Quiz 4 Solutions

1. Question: 5.5 points

Given the LP program:

Minimize
$$p = 3x - 2y + z$$

Subject to $-x - y + z \le 1$
 $x + 2y - z \le 5$
 $x, y, z \ge 0$

Set up the initial simplex tableau.

• Solution:

The **grading scheme** for this question is as follows:

- 1 mark off for incorrect objective function
- 0.5 mark off for incorrect objective row (check signs)
- 0.5 mark off for no z or P column present in tableau

2. Question: 4.5 points

Consider the following tableau for a maximization problem:

Γ	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	
	0	1/3	1	2	1	0	3	-3	1
İ	0	1	0	1/2	1	1	-1/3	-1/2	2
	1	-1	0	0	1/3	0	$ \begin{array}{c} 3 \\ -1/3 \\ 0 \end{array} $	1	0
L	0	-6	0	-3	-1	0	3	9	24

- (a) Identify the basic variables in the above tableau.
- (b) What basic feasible solution does the tableau represent?
- (c) Indicate which variable should be the entering variable and which variable should be the departing variable.
- (d) Compute the next tableau using Simplex method, and what can you tell from the new tableau?

• Solution:

- (a) x_1, x_3, s_1
- (b) (0,0,1,0,0,2,0,0)

- (c) x_2 enters, s_1 departs
- (d) The next tableau is as follows

	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	7
	0	0	1	11/6	2/3	-1/3	28/9	-17/6	1/3
-	0	1						-1/2	
-	1	0	0	1/2	4/3	1	-1/3	-1/2	2
	0	0	0	0	5	6	1	6	36

The **grading scheme** for this question is as follows:

- 1 mark for correct answer to each of (a) to (c)
- 2 marks for correct answer to (d): 1 mark for correct next tableau and 1 mark for correct analysis of tableau