EXERCISES FOR CHAPTER 5: ORTHOGONALITY

Question 5.1 to Question 5.20 are exercises for Sections 5.1 and 5.2.

1	For each o	of the follow	wing find I	بالبعال العرا	d(11 11) 11	u and the angle l	between \boldsymbol{u} and \boldsymbol{v} .
т.	roi eacii o	n me iono	wing, iiiu <i>t</i>	$u_{\parallel}, \parallel v_{\parallel}, \alpha$	$u(\mathbf{u}, \mathbf{v}), \mathbf{u}$	v and the angle	Detween u and v .

- CM-1 (||M|1||N|) 12 (a) u = (2,3) and v = (1,1).
- (b) u = (1, -1) and v = (-1, 3).
- (c) $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (0, -3, 2)$.
- (d) $\boldsymbol{u} = (1, -1, 1, -1)$ and $\boldsymbol{v} = (2, 1, 1, 2)$.

2. Consider a triangle in \mathbb{R}^4 with vertices A = (1, 1, 0, 0), B = (1, -1, 0, 0) and C = (2, 0, 0, 1).

- (a) Find the lengths of the sides of the triangle. AB = ||A B|| AC = ||A C|| BC = ||B C||.
- (b) Find the angle between AB and AC. Let u = A B and v = A C, $corr = \frac{u \cdot v}{u \cdot v \cdot v}$
- (c) Verify the cosine rule: $2|AB||AC|\cos\theta = |AB|^2 + |AC|^2 |BC|^2$, where θ is the angle between AB and AC. We α ond b-

3. Complete the proof of Theorem 5.1.5:

Let u, v, w be vectors in \mathbb{R}^n and c a scalar. Show that

- (a) $u \cdot v = v \cdot u$; $(v \cdot v \cdot u_1 \cdot v_1 \cdot v_2 \cdot v_3 \cdot v_4 \cdot v_4 \cdot v_5 \cdot v_4 \cdot v_4 \cdot v_5 \cdot v_4 \cdot v_5 \cdot v_4 \cdot v_5 \cdot v_4 \cdot v_5 \cdot v_6 \cdot v_6$
- (b) $(u+v)\cdot w = u\cdot w + v\cdot w$ and $w\cdot (u+v) = w\cdot u + w\cdot v$;
- (c) $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v});$
- (d) ||cu|| = |c| ||u||.

- **4.** Let u, v and w be any three vectors in \mathbb{R}^n . Prove the following inequalities.
 - U.U (a) $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}||$ (the *Cauchy-Schwarz Inequality*).
 - = W14 1 41 2 = JW 7142 11/11 1 JV 742 (b) $\|\boldsymbol{u} + \boldsymbol{v}\| \le \|\boldsymbol{u}\| + \|\boldsymbol{v}\|$ (the *Triangle Inequality*).
 - (c) $d(u, w) \le d(u, v) + d(v, w)$.

(UV)= (N2+ N2) (42+V2) Interpret the result in Part (b) geometrically in \mathbb{R}^2 .

- **5.** Let \boldsymbol{u} and \boldsymbol{v} be any two vectors in \mathbb{R}^n . Prove the following equalities.
 - (a) $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$.
 - (b) $\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 \frac{1}{4} \|\mathbf{u} \mathbf{v}\|^2$.

Interpret the result in Part (a) geometrically in \mathbb{R}^2 .

- 6. For each of the following vectors, find all vectors that are orthogonal to it.
 - (a) (1,1), $(a^{\epsilon} 90^{\circ}: \frac{\binom{1}{1} \vee 1}{\binom{1}{1} |||| \vee ||} \xrightarrow{V_1 + V_2 = 0} (b) (1,0,3), V_1 + \frac{9}{3} V_2 + \frac{9}{3} (\frac{2}{2},1)}$ Interpret the results in Part (a) and (b) geometrically.

