### Taxes and Labor Supply

Elliott Ash

Fiscal Policy and Inequality

Monday 29th October, 2018

▶ Basic cross-section estimation: Ordinary Least Squares (OLS) regression

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

 $ightharpoonup h_i$ , hours worked

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

- $\triangleright$   $h_i$ , hours worked
- w<sub>i</sub>, after-tax wage

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

- $\triangleright$   $h_i$ , hours worked
- ▶ w<sub>i</sub>, after-tax wage
- $ightharpoonup R_i$ , non-labor income (eg, earnings of the spouse)

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

- $\triangleright$   $h_i$ , hours worked
- ▶ w<sub>i</sub>, after-tax wage
- $ightharpoonup R_i$ , non-labor income (eg, earnings of the spouse)
- X<sub>i</sub>, vector of demographic controls (gender, age, marital status)

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

- $\triangleright$   $h_i$ , hours worked
- ▶ w<sub>i</sub>, after-tax wage
- $ightharpoonup R_i$ , non-labor income (eg, earnings of the spouse)
- ➤ X<sub>i</sub>, vector of demographic controls (gender, age, marital status)
- Since all variables in the regression are in logs:
  - $\triangleright$   $\beta$  provides an estimate of \_\_\_\_ ?

# Summary of Empirical labor Supply Literature

- ▶ Very extensive literature trying to estimate these parameters
- ightharpoonup Small elasticities ( $\simeq 0.1$ ) for males with ages 20-55

# Summary of Empirical labor Supply Literature

- Very extensive literature trying to estimate these parameters
- ightharpoonup Small elasticities ( $\simeq 0.1$ ) for males with ages 20-55
- ► Larger responses for married women, retirees, low-income workers

# Summary of Empirical labor Supply Literature

- Very extensive literature trying to estimate these parameters
- lacktriangle Small elasticities ( $\simeq 0.1$ ) for males with ages 20-55
- Larger responses for married women, retirees, low-income workers
- Responses driven by extensive margin
  - Intensive margin (hours) elasticity is close to zero
  - ightharpoonup Extensive margin (participation) elasticity around 0.2 0.5

#### Issues with cross-sectional estimation

- 1. Econometric issues:
  - 1.1 Wages (w) correlated with taste for work
  - 1.2 Measurement error in hours worked (h)
  - 1.3 Selection into labor force
- 2. Extensive vs. Intensive margin responses
- 3. Non-hours responses

# Issue #1a: Wage correlated with taste for work

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

 $\triangleright$   $\zeta_i$  includes unobserved characteristics, including whether you like working.

# Issue #1a: Wage correlated with taste for work

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X_i} \delta + \zeta_i$$

- $ightharpoonup \zeta_i$  includes unobserved characteristics, including whether you like working.
- ▶ If high-skill workers enjoy working more hours, then:

$$\operatorname{corr}(w_i, \zeta_i) > 0,$$

leading to **upward bias** in  $\beta$  (the elasticity estimate)

### Issue #1a: Wage correlated with taste for work

$$\log h_i = \alpha + \beta \log w_i + \gamma \log R_i + \mathbf{X}_i \delta + \zeta_i$$

- $ightharpoonup \zeta_i$  includes unobserved characteristics, including whether you like working.
- If high-skill workers enjoy working more hours, then:

$$\operatorname{corr}(w_i, \zeta_i) > 0,$$

leading to **upward bias** in  $\beta$  (the elasticity estimate)

Controlling for individual characteristics  $X_i$  helps, but never sure that we have controlled for everything

#### ⇒ Omitted variable bias

# Issue #1b: Measurement error in hours (h)

- $\triangleright$  Usually w is computed as earnings (z) divided by hours (h)
  - $lackbox{ But hours are measured with error: $\log h = \log h^* + \mu$, where $\mu 
    eq 0$$

# Issue #1b: Measurement error in hours (h)

- $\triangleright$  Usually w is computed as earnings (z) divided by hours (h)
  - ▶ But hours are measured with error:  $\log h = \log h^* + \mu$ , where  $\mu \neq 0$
- ► Measurement error adds noise and biases results toward zero⇒ downward bias

