Information Retrieval (CS60092) Computer Science and Engineering, Indian Institute of Technology Kharagpur

Session: Autumn 2012 – 2013 Class Test 1

Time: 1 hour Full Marks: 20

Attempt all questions.
Use of calculator is allowed.
State any assumptions made clearly.

Q. 1> For the document collection:

D₁: catholic church in brisbane
 D₂: garden city church brisbane
 D₃: brisbane courier garden city
 D₄: where in brisbane catholic church

a. Draw the term-document incidence matrix.

b. Draw the inverted index that would be built.

(1 + 1 = 2)

A. 1> a.

	D_1	D_2	D_3	D_4
catholic	1	0	0	1
church	1	1	0	1
in	1	0	0	1
brisbane	1	1	1	1
garden	0	1	1	0
city	0	1	1	0
courier	0	0	1	0
where	0	0	0	1

A. 1> b.

Q. 2> What would be the best query processing order for the Boolean queries below, given the following term postings size:

poison4133blue97002dart1079life27145frog466cycle3162

a. (poison OR blue) AND (dart OR frog) AND (life OR cycle)

b. (cycle OR blue) AND (poison OR frog) AND (dart OR life)

(1 + 1 = 2)

A. 2> a. (poison OR blue) -> 4133 + 97002 = 101135 (dart OR frog) -> 1079 + 466 = 1545 (life OR cycle) -> 27145 + 3162 = 30307

So the best order is

((dart OR frog) AND (life OR cycle)) AND (poison OR blue)

Any commutative other order is fine, like (a and b) and c is same as c and (b and a).

A. 2> b. (cycle OR blue) -> 3162 + 97002 = 100164 (poison OR frog) -> 4133 + 466 = 4599 (dart OR life) -> 1079 + 27145 = 28224

So the best order is

((poison OR frog) AND (dart OR life)) AND (cycle OR blue)

Q. 3> What would be the permuterm vocabulary for "cat"?

(1)

A. 3> cat\$, at\$c, t\$ca, \$cat

Q. 4> What is the likely effect of (a) Stemming and (b) Lemmatization on

- (i) Vocabulary size: Increase, Decrease, Unpredictable?
- (ii) Precision: Increase, Decrease, Unpredictable?

(iii) Recall: Increase, Decrease, Unpredictable?

(3)

A. 4> (a) Stemming

- (i) Vocabulary: Decrease (*bring, bringing, brings* all become *bring*) (If someone specifically states we add stemmed terms to existing list, then Increase is fine, because sometimes stem is a new term, like *duplic*)
- (ii) Precision: Unpredictable
- (iii) Recall: Increase

A. 4> (b) Lemmatization:

- (i) Vocabulary: Decrease (Same logic, actually the decrease is more here as even *brought* becomes *bring;* doesn't matter wrt marks)
- (ii) Precision: Unpredictable
- (iii) Recall: Increase

where R = relevant and NR = non-relevant.

For this list, plot the (i) Precision-Recall curve and (ii) Interpolated Precision-Recall curve.

(3 + 3 = 6)

A. 5> (i)

Doc	Recall	Precision
R	0.20	1.00
NR	0.20	0.50
R	0.40	0.67
R	0.60	0.75
NR	0.60	0.60
R	0.80	0.67
NR	0.80	0.57
R	1.00	0.63
NR	1.00	0.56
NR	1.00	0.50

A. 5> (ii)

Doc	Recall	Interpolated Precision
R	0.20	1.00
NR	0.20	1.00
R	0.40	0.75
R	0.60	0.75
NR	0.60	0.75
R	0.80	0.67
NR	0.80	0.67
R	1.00	0.63
NR	1.00	0.63
NR	1.00	0.63

Q. 4> Let the top ten documents (leftmost = Rank 1) returned by an IR system for three queries be graded for relevance as (6-point relevance scale, 0-5):

 q_1 : 5, 5, 3, 3, 5, 4, 2, 1, 0, 0

 q_2 : 4, 3, 0, 2, 2, 1, 5, 5, 5, 5

 q_3 : 4, 4, 5, 5, 5, 2, 1, 1, 1, 1

nDCG@10 = DCG@10/IDCG@10. DCG@p of a graded ranked list of p documents is given by

$$DCG@p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2(i+1)}$$

where p = 10 in this case, rel_i is the relevance rating of document at Rank i.

Assume IDCG@p = DCG@p for a list of p documents where each document has the maximum rating (5 in this case).

nDCG = Normalized Discounted Cumulated Gain

DCG = Discounted Cumulated Gain

IDCG = Ideal Discounted Cumulated Gain

Find the average nDCG@10 of the system for this result set. Show each step of the computation. (6)

A. 4>

$$DCG \ for \ q_1 = 5 + \frac{5}{\log_2(2+1)} + \frac{3}{\log_2(3+1)} + \frac{3}{\log_2(4+1)} + \frac{5}{\log_2(5+1)} + \frac{4}{\log_2(6+1)} + \frac{2}{\log_2(7+1)} + \frac{1}{\log_2(8+1)} + \frac{1}{\log_2(9+1)} + \frac{1}{\log_2(10+1)} = 15.288$$

$$DCG \ for \ q_2 = 4 + \frac{3}{\log_2(2+1)} + \frac{0}{\log_2(3+1)} + \frac{2}{\log_2(4+1)} + \frac{2}{\log_2(5+1)} + \frac{1}{\log_2(6+1)} + \frac{5}{\log_2(7+1)} + \frac{5}{\log_2(7+1)} + \frac{5}{\log_2(8+1)} + \frac{5}{\log_2(9+1)} + \frac{5}{\log_2(10+1)} = 14.079$$

$$DCG \ for \ q_3 = 4 + \frac{4}{\log_2(2+1)} + \frac{5}{\log_2(3+1)} + \frac{5}{\log_2(4+1)} + \frac{5}{\log_2(5+1)} + \frac{2}{\log_2(6+1)} + \frac{1}{\log_2(7+1)} + \frac{1}{\log_2(7+1)} + \frac{1}{\log_2(8+1)} + \frac{1}{\log_2(9+1)} + \frac{1}{\log_2(10+1)} = 15.063$$

IDCG for all = 22.718

Thus, nDCG for
$$q_1$$
 = 15.288/22.718 = 0.673
nDCG for q_2 = 14.079/22.718 = 0.620
nDCG for q_3 = 15.063/22.718 = 0.663

Thus, average nDCG of system = (0.673 + 0.620 + 0.663)/3 = 0.652 Ans.