(c) (1,-1,1,-1). $v_1-v_2+v_2-v_4=0$

- 7. Let W be a subspace of \mathbb{R}^n . Define $W^{\perp} = \{ \boldsymbol{u} \in \mathbb{R}^n \mid \boldsymbol{u} \text{ is orthogonal to } W \}$. $(\boldsymbol{v} \cdot \boldsymbol{v}_1 \mid \boldsymbol{v}) = \{ \boldsymbol{v} \cdot \boldsymbol{v}_2 \mid \boldsymbol{v} \cdot \boldsymbol{v}_3 \mid \boldsymbol{v} \cdot \boldsymbol{v}_4 \mid \boldsymbol{v} \mid \boldsymbol{v} \cdot \boldsymbol{v}_4 \mid \boldsymbol{v} \mid \boldsymbol{v}$
 - (b) Show that W^{\perp} is a subspace of \mathbb{R}^n . (*Hint*: Show that W^{\perp} is a solution set of a homogeohow by ca). neous system of linear equations.)

1

8. Let $S = \{u_1, u_2, u_3\}$, where u_1, u_2, u_3 are vectors in \mathbb{R}^3 , and let $T = \{v_1, v_2, v_3\}$, where

$$v_1 = \frac{3}{5}u_2 + \frac{4}{5}u_3$$
, $v_2 = \frac{4}{5}u_2 - \frac{3}{5}u_3$ and $v_3 = u_1$.

- (a) Show that span(S) = span(T). Specifically 1.
- (b) If *S* is orthogonal, show that *T* is also orthogonal.
- **9.** Let $\{u_1, u_2, \dots, u_n\}$ be an orthogonal set of vectors in a vector space. Show that

11 N, +Na 112: 11 Nill +11 Nal $\|\boldsymbol{u}_1 + \boldsymbol{u}_2 + \dots + \boldsymbol{u}_n\|^2 = \|\boldsymbol{u}_1\|^2 + \|\boldsymbol{u}_2\|^2 + \dots + \|\boldsymbol{u}_n\|^2.$ Vije Zt, 2+1, 1,1 < n, U; W; =0 pythogoral theorem? For n = 2, interpret the result geometrically in \mathbb{R}^2 . : len valid.

- **10.** Let $u_1 = (1, 2, 2, -1)$, $u_2 = (1, 1, -1, 1)$, $u_3 = (-1, 1, -1, -1)$, $u_4 = (-2, 1, 1, 2)$.
 - (a) Show that $S = \{u_1, u_2, u_3, u_4\}$ is an orthogonal set. $\bigcup_{V_1 : V_1 = 0}^{V_1 : V_1 = 0} \bigcup_{V_2 : V_3 : 0}^{V_1 : V_4 = 0} \bigcup_{V_2 : V_3 : 0}^{V_2 : V_3 : 0} \bigcup_{V_3 : V_4 = 0}^{V_3 : V_4 = 0}$
 - (b) Obtain an orthonormal set S' by normalizing u_1, u_2, u_3, u_4 .
 - (c) Is S' an orthonormal basis for \mathbb{R}^4 ? Using the graph of S'
 - (d) If $\mathbf{w} = (0, 1, 2, 3)$, find $(\mathbf{w})_S$ and $(\mathbf{w})_{S'}$.
- $\begin{pmatrix} \Lambda \cdot \Lambda^3 = 0 \\ \Lambda \cdot \Lambda^3 = 0 \end{pmatrix} \rightarrow \text{KFE}.$ (e) Let $V = \text{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}$. Find all vectors that are orthogonal to V.
 - (f) Find the projection of \boldsymbol{w} onto V. $\rho = \frac{\mathbf{w} \cdot \mathbf{u}_1}{\|f(\mathbf{u}_1)\|^2} + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\|f(\mathbf{u}_2)\|^2} + \frac{\mathbf{w} \cdot \mathbf{u}_3}{\|f(\mathbf{u}_2)\|^2} + \frac{\mathbf{u}_3}{\|f(\mathbf{u}_2)\|^2} + \frac{\mathbf{u}_3}{\|f(\mathbf{u}$
 - (a) Show that $\{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 . \Rightarrow is the equal \Rightarrow the third in the content of the content a_1, a_2, a_3 is an orthogonal basis for \mathbb{R}^3 .
 - (b) Let $V = \text{span}\{u_1, u_2\}$ and $W = \text{span}\{u_3\}$. Write each of the following vectors as a sum of two vectors \boldsymbol{v} and \boldsymbol{w} such that $\boldsymbol{v} \in V$ and $\boldsymbol{w} \in W$:
 - (i) (0,0,1) \ \(\pi \u, \cdot \bu_2) + \cdot \u, \cdot \REF
 - 12. Use Gram-Schmidt Process to transform each of the following bases for \mathbb{R}^3 to an orthonormal basis.
 - (a) $\{(1,0,1),(0,1,2),(2,1,0)\}.$
 - (b) $\{(1,1,1),(1,-1,1),(1,1,-1)\}.$
 - 13. Use Gram-Schmidt Process to transform the following basis for \mathbb{R}^4 to an orthonormal basis:

 $\{(2,1,0,0),(-1,0,0,1),(2,0,-1,1),(0,0,1,1)\}.$

- 14. (a) Find an orthonormal basis for the solution space of the equation x + y = 0
- (b) Find the projection of (1,0,-1) onto the plane x+y-z=0.
- (c) Extend the set obtained in Part (a) to an orthonormal basis for \mathbb{R}^3 . **15.** Let $W = \text{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3, \boldsymbol{u}_4, \boldsymbol{u}_5\}$ be a subspace of \mathbb{R}^4 where

 $u_1 = (1, 1, 0, 0), \ u_2 = (1, 0, 0, 1), \ u_3 = (1, 0, 1, 0), \ u_4 = (3, 1, 1, 1), \ u_5 = (-1, -1, 1, -1).$

- (a) Show that $\{u_1, u_3, u_4\}$ is a basis for W. $(U_1 \cup U_2 \cup U_3 \cup U_4 \cup U_5)$
- (b) Apply the Gram-Schmidt Process to transform $\{u_1, u_3, u_4\}$ into an orthonormal basis for
- (c) Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 . Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 . Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 . Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 . Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 . Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 . Extend the set obtained in Part (b) to an orthonormal basis for \mathbb{R}^4 .
- **16.** Let $V = \text{span}\{(1, 1, 1), (1, a, a)\}$, where a is a real number.

- (a) Find an orthonormal basis for V. \mathcal{F}_{m} smith \mathcal{F}_{m} where \mathcal{F}_{m} (b) Compute the projection of (5,3,1) onto V. $\mathcal{F}_{m} = (w.v_{r}) V_{r} + (w.v_{r}) V_{r}$.

17. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\mathbf{u}_1 = (1, 1, 1, 0)^{\mathrm{T}}$, $\mathbf{u}_2 = (1, 1, 1, 1)^{\mathrm{T}}$ and $\mathbf{u}_3 = (0, 0, 1, 1)^{\mathrm{T}}$.

- (a) Use the Gram-Schmidt Process to transform $\{u_1, u_2, u_3\}$ into an orthonormal basis $\{w_1, w_2, w_3\}$ for the column space of A. Do not change the order of u_1, u_2, u_3 when applying the **Gram-Schmidt Process.**)
- (b) Write each of u_1, u_2, u_3 as a linear combination of w_1, w_2, w_3 .
- (c) Hence, or otherwise, write A = QR where Q is a 4×3 matrix with orthonormal columns and R is a 3×3 upper triangular matrix with positive entries along its diagonal.

(The process of writing a matrix in the form described in Part (c) is called the QR factorization. It is widely used in computer algorithms for various computations concerning matrices.)

18. Prove the uniqueness of (orthogonal) projection:

Let V be a subspace of \mathbb{R}^n and \boldsymbol{u} a vector in \mathbb{R}^n . Show that \boldsymbol{u} can be written uniquely as u = n + p such that n is a vector orthogonal to V and p is a vector in V.

(*Hint*: We need to prove that if $\boldsymbol{u} = \boldsymbol{n}_1 + \boldsymbol{p}_1 = \boldsymbol{n}_2 + \boldsymbol{p}_2$, where $\boldsymbol{n}_1, \boldsymbol{n}_2$ are orthogonal to V and $p_1, p_2 \in V$, then $n_1 = n_2$ and $p_1 = p_2$.

