Ecole Supérieure en Sciences et Technologies de l'Informatique et du Numérique. 2ºm² Année Classe Préparatoire.

Durée: 2H

Examen du module probabilité et statistique 2

Exercice nº 1: (5 pts)

I) Soit X_n une v.a. positive de densité $f_n(x) = nc^{-nx}$ pour x > 0. Montrer que la suite (X_n) converge en moyenne quadratique vers zéro.

II) Soit (U_n) des v.a. indépendantes et de même loi définie par $P(U_n=1)=p$ et $P(U_n=-1)=q=1$ avec $0 . Déterminer la loi exacte, puis la loi limite, de la suite <math>(V_n)$ définie par :

$$V_n = \prod_{i=1}^n U_n$$

X X

Exercice nº 2: (5 pts)

Soit (X_1, X_2, \ldots, X_n) un n-échantillon issu de $X \curvearrowright P(\lambda)$.

- contre H_1 " $\lambda < \lambda_0$ ", avec λ_0 donnée. 1. Tester au niveau de α , H_0 " $\lambda \ge \lambda_0$ "
 - contre H_1 " $\lambda > \lambda_0$ ", avec λ_0 donnée. 2. Tester au niveau de α , H_0 " $\lambda \le \lambda_0$ "

Application numérique : $\alpha = 0.01$, $\lambda_0 = 1.5$, $\sum_{i=1}^{10} X_i = 15$.

Exercice n° 3 : (10 pts) Soit $(X_1, X_2, ..., X_n)$ un n-échantillon issu de $X \curvearrowright \exp(\lambda = \frac{1}{\theta})$. Pour $x \ge 0$ et avec $\theta > 0$. On considère les trois estimateurs suivants de $\theta > 0$:

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\theta}_2 = \frac{1}{n+1} \sum_{i=1}^n X_i, \quad \hat{\theta}_3 = n. \min\{X_1, ..., X_n\}.$$

- 1. Calculer l'espérance et la variance de $\hat{ heta}_1$ et de $\hat{ heta}_2$ ainsi que leur erreur quadratique moyenne (le $\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i,$
- Indication: trouver la distribution de $Y=\min(X_1,...,X_n)$, c'est-à-dire calculer P(Y< y). De quelle loi s'agit-il? De même pour $\hat{ heta}_3$. Comparer l'efficacité de ces trois estimateurs du point de vue de l'erreur quari

risque associé).

- 3. Les estimateurs $\hat{\theta}_1, \hat{\theta}_2$ et $\hat{\theta}_3$ sont-ils convergents?
- 4. On définit l'intervalle de confiance suivant pour λ :

$$IC = [a/\min\{X_i\}, b/\min\{X_i\}]$$

Calculer le degré de confiance de cet intervalle en fonction de a,b et de n (c'est à dire la probabilité Indication : montrer que $Z=\lambda$. min $\{X_i\}$ est distribué selon la loi exponentielle de paramètre n et que λ soit dans l'intervalle IC).

utiliser ce résultat.

Bon courage.

CS CamScanner