Analysis of Massive Data Sets

http://www.fer.hr/predmet/avsp

Prof. dr. sc. Siniša Srbljić

Doc. dr. sc. Dejan Škvorc

Doc. dr. sc. Ante Đerek

Faculty of Electrical Engineering and Computing
Consumer Computing Laboratory

Advertising on the Web

Goran Delač, PhD

Outline

- Motivation
 - Advertising on the Web, Issues
- Online algorithms
 - Online Bipartite Matching
 - Greedy algorithm
- Advertising on the Web
 - Adwords problem
 - Solutions: Greedy algorithm, Balance algorithm

Motivation

- Web applications support themselves through advertising
 - One of the big surprises of the 21st century
 - Multi-billion dollar market

- Other media revenue sources
 - Radio and television
 - Advertising (primary)
 - Most media (newspapers and magazines)
 - Subscription (primary)
 - Hybrid approach advertising and subscriptions

- Direct Placement of Ads
 - Directly placed by advertisers
 - Free, for a fee or commission
 - o eBay, Craig's List

- Display ads (banners)
 - Earliest form of Web advertising
 - E.g. fixed rate for *impression* (total cost defined by the number of times an ad has been rendered in a browser)

Recommendation systems

Frequently Bought Together

- Amazon
- Ad is selected by the store to maximize the probability that a customer will be interested in a product

Search ads

- Placed along with the results of a search query
- Bids for the right to have ad shown in response to certain queries
 - Payed only if the ad is clicked on

Direct Placement of Ads

- Identifying ads: displayed in response to query terms
 - Inverted index of words (search engine)
 - Filters (user specifies a set of predefined parameters)
- Assigning importance to ads: display order
 - Most recent first (njuskalo.hr)
 - Display the latest ad
 - Possible abuse minimal ad changes at frequent intervals
 - Measure the "attractiveness" of an add
 - Record how many times the ad has been clicked on
 - Ads that are clicked on more frequently are presumed to be more attractive

Direct Placement of Ads

- Measuring ad "attractiveness" is not that straightforward
 - The position of an ad in a list: first ad in a list has by far the greatest probability to be clicked on
 - Attractiveness can depend on the query terms
 - All ads should have opportunity to be shown initially (until their click probability can be estimated their attractiveness is unknown)

Display Ads

- Resemble advertising in traditional media
- Problem: lack of focus
 - User might not be interested (e.g. just bought a new mobile phone or is generally not into tech)
 - Low click through rates (banner advertising 1995-2001 offered low return of investment)
- Printed media / TV cannot solve this issue **but** web ads can!

Display Ads

- User-tailored ads: adds fitted to a specific user
 - use information about users to determine which ad they should be shown
- Problem: need to get to know users
 - Activity on Facebook
 - E-mail
 - Time spent on a particular site, bookmarks etc.
 - Search queries
- Significant privacy issues

Performance-based Advertising

□ Concept introduced by Overture (2000)

- Advertisers place bids on search keywords
- When a keyword is searched, the highest bidder's ad is shown
- Advertiser is charged only if the ad is clicked on

- Google adopted the Overture PBA model around 2002 and modified it
 - Adwords

 The value of PBA was proven as web advertising started to get a lot of traction

What ads are to be displayed for a given user query?

- What search terms advertisers should bid on?
- How much to bid for a particular search term?
 - Out of scope of this lecture

Problem

- Advertisers usually have a limited budget
- How to display ads in an optimal way if all search queries are **not known** in advanced?
- Online algorithms

Online algorithms

Classic ("offline") algorithms

- The entire input is available
- Can access data set in any order and compute some function over all input values

Online Algorithms

- Do not have access the entire data set
- Input is read piece-by-piece
- Output is produced for each input data set piece (cannot wait for the entire data set to arrive!)

Online algorithms

Examples:

- Stream mining algorithms
- Insertion sort
- BFR clustering algorithm (if centroids are known)
- 0 ...

