回课:分治

https://frank3215.github.io/

分治

●略。

题目讲解

• 坏消息:我们没有找到"纯分治"的题目。

• 因此,我们直接讲分治相关的知识点。

• 考虑到在场有神仙,我们会同时给出简单题和较为困难的题目。

根号分治

• 求 n 的所有约数。

根号分治

• 求 n 的所有约数。

• 按 < √ n 和 > √ n 讨论即可,复杂度 O(√ n).

P3396 哈希冲突

- 给定 n 长序列, m 个操作:
 - $A \times y$ 询问在序列下标 $mod \times x$ 时,余数为 y 的下标的对应的值的加和
 - $C \times y$ 把序列第 x 个数的值替换成 y
- $n \le 150000, m \le 150000$.

根号分治?!

• 按询问的 x 与 √n 的大小关系分类讨论:

根号分治?!

- 按询问的 x 与 √n 的大小关系分类讨论:
 - x < √n 的询问:每次修改时实时更新。
 - x > √n的询问:每次询问时暴力查询。

根号分治?!

- 按询问的 x 与 √n 的大小关系分类讨论:
 - x < √n的询问:每次修改时实时更新。修改复杂度 O(√n)。
 - x > √n的询问:每次询问时暴力查询。询问复杂度 O(√n)。
- 总复杂度 O(m √n)

分块

• 略。可搜"根号平衡"了解。

P3806 【模板】点分治1 (点分治)

题目描述

给定一棵有 n 个点的树,询问树上距离为 k 的点对是否存在。

P3806 【模板】点分治1 (点分治)

题目描述

给定一棵有 n 个点的树,询问树上距离为 k 的点对是否存在。

输入格式

第一行两个数 n, m。

第 2 到第 n 行,每行三个整数 u, v, w,代表树上存在一条连接 u 和 v 边权为 w 的路径。

接下来m行,每行一个整数k,代表一次询问。

P3806 【模板】点分治1 (点分治)

题目描述

给定一棵有 n 个点的树,询问树上距离为 k 的点对是否存在。

输入格式

第一行两个数 n, m。

第 2 到第 n 行, 每行三个整数 u, v, w, 代表树上存在一条连接 u 和 v 边权为 w 的路径。

接下来m行,每行一个整数k,代表一次询问。

数据规模与约定

- 对于 30% 的数据,保证 $n \le 100$ 。
- 对于 60% 的数据,保证 $n \le 1000$, $m \le 50$ 。
- 对于 100% 的数据,保证 $1 \le n \le 10^4$, $1 \le m \le 100$, $1 \le k \le 10^7$, $1 \le u,v \le n$, $1 \le w \le 10^4$ 。

P3806 【模板】点分治1

https://oi-wiki.org/graph/tree-divide/

P3806 【模板】点分治1

https://oi-wiki.org/graph/tree-divide/

• 按点分治。

P3806 【模板】点分治1

https://oi-wiki.org/graph/tree-divide/

• 按点分治。

• 树的重心的性质: 所有子树节点数均 <= n/2。

伪代码

- Solve(T):
 - 找到重心 g
 - 遍历 g 的儿子 u:
 - 统计子树 u 的答案
 - 更新子树 u 的信息
 - 清除存储的信息
 - 删去 g 点
 - 遍历 g 曾经的儿子 u:
 - Solve(子树u)

复杂度

• 空间复杂度 O(n)

复杂度

- 空间复杂度 O(n)
- O(log n) 层(重心性质)
- 每层复杂度 O(n)
- 总时间复杂度 O(n log n)

复杂度

• 空间复杂度 O(n)

- O(log n) 层(重心性质)
- 每层复杂度 O(n)
- 总时间复杂度 O(n log n)

• 举例:菊花图、链。

BZOJ2152 聪聪可可

• 求树上长为 3 的倍数的路径数。

• n <= 20000

BZOJ2152 聪聪可可

• 求树上长为 3 的倍数的路径数。

• n <= 20000

•简单。DFS时记录到根的路径模3的余数即可。

P2617 Dynamic Rankings(整体二分)

给定一个含有 n 个数的序列 $a_1, a_2 \ldots a_n$,需要支持两种操作:

