Lecture 4: The Entropy Methods

Tianpei Xie

Jan. 19th., 2023

Contents

1	\mathbf{Log}	arithmic Sobolev Inequality	2
	1.1	Bernoulli Logarithmic Sobolev Inequality	2
	1.2	Gaussian Logarithmic Sobolev Inequality	4
	1.3	Information Theory Interpretation	6
	1.4	Logarithmic Sobolev Inequality for General Probability Measures	7
	1.5	Applications	8
		1.5.1 Lipschitz Functions of Gaussian Variables	8
		1.5.2 Supremum of Gaussian Process	8
		1.5.3 Hypercontractivity for Boolean Polynomials	8
		1.5.4 Gaussian Hypercontractivity	8
2	The	Entropy Methods	8
	2.1	Herbst's Argument	8
	2.2	Modified Logarithmic Sobolev Inequalities	(
	2.3	Poisson Logarithmic Sobolev Inequality	. 1
	2.4	Applications	2
		2.4.1 Concentration on the Hypercube	2
		2.4.2 Bounded Difference Inequality	2
		2.4.3 The Johnson-Lindenstrauss Lemma	2
		2.4.4 Concentration of Convex Lipschitz Functions	2
		2.4.5 Exponential Tail Bounds for Self-Bounding Functions	2

1 Logarithmic Sobolev Inequality

1.1 Bernoulli Logarithmic Sobolev Inequality

• Remark (Setting)

Consider a uniformly distributed binary vector $Z = (Z_1, ..., Z_n)$ on the hypercube $\{-1, +1\}^n$. In other words, the components of X are independent, identically distributed random sign (Rademacher) variables with $\mathbb{P}\{Z_i = -1\} = \mathbb{P}\{Z_i = +1\} = 1/2$ (i.e. symmetric Bernoulli random variables).

Let $f: \{-1,+1\}^n \to \mathbb{R}$ be a real-valued function on **binary hypercube**. X:=f(Z) is an induced real-valued random variable. Define $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},Z_i',Z_{i+1},\ldots,Z_n)$ be the sample Z with i-th component replaced by an independent copy Z_i' . Since $Z,\widetilde{Z}^{(i)}\in\{-1,+1\}^n$, $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},-Z_i,Z_{i+1},\ldots,Z_n)$, i.e. the i-th sign is **flipped**. Also denote the i-th Jackknife sample as $Z_{(i)}=(Z_1,\ldots,Z_{i-1},Z_{i+1},\ldots,Z_n)$ by leaving out the i-th component. $\mathbb{E}_{(-i)}[X]:=\mathbb{E}\left[X|Z_{(i)}\right]$.

Denote the i-th component of **discrete gradient** of f as

$$\nabla_i f(z) := \frac{1}{2} \left(f(z) - f(\widetilde{z}^{(i)}) \right)$$

and
$$\nabla f(z) = (\nabla_1 f(z), \dots, \nabla_n f(z))$$

• Remark (Jackknife Estimate of Variance)
Recall that the Jackknife estimate of variance

$$\mathcal{E}(f) := \mathbb{E}\left[\sum_{i=1}^{n} \left(f(Z) - \mathbb{E}_{(-i)}\left[f(\widetilde{Z}^{(i)})\right]\right)^{2}\right]$$
$$= \frac{1}{2}\mathbb{E}\left[\sum_{i=1}^{n} \left(f(Z) - f(\widetilde{Z}^{(i)})\right)^{2}\right].$$

Using the notation of discrete gradient of f, we see that

$$\mathcal{E}(f) := 2\mathbb{E}\left[\left\|\nabla f(Z)\right\|_{2}^{2}\right]$$

• Remark ($Entropy\ Functional$)
Recall that the entropy functional for f is defined as

$$H_{\Phi}(f(Z)) = \operatorname{Ent}(f) := \mathbb{E}\left[f(Z)\log f(Z)\right] - \mathbb{E}\left[f(Z)\log (\mathbb{E}\left[f(Z)\right])\right].$$

• Proposition 1.1 (Logarithmic Sobolev Inequality for Rademacher Random Variables). [Boucheron et al., 2013]

