LogiCORE™ IP Serial RapidIO v5.5

Getting Started Guide

UG247 April 19, 2010

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.

© 2006-2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision			
2/17/06	1.0	Initial Xilinx release.			
7/13/06	2.0	Updated for IP1i minor release, ISE® software to v8.1i			
11/15/06	3.0	Updated for IP3i minor release, added Virtex®-5 FPGA support			
2/15/07	4.0	Added section on Initiator User Design, changed directory structure layout, updated tools for IP1 Jade release.			
10/10/07	4.5	Updated for IP2 Jade Minor release.			
3/24/08	5.0	Added support for Virtex-5 FXT FPGAs, updated tools for the ISE software v10.1 release.			
6/19/08	6	Updated descriptions and images to include the new buffer, and added VHDL support			
9/18/08	6.5	Updated for ISE software Service Pack 3 release.			
4/24/09	7.0	Added support for Virtex-6 devices, removed support for legacy devices. Updated tools to Xilinx ISE software v11.1.			
6/24/09	7.5	Updated tools to Xilinx ISE v11.2 software.			
9/16/09	8.0	Updated core to v5.4 and Xilinx ISE to v11.3.			
12/2/09	8.5	Added Chapter 6, "ChipScope™ VIO Hardware Demonstration."			
4/19/10	9.0	Updated core to v5.5 and Xilinx ISE to v12.1.			

Serial RapidIO v5.5 www.xilinx.com UG247 April 19, 2010

Table of Contents

Revision History	2
Schedule of Figures	7
Preface: About This Guide	
Contents	9
Additional Resources	
Conventions	
Typographical	
Online Document	
Chapter 1: Introduction	
System Requirements	
About the Core	13
Recommended Design Experience	14
Additional Core Resources	
Technical Support.	
Feedback	
RapidIO Cores	
Document	
Chapter 2: Licensing the Cores Before you Begin	17
License Options	
Simulation Only	
Full System Hardware Evaluation	
Full	
Obtaining Your License Key	
Simulation License	
Full System Hardware Evaluation License	
Obtaining a Full License Key	
Installing Your License File	
Chapter 3: Customizing and Generating the Cores	
Serial RapidIO Graphical User Interface	
Main Screen	
Serial Physical Layer Configuration	
Logical Layer Configuration	
Logical Layer CAR Configuration	
Logical Layer CAR Configuration	
Logical Layer CSR Configuration	

Serial Physical Layer CAR/CSR Configuration	
Serial Physical Layer CSR Configuration	
Output Generation	40
Chapter 4: Quick Start Example Design	
Overview	41
Generating the Cores	
Implementing the Example Design	
Running the Simulation	
Setting up the Simulation	
Creating an ISE Software Project	45
Chapter 5: Detailed Example Design	
Directory Structure and File Descriptions	47
CORE Generator Software Project	
Serial RapidIO Endpoint	48
Directory and File Contents	49
Project Directory	49
<pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	
Serial RapidIO Endpoint Solution	
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
<pre><srio_component name="">/doc</srio_component></pre>	
<pre><srio_component_name>/example_design</srio_component_name></pre>	
<pre><srio_component_name>/example_design/chipscope</srio_component_name></pre>	
<pre><srio_component_name>/example_design/reg_manager</srio_component_name></pre>	
<pre><srio_component_name>/example_design/user</srio_component_name></pre>	
<pre><srio_component_name>/implement</srio_component_name></pre> <pre><srio_component_name>/implement/results</srio_component_name></pre>	
<pre><sno_component_name>/ intpiement/results</sno_component_name></pre>	
<pre><srio_component_name>/simulation</srio_component_name></pre>	
<pre><srio_component_name>/simulation/functional</srio_component_name></pre>	
Serial RapidIO Endpoint Example Design Description	
Initiator User Design	
Target User Design	
Simulation Host	
Chapter 6: ChipScope™ VIO Hardware Demonstration	
Overview	60
Tools Required	
HardwareSoftware	
Generating Hardware Demonstration Files	
Generating the Core Enabling ChipScope in Serial RapidIO Solution	
UCF Modifications	
Creating a Bit File	
ChipScope Project File	

Hardware Setup	⁷ 1
Loopback	
Chip-to-Chip	71
Connecting to a Switch	
ChipScope Core Signals 7	72
VIO Core Signals	72
ILA Signals	⁷ 6
Using ChipScope Analyzer 8	33
Loading the Core in Analyzer 8	33
The ChipScope Analyzer Environment 8	33
ChipScope Analyzer Windows	35
Creating Transactions with VIO Console 8	38
Tips for Creating Serial RapidIO Transactions	39
I/O Transaction Example	9 0
Interpreting Results of I/O Transactions	€0
MAINTENANCE Transaction Example9	
Interpreting Results of MAINTENANCE Transaction) 3

6

Schedule of Figures

Chapter 1: Introduction	
Chapter 2: Licensing the Cores	
Chapter 3: Customizing and Generating the Cores	
Figure 3-1: Serial RapidIO Configuration Screen	22
Figure 3-2: Physical Layer Configuration Screen	24
Figure 3-3: Logical Layer Configuration Screen	26
Figure 3-4: Buffer Design Configuration Screen	27
Figure 3-5: Logical Layer CAR Configuration (Screen 1)	30
Figure 3-6: Logical Layer CAR Configuration (Screen 2)	32
Figure 3-7: Logical Layer CSR Configuration Screen	34
Figure 3-8: Serial Physical Layer CAR/CSR Configuration Screen	36
Figure 3-9: Serial Physical Layer CSR Configuration Screen	38
Chapter 4: Quick Start Example Design	
Figure 4-1: The RapidIO Endpoint Example Design Configuration	42
Chapter 5: Detailed Example Design	
Figure 5-1: RapidIO Endpoint Core Example Design	59
Figure 5-2: Initiator User Design	
Figure 5-3: RapidIO Example Target Design Block Diagram	
Figure 5-4: RapidIO Simulation Host Block Diagram	
Chapter 6: ChipScope™ VIO Hardware Demonstration	
Figure 6-1: ChipScope Cores Integrated into Example Design	69
Figure 6-2: Bitstream Selection and Configuration	83
Figure 6-3: ChipScope Analyzer Environment	84
Figure 6-4: ChipScope Analyzer VIO Console	85
Figure 6-5: ChipScope Analyzer Trigger Setup	86
Figure 6-6: ChipScope Analyzer Trigger Condition Window	87
Figure 6-7: ChipScope Analyzer Waveform Window	88
Figure 6-8: Default VIO Settings that Produce NWRITE_R and NREAD	90
Figure 6-9: ILA1 Waveform after Creation of NWRITE_R and NREAD	91
Figure 6-10: Format for NWRITE_R Packet at Input to phy_wrapper	92
Figure 6-11: VIO Console During Example MAINTENANCE READ	93

About This Guide

This guide contains information for generating the Xilinx LogiCORE™ IP Serial RapidIO Endpoint solution, which includes the Serial RapidIO Physical Layer, Buffer, and RapidIO Logical Layer cores. It also provides detailed information for customizing and simulating these RapidIO cores and for running the design files through implementation using Xilinx tools.

Contents

This guide contains the following chapters:

- Preface, "About this Guide," introduces the organization and purpose of the design guide and describes the conventions used in this document.
- Chapter 1, "Introduction," provides information about the system requirements for running the cores recommended design experience, and references to related material including the ways to contact Xilinx for obtaining technical support and for providing feedback.
- Chapter 2, "Licensing the Cores," provides licensing information for the Serial RapidIO Endpoint solution.
- Chapter 3, "Customizing and Generating the Cores," describes the GUI options used to generate and customize the cores.
- Chapter 4, "Quick Start Example Design," describes how to quickly get started using the Serial RapidIO Endpoint solution.
- Chapter 5, "Detailed Example Design," provides a detailed explanation about the example design. It also provides information about the various output files, directory structure, purpose and contents of the implementation scripts, operation of the example target design, and the demonstration test bench.
- Chapter 6, "ChipScopeTM VIO Hardware Demonstration," provides instructions for using the example design in hardware. The ChipScope Pro tool is used to create transactions and monitor the core interfaces.

Additional Resources

To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support/mysupport.htm.

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention	Meaning or Use	Example	
Courier font	Messages, prompts, and program files that the system displays	speed grade: - 100	
Courier bold	Literal commands that you enter in a syntactical statement	ngdbuild design_name	
Helvetica bold	Commands that you select from a menu	File → Open	
	Keyboard shortcuts	Ctrl+C	
	Variables in a syntax statement for which you must supply values	ngdbuild design_name	
Italic font	References to other manuals	See the <i>User Guide</i> for more information.	
	Emphasis in text	If a wire is drawn so that it overlaps the pin of a symbol, the two nets are <i>not</i> connected.	
Dark Shading	Items that are not supported or reserved	This feature is not supported	
Square brackets []	An optional entry or parameter. However, in bus specifications, such as bus [7:0], they are required.	ngdbuild [option_name] design_name	
Braces { }	A list of items from which you must choose one or more	lowpwr ={on off}	
Vertical bar	Separates items in a list of choices	lowpwr ={on off}	
Angle brackets < >	User-defined variable or in code samples	<directory name=""></directory>	
Vertical ellipsis	Repetitive material that has been omitted	IOB #1: Name = QOUT' IOB #2: Name = CLKIN' .	
Horizontal ellipsis	Repetitive material that has been omitted	allow block block_name loc1 loc2 locn;	

Convention	Meaning or Use	Example	
Notations	The prefix '0x' or the suffix 'h' indicate hexadecimal notation	A read of address 0x00112975 returned 45524943h.	
rotations	An '_n' means the signal is active low	usr_teof_n is active low.	

Online Document

The following conventions are used in this document:

Convention	Meaning or Use	Example	
Blue text	Cross-reference link to a location in the current document	See the section "Additional Resources" for details. Refer to "Title Formats" in Chapter 1 for details.	
Blue, underlined text	Hyperlink to a website (URL)	Go to http://www.xilinx.com for the latest speed files.	

Introduction

The complete LogiCORE[™] IP RapidIO Endpoint solution consists of the Serial RapidIO Physical Layer, Buffer, and the RapidIO Logical Layer stitched together with reference designs to create a full example endpoint solution.

- The 1 lane (1x) and 4 lane (4x) Serial Physical Layer is incorporated into the Serial RapidIO Physical Layer core.
- The Logical (I/O) and Transport Layers are combined into the RapidIO Logical Layer core.

The RapidIO Endpoint example design provides the remaining logic to create a RapidIO Endpoint solution that includes a register manager reference design and an example target design. The RapidIO Endpoint example design also provides implementation and simulation scripts for the RapidIO Endpoint solution.

System Requirements

Windows

- Windows XP Professional 32-bit/64-bit
- Windows Vista Business 32-bit/64-bit

Linux

- Red Hat Enterprise Linux WS v4.0 32-bit/64-bit
- Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)
- SUSE Linux Enterprise (SLE) desktop and server v10.1 32-bit/64-bit

Software

• ISE® software v12.1

Check the release notes for the required service pack; ISE software service packs can be downloaded from www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp.

About the Core

The Serial RapidIO Endpoint solution, including the Serial RapidIO Physical Layer, Buffer, and the RapidIO Logical Layer cores are Xilinx CORE Generator $^{\text{TM}}$ software, included in the latest IP update. For detailed information about these cores, go to $\underline{\text{www.xilinx.com/rapidio}}$.

Recommended Design Experience

The fully verified RapidIO Endpoint solution allows engineering focus on the unique user-application functions of a RapidIO design. The RapidIO Interconnect technology is a high-performance design that can be challenging to implement in any device technology.

Therefore, previous experience with building high-performance, pipelined FPGA designs using Xilinx implementation software and constraints file is recommended. The challenge to implement a complete RapidIO Endpoint design including user application functions varies, depending on the features and configuration of the application. Contact your local Xilinx representative for a closer review and estimation for your specific requirements.

Additional Core Resources

For detailed information about and updates to the RapidIO Design Environment, Serial RapidIO Physical Layer, and the RapidIO Logical Layer coressee the following documents. These and other documents can be downloaded from the Xilinx RapidIO lounge:

www.xilinx.com/rapidio

- Serial RapidIO Release Notes
- Serial RapidIO Data Sheet
- Serial RapidIO User Guide

For updates to this document, see the *Serial RapidIO Getting Started Guide*, *also* available from www.xilinx.com/rapidio.

Technical Support

The fastest method for obtaining specific technical support for the RapidIO cores is through the www.xilinx.com/support website. Questions are routed to a team of engineers with expertise in using the RapidIO cores.

Xilinx will provide technical support for use of this product as described in this guide, the and the *LogiCORE IP Serial RapidIO User Guide*. Xilinx cannot guarantee timing, functionality, or support of this product for designs that do not follow these guidelines.

Feedback

Xilinx welcomes feedback on the RapidIO cores and documentation provided with the cores.

RapidIO Cores

For comments or suggestions about the RapidIO cores, please submit a WebCase at www.xilinx.com/support, and provide the following information:

- Product name
- Core version number
- Brief explanation

Document

If you have any comments about this document, please submit a WebCase at www.xilinx.com/support, and provide the following information:

- Document title
- Document number
- Page number(s) to which your comments refer
- Brief explanation

General suggestions for additions and improvements are also welcome.

16

Licensing the Cores

The Serial RapidIO Solution consists of two Xilinx LogiCORETM IP cores and an endpont reference design. This chapter provides licensing instructions for the Serial RapidIO Physical Layer and the RapidIO Logical Layer cores. You must obtain the appropriate licenses before using the cores in your designs. The Serial RapidIO Physical Layer and RapidIO Logical Layer cores are provided under the terms of the Xilinx LogiCORE Site License Agreement, which conforms to the terms of the SignOnce IP License standard defined by the Common License Consortium. Purchase of a Physical Layer core license includes licensing the Buffer as both are created when generating the Physical Layer.

