Package 'NicheBarcoding'

October 12, 2022

```
Version 1.0
Description Species Identification using DNA Barcodes Integrated with
     Environmental Niche Models.
License GPL (>= 3)
Encoding UTF-8
Language es
LazyData true
LazyDataCompression bzip2
RoxygenNote 7.1.2
Imports ape, dismo, e1071 (>= 1.7-7), maps, pROC, randomForest,
     raster, rJava, spider, vegan
Depends R (>= 2.10)
VignetteBuilder knitr
Author Cai-qing YANG [aut, cre],
     Xin-hai Li [aut],
     Michael christopher ORR [aut],
     Ai-bing ZHANG [aut]
Maintainer Cai-qing YANG <yangcq_ivy@163.com>
URL https://github.com/Yangcq-Ivy/NicheBarcoding
BugReports https://github.com/Yangcq-Ivy/NicheBarcoding
NeedsCompilation no
```

Suggests rmarkdown, covr, testthat (>= 3.0.0), knitr

Date/Publication 2021-12-21 08:22:03 UTC

Config/testthat/edition 3

Repository CRAN

Title Niche-model-Based Species Identification

2 en.vir

R topics documented:

	bak.vir	2
	en.vir	2
	extractSpeInfo	3
	LappetMoths	4
	monophyly.prop	4
	NBSI	5
	NBSI2	7
	niche.Model.Build	9
	niche.PCA	11
	pseudo.absent.points	12
	pseudo.present.points	13
	spe.mantel.test	15
dex		17
bak.v	vir bak.vir data set, a class of matrix.	

Description

A dataset containing 5 of the 19 bioclimatic variables randomly genereated as background points.

Usage

Index

bak.vir

Format

a class of matrix.

bak.vir 5000*5 matrix.

en.vir

en.vir data set, a class of RasterBrick.

Description

A dataset containing 5 of the 19 bioclimatic variables downloaded from WorldClim (version 1.4 with 10 arc minute resolution; Hijmans et al. 2005)).

Usage

en.vir

extractSpeInfo 3

Format

```
a class of RasterBrick.
```

en.vir class: RasterBrick; dimensions: 360, 720, 259200, 5 (nrow, ncol, ncell, nlayers); resolution: 0.5, 0.5 (x, y); extent: -180, 180, -90, 90 (xmin, xmax, ymin, ymax); crs: +proj=longlat +datum=WGS84 +no_defs; source: memory; names: bio1,bio4,bio7,bio12,bio15.

Source

```
https://www.worldclim.org/
```

extractSpeInfo

Extraction of taxon/species and distribution information

Description

Split comma-separated sample information into different columns of a data frame.

Usage

```
extractSpeInfo(seqID.full)
```

Arguments

seqID.full

Character, sample ID, taxon information and longitude and latitude data that splitted by comma in class character.

Value

A data frame of splitted sample ID, taxon information and longitude and latitude data for further analysis.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

Examples

```
data(LappetMoths)
ref.seq<-LappetMoths$ref.seq
seqID.full<-rownames(ref.seq)
infor<-extractSpeInfo(seqID.full)
head(infor)</pre>
```

4 monophyly.prop

LappetMoths

LappetMoths data set, a list of 8 data frames.

Description

A dataset containing the sequences IDs of species, coordinates of species sampled, and other attributes

Usage

LappetMoths

Format

list of 8 data frames.

barcode.identi.result data frame, species identifications by other methods or barocodes, containing query IDs, species identified, and corresponding probabilities.

que.env data frame, containing query sampleIDs,and a set of corresponding environmental variables collected by users.

que.infor data frame, query samples, containing sample IDs, longitude and latitude of each sample. **que.seq** query sequences in binary format stored in a matrix

ref.env data frame, containing reference sampleIDs, species names, and a set of environmental variables collected by users.

ref.infor data frame, reference dataset containing sample IDs, taxon information,longitude and latitude of each sample.

ref.seq reference sequences in binary format stored in a matrix

ref.add data frame, additional reference dataset containing taxon information, longitude and latitude of each species.

monophyly.prop

Calculate the proportion of monophyletic group on a tree

Description

Calculate the proportion of monophyletic group on a tree given species vector and a tree.

```
monophyly.prop(phy, sppVector, singletonsMono = TRUE)
```

NBSI 5

Arguments

phy A tree of class phylo. sppVector Species vector.

singletonsMono Logical. Should singletons (i.e. only a single specimen representing that species)

be treated as monophyletic? Default of TRUE. Possible values of FALSE and

NA.

