- 几何学
- 阿拉伯语,指土地的测量,即测地术。
- 《几何原本》,公元前338年
 - 欧几里得著
 - •明徐光启、利玛窦译
- •《墨经》、《九章算术》

Points and Meshes

Point Cloud

- A set of datapoints sampled from the underlying surface
- Attributes: color, normal, etc.

2D point cloud

Oriented point cloud

Point Set Surface

Points and Meshes

Polygon Meshes

- A collection of vertices, edges and faces
- Triangular mesh, quad mesh, etc.

Points and Meshes

Polygon Meshes

- A collection of vertices, edges and faces
- Triangular mesh, quad mesh, etc.

Triangular and quadrilateral meshes

Many Representations of Geometry

Explicit

- point cloud
- polygon mesh

Implicit

- algebraic surface
- level sets
- distance function

"Implicit" Representations of Geometry

Classifying points with implicit function f(x,y,z) = 0

Points satisfy some specified relationship

E.g. sphere: all points in 3D, where $x^2+y^2+z^2-1=0$

"Implicit" Representations of Geometry

Is (0.3, 0.3, 0.5) inside or outside the sphere?

$$-0.3^{2}+0.3^{2}+0.3^{2}-1=-0.73<0$$

- Inside!

Inside/Outside Test Easy!

"Implicit" Representations of Geometry

$$f(x,y,z) = (2 - \sqrt{x^2 + y^2})^2 + z^2 - 1$$

What points lie on f(x,y,z) = 0?

Point Sampling Hard!

"Explicit" Representations of Geometry

All points are given directly or via parameter mapping

Generally: $f: \mathbb{R}^2 \to \mathbb{R}^3; (u,v) \mapsto (x,y,z)$

"Explicit" Representations of Geometry

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u)$$

What points lie on this surface?

Just plug in (u,v) values!

"Explicit" Representations of Geometry

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u)$$

Is (0.3,0.3,0.5) inside or outside this shape?

No "Best" Representation – Geometry is Hard!

"I hate meshes.

I cannot believe how hard this is.

Geometry is hard."

— David Baraff
Senior Research Scientist
Pixar Animation Studios

More implicit representations

Constructive Solid Geometry

Combine implicit geometry via Boolean operations

More implicit representations

Signed Distance Function

- Distance of a given point x to the surface boundary
- Sign: whether or not x is in the interior of surface

More implicit representations

Level-Set

- A grid of values approximating function
- Surface is found where interpolated values equal zero

Mesh Extraction From Implicit Representation

MarchingCube Algorithm, 1987

- Assume f(x,y,z)=0
- Estimate f(x,y,z) at the grid points

- Determine the polygon for each cube
- 28=256 cases!

MarchingCube15, 1987 (Then MarchingCube33 in 1995)

Mesh Extraction From Implicit Representation

MarchingCube cannot do sharp edges and corners

Dual Contour Algorithm: not only f(x), but also f'(x)

Thank you