MS BGD MDI 720 : Statistiques

François Portier and Joseph Salmon

http://sites.google.com/site/fportierwebpage/ Télécom Paristech, Institut Mines-Télécom

Concept et origines du Bootstrap

Concept de racine statistique

Bien choisir la racine statistique : le *t*-bootstrap Racine pivotale Nombre de réplications

Le bootstrap en regression

Bootstrap: le principe général

But

mesurer le degré de précision d'un estimateur $\hat{\theta}$

Algorithme

$$\begin{array}{ccc} \text{monde r\'eel} & \text{monde Bootstrap} \\ (X_1, \dots X_n) \sim \mathbb{P} \text{ (inconnue)} & (X_1^*, \dots X_n^*) \sim \hat{\mathbb{P}} \text{ (connue)} \\ & \downarrow & & \downarrow \\ \hat{\theta} & & \hat{\theta}^* \end{array}$$

 $\hat{\theta}$ provient de données sous \mathbb{P}

monde Bootstrap
$$(X_1^*,\dots X_n^*)\sim \hat{\mathbb{P}}$$
 (connue) $\hat{\theta}^*$

 $\hat{\theta}^*$ provient de données sous $\hat{\mathbb{P}}$ (qui approche \mathbb{P})

Idée de base

 $\hat{\theta}^*$ (connu) reproduit le comportement de $\hat{\theta}$ (inconnu)

- X_1,\ldots,X_n i.i.d.
- $\hat{\theta} = \hat{\theta}(X_1,\ldots,X_n)$ une statistique/estimateur d'intérêt Examples : moyenne empirique \bar{X}_n ou médiane $\mathrm{Med}_n(X_1,\ldots,X_n)$

Algorithme: Bootstrap

Input : X_1, \ldots, X_n , nombre d'itérations B

 ${f Output}$: Estimateur Bootstrap $(\hat{ heta}_1^*,\ldots,\hat{ heta}_B^*)$

- X_1,\ldots,X_n i.i.d.
- $\hat{\theta} = \hat{\theta}(X_1,\ldots,X_n)$ une statistique/estimateur d'intérêt Examples : moyenne empirique \bar{X}_n ou médiane $\mathrm{Med}_n(X_1,\ldots,X_n)$

```
Algorithme: Bootstrap
```

```
Input : X_1, \ldots, X_n, nombre d'itérations B
```

 $\textbf{Output}: \mathsf{Estimateur} \ \mathsf{Bootstrap} \ (\hat{\theta}_1^*, \dots, \hat{\theta}_B^*)$

pour $b = 1, \dots, B$ faire

- X_1,\ldots,X_n i.i.d.
- $\hat{\theta} = \hat{\theta}(X_1,\ldots,X_n)$ une statistique/estimateur d'intérêt Examples : moyenne empirique \bar{X}_n ou médiane $\mathrm{Med}_n(X_1,\ldots,X_n)$

Algorithme: Bootstrap

Input : X_1, \ldots, X_n , nombre d'itérations B

Output: Estimateur Bootstrap $(\hat{\theta}_1^*, \dots, \hat{\theta}_B^*)$

pour $b = 1, \dots, B$ faire

(i) Tirer (uniformément) avec remise dans X_1, \ldots, X_n afin d'obtenir un nouvelle échantillon (aléatoire) : échantillon Bootstrap : X_1^*, \ldots, X_n^*

4 / 34

- X_1,\ldots,X_n i.i.d.
- $\hat{\theta} = \hat{\theta}(X_1,\ldots,X_n)$ une statistique/estimateur d'intérêt Examples : moyenne empirique \bar{X}_n ou médiane $\mathrm{Med}_n(X_1,\ldots,X_n)$

