δ =	F	ΔL		δ
	\overline{A} , ε	$=\frac{L_0}{L_0}, E$	=	ε

UCM, SHM, Deformation of Solids F is restoring force

s=r
$$\theta$$
, $\omega = \frac{2\pi}{r}$, v=r ω , $a = \frac{v^2}{r} = v\omega = r\omega^2$

$$E_k = \frac{1}{2}m\omega^2A^2sin^2\omega t, T = 2\pi\sqrt{\frac{L}{g}} = 2\pi\sqrt{\frac{m}{k}}, \text{ Tension = ke, F=kx,}$$

$$\text{E=k}A^2$$

	Displacement	Velocity	Acceleration
Variation w/t	Acosωt	$-\omega A sin\omega t$	-ω ² Acosωt
Max	Amplitude=A	At fixed point (equilibrium) $x=0, v=\omega A$	Extremity of x , $a = \omega^2 A$
Min	At fixed point (equilibrium), 0	Extremity of x, 0	At fixed point, 0
Variation w/ x		$\omega\sqrt{(A^2-x^2)}$	$\omega^2 x$

Free vibration/undamped – no E transfer to/from system, Forced vibration (ex Barton's Pendulums) – forced to oscillate at freq. of eternal oscillator which is giving it E, Condition for resonance: driving freq. = natural freq. Example of resonating system: singer and class, how to damp this system: fill with water, Oscillate in water to increase damping

Cyclist on bend has ω as they sweep an angle over time, Fr between tyres&road permit the UCM. **SHM**: a directly proportional to d from fixed point & directed towards fixed point. **Cause of damping** for moving obj is fr, effect is E loss and <A, how travel in circle at const speed but have a? direction & thus v changing, a is rate of change of v. **When obj first reaches** equilibrium: $x(t) = Acos\omega t$, Acan't be $0 \div cos\omega t = 0$, $\omega t = cos^{-1}(0) = \frac{\pi}{2}$, $\therefore t = \frac{\pi}{2\omega}$

	SHM	UCM
Т	T for one oscillation	T for one revolution/orbit
F	Acts toward equilibrium	Acts toward centre of circle
	Varies depending on position of object	Const.

Both overdamped and critically damped systems lose E and return to equilibrium position without oscillating, Critically damped does so in the quickest possible time, **Total E of system is not conserved** as E leaves the system to move air particles/due to air resistance

Why chain w/ hammer can't be horz: W_hammer acts downwards and must be balanced by vertical tension component

Hooke's Law: F directly proportional to x produced provided proportional limit not exceeded, F=-kx

Elastic Limit: max load specimen can experience and return to original length when deforming F removed. **Elastic Deformation**, after this is **Plastic Deformation**

UTS: max stress applied to wire without breaking/fracturing

Elastic Strain Energy: Es = $\frac{1}{2}kx^2$ (work done in stretching material held as Ep)

Strain gauge to measure crack width in walls

Experiment: measure unstretched L. Measure x for range of F, L with metre rule clamped to pointer, x with ruler, d of wire at several places with micrometre gauge and avg, wear goggles as wire could break under tension

Combined spring constant: Series: $x_T = x_1 + x_2 = \frac{F}{k_T} = \frac{F}{k_1} + \frac{F}{k_2} \div \frac{1}{k_T} = \frac{1}{k_1} + \frac{1}{k_2} \div k_T = \frac{k_{1k_2}}{k_{1+k_2}}$ // F is same for all springs. Parrallel: $F_T = F_1 + F_2 = k_1 x + k_2 x = k_T x \div k_1 + k_2 = k_T$ // x is the same for all springs

Reference wire

Small load to

keep wire taut

Vernier arrangement to measure the extension of the

wire under test

Variable load