МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторної роботи № 6 «Розв'язування задач оптимізації на мережах за допомогою алгоритмів Дейкстри та Флойда»

з дисципліни «Дослідження операцій» для здобувачів першого (бакалаврського) рівня вищої освіти спеціальності 121 «Інженерія програмного забезпечення»

Укладачі:

д.т.н., проф., проф. кафедри

Любов ЖУРАВЧАК

к.ф.-м..н., старший викладач кафедри

Наталія ІВАСЬКО

Тема роботи: Розв'язування задач оптимізації на мережах за допомогою алгоритмів Дейкстри та Флойда

Мета роботи: Ознайомитись на практиці із основними алгоритмами розв'язування потокових задач, навчитись знаходити оптимальні маршрути між вершинами мережі за допомогою модифікованих алгоритмів Дейкстри та Флойда.

6.1. Поняття мережі

У межах теорії дослідження операцій розглядається велика кількість практичних задач, які можна сформулювати як мережеві моделі та розв'язати їх за спеціальними методами лінійного програмування. Приведемо декілька конкретних прикладів.

- 1. Проектування газопроводу, що сполучає бурові свердловини морського базування з приймальною станцією, що знаходиться на березі. Цільова функція відповідної моделі повинна мінімізувати вартість будівництва газопроводу.
- 2. Пошук найкоротшого маршруту між двома містами в наявній мережі доріг.
- 3. Визначення максимальної пропускної спроможності трубопроводу для транспортування вугільної пульпи від вугільних шахт до електростанцій.
- 4. Визначення схеми транспортування нафти від пунктів нафтовидобування до нафтопереробних заводів із мінімальною вартістю транспортування.
- 5. Складання тимчасового графіка будівельних робіт (визначення дат початку і завершення окремих етапів робіт).

Розв'язування описаних задач (як і багатьох аналогічних) вимагає застосування різних мережевих оптимізаційних алгоритмів. Задачі такого вигляду можна сформулювати і вирішувати як задачі лінійного програмування, але їхня специфічна структура дає можливість розробити спеціальні мережеві алгоритми, більш ефективні, ніж стандартний симплекс-метод.

Мережа складається з множини вузлів, зв'язаних дугами (або ребрами), тобто зображується графом. Отже, мережа описується парою множин (N,A), де N — множина вузлів (вершин), а A — множина дуг. Наприклад, на рис. 5.1 зображено деяку мережу, у якої $N = \{1,2,3,4,5\}$, а множина $A = \{(1,2);(1,3);(2,3);(2,5);(3,4);(3,5);(4,2);(4,5)\}$.

Рис. 6.1. Приклад мережі

Зв'язна мережа — це мережа, у якої будь-які два вузли зв'язані принаймні одним шляхом (дугою). На рис. 6.1 показаний саме такий тип мережі. Якщо дуги є спрямованими, то мережу називають *орієнтованою*. Якщо кожній дузі приписано деяке дійсне число (вагу), то мережу називають зваженою. Під довжиною шляху у зваженій мережі розуміють суму ваг дуг, що утворюють цей шлях, у незваженій — кількість дуг.

Зазвичай розглядають транспортні мережі. Найбільш поширеними задачами ϵ визначення найкоротшої відстані від будь-якого пункту (вершини) до інших у заданій транспортній мережі.

Постановка задачі. Нехай у заданій зв'язній транспортній мережі кожній дузі, що виходить із точки p_i та входить у точку p_j , відповідає деяке дійсне **невід'ємне** число d_{ij} — її довжина. Треба визначити найкоротші шляхи в мережі від довільної вершини до всіх інших і вказати, через які вершини вони проходять.

Для розв'язування цієї задачі розглянемо модифіковані алгоритми Дейкстри та Флойда.

6.2. Модифікований алгоритм Дейкстри

Алгоритм Дейкстри винайдений нідерландським вченим Е. Дейкстрою в 1959 р. Його мета полягає в знаходженні найкоротшої відстані від однієї (початкової) вершини мережі до всіх інших.

Згідно з алгоритмом, кожній вершині відповідає мітка — мінімальна відома відстань від цієї вершини до початкової. Алгоритм працює покроково — на кожному кроці він "відвідує" одну вершину і намагається зменшувати мітки. Робота алгоритму завершується, коли всі вершини відвідані.

