

Business Analytics I Hintergrund und Konzept der BA Professionalisierung

Dr. Holger Steinmetz Lehrstuhl für Unternehmensführung Universität Trier

Umweltveränderungen

- Umwelt des Mittelstands von 1950 1980
 - Fokus auf nationale / regionale Märkte und weniger internationale Beziehungen und Geschäfte
 - Weniger (internationale) Konkurrenz
 - **Höhere Regulierung** v.a. in europäischen Ländern \rightarrow Klare Regeln, Vorgaben und Planbarkeit
 - Industrieller Wandel: Verschiebung von traditionellen Wirtschaftssektoren hin zu neuen
 Technologien und Industrien → Chancen für Wachstum
 - Traditionelle Unternehmensstrukturen und -kultur:
 - Struktur: Formalisierung, Zentralisierung von Kontrolle
 - **Kultur:** Performanceorientierung, geringe Innovationskultur, auf langfristige Planung und Sicherheit fokussiert ("internal process culture")

Umweltveränderungen

- Mehr Wettbewerb durch Globalisierung und Internet
- Geringere Regulierung (Flexibilität)
- Veränderte Kundenanforderungen
 - Kunden sind informierter über Konkurrenzprodukte und Preise
 - Kunden haben heute höhere Anforderungen an Qualität, Service und Personalisierung.
 - **Veränderte Werte** z.B. Nachhaltigkeit
 - → Höhere switching-Wahrscheinlichkeit, geringere Kundenloyalität
- Digitalisierung
 - Neue **Geschäftsmodelle** und mehr Möglichkeiten der **Vermarktung** (z.B. social media)
 - Neue Verpflichtungen (→ Kunden erwarten digitale Optionen)

Relevante Umweltdimensionen

- → Was genau ist DIE Umwelt?
- Enthält den Teil der Realität, der für die **eigene Handlungsfähigkeit** relevant ist—d.h.
 - die Wahl (→ Ziele, Entscheidungen)
 - Art/Ausformung (→ Handlungsausführung, Adaptation an Veränderungen, Effizienz)
 - Erfolg (→ Barrieren, Gefahren, Erleichterungsfaktoren)
- → Handlungspsychologie: "**Handlungsfeld**"
- Verschiedene Modelle und Taxonomien. Zentral:
 - **Complexity:** Anzahl der relevanten Aspekte der Umwelt (z.B. Gesetze, Kunden-Diversität)
 - **Munificience:** Ressourcenreichtum vs. Sättigung
 - **Uncertainty:** Ungewissheit über die
 - Zukunft und
 - Handlungs-Ergebnis-Kontingenzen
 - **Hostility:** Gefährdet die Existenz der Organisation (z.B. intensiver Wettbewerb, harsche Kunden)
- Gibt es sowohl extern als auch intern

Rolle der Digitalisierung und Big Data

- Big Data: Die 3 Vs
 - **Volume:** Menge an Daten
 - Variety:
 - Datenquellen, z.B. Kunden (digital trace data),
 Maschinen
 - Vielfalt z.B. durch Zahlen, Text, Bilder, Audio
 - Velocity: z.B. durch Sensoren, automatisch/digital Prozesse

- Volume: Cattel's Data Cube
 - Large N (Fälle, z.B. Kunden)
 - Large P (Variables/Features)
 - Large T (Zeitpunkte, z.B. Sensordaten)

Quelle: Ram & Nesselroade (2007): Modeling intraindividual and intracontextual change: Rendering developmental contextualism operational. In Little, T. D., Bovaird, J. A., & Card, N. A. (Eds), *Modeling contextual effects in longitudinal studies (p. 325-342)*: Routledge.

