Proof of UVA10209

Figure 1. Three regions: R₁, R₂, and R₃

Let the region of the three shapes be R_1 , R_2 , and R_3 as shown in Figure 1.

Figure 2. Area of OHF, area(R₂)/4

We first consider region R₁ as shown in Figure 2. The side of the square is a. Consider triangle AEF, AF=a, EF=a/2. Therefore, AE = $\sqrt{a^2-(\frac{a}{2})^2}=\sqrt{3}a/2$. The area of OHF is the integral of curve $f(x)=(a^2-x^2)^{1/2}$ -a/2 from a/2 to $\sqrt{3}a/2$. Hence the quarter area of region R₁ is

area(R1)/4 =
$$\int_{a/2}^{\sqrt{3}a/2} \left(\sqrt{a^2 - x^2} - a/2 \right) dx$$

Figure 3. $area(R_1)/2+area(R_2)/4$

From Figure 3, we obtain the equations $area(R_1)/2+area(R_2)/4=(\pi a^2-2a^2)/4$. Furthermore $area(R_1)+area(R_2)+area(R_3)=a^2$. Hence, we can compute the areas of regions: R_1 , R_2 , and R_3 .

Q.E.D.