Постановка

Задан неорентированный граф. Необходимо найти степени всех его вершин.

Входные данные

В первой строке содержатся два целых числа n и m ($1 \le n \le 105$, $0 \le m \le 105$), где n — количество вершин в графе, m — количество рёбер в графе.

В следующих m строках записаны рёбра, по одному ребру в строке. Каждое ребро - два числама u и v ($1 \le u, v \le n$), начало ребра и конец ребра соответственно.

Граф без петель и кратных рёбер.

Выходные данные

Выведите n целых чисел, где i-е число является степенью i-й вершины графа.

Пример 1

Входные данные	Выходные данные
5 6	
1 2	23322
2 3	23322
3 1	
4 3	
5 4	
5 2	

Входные данные	Выходные данные
2 1	1 1
12	

Постановка

Постройте k-регулярный неориентированный граф из n вершин. Если это невозможно, то укажите это.

Входные данные

На вход подаётся два числа n и k ($1 \le n, k \le 200$).

Выходные данные

- если существуте, то вывести количество рёбер в графе и ребра в следующих строках.
- если не существует, то выведите None.

Пример 1

Входные данные	Выходные данные
	3
32	1 2
	2 3
	3 1

Входные данные	Выходные данные
53	None

Постановка

Постройте наименьший по количеству дуг непустой ориентированный граф, такой что степень исхода каждой вершины равна d_1 , а степень входа равна d_2 .

Входные данные

На вход подаются два целых числа d_1 и d_2 ($1 \le d1, d2 \le 100$) - степень исхода и степень входа каждой вершины соответственно.

Выходные данные

- если существуте, то вывести в первой строке количество вершин и дуг искомого графа. А в остальных строках пары дуг.
- если не существует, то выведите None.

Пример 1

Входные данные	Выходные данные
	2 4
2 2	11
	12
	2 1
	2 2

Входные данные	Выходные данные
1 2	None

Постановка

Вам заданы неориентированный граф списком его рёбер и множество вершин. Необходимо проверить можно ли выбрать подмножество компонент связности так, что заданные вершины являются всеми вершинами этого подмножества компонент (и только ими).

Входные данные

В первой строке содержатся количество вершин в графе (n), количество рёбер (m) и количество вершин в множестве (k).

В следующей строке k целых чисел - заданное множество вершин.

В следующих m строках записаны рёбра, по одному ребру в строке.

Граф без петель и кратных рёбер.

Выходные данные

- True если заданные вершину оразуют одну или более компоненту связности.
- False в противном случае

Пример 1

Входные данные	Выходные данные
433	
123	True
1 2	
2 3	
1 3	

Входные данные	Выходные данные
423	_
123	False
1 2	
3 4	