日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Data of Application 2003年10月31日

REC'D 0 4 NOV 2004

WIPO

PCT

Date of Application:

願

出

特願2003-372768

Application Number: [ST. 10/C]:

[JP2003-372768]

出 願 人

三井金属鉱業株式会社

出 願
Applicant(s):

特(

PRIÓRITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年10月22日

特許庁長官 Commissioner, Japan Patent Office)· "

特許願 【書類名】 D-17736 【整理番号】 平成15年10月31日 【提出日】 特許庁長官 殿 【あて先】 GO1M 3/00 【国際特許分類】 【発明者】 埼玉県上尾市原市1333-2 三井金属鉱業株式会社総合研究 【住所又は居所】 所内 関守 英史 【氏名】 【発明者】 埼玉県上尾市原市1333-2 三井金属鉱業株式会社総合研究 【住所又は居所】 所内 山岸 喜代志 【氏名】 【発明者】 埼玉県上尾市原市1333-2 三井金属鉱業株式会社総合研究 【住所又は居所】 所内 小池 淳 【氏名】 【特許出願人】 000006183 【識別番号】 三井金属鉱業株式会社 【氏名又は名称】 【代理人】 【識別番号】 100065385 【弁理士】 山下 穣平 【氏名又は名称】 03-3431-1831 【電話番号】 【手数料の表示】 【予納台帳番号】 010700 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

9108382

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

タンク内の液体の漏れを検知する装置であって、

前記タンク内の液体が下端から導入出される測定細管と、

該測定細管の上端に接続され且つ前記測定細管より断面積が大きな測定管と、

前記測定細管に付設され、前記測定細管に沿って順に配置された第1の温度センサ、ヒ ータ及び第2の温度センサを含んでなる、前記測定細管内の液体の流量を測定するための センサ部と、

該センサ部に接続された漏れ検知制御部とを備えており、

該漏れ検知制御部は、前記ヒータに単一パルス電圧を印加するパルス電圧発生回路と、 前記第1の温度センサ及び第2の温度センサに接続され且つこれら温度センサにより感知 される温度の差に対応する出力を生ぜしめる漏れ検知回路とを有しており、前記パルス電 圧発生回路による前記ヒータへの単一パルス電圧の印加に応じて前記漏れ検知回路の出力 と当該出力の当初値との差を積分することで前記液体の流量に対応する流量対応値を算出 し、これに基づき前記タンク内の液体の漏れを検知することを特徴とする、タンク内液体 の漏れ検知装置。

【請求項2】

前記単一パルス電圧はパルス幅が2~10秒であり、前記流量対応値は前記漏れ検知回路 の出力を20~150秒にわたって積分したものであることを特徴とする、請求項1に記 載のタンク内液体の漏れ検知装置。

【請求項3】

前記パルス電圧発生回路は前記単一パルス電圧を40秒~5分但し前記漏れ検知回路の出 力と当該出力の当初値との差の積分時間より長い時間の間隔をおいて前記ヒータに印加す ることを特徴とする、請求項2に記載のタンク内液体の漏れ検知装置。

【請求項4】

前記漏れ検知制御部は前記流量対応値が所定範囲内にある場合に漏れ検知信号を発するこ とを特徴とする、請求項1~3のいずれかに記載のタンク内液体の漏れ検知装置。

【請求項5】

前記測定管の上部に回路収容部が取り付けられており、該回路収容部内に前記漏れ検知制 御部が配置されていることを特徴とする、請求項1~4のいずれかに記載のタンク内液体 の漏れ検知装置。

【請求項6】

前記第1の温度センサ及び第2の温度センサは何れも前記測定細管の外面と接触する熱伝 達部材とこれに接合された感温体とを備えており、前記ヒータは前記測定細管の外面と接 触する熱伝達部材とこれに接合された発熱体とを備えていることを特徴とする、請求項1 ~5のいずれかに記載のタンク内液体の漏れ検知装置。

【書類名】明細書

【発明の名称】タンク内液体の漏れ検知装置

【技術分野】

[0001]

本発明は、タンク内液体の漏れ検知装置に関するものであり、特にタンクからの液体漏 れをタンク内液体の液位変動に基づく流動に変換して検知する装置に関する。

【背景技術】

[0002]

燃料油や各種液体化学品などはタンク内に貯蔵されている。例えば、近年では、集合住 宅における集中給油システムが提案されており、このシステムでは集中灯油タンクから配 管を通じて各住戸に燃料用灯油が供給される。

