In the problems assume the parameter given in following table. Use the temperature $T=300~{\rm K}$ unless otherwise stated.

Property	Si	GaAs	Ge
Bandgap Energy	1.12	1.42	0.66
Dielectric Constant	11.7	13.1	16.0
Effective density of states in conduction band $N_c ({ m cm}^{-3})$	2.8×10 ¹⁹	4.7×10 ¹⁷	1.04×10^{19}
Effective density of states in valence band $N_v({ m cm}^{-3})$	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
$ \begin{array}{c} \text{Intrinsic carrier} \\ \text{concertration} \\ n_i \text{ (cm}^{-3}) \end{array} $	1.5×10^{10}	1.8×10^6	2.4×10^{18}
Mobility Electron Hole	1350 480	8500 400	3900 1900

- 1. In germanium semiconductor material at $T=400~\mathrm{K}$ the intrinsic concentration is
- (A) $26.8 \times 10^{14} \text{ cm}^{-3}$
- (B) $18.4 \times 10^{14} \text{ cm}^{-3}$
- (C) $8.5 \times 10^{14} \text{ cm}^{-3}$
- $(D)~3.6\times 10^{14}~cm^{-3}$
- **2.** The intrinsic carrier concentration in silicon is to be no greater than $n_i=1\times 10^{12}~{\rm cm}^{-3}$. The maximum temperature allowed for the silicon is (Assume $E_{_{\rho}}=1.12~{\rm eV})$
- (A) 300 K

(B) 360 K

(C) 382 K

- (D) 364 K
- **3.** Two semiconductor material have exactly the same properties except that material A has a bandgap of 1.0

eV and material B has a bandgap energy of 1.2 eV. The ratio of intrinsic concentration of material A to that of material B is

(A) 2016

(B) 47.5

(C) 58.23

- (D) 1048
- **4.** In silicon at T=300 K the thermal-equilibrium concentration of electron is $n_0=5\times 10^4$ cm⁻³. The hole concentration is
- $(A)~4.5\times10^{15}~cm^{^{-3}}$
- (B) $4.5 \times 10^{15} \ m^{-3}$
- (C) $0.3 \times 10^{-6} \text{ cm}^{-3}$
- (D) $0.3 \times 10^{-6} \text{ m}^{-3}$
- **5.** In silicon at T = 300 K if the Fermi energy is 0.22 eV above the valence band energy, the value of p_0 is
- (A) $2 \times 10^{15} \ cm^{-3}$
- (B) 10^{15} cm^{-3}
- (C) $3 \times 10^{15} \text{ cm}^{-3}$
- $(D)~4\times 10^{15}~cm^{-3}$
- **6.** The thermal-equilibrium concentration of hole p_0 in silicon at T = 300 K is 10^{15} cm⁻³. The value of n_0 is
- $(A) \ 3.8 \times 10^8 \ cm^{-3}$
- (B) $4.4 \times 10^4 \text{ cm}^{-3}$
- (C) $2.6 \times 10^4 \text{ cm}^{-3}$
- (D) $4.3 \times 10^8 \text{ cm}^{-3}$
- 7. In germanium semiconductor at T=300 K, the acceptor concentrations is $N_a=10^{13}$ cm⁻³ and donor concentration is $N_d=0$. The thermal equilibrium concentration p_0 is
- (A) $2.97 \times 10^9 \text{ cm}^{-3}$
- (B) $2.68 \times 10^{12} \text{ cm}^{-3}$
- $(C)~2.95\times10^{13}~cm^{-3}$
- (D) 2.4 cm⁻³

Statement for Q.8-9:

In germanium semiconductor at $T = 300\,$ K, the impurity concentration are

$$N_d = 5 \times 10^{15} \text{ cm}^{-3} \text{ and } N_a = 0$$

8. The thermal equilibrium electron concentration n_0 is

- $(A)~5\times10^{15}~cm^{-3}$
- (B) $1.15 \times 10^{11} \text{ cm}^{-3}$
- (C) $1.15 \times 10^9 \text{ cm}^{-3}$
- (D) $5 \times 10^6 \text{ cm}^{-3}$
- **9.** The thermal equilibrium hole concentration p_0 is
- (A) 3.96×10^{13}
- (B) $1.95 \times 10^{13} \text{ cm}^{-3}$
- $(C)~4.36\times 10^{12}~cm^{-3}$
- (D) $3.96 \times 10^{13} \text{ cm}^{-3}$
- 10. A sample of silicon at $T=300~{\rm K}$ is doped with boron at a concentration of $2.5\times 10^{13}~{\rm cm}^{-3}$ and with arsenic at a concentration of $1\times 10^{13}~{\rm cm}^{-3}$. The material is
- (A) p -type with $p_0 = 1.5 \times 10^{13} \text{ cm}^{-3}$
- (B) p -type with $p_0 = 1.5 \times 10^7 \text{ cm}^{-3}$
- (C) n -type with $n_0 = 1.5 \times 10^{13} \text{ cm}^{-3}$
- (D) n -type with $n_0 = 1.5 \times 10^7 \text{ cm}^{-3}$
- 11. In a sample of gallium arsenide at T = 200 K, $n_0 = 5 p_0$ and $N_a = 0$. The value of n_0 is
- (A) $9.86 \times 10^9 \text{ cm}^{-3}$
- (B) 7 cm⁻²
- (C) $4.86 \times 10^{3} \text{ cm}^{-3}$
- (D) 3 cm^{-3}
- 12. Germanium at $T=300~{\rm K}$ is uniformly doped with an acceptor concentration of $N_a=10^{15}~{\rm cm}^{-3}$ and a donor concentration of $N_d=0$. The position of fermi energy with respect to intrinsic Fermi level is
- (A) 0.02 eV
- (B) 0.04 eV
- (C) 0.06 eV
- (D)0.08 eV
- 13. In germanium at $T=300\,$ K, the donor concentration are $N_d=10^{14}\,$ cm $^{-3}$ and $N_a=0$. The Fermi energy level with respect to intrinsic Fermi level is
- (A) 0.04 eV
- (B) 0.08 eV
- (C) 0.42 eV
- (D) 0.86 eV
- 14. A GaAs device is doped with a donor concentration of $3\times10^{15}~\rm cm^{-3}$. For the device to operate properly, the intrinsic carrier concentration must remain less than 5% of the total concentration. The maximum temperature on that the device may operate is
- (A) 763 K

