Adaptation of Frequent Subgraph Mining Algorithms to Noncoding RNA Topology Alignment and Function Prediction

University of Massachusetts Medical School Program in Systems Biology Nov 14th, 2017

> Muyi Liu Biological Sciences, Ph.D. Computer Science, M.S. liu413@purdue.edu Purdue University

Outline

Introduction

Background: novel ncRNAs and important ncRNA functions

Purpose of project:

How to predict ncRNA's function by common ncRNA topology?

Available methods and limitation

The MMC-Margin Algorithm

Identify common ncRNA topology

ncRNA Topology Alignment and Classification

Predict ncRNA's function by common ncRNA topology

Summary

Achievements

Future directions

Introduction

Reported Novel ncRNAs

Encyclopedia of DNA Elements (ENCODE) Consortium:

93% of human genome is transcribed

(Birney et al., 2007)

53,864 previously unidentified long intergenic noncoding RNAs are reported (Hangauer et al., 2013)

Functional Annotation of the Mammalian Genome (FANTOM) Consortium:

181,047 independent transcripts are reported from mouse transcriptomic data Estimated mouse genes: 22,000

(Carninci et al., 2005)

Important Functions of ncRNA

Examples of Determined ncRNA Functions by Observation

ncRNA Categories	Function	Authors	Nobel Prize Award
Transfer RNA	Gene Expression	R. Holley	1968
RNase P	tRNA Maturation	S. Altman and T. Cech	1989
Intron RNA	mRNA Maturation	R. Roberts and P. Sharp	1993
RNA interference	Gene Expression Regulation	C. Mello and A. Fire	2006
Telomerase	Chromosome Stabilization	E. Blackburn, C. Greider and J. Szostak	2009
Ribosomal RNA	Gene Expression	V. Ramakrishnan, T. Steitz and A. Yonath	2009

RNase P and Transfer RNA Model

Can We Predict ncRNA's Function?

Conserved Common Structure in RNase P

Conserved Common Substructure in The Rnase P Database (Brown 1991) Brown et al. 1993

More ncRNA Structure Conservation Studies

Topology Conservation of ncRNA Functional Classes

Functional Group	Conserved Stems ¹	Reference
Group I Intron	11	Woodson et al., 2005
RNase P	11	Brown et al., 1995
${ m tmRNA}$	14	Williams et al., 1996
Telomerase RNA	13	Chen et al., 2000
16s rRNA	~100	Gutell et al., 2002
23s rRNA	~150	Gutell et al., 2002

 $^{^{1}}$ Number of conserved stems for each ncRNA function category

Preliminary Concept ncRNA Topology Graph

ncRNA XIOS Topological Graph

ncRNA XIOS Topological Graph

ncRNA XIOS graphs

Definition 1 Labeled Graph:

A labeled graph is a tuple: $G = (V, E, \Lambda, \lambda)$, where

V: a set of vertices

E: a set of edges $V \times V$

 Λ : a set of edge labels

 λ : $V \cup E \to \Lambda$, assign labels to vertices and edges

graph length: |G| = |E|

Preliminary Concept

Graph Theory

Frequent Subgraph Mining Algorithms

FSM Lattice Space: A Toy Example

ncRNA XIOS Graph Alignment, FSM Lattice Space, and Cut Pairs

FSM Algorithms

Several Well Known Frequent Subgraph Mining Algorithms

Туре	Algorithm	Search Strategy	Reference
A priori-based:			
	AGM	Join K-1 Edge Subgraphs	Inokuchi et al., 2000
	FSG	Edge Extension by ${\operatorname{BFS^1}}$	kuramochi et al., 2001
	gSpan	Edges Extension by DFS¹and Prunning	Yan et al., 2002
	${\bf Close Graph}$	Edges Extension from Closed Subgraphs	Yan et al., 2003
Non- $a\ priori$ -based:			
	Margin	Maximal Subgraphs Search	Thomas et al., 2006
	FS3	Fixed Size Subgraphs Sampling	Saha et al., 2014

¹ Breadth-first Search

 $^{^2}$ Depth-first Search

The Margin Algorithm

The Margin Algorithm (Thomas et al., 2006)

