

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Periodic Table

Periodic Table

ırt A	Tin
W	hich block of the periodic table contains the element tin?
	o s
	p
	\bigcirc d
	\bigcirc f
art B	Ytterbium
W	hich block of the periodic table contains the element ytterbium?
	○ s
	p
	\bigcirc d
	f
art C	Lithium
Se	elect the correct statement about lithium.
	Lithium has two protons in its nucleus.
	Lithium is in period 2 of the periodic table.
	Lithium is in group 2 of the periodic table.

Part D	Phosphorus and antimony	•
Se	elect the correct statement.	
	Phosphorus and antimony are in the same period as each other.	
	Phosphorus and antimony are in the same group as each other.	
	Phosphorus and antimony are neither in the same group nor in the same period as each other.	
	Phosphorus and antimony are both in the same group and in the same period as each other.	
Part E	Groups	~
	Groups elect the correct general statement.	~
		~
	elect the correct general statement.	~
	elect the correct general statement. Elements in the same group have the same number of valence electrons and therefore have the same atomic radius.	*
	Elements in the same group have the same number of valence electrons and therefore have the same atomic radius. Elements in the same group have the same number of valence electrons, but can have different reactivities and atomic radii.	*
	elect the correct general statement. Elements in the same group have the same number of valence electrons and therefore have the same atomic radius. Elements in the same group have the same number of valence electrons, but can have different reactivities and atomic radii. Elements in the same group have the same number of valence electrons and are therefore equally reactive.	~

Created for isaacphysics.org by Andrea Chlebikova

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Electron configurations (D1.1)

Electron configurations (D1.1)

Complete the following ground state electron configurations.

Part A Be

What is the ground-state electron configuration of $Be\ensuremath{?}$

Items:

Part B N

What is the ground-state electron configuration of N?

Items:

Based on question D1.1 from Physical Chemistry book

 $\underline{\mathsf{Home}}$ > Chemistry > Foundations > Atomic Structure > Electron configurations (D1.4)

Electron configurations (D1.4)

Complete the following ground state electron configurations. Part A H^- What is the ground-state electron configuration of H^- ? Items: O^{2-} Part B What is the ground-state electron configuration of $\boldsymbol{O}^{2-}\boldsymbol{?}$ Items:

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Essential Pre-Uni Chemistry D4.2

Essential Pre-Uni Chemistry D4.2

	ISOTOPE	# PROTONS	# NEUTRONS
Part A	Carbon-12		6
Part B	Carbon-13		
Part C	Technetium-99	43	
Part D	Iodine-131		
Part E	Polonium-210		
Part F	Uranium-233		
Part G	Rutherfordium-260		

Complete the table to show the numbers of protons and neutrons in each isotope.

Part C Technetium-99	•
Number of neutrons	
Part D Iodine-131	~
Number of protons	
Number of neutrons	
Part E Polonium-210	~
Number of protons	
Number of neutrons	
Part F Uranium-233	~
Number of protons	
Number of neutrons	

Part G Rutherfordium-260	~
Number of protons	
Number of neutrons	

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Essential Pre-Uni Chemistry D4.1

Essential Pre-Uni Chemistry D4.1

Name the isotopes with the following numbers of protons and neutrons in their nuclei, e.g. 2 protons and 2 neutrons gives the answer helium-4.

Part A	1 proton and 2 neutrons.	^
1;	proton and 2 neutrons.	
	lithium-3	
	helium-3	
	hydrogen-3	
	hydrogen-2	
Part B	5 protons and 6 neutrons.	~
	5 protons and 6 neutrons. protons and 6 neutrons.	~
		~
	protons and 6 neutrons.	~
	protons and 6 neutrons. boron-11	~
	borotons and 6 neutrons. boron-11 beryllium-11	~
	boron-11 beryllium-11 carbon-11	~
	boron-11 beryllium-11 carbon-11	~

Part C	15 protons and 16 neutrons.	~
15	5 protons and 16 neutrons.	
10	silicon-32	
	sulfur-31	
	phosphorus-32	
	phosphorus-31	
Part D	18 protons and 22 neutrons.	~
18	3 protons and 22 neutrons.	
	argon-40	
	potassium-40	
	argon-22	
	chlorine-40	
Part E	$27~{ m protons}$ and $33~{ m neutrons}.$	~
	$27~{ m protons}$ and $33~{ m neutrons}.$ protons and $33~{ m neutrons}.$	~
		~
	7 protons and 33 neutrons.	~
	7 protons and 33 neutrons. iron-60	*
	r protons and 33 neutrons. iron-60 copper-61	~
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	~
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	•
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	~
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	~
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	~
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	•
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	•
	7 protons and 33 neutrons. iron-60 copper-61 zinc-59	•

