Lexical Analysis

• Primary role = abstraction process: $[characters] \rightarrow [symbols]$

- Secondary role
 removal of spacing pseudo-symbols removal of comments linking of errors to source lines (supports clarity of error messages)
- Advantages in separating syntax analysis from lexical analysis:
 - 1. Simplicity of design (syntax do not care about white spaces, comments, ...)
 - 2. Efficiency
 - 3. Portability

Symbol Specification

- Lexical string: significant sequence of characters (*lexeme*)
- Symbol: abstraction of a class of lexical strings
- Pattern: rule to describe the extension of a symbol (≈ grammar of lexical symbol)
- Lexical attribute: when the symbol is the abstraction of several lexical strings

```
alpha = (beta * 3) \qquad (id, \uparrow alpha) \langle assign, \rangle \langle left, \rangle \langle id, \uparrow beta \rangle \langle times, \rangle \langle num, 3 \rangle \langle right, \rangle \langle left, \rangle \langle id, \uparrow beta \rangle \langle times, \rangle \langle num, 3 \rangle \langle right, \rangle \langle left, \rangle \langle
```

Regular Expressions

- Definition of regular expression (on alphabet Σ):
 - 1. ε is a regular expression denoting the language { ε }
 - 2. If $a \in \Sigma$, then a is a regular expression denoting the language $\{a\}$
 - 3. If x, y are regular expressions denoting languages L(x), L(y), then:
 - \blacksquare (x) is a regular expression denoting L(x)
 - $(x) \mid (y)$ is a regular expression denoting $L(x) \cup L(y)$
 - (x)(y) is a regular expression denoting $\{xy \mid x \in L(x), y \in L(y)\}$
 - $(x)^*$ is a regular expression (repetition zero or more times of strings in L(x))
- Extended regular expressions: (x)⁺, , [a-z], ~(a|b), (x)?
- Regular definitions: associations of names with regular expressions

```
\begin{aligned} &\textbf{letter} \rightarrow [A\text{-}Za\text{-}z] \\ &\textbf{digit} \rightarrow [0\text{-}9] \\ &\textbf{id} \rightarrow \textbf{letter} \ (\textbf{letter} \mid \textbf{digit})^* \end{aligned}
```

Regular Expressions for Tokens in Prog. Languages

- Classification of lexical elements:
 - **Keywords** = { if, then, while, do, begin, end, procedure, function, case, repeat ... }
 - **Special symbols** = { +, -, *, /, =, >, >=, !=, ++, --, &&, | |, ... }
 - Identifiers = { alphanumeric strings starting with a letter }
 - Constants = { 25, .34, 2.7E-3, "alpha", 'a', ... }
 - Pseudo-symbols (spacing, comments)
- Ambiguity: when the same string of characters is compatible with <u>several</u> regular expressions

$$\begin{array}{c} \text{PL} \rightarrow \text{disambiguating rules} & \text{keywords = reserved words} \\ \text{principle of longest substring} & \textit{(maximal munch)} \\ \\ \text{In general: insufficient} & E_1 & \bullet & E_2 \\ \end{array}$$

Finite Automata

- Mathematical formalism to describe certain types of algorithms ("machines")
- In particular: to check the membership of a string in a regular language (matching string regexpr)
- Strong correlation between \(\begin{array}{l} \text{finite automata} \\ \text{regular expressions} \end{array} \)

 $id \rightarrow letter (letter | digit)^*$ recognition process of an id by means of a diagram

- States: what was recognized
- Transitions: change of state caused by the matching of a character
- ullet Recognition process of an id o defined by the sequence of involved transitions

Recognized regular language = { paths within automaton }

Deterministic Finite Automata

- **Def**: A DFA is a 5-tuple M = (Σ, S, T, s_0, F) , where:
 - \square Σ = alphabet
 - □ S = set of states
 - □ T: $S \times \Sigma \rightarrow S$ = transition function (deterministic)
 - \circ s₀ = initial state (unique)
 - \neg $F \subseteq S$ = set of final states (nonempty set)
- L recognized by $M \equiv L(M) = \{ x \mid x = c_1c_2...c_n, c_i \in \Sigma, \text{ and } \exists$

$$\rightarrow$$
S₀ \rightarrow S₁ \rightarrow S₂ \rightarrow ... \rightarrow S_{n-1} \rightarrow S_n

$$s_1 = T(s_0, c_1),$$

 $s_2 = T(s_1, c_2),$
...
 $s_n = T(s_{n-1}, c_n), s_n \in F$

Deterministic Finite Automata (ii)

