EL2450 Hybrid and Embedded Control

Lecture 12: Verification of hybrid systems

- Reachability for hybrid automata
- Bisimulations of hybrid systems

Today's Goal

You should be able to

- do reachability analysis for hybrid automata
- state when transitions systems are bisimilar
- find a bisimulation quotient for a transition system

Recap: Verification

- Prove that a system fulfills certain property
- Based on a mathematical model and a computational tool

Recap: Safety of Transition Systems

For a transition system $T=(S,\Sigma,\rightarrow,S_0)$, let $B\subseteq S$ denote a "bad" set, i.e., a set of states that we don't want the system to enter. T is **safe** if

$$\operatorname{Reach}(S_0) \cap B = \emptyset$$
,

where $Reach(S_0)$ is the set of states that can be reached from S_0 by a sequence of transitions, i.e.,

$$\operatorname{Reach}(S_0) = \bigcup_{k=0,1,\dots} \operatorname{Post}^k(S_0).$$

- There is an algorithm for reach set computation
- The algorithm is guaranteed to terminate if the transition system is finite

Safety of Hybrid Automata

For a hybrid automaton $H = (Q, X, \mathsf{Init}, f, D, E, G, R)$, let $B \subseteq Q \times X$ denote a "bad" set, i.e., a set of states that we don't want the system to enter. H is **safe** if

$$\mathsf{Reach}_{H}(\mathsf{Init}) \cap B = \emptyset,$$

where Reach_H(Init) $\subseteq Q \times X$ is the set of states that can be reached by a solution of H from Init, i.e.,

$$(\bar{q},\bar{x}) \in \mathsf{Reach}_{H}(\mathsf{Init})$$

if and only if there exists a solution $\chi = (\tau, q, x)$ of H such that

- $(q(0), x^0(0)) \in Init$, and
- $(q(t), x^i(t)) = (\bar{q}, \bar{x})$ for some $t \in [\tau_i, \tau'_i) \in \tau$.

Pre and Post for Hybrid Automata

The **predecessor operator** $Pre(P), P \subseteq Q \times X$ for a hybrid automaton is

$$\mathsf{Pre}_{H}(P) = \{(q_p, x_p): \ \exists (q, x) \in P, (q_p, x_p) \overset{t}{\rightarrow} (q, x) \ \mathsf{or} \ (q_p, x_p) \overset{e}{\rightarrow} (q, x)\}.$$

The successor operator Post(P) for a hybrid automaton is

$$\mathsf{Post}_{H}(P) = \{ (q_p, x_p) : \ \exists (q, x) \in P, (q, x) \overset{\mathsf{t}}{\to} (q_p, x_p) \ \mathsf{or} \ (q, x) \overset{\mathsf{e}}{\to} (q_p, x_p) \}.$$

$$Reach_H(Init) = \bigcup_{k=0,1,...} Post_H^k(Init).$$

Hybrid Automaton as a Transition System

A hybrid automaton is a transition system $T_H = (S, \Sigma, \rightarrow, S_0 = \text{Init})$ with interacting event-driven and time-driven evolution:

- $S = Q \times X$ and $(q, x) \in S$ denotes the state
- $\Sigma = \{g\} \cup \text{Time}$ where the generators $\{g\}$ causes the jumps and Time the continuous evolution
- ullet (q,x)
 ightarrow (q',x') defines the event-driven and time-driven transitions

Example: $S = Q \times X$, with $Q = \{q_1, q_2\}$ and $X = \mathbb{R}$, $\Sigma = \{g_1, g_2\} \cup \mathsf{Time}$, g_1 corresponds to the event x > 1 and g_2 to x < -1, $S_0 = \mathit{Init} = \{(q_1, x) \mid x \geq 0\}$

Reach Set for Hybrid Automata

Reach set for a hybrid automaton H can be computed in the transition system T_H

$$Reach_H(Init) = Reach(S_0)$$

- T_H can be infinite and thus the reach set computation algorithm does not have to terminate
- Idea: To simplify T_H while preserving all information about its behaviors

Example

Figure: The transition systems $T_1 = (S, \Sigma, \rightarrow, S_0, S_F)$ (left) and $T_1' = (S', \Sigma, \rightarrow', S_0', S_F')$ (right).

