- 1 # Pandas es una biblioteca para acceso y manipulación de datos
- 2 import pandas as pd
- datos = pd.read_csv('https://bit.ly/31B56KB')
- 2 type(datos)

pandas.core.frame.DataFrame

1 datos.head(3)

	Contaminacion_SO2	Temperatura	Fabricas	Habitantes	Velocidad_viento	Lluvia
0	10	70.3	213	582	6.0	7.05
1	13	61.0	91	132	8.2	48.52
2	12	56.7	453	716	8.7	20.66

1 datos.tail(3)

$\qquad \qquad \longrightarrow$		Contaminacion_SO2	Temperatura	Fabricas	Habitantes	Velocidad_viento	Lluvi
	38	29	51.1	379	531	9.4	38.7
	39	31	55.2	35	71	6.5	40.7
	40	16	45.7	569	717	11.8	29.0

1 datos.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41 entries, 0 to 40
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Contaminacion_SO2	41 non-null	int64
1	Temperatura	41 non-null	float64
2	Fabricas	41 non-null	int64
3	Habitantes	41 non-null	int64
4	Velocidad_viento	41 non-null	float64
5	Lluvia	41 non-null	float64
6	Dias_Lluvia	41 non-null	int64

dtypes: float64(3), int64(4)

memory usage: 2.4 KB

1 datos.describe()

	Contaminacion_SO2	Temperatura	Fabricas	Habitantes	Velocidad_viento	
count	41.000000	41.000000	41.000000	41.000000	41.000000	4
mean	30.048780	55.763415	463.097561	608.609756	9.443902	3
std	23.472272	7.227716	563.473948	579.113023	1.428644	1
min	8.000000	43.500000	35.000000	71.000000	6.000000	
25%	13.000000	50.600000	181.000000	299.000000	8.700000	3
50%	26.000000	54.600000	347.000000	515.000000	9.300000	3
75%	35.000000	59.300000	462.000000	717.000000	10.600000	2

len(datos)

41

1 datos.columns

1 datos.dtypes

```
Contaminacion_SO2 int64
Temperatura float64
Fabricas int64
Habitantes int64
Velocidad_viento float64
Lluvia float64
Dias_Lluvia int64
dtype: object
```

1 datos.shape

(41, 7)

1 datos.shape[0]

