S5 CALCULUS - DIFFERENTIATION

Consider the points P(x, y) and $Q(x + \Delta x, y + \Delta y)$, very close together on a curve y = f(x), where Δx and Δy are small changes in x and y respectively.

The gradient function of the curve at the point P(x, y) is obtained by taking the point Q move so close to the point P. This gives the derivative of the function y = f(x) at P(x, y).

Thus
$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right] \dots (*)$$

Differentiation from first principles

We shall illustrate this using some examples.

Find the derivatives of the following functions from first principles.

(a)
$$y = 2x + 3$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = 2(x + \Delta x) + 3 - (2x + 3) = 2\Delta x$$

$$\frac{\Delta y}{\Delta x} = \frac{2\Delta x}{\Delta x} = 2$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 2$$

(b)
$$y = x^2$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = x^2 + 2x\Delta x + (\Delta x)^2 = \Delta x(2x + \Delta x)$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta x (2x + \Delta x)}{\Delta x} = 2x + \Delta x$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} 2x + \Delta x = 2x + 0 = 2x \text{ (this is got by substituting } \Delta x \text{ with } 0)$$

(c)
$$y = x^3 - 3$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^3 - 3 - (x^3 - 3)$$

$$= x^3 + 3x^3 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - 3 - (x^3 - 3)$$

$$= \Delta x (3x^2 + 3x \Delta x + (\Delta x)^2)$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta x (3x^2 + 3x \Delta x + (\Delta x)^2)}{\Delta x} = 3x^2 + 3x \Delta x + (\Delta x)^2$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} 3x^2 + 3x \Delta x + (\Delta x)^2 = 3x^2 + 3x(0) + (0)^2 = 3x^2$$

(d)
$$y = \frac{1}{x}$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = \frac{1}{x + \Delta x} - \frac{1}{x} = \frac{x - x - \Delta x}{x(x + \Delta x)} = -\frac{\Delta x}{x(x + \Delta x)}$$

$$\frac{\Delta y}{\Delta x} = -\frac{\Delta x}{x(x + \Delta x)} \times \frac{1}{\Delta x} = -\frac{1}{x(x + \Delta x)}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \left(-\frac{1}{x(x + \Delta x)} \right) = -\frac{1}{x^2}$$

(e)
$$y = \frac{1}{x^2}$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = \frac{1}{(x + \Delta x)^2} - \frac{1}{x^2} = \frac{x^2 - (x + \Delta x)^2}{x^2 (x + \Delta x)^2}$$
$$= \frac{x^2 - (x^2 + 2x\Delta x + (\Delta x)^2)}{x^2 (x + \Delta x)^2} = -\frac{\Delta x (2x + \Delta x)}{x^2 (x + \Delta x)^2}$$

$$\frac{\Delta y}{\Delta x} = -\frac{\Delta x (2x + \Delta x)}{x^2 (x + \Delta x)^2} \times \frac{1}{\Delta x} = -\frac{(2x + \Delta x)}{x^2 (x + \Delta x)^2}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \left(-\frac{(2x + \Delta x)}{x^2 (x + \Delta x)^2} \right) = -\frac{2}{x^3}$$

(f)
$$y = \sqrt{x}$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = \frac{\sqrt{x + \Delta x} - \sqrt{x}}{1} \dots (**)$$

Here multiply top and bottom of equation (**) by the conjugate of $\sqrt{x+\Delta x}$ $-\sqrt{x}$.

$$\Delta y = \frac{\left(\sqrt{x + \Delta x} - \sqrt{x}\right)\left(\sqrt{x + \Delta x} + \sqrt{x}\right)}{\sqrt{x + \Delta x} + \sqrt{x}} = \frac{x + \Delta x - x}{\sqrt{x + \Delta x} + \sqrt{x}} = \frac{\Delta x}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta x}{\sqrt{x + \Delta x} + \sqrt{x}} \times \frac{1}{\Delta x} = \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \left(\frac{1}{\sqrt{x + \Delta x} + \sqrt{x}} \right) = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

$$(g) y = \frac{1}{2\sqrt{x}}$$

Let Δx and Δy be small changes in x and y respectively.

