Demonstratii. Deductia naturala

Scurta recapitulare

- O evaluare booleana este o functie v al carei domeniu este multimea tuturor formulelor din logica propozitiilor, iar codomeniul este multimea de valori de adevar {A, F} a.i.
 - v(p) este definit pentru orice formula atomica p.
 - Pentru orice formula α ,
 - $v(\neg \alpha) = A$, daca $v(\alpha) = F$
 - $v(\neg \alpha) = F$, daca $v(\alpha) = A$...
- Dintr-o multime de formule Σ spunem ca se *deduce* o formula ϕ , (sau ϕ este *consecinta logica* pentru Σ), notat $\Sigma \models \phi$, daca fiecare evaluare booleana v care satisface Σ il satisface si pe ϕ .

Scurta recapitulare

- Fie formulele $P_1, P_2, ..., P_n$. Formula P este consecinta logica a multimii $\{P_1, P_2, ..., P_n\}$ daca si numai daca $P_1 \land P_2 \land ... \land P_n \land \neg P$ este nesatisfiabila.
- Propozitiile compuse p si q se numesc **echivalente logic** daca si numai daca $p \leftrightarrow q$ este o tautologie. Notatie: $p \equiv q$.
- $\neg (p \lor q) \equiv \neg p \land \neg q$
- $\neg (p \land q) \equiv \neg p \lor \neg q$
- Cand este nevoie sa construim tabele complete de adevar si cand nu.

Folosirea echivalentelor logice

Ex1: Sa se arate ca $(p \land q) \rightarrow (p \lor q)$ este o tautologie.

■
$$(p \land q) \rightarrow (p \lor q) \equiv (\neg (p \land q)) \lor (p \lor q)$$

 $\equiv (\neg p \lor \neg q) \lor (p \lor q)$
 $\equiv (\neg p \lor \neg q) \lor (p \lor q)$
 $\equiv (\neg p \lor p) \lor (\neg q \lor q)$
 $\equiv A \lor A$
 $\equiv A$

Folosirea echivalentelor logice

Ex2: Aratati ca $p \leftrightarrow q$ si $(p \land q) \lor (\neg p \land \neg q)$ sunt echivalente.

■
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

 $\equiv (\neg p \lor q) \land (\neg q \lor p)$
 $// \text{ not } (\neg p \lor q) \text{ cu X, deci vom avea } X \land (\neg q \lor p)$
 $// \text{ adica } (X \land \neg q) \lor (X \land p)$
 $\equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p)$
 $\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \lor ((p \land \neg p) \lor (p \land q))$
 $// (\neg q \land q) \equiv F, \text{ la fel } (p \land \neg p)$
 $\equiv (\neg q \land \neg p) \lor (p \land q)$

Exc1: Sa se arate prin tabele de adevar ca urmatoarele formule propozitionale sunt tautologii:

1.
$$\neg p \rightarrow (p \rightarrow q)$$

$$2. \qquad (p \land q) \rightarrow p$$

$$(\neg p \land (p \lor q)) \rightarrow q$$

4.
$$(p \land (p \rightarrow q)) \rightarrow q$$

5.
$$(\neg p \land (p \rightarrow q)) \rightarrow \neg q$$

Exc2: Sa se arate fara sa se foloseasca tabele de adevar ca formulele de la exercitiul 6 sunt tautologii.

Exc3: Verificati prin tabele de adevar daca urmatoarele formule sunt echivalente:

1.
$$(p \land q) \rightarrow r, (p \rightarrow r) \land (q \rightarrow r)$$

$$\neg (p \leftrightarrow q), p \leftrightarrow \neg q$$

$$\neg (p \oplus q), p \leftrightarrow q$$

4.
$$\neg p \rightarrow (q \rightarrow r), q \rightarrow (p \lor r)$$

5.
$$(p \rightarrow q) \rightarrow r, p \rightarrow (q \rightarrow r)$$

- Exc4: Verificati fara tabele de adevar daca formulele de la exercitiul 3 sunt echivalente.
 - Pentru punctul 3 al exc 3 este necesara si cunoasterea echivalentei:

$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

Un numar minim de conective

- Ce s-ar intampla daca
 - din logica propozitiilor eliminam echivalenta (\leftrightarrow) si o inlocuim cu varianta ei echivalenta: $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$?
 - s-ar obtine un limbaj echivalent logic cu logica propozitiilor.
- Simplificarea poate merge si mai departe, a.i. orice propozitie compusa poate fi scrisa folosind numai negatia, o alta conectiva logica si paranteze.