Purchase of a core entitles you to technical support and access to updates for a period of one year. The endpoint example is a non-licensed support core that includes reference designs, as well as simulation and implementation scripts.

Before you Begin

This chapter assumes you have installed the core using either the CORE GeneratorTM IP Software Update installer or by performing a manual installation after downloading the core from the web. For information about installing the core, see the RapidIO product page at www.xilinx.com/rapidio.

License Options

The Serial RapidIO Physical Layer and RapidIO Logical Layer cores provide three licensing options. After installing the required Xilinx ISE software and IP Service Packs, choose a license option. The endpoint example is a reference design, and is not a licensed core.

Simulation Only

The Simulation Only Evaluation license is provided with the Xilinx CORE Generator tool. This license lets you assess core functionality with either the endpoint example design provided in the Serial RapidIO solution, or alongside your own design and demonstrates the various interfaces on the core in simulation. (Functional simulation is supported by a dynamically generated HDL structural model.)

Full System Hardware Evaluation

The Full System Hardware Evaluation license is available at no cost and lets you fully integrate the core into an FPGA design, place-and-route the design, evaluate timing, and perform functional simulation of the RapidIO endpoint design using the RapidIO endpoint example design and demonstration test bench provided in the Serial RapidIO solution.

In addition, the license key lets you generate a bitstream from the placed and routed design, which can then be downloaded to a supported device and tested in hardware. The core can be tested in the target device for a limited time before timing out (ceasing to function), at which time it can be reactivated by reconfiguring the device.

Full

The Full license key is available when you purchase the core and provides full access to all core functionality both in simulation and in hardware, including:

- Functional simulation support
- Full implementation support including place and route and bitstream generation
- Full functionality in the programmed device with no time outs

Obtaining Your License Key

This section contains information about obtaining a simulation, full system hardware, and full license keys.

Simulation License

No action is required to obtain the Simulation Only Evaluation license key; it is provided by default with the Xilinx CORE Generator software.

Full System Hardware Evaluation License

To obtain a Full System Hardware Evaluation license, do the following:

- 1. Navigate to the product page for this core: www.xilinx.com/rapidio
- 2. Click Download Evaluation.
- 3. Follow the instructions to install the required Xilinx ISE® software and IP Service Packs.

Obtaining a Full License Key

To obtain a Full license key, you must purchase a license for the core. After you purchase a license, a product entitlement is added to your Product Licensing Account on the Xilinx Product Download and Licensing site. The Product Licensing Account Administrator for your site will receive an email from Xilinx with instructions on how to access a Full license and a link to access the licensing site. You can obtain a full key through your account administrator, or your administrator can give you access so that you can generate your own keys.

Further details can be found at

http://www.xilinx.com/products/ipcenter/ipaccess_fee.htm.

Installing Your License File

The Simulation Only Evaluation license key is provided with the Xilinx ISE software CORE Generator system and does not require installation of an additional license file. For the Full System Hardware Evaluation license and the Full license, an email will be sent to you containing instructions for installing your license file. Additional details about IP license key installation can be found in the ISE Design Suite Installation, Licensing and Release Notes document.

Customizing and Generating the Cores

The LogiCORETM IP Serial RapidIO Design Solution consists of four components, the Serial RapidIO Physical Layer core, Buffer core, the RapidIO Logical Layer core, and the Endpoint example design. These components are generated through the Xilinx CORE GeneratorTM software using a graphical user interface (GUI).

The 1 lane (1x) and 4 lane (4x) Serial Physical Layer is incorporated into the Serial RapidIO Physical Layer core. The Logical (I/O) and Transport layers are combined into the RapidIO Logical Layer core. The RapidIO Endpoint example design provides the remaining logic to create a Serial RapidIO Endpoint solution that includes a register manager reference design and an example target design.

This chapter describes the GUI options used to generate and customize the cores. When you are generating the Serial RapidIO cores, they must all be created within the same CORE Generator software project directory to work with the Endpoint Example implementation and simulation scripts.

For assistance with starting and using the Xilinx CORE Generator software, see the documentation supplied with the Xilinx ISE® software, including the *Xilinx CORE Generator Online Help*.

This information is located at toolbox.xilinx.com/docsan/xilinx10/books/manuals.pdf

Serial RapidIO Graphical User Interface

This section describes the Xilinx CORE Generator software configurations screens provided to configure the Serial RapidIO Endpoint design.

Main Screen

Figure 3-1 shows the Serial RapidIO CORE Generator software main configuration screen. Descriptions of the GUI options on this screen are provided in the following text.

Figure 3-1: Serial RapidIO Configuration Screen

Component Name

The component name is used as the name of the endpoint reference design as well as the base name of the output files generated for the core. Names must begin with a letter and must be composed from the following characters: a through z, 0 through 9, and "_". The default is srio_v5_5.

Enable Endpoint Example Generation

The Endpoint Example reference design is an option. Enabling this option provides the remaining logic to create a RapidIO Endpoint solution that includes a register manager reference design, an example target design, and implementation and simulation scripts. If the Endpoint Example is not generated, implementation and simulation scripts will not be generated.

Enable Serial RapidIO Physical Layer Generation

The Physical Layer core generation is optional. Enabling generation provides a customized netlist for the Physical Layer core, and a netlist for a customized Buffer core. The Physical Layer includes an example transceiver instantiation and associated CORE Generator software files.

Serial RapidIO Physical Layer Name

The Physical Layer name is used as the base name of the output files generated for the Physical Layer core. Names must begin with a letter and be composed from the following characters: a through z, 0 through 9, and "_". The default is srio_phy_v5_5.

Enable Logical and Transport Layer Generation

The Logical Layer core generation is optional. Enabling generation provides a customized netlist for the Logical Layer core and associated CORE Generator software files. The Logical Layer is not meant as a stand-alone core. It is assumed a Physical Layer core will be generated as well.

Logical Layer Name

The Logical Layer name is used as the base name of the output files generated for the logical layer core. Names must begin with a letter and be composed from the following characters: a through z, 0 through 9, and "_". The default is rio_log_io_v5_5.

Serial Physical Layer Configuration

Figure 3-2 shows the Serial Physical Layer Configuration screen. This screen is required when generating either the Endpoint Example Design or the Physical Layer core. The configuration options found on this screen are described in the following text.

Figure 3-2: Physical Layer Configuration Screen

System Configuration

System configuration determines the ultimate port bandwidth and the required input clock frequency. See Table 3-1.

Table 3-1: Baud Rate to Input Clock Frequency

x4	x1	Per Lane Baud Rate (Gbaud)	Input Clock Frequency (MHz)			
Bandwidth (Gbps)	Bandwidth (Gbps)		Virtex®-6a	Spartan®-6a	Virtex-5 ^a	Virtex-4
16	4	5.0	125 ^b	N/A	N/A	N/A
10	2.5	3.125	156.25	156.25	156.25	312.5
8	2	2.5	125	125	125	250
4	1	1.25	125	125	125	250

a. The Virtex-6, Spartan-6 and Virtex-5 FPGA 3.125 cores may also be generated using a 125 MHz input clock frequency.

Lanes

Selecting x1 creates a one-lane core; selecting x4 creates a four-lane core. The default is x4.

Transfer Frequency

This sets the per-lane baud rate. Allowable settings are 1.25, 2.5, 3.125, or 5.0 Gbps. The default transfer frequency is 3.125 Gbps.

Input Clock Frequency

Note: This option is not applicable for Virtex-4 FPGA designs

Select the input clock frequency. Allowable settings for 3.125 GHz line rates are 125 or 156.25 MHz. The default input clock frequency is 125 MHz.

User Reference Clock

Note: This option is only applicable to Virtex-4 FPGA designs.

Virtex-4 FPGA Designs

Select either REFCLK1 or REFCLK2 from the drop-down list to select the source of the RocketIO™ transceiver reference clock. See the <u>Virtex-4 FPGA RocketIO User Guide</u> to determine the appropriate clock to use. REFCLK1 is selected by default.

Additional Link Requests Before Fatal

Use the drop-down list to select the number of link requests that are to be sent without receiving a link response prior to transiting to a fatal error state. Allowable options are 0 through 6 and Never Fatal. The default is zero. Xilinx recommends setting this value greater than zero for enhanced error recovery.

Support Critical Request Flow

This option supports the CRF bit for priority bumping. Support Critical Request Flow is disabled by default.

b. 5.0 Gbaud is not supported for Virtex-6 CXT devices.

Logical Layer Configuration

Screen 3, shown in Figure 3-3, presents system level Implementation options which effect Logical layer functionality. Details for each option are included in this section.

Figure 3-3: Logical Layer Configuration Screen

Implementation Options

Device IDs

Select either 8-bit or 16-bit device IDs. The core generates and consumes only those packets that match the selected device IDs. Use the 16-bit device IDs if the processing element supports large systems.

Component Device ID

Sets the device ID for this component. Any 8 or 16-bit (depending on the selected user device ID size) hexadecimal value is allowed. The default setting is FF.

Doorbell and Messaging Support

It is recommended Doorbell and Messaging support be included. Deselecting this option is meant to support legacy end-points which choose to build Doorbell and Message packets as undefined packet types.

Buffer Reference Design Configuration

The Buffer design options shown in Figure 3-4 provide size vs. bandwidth trade-offs. Descriptions for each option and associated cost are provided in this section.

Figure 3-4: Buffer Design Configuration Screen

Implementation Options

Buffer Configuration

You can customize the depth of the transmit and receive buffers to 8, 16, or 32. This number represents the amount of packets the buffer is capable of storing. Selecting the smaller buffer depths conserves resources, whereas maximum buffer depth yields maximum throughput.

The number of block RAM used is only affected by the depth of the buffer. Block RAM usage is listed in Table 3-2 and is based on the selected Virtex FPGA device family.

Table 3-2: Block RAM Usage by Device Family

Buffer Depth	Virtex-6	Spartan-6	Virtex-5	Virtex-4
8	2	4	2	4
16	4	8	4	8
32	8a	NA	8	NA

a. Buffer Depth of 32 is not supported for Virtex-6 CXT devices.

Table 3-3 is a summary of LUT utilization for different buffer configurations. In this table, 0 represents the default configuration with an approximate LUT count of 727 for Virtex-5 devices, and 855 for Virtex-4 devices. For each parameter that is altered, more or less LUTs will be used. This number can then be added or subtracted from the approximate default value to get a rough estimate of the LUTs your configuration may use. However, this is only an estimate and should not be used as an precise value.

Table 3-3: LUT Approximation Based on Buffer Configuration Parameters

Parameter	Value	Virtex-6	Spartan-6	Virtex-5	Virtex-4
Flow Control	RX	-60	-51	-50	-81
Flow Control	TX	0	0	0	0
	8	-133	-73	-156	-76
TX Depth	16	-75	0	-80	0
	32	0	NA	0	NA
RX Depth	8	-22	-10	-13	-14
	16	-1	0	-12	0
	32	0	NA	0	NA

Flow Control

These options indicate the type of flow control to be used by the transmitter.

Transmitter Controlled

Selecting this option causes the core to first attempt to use transmitter-controlled flow control, but switches to receiver-controlled if the link partner does not support it. Transmitter-controlled flow control minimizes retry conditions through the use of received buffer status and watermarks. Receiver-controlled flow control blindly transmits packets and uses the retry protocol.

Receiver Controlled

Select this option for receiver-controlled flow control only. In this mode, packets are blindly transmitted and the retry protocol is used to control packet flow.

Packet Priority Watermarks

Packet Priority Watermarks are used to progressively limit the packet priorities that can be sent as the effective number of free buffers decreases in the link partner. If the free buffer count exceeds the watermark, only packets of that priority and higher are transmitted. Be sure to set the watermark values below the max value of available buffers within the link partner to allow all packet priorities possibility of transmission.

Priority 3 packets will be sent until the effective number of receive buffers reaches zero.

Highest Priority Watermark (WM2)

Used only when in Transmitter Controlled Flow Control Mode. This field establishes the minimum number of available buffer spaces required prior to sending High Priority (priority 2) packets. The watermarks must be constrained to:

Medium Priority Watermark (WM1)

Used only when in Transmitter Controlled Flow Control Mode. This field establishes the minimum number of available buffer spaces required prior to sending Medium Priority (priority 1) packets. The watermarks must be constrained to:

Smallest Priority Watermark (WM0)

Used only when in Transmitter Controlled Flow Control mode. This field establishes the minimum number of available buffer spaces required prior to sending Smallest Priority (priority 0) packets. The watermarks must be constrained to:

Logical Layer CAR Configuration

The Logical Layer Device Capabilities Registers (CARs) are detailed in Figure 3-5. These registers are read only once implemented. Register values do not effect core behavior.

Figure 3-5: Logical Layer CAR Configuration (Screen 1)

Device Capability Registers (CARs)

Device Identity CAR

Device Identity

Xilinx reserved field; currently not used.

Device Vendor Identity

RapidIO Trade Association assigned Xilinx vendor ID.

Device Information CAR

Device Revision Level

Xilinx core revision.

- Bits 0:15 are currently reserved by Xilinx.
- Bits 16:23 represent the major revision number.
- Bits 24:27 represent the minor revision number.
- Bits 28:31 indicate the patch release.

Currently, the Device Revision Level is 0000_0550h.

Assembly Identity CAR

Assembly Identifier

Sets the type of assembly-CAR 0x08 Assyldentity field. Any 16-bit hexadecimal value is allowed. The default setting is 0x0000. This does not affect core functionality and is stored in a configuration register.

Assembly Vendor Identifier

Sets the assembly vendor identity-CAR 0x08 AssyVendorIdentity field. Any 16-bit hexadecimal value is allowed. The default setting is 0x0000. This does not affect core functionality and is stored in a configuration register.

