Prediction of Scoring Innings in Baseball

Capstone Project
Springboard Data Science Intensive
Kevin Wang

Introduction

- Common complaint of baseball: long periods of little action
- Casual fans often find watching batting (offense) more interesting than pitching (defense)
 - Most innings in baseball are scoreless
- Is there a way to predict whether scoring will occur in an inning only given information available at the beginning of the inning?
 - Fans can decide whether to watch an inning at the beginning of it
 - Advertisers and broadcasters can predict most exciting parts of a game to show ads

Data Acquisition and Exploration

Data Acquisition

- MLB data available online in many sources
- Retrosheet.org provides play-by-play files of every game in every season up to 2016
 - Event file format needs to be parsed to be readable by Python
 - ▶ 3rd party tools available online to process data into .CSV files using R
- > 96 different data fields available
- ► For this project, use data from 2016 MLB season

```
['GAME_ID',
'AWAY_TEAM_ID',
'INN_CT',
'BAT_HOME_ID',
'OUTS CT',
'BALLS_CT',
'STRIKES_CT',
'PITCH SEQ TX',
'AWAY SCORE CT',
'HOME_SCORE_CT',
'BAT_ID',
'BAT_HAND_CD',
'RESP BAT ID',
'RESP_BAT_HAND_CD',
'PIT_ID',
```

Data Cleaning

- Many fields were not of interest, so a subset of data is selected to work with
- ► The data is for each play instead of inning
 - Iterate through to produce a compressed data frame where each row is an inning instead of a play
- Additional fields generated such as a True/False flag denoting whether runs scored in an inning
 - ► This flag will eventually be the dependent variable Y for the classification

	GameID	Away	Home	Inning	BotFlag	Batting	Pitching	Leadoff	AwayScore	HomeScore	BatScore	Runs	Hits	RunDiff	RunsFlag
0	ANA201604040	CHN	ANA	1	1	ANA	CHN	1	1	0	0	0	0	-1	False
1	ANA201604040	CHN	ANA	2	1	ANA	CHN	4	1	0	0	0	1	-1	False
2	ANA201604040	CHN	ANA	3	1	ANA	CHN	8	1	0	0	0	0	-1	False
3	ANA201604040	CHN	ANA	4	1	ANA	CHN	2	3	0	0	0	0	-3	False
4	ANA201604040	CHN	ANA	5	1	ANA	CHN	5	3	0	0	0	0	-3	False

Data Exploration Summary

- Leadoff Position: Batting Order Number of player leading off for a particular inning
- American League uses Designated Hitter in place of pitcher batting
 - Suspected to lead to better offensive numbers
- Clear trend of scoring amount based on leadoff position and inning number
 - Consider these features in future models
- Trend is mirrored for plots involving probability of scoring instead of average number of runs scored

Preliminary Modeling

Logistic Regression

- Since it is a binary classification problem (T/F for runs scored in inning), consider Logistic Regression
- Use scikit-learn package from Python
 - Train-test split on data to form training/test sets
 - GridSearchCV to tune parameters
 - ► For Logistic Regression, tune regularization parameter C
- Results: Decent accuracy, but poor precision/recall
- Confusion matrix shows problem
 - Model predicts everything as False

Runs scored?	False	True
False	7904	2961
True	0	0

Random Forests

Maintain same train-test split, tune parameters with GridSearchCV as well
Runs scored?

False

7700

204

False

True

True

2888

73

Results: better, but still poor

Comparison of scoring metrics:

	Accuracy	Precision	Recall	
Logistic	0.727473538886	0.0	0.0	
Regression				
Random Forest	0.716244822826	0.031746031746	0.303225806452	

- More tuning needed
 - Adding additional features did not help much
- Consider the imbalanced data

Imbalanced Learning

- Data: roughly 30-70 split for True/False
- Consider using imbalanced learning techniques with Logistic Regression
- Stratification: no real change observed
- Oversampling

	Accuracy	Precision	Recall		
Training	0.533274197977	0.475880713019	0.537576943265		
Test	0.528986884623	0.465788139888	0.533217290397		