Algorithme: Bootstrap

Input : X_1, \ldots, X_n , nombre d'itérations B

Output : Estimateur Bootstrap $(\hat{\theta}_1^*, \dots, \hat{\theta}_B^*)$

pour $b = 1, \ldots, B$ faire

- (i) Tirer (uniformément) avec remise dans X_1, \ldots, X_n afin d'obtenir un nouvelle échantillon (**aléatoire**) : échantillon Bootstrap : X_1^*, \ldots, X_n^*
- (ii) Calculer l'estimateur/la statistique sur cet échantillon

$$\hat{\theta}_b^* = \hat{\theta}(X_1^*, \dots, X_n^*)$$

Bootstrap (des paires) en régression

Soit $X \in \mathbb{R}^{n \times p}$ et $y \in \mathbb{R}^n$

Bootstrap (des paires) en régression

Soit $X \in \mathbb{R}^{n \times p}$ et $y \in \mathbb{R}^n$

Bootstrap (des paires) en régression

Soit $X \in \mathbb{R}^{n \times p}$ et $y \in \mathbb{R}^n$

Premiers estimateurs bootstrap

Soit θ_0 le paramètre d'intérêt (inconnu)

	le vrai (inconnu)	le bootstrap
biais	$\mathbb{E}[\hat{ heta}] - heta_0$	$B^{-1} \sum_{b=1}^{B} \hat{\theta}_{b}^{*} - \hat{\theta}$
variance	$\mathbb{E}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2]$	$B^{-1} \sum_{b=1}^{b=1} (\hat{\theta}_b^* - B^{-1} \sum_{b=1}^{B} \hat{\theta}_b^*)^2$
mean-square error	$\boxed{\mathbb{E}[(\hat{\theta}-\theta_0)^2]}$	$B^{-1} \sum_{b=1}^{B} (\hat{\theta}_b^* - \hat{\theta})^2$
quantiles density		

Les statistiques $\hat{ heta}_1^*,\dots,\hat{ heta}_B^*$ sont des "versions" bootstrap de $\hat{ heta}$

Comment les utiliser?

Origine Efron et Tibshirani (1993)

Le terme "bootstrap" provient de la phrase :

"to pull oneself up by one's own bootstrap" (réussir par soi-même)

Idée Efron (1979)

En se basant uniquement sur les données observées, reproduire la distribution d'une statistique, *e.g.*, moyennes, écart-type, corrélation, etc...

Pas de théorie asymptotique!

Concept et origines du Bootstrap

Concept de racine statistique

Bien choisir la racine statistique : le *t*-bootstrap Racine pivotale Nombre de réplications

Le bootstrap en regression

Racine statistique

Definition

Une **racine statistique** \hat{R} est une fonction de (X_1,\ldots,X_n) qui converge en distribution vers G *i.e.*, $\hat{R} \leadsto G$

Examples

Let X_1, \ldots, X_n be *i.i.d.* with distribution $\mathcal{U}[0,1]$

- la moyenne, $n^{1/2}(n^{-1}\sum_{i=1}^n X_i 1/2)$
- ▶ la cdf, $n^{1/2}(n^{-1}\sum_{i=1}^n 1_{\{X_i \leqslant x\}} x)$
- le minimum, $n(\min_{1 \leq i \leq n} X_i)$
- ▶ la variance, ...

Notre contexte : le cas régulier

$$n^{1/2}(\hat{\theta} - \theta_0) \rightsquigarrow \mathcal{N}(0, \sigma^2)$$

FIGURE - Exemple d'une racine dont le biais est positif

Bootstrapper une racine

La racine choisie \hat{R} est donnée par le problème considéré

But du bootstrap

reproduire le "comportement" d'une racine statistique

2 étapes :

- (étape de définition)* Trouver la racine bootstrap \hat{R}^* qui reproduit la racine d'intérêt \hat{R}
- (étape d'approximation)** Pour B (grand), calculer $\hat{R}_1^*, \dots, \hat{R}_B^*$ et approcher la loi de \hat{R}

^{*}pour l'étape de définition : bon sens et théorie asymptotique

^{**}pour l'étape d'approximation : simulation de Monte Carlo

Exemples

Example 1: La moyenne

Supposons

$$\theta_0 = \int x dP(x)$$
 $\hat{\theta} = \bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ $\sigma^2 = \int (x - \theta_0)^2 dP(x)$

D'après le TCL, si
$$\mathbb{E}[X_1^2]<+\infty$$
, alors $\hat{R}=n^{1/2}(\hat{\theta}-\theta_0)\leadsto\mathcal{N}(0,\sigma^2)$