Value

A list containing proportion and number of monophyly group.

A set monophyly and of non-monophyly group names.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

Examples

```
library(ape)
tree<-ape::rtree(20)
tree$tip.label<-sample(tree$tip.label[1:10],size=20,replace = TRUE)
plot(tree)
sppVector<-tree$tip.label

MP<-monophyly.prop(tree,sppVector,singletonsMono = TRUE)
MP</pre>
```

NBSI

Niche-model-Based Species Identification (NBSI)

Description

Species identification using DNA barcoding integrated with niche model.

```
NBSI(
  ref.seq,
  que.seq,
  model = "RF",
  independence = TRUE,
  ref.add = NULL,
  variables = "ALL",
  en.vir = NULL,
  bak.vir = NULL
)
```

NBSI NBSI

Arguments

ref.seq	DNAbin, the reference dataset containing sample IDs, taxon information, longitude and latitude, and barcode sequences of samples.
que.seq	DNAbin, the query dataset containing sample IDs, longitude and latitude, and barcode sequences of samples.
model	Character, string indicating which niche model will be used. Must be one of "RF" (default) or "MAXENT". "MAXENT" can only be applied when the java program paste(system.file(package="dismo"), "/java/maxent.jar", sep=") exists.
independence	Logical. Whether the barcode sequences are related to the ecological variables?
ref.add	Data.frame, the additional coordinates collected from GBIF or literatures.
variables	Character, the identifier of selected bioclimate variables. Default of "ALL" represents to use all the layers in en.vir; the alternative option of "SELECT" represents to randomly remove the highly-correlated variables (r larger than 0.9) with the exception of one layer.
en.vir	RasterBrick, the global bioclimate data output from "raster::getData" function.
bak.vir	Matrix, bioclimate variables of random background points.

Value

A dataframe of barcoding identification result for each query sample and corresponding niche model-based probability.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

References

Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.

Liaw, A. and M. Wiener. 2002. Clasification and regression by randomForest. R News, 2/3:18-22.

Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190:231-259.

Zhang, A.B., M.D. Hao, C.Q. Yang and Z.Y. Shi. (2017). BarcodingR: an integrated R package for species identification using DNA barcodes. Methods in Ecology and Evolution, 8:627-634.

Jin, Q., H.L. Han, X.M. Hu, X.H. Li, C.D. Zhu, S.Y.W. Ho, R.D. Ward and A.B. Zhang. 2013. Quantifying species diversity with a DNA barcoding-based method: Tibetan moth species (Noctuidae) on the Qinghai-Tibetan Plateau. PloS One, 8:e644.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978.

NBSI2 7

Examples

```
data(en.vir)
data(bak.vir)
#envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5)</pre>
#en.vir<-raster::brick(envir)</pre>
#back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1,</pre>
                            excludep=TRUE,prob=FALSE,
                            cellnumbers=FALSE, tryf=3, warn=2,
#
                            lonlatCorrection=TRUE)
#bak.vir<-raster::extract(en.vir,back)</pre>
library(ape)
data(LappetMoths)
ref.seq<-LappetMoths$ref.seq[1:50,]
que.seq<-LappetMoths$que.seq[1:5,]
NBSI.out<-NBSI(ref.seq,que.seq,ref.add=NULL,
               independence=TRUE,
               model="RF", variables="SELECT",
               en.vir=en.vir,bak.vir=bak.vir)
NBSI.out
### Add a parameter when additional reference coordinates are available ###
#ref.add<-LappetMoths$ref.add</pre>
#NBSI.out2<-NBSI(ref.seq,que.seq,ref.add=ref.add,
                  independence=TRUE,
#
                  model="RF",variables="SELECT",
#
                  en.vir=en.vir,bak.vir=bak.vir)
#NBSI.out2
```

