Class 11: The zero variant

1 Paradigm gaps

I've discovered that I'm lactose-intolerant. Sadly, from now on, I'll have to forgo dairy. This afternoon I ______ the ice cream I normally would have relished on such a hot day.

- The funny thing is that speakers know exactly what the options are and can produce them—forgoed, forwent—but they just feel icky about both options.
- The most famous and surprising paradigm gaps involve productive inflectional morphology:
 - 'He abolishes' in Spanish: *abuele, *abole (see Albright, Hayes & Andrade 2001)
 - 'I win' in Russian: *pobežu (see Daland, Sims & Pierrehumbert 2007)
 - 'We fry' in French: *nous frions, *nous fritons, *nous frisons (Baronian 2009)

2 Overview of today

- Variable, phonologically driven paradigm gaps in derivational morphology.
- One way of modeling these: having the grammar assign absolute goodness scores
- A case study or two
- Where else might we want goodness scores?

3 A well-known English allomorphy: -ar vs. -al

- -ar is supposed to be the allomorph that occurs when the stem's last liquid is /l/
 - accident-al vs. consul-ar (Raffelsiefen 1999)
- Counts from CELEX (XXref) English lemma list, Noun+ $al/ar \rightarrow Adj$ only

ν , υ		
all nouns ¹	-al suffixed	-ar suffixed
4499	113 (2.5%)	0
381	115	0
474	25	0
496	10	0
23	3	0
3	0	0
11	0	0
3	0	0
1	0	0
1392	153 (11.0%)	0
2599	24	12
107	0	2
678	3	3
15	0	0
2	0	0
11	0	0
1	0	0
3413	27 (0.8%)	17 (0.5%)
	all nouns 4499 381 474 496 23 3 11 3 11 3 1392 2599 107 678 15 2 11	all nouns -al suffixed 4499 113 (2.5%) 381 115 474 25 496 10 23 3 3 0 11 0 3 0 1392 153 (11.0%) 2599 24 107 0 678 3 15 0 2 0 11 0 1 0

Counts too big for Fisher's Exact Test.
Chi-square test (2x2: last liquid=l or no, takes suffix or no)gives p < 0.00001

 \Rightarrow if no liquid, or last liquid is [r], use -al. If last liquid is [1], variation.

1

¹ Nouns with no hyphen or space, not tagged as affixed or compound.

- But also: nouns whose last liquid is [1] are less likely to take this suffix at all!
- We could say that -al/-ar has a <u>partial paradigm gap</u> for these stems.
- This looks like a gradient version of a starker gap noted (non-quantitatively) by Raffelsiefen 1999.
- The -al that forms nouns from verbs has only one allomorph. If there's an *L...L issue, the word is simply unutterable:
 - deny, deni-al vs. rely, *reli-al, *reli-ar

verb stem has	all verbs ²	-al suffixed
no liquid	506	10 (2.0%)
just [r]	483	22
[rr]	73	4
[lr]	44	0
[rlr]	1	0
[rrr]	3	0
total	604	26 (4.3%)
just [l]	318	0
[11]	6	0
[rl]	69	0
total	393	0 (0%)

Chi-square test (2x2): *p*=0.0004

4 One way to model variable gaps: absolute rather than relative well-formedness

(Bruce will discuss another way Thursday—competition with the null parse)

• <u>Schematically</u>: typical MaxEnt says these tableaux are the same—50-50 variation:

input1	Constraint1 weight=1	CONSTRAINT2 weight=1	harmony	probability
output1a	*		e ⁻¹	0.5
output1b		*	e ⁻¹	0.5

input2	Constraint1 weight=1	CONSTRAINT2 weight=1	harmony	probability
output2a	**		e^{-2}	0.5
output2b		**	e ⁻²	0.5

- But in absolute terms, *output1a* is better than *output2a*.
- So what if we try to model utterability as a function of <u>harmony</u> (not of relative harmony, i.e. probability)?
 - Coetzee & Pater 2005 propose this, but using Harmonic Grammar (so no exponentiation)
- This allows us to capture the difference between two good options and two bad options.

