SUPPLEMENTARY MATERIAL FOR ONLINE PUBLICATION

Appendix A: Comparison of Methodologies

Table 6. Comparison of Methodologies

Model	Comparison of Methodologies Advantages	Disadvantages	Fields of application
Input- output model	 Partial equilibrium (quantities only) and partial optimization¹ No supply constraints Clear distinction between direct and indirect impacts Identification of supply chain linkages Allows scenario modelling Allows differentiation between sectors Simplicity and transparency Allows to measure ripple effects Reliable data collection methodology Allows to analyze the impact of inoperability in a particular sector 	 Availability of reliable primary data Does not capture inter-industry linkages changes over time Assumption of constant returns on scale; fixed technical coefficients, infinite and perfectly elastic resources; infinite and perfectly elastic supply of resources; resources are efficiently used; linearity No substitution between inputs to production processes No mechanism for price adjustments Inability to incorporate the reactions of economic agents to disasters² Overestimation of indirect economic losses³ Determination of the impacts only in a short-term horizon⁴ 	 Natural catastrophes (e.g., Hallegatte, 2008) Critical infrastructure systems (e.g., Lin et al., 2016) Material use and emissions (e.g., Guevara and Domingos, 2017)
Com- putable general equilib- rium models	General equilibrium (prices and quantities) and full optimization Demand and supply Captures sector interdependences due to its price-quantity interconnectedness Behavior of economic agents are modelled explicitly through utility and profit maximizing assumptions Promising if the shocks under consideration affect many countries and sectors concurrently Allow for the possibility of input substitution Non-linearity improves the representation of the	 Extensive data requirement No differentiation between direct and indirect impacts Based on the neoclassical concepts of optimization and rationality Assumptions about the market structure (perfect competition); production function; maximization behavior of households; Armington assumption⁵; nonconvexities in production; social welfare; absence of market failures Results are sensitive to the applied elasticities Insufficient empirical foundation of the theoretical framework High mathematical complexity 	 Natural gas price effects (e.g., Zhang et al., 2017) Valuation of air pollution co-benefits (e.g., Bollen, 2015) Corporate income tax reform proposals (e.g., Bhattarai et al., 2017) Electricity system (e.g., Langarita et al., 2019) Tourism contribution to poverty alleviation (e.g., Njoya and Seetaram, 2017) Impact of disease vaccination strategies (e.g., Miller et al., 2018)

¹ (West, 1995). ² (Poledna et al., 2018). ³ (Koks et al., 2015).

⁴ (Koks et al., 2015).

⁵ The Armington assumption states that products from different import sources, although similar, are imperfect substitutes (Armington, 1969).

	actual economic conditions (e.g. economies of scale) - Determination of the impacts in the short-, medium- and long-term horizon ¹⁵	 Black-box critique: low transparency and inexplicit indication of the factors driving the results ⁶ Underestimation of indirect economic losses ¹⁴ 	
Econo-	 Well-established set of criteria for model valuation⁷ Forecasting capabilities, statistical rigorousness, provision of stochastic estimates⁸ 	 Require consistent time-series data over a long period of time Extrapolation of the past Difficulty in distinguishing direct and indirect effects⁹ 	 Natural disasters (Sahin and Yavuz, 2015; Okon, 2018) Impact on emigration due to natural disasters (Saldaña-Zorrilla and Sandberg, 2009)

⁶ See Piermantini and Teh (2005).
⁷ See Rose (2004).
⁸ See Okuyama (2007)
⁹ See Rose (2004).

Appendix B: Industry classification

Table 7. Sectors Included in the Input-Output Tables of the OECD (OECD, 2018)

Industry code	Industry name
D01T03	Agriculture, forestry and fishing
D05T06	Mining and extraction of energy producing products
D07T08	Mining and quarrying of non-energy producing products
D09	Mining support service activities
D10T12	Food products, beverages and tobacco
D13T15	Textiles, wearing apparel, leather and related products
D16	Wood and products of wood and cork
D17T18	Paper products and printing
D19	Coke and refined petroleum products
D20T21	Chemicals and pharmaceutical products
D22	Rubber and plastic products
D23	Other non-metallic mineral products
D24	Basic metals
D25	Fabricated metal products
D26	Computer, electronic and optical products
D27	Electrical equipment
D28	Machinery and equipment, nec
D29	Moto vehicles, trailers and semi-trailers
D30	Other transport equipment
D31T33	Other manufacturing; repair and installation of machinery and equipment
D35T39	Electricity, gas, water supply, sewerage, waste and remediation services
D41T43	Construction
D45T47	Wholesale and retail trade; repair of motor vehicles
D49T53	Transportation and storage
D55T56	Accommodation and food services
D58T60	Publishing, audiovisual and broadcasting activities
D61	Telecommunications
D62T63	IT and other information services
D64T66	Financial and insurance activities
D68	Real estate activities
D69T82	Other business sector services
D84	Public administration and defence; compulsory social security
D85	Education
D86T88	Human health and social work
D90T96	Arts, entertainment, recreation and other service activities
D97T98	Private households with employed persons

Appendix C: Cyber Risk Taxonomy

The aim of a classification or taxonomy is to provide a practical and consistent framework for categorizing, understanding, and comparing cyber risk scenarios (Hansman and Hunt, 2005). Early taxonomies such as Bishop's (1995) concentrated on categorizing security vulnerabilities in software to assist security practitioners in maintaining secure systems. Howard (1997) analyzed 4,299 cyber incidents and not only classified them according to the categories attacker, target, and result, but also included intangible factors such as the attacker's motivation. The cyber-attack taxonomy proposed by Hansman and Hunt (2005) is based on four dimensions (i.e., attack vector, attack targets, vulnerabilities, and payloads 11), whereby additional dimensions can be added as needed. While almost any cyber-attack can be categorized by these taxonomies, only the one developed by Applegate and Stavrou (2013) is capable of illustrating the complex interactions between attackers, actors and other potentially related events. Even though a wide array of taxonomies exists, none is able to capture all aspects of every conceivable cyber risk perfectly.

In this paper, Howard's (1997, 2015) taxonomy is applied to classify different cyber risk scenarios. This common language is widely accepted because it is simple and is used by incident response teams as well as by the US Department of Defense. In comparison to the taxonomies discussed above, it also includes more intangible factors such as an attacker's motivation. Additionally, the broad taxonomy considers the whole attack process. This is especially useful

-

¹⁰ Satisfactory taxonomies should have classification categories with the following six characteristics: mutually exclusive, exhaustive, unambiguous, repeatable, accepted (i.e., logical and intuitive), and useful (i.e., provides an insight into the field of inquiry) (Amoroso, 1994). A taxonomy is, however, only an approximation of reality and might be inadequate in some respects.

