# 常微分方程 ODE

Illusionna

2023年1月31日——2023年2月15日



目录 ODE 记录

## 目录

| 1 | 常微  | 分方程   | 機念             | 1        |
|---|-----|-------|----------------|----------|
|   | 1.1 | n 阶线  | <b>. 性微分方程</b> | 1        |
|   |     | 1.1.1 | n 阶齐次线性微分方程    | 1        |
|   |     | 1.1.2 | n 阶非齐次线性微分方程   | 1        |
|   |     | 1.1.3 | 示例             | 1        |
| 2 | 一阶  | 微分方   | 程求解            | <b>2</b> |
|   | 2.1 | 除项变   | 医量换元           | 2        |
|   |     | 2.1.1 | 适用公式           | 2        |
|   |     | 2.1.2 | 示例             | 2        |
|   | 2.2 | 解方程   | 呈组变量分离         | 2        |
|   |     | 2.2.1 | 适用公式           | 2        |
|   |     | 2.2.2 | 示例             | 3        |
| 3 | 线性  | 微分方   | ·<br>·程的常数变易   | 3        |
|   | 3.1 | 一阶线   | <b>붆性微分方程</b>  | 3        |
|   |     | 3.1.1 | 适用公式           | 3        |
|   |     | 3.1.2 | 通解结论           | 3        |
|   |     | 3.1.3 | 自变量因变量互换       | 3        |
|   | 3.2 | 伯努利   | 刊微分方程          | 4        |
|   |     | 3.2.1 | 适用公式           | 4        |
|   |     | 3.2.2 | 伯努利方程求解步骤      | 4        |
|   |     | 3.2.3 | 示例             | 4        |
|   | 3.3 | 特殊换   | 英元             | 5        |
|   |     | 3.3.1 | 特殊换元方法         | 5        |
|   |     | 3.3.2 | 示例             | 5        |

|   | 3.4             | 二阶微           | 放分方程的 | 内常       | 数  | 变易 | i<br>J |    |   |   |   |   |    |  | ٠  | • | • | 5  |
|---|-----------------|---------------|-------|----------|----|----|--------|----|---|---|---|---|----|--|----|---|---|----|
| 4 | 恰当              | í方程与          | 积分因子  | <u>-</u> |    |    |        |    |   |   |   |   |    |  |    |   |   | 6  |
|   | 4.1             | 恰当方           | 7程    |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 6  |
|   | 4.2             | 积分因           | ]子    |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 7  |
|   |                 | 4.2.1         | 前提条件  | 牛        |    |    |        |    |   |   |   |   |    |  |    |   |   | 7  |
|   |                 | 4.2.2         | 引入积分  | 分因       | 子  |    |        |    |   |   |   |   |    |  |    |   |   | 7  |
|   | 4.3             | 求解示           | · 例   |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 7  |
|   |                 | 4.3.1         | 凑微分   | 去        |    |    |        |    |   |   |   |   |    |  |    |   |   | 7  |
|   |                 | 4.3.2         | 常规做》  | 去        |    |    |        |    |   |   |   |   |    |  |    |   |   | 8  |
| 5 | 一阶隐式微分方程及参数表示 8 |               |       |          |    |    |        |    |   |   |   |   |    |  |    |   |   |    |
|   | 5.1             | 一般的           | 换元 .  |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 8  |
|   |                 | 5.1.1         | 换元操作  | 乍        |    |    |        |    |   |   |   |   |    |  |    |   |   | 8  |
|   |                 | 5.1.2         | 示例 .  |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 9  |
|   |                 | 5.1.3         | 倒数换   | 元        |    |    |        |    |   |   |   |   |    |  |    |   |   | 9  |
|   |                 | 5.1.4         | 示例(   | 亥何       | ]是 | 不言 | 計理     | 刨的 | , | 仅 | 说 | 理 | )  |  |    |   |   | 10 |
|   | 5.2             | 特殊的           | 换元 .  |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 10 |
|   |                 | 5.2.1         | 引入参   | 数 t      | 的  | 換え | 亡掉     | 悼作 |   |   |   |   |    |  |    |   |   | 10 |
|   |                 | 5.2.2         | 示例 .  |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 10 |
|   |                 | 5.2.3         | 适用公式  |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 11 |
|   |                 | 5.2.4         | 示例 .  |          |    |    |        |    |   |   |   |   |    |  |    |   |   | 11 |
|   |                 | 5.2.5         | 拓展 .  |          |    |    |        |    |   |   |   | • |    |  | •  |   | • | 12 |
| 6 | 皮卡              | 皮卡逐步逼近函数序列 13 |       |          |    |    |        |    |   |   |   |   |    |  | 13 |   |   |    |
|   | 6.1             | 皮卡函数序列        |       |          |    |    |        |    |   |   |   |   | 13 |  |    |   |   |    |
|   | 6.2             | 第 n と         | 欠近似解. | 及诣       | 差  | 估计 | +      |    |   |   |   |   |    |  |    |   |   | 14 |
|   |                 | 6.2.1         | 第n次   | 近何       | 以解 | ٠  |        |    |   |   |   |   |    |  |    |   |   | 14 |
|   |                 | 6.2.2         | 误差估   | 十        |    |    |        |    |   |   |   |   |    |  |    |   |   | 14 |

