Metode Transformasi

Multidimensi

Untuk kasus diskrit sama seperti sebelumnya, hanya perlu menambah peubah acak pada fungsinya. Namun untuk kasus kontinu kita perlu meninjau Jacobian dari fungsi transformasi terse-

Misal $X = (X_1, ..., X_n)$ variabel acak kontinu Misal $X=(X_1,\ldots,X_n)$ variable acta kolitinu dengan pdf bersama $f_X(x_1,x_2,\ldots,x_n)>0$ atas A, dan $Y=(Y_1,Y_2,\ldots,Y_n)$ didefinisikan oleh transformasi satu-satu $Y_i=u_i(X_1,X_2,\ldots,X_n)$, maka pdf bersama dari Y adalah

$$f_Y(y_1, y_2, \dots, y_n) = f_X(x_1, x_2, \dots, x_n) |J|$$

$$\text{dengan } J = \begin{bmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \dots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \dots & \frac{\partial x_n}{\partial y_n} \end{bmatrix}$$
 Jika transformasi tidak satu-satu, dengan cara

yang sama yaitu kita partisi A sehingga u(x) satusatu pada A_i . Kemudian jumlahkan semua pdf

Order Statistik

Misal X_1, X_2, \dots, X_n adalah sampel acak. Kemudian didefinisikan

- $X_{(1)}$ adalah X_1, X_2, \dots, X_n . sampel terkecil
- $X_{(i)}$ adalah sampel terkecil ke-idari X_1,X_2,\ldots,X_n untuk $i=2,3,\ldots,n-1.$
- $X_{(n)}$ adalah sampel terbesar dari X_1,X_2,\dots,X_n .

 Misalkan $Y_k=X_{(k)}$, maka pdf bersama untuk order statistik Y_1,Y_2,\dots,Y_n adalah

$$g(y_1, y_2, \dots, y_n) = n! f(y_1) f(y_2) \dots f(y_n)$$

$$y_1 < y_2 < \dots < y_n$$

Kemudian untuk pdf dari Y_k adalah

$$g_k(y) = \frac{n! F(y)^{k-1} [1 - F(y)]^{n-k} f(y)}{(k-1)! (n-k)!}, \ a < y_k < b$$

- PDF Y_1 : $g_1(y_1) = nf(y_1)[1 F(y_1)]^{n-1}$
- PDF Y_n : $g_n(y_n) = nf(y_n)[F(y_n)]^{n-1}$
- CDF Y_k : $G_k(y_k) = \sum_{i=k}^n \binom{n}{i} F(y_k)^i [1 -$
- CDF Y_1 : $G_1(y_1) = 1 [1 F(y_1)]^n$
- CDF Y_n : $G_n(y_n) = [F(y_n)]^n$

Teorema Limit Pusat

Misal Y_1,Y_2,\ldots adalah barisan variabel acak dengan CDF $G_1(y),G_2(y),\ldots$ dan MGF $M_1(t),M_2(t),\ldots$ Jika $\lim_{n\to\infty}M_n(t)=M(t)$ untuk setiap t dalam suatu interval -h < t < h, maka $\lim_{n \to \infty} G_n(y) = G(y)$.

 Jika X_1,X_2,\dots,X_n adalah sampel acak dari distribusi dengan mean μ dan varian σ^2 , maka limiting distribution dari

$$Z_n = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

adalah distribusi normal standar, $Z_n \xrightarrow{d} N(0,1)$.

Asimtotik Distribusi Normal

 Jika Y_1,Y_2,\dots adalah barisan variabel acak dan mdan c adalah konstan sedemikian sehingga

$$Z_n = \frac{Y_n - m}{c} \xrightarrow{d} Z \sim N(0, 1)$$

untuk $n \to \infty$, maka Y_n dikatakan berdistribusi normal asimtotik dengan mean m dan varians c^2/n .

Misalkan X_1, X_2, \dots, X_n adalah sampel acak dari distribusi kontinu dengan PDF f(x) dan tidak nol pada persentil ke-p. Jika $k/n \to p$, maka barisan order statistik ke-k, $X_{k:n}$ adalah normal asimtotik dengan mean x_p dan varians c^2/n , dimana

$$c^2 = \frac{p(1-p)}{f^2(x_p)}$$

Konvergen Stokastik

Suatu barisan variabel acak Y_1, Y_2, \ldots dikatakan konvergen stokastik menuju sebuah konstanta c jika barisan tersebut terdistribusi terbatas pada satu nilai y = c, dapat ditulis