If $f: \{-1,+1\}^n \to \mathbb{R}$ be an arbitrary real-valued function defined on the n-dimensional binary hypercube and assume that Z is uniformly distributed over $\{-1,+1\}^n$. Then

$$Ent(f^2) \le \mathcal{E}(f)$$
 (1)

$$\Leftrightarrow \operatorname{Ent}(f^2(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_2^2\right] \tag{2}$$

Proof: The key is to apply the tensorization property of Φ -entropy. Let X = f(Z). By tensorization property,

$$\operatorname{Ent}(X^2) \le \sum_{i=1}^n \mathbb{E}\left[\operatorname{Ent}_{(-i)}(X^2)\right]$$

where $\operatorname{Ent}_{(-i)}(X^2) := \mathbb{E}_{(-i)} \left[X^2 \log X^2 \right] - \mathbb{E}_{(-i)} \left[X^2 \right] \log \left(\mathbb{E}_{(-i)} \left[X^2 \right] \right)$.

It thus suffice to show that for all i = 1, ..., n,

$$\operatorname{Ent}_{(-i)}(X^2) \le \frac{1}{2} \mathbb{E}_{(-i)} \left[\left(f(Z) - f(\widetilde{Z}^{(i)}) \right)^2 \right].$$

Given any fixed realization of $Z_{(-i)}$, $X = f(Z) = \widetilde{f}(Z_i)$ can only takes two different values with equal probability. Call these two values a and b. See that

$$\operatorname{Ent}_{(-i)}(X^2) = \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{1}{2}(a^2 + b^2) \log \left(\frac{a^2 + b^2}{2}\right)$$
$$\frac{1}{2}\mathbb{E}_{(-i)}\left[\left(f(Z) - f(\widetilde{Z}^{(i)})\right)^2\right] = \frac{1}{2}(a - b)^2.$$

Thus we need to show

$$\frac{1}{2}a^2\log a^2 + \frac{1}{2}b^2\log b^2 - \frac{1}{2}(a^2 + b^2)\log\left(\frac{a^2 + b^2}{2}\right) \le \frac{1}{2}(a - b)^2.$$

By symmetry, we may assume that $a \ge b$. Since $(|a| - |b|)^2 \le (a - b)^2$, without loss of generality, we may further assume that $a, b \ge 0$.

Define

$$h(a) := \frac{1}{2}a^2 \log a^2 + \frac{1}{2}b^2 \log b^2 - \frac{1}{2}(a^2 + b^2) \log \left(\frac{a^2 + b^2}{2}\right) - \frac{1}{2}(a - b)^2$$

for $a \in [b, \infty)$. h(b) = 0. It suffice to check that h'(b) = 0 and that h is concave on $[b, \infty)$. Note that

$$h'(a) = a \log a^2 + 1 - a \log \left(\frac{a^2 + b^2}{2}\right) - 1 - (a - b)$$
$$= a \log \frac{2a^2}{(a^2 + b^2)} - (a - b).$$

So h'(b) = 0. Moreover,

$$h''(a) = \log \frac{2a^2}{(a^2 + b^2)} + 1 - \frac{2a^2}{(a^2 + b^2)} \le 0$$

due to inequality $\log(x) + 1 \le x$.

• Remark (*Logarithmic Sobolev Inequality* \Rightarrow *Efron-Stein Inequality*). [Boucheron et al., 2013]

Note that for f non-negative,

$$Var(f(Z)) \le Ent(f^2(Z)).$$

Thus logarithmic Sobolev inequality (1) implies

$$Var(f(Z)) \le \mathcal{E}(f)$$

which is the Efron-Stein inequality.

• Corollary 1.2 (Logarithmic Sobolev Inequality for Asymmetric Bernoulli Random Variables). [Boucheron et al., 2013]

If $f: \{-1, +1\}^n \to \mathbb{R}$ be an arbitrary real-valued function and $Z = (Z_1, \dots, Z_n) \in \{-1, +1\}^n$ with $p = \mathbb{P}\{Z_i = +1\}$. Then

$$Ent(f^2) \le c(p) \mathbb{E}\left[\|\nabla f(Z)\|_2^2 \right] \tag{3}$$

where

$$c(p) = \frac{1}{1 - 2p} \log \frac{1 - p}{p}$$

Note that $\lim_{p \to 1/2} c(p) = 2$.

