

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada

EXPRESS MAIL NO.

An agency of

Industry Canada

EV889128890US

CA 2413450 A1 2001/12/27

(21) 2 413 450

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) A1

(86) Date de dépôt PCT/PCT Filing Date: 2001/06/19

(87) Date publication PCT/PCT Publication Date: 2001/12/27

(85) Entrée phase nationale/National Entry: 2002/12/19

(86) N° demande PCT/PCT Application No.: CA 2001/000908

(87) N° publication PCT/PCT Publication No.: 2001/098334

(30) Priorité/Priority: 2000/06/20 (60/212,683) US

(51) Cl.Int.7/Int.Cl.7 C12N 15/31, A61K 39/09, C12N 15/63, C07K 14/315

(71) Demandeur/Applicant: SHIRE BIOCHEM INC., CA

(72) Inventeurs/Inventors: HAMEL, JOSEE, CA; OUELLET, CATHERINE, CA; CHARLAND, NATHALIE, CA; MARTIN, DENIS, CA; BRODEUR, BERNARD, CA

(74) Agent: OGILVY RENAULT

(54) Titre: ANTIGENES DE STREPTOCOQUE (54) Title: STREPTOCOCCUS ANTIGENS

(57) Abrégé/Abstract:

Streptococcus polypeptides and polynucleotides encoding them are disclosed. Said polypeptides may be useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2001 (27.12.2001)

PCT

(10) International Publication Number WO 01/098334 A3

- (51) International Patent Classification⁷: 15/63, C07K 14/315, A61K 39/09
- C12N 15/31,
- (21) International Application Number: PCT/CA01/00908
- (22) International Filing Date: 19 June 2001 (19.06.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/212,683

20 June 2000 (20.06.2000) US

- (71) Applicant (for all designated States except US): SHIRE BIOCHEM INC. [CΛ/CΛ]; 275 Λrmand Frappier Boulevard, Laval, Québec H7V 4Λ7 (CΛ).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HAMEL, Josée [CA/CA]; 2401 Mauritain, Sillery, Québec G1T 1N6 (CA). OUELLET, Catherine [CA/CA]; 763 du Bocage, St-Jean-Chrysostome, Québec G6Z 2Z8 (CA). CHARLAND, Nathalie [CA/CA]; 4340 du Rapide, Apt. 8, Charny, Québec G6X 3N6 (CA). MARTIN, Denis [CA/CA]; 4728-G, Gaboury Str., St-Augustin, Québec G3A 1E9 (CA). BRODEUR, Bernard [CA/CA]; 2401 Mauritain, Sillery, Québec G1T 1N6 (CA).

- (74) Agents: CAWTHORN, Christian et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report

(88) Date of publication of the international search report: 6 September 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

/098334 A3

(54) Title: STREPTOCOCCUS ANTIGENS

(57) Abstract: Streptococcus polypeptides and polynucleotides encoding them are disclosed. Said polypeptides may be useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.

WO 01/98334

STREPTOCOCCUS ANTIGENS

FIELD OF THE INVENTION

The present invention is related to antigens, epitopes and antibodies directed to these epitopes, more particularly polypeptide antigens of streptococcus pneumoniae pathogen which may be useful for prophylaxis, diagnostic or treatment of streptococcal infection.

10

25

30

BACKGROUND OF THE INVENTION

S. pneumoniae is an important agent of disease in man especially among infants, the elderly and immunocompromised persons. It is a bacterium frequently isolated from patients with invasive diseases such as bacteraemia/septicaemia, pneumonia, meningitis with high morbidity and mortality throughout the world. Even with appropriate antibiotic therapy, pneumococcal infections still result in many deaths. Although the advent of antimicrobial drugs has reduced the 20 overall mortality from pneumococcal disease, the presence of resistant pneumococcal organisms has become a major problem in the world today. Effective pneumococcal vaccines could have a major impact on the morbidity and mortality associated with S. pneumoniae disease. Such vaccines would also potentially be useful to prevent otitis media in infants and young children.

Efforts to develop a pneumococcal vaccine have generally concentrated on generating immune responses to the pneumococcal capsular polysaccharide. More than 80 pneumococcal capsular serotypes have been identified on the basis of antigenic differences. The currently available pneumococcal vaccine, comprising 23 capsular polysaccharides that most frequently caused disease, has significant shortcomings related primarily to the poor immunogenicity of some capsular polysaccharides, the diversity of the serotypes and the differences in the distribution of serotypes over time, geographic areas and age

groups. In particular, the failure of existing vaccines and capsular conjugate vaccines currently in development to protect young children against all serotypes spurres evaluation of other S. pneumoniae components. Although immunogenicity of capsular polysaccharides can be improved, serotype specificity will still represent a major limitation of polysaccharide-based vaccines. The use of a antigenically conserved immunogenic pneumococcal protein antigen, either by itself or in combination with additional components, offers the possibility of a protein-based pneumococcal vaccine.

PCT WO 98/18930 published May 7, 1998 entitled "Streptococcus Pneumoniae antigens and vaccines" describes certain polypeptides which are claimed to be antigenic. However, no biological activity of these polypeptides is reported. Similarly, no sequence conservation is reported, which is a necessary species common vaccine candidate.

PCT WO 00/39299 describes polypeptides and polynucleotides 20 encoding these polypeptides. PCT WO 00/39299 demonstrates that polypeptides designated as BVH-3 and BVH-11 provide protection against fatal experimental infection with pneumococci.

Therefore there remains an unmet need for Streptococcus antigens that may be used as components for the prophylaxis, diagnostic and/or therapy of Streptococcus infection.

30 SUMMARY OF THE INVENTION

An isolated polynucleotide comprising a polynucleotide chosen from:

35

10

15

(a) a polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide chosen from: table A, B, D, E or H;

15

- (b) a polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide chosen from: table A, B, D, E or H;
- 5 (c) a polynucleotide encoding a polypeptide having an amino sequence chosen from table A, B, D, E or H; or fragments, analogs or derivatives thereof;
 - (d) a polynucleotide encoding a polypeptide chosen from: table A, B, D, E or H;
- 10 (e) a polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide having a sequence chosen from: table A, B, D, E or H;
 - (f) a polynucleotide encoding an epitope bearing portion of a polypeptide chosen from table A, B, D, E or H; and
 - (g) a polynycleotide complementary to a polynucleotide in (a), (b), (c), (d), (e) or (f).

In other aspects, there are provided novel polypeptides encoded by polynucleotides of the invention, pharmaceutical or vaccine composition, vectors comprising polynucleotides of the invention operably linked to an expression control region, as well as host cells transfected with said vectors and methods of producing polypeptides comprising culturing said host cells under conditions suitable for expression.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is the DNA sequence of SP64 BVH-3 gene; SEQ ID NO: 1

- 30 Figure 2 is a DNA sequence containing the complete SP64 BVH-3 gene at nucleotides 1777 to 4896; SEQ ID NO: 2
 - Figure 3 is the DNA sequence of SP64 BVH-11 gene; SEQ ID NO: 3
- 35 Figure 4 is a DNA sequence containing the complete SP64 BVH-11 gene at nucleotides 45 to 2567; SEQ ID NO: 4

Figure 5 is a DNA sequence containing the complete SP64 BVH11-2 gene at nucleotides 114 to 2630; SEQ ID NO: 5

5 Figure 6 is the amino acid sequence of SP64 BVH-3 polypeptide; SEQ ID NO: 6

Figure 7 is the amino acid sequence of SP64 BVH-11 polypeptide; SEQ ID NO: 7

10

Figure 8 is the amino acid sequence of SP64 BVH-11-2 polypeptide; SEQ ID NO: 8

Figure 9 is the DNA sequence of SP63 BVH-3 gene; SEQ ID NO:9

15

Figure 10 is the amino acid sequence of SP63 BVH-3 polypeptide; SEQ ID NO: 10

Figure 11 is the amino acid sequence of 4D4.9 polypeptide; SEQ 20 ID NO: 11

Figure 12 is the amino acid sequence of 7G11.7 polypeptide; SEQ ID NO: 12

25 Figure 13 is the amino acid sequence of 7G11.9 polypeptide; SEO ID NO: 13

Figure 14 is the amino acid sequence of 4D3.4 polypeptide; SEQ ID NO: 14

30

Figure 15 is the amino acid sequence of 8E3.1 polypeptide; SEQ ID NO: 15

Figure 16 is the amino acid sequence of 1G2.2 polypeptide; SEQ 35 ID NO: 16

CA 02413450 2002-12-19

WO 01/98334 PCT/CA01/00908

Figure 17 is the amino acid sequence of 10C12.7 polypeptide; SEQ ID NO: 17

- Figure 18 is the amino acid sequence of 14F6.3 polypeptide; SEQ ID NO: 18
 - Figure 19 is the amino acid sequence of B12D8.2 polypeptide; SEQ ID NO: 19
- 10 Figure 20 is the amino acid sequence of 7F4.1 polypeptide; SEQ ID NO: 20
 - Figure 21 is the amino acid sequence of 10D7.5 polypeptide; SEQ ID NO: 21
- Figure 22 is the amino acid sequence of 10G9.3 polypeptide, 10A2.2 polypeptide and B11B8.1 polypeptide; SEQ ID NO: 22

15

- Figure 23 is the amino acid sequence of 11B8.4 polypeptide; 20 SEQ ID NO: 23
 - Figure 24 is the amino acid sequence of Mab H11B-11B8 target epitope; SEQ ID 163
- 25 Figure 25 is a schematic representation of the <u>BVH-3</u> gene as well as location of gene sequences coding for the full length and truncated polypeptides. The relationships between DNA fragments are shown with respect to each other.
- 30 Figure 26 is a schematic representation of the <u>BVH-11</u> gene as well as location of gene sequences coding for the full length and truncated polypeptides. The relationships between DNA fragments are shown with respect to each other.
- 35 Figure 27 is a schematic representation of the <u>BVH-11-2</u> gene as well as location of gene sequences coding for the full

length and truncated polypeptides. The relationships between DNA fragments are shown with respect to each other.

Figure 28 is a schematic representation of the BVH-3 protein and the location of internal and surface epitopes recognized by certain monoclonal antibodies.

Figure 29 is a schematic representation of the BVH-11-2 protein and the location of protective surface epitopes 10 recognized by certain monoclonal antibodies.

Figure 30 is a map of plasmid pURV22.HIS. Kan^R, kanamycin-resistance coding region; cI857, bacteriophage λ cI857 temperature-sensitive repressor gene; lambda pL, bacteriophage λ transcription promotor; His-tag, 6-histidine coding region; terminator, T1 transcription terminator; ori, colE1 origin of replication.

Figure 31 depicts the comparison of the amino acid sequences of BVH-3M (sp64) and BVH-3 (Sp63) proteins by using the program Clustal W from MacVector sequence analysis software (version 6.5.3). Underneath the alignment, there is a consensus line where * and . characters indicate identical and similar amino acid residues, respectively.

25

15

Figure 32 depicts the comparison of the amino acid sequences of BVH-3, BVH-11 and BVH-11-2 proteins by using the program Clustal W from MacVector sequence analysis software (version 6.5.3). Underneath the alignment, there is a consensus line where * and . characters indicate identical and similar amino acid residues, respectively.

Figure 33 is the DNA sequence of the $\underline{\text{NEW43}}$ gene (SEQ ID No 257).

Figure 34 is the deduced amino acid sequence of NEW43 polypeptide (SEQ ID No 258).

5 DETAILED DESCRIPTION OF THE INVENTION

25

30

35

It was determined that portions of the BVH-3 and BVH-11 polypeptides were internal. Other portions were not present in important strains such as encapsulated s.pneumonia causing disease strains. It would be advantageous to have a polypeptide that comprises a portion that is not internal. When large portions of a polypeptide are internal, these portions are not exposed on the bacteria. However, these portions can be very immunogenic in a recombinant polypeptide and will not confer protection against infections. It would also be advantageous to have a polypeptide that comprises a portion that is present in most strains.

The present invention is concerned with polypeptides in which 20 undesired portions have been deleted and/or modified in order to obtain a specific immune response.

In accordance with the present invention, there are also provided polypeptides or polynucleotides encoding such polypeptides comprising protective domains.

Surprisingly, when the undesired portion of the polypeptides are deleted or modified, the polypeptides have desired biological properties. This is surprising in view of the fact that some of these portions were described as being epitope bearing portion in the patent application PCT WO 98/18930. In other publications such as PCT WO 00/37105, portions identified as histidine triad and coil coiled regions were said to be of importance. The present inventors have found that variants of the polypeptide BVH-3 and BVH-11 in which certain portions were deleted and/or modified and chimeras of these polypeptides have

biological properties and generate a specific immune response.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence as disclosed in the present application, the tables and figures.

In accordance with one aspect of the present invention, there is provided an isolated polynucleotide comprising a polynucleotide chosen from;

- (a) a polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide chosen from: table B, E or H;
- 15 (b) a polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide chosen from: table B, E or H;

20

25

35

- (c) a polynucleotide encoding a polypeptide having an amino sequence chosen from table B, E or H or fragments, analogs or derivatives thereof;
- (d) a polynucleotide encoding a polypeptide chosen from: table B, E or H;
- (e) a polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide having a sequence chosen from: table B, E or H.
 - (f) a polynucleotide encoding an epitope bearing portion of a polypeptide chosen from table B, E or H; and
- (g) a polynycleotide complementary to a polynucleotide in 30 (a), (b), (c), (d), (e) or (f).

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence chosen from table A, B, D, E, G or H or fragments, analogues or derivatives thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising a sequence chosen from table A, B, D, E, G or H or fragments, analogues or derivatives thereof.

According to one aspect, the present invention relates to polypeptides characterised by the amino acid sequence chosen from table A, B, D, E, G or H or fragments, analogues or derivatives thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence chosen from table A, B, D, E, G or H.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 20 95% identity to a second polypeptide comprising a sequence chosen from table A, B, D, E, G or H.

According to one aspect, the present invention relates to polypeptides characterised by the amino acid sequence chosen from table A, B, D, E, G or H.

25

30

35

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence chosen from table B, E or H or fragments, analogues or derivatives thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising a sequence chosen from B, E or H or fragments, analogues or derivatives

thereof.

According to one aspect, the present invention relates to polypeptides characterised by the amino acid sequence chosen from table B, E or H or fragments, analogues or derivatives thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 10 70% identity to a second polypeptide comprising a sequence chosen from table B, E or H.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 15. 95% identity to a second polypeptide comprising a sequence chosen from B, E or H.

According to one aspect, the present invention relates to polypeptides characterised by the amino acid sequence chosen from table B, E or H.

In accordance with the present invention, all nucleotides encoding polypeptides and chimeric polypeptides are within the scope of the present invention.

25

20

In a further embodiment, the polypeptides or chimeric polypeptides in accordance with the present invention are antiquenic.

30 In a further embodiment, the polypeptides or chimeric polypeptides in accordance with the present invention are immunogenic.

In a further embodiment, the polypeptides or chimeric polypeptides in accordance with the present invention can elicit an immune response in an individual.

In a further embodiment, the present invention also relates to polypeptides which are able to raise antibodies having binding specificity to the polypeptides or chimeric polypeptides of the present invention as defined above.

In one embodiment, the polypeptides of table A (BVH-3) or table D (BVH-11) comprise at least one epitope bearing portion.

10

15

In a further embodiment, the fragments of the polypeptides of the present invention will comprise one or more epitope bearing portion identified in Table C and F. The fragment will comprises at least 15 contiguous amino acid of the polypeptide of table C and F. The fragment will comprises at least 20 contiguous amino acid of the polypeptide of table C and F.

In a further embodiment, the epitope bearing portion of the polypeptide of table A(BVH-3) comprises at least one 20 polypeptide listed in Table C.

In a further embodiment, the epitope bearing portion of the polypeptide of table B(BVH-11) comprises at least one polypeptide listed in Table F.

25

30

An antibody that " has binding specificity" is an antibody that recognises and binds the selected polypeptide but which does not substantially recognise and bind other molecules in a sample, such as a biological sample. Specific binding can be measured using an ELISA assay in which the selected polypeptide is used as an antigen.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and

other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

In accordance with the present invention, "protection" in the biological studies is defined by a significant increase in the survival curve, rate or period. Statistical analysis using the Log rank test to compare survival curves, and Fisher exact test to compare survival rates and numbers of days to death, respectively, might be useful to calculate P values and determine whether the difference between the two groups is statistically significant. P values of 0.05 are regarded as not significant.

15 not significant.

10

As used herein, "fragments", "derivatives" or "analogues" of the polypeptides of the invention include those polypeptides in which one or more of the amino acid residues are 20 substituted with a conserved or non-conserved amino acid residue (preferably conserved) and which may be natural or unnatural. In one embodiment, derivatives and analogues of polypeptides of the invention will have about 70% identity with those sequences illustrated in the figures or fragments 25 thereof. That is, 70% of the residues are the same. In a further embodiment, polypeptides will have greater than 75% homology. In a further embodiment, polypeptides will have In a further embodiment, greater than 80% homology. polypeptides will have greater than 85% homology. In a further embodiment, polypeptides will have greater than 90% homology. 30 In a further embodiment, polypeptides will have greater than 95% homology. In a further embodiment, polypeptides will have than homology. In a further embodiment, 99% derivatives and analogues of polypeptides of the invention will have less than about 20 amino acid residue substitutions, modifications or deletions and more preferably less than 10.

Preferred substitutions are those known in the art as conserved i.e. the substituted residues share physical or chemical properties such as hydrophobicity, size, charge or functional groups.

5

10

15

20

25

The skilled person will appreciate that analogues or derivatives of the proteins or polypeptides of the invention will also find use in the context of the present invention, i.e. as antigenic/immunogenic material. Thus, for instance proteins or polypeptides which include one or more additions, deletions, substitutions or the like are encompassed by the present invention. In addition, it may be possible to replace one amino acid with another of similar "type". For instance replacing one hydrophobic amino acid with another hydrophilic amino acid.

One can use a program such as the CLUSTAL program to compare amino acid sequences. This program compares amino acid sequences and finds the optimal alignment by inserting spaces in either sequence as appropriate. It is possible to calculate amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment. A program like BLASTx will align the longest stretch of similar sequences and assign a value to the fit. It is thus possible to obtain a comparison where several regions of similarity are found, each having a different score. Both types of identity analysis are contemplated in the present invention.

In an alternative approach, the analogues or derivatives could be fusion proteins, incorporating moieties which render purification easier, for example by effectively tagging the desired protein or polypeptide, It may be necessary to remove the "tag" or it may be the case that the fusion protein itself retains sufficient antigenicity to be useful.

35

In an additional aspect of the invention there are provided antigenic/immunogenic fragments of the proteins or polypeptides of the invention, or of analogues or derivatives thereof.

5

The fragments of the present invention should include one or more such epitopic regions or be sufficiently similar to such regions to retain their antigenic/immunogenic properties. Thus, for fragments according to the present invention the degree of identity is perhaps irrelevant, since they may be 100% identical to a particular part of a protein or polypeptide, analogue or derivative as described herein. The key issue, once again, is that the fragment retains the antigenic/immunogenic properties.

15

10

Thus, what is important for analogues, derivatives and fragments is that they possess at least a degree of the antigenicity/immunogenic of the protein or polypeptide from which they are derived.

20

In accordance with the present invention, polypeptides of the invention include both polypeptides and chimeric polypeptides.

Also included are polypeptides which have fused thereto other compounds which alter the polypeptides biological or pharmacological properties i.e. polyethylene glycol (PEG) to increase half-life; leader or secretory amino acid sequences for ease of purification; prepro- and pro- sequences; and (poly) saccharides.

30

Furthermore, in those situations where amino acid regions are found to be polymorphic, it may be desirable to vary one or more particular amino acids to more effectively mimic the different epitopes of the different streptococcus strains.

35

Moreover, the polypeptides of the present invention can be

modified by terminal $-NH_2$ acylation (e.g. by acetylation, or thioglycolic acid amidation, terminal carboxy amidation, e.g. with ammonia or methylamine) to provide stability, increased hydrophobicity for linking or binding to a support or other molecule.

Also contemplated are hetero and homo polypeptide multimers of the polypeptide fragments, analogues and derivatives. These polymeric forms include, for example, one or more polypeptides that have been cross-linked with cross-linkers such as avidin/biotin, gluteraldehyde or dimethylsuperimidate. Such polymeric forms also include polypeptides containing two or more tandem or inverted contiguous sequences, produced from multicistronic mRNAs generated by recombinant DNA technology.

15

Preferably, a fragment, analogue or derivative of a polypeptide of the invention will comprise at least one antigenic region i.e. at least one epitope.

20 In order to achieve the formation of antigenic polymers (i.e. synthetic multimers), polypeptides may be utilised having bishaloacetyl groups, nitroarylhalides, or the like, where the reagents being specific for thio groups. Therefore, the link between two mercapto groups of the different peptides may be a single bond or may be composed of a linking group of at least two, typically at least four, and not more than 16, but usually not more than about 14 carbon atoms.

In a particular embodiment, polypeptide fragments, analogues
30 and derivatives of the invention do not contain a methionine
(Met) starting residue. Preferably, polypeptides will not
incorporate a leader or secretory sequence (signal sequence).
The signal portion of a polypeptide of the invention may be
determined according to established molecular biological
35 techniques. In general, the polypeptide of interest may be
isolated from a streptococcus culture and subsequently

sequenced to determine the initial residue of the mature protein and therefore the sequence of the mature polypeptide.

According to another aspect, there are provided vaccine compositions comprising one or more streptococcus polypeptides of the invention in admixture with a pharmaceutically acceptable carrier diluent or adjuvant. Suitable adjuvants include oils i.e. Freund's complete or incomplete adjuvant; salts i.e. AlK(SO₄)₂, AlNa(SO₄)₂, AlNH₄(SO₄)₂, silica, kaolin, carbon polynucleotides i.e. poly IC and poly AU. Preferred adjuvants include QuilA and Alhydrogel. Vaccines of the invention may be administered parenterally by injection, rapid infusion, nasopharyngeal absorption, dermoabsorption, or bucal or oral. Pharmaceutically acceptable carriers also include tetanus toxoid.

The term vaccine is also meant to include antibodies. In accordance with the present invention, there is also provided the use of one or more antibodies having binding specificity for the polypeptides of the present invention for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection.

15

20

Vaccine compositions of the invention are used for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection as described in P.R. Murray (Ed, in chief), E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken. Manual of Clinical Microbiology, ASM Press, Washington, D.C. sixth edition, 1995, 30 1482p which are herein incorporated by reference. In one embodiment, vaccine compositions of the present invention are used for the treatment or prophylaxis of meningitis, otitis media, bacteremia or pneumonia. In one embodiment, vaccine compositions of the invention are used for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection, in particular

S.pneumoniae, group A streptococcus (pyogenes), group B streptococcus (GBS or agalactiae), dysgalactiae, uberis, nocardia as well as Staphylococcus aureus. In a further embodiment, the streptococcus infection is S.pneumoniae.

5

In a particular embodiment, vaccines are administered to those individuals at risk of streptococcus infection such as infants, elderly and immunocompromised individuals.

10 As used in the present application, the term " individuals" include mammals. In a further embodiment, the mammal is human.

Vaccine compositions are preferably in unit dosage form of about 0.001 to 100 $\mu g/kg$ (antigen/body weight) and more preferably 0.01 to 10 $\mu g/kg$ and most preferably 0.1 to 1 $\mu g/kg$ 1 to 3 times with an interval of about 1 to 6 week intervals between immunizations.

Vaccine compositions are preferably in unit dosage form of about 0.1 µg to 10 mg and more preferably 1µg to 1 mg and most preferably 10 to 100 µg 1 to 3 times with an interval of about 1 to 6 week intervals between immunizations.

According to another aspect, there are provided 25 polynucleotides encoding polypeptides characterised by the amino acid sequence chosen from table A, B, D, E, G or H or fragments, analogues or derivatives thereof.

According to another aspect, there are provided 30 polynucleotides encoding polypeptides characterised by the amino acid sequence chosen from table B, E or H or fragments, analogues or derivatives thereof.

In one embodiment, polynucleotides are those illustrated in table A, B, D, E, G or H which encodes polypeptides of the

PCT/CA01/00908 WO 01/98334

invention.

In one embodiment, polynucleotides are those illustrated in table B, E or H which encodes polypeptides of the invention.

5

15

It will be appreciated that the polynucleotide sequences illustrated in the figures may be altered with degenerate codons yet still encode the polypeptides of the invention. Accordingly the present invention further provides 10 polynucleotides which hybridise to the polynucleotide sequences herein above described (or the complement sequences thereof) having 50% identity between sequences. In one embodiment, at least 70% identity between sequences. In one embodiment, at least 75% identity between sequences. In one embodiment, at least 80% identity between sequences. In one embodiment, at least 85% identity between sequences. In one embodiment, at least 90% identity between sequences. In a further embodiment, polynucleotides are hybridizable under stringent conditions i.e. having at least 95% identity. In a 20 further embodiment, more than 97% identity.

Suitable stringent conditions for hybridation can be readily determined by one of skilled in the art (see for example Sambrook et al., (1989) Molecular cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y.; Current Protocols in Molecular Biology, (1999) Edited by Ausubel F.M. et al., John Wiley & Sons, Inc., N.Y.).

In a further embodiment, the present invention provides 30 polynucleotides that hybridise under stringent conditions to either

- (a) a DNA sequence encoding a polypeptide or
- (b) the complement of a DNA sequence encoding a polypeptide;
- wherein said polypeptide comprising a sequence chosen from table A, B, D, E, G or H or fragments or analogues thereof.

In a further embodiment, the present invention provides polynucleotides that hybridise under stringent conditions to either

(c) a DNA sequence encoding a polypeptide or

5

15

(d) the complement of a DNA sequence encoding a polypeptide;

wherein said polypeptide comprising a sequence chosen from 10 table B, E or H or fragments or analogues thereof.

In a further embodiment, the present invention provides polynucleotides that hybridise under stringent conditions to either

- (a) a DNA sequence encoding a polypeptide or
- (b) the complement of a DNA sequence encoding a polypeptide;

wherein said polypeptide comprises at least 10 contiguous amino acid residues from a polypeptide comprising a sequence chosen 20 from table A, B, D, E, G or H or fragments or analogues thereof.