(B) 942 K

 $(C)\ 486\ K$

- (D) 243 K
- **15.** For a particular semiconductor at $T=300~{\rm K}$ $E_g=1.5~{\rm eV},~m_p^*=10m_n^*$ and $n_i=1\times 10^{15}~{\rm cm}^{-3}.$ The

- position of Fermi level with respect to the center of the bandgap is
- (A) +0.045 eV
- (B) 0.046 eV
- (C) +0.039 eV
- (D) -0.039 eV
- 16. A silicon sample contains acceptor atoms at a concentration of $N_a = 5 \times 10^{15} \ {\rm cm^{-3}}$. Donor atoms are added forming and n-type compensated semiconductor such that the Fermi level is 0.215 eV below the conduction band edge. The concentration of donors atoms added are
- $(A)~1.2\times 10^{16}~cm^{^{-3}}$
- (B) $4.6 \times 10^{16} \text{ cm}^{-3}$
- (C) $3.9 \times 10^{12} \text{ cm}^{-3}$
- (D) $2.4 \times 10^{12} \text{ cm}^{-3}$
- 17. A silicon semiconductor sample at $T=300~{\rm K}$ is doped with phosphorus atoms at a concentrations of $10^{15}~{\rm cm}^{-3}$. The position of the Fermi level with respect to the intrinsic Fermi level is
- (A) 0.3 eV

(B) 0.2 eV

(C) 0.1 eV

- (D) 0.4 eV
- 18. A silicon crystal having a cross-sectional area of $0.001~\rm cm^2$ and a length of 20 μm is connected to its ends to a 20 V battery. At $T=300~\rm K$, we want a current of 100 $~\rm mA$ in crystal. The concentration of donor atoms to be added is
- (A) $2.4 \times 10^{13} \text{ cm}^{-3}$
- (B) $4.6 \times 10^{13} \text{ cm}^{-3}$
- (C) $7.8 \times 10^{14} \ cm^{-3}$
- (D) $8.4 \times 10^{14} \text{ cm}^{-3}$
- 19. The cross sectional area of silicon bar is $100~\mu m^2$. The length of bar is 1 mm. The bar is doped with arsenic atoms. The resistance of bar is
- $(A)~2.58~m\Omega$
- $(B)\ 11.36\ k\Omega$
- (C) 1.36 mΩ
- (D) 24.8 kΩ
- **20.** A thin film resistor is to be made from a GaAs film doped n –type. The resistor is to have a value of 2 k Ω . The resistor length is to be 200 μm and area is to be $10^{-6}~\rm cm^2$. The doping efficiency is known to be 90%. The mobility of electrons is 8000 cm²/V –s. The doping needed is
- (A) $8.7 \times 10^{15} \text{ cm}^{-3}$
- (B) $8.7 \times 10^{21} \text{ cm}^{-3}$
- (C) $4.6 \times 10^{15} \text{ cm}^{-3}$
- (D) $4.6 \times 10^{21} \text{ cm}^{-3}$
- **21.** A silicon sample doped n –type at 10^{18} cm⁻³ have a resistance of $10~\Omega$. The sample has an area of 10^{-6}

 $cm^2~$ and a length of 10 μm . The doping efficiency of the sample is $(\mu_{\it n}=800~cm^2/V-s)$

(A) 43.2%

(B) 78.1%

(C) 96.3%

- (D) 54.3%
- 22. Six volts is applied across a 2 cm long semiconductor bar. The average drift velocity is 10^4 cm/s. The electron mobility is
- (A) $4396 \text{ cm}^2/\text{V} \text{s}$
- (B) $3 \times 10^4 \text{ cm}^2/\text{V} \text{s}$
- (C) $6 \times 10^4 \text{ cm}^2/\text{V} \text{s}$
- (D) $3333 \text{ cm}^2/\text{V} \text{s}$
- **23.** For a particular semiconductor material following parameters are observed:

$$\mu_n = 1000 \text{ cm}^2/\text{V} - \text{s}$$
,

$$\mu_n = 600 \text{ cm}^2/\text{V} - \text{s}$$

$$N_a = N_v = 10^{19} \text{ cm}^{-3}$$

These parameters are independent of temperature. The measured conductivity of the intrinsic material is $\sigma=10^{-6}(\Omega-cm)^{-1}$ at T=300 K. The conductivity at T=500 K is