1.2 Gaussian Logarithmic Sobolev Inequality

• Proposition 1.3 (Gaussian Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous differentiable function and let $Z = (Z_1, \ldots, Z_n)$ be a vector of n independent standard Gaussian random variables. Then

$$Ent(f^{2}(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right]. \tag{4}$$

Proof: We first prove for n=1, where $f: \mathbb{R} \to \mathbb{R}$ is continuous differentiable and Z is standard Gaussian distribution. Without loss of generality, assume that $\mathbb{E}\left[f'(Z)\right] < \infty$ since it is trivial when $\mathbb{E}\left[f'(Z)\right] = \infty$. By density argument, it suffice to prove the proposition when f is twice differentiable with bounded support.

Now let $\epsilon_1, \ldots, \epsilon_n$ be independent Rademacher random variables and introduce

$$S_n := \frac{1}{\sqrt{n}} \sum_{j=1}^n \epsilon_j.$$

Note that $\epsilon_i \in \{-1, +1\}$ with equal probability, thus

$$\mathbb{E}_{(-i)}[S_n] = \frac{1}{2} \left[\left(\frac{1}{\sqrt{n}} \sum_{j \neq i} \epsilon_j + \frac{1}{\sqrt{n}} \right) + \left(\frac{1}{\sqrt{n}} \sum_{j \neq i} \epsilon_j - \frac{1}{\sqrt{n}} \right) \right]$$
$$= \frac{1}{2} \left[\left(S_n + \frac{1 - \epsilon_i}{\sqrt{n}} \right) + \left(S_n - \frac{1 + \epsilon_i}{\sqrt{n}} \right) \right].$$

In the proof of Gaussian Poincaré inequality, we show that by central limit theorem,

$$\limsup_{n \to \infty} \mathbb{E}\left[\sum_{i=1}^{n} \left| f(S_n) - f\left(S_n - \frac{2\epsilon_i}{\sqrt{n}}\right) \right|^2\right] = 4\mathbb{E}\left[(f'(Z))^2 \right].$$

On the other hands, for any continuous uniformly bounded function f, by central limit theorem,

$$\lim_{n \to \infty} \operatorname{Ent}\left(f^2(S_n)\right) = \operatorname{Ent}(f^2(Z))$$

The proof is then completed by invoking the logarithmic Sobolev inequality for Rademacher random variables

$$\operatorname{Ent}\left(f^{2}(S_{n})\right) \leq \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n} \left| f\left(S_{n}\right) - f\left(S_{n} - \frac{2\epsilon_{i}}{\sqrt{n}}\right) \right|^{2}\right]$$

$$\Rightarrow \lim_{n \to \infty} \operatorname{Ent}\left(f^{2}(S_{n})\right) \leq \frac{1}{2} \lim_{n \to \infty} \mathbb{E}\left[\sum_{i=1}^{n} \left| f\left(S_{n}\right) - f\left(S_{n} - \frac{2\epsilon_{i}}{\sqrt{n}}\right) \right|^{2}\right]$$

$$\Rightarrow \operatorname{Ent}(f^{2}(Z)) \leq 2\mathbb{E}\left[\left(f'(Z)\right)^{2}\right].$$

The extension of the result to dimension $n \geq 1$ follows easily from the sub-additivity of entropy which states that

$$\operatorname{Ent}(f^2) \le \sum_{i=1}^n \mathbb{E}\left[\mathbb{E}_{(-i)}\left[f^2(Z)\log f^2(Z)\right] - \mathbb{E}_{(-i)}\left[f^2(Z)\right]\log \mathbb{E}_{(-i)}\left[f^2(Z)\right]\right]$$

where $\mathbb{E}_{(-i)}[\cdot]$ denotes the integration with respect to *i*-th variable Z_i only. Thus by induction, for all *i*

$$\mathbb{E}_{(-i)}\left[f^2(Z)\log f^2(Z)\right] - \mathbb{E}_{(-i)}\left[f^2(Z)\right]\log \mathbb{E}_{(-i)}\left[f^2(Z)\right] \leq 2\mathbb{E}_{(-i)}\left[(\partial_i f(Z))^2\right].$$

