Lecture 22: Nonparametric Regression

STA702

Merlise Clyde
Duke University

Semi-parametric Regression

Consider model

$$Y_1,\ldots,Y_n \sim \mathsf{N}\left(\mu(\mathbf{x}_i,oldsymbol{ heta}),\sigma
ight)$$

- Mean function $\mathsf{E}[Y_i \mid oldsymbol{ heta}] = \mu(\mathbf{x}_i, oldsymbol{ heta})$ falls in some class of nonlinear functions
- Basis Function Expansion

$$\mu(\mathbf{x},oldsymbol{ heta}) = \sum_{j=1}^J eta_j b_j(\mathbf{x})$$

• $b_j(\mathbf{x})$ is a pre-specified set of *basis functions* and $\boldsymbol{\beta} = (\beta_1, \dots, \beta_J)^T$ is a vector of coefficients or coordinates wrt to the basis

Examples

• Taylor Series expansion of $\mu(\mathbf{x})$ about point χ

$$egin{aligned} \mu(x) &= \sum_k rac{\mu^{(k)}(\chi)}{k!} (x-\chi)^k \ &= \sum_k eta_k (x-\chi)^k \end{aligned}$$

- polynomial basis
- can require a large number of terms to model globally
- can have really poor behavior in regions without data
- each basis function has a "global" impact

Other Basis Functions

• cubic splines

$$b_j(x,\chi_j)=(x-\chi_j)_+^3$$

Gaussian Radial Basis

$$b_j(x,\chi_j) = \exp\left(rac{(x-\chi_j)^2}{l^2}
ight)$$

- ullet centers of basis functions χ_j
- width parameter l controls the scale at which the mean function dies out as a function of ${\bf x}$ from the center
- localized basis elements

Local Models

• Multivariate Gaussian Kernel g with parameters $oldsymbol{\omega} = (oldsymbol{\chi}, oldsymbol{\Lambda})$

$$b_j(\mathbf{x}, oldsymbol{\omega}_j) = g(oldsymbol{\Lambda}_j^{1/2}(\mathbf{x} - oldsymbol{\chi}_j)) = \exp\left\{-rac{1}{2}(\mathbf{x} - oldsymbol{\chi}_j)^Toldsymbol{\Lambda}_j(\mathbf{x} - oldsymbol{\chi}_j)
ight\}$$

- Gaussian, Cauchy, Exponential, Double Exponential kernels (can be asymmetric)
- translation and scaling of wavelet families
- ullet basis functions formed from a generator function g with location and scaling parameters

Bayesian Nonparametric Model

Mean function

$$\mu(\mathbf{x}_i) = \sum_{j}^{J} b_j(\mathbf{x}_i, oldsymbol{\omega}_j) eta_j$$

- conditional on the basis elements back to our Bayesian regression model
- usually uncertainty about number of basis elements needed
- could use BMA or other shrinkage priors
- how should coefficients scale as *J* increases?
- choice of *J*?
- what about uncertainty in ω (locations and scales)?
- priors on unknowns $(J, \{\beta_j\}, \{\boldsymbol{\omega}_j\})$ induces a prior on functions!

Stochastic Expansions

$$\mu(\mathbf{x}) = \sum_{j=0}^J b_j(\mathbf{x}, oldsymbol{\omega}_j) eta_j = \sum_{j=0}^J g(oldsymbol{\Lambda}^{1/2}(\mathbf{x} - oldsymbol{\omega}_j)) eta_j$$

- introduce a Lévy measure $\nu(d\beta, d\omega)$
- ullet Poisson distribution $J\sim {\sf Poi}(
 u_+)$ where $u_+\equiv
 u(\mathbb{R} imes {f \Omega})=\iint
 u(eta,{m \omega})deta\,d{m \omega}$
- conditional prior on $eta_j, m{\omega}_j \mid J \stackrel{ ext{iid}}{\sim} \pi(eta, m{\omega}) \propto
 u(eta, m{\omega})$
- Conditions on ν (and g)
 - need to have that $|\beta_j|$ are absolutely summable
 - finite number of large coefficients (in absolute value)
 - lacksquare allows an infinite number of small $eta_j \in [-\epsilon,\epsilon]$

