CATHOLIC SECONDARY SCHOOLS ASSOCIATION OF NEW SOUTH WALES YEAR TWELVE FINAL TESTS 2000

MATHEMATICS 3/4 UNIT COURSE

SUGGESTED SOLUTIONS

Answers to 3 Unit Mathematics CSSA Trial 2000

Question 1.

(a)

$$x^{2} \ge 2x$$

$$x^{2} - 2x \ge 0$$

$$x(x-2) \ge 0$$

$$x \le 0 \text{ or } x \ge 2$$

The only possible pattern is (b)

Arrange G's in 4! ways then arrange B's in 3! ways.

Number of ways is $4! \times 3! = 24 \times 6 = 144$

(c) (i)
$$y = \ln x \qquad y = \frac{e}{x}$$
$$\frac{dy}{dx} = \frac{1}{x} \qquad \frac{dy}{dx} = \frac{-e}{x^2}$$
$$m_1 = \frac{1}{e} \qquad m_2 = \frac{-1}{e}$$

(c) (ii) · $\tan \theta = \left| \frac{\frac{1}{e} - \left(\frac{-1}{e} \right)}{1 + \frac{1}{e} \left(\frac{-1}{e} \right)} \right|$ (since e > 1)

(d) (i)

(d)(ii) $\hat{CDE} = \hat{CBE}$ (Angles in the same segment standing on arc CE are equal)

(iii) $\hat{CBE} = \hat{ABE}$ (given BE bisects \hat{ABC})

 $A\hat{B}E = F\hat{D}E$ (In cyclic quad. ABED, exterior angle FDE is equal to opposite interior angle ABE)

 $\therefore F\hat{D}E = C\hat{D}E \quad (C\hat{D}E = C\hat{B}E = A\hat{B}E = F\hat{D}E)$ and hence DE bisects \hat{CDF} .

Question 2

(a)

(b) $2x^3 - 5x - 1 = 0$ has roots α , β and γ .

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \gamma \alpha + \alpha \beta}{\alpha \beta \gamma}$$
$$= \frac{-\left(\frac{5}{2}\right)}{\left(\frac{1}{2}\right)}$$
$$= -5$$

- (c) (i) Series is geometric, $a = \tan x$, $r = \tan^2 x$. $0 \le x < \frac{\pi}{4} \implies 0 \le \tan x < 1$ Hence $0 \le r < 1$ and since |r| < 1, limiting sum S exists.
- (c) (ii) $S = \frac{\tan x}{1 - \tan^2 x} = \frac{1}{2} \cdot \frac{2 \tan x}{1 - \tan^2 x}$ $\therefore S = \frac{1}{2} \tan 2x$

Question 2 (cont)

(d) (i)

$$y = at^2 \Rightarrow \frac{dy}{dt} = 2at$$

 $x = 2at \Rightarrow \frac{dx}{dt} = 2a$

$$\therefore \frac{dy}{dx} = \frac{2at}{2a} = t$$

Normal at P has gradient $\frac{-1}{t}$ and equation x + t y = k, for some constant k.

At
$$P$$
, $\begin{cases} x = 2at \\ y = at^2 \end{cases} \Rightarrow 2at + at^3 = k$

 \therefore Equation is $x + ty - 2at - at^3 = 0$

(ii) At X and Y,
$$x+ty = 2at + at^3$$

 $X(2at + at^3, 0)$ $Y(0, 2a + at^2)$

(iii) Midpt of XY is $M\left(at + \frac{1}{2}at^3, a + \frac{1}{2}at^2\right)$ Hence if P is the midpoint of XY, $at^2 = a + \frac{1}{2}at^2$

$$\frac{1}{2}at^2 = a$$

$$t^2 = 2$$

$$t = \sqrt{2} \quad (\text{ since } t > 0)$$
For $t = \sqrt{2}$, $P \equiv M \equiv (2\sqrt{2} \ a, 2a)$

Question 3.

