Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 Applied Mathematics - I

SOME PRACTICE PROBLEMS

- 1. If $u = x^2 + y^2 + z^2$, where, $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$ prove that $\frac{du}{dt} = 4e^{2t}$.
- 2. If $z = \sin^{-1}(x y)$, x = 3t, $y = 4t^3$, prove that $\frac{dz}{dt} = \frac{3}{\sqrt{1-t^2}}$.
- 3. If $z = \tan^{-1}\left(\frac{x}{y}\right)$, x = 2t, $y = 1 t^2$, prove that $\frac{dz}{dt} = \frac{2}{1+t^2}$.
- 4. If $u = f[e^{y-z}, e^{z-x}, e^{x-y}]$, then show that $u_x + u_y + u_z = 0$.
- 5. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
- 6. If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.
- 7. If $u = f(x^n y^n, y^n z^n, z^n x^n)$,

 prove that $\frac{1}{x^{n-1}} \frac{\partial u}{\partial x} + \frac{1}{y^{n-1}} \frac{\partial u}{\partial y} + \frac{1}{z^{n-1}} \frac{\partial u}{\partial z} = 0$.
- 8. If u = f(x y, y z, z x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- 9. If u = f(2x 3y, 3y 4z, 4z 2x), prove that $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$
- 10. If x = u + v + w, y = uv + vw + wu, z = uvw, and ϕ is a function of x, y & z, then prove that $x \frac{\partial \phi}{\partial x} + 2y \frac{\partial \phi}{\partial y} + 3z \frac{\partial \phi}{\partial z} = u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} + w \frac{\partial \phi}{\partial w}$.
- 11. If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and ϕ is a function of x, y & z then prove that, $x \frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} + z \frac{\partial \phi}{\partial z} = u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} + w \frac{\partial \phi}{\partial w}.$
- 12. If z = f(x, y), $x = r\cos\theta$, $y = r\sin\theta$, prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.
- 13. If z = f(x, y), $x = e^{u} + e^{-v}$, $y = e^{-u} e^{v}$, then show that $\frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}.$
- 14. If $w = \phi(u, v)$, $u = x^2 y^2 2xy$, v = y, prove that $\frac{\partial w}{\partial v} = 0$ is equivalent to $(x + y) \frac{\partial w}{\partial x} + (x y) \frac{\partial w}{\partial y} = 0$.
- 15. If z = f(x, y), x = ucoshv, y = usinhv, prove that, $\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial u}\right)^2 \frac{1}{u^2}\left(\frac{\partial z}{\partial v}\right)^2$.

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 Applied Mathematics - I

16. If z = f(x, y), $x = e^u \cos v$, $y = e^u \sin v$, prove that

(i)
$$x \frac{\partial z}{\partial v} + y \frac{\partial z}{\partial u} = e^{2u} \frac{\partial z}{\partial y}$$
 (ii) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$

17. If z = f(x, y), $x = e^u \sec v$, $y = e^u \tan v$,

prove that
$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 - \cos^2 v \left(\frac{\partial z}{\partial v}\right)^2 \right]$$

18. If
$$z = f(u, v)$$
, $u = e^x$, $v = e^y$, prove that $\frac{\partial^2 z}{\partial x \partial y} = uv \frac{\partial^2 z}{\partial u \partial v}$

19. If
$$z = f(u, v)$$
, $u = lx + my$, $v = ly - mx$,

prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$.

20. If
$$z = f(u, v)$$
, $u = x^2 - y^2 - 2xy$, $v = y$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 4\sqrt{u^2 + v^2} \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$

SOMAIYA

VIDYAVIHAR UNIVERSITY

K J Somaiya College of Engineering