Сплайн интерполяция

к.ф.-м.н. Уткин Павел Сергеевич * e-mail: utkin@icad.org.ru, pavel_utk@mail.ru (926) 2766560

Данная лекция доступна по адресу http://mipt.ru/education/chair/computational mathematics/study/materials/compmath/lectures/

27 сентября 2014, МФТИ, Долгопрудный

^{*}Конспект Ивана Цыбулина, email: tsybulin@crec.mipt.ru

Недостатки глобальной интерполяции

Глобальная интерполяция многочленом высокой ($n>10\div20$) степени нежелательна, поскольку

- при вычислении многочлена высокой степени могут накапливаться ошибки округления (вспомните суммирование ряда Тейлора);
- интерполяционный многочлен может плохо приближать исходную функцию (примеры Бернштейна и Рунге на равномерной сетке)
- задача интерполяции может быть плохо обусловлена (интерполяционный многочлен чувствителен к возмущениям значений в узлах)

В принципе, все эти проблемы могут быть решены введением сетки интерполяции из нулей многочлена Чебышева, но не всегда такая возможность имеется.

Альтернатива глобальной интерполяции

Задача интерполяции

По данному набору значений функции u(x) на сетке $\{x_i\}_{i=0}^N$ восстановить функцию U(x), совпадающую с $u(x_i)$ в узлах x_i .

- Ранее функцию U(x) мы искали в форме многочлена от x.
- Рассмотрим теперь вариант, когда на каждом отрезке $[x_{i-1}, x_i]$ функция является некоторым многочленом $s_i(x)$, причем для каждого отрезка эта функция своя.
- В такой постановке задача имеет множество решений. Единственность решения можно обеспечить, потребовав от функции U(x) некоторой гладкости в местах стыков функций $s_i(x)$, то есть в узлах интерполяции.

Примеры сплайнов

Кусочно-линейная интерполяция. На каждом отрезке функция приближается линейной. Дополнительных условий не требуется, условия гладкости на U(x) в данном случае не налагаются.

Примеры сплайнов

Гладкая кусочно-кубическая интерполяция. На каждом отрезке функция приближается кубическим многочленом. Дополнительно требуется непрерывность первой и второй производных функции U(x) на всем отрезке $[x_0, x_N]$.

Характеристики сплайна

- Степенью сплайна называется максимальная из степеней многочленов $s_i(x)$.
- Гладкостью сплайна называется количество непрерывных производных, которые U(x) имеет на всем отрезке $[x_0, x_N]$.
- Дефектом сплайна называется разность между степенью и гладкостью сплайна.

Характеристики сплайна

- Степенью сплайна называется максимальная из степеней многочленов $s_i(x)$.
- Гладкостью сплайна называется количество непрерывных производных, которые U(x) имеет на всем отрезке $[x_0, x_N]$.
- Дефектом сплайна называется разность между степенью и гладкостью сплайна.

Например, кусочно-линейный сплайн имеет степень 1, гладкость 0 и дефект 1. Гладкий кусочно-кубический сплайн имеет степень 3, гладкость 2 и дефект 1.

Построение сплайна

Найдем выражения для функций $s_i(x)$, составляющих гладкий кубический сплайн.

Поскольку сплайн имеет степень 3, все функции $s_i(x)$ являются многочленами степени 3. Запишем их в виде

$$s_i(x) = a_i + b_i(x - x_i) + \frac{c_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3.$$

Такая форма записи соответствует ряду Тейлора для $s_i(x)$ в окрестности точки x_i . Поскольку $s_i(x)$ — кубический многочлен, его ряд Тейлора обрывается после кубического слагаемого. Из аналогии с рядом Тейлора заключаем, что

$$a_i = s_i(x_i), \quad b_i = s_i'(x_i), \quad c_i = s_i''(x), \quad d_i = s_i'''(x_i),$$

хотя в этом можно убедиться и обычной подстановкой.

Условия непрерывности

Выразим условия непрерывности и гладкости сплайна в терминах коэффициентов a_i, b_i, c_i, d_i . Для удобства введем обозначение для длины i-го отрезка $h_i = x_i - x_{i-1}$. Запишем условие непрерывности U(x) в точке x_{i-1} :

$$a_{i-1} = s_{i-1}(x_{i-1}) = s_i(x_{i-1}) = a_i + b_i(x_{i-1} - x_i) + \frac{c_i}{2}(x_{i-1} - x_i)^2 + \frac{d_i}{6}(x_{i-1} - x_i)^3$$

или, пользуясь h_i ,

$$a_{i-1} = a_i - b_i h_i + \frac{c_i}{2} h_i^2 - \frac{d_i}{6} h_i^3, \qquad i = 2, \dots, N.$$
 (1)

Условия гладкости

Выпишем условия непрерывности первой и второй производной U(x) в точках x_{i-1} :

$$b_{i-1} = s'_{i-1}(x_{i-1}) = s'_{i}(x_{i-1}) = b_{i} + c_{i}(x_{i-1} - x_{i}) + \frac{d_{i}}{2}(x_{i-1} - x_{i})^{2},$$

$$c_{i-1} = s''_{i-1}(x_{i-1}) = s''_{i}(x_{i-1}) = c_{i} + d_{i}(x_{i-1} - x_{i}).$$