Un numar minim de conective

- Exc5: Utilizand numai negatia, implicatia si paranteze scrieti propozitii care sunt logic echivalente cu cele de mai jos:
 - 1. $p \vee q$
 - $p \wedge q$
 - $p \leftrightarrow q$
- Exc6: Utilizand numai negatia, disjunctia si paranteze scrieti propozitii care sunt logic echivalente cu cele de mai jos:
 - 1. $p \wedge q$
 - 2. $p \rightarrow q$
 - $g \mapsto q$
 - 4. $\neg p \land \neg q$

Demonstratii – silogism disjunctiv

$$\frac{p \vee q}{-p}$$

- p = "Afara ploua"
- q = "Afara este insorit"
- Stim ca:
 - $p \lor q$ = "Afara ploua sau este insorit."
 - $\neg p = \text{``Afara nu ploua.''}$
- Rezulta:
 - q = "Afara este insorit."

Demonstratii – modus ponens

$$\begin{array}{c}
p \to q \\
\hline
p \\
q
\end{array}$$

- p = ``Ai o parola.''
- q = "Te poti loga la calculator."
- Stim ca
 - $p \rightarrow q$ = "Daca ai o parola, atunci te poti loga la calculator."
 - p = "Ai o parola."
- Rezulta
 - q = "Te poti loga la calculator."

Demonstratii

 Forme precum silogismul disjunctiv sau modus ponens pot fi combinate pentru a crea demonstratii mai complicate:

$$\begin{array}{c}
\neg P \to (Q \lor P) \\
\hline
\neg P \\
\hline
Q
\end{array}$$

- Din modus ponens, pornind de la ceea ce stim, obtinem Q \(\times P \),
 o concluzie intermediara.
- Din $Q \lor P$, si ¬ P, prin silogism disjunctiv se obtine Q.

Demonstratii

- D.p.d.v. formal, o demonstratie este o secventa de propozitii.
 - Primele propozitii din secventa se numesc premise.
 - Fiecare propozitie ulterioara se deduce din cele anterioare printr-o regula de demonstratie.
 - Ultima propozitie din secventa (cea de sub linie) reprezinta concluzia.

Deductia naturala

- Intr-un sistem de deductie naturala, avem 2 reguli pentru fiecare operator logic:
 - O regula de *introducere* (notata cu I) care ne permite sa demonstram o propozitie care are operatorul ca si conectiva principala.
 - O regula de *eliminare* (notata cu E) care ne permite sa demonstram ceva cand se da o propozitie care are operatorul ca si conectiva principala.
- In plus, avem si regula de reiterare (notata cu R).
 - Daca ceva a fost deja demonstrat, reiterarea permite reluarea acelei reguli intr-o line noua.

Reiterarea

- Cand adaugam o linie la o demonstratie, specificam:
 - Ce regula (R, I sau E) justifica linia.
 - Numerele liniilor la care s-a aplicat regula.
- R1 in exemplul de mai sus arata ca linia n este justificata prin reiterare aplicata liniei m.
- Reiterarea nu demonstreaza nimic nou, doar aminteste o propozitie de mai sus (de obicei, mai multe linii mai sus).

Conjunctia – introducerea (∧I)

- De ce ar fi nevoie pentru a demonstra P ∧ Q?
 - Ar trebui sa demonstram separat ca P este adevarat, la fel, Q.

$$m$$
 P Q $P \wedge Q \wedge M_{\bullet} M_$

- \wedge I m,n inseamna ca introducerea conjunctiei se aplica pentru liniile m si n.
 - Liniile pot fi orice linii existente intr-o demonstatie, nu neaparat consecutive, lucru valabil pentru toate celelalte reguli.
- Evident, P si Q pot fi propozitii complexe (din acest motiv le-am notat cu litere mari).

Conjunctia – eliminarea (^E)

- Ce se poate deduce din o propozitie precum $P \wedge Q$?
 - Se poate deduce P. La fel, se poate deduce Q.

$$\begin{array}{c|ccc}
m & P \wedge Q \\
\hline
P & \wedge E m \\
\hline
Q & \wedge E m
\end{array}$$

- Cand avem o conjunctie pe o linie, se poate utiliza ∧ E pentru a deriva oricare din propozitiile implicate in conjunctie.
- A E necesita o singura propozitie, deci scriem un singur numar de linie ca justificare pentru aplicarea acestei reguli.

