Overtaking

Það er einstefndur vegur með einni akrein frá flugvellinum í Budapest að hótelinu Forrás. Vegurinn er L kílómetrar að lengd.

Á meðan IOI 2023 stendur yfir munu N+1 rútur keyra þennan veg. Rúturnar eru númeraðar frá 0 upp í N. Rúta númer i, þar sem $0 \leq i < N$, á að leggja af stað frá flugvellinum á T[i]-tu sekúndu atburðarins, og getur ferðast 1 kílómetra á W[i] sekúndum. Rúta N er vararúta sem getur ferðast 1 kílómetra á X sekúndum. Ekki er búið að ákvarða á hvaða tíma Y vararútan mun leggja af stað frá flugvellinum.

Framúrakstur er ekki leyfilegur á veginum almennt séð, en rúturnar mega taka fram út hvorri annarri á **röðunarstöðvum**. Það eru M, þar sem M>1, röðunarstöðvar á mismunandi stöðum á veginum, sem eru númeraðar frá 0 upp í M-1. Röðunarstöð númer j, þar sem $0\leq j < M$, er staðsett S[j] kílómetrum frá flugvellinum meðfram veginum. Röðunarstöðvar eru raðaðar í hækkandi fjarlægð frá flugvellinum, það er, S[j] < S[j+1] fyrir sérhvert $0\leq i \leq M-2$. Fyrsta röðunarstöðin er á flugvellinum og síðasta röðunarstöðin er á hótelinum. Þannig S[0]=0 og S[M-1]=L.

Sérhver rúta ferðast á hámarkshraða sínum, nema ef hún nær hægari rútu sem er á undan sér á veginum. Í því tilviki fylkjast þær saman og þurfa að ferðast saman á hámarkshraða hægari rútunnar þar til þær komast á næstu röðunarstöð. Þar munu hraðari rúturnar taka fram úr þeim hægari.

Formlega má segja, fyrir sérhvert i og j ar sem $0 \le i \le N$ og $0 \le j < M$ að tíminn $t_{i,j}$, í sekúndum, er tímasetningin sem rúta i **kemur að** röðunarstöð j sem er skilgreind á eftirfarandi máta. Ef j=0, látum við $t_{i,0}=T[i]$ fyrir sérhvert i < N og látum $t_{N,0}=Y$. Annars, fyrir sérhvert j þar sem $0 \le j < M$:

ullet Skilgreinum *væntan komutíma* rútu i að röðunarstöð j sem tímann sem rúta j myndi koma að röðunarstöð j ef hún ferðaðist á fullum hraða frá tímanum sem hún kom að röðunarstöð j-1. Það er, látum

$$egin{aligned} &\circ &e_{i,j}=t_{i,j-1}+W[i]\cdot (S[j]-S[j-1]) ext{ fyrir s\'erhvert } i< N, ext{ og } \ &\circ &e_{N,j}=t_{N,j-1}+X\cdot (S[j]-S[j-1]). \end{aligned}$$

• Rúta i kemur að röðunarstöð j á hæsta af væntum komutímum rútu i og rútum sem komu að röðunarstöð j-1 fyrr en rúta i. Formlega, látum $t_{i,j}$ vera hámarksgildi $e_{i,j}$ og $e_{k,j}$ þar sem $0 \leq k \leq N$ og $t_{k,j-1} < t_{i,j-1}$.

Skipuleggjendur IOI vilja ákvarða hvenær vararútan, sem er númer N, skal leggja af stað. Verkefni þitt er að svara Q fyrirspurnum frá skipuleggjendum sem eru á eftirfarandi formi: gefið tímann Y, í sekúndum, sem segir hvenær vararútan á að leggja af stað, á hvaða tíma myndi hún koma að hótelinu?

Útfærsluatriði

Verkefnið þitt er að útfæra eftirfarandi föll.

```
void init(int L, int N, int64[] T, int[] W, int X, int M, int[] S)
```

- *L*: lengd vegarins.
- *N*: fjöldi rútna sem eru ekki vararútan
- ullet T: fylki af stærð N sem lýsir á hvaða tímum rúturnar sem eru ekki vararútan eiga að leggja af stað frá flugvellinum.
- W: fylki af stærð N sem lýsir hámarkshraða rútnanna sem eru ekki vararútan.
- *X*: tíminn sem tekur fyrir vararútuna að ferðast 1 kílómetra.
- *M*: fjöldi röðunarstöðva.
- ullet S: fylki af stærð M sem lýsir fjarlægð röðunarstöðvanna frá flugvellinum.
- Kallað er í þetta fall nákvæmlega einu sinni í hverju prufutilviki, áður en kallað er í arrival time.

```
int64 arrival_time(int64 Y)
```

- Y: tíminn sem vararútan, sem er númer N, á að fara frá flugvellinum.
- Þetta fall skal skila út komutíma vararútunnar að hótelinu.
- Kallað er í þetta fall nákvæmlega Q sinnum.

Sýnidæmi

Íhugaðu eftirfarandi runu af fallaköllum.

```
init(6, 4, [20, 10, 40, 0], [5, 20, 20, 30], 10, 4, [0, 1, 3, 6])
```

Ef við hunsum rútu 4 þar sem hún er vararúta, þá sýnir eftirfarandi tafla vænta komutíma og alvöru komutíma rútnanna sem eru ekki vararútan á sérhverri röðunarstöð:

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180

Komutímar á stöðina 0 eru áætluðu tímar rútnanna til að leggja af stað frá flugvellinum. Það er, $t_{i,0}=T[i]$ fyrir $0\leq i\leq 4$.