Assembly Information CAR

Assembly Revision

Sets the revision for assembly-CAR 0x8 AssyRev field. Any 16-bit hexadecimal value is allowed. The default is 0x0000. This does not affect core functionality and is stored in a configuration register.

Processing Element Features CAR

Selects the major functionality provided by the processing element. Allowable options are:

- Bridge
- Memory
- Processor

Memory is the default setting. This field does not alter core functionality.

Logical Layer CAR Configuration

The Operations CARs, shown in Figure 3-6, are meant to indicate to system software what transactions this endpoints support. These should reflect the capabilities of your design. They will not effect core functionality or size.

Figure 3-6: Logical Layer CAR Configuration (Screen 2)

Source Operations CAR

Note: Modifications to the Source Operations CAR do not affect core operation. It is an informational register describing the capabilities of the user design.

Supported Source Operations

Select the standard transmit operations supported by the processing element. The supported source operations are listed in the following text. All operations except Port-Write are enabled by default.

- Read
- Write
- Streaming-Write
- Write with Response
- Data Message
- Doorbell
- Port-Write

Atomic

Select the atomic transmit operations supported by the processing element. Following is a list of supported atomic operations, and all are enabled by default.

- Compare and Swap
- Test and Swap
- Increment
- Decrement
- Set
- Clear
- Swap

Destination Operations CAR

Note: Modifications to the Destination Operations CAR have no effect on core operation. It is an informational register describing the capabilities of the user design.

Supported Destination Operations

Select the standard receive operations supported by the processing element. Following is a list of supported standard operations. All operations except Port-Write are enable by default.

- Read
- Write
- Streaming-Write
- Write with Response
- Data Message
- Doorbell
- Port-Write

Atomic

Select the atomic receive operations supported by the processing element. Following is a list of supported atomic operations, and all are enabled by default.

- Compare and Swap
- Test and Swap
- Increment
- Decrement
- Set
- Clear
- Swap

Logical Layer CSR Configuration

The Logical Layer Command and Status Registers (CSRs) shown in Figure 3-7 are read/write after implementation. Descriptions and impact of each register is detailed on the pages that follow.

Figure 3-7: Logical Layer CSR Configuration Screen

Device Command and Status Registers (CSRs)

Logical Configuration Space Base Address (LCSBA) CSR

Sets the local configuration register space address offset. It is a 31-bit hexadecimal value. Only the most significant 10 bits are used for Maintenance transaction address comparisons. Standard Read and Write transactions into this space are routed to the Maintenance and access the sRIO register space. The default setting is 0x7FE00000.

Base Device ID CSR

Base Device ID

This is the device ID set on the Logical Layer Configuration screen. Valid only if "Use 8-bit Device IDs" was set.

Large Base Device ID

This is the Device ID set on the Logical Layer Configuration screen. Valid only if "Use 16-bit Device IDs" was set.

Host Base Device ID CSR

Allows system host to identify itself by writing its Device ID to this register. Not GUI modifiable. Default Value is 0xFFFF.

Serial Physical Layer CAR/CSR Configuration

The Serial PHY Layer Capabilities Registers (CARs) and Configuration Status Registers (CSRs) as shown in Figure 3-8 are detailed after the diagram.

Figure 3-8: Serial Physical Layer CAR/CSR Configuration Screen

Device Capability Registers (CARs)

Processing Element Features CAR

Re-transmit Suppression Support

Allows the Endpoint to conditionally suppress errors due to CRC failures. Packets are marked as accepted, but dropped. The following Port Response Time-out Control CSR screen allows you to predefine packet priority levels to suppress packet retransmission.

CRF Support

Indicates whether the CRF bit is being used for extended priority mapping. This register reflects the support option that was selected on the Physical Layer Configuration screen (Figure 3-2.)

Device Command and Status Registers (CSRs)

1x/4x LP-Serial Register Block Header CSR

Sets the extended features ID. The extended features ID indicates the extended features of the core. The allowable range is any 16-bit hexadecimal value 0000h to FFFFh. The default is 0001h to reflect the endpoint functionality of the core.

Port Link Time-out Control CSR

Time-out value the PHY uses when determining a link control symbol, such as Packet Accepted or Link Response, has been lost. When this counter expires, link protocol as defined in the RapidIO Serial PHY specification is followed. The max time-out scales linearly with the value in this CSR. A max time-out value of FF_FFFFh corresponds to a time-out length of approximately 3.33 seconds.

Port Response Time-out Control CSR

Time-out value to be used by an end-point to determine a lost packet. A max time-out value of FF_FFFFh should correspond to a time-out length of approximately 3.33 seconds.

Port General Control CSR

The Host bit indicates that the device is a host device. If this bit is not set, the device is an agent or a slave. This bit does not affect core functionality.

The Master Enable bit controls whether or not a device is allowed to issue requests to the system. If the Master Enable bit is not set, the device may only respond to requests.

The Discovered bit indicates that the device has been located by the processing element responsible for system configuration. This bit does not affect endpoint operation.

Serial Physical Layer CSR Configuration

The port control CSR is Configurable using the Serial Physical Layer CSR Configuration screen (Figure 3-9). Details on each field are provided in this section.

Figure 3-9: Serial Physical Layer CSR Configuration Screen

CSR Port MAP

Sets the port (defined in the RapidIO CSR map) to which CSR transactions are targeted. The allowable range is any single hexadecimal value of 0 through F. The default is zero (0). A change to this value modifies the PHY port CSR address offsets.

Command and Status Register

Port Width Override

This sets the default port width for 4x configurations. Default is No Override.

- **No Override** keeps the 4x configuration in 4x mode.
- **Force Single Lane 0** causes the 4x configuration to operate in 1x mode on Lane 0.
- Force Single Lane 2 causes the 4x configuration to operate in 1x mode on Lane 2.

Port Disable

Enabling this option disables port receivers and drivers (serial transceivers). When disabled, the port is unable to transmit or receive packets and control symbols. The port is enabled (unchecked) by default.

Output Port Enable

This enables transmission on the output port. When disabled, the port can only transmit maintenance packets; control packets are unaffected. Output Port Enable is enabled by default.

Input Port Enable

This enables reception on the input port. When disabled, the port can only receive maintenance packets. Non-maintenance packets generate packet-not-accepted (PNA) control symbols. Control symbols are unaffected. Input Port Enable is enabled by default.

Error Checking Disable

Select this option to disable all error checking. Doing so causes all packets to be passed to the link interface, and all packets are tagged as accepted. Core behavior is undefined when this option is selected and a packet with an error is received. Error Checking is enabled (unchecked) by default.

Multicast Event Participant

Select this option to set the core as a multicast event participant. This causes multicast event control symbols to be sent to this port. Multicast Event Participation is enabled by default.

Re-transmit Suppression Mask

Conditionally suppress CRC errors based on packet priority. Extended priority through CRF is available only if CRF support is enabled on the Serial Physical Layer CSR Configuration screen (Figure 3-8.)

Output Generation

The output files generated from the Xilinx CORE GeneratorTM software are placed in the project directory. The file output list may include some or all of the following files. For complete descriptions of these output files, see "Directory Structure and File Descriptions" in Chapter 5.

- Serial RapidIO Physical Layer netlist
- RapidIO Logical Layer netlist
- Serial RapidIO Buffer netlist
- Serial RapidIO Physical Layer simulation model
- RapidIO Logical Layer simulation model
- Supporting CORE Generator software files
- Serial RapidIO release notes and other documentation
- Register Manager reference design
- Serial RapidIO endpoint example design
- Synthesis and implementation scripts
- Mentor Graphics® ModelSim®, Cadence® Incisive Enterprise Simulator (IES), and and Synopsys® VCS® functional simulation scripts
- Clocking template and user constraint file

Quick Start Example Design

This chapter introduces the RapidIO Endpoint reference design that is included with the Serial RapidIO Endpoint solution. The reference design demonstrates how to generate the Serial RapidIO Endpoint solution, including the Serial RapidIO Physical Layer, Buffer design and RapidIO Logical Layer cores, and illustrates using the default options in the RapidIO Endpoint example design. For detailed information about the example design, see Chapter 5, "Detailed Example Design."

Overview

Figure 4-1 shows the Serial RapidIO Endpoint example design, which contains a simulation host model interfacing to a target design that writes and reads data to memory. Both the simulation host and the user design use the RapidIO Endpoint reference design, consisting of a Serial RapidIO Physical Layer core, Buffer core, RapidIO Logical Layer core, and Register Manager reference design. For a description of the components provided with the Serial RapidIO Endpoint, see "Chapter 5, "Detailed Example Design."

For detailed information about the Serial RapidIO Physical Layer and the RapidIO Logical Layer cores, see the *Serial RapidIO User Guide*.

Figure 4-1: The RapidIO Endpoint Example Design Configuration

Generating the Cores

Before you can use the Serial RapidIO Endpoint solution, the Serial RapidIO Physical Layer and RapidIO Logical Layer cores must be generated in the CORE GeneratorTM software within the same CORE Generator software project directory. To generate these cores, you must first create a CORE Generator software project.

To create a CORE Generator software project:

- Start the CORE Generator software.
 For help starting the CORE Generator software, see the *Xilinx CORE Generator Guide*.
- 2. Choose File > New Project.
- 3. Type a directory name. In this example, the directory is named ct_dir>.

4. Set the following options:

Part Options:

a. From Target Architecture, select the desired Virtex® device family. Supported families include Virtex-6, Spartan-6 LXT, Virtex-5 LXT/FXT, and Virtex-4 FX devices.

Note: If an unsupported silicon family is selected, the RapidIO cores will not appear in the list of available cores.

Note: The Device, Package, and Speed Grade selected in the Part options tab have no effect on the generated cores. The core is delivered with an example UCF, targeting the Virtex-6 XC6VLX240T-1156-1, Spartan-6 XC6SLX45T-FGG484-2, Virtex-5 XC5VLX50T-FF1136-1, Virtex-5 XC5VFX70TFF1136-1, or Virtex-4 XC4VFX60-FF1152-10, depending on the chosen target architecture.

Generation Options:

b. Select either VHDL or Verilog for the Design Entry.

Note: A VHDL reference design is not supported for Virtex-4 devices.

c. For Vendor, select Synplicity or Other (for XST).

Advanced Options:

Leave the advanced options at their default values.

To generate a Full Serial RapidIO Endpoint with default values

- After creating the project, locate the directory containing Serial RapidIO in the list of available cores. It should be located under Standard Bus Interfaces > RapidIO > Serial RapidIO.
- 2. Double-click the Serial RapidIO core.
 - If the license file is not properly configured, the CORE Generator software displays an error. See Chapter 2, "Licensing the Cores" for details.
- 3. If a warning appears regarding the limitations of the available license, click OK. The Serial RapidIO customization screen appears.
- 4. Accept the default values on the screen, and then click Finish.

By default, the cores are named srio_phy_v5_5 and rio_log_io_v5_5 and are generated into the Component Name directory within the project directory. Also generated in the Component Name directory are the supporting files for the core, including the Serial RapidIO example endpoint design. Detailed information about the files and directories delivered with the Serial RapidIO core is provided in the following chapter, "Directory Structure and File Descriptions," page 47.

Implementing the Example Design

After the Serial RapidIO cores are generated, the Serial RapidIO Endpoint example design can be synthesized by XST or Synplify, depending on the Vendor setting chosen in the CORE Generator software project options, and processed by the Xilinx implementation tools. The output files generated by the Serial RapidIO Endpoint solution include scripts to assist you in running synthesis and implementation.

In the implementation example that follows, srio_v5_5 is the component name as generated by default from the Serial RapidIO Endpoint solution configuration screen. If a core is generated with a different name, substitute that core name in the following commands.

• From the CORE Generator software project directory window, type the following to implement the Serial RapidIO Endpoint example design.

Windows

```
> cd srio_v5_5\implement
> implement.bat
Linux
% cd srio_v5_5/implement
% ./implement.sh
```

These commands execute a script that synthesizes, builds, maps, and place-and-routes the Serial RapidIO Endpoint example design including the Serial RapidIO Physical Layer and RapidIO Logical Layer core netlists. The resulting files are placed in the results directory of the Serial RapidIO Endpoint solution, which is created by the implement script at runtime.

Running the Simulation

Using the Serial RapidIO Endpoint example design (delivered as part of the Serial RapidIO Endpoint solution), you can quickly simulate and observe the behavior of the RapidIO cores.

Setting up the Simulation

To run the gate-level simulation you must have the Xilinx Simulation Libraries compiled for your system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE® Synthesis and Verification Design Guide, and the Xilinx ISE Software Manuals and Help. You can download these documents from:

www.xilinx.com/support/software_manuals.htm.

The Xilinx simulation libraries must be mapped into the simulator. If the libraries are not set for your environment, please refer to the *Synthesis and Simulation Design Guide* on the Xilinx software manuals Web page for assistance compiling Xilinx simulation models and setting up the simulator environment.

Virtex-6, Spartan-6, and Virtex-5 devices require a Verilog LRM-IEEE 1364-2005 encryption-compliant simulator. For VHDL simulation, a mixed HDL license is required.

Functional Simulation

This section contains instructions for running a functional simulation of the Serial RapidIO Endpoint solution using Verilog. Functional simulation models for the Serial RapidIO Physical Layer and RapidIO Logical Layer cores are provided when the cores are generated. Implementing the core before simulating the functional models is not required.

To run the functional simulation of the example design using ModelSim:

- Launch the simulation script: modelsim> do simulate_mti.do

To run the functional simulation of the example design using IES:

- 2. Execute the simulation script:
 - % ./simulate_ncsim.sh
 - > ./simulate_ncsim.bat

The simulation script compiles the Serial RapidIO Physical Layer, Buffer, RapidIO Logical Layer functional simulation models, the Serial RapidIO Endpoint example design, and supporting simulation files. It then runs the simulation and checks ensure that it completed successfully. To observe the operation of the core, inspect the simulation transcript and the waveform.

