

Affine Springer Fibers and Level-Rank Duality

Minh-Tâm Quang Trinh

Yale University

- 1 Springer Theory
- 2 Deligne-Lusztig Theory
- 3 Level-Rank Duality

Mainly about joint work with Ting Xue:

arXiv:2311.17106

See also the extended abstract on my website, which we have submitted to FPSAC '25.

Springer Theory Work over C.

G connected reductive group

A maximal torus

W Weyl group

The rational Cherednik algebra $\mathcal{D}_{\mathbf{c}}^{\mathbf{rat}}$ is a deformation of $\mathbf{C}W \ltimes \mathcal{D}(\mathbf{a})$ depending on a parameter $c \in \mathbf{C}$.

$$egin{aligned} D_c^{ ext{rat}} & & ext{Ug} \ \mathbf{C}[\mathbf{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathbf{a}^*] & & ext{U}\mathbf{n}_- \otimes ext{U}\mathbf{a} \otimes ext{U}\mathbf{n}_+ \ & & \Delta_c(\chi) & & \Delta(\lambda) \ & & L_c(\chi) & & L(\lambda) \end{aligned}$$

For $c\ rational,\ D_c^{\rm rat}$ can fail to be semisimple. This is the most interesting case.

For c rational and $positive, D_c^{\rm rat}$ -modules from the geometry of $affine\ Springer\ fibers.$

$${f B}$$
 Borel containing ${f A}$ ${f I} \subset {f G}[\![z]\!]$ Iwahori lifting ${f B} \subset {f G}$

The affine Springer fiber over $\gamma \in \mathbf{g}((z))$ is

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}.$$

Note that $\mathbf{G}((z))/\mathbf{I}$ is infinite-dimensional.

We say that γ is regular semisimple iff $\mathbf{G}((z))^{\circ}_{\gamma}$ is a maximal torus.

Here $\mathcal{F}l_{\gamma}$ is finite-dimensional!

But it varies wildly over $\mathbf{g}((z))^{rs} \subseteq \mathbf{g}((z))$.

Fix rational $c = \frac{d}{m} > 0$ in lowest terms.

Let $\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z))$ according to

$$c \cdot g(z) = \operatorname{Ad}(c^{d\rho^{\vee}})g(c^m z).$$
 $\left(\rho^{\vee} = \sum_{\alpha} \omega_{\alpha}^{\vee}\right)$

(Oblomkov-Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \},$$

and $\mathbf{C}^{\times} \curvearrowright \mathcal{F}l_{\gamma}$ for such γ .

We say that γ is homogeneous of slope $\frac{d}{m}$.

Example Take $G = SL_2$ and B upper-triangular.

Then
$$\left(\begin{smallmatrix}1&\\&-1\end{smallmatrix}\right), \left(\begin{smallmatrix}1&\\z\end{smallmatrix}\right), \left(\begin{smallmatrix}z&\\&-z\end{smallmatrix}\right)$$
 have slopes $0,\frac{1}{2},1.$

(Oblomkov–Yun) Take G simply-connected, simple. For $\gamma \in \mathbf{g}_{d/m}^{\mathrm{rs}}$ such that $\mathcal{F}l_{\gamma}$ is proper:

- A perverse filtration $P_{\leq *}$ on $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$. It arises from a Ngô-type global model.
- An action of $D_{d/m}^{\text{rat}}$ on

$$\mathcal{E}_{\gamma} := \operatorname{gr}^{\mathsf{P}}_{*} \operatorname{H}^{*}_{\mathbf{C}^{\times}} (\mathcal{F} l_{\gamma})^{\pi_{0}(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where $\mathbf{G}_0 = (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ}$ and $\epsilon \in \mathrm{H}^2_{\mathbf{C}^{\times}}(point)$.

As a module, \mathcal{E}_{γ} contains $L_{d/m}(\chi_{\mathsf{triv}})$. Equality holds when m is the Coxeter number. Problem Give a formula for $D_{d/m}^{\rm rat} \curvearrowright \mathcal{E}_{\gamma}$ in general. In practice, too hard. Replace with

$$\underline{E}_{\gamma} := \sum_{i} (-1)^{i} \operatorname{gr}_{*}^{\mathsf{P}} \operatorname{H}_{\mathbf{C}^{\times}}^{i} (\mathcal{F} l_{\gamma})^{\pi_{0}(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1}.$$

Idea $D_{d/m}^{\mathrm{rat}}$ commutes with monodromy of \mathcal{E}_{γ} over

$$\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}},$$

a Kostant-type transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from *Deligne-Lusztig theory*.

Deligne–Lusztig studied groups over finite fields. But up to Tate twist.

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}(\!(z)\!)}|\mathbf{C}(\!(z)\!)).$$

Forms of **G** are classified by Dynkin automorphisms in the same way over \mathbf{F}_q as over $\mathbf{C}((z))$.

Much of Oblomkov–Yun's setup generalizes from ${\bf G}$ to any of its forms ${\bf G}_{{\bf C}((z))}.$

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)),\gamma}$. These have corresponding forms $\mathbf{A}_{\mathbf{F}_{q}}, \mathbf{T}_{\mathbf{F}_{q}}$. 2 Deligne–Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q.

$$\{\text{forms of }\mathbf{G} \text{ over } \mathbf{F}_q\} \quad \leftrightarrow \quad \{\text{Frobenii } {\color{red} F} \curvearrowright \mathbf{G}\}$$

We say that $G = \mathbf{G}^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subseteq \mathbf{G}$ correspond to Levis $\mathbf{L} \subseteq G$.