Ініціалізація. Мітка початкової вершини d(a)=0, мітки інших вершин — нескінченності $(d(x_i)=\infty)$. Це зображає те, що відстані від початкової до інших вершин невідомі. Мітка вершини a стає **постійною** (x^*) , мітки решти вершин — **тимчасовими**.

Крок 1. Якщо всі вершини мають постійну мітку, алгоритм завершений. Інакше, для всіх тимчасових міток, які суміжні з постійною вершиною (x^*) , обчислюємо $d(x_i) = \min\{d(x_i), d(x^*) + c(x^*, x_i)\}$, де $c(x^*, x_i)$ – відстань від вершини x^* до вершини x_i .

 $\mathit{Kpo\kappa}\ 2$. Серед усіх тимчасових міток визначаємо постійну за правилом $x^* = \min(d(x_i))$. Переходимо до кроку 1.

Алгоритм Дейкстри дає змогу обчислити довжину найкоротшого шляху від початкової вершини a до заданої t. Для знаходження самого шляху потрібно ще накопичувати вектор вершин, із яких найкоротший шлях безпосередньо потрапляє у дану вершину. Для цього з кожною вершиною x_i , крім вершини x^* , пов'язують ще одну мітку $\theta(x_i)$. Крок 1 модифікують так.

Для кожної непереглянутої вершини x_i виконати: якщо $d(x_i) > d(x^*) + c(x^*, x_i)$, то $\theta(x_i) = x^*$. Інакше $\theta(x_i)$ не змінювати. Коли мітка $d^{(l)}(x)$ стане постійною, найкоротший шлях з a потраплятиме у вершину x_i безпосередньо з вершини x^* . З постійних міток $d(x_i)$ та $\theta(x_i)$ утворюємо вектори d та θ .

6.3 Приклад пошуку найкоротшого маршруту в мережі за модифікованим алгоритмом Дейкстри

<u>Приклад 6.1.</u> Знайти найкоротші маршрути з вершини a до решти вершин в мережі, зображеної на рис. 6.2, та вказати вершини, через які вони проходять, за допомогою модифікованого алгоритму Дейкстри.

Рис. 6.2. Приклад мережі

Крок 1. Розглянемо першу вершину a (з якої необхідно знайти маршрут до решти вершин) — тимчасова мітка. Випишемо таблицю (табл. 6.1), у якій елементи першого рядка d(x) міститимуть відстані від початкової вершини до решти, які ми переглянули, а елементи другого рядка $\theta(x)$ — вершини, через які проходить маршрут із мінімальною довжиною. На першому кроці відстань від вершини a до самої себе = 0, а до решти вершин = ∞ , ці вершини ще не переглянуті. Другий рядок таблиці заповнюємо "-" (оскільки ще не обчислені мінімальні відстані до вершин, то і немає номерів чи назв самих вершин).

Вершини	a	b	С	d	e	f	g	h	i	j	z
d(x)	0	∞	8	∞	∞	∞	∞	∞	8	∞	8
X	-	-	-	-	-	-	-	-	-	-	1

Переглянемо усі суміжні вершини з вершиною a. Виконаємо обчислення:

$$d(b) = \min\{d(b), d(a) + c(a,b)\} = \min\{\infty, 0 + 6\} = 6,$$

$$d(c) = \min\{d(c), d(a) + c(a,c)\} = \min\{\infty, 0+3\} = 3,$$

$$d(d) = \min\{d(d), d(a) + c(a,d)\} = \min\{\infty, 0 + 2\} = 2,$$

$$d(e) = \min\{d(e), d(a) + c(a, e)\} = \min\{\infty, 0 + 8\} = 8.$$

Вершина а переглянута (постійна мітка).

Крок 2. У нову таблицю (табл. 6.2) записуємо обчислені значення елементів у перший рядок. У відповідних елементах другого рядка таблиці записуємо вершину a.

Таблиця 6.2

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	8	∞	∞	8	∞	∞	∞
X	-	a	a	a	а	-	-	-	-	-	-

Обираємо серед *непереглянутих* вершин у табл. 6.2 ту, яка має $\min(d(x))$. Це вершина d (*тимчасова* мітка).