[0003]

タンクは経時劣化により亀裂を生ずることがあり、この場合にはタンク内液体がタンク 外へと漏れ出す。このような事態をいち早く検知して適切に対処することは、引火爆発又 は周囲環境汚染又は有毒ガス発生などを防止するために重要である。

[0004]

タンク内液体の漏れをできるだけ早く検知する装置として、特開2003-18552 2号公報(特許文献1)には、タンク内の液体が導入される測定管と該測定管の下方に位 置する測定細管とを備え、該測定細管に付設したセンサ部を用いて測定細管内の液体の流 量を測定することで、タンク内液体の微小な液面変動即ち液位変化を検知するようにした ものが開示されている。

[0005]

この漏れ検知装置では、測定細管に付設されたセンサとして傍熱式流量計が使用されて いる。この流量計では、通電により発熱体を発熱させ、その発熱量のうちの一部を液体に 吸収させ、この液体の吸熱量が液体の流量に応じて異なることを利用し、この吸熱の影響 を感温体の温度変化による電気的特性値例えば抵抗値の変化により検知している。

[0006]

ところで、上記の漏れ検知に際しては、発熱体への通電のための電源として外部商用電 源を使用すると、外部から漏れ検知装置のセンサへと電源配線を敷設することが必要とな る。このような電源配線は、長期使用のうちには、特に漏れ検知装置の構造部への取り入 れ部分において漏電を生ずる可能性がある。液体が可燃性のものである場合又は電気伝導 性を持つものである場合には、漏れ検知装置の構造部に付着した液体に対して漏電に基づ く引火又はショートなどを引き起こすことがある。

[0007]

このような観点からは、特に液体が可燃性又は電気伝導性のものである場合には、セン サの発熱体の電源として漏れ検知装置の構造部内に内蔵された電池を利用するのが好まし い。その場合、できるだけ長い期間にわたって電池交換することなく漏れ検知を実施する ためには、漏れ検知装置の消費電力の低減が望ましい。

【特許文献1】特開2003-185522号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

そこで、本発明は、漏れ検知を継続して実施でき且つ消費電力低減の可能な漏れ検知装 置を提供することを目的とするものである。

【課題を解決するための手段】

[0009]

本発明によれば、以上の如き目的を達成するものとして、

タンク内の液体の漏れを検知する装置であって、

前記タンク内の液体が下端から導入出される測定細管と、

該測定細管の上端に接続され且つ前記測定細管より断面積が大きな測定管と、

前記測定細管に付設され、前記測定細管に沿って順に配置された第1の温度センサ、ヒ ータ及び第 2 の温度センサを含んでなる、前記測定細管内の液体の流量を測定するための センサ部と、

該センサ部に接続された漏れ検知制御部とを備えており、

該漏れ検知制御部は、前記ヒータに単一パルス電圧を印加するパルス電圧発生回路と、 前記第1の温度センサ及び第2の温度センサに接続され且つこれら温度センサにより感知 される温度の差に対応する出力を生ぜしめる漏れ検知回路とを有しており、前記パルス電 圧発生回路による前記ヒータへの単一パルス電圧の印加に応じて前記漏れ検知回路の出力 と当該出力の当初値との差を積分することで前記液体の流量に対応する流量対応値を算出 し、これに基づき前記タンク内の液体の漏れを検知することを特徴とする、タンク内液体 の漏れ検知装置、

が提供される。

[0010]

本発明の一態様においては、前記単一パルス電圧はパルス幅が2~10秒であり、前記 流量対応値は前記漏れ検知回路の出力を20~150秒にわたって積分したものである。 本発明の一態様においては、前記パルス電圧発生回路は前記単一パルス電圧を40秒~5 分但し前記漏れ検知回路の出力と当該出力の当初値との差の積分時間より長い時間の間隔 をおいて前記ヒータに印加する。本発明の一態様においては、前記漏れ検知制御部は前記 流量対応値が所定範囲内にある場合に漏れ検知信号を発する。

[0011]

本発明の一態様においては、前記測定管の上部に回路収容部が取り付けられており、該 回路収容部内に前記漏れ検知制御部が配置されている。本発明の一態様においては、前記 第1の温度センサ及び第2の温度センサは何れも前記測定細管の外面と接触する熱伝達部 材とこれに接合された感温体とを備えており、前記ヒータは前記測定細管の外面と接触す る熱伝達部材とこれに接合された発熱体とを備えている。