In a further embodiment, the present invention provides polynucleotides that hybridise under stringent conditions to either

- (c) a DNA sequence encoding a polypeptide or
- (d) the complement of a DNA sequence encoding a polypeptide;

wherein said polypeptide comprises at least 10 contiguous amino 30 acid residues from a polypeptide comprising a sequence chosen from table B, E or H or fragments or analogues thereof.

In a further embodiment, polynucleotides are those encoding polypeptides of the invention illustrated in table A, B, D, E, 35 G or H.

As will be readily appreciated by one skilled in the art, polynucleotides include both DNA and RNA.

The present invention also includes polynucleotides complementary to the polynucleotides described in the present application.

In a further aspect, polynucleotides encoding polypeptides of the invention, or fragments, analogues or derivatives thereof,

10 may be used in a DNA immunization method. That is, they can be incorporated into a vector which is replicable and expressible upon injection thereby producing the antigenic polypeptide in vivo. For example polynucleotides may be incorporated into a plasmid vector under the control of the

15 CMV promoter which is functional in eukaryotic cells. Preferably the vector is injected intramuscularly.

According to another aspect, there is provided a process for producing polypeptides of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host cell and recovering the expressed polypeptide product. Alternatively, the polypeptides can be produced according to established synthetic chemical techniques i.e. solution phase or solid phase synthesis of oligopeptides which are ligated to produce the full polypeptide (block ligation).

General methods for obtention and evaluation of polynucleotides and polypeptides are described in the 30 following references: Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Edited by Ausubel F.M. et al., John Wiley and Sons, Inc. New York; PCR Cloning Protocols, from Molecular Cloning to Genetic Engineering, Edited by White B.A., Humana Press, Totowa, New Jersey, 1997, 490 pages; Protein Purification, Principles and Practices,

Scopes R.K., Springer-Verlag, New York, 3rd Edition, 1993, 380 pages; Current Protocols in Immunology, Edited by Coligan J.E. et al., John Wiley & Sons Inc., New York which are herein incorporated by reference.

.5

10

20

25

30

For recombinant production, host cells are transfected with vectors which encode the polypeptide, and then cultured in a nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes. Suitable vectors are those that are viable and replicable in the chosen host and include chromosomal, non-chromosomal and synthetic DNA sequences e.g. bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA. The polypeptide sequence may be 15 incorporated in the vector at the appropriate site using restriction enzymes such that it is operably linked to an expression control region comprising a promoter, ribosome binding site (consensus region or Shine-Dalgarno sequence), and optionally an operator (control element). One can select individual components of the expression control region that are appropriate for a given host and vector according to established molecular biology principles (Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Edited by Ausubel F.M. et al., John Wiley and Sons, Inc. New York incorporated herein by reference). Suitable promoters include but are not limited to LTR or SV40 promoter, E.coli lac, tac or trp promoters and the phage lambda $P_{\mathbf{L}}$ promoter. Vectors will preferably incorporate an origin of replication as well as selection markers i.e. ampicilin resistance gene. Suitable bacterial vectors include pET, pQE70, pQE60, pQE-9, pbs, pD10 phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 and eukaryotic vectors pBlueBacIII, pWLNEO, pSV2CAT, pOG44, pXT1, pSG, pSVK3, pBPV, pMSG and pSVL. Host cells may be bacterial i.e. E.coli, Bacillus subtilis, Streptomyces;

fungal i.e. Aspergillus niger, Aspergillus nidulins; yeast i.e. Saccharomyces or eukaryotic i.e. CHO, COS.

Upon expression of the polypeptide in culture, cells are typically harvested by centrifugation then disrupted by physical or chemical means (if the expressed polypeptide is not secreted into the media) and the resulting crude extract retained to isolate the polypeptide of interest. Purification of the polypeptide from culture media or lysate may be achieved by established techniques depending on the properties of the polypeptide i.e. using ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography and lectin chromatography. Final purification may be achieved using HPLC.

The polypeptide may be expressed with or without a leader or secretion sequence. In the former case the leader may be removed using post-translational processing (see US 4,431,739; US 4,425,437; and US 4,338,397 incorporated herein by reference) or be chemically removed subsequent to purifying the expressed polypeptide.

- 25 According to a further aspect, the streptococcus polypeptides of the invention may be used in a diagnostic test for streptococcus infection, in particular <u>S. pneumoniae</u> infection. Several diagnostic methods are possible, for example detecting streptococcus organism in a biological sample, the following procedure may be followed:
 - a) obtaining a biological sample from a patient;
 - b) incubating an antibody or fragment thereof reactive with a streptococcus polypeptide of the invention with the biological sample to form a mixture; and
- 35 c)detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of streptococcus.

Alternatively, a method for the detection of antibody specific to a streptococcus antigen in a biological sample containing or suspected of containing said antibody may be performed as follows:

- a) obtaining a biological sample from a patient;
- b) incubating one or more streptococcus polypeptides of the invention or fragments thereof with the biological sample to form a mixture; and
- 10 c)detecting specifically bound antigen or bound fragment in the mixture which indicates the presence of antibody specific to streptococcus.

One of skill in the art will recognize that this diagnostic test may take several forms, including an immunological test such as an enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay or a latex agglutination assay, essentially to determine whether antibodies specific for the polypeptide are present in an organism.

20

25

5

The DNA sequences encoding polypeptides of the invention may also be used to design DNA probes for use in detecting the presence of streptococcus in a biological sample suspected of containing such bacteria. The detection method of this invention comprises:

- a) obtaining the biological sample from a patient;
- b) incubating one or more DNA probes having a DNA sequence encoding a polypeptide of the invention or fragments thereof with the biological sample to form a mixture; and
- 30 c)detecting specifically bound DNA probe in the mixture which indicates the presence of streptococcus bacteria.

The DNA probes of this invention may also be used for detecting circulating streptococcus i.e. S.pneumoniae nucleic acids in a sample, for example using a polymerase chain reaction, as a method of diagnosing streptococcus infections.

The probe may be synthesized using conventional techniques and may be immobilized on a solid phase, or may be labelled with a detectable label. A preferred DNA probe for this application is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of the streptococcus pneumoniae polypeptides of the invention.

Another diagnostic method for the detection of streptococcus in a patient comprises:

- 10 a)labelling an antibody reactive with a polypeptide of the invention or fragment thereof with a detectable label;
 - b) administering the labelled antibody or labelled fragment to the patient; and
- c)detecting specifically bound labelled antibody or labelled fragment in the patient which indicates the presence of streptococcus.

A further aspect of the invention is the use of the streptococcus polypeptides of the invention as immunogens for the production of specific antibodies for the diagnosis and in particular the treatment of streptococcus infection. Suitable antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against streptococcus infection in a test model. One example of an animal model is the mouse 25 model described in the examples herein. The antibody may be a whole antibody or an antigen-binding fragment thereof and may belong to any immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a 30 natural antibody or a fragment thereof, or if desired, a antibody or antibody fragment. recombinant The recombinant antibody or antibody fragment means antibody or antibody fragment which was produced using molecular biology The antibody or antibody fragments may be 35 techniques. polyclonal, or preferably monoclonal. It may be specific for

a number of epitopes associated with the streptococcus pneumoniae polypeptides but is preferably specific for one.

A further aspect of the invention is the use of the antibodies directed to the streptococcus polypeptides of the invention for passive immunization. One could use the antibodies described in the present application. Suitable antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against streptococcus infection in a test model. One example of an animal model is the mouse model described in the examples herein. The antibody may be a whole antibody or an antigen-binding fragment thereof and may belong to any immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a natural antibody or a fragment thereof, or if desired, a antibody or antibody fragment. The recombinant recombinant antibody or antibody fragment means antibody or antibody fragment which was produced using molecular biology The antibody or antibody fragments may be techniques. polyclonal, or preferably monoclonal. It may be specific for a number of epitopes associated with the streptococcus pneumoniae polypeptides but is preferably specific for one.

25

20

[5

The following are reference tables summarizing the sequences disclosed in the present application:

TABLE A, B and C Variants and Epitope of BVH-3-

30

Table A

Family	Polypeptide SEQ ID NO
BVH-3	《大学》,"大学,我们是一个人的人,我们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们
New 21	aa 396-1039 of SEQ ID.
	6
New 25	aa 233-1039 of SEQ ID.6
New 40	aa 408-1039 of SEQ ID.6

TABLE B -

Family	Polypeptide SEQ ID NO
BVH-3	
NEW1-mut1**	235
NEW35A	236
NEW42	237
NEW49	238
NEW50	239
NEW51	240
NEW52	241
NEW53	242 .
NEW54	243
NEW55	244
NEW56	245
NEW56-mut2**	245
NEW56-mut3**	245
NEW57	246
NEW63	247
NEW64	248
NEW65	249
NEW66	250
NEW76	251
NEW105	252
NEW106	253
NEW107	254

5 ** silent mutation, i.e. the polypeptide is the same as New1 or New 56

TABLE C- Epitopes of BVH-3

7G11.7	12
7G11.9	. 13
B12D8.2	19
7F4.1	20
14F6.3	18
4D3.4	14
10C12.7	17.
8E3.1	15
1G2.2	16

TABLE D, E and F Variants and Epitope of BVH-11-

5 TABLE D-

Family	Po	lyp	ept	ide	S)	II Q2) NC	
BYHELDS AND LORDS	順節	統計			938	拉勒拉	星湖	SEARCH
New19	aa	49	7-8	38	of	Seq	.ID	8
New24	aa	22	7-8	38	of	Seq.	.ID	8

TABLE E-

Family	Polypeptide SEQITD NO
BYHULLARYELLA	也是理論。其中學型系統的政學的學樣所有的語言
New 43	258
NEW60	293
NEW61	294
NEW62	295
NEW80	296
NEW81	297
NEW82	298
NEW83	299
NEW84	300
NEW85	301
NEW88D1	302
NEW88D2	303
NEW88	304

10

TABLE F- epitopes of BVH-11

10D7.5	21	
10G9.3	22	
B11B8.1	22	
10A2.2	22	
11b8.4	23	
3A4.1	24	

15

TABLE G and H Chimeras-

TABLE G

The state of the s	"我们的"。 二十二二十二十二十二十二十二十二二十二二十二二十二十二十二十二十二十二十二十
li Pamaidar	- ToPo Paroentside SkO®は砂酸NGと終しま
I Pamary	Polypeptide SEQ ID NO

Chimeras with BVH-11; and BVH-3:	
New17	M*-NEW5-G*P*-NEW1
New20	M*-NEW1-G*P*-NEW5
New26	M*-NEW10-G*P*-NEW25
New27	M*-NEW19-G*P*-NEW25
New28	M*-NEW10-G*P*-NEW1
New29	M*-NEW5-G*P*-NEW25
New30	M*-NEW4-G*P*-NEW25
New31	M*-NEW4-G*P*-NEW1
NEW32	M*-NE19-G*P*-NEW1

^{*} OPTIONAL AMINO ACID

TABLE H

Family	Polypeptide SEQ ID NO
Chimeras with BVH-11	
Chimeras with BVH-111 and BVH-3	
VP 89	305
VP 90	306
VP 91	307
VP 92	308
VP 93	309
VP 94	310
VP 108	311
VP109	312
VP 110	313
VP 111	314
VP112	315
VP113	316
VP114	317
VP115	318
VP116	319
VP117	320
VP119	321
VP120	322
VP121	323
VP122	324
VP123	325
VP124	326

EXAMPLE 1

5

This example describes the bacterial strains, plasmids, PCR primers, recombinant proteins and hybridoma antibodies used 10 herein.

S. pneumoniae SP64 (serogroup 6) and SP63 (serogroup 9) clinical isolates were provided by the Laboratoire de la Santé Publique du Québec, Sainte-Anne-de-Bellevue; Rx1 strain, a nonencapsulated derivative of the type 2 strain D39 and the type 3 strain WU2 were provided by David E. Briles from University of Alabama, Birmingham and the type 3 clinical isolate P4241 was provided by the Centre de Recherche en Infectiologie du Centre Hospitalier de l'Université Laval, Sainte-Foy. E. coli strains DH5\alpha (Gibco BRL, Gaithesburg, MD); AD494 (\lambda DE3) (Novagen, Madison, WI) and BL21 (\lambda DE3) 10 (Novagen) as well as plasmid superlinker pSL301 vector (Invitrogen, San Diego, CA); pCMV-GH vector (gift from Dr. Stephen A. Johnston, Department for Biochemistry, University of Texas, Dallas, Texas); pET32 and pET21 (Novagen) and pURV22.HIS expression vectors (Figure 30) were used in this study. The pURV22.HIS vector contains a cassette of the bacteriophage λ cI857 temperature-sensitive repressor gene from which the functional P_{R} promoter has been deleted. inactivation of the cI857 repressor by a temperature increase from the range of 30-37°C to 37-42°C results in the induction 20 of the gene under the control of promoter λPL . primers used for the generation of the recombinant plasmids had a restriction endonuclease site at the 5'end, thereby allowing directional cloning of the amplified product into the digested plasmid vector. The PCR oligonucleotide primers used 25 are listed in the following Table 1. The location of the gene sequences coding for BVH-3, BVH-11 and BVH-11-2 gene products is summarized in the Figure 25, Figure 26 and Figure 27, respectively.

Table 1. List of PCR oligonucleotide primers

Primer	SEQ ID NO	Sequence 5' - 3'	Nucleotide position	Restriction sites
OCRR	25	cagtagatctgtgcctatgcact	SEQ ID 1:	BglII .
479		aaac	61-78	
			SEQ ID 9:	
	ľ		1-18	
OCRR	26	gatetetagaetaetgetattee	SEQ ID 2:	XbaI
480		ttacgctatg	4909-4887	
•			SEQ ID 9:	
			2528-2519.'	·
OCRR	27	atcactcgagcattacctggata	SEQ ID 1:	XhoI
497		atcctgt	1525-1506	-
OCRR	28	ctgctaagcttatgaaagattta	SEQ ID 1:	HindIII.
498	-	gat	1534-1548	
OCRR	29	gatactcgagctgctattcctta	SEQ ID 2:	XhoI.
499		С	4906-4893	
HAMJ	30	gaatctcgagttaagctgctgct	SEQ ID 1:	XhoI
172		aattc	675-661	
HAMJ	31	gacgctcgagcgctatgaaatca	SEQ ID 1:	XhoI
247	1	gataaattc	3117-3096	
HAMJ	32	gacgctcgagggcattacctgga	SEQ ID 1:	XhoI
248		taatcctgttcatg	1527-1501	
HAMJ.	33	cagtagatctcttcatcatttat	SEQ ID 2:	BglII
249		tgaaaagagg	1749-1771	
HAMJ	34	ttatttcttccatatggacttga	SEQ ID 1:	NdeI
278		cagaagagcaaattaag	1414-1437	
HAMJ	35	cgccaagcttcgctatgaaatca	SEQ ID 1:	HindIII
279		gataaattc	3117-3096	
HAMJ	36	cgccaagcttttccacaatataa	SEQ ID 1:	HindIII
280		gtcgattgatt	2400-2377	
HAMJ	37	ttatttcttccatatggaagtac	SEQ ID 1:	NdeI
281		ctatcttggaaaaagaa	2398-2421	
LMAH	38	ttatttcttccatatggtgccta	SEQ ID 1:	NdeI .
300		tgcactaaaccagc	62-82	

			position	sites
LMAH	39	ataagaatgcggccgcttccaca	SEQ ID 1:	NotI
313		atataagtcgattgatt	2400-2377	
OCRR	40	cagtagatctgtgcttatgaact	SEQ ID 3:	BglII
487		aggtttgc	58-79	
OCRR	41	gatcaagcttgctgctaccttta	SEQ ID 4:	HindIII
488		cttactctc	2577-2556	
HAMJ	42	ctgagatatccgttatcgttcaa	SEQ ID 3:	EcoRV
171		acc	1060-1075	
HAMJ	43	ctgcaagcttttaaaggggaata	SEQ ID 3:	HindIII
251		atacg	1059-1045	
НАМЈ	44	cagtagatctgcagaagccttcc	SEQ ID 3:	BglII
264		tatctg	682-700	
HAMJ	45	tcgccaagcttcgttatcgttca	SEQ ID 3:	HindIII
282		aaccattggg	1060-1081	
HAMJ	46	ataagaatgcggccgccttactc	SEQ ID 3:	NotI
283		tcctttaataaagccaatagtt	2520-2492	
HAMJ	47	catgccatggacattgatagtct	SEQ ID 3:	NcoI -
284		cttgaaacagc	856-880	
HAMJ	48	cgccaagcttcttactctcttt	SEQ ID 3:	HindIII
285		aataaagccaatag	2520-2494	
HAMJ	49	cgacaagcttaacatggtcgcta	SEQ ID 3:	HindIII
286	·	gcgttacc	2139-2119	
			SEQ ID 5:	
	ŀ		2210-2190	
HAMJ	50	cataccatgggcctttatgaggc	SEQ ID 3:	NcoI
287		acctaag	2014-2034	
HAMJ	51	cgacaagcttaagtaaatcttca	SEQ ID 3:	HindIII
288		gcctctctcag	2376-2353	
LMAH	52	gataccatggctagcgaccatgt	SEQ ID 3:	NcoI
289		tcaaagaa	2125-2146	
LMAH	53	cgccaagcttatcatccactaac	SEQ ID 3:	HindIII
290		ttgactttatcac	1533-1508	•

Primer	SEQ	Sequence 5' - 3'	Nucleotide position	Restriction
	ио	· ·		sites
HAMJ ·	54	cataccatggatattcttgcctt	SEQ ID 3:	NCOI
291		cttagctccg	1531-1554	
HAMJ	55	catgccatggtgcttatgaacta	SEQ ID 3:	Ncol
301		ggtttgc	59-79	
HAMJ	56	cgccaagctttagcgttaccaaa	SEQ ID 3:	HindIII
302	-	accattatc	2128-2107	·
HAMJ	57	gtattagatctgttcctatgaac	SEQ ID 5:	BglII
160		ttggtcgtcacca .	172-196	
LMAH	58	cgcctctagactactgtatagga	SEQ ID 5:	XbaI
186		gccgg	2613-2630	
LMAH	59	catgccatggaaaacatttcaag	SEQ ID 5:	Ncol
292		ccttttacgtg	925-948	
LMAH	60	cgacaagcttctgtataggagcc	SEQ ID 5:	HindIII
293		ggttgactttc	2627-2604	
HAMJ	61	catgccatggttcgtaaaaataa	SEQ ID 5:	NcoI
294		ggcagaccaag	2209-2232	
HAMJ	62	catgccatggaagcctattggaa	SEQ ID 5:	NcoI
297		tgggaag	793-812	
HAMJ	63	catgccatggaagcctattggaa	SEQ ID 5:	Ncol
352	ļ.	tgggaagc	793-813	
HAMJ	64	cgccaagcttgtaggtaatttgc	SEQ ID 5:	HindIII
353		gcatttgg	1673-1653	
LMAH	65	cgccaagcttctgtataggagcc	SEQ ID 5:	HindIII
354		ggttgac	2627-2608	
HAMJ	66	catgccatggatattcttgcctt	SEQ ID 5:	Ncol
355		cttagctcc	1603-1624	
HAMJ	67	ttatttcttccatatgcatggtg	SEQ ID 1:	NdeI
404		atcatttccattaca	1186-1207	
HAMJ	68	gatgcatatgaatatgcaaccga	SEQ ID 1:	NdeI
464		gtcagttaagc	697-720	
HAMJ	69	gatgctcgagagcatcaaatccg	SEQ ID 1:	XhoI
465		tatecate	1338-1318	

Primer	SEQ ID NO	Sequence 5' - 3'	Nucleotide position	Restriction sites
HAMJ	70	gatgcatatggatcatttccatt	SEQ ID 1:	NdeI
466		acattcca	1192-1212	
HAMJ	71	gacaagcttggcattacctggat	SEQ ID 1:	HindIII
467		aatcctg	1527-1507	
HAMJ	72	catgccatggaagcctattggaa	SEQ ID 5:	NcoI
352		tgggaagc	793-813	
LMAH	73	ataagaatgcggccgccgctatg	SEQ ID 1:	NotI
470		aaatcagataaattc	3096-3117	
HAMJ 471	168	atatgggcccctgtataggagcc ggttgactttc	SEQ ID 5: 2626-2604	Apa I
HAMJ 472	169	atatgggcccaatatgcaaccga gtcagttaagc	SEQ ID 1:	Apa I
HAMJ 350	170	atatgggcccaacatggtcgcta gcgttacc	SEQ ID 3: 2139-2119	Apa I
HAMJ 351	171	tcccgggcccgacttgacagaag agcaaattaag	SEQ ID 1: 1414-1437	Apa I
НАМЈ 358	172	catgccatgggacttgacagaag agcaaattaag	SEQ ID 1: 1415-1437	Ncol
HAMJ 359	173	tcccgggccccgctatgaaatca gataaattc	SEQ ID 1: 3116-3096	Apa I
HAMJ 403	174	atatgggcccgacattgatagtc tcttgaaacagc	SEQ ID 3: 856-880	Apa I
HAMJ 361	175	cgccaagcttaacatggtcgcta gcgttacc	SEQ ID 3: 2139-2119	Hind III
HAMJ 483	176	atatgggccccttactctcttt aataaagccaatag	SEQ ID 3: 2520-2494	Apa I

Molecular biology techniques were performed according to standard methods. See for example, Sambrook, J., Fritsch, E.F., Maniatis, T., "Molecular cloning. A laboratory manual" Vol.1-2-3 (second edition) Cold Spring Harbour Laboratory Press, 1989, New York, which is herein incorporated by reference. PCR-amplified products were digested with restriction endonucleases and ligated to either linearized plasmid pSL301, pCMV-CH, pET or pURV22.HIS expression vector digested likewise or digested with enzymes that produce compatible cohesive ends. Recombinant pSL301 and recombinant pCMV-CH plasmids were digested with restriction enzymes for the in-frame cloning in pET expression vector. When pET

10

15

vectors were used, clones were first stabilized in Ε. coli DH5α before introduction into \underline{E} . \underline{coli} BL21(λ DE3) or AD494 (λ DE3) for expression of fulllength or truncated BVH-3, BVH-11 or BVH-11-2 molecules. Each of the resultant plasmid constructs was confirmed by nucleotide sequence analysis. recombinant proteins were expressed as N-terminal fusions with the thioredoxin and His-tag (pET32 expression system); as C-terminal fusions with an His-tag (pET21 expression system); or as N-terminal fusions with an His-tag (pURV22.HIS expression system). The expressed recombinant proteins were purified from supernatant fractions obtained after centrifugation of sonicated IPIG- (pET systems) or heat- (pURV22.HIS) induced E. coli using a His-Bind metal chelation resin (QIAgen, Chatsworth, CA). The gene products generated from S. pneumoniae SP64 are listed in the following Table 2. The gene fragment encoding BVH-3-Sp63 protein (amino acid residues 21 to 840 on SEQ ID NO: 10) was generated from S. pneumoniae SP63 using the PCR-primer sets OCRR479-OCRR480 and the cloning vector pSL301. The recombinant pSL301-BVH-3Sp63 was digested for the in-frame cloning in pET32 vector for the expression of the BVH-3-Sp63 molecule.