Notes comparing formal definition of DFA and diagrammatic example (id)

- 1. States identifiable by any type of labels (numbers, letters, strings, ...)
- 2. Factorization (abstraction) of n transitions, one \forall letter/digit, by a single transition letter/digit
- 3. Def \Rightarrow T: S \times Σ \rightarrow S = function \Rightarrow T(s, c) must have a value \forall (s, c) \Rightarrow missing transitions!

missing transitions ≡ error transitions!

context-sensitive meaning

ullet Error state: double semantics \langle it is <u>not</u> an identifier (from <u>non</u>-final state) \to identifier followed by separator (from final state) \to maximal munch

Examples of DFAs in Diagrammatic Form

1. $L = \{ x \mid x \text{ includes } \underline{\text{exactly}} \text{ one } b \}$

2. $L = \{ x \mid x \text{ includes } \underline{\text{at most}} \text{ one } b \}$

3. L = { $x \mid x = \text{numeric constant in scientific notation }}$

$$\begin{aligned} & \textbf{digit} \rightarrow [0\text{-}9] \\ & \textbf{nat} \rightarrow \textbf{digit}^+ \\ & \textbf{snat} \rightarrow (+|-)~?~\textbf{nat} \\ & \textbf{num} \rightarrow \textbf{snat}~(``."\textbf{nat})~?~(\texttt{E}~\textbf{snat})~? \end{aligned}$$

4. $L = \{ x \mid x = Pascal comment \}$

5. $L = \{ x \mid x = C \text{ comment } \}$

Augmentation of Semantics in DFAs

- Representation diagrammatic formal does not describe every algorithmic aspect of the recognition process
 - □ Error → backtracking or return(ERROR) ?
 - □ Final state → ?
 - Matching of character → ? (accumulation in lexeme)
 - Maximal munch?

Furthermore: it expresses maximal munch

Problem of Initial State

• Since ∃ different tokens in a PL → combination (fusion) of different automata

In theory: manual combination of all tokens in one large DFA ⇒ complex!
 Better: extending DFA to NFA + algorithm: NFA → equivalent DFA (modular approach)

Compilers

Empty Transition

• ϵ -transition \langle formally: matching of empty string (ϵ) intuitively: performed "spontaneously" (without character consumption)

• Advantage: simple and systematic combination of symbol recognizers ("glue" for NFAs)

Nondeterministic Finite Automata

- **Def**: An NFA is a 5-tuple M = (Σ, S, T, s_0, F) , where:
 - □ Σ = alphabet
 - □ S = set of states

□ T: $S \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^S$ = transition function \rightarrow 2 causes for nondeterminism:

- \Box s₀ = initial state
- F ⊆ S = set of final states
- L recognized by $M \equiv L(M) = \{ x \mid x = c_1c_2...c_n, c_i \in (\Sigma \cup \{\epsilon\}), \text{ and } \exists s_1 \in T(s_0, c_1), s_2 \in T(s_1, c_2), ... s_n \in T(s_{n-1}, c_n), s_n \in F \}$
- Notes:
 - 1. $x = c_1c_2...c_n$, actually $|x| \le n$
 - 2. Nondeterminism when choosing $s_i \in T(s_{i-1}, c_i)$
 - 3. Formally, NFA <u>does not</u> represent an algorithm, yet can be simulated by an algorithm with backtracking (→ efficiency problem)

ε-transitions

same c for several trans.

Examples of NFAs in Diagrammatic Form

• Recognition of abb <

$$1 \xrightarrow{a} 2 \xrightarrow{b} 4 \xrightarrow{\varepsilon} 2 \xrightarrow{b} 4$$

$$1 \xrightarrow{\mathbf{a}} 3 \xrightarrow{\varepsilon} 4 \xrightarrow{\varepsilon} 2 \xrightarrow{\mathbf{b}} 4 \xrightarrow{\varepsilon} 2 \xrightarrow{\mathbf{b}} 4$$

several paths for the same string

- Recognition of L((a | ϵ)b*) \Rightarrow in particular: ϵ , a, b
- Equivalent DFA:

Examples of NFAs in Diagrammatic Form (ii)