- 19. (All vectors in this question are written as column vectors.) Let A be a square matrix of order n such that $A^2 = A$ and $A^T = A$.
 - (a) For any two vectors $u, v \in \mathbb{R}^n$, show that $(Au) \cdot v = u \cdot (Av)$.
 - (b) For any vector $\mathbf{w} \in \mathbb{R}^n$, show that $A\mathbf{w}$ is the projection of \mathbf{w} onto the subspace $V = \{\mathbf{u} \in \mathbb{R}^n \}$ $\mathbb{R}^n \mid Au = u$ } of \mathbb{R}^n .
- **20.** Determine which of the following statements are true. Justify your answer.
 - (a) If u, v, w are vectors in \mathbb{R}^n such that ||u|| = ||v||, then ||u + w|| = ||v + w||.
 - (b) If u, v, w are vectors in \mathbb{R}^n such that ||u|| = ||v|| and w is orthogonal to both u and v, then ||u+w|| = ||v+w||.
 - (c) If u, v, w are vectors in \mathbb{R}^n such that u is orthogonal to both v and w, then u and v + ware orthogonal.
 - (d) If u, v, w are vectors in \mathbb{R}^n such that u, v are orthogonal and v, w are orthogonal, then uand \boldsymbol{w} are orthogonal.

Question 5.21 to Question 5.34 are exercises for Sections 5.3 and 5.4.

- **21.** (a) In \mathbb{R}^2 , find the distance from the point (1,5) to the line x y = 0.
 - (b) In \mathbb{R}^3 , find the distance from the point (1,0,-2) to the plane 2x + y

2. projection wing verter/veto spece.

3. protrugeros.

- (c) In \mathbb{R}^3 , find the distance from the point (1,0,-2) to the line x=t, y=2t and z=2t for $t \in \mathbb{R}$.
- **22.** There are two costs involved if we want to publish a book. *C* is a fixed cost due to typesetting and editing and D is the printing and binding cost for each additional book we want to produce.

Suppose we expect *b*, the total cost of producing *t* books to be a linear function of *t*. We shall apply the least squares method (see Example 5.3.5, Theorem 5.3.10 and Example 5.3.11.2) to find a straight line b = C + Dt that "best fits" the following set of data:

$$b_1 = 3 \text{ when } t_1 = 1, \quad b_2 = 5 \text{ when } t_2 = 2 \text{ and } b_3 = 6 \text{ when } t_3 = 3.$$

- (a) Write down a linear system with three equations and two variables using the data set.
- (b) Obtain the least squares solution for *C* and *D*.
- 23. A father wishes to distribute an amount of money among his three sons Jack, Jim and John.
 - (a) Show that it is not possible to have a distribution such that the following conditions are July = 2John +300 800: Jack - 2 John. 300 = Jack 2 Jim 300 -) in + John all satisfied.
 - (i) The amount Jack receives plus twice the amount Jim receives is \$300.
 - (ii) The amount Jim receives plus the amount John receives is \$300.
 - (iii) Jack receives \$300 more than twice of what John receives.
 - (b) Since there is no solution to the distribution problem above, find a least squares solution (Make sure that your least squares solution is feasible. For example, one cannot give a negative amount of money to anybody.) ATAx. ATD FF. Wis loke to the egg
- **24.** Consider the following linear system:

$$\begin{cases} x+y+z=1\\ y+z=1\\ x-y-z=1\\ z=1. \end{cases}$$

- (a) Show that the linear system is inconsistent.

25. Let
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

- (a) Find the least squares solution to the linear system Ax = b. $A^{\dagger}A \rightarrow A^{\dagger}b$.
- (b) By the result in Part (a), compute the projection of b onto the column space of A.
- (b) By the result in Pair (a), compared to the Pair (a), compared to

 - (b) Find the projection of (1, 1, 1) onto V using
 - (i) Theorem 5.2.15;
- (ii) Theorem 5.3.8.

27. (a) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$.

(i) Solve the linear system Ax = b.

(ii) Find the least squares solution to Ax = b. (b) Suppose a linear system Ax = b is consistent. Show that the solution set of Ax = b is equal to the solution set of $A^{T}Ax = A^{T}b$.

