Hoja de Trabajo 8 Optimización

Sergio Vasquez, Ing. Mecatronica, Métodos, Sección, 40

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, template.

I. Introducción

Resuelva los siguientes problemas con las herramientas vistas en clase. En su reporte debe incluir las tablas generadas y la respuesta a cada inciso. No olvide subir la hoja de cálculo o el código fuente en Python.

October 26, 2023

II. PROBLEMAS

1) Problema 1: La siguiente función tiene un mínimo absoluto. Escoja un intervalo adecuado y utilice la búsqueda de la sección dorada para encontrarlo. Luego, derive la función y utilice el método de bisección para encontrar el cero de la derivada en el mismo intervalo. Considere un error aproximado menor al 0.5 % en ambos casos. Responda: ¿los resultados coinciden? ¿Alguno de los dos métodos convergió más rápido? Finalmente, encuentre el mínimo utilizando el método de Newton y compare sus resultados.

$$f(x) = 3 + 6x + 5x^2 + 3x^3 + 4x^4 \tag{1}$$

Figura 1: Grafica

Según la gréfica de la función anterior podemos encontrar el intervalo del minimo absoluto, el cual es de -1 a 0.

Ahora derivamos la ecuación anterior para aplicarlo al Metodo de Bisección

$$f(x) = 6 + 10x + 9x^2 + 16x^3 \tag{2}$$

IT.	xi	xs	d	x1	x2	ea	fx1	fx2
1	-1.000	0.000	0.618	-0.382	-0.618		1.356	1.077
2	-1.000	-0.382	0.382	-0.618	-0.764	0.191	1.077	1.359
3	-0.764	-0.382	0.236	-0.528	-0.618	0.236	1.095	1.077
4	-0.764	-0.528	0.146	-0.618	-0.674	0.083	1.077	1.134
5	-0.674	-0.528	0.090	-0.584	-0.618	0.090	1.069	1.077
6	-0.618	-0.528	0.056	-0.562	-0.584	0.059	1.074	1.069
7	-0.618	-0.562	0.034	-0.584	-0.597	0.022	1.069	1.070
8	-0.597	-0.562	0.021	-0.575	-0.584	0.023	1.070	1.069
9	-0.597	-0.575	0.013	-0.584	-0.589	0.009	1.069	1.069
10	-0.597	-0.584	0.008	-0.589	-0.592	0.005	1.069	1.069
11	-0.592	-0.584	0.005	-0.587	-0.589	0.005	1.069	1.069
12	-0.589	-0.584	0.003	-0.586	-0.587	0.003	1.069	1.069
13	-0.589	-0.586	0.002	-0.587	-0.587	0.001	1.069	1.069
14	-0.587	-0.586	0.001	-0.586	-0.587	0.001	1.069	1.069
15	-0.587	-0.586	0.001	-0.587	-0.587	0.000	1.069	1.069
16	-0.587	-0.586	0.000	-0.587	-0.587	0.000	1.069	1.069
17	-0.587	-0.587	0.000	-0.587	-0.587	0.000	1.069	1.069
18	-0.587	-0.587	0.000	-0.587	-0.587	0.000	1.069	1.069
19	-0.587	-0.587	0.000	-0.587	-0.587	0.000	1.069	1.069
20	-0.587	-0.587	0.000	-0.587	-0.587	0.000	1.069	1.069

Tabla I: Resultado Busqueda de la Sección Dorada

Iteración	xi	XS	xr	Error Aprox.
1	-1.000	0.000	-0.500	
2	-0.500	0.000	-0.250	0.500
3	-0.250	0.000	-0.125	0.500
4	-0.125	0.000	-0.063	0.500
5	-0.063	0.000	-0.031	0.500
6	-0.031	0.000	-0.016	0.500
7	-0.016	0.000	-0.008	0.500
8	-0.008	0.000	-0.004	0.500
9	-0.004	0.000	-0.002	0.500
10	-0.002	0.000	-0.001	0.500
11	-0.001	0.000	0.000	0.500
12	0.000	0.000	0.000	0.500
13	0.000	0.000	0.000	0.500
14	0.000	0.000	0.000	0.500
15	0.000	0.000	0.000	0.500
16	0.000	0.000	0.000	0.500
17	0.000	0.000	0.000	0.500
18	0.000	0.000	0.000	0.500
19	0.000	0.000	0.000	0.500
20	0.000	0.000	0.000	0.500

Tabla II: Resultado Derivada con Metodo de Bisección

Los resultados entre el Método de la Sección Dorada y el Método de Bisección fueron un tanto similares pero no exactos, esto puede depender por el intervalo tomado en el Método de Bisección, que fue el mas acertado para que tuviera mayor similitud con el Método de la Sección Dorada.

