DETERMINING TOPIC SENTIMENT ACROSS SOCIAL NETWORK PLATFORMS

Craig Dick

INTRODUCTION

- Motivation around project
- 2.8 million subreddit communities Reddit in 2021, Twitter 206 million daily users
- Misinformation is dangerous due to the health implications of COVID, can make the decision of a user getting the vaccine or not
- What does the project aim to do?
- □ Whether sentiment analysis can identify misinformation on social networks
- ☐ Code to collect data, then analyse sentiment to see if this highlights misinformation

BACKGROUND

- Natural Language Processing
- ☐ Pre-processing of data, NLP tasks, sentiment analysis
- Collecting data on Twitter and Reddit
- Streaming and REST API, Reddit and Pushshift API
- Sentiment Analysis
- □ VADER, Afinn, TextBlob, Naïve Bayes, BERT
- Sentiment analysis with COVID
- □ COVID brought new challenges, strong opinions on social media, label scales

REQUIREMENTS

Functional

- MH System must be able to gather data off of Twitter and Reddit
- MH The posts must be saved to a database
- MH Search terms must be decided
- MH Display the results of Twitter vs Reddit
- SH Run the data collections for multiple weeks
- SH Compare different sentiment analysis libraries
- SH Analyse the sentiment in subreddits
- CH Trained BERT model on labelled data
- WH Website where user can search topic

Non-Functional

- MH Graphs must be easily understood
- MH Code should be commented
- SH Code modularised where possible
- SH The database should hold all of the data
- SH Libraries should be scalable
- CH The libraries should be optimised to get fast results
- WH The APIs should be able to be used at all times

DESIGN

- Programming Language needed
- List of Search terms
- Data collection on social media
- Database storage
- Sentiment analysis libraries

Layout of the design process to arrive at the end goal

IMPLEMENTATION

- Programming Language
- Software Engineering Practices
- Search Terms
- Database Storage
- Data collection APIs
- Sentiment Analysis Labels, Libraries, Saving Results
- Graphs

MongoDB Schema to save the posts

SENTIMENT ANALYSIS CODE

```
def database_as_textblob(post):
    text = TextBlob(post)  # create
    polarity = text.sentiment.polarity

if (polarity >= 0.05):  # if its
    sentiment = 'positive'

elif (polarity <= -0.05):  # if
    sentiment = 'negative'

else:
    sentiment = 'neutral'  # of

return sentiment</pre>
```

```
#------#

def database_as_afinn(post):
    afinn_analyser = Afinn()  # crea
    polarity = afinn_analyser.score(post)

    if (polarity > 0):  # if its great
        sentiment = 'positive'

    elif (polarity < 0):  # if its l
        sentiment = 'negative'

    else:
        sentiment = 'neutral'  # othe

    return sentiment</pre>
```

```
try:
    t = bert_preprocess(post)  # preprocesses post
    encoded_input = tokenizer(t, return_tensors='pt')  # puts post into tokenizer
    output = model(**encoded_input)  # puts input into the model

except:  # exceptions were happening on unrecognised emojis, so it then removes this
    t = process_emoji(t)  # only removes emoji on exception, they can provide sentimental value to post
    encoded_input = tokenizer(t, max_length=512, truncation=True, return_tensors='pt')
    output = model(**encoded_input)

finally:
    scores = output[0][0].detach().numpy()
    scores = softmax(scores)  # turns into probability
    ranking = np.argsort(scores)  # sorts scores in order
    ranking = np.argsort(scores)  # sorts scores in order
    ranking = ranking[::-1]  # reverses to get top ranking at first item in list
    sentiment = labels[ranking[0]]  # gets the sentiment of the top ranking from model

return sentiment
```


EVALUATION - SYSTEM

• Feature testing with Pytest

Test name	Stmts	Miss	Cover
tests/initpy	0	0	100%
tests/test_reddit_modules.py	41	0	100%
tests/tests_shared_modules.py	44	0	100%
TOTAL	85	0	100%

Term	Twitter Run 1	Twitter Run 2	Twitter Run 3
Facemasks	8460	73825	37780
Lockdown	137365	173641	167871
PCR	44595	135507	71512
Pfizer	83197	116621	79829
Quarantine	71657	131953	73405
Restrictions	108885	126852	151074
Vaccine	234068	238990	265256
TOTAL	688227	997389	846727

Term	Reddit Run 1	Reddit Run 2	Reddit Run 3
Facemasks	1465	1197	4054
Lockdown	31243	1421	26687
PCR	8792	3025	17500
Pfizer	16591	4590	18683
Quarantine	16589	7116	19004
Restrictions	37651	24298	40161
Vaccine	171180	149126	170466
TOTAL	283511	190773	296555

EVALUATION - MODELS

	Afinn	BERT	TextBlob	VADER
F1 score	0.423	0.549	0.400	0.417
Accuracy	0.470	0.617	0.478	0.463
Precision	0.436	0.554	0.407	0.437
Recall	0.512	0.638	0.433	0.505

	Afinn	BERT	TextBlob	VADER
F1 score	0.431	0.549	0.408	0.421
Accuracy	0.481	0.617	0.495	0.471
Precision	0.440	0.554	0.411	0.438
Recall	0.513	0.638	0.435	0.502

EVALUATION – SENTIMENT ANALYSIS

Comparison of the total sentiment

EVALUATION – SUBREDDIT SENTIMENT ANALYSIS

EVALUATION – SUBREDDIT SENTIMENT ANALYSIS

EVALUATION – SUBREDDIT SENTIMENT ANALYSIS

CONCLUSION

- Summary
- Reflection and Limitations
- Future work

