Practical Parallel Computing (実践的並列コンピューティング)

Part 0: Introduction

No 1: About Supercomputer Apr 8, 2024

Toshio Endo

School of Computing & GSIC

endo@is.titech.ac.jp

Purpose of This Course

- To learn parallel computing practically
 - Lecture + Practice
 - We will use the TSUBAME supercomputer from your PC

From this year, we use a brand-new TSUBAME4.0!

- Part 0: Introduction
 - 2 classes including today
- Part 1: OpenMP for shared memory programming
 - 4 classes
- Part 2: GPU programming
 - 4 classes, OpenACC and CUDA
- Part 3: MPI for distributed memory programming
 - 3 classes

In 2024, talk and presentations are done in Japanese 偶数年度は日本語です

Your score will be determined by the followings

- Each part (OpenMP, GPU, MPI) has homework.
- Reports submission for 2 parts is required
 - The due date will be about 1.5 weeks after each part finished
 - (You can submit more than 2)

下記により採点・単位認定

- OpenMP, GPU, MPIの各パートで課題を出す。2つのパートのレポート提出を必須とする
 - 〆切は、各パート終了の約1.5週間後
 - ●(それ以上のレポートを提出してもよい)

What We Do

We do

- Parallel programming by yourself
 - C language + something
 - CPU parallel programming and GPU parallel programming
- To evaluate speed-up of programs on TSUBAME supercomputer

What We Don't

We don't

- To use Python
- To learn usage of machine learning framework
- To learn usage of parallel computation libraries
- To learn variety of parallel algorithms
 - Consider to attend "CSC.T526 High Performance Scientific Computing"
- To program network or client-server applications

Requirements (1)

- Knowledge of basic C language
 - Pointers, malloc/free
 - Relation between pointers and arrays
 - Knowledge of Pthread, Java threads is useful, but not required

Requirements (2)

- Knowledge of basic Linux commands
 - TSUBAME uses Linux OS
 - Is, cp, mkdir, gcc...
 - "make" command will help you
 - Optional: SSH public key authorization (SSH公開鍵認証)
- A PC to log-in to TSUBAME4 and Internet connection
 - Such as "SciTokyo" or "TokyoTech" wifi

Supercomputers

What are Supercomputers (SCs) used for?

Simulations (Fluid dynamics, molecular dynamics, etc.)

Machine learning/Deep learning, Big-data analysis

Difference with "Normal" Computers

- SCs are computers that support much faster and much larger computation than normal computers
 - Speeds are often compared in "Flops" = The number of possible add/subtract/multiplication operations per second

~500GFlops (5x10¹¹ times per sec) 67PFlops (6.7x10¹⁶ times per sec)

PC in 1980

Cray-1 (1976)
160MFlops

Modern Cell Phone

Why are Speed & Size Important?

- For simulation & big-data analysis, large number of computations should be done speedily
- ⇒Want to obtain forecast of tomorrow weather by tomorrow (of course!)
- ⇒Want to develop and sell new medicine (than competitors)
- For simulation & big-data analysis, storing large scale data is needed
- ⇒Want to make discovery by comparing mass genome data
- ⇒Want to visualize motion of molecules for every time step

How is Weather Forecast done?

Motions of air, clouds, water are expressed by differential equations

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{\rho} \nabla p + \nu \Delta \boldsymbol{v} - g \boldsymbol{\hat{z}}$$

By Takayuki Aoki

- But no analytical solution for them, generally
- ⇒ Instead, space and time are discretized
- The space is divided into small grids, expressed as an array
 - ⇒ Each array element should be computed
- The time is divided into time steps
 - ⇒ After a time step is computed, we go to next step, and so on

Why is Speed Important?

- Since we have to compute all points for every time step, computational complexity is
 - O(x-size × y-size × z-size × time-steps)

For better prediction, we need to make grid finer (arrays larger)

If resolution is 10x higher, we need 10000x computations! (10x10x10x10)

→ In future, we are going to 50m or smaller grids

Deep Learning (DL) needs SC

- Deep learning consists of "training phase" and "inference phase"
- Training requires supercomputers

In case of image recognition

Training

Done on supercomputers/cloud Inputs are lots of images with correct answers

AI, actually numeric data

Inference

Done on cars/phones

What's

this?

