2.4 初等变换与初等矩阵

解如下方程组:

$$\begin{cases} 2x_1 + x_2 = 4, & (1) \\ 3x_1 - 2x_2 = -1, & (2) \end{cases}$$

$$(3x_1 - 2x_2 = -1, (2))$$

$$(2)+(1) \times 2:$$

$$\begin{cases} 2x_1 + x_2 = 4, (1) \\ 7x_1 = 7, (2) \end{cases}$$

$$(2) \div 7:$$

$$\begin{cases} 2x_1 + x_2 = 4, (1) \\ x_1 = 1, (2) \end{cases}$$

$$(1) \leftrightarrow (2):$$

$$\begin{cases} x_1 = 1, (1) \\ 2x_1 + x_2 = 4, (2) \end{cases}$$

$$\begin{cases} 2x_1 + x_2 = 4, & (1) \\ x_1 & = 1, & (2) \end{cases}$$

$$\begin{cases} x_1 & = 1, & (1) \\ 2x_1 + x_2 & = 4 \end{cases}$$

(2) - (1)
$$\times$$
 2:

$$\begin{cases} x_1 = 1, & (1) \\ x_2 = 2, & (2) \end{cases}$$

矩阵表示

借用行列
式符号
$$\begin{pmatrix} 2 & 1 & | & 4 \\ 3 & -2 & | & -1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 & | & 4 \\ 7 & 0 & | & 7 \end{pmatrix}$$

$$r_2 \div 7$$
:
$$\begin{pmatrix} 2 & 1 & | & 4 \\ 1 & 0 & | & 1 \end{pmatrix}$$

$$r_1 \leftrightarrow r_2$$
:
$$\begin{pmatrix} 1 & 0 & | & 1 \\ 2 & 1 & | & 4 \end{pmatrix}$$

$$r_2$$
-2 r_1 :
$$\begin{pmatrix}
1 & 0 & | & 1 \\
0 & 1 & | & 2
\end{pmatrix}$$

矩阵形式解方程组:

$$\begin{pmatrix} 2 & 1 & | & 4 \\ 3 & -2 & | & -1 \end{pmatrix} \xrightarrow{r_2 + 2r_1} \begin{pmatrix} 2 & 1 & | & 4 \\ 7 & 0 & | & 7 \end{pmatrix} \xrightarrow{r_2 \div 7} \begin{pmatrix} 2 & 1 & | & 4 \\ 1 & 0 & | & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 0 & | & 1 \\ 2 & 1 & | & 4 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{pmatrix}$$

由此导出矩阵的初等变换

初等变换:

- •行交换
- •行乘以一个非零数
- •行的倍数加到另一行

或者:

- •列交换
- •列乘以一非零数
- •列的倍数加到另一列

初等变换还可简化矩阵:

如同步简化矩阵中的列,从而找到矩阵中列的相互关系

$$\begin{pmatrix}
1 & 1 & 0 & 3 & 3 \\
1 & -1 & 2 & 3 & 3 \\
1 & 3 & -2 & -2 & -2 \\
1 & 3 & -2 & -4 & -4
\end{pmatrix}
\xrightarrow{r_i-r_1,i=2,3,4}
\begin{pmatrix}
1 & 1 & 0 & 3 & 3 \\
0 & -2 & 2 & 0 & 0 \\
0 & 2 & -2 & -5 & -5 \\
0 & 2 & -2 & -7 & -7
\end{pmatrix}$$

$$\begin{array}{c}
r_{3}+r_{2}\\r_{4}+r_{2}\\r_{1}+0.5r_{2}\\
\rightarrow
\end{array}
\begin{pmatrix}
1 & 0 & 1 & 3 & 3\\0 & -2 & 2 & 0 & 0\\0 & 0 & 0 & -5 & -5\\0 & 0 & 0 & -7 & -7
\end{pmatrix}
\xrightarrow{r_{2}\div(-2)\\r_{3}\div(-5)\\r_{4}\div(-7)\\
\rightarrow\\r_{1}-3r_{3}\\r_{4}-r_{3}
}
\begin{pmatrix}
1 & 0 & 1 & 0 & 0\\0 & 1 & -1 & 0 & 0\\0 & 0 & 0 & 1 & 1\\0 & 0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{\beta_{1}}
\begin{array}{c}
\beta_{2} & \beta_{3} & \beta_{4} & \beta_{5}\\
\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5}
\end{array}$$