- Q 1 r k 表示查询下标在区间 [l,r] 中的第 k 小的数
- $\mathbf{c} \times \mathbf{y}$ 表示将 a_x 改为 y

P2617 Dynamic Rankings(整体二分)

给定一个含有 n 个数的序列 $a_1, a_2 \ldots a_n$,需要支持两种操作:

- Q 1 r k 表示查询下标在区间 [l,r] 中的第 k 小的数
- $\mathbf{c} \times \mathbf{y}$ 表示将 a_x 改为 y

【数据范围】

```
对于 10\% 的数据,1\leq n,m\leq 100;对于 20\% 的数据,1\leq n,m\leq 1000;对于 50\% 的数据,1\leq n,m\leq 10^4;对于 100\% 的数据,1\leq n,m\leq 10^5,1\leq l\leq r\leq n,1\leq k\leq r-l+1,1\leq x\leq n,0\leq a_i,y\leq 10^9。
```

假设只询问一个区间[1,n],没有修改

• 选择算法 / 排序。

假设只询问一个区间[1,n],没有修改

• 选择算法 / 排序 => 难处理修改, 也难扩展到多次询问。

假设只询问一个区间[1,n],没有修改

• 选择算法 / 排序 => 难处理修改, 也难扩展到多次询问。

•二分答案?

伪代码

- 初始二分区间 [valL, valR] = [0, 109], 要求数组 A[1..n] 的第 k 小。
- 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 计数 [1, n] 中小于等于 valM 的数的个数, 记为 k`
 - 若 k` >= k:
 - 可知前 k 小的数都 <= valM。
 - 令 [valL, valR] = [valL, valM], 循环。
 - 否则, 若 k` < k:
 - 可知第 k 小的数 > valM
 - 令 [valL, valR] = [valM+1, valR],循环。

时间复杂度

- O(log n) 层
- 每层有 n 个数。
- 总时间复杂度 O(n log n)。

重复计算?

- 每次更新区间时,可以丢弃一半的值。
- [valL, valR] := [valL, valM]
 - > valM 的数可以不要(一定不会产生贡献)。
- [valL, valR] := [valM+1, valL]
 - <= valM 的数可以不要(一定会产生贡献)。

更新后的伪代码

- 初始区间 [valL, valR] = [1, n], 要求第 k 小。
- 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 计数 [1, n] 中小于等于 valM 的数的个数, 记为 k`
 - 将 A[] 中小于等于 valM 的数放入 L[] 中, 将大于 valM 的数放入 R[] 中。
 - 若 k` >= k:
 - 可知前 k 小的数都 <= valM。
 - 令 [valL, valR] = [valL, valM], 令 A[] = L[], 循环。
 - 否则, 若 k` < k:
 - 可知第 k 小的数 > valM
 - 令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k = k k, 循环。

举个例子

- A = [1, 5, 2, 4, 3], 找第 k = 4 小:
- 最开始, [valL, valR] = [1,5]。
- valM = 4, A = [1, 5, 2, 4, 3], 共有 <u>3</u> 个小于等于 valM 的数。
 - 令 A = [5, 4], k = 4 3 = 1, [valL, valR] = [4, 5] 继续。
- valM = 4, A = [5, 4], 共有 <u>1</u> 个小于等于 valM 的数。
 - 令 A = [4], [valL, valR] = [4, 4], 达到结束条件 valL == valR, 答案为 4。

时间复杂度

- O(log n) 层
- 每层有 O(n) 个数。
- 总时间复杂度 O(n log n)。
- 如果数的分布均匀的话?
- 第一层 n 个,第二层约 n/2 个,第三层约 n/4 个……
- 时间复杂度约为 O(n)。

假设询问多个区间[li, ri], 无修改

• 尝试扩展之前的二分答案的解法。

假设询问多个区间[li, ri], 无修改

• 尝试扩展之前的二分答案的解法。

• 离线后,同时进行多个二分答案?——怎么做?

