

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION BLUETOOTH TEST REPORT

FOR

HANDS-FREE WIRELESS COMPUTING HEADSET CONTAINING BT v 2.1 + EDR and 802.11b/g RADIO

MODEL NUMBER: 30-00818-04

FCC ID: ZAOGOLDENI350 IC: 9529A- GOLDENI350

REPORT NUMBER: 10U13572-1, Revision C

ISSUE DATE: MARCH 18, 2011

Prepared for
KOPIN DISPLAY CORPORATION
200 JOHN HANCOCK ROAD
TAUNTON, MA 02780

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

DATE: MARCH 18, 2011 IC: 9529A- GOLDENI350

	Issue		
Rev.	Date	Revisions	Revised By
	02/18/11	Initial Issue	F. Ibrahim
Α	03/16/11	Revised BE radiated for 8PSK mode	F. Ibrahim
В	03/17/11	Revised I/O cables list, test equipment list and radiated emissions data above 1 GHz.	F. Ibrahim
	03/18/11	Removed MPF section	Δ Zaffar

TABLE OF CONTENTS

1.	ATT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAI	LIBRATION AND UNCERTAINTY	6
4	4.1.	MEASURING INSTRUMENT CALIBRATION	6
4	4.2.	SAMPLE CALCULATION	6
4	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQI	UIPMENT UNDER TEST	7
į	5.1.	DESCRIPTION OF EUT	7
į	5.2.	MAXIMUM OUTPUT POWER	7
į	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
į	5. <i>4</i> .	SOFTWARE AND FIRMWARE	7
ļ	5.5.	WORST-CASE CONFIGURATION AND MODE	
	5.6.	DESCRIPTION OF TEST SETUP	
•			
6.	TES	ST AND MEASUREMENT EQUIPMENT	10
7.	AN	TENNA PORT TEST RESULTS	11
7	7.1.	BASIC DATA RATE GFSK MODULATION	11
	7.1.	1. AVERAGE TIME OF OCCUPANCY	11
	7.1.		
	7.1.		
	7.1. 7.1.		
	7.1.		
	7.1.		
-	7 2	ENHANCED DATA RATE 8PSK MODULATION	
,	7.2.		
	7.2.		
	7.2.		
	7.2.	4. NUMBER OF HOPPING CHANNELS	53
	7.2.		
	7.2.		
	7.2.	7. CONDUCTED SPURIOUS EMISSIONS	63
8.	RAI	DIATED TEST RESULTS	69
8	3.1.	LIMITS AND PROCEDURE	69
8	3.2.		
	8.2.	1. BASIC DATA RATE GFSK MODULATION	70
	8.2.	2. ENHANCED DATA RATE 8PSK MODULATION	79

0 SE1	THE PHOTOS	92
8.4.	WORST-CASE BELOW 1 GHz	89
8.3.	RECEIVER ABOVE 1 GHz	88
FCC ID:	ZAOGOLDENI350	IC: 9529A- GOLDENI350
REPORT	NO: 10U13572-1C	DATE: MARCH 18, 2011

 REPORT NO: 10U13572-1C
 DATE: MARCH 18, 2011

 FCC ID: ZAOGOLDENI350
 IC: 9529A- GOLDENI350

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: KOPIN DISPLAY CORPORATION

200 JOHN HANCOCK ROAD

TAUNTON, MA 02780

EUT DESCRIPTION: HANDS-FREE WIRELESS COMPUTING HEADSET

CONTAINING BT v 2.1 + EDR and 802.11b/g RADIO

MODEL: 30-00818-04

SERIAL NUMBER: 12

DATE TESTED: FEBRUARY 1-4, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C (BLUETOOTH) Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 (BLUETOOTH) Pass

INDUSTRY CANADA RSS-GEN Issue 3 (BLUETOOTH) Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

FRANK IBRAHIM

EMC SUPERVISOR UL CCS THANH NGUYEN EMC ENGINEER UL CCS

Maukon guym

Page 5 of 94

REPORT NO: 10U13572-1C FCC ID: ZAOGOLDENI350

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: MARCH 18, 2011

IC: 9529A- GOLDENI350

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a hands-free wireless computing headset containing BT v 2.1 + EDR and 802.11b/g radio. The unit is manufactured by Kopin.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	Basic GFSK	1.62	1.45
2402 - 2480	Enhanced 8PSK	0.03	1.01

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Patch antenna, with a maximum gain of 4 dBi.

5.4. SOFTWARE AND FIRMWARE

WLAN: 1) Murata-SyChip Wi-Fi Firmware: 9.70.7.0

2) Murata-SyChip Wi-Fi Driver 0.4.3.8

Bluetooth: 3) Stonestreet One Bluetopia Stack for WinCE: version 2.1.3.5

Stonestreet One -- Bluetooth FCC Test Tool

Tool Version: 2.1.3.5

This application was loaded onto the EUT and remotely controlled through USB using the SOTI – Pocket Controller Pro.

<u>SOTI – Pocket Controller Pro:</u>

Version 6.02

This application installs on the PC and on the EUT. It allows the Golden-I WinCE device to be controlled by the desktop PC through USB using ActiveSync or Windows Mobile Device Center. It simplifies configuring the EUT for compliance testing by using the PC's mouse and big screen to navigate the WinCE's menus.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. Radiated Emissions below 1 GHz was performed with the EUT set to transmit at the channel with highest output power.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

EUT is a stand-alone device and has no peripherals.