41

1 datos.values

```
6.,
array([[
                    70.3 ,
                            213.
                                      582.
                                                           7.05,
          10.
                                                                    36.
                                                                         ],
          13.
                             91.
                                      132.
                                                  8.2 ,
                                                          48.52,
                                                                   100.
                    61. ,
                                                                         ],
       [
          12.
                    56.7 ,
                            453.
                                      716.
                                                  8.7,
                                                          20.66,
                                                                    67.
                                                                         ],
                    51.9 ,
                            454.
                                      515.
                                                  9. ,
          17.
                                                          12.95,
                                                                    86.
                                                                         ],
          56.
                    49.1 ,
                            412.
                                 , 158. ,
                                                  9.,
                                                          43.37,
                                                                   127.
                                                                         ],
```

```
80.
   36.
            54.
                              80.
                                         9. ,
                                                  40.25,
                                                          114.
                                                                 1,
                              757.
                                          9.3 ,
   29.
            57.3 ,
                     434.
                                                  38.89,
                                                           111.
                                                                 1,
            68.4 ,
                              529.
                                          8.8,
                                                  54.47,
ſ
  14.
                     136.
                                                           116.
                                                                 ],
            75.5 ,
                             335.
                                          9. ,
                                                  59.8 ,
ſ
  10.
                     207.
                                                           128.
                                                                 1,
Γ
   24.
            61.5 ,
                     368.
                              497.
                                         9.1 ,
                                                  48.34,
                                                           115.
                                                                 1,
                          , 3369.
[ 110.
            50.6 , 3344.
                                        10.4 ,
                                                  34.44,
                                                           122.
                                                                 ],
        /
                                        9.7,
            52.3 ,
                    361.
                              746.
                                                  38.74,
                                                           121.
ſ
   28.
                                                                 1,
            49. ,
                                        11.2 ,
Γ
  17.
                    104.
                             201.
                                                  30.85,
                                                          103.
                                                                 ],
            56.6 ,
                    125.
                              277.
                                        12.7 ,
                                                  30.58,
[
   8.
                                                           82.
                                                                 ],
                                        8.3 ,
Γ
   30.
            55.6 ,
                     291.
                              593.
                                                  43.11,
                                                          123.
                                                                 1,
                    204.
                              361.
                                        8.4 ,
                                                  56.77,
Γ
   9.
            68.3 ,
                                                          113.
                                                                 1,
                                        9.6,
[
   47.
            55. ,
                    625.
                             905.
                                                  41.31,
                                                           111.
                                                                 ],
            49.9 , 1064.
                          , 1513.
                                                  30.96,
ſ
  35.
                                        10.1 ,
                                                           129.
                                                                 ],
                                        10.6,
                             744.
[
   29.
            43.5 ,
                    699.
                                                  25.94,
                                                           137.
                                                                 ],
                                        10. ,
Γ
  14.
            54.5 ,
                     381.
                              507.
                                                  37. ,
                                                           99.
                                                                 ],
  56.
            55.9 ,
                     775.
                              622.
                                        9.5 ,
                                                  35.89,
                                                           105.
[
                                                                 ],
            51.5 ,
                    181.
                             347.
                                        10.9 ,
                                                  30.18,
                                                           98.
ſ
  14.
                                                                 1,
                                        8.9 ,
[
  11.
            56.8 ,
                     46.
                             244.
                                                  7.77,
                                                           58.
                                                                 ],
  46.
                                        8.8,
            47.6 ,
                     44.
                             116.
                                                  33.36,
[
                                                          135.
                                                                ],
ſ
  11.
            47.1 ,
                     391.
                             463.
                                        12.4 ,
                                                  36.11,
                                                           166.
                                                                 1,
            54. ,
Γ
   23.
                    462.
                              453.
                                        7.1,
                                                  39.04,
                                                           132.
                                                                 1,
            49.7 , 1007.
                             751.
                                        10.9 ,
                                                  34.99,
                                                           155.
[
  65.
                                                                 ],
  26.
            51.5 , 266.
                             540.
                                        8.6,
                                                  37.01,
ſ
                                                          134.
                                                                 ],
                          , 1950.
[
   69.
            54.6 , 1692.
                                         9.6,
                                                  39.93,
                                                           115.
                                                                 ],
                                        9.4,
[
   61.
            50.4 ,
                     347.
                              520.
                                                  36.22,
                                                           147.
                                                                 ],
            50.,
                     343.
                              179.
                                                  42.75,
Γ
  94.
                                        10.6 ,
                                                           125.
                                                                 1,
Γ
  10.
            61.6 ,
                     337.
                             624.
                                        9.2,
                                                  49.1 ,
                                                           105.
                                                                 ],
            59.4 ,
                    275.
                              448.
                                        7.9 ,
                                                  46. ,
[
  18.
                                                           119.
                                                                 ],
                                                  35.94,
   9.
            66.2 ,
                     641.
                              844.
                                        10.9 ,
                                                           78.
[
                                                                 ],
  10.
            68.9 ,
                     721.
                          , 1233. ,
                                        10.8 ,
                                                  48.19,
                                                          103.
[
                                                                 ],
        /
                          , 176.
                                        8.7,
            51. ,
                    137.
                                                  15.17,
[
   28.
                                                           89.
                                                                 ],
[
  31.
            59.3 ,
                     96.
                             308.
                                        10.6 ,
                                                  44.68,
                                                          116.
                                                                 ],
            57.8 ,
                              299.
                                         7.6,
                                                  42.59,
[
   26.
                    197.
                                                           115.
                                                                 ],
            51.1 ,
[
   29.
                     379.
                             531.
                                         9.4,
                                                  38.79,
                                                           164.
                                                                ],
Γ
   31.
            55.2 ,
                     35.
                              71. ,
                                        6.5 ,
                                                  40.75,
                                                          148.
                                                                 ],
       /
   16.
            45.7 ,
                   569.
                             717. ,
                                      11.8 ,
                                                  29.07,
                                                          123.
                                                                 ]])
```

datos['Temperatura'].head(3)

0 70.3 1 61.0 2 56.7

Name: Temperatura, dtype: float64

1 datos.Temperatura.head(3)