有 β_1 - β_2 - β_3 + β_4 - β_5 =0,则也有 α_1 - α_2 - α_3 + α_4 - α_5 =0

定义2.4.1 (初等变换) 下面三种对矩阵的变换, 统称为矩阵的初等变换:

- (1) 对调变换: 互换矩阵 i,j 两行(列),记作 $r_i \leftrightarrow r_j (c_i \leftrightarrow c_j)$.
- (2) 数乘变换:用任意数 $k\neq 0$ 去乘矩阵的第 i 行(列),记作 $kr_i(kc_i)$.
- (3) 倍加变换: 把矩阵的第i行(列)的k倍加到第j行(列),其中k为任意数,记作 r_i+kr_i (c_i+kc_i).

注: 初等变换都有逆变换: $r_i \leftrightarrow r_j \Leftrightarrow r_i \leftrightarrow r_j$, $kr_i \Leftrightarrow r_i \div k$, $r_j + kr_i \Leftrightarrow r_j - kr_i$

矩阵乘积有行或列变换的作用,见对角矩阵P左乘或右乘矩阵A

$$PA = \begin{pmatrix} k_1 & & \\ & k_2 & \\ & & k_3 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} k_1 a_{11} & k_1 a_{12} & k_1 a_{13} \\ k_2 a_{21} & k_2 a_{22} & k_2 a_{23} \\ k_3 a_{31} & k_3 a_{32} & k_3 a_{33} \end{pmatrix} A$$
A各行乘以对应对角元

$$AP = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} k_1 a_{11} & k_2 a_{12} & k_3 a_{13} \\ k_1 a_{21} & k_2 a_{22} & k_3 a_{23} \\ k_1 a_{31} & k_2 a_{32} & k_3 a_{33} \end{pmatrix} A$$
 A各列乘以对应对角元

左乘对角矩阵相当于对矩阵的行乘上各个倍数,右乘对角矩阵相当于对矩阵的列乘上各个倍数

更进一步,<mark>左乘</mark>矩阵相当于对矩阵作<mark>行</mark>的组合变换, 右乘对角矩阵相当于对矩阵作了列的组合变换

说明:
$$\begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{\frac{A}{5}E} \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} k_{11}\alpha_1 + k_{12}\alpha_2 \\ k_{21}\alpha_1 + k_{22}\alpha_2 \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix}^{\frac{A}{5}E} \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} = (k_{11}\beta_1 + k_{21}\beta_2, k_{12}\beta_1 + k_{22}\beta_2)$$

反过来,由初等变换找对应的矩阵P?

以交换矩阵的两行为例:
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = B = PA$$

矩阵P左乘矩阵达到两行交换: 即PA=B,此处左乘P看成是一个作用

因为
$$PA = P(EA) = (PE)A$$
, 故有 $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = PE = P$

故矩阵P是对单位矩阵E进行同样的初等行变换得到的矩阵(初等矩阵)

定义2.4.2 (初等矩阵)将单位矩阵 E,做一次初等变换所得的矩阵称为初等矩阵,对应于三类初等行(列)变换,有如下三种类型的初等矩阵.