|   | 6.3     | 存在唯一定理条件所在的区间     | 15 |  |  |  |  |  |  |  |  |
|---|---------|-------------------|----|--|--|--|--|--|--|--|--|
|   | 6.4     | 解的存在区间            | 16 |  |  |  |  |  |  |  |  |
|   | 6.5     | 矩阵形式的逐步逼近近似解      | 16 |  |  |  |  |  |  |  |  |
|   |         | 6.5.1 矩阵形式方程      | 16 |  |  |  |  |  |  |  |  |
|   |         | 6.5.2 示例          | 17 |  |  |  |  |  |  |  |  |
| 7 | 克莱罗微分方程 |                   |    |  |  |  |  |  |  |  |  |
|   | 7.1     | 克莱罗公式             | 18 |  |  |  |  |  |  |  |  |
|   | 7.2     | 几何意义下克莱罗方程        | 18 |  |  |  |  |  |  |  |  |
|   | 7.3     | 克莱罗方程的包络          | 18 |  |  |  |  |  |  |  |  |
|   | 7.4     | 示例                | 19 |  |  |  |  |  |  |  |  |
| 8 | 奇解与包络   |                   |    |  |  |  |  |  |  |  |  |
|   | 8.1     | 简介                | 19 |  |  |  |  |  |  |  |  |
|   | 8.2     | 奇解(包络)定义          | 20 |  |  |  |  |  |  |  |  |
|   | 8.3     | c-判别曲线            | 20 |  |  |  |  |  |  |  |  |
|   |         | 8.3.1 c-判别曲线的必要条件 | 20 |  |  |  |  |  |  |  |  |
|   |         | 8.3.2 示例          | 20 |  |  |  |  |  |  |  |  |
|   |         |                   | 21 |  |  |  |  |  |  |  |  |
|   | 8.4     | p-判别曲线            | 22 |  |  |  |  |  |  |  |  |
|   |         | 8.4.1 p-判别曲线的必要条件 | 22 |  |  |  |  |  |  |  |  |
|   |         | 8.4.2 示例          | 22 |  |  |  |  |  |  |  |  |
|   |         |                   | 22 |  |  |  |  |  |  |  |  |
|   | 8.5     | c-p-判别曲线与包络奇解区别   | 23 |  |  |  |  |  |  |  |  |
| 9 | 高阶      | 线性微分方程组(不全)       | 23 |  |  |  |  |  |  |  |  |
|   | 9.1     | 高阶微分方程            | 23 |  |  |  |  |  |  |  |  |
|   | 9.2     | 线性微分方程组           | 23 |  |  |  |  |  |  |  |  |

## 1 常微分方程概念

### 1.1 n 阶线性微分方程

$$\frac{d^{n}y}{dx^{n}} + a_{1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_{n}(x)y = f(x)$$

### 1.1.1 n 阶齐次线性微分方程

$$f(x) = 0$$

#### 1.1.2 n 阶非齐次线性微分方程

$$f(x) \neq 0$$

### 1.1.3 示例

一阶非线性微分方程:

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{y}$$

三阶非齐次线性微分方程:

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + x^2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + x$$

### 2 一阶微分方程求解

### 2.1 除项变量换元

#### 2.1.1 适用公式

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(\frac{y}{x})$$

令:

$$u = \frac{y}{x} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = x\frac{\mathrm{d}u}{\mathrm{d}x} + u$$

#### 2.1.2 示例

$$1. \quad t\frac{\mathrm{d}x}{\mathrm{d}t} = x + \sqrt{t^2 - x^2}$$

$$2. \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \tan\frac{y}{x}$$

### 2.2 解方程组变量分离

#### 2.2.1 适用公式

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$$

联立方程组:

$$\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases} \implies (x, y) = (\alpha, \beta)$$

令:

$$\begin{cases} X = x - \alpha \\ Y = y - \beta \end{cases}$$

则:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}(Y+\beta)}{\mathrm{d}(X+\alpha)} = \frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{a_1X + b_1Y}{a_2X + b_2Y} = g(\frac{Y}{X})$$

2.2.2 示例

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x - y + 1}{x + y - 3}$$

### 3 线性微分方程的常数变易

- 3.1 一阶线性微分方程
- 3.1.1 适用公式

$$\frac{\mathrm{d}y}{\mathrm{d}x} = P(x)y + Q(x) \rightleftharpoons \frac{\mathrm{d}x}{\mathrm{d}y} = P(y)x + Q(y)$$

3.1.2 通解结论

$$y = e^{\int P(x) dx} \left( \int Q(x) e^{-\int P(x) dx} dx + C \right)$$

3.1.3 自变量因变量互换

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{2x - y^2} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2x - y^2}{y} = \frac{2x}{y} - y$$

### 3.2 伯努利微分方程

#### 3.2.1 适用公式

$$\frac{\mathrm{d}y}{\mathrm{d}x} = P(x)y + Q(x)y^n$$

【注意】  $f(x,y) = Q(x)y^n \neq f(x)$ ,因此伯努利微分方程是非线性微分方程.