 $acab \in (a \mid c)^*b$

Automata Specified by Transition Tables

	c			
	letter	digit	other	F
1	2			
2	2	2	<mark>[3]</mark>	
3				•

	С			
	/	*	other	F
1	2			
2		3		
3		4	3	
4	5	4	3	
5				•

Blank boxes → unspecified transitions

• Assumptions: $s_0 = \text{first in list}$ Information extension $s_0 = \text{states} \in F$

Automata Specified by Transition Tables (ii)

 Generic code → 3 data structures (simple, yet universal)

 $\underline{\text{exmp}}$: state = -1

• Table-driven algorithm:

```
state := 1; c := next();
while not F[state] and not error(state) do
begin
    new_state := T[state,c];
    if Cons[state, c] then
        c := next();
    state := new_state
    end;
if F[state] then accept.
```

Automata Specified by Transition Tables (iii)

Notes on table-driven algorithms :

- 2. Cons: waste of memory (sparse tables → compression)
- 3. Technique extensible to NFA $\langle {}^{\texttt{T[state,c]}} = \{ \text{ states } \}$ backtracking \Rightarrow inefficient: better transforming NFA \rightarrow DFA
- Underlying problem: Regexpr → DFA ⇒ in two steps (automatic within generators):

Regexpr → **NFA** (Construction of Thompson)

 $\bullet \ \, \mbox{ Method:} \left\{ \begin{array}{l} \mbox{Incremental construction starting from automata (a, ϵ)} \\ \mbox{ϵ-transitions: to glue together sub-automata} \\ \mbox{Final automaton= recognizer of L(r)} \end{array} \right.$

1. Atomic regexpr: $x = \begin{cases} a & \xrightarrow{a} & \bigcirc & \\ \epsilon & \xrightarrow{\epsilon} & \bigcirc & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$

2. Concatenation: xy

3. Alternative: $x \mid y$ $\varepsilon \qquad x \qquad \varepsilon$ $\varepsilon \qquad y \qquad \varepsilon$

4. Repetition: x*

5. Parentheses: $(x) \Rightarrow$ automaton unchanged

Regexpr → NFA (Construction of Thompson) (ii)

• Notes:

- □ ∀ new state → new name
- Properties of the final NFA (by construction):
 - 1. NFA recognizes L(r)
 - 2. Total-states(NFA) \leq 2 * (symbols in r)
 - 3. NFA has
 1 initial state (no entering transitions)
 1 final state (no exiting transitions)
 - 4. \forall state \in NFA: possible one of two cases \langle 1 exiting transition marked by $c \in \Sigma$ at most 2 exiting transitions marked by ϵ
- <u>Not</u> unique construction (simplification):

Construction of Thompson: Examples

Construction of Thompson: Examples (ii)

$NFA \rightarrow DFA$

• Removal of transitions $\langle \text{empty } (\epsilon\text{-transitions}) \Rightarrow \epsilon\text{-closure} = \{ \text{ states reachable by } \epsilon\text{-transitions} \}$ (causes for nondeterminism) $\langle \text{multiple } (\text{on single } c) \Rightarrow \{ \text{ states reachable with same } c \}$

- Def of **e-closure**:
 - 1. Single state: $\underline{s} = \varepsilon$ -closure(s) $\equiv \{s' \mid \exists s \xrightarrow{\varepsilon} ... \xrightarrow{\varepsilon} s' \text{ in M } \} \cup \{s\}$

2. **Set of states**: $\underline{S} = \epsilon$ -closure(S) $= \bigcup_{S \in S} \underline{S} \implies \{\underline{1},\underline{3}\} = \underline{1} \cup \underline{3} = \{1,2,4\} \cup \{2,3,4\} = \{1,2,3,4\}$

Subset Construction

$$\begin{array}{ll} \mathsf{NFA} & \mathsf{DFA} \\ \mathsf{M} \to \mathsf{M}' \end{array} \left\{ \begin{aligned} \mathsf{M} &= (\Sigma,\,\mathsf{S},\,\mathsf{T},\,\mathsf{s}_0,\,\mathsf{F}) \\ \mathsf{M}' &= (\Sigma,\,\mathsf{S}',\,\mathsf{T}',\,\mathsf{s}'_0,\,\mathsf{F}'), \end{aligned} \right. \text{ where } \left\{ \begin{array}{ll} \mathsf{S}' \subseteq 2^{\mathsf{S}} \\ \mathsf{T}' \colon \mathsf{S}' \times \Sigma \to \mathsf{S}' \\ \\ \mathsf{s}'_0 &= \underline{\mathsf{s}}_0 \\ \mathsf{F}' \subseteq \mathsf{S}' \end{aligned} \right.$$

