

Hashing

Cryptography, Spring 2020

L. Batina, J. Daemen

March 4, 2020

Institute for Computing and Information Sciences Radboud University

Outline

Hash function applications and requirements

Merkle-Damgård mode and provable security

MD5 and standards SHA-1 and SHA-2

Hash function applications and

requirements

Hash function definition

$$H \leftarrow h(m)$$

- ▶ Function h from $\{0,1\}^*$ to $\{0,1\}^\ell$
 - no dedicated key input
 - input *m* has arbitrary length
 - output H, called digest or just hash, has fixed length ℓ
- ▶ Secure if it behaves as a \mathcal{RO} , with output truncated to ℓ bits
- ightharpoonup So strength defined in terms of output length ℓ

Message compression and collision-resistance

- Applications
 - signing m with private key PrK: sign h(m) instead
 - identification of a file m with its hash h(m) (e.g., in git, bittorrent)
- ▶ These rely on h(m) being unique
- ► Security notion: *collision-resistance*:
 - hard to find $x1 \neq x2$ such that h(x1) = h(x2)

- ▶ For \mathcal{RO} : Pr(Success) $\approx N^2/2^{\ell+1}$ with N: # calls h(·)
 - expected cost of generating collision about $2^{\ell/2}$
 - collision resistance security strength $\leq \ell/2$
 - ullet this is the birthday bound on the digest length ℓ

2nd pre-image resistance

- Sometimes collision-resistance is not required
- Examples
 - using an existing signature on m to forge a signature on m'
 - forge a file m identified by h(m) to m'
- ▶ Security notion: 2nd preimage resistance:
 - given m and h(m), find $m' \neq m$ such that h(m') = h(m)

- ▶ Generic attack (on \mathbb{RO}) has succes probability $N/2^{\ell}$
 - ullet security strength limited to ℓ instead of $\ell/2$

Hashing passwords and pre-image resistance

- Application
 - storage of hashed passwords on servers: h(password||salt)
- ► Security notion: *preimage resistance*:
 - given y, find any m such that h(m) = y

- ► Security strength ≤ ℓ
- ▶ Sometimes it is not pure preimage resistance what we want
 - m may have to satisfy certain criteria, e.g., ASCII-coded
 - problem may be: given y obtained as $y \leftarrow h(m)$, find that m

Keyed hashing

- ▶ MAC computation: h(K||m) = T
- ▶ Stream cipher: $h(K||D||i) = z_i$ (keystream block)
- ▶ Key derivation $h(Master K || "Bob") = K_{Bob}$
 - different diversifier values give independent subkeys
 - in payment systems: MK in bank, K_i in IC card
 - knowledge of K_i shall not reveal MK
 - also used in TLS for computing symmetric keys . . .
- ► Hashed password storage: h(password||salt)

Keyed hashing security notion: pseudorandom function (PRF)

- ▶ PRF security: difficulty of distinguishing $h(K||\cdot)$ from \mathcal{RO}
- ▶ Single-target security strength $\leq |K|$
- ► Caution: strength upper bound by entropy of *K*
- ► Same notion as for stream cipher and MAC functions
- ▶ MAC function: forgery success probability $h(K||\cdot)$ sum of:
 - probability of guessing a random ℓ -bit tag correctly: $2^{-\ell}$
 - advantage of distinguishing $h(K||\cdot)$ from RO

Other applications and requirements

- ► There are many applications of hash functions
 - destroying algebraic structure, e.g.,
 - ► encryption with RSA: OAEP [PKCS #1]
 - ► signing with RSA: PSS [PKCS #1]
 - more than 800 uses of hash function MD5 in MS Windows
- ▶ Problems:
 - for designer: what to aim for?
 - for user: what are the (claimed) security properties?
 - expressing security claim is non-trivial
- ▶ Design approach: try to build hash function that *behaves like a RO*
 - there exist counterexamples proving this is impossible
 - still the best we can come up with and intuitively kind of clear

Domain separation

- ▶ Some applications need multiple *independent* hash functions
- ▶ This can be done with a single h using domain separation
 - output of h(m||0) and h(m||1) are independent
 - ...unless h has a cryptographic weakness
- ▶ Generalization to 2^{w} functions with D a w-bit diversifier

$$h_D(m) = h(m||D)$$

► Variable-length diversifiers: suffix-free set of strings

Merkle-Damgård mode and

provable security

Classical iterative hashing: Merkle-Damgård

- ▶ Mode of use of a fixed-input-length compression function F
- ► Collision-resistance preserving
 - collision in hash function implies collision in F
 - reduces hash function design to fixed-input-length compression function design
 - implies fixing initial value (IV) of chaining value (CV) and conditions on the padding
- ► Important
 - used in MD5 and standards SHA-1, SHA-2
 - many experts (still) believe this is a good idea