(1) 初等对调矩阵

对调E的i、j行 或者对调E的i、j列

(2) 初等倍乘矩阵

E的i行乘以k 或者E的i列乘以k

(3) 初等倍加矩阵

E的j行k倍加到i行 或者E的i列k倍加到j列

初等矩阵的逆矩阵:

$E(i,j)^{-1}=E(i,j)$, $E(i(k))^{-1}=E(i(1/k))$, $E(i,j(k))^{-1}=E(i,j(-k))$

$$E(i,j)^{-1}=E(i,j)$$
:

$$E(i,j)E(i,j) =$$

$E(i(k))^{-1}=E(i(1/k))$:

等价于两列交换

等价于列乘1/k

$$E(i(k))E(i(\frac{1}{k})) =$$

$$\frac{1}{k}$$
 \vdots

$$\begin{vmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & \ddots & \end{vmatrix} = E, 同理 E(i(\frac{1}{k}))E(i(k)) = E.$$

$E(i,j(k))^{-1}=E(i,j(-k))$:

等价于i列-k倍加到j列

$$E(i, j(k))E(i, j(-k)) = \begin{pmatrix} 1 & & & \\ & 1 & \cdots & k \\ & & \ddots & \vdots \\ & & & 1 \\ & & & \ddots \\ & & & & 1 \end{pmatrix}$$

=E.

例2.4.1 计算矩阵与初等矩阵的乘积:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \end{pmatrix}, 相当于初等行变换: kr2$$

$$\begin{pmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} a_{11} + ka_{31} & a_{12} + ka_{32} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}, \quad \mathbf{相当于初等行变换}: \quad \mathbf{r_1} + \mathbf{kr_3}$$

$$\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} b_{11} & b_{13} & b_{12} \\ b_{21} & b_{23} & b_{22} \\ b_{31} & b_{33} & b_{32} \end{pmatrix}.$$
相当于初等列变换: $\boldsymbol{c_2} \leftrightarrow \boldsymbol{c_3}$

初等矩阵的变换作用

定理2.4.1 (初等变换与初等矩阵)设A是一个 $m \times n$ 矩阵,对A施行一次初等行变换,相当于在A的左边乘以一个相应的m阶初等矩阵;对A施行一次初等列变换,相当于A的右边乘以一个相应n阶初等矩阵.

证明 只须具体验证即可,此处只举一种情形.A按行分块,A施行第三种 初等行变换,将A的第j行乘 k倍加到i行上,即

注: 定理中相应初等矩阵表示同样的初等变换作用到E后的初等矩阵。

*初等变换和分块矩阵结合来考虑例2.2.7的证明 思路.

 P_{33} 中例2.2.7原题为:证明 |AB|=|A||B|.

矩阵变换
$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ -1 & b \end{pmatrix} = \begin{pmatrix} 0 & ab \\ -1 & b \end{pmatrix},$$

没有乘法交换,即
$$\begin{pmatrix} E & A \\ 0 & E \end{pmatrix} \begin{pmatrix} A & O \\ -E & B \end{pmatrix} = \begin{pmatrix} O & AB \\ -E & B \end{pmatrix},$$

取行列式

$$\begin{vmatrix} A & O \\ -E & B \end{vmatrix} \stackrel{\text{fiffin}}{=} \begin{vmatrix} E & A \\ 0 & E \end{vmatrix} \begin{pmatrix} A & O \\ -E & B \end{vmatrix} = \begin{vmatrix} O & AB \\ -E & B \end{vmatrix} = (-1)^n \begin{vmatrix} AB & O \\ B & -E \end{vmatrix}.$$

补充例2G 已知同阶方阵 A,B,C,D,A可逆,且AC=CA,证明 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD-CB|$. 证明 由矩阵式子 $\begin{pmatrix} E & O \\ -CA^{-1} & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ O & D-CA^{-1}B \end{pmatrix}$,

两边取行列式得
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & B \\ O & D - CA^{-1}B \end{vmatrix} = |A| \cdot |D - CA^{-1}B| = |AD - ACA^{-1}B|,$$

因为 AC=CA, 故有: 左式= |AD-ACA-1B|=|AD-CAA-1B|=|AD-CB|.