【発明の効果】

[0012]

本発明によれば、パルス電圧発生回路によるヒータへの単一パルス電圧の印加に応じて 漏れ検知回路の出力と当該出力の当初値との差を積分することで測定細管内の液体の流量 に対応する流量対応値を算出し、これに基づきタンク内の液体の漏れを検知するので、漏 れ検知を長期にわたり継続して実施でき且つ消費電力低減が可能となる。従って、ヒータ の電源として漏れ検知装置の構造部内に内蔵された電池を利用し、長期間にわたって電池 交換することなく漏れ検知を実施することが可能になる。

【発明を実施するための最良の形態】

[0013]

以下、本発明の実施の形態を、図面を参照しながら説明する。

[0014]

図1は本発明によるタンク内液体の漏れ検知装置の一実施形態を説明するための一部破 断斜視図であり、図2は本実施形態の漏れ検知装置の一部省略断面図である。

[0015]

タンク1は、計量口5及びタンク内へ液体を注入する際に使用される注液口6が形成さ れた天板2と、タンク内からタンク外へと液体を供給する際に使用される給液口7が形成 された側板3と、底板4とを有する。図1に示されている様に、タンク1内には、液体(例えばガソリン、軽油または灯油その他の可燃性液体)Lが収容されている。LSはその 液面を示す。

[0016]

漏れ検知装置11は、タンク1の天板2に形成された計量口5を通って、一部がタンク 1内へと挿入されており、全体として鉛直方向に配置されている。漏れ検知装置11は、 液導入出部12、流量測定部13、液溜め部14、キャップ16及び回路収容部15を備 えている。液導入出部12、流量測定部13及び液溜め部14はタンク1の内部に位置し

[0017]

流量測定部13では、図2に示すように、鞘管17内にセンサホルダ13aが配置され ており、該センサホルダにより鉛直方向の測定細管13bが固定保持されている。測定細 管13bには、第1の温度センサ133、ヒータ135及び第2の温度センサ134が上 側からこの順に配置されて取り付けられている。ヒータ135は第1の温度センサ133 及び第2の温度センサ134から等距離の位置に配置されている。センサホルダ13aは 、外側が鞘管17により覆われているので、第1の温度センサ133、ヒータ135及び 第2の温度センサ134は、液体Lによる腐食から保護される。測定細管13bは、液溜 め部14と液導入出部12との間での液体の流通経路として機能する。また、第1の温度 センサ133、ヒータ135及び第2の温度センサ134により測定細管13b内の液体 の流量を測定するためのセンサ部が構成される。

[0018]

液導入出部12では、図2に示されるように、フィルタカバー12bがフィルタ12a をセンサホルダ13aの下部に対して固定している。フィルタ12aは、タンク内の液体 に浮遊または沈殿するスラッジなどの異物を除去して、液体のみを測定細管13bを介し て液溜め部14へと導入する機能を有する。また、フィルタカバー12bの側壁には開口 部が設けられており、タンク1内の液体Lは液導入出部12のフィルタ12aを介して測 定細管13bへと導入される。

[0019]

液溜め部14は、流量測定部13の上方に位置しており、鞘管17により囲まれた空間 Gを有し、この空間G内に測定細管13bから導入される液体を溜めるように構成されて いる。鞘管17の上部にはキャップ16が固定されており、該キャップには液溜め部14 内と検知装置外のタンク内空間とを連通させる通気路16aが形成されている。キャップ 16には回路収容部15が取り付けられており、該回路収容部には漏れ検知制御部15a が収容されている。上記鞘管17内にはセンサホルダ13aの上部とキャップ16とを接 続するように延びたガイド管Pgが配置されており、流量測定部13の第1の温度センサ 133、ヒータ135及び第2の温度センサ134と漏れ検知制御部15aとを接続する 配線18がガイド管Pg内を通って延びている。

[0020]

液溜め部14における鞘管17が本発明の測定管を構成する。測定細管13bの断面積 は、鞘管17の断面積(但し、ガイド管Pgの断面積を除く)に対して十分小さく(例え ば1/50以上、1/100以下、更には1/300倍以下)設定しておくことで、僅か な液体漏れの際の僅かな液位変化にも測定細管13b内に流量測定可能な液体流通を生ぜ しめることができる。

[0021]