Creating an ISE Software Project

Located in the top level of your project directory is a <code>create_ise_prj.tcl</code> script. This script allows for easily integrating the Serial RapidIO core into an ISE software project using Project Navigator. The script creates a new project and locates all the necessary files and directories to synthesize the SRIO core. This script only supports a core generated outside of Project Navigator using the CORE Generator software with all components of the full solution selected (that is, Endpoint Example Design, Serial RapidIO Logical Layer, and Serial RapidIO Physical Layer).

To use this script, from a command prompt navigate into your project directory where this script is located. Run the command "xtclsh create_ise_prj.tcl build_project". After this script executes, a .ise file will be located in the same directory. It can then be opened to work with the project or implement the core through XST.

Detailed Example Design

This chapter provides detailed information about the Serial RapidIO Endpoint example design. It describes the output files, directory structure, purpose and contents of the implementation scripts, operation of the example target design and the demonstration test bench.

Directory Structure and File Descriptions

The complete LogiCORE™ IP Serial RapidIO Endpoint solution consists of the following cores:

- Serial RapidIO Physical Layer
- Buffer Design
- RapidIO Logical Layer
- Serial RapidIO Endpoint Example Design

The 1 lane (1x) and 4 lane (4x) Serial Physical Layer is incorporated into the Serial RapidIO Physical Layer core. The Logical (I/O) and Transport layers are combined into the RapidIO Logical Layer core. The RapidIO Endpoint solution includes a register manager reference design, and an example user design.

The Serial RapidIO Endpoint solution also includes synthesis and implementation scripts, simulation scripts, a demonstration test bench, and supporting simulation files for the example design. For the implementation and simulation scripts to work, all cores must be generated in the same CORE GeneratorTM software project directory.

48

CORE Generator Software Project

project directory>

Top-level project directory for the CORE Generator software.

Serial RapidIO Endpoint

 component name Contains the Serial RapidIO release notes text file.

<srio_component name>/doc

Contains the Serial RapidIO Endpoint solution PDF documentation.

<srio_component_name>/example_design Contains the source files necessary to create the RapidIO Endpoint example design.

<srio_component_name>/example_design/chipscope Contains the .xco files to create the Chipscope ILA, ICON, and VIO cores and a Chipscope project file.

<srio_component_name>/example_design/reg_manager Contains the source files for the example and endpoint user design.

| <srio_component_name>/example_design/user Contains the source files for the initiator and target user designs.

 <srio_component_name>/implement Contains the supporting files for synthesis and implementation of the RapidIO example design.

<srio_component_name>/implement/results Contains the implementation scripts that are created when the implement scripts are run.

<srio_component_name>/netlists

create the RapidIO simulation model.

Contains various CORE Generator software netlists for asynchronous FIFOs that are used in implementing the example design.

 <srio_component_name>/simulation Contains the test bench and other supporting source files used to

<srio_component_name>/simulation/functional Contains the scripts and define files for simulating the RapidIO Endpoint example design in ModelSim and Cadence IES.

Directory and File Contents

The Serial RapidIO Endpoint solution cores directories and their associated files are defined in this section.

Project Directory

The Serial RapidIO cores need to be generated from the same CORE Generator software project directory so that all the files appear in the cproject_dir

ct directory>

The following table contains the project directory files for the Serial RapidIO Physical Layer, the RapidIO Logical Layer and the Serial RapidIO Endpoint solution cores.

Table 5-1: Project Directory

Name	Description
<pre><pre><pre><pre>dir></pre></pre></pre></pre>	
<pre><srio_component_name>.xco</srio_component_name></pre>	Log file from CORE Generator software describing which options were used to generate the Serial RapidIO core. An XCO file is generated by the CORE Generator software for each core that it creates in the current project directory. An XCO file can also be used as an input to the CORE Generator software.
<pre><srio_component_name>_flist.txt</srio_component_name></pre>	A text file listing all of the output files produced when the customized Serial RapidIO cores were generated in the CORE Generator software.

Serial RapidIO Endpoint Solution

The following tables contain the files and their descriptions specific to the Serial RapidIO Endpoint solution.

component name>

The <srio_component_name> directory contains the release notes text file included with the core that contains last-minute changes and or updates.

Table 5-2: Component Name Directory

Name	Description
<pre><pre><pre>cproject_dir>/<srio_c< pre=""></srio_c<></pre></pre></pre>	omponent_name>
srio_readme.txt	The Serial RapidIO Endpoint core release notes text file.
create_ise_prj.tcl	A TCL script to simplify creating an ISE® software project.
<phy_component_name>.ngc</phy_component_name>	The netlist for the Serial RapidIO Physical Layer core.
<phy_component_name>.ngc</phy_component_name>	The netlist for the RapidIO Physical Layer core.
<pre><phy_component_name>.v <phy_component_name>.vhd</phy_component_name></phy_component_name></pre>	The structural simulation model for the Serial RapidIO Physical Layer core. It is used to support the functional simulation of the Serial RapidIO Physical Layer core in the RapidIO Endpoint example design.
<pre><phy_component_name>.veo <phy_component_name>.vho</phy_component_name></phy_component_name></pre>	The HDL template for the Serial RapidIO Physical Layer.
<pre><logio_component_name>.ngc</logio_component_name></pre>	The netlist for the RapidIO Logical Layer core.
<pre><logio_component_name>.v <logio_component_name>.vhd</logio_component_name></logio_component_name></pre>	The structural simulation model for the RapidIO Logical Layer core. It is used to support the functional simulation of the Serial RapidIO Physical Layer core in the RapidIO Endpoint example design.
<pre><logio_component_name>.veo <logio_component_name>.vho</logio_component_name></logio_component_name></pre>	The HDL template for the RapidIO Logical Layer core.
rio_buffer.ngc	The netlist for the Buffer design.
rio_buffer.v rio_buffer.vhd	The structural simulation model for the Buffer design. It is used to support the functional simulation of the Buffer in the RapidIO Endpoint example design.
rio_buffer.veo rio_buffer.vho	The HDL template for the Buffer.

[&]quot;ct directory>"

<srio_component name>/doc

This directory contains the Serial RapidIO Endpoint solution PDF documentation that is included with the core.

Table 5-3: Doc Directory

Name	Description
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
srio_gsg247.pdf	The Serial RapidIO Getting Started Guide
srio_ds696.pdf	The Serial RapidIO Data Sheet
srio_ug503.pdf	The Serial RapidIO User Guide

[&]quot;ct directory>"

<srio_component_name>/example_design

This directory and its subdirectories contain all the source files, aside from the Serial RapidIO Physical Layer and RapidIO Logical Layer netlists, to create the RapidIO Endpoint example design. They include the Buffer design, register manager reference design, example user design, and user constraints file.

Table 5-4: Example Design Directory

Name	Description
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
<pre><srio_component_name>_top.ucf</srio_component_name></pre>	The user constraints file (UCF) for the RapidIO Endpoint example design.
<pre><srio_component_name>_top.v <srio_component_name>_top.vhd</srio_component_name></srio_component_name></pre>	The top-level HDL file for the RapidIO Endpoint example design.
<pre><srio_component_name>_clk.v <srio_component_name>_clk.vhd</srio_component_name></srio_component_name></pre>	HDL clock module for generation of reference clocks and core clocks.
rio_wrapper.v rio_wrapper.vhd	HDL wrapper file that instantiates the SRIO Physical Layer core, RapidIO Logical Layer core, Buffer design, Register Manager reference design, and transceiver wrapper. The SRIO Physical Layer core and Serial RapidIO GT wrapper are instantiated as part of the Physical Layer wrapper.
phy_wrapper.v phy_wrapper.vhd	Wrapper file that instantiates SRIO Physical Layer core and the SRIO GT transceiver wrapper.
rio_reset.v rio_reset.vhd	Example reset module that generates and sequences the necessary resets from a sys_reset_n.
srio_gt_wrapper_v4_1x.v	Transceiver wrapper file for Virtex®-4 FPGA 1x configurations.
srio_gt_wrapper_v4_4x.v	Transceiver wrapper file for Virtex-4 FPGA 4x configurations.

Table 5-4: Example Design Directory (Cont'd)

Name	Description
<pre>srio_gt_wrapper_v5_1x.v srio_gt_wrapper_v5_1x.vhd</pre>	Transceiver wrapper file for Virtex-5 FPGA 1x configurations.
<pre>srio_gt_wrapper_v5_4x.v srio_gt_wrapper_v5_4x.vhd</pre>	Transceiver wrapper file for Virtex-5 FPGA 4x configurations.
<pre>srio_gt_wrapper_v6_1x.v srio_gt_wrapper_v6_1x.vhd</pre>	Transceiver wrapper file for Virtex-6 FPGA 1x configurations.
<pre>srio_gt_wrapper_v6_4x.v srio_gt_wrapper_v6_4x.vhd</pre>	Transceiver wrapper file for Virtex-6 FPGA 4x configurations.
<pre>srio_gt_wrapper_s6_1x.v srio_gt_wrapper_s6_1x.vhd</pre>	Transceiver wrapper file for Spartan-6 FPGA 1x configurations.
<pre>srio_gt_wrapper_s6_4x.v srio_gt_wrapper_s6_4x.vhd</pre>	Transceiver wrapper file for Spartan-6 FPGA 4x configurations.
cal_block_v1_4_1.v	Calibration block for Virtex-4 FPGA GT11 transceivers.
oplm_pma_pcs_rst_sequence.v	Module that performs the necessary reset sequencing for the Virtex-4 FPGA GT11 transceivers.
gt11_init_rx.v	Initialization state machine within the RocketIO transceiver wrappers which manages the reset sequence for the receiving Virtex-4 FPGA transceivers.
gt11_init_tx.v	Initialization state machine within the RocketIO transceiver wrappers which manages the reset sequence for the transmitting Virtex-4 FPGA transceivers.
gt11_wrapper.v	GT11 wrapper from the RocketIO transceiver Wizard for Virtex-4 FPGA configurations.
unused_mgt.v	This wrapper can be placed around any unused MGTs to alleviate static operating behavior (see <u>AR #22471</u> for details).
gt11_wrapper.xco	XCO file used to generate RocketIO transceiver associated files for Virtex-4 FPGA configurations.
gtp_wrapper.v gtp_wrapper.vhd	GTP wrapper from GTP Wizard for Virtex-5 LXT/SXT or Spartan-6 LXT FPGA configurations.
<pre>gtp_wrapper_tile.v gtp_wrapper_tile.vhd</pre>	GTP wrapper from GTP Wizard for Virtex-5 LXT/SXT or Spartan-6 LXT FPGA configurations.
gtp_wrapper.xco gtp_wrapper_vhd.xco	XCO file used to generate gtp_wrapper.v and gtp_wrapper_tile.v files from the GTP Wizard for Virtex-5 LXT/SXT or Spartan-6 LXT FPGA configurations.

Table 5-4: Example Design Directory (Cont'd)

Name	Description
gtx_wrapper.v gtx_wrapper.vhd	GTX wrapper from GTX Wizard for Virtex-5 FXT FPGA configurations.
<pre>gtx_wrapper_tile.v gtx_wrapper_tile.vhd</pre>	GTX wrapper from GTX Wizard for Virtex-5 FXT FPGA configurations.
gtx_wrapper.xco gtx_wrapper_vhd.xco	XCO file used to generate gtx_wrapper.v and gtx_wrapper_tile.v files from the GTX Wizard for Virtex-5 FXT FPGA configurations.
gtx_wrapper.v gtx_wrapper.vhd	GTX wrapper from GTX Wizard for Virtex-6 FPGA configurations.
gtx_wrapper_gtx.v gtx_wrapper_gtx.vhd	GTX wrapper from GTX Wizard for Virtex-6 FPGA configurations.
gtx_wrapper.xco gtx_wrapper_vhd.xco	XCO file used to generate gtx_wrapper.v and gtx_wrapper_gtx.v files from the GTX Wizard for Virtex-6 FPGA configurations.

<srio_component_name>/example_design/chipscope

This directory contains the .xco files to create the Chipscope ILA, ICON, and VIO cores through CORE Generator. It also contains a Chipscope project file. This Chipscope design can be used to monitor activity in the physical layer and logical layer. It also provides the ability to initiate traffic.

Table 5-5: Chipscope Directory

Name	Description
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
phy_ila.xco	This .xco file is used by CORE Generator to create a Chipscope ILA core that is used to monitor activity at the Physical Layer core.
rio_ila.xco	This .xco file is used by CORE Generator to create a Chipscope ILA core that is used to monitor activity at the Logical Layer core.
srio_icon.xco	This .xco file is used by CORE Generator to create a Chipscope ICON controller that is used to control each of the various Chipscope cores.
srio_vio.xco	This .xco file is used by CORE Generator to create a Chipscope VIO core that is used initiate transactions.
srio_cs_bb.v	This is a blackbox file used to instantiate the Chipscope cores.
srio.cpj	This is a Chipscope project file containing predefined configurations for each ILA and for controlling the VIO interface.

<srio_component_name>/example_design/reg_manager

This directory contains the source files for the Register Manager reference design. The register manager is designed to process configuration packets from the RapidIO Logical Layer and Serial RapidIO Physical Layer cores. Once a configuration packet is received, the register manager determines the appropriate action to take. The source code contains comments to help explain the functionality of the code. You are not required to use this register manager in your design; however, some type of register manager will be needed.

Table 5-6: Reg Manager Directory

Name	Description
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
reg_manager.vreg_manager.vhd	File containing the register manager reference design that provides read and write access to the entire RapidIO configuration space through a single interface. It acts as a master on a maintenance bus connecting the configuration ports of all RapidIO layers, as well as one user agent potentially mapped into the configuration space.

