Problema 811

Sea un triángulo ABC. D es el pie de la altura de A sobre BC. Cualquier recta (Δ) que pase por D corta el círculo circunscrito ABD en el segundo punto E y el círculo circunscrito ACD en el segundo punto F.

Determinar el lugar del punto medio de EF cuando (Δ) pivota alrededor de D. Fondanaiche, P. (2017) Comunicación personal.

Resuelto por JULIÁN SANTAMARÍA TOBAR profesor de Dibujo del IES La Serna de Fuenlabrada

 $\alpha 2 = \alpha 1$ al ser suplementarios EGA y EDA por ser EDAG un cuadrilátero inscriptible $\alpha 3 = \alpha 2$ al ser suplementarios ADF Y AHF por ser EDFH un cuadrilátero inscriptible => EG es paralelo a FH

Supongamos una posición cualquiera de la recta (Δ) que pasa por el punto D y corta al círculo circunscrito a ABD en el punto E y al círculo circunscrito a ACD en el punto F.

Supongamos también otra recta cualquiera que pasa por el punto A de modo que corta al círculo circunscrito a ABD en el punto G y al círculo circunscrito a ACD en el punto H.

En la figura se cumplen las siguientes igualdades de ángulos: el ángulo ADF

= al ángulo AGE al ser suplementarios EGA y EDA por ser EDAG un cuadrilátero inscriptible; el suplementario del ángulo AHF = al ángulo ADF al ser suplementarios ADF Y AHF por ser EDFH un cuadrilátero inscriptible. En consecuencia EG es paralelo a FH.

Al hacer una recta paralela y equidistante a las rectas EG y FH cortan en los puntos medios M y N de los segmentos EF y GH como el ángulo EGA = MNH por ser ángulos correspondientes, ADMN es un cuadrilátero inscriptible. Por lo tanto el lugar del punto medio M de EF cuando (Δ) pivota alrededor de D es una circunferencia.

Un diámetro de esta circunferencia es la mediana ma del triángulo ABC, que corresponde con la hipotenusa del

triángulo A-D-Ma ya que el pie Ma de la mediana m_a es el punto medio del lado BC, siendo BC una posición de la recta (Δ) que pivota alrededor de D.