Переглянемо усі суміжні вершини з вершиною d. Виконаємо обчислення:

$$d(c) = \min\{d(c), d(d) + c(d,c)\} = \min\{3, 2 + \infty\} = 3,$$

$$d(i) = \min\{d(i), d(d) + c(d,i)\} = \min\{\infty, 2+3\} = 5,$$

$$d(e) = \min\{d(e), d(d) + c(d, e)\} = \min\{8, 2 + 2\} = 4,$$

$$d(b) = \min\{d(b), d(d) + c(d, b)\} = \min\{6, 2 + \infty\} = 6.$$

Вершина d переглянута (постійна мітка).

Крок 3. Записуємо нову таблицю 6.3.

Таблиця 6.3

Вершини	a	b	C	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	8	∞	8	5	8	8
X	-	a	a	a	d	-	-	-	d	-	-

Обираємо серед непереглянутих вершин у табл. 6.3 ту, яка має $\min(d(x))$. Це вершина c (mumuacoea мітка).

Переглянемо усі суміжні вершини з вершиною c. Виконаємо обчислення:

$$d(f) = \min\{d(f), d(c) + c(c, f)\} = \min\{\infty, 3 + 6\} = 9,$$

$$d(i) = \min\{d(i), d(c) + c(c, i)\} = \min\{5, 3 + \infty\} = 5,$$

$$d(e) = \min\{d(e), d(c) + c(c, e)\} = \min\{4, 3 + \infty\} = 4,$$

$$d(b) = \min\{d(b), d(c) + c(c, b)\} = \min\{6, 3 + \infty\} = 6.$$

Вершина с переглянута (постійна мітка).

Крок 4. Записуємо нову таблицю 6.4.

Таблиця 6.4

Вершини	a	b	С	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	∞	8	5	∞	∞
X	-	a	a	a	d	c	-	-	d	-	-

Серед непереглянутих вершин у табл. 6.4, яка має $\min(d(x))$ -це вершина e (*тимчасова* мітка).

Переглянемо усі суміжні вершини з вершиною e. Виконаємо обчислення:

$$d(b) = \min\{d(b), d(e) + c(e, b)\} = \min\{6, 4 + \infty\} = 6,$$

$$d(f) = \min\{d(f), d(e) + c(e, f)\} = \min\{9, 4 + 14\} = 9,$$

$$d(i) = \min\{d(i), d(e) + c(e, i)\} = \min\{5, 4 + 5\} = 5.$$

Вершина e переглянута (постійна мітка).

Так продовжуємо далі, допоки всі вершини таблиці не будуть переглянуті (табл. 6.5-6.11).

Таблиця 6.5

Вершини	a	b	c	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	9	8	∞	5	∞	8
X	-	a	a	a	d	c	1	-	d	-	-

Таблиця 6.6

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	∞	5	7	∞
X	-	a	a	a	d	c	i	-	d	i	-

Таблиця 6.7

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	∞
X	ı	a	a	a	d	c	i	b	d	i	-

Таблиця 6.8

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Таблиця 6.9

Вершини	a	b	c	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Вершини	a	b	c	d	e	f	g	h	i	j	z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Таблиця 6.11

Вершини	a	b	c	d	e	f	g	h	i	j	Z
d(x)	0	6	3	2	4	9	9	14	5	7	12
X	-	a	a	a	d	c	i	b	d	i	j

Отже, всі вершини позначено і отримано остаточний результат (табл. 6.12). Таблиця 6.12

Маршрут	Шлях	Довжина
a-a	-	0
a-b	$a \rightarrow b$	6
a-c	$a \rightarrow c$	3
a-d	$a \rightarrow d$	2
а-е	$a \rightarrow d \rightarrow e$	4
a-f	$a \rightarrow c \rightarrow f$	9
a-g	$a \rightarrow d \rightarrow i \rightarrow g$	9
a-h	$a \rightarrow b \rightarrow h$	14
a-i	$a \rightarrow d \rightarrow i$	5
а-ј	$a \rightarrow d \rightarrow i \rightarrow j$	7
a-z	$a \rightarrow d \rightarrow i \rightarrow j \rightarrow z$	12

6.4. Модифікований алгоритм Флойда

Алгоритм Флойда — алгоритм динамічного програмування для знаходження найкоротших відстаней між усіма вершинами зваженого орієнтованого графа. Розроблений цей алгоритм у 1962 році Робертом Флойдом і Стівеном Воршеллом.