<srio_component_name>/example_design/user

This directory contains the source files for the Initiator and Target User reference designs. The Initiator User interfaces to the Initiator Request and Response ports of the RapidIO Logical Layer while the Target User interfaces to the Target Request and Response ports. Both User designs are used as an example on how to interface to the RapidIO Logical Layer core and demonstrate the RapidIO Endpoint in simulation or hardware. The source code contains comments to help explain the functionality of the code. You are not required to use either User design in your design.

Table 5-7: User Directory

Name	Description
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
user_top.v user_top.vhd	Top-level User design that instantiates both Initiator and Target User designs.
target_user.v target_user.vhd	The Target User design interfaces to the Target Request and Target Response ports of the Logical Layer. It processes read and write requests. NWRITE, NWRITE_R and SWRITE requests are stored in a Block RAM. It also generates responses as necessary to NREAD and NWRITE_R commands.
<pre>initiator_user.v initiator_user.vhd</pre>	Top-level Initiator User design.
tickler.v tickler.vhd	User interface of the Initiator User design. It is used to send various packet type requests to the IREQ Generator.
<pre>ireq_generator.v ireq_generator.vhd</pre>	The Initiator Request (IREQ) Generator of the Initiator User design. It creates the requested Initiator Request packet for the Logical Layer. It also handles the generation of the SOF, EOF, and VLD control signals, populates the frame with the requested amount of data, and increments the Transaction ID.
<pre>iresp_handler.v iresp_handler.vhd</pre>	The Initiator Response (IRESP) Handler of the Initiator User design. It verifies incoming Initiator Response packets against expected responses generated from outgoing Initiator Request packets.
<pre>initiator_bram.v initiator_bram.vhd</pre>	The Initiator block RAM (IRAM) module of the Initiator User design. It stores pre-loaded field information with different data patterns. This data is used to populate the DATA field of outgoing Initiator Request packets from the IREQ Generator module. The IRAM is also used by the IRESP Handler to verify the DATA field of incoming Initiator Response packets against the expected contents.

Table 5-7: User Directory (Cont'd)

tid_bram.v tid_bram.vhd	The Transaction ID (TID) block RAM module of the Initiator User design. It passes information regarding expected Initiator Responses from the IREQ Generator to the IRESP Handler. The IRESP Handler will use this information to verify incoming responses.
history_bram.v history_bram.vhd	The History block RAM module of the Initiator User design. It is used to store information of outgoing Initiator Request and incoming Initiator Response packets. This history of previous transactions can be used to debug any errors. There are separate memory spaces for Initiator Request and Initiator Response packets.
fifo_16x190.v fifo_16x190.vhd	Structural simulation netlist for the FIFO used in the IREQ Generator.
target_checker.v target_checker.vhd	The Target Checker module verifies target request transactions.

<srio_component_name>/implement

This directory contains the support files necessary for synthesis and implementation of the Serial RapidIO Endpoint example design with the Xilinx tools.

Table 5-8: Implementation Directory

Name	Description
<pre><pre><pre>ct_dir>/<sri< td=""><td>o_component_name>/implement</td></sri<></pre></pre></pre>	o_component_name>/implement
implement.bat	A Windows batch file that processes the example design through the Xilinx tool flow.
implement.sh	A Linux shell script that processes the example design through the Xilinx tool flow.
xst.prj	The XST project file for the example design; it lists all of the source files to be synthesized. It is only available when the CORE Generator software vendor project option is set to "Other."
xst.scr	The XST script file for the example design that is used to synthesize the core, called from the implement script described previously. It is only available when the CORE Generator software vendor project option is set to "Other."
synplify.prj	The Synplicity project file for the example design; it lists all of the source files to be synthesized. It is only available when the CORE Generator software vendor project option is set to "Synplicity."

<srio_component_name>/implement/results

The results directory is created when the implement scripts are ran and contains the resulting implementation files.

<srio_component_name>/netlists

This directory contains various CORE Generator software netlists for asynchronous FIFO's that are used in implementing the Buffer design.

Table 5-9: Netlists Directory

Name	Description
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
	Netlist for FIFO that is used in Initiator Request Generator module of the Initiator User design.

<srio_component_name>/simulation

This directory and its subdirectories contain the files necessary to simulate the Serial RapidIO Endpoint example design. This directory contains the test bench and other supporting source files used to create the RapidIO host simulation model.

Table 5-10: Simulation Directory

Name	Description		
<pre><pre><pre><pre>project_dir>/<srient< pre=""></srient<></pre></pre></pre></pre>	o_component_name>/simulation		
ep_sim.v	This file contains the top level RapidIO host		
ep_sim.vhd	simulation model. It instantiates the physical layer, logical layer, register manager, buffer and host application.		
ep_tb.v	Test bench for the RapidIO Endpoint example		
ep_tb.vhd	design demonstrating the example user application.		
sys_clk_gen.v	This module generates the system clock.		
sys_clk_gen.vhd			
user_sim_host.v	Standalone test bench for the RapidIO Endpoint		
user_sim_host.vhd	example design. It sends packets that are then expected in the same order on the response.		

<srio_component_name>/simulation/functional

This directory contains the scripts and define files for simulating the Serial RapidIO Endpoint example design in ModelSim and IES.

Table 5-11: Functional Directory

Name	Description		
<pre><pre><pre><pre>ct_dir>/<srio_con< pre=""></srio_con<></pre></pre></pre></pre>	mponent_name>/simulation/functional		
simulate_mti.do	A ModelSim macro file that compiles the example design sources and the structural simulation models, then runs the functional simulation to completion.		
simulate_vcs.sh	A VCS shell script that compiles the example design sources and the structural simulation models, then runs the functional simulation to completion.		
simulate_ncsim.bat	An IES batch file for Windows that compiles the example design sources and the structural simulation models, then runs the functional simulation to completion.		
simulate_ncsim.sh	An IES shell script for Linux that compiles the example design sources and the structural simulation models, then runs the functional simulation to completion.		
wave_1x_ser.sv wave_4x_ser.sv	IES macro files that open a wave window and add key signals to the wave viewer.		

Serial RapidIO Endpoint Example Design Description

The RapidIO Endpoint example design that is delivered with the Serial RapidIO Endpoint solution helps core designers understand how to use the Serial RapidIO Physical Layer and RapidIO Logical Layer cores in a design. The RapidIO Endpoint example design is shown in Figure 5-1 and contains the following:

- Register Manager reference design
- Initiator and user reference designs
- Simulation host

The example design provides helpful information for building design using the Serial RapidIO Endpoint example solution. The Register Manager converts maintenance interface of the Logical Layer and the management interfaces of the LOGIO, Buffer, and SRIO management interfaces. The Initiator and Target User reference design shows you how to develop an interface to the RapidIO Logical Layer core. The simulation host provides a starting point for developing test benches for you own design. You can also simulate and implement the example design to understand how the endpoint example design works in your own design.

Figure 5-1: RapidIO Endpoint Core Example Design

Initiator User Design

The Initiator User Design is an example design that interfaces to the Initiator Request and Response ports of the Logical Layer core. It is designed to behave as a Master and generate Initiator Request (IREQ) packets and verify corresponding Initiator Response (IRESP) packets. The Initiator User Design is comprised of six blocks, as shown in Figure 5-2.

Figure 5-2: Initiator User Design

Initiator Request Generator

The Initiator Request (IREQ) Generator is designed to aid in the generation of Initiator Request packets. It interfaces to the Tickler through LocalLink ready and valid control signals. The Tickler provides header information (such as ftype, ttype, prio, address) and data size to the IREQ Generator. The IREQ Generator then creates the requested IREQ packet for the LOGIO. It also handles the generation of the SOF, EOF, and VLD control signals, populates the frame with the requested amount of data, and increments the Transaction ID (TID).

Data is pulled either from the Initiator block RAM containing predefined data patterns or from the external Bypass Port. Pulling data from the Initiator block RAM allows test data to be easily transmitted and verified, where applicable. The Initiator block RAM is addressed using the address field of the header. The Bypass Port allows for custom data to be sent, specifically for Maintenance transactions.

The IREQ Generator passes information to the TID block RAM, which is used by the Initiator Response (IRESP) Handler for expected packet responses. The IRESP Handler uses this information to verify incoming responses. All outgoing frames (not just ones with expected responses) are written to the History block RAM and provide a record of previous transactions.

Initiator Response Handler

The Initiator Response (IRESP) Handler is used to verify incoming IRESP packets against expected responses generated from outgoing Initiator Request (IREQ) packets. The Transaction ID (TID) or corresponding message fields are used to pull information from the TID block RAM for incoming IRESP packets. This information is used by the IRESP Handler to verify the received IRESP packet.

The IRESP Handler flags an error in any of the following situations:

- There is a data mismatch between the IRESP data and the expected data in the Initiator block RAM. The IRESP Handler can only verify data that originated from the Initiator block RAM.
- The IRESP Handler received an unexpected IRESP packet.
- An IRESP packet was received without an EOF or the EOF was late arriving; indicating that the packet is too long.
- An EOF was arrived earlier than expected for an IRESP packet indicating that the packet is shorter than expected.
- The STATUS field of an IRESP packet indicates a value other than "DONE" (4'b0000).
- The Destination ID received in the IRESP packet does not match the Device ID of the core.

TID Block RAM

Transaction ID (TID) block RAM is used to store information of outgoing Initiator Request (IREQ) packets that are expected to generate responses. This can later be accessed by the Initiator Response (IRESP) Handler to verify incoming IRESP packets against outgoing IREQ packets. The TID block RAM is indexed with the packet TID or with the corresponding Message field if it is a Message packet.

The data stored for each entry includes an indication of whether or not to check the data, offset, and byte count of outgoing IREQ packets. The IRESP Handler uses this information to verify the data of incoming IRESP packets against the expected data in the Initiator block RAM. There is a bit indicating if the data field should be checked by the IRESP Handler. There is also a valid bit for each entry that indicates if the entry is valid and outstanding. If the IREQ Generator writes to an entry which is already valid, it is flagged as an error. If the IRESP Handler reads from an entry that is invalid, it is flagged as an error.

The TID block RAM maintains a count of the current number of valid outstanding entries in the block RAM. The counter increments when the IREQ port writes to it and is decremented when the IRESP reads from it. This outstanding packet count can be used to indicate if an expected response was never received.

Initiator Block RAM

Initiator block RAM stores preloaded data field information. This data can be used by the Initiator Request (IREQ) Generator to populate the DATA field of outgoing IREQ packets. The Initiator block RAM data is also used by the Initiator Response (IRESP) Handler to verify the DATA field of incoming IResp packets against the expected contents.

The IRESP Handler can only verify data of incoming packets generated on outgoing IREQ packets with data from the Initiator block RAM. Therefore, it is important to keep the contents of the memory space on both ends of the link in sync to avoid erroneous data mismatches. For example, a write must occur with data from the Initiator block RAM before doing a read from the other end so that the IRESP Handler has known data to check against. For example, it is not possible to check the data of a Maintenance Read because there would be no expected data in the Initiator block RAM for the IRESP Handler to verify.

The Initiator block RAM is pre-loaded with different data patterns that can be accessed depending on the address space. The data types and their location in the block RAM address space are defined in the Table 5-12.

Table 5-12: Initiator Block RAM Data Types and Locations

Address Range	Data Type	Init Value
0x000 - 0x01F	All 0s	0x00, 0x00, 0x00,, 0x00
0x020 - 0x03F	All 1s	0xFF, 0xFF, 0xFF,, 0xFF
0x040 – 0x05F	Alternating 0s and 1s Bytes	0x55, 0x55, 0x55,, 0x55
0x060 – 0x07F	Alternating 1s and 0s Bytes	0xAA, 0xAA, 0xAA,, 0xAA
0x080 – 0x09F	Alternating bytes of 0s and 1s	0x00, 0xFF, 0x00,, 0xFF
0x0A0 – 0x0BF	Alternating bytes of 1s and 0s	0xFF, 0x00, 0xFF,, 0x00
0x0C0 – 0x0DF	Alternating dwords of 0s and 1s	0x0000_0000_0000_0000, 0xFFFF_FFFF_FFFF_FFFF,
0x0E0 – 0x0FF	Alternating dwords of 1s and 0s	0xFFFF_FFFF_FFFF, 0x0000_0000_0000_0000,
0x100 - 0x11F	Incrementing bytes	0x00, 0x01, 0x02,, 0xFF
0x120 - 0x13F	Incrementing dwords	0x0000_0000_0000_0000, 0x0000_0000_0000_
0x140 - 0x15F	Decrementing bytes	0xFF, 0xFE, 0xFD,, 0x00
0x160 – 0x17F	Decrementing dwords	0x0000_0000_0000_001F, 0x0000_0000_0000_001E,, 0x0000_0000_0000_0000
0x180 - 0x19F	Random data	0xB3, 0x4C, 0x66, 0x9D (for example)

Table 5-12: Initiator Block RAM Data Types and Locations

0x1A0 - 0x1BF	More random data	0x32, 0x18, 0xFF, 0x87 (for example)
0x1C0 - 0x3FF	More incrementing dwords	0x0000_0000_0000_0000, 0x0000_0000_0000_

History Block RAM

The History block RAM stores information of outgoing Initiator Request (IREQ) and incoming Initiator Response (IRESP) packets. The IREQ and IRESP ports have separate memory spaces. This history of previous transactions can then be used to debug any failures. Although the read port exists, the logic is not currently implemented to read out the contents of the block RAM. This logic may be implemented by the user.

Tickler

The Tickler interfaces to the Initiator Request (IREQ) Generator and generate IREQ packets. The ports of the Tickler interface to the IREQ Generator are described in Table 5-13.