同时二分

• 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- 根据之前的伪代码,考虑需要更改哪些部分。

- 初始区间 [valL, valR] = [1, n], 要求第 k 小。
- 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 计数 [1, n] 中小于等于 valM 的数的个数,记为 k`
 - 将 A[] 中小于等于 valM 的数放入 L[] 中, 将大于 valM 的数放入 R[] 中。
 - 若 k` >= k:
 - 令 [valL, valR] = [valL, valM], 令 A[] = L[], 循环。
 - 否则, 若 k` < k:
 - 令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k = k k`, 循环。

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- 根据之前的伪代码,考虑需要更改哪些部分。
- 如何对这些区间分别计数大于等于 n/2 的数的个数?
 - 初始区间 [valL, valR] = [1, n], 要求第 k 小。
 - 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 计数 [1, n] 中小于等于 valM 的数的个数,记为 kì
 - 将 A[] 中小于等于 valM 的数放入 L[] 中, 将大于 valM 的数放入 R[] 中。
 - 若 k`>= k:
 - 令 [valL, valR] = [valL, valM], 令 A[] = L[], 循环。
 - 否则, 若 k` < k:
 - 令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k = k k`, 循环。

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- 如何对这些区间分别计数大于等于 n/2 的数的个数?
- 将 < n/2 的数视为 0, >= n/2 的数视为 1。

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- 如何对这些区间分别计数大于等于 n/2 的数的个数?
- 将 < n/2 的数视为 0, >= n/2 的数视为 1。
- 离散化后,按下标进行前缀和即可。

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- •继续根据之前的伪代码,考虑需要更改哪些部分。

- 初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。
- 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 用下标前缀和分别计数 [li, ri] 中小于等于 valM 的数的个数,记为 ki`
 - 将 A[] 中小于等于 valM 的数放入 L[] 中, 将大于 valM 的数放入 R[] 中。
 - 若 k` >= k:
 - 令 [valL, valR] = [valL, valM], 令 A[] = L[],循环。
 - 否则, 若 k` < k:
 - 令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k = k k`, 循环。

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- •继续根据之前的伪代码,考虑需要更改哪些部分。
- 如何把分类讨论的循环改成分治?
 - 初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。
 - 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 用下标前缀和分别计数 [li, ri] 中小于等于 valM 的数的个数,记为 ki
 - 将 A[] 中小于等于 valM 的数放入 L[] 中, 将大于 valM 的数放入 R[] 中。
 - 若 k`>= k:
 - 令 [valL, valR] = [valL, valM], 令 A[] = L[], 循环。
 - 否则, 若 k` < k:
 - 令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k = k k`, 循环。

- 考虑有若干个询问, $[l_1, r_1]$, $[l_2, r_2]$, $[l_3, r_3]$ 。初始的二分区间为 [1, n]
- 继续根据之前的伪代码,考虑需要更改哪些部分。
- 如何把分类讨论的循环改成分治?
- 很简单。

- 初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。
- 直到 valL == valR:
 - 令 valM = (valL + valR) / 2, 下取整。
 - 用下标前缀和分别计数 [li, ri] 中小于等于 valM 的数的个数,记为 ki
 - 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。
 - 将所有 k_i`>= k_i的询问:
 - 令 [valL, valR] = [valL, valM], 令 A[] = L[], **递归**解决。
 - 将所有 k_i` < k_i 的询问:
 - 令 [valL, valR] = [valM+1, valR],令 A[] = R[],令 k_i = k_i k_i`,<mark>递归</mark>解决。

初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。 直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

用下标前缀和分别计数 $[l_i, r_i]$ 中小于等于 valM 的数的个数,记为 k_i " 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。将所有 k_i " >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[], **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 $k_i = k_i - k_i$, **递归**解决。

• 一共有 O(log n) 层。

初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。 直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

用下标前缀和分别计数 $[l_i, r_i]$ 中小于等于 valM 的数的个数,记为 k_i 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[], **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 $k_i = k_i - k_i$, **递归**解决。

- 一共有 O(log n) 层。
- 每一层共处理 O(n) 个元素、O(m) 个询问。
 - 划分的复杂度为 O(n + m)。

初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。 直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

用下标前缀和分别计数 $[l_i, r_i]$ 中小于等于 valM 的数的个数,记为 k_i 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[], **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k_i = k_i − k_i`, **递归**解决。

