Mathematics Methods for Computer Science

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzing

III Factorization

LU with Pivoting

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LO Tactorization

zing

Lecture

Linear Systems and LU

Linear System

Solvability

Solving Linear Systems

Gaussian Elimination

unalyzing

III Factorization

$$A\vec{x} = \vec{b}$$

$$A \in \mathbb{R}^{m \times n}$$

$$\vec{x} \in \mathbb{R}^n$$

$$\vec{b} \in \mathbb{R}^m$$

Case 1: Solvable

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzini

LU Factorization

LU with Pivoting

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 1 \end{array}\right)$$

"Completely Determined"

Case 2: No Solution

Solvability

Solving Linear Systems

Gaussian Elimination

nalvzing

III Factorization

LU with Pivoting

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 1 \end{array}\right)$$

"OverDetermined"

Case 3: Infinitely Many Solutions

Solvability

Solving Linear Systems

Gaussian Elimination

\nalvzing

LU Factorization

LU with Pivoting

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ -1 \end{array}\right)$$

"UnderDetermined"

No Other Cases

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzin

LU Factorization

LU with Pivoting

Proposition

If $A\vec{x} = \vec{b}$ has two distinct solutions \vec{x}_0 and \vec{x}_1 , it has infinitely many solutions.

Common Misconception

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

III Factorization

LU with Pivoting

Solvability can depend on $\vec{b}!$

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -1 \\ 0 \end{array}\right)$$

Dependence on Shape

Solvability

Solving Linear System

Gaussian Elimination

Analyzin

LU Factorization

LU with Pivotin

Proposition

Tall matrices admit unsolvable right hand sides.

Proposition

Wide matrices admit right hand sides with infinite numbers of solutions.

For Now

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzin

III Factorization

LU with Pivoting

All matrices will be:

- Square
- Invertible

Inverting Matrices

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzin,

III Factorizatio

LU with Pivotin

Do not compute A^{-1} if you do not need it.

- Not the same as solving $A\vec{x} = \vec{b}$
- Can be slow and poorly conditioned

Example

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzin

LU Factorization

$$y - z = -1 3x - y + z = 4 \iff \begin{pmatrix} 0 & 1 & -1 & | & -1 & | & \\ 3 & -1 & 1 & | & 4 & | & \\ x + y - 2z = -3 & & & 1 & | & -2 & | & -3 & \end{pmatrix}$$

- Permute rows
- Row scaling
- Forward/back substitution

Row Operations: Permutation

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

III Factorizatio

$$\sigma: \{1, \dots, m\} \to \{1, \dots, m\}$$

$$P_{\sigma} \equiv \left(egin{array}{ccc} - & ec{e}_{\sigma(1)}^{ op} & - \\ - & ec{e}_{\sigma(2)}^{ op} & - \\ & \cdots & - & ec{e}_{\sigma(m)}^{ op} & - \end{array}
ight)$$

Row Operations: Row Scaling

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

III Factorization

$$S_a \equiv \begin{pmatrix} a_1 & 0 & 0 & \cdots \\ 0 & a_2 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_m \end{pmatrix}$$

Row Operations: Elimination

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivotin

"Scale row k by constant c and add result to row l."

$$E \equiv \left(I + c\vec{e_l}\vec{e_k}^T\right)$$

Solving via Elimination Matrices

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzing

III Factorization

LU with Pivoting

$$\begin{pmatrix}
0 & 1 & -1 & -1 \\
3 & -1 & 1 & 4 \\
1 & 1 & -2 & -3
\end{pmatrix}$$

Reverse order!

Mathematics Methods for Computer Science

Introducing Gaussian Elimination

Solvability

Solving Linear System

Gaussian Elimination

nalyzing

III Factorization

LU with Pivotin

Big idea:

General strategy to solve linear systems via row operations.

Mathematics Methods for Computer Science

Elimination Matrix Interpretation

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

$$A\vec{x} = \vec{b}$$

$$E_1 A \vec{x} = E_1 \vec{b}$$

$$E_2 E_1 A \vec{x} = E_2 E_1 \vec{b}$$

$$\vdots$$

$$\underbrace{E_k \cdots E_2 E_1 A}_{I_{n \times n}} \vec{x} = \underbrace{E_k \cdots E_2 E_1}_{A^{-1}} \vec{b}$$

Shape of Systems

Solvability

Solving Linear System

Gaussian Elimination

nalvzing

III Factorization

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzing

III Factorization

$$\begin{pmatrix}
\otimes & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{pmatrix}$$

Row Scaling

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzing

III Factorization

$$\begin{pmatrix}
\textcircled{1} & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{pmatrix}$$

Row Scaling

Solvability

Solving Linear System

Gaussian Elimination

nalyzing

III Factorization

$$\begin{pmatrix}
\textcircled{1} & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{pmatrix}$$

Forward Substitution

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

III Factorization

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & \textcircled{1} & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{pmatrix}$$

Upper Triangular Form

Solvability

Solving Linear System

Gaussian Elimination

Analyzina

III Factorization

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & \textcircled{1} & \times
\end{pmatrix}$$

Back Substitution

Solvability

Solving Linear Systems

Gaussian Elimination

nalvzing

III Factorization

$$\begin{pmatrix}
1 & \times & \times & 0 & | \times \\
0 & 1 & \times & 0 & | \times \\
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & ① & | \times
\end{pmatrix}$$

