

HA Editional Hamanous

# RV College of Engineering

Autonomous Institution Affiliated

Approved by AXCTE, New Delhi

| Institution<br>to Visvesv<br>Technolog<br>University, | sinya<br>cal       | 21-2022 (Odd semester                               | 2021)       |           |
|-------------------------------------------------------|--------------------|-----------------------------------------------------|-------------|-----------|
|                                                       | DEPARTMEN          | NT OF MATHEMAT                                      | ICS         |           |
| Date                                                  | 03 January 2021    | Time                                                | 10:00 AM to | 11: 30 AM |
| Test                                                  | II                 | Maximum Marks                                       | 50          |           |
| Course Title                                          | LINEAR ALGEBRA, LA | EAR ALGEBRA, LAPLACE TRANSFORM<br>AND COMBINATORICS |             | 18MA31A   |
| Semester                                              | III                | Programs                                            | CSE &       | ISE       |

| SI, No. | Questions                                                                                                                                                                                                                                                                                                                          | M  | BT  | CO |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 1.      | Verify whether the following sets forms a subspace or not. Justify your answer.<br>a) $P = \{ a_0 + a_1x + a_2x^2 + a_3x^3, \text{ set of polynomials of degree 3 for which } a_0 = 0 \}.$                                                                                                                                         | 10 | 1   | 1  |
|         | a) $P = \{a_0 + a_1x + a_2x^2 + a_3x^2, \text{ set of polynomials of degree 3 for which at } 0\}$ .<br>b) $M = \{M_{2\times 2}, \text{ the set of all } 2 \times 2 \text{ matrices such that }  A  = 0\}$ .                                                                                                                        |    | 8   |    |
|         | c) $S = \{(x, y) \text{ such that either } x = 0 \text{ or } y = 0\} \text{ in } \mathbb{R}^2$ .                                                                                                                                                                                                                                   |    |     |    |
|         | d) F = {The set of all polynomials f's such that f(0) = 1}.                                                                                                                                                                                                                                                                        |    |     | È  |
|         | e) $S = \{(x, y, z); x^2 + y^2 + z^2 \le 1\}$ in $\mathbb{R}^3$ .                                                                                                                                                                                                                                                                  |    |     |    |
| 2.      | a) Determine a value for q such that the following vectors are linearly independent                                                                                                                                                                                                                                                | 4  | 1   | 1  |
|         | {(1, 1, 2, 1), (2, 1, 2, 3), (1, 4, 2, 1), (-1, 3, 5, q)}.                                                                                                                                                                                                                                                                         |    |     |    |
|         | b) Is there a linear transformation T; R <sup>2</sup> →R <sup>3</sup> such that T (1, 1) = (1, 0, 2) and T (2, 3) = (1, -1, 4)? If so compute T (0, 0) and 1 (8, 11).                                                                                                                                                              | 6  | 2   | 2  |
| 3.      | 1 1 2 2 4 2 2 4 2 2 7                                                                                                                                                                                                                                                                                                              | 10 | 3   | 3  |
| 4.      | Let $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & -1 & -4 & 8 \\ -1 & 1 & 3 & -5 \\ -1 & 2 & 5 & -6 \\ -1 & -2 & -3 & 1 \end{bmatrix}$ (a) Determine the basis and dimension for row space and column space of A. (b) Determine the basis and the dimension for the set of solutions of $Ax = 0$ . (c) Verify rank – nullity theorem. | 10 | 2   | 2  |
| 5       | Apply the Gram-Schmidt process to construct an orthonormal basis for the subspace $W = \text{span}(x_1, x_2, x_3)$ of $R^4$ , where $x_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$ , $x_2 = \begin{bmatrix} 5 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ , $x_3 = \begin{bmatrix} 2 \\ 3 \\ 4 \\ -1 \end{bmatrix}$                    | 10 | ) 3 |    |

|                       | BT-Blooms T | axono | my, CC | )-Cour | se Outc | omes | s, M- | Mark | S   |    |    |
|-----------------------|-------------|-------|--------|--------|---------|------|-------|------|-----|----|----|
| may your rath manager | COS/BT      | COL   | CO2    | CO3    | CO4     | Ll   | L2    | L3   | 1.4 | L5 | L6 |
| Marks Distribution    | Max Marks   | 14    | 16     | 10     | 10      | 14   | 16    | 20   | +   | 23 | +- |



Autonomous Institution Affiliated to Visvesvaraya, Technological University, Belagawi Approved by AICTE, New Dehi

# DEPARTMENT OF MATHEMATICS

| Course:<br>MULTIVARIABLE<br>CALCULUS | IMPROVEMENT TEST                                                            | Maximum marks:<br>10+50=60                                   |
|--------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|
| Course Code: 21MA11                  | First semester 2021-2022<br>Physics Cycle<br>Branch: CS, EC, EE, EI, ET, IS | Time: 10.00am - 12.00pm<br>(120 Minutes)<br>Date: 28-03-2022 |

Instructions to candidates:

i. Part A must be answered within the first two pages of the Booklet.

ii. Answer all questions.

| Q.No | PART A – Quiz                                                                                                          | М | BT | CO |
|------|------------------------------------------------------------------------------------------------------------------------|---|----|----|
| 1.1  | $\beta(1, 0.5) =$                                                                                                      | 2 | 1  | 1  |
| 1.2  | The integral $\int_0^\infty e^{-v} v^{3/2} dv$ in terms of Gamma function is and its value is                          | 2 | 2  | 1  |
| 1.3  | The limits for the triple integral to determine the volume of the sphere $x^2 + y^2 + z^2 = 1$ is                      | 2 | 2  | 2  |
| 1,4  | The value of the integral $\int_{1}^{2} \int_{0}^{1} \int_{0}^{1} xy  dz  dy  dx$ is                                   | 2 | 1  | 1  |
| 1.5  | The equivalent integral of the integral $\int_0^2 \int_0^{\sqrt{4-x^2}} x dy dx$ by changing into polar coordinates is | 2 | 1  | 1  |

| Q.No | PART B - Test                                                                                                                                                                                                               | M  | ВТ | co |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|
| 1    | Evaluate $\iint_{\mathbb{R}} x^2 y  dy  dx$ where R is the region bounded by the lines $y = x$ , $x + y = 2$ and $y = 0$ . Represent the region R graphically.                                                              | 10 | 2  | 2  |
| 2a   | Determine the area enclosed by the curve $r = a(1 + \cos \theta)$ and lying above the initial line.                                                                                                                         | 5  | 2  | 3  |
| 2b   | Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dx$ .                                                                                                                                                              | 5  | 2  | 3  |
| 3    | A plate is in the form of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant and of varying thickness $\rho = xy$ . Find the coordinates of the centre of gravity of the plane by double integration. | 10 | 3  | 4  |
| 4    | Using triple integral evaluate the volume of tetrahedron bounded by the plane $2x + y + 2z = 2$ , $y = 0$ , $x = 0$ and $z = 0$                                                                                             | 10 | 3  | 3  |
| 5    | Obtain the total work done in moving a particle in a force field $\vec{F} = 3xy\hat{t} - 5z\hat{j} + 10x\hat{k}$ along the curve $x = t^2 + 1$ , $y = 2t^2$ , $z = t^3$ from $t=1$ to 2.                                    | 10 | 3  | 3  |

| Cos   | CO 1 | CO 2 | CO 3 | CO4 |
|-------|------|------|------|-----|
| Marks | 8    | 12   | 30   | 10  |



# RV COLLEGE OF ENGINEERING®, BENGALURU - 59 (An Autonomous Institution Affiliated to VTU)

## DEPARTMENT OF MATHEMATICS

ODD Semester 2019 - 20 III Semester - Test - 2 Branches: CS & IS

Course: Linear Algebra, Laplace Transforms and Combinatorics (18MA31A)

Date: 09/10/2019

Marks: 50

Time: 9:30 AM - 11:00 AM

| SI.  | Answer All the Question                                                                                                                                                                                                                                                                                                                                                                                          | M   | co | BTL |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|
| 1    | Given $T(2, -4) = (10, -14, 14)$ , $T(3, 2) = (-1, 3, 5)$ . Obtain the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ . Also find the range space, null space, rank, nullity and hence verify the rank-nullity theorem.                                                                                                                                                                                       | 10  | 3  | 3   |
| 2    | Suppose A can be factored as $A = QR$ . Apply Gram-Schmidt process to the columns of $A$ to obtain $Q$ and hence find $R$ . $A = \begin{bmatrix} 1 & 3 & 5 \\ -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{bmatrix}$                                                                                                                                                                                  | 10  | 4  | 4   |
| 3    | If $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ , resolve it as $A = PDP^{-1}$ . Give the matrices $P, D, P^{-1}$ .                                                                                                                                                                                                                                                                   | 10  | 4  | 4   |
| 4(a) | A Givens rotation is a linear transformation from $\mathbb{R}^n$ to $\mathbb{R}^n$ used in computer program to create a zero entry in a vector. The standard matrix of a Givens rotation in $\mathbb{R}^2$ has the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ , $a^2 + b^2 = 1$ . Find a and b such that $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ is rotated into $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ | 0.5 | 2  | 3   |
| (b)  | If $a \equiv b \pmod{n}$ , prove that $a$ and $b$ have the same reminder when divided by $n$ .                                                                                                                                                                                                                                                                                                                   | 05  | 2  | 3   |
| 5(a) | Examine if the linear congruence $7x \equiv 13 \pmod{24}$ has a unique solution, and hence solve it.                                                                                                                                                                                                                                                                                                             | 05  | 3  | 3   |
| (b)  | Determine the reminder when 53 <sup>103</sup> + 103 <sup>53</sup> is divided by 39.                                                                                                                                                                                                                                                                                                                              | 05  | 3  | 3   |

| CO1: | Understand the fundamental concepts of linear algebra, Laplace and inverse Laplace transforms, number theory and enumeration.             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CO2; | Solve the problems of vector spaces, linear transformations, Laplace transform, ged and generating functions.                             |
| CO3: | Apply the acquired knowledge to solve the problems of factorization, transform of special functions and exponential generating functions. |
| CO4: | Evaluate solution of differential equations using Laplace transform, decomposition of a matrix, public key encryption.                    |

Linear Algebra, Laplace Transforms and Combinaturics
18 MA31A - Test 2. Scheme an Solution 09.10.19. 09.10.19 1. T(2,-4) = (0,-14,14), T(3,2) = (-1,3,5)  $\begin{vmatrix} 2 & -4 \\ 3 & 2 \end{vmatrix} = 16 \neq 0$  $(2,y) = c_1(2,-4) + c_2(3,2)$   $\Rightarrow (2c_1+3c_2=2)2 \Rightarrow 8c_2=2x+y \Rightarrow c_2 = \frac{2x+y}{8} = \frac{4x+y}{16}$   $= -(4c_1+2c_2-2)2 \Rightarrow 8c_2=2x+y \Rightarrow c_2 = \frac{2x+y}{8} = \frac{4x+y}{16}$  $-4C_1 + 2C_2 = \frac{1}{4} \Rightarrow C_1 = \frac{1}{2} \left(2 - 3(2 \times \frac{1}{8})\right) \Rightarrow C_1 = \frac{22 - 34}{16} \left(2\right)$  $(2,y) = \left(\frac{22-3y}{16}\right)(2,-4) + \left(\frac{42+2y}{16}\right)(3,2) \qquad \top(C\alpha) = C \top(\alpha)$ => T(2, y)= (22-34)T(2,-4) + (42+24)T(3,2) => T(2,4)= (22-34)(10,-14,14)+(42+24)(-1,3,5)  $\begin{bmatrix} 1 & -1 & 3 \\ -2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} \stackrel{?}{\longrightarrow} \text{Prank } g = 2$ T(x,y)=(0,0,0) => (x-2y,-x+3y,3x-2y)=(0,0,0) ()  $\Rightarrow 3e = 2y, x = 3y, 3x = 2y \Rightarrow x = 0, y = 0. \text{ }$   $\Rightarrow \text{Nullspace} = \{(0,0) \neq 0\} \text{ nullity } n = 0$   $\Rightarrow \text{null thy} = \text{demension of domain}$  2 + 0 = 2 hence verified. $\mathcal{R}_1 = (1, -1, 0, 1, 1)$ ,  $\mathcal{R}_2 = (3, -3, 2, 5, 5)$ ,  $\mathcal{R}_3 = (5, 1, 3, 2, 8)$  $u_2 = \varkappa_2 - \frac{\varkappa_2 \cdot u_1}{u_1 \cdot u_1} u_1 = (3, -3, 2, 5, 5) - \frac{(3, -3, 2, 5, 5) \cdot (i_3 - 1, 0, 1, i)}{(i_3 - 1, 0, 1, i) \cdot (i_3 - 1, 0, 1, i)} (i_3 - 1, 0, 1, i)$ (et u = 2 = (1,-1,0,1,1) () =(3,-3,2,5,5)-164(1,-1,0,1,1)=(-1,1,2,1,1)(2)  $u_3 = 2_3 - \frac{\chi_3 \cdot u_1}{u_1 \cdot u_1} \cdot u_1 - \frac{\chi_3 \cdot u_2}{u_2 \cdot u_2} \cdot u_2 = (5,1,3,2,8) - \frac{(5,1,3,2,8) \cdot (1,-1,0,1,1)}{(1,-1,0,1,1) \cdot (1,-1,0,1,1)} \cdot (1,-1,0,1,1)$   $= \frac{3}{(1,-1,0,1,1)} \cdot \frac{3}{(1$  $=(5,1,3,2,8)-\frac{44}{62}(1,-1,0,1,1)-\frac{12}{82}(1,1,2,1,1) - \frac{(5,1,3,2,8)\cdot(1,1,2,1,1)}{(1,1,2,1,1)\cdot(-1,1,2,1,1)} = 0$ R= -1/26 1/242 2/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/252 1/2 =(3,3,0,-3,3) Q= 1/2 -1/2/2 1/2--1/2 1/2/2 1/2 1/2 1/2 0 -1/2 1/2 [152] [0 0 6 0 2/2/2 41/2 1/2/2

3. 
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 3 & 1 \end{bmatrix}$$
 $A = XI = 0 \Rightarrow X - (1431)X + (2.8+2)X - (242-24) = 0$ 
 $A - 2X(X^2 - 3A - 10) = 0$ 
 $A - 2X(X^2 - 3A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 5A + 2A - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) = 0$ 
 $A - 2X(X - 10 - 10) =$ 

|     |  | _ |  |  |
|-----|--|---|--|--|
| USN |  |   |  |  |

## RV COLLEGE OF ENGINEERING\*

(An Autonomous Institution Affiliated to VTU) III Semester B. E. Examinations April-2022

Common CSE / ISE

# LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

 Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

| 1 | 1.1  | Is the set of vectors $\{(1,2,1),(2,1,0),(1,-1,2)\}$ linearly independent or not?                                                                                                                                  | 02   |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | 1.2  | Write the induced matrix in the following transformations:  i. Projection of xz -plane in R <sup>3</sup> ii. Counter clockwise rotation through an angle $\theta$ about the positive $y$ -axis in R <sup>3</sup> . | 02   |
|   | 1.3  | What multiple of $a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ should be subtracted from $a_2 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ to make                                                                       | 0.22 |
|   |      | the result orthogonal to a <sub>1</sub> ?                                                                                                                                                                          | 02   |
|   | 1.4  | If $\begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$ is an Eigen vector of $\begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix}$ , then the Eigen value corresponding to the Eigen vector is        | 02   |
|   | 1.5  | Evaluate $\int_0^\infty e^{-3t} \cos^2 t  dt$ using Laplace transforms.                                                                                                                                            | 02   |
|   | 1.6  | Find $L^{-1} \begin{bmatrix} 1 \\ \sqrt{2z+3} \end{bmatrix}$                                                                                                                                                       | 02   |
|   | 1.7  | The total number of positive divisors of 1412 are                                                                                                                                                                  | 02   |
|   | 1.8  | The Euler's totient function $\phi$ for the integer 219 is                                                                                                                                                         | 02   |
|   | 1.9  | Calculate the number of dearrangements of $d_4$ . Hence write corresponding dearrangements.                                                                                                                        | 02   |
|   | 1.10 | Find the generating function for the sequence 2,4,8,16,32,                                                                                                                                                         | 02   |

| 2 | а | Determine the basis and dimension for the row space, column space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00       |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   | b | and null space of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & -1 & -4 & 8 \\ -1 & 1 & 3 & -5 \\ -1 & 2 & 5 & -6 \\ 1 & -2 & -3 & 1 \end{bmatrix}$<br>Examine whether following sets forms a subspace or not?<br>i. $M_{22} = \{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} / a, b \text{ are integers } \}$ on the set of all $2 \times 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08<br>2  |
| 3 | a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08       |
|   |   | Find a third column so that the matrix $Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{14} & -1/\sqrt{3} & 2/\sqrt{14} & -1/\sqrt{3} & 2/\sqrt{14} & -1/\sqrt{3} & -3/\sqrt{14} & -1/\sqrt{3} $ |          |
|   | b | The same time.  Diagonalize the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08       |
|   |   | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 4 | а | Obtain the QR factorization for the matrix $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ using Gram Schmidt process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CARACTAN |
|   | ь | Obtain the singular value decomposition of the matrix $\begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08       |
| 5 | a | The periodic function $f(t)$ is shown in the Fig 5a below. Write a mathematical expression for $f(t)$ and hence show that $L[f(t)] = \frac{1}{s} \tanh\left(\frac{\alpha s}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|   |   | 0 a 2a 3a la t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|   | b | Fig 5a  Obtain the Laplace transforms of the following functions.  i. $e^{-t} \int_0^t \frac{e^{2t} \sin 3t}{t} dt$ ii. $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 08       |
| - |   | (*° √€)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08       |

|   |        | OR                                                                                                                                                                                                                                |        |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 6 | a<br>b | Using convolution theorem, evaluate $\left(\frac{s^2}{(s^2+16)(s^2+a)}\right)$ .<br>Solve by using Laplace transforms $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ given that $x = 4$ , $\frac{dx}{dt} = 2$ when $t = 0$ . | 08     |
| 7 | a      | Find the gcd(12378, 3054) using the Euclidean algorithm and also find                                                                                                                                                             |        |
|   |        | the integers $x \& y$ to satisfy $12378x + 3054y = d$ .                                                                                                                                                                           | 08     |
|   | b      | Given the public key $(e, n) = (7, 51)$ , encrypt plain text $l, l, V$ , where the                                                                                                                                                | 90     |
|   |        | alphabets A, B, C, X, Y, are assigned the numbers 3,4,5, 26,27,28.                                                                                                                                                                |        |
|   |        | Give the cipher text and also find the private key $d$ .                                                                                                                                                                          | 08     |
| 8 | a      | Using expansion formula, find the rook polynomial for the board shown in Fig 8a.                                                                                                                                                  |        |
|   |        | \[ \begin{pmatrix} 2 & 3 \\ \frac{1}{7} & 5 & 6 \\ \frac{1}{7} & 8 \end{pmatrix} \]                                                                                                                                               |        |
|   |        | Fig 8a                                                                                                                                                                                                                            | 08     |
|   | b      | How many integers between 1 and 300 arc                                                                                                                                                                                           | JASKI. |
|   |        | i. Divisible by at least one of 5,6,8?                                                                                                                                                                                            | 122    |
|   |        | ii. Divisible by none of 5,6,8 ?                                                                                                                                                                                                  | 08     |

| USN             | 2010 |  |                   |
|-----------------|------|--|-------------------|
| and the same of | - 1  |  | Laurence Laurence |
|                 |      |  |                   |

