Replication of Green & Vasudevan

Zenobia Chan, Alicia Cooperman, & Lauren Young

Columbia University

October 2015

Overview

- Theory
- lacksquare Design
- Replication of main results
- Robustness to other coding of vote buying
- Heterogeneous effects

Theory

brief discussion of theory

Design

Intervention:

Does this really test the theory that you've laid out?

Suggestions for replication package

- Code written in Matlab + Stata
 - Randomization Stata
 - Data Building Stata
 - Regressions Matlab
 - Standard Errors Matlab
 - Randomization Inference Simulations Stata
 - p-values Matlab
- Possible to do everything in R
- Include a roadmap (master R file, markdown, etc)

Main results from the paper

Table 6: Average Treatment Effect (ATE) of receiving radio ads on vote-share of votebuying parties and on the voter turnout rate

		Vote-share of vote-buying parties (%)				Turnout	rate (%)	
	Specific	ation 1 ⁵	Specification 2		Specification 3		Tunious faite (70)	
	IPW	FE	IPW	FE	IPW	FE	IPW	FE
ATE ¹	-5.86	-6.04	-7.68	-7.73	-3.68	-3.41	-0.49	-0.61
SE ²	3.97	4.08	3.92	4.18	1.92	2.04	0.96	0.99
p-value ³	0.08	0.08	0.00	0.00	0.02	0.03	0.64	0.57
R-squared	0.44	0.43	0.38	0.28	0.51	0.33	0.80	0.76
Mean ⁴ (Control)	67.	.23	90	.85	91	.73	68	.45
N	62	28	6	65	60	55	6	65
Control	31	15	33	24	32	24	33	24
Treatment	31	13	34	41	34	41	34	41

All specifications have the lagged outcome variable as covariate.

¹IPW are inverse probability weighted and FE are fixed effects regression estimates respectively.

²Standard errors are robust to heteroskedasticity and known cross-sectional dependence of the error term.

³p-values obtained from randomization inference with 10,000 iterations.
⁴Control Means are inverse probability weighted.

⁵Responses identifying vote-buying parties for 37 ACs are missing.

Imagine a scenario of 3 clusters with 2 units each.

Table: Constant error variance

Table : Not-constant error
$$\Sigma$$

1	able	NOU	-cons	tant	error	2
		e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	σ_{11}^2	0	0	0	0	0
e_{12}	0	σ_{12}^2	0	0	0	0
e_{21}	0	0	σ_{21}^2	0	0	0
e_{22}	0	0	0	σ_{22}^2	0	0
e_{31}	0	0	0	0	σ_{31}^2	0
e_{32}	0	0	0	0	0	σ_{32}^2

$$Var(\hat{\beta}) = (X'X)^{-1}(X'\Sigma X)(X'X)^{-1}$$

Huber-White "Robust" SEs estimate $\hat{\Sigma}$ where σ_i^2 is \hat{u}_i^2 But, still assumes no clustered or spatial correlation

Imagine a scenario of 3 clusters with 2 units each.

Cluster-robust "block diagonal"

	Table : Cluster robust					
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	σ_{11}^2	$\sigma_{11}\sigma_{12}$	0	0	0	0
e_{12}	$\sigma_{12}\sigma_{11}$	σ_{12}^2	0	0	0	0
e_{21}	0	0	σ_{21}^2	$\sigma_{21}\sigma_{22}$	0	0
e_{22}	0	0	$\sigma_{22}\sigma_{21}$	σ_{22}^2	0	0
e_{31}	0	0	0	0	σ_{31}^2	$\sigma_{31}\sigma_{32}$
e_{32}	0	0	0	0	$\sigma_{32}\sigma_{31}$	σ_{32}^2

Imagine a scenario of 3 clusters with 2 units each, but Station 1 covers 11, 12, 21; Station 2 covers cluster 2; Station 3 covers cluster 3.

Table: Barrios Dependency Matrix

	i i		F		,	
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	1	1	1	0	0	0
e_{12}	1	1	1	0	0	0
e_{21}	1	1	1	1	0	0
e_{22}	0	0	1	1	0	0
e_{31}	0	0	0	0	1	1
e_{32}	0	0	0	0	1	1

Multiply this matrix element-by-element with $\hat{u}\hat{u}'$

Imagine a scenario of 3 clusters with 2 units each, but Station 1 covers 11, 12, 21; Station 2 covers cluster 2; Station 3 covers cluster 3.