0 70.3 1 61.0 2 56.7

Name: Temperatura, dtype: float64

1 # Series: almacena una columna

2 s = datos.Contaminacion SO2

3 type(s)

```
1 s.dtype
  dtype('int64')
1 s.values
  array([ 10, 13, 12, 17, 56, 36, 29, 14, 10, 24, 110, 28, 17,
         8, 30, 9, 47, 35, 29, 14, 56, 14, 11, 46,
                                                         11,
                                                              23,
         65, 26, 69, 61, 94, 10, 18, 9, 10, 28, 31,
                                                         26,
                                                              29,
         31, 16])
1 s.describe()
         41.000000
  count
  mean
          30.048780
          23.472272
  std
           8.000000
  min
  25%
          13.000000
  50%
          26.000000
  75%
          35.000000
  max
       110.000000
  Name: Contaminacion SO2, dtype: float64
1 s.mean()
  30.048780487804876
1 s.sum()
  1232
1 s.unique()
  array([ 10, 13, 12, 17, 56, 36, 29, 14, 24, 110, 28, 8, 30,
          9, 47, 35, 11, 46, 23, 65, 26, 69, 61, 94, 18, 31,
         16])
1 s.value counts()
  10
        4
  14
        3
  29
        3
  9
        2
  31
        2
        2
   28
  26
        2
  11
        2
```

```
17
          2
   61
          1
   46
          1
   69
          1
   8
          1
   12
          1
   13
          1
   23
          1
   16
          1
   18
          1
   24
          1
   94
          1
   30
          1
   35
          1
   36
          1
         1
   110
   47
          1
   65
   Name: Contaminacion_SO2, dtype: int64
1 s.sort_values(ascending=True).head(10)
   13
          8
   33
          9
   15
         9
   0
         10
   34
         10
   31
        10
   8
         10
   24
         11
   22
         11
   2
         12
   Name: Contaminacion_SO2, dtype: int64
1 s[9:16]
   9
          24
   10
        110
   11
          28
   12
         17
   13
          8
   14
          30
   Name: Contaminacion_SO2, dtype: int64
1 datos[9:16]
```

	Contaminacion_SO2	Temperatura	Fabricas	Habitantes	Velocidad_viento	Lluvi
9	24	61.5	368	497	9.1	48.3
10	110	50.6	3344	3369	10.4	34.4
11	28	52.3	361	746	9.7	38.7
12	17	49.0	104	201	11.2	30.8

1 datos.iloc[3:8,:]

	Contaminacion_S02	Temperatura	Fabricas	Habitantes	Velocidad_viento	Lluvia
3	17	51.9	454	515	9.0	12.95
4	56	49.1	412	158	9.0	43.37
5	36	54.0	80	80	9.0	40.25
6	29	57.3	434	757	9.3	38.89
7	14	68.4	136	529	8.8	54.47

1 datos.iloc[3:8,2:6]

	Fabricas	Habitantes	Velocidad_viento	Lluvia
3	454	515	9.0	12.95
4	412	158	9.0	43.37
5	80	80	9.0	40.25
6	434	757	9.3	38.89
7	136	529	8.8	54.47

1 datos.iloc[:,2:6]

	Fabricas	Habitantes	Velocidad_viento	Lluvia
0	213	582	6.0	7.05
1	91	132	8.2	48.52
2	453	716	8.7	20.66
3	454	515	9.0	12.95
4	412	158	9.0	43.37
5	80	80	9.0	40.25
6	434	757	9.3	38.89
7	136	529	8.8	54.47
8	207	335	9.0	59.80
9	368	497	9.1	48.34
10	3344	3369	10.4	34.44
11	361	746	9.7	38.74
12	104	201	11.2	30.85
13	125	277	12.7	30.58
14	291	593	8.3	43.11
15	204	361	8.4	56.77
16	625	905	9.6	41.31
17	1064	1513	10.1	30.96
18	699	744	10.6	25.94
19	381	507	10.0	37.00
20	775	622	9.5	35.89
21	181	347	10.9	30.18
22	46	244	8.9	7.77

¹ datos.iloc[:,-3:6]

