# Basic Number Theory Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

September 27, 2019

## Number Theory

Concerned with the properties of integers

#### **Basic Notions**

#### Divisibility (of integers)

- Let a and b be integers with  $a \neq 0$ . We say that  $\underline{a}$  divides  $\underline{b}$ , if there is an integer k s.t.  $b = a \times k$
- Denoted as a|b.
- b is a multiple of a.

#### Propositions

- For every  $a \neq 0$ , a|0 and a|a. Also 1|b for every b.
- If a|b and b|c, then a|c
- If a|b and a|c, then  $a|(s \times b + t \times c)$  for all s and t.

#### Prime Numbers

- A number p > 1 that is divisible only by 1 and itself is called a prime number.
- An integer that is not a prime number is called a composite number.
- Prime Number Theorem: Let  $\pi(x)$  be the # of primes less than x. Then

$$\pi(x) \to x/\ln x$$
 as  $x \to \infty$  (i.e.  $\pi(x) \approx x/\ln x$ )

- Theorem: Every positive integer is a product of primes. This factorization is unique.
- Lemma: If p is a prime and it divides a product of integers  $a \cdot b$ , then either p|a or p|b.

## Greatest Common Divisor (GCD)

- GCD of a and b is the largest positive integer that divides both integers.
  - Denoted as gcd(a, b).
- ullet Computation gcd of a and b can be done
  - lacksquare by factoring a and b into primes
    - Example: gcd(576, 135)
    - $576 = 2^6 \times 3^2$  and  $135 = 3^3 \times 5 \Rightarrow$
    - $gcds(576, 135) = 3^2 = 9.$
  - 2 by using Euclidean algorithm
    - Utilizes division by remainder.

# Example: Euclidean algorithm

• 
$$\gcd(482, 1180)$$
  $\gcd(c + k \times b, b) = \gcd(c, b)$ 

$$1180 = 2 \cdot 482 + 216$$

$$482 = 2 \cdot 216 + 50$$

$$216 = 4 \cdot 50 + 16$$

$$50 = 3 \cdot 16 + 2$$

$$16 = 8 \cdot 2 + 0$$

The last nonzero remainder is the gcd

#### GCD

• Theorem: Let a and b be two integers, with at least one of them nonzero, and let  $d = \gcd(a, b)$ . Then there exist integers x, y such that

$$a \times x + b \times y = d$$

In particular, if a and b are relatively prime (i.e. gcd(a,b)=1) then  $a\times x+b\times y=1$ .

• In the last case, x is called the <u>multiplicative inverse</u> of a with respect to b since  $a \times x \equiv 1 \mod b$ .

## Solving $a \times x + b \times y = d$

#### **Algorithm 1** Solving $a \cdot x + b \cdot y = d$

```
Input: a > b > 0
Output: d = gcd(a,b) and x,y \ni a \cdot x + b \cdot y = d

1: x_2 := 1, x_1 := 0, y_2 := 0, y_1 := 1

2: while b > 0 do

3: q := \lfloor a/b \rfloor, r := a - q \cdot b, x := x_2 - qx_1, y := y_2 - qy_1

4: a := b, b := r, x_2 := x_1, x_1 := x, y_2 := y_1 and y_1 := y

5: end while

6: d := a, x := x_2, y := y_2

7: return d, x, y
```

## Example: EEA a=4864 and b=3451

| q  | r    | x    | y     | a    | b    | $x_2$ | $x_1$ | $y_2$ | $y_1$ |
|----|------|------|-------|------|------|-------|-------|-------|-------|
| _  | _    | _    | _     | 4864 | 3451 | 1     | 0     | 0     | 1     |
| 1  | 1413 | 1    | -1    | 3451 | 1413 | 0     | 1     | 1     | -1    |
| 2  | 625  | -2   | 3     | 1413 | 625  | 1     | -2    | -1    | 3     |
| 2  | 163  | 5    | -7    | 625  | 163  | -2    | 5     | 3     | -7    |
| 3  | 136  | -17  | 24    | 163  | 136  | 5     | -17   | -7    | 24    |
| 1  | 27   | 22   | -31   | 136  | 27   | -17   | 22    | 24    | -31   |
| 5  | 1    | -127 | 179   | 27   | 1    | 22    | -127  | -31   | 179   |
| 57 | 0    | 3451 | -4864 | 1    | 0    | -127  | 3451  | 179   | -4864 |

## Congruence Classes

- Let a, b, and n be integers with  $n \neq 0$ . We say that
  - $-a \equiv b \bmod n$

(a is congruent to  $b \bmod n$ ) if a - b is a (positive or negative) multiple of n.

