Science backed practical guideline to Productivity

How to increase your flow...

About me:

Freelance MLE by day, medical science nerd and biohacker by night. Love reading about new health-related researches. Love playing around with gadgets. Love over-optimizing =)

Follow the rabbit:

@FatDataUnicorn@fosstodon.org

@FatDataUnicorn

Alisa Dammer#5584

alisadammer

alisadammer.com

https://github.com/Alisa-lisa

https://github.com/Alisa-lisa/conferences/tree/master/DD_2024

Structure

Intro

- Scope
- Methodology

Mechanisms

- Stages of flow
 - Struggle
 - ii. Release
 - iii. Flow
 - i۷. Recovery
 - Reflection
- Analysis
- Additional factors
- Simple summary
- QA

Productivity vs Flow

Productivity

- Measurement
- Complex
- Per time unit
- Input to output ratio

Context

- Scalable
- Generalized
- Measurable
- Cost efficient
- Transparent

Hypothesis

Flow can be used to improve productivity in most of the systems and processes executed by human.

Flow

Classic definition

"A mental state characterized by full immersion in an activity, where a person experiences intense focus, concentration, and enjoyment."

Mihaly Csikszentmihalyi

State

- Extreme focus and concentration
- Loss of sense of self
- High motivation
- Loss of time tracking ability
- Deep and calm happiness

Stages

- Struggle
- Release
- Flow
- Recovery
- Reflection (optional)

Methodology

Biological "simple" markers

Heart Rate Monitor (ECG, PPG)

Limitations and scope

- Coding task
- Clear results
- Simple Hypothesis
- Reproducible

- General participants group
- Practical outcome
- Consumer-grade wearables

- Personal bias
- Complexity ceiling
- Science-pop references

- Too theoretical
- Impractical
- Suspicious
- Limited citations
- Too good

Neurological Mechanisms

From theory to practice

From stage, to neurological mechanism, to psychological explanation, to practical advise

Flow

Classic definition

"A mental state characterized by full immersion in an activity, where a person experiences intense focus, concentration, and enjoyment."

Mihaly Csikszentmihalyi

State

- Extreme focus and concentration
- Loss of sense of self
- High motivation
- Loss of time tracking ability
- Deep and calm happiness

Stages

- Struggle
- Release
- Flow
- Recovery
- Reflection (optional)

Flow dimensions

Identified mechanisms

Stage	Stage simple description	Neurological mechanisms	Function	Tracking
Struggle	Anxious or stressed mental state in the face of the task execution planning, resources collection and difficulty assessment	BG starts dopamine production, Locus Coeruleus activates norepinephrine release, SNS activity increase	Promote intense, controlled focus and wakefulness, first level reward assessment, setting reward/desire for the activity	fMRI, HRM, EEG, EDA, ECG
Release	Commitment to a chosen solution, reduced self-awareness, increased concentration	DMN activity reduction, CEN activity increase, SN activity increase, PNS activity increase	Relaxation to some degree, increased concentration on specific task, internal dialog shut down, concentrated stimuli filtering, commitment	fMRI, EDA, EEG, HRM, ECG
Flow	No self-awareness, no time-feeling, extreme focus, no active internal dialog or monologue, joy	ANS regulates balanced PNS and SNS activity, Activation of frontoparietal attention networks and reward network, LC-NE balances engagement, SN assesses feedback	Constantly re-assessing physiological and psychological cost/benefit function, re-assessing external stimuli importance, learning, joy	EEG, EDA, fMRI, HRM, ECG
Recovery	Rapid energy depletion, self-awareness, decreased attention	Re-balancing of engaged systems	Preventing burnout, energy restoration	EEG, fMRI, HRM, FSS, ECG, questionnaire
Reflection	Activation of memory and learning	Basal Ganglia and DMN increase in activity	Active learning and evaluation of the experience, engaging in long-term memory	fMRI, questionnaire

Struggle

- 1. Assessment of tasks "value"
- 2. Increasing stress markers
- 3. Increased attention
- 4. Scattered focus present
- 5. High external stimuli assessment
- 6. High awareness
- 7. Time speed up

