وازن المعادلات الكيميائية التالية

 $Al(s) + O_2(g) \longrightarrow Al_2O_3(s)$ الأوكسجين الأوكسجين الأوكسجين –1

 $C_3H_6\left(g
ight) + O_2\left(g
ight) \longrightarrow CO_2\left(g
ight) + H_2O\left(g
ight)$ احتراق البروبان -2

 $Zn\left(s\right) + H^{+}\left(aq\right) \longrightarrow Zn^{+2}\left(aq\right) + H_{2}\left(g\right)$ گار الهيدرو جين على الزنك -3

 Cu^{+2} (aq) + OH (aq) \longrightarrow Cu(OH)₂ (s) قعل محلول هيدروكسيد الصوديوم على شاردة النحاس -4

التمرين 02:]

أهم الأسمدة المنتجة في الصناعة الكيميائية هو نترات الأمونيوم (مركب صلب ،صيغته NH_4NO_3) . نحصل عليه من تفاعل مباشر بين النشادر غاز NH_3 و محلول مركز من حمض الأزوت NNO_3

 $H_2 + N_2 \longrightarrow NH_3$ تحضر المتفاعلات صناعيا باستعمال التحولات الكيميائية التالية

 $NH_3 + O_2$ \longrightarrow $NO + H_2O$. المابقة $NO + H_2O$. NO $NO + H_2O$. NO $NO + H_2O$.

 $NO + O_2$ \longrightarrow NO_2

1.02 NO₂ + H₂O \longrightarrow HNO₃ + NO الأمونيوم و وزنها -2

التمرين 03:

في أنبوبة اختبار نضع مزيج من أوكسيد النحاس (CuO) و باردة الكربون(C) . نزن المزيج فنجد كتلته $m_1=26.50~g$ نسخن الأنبوبة فيتشكل راسب أحمر أجوري من النحاس كما يتصاعد غاز ثاني أوكسيد الكربون . عند انتهاء نعيد وزن الأنبوبة بالمحتوى فنجد كتلته $m_2=22.20~g$ مع اختفاء كلى للفحم .

1- حدد مكونات الحالة الابتدائية و الحالة النهائية (يستحسن استعمال جدول).

2- أ) ما هي كتلة ثاني أوكسيد الكربون المتكون أثناء هذا التحول الكيميائي .

 $M(CO_2) = 44 \text{ g/mol}$. الخسيب عدد مو لات ثانى أو كسيد الكربون الناتج

جـ) الحجم المولى في الشروط التجريبية $V_{\rm m}=24.4~{
m L/mol}$ أحسب حجم هذا الغاز في هذه الشروط.

3- أكتب معادلة التفاعل الكيميائي الحادث . 4- أنشئ جدول التقدم لهذا التفاعل .

-5 أو جد مقدار التقدم الأعظمي X_{max} واستنتج كتلة النحاس المتشكلة .

التمرين 04:

لدينا محلول من كبريتات الحديد الثنائي ($_{(aq)}^{(aq)} + SO_{4}$ عجمه $_{(aq)}^{(aq)} + SO_{4}$ أدخلنا فيه صفيحة من الألمنيوم Al كتاتها $_{(aq)}^{(aq)} + SO_{4}$. نلاحظ حدوث تحول كيميائي مرفق باختفاء كلي للون الأخضر المميز لشوارد الحديد الثنائي $_{(aq)}^{(aq)} + SO_{4}^{(aq)} + SO_{5}^{(aq)}$. نلاحظ أيضا اختفاء كلي لقطعة الألمنيوم و تشكل راسب نزنه بعد ترشيح المحلول الناتج فنجد $_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)}$. in $_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)} + 3Fe_{(aq)}^{(aq)}$

1- على ماذا يدل اختفاء اللون الأخضر . 2- أنشئ جدول التقدم لهذا التفاعل . 3- هل يوجد متفاعل محد ؟ أوجد مقدار التقدم الأعظمي Xmax .

4- اعتمادا على جدول التقدم أوجد: أ- كتلة الألمنيوم الابتدائية m.

ب- التركيز المولي ${
m C}_0$ لمحلول كبريتات الحديد الثنائي .

جـ تركيز المحول الناتج بالشوارد $^{-2}$ $^{-1}$ و بالشوارد $^{-2}$ في نهاية التفاعل .

. $M(Al) = 27 \text{ g/mol } \cdot M(Fe) = 56 \text{ g/mol } :$ يعطى:

التمرين 05:

 $H_2C_2O_4$ نمزج في اللحظة t=0s عند الدرجة 12° C حجما $V_1=60~\text{mL}$ من محلول حمض الأوكساليك t=0s نمزج في اللحظة وي $V_1=60~\text{mL}$ من محلول بيكرومات البوتاسيوم $V_2=40~\text{mL}$ مع حجم $V_2=40~\text{mL}$ مع حجم $V_2=40~\text{mL}$ من محلول بيكرومات البوتاسيوم $V_2=40~\text{mL}$ مع حجم تركيزه المولي $V_2=40~\text{mL}$ ، التفاعل الكيميائية المنمذج للتحول الكيميائية الحادث يعطى بالمعادلة الكيميائية التالية : $C_2=0.2~\text{mol.L}^{-1}$. $C_2=0.2~\text{mol.L}^{-1}$ الكيميائية التالية : $C_2=0.2~\text{mol.L}^{-1}$.

2 - أحسب الكمية الابتدائية لشوارد البيكرومات ${
m Cr}_2{
m O}_7^{2-}$ و أكمل جدول تقدم التفاعل الحادث التالي 1

		•	· •				
الحالة	التقدم	$3H_2C_2O_4$ +	$+ Cr_2O_7^{2-} + 8H^+ = 6CO_2 + 2Cr^{3+} + 7H$				
ابتدائية	$\mathbf{x} = 0$	$n_0(H_2C_2O_4)$	$n_0(Cr_2O_7^{2-})$	7.	0	0	٦.
انتقالية	X			. فل			في
نهائية	X _{max}			,,0			,0

. x_{max} . x_{max} التقدم الأعظمي $(Cr^{3+})_f = 4.10^{-2} \text{ mol/L}$. أحسب التقدم الأعظمي $(Cr^{3+})_f = 4.10^{-2} \text{ mol/L}$. أحسب التقدم الأوكساليك $(Cr^{3+})_f = 4.10^{-2} \text{ mol/L}$. المنفاعل المحد هو حمض الأوكساليك $(Cr^{3+})_f = 4.10^{-2} \text{ mol/L}$ علما أن $(Cr^{3+})_f = 4.10^{-2} \text{ mol/L}$.

 $_{\mathrm{C}_{1}}$ وجد التركيز المولى الابتدائي لمحلول حمض الأوكساليك $_{\mathrm{C}_{1}}$.

 $_{0}$ - أحسب في نهاية التفاعل حجم غاز ثنائي أكسيد الكربون $_{0}$ الناتج في الشرطين النظاميين و كذا تركيزه المولى في المزيج $_{0}$