Bubblesort e ordinamenti per confronti

Informatica@SEFA 2018/2019 - Lezione 14

Massimo Lauria < massimo.lauria@uniroma1.it>
http://massimolauria.net/courses/infosefa2018/

Venerdì, 9 Novembre 2018

Bubblesort

Bubble sort stupido (I)

Abbiamo una sequenza di n elementi.

- 1. Mettiamo il più grande elemento nella posizione n-1
- 2. Mettiamo il secondo più grande elemento nella posizione n-2

...

Al passo i-esimo mettiamo l'i-esimo elemento più grande alla posizione n-i.

Invarianti

- Immediatamente prima di eseguire il passo i gli elementi nelle posizioni $n-i+1,\ldots,n-1$ sono nella loro posizione definitiva;
- ▶ al passo i mettiamo alla posizione n-i il più grande tra gli elementi nelle posizioni $0, \ldots, n-i$;
- la ricerca del più grande il suo spostamento sono fatte simultaneamente.

Bubble up

Mette il massimo elemento alla fine, effettuando scambi a due a due.

```
def bubbleup(seq,end):
    for j in range(0,end): # si ferma a end-1 2
        seq[j], seq[j+1] = min(seq[j],seq[j+1]),max(seq[j],seq3
        [j+1])
```

```
bubbleup([2,4,1,3,6,5,2],6)
```

```
Initial: [2, 4, 1, 3, 6, 5, 2]
0 vs 1: [2, 4, 1, 3, 6, 5, 2]
1 vs 2: [2, 1, 4, 3, 6, 5, 2]
2 vs 3: [2, 1, 3, 4, 6, 5, 2]
3 vs 4: [2, 1, 3, 4, 6, 5, 2]
4 vs 5: [2, 1, 3, 4, 5, 6, 2]
5 vs 6: [2, 1, 3, 4, 5, 2, 6]
```

Notate come il massimo sia messo sul fondo della lista.

Bubble sort stupido (II)

L'ordinamento finale stupid_bubblesort si ottiene ripetendo la procedura: al passo i si opera sulla sottolista dalla posizione 0 alla posizione n-i.

```
def stupid_bubblesort(seq):
    for i in range(1,len(seq)):
        bubbleup(seq,len(seq)-i)
        3
```

```
stupid_bubblesort([5,-4,3,6,19,1,-5]) 1
```

```
Start : [5, -4, 3, 6, 19, 1, -5] |
Step 1 : [-4, 3, 5, 6, 1, -5] | [19]
Step 2 : [-4, 3, 5, 1, -5] | [6, 19]
Step 3 : [-4, 3, 1, -5] | [5, 6, 19]
Step 4 : [-4, 1, -5] | [3, 5, 6, 19]
Step 5 : [-4, -5] | [1, 3, 5, 6, 19]
Step 6 : [-5] | [-4, 1, 3, 5, 6, 19]
```

Osservazione su bubbleup

Sulla sequenza

```
[3, 2, 7, 1, 8, 9]
```

l'ultimo scambio effettuato è tra la posizione 2 e 3, ovvero quando si passa da

```
[2, 3, 7, 1, 8, 9]
```

a

Nessuno scambio viene effettuato dalla posizione 3 in poi: quegli elementi sono già ordinati.

Garanzie ulteriori di bubbleup

La funzione bubbleup ci fornisce delle garanzie che

- un'inversione tra posizione i e i + 1 vuol dire:
 L'elemento alla posizione i + 1 è maggiore di tutti i precedenti.
- nessuna inversione dopo la posizione i vuol dire:
 Gli elementi dalla posizione i + 1 in poi sono ordinati.

Stiamo usando la prima ma non la seconda.

Modifichiamo bubbleup

Memorizziamo l'ultimo scambio effettuato. Se la funzione restuisce una posizione j

- ▶ gli elementi in pos > j sono ordinati
- ▶ sono maggiori degli elementi in pos $\leq j$.

```
def bubbleup(seq,end,log=False):
    last_swap = 0
    for j in range(0,end):
        if seq[j] > seq[j+1]:
            last_swap = j
            seq[j], seq[j+1] = seq[j+1],seq[j]
    return last_swap
    7
```

Bubblesort

Usiamo queste garanzie che ci da bubbleup

```
def bubblesort(seq):
    end=len(seq)-1
    while end>0:
        end=bubbleup(seq,end)
1
2
4
```

```
bubblesort([3,2,7,1,8,9]) 1
```

```
Start : [3, 2, 7, 1, 8, 9] |
Step 1 : [2, 3, 1] | [7, 8, 9]
Step 4 : [2, 1] | [3, 7, 8, 9]
Step 5 : [1] | [2, 3, 7, 8, 9]
```

Questa versione fa meno passi: deve ordinare solo la parte di sequenza che precede l'ultimo scambio.

