Algebra I

Andrea Gallese

October 11, 2017

G Teoria dei Gruppi

G.1 Automorfismi e Azioni

Teorema G.1. Se G
in un gruppo, $(Aut(G), \circ)
in un gruppo$.

Esempi.

- 1. Aut $(\mathbb{Z}) \cong \{\pm id\} \cong \mathbb{Z}_2$
- 2. Aut $(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$
- 3. Aut $(\mathbb{Q}) \cong \mathbb{Q}^{\times}$
- 4. Aut $(\mathbb{R}) \cong \mathcal{S}(\mathbb{R}) \times \mathbb{Q}^{\times}$

Definizione G.2 (Gruppo degli automorfismi interni). Sia Int $(G) = \{\varphi_g \mid g \in G\}$ l'insieme di tutti gli automorfismi interni, i.e. degli automorfismi di coniugio:

$$\varphi_g(x) = gxg^{-1} \quad \forall x \in G$$

Osservazione. è immediato osservare che Int $(G) \triangleleft Aut(G)$.

Teorema G.3.

Int
$$(G) \cong {}^{G}/_{Z(G)}$$

Proof. La funzione

$$\Phi \colon G \to \operatorname{Int} (G)$$
$$g \mapsto \varphi_g$$

è un omomorfismo con kernel Z(G). La tesi segue dal Primo Teorema di Omomorfismo.

Osservazione.

$$H \triangleleft G \Leftrightarrow \varphi_q(H) = H \quad \forall \varphi_q \in \text{Int}(G)$$

Definizione G.4 (Sottogruppo caratteristico). Un sottogruppo H < G si dice caratteristico se è invariante per tutto $\operatorname{Aut}(G)$, i.e.

$$\varphi(H) = H \quad \forall \varphi \in \text{Aut}(G)$$

Osservazione. Un sottogruppo caratteristico è anche normale, ma non è vero il viceversa: basta considerare $\langle (0,1) \rangle \lhd \mathbb{Z}_2 \times \mathbb{Z}_2$

Definizione G.5 (Azione). Si dice azione di un gruppo G su un insieme X un omomorfismo φ tale che

$$\varphi \colon G \to \mathcal{S}(X)$$

 $g \mapsto \phi_g(x) = g \cdot x.$

Esempio. Siano $G=\{z\in\mathbb{C}\mid |z|=1\}$ e $X=\mathbb{R}^2$. E sia ϕ l'azione:

$$\varphi \colon C \to \mathcal{S}\left(\mathbb{R}^2\right)$$

$$z \mapsto \mathcal{R}(O, \arg z)$$

Osservazione. Un'azione induce naturalmente una relazione di equivalenza su X: $x \sim y \Leftrightarrow \exists g \in G \ t.c. \ g \cdot x = y$. Viene quindi spontaneo prendere in considerazione gli elementi della partizione così ottenuta.

Definizione G.6 (Orbita). Si dice orbita di un elemento $x \in X$ l'insieme di tutti gli elementi che posso essere raggiunti da x tramite l'azione:

$$\mathcal{O}rb\left(x\right) = \left\{g \cdot x \mid \forall g \in G\right\}$$

Osservazione. Detto R un insieme di rappresentanti delle varie orbite, per il partizionamento prima considerato:

$$X = \bigcup_{x \in R} \mathcal{O}rb\left(x\right) \; \Rightarrow \; |X| = \sum_{x \in R} |\mathcal{O}rb\left(x\right)|$$

Definizione G.7 (Stabilizzatore). Si dice stabilizzatore di un elemento $x \in X$ l'insieme di tutti gli elementi di G che agiscono in modo banale su x:

$$Stab(x) = \{ q \in G \mid q \cdot x = x \}$$

Osservazione. è immediato osservare che Stab(x) < G, ma non necessariamente normale.

