Q5) Let Gr(K) denote the gaussian hernel with mean 0 and standard deviation of Then for a given image I(x), if we apply the filter Gr(K), the outful J(s) would be the convalution Gr*I)(x).

$$\begin{aligned}
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) - (\sum_{k=-\infty}^{K=-\infty} \mathcal{C}(K) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= \sum_{K=-\infty}^{K=-\infty} (\mathcal{C}(\mathcal{A} - \mathcal{C}(K)) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(\mathcal{K}(K)) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) + \mathcal{A} \left(\sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \sum_{K=-\infty}^{K=-\infty} \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right) \\
&= (\mathcal{A} \left(\sum_{K=-\infty}^{K} \mathcal{C}(K) \right) - \mathcal{C}(K) \right)$$

Note that for any PMF, Z G(K)=I.

Also note that $\underset{k=-\infty}{\overset{+\infty}{\sim}}$ K (n(k) = \$\frac{1}{2}\text{K}(0) \text{ because G(K) = +G(-K)}

So, we can say that J(x) = (x(1)-0+d(1)

Now, for a Bilaboral Filter, we know that

Note that the image is of infinite extent. So 2 goes from $-\infty$ to $+\infty$.

Let 2 = K and p = x for convenience. So, K goes from $-\infty$ to $+\infty$.

$$BF[I]_{x} = \frac{100}{100} I(K) \frac{e^{-\frac{(x-K)^2}{2\sigma_5^2}}}{e^{-\frac{(x-K)^2}{2\sigma_5^2}}} e^{-\frac{(x-K)^2}{2\sigma_5^2}}$$

$$= \frac{100}{100} \frac{e^{-\frac{(x-K)^2}{2\sigma_5^2}}}{e^{-\frac{(x-K)^2}{2\sigma_5^2}}} e^{-\frac{(x-K)^2}{2\sigma_5^2}} e^{-\frac{(x-K)^2}{2\sigma_5^2}}$$

$$= \frac{100}{100} \frac{e^{-\frac{(x-K)^2}{2\sigma_5^2}}}{e^{-\frac{(x-K)^2}{2\sigma_5^2}}} e^{-\frac{(x-K)^2}{$$

The denominator is the PDF of a gaussian with mean = x and standard deviation & L.

Since sum of PDF must be I, the denominator is I.

The numerator is convolution between f(x) = x and $g(x) = e^{-x^2/2x^2}$ So, ux can also unite is as $\sum_{k=-\infty}^{+\infty} (x-k) e^{-x^2/2x^2}$ because consolution is commutative.

Numerator =
$$\chi \stackrel{\text{teo}}{=} e^{-k^2/2L^2}$$
 - $\chi \stackrel{\text{teo}}{=} e^{-k^2/2L^2}$ - $\chi \stackrel{\text{teo}}{=} e^{-k^2/2L^2}$ - $\chi \stackrel{\text{teo}}{=} e^{-k^2/2L^2}$ Sum from - ∞ to 100 Sums to 100 = 100 T

$$BF[I]_{a} = d + \frac{C(a)}{(1)}$$