Thus,  $a = b + k \times n$  for some integer k (positive or negative)

- Proposition: a, b, c, d, n integers with  $n \neq 0$  and  $a \equiv b \mod n$  and  $c \equiv d \mod n$ . Then
  - $a + c \equiv b + d \mod n$ ,
  - $a-c \equiv b-d \mod n$ ,
  - $a \times c \equiv b \times d \mod n$

## Division in Congruence Classes

- We can divide by "a" (mod n) when  $\gcd(a, n) = 1$
- Proposition: Suppose  $\gcd(a,n)=1$ . Let s and t be integers s.t.  $a\times s+n\times t=1$ . Then  $a\cdot s\equiv 1\pmod n$  s is called the multiplicative inverse of  $a \mod n$
- Extended Euclidean algorithm is a fairly efficient method of computing multiplicative inverses in congruence classes.
- Example: Solve  $2x + 7 \equiv 3 \pmod{17}$
- Example: Solve  $5x + 6 \equiv 13 \pmod{15}$ .

# Solution to $ax \equiv b \pmod{n}$

- If  $\gcd(a,n)=1$ 
  - There is exactly one solution
  - $-x \equiv ba^{-1} \pmod{n}$
- If  $gcd(a, n) = d \neq 1$ 
  - There "may" be solutions
  - If there exist solutions, there are exactly "d" solutions
  - If  $d \nmid b$  then there is no solution
  - Otherwise solutions are obtained as follows

$$\frac{a}{d}\tilde{x} \equiv \frac{b}{d} \bmod \frac{n}{d} \quad \gcd\left(\frac{a}{d}, \frac{n}{d}\right) = 1 \quad \tilde{x} \equiv \left(\frac{a}{d}\right)^{-1} \frac{b}{d} \bmod \frac{n}{d}$$
$$x = \left\{\tilde{x}, \tilde{x} + \frac{n}{d}, \tilde{x} + 2\frac{n}{d}, \cdots, \tilde{x} + (d-1)\frac{n}{d}\right\}$$

#### Solution to $ax \equiv b \mod n$

- Example 1
  - $-12x \equiv 15 \mod 39$
  - Is there a solution to this equation?
- Example 2
  - $-12x \equiv 17 \mod 39$
  - Is there a solution to this equation?



www.shutterstock.com · 2782134







- Suppose  $\gcd(n_1,n_2)=\gcd(n_1,n_3)=\gcd(n_2,n_3)=1.$  Given  $x\equiv a \bmod n_1,\ x\equiv b \bmod n_2,\ \text{and}\ x\equiv c \bmod n_3$  There exists exactly one solution to  $x\bmod n_1\times n_2\times n_3$  Example: Given  $x\equiv 2\bmod 3,\ x\equiv 1\bmod 5,\ \text{and}$   $x\equiv 0\bmod 7\to \text{Solve}\ x\bmod 105$
- Solution: (works only for small numbers).
  - Congruence class  $0 \mod 7$ :

## Gauss' Algorithm for CRT

- Simultaneous congruences for general case
  - $x \equiv a_1 \mod n_1$ ,  $x \equiv a_2 \mod n_2$ , ...,  $x \equiv a_k \mod n_k$  has a unique solution modulo  $n_1 \times n_2 \times \ldots \times n_k$
  - $-x \mod (n = n_1 \times n_2 \times \ldots \times n_k)$
- Gauss' algorithm:

$$x=\sum\limits_{i=1}^k a_iN_iM_i mod n$$
, where  $N_i=n/n_i$  and  $M_i=N_i^{-1} mod n_i$ 

# Example 1/2

- Solve
  - $-x \equiv 2 \mod 3, x \equiv 1 \mod 5, \text{ and } x \equiv 0 \mod 7$

$$-a_1=2$$
,  $a_2=1$ ,  $a_3=0$ 

$$-n_1=3$$
,  $n_2=5$ ,  $n_3=7$ 

$$-n = 3 \times 5 \times 7 = 105$$

- $N_i$  for i = 1, 2, 3
  - $-N_1 = n/n_1 = 105/3 = 35$
  - $N_2 = n/n_2 = 105/5 = 21$
  - $-N_3 = n/n_3 = 105/7 = 15$
- $M_i$  for i = 1, 2, 3

