

Fig. 1A

Fig. 1B

1/246

Fig. 2A

Fig. 2B

Fig. 2C

2/246

3/246

Fig.3A

Fig.3C

Fig.3B

Fig.3D

4/246

Fig. 4

5/246

Fig. 5

6/246

Fig. 6A

Fig. 6B

Fig. 7A

Fig. 7B

Fig. 7C

7/246

8/
246

Fig.8A

Fig.8B

Fig.8C

Fig. 9A

Fig. 9B

Fig. 9C

9/246

10/246

Fig.10A

Fig.10B

Fig.10C

11/246

Fig.11A

Fig.11B

Fig.11C

12/246

Fig.12A

Fig.12B

Fig.12C

13 /
246

Fig.13

14/246

Fig.14A

Fig.14B

15 / 246

Fig. 15.

16 / 246

Fig. 16

17 / 246

Fig. 17

18/246

Fig.18A

Fig.18B

19 / 246

Fig. 19

20/246

21 /
246

Fig. 21

22/246

Fig. 22

23/246

Fig. 23A

Fig. 23B

Fig. 23C

24/246

Fig. 24A

-45°

Fig. 24B

-90°

25/
246

Fig. 25

26
246

Fig. 26A

Fig. 26B

Fig. 26C

27 /
246

Fig. 27

Fig. 28

29 /
246

Fig. 29

30
246

Fig.30

Fig. 31

WHEN NO VOLTAGE IS APPLIED

32/246

Fig. 32

33/246

Fig. 33

34/
246

Fig. 34

35 /
246

F i g . 35

36/246

Fig. 36

Fig. 37A

Fig. 37B

37/246

Fig.38A

Fig.38B

38/246

Fig.39

39
/ 246

Fig. 40

Fig. 41

40/
246

Fig. 42

41/246

Fig.43

42 /
246

Fig. 44

43 / 246

Fig. 45

Fig. 46

45/246

Fig. 47

46
246

Fig. 48A

Fig. 48B

Fig. 48C

47/246

Fig.49A

Fig.49B

48 /
246

Fig.50A

Fig.50B

49 /
246

Fig.51

Fig. 52

51/246

Fig.53A

Fig.53B

Fig.53C

Fig.53D

Fig.53E

52 / 246

Fig.53F

Fig.53G

Fig.53H

Fig.53I

Fig.53J

Fig. 54

54/246

Fig.55

55 /
246

Fig. 56

56 /
246

Fig.57A

WHEN NO VOLTAGE IS APPLIED

Fig.57B

WHEN A VOLTAGE IS APPLIED

57 /
246

Fig.58

58/246

Fig. 59

59 / 246

Fig. 60

60 / 246

Fig. 61A

A - A'

Fig. 61B

B - B'

61 / 246

Fig. 62A

Fig. 62B

62/246

Fig. 63

63 / 246

Fig. 64

64 /
246

Fig. 65A

Fig. 65B

65 /
246

Fig. 66

66 /
246

Fig. 67A

Fig. 67B

Fig. 67C

67/246

Fig. 68

68/246

Fig. 69A

Fig. 69B

69 /
246

Fig.70A

Fig.70B

70/246

Fig. 71

71/246

Fig. 72

72 / 246

Fig. 73

73 /
246

Fig. 74

74/246

Fig. 75

75/246

Fig. 76A
A-A'

Fig. 76B
B-B'

