sheet 4

1

(a)
$$6rs = 2(3rs) = 2k$$
 even.

(b)
$$6r + 85^2 + 7$$
 $2(3r + 45^2 + 3) + 1$
= $2k + 1$ odd.
Yes.

(c)
$$r^2 + 2rs + s^2 = (r+s)(r+s)$$

Report

$$[2]$$
 @ n > 5
2n_1 \rightarrow is Prime.

assume
$$n=6$$
 $2n-1=12-1=(1) \rightarrow Prime$

FIDO CALL III IE CO

$$\frac{b}{m} + \frac{1}{n} - r \text{ integer}$$

assume
$$n=2$$
 and $n=2$ $\frac{1}{2}+\frac{1}{2}=\frac{1}{2}$

12/ [1

(c) Report

assume that a=0 and b=g.

Vo+9 = Vo+ V9 =+3

3) 2m+n sodd = m, n is also odd.

false if m = 2m + n = 5 odd. • even = m = 2 $n = 1 \longrightarrow odd$.

(b) The product of any two odd -> is odd

True = m = 2k+1 = $m \cdot n = (2k+1)(2k+1)$ n = 2k+1 = $4k^2 + 4k+1 = 2(2k^2+2k)$

The Sum of any even and any odd is nodd.

m=2k+1 odd. 2k+1+2k=4k+1

n = 2k even 2(2k)+1

true.

a) the difference of any even integer minus any odd ->

$$m = 2k$$
 even. $m-n = 2k - (2k+1)$
 $n = 2k+1$ odd. $= 2k-2k-1 = -1$

True.

(e) The product of any even integer and any integer is (even

$$m = 2k$$
 Case 1: $m \cdot n = 2k \cdot 2k = 4k^2 = 2(2k^2)$
 $n = 2k$ even

$$m = 2k$$
 Case 2: $m \cdot n = 2k \cdot (2k+1) = 4k^2 + 2k$
 $n = 2k+1$ = $2(2k^2 + k)$
even.

True.

(9) the difference of any two even integers is even.

$$m = 2k$$
 $m - n = 2k - 2S = 2(k-5) = 2k$
 $n = 2S$ Even.

True.

The Will	Today it be	is Tueso	lay, what	- day of today?	the	week
	days	the state of		Saturday		- Ak
	Monde	ay.		Sunday	1	
				Wensday		

[5] Report.

The a (4) is a first of the same of the sa

thursday

1771

4. 11.