USTHB

Faculté d'Informatique

Département Intelligence Artificielle & Sciences des Données

Master 2 Informatique Visuelle

Représentation des Connaissances et raisonnement

TD N° 2 : Logique Modale

Année Universitaire: 2023-2024

Exercice 1:

- 1- Exprimer l'antisymétrie de la relation d'ultériorité temporelle par la théorie des modèles et par l'axiomatique.
- 2- Exprimer le fait que le temps a une origine par la théorie des modèles et par l'axiomatique. Solution :
- 1- Exprimez par la théorie des modèles et par l'axiomatique.
 - a- l'antisymétrie de la relation d'ultériorité temporelle

a-1 Théorie des modèles :

 $\forall (w,w') \in W ((wRw' \land w'Rw) \supset w=w')$

a-2 Il n'existe pas d'axiome spécifique à l'antisymétrie mais les axiomes suivants permettent entre autres de la modéliser :

Axiomes reliant le passé et le futur :

 $a \supset GPa$

ce qui a eu lieu maintenant, on pourra toujours dire que cela a eu lieu

et a \supset HFa

Il a toujours été vrai qu'on pouvait dire que cela aura lieu.

b- que le temps a une origine

b-1 Théorie des modèles :

Soit < la relation d'ultériorité

 $\exists w_0 \ \forall (w \in W) \text{ tq } w \neq w_0 \ w_0 < w \ w_0 \text{ est un temps temporal avant tous les autres temps.}$

b-2 Axiomatisation:

 $H_{faux} \lor PH_{faux}$

Toutes les dates avant w₀ satisfont le faux et s'il y'en a une alors c'est elle l'origine.

 H_{faux}

- 2- Exprimez en utilisant l'axiomatisation de la logique modale le fait que :
 - a- Il y a un ordre total des dates futures,

$$((Fa \land Fb) \supset (F(a \land Fb) \lor F(a \land b) \lor (Fa \land b)))$$

b- Il n'existe pas d'instant maximal,

$$(Ga \supset Fa)$$
 (tous les futurs ont un futur)

d- Il n'existe pas d'instant minimal.

Exercice 2:

1- Spécifier les assertions vraies dans le modèle suivant avec la spécificité que $M,x \models = \neg B$ ssi non $(M,x \models = B)$.

- a- $M,w_1 \models = \Diamond(p \land q)$ vrai car $(p \land q)$ est vrai en w3 et w_1Rw_3 .
- b- $M, w_2 \models = \neg \Box p$ faux car $M, w_2 \models = \Box p$. En effet, w5 est le seul monde accessible depuis w_2 et p est vrai en w_5 .
- c- $M, w_3 \models = \Box(p \supset q)$ vrai car $(p \supset q)$ est vrai en w_4 et w_4 est le seul monde accessible depuis w_3 .
- d- $M, w_4 \models \Box (q \land \Diamond \neg p)$ vrai car il n'existe aucun monde accessible depuis w_4 . D'où, quel que soit la formule $f, \Box f$ est vrai en w_4 et $\Diamond f$ est faux en w_4 .
- e- M,w₅ |== \square (q $\land \lozenge \neg p$) faux car q est faux en w4 et w₅Rw₄.

Exercice 3 : Exprimez en logique modale les énoncés suivants :

- a- Le coronavirus est un fléau mondial Est-un(Coronavirus, fléau-mondial)
- b- Les Italiens ne croient pas que les chinois maitrisent le coronavirus —Croire _{italiens}(maitrise(chinois, coronavirus))
- c- Les Français savent que le coronavirus est un fléau mondial Savoir _{Français} (est-un(Coronavirus, fléau-mondial))
- d- Les chinois veulent que le coronavirus ne soit pas un fléau mondial Vouloir _{chinois} ¬ (est-un(coronavirus,fléau-mondial))

Exercice 4:

1- Spécifier les assertions vraies dans le modèle modal temporel suivant dans lequel un monde représente un instant dans le temps, avec la spécificité que $M,x \models = \neg B$ ssi non $(M,x \models = B)$.

- a- $M,t_1 == G(\neg a \land \neg b)$ est faux car t5 est le seul état temporel accessible depuis t1 et $(\neg a \land \neg b)$ est faux en t5.
- b- M, $t_5 \models= HP(b \supset a)$ faux car t_1 et t_4 sont les seuls passés de t_5 . Pour t_1 , t_3 est son seul passé dans lequel b est vrai et a est faux d'où ($b \supset a$) est faux en t_3 . D'où $P(b \supset a)$ est faux en t_1 .
- c- M, $t_2 \models \neg F(a \supset b)$ est faux car t_4 et t_3 sont les seuls futurs de t_2 . Or $(a \supset b)$ est vrai en t_4 ainsi qu'en t_3 . D'où, $F(a \supset b)$ est vrai en t_4 ce qui implique que M, $t_2 \models \neg F(a \supset b)$ est faux.
- d- $M,t_5|==G Fb$ vrai car il n'existe aucun monde accessible à partir de t5. Ainsi quel que soit la formule f, Gf est vrai en t5.

Exercice 5:

Montrer que:

1. $(a \supset \Box \Diamond a)$ est une tautologie si et seulement si R est symétrique.