- 一共有 O(log n) 层。
- 每一层共处理 O(n) 个元素、O(m) 个询问。
 - 划分的复杂度为 O(n + m)。
- 每一个子问题的 A[] 是原来 A[1..n] 的子序列,元素两两不交。故长度之和为 O(n)。
 - 下标前缀和的复杂度是 O(n) 的。
- 总复杂度为 O((n+m)log n)

初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。 直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

用下标前缀和分别计数 [l_i, r_i] 中小于等于 valM 的数的个数,记为 k_i " 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。将所有 k_i " >= k_i 的询问:

令 [valL, valR] = [valL, valM],令 A[] = L[],<u>**递归</u>解决**。</u>

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k_i = k_i − k_i`, **递归**解决。

• 很明显,答案与序列元素的顺序无关。

• 很明显,答案与序列元素的顺序无关。

• 更进一步地, 答案只与每个数出现了多少次有关。

• 很明显,答案与序列元素的顺序无关。

• 更进一步地,答案只与每个数出现了多少次有关。

• 只需要用平衡树/线段树/树状数组维护每一个值出现多少次即可。

- 很明显,答案与序列元素的顺序无关。
- 更进一步地, 答案只与每个数出现了多少次有关。

- 只需要用平衡树/线段树/树状数组维护每一个值出现多少次即可。
 - 利用可离线处理的性质,可以不用数据结构进行解答。
- 尝试扩展之前的二分答案的解法。

- 很明显,答案与序列元素的顺序无关。
- 更进一步地, 答案只与每个数出现了多少次有关。
- 只需要用平衡树/线段树/树状数组维护每一个值出现多少次即可。
 - 利用可离线处理的性质,可以不用数据结构进行解答。
- •尝试扩展之前的二分答案的解法。——怎么处理修改?

- 很明显,答案与序列元素的顺序无关。
- 更进一步地, 答案只与每个数出现了多少次有关。
- 只需要用平衡树/线段树/树状数组维护每一个值出现多少次即可。
 - 利用可离线处理的性质,可以不用数据结构进行解答。
- 尝试扩展之前的二分答案的解法。——把修改看成删去一个值后、 再加上一个值;按时间顺序处理所有询问与修改!

• 如何修改之前的伪代码?

初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。 直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

用下标前缀和分别计数 $[l_i, r_i]$ 中小于等于 valM 的数的个数,记为 k_i 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[], **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k_i = k_i − k_i`, **递归**解决。

• 如何修改之前的伪代码?

• 只需要修改核心语句。

初始区间 [valL, valR] = [1, n], 要求第 k 小。假设已离散化。 直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

用下标前缀和分别计数 $[l_i, r_i]$ 中小于等于 valM 的数的个数,记为 k_i 将 A[] 中小于等于 valM 的数放入 L[] 中,将大于 valM 的数放入 R[] 中。将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM],令 A[] = L[],**递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[], 令 k_i = k_i − k_i`, **递归**解决。

- 如何修改之前的伪代码?
- 很简单。甚至不需要前缀和。
 - 不如说前缀和根本不支持动态修改。
- •时间复杂度依然为 O((n+m)log n)

初始区间 [valL, valR] = [1, n],要求第 k 小,A[] 按时间顺序记录所有值、修改、与询问。假设已离散化。

直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

按时序处理修改与询问。假设 $[I_i, r_i]$ 中小于等于 valM 的数的个数为 k_i

将 A[] 中小于等于 valM 的数与修改放入 L[] 中,将大于 valM 的数与修改放入 R[] 中。

将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[] + 这些询问, 递归解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[] + 这些询问, 令 k; = k; − k; , **递归**解决。

假设询问多个区间[Ii, ri], 有修改(原问题)

• 考虑之前的伪代码。

初始区间 [valL, valR] = [1, n],要求第 k 小,A[] 按时间顺序记录所有值、修改、与询问。假设已离散化。

直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

按时序处理修改与询问。假设 [li, ri] 中小于等于 valM 的数的个数为 ki`

将 A[] 中小于等于 valM 的数与修改放入 L[] 中,将大于 valM 的数与修改放入 R[] 中。

将所有 k_i` >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[] + 这些询问, **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[] + 这些询问, 令 k_i = k_i − k_i`, **递归**解决。

