Summer 2019/ June 21, 2019/ FNAL

Rachael Keller. Memo: Beginning Time Series Studie

Abstract

In which we present ongoing discussions, present some autoregressive modeling, and begin studies of gaussian processes.

1 Introduction

Consider a space of variables $\mathcal{P} \subset \mathbb{R}^{|\mathcal{P}|}$ that are settings, $\mathcal{Q} \subset \mathbb{R}^{|\mathcal{Q}|}$ that are observations, and $\mathcal{E} = \{0,1\}^{256}$ that are indicators of event $\mathcal{E}_i, i \in \{1,2,\ldots,256\}$ occuring. We are working on a problem with some input parameters $\vec{p} \in \mathbb{R}^{m_p}, \vec{q} \in \mathbb{R}^{m_q}$, and $\vec{E} \in \{0,1\}^{256}$. Parameters $\vec{p} \in \mathbb{R}^m$ are real-valued, independent variables specifying settings for a machine; $\vec{q} \in \mathbb{R}^{m_q}$ are observable variables; and \vec{E} is a binary vector mapping to events, where a value of 1 means an event is on and 0 off¹. We hope to learn a function f:

$$f: \mathbb{R}^m \times \{0, 1\}^{256} \to \mathbb{R},$$

where $m \leq m_p + m_q$, to predict some observable q_i , $i \in \{1, 2, ..., m_q\}$ at future time steps. In particular, we let q_0 be the primary quantity of interest $(q_0 = \Delta V)$.

For now, we have a large dataset over time of parameters \vec{p} and \vec{q} . These samples are in discrete time, and for the remainder of this paper we let t index the (discrete) time, so that $\vec{p_t}, \vec{q_t}, \vec{E_t}$ refer to the parameters at time $0 < t < T < \infty$.

Ultimately, we hope to determine the input space $\mathcal{X} \subset \mathcal{P} \cup \mathcal{Q} \cup \mathcal{E}$, so that we may refer to our samples as $\mathbf{x} \in \mathcal{X}$ and approximate some function f where $f(\mathbf{x}) = y \in \mathbb{R}$. We have yet to specify precisely which variables should be chosen. We are in the process of obtaining the data \vec{E}_t , and we are still in the process of selecting parameters from \mathcal{P} and \mathcal{Q} .

Note that parameters from $\mathcal Q$ are observations, so they may not be given in real-time to predict a parameter in it. Therefore, one would first specify that no $\vec q$ may enter the learning problem as an input. However, the parameters $\vec p$ are specified settings and are rarely changed, so that the data one generates over time of these inputs is only a rank 1 matrix. One can represent this matrix by a single row vector; it is therefore singular, and so we have problems with learning techniques that require full rank such as kernel methods.

To cut out kernel methods would eliminate a wide variety of robust methods for learning, so that is not a route we hope to take. Instead, we might predict other parameters in $\mathcal Q$ and use them to inform a model to predict the primary quantity of interest.

To understand if time series analysis is even required, or if the problem is merely static, we use pandas' lag_plot function to see the time dependence on a few of the variables of interest: two observation variables B:IMINER and B:VIMIN, and a setting B_VIMIN. We show the results in

Figure 1: Lag plot of quantities of interest. The x-axis is the data sampled at time t and the y-axis is the observed state at time t+1.

Figure 1. If the data were truly random, there would be no pattern showing dependence of the two. One can see clearly that the variables B:IMINER and B:VIMIN display linear time dependence; interestingly, the observation variables B:VIMIN seems to be reset and evolves linearly for some clusters of data. Therefore, the plots are compelling for studying different types of time series models.

1.1 Ongoing Discussions

As shown in Figure 1, there is certainly time dependence on the data. One important aspect to learn is how the change in setting B_VIMIN relates to the change in B:VIMIN and B:IMINER. For example, the middle and right-most panel of Figure 1 are B:VIMIN and B_VIMIN respectively. Is there a correlation in time between the clusters seen in the middle plot and the change in the setting shown in B_VIMIN? Can we predict B:VIMIN based on B_VIMIN? Importantly, can we predict B:IMINER from B_VIMIN?

Originally, the relationship

$$B:IMINER = \gamma [B_VIMIN - B:VIMIN], \qquad (1)$$

where $\gamma \in \mathbb{R}$ is some fixed constant (the "gain"). With that in mind, we experimented with a one-hour dataset and found $\gamma \approx 0.055$. Then, we tested 24 one-hour datasets over a single day and six one-hour data sets over multiple days. We obtained conflicting, oscillatory results; a plot of the two are shown in Figure 2

Figure 2: Hourly-binned Gain Plots for Function (1)

After discussions with Bill Pellico, who controls this part of the process, we found the following. First, let $\vec{p_t}$ refer to independent parameters that are set and $\vec{q_t}$ refer