	Velocidad_viento	Lluvia
0	6.0	7.05
1	8.2	48.52
2	8.7	20.66
3	9.0	12.95
4	9.0	43.37
5	9.0	40.25
6	9.3	38.89
7	8.8	54.47
8	9.0	59.80
9	9.1	48.34
10	10.4	34.44
11	9.7	38.74
12	11.2	30.85
13	12.7	30.58
14	8.3	43.11
15	8.4	56.77
16	9.6	41.31
17	10.1	30.96
18	10.6	25.94
19	10.0	37.00
20	9.5	35.89
21	10.9	30.18
22	8.9	7.77
23	8.8	33.36
24	12.4	36.11

^{1 #} Columnas específicas de un DF

² df2 = datos.filter(['Temperatura', 'Dias_Lluvia'])

³ df2

	Temperatura	Dias_Lluvia		
0	70.3	36		
1	61.0	100		
2	56.7	67		
3	51.9	86		
4	49.1	127		
5	54.0	114		
6	57.3	111		
7	68.4	116		
8	75.5	128		
9	61.5	115		
10	50.6	122		
11	52.3	121		
12	49.0	103		
13	56.6	82		
14	55.6	123		
15	68.3	113		
16	55.0	111		
17	49.9	129		
18	43.5	137		
19	54.5	99		
20	55.9	105		
21	51.5	98		
22	56.8	58		
23	47.6	135		
24	47.1	166		
25	54.0	132		
26	49.7	155		
27	51.5	134		
28	54.6	115		

¹ df2 = datos.drop(['Temperatura', 'Dias_Lluvia'], axis=1)

² df2

Contaminacion_SO2 Fabricas Habitantes Velocidad_viento Lluvia

```
1 s = datos.Dias_Lluvia
2 s.values
   array([ 36, 100, 67, 86, 127, 114, 111, 116, 128, 115, 122, 121, 103,
         82, 123, 113, 111, 129, 137, 99, 105, 98, 58, 135, 166, 132,
         155, 134, 115, 147, 125, 105, 119, 78, 103, 89, 116, 115, 164,
         148, 123])
                    JU 712 1JU
                                                      U.U TU.U1
1 s.value_counts()
  115
         3
        2
   105
  123
        2
  116
        2
  103
        2
  111
        2
  127
        1
  148
        1
  147
        1
  82
        1
  100
        1
  78
         1
  137
        1
  89
         1
  135
        1
  134
        1
  132
        1
  67
        1
  129
         1
  86
        1
  99
         1
  155
        1
  98
        1
  125
        1
  36
        1
  166
        1
  58
        1
  113
        1
  114
        1
  119
        1
  164
        1
  121
        1
  122
        1
  128
        1
  Name: Dias Lluvia, dtype: int64
                        . . . . .
                                                     grupo = datos.groupby('Dias Lluvia')
2 type(grupo)
   pandas.core.groupby.generic.DataFrameGroupBy
   29
                    61
                            34/
                                      520
                                                    9.4
                                                           36.22
  ariino maan/\
```

- - - - -

1 grupo.sum().head(20)

	Contaminacion_SO2	Temperatura	Fabricas	Habitantes	Velocidad_vier
Dias_Lluvia					
36	10	70.3	213	582	
58	11	56.8	46	244	
67	12	56.7	453	716	
78	9	66.2	641	844	1
82	8	56.6	125	277	1
86	17	51.9	454	515	
89	28	51.0	137	176	
98	14	51.5	181	347	1
99	14	54.5	381	507	1
100	13	61.0	91	132	
103	27	117.9	825	1434	2
105	66	117.5	1112	1246	1
111	76	112.3	1059	1662	1
113	9	68.3	204	361	
114	36	54.0	80	80	
115	119	173.9	2257	2746	2
116	45	127.7	232	837	1
119	18	59.4	275	448	
121	28	52.3	361	746	
122	110	50.6	3344	3369	1
128	10.00000	/5.500000	207.00000	U 335.UUUUU	9.00

¹ s_grupo = grupo.sum()

Dias_Lluvia
36 True
58 False
67 False
78 True

² cond = s_grupo.Temperatura >= 65

³ cond

```
82
      False
86
      False
89
      False
98
      False
99
      False
100
      False
103
       True
105
       True
111
       True
113
       True
114
     False
115
       True
116
       True
119
      False
121
      False
122
      False
123
      True
125
      False
127
     False
128
       True
129
      False
132
     False
134
     False
135
      False
137
     False
147
      False
148
     False
155
     False
164
      False
166
      False
Name: Temperatura, dtype: bool
```

