## WHAT IS CLAIMED IS:

- 1. A chemical-mechanical polishing system comprising:
- (a) an abrasive and/or polishing pad,
- (b) boric acid, or a conjugate base thereof, and
- (c) an aqueous carrier,

wherein the boric acid and conjugate base are not present together in the polishing system in a sufficient amount to act as a pH buffer.

- 2. The chemical-mechanical polishing system of claim 1, wherein the abrasive is a metal oxide.
- 3. The chemical-mechanical polishing system of claim 2, wherein the abrasive is selected from the group consisting of alumina, silica, titania, ceria, zirconia, germania, magnesia, co-formed products thereof, and combinations thereof.
- 4. The chemical-mechanical polishing system of claim 3, wherein the abrasive is alumina or silica.
- 5. The chemical-mechanical polishing system of claim 1, wherein the abrasive is fixed on a polishing pad.
- 6. The chemical-mechanical polishing system of claim 1, wherein the abrasive is in particulate form and is suspended in the carrier.
- 7. The chemical-mechanical polishing system of claim 1, wherein the carrier is water.
- 8. The chemical-mechanical polishing system of claim 1, wherein the system further comprises an oxidizing agent.

- 9. The chemical-mechanical polishing system of claim 8, wherein the oxidizing agent is a peroxide or persulfate.
- 10. The chemical-mechanical polishing system of claim1, wherein the system further comprises a film-forming agent.
- 11. The chemical-mechanical polishing system of claim 10, wherein the film-forming agent is an azole.
- 12. The chemical-mechanical polishing system of claim 1, wherein the system comprises about 0.5 wt.% or more carrier-suspended abrasive particles, about 0.01 wt.% or more boric acid or conjugate base thereof, and water.
- 13. The chemical-mechanical polishing system of claim 1, wherein the system further comprises a complexing agent.
  - 14. A chemical-mechanical polishing system comprising:
  - (a) an abrasive and/or polishing pad,
  - (b) an aqueous carrier, and
- (c) a water-soluble boron-containing compound that is not boric acid, or salt thereof, formula I-VII:

wherein,

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>9</sup>, R<sup>14</sup>, R<sup>18</sup>, R<sup>19</sup>, R<sup>22</sup>, R<sup>23</sup>, and R<sup>24</sup> are independently selected from the group consisting of H, C<sub>1-20</sub> alkyl, C<sub>6-30</sub> aryl including polycyclic aryl,

cyclo( $C_{3-20}$ )alkyl, hetero( $C_{6-30}$ )aryl including polycyclic heteroaryl,  $C_{3-20}$  heterocyclyl,  $C_{2-20}$  alkenyl, and  $C_{2-20}$  alkynyl,

 $R^4$ ,  $R^7$ ,  $R^8$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{20}$ ,  $R^{21}$ , and  $R^{25}$  are independently selected from the group consisting of H, halide,  $C_{1-20}$  alkyl,  $C_{6-30}$  aryl including polycyclic aryl, cyclo( $C_{3-20}$ )alkyl, hetero( $C_{6-30}$ )aryl including polycyclic heteroaryl,  $C_{3-20}$  heterocyclyl,  $C_{2-20}$  alkenyl, and  $C_{2-20}$  alkynyl,

any two R substituents of a formula can be linked through 1-16 atoms selected from the group consisting of C, N, O, and S to form a cyclic ring, and

