DATA SCIENCE

K-Means Clustering

BY:

NADHIFA SOFIA (19/448721/PPA/05804)

MASTER OF COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ELECTRONICS

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITAS GADJAH MADA

2020

K Means Clustering is an unsupervised learning algorithm that will attempt to group similar clusters together in your data. By way of example on Figure 1. The overall goal is to divide data into distinct groups such that observations within each group are similar. Typical clustering problem look like;

- Cluster similar documents
- Cluster customers based on features
- Market segmentation
- Identify similar physical groups

Figure 1. Before and after clustering.

The K Means Algorithm

- Choose a number of clusters 'K'
- Randomly assign each point to a cluster
- Until clusters stop changing, repeat the following;
 - For each cluster, compute the cluster centroid by taking the mean vector of points in the cluster
 - Assign each data point to the cluster for which the centroid is the closest

Figure 2. How KMeans work

Choosing a K Value

- There is no easy answer to choose a 'best' K value
- One way is the elbow method

First of all, compute the Sum of Squared Error (SSE) for some values of k (for example: 2, 4, 6, 8, etc). The SSE is defined as the sum of the squared distance between each of the clusters and its centroid like in figure 3.

Figure 3. Choosing a K value

If you plot k against the SSE, you will see that the error decreases as k gets larger; this is because when the number of clusters increases, they should be smaller, so distortion is also smaller. The idea of the elbow method is to choose the k at which the SSE decreases abruptly.

This produces an 'elbow effect' in the graph, as you can see in the following picture;

Figure 4. Example of elbow effect

K-means is a simple unsupervised machine learning algorithm that groups a dataset into a user-specified number (k) of clusters. The algorithm is somewhat naive--it clusters the data into k clusters, even if k is not the right number of clusters to use. Therefore, when using k-means clustering, users need some way to determine whether they are using the right number of clusters. The elbow method runs k-means clustering on the dataset for a range of values for k (say from 1-10) and then for each value of k computes an average score for all clusters. By default, the distortion score is computed, the sum of square distances from each point to its assigned center.

Figure 5. KMeans clustering

IMPLEMENTATION

Full version: https://github.com/dhifaaans/kmeans

'Buatlah cluster optimal dari dataset terlampir, dengan deskripsi seperti dalam video project description di masteri [minggu ke-8] (https://drive.google.com/file/d/1yFiIz T1tblDkG1h0PJIoCZ0ICFKLANw/view)'.

We will use a dataframe with 777 observations on the following 8 variables.

- Private: A factor with levels No and Yes indicating private or public university

- Apps : Number of applications received

- Accept : Number of applications accepted

- Enroll: Number of new students enrolled

NADHIFA SOFIA | 19/448721/PPA/05804

- Top10perc : Percentage new students from top 10% of H.S. Class
- Top25perc : Percentage new students from top 25% of H.S. Class
- F.Undergrad : Number of fulltime undergraduates
- P.Undergrad : Number of parttime undergraduates
- Outstate : Out-of-state tuition
- Room.Board: Room and board costs
- Books: Estimated book costs
- Personal : Estimated personal spending
- PhD: Percentage of faculty with Ph.D.'s
- Terminal : Percentage of faculty with terminal degree
- S.F.Ratio : Student/faculty ratio
- perc.alumni : Pct. alumni who donate
- Expend : Instructional expenditure per student
- Grad.Rate: Graduation rate

Import Libraries

Import the libraries you usually use for data analysis.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams["patch.force_edgecolor"] = True
%matplotlib inline
```

Get the Data

Read in the College_Data file using read_csv. Figure out how to set the first column as the index.