# RV COLLEGE OF ENGINEERING\*

(An Autonomous Institution Affiliated to VTU) III Semester B. E. Examinations March-2021

Common CSE / ISE

## LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

 Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

| 1 1.1 | The value of $k$ such that the vectors $(1,0,3)$ , $(k,2,5)$ , $(2,1,4)$ are linearly dependent is                                                                                           | 02 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.2   | If the columns of an 8 by 4 matrix are linearly independent, then the dimension of its null space and left null space are and respectively.                                                  |    |
| 1.3   | Let $W = Span\{v_1, v_2\}$ , where $v_1 = (2,4)$ and $v_2 = (3,-1)$ . Construct an orthogonal basis $\{u_1, u_2\}$ for $W$ .                                                                 | 02 |
| 1.4   | Given $\lambda_1 = 5$ , $\lambda_2 = 1$ and corresponding eigenvectors are $\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ then the matrix A is                | 02 |
| 1.5   | The Laplace transform of input $y(t)$ , if the system is given by $y(t) - \int_0^t y(t)dt - 5\cos(t) = 0$ is                                                                                 | 02 |
| 1.6   | If $L^{-1}[F(s)] = Le^{-t} + 1$ , then $L^{-1}[F\binom{s}{5}] = $                                                                                                                            | 02 |
| 1.7   | The last digit of 17 <sup>37</sup> is                                                                                                                                                        | 02 |
| 1.8   | The number of positive divisors of the integer 1568 are                                                                                                                                      | 02 |
| 1.9   | There are six letters to six different people to be placed in six different addressed envelopes. Find the number of ways of doing this so that at least one letter gets to the right person? |    |
| 1.10  | Define exponential generating function with an example.                                                                                                                                      | 02 |

| 2/ | а  | Let $V = \{(x, x/2) : x \in R\}$ with standard operations. Is it a vector space? Justify your answer.                                                                                                                                               |    |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | b  | Apply elementary row operations to the following matrix to reduce it to echelon form and hence obtain the bases and dimension for its Row space, and Null space. $\begin{bmatrix} 1 & -1 & 1 & 1 \\ 4 & -4 & 3 & 6 \\ 2 & -7 & 1 & 2 \end{bmatrix}$ | 06 |
|    |    | 2 -2 1 3                                                                                                                                                                                                                                            | 06 |
|    | c  | The position vector $(2, 1)$ in $\mathbb{R}^2$ is first rotated through an angle of $30^o$ clockwise and then stretched by a factor of 2. Give the rotation matrix and the stretching matrix for this situation.                                    |    |
| 3  | а  | The columns of the following matrix $A$ form a basis for the column space of $A$ . Applying suitable process to the columns of $A$ , construct an orthogonal basis for the column space of $A$ .                                                    |    |
|    | b  | $A = \begin{bmatrix} 2 & 3 & 5 \\ -1 & -1 & -3 \\ 1 & -1 & 2 \end{bmatrix}$ Decompose the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ into $A = PDP^{-1}$ .                                                     | 08 |
|    |    | l2 2 3 l                                                                                                                                                                                                                                            | 08 |
|    |    | OR                                                                                                                                                                                                                                                  |    |
| 1  | a  | Obtain the QR factorization for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$                                                                                                                                  | 08 |
|    | b  | Obtain the singular value decomposition of the matrix $\begin{bmatrix} 3 & -1 \\ 1 & -2 \\ 2 & 1 \end{bmatrix}$                                                                                                                                     | 08 |
| 5  | a/ | i. Evaluate $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} dt$ using Laplace transform.  ii. Obtain the frequency domain function for                                                                                                                     |    |
|    |    | $f(t) = t^{-\frac{1}{2}} + \cos\left(\frac{t}{2}\right) + e^{-\frac{1}{4}t}\sin(3t)$                                                                                                                                                                | 08 |
|    | b  | Show that the Laplace transform of the periodic $f(t)$ is $\frac{p}{s} tanh\left(\frac{s}{2}\right)$ , where                                                                                                                                        |    |
|    |    | $f(t) = \begin{cases} p & \text{if } 0 \le t < 1 \\ -p & \text{if } 1 \le t < 2 \end{cases}, \ f(t+2) = f(t).$                                                                                                                                      | 08 |
|    |    | OR                                                                                                                                                                                                                                                  |    |
| 6/ | a  | Using convolution theorem, evaluate inverse Laplace transform $\left(\frac{1}{(s-2)(s^2+4s+4)}\right)$ .                                                                                                                                            | 08 |
|    | b  | Solve $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}sin(t)$ with $x(0) = 0$ and $\frac{dx}{dt} = 1$ at $t = 0$ using Laplace transform.                                                                                                          | 08 |

| 7 | a   | By using the Euclidean algorithm, find the greatest common divisor $d$ of 1389 and 2567 and then find integers $x$ and $y$ to satisfy 1389 $x$ + |    |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | ь   | 2567y = d.<br>Given the public key $(e, n) = (5.95)$ , encrypt plain text T J H, where the                                                       | 08 |
|   | · U | alphabets $A, B, C,, X, Y$ , are assigned the numbers $5, 6, 7, \cdots, 29, 30$ .                                                                |    |
|   |     | Determine the cipher text and also the private key $d$ .                                                                                         | 08 |
| 8 | а   | How many integers between 1 and 300 (inclusive) are divisible by 5 but by neither 3 nor7?                                                        | 05 |
|   | b   | Determine the rook polynomial for the following shaded chessboard.                                                                               |    |
|   |     |                                                                                                                                                  | 8  |
|   |     |                                                                                                                                                  |    |
|   |     |                                                                                                                                                  |    |
|   |     |                                                                                                                                                  | 06 |
|   | С   | Find the co-efficient of $x^{27}$ in the expansion of the function $(x^4 + x^5 + x^6 + \cdots)^5$                                                | 05 |

# Scheme and solution

Linear Algebra, Laplace Transforms and Combinatorics (18MA31A)

|      | 1 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1  | k 2 5 = 0, k = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2    |
|      | 2 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 1.2  | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2    |
| 1.3  | $v_1 = u_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, v_2 = u_2 - \frac{v_2 u_1}{u_1 u_1} v_1 = \begin{bmatrix} 14/5 \\ -7/5 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                            | 2    |
| 1.4  | $A = PDP^{-1} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                         | 2    |
| 1.5  | $Y(s) - \frac{Y(s)}{s^2} - \frac{8s}{s^2+1} = 0, \implies Y(s) = \frac{6s^2}{(s^2+1)(s-1)}$                                                                                                                                                                                                                                                                                                                                                                                                         | 2    |
| 1.6  | $L^{-1}[F(\xi)] = 2f(2t) = 2(2te^{-2t} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2    |
| 1.7  | $17 \equiv x \pmod{10} \implies x = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2    |
| 1.8  | $1568 = 2^57^2$ , $n(1568) = (1 + \alpha_1)(1 + \alpha_2) = (1 + 5)(1 + 2) = 18$                                                                                                                                                                                                                                                                                                                                                                                                                    | 2    |
| 1.9  | $6! - d_6 = 720 - 265 = 455$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2    |
| 1.10 | Given a sequence $\langle a_r \rangle$ , suppose there exists a function $E(x)$ such that the expansion of $E(x)$ in a series of powers of $x$ is given by $E(x) = a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \dots = \sum_{r=0}^{\infty} a_r \frac{x^r}{r!}$ Example: $e^{-x} = 1 - x + \frac{x^3}{2!} - \frac{x^3}{3!} + \dots = \sum_{r=0}^{\infty} (-1)^r \frac{x^r}{r!}$ The function $e^{-x}$ is the exponential generating function for the sequence $1, -1, 1, -1, \dots$      | 1000 |
|      | PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |
| 2(a) | Addition:<br>(i) $\forall x, y \in \mathbb{R}$ we have $(x, \frac{\pi}{2}) + (y, \frac{y}{2}) = (x + y, \frac{\pi + y}{2})$ , $V$ is closed under addition.<br>(ii) $\forall x, y, z \in \mathbb{R}$ we have $((x, \frac{\pi}{2}) + (y, \frac{y}{2})) + (z, \frac{\pi}{2}) = (x, \frac{\pi}{2}) + ((y, \frac{y}{2}) + (z, \frac{\pi}{2}))$<br>$= (x + y + z, \frac{x + y + z}{2})$ , $V$ is associative under addition.<br>(iii) Identity $(0, 0)$ .<br>(iv) Inverse element $(-x, -\frac{\pi}{2})$ |      |

|     | Scalar Multiplication:                                                                                                                                                                                             | -   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (v) For a scalar c we have $c(x, \frac{\tau}{2}) = (cx, \frac{cx}{2})$ .                                                                                                                                           |     |
|     | $(vi)c((x, \frac{x}{2}) + (y, \frac{y}{2})) = (c(x, \frac{x}{2}) + c(y, \frac{y}{2}))$                                                                                                                             |     |
|     | $(vii)(c+d)(x, \frac{\pi}{2}) = c(x, \frac{\pi}{2}) + d(x, \frac{\pi}{2})$                                                                                                                                         |     |
|     | $\langle \text{viii} \rangle (1, \frac{2}{2}) = (1, 1),  (1, 1)((x, \frac{\pi}{2}) = (x, \frac{\pi}{2})$                                                                                                           | 1   |
|     | 1 -1 1 1                                                                                                                                                                                                           | - 1 |
| 2(b | $ \begin{vmatrix} A = & 4 & -4 & 3 & 6 \\ 2 & -2 & 1 & 3 \end{vmatrix} $                                                                                                                                           | 9   |
|     | 2 -2 1 3                                                                                                                                                                                                           |     |
|     | [1-111]                                                                                                                                                                                                            |     |
|     | $R_2: R_2 - 4R_1, R_3: R_3 - 2R_1 \implies A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$                                                                                                     |     |
|     | 0 0 1 1                                                                                                                                                                                                            |     |
|     |                                                                                                                                                                                                                    | 1   |
|     | $R_3: R_3 - R_2 \Longrightarrow A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 \end{bmatrix}$                                                                                              | 2   |
|     | 0 0 0 -1                                                                                                                                                                                                           |     |
|     | Basis of Row space $Row(A) = \{(1, -1, 1, 1), (4, -4, 3, 6), (2, -2, 1, 3)\}.$                                                                                                                                     |     |
|     | Dimension of Row space= 3.                                                                                                                                                                                         | 1   |
|     |                                                                                                                                                                                                                    | 1   |
|     | 1 -1 1 1   x2   0                                                                                                                                                                                                  |     |
|     | $AX = 0 \implies \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$         |     |
|     |                                                                                                                                                                                                                    |     |
|     |                                                                                                                                                                                                                    |     |
|     | $egin{bmatrix} x_1 & x_2 & 1 \ x_2 & x_2 & 1 \ \end{bmatrix}$                                                                                                                                                      |     |
|     | $\begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$                                                                    | 2   |
|     | x <sub>4</sub>                                                                                                                                                                                                     |     |
|     | Basis of $Null(A) = \{(1, 1, 0, 0)\}$ , Dimension of $Null(A) = 1$ .                                                                                                                                               | 1   |
| (0) |                                                                                                                                                                                                                    | 1   |
| (c) | $Q_{30} = \begin{vmatrix} cos30 & sin30 \\ -sin30 & cos30 \end{vmatrix} = \begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix}$ (Rotational matrix )                | 2   |
|     | $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ (is the steching matrix)                                                                                                                                        |     |
|     | A = 0 2 (is the steehing matrix)                                                                                                                                                                                   | 2   |
| a)  | $u_1 = (2, -1, 1), u_2 = (3, -1, -1), u_3 = (5, -3, 2)$                                                                                                                                                            | 1   |
|     | $v_1 = u_2 = (2, -1, 1)$                                                                                                                                                                                           | 1   |
|     | $v_2 = u_2 - \frac{u_2v_1}{v_1u_1}v_1 = (3, -1, -1) - \frac{(3, -1, -1)(2, -1, 1)}{(2, -1, 1)(2, -1, 1)}(2, -1, 1) = (3, -1, -1) - \frac{6}{6}(2, -1, 1)$                                                          | 1   |
| -   | $v_2 = (1, 0, -2)$                                                                                                                                                                                                 | 9   |
|     | $v_3 = u_3 - \frac{u_3 v_1}{v_2 v_1} v_1 - \frac{u_3 v_2}{v_2 v_2} v_2 = (5, -3, 2) - \frac{(5, -3, 2)(2, -1, 1)}{(2, -1, 1)(2, -1, 1)} (2, -1, 1) - \frac{(5, -3, 2)(1, 0, -2)}{(1, 0, -2)(1, 0, -2)} (1, 0, -2)$ | 2   |
|     |                                                                                                                                                                                                                    | 1   |

|      | $v_3 = (5, -3, 2) - \frac{10+3+2}{4+1+1}(2, -1, 1) - \frac{5+0-4}{1+4}(1, 0, -2)$                                                                                                                                                                                                                                                                                       |       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | $v_3 = (5, -3, 2) - (5, -\frac{5}{2}, \frac{5}{2}) - (\frac{1}{5} - 0 - \frac{2}{5}) = (\frac{-1}{5}, \frac{-1}{2}, \frac{-1}{10})$                                                                                                                                                                                                                                     | 3     |
|      | 1 0 -1                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3(b) | $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \implies  A - \lambda I  = (1 - \lambda)(2 - \lambda)(3 - \lambda) \implies \lambda = 1, 2, 3$                                                                                                                                                                                                                             | 2     |
|      | 2 2 3                                                                                                                                                                                                                                                                                                                                                                   |       |
|      | (i) for $\lambda = 1$                                                                                                                                                                                                                                                                                                                                                   | -     |
|      | $ A - I  = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \Longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$                                                                                                                         |       |
|      | $ A-I  = \begin{vmatrix} 1 & 1 & 1 & 1 & x_2 \end{vmatrix} = 0 \Longrightarrow \begin{vmatrix} x_2 & 1 & 1 \end{vmatrix}$                                                                                                                                                                                                                                               | -1    |
|      | 2 2 2   x <sub>3</sub>   x <sub>3</sub>   0                                                                                                                                                                                                                                                                                                                             |       |
|      | (ii) for $\lambda = 2$                                                                                                                                                                                                                                                                                                                                                  | . 74  |
|      | $\begin{bmatrix} -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix}$                                                                                                                                                                                                                        | 0.6   |
|      | $ A - I  = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$                                                                                                                               | 1     |
|      | 2 2 1   x <sub>3</sub>   x <sub>3</sub>   2                                                                                                                                                                                                                                                                                                                             | In-   |
|      | (iii) for $\lambda = 3$                                                                                                                                                                                                                                                                                                                                                 |       |
|      |                                                                                                                                                                                                                                                                                                                                                                         |       |
|      | $ A - I  = \begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$                                                                                                                             | 1     |
|      | 2 2 0   x <sub>3</sub>   x <sub>3</sub>   -2-                                                                                                                                                                                                                                                                                                                           |       |
|      |                                                                                                                                                                                                                                                                                                                                                                         | -     |
|      | $P = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}, P^{-1} = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$                                                                                                                                                                                                                         | 1+1+1 |
|      | $ P = \begin{bmatrix} -1 & -2 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & -2 \end{bmatrix}, P^{-1} = \begin{bmatrix} 0 & 1 & -\frac{1}{2} \\ -1 & -1 & 0 \\ -1 & -1 & -\frac{1}{2} \end{bmatrix} D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} $                                                                                                               |       |
|      | 1 2 0                                                                                                                                                                                                                                                                                                                                                                   |       |
| 4(a) | $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \implies u_1 = (1, 0, 1), u_2 = (2, 1, 0), u_3 = (0, 1, 1)$                                                                                                                                                                                                                                                                |       |
|      | 1 0 1                                                                                                                                                                                                                                                                                                                                                                   |       |
|      | $v_1 = u_1 = (1, 0, 1)$                                                                                                                                                                                                                                                                                                                                                 | 1     |
|      | $v_2 = u_2 - \frac{u_2 v_1}{v_1 v_1} v_1 = (2, 1, 0) - \frac{(2, 1, 0)(1, 0, 1)}{(1, 0, 1)(1, 0, 1)} (1, 0, 1) = (2, 1, 0) - \frac{2}{2} (1, 0, 1) = (1, 1, -1)$                                                                                                                                                                                                        | 2     |
|      | $v_3 = u_3 - \frac{v_3 v_1}{v_1 v_2} v_1 - \frac{v_3 v_2}{v_2 v_2} v_2 = (0, 1, 1) - \frac{(0, 1, 1)(1, 0, 1)}{(1, 0, 1)(1, 0, 1)} (1, 0, 1) - \frac{(0, 1, 2)(1, 1, -1)}{(1, 1, -1)(1, 1, -1)} (1, 1, -1)$                                                                                                                                                             | 2     |
|      | $v_3 = (0, 1, 1) - \frac{1}{2}(1, 0, 1) - 0 = (-1/2, 1, 1/2) = (-1, 2, 1)$ $v_3 = (0, 1, 1) - \frac{1}{2}(1, 0, 1) - 0 = (-1/2, 1, 1/2) = (-1, 2, 1)$                                                                                                                                                                                                                   | 1     |
|      |                                                                                                                                                                                                                                                                                                                                                                         |       |
|      | $Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{8}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$                                                                                                                                                       | 1     |
|      | 9 0 75 76                                                                                                                                                                                                                                                                                                                                                               |       |
|      |                                                                                                                                                                                                                                                                                                                                                                         |       |
|      | $R = Q^{T}A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{3}{2} \end{bmatrix}$ |       |
|      | $K = Q^*A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \end{bmatrix}$                                                                                                                                                                                                                 | 1     |
|      | $\begin{vmatrix} -1 & 2 & 1 \\ \sqrt{6} & \sqrt{6} & \sqrt{6} \end{vmatrix}$ 1 0 1 0 0 $\frac{3}{\sqrt{6}}$                                                                                                                                                                                                                                                             |       |

$$\begin{vmatrix} A(b) \\ A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \\ 2 & 1 \end{bmatrix}$$

$$\begin{vmatrix} AA^T = \begin{bmatrix} 10 & 5 & 5 \\ 5 & 5 & 0 \\ 5 & 0 & 5 \end{bmatrix} \Rightarrow |AA^T - \lambda I| = \lambda^3 - 20\lambda^2 + 75\lambda = 0 \implies \lambda = 0, 5, 15$$

$$\begin{vmatrix} IAA^T - II \end{vmatrix} = \begin{bmatrix} 10 & 5 & 5 \\ 5 & 5 & 0 \\ 5 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies u_1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ x_2 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - II \end{vmatrix} = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -5 & 5 & 5 \\ 5 & -10 & 0 \\ 5 & 0 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -5 & 5 & 5 \\ 5 & -10 & 0 \\ 5 & 0 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies u_3 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -5 & 5 & 5 \\ 5 & -10 & 0 \\ 5 & 0 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} 9 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\begin{vmatrix} IAA^T - III \end{vmatrix} = \begin{bmatrix} -1 & -3 \\ -3 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies u_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2$$