Many online algorithms are greedy

 Output is produced by maximizing some function of the current input and the past (comprising of previous input elements)

Online algorithms

 Online algorithms can (and usually do) return result that is not as good as the result of the best offline algorithm

Competitive ratio

- Given a solution quality for an offline algorithm o there exists such constant c, 0 ≤ c ≤ 1, so that c o is the solution quality of the online algorithm
- c is the competitive ratio for the online algorithm

The Bipartite Matching Problem

- Assignment of entities from two ("different") sets
- E.g. assign people to jobs, tasks to servers
- OR ads to web site renderings!

- Constraints: number of ways entities can be matched is limited → defined by graph edges
 - Limited number of job listings, job limitations, ...

The Bipartite Matching Problem

o **Task:** prune the graph so each vertex in set s_1 is connected to **at most one** vertex in set s_2

- Matched pairs (1,b), (2,a), (3,c)
- \circ Cardinality of matching |M| = 3

- The Bipartite Matching Problem
 - Maximum matching: largest possible number of matches → Goal
 - Perfect matching: all graph vertices are matched

- Perfect matching = maximum matching
- More than one maximum/perfect matching can exist

- The Bipartite Matching Problem
 - Offline algorithms solve the problem of finding maximal matching in polynomial time
 - \circ Hopcroft-Karp algorithm $(O(E\sqrt{V}))$
 - Can be treated as a max-flow problem

O What if entire data set is not known in advance?

Online approach to bipartite matching problem

- Initially, set s₁ is known (e.g. people that look for jobs, possible ads)
- Data from set s₂ becomes known gradually (job offers, ad rendering possibilities)

o Choice:

- Pair available items using current knowledge
- Do not pair items (a better match could become available)

- Matching pairs in a greedy manner
 - Pair the newly discovered entity with any available (but eligible) entity in the other set
 - Pair the job offering with the first available person
 - If eligible person does not exist, do not match

o Is this approach any good?

- Let D be the input data set
- Let be M_G and M_O the cardinality of matching for greedy and offline algorithms respectively

Competitive ratio c is defined as:

$$c = \min_{D} \left(\frac{M_G}{M_0} \right)$$

c represents the worst case scenario for the greedy approach

- □ Let $M_G \neq M_O$
- \Box Y a set of unmatched entries in M_G (e.g. jobs)

$$M_o = M_G + |Y| \qquad (1)$$

$$M_G \ge |X|$$
 (2)

As all elements in X are apparently matched by the greedy algorithm. Otherwise, elements in Y would have been matched!

□ Let
$$M_G \neq M_O$$

$$|Y| \le |X| \tag{3}$$

As optimal approach matched all elements in Y to some elements in X

$$(2) + (3) \rightarrow |Y| \leq |X| \leq M_G \qquad (4)$$

$$\text{Worst case}$$

$$|Y| = |X| = M_G \qquad (5)$$

□ Let
$$M_G \neq M_O$$

$$(1) + (5) \rightarrow M_O \le 2M_G$$

$$\frac{M_G}{M_O} \ge 1/2$$

Advertising: The Adwords Problem

- How to match ads to search queries?
 - Very similar to the general problem of bipartite graph matching

- Search engine gets a set of queries as input values
- Advertisers bid on search keywords
- Upon answering the query, the search engine picks a subset of ads to display
 - Usually more than one ad is shown
- Goal is to maximize the profits from advertising

Advertiser	Bid	
Α	\$1.00	
В	\$0.75	
С	\$0.50	
D	\$0.25	

Model used by Overture Advertisers are sorted by bid values

Advertising: The Adwords Problem

Adwords introduced the click-through rate (CTR)

 Number of times the ad has been clicked on as the result of being displayed divided by the total number of ad clicks

Expected revenue

B * CTR, where B is the bidding value

Advertiser	Bid	CTR	Bid * CTR
Α	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
D	\$0.25	8%	2 cents

Advertisers sorted by the expected revenue

Advertiser	Bid	CTR	Bid * CTR
D	\$0.25	8%	2 cents
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

Statement of the Adwords problem

- Having the following values:
 - 1. A set of advertisers' bids on search queries
 - 2. A click-through rate for each ad-query(keyword) pair
 - 3. A budget for each advertiser (e.g. for 1 month)
 - 4. A limit on the number of ads that can be displayed per search query

Derive a subset of ads such that:

- The size of the set is not larger than the ad display limit
- 2. The advertiser has placed a bid on the search keywords
- 3. The advertiser has enough budget left to pay if the adgets clicked on

Advertising: Adwords problem

- It turns out that sorting the ads by the expected revenue is the optimal strategy, but only if
 - The click-trough rate for each ad-query pair is known
 - Advertisers have an unlimited budget
- In general, this is not the case!

