

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds

Björn Michele¹, Alexandre Boulch¹, Gilles Puy¹, Maxime Bucher¹, Renaud Marlet^{1,2} ¹valeo.ai, France. ²LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France.

Zero-shot learning for 3D point clouds (PCs)

- Zero-shot learning (ZSL): detect, at inference time, objects of classes which have not been seen during training.
- We use a generative approach based on [1,2] and adapt it to 3D PCs:
 - \circ A backbone $\phi(\cdot)$ extracting a meaningful representation x of 3D point clouds.
 - A feature generator $G(\cdot)$ learning to generate representations xbased on class prototypes. The generated representations are used to train a classifier for unseen classes.

Existing ZSL methods for 3D point clouds did not make use of generative approaches and do not tackle semantic segmentation.

Contributions:

- A generative framework handling both ZSL and Generalized ZSL (GZSL) for 3D point clouds, for semantic segmentation and classification.
- 3 benchmarks for 3D semantic segmentation based on SemanticKITTI [8] (outdoor), S3DIS [9] and ScanNet [10] (indoor).
- 2 additional baselines for 3D GZSL segmentation.

References

- [1] Bucher et al. Generating visual representations for zero-shot classification. ICCV, 2017.
- [2] Bucher et al. Zero-shot semantic segmentation. NeurIPS, 2019.
- [3] Cheraghian et al. Zero-shot learning of 3D point cloud objects. MVA, 2019.
- [4] Cheraghian et al. Mitigating the hubness problem for zero-shot learning of 3D objects. 2019.
- [5] Cheraghian et al. Transductive zero-shot learning for 3D point cloud classification. WACV, 2020. [6] Chao et al. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. ECCV, 20
- [7] Frome et al. DeViSE: A deep visual-semantic embedding model. NIPS, 2013.
- [8] Behley et al. SemanticKITTI: A dataset for Semantic Scene Understanding of LiDAR Sequences. ICCV, 2019.
- [9] Armeni et al. 3D semantic parsing of large-scale indoor spaces. CVPR, 2016. [10] Dai et al. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. CVPR, 2017.

Reducing bias towards seen classes

- In GZSL a strong bias toward seen classes can be observed [6].
- Bias reduction techniques:
 - Class-dependent weighting: Loss for unseen classes is weighted with a factor $\beta > 1$ in classifier training.
- Calibrated Stacking [6]: At test time a small value ε is subtracted from the seen-class score (after softmax).
- \circ β and ε are estimated by cross-validation.
- GZSL is the naturally setting for semantic segmentation.

Results

Classification:

- ZSL and GZSL on ModelNet40 (10 unseen, 30 seen classes).
- Different auxiliary information: W2V and GloVe

	Full ZSL			GZSL							
Method	Gener- ative	super- vision Acc.	W2V Acc.	GloVe Acc.	Bias reduct.	Acc.	W2V Acc. <i>U</i>	НМ		GloVe Acc. <i>U</i>	
PointNet		89.2									
f-CLSWGAN* [5]	✓		20.7	-		76.3	3.7	7.0	-		
CADA-VAE* [5]	✓		23.0	-		84.7	1.3	2.6	-	-	-
ZSLPC [3]			28.0	20.9		40.1	22.5	28.8	49.2	18.2	26.6
MHPC [4]			33.9	28.7	✓	53.8	26.2	35.2	53.8	25.7	34.8
3DGenZ (ours)	✓		28.6	29.3	✓	48.8	29.3	36.6	44.7	28.4	34.7

Semantic segmentation

- GZSL on S3DIS, ScanNet and SemanticKITTI.
- 2 Baseline methods + additional bias reduction.

	Training set		ing set	S3DIS			ScanNet			SemanticKITTI			
		Back-	Classi-	mI	oU	HmIoU	mI	oU	HmIoU	mI	oU	HmIoU	
r ds		bone	fier	\mathcal{S}	\mathcal{U}		S	\mathcal{U}		S	\mathcal{U}		
Upper bounds	Supervised methods with different levels of supervision												
d oc	Full supervision	$S \cup U$	$S \cup U$	74.0	50.0	59.6	43.3	51.9	47.2	59.4	50.3	54.5	
<u> </u>	ZSL backbone	\mathcal{S}	$S \cup U$	60.9	21.5	31.8	41.5	39.2	40.3	52.9	13.2	21.2	
	ZSL-trivial	\mathcal{S}	\mathcal{S}	70.2	0.0	0.0	39.2	0.0	0.0	55.8	0.0	0.0	
	Generalized zero-shot	-learnin	g method	ds									
2016.	ZSLPC-Seg* [3] [†]	S	\mathcal{U}	65.5	0.0	0.0	28.2	0.0	0.0	49.1	0.0	0.0	
	DeViSe-3DSeg* [7] [†]	S	\mathcal{U}	70.2	0.0	0.0	20.0	0.0	0.0	49.7	0.0	0.0	
	ZSLPC-Seg [3] [†]	S	\mathcal{U}	5.2	1.3	2.1	16.4	4.2	6.7	26.4	10.2	14.7	
-	DeViSe-3DSeg [7] [†]	\mathcal{S}	\mathcal{U}	3.6	1.4	2.0	12.8	3.0	4.8	42.9	4.2	7.5	
	3DGenZ (ours)	\mathcal{S}	$S \cup U$	53.1	7.3	12.9	32.8	7.7	12.5	41.4	10.8	17.1	

†Our adaption of the method. *Direct, unrepaired (failing) adaptation

Image based prototypes

- Alternative auxiliary information based on image representations.
- Images capturing the appearance of objects, perhaps a better link to the object geometry.
- Description of an object class with a small set of images
 - → generate a visual representation by averaging features extracted using a pre-trained CNN (ResNet).

Representation	Classif. ModelNet40 ZSL GZSL		Segmen ScanNet HmI	KITTI	
W2V+GloVe (self-sup.)	36.8	41.3	12.5	17.1	
ResNet-18 (sup.) ResNet-50 (self-sup.)	43.6 37.0	40.0 36.5	13.9 15.5	3.6 5.3	Only image based

Visualizations

Top: Ground Truth, Bottom: Ours Unseen class

Summary

- Zero shot learning for 3D point clouds with generative approach:
 - reaches state of the art in classification with additional bias reduction.
- outperforms natural baselines in GZSL for semantic segmentation.
- We proposed to use image-based auxiliary information.