Ex3: Aratati ca:

$$\frac{[(p \land q) \rightarrow (r \lor s)] \land [(t \lor \upsilon) \leftrightarrow (v \land w)]}{[(t \lor \upsilon) \leftrightarrow (v \land w)] \land [(p \land q) \rightarrow (r \lor s)]}$$

- Incepem prin a scrie premisa pe prima linie si a trage o linie sub ea.
 - Tot ce apare sub aceasta linie este justificat de o regula a demonstratiei.

$$1 \qquad [(p \land q) \rightarrow (r \lor s)] \land [(t \lor u) \longleftrightarrow (v \land w)]$$

Ex3 (cont): Aratati ca:

$$[(p \land q) \rightarrow (r \lor s)] \land [(t \lor u) \leftrightarrow (v \land w)]$$

$$[(t \lor u) \leftrightarrow (v \land w)] \land [(p \land q) \rightarrow (r \lor s)]$$

 Din premisa, putem deduce oricare din cele doua propozitii complexe, prin eliminarea conjunctiei.

1
$$[(p \land q) \rightarrow (r \lor s)] \land [(t \lor u) \leftrightarrow (v \land w)]$$
2
$$[(p \land q) \rightarrow (r \lor s)] \land E 1$$
3
$$[(t \lor u) \leftrightarrow (v \land w)] \land E 1$$

Ex3 (cont): Aratati ca:

$$[(p \land q) \rightarrow (r \lor s)] \land [(t \lor u) \leftrightarrow (v \land w)]$$

$$[(t \lor u) \leftrightarrow (v \land w)] \land [(p \land q) \rightarrow (r \lor s)]$$

- Al necesita ca fiecare din elementele care vor fi adaugate la conjunctie sa fie disponibile in demonstratie.
 - Ele nu trebuie sa fie neaparat in ordine.

1
$$[(p \land q) \rightarrow (r \lor s)] \land [(t \lor v) \leftrightarrow (v \land w)]$$
2
$$[(p \land q) \rightarrow (r \lor s)] \land E 1$$
3
$$[(t \lor v) \leftrightarrow (v \land w)] \land E 1$$

Ex3 (cont): Aratati ca:

$$[(p \land q) \rightarrow (r \lor s)] \land [(t \lor u) \leftrightarrow (v \land w)]$$
$$[(t \lor u) \leftrightarrow (v \land w)] \land [(p \land q) \rightarrow (r \lor s)]$$

- Al necesita ca fiecare din elementele care vor fi adaugate la conjunctie sa fie disponibile in demonstratie.
 - Ele nu trebuie sa fie neaparat in ordine.

1
$$[(p \land q) \rightarrow (r \lor s)] \land [(t \lor v) \leftrightarrow (v \land w)]$$
2
$$[(p \land q) \rightarrow (r \lor s)] \land E 1$$
3
$$[(t \lor v) \leftrightarrow (v \land w)] \land E 1$$
4
$$[(t \lor v) \leftrightarrow (v \land w)] \land [(p \land q) \rightarrow (r \lor s)] \land I 3,2$$

Disjunctia – introducerea (VI)

- Daca propozitia p este adevarata, atunci si $p \lor q$ este adevarata.
 - Deci, daca avem o propozitie P adevarata, putem introduce o disjunctie in care sa apara si P.

$$\begin{array}{c|ccc}
m & P \\
P \lor Q & \lor I m \\
Q \lor P & \lor I m
\end{array}$$

- Q poate fi orice alta propozitie, simpla sau complexa.
 - Asadar, o demonstratie corecta este si cea de mai jos.

Disjunctia – introducerea (VI)

- Stiindu-se P adevarat, se poate introduce disjunctia cu Q.
 - Aceasta se poate interpreta ca: daca P este adevarat, atunci si P \(\times Q \)
 este adevarat, indiferent ce valoarea de adevar a lui Q.
 - Deci concluzia nu poate fi falsa daca premisa este adevarata, deci demonstratia este corecta.

Disjunctia – eliminarea (VE)

- Ce se poate concluziona daca se stie ca $P \lor Q$ este adevarata?
 - Nu se poate spune ca P este adevarata.
 - Nu stim daca P face P ∨ Q adevarata sau Q o face adevarata.
 - Analog, nu se poate concluziona nimic despre Q.
- Nu se poate trage nicio concluzie doar din premisa $P \lor Q$.
- Daca stim insa si ca P este falsa, atunci putem concluziona ca este adevarata Q.
 - Am ajuns la silogismul disjunctiv.

$$\frac{P \vee Q}{\neg P \rightarrow Q}$$

- Se observa ca cele doua sunt logic echivalente.
- Scriem demonstratia incepand cu premisa, dupa care tragem o linie orizontala.

