# Deep Learning — Assignment 4

#### Anirudhan J. Rajagopalan

Department of Computer Science New York University New York, NY. ajr619@nyu.edu

### 1 nnGraph

#### 1.1 1. Warmup

The code for nngraph\_warmup.lua can be found at https://git.io/vwQco

#### 1.1.1 2. Grucell diagram

The gru cell was drawn using the following steps.

- 1. Code the cell in torch similar to the code in main.lua
- 2. Plot the code using graph.dot function passing the filename argument
- 3. Open the svg file in browser and remove the unwanted nodes.

The cell diagram generated is included in 2.

#### 2 Language Modeling

#### 2.1 Generating sequences

The query\_sentences.lua can be found at https://git.io/vwQEc.

The query\_sentences.lua does the following

- 1. Loads the core network of the model.
- 2. Builds the vocabulary map and the inverse vocabulary map.
- 3. Fetches the number of words to generate and the initial seed words (minimum 2).
- 4. Does a forward pass on the core\_network for each and every word to generate the index for next word.
- 5. The index is generated by using a multinomial distribution over the probabilities generated by the logsoftmax layer (layer 44 in core\_network)
- 6. Concatenates and returns the new sentence.

Steps to run the model:

- 1. Change the params table in query\_sentences.lua accoding to the model that will be used.
- 2. Change the model file path to point to the right path
- 3. th query\_sentences.lua

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

#### 2.2 Improvements to the model

#### 2.2.1 Experiments summary

A number of experiments were preformed on the model. A few of the major areas which we explored are

- 1. Changing the size of rnn (200, 600). The best performing model has rnn\_size of 600.
- 2. Enabling/changing dropout. The best performing model has a dropout of
- 3. Changing the sequence length. The best performing model has a sequence length of 30.
- 4. Changing the core network to work with GRU instead of lstm (Code can be found in https://git.io/vwQXB)
- 5. Chainging the number of layers. Increasing the number of layers consistently decreased the performance of the model.
- 6. Changing gradient clipping. Changing the gradient clipping doesn't appear to affect the outputs much.
- 7. Changing the vocabulary size. This actually has no effect as the total number of words in the corpus is only 10,000.

The best performing model has a test accuracy of 86.818. The model characteristics are

vocab\_size 12000 core\_network LSTM Seq\_length 30 rnn\_size 600 dropout 0.4 layers 2

#### 2.2.2 Hardware & Runtimes

Almost all of the experiments were run in NYU HPC clusters with 20 core processors, 16GB RAM.

The default model ran ran fast with wps = 2K. There was considerable reduction in the speed of the model as the rnn\_size is increased. The best performing model has a wps of around 650.

#### 2.2.3 Model file

The model file can be found at http://cs.nyu.edu/~ajr619/lang\_model.net

## 2.2.4 Experiments

**LSTM** 

| seq length | layers | rnn size | dropout | vocab size | best Perplexity |
|------------|--------|----------|---------|------------|-----------------|
| 20         | 2      | 200      | 0       | 10000      | 119.756         |
| 30         | 2      | 200      | 0       | 10000      | 114.548         |
| 15         | 2      | 200      | 0       | 10000      | 195.712         |
| 30         | 4      | 200      | 0       | 10000      | 120.359         |
| 40         | 3      | 200      | 0       | 15000      | 137.629         |
| 40         | 5      | 200      | 0.2     | 10000      | 135.020         |
| 40         | 4      | 400      | 0.2     | 10000      | 107.970         |
| 30         | 2      | 400      | 0.2     | 10000      | 93.449          |
| 30         | 4      | 400      | 0.3     | 10000      | 102.013         |
| 30         | 4      | 400      | 0.5     | 10000      | 113.420         |
| 30         | 2      | 400      | 0.5     | 10000      | 96.340          |
| 30         | 2      | 600      | 0.4     | 12000      | 87.741          |
| 30         | 2      | 500      | 0.3     | 10000      | 89.794          |
|            |        |          |         |            |                 |

# GRU

| seq length | layers | rnn size | dropout | vocab size | best Perplexity |
|------------|--------|----------|---------|------------|-----------------|
| 20         | 2      | 200      | Ō       | 10000      | 182.217         |
| 15         | 2      | 200      | 0       | 10000      | 195.712         |
| 30         | 2      | 600      | 0.4     | 10000      | 97.056          |
| 30         | 2.     | 700      | 0.5     | 10000      | 101 021         |



Figure 1: GRUCell given in slide 32 of talk by Armand Joulin



Figure 2: LSTM vs GRU sample comparison plot for their corresponding best performing model.