- $(A)~2\times 10^{-4}~(\Omega-cm)^{-1}$
- (B) $4 \times 10^{-5} (\Omega cm)^{-1}$
- (C) $2 \times 10^{-5} (\Omega cm)^{-1}$
- (D) $6 \times 10^{-3} (\Omega cm)^{-1}$
- **24.** An n-type silicon sample has a resistivity of 5 Ω -cm at T=300 K. The mobility is $\mu_n=1350$ cm²/V-s. The donor impurity concentration is
- $(A)~2.86\times 10^{-14}~cm^{-3}$
- (B) $9.25 \times 10^{14} \text{ cm}^{-3}$
- (C) $11.46 \times 10^{15} \text{ cm}^{-3}$
- (D) $1.1 \times 10^{-15} \text{ cm}^{-3}$
- **25.** In a silicon sample the electron concentration drops linearly from 10^{18} cm⁻³ to 10^{16} cm⁻³ over a length of 2.0 μ m. The current density due to the electron diffusion current is ($D_n = 35 \text{ cm}^2/\text{s}$).
- (A) $9.3 \times 10^4 \text{ A/cm}^2$
- (B) $2.8 \times 10^4 \text{ A/cm}^2$
- (C) $9.3 \times 10^9 \text{A/cm}^2$
- (D) $2.8 \times 10^9 \text{ A/cm}^2$
- **26.** In a GaAs sample the electrons are moving under an electric field of 5 kV/cm and the carrier concentration is uniform at 10^{16} cm⁻³. The electron velocity is the saturated velocity of 10^7 cm/s. The drift current density is
- (A) $1.6 \times 10^4 \text{ A/cm}^2$
- (B) $2.4 \times 10^4 \text{ A/cm}^2$
- (C) $1.6 \times 10^8 \text{A/cm}^2$
- (D) $2.4 \times 10^8 \text{ A/cm}^2$

- **27.** For a sample of GaAs scattering time is $\tau_{sc} = 10^{-13} \, \mathrm{s}$ and electron's effective mass is $m_e^* = 0.067 m_o$. If an electric field of 1 kV/cm is applied, the drift velocity produced is
- $(A)~2.6\times 10^6~cm/s$
- (B) 263 cm/s
- (C) 14.8×10^6 cm/s
- (D) 482
- **28.** A gallium arsenide semiconductor at $T=300~{\rm K}$ is doped with impurity concentration $N_d=10^{16}~{\rm cm}^{-3}$. The mobility μ_n is 7500 cm²/V –s. For an applied field of 10 V/cm the drift current density is
- (A) 120 A/cm²
- (B) 120 A/cm²
- (C) $12 \times 10^4 \text{ A/cm}^2$
- (D) $12 \times 10^4 \text{A/cm}^2$
- **29.** In a particular semiconductor the donor impurity concentration is $N_d=10^{14}~{\rm cm}^{-3}.$ Assume the following parameters,

$$\mu_n = 1000 \text{ cm}^2/\text{V} - \text{s},$$

$$N_c = 2 \times 10^{19} \left(\frac{T}{300}\right)^{3/2} \text{ cm}^{-3},$$

$$N_v = 1 \times 10^{19} \left(\frac{T}{300}\right)^{3/2} \text{ cm}^{-3},$$

$$E_{\varphi} = 1.1 \text{ eV}.$$

An electric field of $E=10~\mathrm{V/cm}$ is applied. The electric current density at 300 K is

- (A) 2.3 A/cm²
- (B) 1.6 A/cm²
- (C) 9.6 A/cm²
- (D) 3.4 A/cm^2

Statement for Q.30-31:

A semiconductor has following parameter

$$\mu_n = 7500 \text{ cm}^2/\text{V} - \text{s},$$

$$\mu_n = 300 \text{ cm}^2/\text{V} - \text{s},$$

$$n_i = 3.6 \times 10^{12} \text{ cm}^{-3}$$

- **30.** When conductivity is minimum, the hole concentration is
- $(A)~7.2\times 10^{11}~cm^{^{-3}}$
- (B) $1.8 \times 10^{13} \text{ cm}^{-3}$
- (C) $1.44 \times 10^{11} \text{ cm}^{-3}$
- (D) $9 \times 10^{13} \text{ cm}^{-3}$
- **31.** The minimum conductivity is
- (A) $0.6 \times 10^{-3} (\Omega cm)^{-1}$
- (B) $1.7 \times 10^{-3} (\Omega cm)^{-1}$
- (C) $2.4 \times 10^{-3} (\Omega cm)^{-1}$
- (D) $6.8 \times 10^{-3} (\Omega cm)^{-1}$

32. A particular intrinsic semiconductor has a resistivity of 50 (Ω –cm) at T = 300 K and 5 (Ω –cm) at T = 330 K. If change in mobility with temperature is neglected, the bandgap energy of the semiconductor is

(A) 1.9 eV

(B) 1.3 eV

(C) 2.6 eV

(D) 0.64 eV

33. Three scattering mechanism exist in a semiconductor. If only the first mechanism were present, the mobility would be $500~\rm{cm^2/V}$ –s. If only the second mechanism were present, the mobility would be $750~\rm{cm^2/V}$ –s. If only third mechanism were present, the mobility would be $1500~\rm{cm^2/V}$ –s. The net mobility is

- (A) $2750 \text{ cm}^2/\text{V} \text{s}$
- (B) $1114 \text{ cm}^2/\text{V} \text{s}$
- (C) $818 \text{ cm}^2/\text{V} \text{s}$
- (D) $250 \text{ cm}^2/\text{V} \text{s}$

34. In a sample of silicon at T=300 K, the electron concentration varies linearly with distance, as shown in fig. P2.1.34. The diffusion current density is found to be $J_n=0.19$ A/cm². If the electron diffusion coefficient is $D_n=25$ cm²/s, The electron concentration at is

Fig. P2.1.34

- (A) $4.86 \times 10^{8} \text{ cm}^{-3}$
- (B) $2.5 \times 10^{13} \text{ cm}^{-3}$
- (C) $9.8 \times 10^{26} \text{ cm}^{-3}$
- (D) $5.4 \times 10^{15} \text{ cm}^{-3}$

35. The hole concentration in p – type GaAs is given by

$$p = 10^{16} \left(1 - \frac{x}{L} \right) \text{cm}^{-3} \text{ for } 0 \le x \le L$$

where L = 10 μm . The hole diffusion coefficient is 10 cm $^2/s$. The hole diffusion current density at x = 5 μm is