¹¹ Payloads are the malicious mechanisms that exploit the vulnerability of a system (Yadav and Rao, 2015).

when classifying cyber risk scenarios as they usually describe the entire attack process. Furthermore, while the categories of the taxonomy are given, the characteristics are diverse and may be extended if technical developments should make it necessary.

Howard's (1997, 2015) taxonomy classifies cyber risk scenarios by seven categories: attacker(s), tool, vulnerability, action, target, unauthorized result, and objectives (see Figure 4). While cyber incidents are characterized by all categories, the actual cyber-attacks are only described by the categories 2–5 and the cyber events by the categories 4–5. The dotted arrow indicates that an incident may be comprised of a single or multiple attacks. The definitions of the different characteristics of the taxonomy are given in Table 7.

Figure 4. Computer and Network Incident Information Taxonomy (Howard, 2015)

Table 8. Definitions of the Characteristics of the Computer and Network Incident Information Taxonomy (Howard, 2015)

2015)	
Characteristic	Definition
Incident	Group of attacks that can be distinguished from other attacks because of the
	distinctiveness of the attackers, attacks, objectives, sites, and timing.
Attack	A series of steps taken by an attacker to achieve an unauthorized result.
Event	Action directed at a target that is intended to result in a change of state, or status, of the target.
Attackers	Individual who attempts one or more attacks in order to achieve an objective.
Hackers	Attackers who attack computers for challenge, status, or the thrill of obtaining access.
Spies	Attackers who attack computers for information to be used for political gain.
Terrorists	Attackers who attack computers to cause fear, for political gain.
Corporate raiders	Employees (attackers) who attack competitors' computers for financial gain.
Professional criminals	Attackers who attack computers for personal financial gain.
Vandals	Attackers who attack computers to cause damage.
Voyeurs	Attackers who attack computers for the thrill of obtaining sensitive information.
Tool	Means of exploiting a computer or network vulnerability.
Physical attack	Means of physically stealing or damaging a computer, network, its components, or its supporting systems (e.g., air conditioning, electric power, etc.).
Information ex-	Means of obtaining information either from other attackers (e.g., through an
change 	electronic bulletin board) or from the people being attacked (commonly called social engineering).
User command	Means of exploiting a vulnerability by entering commands to a process through
	direct user input at the process interface. An example is entering UNIX com-
	mands through a telnet connection or commands at a protocol's port.
Script or com- mand	Means of exploiting a vulnerability by entering commands to a process through the execution of a file of commands (script) or a program at the process interface. Examples are a shell script to exploit a software bug, a Trojan horse log-in
	program, or a password-cracking program.
Autonomous agent	Means of exploiting a vulnerability by using a program or program fragment that operates independently from the user. Examples are computer viruses or worms.
Toolkit	Software package that contains scripts, programs, or autonomous agents that exploit vulnerabilities. An example is the widely available toolkit called rootkit.
Distributed tool	Tool that can be distributed to multiple hosts, which then can be coordinated to anonymously perform an attack on the target host simultaneously after some time delay.
Data tap	Means of monitoring the electromagnetic radiation emanating from a computer or network using an external device.
Vulnerability	Weakness in a system allowing unauthorized action.
Design	Vulnerability inherent in the design or specification of hardware or software whereby even a perfect implementation will result in a vulnerability.
Implementation	Vulnerability resulting from an error made in the software or hardware implementation of a satisfactory design.
Configuration	Vulnerability resulting from an error in the configuration of a system, such as having system accounts with default passwords, having "world write" permission for new files, or having vulnerable services enabled.
Action	Step taken by a user or process in order to achieve a result,11 such as to probe, scan, flood, authenticate, bypass, spoof, read, copy, steal, modify, or delete.
Probe	Access a target in order to determine one or more of its characteristics.
Scan	Access a set of targets systematically in order to identify which targets have one or more specific characteristics.
Flood	Access a target repeatedly in order to overload the target's capacity.
Authenticate	Present an identity to a process and, if required, verify that identity, in order to access a target.
Bypass	Avoid a process by using an alternative method to access a target.
Spoof	Masquerade by assuming the appearance of a different entity in network communications.

Read	Obtain the content of data in a storage device or other data medium.
Сору	Reproduce a target leaving the original target unchanged.
Steal	Take possession of a target without leaving a copy in the original location.
Modify	Change the content or characteristics of a target.
Delete	Remove a target or render it irretrievable.
Target	Computer or network logical entity (account, process, or data) or a physical entity (component, computer, network or internetwork).
Account	Domain of user access on a computer or network that is controlled according to
	a record of information, which contains the user's account name, password, and use restrictions.
Process	Program in execution, consisting of the executable program, the program's data and stack, its program counter, stack pointer and other registers, and all other information needed to execute the program.
Data	Representations of facts, concepts, or instructions in a manner suitable for communication, interpretation, or processing by humans or by automatic means. Data can be in the form of files in a computer's volatile memory or nonvolatile memory, or in a data storage device, or in the form of data in transit across a transmission medium.
Component	One of the parts that make up a computer or network.
Computer	Device that consists of one or more associated components, including processing units and peripheral units, that is controlled by internally stored programs and that can perform substantial computations, including numerous arithmetic operations or logic operations, without human intervention during execution. Note: may be stand-alone or may consist of several interconnected units
Network	Interconnected or interrelated group of host computers, switching elements, and interconnecting branches.
Internetwork	Network of networks.
Unauthorized result	Unauthorized consequence of an event.
Increased access	Unauthorized increase in the domain of access on a computer or network.
Disclosure of in-	Dissemination of information to anyone who is not authorized to access that in-
formation	formation.
Corruption of information	Unauthorized alteration of data on a computer or network.
Denial of service	Intentional degradation or blocking of computer or network resources.
Theft of re- sources	Unauthorized use of computer or network resources.
Objectives	Purpose or end goal of an incident.

