Solution - Abstract Algebra Assignments © BinaryPhi

Name:	Assignment: Number 3
Score:	Last Edit: May 31, 2022 PDT

Problem 1: Definitions

- (a) Assuming H is a non-empty subset of group G while H is also a group with respect to the operation of G, we call H a **Subgroup** of G.
- (b) H is a subgroup of a group G. If $H = \{e\}$ or H = G, H is called a **Trivial Subgroup**. Other subgroups are called the **Non-trivial Subgroup**.
- (c) Prove that the following statements are equivalent if H is a non-empty subset of G.
 - 1. H < G.
 - $2. \ a,b \in H \Longrightarrow a \circ b \in H, a^{-1} \in H.$
 - 3. $a, b \in H \Longrightarrow a \circ b^{-1} \in H$.

$1 \Rightarrow 2$:

Since H is a group, according to the closure property, we have $a \circ b \in H$. Any element a must have an inverse element a^{-1} in H. Because H < G, which means the operations in both groups are the same, indicating that the inverse of a in H is exactly the inverse of a in G. Therefore, $a^{-1} \in H$.

$2 \Rightarrow 3$:

We have $b \in H \Longrightarrow b^{-1} \in H$, and $a, b^{-1} \in H$. Thus, $a \circ b^{-1} \in H$.

$3 \Rightarrow 1$:

We have $a, a \in H \implies a \circ a^{-1} \in H$, which means $e \in H \implies H$ has identity element in it. Then, we have $e, b \in H \implies e \circ b^{-1} \in H$, which means $b^{-1} \in H \implies$ every element in H has its corresponding inverse element. Because $a, b^{-1} \in H \implies a \circ (b^{-1})^{-1} \in H$, which means $a \circ b \in H$, indicating the closure property of the operation of H. Additionally, the operation of the elements in H satisfies the associative law because H is a subset of a group G. Therefore, H is a group respect to the operation of G.

(d) Assume H is a subgroup of group $G, a \in G$, then:

$$a \circ H = \{a \circ h \mid h \in H\}, H \circ a = \{h \circ a \mid h \in H\}$$

(Or often written as: $aH = \{ah \mid h \in H\}$, $Ha = \{ha \mid h \in H\}$) are called the **left coset** and **right coset** of H with the representative element a, respectively.

- (e) Assuming H is a subgroup of group G and $aRb \iff a^{-1}b \in H$,
 - i) prove that the relation R in G is an equivalent relation and
 - ii) the equivalent class of a, \overline{a} , is exactly the left coset of H represented by a: aH;
 - iii) thus the set of all left cosets of $H : \{aH\}$ is a partition of G.

For $a, b \in G$, we could determine that $a^{-1}b \in H$, thus R is a relation in G.

- 1) Reflexive Property: $\forall a \in G, a^{-1}a \in H \Longrightarrow e \in H$, thus aRa.
- 2) Symmetric Property: If aRb, then $a^{-1}b \in H$, thus $(a^{-1}b)^{-1} \in H$ because H is a group. Therefore, $b^{-1}a \in H \Longrightarrow bRa$.
- 3) Transitive Property: If aRb, bRc; then $a^{-1}b \in H$ and $b^{-1}c \in H$. Since H is a group, we have $a^{-1}bb^{-1}c \in H \implies a^{-1}c \in H$, $aRb, bRc \implies aRc$. Therefore, R is an equivalent relation in G.

 $\forall b \in \overline{a} \ (b \in H)$, we have aRb, thus $a^{-1}b \in H$. Assuming $h \in H$ that satisfies $a^{-1}b = h$, which is $b = ah \in aH$, we have $\overline{a} \subseteq aH$ since $\forall b \in \overline{a}$. Additionally, we have $\forall b \in aH$, then assuming $h \in H \Longrightarrow b = ah$. Thus, $a^{-1}b = h \in H \Longrightarrow b \in \overline{a}$. In conclusion, $\overline{a} \subseteq aH$, $aH \subseteq \overline{a} \Longrightarrow \overline{a} = aH$.

An equivalent relation R determines a partition of a set, each class is the equivalent class \bar{a} with respect to this equivalent relation R. Since $\bar{a} = aH$, $\{aH\}$ is a partition of G.

- (f) The quotient set G/R of group G with respect to the equivalent relation $aRb \iff a^{-1}b \in H, H < G$ is called the **Quotient Set of** G **by left congruence modulo** H or **Left Coset Space**, denoted by $G/H^{\mathbb{L}}$.
- (g) The <u>Index</u> of a subgroup H in a group G is the number of left cosets or right cosets of H in G, which is denoted by [G:H] or [G:H].