- (A) 20 A/cm^2
- (B) 16 A/cm^2
- (C) 24 A/cm²
- (D) 30 A/cm²

36. For a particular semiconductor sample consider following parameters:

Hole concentration $p_0 = 10^{15} e^{\left(\frac{-x}{L_p}\right)} \text{ cm}^{-3}, x \ge 0$

Electron concentration $n_0 = 5 \times 10^{14} e^{\left(\frac{-x}{L_n}\right)} \, \mathrm{cm}^{-3}, x \leq 0$

Hole diffusion coefficient $D_p = 10 \text{ cm}^2/\text{s}$

Electron diffusion coefficients $D_n = 25 \text{ cm}^2/\text{s}$

Hole diffusion length $L_p = 5 \times 10^{-4}$ cm,

Electron diffusion length $L_n = 10^{-3}$ cm

The total current density at x = 0 is

- (A) 1.2 A/cm²
- (B) 5.2 A/cm^2
- (C) 3.8 A/cm^2
- (D) 2 A/cm^2

37. A germanium Hall device is doped with 5×10^{15} donor atoms per cm³ at T=300 K. The device has the geometry $d=5\times 10^{-3}$ cm, $W=2\times 10^{-2}$ cm and L=0.1 cm. The current is $I_x=250~\mu\text{A}$, the applied voltage is $V_x=100~\text{mV}$, and the magnetic flux is $B_z=5\times 10^{-2}$ tesla. The Hall voltage is

- (A) -0.31 mV
- (B) 0.31 mV
- (C) 3.26 mV
- (D) -3.26 mV

Statement for Q.38-39:

A silicon Hall device at $T=300~\rm K$ has the geometry $d=10^{-3}~\rm cm$, $W=10^{-2}~\rm cm$, $L=10^{-1}~\rm cm$. The following parameters are measured: $I_x=0.75~\rm mA$, $V_x=15~\rm V$, $V_H=+5.8~\rm mV$, tesla

38. The majority carrier concentration is

- (A) $8 \times 10^{15} \text{ cm}^{-3}$, n type
- (B) $8 \times 10^{15} \text{ cm}^{-3}$, p type
- (C) $4 \times 10^{15} \text{ cm}^{-3}$, n type
- (D) $4 \times 10^{15} \text{ cm}^{-3}$, p type

39. The majority carrier mobility is

- (A) $430 \text{ cm}^2/\text{V} \text{s}$
- (B) $215 \text{ cm}^2/\text{V} \text{s}$
- (C) $390 \text{ cm}^2/\text{V} \text{s}$
- (D) $195 \text{ cm}^2/\text{V} \text{s}$

40. In a semiconductor $n_0=10^{15}~{\rm cm}^{-3}$ and $n_i=10^{10}~{\rm cm}^{-3}$. The excess-carrier life time is 10^{-6} s. The excess hole concentration is $\delta p=4\times 10^{13}~{\rm cm}^{-3}$. The electron-hole recombination rate is

- $(A)~4\times 10^{19}~cm^{-3}\!s^{-1}$
- (B) $4 \times 10^{14} \text{ cm}^{-3} \text{s}^{-1}$
- (C) $4 \times 10^{24} \text{ cm}^{-3} \text{s}^{-1}$
- (D) $4 \times 10^{11} \text{ cm}^{-3} \text{s}^{-1}$

- **41.** A semiconductor in thermal equilibrium, has a hole concentration of $p_0 = 10^{16} \ \mathrm{cm^{-3}}$ and an intrinsic concentration of $n_i = 10^{10} \ \mathrm{cm^{-3}}$. The minority carrier life time is $4 \times 10^{-7} \mathrm{s}$. The thermal equilibrium recombination rate of electrons is
- (A) $2.5 \times 10^{22} \text{ cm}^{-3} \text{ s}^{-1}$
- (B) $5 \times 10^{10} \text{ cm}^{-3} \text{ s}^{-1}$
- $(C)~2.5\times10^{10}~cm^{^{-3}}\,s^{^{-1}}$
- (D) $5 \times 10^{22} \text{ cm}^{-3} \text{ s}^{-1}$

Statement for Q.42-43:

A n-type silicon sample contains a donor concentration of $N_d=10^6~{\rm cm}^{-3}.$ The minority carrier hole lifetime is $\tau_{p0}=10~{\rm \mu s}.$

- **42.** The thermal equilibrium generation rate of hole is
- (A) $5 \times 10^8 \text{ cm}^{-3} \text{ s}^{-1}$
- (B) $10^4 \text{ cm}^{-3} \text{ s}^{-1}$
- (C) $2.25 \times 10^9 \text{ cm}^{-3} \text{ s}^{-1}$
- (D) $10^3 \text{ cm}^{-3} \text{ s}^{-1}$
- **43.** The thermal equilibrium generation rate for electron is
- $(A)~1.125\times 10^9~cm^{^{-3}}\,s^{^{-1}}$
- (B) $2.25 \times 10^9 \text{ cm}^{-3} \text{ s}^{-1}$
- (C) $8.9 \times 10^{-10} \text{ cm}^{-3} \text{ s}^{-1}$
- (D) $4 \times 10^9 \text{ cm}^{-3} \text{ s}^{-1}$
- **44.** A n-type silicon sample contains a donor concentration of $N_d=10^{16}~{\rm cm}^{-3}$. The minority carrier hole lifetime is $\tau_{p0}=20~{\rm \mu s}$. The lifetime of the majority carrier is $(n_i=1.5\times 10^{10}~{\rm cm}^{-3})$
- (A) $8.9 \times 10^6 \text{ s}$
- (B) $8.9 \times 10^{-6} \text{ s}$
- (C) $4.5 \times 10^{-17} \text{ s}$
- (D) 1.13×10^{-7} s
- **45.** In a silicon semiconductor material the doping concentration are $N_a=10^{16}~{\rm cm^{-3}}$ and $N_a=0$. The equilibrium recombination rate is $R_{p0}=10^{11}~{\rm cm^{-3}s^{-1}}$. A uniform generation rate produces an excess- carrier concentration of $\delta n=\delta p=10^{14}~{\rm cm^{-3}}$. The factor, by which the total recombination rate increase is
- (A) 2.3×10^{13}
- (B) 4.4×10^{13}
- (C) 2.3×10^9
- (D) 4.4×10^9