Table 5-13: Tickler Interface to the IREQ Generator Ports

Name	Width	Direction	Description
igen_vld		Out	Packet Valid Indication – indicates information presented to IREQ Generator is valid for new packet.
igen_rdy		In	IREQ Generator Ready Indication.
igen_bypass_data	[0:63]	Out	Bypass data port to allow data other than what is stored in the Initiator block RAM to be sent.
igen_stalls	[0:1]	Out	Currently unsupported.
igen_bypass_en		Out	Enable the Data Bypass port to use the data presented on the Bypass Data to populate the DATA field rather than contents of the Initiator block RAM. Registered at beginning of packet on ireq_gen_vld and ireq_gen_rdy and changing in the middle of packet has no effect.
igen_bypass_vld		Out	Bypass Data Valid – Indicates valid data is on Bypass Data bus.
igen_bypass_rdy		In	Bypass Data Ready – IREQ Generator is ready to accept data on Bypass Data port.

Table 5-13: Tickler Interface to the IREQ Generator Ports (Cont'd)

igen_addr	[0:33]	Out	Address of packet to be generated –
igen_addi	[0.33]	Out	Read/Write: {xamsbs[0:1], address[0:28], byte_offset[0:2]}
			Swrite: {xamsbs[0:1], address[0:28], 3'b0}
			Maintenance: {7'b0, config_offset[0:23], byte_offset[0:2]}
			Doorbell: N/A
			Message: {21'b0, iram_addr[0:9], 3'b0}
igen_size	[0:8]	Out	Number of bytes of data to transmit.
igen_ftype	[0:3]	Out	Format Type of packet to be generated.
igen_ttype	[0:3]	Out	Transaction Type of packet to be generated.
igen_prio	[0:1]	Out	Priority of packet to be generated.
igen_crf		Out	Critical Request Flow for packet to be generated.
igen_dest_id	[0:7] / [0:15]	Out	Destination ID of packet to be generated.
igen_hopcount	[0:7]	Out	Hopcount of maintenance write packets to be generated.
igen_local		Out	Local configuration indicating that the packet to be generated is a local maintenance packet.
igen_db_info	[0:15]	Out	Doorbell Info for Message packets.
igen_msglen	[0:3]	Out	Message Length – a value of 0x0 indicates a single-packet message and a value of 0xF indicates a 16-packet message.
igen_letter	[0:1]	Out	Letter for Message packets.
igen_mbox	[0:1]	Out	Mailbox for Message packets.
igen_msgseg	[0:3]	Out	Message Segment / xmbox – this port is the Message Segment (msgseg) port for multiple packet messages, as determined by the ireq_gen_msglen port, and is the xmbox port for single packet messages.
igen_error	[0:3]	Out	Error indications to the IREQ Generator.
g_error	[0:3]	In	Error indicators from IREQ Generator.

The Tickler and IREQ Generator interfaces communicate using the LocalLink style of ready and valid signals. When the IREQ Generator is ready and the Tickler has valid header information, the IREQ Generator generates an IREQ packet. The Tickler supports the generation of any supported packet type. The Tickler must present the header information of the request packet. It must also provide a size for packets with data so that the IREQ Generator can include the requested amount of data in the packet.

If the packet requires data, it can either be pulled from the Initiator block RAM or from the Bypass Port as determined by the <code>igen_bypass_en</code> setting. The Initiator block RAM contains predefined data patterns and is accessed by using the address header field. For the Bypass Port, data is loaded over another LocalLink style interface designed to interface to a FIFO. Specifically, the <code>igen_bypass_rdy</code> input from the IREQ Generator can be connected to the FIFOs <code>read_enable</code> port while the <code>igen_bypass_vld</code> output from the Tickler can be driven from the empty signal of the FIFO.

The Tickler can be modified to generate different packets or sequences than what is currently provided. To do this, the Tickler packet state machine can be modified to send the desired packets. Alternatively, you may remove the Tickler and build a custom interface into the IREQ Generator.

The Initiator User Design is intended to complete the RapidIO Endpoint example design and can be implemented in hardware. The user interfaces to the Initiator User Design through the Tickler interface. This is controlled through Chipscope delivered with the core. Refer to the *Serial RapidIO User Guide* (UG503) for more information on using Chipscope to generate traffic.

The resets and status LEDs are described in Table 5-14 for each of the supported development platforms.

Table 5-14: Tickler Interface to the Initiator User Design

ML623	SP623	ML523	ML421	ML325	Function	Description		
	Pushbutton							
SW4	SW4	SW8	SW1	SW8	Link Reset	First issues Link Reset to the other end of the link. Once the port_initalized is deasserted in response to the Link Reset command, the FPGA logic is reset.		
SW6	SW6	SW7	SW2	SW3	Local Reset	Resets all logic within the FPGA but does not issue a Link Reset command.		
				LEDs				
DS10	DS10	DS16	DS28	DS23	mode_sel	Mode Select from PHY $(1 = 4x \text{ mode}, 0 = 1x \text{ mode})$		
DS11	DS11	DS17	DS32	DS16	~lnk_trdy_n	Tx ready for link (1 = Tx link is ready, 0 Tx link is not ready)		
DS12	DS12	DS18	DS33	DS17	~lnk_rrdy_n	Rx ready for link (1 = Rx link is ready, 0 = Rx link is not ready)		
DS13	DS13	DS19	DS34	DS18	port_initialized	Port Initialized (1 = port is initialized, 0 = port is not initialized)		

Table 5-14: Tickler Interface to the Initiator User Design (Cont'd)

ML623	SP623	ML523	ML421	ML325	Function	Description
DS14	DS14	DS20	DS35	DS19	lnk_porterr_n	Link Port Error (1 = port is not in error, 0 = port is in error state)
DS15	DS15	DS21	DS8	DS20	PLL Locked (Not available for Virtex-4)	Virtex-5 and Spartan-6 FPGA GT PLL Locked indicator (1 = locked, 0 = not locked).
DS16	DS16	DS22	DS8	DS21	DCM Locked	DCM Locked indicator (1 = locked, 0 = not locked)
DS17	DS17	DS23	DS10	DS22	Initiator User Error	Error indicator from Initiator User design (1 = error, 0 = no error)

Target User Design

The Target User Design is an example target design that interfaces to the Target Request and Target Response ports of the Logical Layer. The user application portion of the target design shown in Figure 5-3 is the target_user.v file and is created in the c_dir>/<srio_component_name>/example_design/user directory when the Serial RapidIO Endpoint solution is generated through CORE Generator software.

Figure 5-3: RapidIO Example Target Design Block Diagram

The simulation host writes data into the block ram through the target request port on the RapidIO Logical Layer core. To read data, the simulation host will send a read request to the user application using the target request port. The user application will process the request and respond using the target response port. The simulation host uses SWRITE, NWRITE, NWRITE_R, and NREAD commands to interface to the user applications block ram.

The user application will process incoming packets on the target request port and respond if necessary. The user application will generate responses for NWRITE_R and NREAD commands.

For more information on interfacing to the RapidIO Logical Layer core, see the comments in the user.v file. Also, see the *LogiCORE Serial RapidIO User Guide*, srio_ug503.pdf, located in the

```
oject dir>/<srio component name>/doc
```

directory after the Serial RapidIO core is generated in the CORE Generator software.

Simulation Host

The simulation host, shown in Figure 5-4, is the user_sim_host.v file. It is created in the component_name/simulation directory when the Serial RapidIO Endpoint solution is generated through the CORE Generator software.

Figure 5-4: RapidIO Simulation Host Block Diagram

The simulation host initiates request to write data to the memory inside the target design user application. Data is written using SWRITE, NWRITE, or NWRITE_R commands. Data is then read back from the memory of the target design using the NREAD command and compared to the original data sent. Status and error messages are printed to the screen during operation so the user can monitor the progress of the test bench.

The Target User Design, target_user.v, is also instantiated in the Simulation Host. This adds target functionality to the simulation side allowing for the FPGA side to initiate requests and receive responses from the Simulation Host.

ChipScopeTM VIO Hardware Demonstration

This chapter introduces the hardware demonstration that is generated with the Serial RapidIO Endpoint Solution. The design leverages the ChipScope™ Pro tools to enable users to form Serial RapidIO transactions in real time and view these transactions as they travel through the core.

Overview

The hardware demonstration integrates three ChipScope cores into the Serial RapidIO Endpoint Example Design.

A Virtual Input/Output (VIO) core is embedded in the Tickler as part of the Initiator User Design. This enables the creation of user-specified I/O, Maintenance, and Message packets in real time. For more information on the Initiator User Design, see Chapter 5, "Detailed Example Design." Additionally, the design includes two Integrated Logic Analyzer (ILA) cores, which are used to monitor the Serial RapidIO solution's interfaces while the hardware demonstration is running. Figure 6-1 shows how the ChipScope cores fit into the User Design.

Figure 6-1: ChipScope Cores Integrated into Example Design

The first ILA core, ILA1, is instantiated in the rio_wrapper. It monitors signals on the interfaces to the LOGIO and phy_wrapper. The second ILA core, ILA2, is instantiated in

the phy_wrapper and monitors the interfaces to the PHY. For a full listing of VIO and ILA signals, see "ChipScope Core Signals," page 72.

Tools Required

Hardware

- Board with a Xilinx Virtex-4, Virtex-5, Virtex-6, or Spartan-6 device that supports the Serial RapidIO core
 - Examples include the ML421, ML505, ML523, ML605, ML623 boards
- 6 (x1 core) or 18 (x4 core) SMA Cables (2 for clock and 4 for each lane, unless in loopback)
- Xilinx Platform Cable USB

Software

- ISE Design Suite software
- Serial RapidIO Full or Hardware Evaluation license
- ChipScope Pro Analyzer (with same version as ISE)
- ChipScope Pro 30-day Evaluation license or Full license

Generating Hardware Demonstration Files

Generating the Core

See Chapter 3, "Customizing and Generating the Cores" for instructions on generating the Serial RapidIO core. Key selections dependent on board selection and connections for this demonstration are Lane Width, Transfer Frequency, and Input Clock Frequency (see Figure 3-2, page 24). Take note of the selected Component Device ID (see Figure 3-3, page 26). The Master Enable bit must be selected for the VIO Demo (see Figure 3-8, page 36).

Enabling ChipScope in Serial RapidIO Solution

All Serial RapidIO cores are automatically generated with the necessary ChipScope cores inserted into the Example Design.

For Virtex-4 devices, the user must manually change the value of the SRIO_VIO parameter in the < component name> top.v [hd] file to '1.'

UCF Modifications

The User Constraints File (UCF) generated with the core is pre-targeted to specific Xilinx development boards based on the device selected in CORE Generator:

- Virtex-4: Generated UCF has pinout for ML421.
- Virtex-5: UCF has pinout for ML523 (with a XC5VLX50T-FF1136 device).

If targeting the ML523 board, you must use the ML523 RevD or later board. The UCF needs modification to target a Virtex-5 LX110T device. The CONFIG PART line and the MGT locations will need to be changed as follows for the Virtex-5 LX110T:

```
CONFIG PART = XC5VLX110T-FF1136-1;

INST
"rio_de_wrapper/phy_wrapper/rocketio_wrapper/gtp_wrapper/tile1_gtp_wrapper_i/gtp_dual_i" LOC = "GTP_DUAL_X0Y4";# MGT112

INST
"rio_de_wrapper/phy_wrapper/rocketio_wrapper/gtp_wrapper/tile0_gtp_wrapper_i/gtp_dual_i" LOC = "GTP_DUAL_X0Y3";# MGT114
```

- Virtex-5: With x1 lane selected and Component Name beginning with "ml505_" (for example, "ml505_demo"), UCF has pinout for ML505.
- Virtex-6: UCF has pinout for ML623 (with a XC6VLX420T-FF1156 device).

Creating a Bit File

Once any necessary modifications to the UCF file are made, the design can be implemented to produce a bit file for use in hardware. See the "Implementing the Example Design" in Chapter 4 for details.

ChipScope Project File

The file containing ChipScope Analyzer project information, srio.cpj, includes signal/bus naming and trigger condition information. The file is located in:

```
<srio component name>/example design/chipscope/
```

This file is specifically used to target Xilinx development boards, so it may not work properly for other boards. Specifically, the signal names may not be imported because the JTAG chain settings may be incorrect. For third-party boards, see the "ChipScope Core Signals," page 72 and manually name the signals in ChipScope Analyzer.

Hardware Setup

Since the user design is set up to implement basic RapidIO Endpoint functionality, the hardware demonstration can be set up in a variety of ways.

Loopback

The simplest hardware setup involves looping back the core's transmitter to its receiver. For a 1x core, the transmitter of lane 0 should be connected to the lane 0 receiver. For a 4x core, the hardware demo can be run in 1x mode (by placing only one lane in loopback and leaving the others unconnected) or by connecting the transmitter of each of the 4 lanes to its respective receiver. In the case of Xilinx Development Boards, SMA cables are typically used to make the loopback connection.

Chip-to-Chip

For a more elaborate test, the Xilinx Serial RapidIO solution can be connected to another Serial RapidIO Endpoint. The Register Manager and the Target User Design will handle

incoming transactions, and the VIO-based hardware demo can be used to initiate transactions targeted to the local configuration space or to the remote endpoint.

Connecting to a Switch

The Xilinx Serial RapidIO solution with hardware demonstration enabled can be connected to a RapidIO-based system via a switch. In systems of this type, it is important to use the appropriate Destination ID for transactions initiated from the VIO interface. The switch may require certain configuration transactions in order to communicate with the endpoint.

This setup can be useful for verifying that the core's configuration is valid before adding in a custom user design.

ChipScope Core Signals

VIO Core Signals

The VIO core allows the user to create transactions that the Initiator User Design will send into the Serial RapidIO core. In ChipScope Analyzer, the user will select which transaction types will be generated, then set parameters such as the number of transactions, Destination ID, and transaction priority. The VIO Input signals are updated each time ChipScope Analyzer scans the JTAG chain. The Analyzer then provides a snapshot of the signals at the time of the scan.

