Численное интегрирование и дифференцирование

Тема 5

Погрешность квадратурных формул.

Квадратурные формулы наивысшей алгебраической точности.

Приближенное вычисление определенного интеграла основано на замене интеграла конечной суммой по формуле:

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} C_{k} f(x_{k}),$$

называемой *квадратурной формулой*, где

 ${\it C}_{\it k}$ - ${\it коэффициенты}$ (или веса) квадратурной формулы,

 \mathbf{x}_{k} - узлы квадратурной формулы (точки отрезка интегрирования).

Квадратурные формулы интерполяционного типа (формулы Ньютона-Котеса) получают заменой подынтегральной функции f(x) на [a,b] интерполяционным многочленом $P_m(x)$ с узлами интерполяции в точках x_o , x_v , x_z , ... x_n (узлах) и последующим интегрированием для получения коэффициентов(весов) формул:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{m}(x)dx$$

Простейшие <u>составные</u> квадратурные формулы получаются при разбиении области интегрирования [a,b] на n равных частей длиною h=(b-a)/n и замене подынтегральной функции на <u>каждой</u> части интерполяционным многочленом невысокой степени m:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} P^{(i)}_{m}(x)dx$$

<u>Увеличение</u> числа отрезков разбиения **п** ведет к <u>увеличению</u> точности замены.

Квадратурные формулы интерполяционного типа

Замена функции на *элементарных отрезках* разбиения полиномами нулевой, первой и второй степени (**m=0,1,2**) позволяет получить соответственно следующие формулы численного интегрирования:

- ✓ методы прямоугольников;
- ✓ метод трапеций;
- ✓ метод Симпсона (парабол).

Очевидно, что во всех случаях замена функции f(x) интерполирующим полиномом приводит к образованию погрешности вычисления значения интеграла.

Разность $R_n(f)$ между точным значением и приближенным значением интеграла, вычисленным по квадратурной формуле, называется погрешностью квадратурной формулы:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{n} C_{k} f(x_{k}) + R_{n}(f)$$

Для элементарных отрезков разбиения погрешность квадратурных формул **Ньютона-Котеса** для различных степеней **т** на можно найти из равенства:

$$\int_{x_i}^{x_{i+1}} f(x)dx - \int_{x_i}^{x_{i+1}} P_m(x)dx = \int_{x_i}^{x_{i+1}} r_m^{(u + mepn)}(x)dx$$

Для элементарных квадратурных формул степени m остаточный член можно получить интегрированием погрешности интерполяционного многочлена $P_{m,i}(x)$:

$$R_{m,i} = \int_{x_i}^{x_{i+1}} r_m^{(u + mepn)}(x) dx = \int_{x_i}^{x_{i+1}} \frac{f^{(m+1)}(\xi)}{(m+1)!} \omega_{m+1}(x) dx$$

Оценка погрешности формулы:

$$\left| R_{m,i} \right| \le \frac{\max_{x \in [x_{i}, x_{i+1}]} f^{(m+1)}(x) x_{i+1}}{(m+1)!} \int_{x_{i}}^{x_{i+1}} \omega_{m+1}(x) dx$$

Используем формулу Тейлора для функции f(x), тогда остаточный член квадратурной формулы совпадает с погрешностью интегрирования остаточного члена формулы Тейлора:

$$R_{m,i} = \int_{x_i}^{x_{i+1}} \frac{f^{(m+1)}(\xi)}{(m+1)!} (x - x_i)^{m+1} dx = \frac{f^{(m+1)}(\xi)}{(m+1)!} \cdot \frac{(x - x_i)^{m+2}}{m+2} \Big|_{x_i}^{x_{i+1}} = \frac{f^{(m+1)}(\xi)}{(m+2)!} \cdot (x_{i+1} - x_i)^{m+2} = \frac{f^{(m+1)}(\xi)}{(m+2)!} \cdot h^{m+2},$$

где h – длины *элементарных отрезков,* ξ - некоторая точка отрезка.

