Motivación:

- Interacción entre las acciones de los individuos y un "estado macro" (temperatura, rastros de feromonas en el entorno, etc.). Ejemplos: sistema de control de temperatura de un panal de abejas; sistema de recolección de alimento de un hormiguero.
- Ontología del estado macro: sencillamente otro estado de cosas (se abstrae su naturaleza y se considera sólo su función).
- Desarrollar un sistema formal sencillo para estudiar la interacción elemental entre el estado micro (p.ej., la colección de los estados de las abejas en un instante determinado), y un estado macro (p.ej., la temperatura del panal) (Elementary Micro Macro Interaction, EMMI).
- Comparación con los autómatas celulares.

Definición de un EMMI:

- Sea $\mathcal{I} = \{1, \dots, I\}$ un conjunto de agentes. Para cada $i \in \mathcal{I}$ se define:
 - (a) Umbral $u_i \in [0, 1]$.
 - (b) Estado $x_i[k] \in \{0, 1\}$, para $k \in \mathbb{N}$.

(c) Regla
$$x_i[k+1] = \begin{cases} 1, & \text{si } \frac{X[k]}{I} \leq u_i \\ 0, & \text{si } u_i < \frac{X[k]}{I} \end{cases}$$

- Estado macro: $X[k] = \sum_{i \in \mathcal{I}} x_i[k]$, para $k \in \mathbb{N}$.
- $\mathbf{u}[k] = (u_1[k], \dots, u_I[k])$
- $x[k] = (x_1[k], \dots, x_I[k])$ (estado micro)

2 EJEMPLOS CON POCOS AGENTES

Observación 1. La dinámica de los estados micro es determinista, es decir, si $\mathbf{x}[k] = \mathbf{x}[l]$, entonces $\mathbf{x}[k+1] = \mathbf{x}[l+1]$, para todo $k, l \in \mathbb{N}$.

Observación 2. La dinámica de los estados macro es determinista, es decir, si X[k] = X[l], entonces X[k+1] = X[l+1], para todo $k, l \in \mathbb{N}$.

Observación 3.
$$X[k+1] = |\{i \in \mathcal{I} : \frac{X[k]}{I} \le u_i\}|$$

Lema 1 (Dinámica fundamental). Si $X[k] \le X[l]$, entonces $X[l+1] \le X[k+1]$.

Demostración. Supongamos que $X[k] \leq X[l]$. Vamos a demostrar primero que para todo $i \in \mathcal{I}$ se tiene que $x_i[l+1] \leq x_i[k+1]$. Sea i arbitrario y observe que $x_i[k+1] \in \{0,1\}$. Consideremos cada caso por aparte:

- Supongamos que $x_i[k+1] = 0$. Luego, por la definición de $x_i[k+1]$ (ver (c) arriba) y por la hipótesis se tiene que $u_i < \frac{X[k]}{I} \le \frac{X[l]}{I}$. Es decir, $u_i < \frac{X[l]}{I}$ y, de nuevo por (c) aplicado a l+1, se tiene que $x_i[l+1] = 0$. Por lo tanto $x_i[l+1] \le x_i[k+1]$.
- Supongamos que $x_i[k+1] = 1$. Como $x_i[l+1] \in \{0,1\}$, entonces $x_i[l+1] \le x_i[k+1]$.

Como i es arbitrario, entonces $x_i[l+1] \le x_i[k+1]$ para todo $i \in \mathcal{I}$. En consecuencia, $\sum_{i \in \mathcal{I}} x_i[l+1] \le \sum_{i \in \mathcal{I}} x_i[k+1]$. Por lo tanto, por la definición de X[k] se tiene que $X[l+1] \le X[k+1]$.

Corolario 1. No puede haber dos transiciones consecutivas a estados de mayor número de individuos. Es decir, si $X[k] \le X[k+1]$, entonces $X[k+2] \le X[k+1]$.

Demostración. Considere el lema 1 con l = k + 1.

Corolario 2. No puede haber dos transiciones consecutivas a estados de menor número de individuos. Es decir, si $X[k+1] \le X[k]$, entonces $X[k+1] \le X[k+2]$.

Demostración. Considere el lema 1 con l = k - 1.

Teorema 1. No existen ciclos de longitud 3. Es decir, no existe $k \in \mathbb{N}$ tal que $X[k] \neq X[k+1] \neq X[k+2]$ y X[k+3] = X[k].

Demostración. Para todo $k \in \mathbb{N}$ vamos a demostrar que si $X[k] \neq X[k+1] \neq X[k+2]$, entonces $X[k+3] \neq X[k]$. Sea k arbitrario y supongamos la hipótesis. Consideremos por aparte los casos X[k] < X[k+1] y X[k] > X[k+1]:

- Supongamos que X[k] < X[k+1]. Por el lema 1 se sigue que $X[k+2] \le X[k+1]$. Tenemos dos casos para comparar X[k] y X[k+2] (ya sabemos que, por hipótesis, ellos son distintos):
 - Caso X[k+2] < X[k]. Supongamos por absurdo que X[k+3] = X[k]. Por la observación 2 se sigue que X[k+4] = X[k+1]. Entonces, como arriba supusimos que X[k] < X[k+1], se sigue que X[k+2] < X[k+3] < X[k+4]. Esto contradice el corolario 1. Concluimos que $X[k+3] \neq X[k]$.
 - Caso X[k] < X[k+2]. Supongamos por absurdo que X[k+3] = X[k]. Entonces, como arriba vimos que $X[k+2] \le X[k+1]$, se sigue que $X[k+3] < X[k+2] \le X[k+1]$. Esto contradice el corolario 2. Concluimos que $X[k+3] \ne X[k]$.