1
$$P \lor Q$$

- Daca am fi stiut ca ¬ P este adevarat, am fi putut concluziona Q prin ∨ E.
 - Dar nu stim acest fapt...

- Putem incepe o subdemonstratie (subdem), adica o demonstratie in cadrul demonstratiei principale.
 - Se mai trage o linie verticala pentru a indica faptul ca nu ne mai aflam in cadrul demonstratiei principale.
 - Apoi scriem in cadrul subdem o presupunere.
 - In cazul nostru, ar fi util sa presupunem $\neg P$.

- Este important sa mentionam ca nu pretindem ca ¬ P este demonstrat.
 - Nu este nevoie insa sa demonstram nicio presupunere din subdem.
 - Poate fi interpretata ca: ce s-ar putea demonstra daca ¬ P ar fi adevarat?
 - Se poate demonstra Q.

$$\begin{array}{c|cccc}
1 & P \lor Q \\
2 & \neg P \\
\hline
3 & Q & \lor E 1,2
\end{array}$$

- Am demonstrat asadar ca daca avem premisa ¬ P, putem demonstra Q.
 - Altfel spus, am demonstrat ca $\neg P \rightarrow Q$.
- Prin urmare, putem iesi din subdem cu concluzia $\neg P \rightarrow Q$.
- Notatia de la introducerea implicatiei cuprinde toate liniile din subdem, care desigur pot fi mai multe de doua.

$$\begin{array}{c|cccc}
1 & P \lor Q \\
2 & \neg P \\
3 & Q & \lor E 1,2 \\
4 & \neg P \rightarrow Q & \rightarrow I 2-3
\end{array}$$

- Din faptul ca putem presupune absolut orice, poate parea ca se merge spre haos.
 - Totusi, presupunerile se leaga de afirmatiile adevarate din afara demonstratiei.
- O subdem se incheie atunci cand se incheie linia verticala.
- Pentru a se termina o demonstratie, trebuie incheiate toate subdem.
- Cand inchidem o subdem, nu ne mai putem referi inapoi la afirmatii din liniile din subdem (care contin presupuneri).

- Cand introducem o subdem, incepem cu ceea ce vrem sa deducem in coloana.
- Asadar, pentru a obtine o implicatie prin \rightarrow I, incepem presupunerea cu antecedentul implicatiei pe care vrem sa o realizam.
- Ultima linie a subdem va contine elementul din dreapta implicatiei.

$$\begin{array}{c|c}
m & P \\
\hline
n & Q \\
P \rightarrow Q & \rightarrow | m-n
\end{array}$$

Implicatia – eliminarea (→ E)

- Nu obtinem nimic doar dintr-o implicatie $P \rightarrow Q$.
 - Daca am sti insa si P, am putea concluziona Q.
- \rightarrow E se mai numeste si *modus ponens*.

$$\begin{array}{c|ccc}
m & P \rightarrow Q \\
n & P \\
Q & \rightarrow E \\
m, n
\end{array}$$

Implicatia

Ex4: Aratati ca:

$$P \to Q$$

$$Q \to R$$

$$P \to R$$

- Devreme ce concluzia contine o implicatie, va trebui sa se utilizeze regula → I.
 - Pentru aceasta, avem nevoie de o subdem care sa inceapa cu P.

Implicatia

- Presupunand P adevarat, avem posibilitatea sa utilizam → E asupra primei premise.
 - Aceasta ne permite sa-l determinam pe Q.
 - \rightarrow E aplicat premisei 2 ne conduce la R.
 - Din presupunerea lui P am ajuns sa demonstram R si aplicam \rightarrow I.

Implicatia

- Presupunand P adevarat, avem posibilitatea sa utilizam → E asupra primei premise.
 - Aceasta ne permite sa-l determinam pe Q.
 - \rightarrow E aplicat premisei 2 ne conduce la R.
 - Din presupunerea lui P am ajuns sa demonstram R si aplicam \rightarrow I.

Echivalenta – introducerea (↔ I)

- Pentru a demonstra ca $P \leftrightarrow Q$, trebuie sa aratam ca presupunand P obtinem Q si viceversa.
 - Deci trebuie sa aratam ca $P \rightarrow Q$ si $Q \rightarrow P$.
 - Prin urmare, trebuie sa avem doua subdem, una in care presupunem P
 si obtinem Q si una in care presupunem Q si obtinem P.

Echivalenta – eliminarea (↔ E)

- Daca stim $P \leftrightarrow Q$ si de asemenea stim P, atunci putem concluziona Q.
 - Analog, stiind $P \leftrightarrow Q$ si Q putem concluziona P.