Teorema G.8.

$$|G| = |\mathcal{O}rb(x)||\mathcal{S}tab(x)|$$

Proof. La funzione f così definita

$$f \colon \{gStab\left(x\right) \mid g \in G\} \to \{\mathcal{O}rb\left(x\right) \mid x \in X\}$$
$$gStab\left(x\right) \mapsto g \cdot x$$

è biunivoca, infatti:

$$g \cdot x = h \cdot x \Leftrightarrow \varphi_g(x) = \varphi_h(x)$$

$$\Leftrightarrow \varphi_h^{-1} \varphi_g(x) = x$$

$$\Leftrightarrow \varphi_{h^{-1}g}(x) = x$$

$$\Leftrightarrow h^{-1}g \cdot x = x$$

$$\Leftrightarrow h^{-1}g \in \mathcal{S}tab(x)$$

$$\Leftrightarrow g \in h\mathcal{S}tab(x)$$

$$\Leftrightarrow g\mathcal{S}tab(x) = h\mathcal{S}tab(x)$$

Osservazione. Dall'osservazione precedente

$$|X| = \sum_{x \in R} \frac{|G|}{|\mathcal{S}tab(x)|}$$

Esempi.

1. $[G = C, X = \mathbb{R}^2]$ e l'azione dell'ultimo esempio. Questa sposta ruota ogni punto attorno all'origine, pertanto le orbite sono circonferenze centrate nell'origine e gli stabilizzatori sono tutti banali, tranne quello dell'origine che coincide con G.

- 2. $[G=\mathbb{R},\ X=\mathbb{R}^2]$ e l'azione che trasforma $r\in\mathbb{R}$ nella traslazione orizzontale di lunghezza r. Le orbite sono le rette parallele alla traslazione e gli stabilizzatori sono tutti banali.
- 3. [G, X = G] e l'azione sia la mappa che manda un elemento g nel coniugio per questo $\varphi_g(x) = gxg^{-1}$. L'orbita di un elemento contiene tutti i coniugati di questo ed è detta classe di coniugio di x (\mathcal{C}_x). Lo stabilizzatore di x contiene tutti e soli gli elementi tali che

xg = gx, ovvero il sottogruppo di tutti gli elementi che commutano con x, è detto centralizzatore di x ($Z_G(x)$).

4. $[G, X = \{H \mid H < G\}]$ e l'azione di coniugio. Le orbite non sono particolarmente interessanti, mentre lo stabilizzatore di un sottogruppo è detto *Normalizzatore* di H, N(H) ed è il più grande sottogruppo di G in cui H è normale.

Osservazione. $H \triangleleft G \Leftrightarrow N(H) = G$

G.2 Formula delle Classi e Cauchy

Teorema G.9 (Formula delle Classi). Per ogni gruppo finito vale

$$|G| = |Z(G)| + \sum_{x \in R'} \frac{|G|}{|Z_G(x)|}$$

 ${\it Proof.}$ Riprendiamo la partizione di X in orbite, ma separando quelle banali da quelle non

$$|X| = \sum_{\substack{x \in R \\ \mathcal{O}rb(x) = \{x\}}} 1 + \sum_{\substack{x \in R \\ \mathcal{O}rb(x) \neq \{x\}}} \frac{|G|}{|\mathcal{S}tab\left(x\right)|}$$

Osserviamo cosa succede nel caso dell'azione di coniugo da un gruppo in se (l'esempio 3 della lezione precedente). L'orbita di x è banale se e solo se $gxg^{-1}=x, \forall g\in G$, ovvero nel caso in cui x commuti con tutti gli elementi di G (stia nel centro). Dunque la formula di sopra si riscrive come desiderato.

Definizione G.10 (p-gruppo). Si dice p-gruppo un gruppo finito G di ordine potenza di un primo $p: |G| = p^n$.

Esempi.

