

# Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG



## Métodos baseados em árvores

Eduardo Vargas Ferreira

### Introdução



 Árvore de decisão é o conjunto de regras que envolvem a estratificação ou segmentação do espaço de predição em regiões simples;



 Nesta seção vamos descrever os métodos baseados em árvores no contexto de regressão e classificação.

## Exemplo: Hitters data set - Baseball salary



 Queremos prever o Salary dos jogadores baseado nos Years em que está na Major leagues e número de Hits no ano;



 Os salários mais baixos são codificados pelas cores azul e verde, e mais altos pelas cores amarelo e vermelho;

## Exemplo: Hitters data set - Baseball salary (eg







$$R_1 = \{X | Years < 4.5\}$$

$$R_2 = \{X | Years \ge 4.5, Hits < 117.5\}$$

$$R_3 = \{X | Years \ge 4.5, Hits \ge 117.5\}$$

## Exemplo: Hitters data set - Baseball salary







$$R_1 = \{X | Years < 4.5\}$$
 $R_2 = \{X | Years \ge 4.5, Hits < 117.5\}$ 
 $R_3 = \{X | Years \ge 4.5, Hits \ge 117.5\}$ 

## Como o algoritmo funciona?



• O objetivo é encontrar os retângulos  $R_1, \ldots, R_J$  que minimiza a:

$$SQRes = \sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2,$$

em que 
$$R_1(j,s) = \{X | X_j < s\} \ \mathrm{e} \ R_2(j,s) = \{X | X_j \geq s\}.$$



## Como o algoritmo funciona?



#### Alto vício e baixa variância



#### Baixo vício e alta variância



### Cost complexity pruning



• Para cada valor de  $\lambda$ , temos uma subárvore  $T \subset T_0$ , tal que

$$SQRes_{\lambda} = \sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \lambda |T|$$

seja o menor possível.

- $\star$  |T| indica o número de **terminal nodes** da árvore T;
- $\star$   $R_m$  é o retângulo correspondente ao *m*-ésimo *terminal node*;
- \*  $\hat{y}_{R_m}$  é a média das observações dos dados de treino em  $R_m$ .
- Selecionamos o valor ótimo,  $\hat{\lambda}$ , através de validação. Em seguida, obtemos a subárvore utilizando  $\hat{\lambda}$ .

## Exemplo: Hitters data set - Baseball salary



• O erro mínimo na validação cruzada ocorre na árvore de tamanho 3.



### Exemplo: heart disease - HD



- Os dados contêm o diagnóstico de 303 pacientes com dores no peito:
  - \* Yes: indica a presença de doença cardíaca;
  - \* No: indica ausência de doença cardíaca;
- Os dados apresentam 13 preditores incluindo Age, Sex, Cho1, e outras medidas de funções cardíacas e pulmonar;



### Exemplo: heart disease - HD



Após validação cruzada chegamos na árvore com seis terminal nodes;





 Note que, em MaxHR temos duas respostas No. Isto se deve a um dos nós ser "puro" e o outro ser majoritariamente No.

## Árvores versus modelos lineares





## Prós e contras das Árvores de decisão



- ✓ Podem ser aplicadas em problemas de regressão e classificação;
- √ Lidam bem com dados faltantes;
- ✓ São simples e úteis para interpretação. Sendo muito bons nas etapas iniciais de um projeto;
- X São mais simples do que deveriam. Por esse motivo, em termos de predição, não são competitivos com outras abordagens de aprendizado supervisionado;
- ✓ Mas, serve de base para outros métodos, como:
  - Bagging;
  - Random Forests:
  - Boosting.



## **Ensembles**

## Ideia do Bootstrap







# **Bagging**

### **Bagging**



 Geramos B conjuntos de observações (bootstrapped). Treinamos o modelo a fim de obter a predição no ponto x;



• Em seguida, calculamos a média das predições (chamamos de bagging):

$$\hat{h}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{h}^{b}(x).$$



## **Random Forests**

#### **Random Forests**



 No Random forests, para cada partição, temos uma seleção aleatória de m preditores, de um total de p (tipicamente, m ≈ √p);



• Assim, forçamos com que diferentes preditores sejam escolhidos (decorrelating the trees). Se m = p, estaremos no método Bagging.

