

LINMA2491 Operational Research

Simon Desmidt Issambre L'Hermite Dumont

Academic year 2024-2025 - Q2

Contents

1	Definition and notation	2
2	TO DO	5

Definition and notation

- Given Ω , a sigma-algebra \mathcal{A} is a set of subsets of Ω , with the elements called events, such that:
 - $-\Omega\in\mathcal{A}$
 - **-** if A ∈ A then also Ω − A ∈ A
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcup_{i=1}^{\infty} A_i \in A$
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcap_{i=1}^{\infty} A_i \in A$
- Consider:

- The state space is the set of all values of the system at each stage.

$$S_0 = \{C\}, \qquad S_1 = \{C_u, C_d\}, \qquad S_2 = \{C_{uu}, C_{ud}, C_{dd}\}$$
 (1.1)

- The sample space is the set of all possible combination of the system.

$$\Omega = S_0 \times S_1 \times S_2 = \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), \dots \}$$
 (1.2)

- The power set of Ω is the set of all of the subsets, denoted $\mathcal{B}(\Omega)$.
- The probability space is the triplet (Ω, \mathcal{A}, P) where P is a probability measure.
 - $-P(\emptyset)=0$
 - $-P(\Omega)=1$
 - $P(\bigcup_{i=1}^{\infty} A_i) = \sum_i P(A_i)$ if A_i are disjoint
- $\forall t$, A_t is the set of events on which we have information at stage t. For example, $A_0 = \{C\}$, $A_1 = \{C, C_u, C_d\}$. Thus is it evident that $t_1 \leq t_2 \Rightarrow A_{t_1} \subseteq A_{t_2}$

• Consider the following problem with $x \in \mathbb{R}^n$ and domain \mathcal{D} :

$$\min f_0(x), \qquad s.t.$$

 $f_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$ (1.3)

Then the Lagrangian function is defined as $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$
 (1.4)

• The Lagrange dual function is defined as $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
 (1.5)

- The Lagrange dual problem is a lower bound on the optimal value of the primal problem
- Lagrange relaxation of Stochastic Programs, consider the two problems:

$$\min f_{1}(x) + \mathbb{E}_{\omega}[f_{2}(y(\omega), \omega)] \qquad \min f_{1}(x) + \mathbb{E}_{\omega}[f_{2}(y(\omega), \omega)]$$

$$s.t \quad h_{1i}(x) \leq 0, i = 1, \dots, m_{1} \qquad s.t. \quad h_{1i}(x) \leq 0, i = 1, \dots, m_{1}$$

$$h_{2i}(x, y(\omega), \omega) \leq 0, i = 1, \dots, m_{2} \qquad h_{2i}(x(\omega), y(\omega), \omega) \leq 0, i = 1, \dots, m_{2}$$

$$x(\omega) = x \qquad (1.6)$$

The red constraint is the non-anticipativity constraint, it transforms the deterministic variable into a stochastic variable. A VERIFIER

• The dual of a stochastic program is:

$$g(\nu) = g1(\nu) + \mathbb{E}_{\omega}(g2(\nu,\omega))$$
where
$$g_1(\nu) = \inf f_1(x) + \left(\sum_{\omega \in \Omega} \nu(\omega)\right)^T x$$
s.t. $h_{1i}(x) \leq 0, i = 1, \dots, m_1$
and
$$g_2(\nu,\omega) = \inf f_2(y(\omega)\omega) - \nu x(\omega)$$
s.t. $h_{2i}(x(\omega), y(\omega), \omega) \leq 0, i = 1, \dots, m_2$

$$(1.7)$$

- With p^* the solution of the primal problem and d^* the solution of the dual problem, we have:
 - − Weak duality: $d^* \le p^*$
 - Strong duality: $d^* = p^*$
- The KKT conditions are necessary and sufficient for optimality in convex optimization, there aren't unique. They are:

- Primal constraint: $f_i(x)$ ≤ 0, i = 1,..., m, $h_j(x)$ = 0, j = 1,..., p
- Dual constraint: $\lambda \geq 0$
- Complementarity slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- Gradient of the Lagrangian: $\nabla_x L(x, \lambda, \nu) = 0$
- For a certains sequence of events: $x \to \omega \to y(\omega)$, where ω is the uncertainty:
 - A first-stage decision is a decision that is made before the uncertainty is revealed (in *x*)
 - A second-stage decision is a decision that is made after the uncertainty is revealed (in $y(\omega)$)
- We can have a mathematic formulation like this:

$$\min c^{T}x + \mathbb{E}[\min q(\omega)^{T}y(\omega)]$$

$$Ax = b$$

$$T(\omega)x + W(\omega)y(\omega) = h(\omega)$$

$$x \ge 0, y(\omega) \ge 0$$
(1.8)

- First-stage decision: $x \in \mathbb{R}^{n_1}$
- First-stage parameter: $c \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{m_1}$ and $A \in \mathbb{R}^{m_1 \times n_1}$
- Second-stage decision: $y(\omega) \in \mathbb{R}^{n_2}$
- Second-stage data: $q(\omega) \in \mathbb{R}^{n_2}$, $h(\omega) \in \mathbb{R}^{m_2}$ and $T(\omega) \in \mathbb{R}^{m_2 \times n_1}$, $W(\omega) \in \mathbb{R}^{m_2 \times n_2}$

TO DO