NOMBRES ET CALCULS

I) NOTATIONS UTILISÉES EN LYCÉE

1) Ensembles de nombres

- IN désigne l'ensemble des entiers
- Z désigne l'ensemble des entiers
- \mathbb{D} désigne l'ensemble des nombres (qui peuvent s'écrire avec un nombre <u>fini</u> de décimales, donc $\frac{1}{3} \notin \mathbb{D}$!)
- \mathbb{Q} désigne l'ensemble des nombres (quotients <u>d'entiers</u> donc $\frac{\pi}{2} \notin \mathbb{Q}$!)
- R désigne l'ensemble des nombres (tous les nombres connus en 2^{de})

2) Notations complémentaires

- $\bullet \: \mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$
- IR+ désigne l'ensemble des réels positifs ou nuls
- Q* désigne l'ensemble des rationnels sauf zéro
- IR \ {1; 3} désigne l'ensemble des réels sauf 1 et 3

3) Montrer qu'un nombre est décimal

Pour montrer qu'un nombre appartient à \mathbb{D} , il peut être commode de le convertir en fraction décimale. En effet, un nombre possédant n décimales peut toujours s'écrire sous la forme avec $a \in \mathbb{Z}$

Ex:
$$0,12345 = \frac{12345}{12345} = \frac{12345}{12345}$$

Exercice 1 : $\frac{4}{25}$ est-il décimal ?

$$\frac{4}{25} =$$

Exercice 2 : Démonstration « par l'absurde » à connaître :

A l'inverse, montrons que $\frac{1}{3}$ n'est pas décimal :

Supposons que $\frac{1}{3}$ soit décimal.

alors il existe deux entiers a et n, tels que $\frac{1}{3} = \frac{a}{10^n}$

donc
$$a = \frac{10^n}{3}$$

or la somme des chiffres de 10^n est toujours égale à donc 10^n ne peut être divisible par 3

donc a ne peut être entier

donc l'hypothèse de départ ne peut être vraie

p21: 15, 21 p22: 36, 37 p24: 81, 82 + feuille 1.1

4) Intervalles de ℝ

Un intervalle de IR est un ensemble de réels définis par un encadrement ou une inégalité.

L'ensemble des réels <i>x</i> tels que :	se représente graphiquement :	et se note :
$3 \leqslant x < 5$	3 5	
3 > x > 1	1 3	
$-10 \le x$	<u>−10</u>	

5) Intersections et réunions d'ensembles

Soient deux ensembles A et B.

- La réunion de A et de B est l'ensemble des éléments qui appartiennent à A ou à B. On la note A \cup B.
- L'intersection de A et de B est l'ensemble des éléments qui appartiennent à A \underline{et} à B. On la note A \cap B.

Ex avec des intervalles :

- A = [1 ; 5[et B =]-3 ; 4] $A \cap B =$
 - $A \cup B =$
- $A = [2; +\infty[\text{ et } B =]-\infty; 0]$ $A \cap B =$
 - $A \cup B =$

 $A \cup B =$

• A = $[0 ; 2[\text{ et B} =]-1 ; +\infty[$ A \cap B =

p22: 46, 53, 54

p23: 56, 57, 58, 67

p26: 110, 111

p27: 119

6) Dans les exercices

<u>Avant</u> de modifier une expression contenant une variable, il faut <u>définir</u> cette variable et notamment vérifier qu'elle ne prend pas de <u>valeurs</u> <u>interdites</u>.

Voici donc quelques réflexes de rédaction à prendre dès le début de l'année :

Ex1: Développer :
$$A = (2x-1)(x^2+2)$$

Pour tout
$$x$$
 de \mathbb{R} : $A =$

Ex2: Simplifier:
$$B = \frac{(x+1)^2(x-1)}{x^2-1}$$

Conditions:
$$x^2 - 1 \neq 0 \Leftrightarrow$$

Pour tout x de
$$B = \frac{(x+1)^2(x-1)}{x^2-1} =$$

Ex3: Résoudre (E) :
$$x^2+4>4x$$

$$(E) \Leftrightarrow$$

$$(E) \Leftrightarrow$$

Or un carré est toujours positif ou nul S =

Ex4: Résoudre (I):
$$-3x+1 \ge x-3$$

$$(I) \Leftrightarrow$$

$$(I) \Leftrightarrow$$

$$\hat{S} =$$

II) RÈGLES DE CALCUL

1) Quotients:

CONDITION	RÈGLE	
	$\frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}$	
	$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	
	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	
	$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$	

2) Puissances: (n et m entiers strictement positifs)

CONDITION	RÈGLE
	$a^0=1$
	$a^{-n} = \frac{1}{a^n}$
	$a^m \times a^n = a^{m+n}$
	$\frac{a^m}{a^n} = a^{m-n}$
	$(a^m)^n = a^{m \times n}$
	$(ab)^n = a^n b^n$
	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Remarque : Il n'y a pas de règle avec $a^m + a^n$

3) Identités remarquables :

CONDITION	RÈGLE
	(a+b)(a-b) =
	$(a+b)^2 =$
	$(a-b)^2 =$

Rem : illustration géométrique de $(a+b)^2$ =

p22: 41

p25: 86

p26: 100, 107 p28: 136, 137

p69: 3, 4, 5, 7, 8

p79: 27, 31

p80: 43, 44, 50, 53, 55

p81: 59, 60, 61, 62

p90: 154

comparer 2 nombres:

p86: 114, 115, 116, 118

III) FACTORISER UNE EXPRESSION

Factoriser une expression, c'est chercher à la transformer en un produit de facteurs du 1^{er} degré. Pour cela, 2 techniques à essayer <u>dans l'ordre</u>:

1) D'abord, chercher un facteur commun

Pour tout x de \mathbb{R} :

$$A = (4x-3)(x+2)-x(8x-6)-4x+3$$

2) Ensuite seulement, chercher une identité remarquable

Pour tout x de \mathbb{R} :

$$B = 32 x^2 - 48 x + 18$$

p81: 64, 65, 70

p84:101,102

IV) VALEUR ABSOLUE D'UN RÉEL

1) Définition

On appelle « valeur absolue d'un réel x », le réel noté |x| tel que :

$$\begin{cases} \sin x \ge 0 \text{ alors } |x| = x \\ \sin x \le 0 \text{ alors } |x| = -x \end{cases}$$

La valeur absolue permet donc de « rendre positif » un nombre quelconque.

Exemples:

$$|5| = |2 + 5| = |4 - \pi| = |2 - 5| = |\pi - 4| = |\pi - 4|$$

2) Écart entre deux nombres

Cette année, nous utiliserons cette notation pour désigner « la distance entre deux nombres », c'est à dire la différence entre le plus grand et le plus petit de ces deux nombres.

En effet, sur une droite graduée, la distance d entre 2 points d'abscisses x

et
$$a$$
 est telle que :
$$\begin{cases} \sin x \ge a \text{ alors } d = \\ \sin x \le a \text{ alors } d = \end{cases}$$

La distance entre 2 réels x et a est donc égale à

Application:

Équation ou inéquation	Droite graduée	Solutions
x-5 = 4	1 5 9	
$ x = \sqrt{2}$		
x + 1 = 4		
$ x-2 \leq 4$		

3) Valeurs approchées d'un nombre

Soit r, un réel positif (en général tout petit).

On dit que a est une « valeur approchée » de x à r près lorsque $|x-a| \le r$

Tous les nombres de l'intervalle ci-dessus sont des valeurs approchées possibles de x à r près.

En pratique, on cherche une valeur approchée de *x* lorsque ce réel a un très grand nombre de décimales et que l'on veut le remplacer par un nombre très proche ayant peu de décimales !

Exemple : Valeurs approchées de π à 10^{-2} près :

3,14; 3,15; 3,135; 3,1416 sont des valeurs approchées de π à 10^{-2} près. Parmi ces possibilités, on préférera en général 3,14 et 3,15 qui n'ont que 2 décimales. Et on appellera « arrondi de π à 10^{-2} près » celle de ces deux valeurs qui est la plus proche de π , c'est à dire 3,14.

p11: 2 p21: 19 p22: 39 p24: 78, 79, 80 p27: 122 p28: 130, 131, 132 p30: 152, 158 + feuille 1.3