Table 2. Lists of truncated <u>BVH-3</u>, <u>BVH-11</u>, <u>BVH-11-2</u> and <u>Chimeric</u> gene 20 products generated from <u>S. pneumoniae</u> SP64

PCR-primer sets	Protein designation	Identification	Encoded amino acids (SEQ ID No6)	Cloning vector
OCRR479-OCRR480	BVH-3M	BVH-3 w/oss	21-1039	pSL301
OCRR479-OCRR497	BVH-3AD	BVH-3N°endw/oss	21-509	pSL301
HAMJ248-HAMJ249	L-BVH-3AD	BVH-3 N'end	1-509	pET-21(+)
OCRR498-OCRR499	BVH-3B	BVH-3C'end	512-1039	pSL301
OCRR479-HAMJ172	BVH-3C	BVH-3 N'endw/oss	21-225	pET-32c(+)
OCRR487-OCRR488	BVH-11M	BVH-11 w/oss	20-840	pCMV-GH
HAMJ251-OCRR487	BVH-11A	BVH-11 N'endw/oss	20-353	pET-32c(+)

TIANGIAL CORDACE	DVIII	DITT 11 C	254 940	-Pm 20 (1)
HAMJ171-OCRR488	BVH-	BVH-11 C'end	354-840	pET-32 a(+)
HAMJ264-OCRR488	BVH-	BVH-11 C'end	228-840	pET-32 a(+)
НАМЈ278-НАМЈ279	NEW1	BVH-3 C'end	472-1039	pET-21b(+)
HAMJ278-HAMJ280	NEW2	BVH-3 C'end	472-800	pET-21b(+)
НАМЈ281-НАМЈ279	NEW3	BVH-3 C'end	800-1039	pET-21b(+)
HAMJ284-HAMJ285	NEW4	BVH-11 C'end	286-840	pET-21d(+)
НАМЈ284-НАМЈ286	NEW5	BVH-11	286-713	pET-21d(+)
HAMJ287-HAMJ288	NEW6	BVH-11	672-792	pET-21d(+)
НАМЈ285-НАМЈ289	NEW7	BVH-11 C'end	709-840	pET-21d(+)
НАМЈ284-НАМЈ290	NEW8	BVH-11	286-511	pET-21d(+)
НАМЈ286-НАМЈ291	NEW9	BVH-11	511-713'	pET-21d(+)
НАМЈ160-НАМЈ186	BVH-	BVH-11-2 w/o	20-838	pSL301
НАМЈ292-НАМЈ293	NEW10	BVH-11-2	271-838	pET-21d(+)
НАМЈ293-НАМЈ294	NEW11	BVH-11-2	699-838	pET-21d(+)
HAMJ282-HAMJ283	NEW13	BVH-11 C'end	354-840	pET-21b(+)
НАМЈ286-НАМЈ297	NEW14	BVH-11-2	227-699	pET-21d(+)
НАМЈ300-НАМЈ313	NEW15	BVH-3 N'end	21-800	pET-21b(+)
НАМЈ301-НАМЈ302	NEW16	BVH-11 N'end w/o ss	20-709	pET-21d(+)
НАМЈ352-НАМЈ353	NEW18	BVH-11-2 internal	227-520	pET21d(+)
НАМЈ354-НАМЈ355	NEW19	BVH-11-2 C'end	497-838	pET21d(+)
НАМЈ404-НАМЈ279	NEW21	BVH-3 C'end	396-1039	pET21b(+)
НАМЈ464-НАМЈ465	NEW22	BVH-3 internal	233-446	pET-21a(+)
НАМЈ466-НАМЈ467	NEW23	BVH-3 internal	398-509	pET-21b(+)
НАМЈ352-НАМЈ293	NEW24	BVH-11-2	227-838	pET-21d(+)
		C'end		
НАМЈ464-НАМЈ470	NEW25	BVH-3 C'end	233-1039	pET-21b(+)
HAMJ278-HAMJ279 (NEW 1) HAMJ282- HAMJ283 (NEW 13)	NEW1 2	Chimera*	M-NEW 1 -KL - NEW 13	pET 21 b (+)
HAMJ284-HAMJ350 (NEW 5) HAMJ351- HAMJ279 (NEW 1)	NEW1 7	Chimera*	M- NEW 5 -GP - NEW 1	pET 21 d (+)
HAMJ358-HAMJ359 (NEW 1) HAMJ403-	NEW2 0	Chimera*	M- NEW 1 -GP - NEW 5	pET 21 d (+)

HAMJ361 (NEW 5)				
HAMJ292-HAMJ471	NEW26	Chimera*	M- NEW 10 -GP -	pET21 d(+)
(NEW 10) HAMJ472-			NEW 25	. .
HAMJ470 (NEW 25)				
HAMJ355-HAMJ471	NEW27	Chimera*	M- NEW 19 -GP -	pET21d(+)
(NEW 19) HAMJ472-		1	NEW 25	
HAMJ470(NEW 25)				
HAMJ292-HAMJ471	NEW28	Chimera*	M- NEW 10 -GP -	pET21d(+)
(NEW 10) HAMJ351 -			NEW1	
HAM0279 (NEW 1)				
HAMI284-HAMI350	NEW29	Chimera*	M- NEW 5 -GP -	pET21 d(+)
(NEW 5) HAMJ472-			NEW 25	
HAMJ470 (NEW 25)				· · · · · · · · · · · · · · · · · · ·
HAMJ284-HAMJ483	NEW30	Chimera*	M- NEW 4 -GP -	pET21d(+)
(NEW 4) HAMJ472-			NEW 25	
HAMJ470(NEW 25)				
HAMJ284-HAMJ483	NEW31	Chimera*	M- NEW 4 -GP -	pE121d(+)
(NEW 4) HAMJ351-			NEW1	
HAMJ279(NEW 1)	277775	~) () TTI 10 CT	TTT01 1(1)
HAMJ355-HAMJ471	NEW32	Chimera*	M- NEW 19 -GP -	pE121d(+)
(NEW 19) HAMJ351-			NEW1	
HAM0279(NEW 1)	[1	

w/o ss: without signal sequence. Analysis of the BVH-3, BVH-11 and BVH-11-2 protein sequences suggested the presence of putative hydrophobic leader sequences.

* encoded amino acids for the chimeras are expressed as the gene product, additional non essential amino acids residue were added M is methionine, K is lysine, L is leucine, G is glycine and P is proline.

10

15

Monoclonal antibody (Mab)-secreting hybridomas were obtained by fusions of spleen cells from immunized mice and non-secreting, HGPRT-deficient mouse myeloma SP2/0 cells by the methods of Fazekas De St-Groth and Scheidegger (J Immunol Methods 35 : 1-21, 1980) with modifications (J. Hamel et al. J Med Microbiol 23 : 163-170, 1987). Female BALB/c mice (Charles River, St-Constant, Quebec, Canada) were immunized with either BVH-3M (thioredoxin-His•Tag-BVH-3M fusion protein/ pET32

system), BVH-11M (thioredoxin-His•Tag-BVH-11M fusion protein/ pET32 system), BVH-11-2M (thioredoxin-His•Tag-BVH-11-2M fusion protein/ pET32 system), BVH-11B (thioredoxin-His•Tag-BVH-11B fusion protein/ pET32 system), BVH-3M (His•Taq-BVH-3 fusion protein/ pURV22.HIS system) or NEW1 (NEW1-His•Tag fusion protein/ pET21 system) gene products from S. pneumoniae strain SP64 to generate the Mab series H3-, H11-, H112-, H11B-, H3V-, and HN1-, respectively. Culture supernatants of hybridomas were initially screened by enzyme-linked-immunoassay (ELISA) according to the procedure described by Hamel et al. (Supra) 10 using plates coated with preparations of purified recombinant BVH-3, BVH-11 and/or BVH-11-2 proteins or suspensions of heatkilled S. pneumoniae cells. The Mab-secreting hybridomas selected for further characterization are listed in Table 3 and Table 4 from the following Example 2. 15 The class and subclass of Mab immunoglobulins were determined by ELISA using commercially available reagents (Southern Biotechnology Associates, Birmingham, AL).

20 Furthermore, the cloning and expression of chimeric gene(s) encoding for chimeric polypeptides and the protection observed after vaccination with these chimeric polypeptides are described.

25 BVH-3 and BVH-11 gene fragments corresponding to the 3'end of the genes were amplified by PCR using oligonucleotides engineered to amplify gene fragments to be included in the chimeric genes. The primers used had a restriction endonuclease site at the 5' end, thereby allowing directional in-frame cloning of the amplified product into 30 digested plasmid vectors (Table 1 and Table 2). PCR-amplified products were digested with restriction endonucleases and ligated to linearized plasmid pET21 or pSL301 vector. resultant plasmid constructs were confirmed by nucleotide sequence analysis. The recombinant pET21 plasmids containing 35

a PCR product were linearized by digestion with restriction enzymes for the in-frame cloning of a second DNA fragment and the generation of a chimeric gene encoding for a chimeric pneumococcal protein molecule. Recombinant pSL301 plasmids 5 containing a PCR product were digested with restriction enzymes for the obtention of the DNA inserts. The resulting insert DNA fragments were purified and inserts corresponding to a given chimeric gene were ligated into pET21 vector for the generation of a chimeric gene. The recombinant chimeric polypeptides listed in Table 2 were as C-terminal fusion with an His-tag. The expressed recombinant proteins were purified from supernatant fractions obtained from centrifugation of sonicated IPTG-induced E. coli cultures using a His-Bind metal chelation resin (QIAgen, Chatsworth, CA).

15

10

Groups of 8 female BALB/c mice (Charles River) were immunized subcutaneously two times at three-week intervals with 25 $\mu\mathrm{g}$ of either affinity purified His Tag-fusion protein identifed in presence of 15-20 μg of QuilA adjuvant. Ten to 14 days following the last immunization, the mice were challenged challenged intravenously

with 10E5-10E6 CFU of S. pneumoniae type 3 strain WU2. The polypeptides and fragments are capable of eliciting a protective immune response.

25

20

Table 2A

Experiment	Immunogen	Alive : Dead	Days to death post- infection
1	none	0 : 8	1, 1, 1, 1, 1, 1, 1, 1, 1
	NEW 1	2 : 6	1, 2, 2, 2, 2, 2, >14, >14
	NEW 13	1 : 7	1, 1, 3, 3, 4, 5, 5, >14
	NEW 12	6 : 2	3, 11, 6X >14
	BVH-3M	1 : 7	3, 3, 3, 3, 3, 3, 3, 3, 3, >14
2000 TO THE		烈星的特殊的	学的现在分词是包含的一种。 第12章
2	none	0:8	1, 1, 1, 1, 1, 1, 1,

CA 02413450 2002-12-19

WO 01/98334 PCT/CA01/00908

					1
	NEW 17	7	:	1	4, 7 X >14
	NEW 12	3	:	5	3, 3, 3, 4, 5, >14,
	•				>14, >14
	产州2008年1000年1	ζ	6		
3	none	0	:	8	2, 2, 2, 2, 2, 2, 2,
					2
	NEW 18	1	:	7	2, 2, 2, 2, 3, 3, 3,
·				_	3
	NEW 19	8	:	0	8 X >14
	NEW 10	8	:	0	8 X >14
	BVH-11-2	8	:	0	8 X >14

EXAMPLE 2

This example describes the identification of peptide domains carrying target epitopes using Mabs and recombinant truncated proteins described in example 1.

Hybridomas were tested by ELISA against truncated <u>BVH-3</u>, <u>BVH-10 11 or BVH-11-2</u> gene products in order to characterize the epitopes recognized by the Mabs. The truncated gene products were generated from <u>S. pneumoniae</u> SP64 strain except for BVH-3-Sp63 which was generated from <u>S. pneumoniae</u> SP63 strain. As a positive control, the reactivity of each antibody was examined with full-length BVH-3, BVH-11 or BVH-11-2 recombinant proteins. In some cases, the Mab reactivity was evaluated by Western immunoblotting after separation of the gene product by SDS-PAGE and transfer on nitrocellulose paper. The reactivities observed is set forth in the following Table 3 and Table 4.

Table 3. ELISA reactivity of BVH-3-reactive Mabs with a panel of eleven BVH-3 gene products and the BVH-11M molecule

	Gene	products		tested		!						
Mabs												
(IgG	вин-	BVH-	вун-	BVH-	NEW	NEW	NEW	NEW	NEW	NEW	BVH-	BVH-
isotype)	3M	3AD	3B	30	~	7	т	21	22	23	е	11M
						:					Sp63	
H3-4F9 (1)	+	+	-	+	1		ı			ı	+	+
H3-4D4 (1)	+	+	1	+	1	1	1	,		ı	+	+
H3-9H12 (1)	+	. +	-	+	_		1	,	ı	1	+	+
H3-7G2 (1)	+	+	ı	1	ı	1	ı		+	ı	1	t
H3-10A1 (1)	+	+	1	1	1	1	1	+	ı	+	+	ı
H3-4D3 (1)	+	1.	+	1	+		+	+	1	1	+	1
H11-6E7 (1)	+	+	1	+	,	•	,	IN	NT	IN	+_	+
H11-10H10		+	ı	+	-	1	ı	IN	NT	NT	+	+
(2a)												
H11-7G11	+	+	+	+	+	+	ı	LN	TN	TN	+	+
(2b)												
H3V-4F3 (1)	+	1	+		+		1	+			+	ı
H3V-2F2 (1)	+	ı	+	1	+	+	1	+	ı	ı	+	1
H3V-7F4 (1)	+	1	+	ı	+	+	1	+	1	1	+	1
H3V-7H3 (1)	+		+	1	+	ı	+	+	1	1	+	ı

	Gene I	products	i	tested								
Mabs (IgG	BVH-	BVH-	- НАЯ	BVH-	NEW	NEW	NEW	NEW	NEW	NEW	BVH-	BVH-
isotype)	зм	3AD	3B	30	Н	7	ю	21	22	23	е	11M
									•	·	Sp63	•
H3V-13B8	+	1	+		+	ı	+	+	ı		+	1
(1)							-					
H3V-9C2 (1)	+	+ .		-/+		,	,	1	+	1	-/+	-/+
H3V-9C6 (1)	+	+	1	1	,1	ı	-	1	+	1	ŀ	ı
H3V-16A7	+	+	ı	ı	1	,	1	+		+	1	
(1)												
H3V-15A10	+	+	+	-/+	+	+		+	+	+	+	-/+
(1)												
H3V-6B3	+	+	INT	IN	+	+	1	+	+	_	IN	ı
(1/2)												
HN1-5H3	+	1	+	NT	+		_	+	-	-	+	1
(2b)												•
HN1-8E3	+	1	+	NT	+	-	1	+	ı	1	+	ı
(2a)												
HN1-14F6	+	1	+	TN	+	ı	1	+			+	,
(2a)	·											
HN1-2G2 (1)	+	1	+	TN	+	+	ı	+	1	-	+	1

	Gene 1	products	ts tes	tested								
Mabs												
(IgG	BVH-	BVH-	BVH-	BVH-	NEW	NEW	NEW	NEW	NEW	NEW	BVH-	BVH-
isotype)	3M	3AD	3B	3¢	7	7	е	21	22	23	е	11M
											Sp63	
HN1-12D8	+	1	+	NT	+	+	1	+	,	ı	+	-
(2a)												
HN1-14B2	+	1	+	LN	+	+	ı	+	1	_	+	1
(2a)												
HN1-1G2	+	-	+	NT	+		+	+	-	ı	+	1
(2a)				-								
HN1-10C12	+	_	+	LN	+		+	+	1	-	+	1
(1)												
HN1-3E5 (1)	+	+	-	1	+	+		+	ı	+ .	+	ı

Table 4. ELISA reactivity of BVH-11 and/or BVH-11-2-reactive Mabs with a panel of fourteen BVH-+/- : very low reactivity but higher than background, possible non-specific Mab binding 11 and BVH-11-2 gene products and the BVH-3M molecule NT : not tested

	Gene	products		tested												
Mabs	BVH-	BVH-	BVH-	вун-	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	BVH- 11-	вин-
(IgG	11M	11A	11B	11C	ις.	9	7	æ	o)	10	디	14	18	19	2-M	3M
isotype)									-							
H3-4F9	+	+		1	,	1	,	<u>'</u>	,		ı		ı	ı	+	+
(1)										<u>.</u> .						
H3-4D4	+	+			1	1		,	1	,		1	,	,	+	+
(1)																
нз-9н12	+	+			<u> </u>		1	ı			-	ı	1	,	+	+
(1)																
H11-6E7	+	+	1	,		1	,	1	,	,			-		+	+
(1)		•													•	
H11-	+	+	1	1	,	,	-	,	1		1	1	1	-	+	+
10H10							-11									
(2a)																
H11-7G11	+	+	1		-				-			1	ı	,	+	+
(2b)																
H11-1B12	+	+	1	ı			ą.	,_	,	1		ı	1	1	+	1
(1)								•								
H11-7B9	+	+	1	,		-	Į.	1	1	1	1	ī	1	ı	' +	1

	Gene	products	1	tested												
Mabs	BVH	BVH-	BVH-	BVH-	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	,	BVH-
SSI)	11M	11A	11B	11C	ហ	9	7	ω	O	10	11	14	18	19	2-X	3M
isotype)																
(2a)					<u>.</u>											
H11-3H5	+	_	+	+	+	-	,	*		+		+	+	,	+	1
(1)																
H11-10B8	+		+	+	+	,	1	*	-	+	ı	+	+	1	+	
(1)																
H11-1A2	+	1	+	+	+	,	,	*	1	+	ı	+	+	ı	+	1
(1)												 -				
H112-3A1	+	-	+	IN	+	1	,	+	1	+	1	+	+	-	·+	1
(1)						·										
H112-	+	-/+	+	TN	+	_	,	+		+		+	+	ı	+	1
13C11																
(1)													-			
H112-	+	+		TN	+	1	1	+	-	+	-	+	+	ı	Ť	1
10H10																
(1)																
H112-1D8	+	+	,	IN	+		,	+	1	+	ı	+	+	1	+	ı
(2a)																

-											•					
	Gene	products	(tested												
															RVH-	
Mabs	BVH-	BVH-	BVH-	BVH-	NEW	11-	BVH-									
(IgG	11M	11A	11B	1.1C	ហ	9	7	ω.	o	10	11	14	18	19	2-M	33
isotype)																
H112-	+		+	IN	+	ı	1	1	+	+	•	+	,	+	+	ı
10G9												•				
(2b)										,						
H112-	+	ı	+	NT	+			-/+	+	+	t	·+	ı	+	+	ı
10A2 (1)											•					
H112-3E8	+_	,_	+_	LN	+	,	ı	-/+	ı	+	ı	+	-	+	+	ı
(2a)																
H112-	+		+	IN	+		_		ı	+	-	+	1	1	+	,
10D7																
(2a)				•												
H112-2H7	+	+	,	IN		,	,	,	,	1	1		1	1	+	-
(2a)																
H112-6H7	+.	+		IN	1	,		ı	,		-		,	1	+	ī
(1)																,
H112-3A4			,	INI		1				+	+	1	1	+	+	ı
(2a)																
H112-	,			NT					1	+	+	1	ı	+	+	ı

	Gene	products	1	tested	_		i									
Mabs	вун-	BVH-	вун-	вун-	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	BVH-	BVH-
(IgG	11M	11A	11B	110	വ	9	7	۵	o,	. 01	11	1,4	18	19	2-M	3M
isotype)																
10C5 (1)																
H112-	,	-		IN	,	ı	1	-	1	+	+	1	,	+	+	1
14H6 (1)					-				·							
H112-7G2	1	-		LN	,_	1	i	i	ı	+	1	+	+		+	1
(1)																
H112-			1	TN		1	ı	1	_	!		+	+_	1	+	3
13H10	···													-		
(2a)																
H112-7E8	-/+	1	ı	INI	ı	_		1	ı.	1	-	ı	-/+	1	+	1
(2b)							-									
H112-7H6	-/+	-	,	NT		1		ı	1	-/+	,	1	1	1	+	ı
(1)											:					
H11B-	+	,	+	+	+	1	1	+	-	+	ı	+	+		+	ı
5F10 (1)																
H11B-	+		+	+	+	1	-	+	-	+	1	+	+	ı	+	ı
15G2 (1)																
H11B-	+		+	+	+_	<u></u>	<u>.</u>	<u>'</u>	+	+	1	+	1	+	+	1

	,															
٠	Gene	Gene products		tested	-											
															1,10	
Mabs	BVH-	BVH- BVH- BVH-	BVH-	BVH-	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	NEW	11-	BVH-
(IgG	11M	11A	118	11C	ហ	9	7	80	თ	10	, ,	14	1.8	19	2-M	3M
isotype)								-								
13D5 (2)																
H11B-	+	. 1	+	+	+_	ı		1_	+	+	1	+	ı	+	+	1
11B8 (1)																
H11B-	+,		+	+	+		,	,	,	+	1	+	_	1	+	1
7E11 (1)											. 1			-		
H11B-1C9	+	1	+	+	+		ı	,		+	ı	+	ı	1	+	ı
(1)																
H11B-5E3	+		+	+	,	1	+	,	, -	1	1	1	ı	1	1	1
(2)					<u>-</u> -					,						
H11B-6E8	+		+	+	<u> </u>	<u>.</u>	+	ı	1	1	1	ı	1		1	ı
(1)																

· very low reactivity but higher than background, possible non-specific Mab binding a strong signal was detected when tested by Western immunoblotting -/+

NT : not tested

The deduced locations of the epitopes are summarized in Figure 28 and Figure 29. As can be seen from the data in Table 3, BVH-3-reactive Mabs can be divided into two groups: BVH-3Aand BVH-3B-reactive Mabs with the exception of Mabs H11-7G11 and H3V-15A10 which reacted with both, BVH-3A and BVH-3B molecules. The BVH-3A-reactive Mabs can be subdivided in two subgroups of antibodies depending of their reactivity or lack of reactivity with BVH-3C recombinant protein. Mab reactive with BVH-3C protein recognized epitopes shared by both, BVH-3 and BVH-11 proteins. As can be seen in Table 4, these BVH-3and BVH-11-cross-reactive Mabs were also reactive with BVH-11A and BVH-11-2M recombinant proteins. BVH-3B-reactive Mabs can be subdivided into three subgroups according to their 15 reactivity with NEW1, NEW2 and NEW3 recombinant proteins. Some Mabs were only reactive with the NEW1 protein while other Mabs were reactive with either, NEW1 and NEW2 or NEW1 and NEW3 recombinant proteins.

20

25

30

Mabs H11-7G11 and H3V-15A10 react with epitopes in more than one position on BVH-3. The reactivity of H11-7G11 with BVH-3AD, BVH-3B, BVH-3C, BVH-11A and BVH-11-2M molecules suggests that H11-7G11 epitope might comprised HXXHXH sequence. This sequence is repeated, respectively, 6 and 5 times in BVH-3 and BVH-11/BVH-11-2 protein sequences. The lack of reactivity of Mab H11-7G11 with NEW 10 molecule suggests that the epitope includes the HGDHXH sequence. Multiple-position mapping of H3V-15A10 epitope on BVH-3 is suggested by the reactivity of the Mab with two BVH-3 fragments that do not overlap.

Interestingly, Mabs H3-7G2, H3V-9C6 and H3V-16A7 were not reactive with BVH-3 Sp63 thus allowing the location of their corresponding epitopes on a 177-amino acid fragment comprised

between amino acids 244 and 420 on BVH-3 molecule of \underline{S} . pneumoniae SP64 (Figure 31).

As can be seen from the data in Table 4, the Mabs that are reactive with BVH-11- and/or BVH-11-2 and that do not recognize BVH-3 molecules can be divided into three groups according to their reactivities with BVH-11A and NEW10 recombinant proteins. Some Mabs reacted exclusively with either BVH-11A or NEW10 protein while other Mabs were reactive with both, BVH-11A and NEW10 recombinant proteins.

10 EXAMPLE 3

5

This example describes the construction of $\underline{BVH-3}$ and $\underline{BVH-11-2}$ gene libraries for the mapping of epitopes.

BVH-3 and BVH-11-2 gene libraries were constructed using 15 recombinant pCMV-GH and PSL301 plasmid DNA containing respectively, BVH-3 gene sequence spanning nucleotides 1837 to 4909 (SEQ ID NO: 2) or BVH-11-2 gene sequence spanning nucleotides 172 to 2630 (SEQ ID NO: 5) and the Novatope® library construction and screening system (Novagen). 20 recombinant plasmids containing BVH-3 BVH-11-2 gene or fragment were purified using QIAgen kit (Chatsworth, CA) and digested with the restriction enzymes BglII The resulting BglII-XbaI DNA fragments were respectively. purified using the QIAquick gel extraction kit from QIAgen and 25 digested with Dnase I for the generation of randomly cleaved DNA fragments of 50 to 200 bp were purified, treated with T4 DNA polymerase to blunt the target DNA ends and add a single 3'dA residue, and ligated into pSCREEN-T-Vector procedures suggested (Novagen) following the by 30 manufacturer (Novatope® System, Novagen). The gene libraries of E. coli clones, each of which expressing a small peptide derived from BVH-3 or BVH-11-2 genes were screened by standard colony lift methods using Mabs as immunoprobes. The colony screening was not successful with Mabs producing very high 35 backgrounds on colony lifts. Moreover, in some cases, Mabs

failed to detect epitope-expressing-colonies. The lack of reactivity can possibly be explained by the small amount of proteins produced οr the recognition recombinant consisting of conformation-dependent epitopes Sequencing of DNA inserts from positive protein domains. clones determined the location of the segment that encodes the The data are presented in Table 5. target epitope. peptides encoded by DNA inserts into the recombinant pSCREEN-T vector can be purified and used as immunogens as described below in Example 6.

The peptide sequences obtained from the screening of BVH-3 and BVH-11-2 gene libraries with the Mabs are in agreement with Mab ELISA reactivities against the truncated gene products. As expected, the amino acid sequences obtained from H11-7G11 contained the sequence HGDHXH. These findings provide additional evidence for the location of epitopes Interestingly, although the Mabs recognized with the Mabs. H112-10G9, H112-10A2 and H11B-11B8 were reactive against the same peptide sequence (amino acid residues 594 to 679 on BVH-11-2 protein sequence), clones corresponding to the sequence spanning from amino acid residues 658 to 698 were only picked up by Mab H11B-11B8 thus revealing the location of H11B-11B8 epitope between amino acid residues 658 to 679 (SEQ ID NO: 163). Mabs H112-10G9, H112-10A2, and H11B-11B8 are directed against 3 distinct non overlapping epitopes located closely on the peptide sequence corresponding to amino acid residues 594 to 679 (SEQ ID NO: 22).

10

15

20

25

Peptide sequences obtained from the screening of BVH-3 and BVH-11-2 gene libraries with Table 5. Mabs

Mab	Clone/	Nucleotide	Amino acid	Amino acid sequence	SEQ
	Protein	position	position		ON GI
	designat ion				
H3-4D4	4D4.9	SEQ ID 1:	SEQ ID 6:	DQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDA	11
•		226-509	76-169	DIVNEVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQK	
				QEHVKDNEKVNS	
H111-	7G11.7	SEQ ID 1:	SEQ ID 6:	GIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEEL	12
7G11		193-316	64-105	1	
H11-	7G11.9	SEQ ID 1:	SEQ ID 6:	TAYIVRHGDHFHYIPKSNQIGQPTLPNNSLATPSPSLPI	13
7G11		1171-1284	390-428		
H3-4D3	4D3.4	SEQ ID 1:	SEQ ID 6:	TSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLFN	14
		2565-2670	855-890		
HN1 -	8E3.1	SEQ ID 1:	SEQ ID 6:	MDGTIELRLPSGEVIKKNLSDFIA	15
8E3		3004-3120	1016-1039		
HN1-	1G2.2	SEQ ID 1:	SEQ ID 6:	YGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDFIA	16
1G2		3017-3120	1005-1039		
HN1 -	10C12.7	SEQ ID 1:	SEQ ID 6:	PALEEAPAVD PVQEKLEKFTASYGLGLDSVIFNMDGTIELR	17
10012		2936-3120	983-1039	LPSGEVIKKNLSDFIA	
HN1-	14F6.3	SEQ ID 1:	SEQ ID 6:	KVEEPKTSEKVEKEKLSETGNSTSNSTLEEVPTVDPVQEK	18
14F6		2501-2618	833-872		

₹ 7ah	Clone/	Nucleotide	Amino acid	Amino acid sequence	ÕES
}	Protein	position	ᆟ		ON GI
	designation				·
HN1-	B12D8.2	GE OES	SEQ ID 6:	MKDLDKKIEEKIAGIMKQYGVKRESIVVNKEKNAIIYPHGD	19
12D8		1:1433-	512-589	HHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGN	
_		1767			
нзи-	7F4.1	SEQ ID 1:	SEQ ID 6:	AIIYPHGDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAK	20
7F4		1633-1785	545-595	KEGNKVYIGE	
H112-	10D7.5	SEQ ID 5:	SEQ ID 8:	IQVAKDAGKYTTEDGYIFDPRDITSDEGD	21
1007		1685-1765	525-553		
H112-	10G9.3	SEQ ID 5:	SEQ ID 8:	DHQDSGNTEAKGAEAIYNRVKAAKKVPLDRMPYNLQYTVEV	22
1069		1893-2150	594-679	KNGSLIIPHYDHYHNIKFEWFDEGLYEAPKGYSLEDLLATV	
				KYYV	
H112-	10A2.2	SEQ ID 5:	SEQ ID 8:	DHQDSGNTEAKGAEAI YNRVKAAKKVPLDRMPYNLQYTVEV	. 22
10A2		1893-2150	594-679	KNGSLIIPHYDHYHNIKFEWFDEGLYEAPKGYSLEDLLATV	
				KYYV	
H11B-	B11B8.1	SEQ ID 5:	SEQ ID 8:	DHQDSGNTEAKGAEAIYNRVKAAKKVPLDRMPYNLQYTVEV	22
1188		1893-2150	594-679	KNGSLIIPHYDHYHNIKFEWFDEGLYEAPKGYSLEDLLATV	
				KYYV	
H11B-	11B8.4	SEQ ID 5:	SEQ ID 8:	GLYEAPKGYSLEDLLATVKYYVEHPNERPHSDNGFGNASDH	23
1188		2085-2217	658-698		

МаЪ	Clone/ Protein	Nucleot positic	otide ion	Amino ac position	acid	otide Amino acid Amino acid sequence ion position		SEQ ID NO
	designat			•				
•	ion							
H112- 3A4.1	3A4.1	SEQ II	5:	SEQ II	8:	VENSVINAKIADAEALLEK	ID 5: SEQ ID 8: VENSVINAKIADAEALLEKVTDPSIRQNAMETLTGLKSSLL 24	24
3A4		2421-26	626	2626 769-837	7	LGTKDNNTISAEVDSLLALLKESQPAPI	KESQPAPI	

EXAMPLE 4

This example describes the immunization of animals with recombinant proteins for the generation of antibody reactive with BVH-3, BVH-11 and/or BVH-11-2.