• How formalize that T_1 (left) and T_1' (right) above have similar behaviour?

Relation

Given two sets A and B, a (binary) **relation** R from A to B is a subset of $A \times B$. We write a R b if $(a, b) \in R$.

Example

= is a relation from \mathbb{N} to \mathbb{N} .

Simulation Relation

Given transition systems $T=(S,\Sigma,\rightarrow,S_0,S_F)$ and $T'=(S',\Sigma,\rightarrow',S'_0,S'_F)$. A relation $\sim\subseteq S\times S'$ is a **simulation relation** if

- 1. $\forall s \in S_0 \ (\exists s' \in S'_0. \ s \sim s')$
- 2. $s \sim s' \land s \in S_F \Rightarrow s' \in S'_F$
- 3. $\forall \sigma \in \Sigma \ (s \sim s' \land s \xrightarrow{\sigma} r \Rightarrow \exists r' \in S' \text{ such that } s' \xrightarrow{\sigma} r' \text{ and } r \sim r')$

We say that T' simulates T, i.e. that T is simulated by T', denoted by $T \sim T'$

Example: Simulation

Figure: The transition systems T_1 (left) and T'_1 (right).

Derive a simulation relation for T_1 and T'_1

Example: Simulation

Figure: T_2 (left), T'_2 (right).

Derive a simulation relation for T_2 and T_2'

Bisimulation Relation

lf

- $\sim \subseteq S \times S'$ is a simulation relation from T to T' and
- $\sim' = \{(s', s) : (s, s') \in \sim\} \subseteq S' \times S$ is a simulation relation from T' to T,

then \sim is a **bisimulation relation**.

- The existence of a bisimulation relation between two transition systems indicates that they are equivalent in some sense
- We say that T and T' are **bisimilar**

Examples: Bisimulation Relation

Figure: The transition systems T_1 (left) and T'_1 (right) are bisimilar.

Examples: Bisimulation Relation

Figure: T_2 (left), T_2' (right) are not bisimilar, because T_2' simulates T_2 , but T_2 does not simulate T_2' .

Examples: Bisimulation Relation

Figure: T_3 (left), T'_3 (right).

Are T_3 and T_3' bisimilar?

Equivalence Relation

A relation $\equiv \subset S \times S$ is an **equivalence relation** if for all $s, s', s'' \in S$

- 1. $s \equiv s$ (reflexive)
- 2. $s \equiv s' \Rightarrow s' \equiv s$ (symmetric)
- 3. $s \equiv s'$ and $s' \equiv s'' \Rightarrow s \equiv s''$ (transitive)

Example

= is an equivalence relation

Equivalence Class

Let $\equiv \subseteq S \times S$ be an equivalence relation. The **equivalence class** of $r \in S$ is defined as $[r] = \{s \in S \mid s \equiv r\}$.

Note

The equivalence classes constitute a partition of S, i.e., a collection of states $S/_{\equiv} = \{S_i\}_{i \in I}$ such that

$$S_i \cap S_j = \emptyset$$
, for all $i \neq j$

and

$$\bigcup_{i\in I} S_i = S$$

Quotient Transition System

Given a transition system $T=(S,\Sigma,\rightarrow,S_0,S_F)$ and a partition $S/_{\equiv}=\{S_i\}_{i\in I}$, the **quotient transition system** $\hat{T}=(\hat{S},\Sigma,\hat{\rightarrow},\hat{S}_0,\hat{S}_F)$ is defined as

- 1. $\hat{S} = S/_{\equiv}$
- 2. $\hat{s} \stackrel{\sigma}{\hat{\rightarrow}} \hat{s}'$ if $\exists s, s' \in S, s \in \hat{s}, s' \in \hat{s}', s \stackrel{\sigma}{\rightarrow} s'$
- 3. $\hat{s} \in \hat{S}_0$ if $\exists s \in \hat{s}, s \in S_0$
- 4. $\hat{s} \in \hat{S}_F$ if $\exists s \in \hat{s}, s \in S_F$

Can we find a *finite* partition such that T and \hat{T} are bisimilar?

