

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Clustering I

CS 422 vgurbani@iit.edu

- Cluster analysis divides data into groups (clusters) that are meaningful, useful, or both.
 - Objects in a cluster share the same characteristics.
- Used in a variety of fields: health and medicine, business, ...
 - Health and medicine: Cluster patients according to symptoms presented upon evaluation.
 - Business: Cluster stores according to sales / customer satisfaction /
 ...
 - Computer networking: Cluster traffic according to application type
 - Encrypted traffic identification.
 - Anomaly detection.
 - ...

- Cluster analysis divides data into groups (clusters) that are meaningful, useful, or both.
 - Meaningful: clusters should capture the natural structure of the data.
 - Useful: cluster prototype.
 - Using the cluster prototype, clusters can be used as a starting point for data summarization, compression (vector quantization), classification (nearest neighbour).

- Clustering groups data objects based on information found in the data that describes the objects and their relationships.
 - Goal: Objects within a cluster be similar to one another, but different from objects in other clusters.
- Notion of a cluster is not well defined.

- Notion of a cluster is not well defined.
- Consider: Original data points.

How many clusters?

- Notion of a cluster is not well defined.
- Consider: Original data points.

How many clusters?

- Notion of a cluster is not well defined.
- Consider: Original data points.

How many clusters?

- Notion of a cluster is not well defined.
- Consider: Original data points.

- Notion of a cluster is not well defined.
- Consider: Original data points.

- Different type of clustering
 - Partitional vs. hierarchical:
 - Partitional: divide objects into non-overlapping clusters such that each object belongs to exactly one cluster.
 - Hierarchical: Clusters can have subclusters.

- Different type of clustering
 - Exclusive vs. overlapping vs. fuzzy:
 - Exclusive: 1:1 relationship between object and cluster.
 - Overlapping: 1:n relationship between object and cluster; an object can belong to > 1 cluster.
 - Fuzzy: n:n relationship, all objects belong to all clusters with a certain probability (or membership weight). Each object's probability of belonging to all clusters should sum up to 1.0.

- Different type of clustering
 - Complete vs. partial:
 - Complete: Assign every point to at least one cluster.
 - Partial: Some objects may not be assigned to any cluster.
 Such objects may represent "noise", or "outliers".
 - Outlier detection, or anomaly detection, is a rich area of current research.

Different type of clusters

Different type of clusters

(a) Well-separated clusters. Each point is closer to all of the points in its cluster than to any point in another cluster. (b) Center-based clusters. Each point is closer to the center of its cluster than to the center of any other cluster.

Different type of clusters

(a) Well-separated clusters. Each point is closer to all of the points in its cluster than to any point in another cluster. (b) Center-based clusters. Each point is closer to the center of its cluster than to the center of any other cluster.

(d) Density-based clusters

Used when clusters are irregular or intertwined, or when noise and outliers are present.

Different type of clusters

(a) Well-separated clusters. Each point is closer to all of the points in its cluster than to any point in another cluster. (b) Center-based clusters. Each point is closer to the center of its cluster than to the center of any other cluster.

(e) Conceptual clusters. Points in a cluster share some general property that derives from the entire set of points. (Points in the intersection of the circles belong to both.)

(d) Density-based clusters

Used when clusters are irregular or intertwined, or when noise and outliers are present.

Clustering: Algorithms

- What we will study:
 - K-means clustering: a prototype-based, partitional clustering techniques to find patterns in the data to create k clusters.

- Hierarchical clustering: Build a hierarchy of clusters

starting from singleton clusters.

- DBSCAN: Density-based

clustering.

Clustering: Algorithms

- K-Means clustering: Takes n observations and partitions them into k clusters (k << n).
 - Prototype-based clustering scheme.
 - Computationally difficult (NP-hard); greedy algorithms exist that converge quickly to a local optimum.

Clustering: K-Means

Clustering: K-Means

Prerequisite:

- Attributes must be numeric
- Attributes must be standardized (scaled).

Algorithm 8.1 Basic K-means algorithm.

- Select K points as initial centroids.
- 2: repeat
- Form K clusters by assigning each point to its closest centroid.
- Recompute the centroid of each cluster.
- 5: until Centroids do not change.

Issues:

- How do we compute distances to centroids?
- How do we choose *K*?
- When do we know when to stop?
- How do we choose the initial centroids?