1 s_grupo[cond]

```
1 # Numpy: utilizar arreglos y matrices "a la matlab"
2 import numpy as np
                                     70.0
                                                        ____
                           4.0
  v = np.array([1,2,3,4,5])
1
2
  type(v)
  numpy.ndarray
      105
                                  117.5 1112 1246
                            00
1 v.shape
  (5,)
       115
                           119
                                    173.9 2257
                                                        2746
                                                                         2
1 v.ndim
  1
      - - -
                           . -
                                      -- -
                                              ---
1 v.dtype
  dtype('int64')
1 \quad v + v
  array([ 2, 4, 6, 8, 10])
1 7.18 * v
  array([ 7.18, 14.36, 21.54, 28.72, 35.9 ])
1 v * v
  array([ 1, 4, 9, 16, 25])
1 v @ v # producto punto
  55
1 np.zeros(5)
  array([0., 0., 0., 0., 0.])
1 \quad np.ones(5)
  array([1., 1., 1., 1., 1.])
```

m - nn arram/[[1 2 2] [/ E 6] [7 0 0]])

```
m = np.array([[1,2,3],[4,3,0],[1,8,9]])
2
  type(m)
   numpy.ndarray
1
 m.shape
   (3, 3)
 m + m
   array([[ 2, 4, 6],
         [ 8, 10, 12],
          [14, 16, 18]])
1 7.12 * m
   array([[ 7.12, 14.24, 21.36],
         [28.48, 35.6, 42.72],
          [49.84, 56.96, 64.08]])
1 m * m
   array([[ 1, 4, 9],
         [16, 25, 36],
          [49, 64, 81]])
1 m@m
   array([[ 30, 36, 42],
          [ 66, 81, 96],
          [102, 126, 150]])
1 np.zeros((2,3))
   array([[0., 0., 0.],
         [0., 0., 0.]])
1 np.ones((3,2))
   array([[1., 1.],
          [1., 1.],
         [1., 1.]])
1 r = np.random.random((3,5))*100
  r
   array([[28.59190643, 88.89008955, 28.96653224, 53.43865308, 82.23642151],
          [23.77256156, 20.94847528, 58.07835104, 40.52839005, 71.72227041],
```

```
1 	 rt = r.T
  rt
   array([[28.59190643, 23.77256156, 11.74241858],
          [88.89008955, 20.94847528, 98.29272273],
          [28.96653224, 58.07835104, 29.30936364],
          [53.43865308, 40.52839005, 52.25047165],
          [82.23642151, 71.72227041, 74.84800268]])
1 rt[1,2]
   98.29272272774045
1
  rt[1,:]
   array([88.89008955, 20.94847528, 98.29272273])
1
  rt[:,2]
   array([11.74241858, 98.29272273, 29.30936364, 52.25047165, 74.84800268])
  rt[2:5,1:3]
   array([[58.07835104, 29.30936364],
          [40.52839005, 52.25047165],
          [71.72227041, 74.84800268]])
1 rt > 45
   array([[False, False, False],
          [ True, False, True],
          [False, True, False],
          [ True, False, True],
          [ True, True, True]])
1 rt[ rt>45 ]
   array([88.89008955, 98.29272273, 58.07835104, 53.43865308, 52.25047165,
          82.23642151, 71.72227041, 74.84800268])
1 rt.sum()
   763.6166304334438
1 rt.sum(axis=0)
```

[11.74241858, 98.29272273, 29.30936364, 52.25047165, 74.84800268]])

```
rt.sum(axis=1)
1
   array([ 64.10688656, 208.13128755, 116.35424692, 146.21751479,
          228.80669461])
1 rt.std()
   26.403182085068394
1 rt.std(axis=0)
   array([25.52558848, 19.56730934, 30.95915239])
1
  a = np.arange(10)
2
   array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
  a2 = a.reshape(2,5)
1
2
   a2
   array([[0, 1, 2, 3, 4],
          [5, 6, 7, 8, 9]])
  a.reshape(5,2)
   array([[0, 1],
          [2, 3],
          [4, 5],
          [6, 7],
          [8, 9]])
1
   array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
1 v = np.array([7,8,9])
  m = np.array([[1,2,3],[4,5,6]])
  v.shape
   (3,)
1
  m.shape
   (2, 3)
```