	Table : Barrios $\hat{\Sigma}$					
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	σ_{11}^2	$\sigma_{11}\sigma_{12}$	$\sigma_{11}\sigma_{21}$	0	0	0
e_{12}	$\sigma_{12}\sigma_{11}$	σ_{12}^2	$\sigma_{12}\sigma_{21}$	0	0	0
e_{21}	$\sigma_{21}\sigma_{11}$	$\sigma_{21}\sigma_{12}$	σ_{21}^2	$\sigma_{21}\sigma_{22}$	0	0
e_{22}	0	0	$\sigma_{22}\sigma_{21}$	σ_{22}^2	0	0
e_{31}	0	0	0	0	σ_{31}^2	$\sigma_{31}\sigma_{32}$
e_{32}	0	0	0	0	$\sigma_{32}\sigma_{31}$	σ_{32}^2

$$Var(\hat{\beta}) = (X'X)^{-1}(X'\hat{\Sigma}X)(X'X)^{-1}$$

Main results from the paper

	Spe	ec 1	Spe	ec 2	Spe	ec 3
	IPW	FE	IPW	FE	IPW	FE
ATE	-5.86	-6.04	-7.68	-7.73	-3.68	-3.41
SE	3.97	4.08	3.92	4.18	1.92	2.04
p-value (Barrios)	0.07	0.07	0.03	0.03	0.03	0.05
p-value (RI)	0.08	0.08	0.00	0.00	0.02	0.03
\mathbb{R}^2	0.44	0.43	0.38	0.28	0.51	0.33

- Very innovative measure of illicit electoral technique
 - Cost-effective
 - Draws on local expertise
 - Covers comprehensive area
- What is the data generating process?
 - Journalistic ethics to tell the truth
 - Journalists have ideological biases?
 - Journalists pay more attention to major parties?
- How to think about uncertainty with journalist data?
 - Levels of informedness
 - Under-identification
 - Over-identification
 - Random noise

Robustness to the definition of vote buying party

Robustness to the definition of vote buying party

Interpretation of the results

are people just fleeing from the major parties and voting for minor parties?
does this change the results?
can het effects tell us more about how this works?

Interpretation: Implications for who wins

In how many PCs do these results change the results? calc het effects by state and then do projections of which party would have won if the intervention hadn't happened

Heterogeneous effects: Urban

Dummy: More than 90% Rural

	Coef.	SE	p
Treat	-4.68	3.6	0.1
$\mathrm{Rural} > \!\! 90~\mathrm{pc}$	1.69	2.55	0.25
Treat:Rural90	-3.16	3.83	0.2
R squared	0.44		

Continuous	s Rural		
	Coef.	SE	p
Treat	1.79	6.79	0.4
Rural pc	-0.01	0.05	0.45
Treat:Rural pc	-0.1	0.06	0.06
R squared	0.44		

Histogram of Percent Rural in AC

Heterogeneous effects: Minority voters

Dummy: More than 50% SC/ST

20/21			
	Coef.	SE	p
Treat	-6	4.4	0.09
SC/ST > 50 pc	-4.88	3.66	0.09
Treat:SC/ST50	1.87	5.06	0.36
R squared	0.44		

Continuous SC/ST Coef. SEр Treat -6.03 6.36 0.17ST/SC pc -0.060.09 0.26Treat:SC/ST pc 0.480.01 0.11R squared 0.44

Histogram of Percent SC/ST in AC

Heterogeneous effects: Competitiveness of election

Heterogeneous effects: State

Table: Treatment Status of ACs by State				
	Control AC	Treated AC		
Andhra Pradesh	82	31		
Bihar	0	14		
Chattisgarh	15	27		
Jharkhand	15	17		
Karnataka	50	25		
Madhya Pradesh	27	18		
Maharashtra	60	38		
Orissa	23	26		
Rajasthan	42	54		
Uttar Pradesh	1	63		

Heterogeneous effects: State

Table

	$Dependent\ variable:$
	2014 Vote Share
	Vote Buying Parties
State Bihar	-26.287^{***} (5.571)
State Chattisgarh	-5.774(4.893)
State Jharkhand	-3.946 (4.916)
State Karnataka	-8.440^{***} (3.115)
State Madhya Pradesh	-2.123(3.875)
State Maharashtra	-4.945^* (2.909)
State Orissa	-4.407(4.084)
State Rajasthan	1.235 (3.420)
State Uttar Pradesh	-61.526^{***} (17.276)
Vote Share 2009	0.588*** (0.030)
Num Radio 1	2.224 (17.458)
Num Radio 2	1.392 (17.560)
Constant	35.029**(17.569)

Table

Treat	4.353 (3.702)
Treat:Bihar	4.555 (5.702)
Treat:Chattisgarh	-9.903 (6.618)
Treat:Jharkhand	$0.761 \ (7.062)$
Treat:Karnataka	-3.484 (5.559)
Treat:Madhya Pradesh	-11.592*(6.357)
Treat:Maharashtra	-8.632^* (5.113)
Treat:Orissa	-8.085 (6.116)
Treat:Rajasthan	-14.242^{***} (5.046)
Treat:Uttar Pradesh	43.523** (17.650)
Constant	35.029** (17.569)
Observations	628
\mathbb{R}^2	0.485
Adjusted R ²	0.467
Residual Std. Error	17.111 (df = 606)
F Statistic	27.158**** (df = 21; 606)
Note:	*p<0.1; **p<0.05; ***p<0.01

Heterogeneous effects: State

Map het effects by state