En cualquiera de estos dos casos, se sigue que $X[k+3] \neq X[k]$.

- Ahora supongamos que X[k+1] < X[k]. Por el lema 1 se sigue que $X[k+1] \le X[k+2]$. Tenemos dos casos para comparar X[k] y X[k+2] (ya sabemos que, por hipótesis, ellos son distintos):
 - Caso X[k+2] < X[k]. Supongamos por absurdo que X[k+3] = X[k]. Entonces como arriba vimos que $X[k+1] \le X[k+2]$, se sigue que $X[k+1] \le X[k+2] < X[k+3]$. Esto contradice el corolario 2. Concluimos que $X[k+3] \ne X[k]$.

• Caso X[k] < X[k+2]. Supongamos por absurdo que X[k+3] = X[k]. Por la observación 2 se sigue que X[k+4] = X[k+1]. Entonces, como arriba supusimos que X[k+1] < X[k], se sigue que X[k+4] < X[k+3] < X[k+2]. Esto contradice el corolario 2. Concluimos que $X[k+3] \neq X[k]$.

En cualquier caso, $X[k+3] \neq X[k]$, y como k es arbitrario, entonces concluimos que si $X[k] \neq X[k+1] \neq X[k+2]$, entonces $X[k+3] \neq X[k]$, para todo $k \in \mathbb{N}$. \square

Lema 2. Si
$$X[k] < X[l] < X[l+1]$$
, entonces $X[k] < X[l] < X[l+1] \le X[k+1]$

Demostraci'on. Como X[k] < X[l] se sigue por el lema 1 que $X[l+1] \le X[k+1]$, ademas como X[l] < X[l+1] entonces $X[k] < X[l] < X[l+1] \le X[k+1]$

SI EL REBOTE SE CIERRA, SE SIGUE CERRANDO SI EL REBOTE SE ABRE, SE SIGUE ABRIENDO

Corolario 3. No existen ciclos de longitud mayor o igual a 3.

Teorema 2 (Punto fijo). Si existe un $k \in \mathbb{N}$ tal que X[k] = X[k+1], entonces existe un $p \in [0,1]$ tal que

$$p * I = |\{i \in \mathcal{I} : p \le u_i\}| \tag{1}$$

Demostraci'on. Supongamos que existe un $k\in\mathbb{N}$ tal que X[k]=X[k+1] y sea $p=\frac{X[k]}{I}.$ Observe que $p\in[0,1]$ y que $p*I=\frac{X[k]}{I}*I=X[k]=X[k+1].$ Además, observe que:

$$\begin{aligned} p*I &= X[k+1] \\ &= |\{i \in \mathcal{I} : \frac{X[k]}{I} \le u_i\}| & \text{(por la observación 3)} \\ &= |\{i \in \mathcal{I} : p \le u_i\}| & \text{(por definición de p)} \end{aligned}$$

Por lo tanto existe un $p \in [0,1]$ que cumple la igualdad (1).

Teorema 3 (Unicidad del punto fijo). Si $p_1, p_2 \in [0,1]$ y ambos cumplen la ecuación 1, entonces $p_1 = p_2$.

Demostración. Supongamos que $p_1, p_2 \in [0, 1]$ y que ambos cumplen la ecuación 1. Supongamos por absurdo que $p_1 < p_2$. Sea $i \in \{i \in \mathcal{I} : p_2 \leq u_i\}$, entonces $p_2 \leq u_i$ y por hipótesis se sigue que $p_1 \leq u_i$. Luego $i \in \{i \in \mathcal{I} : p_1 \leq u_i\}$ y en consecuencia, $\{i \in \mathcal{I} : p_2 \leq u_i\} \subseteq \{i \in \mathcal{I} : p_1 \leq u_i\}$. Por lo tanto, $|\{i \in \mathcal{I} : p_2 \leq u_i\}| \leq |\{i \in \mathcal{I} : p_1 \leq u_i\}|$. Por la ecuación 1 se sigue que $p_2 * I \leq p_1 * I$ y luego $p_2 \leq p_1 \ (\rightarrow \leftarrow)$. Por reducción al absurdo hemos demostrado que si $p_1, p_2 \in [0, 1]$ y ambos cumplen la ecuación 1, entonces $p_1 = p_2$.

Observación 4. Si para ningún $p \in [0,1]$ se cumple la igualdad (1), entonces el sistema no tiene un estado estable.

Observación 5. Si se cumpla la igualdad (1), p*I debe ser entero, luego $p = \frac{1}{I}$, para algún $j \in \{1, ..., I\}$.