On considère un robot ur10 équipé d'une ventouse, tel que représenté ci-dessous, ainsi que son tableau de Denavit-Hartenberg (l'origine O₀ est à l'intersection du sol et de l'axe z₀ de l'articulation de base)

- Tableau de Denavit-Hartenberg (d6 est choisi pour que O_6 soit l'extrémité de la ventouse)

	Θ_i	a_i	d_i	α_i
0->1	$q_1\!=\!\theta_1^*$	0	d1=0.128m	90°
1->2	$q_2 = \theta_2^*$	a2=0.612m	0	0
2->3	$q_3 = \theta_3^*$	a3=0.5722m	0	0
3->4	$q_4=\theta_4^*$	0	d4=0.1639m	90°
4->5	$q_5 = \theta_5^*$	0	d5=0.1157m	-90°
5->6	$q_6=\theta_6^*$	0	d6=0.1047m	0

1. Partie calcul symbolique

Ouvrir le Fichier *ur10SymbolicEtudiant.m*, et le compléter en programmant les réponses aux questions ci-après

1.1. Modèle Géométrique Direct (MGD)

Les matrices ${}^{0}T_{1}$ à ${}^{5}T_{6}$ du modèle géométrique direct sont déjà calculées dans la partie 1.1 du programme.

- \square Compléter cette partie en calculant les matrices ${}^0T_2, \cdots, {}^0T_6$ et leurs inverses La configuration *Robot au repos* correspond aux valeurs angulaires $\left|q_1=90\,^\circ, q_2=90\,^\circ, q_3=0\,^\circ, q_4=90\,^\circ, q_5=0\,^\circ\right|$.
- □ Analyser les matrices ${}^{0}T_{1}$, \cdots , ${}^{0}T_{6}$ correspondantes, et en déduire une représentation graphique des axes x_{i} , z_{i} et origines o_{i} des repères 0 à 6 dans ce cas. Si vous êtes plus doués que le prof en dessin technique, ce qui ne devrait pas poser de problèmes, vous pouvez également représenter les constantes :d1 a2 a3 d4 d5 d6.

1.2. Modèle cinématique direct, (MCD) calcul des jacobiennes en position

 \square Déterminer les jacobiennes en position ${}^0J_{P1},\cdots,{}^0J_{P6}$, de points P1...P6, respectivement liés aux repères

1 à 6. et générer les fonctions matlab *clcJ0P1* , *clcJ0P6* correspondantes.

1.3. Modèle cinématique direct, (MCD) calcul des jacobiennes en orientation

- \Box Déterminer les jacobiennes en orientation ${}^0J_{u1}, \cdots, {}^0J_{u6}$ des repères 1...6 par rapport au repère 0, de 2 façons différentes
- 1- Directement depuis 0 , T_{1} , 0 , T_{6} , en n'émettant aucune hypothèse sur la façon dont on a obtenu cette matrice depuis les degrés de liberté q_{i} (on générera également la fct Matlab correspondante clcJ0ui)
- 2- En employant le fait que l'on a employé le formalisme de Denavit-Hartenberg pour décrire les changements de repère.(on générera la fct Matlab correspondante *clcJ0ui_dh*)

2. partie numérique : Modèle cinématique direct (MCD)

2.1. Vérification numérique du MCD

☐ Ouvrir le fichier *ur10NumericEtudiant.m*, et vérifier numériquement la correspondance entre les 2 expressions des jacobiennes en orientation , pour la configuration proposée du robot

2.2. MCD en position(facile)

 \Box Vérifier que pour de petites variations articulaires dq, les petites variations des coordonnées de l'extrémité du robot dans le repère 0 correspondent bien à ce qui est prédit par la matrice Jacobienne.

2.3. MCD en orientation(pas facile)

Pourquoi est-ce plus difficile qu'avec les positions ?