Пользуясь обозначением $h_i = x_i - x_{i-1}$,

$$b_{i-1} = b_i - c_i h_i + \frac{d_i}{2} h_i^2, \qquad i = 2, ..., N,$$
 (2)

$$c_{i-1} = c_i - d_i h_i, \qquad i = 2, ..., N.$$
 (3)

Условия интерполирования

Выпишем условия интерполирования, то есть $U(x_i) = u(x_i)$

$$a_i = s_i(x_i) = U(x_i) = u(x_i), \qquad i = 1, ..., N.$$

Кроме этого, есть еще условие в точке x_0 ,

$$a_1 + b_1(x_0 - x_1) + \frac{c_1}{2}(x_0 - x_1)^2 + \frac{d_1}{6}(x_1 - x_0)^3 = s_1(x_0) = U(x_0) = u(x_0).$$

Мы не требуем дополнительно $s_{i+1}(x_i) = U(x_i)$, поскольку эти условия автоматически удовлетворяются при выполнении условий непрерывности.

$$a_i = u(x_i), \qquad i = 1, \dots, N \tag{4}$$

$$a_1 - b_1 h_1 + \frac{c_1}{2} h_1^2 - \frac{d_1}{6} h_1^3 = u(x_0)$$
 (5)

Система уравнений

Объединим полученные ранее уравнения в единую систему

$$a_{i-1} = a_i - b_i h_i + \frac{c_i}{2} h_i^2 - \frac{d_i}{6} h_i^3,$$
 $i = 2, ..., N$ (1)

$$b_{i-1} = b_i - c_i h_i + \frac{d_i}{2} h_i^2,$$
 $i = 2, ..., N$ (2)

$$c_{i-1} = c_i - d_i h_i,$$
 $i = 2, ..., N$ (3)

$$a_i = u(x_i), i = 1, \dots, N (4)$$

$$a_1 - b_1 h_1 + \frac{c_1}{2} h_1^2 - \frac{d_1}{6} h_1^3 = u(x_0)$$
 (5)

Всего в этой линейной системе 3(N-1)+N+1=4N-2 уравнения, хотя неизвестных a_i,b_i,c_i,d_i-4N . Два дополнительных условия могут быть выбраны достаточно произвольно. Обычно их задают на концах отрезка в точках x_0 и x_N . В этом случае они называются краевыми условиями.

Краевые условия

В качестве краевых условий обычно используют

«Естественный сплайн»

$$U''(x_0) = U''(x_N) = 0.$$

• Понижение степени сплайна на краях до второй

$$U'''(x_0) = U'''(x_N) = 0.$$

Периодический сплайн

$$U'''(x_0) = U'''(x_N), \quad U''(x_0) = U''(x_N).$$

Рассмотрим наиболее используемый первый вариант.

$$c_N = s_N''(x_N) = U''(x_N) = 0$$
 (6)

$$c_1 - d_1 h_1 = s_1''(x_0) = U''(x_0) = 0 (7)$$

Линейная система

- После добавления двух краевых условий количество уравнений совпало с количеством неизвестных. Можно было бы на этом остановиться, ведь формально задача сведена к хорошо изученной.
- Тем не менее, можно значительно упростить эту систему линейных уравнений, сведя ее к системе линейных уравнений специального трехдиагонального вида. В вычислительной математике такие системы линейных уравнений часто встречаются при решении краевых задач для обыкновенных дифференциальных уравнений и уравнений в частных производных.

Начнем с исключения из системы неизвестных a_i .

$$a_{i-1} = a_i - b_i h_i + \frac{c_i}{2} h_i^2 - \frac{d_i}{6} h_i^3,$$
 $i = 2, ..., N$ (1)

$$b_{i-1} = b_i - c_i h_i + \frac{d_i}{2} h_i^2,$$
 $i = 2, ..., N$ (2)

$$c_{i-1} = c_i - d_i h_i,$$
 $i = 2, ..., N$ (3)

$$a_i = u(x_i), i = 1, \dots, N (4)$$

$$a_1 - b_1 h_1 + \frac{c_1}{2} h_1^2 - \frac{d_1}{6} h_1^3 = u(x_0)$$
 (5)

$$c_N = 0 (6)$$

$$c_1 - d_1 h_1 = 0 (7)$$

Удобно воспользоваться обозначениями разделенных разностей Ньютона:

$$u(x_{i-1}, x_i) = \frac{u(x_i) - u(x_{i-1})}{x_i - x_{i-1}} = \frac{a_i - a_{i-1}}{h_i}$$