A cat (75%) A dog (24%?)

Training in DL Has Large Compute Complexity

- DL uses "network of neurons"
- (Roughly) "knowledge" is represented as connectivity of neurons
 - Sets of large parameter vectors, whose total sizes are >10⁴, >10⁸...
- Basic training method:
 - For an input image, it computes the <u>current answer</u> (≠ <u>correct answer</u>)
 - By using difference of current answer and correct answer, it updates its parameter vectors

Vertices are neurons
Arrows are connections,
which have numeric data

Compares current answer and correct answer, "cat"

→ It updates the knowledge (vectors) using the difference

Complexity of (Number of images × Sizes of parameter vectors × Number of repetitions) !!

Why are SCs Fast?

- Do SCs have 10THz CPUs? → No!!
- Basic idea: If multiple workers work cooperatively and simultaneously, they can do great tasks than a single worker ⇒Parallel execution

A worker is cultivating a large field

Multiple workers are working together → fast!

SC Structure is Hierarchical

- System = Many nodes (=computers) +
 External storage
 - They are connected by Network
- Node = Several processors (CPU/GPU)
 - + Memory + Local storage
 - They are connected by PCI-e, QPI, etc.
- Processor = Several cores + Cache

Structure of TSUBAME4 and Fugaku

System	240 nodes	66.8PFlops	160,000 nodes	540PFlops
Node	2 CPUs + 4 GPUs	2 x 5.45TFlops + 4 x 66.9TFlops = 278.5TFlops	1 CPU	3.38TFlops
Processor	CPU: 96 cores GPU: 132 SMXs	CPU: 5.45TFlops GPU: 66.9TFlops	48 cores	3.38TFlops
Core	CPU core: 3.55GHz x 16 = 56.8GFlops GPU SMX: 507 Gflops (Tensor core)		2.2GHz x 32 = 70.4GFlops	

Start to Use TSUBAME

Two ways to use TSUBAME in this class

Also, please register to "*tga-ppcomp*" TSUBAME group (see Today's homework)

Important URLs about TSUBAME

- TSUBAME official site
 - https://www.t4.gsic.titech.ac.jp
 - Manuals are here
- Tokyo Tech portal
 - https://portal.titech.ac.jp/
- → Log-in and then click "TSUBAME portal"
- Open-on-Demand page
 - https://ood.t4.gsic.titech.ac.jp/
 - For Web-only route

Standard route || Web-only route

Account Creation in TSUBAME Portal

Visit TokyoTech Portal / 東工大ポータル and log-in

Click "TSUBAME4 portal"

- → If you are new to TSUBAME, you will be taken to account creation pages
- → You will get an account.
- An account name looks like: ux02345 (not the student ID)
- For details, visit https://www.t4.gsic.titech.ac.jp/ and click "Getting Accounts" / "アカウント取得方法'

Password Setting

Go to "TSUBAME4 portal" again

- Visit "Tokyo Tech portal"
- Log-in
- Click "TSUBAME4 portal"

Your account name

Set a new password

→ used in next page

Visit "Open-on-Demand" Web Page

Account creation in TSUBAME portal

[Optional] Install terminal app

Register SSH public key

Password Setting

Visit "Open-on-Demand"
Web Page

Log-in to interactive node

Sign-in to interactive node

Visit https://ood.t4.gsic.titech.ac.jp/

Two-factor authentication is used:

- You will receive an e-mail with "Access code"
 - → Type it

Start "Web Service" (1)

Start "Web Service" (2)

Start "Web Service" (3)

Please wait until your session becomes "Running"

If you see "Running", click "Connect to Jupyter"

Start "Web Service" (4)

- You will see a "Jupyter" screen
- Click the Terminal icon

[Optional] Install a Terminal Application

(In standard route) Your PC must have a terminal application that supports SSH protocol

▶ Start terminal / ターミナル app → use ssh command

Recently, command prompt / コマンドプロンプト is ok

Also you can install other applications

- MobaXterm on Windows
- Putty on Windows/Mac
- iTerm on Mac ...