How to estimate the CTR and deal with limited advertiser budgets?

Advertising: Estimating CTR

CTR can be measured historically

- Show the ad a large number of times
- Compute the CTR estimate by observing the number of clicks

Problems

- CTR is very position dependent
 - First ad in the list has the greatest probability to be clicked on
- Explore or Exploit
 - Exploit: continue displaying ads with a high CTR estimate
 - Explore: examine CTR of a new ad (might be worthwhile)

Advertising: Limited Budget

Simplified environment

- 1 ad is shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- All ads have the same price (e.g. 1 cent)

Greedy algorithm:

- Pick an advertiser that has bid on the query and has enough leftover budget
- Competitive ratio is 0.5

Advertising: Limited Budget

- Two advertisers A and B
 - \circ **A** bids only on queries x, **B** bids both on x and y
 - Both advertisers have budgets of 4 cents
 - Cost of displaying an ad is 1 cent
- □ Query stream: x x x x y y y y
 - Worst case for greedy: BBBB____
 - Earned 4 cents
 - Optimal solution: A A A A B B B B
 - Earned 8 cents

Advertising: Limited Budget

- Is it possible to get a better competitive ratio?
 - Problem with greedy approach is that it always breaks ties in the same way
 - This leads to exhausting budgets of certain advertisers and thus limiting the ways of efficiently utilizing other advertisers

BALANCE Algorithm (Mehta, Saberi, Vazirani, and Vazirani)

- Upon processing a query, choose the advertiser with the largest unspent budget
- Break ties in an arbitrary way
 - But do it deterministically

- Two advertisers A and B
 - \circ **A** bids only on queries x, **B** bids both on x and y
 - Both advertisers have budgets of 4 cents
 - Cost of displaying an ad is 1 cent
- □ Query stream: x x x x y y y y

- □ BALANCE output: A B A B B B _ _ _
 - Optimal: A A A A B B B B
 - Cardinality of matching is ¾

- In general: for BALANCE having 2 advertisers
 - \circ Competitive ratio = $\frac{3}{4}$

- \Box Proof c = $\frac{3}{4}$
 - Two advertisers A and B
 - They have the same budget S
 - Let all ads be priced the same (=1)
 - o 2S queries
 - Optimal case
 - Both budgets get exhausted
 - The overall revenue is 2S

- \Box Proof c = $\frac{3}{4}$
 - Budget in case of BALANCE algorithm
 - Budget of one advertiser will surely get exhausted!
 - Because optimal approach managed to perform a perfect match
 - Both advertisers placed a bid on at least half the queries
 - Assume without the loss of generality that B's budget gets exhausted

- \Box Proof c = $\frac{3}{4}$
 - Budget in case of BALANCE algorithm
 - X number of queries that were left unassigned
 - Total revenue in this case is
 - 2S X
 - S + Y

- \Box Proof c = $\frac{3}{4}$
 - o Goal
 - Prove that $X \le S/2$ or $Y \ge S/2$
 - Thus, $Y \ge X$
 - Case 1
 - Assume that less then S/2 queries of A were assigned to B
 - X ≤ S/2
 - X + Y = S

$$Y \ge X$$

- \Box Proof c = $\frac{3}{4}$
 - o Case 2
 - Assume that k ≥ S/2 queries of A were assigned to B
 - At the time last query belonging to A was added to B, A's budget would have been greater or equal to B's budget
 - Otherwise the BALANCE algorithm would not make that assignment!
 - The only possibility is that some queries of B were assigned to A
 - Y is at least equal to k

$$\Box$$
 Proof c = $\frac{3}{4}$

- Finally
 - X + Y = S
 - Y ≥ X
 - Worst case Y = X = S/2
 - Worst case revenue is S + S/2
 - Competitive ratio

$$c = \frac{\frac{3}{2}S}{2S} = \frac{3}{4}$$

 □ For more then 2 advertisers the BALANCE algorithm has slightly lower competitive ratio – approx.. 0.63

$$c = 1 - \frac{1}{e}$$

 This appears to be the best solution for the Adwords problem – no online algorithm has a better competitive ratio!