Parce que, contrairement à ce que l'on pourrait croire : la rotation de vecteur angle-axe ${}^0\delta u$ ne permet pas de passer de l'orientation ${}^0u_{6init}$ à l'orientation ${}^0u_{6final} = {}^0u_{6init} + {}^0\delta u$...

Détermination de ${}^0u_{6final} = f({}^0u_{6init}, {}^0\delta u) \neq {}^0u_{6init} + {}^0\delta u$. Soient ${}^0\delta u$: le vecteur angle axe correspondant à la variation δq des positions articulaires. 0R : la matrice de rotation correspondante (exprimée dans le repère 0, tout comme ${}^0\delta u$) ${}^0u_{6final}, {}^0u_{6init}$: les orientations du repère 6 par rapport au repère 0, après et avant avoir appliqué la rotation 0R on a alors: ${}^0R_{6final} = {}^0R. {}^0R_{6init}$ (0R est appliquée à gauche, car elle est exprimée dans le repère 0) le vecteur angle axe ${}^0u_{6final}$ peut alors être déduit de l'expression de ${}^0R_{6final}$ { pour les formules permettant de passer de R à u et réciproquement : fonctions get_u , get_v voir Tr Homogene 4.2 slide 38 } (Une méthode alternative correspond à utiliser les quaternions d'orientation ...)

 \Box Vérifier <u>en appliquant cette méthode</u> que pour de petites variations articulaires dq, les petites variations des l'orientation de l'extrémité du robot dans le repère 0 correspondent bien à ce qui est prédit par la matrice Jacobienne.

3. Partie numérique : Modèle cinématique inverse (MCI)

Le principe de génération de trajectoires articulaires q, depuis les jacobiennes J(q) et les trajectoires

opérationnelles, consiste à effectuer une série de petits déplacements pour lesquels on emploie les approximations du premier ordre suivantes :

$$\underbrace{{}^{0}O_{6}(q+\delta q)}_{\text{point vis\'e}} - \underbrace{{}^{0}O_{06}(q)}_{\text{point actuel}} \approx \underbrace{J_{0O6}(q)}_{\text{jacobienne connue}} \cdot \underbrace{\delta_{q}}_{\text{a déterminer}}$$

$${}^0\delta u_6(\delta q) {pprox} \underbrace{J_{0\,U\,6}(q)}_{
m jacobienne\ connue}$$
 . $\underbrace{\delta_q}_{
m a\ déterminer}$

l'objectif est de déterminer une succession de petits déplacement articulaires δq_k permettant de parcourir le

chemin entre les points de départ et d'arrivée : $P_{dep} = \begin{bmatrix} {}^{0}O_{6dep} \\ {}^{0}U_{6dep} \end{bmatrix}$, $P_{arr} = \begin{bmatrix} {}^{0}O_{6arr} \\ {}^{0}U_{6arr} \end{bmatrix}$

3.1. petits déplacements en position

- \square En employant l'approximation du premier ordre correspondante, déterminer δ_q pour que l'extrémité du robot se déplace de +0,01m colinéairement à $\vec{x_0}$, partant de sa configuration initiale
- □ Calculer la norme de l'erreur entre les coordonnées obtenues et désirées

3.2. petits déplacements en orientation

- \Box En employant l'approximation du premier ordre correspondante, déterminer δ_a pour que le repère lié à l'extrémité du robot tourne de $\pm 0,01$ rad, autour de \vec{x}_0 , partant de sa configuration initiale
- □ Calculer la norme de l'erreur angulaire entre les orientations obtenue et désirée

3.3. petits déplacements simultanés

- \square Déterminer δ_q pour que simultanément, partant de la configuration initiale, l'extrémité du robot se déplace de +0,01m colinéairement à \vec{x}_0 et tourne de +0,01rad autour de \vec{x}_0
- □ (optionnel, si on a le temps après la partie 4) proposer une méthode itérative telle que finalement on obtienne une erreur inférieure à 1 micro mètre sur la position finale, et à 1 micro radian sur l'orientation finale.

