$$h(x) = \frac{1}{x+2}$$

$$f(x) = \frac{x^2 + 1}{x - 3}$$

2. METODY V PATOLOGII: MAKROSKOPIE (PITVA, PITEVNÍ PROTOKOL), MIKROSKOPIE SVĚTELNÁ A ELEKTRONOVÁ:

- metody v patologii:
 - a) makroskopie a mikroskopie
 - b) biopsie a nekropsie

1) PITVA:

- nutno předem prostudovat klinickou dokumentaci (anamnéza, průběh choroby, klinická vyšetření, klinická hodnocení stavu, příčina úmrtí)
- pitva začíná eviscerací (= odstranění, vyjmutí vnitřních orgánů)
- v průběhu vlastní pitvy orgánů patolog hodnotí změny orgánů, popř. odebírá vzorky pro mikroskopii, mikrobiologii nebo pořízuje fotodokumentaci
- výsledek pitvy srovná s klinickými údaji a sestaví pitevní protokol, který se skládá:
 - 1) popis pitvy a makroskopických změn
 - 2) popis histologického nálezu
 - 3) výsledky mikrobiologie
 - 4) epikríza = stručné zhodnocení pityy
 - základní onemocnění charakteristika hlavní choroby, která často souvisí s příčinou smrti
 - komplikace nejdůležitější část, více rozvedeno
 - příčina smrti
 - vedlejší nález změny nalezené při pitvě, které ale nemají souvislost ani se základním onemocněním ani s příčinou smrti
 - 5) korelace pitevního a klinického nálezu = stupeň shody mezi klinickým a pitevním nálezem ve stupnici 1: 1-4 (1 = plná shoda, 4 = výrazná neshoda, např. AIM a perforovaný žaludeční vřed)

2) SVĚTELNÁ MIKROSKOPIE:

- nejběžnější a nejvyužívanější technika
- nachystaný preparát může přežívat i několik let
- rozlišovací schopnost 0,1 0,2 μm
- světelný mikroskop
 - skládá se z částí mechanické, osvětlovací a optiky
 - objektívy mohou být suché a imerzní

3) ELEKTRONOVÁ MIKROSKOPIE:

- dnes nezbytné např. v nefropatologii a patologii metabolických onemocnění
- zobrazení tkání ve velmi vysokých rozlišeních, ale objem vyšetřené tkáně je velmi malý (vyšetřujeme tedy jen homologní tkáně)
- tkáně určujeme dle intracelulárních organel nebo depozit (např. hormonálně aktivní tkáně určujeme dle velikosti vakuol skladujících příslušný hormon nebo prekurzor)
- v dnešní době částečně vytlačeno aplikací specifických protilátek

- rozdíly oproti světelné mikroskopii:
 - fixace glutaraldchydem
 - · zalévání do pryskyřice
 - řezy 70 100 nm
 - kovová síťka jako podložka
- typy elektronových míkroskopů:
 - 1, PROZAŘOVACÍ = TRANSMISNÍ (TRAM)
 - rozlišovací schopnost 0,3 0,2 nm
 - vakuum
 - obraz vytvoří elektronový paprsek, obraz se pozoruje nepřímo projekcí na fluorescenční stínítko
 - 2. RASTROVACÍ = ŘÁDKOVÝ (SEM)
 - rozlišovací schopnost 10 20 nm
 - elektronový svazek fádkuje po povrchu preparátu, elektrony jsou
 částečně odráženy a částečně dochází k sekundární emisi → elektrony
 dopadají na scintilátor, kde vybudí světelně impulzy → fotonásobič