A2DI - Online Learning

Quentin Baert - Antonin Carette

Master 2 Informatique - MoCAD

Question 1

Voir l'implémentation des méthodes update() dans le fichier binary.py.

Voici les résultats de l'algorithme Perceptron en faisant varier le nombre d'itérations :

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	7	11	8	8/13
1	-1	1	2	5	0/13
5	1	6	9	8	8/13
9	-1	2	4	5	0/13
10	1	6	8	8	9/13
10	-1	3	5	5	9/10
100	1	6	8	8	9/13
100	-1	3	5	5	9/10
1000	1	6	8	8	9/13
1000	-1	3	5	5	9/13

Question 2

Voici les résultats de l'algorithme Passive-Agressive en faisant varier le nombre d'itérations et en gardant la valeur de C par défaut :

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	7	10	8	8/13
1	-1	2	3	5	0/13
5	1	7	7	8	12/13
9	-1	5	6	5	12/13
10	1	6	8	8	11/13
10	-1	3	5	5	11/13
100	1	6	7	8	10/13
100	-1	4	6	5	10/13
1000	1	6	7	8	10/13
1000	-1	4	6	5	10/13

Considérons le nombre d'itérations qui donne le meilleurs résultats (à savoir 5) pour déterminer l'impacte du paramètre C. En faisant varier les valeurs de C entre 0 et 1, on obtient les résultats suivants :

C	Label	Correct	Predicted	Gold	Sucess
		Correct	1 Tealettea		Dacess
0.0	1	0	0	8	5/13
0.0	-1	5	13	5	0/10
0.1	1	7	10	8	0 /19
0.1	-1	2	3	5	9/13
0.2	1	7	9	8	10/19
0.2	-1	3	4	5	10/13
0.26	1	7	8	8	11/19
0.26	-1	4	5	5	11/13
0.3	1	7	7	8	19/19
0.5	-1	5	6	5	12/13
	1	7	7	8	19/19
•••	-1	5	6	5	12/13
1.0	1	7	7	8	19/19
1.0	-1	5	6	5	12/13

On constate que pour obtenir le meilleur résultat, il faut que le paramètre d'agressivité C soit supérieur à 0.3.

Pour comparer les deux algorithmes on constate l'algorithme Passive-Agressive est meilleur que le Perceptron dès que l'on utilise 5 itérations ou plus.

Question 3

Averaged Perceptron

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	6	9	8	0 /19
1	-1	2	4	5	8/13
5	1	7	9	8	10/13
9	-1	3	4	5	10/13
10	1	6	6	8	11/13
10	-1	5	7	5	11/10
100	1	6	6	8	11/19
100	-1	5	7	5	11/13
1000	1	6	6	8	11/13
1000	-1	5	7	5	11/13

On remarque que le Averaged Perceptron est meilleur que le Perceptron classique et ce dès 5 itérations.

Averaged Passive-Agressive

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	8	12	8	9/13
1	-1	1	1	5	9/13
5	1	7	9	8	10/13
9	-1	3	4	5	10/13
10	1	7	7	8	12/13
10	-1	5	6	5	12/13
100	1	6	7	8	10/13
100	-1	4	6	5	10/13
1000	1	6	7	8	10/13
1000	-1	4	6	5	10/13

Le Averaged Passive-Agressive donne plus ou moins les même résultats que le Passive-Agressive classique. On remarque tout de même qu'il lui fautp plus d'itérations (ici 10) avant d'atteindre son meilleur score (12/13).

Prenons 10 itérations pour tester le comportement du Averaged Passive-Agressive en fonction de son paramètre C.

C	Label	Correct	Predicted	Gold	Sucess
0.0	1	0	0	8	5/13
0.0	-1	5	13	5	5/15
0.1	1	7	9	8	10/13
0.1	-1	3	4	5	10/13
0.2	1	7	8	8	11/13
0.2	-1	4	5	5	11/10
0.3	1	7	7	8	12/13
0.5	-1	5	6	5	12/10
	1	7	7	8	12/13
•••	-1	5	6	5	12/10
1.0	1	7	7	8	12/13
1.0	-1	5	6	5	12/10

On constate que l'Averaged Passive-Agressive donne de meilleurs résultats que la version classique pour C<0.3. En revanche, pour $C\geq0.3$ ses résultats sont identiques à ceux de la version classique.

Question 4

Voici les résultats de deux algorithmes dans leur forme classique ou averaged sur de plus grosses données¹.

Perceptron

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	5212	8779	7446	25155/30956
1	-1	19943	22177	23510	20100/00900
5	1	4897	8096	7446	25208/30956
9	-1	20311	22860	23510	20206/30900
10	1	3480	5022	7446	25448/30956
10	-1	21968	25934	23510	20446/30930
100	1	4871	8304	7446	24948/30956
100	-1	20077	22652	23510	24946/30930
1000	1	4960	8420	7446	25010/30956
1000	-1	20050	22536	23510	25010/50950

¹récupérées à l'adresse suivante : http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

Averaged Perceptron

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	3672	5272	7446	25582/30956
1	-1	21990	25684	23510	20062/30900
5	1	4522	6997	7446	25557/30956
9	-1	21035	23959	23510	20001/00900
10	1	5795	11269	7446	23831/30956
10	-1	18036	19687	23510	23631/30930
100	1	1559	1958	7446	24670/30956
100	-1	23111	28998	23510	24070/30930
1000	1	6515	14020	7446	22520/30956
1000	-1	16005	16936	23510	22020/30900

Passive-Agressive

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	4030	5814	7446	25756/30956
1	-1	21726	25142	23510	20100/30900
5	1	3921	5729	7446	25623/30956
9	-1	21702	25227	23510	20023/30930
10	1	3904	5747	7446	25571/30956
10	-1	21667	25209	23510	25571/50950
100	1	3953	5883	7446	25533/30956
100	-1	21580	25073	23510	20000/00900
1000	1	3970	5919	7446	25531/30956
1000	-1	21561	25037	23510	20001/00900

${\bf Averaged~Passive-Agressive}$

Itérations	Label	Correct	Predicted	Gold	Sucess
1	1	4366	6272	7446	25970/30956
1	-1	21604	24684	23510	20970/30900
5	1	4553	6719	7446	25897/30956
9	-1	21344	24237	23510	20091/30900
10	1	4580	6834	7446	25836/30956
10	-1	21256	24122	23510	20000/00900
100	1	4624	7011	7446	25747/30956
100	-1	21123	23945	23510	20141/00900
1000	1	4634	7036	7446	25742/30956
1000	-1	21108	23920	23510	20142/30900