	Introduction In this diary I will be experimenting with the concepts learned in MATH 3406 and doing the assigned problems. I will be using the Julia programming language. The diary is maintained through a Jupyter notebook which lets me combine prose and code in a user-friendly way. Julia is similar to MATLAB in some regards. It draws inspiration from dynamic languages like Lisp, Perl, Python, and R. Under the hood, Julia operates on the multiple-dispatch paradigm and supports optional
In [257 In [190	I decided to use this language because I thought it would be interesting to try it out! Basic operations using LinearAlgebra using RowEchelon using BenchmarkTools # For benchmarking, alternative to tic; tac; in MATLAB
<pre>In [4]: Out[4]: In [5]: Out[5]:</pre>	3 det(A) 104.0
In [191	3×3 Array{Float64,2}: -0.451923
In [187	2×2 Array{Float64,2}: 0.0 1.0 0.0 0.0 Solving a linear system A = [2 1 1; 4 -6 0; -2 7 2] b = [5, -2, 9] A\b
Out[187 In [188	3-element Array{Float64,1}: 1.0 1.0 2.0 Lets try it out with a singular matrix A = [1 2 3; 4 5 6; 7 8 9] b = [5, -2, 9] A\b SingularException(3) Stacktrace: [1] checknonsingular at /Users/julia/buildbot/worker/package_macos64/build/usr/share julia/stdlib/v1.5/LinearAlgebra/src/factorization.j1:19 [inlined] [2] checknonsingular at /Users/julia/buildbot/worker/package_macos64/build/usr/share julia/stdlib/v1.5/LinearAlgebra/src/factorization.j1:21 [inlined] [3] lu!(::Array{Float64,2}, ::Val{true}; check::Bool) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/lu.j1:85 [4] #lu#136 at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/lu.j1:85
In [192	lib/v1.5/LinearAlgebra/src/lu.jl:273 [inlined] [5] lu at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/1.5/LinearAlgebra/src/lu.jl:272 [inlined] (repeats 2 times) [6] \(::Array{Int64,2}, ::Array{Int64,1}) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/generic.jl:1116 [7] top-level scope at In[188]:3 [8] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091 Note how Julia throws a SingularException . This is because it checks if the matrix is singular before attempting to perform the calculation. Under the hood, Julia uses an LU decomposition for nontriangular square matrices (which it fails to compute becase A is singular). LU Decomposition
Out[192 In [149 Out[149	A[F.p, :] == F.L * F.U
In [146 In [148 Out[148	<pre>A = [0 17 3 4] F = lu(A) display(F) println("p = ", F.p) LU{Float64,Array{Float64,2}} L factor: 2×2 Array{Float64,2}: 1.0 0.0 0.0 1.0 U factor: 2×2 Array{Float64,2}: 3.0 4.0 0.0 1.0 p = [2, 1]</pre> A[F.p, :] == F.L * F.U
In [151	Note how in the above case, we needed to permuate the original matrix A. The permutation specifically is a row-exchange between R_1 and R_2 $A = \begin{bmatrix} 0 & 0 & 1; & 0 & 0 & 2; & 0 & 3 & 0 \end{bmatrix}$ $F = \ln(A)$ $SingularException(1)$ $Stacktrace: $
In [156	<pre>display(F.L) display(F.U) display(F.P) display(F) 3×3 Array{Float64,2}: 1.0 0.0 0.0 0.0 1.0 0.0</pre>
In [167	0.0 0.0 1.0 3×3 Array{Float64,2}: 0.0 0.0 1.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Out[167 In [170	<pre>L1, 01 = 1u(A, Check=raise) display(L1) display(U1) 2×2 Array{Float64,2}: 1.0 0.0 0.0 1.0 2×2 Array{Float64,2}: 0.0 1.0</pre>
In [179	<pre>L2 = [1 0; 3 1] U2 = [0 1; 0 -1] display(L2) display(U2) 2×2 Array{Int64,2}: 1 0 3 1 2×2 Array{Int64,2}: 0 1 0 -1</pre>
Out[181 In [182 Out[182	L2 * U2 == A
In [12]:	<pre># part 1 A = [1 1 1; 1 2 2; 2 3 -4] b = [6, 11, 3] x = A\b 3-element Array{Float64,1}: 1.0 3.0 2.0</pre>
In [205	32 L,U,p = lu(rand(3,3)) LU{Float64,Array{Float64,2}} L factor: 3×3 Array{Float64,2}: 1.0 0.0 0.0 0.0138241 1.0 0.0 0.614814 0.778507 1.0 U factor: 3×3 Array{Float64,2}: 0.779435 0.5035 0.403196 0.0 0.246302 0.88074 0.0 0.0 -0.601532