# Example 2/2

• 
$$M_i$$
 for  $i=1,2,3$   
-  $M_i=N_i^{-1} \mod n_i$   
-  $n_1=3, n_2=5, n_3=7$   
-  $N_1=35, N_2=21, N_3=15$   
-  $M_1=N_1^{-1} \mod n_1=35^{-1} \mod 3=2$   
-  $M_2=N_2^{-1} \mod n_2=21^{-1} \mod 5=1$   
-  $M_3=N_3^{-1} \mod n_3=15^{-1} \mod 7=1$   
•  $x=a_1N_1M_1+a_2N_2M_2+a_3N_3M_3$   
-  $a_1=2, a_2=1, a_3=0$ 

 $-x = 161 \mod 105 = 56$ 

 $-x = 2 \cdot 35 \cdot 2 + 1 \cdot 21 \cdot 1 + 0 \cdot 15 \cdot 1 \mod 105$ 

# CRT has a very important application in RSA cryptography

Think of performing 
$$m^d \bmod n$$
 where  $n = p \times q$ 

## Modular Exponentiation

- $m^e \mod n$
- Example:  $2^{1234} \mod 789$ ,
- Naïve method:
  - Compute  $2^{1234}$  first
  - $-(2.958112246080986290600446957161 \times 10^{371})$
  - then reduce the result modulo 789.
  - Is it practical (possible)?
- Practical method: Use binary expansion of the exponent.
- $1234 = (10011010010)_2$

## Binary Left-to-Right Algorithm

#### Algorithm 2 Binary Left-to-Right Algorithm

```
Input: 1 < a < n and e \ge 1 (e = e_{k-1}, \dots, e_1, e_0)
Output: x \equiv a^e \mod n

1: x := 1

2: for i = k - 1 downto 0 do

3: x := x \times x \mod n

4: if e_i = 1 then

5: x := x \times a \mod n

6: end if

7: end for

8: return x \mod p
```

## Modular Exponentiation Example

 $2^{1234} \mod 789$ ,  $1234 = (10011010010)_2$ , x = 1

| i  | $e_i$ | Squaring $x \cdot x$      | Multiplication $2 \times x$ |
|----|-------|---------------------------|-----------------------------|
| 10 | 1     | $x = 1 \cdot 1 = 1$       | $x = 1 \cdot 2 = 2$         |
| 9  | 0     | $x = 2 \cdot 2 = 4$       | _                           |
| 8  | 0     | $x = 4 \cdot 4 = 16$      | _                           |
| 7  | 1     | $x = 16 \cdot 16 = 256$   | $x = 256 \cdot 2 = 512$     |
| 6  | 1     | $x = 512 \cdot 512 = 196$ | $x = 196 \cdot 2 = 392$     |
| 5  | 0     | $x = 392 \cdot 392 = 598$ | _                           |
| 4  | 1     | $x = 598 \cdot 598 = 187$ | $x = 187 \cdot 2 = 374$     |
| 3  | 0     | $x = 374 \cdot 374 = 223$ | _                           |
| 2  | 0     | $x = 223 \cdot 223 = 22$  | _                           |
| 1  | 1     | $x = 22 \cdot 22 = 484$   | $x = 484 \cdot 2 = 179$     |
| 0  | 0     | $x = 179 \cdot 179 = 481$ | _                           |

## Binary Right-to-Left Algorithm

#### Algorithm 3 Binary Right-to-Left Algorithm

```
Input: 1 < a < n \text{ and } e \ge 1
Output: x \equiv a^e \mod n
1: x := 1, y := a
2: while e \ne 0 do
3: if e is odd then
4: x := x \times y \mod n
5: end if
6: y := y \times y \mod n
7: e := e >> 1
8: end while
9: return x \mod p
```

#### Fermat's Little Theorem

• If p is a prime and p does not divide a, then

$$a^{p-1} \equiv 1 \bmod p$$



Pierre de Fermat (1601 or 1607 or 1608 - 12 January 1665)

#### Euler's Theorem

• If gcd(a, n) = 1, then

$$a^{\phi(n)} \equiv 1 \bmod n$$

where  $\phi(n)$  is defined as the number of integers  $1 \le a \le n$  such that gcd(a,n)=1 and called as Euler's  $\phi$ -function.

