DHT Routing Table Health

Our DHT is in good shape!

Guillaume Michel @guissou

ProbeLab,
Protocol Labs

IPFS þing 15th July 2022

Kademlia DHT Routing Table

- ► A Distributed Hash Table (DHT) is a decentralized overlay network
- ► Each node has to know some other peers to be connected to the network, this set of peers is the node's Routing Table
- Kademlia keeps peers in k-buckets sorting the peer_id by XOR distance (or Common Prefix Length). Each bucket is capped at 20 peers

Example: Routing Table of peer 01101000

Bucket 0	Bucket 1	Bucket 2	Bucket 3	Bucket 4
1. 11010111	1. 0 0110101	1. 01 011101	1. 011 11011	1. 0110 0011
2. 10001011	2. 0 0001000	2. 01 001111	2. 011 10001	
3. 10101110	3. 0 0111011	3. 01 010110		
4. 11110101	4. 0 0101101			
5. 10000010	5. 0 0110100			
6. 11010100				
7. 11000100				
R				

k-bucket replacement policy

- ► Kademlia: only when a bucket is full and there is a new candidate, least-recently seen and unreachable node gets evicted, but live nodes are never evicted
- ▶ kubo implementation: periodically ping nodes that it didn't hear of recently, and evict them if they don't respond

Measurements data

- ► The Nebula Crawler crawls the IPFS network and provides all peers in the network along with their routing table for a point in time
- ▶ Data taken from 28 crawls over 1 week (4 crawls per day) starting on 2022-04-19

Methodology

- ► The Nebula Crawler provides a global snapshot of the network
- ► We can reconstruct the k-buckets of all peers by computing the XOR distance between a peer_id and the peer_ids of all peers in its routing table
- ► From the global snapshot we can find the closest peers to every other peer and verify if any peer is missing from a k-bucket
- Caveat: XOR distance is non-linear! Computationnaly expensive to find the closest peers to a specific peer_id. A python Binary Trie implementation was built for this purpose

Unreachable peers in the Routing Table

Unreachable peers may still be referenced in other peers routing tables (stale entries)

- ► Average for buckets 0 to 8: 3.8% ~ 0.75 peers
- ► Average for buckets 9 to 21: 15%

Peers distribution in the k-buckets

- ► Peers distribution in bucket follows an exponential growth, capped at 20
- Buckets 0-8 are missing on average 0.12 peers per bucket
- ► Buckets 9-14 are missing on average 0.53 peers per bucket

20 closest peers awareness

- Probability Density Function (PDF)
- **2.** Cumulative Distribution Function (CDF)
- ► 61.1% of the peers know all their 20 closest peers
- ▶ 95.2% of the peers know at least 18 of their 20 closest peers

Diversity in the k-buckets

- ► Live peers never get replaced in the k-buckets by design
- ➤ Eventually, buckets with many candidates (e.g buckets 0-1) will be filled almost exclusively with a small number of very stable peers
- Routing for content far away (in XOR distance) may become centralized on a small set of peers
- Bad for decentralization :(

New measurements

- Measurements for 10 consecutive weeks starting on 2022-02-16
- ► Each week's measurements are based on data from 14 crawls (2x/day)
- Diversity in k-buckets is measured as the number of distinct peer_ids observed in each bucket for all peers

Diversity in each k-buckets

- ► Buckets 10+: non-full buckets → low diversity
- ▶ Bucket 9: bucket just full→ highest diversity
- ➤ Buckets 0-1: many candidates, only the most stable don't get evicted → lower diversity
- ► We expect diversity in buckets 0-1 to decrease over time

Diversity evolution over time

Moving average difference between week 1 and week 8:

Bucket 0: -6.9%

Bucket 1: -7.3%

Bucket 9: -2.6%

Conclusion

- ▶ Very low rate of stale entries in the routing table, given high churn
- ► Peers distributions in the k-buckets as expected
- the k-buckets are only missing a small number of peers
- ▶ 95.2% of the nodes have at least 18 of their 20 closest peers in their Routing Table
- We observed diversity decreasing over time in low ID buckets, which might become a concern for decentralization
- ► All results of RFM19 of are available on the protocol/network-measurements Github repo

References

- 1. RFM19 on the protocol/network-measurements Github repo
- 2. DHT Routing Table Health Notion page
- 3. Kademlia Paper by Petar Maymounkov and David Mazières
- 4. Nebula Crawler by Dennis Trautwein
- 5. Python Binary Trie implementation
- 6. ProbeLab Notion page