In [134 Out[134	res = [0, 0, 0] n = 100000 for i = 1:n A = rand(3,3) L,U,p = lu(A) res += abs.(diag(U)[p]) end res/n 3-element Array{Float64,1}: 0.538352456101028 0.5404040696892417 0.5395553022227193
In [198 In [199	A = [0.5 0.5; 0.5 0.5] println("A^2 = ", A^2) println("A^3 = ", A^3) A^2 = [0.5 0.5; 0.5 0.5] A^3 = [0.5 0.5; 0.5 0.5]
In [200	<pre>println("B^2 = ", B^2) println("B^3 = ", B^3) B^2 = [1 0; 0 1] B^3 = [1 0; 0 -1]</pre>
	$A^k = A$ $B^k = \begin{bmatrix} 1 & 0 \ 0 & (-1)^k \end{bmatrix}$ $C^k = \begin{cases} \begin{bmatrix} 0.5 & -0.5 \ 0.5 & -0.5 \end{bmatrix} & \text{if } k = 1 \ \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} & \text{otherwise} \end{cases}$ $k \in \mathbb{N}$
In [63]:	<pre>3×3 Diagonal{Bool,Array{Bool,1}}: 1</pre>
In [66]:	<pre>1×3 Adjoint{Int64,Array{Int64,1}}: 3 4 5 A*v 3-element Array{Int64,1}: 3 4 5</pre>
Out[67]: In [68]:	
In [70]:	<pre>A = ones(4,4) 4×4 Array{Float64,2}: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 v = ones(4,1) 4×1 Array{Float64,2}:</pre>
In [71]:	1.0 1.0 1.0 1.0 A * v 4×1 Array{Float64,2}: 4.0 4.0 4.0 4.0
In [74]:	<pre>W = zeros(4,1) + 2 * ones(4,1) 4×1 Array{Float64,2}: 2.0 2.0 2.0 2.0 2.0</pre>
Out[75]:	
	row from the penultimate row. In the last row, the only non-zero entry is the value on the diagonal on both the LHS (if this entry were zero, then A would not be invertible) and RHS (which is the identity matrix). This means that when performing the row transformation, the entries below the diagonal still remain zero, since subtracting zero from a number gives back the number. WLOG, we can apply the same reasoning to conclude that the entries below the diagonal remain zero throughout the entire backward elimination process on both the LHS and RHS. This means that the RHS (which is A^{-1}) is upper-triangular. $ A^{-1} $ is upper-triangular. Case 2: A is lower triangular. Here, we only need to perform forward elimination, since the entries above the diagonal are zero. WLOG, we can apply the same reasoning as in the previous case on backward elimination to conclude that the entries above the diagonal remain zero throughout the forward elimination process on both the LHS and
	RHS. $\therefore A^{-1} \text{ is lower-triangular.}$ From both these cases, we conclude that A^{-1} is triangular. (b) True If A is symmetric then, $A^T = A$ But, $(A^T)^{-1} = (A^{-1})^T$
	$(A - A) = (A - A)$ $\Rightarrow A^{-1} = (A^{-1})^{T}$ $\therefore A^{-1} \text{ is symmetric.}$ (c) False Example: $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
	$A^{-1} = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \end{bmatrix}$ (d) False Example: $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
	$A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ (e) True The entries of A are given to be fractions. In other words, the entries of A are rational (since every rational number can be expressed in the form $\frac{p}{q}$ where q is non-zero). We know that the set of rational numbers are closed under addition, multiplication, and subtraction. The set of row-transformations (as explained below) we need to apply to find the inverse using the Gauss-Jordan process precisely use addition, multiplication, and subtraction. Lets say we want to make the entry $\frac{p}{q}$ on row R_i zero by applying a row-transformation that subtracts this row from a row R_j (with $j < i$) whose corresponding column entry is $\frac{a}{b}$ (that is non-zero, it wouldn't
	make sense to subtract a zero entry). We can write this transformation as $R_i \to R_i - \frac{p}{q} \frac{b}{a} R_j$ Observe that this transformation takes rational numbers to rational numbers. $\frac{b}{a}$ exists since $\frac{a}{b}$ is non-zero. The corresponding operation that takes place on the RHS is also rational, since we start off with the identity matrix. Row-exchanges do not change the rationality of the entries.