Une version bootstrap pour \hat{R} est

$$\hat{R}^* = n^{1/2}(\hat{\theta}^* - \hat{\theta}), \qquad \hat{\theta}^* = \bar{X}^*$$

Exemples

Exemple 2: la variance

Soient

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$
 $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

Si
$$\mathbb{E}[X_1^4]<+\infty$$
, alors $\hat{R}=n^{1/2}(\hat{\sigma}^2-\sigma^2)\leadsto\mathcal{N}(0,v),$

avec $v = \mathrm{var}((X - \mathbb{E}[X])^2).$ Une version bootstrap de \hat{R} est

$$\hat{R}^* = n^{1/2}(\hat{\sigma}^{*2} - \hat{\sigma}^2),$$
 $\hat{\sigma}^{*2} = \frac{1}{n} \sum_{i=1}^n (X_i^* - \bar{X}^*)^2$

Quantiles d'une racine

Soit ξ_{α} le α -quantile de $n^{1/2}(\hat{\theta}-\theta_0)$

Les quantiles sont très utiles pour...

... créer des intervalles de confiance, i.e.,
$$\mathbb{P}\left(\theta_0 \in [\hat{\theta} - \xi_{1-\alpha/2}/n^{1/2}, \hat{\theta} - \xi_{\alpha/2}/n^{1/2}]\right) = 1 - \alpha.$$

...faire des **tests**, *i.e.*, sous
$$H_0: \theta_0=1$$

$$\mathbb{P}\left(n^{1/2}(\hat{\theta}-1)\leqslant \xi_{\alpha/2} \text{ or } n^{1/2}(\hat{\theta}-1)\geqslant \xi_{1-\alpha/2}\right)=\alpha$$

Exercise: Obtenir les égalités précédentes pour la moyenne

Intervalle de confiance : Bootstrap vs asymptotique

Asymptotique:

$$\left[\hat{\theta} - \frac{\hat{\sigma}}{\sqrt{n}} \xi_{1-\frac{\alpha}{2}}^{(\infty)}, \hat{\theta} - \frac{\hat{\sigma}}{\sqrt{n}} \xi_{\frac{\alpha}{2}}^{(\infty)}\right]$$

ou $\xi_{\alpha}^{(\infty)}$ est le α -quantile d'une loi normale standardisée et $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

Bootstrap:

$$\left[\hat{\theta}_n - \frac{1}{\sqrt{n}}\hat{\xi}_{B,1-\frac{\alpha}{2}}, \hat{\theta}_n - \frac{1}{\sqrt{n}}\hat{\xi}_{B,\frac{\alpha}{2}}\right]$$

ou $\hat{\xi}_{B,\alpha}$ est un estimateur bootstrap du α -quantile de $n^{1/2}(\hat{\theta}-\theta_0)$ basé sur B échantillon bootstrap

Exercise: Proposer un algorithme pour calculer $\hat{\xi}_{B,\alpha}$

Bootstrap vs asymptotique

But

la distribution inconnue de

$$n^{1/2}(\hat{\theta}-\theta_0)$$

2 possibilités

La distribution **asymptotique** (estimée), *i.e.*,

$$\mathcal{N}(0,\hat{\sigma}^2)$$

La distribution **bootstrap**, *i.e.*, la distribution de

$$n^{1/2}(\hat{\theta}^* - \hat{\theta})$$

Bootstrap vs asymptotique

Différence importante 1

L'utilisation du bootstrap ne requiert aucune considération théorique comme le calcul, parfois difficile de la loi asymptotique (e.g., intervalle de confiance pour la variance).

Différence importante 2

Le bootstrap est basé sur la simulation de

$$n^{1/2}(\hat{\theta}_b^* - \hat{\theta}), \qquad b = 1, \dots B$$

pour approcher la loi cible de \hat{R} .

