

Exame Final Nacional de Matemática A Prova 635 | 1.ª Fase | Ensino Secundário | 2021

12.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho

Duração da Prova: 150 minutos.	Tolerância: 30 minutos.	8 Páginas
Daração da Frova. 100 minatos.	i Toloranola. 00 minutos.	o i aginas

A prova inclui 11 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 7 itens da prova, apenas contribuem para a classificação final os 4 itens cujas respostas obtenham melhor pontuação.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$$

Área lateral de um cone: $\pi rg(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \ e^{i\theta}} = \sqrt[n]{\rho} \ e^{i\frac{\theta+2k\pi}{n}} \quad (k \in \{0,\dots,n-1\} \ e \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Na Figura 1, está representado, num referencial o.n. Oxyz, um paralelepípedo retângulo $\begin{bmatrix} ABCDEFGH \end{bmatrix}$

ullet o vértice A pertence ao eixo Ox e o vértice B pertence ao eixo Oy

• a reta
$$EF$$
 é definida pela equação $(x, y, z) = (1, -2, 19) + k(-3, -2, 2), k \in \mathbb{R}$

(A)
$$(x, y, z) = (7, -3, 3) + k(2, -3, 0), k \in \mathbb{R}$$

(B)
$$(x, y, z) = (7, 2, 15) + k(0, 3, -3), k \in \mathbb{R}$$

(C)
$$(x, y, z) = (7, -10, 3) + k(0, 3, 3), k \in \mathbb{R}$$

(D)
$$(x, y, z) = (7, 2, 15) + k(2, 0, -3), k \in \mathbb{R}$$

Figura 1

- \bigstar 1.2. Determine, sem recorrer à calculadora, a equação reduzida da superfície esférica de centro no ponto B e que passa no ponto D
- **2.** Na Figura 2, estão representados, num referencial o.n. xOy, a circunferência de centro em O e raio 3 e o triângulo [ABC]

Sabe-se que:

Sabe-se que:

•
$$\alpha$$
 é a inclinação da reta AB $\left(\alpha \in \left]\frac{\pi}{2}, \pi\right[\right)$

ullet o ponto C pertence ao semieixo positivo Ox

ullet a reta BC é paralela ao eixo Oy

Mostre que a área do triângulo [ABC] é dada pela expressão $-9 \ {\rm sen} \ \alpha \ {\rm cos} \ \alpha$

Figura 2

 \star 3. Numa escola frequentada por estudantes portugueses e estrangeiros, 60% dos alunos são raparigas e 15% são rapazes estrangeiros.

Escolheu-se, ao acaso, um aluno dessa escola e verificou-se que era um rapaz.

Qual é a probabilidade de ele ser português?

- (A) 45%
- (B) 50% (C) 57,5% (D) 62,5%

* 4. O corfebol é um desporto coletivo misto, com origem na Holanda.

Um clube de corfebol de um certo país vai participar num torneio internacional.

A comitiva vai deslocar-se por via terrestre, utilizando um automóvel de cinco lugares e uma carrinha de nove lugares. A comitiva é constituída por três dirigentes, um treinador, cinco jogadores do sexo masculino e cinco do sexo feminino.

Escreva uma expressão que dê o número de maneiras diferentes de distribuir os catorze elementos da comitiva pelos catorze lugares disponíveis, sabendo-se que os dois condutores são dois dos dirigentes e que, no automóvel, vão dois jogadores de cada sexo.

5. Uma turma de 11.º ano é constituída por 30 alunos com idades de 15, 16 e 17 anos, dos quais 60%são raparigas. Sabe-se que um terço dos rapazes tem 17 anos e que um terço das raparigas tem 15 ou 16 anos.

O André e a Beatriz, alunos da turma, são gémeos e têm 16 anos.

Escolhem-se, ao acaso, cinco alunos da turma.

Determine a probabilidade de o grupo constituído por esses cinco alunos ser formado pelo André, pela Beatriz, por dois jovens com 17 anos e por outro com 15 ou 16 anos.

Apresente o resultado na forma de dízima, arredondado às centésimas.

*** 6.** Seja (v_n) uma progressão geométrica.

Sabe-se que $v_5 = 4$ e que $v_8 = 108$

Qual é o valor de v_6 ?

- (A) 12
- **(B)** 24
 - (C) 48
- **(D)** 60

7. Seja (u_n) a sucessão definida por $u_n = 2 + \frac{(-1)^{n+1}}{n}$

Determine, sem recorrer à calculadora, quantos termos de ordem ímpar da sucessão (u_n) pertencem ao intervalo $\left[\frac{83}{41}, \frac{67}{33}\right]$

8. Em \mathbb{C} , conjunto dos números complexos, considere $z_1=2e^{i\frac{\pi}{4}}$ e $z_2=2e^{i\frac{3\pi}{28}}$ Seja w o número complexo tal que $w=\frac{z_1}{z_2}$

Sabe-se que, no plano complexo, o afixo do número complexo w é um dos vértices de um polígono regular com centro na origem do referencial e com outro vértice sobre o semieixo real positivo.