(*Hint*: You need Theorem 4.3.6 and the result of Question 4.25(a).)

28. Let *E* be the standard basis for \mathbb{R}^3 ,

$$U = \{(2,1,0), (0,0,1), (-1,2,0)\}$$
 and $V = \{(0,-1,2), (-1,2,1), (5,2,1)\}.$

- (a) Check that U and V are both orthogonal basis for \mathbb{R}^3 . Let V (a) V by normalizing the vectors in V and V.
- (c) Find P and Q, the transition matrices from E to U' and U' to V' respectively. $P = U'^T \downarrow Q = V'^T \downarrow Q$ (d) Let R = QP. Is R the transition matrix from E to V'?
- **29.** Suppose an x'y'-coordinate system is obtained from the xy-coordinate system by an anticlockwise rotation through an angle $\theta = \pi/3$. $[V]_{7} = p^{+}[V]_{5}^{-}(2,1)$
 - (a) Let *P* be the point such that its xy-coordinates are (2,1). Find the x'y'-coordinates of *P*.
 - (b) Let Q be the point such that its x'y'-coordinates are (2,1). Find the xy-coordinates of Q.
 - (c) Let L be the line x + y = 1. Write down the equation of L using the x'y'-coordinates.
- **30.** Suppose an x'y'z'-coordinate system is obtained from the xyz-coordinates system by an anti-clockwise rotation about the z-axis through an angle θ . Let $\mathbf{u} = (x, y, z)^{\mathrm{T}}$ and $\mathbf{u}' = (x', y', z')^{\mathrm{T}}$ be the xyz-coordinates and x'y'z'-coordinates, respectively, of he same point. Find a 3×3 matrix **A** such that Au = u'.

(*Hint*: The *z*-axis is fixed under the rotation.)

(a) Let $S_1 = \{(1,0),(0,1)\}, S_2 = \{(1,-1),(2,1)\}$ and $S_3 = \{(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}),(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})\}$. Clearly, S_1,S_2 and S_3 are three bases for \mathbb{R}^2 .

Let u = (1,4) and v = (-1,1). Compute $(u)_{S_i}$, $(v)_{S_i}$ and $(u)_{S_i} \cdot (v)_{S_i}$ for i = 1,2,3. What do you observe?

- (b) Prove that if S and T are two orthonormal bases for a vector space V, then for any vectors $\boldsymbol{u}, \boldsymbol{v} \in V, (\boldsymbol{u})_S \cdot (\boldsymbol{v})_S = (\boldsymbol{u})_T \cdot (\boldsymbol{v})_T.$
- **32.** (All vectors in this question are written as column vectors.) Let A be an orthogonal matrix of order n and let u, v be any two vectors in \mathbb{R}^n . Show that
 - (a) $\|u\| = \|Au\|$;
 - (b) d(u, v) = d(Au, Av); and
 - (c) the angle between u and v is equal to the angle between Au and Av.
- 33. (All vectors in this question are written as column vectors.) Let A be an orthogonal matrix of order *n* and let $S = \{u_1, u_2, ..., u_n\}$ be a basis for \mathbb{R}^n .

- (a) Show that $T = \{Au_1, Au_2, ..., Au_n\}$ is a basis for \mathbb{R}^n .
- (b) If *S* is orthogonal, show that *T* is orthogonal.
- (c) If S is orthonormal, is T orthonormal?
- 4. Determine which of the following statements are true. Justify your answer.
 - (a) If $A = \begin{pmatrix} c_1 & c_2 & \cdots & c_k \end{pmatrix}$ is an $n \times k$ matrix such that c_1, c_2, \dots, c_k are orthonormal, then $A^T A = I_k$.
 - (b) If $A = \begin{pmatrix} c_1 & c_2 & \cdots & c_k \end{pmatrix}$ is an $n \times k$ matrix such that c_1, c_2, \dots, c_k are orthonormal, then $AA^T = I_n$.
 - (c) If A and B are orthogonal matrices, then A + B is an orthogonal matrix.
 - (d) If A and B are orthogonal matrices, then AB is an orthogonal matrix.