

PROJECT A SUBMISSION

Program: Computer Engineering and

Software Systems

Course Code: CSE111

Course Name: Digital Design

Examination Committee

Dr. Manal Mohsen

Ain Shams University
Faculty of Engineering
Spring Semester – 2022

May 28, 2022

Students Personal Information

Student Name: Yousef Emad Eldin Elshahat

Student Code: 20P3844

Student Name: Ahmed aboBakr Hafez

Student Code: 20P4588

Student Name: Mohamed Sohiel Sayed Ibrahim

Student Code: 20P3576

Table of Contents

1.0 Project Description	4
2.0 Project Requirements	4
3.0 Equipments Used	4
4.0 Comparator	5
Truth Table:	5
Kmaps:	5
Simulation:	6
5.0 Lock LED	7
Truth Table:	7
Kmaps:	7
Simulation:	7
6.0 Flip Flops	8
Truth Table:	8
Kmaps:	8
7.0 Final Result	g
Simulation:	g
Implementation:	
Videos while circuit working:	

1.0 Project Description:

The objective is to design and implement a digital circuit that acts like a digital lock for a safe which accepts a binary passcode, compare it to a preset code by a comparator and takes an action depending on the validity of the entered value. If a wrong code is entered for three successive trials, the lock should no longer accept a new value unless a Reset switch is pressed.

2.0 Project Requirements:

- 1. A 3-bit binary passcode is entered through switches (Preferably dipswitches for ease of use). The preset code is also adjusted through dipswitches.
- 2. A switch is used to pass the input to the comparator via flip flops.
- 3. Wrong trials counter is incremented each time a code is passed and a false indication is given by the comparator. Ready-made counter IC could be used.
- 4. Output action is to illuminate a green LED in case of correct code or a red LED otherwise and another output LED is to be illuminated when wrong trials counter reaches three

3.0 Equipments Used:

(2) Dip Switch	(4 inputs)
(5) D-flipflop	(IC 7474)
(1) 2-input Xnor	(IC 74266)
(1) 3-input Nand	(IC 7411)
(1) Inverter	(IC 7404)
(1) And	(IC 7408)
(1) OR	(IC 7432)
(1) NOR	(IC 7402)
(2) Push Button	
(7) Resistance	(1kΩ)
(3) LEDs	
Male-Male wires	
Power supply(5v)	

4.0 Comparator:

Truth Table:

Password = $A_0 A_1 A_2$ Input = $B_0 B_1 B_2$

Ao	Bo	F1
0	0	1
0	1	0
1	0	0
1	1	1

A1	B1	F2
0	0	1
0	1	0
1	0	0
1	1	1

A2	B2	F3
0	0	1
0	1	0
1	0	0
1	1	1

F1	F2	F3	F
1	1	1	1
0	0	0	0
0	0	0	0
1	1	1	1

Kmaps:

	B _o `	Bo
A _o `	1	0
Ao	0	1

	B1`	B1
A1`	1	0
A1	0	1

$$F1 = A_o$$
` B_o ` + A_o B_o

$$F2 = A_1 B_1 + A_1 B_1$$

$$F3 = A_2 B_2 + A_2 B_2$$

	F2`		F2	2
F1`	0 0		1	0
F1	0 0		1	0
_	F3` F:		3	F3`

F = F1 F2 F3

Simulation:

5.0 Lock LED:

Truth Table:

X	Α	A ⁺	Y	D_A
0	0	0	0	0
0	1	1	1	1
1	0	1	1	1
1	1	1	1	1

y = A + X

Kmap:

	A`	Α
X,	0	1
Χ	1	<mark>1</mark>

$$D_A = A + X$$

Simulation:

Led indicator for locked circuit

6.0 Flip Flops:

Truth Table:

X	Α	В	A ⁺	B ⁺	D_A	D_B	У
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	0	1	0	1	0
1	0	1	1	0	1	0	0
1	1	0	1	1	1	1	1
1	1	1	Х	Х	Х	Х	Х

Kmap:

	A`		Α	
X`	0	0	0	0
X	0	1	X	1
	B`	В		B`

	A`		Α	
X`	0	0	0	0
Χ	1	0	Х	1
	B`	В		B`

		A`		Α	
	Χ,	0	0	0	0
Ī	Χ	0	0	Х	1
•		B`	В		B`

$$D_A = XA + XB$$

$$D_B = XB$$

$$y = XA$$

7.0 Final Result:

Simulation:

Implementation:

Videos while circuit working:

https://drive.google.com/drive/folders/1zgUDWRA3RxaD7G7DkqcJwamPcUiSnO4s?usp=sharing