$$\lim_{n \to \infty} G_n(y) = G(y) = \begin{cases} 0 & , y < c \\ 1 & , y \ge c \end{cases}$$

note:
$$\lim_{n \to \infty} \left(1 + \frac{c}{n} \right)^{nb} = e^{bc}$$

note: $\lim_{n \to \infty} \left(1 + \frac{c}{n}\right)^{nb} = e^{bc}$ Barisan Y_1, Y_2, \dots konvergen stokastik kecjika dan hanya jika untuk setiap $\epsilon > 0$,

$$\lim_{n \to \infty} P(|Y_n - c| < \epsilon) = 1$$

Barisan tersebut dapat dikatakan konvergen dalam peluang menuju suatu konstanta c, yang dinotasikan dengan $Y_n \xrightarrow{P} c$.

Ketaksamaan Chebyshev: $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$

atau dapat ditulis $P(|X-\mu| < k\sigma) \ge 1 - \frac{1}{k^2},$ dengan X adalah variabel acak, μ adalah mean, dan σ adalah standar deviasi.

Jika X_1, X_2, \ldots, X_n adalah sampel acak dari distribusi dengan mean μ dan varian σ^2 , maka barisan sampel mean konvergen dalam peluang menuju μ , dinotasikan dengan $\bar{X}_n \xrightarrow{P} \mu$.

Jika $X_n \xrightarrow{P} c$ dan $Y_n \xrightarrow{P} d$, maka

- $X_n + Y_n \xrightarrow{P} c + d$
- $X_n Y_n \xrightarrow{P} c d$
- $X_n Y_n \xrightarrow{P} cd$
- $X_n/c \xrightarrow{P} 1$ jika $c \neq 0$
- $\sqrt{X_n} \xrightarrow{P} \sqrt{c}$

Distribusi Sampel

Kombinasi Linear dari Variabel Normal

Jika $X_i \sim N(\mu_i, \sigma_i^2)$ dengan i = 1, 2, ..., n menotasikan variabel normal independen, maka

$$Y = \sum_{i=1}^{n} a_i X_i \sim N \left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right)$$

Distribusi Chi-Square

Jika $Y \sim \chi^2(\nu)$, maka

- MGF: $M_Y(t) = (1-2t)^{-\nu/2}$
- E(Y) = ν

Jika $X \sim GAM(\theta, \kappa)$, maka $Y = 2\theta X \sim \chi^2(2\kappa)$. Persentil ke-p dari distribusi gamma dapat diperoleh dari $x_p = \theta \chi_p^2(2\kappa)$.

Jika $Y_i \sim \chi^2(\nu_i)$; i = 1, ..., n adalah variabel chisquare independen, maka

$$V = \sum_{i=1}^{n} Y_i \sim \chi^2 \left(\sum_{i=1}^{n} \nu_i \right)$$

Jika $Z\sim N(0,1),$ maka $Z^2\sim \chi^2(1).$ Jika X_1,\ldots,X_n menotasikan suatu sampel acak dari $N(\mu,\sigma^2),$ maka

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

$$\frac{n(\bar{X}-\mu)^2}{\sigma^2} \sim \chi^2(1)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Distribusi Student's t

Jika $Z \sim N(0,1)$ dan $V \sim \chi^2(\nu)$, untuk Z dan V independen berakibat distribusi $T = \frac{Z}{\sqrt{V/\nu}}$

adalah distribusi t
 dengan ν derajat kebebasan. Dinotasikan dengan
 $T\sim t(\nu),$ dimana pdf dari T

$$f(t;\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1 + \frac{t^2}{\nu}\right)^{-\frac{(\nu+1)}{2}}$$

Jika $T \sim t(\nu)$, maka untuk

$$E(T^{2r}) = \frac{\Gamma\left(\frac{2r+1}{2}\right)\Gamma\left(\frac{\nu-2r}{2}\right)}{\sqrt{\pi}\Gamma(\nu/2)}v^r$$

 $E(T^{2r-1})=0$ untuk $r=1,2,\ldots$

$$\operatorname{Var}(T) = \frac{\nu}{\nu - 2}, \ \nu > 2$$

Jika X_1,\dots,X_n adalah sampel acak dari $N(\mu,\sigma^2),$ maka

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

Distribusi F

Jika $V_1 \sim \chi^2(\nu_1)$ dan $V_2 \sim \chi^2(\nu_2)$ adalah independen, maka distribusi $X = \frac{V_1/\nu_1}{V_2/\nu_2}$ adalah distribusi F dengan derajat kebebasan ν_1 dan ν_2 . Dinotasikan dengan $X \sim F(\nu_1, \nu_2)$.