Bootstrap vs asymptotic

FIGURE – Graphe de la densité d'une beta(.1,1)

Bootstrap vs asymptotic

FIGURE – Graphe de la distribution théorique (la vraie), bootstrap et asymptotique de la racine dans le cas de la moyenne d'une beta(.1,1)

Bootstrap vs asymptotique

```
import numpy as np
from scipy.stats import gaussian_kde
from scipy.stats import norm
import matplotlib.pyplot as plt
```

```
# Generation of the data
np.random.seed(1)
n = 20
a = .1
b = 1
X = np.random.beta(a, b, n)
```

Bootstrap vs asymptotique

```
# Asymptotic
sigma = np.std(X)
x = .56
print(norm.pdf(x, loc=0, scale=sigma))
```

```
# Bootstrap
B = 50
Xstarbarme = np.zeros([1, B])

for i in range(B):
    Xstar = X[np.random.randint(n, size=n)]
    Xstarbarme[:, i] = np.mean(Xstar)
Xstarbarme = np.sqrt(n) * (Xstarbarme - np.mean(X))
density_boot = gaussian_kde(Xstarbarme)
```

1er conclusions

- Le bootstrap est "sample-based" (pas de théorie asymptotique)
- ► Facile à utiliser :
 - (i) pas de théorie asymptotique
 - (ii) parallélisable
 - (iii) pas besoin d'estimer σ

Autres exemples

- Covariance
- Correlation coefficient
- Regression coefficient
- Testing the rank of a matrix
- etc.

Concept et origines du Bootstrap

Concept de racine statistique

Bien choisir la racine statistique : le t-bootstrap Racine pivotale Nombre de réplications

Le bootstrap en regression

Racine pivotale

Definition

Une statistique est pivotale lorsque la distribution limite ne dépend pas de $\mathbb P$

Exemples

- ullet la moyenne, $n^{1/2}\left(rac{ar{X}-EX}{\hat{\sigma}}
 ight)$ avec $\hat{\sigma}^2=n^{-1}\sum_{i=1}^n(X_i-ar{X})^2$
- ▶ la cdf, $n^{1/2}\left(\frac{\hat{F}(x) F(x)}{\hat{F}(x)^{1/2}(1 \hat{F}(x))^{1/2}}\right)$ avec $\hat{F}(x) = n^{-1}\sum_{i=1}^n 1_{\{X_i \leqslant x\}}$

Requirement

Pour obtnir une statistique pivotale, on doit estimer la variance

Le t-bootstrap

Idée

bootstrap basique : $n^{1/2}(\hat{\theta}^* - \hat{\theta})$ imite $n^{1/2}(\hat{\theta}^* - \theta_0)$ t-bootstrap* : $n^{1/2}\left(\frac{\hat{\theta}^* - \hat{\theta}}{\hat{\sigma}^*}\right)$ imite $n^{1/2}\left(\frac{\hat{\theta} - \theta_0}{\hat{\sigma}}\right)$

Approximation**

Supposons que $n^{1/2}(\hat{\theta}-\theta_0) \leadsto \mathcal{N}(0,\sigma)$ dont la cdf est noté Φ

- Asymptotique : $|\Phi(y) \mathbb{P}(n^{1/2}(\hat{\theta} \theta_0) \leqslant y)| \simeq \frac{C}{\sqrt{n}}$
- ▶ bootstrap basique : $|\mathbb{P}_*(n^{1/2}(\hat{\theta}^* \hat{\theta}) \leq y) \mathbb{P}(n^{1/2}(\hat{\theta} \theta_0) \leq y)| \simeq \frac{C}{\sqrt{n}}$
- t-bootstrap : $|\mathbb{P}_*(n^{1/2}\left(\frac{\hat{\theta}^* \hat{\theta}}{\hat{\sigma}^*}\right) \leqslant y) \mathbb{P}(n^{1/2}\left(\frac{\hat{\theta} \theta_0}{\hat{\sigma}}\right) \leqslant y)| \simeq \frac{C}{n}$

^{*}t pour studentization

^{**}Basée sur des expansions d'Edgeworth [Hal92]