| 5(a) | (i) $sin^2t = \frac{1-css2t}{2} \implies L(sin^2t) = \frac{1}{2}(\frac{1}{s} - \frac{s}{s^2+4})$                                                                                                                                                              | 1     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | $L(\frac{\sin^2 t}{t}) = \frac{1}{2} \int_s^{\infty} \left( \frac{1}{s} - \frac{s}{s^2 + 4} \right) ds = \frac{1}{2} \left[ logs - \frac{1}{2} log(s^2 + 4) \right]_s^{\infty} = \frac{1}{2} \left[ log \frac{s}{(s^2 + 4)^{\frac{1}{2}}} \right]_s^{\infty}$ | 1     |
|      | $L(\frac{\sin^2 t}{1}) = \frac{1}{2} \left[ log(0) - log \frac{s}{(s^2+4)^{\frac{1}{2}}} \right] = \frac{1}{2} \left[ log \left( \frac{\sqrt{s^2+4}}{s} \right) \right]$                                                                                      |       |
|      | $\int_0^\infty e^{-st} \frac{\sin^2 t}{t} dt = \frac{1}{2} \left[ log \left( \frac{\sqrt{s^2 + 4}}{s} \right) \right]$                                                                                                                                        | 2     |
|      | put $s = 1 \implies \int_0^\infty e^{-t \frac{\sin^3 t}{t}} dt = \frac{1}{2} \left[ log\left(\frac{\sqrt{1+4}}{1}\right) \right] = \frac{1}{2} log(\sqrt{5})$                                                                                                 | 1     |
|      | (ii) $L(f(t)) = L(t^{-t/2}) + L(\cos(t/2)) + L(e^{-t/4}\sin 3t) = \frac{\Gamma(1/2)}{s^{3/2}} + \frac{s}{s^2 + \frac{1}{4}} + \frac{3}{(s + \frac{1}{4})^2 + 0}$                                                                                              | 1+1+1 |
| 5(ь) | $f(t) = \begin{cases} p & 0 \le t < 1 \\ -p & 1 \le t < 2 \end{cases}  f(t+2) = f(t) \implies T = 2$                                                                                                                                                          | 1     |
|      | $L(f(t)) = \frac{1}{1 - e^{-st}} \int_0^T e^{-st} f(t) dt = \frac{1}{1 - e^{-2s}} \left[ \int_0^1 e^{-st} (p) dt + \int_1^2 e^{-st} (-p) dt \right]$                                                                                                          | 141   |
|      | $=\frac{p}{s}\left(\frac{1}{1-e^{-2s}}\right)\left[1+e^{-2s}-2e^{-s}\right]=\frac{p}{s}\left(\frac{1}{1-e^{-2s}}\right)\left[1-e^{-s}\right]^2$                                                                                                               | 1+1   |
|      | $=\frac{p}{r_{(1)-r-2}(1-r-r)}\left[1-e^{-s}\right]^2=\frac{p}{s}\frac{(1-e^{-s})}{(1+e^{-s})}$                                                                                                                                                               | 1+1   |
|      | $= \frac{\mathbb{E}\left(e^{s/2} - e^{-s/2}\right)}{\left(e^{s/2} + e^{-s/2}\right)} = \frac{p}{s} \tanh\left(\frac{s}{2}\right)$                                                                                                                             | 1.    |
| 6(a) | $L^{-1}\left[\frac{1}{(s-2)(s^2+4s+4)}\right] = L^{-1}\left[\frac{1}{(s-2)(s+2)^2}\right]$                                                                                                                                                                    |       |
|      | $F(s) = \frac{1}{s-2} \implies f(t) = e^{2t}$                                                                                                                                                                                                                 | 1     |
|      | $G(s) = \frac{1}{(s+2)^2} \implies g(t) = te^{-2t}$                                                                                                                                                                                                           | 2     |
|      | $L^{-1}[F(s)G(s)] = \int_{0}^{t} f(t-u)g(u)du = \int_{0}^{t} e^{2(t-u)}e^{-2u}udu = \int_{0}^{t} e^{(2t-2u-2u)}udu$                                                                                                                                           | 2     |
|      | $=e^{2t}\int_0^t e^{-4u}udu = e^{2t}\left[-\frac{ae^{-4u}}{4} + \frac{e^{-4u}}{-16}\right]_0^t = e^{2t}\left[\frac{-4te^{-4t}-e^{-4t}+1}{16}\right]$                                                                                                          | 1+1+1 |
| 6(b) | $L\left[\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x(t) = e^{-t}sint\right]$                                                                                                                                                                                       | 15    |
|      | $\left\{s^{2}L\left[x(t)\right]-sx(0)-x'(0)\right\}+2\left\{sL\left[x(t)\right]-x(0)\right\}+5L\left[x(t)\right]=\frac{1}{(s^{2}+1)^{2}+1}$                                                                                                                   | 2     |
|      | $L[x(t)](s^2 + 2s + 5) - 1 = \frac{1}{(s^2+1)^{3}+1} \implies L[x(t)] = \frac{s^2+2s+3}{(s^2+2s+2)(s^2+2s+5)}$                                                                                                                                                |       |
|      | $L[x(t)] = \frac{(s+1)^2+2}{[(s+1)^2+1][((s+1)^2]+4]} \implies x(t) = e^{-t}L^{-1}\left[\frac{s^2+2}{(s^2+1)(s^2+4)}\right]$                                                                                                                                  | 1     |
|      | $\left[\frac{s^2+2}{(s^2+1)(s^2+4)}\right] = \frac{As+B}{s^2+1} + \frac{Cs+D}{s^2+4} \implies A = 0, B = 1/3, C = 0, D = 2/3$                                                                                                                                 | 1+1+1 |
|      | $\begin{vmatrix} x(t) = e^{-t}L^{-1} \left[ \frac{s^3+2}{(s^2+3)(s^3+4)} \right] = e^{-t}L^{-1} \left[ \frac{1/3}{(s^2+1)} + \frac{2/3}{(s^2+4)} \right] = e^{-t} \left[ \frac{1}{3}sint + \frac{1}{3}sin2t \right]$                                          | 111   |
|      | $x(t) = \frac{e^{-t}}{3} \left[ sint + sin2t \right]$                                                                                                                                                                                                         |       |
| 7(a) | GCD(1389, 2567) = 1                                                                                                                                                                                                                                           |       |
|      | 1178 = 2567 - 1389, $211 = 1389 - 1178$ , $123 = 1178 - 211(5)$ , $88 = 211 - 123$                                                                                                                                                                            | 2     |
|      | 35 = 123 - 88, 18 = 88 - 35(2), 17 = 35 - 18, 1 = 18 - 17                                                                                                                                                                                                     | 2     |
|      | $d = 1389x + 2567y \implies 1 = 1389(146) + 2567(-79) \implies x = 146, y = -79$                                                                                                                                                                              | 2+2   |

| 7(b) | $e = 5, n = 95 = 5 \times 19 \implies p = 5, q = 19$                                                                                                                                                   | 1       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | J = 14, H = 12, T = 24                                                                                                                                                                                 |         |
|      | $c_T \equiv 24^{\circ} (mod 95) \equiv 9 (mod 95)$                                                                                                                                                     | 1       |
|      | $c_J \equiv 14^5 (mod 95) \equiv 29 (mod 95)$                                                                                                                                                          | 1       |
|      | $c_{H} \equiv 12^{5} (mod 95) \equiv 27 (mod 95)$                                                                                                                                                      | -1      |
|      | $9,29,27 \implies E,Y,W$                                                                                                                                                                               | 1       |
|      | $\phi(n) = (p-1)(q-1) = (5-1)(19-1) = 72$ and $GCD(5,72) = 1$                                                                                                                                          | 1       |
|      | $dc \equiv 1 (mod\phi(n)) \implies d5 \equiv 1 (mod72) \equiv 1 (mod72) \implies d = 29$                                                                                                               | 2.      |
| 8(a) | $A = \{x : x 5\}, B = \{x : 3 5\} \text{ and } C = \{x : x 7\}$                                                                                                                                        |         |
|      | $ A  = \lfloor \frac{300}{5} \rfloor = 60,  B  = \lfloor \frac{300}{3} \rfloor = 100,  C  = \lfloor \frac{300}{7} \rfloor = 42,$                                                                       | 1       |
|      | $ A\cap B  = \left\lfloor \frac{300}{15} \right\rfloor = 20,   A\cap C  = \left\lfloor \frac{300}{35} \right\rfloor = 8 \text{ and }  A\cap B\cap C  = \left\lfloor \frac{300}{100} \right\rfloor = 2$ | 2       |
|      | AUBUC - BUC                                                                                                                                                                                            |         |
|      | $=  A  -  A \cap B  -  A - C  +  A \cap B \cap C $                                                                                                                                                     | 100     |
|      | $ A \cup B \cup C  -  B \cup C  = 60 - 20 - 8 + 2 = 34$                                                                                                                                                | 2       |
| S(b) | $r_1 = n = 8, r_2 = 16, r_3 = 8, r_4 = 1$                                                                                                                                                              | 1+2+1+1 |
|      | $r(c,x) = 1 + 48x + 16x^2 + 8x^3 + x^4$                                                                                                                                                                | 1.      |
| 8(c) | $(x^4 + x^5 + x^6 +)^5 = x^20(1 + x + x^2 +)^5 = x^{20}(1 - x)^5$                                                                                                                                      | 1+1     |
|      | $= x^{20} \sum_{r=0}^{\infty} \begin{pmatrix} 4+r \\ r \end{pmatrix} x^r$ coefficient of $x^{27}$ is $\begin{pmatrix} 11 \\ 7 \end{pmatrix} = \frac{11}{794} = 330$                                    | 1       |
|      | coefficient of $x^{27}$ is $\begin{pmatrix} 11 \\ 7 \end{pmatrix} = \frac{11}{796} = 330$                                                                                                              | 2       |

For alternative answers appropriate marks can be given.

(BOE Chairman)

## DEPARTMENT OF MATHEMATICS

# RV College of Engineering®, Bengaluru – 59 FIRST TEST - SCHEME OF VALUATION

Semester: III (CSE & ISE) Date: 03.09.2019

| Q.<br>No. | Answer                                                                                                                                                             | Mari  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1         | $V = \{a + b\sqrt{2} / a, b, \in Q\}$                                                                                                                              | 10    |
|           | Let $x = a_1 + b_1\sqrt{2}$ , $y = a_2 + b_2\sqrt{2}$ ; $a_1, b_1, a_2, b_2 \in Q$ . $\rightarrow$ 01 M                                                            | 1.000 |
|           | $x + y = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}$                                                                                                                        |       |
|           |                                                                                                                                                                    |       |
|           | $ax = (aa_1) + (ab_1)\sqrt{2}$                                                                                                                                     |       |
|           | i. Axioms under vector addition → 01 M                                                                                                                             |       |
|           | V <sub>1</sub> . Closure. Let x, y ∈ V<br>Then x + y = $(a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{2} \in V$                       |       |
|           | [ $\forall a_1, b_1, a_2, b_2 \in Q \Rightarrow a_1 + a_2 b_1 + b_2 \in Q$ ]                                                                                       |       |
|           | $V_2$ . Associativity. Let $x, y, z \in V$ $\rightarrow 01 M$                                                                                                      |       |
|           | Then $x + (y + z) = (a_1 + b_1\sqrt{2}) + [(a_2 + b_2\sqrt{2}) + (a_3 + b_3\sqrt{2})]$                                                                             |       |
|           | $= ((a_1 + a_2) + a_3) + ((b_1 + b_2) + b_3)\sqrt{2}) = (x + y) + z \in V$                                                                                         |       |
|           | [: Associative law holds in 0]                                                                                                                                     |       |
|           | $V_3$ . Existence of Identity. Let $x \in V$ , $x = a + b\sqrt{2}/a$ , $b \in Q$ $\rightarrow 01 M$                                                                |       |
|           | Then $O = 0 + 0\sqrt{2} \in V \Rightarrow 0 + x = a + b\sqrt{2} = x$                                                                                               |       |
|           | $\therefore O = 0 + 0\sqrt{2} \text{ is the additive identity in V.}$                                                                                              |       |
|           | $V_4$ . Existence of Inverse. Let $x \in V$ , $x = a + b\sqrt{2}/a$ , $b \in Q$ $\longrightarrow$ 01 M                                                             |       |
|           | Then $-x = (-a) + (-b)\sqrt{2} \in Q$ $[\because a, b, \in Q \Rightarrow -a, -b, \in Q]$                                                                           |       |
|           | $x + (-x) = 0 \Rightarrow -x = (-a) + (-b)\sqrt{2}$ is additive inverse of $x = a + b\sqrt{2}$ in V.                                                               | 150   |
|           | V <sub>5</sub> , Commutativity. Let x, y ∈ V → 01 M                                                                                                                |       |
|           | Then $x + y = (a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{2} = (a_2 + b_2\sqrt{2}) + (a_1 + b_1\sqrt{2}) = y + x$                   |       |
|           | - Addition is commutative in V.                                                                                                                                    |       |
|           | ii. Axioms under Scalar Multiplication                                                                                                                             |       |
|           | $V_6$ . Let $\alpha \in Q$ and $x \in V$ $\longrightarrow$ 01 M                                                                                                    |       |
|           | Then $\alpha x = \alpha(a + b\sqrt{2}) = (\alpha a) + (\alpha b)\sqrt{2} \in V \ [\because \alpha, a \in Q \Rightarrow \alpha a \in Q]$                            |       |
|           | V is closed under scalar multiplication.                                                                                                                           |       |
|           | $V_{7}$ . Let $\alpha, \beta \in Q$ and $x \in V$ $\longrightarrow$ 01 M                                                                                           |       |
|           | Then $(\alpha + \beta) x = (\alpha + \beta) (a + b\sqrt{2}) = (\alpha + \beta) a + (\alpha + \beta) b\sqrt{2}$                                                     |       |
|           | $= (\alpha a + \beta a) + (\alpha b + \beta b) \sqrt{2} = \alpha (a + b\sqrt{2}) + \beta (a + b\sqrt{2}) = \alpha x + \beta x.$                                    |       |
|           | $V_{s}$ . Let $\alpha, \beta \in Q$ and $x \in V$ $\rightarrow 01 M$                                                                                               |       |
|           | Then $(\alpha\beta) x = (\alpha\beta)(a + b\sqrt{2}) = [(\alpha\beta)a] + [(\alpha\beta)b\sqrt{2})]$                                                               |       |
|           | $=\alpha[\beta(a+b\sqrt{2})]=\alpha(\beta x).$                                                                                                                     |       |
|           | -V <sub>9</sub> . Let I be the unity element of Q and $x ∈ V$ $\rightarrow 01 M$                                                                                   |       |
|           | $1 \cdot x = 1 \cdot (a + b\sqrt{2}) = (1 \cdot a) + (1 \cdot b)\sqrt{2} = a + b\sqrt{2} = x$                                                                      |       |
|           | V is a vector space over Q.                                                                                                                                        |       |
| a         | Showing the given 2 x 2 matrices as a subspace of M <sub>2x2</sub>                                                                                                 | 0.5   |
|           | Let two vectors be $x_1 = \begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix}$ , $x_2 = \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}$ $\longrightarrow$ 01 M  |       |
|           | $c_1 x_1 + c_2 x_2 = c_1 \begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} + c_2 \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix} \longrightarrow 03 \text{ M}$ |       |
|           | The set H is a subspace of M2x2. The zero matrix is in H, the sum of two upper triangular matrices is                                                              |       |
|           | upper triangular and any scalar multiple of an upper triangular matrix is again upper triangular.                                                                  |       |

|     | showing x1 and x2 satisfies vector addition and scalar multiplication                                                                                                      |         | 3    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| 2b  | Showing the vectors linearly independent                                                                                                                                   | → 01 M  |      |
|     | 2 -1 0                                                                                                                                                                     |         | 0    |
|     | $\begin{vmatrix} 2 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & -1 \end{vmatrix} = -1 \neq 0.$                                                                                         | 00.14   |      |
|     |                                                                                                                                                                            | → 02 M  | 1    |
|     | Expressing the given vectors as linear combination of (3, 2, 1)                                                                                                            | → 02 M  |      |
|     | $(3, 2, 1) = c_1(2, -1, 0) + c_2(1, 2, 1) + c_3(0, 2, -1)$                                                                                                                 | - 02 14 |      |
|     | $c_1 = 8/9, c_2 = 11/9$ & $c_3 = 2/9$                                                                                                                                      | → 01 M  |      |
| 3   | Reduce the given matrix to Echelon form                                                                                                                                    | - 01 M  | 1    |
|     | [1 2 3 5]                                                                                                                                                                  |         | 11   |
|     | $\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 - 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                            | → 02 M  |      |
|     |                                                                                                                                                                            |         | VIE. |
|     | Null space of A: Set of all solutions of $Ax = 0$ .                                                                                                                        | → 02 M  |      |
|     | $\{(-2, 1, 0, 0), (2, 0, -1, 1)\}\$ forms the basis for $N(A)$ and $dim\{N(A)\} = 2$                                                                                       | → 01 M  |      |
|     | Column space C(A): The set of all possible linear combination of its column vectors                                                                                        |         |      |
|     | $\{(1, 2, 3), (3, 8, 7)\}$ forms the basis for $C(A)$ and $dim\{C(A)\} = 2$                                                                                                | → 01 M  |      |
|     | Row Space C(AT): The set of all possible linear combination of its Row vectors                                                                                             |         |      |
|     | $\{(1, 2, 3, 5), (2, 4, 8, 12)\}\$ forms the basis for $C(A^T)$ and $dim\{C(A)\}=2$                                                                                        | → 01 M  |      |
|     | Left null space of A: Set of all solutions of $A^T y = 0$ .                                                                                                                | → 02 M  |      |
| _   | $\{(-5, 1, 1)\}$ forms the basis for $N(A^T)$ and $dim\{N(A^T)\}=1$                                                                                                        | → 01M   |      |
| a   | The number of all positive divisors \$128=26 × 127                                                                                                                         | → 01 M  | 05   |
|     | $T(a) = (1 + a_1)(1 + a_2) \cdots (1 + a_n)$                                                                                                                               | → 01 M  |      |
|     | The sum of all positive divisors $S(a) = \left(\frac{p_1^{a_1+1}-1}{p_1-1}\right) \left(\frac{p_1^{a_2+1}-1}{p_2-1}\right) \dots \left(\frac{p_1^{a_n+1}-1}{p_n-1}\right)$ |         |      |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                       | → 01 M  |      |
|     | Number of divisors of 8128 = 14                                                                                                                                            | → 01 M  |      |
| _   | Sum of divisors of 8128 = 16256                                                                                                                                            | → 01 M  |      |
| 6   | Suppose p † a, then gcd (p, a) = 1                                                                                                                                         | → 01 M  | 05   |
|     | Therefore there exist integers x and y such that $ax + py = 1$                                                                                                             | 22.5    | 27.  |
|     | $\div abx + bpy = b \qquad \dots \qquad (1)$                                                                                                                               | 01 M    |      |
|     | Now $p ab \Rightarrow ab = kp$ where $k \in Z$                                                                                                                             |         |      |
| -1  | Substituting for ab in equation (1), we get                                                                                                                                |         |      |
|     | kpx + bpy = b                                                                                                                                                              | → 02 M  |      |
| - 1 | $\therefore pk_1 = b \text{ where } k_1 = kx + by \in Z$                                                                                                                   |         |      |
|     | Hence plb.                                                                                                                                                                 | → 01 M  |      |
| -   | By division algorithm, we get                                                                                                                                              | 04.112  | 10   |
|     | 1312 = 4001 -2689                                                                                                                                                          | → 01 M  | 10   |
|     | 65 = 2689 -2(1312)                                                                                                                                                         | V       |      |
|     | 12 = 1312 - 20(65)                                                                                                                                                         | → 01 M  |      |
|     | 5 = 65 - 5(12)                                                                                                                                                             | OF ME   |      |
|     | 2 = 12 - 2(5)                                                                                                                                                              | → 01 M  |      |
|     | I=5-2(2)                                                                                                                                                                   | 94.34   |      |
|     | Since the non-zero remainder is 1, we get gcd(2689,4001) = 1                                                                                                               | → 01 M  |      |
|     | 1=5-2(2)                                                                                                                                                                   | → 01 M  |      |
|     | 1=5(5) - 12(2)                                                                                                                                                             | → 01 M  |      |
|     | I=65(5) -12(27)                                                                                                                                                            | → 01 M  |      |
|     | 1=65(545), 1312(27)                                                                                                                                                        | → 01 M  |      |
|     | 1=2689(545) -1312(1117)                                                                                                                                                    | 02.112  |      |
|     | 1-2689x + 4001y where $x = 1662$ and $y = -1117$                                                                                                                           | → 01 M  |      |
|     | Disproving x and y are not unique (x = 5663 and y = - 3806)                                                                                                                | UI WI   |      |

course code: 18MA31 Course: Discrete & Integral Transform.