4. Partie numérique : modèle de force statique

Le Modèle de force statique permet d'établir le lien entre des forces ou moments exercées par le robot sur l'environnement, ou vice-versa. Le principe est relativement simple si l'on se reporte à la notion de travail.

Pour une force F_i appliquée en un point P_k , fixe dans le repère, le travail s'écrit de 2 façons :

$$\underbrace{{}^{0}F_{i}^{T}.d^{0}P_{k}}_{\text{travail élémentaire Force.déplacement}} = \underbrace{Fq^{T}.dq}_{\text{travail élémentaire = Force articlaire .déplacement articulaire}}$$

Pour un moment Γ_i appliqué à un solide lié au repère R_k , de vecteur angle axe de coordonnées 0U_k :

$${}^{0}\Gamma_{i}^{T}.d^{0}U_{Rk}$$
 = $Fq^{T}.dq$ travail élémentaire Force. déplacement travail élémentaire = Force articlaire déplacement articulaire

de plus, comme on a, pour tout *q*:

$$d^{0}P_{k} = \underbrace{{}^{0}J_{Pk}}_{\text{jacobienne en position}}.dq$$
 , et $d^{0}U_{k} = \underbrace{{}^{0}J_{Uk}}_{\text{jacobienne en orientation}}.dq$

On obtient donc finalement le lien entre les forces (moments) articulaires, et forces/ moments opérationnels

$$\underbrace{Fq^{T}}_{\text{Force articulaire due à }F_{i}} dq = {}^{0}F_{i}^{T}. \qquad \underbrace{{}^{0}J_{Pk}}_{\text{jacobienne en position au point P_k}}. dq \Leftrightarrow Fq = \left[{}^{0}J_{Pk}\right]^{T}. {}^{0}F_{i}$$

$$\underbrace{Fq^{T}}_{\text{Force articulaire due à }\Gamma_{i}} dq = {}^{0}\Gamma_{i}^{T}.$$

$$\underbrace{{}^{0}J_{uk}}_{\text{jacobienne en orientation du repère U k}}_{\text{decomp}} dq \Leftrightarrow Fq = \left[{}^{0}J_{uk}\right]^{T}.{}^{0}\Gamma_{i}$$

4.1. forces sur un des bras de robots

Choisir quelques configurations permettant de mettre en évidence les concepts suivants

\Box Couples articulaires minimum et maximum du robot pour compenser la force de gravité (masse de $10 \mathrm{Kg}$ à l'extrémité)
□ Seules les actions (moments et forces, pas forcément appliqués sur l'extrémité) compatibles avec les
déplacements du robot produisent des couples articulaires.

5. Travail personnel optionnel

Ouvrir avec V-REP le fichier *ur10Etudiant.tt* et analyser rapidement le script *UR10*.

L'objectif est de calculer les petits déplacement que le robot ur10 attrape la boîte rouge et la pose dans la caisse verte, avant de revenir à sa position de repos.

Le fichier matlab *ur10TrajectoireCinematiqueEtudiant.m* génére automatiquement le texte à intégrer dans le script *UR10*, *correspondant* à *la trajectoire générée*.

éditer et exécuter ce fichier avec Matlab (noter que par défaut il n'y a pas de déplacement)

□ <i>A</i> dapter le tableau <i>pts</i> des points à atteindre (ligne 35…), en relevant les coordonnées et dimensions de la boîte et de la caisse sous V-REP
\Box Dans la boucle de suivi de trajectoire, proposer un algorithme de calcul des déplacements articulaires dq , pour chacun des points à atteindre.
\Box intégrer la trajectoire générée sous V-REP (dans le script $UR10$ du fichier), jusqu'à ce que vous la jugiez satisfaisante.

Remarque : Il y a une quantité importante de ''petits détails'' entre la version naïve de suivi de trajectoire en 3.3 et la version finale fonctionnelle: (gestion des points singuliers, limitation de la norme des déplacements élémentaires, points non faisables à cause de collisions…), que vous êtes invités à gérer seuls…