• Computation of S', T', F':

$$S' := \{ s'_0 \}; T' := \emptyset;$$

repeat

Choose an unmarked node A∈S';

for each $c \in \Sigma$ marking a transition of M exiting a node in A do

begin

$$A'_{c} := \{ z \mid s \in A, s \xrightarrow{C} z \in T \};$$

$$\underline{A'_{c}} := \epsilon \text{-closure}(A'_{c});$$

$$\mathbf{if} \ \underline{A'_{c}} \notin S' \ \mathbf{then} \ \underline{S'} := S' \cup \{ \ \underline{A'_{c}} \};$$

$$\underline{T'} := T' \cup \{ \ A \xrightarrow{C} \underline{A'_{c}} \}$$

end;

Mark A

until all elements in S' are marked;

$$F' := \{ A \mid A \in S', A \cap F \neq \emptyset \}.$$

Examples NFA \rightarrow **DFA**

1. a^* $\Rightarrow 1 \xrightarrow{\epsilon} 2 \xrightarrow{a} 3 \xrightarrow{\epsilon} 4$ $\Rightarrow s'_0 = \underline{s_0} = \underline{1} = \{1, 2, 4\}$

$$s'_0 = 1 = \{1, 2, 6\}$$

Examples NFA → **DFA** (ii)

3. letter (letter | digit)*

Lex (lexical analyzer generator)

Broad applicability: sw tool recognizing patterns of characters defined by regexpr
 → then ?

Lexical analyzer:

Lex (ii)

• Lex specification (program): 3 sections

Declarations
%%
Translation rules
%%
Auxiliary functions

black box (auxiliary definitions): %{ #include, constants, variables %}
 Declarations
 white box (regular definitions): name expr

Translation rules

Regexpr	C fragment
r_1	{ action₁ }
r ₂	{ action ₂ }
r_n	{ action _n }

Auxiliary functions: necessary to actions → possibly compiled separately

• Flex (GNU) \rightarrow yylex() = C function in file.c that $\stackrel{\text{recognizes the symbol}}{\leftarrow}$ executes the action

Lex (iii)

- Notation for the specification of regular expressions
 - Matching of strings of characters: if or "if"
 - □ Neutralization of the meta-character effect (" acts on a single character
 - $_{\square}$ Uniformity with C to denote space characters $\left\langle \begin{smallmatrix} t \\ \\ \end{pmatrix}_n$
 - □ Meta-character \equiv any character $\neq \n$
 - □ Canonical interpretation of meta-characters * + () | ? ······ textual form

Example: " Set of strings of a, b, which start with aa or bb, and end with an optional c "

$$\Sigma = \{a,b,c\} \qquad (aa \mid bb) (a \mid b) *c?$$

Complement set: $^{\circ}$ = first character within the range [$^{\circ}$ 0-9abc] = Σ -{0,1,...,9,a,b,c}

<u>Example</u>: "Numbers in scientific notation" ("+"|"-")?[0-9]+("."[0-9]+)?(E("+"|"-")?[0-9]+)?

- Reference to names of regexpr by $\{name\}$ $nat [0-9]+ snat ("+"|"-")?{nat} only when referenced$
- Further meta-characters $(expr)_{n}$, $(expr)_{n,m}$ $(m \text{ missing } \rightarrow \text{ infinite})$ $(expr)_{n,m}$ $(expr)_{n,m}$ $(m \text{ missing } \rightarrow \text{ infinite})$

Lex (ex1.lex)

Generation of lines preceded by their position number

Lex (ex2.lex)

Generation of lines in odd position

Lex (ex3.lex)

Substitution of numbers from decimal to hexadecimal notation + printing of number of <u>actual</u> substitutions

```
용 {
#include <stdio.h>
#include <stdlib.h>
int cont = 0;
용}
%option noyywrap
digit
          [0-9]
          {digit}+
num
용용
{num} { int n = atoi(yytext);
          printf("%x", n);
          if (n > 9) cont++; }
응응
main()
{
   yylex();
   fprintf(stderr, "Tot substitutions = %d\n", cont);
```

Note: Default action: when a character (or a string of characters) is not part of any symbol