FSM Complexity & NP-Completeness

FSM Lattice Scalability

The FSM lattice space includes $O(2^n)$ nodes

20 stem ncRNA structure may contain 190 edges

FSM lattice space is about $2^{190} \approx 10^{57}$

(assume search one node in one second)

100 years $\approx 10^9$ seconds and estimated universe age $\approx 10^{17}$ seconds

FSM is NP-Hard (nondeterministic polynomial-time)

Subgraph Isomorphism (SI) problem is NP-Complete

Reduce from Clique problem

(Cook et al., 1971)

The FSM problem is NP-Hard

Reduce from SI problem

(Garey et al., 1979)

(Kimelfeld et al., 2014)

The MMC-Margin Algorithm (Metropolis Monte Carlo Sampling)

The MMC-Margin Algorithm

The MMC-Margin Algorithm (Liu et al., 2015)

Algorithm 1 MMC-Margin Sampling **INPUT:** A Graph Set $\mathbb{G} = \{ G_1, G_2, ..., G_n \}$ **OUTPUT:** Maximum Frequent Subgraphs: MFS $\in G_1 \cap G_2 \cap$ $\dots \cap G_n$ 1: $MFS = \emptyset$, $C \dagger P = \emptyset$ 2: $(C \dagger P) = FindInitialCut (G_{min}, \mathbb{G})$ 3: $SampleCut (MFS, C \dagger P)$

```
Algorithm 2 FindInitialCut
```

```
INPUT: G_{min}, \mathbb{G}
OUTPUT: C \dagger P
 1: C = G_{min}
```

2: P = RemoveOneEdge(C)

3: while P is infrequent in \mathbb{G} do

P = RemoveOneEdge(P)

Algorithm 3 SampleCut

INPUT: $C \dagger P$ **OUTPUT:** MFS

1: while update of current candidate MFS is frequent do

 $C_{new} \dagger P_{new} = \emptyset$

Choose MoveType randomly

Find Neighbor $C_{new} \dagger P_{new}$ of $C \dagger P$ by MoveType

if $|P_{new}| > |P|$ then

 $C \dagger P = C_{new} \dagger P_{new}$ Update MFS by P_{new}

if $|P_{new}| < |P|$ then

Accept $C_{new} \dagger P_{new}$ by EEAP or HEAP 10:

Update MFS by P_{new}

Neighboring Cuts

ncRNA Structure Generator

Synthetic RNA Graphsets Statistics:

⁷ Three RNA structures share 5 stems core.

MMC-Margin Outperforms Margin

Margin Performance on Synthetic Datasets

MMC-Margin Performance on Synthetic Datasets

		Margin (600 hours)						MMC-Margin (600 hours)	
Datasets	#Cuts1	#Cuts ²	$ \mathrm{Cut} \mathrm{max}^3$	Terminate	Core ⁴	Datasets	#Cuts ¹	Cut max ²	Core ³
5_4.3	2537459	0	18	158 hours	Yes	5_4.3	14219210	18	Yes
6_4.3	2324096	92561945	25	No	No	6_4.3	10602161	26	Yes
7_4.3	342847	0	15	138 hours	Yes	7_4.3	2183970	15	Yes
8_4.3	90036	5235531	29	No	No	8_4.3	479271	35	Yes
9_4.3	313193	9116299	26	No	Yes	9_4.3	307188	26	Yes
10_4.3	375751	15515320	39	No	No	10_4.3	209109	40	Yes
11_4.3	166888	6578510	25	No	No	11_4.3	143498	28	Yes
12_4.3	10569	716660	48	No	No	$12_{-}4.3$	330889	58	Yes
13_4.3	26079	2185779	47	No	No	13_4.3	1854359	58	Yes
14_4.3	17113	1176322	32	No	No	14_4.3	42564	38	Yes
15_4.3	1904	193009	50	No	No	15_4.3	40674	60	No ⁴
16_4.3	2848	312832	90	No	No	16_4.3	92714	105	Yes
17_4.3	21	11038	27	No	No	17_4.3	420267	106	Yes
18_4.3	105	53333	44	No	No	18_4.3	366646	107	Yes
19_4.3	65	23628	46	No	No	19_4.3	436166	114	Yes
20_4.3	22	24367	38	No	No	20_4.3	8013	124	Yes

Number of explored cuts.