JIka $X \sim F(\nu_1, \nu_2)$, maka

$$E(X) = \frac{\nu_2}{\nu_2 - 2}$$

$$Var(X) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$$

Fakta bahwa $X \sim F(\nu_1, \nu_2)$ dan $1/X \sim F(\nu_2, \nu_1)$.

$$f_{1-\gamma}(\nu_1,\nu_2) = \frac{1}{f_{\gamma}(\nu_1,\nu_2)}$$

Distribusi Beta

Suatu variabel F dapat d
transformasikan untuk distribusi beta. Jika $X \sim F(\nu_1, \nu_2),$ maka

$$Y = \frac{(\nu_1/\nu_2)X}{1 + (\nu_1/\nu_2)X} \sim BETA(a, b)$$

dengan $a = \nu_1/2$ dan $b = \nu_2/2$ yang memiliki pdf

$$f(y; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1}$$

Rataan dan varians dari distribusi beta adalah

$$E(Y) = \frac{a}{a+b}$$

$$Var(Y) = \frac{ab}{(a+b)^2(a+b+1)}$$

Sedangkan, persentil dri suatu distribusi beta dapat diekspresikan dalam bentuk persentil dari distribusi F sebagai hasil dari persamaan sebelumnya

$$y_{\gamma}(a,b) = \frac{af_{\gamma}(2a,2b)}{bf_{\gamma}(2a,2b)}$$

Pendekatan Sampel Ukuran Besar

Jika $Y_{\nu} \sim \chi^{2}(\nu)$, maka

$$Z_{\nu} = \frac{Y_{\nu} - \nu}{\sqrt{2\nu}} \xrightarrow{d} N(0, 1)$$

ketika $\nu \to \infty$. **Pendekatan Wilson-Hilferty** diberikan oleh

$$\chi_{\gamma}^{2}(\nu) = \nu \left(1 - \frac{2}{9\nu} + z_{\gamma} \sqrt{\frac{2}{9\nu}} \right)^{3}$$

ketika $\nu \to \infty$.

Tabel Distribusi Diskrit

Nama	Notasi dan	PDF Diskrit	Ekspektasi	Varian	MGF
Distribusi	Parameter	f(x)	E(X)	$\operatorname{Var}(X)$	$M_X(t)$
Bernoulli	$X \sim B(1, p)$	$p^x(1-p)^{1-x}$	p	p(1 - p)	$1 - p + pe^t$
Binomial	$X \sim B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^t)^n$
Negatif Binomial	$X \sim NB(r, p)$	$\binom{x-1}{r-1}p^r(1-p)^x$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)^r$
Geometrik	$X \sim G(p)$	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$
Hypergeometrik	$X \sim H(n, M, N)$	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$n\frac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}$	-
Multinomial	$X \sim M(n, p_1, \dots, p_k)$	$\frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}$	np_i	$np_i(1-p_i)$	$\left(\sum_{i=1}^k p_i e^{t_i}\right)^n$
Poisson	$X \sim P(\mu)$	$\frac{e^{-\mu}\mu^x}{x!}$	μ	μ	$e^{\mu(e^t-1)}$
Uniform Diskrit	$X \sim U(a,b)$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$

Tabel Distribusi Kontinu

Nama	Notasi dan	PDF Kontinu	Ekspektasi	Varian	MGF
Distribusi	Parameter	f(x)	E(X)	Var(X)	$M_X(t)$
Uniform	$X \sim UNIF(a,b)$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Normal	$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
Gamma	$X \sim GAM(\theta, \kappa)$	$\frac{1}{\theta^{\kappa}\Gamma(\kappa)}x^{\kappa-1}e^{-x/\theta}$	$\kappa\theta$	$\kappa heta^2$	$\left(\frac{1}{1-\theta t}\right)^{\kappa}$
Exponential	$X \sim EXP(\theta)$	$\frac{1}{\theta}e^{-x/\theta}$	θ	θ^2	$\frac{1}{1-\theta t}$
Weibull	$X \sim WEI(\theta,\beta)$	$\frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-(x/\theta)^{\beta}}$	$\theta\Gamma\left(1+\frac{1}{\beta}\right)$	$\theta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma^2 \left(1 + \frac{1}{\beta} \right) \right]$	-
Pareto	$X \sim PAR(\theta, \kappa)$	$\frac{\kappa}{\theta(1+x/\theta)^{\kappa+1}}$	$\frac{\theta}{\kappa-1}$	$\frac{\theta^2 \kappa}{(\kappa - 1)^2 (\kappa - 2)}$	-