$$\Delta y = f(x + \Delta x) - f(x) = \frac{1}{2\sqrt{x + \Delta x}} - \frac{1}{2\sqrt{x}} = \frac{2\sqrt{x} - 2\sqrt{x + \Delta x}}{2\sqrt{x} \cdot 2\sqrt{x + \Delta x}} \dots (***)$$

Here multiply top and bottom of equation (***) by the conjugate of $\sqrt{x} - \sqrt{x + \Delta x}$.

$$\Delta y = \frac{2\sqrt{x} - 2\sqrt{x + \Delta x}}{2\sqrt{x} \cdot 2\sqrt{x + \Delta x}} = \frac{\left(\sqrt{x} - \sqrt{x + \Delta x}\right)\left(\sqrt{x} + \sqrt{x + \Delta x}\right)}{2\sqrt{x}\left(x + \Delta x\right)\left(\sqrt{x} + \sqrt{x + \Delta x}\right)} = \frac{x - x - \Delta x}{2\sqrt{x}\left(x + \Delta x\right)\left(\sqrt{x} + \sqrt{x + \Delta x}\right)}$$
$$= \frac{-\Delta x}{2\sqrt{x}\left(x + \Delta x\right)\left(\sqrt{x} + \sqrt{x + \Delta x}\right)}$$

$$\frac{\Delta y}{\Delta x} = \frac{-\Delta x}{2\sqrt{x(x+\Delta x)}(\sqrt{x} + \sqrt{x+\Delta x})} \times \frac{1}{\Delta x} = \frac{-1}{2\sqrt{x(x+\Delta x)}(\sqrt{x} + \sqrt{x+\Delta x})}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \left(\frac{-1}{2\sqrt{x(x+\Delta x)}(\sqrt{x} + \sqrt{x+\Delta x})} \right) = \frac{-1}{2\sqrt{x(x+0)}(\sqrt{x} + \sqrt{x+0})}$$

$$= -\frac{1}{2\sqrt{x^2}(2\sqrt{x})} = -\frac{1}{4x^{\frac{3}{2}}}$$

Note:

- (i) In all cases, Δy is a multiple of Δx .
- (ii) In examples (d), (e) and (g) above, you do not need to expand the denominator when obtaining Δy .
- $\frac{dy}{dx}$ is termed as the gradient function of y = f(x) or it is the first derivative of (iii) y = f(x) with respect to x.

ACTIVITY I

Differentiate the following from first principles.

(a)
$$y = 3 - x$$

(b)
$$y = x^2 + 2$$

(b)
$$y = x^2 + 2$$
 (c) $y = x^2 + 5x$

(d)
$$y = 2 - x^2$$

$$(e) y = x + x^3$$

(e)
$$y = x + x^3$$
 (f) $y = 2\sqrt{x}$

$$(g) y = \frac{3}{3+x}$$

(h)
$$y = \frac{1}{x^2 + 1}$$
 (i) $y = \frac{1}{1 - x}$

$$(i) y = \frac{1}{1 - x}$$

$$(j) y = \frac{1}{1 - x^2}$$

(k)
$$y = \frac{x}{1+x^2}$$
 (l) $y = \frac{2x}{1-x}$

$$(1) y = \frac{2x}{1-x}$$

$$(m) y = \frac{1}{2 + \sqrt{x}}$$

(n)
$$y = x^3 - 2x + 5$$

The rule for differentiation

(a) Suppose that $y = x^n$, then $\frac{dy}{dx} = n x^{n-1}$; that is to say "multiply by the power and reduce the power by 1"

Example

Find $\frac{dy}{dx}$ in each of the cases below:

(i)
$$y = x^2$$
; $\frac{dy}{dx} = 2x^{2-1} = 2x$

(ii)
$$y = x^7$$
; $\frac{dy}{dx} = 7x^{7-1} = 7x^6$

(iii)
$$y = x^{-1}$$
; $\frac{dy}{dx} = -x^{-1-1} = -x^{-2} = -\frac{1}{x^2}$

(iv)
$$y = \frac{1}{x^3} = x^{-3}$$
; $\frac{dy}{dx} = -3x^{-3-1} = -3x^{-4} = -\frac{3}{x^4}$

