Luftdruck-Modul HP03S

Best.Nr. 810 119

Bei dem HP03S handelt es sich um ein kostengünstiges Luftfdruckmodul. Es arbeitet mit einem piezoresistiven Sensor und misst neben dem Luftdruck auch noch die Temperatur. Über die integrierte I²C-Schnittstelle kann das Modul leicht mit einem Microcontroller angesteuert werden. Aufgrund der kompakten und sehr kleinen Bauform kann das Modul universell eingesetzt werden. Dank der seitlichen Lötausbuchtungen ist trotz SMD-Bauweise ein leichter Anschluss möglich.

Bestimmungsgemäße Verwendung

Das HPO3S-Luftdruckmodul ist eine kostengünstige Möglichkeit um eine präzise Messung des physikalischen Luftdrucks bzw. der Temperatur durchzuführen.

Über die integrierte I²C-Schnittstelle kann das Modul leicht und komfortabel mit einem Microcontroller angesteuert werden. Durch die geringe StandBy-Stromaufnahme von 1 μA sind auch batteriebetriebene mobile Applikationen möglich.

Eine andere Verwendung als angegeben ist nicht zulässig! Es kann zur Beschädigung dieses Produktes führen, darüber hinaus ist dies mit Gefahren, wie z.B. Kurzschluss, Brand, elektrischer Schlag etc. verbunden. Das gesamte Produkt darf nicht geändert bzw. umgebaut werden! Auf keinen Fall darf 230 V~ Netzspannung angeschlossen werden. Dann besteht Lebensgefahr.

Für alle Personen- und Sachschäden, die aus nicht bestimmungsgemäßer Verwendung entstehen, ist nicht der Hersteller, sondern der Betreiber verantwortlich. Bitte beachten Sie, dass Bedien- und/oder Anschlussfehler außerhalb unseres Einflussbereiches liegen. Verständlicherweise können wir für Schäden, die daraus entstehen, keinerlei Haftung übernehmen.

Sicherheitshinweise

Bei allen Geräten, die zu ihrem Betrieb eine elektrische Spannung benötigen, müssen die gültigen VDE-Vorschriften beachtet werden. Besonders relevant sind für diesen Bausatz die VDE-Richtlinien VDE 0100, VDE 0550/0551, VDE 0700, VDE 0711 und VDE 0860. Bitte beachten Sie auch nachfolgende Sicherheitshinweise:

- Baugruppen und Bauteile gehören nicht in Kinderhände!
- Beim Umgang mit Produkten die mit elektrischer Spannung in Berührung kommen, müssen die gültigen VDE-Vorschriften beachtet werden.
- Bauteile, Baugruppen oder Geräte, dürfen nur in Betrieb genommen werden, wenn sie vorher berührungssicher in ein Gehäuse eingebaut wurden. Während des Einbaus müssen diese vom Stromnetz getrennt sein.
- Geräte, die mit einer Versorgungsspannung größer als 24 V- betrieben werden, dürfen nur von einer fachkundigen Person angeschlossen werden.

- In Schulen, Ausbildungseinrichtungen, Hobby- und Selbsthilfewerkstätten ist das Betreiben von Baugruppen durch geschultes Personal verantwortlich zu überwachen.
- Betreiben Sie die Baugruppe nicht in einer Umgebung in welcher brennbare Gase, Dämpfe oder Stäube vorhanden sind oder vorhanden sein können.
- Falls das Gerät repariert werden muss, dürfen nur Original-Ersatzteile verwendet werden! Die Verwendung abweichender Ersatzteile kann zu ernsthaften Sach- und Personenschäden führen! Eine Reparatur des Gerätes darf nur vom Elektrofachmann durchgeführt werden!
- Beim Einsatz in stärker gestörten Umgebungen (EMV, andere Sender, Industrie) können vermehrt Probleme auftreten
- Die Sendeleistung der Funkmodule entspricht den gesetzlichen Vorgaben, werden jedoch gewinnbringende Antennen eingesetzt, so muss der Anwender mit eigenen Messungen die gesetzlich geforderte Konformität sicherstellen.
- Auch hat der Anwender sicherzustellen, dass von den Modulen während des Betriebes nur der freigegebene Frequenzbereich genutzt wird (www.bundesnetzagentur.de)
- Nach DIN VDE 0869 gilt derjenige als Hersteller, welcher z.B. einen Bausatz oder eine Baugruppe durch Erweiterung (z.B. mit einem Microcontroller) oder Fertigstellung betriebsbereit macht.