初等分块矩阵

*只讲2阶分块矩阵的初等分块矩阵

行倍乘:
$$\begin{pmatrix} P & O \\ O & E \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} PA_{11} & PA_{12} \\ A_{21} & A_{22} \end{pmatrix}, \text{ 列倍乘:} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} P & O \\ O & E \end{pmatrix} = \begin{pmatrix} A_{11}P & A_{12} \\ A_{21}P & A_{22} \end{pmatrix}$$

行倍加:
$$\begin{pmatrix} E & O \\ P & E \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} + PA_{11} & A_{22} + PA_{12} \end{pmatrix},$$
列倍加:
$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} E & O \\ P & E \end{pmatrix} = \begin{pmatrix} A_{11} + A_{12}P & A_{12} \\ A_{21} + A_{22}P & A_{22} \end{pmatrix}$$

一个矩阵是否可以通过初等变换化成任意一个同阶的矩阵?否

考虑3阶零矩阵和3阶单位矩阵

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{Effinish} \oplus \Phi} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

有些矩阵可以通过初等行变换转换

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -6 & 1 \\ -2 & 6 & -1 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{$\not \sqsubseteq$ } A \xrightarrow{r} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

有些矩阵可以通过初等行列变换转换

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -6 & 1 \\ -2 & 6 & -1 \end{pmatrix} \xrightarrow{r,c} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{$\not \sqsubseteq$ } A \xrightarrow{r,c} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

通过初等变换对矩阵进行一个分类,能相互变换的归成一类,于是同一类的矩阵都可以通过初等变换简化成一类中的最简矩阵.

矩阵的简化(行梯形、列梯形)

定义2.4.3 (行(列)等价矩阵,等价矩阵) 如果A经过有限次初等行变换变成矩阵B,称矩阵A与B行等价,记作A— r $\to B$;若矩阵A经有限次初等列变换变成矩阵B,称矩阵A与B列等价,记作A— c $\to B$;若矩阵A经有限次初等变换变成矩阵B,称矩阵A与B等价,记作A— c $\to B$:

矩阵的等价是一种等价关系,具有:(1)自反性(2)对称性(3)传递性.

行(列)等价的矩阵归为一类,然后找这一类中最简单的矩阵表示这一类. 行(列)等价类中最简单的矩阵就是行(列)简化梯形矩阵. 等价类中最简单的矩阵就是标准形矩阵.

行等价矩阵的意义:

考虑方程组: $\begin{cases} 2x_1 + x_2 = 4, & (1) \\ 3x_1 - 2x_2 = -1, & (2) \end{cases}$ 用矩阵形式求解:

$$\begin{pmatrix} 2 & 1 & | & 4 \\ 3 & -2 & | & -1 \end{pmatrix} \xrightarrow{r_2 + 2r_1} \begin{pmatrix} 2 & 1 & | & 4 \\ 7 & 0 & | & 7 \end{pmatrix} \xrightarrow{r_2 \div 7} \begin{pmatrix} 2 & 1 & | & 4 \\ 1 & 0 & | & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 0 & | & 1 \\ 2 & 1 & | & 4 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{pmatrix}, \text{ if } \begin{cases} x_1 = 1, \\ x_2 = 2. \end{cases}$$

可以看到:

行等价矩阵对应的方程组是同解方程组,解对应的矩阵是

行等价矩阵中最简单的矩阵(1 0 | 1), 就是行简化梯形矩阵.

零行(列): 矩阵中全为零的行(列); 非零行(列): 矩阵中不全为零的行(列).

定义2.4.4 (梯形矩阵,矩阵的标准形) 若矩阵/满足下面两个条件:

- (1) 若有零行,则零行全部在下方,
- (2) 从第一行起,每行第一个非零元素前面的零的个数逐行增加,则称*A* 为行梯形矩阵. 若*A*还满足:
- (3) 非零行的第一个非零元素为1,且"1"所在的列的其余元素全为零,则称A为行简化梯形矩阵. 类似可定义列梯形矩阵与列简化梯形矩阵. 若矩阵A既是行简化梯形矩阵,又是列简化梯形矩阵,则称A是标准形矩阵,矩阵的标准形可写为 (E O)