(a) (i)

$$f(x) = \frac{3x - 4}{x - 1}$$
Throughout domain

$$\begin{cases} x : x \neq 1 \end{cases},$$

$$= \frac{3(x - 1) - 1}{x - 1}$$

$$= 3 - \frac{1}{x - 1}$$
Hence f is increasing.

$$y=3-\frac{1}{x-1}$$

As $x \to \infty$, $y \to 3$ $\therefore y=3$ is an asymptote
As $x \to 1$, $y \to \infty$ $\therefore x=1$ is an asymptote

(iii)
$$mx = \frac{3x-4}{x-1}$$
$$mx^2 - mx = 3x-4$$
$$mx^2 - (m+3)x + 4 = 0$$
 *

(b)(i)
$$f(x) = x^3 - kx + 1 \implies f(0) = 1$$
, $f(1) = 2 - k$
But if $f(x) = 0$ has exactly one root between 0 and 1, then $f(0)$, $f(1)$ have opposite signs, $2 - k < 0$. $\therefore k > 2$.

(iv) y = mx is a tangent when * has equal roots and hence discriminant $\Delta = 0$.

$$\Delta = (m+3)^2 - 16m$$

$$= m^2 - 10m + 9$$

$$= (m-9)(m-1)$$

$$\Delta = 0 \Rightarrow m=1, 9$$

$$\therefore \text{ tangents are}$$

$$y = x, y = 9x$$

(b)(ii)
$$f(x) = x^3 - 3x + 1 \Rightarrow f(0.3) = 0.127$$

 $f'(x) = 3x^2 - 3 \Rightarrow f'(0.3) = -2.73$
 $\alpha \approx 0.3 - \frac{f(0.3)}{f'(0.3)} = 0.3 + \frac{0.127}{2.73} = 0.35$

Question 4

(a)(i) Domain Range

$$-1 \le \frac{x}{2} \le 1$$
 $0 \le \cos^{-1} \frac{x}{2} \le \pi$
 $-2 \le x \le 2$ $0 \le 3 \cos^{-1} \frac{x}{2} \le 3\pi$
 $\{x : -2 \le x \le 2\}$ $\{y : 0 \le y \le 3\pi\}$

(a) (ii) When
$$x = 0$$
,
 $y = 3\cos^{-1}\frac{x}{2} \implies y = \frac{3\pi}{2}$
 $\frac{dy}{dx} = \frac{-3}{\sqrt{4 - x^2}} \implies \frac{dy}{dx} = -\frac{3}{2}$

Tangent at $\left(0, \frac{3\pi}{2}\right)$ has gradient $-\frac{3}{2}$ and equation 3x + 2y = k, k constant x = 0, $y = \frac{3\pi}{2} \implies 3\pi = k$

$$x = 0 , y = \frac{3\pi}{2} \implies 3\pi = k$$

$$\therefore \text{ Tangent is } 3x + 2y - 3\pi = 0$$

(c)
$$y = \frac{1}{\sqrt{3+x^2}}$$

$$0$$

$$-\frac{1}{\sqrt{3}}$$

(b)
$$u = 1 + x \qquad \int_{0}^{3} \frac{3x}{\sqrt{1 + x}} dx$$

$$du = dx$$

$$x = 0 \implies u = 1$$

$$x = 3 \implies u = 4$$

$$\frac{x}{\sqrt{x + 1}} = \frac{u - 1}{\sqrt{u}}$$

$$= u^{\frac{1}{2}} - u^{-\frac{1}{2}}$$

$$= 2(8 - 1) - 6(2 - 1)$$

$$= 8$$

$$V = \pi \int_{1}^{3} \frac{1}{3 + x^{2}} dx$$

$$= \frac{\pi}{\sqrt{3}} \left[\tan^{-1} \frac{x}{\sqrt{3}} \right]_{1}^{3}$$

$$= \frac{\pi}{\sqrt{3}} \left\{ \tan^{-1} \sqrt{3} - \tan^{-1} \frac{1}{\sqrt{3}} \right\}$$

$$= \frac{\pi}{\sqrt{3}} \left\{ \frac{\pi}{3} - \frac{\pi}{6} \right\}$$

$$= \frac{\pi^{2} \sqrt{3}}{18}$$
Volume is $\frac{\pi^{2} \sqrt{3}}{18}$ cu. units.