Bubblesort su sequenze ordinate

```
stupid_bubblesort([1, 2, 3, 4, 5, 6, 7, 8]) 1
```

```
Start : [1, 2, 3, 4, 5, 6, 7, 8] |
Step 1 : [1, 2, 3, 4, 5, 6, 7] | [8]
Step 2 : [1, 2, 3, 4, 5, 6] | [7, 8]
Step 3 : [1, 2, 3, 4, 5] | [6, 7, 8]
Step 4 : [1, 2, 3, 4] | [5, 6, 7, 8]
Step 5 : [1, 2, 3] | [4, 5, 6, 7, 8]
Step 6 : [1, 2] | [3, 4, 5, 6, 7, 8]
Step 7 : [1] | [2, 3, 4, 5, 6, 7, 8]
```

```
bubblesort([1, 2, 3, 4, 5, 6, 7, 8])
```

```
Start : [1, 2, 3, 4, 5, 6, 7, 8] |
Step 1 : [1] | [2, 3, 4, 5, 6, 7, 8]
```

Bubblesort su sequenze invertite

```
stupid_bubblesort([8, 7, 6, 5, 4, 3, 2, 1])
```

```
Start : [8, 7, 6, 5, 4, 3, 2, 1] |
Step 1 : [7, 6, 5, 4, 3, 2, 1] | [8]
Step 2 : [6, 5, 4, 3, 2, 1] | [7, 8]
Step 3 : [5, 4, 3, 2, 1] | [6, 7, 8]
Step 4 : [4, 3, 2, 1] | [5, 6, 7, 8]
Step 5 : [3, 2, 1] | [4, 5, 6, 7, 8]
Step 6 : [2, 1] | [3, 4, 5, 6, 7, 8]
Step 7 : [1] | [2, 3, 4, 5, 6, 7, 8]
```

```
bubblesort([8, 7, 6, 5, 4, 3, 2, 1])
```

```
Start : [8, 7, 6, 5, 4, 3, 2, 1] |
Step 1 : [7, 6, 5, 4, 3, 2, 1] | [8]
Step 2 : [6, 5, 4, 3, 2, 1] | [7, 8]
Step 3 : [5, 4, 3, 2, 1] | [6, 7, 8]
Step 4 : [4, 3, 2, 1] | [5, 6, 7, 8]
Step 5 : [3, 2, 1] | [4, 5, 6, 7, 8]
Step 6 : [2, 1] | [3, 4, 5, 6, 7, 8]
Step 7 : [1] | [2, 3, 4, 5, 6, 7, 8]
```

Prestazioni del Bubblesort

Come abbiamo visto ci sono casi in cui il bubblesort impiega O(n) operazioni ma anche casi in cui non si comporta meglio della versione stupida.

Esercizio: generate liste casuali e osservate la differenza di prestazioni tra

- insertion sort
- bubblesort stupido
- bubblesort

Ordinamenti per confronti

Risultati di impossibilità

Vogliamo migliorare il più possibile gli algoritmi che utilizziamo. Esistono tuttavia dei limiti insuperabili.

E.g. La ricerca in una sequenza non ordinata richiede $\Omega(n)$ operazioni.

Dimostrazione: qualunque sia l'algoritmo, sappiamo che non deve saltare nessuna posizione nella sequenza, poiché l'elemento cercato potrebbe essere lì.

Come si dimostra l'impossibilità?

Vogliamo trovare un algoritmo con determinate prestazioni, e questo può esistere (anche se è difficile scoprirlo/inventarlo) oppure non esistere affatto.

Come dimostrare che esiste?

basta esibirlo

Come dimostrare che non esiste?

nessun algoritmo ha le prestazioni richieste

Limite degli ordinamenti per confronto

Gli algoritmi di ordinamento che abbiamo visto

- ▶ insertion sort
- bubble sort

sono algoritmi di ordinamento per confronti e usano $O(n^2)$ operazioni. É possibile fare di meglio? E quanto meglio?

Limite degli ordinamenti per confronto

Gli algoritmi di ordinamento che abbiamo visto

- ▶ insertion sort
- bubble sort

sono algoritmi di ordinamento per confronti e usano $O(n^2)$ operazioni. É possibile fare di meglio? E quanto meglio?

Theorem

Un algoritmo di ordinamento per confronti **necessita** di $\Omega(n \log n)$ operazioni per ordinare una lista di n elementi.

Esempio di ordinamento di tre elementi

Ci sono 6 modi di disporre $\{a_0, a_1, a_2\}$ in sequenza, e possiamo effettuare confronti tra elementi per scoprire quale dei 6 modi mette $\{a_0, a_1, a_2\}$ in ordine crescente.

- ▶ **Se** $a_0 \le a_1$
 - se $a_1 \leqslant a_2$ output $\langle a_0, a_1, a_2 \rangle$
 - altrimenti
 - se $a_0 \leqslant a_2$ output $\langle a_0, a_2, a_1 \rangle$
 - altrimenti output $\langle a_2, a_0, a_1 \rangle$
- altrimenti
 - se $a_0 \leq a_2$ output $\langle a_1, a_0, a_2 \rangle$
 - altrimenti
 - se $a_1 \leqslant a_2$ output $\langle a_1, a_2, a_0 \rangle$
 - altrimenti output $\langle a_2, a_1, a_0 \rangle$

Prerequisito: permutazioni

Una permutazione su $\{0, 1, \dots n-1\}$ è una funzione

$$\pi: \{0, 1, \dots n-1\} \to \{0, 1, \dots n-1\}$$

tale che $\pi(i) = \pi(j)$ se e solo se i = j.