NBSI2

Niche-model-Based Species Identification (NBSI) for a prior analysis

Description

If users already have species identified by other barcodes or methods, they can use this function given the identified species names and corresponding probabilities to make further confirm by environmental niche model.

```
NBSI2(
  ref.infor = NULL,
  que.infor = NULL,
  ref.env = NULL,
  que.env = NULL,
  barcode.identi.result,
  model = "RF",
  variables = "ALL",
  en.vir = NULL,
```

8 NBSI2

```
bak.vir = NULL
)
```

Arguments

ref.infor	Data frame, reference dataset containing sample IDs, taxon information,longitude and latitude of each sample.
que.infor	Data frame, query samples, containing sample IDs, longitude and latitude of each sample.
ref.env	Data frame, containing reference sampleIDs, species names, and a set of environmental variables collected by users.
que.env	Data frame, containing query sampleIDs, and a set of corresponding environmental variables collected by users.
barcode.identi	result
	Data frame, species identifications by other methods or barocodes, containing query IDs, species identified, and corresponding probabilities.
model	Character, string indicating which niche model will be used. Must be one of "RF" (default) or "MAXENT". "MAXENT" can only be applied when the java program paste(system.file(package="dismo"), "/java/maxent.jar", sep=") exists.
variables	Character, the identifier of selected bioclimate variables. Default of "ALL" represents to use all the layers in en.vir; the alternative option of "SELECT" represents to randomly remove the highly-correlated variables (r larger than 0.9) with the exception of one layer.
en.vir	RasterBrick, the global bioclimate data output from "raster::getData" function.
bak.vir	Matrix, bioclimate variables of random background points.

Value

A dataframe of identifications for query samples and their niche-based reliability.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

References

Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.

Liaw, A. and M. Wiener. 2002. Clasification and regression by randomForest. R News, 2/3:18-22.

Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190:231-259.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978.

niche.Model.Build 9

Examples

```
data(en.vir)
data(bak.vir)
#envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5)</pre>
#en.vir<-raster::brick(envir)</pre>
#back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1,</pre>
                            excludep=TRUE, prob=FALSE,
                            cellnumbers=FALSE,tryf=3,warn=2,
#
#
                            lonlatCorrection=TRUE)
#bak.vir<-raster::extract(en.vir,back)</pre>
data(LappetMoths)
barcode.identi.result<-LappetMoths$barcode.identi.result
ref.infor<-LappetMoths$ref.infor
que.infor<-LappetMoths$que.infor
if(class(en.vir) == "NULL"){
 NBSI2.out<-NBSI2(ref.infor=ref.infor, que.infor=que.infor,
                  barcode.identi.result=barcode.identi.result,
                  model="RF",variables="SELECT",
                  en.vir=NULL,bak.vir=NULL)
}else{
 NBSI2.out<-NBSI2(ref.infor=ref.infor, que.infor=que.infor,
                  barcode.identi.result=barcode.identi.result,
                  model="RF",variables="SELECT",
                  en.vir=en.vir,bak.vir=bak.vir)
}
NBSI2.out
ref.env<-LappetMoths$ref.env
que.env<-LappetMoths$que.env
NBSI2.out2<-NBSI2(ref.env=ref.env, que.env=que.env,
                  barcode.identi.result=barcode.identi.result,
                  model="RF",variables="ALL",
                  en.vir=en.vir,bak.vir=bak.vir)
NBSI2.out2
```

niche.Model.Build

Ecological niche model building using the randomForest classifier

Description

Build a niche model for a given species according to its distribution data.

```
niche.Model.Build(
  prese = NULL,
```

10 niche.Model.Build

```
absen = NULL,
prese.env = NULL,
absen.env = NULL,
model = "RF",
en.vir = NULL,
bak.vir = NULL
```

Arguments

prese	Data frame, longitude and latitude of the present data of a species (can be absent when providing prese.env parameter).
absen	Data frame, longitude and latitude of the absent data of a species.(can be absent when providing absen.env or back parameter).
prese.env	Data frame, bioclimate variables of present data. (can be absent when providing prese parameter).
absen.env	Data frame, bioclimate variables of absent data. (can be absent when providing absen or back parameter).
model	Character, string indicating which niche model will be used. Must be one of "RF" (default) or "MAXENT". "MAXENT" can only be applied when the java program paste(system.file(package="dismo"), "/java/maxent.jar", sep=") exists.
en.vir	RasterBrick, the global bioclimate data output from "raster::getData" function.
bak.vir	Matrix, bioclimate variables of random background points.

