Purchase Prediction based on Recurrent Neural Networks with an Emphasis on Recent User Activities

Quanyu PIAO (Waseda Univ.), Joo-Young LEE (Wider Planet, Inc.), Tetsuya SAKAI (Waseda Univ.)

Contents

- 1. Introduction
- 2. Methodology
- 3. Experiments
- 4. Conclusions
- 5. Future work

- An E-Commerce prediction task
 - E-Commerce is common nowadays. How to use these business data for better profit is important.
 - Operators collect users click data.
 - Tremendous users browse EC site anytime.
 - The data is very big.
 - Characteristics
 - Sequentiality
 - Uncertainty
 - Multidimensionality

- User data: Session
 - User click data
 - Session ID, Timestamp, Item ID, Category, etc.

SSID	Timestamp	Item ID	Category
1	2014-04-07T10:51:09.277Z	214536502	0
1	2014-04-07T10:54:09.868Z	214536500	0

- User buy data
 - Session ID, Timestamp (omitted), Item ID, Price, Quantity, etc.

SSID	Item ID	Price	Quantity
420374	214537888	0	1
420374	214537850	0	1

- Our task
 - Aggregate user data with some specific methods.
 - Show and compare the performances of the models trained by original data and aggregated data.
- Our goal
 - Main
 - Avoid the models overly concentrating on specific user activities.
 - Sub
 - Reduce user data size.
 - Accelerate the model training process.

- Previous works
 - Random Forest
 - Gradient Boosting Decision Tree (GBDT)
 - Factorization Machine (FM)
- Our model selection
 - Neural Network
 - Recurrent Neural Networks (RNN): Adapt sequential data well.
 - Long Short-Term Memory (LSTM)

- Data Aggregation
 - Start point
 - Analogous to the way people recall the products they browsed in online shopping.
 - We believe that the aggregation can
 - Summarize and also compress user data.
 - It is hard to give prediction for short sessions.
 - The overall record length will be significantly reduced after aggregation, which may give more attention to short sessions for better prediction.

- Aggregation definitions
 - We define number of activities we aggregated within one session in every step P_i as:

$$P_i$$
, $i = 1,2,3,...$

• Then, the total numbers of activities aggregated $N_{aggregated}$ can be represented as:

$$N_{aggregated} = \sum_{i=1}^{\max(i)} P_i, \qquad i = 1,2,3,...$$

• Obviously, $N_{aggregated}$ should be smaller than the longest session in the dataset:

$$N_{aggregated} \leq maxLength(session)$$

Natural Aggregation

We aggregate numbers of activities in natural number sequence:

$$P_i = i, \qquad i = 1,2,3,...$$

Fibonacci Aggregation

The Fibonacci number sequence can be represented as:

$$F(i) = F(i-1) + F(i-2), \qquad i = 1,2,3,...$$

So, the number of aggregated activities in every step will be:

$$P_i = \begin{cases} 1, & i = 1 \text{ and } 2 \\ F(i), & i = 3,4,5, \dots \end{cases}$$

Exponent Aggregation

Similarly way. We choose the base as 2.

$$P_i = 2^{i-1}, \qquad i = 1,2,3,...$$

Natural Aggregation

- Aggregation method for features in every step
 - For numerical features, e.g., timestamp,

$$feature_{new} = avg(\sum feature_{original})$$

- For non-numerical features, e.g., item ID and category, we choose the most clicked item and its category in this aggregating step.
 - We should keep the correlativeness of the features.

```
feature_{newItem} = mostClicked(feature_{clickedItemList})feature_{newCategory} = Category(feature_{newItem})
```

- Embedding
 - We embed all features into low-dimensional dense vector spaces.
- Long Short-Term Memory (LSTM)
 - A popular model for sequential data processing.
 - Especially, we use bi-directional LSTM, which is Bi-LSTM.
 - We believe that the Bi-LSTM model can get more user action information with chronological view and inverse-chronological view.

- Dataset
 - The RecSys 2015 Challenge dataset published by YOOCHOOSE.

Total clicks	Click sessions	Buy sessions	Unique Item	Unique Category
33,003,944	9,249,729	509,696	52,739	339

- Data preparation
 - Data imbalance
 - Create balanced data
 - Select sessions with suitable length
 - With padding

Aggregation	Activity Length Limit	Shrunken Percentage
Natural	36	99.60%
Fibonacci	33	99.46%
Exponent	31	99.35%

- Data properties processing
 - Click data: Unchanged.
 - Buy data: Only session ID, timestamp and item ID are retained.
 - Timestamp: Split into month, day, day of week, hour, minute and second.
 - Category ID: Unchanged
 - Target data (label): For every session in click data, if the session ID exists in the buy data, this means the session is a buy session (1).
 Otherwise, it is a not-buy session (0).

