$\begin{array}{c} \textbf{High Performance Computing} \\ \phantom{\textbf{2023 Fall}} \end{array}$

Lab 2. C Programming in Linux

General Matrix Multiplication

Yongzhuo Ma

September 17, 2023

Chapter 1

Introduction to the Environment

1.1 Host Machine

Item	Value
OS version Apple clang version CPU	macOS Ventura 13.5.2 14.0.3 Apple M2 Max
CPU Frequency CPU Cores Memory	Apple M2 Max 3.54 - 3.70 GHz 12 64 GB

1.2 Virtual Machine

Item	Value
Virtualization OS version gcc version CPU CPU Frequency	Parallels Ubuntu 22.04.3 LTS 11.4.0 Apple M2 Max 3.66 GHz
CPU Cores Memory	8 32 GB

Chapter 2

Matrix Multiplication

In this chapter, I will compare the efficiency between two algorithms of matrix multiplication. They are **general matrix multiplication:** naive and **general matrix multiplication:** OpenBlas.

2.1 General Matrix Multiplication: Naive

It is easy to implement this algorithm, relevant code has been attached to **Appendix**.

Here the math is,

$$\boldsymbol{A} = \alpha \boldsymbol{L} \times \boldsymbol{R} + \beta \boldsymbol{C}$$

where the size of A, L, R, C is $M \times K, M \times N, N \times K$ and $M \times K$.

Time is recorded in microsecond(μs). All numbers in the matrices are generated randomly. Here,

$$\alpha = 3, \beta = 2$$

Virtual Machine

	M	N	K	$Duration(\mu s)$	GFlops
4	1	4	4	1	0.128000
1	16	16	16	12	0.682667
6	64	64	64	802	0.653726
2	256	256	256	44750	0.749820
1	1024	1024	1024	2383867	0.900840
2	2048	2048	2048	19046422	0.902000
4	1096	4096	4096	153913963	0.892960
8	8192	8192	8192	1235454909	0.889965
1	16384	16384	16384	9883639272*	
3	32768	32768	32768		
6	65536	65536	65536		

For M = N = K = 16384, the duration is estimated.

For M = N = K = 32768, it raised a memory error.

For M = N = K = 65536, it raised a memory error.

2.2 General Matrix Multiplication : OpenBlas

Relevant code has been attached to **Appendix**. Nothing changed,

$$\boldsymbol{A} = \alpha \boldsymbol{L} \times \boldsymbol{R} + \beta \boldsymbol{C}$$

where the size of A, L, R, C is $M \times K, M \times N, N \times K$ and $M \times K$.

Time is recorded in microsecond(μs). All numbers in the matrices are generated randomly. Here,

$$\alpha = 3, \beta = 2$$

M	N	K	$\mathrm{Duration}(\mu s)$	GFlops
4	4	4	466	0.000275
16	16	16	84	0.097524
64	64	64	177	2.962079
256	256	256	673	49.857997
1024	1024	1024	15604	137.623920
2048	2048	2048	99692	172.329467
4096	4096	4096	507859	270.624235
8192	8192	8192	3417775	321.703924
16384	16384	16384	24669406	356.558768
32768	32768	32768	191583411	367.300821
65536	65536	65536		

For M = N = K = 65536, it raised a memory error.

2.3 Comparison

Figure 2.1: timeNaiveDGEMM.txt

Figure 2.2: timeDGEMM.txt

Figure 2.3: Duration Differences

 $Figure \ 2.4: \ GFlops \ Differences$

Figure 2.5: Duration Differences (base 2)

Figure 2.6: GFlops Differences (base 2)

Appendix

Two copies of source code attached.