1. Un p-gruppo G ha centro non banale. Tutti i centralizzatori degli elementi di R' hanno dimensione p^k per un intero $0 \le k < n$, dunque

$$p \mid \frac{|G|}{|Z_G(x)|} \forall x \in R'$$

pertanto, per la formula delle classi,

$$p \mid |G| - \sum_{x \in R'} \frac{|G|}{|Z_G(x)|} = |Z(G)|$$

che quindi, contenendo e, deve avere almeno p elementi.

2. I gruppi di ordine p^2 sono abeliani. Il centro di G avrà, per quanto appena dimostrato, ordine p o p^2 . Nel secondo caso abbiamo finito. Nel primo

$$\left| \frac{G}{Z(G)} \right| = p$$

dunque il quoziente è ciclico. Presi due elementi qualunque $x,y\in G$ possiamo esprimerli come $x=g^ha$ e $y=g^kb$, dove g è il generatore del quoziente e $a,b\in Z(G)$. Allora, sfruttando la commutatività degli elementi del centro

$$xy = (a)(q^k b) = q^{h+k}ab = q^{k+h}ba = (q^k b)(q^h a) = yx$$

ricaviamo la commutativa per tutti gli elementi del gruppo.

3. Una possibile dimostrazione del Teorema di Cauchy:

Teorema G.11 (di Cauchy). Per ogni fattore primo p di |G| esiste un elemento g di G di ordine p.

Dimostrazione Classica. Sia |G|=pn, procediamo per induzione su n.

Se n=1, G è ciclico, quindi ha un generatore di ordine p. Supponiamo ora che tutti i gruppi di ordine $kp \quad \forall k < m$ abbiamo un elemento di ordine p. Se |G|=pm ci sono due casi:

- 1. Esiste un sottogruppo proprio H di ordine multiplo di p, da cui ricadiamo nell'ipotesi induttiva.
- 2. Se nessun sottogruppo di ${\cal G}$ ha ordine divisibile per p, allora

$$p \mid \frac{|G|}{|Z_G(x)|} \forall x \in R'$$

perché i $Z_G(x) < G$. Per la formula delle classi

$$p \mid |G| - \sum_{x \in R'} \frac{|G|}{|Z_G(x)|} = |Z(G)|$$

ma abbiamo supposto che i sottogruppi propri non abbiamo ordine multiplo di p, dunque il centro deve coincidere con l'intero gruppo, che risulta pertanto commutativo.

Dimostrazione Magica. Sia

$$X = \{(x_1, \dots, x_p) \in G^p \mid x_1 \dots x_n = 1\}$$

questo insieme ha esattamente $|G|^{p-1}$ elementi, infatti scelti i primi (p-1) l'ultimo è univocamente determinato come il suo unico inverso. Se una p-upla non è composta da un solo elemento ripetuto, allora possiamo ciclare i suoi termini per ottenere altre (p-1) p-uple in X. Dunque, detto n il numero di g tali che $g^p=1$

$$p \mid |G|^{p-1} - n \implies p \mid n$$

e poiché $e^p = e$ ci sono almeno p elementi di ordine p.

Osservazione. Cosa riusciamo a dire su un possibile teorema inverso a quello di Lagrange?

- 1. per Gruppi Abeliani?
 - (a) elementi di ordine divisore? no, basti guardare $\mathbb{Z}_2 \times \mathbb{Z}_2$
 - (b) sottogruppi di ordine divisore? sì! esercizio.
- 2. per Gruppi non Abeliani?
 - (a) a maggior ragione no
 - (b) no

Esercizio. Classificare i gruppi G di ordine 6. Per Cauchy esistono $x,y\in G$ di ordine, rispettivamente, 2 e 3.

- ▶ Se G è abeliano, ord(xy) = 6, quindi G è ciclico e pertanto isomorfo a \mathbb{Z}_6 .
- ▶ Se non lo è, costruiamo un isomorfismo esplicito...

Teorema G.12 (Caylay). Possiamo immergere ogni gruppo G in S(G).