_

² Nouns with no hyphen or space, not tagged as affixed or compound.

Application to adjectival -al/-ar

• I don't know what the function from harmony to observed probability should look like, but suppose we want it to be linear. Then, these weights work pretty well:

gloam+{al,ar}	*LL w=2.635	*RR w=2	*LONELIQUID w=1.465	Prefer-al w=3.1	harmony	observed probability
gloamal	*				0.072	27/3413 = 8%
gloamar				*	0.045	17/3413 = 5%

stobe+{al,ar}	*LL w=2.635	*RR w=2	*LONELIQUID w=1.465	PREFER-AL w=3.1	harmony	observed probability
stobal			*		0.231	113/4499 = 3%
stobar			*	*	0.010	0/4499 = 0%

criff+{al,ar}	*LL w=2.635	*RR w=2	*LONELIQUID w=1.465	PREFER-AL w=3.1	harmony	observed probability
criffal					1.000	153/1392 = 11%
criffar		*		*	0.006	0/1392 = 0%

- The idea of absolute well-formedness is well-established in phonotactics.
 - It's not a question of what the best output for /smin/ is, but rather how good that output is.
 - See Frisch, Pierrehumbert & Broe 2004, Coetzee & Pater 2005; Daland et al. 2011 for overview and empirical comparison.

5 How big should the tableau be? How specific is the input?

• Smallest tableau

hobby-horse + {-al, -ar}	*LL	*RR	*LoneLiquid	Prefer-al
hobby-horsal				
hobby-horsar		*		*

• A little broader

hobby-horse + {-al, -ar, -ical}	*LL	*RR	*LONELIQUID	PREFER-AL	ENDDACTYL?
hobby-horsal					*
hobby-horsar		*		*	*
hobby-horsical ³				*	

• Broad

hobby-horse → <i>adjective</i>	*LL	*RR	•••
hobby-horsal			
hobby-horsar		*	
hobby-horsical			
hobby-horsic			
hobby-horsy			
hobby-horsish			
hobby-horsian			
hobby-horsoid			
hobby-horsesque			

• Really broad

express the idea of 'related to a pet topic'	
hobby-horsal	
hobby-horsical	
hobby-horsian	
characteristic of a hobby-horse	
pet-topic-related	
having to do with his favorite subject	
or even just behave suitably:	
you know how he always likes to talk about fortifications and stuff	
How about this weather we're having?	
[get up to refill guest's glass]	

• If we assign each candidate a goodness score, it doesn't matter if they're in the same tableau or different tableaux.

³ Lawrence Sterne's choice in *Tristram Shandy*.

6 Some more trends in Raffelsiefen 1996, Raffelsiefen 1999

Raffelsiefen is careful to point out: English borrowed many words already containing these suffixes, which can violate generalizations below—generalizations apply only to new coinages.

• -ize doesn't like to attach to after a stressed syllable (1996 p. 194)

síster-ìze *obscéne-ize sálmon-ìze *ápt-ize

• *-eer* also doesn't like to attach after a stressed syllable (1996 p. 207, 1998 p. 231)

mùffin-éer *baguètt-éer (though this could be an issue with /t/--uncirculated

talk by Albright)

jàrgon-éer *strìke-éer càmel-éer *giràff-éer pìgeon-éer *dòve-éer

but -ee is fine with it:

assìgn-ée appòint-ée

• -ize and -ee don't like to attach after [i] (1996 p. 202)

*sílly-ìze *mónkey-ìze

rèscue-ée *càrry-ée

except where deletion is allowed: mémor-ìze (< mémory) apóstroph-ìze (< apóstrophe)

• -ee doesn't like to attach after any vowel (1998 p. 246)

mùsket-éer *bazòoka-éer

• -ese doesn't like to attach after any V, but can delete a V or insert a C (1998 p. 246)

