Reg.No							
	1	1		1	1		

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104

IV SEMESTER B.E DEGREE END SEMESTER EXAMINATION - May, 2008

SUB: PROBABILITY, STATISTICS AND STOCHASTIC PROCESS – IV (MAT –CSE – 202) (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

Note: a) Answer any FIVE full questions.b) All questions carry equal marks.

- 1A. A 2n digit number starts with 2 and all its digits are prime. Find the probability that the sum of every 2 consecutive digits of the number is prime.
- 1B. Consider families of n children and let A be the event that a family has children of both the sexes and B be the event that there is at most one girl in the family. Find the value of n for which A and B are independent.
- 1C. It is suspected that a patient has one of the diseases A₁, A₂, A₃. Suppose that the population percentage suffering from these illness are in the ratio 2:1:1. The patient is given a test which turns out to be positive 25% of the cases of A₁, 50% of the cases of A₂ and 90% of A₃. Given that out of three tests taken by the patient two are positive. Find the probability the patient has illness A₁.

(3 + 3 + 4)

- 2A. A coin is tossed till first head appears. Let X denote the number of tosses. Find E(X) and V(X).
- 2B. Suppose that X is uniformly distributed over (-a, +a) where a > 0. Whenever possible determine 'a' such that

(i)
$$Pr(X > 1) = \frac{1}{3}$$

(ii)
$$Pr(X < 1) = \frac{1}{2}$$

(iii)
$$Pr(|X| < 1) = Pr(|X| > 1)$$

2C. Suppose that joint pdf of the two dimensional random variable (X, Y) is given by

$$f(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 \le x \le 1, \ 0 \le y \le 2 \\ 0, & \text{elsewhere} \end{cases}$$

compute (i)
$$Pr\left(\frac{Y}{X} < 1\right)$$
 (ii) $Pr\left(X > \frac{1}{2}\right)$

(3 + 3 + 4)

- 3A. With usual notation show that $-1 \le \rho \le +1$.
- 3B. A continuous random variable X has the pdf given by

$$f(x) = \begin{cases} a e^{-ax}, & a > 0, x \ge 0 \\ 0, & elsewhere \end{cases}$$

- (i) Let $P_j = Pr$ ($j \le X \le j + 1$), then show that P_j is of the form $(1-b)b^j$ and determine b.
- (ii) Show that Pr(X > s + t /X > s) = Pr(X > t), t > 0
- 3C. An examination is often regarded as being good if the test scores of those taking the examination can be approximated by a normal density function. The instructor often uses the test scores to estimate the normal parameters μ and σ^2 and assign letter grade A to those whose test score is greater than μ + σ , B to those whose test score is between μ and μ + σ , C to those whose test score is between μ σ and μ , D to those whose score is between μ 2σ and μ σ , F to those getting a score below μ 2σ . Find approximate percentage of students in each grade.

$$(3 + 3 + 4)$$

- 4A. Show that for a normal distribution with mean μ and variance σ^2 . $\mu_{2n}=1.3.5...(2n-1)\sigma^{2n}$.
- 4B. Let (X_1, X_2) be random sample from a distribution with the pdf $f(x) = e^{-x}$, $0 \le x \le \infty$. Show that $Z = X_1/X_2$ has an F distribution.
- 4C. Show that \overline{X} , the sample mean is both an unbiased and consistent estimator for the population mean.

$$(3 + 3 + 4)$$
 Contd...3

- 5A. Let $(X_1, X_2, ..., X_n)$ denote a random sample from a distribution which is $n(\theta_1, \theta_2)$, $-\infty < \theta_1 < \infty$, $0 < \theta_2 < \infty$. Find a maximum likelihood estimator for $\theta_1 \& \theta_2$.
- 5B. Let \overline{X} be the mean of a random sample of size n from distribution which is N(3, 9). Find n such $Pr(\overline{X}-1<\mu<\overline{X}+1)=0.90$, approximately.
- 5C. Let us assume that the life length of a tyre in miles, say X is normally distributed with mean θ and standard deviation 5000. Past experience indicates that θ = 30,00 the manufacturer claims that the typres made by a new procedure have mean θ > 30,000 and it is very possible that θ = 35, 000. Let us check this claim by testing H_0 : θ < 30,000 against H_1 : θ > 30,000. We shall observe n independent values of X say $X_1,\,X_2,\,...,\,X_n$ and we shall reject H_0 if and only if x \geq c . Determine n and c so that the power function $K(\theta)$ of the test has values K (30,000) = 0.01 and K (35,000) = 0.98.

$$(3 + 3 + 4)$$

6A. Let $(X_1, X_2, ... X_n)$ be a random sample of size n form a distribution

$$n \ (\theta,\ 100). \ Show \ that \ \ C = \left\{ \left(x_1, x_2, ..., x_n\right) : c \le \overline{x} = \frac{\sum\limits_{i=1}^n x_i}{n} \right\} \ is \ a \ best \ critical$$

region for testing $H_0: \theta = 75$ against $H_1: \theta = 78$. Find and c so that

$$\Pr\!\left[\left(X_1, X_2, ..., X_n\right) \in C, H_0\right] = 0.05 \ \text{ and } \Pr\!\left[\left(X_1, X_2, ..., X_n\right) \in C, H_1\right] = 0.90$$
 approximately.

- 6B. The Mendelian theory states that the probabilities of classification a, b, c, d are respectively $\frac{9}{16}$, $\frac{3}{16}$, $\frac{3}{16}$. From a sample of 160 the actual numbers observed were 86, 35, 26 and 13. Is this data consistent with the theory at 0.01 significance level.
- 6C. Consider the process $X(t) = A\cos\omega t + B\sin\omega t$ where A and B are uncorrelated random variables with mean 0 and variance 1 and ω is a constant. Show that the process is covariance stationary.

(3 + 3 + 4)