Negatia – introducerea (– I)

- Se face prin reducere la absurd.
- Se face in cadrul unei subdem o presupunere si, daca se ajunge la o contradictie, am demonstrat negatia presupunerii initiale.

 Reducere la

Negatia – introducerea (– I)

- Ultimele doua propozitii ale subdem trebuie sa fie o contradictie clara, adica o propozitie urmata de negatia ei.
- **Ex5**: Aratati ca \neg ($P \land \neg P$) este o tautologie.
 - Demonstratia se poate face incepand cu o subdem prin presupunerea ca $P \land \neg P$.

$$\begin{array}{c|cccc}
1 & P \land \neg P & RA \\
\hline
P & \land E 1 \\
\hline
3 & \neg P & \land E 1 \\
\hline
4 & \neg (P \land \neg P) & \neg I 1-3
\end{array}$$

Negatia – eliminarea (– E)

 Se presupune o afirmatie negata si daca se ajunge la o contradictie, afirmatia fara negatie este considerata adevarata.

Negatia

Ex6: Demonstrati ca:

$$P \lor Q$$

$$P \to R$$

$$Q \to R$$

$$R$$

Reguli de inlocuire

- Avem o serie de reguli care sunt permise in cadrul unor propozitii complexe.
- Comutativitatea (notata in cadrul demonstratiilor com)

•
$$P \wedge Q \equiv P \wedge Q$$

•
$$P \lor Q \equiv Q \lor P$$

•
$$P \leftrightarrow O \equiv O \leftrightarrow P$$

Dubla negatie (DN)

$$\neg \neg P \equiv P$$

Legile lui De Morgan (*DeM*)

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

Reguli de inlocuire

Implicatia (Impl)

•
$$P \rightarrow Q \equiv \neg P \lor Q$$

•
$$P \lor Q \equiv \neg P \rightarrow Q$$

- Echivalenta (*Echiv*)
 - $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$

Reguli de inlocuire

Ex7: Aratati ca: $\frac{\neg (P \rightarrow Q)}{P \land \neg Q}$

1
$$\neg (P \rightarrow Q)$$

2 $\neg (\neg P \lor Q)$ Impl 1
3 $\neg \neg P \land \neg Q$ DeM 2
4 $P \land \neg Q$ DN 3

 Exc7: Adaugati justificarile (regula aplicata si numerele de linii) pentru fiecare linie a demonstratiilor urmatoare.

1	$T \rightarrow \neg Q$	1	$P \leftrightarrow \neg Q$	
2	$P \wedge T$	2	$P \lor \neg Q$	
3	$Q \vee (R \wedge S)$	3		$\neg P$
4	T	4		$\neg Q$
5	$\neg Q$	5		Р
6	$R \wedge S$	6		$\neg P$
7	5	7	P	

Exc8: Demonstrati ca:

$$\frac{P \wedge Q}{P \leftrightarrow Q}$$

$$\frac{P \to (Q \to R)}{(P \land Q) \to R}$$

$$\frac{P \to (P \land \neg P)}{\neg P}$$

$$\frac{P \rightarrow \neg P}{\neg P}$$

$$\frac{(P \land Q) \lor R}{R \lor Q}$$

$$\frac{P \vee (Q \to P)}{\neg P \to \neg Q}$$

$$P \wedge (Q \vee R)$$

$$P \rightarrow \neg R$$

Q

$$\neg P \rightarrow Q$$

$$P \rightarrow R$$

$$Q \vee R$$

$$P \leftrightarrow Q$$

$$Q \leftrightarrow R$$

$$P \leftrightarrow R$$

Exc9 tema: Demonstrati ca:

$$(P \land Q) \lor (P \land R)$$

$$\neg (P \land S)$$

$$S \lor T$$

$$T$$

- **Exc1o**: Demonstrati ca urmatoarele propozitii sunt tautologii:
 - $P \rightarrow P$
 - $P \vee \neg P$
 - $\neg (P \rightarrow \neg Q) \rightarrow (P \rightarrow Q)$

- Exc11: Aratati ca urmatoarele perechi de propozitii sunt demonstrabil echivalente:
 - ¬¬¬¬P, P
 - $P \rightarrow Q, \neg Q \rightarrow \neg P$
 - $\neg P \leftrightarrow Q, \neg (P \leftrightarrow Q)$
- Exc12: Demonstrati ca:
 - $P \wedge (\neg Q \rightarrow \neg P) \models (P \wedge Q) \vee \neg P$
 - $\{P \rightarrow (Q \land R), (\neg P \rightarrow R)\} \models \{R\}$