鞘管17、センサホルダ13a、フィルタカバー12b、キャップ16及びガイド管P gは、タンク1を構成する素材に近似した熱膨張係数を有する金属からなるのが好ましく 、鋳鉄又はステンレス鋼などのタンク1の素材と同一の金属からなるのがより好ましい。

[0022]

図3は、測定細管に対する第1の温度センサ133、ヒータ135及び第2の温度セン サ134の取り付け部分の拡大斜視図であり、図4はその断面図である。ヒータ135は 、測定細管13bの外面に接触して配置された熱伝達部材181と、該熱伝達部材181 に電気絶縁性薄膜を介して積層された薄膜発熱体182とを有する。薄膜発熱体182は 、所要のパターンに形成されており、それへの通電のための電極には配線182′が接続 されている。熱伝達部材181は、例えば厚さ0.2mm、幅2mm程度の金属又は合金 からなる。配線182、はフレキシブル配線基板等の配線基板24に形成された配線(図 示せず)と接続されている。この配線が上記ガイド管Pg内の配線18に接続されている 。熱伝達部材181、薄膜発熱体182及び配線182,は、配線基板24の一部及び測

[0023]

以上の様な漏れ検知装置11をタンク1の計量口5に取り付けると、上記のようにタン ク内液体Lの液面LSは、液溜め部14の高さ範囲内に位置する。従って、タンク内液体 Lは、液導入出部12のフィルタ12aにより濾過された上で流量測定部13の測定細管 13 bを通って上昇し、液溜め部14の空間G内へと導入され、ついには液溜め部14内 の液体の液面が漏れ検知装置外のタンク内液体の液面LSと同一の高さになる。そして、 タンク内液体の液面LSが変動すると、これに追従して液溜め部14内の液体の液面も変 動し、この液面変動即ち液位変化に伴い測定細管13b内で液体の流動が生ずる。

[0024]

図5は上記センサ部及び漏れ検知制御部の回路構成を示す図である。これら回路の電源 としては、回路収容部15内に配置された不図示の電池を用いることができる。

[0025]

ヒータ135の薄膜発熱体182はパルス電圧発生回路67に接続されており、該パル ス電圧発生回路から適時単一パルス電圧が薄膜発熱体182に印加される。第1及び第2 の温度センサ133,134を構成する薄膜感温体60,61は、漏れ検知回路71に接 続されている。即ち、薄膜感温体60,61は、抵抗体62,63と共にブリッジ回路を 構成する。該ブリッジ回路には電源電圧V1が供給され、そのa,b点の電位差に対応す る電圧出力信号が差動増幅器65により得られる。この漏れ検知回路71の出力は、温度 センサ133,134の薄膜感温体60,61により感知される温度の差に対応しており 、A/Dコンバータ66を介してCPU68に入力される。又、上記パルス電圧発生回路 67は、СР U 68からの指令により動作制御される。СР U には、クロック 69 及びメ モリ70が接続されている。

[0026]

以下、本実施形態における漏れ検知動作即ちCPU68の動作につき説明する。

[0027]

図6は、パルス電圧発生回路67から薄膜発熱体182に印加される電圧Qと漏れ検知 回路71の電圧出力Sとの関係を示すタイミング図である。CPU68からは、クロック 69に基づき、幅 t 1の単一パルス状電圧が所定の時間間隔 t 2で印加される。この単一 パルス状電圧は、例えば、パルス幅t1が2~10秒であり、パルス高Vhが1.5~4 Vである。これにより薄膜発熱体182で生じた熱は、測定細管13b及びその内部の液 体を加熱し、周囲に伝達される。この加熱の影響は薄膜感温体60,61に到達し、これ ら薄膜感温体の温度が変化する。ここで、測定細管13b内での液体の流量が零の場合に は、対流による温度伝達の寄与を無視すれば、2つの感温体60,61での温度変化は同 等である。しかし、タンク内液体がタンクから漏れた時のようにタンク内液体の液面が低 下した場合には、液溜め部14から測定細管13bを通じて液体が検知装置外のタンク内 へと液体導入出部12から導出されるので、測定細管13b内の液体は上から下へと流動 する。これにより、薄膜発熱体182からの熱は上側の温度センサ133の薄膜感温体6 0よりも下側の温度センサ134の薄膜感温体61の方へと多く伝達される。かくして、 2つの薄膜感温体が検知する温度には差が生じて、これら薄膜感温体の抵抗値変化は互い に異なるものとなる。図6には、温度センサ133の薄膜感温体60に印加される電圧V T1及び温度センサ134の薄膜感温体61に印加される電圧VT2の変化が示されてい る。かくして、差動増幅器の出力即ち漏れ検知回路71の電圧出力Sは、図6に示される ように、変化する。