ECHO on output

Lex (ex4.lex)

Substitution of numbers with value >= 10 from decimal to hexadecimal notation + printing of number of substitutions

```
웅 {
#include <stdio.h>
#include <stdlib.h>
int cont = 0;
용}
%option noyywrap
digit
        [0-9]
         {digit}{digit}+
num
응응
{num} { int n = atoi(yytext);
          printf("%x", n);
          cont++; }
응응
main()
   yylex();
   fprintf(stderr, "Tot substitutions = %d\n", cont);
```

Lex (ex5.lex)

Selection of lines which either start or end with character a

```
웅 {
                          Note: Ambiguous set of rules (a string may correspond to different
#include <stdio.h>
                                 regexpr, e.g: a)
용}
%option noyywrap
           a.*\n
a line
                                                      Priority rules (built-in)
line a
           .*a\n
응응
{a line} ECHO;
                               1. Principle of maximal munch.
{line a} ECHO;
.*\n
                               2. If \exists several rules matching the string \rightarrow select the rule specified <u>first</u>.
응응
main()
   yylex();
                                           .*\n
}
                                           {a line}
                                                         ECHO;
                                                                              empty output!
                                           {line a}
                                                         ECHO;
                   output of yytext
                                           {a line}
                                                         ECHO;
         empty action
                                                                              output = input!
                                           {line a}
                                                         ECHO;
```

Lex (ex6.lex)

Selection of lines which both start and end with character and contain other characters, all different from a

```
%{
#include <stdio.h>
%}
%option noyywrap
a_line_a a[^a\n]+a\n
%%
{a_line_a} ECHO;
.*\n ;
%%
main()
{
   yylex();
}
```

Lex (ex7.lex)

Substitution of uppercase with lowercase letters, except those in C comments

```
용 {
#include <stdio.h>
#define FALSE 0
#define TRUE 1
% }
%option noyywrap
응응
[A-Z]
        {putchar(tolower(yytext[0]));}
"/*"
         {char c; int end = FALSE;
         ECHO;
         do { while ((c=input()) != '*')
                putchar(c);
              putchar(c);
              while ((c=input()) == '*')
                putchar(c);
              putchar(c);
              if(c == '/')
                end = TRUE;
              } while(!end);
응응
main(){ yylex(); }
```


Internal Lex identifiers:

Identifier	Description
yylex()	Function of lexical analysis
yytext	Lexical string (lexeme)
yyleng	strlen(yytext)
yyin	Input file (default: stdin)
yyout	Output file (default: stdout)
input()	Input of one character ← yyin
ECHO	Default action: prints yytext on yyout

Lex (ex8.lex)

Substitution of uppercase with lowercase letters, except those in Pascal comments

Compilers 2. Lexical analysis 36

Lex (ex9.lex)

Counting of chars, words and lines (wc), where word = list of non-blank chars

```
용 {
#include <stdio.h>
int nc=0, nw=0, nl=0;
용}
%option noyywrap
word [^ \t\n]+
eol \n
응응
{word} {nw++; nc+=yyleng;}
{eol} {nl++; nc++;}
      {nc++;} either space or tab
응응
main()
 yylex();
 printf("%d %d %d\n", nl, nw, nc);
```

Lex: Lexical Analysis

Recognition of lexical symbols in a programming language

```
%{
#include <stdlib.h>
#include "def.h" /* IF, THEN, ELSE, ID, NUM, RELOP, LT, LE, EQ, NE, GT, GE */
int lexval:
%}
delimiter
             [ \t\n]
spacing
             {delimiter}+
letter
             [A-Za-z]
digit
             [0-9]
             {letter}({letter}|{digit})*
id
             {digit}+
num
응응
{spacing}
if
             {return(IF);}
then
             {return(THEN);}
             {return(ELSE);}
else
{id}
             {lexval = store id(); return(ID);}
             {lexval = atoi(yytext); return(NUM);}
{num}
"<"
             {lexval = LT; return(RELOP);}
"<="
             {lexval = LE; return(RELOP);}
"="
             {lexval = EQ; return(RELOP);}
             {lexval = NE; return(RELOP);}
"<>"
">"
             {lexval = GT; return(RELOP);}
             {lexval = GE; return(RELOP);}
">="
응응
int store id() /* symbol table without keywords */
{ int line;
  if((line = lookup(yytext)) == 0) line = insert(yytext);
  return(line);
```