iotProject

Alessio Tommasi

6 febbraio 2025

Indice

1	Introduzione	2		
2	Dipendenze	3		
3	Configurazione dell'Arduino IDE			
4	Diagramma UML	6		
5	Hardware 5.1 Board Esam	7 7 7 8		
6	Software 6.1 WebServer	10 10 10		
7	Attività	11		

Introduzione

Il progetto iotProject è stato sviluppato nel corso di IoT del Master in Informatica presso SUPSI. Il focus principale è sull'ESP32 e il protocollo Modbus.

Dipendenze

Driver Per gli utenti Windows, è necessario installare CP210xDriver

Compiler Per compilare tale progetto e'stato utilizzato Arduino IDE 2.3.3. disponibile al seguente link: Arduino IDE.

Configurazione dell'Arduino IDE

Link repo ufficiale: iotProject.

Per compilare i file nelle sottocartelle, è necessario aggiungerli come librerie (.zip) all'Arduino IDE. Ho creato una cartella specifica per le librerie dove posizionare o sostituire i file zip. Per una corretta compilazione, importa tutte le cartelle zip presenti in /Library.

Figura 3.1: Importazione delle librerie nell'Arduino IDE

Altrimenti clonare la versione Portable del progetto disponibile al seguente link: iotProject-portable.

Diagramma UML

Figura 4.1: Diagramma UML del sistema

Hardware

5.1 Board Esam

5.1.1 Funzionamento

Multiplex

Il dispositivo di multiplexing riulta essere il ${\bf CD405xB}$. sviluppato da Texas Insreumet, link alla documentazione ufficiale: ${\bf CD405xB}$.

Siccome successivamente servira diporto di seguito la tabella di verita di tale dispositivo. Figura 5.1

Figura 5.1: Tabella di verita del CD405xB

Collegamenti Multiplexer

I pin di ingresso A, B, C del multiplexer **CD405xB** sono collegati rispettivamente ai pin GPIO 12, 13, 14 dell'ESP32. La selezione dei canali del multiplexer avviene impostando i pin A, B, C come segue:

Canale	Pin A	Pin B	Pin C
0	0	0	0
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

Tabella 5.1: Configurazione dei pin per la selezione dei canali del multiplexer

5.1.2 hardware esterno posizionabile sulla board MAX31865

asd

ESP32 38 Pin

Figura 5.2: Pinout dell'ESP32-DOIT-DEV-KIT v1

Software

6.1 WebServer

6.2 Modbus

Il file utilizzato per testare lo slave è disponibile qui: modbusSlave2.ino.

Figura 6.1: Pinout proposto per il dispositivo slave Modbus

Attività

Attività	Descrizione
Configurazione sensori	Configurare e integrare sensori di temperatura
di temperatura	PT100, PT1000 e termocoppie utilizzando
	$\ \ \text{moduli come} \mathbf{MAX31865} \mathbf{e} \mathbf{MAX31855}.$
Lettura segnali analogi-	Implementare la lettura di segnali analogici trami-
ci	te gli ingressi ADC dell'ESP32 e eventuali moduli
	esterni.
Gestione uscite digitali	Sviluppare la gestione delle uscite digitali e ana-
e analogiche	logiche tramite l'ESP32.
Comunicazione RS485	Integrare la comunicazione RS485 utilizzando il
(Modbus RTU)	protocollo Modbus RTU per interfacciarsi con
	altri dispositivi.
Server Web (Ethernet	Sviluppare un server Web basato su Ethernet
TCP/IP)	TCP/IP per il monitoraggio e controllo remoto
	dei dati acquisiti.
Datalogging	Implementare un sistema di datalogging per sal-
	vare e storicizzare i dati raccolti dai sensori.
Test e validazione	Testare e validare il sistema attraverso simulazioni
	e test su hardware reale.