Runs scored?	False	True
False	4673	4216
True	3218	3676

Undersampling

	Accuracy	Precision	Recall
Training	0.534895453781	0.418096199125	0.545494441194
Test	0.528838069615	0.41492938803	0.537456445993

Runs scored?	False	True
False	1911	1740
True	1062	1234

Imbalanced Learning

- Oversampling: shows better precision
- Use of stratification and oversampling at same time
- Logistic Regression
 - Seemingly not much better than assigning T/F at random
 - Perhaps not an appropriate model for the problem
- Move on to other classifiers while maintaining use of imbalanced learning techniques

Classifier Testing and Selection

Classifier Testing

- ► Test several different classifier algorithms, and compare scoring metrics to determine the best model
 - Perform parameter tuning using GridSearchCV
 - Calculate accuracy-precision-recall for test sets
 - ► Calculate training scores or OOB scores for Random Forests
 - Generate ROC-AUC curves when appropriate
- Maintain use of stratification and oversampling
- Continue using same features as before
 - Numeric: Inning, Leadoff Position, Score Differential
 - ► Categorical: Team Batting, Team Pitching
 - Encoded using One-Hot Encoding

Random Forests

	OOB Score	Test Accuracy	Test Precision	Test Recall
Value	0.768400599801	0.778812646518	0.839077546883	0.7488408911

- Solid results for all scoring methods
- Decent runtime
- Good AUC score from ROC curve

K-neighbors Classifier

	Accuracy	Precision	Recall		
Training	0.920990939619	0.875897609192	0.962718789173		
Test	0.750364316036	0.767359351242	0.742156862745		

- K=2 selected by GridSearchCV
- Evidence of overfitting
- Longer computation time
- Scoring not quite as good as Random Forest

Support Vector Machines

- SVC: extremely long runtime
 - Max iterations had to be reduced so GridSearchCV could finish
 - ▶ No longer converged (Tuning accuracy: 0.52)
 - Increase iterations for final estimate of scores
 - ▶ Still did not converge completely

L	iı	1	e	a	r	S	V	C
			-	~			w	_

SVC	Accuracy	Precision	Recall	
Training	0.769055312678	0.765143195066	0.771169483588	
Test	0.637458024457	0.681829700963	0.626280260708	

- ► Faster than SVC, but poorer performance
- Default iterations: not unbounded
 - ► Likely also did not converge

LinearSVC	Accuracy	Precision	Recall		
Training	0.53749815202	0.53007518797	0.538052566136		
Test	0.526832668061	0.511657374557	0.527705175118		

Conclusion: SVMs have potential, but are severely handicapped by hardware limitations

Decision Tree Classifier

	Accuracy	Precision	Recall
Training	0.942490865699	0.949607163977	0.936279205364
Test	0.750554393968	0.834262544349	0.714642353197

- Default parameters selected
- Evidence of overfitting
- Decent computation time
- Comparable to Random Forest, but not as good

Conclusion and Recommendations

Final Model

- Select Random Forest model due to good scoring and runtime
- Features Used
 - Numeric: Inning, Leadoff Position, Score Differential
 - ► Categorical: Team Batting, Team Pitching
- Binary T/F classification for whether runs scored in an inning
- Use stratification and overfitting to combat imbalanced data
- Consider effect of random seed on train-test split, random forest generation
 - Generate several trials with different random seeds, and plot the scoring metrics for each iteration

Final Model

Scores remain stable, so remain confident in model's ability to successfully classify the data

Conclusion

- Models can predict with roughly 75% accuracy whether there will be scoring in a half-inning based only on information available at the beginning of the half-inning
- Random Forest Classifier had the best performance
- Recommend taking note of inning, leadoff position, teams playing, and score differential at the beginning of an inning
 - Can input these features into model to get rough estimate of whether scoring will occur

Future Recommendations

- Consider more modeling algorithms
- Change dependent variable
 - ▶ Define "interesting" inning differently: More than 2 hits, homerun T/F, etc.
 - Use numeric variable like number of runs scored
 - Opens door to regression models in addition to classification models
- Add features from other datasets
 - ▶ Player statistics, time of day, team record, etc.
- Consider more seasons of data
- Better hardware recommended for faster processing