Appendix D: Cyber risk scenarios

Table 1. Summary of Scenarios

N	o Scenario Authors	Description/Attack goal	When [*]	Where*	What [*]	How [*]	Threat actor	Estimated frequency	Estimated sever- ity / economic im- pact	Required know-how and resources of attackers	Persistence of the attack	Example
1	Supervi- Dejung sory con-(2017) trol and data ac- quisition network/ industrial control system extortion	In a supervisory control and data acquisition network/industrial control system extortion scenario, simple process variables are maliciously modified to change the product properties. Victims are e.g. critical infrastructure providers (i.e., electric grid, oil/gas/water networks).	Exploit	Adminis- trative In- terface			Politically, economically or religiously motivated state sponsored attackers (potentially supported by insiders).	n.a.	business interrup-	how and re- mote access to the industrial	Potential to persist for three weeks.	The first supervisory control and data acquisition network/industrial control system attack was on Maroochy Shire Wastewater Treatment Plant in Australia (Abrams and Weiss, 2008).
2	Cloud Risk Service Manage- Provider ment So- Failure lutions Inc. (2016); Dejung (2017); World Eco- nomic Forum (2014)	tions of many com-	Control	Cloud Web In- terface	Creden- tial Ac- cess	e.g. John the Rip- per	Criminals with the goal of earning money through extor- tion.	Very low as the big four CSP typically achieve over 99.9% reliability of service. However, due to insufficient observational data, an assessment of the likelihood of a catastrophic failure of these systems is not possible through statistical means.	access cloud services.)	,	A few hours up to one month of per- sistence are conceivable.	In 2016, the world's largest Software-as-a-Service (SaaS) customer relationship management provider, Salesforce, experienced a system outage that lasted more than two business days, resulting in customers losing four hours of CRM data (Nicastro, 2016).
3	Health Dejung sector (2017) and hos- pitals scenar- ios	A sophisticated cyber-attack that infiltrates several hospitals and becomes active at the same time, resulting in non-availability of hospitals for two to three weeks.	Control		Com- mand and Con- trol		,	Likelihood of successful attacks that affect more than 10% of a country's hospitals is assumed to be low to medium as architecture, implementation, and configuration of	Max. economic impact is assumed to be 0.2% of GDP.	, ,		In 2017, a massive ransomware, known as WannaCry, attack has shut down work at 16 hospitals across the UK (Brandom, 2017).

							the malware are individual.				
4	Municipal Tra- services utman compro- and Or- mised merod (2018)	Malware is deployed on city administrative service systems, disabling civil services functions for an entire city.	Device Network Services	Access	e.g. SamSam	Politically motivated state sponsored attackers. Also, criminals pursuing extortion.		Estimates from the SamSam ransomware attack on the city of Atlanta indicate that the total cost of disturbance was around \$20m.	need to design a phishing email relevant to city employ- ees that will	nite if the at- tack is not en- tirely remedi- ated as ran- somware can	In 2018, the city of Atlanta was infected with the SamSam ransomware. The city decided not to pay the \$51,000 payment and instead took city services offline for over a week, incurring costs of around \$17m for restoring the IT infrastructure (Armerding, 2018).
5	Telecom-Dejung munica- (2017) tion sce- narios	Malware targets e.g. a router or modem with 50% market share and results in the deletion of the firmware whereby the devices must be replaced.	Device Firm- ware/ Device Web In- terface		BCMUPn P_Hunte	Criminals (with the aim of earn- ing money through extor- tion) or politi- cally, economi- cally or reli- giously moti- vated state sponsored at- tackers.	n.a.	0.35% of GDP in the first scenario and 0.03% in the second scenario.	The second scenario requires less time and resources than the first on. However, a Border Gateway Protocol (BGP) attack might require less know-how and is therefore to be expected more frequently.	tence of seven days is assumed in the first sce- nario, while the persis- tence in the second sce- nario is ex- pected to be	In 2017, the Spanish tele- communication company Telefónica was affected by the ransomware WannaCry (Teoh et al., 2018).
6	tack sce- lutions nario lnc. (2016); Ruffle et	The aim of this sce- C nario is to take hostage of many companies by disabling IT functionality to obtain payoffs. Many enterprises are attacked, and high ransom payments are demanded.	Network	Com- mand and Con- trol	Petya	Criminals with the goal of earning money through extor- tion.	Ruffle et al. (2014) estimate the frequency of such an event at one percent.	According to Ruffle et al. (2014) the overall global loss is estimated between \$4.5 trillion to \$15 trillion. Additionally, they predict a plunge of the financial markets similarly to the financial crisis in 2008.	plementation of ransomware targeted at companies takes time and requires sophis-	short perception of a few days as the attack is expected to be	The three best-known ransomware versions currently in use are CryptoWall, CTB-Locker and TorrentLocker (Richardson and North, 2017).

Note: The criteria marked with * are adopted from the attack anatomy proposed by Falco et al. (2018).

Appendix E

Scenario 1: Supervisory Control and Data Acquisition Network/ICS Extortion

Figure 1. Inoperability Development of the Top 10 Inoperable Sectors

Figure 2. Cumulative Economic Losses for the Top 10 Affected Sectors

Figure 3. Dynamic Cross-Prioritization Plot

Scenario 2: Cloud Service Provider Failure

Figure 4. Inoperability Development of the Top 10 Inoperable Sectors

Figure 5. Cumulative Economic Losses for the Top 10 Affected Sectors

Figure 6. Dynamic Cross-Prioritization Plot

Scenario 3: Health Sector and Hospitals

Figure 11. Inoperability Development of the Top 10 Inoperable Sectors

Figure 7. Cumulative Economic Losses for the Top 10 Affected Sectors

Figure 8. Dynamic Cross-Prioritization Plot

Scenario 4: Municipal Services

Figure 9. Inoperability Development of the Top 10 Inoperable Sectors

Figure 10. Cumulative Economic Losses for the Top 10 Affected Sectors

Figure 11. Dynamic Cross-Prioritization Plot

Scenario 5: Telecommunication

Figure 17. Inoperability Development of the Top 10 Inoperable Sectors

Figure 18. Cumulative Economic Losses for the Top 10 Affected Sectors

Figure 19. Dynamic Cross-Prioritization Plot

Scenario 6: Cross-Sector Attack

Figure 12. Inoperability Development of the Top 10 Inoperable Sectors

Figure 13. Cumulative Economic Losses for the Top 10 Affected Sectors

Figure 14. Dynamic Cross-Prioritization Plot

Appendix F: Calculation of Loss Estimators

In this Appendix we show the calculation of the economic loss considering scenario 1 as example. The first step is the definition of three input parameters (see Table 3 in the main body of the paper and Table 11 below), i.e. information on which sectors are affected, their initial inoperability and their recovery time. These input parameters together with the Input-Output Table for the United States (Table 12 below) are all parameters necessary to derive the economic loss for the respective scenario, which is the second step of the analysis. One key aspect in the calculations in the second step are the ripple effects from one sector to another. Considering scenario 1 as an example, although only seven sectors are directly affected, we see that also numerous other sectors are affected, because they are linked with each other in the input-output table. The inoperability of a sector then goes down over time and is driven by not only be the own recovery rate, but again also by the interdependence with the other sectors, leading to the development of inoperability over time presented in Figure 1. The economic loss of a particular sector on a certain day is then calculated as the inoperability on that day times the output of the respective sector on that day. Finally, all losses are cumulated across sectors and across time. Table 10 illustrates the two steps necessary to derive the loss estimates.

