MRE and CYER Program Description

Randy Peterson

May 8, 2018

What you will learn

- A little about git and github
- ▶ A little about R
- ► How to compute CYER's in R
- ► How to compute MRE's in R

CTC github website

https://github.com/CTC-PSC

Downloading requisite files directly from github

https://github.com/CTC-PSC/GarciaExampleMay 2018

Downloading requisite files from github via R, first option

```
library(repmis)
source_data("https:
//raw.githubusercontent.com/CTC-PSC/GarciaExampleMay2018/
master/Data/2018ERA%20MRE%20Data.Rdata")
```

Downloading requisite files from github via R, second option

```
download.file("https: //raw.githubusercontent.com/CTC-PSC/GarciaExampleMay2018/master/Data/2018ERA%20MRE%20Data.Rdata", "2018ERA MRE Data.Rdata")
```

Load Functions into R

The first we need to do is load all of the functions. This project utilizes three 'classes' of data:

- ► ERA
- CYER
- MRE

source("Code/GarciaFunLibrary.R")

Data inputs

Figure 1: Program inputs

Read HRJ Functions

```
readHRJdir <- function(userDir=choose.dir(), ...)
convertHRJ_BYtoCY(x)
convertHRJ_RtoAccess(x, writeCSV=FALSE, userDir=NULL)
addPTableHRJ(x, hrjclass=c("R","Access"))</pre>
```

Where "..." are values passed onto the function readHRJ:

- ▶ nFisheries=69
- straysinescap=TRUE
- Age6=c("DNE","ignore","include")

Read ERA output into R

Reading 1 HRJ File of 4 : LYFB1.HRJ
Reading 2 HRJ File of 4 : LYFC1.HRJ

```
## Reading 3 HRJ File of 4 : SRHB1.HRJ
## Reading 4 HRJ File of 4 : SRHC1.HRJ

#Convert to CY layout
   cy=convertHRJ_BYtoCY(x=by)
#Convert HRJ from R to Access format
```

#add the 'preferred' table to the Access format
z.cy = addPTableHRJ(x=z.cy, hrjclass = "Access")

z.cy=convertHRJ_RtoAccess(x=cy, writeCSV=FALSE, userDir=

Load ERA Fishery Definitions into R

	-			
FisheryNumber	FisheryName	Gear	Term_PreTerm	Jurisdi
1	AK W/S T	Troll	Preterm	SEAK
2	AK JNO T	Troll	Preterm	SEAK
3	AK JNI T	Troll	Preterm	SEAK
4	AK JLO T	Troll	Preterm	SEAK
5	AK JLI T	Troll	Preterm	SEAK
6	AK FALL T	Troll	Preterm	SEAK
7	TAK TERM T	Troll	Term	SEAK
8	NORTH T	Troll	Preterm	Canad
9	CENTRL T	Troll	Preterm	Canad
10	WCVI F/W T	Troll	Preterm	Canad
11	WCVI SPR T	Troll	Preterm	Canad
12	WCVI SUM T	Troll	Preterm	Canad
13	N FALCON T	Troll	Preterm	SUS
14	S FALCON T	Troll	Preterm	SUS
15	TOR TERM T	Troll	Term	SUS
16	GEO ST T	Troll	Preterm	Canad
17	ΛΙΛςΚΛ Ν	Not	Torm	SEAK

Load Escapement Data into R Year YrLab Period Situk

1001

Ω1

100E 00

1975	75	1975-84	NA	NA	12920	7571	NA
1976	76	1975-84	1421	5282	24582	5723	NA
1977	77	1975-84	1732	12706	29497	11445	NA
1978	78	1975-84	808	12034	17124	6835	NA
1979	79	1975-84	1284	17354	21617	12610	NA
1980	80	1975-84	905	10718	39239	30573	NA
1981	81	1975-84	702	8587	49559	36057	NA
1982	82	1975-84	434	9584	23848	40488	NA
1983	83	1975-84	592	10344	9794	6424	NA
1984	84	1975-84	1726	7213	20778	13995	NA
1985	85	1985-98	1521	6087	35916	16037	NA
1986	86	1985-98	2067	11069	38111	14889	NA
1987	87	1985-98	1379	11276	28935	24632	NA
1988	88	1985-98	868	8852	44524	37554	NA
1989	89	1985-98	637	10178	40329	24282	NA
1990	90	1985-98	628	8775	52142	22619	NA

000

11667

E16/E

22206

E003

Alsek

Stikine

Taku

Chilkat

Load External HR Data into R

CY	X76
1979	0.0492914
1980	0.0887186
1981	0.0440704
1982	0.0664970
1983	0.0625658
1984	0.0648975
1985	0.0423897
1986	0.1032377
1987	0.1285429
1988	0.1297936
1989	0.1060298
1990	0.1687867
1991	0.2091650
1992	0.1909712
1993	0.3436861
1994	0.2297112
1005	0.3027348