Solutions

1. (D)
$$n_i^2 = N_c N_v e^{-\left(\frac{-E_g}{kT}\right)}$$

$$V_t = 0.0259 \left(\frac{400}{300} \right) = 0.0345$$

For Ge at 300 K,

$$N_c = 1.04 \times 10^{19}, \ N_v = 6.0 \times 10^{18}, \ E_g = 0.66 \text{ eV}$$

$$n_i^2 = 1.04 \times 10^{19} \times 6.0 \times 10^{18} \times \left(\frac{400}{300}\right)^3 \times e^{-\left(\frac{0.66}{0.0345}\right)}$$

$$\Rightarrow n_i = 8.5 \times 10^{14} \text{ cm}^{-3}$$

2. (C)
$$n_i^2 = N_c N_v e^{-\left(\frac{-E_g}{kT}\right)}$$

$$(10^{12})^2 = 2.8 \times 10^{19} \times 1.04 \times 10^{19} \left(\frac{T}{300}\right)^3 e^{-\left(\frac{1.12e}{kT}\right)}$$

$$T^3\,e^{\frac{-13\times 10^3}{T}}=9.28\times 10^{-8}$$
 , By trial $\ T=382\ \mathrm{K}$

3. (B)
$$\frac{n_{iA}^2}{n_{iB}^2} = \frac{e^{-\frac{E_{gA}}{kT}}}{e^{-\frac{E_{gB}}{kT}}} = e^{-\left(\frac{E_{gA} - E_{gB}}{kT}\right)} = 2257.5 \implies \frac{n_{iA}}{n_{iB}} = 47.5$$

4. (A)
$$p_0 = \frac{n_i^2}{n_0} = \frac{(1.5 \times 10^{10})^2}{5 \times 10^4} = 4.5 \times 10^{15} \text{ cm}^{-3}$$

5. (A)
$$p_0 = N_v e^{-\frac{(E_F - E_v)}{kT}} = 1.04 \times 10^{19} e^{\frac{-0.22}{0.0259}} = 2 \times 10^{15} \text{ cm}^{-3}$$

6. (B)
$$p_0 = N_v e^{-\frac{(E_F - E_v)}{kT}} \implies E_F - E_v = kT \ln\left(\frac{N_v}{p_0}\right)$$

At 300 K, $N_v = 1.0 \times 10^{19} \text{ cm}^{-3}$

$$E_F - E_v = 0.0259 \ln \left(\frac{1.04 \times 10^{19}}{10^{15}} \right) = 0.239 \text{ eV}$$

$$n_0 = N_c \, e^{\frac{(E_c - E_F)}{kT}}$$

At 300 K, $N_a = 2.8 \times 10^{19} \text{ cm}^{-3}$

$$E_c - E_F = 1.12 - 0.239 = 0.881 \text{ eV}$$

 $n_0 = 4.4 \times 10^4 \text{ cm}^{-3}$

7. (C)
$$p_0 = \frac{N_a - N_d}{2} + \sqrt{\left(N_a - \frac{N_d}{2}\right)^2 + n_i^2}$$

For Ge
$$n_i = 2.4 \times 10^3$$

$$p_0 = \frac{10^{13}}{2} + \sqrt{\left(\frac{10^{13}}{2}\right)^2 + (2.4 \times 10^{13})^2} = 2.95 \times 10^{13} \text{ cm}^{-3}$$

$$\begin{aligned} \mathbf{8.} & \text{ (A) } \ n_0 = \frac{N_d - N_a}{2} + \sqrt{\left(N_d - \frac{N_a}{2}\right)^2 + n_i^2} \\ & = \frac{5 \times 10^{15}}{2} + \sqrt{\left(\frac{5 \times 10^{15}}{2}\right)^2 + (2.4 \times 10^{13})^2} \ = 5 \times 10^{15} \text{ cm}^{-3} \end{aligned}$$

9. (B)
$$p_0 = \frac{n_i^2}{p_0} = \frac{(2.4 \times 10^{13})^2}{2.95 \times 10^{13}} = 1.95 \times 10^{13} \text{ cm}^{-3}$$

10. (A) Since $N_a > N_d$, thus material is p-type , $p_0 = N_a - N_d = 2.5 \times 10^3 - 1 \times 10^3 = 1.5 \times 10^{13} \text{ cm}^{-3}$

11. (D)
$$kT = 0.0259 \left(\frac{200}{300} \right) = 0.0173 \text{ eV}$$

For GaAs at 300 K,

$$N_c = 4.7 \times 10^{17} \text{ cm}^{-3}, \qquad N_v = 7.0 \times 10^{18}, \qquad E_g = 1.42 \text{ eV}$$

$$n_i^2 = 4.7 \times 10^{17} \times 7.0 \times 10^{18} \left(\frac{200}{300}\right)^3 e^{-\left(\frac{1.42}{0.0173}\right)}$$