Table 10. Steps to obtain Loss Estimates

Step	Sub-steps Sub-steps
Step 1: Estimate	a) Sectors which are affected
input parameters	b) their initial level of inoperability
	c) their recovery time
Step 2: Calculate economic loss	a) Determine daily Input-Output Table with elements x_{ij} (yearly numbers (Table 12) divided by 365)
	b) Calculate technical coefficient matrix A with elements $a_{ij} = x_{ij}/x_j$ and x_j = total production output of sector j
	c) Calculate interdependency matrix $A^* = \widehat{x}^{-1}A\widehat{x}$ with \widehat{x} = diagonal matrix generated by the vector \overline{x} (industry total output) and elements $a_{ij}^* = a_{ij} x_j/x_i$
	d) Calculate $(I - A^*)^{-1}$ with $I = \text{identity matrix}$
	e) Calculate inoperability vector $q(0)$ (ratio of unrealized production with respect to "business-as-usual" production on day 0, i.e. the day of pertubation) = $[I - A^*]^{-1}c^*$ and development in the following days $q(t+1)$ =
	$KA^*q(t) + Kc^*(t) + (I - K)q(t)$ with $q(t)$ = inoperability vector at time t , K = sectoral resilience matrix, and $c^*(t)$ = perturbation vector at time t
	f) Calculate economic loss per day and per sector $q(t) x_i$
	g) Aggregate economic losses across sectors and days

All data and details of the calculation are presented in an excel spreadsheet which is available in the supplemental material; the spreadsheet also contains a simple example with only three sectors to help clarifying all calculations. For more technical details, we also refer to the references we cite in the main body of the text (Miller and Blair, 2009; Lian et al., 2007; Santos, 2006; Lian and Haimes, 2006). It is obvious that the calculations rely on manifold simplifying assumptions, but still we believe that the input-output model provides a simple, understandable, transparent and replicable way to assess potential losses from the scenarios at hand.

Table 11. Input Parameters for Scenario 1

Sector	Triangular	distribution of	inoperability c	Recovery period (days)
	min	Mode	max	
D01T03	0.05	0.10	0.15	21
D05T06	0.00	0.00	0.00	21
D10T12	0.05	0.10	0.15	21
D13T15	0.00	0.00	0.00	21
D16	0.00	0.00	0.00	21
D17T18	0.00	0.00	0.00	21
D19	0.00	0.00	0.00	21
D20T21	0.00	0.00	0.00	21
D22	0.00	0.00	0.00	21
D23	0.00	0.00	0.00	21
D24	0.00	0.00	0.00	21
D25	0.00	0.00	0.00	21
D28	0.00	0.00	0.00	21
D26	0.00	0.00	0.00	21
D27	0.00	0.00	0.00	21
D29	0.00	0.00	0.00	21
D30	0.00	0.00	0.00	21
D31T33	0.05	0.10	0.15	21
D35T39	0.05	0.10	0.15	21
D41T43	0.05	0.10	0.15	21
D45T47	0.00	0.00	0.00	21
D55T56	0.00	0.00	0.00	21
D49T53	0.05	0.10	0.15	21
D61	0.00	0.00	0.00	21
D64T66	0.00	0.00	0.00	21
D68	0.00	0.00	0.00	21
C71	0.00	0.00	0.00	21
D62T63	0.00	0.00	0.00	21
D69T82	0.00	0.00	0.00	21
D84	0.00	0.00	0.00	21
D85	0.00	0.00	0.00	21
D86T88	0.05	0.10	0.15	21
D90T96	0.00	0.00	0.00	21
D97T898	0.00	0.00	0.00	21

Table 12. Input-Output Table for all Scenarios (per annum, in USD million, taken from https://stats.oecd.org/Index.aspx?DataSetCode=IOTS)