Chìn-ése (< Chína) Jàvan-ése (< Jáva) Bàlin-ése (< Báli)

• -ize also doesn't like to attach after Obstruent_iRimeObstruent_i (1996 p. 200)

*crísis-ìze
*thésis-ìze
cótton-ìze
vígor-ìze
*hórror-ìze
Stálin-ìze
líquid-ìze
*cándid-ìze

except where it can delete to solve the problem:
émphas-ìze (< émphasis)
óptim-ìze (<óptimum)
fémin-ìze (<féminine—cf. másculin-ìze, not *máscul-ìze)
áppet-ìze (<áppetite)

similarly (1998, p. 243):
trepíd-ity *candíd-ity
lámb-ify *béef-ify

• -ish doesn't like to attach right after a postalveolar (1998 p. 241)

shéep-ish *físh-ish cánnibal-ish *rúbbish-ish

• similarly... (1998 pp. 241-243)

flávor-ous *bías-ous
pìstol-éer *revòlver-éer
kìtchen-étte *clòset-étte
shórt-age *lárge-age
vást-ity *fáint-ity

• The *-en* that forms V from A requires a monosyllable ending in an obstruent wéak-en *vívid-en *wárm-en

doesn't apply to other –ens: wool-en $(N \rightarrow A)$ fall-en (past participle)

7 A case to model: the choice of -y, -ly, -ish, -ful

- I extracted the ~11.000 noun lemmas from CELEX
- About 700 of them take at least one of these suffixes
- I threw in some plausible constraints:

*MONOSYLLABLE+Y	*MONO+LY	*MONO+LIKE	MONO+ISH	*MONO+FUL
*STRESSED+Y	*STRESSED+LY	*STRESSED+LIKE	*STRESSED+ISH	*STRESSED+FUL
*UNSTRESSED+Y	*UNSTR+LY	*UNSTR+LIKE	*UNSTR+ISH	*UNSTR+FUL
*V+Y	*C+LY	*C+LIKE	*V+ISH	*C+FUL
*[i]+Y	*[1]+LY	*[1]+LIKE	*[i]+ISH	*[f]+FUL
	*[1]+LY	*[1]+LIKE	*[∫]+ISH	*[f]+FUL
			*[∫]+ISH	
			*POSTALV+ISH	
			*POSTALV+ISH	

• Fitting a MaxEnt model (with just one input, "dummy input") and all noun-suffix combinations as outputs (some with freq. 0, others with freq. 1), was taking too long.

Estimate Std. Error z value Pr(>|z|)

- So, I went with logistic regression. Dependent variable is attestedness.
 - This means some of the constraints can actually bestow bonus points rather than penalties.

Result:

			Sta. Ellor			
F 1 60' 4 '4	(Intercept: ful)	-4.345519	1.008568		1.64e-05	* * *
Each suffix gets its	suffix=ish	0.385621		0.283		
own baseline	suffix=like	-0.448268		-0.312	0.75496	
productivity	suffix=ly	-0.631347		-0.458	0.64663	
producting	suffix=y	2.361594	1.603819	1.472	0.14089	
1 1	ymono	-4.978219	1.120391	-4.443	8.86e-06	***
-y hates attaching to	yfinal_stress	2.511399	1.649652	1.522	0.12791	
monosyllables, Vs,	yfinal_stressless	-0.003126	1.460663	-0.002	0.99829	
and especially [i]		-0.830426	0.308917	-2.688	0.00718	* *
: op - : : : : : : : : : : : : : : : : : :	i_y	-3.530299	1.533468	-2.302	0.02133	*
	lymono	-0.638485	0.495280	-1.289	0.19735	
-ly is pretty easy-	lyfinal_stress	-0.346992	1.247249	-0.278	0.78085	
going; prefers to attach	lyfinal_stressless	-0.234919	1.223998	-0.192	0.84780	
to C rather than V	C_ly	0.849465	0.412582	2.059	0.03950	*
to C father than v	1_1y	-1.064240	0.855053	-1.245	0.21326	
	l_dot_dot_ly	-0.502848	0.337780	-1.489	0.13657	
	likemono	-2.464277	1.240523	-1.986	0.04698	*
-like is also pretty	likefinal_stress	0.035957		0.024	0.98054	
easy-going; doesn't	likefinal_stressless		1.327181	-0.353	0.72408	
like attaching to	C_like	0.087791	0.590673	0.149	0.88185	
monosyllables,	_ l_like	-0.730362	0.891083	-0.820	0.41243	
monosynables,	_ l_dot_dot_dot_like	0.266909	0.460607	0.579	0.56227	
	ishmono	-2.381054	0.766904	-3.105	0.00190	**
-ish also doesn't like	ishfinal_stress	0.141440	1.306048	0.108	0.91376	
attaching to	ishfinal_stressless	0.226993	1.236040	0.184	0.85429	
monosyllables.	sh_ish	-0.396604		-0.202	0.83980	
	 postalv_ish	-2.371327	1.521538	-1.559	0.11911	
Surprisingly, OCP	sh_dot_dot_ish	1.207102		1.130	0.25839	
effects aren't	postalv_dot_dot_ish	-1.369953	1.006718	-1.361	0.17357	
significant.	V_ish	-1.174535	0.742487	-1.582	0.11367	
	i_ish	0.326065	0.931847	0.350	0.72640	
C 1: :	ful mono	0.080480	0.273154	0.295	0.76828	
-ful is easygoing	fulfinal_stress	-1.805414	1.045057	-1.728	0.08406	
	fulfinal_stressless	0.665338	1.017251	0.654	0.51308	-
	C_ful	-0.209413	0.298990	-0.700	0.48368	
	f_ful	-2.139546	1.454674	-1.471	0.14134	
	f_dot_dot_ful	0.195713	0.351844	0.556	0.57804	

8 What would this look like in language use?

- Imagine the regression model as a MaxEnt grammar instead (i.e., with suitable adjustments to avoid negative weights)
- You want to make *cash* into an adjective.
- A suffix comes to mind, such as -ish
- You run it through the grammar, and see how good the winner sounds.

	probability under log. reg. model above
cash-y	0.1206
cash-ly	0.0067
cash-like	0.0056
cash-ish	0.0013
cash-ful	0.0200

- If not good enough, derivation crashes and you try again.
 - See Orgun & Sprouse 1999 for the idea of CONTROL, a component that checks the output of the normal Gen-Eval process; if it violates certain constraints, derivation crashes.
- If nothing acceptable comes to mind in time, you paraphrase, hesitate, or change the subject.
 - E.g., Martin's Turkish case that we discussed earlier: if a compound isn't good enough to be a "lexical compound", you can make it an izafet compound instead.

9 What would this look like over generations? Martin 2007 in a nutshell

• Uncontroversial assumption: language production involves *competition*

- Competitors get an edge from...
 - phonological goodness (being connected to phonological structures with high resting activation)
 - phonological typicality (ditto)
 - frequency (high resting activation) ← self-reinforcing over the generations

- If speakers ("agents") communicate, given certain assumptions they'll tend to converge on just one term per meaning (fish-y) but not always (man-ly, man-ful):
 - (12) Set of cooperative agents ($\beta > \alpha$): agents come to agree on a single word

 β and α are parameters in Martin's model that determine relative importance of one's own utterances to others'.

(p. 25)

- Phonological-goodness example: Latin, countertypologically, had more d than b.
 - The Romance languages fixed this, in part by preferentially retaining b-words (largely not the same ones, except in Spanish-vs-Portuguese!)