Table 6-1: VIO Output Signals

VIO Alias	Signal Name	Port Number(s)	Description
Reinit	vio_reinit	184	See description of force_reinit in "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide.
TResp_Stalls ^a	vio_tresp_stalls[0:1]	183:182	Currently unsupported.
IResp_Stalls ^a	vio_iresp_stalls[0:1]	181:180	Currently unsupported.
RandomizeSizea	vio_rand_size	179	Set to '1' to randomize the length for each transaction for which a length change is valid. Set to '0' to use the vio_size[0:16] input.
RandomizePrio ^a	vio_rand_prio	178	Set to '1' to randomize the priority for each transaction for which the priority field is applicable. Set to '0' to use the vio_prio[0:1] input.
BurstSize	vio_burst_size[0:5]	177:172	Number of times each transaction is run before switching to a new transaction.
ErrorEnable ^a	vio_error_enable[0:7]	171:164	Currently unsupported.
DestId	vio_dest_id[0:15]	163:148	Drives igen_dest_id, see Table 5-13, page 63.
MsgSeg ^a	vio_msgseg[0:3]	147:144	Drives igen_msgseg, see Table 5-13, page 63.
Mailbox ^a	vio_mbox[0:1]	143:142	Drives igen_mbox, see Table 5-13, page 63.
Letter ^a	vio_letter[0:1]	141:140	Drives igen_letter, see Table 5-13, page 63.
MSGLena	vio_msglen[0:3]	139:136	Drives igen_msglen, see Table 5-13, page 63.

Table 6-1: VIO Output Signals (Cont'd)

VIO Alias	Signal Name	Port Number(s)	Description
DBInfo	vio_db_info[0:15]	135:120	Drives igen_db_info, see Table 5-13, page 63.
Locala	vio_local	119	Drives igen_local, see Table 5-13, page 63.
Hopcount	vio_hopcount[0:7]	118:111	Drives igen_hopcount, seeTable 5-13, page 63.
CRFa	vio_crf	110	Drives igen_crf, see Table 5-13, page 63.
Prio ^a	vio_prio[0:1]	109:108	Drives igen_prio when vio_rand_prio is '0'. The igen_prio signal is documented in Table 5-13, page 63.
BypassEnable	vio_bypass_en	107	Drives igen_bypass_en, see Table 5-13, page 63.
BypassData	vio_bypass_data[0:31]	106:75	Drives igen_bypass_data, see Table 5-13, page 63.
BlockSize ^a	vio_blk_size[0:16]	74:58	Indicates the size of the addressable space available for writing and reading. Indirectly determines the maximum value to be used for the addresses in a set of transaction cycles (sequences). If the address increments past the vio_start_addr plus the vio_blk_size, it will wrap back around to the start address.
Start_Addr	vio_start_addr[0:33]	57:24	Sets the start address for I/O transactions. For the first sequence, each burst of selected transaction types will use the same start address. For each subsequent sequence (transaction cycle), each transaction type will begin at the vio_burst_size times vio_size plus vio_start_addr.
Stalls ^a	vio_stalls[0:1]	23:22	Currently unsupported.
Num_Seq	vio_num_seq[0:3]	21:18	Sequences are made up of a series of transactions. Once a transaction cycle is complete (every selected transaction has been run the number of times specified by the burst_size), a new transaction cycle will begin unless the specified number of sequences has been run. A value of 'F' for this input will tell the core to run for infinite transaction cycles.
Size	vio_size[0:8]	17:9	Drives igen_size when vio_rand_size is '0'. The igen_size signal is documented in Table 5-13, page 63.
Maint_Rd	vio_maint_rd	8	Indicates that MAINTENANCE READ transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
Maint_Wrt	vio_maint_wrt	7	Indicates that MAINTENANCE WRITE transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
Doorbell	vio_db	6	Indicates that DOORBELL transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
Message	vio_msg	5	Indicates that MESSAGE transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
NRead	vio_nread	4	Indicates that NREAD transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).

Table 6-1: VIO Output Signals (Cont'd)

VIO Alias	Signal Name	Port Number(s)	Description
SWrite	vio_swrite	3	Indicates that SWRITE transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
NWrite_R	vio_nwrite_r	2	Indicates that NWRITE transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
NWrite	vio_nwrite	1	Indicates that NWRITE_R transactions will be generated (number to be determined by vio_burst_size and vio_num_seq).
GO	vio_go	0	On the rising edge of GO, the tickler will start sending transactions. If vio_num_seq is set such that the tickler will produce infinite transactions, transactions will be sent for as long as GO is '1'. When GO is '0,' no transactions are generated.

a. Not in VIO Console by default. Can be added for advanced control.

Table 6-2: VIO Input Signals

VIO Alias	Signal Name	Port Number(s)	Description
iresp_sof	q_sof	127	Validated IRESP start-of-frame. The q_sof signal in the Initiator Response Handler is active-high and asserts when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in UG503 , LogiCORE IP Serial RapidIO User Guide, for the description of IRESP interface signals.
iresp_eof	q_eof	126	Validated IRESP end-of-frame. The q_eof signal in the Initiator Response Handler is active-high and asserts when iresp_eof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in UG503 , LogiCORE IP Serial RapidIO User Guide, for the description of IRESP interface signals.
iresp_vld	q_vld	125	Validated IRESP valid signal. The q_vld signal in the Initiator Response Handler is active-high and updates to the inverse of iresp_vld_n when iresp_rdy_n is asserted. See "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide, for the description of IRESP interface signals.
iresp_rdy_n	iresp_rdy_n	124	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
iresp_data ^a	first_data[0:63]	123:60	This signal stores the first eight bytes of a packet on the IRESP interface and updates with each new packet.
iresp_ftype ^a	q_ftype[0:3]	59:56	Validated IRESP FTYPE. The q_ftype signal in the Initiator Response Handler is updated to the current iresp_ftype when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of IRESP interface signals.

Table 6-2: VIO Input Signals (Cont'd)

VIO Alias	Signal Name	Port Number(s)	Description	
iresp_ttype ^a	q_ttype[0:3]	55:52	Validated IRESP TTYPE. The q_ttype signal in the Initiator Response Handler is updated to the current iresp_ttype when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of IRESP interface signals.	
iresp_status	q_status[0:3]	51:48	Validated IRESP Status. The q_status signal in the Initiator Response Handler is updated to the current iresp_status when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of IRESP interface signals.	
iresp_tid	q_tid[0:7]	47:40	Validated IRESP TID. The q_tid signal in the Initiator Response Handler is updated to the current iresp_tid when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in UG503 , LogiCORE IP Serial RapidIO User Guide, for the description of IRESP interface signals.	
iresp_msg_seg ^a	q_msg_seg[0:3]	39:36	Validated IRESP Message Segment. The q_msg_seg signal in the Initiator Response Handler is updated to the current iresp_msg_seg when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in UG503 , LogiCORE IP Serial RapidIO User Guide, for the description of IRESP interface signals.	
iresp_mbox ^a	q_mbox[0:1]	35:34	Validated IRESP Mailbox. The q_mbox signal in the Initiator Response Handler is updated to the current iresp_mbox when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of IRESP interface signals.	
iresp_letter ^a	q_letter[0:1]	33:32	Validated IRESP Letter. The q_letter signal in the Initiator Response Handler is updated to the current iresp_letter when iresp_sof_n, iresp_rdy_n, and iresp_vld_n are all asserted. See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of IRESP interface signals.	
ireq_sof_n	ireq_sof_n	31	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	
ireq_eof_n	ireq_eof_n	30	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	
ireq_vld_n	ireq_vld_n	29	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	
ireq_rdy_n	ireq_rdy_n	28	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	
ireq_tid	ireq_tid[0:7]	27:20	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	
ireq_ftype ^a	ireq_ftype[0:3]	19:16	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	
ireq_ttype ^a	ireq_ttype[0:3]	15:12	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.	

Table 6-2: VIO Input Signals (Cont'd)

VIO Alias	Signal Name	Port Number(s)	Description
ireq_dest_id ^a	ireq_dest_id[0:7]	11:4	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_hopcount ^a	ireq_hopcount[6:7]	3:2	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_local	ireq_local	1	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
tickler_error ^a	tickler_error	0	Currently unsupported.

a. Not in VIO Console by default. Can be added for advanced monitoring.

ILA Signals

The two ILA cores act as logic analyzers within the FPGA. They store data in the block RAM of the FPGA until the ChipScope software can read it out over the JTAG connection. ChipScope Analyzer is then used to display the captured data as a waveform. Table 6-3 and Table 6-4 list the signals that are present in the ILA cores.

Both ILA cores use uclk to sample data. ILA1 allows packet tracking through the core. The default trigger condition for ILA1 is the simultaneous assertion of ireq_sof_n and ireq_vld_n.

Table 6-3: ILA1 Signals

Signal Name	Data Port Number(s)	Trigger Port Number(s)	Туре	Description
target_error	255	0	Not Supported	Currently unsupported.
ireq_sof_n	254	31	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_eof_n	253		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_vld_n	252	30	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_rdy_n	251	29	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_ftype[0:3]	250:247			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_ttype[0:3]	246:243			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.

Table 6-3: ILA1 Signals (Cont'd)

Signal Name	Data Port Number(s)	Trigger Port Number(s)	Туре	Description
ireq_local	242			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
ireq_tid[0:7]	241:234			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
tresp_sof_n	233	27	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
tresp_eof_n	232		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
tresp_vld_n	231		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
tresp_rdy_n	230		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
tresp_ttype[0:3]	229:226			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
tresp_tid[0:7]	225:218			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> Serial RapidIO User Guide, for the description of this signal.
lnk_porterr_n	217	28	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
fifo_error	216	9		Indicates FIFO lockup. Asserts after 64 uclk cycles where the buffer is not accepting new data from the LOGIO core even though data is available, and the buffer is not presenting data to the PHY layer even though it is ready for data.
lnk_pna_n	215	25	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
log_tlnk_sof_n	214	26	Active Low	See description of tx_sof_n in "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide.
log_tlnk_eof_n	213		Active Low	See description of tx_eof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
log_tlnk_src_rdy_n	212		Active Low	See description of tx_vld_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
log_tlnk_dst_rdy_n	211	24	Active Low	See description of tx_rdy_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.

Table 6-3: ILA1 Signals (Cont'd)

Signal Name	Data Port Number(s)	Trigger Port Number(s)	Туре	Description
phy_tlnk_sof_n	210	23	Active Low	See description of lnk_tsof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_tlnk_eof_n	209	22	Active Low	See description of lnk_teof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_tlnk_src_rdy_n	208	21	Active Low	See description of lnk_tsrc_rdy_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_tlnk_src_dsc_n	207	20	Active Low	See description of lnk_tsrc_dsc_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_tlnk_dst_rdy_n	206	19	Active Low	See description of lnk_tdst_rdy_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_tlnk_dst_dsc_n	205	18	Active Low	See description of lnk_tdst_dsc_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
phy_tlnk_d[0:63]	204:141			See description of lnk_td in "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide.
phy_tlnk_rem[0:2]	140:138			See description of lnk_trem in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
lnk_tnext_fm[0:4]	137:133			See description of tx_vld_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
lnk_tnext_ack[0:4]	132:128			See description of tx_vld_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
phy_rlnk_sof_n	127	17	Active Low	See description of lnk_rsof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_rlnk_eof_n	126	16	Active Low	See description of lnk_reof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_rlnk_dst_rdy_n	125	15	Active Low	See description of lnk_rdst_rdy_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
phy_rlnk_dst_dsc_n	124	14	Active Low	See description of lnk_rdst_dsc_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
phy_rlnk_src_rdy_n	123	13	Active Low	See description of lnk_rsrc_rdy_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .

Table 6-3: ILA1 Signals (Cont'd)

Signal Name	Data Port Number(s)	Trigger Port Number(s)	Туре	Description
phy_rlnk_src_dsc_n	122	12	Active Low	See description of lnk_rsrc_dsc_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
phy_rlnk_d[0:63]	121:58			See description of lnk_rd in "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide.
phy_rlnk_rem[0:2]	57:55			See description of lnk_rrem in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
log_rlnk_sof_n	54		Active Low	See description of rx_sof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
log_rlnk_eof_n	53		Active Low	See description of rx_eof_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
log_rlnk_src_rdy_n	52		Active Low	See description of rx_vld_n in "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> .
log_rlnk_dst_rdy_n	51		Active Low	See description of rx_rdy_n in "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide.
iresp_sof_n	50	10	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_eof_n	49		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_vld_n	48		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_rdy_n	47		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_ftype[0:3]	46:43			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_ttype[0:3]	42:39			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_tid[0:7]	38:31			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP</i> <i>Serial RapidIO User Guide</i> , for the description of this signal.
iresp_status[0:3]	30:27			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
treq_sof_n	26	11	Active Low	See "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide, for the description of this signal.

Table 6-3: ILA1 Signals (Cont'd)

Signal Name	Data Port Number(s)	Trigger Port Number(s)	Туре	Description
treq_eof_n	25		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
treq_vld_n	24		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
treq_rdy_n	23		Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
treq_ftype[0:3]	22:19			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
treq_ttype[0:3]	18:15			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
treq_tid[0:7]	14:7			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
h_error[0:7]	6:0	8:1	Not Supported	Currently unsupported. Only h_error[1:7] are connected to the ILA's data port.

ILA2 allows analysis of the PHY interface and gives the capability of monitoring traffic on the link. The default trigger condition for ILA2 is the simultaneous assertion of lnk_tsof_n and lnk_tsrc_rdy_n, which indicates that the buffer is presenting start-of-frame information to the phy_wrapper.

