

机器学习导论 第四章 决策树

詹德川

大纲

- 基本流程
- 划分选择
- 剪枝处理
- 连续与缺失值
- 多变量决策树

基本流程

决策树基于树结构来进行预测

基本流程

• 决策过程中提出的每个判定问题都是对某个属性的"测试"

- 决策过程的最终结论对应了我们所希望的判定结果
- 每个测试的结果或是导出最终结论,或者导出进一步的判定。 的判定,是是是是是一个人,或者导出进一步。 决策树学习的目的是为了产生一棵泛化能力强, 即处理未见示例能力强的决策树
- 从根结点到每个叶结点的路径对应了一个判定测试序列

基本流程

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结**点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点,其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*:
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

- (1) 当前结点包含的 样本全部属于同一类 别
- (2) 当前属性集为空, 或所有样本在所有属 性上取值相同
- (3) 当前结点包含的 样本集合为空

大纲

- 基本流程
- 划分选择

- 剪枝处理
- 连续与缺失值

• 多变量决策树

划分选择

- 决策树学习的关键在于如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度"(purity)越来越高
- 经典的属性划分方法:
 - 信息增益
 - 增益率
 - 基尼指数

• "信息熵"是度量样本集合纯度最常用的一种指标,假定当前样本集合D中第k类样本所占的比例为 p_k 则D的信息熵定义为Ent(D)

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

值越小,则D的纯度越高

- Ent(D) 的最小值为 0,最大值为 $log_2|\mathcal{Y}|$

• 离散属性a 有V个可能的取值 $\{a^1, a^2, ..., a^V\}$,用 a 来进行划分,则会产生V个分支结点,其中第V个分支结点包含了D 中所有在属性a 上取值为 a^v 的样本,记为 D^v 。则可计算出用属性a 对样本集D 进行划分所获得的"信息增益":

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$

为分支结点权重,样本数越 多的分支结点的影响越大

- 一般而言,信息增益越大,则意味着使用属性 a 来进行划分所获得的"纯度提升"越大
- □ ID3决策树学习算法[Quinlan, 1986]以信息增益为准则来选择划分属性

信息增益实例

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

该数据集包含17个 训练样本, $|\mathcal{Y}| = 2$, 其中正例占 $p_1 = \frac{8}{17}$, 反例占 $p_2 = \frac{9}{17}$,计 算得到根结点的信 息熵为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

- 以属性"色泽"为例,其对应的3个数据子集分别为 D¹ (色泽=青绿), D² (色泽=乌黑), D³ (色泽=浅白)
- 子集 D^1 包含编号为 $\{1,4,6,10,13,17\}$ 的6个样例,其中正例占 $p_1 = \frac{3}{6}$,反例占 $p_2 = \frac{3}{6}$, D^2 、 D^3 同理,3个结点的信息熵为: $\operatorname{Ent}(D^1) = -(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}) = 1.000$

$$\operatorname{Ent}(D^2) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(D^3) = -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722$$

• 属性"色泽"的信息增益为

Gain
$$(D, \textcircled{E})$$
 = Ent (D) - $\sum_{v=1}^{3} \frac{|D^v|}{|D|}$ Ent (D^v) = $0.998 - (\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722)$ = 0.109

• 类似的, 其他属性的信息增益为

Gain(D, 根蒂) = 0.143

Gain(D, 纹理) = 0.381

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

• 显然,属性"纹理"的信息增益最大,其被选为划分属性

• 决策树学习算法将对每个分支结点做进一步划分,最终得到的决策树如图: (如# - 2)

存在的问题

 若把"编号"也作为一个候选划分属性,则其信息 增益一般远大于其他属性。显然,这样的决策树不 具有泛化能力,无法对新样本进行有效预测

信息增益对可取值数目较多的属性有所偏好

划分选择-增益率

增益率定义:

$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

其中

$$IV(a) = -\sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \log_2 \frac{|D^{v}|}{|D|}$$

