Style GAN

StyleGANTerminology. In the StyleGAN2 architecture, a 512 di-mensional latent code $z \in N(0,I)$ is mapped to an intermediate latent code $w \in R^{512}$ via a mapping network. The space of w is commonly referred to as W. w is then sent to the generator G to produce the output image I = G(w). In this process, w is copied several times and sent to different layers of the generator G to control different levels of attributes. Alternatively, one can also use different w for different layers, in which case the input would be $w \in R^{l imes 512} = W^+$,where l is the number of layers. This less constrained W^+ space is shown to be more expressive.

Interactive Point-based Manipulation

As shown in Fig. 2, each optimization step consists of two sub-steps, including 1) motion supervision and 2) point tracking.

to optimize the latent code w. After one optimization step, we get a new latent code w' and a new image I'. 2. Thus, we then update the positions of the handle points to track the corresponding points on

1. In motion supervision, a loss that enforces handle points to move towards target points is used

- the object 3. Motion supervision step only moves each handle point towards its target by a small step but the
- exact length of the step is unclear. 4. This optimization process continues until the handle point reach the position of the target
- points, which usually takes 30-200 iterations in our experiments

Motion Supervision

same feature space via the nearest neighbor search. 1. We consider the feature maps F after the 6th block of Style GAN2, which performs the best among all features due to a good trade-off between resolution and discriminativeness.

Fig. 3. Method. Our motion supervision is achieved via a shifted patch loss

on the feature maps of the generator. We perform point tracking on the

3. As shown in Fig. 3, to move a handle point p_i to the target point t_i , our idea is to supervise a

2. We resize F to have the same resolution as the final image via bilinear interpolation.

small patch around p_i (red circle) to move towards t_i by a small step (blue circle).

Motion supervision loss:

 $\|\mathbf{F}(q_i) - \mathbf{F}(q_i + d_i)\|_1 + \lambda \|(\mathbf{F} - \mathbf{F}_0) \cdot (1 - \mathbf{M})\|_1$

i=0 $\boldsymbol{q}_{i}\in\Omega_{1}(\boldsymbol{p}_{i},r_{1})$

where
$$F(q)$$
 denotes the feature values of F at pixel q ,
$$d_i = \frac{t_i - p_i}{\parallel t_i - p_i \parallel_2}$$

case the binary mask M is given, we keep the unmasked region fixed with a reconstruction loss shown as the second term. 4. At each motion supervision step, this loss is used to optimize the latent code w for one step. w can be optimized either in the W space or in the W^+ . W^+ space is easier to achieve outof-distribution manipulations. We observe that the spatial attributes of the image are mainly affected by the w for the first 6 layers while the remaining ones only affect appearance.

corresponding to the initial image. Note that the first term is summed up over all handle points $\{p_i\}$.

As the components of q_i+d_i are not integers, we obtain $F(q_i+d_i)$ via bilinear interpolation. In

is a normalized vector pointing from p_i to t_i ($d_i=0$ if $t_i=p_i$), and F_0 is the feature maps

Point Tracking The discriminative features of GANs well capture dense correspondence and thus tracking can be effectively performed via nearest neighbor search in a feature patch. Specifically, we denote the feature of the initial handle point as $f_i = F_0(p_i)$. We denote the patch around p_i as

 $\Omega_2(p_i, r_2) = \{(x,y) \mid |x - x_{p,i}| < r_2, |y - y_{p,i}| < r_2\}$

$$\mathbf{p}_i := \underset{\mathbf{q}_i \in \Omega_2(\mathbf{p}_i, r_2)}{\arg \min} \|\mathbf{F}'(\mathbf{q}_i) - f_i\|_1.$$

Then the tracked point is obtained by searching for the nearest neighbor of f_i in $\Omega_2(p_i,r_2)$:

 $q_i \in \Omega_2(p_i,r_2)$

we are also considering the feature maps F' after the 6th block of StyleGAN2

Implementation Details