Introdução ao aprendizado de máquina 3

Aula 3 - Regressão linear: 1 variável, multiplas variáveis, Lasso e Ridge, Causalidade

Como escolher o melhor modelo linear

Modelo linear pode ser escrito assim:

$$\hat{y_i} = heta_0 + heta_1 x_i$$

Observação	Área m²	Preço R\$	
1	80	640.000	
2	160	1.200.000	
N	100	900.000	

Vamos usar o erro quadrático médio

$$egin{aligned} \hat{y_i} &= heta_0 + heta_1 x_i \ EQM &= rac{1}{N} \sum_{i=1}^N \left(\hat{y_i} - y_i
ight)^2 \end{aligned}$$

Quais são os parâmetros ótimos?

$$\min_{ heta_0, heta_1} rac{1}{N} \sum_{i=1}^N \left(heta_0 + heta_1 x_i - y_i
ight)^2$$

Esse problema pode ser resolvido manualmente!!!

O resultado é intuitivo

$$heta_0 = ar{y} - heta_1 ar{x}$$
 $heta_1 = rac{cov(x,y)}{var(x)}$

Matemática da regressão linear

Resolvendo o problema matematicamente

$$\min_{ heta_0, heta_1} rac{1}{N} \sum_{i=1}^N \left(heta_0 + heta_1 x_i - y_i
ight)^2$$

Múltiplas variáveis

Outras variáveis relevantes para o preço de casas

Observação	área x_1	Número de quartos x_2	piscina? x_3	Número de banheiros x_4	Qualidade das escolas x_5	preço y
1	80	2	0	1	6	650.000
2	160	4	1	2	9	1.600.000
N	100	3	0	2	8	900.000

É mais difícil de visualizar, mas a matemática ainda se aplica

Matemática do modelo linear com múltiplas variáveis

$$\min rac{1}{N} \sum_{i=1}^{N} \left(heta_0 + heta_1 x_{1i} + heta_2 x_{2i} + \ldots + heta_k x_{ki}
ight)^2$$

- Esse problema também pode ser resolvido manualmente
- Mas também podemos resolver usando o método do gradiente como vimos na aula passada.

Interpretação do modelo linear

```
\begin{aligned} \text{preço} = & 20.000 + 1.000 * \text{area} \\ & 50.000 * \text{piscina} + 20.000 * \text{quartos} \\ & 10.000 * \text{banheiros} + 5.000 * \text{escolas} \end{aligned}
```

O modelo linear não é tão restritivo

Métrica R2

R2 é uma outra métrica de performance

Soma dos quadrados totais =

Soma dos quadrados da regressão =

Soma dos quadrados dos erros =

Prós e contras do R2

$$R^2 = 1 - rac{\sum_{i=1}^{N} (y_i - \hat{y_i})^2}{\sum_{i=1}^{N} (y_i - ar{y})^2}$$

Pros:

- Intuitivo
- Fácil de calcular

Cons:

- Sempre aumenta com novas variáveis
- Ruim para selecionar modelos
- Sobreuso

Regularização e regressão Ridge

Regularização

- Regularização é a técnica de restringir o modelo para torná-lo mais simples e reduzir o risco de sobre-ajuste.
- Modelos diferentes tem versões de regularização diferente, mas essa técnica é geralmente comum em vários modelos de ML.
- Na regressão linear, técnicas de regularização incluem a regressão Ridge e a regressão Lasso.

Fórmula da Regressão Ridge

Visualizando a regressão Ridge

$$\min_{ heta_0, heta_1}rac{1}{N}\sum_{i=1}^N\left(heta_0+ heta_1x_i-y_i
ight)^2+\lambda(heta_0^2+ heta_1^2)$$

λ - O parâmetro de punição

- Lambda é um outro hiperparâmetro, a taxa de punição
- Quão maior for lambda, mais o algoritmo punirá coeficientes muito grandes
- Quão maior for lambda, menos provável que haja sobreajuste e mais provável o subajuste
- Assim como outros hiperparâmetros, nós escolhemos o lambda ótimo que leva a melhor performance no conjunto de validação

Regressão Lasso

Fórmula da regressão Lasso

Visualizando a trajetória dos coeficientes

$$\min_{ heta_0, heta_1}rac{1}{N}\sum_{i=1}^N\left(heta_0+ heta_1x_i-y_i
ight)^2+\lambda(\| heta_0\|+\| heta_1\|)$$

- Lasso Regression ajuda a prevenir o sobreajuste
- Também ajuda a selecionar variáveis
- Esse algoritmo força as variáveis menos relevantes para zero

Tamano da punição

Correlação e causalidade

Correlação e causalidade

Temperatura Global X Piratas no mundo

Exemplos de correlação

Confundindo correlação e causalidade

- Casas mais caras são alugadas mais rapidamente em uma plataforma, vamos aumentar os preços das casas.
- Motoristas que dirigem mais quando ganham menos, eles são irracionais, vamos pagar menos.
- Clientes que compram pela segunda vez tem um valor de tempo de vida, vamos dar o segundo item de graça.