Фазовая плоскость. Классификация точек покоя.

Пусть линейное уравнение имеет вид

$$D^2x + a_1Dx + a_0x = 0, \quad t \in \mathbb{R}. \tag{1}$$

ullet Фазовым графиком решения x(t) называется график параметрически заданной функции вида

$$\begin{cases} x = x(t), \\ y = Dx(t); \end{cases} \quad t \in \mathbb{R}.$$

 \bullet Решение, сохраняющее постоянное значение при всех t, называется **стационарным**.

Фазовый график стационарного решения $x(t) \equiv C$ состоит из единственной точки (C,0).

• Точка, являющаяся фазовым графиком стационарного решения, называется **точкой покоя** уравнения.

Любое уравнение вида (1) имеет стационарное решение $x(t) \equiv C$. Следовательно, точка O(0,0) является точкой покоя для этого уравнения.

Пусть λ_1 , λ_2 — корни характеристического уравнения для уравнения (1). Тогда тип точки покоя O при $a_0 \neq 0$ определяется следующим образом:

- 1. Если $\lambda_1, \lambda_2 \in \mathbb{R}$ и
 - (a) $\lambda_1 \cdot \lambda_2 < 0$, то точка покоя называется **седлом**;
 - (b) $\lambda_1 \cdot \lambda_2 > 0$, $\lambda_1 \neq \lambda_2$, то точка покоя называется **бикритическим узлом**, причем, при $\lambda_1 < \lambda_2 < 0$ устойчивым; при $\lambda_2 > \lambda_1 > 0$ неустойчивым;
 - (c) $\lambda_1 \cdot \lambda_2 > 0$, $\lambda_1 = \lambda_2$, то точка покоя называется **монокритическим узлом**, причем, при $\lambda_1 = \lambda_2 < 0$ **устойчивым**; при $\lambda_2 = \lambda_1 > 0$ **неустойчивым**;
- 2. Если $\lambda_{1,2} = \alpha \pm \beta i$ и
 - (a) $\alpha \neq 0$, $\beta \neq 0$, то точка покоя называется фокусом, причем, при $\alpha < 0$ устойчивым; при $\alpha > 0$ неустойчивым;
 - (b) $\alpha = 0, \beta \neq 0$, то точка покоя называется **центром**.

Если линейное уравнение имеет вид $D^2x + a_1Dx = 0$, где $a_1 \geqslant 0$, то прямая y = 0 состоит из точек покоя и называется **прямой покоя**.

Пример 1. Установить тип точки покоя для уравнения

$$D^2x - 4Dx + 3 = 0.$$

Решение. Найдем корни характеристического уравнения: $\lambda_1=1,\ \lambda_2=3$. Таким образом, $\lambda_1\cdot\lambda_2>0,\ \lambda_1\neq\lambda_2,\ \lambda_2>\lambda_1>0$. Следовательно, точка покоя O — неустойчивый бикритический узел.

Ответ: О — неустойчивый бикритический узел.

Пример 2. Установить тип точки покоя для уравнения

$$D^2x + 9Dx = 0.$$

Решение. Так как коэффициент $a_0 = 0$, то прямая y = 0 является прямой покоя.

Ответ: y = 0 — прямая покоя.

Пример 3. Определить тип точки покоя уравнения

$$D^2x + 3\alpha Dx + 3x = 0$$

в зависимости от значений параметра α .

Решение. Построим характеристическое уравнение

$$\lambda^2 + 3\alpha\lambda + 3 = 0.$$

Тогда корни уравнения имеют вид

$$\lambda_1 = \frac{-3\alpha + \sqrt{9\alpha^2 - 12}}{2}, \quad \lambda_2 = \frac{-3\alpha - \sqrt{9\alpha^2 - 12}}{2}.$$

1. Пусть $9\alpha^2 - 12 > 0$. Тогда $|\alpha| > \frac{2}{\sqrt{3}}$. Подставим α в λ_1 и λ_2 и получим $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$,

$$\lambda_1 \cdot \lambda_2 = \frac{9\alpha^2 - 9\alpha^2 + 12}{4} = 3 > 0,$$

следовательно, точка O — бикритический узел. Причем при $\alpha > \frac{2}{\sqrt{3}}$ получаем устойчивый бикритический узел, а при $\alpha < -\frac{2}{\sqrt{3}}$ — неустойчивый.

- 2. Пусть $9\alpha^2-12=0$. Тогда $|\alpha|=\frac{2}{\sqrt{3}}$. Подставим α в λ_1 и λ_2 и получим $\lambda_1,\lambda_2\in\mathbb{R},\,\lambda_1=\lambda_2=-\frac{3}{2},\,\lambda_1\cdot\lambda_2>0$. Таким образом, точка O монокритический узел. Причем при $\alpha=\frac{2}{\sqrt{3}}$ получаем устойчивый бикритический узел, а при $\alpha=-\frac{2}{\sqrt{3}}$ неустойчивый.
- 3. Пусть $9\alpha^2-12<0$. Тогда получаем два случая:
 - (a) $0<|\alpha|<\frac{2}{\sqrt{3}}$. Таким образом, $\lambda_{1,2}=\alpha\pm\beta i$ и $\alpha\neq 0$. Тогда точка O фокус, причем при $0<\alpha<\frac{2}{\sqrt{3}}$ устойчивый, а при $0>\alpha>-\frac{2}{\sqrt{3}}$ неустойчивый.
 - (b) $\alpha=0.$ Таким образом, $\lambda_{1,2}=\pm \beta i,$ и точка O- центр.