### 3.2.2 伯努利方程求解步骤

$$y^{-n} \frac{dy}{dx} = P(x)y^{1-n} + Q(x)$$
$$\frac{dy^{1-n}}{dx} = (1-n)P(x)y^{1-n} + (1-n)Q(x)$$

#### 3.2.3 示例

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6y}{x} - xy^2$$
$$y^{-2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{x}y^{-1} - x$$
$$\frac{\mathrm{d}y^{-1}}{\mathrm{d}x} = -\frac{6}{x}y^{-1} + x$$

【注意】同除以  $y^2$  时要考虑  $y \neq 0$  这一特解.

### 3.3 特殊换元

### 3.3.1 特殊换元方法

令:

$$u = f(x, y)$$

### 3.3.2 示例

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{e^y + 3x}{x^2}$$

**�:** 

$$u = e^y$$

则:

$$\implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{3u}{x} + \frac{u^2}{x^2}$$

### 3.4 二阶微分方程的常数变易

$$y'' + \frac{x}{1 - x}y' - \frac{1}{1 - x}y = x - 1$$

已知齐次方程的基本解组为:

$$y_1 = x \qquad y_2 = e^x$$

常数变易:

$$y = c_1(x)y_1 + c_2(x)y_2$$

得到方程组:

$$\begin{cases} c'_{1}(x)y_{1} + c'_{2}(x)y_{2} = 0\\ c'_{1}(x)y'_{1} + c'_{2}(x)y'_{2} = f(x) \end{cases}$$

即:

$$\begin{cases} c'_{1}(x)x + c'_{2}(x)e^{x} = 0\\ c'_{1}(x) \times 1 + c'_{2}(x) \times e^{x} = x - 1 \end{cases}$$

略.....

### 4 恰当方程与积分因子

### 4.1 恰当方程

$$M(x,y) dx + N(x,y) dy = du(x,y) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

通解:

$$u(x,y) = C$$

恰当:

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

#### 【注意引理】

$$\begin{cases} \text{If } : \frac{\partial^2 u}{\partial x \partial y} \text{ and } \frac{\partial^2 u}{\partial y \partial x} \text{ Continuity} \\ \text{Then } : \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x} \end{cases}$$

### 4.2 积分因子

#### 4.2.1 前提条件

不恰当:

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}$$

#### 4.2.2 引入积分因子

$$\mu = e^{\int \psi(x) \, dx} \longrightarrow \psi(x) = \frac{\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}}{N(x,y)}$$
$$\mu = e^{\int \phi(y) \, dy} \longrightarrow \phi(y) = \frac{\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}}{M(x,y)}$$

### 4.3 求解示例

$$x dy = y(1 - xy) dx$$
$$(xy^2 - y) dx + x dy = 0$$
$$\Longrightarrow \mu = \frac{1}{y^2}$$
$$(x - \frac{1}{y}) dx + \frac{x}{y^2} dy = 0$$

### 4.3.1 凑微分法

$$x dx + \frac{x}{y^2} dy - \frac{y}{y^2} dx = d(\frac{x^2}{2}) - d(\frac{x}{y}) = 0$$

$$\frac{x}{y} = \frac{x^2}{2} + C$$

#### 4.3.2 常规做法

$$u(x,y) = \int \frac{\partial u}{\partial x} dx + \phi(y) = \int M(x,y) dx + \phi(y)$$
$$u(x,y) = \int \frac{\partial u}{\partial y} dy + \psi(x) = \int N(x,y) dy + \psi(x)$$

因此:

$$u(x,y) = \int (x - \frac{1}{y}) dx + \phi(y) = \frac{x^2}{2} - \frac{x}{y} + C + \phi(y)$$

分别对两边的 y 求偏导.

$$\frac{\partial u}{\partial y} = N(x, y) = \frac{x}{y^2} + \frac{d\phi(y)}{dy} = \frac{x}{y^2}$$

$$\Longrightarrow \frac{d\phi(y)}{dy} = 0 \Longrightarrow \phi(y) = \bar{C}$$

则:

$$u(x,y) = \frac{x^2}{2} - \frac{x}{y} + \tilde{C} = \hat{C}$$

通解:

$$\frac{x}{y} = \frac{x^2}{2} + \mathcal{C}$$

## 5 一阶隐式微分方程及参数表示

### 5.1 一般的换元

#### 5.1.1 换元操作

令:

$$p = \frac{\mathrm{d}y}{\mathrm{d}x}$$

#### 5.1.2 示例

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + 2x\frac{\mathrm{d}y}{\mathrm{d}x} - y = 0$$
$$p^3 + 2xp = y$$

分别对两边的 x 求偏导.