Суть алгоритму Флойда полягає у перевірці того, чи не виявиться шлях із вершини i у вершину j коротшим, якщо він буде проходити через деяку проміжну вершину. Алгоритм Флойда реалізується з використанням двох матриць: матриці найкоротших довжин D та матриці шляхів S. Зауважимо, що в цьому алгоритмі довжини дуг можуть бути вid'ємними, однак довжина кожного циклу має бути nesid'ємною.

Спочатку потрібно ініціалізувати початкову матрицю відстаней D_1 (матрицю, кожен елемент якої d_{ij} дорівнює відстані від вершини i до вершини j, якщо існує ребро (i,j), і дорівнює нескінченності в іншому випадку) і матрицю марш-

рутів (послідовностей вершин) S_1 (кожен елемент матриці дорівнює номеру відповідного стовпця). Діагональні елементи обох матриць позначають знаком "- ", оскільки їх в обчисленнях не враховують.

$$D_{1} = \begin{bmatrix} - & d_{12} & d_{13} \dots & d_{1n} \\ d_{21} & - & d_{23} \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{n1} & d_{n2} & d_{n3} \dots & d_{nn} \end{bmatrix} \qquad S_{1} = \begin{bmatrix} - & 2 & 3 & \dots & n \\ 1 & - & 3 & \dots & n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 3 & \dots & n \end{bmatrix}$$

Далі на кожному кроці потрібно виділити **базовий вузол** (провідні рядок та стовпець). На першому кроці (k=1) це буде перший рядок та стовпець, на другому кроці — другий рядок та стовпець тощо. Викреслюємо базові стовпець та рядок матриці D_k , а також ті її рядки та стовпці, які мають значення ∞ , що знаходиться в базових рядку чи стовпці.

Для утворення нової матриці D_{k+1} необхідно переписати викреслені рядки і стовпці без змін, а інші елементи перерахувати за таким правилом: якщо $d_{ik} + d_{kj} < d_{ij}$, то у матриці D_{k+1} змінюємо елемент $d_{ij} = d_{ik} + d_{kj}$, в іншому випадку значення елементу залишаємо попереднім.

Розрахунки на цьому кроці доцільно виконувати з урахуванням викреслених рядків та стовпчиків. Викреслення полегшує розрахунки за вищенаведеними формулами та усуває непотрібні перерахунки значень. Порівнюємо кожен невикреслений елемент d_{ij} та переписуємо перераховані значення в матриці наступної ітерації. Викреслені елементи переписуємо без змін.

		•••	k		\boldsymbol{j}	•••	i	•••
	÷	-						
	k		-		d_{kj}			
	÷			-	1			
D	\boldsymbol{j}				-			
$D_k=$	÷					-		
	i		d_{ik}	-	$-d_{ij}$		-	
	:							-

Після зміни на кроці k елемента d_{ij} матриці відстаней D_{k+1} у матриці шляхів S_{k+1} на місці відповідного елемента s_{ij} записуємо номер кроку k, якщо $s_{ik}=k$, а в протилежному випадку присвоюємо йому значення s_{ik} .

Алгоритм Флойда завершується через n кроків (n – кількість вершин мережі).

6.5. Приклад знаходження найкоротшого маршруту в мережі за допомогою алгоритму Флойда

<u>Приклад 6.2.</u> Знайти мінімальні ланцюги між вершинами мережі, зображеної на рис. 6.3, за допомогою алгоритму Флойда.

Рис. 6.3. Приклад мережі

 $S_1 =$

Крок 1. Визначимо початкові матриці.

		a	b	С	e	h	f
	a	0	6	3	8	8	8
	b	8	0	2	8	8	8
D_1 =	c	8	8	0	8	8	6
	e	8	8	8	0	8	14
	h	8	8	12	8	0	6
	\overline{f}	8	8	8	8	8	0

	a	b	С	e	h	f
a	0	b	С	e	h	f
b	a	0	С	e	h	f
c	a	b	0	e	h	f
e	a	b	С	0	h	f
h	a	b	c	e	0	f
f	a	b	c	e	h	0

На першому кроці виділяємо *перші* рядок та стовпець матриці D_1 . Для зменшення кількості обчислень користуємось **правилом**: якщо у виділеному рядку (стовпці) є елементи рівні ∞ , то викреслюємо і всі стовпці (рядки), які їм відповідають, тобто їх **не перераховуємо**. Оскільки у матриці D_1 у першому стовпчику всі елементи рівні ∞ , то жоден її елемент не змінюємо (так само і в матриці S_1).

