Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П. О. Сухого

Кафедра «Электроснабжение»

Отчет

по лабораторной работе № 7 на тему: «Двухфазное короткое замыкание на землю»

по дисциплине: «Электромагнитные переходные процессы

Выполнил студент гр. ЭС-41 Ячнев В.А. Принял преподаватель: Панасик В.А.

Лабораторная работа № 7

Цель работы: Анализ основных соотношений и построение векторных диаграмм токов при двухфазном КЗ на землю в сети с глухозаземленной нейтралью с помощью теории симметричных составляющих.

Ход работы:

Рисунок 1. Схема двухфазного КЗ на землю А-С-0

Рисунок 2. Схема для измерения двухфазного КЗ на землю А-С-0

Таблица 1 — Результаты вычислений и измерений напряжений при двухфазном КЗ на землю A-C-0

КЗ на	Измерено					Вычислено			
землю фаз	U _A ,	U _B ,	Uc,	U _{AB} ,	U _{AC} ,	U _{AC} ,	U ₁ ,	U_2 ,	U ₀ ,
1	В	В	В	В	В	В	В	В	В
A-C-0	0	80	0	80	80	0	26,6	26,6	26,6

Таблица 2 — Результаты вычислений и измерений токов при двухфазном К3 на землю A-C-0

КЗ на землю	Измерено						
фаз	I _A , A	I _B , A	Ic, A	I ₁ , A	I ₂ , A	I ₀ , A	
A-C-0	4.2	0	4.2	2.8	1.05	1.75	

Вывод: Граничные условия двухфазного КЗ на землю $K^{(1,1)}$ Для фаз A-C-0:

$$I_B=0 A, U_A=0B, U_C=0B$$

Полученные значения подтверждают метод симметричных составляющих путем построения по ним векторных диаграмм токов и напряжений.

Полученные соотношения для напряжений.

$$U_A = 0B, U_C = 0B$$

$$U_B = 80B$$
, $U_B = 1/3U_{B1} = 1/3U_{B2} = 1/3U_{B0}$

$$U_{B1} = U_{B2} = U_{B0} = 26,6 \text{ B}$$

$$U_{AC} = 0B$$

$$U_{AC} = U_{BC} = U_B = 80 B$$

Полученные соотношения для токов:

$$I_B=0$$
 A

По полученным данным построим векторные диаграммы токов и напряжений для двухфазного короткого замыкания на землю (A-C-0), учитывая полученные граничные условия.

Рис.1 – Векторная диаграмма токов при двухфазном КЗ на землю (А-С-0)

Рис.2 – Векторная диаграмма напряжений при двухфазном КЗ на землю (A-C-0)

Коэффициент m= I_A / I_{A1} =4,2/2,8=1,5, что точно подтверждает метод симметричных составляющих I_A = I_{A1} + I_{A2} + I_{A0} =0A