 $R^{1}$ -  $R^{25}$  are optionally substituted with 1-5 substituents independently selected from the group consisting of halide,  $C_{1-20}$  alkyl,  $C_{1-20}$  alkoxy, thio( $C_{1-20}$ )alkyl,  $C_{6-30}$  aryl including polycyclic aryl,  $C_{6-30}$  ar( $C_{1-20}$ )alkyl,  $C_{6-30}$  ar( $C_{1-20}$ )alkyl, cyclo( $C_{1-20}$ )alkyloxy, hetero( $C_{6-30}$ )aryl including polycyclic heteroaryl,  $C_{3-20}$  heterocyclyl, heterocyclo( $C_{3-20}$ )alkyloxy,  $C_{2-20}$  alkenyl,  $C_{2-20}$  alkynyl,  $C_{2-20}$  alkyl),  $C_{2-20}$  alkylamino,  $C_{2-20}$  alkylamino, di( $C_{2-20}$ )alkylamino, amino( $C_{2-20}$ )alkyl,  $C_{2-20}$  alkylamino( $C_{2-20}$ )alkyl, nitrile, cyano, carbonyl,  $C_{2-20}$  alkylcarbonyl, carboxy, carboxy( $C_{2-20}$ )alkyl, silyl, and siloxy.

- 15. The chemical-mechanical polishing system of claim 14, wherein the water-soluble boron-containing compound is a trialkylborate.
- 16. The chemical-mechanical polishing system of claim 14, wherein the water-soluble boron-containing compound is a borinic acid, boronic acid, borinate ester, or boronate ester.
- 17. The chemical-mechanical polishing system of claim 14, wherein the water-soluble boron-containing compound is a benzodioxaborole compound.
- 18. The chemical-mechanical polishing system of claim 17, wherein the water-soluble boron-containing compound is *B*-bromocatecholborane.

- 19. The chemical-mechanical polishing system of claim 14, wherein the water-soluble boron-containing compound is a tetraarylborate salt.
- 20. The chemical-mechanical polishing system of claim 14, wherein the water-soluble boron-containing compound is generated *in situ*.
- 21. The chemical-mechanical polishing system of claim 14, wherein the abrasive is a metal oxide.
- 22. The chemical-mechanical polishing system of claim 21, wherein the abrasive is selected from the group consisting of alumina, silica, titania, ceria, zirconia, germania, magnesia, co-formed products thereof, and combinations thereof.
- 23. The chemical-mechanical polishing system of claim 22, wherein the abrasive is alumina or silica.
- 24. The chemical-mechanical polishing system of claim 14, wherein the abrasive is fixed on a polishing pad.
- 25. The chemical-mechanical polishing system of claim 14, wherein the abrasive is in particulate form and is suspended in the carrier.
- 26. The chemical-mechanical polishing system of claim 14, wherein the carrier is water.
- 27. The chemical-mechanical polishing system of claim 14, wherein the system further comprises an oxidizing agent.
- 28. The chemical-mechanical polishing system of claim 27, wherein the oxidizing agent is a peroxide or persulfate.

- 29. The chemical-mechanical polishing system of claim 14, wherein the system further comprises a film-forming agent.
- 30. The chemical-mechanical polishing system of claim 29, wherein the film-forming agent is an azole.
- 31. The chemical-mechanical polishing system of claim 14, wherein the system comprises about 0.5 wt.% or more carrier-suspended abrasive particles, about 0.01 wt.% or more water-soluble boron-containing compound or salt thereof, and water.
- 32. The chemical-mechanical polishing system of claim 31, wherein the abrasive particles are alumina or silica particles, and the water-soluble boron-containing compound is a trialkylborate, borinic acid, boronic acid, borinate ester, or boronate ester.
- 33. The chemical-mechanical polishing system of claim 14, wherein the system further comprises a complexing agent.
  - 34. A method of polishing a substrate comprising:
- (i) contacting a substrate with a chemical-mechanical polishing system comprising:
  - (a) an abrasive and/or polishing pad,
  - (b) boric acid, or conjugate base thereof, and
  - (c) an aqueous carrier,

wherein the boric acid and conjugate base are not present together in the polishing system in a sufficient amount to act as a pH buffer, and

- (ii) abrading at least a portion of the substrate to polish the substrate.
- 35. The method of claim 34, wherein the substrate comprises a metal oxide layer and a metal layer.

