Calibrated Recommendations

Harald Steck, presented by Justin Basilico at RecSys 2018

NETFLIX

Basic Idea

user has played:

70 romance movies

30 action movies

Calibrated recommendations:

70% romance

30% action

- ... aims to reflect: all interests of user & with correct proportions
- ... fairness regarding all the interests of a user

Accuracy vs. Calibration

Accurate vs. Calibrated Recommendations

Accuracy as prediction objective can lead to unbalanced recommendations:

- recommendations may amplify main interests of user, and
 - crowd out the lesser interests of a user.

2 examples in the following (see paper for more)

1. Accuracy vs. Calibration (in binary classification)

data comprised of:

70 romance movies

30 action movies

if no additional information available about movies (extreme case)

predict genre of each movie:

100 % romance

 \rightarrow <u>accuracy:</u> 100% * 70 = <u>70</u> movies labeled correctly

1. Accuracy vs. Calibration (in binary classification)

data comprised of:

70 romance movies

30 action movies

if no additional information available about movies (extreme case)

predict genre of each movie:

70 % romance

30 % action

 \rightarrow <u>accuracy:</u> 70% * 70 + 30% * 30 = <u>58</u> movies labeled correctly (in expectation)

2. Recommended List generated from LDA model

Sampling	Ranking
1. Sample a topic (genre) g for user u : $g \sim p(G u)$ 2. Sample a word (video) i from topic g : $i \sim p(I g)$	Sort videos i according to their probabilities $p(i u)$ for user u , where $p(i u) = \sum_g p(i g) \cdot p(g u)$
 → - expected to preserve genre-proportions - reduced accuracy 	 → - genre-proportions not preserved - increased accuracy

Calibration Metric

Calibration Metric

genre-distribution of <u>each movie</u> is given: (or other categorization)

 $p(g|u) = \frac{\sum_{i \in \mathcal{H}} w_{u,i} \left(p(g|i) \right)}{\sum_{i \in \mathcal{H}} w_{u,i}}$ genre-distribution of <u>user's play history</u>:

> ... add prior for other genres: $\bar{p}(g|u) = \beta \cdot p_0(g) + (1-\beta) \cdot p(g|u)$ (for diversity)

genre-distribution of recommended list:
$$\boxed{q(g|u) = \frac{\sum_{i \in \mathcal{I}} w_{r(i)} \cdot p(g|i)}{\sum_{i \in \mathcal{I}} w_{r(i)}}}$$

Calibration Metric

Kullback-Leibler divergence: how similar are p and q?

$$C_{\mathrm{KL}}(p,q) = \mathrm{KL}(p||\tilde{q}) = \sum_{g} p(g|u) \log \frac{p(g|u)}{\tilde{q}(g|u)}$$

... as to avoid q(.)=0:
$$\tilde{q}(g|u)=(1-\alpha)\cdot q(g|u)+\alpha\cdot p(g|u)$$

- or other f-divergences (see paper)

- calibration is a list-property
- recommender systems often trained via pointwise or pairwise approach
- ightarrow re-ranking in post-processing step: λ d

 λ determines trade-off

$$\mathcal{I}^* = \operatorname*{arg\;max}_{\mathcal{I},|\mathcal{I}|=N} (1-\lambda) \cdot s(\mathcal{I}) - \lambda \cdot C_{\mathrm{KL}}(p,q(\mathcal{I}))$$

$$s(\mathcal{I}) = \sum_{i \in \mathcal{I}} s(i)$$
 ... re-ranked list of items ... scores predicted by RecSys

- calibration is a list-property
- recommender systems often trained via pointwise or pairwise approach
- → <u>re-ranking in post-processing step:</u>

 λ determines trade-off

$$\mathcal{I}^* = \underset{\mathcal{I}, |\mathcal{I}|=N}{\operatorname{arg max}} (1 - \lambda) \cdot s(\mathcal{I}) - \lambda \cdot C_{\mathrm{KL}}(p, q(\mathcal{I}))$$

... adding several calibrationcategorizations is straightforward

Equivalent greedy optimization problem (see paper):

$$\mathcal{I}^* = \underset{\mathcal{I}, |\mathcal{I}| = N}{\operatorname{arg\,max}} (1 - \lambda) \cdot s(\mathcal{I}) + \lambda \cdot \sum_{g} p(g|u) \log \sum_{i \in \mathcal{I}} w_{r(i)} \tilde{q}(g|i)$$

submodular function:

greedy optimization is (1-1/e) optimal, also for each length n<*N*

Related Concepts

Related Concepts

- **Fairness:** typically refers to persons or groups within a population
 - several fairness criteria besides calibration exist:
 - equal(ized) odds, equal opportunity, statistical parity

- **Diversity:** minimal similarity or redundancy among items [majority of literature]
 - proportionality in search results [Dang, Croft 2012]
 - new metric to capture three properties [Vargas et al. 2014]
 - focus on submodularity [Teo et al. 2016]

Experiments (on MovieLens 20 million data)

Calibration Metric: across users

Baseline model (wMF):

many users receive uncalibrated rec's.

After re-ranking:

rec's are much more calibrated (smaller $C_{
m KL}$)

Calibration-Accuracy Tradeoff

	recall		C_{KL}	
calibration	@10	@50	@10	@50
none $(\lambda = 0)$	0.209	0.464	0.677	0.185
$\lambda = 0.2$	0.209	0.464	0.465	0.171
$\lambda = 0.5$	0.199	0.464	0.274	0.141
$\lambda = 0.8$	0.170	0.463	0.128	0.092
$\lambda = 0.9$	0.146	0.460	0.084	0.061
$\lambda = 0.95$	0.121	0.453	0.065	0.037
$\lambda = 0.99$	0.090	0.417	0.054	0.009
$\lambda = 0.999$	0.082	0.339	0.054	0.005

- Calibration can be improved a lot without degrading accuracy much.
- Extreme calibration reduces accuracy considerably.

Genre-Distribution for a User

Example: a user with very uncalibrated rec's:

- Without calibration, lesser interests of user are absent from rec's.
- After calibration, all genres are recommended with approx. correct proportions.

Genre-Distribution Averaged over 10% of Users

Average over 10% of users with least calibrated rec's:

- results similar to previous slide
- for details, see paper

Summary

Summary

Motivation:

unbalanced recommendations can result from training recommender-models

- on limited amounts of data,
- towards accuracy-metrics.

Calibration-Approach combines two aspects:

- 1. aimed at fairness / proportionality regarding all interests of a user.
- 2. **submodular function** in post-processing step:
 - efficient optimization,
 - (1-1/e) optimality guarantee.

Thank you.