Confidence interval

$$\begin{array}{ll} \xi_{\alpha}^{(\infty)} : \alpha\text{-quantile d'une } \mathcal{N}(0,1) & \hat{\xi}_{B,\alpha}^{(bb)} : \alpha\text{-quantile de } \sqrt{n}(\hat{\theta}^* - \hat{\theta}) \\ \hat{\xi}_{B,\alpha}^{(tb)} : \alpha\text{-quantile de } \sqrt{n}\left(\frac{\hat{\theta}^* - \hat{\theta}}{\hat{\sigma}^*}\right) & \hat{q}_{\alpha} : \alpha\text{-quantile de} \hat{\theta}^* \end{array}$$

	formulas	accuracy
asymp.	$\left[\hat{\theta} - \frac{\hat{\sigma}}{\sqrt{n}} \xi_{1-\alpha/2}^{(\infty)}, \hat{\theta} - \frac{\hat{\sigma}}{\sqrt{n}} \xi_{\alpha/2}^{(\infty)}\right]$	$n^{-1/2}$
basic boot.	$\left[\hat{\theta} - \frac{1}{\sqrt{n}}\hat{\xi}_{1-\alpha/2}^{(bb)}, \hat{\theta} - \frac{1}{\sqrt{n}}\hat{\xi}_{\alpha/2}^{(bb)}\right]$	$n^{-1/2}$
t-boot.	$\left[\hat{\theta} - \frac{\hat{\sigma}}{\sqrt{n}}\hat{\xi}_{1-\alpha/2}^{(tb)}, \hat{\theta} - \frac{\hat{\sigma}}{\sqrt{n}}\hat{\xi}_{\alpha/2}^{(tb)}\right]$	n^{-1}
percentile boot.	$\left[\hat{q}_{lpha/2},\hat{q}_{1-lpha/2} ight]$	$n^{-1/2}$

Remarques

- ▶ pas d'estimation de la variance pour le bootstrap basique et le percentile
- ▶ le plus précis est le *t*-bootstrap
- \blacktriangleright le percentile est simple et donne des intervalles dans l'image de θ

Le Bootstrap est très demandeur en temps de calcul

• (l'étape d'approximation) Calculer $\hat{R}_1^*, \dots, \hat{R}_B^*$ et approcher la loi de \hat{R}

Choice of B

- Les procédures dont la précision est $1/\sqrt{n}:B$ devra être de l'ordre de n
- Les procédures dont la précision est 1/n:B devra être de l'ordre de n^2

Concept et origines du Bootstrap

Concept de racine statistique

Bien choisir la racine statistique : le *t*-bootstrap Racine pivotale Nombre de réplications

Le bootstrap en regression

Model de régression

$$Y = g(X) + \sigma(X)\epsilon$$

- X est aléatoire, *i.e.*, "random design" (ϵ et X indépendants)
- X n'est pas aléatoire, i.e., "deterministic design"

But: estimer g

particular semiparametric problem ⇒ particular bootstrap

2 stratégies pour le bootstrap

- bootstrap classique : bootstrap des paires
 - ⇒ OK pour "random design"
- Bootstrap des résidus
 - ⇒ OK pour "random" et "deterministic design"

Bootstrap des résidus

Algorithme

Soient $(Y_1, X_1, \dots, Y_n, X_n)$. Calculer \hat{g} et les résidus estimés $\hat{\epsilon}_i = Y_i - \hat{g}(X_i)$. Initialiser b = 1

- 1. Tirer uniformément avec remise dans $\hat{\epsilon}_1, \dots, \hat{\epsilon}_n$. Cela donne $(\hat{\epsilon}_1^*, \dots, \hat{\epsilon}_n^*)$
- 2. Pour $i=1,\ldots,n$, calculer $Y_i^* = \hat{g}(X_i) + \hat{\epsilon}_i^*$
- 3. A partir de $(Y_1^*, X_1, \dots, Y_n^*, X_n)$, calculer \hat{g}_h^*
- 4. Stop if b = B else iterate

Bootstrap of the residuals

Bootstrap of the residuals

syllabus I

- P. Bertail, Université Paris Ouest (see webpage)
- L. Simard Université catholique de Louvain
- J. Wellner, University of Washington (see webpage)

References I

B. Efron.
 Bootstrap methods: another look at the jackknife.
 Ann. Statist., 7(1):1–26, 1979.

- Bradley Efron and Robert J. Tibshirani.
 An introduction to the bootstrap, volume 57 of Monographs on Statistics and Applied Probability.
 Chapman and Hall, New York, 1993.
- Peter Hall.
 The bootstrap and Edgeworth expansion.
 Springer Series in Statistics. Springer-Verlag, New York, 1992.