V 称为属性a 的"固有值" [Quinlan, 1993], 属性a的可 能取值数目越多(即 越大),则 IV(a)的值通常就 越大

• 存在的问题

| 增益率准则对可取值数目较少的属性有所偏好

划分选择-基尼指数

• 数据集D的纯度可用"基尼值"来度量

Gini(D) =
$$\sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2$$

反映了从D 中随机抽取两个样本,其类别标记不一致的概率

Gini(D) 越小,数据集D的纯度越高

• 属性a 的基尼指数定义为:

$$\operatorname{Gini_index}(D, a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Gini}(D^v)$$

• 应选择那个使划分后基尼指数最小的属性作为最优划分属性,即

$$a_* = \underset{a \in A}{\operatorname{argmin Gini_index}}(D, a)$$

• CART [Breiman et al., 1984] 采用"基尼指数"来选择划分属性

大纲

- 基本流程
- 划分选择

- 剪枝处理
- 连续与缺失值

• 多变量决策树

剪枝处理

- 为什么剪枝
 - "剪枝"是决策树学习算法对付"过拟合"的主要手段
 - 可通过"剪枝"来一定程度避免因决策分支过多,以致于 把训练集自身的一些特点当做所有数据都具有的一般性质 而导致的过拟合
- 剪枝的基本策略
 - 预剪枝
 - 后剪枝
- 判断决策树泛化性能是否提升的方法
 - 留出法: 预留一部分数据用作"验证集"以进行性能评估

剪枝处理

数据集

ìll	l练集
W	以朱

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	1 2 3 6 7	青乌黑绿鸟	蜷蜷缩缩 蜷缩缩 转	独响 沉闷 浊响 浊响 浊响	清晰 清晰 清晰 稍糊	凹陷 凹陷 凹陷 稍凹 稍凹	硬滑 硬硬滑 软粘 软粘	是是是是是
	10 14 15 16 17	青线白 吳白 黑白 青绿	硬 稍 蜷 蜷 蜷 缩	清脆 沉油响 浊响 沉闷	清晰 稍糊 清糊 模糊 稍糊	平 四 稍 四 平 坦 間 四 明 四 明 四 明 四 明 四 明 四 明 日 四 日 四 日 四 日 四	软滑 報 報 程 程 得 程 得 得 得 得 得 得 得 得 得 得 得 得 是 得 是 得	否否否否否
•	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
_	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
	9 11 12	乌黑 浅白 浅白	稍蜷 硬挺 蜷缩	沉闷 清脆 浊响	稍糊 模糊 模糊	稍凹 平坦 平坦	硬滑 硬滑 软粘	
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

验证集

剪枝处理

 决策树生成过程中,对每个结点在划分前先进行估计 ,若当前结点的划分不能带来决策树泛化性能提升, 则停止划分并将当前结点记为叶结点,其类别标记为 训练样例数最多的类别

针对上述数据集,基于信息增益准则,选取属性"脐部"划分训练集。分别计算划分前(即直接将该结点作为叶结点)及划分后的验证集精度,判断是否需要划分。若划分后能提高验证集精度,则划分,对划分后的属性,执行同样判断;否则,不划分

验 证

_								
	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
	9 11 12 13	乌黑 浅白 白 青绿	稍蜷 硬蜷缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则将其标记为叶结点,类别标记为训练样例中最多的类别,即好瓜。验证集中, $\{4,5,8\}$ 被分类正确,得到验证集精度为 $\frac{3}{7} \times 100\% = 42.9\%$

验证集精度

1) (脐部=?)