El Método de Bisección converge más rapido en este caso, no observando el Error Paroximado sino la similitudes entre sus xi, xs y xr, en la iteración 11 mientras que el Método de

1.125 3.000 1.781 1.781 3.000 2.323 2.323 3.000 2.644 2.644 3.000 2.917 2.907 3.000 2.953 2.953 3.000 2.977 2.977 3.000 2.988 2.988 3.000 2.994 2.997 3.000 2.997 2.997 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	fxi	fxs	fxr
1.781 3.000 2.323 2.323 3.000 2.644 2.644 3.000 2.907 2.907 3.000 2.953 2.953 3.000 2.977 2.977 3.000 2.994 2.994 3.000 2.997 2.997 3.000 2.999 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	3.000	3.000	1.125
2.323 3.000 2.644 2.644 3.000 2.817 2.817 3.000 2.907 2.907 3.000 2.953 2.953 3.000 2.977 2.977 3.000 2.988 2.988 3.000 2.994 2.997 3.000 2.997 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	1.125	3.000	1.781
2.644 3.000 2.817 2.817 3.000 2.907 2.907 3.000 2.953 2.953 3.000 2.977 2.977 3.000 2.988 2.988 3.000 2.994 2.997 3.000 2.997 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	1.781	3.000	2.323
2.817 3.000 2.907 2.907 3.000 2.953 2.953 3.000 2.977 2.977 3.000 2.988 2.988 3.000 2.994 2.997 3.000 2.997 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.323	3.000	2.644
2.907 3.000 2.953 2.953 3.000 2.977 2.977 3.000 2.988 2.988 3.000 2.994 2.994 3.000 2.997 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.644	3.000	2.817
2.953 3.000 2.977 2.977 3.000 2.988 2.988 3.000 2.994 2.994 3.000 2.997 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.817	3.000	2.907
2.977 3.000 2.988 2.988 3.000 2.994 2.994 3.000 2.997 2.997 3.000 2.999 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.907	3.000	2.953
2.988 3.000 2.994 2.994 3.000 2.997 2.997 3.000 2.999 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.953	3.000	2.977
2.994 3.000 2.997 2.997 3.000 2.999 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.977	3.000	2.988
2.997 3.000 2.999 2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.988	3.000	2.994
2.999 3.000 2.999 2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.994	3.000	2.997
2.999 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.997	3.000	2.999
3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.999	3.000	2.999
3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	2.999	3.000	3.000
3.000 3.000 3.000 3.000 3.000 3.000	3.000	3.000	3.000
3.000 3.000 3.000	3.000	3.000	3.000
	3.000	3.000	3.000
3.000 3.000 3.000	3.000	3.000	3.000
	3.000	3.000	3.000
3.000 3.000 3.000	3.000	3.000	3.000

Tabla III: Resultado Derivada con Metodo de Bisección

la Sección Dorada converge en la iteración 15.

Ahora sacamos la segunda derivada de la ecuación para aplicarlo al Metodo de Bisección

$$f(x) = 10 + 18x + 48x^2 \tag{3}$$

Iteración	xi	ea	fprima	fbiprima
1	-0.6		-0.216	16.48
2	-0.5868	2.23325%	-0.00336538	15.969
3	-0.5866	0.03%	-8.5127E-07	15.966
4	-0.5866	0.00%	-5.5067E-14	15.961
5	-0.5866	0.00%	0	15.961
6	-0.5866	0.00%	0	15.961
7	-0.5866	0.00%	0	15.961
8	-0.5866	0.00%	0	15.961
9	-0.5866	0.00%	0	15.961
10	-0.5866	0.00%	0	15.961

Tabla IV: Resultado 2da Derivada con el Metodo de Newton

2) Problema 2: La posición vertical de una pelota lanzada como proyectil se calcula con la expresión

$$y(x) = \tan(\theta_0) \cdot x - \frac{g}{2(v_0)^2 \cdot \cos^2(\theta_0)} \cdot x^2 + y_0$$
 (4)

Utilice búsqueda de la sección dorada para determinar la altura máxima si el trayecto va desde x=0 m hasta x=60 m. Considere los siguientes valores de las constantes: $y_0=1$ m, $v_0=25m/s$ y $\theta_0=50$.