Thus

$$\operatorname{Ent}(f^2) \le 2\mathbb{E}\left[\mathbb{E}_{(-i)}\left[\sum_{i=1}^n (\partial_i f(Z))^2\right]\right] = 2\mathbb{E}\left[\|\nabla f(Z)\|_2^2\right].$$

• Remark (Dimension Free Property).

The Gaussian logarithmic Sobolev inequality has a constant C=2 that is **independent of** dimension n:

$$\mathbb{E}_{\mu}\left[f^{2}\right] \leq 2\mathbb{E}_{\mu}\left[\left\|\nabla f\right\|_{2}^{2}\right].$$

This dimension-free property is related to the concentration of Gaussian measure μ . As a consequence, this inequality can be extended to functions of Gaussian measure on infinite dimensional space, such as Gibbs measure, Gaussian process etc.

• Remark (Equivalent Form of Gaussian Logarithmic Sobolev Inequality) Assume $f: \mathbb{R}^n \to (0, \infty)$ and $\int_{\mathbb{R}^n} f d\mu = 1$ under Gaussian measure μ . Substituting $f \to \sqrt{f}$, the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) = \int f \log f d\mu \le \frac{1}{2} \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{5}$$

• Remark (Gaussian Logarithmic Sobolev Inequality \Rightarrow Gaussian Poincaré Inequality). [Boucheron et al., 2013]

Recall that the Gaussian Poincaré inequality

$$\operatorname{Var}(f(Z)) \le \mathbb{E}\left[\|\nabla f(Z)\|_2^2\right]$$

Since

$$(1+t)\log(1+t) = t + \frac{t^2}{2} + o(t^2)$$

as $t \to 0$, we can get for Gaussian measures,

$$\operatorname{Ent}_{\mu}(1+\epsilon h) = \frac{\epsilon^2}{2} \operatorname{Var}_{\mu}(h) + o(\epsilon^2).$$

Similarly,

$$\int \frac{\left\|\nabla(1+\epsilon h)\right\|_{2}^{2}}{1+\epsilon h} d\mu = \epsilon^{2} \int \left\|\nabla h\right\|_{2}^{2} d\mu + o(\epsilon^{2}).$$

Thus from the Gaussian logarithmic Sobolev inequality,

$$\operatorname{Ent}_{\mu}(1+\epsilon h) \leq \frac{1}{2} \int \frac{\|\nabla(1+\epsilon h)\|_{2}^{2}}{1+\epsilon h} d\mu$$

$$\Leftrightarrow \frac{\epsilon^{2}}{2} \operatorname{Var}_{\mu}(h) + o(\epsilon^{2}) \leq \frac{\epsilon^{2}}{2} \int \|\nabla h\|_{2}^{2} d\mu + o(\epsilon^{2})$$

$$\Leftrightarrow \operatorname{Var}(f(Z)) \leq \mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right] \quad \text{as } \epsilon \to 0.$$

Thus the Gaussian logarithmic Sobolev inequality implies the Gaussian Poincaré inequality.

1.3 Information Theory Interpretation

• Remark (Information Interpretation of Gaussian Logarithmic Sobolev Inequality)

Let ν, μ be two probability measures on $(\mathcal{X}^n, \mathscr{F})$, $\mu = \mu_1 \otimes \ldots \otimes \mu_n$ and $\nu \ll \mu$. Define $f := \frac{d\nu}{d\mu}$ be the Radon-Nikodym derivative of ν with respect to μ (i.e f is the probability density function of ν with respect to μ). Then the entropy becomes **the relative entropy**

$$\operatorname{Ent}_{\mu}(f) := \mathbb{E}_{\mu} \left[f \log f \right] = \mathbb{KL} \left(\nu \parallel \mu \right)$$

since $\mathbb{E}_{\mu}[f] = \int_{\mathcal{X}^n} f d\mu = 1$.