(p. 59)

• But more than that, in French case study, b-words spawned far more derivatives:

			/b/-initial words	/d/-initial words
(a)	inherited from Latin	B≈D	14	15
(b)	re-borrowed from Latin	D > B	31	77
(c)	borrowed from another language	B > D	64	31
(d)	derived from existing French word	B > D	212	77

(p. 62)

- Another good one: liquids in English.
 - Martin shows that...
 - In the English lexicon overall, if a word has two liquids, they're more likely to be l...r or r...l than l...l or r...r.
 - In Old English, about 35% of words with two liquids have identical liquids, compared to ~55% expected by chance.
 - In Middle English, it's about 25% (expect ~50%)
 - Today, it's about 25% (expect ~50%)
 - Even though current English retains only ~10-15% of the Old English vocabulary!
 - English gained and lost many, many words, but always tended to respect the constraint against l...l or r...r.

- Martin also uses the Oxford English Dictionary, which gives dates of earliest attested use for each word, to look at words newly entering the language.
 - In every decade, new words avoid identical liquids:

• Phonological-typicality example (maybe): increasingly, Americans agree on which sound their baby's name should begin with:

Other places where phonological goodness can play a role in a competition

10 Imperfect puns

- Zwicky & Zwicky 1986 (with fronds like these, who needs anemones), Fleischhacker 2006, Kawahara 2010
- E.g., in Japanese, puns don't have to be identical, but the more similar they are, the more likely they are to be attested

Arumikan-no ue-ni aru mikan
Aizu-san-no aisu

'An orange on an aluminum can.'
'Ice cream from Aizu' (Kawahara)

- Various interesting implications for what counts as similar, how similarity is calculated
- The competition is at the levels of deciding whether to make the pun, deciding whether to repeat a pun you've heard

11 Imperfect rhyme (e.g., Steriade 2003, Kawahara 2007)

• Although rhymes don't have to be perfect, closer is better

Kettobase <u>kettobase</u>; kettobashita kashi de <u>gettomanee</u>
'Kick it, kick it; with funky lyrics, get money' (Kawahara)

12 Metrical properties of verse

- Hayes 2009 takes on, among other issues, the problem of the "missing remedy"—attempted line derivations that simply crash:
 - As Halle & Keyser pointed out, the following isn't a line of iambic pentameter, and it's not clear how to fix it to make it one:

Ode to the West Wind by Percy Bysshe Shelley

- Hayes proposes that a line will simply fail to be usable if the outputs of the phonological grammar matches the output of the metrical grammar (which will attempt crazy repairs if forced to).
- In humorous verse you sometimes see what looks like the output of the metrical or rhyming grammar, despite its unacceptable faithfulness violations:

Gast[õ] y a l'téléf[õ] qui s[õ], et y a jamais pers[õ] qui y rép[õ] (Nino Ferrer) The bold ones should be [ɔn], but are unfaithful in order to rhyme

13 Naming

- Which names people choose for babies (as we saw), fantasy role-playing characters, and pharmaceuticals (Martin 2007)
- Which first-name/last-name combinations people choose (Shih 2012)

14 Blends

- There's isn't a machine you can just plug any two words into.
 - $breakfast + lunch \rightarrow lunch$ is fine
 - but breakfast + reception \rightarrow ??breception ??breakception ??recepfast crashes, I think
- Ahn 2011 example from Korean
 - kunde 'army' + lotteria 'Lotteria [fast-food chain]' → kunderia 'army mess hall'
 - As Ahn points out, Lotteria seems to have been chosen (rather than MacDonald's or whatever) because it produces a good blend.

• A French example

TTTTCITCIT CALCAL	-r	
	France	Quebec
tweet	le tweet	le gazouillis
		le tweet
to tweet	teeter	gazouiller
		tweeter
tweeter,	tweeteur(e)	gazouilleur/se
twitterer		tweeteur(e)
twitterature	twittérature	*gazouillature
	(twitter + littérature)	twittérature

15 Next time

• A model that might be easier to work with: competition with the null parse

References

Ahn, Suzy. 2011. Master's thesis. Seoul National University master's thesis.