(h) Assuming a group G has a subgroup H < G, we define H to be a **Normal Subgroup** of G (denoted by $H \triangleleft G$), if:

$$ghg^{-1} \in H, \forall g \in G, \forall h \in H.$$

- (i) Prove the following statements are equivalent assuming G is a group and H < G:
 - 1) $H \triangleleft G$;
 - 2) $qH = Hq, \forall q \in G$;
 - 3) $g_1H \cdot g_2H = g_1g_2H = \{g_1h_1g_2h_2 \mid h_1, h_2 \in H\}.$
 - 1) \Longrightarrow 2) : Since $H \triangleleft G$, $\forall g \in G$ and $\forall h \in H$, we have:

$$gh = ghg^{-1}g \in Hg;$$

$$hg = gg^{-1}hg \in gH;$$
Since $gh \in gH$ and $hg \in Hg$

$$\therefore gH = Hg.$$

2) \Longrightarrow 3): $\forall g_1, g_2 \in G$, there is an element $g_1h_1g_2h_2$ in $g_1H \cdot g_2H$ where $h_1, h_2 \in H$. We have $h_1g_2 \in Hg_2 = g_2H$, and considering $h_3 \in H$ which satisfies $h_1g_2 = g_2h_3$. Thus,

$$g_1 h_1 g_2 h_2 = g_1 g_2 h_3 h_2 \in g_1 g_2 H;$$

 $g_1 H \cdot g_2 H \subseteq g_1 g_2 H.$

Then, any element g_1g_2h from g_1g_2H has:

$$g_1g_2h = g_1eg_2h \in g_1H \cdot g_2H;$$

$$g_1g_2H \subseteq g_1H \cdot g_2H.$$

$$\therefore g_1g_2H = g_1H \cdot g_2H.$$

 $(3) \Longrightarrow 1): \forall g \in G, \forall h \in H$, we have:

$$ghg^{-1} = ghg^{-1}e \in gH \cdot g^{-1}H = gg^{-1}H = eH = H$$

Therefore, $H \triangleleft G$.

(j) Assuming G is a group and H < G, R is a relation defined by $aRb \iff a^{-1}b \in H$, then:

R is a congruence relation in $G \iff H \triangleleft G$.

 \Leftarrow : Assuming a_1Rb_1, a_2Rb_2 , we have a_1^{-1} $b_1 \in H, a_2^{-1}$ $b_2 \in H$. Since we have:

$$(a_1 \ a_2)^{-1} \ (b_1 \ b_2) = a_2^{-1} \ (a_1^{-1} \ b_1) \ a_2 \ a_2^{-1} \ b_2;$$

$$\therefore H \lhd G, a_2^{-1} \ (a_1^{-1} \ b_1) \ a_2 \in H \Longrightarrow a_2^{-1} \ (a_1^{-1} \ b_1) \ a_2 \ a_2^{-1} \ b_2;$$

$$\Longrightarrow (a_1 \ a_2)^{-1} \ (b_1 \ b_2) \in H$$

Therefore, $(a_1 \ a_2)^{-1}R(b_1 \ b_2)$, which means R is a congruence relation with respect to the operation in G.

 \implies : $\forall g \in G, \forall h \in H$, in order to prove $ghg^{-1} \in H$, we have:

$$g^{-1}gh = h \in H \Longrightarrow gR(gh),$$

$$gg^{-1}R(gh)g^{-1} \Longrightarrow eRghg^{-1} \text{ because } g^{-1}Rg^{-1},$$

$$\therefore e^{-1}ghg^{-1} = ghg^{-1} \in H.$$

More importantly, the quotient set G/R and the operation with respect to the congruence relation R is, a group, which is also called the **Quotient Group** or **Factor Group** of G by H, denoted by G/H.

Problem 2: Prove:

(a) Assuming H is a non-empty and finite subset of group G, we have

$$H < G \iff H$$
 is closed under the operation of G

Since G is a group, the operation in G must have associative property, left and right cancellative properties. Thus, the elements in the subset H with respect to the operation in G also have associative and cancellative properties. Because H is closed under the operation of G, H is a finite semigroup which also has the cancellative property. *Thus H is a group with respect to the operation of G.

- $\therefore H < G$
- *: Why? Recall the 2nd lecture.
- (b) If H_1 and H_2 are both subgroup of group G, then $H_1 \cap H_2 < G$.

