

Job Queue

Usage statistics

API ▼

Citations

<u>Help</u>

COVID-19

<u>Blog</u>

∠ Classic

Fast Unconstrained Bayesian AppRoximation

results summary

FUBAR found evidence of

⊕ episodic positive/diversifying selection at 3 sites

⇒ episodic negative/purifying selection at 33 sites

with posterior probability of 0.9

See here for more information about the FUBAR method.

Please cite PMID 23420840 if you use this result in a publication, presentation, or other scientific work.

Posterior rate distribution

a

This graph shows the posterior distribution over the discretized rate grid. The size of a dot is proportional to the posterior weight allocated to that gridpoint, and the color shows the intensity of selection. Site-specific distributions can be viewed by entering a site number in the input box above the figure. When this is empty, the alignment-wide distribution will be shown.

COVID-19

<u>Blog</u>

∠ Classic

Positively selected sites with evidence are highlighted in green.

Negatively selected sites with evidence are highlighted in black.

Showing entries 15 through 34 out of 134.

Export Table to CSV

« 							E Expo	El Export Table to CS		
Site \$	Partition \$	α \$	β \$	β-α 💠	Prob [α>β] \$	Prob [α<β] ♦	BayesFactor[α<β] \$	_		
15	1	0.480	0.647	0.167	0.319	0.621	2.353	0.000	0.000	
16	1	1.360	0.418	-0.943	0.764	0.187	0.332	0.000	0.000	
17	1	0.694	0.596	-0.097	0.414	0.522	1.574	0.000	0.000	
18	1	2.127	0.338	-1.788	0.843	0.120	0.196	0.000	0.000	
19	1	0.505	0.409	-0.095	0.508	0.416	1.026	0.000	0.000	
20	1	0.665	0.334	-0.331	0.578	0.343	0.753	0.000	0.000	
21	1	1.827	0.669	-1.158	0.556	0.387	0.907	0.000	0.000	
24	1	0.523	0.576	0.053	0.373	0.563	1.851	0.000	0.000	
25	1	11.305	1.811	-9.494	0.716	0.244	0.464	0.000	0.000	
26	1	1.494	1.159	-0.335	0.502	0.426	1.066	0.000	0.000	
27	1	0.603	1.349	0.746	0.187	0.762	4.603	0.000	0.000	
28	1	0.665	0.322	-0.343	0.588	0.333	0.719	0.000	0.000	
29	1	2.757	0.606	-2.151	0.719	0.226	0.420	0.000	0.000	
30	1	0.773	0.763	-0.010	0.314	0.627	2.417	0.000	0.000	
31	1	7.069	4.094	-2.975	0.700	0.235	0.442	0.000	0.000	
32	1	0.641	0.649	0.008	0.446	0.490	1.383	0.000	0.000	
33	1	0.764	2.010	1.247	0.234	0.708	3.492	0.000	0.000	
34	1	0.647	0.403	-0.244	0.540	0.393	0.932	0.000	0.000	

Fitted tree

KM365479

HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_002815 HYLOCEREUS_UNDATUS_SRR11190792_NC_002815

AF308158

HYLOCEREUS_POLYRHIZUS_SRR11190795_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_002815

IIVI COEDELIO DOLVELIITIIO ODDIIIIOOTOT NO COCCIE

Classic

HYLOCEREUS_UNDATUS_SRR11603189_NC_002815

HYLOCEREUS_UNDATUS_SRR11603187_NC_002815

KM288844

AY366208

HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_006059

JF930326

KM288842

HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_006059

HYLOCEREUS_UNDATUS_SRR11603186_NC_006059

HYLOCEREUS_UNDATUS_SRR11603191_NC_006059
HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_006059
HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_006059

MG210801

HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_024458
HYLOCEREUS_UNDATUS_SRR11603184_NC_024458
HYLOCEREUS_UNDATUS_SRR11603191_NC_024458
HYLOCEREUS_UNDATUS_SRR11603186_NC_024458
HYLOCEREUS_UNDATUS_SRR11603182_NC_024458
HYLOCEREUS_POLYRHIZUS_SRR11190801_NC_024458
HYLOCEREUS_POLYRHIZUS_SRR11190795_NC_024458
HYLOCEREUS_UNDATUS_SRR11190800_NC_024458
HYLOCEREUS_UNDATUS_SRR11190793_NC_024458
HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_024458
HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_024458
HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_024458
HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_024458

HYLOCEREUS_UNDATUS_SRR11603184_NC_011659
HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_011659

KP090203

<u>Classic</u>

Model fits

Model	AIC _C	log L	Parameters	Rate distributions
Nucleotide GTR	10866.72	-5271.53	161	

This table reports a statistical summary of the models fit to the data. Here, **MG94** refers to the MG94xREV baseline model that infers a single ω rate category per branch.

Datamonkey is funded jointly by MIDAS and NIH award R01 GM093939

COVID-19

Blog

∠ Classic

