

Focus on characters with same structure Corresponding degrees of freedom example: articulated figures with same joints Use as first step in more general problem Parameter values can be transferred results are may not be the same must adapt motion values (curves)

Previous Work Compute a new motion (parameterized controllers, resynthesis, ...) Adjust each frame or key (using inverse kinematics or manual adjustment) Apply signal processing to motion

Use Spacetime Constraints

-they're not just for physical synthesis

Basic Idea 1: Constraints

Basic geometric constraints are the most critical characteristics of a motion

- These constraints must be maintained when applying the motion to a different character
- Retargetting must adapt a motion to re-establish any violated constraints

Basic Idea 2: Frequency content

High frequencies are significant characteristics of motions

- · Altering high frequencies changes motions
- Adaptations should avoid disturbing high frequencies
- Adaptations (not the underlying motion) should be frequency bounded

Retargetting Recipe 1. Define Constraints 2. Apply to new character

The Constraint Problem Constraints for specific, geometric attributes specify position of hand, foot on floor joint limits, feet above floor Constraints placed at specific times create durations as a series of individual times Functions of character's parameters include character's kinematics

Constraint Solving: Method 1

Sequential Quadratic Programming (SQP)

- Too few constraints? Many possible solutions
 - -define an objective function to pick "best"
 - -pick simple objective to make easy to solve
- Constrained minimization
- Solve a sequence of linear sub-problems
 - linearize non-linear constraints at each step

Constraint Solving: Method 2

Non-linear least squares

- Too many constraints? No exact solution
 - -minimize residual error
 - -add constraints to make over-determined
- Unconstrained minimization
- · Solve a sequence of linear sub-problems
 - linearize non-linear constraints at each step

Character size not constant

Target size needs to be known in each frame – it doesn't have to be the same

World not constant

Adaptation can change any parameters – not just those for the changed character

- We can choose which parameters are affected by the adaptation
- · Solve for everything at once

Different Structure

When the parameters aren't the same, the problem is harder

- · Couple corresponding "body" parts
- · Characters must be similarly sized
 - -Retargetting makes characters the same size
- Minimize distance between old and new points
- Must deal with different numbers of parameters

Skipping Can Example

- retarget to canproportioned human
- 3. tie corresponding points
- 4. solve for new motion

Why does it fail?

- Implementation limitations
- · Need richer constraints
 - -balance, strength, collision, ballet form, ...
- Fundamental over-simplifications
 - -similarity computed on poses
 - -additive adaptations (no scaling or time-shift)
 - -limit of adaptation (sometimes, need new motions)

Summary

We can retarget motions created for one character to another

- · Re-establish geometric constraints
- Avoid adding high frequencies
- Compute adaptation with spacetime constraints

Because I thought you'd ask....

Answers to frequently asked questions

- · I don't know.
- · Nothing is specific to mocap. That's just what I had.
- · Yes, I'd love your examples to try.
- · The examples take a few seconds on a mac.
- · The heads were lost in a bad mocap accident.
- The method is not specific to articulated figures.
- gleicher@cs.wisc.edu (after August 24)