76/246

Fig.77A

Fig.77B

77/246

Fig.78A

Fig.78B

78 / 246

Fig. 79A

Fig. 79B

79/246

Fig. 80A

Fig. 80B

80/246

Fig.81A

Fig.81B

81/246

Fig. 82

82/246

Fig.83A

Fig.83B

Fig.83C

Fig.83D

83/246

Fig. 84

84 / 246

Fig. 85A

Fig. 85B

85 / 246

Fig. 85C

Fig. 85D

86 /
246

Fig. 86A

Fig. 86B

87 / 246

Fig. 87

88/246

Fig. 88

89/246

Fig. 89

90
246

Fig.90A

Fig.90B

91 / 246

Fig. 91

92 /
246

Fig.92A

Fig.92B

93/246

Fig. 93

94/246

Fig. 94

Fig. 95

95 /
246

Fig. 96

Fig. 97

Fig. 98

96/246

Fig.99A

Fig.99B

97 /
246

Fig.100A

Fig.100B

98/246

Fig. 101A

Fig. 101B

99/246

Fig.102

100/246

Fig. 103A

Fig. 103B

101/246

Fig.104

B~14

102 /
246

Fig.105A

Fig.105B

103 /
246

Fig. 106

Fig. 107

104 / 246

Fig. 108A

Fig. 108B

105/246

Fig.109A

Fig.109B

106/246

Fig. 110

107/246

Fig. 111

108
/ 246

Fig.112

109 / 246

Fig. 113

110/246

Fig.114

111/246

Fig. 115

112 /
246

Fig. 116

113/246

Fig.117

114 /
246

Fig.118

115 /
246

Fig. 119

$$h_1 < h_2 < h_3$$

Fig. 120

Fig. 121

WHEN 5V IS APPLIED

Fig. 122

119 / 246

Fig. 123

120
246

Fig .124A

Fig .124B

121/246

Fig .125A

Fig .125B

122/246

Fig. 126

123/246

Fig. 127

124 / 246

Fig. 128

125/246

Fig. 129

126 / 246

Fig. 130

$^{127}/246$

Fig. 131

128
/ 246

Fig. 132

129 /
246

Fig. 133

Fig. 134 A

Fig. 134 B

Fig. 135

131/246

Fig.136A

Fig.136B

Fig. 137A

Fig. 137B

Fig. 137C

Fig. 137D

133/246

Fig. 138

134 / 246

Fig. 139A

Fig. 139B

Fig. 139C

Fig. 139D

Fig. 139E

135 / 246

Fig. 140 A

Fig. 140 B

136/246

Fig.141A

Fig.141B

137 / 246

Fig.142A

Fig.142B

Fig.142C

Fig.142D

Fig.142E

138 /
246

Fig.143

139 /
246

Fig. 144A

BEFORE BAKING

Fig. 144B

AFTER BAKING

140/246

Fig.145A NO BAKING

Fig.145B 120°C

Fig.145C 130°C

Fig.145D 140°C

Fig.145E 150°C

141 / 246

Fig. 146A

$2\mu m$ WIDTH

Fig. 146B

$5\mu m$ WIDTH

Fig. 146C

$10\mu m$ WIDTH

142/246

Fig. 147A

Fig. 147B

143 / 246

Fig. 148A

Fig. 148B

Fig. 148C

144 /
246

Fig.149A

Fig.149B

145 /
246

Fig. 150

146 /
246

Fig.151A

Fig.151B

147 / 246

Fig. 152A

Fig. 152B

Fig. 152C

148
/ 246

Fig.153A

Fig.153B

Fig.153C

149
/ 246

Fig. 154 A

Fig. 154 B

~~150~~
246

Fig.155A

Fig.155B

151 / 246

Fig. 156

152/246

Fig. 157A

Fig. 157B

Fig. 157C

~~153~~
246

Fig. 158

Fig. 159

155/246

Fig. 160

156 /
246

Fig. 161

Fig. 162

158 /
246

Fig. 163

Fig. 164

Fig. 165A

Fig. 165B

~~161~~
246

Fig. 166A

Fig. 166B

Fig. 167

163 /
246

Fig. 168 A

Fig. 168 B

Fig. 168 C

Fig. 169

Fig. 170

SPRINKLE DENSITY OF SPACERS (NUMBERS/mm ²)	50	100	150	200	250	300	350	400	450	500	550
BLEMISH OCCURRENCE DUE TO PUSHING	YES	YES	NO								
BLEMISH OCCURRENCE DUE TO PULLING	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

165
/ 246

166
/ 246

Fig.171A

18-CROWN-6

Fig.171B

DIBENZOYL-18-CROWN-6

167
/ 246

Fig.172A

CRYPTAND [2.2.2]

Fig.172B

CRYPTAND [2.1.1]