"脐部=?" 划分前: 42.9%

验	
证	_
集	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 白 青绿	稍 梃 蜷 稍 蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若划分,根据结点②,③,④ 的训练样例,将这3个结点分别标记为"好瓜"、"好瓜"、"好瓜"、"坏瓜"。此时,验证集中编号为 $\{4,5,8,11,12\}$ 的样例被划分正确,验证集精度为 $\frac{5}{7} \times 100\% = 71.4\%$

验	
证	-
集	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白白 青绿	稍蜷 硬蜷缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平烟 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

对结点②,③,④分别进行剪枝判断,结点②,③都禁止划分,结 点④本身为叶子结点。最终得到 仅有一层划分的决策树,称为 "决策树桩"

划分前: 71.4%

划分后: 57.1%

预剪枝决策: 禁止划分

"根蒂=?" 划分前: 71.4%

划分后: 71.4%

预剪枝决策: 禁止划分

http://lamda.nju.edu.cn

预剪枝的优缺点

- 优点
 - 降低过拟合风险
 - 显著减少训练时间和测试时间开销
- 缺点
 - <mark>欠拟合风险</mark>:有些分支的当前划分虽然不能提升泛化性能,但在其基础上进行的后续划分却有可能导致性能显著提高。预剪枝基于"贪心"本质禁止这些分支展开,带来了欠拟合风险

首先生成一棵 完整的决策树, 该决策树的验 证集精度为42.9%

• 首先考虑结点⑥ ,若将其替换为叶结点,根据落在其上的训练样本 {7,15} 将其标记为"好瓜",得到验证集精度提高至 57.1% ,则决定剪枝

• 最终基于后剪枝策略得到的决策树如图所示

后剪枝的优缺点

- 优点
 - 后剪枝比预剪枝保留了更多的分支,欠拟合风险小,泛化性能往往优于预剪 枝决策树
- 缺点
 - 训练时间开销大:后剪枝过程是在生成完全决策树之后进行的,需要自底向上对所有非叶结点逐一考察

大纲

- 基本流程
- 划分选择
- 剪枝处理
- 连续与缺失值

• 多变量决策树

连续与缺失值 - 连续值处理

- □ 连续属性离散化(二分法)
 - 第一步:假定连续属性a在样本集D上出现n个不同的取值,从小到大排列,记为 $a^1, a^2, ... a^n$,基于划分点 t,可将D分为子集 D_t^- 和 D_t^+ ,其中 D_t^- 包含那些在属性a上取值不大于t的样本, D_t^+ 包含那些在属性a上取值大于t的样本。考虑包含 n-1 个元素的候选划分点集合

$$T_a = \left\{ \frac{a^i + a^{i+1}}{2} \mid 1 \le i \le n-1 \right\}$$

即把区间 $[a^i, a^{i-1}]$ 的中位点 $\frac{a^i + a^{i+1}}{2}$ 作为候选划分点

连续与缺失值 - 连续值处理

- □ 连续属性离散化(二分法)
 - 第二步:采用离散属性值方法,考察这些划分点,选取最优的划分点 进行样本集合的划分

$$Gain(D, a) = \max_{t \in T_a} Gain(D, a, t)$$

$$= \max_{t \in T_a} Ent(D) - \sum_{\lambda \in \{-, +\}} \frac{|D_t^{\lambda}|}{|D|} Ent(D_t^{\lambda})$$

其中 Gain(D, a, t) 是样本集D基于划分点 t 二分后的信息增益,于是,就可选择使 Gain(D, a, t) 最大化的划分点

连续与缺失值 - 连续值处理

连续值处理实例

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.460	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.360	0.370	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

对属性 "密度", 其候选划 分点集合包含16 个候选值: $T_{\text{密度}} = \{0.244, 0.294, 0.351, 0.381, 0.420, 0.459, 0.518, 0.574, 0.600, 0.621, 0.636, 0.648, 0.661, 0.681, 0.708, 0.746\}$ 可计算其信息增益为 0.262,对应划分点为 0.381

对属性"含糖量"进行同样 处理

与离散属性不同,若当前结点划分属性为连续属性,该属性还可作为其后代结点的划分属性

- 不完整样本,即样本的属性值缺失
- 仅使用无缺失的样本进行学习?

对数据信息极大的浪费

• 使用有缺失值的样本,需要解决哪些问题?

Q1:如何在属性缺失的情况下进行划分属性选择?

Q2:给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?

