mail: ibotca52@gmail.com

COLLE 4 = SUITES NUMÉRIQUES

Questions de cours:

Soient $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ deux suites réelles et $l_1,l_2\in\mathbb{R}$.

- 1. (a) Montrer que si les suites $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ sont bornées alors les suites $(U_n+V_N)_{n\in\mathbb{N}}$ et $(U_n\times V_N)_{n\in\mathbb{N}}$ sont bornées.
 - (b) Donner deux suites $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ bornées telle que la suite $\left(\frac{U_n}{V_n}\right)_{n\in\mathbb{N}}$ soit définie et non bornée.
- 2. Montrer que si une suite est convergente alors sa limite est unique.
- 3. Montrer que toute suite convergente à valeur dans $\mathbb Z$ est stationnaire.
- 4. On suppose que $\lim_{n\to +\infty}(U_n)=l_1$ et $\lim_{n\to +\infty}(V_n)=l_2$
 - (a) Montrer que $\lim_{n\to+\infty} (U_n + V_n) = l_1 + l_2$
 - (b) Montrer que $\lim_{n\to+\infty}(U_n\times V_n)=l_1\times l_2$
- 5. Démontrer que pour tout $\alpha>0$ on a : $\lim_{n\to+\infty}(n^{-\alpha})=0$
- 6. Rappeler le théorème de Cesàro

Suites numériques :

Exercice 1.

Pour tout $n \in \mathbb{N}$, on pose :

$$a_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$$

(Intégrale de Wallis)

- 1. Calculer a_0 et a_1 puis montrer que pour tout $n \in \mathbb{N} : a_n > 0$
- 2. Montrer que pour tout $n \in \mathbb{N}$: $a_{n+2} = \frac{n+1}{n+2}a_n$
- 3. En déduire que pour tout $n \in \mathbb{N}$

$$a_{2n} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$

$$a_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}$$

Exercice 2.

Pour tout vecteur du plan fixé $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$, on considère la suite définie par récurrence :

$$\left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right) \,=\, \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x_n \\ y_n \end{array}\right)$$

- 1. En partant de $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, représenter les 8 premiers termes de la suite.
- 2. Cette suite est elle convergente?

Exercice 3.

Soit $(u_n)_{n\geq 1}$ une suite réelle. On pose $S_n=\frac{\sum_{k=1}^n u_k}{n}$

- 1. On suppose que $(u_n)_{n\geq 1}$ converge vers 0. Soient $\epsilon>0$ et $n_0\in\mathbb{N}$ tel que, pour tout $n\geq n_0$, on a $|u_n|\leq \epsilon$.
 - (a) Montrer qu'il existe une constante M telle que, pour $n \ge n_0$, on a

$$|S_n| \le \frac{M(n_0 - 1)}{n} + \epsilon$$

- (b) En déduire que (S_n) converge vers 0.
- 2. On suppose que $u_n = (-1)^n$. Que dire de (Sn)? Qu'en déduisez-vous?
- 3. On suppose que (u_n) converge vers l. Montrer que (S_n) converge vers l.
- 4. On suppose que (u_n) tend vers $+\infty$. Montrer que (S_n) tend vers $+\infty$

Exercice 4.

Calculer en fonction de n le terme général des la suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

1. $u_0 = 1$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 3u_n^2$$

2. $v_0=1, v_1=2$ et pour tout $n\in\mathbb{N}$:

$$v_{n+2} = \frac{v_{n+1}^3}{v_n^4}$$

Exercice 5.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à termes réels strictement positifs telle que $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ converge vers un réel $l\in\mathbb{R}^+$.

1. On suppose l < 1 et on fixe $\epsilon > 0$ tel que $l + \epsilon < 1$.

(a) Démontrer qu'il existe un entier $n_0 \in \mathbb{N}$ tel que, pour $n \geq n_0$, on a

$$u_n \le \left(l + \epsilon\right)^{n - n_0} u_{n_0}$$

(b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.

2. On suppose l > 1. Démontrer que (u_n) diverge vers $+\infty$.

3. Étudier le cas l=1 (Indication : étudier les suites $(n^{\alpha})_{n\in\mathbb{N}^*}$)

Exercice 6.

Soient (u_n) et (v_n) deux suites réelles convergeant respectivement vers u et v. Montrer que la suite $w_n = \frac{u_0v_n + \ldots + u_nv_0}{n+1} \text{ converge vers } uv.$

(Indication : on coupera ici la somme en 3 en isolant les bords)

Exercice 7.

Soit (u_n) une suite de réels positifs vérifiant

$$u_n \le \frac{1}{k} + \frac{k}{n}$$

pour tous $(k, n) \in (\mathbb{N}^*)^2$. Démontrer que (u_n) tend vers 0.

Exercice 8.

Démontrer que

- 1. $\ln(n+e^n) \sim_{+\infty} n$
- 2. $b^n a^n \sim_{+\infty} a^n + b^n$, 0 < a < b
- 3. $4\ln(1+\sqrt{n}) \sim_{+\infty} \ln(1+n^2)$

Exercice 9.

Montrer que

$$\sum_{k=1}^{n-1} k! =_{+\infty} o(n!)$$

En déduire que

$$\sum_{k=1}^{n} k! \sim_{+\infty} n!$$