Datenstrukturen und effiziente Algorithmen

Markus Vieth

David Klopp

22. Januar 2016

Inhaltsverzeichnis

1	Vorl	esung		1
		1.0.1	Gesamtzahl der Schleifendurchläufe]
	1.1	Algori	thmen zur Berechnung maximaler Flüsse]
			Flusserhaltung	
			Definition	
		1.1.3	Definition: Schnitt (S,T)	٠
			Konstruktion des Restnetzwerk G_f	
	1.2		Fulkerson-Algorithmus	

1 Vorlesung

Ohne Beweis (siehe später Edmonds-Krap-Algorithmus) gilt:

Die Zeit der Schichten im Levelnetzgraph des Hopcraft-Karp-Algorithmus steigt mindestens um eins von Durchlauf zu Durchlauf.

$$|M^*| - |M| \le \frac{I|V|}{k}$$
 $\tilde{G} = (V_1 \cup V_2, M \oplus M^*)$

k Mindestlänge der M-augm. Pfade

Ziel Laufzeit von Hopcraft-Karp = $\mathcal{O}(\sqrt{|V|} \cdot |E|)$

- **1. Phase** k Schleifendurchläufe \Rightarrow Danach haben M-augm. Pfade mindestens die Länge k
- 2. Phase Weitere $\frac{|V|}{k}$ Schleifendurchläufe genügen, um zum Maximum-Matching M^* zu gelangen.

1.0.1 Gesamtzahl der Schleifendurchläufe

$$S(k) = k + \frac{|V|}{k}$$
 $S'(k) = 1 - \frac{|V|}{k^2} = 0 \Rightarrow k = \sqrt{|V|}$

 \Rightarrow Zahl der Schleifendurchläufe $\leq \sqrt{|V|}$

1.1 Algorithmen zur Berechnung maximaler Flüsse

Abbildung 1.1: ...

$$c^{\mathrm{II}}:E\to\mathbb{R}_0^+$$

Gesucht:

$$f: E \to \mathbb{R}_0^+$$

 $\forall (u,v) \in E : \text{Kapazitätsbedingung: } 0 \leq f(u,v) \leq c(u,v)$

1.1.1 Flusserhaltung

^ILemma von Berge

 $^{^{\}rm II}$ Kapazität

1 Vorlesung

 $(u,v) \in E \Rightarrow (v,u) \notin E$ Konventionen

Abbildung 1.3: ...

Abbildung 1.4: Beispiel für einen Fluss

1.1.2 Definition

$$|f| = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) = \sum_{v \in V} f(v,t) - \sum_{v \in V} f(t,v)$$

Gesucht: maximaler Fluss |f|

1.1.3 Definition: Schnitt (S,T)

$$S \dot{\cup} T = V \quad s \in S, t \in T$$

Schnittkapazität

$$\sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T)$$

Fluss über Schnitt

$$\sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \le c(S, T)$$

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S \setminus \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) = \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

$$= \sum_{u \in S} \left(\sum_{v \in S} f(u, v) + \sum_{v \in T} f(u, v) - \sum_{v \in S} f(v, u) - \sum_{v \in T} f(v, u) \right)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) + \sum_{v \in T} f(v, v) - \sum_{u \in S} \sum_{v \in S} f(u, v) - \sum_{u \in S} \sum_{v \in S} f(v, u) - \sum_{u \in S} \sum_{v \in S} f(v, u) \right) = f(S, T)$$

1.1.4 Konstruktion des Restnetzwerk G_f

(a) Restnetzwerk zum Graphen (b) Mit Restnetzwerk optimierter

$$|f| = f(S,T) \le c(S,T)$$

1.2 Ford-Fulkerson-Algorithmus

```
f = 0;
  do {
       p = flussverbessernder Pfad im Restnetzwerk G_f;
      c_{min} = kleinste Restkapazität der kanten von p;
       erhöhe den Fluss f entlang von p um c_min
6 } while (p \neq NULL);
```

Abbildungsverzeichnis

1.1		1
1.2		2
1.3		2
1.4	Beispiel für einen Fluss	2
1.5	Beispiel Schnitt	3