BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 13-14

Theorem: The sum of the first n natural numbers in equal to $\frac{n(n+1)}{2}$

Proof: Let M(n): the sum of the first n natural numbers not equal to $\frac{n(n+1)}{2}$.

• Base Case: To show that M(1) is true.

The sum of first one natural number is 1. Furthermore M(1) states that the sum of first natural number equals $\frac{1(1+1)}{2} = 1$.

 $\therefore M(1)$ is true.

• Inductive Step: Suppose M(n) is true. Consider M(n+1): The sum of the first (n+1) natural numbers is $\frac{(n+1)(n+2)}{2}$.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

By the induction hypothesis, M(n) is true.

$$\sum_{i=1}^{n+1} = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$
$$\sum_{i=1}^{n+1} = \frac{(n+1)(n+2)}{2}$$

M(n+1) is true.

12 Course of Values Induction or Strong Induction

- 1. Base Case: Natural number 1 has the property i.e. we have a proof of M(1).
- 2. **Inductive Step**: We assume that $M(1) \wedge M(2) \wedge M(3) \dots \wedge M(n)$ is true and show that M(n+1) is true.

Statements on parse trees are often shown by strong induction on height. It is also called as structural Induction.

Theorem: For every well-formed proposition logic formula, the number of left brackets equal the number of right brackets.

Proof: Course of values induction on the height of the parse tree corresponding to the well-formed formula.

Let M(n): All formulas of height n, have the same number of left and right brackets.

- Base Case: We will show that M(1) is true. A parse tree of height 1 has only an atom and no bracket. Hence M(1) is true.
- Inductive Step: Suppose M(1), M(2),M(n) is true, we will show that M(n+1) is true.

A parse tree of height ≥ 2 has as its root either of $\neg, \lor, \land, \rightarrow$.

Case (1): Suppose the root as \neg . Then the sub-tree rooted at \neg is of height n.

By the induction hypothesis property as true for the formula ϕ corresponding to that of sub-tree. The formula corresponding to the full tree is $(\neg \phi)$, which has equal number of left and right brackets. Since we added one left bracket and one right bracket.

- Case (2): Let the root be \vee . If this i so, there exist two well formed formulas ϕ_1 and ϕ_2 so that the present formula is $(\phi_1 \vee \phi_2)$. The parse trees corresponding to the formulas ϕ_1 and ϕ_2 have height less than or equal to n.
- \therefore by the induction hypothesis both these parse trees have equal number of left and right brackets each.
- \therefore $(\phi_1 \lor \phi_2)$ has equal number of left and right brackets. Since this adds one more left (right) bracket to the sum of left brackets of $(\phi_1 \lor \phi_2)$.

Case (3), (4) correspond to the binary connectives \land, \rightarrow , for which the argument is similar.

13 Semantics of Propositional Logic

Def 1: The set of truth values contains two elements - T and F, where T represents 'true' and F corresponds to 'false'.

Def 2: The valuation on model of formula ϕ is an assignment of each propositional atom in ϕ to a truth value. A truth table lists all valuations of a formula ϕ .

Do all valid sequents preserve truth computed by our truth table semantics?

Def: If for all the valuations in which all of $\phi_1, \phi_2, ..., \phi_n$ evaluate to T and formula χ also evaluates to T, we say that (the semantic entailment relation) $\phi_1, \phi_2, ..., \phi_n \models \chi$ holds and we call \models as the semantic entailment relation.

Examples:

1. $p \wedge q \vDash p$ holds.

ĺ	p	q	$p \wedge q$	p	$p \lor q$
	F	F	F	F	F
	\mathbf{F}	Τ	\mathbf{F}	F	${ m T}$
	T	F	F	Τ	${ m T}$
	T	Τ	Т	Τ	${ m T}$

- 2. $p \lor q \vDash p$ does not holds.
- 3. $p \vDash q \lor \neg q$ holds.