•  $\phi(p) = (p-1)$ 



(15 April 1707 -18 September 1783)

#### **Euler's Totient Function**

- If  $n = p \cdot q$  then  $\phi(n) = (p-1) \cdot (q-1)$  (prove this)
- If p is prime and  $n = p^r$ , then:

$$\phi(p^r) = \left(1 - \frac{1}{p}\right)p^r$$

we must remove every  $p^{\rm th}$  number in order to get the list of a 's with  $\gcd(a,n)=1$ 

In general case any integer can be written as

$$n = \prod_{i=1}^{t} p_i^{a_i} \qquad \qquad \phi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$



# Examples

- Example 1:  $2^{10} \mod 11$ -  $2^{10} \equiv ? \mod 11$
- Example 2: Compute  $5^{-1} \mod 11$   $5^{10} = 5 \times 5^9 \equiv 1 \mod 11$  $5^{-1} \equiv 5^9 \mod 11 \equiv 9 \mod 11$ .
- Example 3:  $\phi(10) = ?$
- Example 4: Compute  $2^{43210} \mod 101$ We know  $2^{100} \equiv 1 \mod 101 \rightarrow$  $2^{43210} \mod 101 \equiv$

### Important Principle

• Let a, n, x, y be integers with  $n \geq 1$  and  $\gcd(a,n) = 1$ . If  $x \equiv y \mod \phi(n)$  then  $a^x \equiv a^y \mod n$ . Proof:  $x = y + k \times \phi(n)$  from congruence relation. Then  $a^x = a^{y+\phi(n)k} \equiv a^y(a^{\phi(n)})^k \equiv a^y1^k \equiv a^y \mod n$  In other words, if you work  $\mod n$  in the base, you should work  $\mod \phi(n)$  in the exponent.

# Example

- Compute  $3^{4012} \mod 100$ .
- Solution 1:  $3^{4012} \equiv 41 \mod 100$ .
- Solution 2:

$$\phi(100) = 100 \times (1 - \frac{1}{2}) \times (1 - \frac{1}{5}) = 40.$$

$$4012 \equiv 12 \mod 40$$

$$3^{4012} \equiv 2^{4012 \mod 40} \mod 100$$

$$\equiv 3^{12} \mod 100$$

$$\equiv 41 \mod 100.$$

### Group

- An algebraic structure consisting of
  - a set together with <u>one</u> operation
  - A set of axioms should hold
    - closure, associativity, identity and invertibility.
- Example:
  - The set of integers  $\mathbb{Z}$  which consists of the numbers
    - $-\ldots$ , -4, -3, -2, -1, 0, 1, 2, 3, 4,  $\ldots$
    - Operation is addition, "+".
    - Prove that axioms hold
  - Set of numbers  $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$ 
    - Operation is the modular multiplication (with prime p)
- $\bullet$  The number of elements in a finite group is the  $\mathit{order}$  of the group; e.g.,  $|\mathbb{Z}_p^*| = p-1$

## Primitive (Roots) Elements

- Consider powers of  $3 \mod 7$ :  $3^1 \equiv 3$ ,  $3^2 \equiv 2$ ,  $3^3 \equiv 6$ ,  $3^4 \equiv 4$ ,  $3^5 \equiv 5$ ,  $3^6 \equiv 1$
- Powers of 3 generate all nonzero elements of the congruence class  $\bmod 7$ .
- Such elements are called <u>primitive elements</u> or multiplicative generators in the congruence class.
- If p is a prime, there are  $\phi(p-1)$  primitive elements  $\operatorname{mod} p$ .
- Let g be a primitive element for the prime p. Then if n is an integer, then  $g^n \equiv 1 \bmod p$  if and only if  $n \equiv 0 \bmod p 1$ .