168 /
246

Fig.173A

Fig.173B

169 /
246

Fig. 174

170/246

Fig.175A

Fig.175B

171 /
246

Fig.176A

Fig.176B

172/246

Fig.177A

Fig.177B

173/246

Fig. 178

174 /
246

Fig. 179A

Fig. 179B

175/246

Fig. 180 A

Fig. 180 B

176/246

Fig.181A

Fig.181B

Fig.181C

Fig.181D

177 /
246

Fig. 181E

Fig. 181F

Fig. 181G

178
/ 246

Fig.182

179
246

Fig. 183 A

Fig. 183 B

180
/ 246

Fig. 184A

Fig. 184B

181 / 246

Fig. 186

183/246

Fig.187

~~184~~/
246

Fig. 188A

Fig. 188B

185 /
246

Fig.189

Fig.190A

Fig.190B

186/246

Fig.191

Fig.192

Fig.193

187/246

Fig.194

Fig.195

188/246

Fig.196A

Fig.196B

189 /
246

Fig.197

190
/ 246

Fig.198

Fig.199

Fig. 200

191
246

192/246

Fig. 201A

Fig. 201B

193/246

Fig. 202A

Fig. 202B

194/246

Fig. 203A

Fig. 203B

195/246

Fig. 204

196/246

Fig. 205 A

Fig. 205 B

Fig. 205 C

197/246

Fig. 206

Fig. 207

Fig .2008

200
246

Fig. 209
DISCHARGE OF CHARGES (THEORETICAL VALUE)

201 /
246

Fig. 210

202 /
246

Fig. 211

203 /
246

Fig. 212

204/246

Fig.213

205 /
246

Fig. 214

206 /
246

Fig. 215

207/246

Fig. 216

GENERAL CONDITION

$$n_x, n_y \geq n_z$$

POSITIVE UNIAXIAL FILM

$$n_x > n_y = n_z$$

NEGATIVE UNIAXIAL FILM

$$n_x = n_y > n_z$$

BIAXIAL FILM
(A PHASE LAG AXIS IS X DIRECTION.)

$$n_x > n_y > n_z$$

RETARDATION IN
INPLANE DIRECTIONS

$$R = (n_x - n_y)d$$

RETARDATION OF
THICKNESS DIRECTION

$$R = \left(\frac{n_x + n_y}{2} - n_z \right) d$$

208/246

Fig. 217

209 /
246

Fig. 218

210 / 246

Fig. 219

Fig . 220

212/246

Fig. 221

213/246

Fig. 222

214/
246

Fig. 223

215/246

Fig. 224

216 /
246

Fig. 225

217/246

Fig. 226

218/246

Fig. 227

219/246

Fig. 228

220 /
246

Fig. 229

221/246

Fig. 230

222/246

Fig. 231

223 /
246

Fig. 232

224/
246

Fig. 233

225 / 246

Fig. 234

226/246

Fig. 235

227/246

Fig. 236

228/
246

Fig. 237

229/246

Fig. 238

230 /
246

Fig. 239

231 /
246

Fig. 240

232 / 246

Fig. 241

233/246

Fig. 242

234 / 246

Fig. 243

235
/ 246

Fig. 244

236/
246

Fig. 245

237/246

Fig. 246

Fig. 247

239/246

Fig. 248

~~240~~
246

Fig. 249

SAMPLE	THICKNESS OF A PANEL (μm)			GAP BETWEEN PROJECTIONS (μm)			PHASE DIFFERENCE FILM	TRANSMITTANCE (%) (5V)	VIEW ANGLE : CR >10 LEFT-RIGHT DIRECTION	COLOR DIFFERENCE (5V: LEFT -RIGHT) $\Delta u(x)$ $\Delta v(Y)$	
	R	G	B	R	G	B				$\Delta u(x)$	$\Delta v(Y)$
EMBODIMENT A	5.7, 4.6, 3.6	20, 25, 30		320				5.60	$\pm 80^\circ$	0.03	0.03
EMBODIMENT B	5.7, 4.6, 3.6	20, 25, 30		320				5.60	$\pm 80^\circ$	0.03	0.05
PRIOR ART ₁	R, G, B=3.6	R, G, B=30		240				4.50	$\pm 80^\circ$	0.06	0.05
PRIOR ART ₂	R, G, B=4.6	R, G, B=30		320				5.80	$\pm 80^\circ$	0.14	0.12

241/246

Fig. 250

EXAMPLES	INITIAL VALUES	AFTER 200 HOURS
EMBODIMENT C	25	42
EMBODIMENT D	33	51
EMBODIMENT E	26	45
EMBODIMENT F	30	48
REFERENCE	32	70

242 / 246

Fig. 251A

Fig. 251B

Fig. 251C

Fig. 251D

243/246

Fig. 252A

Fig. 252B

244/246

Fig. 253

245
246

Fig. 254 A

Fig. 254 B

246/246

Fig. 255