Or try google
"windows ssh client"
"mac ssh client"

Register an SSH Public Key (1)

- To log-in to TSUBAME,
 - A password is NOT used
 - instead, public key (公開鍵) method is used

Account creation

in TSUBAME porta

Standard route

[Optional] Install terminal app

Register SSH public key

Log-in to login node

Log-in to interactive node

Do only once

Do every time

Web-only route

Password Setting

Visit "Open-on-Demand"

Web Page

Sign-in to interactive node

Register an SSH Public Key (2)

Please create key-pair on your PC by yourself

- On Mac terminal or Windows command prompt
 - Use ssh-keygen command
 - Setting "passphrase" is strongly recommend
 - Two files are created

```
For example,
private key → .ssh/id_ecdsa (Mac) .ssh¥id_ecdsa(Win)
public key → .ssh/id_ecdsa.pub (Mac) .ssh¥id_ecdsa.pub (Win)
```

- If you are using another terminal application, try Google
 - Such as "mobaXterm public key"
 - If you are asked the key format, choose "OpenSSH" format, NOT "ssh.com format"

Register an SSH Public Key (3)

Register your public key on TSUBAME portal

- 1. Click Register SSH public key / SSH公開鍵 登録
- 2. Upload your public key
- Don't upload the private key!!

id_ecdsa id_ecdsa.pub

Log-in to TSUBAME Login Node

 On Mac terminal or Windows command prompt ssh -i [private key] [account]@login.t4.gsic.titech.ac.jp ex) ssh -i .ssh/id_rsa ux02345@login.t4.gsic.titech.ac.jp


```
Last modified: Mon Apr 1 10:00:09 JST 2024

(The current TSUBAME 4.0 operational status)

https://www.t4.gsic.titech.ac.jp/ X(Twitter):@Titech_TSUBAME

Last login: Wed Apr 3 18:41:29 2024 from 131.112.132.225

[ua02023@login1 ~]$
```

← If successful, you will see

On other terminal applications, try Google

Log-in to Interactive Node

- Log-in nodes are only entrance of TSUBAME and not powerful, no GPU on them
- In this lecture, we mainly use "interactive nodes"

2 nodes among 240 nodes

Login Node

Interactive Nodes

On a login node,

iqrsh -l h_rt=2:00:00

If successful, you will see →

```
[ua02023@<mark>login1</mark> ~]$ iqrsh -l h_rt=2:00:00
[ua02023@r4n11 ~]$ ■
```

Notes in Using TSUBAME

Use your account only by yourself

Standard route

- Don't share private or public keys with other people
- Login nodes are shared by many TSUBAME users.
 Avoid running CPU/GPU heavy jobs there

[Interactive nodes] Web-only route Standard route

- Each user can use only one session
- (24 CPU cores + 0.5 GPU) (= 1/8 node) are assigned
- CPU cores, GPU may be shared by several users → you may suffer from slow down

Today's Homework (1)

Please do 1&2 by 17:00, Aug 10. We accept the mail later. 1と2を4/10 17:00までに行ってください。それより後でも受け付けます

- 1. (If you are new to TSUBAME) please make your account on TSUBAME (まだ作ったことがなければ) TSUBAMEアカウントを作成してください
- 2. Please send an e-mail after account creation 作成してから下記のようなe-mailを送ってください

To: ppcomp@el.gsic.titech.ac.jp

Subject: TSUBAME4 ppcomp account

Department name:

Student ID:

Name:

TSUBAME account name:

3. You will receive an invitation e-mail to tga-ppcomp TSUBAME group. Please read it and accept the invitation.

tga-ppcomp TSUBAMEグループへの招待e-mailが届くはずです。指示に従って招待を受けてください。

Contact/ Information on the Course

- About this course
 - e-mail ppcomp@el.gsic.titech.ac.jp or endo@is.titech.ac.jp
- T2SCHOLA
 - https://t2schola.titech.ac.jp/
- Slides
 - https://github.com/toshioendo/ppcomp
- TSUBAME official site
 - https://www.t4.gsic.titech.ac.jp manuals are here
- Tokyo Tech portal
 - https://portal.titech.ac.jp/
- → Log-in and then click "TSUBAME4 portal"