Probability Distributions

Distribution	Distribution function	Support	Mean	Variance
Bernoulli	$f(x) = p^x (1-p)^{1-x}$	x = 0, 1	p	p(1-p)
Binomial	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, 1, 2, \dots, n$	np	np(1-p)
Normal	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	$-\infty \le x \le +\infty$	μ	σ^2
Gamma	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}}$	<i>x</i> > 0	$\alpha\beta$	$\alpha \beta^2$
Chi-Square	$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{(k/2)-1} e^{-x/2}$	<i>x</i> > 0	k	2k

Transformations

Let X be a normally distributed random variable with a mean μ and variance σ^2 .

$$Z = \frac{x - \mu}{\sigma}$$

Let \bar{x} represent the sample mean of n independent observations from a distribution with finite mean μ and finite variance σ^2 . For normal populations or sufficiently large n:

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Let \bar{x} and s^2 represent the sample mean and sample variance of n independent observations from a distribution with finite mean μ and some unknown finite variance. For normal populations or sufficiently large n:

$$T = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Inference Procedures for the Population Mean μ

One-Sample

Confidence interval for μ when σ is known:

Confidence interval for μ when σ is unknown:

$$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 $\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$

Continuity Correction for the Normal Approximation

Binomial Probability	Continuity Correction	Normal Approximation
P(X=x)	$P(x - 0.5 \le X \le x + 0.5)$	$P\left(\frac{x-0.5-\mu}{\sigma} \le Z \le \frac{x+0.5-\mu}{\sigma}\right)$
$P(X \le x)$	$P(X \le x + 0.5)$	$P\left(Z \le \frac{x + 0.5 - \mu}{\sigma}\right)$
P(X < x)	$P(X \le x - 0.5)$	$P\left(Z \le \frac{x - 0.5 - \mu}{\sigma}\right)$
$P(X \ge x)$	$P(X \ge x - 0.5)$	$P\left(Z \ge \frac{x - 0.5 - \mu}{\sigma}\right)$
P(X > x)	$P(X \ge x + 0.5)$	$P\left(Z \ge \frac{x + 0.5 - \mu}{\sigma}\right)$
$P(a \le X \le b)$	$P(a - 0.5 \le X \le b + 0.5)$	$P\left(\frac{a-0.5-\mu}{\sigma} \le Z \le \frac{b+0.5-\mu}{\sigma}\right)$

Some Relationships Between Random Variables

Let $Z_1, Z_2, \ldots, Z_n \stackrel{\text{iid}}{\sim} N(0, 1)$. Then

$$V = \sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$$

Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Let \bar{x} and S^2 represent the sample mean and variance of X_1, X_2, \ldots, X_n respectively. Then

$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi_{n-1}^2$$

Let $Z \sim N(0,1)$ and let $W \sim \chi_n^2$. Then

$$T = \frac{Z}{\sqrt{\frac{W}{n}}} \sim t_n$$

Let $X_1, X_2, \ldots, X_{n_x} \stackrel{\text{iid}}{\sim} N(\mu_x, \sigma^2)$ with sample variance S_x^2 , and let $Y_1, Y_2, \ldots, Y_{n_y} \stackrel{\text{iid}}{\sim} N(\mu_y, \sigma^2)$ with sample variance S_y^2 . with the $X_i's$ and the $Y_j's$ all being independent. Then

$$F = \frac{\left(\frac{n_x - 1}{\sigma^2}\right) S_x^2 / (n_x - 1)}{\left(\frac{n_y - 1}{\sigma^2}\right) S_y^2 / (n_y - 1)} \sim F_{n_x - 1, n_y - 1}$$