FISICA SPERIMENTALE I (MECC. TERM.) AA 2023/2024 - Appello intermedio - 2 Maggio 2024

Nome	Cognome	Matricola	Esercizi	Tempo
			1+2+3+4	2 ore

1) Si sta progettando una nuova tratta di metropolitana sotterranea. Schematicamente la tratta è la seguente: A: treno fermo, A-B: tratto di 500m percorso con accelerazione costante a₁; B-C: tratto di 4 km percorso a velocità costante v₂=72km/h; C-D: tratto di 250m percorso con decelerazione costante a₃; i) si rappresenti su un grafico l'accelerazione, la velocità e la posizione in funzione del tempo in modo qualitativo; ii) si calcoli il valore dell'accelerazione a1 in m/s² necessaria per raggiungere in B la velocità prevista sul tratto BC; iii) si calcoli il valore della accelerazione a₃ in m/s² necessaria al treno per arrestarsi nel punto D, cominciando a frenare in C; iv) si determini il tempo di percorrenza del tratto AD

8 punti a1=0,4m/s2 a3=-0,8m/s2 tempo 275s

2) Una sfera di massa m=100g è agganciata ad una molla ideale di costante elastica k=19,6N/m, lunghezza a riposo L=40cm, priva di massa il cui secondo estremo è fissato nel punto A, come mostrato in figura. Il sistema è posto su un piano orizzontale scabro (coefficiente di attrito dinamico 0,5). Se si allunga la molla di un tratto di 20 cm e si lascia muovere la sferetta sotto

l'azione della molla, si determini la distanza minima da A raggiunta dalla sferetta nel suo moto.

8 punti distanza minima= 25 cm

3) Due blocchi di massa m_1 e m_2 sono posti a contatto tra loro su un piano orizzontale liscio, come mostrato in figura. Una forza costante \mathbf{F} viene applicata alla prima massa. Si determinino: i) l'accelerazione del sistema ii) il modulo della forza di interazione tra i blocchi.

- ^{8 punti} a= F/(m1+m2), F interazione= F m2/ (m1+m2)
- 4) La macchina di Atwood è composta da due corpi, di masse m₁ e m₂, sospesi verticalmente ad una puleggia liscia e di massa trascurabile. Si calcolino l'accelerazione del sistema, la tensione nella fune e la tensione nel gancio che tiene appesa la puleggia.

 8 punti

T corda= 2 m1 m2 g/ (m1+m2) T carrucola= 2 T corda

Istruzioni				
COMPILARE la tabella e RESTITUIRE il	Indicare NOME, COGNOME e MATRICOLA	Utilizzare SOLO calcolatrice e tavole		
testo dello scritto	in ogni foglio, indicare il TIPO DI ESAME	matematiche		
NON E' CONSENTITO l'uso del formulario	Scrivere esclusivamente con penna blu o	Cancellare le parti in brutta copia		
	nera			