Una permutazione è completamente descritta da

$$(\pi(0),\pi(1),\ldots,\pi(n-1))$$

Esempi per n = 6:

- **►** (1,4,3,2,0,5)
- \rightarrow (5, 4, 3, 2, 1, 0)
- ► (0,1,2,3,4,5)

Prerequisito: permutazioni (II)

Le permutazioni su $\{0, \dots n-1\}$ con operazione $\pi \rho$ che denota $i \mapsto \rho(\pi(i))$.

Struttura di gruppo algebrico

- ▶ Identità: esiste π per cui $\pi(i) = i$ per ogni i;
- Associatività: $\pi_1(\pi_2\pi_3) = (\pi_1\pi_2)\pi_3$
- Inversa: per ogni π esiste un'unica permutazione, che denotiamo come π^{-1} per cui $\pi\pi^{-1}$ è la permutazione identica.

$$n = 6$$
 $\pi = (1,4,3,5,2,0)$ $\pi^{-1} = (5,0,4,2,1,3)$

Ordinamento

Un algoritmo di ordinamento prende in input una sequenza

$$\langle a_0, a_1, a_2, a_3, \dots, a_{n-1} \rangle$$
 (1)

ed essenzialmente calcola una permutazione π sugli indici $\{0,1,\ldots,n-1\}$ per cui

$$\langle a_{\pi(0)}, a_{\pi(1)}, a_{\pi(2)}, a_{\pi(3)}, \dots, a_{\pi(n-1)} \rangle$$
 (2)

è una sequenza crescente.

Esempio

Da un input

$$\langle a_0, a_1, a_2, a_3, a_4 \rangle = \langle 32, -5, 7, 3, 12 \rangle$$

un algoritmo di ordinamento produce la permutazione

che corrisponde all'output

$$\langle a_1, a_3, a_2, a_4, a_0 \rangle = \langle -5, 3, 7, 12, 32 \rangle$$

Ordinamenti per confronti

Tutte le decisioni prese dall'algoritmo di basano sul confronto ≤ tra due elementi della sequenza. Nel senso che

- ▶ le entrate e uscite dai cicli while e for
- ► la strada presa negli if/else
- come spostati gli elementi tra le posizioni della lista
- ▶ ...

non dipendono dai valori nella sequenza, ma solo dall'esito dei confronti.

Esempio (ancora tre elementi)

- Se a₀ ≤ a₁
 - se $a_1 \leqslant a_2$ output $\langle a_0, a_1, a_2 \rangle$
 - altrimenti
 - se $a_0 \leq a_2$ output $\langle a_0, a_2, a_1 \rangle$
 - altrimenti output $\langle a_2, a_0, a_1 \rangle$
- altrimenti
 - se $a_0 \leqslant a_2$ output $\langle a_1, a_0, a_2 \rangle$
 - altrimenti
 - se $a_1 \leq a_2$ output $\langle a_1, a_2, a_0 \rangle$
 - altrimenti output $\langle a_2, a_1, a_0 \rangle$

La scelta della permutazione (delle 6 disponibili) dipende solo dall'esito dei confronti.

Osservazione 1

Se per due sequenze in input tutti i confronti danno lo stesso esito, un algoritmo di ordinamento per confronti produce la stessa permutazione π per entrambe.

Osservazione 2

Per ogni permutazione π di $\{0,1,\ldots,n-1\}$, esiste un input per cui questa permutazione è l'unico output corretto per un ordinamento.

Dimostrazione: Si prenda l'unica permutazione π^{-1} e si dia in input la sequenza

$$\pi^{-1}(0), \pi^{-1}(1), \pi^{-1}(2), \dots, \pi^{-1}(n-1)$$

che, una volta ordinata, risulta essere $\{0,1,2,\ldots,n-1\}$. Questa sequenza può essere ordinata solo dalla permutazione π per definizione.

Dimostrazione del limite $\Omega(n \log n)$

Theorem

Per qualunque algoritmo di ordinamento per confronti, esiste una sequenza di n elementi per cui l'algoritmo esegue $\Omega(n \log n)$ confronti.

Proof.

- Sia h il massimo numero di confronti dell'algoritmo;
- ▶ al massimo 2^h output distinti (osservazione 1);
- ► Ci sono n! permutazioni di n elementi e sono tutte possibili output (osservazione 2);
- Quindi $2^h \ge n! \ge (n/2)^{n/2}$, ovvero $h \ge \Omega(n \log n)$.

Ricapitolando

- ordinamento per confronti richiede $\Omega(n \log n)$ passi
- ▶ insertion sort $\Theta(n^2)$ operazioni
- ▶ bubblesort $\Theta(n^2)$ operazioni

vedremo

- ▶ ordinamenti per confronti con $O(n \log n)$ operazioni
- lacktriangle (forse) un ordinamento che utilizza O(n) operazioni