[0028]

図7に、パルス電圧発生回路67から薄膜発熱体182に印加された電圧Qと漏れ検知 回路71の電圧出力Sとの関係の具体例を示す。この例では、単一パルス状電圧はパルス 高Vhが2Vでありパルス幅tlが5秒であり、液位変化速度F[mm/h]を変化させ

[0029]

CPU68では、パルス電圧発生回路67によるヒータ135の薄膜発熱体182への 単一パルス電圧の印加に応じて、単一パルス電圧印加の開始後の所定時間 t 3 において、 漏れ検知回路の電圧出力Sとその当初値(即ち、単一パルス電圧印加開始時)Soとの差 (S_0-S) を積分する。この積分値 \int (S_0-S) d t は、図 6 で斜線を付した領域に相 当し、測定細管13b内の液体の流量に対応する流量対応値である。得られた流量対応値 に基づき、この流量対応値が所定範囲内にある場合にタンク1内の液体の漏れがあると判 定し漏れ検知信号を発する。所定時間 t 3 は、例えば 2 0~150秒である。

[0030]

図8に、測定細管13b内の液体の流量Fに対応する液位変化速度と上記積分値∫(S $_{0}-S$) d t との関係の具体例を示す。この例では、積分値を得るための所定時間 t 3 ϵ 30秒とし、互いに異なる3つの温度での関係を得た。液位変化速度1.5mm/h以下 の領域において、液位変化速度と積分値∫(So-S) d t との間に温度によらず良好な 直線的関係があることが分かる。尚、この例では液位変化速度1.5mm/h以下の領域 で良好な直線的関係が示されたが、測定管断面積に対する測定細管断面積の比や測定細管 の長さなどを適宜設定することで、液位変化速度20mm/h以下の領域で良好な直線的 関係が得られるようにすることが可能である。

[0031]

このような積分値∫ (So−S) d t と液位変化速度との代表的な関係は、予めメモリ 70に記憶させておくことができる。従って、漏れ検知回路71の出力を用いて算出され る流量対応値である積分値∫ (So-S) d t に基づき、メモリ70の記憶内容を参照し て換算することにより、タンク内液体の漏れを液位変化速度として得ることができる。但 し、或る値(例えば 0. 0 1 mm/h)より小さな液位変化速度が得られた場合には、測 定誤差範囲内であるとみなして、漏れなしと判定することができる。

[0032]

以上のような漏れ検知は、適宜の時間 t 2 の間隔をおいて繰り返し実行される。時間 t 2は、例えば40秒~5分(但し、上記積分時間t3より長い時間)である。

[0033]

ところで、タンク1内での液位変化は、注液口6からタンク内への液体の注入がなされ る時あるいは給液口7から外部への液体供給がなされる時にも発生する。しかし、これら の場合のタンク1内の液位の上昇または下降の速度は、漏れの場合の液位変化速度よりか なり大きいのが一般的である。従って、これらの場合の積分値∫ (So-S) d t の大き さは漏れの場合より大きくなる。そこで、液体注入や液体供給の場合には得られず且つ漏 れのみがある時に得られる積分値∫(So−S) d t の範囲(例えば図8の場合では0~ 1.0 [液位変化速度 0.2~1.2 mm/hに相当]) を予め設定し、これをメモリ7 0 に記憶しておき、上記積分値 \int (S_0-S) dt に基づく漏れの有無の判定の基準とす ることができる。尚、この例では液位変化速度0.2~1.2mm/hに相当する積分値 ∫ (S₀-S) d t の範囲を漏れの有無の判定基準としたが、測定管断面積に対する測定 細管断面積の比や測定細管の長さなどを適宜設定することで、液位変化速度 0.01~2 0 mm/hの範囲内の適宜の領域に相当する積分値∫(So-S) d t の範囲を漏れの有 無の判定基準とすることが可能である。

[0034]