$$\Rightarrow n_i = 1.48 \text{ cm}^{-3}$$

$$n_i^2 = n_0 p_0 = 5 p_0^2 = \frac{n_0^2}{5}$$

$$n_0 = \sqrt{5} n_i = 3.3 \text{ cm}^{-3}$$

12. (A)
$$kT = 0.0259 \left(\frac{400}{300} \right) = 0.0345 \text{ eV}$$

$$n_i^2 = N_c N_v e^{-\left(\frac{-E_g}{kT}\right)}$$

For Ge at 300 K,

$$N_c = 1.04 \times 10^{19} \text{ cm}^{-3}$$
 , $N_v = 6 \times 10^{18} \text{ cm}^{-3}$, $E_g = 0.66 \text{ eV}$ $n_i^2 = 1.04 \times 10^{19} \times 6 \times 10^{18} \left(\frac{400}{300}\right)^3 e^{-\left(\frac{0.66}{0.0345}\right)} = 7.274 \times 10^{29}$

$$n_i = 8.528 \times 10^{14} \text{ cm}^{-3}$$

$$p_0 = \frac{N_a}{2} + \sqrt{\left(\frac{N_a}{2}\right)^2 + n_i^2}$$

$$=\frac{10^{15}}{2}+\sqrt{\left(\frac{10^{15}}{2}\right)^2+7.274\times10^{29}}$$

$$\Rightarrow p_0 = 1.489 \times 10^{15} \text{ cm}^{-3}$$

$$E_{Fi} - E_F = kT \ln \left(\frac{p_0}{n_0} \right) = 0.0345 \ln \left(\frac{1.489 \times 10^{15}}{8.528 \times 10^{14}} \right)$$

=0.019 eV

13. (A)
$$n_0 = \frac{N_d}{2} + \sqrt{\left(\frac{N_d}{2}\right)^2 + n_i^2}$$

For Ge at T = 300 K, $n_i = 2.4 \times 10^{13}$ cm⁻³

$$n_0 = \frac{10^{14}}{2} + \sqrt{\left(\frac{10^{14}}{2}\right)^2 + (2.4 \times 10^{13})^2} = 1.055 \times 10^{14} \text{ cm}^{-3}$$

$$E_F - E_{Fi} = kT \ln \left(\frac{n_0}{n_i} \right) = 0.0259 \ln \left(\frac{1.055 \times 10^{14}}{2.4 \times 10^{13}} \right)$$

14. (A)
$$n_0 = \frac{N_d}{2} + \sqrt{\left(\frac{N_d}{2}\right)^2 + n_i^2}$$

$$n_i = 0.05 n_0$$

$$\Rightarrow n_0 = 1.5 \times 10^{15} + \sqrt{(1.5 \times 10^{15})^2 + (0.05 n_0)^2}$$

$$\Rightarrow n_0 = 3.0075 \times 10^{15} \text{ cm}^{-3}$$

$$n_i = 1.504 \times 10^{14} \text{ cm}^{-3}$$

$$n_i^2 = N_c N_v e^{-\left(\frac{-E_g}{kT}\right)}$$

For GaAs at T = 300 K,

$$N_c = 4.7 \times 10^{17}$$
, $N_v = 7 \times 10^{18}$, $E_g = 1.42$ eV

$$N_c = 4.7 \times 10^{17}, \qquad N_v = 7 \times 10^{18}, \qquad E_g = 1.42 \text{ eV}$$

 $(1.504)^2 = 4.7 \times 10^{17} \times 7 \times 10^{18} \left(\frac{T}{300}\right)^3 e^{-\left(\frac{1.42 \times 300}{0.0259T}\right)}$

By trial and error T = 763 K

15. (A)
$$E_{Fi} - E_{midgap} = \frac{3}{4} kT \ln \left(\frac{m_p^*}{m_p^*} \right) = 0.0446 \text{ eV}$$

16. (A)
$$n_0 = N_d - N_a = N_c e^{-\left(\frac{E_c - E_F}{kT}\right)}$$

For Si,
$$N_c = 2.8 \times 10^{19} \text{ cm}^{-3}$$

$$N_d = 5 \times 10^{15} + 2.8 \times 10^{19} e^{-\left(\frac{0.215}{0.0259}\right)} = 1.19 \times 10^{16} \text{ cm}^{-3}$$

17. (A)
$$E_F - E_{Fi} = kT \ln \left(\frac{N_d}{N_c} \right)$$

$$=0.0259 ln \left(\frac{10^{15}}{1.5 \times 10^{10}}\right) = 0.287 eV$$

18. (D)
$$R = \frac{V}{I} = \frac{20}{100 \text{m}} = 200 \Omega$$

$$\sigma = \frac{L}{RA} = \frac{2 \times 10^{-3}}{(200)(0.001)} = 0.01(\Omega - cm)^{-1}$$

 $\sigma \approx e \mu_n n_0$, For Si, $\mu_n = 1350$.

$$\Rightarrow$$
 0.01 = $(1.6 \times 10^{-19})(1350)n_0$

$$n_0 = 4.6 \times 10^{13} \text{ cm}^{-3}$$

$$n_0 >> n_i \implies n_0 = N_d$$

19. (B)
$$N_d >> n_i \implies n_0 = N_d$$
, $\sigma \approx e \mu_n n_0$,

$$R = \frac{L}{\sigma A} = \frac{L}{e\mu_n N_d A}$$

$$= \frac{0.1}{(1.6\times 10^{-19})(1100)(5\times 10^{16})(100\times 10^{-8})} \ = 11.36 \ k\Omega$$

20. (A)
$$R = \frac{L}{\sigma A}$$
, $\sigma \approx e \mu_n n_0$, $R = \frac{L}{e \mu_n n_0 A}$ $\Rightarrow n_0 = \frac{L}{e \mu_n A R}$

$$n_0 = 0.9 N_0$$

$$=\frac{20\times 10^{-4}}{(0.9)(1.6\times 10^{-19})(8000)(10^{-6})(2\times 10^{3})}=8.7\times 10^{15}~cm^{-3}$$