ITERACION	xi	xs	d	x1	x2	ea	fx1
1	0.000	60.000	37.082	37.082	22.918		1.000
2	22.918	60.000	22.918	45.836	37.082	0.382	21.906
3	37.082	60.000	14.164	51.246	45.836	0.191	28.421
4	45.836	60.000	8.754	54.590	51.246	0.106	30.000
5	45.836	54.590	5.410	51.246	49.180	0.042	30.000
6	45.836	51.246	3.344	49.180	47.902	0.027	30.000
7	47.902	51.246	2.067	49.969	49.180	0.026	30.100
8	47.902	49.969	1.277	49.180	48.692	0.010	30.100
9	47.902	49.180	0.789	48.692	48.390	0.006	30.100
10	48.390	49.180	0.488	48.878	48.692	0.006	30.109
11	48.692	49.180	0.301	48.993	48.878	0.004	30.111
12	48.692	48.993	0.186	48.878	48.807	0.001	30.111
13	48.807	48.993	0.115	48.922	48.878	0.001	30.111
14	48.807	48.922	0.071	48.878	48.851	0.001	30.111
15	48.807	48.878	0.044	48.851	48.834	0.000	30.111
16	48.834	48.878	0.027	48.861	48.851	0.000	30.111
17	48.834	48.861	0.017	48.851	48.845	0.000	30.111
18	48.845	48.861	0.010	48.855	48.851	0.000	30.111
19	48.851	48.861	0.006	48.857	48.855	0.000	30.111
20	48.851	48.857	0.004	48.855	48.853	0.000	30.111

Tabla V: Resultado Problema 2 Met. Busqueda de la Sec. Dorada

3) Problema 3: Genere números aleatorios en un rango de -2 a 2 tanto para la variable x como para la variable y y encuentre el máximo y el mínimo de la siguiente función multivariable.

$$f(x) = 6.4x + 2y + x^2 - 2x^4 + 2xy - 3y^2 \tag{5}$$

Resultado del cálculo del mínimo:

x mínimo: -1.9941227307276632 y mínimo: 1.9505491928451826 Valor mínimo: -55.703466603442806

Resultado del cálculo del máximo:

x máximo: 1.0852312317638955 y máximo: 0.6856508570581767 Valor máximo: 6.798255623553101

4) Problema 4: Considere nuevamente la función del inciso anterior, en la misma región. Modifique su código para que, en lugar de evaluar números aleatorios, recorra la región con un paso h fijo. Su catedrático le explicará el detalle de esta implementación. Este método se llama la búsqueda por malla. Compare los resultados de ambos incisos y discuta qué método es su preferido

Resultado del cálculo del mínimo en orden:

x mínimo en orden: -2.0 y mínimo en orden: -2.0 Valor mínimo en orden: -48.8

Resultado del cálculo del máximo en orden:

x máximo en orden: 1.02 y máximo en orden: 1.02

Valor máximo en orden: 6.403135680000002

5) Problema 5: La ley de viscosidad de Newton está dada por la expresión:

$$f(x,y) = (x-3)^2 + (y-3)^3$$
 (6)

sujeta a la restricción x + 2y = 4. Explique geométricamente el problema.

X	Y	Z	EC. RESTRICCION 1
2.2	1.4	3.2	1

Tabla VI: Resultados Ecuacion 6

Geométricamente, estamos buscando el punto más cercano al punto (3,3) que esté en la línea definida por x+2y=4. La función f(x,y) es la suma de los cuadrados de las distancias de un punto arbitrario (x,y) al punto (3,3). La restricción x+2y=4 limita las posiciones posibles de (x,y) a una línea específica. El punto en esta línea que minimiza la distancia al cuadrado al punto (3,3) será la solución al problema.

6) Problema 6: Plantee un problema de programación lineal para la siguiente compañía de automóviles, la cual busca maximizar la utilidad de sus ventas. Luego, utilizando Excel, indique cuántos autos de cada modelo deben vender (dos puertas o cuatro puertas) para lograr su objetivo.

	Dos puertas	Cuatro puertas	Disponibilidad
Utilidad	\$13 500/auto	\$15 000/auto	
Tiempo de producción	15 h/auto	20 h/auto	8000 h/año
Almacenamiento	400 autos	350 autos	
Demanda del consumidor	700/auto	500/auto	240 000 autos

Figura 2: Tabla Problema 6

Para introducir las ecuaciones en Excel, se realizó el siguiente análisis con los datos de la tabla anterior...

$$x_1 = \text{AUTOS DE 2 PUERTAS}$$

$$x_2 = \text{AUTOS DE 4 PUERTAS}$$

$$z = 13500x_1 + 15000x_2$$

$$15x_1 + 20x_2 \le 800$$

$$x_1 \le 400$$

$$x_2 \le 350$$

$$700x_1 + 500x_2 \le 240000$$

x1	x2	Z	Demanda Consu.	Horas
123.076923	307.692308	6276923.08	240000	8000

Tabla VII: Respuesta al Problema 6

En el Problema 6 por medio de los resultados obtenidos en el Solver de Excel podemos observar que la empresa necesita vender **123 Autos de 2 Puertas** y **307 Autos de 4 Puertas** para Maximizar la utilidad de sus ventas. Se puede vender tambien uno mas de 2 Puertas o uno mas de 4 puertas por los valores decimales aproximados obtenidos.

PROGRAMAS Y ARCHIVOS UTILIZADOS EN PYTHON Y EXCEL 'CLICK AQUI'