- 36. The method of claim 35, wherein the metal layer comprises copper, tungsten, tantalum, or titanium.
  - 37. A method of polishing a substrate comprising:
- (i) contacting a substrate with a chemical-mechanical polishing system comprising:
  - (a) an abrasive and/or polishing pad,
  - (b) an aqueous carrier, and
  - (c) a water-soluble boron-containing compound that is not boric acid, or salt thereof, of formula I-VII:

wherein,

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^5$ ,  $R^6$ ,  $R^9$ ,  $R^{14}$ ,  $R^{18}$ ,  $R^{19}$ ,  $R^{22}$ ,  $R^{23}$ , and  $R^{24}$  are independently selected from the group consisting of H,  $C_{1-20}$  alkyl,  $C_{6-30}$  aryl including polycyclic aryl, cyclo( $C_{3-20}$ )alkyl, hetero( $C_{6-30}$ )aryl including polycyclic heteroaryl,  $C_{3-20}$  heterocyclyl,  $C_{2-20}$  alkenyl, and  $C_{2-20}$  alkynyl,

 $R^4$ ,  $R^7$ ,  $R^8$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{20}$ ,  $R^{21}$ , and  $R^{25}$  are independently selected from the group consisting of H, halide,  $C_{1-20}$  alkyl,  $C_{6-30}$  aryl including polycyclic aryl, cyclo( $C_{3-20}$ )alkyl, hetero( $C_{6-30}$ )aryl including polycyclic heteroaryl,  $C_{3-20}$  heterocyclyl,  $C_{2-20}$  alkenyl, and  $C_{2-20}$  alkynyl,

any two R substituents of a formula can be linked through 1-16 atoms selected from the group consisting of C, N, O, and S to form a cyclic ring, and

 $R^{1}$ -  $R^{25}$  are optionally substituted with 1-5 substituents independently selected from the group consisting of halide,  $C_{1-20}$  alkyl,  $C_{1-20}$  alkoxy, thio( $C_{1-20}$ )alkyl,  $C_{6-30}$  aryl including polycyclic aryl,  $C_{6-30}$  ar( $C_{1-20}$ )alkyl,  $C_{6-30}$  ar( $C_{1-20}$ )alkyl, cyclo( $C_{1-20}$ )alkyl, cyclo( $C_{3-20}$ )alkyloxy, hetero( $C_{6-30}$ )aryl including polycyclic heteroaryl,  $C_{3-20}$  heterocyclyl, heterocyclo( $C_{3-20}$ )alkyloxy,  $C_{2-20}$  alkenyl,  $C_{2-20}$ 

alkynyl, B(OH)( $C_{1-20}$  alkyl), B(OH)(cyclo( $C_{1-20}$ )alkyl), B(OH)( $C_{6-30}$  aryl), B(OH)( $C_{6-30}$  heteroaryl), B(OH)<sub>2</sub>, thiol, hydroxy, halo( $C_{1-20}$ )alkyl, halo( $C_{1-20}$ )alkoxy, nitro, amino,  $C_{1-20}$  alkylamino, di( $C_{1-20}$ )alkylamino, amino( $C_{1-20}$ )alkyl,  $C_{1-20}$  alkylamino( $C_{1-20}$ )alkyl, nitrile, cyano, carbonyl,  $C_{1-20}$  alkylcarbonyl, carboxy, carboxy( $C_{1-20}$ )alkyl, silyl, and siloxy, and

- (ii) abrading at least a portion of the substrate to polish the substrate.
- 38. The method of claim 37, wherein the substrate comprises a metal oxide layer and a metal layer.
- 39. The method of claim 38, wherein the metal layer comprises copper, tungsten, tantalum, or titanium.
- 40. The method of claim 37, wherein the water-soluble boron-containing compound is trialkylborate.
- 41. The method of claim 37, wherein the water-soluble boron-containing compound is a borinic acid, boronic acid, borinate ester, or boronate ester.
- 42. The method of claim 37, wherein the water-soluble boron-containing compound is a benzodioxoborole compound.
- 43. The method of claim 42, wherein the water-soluble boron-containing compound is *B*-bromocatecholborane.
- 44. The method of claim 37, wherein the water-soluble boron-containing compound is a tetraarylborate salt.