#### Primitive Root Modulo n

- ullet If n is a positive integer
  - the congrunce classes coprime to n form a group with multiplication modulo n as the operation;
  - denoted by  $\mathbb{Z}_n^*$ .
  - Also called as the group of primitive classes mod n.
- ullet A primitive root modulo n is any number g
  - with the property that any number coprime to n is congruent to a power of  $g \mod n$ .
  - If g is a primitive root  $\operatorname{mod} n$  and gcd(a,n)=1, then there is an integer k such that  $g^k\equiv a \bmod n$ .
  - k is called the **index** of a.

## Square Roots Modulo n

- Suppose  $y = x^2 \mod n$ , where  $n = p \times q$ , has a solution.
- ullet If the factorization of n is known, the equation can be solved quite easily.
  - ullet Conversely, if we know all the solutions, then it is easy to factor n.
- Proposition: Let  $p \equiv 3 \mod 4$  be prime and let y be an integer. Let  $x = y^{(p+1)/4} \mod p$ .
  - ① If y has square roots  $\operatorname{mod} p$ , then the square roots of  $y \operatorname{mod} p$  are  $\pm x$ .
  - ② If y has no square root mod p, then -y has a square root mod p, and the square roots of  $-y \mod p$  are  $\pm x$ .



## Examples: Square Roots Modulo n

ullet Example: Find the square root of  $5 \bmod 11$ .

$$\overline{\frac{(p+1)}{4}} = 3 \to 5^3 \mod 11 = 4.$$

Then  $\pm 4$  are square roots of  $5 \mod 11$ .

- Example: Find the square roots of  $2 \mod 11$ .
- Square roots for composite modulus.
- Example:  $x^2 \equiv 71 \mod 77$   $77 = 7 \times 11 \rightarrow x^2 \equiv 1 \mod 7$  and  $x^2 \equiv 5 \mod 11$   $\rightarrow x \equiv \pm 1 \mod 7$  and  $x \equiv \pm 4 \mod 11$ Solve the rest using CRT.

## Square Roots Modulo n

- Four solutions:

  - ②  $x \equiv 1 \mod 7$  and  $x \equiv -4 \mod 11$  $\rightarrow x \equiv 29 \mod 77$
  - $3 x \equiv -15 \mod 77$  and
  - $3 x \equiv -29 mod 77$
- An important property
  - $-x = \pm a, \pm b$  of  $y = x^2 \mod n$  where  $n = p \times q$
  - $-a \equiv b \bmod p \text{ and } a \equiv -b \bmod q.$

## Important Question

- ullet Can we factor n if we know all four solutions?
- Let  $n = p \times q$  be the product of two primes and we know the four solutions  $x = \pm a, \pm b$  of  $x^2 \equiv y \mod n$ .
- We know that  $a \equiv b \bmod p$  and  $a \equiv -b \bmod q$ . Thus, p|(a-b) and  $q \nmid (a-b)$ . This means that gcd(a-b,n) = p. This is a nontrivial factor of n.
- Result:
  - Computing square root modulo n (where  $n=p\times q$ ) is as hard as factorization

## Subgroup

- $\bullet$  A subset  $\mathbb H$  of a group  $\mathbb G$  can form a subgroup under the same operation
- Lagrange Theorem: The order of a subgroup divides the order of the group
- $\bullet$  Example:  $\mathbb{Z}_{11}^* = \{1,\dots,10\}$  , where  $|\mathbb{Z}_{11}^*| = 10$ 
  - $\mathbb{H} = \{1, 3, 4, 5, 9\}$  is a subgroup of  $\mathbb{Z}_{11}^*$ .

| $\times \mod 11$ | 1 | 3 | 4 | 5 | 9 |
|------------------|---|---|---|---|---|
| 1                | 1 | 3 | 4 | 5 | 9 |
| 3                | 3 | 9 | 1 | 4 | 5 |
| 4                | 4 | 1 | 5 | 9 | 3 |
| 5                | 5 | 4 | 9 | 3 | 1 |
| 9                | 9 | 5 | 3 | 1 | 4 |

#### Finite Fields

- Two operations defined in a field:
  - addition (subtraction) and multiplication.
  - Since every non-zero element has a multiplicative inverse we can also define the division operation.
- If p is a prime,  $\{0, 1, \dots, p-1\}$  forms a finite field.
- $\mathbb{F}_p$  or GF(p) to denote prime finite fields.
- GF is read as Galois field after a famous French Mathematician, Évariste Galois.
- Is set of integers a field?
- Give an example of infinite field



Évariste Galois 1811 - 1832

## A Special Class of Finite Field (Binary Extension Field)

- Let  $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ be an irreducible binary polynomial (i.e.,  $a_i \in \{0,1\}$   $0 \le i \le n-1$ ).
- No binary polynomial of degree n-1 or less divides f(x)
- Using f(x), we can construct binary extension field  $GF(2^n)$  or  $\mathbb{F}_{2^n}$ .

