Upper Layers

Jonathan Windle

University of East Anglia

J.Windle@uea.ac.uk

June 2, 2017

Overview I

- Intro
- 2 Application Layer 7
 - Specific Application Service Elements SASE
 - Common Application Service Elements (CASE)
- Presentation Layer 6
 - Issues
 - Source coding standards
 - Audio Coding standards
 - Image Coding Standards
- Session Layer 5
 - Connection establishment
 - Synchronization

Intro

- Contains:
 - Application Layer (layer 7)
 - Presentation Layer (layer 6)
 - Session Layer (layer 5)

Description

- Significantly different from other layers
- Lower layers concerned with reliably communicating data from one process/machine to another.
- Application layer concerned with what to do with data once it arrives.
- Has a set of utilities:
 - Specific Application Service Elements (SASE) FTAM, MHS, DS, VT
 - Common Application Service Elements (CASE) provide access to Presentation layer, plus Concurrency Commitment and Recovery (CCR).

Specific Application Service Elements - SASE

- Basically abstractions for commonly used high-level network operations (procedure/interrupt libraries).
- FTAM File Transfer Access & Management implements a virtual filestore.
- MHS Message Handling Service for E-Mail applications.
- DS Directory Service allow network services to be known by symbolic names. Implements a mapping of names → network ids (TSAP's).
- It allows operations to add/change/delete entrues so that processes can advertise ttheir existence, be closed down etc.

Common Application Service Elements (CASE)

- CASEs are primitives to give access to Presentation Layer equivalents.
- Commitment, Concurrency & Recovery (CCR).
- CCR implements fool-proof coordination of mult-message operations to difference computers even under repeated host crashes.
- Implemented by supporting atomic actions (either fail or completelet success in their entirety).
- Requires Stable storage (i.e. disk storage) to hold state information and a 2 stage prepare then commit.

Description

- Main concerns:
 - Access to the session layer
 - Representation transformations
- It's concerned with preserving the meaning of information sent over the network.
- It may represent the data (encode) in various ways, but the receiver side will convert it back into its original meaning.

- Data format: Convert data structures used on a machine (floats, ints, characters etc) into byte sequence. Peers agree on the format before exchanging. E.g. How many bytes to represent an integer etc.
- **Compression:** Reducing the number of bits required to transmit infomation.
- Encryption/Privacy: Encrypting data so that only authorised participants can read it. Authentication - verifying that remote party is really who they claim to be.

Source coding standards

- Standards for encoding source data are termed source coding standards.
- Have two main functions:
 - Ensure common format which manufacturers can adopt to ensure compatibility of devices.
 - Compression of the original source signal such that a good representation can be made using a smaller number of bits (for transmission and storage).
- Can be lossless or lossy depending on media type. Images and audio can tolerate lossy compression whereas text and binaries cannot.
- To maintain a high quality with a much reduced bit rate, the computational complexity is a real disadvantage.
- Can use a model to compress effectively, for example speech will compress
 by removing sounds outside of a frequency resolution (Ear has a lower
 frequency resolution at higher frequencies) and masking(Strong signals mask
 out neighbouring signals).
- To deal with variable signal strengths, the bit rates can vary too, due to more error checking needed at poorer signal strengths.

Audio Coding standards

 Bit rate (number of bits needed to represent one second of data) is given by:

Bitrate = number of samples per second \times number of bits per sample \times number of channels (mono/stereo)

- Total amount of data can be calculated by:
 Total amount = number of bits per second × number of seconds
- Download time is calculated by: $Time\ to\ download = \frac{Size\ of\ file}{data\ rate}$
- To download faster, compress more or increase data rate (throughput).

Image Coding Standards

 Black and white images only need one bit per pixel and therefore an entire image is:

$$Size = pixels \times 1$$

• Colour images require 24 bits per pixel (8 red, 8 green, 8 blue) and therefore:

$$Size = pixels \times 24$$

Descriptions

- Session layer and presentation layer add services to that offered by the transport layer which may be useful to the application layer.
- Avoids the application layer having to implement these itself.
- Some models (TCP/IP) the functionality of session and presentation layers is put in application and transport layers.
- This is the Thinnest" layer in the OSI reference model.
- Main functions:
 - Session connection establishment and release.
 - Synchronisation points
 - Dialogue interruption and resumption.

Connection establishment

- Transport layer connections accept session layer connections, termination requires orderly set up and release (both sides must agree) - 3-way handshake.
- Opening can be denied. Similar process for release can be denied if further message needs to be exchanged.

Synchronization

- Points within a dialogue for recovery from agreed points if machine or network fails.
- Transfers grouped into activities and dialogues.
- Activities and dialogues can be structured as sequences of message exchanges punctuated by synchronization points.
- Points have to be acknowledged and allow for reversion to the last sync point.

Summary

- Examined the functions of the top three layers of the OSI reference model (and TCP/IP model)
- Application layer: Provision of functionality and for multi-party atomic actions
- Presentation layer: Provision for computer independant transfer syntax, compression and encryption.
- Session layer: Establishing session between machines, synchronization and dialogue control.
- Applications typiclly require some of these facilities.
- TCP/IP combines these layers into one layer.

The End