Load Externally Computed MRE Data into R Year SitukAux ChilkatAux UnukAux ChickaminAux

NA

0.200

0.375

0.313

0.4E2

1975

1076

1989

1990

1001

NA

N I A

NA

NA

NΙΛ

1976	0.390	NA	NA	NA	0.088
1977	0.369	NA	NA	NA	0.099
1978	0.368	NA	NA	NA	0.169
1979	0.432	NA	NA	NA	0.127
1980	0.466	NA	NA	NA	0.114
1981	0.502	NA	NA	NA	0.083
1982	0.314	NA	NA	NA	0.053
1983	0.308	NA	NA	0.371	0.009
1984	0.246	NA	NA	0.277	0.008
1985	0.243	NA	NA	0.281	0.034
1986	0.098	NA	NA	0.398	0.042
1987	0.389	NA	NA	0.436	0.030
1988	0.273	NA	NA	0.313	0.025

NA

NIA

NA

NA

NΙΛ

AlsekAux

NA

 Λ

0.022

0.009

0.000

NA

NIA

0.364

0.346

U 2U2

Load EIS Definitions into R

StockNum	Stock	EIS_StockName	RateType	Smsy	S85
1	Nehalem	Nehalem	1	6989	5940.65
2	Nehalem	Nehalem	1	6989	5940.65
3	Siletz	Siletz	1	2944	2502.40
4	Siletz	Siletz	1	2944	2502.40
5	Siuslaw	Siuslaw	1	12925	10986.25
6	Siuslaw	Siuslaw	1	12925	10986.25

Relationships between input files

- ▶ EIS Definition File specifies which ERIS to reference by *NAME*
- External MRE Estimates are referenced by the EIS Definition File by NAME
- ► External HR file references ERA fishery to modify by *NUMBER*

CYER computation flow

Figure 2

CYER Functions

```
cyer(hrj, esc, fmap, type=c("AEQCat","AEQTot","NomCat","Nom
print.CYER(x, digits=1, type="percent", prop=FALSE, yearste
summary.CYER(x, yearranges=list(1979:1984,1985:1995,1996:19
print.summary.CYER(x, digits=1, type="percent", prop=FALSE)
```

Finding your stock

```
#stock List
z.cy$stknames
```

```
## [1] "LYF" "SRH"
```

CYER Example: LYF (1/4)

1991 2,3,4,5

1992 3,4,5

4,5

5

3

4

1993

1994

1995

1996

1997

1998

Print command

##

##

##

##

##

##

cyer(hrj=subset(z.cy\$HRJ_P,stock==1), esc=subset(z.cy\$ESG

##	CatchYear	Ages	$\hbox{\it Recoveries}$	US.AABM	CAN.AABM	CAN.ISBM
##	1986	2	335	1.2	11.6	12.5
##	1987	3	753	1.7	24.8	4.6
##	1988	2,4	773	3.4	26.4	0.9
##	1989	2,3,5	395	1.5	25.6	3.0
##	1990	2,3,4	545	2.9	20.6	0.6

354

264

229

105

NA

30

41

159

4.2

1.9

7.0

NA

6.7

4.9

15.1

13.3

15.5

24.6

24.5

8.6

6.7

0.0

11.3

NA

1.1

0.0

1.3

1.9

NA

0.0

4.9

3.1

CYER Example: LYF (2/4)

Summary command

```
summary(cyer(hrj=subset(z.cy$HRJ_P,stock==1), esc=subset
```

##	Years	Recoveries	US.AABM	CAN.AABM	CAN.ISBM	OS.ISBM	UTH.
##	79-84	NaN	NA	NA	NA	NA]
##	85-95	375	4.1	20.2	2.9	32.0	
##	96-98	77	8.9	6.0	2.7	12.7	
##	99-08	1061	5.4	3.6	0.4	15.1	
##	09-17	1821	3.6	8.4	0.7	39.3	

CYER Example: LYF (3/4)

1992 3,4

3

4

1993

1994

1995

1996

1997

1998

Print command

##

##

##

##

##

##

##

##

cyer(hrj=subset(z.cy\$HRJ_P,stock==1), esc=subset(z.cy\$ESC

CatchYear Ages Recoveries US.AABM CAN.AABM CAN.ISBM US

1.9

7.0

NA

NA

NA

4.9

15.1

24.6

24.6

NA

NA

NA

0.0

11.3

0.0

1.3

NA

NA

NA

4.9

3.1

	0400111041	605	11000101100	00.1111211	01111 11111111111	OIIII TEELI	~~
##	1986		NA	NA	NA	NA	
##	1987	3	753	1.7	24.8	4.6	
##	1988	4	671	3.4	26.7	0.7	
##	1989	3	292	0.3	28.1	3.8	
##	1990	3,4	521	3.1	21.1	0.4	
##	1991	3,4	99	7.1	13.1	0.0	