NZW rabbits (Charles River Laboratories, St-Constant, Québec, Canada) were immunized subcutaneously at multiple sites with 50 μ g or 100 μ g of the purified BVH-3M, L-BVH-3AD, NEW1, NEW13, or L-BVH-11 recombinant protein in presence of 80 µg of QuilA adjuvant (Cedarlane Laboratories Ltd, The rabbits were boosted two times at three-week intervals with the same antigen and blood samples were collected before each immunization and 6 to 28 days following 15 the last immunization. The sera samples were designated preimmune, post 1st, post 2nd or post 3rd injection. The rabbit immune response to immunization was evaluated by ELISA using recombinant BVH-3M (BVH-3M-His•Tag fusion protein/ pET21 system) or BVH-11M (BVH-11M-His•Tag fusion protein/ pET21 20 system) proteins or suspensions of heat-killed S. pneumoniae Rx-1 cells as coating antigens. ELISA titer was defined as the reciprocal of the highest sera dilution at which absorbance A410 value was 0.1 above the background value. Antibodies reactive with BVH-3 and/or BVH-11 epitopes were 25 elicited following immunization in all animals as shown in the following Table 6. Antibody reactive with recombinant or pneumococcal antigens was not present in the preimmune sera. The immune response to immunization was detectable in the sera of each rabbit after a single injection of recombinant 30 antigen. The antibody response following the second injection with either antigen tested was characterized by a strong increase in antibody titer. Interestingly, good titers of antibody reactive with S. pneumoniae cells, with an average titer of 52,000 after the third immunization, were obtained, 35 thus establishing that native pneumococcal epitopes are expressed on the recombinant E. coli gene products. These

data support the potential use of <u>BVH-3</u>, <u>BVH-11</u> and/or <u>BVH-11-2</u> gene products and the antibody raised to <u>BVH-3</u>, <u>BVH-11</u> and/or <u>BVH-11-2</u> gene products as vaccines for the prevention and the treatment of pneumococcal disease, respectively.

5 Table 6. Rabbit Antibody response to immunization with BVH-3 and BVH-11 gene products

		1	ELISA Ti antigen	ter w	ith coating
Rabbit	Immunogen	Sera	BVH-3M	BVH-	<u>S.</u>
		sample		11M	pneumoniae
		Preimmune	NT	NT	200
#15	BVH-3M	Post-1 st	NT	NT	1,600
	(50µg)				
		Post-2 nd	NT	NT	20,000
		Post-3 rd	512,000	NT	40,000
	1	Preimmune	NT	NT	200
#16	BVH-3M	post 1 st	NT	NT	1,600
	(100µg)		·		
		post 2 nd	NT	NT	40,000
		post 3 rd	10 ⁶	NT	80,000
		Preimmune	<100	NT	NT
#112	L-BVH-3AD	post 1 st	16,000	NT	NT
	(50 μg)	post 2 nd	512,000	NT	NT
·	· ·	post 3 rd	2x10 ⁶	NT	32,000
		Preimmune	<100	NT	NT
#113	New 1	post 1 st	16,000	NT	NT
	(50 μg)	post 2 nd	512,000	NT	NT
		post 3 rd	106	NT	64,000
		Preimmune	NT	<100	NT
#114	New 13	post 1st	NT	16,000	NT
	(50 μg)	post 2 nd	NT	64,000	NT
		post 3 rd	NT	256,00	32,000
				0	
		Preimmune	NT	<100	NT

#116	L-BVH-11	post 1 ^{st.}	NT	64,000	NT
	(50 μg)	post 2 nd	NT	10 ⁶	NT
		post 3rd	NT	2x106	64,000

NT: not tested

EXAMPLE 5

5

This example describes the protection of animals against fatal experimental pneumococcal infection by administration of antibody raised to BVH-3, BVH-11 or BVH-11-2 gene products.

10 High-titer Mab preparations were obtained from ascites fluid of mice inoculated intraperitoneally with Mab-secreting hybridoma cells according to the method described by Brodeur et al (J Immunol Methods 71:265-272, 1984). Sera samples were collected from rabbits immunized with BVH-3M as described in Example 4. The rabbit sera collected after the third immunization and ascites fluid were used for the purification of antibodies by precipitation using 45 to 50% saturated ammonium sulfate. The antibody preparations were dissolved and dialyzed against phosphate-buffered saline (PBS).

20

25

CBA/N (xid) mice (National Cancer Institute, Frederick, MA) were injected intraperitoneally with either 0.1 ml of purified rabbit antibodies or 0.2 ml of ascites fluid before intravenous challenge with approximately 200 CFU of the type 3 S. pneumoniae strain WU2. Control mice received sterile PBS or antibodies purified from preimmune rabbit sera or sera from N. meningitidis unrelated immunized with an rabbits recombinant protein antigen. One group of mice was challenged with S. pneumoniae before the administration of anti-BVH-3 antibody. Samples of the S. pneumoniae challenge inoculum were plated on chocolate agar plates to determine the number of CFU and verify the challenge dose. The CBA/N mice were chosen because of their high susceptibility to S. pneumoniae

infection. The LD_{50} of WU2 injected intravenously to CBA/N mice is estimated to be ≤ 10 CFU. Deaths were recorded at 24-h intervals for a period of at least 7 days.

The protection data obtained from mice injected with rabbit anti-BVH-3 antibody are set forth in the following Table 7. Nine out of 10 mice receiving the anti-BVH-3 antibody survived the challenge in contrast to none of 10 mice injected with control antibody or PBS buffer. The observation that antibody raised to the BVH-3-M molecule passively protected even when administered after the challenge demonstrated the ability of anti-BVH-3 antibody to prevent death even from an already established infection.

15 Table 7. Protective effects of rabbit antibody to BVH-3-M gene in CBA/N mice challenged i.v. with WU2 pneumococci

Antibody preparation	Time of a	•	Alive : Dead	Days to death post-infection
Anti-BVH3M	1 h infection	before	5 : 0	>14, >14, >14, >14, >14
Anti-N. meningitidis	1 h infection	before	0:5	2, 2, 2, 2, 2
Anti-BVH-3M	0.5 h infection	post-	4 : 1	2, >14, >14, >14, >14
None (PBS)	1 h infection	before	0 : 5	1, 2, 2, 2, 2

CBA/N mice were infected with 1000 CFU of WU2 S. pneumoniae before or after intraperitoneal administration of 0.1 ml of rabbit antibody.

20

In an other experiment, 0.1 ml of rabbit antibody prepared from preimmune and immune sera were administered intraperitoneally to CBA/N mice four hours before intranasal challenge with 280 CFU of <u>S. pneumoniae</u> P4241 type 3 strain.

25 As seen in the following Table 8, all immunized mice survived

the challenge while none of 9 mice receiving preimmune sera antibody or buffer alone were alive on day 6 post-infection.

S. pneumoniae hemocultures on day 11 post-challenge were negative for all surviving mice. Furthermore, 100% protection was observed in mice receiving monoclonal antibodies H112-10G9 or a mixture of H112-10G9 and H11B-7E11 which are directed against BVH-11/BVH-11-2.

10 Table 8. Protective effects of passive transfer of rabbit antibody to BVH-3-M gene product or anti-BVH-11/BVH-11-2 specific Mabs in CBA/N mice challenged i.n. with P4241 pneumococci

Antibody	Alive :	Days to death
preparation	Dead	post-infection
Anti-BVH-3M	5 : 0	>11, >11, >11, >11,
·	·	>11
Antibody from	0:5	3, 3, 3, 6, 6
preimmune sera		
H112-10G9	4 : 0	>11, >11, >11, >11
H112-10G9+H11B-	5 : 0	>11, >11, >11, >11,
7E11	-	>11
None (PBS)	0 : 4	3, 3, 3, 3

15

20

Altogether, the results from Table 7 and Table 8 clearly establish that immunization of animals with a <u>BVH-3</u> gene product such as BVH-3M elicited protective antibodies capable of preventing experimental bacteremia and pneumonia infections.

The protection data obtained for mice injected with ascites fluid are set forth in the following Table 9. Administration of a volume of 0.2 ml of ascites fluid of 0.2 ml of some sets of ascites fluid prevented death from experimental infection. For example, H112-3A4 + H112-10G9 and H112-10G2 + H112-10D7

2 Mabs conferred complete protection against experimental infection. These data indicated that antibody targetting BVH-11 and/or BVH-11-2 epitopes gave efficient The Mabs H112-3A4, H112-10G9, H112-10D7, H112-10A2, H112-3E8, H112-10C5, H11B-11B8, H11B-15G2, H11B-1C9, H11B-7E11, H11B-13D5 and H11-10B8 were present in at least one protective pair of Mabs and were said to be protective and reactive against protective epitopes. The locations of protection-conferring epitopes on BVH-11-2 molecules are summarized in Table 10 and Figure 29 . Protective Mabs H112-10 3A4, H112-10G9, H112-10D7, H112-10A2, H112-3E8, H112-10C5, H11B-11B8, H11B-15G2, H11B-1C9, H11B-7E11, H11B-13D5 and H11-10B8 were all reactive with New 10 protein corresponding to amino acid residues 271 to 838 on the BVH-11-2 molecule. Six out of these 12 Mabs were directed against epitopes present in 15 the NEW 19 protein and 3 protective Mabs recognized NEW 14. Mab H112-3A4 and H112-10C5 reacted with Interestingly, distinct epitopes exclusive to BVH-11-2 located at the carboxyl end comprised between amino acid residues 769 and 837. Also, Mabs H11-7G11, H11-6E7 and H3-4F9 reactive with 20 epitopes shared by pneumococcal BVH-3, BVH-11 and BVH-11-2 molecules did not succeed to protect even if given in combination with protective H112-10G9 or H112-11B8 Mab. These Mabs recognized epitopes located at the amino end of the BVH-3, BVH-11 and BVH-11-2 molecules comprising, respectively, 25 the first 225, 228 and 226 amino acid residues. comparison of the BVH-3, BVH-11 and BVH-11-2 protein sequences revealed that a large number of amino acids were conserved in the amino end portion comprising these 225-228 residues with a global 72.8 % identity (Figure 32). 30

Altogether the data set forth in Table 9 and Table 10 suggest that the protection eliciting BVH-11- and BVH-11-2-epitopes is comprised in the carboxy terminal product containing amino acids 229 to 840 and 227 to 838, on BVH-11 and BVH-11-2 proteins, respectively.

Table 9. Passive immunization with BVH-11- and/or BVH-11-2-specific Mabs can protect mice from lethal experimental pneumococcal infection.

Experim ent	Mab	Alive : Dead	Days to death post-infection
1	H112 3A4 + H112-10G9	6:0	6 X >10
	H112-3A4 + H112-10D7	5:1	4, 5X >10
	None	0 : 6	2, 2, 2, 2, 6
2	H112-10 A2 + H112-10D7	5 : 1	3, 5X >10
	H112-3E8 + H112-10G9	6:0	6 X >10
	None	0:6	2, 2, 2, 2, 2
3	H112-10D7 + H11B-11B8	6:0	6 X >10
	H112-10G9 + H11B-15G2	3 : 3	2, 6, 6, 3 X >10
	None	0:6	2, 2, 2, 2, 2
4	H112-10G9 + H112-10D7	5 : 0	5 X >11
	None .	0 : 5	2, 2, 2, 2, 2
.5	H112-10G9 + H11-10B8	4 : 1	8, 4 X >14
·	H112-10G9 + H11B-7E11	5 : 0	5 X >14
	None	0:3	1, 2, 2
6	H112-10G9 + H11B-1C9	4 : 1	4, 4 X >14
	None	0 : 3	2, 2, 2
7	H112-10C5 + H11B-13D5	5 :0	5 X >14
	None	3 :3	2,2,2

⁵ CBA/N mice were injected intraperitoneally with a total of 0.2 ml of ascites fluid 4 hours before intravenous challenge with S. pneumoniae WU2.

Table 10. Deduced locations of protection-conferring epitopes on BVH-11-2 molecules.

Mabs	Protection	Gene products carrying Mab- epitope
H112-3A4	+	NEW 19 and NEW 11
H112-10G9	+	NEW 19
H112-10D7	+	NEW 14 and NEW 10
H112-10A2	+	NEW 19
H112-3E8	+	NEW 19
H11B-11B8	+	NEW 19
H11B-15G2	+	NEW 18
H11B-7E11	+	NEW 14 and NEW 10
H11-10B8	+	NEW 18
H11B-1C9	+	NEW 14 and NEW 10
H112-3A1	_	NEW 18 and NEW 8
H112-10H10	-	NEW 18 and NEW 8
H112-2H7	-	BVH-11-2M
H112-6H7		BVH-11-2M
H11-7G11	-	BVH-11A and BVH-3C
H11-6E7	-	BVH-11A and BVH-3C
H112-10C5	+ .	NEW 19, NEW11 and 3A4.1
H11B-13D5	+	NEW 19
H112-7G2	-	NEW 18
H112-7E8	-	BVH-11-2M
H3-4F9	-	BVH-11A and BVH-3C

5 Altogether the data presented in this example substantiate the potential use of antibodies raised to BVH-3, BVH-11 or BVH-11-2 molecules as therapeutic means to prevent, diagnose or treat S. pneumoniae diseases.

10 EXAMPLE 6

This example describes the localization of surface-exposed peptide domains using Mabs described in Example 1.

S. pneumoniae type 3 strain WU2 was grown in Todd Hewitt (TH) broth (Difco Laboratories, Detroit MI) enriched with 0.5% Yeast extract (Difco Laboratories) at 37°C in a 8% CO2 atmosphere to give an OD_{600} of 0.260 (~10⁸ CFU/ml). bacterial suspension was then aliquoted in 1 ml samples the S. pneumoniae cells were pelletted by centrifugation and resuspended in hybridoma culture supernatants. The bacterial 10 suspensions were then incubated for 2 h at 4°C. Samples were washed twice in blocking buffer [PBS containing 2% bovine serum albumin (BSA)], and then 1 ml of goat fluorescein (FITC)-conjugated anti-mouse IgG + IgM diluted in blocking buffer was added. After an additional incubation of 60 min at 15 room temperature, samples were washed twice in blocking buffer and fixed with 0.25 % formaldehyde in PBS buffer for 18-24 h at 4°C. Cells were washed once in PBS buffer and resuspended in 500 μ l of PBS buffer. Cells were kept in the dark at 4°C until analyzed by flow cytometry (Epics® XL; Beckman Coulter, 20 Inc.). Ten thousands (10,000) cells were analyzed per sample the results were expressed as % Fluorescence and Fluorescence index (FI) values. The % Fluorescence is the number of fluorescein-labelled S. pneumoniae cells divided by 100 and the FI value is the median fluorescence value of 25 pneumococci treated with Mab supernatant divided by the fluorescence value of pneumococci treated with the conjugate alone or with a control unrelated Mab. A FI value of 1 indicated that the Mab has not been detected at the surface of the bacteria whereas a FI value higher than 2 was considered positive when at least 10 % of the pneumococcal cells were labelled and indicated that the Mab was reactive with cellsurface exposed epitopes. The following Table 11 summarized the data obtained with the Mabs tested by flow cytometry.

Flow cytometric analysis revealed that the Mabs reactive with BVH-3C and/or BVH-11A molecules did not bind to the cell surface. In contrast, with the exception of Mabs H3V-9C6 and H3V-16A7, the Mabs reactive with NEW 1, NEW 2, NEW 3, NEW 22 or NEW 23 BVH-3 gene products were detected at the surface of pneumococci. These data indicated that the first 225 amino acid residues located at the amino end of BVH-3 are internal. The lack of binding of Mabs H3V-9C6 and H3V-16A7 suggest some portions of the sequence corresponding to the 177-amino acids absent from the BVH-3 molecule of <u>S. pneumoniae</u> SP63 appears not to be accessible to antibodies.

10

Results from BVH-11- and/or BVH-11-2-reactive Mabs revealed that there is a good correlation between surface-exposure and protection. All Mabs reactive with internal epitopes as determined by the flow cytometry assay were not protective whereas all the protective Mabs described in Example 5 gave a positive signal in flow cytometry. Although an FI value of 9.0 and a % Fluorescence of 81.2 were obtained with Mab H11-7G11, this Mab was not shown to protect. Additional assays can be used to further evaluate whether this Mab and its corresponding epitope might participate in anti-infectious immunity.

25 Table 11. Results from the binding of Mabs at the surface of S. pneumoniae by flow cytometry analysis

Mab .	% Fluoresce nce	FI	Bindin g	Gene products carrying Mab-epitope
H3-4F9	3.4	1.2	-	BVH-3C and BVH-11A
H3-4D4	3.4	1.2	-	BVH-3C and BVH-11A
H3-9H12	2.5	1.1	-	BVH-3C and BVH-11A
H3-7G2	66.2	6.3	+	NEW 22
H3-10A1	58.8	5.6	+	NEW 23

Mab	% Fluoresce nce	FI	Bindin	Gene products carrying Mab-epitope
H3-4D3	33.2	3.5	+	NEW 3
H3V-4F3	24.4	2.9	+	NEW 1
H3V-2F2	15.6	2.4	+	NEW 2
H3V-7F4	58.7	5.6	+	NEW 2
H3V-7H3	68.8	6.9	+ .	NEW 3
H3V-13B8	75.0	7.7	+	NEW 3.
H3V-9C2	66.4	6.2	+	NEW 22
H3V-9C6	2.9	1.0	-	NEW 22
H3V-16A7	6.6	1.7	-	NEW 23
H3V-	58.7	5.7	+	NEW 22 and NEW 23
15A10				
HN1-5H3	43.4	5.3	+	NEW 1
HN1-8E3	57.4	6.6	+	NEW 1
HN1-14F6	57.8	6.7	+	NEW 1
HN1-2G2	54.8	6.3	+	NEW 2
HN1-12D8	14.3	3.0	+	NEW 2
HN1-14B2	11.5	2.7	+	NEW 2
HN1-1G2	59.9	7.0	+	NEW 3
HN1-	13.6	2.8	+	NEW 3
10C12				
H11-6E7	4.9	1.2	-	BVH-3C and BVH-11A
H11-	6.5	1.6		BVH-3C and BVH-11A
10H10				
H11-7G11	81.2	9.0	+	BVH-3C and NEW 2
H11-1B12	3.1	1.2	-	BVH-11A
H11-7B9	2.4	1.1	-	BVH-11A
H11-10B8	81.1	9.1	+	NEW 18 and NEW 8
H11-1A2	84.4	10	+ .	NEW 18 and NEW 8
H11-3H5	84.0	9.8	+	NEW 18 and NEW 8
H112-	49.3	5.9	+	NEW 18 and NEW 8
13C11				
H112-	0.4	1.0	-	BVH-11A and NEW 18

Mab	% Fluoresce nce	FI	Bindin g	Gene products carrying Mab-epitope
10H10			<u> </u>	·
H112-1D8	0.4	1.0	-	BVH-11A and NEW 18
H112-	78.9	10.4	+	NEW 19
10G9				
H112-	75.5	9.6	+ .	NEW 19
10A2				
H112-3E8	62.5	7.5	+	NEW 19
H112-	64.5	7.7	+	NEW 14
10D7				
H112-2H7	0.7	1.1	-	BVH-11A
H112-6H7	0.3	1.0	-	BVH-11A
H112-3A4	70.1	8.9	+	NEW 11
H112-	86.3	9.2	+	NEW 11 AND 3A4.1
10C5				
H112-	89.6	11	+	NEW 11 .
14H6				
H112-	0.8	1.4	-	NEW 11
14H6		·		
H112-7G2	4.7	2.0	-	NEW 18
H112-	0.5	1.0	-	NEW 18
13H10] .			
H112-7E8	0.4	1.0	- .	BVH-11-2M
H112-7H6	0.2	1.0	-	BVH-11-2M
H11B-	3.1	1.1	-	NEW 18
5F10				
H11B-	60.2	5.7	+ .	NEW 18 and NEW 8
15G2				
H11B- '	75.7	8.3	+	NEW 19
13D5				
H11B-	78.4	8.3	+	NEW 19
11B8	}			
H11B-	32.3	3.5	+	NEW 14

Mab	% Fluoresce nce	FI	Bindin g	Gene products carrying Mab-epitope
7E11				
H11B-1C9	57.3	5.5	+	NEW 14
H11B-5E3	1.8	1.0	-	NEW 7
H11B-6E8	2.4	1.0	-	NEW 7

EXAMPLE 7

5 This example describes the immunization of animals with peptide epitopes of BVH-3 and BVH-11-2.

recombinant pSCREEN-T vector (Novagen, Madison, containing DNA fragment (nucleotides 2421 to 2626 on SEQ ID NO: 5) encoding the Mab 3A4-epitope (SEQ ID NO: 24) was 10 transformed by electroporation (Gene Pulser II apparatus, BIO-RAD Labs, Mississauga, Canada) into \underline{E} . \underline{coli} Tuner ($\lambda DE3$) pLysS [BL21 (F' ompT hsdSB (rB-mB-) gal dcm lacYI pLysS (Cmr)] In this strain, the expression of the fusion (Novagen). protein is controlled by the T7 promoter which is recognized by the T7 RNA polymerase (present on the $\lambda DE3$ prophage, itself under the control of the lac promoter inducible by isopropyl- β -D-thiogalactopyranoside (IPTG). The pLysS plasmid reduces the basal fusion protein expression level by coding for a T7 lysozyme, which is a natural inhibitor of the T7 20 polymerase.

The transformants were grown at 37°C with 250 RPM agitation in LB broth (peptone 10g/l, yeast extract 5g/l, NaCl 5g/l) supplemented with 50mM glucose, $100\mu g/ml$ carbenicillin and $34\mu g/ml$ chloramphenicol, until the absorbance at 600nm reached a value of 0,7. The overexpression of T7gene 10 protein-His•Tag-3A4.1 fusion protein was then induced by the addition of IPTG to a final concentration of 1mM and further

incubation at 25°C with 250 RPM agitation for 3 hours. Induced cells from a 800-ml culture were pelleted by centrifugation and frozen at -70°C. The fusion protein was purified from the soluble cell fraction by affinity chromatography based on the 5 binding of a six histidine residues sequence (His-Tag) to divalent cations (Ni2+) immobilized on a metal chelation Ni-NTA resin (Qiagen, Mississauga, Canada). Briefly, pelleted cells were thawed and resuspended in Tris buffered sucrose solution (50mM Tris, 25%(w/v) sucrose) and frozen at -10 70°C for 15 minutes. Cells were incubated 15 minutes on ice in lysozyme before disruption 2mg/ml presence of sonication. The lysate was centrifuged at 12000 RPM for 30 minutes and Nickel charged Ni-NTA resin (QIAgen) was added to the supernatant for an overnight incubation at 4°C, with 100 After washing the resin with a buffer 15 RPM agitation. consisting of 20mM Tris, 500mM NaCl, 20mM imidazole pH 7,9, the fusion 3A4.1 protein was eluted with the same buffer The removal of the salt supplemented with 250mM imidazole. and imidazole was done by dialysis against PBS at 4°C. The protein concentration was determined with BCA protein assay reagent kit (Perce, Rockford, IL) and adjusted to 760 μ g/ml.

To evaluate whether immunization with an epitope peptide sequence could confer protection against disease, groups of 6 female CBA/N (xid) mice (National Cancer Institute) are immunized subcutaneously three times at three-week intervals with affinity purified T7gene10 protein-His•Tag-3A4.1 fusion protein or, as control, with QuilA adjuvant alone in PBS. Twelve to fourteen days following the third immunization, the mice are challenged intravenously with <u>S. pneumoniae</u> WU2 strain or intranasally with P4241 strain. Samples of the <u>S. pneumoniae</u> challenge inoculum are plated on chocolate agar plates to determine the number of CFU and to verify the challenge dose. The challenge dose are approximalety 300 CFU. Deaths are recorded daily for a period of 14 days and on day

25

30

14 post-challenge, the surviving mice are sacrificed and blood samples tested for the presence of <u>S. pneumoniae</u> organisms. The 3A4.1 protein or other tested protein is said protective when the number of mice surviving the infection or the median number of days to death is significantly greater in the 3A4.1-immunized group compared to the control mock-immunized group.

EXAMPLE 8

10 This example illustrates the improvement of the antibody response to pneumococci using BVH-3 fragments and variants thereof.