Справедлива следующая априорная оценка погрешности интегрирования для элементарных

отрезков длиною h:

$$\left| R_{m,i} \right| \le \frac{\max_{x \in [x_i, x_{i+1}]} f^{(m+1)}(x)}{(m+2)!} \cdot h^{m+2}$$

ИЛИ

$$R_{m,i}=O(h^{m+2}).$$

Погрешности составных *квадратурных формул* равны сумме погрешностей соответствующих формул для *элементарных отрезков* и по теореме о <u>среднем</u>:

$$R_n(f) = \sum_{k=1}^n R_{m,i}$$

$$R_{n}(f) = \sum_{k=1}^{n} R_{m,i} \le \frac{\max_{x \in [a,b]} f^{(m+1)}(x)}{(m+2)!} \sum_{k=1}^{n} h^{m+2} = \frac{\max_{x \in [a,b]} f^{(m+1)}(x)}{(m+2)!} \cdot n \cdot h^{m+2} = \max_{x \in [a,b]} f^{(m+1)}(x) \frac{(b-a)}{(m+2)!} \cdot h^{m+1},$$

$$R_{n}(f) = O(h^{m+1})$$

Из оценки видно, что даже составная формула левых и правых прямоугольников ($\mathbf{m} = \mathbf{o}$) имеет погрешность порядка O(h), погрешность других формулы имеет более высокий порядок.

Формула средних прямоугольников и формула трапеций

$$I^{(cpe \partial H.npям.)} = \int_{a}^{b} f(x) dx \approx h \sum_{k=1}^{n-1} f(a + \frac{h}{2} + kh),$$
 $R_N(f) = h^2 \frac{b-a}{24} f^{II}(\xi), \quad \xi \in [a,b],$

$$I^{(mpan.)} = \int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{N-1} f(a+kh) + f(b) \right],$$

$$R_N(f) = -h^2 \frac{b-a}{12} f^{II}(\xi_1), \quad \xi_1 \in [a,b]$$

Знак оценки погрешности формулы трапеций противоположен знаку оценки погрешности формулы средних прямоугольников.

Разность значений, полученных по формулам прямоугольников и трапеций, можно использовать для оценки погрешности каждой из них.

Формула парабол(Симпсона)

$$I^{(napa6.)} = \int_{a}^{b} f(x)dx \approx$$

$$\frac{h}{6} \left(f(a) + 2\sum_{k=1}^{N-1} f(a+kh) + 4\sum_{k=0}^{N-1} f(a+(k+0.5)h) + f(b) \right),$$

$$R_{N}(f) = -h^{4} \frac{b-a}{2880} f^{IV}(\xi_{2}), \quad \xi_{2} \in [a,b].$$

Выражение для остаточного члена показывает, что алгебраический порядок точности формулы Симпсона равен трем. Формула позволяет получить высокую точность, если четвертая производная не слишком велика.

Оценка точности интегрирования

$$m$$
очное значение $0,32$
$$\int_{0}^{1} f(x) dx = 0,278967$$

п – количество интервалов

 $I_{\scriptscriptstyle n}$ – значение интеграла при данном разбиении

$$arepsilon = \left| rac{I_{n+1} - I_n}{I_{n+1}}
ight| \qquad arepsilon_{mouh} = \left| rac{I_{mouh} - I_n}{I_{mouh}}
ight|$$

Погрешность интегрирования

	количество интервалов разбиения					
	n=1	n=2	n=4	n=8	n=16	
Значение I _n	0,320	0,304	0,293	0,286	0,283	
3		0,0526	0,038	0,023	0,013	
$\mathcal{E}_{moчh}$	0,147	0,090	0,050	0,026	0,013	

Погрешность интегрирования

Методы наивысшей алгебраической точности Методы наивысшей алгебраической точности (формулы Гаусса).

В квадратурной формуле Гаусса **узлы** и **коэффициенты** подобраны так, чтобы формула была

точна для всех многочленов степени 2*m-1* и имеет вид:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \sum_{k=1}^{m} A_{k} f(x_{k}), \quad x_{k} = \frac{a+b}{2} + \frac{b-a}{2} t_{k}$$

где t_k - корни многочленов Лежандра степени m .

(Формулы Гаусса наивысшей алгебраической точности						
1	t_{k}	A_{k}					
1	$t_1 = 0$	$A_1 = 2$					
2	$t_2 = -t_1 = 0.5773502692$	$A_1 = A_2 = 2$					
3	$t_2 = 0$	$A_2 = 8/9$					
	$t_3 = -t_1 = 0.7745966692$	$A_1 = A_3 = 5/9$					
4	$t_4 = -t_1 = 0.8611363116$	$A_2 = A_3 = 0.6521451549$					
	$t_3 = -t_2 = 0.3399810436$	$A_1 = A_4 = 0.3478548451$					
5	$t_3 = 0$	$A_3 = 0.5688888899$					

 $A_2 = A_4 = 0.4786286705$ $t_5 = -t_1 = 0.9061798459$ $A_1 = A_4 = 0.2369268851$ $t_4 = -t_2 = 0.5384693101$

 $t_6 = -t_1 = 0.9324695142$ $A_1 = A_6 = 0.1713244924$ $A_2 = A_5 = 0.3607615730$ $t_5 = -t_2 = 0.6612093865$ $A_3 = A_4 = 0.4679139346$ $t_4 = -t_3 = 0.2386191861$

Формулы Гаусса

интегрирования.