Подставим вместо a_i значения $u(x_i)$:

$$b_i - \frac{c_i}{2}h_i + \frac{d_i}{6}h_i^2 = u(x_{i-1}, x_i),$$
 $i = 2, ..., N$ (1')

$$b_{i-1} = b_i - c_i h_i + \frac{d_i}{2} h_i^2,$$
 $i = 2, ..., N$ (2)

$$c_{i-1} = c_i - d_i h_i,$$
 $i = 2, ..., N$ (3)

$$b_1 - \frac{c_1}{2}h_1 + \frac{d_1}{6}h_1^2 = u(x_0, x_1)$$
 (5')

$$c_N = 0 (6)$$

$$c_1 - d_1 h_1 = 0 (7)$$

Из уравнений (3) и (7) выразим $d_i h_i$:

$$d_1h_1 = c_1,$$
 $d_ih_i = c_i - c_{i-1},$ $i = 2, ..., N$

Исключим d_i из уравнений

$$b_i - \frac{c_i}{2}h_i + \frac{h_i}{6}(c_i - c_{i-1}) = u(x_{i-1}, x_i),$$
 $i = 2, ..., N$ (1")

$$b_{i-1} = b_i - c_i h_i + \frac{h_i}{2} (c_i - c_{i-1}),$$
 $i = 2, ..., N$ (2')

$$b_1 - \frac{c_1}{2}h_1 + \frac{h_1}{6}c_1 = u(x_0, x_1)$$
 (5")

$$c_N = 0 (6)$$

и приведем подобные при c_i .

После приведения подобных

$$b_i - \frac{c_i}{3}h_i - \frac{c_{i-1}}{6}h_i = u(x_{i-1}, x_i),$$
 $i = 2, ..., N$ (1"')

$$b_i - b_{i-1} - \frac{c_i}{2}h_i - \frac{c_{i-1}}{2}h_i = 0,$$
 $i = 2, ..., N$ (2")

$$b_1 - \frac{c_1}{3}h_1 = u(x_0, x_1) \tag{5}$$

$$c_N = 0 (6)$$

выразим b_i

$$b_1 = \frac{c_1 h_1}{3} + u(x_0, x_1)$$

$$b_i = \frac{c_i h_i}{3} + \frac{c_{i-1}}{6} h_i + u(x_{i-1}, x_i), \quad i = 2, \dots, N$$

и подставим в уравнение (2")

Заметим, что выражение для b_1 формально совпадает с выражением для b_i при i=1, если доопределить $c_0\equiv 0$.

$$b_{i} = \frac{c_{i}h_{i}}{3} + \frac{c_{i-1}}{6}h_{i} + u(x_{i-1}, x_{i}), \quad i = 1, \dots, N$$

$$b_{i} - b_{i-1} = \frac{c_{i}h_{i}}{3} + \frac{c_{i-1}h_{i}}{6} - \frac{c_{i-1}h_{i-1}}{3} - \frac{c_{i-2}h_{i-1}}{6} + u(x_{i-1}, x_{i}) - u(x_{i-2}, x_{i-1}).$$

Подставляя это выражение в (2") и упрощая, получаем

$$\frac{h_{i-1}}{6}c_{i-2} + \left(\frac{h_i}{3} + \frac{h_{i-1}}{3}\right)c_{i-1} + \frac{h_i}{6}c_i =
= u(x_{i-1}, x_i) - u(x_{i-2}, x_{i-1}), i = 2, ..., N (2''')
c_0 = c_N = 0. (6')$$

Для удобства умножим каждое уравнение на $\frac{6}{h_i + h_{i-1}}$. Заметим, что

$$\frac{u(x_{i-1},x_i)-u(x_{i-2},x_{i-1})}{h_i+h_{i-1}}=\frac{u(x_{i-1},x_i)-u(x_{i-2},x_{i-1})}{x_i-x_{i-2}}=u(x_{i-2},x_{i-1},x_i)$$

Трехдиагональная система

В результате серии упрощений у нас получилась система относительно значений только c_1, \ldots, c_{N-1} , причем структура уравнений довольно специфическая. В i-е уравнение системы входят только три неизвестные — c_{i-1}, c_i и c_{i+1} . В первое и последнее уравнения входят только две неизвестные.

$$2c_{1} + \frac{h_{2}}{h_{1}+h_{2}}c_{2} = 6u(x_{0}, x_{1}, x_{2})$$

$$\vdots$$

$$\frac{h_{i}}{h_{i}+h_{i+1}}c_{i-1} + 2c_{i} + \frac{h_{i+1}}{h_{i}+h_{i+1}}c_{i+1} = 6u(x_{i-1}, x_{i}, x_{i+1})$$

$$\vdots$$

$$\frac{h_{N-1}}{h_{N-1}+h_{N}}c_{N-2} + 2c_{N-1} = 6u(x_{N-2}, x_{N-1}, x_{N})$$

Системы данного вида будут подробно рассмотрены в лекции по решению линейных систем.

Свойства сплайна

• Оказывается, что если u(x) непрерывна, то последовательность кубических сплайнов $U_N(x)$ будет сходиться к u(x) равномерно, то есть

$$\lim_{\substack{N\to\infty\\\max h_i\to 0}}\max_{[x_0,x_N]}|U_N(x)-u(x)|=0$$

• Построенный сплайн относится к глобальным. Если изменить значение $u(x_i)$ в какой-либо точке, это приведет к изменению всего сплайна U(x). Правда, амплитуда изменения быстро уменьшается при удалении от точки x_i .