SIMPLIFYING TRIGONOMETRIC EXPRESSIONS

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

EXERCISE 11C.1

- 1 Simplify:
 - $\sin \theta + \sin \theta$
 - d $3\sin\theta 2\sin\theta$

- $b 2\cos\theta + \cos\theta$
- $\cot \theta 3 \tan \theta$

- 2 Simplify:
 - $3\sin^2\theta + 3\cos^2\theta$
 - d $3-3\sin^2\theta$
 - $\cos^2\theta 1$
 - $\frac{1-\sin^2\theta}{\cos^2\theta}$

- $-2\sin^2\theta 2\cos^2\theta$
- $e 4 4\cos^2\theta$
- $\sin^2 \theta 1$
- $\frac{1-\cos^2\theta}{\sin\theta}$

- 3 Simplify:
 - a $3\tan x \frac{\sin x}{\cos x}$
 - $\frac{\sin x}{\tan x}$

- $\frac{\sin^2 x}{\cos^2 x}$
- \circ $3\sin x + 2\cos x \tan x$
- 4 Expand and simplify if possible:
 - $(1+\sin\theta)^2$
 - d $(\sin \alpha + \cos \alpha)^2$

- **b** $(\sin \alpha 2)^2$
- $(\sin \beta \cos \beta)^2$
- **5** Expand and simplify: $(\sin x + \tan x)(\sin x \tan x)$

FACTORISING TRIGONOMETRIC EXPRESSIONS

EXERCISE 11C.2

Factorise: 1

$$1 - \sin^2 \theta$$

d
$$2\sin^2\beta - \sin\beta$$

g
$$\tan^2 \theta + 5 \tan \theta + 6$$

$$\sin^2 \alpha - \cos^2 \alpha$$

$$2\cos\phi + 3\cos^2\phi$$

h
$$2\cos^2\theta + 7\cos\theta + 3$$

Simplify:

$$\frac{1-\sin^2\alpha}{1-\sin\alpha}$$

$$\frac{\cos^2\phi - \sin^2\phi}{\cos\phi - \sin\phi}$$

$$\frac{\tan^2\beta - 1}{\tan\beta + 1}$$

$$\frac{\sin \alpha + \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha}$$

Show that:

a
$$(\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta)^2$$
 simplifies to 2

b
$$(2\sin\theta + 3\cos\theta)^2 + (3\sin\theta - 2\cos\theta)^2$$
 simplifies to 13

$$(1-\cos\theta)\left(1+\frac{1}{\cos\theta}\right)$$
 simplifies to $\tan\theta\sin\theta$

EXERCISE 11C.1

a $2\sin\theta$ 1

 $\mathbf{b} \quad 3\cos\theta$

 $2\sin\theta$

 $d \sin \theta$

 $e^{-2\tan\theta}$

 $f -3\cos^2\theta$

2 **a** 3

-2

c −1

d $3\cos^2\theta$

 $e^{4\sin^2\theta}$

 $\int \cos \theta$

 $\mathbf{g} - \sin^2 \theta$ $\mathbf{h} - \cos^2 \theta$

 $-2\sin^2\theta$

1

 $k \sin \theta$

 $\sin \theta$

3 a $2\tan x$

 $b \tan^2 x$

 $\sin x$

 $d \cos x$

4 a $1 + 2\sin\theta + \sin^2\theta$

 $\sin^2 \alpha - 4\sin \alpha + 4$

 $\tan^2 \alpha - 2 \tan \alpha + 1$

d $1 + 2\sin\alpha\cos\alpha$

 $e 1 - 2\sin\beta\cos\beta$

 $f -4 + 4\cos\alpha - \cos^2\alpha$

 $5 \sin^2 x - \tan^2 x$

EXERCISE 11C.2

 $(1-\sin\theta)(1+\sin\theta)$

b $(\sin \alpha + \cos \alpha)(\sin \alpha - \cos \alpha)$

c $(\tan \alpha + 1)(\tan \alpha - 1)$ d $\sin \beta(2\sin \beta - 1)$

 $\cos \phi (2 + 3\cos \phi)$

 $\sin \theta (\sin \theta - 2)$

g $(\tan \theta + 3)(\tan \theta + 2)$ h $(2\cos \theta + 1)(\cos \theta + 3)$

i $(3\cos\alpha+1)(2\cos\alpha-1)$

 $1 + \sin \alpha$ 2

 $b \tan \beta - 1$

 $\cos \phi - \sin \phi$

 $d \cos \phi + \sin \phi$