Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

4005 7 0 7 2004

United States Department of Agriculture

Animal and Plant Health Inspection Service

Veterinary Services

National Animal Health Monitoring System

January 2004

SOSS

Phase II: Scrapie: Ovine Slaughter Surveillance Study 2002-2003

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

Mention of companies or commercial products does not imply recommendation or endorsement by the USDA over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information.

USDA:APHIS:VS:CEAH
NRRC Building B, M.S. 2E7
2150 Centre Avenue
Fort Collins, CO 80526-8117
970.494.7000
E-mail: NAHMSweb@aphis.usda.gov
www.aphis.usda.gov/vs/ceah/cahm

#N419.0104

Acknowledgments

Phase II of the Scrapie: Ovine Slaughter Surveillance study (SOSS) was prepared from material received and analyzed by the U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS) during a study to estimate the regional and national prevalence of scrapie in mature cull sheep in the United States.

VS is grateful to the American Sheep Industry Association (ASI), which provided invaluable assistance in the design of the SOSS study, helped coordinate efforts among industry and participating States, and made a substantial monetary contribution. Recognition also goes to the Food Safety Inspection Service (FSIS), and the contract laboratories that worked in cooperation with the National Veterinary Services Laboratory (NVSL).

We want to thank the State and Federal veterinary medical officers (VMOs) and animal health technicians (AHTs) who visited the plants and collected the data and samples. Their hard work and dedication to SOSS were invaluable.

All participants are to be commended, particularly the slaughter plants, whose voluntary efforts made the SOSS study possible.

Thomas E. Walton

Director

Centers for Epidemiology and Animal Health

Suggested bibliographic citation for this report:

USDA. 2003. Phase II: Scrapie: Ovine Slaughter Surveillance Study 2002-2003 USDA:APHIS:VS,CEAH, National Animal Health Monitoring System, Fort Collins, CO #N419.0104

Contacts for further information:

Questions or comments on the Scrapie: Ovine Slaughter Surveillance Study 2002-2003: Dr. Randy Pritchard or Dr. Katherine Marshall: 970.494.7000 Information on reprints or other NAHMS reports: Mr. Brad Doty: 970.494.7000 E-mail: NAHMSweb@aphis.usda.gov

Table of Contents

Introduction 1

Terms Used in this Report 2

Section I: Prevalence Estimates 5

A. Weighted Test Results 5

- 1. Overall prevalence 5
- 2. Prevalence by tissue type 7
- 3. Prevalence by face color 8
- 4. Prevalence by age 9
- 5. Logistic regression model 10

B. Unweighted Genetic Results 11

1. Distribution of sampling 11

Section II: Methodology 16

A. Background 16

- 1. Mature sheep slaughter and marketing 16
- 2. Mature sheep marketed to Mexico 18
- 3. Projected number of sheep culled 19

B. Sampling 21

- 1. Total sample size 21
- 2. Plant selection and sampling allocation 21
- 3. Animal selection 22
- 4. Laboratory allocations 22
- 5. Genetic testing 22
- C. Region of Origin 23
- D. Population Inferences 23
- E. Data Validation and Analysis 23

Appendix I: Sample Profile 24

Appendix II: U.S. Sheep Inventory and Operations 26

Appendix III: Scrapie: Ovine Slaughter Surveillance - Phase I

Information Sheet 27

Appendix IV: Laboratory Selection and Results 29

Appendix V: Age Determination by Teeth Examination 30

Introduction

The purpose of the SOSS study was to estimate the regional and national prevalence of scrapie in mature cull sheep in the United States.

Phase I of SOSS was conducted from February 2001 through March 2002 and included refinement of the study design and sample collection training. The purpose of Phase I was to develop and modify the sample collection and testing processes, without emphasizing statistical results (see appendix III).

SOSS Phase II is similar to Phase I in that similar sample collection procedures and testing were used, along with a representative sample allocation. Beginning April 1, 2002, and continuing through March 31, 2003, Phase II included the collection of tissue samples from 12,508 sheep from 22 slaughter plants and 1 large livestock market.