																																	2 ID84					BHFCE:			GFCF:		,	CONS NON	I EVDO.	10.7
	DUTTO	13 70310	000	112013	1130	10 1	/ 1 10	פוע	52012	21 02	22	723	724	525	J26	020	521	529	030	531	133 73	3139 0	41143D	43147	D33130	549153	3 001	D04100	D00	071	D0210	3 009 102	2 004	565	200100	290190	D9/109	House-			d Gross		Directour-	RES: Direct		n les
							- 1																															holds fina						ourchases b		
							- 1																																			ges in a		non-resident		
																																								nal cor		inven-		exports)	is joider,	, 00
																																										tories (exports)		
							- 1																															pendidi	house		mauom	DI IOS	iiipora)			
							- 1																																holds	- 10011						
T03	39955	125	1044	82 470	0.0	20 10		14	3718	20	24 0	_		-		-	16	23	_	536	,	45	326 4	217	6048	71	118	42	175	0	15	1120	2878	374	519	380	0	81330	192	0	597	-8323 1	122	12	31360	-
													3	9	3				-		,									8							0		192	U				32		
		30092							6 19245						104	33		326					628 8		1212				7596		151	2286	32124		1182	2540	0	11946	0	D		-1909		149	32672	
T12		145							1571					105	111	32	39	202	38	117					61564		114		226	34	91	1359	26182		12753	3744	0	540664		D	667	-1339		5935	30044	
BT15	258	55	235	6059				108	751				16	14	584	37	21	3797								152	178	63	105	90	33	563	2639	140	2356	1988	0	119678		D	273	-4210		10119	13147	
3		112		47		530 58	3	21	320	B1	2 2	29	337	178	560	209	171	1738	188	5533	3 1		9252 2				487	110	3280	591	1499	918	2946	229	1032	579	0	4571	0	D	350	309		12	5142	
T18	546	1276	2139	7 727	55	2 11	508	181	7023	42	50 1	396	2178	2603	2290	1638	1024	3198	1481	3456	177	7 38	383 3	0136	10179	1104	3139	20482	5881	1377	6015	30009	37762	7329	19309	9367	0	131614	14	889	31679	212	72	290	39539	-2
	19975	9038	3655	502	60	3 36	30 I	13308	26446	3 27	61 1	029	2726	1408	1558	194	1093	382	579	1171	322	24 48	3299 9	065	5302	100138	527	2228	1944	747	530	7470	125832	3021	9812	3374	0	303870	0	D	253	-3006	2166	3870	115382	2 -9
	14374	3416	6605	851	1 14	36 18	315	1959	17230	14 39	601 3	128	2054	5449	3275	3528	2017	5470	1675	3417	133	35 68	358 6	026	2514	2004	2111	2116	6034	350	1050	17741	21611	2349	13995	3396	0	236683		D	4861	-953	834	1566	169942	2 -1
		1904		8 405				227	3162		662 8			1863	3065					7134						1571	2438	1431	925	724	698	5590			11112	1639	0	36419	0	n	967	663		149	27193	
		1065				5 39		383	1271		28 8			909	1335			1399		758			3591 1			167	2430	117	621	146	1044	3315	2903	370	3083	1088	0	11683	0	n	676	455		50	9184	
		3127	1	_		1 76	_		944	_	- 1	_			1	_	1927	1000					220 2			2069	487	72	1967	418	452	3226		105	351	2219	0	3329	0	n	614	8345		10	11455	
																											1101	470									0		5	0				107		
		1157				22 79		345	7244			013		28882						8 3504			934 4			5688	8640	4/8	1920	731	2744	7181	13273	1520	2630	3237	U	19723	-	U	7337	3980 1		107	34408	
		26275				8 52		106	7220		111 5			5907	18667				7 7858				3718 6			1028		695	3417	773	1934	11383	10409		2935	13495	U		0	0		16725		?732	132958	
	169	⁷ 63		522		1 90		101	1904					3776			1 3454						121 1				40287	7252	2232	599	8856	21021	28521	2858	3314	3984	0	103029	1	D		7 8571 2		7713	186485	
	115	237	1014	52	37	3 36	9	34	364	64	0 1	36	2190	1684	3030	3290	5795	3428	2650	951	10	21	1553 1	313	2451	337	2657	286	565	222	1090	5508	4903	1973	1052	2496	0	38726	0	D	31876	2871	129	98	10395	
	384	1378	2347	93	34	4 16	88	126	1115	42	2 3	97	337	1163	3854	744	339	1265	25 3604	761	32	65	64 1	5371	1277	3257	850	1003	680	710	299	5876	13287	2900	2197	17265	0	220664	0	D	87752	3642	124	186	102973	3 -
	92	370	396	47	54	14	3	91	138	11	5 5	5	147	294	760	257	102	330	3653	9 167	76	75	53 1	893	596	1075	518	1355	1180	148	493	2862	17934	100	1286	1208	0	15715	0	D	83755	2415	52	51	93439	-
33	212	258	542	175	40	6 15	39	254	932	34	6 2	21	7173	275	1515	350	255	1263	293	5348	3 37	48	385 3	004	1658	106	485	694	2466	160	713	2732	4104	352	21682	2403	0	122256	0	D	14910	2822	8679	7654	30761	7
		2678							7832		24 1			1731		136		1078		556						2968	1473	1734	49545	259	706	4537			3660	1082	0	177841		1445		-101		30	1341	T.
43		1829				5 91			973		4 2			155	332	501		326	205	206						2000	2122		117369	LUU	170	1353	54998	927	1862	3443	0	230	0	0		9 -471 1)	3310	- 6
Γ47																	6 7921								45421							40741			56331	30042	0	1070982		100		3579		11544	169874	
T56																																					0			190				38238		-3
		712						231	913	72				1058	346	364		166	374							2358		23327	6635	964	6413	20537	18128	5388	15659	1378	U	546886		U		-10			1203	
53		9269																3008		1426			384 9					19914				28109				12013	0	188708		D		763		18025	99672	
		1706			30			567	2675					1390	1305			1042		1379								25766				32984	38272		21003	9493	0	365630		D		-60		187	13664	
T66		3812						203						3556			946	1860															61494		107038			1033380		D		-268		147	112771	
	16053	190	655	147	10	7 33	96	57	1611	24	1 1	04	146	582	139	1266	126	346	342	131	722	2 35	61 1	00172	28824	13642	10408	20807	90006	2399	8523	49800	40198	36371	39984	19367	0	1551068	8 6	D	8164	-49	303	5759	3500	-7
	1414	1577	2082	201	12	6 33	9	297	2590	45	4 3	14	169	1115	1083	1182	291	750	740	337	322	2 59	969 1	1527	3596	3457	3626	3726	1507	871	3974	14157	4467	3625	7079	3857	0	32721	66	2	92	-17	421	3953	37157	-
63	518	2635	3505	562	52	4 98	80	344	2547	10	67 7	22	1010	2543	3342	2457	373	1174	2352	1727	118	37 29	331 2	2233	4779	3627	5509	42912	6450	4007	13421	45547	93469	9540	17037	1942	0	26429	24	1044	91094	-136	70	33	15522	7
82	2332	22628	3448	9 5169	3 31	70 13	311	3718	13762	77	78 4	969	3592	14457	12455	1665	3 3834	1742	5 1540	4 1364	12 780	1 20	9597 2	23689	69782	33536	49009	151546	145425	14933	52328	234865	159410	33760	142683	56949	0	189429	83	8	330683	2 -557 2	987	26	133097	7 -
U.L.	1597			364		4 11			1168					1131			359	1056										17143					17786	7672		3123	0			182816		-137		3038	10245	
	228	980	1581			8 21			1774					394	329	711		729	361			1.0		1244			2345			740	2852		12707		7035	3804	0							5977	5531	-
00	245				-				$\overline{}$	13					179	143		260	121										-	-					18400	557	0	1542063				-31		306	2403	-[
			717		48			109	502																	511	309	794	555	105	356	1484	9764	329			0									
96	331	1402		492		/ 35	27	1079	3768	88			1289	1363	957	1016	324	914	707	365	735				10298				14255		3355	24843	35407	9803	24484	35068	0			1138		-135	12367	11440	22574	
898	D)	0	D	0	D)	D	D	0)	þ	D)	D	D)	D)	0			0		0	0	D	0	0	0	0	D	D)	0	15648	0	D	0	0 0)))	0
INT_FNL:	406	919	-417	358	14	0 70		2756	1822	42	1 2	161	585	130	577	160	178	390	500	357	143	84 64	106 5:	22	528	12211	-37	-781	2449	21	3	344	8267	2394	551	339	0	529744	0	D	0	0 0)	13266	P	0
sless							- 1																																							
idies on in-																																														
ediate and																																														
roducts																_																														_
NT_FNL:	233427	7 23085	6 6088	56 4142	25 45	086 34	368	594150	0 43858	88 12	2884 5	7077	239986	18051	6 20258	37 1152	15 3282	6 3727	74 1433	52 1080	86 319	984 43	34281 8	56884	339272	393268	32562	105655	607876	55363	159859	719982	1076053	271857	390617	359590	0	1025690	29190	0 259460	3 174559	37 33603	139824	189539	190834	41 -
ntermedi-																																														- 2
nd final							- 1																																							
nditure at																																														
nasers'										-1																																				
s		1							1						1																								1					1	-1	
: Value	165139	9 26566	4 2093	76 2850	06 21	698 21	123	15829	1 24029	5 64	682 3	1050	16832	11634	7 12520	7 2167	45 1444	5 7238	4 3900	5 1004	105 258	952 49	3826 1	447548	383627	108120	39474	118448	155966	9 11224	2 261682	2 154170	1 1225316	772130	107948	2 561402	15648	0	0	D	0	0 0)))	
d at basic	1		1							- [1					1	1	- 1							1					1	1	1		1									
es		1							1						1																								1					1	-1	
	398566	6 19652	0 8182	33 6993	32 66	785 56	491	75244	1 37888	33 18	7566 R	8127	286818	3 29686	3 32779	33 3319	60 1072	71 4451	58 2323	57 2084	91 340	937 92	8107 2	304432	722899	301388	72036	1 224104	216754	4 16760	5 421542	2 226168	3 2301369	1043987	177009	9 920993	15648	0	0	D	0	0 1)	0)	0