In [208	<pre># carculation for part (c) A = [1 1 0 0; 1 1 1 0;</pre>
In [214	<pre>4×4 Array{Float64,2}: 1.0 0.0 -1.0 1.0 0.0 0.0 1.0 -1.0 -1.0 1.0 0.0 -0.0 1.0 -1.0 0.0 1.0 # Calculation for part (d) A = [</pre>
<pre>In [76]: Out[76]: In [78]:</pre>	1.0 0.0 0.0 0.5 32 A = 5 * I(4) - ones(4,4) 4×4 Array{Float64,2}: 4.0 -1.0 -1.0 -1.0 -1.0 4.0 -1.0 -1.0 -1.0 -1.0 4.0 -1.0 -1.0 -1.0 4.0 -1.0 inv(A) inv(A)
In [80]:	$egin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>In [82]: Out[82]: In [84]:</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	SingularException(2) Stacktrace: [1] checknonsingular at /Users/julia/buildbot/worker/package_macos64/build/usr/share julia/stdlib/v1.5/LinearAlgebra/src/factorization.jl:19 [inlined] [2] checknonsingular at /Users/julia/buildbot/worker/package_macos64/build/usr/share julia/stdlib/v1.5/LinearAlgebra/src/factorization.jl:21 [inlined] [3] lu!(::Array{Float64,2}, ::Val{true}; check::Bool) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/lu.jl:85 [4] #lu#136 at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stlib/v1.5/LinearAlgebra/src/lu.jl:273 [inlined] [5] lu at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/1.5/LinearAlgebra/src/lu.jl:272 [inlined] (repeats 2 times) [6] \((::Array{Float64,2}, ::Array{Float64,2})\) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/generic.jl:1116
In [91]:	[7] top-level scope at In[84]:3 [8] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:1091
	[3] lu!(::Array{Float64,2}, ::Val{true}; check::Bool) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/lu.j1:85 [4] #lu#136 at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stlib/v1.5/LinearAlgebra/src/lu.j1:273 [inlined] [5] lu at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/1.5/LinearAlgebra/src/lu.j1:272 [inlined] (repeats 2 times) [6] \((::Array{Float64,2}, ::Array{Float64,2})\) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/generic.j1:1116 [7] top-level scope at In[91]:2 [8] include_string(::Function, ::Module, ::String, ::String) at ./loading.j1:1091 Julia throws a SingularException in both cases. This is because the language does not attempt to solve the equation if the matrix is singular. Running the same example in Matlab, you get the following output >> A = ones(4,4)
	[3] lu!(::Array{Float64,2}, ::Val{true}; check::Bool) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/lu.j1:85 [4] #lu#136 at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stlib/v1.5/LinearAlgebra/src/lu.j1:273 [inlined] [5] lu at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/1.5/LinearAlgebra/src/lu.j1:272 [inlined] (repeats 2 times) [6] \(::Array{Float64,2}, ::Array{Float64,2}\) at /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/generic.j1:1116 [7] top-level scope at In[91]:2 [8] include_string(::Function, ::Module, ::String, ::String) at ./loading.j1:1091 Julia throws a SingularException in both cases. This is because the language does not attempt to solve the equation if the matrix is singular. Running the same example in Matlab, you get the following output
