STAT 134: Section 9

Adam Lucas

October 19, 2020

Conceptual Review

Consider a Poisson Process with rate λ per unit time. What are the distributions of:

- a. N_t , the number of arrivals by time t;
- b. W_k , the waiting time between the $(k-1)^{st}$ and k^{th} arrivals; and
- c. T_k , the waiting time until the k^{th} arrival.

Problem 1

Suppose calls arrive at a telephone exchange at an average rate of one per second, according to a Poisson arrival process. Find:

- a. the probability that the fourth call after time t=0 arrives within 2 seconds of the third call;
- b. the probability that the fourth call arrives by time t = 5 seconds;
- c. the expected time at which the fourth call arrives.

Ex 4.2.5 in Pitman's Probability

Problem 2: Gammas, Exponentials, and Moments

Consider the gamma function $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, r > 0.

- a. Use integration by parts to show that $\Gamma(r+1) = r\Gamma(r)$.
- b. Deduce from (a) that for any positive integer n, $\Gamma(n) = (n-1)!$
- c. Show that if $T \sim \text{Exp}(1)$, then $\mathbb{E}(T^n) = n!$.
- d. Show that if $S = T/\lambda$, then $S \sim \text{Exp}(\lambda)$. (Note: from this, we can easily show that $\mathbb{E}(S^n) = n!/\lambda^n$).

Hint: Consider the expression P(S > s), then substitute for *S* appropriately.

Ex 4.2.9 in Pitman's Probability

Problem 3

Shocks occur to a system according to a Poisson process of rate λ . Suppose that the system survives each shock with probability α , independently of other shocks, so that its probability of surviving kshocks is α^k . What is the probability that the system is surviving at time t?