See Wolpert, Clyde and Tu (2011) AoS

Gamma Process Example

$$\nu(\beta,\chi) = \beta^{-1} e^{-\beta\eta} \gamma(\chi) d\beta \, d\chi$$

Stochastic Integral Representation

$$\mu(\mathbf{x}) = \sum_{j=0}^J b_j(\mathbf{x}, oldsymbol{\omega}_j) eta_j = \sum_{j=0}^J g(oldsymbol{\Lambda}^{1/2}(\mathbf{x} - oldsymbol{\omega}_j)) eta_j = \int_{oldsymbol{\Omega}} b(\mathbf{x}, oldsymbol{\omega}) \mathcal{L}(doldsymbol{\omega})$$

• \mathcal{L} is a **random signed measure** (generalization of Completely Random Measures)

$$\mathcal{L} \sim \mathsf{L\'{e}vy}(
u) \qquad \qquad \mathcal{L}(doldsymbol{\omega}) = \sum_{j \leq J} eta_j \delta_{oldsymbol{\omega}_j}(doldsymbol{\omega})$$

- Lévy-Khinchine Poisson Representation of ${\cal L}$
- Poisson number of support points (possibly infinite!)
- random support points of discrete measure $\{\boldsymbol{\omega}_j\}$
- random "jumps" β_i
- Convenient to think of a random measure as stochastic process where ${\mathcal L}$ assigns random variables to sets $A\in {f \Omega}$

Examples

· gamma process

$$u(eta,oldsymbol{\omega}) = eta^{-1}e^{-eta\eta}\pi(oldsymbol{\omega})deta\,doldsymbol{\omega} \ \mathcal{L}(A) \sim \mathsf{Gamma}(\pi(A),\eta)$$

- non-negative coefficients plus non-negative basis functions allows priors on nonnegative functions without transformations
- α -Stable process (Cauchy process is $\alpha=1$)

$$u(eta,oldsymbol{\omega}) = c_lpha |eta|^{-(lpha+1)} \, \pi(oldsymbol{\omega}) \qquad 0 < lpha < 2$$

- ullet $u^+(\mathbb{R},oldsymbol{\Omega})=\infty$ for both the Gamma and lpha-Stable processes
- Fine in theory, but problematic for MCMC!

Prior Approximation I

Truncate measure ν to obtain a finite expansion:

- Finite number of support points $\boldsymbol{\omega}$ with β in $[-\epsilon,\epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $u_{\epsilon}(eta,m{\omega}) \equiv
 u(eta,m{\omega}) \mathbf{1}(|eta| > \epsilon)$
- $ullet \ \Rightarrow J \sim \mathsf{Poi}(
 u_\epsilon^+) \, \mathsf{where} \,
 u_\epsilon^+ =
 u([-\epsilon,\epsilon]^c, oldsymbol{\Omega})$
- $ullet \Rightarrow eta_j, oldsymbol{\omega}_j \stackrel{ ext{iid}}{\sim} \pi(deta, doldsymbol{\omega}) \equiv
 u_\epsilon(deta, doldsymbol{\omega})/
 u_\epsilon^+$
- for α -Stable, the approximation leads to double Pareto distributions for β

$$\pi(eta_j) = rac{\epsilon}{2\eta} |eta|^{-lpha-1} \mathbf{1}_{|eta|>rac{\epsilon}{\eta}}$$

Truncated Cauchy Process Prior

Truncated Cauchy

Simulation

Kernels

Comparison of Lévy Adaptive Regression Kernels

Inference via Reversible Jump MCMC

trans-dimensional MCMC

- \bullet number of support points J varies from iteration to iteration
 - add a new point (birth)
 - delete an existing point (death)
 - combine two points (merge)
 - split a point into two
- update existing point(s)

MotorCycle Acceleration

Summary

- more parsimonious than "shrinkage" priors or SVM
- allows for increasing number of support points as n increases
- control MSE *a priori* through choice of ϵ
- no problem with non-normal data, non-negative functions or even discontinuous functions
- credible and prediction intervals
- robust alternative to Gaussian Process Priors
- hard to scale up random scales, locations as dimension of \mathbf{x} increases
- next Prior Approximation II