 $e \in H_1 \cap H_2, \forall a, b \in H_1 \cap H_2$, we have $a, b \in H_1$ and $a, b \in H_2 \Longrightarrow a \circ b^{-1} \in H_1$ and $a \circ b^{-1} \in H_2$ because H_1 and H_2 are two subgroups of G.

Thus,
$$a \circ b^{-1} \in H_1 \cap H_2 \Longrightarrow H_1 \cap H_2 < G$$
.

(c) $[\mathbb{Z}: m \circ \mathbb{Z}] = m$, where $m \in \mathbb{N}$

Considering the left coset space of \mathbb{Z} modulo $m \circ \mathbb{Z}$, we have:

$$\mathbb{Z} = (0 + m \circ \mathbb{Z}) \cup (1 + m \circ \mathbb{Z}) \cup \dots \cup ((m - 1) + m \circ \mathbb{Z})$$
$$= \overline{0} \cup \overline{1} \cup \dots \cup \overline{(m - 1)}.$$

$$\therefore \quad [\mathbb{Z}: m \circ \mathbb{Z}] = m$$

Problem 3: Lagrange Theorem:

For a finite group G, H < G, then we have:

$$|G| = [G:H] \cdot |H|,$$

which means the order of the subgroup H is a factor of the order of G.

First of all, the number of elements in any left coset aH of H is equal to the number of elements in H (which is denoted by |H|). It will be easier to think the map $h \to ah, \forall h \in H$.

Then, G can be described by the union of all non-intersecting left cosets of H, which is [G:H] of them.

Therefore, there are $[G:H] \cdot |H|$ elements in $G \Longrightarrow |G| = [G:H] \cdot |H|$.

Problem 4: Corollary of Lagrange Theorem:

If G is a finite group and K < G, H < K, we have:

$$[G:H] = [G:K] \cdot [K:H].$$

According to Lagrange Theorem, we have

$$|G| = [G : K] \cdot |K| = [G : K] \cdot [K : H] \cdot |H|,$$

$$|G| = [G : H] \cdot |H|.$$

$$[G : H] \cdot |H| = [G : K] \cdot [K : H] \cdot |H|,$$

$$\therefore [G : H] = [G : K] \cdot [K : H].$$

Therefore, the corollary is proved.

Problem 5: Which of the following are true?

- (a) <u>False</u> There exists a group in which the cancellation law fails.
- (b) <u>False</u> Every group has exactly two improper subgroups.
- (c) <u>True</u> Every group is a subgroup of itself.
- (d) <u>False</u> A subgroup can be defined as the subset of a group.
- (e) <u>False</u> Every set of numbers that is a group under addition is also a group under multiplication.

Problem 6: Prove that

if G is an abelian group, written multiplicatively, with identity element e, then all elements x of G satisfying the equation $x^2 = e$ form a subgroup H of G.

Closure:

 $\forall a, b \in H$, since G is abelian, we have $(ab)^2 = a^2b^2 = ee = e$, so $ab \in H \Longrightarrow H$ is closed.

Identity:

 $\therefore ee = e$, we have $e \in H$.

Inverses:

 $\therefore \forall a \in H, aa = e$, which means the element of H and its inverse is the same.

(Ref: John B. Fraleigh, Victor J. Katz. A first course in abstract algebra, 2003.)

Problem 7: Assume H, K are two normal subgroups of group G and $H \cap K = \{1\}$. Prove the following

$$hk = kh, \forall h \in H, \forall k \in K.$$

Because H, K are normal subgroups, we have:

$$hkh^{-1} \in K; \quad kh^{-1}k^{-1} \in H;$$

 $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1} \in K$
 $= h(kh^{-1}k^{-1}) \in H$
 $\in K \cap H = \{1\}$

Therefore, $hkh^{-1}k^{-1} = 1 \Longrightarrow hk = kh$.

Problem 8: Assume H is a normal subgroup of group G. Prove that the sufficient prerequisite for G/H to be an abelian group is the following:

$$gkg^{-1}k^{-1} \in H, \forall g, k \in G.$$

The quotient group $G/H = \{gH \mid g \in G\}$ has $gHkH = gkH, (gH)^{-1} = g^{-1}H$. Then,

$$gHkH=kHgH$$
 if and only if $gHkH(gH)^{-1}(kH)^{-1}=H$ if and only if $gkg^{-1}k^{-1}H=H$ if and only if $gkg^{-1}k^{-1}\in H$