

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе N_{2} 3

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-46Б	27.04.2021	Д. В. Варин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А. Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы – изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

Задание 1

Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на **T триггерах.**

Проверить работу счётчика

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета

Схема четырёхразрядного счётчика на Т триггерах.

Активность лампочек эквивалентна количеству подсчитанных сигналов в двоичном представлении, после достижения 15(4 единиц) происходит сброс в 0. Увеличение счётчика происходит при замыкании триггера.

Схема с импульсным генератором и логическим анализатором.

Собрал четырёхразрядный счётчик, на выходе сигналы — числа от 0 до 15.

Если начать комбинировать триггеры (по количеству), получатся счётчики, способные принимать больший(меньший) диапазон значений.

Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. Последовательность состояний счётчика для каждого варианта работы приведена в табл.3; десятичными числами обозначены номера двоичных наборов, изображающие десятичные цифры и определяющие состояние счётчика.

Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Вариант из таблицы 3.

		I aom
№ варианта	Десятичные номера двоичных	
двоично-	наборов переменных,	
десятичного	изображающих десятичные	
кода	цифры 0,1,,9	
1	3, 4,5,6,7,8,9,10,11,12	
2	0,1,2,3,5,10,12,13,14,15	
3	0,1,4,5,7,8,10,12,14,15	

1.1 Таблица переходов

$\mathbf{Q}_i^t \to \mathbf{Q}_i^{t+1}$	J	K	D
0 - 0	0	α	0
0 - 1	1	α	1
1 - 0	α	1	0
1-1	α	0	1

1.2 Таблица значений

No	Q_3	Q_2	Q_1	Q_0	Q_3*	Q_2*	Q_1*	Q_0*	J_3	K_3	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	0	1	0	α	0	α	0	α	1	α
1	0	0	0	1	0	1	0	0	0	α	1	α	0	α	α	1
4	0	1	0	0	0	1	0	1	0	α	α	0	0	α	1	α
5	0	1	0	1	0	1	1	1	0	α	α	0	1	α	α	0
7	0	1	1	1	1	0	0	0	1	α	α	1	α	1	α	1
8	1	0	0	0	1	0	1	0	α	0	0	α	1	α	0	α
10	1	0	1	0	1	1	0	0	α	0	1	α	α	1	0	α
12	1	1	0	0	1	1	1	0	α	0	α	0	1	α	0	α
14	1	1	1	0	1	1	1	1	α	0	α	0	α	0	1	α
15	1	1	1	1	0	0	0	0	α	1	α	1	α	1	α	1

1.3 Минимизация с помощью карт Карно

J3 = q1						
q3q2\q1q0	00	01	11	10		
00	0	0	-	-		
01	0	0	1	-		
11	α	-	α	α		
10	α	-	-	α		

K3 = q0q3						
q3q2\q1q0	00	01	11	10		
00	α	α	-	-		
01	α	α	α	-		
11	0	-	1	0		
10	0	-	-	0		

J2 = q0 q1						
q3q2\q1q0	00	01	11	10		
00	0	1	-	-		
01	α	α	α	-		
11	α	-	α	α		
10	0	-	-	1		

K2 = q1q0						
q3q2\q1q0	00	01	11	10		
00	α	α	-	-		
01	0	0	1	-		
11	0	-	1	0		
10	α	-	-	α		

J1 = q3 q0q2					
q3q2\q1q0	00	01	11	10	
00	0	0	_	-	
01	0	1	α	-	
11	1	-	α	α	
10	1	-	-	α	

K1 = q0 q3!q2					
q3q2\q1q0	00	01	11	10	
00	α	α	-	-	
01	α	α	1	-	
11	α	-	1	0	
10	α	-	-	1	

J0 = !q3 q1q2						
q3q2\q1q0	00	01	11	10		
00	1	α	-	-		
01	1	α	α	-		
11	0	-	α	1		
10	0	-	-	0		

K0 = q1q0 !q3!q2						
q3q2\q1q0	10					
00	α	1	-	-		
01	α	0	1	-		
11	α	-	1	α		
10	α	-	-	α		

Схема, построенная по расчётам.

Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета.

Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

1.1 Таблица переходов

No	Q_3	Q_2	Q_1	Q_0	Q_3*	Q_2*	Q_1*	Q_0*	J_3	K_3	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	0	1	0	α	0	α	0	α	1	α
1	0	0	0	1	0	0	1	0	0	α	0	α	1	α	α	1
2	0	0	1	0	0	0	1	1	0	α	0	α	α	0	1	α
3	0	0	1	1	0	1	0	0	0	α	1	α	α	1	α	1
4	0	1	0	0	0	1	0	1	0	α	α	0	0	α	1	α
5	0	1	0	1	0	1	1	0	0	α	α	0	1	α	α	1
6	0	1	1	0	0	1	1	1	0	α	α	0	α	0	1	α
7	0	1	1	1	1	0	0	0	1	α	α	1	α	1	α	1
8	1	0	0	0	1	0	0	1	α	0	0	α	0	α	1	α
9	1	0	0	1	0	0	0	0	α	1	0	α	0	α	α	1

1.2 Минимизация

J3 = q0q1q2						
q3q2\q1q0	00	01	11	10		
00	0	0	0	0		
01	0	0	1	0		
11	-	-	-	-		
10	α	α	-	-		

K3 = q0							
q3q2\q1q0	00	01	11	10			
00	α	α	α	α			
01	α	α	α	α			
11	-	-	-	-			
10	0	1	-	-			

J2 = q0q1							
q3q2\q1q0	00	01	11	10			
00	0	0	1	0			
01	α	α	α	α			
11	-	-	-	-			
10	0	0	-	-			

K2 = q0q1							
q3q2\q1q0	00	01	11	10			
00	α	α	α	α			
01	0	0	1	0			
11	-	-	-	-			
10	α	α	-	-			

J1 = q0!q3						
q3q2\q1q0	00	01	11	10		
00	0	1	α	α		
01	0	1	α	α		
11	-	-	-	-		
10	0	0	-	-		

K1 = q0							
q3q2\q1q0	00	01	11	10			
00	α	α	1	0			
01	α	α	1	0			
11	-	-	-	-			
10	α	α	-	-			

J0 = 1							
q3q2\q1q0	00	01	11	10			
00	1	α	α	1			
01	1	α	α	1			
11	-	-	-	-			
10	1	α	-	-			

K0 = 1							
q3q2\q1q0	00	01	11	10			
00	α	1	1	α			
01	α	1	1	α			
11	-	-	-	-			
10	α	1	-	-			

Построим схему по полученным расчётам.

Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом.

Проверить работу счётчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Построим схему счётчика.

Подключим анализатор для для просмотра временных диаграмм сигналов на входе и выходе счетчика.

Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160.

Проверить работу счётчика

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета

Схема от одиночных имульсов

Схема от импульсов генератора.

Вывод логического анализатора.

Задание 6

Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета.

Схема

Получили многоразрядный десятичный счётчик, который выдаёт число, читаемое слева направо.