$$3p^2 \frac{\mathrm{d}p}{\mathrm{d}x} + 2p + 2x \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} = p$$

然后积分解出含参数 p 的 x.

$$x = \frac{C - \frac{3}{4}p^4}{p^2}$$

从而代入解出含参数 p 的 y.

$$y = \frac{2C}{p} - \frac{1}{2}p^3$$

综上:

$$\begin{cases} x = \frac{C}{p^2} - \frac{3}{4}p^2 \\ y = \frac{2C}{p} - \frac{1}{2}p^3 \end{cases} \quad p \neq 0 \text{ and } y = 0$$

### 5.1.3 倒数换元

**�:** 

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{p}$$

### 5.1.4 示例(该例是不合理的,仅说理)

对某方程两边关于 x 求偏导,得到.

$$p = \frac{p}{p^2 - x\frac{\mathrm{d}p}{\mathrm{d}x}}$$

不妨,关于 y 求偏导.

$$\frac{1}{p} = \frac{p^2 - y \frac{\mathrm{d}p}{\mathrm{d}y}}{p}$$

### 5.2 特殊的换元

### 5.2.1 引入参数 t 的换元操作

$$F(x, y') = 0$$

令:

$$y^{'} = p = G(t, x)$$

### 5.2.2 示例

$$x^3 + y^{'3} - 3xy^{'} = 0$$

令:

$$p = y' = tx$$

从而:

$$x = \frac{3t}{1 + t^3}$$

则:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = tx \longrightarrow \mathrm{d}x = \mathrm{d}(\frac{3t}{1+t^3})$$

积分得到 y.

$$y = \frac{3 + 12t^3}{2(1+t^3)^2} + C$$

如果令:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p$$

则:

$$x^3 + p^3 = 3xp + C$$

此情形之下,难以将 x 表示成 p 的参数形式.

### 5.2.3 适用公式

$$F(y, y') = 0$$

### 5.2.4 示例

$$y^{2}(1-y') = (2-y')^{2}$$

令:

$$2 - y^{'} = yt$$

则:

$$y^2(yt-1) = y^2t^2$$

易得  $(y \neq 0)$ :

$$y = t + \frac{1}{t}$$

$$\frac{dy}{dx} = y' = 2 - yt = 1 - t^2$$

积分得到 x.

$$x = \frac{1}{t} + C$$

如果令:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p$$

则:

$$y^2(1-p) = (2-p)^2$$

由于  $y^2$  的存在,所以对 x 求偏导后依然有 y.

$$2y\frac{\mathrm{d}y}{\mathrm{d}x}(1-p) - y^2\frac{\mathrm{d}p}{\mathrm{d}x} = -2(2-p)\frac{\mathrm{d}p}{\mathrm{d}x}$$

### 5.2.5 拓展

1. 
$$x^2 + y'^2 = 1 \longrightarrow y' = \cos t$$

2. 
$$y(1+y'^{2}) = 2 \longrightarrow y' = \tan t$$

### 6 皮卡逐步逼近函数序列

### 6.1 皮卡函数序列

方程:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y)$$

假设  $y = \phi(x)$  是方程的解(存在唯一定理可以印证). 取定初值:

$$(x_0, y_0) = (\alpha, \beta)$$

则:

$$\frac{\mathrm{d}\phi(x)}{\mathrm{d}x} = f(x, \phi(x))$$

Picard function series:  $\begin{cases} \phi_0(x) = y_0 \\ \phi_n(x) = y_0 + \int_{x_0}^x f(t, \phi_{n-1}(t)) dt \end{cases}$ 

即:

$$\begin{cases} \phi_0(x) = \beta \\ \phi_n(x) = \beta + \int_{\alpha}^x f(t, \phi_{n-1}(t)) dt \end{cases}$$

 $\phi_n(x)$  表示第 n 次逐步逼近的近似解函数,注意解的存在区间.

解的存在区间:  $x_0 \le x \le x_0 + h$ 

$$h = \min\{a, \frac{b}{M}\}$$
 and  $M = \max_{\Omega} |f(x, y)|$ 

$$\Omega = \{(x,y)|x_0 - a \le x \le x_0 + a, y_0 - b \le y \le y_0 + b\}$$
$$|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2| \text{ and } L = \max \left|\frac{\partial f(x,y)}{\partial y}\right|$$

### 6.2 第 n 次近似解及误差估计

已知方程:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y^2$$

通过点:

$$(x_0, y_0) = (\alpha, \beta) = (1, 0)$$

#### 6.2.1 第 n 次近似解

- $\bullet \ f(x,y) = x + y^2$
- $\bullet \ \phi_0(x) = y_0 = 0$
- $\phi_1(x) = y_0 + \int_{x_0}^x f(t, \phi_0(x)) dt = 0 + \int_1^x f(t, 0) dt = \int_1^x f(t, 0) dt$
- $\phi_1(x) = \frac{x^2}{2} \frac{1}{2}$
- $\phi_2(x) = 0 + \int_1^x f(t, \frac{t^2}{2} \frac{1}{2}) dt = \int_1^x (t + \frac{t^4}{4} \frac{t^2}{2} + \frac{1}{4}) dt$
- $\phi_2(x) = \frac{t^5}{20} \frac{t^3}{6} + \frac{t^2}{2} + \frac{t}{4} |_1^x$
- $\phi_2(x) = \frac{x^5}{20} \frac{x^3}{6} + \frac{x^2}{2} + \frac{x}{4} \frac{30}{19}$
- .....