- Pupils dilation
- 2. Shallow breath
- Increased Respiratory Rate
 Lower HRV, Higher LF power
- 5. Increased body temperature

Release

Default mode network

Central executive network

- 1. Commitment to the task (set value)
- 2. Reduced stress markers
- 3. Increased focused attention
- 4. Scattered attention rapidly diminishes
- 5. Diminished self-awareness
- 6. Time slow down
- 7. Entering state of positive excitement

- Dilated pupils
- 2. Increasing breath depth
- 3. Increasing respiratory Rate
- 4. Increasing HRV, Prevalent LF power, Increasing HF power
- Slightly decreasing body temperature

Flow

- 1. No self-awareness
 - . Moderate stress markers
- 3. Extreme focus
- 4. Extreme on-task attention
- 5. Super slow sense time
- 6. Joy, happiness
- 7. Sense of control

- Dilated pupils
- 2. Stabilized higher respiratory Rate, deep breath pattern
- B. Potentially irregular time between breaths
- 4. High HRV, Balanced LF/HF HRV with slight HF dominance
- 5. Stabilized heightened body temperature

Recovery

- 1. Active self-awareness
- 2. Moderate stress markers
- Scattered focus
- 4. Low attention
- 5. Normal sense time
- 6. Exhaustion
- 7. Feeling of satisfaction

- Constricted pupils
- 2. Decreased breath depth
- 3. Normalized time between breaths
- 4. .
- 5. Stabilized body temperature

Reflection

- Active self-awareness
- 2. Low stress markers
- 3. Present focus
- 4. Present attention
- 5. Normal sense time
- 6. Gratitude, joy, calm

- . Slightly dilated pupils
- 2. Normalized breathing patterns
- 3. Normalized temperature
- 4. High HRV, High HF power, LF present

Analysis

Getting the data

Steps

- 1. Questionnaire fill-in
- 2. Check for biometric data to support your subjective experience
- 3. Reflect on details
- 4. Do it over multiple days

Self-assessment: Flow Short Scale with item allocation proposed by Engeser (2012)

- I feel just the right amount of challenge (ABA) 0 (not at all) .. 5 (absolutely)
- My thoughts/activities run fluidly and smoothly (FP)
- I do not notice time passing (ABA)
- I have no difficulty concentrating (FP)
- My mind is completely clear (FP)
- I am totally absorbed in what I am doing (ABA)
- The right thoughts/movements occur of their own accord (FP)
- I know what I have to do each step of the way (FP)
- I feel that I have everything under control (FP)
- I am completely lost in thought (ABA)

- HRV
- Breathing patterns
- Stress/Rest
- Sleep
- Blood pressure (optional)
- ..
- ?=
- Mental state
- Flow experience
- Stress
- Mood

- Seasonality

- Infrequent sampling
- Hard to get raw data
- Aggregated data
- Inaccurate readings
- Timing bias

- Trends
 - Cyclic components
 - Anomalies
 - Shifts

- A number of biases
- Inconsistent scale
- Adaptation

Additional factors

- General health
- Higher happiness
- Autonomy over task
- Growth mindset
- Mindfulness
- Certain level of skill

Genetics

- Illness
- Negative mindset
- Perceived risk is too high
- New skill
- Inappropriate environment

Summary

Practical recap

Flow dimensions

- 1. Is a factor positive or negative?
 - A. DO YOU WANT TO ADD TO YOUR ROUTINE OR TAKE AWAY?
- 2. Which dimension is it tackling?
 - A. IS IT VERY PRACTICAL OR A GLOBAL CHANGE?
- 3. How high is implementation cost?
 - A. IS IT CHEAP PHYSICAL ADDITION, OR A LONG, UNIQUE PROCESS?
- 4. What is the desirable outcome?
 - A. IS IT A MEASURABLE FEATURE OF A STAGE, OR IMPROVED GLOBAL FACTOR?
- 5. How can it be measured?
 - A. IS IT AN OBJECTIVELY OR SUBJECTIVELY COLLECTED DATA?
- 6. Is it sustainable?
 - A. IS THIS CHANGE TEMPORARY OR PERMANENT?
- 7. Are there side- or compound effects?
 - A. WHAT ARE OTHER DIMENSIONS IT IS AFFECTING?

