What is claimed is:

1. A process for producing a polymeric actuator comprising an ion-exchange resin product and metal electrodes which are formed on the surface of the ion-exchange resin product and are insulated from each other, said actuator operating as an actuator by applying a potential difference between the metal electrodes when the ion-exchange resin product is in the water-containing state to allow the ion-exchange resin product to undergo bending or deformation,

wherein the following steps (i) to (iii) are repeatedly conducted to form the metal electrodes ranging from the surface of the ion-exchange resin product to the inside thereof;

(i) a step of allowing the ion-exchange resin product to adsorb a metal complex in an aqueous solution (adsorption step),

(ii) a step of reducing the metal complex adsorbed on the ion-exchange resin product by a reducing agent to deposit a metal on the surface of the ion-exchange resin product (deposition step), and

(iii) a step of washing the ion-exchange resin product having the deposited metal (washing step).

10

5

15

20

15

20

- A polymeric actuator comprising an ion-exchange resin product containing an alkylammonium ion as a counter ion and metal electrodes which are formed on the surface of the ion-exchange resin product and are insulated from each other, said polymeric actuator operating as an actuator by applying a potential difference between the metal electrodes when the ion-exchange resin product is in the water-containing state to allow the ion-exchange resin product to undergo
 bending or deformation.
 - 3. The polymeric actuator as claimed in claim 2, wherein the alkylammonium ions are alkylammonium ions containing at least ions represented by the following formula (1):

$$\begin{pmatrix}
R^{2} & - & N \\
R^{2} & - & N \\
R^{4} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{1} & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{2} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{2} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3} & R^{3}
\end{pmatrix} +
\begin{pmatrix}
R^{3} & - & R^{3$$

wherein R^1 to R^4 may be the same or different and are each a hydrogen atom, a hydrocarbon group, an oxygen-containing hydrocarbon group or a nitrogen-containing hydrocarbon group, at least one of R^1 to R^4 is a group other than a hydrogen atom, and two or more of R^1 to R^4 may be bonded to form a ring.

4. The polymeric actuator as claimed in claim 2, wherein the alkylammonium ion is represented by the following formula (1):

 $\begin{pmatrix}
R^1 & & \\
R^2 & - N & - R^3 \\
& R^4
\end{pmatrix}^+ \dots (1)$

wherein R¹ to R⁴ may be the same or different and are each a hydrogen atom, a hydrocarbon group, an oxygen-containing hydrocarbon group or a nitrogen-containing hydrocarbon group, at least one of R¹ to R⁴ is a group other than a hydrogen atom, and two or more of R¹ to R⁴ may be bonded to form a ring.

5. The polymeric actuator as claimed in any—one—
15 of claims 2 to 4, wherein the ion represented by the formula (1) is CH₃N+H₃, C₂H₅N+H₃, (CH₃)₂N+H₂, (C₂H₅)₂N+H₂, (C₄H₉)₂N+H₂, (C₅H₁₁)₂N+H₂, (CH₃)₃N+H, (C₂H₅)₃N+H, (C₄H₉)₃N+H, (C₅H₁₁)₃N+H, (CH₃)₄N+, (C₂H₅)₄N+, (C₃H₇)₄N+, (C₄H₉)₄N+, H₃N+(CH₂)₄N+H₃, H₂C=CHCH₂N+HCH₃, H₃N+(CH₂)₄N+H₂(CH₂)₄N+H₃, HC=CCH₂N+H₂, CH₃CH(OH)CH₂N+H₃, H₃N+(CH₂)₅OH, H₃N+CH(CH₂OH)₂, (HOCH₂)₂C(CH₂N+H₃)₂, C₂H₅OCH₂CH₂N+H₃,

a

5

add)

of the second