PERIODIC MOTION I

Intended Learning Outcomes – after this lecture you will learn:

- 1. definition of simple harmonic motion
- 2. relation between uniform circular motion and simple harmonic motion
- 3. description of simple harmonic motion in terms of phasor diagram
- 4. kinetic, potential, and total energy in simple harmonic motion

Textbook Reference: Ch 14.1 – 14.3

Simple Harmonic Motion (SHM)

Simplest example: a spring and mass system

x > 0: glider displaced $F_x < 0$, so $a_x < 0$: to the right from the stretched spring equilibrium position. pulls glider toward equilibrium position.

x = 0: The relaxed spring exerts no force on the glider, so the glider has zero acceleration.

Hooke's law: $F_x = -kx$ restoring force

displacement (+/-) from equilibrium point

Newton's law

$$a_x = \boxed{\frac{d^2x}{dt^2} = -\frac{k}{m}x}$$

a differential equation of the form $\ddot{x} = -\alpha x$, $\alpha > 0$, called **simple** harmonic motion (SHM)

A system executing simple harmonic motion is called a harmonic oscillator

How to solve the differential equation? Consider a particle Q executing uniform circular motion with angular speed ω and radius A. P is its projection along x axis.

$$x = A \cos \theta$$

$$v_x = -v_Q \sin \theta$$

$$a_x = -a_Q \cos \theta$$

$$u_{x} = u_{Q} \cos \theta$$
$$= -(\omega^{2} A) \cos \theta$$

$$=-\omega^2 x$$
 c.f. $a=-(k/m)x$

Conclusion: a harmonic oscillator is the same as a particle in uniform circular motion with $\omega = \sqrt{k/m}$ projected along the x direction

f = number of cycles per unit time

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

period

T = time for one complete cycle

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

angular frequency

 ω = angle (in radian) per unit time $\omega = 2\pi f$

General solution: $x = A \cos \theta(t) = A \cos(\omega t + \phi)$, where the **phase angle** $\phi = \theta(0)$ A is the **amplitude** (maximum displacement) of the oscillation

$$\phi = 0$$
, i.e., $\phi = \pi/4$, i.e., $\phi = \pi/2$, i.e., $\theta(t) = \omega t + \frac{\pi}{4}$ $\theta(t) = \omega t + \frac{\pi}{2}$

phasor diagram

displacement-time graph

▲ effect of phase angle is to push displacement-time graph along – t by ϕ/ω

velocity
$$v_x = \frac{dx}{dt} = -\omega A \sin(\omega t + \phi) = \omega A \cos\left(\omega t + \phi + \frac{\pi}{2}\right), \quad v_{max} = \omega A$$
acceleration
$$a_x = \frac{d^2x}{dt^2} = -\omega^2 A \cos(\omega t + \phi) = \omega^2 A \cos(\omega t + \phi + \pi), \quad a_{max} = \omega^2 A$$

▲ see Appendix I about changing from sine to cosine function.

How to find A and ϕ ? If given initial condition $x(0) = x_0$, $v(0) = v_{0x}$

$$\frac{v_{0x}}{x_0} = \frac{-\omega A \sin \phi}{A \cos \phi} = -\omega \tan \phi \quad \Rightarrow \quad \left\{ \phi = \begin{cases} \tan^{-1} \left(-\frac{v_{0x}}{\omega x_0} \right), & \text{if } x_0 > 0 \\ \tan^{-1} \left(-\frac{v_{0x}}{\omega x_0} \right) + \pi, & \text{if } x_0 < 0 \end{cases} \right.$$

▲ see Appendix II

$$x_0^2 + \frac{v_{0x}^2}{\omega^2} = A^2(\cos^2\phi + \sin^2\phi) = A^2$$
 \implies $A = \sqrt{x_0^2 + \frac{v_{0x}^2}{\omega^2}}$

(a) Displacement x as a function of time t

(b) Velocity v_r as a function of time t

(c) Acceleration a_x as a function of time t

$$a_{\max} = \omega^{2}A$$

$$-a_{\max} = -\omega^{2}A$$

$$a_{x} = -\omega^{2}A \cos(\omega t + \phi)$$

$$towards - t$$

The a_x -t graph is shifted by $\frac{1}{4}$ cycle from the v_x -t graph and by $\frac{1}{2}$ cycle from the x-t graph.

Question

Suppose the glider in the above diagram is moved to x = 0.10 m and is released from rest at t = 0, then $A = \underline{\hspace{1cm}}$ m and $\phi = \underline{\hspace{1cm}}$.

Suppose instead the glider in the above diagram at t = 0 is at x = 0.10 m and is moving to the right, then A is (>/</=) 0.10 m and ϕ is (>/</=) 0.