Формулами Гаусса называются интерполяционные квадратурные формулы, имеющие максимальную алгебраическую степень для данного числа узлов. Формула Гаусса с K узлами имеет степень 2K-1 и порядок 2K. Формулы Гаусса обычно приводят для стандартного отрезка [-1,1]:

crangapinors orposta [1,1].								
	Число узлов, K	Узлы <i>х_к</i>	Beca w _k	E[f]				
	1	0	1	$\frac{f''(\zeta)(b-a)^3}{24}$				
	2	$\pm \frac{1}{\sqrt{3}}$	1/2	$\frac{f^{IV}(\zeta)(b-a)^5}{4320}$				
	3	$0\\\pm\tfrac{\sqrt{15}}{5}$	4/9 5/18	$\frac{f^{VI}(\zeta)(b-a)^7}{2016000}$				

Простейшая формула Гаусса совпадает с формулой средней точки. Узлы формул Гаусса не содержат крайних точек отрезка

Формулы Гаусса наивысшей алгебраической точности

Если подынтегральная функция достаточно гладкая, то квадратурная формула Гаусса обеспечивает очень высокую точность при небольшом числе узлов, так как для погрешности формулы Гаусса справедлива оценка

$$R_n(f) = \frac{b - a}{2.5\sqrt{n}} \left(\frac{b - a}{3n}\right)^{2n} f^{(2n)}(\xi), \quad \xi \in [a, b]$$

Вычисление интеграла с заданной точностью

Вычисление интеграла с заданной точностью по приведенным квадратурным формулам требует либо предварительного (априорной оценки) определения числа частичных интервалов **n** (или величины шага интегрирования **h**, что равносильно), либо возможности оценки достигнутой точности (апостериорной оценкой) при произвольном числе разбиений отрезка.

Определение шага на основании *априорной оценки* погрешности интегрирования часто оказывается невозможным из-за <u>трудностей определения максимума</u> производных подынтегральной функции.

На практике применяют апостериорные оценки погрешности интегрирования по *правилу Рунге*.

Для этого априорные оценки погрешностей квадратурных формул записывают, выделив явно главную часть погрешности, в виде

$$R(f) = Ah^p + O(h^{p+1})$$

где *А*- коэффициент, зависящий от метода интегрирования и вида подынтегральной функции, **р** - порядок метода.

Вычисляют интеграл по одной и той же формуле

<u>дважды</u> :

- c шагом *h* и
- с шагом kh (обычно k=2):

$$I = I_h + Ah^p + O(h^{p+1}),$$

$$I = I_{kh} + A(kh)^p + O((kh)^{p+1})$$

Приравнивают правые части соотношений и определяют главную часть погрешности по первой формуле Рунге:

$$Ah^p = \frac{I_h - I_{kh}}{k^p - 1}$$

Это - апостериорная оценка погрешности, и согласно ей ошибка более точного приближения примерно в k^p -1 раз меньше разности между двумя приближениями. Уточненное значение интеграла определяется по второй формуле Рунге:

$$I_h^T = I_h + \frac{I_h - I_{kh}}{k^p - 1}$$

Возможность <u>апостериорно</u> оценить погрешность позволяет вычислять интеграл с заданной точностью путем <u>автоматического выбора шага</u> интегрирования. Если на каком-то частичном отрезке не выполняется неравенство

$$\left| \frac{I_{0.5h,i} - I_{h,i}}{2^p - 1} \right| \le \frac{\varepsilon h_i}{b - a}$$

то шаг на этом отрезке надо <u>уменьшить еще в два раза</u> и снова оценить погрешность.

Погрешность квадратурных формул

Независимо от выбранного метода, погрешность обобщенной квадратурной формулы будет уменьшаться при увеличении числа разбиений п за счет более точной аппроксимации подынтегральной функции. Однако этом будет возрастать <u>вычислительная</u> <u>погрешность</u> <u>суммирования</u> частичных интегралов, и, начиная некоторого N_o , она станет преобладающей.

Это особенность должна предостеречь от выбора чрезмерно большого числа *п* и привлечь внимание к важности как *априорной*, так и *апостериорной* оценкам погрешности

Зависимость погрешности численного интегрирования от числа разбиений **n** интервала интегрирования