The combined results obtained from studies of Mab reactivity with truncated gene products, epitope-expressing colonies and live intact pneumococci presented in examples 2, 3 and 6, allowed to delineate between surface-exposed and internal epitopes. The epitopes detected by Mabs that efficiently bound to pneumococci cells mapped to a region comprised between amino acid residues 223 to 1039 of BVH-3 described in SEQ ID NO 6. The existence of protective epitopes in the BVH-3-carboxyl half was confirmed by demonstrating that mice immunized with NEW1 molecule were protected from fatal infection with P4241 strain.

25

15

20

Gene sequence comparison revealed that in some strains, the region of BVH-3 encoding for amino acids 244 to 420 as described in SEQ ID NO6 is absent thus suggesting the lack of utility of this sequence in vaccine to prevent disease caused by such strains (SEQ ID NO: 9 versus SEQ ID NO: 1). Further BVH-3 fragments or variants thereof were designed in the purpose to develop a universal highly effective vaccine that would target the immune response to ubiquitous surface-exposed protective epitopes. BVH-3 gene fragments designated NEW1 (encoding amino acid residues 472 to 1039 from SEQ ID NO: 6) and NEW40 (encoding amino acid residues 408 to 1039 from SEQ

ID NO: 6) were amplified from the S. pneumoniae strain SP64 by PCR using pairs of oligonucleotides engineered for the amplification of the appropriate gene fragment. Each of the primers had a restriction endonuclease site at the 5'end, thereby allowing directional in-frame cloning of the amplified product into the digested plasmid vector. PCR-amplified products were digested with restriction endonucleases and ligated to linearized plasmid pET21 (Novagen) expression vector digested likewise. Oligonucleotide primers HAMJ489 (ccgaattccatatgcaaattgggcaaccgactc; NdeI) and (cgccaagcttcgctatgaaatcagataaattc; HindIII) were used for the NEW 40 construction. Clones were first stabilized in E. coli DH5 α before introduction into E. coli BL21 (λ DE3) for expression of the truncated gene products. Variants from NEW1 and NEW40 were generated by mutagenesis using the Quickchange Site-Directed Mutagenesis kit from Stratagene and the oligonucleotides designed to incorporate the appropriate The presence of 6 histidine tag residues on the Cmutation. recombinant molecules simplified terminus the purification of the proteins by nickel chromatography. The following tables 12 and 13 describe the sequences of the primers used for the mutagenesis experiments and the variant gene products generated, respectively. Mutagenesis experiments using primer sets 39, 40, 46, 47 or 48 resulted in silent 25 changes and were performed in the purpose of improving the expression of the desired gene or gene fragment since it was observed that during the course of expression, BVH-3 gene and fragments of, shorter secondary translation initiation products were coexpressed.

10

15

20

oligonucleotide primer sets used for site-directed mutagenesis on PCR List Table 12. gene trun<u>c</u>

ψ H	fication 13 14 15 16 17 18	SEQ ID No	S
		SEQ ID No	Primer SEQUENCE
		1777	
	13 . 144 . 15 16 17 18	177	5,> 3,
	14 15 16 17 18 2		GAATCAGGTTTTGTCATGAGTTCCGGAGACCACAATCATTATTTC
	115 117 118 118	178	GAAATAATGATTGGTCTCCGGAACTCATGACAAAACCTGATTC
	16 17 18 18	179	GTCATGAGTTCCGGAGACTCCAATCATTATTTCTTCAAGAAGG
	1.7 1.8 1.0 2.0	180	CCTTCTTGAAGAAATAATGATTGGAGTCTCCGGAACTCATGAC
	18	181	ATGAGTTCGGAGACTCCAATTCTTTTTTTTCTAAGAAGGACTTG
	1 2	182	CAAGTCCTTCTTGAAGAATAAGAATTGGAGTCTCCGGAACTCAT
	~	183	GCGATTATTTATCCGTCTGGAGATCACCATCATGC
	3	184	GCATGATGGTGATCCCAGACGGATAAATAATCGC
	3	185	CCGTCTGGAGATGGCCATCATGCAGATCCG
	4	186	CGGATCTGCATGGCCATCTCCAGACGG
	7	187	CCGCAGGGAGATAAGCGTCATGCAGATCCGATTG
	œ	188	CAATCGGATCTGCATGACGCTTATCTCCCTGCGG
	5	189	CCGTCTGGAGATGGCACTCATGCAGATCCGATTG
	9	190	CAATCGGATCTGCATGAGTGCCATCTCCAGACGG
	7	191	CCGTCTGGAGATGGCACTTCTGCAGATCCGATTGATG
	ω	192	CATCAATCGGATCTGCAGAGTGCCATCTCCAGACGG
	23	193	CCGCATGGAGATGGCATGCAGATCCG
	24	194	CGGATCTGCATGGCCATCTCCATGCGG
	26	195	GTCATGAGTCACGGAGACTCCAATCATTATTTCTTCAAGAAGG
	27	196	CCTTCTTGAAGAAATAATGATTGGAGTCTCCGTGACTCATGAC
	28	197	ATGAGTCACGGAGACCACAATTCTTATTTCTTCAAGAAGGACTTG
	29	198	CAAGICCITCITGAAGAATAAGAATIGIGGICICCGIGACICAT
	69	199	TACCTCATTATGACTCTTACTCTAACATCAAATTTGAGTGGTTTG
	70	200	CAAACCACTCAAATTTGATGTTAGAGTAAGAGTCATAATGAGGTA
30 HAMOS/1	71	201	TACCTTCTTATGACCATTACTCTAACATCAAATTTGAGTGGTTTG
HAMJ572	72	202	AAACCACTCAAATTTGATGTTAGAGTAATGGTCATAAGAAGGTA
31 HAMJ573	73	203	AACGGTAGTTTAATCATACCTTCTAAAGACCATTACCATAACATC
HAMJ574	74	204	GATGTTATGGTAATGGTCTTTAGAAGGTATGATTAAACTACCGTT

		CHE	be goottando
Primer set	Frimer identification	ID NO	5> 3.
32	HAMJ575	205	CGGTAGTTTAATCATACCTCATAAGGACTCTTACCATAACATCAAA
	HAMJ576	206	TTTGATGTTATGGTAAGAGTCCTTATGAGGTATGATTAAACTACCG
33	HAMJ577	207	AACGGTAGTTTAATCATACCTGACCATTACCATAACATCAAATTTG
	HAMJ578	208	CAAATTTGATGTTATGGTAATGGTCAGGTATGATTAAACTACCGTT
34	HAMJ579	209	AACGGTAGTTTAATCATACCTTACCATAACATCAAATTTGAGTGG
	HAMJ580	210	CCACTCAAATTTGATGTTATGGTAAGGTATGATTAAACTACCGTT
35	HAMJ581	211	ACCGGTAGITIAATCATACCTAACATCAAATTTGAGTGGTTTGAC
	HAMJ582	212	GTCAAACCACTCAAATTTGATGTTAGGTATGATTAAACTACGGTT
37	HAMJ536	213	CCTATGTAACTCCACATATAACCCATAGCCACTGG
	HAMJ537	214	CCAGTGGCTATGGGTTATGTGGAGTTACATAGG
39	HAMJ550	215	CGTGAAAGTATTGTCGTAAATAAAGAAAAAAATGCG
	HAMJ551	216	CGCATTTTTTTTTTTTACGACAATACTTTCACG
40	HAMJ586	217	CATGAAGAAGATGGTTACGGTTTCGATGCTAACCGTATTATCGCTGAAG
	HAMJ587	218	CTICAGCGATAATACGGTTAGCATCGAAACCGTAACCATCTTCTTCTG
41	HAMJ588	219	GAATCAGGTTTTGTCATGAGTGACCACAATCATTATTTCTTC
	HAMJ589	220	GAAGAAATAATGATTGTGGTCACTCATGACAAAACCTGATTC
42	HAMJ590	221	GAAGATGAATCAGGTTTTGTCATGAGTAATCATTATTTCTTCAAG
	HAMJ591	222	CITGAAGAAATAATGATTACTCATGACAAAACCTGATTCATCTTC
43	HAMU592	223	GAAGATGAATCAGGTTTTGTCATGAGTTATTTCTTCAAGAAGGAC
	HAMJ593	224	GTCCTTCTTGAAGAAATAACTCATGACAAAACCTGATTCATCTTC
44	HAMJ594	225	AAAATGCGATTATTTATCCGCACCATCATGCAGATCCGATTG
	HAMJ595	226	CAATCGGATCTGCATGATGGTGCGGATAAATAATCGCATTTT
45	HAMJ600	227	AAAATGCGATTATTTATCCGGCAGATCCGATTGATGAACATAAAC
	HAMJ601	228	GTTTATGTTCATCAATCGGATCTGCCGGATAAATAATCGCATTTT
46	HAMJ604	229	GATGCTAACCGTATAATCGCCGAAGACGAATCAGGTTTTGTCATG
	HAMJ605	230	CATGACAAAACCTGATTCGTCTTCGGCGATTATACGGTTAGCATC
47	HAMJ606	231	CGCCGAAGACGAATCCGGCTTTGTAATGAGTCACGGAGACTCC
	HAMJ607	232	GGAGTCTCCGTGACTCATTACAAAGCCGGATTCGTCTTCGGCG
48	HAMJ608	233	CATCTCATGAACAGGATTATCCCGGCAACGCCAAAGAAATGAAAG
	HAMJ609	234	CTITICATITICITIEGCGILGCCGGGALAAICCIGIICAIGAGAIG

	of trung	cated variant BVH-3 gene products g	generated from S.	pneumoniae SP64	64
Ø	le/	ein Identification*	PCR primer set		for
designation	Protein SEO ID NO		(ref. table 12)	титаделевія	
NEW1	255	NEW1	39	NEW1	
mut1**					·
NEW35A	256	NEW1 550-SGDGTS-555	14,17,20,22	NEW1	
NEW42	257	NEW40 55-SGDSNS-60 144-SGDGTS-149	9, 10, 11, 14, 17, 20, 22	NEW40	
NEW49	258	NEW40 55-SGDHNH-60	o	NEW40	1
NEWSO	259	NEW40 55-SGDSNH-60	10	NEW49	
NEWSI	260	NEW40 55-SGDHNH-60 144-SGDHHH-149	14	NEW49	
NEW52	261	NEW40 55-SGDSNH-60 144-SGDGHH-149	10, 17	NEW51	
NEW53	262	NEW40 55-HGDHNH-60 144-SGDHHH-149	14	NEW40	
NEW54	263	NEW40 55-SGDHNH-60 144-SGDGHH-149	17	NEW53	
NEWSS	264	NEW1 550-HGDGHH-555	23	NEWl	
NEW56	265	NEW40 55-HGDSNH-60 144-SGDHHH-149	24	NEW53	
NEW56-	266	NEWS6	40	NEW56	
mut2**	.,				
NEWS6-	267	NEWS6	46,47,48	NEW56	
mut3 * *					
NEWS7	268	NEW40 55-HGDHNS-60 144-SGDHHH-149	25	NEW53	
NEW63	269	NEW40 55-HGDSNH-60 144-HGDHHH-149	24	NEW40	
NEW64	. 270	NEW40 55-HGDHNS-60 144-HGDHHH-149	25	NEW40	
NEW65	271	NEW40 55-HGDSNH-60 144-HGDGHH-149	23	NEW63	

Table 1

Protein	Gene/	Protein Identification*	PCR primer set	Gene used for	
designation Protein	Protein		(ref. table 12)	mutagenesis	
	SEQ ID NO		,		
NEW66	272	NEW40 55-HGDHNS-60 144-HGDGHH-149	23	NEW64	
NEW76	273	NEW40 55-HGDHNS-60 144-SGDGHH-149	. 17	NEW64	,
NEW105	274	NEW40 5560	41,42,43	NEW40	
NEW106	275	New40 144	44,45	NEW40	
NEW107	276	NEW40 5560 144149	44,45	NEW105	
he underlin	ed amino	underlined amino acid residues represent the	represent the modification in protein	1	sednence.

represent the modification in protein NEW105, NEW106 and NEW107 constructs. Nucleotides/amino acid residues are deleted amino underlined The

** silent mutation, i.e. the polypeptide is the same as New1.

Groups of 7 or 8 female BALB/c mice (Charles River) immunized as described earlier in example 1 were used for protection experiments against intranasal challenge with virulent <u>S.</u>

5 pneumoniae P4241 strain. The mice were observed for 10 to 14 days post-infection. Data from Table 15 clearly indicate that the NEW35A molecule was equivalent to the parental NEW1 in term of protection. Interestingly, high survival rates where obtained for NEW40- and NEW56-immunized groups with 7 and 8 survivors out of 8 animals, respectively. Similarly, NEW25 comprising amino acid residues 233 to 1039 protected 7 out of 8 animals from lethal infection.

Table 14. Protection mediated by BVH-3 fragments or variants thereof in experimental pneumonia

Expe	Immunogen	Alive	Days to death post-infection
rime	_	: Dead	
nt			·
1	Quil A	0 : 8	4, 4, 4, 4, 4, 4, 4
	NEW 1	5 : 3	5, 7, 7, >14, >14, >14, >14, >14
	NEW 35A	5 : 2	9, 10, >14, >14, >14, >14, >14
	. NEW 40	7 : 1	13, >14, >14, >14, >14, >14, >14, >14
	BVH-3M	4 : 4	7, 8, 10, 12, >14, >14, >14, >14
2	Quil A	0 : 8	3, 3, 4, 4, 4, 4, 4
	NEW 52	4 : 4	7, 7, 8, 9, >10, >10, >10, >10
1	NEW56	8 : 0	8 X >10
	NEW 40	7 : 1	6, >10, >10, >10, >10, >10, >10, >10
3	QuilA	0 : 8	3, 3, 4, 4, 4, 4, 4
	NEW25	7 : 1	6, >13, >13, >13, >13, >13, >13

Additionally, flow cytometry analyses of the binding capacity of the sera antibodies from the vaccinated animals revealed that NEW40 and NEW56 antibodies labelled live intact pneumococci more efficiently than antibodies raised to BVH-3M (Table 15).

Table 15. Binding of mouse sera antibodies at the surface of S. pneumoniae type 3 strain WU2 as measured by flow cytometry.

Antisera		Flu	orescence inde	x
	Experiment	Experimen	t Experiment	Mean ± SE
	1	2	3	
BVH-3M	9.2	11.4	14.5	11.7 ± 1.5
NEW1	11.5	10.1	nd*	10.8 ± 0.7
NEW35A	14.3	12.9	nd	13.6 ± 0.7
NEW40	20.4	19.1	20.2	19.9 ± 0.4
NEW56	nd	16.7	20.2	18.5 ± 1.8
NEW52	nd	16.6	19.3	18.0 ± 1.4
Adjuvant	1.9	1.6	1.2	1.6 ± 0.2
alone				

^{*} nd: not done

5 Cytometry results are expressed as fluorescence index value where the fluorescence index is the median fluorescence value of pneumococci treated with test sera divided by the background fluorescence value of pneumococci treated with the fluorescein conjugate alone. In these flow cytometric assays, all sera were used at a dilution of 1:50 and the sera from mice immunized with BVH-3C fragment or QuilA adjuvant alone gave a value similar to the background value.

Altogether the protection and pneumococci antibody binding data indicate that vaccination using NEW1 or NEW40 molecules and variants thereof, directs the immune response to conserved protective surface-exposed epitopes.

EXAMPLE 9

20 This example describes the cloning and expression of a chimeric deletant BVH-11-2 gene encoding for a chimeric polypeptide corresponding to BVH-11-2 conserved protective surface-exposed epitopes present in most if not all \underline{S} . pneumoniae strains.

BVH-11-2 gene fragments corresponding to 4 gene regions, were amplified by PCR using pairs of oligonucleotides engineered to amplify fragments originating from SEQ ID NO:5 spanning nucleotides 1662 to 1742, 1806 to 2153, 2193 to 2414 and 2484 to 2627 from S. pneumoniae strain Sp64 BVH-11-2 gene.

primers used, HAMJ490-491, HAMJ492-HAMJ493, HAMJ494-HAMJ495, HAMJ496-HAMJ354 had a restriction endonuclease site at the 5' end, thereby allowing directional in-frame cloning 10 of the amplified product into the digested pET21b(+) plasmid vector (Table 16). PCR-amplified products were digested with restriction endonucleases and ligated to linearized plasmid pSL301 vector digested likewise except for the PCR-amplified fragment obtained with the primer pair HAMJ490-HAMJ491. The 15 HAMJ490-HAMJ491 PCR-amplified product was purified from agarose gel using a QIAquick gel extraction kit from QIAgen (Chatsworth, CA) and ligated into pGEM-T plasmid vector without any prior restriction endonuclease digestion. resultant plasmid constructs were confirmed by nucleotide 20 sequence analysis. The recombinant plasmids containing each of were digested with restriction endonucleases four the corresponding with the 5' end of each primer pair used for the The fragments were purified from agarose PCR-amplification. gel like described earlier and were all ligated to linearized 25 plasmid pET21b (+) digested with the restriction enzymes NdeI and HindIII for the in-frame cloning of the four different regions of the BVH11-2 gene. Clones were first stabilized in E.coli DH5α before introduction into E.coli BL21 (λDE3) for expression of a chimeric pneumococcal protein molecule. 30

The resulting $\underline{\text{NEW43}}$ gene sequence (SEQ ID No 257) is described in Figure 33.

WO 01/98334

PCT/CA01/00908

The deduced amino acid sequence of NEW43 protein (SEQ ID No 258) is described in Figure 34.

Table 16. List of PCR oligonucleotide primers used to construct the $\underline{\text{NEW43}}$, $\underline{\text{VP43S}}$ and $\underline{\text{NEW86}}$

SEQ	Sequence 5' - 3'	Nucleotide	Restrictio
ID NO	·	position	n
			sites
259	ccgaattccatatgcaaat		NdeI
	tacctacactgatgatg	1683	
260	ggactagtatcaaagatat		SpeI
	aaccgtcttc	5 :1742- 1722	
261	ggactagttggattaaaaa		SpeI
	agatagtttgtctg	1830	
262	ttcccgcggttcgacatag	_	SacII
-	tacttgacagtcg	2131	
263	ttcccgcggaacgctagtg	, ~	SacII
	accatgttcg	1	
264	caaatacaaaattta		KpnI
204		1	Trpiii
		2393	
265	cccggtacccctagtatta		KpnI
	gacaaaatgctatggag	5 :2484- 2510	
65	cgccaagcttctgtatagg	1 ~	HindIII
	agccggttgac	5 :2627- 2608	
266	ggatcccgggaggtatgat	_	SmaI
	taaactaccg	5 :2039- 2021	
267	catgcccgggaacatcaaa	; -	SmaI
	tttgagtggtttgac	5 :2058- 2081	
268	cttgatcgacatatgttgg	_	NdeI
	caggcaagtacacaacag	1	
	259 260 261 262 263 264 265 65 266	259 Ccgaattccatatgcaaat tacctacactgatgatg 260 ggactagtatcaaagatat aaccgtcttc 261 ggactagttggattaaaaa agatagtttgtctg 262 ttcccgcggttcgacatagtgacattgacgggaacgctagtgacatgttcg 263 ttcccgcggaacgctagtgacatgttcg 264 cggggtaccaggaatttcagcetcatctgtg 265 cccggtacccctagtattagacaaaatgctatggag 65 cgcaagcttctgtataggag 266 ggatcccgggaggtatgat 267 catgccgggaacatcaaa tttgagtggtttgac 268 cttgatcgacatatgttgg	TD NO position 259 ccgaattccatatgcaaat tacctacactgatgatg SEQ ID 260 ggactagtatcaaagatat accgtcttc SEQ ID 261 ggactagttggattaaaaa agatattgtctg SEQ ID 262 ttcccgcggttcgacatag SEQ ID 262 ttcccgcggttcgacatag SEQ ID 5:2153-2131 SEQ ID 263 ttcccgcggaacgctagtg SEQ ID 5:2193-2212 SEQ ID 264 cggggtaccaggaacgctagtg SEQ ID 5:2193-2212 SEQ ID 265 cccggtacccctagtattcagga SEQ ID 5:2414-2393 SEQ ID 65 cgccaagcttctgtatagg SEQ ID 65 cgccaagcttctgtatagg SEQ ID 65 cgccaagcttctgtatagg SEQ ID 65 cgccaagctggagtatgat SEQ ID 5:2627-2608 SEQ ID 5:2039-2021 Seq

Table 17. List of truncated $\underline{BVH-11-2}$ gene fragments generated from S. pneumoniae SP64 for the construction of NEW43

From B. predmerized 2101 201						
PCR-primer sets	Gene	Correspondin	Cloning			
	fragment	g amino acid	vector			
	designation	residues				
		on SEQ ID	,			
		NO: 8				
HAMJ490-HAMJ491	NEW43a	517-543	pGEM-T			
HAMJ492-HAMJ493	NEW43b	565-680	pSL301			
	NIDITA O	604 767	pSL301			
HAMJ494-HAMJ495	NEW43c	694-767				
HAMJ496-HAMJ354	NEW43d	791-838	pSL301			
1	l		<u>. </u>			

5

Table 18. Properties of $\underline{\text{NEW86}}$ and $\underline{\text{VP43S}}$ genes generated from NEW43 gene

MRM43 Gene		
PCR-primer sets	Gene/	Identification
	Protein	
· ·	designation	
HAMJ610-HAMJ354	VP43S	NEW43 C'end corresponding to
		residues 15-272)
HAMJ490-HAMJ583	NEW86	NEW43 109PG114
HAMJ584~HAMJ354		

10 NEW43-derived molecules designated VP43S and NEW86 were generated from gene amplification and cloning experiments using PCR primers described in Tables 16 and 18 and pET21 expression plasmid vector. Variants from NEW43 were generated by mutagenesis using the Quickchange Site-Directed Mutagenesis kit from Stratagene and the oligonucleotides designed to 15 incorporate the appropriate mutation. The presence of 6 histidine tag residues on the C-terminus of the recombinant molecules simplified the purification of the proteins by The following tables 19 and 20 nickel chromatography. describe the sequences of the primers used for the mutagenesis 20 experiments and the NEW43 variant gene products generated, respectively.

5 Table 19. List of PCR oligonucleotide primer sets used for site-directed mutagenesis on NEW43 gene

Prim	Primer	SEQ	Primer SEQUENCE
er set	identi- fication	NO	5'> 3'
1	HAMJ 497	269	AACGGTAGTTTAATCATACCTTCTTATGACCATTACCATAACATC
	HAMJ 498	270	GATGTTATGGTAATGGTCATAAGAAGGTATGATTAAACTACCGTT
2	HAMJ499	271	AATCATACCTTCTTATGACTCTTACCATAACATCAAATTTGAGTG
	HAMJ500	272	CACTCAAATTTGATGTTATGGTAAGAGTCATAAGAAGGTATGATT
3	HAMJ501	273	TACCTTCTTATGACTCTTACTCTAACATCAAATTTGAGTGGTTTG
	HAMJ502	274	CAAACCACTCAAATTTGATGTTAGAGTAAGAGTCATAAGAAGGTA
26	HAMJ530	275	AATCATACCTCATTATGACTCTTACCATAACATCAAATTTGAGTG
	HAMJ531	276	CACTCAAATTTGATGTTATGGTAAGAGTCATAATGAGGTATGATT
27	HAMJ532	277	TACCTCATTATGACCATTACTCTAACATCAAATTTGAGTGGTTTG
	HAMJ533	278	CAAACCACTCAAATTTGATGTTAGAGTAATGGTCATAATGAGGTA
29	HAMJ569	279	TACCTCATTATGACTCTTACTCTAACATCAAATTTGAGTGGTTTG
	HAMJ570	280	CAAACCACTCAAATTTGATGTTAGAGTAAGAGTCATAATGAGGTA
30	HAMJ571	281	TACCTTCTTATGACCATTACTCTAACATCAAATTTGAGTGGTTTG
	HAMJ572	282	AAACCACTCAAATTTGATGTTAGAGTAATGGTCATAAGAAGGTA
31	HAMJ573	283	AACGGTAGTTTAATCATACCTTCTAAAGACCATTACCATAACATC
	HAMJ574	284	GATGTTATGGTAATGGTCTTTAGAAGGTATGATTAAACTACCGTT
32	HAMJ575	285	CGGTAGTTTAATCATACCTCATAAGGACTCTTACCATAACATCAAA
	HAMJ576	286	TTTGATGTTATGGTAAGAGTCCTTATGAGGTATGATTAAACTACCG
33	HAMJ577	287	AACGGTAGTTTAATCATACCTGACCATTACCATAACATCAAATTTG
	HAMJ578	288	CAAATTTGATGTTATGGTAATGGTCAGGTATGATTAAACTACCGTT
34	HAMJ579	289	AACGGTAGTTTAATCATACCTTACCATAACATCAAATTTGAGTGG
	HAMJ580	290	CCACTCAAATTTGATGTTATGGTAAGGTATGATTAAACTACCGTT
35	HAMJ581	291	ACCGGTAGTTTAATCATACCTAACATCAAATTTGAGTGGTTTGAC
	HAMJ582	292	GTCAAACCACTCAAATTTGATGTTAGGTATGATTAAACTACCGTT

Table 20. List of NEW43 variant gene products generated from S. pneumoniae SP64

s. pheulioni			Τ	T
Polypeptide designation		Polypeptide identification*	PCR primer set (ref. table 22)	Gene used for mutagenesis
NEW60	293	NEW43 109-SYDHYH-114	1.	NEW43
NEW61	294	NEW43 109-HYDSYH-114	26	NEW43
NEW62	295	NEW43 109-HYDHYS-114	27	NEW43
NEW80	296	NEW43 109-SYDSYH-114	2	NEW60
NEW81	297	NEW43 109-SYDSYS-114	3	NEW80
NEW82	298	NEW43 109-HYDSYS-114	29	NEW61
NEW83	299	NEW43 109-SYDHYS-114	30	NEW60
NEW84	300	NEW43 109-SKDHYH-114	31	NEW60
NEW85	301	NEW43 109-HKDSYH-114	32	NEW61
NEW88D1	302	NEW43 109DHYH-114	33	NEW43
NEW88D2	303	NEW43 109YH-114	34 .	NEW88D1
		NEW43 109114		

^{*} The underlined amino acid residues represent the modification in protein sequence. Nucleotides/amino acid residues are deleted in NEW88D1, NEW88D2 and NEW88 constructs.