Basis von BA: Handlungen und Informationsbedarfe

- **Definition BA:** "Delivering the right decision support to the right people at the right time"
- → BA unterstützt **Entscheidungs- und Handlungsprozesse**

• Beispiele:

- Welche Leute sollten wir bei der Besetzung einer Stelle auswählen?
- Was ist der Erfolg einer Marketingkampagne?
- Welche Bedürfnisse/Sichtweisen haben unsere Kunden?
- Wie können wir Ressourcen sparen?
- Wie können wir Ausfälle von Maschinen vermeiden?
- Exkurs Handlungsregulationstheorie: Handlungen sind
 - Sequentiell: Vollziehen sich über Phasen über die Zeit
 - **Hierarchisch:** Organisiert über Zielhierarchien
- → BA zielt darauf ab, an entscheidenden Punkten einer Handlung nötige Information zu liefern

Basis von BA: Handlungen und Informationsbedarfe

• Handlungssequenz

• Hierarchische Zielorganisation:

- Das allgemeine Ziel (s.o.) wird operative Subziele (~ to do's) zerlegt
- Der Handlungsprozess läuft über **feedback loops**, bis das (Sub)Ziel erreicht ist.

BA Professionalisierung

Konzept der BA-Professionalisierung

- Laursen & Thorlund: "The BA model"
 - Beschreibt die ideale Integration von BA in eine Organisation
 - Realität ist sehr weit davon entfernt (→ BA Reifegrad / maturity model)
 - Evidence-management Konzept in der angewandten Forschung:
 - Manager lesen keine wissenschaftliche paper
 - Orientieren sich eher an Moden und Mimikri der Konkurrenz
 - Daten bedrohen die eigenen Position / Macht
 - Effektivitätseinschätzung auf Basis von Plausibilität
 - Im Fall speziell des Mittelstandes: Kulturelle / historische Aspekte

Der BA-Reifegrad

Welche Bedeutung hat die generelle Zunahme digitaler Daten für die Unternehmen?

schon heute zentral 📉 in Kürze zentral 🚃 in Zukunft zentral 📺 noch nicht abzuschätzen 🚾 für uns nicht relevant

Welche digitalen Daten liegen den Unternehmen vor?

Die (weitere) Erfassung von Daten ...

- Commerzbank-Umfrage
 - 81% finden Big Data zentral (jetzt oder zukünftig)
 - Für alle Branchen und Größen relevant
 - Aber (nicht in der Abb.): Nur 8% analysieren Daten systematisch ("smart-data user")
 - Untere Abbildung: Am Nicht-Vorhandensein digitaler Daten liegt das nicht:
 - 67% erheben digitale Daten über finanzielle Lage
 - ~50% über Ressourcenauslastung, Lagerbestände und Zielgruppen
 - Nur 35-50% Analyse von Kundenprofilen,
 Produktverwendung und Zufriedenheit (!)

Der BA-Reifegrad

- Optimierung von Prozessen durch KI
- Zentrale und operationale Prozesse basieren auf BA-generierter lead und lag information
- Automatische Informationsprozesse (→ User)
- Grad 3 Zentrale Prozesse basieren auf lead information
 - Big Data & Machine learning

- Data Warehouse und Datenintegration (starke IT)
- Wenig analytische Kompetenz
- Etabliertes Reporting (lag information)

• Wenig analytische Kompetenz, grundlegende IT

Konzept der BA-Professionalisierung

- Zeigt
 - die **Rollen** und
 - Aufgabenbereiche

die für BA relevant sind

- Oben: Businessorientierung
- Unten: Technik/Datenorientierung
- Von oben nach unten: Informationsbedarfe
- Von unten nach oben: Informationsangebot

Drei zentrale Rollen

• Businessorientierung

- Top Management
- Funktionsbereiche (FB), z.B. HR, Marketing,
 Produktion, Finanzen
- Fokussiert auf strategische und operative
 Prozesse

Analyseorientierung

- Arbeitet mit Daten und liefert Information
- Integriert die Business-, Daten- und Analyseorientierung und vermittelt

Datenorientierung

- Sammlung und Integration der Daten
- ETL (extract, transform, load): Cleaning,
 Integration und "wrangling"

Beziehung zwischen Unternehmensstrategie und BA-Funktion

- Betrifft die Frage der Wertschöpfung durch die BA-Funktion
- Dimension von "wenig" (BA-Information als "nice to have") bis zu "stark relevant" (BA-Information ist zentral für strategische Entscheidungen)
- Laursen & Thorlund: 4 Typen der Integration

