Групповой проект. Тема: Рост дендритов

Этап 3

Артамонов Т. Е., Федорина Э. В., Морозов М. Е., Коротун И. И., Маслова А. С. 7 марта 2024

Российский Университет Дружбы Народов, Moscow, Russian Federation

Состав исследовательской команды

Студенты группы НКНбд-01-21

- Артамонов Тимофей Евгеньевич
- Федорина Эрнест Васильевич
- Морозов Михаил Евгеньвич
- Коротун Илья Игоревич
- Маслова Анастасия Сергеевна

Вводная часть

Вводная часть

На третьем этапе группового проекта нужно описание программную реализацию проекта. На прошлом этапе мы уже рассмотрели алогритм по которому мы будем двигаться при выполнении этого этапа. Приступим к описанию кода.

Шаг 0 Используемые библиотеки

 using Plots: Библиотека для визуализации данных. В данном коде используем для создания тепловой карты, отображающей состояние сетки после симуляции роста дендритов.

using Plots

Шаг 1 Параметры модели

Указываем основные параметры моделирования в качестве примера был взят цезий:

```
const p = 1.873 #плотность

const t_melt = 28.7 #температура кристализации

const t0 = 29.8 #начальная температура границ кристалла

const c = 2180 #0.218 кДж удельная теплоемкость

const L = 15742 # 15.742 улельная теплота плавления

const S = c * (t_melt - t0) / L # Безразмерное переохлаждение

const k = 35.9 # Теплопроводность

const N = 100 # Размер сетки
```

```
const m = 3 # колличество обновлений температуры за шаг const x = k / (p * c) # коэффициент температуропроводности const w = 1 / 2 # диагональный коэффициент const y = 0.066 # поверхностное натяжение const lambda = y * t_melt * c / (p * L^2) const d = 0.1 # Флуктуации температуры
```

Шаг 2 Инициализация сетки

and

Создаем матрицу T размером $N \times N$, инициализируя ее нулями - она задает температуру на сетке. Задаем начальную затравочную область в виде квадрата с заданным радиусом и центром.

```
global T = fill(Float64(t0), N, N)
global n = zeros(Int, N, N)
center = N \div 2
radius = 5
for i in (center-radius):(center+radius)
    for j in (center-radius):(center+radius)
        if i > 0 && i <= N && j > 0 && j <= N
            T[i, j] = t melt
            n[i, j] = 1 # устанавливаем в твердое состояние
        end
```

7/17

Шаг 3 Функция изменения температуры

Здесь мы используем уравнение теплопроводности.

```
function temperature change!(T, N, m, x, w)
    T tmp = copv(T)
    for i in 2:N-1
        for j in 2:N-1
            d2t = (T[i+1,j] + T[i-1,j] + T[i,j+1] + T[i,j-1] +
                   W * (T[i+1,j+1] + T[i+1,j-1] + T[i-1,j+1] + T[i-1,j-1])) /
            T \text{ tmp[i, j]} = T[i, j] + x * d2t / m
        end
    end
   T .= T_tmp
end
```

Шаг 4 Формула Гиббса-Томсона

Следующие служат нам для того чтобы посчитать радиус кривизны и реализовать замедление изменения температуры, связанного с поверхностным натяжении. На выступах число соседей у атомов меньше, чем во впадинах, поэтому атомам выгоднее заполнять впадины, восстанавливая ровную поверхность.

```
function count curvature(n, i, j)
    n1 = n[i+1, j] + n[i, j+1] + n[i, j-1] + n[i-1, j]
    n2 = n[i+1, j+1] + w * n[i-1, j+1] + n[i-1, j-1] + n[i+1, j-1]
    R = 1 / (n1 + n2 - (5/2 + 5/2*w))
    return R
end
function gibbs_thomson(R)
    T boundary = t melt - lambda / (c * R)
    return T boundary
end
```

Функция считает колличество твердых соседей у клетки и необходима для реализации кристаллизации.

```
function has_solid_neighbor(n, i, j)
   neighbors = [
        n[i-1, j], n[i+1, j], n[i, j-1], n[i, j+1],
        n[i-1, j-1], n[i-1, j+1], n[i+1, j-1], n[i+1, j+1]
   ]
   return any(neighbors .== 1)
end
```

Шаг 6 Кристаллизация

Функция, которая использует все функции описанные выше и меняет состояние ячейки.

```
function crystallise!(n, T, i, j)
    if has solid neighbor(n, i, j)
        R = count_curvature(n, i, j)
        T boundary = gibbs thomson(R)
        eta = 2 * rand() - 1
        if T[i. j] \leftarrow T boundary * (1 + \text{eta} * d)
             n[i. i] = 1
        end
    end
end
```

Шаг 7 Цикл

Так как рост температуры происходит гораздно быстрее роста кристаллов, то мы должны несколько раз за итерацию обновлять температуру. Этот цикл реализует этот процесс.

```
const steps = 30000
for step in 1:steps
    for k in 1:m
        temperature_change!(T, N, m, x, w)
    end
    for i in 2:N-1
        for j in 2:N-1
            crystallise!(n, T, i, j)
        end
    end
end
```

Шаг 8 График №1 модели

Рисуем график для нашей модели.

plot(heatmap(n), title = "Кристаллизация", color = :blues)

Рис. 1: дендрит в форме дракончика

Шаг 8 График №2

Рис. 2: дендрит в форме лягушки с хвостом

Шаг 8 График №3

Рис. 3: дендрит в форме ёжика

Вывод

Модель роста дендритов, реализованная с использованием условия Гиббса-Томсона и уравнения теплопроводности, позволяет имитировать процесс затвердевания материала и формирования кристаллических структур. После завершения всех шагов симуляции, модель предоставляет визуализацию итогового состояния сетки с помощью тепловой карты.