定理2.4.2 (矩阵的化简) 设 A为 m×n矩阵,

- (1) 存在m阶初等矩阵 $P_1,P_2,...,P_s$ 使 $P_sP_{s-1}...P_2P_1A$ (即对A施行有限次的初等行变换) 成为 $m \times n$ 阶行简化梯形矩阵 . 也存在n阶初等矩阵 $Q_1,Q_2,...,Q_t$ 使 $AQ_1Q_2...Q_t$ (即对A施行有限次的初等列变换) 成为 $m \times n$ 阶列简化梯形矩阵 .
- (2) 可以经过有限次的初等行变换和初等列变换,将矩阵A化为标准形.

初等变换化行梯形、行简化梯形的说明

原矩阵:

找框中第一个非零列

框中第一列的某个非零 元素交换到框中 第一行

反复进行

框中其它列减去第一列的倍数,使第一列第一个元素以下元素消为零

找框中第一个非零列

重复上述过程 0 0 0 * * * * 0 0 0 0 * * * 0 0 0 0 0 * *

进一步化为行简化梯形

第二行乘以某个倍数加到第一行上,消去行首1上面的元素

```
      (0 1 * 0 * *)
      * (0 0 0 1 * * *)

      (0 0 0 0 1 * *)
      * (0 0 0 0 0 0 0)

      (0 0 0 0 0 0 0 0)
      * (0 1 * 0 0 * *)

      (0 0 0 0 1 0 * *)
      * (0 0 0 0 0 0 0)

      (0 0 0 0 0 0 0 0)
      * (0 0 0 0 0 0)
```

*注:矩阵/4变换成的行(列)简化梯形矩阵是唯一的,标准形矩阵也是唯一的.

例2.4.2 设
$$A = \begin{pmatrix} 1 & 2 & -4 & 5 \\ 1 & 3 & -5 & 7 \\ 2 & 3 & -7 & 8 \end{pmatrix}$$
, A 可经下列初等行变换化为行简化梯形矩阵.

$$A = \begin{pmatrix} 1 & 2 & -4 & 5 \\ 1 & 3 & -5 & 7 \\ 2 & 3 & -7 & 8 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 2 & -4 & 5 \\ 0 & 1 & -1 & 2 \\ 2 & 3 & -7 & 8 \end{pmatrix} \xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 2 & -4 & 5 \\ 0 & 1 & -1 & 2 \\ 2 & 4 & -8 & 10 \end{pmatrix} \xrightarrow{r_3 - 2r_1} \begin{pmatrix} 1 & 2 & -4 & 5 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

相应的初等变换矩阵为

$$P_{1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, P_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}, P_{4} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \quad P = P_{4}P_{3}P_{2}P_{1} = \begin{pmatrix} 3 & -2 & 0 \\ -1 & 1 & 0 \\ -3 & 1 & 1 \end{pmatrix}.$$

验算可得
$$P_4P_3P_2P_1A = PA = \begin{pmatrix} 3 & -2 & 0 \\ -1 & 1 & 0 \\ -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -4 & 5 \\ 1 & 3 & -5 & 7 \\ 2 & 3 & -7 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

*求A的行简化梯形及变换矩阵P使得PA为行简化梯形方法二:

$$(A,E) = \begin{pmatrix} 1 & 2 & -4 & 5 & 1 & 0 & 0 \\ 1 & 3 & -5 & 7 & 0 & 1 & 0 \\ 2 & 3 & -7 & 8 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 2 & -4 & 5 & 1 & 0 & 0 \\ 0 & 1 & -1 & 2 & -1 & 1 & 0 \\ 0 & -1 & 1 & -2 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_1-2r_2} \begin{pmatrix} 1 & 0 & -2 & 1 & 3 & -2 & 0 \\ 0 & 1 & -1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -3 & 1 & 1 \end{pmatrix} = (B,P).$$

其中,B为行简化梯形,P为变换矩阵使得PA=B.