Part F	35 protons and 44 neutrons.	~
35	5 protons and 44 neutrons.	
	bromine-89	
	selenium-79	
	bromine-69	
	bromine-79	
Part G	38 protons and 52 neutrons	~
38	3 protons and 52 neutrons	
	rubidium-38	
	yttrium-80	
	strontium-90	
	strontium-52	
Part H	55 protons and 82 neutrons.	~
	$55~{ m protons}$ and $82~{ m neutrons}$.	~
	5 protons and 82 neutrons.	~
	protons and 82 neutrons. barium-82	~
	protons and 82 neutrons. barium-82 caesium-82	~
	protons and 82 neutrons. barium-82	~
	protons and 82 neutrons. barium-82 caesium-82	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~
	protons and 82 neutrons. barium-82 caesium-82 caesium-137	~

Part I	90 protons and 142 neutrons.	~
90	0 protons and 142 neutrons.	
	thorium-232	
	actinium-90	
	thorium-142	
	actinium-232	
Part J	$95\mathrm{protons}$ and $146\mathrm{neutrons}.$	~
95	5 protons and 146 neutrons.	
	americium-241	
	curium-241	
	plutonium-241	
	americium-95	

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Essential Pre-Uni Chemistry D1.7

Essential Pre-Uni Chemistry D1.7

Give the chemical symbols for the atoms with the following ground state electron configurations:

Part A $[Ne] 3s^1$

[Ne] $3s^1$

 $\hbox{ Part B } \quad [Ar]\, 3d^5\, 4s^2$

 $[Ar] \ 3d^5 \, 4s^2$

Part C $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$

 $1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,3d^8\,4s^2$

 $\textbf{Part D} \hspace{0.5cm} [Ar] \, 3d^{10} \, 4s^2$

 $[{
m Ar}]\, 3{
m d}^{10}\, 4{
m s}^2$

Part E $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^5$

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^5$

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \mathsf{Chemistry} \; \; \blacktriangleright \; \mathsf{Foundations} \; \; \blacktriangleright \; \mathsf{Atomic} \; \mathsf{Structure} \; \; \flat \; \; \mathsf{Essential} \; \mathsf{Pre-Uni} \; \mathsf{Chemistry} \; \mathsf{D4.3}$

Essential Pre-Uni Chemistry D4.3

	SYMBOL	# PROTONS	# NEUTRONS	# ELECTRONS
Part A	$^{23}_{11}\mathrm{Na}$		12	
Part B	$^{40}_{19}{ m K}$			
Part C	$^{25}_{12}{ m Mg}^{2+}$	12		
Part D	$^{81}_{35}{ m Br}^{-}$			
Part E	$^{58}_{26}{ m Fe}^{3+}$			
Part F	$^{18}_{8}\mathrm{O}^{2-}$			
Part G	206 82			82
Part H	239 93			93

Complete the table by filling any blank cell and any missing symbol indicated by a ' '.

Part A $^{23}_{11}\mathrm{Na}$			^
Number of pro	otons		
Number of ele	ectrons		

Part	$^{ m 40}_{19} m K$	~
	Number of protons	
	Number of neutrons	
	Number of electrons	
Part	t C $^{25}_{12}\mathrm{Mg}^{2+}$	~
	Number of neutrons	
	Number of electrons	
Part	t D $^{81}_{35}\mathrm{Br}^-$	~
	Number of protons	
	Number of neutrons	
	Number of electrons	

Part E $^{58}_{26}\mathrm{Fe}^{3+}$	~
Number of protons	
Number of neutrons	
Number of electrons	
10 0	
Part F ${}^{18}_{8}\mathrm{O}^{2-}$	~
Number of protons	
Number of neutrons	
Number of electrons	
Part G 206 82	~
What is the element symbol corresponding to the question mark?	
Number of protons	
Number of neutrons	

Part H	239 93	~
Wh	nat is the element symbol corresponding to the question mark?	
Nu	mber of protons	
Nu	mber of neutrons	

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Essential Pre-Uni Chemistry D1.8

Essential Pre-Uni Chemistry D1.8

An ion of nickel is found to have the ground state electron configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$ in the gas phase.

Give the numerical charge on the ion as an integer. Remember to include the appropriate sign in your answer (as $\pm N$ and not $N\pm$).

<u>Home</u> > Chemistry > Foundations > Atomic Structure > Electron Configuration

Electron Configuration

A species \boldsymbol{Z} has the following electron configuration:

Figure 1: Electron configuration of Z

What could Z be?

1	2	3
Cl^+ ion	S atom	$ m Ar^{2-}$ ion

1 only is possible

2 only is possible

3 only is possible

1 and 2 only are possible

1 and 3 only are possible

2 and 3 only are possible

1, 2 and 3 are possible

None are possible

Adapted with permission from UCLES, A Level Chemistry, November 1996, Paper 4, Question 31