Proof. Esibiamo un'azione fedele (ovvero, iniettiva):

$$\Phi \colon G \to \mathcal{S}(G)$$
$$g \mapsto \varphi_q(x) = gx$$

è ora sufficiente verificare che Φ è ben definito $(\varphi_g$ è una bigezione) e iniettivo.

Definizione G.13 (Sottogruppo generato). Sia $S \subset G$ un sottoinsieme su G, chiamiamo il più sottogruppo contenente S sottogruppo generato da S ($\langle S \rangle$).

$$\langle S \rangle = \bigcap_{\substack{H \le G \\ S \subseteq H}} H$$

Teorema G.14 (Caratterizzazione dei sottogruppi generati).

$$\langle S \rangle = \{ s_1 \cdots s_k \mid k \in \mathbb{N}, \ s_i \in S \cup S^{-1} \}$$

Proof. Chiamiamo X il magico insieme nel RHS. Chiaramente $S \subseteq X$ e pertanto X, che è facile verificare essere un gruppo, è parte della famiglia sotto intersezione: $X \subseteq \bigcap \mathcal{F}$. Inoltre se $S \subseteq H < G$ sicuramente in H compaiono tutte le k-uple di X e quindi X < H per ogni sottogruppo di \mathcal{F} . Dunque $X \subseteq \bigcap \mathcal{F}$.

Esempi.

1. $\langle S \rangle$ è abeliano se e solo se tutti gli elementi di S commutano fra loro.

G.3 Gruppi Diedrali D_n

Definizione G.16 (Gruppo Diedrale). Sia D_n il gruppo delle isometrie dell'*n*-agono regolare.

Teorema G.17 (Caratterizzazione di D_n). Si ha

$$D_n = \langle \rho, \sigma \mid \rho^n = e, \sigma^2 = e, \sigma \rho \sigma = \rho^{-1} \rangle$$

Proof. Tutti gli elementi sopra definiti possiamo ridurli a un elemento della forma ρ^k o $\sigma \rho^k$ per un qualche $0 \leq k < n$. Questo perché così sono fatti i generatori e ogni operazione permessa (composizione e inversione) si riducono a questa forma attraverso le leggi a disposizione. Inoltre possiamo immergere D_n in un sottogruppo di $\mathbf{O}_2(\mathbb{R})$ di ordine 2n attraverso un omomorfismo suriettivo:

$$\Phi \colon D_n \to \mathbf{O}_2(\mathbb{R})$$

$$\sigma \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\rho \mapsto \begin{pmatrix} \cos \frac{2\pi}{\eta_2} & \sin \frac{2\pi}{\eta} \\ -\sin \frac{2\pi}{\eta} & \cos \frac{2\pi}{\eta} \end{pmatrix}$$

Pertanto ognuno dei rappresentati sopra individua un'effettiva trasformazione distinta.

Osservazione. Conosciamo già un gruppo diedrale: $D_3 \cong S_3$. Osservazione. Il sottogruppo C_n delle rotazioni, generato da ρ , è ovviamente ciclico e, avendo indice 2, è anche normale in D_n .

$$\langle \rho \rangle = C_n \lhd D_n$$

Teorema G.18 (Ordine degli elementi di D_n). Sappiamo che

- ▶ tutte le simmetrie hanno ordine 2.
- ightharpoonup ci sono $\varphi(m)$ rotazioni di ordine m, per ogni $m \mid n$.

Proof. La seconda parte è immediata conseguenza della ciclicità del sottogruppo delle rotazioni. L'ordine delle riflessioni possiamo calcolarlo esplicitamente notando che $(\sigma \rho^k) (\sigma \rho^k) = (\sigma \rho^k \sigma) \rho^k = \rho^{-k} \rho^k = e$ grazie alla terza proprietà imposta nella caratterizzazione.

