

廣東工業大學

本科毕业设计(论文)

汽车动力经济性能计算分析 System 的设计 123

机电工程学院		
机械设计制造及其自动化		
(车辆工程方向)		
2003 级(1)班		
3103000651		
陈杰栋		
樊晶明		

2022年5月

汽车动力经济性能计算分析System的设计123

陈杰栋

机电工程学院

摘要

反射式光纤位移传感器由于具有原理简单、实现容易、工作可靠等诸多优点而受到越来越广泛的重视。本系统由于要同时兼顾高精度和大量程的要求,因此在反射式光纤位移传感器的一般原理上进行了新的设计,使它较好的达到了实际的设计要求。鉴于本项目中光纤传感头的设计与实现工作已经基本完成,本文主要侧重于对电路部分的设计与调试工作进行描述。

关键词: 反射式,光纤,位移,测量

注:本设计(论文)选题来源于 XXX 项目(编号)。(例如,"国家自然科学青年基金项目(61704512)",或"广东省重点领域研发计划项目(2019B015177001)",或"自选课题",或"XXX公司横向项目")。

Abstract

Fiber-optic reflective displacement sensor attracts much attention for its particular advan-

tages, such as simply theory, easy realization, good stability and so on. With the requirement

of wide measurement range and high precision, it is re-designed based on the basic principle of

the simplest reflective fiber-optic sensor. For some work having been finished at the beginning

of this project, I will mainly describe the electric circuit.

keywords: Reflective, Fiber-optic, Displacement, Measuring

目录

1 绪论		1
1.1	题目背景及目的	1
1.2	国内外研究状况	1
1.3	题目研究方法	1
1.4	论文构成及研究内容	1
2 I 级时	↑/盘协调转子固有振动特性分析	2
2.1	基础知识	2
2.1	1.1 有限元法	2
2.1	1.2 循环对称结构的分析方法	2
2.2	I级叶/盘转子振动特性的有限元分析	2
2.2	2.1 计算模型	2
2.2	2.2 有限元计算结果及分析	2
3 I 级时	十/盘转子错频方案的对比分析	3
3.1	多自由度系统的强迫响应分析	3
3.1	1.1 动态响应的计算方法	3
3.1	1.2 强迫相应前的准备工作	3
参考文章	献	6
致谢		7
附录 A	1/f 谱图	8
附是 B	——维 1 / f 动数据的生成	C

1 绪论

- 1.1 题目背景及目的
- 1.2 国内外研究状况
- 1.3 题目研究方法
- 1.4 论文构成及研究内容

2 I级叶/盘协调转子固有振动特性分析

- 2.1 基础知识
- 2.1.1 有限元法
- 2.1.2 循环对称结构的分析方法
- 2.2 I级叶/盘转子振动特性的有限元分析
- 2.2.1 计算模型
- 2.2.2 有限元计算结果及分析

3 I级叶/盘转子错频方案的对比分析

在叶轮机械领域,对一个实际的叶盘转子,错频是指由于单个叶片之间因几何上或 结构上的不同而造成的其在固有频率上的差异[1]。

3.1 多自由度系统的强迫响应分析

由前面的分析可知,响应分析在数学上是一个具有 38 个自由度的二阶线性微分方程的数值积分问题^[2-5]。

3.1.1 动态响应的计算方法

1、系统的运动方程

多自由度系统运动微分方程的一般形式为: ……

- (1)
- (2) ·····

2、微分方程组的数值积分

一介常系数微分方程组的初值问题可表述为: ……

3.1.2 强迫相应前的准备工作

••••

$$\vec{P}_i(u) = \sum_{j=0}^k \vec{V}_i \Lambda_i \left(k; \vec{\beta}_1, \dots, \vec{\beta}_n; u \right)$$
(3.1)

$$\frac{|A(s)|^2}{|A(o)|^2} = \frac{\rho_1 \rho_2}{(s + \rho_1)(s + \rho_2)}$$
(3.2)

引用图片样例如下:

- 只引用编号: \ref{fig:figname1} 3.2
- 引用类型和编号: \autoref{fig:figname1} 图 3.2
- 引用类型、编号、标题: \fullref{fig:figname1} 图 3.2 单管换热系统流程图

注: 此图中的曲线对应关系与图 3.2相同 图 3.1 部分相干调解与非相干解调平均误码性能的比较

1-太阳模拟器; 2-单管及 31 个 PCM 容器; 3-气泵; 4-干燥过滤器; 5-手动调节阀; 6-孔板流量计; 7-空气预热器; 8, 9-调功器; 10-空气换热器. 图 3.2 单管换热系统流程图

(a) 分布符合 1/f 规律图

(b) 大小与色彩

图 3.3 图案例

(c) 间距、大小与色彩均符合 1/f 规律图符合 1/f 规律图

表 3.1 方法——干扰抑制结果

干扰类型	目标信号	阵元数	干扰采样值数	SINR(dB)
	信号 1	8	_	30.58
第一类干扰	III 7 1	4	_	21.16
	信号4	8	_	38.28
		4	_	19.41
		Q	30	4.69
第二类干扰	信号 4	0	19	4.83
		4	30	-0.42

表 3.2 各组分 lgB_i 值

		**		
序号	T=1	500K	T=2	2000K
	组分	lgB_i	组分	$-lgB_i$
1	abc	123	abc	123
2	abc	124	abc	124
3	abc	125	abc	125
4	abc	126	abc	126
5	abc	127	abc	127
6	abc	128	abc	128
7	abc	129	abc	129
8	abc	130	abc	130
9	abc	131	abc	131
10	abc	132	abc	132
11	abc	133	abc	133
12	abc	134	abc	134
13	abc	135	abc	135
14	abc	136	abc	136
15	abc	137	abc	137

注: "+"表示重要组分,"*"表示冗余组分.

表 3.3 压降损失计算结果 Pa

换热器	热边压降损失	冷边压降损失
初级	2974.37	2931.52
次级	2924.65	3789.76

参考文献

- [1] 刘国钧, 王连成. 图书馆史研究[J]. 教育出版社, 1979: 15-18.
- [2] 张和生. 地质力学系统理论[D]. 太原: 太原理工大学, 1998.
- [3] 汉语拼音正词法基本规则[J]. 语文建设, 1988(4): 8.
- [4] 毛峡. 情感工学破解"舒服"之迷[M]. 光明日报, 2000: 4-17.
- [5] 王明亮. 关于中国学术期刊标准化数据库系统工程的进展 [EB/01][Z]. 1998.

致谢

本设计(论文)是在我的指导教师 XXX 副教授的亲切关怀和悉心指导下完成的。他严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。从题目的选择到最终完成,x 老师都始终给予我细心的指导和不懈的支持。……

附录 A 1/f 谱图

图 A1 频谱图

附录 B 一维 1/f 动数据的生成

```
clear all
close all
M = 2 * 256;
K = 1;
f = 1 : M;
s = K * 1 ./ f;
figure(1); plot(s); grid;
LOGs = log10(s);
LOGf = log 10(f);
figure(4); plot(LOGf, LOGs); grid;
hh = sqrt(m * s);
m = 2 * M - 1;
h2(1:M) = hh(1:M);
h2(M:m) = hh(M:-1:1);
figure(2); plot(h); grid;
pp = rand(1, m);
re = h2 .* cos(pp);
im = h2 .* sin(pp);
hh = re + i * im;
以下是 C 语言代码:
#include <stdio.h>
int main(void){
    printf("Hello World!");
    return 0;
}
```