则第二次近似解为:

$$\phi_2(x) = \frac{x^5}{20} - \frac{x^3}{6} + \frac{x^2}{2} + \frac{x}{4} - \frac{30}{19}$$

### 6.2.2 误差估计

误差估计表达式:

$$|\phi_n(x) - \phi(x)| \le \frac{ML^n}{(n+1)!}h^{n+1}$$

以上述为例,第二次近似解存在区间的误差估计. 假设:

$$|x-1| \le a = 1, \quad |y-0| \le b = 2$$

依然通过点:

$$(x_0, y_0) = (\alpha, \beta) = (1, 0)$$

则:

$$M = \max_{\Omega} |f(x,y)| = \max_{\Omega} |x+y^2| = |2+2^2| = 6$$

$$h = \min\{a, \frac{b}{M}\} = \min\{1, \frac{2}{6}\} = \frac{1}{3}$$

$$L = \max|\frac{\partial f}{\partial y}| = \max|2y| = 4$$
误差 = 
$$\frac{ML^n}{(n+1)!}h^{n+1} = \frac{6 \times 4^2}{(2+1)!}(\frac{1}{3})^{2+1} = \frac{16}{27} \approx 0.5926$$

### 6.3 存在唯一定理条件所在的区间

方程:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2y^{\frac{1}{2}}$$

利普希思(Lipschitz)条件:

$$L = \max |\frac{\partial f}{\partial y}|$$

而:

$$\frac{\partial f}{\partial y} = \frac{1}{\sqrt{y}}$$
 在  $y \neq 0$  上存在且连续

则:

$$|x| \ge 0, \quad |y| \ge \delta > 0$$

### 6.4 解的存在区间

方程组:

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

解的存在区间:

$$|x - x_0| \le h$$

即在  $|x-x_0| \le h$  区间上有唯一解  $y = \phi(x)$ .

### 6.5 矩阵形式的逐步逼近近似解

#### 6.5.1 矩阵形式方程

$$Y' = AY + X$$

其中:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \dots \\ f_n(x) \end{bmatrix}$$

满足初值:

$$m{Y}(\zeta) = egin{bmatrix} value_1 \ value_2 \ ... \ value_n \end{bmatrix}$$

矩阵形式的皮卡函数序列:

$$\begin{cases} \boldsymbol{\phi}_0(x) = \boldsymbol{Y}(\zeta) \\ \boldsymbol{\phi}_n(x) = \boldsymbol{Y}(\zeta) + \int_{\zeta}^{x} [\boldsymbol{A}\boldsymbol{\phi}_{n-1}(t) + \boldsymbol{X}] dt \end{cases}$$

#### 6.5.2 示例

方程组:

$$\mathbf{Y}' = \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} \mathbf{Y} + \begin{bmatrix} 0 \\ \sin x \end{bmatrix}$$

满足初值:

$$\mathbf{Y}(0) = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

 $\bullet \ \boldsymbol{\phi}_0(x) = \boldsymbol{Y}(0)$ 

 $\phi_1(x) = \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \int_0^x \left\{ \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ \sin t \end{bmatrix} \right\} dt$  $\phi_1(x) = \begin{bmatrix} -9x \\ 4 - \cos x \end{bmatrix}$ 

 $\phi_2(x) = \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \int_0^x \left\{ \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} -9t \\ 4 - \cos t \end{bmatrix} + \begin{bmatrix} 0 \\ \sin t \end{bmatrix} \right\} dt$ 

$$\phi_2(x) = \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \begin{bmatrix} 3\sin x - 12x \\ -\frac{27}{2}x^2 - \cos x + 1 \end{bmatrix} = \begin{bmatrix} 3\sin x - 12x \\ -\frac{27}{2}x^2 - \cos x + 4 \end{bmatrix}$$

### 7 克莱罗微分方程

### 7.1 克莱罗公式

$$y = xp + f(p)$$

其中, $p = \frac{dy}{dx}$ ,f(p) 是 p 的连续可微函数. 通解:

$$y = Cx + f(C)$$

### 7.2 几何意义下克莱罗方程

克莱罗微分方程的通解是一直线簇,此直线簇的包络就是方程的奇解.

### 7.3 克莱罗方程的包络

对克莱罗方程两边关于 p 求导.

$$0 = x + f'(p)$$

联立方程,可得求 p-判别曲线的前凑.

$$\begin{cases} x + f'(p) = 0 \\ y = xp + f(p) \end{cases}$$

【注意】 消去 p 后的解是通解的包络,不需要检验.