- 2. $\langle S \rangle$ è normale se e solo se ogni ogni elemento di S rimane in $\langle S \rangle$ per coniugio.
- 3. $\langle S \rangle$ è caratteristico se e solo se ogni elemento di S viene mandato in $\langle S \rangle$ da ogni automorfismo di G.
- 4. $G' = \langle ghg^{-1}h^{-1} \mid g, h \in G \rangle$ è detto Gruppo dei Commuatatori o Gruppo Derviato di G. Questo gruppo gode di alcune proprietà fondamentali
 - (a) $G' = \{e\} \Leftrightarrow G \text{ abeliano.}$
 - (b) G' è caratteristico e pertanto normale in G.
 - (c) Dato $H \triangleleft G$, il quoziente G/H è abeliano se e solo se G' < H.

Proof. La verifica delle proprietà (a) e (b) è banale. Rimane l'ultima (c):

$$\begin{array}{ll} G_{/H} \text{ abeliano} \Leftrightarrow xHyH = yHxH & \forall x,y \in G \\ \Leftrightarrow xyH = yxH & \forall x,y \in G \\ \Leftrightarrow x^{-1}y^{-1}xy \in H & \forall x,y \in G \\ \Leftrightarrow g' \in H & \forall g' \in G' \end{array}$$

Definizione G.15. G/G' è detto l'abelianizzato di G, perché è sempre abeliano!

Teorema G.19 (Sottogruppi di D_n). I sottogruppi $H < D_n$ rientrano in una di queste due categorie:

- ▶ $H < C_n$: di cui ne abbiamo esattamente uno per ogni ordine divisore di n.
- ▶ $H = (H \cap C_n) \sqcup \tau(H \cap C_n)$: di cui ce ne sono d di ordine $\frac{2n}{d}$ per ogni d | n.

Proof. Se $H < C_n$ il risultato viene da Aritmetica. Se $H \nleq C_n$, H contiene almeno una rotazione $\tau = \sigma \rho^i$. Consideriamo l'omomorfismo f che fa commutare il diagramma

$$D_n \xrightarrow{\Phi} \mathbf{O}_2(\mathbb{R})$$

$$f \qquad \qquad \downarrow^{det}$$

$$\{\pm 1\} \cong \mathbb{Z}$$

Notiamo che $\ker f = C_n \triangleleft D_n$ e osserviamo cosa succede quando restringiamo l'omomorfismo trovato ad H

$$H \xrightarrow{f_{\mid H}} f(H)$$

$$\downarrow^{id} \qquad \qquad \downarrow^{id}$$

$$D_n \xrightarrow{f} \mathbb{Z}_2$$

Abbiamo così scomposto il nostro sottogruppo come desiderato, poiché conosciamo il ker della trasformazione

$$H = f^{-1}(0) \sqcup f^{-1}(1) = (H \cap C_n) \sqcup \tau(H \cap C_n)$$

Poiché $(H \cap C_n) < C_n$ possiamo vederlo come il sottogruppo generato da una potenza della rotazione elementare

$$H \cap C_n = \langle \rho^d : d \mid n \rangle$$

Il suo unico laterale sarà allora composto dagli d elementi della forma

$$\tau(H \cap C_n) = \{\tau \rho^d, \tau \rho^2 d, \dots, \tau \rho^{n-m}\}$$
$$= \{\sigma \rho^{d+i}, \sigma \rho^{2d+i}, \dots, \sigma \rho^{n-m+i}\}$$

che è facile convincersi dipendere solamente dalla classe di i

Esercizi.

- 1. Quali sottogruppi di D_n sono normali?
- 2. Quali sottogruppi di D_n sono caratteristici?

G.4 Gruppi di Permutazioni S_n

Definizione G.20 (Gruppi di Permutazioni). Dato un insieme X, chiamiamo

$$S(X) = \{ f : X \to X \mid f \text{ è bigettiva} \}$$

con l'operazione di composizione, il gruppo delle permutazioni di X. Se l'insieme è finito |X|=n, allora

$$\mathcal{S}(X) \cong S(\{1, 2, \dots, n\})$$

lo chiamiamo S_n .

