Activity Selection Problem

Mashiwat Tabassum Waishy

Lecturer

Activity Selection Problem

• An Activity Selection Problem is the problem of scheduling a resource among several competing activity.

Activity Selection

- The activity scheduling is a simple scheduling problem fro which the greedy algorithm approach provides an optimal solution.
- We are given a set $S = \{a_1, a_2, \dots, a_n\}$ of n activities that are to be scheduled to use some resources.
- Each activity a_i must be started at a given start time s_i and ends at a given finish time f_i .
- Example:
 - An Example is that a number of lectures are to be given in a single lecture hall.
 - The start and end times have be set up in advance.
 - The lectures are to be scheduled.
 - There is only one resource(e.g. lecture hall)
 - Some start and finish times may overlap.
 - Therefore, not all request can be honored.

Activity Selection

- We sat that two activities a_i and a_j are non-interfering if their start-finish intervals do not overlap.
- i.e. $(s_i, f_i) \cap (s_j, f_j) = \emptyset$.
- The activity selection problem is to select a maximum-size set of mutually non-interfering activities for the resource.

Activity Selection Problem

- A set $s=\{1,2...n\}$ proposed activities.
- Everyone want the same resource (as like classroom) used by one at a time.
- Each activity 'i' has start time s_i and finish time f_i where $s_i <= f_i$. Time between $[s_i$ and f_i] is the ith activity time.
- Two activities i and j are compatible if they do not overlap $(s_i >= f_i \text{ or } s_i >= f_i)$.

Example

i	1	2	3	4	5	6	7 6 10	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

The largest subset of mutually compatible activities: {a1; a4; a8; a11}

Algorithm

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```


Activity Selection Problem – Greedy Solution

- 1. Sort the input activities by increasing finishing time as $f_1 \le f_2 \le \dots \le f_n$.
- 2. Now, define or call a procedure GREEDY- ACTIVITY-SELECTOR (s,f)

Greedy Algorithm

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

Analysis

- 1. Sort input activity by increasing finishing time requires O(n log n).
- 2. Greedy-activity-selector (s,f) requires $\Theta(n)$.

- Thank -