	[13] lut(::Array[Float64,2], ::Val[true]; check::Bool) at /Users/julia/buildbot/worker/package macos64/build/usr/share/julia/stdlib/v1.5/LinearAlgebra/src/lu.jl:S5 [4] #lutfl36 at /Users/julia/buildbot/worker/package macos64/build/usr/share/julia/stllib/v1.5/LinearAlgebra/src/lu.jl:273 [inlined] [5] lu at /Users/julia/buildbot/worker/package macos64/build/usr/share/julia/stdlib/l.3/LinearAlgebra/src/lu.jl:272 [inlined] (repeats 2 times) [6] \(\text{Vi:Array[Float64,2}\); at /Users/julia/buildbot/worker/package macos64/build/usr/share/julia/stdlib/l.3/LinearAlgebra/src/generic.jl:ll16 [7] top-level scope at In[91]:2 Module, ::String, ::String) at ./loading.jl:1091 Julia throws a SingularException in both cases. This is because the language does not attempt to solve the equation if the matrix is singular. Running the same example in Matlab, you get the following output >> A = ones(4,4) A = 1
In [265	[3] luf(::Array[Float64,2], ::Val(true); check::Sool) at //Users/julia/builthot/vorker/package_macos64/build/vor/shere/julia/stulib/1.5/Linearalgebra/sor/u.ji:85 [4] tbut136 at //Users/julia/buildbot/vorker/package_macos64/build/vor/share/julia/stulib/1.5/Linearalgebra/sor/u.ji:73 [inlined] [5] lu at //Users/julia/buildbot/vorker/package_macos64/build/vor/share/julia/stulib/1.5/Linearalgebra/sor/u.ji:73 [inlined] [6] \(\frac{1}{1}\) top-level zoope at In[9]:2 [7] \(\text{top-level zoope at In[9]:2} [8] \(\text{linearalgebra/sor/uils/stulib/vi.5/Linearalgebra/sor/genezic.ji:1116} [7] \(\text{top-level zoope at In[9]:2} [8] \(\text{linearalgebra/sor/uils/stulib/vi.5/Linearalgebra/sor/genezic.ji:1116} [7] \(\text{top-level zoope at In[9]:2} [8] \(\text{linearalgebra/sor/genezic.ji:1116} [7] \(\text{top-level zoope at In[9]:2} [8] \(\text{linearalgebra/sor/genezic.ji:116} [8] \(\text{linearalgebra/sor/genezic.ji:116} [9] \(\text{linearalgebra/sor/genezic.ji:116} [9] \(\text{linearalgebra/sor/genezic.ji:116} [9] \(\text{linearalgebra/sor/genezic.ji:116} [9] \(\text{linearalgebra/sor/genezic.ji:116} [9] \(\text{linearalgebra/sor/genezic.ji:116} [9] \(linearalge
	[3] luft::Array[Float64,2], ::Valtrue]; check::Bool) at //Users/julia/builchot/vorker/package macos64/build/worfshare/julia/builchot/vorker/package macos64/build/worfshare/julia/builchot/vorker/package macos64/build/worfshare/julia/stilby/1.5/inlined] [5] lu at //Users/julia/builchot/vorker/package macos64/build/worfshare/julia/stilby/1.5/inlined] [5] lu at //Users/julia/stilbot/worker/package macos64/build/worfshare/julia/stilby/1.5/inlined] [6] \times (lepects 2 times) [6] \times (lepects 2 times) [7] \times (lepects 2 times) [8] \times (lepects 2 times) [9] \times (lepects 2 times) [10] \times (lepects 2 times) [11] \times (lepects 2 times) [12] \times (lepects 2 times) [13] \times (lepects 2 times) [13] \times (lepects 2 times) [13] \times (lepects 2 times) [14] \times (lepects 2 times) [15] \tim
Out[265 In [266	1. 1 1 1 1 1 1 1 1 1
Out[265 In [266	The Intervence of the Control of t
Out[265 In [266 In [260	