Teorema G.21. Ogni permutazione $\sigma \in S_n$ si scrive in modo unico come prodotto di cicli disgiunti.

Osservazione. Cicli disgiunti commutano.

Teorema G.22. S_n è generato dai suoi cicli.

Esercizi.

- 1. Quanti k-cicli ci sono in S_n ?
- 2. Come conto gli elementi con una composizione fissata in un S_n dato? Per esempio, come calcolo le permutazioni del tipo 3 + 3 + 2 + 2 + 2 in S_{10} ?
- 3. L'ordine di σ è il minimo comune multiplo delle lunghezze dei suoi k-cicli.

Teorema G.23. S_n è generato dalle sue trasposizioni.

Osservazione. La decomposizione in trasposizioni non è unica. Ma la parità del numeri di trasposizioni lo è:

Teorema G.24. La parità del numero di trasposizioni della scomposizione di una qualunque permutazione $\sigma \in \mathcal{S}_n$ non dipende dalla scomposizione.

Proof. Consideriamo

$$\operatorname{sgn} \colon \mathcal{S}_n \to \mathbb{Z}^{\times} = \{\pm 1\}$$
$$\sigma \mapsto \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

questo è un omomorfismo di gruppi. Infatti:

1. è ben definito, ovvero $|\operatorname{sgn}(\sigma)|=1$: tutte le differenze che compaiono a denominatore compaiono anche a numeratore, poiché σ è una permutazione, magari con ordine o segno, differente.

- 3. Quali sono i quozienti di D_n ?
- 4. (\star) Chi è Aut (D_n) ?
- 2. Si comporta bene con la composizione

$$\begin{split} \operatorname{sgn}(\sigma \circ \tau) &= \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{i - j} \\ &= \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \frac{\tau(i) - \tau(j)}{i - j} \\ &= \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \cdot \prod_{i < j} \frac{\tau(i) - \tau(j)}{i - j} \\ &= \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau) \end{split}$$

Infine, tutte le trasposizioni hanno segno negativo.

Definizione G.25 (Gruppo Alterno). Chiamiamo A_n o gruppo alterno il sottogruppo delle permutazioni pari

$$\ker(\operatorname{sgn}) = A_n \triangleleft \mathcal{S}_n$$

Teorema G.26. Due permutazioni $\sigma, \tau \in S_n$ sono coniugate se e solo se hanno lo stesso tipo di decomposizione in cicli.

Proof. \Rightarrow . Ci basta dimostrare che dato un ciclo $\sigma = (a_1 \cdots a_k)$ e una permutazione tale che $\tau(a_i) = b_i$. Allora le immagini del ciclo vengono mandati nel loro "successore"

$$\tau \sigma \tau^{-1}(b_i) = \tau \sigma(a_i) = \tau(a_{i+1}) = b_{i+1}$$

mentre le non immagini di alcun a_i , con controimmagini invarianti per σ , rimangono fisse

$$\tau \sigma \tau^{-1}(x) = \tau \tau^{-1}(x) = x$$

pertanto

$$\tau \sigma \tau^{-1} = (b_1 \cdots b_k)$$

 \Leftarrow . Se vogliamo mandare il ciclo $(a_1 \cdots a_k)$ in $(b_1 \cdots b_k)$ ci basta coniugare per la stessa permutazione di prima: $\tau(a_i) = b_i$. Possiamo poi costruire il coniugio moltiplicando tra loro tutte le τ relative ai vari cicli.

Osservazione. Notiamo che il centralizzatore di σ coincide con lo stabilizzatore dell'azione di coniugio di S_n in se. Dunque

$$|Z(\sigma)| = \frac{n!}{|\mathcal{C}(x)|}$$

Esercizio. Caratterizzare i normalizzatori dei sottogruppi dei gruppi ciclici.