Security of the hashing mode: (black-box) distinguishing setup

- ► Advantage of distinguishing between:
 - real world: mode \mathcal{M} calling the ideal \mathcal{F} : $\mathcal{M}(\mathcal{F})$
 - ideal world: RO
- ► Can be used to analyze concrete modes like Merkle-Damgård
- ▶ Problem: this adversary model is too weak
 - \bullet in real world adversary should be able to guery \mathcal{F}
 - ullet we don't want to base hash function security on secrecy of ${\mathcal F}$

Hashing mode security: attempt to fix distinguishing setup

- \blacktriangleright We give adversary access to $\mathcal F$ in real and ideal world
- lackbox Unfortunately, now any $\mathcal M$ can be distinguished in a few queries:
 - Adversary queries h $(\mathcal{M}(\mathcal{F}) \text{ or } \mathcal{RO})$ with m
 - Adversary simulates mode $\mathcal{M}(\mathcal{F})$ by making calls to \mathcal{F} herself
- \blacktriangleright $(\mathcal{M}(\mathcal{F}), \mathcal{F})$ will behave \mathcal{M} -consistently
- $ightharpoons (\mathcal{RO},\mathcal{F})$ both return random responses so not likely \mathcal{M} -consistent
- ▶ Note: keyed modes do not have this problem:
 - ullet unknown key ${\color{red} K}$ prevents simple ${\color{red} {\mathcal M}}$ -inconsistency check

Modeling public compression function: indifferentiability

- ► Concept by [Maurer et al. (2004)], for hashing [Coron et al. (2005)]
 - adversary gets access to F in real world
 - introduces counterpart in ideal world: simulator S
- ▶ Methodology for proving bounds on the advantage:
 - \bullet build $\mathcal S$ that makes left/right distinguishing difficult
 - ullet prove bound for advantage given this simulator ${\cal S}$
 - S may query \mathcal{RO} for acting \mathcal{M} -consistently: $\mathcal{S}(\mathcal{RO})$
- ▶ Advantage in this setting is the benchmark for hash mode security

Merkle-Damgård weakness: length extension

- lacktriangle Take indifferentiability setup with ${\cal M}=$ Merkle-Damgård
- ▶ Distinguish $(\mathcal{M}(\mathcal{F}), \mathcal{F})$ from $(\mathcal{RO}, \mathcal{S}(\mathcal{RO}))$ in 3 queries:

- ▶ Query h with m_1 resulting in H_1
- ▶ Query h with $m_1 || m_2$ resulting in H_2
- ▶ Query \mathcal{F} with $H_1 || m_2$ resulting in H'
- ▶ For $(\mathcal{M}(\mathcal{F}), \mathcal{F})$ we have $H' = H_2$.
- ightharpoonup Simulator cannot enforce this because it doesn't know m_1 to ask \mathcal{RO}
- ▶ This is called the *length extension weakness*:
 - one can compute $h(m_1||m_2)$ from $H_1 = h(m_1)$ and m_2 only
 - generalizes to multi-block strings m_1 and m_2
 - major problem for MAC function $h(K||\cdot)$

Merkle-Damgård weakness: length extension (cont'd)

- ▶ Why does Merkle-Damgård have the length extension weakness?
 - adversary gets CVs (here H_1) by queries to $\mathcal{M}(\mathcal{F})$
 - if $\mathcal{M}(\mathcal{F})$ cannot return CVs, S can be made \mathcal{M} -consistent
- ► Easy fix by dedicating bit in F input to indicate final/non-final
 - $CV \leftarrow F(m_1 || IV || 0)$ for first block
 - $CV \leftarrow F(m_i || CV || 0)$ for intermediate block
 - $H \leftarrow F(m_n \| \text{pad} \| CV \| 1)$ for last block
 - $H \leftarrow F(m||pad||IV||1)$ for short message
- ▶ This was never applied for standard Merkle-Damgård hash functions

The limit of iterative hashing: internal collisions

- ▶ There exist inputs $m \neq m^*$ leading to same CV
- ▶ Messages $m \| X$ and $m^* \| X$ always collide for any string X
- ▶ This effect does not occur in \mathcal{RO}
- ► Security strength upper bound by birthday bound in *CV* length

Distinguishing iterative hashing modes from \mathcal{RO}

- ▶ Send N queries to $\mathcal{RO}/\mathcal{M}(\mathcal{F})$ of form $m^{(i)}||X|$ with X always same
 - if there is no collision, say \mathcal{RO}
 - otherwise, we have one or more collisions for some $i \neq j$
 - for each, query $m^{(i)}||X'|$ and $m^{(j)}||X'|$ for some $X' \neq X$
 - if equal: say $\mathcal{M}(\mathcal{F})$, otherwise: say \mathcal{RO}
- $Adv \approx N^2 2^{-(|CV|+1)}$
 - security strength of iterative hashing $\leq |CV|/2$
 - ullet truncating output to $\ell < |\mathit{CV}|$ does not affect advantage
- ightharpoonup Attack success probability on hashing mode with ideal ${\mathcal F}$ at most:
 - (1) success probability of that attack on \mathcal{RO} plus
 - (2) distinguishing advantage $N^2 2^{-(|CV|+1)}$