Problembehandlung

- Pin XCLR auf low während EEPROM-Zugriff.
- Pin XCLR auf high während ADC-Zugriff.
- 32768 Hz an MCLK mit mindestens 2.2 V während ADC Zugriff.
- Ersten ADC-Wert immer verwerfen um mögliche Fehler zu vermeiden.

Technische Daten

- 16 Bit ADC
- 14 Bit Auflösung
- I²C Schnittstelle
- Messbereich 300...1100 hpa
- Maximal Serial Data Rate 500 KHz
- Betriebsspannung 2,2...3,6 V-
- niedrige Stromaufnahme 500 uA
- StandBv-Stromaufnahme 1 uA
- Master Clock 32768 Hz
- Hardwaregesteuerter Reset

Bezeichnung	Тур	Funktion
VSS	S	Power ground
VDD	S	Positive power supply
MCLK	I	Master Clock
XCLR	I	ADC-Reset Inpu (keep low in idle state)
SDA	DI/DO	I ² C data input and output
SCL		I ² C Clock Input

I²C Interface

Das I²C Interface wird sowohl für das Auslesen der Kalibrierungsdaten aus dem EEPROM, als auch für das Auslesen der Messwerte vom AD-Wandler verwendet.

Das EEPROM und der AD-Wandler teilen denselben I²C-BUS und werden durch unterschiedliche Adressen angesprochen.

EEPROM Adresse (lesen): 0xA1
EEPROM Adresse (schreiben): 0xA0
ADC Adresse (lesen): 0xEE
ADC Adresse (schreiben): 0xEF

Das verwendete EEPROM ist voll kompatibel zum Standardtyp 24C02 und enthält 11 Koeffizienten, welche zum Berechnen des Lufdrucks/ der Temperatur erforderlich sind:

Setzen Sie Pin XCLR auf low bevor Sie die Koeffizienten auslesen, andernfalls können die ausgelesenen Daten fehlerhaft sein.

Koeffizient/Parameter	Adresse	Bezeichnung	Wertebereich(HEX)	Wertebereich(Dezimal)
C1 (MSB:LSB)	0x10:0x11	Sensitivity coefficient	0x1000xFFFF	25665535
C2 (MSB:LSB)	0x12:0x13	Offset coefficient	0x000x1FFF	08197
C3 (MSB:LSB)	0x14:0x15	Temperatur coefficient of sensitivity	0x000x400	03000
C4 (MSB:LSB)	0x16:0x17	Temperatur coefficient of offset	0x000x1000	04096
C5 (MSB:LSB)	0x18:0x19	Reference temperature	0x10000xFFFF	409665535
C6 (MSB:LSB)		Temperatur coefficient of temperature	0x000x4000	016384
C7 (MSB:LSB)	0x1C:0x1D	Offset fine tuning	0x9600xA28	24002600
Α	0x1E	Sensor specific parameter	0x010x3F	163
В	0x1F	Sensor specific parameter	0x010x3F	163
С	0x20	Sensor specific parameter	0x010x0F	115
D	0x21	Sensor specific parameter	0x010x0F	115

Messwert vom Sensor	Bezeichnung	Wertebereich(HEX)	Wertebereich(Dezimal)
D1 (MSB:LSB)	Luftdruck	0x000xFFFF	065535
D2 (MSB:LSB)	Temperatur	0x000xFFFF	065535

Bitte befolgen Sie nachfolgende Timing-Sequenzen um eine Messung durchzuführen.

Setzen Sie Pin XCLR auf high bevor Sie die Messwerte auslesen, andernfalls sind die ausgelesenen Daten fehlerhaft. Verwerfen Sie den ersten Messwert um mögliche Fehler zu vermeiden.