Prior to the SOSS study, the estimated prevalence of scrapie in the United States was 0.07 percent (based on unpublished data from the NAHMS Sheep '96 study). However, the Sheep '96 estimate was based on a mail-in survey of producers who reported the presence of suspected or confirmed cases of scrapie in their flock over a period of 5 years, including lambs and mature sheep. The flock estimate was then expanded based on flock size to generate the animal-level prevalence estimate. The results of the SOSS study cannot be directly compared to the Sheep '96 prevalence estimate because of differences in study design, reference population, and data collection methods.

Terms Used in this Report

Age: Determined by examining the teeth (number of permanent incisors) in carcass heads presented for sampling (see appendix V).

Face color: A phenotypic characteristic of sheep associated with breed.

White: Wool and/or hair on face are primarily white in color (e.g.,

Rambouillet and Dorset breeds).

Black: Wool and/or hair on face are primarily black in color (e.g., Suffolk and Hampshire breeds).

Mottled: Some wool and/or hair on the face is darker and form spots, freckles, or blotches that create a mottled appearance (usually associated with crossbreds or composites).

Fiscal year, 2002 (FY02): Time period from October 1, 2001, through September 30, 2002.

Genotypes: A codon is defined as a set of three nucleotides that encode for a specific amino acid. Three codons that encode for amino acids at postions 136, 154, and 171 in the PrP protein have been associated with scrapie susceptibility in sheep in the United States. However, codon 171 is thought to be the major determinant of scrapie susceptibility in the United States.

PrP genotypes are reported as the diploid PrP genotype at codons, 136, 154, and 171, such as QQ at codon 171. Amino acid single-letter abbreviations are shown below:

A: alanine

H: histidine

K: lysine

Q: glutamine

R: arginine

V: valine

Mature sheep: A sheep 1 year of age or older.

No test: Samples could not be genotyped because of insufficient DNA or other reasons.

Obex: A specific anatomical location in the brainstem between the cerebellum and the medulla oblongata where a v-shaped portion of the fourth ventricle of the brain is formed. This location is a critical area for sampling because of the accumulation of the scrapie prion protein in this region.

Examples of a 95% Confidence Interval

Prevalence estimates: Estimates in this report were statistically weighted to reflect the population from which the sample was selected and are provided with a measure of precision called the **standard error**. A 95-percent confidence interval can be created with bounds equal to the estimate, plus or minus two standard errors. If the only error is sampling error, the confidence intervals created in this manner will contain the true population mean 95 out of 100 times. For example, an estimate of 7.5 with a standard error of 1.0 results in limits of 5.5 to 9.5 (two-times the standard error above and below the estimate). The second estimate of 3.4 shows a standard error of 0.3 and results in limits of 2.8 and 4.0. Alternatively, the 90-percent confidence interval would be created by multiplying the standard error by 1.65 instead of 2. In general, when comparing point estimates between categories, estimates with confidence levels that overlap are not considered different. Most estimates in this report are rounded to the nearest hundreth. If rounded to 0, the standard error was reported. If there were no reports of the event, no standard error was reported.

Regions/States:

West: California, Oregon, and Washington

Mountain: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico,

Oklahoma, Texas, Utah, Wyoming

Central: Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota,

South Dakota

East: Alabama, Arkansas, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Mississippi, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia, Wisconsin

Multiregion: Unable to trace animals to a specific region (e.g., a group of animals gathered from numerous States in different regions and sold at a livestock market).

National: All regions combined, including multiregion.

Sample profile: Information that describes characteristics of the sample from which SOSS data were collected (see appendix I).

Weighted estimates: Sample estimates expanded to statistically represent the population being considered (see Section II: Methodology, D. Population Inferences).