UG

| Question<br>No | PART-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1 1.1          | $3\frac{\sqrt{\pi}}{(S+4)^{5/2}}$ 1.2 L\(\frac{1}{2}f(t)\) = $\frac{1}{1-e^{-ST}}\int_{0}^{T}e^{-St}f(t)dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01    |
| 1.3            | $L \S + \cos + \Im  _{S=2} = \frac{S^2 - 1}{(S^2 + 1)^2}  _{S=2} = \frac{3}{25}  1 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -02   |
| 1.4            | 1/3 e - sin3 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01    |
| 1.5            | 1 sin (T(t-3)) U(t-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01    |
| 1-6            | $\int_{S}^{H} \frac{\sin \omega t}{\omega} dt = \frac{1 - \cos \omega t}{\omega^{2}}$ (1+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02    |
| 1.7            | $\frac{1}{2}$ \( \frac{1}{2} \) \( \frac^2 \) \( \frac{1}{2} \) \( \frac{1}{2} \) \( \frac{1}{2} \) \( \f | 01    |
| 1.8            | $f(x) = \sum_{n=-\infty}^{\infty} C_n e^{i\frac{n\pi x}{L}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01    |
| 1,9            | 1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02    |
| 1-10-          | $F = \frac{1}{2} \left[ e^{-\frac{(x^2)^2}{2}} - e^{-\frac{(x^2)^2}{2}} \right]$ $F = \frac{1}{2} \left[ e^{-\frac{(x^2)^2}{2}} + e^{-\frac{(x^2)^2}{2}} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01    |
| 1.11           | Mafex) = Seixx F(x) dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01    |
| 1-12           | $F_{c} \{f(x)\} = \int_{0}^{\infty} f(x) (8 dx dx = \frac{1}{1-d^{2}}) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02    |
| p-13           | $Z \{ n^2 e^{an} \} = \frac{e^a z^2 + (e^a)^2 z}{(z - e^a)^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01    |
| 1.14           | 2-18 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01    |
| 1.15           | $u_0 = 0$ , $u_1 = 0$ , $u_2 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                | where up = Lim z [U(2) - U6) 342 = Lim z [U(2) - U6-U1]<br>Z > 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02    |
| Fi             | PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 2 (a). (i      | $1) L \S s in 4 + \S = \frac{4}{s^2 + 16}, L \S \bar{e}^{t} s in 4 + \S = \frac{4}{(S+1)^2 + 16}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

UG

COURSE:

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Question<br>No |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110            | $L\{te^tsin4t\} = \frac{8(s+1)}{(s^2+2s+17)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 04        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | L 2 Stetsin4tdt = 8 S+1 (32+25+17)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| $2(b)  L \underbrace{Sf(t)}_{4} \underbrace{S} = \frac{1}{1 - e^{4}s} \underbrace{\int_{5}^{4} f(t) e^{5t} dt} - 2$ $T = 4.  = \frac{1}{1 - e^{4}s} \underbrace{\int_{5}^{2} 3 t e^{5t} dt} + \underbrace{\int_{5}^{4} 6e^{5t} dt} $ $= \frac{-6e^{2t}s}{s^{2}} - \frac{3e^{2s}}{s^{2}} + \frac{3}{s^{2}} - \frac{6}{s} e^{4s} + \frac{6e^{2t}s}{s^{2}} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | (ii) $L \{ \frac{\sin^2 at}{at} \} = L \{ \frac{1 - \cos 4t}{2} \} = \frac{1}{a} [ \frac{1}{3} ] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 到6] 十       |
| 2(b) $L \leq f(t) = \frac{1}{1 - e^{t} \cdot s} \int_{0}^{t} f(t) e^{st} dt$ . $T = 4$ $= \frac{1}{1 - e^{t} \cdot s} \left[ \int_{0}^{2} 3t e^{st} dt + \int_{0}^{2} 6e^{-st} dt \right]$ $= \frac{-6e^{t} \cdot s}{8} - \frac{3e^{-2s}}{s^{2}} + \frac{3}{s^{2}} - \frac{6}{s} e^{4s} + \frac{6e^{3s}}{s} \right]$ $= \frac{3}{s^{2}} - \frac{3e^{-2s}}{s^{2}} - \frac{6}{s} e^{4s}.$ $= \frac{3}{s^{2}} - \frac{3}{s^{2}} - \frac{3}{s^{2}} - \frac{3}{s^{2}} - \frac{3}{s^{2}} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | $L \left\{ s \frac{\sin^2 at}{a} \right\} = \frac{1}{a} \left\{ \left[ \frac{1}{s} - s \right] \right\} ds$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04          |
| $ \begin{aligned} &= \frac{1}{1 - e^{4s}} \left[ \int_{0}^{2} 3 + e^{st} dt + \int_{0}^{2} 6e^{st} dt \right] \\ &= \frac{-6e^{2s}}{s} - \frac{3e^{2s}}{s^{2}} + \frac{3}{s^{2}} - \frac{6}{s} e^{4s} + \frac{6e^{2s}}{s^{2}} \right] - 4 \\ &= \frac{3}{s^{2}} - \frac{3e^{2s}}{s^{2}} - \frac{6}{s} e^{4s} - \frac{3}{s^{2}} - \frac{6}{s} e^{4s} - \frac{6}{s} e^{4s} - \frac{3}{s^{2}} - \frac{6}{s} e^{4s} - \frac{3}{s^{2}} - \frac{6}{s} e^{4s} - \frac{6}{s} e^{4s} - \frac{3}{s^{2}} - \frac{3}{s^{2}} - \frac{6}{s} e^{4s} - \frac{3}{s^{2}} - \frac{6}{s} e^{4s} - \frac{3}{s^{2}} - \frac{6}{s^{2}} - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | $=\frac{1}{4}\ln\left(\frac{8+16}{s^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| $= \frac{-6e^{7/3}}{8} - \frac{3e^{25}}{52} + \frac{3}{52} - \frac{6}{5}e^{45} + \frac{6e^{7/3}}{55} - 4$ $= \frac{3}{52} - \frac{3e^{25}}{52} - \frac{6}{5}e^{45} - 2$ $= \frac{3}{52} - \frac{3e^{25}}{52} - \frac{6}{5}e^{45} - 2$ $= \frac{3}{52} - \frac{3e^{25}}{52} - \frac{6}{5}e^{45} - 2$ $= \frac{4}{5} \cdot \frac{1}{52} \cdot \frac{1}{52} \cdot \frac{1}{52} = \frac{8}{52} \cdot \frac{1}{52} \cdot 1$ | 2(b)           | $L_{\frac{1}{2}}f(t) = \frac{1}{1-\tilde{e}^{4}} \int_{0}^{t} f(t)  \tilde{e}^{3}  dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 2<br>st ] |
| $= \frac{-6e^{2/3}}{8} - \frac{3e^{2/3}}{5^2} + \frac{3}{5^2} - \frac{6}{5}e^{4/5} + \frac{6e^{2/3}}{5^2} - \frac{4}{5}e^{4/5}$ $= \frac{3}{5^2} - \frac{3e^{2/5}}{5^2} - \frac{6}{5}e^{4/5} - \frac{3}{5^2}e^{4/5}$ $= \frac{3}{5^2} - \frac{3e^{2/5}}{5^2} - \frac{6}{5}e^{4/5} - \frac{3}{5^2}e^{4/5} - \frac{3}{5^2}e^{4/5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | $= \frac{1}{1 - e^{-4S}} \left[ \int_{0}^{3} 3 t e^{-St} dt + \int_{2}^{3} 6e^{-St} dt \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | df          |
| $3(a)(i) L + f(t) = -\frac{d}{ds} + f(s), \qquad -1$ $\frac{d}{ds} + cot^{-1} s/2 = \frac{d}{ds} + cs, \qquad -1$ $\frac{d}{ds} + cot^{-1} s/2 = \frac{d}{s^{2} + 4}$ $= + f(t) = L^{-1} + \sum_{s=1}^{3} \frac{d}{s^{2} + 4} = sin + 2t - 2t$ $= + f(t) = \frac{sin + 1}{t} + \frac{1}{t} - \frac{1}{t} = \frac{1}{t} \frac{3(s-1) + 10}{(s-1)^{2} - 4} - 2t$ $= L^{\frac{1}{2}} + \frac{3(s-1)}{(s-1)^{2} - 4} + \frac{1}{t} + \frac{1}{t} - \frac{16}{(s-1)^{2} - 4} - \frac{1}{t} + \frac{1}{t} - \frac{1}{t} = \frac{1}{t} \frac{3(s-1)}{(s-1)^{2} - 4} - \frac{1}{t} = \frac{1}{t} 3(s-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | $= \frac{-6e^{-xs}}{s} - \frac{3e^{-2s}}{s^2} + \frac{3}{s^2} - \frac{6}{s}e^{-4s} + \frac{6}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-1-4       |
| $\frac{d}{ds} \underbrace{\begin{cases} \cot^{-1} s/2 \cdot \end{cases}}_{ds} = \underbrace{\frac{d}{s^{2}+4}}_{s^{2}+4}$ $= \underbrace{t}_{f(t)} = \underbrace{L^{-1} \left\{ \underbrace{s^{2}_{t+4}}_{s^{2}+4} \right\}}_{t} = \underbrace{sin2t}_{t} - 2$ $\underbrace{f(t)}_{s^{2}-2s-3} = \underbrace{L^{-1} \left[ \underbrace{3(s-1)+10}_{(s-1)^{2}-4} \right]}_{t} - 2$ $= \underbrace{L^{+1} \underbrace{3(s-1)}_{s^{2}-2s-3}}_{t} + \underbrace{L^{-1} \left[ \underbrace{16}_{(s-1)^{2}-4} \right]}_{t} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | $= \frac{3}{5^2} - \frac{3e^{-2S}}{5^2} - \frac{6}{5}e^{-4S} - \frac{2}{5}e^{-4S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3(a)           | )(i) $L \S + f(+) \S = -\frac{d}{ds} F(s)$ . — 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| $f(t) = \frac{2s^{2}+4s}{t}$ $f(t) = \frac{sinat}{t}$ $(3i) L^{-1} \left[ \frac{3s+7}{s^{2}-2s-3} \right] = L^{-1} \left[ \frac{3(s-1)+10}{(s-1)^{2}-4} \right] - 2$ $= L^{\frac{1}{2}} \frac{3(s-1)}{(s-1)^{2}-4} + L^{-1} \left[ \frac{16}{(s-1)^{2}-4} \right] - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | $\frac{d}{ds} = \frac{1}{2} \cot^{-1} s / 2 \cdot s = \frac{1}{2} + 4$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = $ |             |
| = 1 3 3 7 (s-1) 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | $f(t) = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} (x_i - 1) + 10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4           |
| = L 3 3 7 (s-1) 2 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | (a) $L^{-1} \begin{bmatrix} 35+7 \\ 5^2-35-3 \end{bmatrix} = L^{-1} \begin{bmatrix} (5-1)^2-4 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2          |
| = 3et(8h2t +5 e 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | = 1 3 3 7 (5-1) 2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | $= 3e^{\frac{1}{2}(68h2t + 5e^{x} sin}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _1          |

COURSE:

-2022 UG

| Question<br>No   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3 <sub>(b)</sub> | Taking Laplace transform on both sides of Fan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 4(a)             | $L^{-1}\begin{bmatrix} \frac{1}{(S+1)^{2}(S+3)} \end{bmatrix} = \frac{1}{4}e^{-t} + \frac{1}{4}e^{-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o8    |
| 4(b)             | $= \int_{a}^{b} \cos(\alpha + b) d\alpha \cos b(t-u) d\alpha$ $= \int_{a}^{b} \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) + \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \int_{a-b}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \int_{a-b}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \int_{a-b}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \int_{a-b}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + b) \cos(\alpha + b) \cos(\alpha + b)$ $= \int_{a}^{b} \cos(\alpha + $ | 08    |

| Question   | JAN-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t.    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| No         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks |
|            | $V(s) [s^3 + 4 s^2 + 5s + 2] = 3 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|            | V(c) - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|            | $y(s) = \frac{3}{(s+1)^2(s+2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|            | Ry Pallry Frechon Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|            | 1-18/07 - 1-13 7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| THE P      | $L^{-1}[(s)] = L^{-1}[\frac{3}{(s+1)^{2}(s+2)}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|            | $Cmside 3 = A + B + C = \frac{-3}{3} + \frac{3}{4} + \frac{3}{4}$<br>$(Sti)^2(S+2)$ $Sti$ $(Sti)^2$ $St2$ $Sti$ $(Sti)^2$ $St2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|            | 1-153 7-21 -t, -t+1-2t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|            | $L^{-1}\left[\frac{3}{(s+1)^2(s+2)}\right] = 3\left(-\bar{e}^{t} + \bar{e}^{t} + \bar{e}^{2t}\right).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| -01-07H RO | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 50a)       | since f(x) is even function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|            | fix) = 20 + 2 an Cosnx -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|            | 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|            | \$0= = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 4   |
|            | $a_{1}=\frac{2}{\pi}\int_{0}^{\pi}(1-\frac{2x}{\pi})\cos nx dx = +\frac{1}{\pi^{2}n^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|            | 11 : FX = 4 5 12 +5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|            | 1-12 = # 2 n2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|            | AT X N=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|            | 19 — 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1500       | Half range cosine series is fix = Expression non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 5 (b)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|            | bn=2 st(x) sinnux dx -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|            | = 2 ( /2 x sinnTx dx + SECO-x) sinnTx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|            | T & KX 311 T a L 1 1/2 _ 0. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 3          | = 2 [ Kx ( COS nTM) ( - S MUTTA 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|            | - (E) |       |
|            | The second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1000       | + K(l-x) (- coratix) - (-k) - sinatix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|            | Do not write on the backside (170) 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |

$$= \frac{a}{l} \left[ \frac{-kl^{2} \cos n\pi}{2 + kl^{2}} \sin \frac{n\pi}{2} + \frac{kl^{2} \cos n\pi}{2 + kl^{2} \cos n\pi} \right]$$

$$= \frac{4kl}{n^{2}\pi^{2}} \sin \frac{n\pi}{2}$$

$$= \frac{4kl}{1} \sum_{n=1}^{2} \sin \frac{n\pi}{2} \sin \frac{n\pi}{2}$$

$$= \frac{1}{n^{2}\pi^{2}} \left[ \sin \frac{n\pi}{2} \sin \frac{n\pi}{2} - 1 \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} \left[ -in \cos ax + a \sin ax \right] \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} \left[ -in \cos ax + a \sin ax \right] \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} \left[ -in \cos ax + a \sin ax \right] \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-n^{2}} + a \sin ax \right]$$

$$= \frac{1}{n^{2}\pi} \left[ \frac{e^{inx}}{a^{2}-$$

 $\alpha_0 = \frac{2}{1} \int (x-1)^2 dx = \frac{2}{3}$  $a_n = 2 \int (x-1)^2 \cosh n\pi x \, dx = \frac{4}{n^2\pi^2} - 2$ f(x) = 2/3 + 4 = = 1/h2 COS NTTX - 1 put x=1 in above series  $0 = \frac{1}{3} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos^n n \pi$  $\Rightarrow \ \ \forall \frac{1}{3} = \frac{4}{112} \left( \frac{-1}{12} + 0 - \frac{1}{32} + 0 - \frac{1}{52} + \cdots \right)$  $\frac{\Pi^2}{12} = \frac{1}{2} + \frac{1}{32} + \frac{1}{52} + \cdots$ 7(a) F & f(x) 3 = 50 f(x) eidx dx - 1 = \ \( \a^2 - \chi^2 \) e dx \ \_\_\_\_ |  $= +\frac{4a \cos ad}{d^2} + \frac{4}{d^3} \sin da$   $= -4 \left(ad \cos ad - \sin da\right) - 1$   $= -\frac{4}{d^3}$ F-1{F(d)} = [F(d) e d d = - 54 (ad cosad & sinad) (cosa x - isinxx)  $=) \quad \alpha^2 - \chi^2 = -\int_{-1.3}^{12} (ad \cos ad - \sin ad) \cos dx dd$ since fix) is even funding  $a^2-x^2=-2\int_{-\frac{\pi}{2}}^{\infty}\frac{4}{3}$  (ad (us ad-sinad) (08 dz dd

Take 
$$q=1$$
,  $\chi=0$ 
 $1=8\int_{0}^{\infty} \frac{\sin a - a \cos a}{a^{3}} da = \frac{1}{8}$ . Alter Ans:  $\frac{\pi}{4}$ . 8