Lufdruck:

S	0xEE	Α	0xFF	Α	0xF0	Α	Р	D	S	0xEE	Α	0xFD	Α	S	0xEF	Α	MSB	Α	LSB	Ν	Р

Temperatur:

- 1	\neg																					
- 1																						
- 1																						
- 1																						
- 1		0	•	0 [[0 50	-	7	7	_	0 55		0 50	-	_	0 55		1 ACD		1.00	N. I	_
	\ I	()x++	ι Δ Ι	O _Y FF	Δ	0xE8	Ι Δ	ıΡ	1 1)	I 🔨 I	()y	Ι Δ	l ()y⊦l)	Ι Δ		l ()x⊦⊦	Ι Δ	I MSR	ΙΔΙ	I I S R		. Р
	٦	UXLL		UXFF	~	UNLU		' '		-	UNLL		UNID		-	UNLI	_ ^	IVIJU	/ \	LJD	' '	

S: Start Bedingung
P: Stop Bedingung

A: Acknowledge vom Master
A: Acknowledge vom Slave
N: no Acknowledge vom Master
D: Verzögerung von mindestens 40ms
MSB: Messwert (Most Significant Bit zB. 0x75)
LSB: Messwert (Least Significant Bit zB. 0x54)

=> MSB:LSB => 0x75:0x54 => Der Messwert wäre in diesem Beispiel: 0x7554.

Berechnung

Nachdem Sie die Koeffizienten und die Messwerte ausgelesen haben folgt nun die Berechnung der Messergebnisse.

Schritt 1:

Fall1: D2>=C5 dUT = D2-C5-((D2-C5)/2^7) * ((D2-C5)/2^7) * A / 2^C Fall2: D2<C5 dUT = D2-C5-((D2-C5)/2^7) * ((D2-C5)/2^7) * B / 2^C

Schritt 2:

OFF = (C2 + (C4 - 1024) * dUT / 2^14) * 4 SENS = C1 + C3 * dUT / 2^10) * 4 X = SENS * (D1 - 7168) / 2^14 - OFF

 $P = X * 10 / 2^5 + C7$

Schritt 3:

 $T = 250 + dUT * C6 / 2^16 - dUT / 2^D$

Beispiel:

 $\begin{array}{lll} \text{C1} = 29908; & \text{A} = 1; \\ \text{C2} = 3724; & \text{B} = 4; \\ \text{C3} = 312; & \text{C} = 4; \\ \text{C4} = 441; & \text{D} = 9; \end{array}$

C5 = 9191:

C6 = 3990; D1 = 30036; C7 = 2500; D2 = 4107;

```
Schritt 1:
```

Fall 2 da D2<C5

 $dUT = D2-C5-((D2-C5)/2^7) * ((D2-C5)/2^7) * B / 2^C$

 $dUT = (4107-9191)-((4107-9191)*(4107-9191)/128^2)*4/2^4 = -5478$

Schritt 2:

 $OFF = (C2 + (C4 - 1024) * dUT / 2^14) * 4$

 $OFF = (3724 + (441 - 1024)*(-5478)/2^14*4 = 15675$

 $SENS = C1 + C3 * dUT / 2^10) * 4$

 $SENS = 29908 + 312*(-5478)/2^{10} = 28238$

 $X = SENS * (D1 - 7168) / 2^14 - OFF$

 $X = 28238*(30036-7168)/2^14-15675 = 23738$

 $P = X * 10 / 2^5 + C7$

 $P = 23738*10/2^5+2500 = 9918 = 991.8 \text{ hpa}$

Schritt 3:

 $T = 250 + dUT * C6 / 2^16 - dUT / 2^D$

 $T = 250 + (-5478)*3990/2^16-(-5478/2^9) = -72 = -7,2 °C$

Der Sensor misst den physikalischen Luftdruck. In der Meteorologie wird allerding ein auf die Höhe bezogener Wert verwendet. Näheres unter : http://de.wikipedia.org/wiki/Luftdruck

Nähere technische Daten und die Programmieranleitung (programming guide) finden Sie im Downloadbereich unter: http://www.pollin.de/