原理:

按照定理2.4.2,有初等矩阵 $P_1,P_2,...,P_s$ 使 $P_sP_{s-1}...P_2P_1A$ 为行简化梯形矩阵 B_s 、这等价于对A施行有限次的初等行变换化为行简化梯形矩阵 B_s :

故
$$(A, E)$$
 $\xrightarrow{r} (B, P)$ 等价于
$$P_s P_{s-1} \cdots P_2 P_1 (A, E) = (P_s P_{s-1} \cdots P_2 P_1 A, P_s P_{s-1} \cdots P_2 P_1 E) = (B, P_s P_{s-1} \cdots P_2 P_1)$$
若记 $P = P_s P_{s-1} \cdots P_2 P_1$, 则有 $P(A, E) = (PA, PE) = (B, P)$

求P使得PA为行简化梯形B的方法:

初等行变换: $(A, \mathbf{E}) \xrightarrow{r} (B, \mathbf{P})$

由此得到的P就是所求的变换矩阵.

*矩阵A经过一系列初等行(列)变换可以转换成唯一的行(列)简化梯形矩阵;矩阵A经过一系列初等行变换和初等列变换可以转换成唯一的标准形矩阵.

证明 由定理2.4.2知A通过初等行变换可以转换成行简化梯形矩阵. 假设n阶矩阵A经过有限次初等行变换后分别转换成了行简化梯形 B_1 和行简化梯形 B_2 ,且 B_1 中含p个非零行, B_2 中含q个非零行, $p \le q$. 用矩阵表示就是

$$P_{s}P_{s-1}\cdots P_{1}A = B_{1}, Q_{t}Q_{t-1}\cdots Q_{1}A = B_{2},$$

于是有: $(Q_tQ_{t-2}\cdots Q_1P_1^{-1}\cdots P_{s-1}^{-1}P_s^{-1})B_1 = PB_1 = B_2.$

若 B_2 各行的首1所在列不在最左边,可以对 B_1 和 B_2 进行同步列交换使得 B_2 各行首1都在左边的q列上.所以我们不妨设 B_2 首1在最左边.

按q行、n-q行,q列、n-q列分块,则 PB_1 = B_2 可分块成:

$$\begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ O & O \end{pmatrix} = \begin{pmatrix} P_{11}B_{11} & P_{11}B_{12} \\ P_{21}B_{11} & P_{21}B_{12} \end{pmatrix} = \begin{pmatrix} E & B_{22} \\ O & O \end{pmatrix}, 其中B_{11}为行简化梯形.$$

故有 $P_{11}B_{11}=E$, $P_{11}B_{12}=B_{22}$.

对 $P_{11}B_{11}=E$ 两边取行列式,得到: $|P_{11}|\cdot|B_{11}|=|E|=1$,

故|*B*₁₁|≠0.

因为q阶的块 B_{11} 只有p个非零行,且 $|B_{11}|\neq 0$,故p=q.

若 B_1 的首1所在列不在最左边,则q阶行简化梯形 B_{11} 一定含零行,与 $|B_{11}|\neq 0$ 矛盾,故 B_1 首1都在最左边,即 $B_{11}=E$.

由 $P_{11}B_{11}=E$, $B_{11}=E$,得到 $P_{11}=E$,再由 $P_{11}B_{12}=B_{22}$ 得到 $B_{22}=B_{12}$,于是 $B_1=B_2$,即行简化梯形唯一.,

对于矩阵A,AT的行简化梯形是唯一的,故A的列简化梯形也唯一.

对于矩阵A,A的行简化梯形非零行数是A的等价矩阵中非零行数最少的,因为行简化梯形非零行首1所在列中,其它行不可能消去该行的首1. 故A经过一系列初等行变换后最少非零行数是唯一的.

由于初等列变换不改变非零行数,故初等行变换后得到的最少非零行数就是标准形的1的个数,是唯一的.

矩阵的行(列)简化梯形矩阵是行(列)等价矩阵中最简单的矩阵. 矩阵的标准形矩阵是等价矩阵中最简单的矩阵