 $7(b)$  Since  $\sin(0, \omega) = e^{-1\chi} = e^{-\chi}$ . —1

Fix  $\frac{2}{5}$  fix)  $\frac{2}{5} = \int_{0}^{\infty} \frac{1}{5} \sin a \times dx = \frac{e^{-\chi}}{1+\alpha^{2}} - \frac{1}{3} \cos a \times \frac{1}{3} \sin a \times dx = \frac{e^{-\chi}}{1+\alpha^{2}} - \frac{1}{3} \cos a \times \frac{1}{3} \sin a \times dx = \frac{1}{3} \int_{0}^{\infty} \frac{1}{3} \sin a \times dx$ 

$$= \frac{gz}{(z+1)^2} + \frac{z(z-(687/4))}{z^2-8z(687/4+1)} + \frac{a^2z\sin h\theta}{(a^{-1}z)^2-8a^2z(686/4+1)}$$

$$-3a^4z$$

$$z^{-1}$$
8
(b) Taking Z-brus form on both sids
$$Z[y_{n+2}] -5Z[y_{n+1}] + 6Z[y_n] = Z(1)$$

$$z^2[y_{12}] -y_0-y_1z^{-1}] -5z[y_{(2)} -y_0] + 6y_{(2)}$$

$$z^2[y_{12}] -y_0-y_1z^{-1}] -5z[y_{(2)} -y_0] + 6y_{(2)}$$
Apply  $y_0 = 0$ ,  $y_1 = 1$ 

$$y(z) (z^2-5z+6) = \frac{z^2}{z-1}$$

$$(considis)$$

$$\frac{z}{z} = \frac{z}{(z+1)(z-3)(z-3)}$$
By Pautial Fraction: method
$$\frac{z}{z} = \frac{z}{(z+1)(z-3)+2} + \frac{z}{z-3} = -2$$

$$z = A(z-a)(z-3)+B(z-1)(z-3)+C(z-1)(z-3)$$

$$\Rightarrow z = A(z-a$$

| HSN   |  |  |
|-------|--|--|
| 4,454 |  |  |

### RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU) III Semester B. E. Examinations Nev/Dec-19

#### Common CSE / ISE

# LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

Time: 03 Hours Instructions to candidates: Maximum Marks: 100

- Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

| 1   | 1.1  | In $\mathbb{R}^2$ , the vectors $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ are linearly independent, Justify |        |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     |      | the statement.                                                                                                                                          | 01     |
|     | 1.2  | The nullity of a 3 × 5 matrix is                                                                                                                        | 01     |
|     | 1.3  | If $A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$ , then the geometric interpretation of the associated                                            |        |
|     |      | linear transformation is                                                                                                                                | 01     |
|     | 1.4  | The orthogonal projection of y onto u is where                                                                                                          |        |
|     |      | $y = \begin{bmatrix} -24 \\ -10 \end{bmatrix}$ and $u = \begin{bmatrix} 3 \\ -15 \end{bmatrix}$                                                         | 01     |
| 117 | 1.5  | . 10.                                                                                                                                                   |        |
|     |      | The kernel of [1 2] is                                                                                                                                  | 01     |
|     | 1.6  | Eigen values of a 4 x 4 matrix A are given as 2, -3,13 and 7. Then the                                                                                  |        |
|     |      | value of  A  is                                                                                                                                         | 01     |
|     | 1.7  | If $L\{f(t)\} = \frac{e^{-2/s}}{s^2}$ , then the $L\{e^t f(2t)\}$ is                                                                                    | 01     |
|     | 1.8  | If $L^{-1}{F(s)} = f(t)$ , then $L^{-1}\left\{\frac{F(s-a)}{s}\right\} = $                                                                              | 01     |
|     | 1.9  | Find the singular value of the matrix $A = \begin{bmatrix} \sqrt{6} & 1 \\ 0 & \sqrt{6} \end{bmatrix}$ .                                                |        |
|     |      |                                                                                                                                                         | 02     |
|     | 1.10 | Find the Laplace transform of the function $f(t) = \begin{cases} t & t \leq \pi \\ 0 & t > \pi \end{cases}$                                             | 02     |
|     | 1.11 | When the integer $n$ is divided by 8, the remainder is 3. What is the                                                                                   | 22,000 |
| M,  |      | remainder if 6n is divided by 8.                                                                                                                        | 02     |
|     | 1.12 | If both $11^2$ and $3^3$ are factors of the number $a \times 4^3 \times 6^2 \times 13^{11}$ , then the                                                  | 00     |
|     | 1.13 | smallest possible value of 'a' is<br>The number of partitions of $X = \{a, b, c, \vec{v}\}$ with $a$ and $b$ in the same                                | 02     |
|     | 1.10 | block is                                                                                                                                                | 02     |
|     | 1.14 | Find the generating function for the sequence $a_n = n$ for $n \ge 0$ .                                                                                 | 02     |

| 2   | a | Determine the dimension and a basis for the four fundamental subspaces for the matrix                                                                                                                                                                                                                                                      |       |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     |   | $A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                         | 10    |
|     | ь | Let $T: v \to V$ be given by $T_x: x + v$ . Is $T$ a linear map? If not, under what conditions is $T$ a linear map?                                                                                                                                                                                                                        | 03    |
|     | c | Let A be an $m \times n$ matrix. Suppose that the null space of A is a plane                                                                                                                                                                                                                                                               | 00    |
|     |   | in $\mathbb{R}^3$ and the range is spanned by a nonzero vector $v$ in $\mathbb{R}^5$ .                                                                                                                                                                                                                                                     | 03    |
|     |   | Determine m and n. Also, find the rank and nullity of A.                                                                                                                                                                                                                                                                                   | 03    |
| 3   | a | Apply the Gram-Schmidt process to $a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ , $b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ , $c = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and write                                                                                                                                            | 08    |
|     | b | the result in the form $A = QR$ .<br>Obtain an invertible matrix $P^{-1}$ and a diagonal matrix D, for the matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 2 & 3 & 1 \end{bmatrix}$ .                                                                                                                                             | 00    |
|     |   | 3 3 1                                                                                                                                                                                                                                                                                                                                      | 08    |
|     |   | OR                                                                                                                                                                                                                                                                                                                                         |       |
| 4   | a | [1010]                                                                                                                                                                                                                                                                                                                                     |       |
| -50 |   | Find the SVD of the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ .                                                                                                                                                                                                                                            | 10    |
|     | b | If $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$ , then find $A^{100}$ by diagonalizing A.                                                                                                                                                                                                                                            | 06    |
| 5   | a | Find the Laplace Transform of $t^6e^{3t} + t^2\cos 2t + \frac{e^{-3t}\sin t}{t}$ .                                                                                                                                                                                                                                                         | 08    |
|     | ь | Find the Laplace Transform of $f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases}$                                                                                                                                                                                                                                    | 00    |
|     |   | where $f(t + 2a) = f(t)$ .                                                                                                                                                                                                                                                                                                                 | 08    |
|     |   | OR                                                                                                                                                                                                                                                                                                                                         | 30766 |
|     |   |                                                                                                                                                                                                                                                                                                                                            |       |
| 6   | a | Find the Laplace Transform of $f(t) = \begin{cases} 1 & 0 < t < \frac{a}{z} \\ -1 & \frac{a}{z} < t < a \end{cases}$                                                                                                                                                                                                                       | 08    |
|     |   |                                                                                                                                                                                                                                                                                                                                            | 1110  |
|     | ь | An alternative e.m.f $Esin(\omega t)$ is applied to an inductance L and a                                                                                                                                                                                                                                                                  |       |
|     | ь | 1 2                                                                                                                                                                                                                                                                                                                                        | 08    |
|     | b | An alternative e.m.f $Esin(\omega t)$ is applied to an inductance $L$ and a capacitance $C$ in series. The governing equation is given by                                                                                                                                                                                                  | 08    |
|     | a | An alternative e.m.f $Esin(\omega t)$ is applied to an inductance $L$ and a capacitance $C$ in series. The governing equation is given by $L\frac{d^2q}{dt^2} + \frac{q}{c} = Esin(\omega t)$ . Obtain the current in the $LC$ circuit.  Prove that there are infinitely many primes of the form $4n + 3$ where $n$ is a positive integer. | 08    |
| 7   |   | An alternative e.m.f $Esin(\omega t)$ is applied to an inductance $L$ and a capacitance $C$ in series. The governing equation is given by $L\frac{d^2q}{dt^2} + \frac{q}{c} = Esin(\omega t).$ Obtain the current in the $LC$ circuit.                                                                                                     | 08    |



Institution Affiliated to Visvesvarryo Technological University, Selagavi Approved by AICTE.

# Academic year 2022-2023 (Odd Semester)

|              | DEPARTMEN                       | NT OF MATHEMA | ATICS                               |          |  |
|--------------|---------------------------------|---------------|-------------------------------------|----------|--|
| Date         | 28th March 2023                 | Time          | 09:30 AM to                         | 11:20 PM |  |
| Quiz + Test  | - 11                            | Maximum Marks | rks 10 + 50                         |          |  |
| Course Title | LINEAR ALGEBR<br>TRANSFORMS AND | Course Code   | 21MA31B                             |          |  |
| Semester     | Ш                               | Programs      | AS, EC, EE, EI, ET-Lateral<br>Entry |          |  |

| S. No. | Quiz Questions                                                                                                                                                | M | CO | BT |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|
| 1      | Inverse Laplace transform of $F(s) = \frac{2}{s^2 + 8}$ is                                                                                                    | 1 | 1  | 1  |
| 2      | Show that the vectors $(1,2,1)$ , $(3,1,5)$ and $(-1,3,-3)$ are linearly independent.                                                                         | 2 | 2  | 2  |
| 3      | Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ and $v = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ . Determine if $v$ belongs to left null space of $A$ . | 2 | 3  | 2  |
| 4      | Is the subset $W = \{(x_1, x_2, x_3) / x_1^2 + x_2^2 + x_3^2 \le 1\}$ as subspace of $\mathbb{R}^3$ ?                                                         | 2 | 3  | 3  |
| 5      | $L[\sin t  H(t-\pi)] = \underline{\hspace{1cm}},$                                                                                                             | 2 | 2  | 3  |
| 6      | $L^{-1}\left(\frac{1}{2s-1}\right)$ is                                                                                                                        | 1 | 1  | 2  |

| S.No. | Test Questions                                                                                                                                                                                           | M  | CO | BT |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|
| 1     | Find the dimension and basis for the four fundamental subspaces of the matrix $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$                                      | 10 | 1  | 2  |
| 2     | Find the range space, null space, rank, nullity and verify rank-nullity theorem for $T: \mathbb{R}^3 \to \mathbb{R}^4$ , defined by $T(e_1) = (0,1,0,2), T(e_2) = (0,1,1,0), T(e_3) = (0,1,-1,4)$ .      | 10 | 2  | 3  |
| 3     | Show that the set $B = \{u = (1,1,0), v = (1,0,1), w = (0,1,1)\}$ is a basis of the vector space $\mathbb{R}^3$ . Express each standard basis vector as a linear combination of $u, v$ and $w$ .         | 10 | 3  | 3  |
| 4     | Express the following function as a Heaviside step function and hence calculate the Laplace transform $f(t) = \begin{cases} 2, & 0 \le t < 1 \\ 3t + 1, & 1 \le t < 2 \\ t^2, & 2 \le t < 3 \end{cases}$ | 10 | 2  | 2  |
| 5     | Evaluate inverse Laplace transform of the following functions:<br>(i) $F(s) = \frac{4s+5}{(s+1)^2(s+2)}$ (ii) $F(s) = \frac{s}{s^{2n}-6s+1}$                                                             | 10 | 4  | 4  |

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

| Marks<br>Distribution | Pa   | riticulars | COI | CO2 | CO3 | 004 | LI | 1.2 | 1.3 | L4 |
|-----------------------|------|------------|-----|-----|-----|-----|----|-----|-----|----|
|                       | Dutt | Max Marks  | 4   | 4   | 2   | -   | 1  | 5   | 4.  | 33 |
|                       | Test | Max Marks  | 10  | 20  | 10  | 10  |    | 20  | 20  | 10 |

| USN |  |  |  |
|-----|--|--|--|
|     |  |  |  |

## RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

III Semester B. E. Examinations, December - 2019

BRANCH: Computer Science & Engineering and Information Science & Engineering COURSE: LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

### MODEL QUESTION PAPER - I

Time: 03 Hours Maximum Marks: 100

#### Instructions to candidates:

- Answer all questions from Part A. Part A question should be answered in first three pages of the answer book only.
- Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

|       | FARI - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 1.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 |
|       | R <sup>2</sup> . Justify the statement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 1.2   | A DOMESTIC AND A SECOND AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT AND A SECOND ASSESSMENT A | 01 |
| 1.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 |
| 1.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 |
| 1.5   | Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the projection of $\begin{bmatrix} x \\ y \end{bmatrix}$ on to $X$ – axis i. e. $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$ , the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01 |
|       | Ker (T) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 1.6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 |
| 1.7   | Verify directly from $\cos^2 \theta + \sin^2 \theta = 1$ that reflection matrices satisfy $H^2 = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 |
| 1.8   | In the singular value decomposition $A = U \sum V^{r}$ , $C(A) = \text{span of}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 |
| 1.9   | If $L\left\{\frac{\sin t}{t}\right\}$ is $\tan^{-t}\left(\frac{1}{s}\right)$ , then $L\left\{\frac{\sin 2t}{2t}\right\} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01 |
| 1.1   | $E^{-1}{F(s)} = f(t)$ , then $E^{-1}{\frac{F(s-a)}{s}} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 |
| 1.1   | Find $L^{-1}\left\{\log\left(1-\frac{1}{s^2}\right)\right\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02 |
| 1.1   | Find the sum of positive divisors of the integer 882.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02 |
| 1.1   | What is the remainder in the division of 2 <sup>50</sup> by 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02 |
| 1.1   | Find the rook polynomial for the 2 × 2 board by using expansion formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 |
| 1.1   | Find the sequence generated by the function $(3 + x)^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 |

#### PART - R

|   |    | PARI - B                                                                                                                                                                        |    |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2 | a) | Express $v = t^2 + 4t - 3$ in P(t) as a linear combination of $p_1 = t^2 - 2t + 5$ , $p_2 = 2t^2 - 3t$ , $p_3 = t + 1$ .                                                        | 04 |
|   | b) | Let V be the vector space of function f: R → R. Show that W is a subspace of V where  i) W = {f(x): f(1) = 0} all function whose value at 1 is 0.  ii) W = {f(x): f(3) = f(1)}. | 04 |

|   | c)             | Let G: R <sup>-</sup> → R <sup>-</sup> be given by G(x, y, z) = (x + 2y - z, y + z, x + y - 2z). Find a basis and dimension of  i) Image of G  ii) Kernel of G.  Verify Rank-Nullity theorem.                                                                                                                                                           | 08             |
|---|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3 | a)<br>b)       | Using Gram-Schmidt orthogonalization process to find an orthonormal basis for the linearly independent set of vectors $\{(1, 2, 1), (-1, 1, 0), (5, -1, 2)\}$ in $\mathbb{R}^3$ . Find the invertible matrix P which diagonalizes the matrix $ \begin{bmatrix} 5 & 0 & 4 \\ 4 & 4 & 9 \end{bmatrix}. $                                                  | 10             |
|   | -              | OR                                                                                                                                                                                                                                                                                                                                                      |                |
| 4 | a)<br>b)       | Diagonalize the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ .  Find the singular value decompositions of the matrix and verify that $A = U \sum V^T$ , given $A = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$ .                                                                                        | 10             |
| 5 | a)<br>b)       | Evaluate $(i)L\left\{\int_{0}^{t} te^{-3t} \sin 2t  dt\right\}$ $(ii)\int_{0}^{\infty} e^{-t} \left(\frac{1-\cos t}{t}\right) dt$ .<br>The equation of the LRC circuit governing the current i is given by $L\frac{di}{dt} + Ri + \frac{1}{c}\int_{0}^{t} i dt = E\delta(t) \text{ where } t = 0, \text{ when } t = 0. \text{ Using Laplace transform}$ | 08             |
|   |                | method find the current i.                                                                                                                                                                                                                                                                                                                              |                |
|   |                | OR                                                                                                                                                                                                                                                                                                                                                      |                |
| 6 | a)             | Express the following in terms of Heaviside unit step function and also sketch the graph of the function $f(t) = \begin{cases} t^2 & 0 < t < 2 \\ 4t & 2 < t < 4 \text{ and find its Laplace transform.} \\ 8 & t > 4 \end{cases}$                                                                                                                      | 08             |
|   | b)             | Using convolution theorem, find $L^{-1}\left\{\frac{s}{(2s^2+1)(s^2-4)}\right\}$ .                                                                                                                                                                                                                                                                      | 08             |
| 7 | a)<br>b)<br>c) | Prove that there exist infinitely many primes.<br>If $a = b \pmod{m}$ and $GCD(a, m) = 1$ , then prove that $GCD(b, m) = 1$ .<br>If the cipher text message produced by the RSA cipher with key $(a, n) = (5,2881)$ is 0504 1874 0347 0515 2088 2356 0736 0468, what is the plain text message.                                                         | 04<br>04<br>08 |
| 8 | a)<br>b)       | Using the exponential generating function, find the number of ways in which 4 of the letters in "ENGINE" be arranged.  In how many ways can 12 Moderns be distributed among three networking labs A, B, C so that A gets at least four, B and C gets at least two, but C gets not more than five?                                                       | 08<br>08       |



# R V COLLEGE OF ENGINEERING (As autonomous institution affiliated to VTU, Belgaum) DEPARTMENT OF MATHEMATICS

#### ODD SEMESTER 2019-20 III SEMESTER, Test - 1 BRANCHES; CSE, ISE

COURSE: LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

DATE: 03.09.2019

COURSE CODE: 18MA31A

TIME: 9.30 AM-11 AM

MARKS: 50

| O No. | Answer all the questions                                                                                                                                                                               | Marks | CO  | BIL |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| Q.No. | Show that the set of all elements of the type $a+b\sqrt{2}$ : $a,b\in Q$ form a vector space over the field Q.                                                                                         | 10    | CO2 | 1.2 |
| 2. a) | Determine if the set H of all matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ is a subspace of $M_{2x2}$ , the set of all 2 x 2 Matrices.                                          | 05    | CO2 | 1.2 |
| b)    | If $v_1 = (2, -1, 0)$ , $v_2 = (1, 2, 1)$ and $v_3 = (0, 2, -1)$ , show that $v_1$ , $v_2$ , $v_3$ are linearly independent. Express $(3, 2, 1)$ as a linear combination of $v_1$ , $v_2$ , $v_3$ .    | 05    | CO2 | L2  |
| 3.    | Find the dimension and basis for the four fundamental subspaces of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{bmatrix}$                                    | 10    | C03 | L2  |
| 4. a) | Find the number of positive divisors and sum of all positive divisors of 8128.                                                                                                                         | 05    | CO1 | L2  |
| b)    | If $p$ is a prime number and $p ab$ where $a$ and $b$ are any integers, then prove that either $p a$ or $p b$ .                                                                                        | 05    | CO1 | L2  |
| 5.    | By using the Euclidean algorithm, find the greatest common divisor $d$ of 2689 and 4001 and then find integers $x$ and $y$ to satisfy $2689x + 4001y = d$ . Also show that $x$ and $y$ are not unique. | 10    | CO2 | E   |

#### COs.

Understand the fundamental concepts of linear algebra, properties of Laplace and inverse Laplace transforms, divisibility, properties of prime numbers and principle of inclusion and exclusion.

Solve the problems of vector spaces, subspaces, basis and dimension, rank and multity theorem, orthogonal and orthonormal basis,
Laplace transform of different functions, linear transformations, geometrical interpretations and matrix form, greatest common
divisor, derangements and generating functions.

3 Apply the acquired knowledge to solve the problems of rank and nullity theorem. Gram-Schmidt process, QR-factorization, transform of periodic functions, convolution theorem modular arithmetic, Euler's theorem and exponential generating functions.

 Evaluate - solution of differential equations with initial and boundary conditions using Laplace transform, diagonalization of matrix, singular value decomposition, rook polynomials, Turing's code and RSA public key encryption.



Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE. New Delhi

# Academic year 2022-2023 (Odd Semester 2022)

|              | DEPARTMEN                    | T OF MATHEMATICS            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|------------------------------|-----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date         | 16th January 2023            | Time                        | 11:45AM to  | 01:45 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CIE          | 1                            | Maximum Marks               | 10+5        | The second secon |
| Course Title | Linear Algebra, Integral Tra | insforms and Fourier Series | Course Code | 21MA31B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Semester     | m                            | Programs                    | AS, EC, EF  | , EI, ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Instructions: i) Answer all questions from Part-A and Part-B.

ii) Part-A questions should be answered in first two pages of the answer book only.

| Q.<br>No. | PART-A                                                                                                                                  | M | CO | BT |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|---|----|----|
| No.<br>1  | If $\mathcal{L}{f(t)} = \frac{6s}{(s^2+9)^2}$ , then $\mathcal{L}\left\{f\left(\frac{t}{3}\right)\right\} = \underline{\hspace{1cm}}$ . | 1 | 1  | Li |
| 2         | $\mathcal{L}\left\{\left(\frac{1}{4}\right)^t\right\} = \underline{\hspace{1cm}}$                                                       | 1 | 1  | L1 |
| 3         | Laplace transform of the exponentially decayed sinusoidal signal $f(t) = e^{-at} \sin(2\pi t)$ is                                       | 2 | 2  | L2 |
| 4         | Obtain $\mathcal{L}\{t\delta(t-5)\}\$ , where $\delta(t-5)$ represents unit impulse function.                                           | 2 | 1  | L1 |
| 5         | $\mathcal{L}^{-1}\left\{\frac{se^{-\frac{s}{2}}}{s^2-b^2}\right\} = \underline{\hspace{1cm}}.$                                          | 2 | 3  | L2 |
| 6         | Find inverse Laplace transform of $\frac{1}{s^2+4s+4}$ .                                                                                | 2 | 2  | L2 |

| Q.<br>No. | PART-B                                                                                                                                                                                                                                                                                                                                                                  | М  | co | BT  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|
| 1         | Laplace transform possesses powerful set of properties for analysis of signals and systems. Find Laplace transform of the following time signals:  (i) $t^2 \sin 3t \cos 3t$ (ii) $\int_0^t \frac{e^{2t} - \cos 4t}{t} dt$                                                                                                                                              | 10 | 1  | LI  |
| 2a        | Solve $\int_0^\infty e^{-\frac{t}{2}} \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^2 dt$ using Laplace transform technique.                                                                                                                                                                                                                                               | 05 | 2  | L2  |
| 2ь        | Show that Laplace transform of the triangular wave of period four given by $f(t) = \begin{cases} t, & 0 \le t < 2 \\ 4 - t, & 2 \le t < 4 \end{cases}$ is $\frac{1}{s^2} \tanh(s)$ .                                                                                                                                                                                    | 05 | 3  | L3  |
| 3         | Express the following function as a Unit step function and hence determine its Laplace transform $f(t) = \begin{cases} 1, & 0 \le t < \pi \\ 3t, & \pi \le t < 2\pi \end{cases}$ . Also draw the graph of the signals $\sin t, & t \ge 2\pi \end{cases}$ (i) $\cos t  H(t-\frac{\pi}{2})$ and (ii) $\cos(t-\frac{\pi}{2})  H(t-\frac{\pi}{2})$ for $0 \le t \le 3\pi$ . | 10 | 3  | L3  |
| 4         | Transform the s-domain function in to the corresponding time domain $F(s) = \frac{s^2 - 10s + 13}{(s - 7)(s^2 - 5s + 6)} + tan^{-1} \left(\frac{4}{s}\right).$                                                                                                                                                                                                          | 10 | 2  | L2  |
| 5         | Convolution is used to express the input and output relationship of Linear Time-<br>Invariant (LTI) systems. Apply convolution theorem to determine the inverse Laplace<br>transform of the function $F(s) = \frac{1}{s^3(s^2+4)}$ . Also verify the result.                                                                                                            | 10 | 4  | 1.4 |

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                 |      |     |     |     |      |     |     | 1.4 | 1 12 | 1.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|------|-----|-----|-----|------|-----|-----|-----|------|-----|
| Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Particulars   |                 | CO1  | CO2 | CO3 | 004 | 1.1  | 1.2 | 1.5 | 1,4 | 1.5  | 1.6 |
| EXCEL AND A STATE OF THE STATE |               | Manu Manche     | 14   | 19  | 17  | 10  | 14   | 21  | 15  | 10  | - 8  | 3   |
| Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Agusz da resa | IAMEN TARGET PC | 3.55 |     | 100 | 100 | 2000 |     |     | -   |      |     |

# RV COLLEGE OF ENGINEERING

# Autonomous Institution affiliated to VTU

# III Semester B. E. March/April-2022 Examinations LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

# (Theory) SCHEME AND SOLUTION

| SCHEME AND SOLE FIGURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Here only two vectors are independent. Hence the given set of vector does not form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d 1      |
| basis for $\mathbb{R}^3$ . $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},  ii) \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} $ $ \begin{bmatrix} \cos \theta & -1 & -1 & \cos \theta \\ \cos \theta & -1 & -1 & \cos \theta \\ \cos \theta & \cos \theta & \cos \theta \end{bmatrix} $ $ \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ \cos \theta & \cos \theta \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1+1      |
| 1.3 $ \frac{10}{\text{Multiple } x^n} = \frac{a^T b}{a^T a} = \frac{11}{[1 \ 1]} \frac{11}{[1]} = 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1+1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |
| $AX = \lambda X \implies \begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix} = \begin{bmatrix} -18 \\ -16 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$ $\lambda = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |
| 1.5 $L[t\cos 2t] = \frac{s^2 - 4}{(s^2 + 4)^2}$<br>$\int_0^\infty e^{-st} t \cos 2t  dt = \frac{5}{169}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |
| $\frac{1.6}{\sqrt{2}} L^{-1} \left[ \frac{1}{\sqrt{s + \frac{3}{2}}} \right] = \frac{e^{-\frac{3}{2}t}}{\sqrt{2}} L^{-1} \left[ \frac{1}{\sqrt{s}} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1+1      |
| $=\frac{e^{-\frac{1}{2}t}}{\sqrt{2t}\sqrt{3t}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1+1      |
| 1.7 $T(a) = (1 + a_1)(1 + a_2)$ 2.2 3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6 positive divisors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        |
| 1.8 219 = 3 × 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1      |
| $\phi(219) = 144$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |
| 1.9 $d_4 = 4! \left[ 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \right] = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |
| Derangements $= 2 + .4 \times + 8 \times^{2} + 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1+3      |
| 1.10 $f(x) = a_0 + a_{1x} + a_2x^2 + a_3x^3 + \cdots = 2 + Ax + 8x + 16$<br>= $2(1 - 2x)^{-1}$ = $2 \cdot (1 + 2x + (2x))^2 + (2x)^2 + (2x)^$ | (27) 34> |
| = 2 ((-20)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |

= 2 ([-20])

| 2a                                                                                                                                                                                                                                      | $R_1, R_3 = R_3 + R_1, R_4 = R_4 + R_1, R_5 = R_5 + R_1$ | j |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---|
| $\begin{bmatrix} -1 & 2 & 5 & -6 \\ -1 & -1 & 3 & 1 \end{bmatrix}^{R_2 - R_2 - 2}$                                                                                                                                                      | $n_3, n_3 - n_3 + n_1, n_4 = n_4 + n_1, n_5 = n_5 + n_1$ |   |
| $ \sim \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & -5 & -10 & 10 \\ 0 & 3 & 6 & -6 \\ 0 & 4 & 8 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_2 = -\frac{1}{5}R_2 $                                                                                   |                                                          | 2 |
| $ \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 3 & 6 & -6 \\ 0 & 4 & 8 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_3 = R_3 - 3R_2, R_4 $                                                                                           | $R_4 = R_4 - 4R_2$                                       | 1 |
| $ \sim \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_3 \longleftrightarrow R_4 $                                                                                  |                                                          | 1 |
| $\begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                     |                                                          | 1 |
| Basis for R(A) {(1,2,3,-1), (0,1,2,-2), (                                                                                                                                                                                               | 0,0,0,1)}                                                | 1 |
| Basis for $\mathcal{C}(A)$ $\left\{\begin{bmatrix} 1\\2\\-1\\-1\\-1\end{bmatrix},\begin{bmatrix} 2\\-1\\1\\2\\2\end{bmatrix},\begin{bmatrix} -1\\8\\-5\\-6\\1\end{bmatrix}\right\}$                                                     |                                                          |   |
| Basis for $N(A)$ , $Ax = 0$ implies $Ux = 0$                                                                                                                                                                                            |                                                          | 1 |
| $\begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | (1, -2, 1, 0)                                            |   |
| $x_1 + 2x_2 + 3x_3 - x_4 = 0$ $x_2 + 2x_3 - 2x_4 = 0$ $x_4 = 0$ $tet x_3 = k, x_2 = -2k, x_1 = 2k - 3k = -4k$ $([-k]) \qquad ([-1])$                                                                                                    | *                                                        |   |
| Basis for $N(A)$ $\left\{ \begin{bmatrix} -k \\ -2k \\ k \\ 0 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right\}$                                                                            |                                                          | 1 |

| 28230 |  |  |
|-------|--|--|
| USN   |  |  |
|       |  |  |
|       |  |  |

# RV COLLEGE OF ENGINEERING Autonomous Institution affiliated to VTU III Semester B.E. April -2023 Examinations DEPARTMENT OF MATHEMATICS LINEAR ALGEBRA, INTEGRAL TRANSFORMS AND FOURIER SERIES (Common to AS, EC, EE, EI, ET) (2021 SCHEME) MODEL QUESTION PAPER-1

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, and 9 and 10.

PART-A Consider the polynomials  $p_1(t) = 1 + t^2$ ,  $p_2(t) = 1 - t^2$ . Is  $\{p_1, p_2\}$  a linearly independent set in P3? Justify your answer. 2 Write which matrix reflects every vector in  $\mathbb{R}^2$  about the line y = x. Also 1.2 2 find the transformation of the vector (-3, 2)? Show that the set  $\{u_1, u_2, u_3\}$  is an orthogonal basis of  $\mathbb{R}^3$ , where 1.3  $u_1 = (3, -3, 0), u_2 = (2, 2, -1), u_3 = (1, 1, 4)$ 2 Choose the second row of  $A = \begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix}$  so that A has eigen values 4 and 7. 1.4 The region of convergence for  $L[coshat] = \frac{s}{s^2-n^2}$  to hold good is 1.5 The Laplace transform of the signal  $(1-a)^t$ , where a is constant is 1.6 If  $f(t) = t^{3/2}$  then  $L\{f(t)\} =$ 1.7  $L\{(t-2)u(t-2)\} =$ 1.8 If  $L^{-1}[F(s)] = \sin 2t$ , then  $L^{-1}\left[\frac{F(s)}{s}\right]$  is 1.10 Find  $L^{-1} \left[ \frac{5e^{-2s}}{s} \right] =$ 1 1.11 Inverse Laplace transform of T  $L^{-1}(1) =$ 1 The Fourier series coefficient  $a_0$  for the signal  $x(t) = e^{-2t}$ ,  $0 \le t \le 2$ 1 At the point of discontinuity, Fourier series of  $f(x) = \frac{-\pi, -\pi < x < 0}{x, 0 < x < \pi}$ 1.14 converges to 1 If the Fourier transform of  $e^{-\frac{x^2}{2}}$  is  $\sqrt{2\pi} e^{-\frac{a^2}{2}}$ , then the Fourier transform of 1.15 1 The Fourier cosine transform of x3 is 4, then Fourier sine transform of 1

| P | w | ю  | m   | 63 | 10 |
|---|---|----|-----|----|----|
| 2 | m | ъ. | - 5 | ۰  | ,  |
|   |   |    |     |    |    |

| = |   | UNIT-I                                                                                                                                                                                                   |   |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | a | Show that the set of all vectors of the form $(2s + 4t, 2s, 2s - 3t, 5t)$ is a subspace of $R^4$ .                                                                                                       | 4 |
|   | b | Obtain the bases for the column space and left null space of the matrix $A = \begin{bmatrix} 1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix}$     | 6 |
|   | c | Find the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ such that $T(e_1) = (0,1,0,2), T(e_2) = (0,1,1,0), T(e_3) = (0,1,-1,4)$ . Also find the rank and nullity of the linear transformation. |   |

| - |   | UNIT-II                                                                                                                                            |   |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3 | а | Using the Gram-Schmidt process, orthonormalize the vectors (3, 1, -1, 3), (-5, 1, 5, -7), (1, 1, -2, 8).                                           | 8 |
|   | b | Find the SVD of the matrix $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$ .                                                           | 8 |
|   | - | OR                                                                                                                                                 |   |
| 4 | а | Compute the QR factorization of the matrix $A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}$  | 8 |
|   | ь | Obtain the matrix P such that it diagonalises the matrix $A = \begin{bmatrix} -4 & 5 & 0 \\ 4 & 0 & 9 \end{bmatrix}$ . Also find the inverse of P. | 2 |

|   |   | UNIT-III                                                                                                                                                                             |   |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5 | a | Evaluate $L\left[\frac{2\sin t \sin 2t}{t} + t \cos 2t\right]$ .                                                                                                                     | 6 |
| + | ь | Determine Laplace transform of the triangular wave given by                                                                                                                          |   |
|   |   | $f(t) = \begin{cases} \frac{h}{a}t, & 0 < t < a \\ \frac{h}{c}(2a - t), & a < t < 2a \end{cases} \text{ with } f(t) = f(t + 2a).$                                                    | 6 |
|   |   | /a                                                                                                                                                                                   | _ |
|   | e | Using Laplace transform show that $\int_0^\infty (t e^{-t} \sin 2t dt) = \frac{4}{25}$ .                                                                                             | 4 |
| - |   | OR .                                                                                                                                                                                 |   |
| 6 | n | Obtain the Laplace transform of $f(t) = cos^3 2t + e^{-3t} (2cos5t - 3sin5t)$ .                                                                                                      | 6 |
|   | ъ | Evaluate $L\left\{\int_{s}^{t} \frac{e^{-t}\sin 3t}{t} dt\right\}$ .                                                                                                                 | é |
|   | e | Express $f(t) = \begin{cases} \sin t, & 0 < t \le \frac{\pi}{2} \\ \cos t, & t > \frac{\pi}{2} \end{cases}$ in terms of the unit step function and hence find its Laplace transform. | - |

|   |   | UNIT-IV                                                                                                                                                                                                                                               |   |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 7 | a | Using Convolution theorem, transform the following function in time domain: $F(s) = \left[\frac{s}{(s^2 + a^2) \ (s^2 + b^2)}\right]$                                                                                                                 | 8 |
| 3 | ь | Solve the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 1 - e^{2t}$ under the conditions $y(0) = 1$ , $y'(0) = 0$ using Laplace transform.                                                                                         | 8 |
|   |   | OR                                                                                                                                                                                                                                                    |   |
| 8 | B | Determine the inverse Laplace transform of the following:<br>(i) $\frac{s+3}{s^2-4s+13}$ (ii) $\frac{e^{-3s}}{(s^2+1)(s^2+9)}$                                                                                                                        | 8 |
|   | b | A voltage $E(t)$ = $Ee^{-at}$ is applied at $t=0$ to a circuit of inductance $L$ and resistance $R$ satisfying the equation $L\frac{dl}{dt}+Rl=E(t)$ . Show that the current at any time $t$ is $\frac{E}{R-aL}\Big[e^{-at}-e^{-\frac{Rt}{L}}\Big]$ . | 8 |

|     |   | UNIT-V                                                                                                                                                                                                                                         | T |
|-----|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 9   | а | Draw the graph of the function $f(t) = \begin{cases} 0, & -2 \le t \le -1 \\ 1+t, & -1 \le t \le 0 \\ 1-t, & 0 \le t \le 1 \\ 0, & 1 \le t \le 2 \end{cases}$ when $f(t+4) = f(t)$ . Also express $f(t)$ as trigonometric series.              | 8 |
|     | b | Find the Fourier transform of a parabolic pulse given by $f(t) = \begin{cases} 1-t^2, &  t  < 1 \\ 0, &  t  > 1 \end{cases}$<br>Hence evaluate the integral $\int_0^{\infty} \frac{t \cos t - \sin t}{t}  \cos \left(\frac{t}{2}\right)  dt$ . | 8 |
| 10. | a | Expand $f(x) = \left(\frac{\pi - x}{2}\right)^2$ , $0 < x < 2\pi$ in a Fourier series.                                                                                                                                                         | 8 |
|     | b | Determine the Fourier cosine transform of $\frac{1}{1+x^2}$ . Hence derive Fourier sine transform of $\frac{x}{1+x^2}$ .                                                                                                                       | 8 |

Signature of Scrutinizer: Name: Signature of Chairman Name:

| 8 a | A large software development company employs 100 computer programmers. Of them, 45 are proficient in Java, 30 in C#,20 in Python, 6 in C# and Java, 1 in Java and Python, 5 in C# and Python, and just 1 programmer is proficient in all three languages above. Determine the number of computer programmers that are not proficient in any of these three languages.  Find the rook polynomial for the following forbidden position problem. You may leave the polynomial in factored form, and you need not go any farther with the problem than finding the rook polynomial. We want to find the number of ways 5 people (A, B, C, D and E) can be assigned 5 tasks (1,2,3,4 and 5) to do if person A cannot do tasks 1 and 2, person B cannot do tasks 2 and 4, person C cannot do tasks 1 and 2, and person D cannot do tasks 3 and 4, and person E cannot do | 08 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | tasks 4 and 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08 |



