

Model Optimization and Tuning Phase Template

Date	21 JULY 2024
Team ID	Team-740025
Project Title	Unlocking Silent Signals :Decoding Body Language With Mediapipe
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters

#importing the library for LogisticRegression fromsklearn.linear_model import LogisticRegression

The LogisticRegression from sklearn.linear_model, sets the solver to 'lbfgs' and the maximum number of iterations to 1000, and fits the model to data XXX and yyy. This configuration is important for training a logistic regression model with a specific solver and iteration limit, which can enhance model convergence.

Ridge

Classifier

```
42]: from sklearn.linear_model import LogisticRegression
  model = LogisticRegression(solver='lbfgs', max_iter=1000)
  model.fit(X, y)

42]:  LogisticRegression
  LogisticRegression(max iter=1000)
```

The Random Forest Classifier is an ensemble learning method that constructs multiple decision trees during training and outputs the mode of their predictions, improving accuracy . random feature selection to reduce overfitting and handle large datasets

Random Forest

Classifier

```
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LogisticRegression, RidgeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier

mj: pipelines = {
    'lr':make_pipeline(StandardScaler(), LogisticRegression()),
    'rc':make_pipeline(StandardScaler(), RandomForestClassifier()),
    'gb':make_pipeline(StandardScaler(), GradientBoostingClassifier()),
    'gb':make_pipeline(StandardScaler(), GradientBoostingClassifier()),
}

mij: pipelines.keys()

mij: pipelines.keys()

from sklearn.linear_model import togisticRegression
    model = LogisticRegression(solver='lbfgs', max_iter=1888)
    model.fit(X, y)

cogisticRegression(max_iter=1888)

from sklearn.preprocessing import StandardScaler
    from sklearn.preprocessing import standardScaler
```


	These pipelines are stored in a dictionary for easy access and comparison. The LogisticRegression model is then separately instantiated and fitted, demonstrating individual model training and usage.
XGBoost	
	from sklearn.model_selection import GridsearchtV from xphoost import XBClassifier From XBClassifier From XBClassifier
Classifier	rf = XMCM2dssifier() param_grid = ('n_extinators': [00,200,300],'criterion':['entropy','gini'],'max_depth': [10,20,30],'max_features':['auto','sqrt']) grid search = Gridsearch(v(rf, param_grid , cv = 5, n_jobs = -1, verbose = 3)
	grid_search.fit(X_train,y_train)
	✓ 4.6s Fitting 5 folds for each of 36 candidates, totalling 180 fits
	FICTING 3 10105 TO ENGLISH 30 CHINITURES, COLUMNIA 100 ILS
	► GridSearchCV ① ②
	* best_estimator_: XGBClassifier
	* XGBClassifier

Final Model Selection Justification (2 Marks):

Final Model Reasoning

Random Forest model is chosen for its robustness in handling complex datasets and its ability to mitigate overfitting while providing high predictive accuracy.

Random Forest

Above all the models Random Forest model have the highest accuracy among all the models.