Lecture #14

In Vivo MRS-detectable Metabolites

- Topics
 - ¹H-MRS
 - ³¹P-MRS
 - ¹³C-MRS
 - Other nuclei
- Handouts and Reading assignments
 - de Graaf, Chapter 2.
 - de Graaf, Chapter 3, 158-171.

Introduction

MRS: metabolism and function MRI: anatomy and structure ^{1}H PCr ^{31}P PDE β-ATP 13**C** NAA C3 GABA C4 GABA C2

Anatomy

MR of the Brain

Microvasculature

Microstructure

Conventional MRI

Perfusion imaging

Cellular function and metabolism

DWI/DTI

MRS

Cells

Neuron

General cellular functions

- Turn glucose into energy
- Maintain cellular integrity
 - Ionic balance
 - Osmotic balance
 - Membrane structure
- Perform cell specific functions, e.g. neurons send/receive electrical signals

¹H Brain Spectroscopy

Some general rules of thumb

- In vivo MRS does not see everything! Maudsley paper is rather optimistic.
- Concentration limit (of protons) around 1 mM for NMR-detection
- Macromolecules are non-detectable (T₂s too short)

¹H Brain Spectroscopy

GE MRS phantom

In vitro solutions

¹H Brain Spectra

N-acetyl Aspartate (NAA)

Biochemical role?

NAA

- Largest peak in a ¹H-MRS brain spectrum
- Neuronal marker
- 2.0 ppm
- Approx 10 mM

Creatine (Cre)

"Cre" peak from both creatine and phosphocreatine (often called referred to as total creatine peak)

PCr

O H NH H
HO—P—N—C—N—C—C
OH
HO CH₃H

Choline (Cho)

"Cho" peak from several choline containing compounds: phosphocholine, glycerphophocholine, etc.

Example: Brain Tumor

52 y.o male: MRI #1 - rule out stroke, MRI # - tumor?

Lactate (Lac)

glucose

AT

anaerobic

glycolysis

Lac

Kamada, et al, J. N Psych, 70:675, 2001

Short TE ¹H-MRS Brain Spectra

myo-Inositol (mI)

1.5 T In vivo ¹H Brain

Biochemical role?

\underline{mI}

- Suggested as a glial marker.
- Glial cells provide structural support for neurons in addition to involvement in neurotransmitter processes.
- Largest peak at 3.6 ppm
- Approx 4-8 mM

Neurotransmitters

Glutamate is the major excitatory neurotransmitter in the brain

Glutamate (Glu) and Glutamine (Gln)

1.5 T In vivo ¹H Brain Spectrum (TE=35ms)

In vivo concentrations 8-10 mM 2-3 mM

γ-aminobutyric acid (GABA)

Muscle and Fat

Prostate

Breast

Sensitivity

Table 1.1. NMR properties of commonly encountered nuclei in in vivo NMR

Isotope	Spin	Gyromagnetic ratio (10 ⁷ rads ⁻¹ T ⁻¹)	NMR frequency at 2.35 T (MHz)	Natural abundance (%)	Relative sensitivity ¹	
1 H	1/2	26.752	100.000	99.985	1.00	
^{2}H	1	4.107	15.351	0.015	1.45×10^{-6}	
13 C	1/2	6.728	25.145	1.108	1.76×10^{-4}	
¹⁴ N	1	1.934	7.228	99.630	1.01×10^{-3}	
^{15}N	1/2	-2.712	10.137	0.370	3.85×10^{-6}	
19 F	1/2	25.181	94.094	100.000	0.833	
²³ Na	3/2	7.080	26.466	100.000	9.27×10^{-2}	
31 P	1/2	10.841	40.481	100.000	6.65×10^{-2}	
³⁹ K	3/2	1.250	4.672	93.100	4.75×10^{-4}	

¹Relative sensitivity is calculated as the product of NMR sensitivity (proportional to γ ³I(I + 1)) and the natural abundance.

in vivo SNR
$$\propto \rho \frac{\gamma^2 \hbar^2 B_0}{4kT}$$

³¹P Spectroscopy

¹³C Spectroscopy

Table 2.3. Chemical shifts of biological relevant ¹³C containing metabolites

			Carbo	n atom		
Compound	C1	C2	C3	C4	C5	C6
Acetate	182.6	24.5				
Alanine	176.6	51.5	17.1			
Aspartate	175.1	53.0	37.4	178.4		
Citrate	179.7	46.8	76.0	46.8	179.7	182.3
Creatine	175.4	37.8	158.0	54.7		
GABA	182.3	35.2	24.6	40.2		
Hycerol	63.6	73.3	63.6			
-hydroxy butyrate	181.2	47.6	66.8	22.9		
Glucose α	92.7	72.1	73.5	70.4	72.1	61.4
β	96.6	79.9	76.5	70.4	76.5	61.4
lutamate	175.3	55.5	27.8	34.2	182.0	
lutamine	174.8	55.0	27.1	31.7	178.4	
lycine	173.3	42.5				
Hycogen	100.5		74.0	78.1	72.1	61.4
nositol	73.3	73.1	73.3	71.9	75.1	71.9
actate	183.3	69.3	21.0			
Malate	182.1	71.7	43.9	180.9		
NAA	179.7	54.0	40.3	179.7	174.3	22.8
uccinate	183.4	35.3	35.3	183.4		
Faurine	48.4	36.2				

All chemical shifts are referenced relative to 3-(trimethylsilyl)-1-propanesulfonic acid at 0.00 ppm.

¹³C natural abundance is low, but ¹³C-labeled glucose or acetate infusions can yield important information regarding metabolic fluxes

Example: ¹³C-glucose Infusion

Other Nuclei

- Sodium (²³Na, spin=3/2)
 - Intracellular 10 mM
 - Extracellular 150 mM

Involved in ionic balances, generation of action potentials, regulations of cell volume.

- Fluorine (¹⁹F)
 - No endogenous ¹⁹F compounds in biological tissue
 - Lots of fluorinated drugs!

Next Lecture: ¹H MRS Methods