Back Substitution

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzing

III Factorization

$$\left(\begin{array}{ccc|c}
1 & \times & 0 & 0 & \times \\
0 & 1 & 0 & 0 & \times \\
0 & 0 & ① & 0 & \times \\
0 & 0 & 0 & 1 & \times
\end{array}\right)$$

Steps of Gaussian Elimination

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

- Forward substitution: For each row i = 1, 2, ..., m
 - Scale row to get pivot 1
 - For each j>i, subtract multiple of row i from row j to zero out pivot column
- Backward substitution: For each row i=m,m-1,...,1
 - For each j < i, zero out rest of column

Total Running Time

lvability

Solving Linear System

Gaussian Eliminatio

Analyzing

LU Factorization

$$O(n^3)$$

Problem

olvability

Solving Linear System

Gaussian Elimination

Analyzing

III Factorization

$$A = \left(\begin{array}{cc} \textcircled{0} & 1\\ 1 & 0 \end{array}\right)$$

Even Worse

olvability

Solving Linear System

Gaussian Elimination

Analyzing

I II Factorization

$$A = \left(\begin{array}{cc} \textcircled{\varepsilon} & 1\\ 1 & 0 \end{array}\right)$$

Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- Full pivoting

$$\begin{pmatrix}
1 & 10 & -10 \\
0 & 0.1 & 9 \\
0 & 4 & 6.2
\end{pmatrix}$$

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

Elimination Matrix Interpretation

olvability

Solving Linear System

Gaussian Elimination

nalyzin

LU Factorization

LU with Pivoting

$$A\vec{x}_1 = \vec{b}_1$$

$$A\vec{x}_2 = \vec{b}_2$$

$$\vdots$$

Can we restructure A to make this more efficient?

Does each solve take $O(n^3)$ time?

Observation

olvability

Solving Linear System

Gaussian Elimination

Analyzin,

LU Factorization

LU with Pivotin

Steps of Gaussian elimination depend only on structure of A.

Avoid repeating identical arithmetic on A?

Another Clue: Upper Triangular Systems

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzina

LU Factorization

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & ① & \times
\end{pmatrix}$$

After Back Substitution

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzin

LU Factorization

LU with Pivoting

$$\begin{pmatrix}
1 & \times & \times & 0 & | \times \\
0 & 1 & \times & 0 & | \times \\
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & 1 & | \times
\end{pmatrix}$$

No need to subtract the 0's explicitly! O(n) time

Next Pivot: Same Observation

lvabilit

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$\begin{pmatrix}
1 & \times & 0 & 0 & | \times \\
0 & 1 & 0 & 0 & | \times \\
\hline
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & 1 & | \times
\end{pmatrix}$$

Observation

Triangular systems can be solved in $O(n^2)$ time.

No need to subtract the 0's explicitly!

Upper Triangular Part of A

olvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

$$A\vec{x} = \vec{b}$$

$$M_k \cdots M_1 A \vec{x} = M_k \cdots M_1 \vec{b}$$

Define:

$$U \equiv M_k \cdots M_1 A$$

Lower Triangular Part

Solvability

Solving Linear System

Gaussian Elimination

Analyzino

LU Factorization

$$U = M_k \cdots M_1 A$$

$$\Rightarrow A = (M_1^{-1} \cdots M_k^{-1}) U$$

$$\equiv LU$$

Why Is L Triangular?

Solvability

Solving Linear System

Gaussian Elimination

nalyzin

LU Factorization

LU with Pivoting

$$S \equiv diag(a_1, a_2, \cdots)$$
$$E \equiv I + c\vec{e_l}\vec{e_l}^T$$

Proposition

The product of triangular matrices is triangular.

Solving Systems Using LU

olvability

Solving Linear Systems

Gaussian Elimination

Analyzin

LU Factorization

LU with Pivoting

$$A\vec{x} = \vec{b}$$
$$\Rightarrow LU\vec{x} = \vec{b}$$

- Solve L = using forward substitution.
- Solve U = using backward substitution.

 $O(n^2)$ (given LU factorization)

LU: Compact Storage

Solvability

Solving Linear Systems

Gaussian Elimination

nalyzing

LU Factorization

LU with Pivoting

$$\left(egin{array}{cccc} U & U & U & U \ L & U & U & U \ L & L & U & U \ L & L & L & L \end{array}
ight)$$

Assumption: Diagonal elements of L are 1. Warning: Do not multiply this matrix!

Mathematics Methods for Computer Science

Computing LU Factorization

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivotin

Small modification of forward substitution step to keep track of L¹

¹See textbook for pseudocode.

Solvability

Solving Linear System

Gaussian Elimination

Analyzing

LU Factorization

LU with Pivoting

Does every A admit a factorization A = LU?

Recall: Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- Full pivoting

$$\begin{pmatrix}
1 & 10 & -10 \\
0 & 0.1 & 9 \\
0 & 4 & 6.2
\end{pmatrix}$$

Solvability

Solving Linear Systems

Gaussian Elimination

Analyzing

LU Factorization

Pivoting by Swapping Columns

Solvability

Solving Linear Systems

Gaussian Elimination

۱nalyzin

LU Factorization

$$\underbrace{(E_k \cdots E_1)}_{\text{elimination}} \cdot A \cdot \underbrace{(P_1 \cdots P_\ell)}_{\text{permutations}} \cdot \underbrace{(P_\ell^\top \cdots P_1^\top)}_{\text{inv. permutations}} \vec{x}$$

$$= (E_k \cdots E_1) \vec{b}$$

$$\downarrow \\ A = LUP$$