CSD1130 Game Implementation Techniques

Lecture 17b

Overview

Animated Circle to Line Segment

Modeling Pinball as Circle

- Pinball modeled by a circle with center and radius r
- Located at center point B_s at beginning of frame
- Moving in direction given by vector \vec{v} and modeled as the following parametric equation

$$\Rightarrow B(t) = B_s + \vec{v}t, t \in [0,1]$$

• V is the change of position per **frame** $\vec{v} = B_s B_o$

$$\vec{\boldsymbol{v}} = \overrightarrow{\boldsymbol{B}_s \boldsymbol{B}_e}$$

Note: The new position Bs was computed by the Physics system (earlier)

Pinball-Wall Intersection (1/3)

Pinball-Wall Intersection (2/3)

Pinball-Wall Intersection (3/3)

Pinball is inside at t_s and outside at t_e

$$t_{i} = \frac{\hat{n} \bullet P_{0} - \hat{n} \bullet B_{s} + D_{2}}{\hat{n} \bullet \vec{v}}$$

where $t_i \in [0,1]$

$$B_{i} = B_{s} + \vec{v} \left(\frac{\hat{n} \bullet P_{0} - \hat{n} \bullet B_{s} + D_{2}}{\hat{n} \bullet \vec{v}} \right)$$

Note: $D_2 = -r$ when B_s is inside $D_2 = r$ when B_s is outside

Test for Non-Collision (1/4) Not to be used

$$(\hat{n} \bullet B_s - \hat{n} \bullet P_0 < -r) \& \& (\hat{n} \bullet B_e - \hat{n} \bullet P_0 < -r)$$

Test for Non-Collision (2/4) Not to be used

$$(\hat{n} \bullet B_s - \hat{n} \bullet P_0 > r) \& \& (\hat{n} \bullet B_e - \hat{n} \bullet P_0 > r)$$

Test for Non-Collision (3/4) Not to be used

$$(B_i - P_1) \bullet (P_0 - P_1) < 0$$

Ball collides with infinite extension of wall... not finite wall!

Test for Non-Collision(4/4)

Not to be used

$$(B_{i}-P_{0}) \bullet (P_{1}-P_{0}) < 0$$

$$[B_{s},t_{s}] \qquad [B_{e},t_{e}]$$

$$[B_{i},t_{i}]$$

Ball collides with infinite extension of wall... not finite wall!

But! We have a Problem

The intersection point B_i is not on the line, but the ball collides with the wall.

Steps

- Check for trivial rejection
 - B_s , B_e inside or both outside
 - Going from inside to outside and the collision type of the line segment is outside, and vice versa.
- Calculate the point and time of intersection
 - Check if the time is between t_s and t_e
- Check if the point of intersection is on the line segment

Not to be used We're going to see a better algorithm with more steps