Table 6-4: ILA2 Signals

Signal Name	Data Port Number(s) ^a	Trigger Port Number(s) ^a	Туре	Description
txdata[0:63]	255:192			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal. Only bits 0:15 of txdata are present in 1x cores.
txcharisk[0:7]	191:184			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal. Only bits 0:1 of txcharisk are present in 1x cores.
rxdata[0:63]	183:120			See "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide, for the description of this signal. Only bits 0:15 of rxdata are present in 1x cores.
rxcharisk[0:7]	119:112			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.Only bits 0:1 of rxcharisk are present in 1x cores.
txinhibit_02	111	6	4x Only	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.

Table 6-4: ILA2 Signals (Cont'd)

Signal Name	Data Port Number(s) ^a	Trigger Port Number(s) ^a	Туре	Description
txinhibit	111	6	1x Only	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
txinhibit_13	110	5	4x Only	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal. Data and trigger ports tied to '1' for 1x cores.
lnk_tsof_n	109	31	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_teof_n	108	30	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_tsrc_rdy_n	107	29	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_tdst_rdy_n	106	28	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_tsrc_dsc_n	105	27	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_tdst_dsc_n	104	26	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_tcrf	103	25	Optional	See description of crf_bit_tx in "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide.
lnk_rsof_n	102	24	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_reof_n	101	23	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_rsrc_rdy_n	100	22	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_rdst_rdy_n	99	21	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_rsrc_dsc_n	98	20	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_rdst_dsc_n	97	19	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_rcrf	96	18	Optional	See description of crf_bit_rx in "Core Architecture" in UG503, LogiCORE IP Serial RapidIO User Guide.
lnk_tnext_fm[0:4]	95:91			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_tlast_ack[0:4]	90:86			See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_porterr_n	85	17	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.

Table 6-4: ILA2 Signals (Cont'd)

Signal Name	Data Port Number(s) ^a	Trigger Port Number(s) ^a	Туре	Description
lnk_pna_n	84	16	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
tc_error[0:7]	83:76		Not Supported	Currently unsupported.
h_error[0:7]	75:68	13:8	Not Supported	Currently unsupported.
fifo_error	67	7	Active High	Indicates FIFO lockup. Asserts after 64 uclk cycles where the buffer is not accepting new data from the LOGIO core even though data is available, and the buffer is not presenting data to the PHY layer even though it is ready for data.
port_initialized	66	2	Active High	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
rxdisperr[0:7]	65:58	1		See "Core Architecture" in <u>UG503</u> , LogiCORE IP Serial RapidIO User Guide, for the description of this signal. Only bits 0:1 of rxdisperr are present in 1x cores. The trigger input is an OR of the bus, so there is only one trigger port reserved for rxdisperr.
rxnotintable[0:7]	57:50	0		See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal. Only bits 0:1 of rxnotintable are present in 1x cores. The trigger input is an OR of the bus, so there is only one trigger port reserved for rxnotintable.
enchanbond	49	4		See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
mode_sel	48	3		See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
force_reinit	47		Active High	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_trdy_n	46	15	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
lnk_rrdy_n	45	14	Active Low	See "Core Architecture" in <u>UG503</u> , <i>LogiCORE IP Serial RapidIO User Guide</i> , for the description of this signal.
pll_locked	44		Active High	Indicates that the GT PLL is locked.

a. Data ports 239:192, 189:184, 167:120, 117:112, 49, and 48 and trigger ports 4 and 3 are tied to 10 for 1x cores. Data ports 43:0 are tied to 10 for both 1x and 4x cores.

Using ChipScope Analyzer

All of the functions described in this section are covered in greater detail in <u>UG029</u>, *ChipScope Pro Software and Cores User Guide*. This section only covers the basics necessary to run the VIO demo with the Serial RapidIO core.

Loading the Core in Analyzer

To load the VIO demo in ChipScope Analyzer, the ChipScope Project File must first be loaded. In ChipScope Analyzer, select **File** -> **Open Project...** and browse to the example_design/chipscope/ directory. Locate srio.cpj and open it.

With the board powered-on and a USB Platform Cable connected via JTAG, a boundary scan must be performed in ChipScope Analyzer. This is done using the **Open Cable/Search JTAG chain** button located just below the File menu. The JTAG scan should locate the FPGA on the board and any other devices on the JTAG chain, and show all of the devices in the upper-left window in ChipScope Analyzer.

Next, the demo bitstream must be loaded to the board. Right-click on the FPGA device in the upper-left Project window and select **Configure...** The window shown in Figure 6-2 will appear. Locate your .bit file, usually in the implement/results/ directory, and select it for the FPGA device. Click **OK** to load the bitstream.

Figure 6-2: Bitstream Selection and Configuration

The ChipScope Analyzer Environment

Once the bitstream is loaded, ChipScope Analyzer should populate with several windows, similar to Figure 6-3. If it does not, the windows may be opened manually by double-clicking on them in the Project window in the upper-left corner. The Project window also lists all other devices on the JTAG chain and the VIO and two ILA cores attached to the

Serial RapidIO core. Other important windows for this demo are the VIO Console, and the Trigger Setup and Waveform windows for each ILA.

Figure 6-3: ChipScope Analyzer Environment

ChipScope Analyzer Windows

The primary method of input to the VIO Demo is provided by the VIO Console window, shown in Figure 6-4. The blue push-buttons and editable text boxes in the VIO Console provide all the necessary inputs to allow the design to send specific packet types along with user-defined data content.

Further information on using the VIO Console to generate transactions is included in the "Creating Transactions with VIO Console," page 88.

Figure 6-4: ChipScope Analyzer VIO Console

The ChipScope Analyzer project for the Serial RapidIO VIO demo also has two Trigger Setup windows, one for each ILA. The Trigger Setup window, shown in Figure 6-5, lists multiple Match Units each with a set of signals that can be used to set up a trigger. The Trig section of the window lists the various trigger conditions that have been set up and is also used to modify the trigger condition equations as desired. An example of a trigger condition where match unit "M0" and "M2" must both be satisfied to trigger is shown in Figure 6-6. The Capture section is used to specify storage qualifications, windowing, and the position of the trigger in the captured data.

Figure 6-5: ChipScope Analyzer Trigger Setup

Figure 6-6: ChipScope Analyzer Trigger Condition Window

Each Trigger window is associated with a Waveform window. Once a capture takes place, the waveform window for each ILA will populate based on the trigger conditions set for it. Figure 6-7 shows an example of a populated waveform window.

Figure 6-7: ChipScope Analyzer Waveform Window

Creating Transactions with VIO Console

The VIO Console can be used to generate the following transaction types:

- MAINTENANCE READ
- MAINTENANCE WRITE
- NWRITE
- NWRITE R
- SWRITE
- NREAD
- MESSAGE
- DOORBELL

Tips for Creating Serial RapidIO Transactions

The basic steps for creating transactions using the VIO Console are to:

- 1. Enable the desired transaction types by setting them to '1.'
- 2. Modify transaction settings (address, size, etc.) relevant to the selected transaction types.
- 3. Set GO to '1' to initiate the transactions.

The following tips provide the basic information needed to create a transaction. See "ChipScope Core Signals," page 72 for more details on signals available for control and monitoring.

Data

When BypassEnable is '1', the data used for an I/O write or MESSAGE transaction will be set by the BypassData field. These four bytes of data will be repeated as necessary to create a transaction of the specified size. If BypassEnable is set to '0', data from the Initiator block RAM will be used.

Addressing

The Start_Addr field in the VIO is used for two purposes. If BypassEnable is '0', the Start_Addr is used to select the data from the Initiator block RAM for I/O write or MESSAGE transactions. In addition, Start_Addr is the address used for outgoing I/O transactions, and is inserted into the config_offset field for outgoing Maintenance transactions.

To issue a transaction to the local endpoint, change the Local output to '1' (Local may first need to be added to the VIO Console). To send transactions to the link partner, set Local to '0'.

For Xilinx cores running the example design, the Initiator and Target block RAM uses an address offset of 0x10_0000. The block RAM is pre-loaded with test values as described in Table 5-12, page 62. Most Reads and Writes targeting the Xilinx example design should use the address space corresponding to that block RAM. Maintenance transactions sent to the Xilinx core should use an offset of 0x00_0000 plus the offset for the layer targeted (e.g., 0x00_0100 for the PHY configuration space), plus the byte offset for the target CAR or CSR.

For example, to read the Port Error and Status CSR in the PHY configuration space, the PHY offset of 0x00_0100 is added to the CSR's byte offset of 0x00_0058; therefore the value of 0x00_0158 should be used for Start Addr.

The three least significant bits of Start_Addr[31:33] should always be '0'. Sub-dword addressing is relayed through the rdsize and wdptr RapidIO packet fields and presented to the user through the treq_byte_count and treq_byte_en_n signals.

Randomization

There are two VIO outputs which can be used to randomize the transactions. If RandomizePrio or RandomizeSize are set, the values of Size and Prio will be ignored.

I/O Transaction Example

The VIO core is preset to send an NWRITE_R transaction followed by an NREAD transaction. Figure 6-8 shows the VIO Console with the default settings.

Figure 6-8: Default VIO Settings that Produce NWRITE_R and NREAD

First, arm one or both of the ILA cores by opening up the ILA waveform (double-click **waveform** under selected ILA in Project window), and then selecting **Run** from the Trigger Setup drop-down menu. Next, set **GO** to '1' in the VIO Console.

When the trigger is detected by the ILA core, ChipScope will download the data from the FPGA through the JTAG cable, and the ILA waveform will populate with the sampled data.

Interpreting Results of I/O Transactions

The ILA1 trigger is preset to capture the first simultaneous assertion of <code>ireq_sof_n</code> and <code>ireq_vld_n</code> (the first transfer of packet data into the LOGIO core). It will save data starting 50 cycles before the trigger event, and record 2048 cycles total. With the ILA1 data, the transaction can be seen at the input to the LOGIO (<code>ireq_*</code>), the output of the LOGIO (<code>log_tlnk_*</code>) and the input to the phy_wrapper (<code>phy_tlnk_*</code>). If the core is in loopback, the transaction can also be seen on the receive side, starting with the output from

the phy_wrapper (phy_rlnk*), then at the input to the LOGIO (log_rlnk_*), then emerging from the Serial RapidIO core at the LOGIO Target interface (treq_*). For transactions requiring a response (including both NWRITE_R and NREAD), if the core is in loopback, the response transactions will also be visible in ILA1, starting at the LOGIO's Initiator Response interface (iresp_*) and then going to the output of the LOGIO and input to phy_wrapper via the same path that the requests traveled.

The 'X' and 'O' cursors can be moved within the waveform to view the data captured on specific clock cycles. Figure 6-9 shows the waveform resulting from the NWRITE_R and NREAD sequence. The red 'T' cursor indicates the position where the trigger was detected. The 'X' and 'O' cursors in Figure 6-9 have been set to the position of the SOF assertion at the phy_wrapper input for the NWRITE_R and NREAD transactions, respectively. Therefore, the first Double-Word for each transaction can be seen in the 'X' and 'O' columns of the waveform on phy_tlnk_d.

Figure 6-9: ILA1 Waveform after Creation of NWRITE_R and NREAD

At the input to the phy_wrapper, the packet consists of the logical and transport layer fields, plus the Priority field that belongs to the physical layer. Figure 6-10 shows the packet format for an NWRITE_R request at the input to the phy_wrapper.

Figure 6-10: Format for NWRITE_R Packet at Input to phy_wrapper

ILA2 shows the packets as they enter the PHY core and as they are transmitted on the link. Other signals of interest include <code>lnk_tlast_ack</code>, which indicates the ackID of the last frame to be accepted by the partner device, and <code>lnk_tnext_fm</code>, which indicates to the buffer the ackID of the next packet to be transmitted (or the current packet if the link is not idle).

MAINTENANCE Transaction Example

MAINTENANCE transactions are created with the VIO Console, much like I/O transactions. However, special care should be taken when sending MAINTENANCE writes to ensure that no configuration bits critical to operation of the core (or another device in the system) are overwritten.

Two signals need to be added for reading the Device Identity and Device Information CARs for the local endpoint: Local and iresp_data.

- 1. Select the VIO core in the Project window, then expand the Sync Output Port in the Signals window.
- 2. Drag the "CH: 119 Local" signal over to the VIO Console window.
- 3. Find the iresp_data bus under the Sync Input Port in the Signals window, and drag it over to the VIO Console as well.
- 4. Change Local to '1' in the VIO Console to indicate that this is a local transaction.
- 5. Set the value of Maint_Rd in the VIO Console to '1', and set all other transaction types to '0'.
- 6. Change Start_Addr to 0x000000000, which is the offset for the Device Identity CAR.
- 7. Set GO to '1' (may need to change to '0' first) to create the MAINTENANCE READ.

The inputs displayed in the VIO Console (bus/signal names are blue) will update on the next JTAG scan with the current values. If you arm the trigger of ILA1 before setting GO, the ILA waveform will update as well when the MAINTENANCE READ is sent. The MAINTENANCE READ will be redirected internally to the core's target port, so it is never transmitted across the link. Therefore, the MAINTENANCE READ will not be visible within the ILA2 core, which monitors the PHY interfaces.

Interpreting Results of MAINTENANCE Transaction

Once the inputs to the VIO Console have updated, the iresp_data input in the VIO Console should have changed to reflect the information in the Device Identity and Device Information CARs, as shown in Figure 6-11.

The values should match what was displayed in the Serial RapidIO CORE Generator GUI, shown in Figure 3-5, page 30.

Figure 6-11: VIO Console During Example MAINTENANCE READ

The iresp_data input to the VIO Console will update with the first eight bytes of data of the most recent packet on the IRESP port. The ireq_tid and iresp_tid ports will update with the Transaction ID from the most recent packet on each respective port. See Table 6-1, page 72 for descriptions of the VIO core signals.

For MAINTENANCE transactions targeting remote endpoints, ChipScope can be used to monitor the packet as it travels through the core in the same way that it is used for I/O transactions.