<u>ENGR 391 – Numerical Methods in Engineering</u> <u>Final Exam (Winter, 2012)</u>

Student's Name:	
I.D.:	

- Read carefully all the questions
- Closed Book Exam; **Double sided** 8 ½ x 11 formula sheet allowed
- You must **show all your steps** leading to the solution(s)
- Give the answers in the area provided.
- You can use the back of the papers to make additional calculations (will not be corrected)
- Please do not write in red (colour used for correction)
- Write all your answers in the foreseen places
- Everything not readable will NOT be corrected
- No questions will be answered during exam: answer to your best knowledge

1	
2	
3	
4	
5	
6	
Total	

PROBLEM 1 [Solving Nonlinear Equations] [10 marks]

a)) Solve the following nonlinear ϵ	equation using	the Secant	method with	$x_0 = 0 \text{ ar}$	ıd
	$x_1 = 1$. Show 3 iterations.					

$$f(x) = x \cdot e^{2x} - 1$$

b) Solve the same nonlinear equation using Newton Raphson's method with $x_0 = 1$. Show 3 iterations.
c) Based on your calculations, estimate the errors of a) and b) and give the solution of equation (1) with as many correct significant digits as you can guarantee.

PROBLEM 2 [Linear equations] [10 marks]

Solve the following system of equation using the LU decomposition:

$$x_{1} + 2x_{2} + 4x_{3} + 3x_{4} = -4$$

$$x_{1} - x_{2} + x_{3} - x_{4} = 0$$

$$2x_{1} + 5x_{2} - 3x_{3} - x_{4} = 11$$

$$2x_{2} + x_{3} - 4x_{4} = 1$$

$\mathbf{x}_1 = \underline{\hspace{1cm}}$	$x_3 = \underline{\hspace{1cm}}$
$\mathbf{x}_2 = \underline{\hspace{1cm}}$	$\chi_4 = \underline{\hspace{1cm}}$

PROBLEM 3 [Numerical Integration] [10 marks]

Compute the following integral:

$$I = \int_{-1}^{3} \frac{2}{x^2 + 4} \, dx$$

$\frac{1}{-1}X + 4$
a) using multi-segment composite Trapezoidal rule with a step h equal to 2 (2 segments)
I =
b) using multi-segment (composite) Simpson's 1/3 rule with a step h equal to 2 (2 segments) and 1 (4 segments).
I =
c) Estimate the error based on the results from a) and b)

ENGR 391 FINAL EXAM Winter 2012

PROBLEM 4 [Interpolation] [10 marks]

Given the following data set of travelled distance of a horse, x, in miles versus the time t in seconds

Distance x	Time t
0	0
0.5	49.4
1.0	96.4
1.25	119.4

_

PROBLEM 5 [Numerical Differentiation] [5 marks]

Given a function f(x) and five equally spaced points: $x_0 - 2h$, $x_0 - h$, x_0 , $x_0 + h$ and $x_0 + 2h$

- a) Derive a finite difference approximation formula for the third derivative $f'''(x_0)$ by using $f(x_0-2h)$, $f(x_0-h)$, $f(x_0)$, $f(x_0+h)$, and $f(x_0+2h)(4 \text{ pts})$.
- b) Find the order of the truncation error (1 pts).

PROBLEM 6 [Solving Ordinary Differential Equations] [10 marks]

We aim to solve an ordinary differentiation equation in the form of:

$$\frac{dy}{dx} = g(x, y)$$
 when $y(x_0) = y_0$ $a \le x \le b$

a) Given the 2nd order Taylor method:

$$y_{i+1} = y_i + g(x_i, y_i)h + \frac{1}{2!}g'(x_i, y_i)h^2$$
 (Eq. 1)

and the 2nd order Runge-Kutta method:

$$y_{i+1} = y_i + (c_1k_1 + c_2k_2)h$$
 (Eq. 2)
where $h = x_{i+1} - x_i$
 $k_1 = g(x_i, y_i)$
 $k_2 = g(x_i + a_2h, y_i + b_{21}k_1h)$

Find the values of the constants c_1 , a_2 and b_{21} when $c_2 = 1/2$, so that Eq. (2) becomes the modified Euler method. Show all the intermediate steps to get full mark. (5 pts)

Hint: 1) Transform Eq. (1) and (2) by using Taylor series expansions and compare the resultant equations.

2) The modified Euler method is
$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2)h$$
 with $k_1 = g(x_i, y_i)$ and $k_2 = g(x_i + h, y_i + k_i h)$

ENGR 391	FINAL EXAM	Winter 2012
c1 =		
c ₁ =		
a ₂ =		
b ₂₁ =		
<u> </u>	-	

b) Solve the following 2^{nd} order ordinary differential equation by the classical fourth-order Runge-Kutta Method when t = 1.0.

$$\frac{d^2y}{dt^2} - 0.5t + y = 0$$

when y(0) = 2; y'(0) = 0; and the step size h = 0.5

Solve for y(1.0) (keep five significant figures for decimal numbers, 5 pts).

y(1.0) = _____