- BA wird ad hoc mit operativem Fokus genutzt
- Keine Verbindung zur Strategie
- Entscheidungen basieren nicht auf Daten
- Reaktive / einseitige Verbindung
- BA liefert strategisch relevante Lead und Lag Informationen auf Anfrage (z.B. über KPIs)
- Wechselseitiger Einfluss (feedback-loop)
- Lag information kann Strategieänderung bewirken
- Grundlage f
 ür organizational learning
- Information wird selbst als strategische Ressource genutzt (z.B. Amazon, Facebook, Samson)
- Teil des Business models

Informationsstrategie und ihre Zutaten

- Informationsstrategie: Wie kann man den geäußerten Informationsbedarf decken?
- → Spezifikation der 4 zentralen Zutaten eines BA-Prozesses:
 - (1) **Ziel:** Was möchte man wissen? → Reflektiert den Informationsbedarf (z.B. etwas über Kunden zu lernen)
 - (2) Inhalt: Welche Phänomene sind relevant (z.B. Kundenzufriedenheit)?
 - (3) Zugangsweg: Welche Daten kommen in Frage (z.B. Survey vs. Social Media)?
 - (4) Analytisches Design: Was macht man mit den Daten um das Ziel zu erreichen? (z.B. Clusteranalyse, Zeitreihenanalyse etc.)
 - (5) Nutzung der Ergebnisse: Ergebnisbericht? Präsentation? Dashboard? Fundament für einen automatischen KI-Prozess?

Ziel: Was möchte man wissen?

- Informationsbedarfe variieren in der Wichtigkeit → Welche sind von hoher Wichtigkeit?
- Strategie-Taxonomie von Treacy & Wiersema (1993)

Treacy, M., & Wiersema, F. (1993). Customer intimacy and other value disciplines. *Harvard Business Review*, 71(1), 84-93. (https://hbr.org/1993/01/customer-intimacy-and-other-value-disciplines)

- Nicht alle Dimensionen können maximiert werden (wobei das Dreieck Konflikte überbetont)
- Je nach Orientierung werden Informationen verschiedene Prioritäten/Werte haben
- Das eine Organisation einen Fokus hat, bedeutet nicht, dass andere Dinge unwichtig sind (sie sind nur nicht *der* zentrale Aspekt)

Ziel: Was möchte man wissen

- Die Taxonomie von Treacy und Wiersema kann sehr gut verwendet werden, um Informationsbedarfe (→ **Ziele der Analyse**) zu ordnen und zu verstehen
 - Produktorientierung: Analysen dienen dazu, Produkte zu verbessern oder neue Ideen zu generieren
 - Kundenorientierung: Analysen dienen dazu, etwas über Kunden zu lernen
 - Wie ticken Kunden?
 - Welche Bedürfnisse, Werte, Interessen haben sie?
 - Welche (finanziellen) Ressourcen haben sie?
 - **Prozessorientierung:** Analysen dienen dazu, Prozesse zu optimieren:
 - Fehler reduzieren
 - Effizienz erhöhen

Ziel: Produktorientierung

• Beispiele

- Entwicklung des Marktes und Verkaufszahlen (z.B. mittels Zeitreihen).
- Analysen von Unzulänglichkeiten oder Beschwerden über Funktionsaspekte des Produkts etc. (z.B. auf Social Media, Beschwerdehotlines, Rezensionen) und NLP-Methoden.
- Identifikation neuer Märkte über Identifikation von Kundensegmenten und Prognose ihrer Entwicklung mittels Clusteranalyse.
- **Identifikation von Synchronitäten** vs. **Substitute** von Produkten oder Teilen, die mit dem Produkt assoziiert sind (mittels Market Basket-Analyse).
- Industry 4.0 und Internet of Things (IoT): Produktgebrauch oder Probleme
 (z.B. crashreports, Analyse des Klickverhaltens/Cookies auf Webseiten) mittels
 Zeitreihen, machine learning etc.