Groups of 7 or 8 female BALB/c mice (Charles River) immunized as described earlier in example 1 were used for protection experiments against intranasal challenge with virulent <u>S. pneumoniae</u> P4241 strain. Data from Table 21 clearly indicate that NEW 19, NEW43 and variants thereof provided protection against experimental pneumonia.

Table 21. Protection mediated by NEW19 and NEW43 fragments or variants thereof in experimental pneumonia

Exper	Immunogen	Alive :	Median day alive
iment		Dead	
1	Quil A	0:8	4, 4, 4, 4, 4, 4, 5
	NEW 19	7 : 1	5, 7X >14
	NEW 43	8 : 0	8X >14
2	Quil A	0 : 8	4, 4, 4, 4, 5, 5, 5
	NEW 43	7 : 1	8, 7X >14
	NEW 80	6 : 2	5, 6, 6 X >14
	NEW 83	6 : 2	8, 10, 6 X >14
3	Quil A	0:8	4, 4, 4, 4, 5, 5, 5, 5
	NEW 43	7 : 1	5, 7X >8
	NEW 88D1	5 : 3	5, 6, 6, 6 X >8
	NEW 88D2	5 : 3	6, 6, 6, 6 X >8
	NEW 88	7 : 1	6, 7X >8
3	Quil A	0:8	4, 4, 4, 5, 5, 5, 5, 6
	NEW 60	8 : 0	8 X >8
	NEW 84	8 : 0	8 X >8
	NEW 85	5 : 3	5, 7, 7, 5 X >8
	NEW 86	5 : 3	5, 6, 6, 5 X >8

5

EXAMPLE 10

This example describes the cloning and expression of chimeric genes encoding for a chimeric protein corresponding to the carboxy-terminal region of BVH-3 or variants thereof in fusion, at either the carboxyl end or the amino end, to NEW43 or variants thereof.

15 The chimeric genes comprising a BVH-3 truncate variant gene and a NEW43 or NEW43 variant gene have been designed following

the procedure described in example 1. The polypeptides encoded by these chimeric genes are listed in the table 22. Briefly, gene fragments to be included in a chimeric gene were amplified by PCR using pairs of oligonucleotides engineered so that the primers had a restriction endonuclease site at the 5' end, thereby allowing directional in-frame cloning of the amplified product into digested plasmid vectors (Table 23 and PCR-amplified products were digested with Table 24). restriction endonucleases and ligated to linearized plasmid pSL301 vector. The resultant plasmid construct were confirmed by nucleotide sequence analysis. The recombinant pSL301 plasmids containing a PCR product were redigested with the same endonuclease restriction enzyme for the obtention of the DNA inserts. The resulting insert DNA fragments were purified and inserts corresponding to a given chimeric gene were 15 ligated into pURV22-NdeI vector for the generation of a The expressed recombinant proteins were chimeric gene. supernatant fractions obtained purified from centrifugation of sonicated heat-induced E. coli cultures using multiple chromatographic purification steps. 20

List of polypeptides encoded by chimeric genes comprising a BVH-3 truncate variant gene and a NEW43 or NEW43 variant gene

Polypeptide designation	SEQ ID NO	Identificatio
VP 89	327	M-New56 -GP- New43*
VP 90	328	M-New43 -GP- New56
VP 91	329	M-New52 -GP- New43
VP 92	330	M-New43 -GP- New52
VP 93	331	M-New56 -GP- New60
VP 94	332	M-New60 -GP- New56
VP 108	333	M-New56 -GP- New88
VP109	334	M-New88 -GP- New56

10

Polypeptide designation	SEQ ID NO	Identificatio n
VP 110	335	M-New60 -GP- New105
VP 111 ·	336	M-New60 -GP- New107
VP112	. 337	M-New88 -GP- New105
VP113	338	M-New88 -GP- New107
VP114	339	M-New80-GP- New105
VP115	340	M-New80 -GP- New107
VP116	341	M-New83 -GP- New105
VP117	342	M-New83 -GP- New107
VP119	343	M-New43S- GP-New105
VP120	344	M-New43S- GP-New107
VP121	345	M-New80S- GP-New105
VP122	346	M-New80S- GP-New107
VP123	347	M-New88S- GP-New105
VP124	348	M-New88S- GP-New107

^{*} Encoded amino acids for the chimeras are expressed as the gene product, additional amino acid residues were added. M is methionine, G is glycine and P is proline.

Table 23. List of PCR oligonucleotide primer pairs designed for the generation of the chimeric genes encoding the polypeptides listed in Table 22.

Primer	PCR-primer	Gene used for	Corresponding
set	identification	PCR	position of the
		amplification	gene fragment on
49	HAMJ490-HAMJ471	Variant New43	N-terminal
50 .	HAMJ564-HAMJ556	Variant New43	C-terminal
51	HAMJ489-HAMJ359	Variant New40	N-terminal
52	HAMJ559-HAMJ557	Variant New40	C-terminal
53	HAMJ610-HAMJ471	Variant New43S	N-terminal

5 Table 24. List of PCR oligonucleotide primers designed for the generation of the chimeric genes encoding the polypeptides listed in Table 22.

Primer	SEQ ID NO	Sequence 5' - 3'	Restriction site
HAMJ490	259	ccgaattccatatgcaaattaccta cactgatgatg	NdeI
HAMJ471	168	atatgggcccctgtataggagccgg ttgactttc	ApaI
HAMJ564	327	atatgggccccaaattacctacact gatgatgagattcagg	ApaI
HAMJ556	328	ataagaatgcggccgcctactgtat aggagccggttgactttc	NotI
HAMJ489	329	ccgaattccatatgcaaattgggca accgactc	NdeI
НАМЈ359	173	tecegggeeeegetatgaaateaga taaatte	ApaI
HAMJ559	330	atatgggccccaaattgggcaaccg actc	ApaI
HAMJ354	65	cgccaagcttctgtataggagccgg ttgac	HindIII
HAMJ610	268	cttgatcgacatatgttggcaggca agtacacaacag	NdeI
HAMJ557	331	ataagaatgcggccgcttacgctat. gaaatcagataaattc	NotI
HAMJ279	35	cgccaagcttcgctatgaaatcaga taaattc	HindIII

What is claimed is:

 An isolated polynucleotide comprising a polynucleotide chosen from;

- (a) a polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide chosen from: table B, E or H;
- (b) a polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide chosen from: table B, E or H;
- (c) a polynucleotide encoding a polypeptide having an amino sequence chosen from table B, E or H or fragments, analogs or derivatives thereof;
- (d) a polynucleotide encoding a polypeptide chosen from: table B, E or H;
- (e) a polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide having a sequence chosen from: table B, E or H,
- (f) a polynucleotide encoding an epitope bearing portion of a polypeptide chosen from table B, E or H; and
- (g) a polynycleotide complementary to a polynucleotide in (a), (b), (c), (d), (e) or (f).
- 2. The isolated polynucleotide of claim 1 wherein said polynucleotide is (a).
- 3. The isolated polynucleotide of claim 1 wherein said polynucleotide is (b).
- 4. The isolated polynucleotide of claim 1 wherein said polynucleotide is (c).
- 5. The isolated polynucleotide of claim 1 wherein said polynucleotide is (d).
- 6. The isolated polynucleotide of claim 1 wherein said polynucleotide is (e).

- 7. The isolated polynucleotide of claim 1 wherein said polynucleotide is (f).
- 8. The isolated polynucleotide of claim 1 wherein said polynucleotide is (g).
- 9. The isolated polynucleotide of claim 7 wherein said polynucleotide is chosen from table B.
- 10. The isolated polynucleotide of claim 9 wherein said epitope bearing portion is chosen from table C.
- 11. The isolated polynucleotide of claim 7 wherein said polynucleotide is chosen from table E.
- 12. The isolated polynucleotide of claim 11 wherein said epitope bearing portion is chosen from table F.
- 13. The polynucleotide of anyone of claims 1 to 12, wherein said polynucleotide is DNA.
- 14. The polynucleotide of anyone of claims 1 to 12, wherein said polynucleotide is RNA.
- 15. A vector comprising the polynucleotide of claim 13, wherein said DNA is operably linked to an expression control region.
 - 16. A host cell transfected with the vector of claim 15.
 - 17. A process for producing a polypeptide comprising culturing a host cell according to claim 16 under conditions suitable for expression of said polypeptide.
 - 18. An isolated polypeptide comprising a member chosen from:

(a) a polypeptide having at least 70% identity to a second polypeptide having an amino acid sequence chosen from: table B, E or H;

- (b) a polypeptide having at least 95% identity to a second polypeptide having an amino acid sequence chosen from: table B, E or H;
- (c) a polypeptide having an amino acid sequence chosen from table B, E or H;
- (d) a polypeptide having amino acid sequence chosen from: table B, E or H or fragments, analogs or derivatives thereof;
- (e) a polypeptide capable of generating antibodies having binding specificity for a second polypeptide having a sequence chosen from table B, E or H;
- (f) an epitope bearing portion of a polypeptide having an amino acid sequence chosen from: table B, E or H;
- (g) the polypeptide of (a), (b), (c), (d), (e), or (f) wherein wherein the N-terminal Met residue is deleted; or
- (h) the polypeptide of (a), (b), (c), (d), (e), or (f) wherein the secretory amino acid sequence is deleted.
- 19. The polypeptide of claim 18 wherein said polypeptide is (f).
- 20. The polypeptide of claim 19 wherein said is chosen from table B.
- 21. The polypeptide of claim 20 wherein said epitope bearing portion is chosen from table C.
- 22. The polypeptide of claim 19 wherein said is chosen from table E.
- 23. The polypeptide of claim 22 wherein said epitope bearing portion is chosen from table F.

24. A chimeric polypeptide comprising two or more polypeptides chosen from table B, E or H thereof; provided that the polypeptides are linked as to form a chimeric polypeptide.

- 25. A vaccine composition comprising a polypeptide according to any one of claims 18 to 24 and a pharmaceutically acceptable carrier, diluent or adjuvant.
- 26. A method for therapeutic or prophylactic treatment of meningitis, otitis media, bacteremia or pneumonia infection in an individual susceptible to meningitis, otitis media, bacteremia or pneumonia infection comprising administering to said individual a therapeutic or prophylactic amount of a composition according to claim 25.
- 27. A method for therapeutic or prophylactic treatment of infection in individual bacterial an streptococcal infection comprising streptococcal susceptible to individual therapeutic or a said administering to prophylactic amount of a composition according to claim 25.
- 28. A method according to claim 26, wherein said individual is a mammal.
- 29. A method according to claim 27, wherein said individual is a mammal
- 30. A method according to claim 26, wherein said individual is a human.
- 31. A method according to claim 27, wherein said individual is a human
- 32. A method according to claim 27, wherein said bacterial infection is <u>S.pneumoniae</u>, group A streptococcus

(pyogenes), group B streptococcus (GBS or agalactiae), dysgalactiae, uberis, nocardia or Staphylococcus aureus.

- 33. A method according to claim 27, wherein said bacterial infection is S.pneumoniae.
- 34. Use of a vaccine composition according to claim 25 for the prophylactic or therapeutic treatment of Streptococcal infection in an animal susceptible to or infected with streptococcal infection comprising administering to said animal a prophylactic or therapeutic amount of the composition.

ATGAAATTTA GI	ATAAAAA	TATAGCAGCT	GGATCAGCTG	${\tt TTATCGTATC}$	CTTGAGTCTA	60
TGTGCCTATG CA	CTAAACCA	GCATCGTTCG	CAGGAAAATA	AGGACAATAA	TCGTGTCTCT	120
TATGTGGATG GC	CAGCCAGTC	AAGTCAGAAA	AGTGAAAACT	TGACACCAGA	CCAGGTTAGC	180
CAGAAAGAAG GA	ATTCAGGC	TGAGCAAATT	GTAATCAAAA	TTACAGATCA	GGGCTATGTA	240
ACGTCACACG GT	GACCACTA	TCATTACTAT	AATGGGAAAG	${\tt TTCCTTATGA}$	TGCCCTCTTT	300
AGTGAAGAAC TO	TTGATGAA	GGATCCAAAC	TATCAACTTA	AAGACGCTGA	TATTGTCAAT	360
GAAGTCAAGG GT	GGTTATAT	CATCAAGGTC	GATGGAAAAT	ATTATGTCTA	CCTGAAAGAT	420
GCAGCTCATG CT	GATAATGT	TCGAACTAAA	GATGAAATCA	ATCGTCAAAA	ACAAGAACAT	480
GTCAAAGATA AT	GAGAAGGT	TAACTCTAAT	GTTGCTGTAG	CAAGGTCTCA	GGGACGATAT	540
ACGACAAATG AT	GGTTATGT	СТТТААТССА	GCTGATATTA	TCGAAGATAC	GGGTAATGCT	600
TATATCGTTC CI	CATGGAGG	TCACTATCAC	TACATTCCCA	AAAGCGATTT	ATCTGCTAGT	660
GAATTAGCAG CA	GCTAAAGC	ACATCTGGCT	GGAAAAAATA	${\tt TGCAACCGAG}$	TCAGTTAAGC	720
TATTCTTCAA CA	GCTAGTGA	CAATAACACG	CAATCTGTAG	${\tt CAAAAGGATC}$	AACTAGCAAG	780
CCAGCAAATA AA	TCTGAAAA	TCTCCAGAGT	CTTTTGAAGG	AACTCTATGA	TTCACCTAGC	840
GCCCAACGTT AC	AGTGAATC	AGATGGCCTG	GTCTTTGACC	CTGCTAAGAT	TATCAGTCGT	900
ACACCAAATG GA	GTTGCGAT	TCCGCATGGC	GACCATTACC	ACTTTATTCC	TTACAGCAAG	960
CTTTCTGCTT TA	GAAGAAAA	GATTGCCAGA	ATGGTGCCTA	${\tt TCAGTGGAAC}$	TGGTTCTACA	1020
GTTTCTACAA AT	GCAAAACC	TAATGAAGTA	GTGTCTAGTC	${\tt TAGGCAGTCT}$	TTCAAGCAAT	1080
CCTTCTTCTT TA	ACGACAAG	TAAGGAGCTC	TCTTCAGCAT	CTGATGGTTA	TATTTTTAAT	1140
CCAAAAGATA TO	CGTTGAAGA	AACGGCTACA	GCTTATATTG	TAAGACATGG	TGATCATTTC	1200
CATTACATTC CA	AAATCAAA	TCAAATTGGG	CAACCGACTC	TTCCAAACAA	TAGTCTAGCA	1260
ACACCTTCTC CA	TCTCTTCC	AATCAATCCA	GGAACTTCAC	ATGAGAAACA	TGAAGAAGAT	1320
GGATACGGAT TT	GATGCTĄA	TCGTATTATC	${\tt GCTGAAGATG}$	AATCAGGTTT	TGTCATGAGT	1380
CACGGAGACC AC	CAATCATTA	TTTCTTCAAG	AAGGACTTGA	CAGAAGAGCA	AATTAAGGCT	1440
GCGCAAAAAC AT	TTAGAGGA	AGTTAAAACT	AGTCATAATG	GATTAGATTC	TTTGTCATCT	1500
CATGAACAGG AT	TATCCAGG	TAATGCCAAA	GAAATGAAAG	ATTTAGATAA	AAAAATCGAA	1560
GAAAAAATTG CI	GGCATTAT	GAAACAATAT	GGTGTCAAAC	GTGAAAGTAT	TGTCGTGAAT	1620
AAAGAAAAA AT	CGCGATTAT	TTATCCGCAT	GGAGATCACC	ATCATGCAGA	TCCGATTGAT	1680
GAACATAAAC CO					•	1740
GAAGGAGTTG CT						1800
GTTAATTTGT TA						1860
AAACGCGTTT CT	TTTAGTTT	TCCGCCTGAA	TTGGAGAAAA	AATTAGGTAT	CAATATGCTA	1920
GTAAAATTAA TA						1980
GAAGGAGTAG GG					→ ¬ · · · · · · · · · · · · · · · · · ·	2040
TTTAAGTATA CT						2100
GTTCCAACCT CT						2160
GGGGATACTT AT						2220
GTCAGAGTGT TT						2280
GAAATCAAAT TA						2340
ATTCCTGTAA CO						2400
GTACCTATCT TO						2460
AGGAATAAAG CA						2520
GAGAAGGTAG AA						2580
GAAGAAGTTC CT						2640
GGGATGAAGC T	AGAAAATGT	CTTGTTTAAT	ATGGACGGAA	CAATTGAATT	ATATTTACCA	2700
•						

TCAGGAGAAG TCATTAAAAA GAATATGGCA GATTTTACAG GAGAAGCACC TCAAGGAAAT 2760

			=			_,
GGTGAAAATA	AACCATCTGA	AAATGGAAAA	GTATCTACTG	GAACAGTTGA	GAACCAACCA	2820
ACAGAAAATA	AACCAGCAGA	TTCTTTACCA	GAGGCACCAA	ACGAAAAACC	TGTAAAACCA	2880
GAAAACTCAA	CGGATAATGG	AATGTTGAAT	CCAGAAGGGA	ATGTGGGGAG	TGACCCTATG	2940
TTAGATCCAG	CATTAGAGGA	AGCTCCAGCA	GTAGATCCTG	TACAAGAAAA	ATTAGAAAAA	3000
TTTACAGCTA	GTTACGGATT	AGGCTTAGAT	AGTGTTATAT	TCAATATGGA	TGGAACGATT	3060
GAATTAAGAT	TGCCAAGTGG	AGAAGTGATA	AAAAAGAATT	TATCTGATTT	CATAGCGTAA	3120
(SEQ ID NO	: 1)					
FIGURE 1						
AATTCCTTGT	CGGGTAAGTT	CCGACCCGCA	CGAAAGGCGT	AATGATTTGG	GCACTGTCTC	60
AACGAGAGAC	TCGGTGAAAT	TTTAGTACCT	GTGAAGATGC	AGGTTACCCG	CGACAGGACG	120
GAAAGACCCC	ATGGAGCTTT	ACTGCAGTTT	GATATTGAGT	${\tt GTCTGTACCA}$	CATGTACAGG	180
ATAGGTAGGA	GTCTAAGAGA	TCGGGACGCC	AGTTTCGAAG	${\tt GAGACGCTGT}$	TGGGATACTA	240
CCCTTGTGTT	ATGGCCACTC	TAACCCAGAT	AGGTGATCCC	${\tt TATCGGAGAC}$	AGTGTCTGAC	300
GGGCAGTTTG	ACTGGGGCGG	TCGCCTCCTA	AAAGGTAACG	GAGGCGCCCA	AAGGTTCCCT	360
CAGAATGGTT	GGAAATCATT	CGCAGAGTGT	AAAGGTATAA	${\tt GGGAGCTTGA}$	CTGCGAGAGC	420
TACAACTCGA	GCAGGGACGA	AAGTCGGGCT	TAGTGATCCG	$\tt GTGGTTCCGT$	ATGGAAGGGC	480
CATCGCTCAA	CGGATAAAAG	${\tt CTACCCTGGG}$	GATAACAGGC	${\tt TTATCTCCCC}$	CAAGAGTTCA	540
CATCGACGGG	GAGGTTTGGC	ACCTCGATGT	CGGCTCGTCG	${\tt CATCCTGGGG}$	CTGTAGTCGG	600
TCCCAAGGGT	TGGGCTGTTC	GCCCATTAAA	GCGGCACGCG	${\tt AGCTGGGTTC}$	AGAACGTCGT	660
GAGACAGTTC	GGTCCCTATC	CGTCGCGGGC	${\tt GTAGGAAATT}$	TGAGAGGATC	TGCTCCTAGT	720
ACGAGAGGAC	CAGAGTGGAC	TTACCGCTGG	TGTACCAGTT	GTCTTGCCAA	AGGCATCGCT	780
GGGTAGCTAT	GTAGGGAAGG	GATAAACGCT	GAAAGCATCT	AAGTGTGAAA	CCCACCTCAA	840
GATGAGATTT	CCCATGATTA	TATATCAGTA	AGAGCCCTGA	GAGATGATCA	GGTAGATAGG	900
TTAGAAGTGG	AAGTGTGGCG	ACACATGTAG	CGGACTAATA	CTAATAGCTC	GAGGACTTAT	960
CCAAAGTAAC	TGAGAATATG	AAAGCGAACG	GTTTTCTTAA	ATTGAATAGA	TATTCAATTT	1020
TGAGTAGGTA	TTACTCAGAG	TTAAGTGACG	ATAGCCTAGG	AGATACACCT	GTACCCATGC	1080
CGAACACAGA	AGTTAAGCCC	TAGAACGCCG	GAAGTAGTTG	GGGGTTGCCC	CCTGTGAGAT	1140
AGGGAAGTCG	CTTAGCTCTA	GGGAGTTTAG	CTCAGCTGGG	AGAGCATCTG	CCTTACAAGC	1200
AGAGGGTCAG	CGGTTCGATC	CCGTTAACTC	CCAAAGGTCC	CGTAGTGTAG	CGGTTATCAC	1260
GTCGCCCTGT	CACGGCGAAG	ATCGCGGGTT	CGATTCCCGT	CGGGACCGTT	TAAGGTAACG	1320
CAAGTTATTT	TAGACTCGTT	AGCTCAGTTG	GTAGAGCAAT	TGACTTTTAA	TCAATGGGTC	1380
ACTGGTTCGA	GCCCAGTACG	GGTCATATAT	GCGGGTTTGG	CGGAATTCTA	ATCTCTTTGA	1440
AATCATCTTC	TCTCACTTTC	CAAAACTCTA	TTACCTCTTA	TTATACCACA	TTTCAATCTT	1500
CAACTTCCCA	GTAATATAAG	CACCTCTGGC	GAAAGAAGTT	TCAATGTCCT	AAAGTAATAA	1560
GTGAATCCAA	TTCAGGAACT	CCAAGAACAA	AAGAAACATC	TGGTGTCACA	AGTATTGGAT	1620
GGCACAGAGT	CACGTGGTAG	TCTGACCCTA	GCAGAAATTT	TAAATAGTAA	ACTATTTACT	1680
	ATGCTTAAAT					1740
	TCATCATTTA				•	1800
GCAGCTGGAT	CAGCTGTTAT	CGTATCCTTG	AGTCTATGTG	CCTATGCACT	AAACCAGCAT	1860
	AAAATAAGGA					1920
_	AAAACTTGAC					1980
CAAATTGTAA	TCAAAATTAC	AGATCAGGGC	TATGTAACGT	CACACGGTGA	CCACTATCAT	2040
						-

TACTATAATG	GGAAAGTTCC	TTATGATGCC	CTCTTTAGTG	AAGAACTCTT	GATGAAGGAT	2100
CCAAACTATC	AACTTAAAGA	CGCTGATATT	GTCAATGAAG	TCAAGGGTGG	TTATATCATC	2160
AAGGTCGATG	GAAAATATTA	TGTCTACCTG	AAAGATGCAG	CTCATGCTGA	TAATGTTCGA	2220
ACTAAAGATG	AAATCAATCG	ТСАААААСАА	GAACATGTCA	AAGATAATGA	GAAGGTTAAC	2280
TCTAATGTTG	CTGTAGCAAG	GTCTCAGGGA	CGATATACGA	CAAATGATGG	TTATGTCTTT	2340
AATCCAGCTG	ATATTATCGA	AGATACGGGT	AATGCTTATA	TCGTTCCTCA	TGGAGGTCAC	2400
TATCACTACA	TTCCCAAAAG	CGATTTATCT	GCTAGTGAAT	TAGCAGCAGC	TAAAGCACAT	2460
CTGGCTGGAA	AAAATATGCA	ACCGAGTCAG	TTAAGCTATT	CTTCAACAGC	TAGTGACAAT	2520
AACACGCAAT	CTGTAGCAAA	AGGATCAACT	AGCAAGCCAG	CAAATAAATC	TGAAAATCTC	2580
CAGAGTCTTT	TGAAGGAACT	CTATGATTCA	CCTAGCGCCC	AACGTTACAG	TGAATCAGAT	2640
GGCCTGGTCT	TTGACCCTGC	TAAGATTATC	AGTCGTACAC	CAAATGGAGT	TGCGATTCCG	2700
CATGGCGACC	ATTACCACTT	TATTCCTTAC	AGCAAGCTTT	CTGCTTTAGA	AGAAAAGATT	2760
GCCAGAATGG	TGCCTATCAG	TGGAACTGGT	TCTACAGTTT	CTACAAATGC	AAAACCTAAT	2820
GAAGTAGTGT	CTAGTCTAGG	CAGTCTTTCA	AGCAATCCTT	CTTCTTTAAC	GACAAGTAAG	2880
GAGCTCTCTT	CAGCATCTGA	TGGTTATATT	TTTAATCCAA	AAGATATCGT	TGAAGAAACG	2940
GCTACAGCTT	ATATTGTAAG	ACATGGTGAT	CATTTCCATT	ACATTCCAAA	ATCAAATCAA	3000
ATTGGGCAAC	CGACTCTTCC	AAACAATAGT	CTAGCAACAC	CTTCTCCATC	TCTTCCAATC	3060
AATCCAGGAA	CTTCACATGA	GAAACATGAA	GAAGATGGAT	ACGGATTTGA	TGCTAATCGT	3120
ATTATCGCTG	AAGATGAATC	AGGTTTTGTC	ATGAGTCACG	GAGACCACAA	TCATTATTTC	3180
TTCAAGAAGG	ACTTGACAGA	AGAGCAAATT	AAGGCTGCGC	AAAAACATTT	AGAGGAAGTT .	3240
AAAACTAGTC	ATAATGGATT	AGATTCTTTG	TCATCTCATG	AACAGGATTA	TCCAGGTAAT	3300
GCCAAAGAAA	TGAAAGATTT	AGATAAAAA	ATCGAAGAAA	AAATTGCTGG	CATTATGAAA	3360
CAATATGGTG	TCAAACGTGA	AAGTATTGTC	GTGAATAAAG	AAAAAAATGC	GATTATTTAT	3420
CCGCATGGAG	ATCACCATCA	TGCAGATCCG	ATTGATGAAC	ATAAACCGGT	TGGAATTGGT	3480
CATTCTCACA	GTAACTATGA	ACTGTTTAAA	CCCGAAGAAG	GAGTTGCTAA	AAAAGAAGGG	3540
AATAAAGTTT	ATACTGGAGA	AGAATTAACG	AATGTTGTTA	ATTTGTTAAA	AAATAGTACG	3600
${\tt TTTAATAATC}$	AAAACTTTAC	$\mathbf{TCTAGCCAAT}$	GGTCAAAAAC	GCGTTTCTTT	TAGTTTTCCG	3660
${\tt CCTGAATTGG}$	AGAAAAAATT	AGGTATCAAT	ATGCTAGTAA	AATTAATAAC	ACCAGATGGA	3720
${\tt AAAGTATTGG}$	${\tt AGAAAGTATC}$	${\tt TGGTAAAGTA}$	${\tt TTTGGAGAAG}$	GAGTAGGGAA	TATTGCAAAC	3780
${\tt TTTGAATTAG}$	${\tt ATCAACCTTA}$	${\tt TTTACCAGGA}$	CAAACATTTA	AGTATACTAT	CGCTTCAAAA	3840
${\tt GATTATCCAG}$	AAGTAAGTTA	${\tt TGATGGTACA}$	TTTACAGTTC	CAACCTCTTT	AGCTTACAAA	3900
ATGGCCAGTC	${\tt AAACGATTTT}$	${\bf CTATCCTTTC}$	CATGCAGGGG	ATACTTATTT	AAGAGTGAAC	3960
CCTCAATTTG	CAGTGCCTAA	AGGAACTGAT	GCTTTAGTCA	GAGTGTTTGA	TGAATTTCAT	4020
GGAAATGCTT	ATTTAGAAAA	TAACTATAAA	GTTGGTGAAA	TCAAATTACC	GATTCCGAAA	4080
TTAAACCAAG	GAACAACCAG	AACGGCCGGA	AATAAAATTC	CTGTAACCTT	CATGGCAAAT	4140
GCTTATTTGG	ACAATCAATC	GACTTATATT	GTGGAAGTAC	CTATCTTGGA	AAAAGAAAAT	4200
CAAACTGATA	AACCAAGTAT	TCTACCACAA	TTTAAAAGGA	ATAAAGCACA	AGAAAACTCA	4260
AAACTTGATG	AAAAGGTAGA	AGAACCAAAG	ACTAGTGAGA	AGGTAGAAAA	AGAAAAACTT	4320
TCTGAAACTG	GGAATAGTAC	TAGTAATTCA	ACGTTAGAAG	AAGTTCCTAC	AGTGGATCCT	4380
GTACAAGAAA	AAGTAGCAAA	ATTTGCTGAA	AGTTATGGGA	TGAAGCTAGA	AAATGTCTTG	4440
TTTAATATGG	ACGGAACAAT	TGAATTATAT	TTACCATCAG	GAGAAGTCAT	TAAAAAGAAT	4500
ATGGCAGATT	TTACAGGAGA	AGCACCTCAA	GGAAATGGTG	AAAATAAACC	ATCTGAAAAT	4560
	CTACTGGAAC	_				4620
	CACCAAACGA					4680
TTGAATCCAG	AAGGGAATGT	GGGGAGTGAC	CCTATGTTAG	ATCCAGCATT	AGAGGAAGCT	4740