References for Online Appendix

- Abrams, M., and Weiss, J. 2008. *Malicious control system cyber security attack case study Maroochy Water Services, Australia*, McLean, VA: The MITRE Corporation.
- Amoroso, E. G. 1994. Fundamentals of Computer Security Technology, Upper Saddle River, NJ: Prentice-Hall.
- Applegate, S. D., and Stavrou, A. 2013. "Towards a cyber conflict taxonomy," in 2013 5th International conference on Cyber Conflict, IEEE, pp. 1-18.
- Armerding, T. 2018. "SamSam ransomware keeps striking victims still unprepared" (https://www.synopsys.com/blogs/software-security/samsam-ransomware/; accessed April 20, 2021).
- Armington, P. S. 1969. "A theory of demand for products distinguished by place of production," *Staff Papers* (16:1), pp. 159-178.
- Avelino, A. F. T., and Hewings G. J. D. 2017. "The challenge of estimating the impact of disasters: many approaches, many limitations and a compromise" (http://www.real.illinois.edu/d-paper/17/17-T-1.pdf; accessed April 20, 2021).
- Baldwin, A., Gheyas, I., Ioannidis, C., Pym, D., and Williams, J. 2017. "Contagion in cyber security attacks," *Journal of the Operational Research Society* (68:7), pp. 780-791.
- Ballard, C. L., and Johnson, M. 2017. "Applied General Equilibrium Analysis: Birth, Growth, and Maturity," *History of Political Economy* (49:Supplement), pp. 78-102.
- Berg, M., Hartley, B., and Richters, O. 2015. "A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions," *New Journal of Physics* (17:1), 015011. doi:10.1088/1367-2630/17/1/015011
- Bhattarai, K., Haughton, J., Head, M., and Tuerck, D. G. 2017. "Simulating corporate income tax reform proposals with a dynamic CGE model," *International Journal of Economics and Finance* (9:5), pp. 20-35. doi:10.5539/ijef.v9n5p20
- Biener, C., Eling, M., and Wirfs, J. H. 2015. "Insurability of cyber risk: an empirical analysis," *The Geneva Papers on Risk and Insurance Issues and Practice* (40:1), pp. 131-158. doi:10.2139/ssrn.2577286
- Bishop, M. 1995. "A taxonomy of UNIX system and network vulnerabilities (University of California at Davis No. Report CSE-95-10)," (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5712; accessed April 20, 2021).
- Bollen, J. 2015. "The value of air pollution co-benefits of climate policies: analysis with a global sector-trade CGE model called WorldScan," *Technological Forecasting and Social Change* (90), pp. 178-191. doi:10.1016/j.techfore.2014.10.008
- Börjeson, L., Höjer, M., Dreborg, K. H., Ekvall, T., and Finnveden, G. 2006. "Scenario types and techniques: towards a user's guide," *Futures* (38:7), pp. 723-739. doi:10.1016/j.futures.2005.12.002
- Boteler, D. H., Pirjola, R. J., and Nevanlinna, H. 1998. "The effects of geomagnetic disturbances on electrical systems at the Earth's surface," *Advances in Space Research* (22:1), pp. 17-27. doi:10.1016/s0273-1177(97)01096-x
- Bounfour, A., Dieye, R., Kammoun, N., and Ozaygen, A. 2018. "Macro estimates of intangibles cyber-risks," (https://www.hermeneut.eu/wp-content/uploads/2018/08/HERMENEUT-D3.2-Macro-estimates-of-intangibles-cyber-risks.pdf; accessed April 20, 2021).
- Brandom, R. 2017. "UK hospitals hit with massive ransomware attack: sixteen hospitals shut down as a result of the attack," (https://www.kaspersky.com/blog/billion-dollar-apt-carbanak/7519/; accessed April 20, 2021).
- Cebula, J. J., Popeck, M. E., and Young, L. R. 2014. "A Taxonomy of Operational Cyber Security Risks Version 2" (https://resources.sei.cmu.edu/asset_files/Technical-Note/2014_004_001_91026.pdf, doi:10.21236/ada609863)