Ziel: Kundenorientierung

- Ziel ist guter Service (Jeff Bezos: "Customer Obsession") damit Kundenzufriedenheit und Loyalität
- V.a. essentiell, wenn keine Differenzierung über das Produkt möglich ist (Banken, Versicherungen etc.)
- **Beispiele über Kunden-Informationen** (→ Inhaltsdimension in der Informationsstrategie)
 - **Demografie** (Alter, Geschlecht, Familienstand, Bildung, Beruf, Standort usw.)
 - **Psychografie** (Werte, Einstellungen, Interessen, Hobbys, Lebensstil, Persönlichkeit usw.)
 - Verhaltensdaten (Kaufhistorie, Häufigkeit, Betrag, Markenloyalität, Kaufmuster, Kanalpräferenzen usw.) → Wächst v.a. im Rahmen der Digitalisierung ("digital trace data")
 - Zufriedenheit
 - Net Promoter Score (NPS): Wie wahrscheinlich ist es, dass ein Kunde das Unternehmen anderen empfiehlt?

Ziel: Kundenorientierung

- Analyseformen:
 - **Trends von Präferenzen** mittels Zeitreihen
 - Vorhersage des Customer life time values (CLV) mittels Machine Learning auf Basis von Kundeninformationen auf Basis der Demographie, Psychographie oder Verhalten)
 - Market segmentation mittels Clusteranalyse
 - Need-based: Cluster von Kunden mit bestimmten Präferenzen
 - Value-based: Cluster mit "wichtigeren" vs. "weniger wichtigen" Kunden (→ CLV)
 - Churn prediction: Vorhersage der Dauer, bis der Kunde kündigt und der Ursachen mittels Survivalanalyse.

Ziel: Prozessorientierung

- Ziele
 - Effizienzsteigerung d.h. Ressourcen zu schonen
 - Stabilität erhöhen (z.B. Schwankungen und Ausfälle vermeiden), vgl.
 Umweltdimension "Unsicherheit"
 - Effektivität/Qualität steigern (Fehlerrate senken)
 - Langfristig:
 - Preise senken können
 - Kundenzufriedenheit erhöhen (z.B. über Qualität, Preise, Lieferzeit, Möglichkeit der Retouren)

Ziel: Prozessorientierung

- Ansätze im technischen Bereich
 - Analyse und Vorhersage von Bestellungen (→ Lean Management) mittels
 Zeitreihen und Machine Learning (Beispiel: IntabPro: https://www.intab.pro/)
 - Routenplanung in der Logistik unter Berücksichtigung von Wetter, Verkehr,
 Uhrzeit
 - **Predictive Maintenance:** Basiert auf Sensordaten von Maschinen, z.B.
 - Anomaly Detection: Identifizieren außergewöhnlicher Spitzenwerte (oder Muster, Häufigkeiten) und automatische Benachrichtigung von Operateuren
 - **Survivalanalyse:** Beschreibung der Lebensdauer (hazard rate) und deren Vorhersage.
 - Fraud detection: Identifikation verdächtiger Transaktionen (→ Anomaly Detection), und deren Vorhersage (durch Verhaltens- und Kundendaten)

Ziel: Prozessorientierung

- Ansätze im Humanbereich (Human Resource Managment):
 - Vorhersage der zu erwartenden Performance (im Recruiting-Kontext)
 - Automatisierung des Recruiting (Mögen Bewerber nicht!)
 - Analyse der Kompetenzen und Trainingsbedarfs (Wichtig bei Strategieänderungen, die Implikationen für das Kompetenzprofil der Belegschaft haben)
 - Turnover Prediction (vgl. Churn prediction). Wann kündigen welche Mitarbeiter und warum?

• Nebenwirkungen / Probleme:

- Ethische Problematik (prediction error, systematischer bias/Diskriminierung → "AI fairness")
- Datenschutzrechtliche Aspekte (DSGVO)
- Negative "Interactional justice"-Wahrnehmungen (z.B. bei Bewerbern oder Mitarbeitern)

Die Rolle der/des Analysten

Die Rolle der /des Analysten

- Der Analyst ist die **zentrale Brücke** zwischen Personen
 - mit einer **Business-Orientierung**—d.h.
 - operativen und/oder strategischen Zielen und Aufgaben
 - entsprechenden Informationsbedarfen
 - Perspektive der Organisation: System von "value-adding processes"
 - mit einer Dateninfrastruktur-Orientierung d.h.
 - technischem Fokus
 - Sicherung der Effizienz, Verfügbarkeit und Sicherheit datenbezogener Prozesse
 - Perspektive der Organisation: Technisches System von Informationsflüssen
- Bei mangelnder Integration: Das Data Warehouse entwickelt ein Eigenleben (→ Daten ohne Nutzen, schlechte Usability)