Question 5

(a) Let S(n) be the statement $n! > 2^n$, n=4, 5, 6 ...Consider S(4):

$$4! = 24 > 16 = 2^4 \implies S(4)$$
 is true
If $S(k)$ is true, then $k! > 2^k **$

Consider S(k+1), $k \ge 4$:

$$(k+1)! = (k+1) k!$$

> $(k+1) 2^k$ if $S(k)$ is true, using **
> $2 \cdot 2^k$ since $k \ge 4 \Rightarrow k+1 > 2$
= 2^{k+1}

Hence if S(k) is true for some $k \ge 4$, then S(k+1)is true. But S(4) is true, hence S(5) is true and then S(6) is true, and so on. Hence by Mathematical induction, $n! > 2^n$ for all integers $n \ge 4$.

 $\triangle ABC \parallel \triangle DEC$ (equiangular)

(b)(ii)

$$x + y = 3x$$

$$2x = y$$

$$2\frac{dx}{dt} = \frac{dy}{dt}$$

$$\therefore \frac{dx}{dt} = \frac{2 \cdot 5}{2} = 1 \cdot 25$$
Shadow lengthers at

Question 5 (cont)

$$(1+x)^{n} \frac{\text{Coeff. of } x^{4} \text{ is } {}^{n}C_{4}}{\text{Coeff. of } x^{2} \text{ is } {}^{n}C_{2}}$$

$${}^{n}C_{4} = 6 {}^{n}C_{2} \Rightarrow \frac{n(n-1)(n-2)(n-3)}{4!} = \frac{6n(n-1)}{2!}$$

$$\therefore n \ge 4 \text{ and } (n-2)(n-3) = 72$$

$$n \ge 4 \text{ and } n^{2} - 5n - 66 = 0$$

(c) (ii)
$$n \ge 4$$
 and $(n-11)(n+6) = 0$
 $\therefore n = 11$

Question 6

(a) (i)

$$N = 1000 - Ae^{-kt}$$

 $t = 0$
 $N = 200$ \Rightarrow $200 = 1000 - A.1$
 $A = 800$
 $\frac{dN}{dt} = kAe^{-kt} = 800ke^{-kt}$
 $t = 0$
 $\frac{dN}{dt} = 80$ \Rightarrow $k = 0.1$

(a) (ii)

$$1000 - N = 800 e^{-0.1t} = 800 \text{ when } t = 0$$

$$1000 - N = 400 \implies \begin{cases} e^{-0.1t} = \frac{1}{2} \\ -0.1 & t = -\ln 2 \\ t = 10 \ln 2 \approx 7 \end{cases}$$

 \therefore 1000 – N halves every 7 years and graph has horizontal asymptote at N = 1000

(b)(i)

$$x = a \cos(2t + \alpha)$$

$$t = 0, \quad x = 4 \implies a \cos \alpha = 4$$

$$t = \frac{\pi}{4}, \quad x = -3 \implies a \cos(\frac{\pi}{2} + \alpha) = -3$$

$$a \sin \alpha = 3$$

(ii)
$$a^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = 4^{2} + 3^{2}$$

$$\therefore a^{2} = 25 \qquad \therefore a = 5$$

$$\frac{a\sin\alpha}{a\cos\alpha} = \frac{3}{4} \implies \tan\alpha = \frac{3}{4} \qquad \therefore \alpha \approx 0.64$$

(c)(i) The number of arrangements of B, B, V, V is ${}^{4}C_{2} = \frac{4!}{2! \ 2!} = 6$. Hence

 $P(B \text{ wins two and } V \text{ wins two}) = 6\left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 = \frac{8}{27}$