On the other hand, the (relative) Fisher information is defined as

$$I(\nu \parallel \mu) := \mathbb{E}_{\nu} \left[\|\nabla \log f\|_{2}^{2} \right]$$

$$= \int \left\| \frac{\nabla f}{f} \right\|_{2}^{2} d\nu = \int \frac{\|\nabla f\|_{2}^{2}}{f^{2}} d\nu$$

$$= \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu$$

Thus the information interpretation of the Gaussian logarithmic Sobolev inequality is

$$\mathbb{KL}(\nu \parallel \mu) \le \frac{1}{2} I(\nu \parallel \mu) \tag{6}$$

where μ is a Gaussian measure and $\nu \ll \mu$ with density function f. Note that the Fisher information metric is the Riemannian metric induced by the relative entropy.

1.4 Logarithmic Sobolev Inequality for General Probability Measures

• From functional analysis, we have the Sobolev inequality,

Remark (The Sobolev Inequality) [Evans, 2010]

The Sobolev inequality states for smooth function $f: \mathbb{R}^n \to \mathbb{R}$ in Sobolev space where $n \geq 3$ and $p = \frac{2n}{n-2} > 2$

$$||f||_p^2 \le C_n \int_{\mathbb{R}^n} |\nabla f|^2 \, dx.$$

The inequality is sharp when the constant

$$C_n := \frac{1}{\pi n(n-2)} \left(\frac{\Gamma(n)}{\Gamma(n/2)}\right)^{2/n}$$

• Proposition 1.4 (Euclidean Logarithmic Sobolev Inequality).

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function and m be Lebesgue measure on \mathbb{R}^n , then

$$Ent_{m}(f^{2}) \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \mathbb{E}_{m} \left[\|\nabla f\|_{2}^{2} \right] \right)$$

$$\Leftrightarrow \int f^{2} \log \left(\frac{f^{2}}{\int f^{2} dx} \right) dx \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \int |\nabla f|^{2} dx \right)$$

$$(7)$$

• Definition (Logarithmic Sobolev Inequality for General Probability Measure). A probability measure μ on \mathbb{R}^n is said to satisfy the <u>logarithmic Sobolev inequality</u> for some constant C > 0 if for any smooth function f

$$\operatorname{Ent}_{\mu}(f^{2}) \leq C \operatorname{\mathbb{E}}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] \tag{8}$$

holds for any *continuous differentiable* function $f: \mathbb{R}^n \to \mathbb{R}$. The left-hand side is called *the entropy functional*, which is defined as

$$\operatorname{Ent}(f^2) := \mathbb{E}_{\mu} \left[f^2 \log f^2 \right] - \mathbb{E}_{\mu} \left[f^2 \right] \log \mathbb{E}_{\mu} \left[f^2 \right]$$
$$= \int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu.$$

The right-hand side is defined as

$$\mathbb{E}_{\mu}\left[\left\|\nabla f\right\|_{2}^{2}\right] = \int \left\|\nabla f\right\|_{2}^{2} d\mu.$$

Thus we can rewrite the logarithmic Sobolev inequality in functional form

$$\int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu \le C \int \|\nabla f\|_2^2 d\mu \tag{9}$$

• Remark (Logarithmic Sobolev Inequality)
For non-negative function f, we can replace $f \to \sqrt{f}$, so that the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) \le C \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{10}$$

• Remark (Modified Logarithmic Sobolev Inequality via Convex Cost and Duality) For some convex non-negative cost $c : \mathbb{R}^n \to \mathbb{R}_+$, the convex conjugate of c (Legendre transform of c) is defined as

$$c^*(x) := \sup_{y} \left\{ \langle x, y \rangle - c(y) \right\}$$

Then we can obtain the modified logarithmic Sobolev inequality

$$\operatorname{Ent}_{\mu}(f) \le \int f^2 \, c^* \left(\frac{\nabla f}{f}\right) d\mu \tag{11}$$

