

CLASSIFICAÇÃO DE ESPÉCIES DE AVES POR MEIO DA EXTRAÇÃO DE CARACTERÍSTICAS DE SEUS MEL-ESPECTROGRAMAS

Felipe Archanjo da Cunha Mendes (Orientado) Prof. Dr. Juliano Henrique Foleis (Orientador)

23/11/2023

INTRODUÇÃO

- Biodiversidade, sustentabilidade, equilíbrio dos ecossistemas
- Importância das aves
 - Polinização (CARPENTER, 1978)
 - Controle de Pragas (HOLMES, 1990)
 - Regulação do ciclo de nutrientes (SNOW, 1971)

PROBLEMA

- Classificação correta de espécies (FIGUEIREDO, 2018)
 - Desafio complexo
 - Experiência por parte dos ornitólogos
 - características morfológicas ou sonoras
- Abordagem manual é demorada, propensa a erros e dependente do conhecimento e habilidades dos especialistas
- Demanda crescente por métodos mais eficientes

TRABALHOS ANTERIORES

- Classificação automática de espécies com base em características sonoras
 - Banco de dados robusto
 - Pré-processamento
 - Geração de espectrogramas
 - Descritores de características
 - Handcrafted (LUCIO; COSTA, 2016)
 - TransferLearning (INCZE et al., 2018)
 - Classificadores

OBJETIVO

• Desenvolver um modelo de aprendizado de máquina, visando a classificação precisa de diversas espécies de aves por meio da gravação de seus cantos e chamados.

DATASET

- Kaggle
- BirdCLEF 2023 (BIRDCLEF, 2023)
- Desbalanceado (Figura 1)
- 16900 gravações
- 264 diferentes espécies

Figura 1 – Distribuição de exemplos em cada classe

Figura 2 – Método Proposto

1.GERAÇÃO DE ESPECTROGRAMAS

- Cálculo da STFT
 - 2048 amostras
 - Sobreposição de 50% entre janelas subsequentes
- Conversão do espectrograma em escala mel (Figura 3)
 - Destacar as faixas de frequência que correspondem à sensibilidade auditiva humana
 - Reproduzir a percepção auditiva humana

Figura 3 - Espectrograma da gravação XC128013.ogg

2. SUBDIVISÃO EM PATCHES

- Espectrogramas possuem tamanhos variados
 - Comprimento do áudio
 - Natureza não uniforme do áudio
 - Variedade de sons em vários momentos
- Padronização (Figura 4):
 - Segmentação em unidades menores, com N colunas
 - Padding no ultimo patch

Figura 4 – Geração de patches com 300 colunas da gravação XC128013.ogg

3.EXTRAÇÃO DE CARACTERÍSTICAS

- Subconjunto de classes
 - Simular um ambiente real
- Descritores de Textura Handcrafted
 - Local Binary Patterns (LBP)
 - Filtros Gabor
- Descritores Transfer Learning
 - VGG16
 - Resnet50
 - DenseNet
 - MobileNet

4.TREINAMENTO E TESTE DO MODELO

- Separação dos dados em folds para cada split
 - Obter os nomes dos áudios utilizados para treino e teste
 - Obter os patches correspondentes
- Algoritmo de busca exaustiva para otimização de hiperparâmetros
- Treinamento do modelo
- Teste
- Sistema de votação em relação aos patches de dado arquivo de áudio
- Média dos resultados

RESULTADOS PRELIMINARES

- Espectrogramas em escala Mel
- Subdivisão em patches de 300 colunas
- Extração de características
 - o LBP
 - Raio: 2
 - Pontos: 8
 - VGG16
- Treinamento e teste
 - Apenas um split
 - Subconjunto dos dados (2, 3, 5, e 10 classes)
 - O KNN
 - Hiperparâmetro K de 1 a 20
 - o Resultados na Tabela 1

KNN							
Método	2 Classes	3 Classes	5 Classes	10 Classes			
LBP	82%	68%	58%	43%			
VGG16	86%	69%	63%	47%			

Tabela 1 – Pontuação F1 obtida com os descritores LBP e VGG16

RESULTADOS PRELIMINARES

- Influencia do número de classes
 - Pontuação F1 tende a diminuir ao aumentar o número de classes
 - Desbalanceamento das classes
 - Presença de ruídos semelhantes
- VGG com pequena vantagem
 - o significância estatística dessa diferença apenas com validação cruzada em k folds
- Potencial para alcançar resultados satisfatórios

2024							
Atividades		ABR	MAI	JUN	JUL		
Estudo sobre outros descritores de características		X					
Geração dos espectrogramas							
Geração dos patches							
Extração de Caracteristicas com o LBP							
Extração de Caracteristicas com os filtros Gabor							
Extração de Caracteristicas com o VGG16		x					
Extração de Caracteristicas com o RESNET50		X					
Extração de Caracteristicas com o DenseNet		X					
Extração de Caracteristicas com o MobileNet		X					
Treinamento e Teste do modelo usando SVM		x	x	X			
Escrita do TCC		x	x	x	X		
Defesa do TCC					X		

Tabela 2 – Cronograma

REFERÊNCIAS

CARPENTER, F. L. A spectrum of nectar-eater communities. American Zoologist, Oxford University Press, v. 18, n. 4, p. 809–819, 1978. ISSN 00031569. Disponível em: http://www.jstor.org/stable/3882538.

HOLMES, R. T. Ecological and evolutionary impacts of bird predation on forest insects an overview. Studies in Avian Biology, v. 13, p. 6–13, 1990.

SNOW, D. W. Evolutionary aspects of fruit-eating by birds. Ibis, v. 113, p. 194–202, 1971.

FIGUEIREDO, N. et al. A comparative study on filtering and classification of bird songs. In: Sound and Music Computing Conference - SMC. [S.l.]: SMC, 2018.

REFERÊNCIAS

LUCIO, D. R.; COSTA, Y. M. e Gomes da. Bird species classification using visual and acoustic features extracted from audio signal. In: 2016 35th International Conference of the Chilean Computer Science Society (SCCC). [S.l.: s.n.], 2016. p. 1–12.

INCZE, A. et al. Bird sound recognition using a convolutional neural network. In: 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY). [S.l.: s.n.], 2018. p. 000295–000300.

BIRDCLEF. 2023. Cornell Lab of Ornithology. Disponível em: https://www.kaggle.com/competitions/birdclef-2023/data. Acesso em: 07 out. 2023.

Perguntas?

