CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	G
Mathematics	203	Sections
Examination		All
Final	Date	Pages
•	April 2013	3
Instructors:	•	Course Examiners
I. Gorelyshev, W. Mianbo,		
CL. Santana, T. Huhes		A. Atoyan & H. Proppe
Special	Only calculators approved by the	
Instructions:	Department are allowed	

MARKS

- [10] 1. (a) Let $f(x) = \sqrt{4-x^2}$. Find $h = f \circ f$ and determine the domain and the range of f and the domain of h.
 - (b) Given the function $f = \log_3(2^x 4)$ find the inverse function f^{-1} , and determine the domain of f and the domain of f^{-1} .
- [12] 2. Evaluate the limits Do not use l'Hôpital rule:

(a)
$$\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 - 9}$$
 (b) $\lim_{x \to 1} \frac{\sqrt{x + 8} - 3}{x - 1}$ (c) $\lim_{x \to \infty} \frac{x\sqrt{2 + 16x^2 + x^4}}{1 - 3x^3}$

- [5] 3. Calculate both one-sided limits of $f(x) = \frac{|x^2 5x|}{x 5}$ at the point(s) where the function f is discontinuous.
- [16] 4. Find the derivatives of the following functions:

(a)
$$f(x) = \frac{\sqrt{x^5} - x^2 + e\sqrt{x}}{x^{3/2}}$$

(b)
$$f(x) = \ln \frac{x^3}{(x+3)^4}$$

(c)
$$f(x) = e^{-x}(x^2 \arctan x)$$

(d)
$$f(x) = \sin(x + \sin(x + \sin x))$$

(e)
$$f(x) = (1 + 2x)^{\ln x}$$
 (use logarithmic differentiation)

- [16] 5. (a) Verify that the point (1,-2) belongs to the curve defined by the equation $xy x\sqrt{5+y^2} + 6 = x^2$, and find the equation of the tangent line to the curve at that point.
 - (b) A particle is moving on the trajectory (x(t), y(t)) described by the equation $x^2 + 4y^2 = 8$ in the (x, y) plane. At an instant t when the (x, y) coordinates are (2, 1) the x-coordinate is changing at the rate $\frac{\mathrm{d}x}{\mathrm{d}t} = 16 \frac{\mathrm{m}}{\mathrm{sec}}$. How fast is the y-coordinate changing at that instant?
 - (c) Use l'Hôpital's rule to evaluate the $\lim_{x\to 0} \frac{\sin(3x) 3x}{3x^4 x^3}$.
- [6] 6. Let $f(x) = x^3 3x + 2$.
 - (a) Find the slope m of the secant line joining the points (0, f(0)) and (2, f(2)).
 - (b) Find all points x = c (if any) on the interval [0,2] such that f'(c) = m.
- [9] 7. Consider the function $f(x) = \sqrt{1+3x}$.
 - (a) Use the definition of the derivative to find the formula for f'(x).
 - (b) Write the linearization formula for f at a=5
 - (c) Use this linearization to approximate the value of $f(6) = \sqrt{38} \sqrt{19}$
- [12] 8. (a) Find the absolute extrema of $f(x) = \frac{x-1}{3+2x}$ on the interval [-1,2].
 - (b) Find the radius r and the height h of the cylinder that has a given volume V, but has the smallest possible surface area including both its bottom and the top (i.e. express r and h as functions of V).

- [14] 9. Given the function $f(x) = x^4 6x^2$.
 - (a) Find the domain of f and check for symmetry. Find asymptotes of f (if any).
 - (b) Calculate f'(x) and use it to determine intervals where the function is increasing, intervals where it is decreasing, and the local extrema (if any).
 - (c) Calculate f''(x) and use it to determine intervals where the function is concave upward, intervals where the function is concave downward, and the inflection points (if any).
 - (d) Sketch the graph of the function f(x) using the information obtained above.

[5] Bonus Question

We know that a function f is differentiable on the interval [0,2] and has values f(0) = 0, f(1) = 1 and f(2) = -1. Is this information sufficient to claim, using the Mean Value theorem, that the tangent line to the graph of f(x) must be horizontal at least at one point x in the interval (0,2)? Explain why yes or why not.