7.4 示例 ODE 记录

### 7.4 示例

$$y = x\frac{\mathrm{d}y}{\mathrm{d}x} + 2\sqrt{-\frac{\mathrm{d}y}{\mathrm{d}x}}$$

这是一个克莱罗微分方程, 所以得到通解.

$$y = Cx + 2\sqrt{-C} = 2\mathcal{C} - \mathcal{C}^2 x$$

联立方程组:

$$\begin{cases} y = 2p - p^2 x \\ 0 = 2 - 2px \end{cases}$$

也可以联立方程组:

$$\begin{cases} y = 2\mathcal{C} - \mathcal{C}^2 x \\ 0 = 2 - 2\mathcal{C} x \end{cases}$$

则 p-判别曲线(或 c-判别曲线)为:

$$xy = 1$$

不必验证即可知此 p-判别曲线即是通解的包络.

### 8 奇解与包络

### 8.1 简介

从微分方程角度叫奇解;从几何角度叫包络.因此是一个东西.

### 8.2 奇解(包络)定义

它是一条特殊的积分曲线,它不属于该微分方程的积分曲线簇,它上面的每一点都有积分曲线簇中的某一条曲线与之相切.

### 8.3 c-判别曲线

#### 8.3.1 c-判别曲线的必要条件

$$\begin{cases} \Phi(x, y, c) = 0\\ \frac{\partial \Phi(x, y, c)}{\partial c} = 0 \end{cases}$$

#### 8.3.2 示例

方程:

$$(x - c)^2 + y^2 = 1$$

$$\begin{cases} (x-c)^2 + y^2 = 1\\ 2(x-c) \times (-1) = 0 \end{cases}$$

c-判别曲线:

$$\implies y = \pm 1$$

"经检验",两条直线均是包络.

#### 8.3.3 检验步骤

1. 它是一条积分曲线

$$y = \pm 1 \sim \begin{cases} (x - c)^2 + y^2 = 1\\ 2(x - c) \times (-1) = 0 \end{cases}$$

2. 它不属于积分曲线簇

$$y = \pm 1 \notin (x - c)^2 + y^2 = 1, \quad \forall c \in \mathbb{R}$$

$$x = c$$
,  $y = \pm 1 \in (x - c)^2 + y^2 = 1$ 

3. 它的每一点都和曲线簇某一曲线相切



### 8.4 p-判别曲线

### 8.4.1 p-判别曲线的必要条件

$$\begin{cases} F(x, y, y') = 0\\ \frac{\partial F(x, y, y')}{\partial y'} = 0 \end{cases}$$

#### 8.4.2 示例

方程:

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y^2 - 1 = 0$$

$$\begin{cases} p^2 + y^2 - 1 = 0 \\ 2p = 0 \end{cases}$$

p-判别曲线:

$$y = \pm 1$$

"经检验",两条直线均是奇解(包络).

#### 8.4.3 检验步骤

1. 通解

$$y = \sin(x + C)$$

2. 它是方程的解

$$y = \pm 1 \sim (\frac{\mathrm{d}y}{\mathrm{d}x})^2 + y^2 - 1 = 0$$

#### 3. 它满足通解

$$y = \pm 1 \sim y = \sin(x + C)$$
$$x + C = 2k\pi + \frac{\pi}{2}, \quad k = \mathbb{Z}$$

### 8.5 c-p-判别曲线与包络奇解区别

c-判别曲线是不是包络需要进一步按照定义验证; 而 p-判别曲线 是不是奇解只需要验证是否满足原微分方程和其通解即可, 若满足 通解即为奇解.

#### 高阶线性微分方程组(不全) 9

### 9.1 高阶微分方程

线性微分方程解的性质:线性方程的叠加原理,n 阶线性方程解 空间的结构, n 阶齐次方程的通解, 非齐次方程的通解.

方程的求解方法: 常系数齐次线性方程的特征根法(欧拉待定 指数法), 常系数非齐次线性方程的特解法(待定系数法), 求解一 般非齐次线性方程的常数变易法,非线性方程的降阶法.

### 9.2 线性微分方程组

线性微分方程组解的存在唯一性定理,用矩阵描述微分方程组, 高阶方程与一阶微分方程组的等价关系.

线性方程组的一般理论: 齐次线性方程组的基解矩阵, 通解的 基解矩阵表示, 基解矩阵的朗斯基行列式, 齐次方程组解空间的结 构, 非齐次方程组的常数变易公式.

常系数齐次方程组的解理论, 常系数齐次方程组的基解矩阵的 存在性,矩阵指数,特征方法求解微分方程组.