¹Let $i \in \{0,1,m_p-1\}$ and $j \in \{0,1,\dots,m_q-1\}$. We abuse notation and let $p_i \in \vec{p}$ or $q_j \in \vec{q}$ refer to both the real-valued variable it represents and what it represents. i.e. q_0 is the value q_0 takes and what it represents ΔV.

to the parameters that are observations at time t. The settings B_VIMIN and B_VIMAX are stored in \vec{p} , and likewise B:VIMIN and B:VIMAX are stored in \vec{q} . The multipler γ in (1) is dependent on the events in the Time Line Generator (TLG). In particular, at time t, γ is dependent on the instanteous cost at some time t:

$$C_t^0(\vec{p_t}, \vec{q_t}) = B_VIMIN_t - B: VIMIN_t, \tag{2}$$

and a longer-term cost:

$$C_t^1(\vec{p}_t, \vec{p}_{t-1}, \dots, \vec{p}_{t-T}, \vec{q}_t, \vec{q}_{t-1}, \dots, \vec{q}_{t-T}) = \sum_{\tau=t}^{t-T} \left[\frac{\mathtt{B_VIMIN}_{\tau} - \mathtt{B:VIMIN}_{\tau}}{2 \text{ to predict}} + \frac{\mathtt{B_VIMAX}_{\tau} - \mathtt{B:VIMAX}_{\tau}}{\text{future tim2 series over}} \right]_{\text{a specified time window. In the following section, we show some results over}$$

i.e.

$$\gamma \equiv \gamma_t^T (\vec{p}_t, \vec{p}_{t-1}, \dots, \vec{p}_{t-T}, \vec{q}_t, \vec{q}_{t-1}, \dots, \vec{q}_{t-T}),$$

where the dependence of the parameters is some function of the instantaneous cost (2) and a long-term cost 3. Can we learn this relationship using neural networks? Currently, the T in (3) is unknown, but Bill could check the code for it. Once it is known, we can perhaps learn the relationship between the costs and B: IMINER by learning γ as a function of the parameters (both the settings and the observations over time).

2 AR Models

2.1 Introduction

Autoregressive (AR) models are a form of linear regression models where the time series is regressed on previous time steps. Suppose we have a discrete time series $\{\mathbf{x}_t\}_{t=0}^T$, and we hope to predict \mathbf{x}_T . Consider the model

$$\mathbf{x}_T = \alpha_0 + \alpha_1 \mathbf{x}_{T-1}.$$

This model is an AR(1), model, where the argument 1, the order of the model, indicates the most distant previous time step used in the model. Generally speaking, for 0 < T' < T

$$\mathbf{x}_T = \alpha_0 + \sum_{k=1}^{T'} \alpha_j \mathbf{x}_{T-k}$$

is an AR(T') model of order T'.

There are several advantages to using AR models. The coefficient of correlation between data of two different time steps, known as the autocorrelation function, gives a quick measure of the linear relationship between observations at different times. The difference in the time steps is known as the lag. One can use the lag in the autocorrelation function to deduce the optimal order of an AR model.

In addition to the nice, though simple, properties of the model, there are many computer programming (coding) packages available to implement an AR model and optimize an AR model for the dataset. The python packages pandas and scipy may be used to build models and

Figure 3: AR Models for B: IMINER and B: VIMIN

(a) B:IMINER 1 second Pre-(b) B:VIMIN 1 second Prediction MSE: 3.2e-3 diction MSE 2.0e-4

a one-hour time period of data.

2.2 Results

In this section, we show the results of some experiments with a 60-minute window of samples. We fit an AR model using scipy's AR package. Qualitative results are shown in Figure 3.

Our first goal is to predict a cycle – one second, or 15 time steps - in advance. We have a total of 48108 time steps of data to train it and, as a test, save the final 15 pieces of data to serve as a test. The prediction for the final 15 time steps is plotted alongside the observed values. For both models, the optimal lag computed and used was 56. The training for B:VIMIN was an order of magnitude closer to the true result compared with B: IMINER, which is a derived quantity and dependent on B:VIMIN.

An important aspect of this experimentation is to note the smoothness of the predictions versus the true observation. The autoregressive model fails to capture the noise and instead plots a smoothed curve. Since the data we deal with is highly noisy, these models might not be the best choice for modeling.

3 Gaussian Processes

3.1 Introduction

Gaussian Processes are a Bayesian method that combines the nice properties of Gaussian functions and the concreteness of regression with the richness of kernel methods. In Bayesan linear regression, one assumes a prior distribution over parameters and outputs a probability distribution over possible outputs. Gaussian processes generalize the output to a random functions—an infinite dimensional space.

