje prokládat dva vstupní signály na navzájem kolmou osu jejiž kompozicí získáme Lissajousovy obrazce

Lissajousovy obrazce

Lissajousovy obrazce jsou rovinné křivky, které vznikají skládáním dvou harmonických pohybů ve dvou navzájem kolmých přímkách. Tvar takovýchto křivek je jednoznačně zadán poměrem úhlových frekvencí a velikostí počáteční fáze φ .

3 Schéma zapojení

Obrázek 1: Schéma zapojení osciloskopu

4 Naměřené a vypočítané hodnoty

Pro výpočet poměru kmitočtů je zapotřebí ustálit Lissajousův obrazec v uzavřeném stavu. V takovém případě jsou frekvence shodné a fázový posuv mezi nimi je $\varphi = 0$.

V takovém případě poměr kmitočtů spočteme jako:

$$\frac{f_y}{f_x} = \frac{n_x}{n_y} \qquad \frac{100[Hz]}{50[Hz]} = \frac{2}{1} \tag{1}$$

Jinak řečeno, pokud se na ose Y zobrazuje signál o frekvenci 100Hz a skládá se se signálem na ose X o frekvenci 50Hz, potom je poměr kmitočtů 2. To se dá velmi snadno spočítat z tvaru Lissajousova obrazce, který bude mít v tomto případě vzhledem k ose X dotykové body 2 a na ose Y pouze 1. Toto obecně platí pro všechny násobky frekvencí.

Naměření časy potřebné pro změnu celého cyklu jsou (po seřazení a přepočtení na sekundy): 30, 30, 33, 34, 44, 45, 45, 52, 57, 65, 74, 76, 87, 102, 158[s]. Z těchto časů snadno spočteme střední hodnotu jakožto aritmetický průběh, který se rovná 62s. Střední hodnota kmitočtu je tedy:

$$\pm \Delta f = \frac{1}{T} = \frac{1}{62} = \pm 0,016Hz \tag{2}$$

Velikost kolísání k lze stanovit jako rozdíl největší a nejmenší odchylky, tedy:

$$k = \frac{1}{T_{min}} - \frac{1}{T_{max}} = \frac{1}{30} - \frac{1}{158} = 0,027Hz \tag{3}$$

5 Závěr

Podle našeho měření vychází, že se síťový kmitočet od deklarované hodnoty 50Hz liší maximálně o 0,027Hz a to v největších extrémech. V průměru se síťový kmitočet liší pouze o $\pm 0,016Hz$. Při měření se také ukázalo, že záleží na tom, jaká a kolik zařízení je připojeno a zapnuto v síti. Zatímco při plném využívání laboratoře docházelo k odchylkám největším, při vypnutí přístrojů již byla odchylka od deklarovaného síťového kmitočtu nejmenší (až 0,0063Hz).

6 Přístroje

- Osciloskop OS-504RD, evid. 109718
- Generátor TR0456