## 非齐次线性微分方程特解构造法

$$L(y) = y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y^{'} + a_n y = f(x)$$

### <一>等号右端项只含e 指数

其中:

$$f(x) = e^{tx}$$

① 若 t 不是特征根

$$ar{y} = x^0 A e^{tx} = A e^{tx}$$

② 若 t 是单特征根

$$\bar{y} = x^1 A e^{tx} = A x e^{tx}$$

③若t是k重根

$$ar{y} = x^k A e^{tx} = A x^k e^{tx}$$

例一:

$$y^{''}-2y^{'}+y=e^{2x}$$
  $\lambda^2-2\lambda+1=0 \quad => \quad (\lambda-1)^2=0$   $\lambda=1(double) \quad e^{2x}=>t=2 \quad t
eq \lambda$   $Assume: \quad ar{y}=Ae^{2x}$ 

例二:

$$y^{''}-2y^{'}+y=e^{x}$$
  $\lambda^{2}-2\lambda+1=0 \quad => \quad (\lambda-1)^{2}=0$   $\lambda=1(double) \quad e^{x}=>t=1 \quad t=\lambda(double)$   $Assume: \quad ar{y}=x^{2}Ae^{x}=Ax^{2}e^{x}$ 

例三:

$$y^{'}-y=2e^{x}$$
  $\lambda-1=0 => \lambda=1(single)$   $\lambda=1(single)$   $t=1$   $t=\lambda(single)$   $Assume: ar{y}=x^{1}Ae^{tx}=Axe^{x}$ 

<二>等号右端项含多项式与e 指数乘积(P(x)=1,即为<一>模型) 其中:

$$f(x) = P(x)e^{tx}$$

不妨记:

P(x) is a known polynomial.

Q(x) is an uncertain polynomial, and  $\partial Q(x) = \partial P(x)$ .

① 若 t 不是特征根

$$ar{y} = x^0 Q(x) e^{tx} = Q(x) e^{tx}$$

② 若 t 是单特征根

$$ar{y} = x^1 Q(x) e^{tx} = x Q(x) e^{tx}$$

③若t是k重根

$$\overline{y} = x^k Q(x) e^{tx}$$

例一:

$$y^{'}-y=x^{3}+7$$
 $\lambda-1=0 => \lambda=1(single)$ 
 $\therefore y^{'}-y=x^{3}+7=(x^{3}+7)e^{0x}$ 
 $\therefore t=0 \quad t \neq \lambda$ 

 $Assume: \ \ ar{y} = (Ax^3 + Bx^2 + Cx + D)e^{0x} = Ax^3 + Bx^2 + Cx + D$ 

 $Among: \ \ Q(x) = An\ uncertain\ polynomial = Ax^3 + Bx^2 + Cx + D$ 

例二:

$$y^{'}-y=(x^2-x)e^x$$
  $\lambda-1=0 \implies \lambda=1(single)$   $t=1 \quad t=\lambda(single)$   $Assume: \ ar{y}=x^1(Ax^2+Bx+C)e^x=x(Ax^2+Bx+C)e^x$   $Among: \ \ Q(x)=Ax^2+Bx+C$ 

例三:

$$y^{(3)}-3y''+3y^{'}-y=xe^{x}$$
  $\lambda^{3}-3\lambda^{2}+3\lambda-1=(\lambda-1)^{3}=0 \implies \lambda=1(triple)$   $t=1$   $t=\lambda(triple)$   $Assume: ar{y}=x^{3}Q(x)e^{x}=x^{3}(Ax+B)e^{x}$   $Among: Q(x)=Ax+B$ 

### <三>等号右端项含三角函数与e 指数

其中:

$$f(x) = 
abla(x)e^{rx}$$

不妨记:

 $\nabla(x)$  is an uncertain trigonometric function.

$$abla(x) = Acos(jx) + Bsin(jx)$$

① 若 t 不是特征根

$$ar{y} = x^0 [Acos(jx) + Bsin(jx)] e^{rx} = Ae^{rx}cos(jx) + Be^{rx}sin(jx)$$

② 若 t 是单特征根

$$ar{y} = x^1[Acos(jx) + Bsin(jx)]e^{rx} = x[Acos(jx) + Bsin(jx)]e^{rx}$$

③ 若 t 是 k 重根

$$ar{y} = x^k [Acos(jx) + Bsin(jx)]e^{rx}$$

例一:

$$y'' + 4y = 7cos2x$$
 $\lambda^2 + 4 = 0 \implies \lambda = 2i \text{ or } \lambda = -2i$ 
 $y'' + 4y = 7cos2x = (7cos2x + 0sinx)e^{0x}$ 
 $\therefore r = 0 \qquad t = 0 + 2i \text{ or } t = 0 - 2i$ 
 $t = \lambda(single)$ 

 $Assume: \ \ ar{y}=x^1(Acos2x+Bsin2x)=x(Acos2x+Bsin2x)$ 

例二:

$$y''-2y^{'}+y=(cos3x-2sin3x)e^{7x}$$
  $\lambda^2-2\lambda+1=0 \quad => \quad \lambda=1(double)$   $r=7 \quad t=7+3i \ or \ t=7-3i$   $t
eq \lambda$ 

