Computer Architecture: tutorial exercise answers

Exercise 1.1

(a) executions per second per pound = executions per second / cost = 1 / (execution time × cost)

for S1:
$$1/(10 \times 10,000) = 1/100,000$$

for S2: $1/(5 \times 15,000) = 1/75,000$

So S2 is more cost effective by a ratio of 100 / 75 (\approx 1.3).

(b) The performance is inversely proportional to the time taken for the programs. This is 13 seconds for S1, and 9 seconds for S2. S2 therefore outperforms S1 by $13/9 \ (\approx 1.4)$ times.

Cost effectiveness is computed in the same way as the previous question:

for S1:
$$1/(13 \times 10,000) = 1/130,000$$

for S2: $1/(9 \times 15,000) = 1/135,000$

S1 is more cost effective by 135 / 130 (\approx 1.04) times.

(c) Both machines run P1 the required number of times; the performance is therefore measured by the *number of executions per hour of P2*.

	Time for 200	Time remaining	Number of
	executions of P1	for P2	executions of P2
S 1	2000 seconds	1600 seconds	1600 / 3 = 533
S2	1000 seconds	2600 seconds	2600 / 4 = 650

S2 is faster by 650 / 533 (≈ 1.22) times.

Cost effectiveness in executions per hour per pound:

for S1: 533 / 10,000 = 0.0533for S2: $650 / 15,000 \approx 0.043$

S1 is more cost effective by 1.24 times.

Exercise 1.2

(a) MIPS = Number of instructions / (time taken $\times 10^6$)

for S1:
$$20 \times 10^6 / 10 \times 10^6 = 20 / 10 = 2$$
 MIPS
for S2: $16 \times 10^6 / 5 \times 10^6 = 16 / 5 = 3.2$ MIPS

- (b) CPI = cycles per instruction
 - = number of cycles / number of instructions
 - = cycles per second / instructions per second
 - = clock rate / IPS
 - = clock rate / (MIPS $\times 10^6$)

for S1:
$$20 \times 10^6 / 2 \times 10^6 = 10$$

for S2: $30 \times 10^6 / 3.2 \times 10^6 = 9.4$

- (c) CPI = number of cycles / number of instructions
 - = time taken \times clock rate / number of instructions

number of instructions = time taken (seconds) × clock rate (Hz) / CPI

for S1:
$$3 \times 20 \times 10^6$$
 / $10 = 6 \times 10^6$
for S2: $4 \times 30 \times 10^6$ / $9.4 = 12.8 \times 10^6$