Kompetenzerfordernisse

- **Umgang mit Daten:** → Data wrangling, mit Datenbanken umgehen können
- Methodenkompetenz: Statistik, Modeling, Designs, kausale Inferenz, Visualisierung
- Business-Kompetenz: Unternehmen brauchen mehr als nur Statistik-Fachleute
- Kulturelles Wissen: Muss wissen, wie User ticken (d.h. deren Kenntnisse, Gewohnheiten, Präferenzen, Vorlieben, Vorurteile)
- Kommunikationsfähigkeit:
 - Gegenüber den "Business-Leuten": Fähigkeit, Ergebnisse und analytische Prozesse Usern zu erklären
 - **Gegenüber den "Daten-Leuten":** Informationsbedarfe erläutern

Aufgaben

- Übersetzung eines (meist vagen) **Informationsbedarfes** in eine konkrete **Informationsstrategie**
- → Dialog mit dem entsprechenden Funktionsbereich
- Vermittelt Konflikte bzgl.
 - Sprache und Jargon
 - Langfristiger vs. kurzfristiger Orientierung
 - Geschwindigkeit vs. Akkuratheit
 - Fokus auf Daten vs. Fokus auf Informationsgehalt / Nützlichkeit

Wiederholung: Informationsstrategie und ihre Zutaten

- Informationsstrategie: Wie kann man den geäußerten Informationsbedarf decken?
- → Spezifikation der 4 zentralen Zutaten eines BA-Prozesses:
 - **(1) Ziel:** Was möchte man wissen? → Produkte, Kunden, Prozesse
 - (2) Inhalt: Welche Phänomene sind relevant (z.B. Kundenzufriedenheit)?
 - (3) **Zugangsweg:** Welche Daten kommen in Frage (z.B. Survey vs. Social Media)?
 - (4) Analytisches Design: Was macht man mit den Daten um das Ziel zu erreichen? (z.B. Clusteranalyse, Zeitreihenanalyse etc.)
 - (5) NEU: Nutzung der Ergebnisse: Ergebnisbericht? Präsentation? Dashboard? Fundament für einen automatischen KI-Prozess?

Informationsstrategie: Zugangsweg

- Betrifft die Daten
- Zu berücksichtigende Aspekte
 - Verfügbarkeit: Sind Daten vorhanden oder müssen sie generiert werden?
 - Validität: Betrifft Stärke des Zusammenhangs zwischen dem Phänomen / Konstrukt (vgl. 2. Aspekt der Informationsstrategie: Welche Phänomene sind relevant?). Z.B. bei Survey höher als bei Textmining von Beschwerdehotlines?
 - Fehlerbehaftetheit der Daten ("Veracity")→ Zeitlicher, finanzieller und personenbezogener Aufwand für das Data Cleaning
 - Data wrangling / Feature Engeneering: Aus Daten müssen (konzeptionell bedeutsame Variablen) generiert werden. Daumenregel: 80% des gesamten Zeitaufwandes.
 - → Kennzeichnet den **Konflikt zwischen Verfügbarkeit und Nützlichkeit** (Validität, Fehler, Ausmaß des Feature Engeneering)

Die Rolle des Datawarehouses

Ausgangslage

- Daten werden traditionell in den Funktionsbereichen erzeugt und aufbewahrt
 - **Personalabteilung:** Personalakte, Bewerbungen, Abwesenheits- und Urlaubsdaten
 - **Einkauf:** Auftragsbücher
 - **Finanzen:** Rechnungen, Transaktionen
 - **Produktion:** Inventar, Produktionsdaten

Ungünstig

- Digitalisierung und Explosion der Datenmenge (Big Data)
- Geringe Nützlichkeit (Ziel ist Archivierung)
 - "Dateninseln" / Keine Integration
 - Wenig Dokumentation ("Datenfriedhöfe")
 - Keine Aufbereitung (schlechte Qualität)

Data Warehouse (DW)