Крок 2. Виділяємо у матриці D_2 другі рядок та стовпець.

		a	b	С	e	h	f
	a	0	6	3	8	8	8
	b	8	0	2	8	8	8
$D_2 =$	c	8	8	0	8	8	6
	e	8	8	8	0	8	14
	h	8	8	12	8	0	6
	\overline{f}	8	8	∞	8	8	0

	a	b	c	e	h	f
a	0	b	c	e	h	f
b	a	0	С	e	h	f
c	a	b	0	e	h	f
e	a	b	c	0	h	f
h	a	b	c	e	0	f
\overline{f}	a	b	c	e	h	0

У матриці D_2 необхідно перерахувати лише d_{13}^3 та d_{15}^3 .

$$d_{13}^3 = \min\{d_{13}^2; d_{12}^2 + d_{23}^2\} = \min\{3; 6+2\} = 3;$$

$$d_{15}^3 = \min\{d_{15}^2; d_{12}^2 + d_{25}^2\} = \min\{\infty; 6+8\} = 14.$$

Отже, змінився елемент d_{15}^3 , тому значення відповідного елемента s_{15}^3 буде дорівнювати b (номер кроку = 2).

Крок 3. Виділяємо у матриці D_3 третій рядок та стовпець.

								_
		a	b	С	e	h	f	
	a	0	6	3	8	14	8	
	b	∞	0	2	8	8	8	
$D_3=$	c	8	8	0	8	8	6	$S_3=$
	e	8	8	8	0	8	14	
	h	∞	∞	12	∞	0	6	
	\overline{f}	∞	∞	∞	∞	∞	0	

	a	b	c	e	h	f
a	0	b	c	e	b	f
b	a	0	c	e	h	f
c	a	b	0	e	h	f
e	a	b	c	0	h	f
h	a	b	c	e	0	\overline{f}
f	a	b	c	e	h	0

Обчислимо нові елементи: $d_{16}^4 = \min\{d_{16}^3; d_{13}^3 + d_{36}^3\} = \min\{\infty; 6+3\} = 9;$

$$d_{26}^4 = \min\{d_{26}^3; d_{23}^3 + d_{36}^3\} = \min\{\infty; 6+2\} = 8;$$

$$d_{56}^4 = \min\{d_{56}^3; d_{53}^3 + d_{36}^3\} = \min\{6; 6+12\} = 6.$$

Відповідні елементи s_{16}^4 і s_{26}^4 матриці S_4 замінюємо на c.

Крок 4. Виділяємо у матриці D_4 четвертий рядок та стовпець.

		a	b	c	e	h	f
	a	0	6	3	8	14	9
	b	8	0	2	8	8	8
$D_4=$	c	8	8	0	8	8	6
	e	∞	∞	∞	0	8	14
	h	8	8	12	8	0	6
	\overline{f}	8	8	∞	∞	8	0

	a	b	c	e	h	f
a	0	b	c	e	b	С
b	a	0	С	e	h	С
c	a	b	0	e	h	f
e	a	b	c	0	h	f
h	a	b	c	e	0	f
f	a	b	c	e	h	0

 $d_{16}^5 = \min\{d_{16}^4; d_{14}^4 + d_{46}^4\} = \min\{9; 8+14\} = 9.$

 $\mathit{Крок}\ 5$. Виділяємо у матриці D_5 п'ят<u>и</u>й рядок та стовпець.

 $S_5=$

		a	b	c	e	h	f
	a	0	6	3	8	14	9
	b	8	0	2	8	8	8
$D_5=$	c	8	∞	0	∞	8	6
	e	8	∞	∞	0	∞	14
	h	8	∞	12	∞	0	6
	f	8	8	8	8	8	0
				_			

	a	b	c	e	h	f
a	0	b	c	e	b	c
b	a	0	С	e	h	С
c	a	b	0	e	h	f
e	a	b	c	0	h	f
h	a	b	c	e	0	f
\overline{f}	a	b	С	e	h	0

$$d_{13}^{6} = \min\{d_{13}^{5}; d_{15}^{5} + d_{53}^{5}\} = \min\{3; 12 + 14\} = 3;$$

$$d_{23}^{6} = \min\{d_{23}^{5}; d_{25}^{5} + d_{53}^{5}\} = \min\{2; 12 + 8\} = 2;$$

$$d_{16}^{6} = \min\{d_{16}^{5}; d_{15}^{5} + d_{56}^{5}\} = \min\{9; 14 + 6\} = 9;$$