Answer: see inverted text on P. 466

Energy in Simple Harmonic Motion

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 A^2 \sin^2(\omega t + \phi) + \frac{1}{2}kA^2 \cos^2(\omega t + \phi) = \frac{1}{2}kA^2$$

Conservation of energy! To find velocity:

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 \implies v_x = \pm \sqrt{\frac{k}{m}}\sqrt{A^2 - x^2}$$

© 2012 Pearson Education, Inc

At $x = \pm A$ the energy is all potential; the kinetic energy is zero.

At x = 0 the energy is all kinetic; the potential energy is zero.

energy.

At these points the energy is half kinetic and half potential.

both *U* and *K* are quadratic (i.e., parabolic), and they add up to a constant $E = \frac{1}{2}kA^2$

energy.

Question

To double the total energy of a spring and mass system oscillating in SHM, one should increase the amplitude by a factor of ____. As a result of this amplitude change, the frequency of the oscillator will (be larger / be smaller / have no change).

Answer: see inverted text on P. 469 of textbook

Example 14.5 P. 469 Energy and momentum in SHM

Given: an oscillator with amplitude A_1

When it is at x = 0, a putty of mass m hits, and then stays on the block after collision

During the collision:

y component of momentum (is / is not) conserved x component of momentum (is / is not) conserved

New velocity at x = 0:

$$Mv_1 + 0 = Mv_2 + mv_2 \quad \Rightarrow \quad v_2 = \frac{M}{M+m}v_1$$

New amplitude:

$$\frac{1}{2}kA_2^2 = \frac{1}{2}(M+m)v_2^2 = \left(\frac{M}{M+m}\right)\frac{1}{2}Mv_1^2 = \left(\frac{M}{M+m}\right)\frac{1}{2}kA_1^2 \quad \Rightarrow \quad A_2 = A_1\sqrt{\frac{M}{M+m}}$$

E in terms of

K right after collision

amplitude after

collision

Total energy of the oscillator (increase / decrease). Where does the energy go?

Suppose the putty hits when the block is at $x = A_1$

No change in horizontal velocity (why?)

No change in K (why?)

Does the total energy of the oscillator change? Why? Is the energy of the system (oscillator + putty) conserved? Why?

Appendix I Summary of trigonometrical relations

In this Chapter we have used the relations $\cos\left(\theta \pm \frac{\pi}{2}\right) = \mp \sin\theta$

If two angles ϕ_1 and ϕ_2 differ by $\frac{\pi}{2}$, then sin and cos interchanged: $|\sin \phi_1| = |\cos \phi_2|$, the sign is determined by the following rule for trigonometric function in different quadrants:

 $\theta + \frac{\pi}{2}$ in second quadrant, cos

is -ve, therefore

Likewise, $\sin(\theta \pm \frac{\pi}{2}) = \pm \cos \theta$

For students with more advanced mathematics background only. Others may ignore this part.

Appendix II

The formula $\phi = \tan^{-1}(-v_{0x}/\omega x_0)$ does not always give the correct answer. One needs to determine ϕ in the correct quadrant through the conditions

$$\sin \phi = -v_{0x}/\omega A$$
$$\cos \phi = x_0/A$$

But you can easily convince yourself that the general formula

is
$$\phi = \begin{cases} \tan^{-1}\left(-\frac{v_{0x}}{\omega x_0}\right), & \text{if } x_0 > 0\\ \tan^{-1}\left(-\frac{v_{0x}}{\omega x_0}\right) + \pi, & \text{if } x_0 < 0 \end{cases}$$

irrespective of whether v_{0x} is positive or negative, as illustrated in the following example:

Example

Given $v_{0x}=0.40$ m/s, $x_0=0.015$ m, $\omega=20$ rad/s, then

$$\phi_1 = \tan^{-1} \left(-\frac{0.40 \text{ m/s}}{(20 \text{ rad/s})(0.015 \text{ m})} \right) = -0.93 \text{ rad}$$

But if $v_{0x}=-0.40$ m/s, $x_0=-0.015$ m, then $\sin\phi_2>0$ and $\cos\phi_2<0$, i.e., ϕ_2 in the second quadrant (between $\pi/2$ and π), and the correct phase angle is

$$\phi_2 = \pi - 0.93 \text{ rad} = 2.21 \text{ rad}$$

Clicker questions

Q14.6

This is an *x-t* graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the *potential energy* of the spring the greatest?

D. t = T/2

E. Two of the above are tied for greatest potential energy.

© 2016 Pearson Education, Inc

Q14.7

This is an *x-t* graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the *kinetic energy* of the object the greatest?

D. t = T/2

E. Two of the above are tied for greatest kinetic energy.

© 2016 Pearson Education, Inc.

Ans: Q14.6) D, Q14.7) B