- Speicherung großer Datenmengen
- Entlastung der Funktionsbereiche
- Bessere Datenaufbereitung
 - Höhere Qualität
 - Transparenz durch Dokumentation ("Meta-Daten")
 - Verfügbarkeit
- Integration von Daten aus verschiedenen Quellen / Funktionsbereichen
 - Keine isolierten Dateninseln
 - Bessere Informationsausbeutung (Kombination macht Daten wertvoller)

Architektur

| 33

Beispiele für Source Systems und Nutzung

Datenquelle	Nutzung
Transaktionsdaten (z.B. Buchungen)	Analyse von Verkaufszahlen über die Zeit, automatisches Inkasso-System
Sensordaten	Produktverwendung, Predictive Maintenance
Kundendaten (Demos, Präferenzen, Interaktionen, z.B. Hotlines, Mails)	Segmentierung, Churn Prediction, Alarmsystem
Mitarbeiter (Rolle, Gehalt, Urlaub, Performance), Trainingsinformationen, Umfragen	Trainingsbedarf, Verhaltensvorhersage (z.B. Urlaub, Kündigung, Job Performance)
Geo-Daten	Benachrichtigungen, Fraud Detection, Logistik
Social media	Stimmung, Präferenzen, Trends, CSR, Tracking Bewerber
Informationen über Maßnahmen (z.B. Werbekampagnen)	Wissen was funktioniert (und für welche Art von Kunden)
Web logs	Kundenverhalten, -Interessen, -Präferenzen
Produktionsinformationen (Anzahl produzierte Einheiten, Ausfallrate der Maschinen, Kosten, Energieverbrauch, Rückrufe	Produktverbesserung, Verbesserung der Prozesse, Qualitätskontrolle

Prozesse

An allen Schnittstellen finden ETL-Prozesse statt

Organisation von Daten

- → Relationale Datenbanken
- Zentral: Tables, IDs/Schlüssel, Spalten, Zeilen
- Verbindet Tables (vergleichbar Excel / SPSS sheets) über
 IDs
- Wideformat (eine Zeile = ein Fall) vs. Longformat (multiple Fälle genestet unter einer Variable)
- Abfrage mittels SQL (Structural Query Language), ist aber in R mittels des dbplyr package möglich
- Einfacheres (fiktives) Beispiel (<u>download</u> Excel-file)

ETL

- "Extract, transform, load"
 - Extract: Zugriff auf tables und Variablen/features (select, filter)
 - Transform:
 - Integrieren verschiedener Tables (z.B. left_join) anhand der ID oder anderer Variablen
 - Data Cleaning
 - o Outlier entdecken und "behandeln" (z.B. Trimming oder Winsorizing) (DescTools::Winsorize)
 - o Dublicates entdecken und eliminieren (janitor::get_dupes)
 - o Missing data entdecken, verstehen und behandeln (z.B. imputieren) (siehe Tidyverse-Skript)
 - Datenaufbereitung (Data Wrangling / Feature Engeneering) für die Analyse (→ vgl. Informationsstrategie)
 - o Rekodieren, z.B. von strings in factors (recode, mutate)
 - o **Mapping, z.B.** Verschiedene Versionen von Einträgen in ein unified value (M, male, Mr.)
 - Berechnen: Z.B: Sales = Anzahl verkaufter Teile * Preis (mutate)
 - o **Aggregieren,** z.B. Tagesumsätze auf Monatsumsätze, oder Regionalebene (summarize)
 - Pivoting, z.B. Wideformat in Longformat (privot_longer)

Beispiel

- Rohdaten: Posts auf einem social media Kanal. Rohdaten wären...
 - Text: 1) Firmenrelevante Postings, 2) eigene Postings
 - Meta-Daten: Datum, Uhrzeit, Name, u.U. andere Infos (PLZ) etc.

• Preprocessing:

- Tokenizing, stopwords removal, lemmatization
- Ggfls. Match mit anderen Kundeninfos (DSGVO!)

• Analyse:

- Z.B. Sentiment-Analyse mittels Match mit Wörterbüchern mit positiven/negativen Wörtern
- Analytische Optionen
 - Individuelle Zeitreihe mit Sentiment-Verläufen (Trends? Systematische Rhythmen?)
 - Zusammenhänge mit anderen relevanten Variablen (Käufe, Kündigungen)?