array([282.12360281, 215.05004834, 266.44297929])

```
v+m
   array([[ 8, 10, 12],
          [11, 13, 15]])
  v = np.array([8,9])
1
  m = np.array([[1,2,3],[4,5,6]]).T
  m.shape
   (3, 2)
1
   m
   array([[1, 4],
          [2, 5],
          [3, 6]])
1
  v+m
   array([[ 9, 13],
          [10, 14],
          [11, 15]])
1 v * m
   array([[ 8, 36],
          [16, 45],
          [24, 54]])
1 v@m
                                              Traceback (most recent call last)
   <ipython-input-80-33886e1f3833> in <module>()
   ---> 1 v @ m
   ValueError: matmul: Input operand 1 has a mismatch in its core dimension 0, with
   gufunc signature (n?,k), (k,m?) \rightarrow (n?,m?) (size 3 is different from 2)
   SEARCH STACK OVERFLOW
  m @ v
1
   array([44, 61, 78])
  # Tiempo Numpy vs Python
1
2
  import numpy as np
   import numpy.random as rnd
```

```
4 from operator import matmul
5 from time import time
1
  def mult_mat(m1, m2):
2
     if m1.shape[1] != m2.shape[0]:
3
      return None
4
     mat = np.zeros([m1.shape[0], m2.shape[1]])
5
     for i in range(mat.shape[0]):
6
      for j in range(mat.shape[1]):
7
         for k in range(mat.shape[0]):
           mat[i][j] += m1[i][k] * m2[k][j]
8
     return mat
9
   def time_fun(m1, m2, func):
1
2
    t_ini = time()
3
    func(m1, m2)
4
     return time() - t_ini
1 m1 = np.random.random((300,400))*10
  m2 = np.random.random((400,200))*10
1 print("tiempo numpy : ", time_fun(m1, m2, np.dot))
  print("tiempo matmul : ", time fun(m1, m2, matmul))
3 print("tiempo python : ", time_fun(m1, m2, mult_mat))
   tiempo numpy: 0.010650634765625
   tiempo matmul: 0.0018911361694335938
   tiempo python: 29.771321058273315
1  # Matplotlib
2 import numpy as np
  import matplotlib.pyplot as plt
1 x = np.linspace(-5, 5, 50)
y = np.sin(x)
  plt.plot(x, y, 'y*', linestyle='dashed', markersize=10)
```

```
[<matplotlib.lines.Line2D at 0x7f499d910210>]
      0.75
      0.50 -
1
    x = np.linspace(0, 2, 100)
   plt.plot(x, x, label='lineal')
2
   plt.plot(x, x**2, label='cuadrática')
   plt.plot(x, x**3, label='cúbica')
4
5
   plt.xlabel('eje X')
   plt.ylabel('f(X)')
6
7
   plt.title('Funciones')
8
   plt.grid()
9
   plt.legend()
   plt.show()
10
```



```
1  n = 50
2  x = np.random.rand(n)
3  y = np.random.rand(n)
4  colores = np.random.rand(n) * 20
5  areas = (30 * np.random.rand(n))**2
6  plt.scatter(x,y,s=areas,c=colores,alpha=0.4)
7  plt.show()
```

```
1  mu,sigma = 100,15
2  x = mu+sigma * np.random.randn(1000)
3  plt.hist(x, 50, density=True)
4  plt.title('Histograma')
5  plt.text(50, 0.030, r'$\mu=100,\ \sigma=15$')
6  plt.show()
```

1.0


```
data={'foo':10,'bar':15,'foobar':5,'barfoo':20}
 1
 2
    names=list(data.keys())
 3
    values=list(data.values())
    fig,((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2,figsize=(8,8),sharey=True)
 4
 5
    ax1.bar(names, values)
 6
 7
    ax1.set title('Barras')
 8
9
    ax2.scatter(names, values)
10
    ax2.set title('Dispersión')
11
12
    ax3.plot(names, values)
13
    ax3.set_title('Lineas')
14
    areas = [v*50 for v in values]
15
16
    ax4.scatter(names, values, s=areas)
17
    ax4.set title('Dispersión con áreas')
```

Text(0.5, 1.0, 'Dispersión con áreas')

1 type(ax1)

matplotlib.axes._subplots.AxesSubplot

1