Fundamentos de Programação

Ano/Semestre: 2024/1

Prova de Grau B

Instruções

Resolver as questões com consulta somente ao material apresentado em aula e aos códigos-fonte dos exercícios resolvidos pelo próprio aluno. **Os algoritmos não devem ser** *hard-coded*, ou seja, com apenas uma solução fixa para o conteúdo disponível. Você deve enviar apenas os arquivos .c que você gerar. NÃO ENVIE PROJETOS DO CODEBLOCKS OU EXECUTÁVEIS.

Questões

1. (4,0 pontos). Desenvolva um sistema para gerenciar dados de sensores ambientais usando alocação dinâmica de memória. Primeiro, defina a struct "SensorData" com ponteiros para leituras de float, tamanho atual e capacidade. Em seguida, implemente a função "createSensorData" para inicializar a struct com uma capacidade inicial. Implemente a função "addReading" para adicionar leituras ao array, expandindo a capacidade em 50% quando necessário. Use realloc. Por fim, escreva "freeSensorData" para liberar a memória alocada.

Exemplos de leitura:

- addReading (sensorData, 23.5); // Adiciona uma leitura de 23.5°C.
- addReading (sensorData, 22.0); // Adiciona uma leitura de 22.0°C.

Definição da Struct:

- float* readings; // Array dinâmico para armazenar leituras de temperatura.
- int size; // Número de leituras atualmente no array.
- int capacity; // Capacidade total do array, indicando quantas leituras podem ser armazenadas antes da necessidade de expansão.
- 2. (6,0 pontos). Dado o arquivo anexo "veículos.txt", contendo as colunas fabricante, modelo, ano, tanque e consumo (a primeira linha contém apenas o cabeçalho, ou seja, pode ser descartada), faça um programa que leia o arquivo e mostre na tela:
 - a) (1,5) Os fabricantes e modelos dos veículos fabricados entre 2015 e 2018, inclusive;
 - b) (1,5) Somente os modelos dos veículos que iniciam com vogal ou terminem com consoante;
 - c) (3,0) O modelo, ano e a autonomia dos veículos com menor e maior autonomia, calculada pela fórmula: autonomia = tanque * consumo.