Informationsstrategie: Analytisches Design

- Ausgangslage:
 - Hypothesenbasiert oder
 - Explorativ / Data-Driven ?
- **Analytisches Ziele:** → Was ist die relevante / zu liefernde Information (Passung zum Informationsbedarf)?
 - Deskriptiv
 - Kausal (Explanation)
 - Vorhersage (Prediction)

Analytisches Design: Deskriptive Ziele

• Arten:

- Klassisches "Reporting" (→ Business Intelligence)
- Momentaufnahme der Leistung (Beschreibung von KPIs mittels deskriptiven Maßen)
- **Trends** darstellen (z.B. Verläufe der Verkaufszahlen oder Zufriedenheit)
- **Muster entdecken** (z.B. homogene Kundengruppen entdecken)

• Ansätze:

- Univariate / multivariate deskriptive Statistiken (Mittel, Streuung, Korrelation, etc.)
- **Visualisierungen:** Verteilungen, Zusammenhänge (z.B. Scatterplot)
- Zeitreihenanalyse: Trends? Saisonale Schwankungen? (→ STL Decomposition)
- Clusteranalyse (→ "Unsupervised Machine Learning")

Analytisches Design: Kausale Ziele

• Merkmale:

- Man hat Vermutungen über die Rolle bestimmter Variablen
- Ziel: Kausalen Effekt schätzen (als Lead oder Lag Information).
- Zentrales Kriterium: Korrektheit des Effekts

Beispiele

- Warum kündigen Kunden?
- Welche Wirkung wird eine Veränderung des Preises haben?
- Welche Merkmale eines Produktes attrahieren Kunden?

• Ansätze (klassisch!)

- Experimentell (z.B. A/B Testing, Feldexperimente (randomisiert v.s. quasi-experimentell))
- Längsschnitt- und Zeitreihenansätze: VAR Models oder Interrupted Time Series
- Regressionsanalyse (inkl. logischer Regression, Survivalanalyse) mit Kontroll- oder Instrumentalvariablen

Analytisches Design: Prädiktive Ziele

• Merkmale:

- Klassische Anwendung von Machine learning / KI
- Rein prädiktives (nicht-kausales Ziel): Was weiß ich über Y, wenn ich X kenne?
- Zentrales Kriterium: Geringer Vorhersagefehler

• Beispiele:

- Forecasting von Abonnement-Zahlen
- Vorhersage der Job Performance von Bewerbern
- Identifikation von Kennzeichen für Kreditkartenmissbrauch
- Market Segmentation mittels Clusteranalyse
- Vorteil: Automatisierbarkeit (z.B. Recommender Systems, Benachrichtigungen bei kritischen Beschwerden oder möglichen Maschinenausfällen)

Nutzung der Analyseergebnisse

- Berichte? Präsentation?
- Model Deployment: "Bringing the model into production":
 - Dashboards
 - Automatisierter KI-Prozess? Beispiel: Kunde bekommt eine mail mit einem Angebot, wenn er in "auffällig" wird

Implementierung der BA-Funktion

Kulturelle und strukturelle Hindernisse

- Mittelstand: Traditionell geprägte Strukturen und Kulturen
- Orientierung: Kultur-Taxonomie von Quinn & Rohrbaugh (1983)
 - Beschreibt das Verhältnis von Kultur, Organisationsstruktur und Umwelt
 - Struktur: Formalisiert & zentralisiert (*mechanistisch*) vs. wenig formalisiert / flexibel und dezentralisiert (*organisch*)
 - Fokus: Internal (auf interne Abläufe und Personen gerichtet) oder external (auf das Überleben der Organisation und die Umwelt gerichtet)

- Group Culture: Harmonie, Kohäsion, Mitarbeiterzufriedenheit ist wichtig
- Internal Process Culture: Klare Hierarchien, Formalisierung, Transparenz und Effizienz
- **Developmental Culture:** Dynamisch, innovativ, gute Fehlerkultur
- Rational Goal Culture: Ambitioniert, Wachstum, Langzeitorientiert, Effizienz

