

Why Deep Learning rocks

A philosophical note

Maxim Borisyak

Yandex School of Data Analysis
National Research University Higher School of Economics

No free lunch

No free lunch theorem

No free lunch theorem states that in average all learning algorithms are equally bad at learning.

Examples:

> crazy algorithm:

$$f(x) = \left| \sum_{i} x_i \right| \mod 2$$

> SVM

perform equally well in average.

No free lunch theorem

Is Machine Learning useless?

Why we use Machine Learning at all?

- > a learning algorithm makes some prior assumptions;
- > performs well under these assumptions,
- > but it must perform badly elsewhere.

The main task of <u>data scientists</u> is to identify correctly assumptions from problems description.

Traditional Machine Learning

- > analyse the problem;
- > make assumptions about the problem;
- > pick an algorithm from a toolkit (e.g. sklearn);
- > provide assumptions suitable for the algorithm (feature engineering).

Discussion

- > this approach works well for traditional datasets with a small number of features:
- > e.g. Titanic dataset:

```
passenger class sex age fare ...
```

Essentially, performance of the algorithm depends data scientist's ability to generate features.

> but our abilities are limited.

Kitten

Kitten

```
32 29 ..., 58 36
                                  35
     25
         28
                                       34
                                           347
Γ 26
         30
             31
                 36 ..., 65 38
                                   42
     29
                                       41
                                           421
             30 40 ...,
Γ 27
     28
         31
                          84
                              58
                                   51
                                       52
                                           447
     26
         27
             29 43 ..., 90 70
                                   60
                                       57
                                           431
Γ 20
         28 28 31 ..., 83 73
                                   62
                                       52
     26
                                           451
. . . .
[173 187 180 183 184 ..., 170 227 244 219 199]
[193 199 194 188 185 ..., 181 197 201 209 187]
[175 177 156 166 171 ..., 226 215 194 185 182]
[161 159 160 187 178 ..., 216 193 220 211 200]
[178 180 177 185 164 ..., 190 184 212 216 189]]
```

Solution?

```
> edge detection;
> image segmentation;
> eyes, ears, nose models;
> fit shape to recognise nose, ears, eyes, ...:
> average color of segments;
> standard deviation of color segments;
> goodness of fit for segments;
> kitten's face model:
> tf-idf???
> ...
> feed it to SVM
> ...
```

Deep Learning

Deep Learning

Let's learn features!

How

> apply some simple transformation to the original input:

$$X \to f(X) \cdots y$$

Kitten

- > use convolutions;
- > use convolutions again;
- > and again;
- > and again;
 - ٠...
- > logistic regression.

Why deep?

- > new set of features is generated from previous one by a simple learnable transformation;
- > each step increases complexity of feature generation;
- > high-level features (kitten or puppy) are complex ones thus requires a lot of steps;
- > therefore, deep.

Deep Learning

- > is not a superior algorithm;
- > is not a single algorithm;
- > is a framework;
- > very flexible framework;
- > allows to express our assumptions in much more general way.

Why DL rocks

Solves much harder problems:

- > purely a human factor:
 - > research time;
 - > limits of our intuition and understanding of the world; A framework:
 - > algorithms are like constructor;
 - > possible to solve almost every possible problem:
 - > classification;
 - > regression;
 - > clasterisation;
 - > sample generation...

Downsides

- > learning features requires data;
 - > big datasets;
 - > big computational resources (GPUs);
- > there is almost always a better algorithm:
 - > with hand-made features;
 - > probably constructed by a super-intelligent alien.

Summary

Summary

Deep Learning:

- > a flexible framework;
- > allows to express you knowledge easier;
- > solves much harder problems.