- 1.5 Applications
- 1.5.1 Lipschitz Functions of Gaussian Variables
- 1.5.2 Supremum of Gaussian Process
- 1.5.3 Hypercontractivity for Boolean Polynomials
- 1.5.4 Gaussian Hypercontractivity

2 The Entropy Methods

- 2.1 Herbst's Argument
 - Remark Recall that the Φ -entropy for $\Phi(x) = x \log(x)$ as

$$H_{\Phi}(X) = \operatorname{Ent}(X) := \mathbb{E}[X \log X] - \mathbb{E}[X] \log (\mathbb{E}[X]).$$

The variational formulation of $H_{\Phi}(X)$ is

$$\operatorname{Ent}(X) = \sup_{T} \left\{ X \left(\log(T) - \log(\mathbb{E}[T]) \right) \right\}$$

• Remark (Tensorization Property of Entropy Functional) Let $\mu = \mu_1 \otimes \ldots \otimes \mu_n$ be the probability distribution for $Z = (Z_1, \ldots, Z_n)$ on $(\mathcal{X}^n, \mathscr{F})$. For any measurable function $f : \mathcal{X}^n \to \mathbb{R}$, let $X = f(Z_1, \ldots, Z_n)$ so that $\mathbb{E}[X \log X] < \infty$. The sub-additivity of entropy function (i.e. the tensorization property) states that

$$\operatorname{Ent}_{\mu_1 \otimes ... \otimes \mu_n}(f) \leq \mathbb{E}_{\mu_1 \otimes ... \otimes \mu_n} \left[\sum_{i=1}^n \operatorname{Ent}_{\mu_i}(f) \right]$$

where the subscript μ_i indicates that the integration concerns the *i*-th variable only.

• Remark (Entropy Functional for Moment Generating Function) Let $X = e^{\lambda Z}$ where Z is a random variable. The entropy function of X becomes

$$\operatorname{Ent}(e^{\lambda Z}) = \mathbb{E}\left[\lambda Z e^{\lambda Z}\right] - \mathbb{E}\left[e^{\lambda Z}\right] \log\left(\mathbb{E}\left[e^{\lambda Z}\right]\right)$$

Denote $\psi_{Z-\mathbb{E}[Z]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right]$. Then

$$\begin{split} \psi'_{Z-\mathbb{E}[Z]}(\lambda) &= \frac{d}{d\lambda} \log \mathbb{E} \left[e^{\lambda(Z-\mathbb{E}[Z])} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda(Z-\mathbb{E}[Z])} \right]} \mathbb{E} \left[(Z-\mathbb{E}\left[Z \right]) \, e^{\lambda(Z-\mathbb{E}[Z])} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} e^{\lambda \mathbb{E}\left[Z \right]} \mathbb{E} \left[(Z-\mathbb{E}\left[Z \right]) \, e^{\lambda(Z-\mathbb{E}\left[Z \right])} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \mathbb{E} \left[(Z-\mathbb{E}\left[Z \right]) \, e^{\lambda Z} \right] \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \mathbb{E} \left[Z e^{\lambda Z} \right] - \mathbb{E} \left[Z \right] \\ &\Rightarrow \lambda \, \psi'_{Z-\mathbb{E}[Z]}(\lambda) = \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left(\mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[\lambda Z \right] \mathbb{E} \left[e^{\lambda Z} \right] \right) \\ &\Rightarrow \lambda \, \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda) = \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[\lambda Z \right] \mathbb{E} \left[e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda(Z-\mathbb{E}[Z])} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{1}{\mathbb{E} \left[e^{\lambda Z} \right]} \left\{ \mathbb{E} \left[\lambda Z e^{\lambda Z} \right] - \mathbb{E} \left[e^{\lambda Z} \right] \log \mathbb{E} \left[e^{\lambda Z} \right] \right\} \\ &= \frac{\mathbb{E} \operatorname{nt}(e^{\lambda Z})}{\mathbb{E} \left[e^{\lambda Z} \right]} \end{split}$$

Thus we have

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} = \lambda \ \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda). \tag{12}$$

Our strategy is based on using (12) the sub-additivity of entropy and then univariate calculus to derive upper bounds for the derivative of $\psi(\lambda)$. By solving the obtained differential inequality, we obtain tail bounds via Chernoff's bounding.