Une relation R est dite symétrique ssi:

 $\forall (w,w') \in W ((wRw' \supset w'Rw))$

Si R est symétrique, et si a est vrai en un monde w, alors pour tout monde w' accessible depuis w, ◊a est vrai

D'où □◊a est vrai en w.

<u>Réciproquement</u>:

Supposons que $(a \supset \Box \Diamond a)$ soit vrai en tout monde de tous les modèles et R est non symétrique : Il existe un coupe de monde $(w,w') \in W$ tel que wRw' et $\neg w'Rw$

Considérons la fonction v telle que $v(a)=\{w\}$

a est vrai en w

◊a est faux en w' (car w' n'a pas accès au seul monde où a est vrai)

Donc □◊a est faux en w (car w a accès à un monde w' où ◊a est faux)

Ainsi, $(a \supset \Box \Diamond a)$ est faux en w : Contradiction

2. $(\Box(a\lor b) \supset (\Box a\lor \Box b))$ est une tautologie si et seulement si R relie chaque monde à au plus un monde.

Si R relie chaque monde a au plus un monde et si \Box (a \lor b) est vrai en w,

- soit w n'est relié à aucun monde, donc ∀ la formule f, □ f est vrai en w, en particulier □a w
- soit w est relié à un monde unique w' où a∨b est vrai :

- o si a est vrai en w' alors □a est vrai en w,
- o si b est vrai en w', alors □b est vrai en w.

Ainsi, dans tous les cas, $(\Box a \lor \Box b)$ est vrai en w.

Réciproquement:

Supposons que $(\Box(a\lor b)\supset(\Box a\lor \Box b))$ est vrai en tout monde de tous les modèles et qu'il existe un monde w ayant accès à plusieurs mondes distincts w_i avec 1<=i<=n et n>=2 Considérons la fonction v telle que $v(a)=\{w_1\}$ et $v(b)=W-\{w_2\}$

Tels que wRwi donc $(\Box(a\lorb))$ est vrai en w (1) a est faux en w2 donc \Box a est faux en w b est faux en w1 donc \Box b est faux en w il en résulte $(\Box a\lor\Box b)$ faux en w (2)

contradiction $(\Box(a\lor b)\supset (\Box a\lor \Box b))$ faux en w

3. (◊□a ⊃ □◊a) est une tautologie si et seulement si R est ''confluente'' (c'est-à-dire que chaque fois que R relie un monde w à deux mondes w₁ et w₂, il existe un monde w₃ accessible à la fois depuis w₁ et w₂).

Si R est confluente et que et $\Diamond \Box a$ est vrai en un monde w, il existe un monde w_1 accessible depuis w où $\Box a$ est vrai.

Pour tout monde w_i accessible depuis w (y compris w_1), il existe un monde w_j accessible à la fois à partir de w_1 et w_i .

a est vrai en w_j (car \Box a est vrai en w1 et w_1Rw_j) donc \Diamond a est vrai dans tous les mondes w_i accessible depuis w d'où $\Box \Diamond$ a est vrai en w.

Réciproquement :

Supposons que ($\Diamond \Box a \supset \Box \Diamond a$) est vrai en tout monde de tous les modèles et qu'il existe un triplé de mondes $(w_1,w_2,w_3) \in W$ tels que wRw_1 et wRw_2 et que tous les sous-ensembles W_1 et W_2 des mondes respectivement accessibles depuis w_1 et w_2 soient disjoints $(W_1 \cap W_2 = \varnothing)$ Considérons la fonction v telle que $v(a) = \{W_1\}$

 \Box a est vrai dans tous les w_1 donc \Diamond \Box a est vrai en w cependant \Diamond a est faux en w (car a est faux dans tous les mondes accessibles depuis w_2)

donc □◊a faux en w car wRw2

Ainsi, $\Diamond \Box a$ vrai en w et $\Box \Diamond a$ faux en w est faux en w ceci implique que $(\Diamond \Box a \supset \Box \Diamond a)$ est faux en w :

D'où contradiction.

Exercice 6:

La logique de S5 est axiomatisée de la façon suivante :

 $(A6): (\Box(a\supset b)\supset (\Box\ a\supset \Box\ b))$

 $(A7): (\Box a \supset a)$

(A9): $(\Diamond a \supset \Box \Diamond a)$

 $(R6) [N\'{e}cessitation] : si \ X \ est \ une \ formule, \ R6(X) \ est \ l'ensemble \ contenant \ l'unique \ \'{e}l\'{e}ment$

 $\Box X$

Montrer que:

1- si $(a \supset b)$ est un théorème, $(\Box a \supset \Box b)$ l'est aussi.

Preuve:

X[1]: $(a \supset b)$ Hypothèse X[2]: $\Box(a \supset b)$ R6(X[1])

 $X[3]: (\Box(a \supset b) \supset (\Box a \supset \Box b))$ A6

 $X[4]: (\Box a \supset \Box b)$ R2(X[3],X[2])

2- si $(a \supset b)$ est un théorème, $(\lozenge a \supset \lozenge b)$ l'est aussi

X[1]: $(a \supset b)$ Hypothèse

X[2]: $(\neg b \supset \neg a)$ Logique des propositions

 $X[3]: (\neg \Box \neg a \supset \neg \Box \neg b)$ Résultat de 1

 $X[4]: (\Box \neg b \supset \Box \neg a)$ Logique des propositions

 $X[5]: (\Diamond a \supset \Diamond b)$ par définition du \Diamond