Cryptanalyse — 4TCY902U Responsable : G. Castagnos

TP 1 — Initiation à Sage, révisions sur les corps finis

- I Que fait la fonction xgcd? Appliquez-la à des entiers puis à des polynômes et vérifiez le résultat.
- 2 Faire la liste des carrés des nombres premiers compris entre 0 et 20.
- 3 Quel est l'ordre multiplicatif de 25 modulo 1000003? Cherchez-le par une boucle puis par une fonction de Sage en créant l'anneau **Z**/1000003**Z**.
- 4 Trouvez tous les entiers inférieurs ou égaux à 1000 qui sont égaux à la somme de leurs diviseurs stricts (utilisez la méthode .divisors()).
- [5] Une matrice de Vandermonde est une matrice de la forme

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ a_1 & a_2 & a_3 & \dots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \dots & a_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \dots & a_n^{n-1} \end{pmatrix}$$

- Faire une fonction qui prend en argument des rationnels [a₁, a₂, a₃, a₄] et rend la matrice associée M.
- Modifier votre fonction afin qu'elle accepte des suites de a_i de taille arbitraire.
- Modifier encore votre fonction afin qu'elle accepte des a_i de n'importe quel type.
- Enfin calculez et factorisez le déterminant dans le cas de 4 variables (on pourra travailler avec des variables formelles, dans l'anneau symbolique de Sage, déclarées comme suit : x=var('x')). Quelle est la formule?
- 6 Caractéristique, corps premier (cf. fiche Rappels corps finis, Définition 1)
 - Soit n = 25. Créer l'anneau $A = \mathbb{Z}/n\mathbb{Z}$ avec Sage. Quel est sa caractéristique? Donner la liste de ses éléments inversibles. L'anneau est-il un corps?

- Mêmes questions avec n = 13.
- $\lceil 7 \rceil$ Le corps \mathbf{F}_8 (cf. fiche Rappels corps finis, Proposition 1, Remarque 1, et section réalisation)
 - Créer le corps \mathbf{F}_8 avec Sage. Donner une base de \mathbf{F}_8 , et lister tous les éléments en utilisant cette base.
 - Vérifier l'identité $(x + y)^2 = x^2 + y^2$ sur les éléments de \mathbf{F}_8 avec Sage.
 - Lister les éléments tels que $x^2 = x$.
- $\lceil 8 \rceil$ Calculs dans \mathbf{F}_8 (cf. fiche Rappels corps finis, section réalisation)
 - Quel est le polynôme P(X) utilisé par Sage pour construire l'extension? Vérifier qu'il est bien irréductible sur F₂ (par le calcul et avec Sage). On note $a = X \pmod{P(X)}$ de telle sorte que a que P(a) = 0. Quelles sont les autres racines dans \mathbf{F}_8 (par Sage et par le calcul)?
 - Tout élément de \mathbf{F}_8 s'écrit $v_0 + v_1 X + v_2 X^2$ modulo P(X): On note juste les coordonnées (v_0, v_1, v_2) : cette chaîne de 3 bits permet de représenter chaque élément de \mathbf{F}_8 .
 - Faire le calcul (1,0,1) + (0,1,1) dans \mathbf{F}_8 avec Sage : en utilisant le corps \mathbf{F}_8 et en utilisant la notation polynomiale. De manière générale comment se fait l'addition?
 - Calculer $(1,1,1) \times (0,1,1)$ en utilisant la notation polynomiale. Calculer ensuite l'inverse de (0,0,1) toujours via les polynômes (utiliser une identité de Bézout). Vérifier le résultat en utilisant directement les opérations * et ^(-1).
- 9 Polynômes minimaux et ordres dans \mathbf{F}_8 (cf. fiche Rappels corps finis, sections ordres et section polynôme minimal)
 - Lister les polynômes minimaux de tous les éléments de \mathbf{F}_8 (par le calcul et avec Sage)
 - Quels sont les éléments primitifs?
 - On note b = a + 1. Établir la correspondance entre les éléments exprimés en base $(1, a, a^2)$ et comme puissance de a, ainsi que comme puissance de b.

[10] \mathbf{F}_{16} , \mathbf{F}_{256} et $\mathbf{F}_{2^{100}}$

- Trouver, grâce à un élément de \mathbf{F}_{2^4} , un polynôme irréductible de degré 4, non primitif.
- Trouver de diverses façons les éléments de \mathbf{F}_{2^8} qui forment \mathbf{F}_{2^4} .
- De même lister les éléments de $\mathbf{F}_{2^{100}}$ qui forment \mathbf{F}_{2^4} .