### SCHEME AND SOLUTION

Nov / Dec - 19

COURSE: LINEAR ALGEBRA, LAPLACE TRANSFORM AND COMBINATORICS

UG

|      | PART - A                                                                                                                                                                                                                                                                                          | Mark |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 0    |                                                                                                                                                                                                                                                                                                   | 01   |
| 1.1  | $\begin{bmatrix} \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \alpha + \beta = 0, \ 2\alpha - \beta = 0 \Rightarrow \alpha = 0, \ \beta = 0$ is trivial solution. Therefore linearly independent. |      |
| 1.5  | 2.2 Kars conk                                                                                                                                                                                                                                                                                     | 01   |
| 1.2  | Rotates counter clockwise through 90° and doubles the length.                                                                                                                                                                                                                                     | 01   |
| 1.4  | $\hat{y} = \frac{y \cdot u}{u \cdot u} u = \frac{(-24, 10) \cdot (3, -15)}{(3, -15) \cdot (3, -15)} (3, -15) = (1, -5)$                                                                                                                                                                           | 01   |
| 1000 |                                                                                                                                                                                                                                                                                                   | 01   |
| 1.5  | The line $x_1 + 2x_2 = 0$ or Kernel = (21)                                                                                                                                                                                                                                                        | -01  |
| 1.6  | $2 \times 3 \times 13 \times 7 = -546$ $L[f(2t)] = \frac{2e^{-\frac{t}{s}}}{s^2}  \text{then}  L[e'f(2t)] = \frac{2e^{-\frac{t}{(s-1)}}}{(s-1)^2}$                                                                                                                                                | 01   |
| 1.8  | $L^{-1}\left\{\frac{F(s-a)}{s}\right\} = \int_{0}^{t} e^{i\omega t} f(t)dt$                                                                                                                                                                                                                       | 01   |
| 1.9  | $AA^{T} = \begin{bmatrix} 7 & \sqrt{6} \\ \sqrt{6} & 6 \end{bmatrix},  AA^{T} - \lambda I  = 0 \Rightarrow \lambda^{2} - 13\lambda + 36 = 0 \Rightarrow \lambda = 9, 4.$                                                                                                                          | 02   |
| 1.10 | Singular values of matrix A are 3, 2.<br>$L[f(t)] = \int_{0}^{\infty} e^{at} t dt = \frac{1 - \pi s e^{-cx} - e^{-cx}}{s^{2}}$                                                                                                                                                                    | 02   |
| 1.11 | $n = 8k + 3 \Rightarrow 6n = 6(8k + 3) = 8(6k) + 18 = 8(6k + 2) + 2$                                                                                                                                                                                                                              | 02   |
| 1.12 | $\Rightarrow 2 \text{ is the remainder}$ The smallest value of a is $\frac{a \times 4^3 \times 6^2 \times 13^{11}}{11^2 \times 3^3} \Rightarrow 11^2 \times 3 = 363$                                                                                                                              | 02   |
|      |                                                                                                                                                                                                                                                                                                   | 02   |
| 1.13 | Insufficient data, Grace marks to be awarded.                                                                                                                                                                                                                                                     |      |
| 1,14 | Differentiating                                                                                                                                                                                                                                                                                   | 01   |
|      | $\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + L$ Multiply by x $\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + L = \sum_{n=0}^{\infty} nx^n$ So $G(x) = \frac{x}{(1-x)^2}$                                                                                                                            | 01   |
|      | $S_0 G(x) = \frac{x}{(1-x)^2}$                                                                                                                                                                                                                                                                    |      |

| 100 | PART - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| a   | $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \qquad R_3 - R_i \qquad U = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                |         |
|     | $A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \qquad R_3 - R_i \qquad U = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                 | 10      |
|     | 1 2 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -       |
|     | [0, 0, 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1       |
|     | 1) Column space of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       |
|     | Basis for C(A) = {(1, 0, 1), (2, 1, 2)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|     | Dim of C(A) = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| -   | ii) Row space of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       |
|     | Basis for R(A) = {(1, 2, 0, 1), (0, 1, 1, 0)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|     | Dim of R(A) = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     | TO NO. II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16      |
|     | iii) Null space of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     | $U = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                             |         |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 1   | $U = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_2 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$                                                                                                                                                                                                                        |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     | Basis for N(A) = {(2, -1, 1, 0), (-1, 0, 0, 1)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     | Dim of $N(A) = 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     | iii) Left Null space of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|     | 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|     | 47 2 1 2 P 20 D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       |
|     | $A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $K_2 = 2K_1, K_4 = K_1, K_5 = K_2$ $U = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|     | $A^{T} = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad R_{2} - 2R_{1},  R_{4} - R_{1},  R_{3} - R_{2} \qquad U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                  |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|     | $U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix} = y_1 \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                   |         |
|     | 10 0 01 1 1 1 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       |
|     | $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_3 & 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_3 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ Basis for N(A) = {(-1, 0, 1)}                                                                                                                                                                                                                                                                                                                                                                                                |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       |
| ьх  | $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_3 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_2 & 1 & 1 & 1 \end{bmatrix}$ Basis for N(A) = {(-1, 0, 1)} Dim of N(A <sup>T</sup> ) = 1.                                                                                                                                                                                                                                                                                                                                                                                           |         |
| b)  | $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{y_3} \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}^{y_3} \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ Basis for N(A) = {(-1, 0, 1)} Dim of N(A <sup>T</sup> ) = 1.  Let T: v \( \rightarrow \) V given T(x): x + v.                                                                                                                                                                                                                                                                                |         |
| b)  | $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_3 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_2 & 1 & 1 & 1 \end{bmatrix}$ Basis for N(A) = {(-1, 0, 1)} Dim of N(A <sup>T</sup> ) = 1.                                                                                                                                                                                                                                                                                                                                                                                           | 1       |
| b)  | Basis for N(A) = {(-1, 0, 1)}<br>Dim of N(A <sup>T</sup> ) = 1.<br>Let T: $\mathbf{v} \to \mathbf{V}$ given T(x): $\mathbf{x} + \mathbf{v}$ .<br>T a linear map<br>Here T(x + y) = x + y + v<br>T(x) + T(y) = (x + v)+(y + v) $\Rightarrow$ T(x + y) = T(x) + T(y) iff $\mathbf{v} = 0$ .                                                                                                                                                                                                                                                                                                    |         |
| b)  | Basis for N(A) = {(-1, 0, 1)}<br>Dim of N(A <sup>T</sup> ) = 1.<br>Let T: $\mathbf{v} \to \mathbf{V}$ given T(x): $\mathbf{x} + \mathbf{v}$ .<br>T a linear map<br>Here T(x + y) = x + y + v<br>T(x) + T(y) = (x + v)+(y + v) \Rightarrow T(x + y) = T(x) + T(y) iff $\mathbf{v} = 0$ .<br>T(ax) = ax + v, $\alpha$ T(x) = $\alpha$ (x + v)                                                                                                                                                                                                                                                  | 1       |
| b)  | Basis for N(A) = {(-1, 0, 1)}<br>Dim of N(A <sup>T</sup> ) = 1.<br>Let T: $\mathbf{v} \Rightarrow \mathbf{V}$ given T(x): $\mathbf{x} + \mathbf{v}$ .<br>T a linear map<br>Here T(x + y) = x + y + v<br>T(x) + T(y) = (x + v)+(y + v) $\Rightarrow$ T(x + y) = T(x) + T(y) iff $\mathbf{v} = 0$ .<br>T( $\mathbf{a}\mathbf{x}$ ) = $\mathbf{a}\mathbf{x} + \mathbf{v}$ , $\mathbf{a}\mathbf{T}(\mathbf{x}) = \mathbf{a}(\mathbf{x} + \mathbf{v})$<br>T( $\mathbf{a}\mathbf{x}$ ) = $\mathbf{a}\mathbf{T}(\mathbf{x})$ iff $\mathbf{v} = 0$ .                                                 | 1 1     |
|     | Basis for N(A) = {(-1, 0, 1)}<br>Dim of N(A <sup>T</sup> ) = 1.<br>Let T: $\mathbf{v} \to \mathbf{V}$ given T(x): $\mathbf{x} + \mathbf{v}$ .<br>T a linear map<br>Here T(x + y) = x + y + v<br>T(x) + T(y) = (x + v) + (y + v) $\Rightarrow$ T(x + y) = T(x) + T(y) iff $\mathbf{v} = 0$ .<br>T( $\alpha \mathbf{x}$ ) = $\alpha \mathbf{x} + \mathbf{v}$ , $\alpha$ T(x) = $\alpha$ (x + v)<br>T( $\alpha \mathbf{x}$ ) = $\alpha$ T(x) iff $\mathbf{v} = 0$ .<br>Therefore T is a linear transformation iff $\mathbf{v} = 0$ .                                                            | 1       |
| b)  | Basis for N(A) = {(-1, 0, 1)}  Dim of N(A <sup>T</sup> ) = 1.  Let T: $v \to V$ given $T(x): x + v$ .  T a linear map Here $T(x + y) = x + y + v$ $T(x) + T(y) = (x + v) + (y + v) \Rightarrow T(x + y) = T(x) + T(y)$ iff $v = 0$ . $T(\alpha x) = \alpha x + v$ , $\alpha T(x) = \alpha (x + v)$ $T(\alpha x) = \alpha T(x)$ iff $v = 0$ .  Therefore T is a linear transformation iff $v = 0$ .  For an m x n matrix A, the null space consists of vectors X such that $AX = 0$ . Thus such X                                                                                             | 1 1 1 1 |
|     | Basis for N(A) = {(-1, 0, 1)}  Dim of N(A <sup>T</sup> ) = 1.  Let T: $v \to V$ given $T(x): x + v$ .  T a linear map Here $T(x + y) = x + y + v$ $T(x) + T(y) = (x + v) + (y + v) \Rightarrow T(x + y) = T(x) + T(y)$ iff $v = 0$ . $T(\alpha x) = \alpha x + v$ , $\alpha T(x) = \alpha (x + v)$ $T(\alpha x) = \alpha T(x)$ iff $v = 0$ .  Therefore T is a linear transformation iff $v = 0$ .  For an m x n matrix A, the null space consists of vectors X such that $AX = 0$ . Thus such X must be n – dimensional. Since the null space is a subspace in R <sup>3</sup> , then n = 3. | 1 1     |
|     | Basis for N(A) = {(-1, 0, 1)}  Dim of N(A <sup>T</sup> ) = 1.  Let T: $v \to V$ given $T(x): x + v$ .  T a linear map Here $T(x + y) = x + y + v$ $T(x) + T(y) = (x + v) + (y + v) \Rightarrow T(x + y) = T(x) + T(y)$ iff $v = 0$ . $T(\alpha x) = \alpha x + v$ , $\alpha T(x) = \alpha (x + v)$ $T(\alpha x) = \alpha T(x)$ iff $v = 0$ .  Therefore T is a linear transformation iff $v = 0$ .  For an m x n matrix A, the null space consists of vectors X such that $AX = 0$ . Thus such X                                                                                             | 1 1 1 1 |

| 3 9 | $v_1 = a = (0, 0, 1)$                                                                                                                                                                                                                                    | 1     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | $v_2 = b - \frac{b \cdot v_1}{v_1 \cdot v_1} v_1 = (0, 1, 0)$                                                                                                                                                                                            | 2     |
|     | $v_{1} = c - \frac{c \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{c \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} = (1, 0, 0)$                                                                                                                                  | 2     |
|     | v <sub>1</sub> = 0 - v <sub>1</sub> - v <sub>1</sub> - v <sub>2</sub> - v <sub>2</sub> - v <sub>3</sub> - v <sub>4</sub> - v <sub>3</sub>                                                                                                                |       |
|     | $Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $R = Q^T A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$                                                                                                                            | 1+2   |
|     | $Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad R = Q^T A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                            |       |
| I   | $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \end{bmatrix}$                                                                                                                                                                                            |       |
|     | 3 3 1                                                                                                                                                                                                                                                    |       |
| 1 6 | $ A - \lambda I  = 0 \Rightarrow \lambda^3 + 3\lambda^2 - 4 = 0 \Rightarrow \lambda = 1, -2, -2$                                                                                                                                                         | 1+1   |
|     |                                                                                                                                                                                                                                                          |       |
|     | for $\lambda = 1$ $X_4 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ , for $\lambda = -2$ $X_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ , for $\lambda = 1$ $X_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$                                      | 1+1+1 |
|     | E A BOOK OF LOND                                                                                                                                                                                                                                         |       |
|     | $P = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix},  P^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \Rightarrow D = P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ | 2+1   |
|     |                                                                                                                                                                                                                                                          |       |
| 4   | OR                                                                                                                                                                                                                                                       |       |
|     | $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                       |       |
|     | [1 0 1 0]                                                                                                                                                                                                                                                |       |
|     | $\begin{vmatrix} A^T A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \Rightarrow  A^T A - \lambda I  = 0 \Rightarrow \lambda^4 - 4\lambda^3 + 4\lambda^2 = 0 \Rightarrow \lambda = 0, 0, 2, 2$                         | 1+2   |
|     | 0 1 0 1                                                                                                                                                                                                                                                  | 4     |
|     | Finding eigen vectors                                                                                                                                                                                                                                    | 2     |
|     | $\nu = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$           |       |
|     | $\sqrt{2}$ $1$ $\sqrt{2}$ $1$                                                                                                                                                                                                                            |       |
|     | $V = \begin{bmatrix} 0 & -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}$                                                                                                                                                                                    | 1     |
|     | $\left \begin{array}{cccc} \frac{1}{\sqrt{2}} & 0 & \frac{\cdot}{\sqrt{2}} & 0 \end{array}\right $                                                                                                                                                       |       |
|     | $0 \frac{1}{\sqrt{2}} 0 \frac{1}{\sqrt{2}}$                                                                                                                                                                                                              |       |
|     |                                                                                                                                                                                                                                                          |       |
|     | $AA^{T} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \Rightarrow  AA^{T} - \lambda I  = 0 \Rightarrow \lambda^{2} - 4\lambda + 4 = 0 \Rightarrow \lambda = 2, 2$                                                                                       | 1+1   |
|     |                                                                                                                                                                                                                                                          |       |
|     | $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix},  \Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix} \Rightarrow SVD = U\sum V^T$                                                   | 1+1   |
|     | \[ \sqrt{\sqrt{2}} \]                                                                                                                                                                                                                                    |       |

| b)  | $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+1        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | $ A - \lambda I  = 0 \Rightarrow \lambda^2 - 6\lambda + 5 = 0 \Rightarrow \lambda = 5,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|     | when $\lambda = 5$ , $X_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ , when $\lambda = 1$ , $X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow P = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} & \mathcal{E} P^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2+1        |
|     | $D = P^{-1}AP$ , $A = PDP^{-1} \Rightarrow A^{100} = PD^{100}P^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|     | $\Rightarrow A^{100} = \frac{1}{4} \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5^{00} & 0 \\ 0 & 1^{100} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          |
| a)  | $L\left\{t^{n}e^{3s} + t^{2}\cos 2t + \frac{e^{-3t}\sin t}{t}\right\} = \frac{6!}{(s-3)^{3}} + (-1)^{2}\frac{d^{3}}{ds^{3}}\left(\frac{s}{s^{2}+4}\right) + \int_{1}^{\infty} \frac{1}{(s+3)^{2}+1}ds$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1+1+1      |
|     | $= \frac{6!}{(s-3)^2} + \frac{d}{ds} \left[ \frac{1}{s^2+4} - \frac{2s^2}{(s^2+4)^2} \right] + \tan^{-1}(s+3) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0+1+1      |
| P   | $= \frac{6!}{(s-3)^{7}} + \frac{8s^{3} - 6s(s^{2} + 4)^{2}}{(s^{2} + 4)^{3}} + \frac{\pi}{2} - \tan^{-4}(s+3)$ $= \frac{6!}{(s-3)^{7}} + \frac{8s^{3} - 6s(s^{2} + 4)^{2}}{(s^{2} + 4)^{3}} + \frac{\pi}{2} - \tan^{-4}(s+3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0÷2÷1      |
| b   | (5-2) (6+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1+1        |
|     | $L\{f(t)\} = \frac{1}{1 - e^{-2at}} \left\{ \int_{0}^{1} e^{-at} dt + \int_{0}^{1} e^{-at} (2a - t)dt \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 . 2     |
|     | $= \frac{1}{1 - e^{-2at}} \left\{ \left[ i \frac{e^{-at} - e^{-at}}{-s} \right]_0^a + \left[ (2a - t) \frac{e^{-at}}{-s} - (-1) \frac{e^{-at}}{s^2} \right]_a^{2at} \right\} = \frac{1}{1 - e^{-2at}} \left\{ \left[ i \frac{e^{-at} - e^{-at}}{-s} \right]_0^a + \left[ (2a - t) \frac{e^{-at}}{-s} - (-1) \frac{e^{-at}}{s^2} \right]_a^{2at} \right\} = \frac{1}{1 - e^{-2at}} \left\{ i \frac{e^{-at}}{-s} - \frac{e^{-at}}{s^2} - \frac{e^{-at}}{-s} - \frac{e^{-at}}{s^2} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2+2        |
|     | $= \frac{1}{1 - e^{-2\alpha t}} \left[ \frac{1 - 2e^{-\alpha t} + e^{-2\alpha t}}{s^2} \right]$ $= \frac{1}{1 - e^{-2\alpha t}} \left[ \frac{1 - 2e^{-\alpha t} + e^{-2\alpha t}}{s^2} \right]$ $= \frac{1}{1 - e^{-2\alpha t}} \left[ \frac{1 - 2e^{-\alpha t} + e^{-2\alpha t}}{s^2} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2          |
|     | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21         |
|     | OR 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2+2        |
| 6 a | $L\{f(t)\} = \left\{ \int_{0}^{t} e^{-st} (1)dt + \int_{0}^{t} e^{-st} (-1)dt \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|     | $= \left\{ \left[ \frac{e^{-st}}{-s} \right]_0^{\frac{s}{2}} - \left[ \frac{e^{-st}}{-s} \right]_{\frac{s}{2}}^{\frac{s}{2}} \right\} = \left[ \frac{1 - 2e^{-\frac{st}{2}} + e^{-st}}{s} \right] = \frac{1}{s} \tanh \left( \frac{as}{s} \right)  \frac{\left( 1 - e^{-\frac{st}{2}} \right)^{2}}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2+2        |
|     | $\begin{bmatrix} -s \\ -s \end{bmatrix}_0 \begin{bmatrix} -s \\ -s \end{bmatrix}_z \begin{bmatrix} s \\ s \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| i   | $\frac{1}{L\left\{L\frac{d^{2}q}{ds^{2}} + \frac{q}{c} = E\sin(\omega t)\right\}} = L\left[s^{2}Q(s) - sq(0) - q'(0)\right] + \frac{1}{c}Q(s) = E\frac{\omega}{s^{2} + \omega^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1+1        |
| f   | $\left(Ls^2 + \frac{1}{C}\right)Q(s) = E\frac{\omega}{s^2 + \omega^2} + Lsq(0) + Q'(0) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1          |
|     | $\left(s^2 + \frac{1}{LC}\right)Q(s) = E\frac{\omega}{s^2 + \omega^2} + \frac{sq(0) + q'(0)}{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1          |
|     | $Q(s) = \frac{E}{L(s^2 + \omega^2)(s^2 + p^2)} + \frac{sq(0) + q'(0)}{L}$ $\frac{1}{LC} = p^{2c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
|     | $Q(s) = \frac{E\omega}{L} \frac{1}{(\omega^2 - p^2)} \left[ \frac{1}{(s^2 + p^2)} - \frac{1}{(s^2 + \omega^2)} \right] + \frac{sq(0) + q'(0)}{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1+1        |
|     | $Q(s) = \frac{L\omega}{L} \frac{1}{(\omega^2 - p^2)} \left[ \frac{(s^2 + p^2)}{(s^2 + p^2)} \frac{(s^2 + \omega^2)}{(s^2 + \omega^2)} \right]^{\frac{1}{2}} L$ $q(t) = \frac{E\omega}{L} \frac{1}{(\omega^2 - p^2)} \left[ \frac{\sin pt}{p} - \frac{\sin \omega t}{\omega} \right] + L^{-1} \left[ \frac{sq(0) + q'(0)}{L} \right]  i(\cancel{L}) = \frac{L\omega}{L} \frac{i(\cancel{L})}{(\omega^2 - p^2)} \underbrace{\left[ \frac{sq(0) + q'(0)}{L} \right]}_{\frac{1}{2}}  i(\cancel{L}) = \frac{L\omega}{L} \frac{i(\cancel{L})}{(\omega^2 - p^2)} \underbrace{\left[ \frac{sq(0) + q'(0)}{L} \right]}_{\frac{1}{2}}  i(\cancel{L}) = \frac{L\omega}{L} \frac{i(\cancel{L})}{(\omega^2 - p^2)} \underbrace{\left[ \frac{sq(0) + q'(0)}{L} \right]}_{\frac{1}{2}}  i(\cancel{L}) = \frac{L\omega}{L} \frac{i(\cancel{L})}{(\omega^2 - p^2)} \underbrace{\left[ \frac{sq(0) + q'(0)}{L} \right]}_{\frac{1}{2}}  i(\cancel{L}) = \frac{L\omega}{L} \underbrace{\left[ \frac{sq(0) + q'(0)}{L} \right]}_{\frac{1}{2}$ | + - 182 00 |
|     | 1 sp 1 state 1/2 st 1/2 st 1/2 st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 [Page    |

