SIEMENS

Silizium-PIN-Fotodiode

NEU: in SMT

Silicon PIN Photodiode

NEW: in SMT

BPW 34 BPW 34 S

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- Speziell geeignet f
 ür Anwendungen im Bereich von 400 nm bis 1100 nm
- Kurze Schaltzeit (typ. 20 ns)
- DIL-Plastikbauform mit hoher Packungsdichte
- BPW 34 S: geeignet für Vapor-Phase Löten und IR-Reflow Löten (JEDEC level 4)

Features

- Especially suitable for applications from 400 nm to 1100 nm
- Short switching time (typ. 20 ns)
- DIL plastic package with high packing density
- BPW 34 S: suitable for vapor-phase and IR-reflow soldering (JEDEC level 4)

SIEMENS

Anwendungen

- Lichtschranken für Gleich- und Wechsellichtbetrieb
- IR-Fernsteuerungen
- Industrieelektronik
- "Messen/Steuern/Regeln"

Тур Туре	Bestellnummer Ordering Code
BPW 34	Q62702-P73
BPW 34 S	Q62702-P1602

Applications

- Photointerrupters
- IR remote controls
- Industrial electronics
- For control and drive circuits

Grenzwerte Maximum Ratings

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 80	°C
Sperrspannung Reverse voltage	V_{R}	32	V
Verlustleistung, T_A = 25 °C Total power dissipation	P_{tot}	150	mW

Kennwerte (T_A = 25 °C, Normlicht A, T = 2856 K) **Characteristics** (T_A = 25 °C, standard light A, T = 2856 K)

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Fotoempfindlichkeit, $V_{\rm R}$ = 5 V Spectral sensitivity	S	80 (≥ 50)	nA/Ix
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	$\lambda_{\text{S max}}$	850	nm
Spektraler Bereich der Fotoempfindlichkeit $S=10~\%$ von $S_{\rm max}$ Spectral range of sensitivity $S=10~\%$ of $S_{\rm max}$	λ	400 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	7.00	mm ²

SIEMENS

Kennwerte ($T_{\rm A}$ = 25 °C, Normlicht A, T = 2856 K) Characteristics ($T_{\rm A}$ = 25 °C, standard light A, T = 2856 K) (cont'd)

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	2.65 × 2.65	mm × mm
Abstand Chipoberfläche zu Gehäuseober- fläche Distance chip front to case surface	Н	0.5 0.3 (BPW 34 S)	mm
Halbwinkel Half angle	φ	± 60	Grad deg.
Dunkelstrom, $V_{\rm R}$ = 10 V Dark current	I_{R}	2 (≤ 30)	nA
Spektrale Fotoempfindlichkeit, λ = 850 nm Spectral sensitivity	S_{λ}	0.62	A/W
Quantenausbeute, λ = 850 nm Quantum yield	η	0.90	Electrons Photon
Leerlaufspannung, E_v = 1000 lx Open-circuit voltage	Vo	365 (≥ 300)	mV
Kurzschlußstrom, E_{v} = 1000 lx Short-circuit current	I_{SC}	80	μΑ
Anstiegs- und Abfallzeit des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 5 V; λ = 850 nm; $I_{\rm p}$ = 800 μ A	$t_{\rm r},\ t_{\rm f}$	20	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V_{F}	1.3	V
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz, E = 0 Capacitance	C_0	72	pF
Temperaturkoeffizient von $V_{\rm O}$ Temperature coefficient of $V_{\rm O}$	TC_{V}	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm SC}$ Temperature coefficient of $I_{\rm SC}$	TC ₁	0.18	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V, λ = 850 nm	NEP	4.1 × 10 ⁻¹⁴	$\frac{W}{\sqrt{Hz}}$
Nachweisgrenze, $V_{\rm R}$ = 10 V, λ = 850 nm Detection limit	D*	6.6 × 10 ¹²	<u>cm · √Hz</u> W

Relative spectral sensitivity

 $S_{\text{rel}} = f(\lambda)$

Photocurrent $I_P = f(E_V)$, $V_R = 5 \text{ V}$ Open-circuit voltage $V_O = f(E_V)$

Total power dissipation $P_{tot} = f(T_A)$

Dark current

 $I_{\mathsf{R}} = f(V_{\mathsf{R}}), E = 0$

Capacitance

 $C = f(V_R), f = 1 \text{ MHz}, E = 0$

Dark current

 $I_{R} = f (T_{A}), V_{R} = 10 \text{ V}, E = 0$

Directional characteristics $S_{\text{rel}} = f$ (ϕ)