- □ Worst case scenario $c = 1 \frac{1}{e}$
 - Let there be N advertisers A₁, ... A_N
 - Each advertiser has a budget B, B > N
 - N rounds, each containing B queries = N * B
 - Bidding
 - In ith round, bids are placed by A_i where j ≥ i
 - 1st round A₁, A₂, A₃, ..., A_N place bids
 - 2nd round A₂, A₃, ..., A_N place bids
 - ...

- □ Worst case scenario $c = 1 \frac{1}{e}$
 - Optimal ad matching
 - In the 1st round all ads are assigned to A₁
 - It's the only round where A₁ has placed bids!
 - In the 2nd round all ads are assigned to A₂
 - etc.
 - Total revenue is N · B

 \Box Worst case scenario $c=1-rac{1}{e}$

■ kth advertiser will have the following allocation after k rounds

$$S_k = \sum_{i=1}^k \frac{B}{N-i+1}$$

□ Worst case scenario
$$c = 1 - \frac{1}{e}$$

$$S_k = \sum_{i=1}^k \frac{B}{N-i+1}$$

- \circ At some point S_k will become greater than B
 - No further allocations are possible at that point
 - Advertisers with i < k have no active bids, and advertisers i ≥ k have to small budgets
- Goal
 - Find smallest k so that $S_k \ge B$

□ Worst case scenario
$$c = 1 - \frac{1}{e}$$

$$S_k = \sum_{i=1}^k \frac{B}{N-i+1}$$

□ Worst case scenario
$$c = 1 - \frac{1}{e}$$

$$S_k = \sum_{i=1}^k \frac{B}{N-i+1}$$

o Proof by Euler:

$$\sum_{i=1}^{k} \frac{1}{k} = \ln(k) + \gamma + \varepsilon_k$$

$$ln(N-k)$$

□ Worst case scenario $c = 1 - \frac{1}{e}$

$$S_k = \sum_{i=1}^k \frac{B}{N-i+1}$$

In(N - k) = In(N) - 1

In(N / (N - k)) = 1

$$k = N(1 - 1 / e)$$

- After k rounds no more ads can be assigned
 - Total revenue is $k \cdot B = B \cdot N (1 1 / e)$

- □ Worst case scenario $c = 1 \frac{1}{e}$
 - o Thus, the competitive ratio equals to:

$$c = \frac{NB\left(1 - \frac{1}{e}\right)}{NB} = 1 - \frac{1}{e}$$

- Generally, advertisers do not have the same budget and do not place the same bids
 - This fact ruins the performance of BALANCE algorithm

Example

- 2 advertisers A and B, 5 queries
- A: budget 100, bid: 1
- B: budget 80, bid: 10
- BALANCE will select A and earn 5
- Optimal revenue 50

Generalized BALANCE

- Having query q and bidder I
- \circ Bid value x_i
- Budget size b_i
- \circ Amount spent so far = m_i
- \circ Fraction of budget left over $f_i = 1 \frac{m_i}{b_i}$
- $\phi = \psi_i(q) = x_i(1 e^{-f_i})$

Generalized BALANCE

- Taking into account CTR
 - CTR = c

$$\psi_i(q) = c \cdot x_i (1 - e^{-f_i})$$

Also worth considering historical frequency of queries

Generalized BALANCE

- \circ Query q is assigned to the bidder i that has the largest value of $\psi_i(q)$
- \circ Exhibits the same competitive ratio $1 \frac{1}{e}$

Literature

1. J. Leskovec, A. Rajaraman, and J. D. Ullman, "Mining of Massive Datasets", 2014, Chapter 8: "Advertising on the Web" (link)