UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo

Vaja 43 - Vsiljeno nihanje nihajnega kroga

Luka Orlić

Kazalo

1	Teoretični uvod	2
2	Naloga	3
3	Potrebščine	3
4	Skica	3
5	Meritve	4
	5.1 Metodologija	5
6	Obdelava meritev	5
	6.1 Lissajoujeve figure	5
7	Analiza rezultatov	5

1 Teoretični uvod

Električno nihanje v nihajnem krogu spominja na nihanje nihala na polžasto. Napetost ustreza odmiku in tok hitrosti uteži. Električna energija kondenzatorja ustreza prožnostni energiji vzmeti in magnetna energija tuljave kinetični energiji uteži. Podobno kot pri mehaničnem nihalu tudi nihanje nihajnega kroga izzveni po dovolj dolgem času, če ga samo enkrat vzbudimo in nato prepustimo samemu sebi. Če pa v njem stalno vzbujamo sinusno nihanje, lahko opažujemo vsiljeno nihanje. Nihajni krog v ta namen induktivno sklopimo z oscilatorjem in spreminjamo bodisi frekvenco vsiljene sinusne napetosti ali pa lastno frekvenco nihajnega kroga. Z osciloskopom lahko izmerimo amplitudo inducirane napetosti in fazno razliko med napetostjo na kondenzatorju nihajnega kroga in napetostjo oscilatorja. Lissajoujeve figure dobimo, če odklanjamo elektronski curek v navpični smeri z napetostjo v nihajnem krogu in v vodoravni smeri z napetostjo na vmesni tuljavi.

Pri enačbi (1) bomo vzeli vrednosti ω_0 in C pri resonanci, kajti frekvenca je enaka frekvenci vzbujanja (600 kHz).

$$\omega_0^2 = \frac{1}{LC}$$

$$L = \frac{1}{\omega_0^2 \cdot C}$$
(1)

$$\nu_0 = \frac{1}{2\pi\sqrt{LC}}\tag{2}$$

Dokler bi lahko risali graf ν/ν_0 , lahko ugotovimo, da je to razmerje enostavno enako razmerju C/C_r , kjer je C poljubna kapaciteta kondenzatorja, ter C_r kapaciteta kondenzatorja v resonanci. Potemtakem bomo podali za vsak graf tudi ν_0 . Opomba: U_i je napetost pri največji lastni frekvenci nihajnega kroga, to je pri najmanjši kapaciteti kondenzatorja.

2 Naloga

- i.) Z osciloskopom opazuj vzbujeno nihanje v nihajnem krogu, ki je induktivno vezan z oscilatorjem. Določi resonančno krivuljo pri različnih stopnjah dušenja (uporabi osciloskop kot voltmeter).
- ii.) Opazuj z osciloskopom Lissajoujeve figure in oceni fazne razlike medinducirano napetostjo in vzbujeno napetostjo.

3 Potrebščine

- Osciloskop
- Oscilator ($\nu = 600kHz$)
- resonančni krog
- umeritvena krivulja za vrtljivi kondenzator
- Upori 5 $\Omega,\,10~\Omega,\,15~\Omega$

4 Skica

Skice ni.

5 Meritve

Upor : 0Ω				
št. Raz-	C[pF]	U [mV]		
delkov				
130	380	130		
140	445	210		
150	510	560		
153	531	1100		
155	545	2800		
156	552	4000		
156.2	553.4	4100		
157	559	2500		
160	580	780		
165	615	340		
170	650	240		
180	710	135		
Upor : 5Ω				
št. Raz-	C[pF]	U [mV]		
delkov				
130	380	125		
140	445	200		
150	510	500		
153	531	830		
155	545	1250		
156.5	555.5	1420		
158	566	1150		
160	580	720		
165	615	340		
170	650	230		
180	710	130		
Upor : 15Ω				
št. Raz-	C[pF]	$\mathrm{U}\ [mV]$		
delkov				
130	380	125		
140	445	190		
150	510	420		
153	531	560		
155	545	630		
156.3	554.1	650		
158	566	590		
160	580	500		
165	615	300		
170	650	210		
180	710	130		

5.1 Metodologija

Meritve smo odčitali z osciloskopa, nato smo s pomočjo umeritvene tabele vrtljivega kondenzatorja vrednosti razdelkov spremenili v kapaciteto. Za vrednosti, ki niso zapisani v tabeli, smo privzeli, da se med vrednostima rezdelkov in kapacitete, kondenzator obnaša linearno .

6 Obdelava meritev

S pomočjo enačbe (1) dobimo da je $L = 5*10^{-3}\,H$, ter da je $\nu \approx 95\,kHz$ s pomočjo enačbe (2). Grafe smo narisali $U/U_i\,(C/C_r)$.

6.1 Lissajoujeve figure

Fazni zamik v Lissajoujevi figuri računamo z razmerjem dolžine, od spodn
njega presečišča Y-osi do zgornjega presečišča Y-osi (dolžina B), z dolžino od točke z najmanj
šo Y-vrednostjo do točke z največjo Y-vrednostjo (dolžina A). Za to razmerje označeno z R, velja:

$$\sin(\delta) = R = \frac{B}{A} \tag{3}$$

 $\delta = \arcsin B/A = \arcsin R$

To zelo elegantno lahko prikažemo s Sliko 5.

Elipsa je pri $\pi/2$, ko so velika in mala os elipse vzporedne s koordinatnima osema in ima pozitivno matematično rotacijo, če je rotacija matematično negativna, velja da je fazni zamik $3\pi/2$

Ko je oštri kot dosegljiv z pozitivno matematično smerjo, govorimo, da je $-90\deg < \delta < 90\deg$, ter ko je dosegljiv z negativno matematično smerjo, govorimo, da je $90\deg < \delta < 270\deg$

Za Sliko 6 lahko pokažmo, da je:

$$B = 2.4A = 4.35\delta \approx 123 \deg \tag{4}$$

Za Sliko 7 lahko pokažmo, da je:

$$B = A\delta \approx 90 \deg$$
 (5)

Za Sliko ?? lahko pokažmo, da je:

$$B = 0.6A = 4.3\delta \approx 8 \deg \tag{6}$$

7 Analiza rezultatov

Na slikah (1), (2) in (3), lahko vidimo izmerjene točke na resonančni krivulji. Ti nam povejo, kje je resonanca, ter kolikšno je razmerje resonančne napetosti v primerjavi z inicalno napetostjo. Iz slike (4), je razvidno, da se to razmerje manjša z večjim uporom, torej je obratno sorazmerno.

Resonančna krivulja pri 5 Ohmov

Slika 1: Resonančna krivulja pri 0 Ohmov

Resonančna krivulja pri 5 Ohmov

Slika 2: Resonančna krivulja pri 5 Ohmov

Resonančna krivulja pri 15 Ohmov

Slika 3: Resonančna krivulja pri 15 Ohmov

Resonančne krivulje primerjano med sabo

Slika 4: Resonančna krivulja - primerjalno

Slika 5: Skica računanja faznega zamika

Slika 6: Lissajoujeva figura pri $C=545\,pF$

Slika 7: Lissajoujeva figura pri $C=553.4\,pF$

Slika 8: Lissajoujeva figura pri $C=580\,pF$