Verifying Divergence theorem

• Recall that divergence theorem states that

$$\iiint_{V} \nabla \mathbf{F} dV = \iint_{S} \mathbf{F} \cdot d\mathbf{S}$$

We will verify that this for the following situation:

• Let S_1 be the unit sphere and S_2 be the saddle surface defined by

$$S_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}, \quad S_2 = \{(x, y, z) \mid z = x^2 - y^2\}$$

Let C be the intersection between S_1 and S_2 . The curve C splits the sphere S_1 into two regions $S_1 = S_1^+ \cup S_1^-$ where S_1^+ lies above S_1^- . Let $S_2' \subset S_2$ be the region in S_2 bounded by C. Let V the volume bounded by S_1^+ and S_2' .

• Let **F** be a 3-dimensional vector field defined by

$$\mathbf{F}(x, y, z) = (x^2, y, \sin(z))$$

- 1. Draw the surfaces S_1 , S_2 , and the curve C together in \mathbb{R}^3 .
- 2. Let the orientations of S_1 and S_2 being the *upward*, i.e. the normal vector \mathbf{n} satisfies $\mathbf{n} \cdot \mathbf{k} \ge 0$ for $\mathbf{k} = (0, 0, 1)$.
 - (a) Compute the flux $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ and $\iint_{S_2} \mathbf{F} \cdot d\mathbf{S}$.
 - (b) Compute the triple integral $\iiint_V \nabla \mathbf{F} dV$
- 3. Compare the values obtained above and explain why this verifies the divergence theorem.