

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Universidad Politécnica Salesiana

Vicerrectorado Docente

Código del Formato:	GUIA-PRL-001
Versión:	VF1.0
Elaborado por:	Directores de Área del Conocimiento Integrantes Consejo Académico
Fecha de elaboración:	2016/04/01
Revisado por:	Consejo Académico
Fecha de revisión:	2016/04/06
Aprobado por:	Lauro Fernando Pesántez Avilés Vicerrector Docente
Fecha de aprobación:	2016/14/06
Nivel de confidencialidad:	Interno

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Descripción General

Propósito

El propósito del presente documento es definir un estándar para elaborar documentación de guías de práctica de laboratorio, talleres o centros de simulación de las Carreras de la Universidad Politécnica Salesiana, con la finalidad de lograr una homogenización en la presentación de la información por parte del personal académico y técnico docente.

Alcance

El presente estándar será aplicado a toda la documentación referente a informes de prácticas de laboratorio, talleres o centros de simulación de las Carreras de la Universidad Politécnica Salesiana.

Formatos

- Formato de Guía de Práctica de Laboratorio / Talleres / Centros de Simulación para Docentes
- Formato de Informe de Práctica de Laboratorio / Talleres / Centros de Simulación para Estudiantes

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: COMPUTACIÓN ASIGNATURA: Programación Aplicada

NRO. PRÁCTICA: 1 TÍTULO PRÁCTICA: Patrones en Java

OBJETIVO:

Identificar los cambios importantes de Java

Diseñar e Implementar las nuevas tecnicas de programación

Entender los patrones de Java

INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):

- 1. Revisar los conceptos fundamentales de Java
- 2. Establecer las características de Java basados en patrones de diseño
- 3. Implementar y diseñar los nuevos patrones de Java
- 4. Realizar el informe respectivo según los datos solicitados.

ACTIVIDADES POR DESARROLLAR

(Anotar las actividades que deberá seguir el estudiante para el cumplimiento de la práctica)

- 1. Revisar la teoría y conceptos de Patrones de Diseño de Java
- **2.** Diseñar e implementa cada estudiante un patron de diseño y verificar su funcionamiento. A continuación se detalla el patron a implementar:

Nombre	Patron
NIXON ANDRES ALVARADO CALLE	Factory Method
ROMEL ANGEL AVILA FAICAN	Builder
JORGE SANTIAGO CABRERA ARIAS	Abstract Factory
EDITH ANAHI CABRERA BERMEO	Prototype
JUAN JOSE CORDOVA CALLE	Chain of Responsability
DENYS ADRIAN DUTAN SANCHEZ	Command
JOHN XAVIER FAREZ VILLA	Interpreter
PAUL ALEXANDER GUAPUCAL CARDENAS	Iterator
PAUL SEBASTIAN IDROVO BERREZUETA	Mediator

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

ADOLFO SEBASTIAN JARA GAVILANES	Observer
ADRIAN BERNARDO LOPEZ ARIZAGA	State
ESTEBAN DANIEL LOPEZ GOMEZ	Strategy
GEOVANNY NICOLAS ORELLANA JARAMILLO	Visitor
NELSON PAUL ORTEGA SEGARRA	Adapter
BRYAM EDUARDO PARRA ZAMBRANO	Bridge
LISSETH CAROLINA REINOSO BAJAÑA	Composite
MARTIN SEBASTIAN TOLEDO TORRES	Decorator
SEBASTIAN ROBERTO UYAGUARI RAMON	Flyweight
ARIEL RENATO VAZQUEZ CALLE	Proxy
CHRISTIAN ABEL JAPON CHAVEZ	Facade

- 3. Probar y modificar el patron de diseño a fin de generar cuales son las ventajas y desventajas.
- 4. Realizar práctica codificando los codigos de los patrones y su extructura.

RESULTADO(S) OBTENIDO(S):

Realizar procesos de investigación sobre los patrones de diseño de Java

Entender los patrones y su utilización dentro de aplicaciones Java.

Entender las funcionalidades basadas en patrones.

CONCLUSIONES:

Aprenden a trabajar en grupo dentro de plazos de tiempo establecidos, manejando el lenguaje de programación de Java.

RECOMENDACIONES:

Realizar el trabajo dentro del tiempo establecido.

Revisar el siguiente link: https://refactoring.guru/es/design-patterns/java

Docente / Técnico Docente: Ing: Diego Quisi

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Firma: _____

FORMATO DE INFORME DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA ESTUDIANTES

CARRERA: Computación ASIGNATURA: Programación Aplicada

NRO. PRÁCTICA: TÍTULO PRÁCTICA: Patrones de Diseño Java

OBJETIVO ALCANZADO:

Identificar los cambios importantes de Java

Diseñar e Implementar las nuevas técnicas de programación

Entender los patrones de Java

ACTIVIDADES DESARROLLADAS

1. Revisar la teoría y conceptos de Patrones de Diseño de Java

Patrón de Diseño Prototype:

Es un patrón de diseño creacional que nos permite copiar objetos existentes sin que el código dependa de sus clases.

Existen dos formas de clonar objetos:

Copia Superficial: El objeto clonado tendrá los mismos valores que el original, guardando también referencias a otros objetos que contenga (por lo que si son modificados desde el objeto original o desde alguno de sus clones el cambio afectará a todos ellos).