264

228

NA

NA

NA

41

159

CYER Example: LYF (4/4)

Summary command

```
summary(cyer(hrj=subset(z.cy$HRJ_P,stock==1), esc=subset
```

##	Years	Recoveries	US.AABM	CAN.AABM	CAN.ISBM	OS.ISBM	UTHE
##	79-84	NaN	NA	NA	NA	NA	1
##	85-95	283	3.5	23.3	1.6	33.2	
##	96-98	67	10.0	5.7	4.0	19.0	
##	99-08	699	2.0	6.5	0.4	20.0	
##	09-17	1288	3.7	10.3	0.8	43.8	

CYER Example: SRH

```
summary(cyer(hrj=subset(z.cy$HRJ_P,stock==2),
esc=subset(z.cy$ESC_CY,stock==2),
fmap=flookup,
type="AEQTot",
strays="separate",
ages=2:6))
```

##	Years	Recoveries	US.AABM	CAN.AABM	CAN.ISBM	US.ISBM	O.I.H
##	79-84	706	19.3	24.5	2.8	19.2	
##	85-95	2028	16.5	20.5	1.4	22.7	
##	96-98	3325	19.9	5.8	1.1	32.3	
##	99-08	3326	20.0	12.0	0.1	27.2	
##	09-17	6587	13.4	12.2	0.4	27.7	

CYER Example: Nehalem

[1] "LYF"

09 - 17

##

```
externalHRadjustment(x, hrt, hrjstk, type=c("tm","lc"), new
```

```
#apply external hr adjustment
z.cy = externalHRadjustment(z.cy, hrt=hrt.nehalem, hrjstk=
#look at what we did
z.cy$stknames
```

```
summary(cyer(hrj=subset(z.cy$HRJ_P,stock==3), esc=subset
```

"SRH"

6587

"nehalem"

13.4 12.2

0.4 16.1

##	Years	Recoveries	US.AABM	CAN.AABM	CAN.ISBM	US.ISBM	OTH
	50 04	500	400	01 -			

##	rears	Recoveries	US.AABM	CAN.AABM	CAN.ISBM	OS.ISBM	UIF
##	79-84	706	19.3	24.5	2.8	5.1	
шш	OF OF	0000	1 C E	00 E	4 /	10 0	

16.5 20.5 1.4 12.8 ## 85-95 2028 19.9 5.8 1.1 17.9 ## 96-98 3325

99-08 3326 20.0 12.0 0.1 14.5 ##

MRE computation flow

Figure 3

MRE Functions

```
calcMRE(HRJ, ESC, fisheryinfotable, stknum, mre_startage="g
calcMREAll <- function(HRJ, ESC, fisheryinfotable, mre_start
MRE2Plot(esc, mre, smap, stknames, mrecriteria, auxdata=NUL
plotGarciaAll(Garcia, outdir, outtype, pdffilename = NULL)
plotGarcia(Garcia)
MRE2Excel(x, stknames, filename="mre calcs.xlsx")</pre>
```

MRE Calcs Step 1, Data Manipulation

```
HRJ=convertHRJtoMRE(z.cy$HRJ_P , datatype="fishery")
ESC=convertHRJtoMRE(z.cy$ESC_CY, datatype="escapement")
```

MRE Calcs Step 2, Compute MREs

```
MRE=calcMREAll(HRJ=HRJ, ESC=ESC, fisheryinfotable=flookup
```

```
## calc 1 of 3 for hrj stock number 1
## calc 2 of 3 for hrj stock number 2
## calc 3 of 3 for hrj stock number 3
```

MRE Calcs Step 3, Create Plot File

```
garciaplotdata=MRE2Plot(esc=Escap,
                        mre=MRE,
                        smap=slookup_orc[1:2,],
                        stknames=z.cy$stknames,
                        mrecriteria=TRUE,
                        auxdata=NULL)
```

```
head(garciaplotdata)
##
      EISStock Year YrLab Period Escapement StockNum
```

75 1975-84 ## 1 Nehalem 1975 5197 1 Neha ## 3

Sto

Nehalem 1976 76 1975-84 9807 1 Neha Nehalem 1977 77 1975-84 ## 5 11478 Neha:

7 Nehalem 1978 78 1975-84 12059 1 Neha ## 9 Nehalem 1979 79 1975-84 12205 1 Neha 1 Neha ## 11 Nehalem 1980 80 1975-84 5555

Umsy ERIS ERIS_RunTiming ERIS_StartAge | ## S85 ## 5940.65 0.6921181 SRH Fall

MRE Calcs Step 4, Plot! Nehalem::SRH

plotGarcia(subset(garciaplotdata,StockNum==1))

MRE Calcs Step 4, Plot! Nehalem::SRH w/Term HR Adjustment

plotGarcia(subset(garciaplotdata,StockNum==2))

Diagnostics

► MRE2Excel