Assignment-3

Assignment Date	06 October 2022
Student Name	Vaishnavi R
Student Roll Number	820419106068
Maximum Marks	2 Marks

1.Download the Dataset

2.Load the dataset into the tool

In [2]:	dat	ta =		as pd l_csv("ab	alone.	csv")				
Out[2]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
	4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

3.Perform Below Visualizations

Univariate Analysis

```
In [3]: import seaborn as sns
    sns.histplot(data, x="Rings")
Out[3]: <AxesSubplot:xlabel='Rings', ylabel='Count'>
```



```
In [ ]: Bi-variate Analysis
```

In [4]: sns.displot(data, x="Rings" , y="Shell weight")

Out[4]: <seaborn.axisgrid.FacetGrid at 0x1bd656a1130>

In []: Multi-variate Analysis

In [5]: sns.pairplot(data)

Out[5]: <seaborn.axisgrid.PairGrid at 0x1bd68d0aca0>

4.Perform Descriptive Statistics on the Dataset In [6]: data.mean() C:\Users\Raju\AppData\Local\Temp\ipykernel_6340\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct ions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.mean() Out[6]: Length 0.523992 Diameter 0.407881 Height Whole weight 0.139516 0.828742 Shucked weight 0.359367 Viscera weight 0.180594 Shell weight 0.238831 Rings dtype: float64 9.933684 In [7]: data.median() C:\Users\Raju\AppData\Local\Temp\ipykernel_6340\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median() Out[7]: Length 0.4250 Diameter Height Whole weight 0.1400 0.7995 Shucked weight Viscera weight 0.3360 0.1710 Shell weight 0.2340 Rings dtype: float64 In [8]: data.mode() Out[8]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 M 0.550 0.45 0.15 0.1715 0.275 9.0 0.2225 0.175 1 NaN 0.625 NaN NaN NaN NaN NaN NaN In [9]: data.skew() C:\Users\Raju\AppData\Local\Temp\ipykernel_6340\1188251951.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduc tions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns befor e calling the reduction. data.skew() Out[9]: Length Diameter -0.639873 Height 3.128817 Whole weight 0.530959 0.719098 Shucked weight Viscera weight Shell weight 0.591852 0.620927 Rings dtype: float64 1.114102 In [10]: data.kurt() C:\Users\Raju\AppData\Local\Temp\ipykernel_6340\2907027414.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.kurt() Out[10]: Length Diameter 0.064621 -0.045476 76.025509 Height Whole weight Shucked weight -0.023644 0.595124 Viscera weight Shell weight 0.084012 0.531926

Rings 2.330687

dtype: float64

In [11]: data.std()

C:\Users\Raju\AppData\Local\Temp\ipykernel_6340\2723740006.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.std()

Out[11]: Length 0.120093 Diameter 0.099240 0.041827 Height Whole weight 0.490389 Shucked weight Viscera weight 0.221963 0.109614 Shell weight 0.139203 Rings 3.224169 dtype: float64

In [13]: data.var()

C:\Users\Raju\AppData\Local\Temp\ipykernel_6340\445316826.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct ions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.var()

uata.var(

Out[13]: Length 0.014422
Diameter 0.009849
Height 0.001750
Whole weight 0.049268
Viscera weight 0.012015
Shell weight 0.019377
Rings dtype: float64

5. Check for Missing values and deal with them

6.Find the outliers and replace them with outliers

In [15]: sns.boxplot(data['Rings'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword a rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

warnings.warn(

Out[15]: <AxesSubplot:xlabel='Rings'>

In [16]: import numpy as np
data['Rings']=np.where(data['Rings']>15,5,data['Rings']) #replacing

In [17]: sns.boxplot(data['Rings'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword a rg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

warnings.warn(

Out[17]: <AxesSubplot:xlabel='Rings'>

7. Check for categorical columns and perform encoding

8. Split the data into Dependent and Independent variables

```
In [23]: y=data['Rings']
        v.head()
Out[23]: 0
           15
        Name: Rings, dtype: int64
In [24]: x=data.drop(columns=['Rings'])
        x.head()
Out[24]:
         Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight
        0 2 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150
        1 2 0.350
                     0.265 0.090
                                    0.2255
                                               0.0995
                                                          0.0485
                                                                    0.070
                                              0.2565
        2 0 0.530
                     0.420 0.135
                                   0.6770
                                                       0.1415
                                                                   0.210
        3 2 0.440
                      0.365 0.125
                                     0.5160
                                                0.2155
                                                           0.1140
                                                                    0.155
        4 1 0.330 0.255 0.080 0.2050
                                             0.0895 0.0395
                                                                   0.055
```

9. Scale the Independent variables

10. Split the data into Training and Testing

11.Build the Model

In [32]: from sklearn.tree import DecisionTreeRegressor
model=DecisionTreeRegressor()

12. Train the Model

```
In [33]: model.fit(x_train,y_train)
Out[33]: DecisionTreeRegressor()
```

```
14. Measure the performance using Metrics
 In [36]: from sklearn import metrics
 In [37]: metrics.confusion_matrix(y_test,pred2)
In [39]: print('DT model Accuracy Score:',metrics.accuracy_score(y_test,pred2))
           DT model Accuracy Score: 0.17942583732057416
 In [40]: acc=metrics.accuracy_score(y_test,pred2)
acc
 Out[40]: 0.17942583732057416
 In [41]: 1-acc
Out[41]: 0.8205741626794258
In [42]: data.head()
Out[42]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

        0
        2
        0.455
        0.365
        0.095
        0.5140
        0.2245
        0.1010
        0.150
        15

           1 2 0.350 0.265 0.090 0.2255
                                                            0.0995 0.0485 0.070
          2 0 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9

        3
        2
        0.440
        0.385
        0.125
        0.5160
        0.2155
        0.1140
        0.155
        10

        4
        1
        0.330
        0.255
        0.080
        0.2050
        0.0895
        0.0395
        0.055
        7
```