 $L \frac{di}{dt} + \frac{1}{2}i \frac{dt}{dt} = \frac{(LS + \frac{1}{2})}{(S + \frac{1}{2})} \frac{3(S) - \frac{6}{2} \frac{10^{2}}{10^{2}} + \frac{1}{2}i}{(S + \frac{1}{2})} \frac{1}{(S + \frac{1}$ 

|    |        | 28)    | The state of the s | 1    |
|----|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1  |        |        | Suppose there are finitely many primes of the form $4n+3$ and they are exactly $\{p_1, p_2,,p_k\}$ .  Consider $N = (p_1, p_2,,p_k)^2+2$ . Then $PN = 3 \pmod{4}$ . But N is odd and not divisible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|    |        |        | oy any pi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1+1  |
|    |        |        | It follows that all prime divisoCrs of N are congruent to 1 mod 4, which is N = 1(mod 4) a contradiction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|    |        | b)     | 99=7(mod 23) 992 = 3 (mod 23) 994 = 9 (mod 23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    |
|    |        |        | $99 = 7 \pmod{23} = 21 \pmod{23} = (-2) \pmod{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|    |        |        | 1 199° 1 = 1 21° (mad 221 2040 / 1)( 150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    |
|    |        |        | $(99^{33})^{30003} = (-1)^{30003} \pmod{23} = -1 = 22 \pmod{23}$ Hence the remainder of $99^{999999}$ when divided by 23 is 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |
|    |        | e)     | Given $e = 7$ , $n = 33$ , the choice of two primes p and q may be 3 and 11.<br>$\phi = (p-1)(q-1) = (2)(10) = 20$ $13.0 = 51 \text{ Moc}(33)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    |
|    |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |
|    |        |        | $ed = 1 \pmod{\phi} \Rightarrow 7d = 1 \pmod{20} \Rightarrow d = 3$ for decryption $0 = 2 \times 0 = 20 \pmod{33}$ $13^2 \pmod{33} = 19$ $13^2 \pmod{33} = 19$ $13^2 \pmod{33} = 19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 1  |        |        | 13'(mod 33) = 19 1'(mod 33) = 1 22'(mod 33) = 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    |        |        | $23^{3} \pmod{33} = 23$ $26^{3} \pmod{33} = 20$ $6^{3} \pmod{33} = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5 |
|    |        |        | $14^3 \pmod{33} = 5$ $1^3 \pmod{33} = 1$ $14^3 \pmod{33} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|    |        | 1      | the decrypted sequence will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    |
|    |        |        | SAVE WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1    |
| 1  | 8      | a)     | Since there was a typographical error, marks may be awarded for alternative methods.  Let U denote the set of all employed computer programmers and let J, C and P denote the set of all employed computer programmers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 1  |        | 8      | the set of programmers proticient in Java. C# and Python respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1    |
|    | -1     |        | $ U  = 100$ , $ J  = 45$ , $ C  = 30$ , $ P  = 20$ , $ J  \cap  C  = 6$ , $ J  \cap  P  = 1$ , $ C  \cap  P  = 5$ , $ J  \cap  C  \cap  P  = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    |
|    |        |        | To find the cardinality of the complement of $JUCUP$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|    |        |        | [JUCUP]=84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 1  |        |        | $ \overline{JUCUP}  =  U  -  JUCUP  = 100 - 84 = 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
|    |        |        | 16 programmers are not proficient in any of the three languages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1    |
|    |        | b)     | Board Rewrite the board as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    |        |        | 1 2 3 4 5<br>A X X A A X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    |        |        | A X X B X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1    |
| 1  | -      |        | C x x C X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|    |        |        | D X X D X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|    | 1      | 3      | E XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|    |        |        | ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 1  |        |        | X   X   r <sub>1</sub> =10<br>  X   X   r <sub>2</sub> =33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1    |
|    |        |        | X   X   13=42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    |
|    |        |        | X   X   r <sub>3</sub> =42<br>  X   X   r <sub>4</sub> =20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2    |
|    | 1      |        | x   x   r <sub>5</sub> =2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200  |
|    |        | F      | $(C) = 1 + 10x + 33x^2 + 42x^3 + 20x^4 + 2x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1  |
| Ma | for 34 | Carles |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

Note: Marks may be awarded for alternative proofs and methods.

IC Shire Fumer N.

Dr. N. SHIVAKUHAR.

(BOE) 12.12.19

518480 (0-480/1044. ) Horitain

#### RV COLLEGE OF ENGINEERING

#### Autonomous Institution affiliated to VTU

## III Semester B. E. March/April-2022 Examinations LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS (Theory) SCHEME AND SOLUTION

| 20 42 64                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Let $u = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ , $v = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in M_{22}$ and $a,b,c,d$ and $\alpha \in Z$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $u+v = \begin{bmatrix} a+c & 0 \\ 0 & b+d \end{bmatrix} \in M_{22} \text{ and } \alpha  u = \begin{bmatrix} \alpha a & 0 \\ 0 & \alpha b \end{bmatrix} \in M_{22}$ | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Therefore M 22 is closed under vector addition and scalar multiplication, and hence M 22 is a subspace                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $S = \{(a, b, c) a + b + c = 0, a, b, c \in \mathbb{R}\}$                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $a_1 + a_2 + b_1 + b_2 + c_1 + c_2 = (a_1 + b_1 + c_1) + (a_2 + b_2 + c_2) = 0$                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hence $u + v \in S$                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(ii)\alpha u = (\alpha a_1, \alpha b_1, \alpha c_1)$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\alpha + ab_1 + \alpha c_1 = \alpha(a_1 + b_1 + c_1) = 0$                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hence $\alpha u \in S$                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Therefore S is closed under vector addition and scalar multiplication, and hence S is                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a subspace of $\mathbb{R}^3$                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Let the third matrix be $(x, y, z)$ . Then                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and $\frac{1}{\sqrt{14}}x + \frac{2}{\sqrt{14}}y - \frac{3}{\sqrt{14}}z = 0 \implies x + 2y - 3z = 0$                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Also, $\sqrt{x^2 + y^2 + z^2} = 1 \implies x^2 + y^2 + z^2 = 1$                                                                                                    | 1+1+1+2+2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solving (1) and (2) with $z = 1$ we get $x = -5$ , $y = 4$                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| x(x,y,z) = (-5,4,1)                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Normalizing, the 3 <sup>rd</sup> column is $\left(\frac{-5}{\sqrt{42}}, \frac{4}{\sqrt{42}}, \frac{1}{\sqrt{42}}\right)$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rows automatically become zero.                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                    | Therefore M $_{22}$ is closed under vector addition and scalar multiplication, and hence M $_{22}$ is a subspace $S = \{(\alpha,b,c) \alpha+b+c=0,a,b,c\in\mathbb{R}\}$ Let $u=(a_1,b_1,c_1), v=(a_2,b_2,c_2)\in S, \alpha\in\mathbb{R}$ (i) $u+v=(a_1+a_2,b_1+b_2,c_1+c_2)$ $a_1+a_2+b_1+b_2+c_1+c_2=(a_1+b_1+c_1)+(a_2+b_2+c_2)=0$ Hence $u+v\in S$ (ii) $au=(aa_1,ab_1,ac_1)$ $a+,ab_1+ac_1=a(a_1+b_1+c_1)=0$ Hence $au\in S$ Therefore S is closed under vector addition and scalar multiplication, and hence S is a subspace of $\mathbb{R}^3$ Let the third matrix be $(x,y,z)$ . Then $\frac{1}{\sqrt{3}}x+\frac{1}{\sqrt{3}}y+\frac{1}{\sqrt{3}}z=0 \implies x+y+z=0$ and $\frac{1}{\sqrt{14}}x+\frac{2}{\sqrt{14}}y-\frac{3}{\sqrt{14}}z=0 \implies x+2y-3z=0$ Also, $\sqrt{x^2+y^2+z^2}=1 \implies x^2+y^2+z^2=1$ Solving (1) and (2) with $z=1$ we get $x=-5,y=4$ .: $(x,y,z)=(-5,4,1)$ Normalizing, the $3^{nl}$ column is $\left(\frac{-S}{\sqrt{4z}},\frac{4}{\sqrt{4z}},\frac{1}{\sqrt{4z}}\right)$ |

| 3b | Characteristic equation is $ A - \lambda I  = 0$                                                                                                                                                                                    |                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|    | The eigenvalues are: -3, -3, 5                                                                                                                                                                                                      |                 |
|    | and the corresponding eigenvectors are $\begin{pmatrix} -2\\1\\0 \end{pmatrix}$ , $\begin{pmatrix} 3\\0\\1 \end{pmatrix}$ and $\begin{pmatrix} -1\\-2\\1 \end{pmatrix}$                                                             |                 |
|    |                                                                                                                                                                                                                                     | 1+2+1+1+1+1+1+1 |
|    | $A^{-1} = (SAS^{-1})^{-1} = SA^{-1}S^{-1}$                                                                                                                                                                                          |                 |
|    | $A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1/3 & 0 & 0 \\ 0 & -1/3 & 0 \\ 0 & 0 & 1/5 \end{bmatrix} \begin{bmatrix} -2 & 3 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}^{-1}$ |                 |
| 4a | $q_1 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}; \qquad \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} -2 & 1/2 \\ 1/2 \end{pmatrix}$                                                          |                 |
|    | $B = b - (q_1 T_b) q_1 = (0, 1, -1) 	 q_2 = \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$                                                                                                                           |                 |
|    | $C = C - (q_1 T_c)q_1 - (q_2 T_c)q_2$                                                                                                                                                                                               | 1+2+2+1+1+1     |
|    | $C = (-2, 1/2, 1/2)$ ; $q_3 = (-2\sqrt{2}/3, \sqrt{2}/6, \sqrt{2}/6)$                                                                                                                                                               |                 |
|    |                                                                                                                                                                                                                                     |                 |
| 4b | $A^{T}A = \begin{pmatrix} 9 & -9 \\ -9 & 9 \end{pmatrix}$                                                                                                                                                                           |                 |
|    | The eigenvalues of $A^TA$ are 18 and 0 with corresponding eigenvectors                                                                                                                                                              |                 |
|    | $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, v_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \Sigma = \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$                               |                 |
|    | Now, $u_1 = \frac{1}{3\sqrt{2}} A v_1 = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$                                                                                                                                           | 1+1+1+1+1+2+1   |
|    | $u_2 = \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{pmatrix}; u_3 = \begin{pmatrix} -2/\sqrt{45} \\ 4/\sqrt{45} \\ 5/\sqrt{45} \end{pmatrix}$                                                                                 |                 |

#### RV COLLEGE OF ENGINEERING

#### Autonomous Institution affiliated to VTU

## III Semester B. E. March/April-2022 Examinations LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

(Theory)

|    | (Theory) SCHEME AND SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | $\therefore A = U\Sigma V^{T} = \begin{bmatrix} 1/3 & 2/\sqrt{5} & -2/\sqrt{45} \\ -2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & 5/\sqrt{45} \end{bmatrix} \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$                                                                                                                                                                                                                                   |             |
| 5a | $f(t) = \begin{cases} 1 & 0 \le t \le a \\ -1 & a \le t \le 2a \end{cases}$ $L[f(t)] = \frac{1}{1 - e^{-2as}} \left( \int_0^a e^{-st} dt - \int_a^{2a} e^{-st} dt \right)$ $= \frac{1}{s(1 - e^{-2as})} \left( e^{-2as} - 2e^{-as} + 1 \right)$ $= \frac{1}{s} \tanh\left(\frac{as}{2}\right)$                                                                                                                                                                                                                                               | 2+2+1+1+1+1 |
| 5b | i) $L[\sin 3t] = \frac{3}{s^2 + 9}$ $L\left[\frac{\sin 3t}{t}\right] = \int_{s}^{\infty} \frac{3}{s^2 + 9} ds = \frac{\pi}{2} - \tan^{-1}\left(\frac{s}{3}\right)$ $L\left[\frac{e^{2t}\sin 3t}{t}\right] = \frac{\pi}{2} - \tan^{-1}\left(\frac{s - 2}{3}\right) = \cot^{-1}\left(\frac{s - 2}{3}\right)$ $L\left[\int_{0}^{t} \frac{e^{2t}\sin 3t}{t} dt\right] = \frac{1}{s}\cot^{-1}\left(\frac{s - 2}{3}\right)$ $L\left[e^{-t}\int_{0}^{t} \frac{e^{2t}\sin 3t}{t} dt\right] = \frac{1}{(s + 1)}\cot^{-1}\left(\frac{s - 1}{3}\right)$ | i+1+1+1+1   |
|    | ii) $ \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^{3} = t^{\frac{3}{2}} + 3t^{\frac{1}{2}} + 3t^{\frac{-1}{2}} + t^{\frac{-3}{2}} $ $ L\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^{3} = L(t^{\frac{3}{2}}) + 3L(t^{\frac{1}{2}}) + 3L(t^{\frac{-1}{2}}) + L(t^{\frac{-3}{2}}) $ $ = \frac{\sqrt{\pi}}{4} \left(\frac{3}{5} + \frac{6}{5^{\frac{3}{2}}} + \frac{12}{5^{\frac{1}{2}}} + \frac{8}{5^{\frac{-1}{2}}}\right) $                                                                                                                     | 1+1+1       |

|    | $F(s) = \frac{s}{s^2 + 16}, \ G(s) = \frac{s}{s^2 + 9} \implies f(t) = \cos 4t, \ g(t) = \cos 3t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | $L^{-1}[F(s),G(s)] = \int_{-1}^{1} \cos 4u \cos(3t - 3u) du$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            |
|    | $= \frac{1}{2} \int_{0}^{t} [\cos(u+3t) + \cos(3t-7u)] du \qquad \frac{1}{2} \left( \int_{0}^{t} [\cos(u+3t) + \cos(3t-7u)] du \right) du$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2            |
|    | $= \frac{1}{2} \int_{0}^{t} [\cos(u + 3t) + \cos(3t - 7u)] du \qquad \frac{1}{2} \int_{0}^{t} [\cos(u + 3t) + \cos(3t - 7u)] du$ $= \frac{4\sin(4t - 3\sin(3t))}{7} \qquad \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ $= \frac{1}{2} \left\{ \frac{\sin(4t)}{a - \sqrt{a}} - \frac{\sin(4t)}{4t + \sqrt{a}} \right\} \frac{du}{dt} $ | 2Gt (1+1+1)  |
| ь) | $(s^2 + 2s + 1)L[x(t)]-4s-10 = \frac{3}{(s+1)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44(a)<br>2   |
|    | $L[x(t)] = \frac{4s+10}{(s+1)^2} + \frac{3}{(s+1)^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |
|    | $x(t) = L^{-1} \left[ \frac{4(s+1)+6}{(s+1)^2} \right] + L^{-1} \left[ \frac{1}{(s+1)^4} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|    | $= e^{-t} \left[ 4L^{-1} \left[ \frac{1}{s} \right] + 6L^{-1} \left[ \frac{1}{s^2} \right] + 3L^{-1} \left[ \frac{1}{s^4} \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1+1+1)      |
|    | $x(t) = e^{-t} \left[ 4 + 6t + \frac{t^3}{2} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |
| a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|    | 12378 = 4x3054+162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|    | 3054 = 18x162+138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|    | 162 = 1x738+24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|    | 138 = 5x24 +18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ([+]+[+])    |
|    | 24=1x18+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|    | 18=3x6+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
|    | ∴ gcd(12378,3054) = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I            |
|    | ∴ gcd(12378,3054) = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [<br>(1+1+1) |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [1 + 1 + 1)  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [1+1+1)      |
| b) | ∴ gcd(12378,3054) = 6<br>6 = 24 -18= 6x24 - 138<br>= 6x162 -7x138<br>=132x12378 + (-535) (3054)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 (1+1+1)    |
| b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 (1+1+1)    |
| b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2          |
| ь) | $\therefore gcd(12378,3054) = 6$ $6 = 24 - 18 = 6x24 - 138$ $= 6x162 - 7x138$ $= 132x12378 + (-535)(3054)$ $x = 132,  y = -535$ $p = 3, q = 17, \varphi(51) = 32$ $c = m^e \mod n = 14^7 \mod 51 = 23 = U$ $= 11^7 \mod 51 = 20 = R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| ь) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2          |

#### RV COLLEGE OF ENGINEERING

#### Autonomous Institution affiliated to VTU

#### III Semester B. E. March/April-2022 Examinations

#### LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS (Theory)

SCHEME AND SOLUTION

| CEAN TO THE TOTAL THE TOTAL TO THE TOTAL TOT |                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Let us mark the top most square 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                     |
| 7 8 7 8 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |
| In D, $r_1 = 5$ , $r_2 = 4$ and $r_3 = r_4 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                     |
| $r(D,1) = 1 + 5x + 4x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                     |
| In E, $r_1 = 7$ , $r_2 = 11$ , $r_3 = 3$ , $r_4 = r_5 = \cdots = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| $r(E,x) = 1 + 7x + 11x^2 + 3x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| By using expansion formula, we get $r(C,x) = x r(D,x) + r(E,x)$<br>= $1 + 8x + 16x^2 + 7x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1+1+1)                                               |
| $ A_1 \cup A_2 \cup A_3  =  A_1  +  A_2  +  A_3  - \{ A_1 \cap A_2  +  A_1 \cap A_3  +  A_2 \cap A_3 \} + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                     |
| $ A_1 \cap A_2 \cap A_3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1+1+1+1)                                             |
| $= 60 + 50 + 37 - \{10 + 7 + 12\} + 2 = 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1+1+1+1)                                             |
| ACCURACY SEC. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1+1+1)                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

( PRAKASA R)
( Course Conschinator.

MITMENT OF MADE V. College of Enginue Bungalore - 560 00%

$$f(m) = \frac{a_0}{4} + \frac{b}{2} \quad \text{an}(\cos n\pi + \frac{b}{2} + \frac{b}{2}) + \frac{b}{2} + \frac$$

$$I = \frac{\sinh n}{\pi} \left( 1 + \frac{1}{2} \frac{g}{2} \frac{g(n)}{1 + 1} + 0 \right)$$

$$\frac{\pi}{\sin n} = \frac{1}{1 + 2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{\sinh n} = \frac{1}{2} \left( \frac{1}{1 + 1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 3} + \frac{1}{1 + 12} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 2} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{1 + 2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 2} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{1 + 2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \frac{1}{1 + 2} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{1 + 2} \left( \frac{1}{1 + 1} + \frac{1}{1 + 2} + \cdots \right)$$

$$\frac{\pi}{h} = \frac{1}{1 + 2} \left( \frac{1}{1 + 2} + \frac{1}{1 + 2} + \cdots \right)$$

$$F_{S}(\bar{e}^{[n]}) = \int_{0}^{\infty} \bar{e}^{[n]} s_{m\times n} dx$$

$$= \frac{\alpha^{2}}{1+\alpha^{2}}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} s_{m\times n} dx$$

$$= \frac{\alpha^{2}}{1+\alpha^{2}}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \bar{e}^{[n]} dx = \int_{0}^{\infty} \bar{e}^{[n]} dx$$