### Issue #1c: Selection into labor force

- ► Some individuals are not in the labor force
  - For example, due to fixed cost of working
- We don't observe wages of non-participants

#### Issue #1c: Selection into labor force

- Some individuals are not in the labor force
  - For example, due to fixed cost of working
- We don't observe wages of non-participants
- Then, OLS is biased because it ignores people with potentially low wages
  - Existing solutions, like Heckman's (1979) selection model, depend on strong functional-form assumptions

### Issue #2: Extensive vs. Intensive margin responses

- Related to the selection issue just discussed
- Do people join the labor force if taxes are lower?
  - Could happen if there is a fixed cost of working
  - ▶ People may also switch from part-time to full-time
- Estimation requires tax variation, because wages unobserved for non-participants

# Issue #3: Non-hours responses

 Traditional research focuses on hours and labor force participation

### Issue #3: Non-hours responses

- Traditional research focuses on hours and labor force participation
- ▶ But income taxes distort other choices:
  - Occupational choices (including education)
  - Avoidance/evasion decisions
- ▶ These non-hours responses can be quantitatively large

► How do people respond when the marginal income tax rate goes up?

- ► How do people respond when the marginal income tax rate goes up?
  - ightharpoonup Reduce working hours ightarrow Real labor supply response (short-term)

- ► How do people respond when the marginal income tax rate goes up?
  - ightharpoonup Reduce working hours ightarrow Real labor supply response (short-term)
  - ightharpoonup Look harder for tax deductions ightharpoonup Tax avoidance response

- ► How do people respond when the marginal income tax rate goes up?
  - ightharpoonup Reduce working hours ightarrow Real labor supply response (short-term)
  - lacktriangle Look harder for tax deductions ightarrow Tax avoidance response
  - lacktriangle Misreport (part of) their income o Tax evasion response

- ► How do people respond when the marginal income tax rate goes up?
  - ightharpoonup Reduce working hours ightarrow Real labor supply response (short-term)
  - lacktriangle Look harder for tax deductions ightarrow Tax avoidance response
  - ightharpoonup Misreport (part of) their income ightarrow Tax evasion response
  - Make different career decisions (eg, education, migration) ightarrow Real labor supply response (long-term)

- ► How do people respond when the marginal income tax rate goes up?
  - ightharpoonup Reduce working hours ightarrow Real labor supply response (short-term)
  - lacktriangle Look harder for tax deductions ightarrow Tax avoidance response
  - ightharpoonup Misreport (part of) their income ightarrow Tax evasion response
  - Make different career decisions (eg, education, migration)  $\rightarrow$  Real labor supply response (long-term)
- Elasticity of taxable income captures all behavioral responses to taxation
  - Labor supply elasticity only captures the hours response

# Elasticity of Taxable Income (ETI): Advantages

Elasticity of Taxable Income definition:

$$\varepsilon = \frac{\partial z/z}{\partial (1-\tau)/(1-\tau)} = \frac{\% \text{ change in } z}{\% \text{ change in } (1-\tau)}$$
$$= \frac{\partial z}{\partial (1-\tau)} \cdot \frac{(1-\tau)}{z}$$

# Elasticity of Taxable Income (ETI): Advantages

► Elasticity of Taxable Income definition:

$$\varepsilon = \frac{\partial z/z}{\partial (1-\tau)/(1-\tau)} = \frac{\% \text{ change in } z}{\% \text{ change in } (1-\tau)}$$
$$= \frac{\partial z}{\partial (1-\tau)} \cdot \frac{(1-\tau)}{z}$$

- Key parameter in public economics for two main reasons:
  - 1. What matters for policy is the total behavioral response
    - ► Not only the hours response

# Elasticity of Taxable Income (ETI): Advantages

Elasticity of Taxable Income definition:

$$\varepsilon = \frac{\partial z/z}{\partial (1-\tau)/(1-\tau)} = \frac{\% \text{ change in } z}{\% \text{ change in } (1-\tau)}$$
$$= \frac{\partial z}{\partial (1-\tau)} \cdot \frac{(1-\tau)}{z}$$