Deligne–Lusztig introduced varieties
†
$$Y_{\rm L}^{\bf G}$$
 such that

$$G \quad \curvearrowright \quad \mathrm{H}^*_c(Y^\mathbf{G}_\mathbf{L}) \quad \curvearrowleft \quad L.$$

Induction map $R_L^G: \mathrm{K}_0(L) \to \mathrm{K}_0(G)$:

$$R_L^G(\lambda) = \sum\nolimits_i {(- 1)^i {\bf{H}}_c^i(Y_{\bf{L}}^{\bf{G}})[\lambda]}.$$

 † Actually, $Y_{\mathbf{L}}^{\mathbf{G}}$ depends on a parabolic $\mathbf{P}\supseteq\mathbf{L}.$

(Broué-Malle) For m-regular maximal tori \mathbf{T} , a specific algebra $H_T^G(\mathbf{q})$ such that

$$H_T^G(\zeta_m) = \bar{\mathbf{Q}}W_T^G$$
, where $W_T^G = N_G(T)/T$.

They conjecture:

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{T}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \text{Irr}(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T, \rho}(\rho \otimes \chi_{T, \rho, q})$$

where $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in K_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) $\text{Back to Springer.} \hspace{0.5cm} (\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \leftrightarrow \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!),\gamma})$

It turns out that **A** and **T** are 1- and m-regular. Moreover, $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}})$ is the braid group of W_T^G .

Conjecture (T-Xue)

- 1 $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}}) \curvearrowright \mathcal{E}_{\gamma}$ factors through $H_T^G(1)$.
- 2 As a virtual $(D_{d/m}^{\mathrm{rat}}, H_T^G(1))$ -bimodule,[†]

$$E_{\gamma} = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}).$$

 † In general, $D_{d/m}^{\mathrm{rat}}$ is defined using $W_{A}^{G}.$

Theorem (T-Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}(\!(z)\!)}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = (^2A_2, 2), (C_2, 2), (G_2, 3), (G_2, 2).$ Under a conjecture of OY, true in further cases.

Example Take $G_{\mathbf{C}((z))}$ split, m its Coxeter number. $\chi_{A,\rho}$ runs over characters $\chi_{\wedge k(z)}$ of W_A^G .

 $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$. In $K_0(D_{d/m}^{\mathrm{rat}})$,

$$\begin{split} [E_{\gamma}] &= \sum_{k} (-1)^{k} [\Delta_{d/m}(\chi_{\wedge^{k}(\mathbf{a})})] \\ &= [L_{d/m}(\chi_{\mathsf{triv}})]. \end{split}$$

 ${\it Cf.}$ the BGG resolution of Berest–Etingof–Ginzburg.

3 Level-Rank Duality Compare E_{γ} given by

$$\sum_{\rho} \varepsilon_{T,\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes_{\bar{\mathbf{Q}}_{\ell}G} R_T^G(1_T)$ given by

$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

The Knizhnik–Zamolodchik functor

$$\mathsf{KZ} : \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m))$$

sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$. Thus an analogy:

$$\mathbf{F}_q : (q,q) :: \mathbf{C}((z)) : (\zeta_m, 1)$$

The symmetry between A and T led us to new discoveries about the Harish–Chandra theory of G.

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus \mathbf{T} .

(Broué–Malle–Michel) Fix a positive integer l.

• $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where

S is a torus with |S| a power of $\Phi_l(q)$.

• $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$.

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{\mathbf{L},\lambda},$$

where $Uch(G)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l=1, these are classical Harish-Chandra series.

Generalizing our discussion for maximal tori:

Broué–Malle define a Hecke algebra $H^G_{L,\lambda}(\mathsf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G$$
, where $W_{L,\lambda}^G = N_G(L,\lambda)/L$.

They conjecture:

- 1 $H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{L}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

7

Via the decomposition map

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \operatorname{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $\operatorname{Irr}(W_{L,\lambda}^G)$ into *blocks*, describing how $H_{L,\lambda}^G(\zeta_m)$ fails to be semisimple.

Conjecture (T–Xue) Fix l, m.

Fix an l-cuspidal (\mathbf{L}, λ) and m-cuspidal (\mathbf{M}, μ) .

1 The set

$$\begin{split} \{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \\ resp. \quad \{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \\ \text{is a union of } H^G_{L,\lambda}(\zeta_m)\text{--}, \ resp. \ H^G_{M,\mu}(\zeta_l)\text{--blocks}. \end{split}$$

2 The indexing induces a matching of blocks.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T–Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

8

Note that $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\operatorname{\mathsf{Rep}}(H_{L,\lambda}^{\operatorname{GL}_n}(\zeta_m))$$
 and $\operatorname{\mathsf{Rep}}(H_{M\mu}^{\operatorname{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level Fock spaces

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \overset{\sim}{\longleftarrow} \Lambda_{\mathsf{q}}^s \overset{\sim}{\longrightarrow} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}.$$

Above, $\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$

Level-rank duality of Frenkel, Uglov, Chuang-Miyachi, Rouquier-Shan-Varagnolo-Vasserot...

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Thank you for listening.