21. (B)
$$\sigma \approx e \mu_n n_0$$
, $R = \frac{L}{\sigma A}$, $n_0 = \frac{L}{e \mu_n AR}$

$$=\frac{10\times10^{-4}}{(1.6\times10^{-19})(800)(10^{-6})(10)}=7.81\times10^{17}~cm^{-3}$$

Efficiency =
$$\frac{n_0}{N_d} \times 100 = \frac{7.8 \times 10^{17}}{10^{18}} \times 100 = 78.1 \%$$

22. (D)
$$E = \frac{V}{L} = \frac{6}{2} = 3 \text{ V/cm}, \ v_d = \mu_n E,$$

$$\mu_n = \frac{v_d}{E} = \frac{10^4}{3} = 3333 \text{ cm}^2/\text{V} - \text{s}$$

23. (D)
$$\sigma_1 = e n_i (\mu_n + \mu_p)$$

$$10^{-6} = (1.6 \times 10^{-19})(1000 + 600)n_{\odot}$$

At
$$T = 300$$
 K, $n_i = 3.91 \times 10^9$ cm⁻³

$$n_i^2 = N_c N_v e^{-\left(rac{E_g}{kT}
ight)} \ \Rightarrow E_g = kT \ln\left(rac{N_c N_v}{n_i^2}
ight)$$

$$\Rightarrow E_g = 2(0.0259) \ln \left(\frac{10^{19}}{3.91 \times 10^9} \right) = 1.122 \text{ eV}$$

At
$$T = 500 \text{ K}$$
, $kT = 0.0259 \left(\frac{500}{300} \right) = 0.0432 \text{ eV}$,

$$n^2 = (10^{19})^2 e^{-\left(\frac{1.122}{0.0432}\right)} \text{ cm}^{-3}$$

$$\Rightarrow n_i = 2.29 \times 10^{13} \text{ cm}^{-3}$$

$$=(1.6\times10^{-19})(2.29\times10^{13})(1000+600)$$

$$=5.86 \times 10^{-3} (\Omega - cm)^{-1}$$

24. (B)
$$\rho = \frac{1}{\sigma} = \frac{1}{e \mu_n N_d}$$

$$N_d = \frac{1}{\rho e \mu_n} = \frac{1}{5(1.6 \times 10^{-19})(1350)} = 9.25 \times 10^{14} \text{ cm}^{-3}$$

25. (B)
$$J_n = eD_n \frac{dn}{dx}$$

=
$$(1.6 \times 10^{-19})(35) \left(\frac{10^{18} - 10^{16}}{2 \times 10^{-4}} \right) = 2.8 \times 10^{4} \text{ A/cm}^{2}$$

26. (A)
$$J = evn = (1.6 \times 10^{-19})(10^7)(10^{16}) = 1.6 \text{ A/cm}^2$$

27. (A)
$$v_d = \frac{e\tau_{sc}E}{m^*} = \frac{(1.6 \times 10^{-19})(10^{-13})(10^5)}{(0.067)(9.1 \times 10^{-31})}$$

$$=26.2 \times 10^3 \text{ m/s} = 2.6 \times 10^6 \text{ cm/s}$$

28. (A)
$$N_d >> n_i \implies n_0 = N_d$$

$$J = e\mu_n n_0 E = (1.6 \times 10^{-19})(7500)(10^{16})(10) = 120 \text{ A/cm}^2$$

29. (D)
$$n_i^2 = N_c N_v e^{-\left(\frac{-E_g}{kT}\right)}$$

$$= (2 \times 10^{19})(1 \times 10^{19}) \ e^{-\left(\frac{1.1}{0.0259}\right)} = 7.18 \times 10^{19}$$

$$\Rightarrow n_i = 8.47 \times 10^9 \text{ cm}^{-3}$$

$$N_d >> n_i \implies N_d = n_0$$

$$J = \sigma E = e \mu_n n_0 E$$

=
$$(1.6 \times 10^{-19})(1000)(10^{14})(100) = 1.6 \text{ A/cm}^2$$

30. (A)
$$\sigma = e\mu_n n_0 + e\mu_p p_0$$
 and $n_0 = \frac{n_i^2}{n_0}$

$$\Rightarrow \quad \sigma = e\mu_n \; \frac{n_i^2}{p_0} + e\mu_p \, p_0 \; ,$$

$$\frac{d\sigma}{dp_0} = 0 = \frac{(-1)e\mu_n n_i^2}{p_0^2} + e\mu_p$$

$$\Rightarrow p_0 = n_i \left(\frac{\mu_n}{\mu_n}\right)^{\frac{1}{2}} = 3.6 \times 10^{12} \left(\frac{7500}{300}\right)^{\frac{1}{2}}$$

$$=7.2\times10^{11}~cm^{-3}$$

31. (B)
$$\sigma_{min} = \frac{2\sigma_i \sqrt{\mu_p \mu_n}}{\mu_p + \mu_p} = 2 e n_i \sqrt{\mu_p \mu_n}$$

$$=2\times 1.6\times 10^{-19}(3.6\times 10^{12})\sqrt{(7500)(300)}$$

$$=1.7 \times 10^{-3} (\Omega - cm)^{-1}$$

32. (B)
$$\sigma = \frac{1}{\Omega} = e \mu n_i$$
,

$$\frac{\frac{1}{\rho_1}}{\frac{1}{\rho_1}} = \frac{n_{i1}}{n_{i2}} = \frac{e^{-\frac{E_g}{2kT_1}}}{e^{-\frac{E_g}{2kT_2}}}$$

$$0.1 = e^{-\frac{E_g}{2k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)}$$

$$\frac{E_g}{2k} \left(\begin{array}{c} 330 - 300 \\ 330 \times 300 \end{array} \right) = \ln 10$$

$$E_g = 22(k300) \ln 10 = 1.31 \text{ eV}$$

33. (D)
$$\frac{1}{\mu} = \frac{1}{\mu_1} + \frac{1}{\mu_2} + \frac{1}{\mu_2}$$

$$\frac{1}{\mu} = \frac{1}{500} + \frac{1}{750} + \frac{1}{1500} \implies \mu = 250 \text{ cm}^2/\text{V} - \text{s}$$