- Key parameter in public economics for two main reasons:
  - 1. What matters for policy is the total behavioral response
    - ► Not only the hours response
  - 2. Data availability: taxable income is precisely measured in tax return data

# Elasticity of Taxable Income (ETI): Estimation

➤ Start with a simple model of income choice as function of tax (Saez, Slemrod, Giertz, 2012):

$$z_{it} = z_{it}^0 \cdot (1 - \tau_{it})^{\varepsilon}$$

 $ightharpoonup z_{it}^0 = ext{Potential earnings (income reported when } au_{it} = 0)$ 

# Elasticity of Taxable Income (ETI): Estimation

$$z_{it} = z_{it}^0 \cdot (1 - \tau_{it})^{\varepsilon}$$

► Taking logs:

$$\log z_{it} = \varepsilon \cdot \log (1 - \tau_{it}) + \log (z_{it}^0)$$

# Elasticity of Taxable Income (ETI): Estimation

$$z_{it} = z_{it}^0 \cdot (1 - \tau_{it})^{\varepsilon}$$

► Taking logs:

$$\log z_{it} = \varepsilon \cdot \log (1 - \tau_{it}) + \log (z_{it}^0)$$

- ▶ OLS estimation is biased because corr  $(\tau_{it}, z_{it}^0) > 0$  due to progressivity of tax system
  - People with positive income shock  $(z_{it}^0 \uparrow)$  face higher tax rate  $(\tau_{it} \uparrow)$

### Outline

#### Feldstein (1995)

Kleven and Schultz (2014)

Discussion

# Feldstein (JPE, 1995): Methodology

- Constructs three income groups:
  - M = medium (N = 3,538)
  - ► H = High (N = 197)
  - $\blacktriangleright$  HH = Very high (N = 57)

# Feldstein (JPE, 1995): Methodology

- Constructs three income groups:
  - M = medium (N = 3,538)
  - $\vdash$  H = High (N = 197)
  - $\blacktriangleright$  HH = Very high (N = 57)
- Compares how incomes  $(z^j)$  and marginal tax rates  $(\tau^j)$  evolve from 1985 to 1988 for individuals in each group j, where  $j = \{M, H, HH\}$

# Feldstein (JPE, 1995): Methodology

► Feldstein forms a diff-in-diff estimator of the ETI:

$$\widehat{\varepsilon} = \frac{\Delta \log (z^{H}) - \Delta \log (z^{M})}{\Delta \log (1 - \tau^{H}) - \Delta \log (1 - \tau^{M})}$$

$$= \frac{\% \text{ change in taxable income in H vs M}}{\% \text{ change in net-of-tax rate in H vs M}}$$

#### ETI estimation: Diff-in-diff Assumption

► Identification assumption: absent tax change, log income changes pre- and post-reform would have been the same in treatment and control groups

#### ETI estimation: Diff-in-diff Assumption

- Identification assumption: absent tax change, log income changes pre- and post-reform would have been the same in treatment and control groups
  - Requires parallel trends assumption.
  - Assumption fails if, for example, there is growing inequality for reasons unrelated to tax changes

## Feldstein (JPE, 1995): Results

Table 1: Summary of Data

|       |              |                   |       | % change | % changes, 1985-88 |  |  |
|-------|--------------|-------------------|-------|----------|--------------------|--|--|
| Group | au in $1985$ | z in 1985 (\$000) | Obs.  | (1-	au)  | z*                 |  |  |
| М     | 22% - 38%    | \$30 - \$67       | 3,538 | 12.1%    | 6.2%               |  |  |
| Н     | 42% - 45%    | \$94 - \$127      | 197   | 25.6%    | 21.0%              |  |  |
| HH    | 49% - 50%    | \$177 - \$479     | 57    | 42.2%    | 71.6%              |  |  |

Adapted from Feldstein (JPE, 1985). Includes only married taxpayers.