## Exemplo: Heart data set



 Abaixo, o erro do teste como função de B. A linha tracejada representa o erro utilizando uma árvore somente;



## **Out-of-Bag Error Estimation**







# Métodos boosting







• Lembrando de regressão

$$\underbrace{\sum_{i=1}^{n} \left(y_{i} - \bar{y}\right)^{2}}_{SQT} = \underbrace{\sum_{i=1}^{n} \left(\hat{y}_{i} - \bar{y}\right)^{2}}_{SQR} + \underbrace{\sum_{i=1}^{n} \left(y_{i} - \hat{y}\right)^{2}}_{SQE}.$$

• E, geometricamente, temos



 Isso quer dizer que toda variabilidade não explicada pela regressão ficará no resíduo (variáveis e funções delas!).



 No exemplo abaixo, estamos avaliando a relação entre consumo de combustível e potência do automóvel.

$$mpg = \beta_0 + \beta_1 \times (cavalo vapor) + \varepsilon$$







 No exemplo abaixo, estamos avaliando a relação entre consumo de combustível e potência do automóvel.

$$mpg = \beta_0 + \beta_1 \times (cavalo vapor) + \beta_2 \times (cavalo vapor)^2 + \varepsilon$$















## Métodos boosting



 $mpg = \beta_0 + \beta_1 \times (cavalo vapor) + residuo$ 



 $residuo = \beta_2 \times (cavalo \ vapor)^2 + residuo 2$ 

$$mpg = \beta_0 + \beta_1 \times (cavalo \ vapor) + \beta_2 \times (cavalo \ vapor)^2 + residuo2$$

## Métodos boosting



$$mpg = \beta_0 + \beta_1 \times (cavalo vapor) + residuo$$





 $residuo = \beta_2 \times (cavalo \ vapor)^2 + residuo 2$ 

$$mpg = \beta_0 + \beta_1 \times (cavalo \ vapor) + \beta_2 \times (cavalo \ vapor)^2 + residuo2$$



# Adaptive Boosting (AdaBoost)

## Adaptive Boosting (AdaBoost)



- O princípio básico do Boosting é propor um modelo básico (weak learner)
   e o aprimorá-lo em cada iteração.
- O processo consiste em filtrar os resultados corretos, e concentrar-se naqueles que o modelo n\u00e3o soube lidar;



 Nesse caso, os weak learners, são árvores de decisão com uma separação apenas (chamada de decision stumps).

## Como o algoritmo funciona?



- 1 Inicie com  $\hat{h}(x) = 0$  e  $r_i = y_i$ , para todo i dos dados de treino;
- 2 Para b = 1, 2, ..., B, repita:
  - a) Ajuste a árvore  $\hat{h}^b$  com d divisões para os dados de treino (X, r);
  - b) Atualize  $\hat{h}$  adicionando uma nova versão à árvore anterior:

$$\hat{h}(x) \leftarrow \hat{h}(x) + \alpha \hat{h}^b(x).$$

c) Atualize os resíduos,

$$r_i \leftarrow r_i - \alpha \hat{h}^b(x_i).$$

3 O modelo de saída fica então,

$$\hat{h}(x) = \sum_{b=1}^{B} \alpha \hat{h}^b(x).$$

### **Exemplo simulado**



• Considere o exemplo simulado, obtido a partir da função:

$$f(x) = 10 + 0,05x + 2\sin\left(\frac{x}{10}\right)$$



### **Exemplo simulado**



 O processo consiste em analisar o resíduo decorrente do modelo anterior e somar novas árvores, suprindo tais deficiências.



## Adaptive Boosting (AdaBoost)



 A ideia é ponderar os erros para que nas próximas árvores eles tenham mais importância. Em seguida, combinar os classificadores.



 Não vamos entrar em detalhes teóricos da abordagem. Para o aluno interessado sugere-se Elements of Statistical Learning, capítulo 10.

## Exemplo: Expressão gênica



 Os dados consistem na medida de expressão de 4.718 genes dos tecidos de 349 pacientes;



- Cada paciente possui um marcador qualitativo (de 15 níveis):
  - ⋆ Normal;
  - ⋆ Ou 14 tipos de câncer;

 A forma de construção do boosting (baseado nas árvores anteriores) faz com que ele faça um bom trabalho mesmo com uma partição apenas.

### Referências



- James, G., Witten, D., Hastie, T. e Tibshirani, An Introduction to Statistical Learning, 2013;
- Hastie, T., Tibshirani, R. e Friedman, J., The Elements of Statistical Learning, 2009;
- Lantz, B., Machine Learning with R, Packt Publishing, 2013;
- Tan, Steinbach, and Kumar, Introduction to Data Mining, Addison-Wesley, 2005;
- Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani