Math 5364 Data Mining 2 Homework 31 Mary Barker

1. The file Hw31data.txt contains SAS code for generating two data sets. The first data set provides the correlation matrix of six measurement made on white leghorn fowls, including skull length(SL), skull breadth (SB), humerus length (HS), ulna length (UL), femur length (FL), and tibia length(TL);

```
%include '/folders/myshortcuts/sas_folder/Hw31Data.txt';
```

(a) Perform a principal components analysis for this data set, and report the resulting eigenvalues and eigenvectors;

```
proc princomp data = leghorn;
run;
```

The PRINCOMP Procedure

Observations	10000
Variables	6

Eigenvalues of the Correlation Matrix							
	Eigenvalue	Difference	Proportion	Cumulative			
1	4.56757080	3.85344753	0.7613	0.7613			
2	0.71412326	0.30199429	0.1190	0.8803			
3	0.41212898	0.23894007	0.0687	0.9490			
4	0.17318890	0.09733018	0.0289	0.9778			
5	0.07585872	0.01872938	0.0126	0.9905			
6	0.05712934		0.0095	1.0000			

Eigenvectors								
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6		
sl	0.347439	0.536974	766673	0.049099	0.027212	0.002372		
sb	0.326373	0.696467	0.636305	0.002033	0.008044	0.058827		
hl	0.443419	187301	0.040071	524077	0.168397	680939		
ul	0.439983	251382	011196	488771	151153	0.693796		
fl	0.434544	278168	0.059205	0.514259	0.669483	0.132738		
tl	0.440150	225698	0.045735	0.468582	706953	184077		

(b) How many principal components are required to explain at least 90% of the total variation in the data?;

3

(c) Provide an intuitive interpretation for the principal components accounting for 90% of the total variation. (For example, the first principal component has large positive coefficients for all of the variables in the data set, so it roughly measure the overall size of a white leghorn fowl.);

The first principal component has relatively uniform values for coefficients, giving overall an indication of how big each animal is.

The second principal component has large coefficients for SB and SL, and negative, not to say small coefficients for the other variables, indicating a description of just how big the skull is.

The third component has larger absolute values for SB and SL, as with the second, but the value for SL is negative, so this seems to evaluate the difference between skull width and height.

2. Perform a factor analysis on the leghorn data;

```
proc factor data=leghorn res;
run;
```

(a) How many factors are retained using the MINEIGEN criterion?

proc factor data=leghorn mineigen=0.05;
run;

Only one factor was retained.

Prior Communality Estimates: ONE

	Eigenvalues of the Correlation Matrix: Total = 6 Average = 1							
	Eigenvalue Difference Proportion Cumulative							
1	4.56757080	3.85344753	0.7613	0.7613				
2	0.71412326	0.30199429	0.1190	0.8803				
3	0.41212898	0.23894007	0.0687	0.9490				
4	0.17318890	0.09733018	0.0289	0.9778				
5	0.07585872	0.01872938	0.0126	0.9905				
6	0.05712934		0.0095	1.0000				

1 factor will be retained by the MINEIGEN criterion.

Factor Pattern			
Factor [*]			
sl	0.74254		
sb	0.69752		
hl	0.94767		
ul	0.94033		
fl	0.92870		
tl	0.94068		

Variance Explained by Each Factor Factor1 4.5675708

Final Communality Estimates: Total = 4.567571						
sl	sb	hl	ul	fl	tl	
0.55137044	0.48653453	0.89807737	0.88421400	0.86248933	0.88488513	

Residual Correlations With Uniqueness on the Diagonal							
	sl	sb	hl	ul	fl	tl	
sl	0.44863	0.06606	-0.08869	-0.09723	-0.11960	-0.09850	
sb	0.06606	0.51347	-0.08502	-0.12590	-0.12179	-0.10115	
hl	-0.08869	-0.08502	0.10192	0.04888	-0.00510	-0.01346	
ul	-0.09723	-0.12590	0.04888	0.11579	0.00372	0.00145	

	Residual Correlations With Uniqueness on the Diagonal						
	sl	sb	hl	ul	fl	ti	
fl	-0.11960	-0.12179	-0.00510	0.00372	0.13751	0.05038	
tl	-0.09850	-0.10115	-0.01346	0.00145	0.05038	0.11511	

Root Mean Square Off-Diagonal Residuals: Overall = 0.08123310						
sl	sb	hl	ul	fl	tl	
0.09559288	0.10247468	0.05948076	0.07444404	0.07964388	0.06731137	

Partial Correlations Controlling Factors							
	sl	sb	hl	ul	fl	tl	
sl	1.00000	0.13764	-0.41474	-0.42662	-0.48153	-0.43343	
sb	0.13764	1.00000	-0.37164	-0.51633	-0.45834	-0.41603	
hl	-0.41474	-0.37164	1.00000	0.44997	-0.04311	-0.12423	
ul	-0.42662	-0.51633	0.44997	1.00000	0.02945	0.01256	
fl	-0.48153	-0.45834	-0.04311	0.02945	1.00000	0.40046	
tl	-0.43343	-0.41603	-0.12423	0.01256	0.40046	1.00000	

Root Mean Square Off-Diagonal Partials: Overall = 0.36163739						
sl	sb	hl	ul	fl	tl	
0.39816909	0.40170085	0.32554128	0.36113729	0.34786336	0.32769073	

- (b) What is the overall RMS off-diagonal residuals in this case? $0.08123310\,$
- 3. Continuing with the leghorn data set, increase the number of factors until the overall residual RMS is less than 0.05;

```
proc factor data=leghorn nfact=3 res;
run;
```

Prior Communality Estimates: ONE

	Eigenvalues of the Correlation Matrix: Total = 6 Average = 1							
	Eigenvalue Difference Proportion Cumulative							
1	4.56757080	3.85344753	0.7613	0.7613				
2	0.71412326	0.30199429	0.1190	0.8803				
3	0.41212898	0.23894007	0.0687	0.9490				
4	0.17318890	0.09733018	0.0289	0.9778				
5	0.07585872	0.01872938	0.0126	0.9905				
6	0.05712934		0.0095	1.0000				

3 factors will be retained by the NFACTOR criterion.

	Fact	or Pattern		
	Factor1	Factor2	Factor3	
sl	0.74254	0.45377	-0.49218	
sb	0.69752	0.58856	0.40849	
hl	0.94767	-0.15828	0.02572	
ul	0.94033	-0.21243	-0.00719	
fl	0.92870	-0.23507	0.03801	
tl	0.94068	-0.19073	0.02936	

Variance E	xplained by E	ach Factor		
Factor1	Factor1 Factor2			
4.5675708	0.7141233	0.4121290		

Final Communality Estimates: Total = 5.693823								
sl	sb	hl	ul	fl	tl			
0.99952600	0.99979667	0.92379166	0.92939318	0.91919114	0.92212437			

	Residual Correlations With Uniqueness on the Diagonal										
	sl	sb	hl	ul	fl	ti					
sl	0.00047	0.00004	-0.00420	-0.00437	0.00577	0.00250					
sb	0.00004	0.00020	-0.00237	0.00207	0.00104	-0.00089					
hl	-0.00420	-0.00237	0.07621	0.01544	-0.04329	-0.04440					
ul	-0.00437	0.00207	0.01544	0.07061	-0.04595	-0.03886					
fl	0.00577	0.00104	-0.04329	-0.04595	0.08081	0.00443					
tl	0.00250	-0.00089	-0.04440	-0.03886	0.00443	0.07788					

Root Mean Square Off-Diagonal Residuals: Overall = 0.02282157								
sl	sb	hl	ul	fl	tl			
0.00390799	0.00153294	0.02866001	0.02786663	0.02842195	0.02648714			

	Partial Correlations Controlling Factors										
si sb hi					fl	tl					
sl	1.00000	0.13484	-0.69899	-0.75611	0.93278	0.41152					
sb	0.13484	1.00000	-0.60212	0.54563	0.25549	-0.22242					
hl	-0.69899	-0.60212	1.00000	0.21052	-0.55161	-0.57635					
ul	-0.75611	0.54563	0.21052	1.00000	-0.60828	-0.52399					
fl	0.93278	0.25549	-0.55161	-0.60828	1.00000	0.05590					
ti	0.41152	-0.22242	-0.57635	-0.52399	0.05590	1.00000					

Root Mean Square Off-Diagonal Partials: Overall = 0.53049547								
sl	sb	hl	ul	fl	tl			
0.65082823	0.39829632	0.55351877	0.55826743	0.56793631	0.40710947			

- (a) How many factors are required to achieve this?

 3 factors
- (b) Report the estimated matrices hatL and hat Phi
- (c) What is the communality for skull length? ≈ 0.9995 .
- (d) Find the unique variance of ulna length 0.07061
- (e) What is the correlation between femur length and the 2nd factor?
- 4. The second data set in Hw31data.txt contains responses of 122 diabetes patients to 25 survey questions, on a Likert scale (a scale typically used on surveys, where 1 = Strongly Disagree, 2 = Somewhat Disagree, 3 = Neither DIsagree Nor Agree, 4 = Somewhat Agree, and 5 = Strongly Agree).
 - (a) Perform a factor analysis with nfact=17 on this data and store the factor scores in a data set.

proc factor data=diabetes score nfact=17 res out = fact_scores; run;

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 25 Average = 1								
	Eigenvalue	Difference	Proportion	Cumulative				
1	4.82744353	1.85080952	0.1931	0.1931				
2	2.97663401	1.37717999	0.1191	0.3122				
3	1.59945402	0.06823351	0.0640	0.3761				
4	1.53122051	0.10057945	0.0612	0.4374				
5	1.43064106	0.12163229	0.0572	0.4946				
6	1.30900876	0.08035333	0.0524	0.5470				
7	1.22865544	0.05601538	0.0491	0.5961				
8	1.17264006	0.13721370	0.0469	0.6430				
9	1.03542637 0.17273454		0.0414	0.6844				
10	0.86269182	0.03464371	0.0345	0.7190				
11	0.82804811	0.02776081	0.0331	0.7521				
12	0.80028730	0.08836069	0.0320	0.7841				
13	0.71192661	0.08944024	0.0285	0.8126				
14	0.62248637	0.02826278	0.0249	0.8375				
15	0.59422360	0.03504807	0.0238	0.8612				
16	0.55917552	0.08099790	0.0224	0.8836				
17	0.47817762	0.03572211	0.0191	0.9027				
18	0.44245551	0.07581700	0.0177	0.9204				
19	0.36663851	0.04246366	0.0147	0.9351				
20	0.32417485	0.00818368	0.0130	0.9481				
21	0.31599117	0.01818378	0.0126	0.9607				
22	0.29780739	29780739 0.04030049 0.0119		0.9726				
23	0.25750690	0.02065067	0.0103	0.9829				
24	0.23685623	0.04642752	0.0095	0.9924				
25	0.19042871		0.0076	1.0000				

17 factors will be retained by the NFACTOR criterion.

					Factor Pat	ttern				
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8	Factor9	Factor10
x1	0.24141	-0.14170	-0.40100	0.28573	-0.15424	-0.03261	0.24639	0.23705	0.62435	0.02075
x2	0.06313	0.41673	0.26577	-0.22142	0.30725	0.30155	0.38113	0.08680	-0.05168	0.08866
х3	0.44312	0.51789	-0.17461	0.08515	0.19031	-0.04759	-0.42145	-0.21045	-0.01099	-0.07860
x4	0.02892	0.43713	-0.09896	-0.37412	0.04161	-0.27051	0.35450	-0.19115	-0.01274	0.39987
х5	-0.19535	-0.40344	0.06617	0.36516	0.01143	0.26708	0.49647	-0.35243	-0.05685	-0.06061
х6	0.52891	-0.37879	0.22067	0.12386	0.44229	0.02575	-0.01895	-0.18655	0.00008	-0.03887
х7	-0.20342	0.52388	0.05456	0.29786	0.22401	0.22527	-0.35219	0.11804	-0.08260	0.16773
x8	0.67178	-0.16134	-0.25770	0.16308	-0.19492	-0.16009	-0.06561	-0.06067	0.10400	0.08213
х9	0.25373	0.40675	0.25681	0.04541	-0.55449	-0.00696	0.23151	0.10938	-0.23557	0.27685
x10	0.51183	0.43687	-0.19568	-0.09793	0.07796	-0.04696	0.22053	-0.13227	-0.08851	-0.29176
x11	0.63204	0.44020	-0.07242	0.20035	-0.04693	0.04978	-0.07277	0.00535	-0.10828	0.00758
x12	0.12452	0.54656	-0.24744	0.09200	0.44948	-0.04530	0.16709	0.07176	0.25116	0.16262
x13	0.30655	0.33490	0.27594	0.20215	-0.09814	0.45263	-0.00396	-0.40197	0.10976	-0.13355
x14	0.23177	-0.50354	0.32044	0.17911	0.20034	0.02258	-0.16987	0.34523	-0.02547	0.27708
x15	0.45777	-0.04731	-0.13110	0.10419	-0.09228	0.53327	0.13448	0.29244	-0.12009	0.00911
x16	0.49019	-0.01773	0.30913	-0.25095	-0.04784	0.29673	-0.04305	0.01936	0.46502	-0.05206
x17	0.50346	-0.14367	0.04376	-0.38366	0.23609	-0.15975	0.13877	0.16821	-0.06432	-0.40475
x18	0.55138	0.38030	0.22162	0.15371	-0.25004	-0.16453	-0.15231	0.17318	0.09629	-0.08205
x19	0.46047	-0.11452	0.15290	0.08549	0.43617	-0.18927	0.13299	0.11337	0.04968	0.20193
x20	0.33369	-0.06316	0.57939	-0.26707	-0.21600	-0.24412	-0.09488	-0.28105	0.27774	0.08926
x21	-0.26833	0.38205	0.28036	0.25510	-0.10678	-0.24600	0.23983	0.42428	0.00292	-0.34376
x22	0.75743	-0.17707	-0.01699	-0.08445	0.01927	-0.12931	0.01132	0.06034	-0.31536	-0.06316
x23	-0.54127	0.21634	0.48738	0.16249	0.19311	-0.09392	0.02285	0.13744	0.07329	-0.08530
x24	0.29823	-0.10764	0.12783	0.65193	0.03632	-0.38702	0.17697	-0.24754	-0.11968	0.01632
x25	0.71418	-0.28588	0.01077	-0.09605	-0.08171	0.15735	0.03641	0.19032	-0.16771	0.11656

			Fact	or Pattern			
	Factor11	Factor12	Factor13	Factor14	Factor15	Factor16	Factor17
x1	-0.11615	0.17173	-0.09705	-0.03525	0.03700	0.17475	-0.01953
x2	-0.08845	0.16256	-0.11666	-0.51712	-0.09703	0.04990	-0.01280
х3	0.17845	0.19635	-0.13776	-0.00942	-0.06264	0.00511	-0.00860
х4	0.15782	0.22200	-0.03710	0.30962	0.08611	0.09129	0.12155
х5	-0.02599	-0.08182	0.26523	0.02582	0.24487	0.07034	-0.01329
х6	-0.07452	0.08983	-0.14349	-0.01267	0.06752	-0.23353	0.23179
х7	-0.31184	-0.03139	0.25655 0.13188 0.09994 0.18621		0.18621	0.04671	
x8	0.28706	-0.04745	0.18750	-0.14364	-0.14643	-0.06706	0.12776
х9	-0.10579	-0.17845	45 0.07976 0.02283 -0.12189 -0.1		-0.10395	0.11053	
x10	-0.03981	0.17012	0.29311	0.07641	-0.14524	0.05678	-0.35803
x11	0.07392	-0.11541	0.12290	-0.17495	-0.06052	0.21390	0.16277
x12	0.08324	-0.12664	0.14229	-0.02613	0.25759	-0.27188	0.04084
x13	0.25410	-0.09836	-0.25343	0.14790	0.09280	0.17840	0.00191
x14	0.19638	0.26637	0.20426	-0.00534	0.05174	0.21645	-0.07062
x15	-0.14349	0.34661	-0.16422	0.28276	-0.13655	-0.17061	0.02878
x16	0.03240	-0.19967	0.26440	0.08324	-0.18716	-0.17724	-0.00670
x17	-0.15465	-0.03440	0.13261	0.14204	-0.00672	0.22125	0.33775
x18	-0.28086	-0.00003	-0.07675	-0.00190	0.28647	-0.11202	-0.03789
x19	-0.09920	-0.45381	-0.26547	0.17142	-0.20104	0.13659	-0.21644
x20	-0.15514	0.22572	0.01125	-0.05226	0.10756	0.09111	-0.07220
x21	0.27663	-0.02953	-0.14862	0.00983	0.10501	0.04269	0.02549
x22	-0.00766	-0.01132	0.02478	-0.02229	0.26093	-0.15261	-0.20797
x23	0.26141	0.15418	0.17027	0.13951	-0.14031	-0.16652	-0.02106
x24	-0.14333	0.14865	-0.00317	-0.01080	-0.22703	-0.05030	0.04833
x25	0.33465	-0.05302	-0.02015	-0.01075	0.14414	0.04906	-0.04119

Variance Explained by Each Factor										
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8	Factor9	Factor10
	4.8274435	2.9766340	1.5994540	1.5312205	1.4306411	1.3090088	1.2286554	1.1726401	1.0354264	0.8626918

Factor11	Factor12	Factor13	Factor14	Factor15	Factor16	Factor17
0.8280481	0.8002873	0.7119266	0.6224864	0.5942236	0.5591755	0.4781776

(b) One of the assumptions of the factor model is that cov(f) = identity. Verify that the sample covariance matrix of the factor scores is equal to I (This occurs exactly, because we are using the principal component method for this factor analysis. There are other methods where this does not occur.)

The CORR Procedure

Covariance Matrix, DF = 108								
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8
Factor1	1.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor2	0.000000000	1.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor3	0.000000000	0.000000000	1.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor4	0.000000000	0.000000000	0.000000000	1.000000000	-0.000000000	0.000000000	0.000000000	0.000000000
Factor5	0.000000000	0.000000000	0.000000000	-0.000000000	1.000000000	0.000000000	0.000000000	0.000000000
Factor6	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	1.000000000	0.000000000	0.000000000
Factor7	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	1.000000000	0.000000000
Factor8	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	1.000000000
Factor9	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor10	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor11	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor12	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor13	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor14	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor15	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor16	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Factor17	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000

- (c) What does cov(f) = I say about the correlation between the two different factors? What would you expect the scatter plot of the two different factors to look like? That the covariance matrix is I measn that the factors are uncorrelated, or independent. I would expect the plot to look random, with no underlying pattern between the two variables.
- (d) Create a scatter plot of f1 vs f2. Does this plot agree with your expectations?;

Plot of Factor1*Factor2. Legend: A = 1 obs, B = 2 obs, etc.

NOTE: 13 obs had missing values.

- My initial guess does seem to be supported by the graph, where there is no trend discernible.
- (e) It would be interesting to interpret the factors in this problem, but in order to do that, we will need to consider rotations of the factors, so this will have to wait until a future homework assignment.