

ELEC3020: Lecture 1-1 Introduction

- 1.1 Why study Computer Architecture?
- 1.2 Why are there different Architectures?
- 1.3 How can we classify modern systems
- 1.4 Computer architecture review

Timetable

Monday 15:00
 B6/1081 (Nuffield B)

Friday 14:00
 B7/3027 (Lanchester F1)

Labwork session will be on a Wednesday morning.

Why study Computer Architecture?

- We will all select and use processors.
- Many of us will design systems.
- Some of us will design embedded processor applications (SoC).
- Understanding the limitations of modern architectures will aid effective use.

Why are there different Architectures?

- There continue to be rapid and exciting advances in individual designs.
- Different application domains:
 - Embedded,
 - Signal processing,
 - Workstation,
 - Supercomputer (Scientific, Cryptographic)
 - Quantum...
- We don't need more general-purpose processors; there are too many competing vendors already. Probably only two (Intel, AMD?) will survive.

Syllabus

- Overview of modern processor architectures.
- Processor Design
- Memory Hierarchy
 - Cache and Cache Coherence
 - Bus Architecture
- Types of parallel machine
 - Vector Pipeline Architectures
 - Replicated Architectures
 - Shared Memory and Distributed Memory
- Connectivity
 - Clusters
 - Networks
 - Routing
- Performance Comparison
- Software Issues, including
 - Dataflow
 - Virtual Concurrency
- Case Studies, e.g.
 - AMD64 Opteron
 - Linux clusters
 - Intel Core i7

Additional book

Modern Processor Design

Fundamentals of Superscalar Processors

J P Shen and M H Lipasti

McGraw-Hill Higher Education 2003

ISBN 0-7-282968

How can we classify modern systems

By application domain:

- Embedded:
 - Power Consumption
 - Cost
- Signal Processing:
 - I/O data flow
 - FFT/FIR optimisations

Classify...

- Workstation
 - Graphics
 - Games...
- Supercomputer
 - Weather forecasting: Large data volumes
 - Weapons design: Shock hydrodynamics
 - Cryptography: Autocorrelation, Quantum?

The 64 bit Processor Core of AMD's Opteron

Stage '
Instruction
Addres

and Pack and Pack

to L2 Tags

(1 of 16)

www.chip-architect.com

1x64 bit MMX/SSE

(3 ways)

FP register file access

Address Decod

FP Store Pipeline

Float to Int conv.

Int to Float conv.

2x64 bit MMX/SSE

(add, shift, bool)

Floating Point Scheduler 36 entries

(3 x 12)

FP register file

120 x 90 bit entries

3 class bits, 1 sign bit,

2x32 bit Float.Poin

X87 and SSE2

Floating Point Adder

Intel LGA2011

Core i7

Sandy Bridge

