ADVANCED BAYESIAN MODELING

Evaluating Monte Carlo Error

Monte Carlo Approximation Error

Monte Carlo error is the deviation of the Monte Carlo approximation from the true value.

It is often measured by the **Monte Carlo standard error (SE)**: the standard deviation of the approximation that is due to random simulation.

Note: NOT the same as a posterior (or prior) standard deviation!

Approximations having a roughly normal simulation distribution will be within two SE of the true value about 95% of the time.

Independent Simulation

When the variates are simulated independently, Monte Carlo error is easy to evaluate.

For now, assume independent simulation draws

$$\theta^1, \quad \theta^2, \quad \dots, \quad \theta^S$$

from the posterior.

(Later: More complicated situations)

For Expected Values

The Monte Carlo approximation

$$\frac{1}{S} \sum_{i=1}^{S} h(\theta^{s})$$
 for $E(h(\theta) \mid y)$

is correct on average:

$$E\left(\frac{1}{S}\sum_{s=1}^{S}h(\theta^{s})\mid y\right) = \frac{1}{S}\sum_{s=1}^{S}E(h(\theta^{s})\mid y) = E(h(\theta)\mid y)$$

Moreover, the law of large numbers implies that the approximation converges in probability to $\mathrm{E}\big(h(\theta)\mid y\big)$ as $S\to\infty$.

Using independence, the variance of the approximation (if it exists) is

$$\operatorname{var}\left(\frac{1}{S}\sum_{s=1}^{S}h(\theta^{s})\mid y\right) = \frac{1}{S^{2}}\sum_{s=1}^{S}\operatorname{var}\left(h(\theta^{s})\mid y\right) = \frac{1}{S}\operatorname{var}\left(h(\theta)\mid y\right)$$

So the Monte Carlo SE is

$$\frac{1}{\sqrt{S}} \sqrt{\operatorname{var}(h(\theta) \mid y)}$$

Notes:

- ▶ Choosing S sufficiently large can achieve high accuracy.
- ▶ Can estimate $\sqrt{\operatorname{var}(h(\theta) \mid y)}$ using simulated variates.

Let

$$\widehat{\mathrm{var}}(h) = \text{sample variance of draws } h(\theta^s)$$

Then the estimated Monte Carlo SE is

$$\frac{1}{\sqrt{S}}\sqrt{\widehat{\operatorname{var}}(h)}$$

Remember: This assumes draws are independent.

(When draws are NOT independent, this is called "Naive SE" in rjags/coda.)

1

How Many Draws?

The number of independent draws needed to approximately attain a given SE is

$$\hat{S} \approx \frac{\widehat{\text{var}}(h)}{\text{SE}^2}$$

A rule of thumb: Monte Carlo SE should be less than 1/20 of the (posterior) standard deviation.

The number of independent draws needed for this would be

$$S > \frac{\widehat{\text{var}}(h)}{(\sqrt{\widehat{\text{var}}(h)}/20)^2} = 20^2 = 400$$

18

Remarks:

- ▶ If (posterior) variance exists, central limit theorem implies Monte Carlo approximate expected value is approximately normally distributed.
- ▶ If simulation draws are dependent, need different error estimates (later).
- Error estimates for approximated quantiles exist, but are less commonly used.