## Binary Extension Fields

- Example: Irreducible polynomial  $x^3 + x + 1$  can be used to construct  $GF(2^3)$ .
- A simple method to construct this field is to find all the binary polynomials whose degrees are smaller than the degree of the irreducible polynomial (n=3).
- $GF(2^3) = \{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$
- In computer we can use binary strings to represent these elements as

$$GF(2^3) = \{000, 001, 010, 011, 100, 101, 110, 111\}$$



## Operations in $GF(2^n)$

- Addition is an operation that act on the corresponding coefficients of the two polynomials when the polynomial representation is used.
- Example:  $(x+1) + (x^2+1) = x^2 + x$
- Subtraction is identical to the addition.
- Multiplication is done by using polynomial arithmetic when the polynomial representation is used. Two steps are involved:
  - Polynomial multiplication
  - Reduction with irreducible polynomial



# Multiplication in $GF(2^n)$

• Example:  $(x+1) \times (x^2+1)$  in  $GF(2^3)$  with  $x^3+x+1$ 

Step 1:  $x^3 + x^2 + x + 1$  which is not the element of  $GF(2^3)$  then a reduction step is necessary

Step 2: The remainder of the following division is the result:

$$\frac{x^3 + x^2 + x + 1}{x^3 + x + 1} \to x^2.$$

## Division in $GF(2^n)$

- Every non-zero element has a multiplicative inverse.
- i.e. for every element of  $GF(2^n)$ , a(x), there exists b(x) such that  $a(x) \times b(x) \equiv 1 \mod f(x)$ .
- ullet Thus the division by a non-zero element of  $GF(2^n)$  is defined.

## Primitive Polynomials and Elements

- The root of some of the irreducible polynomials can be used to construct the binary extension field.
  - Namely, its powers generate all nonzero elements of the field.
- Example:  $f(x) = x^4 + x + 1$
- Let  $f(\alpha) = 0$
- Then  $\alpha^4 + \alpha + 1 = 0 \rightarrow \alpha^4 = \alpha + 1$ .

## Primitive Polynomials and Elements

$$f(x) = x^4 + x + 1 \to \alpha^4 + \alpha + 1 = 0 \to \alpha^4 = \alpha + 1.$$

| 0                                | $\alpha^7 = \alpha^4 + \alpha^3 = \alpha^3 + \alpha + 1$                          |
|----------------------------------|-----------------------------------------------------------------------------------|
| $\alpha^0 = 1$                   | $\alpha^8 = \alpha^4 + \alpha^2 + \alpha = \alpha^2 + 1$                          |
| α                                | $\alpha^9 = \alpha^3 + \alpha$                                                    |
| $\alpha^2$                       | $\alpha^{10} = \alpha^4 + \alpha^2 = \alpha^2 + \alpha + 1$                       |
| $\alpha^3$                       | $\alpha^{11} = \alpha^3 + \alpha^2 + \alpha$                                      |
| $\alpha^4 = \alpha + 1$          | $\alpha^{12} = \alpha^4 + \alpha^3 + \alpha^2 = \alpha^3 + \alpha^2 + \alpha + 1$ |
| $\alpha^5 = \alpha^2 + \alpha$   | $\alpha^{13} = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = \alpha^3 + \alpha^2 + 1$ |
| $\alpha^6 = \alpha^3 + \alpha^2$ | $\alpha^{14} = \alpha^4 + \alpha^3 + \alpha = \alpha^3 + \alpha$                  |
|                                  | $\alpha^{15} = \alpha^4 + \alpha = \alpha + 1 + \alpha = 1$                       |

#### Primitive Polynomials and Elements

- Such polynomials are called primitive polynomials while the root of a primitive polynomial is called primitive element.
- Example:  $f(x) = x^4 + x^3 + x^2 + x + 1$  is not a primitive polynomial.