假设询问多个区间[li, ri], 有修改(原问题)

• 考虑之前的伪代码。

•核心部分需要支持:单点修改,区间查询。

初始区间 [valL, valR] = [1, n],要求第 k 小,A[] 按时间顺序记录所有值、修改、与询问。假设已离散化。

直到 valL == valR:

令 valM = (valL + valR) / 2, 下取整。

按时序处理修改与询问。假设 [li, ri] 中小于等于 valM 的数的个数为 ki`

将 A[] 中小于等于 valM 的数与修改放入 L[] 中,将大于 valM 的数与修改放入 R[] 中。 将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[] + 这些询问, **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[] + 这些询问, 令 k_i = k_i − k_i`, **递归**解决。

假设询问多个区间[li, ri], 有修改(原问题)

• 考虑之前的伪代码。

•核心部分需要支持:单点修改,区间查询。

• 用树状数组即可。

初始区间 [valL, valR] = [1, n],要求第 k 小,A[] 按时间顺序记录所有值、修改、与询问。假设已离散化。

直到 valL == valR:

•记得还原。

令 valM = (valL + valR) / 2, 下取整。

用下标树状数组,按时序处理修改与询问。假设 [li, ri] 中小于等于 valM 的数的个数为 ki 将 A[] 中小于等于 valM 的数与修改放入 L[] 中,将大于 valM 的数与修改放入 R[] 中。 还原树状数组。

将所有 k_i >= k_i 的询问:

令 [valL, valR] = [valL, valM], 令 A[] = L[] + 这些询问, **递归**解决。

将所有 k_i < k_i 的询问:

令 [valL, valR] = [valM+1, valR], 令 A[] = R[] + 这些询问, 令 k_i = k_i − k_i`, **递归**解决。

- 一共有 O(log n) 层。
- 每一层共处理 O(n) 个元素、O(m) 个询问。
 - 划分的复杂度为 O(n + m)。
- 每一个子问题的 A[] 是原来 A[1..n] 的子序列,元素两两不交。故长度之和为 O(n)。
 - 下标树状数组的总复杂度是 O((n+m) log n) 的。
- 总复杂度为 O((n+m)log² n)

P3810 【模板】三维偏序(陌上花开)

题目描述

有 n 个元素,第 i 个元素有 a_i,b_i,c_i 三个属性,设 f(i) 表示满足 $a_j \leq a_i$ 且 $b_j \leq b_i$ 且 $c_j \leq c_i$ 且 $j \neq i$ 的 j 的数量。

对于 $d \in [0, n)$,求 f(i) = d 的数量。

2

P3810 【模板】三维偏序(陌上花开)

题目描述

有 n 个元素,第 i 个元素有 a_i, b_i, c_i 三个属性,设 f(i) 表示满足 $a_j \leq a_i$ 且 $b_j \leq b_i$ 且 $c_j \leq c_i$ 且 $j \neq i$ 的 j 的数量。

对于 $d \in [0, n)$,求 f(i) = d 的数量。

说明/提示

 $1 \leq n \leq 10^5$, $1 \leq a_i, b_i, c_i \leq k \leq 2 \times 10^5$.

二维偏序怎么做?

• 按 ai 排序后,用数据结构维护有多少个点 j 的 bj 小于 bi。

二维偏序怎么做?

• 按 ai 排序后,用数据结构维护有多少个点 j 的 bj 小于等于 bi。

• 可以用树状数组/线段树。

二维偏序怎么做?

• 按 ai 排序后,用数据结构维护有多少个点 j 的 bj 小于等于 bi。

• 可以用树状数组/线段树。

• 小细节:ai, bi 可能相同 => 要同时向数据结构中加入 ai 相同的 bi。

2

- 假设 (ai, bi) 已按 ai 排序:
 - 枚举 a:
 - 将所有 ai = a 的 (ai, bi) 加入数据结构 S。
 - 对每一个 ai = a 的 (ai, bi):
 - 询问数据结构 S 中有多少 bj <= bi。
 - 答案为询问结果。

三维偏序怎么做?