<sup>\*</sup> z = Adjusted Taxable Income

## Feldstein (JPE, 1995): Results

Table 2: Elasticity of Taxable Income

| Elasticity of                 | Tuxubic Income                        |  |  |  |
|-------------------------------|---------------------------------------|--|--|--|
| (1-	au)                       | z*                                    |  |  |  |
| Percentage changes, 1985-1988 |                                       |  |  |  |
| 12.1%                         | 6.2%                                  |  |  |  |
| 25.6%                         | 21.0%                                 |  |  |  |
| 42.2%                         | 71.6%                                 |  |  |  |
| Elastici                      | ty Estimates $(\widehat{arepsilon})$  |  |  |  |
|                               | 1.10                                  |  |  |  |
|                               | 3.05                                  |  |  |  |
|                               | 2.14                                  |  |  |  |
|                               | (1 – τ)  Percentage 12.1% 25.6% 42.2% |  |  |  |

Adapted from Feldstein (JPE, 1985)

<sup>\*</sup> z = Adjusted Taxable Income (ATI)

# Feldstein (JPE, 1995): Implications of Results

lacktriangle Feldstein obtains very high elasticities (arepsilon>1) for top earners

## Feldstein (JPE, 1995): Implications of Results

- ightharpoonup Feldstein obtains very high elasticities ( $\varepsilon > 1$ ) for top earners
- ▶ If results are true:
  - ▶ US was on the wrong side of the Laffer curve for the rich
  - lowering tax rate increases tax revenue!

## Feldstein (JPE, 1995): Implications of Results

- lacktriangle Feldstein obtains very high elasticities (arepsilon>1) for top earners
- If results are true:
  - ▶ US was on the wrong side of the Laffer curve for the rich
  - lowering tax rate increases tax revenue!
- Efficiency implications (Feldstein, REStats 1999):
  - If  $\varepsilon = 1.04$ , income tax causes an efficiency loss of 32%
  - That is, compared to lump-sum taxes that collect the same revenue, economy produces 32% less income due to tax distortions

1. Changes in inequality unrelated to tax reform could increase elasticity estimates

- 1. Changes in inequality unrelated to tax reform could increase elasticity estimates
- 2. Small sample size (only 57 people in top group)

- Changes in inequality unrelated to tax reform could increase elasticity estimates
- 2. Small sample size (only 57 people in top group)
- 3. Mean reversion: rich people in t revert to the mean in t+1.
  - **b** Biases  $\varepsilon$  downward when  $\tau \downarrow$  for the rich

- 1. Changes in inequality unrelated to tax reform could increase elasticity estimates
- 2. Small sample size (only 57 people in top group)
- 3. Mean reversion: rich people in t revert to the mean in t+1.
  - ightharpoonup Biases  $\varepsilon$  downward when  $\tau\downarrow$  for the rich
- 4. Only measures short-term response, not long-term

- 1. Changes in inequality unrelated to tax reform could increase elasticity estimates
- 2. Small sample size (only 57 people in top group)
- 3. Mean reversion: rich people in t revert to the mean in t+1.
  - ightharpoonup Biases  $\varepsilon$  downward when  $\tau \downarrow$  for the rich
- 4. Only measures short-term response, not long-term
- 5. Diff-in-diff biased when arepsilon differs across groups

- 1. Changes in inequality unrelated to tax reform could increase elasticity estimates
- 2. Small sample size (only 57 people in top group)
- 3. Mean reversion: rich people in t revert to the mean in t+1.
  - **B**iases  $\varepsilon$  downward when  $\tau \downarrow$  for the rich
- 4. Only measures short-term response, not long-term
- 5. Diff-in-diff biased when arepsilon differs across groups
- 6. Response could be avoidance or evasion, rather than productive earnings.

#### Outline

Feldstein (1995)

Kleven and Schultz (2014)

Discussion

## Kleven and Schultz (AEJ-EP 2014)

- Data: administrative tax returns in Denmark 1980-2005
  - ► Includes socioeconomic variables

## Kleven and Schultz (AEJ-EP 2014)

- Data: administrative tax returns in Denmark 1980-2005
  - Includes socioeconomic variables
- ► Empirical Strategy: diff-in-diff

## Kleven and Schultz (AEJ-EP 2014)

- ▶ Data: administrative tax returns in Denmark 1980-2005
  - Includes socioeconomic variables
- ► Empirical Strategy: diff-in-diff
- Advantages:
  - 1. No discernible trends in overall inequality
  - 2. Multiple tax reforms (some  $\tau \uparrow$ , some  $\tau \downarrow$ )
  - 3. Parallel trends assumption holds

