Tutte Parameterization Report

Features and Implementations

Minimal surface

I implemented a helper class Laplace_solver under the file utils_laplacian_solver.h (.cpp), which takes on the following tasks:

- · detect boundary.
- set weights, obtain the sparse matrix and target vectors.
- · solve the Laplace equation.
- allow us to look up the boundary.
 we call it in node_boundary_mapping.cpp to detect boundaries, and in node_min_surf.cpp to build and solve the Laplacian equation.
 We choose the weight type via a bar in the minimal surface node, so far the bar represents integers, which is not very intuitive.

Boundary mapping

we implemented a map to a circle centered at (0.5, 0.5) with radius 1.5.

And a map to $[0,1] \times [0,1]$. The map of the unit square preserves the four corners: once the mapped boundary vertex is close enough (when the angular difference is less than half of the angle increment) to a corner, we forcefully set it to the corner.

Texture mapping

This is achieved via node programming, see the blueprint.json. It should be straightforward/standard.

Results

Circle boundary:

Square boundary:

Circle texture:

Square texture:

Issues and Future Work

- Only uniform weights work now, we need to fix the bug in Laplace_solver::set_cotangent_weights().
- Package weight type selecting as several nodes, instead of passing it in as an integer selection in the minimal surface node.