CCAGCAGTAG	G ATCCTGTACA	AGAAAATTA	GAAAAATTTA	CAGCTAGTTA	CGGATTAGGC	4800
TTAGATAGT	TTATATTCAA	TATGGATGGA	ACGATTGAAT	TAAGATTGCC	AAGTGGAGAA	4860
GTGATAAAA.	A AGAATTTATC	TGATTTCATA	GCGTAAGGAA	TAGCAGTAGA	AAAAGTCTGA	4920
ATCAAAAAT	AAGTTCTCTC	AAAAGTTAGA	AATAAAACTC	TGACTTTGGG	AGAATTTCAT	4980
TTTATTATT	AAAATATAAA	TTTCTTGACA	TACAACTTAA	AAAGAGGTGG	AATATTTACT	5040
AGTTAATT	(SEQ ID NO	: 2)	٠			5048
FIGURE 2						
ATGAAAATCA	ATAAAAAATA	TCTAGCTGGG	TCAGTAGCTA	CACTTGTTTT	AAGTGTCTGT	60
GCTTATGAAC	TAGGTTTGCA	TCAAGCTCAA	ACTGTAAAAG	AAAATAATCG	TGTTTCCTAT	120
ATAGATGGAA	AACAAGCGAC	GCAAAAAACG	GAGAATTTGA	CTCCTGATGA	GGTTAGCAAG	180
CGTGAAGGAA	TCAACGCCGA	ACAAATCGTC	ATCAAGATTA	CGGATCAAGG	TTATGTGACC	240
TCTCATGGAG	ACCATTATCA	TTACTATAAT	GGCAAGGTCC	CTTATGATGC	CATCATCAGT	300
GAAGAGCTCC	TCATGAAAGA	TCCGAATTAT	CAGTTGAAGG	ATTCAGACAT	TGTCAATGAA	360
ATCAAGGGTG	GTTATGTCAT	TAAGGTAAAC	GGTAAATACT	ATGTTTACCT	TAAGGATGCA	420
GCTCATGCGG	ATAATGTCCG	TACAAAAGAA	GAAATCAATC	GGCAAAAACA	AGAACATAGT	480
CAGCATCGTG	AAGGAGGGAC	TTCAGCAAAC	GATGGTGCGG	TAGCCTTTGC	ACGTTCACAG	540
GGACGCTACA	CCACAGATGA	TGGTTATATC	TTCAATGCAT	CTGATATCAT	CGAAGATACG	600
GGCGATGCCT	ATATCGTTCC	TCATGGAGAT	CATTACCATT	ACATTCCTAA	GAATGAGTTA	660
TCAGCTAGCG	AGTTGGCTGC	TGCAGAAGCC	TTCCTATCTG	GTCGGGAAAA	TCTGTCAAAT	720
TTAAGAACCT	ATCGCCGACA	AAATAGCGAT	AACACTCCAA	GAACAAACTG	GGTACCTTCT	780
GTAAGCAATC	CAGGAACTAC	AAATACTAAC	ACAAGCAACA	ACAGCAACAC	TAACAGTCAA	840
	GTAATGACAT					900
CAACGCCATG	TAGAATCTGA	TGGCCTTATT	TTCGACCCAG	CGCAAATCAC	AAGTCGAACC	960
GCCAGAGGTG	TAGCTGTCCC	TCATGGTAAC	CATTACCACT	TTATCCCTTA	TGAACAAATG	1020
TCTGAATTGG	AAAAACGAAT	TGCTCGTATT	ATTCCCCTTC	GTTATCGTTC	AAACCATTGG	1080
GTACCAGATT	CAAGACCAGA	AGAACCAAGT	CCACAACCGA	CTCCAGAACC	TAGTCCAAGT	1140
CCGCAACCTG	CACCAAATCC	TCAACCAGCT	CCAAGCAATC	CAATTGATGA	GAAATTGGTC	1200
AAAGAAGCTG	TTCGAAAAGT	AGGCGATGGT	TATGTCTTTG	AGGAGAATGG	AGTTTCTCGT	1260
TATATCCCAG	CCAAGAATCT	TTCAGCAGAA	ACAGCAGCAG	GCATTGATAG	CAAACTGGCC	1320
AAGCAGGAAA	GTTTATCTCA	TAAGCTAGGA	GCTAAGAAAA	CTGACCTCCC	ATCTAGTGAT	1380
CGAGAATTTT	ACAATAAGGC	TTATGACTTA	CTAGCAAGAA	TTCACCAAGA	TTTACTTGAT	1440
AATAAAGGTC	GACAAGTTGA	TTTTGAGGCT	TTGGATAACC	TGTTGGAACG	ACTCAAGGAT	1500
GTCTCAAGTG	ATAAAGTCAA	GTTAGTGGAT	GATATTCTTG	CCTTCTTAGC	TCCGATTCGT	1560
CATCCAGAAC	GTTTAGGAAA	ACCAAATGCG	CAAATTACCT	ACACTGATGA	TGAGATTCAA	1620
GTAGCCAAGT	TGGCAGGCAA	GTACACAACA	GAAGACGGTT	ATATCTTTGA	TCCTCGTGAT	1680
ATAACCAGTG	ATGAGGGGGA	TGCCTATGTA	ACTCCACATA	TGACCCATAG	CCACTGGATT	1740
AAAAAAGATA	GTTTGTCTGA	AGCTGAGAGA	GCGGCAGCCC	AGGCTTATGC	TAAAGAGAAA	1800
GGTTTGACCC	CTCCTTCGAC	AGACCATCAG	GATTCAGGAA	ATACTGAGGC	AAAAGGAGCA	1860
GAAGCTATCT	ACAACCGCGT	GAAAGCAGCT	AAGAAGGTGC	CACTTGATCG	TATGCCTTAC	1920
AATCTTCAAT	ATACTGTAGA	AGTCAAAAAC	GGTAGTTTAA	TCATACCTCA	TTATGACCAT	1980
TACCATAACA	TCAAATTTGA	GTGGTTTGAC	GAAGGCCTTT	ATGAGGCACC	TAAGGGGTAT	2040
ACTCTTGAGG	ATCTTTTGGC	GACTGTCAAG	TACTATGTCG	AACATCCAAA	CGAACGTCCG	2100
CATTCAGATA	ATGGTTTTGG	TAACGCTAGC	GACCATGTTC	AAAGAAACAA	AAATGGTCAA	2160

<u> </u>	አመሮ እ እ አ ሮሮሮ እ	3 3 3 3 C C 3 3 C C	C) CC) C) D) C	CIECA CA CA CA	3.3.3.0.0mg3.0	0000
	ATCAAACGGA					2220
	CTCGAGAAGA AAGAAGAATC	•				2280
						2340
	AACTGAGAGA					2400
	CCAAAGAGAC					2460
	CTATTATGGC	AGAAGCTGAA	AAACTATTGG	CTTTATTAAA	GGAGAGTAAG	2520
) ID NO: 3)					2523
FIGURE 3						
as as as moma						
	AGTGAATCAA					60
	TGGGTCAGTA	•	_			120
	TCAAACTGTA					180
	AACGGAGAAT				· · · · · · · ·	240
	CGTCATCAAG					300
	TAATGGCAAG				,	360
	TTATCAGTTG					420
	AAACGGTAAA				-	480
	AGAAGAAATC					540
	AAACGATGGT					600
	TATCTTCAAT					660
	AGATCATTAC					720
CTGCTGCAGA	AGCCTTCCTA	TCTGGTCGGG	AAAATCTGTC	AAATTTAAGA	ACCTATCGCC	780
GACAAAATAG	CGATAACACT	CCAAGAACAA	ACTGGGTACC	TTCTGTAAGC	AATCCAGGAA	840
CTACAAATAC	TAACACAAGC	AACAACAGCA	ACACTAACAG	TCAAGCAAGT	CAAAGTAATG	900
ACATTGATAG	TCTCTTGAAA	CAGCTCTACA	AACTGCCTTT	GAGTCAACGC	CATGTAGAAT	960
CTGATGGCCT	TATTTTCGAC	CCAGCGCAAA	TCACAAGTCG	AACCGCCAGA	GGTGTAGCTG	1020
TCCCTCATGG	TAACCATTAC	CACTTTATCC	CTTATGAACA	AATGTCTGAA	TTGGAAAAAC	1080
GAATTGCTCG	TATTATTCCC	CTTCGTTATC	GTTCAAACCA	${\tt TTGGGTACCA}$	GATTCAAGAC	1140
CAGAAGAACC	AAGTCCACAA	CCGACTCCAG	AACCTAGTCC	AAGTCCGCAA	CCTGCACCAA	1200
ATCCTCAACC	AGCTCCAAGC	${\tt AATCCAATTG}$	ATGAGAAATT	GGTCAAAGAA	GCTGTTCGAA	1260
AAGTAGGCGA	TGGTTATGTC	TTTGAGGAGA	ATGGAGTTTC	TCGTTATATC	CCAGCCAAGA	1320
ATCTTTCAGC	AGAAACAGCA	${\tt GCAGGCATTG}$	ATAGCAAACT	GGCCAAGCAG	GAAAGTTTAT	1380
CTCATAAGCT	AGGAGCTAAG	AAAACTGACC	TCCCATCTAG	TGATCGAGAA	TTTTACAATA	1440
AGGCTTATGA	CTTACTAGCA	AGAATTCACC	AAGATTTACT	TGATAATAAA	GGTCGACAAG	1500
TTGATTTTGA	GGCTTTGGAT	AACCTGTTGG	AACGACTCAA	GGATGTCTCA	AGTGATAAAG	1560
TCAAGTTAGT	GGATGATATT	${\tt CTTGCCTTCT}$	TAGCTCCGAT	TCGTCATCCA	GAACGTTTAG	1620
GAAAACCAAA	TGCGCAAATT	ACCTACACTG	ATGATGAGAT	TCAAGTAGCC	AAGTTGGCAG	1680
GCAAGTACAC	AACAGAAGAC	GGTTATATCT	TTGATCCTCG	TGATATAACC	AGTGATGAGG	1740
GGGATGCCTA	TGTAACTCCA	CATATGACCC	ATAGCCACTG	GATTAAAAAA	GATAGTTTGT	1800
CTGAAGCTGA	GAGAGCGGCA	GCCCAGGCTT	ATGCTAAAGA	GAAAGGTTTG	ACCCCTCCTT	1860
CGACAGACCA	TCAGGATTCA	GGAAATACTG	AGGCAAAAGG	AGCAGAAGCT	ATCTACAACC	1920
GCGTGAAAGC	AGCTAAGAAG	GTGCCACTTG	ATCGTATGCC	TTACAATCTT	CAATATACTG	1980
TAGAAGTCAA	AAACGGTAGT	TTAATCATAC	CTCATTATGA	CCATTACCAT	AACATCAAAT	2040
TTGAGTGGTT	TGACGAAGGC	CTTTATGAGG	CACCTAAGGG	GTATACTCTT	GAGGATCTTT	2100
						•

TGGCGACTGT	CAAGTACTAT	GTCGAACATC	CAAACGAACG	TCCGCATTCA	GATAATGGTT	2160
TTGGTAACGC	TAGCGACCAT	GTTCAAAGAA	ACAAAAATGG	TCAAGCTGAT	ACCAATCAAA	2220
CGGAAAAACC	AAGCGAGGAG	AAACCTCAGA	CAGAAAAACC	TGAGGAAGAA	ACCCCTCGAG	2280
AAGAGAAACC	ACAAAGCGAG	AAACCAGAGT	CTCCAAAACC	AACAGAGGAA	CCAGAAGAAG	2340
AATCACCAGA	GGAATCAGAA	GAACCTCAGG	TCGAGACTGA	AAAGGTTGAA	GAAAAACTGA	2400
GAGAGGCTGA	AGATTTACTT	GGAAAAATCC	AGGATCCAAT	TATCAAGTCC	AATGCCAAAG	2460
AGACTCTCAC	AGGATTAAAA	AATAATTTAC	TATTTGGCAC	CCAGGACAAC	AATACTATTA	2520
TGGCAGAAGC	TGAAAAACTA	TTGGCTTTAT	TAAAGGAGAG	TAAGTAAAGG	TAGCAGCATT	2580
TTCTAACTCC	TAAAAACAGG	ATAGGAGAAC	GGGAAAACGA	AAAATGAGAG	CAGAATGTGA	2640
GTTCTAG	(SED ID NO	: 4)				2647
FIGURE 4						
GGGTCTTAAA	ACTCTGAATC	CTTTAGAGGC	AGACCCACAA	AATGACAAGA	CCTATTTAGA	60
AAATCTGGAA	GAAAATATGA	GTGTTCTAGC	AGAAGAATTA	AAGTGAGGAA	AGAATGAAAA	120
тсаатааааа	ATATCTAGCA	GGTTCAGTGG	CAGTCCTTGC	CCTAAGTGTT	TGTTCCTATG	180
AACTTGGTCG	TCACCAAGCT	GGTCAGGTTA	AGAAAGAGTC	TAATCGAGTT	TCTTATATAG	240
ATGGTGATCA	GGCTGGTCAA	AAGGCAGAAA	ATTTGACACC	AGATGAAGTC	AGTAAGAGAG	300
AGGGGATCAA	CGCCGAACAA	ATTGTTATCA	AGATTACGGA	TCAAGGTTAT	GTGACCTCTC	360
ATGGAGACCA	TTATCATTAC	TATAATGGCA	AGGTTCCTTA	TGATGCCATC	ATCAGTGAAG	420
AACTTCTCAT	GAAAGATCCG	AATTATCAGT	TGAAGGATTC	AGACATTGTC	AATGAAATCA	480
AGGGTGGCTA	TGTGATTAAG	GTAGACGGAA	AATACTATGT	TTACCTTAAA	GATGCGGCCC	540
ATGCGGACAA	TATTCGGACA	AAAGAAGAGA	TTAAACGTCA	GAAGCAGGAA	CACAGTCATA	600
ATCATAACTC	AAGAGCAGAT	AATGCTGTTG	CTGCAGCCAG	AGCCCAAGGA	CGTTATACAA	660
CGGATGATGG	GTATATCTTC	AATGCATCTG	ATATCATTGA	GGACACGGGT	GATGCTTATA	720
TCGTTCCTCA	CGGCGACCAT	TACCATTACA	TTCCTAAGAA	TGAGTTATCA	GCTAGCGAGT	780
TAGCTGCTGC	AGAAGCCTAT	TGGAATGGGA	AGCAGGGATC	TCGTCCTTCT	TCAAGTTCTA	840
GTTATAATGC	AAATCCAGTT	CAACCAAGAT	TGTCAGAGAA	CCACAATCTG	ACTGTCACTC	900
CAACTTATCA	тсаааатсаа	GGGGAAAACA	TTTCAAGCCT	TTTACGTGAA	TTGTATGCTA	960
AACCCTTATC	AGAACGCCAT	GTAGAATCTG	ATGGCCTTAT	TTTCGACCCA	GCGCAAATCA	1020
CAAGTCGAAC	CGCCAGAGGT	GTAGCTGTCC	CTCATGGTAA	CCATTACCAC	TTTATCCCTT	1080
ATGAACAAAT	GTCTGAATTG.	GAAAAACGAA	TTGCTCGTAT	TATTCCCCTT	CGTTATCGTT	1140
CAAACCATTG	GGTACCAGAT	TCAAGACCAG	AACAACCAAG	TCCACAATCG	ACTCCGGAAC	1200
	TCTGCAACCT					1260
AGAAATTGGT	CAAAGAAGCT	GTTCGAAAAG	TAGGCGATGG	TTATGTCTTT	GAGGAGAATG	1320
					GGCATTGATA	1380
					ACTGACCTCC	
	TCGAGAATTT					1500
ATTTACTTGA	TAATAAAGGT	CGACAAGTTG	ATTTTGAGGT	TTTGGATAAC	CTGTTGGAAC	1560
GACTCAAGGA	TGTCTCAAGT	GATAAAGTCA	AGTTAGTGGA	TGATATTCTT	GCCTTCTTAG	1620
CTCCGATTCG	TCATCCAGAA	CGTTTAGGAA	AACCAAATGC	GCAAATTACC	TACACTGATG	1680
	AGTAGCCAAG					1740
ATCCTCGTGA	TATAACCAGT	GATGAGGGG	ATGCCTATGT	AACTCCACAT	ATGACCCATA	1800
	TAAAAAAGAT					1860
					AATACTGAGG	

CAAAAGGAGC	AGAAGCTATC	TACAACCGCG	TGAAAGCAGC	TAAGAAGGTG	CCACTTGATC
GTATGCCTTA	CAATCTTCAA	TATACTGTAG	AAGTCAAAAA	CGGTAGTTTA	ATCATACCTC
ATTATGACCA	TTACCATAAC	ATCAAATTTG	AGTGGTTTGA	CGAAGGCCTT	TATGAGGCAC
CTAAGGGGTA	TAGTCTTGAG	GATCTTTTGG	CGACTGTCAA	GTACTATGTC	GAACATCCAA
ACGAACGTCC	GCATTCAGAT	AATGGTTTTG	GTAACGCTAG	TGACCATGTT	CGTAAAAATA
AGGCAGACCA	AGATAGTAAA	CCTGATGAAG	ATAAGGAACA	TGATGAAGTA	AGTGAGCCAA
CTCACCCTGA	ATCTGATGAA	AAAGAGAATC	ACGCTGGTTT	AAATCCTTCA	GCAGATAATC
TTTATAAACC	AAGCACTGAT	ACGGAAGAGA	CAGAGGAAGA	AGCTGAAGAŢ	ACCACAGATG
AGGCTGAAAT	TCCTCAAGTA	GAGAATTCTG	TTATTAACGC	TAAGATAGCA	GATGCGGAGG
CCTTGCTAGA	AAAAGTAACA	GATCCTAGTA	TTAGACAAAA	TGCTATGGAG	ACATTGACTG
GTCTAAAAAG	TAGTCTTCTT	CTCGGAACGA	AAGATAATAA	CACTATTTCA	GCAGAAGTAG
ATAGTCTCTT	GGCTTTGTTA	AAAGAAAGTC	AACCGGCTCC	TATACAGTAG	TAAAATGAA
(SEQ ID NO	: 5)				
FIGURE 5					
MKFSKKYIAA	GSAVIVSLSL	CAYALNQHRS	QENKDNNRVS	YVDGSQSSQK	50
SENLTPDQVS	QKEGIQAEQI	VIKITDQGYV	TSHGDHYHYY	NGKVPYDALF	100
SEELLMKDPN	YQLKDADIVN	EVKGGYIIKV	DGKYYVYLKD	AAHADNVRTK	150
DEINRQKQEH	VKDNEKVNSN	VAVARSQGRY	TTNDGYVFNP	ADIIEDTGNA	200
YIVPHGGHYH	YIPKSDLSAS	ELAAAKAHLA	GKNMQPSQLS	YSSTASDNNT	250
QSVAKGSTSK	PANKSENLQS	LLKELYDSPS	AQRYSESDGL	VFDPAKIISR	300
TPNGVAIPHG	DHYHFIPYSK	LSALEEKIAR	MVPISGTGST	VSTNAKPNEV	350
VSSLGSLSSN	PSSLTTSKEL	SSASDGYIFN	PKDIVEETAT	AYIVRHGDHF	400
HYIPKSNQIG	QPTLPNNSLA	TPSPSLPINP	GTSHEKHEED	GYGFDANRII	450
AEDESGFVMS	HGDHNHYFFK	KDLTEEQIKA	AQKHLEEVKT	SHNGLDSLSS	500
HEQDYPGNAK	EMKDLDKKIE	EKIAGIMKQY	GVKRESIVVN	KEKNAIIYPH	550
GDHHHADPID	EHKPVGIGHS	HSNYELFKPE	EGVAKKEGNK	VYTGEELTNV	600
VNLLKNSTFN	NQNFTLANGQ	KRVSFSFPPE	LEKKLGINML	VKLITPDGKV	650
LEKVSGKVFG	EGVGNIANFE	LDQPYLPGQT	FKYTIASKDY	PEVSYDGTFT	700
VPTSLAYKMA	SQTIFYPFHA	GDTYLRVNPQ	FAVPKGTDAL	VRVFDEFHGN	750
AYLENNYKVG	EIKLPIPKLN	QGTTRTAGNK	IPVTFMANAY	LDNQSTYIVE	800
VPILEKENQT	DKPSILPQFK	RNKAQENSKL	DEKVEEPKTS	EKVEKEKLSE	850
${\tt TGNSTSNSTL}$	EEVPTVDPVQ	EKVAKFAESY	GMKLENVLFN	MDGTIELYLP	900
SGEVIKKNMA	DFTGEAPQGN	GENKPSENGK	VSTGTVENQP	TENKPADSLP	950
EAPNEKPVKP	ENSTDNGMLN	PEGNVGSDPM	LDPALEEAPA	VDPVQEKLEK	1000
${\tt FTASYGLGLD}$	SVIFNMDGTI	ELRLPSGEVI	KKNLSDFIA (SEQ ID NO:	6) 1039
FIGURE 6					
		•			
MKINKKYLAG	SVATLVLSVC	AYELGLHQAQ	TVKENNRVSY	IDGKQATQKT	50
ENLTPDEVSK	REGINAEQIV	IKITDQGYVT	SHGDHYHYYN	GKVPYDAIIS	100
EELLMKDPNY	QLKDSDIVNE	IKGGYVIKVN	GKYYVYLKDA	AHADNVRTKE	150
EINRQKQEHS	QHREGGTSAN	DGAVAFARSQ	GRYTTDDGYI	FNASDIIEDT	200
GDAYIVPHGD	HYHYIPKNEL	SASELAAAEA	FLSGRENLSN	LRTYRRQNSD	250