- Feature data after preprocessing
 - [SSID]
 - [month:day:day of week:hour:minute:second:item ID:category ID|...]
 - [0 or 1]

SSID	Feature	is_buy
7	4:2:3:6:38:53:389:0 4:2:3:6:39:5:847:0	0
367	4:7:1:9:42:12:566:0 4:7:1:9:43:14:566:0	1

- Activity Aggregation
 - We apply the three aggregating methods to create aggregated datasets.
- Model

Results of balanced test dataset (buy: not-buy = 1:1)

	Buy Precision	Not-buy Precision	Buy Recall	Not-buy Recall	ROC_AUC
Simple	0.7330	0.7387	0.7363	0.7354	0.7358
Simple with Natural Aggregation	0.6645	0.7731	0.8247	0.5892	0.7070
Simple with Fibonacci Aggregation	0.7086	0.7384	0.7528	0.6927	0.7228
Simple with Exponent Aggregation	0.6419	0.7816	0.8492	0.5326	0.6909
Complex	0.7178	0.7476	0.7585	0.7058	0.7322
Complex with Natural Aggregation	0.7414	0.6676	0.5994	0.7937	0.6965
Complex with Fibonacci Aggregation	0.7029	0.7270	0.7390	0.6899	0.7145
Complex with Exponent Aggregation	0.7324	0.6817	0.6352	0.7709	0.7031

Results of original test dataset (buy: not-buy = 1:18)

	Buy Precision	Not-buy Precision	Buy Recall	Not-buy Recall	ROC_AUC
Simple	0.1375	0.9795	0.7339	0.7343	0.7341
Simple with Natural Aggregation	0.1039	0.9829	0.8221	0.5906	0.7064
Simple with Fibonacci Aggregation	0.1249	0.9797	0.7503	0.6959	0.7231
Simple with Exponent Aggregation	0.0957	0.9842	0.8528	0.5328	0.6928
Complex	0.1295	0.9806	0.7582	0.7058	0.7320
Complex with Natural Aggregation	0.1429	0.9714	0.5948	0.7941	0.6945
Complex with Fibonacci Aggregation	0.1216	0.9786	0.7385	0.6915	0.7150
Complex with Exponent Aggregation	0.1390	0.9734	0.6368	0.7713	0.7040

 Data compress rate and training time reduction rate (Approximation)

	Dataset compressed rate	Training time reduction rate
Simple	200/	15%
Complex	20%	50%

4. Conclusions

- We define three kinds of data aggregation methods.
 - Natural, Fibonacci, and Exponent Aggregation
- Except Fibonacci Aggregation
 - For simple LSTM model trained by aggregated data:
 - Better: Not-buy Precision, Buy Recall
 - Worse: Buy Precision, Not-buy Recall
 - For complex LSTM model trained by aggregated data :
 - Better: Buy Precision, Not-buy Recall
 - Worse: Not-buy Precision, Buy Recall

4. Conclusions

Fibonacci Aggregation

- Performs similar with the results trained by original data.
- Gives the best comprehensive performance of the three aggregating methods.
 - With 97.5% ~ 98.5% of the best performance, it provides data compressing and huge training acceleration.
- The test results for balanced and original dataset are similar.

5. Future work

- Overfitting problem
 - We may need better model and adjustment of hyperparameters.
 - Apply dynamic length input to the model (dynamic RNN).
- For better performance
 - Do more feature analysis.
 - Feature selection, combination, etc.
- Explore better solutions for more normalized and imbalanced real-life data.

Reference

- [1] Breiman, Leo. "Random Forests." Machine Learning 45 (2001): 5-32.
- [2] Friedman, Jerome H.. "Greedy function approximation: A gradient boosting machine." (2001).
- [3] Rendle, Steffen. "Factorization Machines." 2010 IEEE International Conference on Data Mining (2010): 995-1000.
- [4] Rendle, Steffen. "Factorization Machines with libFM." ACM TIST 3 (2012): 57:1-57:22.
- [5] Wu, Zhenzhou et al. "Neural Modeling of Buying Behaviour for E-Commerce from Clicking Patterns." RecSys '15 Challenge (2015).
- [6] Ben-Shimon, David et al. "RecSys Challenge 2015 and the YOOCHOOSE Dataset." RecSys '15 (2015).
- [7] Sheil, Humphrey et al. "Predicting Purchasing Intent: Automatic Feature Learning using Recurrent Neural Networks." ArXiv abs/1807.08207 (2018): n. pag.
- [8] Gligorijevic, Djordje et al. "Time-Aware Prospective Modeling of Users for Online Display Advertising." ArXiv abs/1911.05100 (2019): n. pag.
- [9] Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space." CoRR abs/1301.3781 (2013): n. pag.
- [10] Liu Zhiyuan, Sun Maosong, Lin Yankai, et al. "Knowledge Representation Learning: A Review[J]." Journal of Computer Research and Development, 2016, 53(2): 247-261.