² Number of neighboring cuts in memory.

 $^{^3}$ Maximum size of explored *cuts*.

⁴ If core subgraph is identified.

¹ Number of sampled *cuts*.

 $^{^2}$ Maximum size of explored $\it cuts.$

³ If core subgraph is identified.

⁴ Core subgraph is identified after 713 hours.

Traceplot Examples

MMC-Margin Identifies Core Subgraphs: 11_4.3 (top left), 14_4.3 (top right), 18_4.3 (bottom left), 19_4.3 (bottom right). The existence of core subgraph is indicated by red dots.

MMC-Margin Outperforms Margin on RNase P

Margin Cannot Identify Core Subgraphs in Hours

MMC-Margin Identifies Core Subgraphs in Minutes (Acceptance Ratio Optimization)

3RNase P Graphsets Statistics:

	Statistics					
Datasets	V avg	E avg	Davg	Dmax	E core	
3RP	15	25.67	3.42	7	18	

The MMC-Margin Algorithm Conclusion

MMC-Margin identifies core subgraphs shared among ncRNA structures quickly

ncRNA Topological Graph Classification

ncRNA Topological Graph Classification Model

ncRNA Topology Classification Algorithm

Algorithm 4 ncRNA Topology Classification

 $\overline{\text{INPUT}}$: Training Graphs $\mathbb{T} = \{ T_1, ..., T_m \}$ and Test Graphs $\mathbb{G} = \{ G_1, ..., G_n \}$

OUTPUT: Ranking Score of \mathbb{G} : $\mathbb{R} = \{ R_1, ..., R_n \}$

- 1: $\mathbb{S}_{\mathbb{T}}$: $\{S_1, ..., S_t\} = MMC\text{-}Margin(\mathbb{T}) // Training$
- 2: $\mathbb{S}_{\mathbb{C}}$: { $S_1, ..., S_c$ } = SelectTop ($\mathbb{S}_{\mathbb{T}}$) //Feature Selection
- 3: for $G_i \leftarrow G_1$ to G_n do
- 4: $R_i = ATPI(S_{\mathbb{C}}, G_i)$

Can We Distinguish among Same Size Structures?

Cross Validations and Baselines on Synthetic ncRNA Functional Classes
Note:

0.1 fold cross validation:

Inverse 10 fold cross validation, each 10 as training and each 90 in each function class as validation 0.5 fold cross validation:

Inverse 5 fold cross validation, each 20 as training and each 80 in each function class as validation

Heatmap Examples

The ATPI Heatmap Examples of Cross Validations and Baselines

Cross Validations among Different Length Structures

Does Classification Work in Real Life?

Largest Subgraphs 0 Largest Subgraphs 00 Largest Subgraphs 000 Largest Subgraphs

I Classes

class as validation

Note:

⁴ Maximum degree.

2 fold cross validation

- ⁵ Average length of sequences.
- Each 14 Group I II
- ⁶ Standard deviation of sequence length.

Multiple Sequence Augnment:

Clustal Omega Online Server (http://www.ebi.ac.uk/Tools/msa/clustalo/)

Heatmap Examples

The Heatmap Examples of Cross Validations and Baselines

Definition Percent Identity of Sequence Alignment (SPI):

Given a ncRNA sequence S and a sequence alignment A, where |S| is the number of nucleotide in S, and |A| is the number of aligned nucleotide in A.

$$SPI(A, S) = \frac{|A|}{|S|}$$

ncRNA Topological Graph Classification Conclusion

ncRNA topological alignment is able to predict ncRNA's function

Summary

MMC-Margin

MMC-Margin Identifies Largest Common Substructures

Performance: (Outperforms Well Known FSM algorithms)

Time Efficient Algorithm

Little Memory Consumption

ncRNA Topology Alignment and Classification

The ATPI Score Indicates ncRNA Function Similarity

Sequence Similarity Is Less Reliable

Future Direction

Parallel Implementation, Neighboring Cut Optimization

Classification among Predicted Structures

High Throughput ncRNA Function Prediction Method

Performance Evaluation: The AUROC Score

Performance Evaluation: The MAP Score

Mean Average Precision: (0.76 + 0.81)/2 = 0.79

The gSpan Algorithm

The gSpan Algorithm (Yan et al., 2002)