Albright, Adam, Bruce Hayes & Argelia Andrade. 2001. Segmental Environments of Spanish Diphthongization. UCLA Working Papers in Linguistics 7 (Papers in Phonology 5). 117–151.

Baronian, Luc. 2009. Une analyse de verbes d´ efectifs sans sp´ ecification lexicale. In Luc Baronian & F Martineau (eds.), *Le franc* □ *ais d'un continent* ` *a l'autre*, 29–48. Qu´ ebec: Presses de l'Universit´ e Laval.

Coetzee, Andries & Joe Pater. 2005. *Gradient phonotactics in Muna and Optimality Theory*. University of Michigan and University of Massachusetts.

Coetzee, Andries W & Joe Pater. 2007. Weighted constraints and gradient phonotactics in Muna and Arabic.

Daland, Robert, Bruce Hayes, James White, Marc Garellek, Andrea Davis & Ingrid Norrmann. 2011. Explaining sonority projection effects. *Phonology* 28(02). 197–234. doi:10.1017/S0952675711000145.

- Daland, Robert, Andrea D Sims & Janet Pierrehumbert. 2007. Much ado about nothing: a social network model of Russian paradigmatic gaps. *Proceedings of the 45th annual meeting of the Association of Computational Linguistics*, 936–943. Prague: Association for Computational Linguistics.
- Fleischhacker, Heidi. 2006. Similarity in phonology: evidence from reduplication and loan adaptation. UCLA Ph.D. dissertation.
- Frisch, Stefan A, Janet B Pierrehumbert & Michael B Broe. 2004. Similarity Avoidance and the OCP. *Natural Language & Linguistic Theory* 22(1). 179–228.
- Hayes, Bruce. 2009. Faithfulness and componentiality in metrics. In Sharon Inkelas & Kristin Hanson (eds.), *The nature of the word*, 113–148. Cambridge, MA: MIT Press.
- Kawahara, Shigeto. 2007. Half rhymes in Japanese rap lyrics and knowledge of similarity. *Journal of East Asian Linguistics* 16(2). 113–144. doi:10.1007/s10831-007-9009-1 (14 February, 2012).
- Kawahara, Shigeto. 2010. Papers on Japanese imperfect puns.
- Martin, Andrew. 2004. The effects of distance on lexical bias: sibilant harmony in Navajo compounds. UCLA master's thesis.
- Martin, Andrew. 2007. The evolving lexicon. University of California, Los Angeles Ph.D. Dissertation.
- Martin, Andrew. 2011. Grammars leak: modeling how phonotactic generalizations interact within the grammar. *Language* 87(4). 751–770.
- Orgun, Cemil Orhan & Ronald L Sprouse. 1999. From "MParse" to "Control": Deriving Ungrammaticality. *Phonology* 16(2). 191–224.
- Raffelsiefen, Renate. 1996. Gaps in word formation. In Ursula Kleinhenz (ed.), *Interfaces in phonology*, 194–209. Berlin: Akademie Verlag.
- Raffelsiefen, Renate. 1999. Phonological constraints on English word formation. In Geert E Booij & Jaap van Marle (eds.), *Yearbook of Morphology 1998*, 225–287. (Yearbook of Morphology 8). Springer.
- Raffelsiefen, Renate. 2004. Absolute ill-formedness and other morphophonological effects. *Phonology* 21(1). 91–142.
- Shih, Stephanie. 2012. Linguistic determinants in English personal name choice. Presentation. Paper presented at the LSA annual meeting, Portland, OR.
- Steriade, Donca. 2003. Knowledge of perceptual similarity and its uses: evidence from half-rhymes. In M.J. Solé, D Recasens & J Romero (eds.), *Proceedings of the 15th International Congress of Phonetic Sciences*, 363–366. Barcelona: Futurgraphic.
- Zwicky, Arnold M & Elizabeth D Zwicky. 1986. Imperfect puns, markedness, and phonological similarity: with fronds like these, who needs an emones? *Folia Linguistica* 20(3-4). 493–544.