I/O CABLES

	I/O CABLE LIST					
Cable No.		# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	USB	1	USB	shielded	1m	Ferrite bead at both sides

TEST SETUP

The EUT is a stand alone device, a host laptop computer used to activate the EUT and then it was taken out of the chamber during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/10	12/18/11
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/27/10	01/27/12
PSA Series Spectrum Analyzer	Agilent / HP	E4446A	C01069	01/05/10	04/05/11
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	08/05/10	12/17/11
Antenna, Hom, 18 GHz	EMCO	3115	C00945	06/24/10	06/24/11
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRIM50702	N02685	CNR	CNR
Antenna, Hom, 26.5 GHz	ARA	SWH-28	C01015	09/29/10	11/29/11

7. ANTENNA PORT TEST RESULTS

7.1. BASIC DATA RATE GFSK MODULATION

7.1.1. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

GFSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.3967	32	0.127	0.4	-0.273
DH3	1.654	16	0.265	0.4	-0.135
DH5	2.867	10	0.287	0.4	-0.113

DH1 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH3 PULSE WIDTH

DH3 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH5 PULSE WIDTH

<u>DH5 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD</u>

7.1.2. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	961.440	907.2002
Middle	2441	954.168	920.2769
High	2480	951.140	929.2868

20 dB AND 99% BANDWIDTH

7.1.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

7.1.4. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.1.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	annel Frequency Output Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	0.79	30	-29.21
Middle	2441	1.62	30	-28.38
High	2480	0.27	30	-29.73

OUTPUT POWER

7.1.6. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 6.5 dB (including 6 dB pad and .5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	-0.65
Middle	2441	0.58
High	2480	-0.51

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

7.2. ENHANCED DATA RATE 8PSK MODULATION

7.2.1. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

8PSK Mode

Of Off Mode					
DH Packet	Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
	(msec)		(sec)	(sec)	(sec)
DH1	0.4133	41	0.169	0.4	-0.231
DH3	1.658	14	0.232	0.4	-0.168
	2.9		0.319	0.4	-0.081

3DH1 PULSE WIDTH

3DH1 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

3DH3 PULSE WIDTH

3DH3 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

3DH5 PULSE WIDTH

3DH5 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

7.2.2. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.285	1.1908
Middle	2441	1.293	1.1507
High	2480	1.290	1.878

20 dB AND 99% BANDWIDTH

7.2.3. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

7.2.4. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.2.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-0.55	30	-30.55
Middle	2441	0.03	30	-29.97
High	2480	-0.61	30	-30.61

OUTPUT POWER

7.2.6. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 6.5 dB (including 6 dB pad and .5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	-1.99
Middle	2441	-1.01
High	2480	-1.39

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. RADIATED EMISSIONS ABOVE 1 GHZ

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

DATE: MARCH 18, 2011

IC: 9529A- GOLDENI350

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

FAX: (510) 661-0888

HARMONICS AND SPURIOUS EMISSIONS

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.3. **RECEIVER ABOVE 1 GHz**

8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: MARCH 18, 2011

IC: 9529A- GOLDENI350

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

DATA

30-1000MHz Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen
Date: 02/15/11
Project #: 10U13572
Company: Kopin Corporation
Test Target: FCC 15.247
Mode Oper: Transmit worst case

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	\mathbf{CL}	Amp	D Corr	Pad	Согт.	Limit	Margin	Ant Pol	Det	Ant. High	Table Angle	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
NEW POW	ER														
129.604	3.0	36.2	13.8	0.9	28.0	0.0	0.0	23.0	43.5	-20.5	H	P	100.0	0 - 360	
141.365	3.0	39.0	13.1	1.0	27.9	0.0	0.0	25.1	43.5	-18.4	H	P	100.0	0 - 360	
147.605	3.0	41.1	12.8	1.0	27.8	0.0	0.0	27.1	43.5	-16.4	H	P	100.0	0 - 360	
151.085	3.0	40.9	12.7	1.0	27.8	0.0	0.0	26.8	43.5	-16.7	H	P	100.0	0 - 360	
216.008	3.0	37.9	11.9	1.2	27.4	0.0	0.0	23.6	46.0	-22.4	H	P	100.0	0 - 360	
540.021	3.0	34.9	17.5	2.1	28.6	0.0	0.0	25.8	46.0	-20.2	H	P	100.0	0 - 360	
559.702	3.0	34.0	17.8	2.1	28.6	0.0	0.0	25.3	46.0	-20.7	H	P	100.0	0 - 360	
734.429	3.0	31.1	19.6	2.5	28.4	0.0	0.0	24.8	46.0	-21.2	H	P	100.0	0 - 360	
139.925	3.0	32.9	13.1	1.0	27.9	0.0	0.0	19.1	43.5	-24.4	V	P	100.0	0 - 360	
148.085	3.0	33.9	12.8	1.0	27.8	0.0	0.0	19.9	43.5	-23.6	V	P	100.0	0 - 360	
200.887	3.0	34.6	11.9	1.2	27.4	0.0	0.0	20.3	43.5	-23.2	V	P	100.0	0 - 360	
331.932	3.0	33.8	14.0	1.6	27.6	0.0	0.0	21.7	46.0	- 24. 3	V	P	100.0	0 - 360	
540.021	3.0	34.0	17.5	2.1	28.6	0.0	0.0	24.9	46.0	-21.1	V	P	100.0	0 - 360	
893.796	3.0	28.6	22.0	2.7	27.9	0.0	0.0	25.4	46.0	-20.6	V	P	100.0	0 - 360	
	Ĭ														

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0 This report shall not be reproduced except in full, without the written approval of UL CCS.