

Tu travailles pour une entreprise qui propose un service par abonnement (comme Netflix, une salle de sport, ou une appli mobile). Le service marketing a remarqué que certains clients résilient leur abonnement, et aimerait pouvoir anticiper ces départs.

Ta mission : Créer un modèle de Machine Learning capable de prédire si un client risque de résilier.

Résilié

Colonne	Description
Age	Âge du client
Revenu	Revenu mensuel
Sexe	Homme / Femme
Anciennete	Ancienneté en années
Frequence_utilisation	Combien de fois il utilise le service par mois
Support_contacte	A-t-il contacté le support (Oui/Non)
Score_satisfaction	Score de satisfaction de 1 à 10
Résilié	A-t-il résilié ? (0 = Non, 1 = Oui) → c'est la colonne

à prédire!

1. Comprendre le problème

- Quelles informations peuvent influencer la décision de résilier ?
- Pourquoi est-ce utile pour l'entreprise ?
- Que peut-on faire avec une bonne prédiction ? (ex : envoyer des offres personnalisées, relancer les clients...)

2. Explorer et préparer les données

- 1. Télécharge le fichier
- 2. Regarde à quoi ressemblent les données
 - o Combien de clients?
 - o Quelles sont les colonnes ?
- 3. Nettoie les données
 - o Y a-t-il des valeurs manquantes?
 - Faut-il normaliser certaines colonnes ?
 - o Doit-on encoder des variables catégorielles ? (ex : "Oui/Non" → 1/0)
- 4. Fais quelques visualisations:
 - o Histogrammes des âges, du revenu
 - o Corrélation entre satisfaction et résiliation ?

Créer un premier modèle

- 1. Sépare les données :
 - o 80% pour l'entraînement, 20% pour le test
- 2. Teste plusieurs modèles :
 - o Régression logistique
 - o Arbre de décision
 - K-plus proches voisins (KNN)
- 3. Évalue les modèles avec :
 - o Précision
 - Rappel

- o F1-score
- Matrice de confusion

Ton objectif : trouver un **modèle équilibré** qui fonctionne bien sans sur-apprendre.

4. Améliorer ton modèle

- 1. Utilise la validation croisée
- 2. Teste différents **paramètres (hyperparamètres)** : profondeur des arbres, nombre de voisins pour KNN...
- 3. Supprime ou ajoute des colonnes, vois l'impact (feature engineering)
- 4. Si besoin : applique une réduction de dimensionnalité (PCA)

5. Interpréter les résultats

Tu dois comprendre pourquoi le modèle a pris certaines décisions :

- 1. Affiche l'importance des variables :
 - o Quelles colonnes influencent le plus la prédiction ?
- 2. Utilise SHAP (ou LIME si tu préfères) pour un client donné :
 - o Pourquoi le modèle pense-t-il qu'il va résilier ?

6 Présente ton travail

Imagine que tu présentes ton projet à un manager marketing

- 1. Prépare une slide ou un rapport simple :
 - o Résume ce que tu as fait
 - o Montre des visuels
 - o Explique ce que le modèle apprend
 - Donne une **recommandation**: "on pourrait cibler les clients ayant moins de 2 ans d'ancienneté + une note de satisfaction < 5"

Option bonus : crée une **mini appli** avec Streamlit pour prédire et expliquer automatiquement une situation.

Récapitulatif

À la fin tu auras appris à :

- Comprendre et formuler un problème de ML réel
- Nettoyer et préparer des données
- Tester plusieurs modèles
- Éviter le sur-apprentissage
- Expliquer une prédiction (interprétabilité)
- Communiquer comme une pro les résultats ♀

Barème de notation (sur 20 points)

Critère	Détail	Points
Compréhension du problème	Reformulation claire, enjeux, impact	2 pts
Préparation des données	Nettoyage, encodage, exploration visuelle pertinente	4 pts
Modélisation	Choix de plusieurs modèles, évaluation avec les bonnes métriques	4 pts
Amélioration & optimisation	Validation croisée, tuning d'hyperparamètres, essais justifiés	3 pts
Interprétation	Importance des variables + SHAP/LIME sur un cas concret	3 pts
Présentation finale	Clarté des résultats, capacité à vulgariser, recommandations	4 pts

Bonus (jusqu'à +4 pts) : mise en forme originale (Streamlit), dashboard interactif, idée innovante