即ち、CPU68では流量対応値が所定範囲内の場合にのみ漏れありとの判定がなされ 、その判定結果を示す漏れ検知信号がCPU68から出力される。この漏れ検知信号は、 有線または無線により外部に連絡される。また、漏れ判定の結果は、メモリ70に記憶す ることができ、また回路収容部15に設けられた不図示の表示手段により適宜表示するこ とができる。

[0035]

液位変化速度は漏れ量(単位時間あたりの漏れの量)と関係している。即ち、液位変化 出証特2004-3095547 速度に当該液位でのタンク内部の水平断面積を乗じたものが液体の漏れ量に相当する。従 って、予めタンクの形状(即ち高さ位置とタンク内部の水平断面積との関係)をメモリ7 0 に記憶しておき、このメモリの記憶内容を参照して、上記のようにして検知された液位 及び漏れ(液位変化速度)に基づき、タンク内液体の漏れ量を算出することができる。

[0036]

尚、タンクの形状が図1に示される縦型円筒形状などのようにタンク内部の水平断面積 が高さによらず一定のものである場合には、液位変化速度と漏れ量とは単純な比例関係に あり、従って液位の値自体とは無関係に液位変化速度にタンク内部の水平断面積に応じた 比例定数を乗ずることで容易に漏れ量を算出することができる。即ち、この場合には、上 記の本発明装置により検知される漏れは漏れ量に基づくものと実質上同等である。

【図面の簡単な説明】

[0037]

- 【図1】本発明によるタンク内液体の漏れ検知装置の一実施形態を説明するための一 部破断斜視図である。
- 【図2】図1の実施形態の漏れ検知装置の一部省略断面図である。
- 【図3】測定細管に対する第1の温度センサ、ヒータ及び第2の温度センサの取り付 け部分の拡大斜視図である。
- 【図4】図3の断面図である。
- 【図5】センサ部及び漏れ検知制御部の回路構成を示す図である。
- 【図6】薄膜発熱体に印加される電圧Qと漏れ検知回路の電圧出力Sとの関係を示す タイミング図である。
- 【図7】薄膜発熱体に印加された電圧Qと漏れ検知回路の電圧出力Sとの関係の具体 例を示す図である。
- 【図8】液位変化速度と積分値∫(So−S) d t との関係の具体例を示す図である

【符号の説明】

[0038]

- 1 タンク
- 2 天板
- 3 側板
- 4 底板
- 5 計量口
- 6 注液口
- 7 給液口
- L 液体 LS 液面
- 11 漏れ検知装置
- 12 液導入出部
- 12a フィルタ
- 12b フィルタカバー
- 13 流量測定部
- 13a センサホルダ
- 13b 測定細管
- 133 第1の温度センサ
- 134 第2の温度センサ
- 135 ヒータ
- 14 液溜め部
- G 空間
- 15 回路収容部
- 15a 漏れ検知制御部

- 16 キャップ
- 16a 通気路
- 17 鞘管
- Pg ガイド管
- 18 配線
- 181 熱伝達部材
- 182 薄膜発熱体
- 182' 配線
- 23 封止部材
- 24 配線基板
- 60,61 薄膜感温体
- 62,63 抵抗体
- 65 差動増幅器
- 66 A/Dコンバータ
- 67 パルス電圧発生回路
- 68 CPU
- 69 クロック
- 70 メモリ
- 71 漏れ検知回路

【図4】

【図5】

【図7】

【要約】

【課題】 消費電力低減の可能な漏れ検知装置を提供する。

【解決手段】 タンク内液体が下端から導入出される測定細管13bと、その上端に接続 され且つそれより断面積が大きな測定管17と、測定細管に付設され温度センサ133, 134及びヒータ135を含んでなるセンサ部と、それに接続された漏れ検知制御部15 aとを備える。漏れ検知制御部15aは、ヒータ135に単一パルス電圧を印加するパル ス電圧発生回路と、温度センサ133,134に接続され且つこれら温度センサにより感 知される温度の差に対応する出力を生ぜしめる漏れ検知回路とを有しており、パルス電圧 発生回路によるヒータ135への単一パルス電圧の印加に応じて漏れ検知回路の出力とそ の当初値との差を積分することで液体の流量に対応する流量対応値を算出し、これに基づ きタンク内の液体の漏れを検知する。

図 2 【選択図】

特願2003-372768

出願人履歴情報

識別番号

[000006183]

1. 変更年月日

1999年 1月12日

[変更理由]

住所変更

住所

東京都品川区大崎1丁目11番1号

氏 名 三井金属鉱業株式会社