2nd preimage resistance of Merkle-Damgård

- ▶ In Merkle-Damgård: $|CV| = \ell$ (digest length)
- ▶ Success probability of 2nd preimage attack is upper bound by:
 - (1) 2nd preimage attack on \mathcal{RO} truncated to ℓ bits: $N2^{-\ell}$
 - (2) distinguishing advantage: $N^2 2^{-(|CV|+1)} = N^2 2^{-(\ell+1)}$
- ▶ This leaves room for 2nd preimage attacks with $Pr(succ.) \gg N2^{-\ell}$
- ► Such attacks surfaced in 2004-2006 much to the surprise of the establishment
- ightharpoonup E.g., 2nd pre-image of 2^d -block message in about $2^{|\mathcal{CV}|-d}$ \mathcal{F} calls
- ▶ Remedy: take $|CV| = 2\ell$
 - called wide-pipe hashing
 - Merkle-Damgård loses its collision-resistance preservation

Patching length extension: HMAC mode [FIPS 197]

MAC mode with length extension patch for Merkle-Damgård

- ▶ Two calls to the hash function, like $T \leftarrow h(K || h(K || m))$
- \blacktriangleright Remember: h(K|m) allows tag forgery by using length-extension
- ▶ Wikipedia figure:

Extending the output length: The mode MGF1 [PKCS #1]

- ▶ Repeating hash computation multiple times
- On message followed by counter
- ▶ Only last block must be processed multiple times

MD5 and standards SHA-1 and

SHA-2

MD5 and standards SHA-1 and SHA-2

- ▶ MD5 [Ron Rivest, 1991]
 - based on MD4 that was an original design
 - 128-bit digest
- ► SHA-1 [NIST, 1995] (after SHA-0 [NIST, 1993])
 - inspired by MD5, designed at NSA
 - 160-bit digest
- ► SHA-2 series [NIST, 2001 and 2008]
 - reinforced versions of SHA-1, designed at NSA
 - 6 functions with 224-, 256-, 384- and 512-bit digest
- ► Internally:
 - Merkle-Damgård iteration mode
 - F based on a block cipher in Davies-Meyer mode

The Davies-Meyer mode for building a compression function

MD5, SHA-1 and SHA-2 all use a block cipher internally:

- ► This is called the Davies-Meyer mode
- Separation data path and message expansion (key schedule)
- Feedforward
 - due to Merkle-Damgård proof: collision-resistance preservation
 - otherwise it is trivial to generate collisions for F
- ▶ Why a block cipher: we don't know how to design a decent compression function from scratch

MD5 internals

- ► Software oriented with 32-bit words
- ▶ 4-word *CV* and datapath
- ▶ 16-word message block
- ▶ 64 rounds, each taking one message word
- Hoped strength by combining arithmetic, rotation and XOR (ARX)

Round function:

SHA-1 internals

- ► Similar to MD5 but
 - 5-word state and 80 rounds
 - round i takes a word w[i] of the expanded message
- ► Message expansion:
 - i < 16 : w[i] = m[i]
 - $i \ge 16 : w[i] = (w[i-3] \oplus w[i-8] \oplus w[i-14] \oplus w[i-16]) \ll 1$
 - similar to AES key schedule (this is where we got it)

Round function:

SHA-2 internals

- ▶ 8-word state and nonlinear message expansion
- 6 versions:
 - SHA-256 and SHA-224: 32-bit words and 64 rounds
 - SHA-512, SHA-384, SHA-512/256 and SHA-512/224: 64-bit words and 80 rounds

Round function:

Security status of MD5, SHA-1 and SHA-2

- ► Problems of Merkle-Damgård:
 - ullet perceived: strength against a.o. 2nd preimages below ℓ
 - real: length-extension weakness
- ► MD5
 - 1993: F shown weak (before widespread adoption)
 - 2003-2004: great advances in breaking MD5
 - despite weaknesses, corporate IT co. unwilling to abandon MD5
 - 2005: Lenstra, Wang, and De Weger use MD5 collisions to generate fake TLS certificates
 - 2016: MD5 largely replaced by SHA-256
- ► SHA-1
 - 2004-2007: theoretical collision attacks in effort $\approx 2^{61}$
 - 2017: collisions by Marc Stevens et al. published at shattered.io
- ▶ SHA-2 series: no specific problems outside of length extension

Conclusions

- ► Hash functions are modes built on underlying primitives
- Classical hash standards based on block ciphers
 - industry standard MD5 very badly broken
 - SHA-1 practically broken
 - SHA-2 has Merkle-Damgård length-extension weakness
 - dedicated modes are required: HMAC and MGF1

All in all a messy situation