 $d_{26}^6 = \min\{d_{26}^5; d_{25}^5 + d_{56}^5\} = \min\{8; 8+6\} = 8.$ Крок 6. Виділяємо у матриці D_6 шостий рядок та стовпець.

		a	b	С	e	h	f			a	b	С	e	h	f
	a	0	6	3	8	14	9		a	0	b	С	e	b	c
	b	8	0	2	8	8	8		b	8	0	С	∞	h	С
$D_6=$	c	8	8	0	8	8	6	$S_6=$	c	8	8	0	∞	8	f
	e	8	8	8	0	8	14		e	8	8	∞	0	8	f
	h	8	8	12	8	0	6		h	8	8	С	∞	0	f
	\overline{f}	8	8	8	8	8	0		\overline{f}	8	8	∞	∞	8	0

У матриці D_6 немає елементів, які необхідно обчислити. Всі елементи, які в матриці D_6 дорівнюють ∞ , в матриці S_6 теж дорівнюють ∞ , тобто у вершину a не можна попасти зі жодної вершини.

Отже, всі кроки алгоритму Флойда виконані, отримані кінцеві матриці D_6 та S_6

На основі цих двох матриць можна обчислити всі можливі маршрути між вершинами мережі. Наприклад: найкоротша відстань між вершинами a та f $d_{16}^6 = 9$. Для того, щоб знайти вершини мережі, через які проходить даний маршрут, необхідно проаналізувати матрицю S_6 . Елемент $s_{16}^6 = c$, а це означає, що проміжною точкою даного маршруту є вершина c. Далі потрібно переглянути елемент $s_{36}^6 = f$, тобто маршрут від вершини a до вершини f проходить через такі вершини: $a \rightarrow c \rightarrow f$.

Контрольні запитання до лабораторної роботи № 6

- 1. Що таке мережа?
- 2. Що таке зв'язана мережа?
- 3. Що таке орієнтована і зважена мережа?
- 4. Що розуміють під довжиною шляху у зваженій (незваженій) мережі?
- 5. Наведіть приклади практичного застосування мережевих задач.
- 6. На якій ідеї ґрунтується алгоритм Дейкстри та які задачі можна розв'язувати за його допомогою?
- 7. Поясніть процедуру знаходження найкоротшого маршруту в мережі.
- 8. Опишіть послідовність кроків алгоритму Дейкстри.
- 9. Вкажіть, за допомогою якої модифікації можна, окрім довжини найкоротшого шляху, знайти і сам шлях у алгоритмі Дейкстри.
- 10. Яка умова завершення алгоритму Дейкстри?
- 11. Опишіть послідовність кроків алгоритму Флойда.
- 12.У чому полягає суть алгоритму Флойда?
- 13. Яка умова завершення алгоритму Флойда?

- 14. Як за допомогою алгоритму Флойда визначити через які вершини проходять найкоротші шляхи в мережі від довільної вершини до всіх інших?
- 15. Для чого на кожному кроці алгоритму Флойда потрібно виділяти базовий вузол?
- 16. Назвіть переваги алгоритму Флойда над алгоритмом Дейкстри.

Завдання до лабораторної роботи № 6

- 1. Отримати індивідуальний варіант завдання.
- 2. Написати програму розв'язування потокових задач за модифікованими методами Дейкстри та Флойда з Додатка до лабораторної роботи № 6.
- 3. Оформити звіт про виконану роботу.
- 4. Продемонструвати викладачеві результати, відповісти на запитання стосовно виконання роботи.

Вимоги до програми

Програма має передбачати такі можливості:

- 1. Автоматичне знаходження найкоротшого маршруту в мережі за модифікованим алгоритмом Дейкстри.
- 2. Автоматичне знаходження найкоротшого маршруту в мережі за модифікованим алгоритмом Флойда.
- 3. Введення вхідних даних вручну (вагові матриці).
- 4. Передбачити можливість некоректного введення даних.
- 5. Передбачити можливість покрокового відображення проміжних таблиць.
- 6. Підписання усіх таблиць.
- 7. Виведення відповідного повідомлення у випадку відсутності розв'язку.

Додаток до лабораторної роботи № 6

