### $\mathcal{L}_1$ -Adaptive Controller Design for Lithium-Ion Batteries

Erin Swansen, Minjun Sung & Vivek Sharma

University of Illinois, Urbana-Champaign

December  $8^{th}$ , 2021

### System Model Selection

State space representation of lumped thermal capacitance model of a battery :

$$\dot{x}(t) = Ax(t) + b\lambda(u(t) + f(x) + d)$$
$$y = cx$$

- f(x): unstructured, unknown uncertainty
- $\lambda \in [0,1]$  : scaling uncertainty in the controller
- $\bullet$  d : disturbance

$$f(x) = 5sin(2x_1(t)) + cos(4x_2(t)) + exp(-x_1(t)^2 - x_2(t)^2)$$

$$A = \begin{bmatrix} 0 & 1 \\ -0.01 & 0.02 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$A_m = \begin{bmatrix} 0 & 1 \\ -1 & -1.2 \end{bmatrix}, \lambda = 0.75$$

### Control Architecture

The control architecture and parameter bounds are shown below:



Figure 1: Closed loop adaptive system.

#### Parameter Bounds

$$\Theta = [-5, 5], \Sigma = [-10, 10] \& \Omega = [0.1, 2]$$

### $\mathcal{L}_1$ -norm Condition



Figure 2:  $\mathcal{L}_1$  Performance with  $k = 1, 5 \& \Gamma = 10000$ 

#### Notes & Observations

k=5 is close to the minimum value that satisfies  $\mathcal{L}_1$ -norm condition  $||G(s)||_{\mathcal{L}_1}L < 1$ . Does not track when k=1.

# $\mathcal{L}_1$ vs. MRAC in Presence of d = $sin(\pi) + sin(5\pi/7)$



Figure 3: Tracking and input with disturbance for k = 100.

#### Observations

 $\mathcal{L}_1$  compensates for disturbance by scaling control input, whereas MRAC does not.

# Performance Comparison for $D(s) = \frac{1}{s}$ vs $D(s) = \frac{s+15}{s(s+60)}$



Figure 4: Performance with  $t_d = 0.03s \& k = 100$ .

#### Observations

$$D(s) = \frac{s+15}{s(s+60)}$$
 has larger time delay margin.

# $\mathcal{L}_1$ Time Delay Margin Analysis

• k = 5,100,500 has TDM of 0.3,0.025,0.007(s), respectively



Figure 5: Responses with different k and  $t_d = 0.02$ 

#### Observations

Higher k allows higher frequency signal, and has tracking performance. This comes at the cost of reduced time delay margin.

# MRAC: Adaptation Parameter Tuning



Figure 6: MRAC responses to different reference with  $\Gamma = 1$ 

#### Observations

Re-tuning of adaptation parameters is required for different reference input.

### $\mathcal{L}_1$ : Adaptation Parameter Tuning



Figure 7:  $\mathcal{L}_1$  with constant  $\Gamma = 10000 \& k = 100$ 

#### Observations

Without additional tuning,  $\mathcal{L}_1$  shows good performance across different reference inputs.

# $\mathcal{L}_1$ vs. MRAC : Effect of Shifting Plant Parameters

• A is shifted from  $\begin{bmatrix} 0 & 1 \\ -0.01 & 0.02 \end{bmatrix}$  to  $\begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$  at t = 20



Figure 8:  $\mathcal{L}_1$  and MRAC for shifting plant parameters

#### Observations

 $\mathcal{L}_1$  can handle shifting plant parameters, but MRAC does not.

### Summary

- $\mathcal{L}_1$  control framework provides uniform and guaranteed **performance**, even during the transient period.
- $\mathcal{L}_1$  decouples adaptation from robustness in contrast to the trade-off in MRAC.
- In the presence of disturbance,  $\mathcal{L}_1$  guarantees **asymptotic convergence**, whereas MRAC only guarantees ultimate boundedness.
- For different reference inputs, MRAC requires re-tuning of adaptation parameters, while for  $\mathcal{L}_1$  retuning is not required.
- $\mathcal{L}_1$  can handle shifting plant parameters, but MRAC cannot.

### References

- Hovakimyan, Naira, and Chengyu Cao. L<sub>1</sub> adaptive control theory: Guaranteed robustness with fast adaptation.
   Society for Industrial and Applied Mathematics, 2010.
- Nguyen, Nhan T. Model-Reference Adaptive Control. Springer, Cham, 2018. 83-123.