Let $\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}$ be a collection of random variables. A collection of such variables is said to be drawn from a Gaussian process with mean $m: \mathcal{X} \to \mathbb{R}$ and covariance $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ if for any finite input set $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in$ \mathcal{X} , the associated set $f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_m)$ satisfies:

$$\begin{bmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_m) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(\mathbf{x}_1) \\ \vdots \\ m(\mathbf{x}_m) \end{bmatrix}, \begin{bmatrix} \mathbf{K}(\mathbf{x}_1, \mathbf{x}_1) & \cdots & \mathbf{K}(\mathbf{x}_1, \mathbf{x}_m) \\ \vdots & \ddots & \vdots \\ \mathbf{K}(\mathbf{x}_m, \mathbf{x}_1) & \cdots & \mathbf{K}(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix} \right)$$

2 Rachael Keller The covariance function may be any function that satisfies Mercer's conditions. In the discrete case, if we let K refer to the matrix of $k(\cdot,\cdot)$ values specified above, any kernel function statisfying Mercer's condition is positive semidefinite.

A well-known, popular kernel is the gaussian kernel:

$$K(\mathbf{x}, \mathbf{x}'; \sigma) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right),$$

where $\sigma \in \mathbb{R}$. We will use this for now in our preliminary experiments.

Python has several packages for Gaussian Processes. We use a nice package GPFlow, with a backend in Tensorflow, that we use for our experiments.

3.2 Results

We use the same data set as before, except now we only hope to train the model to predict values of B:IMINER. We use the gaussian kernel, as described above, and use gpflow to build a model [2]. A qualitative view of the results on this preliminary experiment are shown in Figure 4.

3.3 Discussion for Time Series

With Bayesian inference, we're building a probability distribution over functions

$$p(f(\mathbf{x})) = \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x})),$$

where $f(\mathbf{x}) = \{f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_m)\}$ are dependent function values evaluated at $\mathbf{x}_1, \mathbf{x}_2, ldots, \mathbf{x}_m$. $m(\mathbf{x})$ is a mea nfunction and $K(\mathbf{x}, \mathbf{x})$ is our covariance matrix. If we assume that the data has some random, uncorrelated noise from sample to sample, then the variance:

$$V(\mathbf{x}) = K(\mathbf{x}, \mathbf{x}) + \sigma^2 I,$$

where I is the identity matrix and σ^2 is a hyperparameter of the variance of the added noise.

Now, if we seek to use a GP over some test sample (\mathbf{x}_*, y_*) , then we begin with the training data and then combine with the test set:

$$p\left(\begin{bmatrix}\mathbf{y}\\y_*\end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix}\boldsymbol{m}(\mathbf{x})\\m(x_*)\end{bmatrix}\begin{bmatrix}\boldsymbol{K}(\mathbf{x},\mathbf{x}) & \boldsymbol{K}(\mathbf{x},x_*)\\\boldsymbol{K}(x_*,\mathbf{x}) & k(x_*,x_*)\end{bmatrix}\right)$$

Then, we may deduce the posterior distribution over y_* is Gaussian with mean and covariance given by

$$m_* = m(x_*) + K(x_*, \mathbf{x}) \mathbf{K}(\mathbf{x}, \mathbf{x})^{-1} (\mathbf{f}(\mathbf{x}) - m(\mathbf{x}))$$

$$\sigma_*^2 = K(x_*, x_*) - \mathbf{K}(x_*, \mathbf{x}) \mathbf{K}(\mathbf{x}, \mathbf{x})^{-1} K(x_*, \mathbf{x})^T,$$

where the superscript T denotes the transpose.

We then extend this for a set of input outside our observations \mathbf{x}_* to obtain a posterior distribution over $f_* \equiv f(\mathbf{x}_*)$ described by:

$$p(\boldsymbol{f}_*) = \mathcal{N}(\boldsymbol{m}_*, \boldsymbol{C}_*),$$

where

$$m_* = m(\mathbf{x}_*) + K(\mathbf{x}_*, \mathbf{x})K(\mathbf{x}, \mathbf{x})^{-1}(f(\mathbf{x}) - m(\mathbf{x}))$$

$$C_* = K(\mathbf{x}_*, \mathbf{x}_*) - K(\mathbf{x}_*, \mathbf{x})K(\mathbf{x}, \mathbf{x})^{-1}K(\mathbf{x}, \mathbf{x}_*)^T.$$

Figure 4: Gaussian Process Model of Predicted Values (black x) within a window of two standard deviations from the expected value.

References

- [1] Do, Chuong and Lee, Honglak. Gaussian processes. Course Lecture Notes. Stanford University, Spring 2019. http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf.
- [2] GPFlow. https://gpflow.readthedocs.io/en/latest/notebooks/ordinal.html
- [3] Rasmussen, Carl Edward. "Gaussian processes in machine learning." Summer School on Machine Learning. Springer, Berlin, Heidelberg, 2003.
- [4] Roberts, Stephen, et al. "Gaussian processes for timeseries modelling." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371.1984 (2013): 20110550.

3 Rachael Keller