- Dejung, S. 2017. "Economic impact of cyber accumulation scenarios," Swiss Insurance Association Cyber Working Group.
- Dreyer, P., Jones, T., Klima, K., Oberholtzer, J., Strong, A., Welburn, J., and Winkelman, Z. 2018. "Estimating the global cost of cyber risk: methodology and examples". doi:10.7249/rr2299 (https://www.rand.org/pubs/research_reports/RR2299.html; accessed April 20, 2021).
- Durance, P., and Godet, M. 2010. "Scenario building: uses and abuses," *Technological Fore-casting and Social Change* (77:9), pp. 1488-1492. doi:10.1016/j.techfore.2010.06.007
- Eling, M., and Schnell, W. 2016. "What do we know about cyber risk and cyber risk insurance?," *The Journal of Risk Finance* (17:5), pp. 474-491. doi:10.1108/jrf-09-2016-0122
- European Union Agency for Network and Information Security. 2018. "ENISA threat land-scape report 2017" (https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017; accessed April 20, 2021).
- Falco, G., Viswanathan, A., Caldera, C., and Shrobe, H. 2018. "A master attack methodology for an AI-based automated attack planner for smart cities," *IEEE Access* (6), pp. 48360-48373. doi:10.1109/access.2018.2867556
- Feenstra, R. C., and Sasahara, A. 2018. "The "China shock," exports and U.S. employment: a global input-output analysis," *Review of International Economics* (26:5), pp. 1053-1083. doi:10.1111/roie.12370
- Guevara, Z., and Domingos, T. 2017. "The multi-factor energy input-output model," *Energy Economics* (61), pp. 261-269. doi:10.1016/j.eneco.2016.11.020
- Hallegatte, S. 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," *Risk Analysis* (28:3), pp. 779-799. doi:10.1111/j.1539-6924.2008.01046.x
- Hansman, S., and Hunt, R. 2005. "A taxonomy of network and computer attacks," *Computers & Security* (24:1), pp. 31-43. doi:10.1016/j.cose.2004.06.011
- Howard, J. D. 1997. "An analysis of security incidents on the Internet," PhD thesis, Carnegie Mellon University (https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=52454; accessed April 20, 2021).
- Howard, J. D. 2015. "Using a common language for computer security incident information," in *Computer Security Handbook*, S. Bosworth, M. E. Kabay, and E. Whyne (eds.). Hoboken, NJ: John Wiley & Sons, pp. 8.1-8.21. doi:10.1002/9781118851678.ch8
- Institute and Faculty of Actuaries. 2018. "Cyber operational risk scenarios for insurance companies: research project," (https://www.actuaries.org.uk/news-and-insights/news/ifoa-publish-cyber-operational-risk-scenarios-insurance-companies; accessed April 20, 2021).
- Jin, X., Shi, X., Gao, J., Xu, T., and Yin, K. 2018. "Evaluation of loss due to storm surge disasters in China based on econometric model groups," *International Journal of Environmental Research and Public Health* (15:4), 604. doi:10.3390/ijerph15040604
- Kajitani, Y., and Tatano, H. 2018. "Applicability of a spatial computable general equilibrium model to assess the short-term economic impact of natural disasters," *Economic Systems Research* (30:3), pp. 289-312. doi:10.1080/09535314.2017.1369010
- Koks, E. E., and Thissen, M. 2016. "A multiregional impact assessment model for disaster analysis," *Economic Systems Research* (28:4), pp. 429-449. doi:10.1080/09535314.2016.1232701
- Koks, E. E., Carrera, L., Jonkeren, O., Aerts, J. C. J. H., Husby, T. G., Thissen, M., Standardi, G., and Mysiak, J. 2015. "Regional disaster impact analysis: comparing input-output and computable general equilibrium models," *Natural Hazards and Earth System Sciences Discussions* (3:11), pp. 7053-7088. doi:10.5194/nhessd-3-7053-2015
- Langarita, R., Duarte, R., Hewings, G., and Sánchez-Chóliz, J. 2019. "Testing European goals for the Spanish electricity system using a disaggregated CGE model," *Energy* (179), pp. 1288-1301. doi:10.1016/j.energy.2019.04.175

- Lin, J., Tai, K., Tiong, R. L. K., and Sim, M. S. 2016. "A general framework for critical infrastructure interdependencies modeling using economic input-output model and network analysis," in *Complex Systems Design & Management Asia*, Cardin, M.-A., Fong, S., Krob, D., Lui, P. and Tan, Y. (eds.). Cham: Springer, pp. 59-74. doi:10.1007/978-3-319-29643-25
- Lloyd's. 2015. "Business blackout: the insurance implications of a cyber attack on the US power grid," (https://www.lloyds.com/news-and-risk-insight/risk-reports/library/society-and-security/business-blackout; accessed April 20, 2021).
- Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., Stewart, R., Gupta, H., Dominguez, D., Dominguez, F., Hulse, D., Letcher, R., Rashleigh, B., Smith, C., Street, R., Ticehurst, J., Twery, M., van Delden, H., Waldick, R., White, D., and Winter, L. 2009. "A formal framework for scenario development in support of environmental decision-making," *Environmental Modelling & Software* (24:7), pp. 798-808. doi:10.1016/j.envsoft.2008.11.010
- Marotta, A., Martinelli, F., Nanni, S., Orlando, A., and Yautsiukhin, A. 2017. "Cyber-insurance survey," *Computer Science Review* (24), pp. 35-61. doi:10.1016/j.cosrev.2017.01.001
- Menoni, S., Bonadonna, C., García-Fernández, M., and Schwarze, R. 2017. "Recording disaster losses for improving risk modelling capacities," in *Science for disaster risk management 2017: knowing better and losing less*, K. Poljanšek, M. Main Ferrer, T. de Groeve, and I. Clark (eds.). Luxembourg: Publications Office of the European Union, pp. 83-97. doi:10.2788/842809
- Miller, M., Liu, L., Shwiff, S., and Shwiff, S. 2018. "Macroeconomic impact of foot-and-mouth disease vaccination strategies for an outbreak in the Midwestern United States: A computable general equilibrium," *Transboundary and Emerging Diseases* (66:1), pp. 156-165. doi:10.1111/tbed.12995
- Nakamura, S., and Kondo, Y. 2018. "Toward an integrated model of the circular economy: Dynamic waste input-output," *Resources, Conservation and Recycling* (139), pp. 326-332. doi:10.1016/j.resconrec.2018.07.016
- Nakicenovic, N., and Swart, R. 2000. Special Report on Emissions Scenarios. Working Group III, Intergovernment Panel on Climate Change (IPCC), Vol. 1.
- National Association of Insurance Commissioners. 2019. "Data, innovation & cyber" (https://www.naic.org/cipr_topics/topic_cyber_risk.htm; accessed April 20, 2021).
- Niknejad, D. 2019. "Salesforce customers lose CRM data in 20 hour outage" (https://www.cms-wire.com/customer-experience/salesforce-customers-lose-crm-data-in-20-hour-outage/; accessed April 20, 2021).
- Niknejad, A., and Petrovic, D. 2016. "A fuzzy dynamic inoperability input-output model for strategic risk management in global production networks," *International Journal of Production Economics* (179), pp. 44-58. doi:10.1016/j.ijpe.2016.05.017
- Njoya, E. T., and Seetaram, N. 2017. "Tourism contribution to poverty alleviation in Kenya: a dynamic computable general equilibrium analysis," *Journal of Travel Research* (57:4), pp. 513-524. doi:10.1177/0047287517700317
- OECD, 2018. "Input-output tables (IOTs)" (http://www.oecd.org/sti/ind/input-outputtables.htm; accessed April 20, 2021).
- Öğüt, H., Raghunathan, S., and Menon, N. 2011. "Cyber security risk management: public policy implications of correlated risk, imperfect ability to prove loss, and observability of self-protection," *Risk Analysis: An International Journal* (31:3), pp. 497-512.
- Okon, E. O. 2018. "Natural disasters in Nigeria: an econometric model," *American Journal of Social Science Research* (2:1), pp. 81-101.
- Okuyama, Y. 2007. "Economic modeling for disaster impact analysis: past, present, and future," *Economic Systems Research* (19:2), pp. 115-124. doi:10.1080/09535310701328435