Value

randomForest/MaxEnt, a trained niche model object.

A vector including the specificity, sensitivity and threshold of the trained model.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

References

Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.

Liaw, A. and M. Wiener. 2002. Clasification and regression by randomForest. R News, 2/3:18-22.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978.

niche.PCA

Examples

```
data(en.vir)
 data(bak.vir)
 #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5)</pre>
 #en.vir<-raster::brick(envir)</pre>
 #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1,</pre>
                              excludep=TRUE,prob=FALSE,
                              cellnumbers=FALSE, tryf=3, warn=2,
 #
                              lonlatCorrection=TRUE)
 #bak.vir<-raster::extract(en.vir,back)</pre>
 data<-data.frame(species=rep("Acosmeryx anceus",3),</pre>
                   Lon=c(145.380,145.270,135.461),
                   Lat=c(-16.4800,-5.2500,-16.0810))
 present.points<-pseudo.present.points(data,10,2,1,en.vir)</pre>
 NMB.out<-niche.Model.Build(prese=present.points,absen=NULL,
                              prese.env=NULL,absen.env=NULL,
                              model="RF",
                              en.vir=en.vir,bak.vir=bak.vir)
 NMB.out
 prese.env<-raster::extract(en.vir,present.points[,2:3])</pre>
 prese.env<-as.data.frame(prese.env)</pre>
 NMB.out2<-niche.Model.Build(prese=NULL,absen=NULL,
                               prese.env=prese.env,absen.env=NULL,
                               model="RF",
                               en.vir=en.vir,bak.vir=bak.vir)
 NMB.out2
niche.PCA
                          Principal component analysis of ecological niche among unknown
                          species and the potential species to which they may belong
```

Description

Determine whether unknown species belong to a known species through principal component analysis of ecological niche according to their distribution information.

Usage

```
niche.PCA(ref.lonlat, que.lonlat, en.vir = NULL)
```

Arguments

ref.lonlat	Data frame, longitude and latitude of the known species.
que.lonlat	Data frame, longitude and latitude of unknown species.
en.vir	RasterBrick, the globle bioclimate data obtained from "raster::getData" function
	tion.

12 pseudo.absent.points

Value

A list containing inportance and loadings of the components.

A dataframe of points that within the 95% confidence interval of the reference dataset ecological space.

A figure shows whether the query points (blue solid circles) are located in the 95%CI range of the niche space of reference species.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

Examples

```
data(en.vir)
#envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5)</pre>
#en.vir<-raster::brick(envir)</pre>
data(LappetMoths)
ref.infor<-LappetMoths$ref.infor
que.infor<-LappetMoths$que.infor
#windows() # open a new plot window when the image format is abnormal
nPCA<-niche.PCA(ref.lonlat=ref.infor[,3:5],</pre>
                que.lonlat=que.infor[,c(2,4:5)],
                en.vir=en.vir)
nPCA$summary
nPCA$que.CI
data<-data.frame(species=rep("Acosmeryx anceus",3),</pre>
                  Lon=c(145.380,145.270,135.461),
                  Lat=c(-16.4800,-5.2500,-16.0810))
simuSites<-pseudo.present.points(data,500,4,2,en.vir)</pre>
ref.lonlat<-simuSites[1:480,]</pre>
que.lonlat<-simuSites[481:500,]
#windows() # open a new plot window when the image format is abnormal
nPCA2<-niche.PCA(ref.lonlat,que.lonlat,en.vir=en.vir)
nPCA2$summary
nPCA2$que.CI
```

 ${\tt pseudo.absent.points} \quad \textit{Generation of pseudo absent points for niche model building}$

Description

Randomly generate pseudo points outside the 95%CI of the ecological space of the present data when there is no absent data for building a niche model.

pseudo.present.points 13

Usage

```
pseudo.absent.points(data, outputNum = 500, en.vir = NULL, map = TRUE)
```

Arguments

data Data frame, longitude and latitude of a single species.

outputNum Numeric, the expected number of points.

en.vir RasterBrick, the globle bioclimate data obtained from "raster::getData" func-

tion.

map Logical. Should a map be drawn?