#### Kleven and Schultz (AEJ-EP 2014): Tax Reforms

Figure 1. The Evolution of Top Income Shares in Denmark



## Kleven and Schultz (AEJ-EP 2014): Graphical Analysis



# Kleven and Schultz (AEJ-EP 2014): Results

Figure 4. Graphical Evidence on Taxable Income Responses to the Danish 1987-Reform







## Kleven and Schultz (AEJ-EP 2014): Results

Table 4. The Elasticity of Labor Income: Heterogeneity

|                          | Full sample         | Top 20 percent      | Top 10 percent      | College degree or<br>more | Women               | With kids below<br>18 years old | With kids below<br>6 years old |
|--------------------------|---------------------|---------------------|---------------------|---------------------------|---------------------|---------------------------------|--------------------------------|
|                          | (1)                 | (2)                 | (3)                 | (4)                       | (5)                 | (6)                             | (7)                            |
| All workers              |                     |                     |                     |                           |                     |                                 |                                |
| Elasticity wrt. 1- $	au$ | 0.049***<br>(0.002) | 0.076***<br>(0.008) | 0.085***<br>(0.012) | 0.062***<br>(0.009)       | 0.054***<br>(0.004) | 0.054***<br>(0.005)             | 0.083***<br>(0.010)            |
| Number of observations   | 31,215,140          | 6,243,028           | 3,121,514           | 5,056,852                 | 15,295,419          | 14,325,926                      | 4,751,852                      |
| Wage earners             |                     |                     |                     |                           |                     |                                 |                                |
| Elasticity wrt. 1- $	au$ | 0.046***<br>(0.002) | 0.073***<br>(0.009) | 0.081***<br>(0.012) | 0.061***<br>(0.010)       | 0.052***<br>(0.005) | 0.052***<br>(0.006)             | 0.080***<br>(0.010)            |
| Number of observations   | 29,568,870          | 5,913,774           | 2,956,887           | 4,844,483                 | 14,785,075          | 13,631,249                      | 4,593,606                      |
| Self-employed            |                     |                     |                     |                           |                     |                                 |                                |
| Elasticity wrt. 1- $	au$ | 0.090***<br>(0.014) | 0.135***<br>(0.037) | 0.147***<br>(0.044) | 0.113***<br>(0.039)       | 0.116***<br>(0.026) | 0.119***<br>(0.022)             | 0.171***<br>(0.046)            |
| Number of observations   | 1,646,270           | 329,254             | 164,627             | 212,369                   | 510,344             | 694,677                         | 158,246                        |

#### Outline

```
Feldstein (1995)
Kleven and Schultz (2014)
```

Discussion

# Slemrod (NTJ 1998): "ETI is not an immutable parameter"

► ETI varies with government policy and across different contexts

## Slemrod (NTJ 1998): "ETI is not an immutable parameter"

- ► ETI varies with government policy and across different contexts
- ► ETI is larger when the number of deductions and exemptions in the tax system is larger
  - Intuition: there are more margins of response available to taxpayers
  - In other words, ETI is smaller when the tax base is wider

## Slemrod (NTJ 1998): "ETI is not an immutable parameter"

- ► ETI varies with government policy and across different contexts
- ► ETI is larger when the number of deductions and exemptions in the tax system is larger
  - Intuition: there are more margins of response available to taxpayers
  - In other words, ETI is smaller when the tax base is wider
- "ETI is a policy choice"

## Slemrod (NTJ 1998)

Examples of alternative margins of response to a change in tax rates:

- Income shifting across years
  - ► Alternative measure: elasticity of the *present value* of the tax base

## Slemrod (NTJ 1998)

Examples of alternative margins of response to a change in tax rates:

- Income shifting across years
  - ► Alternative measure: elasticity of the *present value* of the tax base
- ► Income shifting across tax bases
  - E.g., between personal income tax and corporation tax (depending on which has a lower marginal rate)
  - One interesting example is, again, the TRA'86 as we will see in the lecture on inequality