```
In [2]: df = pd.read_csv('College_Data1.csv', index_col=0)
```

Check the head of the data

In [3]:	df.head()											
ut[3]:		Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	0		
	Abilene Christian University	Yes	1660	1232	721	23	52	2885	537			
	Adelphi University	Yes	2186	1924	512	16	29	2683	1227			
	Adrian College	Yes	1428	1097	336	22	50	1036	99			
	Agnes Scott College	Yes	417	349	137	60	89	510	63			
	Alaska Pacific University	Yes	193	146	55	16	44	249	869			

In [4]:	df.info()								
	<pre><class 'pandas.core.frame.dataframe'=""> Index: 777 entries, Abilene Christian University to York College of Pennsylvania</class></pre>								
	Data #	columns (tot Column	al 18 columns): Non-Null Count	Dtype					
	0	Private	777 non-null	object					
	1	Apps	777 non-null	int64					
	2	Accept	777 non-null	int64					
		Enroll	777 non-null	int64					
	4	Top10perc	777 non-null						
	5	Top25perc	777 non-null	int64					
	6	F.Undergrad	777 non-null	int64					
	7	P.Undergrad	777 non-null	int64					
	8	Outstate	777 non-null						
	9		777 non-null						
	10	Books	777 non-null	int64					
	11		777 non-null	int64					
	12	PhD	777 non-null						
	13	Terminal							
	14	S.F.Ratio							
	15		777 non-null						
	16	Expend	777 non-null						
	17		777 non-null						
), int64(16), ob	ject(1)					
	memo	ry usage: 115	.3+ KB						

Check the info() and describe() methods on the data.

In [5]:	<pre>df.describe()</pre>											
out [5]:		Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Und				
	count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777				
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855				
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522				
	min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1				
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95				
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353				
	75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967				
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836				

Exploratory Data Analysis

Create a scatterplot of Grad.Rate versus Room.Board where the points are colored by the Private column.

Create a scatterplot of F.Undergrad versus Outstate where the points are colored by the Private column.

Create a stacked histogram showing Out of State Tuition based on the Private column. Try doing this using sns.FacetGrid. If that is too tricky, see if we can do it just by using two instances of pandas.plot(kind='hist').

Create a similar histogram for the Grad.Rate column.

Notice how there seems to be a private school with a graduation rate of higher than 100%. What is the name of that school?

Set that school's graduation rate to 100 so it makes sense. You may get a warning not an error) when doing this operation, so use dataframe operations or just re-do the histogram visualization to make sure it actually went through.**

KMeans Cluster Creation

K Means Cluster Creation

Now it is time to create the Cluster labels!

Import KMeans from SciKit Learn.

```
In [14]: from sklearn.cluster import KMeans
```

Create an instance of a K Means model with 2 clusters; private and public

```
In [15]: km = KMeans(n_clusters = 2, random_state=90)
```

Fit the model to all the data except for the Private label.

What are the cluster center vectors?

```
In [17]: km.cluster_centers_
Out[17]: array([[ 1.03631389e+04,
                                                         2.56972222e+03,
                                      6.55089815e+03,
                   4.14907407e+01,
                                      7.02037037e+01,
                                                         1.30619352e+04,
                   2.46486111e+03,
                                      1.07191759e+04,
                                                         4.64347222e+03,
                                                         8.63981481e+01,
                   5.95212963e+02,
                                      1.71420370e+03,
                   9.13333333e+01,
                                      1.40277778e+01,
                                                         2.00740741e+01,
                   1.41705000e+04,
                                      6.75925926e+01],
                 [ 1.81323468e+03,
                                      1.28716592e+03,
                                                         4.91044843e+02.
                   2.53094170e+01,
                                      5.34708520e+01,
                                                         2.18854858e+03,
                   5.95458894e+02,
                                      1.03957085e+04,
                                                         4.31136472e+03,
                   5.41982063e+02,
                                                         7.04424514e+01,
                                      1.28033632e+03,
                                                         2.31748879e+01,
                   7.78251121e+01,
                                      1.40997010e+01,
                   8.93204634e+03,
                                      6.50926756e+01]])
```

Evaluation

Since I have the label from the dataset as Mr. Seagate gave me through https://simaster.ugm.ac.id/elearning/mhs_materi/detail/1bMOdF6cQH9Ffi-kwxSN-5kf6TOBBM
https://simaster.ugm.ac.id/elearning/mhs_materi/detail/1bMOdF6cQH9Ffi-kwxSN-5kf6TOBBM
fextbook by the confusion matrix.

The confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea of the confusion matrix.

The confusion matrix is a sea of the confusion matrix is a sea

Evaluation

Since I have the label from dataset as Mr. Seagate gave me thru simaster.ugm.ac.id, so I use it to test how KMeans performed by using confusion matrix.

Create a new column for df called 'Cluster', which is a 1 for a Private school, and a 0 for a public school.

```
In [18]: def converter(prvt):
    if prvt == 'Yes':
        return 1
    else:
        return 0

In [19]: df['Cluster'] = df['Private'].apply(converter)

In [20]: df.head(3)
```

In [20]:	df.head(3)											
it[20]:		Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Oı		
	Abilene Christian University	Yes	1660	1232	721	23	52	2885	537			
	Adelphi University	Yes	2186	1924	512	16	29	2683	1227			
	Adrian College	Yes	1428	1097	336	22	50	1036	99			

Create a confusion matrix and classification report to see how well the Kmeans clustering worked without being given any labels.

```
In [21]: from sklearn.metrics import classification_report, confusion_matrix
```

```
print(confusion_matrix(df['Cluster'],km.labels_))
In [22]:
         print(classification report(df['Cluster'],km.labels ))
          [[ 74 138]
          [ 34 531]]
                       precision
                                     recall f1-score
                                                         support
                    0
                            0.69
                                       0.35
                                                 0.46
                                                             212
                    1
                            0.79
                                       0.94
                                                 0.86
                                                             565
                                       0.78
                                                 0.75
                                                             777
         avg / total
                            0.76
```

Not so bad considering the algorithm is purely using the features to cluster the universities into 2 distinct groups! Hopefully you can begin to see how K Means is useful for clustering un-labeled data!