Kulturelle und strukturelle Hindernisse

- Eine BA-Implementierung ist eine übliche Organisationsentwicklungs-Maßnahme
 - → **Resistenzen bei Mitarbeitern** aufgrund
 - Sorgen/Ängste z.B. vor Überforderung, Arbeitsplatzverlust oder Privatheit (z.B. bei Einsatz im HR)
 - Verständnisprobleme ("warum ist sowas nötig? Es ging doch bislang ohne?")
 - Mangel an Beteiligung (z.B. wenn Lösungen für User nicht an deren Bedarfe angepasst werden)
 - → **Resistenzen bei Managern** aufgrund
 - Angst vor Verlust an Entscheidungsmacht (durch Delegation der Entscheidungsmacht an "Daten")
 - Kognitive Dissonanz (wenn Evidenz den eigenen Berufserfahrungen widerspricht)
 - Mangel an Ressourcen

Kulturelle und strukturelle Hindernisse

- Aspekte bei der Implementierung
 - Manager und Mitarbeiter einbeziehen: Verstehen, wo sie Unterstützung brauchen, den Nutzen verdeutlichen
 - Die zentralen Personen überzeugen (das heißt Manager und einflussreiche Mitarbeiter)
 → Rollenmodelle vs. "Killer"
 - Training und Unterstützung
 - Start small and make it happen: Wichtigkeit anfänglicher kleiner erfolgreicher Projekte
 - Implementierung begleiten und feedback einholen (→ lag information über BA-Erfolg)

BACC: Das Business Analytics Competency Center

- Das BACC ist eine interdisziplinäre Gruppe, die die Implementierung und Steuerung von BA-Aufgaben koordiniert
- Besteht aus Vertretern der 3 Rollen (Business, Analytics, IT)
- Aufgaben und Funktionen
 - Integration der Fachperspektiven
 - Identifikation und Beseitigung von Barrieren (siehe vorheriger Aspekt)
 - Identifikation von Informationsbedarfen und Planung von Projekten
 (Datenverfügbarkeit, evtl. Erhebung, Design, Analytik), vgl. Abschnitt "Rolle der Analysten"
 - Stärkung der Legitimität
 - Integration von Analysten verschiedener Funktionsbereiche
 - Identifikation von Entwicklungsbedarfen was Technik und personelle
 Kompetenzen angeht (→ Einstellung oder Training bzgl. Analytik oder IT)

BACC: Das Business Analytics Competency Center

• Art der Implementierung

- als formale Einheit:
 - Separate Abteilung mit fest angestellten Mitarbeitern
 - V.a. in großen Firmen

als virtuelle steering group:

- Vertreter der Funktionsbereiche
- Nachteil: Nebenjob
- V.a. in SMEs (Es fehlen Ressourcen für eine formale Einheit)

Zusammenfassung I

- **Veränderungen der Umweltbedingungen** → Komplexität, Dynamik, Unsicherheit
- Digitalisierung und Big Data erhöhen Datenverfügbarkeit und Herausforderungen
- "BA-Funktion":
 - System von Aktivitäten, mittels Datenauswertung Entscheidungen mit operativer oder strategischer Relevanz zu unterstützten
 - Mehr oder weniger stark an strategischen Zielen (auf Unternehmens- oder Funktionsbereichsebene) orientiert (von isoliert bis integriert)
- Integration von 3 relevanten Rollen: Business, Analyst, IT
- Kategorien von Informationen und Analysezielen:
 - Produktbezogen
 - Kundenbezogen
 - Prozessbezogen

Zusammenfassung II

- Besondere Rolle des Analysten als Brückenbauer und Implikationen für Aufgaben und Kompetenzen
- Konzept der Informationsstrategie:
 - Klärung des Informationsbedarfs / Informationsziels
 - Klärung der zentralen relevanten Phänomene
 - Identifikation / Generierung relevanter Daten
 - Klärung des passenden analytischen Designs und des Aufwands für Cleaning / Feature Engineering
 - Klärung der intendierten Nutzung der Ergebnisse
- Rolle des Data Warehouses als Infrastruktur zum Sammeln, Integrieren, Aufbereiten und Verfügbar-machen von Daten
- Arten und mögliche (kulturelle/strukturelle) Probleme bei der Implementierung einer BA-Funktion