(v)
$$y = x^{\frac{1}{2}}; \frac{dy}{dx} = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}}$$

(vi)
$$y = \frac{1}{x^{\frac{3}{2}}} = x^{-\frac{3}{2}}; \frac{dy}{dx} = -\frac{3}{2}x^{-\frac{3}{2}-1} = -\frac{3}{2}x^{-\frac{5}{2}}$$

(vii)
$$y = -4x^5$$
; $\frac{dy}{dx} = -20x^{5-1} = -20x^4$

(b) Given that y = k (a constant), then $\frac{dy}{dx} = 0$.

Proof:

For
$$y = k = k x^0$$

Applying the rule from above, $\frac{dy}{dx} = 0 \times k x^{0-1} = 0$.

For example, if y = -3, then $\frac{dy}{dx} = 0$.

Example

1. Find $\frac{dy}{dx}$ in each of the following cases;

(a)
$$y = 2x^2 - 3$$
, $\frac{dy}{dx} = 4x - 0 = 4x$.

(b)
$$y = 1 - x^4$$
, $\frac{dy}{dx} = 0 - 4x^3 = -4x^3$.

(c)
$$y = x^3 - 3x^2 + 5x - 2$$
, $\frac{dy}{dx} = 3x^2 - 6x + 5$.

(d)
$$y = 5x + \frac{1}{x^2}, \frac{dy}{dx} = 5 - \frac{2}{x^3}.$$

2. Find the value of $\frac{dy}{dx}$ fr the following curves at the given points.

(a)
$$y = 2x^2 - 3x + 4$$
; (1, 3)

$$\frac{dy}{dx} = 4x - 3$$

At
$$(1, 3)$$
, $\frac{dy}{dx} = 4 \times 1 - 3 = 1$

(b)
$$y = x^2 - \frac{1}{x}$$
; $(1, 0)$

$$\frac{dy}{dx} = 2x + \frac{1}{x^2}$$

At
$$(1, 0)$$
, $\frac{dy}{dx} = 2 \times 1 + \frac{1}{1^2} = 3$

3. Determine the values of x for which $\frac{dy}{dx} = 0$.

(a)
$$y = x^3 - 2x^2 + 4$$

$$\frac{dy}{dx} = 3x^2 - 4x = 0$$

$$x(3x-4)=0$$

$$x = 0 \text{ or } x = \frac{4}{3}$$

(b)
$$y = \frac{4}{3}x^3 - x + 5$$

$$\frac{dy}{dx} = 4x^2 - 1 = 0$$

$$(2x-1)(2x+1)=0$$

$$x = \pm \frac{1}{2}$$

$$(c) y = 2x + \frac{1}{x}$$

$$\frac{dy}{dx} = 2 - \frac{1}{x^2} = 0$$

$$2x^2 - 1 = 0$$

$$x = \pm \frac{\sqrt{2}}{2}$$

ACTIVITY II

Determine the values of $\frac{dy}{dx}$ to the curves below at the given – values. 1.

(a)
$$y = x^4 - 2x + 3, x=1$$

(b)
$$y = 3x^2 + 3x - 4$$
, $x = 2$

(c)
$$y = 1 - x^3$$
, $x = -1$

(d)
$$y = x(x-1)(x+1), x=0$$

(e)
$$y = 5 - 2x - x^2$$
, $x = -1$ (f) $y = (1 + x)^2$, $x = 1$

(f)
$$y = (1+x)^2, x=1$$

(g)
$$y = 1 - \frac{1}{x^2}, x = -1$$

(h)
$$y = x^3 - 2x^2 - 4$$
, $x=2$

2. Find the value of the gradient function to the curve at the given value of x.

(a)
$$y = x - \sqrt{x}, x = 4$$

(a)
$$y = x - \sqrt{x}$$
, $x = 4$ (b) $y = 2\sqrt{x} - \frac{1}{\sqrt{x}}$, $x = 1$

(c)
$$y = x^2 - 4x + 3, x = 0$$

(c)
$$y = x^2 - 4x + 3$$
, $x=0$ (d) $y = (1-x)(x^2+3)$, $x=2$