Aleo on-chain MPC Beaver Triple Generation

Pierre-André LONG

July 17, 2024

Let $(v_i)_{1 \leq i \leq n}$ be the *n* MPC share holders, called validators. For $1 \leq i, j \leq n$:

 AHE_i : additively homomorphic encryption with public key of v_i .

 AHD_i : decryption with private key of v_i .

k is a unique base field element identifying the beaver triple we are generating.

 $k_A = commit_{bhp256}(k, 1), k_B = commit_{bhp256}(k, 2), k_{AB} = commit_{bhp256}(k, 3),$ indexes for storing each value of the triple in the MPC.

Validator i: Alice

Validator j: Bob

- Generates random a_i .
- Calls add_private (k_A, a_i) .
- Mints n records containing $c_{A_{i,j}} = AHE_i(a_i)$ to v_j .

 $c_{A_{i,j}}$

- Generates random $b_i, r_{i,j}$.
- Calls add_private (k_B, b_i) .
- Calls add_private $(k_{AB}, -r_{i,j})$.
- Computes:

$$c_{B_{i,j}} = b_j \cdot c_{A_{i,j}} + AHE_i(r_{i,j})$$

- Mints n records containing $c_{B_{i,j}}$ to v_i .

 $c_{B_{i,j}}$

- Computes:

$$S_{i,j} = AHD_i(c_{B_{i,j}})$$
$$= a_i \cdot b_j + r_{i,j}$$

- Calls add_private $(k_{AB}, S_{i,j})$.

Hence:

$$[k_{AB}] = \left[\sum_{i=1}^{n} \sum_{j=1}^{n} (S_{i,j} - r_{i,j})\right] = \left[\sum_{i=1}^{n} \sum_{j=1}^{n} a_i \cdot b_j\right] = [a \cdot b],$$
$$[k_A] = [a] \text{ and } [k_B] = [b].$$