 $Assume: \ \ ar{y}=x^0(Acos3x+Bsin3x)e^{7x}=(Acos3x+Bsin3x)e^{7x}$ 

### <四>等号右端项含多项式、三角函数和e 指数

其中:

$$f(x) = P(x)\nabla(x)e^{rx}$$

不妨记:

$$abla(x) = Acos(jx) + Bsin(jx)$$

① 若 t 是 k 重根 (k>0的整数,认为单根也是重根)

$$ar{y} = x^k [Q(x)cos(jx) + R(x)sin(jx)]e^{rx}$$

② 若 t 不是特征根

$$ar{y}=x^0[Q(x)cos(jx)+R(x)sin(jx)]e^{rx}=[Q(x)cos(jx)+R(x)sin(jx)]e^{rx}$$

【注意】:

$$\partial Q(x) = \partial R(x) = \partial P(x) = 0$$

$$Assume: Q(x) = A, R(x) = B$$

$$ar{y} = [Acos(jx) + Bsin(jx)]e^{rx} \quad transform\ to\ Mode < Three.\ \bigcirc)>.$$

其中:

Both Q(x) and R(x) are uncertain polynomials.

$$\partial Q(x) = \partial R(x) = \partial P(x).$$

例:

$$y'' + 4y = (x^3 - x + 12)cos2x$$
 $\lambda^2 + 4\lambda = 0 \implies \lambda = 2i \ or \ \lambda = -2i$ 
 $y'' + 4y = (x^3 - x + 12)cos2x = (x^3 - x + 12)(1 \times cos2x + 0 \times sin2x)e^{0x}$ 
 $\therefore r = 0 \quad t = 0 + 2i \ or \ t = 0 - 2i$ 
 $t = \lambda(single)$ 
 $Assume: \bar{y} = x^1[(Ax^3 + Bx^2 + Cx + D)cos2x + (Ex^3 + Fx^2 + Gx + H)sin2x]e^{0x}$ 

$$egin{aligned} Assume: y &= x^*[(Ax^3 + Bx^2 + Cx + D)cos2x + (Ex^3 + Fx^2 + Gx + H)sin2x]e^{sw} \ So: \ ar{y} &= x[(Ax^3 + Bx^2 + Cx + D)cos2x + (Ex^3 + Fx^2 + Gx + H)sin2x] \end{aligned}$$

### <五>等号右端项含同类叠加项

其中:

$$f(x) = g(x)e^{r_1x} + h(x)e^{r_2x}$$

不妨记:

Both g(x) and h(x) are polynomial trigonometric functions.

原理:

$$egin{aligned} L(y) &= f(x) = g(x)e^{r_1x} + h(x)e^{r_2x} \ & \ \left\{ egin{aligned} L(y) &= g(x)e^{r_1x} \ L(y) &= h(x)e^{r_2x} \end{aligned} 
ight. \ & \ L(y) = g(x)e^{r_1x} &=> egin{aligned} ar{y_1} &= G(x) \end{aligned}$$

$$L(y)=h(x)e^{r_2x}\quad =>\quad ar{y_2}=H(x)$$

 $Via\ Superposition\ Principle: \ \ ar{y_1} + ar{y_2} = g(x)e^{r_1x} + h(x)e^{r_2x}$ 

$$L(y)=f(x) \quad => \quad ar{y}=ar{y_1}+ar{y_2}$$

例:

$$egin{align} y^{'''}-y&=(-3x^2+1)(7cosrac{\sqrt{3}}{2}x-5sinrac{\sqrt{3}}{2}x)e^{rac{1}{2}x}-(-x^3+12)e^x\ \lambda^3-1&=0\quad => \quad \lambda_1=1(single)\ or\ \lambda_{2,3}=rac{1}{2}\pmrac{\sqrt{3}}{2}i(single)\ y^{'''}-y&=(-3x^2+1)(7cosrac{\sqrt{3}}{2}x-5sinrac{\sqrt{3}}{2}x)e^{rac{1}{2}x}\ &r_1=rac{1}{2}\quad t_1=rac{1}{2}\pmrac{\sqrt{3}}{2}i\ &t_1=\lambda_{2,3}(single) \end{array}$$

$$egin{aligned} Assume: & ar{y_1} = x^1[(Ax^2 + Bx + C)cosrac{\sqrt{3}}{2}x + (Dx^2 + Ex + F)sinrac{\sqrt{3}}{2}x]e^{rac{1}{2}x} \ & Among: & \partial Q(x) = \partial R(x) = \partial (-3x^2 + 1) = 2 \ & y^{'''} - y = -(-x^3 + 12)e^x \ & r_2 = 1 \quad t_2 = 1 = \lambda_1(single) \ & Assume: & ar{y_2} = x^1[Ax^3 + Bx^2 + Cx + D]e^x \ & Among: & \partial Q(x) = \partial [-(-x^3 + 12)] = 3 \end{aligned}$$

$$(i * i Assume: ar{y} = ar{y_1} + ar{y_2})$$

$$ar{y} = x imes \{ [(s_1x^2 + s_2x + s_3)cosrac{\sqrt{3}}{2}x + (s_4x^2 + s_5x + s_6)sinrac{\sqrt{3}}{2}x]e^{rac{1}{2}x} + [s_7x^3 + s_8x^2 + s_9x + s_{10}]e^x \}$$