(c) (ii) B and V must each win 2 of the first 4 scts, then B must win the 5'th set. Hence $P(B \text{ wins three and V wins two}) = \frac{8}{27} \times \frac{2}{3} = \frac{16}{81}$

Question 7

Initial conditions

$$x = 0$$
 $\dot{x} = 20\cos\theta$
 $y = 0$ $\dot{y} = 20\sin\theta$

$20t\sin\theta - 5t^2 = 0$ $5t \left(4\sin\theta - t\right) = 0$ $\therefore \text{ for } y = 0, \ t = 4\sin\theta$ and $x = 20 t \cos \theta$

Horizontal motion

$$\ddot{x} = 0$$

 $\dot{x} = c_1$, c_1 constant

when t = 0, $\dot{x} = 20 \cos \theta$

$$c_1 = 20\cos\theta$$

$$\therefore \dot{x} = 20\cos\theta$$

$$x = 20t \cos \theta + c$$

when t = 0, x = 0

$$\therefore c_2 = 0$$

$$\therefore x = 20t \cos \theta$$

Vertical motion

$$\ddot{y} = -10$$

 $\dot{y} = -10t + c_3$, c_3 constant

when t = 0, $\dot{y} = 20\sin\theta$

$$c_3 = 20\sin\theta$$

$$\therefore \dot{y} = 20\sin\theta - 10t$$

$$y = 20t \sin \theta - 5t^2 + c_4$$

when
$$t = 0$$
, $y = 0$

$$c_4 = 0$$

$$\therefore y = 20t\sin\theta - 5t^2$$

(a)(ii)
$$x = R$$
 when $y = 0$
 $20t \sin \theta - 5t^2 = 0$
 $5t (4\sin \theta - t) = 0$
 \therefore for $y = 0$, $t = 4\sin \theta$
and $x = 20t \cos \theta$
 $= 40 (2\sin \theta \cos \theta)$

 $\therefore R = 40 \sin 2\theta$

(a) (iii) If the horizontal range R varies so that $R_1 \le R \le R_2$, then the area watered is shaded in the diagram.

$$15^{\circ} \le \theta \le 45^{\circ}$$

$$30^{\circ} \le 2\theta \le 90^{\circ}$$

$$0 \cdot 5 \le \sin 2\theta \le 1$$

$$20 \le R \le 40$$

Shaded area is $\pi (40^2 - 20^2)$ Area watered is 1200π m².

(b) (i)
$$v = \frac{1}{2} (1 - x^2)$$

$$\frac{dv}{dx} = -x \qquad \therefore a = v \frac{dv}{dx} = \frac{x^3 - x}{2}$$

(b) (ii)
$$\frac{1}{1+x} + \frac{1}{1-x} = \frac{(1-x)+(1+x)}{(1+x)(1-x)} = \frac{2}{1-x^2}$$

$$\frac{dx}{dt} = \frac{1 - x^2}{2} \implies \frac{dt}{dx} = \frac{2}{1 - x^2}$$

$$\frac{dt}{dx} = \frac{1}{1 + x} + \frac{1}{1 - x}$$

$$t = \ln(1 + x) - \ln(1 - x) + c$$

when
$$t = 0$$
, $x = 0$: $c = 0$

$$\therefore t = \ln \frac{1+x}{1-x}$$

$$\frac{1+x}{1-x} = e^t$$

$$1 + x = e^{t} - xe^{t}$$

$$x(e^{i}+1)=e^{i}-1$$

$$\therefore x = \frac{e^{t} - 1}{e^{t} + 1} = \frac{1 - e^{-t}}{1 + e^{-t}}$$

(b) (iii)

Initially the particle is at O, moving right at speed of $0.5\,\mathrm{ms}^{-1}$ and slowing down (since v and a have opposite signs for 0 < x < 1).

The particle continues to move right while slowing down for x < 1. As $t \to \infty$, $x \to \frac{1-0}{1+0} = 1$.

Its limiting position is 1 m to the right of O.