Væntir komutímar og alvöru komutímar að röðunarstöðu 1 eru reiknaðir á eftirfarandi hátt:

- Væntir komutímar á stöð 1:
 - \circ Rúta 0: $e_{0,1} = t_{0,0} + W[0] \cdot (S[1] S[0]) = 20 + 5 \cdot 1 = 25$.
 - \circ Rúta 1: $e_{1,1} = t_{1,0} + W[1] \cdot (S[1] S[0]) = 10 + 20 \cdot 1 = 30$.
 - \circ Rúta 2: $e_{2,1} = t_{2,0} + W[2] \cdot (S[1] S[0]) = 40 + 20 \cdot 1 = 60$.
 - \circ Rúta 3: $e_{3,1} = t_{3,0} + W[3] \cdot (S[1] S[0]) = 0 + 30 \cdot 1 = 30$.
- Komutímar á stöð 1:
 - Rúta 1 og rúta 3 koma að stöð 0 fyrr en rúta 0, því er $t_{0,1} = \max([e_{0,1}, e_{1,1}, e_{3,1}]) = 30$.
 - \circ Rúta 3 kemur á stöð 0 fyrr en rúta 1, því er $t_{1,1} = \max([e_{1,1},e_{3,1}]) = 30$
 - o Rúta 0, rúta 1 og rúta 3 koma að stöð 0 fyrr en rúta 2, so $t_{2,1}=\max([e_{0,1},e_{1,1},e_{2,1},e_{3,1}])=60.$
 - \circ Engin rúta kemur á stöð 0 fyrr en rúta 3, því er $t_{3,1} = \max([e_{3,1}]) = 30.$

Rúta 4 tekur 10 sekúndur að ferðast 1 kílómetra og á að fara frá flugvellinum á 0-tu sekúndunni. Í þessu tilfelli sýnir eftirfarandi taflan okkur komutíma hverrar rútu. Eina breytingin við vænta og alvöru komutíma rútnanna sem eru ekki vararútan hefur verið undirstrikuð.

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	<u>60</u>
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	0	10	10	30	30	60	60

Við sjáum að rúta 4 kemur að hótelinu á sekúndu 60. Því skal fallið skila 60.

arrival_time(50)

Rúta 4 á núna að fara frá flugvellinum á sekúndu 50. Í þessu tilviki eru engar breytingar á komutímum fyrir rúturnar sem eru ekki vararútan. Komutímarnir eru sýndir í eftirfarandi töflu.

i	$t_{i,0}$	$e_{i,1}$	$t_{i,1}$	$e_{i,2}$	$t_{i,2}$	$e_{i,3}$	$t_{i,3}$
0	20	25	30	40	40	55	55
1	10	30	30	70	70	130	130
2	40	60	60	100	100	160	180
3	0	30	30	90	90	180	180
4	50	60	60	80	90	120	130

Rúta 4 tekur framúr hægari rútunni 2 á röðunarstöð 1 þar sem þær koma þangað á sama tíma. Næst fylkjast rúta 4 með rútu 3 milli stöðvar 1 og stöðvar 2, sem verður til þess að rúta 4 kemur að stöð 2 á sekúndu 90 í stað sekúndu 80. Eftir að hún fer frá stöð 2 fylkjast rúta 4 með rútu 1 þar til þær koma að hótelinu. Rúta 4 kemur að hótelinu á sekúndu 130. Því skal fallið skila 130.

Við getum teiknað graf af tímanum sem tekur fyrir sérhverja rútu að komast að sérhverri fjarlægð frá flugvellinum. Á grafinu táknar x-ásinn fjarlægðina frá flugvellinum í kílómetrum og y-ásinn táknar tímann sem hefur liðið í sekúndum. Lóðréttar strikalínur tákna staðsetningar röðunarstöðvanna. Mismunandi óbrotnar línur sem fylgja númerum rútnanna tákna fjórar rúturnar sem eru ekki vararútan. Svarta punktalínan táknar vararútuna.

Skorður

- $1 \le L \le 10^9$
- $1 \le N \le 1000$
- $0 \leq T[i] \leq 10^{18}$, fyrir sérhvert i þar sem $0 \leq i < N$
- $1 \leq W[i] \leq 10^9$, fyrir sérhvert i þar sem $0 \leq i < N$
- $1 \le X \le 10^9$
- $2 \le M \le 1000$
- $0 = S[0] < S[1] < \cdots < S[M-1] = L$
- $1 \le Q \le 10^6$
- $0 \le Y \le 10^{18}$

Hlutverkefni

- 1. (9 stig) $N=1, Q \leq 1\,000$
- 2. (10 stig) $M=2, Q \leq 1\,000$
- 3. (20 stig) $N,M,Q \leq 100$
- 4. (26 stig) $Q \le 5\,000$
- 5. (35 stig) Engar frekari skorður.

Sýnisyfirferðarforrit

Sýnisyfirferðarforritið les inntakið á eftirfarandi sniði:

- lína $1:L\ N\ X\ M\ Q$
- lína $2: T[0] T[1] \ldots T[N-1]$
- lína $3:W[0]\ W[1]\ \dots\ W[N-1]$
- Iína $4{:}\,S[0]\,\,S[1]\,\,\ldots\,\,S[M-1]$
- lína 5+k ($0 \le k < Q$): Y í fyrirspurn k

Sýnisyfirferðarforritði skrifar svörin þín á eftirfarandi sniði:

• lína 1+k ($0 \le k < Q$): skilagildi arrival_time í fyrirspurn k