MAT157: Analysis I — Tutorial 4

Topics: Limits

Warm up. Let $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ be a function, and $a \in D, L \in \mathbb{R}$. Write out the formal definition of the statement " $\lim_{x \to a} f(x) = L$ ".

Question 1. Using the definition of a limit, prove the following statements.

(a) $\lim_{x \to 1} (3x + 4) = 7$.

(c) $\lim_{x \to 2} (x^2 + x - 1) = 5$.

(b) $\lim_{x \to 0} x^3 = 0$.

(d) $\lim_{x \to 1} \left(\frac{x+5}{x+2} \right) = 2.$

Question 2.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and $a, L \in \mathbb{R}$. Express the statement " $\lim_{x \to a} f(x) \neq L$ " mathematically, using logical symbols.
- (b) Suppose $f: \mathbb{R} \to \mathbb{R}$ is the characteristic function of \mathbb{Q} , namely

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}. \end{cases}$$

Prove that $\lim_{x\to 0} f(x) \neq 1$. Hint: Both \mathbb{Q} and \mathbb{Q}^c are dense in \mathbb{R} .

(c) Bonus: Show that $\lim_{x\to a} f(x) \neq L$ for all $a \in \mathbb{R}$ and $L \in \mathbb{R}$.

Question 3. Suppose f is defined on an open interval containing $a \in \mathbb{R}$. If $\lim_{x \to a} f(x) = L$, show that

- (a) $\lim_{x \to a} (f(x) L) = 0$.
- (b) $\lim_{h \to 0} f(a+h) = L$.
- (c) $\lim_{h \to 1} f(ah) = L$.