34. (B)
$$J_n = eD_n \frac{dn}{dx}$$

$$0.19 = (1.6 \times 10^{-19})(25) \left(\frac{5 \times 10^{14} - n(0)}{0.010} \right)$$

$$n(0) = 2.5 \times 10^{13} \text{ cm}^{-3}$$

35. (B)
$$J = -eD_p \frac{dp}{dx} = -eD_p \frac{d}{dx} \left(10^{16} \left(1 - \frac{x}{L} \right) \right) = \frac{e^{10^{16}} D_p}{L}$$

$$=\frac{(1.6\times 10^{-19})(10^{16})(10)}{10\times 10^{-4}}$$

$$J = 16 \text{ A/cm}^2$$

36. (B)
$$J_p = -eD_p \frac{dp_0}{dx}\Big|_{x=0} = \frac{10^{15}eD_p}{L_p}$$

$$J_n = e D_n \frac{dn_0}{dx}\Big|_{x=0} = \frac{5 \times 10^{14} e D_n}{L_n}$$

$$J = J_p + J_n = \frac{10^{15} eD_p}{L_p} + \frac{5 \times 10^{14} eD_n}{L_p}$$

$$=1.6\times10^{-19}\left(\begin{array}{c} 10^{15}(10)\\ 15\times10^{-4} \end{array} + \frac{5\times10^{14}(25)}{10^{-3}}\right) = 5.2\ A/cm^2$$

37. (A)
$$V_H = \frac{-I_x B_z}{n_{ed}}$$

$$= \frac{(250 \times 10^{-6})(5 \times 10^{-2})}{(5 \times 10^{21})(1.6 \times 10^{-19})(5 \times 10^{-5})} = -0.313~mV$$

38. (B) V_H is positive p-type

$$V_H = \frac{I_x B_z}{epd} \Rightarrow p = \frac{I_x B_z}{eV_H d}$$

$$p = \frac{(0.75 \times 10^{-3})(10^{-1})}{(1.6 \times 10^{-19})(5.8 \times 10^{-3})(10^{-5})}$$

$$= 8.08 \times 10^{21} \ m^{-3} = 8.08 \times 10^{15} \ cm^{-3}$$

39. (C)
$$u_p = \frac{I_x L}{e n V W d}$$

$$=\frac{(0.75\times 10^{-3})(10^{-3})}{(1.6\times 10^{-19})(8.08\times 10^{21})(15)(10^{-4})(10^{-5})}$$

$$\mu_n = 3.9 \times 10^{-2} \text{ m}^2/\text{V} - \text{s} = 390 \text{ cm}^2/\text{V} - \text{s}$$

40. (A) n-type semiconductor

$$R = \frac{\delta p}{\tau_{n0}} = \frac{4 \times 10^{13}}{10^{-6}} = 4 \times 10^{19} \text{ cm}^{-3} \text{s}^{-1}$$

41. (C)
$$n_0 = \frac{n_i^2}{p_0} = \frac{(10^{10})^2}{10^{16}} = 10^4 \text{ cm}^{-3}$$

$$R_{n\,0} = \frac{n_0}{\tau_{n\,0}} = \frac{10^4}{4 \times 10^{-7}} = 2.5 \times 10^{10} \text{ cm}^{-3} \text{s}^{-1}$$

42. (C)
$$R_{n0} = \frac{p_0}{\tau_{n0}}$$
, $p_0 = \frac{n_i^2}{n_0}$, $n_0 = N_d = 10^6 \text{ cm}^{-3}$

$$p_0 = \frac{(1.5 \times 10^{10})^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$$

$$R_{n0} = \frac{2.25 \times 10^4}{10 \times 10^{-6}} = 2.25 \times 10^9 \text{ cm}^{-3} \text{s}^{-1}$$

43. (B) Recombination rate for minority and majority carrier are equal . The generation rate is equal to Recombination rate.

$$G = R_{n0} = R_{p0} = 225 \times 10^9 \text{ cm}^{-3} \text{s}^{-1}$$

44. (A) Recombination rates are equal $\frac{n_0}{\tau_{n0}} = \frac{p_0}{\tau_{p0}}$,

$$N_d >> n$$

$$n_0 = N_d, \ p_0 = \frac{n_i^2}{n_i}$$

$$\tau_{n0} = \frac{n_0}{n_0} \tau_{p0} = \frac{n_0^2}{n_0^2} \tau_{p0}$$

$$= \left(\frac{10^{16}}{1.5 \times 10^{10}}\right)^2 \times 20 \times 10^{-6} = 8.9 \times 10^6 \ s$$

45. (D)
$$N_d >> n_i \implies n_0 = N_d$$

$$p_0 = \frac{n_i^2}{n_0} = \frac{(1.5 \times 10^{10})^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$$

$$R_{p0} = \frac{p_0}{\tau_{p0}} \quad \Rightarrow \quad \tau_{p0} = \frac{p_0}{R_{p0}} = \frac{2.25 \times 10^4}{10^{11}} = 2.25 \times 10^7 \text{ s}$$

$$R_p = \frac{\delta p}{\tau_{p0}} = \frac{10^{14}}{2.25 \times 10^{-7}} = 4.44 \times 10^{20} \text{ cm}^{-3} \text{s}^{-1}$$

$$\frac{R_p}{R_{r,0}} = \frac{4.44 \times 10^{20}}{10^{11}} = 4.44 \times 10^9$$
