Simplify each expression in Table I. Then, find the corresponding answer in Table II. This will give you a correspondence between a letter and a number. Use this correspondence to reveal the mystery Haiku.

Mystery Haiku

Table I

TUDICT			
$(2x^3)^4$	$Q \\ x^0 y^4$	R $(4yx^{-4})^2$	$ \begin{array}{c} P \\ yx^3 \cdot 3x^4y^{-4} \end{array} $
	$3x^{-4}y^{-3}$		
J	D	F	N
$\frac{(2x^2y^2)^3}{x^{-3}y^4}$	$\left(\frac{1}{3}x^4\right)^4$	$\frac{(x^3)^3}{\frac{1}{2}x^{-4}y^0}$	$(2x^3y^2)^0$
	А	0	G
$3x^{-3}y^3 \cdot (-4)x^0y^{-3}$	$\frac{4x^3y^2}{\frac{1}{4}y^3x^4}$	$(2x^0y^0)^3 \div (\frac{1}{4}x^3y^3)$	$x^2y^{-2}\cdot y^4$
L	Н	M	S
$\frac{xy^2 \cdot 3yx^{-2} \cdot xy^{-4}}{2x^2}$	$\left(-\frac{1}{3}x\right)^2 \cdot (3^{-1}x^3)^{-1}$	$\frac{3y^4}{x^{-2}y^{-1}}$	$-\frac{4x^2}{(-2x)^{-2}}$

Table II

$\frac{1}{\frac{32}{x^3y^3}}$	$\frac{4}{\frac{1}{3x}}$	$5 - 16x^4$	$\frac{2}{3}$ $\frac{3}{2x^2y}$
$ \begin{array}{c} 13 \\ x^2y^2 \end{array} $	$\frac{3}{3y^5x^2}$	$\frac{9}{3x^7}$	$\frac{6}{x^{16}}$
$\frac{7}{x^4y^7}$	$ \begin{array}{c} 10 \\ 16x^{12} \end{array} $	8	$\frac{15}{2x^{13}}$
$-\frac{12}{x^3}$	$\frac{11}{\frac{16}{xy}}$	$\frac{16}{\frac{16y^2}{x^8}}$	$ \begin{array}{c} 14 \\ 8x^9y^2 \end{array} $

Simplify each expression in Table I. Then, find the corresponding answer in Table II. This will give you a correspondence between a letter and a number. Use this correspondence to reveal the mystery Haiku.

Mystery Haiku

Table I

Table I			
$ \begin{array}{c} \mathbf{U} \longrightarrow 10 \\ (2x^3)^4 \end{array} $	$ \begin{array}{c} Q \rightarrow 7 \\ x^0 y^4 \\ \overline{3x^{-4}y^{-3}} \end{array} $	$ \begin{array}{c} R \rightarrow 16 \\ (4yx^{-4})^2 \end{array} $	$P \rightarrow 9$ $yx^3 \cdot 3x^4y^{-4}$
$ \begin{array}{c} $	$ \begin{array}{c} D \rightarrow 6 \\ \left(\frac{1}{3}x^4\right)^4 \end{array} $	$ \begin{array}{c} F \to 15 \\ \frac{(x^3)^3}{\frac{1}{2}x^{-4}y^0} \end{array} $	$ \begin{array}{c} N \rightarrow 8 \\ (2x^3y^2)^0 \end{array} $
$1 \rightarrow 12 \\ 3x^{-3}y^3 \cdot (-4)x^0y^{-3}$	$ \begin{array}{c} A \rightarrow 11 \\ \frac{4x^3y^2}{\frac{1}{4}y^3x^4} \end{array} $	$0 \to 1 (2x^0y^0)^3 \div (\frac{1}{4}x^3y^3)$	$G \rightarrow 13$ $x^2 y^{-2} \cdot y^4$
$\frac{xy^2 \cdot 3yx^{-2} \cdot xy^{-4}}{2x^2}$	$H \to 4$ $\left(-\frac{1}{3}x\right)^2 \cdot (3^{-1}x^3)^{-1}$	$ \begin{array}{c} M \rightarrow 3 \\ 3y^4 \\ \overline{x^{-2}y^{-1}} \end{array} $	$ \begin{array}{c} S \rightarrow 5 \\ -\frac{4x^2}{(-2x)^{-2}} \end{array} $

Table II

1 > 0	4 → H	5 → S	2 → L
32	1	$-16x^{4}$	3
$\overline{x^3y^3}$	$\overline{3x}$		$\overline{2x^2y}$
13 → G	3 → M	9 → P	6 → D
x^2y^2	$3y^5x^2$	$\frac{3x^7}{y^3}$	$\frac{x^{16}}{81}$
		<i>y</i> ³	81
7 → Q	10 → U	8 → N	15 → F
$ 7 \rightarrow Q $ $ \frac{x^4y^7}{3} $	$16x^{12}$	1	$2x^{13}$
3			
12 → I	11 → A	16 → R	14 → J
_ 12	$\frac{16}{xy}$	$\frac{16y^2}{x^8}$	$8x^9y^2$
$-\frac{1}{x^3}$	xy	x ⁸	