Problem 1.41. Let B and C be languages over $\Sigma = \{0, 1\}$. Define

 $B \xleftarrow{1} C = \{w \in B \mid for \ some \ y \in C, \ strings \ w \ and \ y \ contain \ equal \ numbers \ of \ 1s\}.$

Show that the class of regular languages is closed under the $\stackrel{1}{\leftarrow}$ operation.

Proof. To show that the operation $B \stackrel{1}{\leftarrow} C$ is closed under the class of regular languages we use the closure properties of operations intersection, $Zero^-$ and $Zero^+$, and give a regular expression that uses these operations to describes operation $B \stackrel{1}{\leftarrow} C$. Let A be any language over $\Sigma = \{0, 1\}$. Define

 $Zero^{-}(A) = \{w \mid w \text{ is constructed by removing all 0s from some string in } A\}.$

 $Zero^+(A) = \{w \mid w \text{ is constructed by inserting any number of } 0s \text{ anywhere in some string of } A\}.$

The closure properties of $Zero^-$ and $Zero^+$ are proved in Corollaries 1 and 2. Let B and C be any regular languages over $\Sigma = \{0, 1\}$. The regular expression that describes the operation $B \xleftarrow{1} C$ is:

$$B \xleftarrow{1} C = Zero^{+} \Big(Zero^{-}(B) \cap Zero^{-}(C) \Big) \cap B$$

Corollary 1. Let A be any language over $\Sigma = \{0, 1\}$. Define

 $Zero^{-}(A) = \{w \mid w \text{ is constructed by removing all 0s from some string in } A\}.$

Show that the class of regular languages is closed under the $Zero^-$ operation.

Proof. The proof is by construction. Let $M=(Q,\Sigma,\delta,q_0,F)$ be the DFA that recognizes A. Construct the NFA $M'=(Q',\Sigma,\delta',q_0',F')$ to recognize $Zero^-(A)$:

- 1. Q' = Q
- 2. $q'_0 = q_0$

3.
$$F' = \begin{cases} F & A \cap 0^+ = \phi \\ F \cup \{q_0\} & A \cap 0^+ \neq \phi \end{cases}$$

4. Define $\delta'(q, a)$ so that for any $q \in Q'$ and any $a \in \Sigma$:

$$\delta'(q, a) = \begin{cases} \{\delta(q, a)\} & a \neq 0 \\ \phi & a = 0 \end{cases}$$

Corollary 2. Let A be any language over $\Sigma = \{0, 1\}$. Define

 $Zero^{+}(A) = \{w \mid w \text{ is constructed by inserting any number of } 0s \text{ anywhere in some string of } A\}.$

Show that the class of regular languages is closed under the $Zero^+$ operation.

Proof. The proof is by construction. Let $M=(Q,\Sigma,\delta,q_0,F)$ be the DFA that recognizes A. Construct the NFA $M'=(Q',\Sigma,\delta',q'_0,F')$ to recognize $Zero^+(A)$:

- 1. Q' = Q
- 2. $q'_0 = q_0$
- 3. F' = F
- 4. Define $\delta'(q, a)$ so that for any $q \in Q'$ and any $a \in \Sigma$:

$$\delta'(q, a) = \begin{cases} \{\delta(q, a)\} & a \neq 0 \\ \{\delta(q, a), q\} & a = 0 \end{cases}$$