- 按 ai 排序后, 我们把每个 ai 相同的 (bi, ci) 看作这样的操作:
 - 首先, 把所有 ai 相同的 (bi, ci) 加入点集。
 - 之后,对每个(bi, ci),询问点集有多少个点(bj, cj)与(bi, ci)形成偏序。

三维偏序怎么做?

- 按 ai 排序后, 我们把每个 ai 相同的 (bi, ci) 看作这样的操作:
 - 首先, 把所有 ai 相同的 (bi, ci) 加入点集。
 - 之后,对每个(bi, ci),询问点集有多少个点(bj, cj)与(bi, ci)形成偏序。
- 把 ai 看作时间的话,这些点可以看作有时间顺序的一次"加点"和一个"询问"。

三维偏序怎么做?

- 按 ai 排序后,我们把每个 ai 相同的 (bi, ci) 看作这样的操作:
 - 首先, 把所有 ai 相同的 (bi, ci) 加入点集。
 - 之后,对每个(bi, ci),询问点集有多少个点(bj, cj)与(bi, ci)形成偏序。
- 把 ai 看作时间的话,这些点可以看作有时间顺序的一次"加点"和一个"询问"。
- 也即,我们把问题转化为了支持加点与询问的二维偏序。

动态二维偏序:假设所有询问在修改后

动态二维偏序:假设所有询问在修改后

• 按 bi 排序后,用之前的做二维偏序的方法即可。

动态二维偏序:假设所有询问在修改后

- 按 bi 排序后,用之前的做二维偏序的方法即可。
- 伪代码:
 - 假设 (bi, ci) 已按 bi 排序:
 - 枚举 b:
 - 将所有 bi = b 的 (bi, ci) 的 "加点" 操作的 ci 加入数据结构 S。
 - 对每一个 bi = b 的 (bi, ci) 的 "询问"操作:
 - 询问数据结构 S 中有多少 cj <= ci。
 - 答案为询问结果。

原问题:CDQ分治

• 可以通过分治把原问题拆成若干个"所有询问在修改后"的问题。

	已按 ai 排序,把 ai 看作时间											
	看作"	加点"		看作"询问"								
看作	看作"加点"		看作"询问"		看作"加点"		看作"询问"					
"加点"	"询问"	"加点"	"询问"	"加点"	"询问"	"加点"	"询问"					
		:				:	:					

LOJ121 「离线可过」动态图连通性

题目描述

这是一道被离线爆艹的模板题。

你要维护一张无向简单图。你被要求加入删除一条边及查询两个点是否连通。

- 0: 加入一条边。保证它不存在。
- 1: 删除一条边。保证它存在。
- 2: 查询两个点是否连通。

输入格式

输入的第一行是两个数 N M o $N \leq 5000$, $M \leq 500000$ o

接下来 M 行,每一行三个数 op, x, y。 op 表示操作编号。

假设没有删边?

假设没有删边?

• 并查集模板题。

• 也即, 所有"删边"操作都删除的是最近加入的(还没被删去)的边。

• 也即, 所有"删边"操作都删除的是最近加入的(还没被删去)的边。

• 可撤销的并查集?

• 也即,所有"删边"操作都删除的是最近加入的(还没被删去)的边。

• 可撤销的并查集?——可以!

• 也即, 所有"删边"操作都删除的是最近加入的(还没被删去)的边。

•可撤销的并查集?——可以!

- 但不能路径压缩了。
 - "加边"操作复杂度为 O(log n)。
 - "撤销"操作复杂度为 O(1)。

线段树分治

• 按时间进行分治。

线段树分治

- 按时间进行分治。
- 假设一条边在 t ∈ [2,7] 存在。

t ∈ [1,8]												
	t ∈	[1,4]		t ∈ [5,8]								
t ∈ [1,2]		t ∈ [3,4]		t ∈ [5,6]		t ∈ [7,8]						
t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8					

线段树分治

- 按时间进行分治。
- 假设一条边在 t ∈ [2,7] 存在。

• 看作在进入这些节点时"加边",离开这些节点时"撤销"即可。

时间复杂度

- 由线段树的性质可以证明, 一条边至多被拆成 O(log m) 条。
- 并查集的复杂度为 O(log n)
- 总复杂度为 O(m log n log m)。
- 但实际上跑的会很快!