NTPRTNWVPS	VSNPGTTNTN	TSNNSNTNSQ	ASQSNDIDSL	LKQLYKLPLS	300	
QRHVESDGLI	FDPAQITSRT	ARGVAVPHGN	HYHFIPYEQM	SELEKRIARI	350	
IPLRYRSNHW	VPDSRPEEPS	PQPTPEPSPS	PQPAPNPQPA	PSNPIDEKLV	400	
KEAVRKVGDG	YVFEENGVSR	YIPAKNLSAE	TAAGIDSKLA	KQESLSHKLG	450	
AKKTDLPSSD	REFYNKAYDL	LARIHQDLLD	NKGRQVDFEA	LDNLLERLKD	500	
VSSDKVKLVD	DILAFLAPIR	HPERLGKPNA	QITYTDDEIQ	VAKLAGKYTT	550	
EDGYIFDPRD	ITSDEGDAYV	TPHMTHSHWI	KKDSLSEAER	AAAQAYAKEK	600	
GLTPPSTDHQ	DSGNTEAKGA	EAIYNRVKAA	KKVPLDRMPY	NLQYTVEVKN	650	
GSLIIPHYDH	YHNIKFEWFD	EGLYEAPKGY	TLEDLLATVK	YYVEHPNERP	700	
HSDNGFGNAS	DHVQRNKNGQ	ADTNQTEKPS	ЕЕКРОТЕКРЕ	EETPREEKPQ	750	
SEKPESPKPT	EEPEEESPEE	SEEPQVETEK	VEEKLREAED	LLGKIQDPII	800	
KSNAKETLTG	LKNNLLFGTQ	DNNTIMAEAE	KLLALLKESK	(SEQ ID NO:	7) 840	
FIGURE 7	_					
MKINKKYLAG	SVAVLALSVC	SYELGRHQAG	QVKKESNRVS	YIDGDQAGQK	50	
	KREGINAEQI					
SEELLMKDPN	YQLKDSDIVN	EIKGGYVIKV	DGKYYVYLKD	AAHADNIRTK	150	
	SHNHNSRADN					
AYIVPHGDHY	HYIPKNELSA	SELAAAEAYW	NGKQGSRPSS	SSSYNANPVQ	250	
	VTPTYHQNQG					
	AVPHGNHYHF					
~	PEPSPSLQPA					
	KDLSAETAAG					
	HQDLLDNKGR					
	LGKPNAQITY					
	THSHWIKKDS					
	NRVKAAKKVP					
KFEWFDEGLY	EAPKGYSLED	LLATVKYYVE	HPNERPHSDN	GFGNASDHVR	700	
KNKADQDSKP	DEDKEHDEVS	EPTHPESDEK	ENHAGLNPSA	DNLYKPSTDT	750	
EETEEEAEDT	TDEAEIPQVE	NSVINAKIAD	AEALLEKVTD	PSIRQNAMET	800	
LTGLKSSLLL	GTKDNNTISA	EVDSLLALLK	ESQPAPIQ		838	
(SEQ ID NO	: 8)					
FIGURE 8						
TGTGCCTATG	CACTAAACCA	GCATCGTTCG	CAGGAAAATA	AGGACAATAA	TCGTGTCTCT	60
TATGTGGATG	GCAGCCAGTC	AAGTCAGAAA	AGTGAAAACT	TGACACCAGA	CCAGGTTAGC	120
CAGAAAGAAG	GAATTCAGGC	TGAGCAAATT	GTAATCAAAA	TTACAGATCA	GGGCTATGTA	180
ACGTCACACG	GTGATCACTA	TCATTACTAT	AATGGGAAAG	TTCCTTATGA	TGCCCTCTTT	240
AGTGAAGAAC	TCTTGATGAA	GGATCCAAAC	TATCAACTTA	AAGACGCTGA	TATTGTCAAT	300
GAAGTCAAGG	GTGGTTATAT	CATCAAGGTC	GATGGAAAAT	ATTATGTCTA	CCTGAAAGAT	360
	CTGATAATGT					420
GTCAAAGATA	ATGAGAAGGT	TAACTCTAAT	GTTGCTGTAG	CAAGGTCTCA	GGGACGATAT	480
ACGACAAATG	ATGGTTATGT	CTTTAATCCA	GCTGATATTA	TCGAAGATAC	GGGTAATGCT	540

TATATCGTTC	CTCATGGAGG	TCACTATCAC	TACATTCCCA	AAAGCGATTT	ATCTGCTAGT	600
				TGCAACCGAG		660
TATTCTTCAA	CACCTTCTCC	ATCTCTTCCA	ATCAATCCAG	GAACTTCACA	TGAGAAACAT	720
GAAGAAGATG	GATACGGATT	TGATGCTAAT	CGTATTATCG	CTGAAGATGA	ATCAGGTTTT	780
GTCATGAGTC	ACGGAGACCA	CAATCATTAT	TTCTTCAAGA	AGGACTTGAC	AGAAGAGCAA	840
ATTAAGGCTG	CGCAAAAACA	TTTAGAGGAA	GTTAAAACTA	GTCATAATGG	ATTAGATTCT	900
TTGTCATCTC	ATGAACAGGA	TTATCCAAGT	AATGCCAAAG	AAATGAAAGA	TTTAGATAAA	960
AAAATCGAAG	AAAAATTGC	TGGCATTATG	AAACAATATG	GTGTCAAACG	TGAAAGTATT	1020
GTCGTGAATA	AAGAAAAAA	TGCGATTATT	TATCCGCATG	GAGATCACCA	TCATGCAGAT	1080
CCGATTGATG	AACATAAACC	GGTTGGAATT	GGTCATTCTC	ACAGTAACTA	TGAACTGTTT	1140
AAACCCGAAG	AAGGAGTTGC	TAAAAAAGAA	GGGAATAAAG	TTTATACTGG	AGAAGAATTA	1200
ACGAATGTTG	${\tt TTAATTTGTT}$	AAAAAATAGT	ACGTTTAATA	ATCAAAACTT	TACTCTAGCC	1260
AATGGTCAAA	AACGCGTTTC	${\tt TTTTAGTTTT}$	CCGCCTGAAT	TGGAGAAAA	ATTAGGTATC	1320
AATATGCTAG	${\bf TAAATTAAAAT}$	AACACCAGAT	GGAAAAGTAT	${\tt TGGAGAAAGT}$	ATCTGGTAAA	1380
GTATTTGGAG	AAGGAGTAGG	GAATATTGCA	AACTTTGAAT	TAGATCAACC	TTATTTACCA	1440
GGACAAACAT	TTAAGTATAC	TATCGCTTCA	AAAGATTATC	CAGAAGTAAG	TTATGATGGT	1500
ACATTTACAG	TTCCAACCTC	${\tt TTTAGCTTAC}$	AAAATGGCCA	GTCAAACGAT	TTTCTATCCT	1560
TTCCATGCAG	GGGATACTTA	TTTAAGAGTG	AACCCTCAAT	TTGCAGTGCC	TAAAGGAACT	1620
GATGCTTTAG	TCAGAGTGTT	TGATGAATTT	CATGGAAATG	CTTATTTAGA	AAATAACTAT	.1680
AAAGTTGGTG	AAATCAAATT	ACCGATTCCG	AAATTAAACC	AAGGAACAAC	CAGAACGGCC	1740
GGAAATAAAA	TTCCTGTAAC	CTTCATGGCA	AATGCTTATT	TGGACAATCA	ATCGACTTAT	1800
ATTGTGGAAG	TACCTATCTT	GGAAAAAGAA	AATCAAACTG	ATAAACCAAG	TATTCTACCA	1860
CAATTTAAAA	GGAATAAAGC	ACAAGAAAAC	TCAAAACTTG	ATGAAAAGGT	AGAAGAACCA	1920
AAGACTAGTG	AGAAGGTAGA	AAAAGAAAAA	${\tt CTTTCTGAAA}$	CTGGGAATAG	TACTAGTAAT	1980
TCAACGTTAG	AAGAAGTTCC	TACAGTGGAT	CCTGTACAAG	AAAAAGTAGC	AAAATTTGCT	2040
GAAAGTTATG	GGATGAAGCT	AGAAAATGTC	TTGTTTAATA	TGGACGGAAC	AATTGAATTA	2100
TATTTACCAT	CGGGAGAAGT	CATTAAAAAG	AATATGGCAG	ATTTTACAGG	AGAAGCACCT	2160
CAAGGAAATG	GTGAAAATAA	ACCATCTGAA	AATGGAAAAG	TATCTACTGG	AACAGTTGAG	2220
AACCAACCAA	CAGAAAATAA	ACCAGCAGAT	TCTTTACCAG	AGGCACCAAA	CGAAAAACCT	2280
GTAAAACCAG	AAAACTCAAC	GGATAATGGA	ATGTTGAATC	CAGAAGGGAA	TGTGGGGAGT	2340
GACCCTATGT	TAGATTCAGC	ATTAGAGGAA	GCTCCAGCAG	TAGATCCTGT	ACAAGAAAAA	2400
TTAGAAAAAT	TTACAGCTAG	TTACGGATTA	GGCTTAGATA	GTGTTATATT	CAATATGGAT	2460
GGAACGATTG	AATTAAGATT	GCCAAGTGGA	GAAGTGATAA	AAAAGAATTT	ATTGATCTCA	2520
TAGCGTAA	(SEQ ID NO	: 9)				2528
FIGURE 9						
			•			
CAYALNQHRS	QENKDNNRVS	YVDGSQSSQK	SENLTPDQVS	QKEGIQAEQI	50	
VIKITDQGYV	TSHGDHYHYY	NGKVPYDALF	SEELLMKDPN	YQLKDADIVN	100	
EVKGGYIIKV	DGKYYVYLKD	AAHADNVRTK	DEINRQKQEH	VKDNEKVNSN	150	
VAVARSQGRY	TTNDGYVFNP	ADIIEDTGNA	YIVPHGGHYH	YIPKSDLSAS	200	
ELAAAKAHLA	GKNMQPSQLS	YSSTPSPSLP	INPGTSHEKH	EEDGYGFDAN	250	
RIIAEDESGF	VMSHGDHNHY	FFKKDLTEEQ	IKAAQKHLEE	VKTSHNGLDS	300	
LSSHEQDYPS	NAKEMKDLDK	KIEEKIAGIM	KQYGVKRES1	VVNKEKNAII	350	
YPHGDHHHAD	PIDEHKPVGI	GHSHSNYELF	KPEEGVAKKE	GNKVYTGEEL	400	

CA 02413450 2002-12-19

WO 01/98334

FIGURE 10

PCT/CA01/00908

TNVVNLLKNS TFNNQNFTL	A NGQKRVSFSF	PPELEKKLGI	NMLVKLITPD	450
GKVLEKVSGK VFGEGVGNI	A NFELDQPYLP	GQTFKYTIAS	KDYPEVSYDG	500
TFTVPTSLAY KMASQTIFY	P FHAGDTYLRV	NPQFAVPKGT	DALVRVFDEF	550
HGNAYLENNY KVGEIKLPI	P KLNQGTTRTA	GNKIPVTFMA	NAYLDNQSTY	600
IVEVPILEKE NOTOKPSIL	P QFKRNKAQEN	SKLDEKVEEP	KTSEKVEKEK	650
LSETGNSTSN STLEEVPTV	D PVQEKVAKFA	ESYGMKLENV	LFNMDGTIEL	700
YLPSGEVIKK NMADFTGEA	P QGNGENKPSE	NGKVSTGTVE	NQPTENKPAD	750
SLPEAPNEKP VKPENSTDN	G MLNPEGNVGS	DPMLDSALEE	APAVDPVQEK	800
LEKFTASYGL GLDSVIFNM	D GTIELRLPSG	EVIKKNLLIS		840
(SEQ ID NO : 10)				

DQGYVTSHGD HYHYYNGKVP YDALFSEELL MKDPNYQLKD ADIVNEVKGG YIIKVDGKYY VYLKDAAHAD NVRTKDEINR QKQEHVKDNE KVNS (SEQ ID NO: 11) FIGURE 11

GIQAEQIVIK ITDQGYVTSH GDHYHYYNGK VPYDALFSEE LL (SEQ ID NO: 12) FIGURE 12

TAYIVRHGDH FHYIPKSNQI GQPTLPNNSL ATPSPSLPI (SEQ ID NO: 13) FIGURE 13

TSNSTLEEVP TVDPVQEKVA KFAESYGMKL ENVLFN (SEQ ID NO: 14)
FIGURE 14

MDGTIELRLP SGEVIKKNLS DFIA (SEQ ID NO: 15) FIGURE 15

YGLGLDSVIF NMDGTIELRL PSGEVIKKNL SDFIA (SEQ ID NO: 16)
FIGURE 16

PALEEAPAVD PVQEKLEKFT ASYGLGLDSV IFNMDGTIEL RLPSGEVIKK NLSDFIA (SEQ ID NO: 17)
FIGURE 17

KVEEPKTSEK VEKEKLSETG NSTSNSTLEE VPTVDPVQEK (SEQ ID NO: 18)

FIGURE 18

MKDLDKKIEE KIAGIMKQYG VKRESIVVNK EKNAIIYPHG DHHHADPIDE HKPVGIGHSH

SNYELFKPEE GVAKKEGN

(SEQ ID NO: 19)

FIGURE19

AIIYPHGDHH HADPIDEHKP VGIGHSHSNY ELFKPEEGVA KKEGNKVYTG E

(SEQ ID NO: 20)

FIGURE 20

IQVAKLAGKY TTEDGYIFDP RDITSDEGD

(SEQ ID NO: 21)

FIGURE 21

DHQDSGNTEA KGAEAIYNRV KAAKKVPLDR MPYNLQYTVE VKNGSLIIPH YDHYHNIKFE

WFDEGLYEAP KGYSLEDLLA TVKYYV

(SEQ ID NO: 22)

FIGURE 22

GLYEAPKGYS LEDLLATVKY YVEHPNERPH SDNGFGNASD H

(SEQ ID NO: 23)

FIGURE 23

GLYEAPKGYSLEDLLATVKYYV

(SEQ ID NO: 163)

Figure 24

FIGURE 25

13/22

SUBSTITUTE SHEET (RULE 26)

14/22

Epitope Localization on BVH-3 Protein

FIGURE 28

Epitope Localization on BVH-11-2 Protein

^{*} Surface-exposed and protection-conferring Mabs

FIGURE 29

FIGURE 30

BVH-3M	1	CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVSQKEGIQAEQIVIKITDQGYV	60
BVH3-63		CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVSQKEGIQAEQIVIKITDQGYV	60

BVH-3M	61	TSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKD	120
BVH3-63	61	TSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKD	120

BVH-3M		AAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRYTTNDGYVFNPADIIEDTGNA	180
BVH3-63	121	AAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRYTTNDGYVFNPADIIEDTGNA	180

BVH-3M		YIVPHGGHYHYIPKSDLSASELAAAKAHLAGKNMQPSQLSYSSTASDNNTQSVAKGSTSK	240
BVH3-63	181	YIVPHGGHYHYIPKSDLSASELAAAKAHLAGKNMQPSQLSYSS	223

BVH-3M	241	PANKSENLQSLLKELYDSPSAQRYSESDGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK	300
BVH3-63	224		223
DVIII 216	201	LSALEEKIARMVPISGTGSTVSTNAKPNEVVSSLGSLSSNPSSLTTSKELSSASDGYIFN	360
BVH-3M	201	DSALEENTARIVF13G1G51V51WARTNEVV552G52S57755	223
BVH3-63	224		
BVH-3M	361	PKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLATPSPSLPINPGTSHEKHEED	420
BVH3-63	224	TPSPSLPINPGTSHEKHEED	243

BVH-3M	421	GYGFDANRIIAEDESGFVMSHGDHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS	480
BVH3-63	244	GYGFDANRIIAEDESGFVMSHGDHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS	303

BVH-3M		HEQDYPGNAKEMKDLDKKIEEKIAGIMKQYGVKRESIVVNKEKNAIIYPHGDHHHADPID	540
BVH3-63	304	HEQDYPSNAKEMKDLDKKIEEKIAGIMKQYGVKRESIVVNKEKNAIIYPHGDHHHADPID	363
-		***** ************	
BVH-3M		EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNVVNLLKNSTFNNQNFTLANGQ	600
BVH3-63	364	EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNVVNLLKNSTFNNQNFTLANGQ	423
BVH-3M	601	KRVSFSFPPELEKKLGINMLVKLITPDGKVLEKVSGKVFGEGVGNIANFELDQPYLPGQT	660
D13113 C3	424	VDVCCCEDDELEKKI.CINMI.VKI.TTPDGKVI.EKVSGKVFGEGVGNIANFELDOPYLPGQT	483

BVH-3M	661	FKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL	720
BVH3-63	484	FKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL	543

BVH-3M	721	VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTRTAGNKIPVTFMANAYLDNQSTYIVE	780
BVH3-63	544	VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTRTAGNKIPVTFMANAYLDNQSTYIVE	603

BVH-3M		VPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSETGNSTSNSTL	840
BVH3-63	604	VPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSETGNSTSNSTL ************************************	663
BVH-3M	841	EEVPTVDPVQEKVAKFAESYGMKLENVLFNMDGTIELYLPSGEVIKKNMADFTGEAPQGN	900
BVH3-63		EEVPTVDPVQEKVAKFAESYGMKLENVLFNMDGTIELYLPSGEVIKKNMADFTGEAPQGN	723

BVH-3M	901	GENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKPENSTDNGMLNPEGNVGSDPM	960
BVH3-63	724	GENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKPENSTDNGMLNPEGNVGSDPM	783

BVH-3M		-	1019
BVH3-63	784	LDSALEEAPAVDPVQEKLEKFTASYGLGLDSVIFNMDGTIELRLPSGEVIKKNLLIS ** **********************************	840
FIGURE 3:	1		
BVH-3		1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENK-DNNRVSYVDGSQSSQKSENLTPDQ	V 59
BVH-11		1 MKINKKYLAG-SVATLVLSVCAYELGLHQAQTVK-ENNRVSYIDGKQATQKTENLTPDE	V 58
BVH-11-2		1 MKINKKYLAG-SVAVLALSVCSYELGRHQAGQVKKESNRVSYIDGDQAGQKAENLTPDE	v 59
		** ***.* * . **.*.* *. * . *****.** *. **.*****.	*
BVH-3		0 SQKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADI	
BVH-11		9 SKREGINAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDAIISEELLMKDPNYQLKDSDI	
BVH-11-2	6	0 SKREGINAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDAIISEELLMKDPNYQLKDSDI	
BVH-3	12	0 NEVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVA	R 175
BVH-11		9 NEIKGGYVIKVNGKYYVYLKDAAHADNVRTKEEINRQKQEHSQHREGGTSANDGAVAFA	
BVH-11-2	12	0 NEIKGGYVIKVDGKYYVYLKDAAHADNIRTKEEIKRQKQEHSHNHNSRADNAVAAA	R 176

BVH-3	176	SQGRYTTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPKSDLSASELAAAKAHLAGKNMQ	235
BVH-11	179	SQGRYTTDDGYIFNASDIIEDTGDAYIVPHGDHYHYIPKNELSASELAAAEAFLSGRENL	238
BVH-11-2	177	AQGRYTTDDGYIFNASDIIEDTGDAYIVPHGDHYHYIPKNELSASELAAAEAYWNGKQ	234
		***** *** ** ***** ***** ****** ****** *	
BVH-3	236	PSQLSYSSTASDNNTQSVAKGSTSKPA-NKSENLQSLLKELYDSP	279
BVH-11	239	SNLRTYRRQNSDNTPRTNWVPSVSNPGTTNTNTSNNSNTNSQASQSNDIDSLLKQLYKLP	298
BVH-11-2	235	-GSRPSSSSYNANPVQPRLSENHNLTVTPTYHQN-~QGENISSLLRELYAKP * ***** *	284
BVH-3	280	SAQRYSESDGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGS	339
BVH-11	299	${\tt LSQRHVESDGLIFDPAQITSRTARGVAVPHGNHYHFIPYEQMSELEKRIARIIPLRYRSN}$	358
BVH-11-2	285	${\tt LSERHVESDGLIFDPAQITSRTARGVAVPHGNHYHFIPYEQMSELEKRIARIIPLRYRSN}$	344
		* *****.****.* *** *** ******** ***.	
BVH-3	340	TVSTNAKPNEVVSSLGSLSSNPSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDH	399
BVH-11	359	HWVPDSRP-EEPSPQPTPEPSPS-PQPAPNPQPAPSNPIDEKLVKEAVRKVGDG	410
BVH-11-2	345	HWVPDSRP-EQPSPQSTPEPSPS-LQPAPNPQPAPSNPIDEKLVKEAVRKVGDG	396
		* * * . ** . * ** ** **	
BVH-3	400	FHYIPKSNQIGQPTLPNNSLATPSPSLPINPGTSHEKHEEDGYGFDANRIIAEDESGFVM	459
BVH-11	411	YVFEENGVSRYIPAKNLSAETAAGIDSKLAKQESLS	446
BVH-11-2	397	YVFEENGVSRYIPAKDLSAETAAGIDSKLAKQESLS	432
		* . * * * * * * * * * * * * * * * * * *	
BVH-3	460	SHGDHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKDLDKKI	519
BVH-11	447	HKLGAKKTDLPSSDREFYNKAYDLLARIHQDLLDNKGRQVDFEALDNLLERLKDVS	502
BVH-11-2	433	HKLGAKKTDLPSSDREFYNKAYDLLARIHQDLLDNKGRQVDFEVLDNLLERLKDVS * * * * * . * . * . * . *	488
BVH-3	520	EEKIAGIMKQYGVKRESIVVNKEKNAIIYPHGDHHHADPIDEHKPVGIGHSHSNYELFKP	579
BVH-11	503	SDKVKLVDDILAFLAPIRHPERLGKPNAQITYTDDEIQVAKLAGKYTTEDGYIFDP	558
BVH-11-2	489	SDKVKLVDDILAFLAPIRHPERLGKPNAQITYTDDEIQVAKLAGKYTTEDGYIFDP	544
		.* * *	
BVH-3	580	EEGVAKKEGNKVYTGEELTNVVNLLKNSTFNNQNFTLANGQKRVSFSFPPELEKKLGINM	639
BVH-11	559	RD-ITSDEGD-AYVTPHMTHSHWIKKDS-LSEAERAAAQAYAKEKGLTPPSTDHQD	611
BVH-11-2	545	RD-ITSDEGD-AYVTPHMTHSHWIKKDS-LSEAERAAAQAYAKEKGLTPPSTDHQD	597
		** * .* * * **	
BVH-3	640	LVKLITPDGKVLEKVSGKVFGEGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTF	699
BVH-11	612	SGNTEAKGAEAIYNRVKAAKKVPLDRMPYNLQYTVEVKNGSL	653
BVH-11-2	598	SGNTEAKGAEAIYNRVKAAKKVPLDRMPYNLQYTVEVKNGSL	639

BVH-3	700	TVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKV	759
BVH-11	654	IIPHYDHYHNIKFEWFDEGLYEAPKGYTLEDLLAT	688
BVH-11-2	640	IIPHYDHYHNIKFEWFDEGLYEAPKGYSLEDLLAT	674
		.* * . * * * . **	
BVH-3	760	GEIKLPIPKLNQGTTRTAGNKIPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQF	819
BVH-11	689	VKYYVEHPNERPHSDNGFGNASDHVQRNKNGQADTN	724
BVH-11-2	675	VKYYVEHPNERPHSDNGFGNASDHVRKNKADQDSKP	710
		. * . ** * * *	
BVH-3	820	KRNKAQENSKLDEKVEEPKTSEKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAES	879
BVH-11	725	QTEKPSEEKPQTEKPEEE	742
BVH-11-2	711	DEDKEHDEVSEPTHPESDEKE	731
		* * *	
BVH-3	880	YGMKLENVLFNMDGTIELYLPSGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQ	939
BVH-11	743	PK	758
BVH-11-2	732	TE	751
		* **	
BVH-3	940	PTENKPADSLPEAPNEKPVKPENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKLE	999
BVH-11	759	PTEEPEEESPEESEEPQVETEKVEEKLREAEDLLGKIQDPIIKSNAKETLT	809
BVH-11-2	752	ETEEEAEDTTDEAEIPQVENSVINAKIADAEALLEKVTDPSIRQNAMETLT	802
		** *. * * * * * * *	
BVH-3	1000	KFTASYGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDFIA 1039	
BVH-11	810	GLKNNLLFGTQDNNTIMAEAEKLLALLKESK 840	
BVH-11-2	803	GLKSSLLLGTKDNNTISAEVDSLLALLKESQPAPIQ 838	
		* ** *	

FIGURE 32

1	ATGCAAATTA	CCTACACTGA	TGATGAGATT	CAGGTAGCCA	AGTTGGCAGG	CAAGTACACA
61	ACAGAAGACG	GTTATATCTT	TGATACTAGT	TGGATTAAAA	AAGATAGTTT	GTCTGAAGCT
121	GAGAGAGCGG	CAGCCCAGGC	TTATGCTAAA	GAGAAAGGTT	TGACCCCTCC	TTCGACAGAC
181	CACCAGGATT	CAGGAAATAC	TGAGGCAAAA	GGAGCAGAAG	CTATCTACAA	CCGCGTGAAA
241	GCAGCTAAGA	AGGTGCCACT	TGATCGTATG	CCTTACAATC	TTCAGTATAC	TGTAGAAGTC
301	AAAAACGGTA	GTTTAATCAT	ACCTCATTAT	GACCATTACC	ATAACATCAA	ATTTGAGTGG
361	TTTGACGAAG	GCCTTTATGA	GGCACCTAAG	GGGTATAGTC	TTGAGGATCT	TTTGGCGACT
421	GTCAAGTACT	ATGTCGAACC	GCGGAACGCT	AGTGACCATG	TTCGTAAAAA	TAAGGCAGAC
481	CAAGATAGTA	AACCTGATGA	AGATAAGGAA	CATGATGAAG	TAAGTGAGCC	AACTCACCCT
541	GAATCTGATG	AAAAAGAGAA	TCACGCTGGT	TTAAATCCTT	CAGCAGATAA	TCTTTATAAA
601	CCAAGCACTG	ATACGGAAGA	GACAGAGGAA	GAAGCTGAAG	ATACCACAGA	TGAGGCTGAA
661	ATTCCTGGTA	CCCCTAGTAT	TAGACAAAAT	GCTATGGAGA	CATTGACTGG	TCTAAAAAGT
721	AGTCTTCTTC	TCGGAACGAA	AGATAATAAC	ACTATTTCAG	CAGAAGTAGA	TAGTCTCTTG
781	GCTTTGTTAA	AAGAAAGTCA	ACCGGCTCCT	ATACAGTAG	(SEQ ID NO:	: 257)

FIGURE 33

1 MQITYTDDEI QVAKLAGKYT TEDGYIFDTS WIKKDSLSEA ERAAAQAYAK EKGLTPPSTD 61 HQDSGNTEAK GAEAIYNRVK AAKKVPLDRM PYNLQYTVEV KNGSLIIPHY DHYHNIKFEW 121 FDEGLYEAPK GYSLEDLLAT VKYYVEPRNA SDHVRKNKAD QDSKPDEDKE HDEVSEPTHP 181 ESDEKENHAG LNPSADNLYK PSTDTEETEE EAEDTTDEAE IPGTPSIRQN AMETLTGLKS 241 SLLLGTKDNN TISAEVDSLL ALLKESQPAP IQ (SEQ ID NO : 258)

FIGURE 34