Интегралы

Интеграл	Определение	Как вычислять	Свойства	+
Криволинейный интеграл 1	$\int_{lpha}^{eta}f(x(t),y(y),z(t)) ec{r}'(t) dt=\int_{\Gamma}fdl$	Параметризовать кривую и тупо вычислить	Не зависит от параметризации кривой Не зависит от направления кривой Линейность Аддитивность	\int — масса кривой, если f — её плотность
	$\int_{lpha}^{eta} \overline{F} \cdot \overline{r}'(t) dt = \int_{lpha}^{eta} (P(x,y,z)x'(t) + Q(x,y,z)y'(t) + R(x,y,z)z'(t))$ Обозначение: $\int_{\Gamma} \overline{F} d\overline{r} = \int_{\Gamma} P dx + Q dy + R dz$	Либо так же, как первого рода(параметризовать кривую) Либо TODO	Всё то же самое, но зависит от направления кривой	F— векторное поле, тогда ∫ его работа вдоль кривой
Поверхностный интеграл 1	$\int\int_{\Omega}f(x,y,z) \overline{r}_{u} imes\overline{r}_{v} dudv=\int\int_{\Sigma}f(x,y,z)ds$	Либо параметризовать поверхность и вычислить через двойной Либо, через формулу Стокса		Как бы масса поверхности, если f — функция плотности
Поверхностный интеграл 2	$\int\!\int_{\Sigma} \overline{F} \cdot \overline{n}_0 ds = \int\!\int_{\Sigma} P dy dz + Q dz dx + R dx dy$	$\int\int_{\Sigma}Pdydz+Qdzdx+Rdxdy=\\ \pm\int\int_{\Sigma_{yz}}P(x(y,z),y,z)dydz\\ \pm\int\int_{\Sigma_{zz}}P(x,y(x,z),z)dzdx\\ \pm\int\int_{\Sigma_{xy}}P(x,y,z(x,y))dxdy$ что касается знаков, берём "+", если угол между нормалью и осью, не фигурирующей в дифференциале острый, ичаче "-" Либо через формулу Гаусса-Остроградского		Поток векторного поля через двусторонюю поверхность

Фигня, с ними связанная

Поле скалярное

TODO

Поле векторное

TODO

Ротор, дивергенция и набла

TODO

Формула Гаусса-Остроградского

TODO

Формула Стокса

TODO

Поле потенциальное

TODO

Поле соленоидальное

TODO