Value

A data frame of simulated pseudo points.

A data frame of bioclimate variables of each pseudo points.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

Examples

pseudo.present.points Generation of pseudo present points for niche model building

Description

Randomly generate pseudo points around actual present distribution site when the number of present points is inadequate for building a niche model.

14 pseudo.present.points

Usage

```
pseudo.present.points(
  data,
  outputNum = 50,
  lonRange = 2,
  latRange = 1,
  en.vir = NULL,
  map = TRUE
)
```

Arguments

data Data frame, longitude and latitude of a single species.

outputNum Numeric, the expected number of points.

lonRange Range of the longitude of the points generated.latRange Range of the latitude of the points generated.

en.vir RasterBrick, the globle bioclimate data obtained from "raster::getData" func-

tion.

map Logical. Should a map be drawn?

Value

A data frame, containing actual present points and simulated pseudo points.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

Examples

spe.mantel.test 15

spe.mantel.test	Mantel test between interspecific pairwise genetic distance and ecological distance

Description

Determine the independence between genetic distance and ecological distance for a reference dataset at the level of species.

Usage

```
spe.mantel.test(
  fas,
  dna.model = "raw",
  ecol.dist.method = "euclidean",
  mantel.method = "spearman",
  permutations = 999,
  en.vir = NULL
)
```

Arguments

fas	DNAbin, reference dataset containing sample IDs, taxon information, longitude and latitude, and barcode sequences of samples.	
dna.model	Character, specifying the evolutionary model to be used; must be one of "raw" (default), "N", "TS", "TV", "JC69", "K80", "F81", "K81", "F84", "BH87", "T92", "TN93", "GG95", "logdet", "paralin", "indel", or "indelblock".	
ecol.dist.method		
	Character, distance measure to be used; must be one of "euclidean" (default), "maximum", "manhattan", "canberra", "binary" or "minkowski".	
mantel.method	Character, correlation method, as accepted by cor: "pearson", "spearman" (default) or "kendall".	
permutations	Numeric, the number of permutations required.	
en.vir	RasterBrick, the global bioclimate data output from "raster::getData" function.	

Value

The Mantel statistic.

The empirical significance level from permutations.

A matrix of interspecific pairwise genetic distance.

A matrix of interspecific pairwise ecological distance.

Author(s)

Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.

spe.mantel.test

References

Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Can. Res. 27:209-220.

Oksanen J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H Wagner. 2016. vegan: Community Ecology Package https://CRAN.R-project.org/package=vegan.rpackage version 2.5-6.

Examples

```
data(en.vir)
#envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5)
#en.vir<-raster::brick(envir)

library(ape)
data(LappetMoths)
ref.seq<-LappetMoths$ref.seq

spe.mantel<-spe.mantel.test(fas=ref.seq,en.vir=en.vir)
spe.mantel$MantelStat.r
spe.mantel$p.value</pre>
```

Index

```
* NBSI2
    NBSI2, 7
* NBSI
    NBSI, 5
* datasets
    bak.vir, 2
    en.vir, 2
    {\tt LappetMoths}, {\tt 4}
*\ extractSpeInfo
    extractSpeInfo, 3
* monophyly.prop
    monophyly.prop, 4
* niche.Model.Build
    niche.Model.Build, 9
* niche.PCA
    niche.PCA, 11
* pseudo.absent.points
    pseudo.absent.points, 12
* pseudo.present.points
    pseudo.present.points, 13
*\ spe.mantel.test
    spe.mantel.test, 15
bak.vir, 2
en.vir, 2
extractSpeInfo, 3
LappetMoths, 4
monophyly.prop, 4
NBSI, 5
NBSI2, 7
niche.Model.Build,9
niche.PCA, 11
pseudo.absent.points, 12
pseudo.present.points, 13
spe.mantel.test, 15
```