Quotient Transition System

Given an equivalence relation $\equiv \subseteq S \times S$, the relation $\sim \subseteq S \times S/\equiv$ such that $\sim = \{(s,[s])|s \in S\}$ is a bisimulation relation between $T = (S,\Sigma,\to,S_0,S_F)$ and its quotient transition system \hat{T} when:

- 1. S_F is a union of equivalence classes.
- 2. For each $P \subseteq S$ that is a union of equivalence classes, $\operatorname{Pre}_{\sigma}(P)$ is a union of equivalence classes, for all $\sigma \in \Sigma$.

Thus, if T and \hat{T} are bisimilar, all the information related to T can be derived from the evolution in \hat{T}

Bisimulation Quotient Algorithm

1. initialize
$$S/\equiv \{\{s\mid s\in S\setminus S_F\}, \{s\mid s\in S_F\}\}$$

2. while $\exists P,P'\in S/\equiv,\sigma\in\Sigma$, s.t. $\emptyset\neq P\cap Pre_{\sigma}(P')\neq P$
 $P_1:=P\cap Pre_{\sigma}(P')$
 $P_2:=P\setminus Pre_{\sigma}(P')$
 $S/\equiv:=(S/\equiv\setminus\{P\})\cup\{P_1,P_2\}$
end while

If the algorithm terminates, it computes the *coarsest* quotient. If T is infinite, the algorithm is not guaranteed to terminate.

Example: Bisimulation Relation

Figure: T_3

Properties of Quotient Transition Systems

- For finite state systems an algorithm that always finds the coarsest bisimilar quotient system exists and always terminates
- Even if a transition system has infinite state space, its corresponding quotient transition system can be finite
- For time-triggered continuous-time systems (and hybrid systems) we cannot always find a finite partition

Reachability for Bisimilar Transition Systems

Given $T = (S, \Sigma, \rightarrow, S_0, S_F)$, the question whether

$$\operatorname{Reach}(S_0) \cap S_F = \emptyset$$

in T is equivalent to the question whether

$$\operatorname{Reach}(\hat{S_0}) \cap \hat{S_F} = \emptyset$$

in the bisimulation quotient transition system \hat{T} .

Safety Verification for Hybrid Automata

• A hybrid automaton H = (Q, X, Init, f, D, E, G, R) and a bad set $B \subseteq Q \times X$ can be captured as a transition system $T_H = (S, \Sigma, \rightarrow, S_0, S_F = B)$, and the question whether

$$Reach_H(Init) \cap B = \emptyset$$

is equivalent to the question whether

$$\operatorname{Reach}(S_0) \cap S_F = \emptyset$$

in T_H , which is equivalent to the question whether

$$\mathsf{Reach}(\hat{S_0}) \cap \hat{S_F} = \emptyset$$

in the bisimulation quotient transition system \hat{T}_H .

• If \hat{T}_H is finite, then the Reach Set Computation algorithm (ref. Lec. 9) terminates in a finite number of steps.

Example: Safety Verification of a Hybrid Automaton

Initial set: $Init = \{(q_1, 0)\}$

Bad set: $B = \{(q_2, x) \mid x \in [1, 2]\}$

Next Lecture

- Which classes of hybrid systems admit a finite bisimulation quotient transition system?
 - Reachability for timed automata, multi-rate automata, rectangular automata
- Over-approximations