Qual é o número mínimo de vértices desse polígono?

(A) 7

- **(B)** 14
- **(C)** 21
- **(D)** 28
- **9.** Em \mathbb{C} , conjunto dos números complexos, considere $z_1=-3+2i$, $z_2=1+2i$ e $z_3=2-i$ Seja w o número complexo tal que $w=\frac{z_1\times z_2}{z_3}$

Mostre, sem recorrer à calculadora, que a proposição seguinte é verdadeira.

$$|w| = \sqrt{13} \wedge \operatorname{Arg}(w) \in \left[-\frac{3\pi}{4}, -\frac{\pi}{2} \right]$$

10. Seja f a função, de domínio $]0, +\infty[$, definida por

$$f(x) = \begin{cases} -x^2 (1 + 2 \ln x) & \text{se} \quad 0 < x \le 1 \\ \frac{5 - 5e^{x - 1}}{x^2 + 3x - 4} & \text{se} \quad x > 1 \end{cases}$$

Resolva os itens 10.1. e 10.2. sem recorrer à calculadora.

- *** 10.1.** Averigue se a função f é contínua em x = 1
- *** 10.2.** Estude, no intervalo]0,1[, a função f quanto à monotonia e quanto à existência de extremos relativos, e determine, caso existam, esses extremos.

Na sua resposta, apresente o(s) intervalo(s) de monotonia.

11. Resolva este item sem recorrer à calculadora.

Seja g a função, de domínio $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, definida por $g(x) = x \cos x + \sin x$

Mostre, recorrendo ao teorema de Bolzano-Cauchy, que existe pelo menos um ponto pertencente ao gráfico da função g tal que a reta tangente ao gráfico da função nesse ponto tem declive $-\frac{1}{2}$

12. Resolva este item sem recorrer à calculadora.

Seja h a função, de domínio \mathbb{R}^+ , definida por $h(x) = \frac{x^3}{2x^2 - \ln x}$

Estude a função h quanto à existência de assíntota oblíqua ao seu gráfico e, caso esta exista, escreva a sua equação reduzida.

13. A Figura 3 representa um depósito de forma cilíndrica, instalado na horizontal, que contém uma certa quantidade de combustível.

Sabe-se que as bases do cilindro têm 1,8 metros de diâmetro.

Num certo instante, iniciou-se o vazamento do depósito.

Seja a(t) a altura, em metros, do combustível no depósito, t minutos após o início do vazamento.

Admita que $a(t) = 1.8 - (0.216 + 0.0039t)^{\frac{2}{3}}$

Figura 3

- *** 13.1.** Qual é, em metros, a diferença entre a altura do combustível no depósito no início do vazamento e a altura do combustível quando este ocupa metade da capacidade do depósito?
 - **(A)** 0,72
- **(B)** 0,54
- (C) 0.36
- **(D)** 0.27
- *** 13.2.** Decorridos t_1 minutos após o início do vazamento, a altura do combustível no depósito é igual a um certo valor.

Sabe-se que, passado igual período de tempo, a altura do combustível no depósito é igual a metade desse valor.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de t_1 , sabendo que esse valor existe e é único.

Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

Se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

14. Determine, sem recorrer à calculadora, os números reais que são solução da equação

$$\ln\left((1-x)e^{x-1}\right) = x$$

*** 15.** Considere, para um certo número real positivo k, as funções f e g, de domínio $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, definidas por $f(x) = k \operatorname{sen}(2x)$ e $g(x) = k \cos x$

Sejam, num referencial ortonormado do plano, A, B e C os pontos de intersecção dos gráficos de f e g, sendo A o ponto de menor abcissa e C o ponto de maior abcissa.

Sabe-se que o triângulo $\left[ABC\right]$ é retângulo em B

Determine, sem recorrer à calculadora, o valor de k

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 11 itens da prova contribuem obrigatoriamente para a classificação final.	1.1.	1.2.	3.	4.	6.	8.	10.1.	10.2.	13.1.	13.2.	15.	Subtotal
Cotação (em pontos)	12	14	12	14	12	12	14	14	12	14	14	144
Destes 7 itens, contribuem para a classificação final da prova os 4 itens cujas respostas obtenham melhor pontuação.	2.	5.	7.	9.	11.	12.	14.					Subtotal
Cotação (em pontos)	4 × 14 pontos										56	
TOTAL									200			