Types of Functions

Piecewise Functions

Notation

$$f(x) = \begin{cases} \text{function,} & \text{condition} \\ \vdots & \vdots \\ \text{function,} & \text{condition} \end{cases}$$

$$f(x) = \begin{cases} x, & [0,2) \\ \frac{1}{2}x, & (2,6] \\ \frac{3}{5}x, & (6,9] \\ -x, & (9,15] \end{cases}$$

Absolute Value

Even and Odd
Definition:
A function $f(x)$ is called:
Even: If $\forall x \in D$ we have $f(-x) = f(x)$
Odd: If $\forall x \in D$ we have $f(-x) = -f(x)$
Neither:
Symmetries:
Even:
Odd:

Neither:

Increasing Decreasing

Definition:

A function f(x) on an inteval I is called:

Increasing: $\forall a, b \in I \text{ if } a < b \text{ then } f(a) < f(b)$

Decreasing: $\forall a, b \in I \text{ if } a < b \text{ then } f(a) > f(b)$

"Parent" Fucntions

Translation of functions

Shifts:

$$\underline{\qquad} : f(x) \to f(x-c)$$

$$\underline{\qquad}: f(x) \to f(x+c)$$

 $\underline{ \qquad } : f(x) \to f(x) - c$

 $: f(x) \to f(x) + c$

Stretching and reflection:

For 1 < c

$$\underline{\qquad}: f(x) \to f(cx)$$

$$\underline{\qquad} : f(x) \to f(\frac{1}{c}x)$$

$$\underline{\qquad}: f(x) \to \frac{1}{c}f(x)$$

$$\underline{\qquad}: f(x) \to -f(x)$$

 $f(x) \to f(-x)$

Function Arithmetic

$$(f+g)(x) = f(x) + g(x)$$

$$(f - g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$