Major Assessment 2

RUIZ, REINARD	O2A	MA2	Score _		Total Pnts 25
---------------	-----	-----	---------	--	---------------

Direction: Answer correctly the following problems, write your answer on Canvass

Problem 1: Transform the first column to 1, 0, 0 of the following matrix system of equation using Gauss Jordan Elimination algorithm I discussed. Write your answer which specify the rows and column of coefficient or constant matrix. Example: coefficient matrix (r,c) = answer; constant matrix (r,1)= answer

Answer in Problem 1 (2pts):

$$\begin{bmatrix} u & b & z \\ a & e & i \\ n & r & d \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} g \\ f \\ c \end{bmatrix}$$

$$\begin{bmatrix} u & b & z \\ a & e & i \\ n & r & d \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} g \\ f \\ c \end{bmatrix} \qquad \begin{bmatrix} \underline{1} & \underline{ } & \underline{ } & \underline{ } \\ \underline{-0} & \underline{ } & \underline{ } & \underline{ } \\ \underline{-0} & \underline{ } & \underline{ } & \underline{ } \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} \underline{\underline{ }} & \underline{\underline{ }} \\ \underline{\underline{ }} & \underline{\underline{ }} \end{bmatrix}$$

Problem 2: Given with the following x and y data and a function $y=ax^2+bx+c$ where a,b and care unknown constants. Find the function that gives the least square error using the given data?

Answer in Problem 2 (4pts):

x	13.7	14.7	18.7	22.7
у	36.7	28.7	36.7	21.7

Problem 3: Given with the following x and y data, what is the lagrange polynomial correspond to data at x = 18.0 and y = 41.0.

	1	2	3	4
x data	18.0	19.0	23.0	27.0
y data	41.0	33.0	41.0	26.0

Answer in Problem 3 (3pts): l_1y_1

Problem 4: Given with the following x and y data, can produce a second degree polynomial $y = ax^2 + bx + c$ using direct method interpolation.

- 4a. Create a linear system of equation and transform to matrix system of equation? Write your answer which specify the rows and column of coefficient or constant matrix. Example: coefficient matrix (r,c) = answer; constant matrix (r,1)= answer
- 4b. What is the resulting polynomial?

Answer in Problem 4a (2pts):

Answer in Problem 4b(1pts):

Problem 5: Given with the following x and y data shown at the left side and the table at the right side is the Newton's Divided Difference(NDD) constant table.

- 5a. Find the value of A, B, C, and D in NDD constant table?
- 5b. What is the resulting Newton's Divided Difference polynomial using all the given data points?
- 5c. Interpolate x = 13.75?

Given Data:

i		10.0	11.0	10.0	155
	X	10.0	11.0	12.0	15.5
	у	10.5	13.134	15.3	19.9

NDD Constant Table:

y	1st	2nd	3rd
10.5			
A	2.634		
15.3	В	-0.234	
19.9	1.31429	С	D

Answer 5a (0.5pts each): A =	, B =	, C =	, D =	Answer 5c (1pt): y =	
Answer 5b (3pts):					

Problem 6: The following data is the distance and time travelled of a rocket, find the velocity of the rocket at t = 75 seconds. Use the centered finite difference with $E(h^4)$.

Given Data:

Time (seconds)					
Position (meter)	32.0	58.0	78.0	92.0	100.0

Answer 6 (2pts): Velocity = _____

Problem 7 (Fill in the blanks): In interpolation, a _____ number of data set or pair can create a 5th degree of polynomials.

Problem 8 (Questions): What method of interpolation has the following formula? (1pnt) $p(x) = \sum_{i=1}^n y_i \cdot \prod_{j=i, j \neq i}^n \frac{(x-x_i)}{(x_i-x_i)}$

Problem 9 (Question): What numerical methods for solving linear system of equations, has elimination and backwards substitution, where elimination is define as changing the under diagonal elements of coefficient matrix to a value of zero and backward substitution is to solved the final solution after the elimination. (1pnt)

Problem 10 (Question): What numerical methods for solving linear system of equations, where the coefficient matrix of a given matrix system of equation must transform or converted to identity matrix to find the final solution? (1pnt)

Problem 11 (Question): What curve fitting method has the formula of $A^TAv = A^Tb$, [where: A^T -transposed coefficient matrix; A - coefficient matrix; V - unknown vector or variable; V - constant matrix] to find least square solution? (1pnt)

Problem 12 (Question): What interpolation method I've discussed where a series are added from constant to higher order polynomial terms? (1pnt)

Problem 13 (Question): What are the the 3 ways to improve derivative estimates in numerical differentiation? (2pnt)