- $\square \tilde{D}$ 表示 D 中在属性 a 上没有缺失值的样本子集, \tilde{D}^v 表示 \tilde{D} 中在属性 a 上取值为 a^v 的样本子集, \tilde{D}_k 表示 \tilde{D} 中属于第 k 类的样本子集 为每个样本 x 赋予一个权重 w_x ,并定义:
 - 无缺失值样本所占的比例

$$\rho = \frac{\sum_{x \in \tilde{D}} w_x}{\sum_{x \in D} w_x}$$

无缺失值样本中第k类所占比例

Q1: 如何在属性缺失的情况下进行划分属性选择?

$$\tilde{p}_k = \frac{\sum_{x \in \tilde{D}_k} w_x}{\sum_{x \in \tilde{D}} w_x} \quad (1 \le k \le |\mathcal{Y}|)$$

• 无缺失值样本中在属性a上取值 a^v 的样本所占比例

$$\tilde{r}_v = \frac{\sum_{x \in \tilde{D}^v} w_x}{\sum_{x \in \tilde{D}} w_x} \quad (1 \le v \le V)$$

□ 基于上述定义,可得

$$Gain(D, a) = \rho \times Gain(\tilde{D}, a)$$

$$= \rho \times \left(Ent(\tilde{D}) - \sum_{v=1}^{V} \tilde{r}_v Ent(\tilde{D}^v) \right)$$

其中

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{|\mathcal{Y}|} \tilde{p}_k \log_2 \tilde{p}_k$$

- □ 对于Q2
 - 若样本x在划分属性a上的取值已知,则将x划入与其取值对应的子结点,且样本权值在子结点中保持为 w_x
 - 若样本x在划分属性a上的取值未知,则将x同时划入所有子结点,且样本权值在与属性值 a^v 对应的子结点中调整为 $\tilde{r}_v \cdot w_x$ (直观来看,相当于让同一个样本以不同概率划入不同的子结点中去)

缺失值处理实例

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	_	是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	 否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	_	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

- 学习开始时,根结点包含 样本集D中全部17个样例, 各样例的权值均为1
- 以属性"色泽"为例,该属性上无缺失值的样例子集 Ď 包含14个样例,Ď 的信息熵为

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{2} \tilde{p}_k \log_2 \tilde{p}_k$$

$$= -\left(\frac{6}{14}\log_2\frac{6}{14} + \frac{8}{14}\log_2\frac{8}{14}\right) = 0.985$$

- $\hat{\phi}^{\tilde{D}^1}$ \tilde{D}^2 , \tilde{D}^3 , \hat{D}^3 , \hat{D}^3
- $\operatorname{Ent}(\tilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0.000$ 因此,样本子集 \tilde{D} 上属性"色泽"的信息增益为

Gain(
$$\tilde{D}$$
, 色泽) = Ent(\tilde{D}) - $\sum_{v=1}^{3} \tilde{r}_v$ Ent(\tilde{D}^v)
$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$

$$= 0.306$$

• 于是, 样本集 D上属性"色泽"的信息增益为

$$Gain(D, 色泽) = \rho \times Gain(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$

• 类似地可计算出所有属性在数据集上的信息增益

Gain(D, 色泽) = 0.252

Gain(D, 根蒂) = 0.171

Gain(D, 敲声) = 0.145

Gain(D, 纹理) = 0.424

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

大纲

- 基本流程
- 划分选择

- 剪枝处理
- 连续与缺失值
- 多变量决策树

多变量决策树

- 单变量决策树分类边界:轴平行
- 多变量决策树

• 非叶节点不再是仅对某 个属性,而是对属性的线 性组合

• 每个非叶结点是一个形 $如 \sum_{i=1}^{d} w_{i}a_{i} = t$ 的线性分 类器,其中 w_{i} 是属性 a_{i} 的权值, w_{i} 和 t 可在该 结点所含的样本集和属 性集上学得

多变量决策树

多变量决策树

• 多变量决策树

To Be Continue