• Proposition 2.1 (Herbst's Argument) [Boucheron et al., 2013, Wainwright, 2019] Let Z be an integrable random variable such that for some $\nu > 0$, we have, for every $\lambda > 0$,

$$\frac{Ent(e^{\lambda Z})}{\mathbb{E}\left[e^{\lambda Z}\right]} \le \frac{\nu\lambda^2}{2} \tag{13}$$

Then, for every $\lambda > 0$, the logarithmic moment generating function of centered random variable $(Z - \mathbb{E}[Z])$ satisfies

$$\psi_{Z-\mathbb{E}[Z]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \leq \frac{\nu \lambda^2}{2}.$$

Proof: The condition of the proposition means, via (12), that

$$\lambda \ \psi'_{Z-\mathbb{E}[Z]}(\lambda) - \psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\nu \lambda^2}{2},$$

or equivalently,

$$\frac{1}{\lambda}\psi'_{Z-\mathbb{E}[Z]}(\lambda) - \frac{1}{\lambda^2}\psi_{Z-\mathbb{E}[Z]}(\lambda) \le \frac{\nu}{2}.$$

Setting $G(\lambda) = \lambda^{-1} \psi_{Z-\mathbb{E}[Z]}(\lambda)$, we see that the differential inequality becomes

$$G'(\lambda) \le \frac{\nu}{2}.$$

Since $G(\lambda) \to 0$ as $\lambda \to 0$, which implies that

$$G(\lambda) \le \frac{\nu\lambda}{2},$$

and the result follows.

2.2 Modified Logarithmic Sobolev Inequalities

• Proposition 2.2 (A Modified Logarithmic Sobolev Inequalities for Moment Generating Function) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $Z_{(-i)} = (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$ and $X_{(-i)} = f_i(Z_{(-i)})$ where $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ is an arbitrary function. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-X_{(-i)}))\right]$$
(14)

Proof: Recall the tensorization of entropy

$$\operatorname{Ent}_{\mu_1 \otimes ... \otimes \mu_n}(Y) \leq \mathbb{E}_{\mu_1 \otimes ... \otimes \mu_n} \left[\sum_{i=1}^n \operatorname{Ent}_{\mu_i}(Y) \right].$$

We bound each term on the right-hand side by the variational formulation of entropy

$$\operatorname{Ent}_{\mu_i}(Y) \le \mathbb{E}_{\mu_i} \left[Y(\log Y - \log u) - (Y - u) \right]$$

for any u > 0. Let $u = Y_{(-i)} = g_i(Z_{(-i)})$. We have

$$\operatorname{Ent}_{\mu_i}(Y) \leq \mathbb{E}_{\mu_i} \left[Y(\log Y - \log Y_{(-i)}) - (Y - Y_{(-i)}) \right].$$

Applying above inequality to the variable $Y = e^{\lambda X}$ and $Y_{(-i)} = e^{\lambda X_{(-i)}}$, one obtain

$$\operatorname{Ent}_{\mu_{i}}(e^{\lambda X}) \leq \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} (\log e^{\lambda X} - \log e^{\lambda X_{(-i)}}) - (e^{\lambda X} - e^{\lambda X_{(-i)}}) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} (\lambda (X - X_{(-i)}) - (e^{\lambda X} - e^{\lambda X_{(-i)}})) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} \left(\lambda (X - X_{(-i)}) - e^{-\lambda X} (e^{\lambda X} - e^{\lambda X_{(-i)}}) \right) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} \left(\lambda (X - X_{(-i)}) + e^{-\lambda (X - X_{(-i)})} - 1 \right) \right]$$

$$= \mathbb{E}_{\mu_{i}} \left[e^{\lambda X} \phi \left(-\lambda (X - X_{(-i)}) \right) \right]$$

where $\phi(x) = e^x - x - 1$. Thus the proof is completed.

