Model Research

Model/ Algorithm	Dataset(s) Used	Performance Factors	Accuracy	Robustness
Random Forest	CICIDS2017, NSL- KDD, UNSW-NB15	Handles high-dimens- ional features, feature importance ranking	92–99	High
Autoencoder	CICIDS2017, UNSW-NB15	Unsupervised anomaly detection learning normal traffic patterns	85-93	Moderate depending on-training oata
LSTM	CICIDS2017, NSL-KDD	Sequential data, detects time-based anomalies	90–96	Moderate-high due to res- tence to pattems
Gradient Boosting (XGBoost/ LightGBM)	CICIDS2017, NSL-KDD, UNSW-NB15	Handles imbalanced classes, robust to overfitting	94-99	Low Moderate- high-m-sates harder
SVM	CICIDS2017, NSL-KDD	Effective for high- dimensional linear/ non-linear separation	88-95	Moderate-high resistance to nolsy features
CNN	CICIDS2017, UNSW-NB15	Extracts packet-level spatial features	90–96	Low-Moderate bust nace possible
Deep Belief Network (DBN)	CICIDS2017, KDD99	Advanced feature extraction, layered unsupervised learning	87–94	Low interpreting deep layers
K-Nearest Nelghbors (KNN)	CICIDS2017, NSL-KDD	Classifies network traffic based on pro- ximity in multidimen-	85-92	Low-Moderate interpretable
Isolation Forest	CICIDS2017, UNSW-NB15	Anomaly detection efficiently isolating outilers in network	85-94	High effective for rare anomalies
Reinforcem- Learning (DQN, PPO)	CICIDS2017, UNSW-NB15	Automates threat mitigation, learning optimal policies	88-95	Moderate outlier scores