```
import numpy as np
\texttt{import} \cdot \texttt{pandas} \cdot \texttt{as} \cdot \texttt{pd}
from sklearn.model_selection import train_test_split
from \ \ sklearn. ensemble \ \ import \ \ Random Forest Classifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.preprocessing import StandardScaler
data = pd.read_csv('/content/diabetes.csv')
data.head()
```

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome 0 6 148 72 35 0 33.6 0.627 50 th 85 29 0 26.6 0.351 1 1 66 31 0 8 183 0 0 23.3 0.672 32

1 3 89 66 23 94 28.1 0.167 21 0 0 137 40 35 168 43.1 2.288 33 1

Next steps: Generate code with data View recommended plots

data.shape

(768, 9)

data.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000

data.groupby('Outcome').mean()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
Outcome	!					
0	3.298000	109.980000	68.184000	19.664000	68.792000	30.304200
1	4.865672	141.257463	70.824627	22.164179	100.335821	35.142537 •

X = data.drop('Age', axis=1) y = data['Age']

print(X)

print(y)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

	DiabetesPedigreeFunction	Outcome
0	0.627	1
1	0.351	0
2	0.672	1

```
0.167
                                           0
     4
                              2.288
                                           1
     763
                              0.171
                                           0
     764
                              0.340
                                           0
     765
                              0.245
                                           0
     766
                              0.349
                                           1
     767
                              0.315
     [768 rows x 8 columns]
     0
            50
     1
            31
     2
            32
     3
            21
     4
            33
     763
            63
     764
            27
     765
            47
     766
     767
            23
     Name: Age, Length: 768, dtype: int64
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{\text{test}} = \text{scaler.transform}(X_{\text{test}})
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
               RandomForestClassifier
      RandomForestClassifier(random_state=42)
predictions = model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
report = classification_report(y_test, predictions)
    'e are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
    re ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
    'e are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
    re ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
    e are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
    re ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
     Accuracy: 0.03896103896103896
     Classification Report:
                    precision
                                  recall f1-score
                                                     support
               21
                         0.10
                                   0.17
               22
                         0.00
                                   0.00
                                             0.00
                                                          13
               23
                         0.00
                                   0.00
                                             0.00
               24
                        0.00
                                   0.00
                                             0.00
                                                          10
               25
                                   0.25
                                             0.16
                        0.12
                                                           8
               26
                                   0.33
                                             0.20
                                                           3
                        0.14
               27
                        0.00
                                   0.00
                                             0.00
                                                           5
               28
                        0.00
                                   0.00
                                             0.00
                                                           9
               29
                        0.00
                                   0.00
                                             0.00
                                                          10
               30
                         0.00
                                   0.00
                                             0.00
                                                           4
               31
                         0.00
                                   0.00
                                             0.00
                                                           3
               32
                         0.00
                                   0.00
                                             0.00
               33
                         0.00
                                   0.00
                                             0.00
               34
                         0.00
                                   0.00
                                             0.00
```

0

4

3

6

4

2

35

36

37

38

39

40

41

0.00

0.00

0.00

0.00

0.00

0.00

0.33

0.00

0.00

0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.00

0.00

0.00

0.20

42	0.00	0.00	0.00	4
43	0.00	0.00	0.00	4
44	0.00	0.00	0.00	3
45	0.00	0.00	0.00	2
46	0.00	0.00	0.00	0
47	0.00	0.00	0.00	0
48	0.00	0.00	0.00	1
49	0.00	0.00	0.00	1
50	0.00	0.00	0.00	2
51	0.00	0.00	0.00	1
52	0.00	0.00	0.00	0
53	0.00	0.00	0.00	2
54	0.00	0.00	0.00	2
55	0.00	0.00	0.00	1
56	0.00	0.00	0.00	1
57	0.00	0.00	0.00	1
58	0.00	0.00	0.00	4
60	0.00	0.00	0.00	3
62	0.00	0.00	0.00	3
63	0.00	0.00	0.00	2
65	0.00	0.00	0.00	2
67	0.00	0.00	0.00	1
69	0.00	0.00	0.00	0
accuracy			0.04	154
macro avg	0.01	0.02	0.02	154
weighted avg	0.02	0.04	0.03	154