Dyn. Systeme in der Zahlentheorie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein **dynamisches System** ist ein kompakter metrischer Raum X mit einer Gruppen-Wirkung $\varphi: G \to \operatorname{Aut}(X), \ g \mapsto T_g$ oder einer Monoid-Wirkung $\rho: M \to \operatorname{End}(X), \ m \mapsto T_m$.

Bem. Falls $G = \mathbb{Z}$ oder $M = \mathbb{N}$, dann bezeichnen wir mit $T := T_1$ den Erzeuger der Aktion und nennen (X, T) ein **zykl. System**.

Def. Sei X ein topol. Raum, $T:X\to X$ stetig. Ein Punkt $x\in X$ heißt **wiederkehrend**, falls für für alle Umgebungen $V\subset X$ von x ein $n\geq 1$ existiert mit $T^n(x)\in V$.

Bem. Sei X sogar ein metrischer Raum, $x \in X$ wiederkehrend. Dann gibt es eine Folge (n_k) mit $d(T^{n_k}(x), x) \to 0$ für $k \to \infty$.

Def. Sei X ein topol. Raum, $T:X\to X$ stetig. Dann heißt

$$Q(x) := \overline{\{T^nx \,|\, n \geq 1\}} \subseteq X$$

abgeschlossener Vorwärtsorbit von $x \in X$.

Lemma. • $x \in X$ ist wiederkehrend $\iff x \in Q(x)$

- $x \in Q(y) \implies T(x) \in Q(y) \iff Q(x) \subseteq Q(y)$
- Die Relation $xRy : \iff x \in Q(y)$ ist transitiv.

Thm. Sei X ein kompakter topol. Raum, $T: X \to X$ stetig. Dann gibt es einen wiederkehrenden Punkt $x \in X$.

Def. Sei K eine kompakte Gruppe, $a \in K$ und T(x) := ax. Dann heißt (K, T) ein **Kronecker-System**.

Thm. In einem Kronecker-System sind alle $x \in K$ wiederkehrend.

Def. Ein Homomorphismus zwischen zwei dyn. Systemen (X, G) und (X', G) (zweimal die gleiche Gruppe oder Monoid G) ist eine G-äquivariante stetige Abbildung $\phi: X \to X'$.

Def. Ein dyn. System (Y,G) ist **Faktor** eines dyn. System (X,G), wenn es einen surjektiven Homomorphismus $(X,G) \to (Y,G)$ gibt. Man nennt (X,G) dann eine **Erweiterung** von (Y,G).

Bem. Sei $\phi:X\to Y$ surjektiv. Dann kann man Y mit der Menge der Fasern von ϕ identifizieren.

Thm. Sei $\phi: (X,T) \to (Y,T)$ ein Morphismus von zyklischen Systemen. Wenn $x \in X$ wiederkehrend ist, dann auch $\phi(x)$. Allgemeiner: $x \in Q(y) \implies \phi(x) \in Q(\phi(y))$

 $\textbf{Def.} \ \mbox{Sei} \ (Y,T:Y\to Y)$ ein zyklisches System, Keine kompakte Gruppe und $\psi:Y\to K$ stetig. Setze

$$X := Y \times K, \quad T : X \to X, \quad (y, k) \mapsto (Ty, \psi(y)k).$$

Das System (X, T) wird **Gruppenerweiterung** von (Y, T) mit K oder **Schiefprodukt** von (Y, T) mit K genannt.

Bem. Die Gr. K wirkt auf $(X,T) = (Y \times K,T)$ durch Rechtstransl.:

$$R: K \to \operatorname{Aut}(X), k \mapsto R_k, R_k(y, k') := (y, k'k).$$

Die Homöomorphismen R_k kommutieren mit T, sind also Automorphismen des dyn. Systems (X, T).

Thm. Sei $(X = Y \times K, T)$ eine Gruppenerw. von (Y, T) und $y_0 \in Y$ wiederkehrend. Dann sind die Pkte $\{(y_0, k) \mid k \in K\}$ wiederkehrend.