- Pescaroli, G., and Alexander, D. 2016. "Critical infrastructure, panarchies and the vulnerability paths of cascading disasters," *Natural Hazards* (82:1), pp. 175-192. doi:10.1007/s11069-016-2186-3
- Peterson, G. D., Cumming, G. S., and Carpenter, S. R. 2003. "Scenario planning: a tool for conservation in an uncertain world," *Conservation Biology* (17:2), pp. 358-366. doi:10.1046/j.1523-1739.2003.01491.x
- Piermantini, R., and Teh, R. 2005. "Demystifying Modeling Methods for Trade Policy," WTO Discussion Papers, No. 10. Geneva: WTO.
- Poledna, S., Hochrainer-Stigler, S., Miess, M. G., Klimek, P., Schmelzer, S., Sorger, J., Shchekinova, E., Rovenskaya, E., Linnerooth-Bayer, J., Dieckmann, U., and Thurner, S. 2018. "When does a disaster become a systemic event? Estimating indirect economic losses from natural disasters," *arXiv preprint* (https://arxiv.org/abs/1801.09740; accessed April 20, 2021).
- Richardson, R., and North, M. M. 2017. "Ransomware: evolution, mitigation and prevention," *International Management Review* (13:1), pp. 10-21.
- Risk Management Solutions Inc. 2016. "Managing cyber insurance accumulation risk" (https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/risk/downloads/crs-rms-managing-cyber-insurance-accumulation-risk.pdf; accessed April 20, 2021).
- Romanosky, S. 2016. "Examining the costs and causes of cyber incidents," *Journal of Cybersecurity* (2:2), pp. 121-135. doi:10.1093/cybsec/tyw001
- Rose, A. 2004. Economic principles, issues, and research priorities in hazard loss estimation. in *Modeling Spatial and Economic Impacts of Disasters*, Y. Okuyama and S. E. Chang (eds.). New York: Springer, pp. 13-36.
- Rose, A., Sue Wing, I., Wei, D., and Wein, A. 2016. "Economic impacts of a California tsunami," *Natural Hazards Review* (17:2), 04016002. doi:10.1061/(asce)nh.1527-6996.0000212
- Ruffle, S. J., Bowman, G., Caccioli, F., Coburn, A. W., Kelly, S., Leslie, B., and Ralph, D. 2014. "Stress test scenario: sybil logic bomb cyber catastrophe," *Cambridge Risk Framework series, Centre for Risk Studies, University of Cambridge*.
- Sahin, I., and Yavuz, O. 2015. "Econometric analysis of natural disasters' macro-economic impacts: an analysis on selected four OECD countries," *Journal of Business, Economics and Finance* (4:3), pp. 430-442. doi:10.17261/Pressacademia.2015313064.
- Saldaña-Zorrilla, S. O., and Sandberg, K. 2009. "Spatial econometric model of natural disaster impacts on human migration in vulnerable regions of Mexico," *Disasters* (33:4), pp. 591-607. doi:10.1111/j.1467-7717.2008.01089.x
- Santos, J. R., and Haimes, Y. Y. 2004. "Modeling the demand reduction input-output (I-O) inoperability due to terrorism of interconnected infrastructures," *Risk Analysis* (24:6), pp. 1437-1451. doi:10.1111/j.0272-4332.2004.00540.x
- Teoh, T. T., Nguwi, Y. Y., Elovici, Y., Ng, W. L., and Thiang, S. Y. 2018. "Analyst intuition inspired neural network based cyber security anomaly detection," *International Journal of Innovative Computing Information and Control* (14:1), pp. 379-386.
- Trautman, L. J., and Ormerod, P. 2018. "Wannacry, ransomware, and the emerging threat to corporations," *SSRN Electronic Journal*. doi:10.2139/ssrn.3238293
- van Notten, P. W. F., Rotmans, J., van Asselt, M. B. A., and Rothman, D. S. 2003. "An updated scenario typology," *Futures* (35:5), pp. 423-443. doi:10.1016/s0016-3287(02)00090-3
- Wang, S. S. 2019. "Integrated framework for information security investment and cyber insurance," *Pacific-Basin Finance Journal* (57), in press. doi:10.1016/j.pacfin.2019.101173
- Wei, F., Koc, E., Soibelman, L., and Li, N. 2018. "Disturbances to urban mobility and comprehensive estimation of economic losses," *Polytechnica* (1:1-2), pp. 48-60. doi:10.1007/s41050-018-0005-1

- West, G. R. 1995. "Comparison of Input-Output, Input-Output + Econometric and Computable General Equilibrium Impact Models at the Regional Level," *Economic Systems Research* (7:2), pp. 209-227. doi:10.1080/09535319500000021
- World Economic Forum. 2014. "Global risks 2014 ninth edition" (http://reports.weforum.org/global-risks-2014/?doing_wp_cron=1548774994.0724980831146240234375; accessed April 20, 2021).
- Yadav, T., and Rao, A. M. 2015. "Technical aspects of cyber kill chain," *Security in Computing and Communications*, Cham: Springer International Publishing Switzerland, pp. 438-452. doi:10.1007/978-3-319-22915-7 40
- Zhang, W., Yang, J., Zhang, Z., and Shackman, J. D. 2017. "Natural gas price effects in China based on the CGE model," *Journal of Cleaner Production* (147), pp. 497-505. doi:10.1016/j.jclepro.2017.01.109
- Zio, E. 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," *Reliability Engineering & System Safety* (152), pp. 137-150. doi:10.1016/j.ress.2016.02.009