Copia Profunda: El objeto clonado tendrá los mismos valores que el original así como copias de los objetos que contenga el original (por lo que si son modificados por cualquiera de ellos, el resto no se verán afectados).

El patrón declara una interfaz común para todos los objetos que soportan la clonación. Esta interfaz nos permite clonar un objeto sin acoplar el código a la clase de ese objeto. Dicha interfaz contiene un único método clonar.

El método crea un objeto a partir de la clase actual y lleva todos los valores de campo del viejo objeto, al nuevo. Se puede incluso copiar campos privados, porque la mayoría de los lenguajes de programación permite a los objetos acceder a campos privados de otros objetos que pertenecen a la misma clase.

2. Diseñar e implementa cada estudiante un patrón de diseño y verificar su funcionamiento **Ejemplo en Java**

ec.edu.ups.modelo Clase Figura

```
package ec.edu.ups.modelo;
import java.util.Objects;

/**
    * @author Anahi
    */
public abstract class Figura {
```


CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

```
public int x;
   public int y;
   public String color;
   public Figura() {
   public Figura (Figura f) {
        if (f != null) {
            this.x = f.x;
            this.y = f.y;
            this.color = f.color;
        }
   }
   public abstract Figura clonar();
   @Override
   public boolean equals(Object o) {
        if (!(o instanceof Figura)) return false;
        Figura figura2 = (Figura) o;
        return figura2.x == x && figura2.y == y && Objects.equals(figura2.color,
color);
   }
      Clase Círculo
package ec.edu.ups.modelo;
 * @author Anahi
public class Circulo extends Figura{
   public int radio;
   public Circulo() {
   public Circulo(Circulo c) {
        super(c);
        if (c != null) {
            this.radio = c.radio;
        }
    }
   @Override
   public Figura clonar() {
       return new Circulo(this);
   }
   @Override
   public boolean equals(Object o) {
        if (!(o instanceof Circulo) || !super.equals(o)) return false;
        Circulo figura2 = (Circulo) o;
```


CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

```
return figura2.radio == radio;
    }
}
      Clase Rectángulo
package ec.edu.ups.modelo;
/**
 * @author Anahi
 * /
public class Rectangulo extends Figura {
    public int ancho;
    public int alto;
    public Rectangulo() {
    public Rectangulo (Rectangulo r) {
        super(r);
        if (r != null) {
            this.ancho = r.ancho;
            this.alto = r.alto;
        }
    }
    @Override
    public Figura clonar() {
        return new Rectangulo(this);
    @Override
    public boolean equals(Object o) {
        if (!(o instanceof Rectangulo) || !super.equals(o)) return false;
        Rectangulo figura2 = (Rectangulo) o;
        return figura2.ancho == ancho && figura2.alto == alto;
    }
}
      ec.edu.ups.vista
      Clase main Prueba
package ec.edu.ups.modelo.vista;
import ec.edu.ups.modelo.*;
import java.util.ArrayList;
import java.util.List;
 * @author Anahi
public class Prueba {
    public static void main(String[] args){
```


CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

```
List<Figura> figuras = new ArrayList<>();
        List<Figura> figurasClonadas = new ArrayList<>();
        Circulo c = new Circulo();
        c.x = 10;
        c.y = 20;
        c.radio = 15;
        c.color = "azul";
        figuras.add(c);
        Circulo c1 = (Circulo) c.clonar();
        figuras.add(c1);
        System.out.println(c1.x);
       Rectangulo r = new Rectangulo();
        r.ancho = 10;
       r.alto = 20;
        r.color = "amarillo";
       figuras.add(r);
       clonarYComparar(figuras, figurasClonadas);
    }
   private static void clonarYComparar(List<Figura> figuras, List<Figura>
figurasClonadas) {
        for (Figura figura : figuras) {
            figurasClonadas.add(figura.clonar());
        for (int i = 0; i < figuras.size(); i++) {
            if (figuras.get(i) != figurasClonadas.get(i)) {
                System.out.println(i + ":Las figuras son diferentes");
                if (figuras.get(i).equals(figurasClonadas.get(i))) {
                    System.out.println(i + ":y son idénticas (Bien Hecho!");
                } else {
                    System.out.println(i + ":Pero no son idénticas (Error)");
            } else {
                System.out.println(i + ": Las figuras son las mismas (Error)");
            }
       }
   }
}
```

3. Ventajas y Desventajas

Ventajas:

- Permite tener una copia de un objeto en ejecución.
- Permite crear copias tanto superficiales como a fondo.
- ❖ Los prototipos pueden servir como alternativa a las subclases

Desventajas:

Es difícil implementar la clonación en una jerarquía de objetos.

Bibliografía:

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

- Prototype. (s. f.). Refactor GURU. Recuperado 18 de noviembre de 2020, de https://refactoring.guru/es/design-patterns/prototype
- Patrón de diseño Prototype (creación). (s. f.). InformaticaPC.com. Recuperado 18 de noviembre de 2020, de https://informaticapc.com/patrones-de-diseno/prototype.php

RESULTADO(S) OBTENIDO(S):

Entender los patrones y su utilización dentro de aplicaciones Java.

Entender las funcionalidades basadas en patrones.

CONCLUSIONES:

El Prototype como patrón de diseño es fácil de usar y nos permite optimizar procesos en el código de programación.

RECOMENDACIONES:

Utilizar fuentes confiables para la investigación.

Utilizar buenas prácticas de Programación.

Nombre de estudiante: Edith Anahí Cabrera Bermeo