UNIVERSITÉ de LORRAINE TELECOM Nancy

TELECOM Nancy

Mathématiques Appliquées pour l'Informatique 1ère année formation par apprentissage

Date: 19 décembre 2018 Horaire: 14h à 16h

Durée du sujet : 2h

Une double feuille A4 (à votre nom) autorisée Calculatrices et téléphones non autorisées

Avertissement: les exercices sont indépendants. Les réponses aux questions posées doivent être justifiées. La clarté et le soin de la rédaction sont des éléments de l'appréciation.

Exercice 1 (Théorie des langages : automates et langages réguliers)

1. Soit l'automate \mathcal{A}_1 défini par le diagramme suivant :

Calculer une expression rationnelle dénotant le langage reconnu par A_1 . On demande d'établir le système d'équations vérifiées par les langages associés aux états de l'automate et de résoudre ce système.

2. Soit l'automate fini \mathcal{A}_2 dont le diagramme est ci-dessous :

Mettre en évidence tous les éléments permettant d'affirmer que A_2 n'est pas déterministe. Déterminiser A_2 en appliquant l'algorithme vu en TD, et donner tous les éléments de l'automate déterminisé et sa fonction de transition sous forme d'une table.

3. Soit l'automate déterministe $A_3 = (\{a, b\}, \{i, i \in \mathbb{N} \ et \ 0 \le i \le 6\}, 0, \delta, \{1, 3, 5\})$ où δ est la table des transitions définie par le tableau suivant :

δ	0	1	2	3	4	5	6
a	4	5	4	4	5	4	1
b	2	3	3	2	2	2	6

Après avoir supprimé les états inaccessibles de A_3 , minimaliser A_3 , donner tous les éléments de l'automate obtenu, et sa fonction de transition sous forme d'une table.

Exercice 2 (Analyse syntaxique descendante)

1. Soit la grammaire $G_1 = (\{A, B, C, D, E, F\}, \{a, b, c\}, \rightarrow, A)$ dont les règles sont :

$$\left\{ \begin{array}{l} A \to BC \\ B \to aBcD \mid b \\ C \to bC \mid \varepsilon \end{array} \right. \quad \left\{ \begin{array}{l} D \to aE \mid F \\ E \to aE \mid \varepsilon \\ F \to cFb \mid \varepsilon \end{array} \right.$$

Calculer l'ensemble P_{ε} (l'ensemble des non terminaux produisant le mot vide ε), les ensembles Premier, Suivant et les symboles directeurs des règles de G_1 et en déduire si oui ou non la grammaire G_1 est LL(1).

2. Soit la grammaire $G_2 = (\{F, Q, C, D, L, V\}, \{\lor, \land, \neg, p, q, r\}, \rightarrow, F)$ dont les règles sont :

$$\left\{ \begin{array}{l} F \rightarrow CQ \\ Q \rightarrow \varepsilon \mid \vee CQ \\ C \rightarrow LD \end{array} \right. \quad \left\{ \begin{array}{l} D \rightarrow \varepsilon \mid \wedge LD \\ L \rightarrow V \mid \neg V \\ V \rightarrow p \mid q \mid r \end{array} \right.$$

On donne $P_{\varepsilon} = \{Q, D\}$ et le tableau suivant :

	F	Q	C	D	L	V
Premier	$\{p, q, r, \neg\}$	$\{\lor\}$	$\{p, q, r, \neg\}$	$\{\wedge\}$	$\{p, q, r, \neg\}$	$\{p, q, r\}$
Suivant	{\$}	{\$}	{\$, ∨}	$\{\$, \ \lor\}$	$\{\$, \ \lor, \ \land\}$	$\{\$, \lor, \land\}$

(a) Déterminer les symboles directeurs des règles de G_2 . G_2 est-elle LL(1)?

(b) Construire la table d'analyse de la grammaire G_2 .

(c) Déterminer si les mots $m_1 = \neg p \land q$ et $m_2 = p \lor \land r$ appartiennent ou non à $L(G_2)$ en utilisant l'analyseur prédictif et la table précédemment construite. On simulera la construction de l'arbre syntaxique et l'on donnera en parallèle la dérivation à gauche du mot donné lors de l'exécution de l'algorithme, que le mot appartienne ou non à $L(G_2)$.

Exercice 3 (Logique des propositions, résolution)

On connaît les faits f_1 , f_2 , f_3 , f_4 , et f_5 suivants sur Superman :

 $-f_1$: Si Superman était capable et voulait éradiquer le mal, il le ferait.

— f_2 : Si Superman n'était pas capable d'éradiquer le mal, il serait faible.

 $-f_3$: Si Superman ne voulait pas éradiquer le mal, il serait malveillant.

— f_4 : Superman n'éradique pas le mal.

— f_5 : Si Superman existe, il n'est ni faible ni malveillant.

Peut-on conclure que Superman n'existe pas? Pour répondre à la question, on introduit les six variables propositionnelles c, e, f, m, s et v suivantes :

c: "Superman est capable d'éradiquer le mal"

e: "Superman éradique le mal"

f: "Superman est faible"

m: "Superman est malveillant"

s: "Superman existe"

v: "Superman veut éradiquer le mal"

1. Ecrire les affirmations f_1 , f_2 , f_3 , f_4 et f_5 , ainsi que la conclusion γ ("Superman n'existe pas") sous forme de formules de la logique des propositions en utilisant les variables propositionnelles introduites.

2. Mettre sous forme de clauses les formules f_1, \ldots, f_5 et montrer que l'ensemble des clauses obtenues est non contradictoire en donnant un modèle de cet ensemble.

3. Mettre sous forme clausale $\neg \gamma$. En utilisant le principe de résolution de Robinson, déduire de l'ensemble de toutes les clauses (les clauses pour f_1, \ldots, f_5 et pour γ) que γ est une conséquence logique des hypothèses f_1, \ldots, f_5 .

Barème donné à titre indicatif:

Exercice 1:7 pts

Exercice 2:9 pts