EE412 Introduction to Big Data

Project 2 tutorial

Introduction

- Topics: Collaborative filtering
 - Matrix completion
- Goal
 - Predict user's hidden ratings
- Training dataset
 - User ID
 - Item ID
 - Ratings on items
 - Timestamps when user rate the item

Data format

- User IDs and item IDs are integer number
- Ratings $\in \{1,2,3,4,5\}$
- Timestamp in Unix time

User Id	Item id	rating	timestamp
1	1	2	1260759144
1	32	4	1260759205
•••		•••	•••
7	145	5	851868044

Tasks

 Given user's rating on some item, you should predict all the hidden ratings of each users

Performance measure: RMSE

Guide

- You can use any algorithms
- But recommend to begin with what you've learned in the class

- Split your training data to train/val set
 - Validate your algorithm with validation set
 - Check how effective each modifications you've made

Implementation

- You can use Matlab or Python for this project
- Submitted code should include
 - Training code (code to reproduce your model)
 - Evaluation code (making output result file)

 Your result should be reproducible on TA's machine with your code

Submission

- Due date: 18th Dec, 11:59 PM
- Submit to KLMS
- You should submit
 - Source code
 - Documentation
 - Result file
- Submit source code, documentation, and result file with zip file
 - file name: [student-id].zip
- Documentation
 - Explanation about your method
 - Explanation about your implementation
 - Explanation about how to run your code
 - Reference if you have any
 - file name: doc_[student-id].xx (pdf, docs, No hwp)

Submission

- Result file
 - Result on test set
 - Format
 - Each line contains one element of matrix
 - <user_id><comma><item_number><comma><ratings>

```
• Example: 1,1,2.5
1,2,5
...
2,40,4.5
...
7000,234,3.5
7000,235,0.5
```

Evaluation

- Accuracy (40%)
 - 0 if submitted algorithm fails to run.
 - 0 if result has invalid value.
- Novelty (50%)
 - 0 if you use open-source implementation without any modification
- Documentation (10%)

Announcement

- Make a team
 - 1~3 members / team
 - If you have mates, please email to TA (until this Sunday, 26th Nov)
 - If you want to do it alone or same team as in Project 1, you don't have to send e-mail
 - If you don't send me an e-mail, I'll consider that you work as same team (or do it alone if you did project #1 alone) in project #1
- This tutorial and dataset will be posted today.
- If you have any questions, please contact to yh.jang@kaist.ac.kr