

Decision Analysis

CS4246/CS5446

Al Planning and Decision Making

Recap: Types of Decision Theory

- Normative decision theory
 - Describes how ideal, rational agents should behave
- Descriptive decision theory
 - Describes how actual agents (humans) really behave
- Prescriptive decision theory
 - Prescribes guidelines for agents to behave rationally

Topics

- The decision analysis framework
 - Formulating decision models
 - Decision networks: Influence diagrams (15.5)
 - Decision trees
 - Analyzing decision networks
 - Sensitivity analysis and robust decision models (15.6.6)
- Information value theory (15.6)
 - Expected value of perfect information (15.6.1-15.6.3)
 - Implementing an information gathering agent (15.6.4)

Value of Information

Information and Decision Making

- Information is gathered to reduce uncertainty in decision making
 - Consult experts
 - Conduct surveys
 - Perform mathematical or statistical analyses
 - Do research
 - Read books, journals, newspapers
 - Learn from past data
- Relevant questions:
 - How to evaluate or measure the "value" or usefulness of the information?
 - What does it mean for a knowledge source to provide perfect information?
 - Shall we invest effort or pay \$X for additional information to help problem solving?

Value of Information

- Costly information gathered to reduce uncertainty
 - How to place value on information in a problem?
 - How to decide whether or not to gather more information?

Main ideas:

- Information has value to the extent that it is likely to cause a change of plan and to the extent that the new plan is significantly better than the old one
- Use conditional probabilities and Bayes' Theorem to model the expected value of information

Example: Stock Investment

An investor may invest in one of three choices:

Payoff

A high-risk stock

A low-risk stock

Investment Decision

• A savings account

Market Activity

Influence diagram

Decision tree

Expected Value of Information

- Expected value of information (EVI)
 - Indicates if information is worth gathering
 - Lower bound: zero expected value
 - Upper bound: expected value of perfect information
- Information has:
 - no value or zero expected value if the same choice will be made before and after obtaining information
 - positive expected value if it leads to a different choice
 - maximum expected value if information is perfect
- EVI is defined in terms of the decision context
 - Different people in different situations may place different values on the same information

Stock Investment Example (cont.)

Should investor consult an expert?

If the expert always provides perfect information:

```
P(Exp says "Up" | Market Up) = 1
P(Exp says "Down" | Market Up) = 0
P(Exp says "Up" | Market Down) = 0
```

To show there is no uncertainty after hearing the expert, apply Bayes' theorem:
 P(Market Up | Exp says "Up")

```
= P(Exp says "Up" | Market Up) P (Market Up)

[P(Exp says "Up" | Market Up)+ P(Exp says "Up" | Market Down)P(Market Down)]
```

- = 1
- Note:
 - The posterior probability is equal to 1 regardless of the prior probability
 - How do real problems differ from the above situation?

Stock Investment Example (cont.)

- The optimal choice is the high-risk stock with EMV \$580
- Assumption: optimistic about market (Up, 0.5 prob)
- How much would the investor be willing to pay for information about the market activity?

Expected Value of Perfect Information

- Max amount that the decision maker is willing to pay for perfect information
- To find expected value of perfect information (EVPI):
 - Modify the decision model to indicate perfect information
 - Solve the model and find the EMV
 - EVPI = EMV (with perfect information) EMV(original)

Stock Investment Example (w/PI)

Modifying Influence Diagram for EVPI

- Impose order on the decision and uncertain event nodes
- The uncertainty nodes for which perfect information is available comes before the decision node

Influence diagram with perfect information

Modifying Decision Tree for EVPI

- Reorder the decision and the uncertain event nodes
- The uncertainty nodes for which perfect information is available comes before the decision node

Expected Value of Perfect Information

- Max amount that the decision maker is willing to pay for perfect information
- To find expected value of perfect information (EVPI):
 - Modify the decision model to indicate perfect information
 - Solve the model and find the EMV (\$1000)
 - EVPI = EMV (with perfect information) EMV(original)
 - = \$1000 \$580 = \$420

(Expected) Value of Perfect Information

Assume exact evidence about variable E_i ; compute value of perfect information (VPI)

• Given expected utility with current best action α :

$$EU(\alpha) = \max_{a} \sum_{s'} P(Result(a) = s')U(s')$$

• Value of the best new action after $E_i = e_i$ is obtained

$$EU\left(\alpha_{e_j}\Big|e_j\right) = \max_{a} \sum_{s'} P(Result(a) = s'\Big|e_j\big)U(s')$$

• Variable E_i can take multiple values e_i , so on averaging:

$$VPI(E_j) = \sum_{e_j} P(E_j = e_j) EU(\alpha_{e_j} | E_j = e_j) - EU(\alpha)$$

Properties of Value of information

• Expected value of information is always non-negative

$$\forall j \ VPI(E_j) \geq 0$$

VPI is not additive

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

VPI is order independent

$$VPI(E_j, E_k) = VPI(E_j) + VPI(E_k|E_j) = VPI(E_k) + VPI(E_j|E_k) = VPI(E_k, E_j)$$

When to Gather More Information?

Source: RN Figure 15.8

Information Gathering, Decision-Theoretic Agent

- Agent should gather information before taking actions, if possible
 - Cost associated with getting the information, so how to choose which variable to get more information about?

Source: RN Figure 15.9

Summary

Decision analysis

- A prescriptive framework for guiding systematic, rational decision making
- Involve formulation of explainable decision models and solutions
- Extensive applications in practice
- Theoretical foundations and methodological bases for AI decision systems decision-theoretic AI

Challenges and opportunities for AI

- Human-machine collaboration in decision making
- Uncertainty modeling with expert judgment and observational data
- Preference modeling in complex, changing and uncertain conditions
- Responsible AI ethical, governance, and regulatory conditions

Homework

Readings:

- RN: 15.6.1-15.6.4 (Value of information)
- Optional:
 - Howard, R.A., <u>Decision Analysis: Practice and Promise</u>. Management Science, 1988. 34(6): p. 679-695. [Accessible through NUS Library e-Resources]

Reviews:

- RN: 13.2-13.5; 14.2-14.4 (Conditional probability and Bayesian networks)
- Charniak, E., Bayesian networks without tears: making Bayesian networks more accessible to the probabilistically unsophisticated. Al Mag., 1991. 12(4): p. 50–63.