Thank you for your attention!

Resources:

- Van der Linden D., Tops M., B.Bakker A. (2020). "Go with the flow: A neuroscience view on being fully engaged", Wiley Open Access Collection, doi: 10.1111/ejn.15014
- Van der Linden D., Tops M., B.Bakker A. (2021). "The Neuroscience of flow State: Involvement of the Locus Coeruleus Norepinephrine System", Frontiers, https://doi.org/10.3389/fpsyg.2021.645498
- Schaffer f., Ginsberg J.P. (2017). "An Overview of Heart Rate Variability Metrics and Norms", Frontiers, https://doi.org/10.3389/fpubh.2017.00258
- Grassman M, Vlemincx E., Von Leupoldt A., Mittelstaedt J.M., Van den Bergh O. (2016). "Respiratory Changes in Response to Cognitive Load: A Systematic Review", Hindawi, https://doi.org/10.1155/2016/8146809
- Hinde K., White G., Armstrong N. (2021). "Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations", Sensors, https://doi.org/10.3390/s21041061
- Mosing M.A., Pedersen N.L., Cesarini D., et al. (2012). "Genetic and Environmental Influences on the Relationship between Flow Proneness, Locus of Control and Behavioral Inhibition", PLOS ONE, https://doi.org/10.1371/journal.pone.0047958
- Jha S., Stogios N., De Oliveira A.S., et. al. (2022). "Getting Into the Zone: A Pilot Study of Autonomic-Cardiac Modulation and Flow State During Piano Performance", Frontiers, https://doi.org/10.3389/fpsyt.2022.853733
- Khoshnoud S., Igarzabal F.A., Wittman M. (2020). "Peripheral-physiological and neural correlates of the flow experience while playing video games: a comprehensive review", PeerJ, doi: 10.7717/peerj.10520
- Gold J., Ciorciari J. (2020). "A Review on the Role of the Neuroscience of Flow States in the Modern World", Behavioural Science, doi: 10.3390/bs10090137
- Abuhamdeh S. (2020). "Investigating the "Flow" Experience: Key Conceptual and Operational Issues", Frontiers, https://doi.org/10.3389/fpsyq.2020.00158
- Kotler S., Mannino M., Kelso S., Huskey R. (2022). "First few seconds for flow: A comprehensive proposal of the neurobiology and neurodynamics of state onset", ScienceDirect, https://doi.org/10.1016/j.neubiorev.2022.104956
- Chin M.S., Kales S.N. (2019). "Is There an Optimal Autonomic State for Enhanced Flow and Executive Task Performance?", Frontiers, https://doi.org/10.3389/fpsyg.2019.01716
- De Manzano Oe., Cervenka S., Jucaite A., et al. (2013). "Individual differences in the proneness to have flow experiences are linked to dopamine D2-receptor availability in the dorsal striatum", ScienceDirect, https://doi.org/10.1016/j.neuroimage.2012.10.072
- <u>Kyriazos</u> T.A., <u>Stalikas</u> A., <u>Prassa</u> K., et al. (2018). "The Flow Short Scale (FSS) Dimensionality and What MIMIC Shows on Heterogeneity and Invariance", Psychology, https://doi.org/10.4236/psych.2018.96083
- Csikszenntmihalyi M. (2008), "Flow". HarperCollins
- Kotler S. (2021). "The art of impossible: a peak performance primer", HarperCollins
- Lembke, A. (2021). "Dopamine Nation: Finding Balance in the Age of Indulgence". Dutton
- Bailey C. (2018). "Hyperfocus: How to Work Less to Achieve More", Pan Macmillan
- Kwik j. (2020). "Limitless: Upgrade Your Brain, Learn Anything Faster, and Unlock Your Exceptional Life", Hay House LLC