Problem Set 4 due October 31

1. Predictions with Random Walks

Consider the process

$$X_{t} = X_{t-1} + \varepsilon_{t} - \infty < t < \infty$$

$$E(\varepsilon_{t}\varepsilon_{t-r}) = 0 \ \forall r \neq 0$$

and the associated first difference

$$\Delta \mathbf{X}_t = \mathbf{X}_t + \mathbf{X}_{t-1}$$

i. Calculate the sequence of linear predictions $x_{t+k|t}$ Suppose that, for this process

$$\begin{split} \varepsilon_t &= \phi \varepsilon_{t-1} + \eta_t \\ E(\eta_t \eta_{t-r}) &= 0 \ \forall \, r \neq 0 \end{split}$$

- ii. Calculate the sequence of linear predictions $x_{t+k|t}$
- iii. In what senses are these prediction problems deviations from the Wiener-Kolmogorov formulas?

2. True, False, or Uncertain and Explain

Assume throughout that x_t is 0 mean, second order stationary, finite variance.

- i. If x_t is projected against x_{t-1} , the associated projection coefficient α must obey $|\alpha| < 1$.
- ii. The projection of x_t against $H_{t-1}(x)$, $x_{t|t-1}$ will obey the condition $\mathrm{var} \Big(x_{t|t-1} \Big) \leq \mathrm{var} \big(x_t \Big)$
- iii. The forecast error $x_t x_{t|t-k}$ has the property that $var(x_t x_{t|t-k})$ is increasing in $k \ge 1$.
- iv. The forecast error $x_t x_{t|t-k}$ is serieally uncorrelated, i.e. $\operatorname{cov}\left(x_t x_{t|t-k}, x_{t-r} x_{t-r|t-r-k}\right) = 0 \ r > 0$