• Proposition 2.3 (Symmetrized Modified Logarithmic Sobolev Inequalities) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $\widetilde{X}^{(i)} = f(Z_1, \ldots, Z_{i-1}, Z'_i, Z_{i+1}, \ldots, Z_n)$. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-\widetilde{X}^{(i)}))\right]$$
(15)

Moreover, denoting $\tau(x) = x(e^x - 1)$, for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(-\lambda(X-\widetilde{X}^{(i)})_{+})\right],$$
$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(\lambda(\widetilde{X}^{(i)}-X)_{-})\right].$$

Proof: Note that $X_{(-i)}$ and $\widetilde{X}^{(i)}$ are both independent from Z_i . The first inequality is the same as the proposition above. For the second inequality, use the fact that

$$\begin{split} \mathbb{E}_{\mu_i} \left[e^{\lambda X} \phi \left(\lambda (\widetilde{X}^{(i)} - X)_+ \right) \right] &= \mathbb{E}_{\mu_i} \left[e^{\lambda \widetilde{X}^{(i)}} \phi \left(\lambda (X - \widetilde{X}^{(i)})_+ \right) \right] \\ &= \mathbb{E}_{\mu_i} \left[e^{\lambda X} e^{-\lambda (X - \widetilde{X}^{(i)})} \phi \left(\lambda (X - \widetilde{X}^{(i)})_+ \right) \right]. \end{split}$$

and

$$\mathbb{E}_{\mu_i} \left[e^{\lambda X} \phi \left(-\lambda (\widetilde{X}^{(i)} - X) \right) \right] = \mathbb{E}_{\mu_i} \left[e^{\lambda X} \phi \left(-\lambda (\widetilde{X}^{(i)} - X)_+ \right) \right] + \mathbb{E}_{\mu_i} \left[e^{\lambda X} \phi \left(\lambda (\widetilde{X}^{(i)} - X)_+ \right) \right] \\
= \mathbb{E}_{\mu_i} \left[e^{\lambda X} \left\{ \phi \left(-\lambda (\widetilde{X}^{(i)} - X) \right) + e^{-\lambda (X - \widetilde{X}^{(i)})} \phi \left(\lambda (X - \widetilde{X}^{(i)})_+ \right) \right\} \right].$$

Finally note that $\phi(x) + e^x \phi(-x) = \tau(x) = x(e^x - 1)$.

2.3 Poisson Logarithmic Sobolev Inequality

• Proposition 2.4 (Modified Logarithmic Sobolev Inequality for Bernoulli Random Variable). [Boucheron et al., 2013]

Let $f: \{0,1\} \to (0,\infty)$ be a **non-negative** real-valued function defined on the binary set $\{0,1\}$. Define **the discrete derivative** of f at $x \in \{0,1\}$ by

$$\nabla f := f(1-x) - f(x).$$

Let X be a Bernoulli random variable with parameter $p \in (0,1)$ (i.e. $\mathbb{P}\{X=1\}=p$). Then

$$Ent(f(X)) \le (p(1-p))\mathbb{E}\left[\nabla f(X)\nabla \log f(X)\right]. \tag{16}$$

and

$$Ent(f(X)) \le (p(1-p))\mathbb{E}\left[\frac{|\nabla f(X)|^2}{f(X)}\right].$$
 (17)

• Proposition 2.5 (Poisson Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f: \mathbb{N} \to (0, \infty)$ be a non-negative real-valued function defined on the set of non-negative integers \mathbb{N} . Define the discrete derivative of f at $x \in \mathbb{N}$ by

$$\nabla f := f(x+1) - f(x).$$

Let X be a Poisson random variable. Then

$$Ent(f(X)) \le (\mathbb{E}[X])\mathbb{E}[\nabla f(X)\nabla \log f(X)].$$
 (18)

and

$$Ent(f(X)) \le (\mathbb{E}[X])\mathbb{E}\left[\frac{|\nabla f(X)|^2}{f(X)}\right].$$
 (19)

- 2.4 Applications
- 2.4.1 Concentration on the Hypercube
- 2.4.2 Bounded Difference Inequality
- 2.4.3 The Johnson-Lindenstrauss Lemma
- 2.4.4 Concentration of Convex Lipschitz Functions
- 2.4.5 Exponential Tail Bounds for Self-Bounding Functions

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.