Section I: Prevalence Estimates

A. Weighted Test Results

1. Overall prevalence

Of the 12,508 mature sheep sampled, valid (at least one testable tissue) test results were obtained from 12,491 (99.9 percent). A positive result was recorded for any animal that tested positive by immunohistochemistry (IHC) on one or more of the tissues sampled. The overall weighted national prevalence of scrapie in mature sheep is 0.20 percent. Estimates could not be made in the West region due to the low number of samples obtained. However, national estimates include samples collected in the West region.

a. Percentage of sheep that tested positive for scrapie, by region*:

Percent Sheep									
	Region								
Мог	Mountain Central			East Multi		ultiregion Na		ional	
Pct.	Std. Error	Pct.	Std. Error	Pct.	Std. Error	Pct.	Std. Error	Pct.	Std. Error
0.14	(0.06)	0.21	(0.10)	0.52	(0.15)	0.13	(0.07)	0.20	(0.04)

^{*}Because of the low number of samples obtained in the West region, results for the West region are included in the National estimates but are not listed individually.

Percent of Sheep that Tested Positive for Scrapie, by Region*

*Because of the low number of samples obtained in the West region, results for the West region are included in the National estimates but are not listed individually.

2. Prevalence by tissue type

Three tissue types (obex, tonsil, and retropharyngeal lymph node) were collected from each sheep head for IHC testing. As expected, each tissue type differed slightly in the number tested as well as the number of positive results; however, the prevalence was similar for the three tissue types.

a. Percentage of sheep that tested positive for scrapie, by tissue type:

Tissue Type	Percent	Standard Error
Obex	0.18	(0.04)
Tonsil	0.19	(0.04)
Retropharyngeal lymph node	0.20	(0.04)

Percent of Sheep That Tested Positive for Scrapie, by Tissue Type

3. Prevalence by face color

Scrapie prevalence (one or more tissue samples tested positive) was highest in black-faced sheep (0.84 percent). White-faced sheep were far less likely to test positive for scrapie (less than 0.01 percent). Some animals were presented for sample collection with the skin removed. Therefore, face color could not be determined on these animals and they were not included in these estimates.

a. Percentage of sheep that tested positive for scrapie, by face color.

Face Color	-	Percent Sheep	Standard Error
White	Tames and the same of the same	0.00	(0.00)
Black		0.84	(0.19)
Mottled	Townson the second	0.12	(0.07)

Percent of Sheep that Tested Positive for Scrapie, by Face Color

4. Prevalence by age

Age was determined based on the number of visible permanent incisors (see appendix V). Four-year-old sheep tested positive (one or more tissue samples tested positive) most frequently (0.49 percent of sheep tested). Scrapie prevalence increased with age until the animals reached 4 years old, then decreased.

a. Percentage of sheep that tested positive for scrapie (national and black-faced sheep), by age:

Percent Sheep							
1	lational	ВІ	ack-faced				
Percent	Standard Error	Percent	Standard Error				
0.11	(0.07)	0.00	()				
0.21	(0.11)	0.54	(0.32)				
0.49	(0.16)	1.77	(0.60)				
0.13	(0.04)	0.69	(0.24)				
	0.11 0.21 0.49	National Percent Standard Error 0.11 (0.07) 0.21 (0.11) 0.49 (0.16)	National BI Percent Standard Error Percent 0.11 (0.07) 0.00 0.21 (0.11) 0.54 0.49 (0.16) 1.77				

Percent of Sheep that Tested Positive for Scrapie (National and Black-faced Sheep), by Age

5. Logistic regression model

Black-faced sheep were significantly more likely to test positive for scrapie than white- or mottled-faced sheep (OR = 38, p < 0.001), even when adjusting for age and region. Age was marginally significant in association with scrapie (p = 0.06), with 4-year-old sheep more likely to test positive for scrapie than sheep younger or older than 4 years. Although the East region had the highest scrapie prevalence, the difference was not significant after adjusting for face color and age.

a. Association of face color, age, and region with scrapie:

Factor	Odds Ratio	95-Percent Confidence Interval	P-value
Black Face: Yes No	38.4 1.0	10.5–139.9	Less than 0.001
Age: Less than 4 years 4 years More than 4 years	0.6 2.1 1.0	0.2–1.7 0.7–6.0	0.06
East Region: Yes No	1.6 1.0	0.6–4.3	0.36

Note: The odds (OR) ratio is a measure of the risk of an outcome (e.g., scrapie) for one group (e.g., blackface) compared to a reference group (e.g., white or mottled face). The 95-percent confidence interval indicates the precision of the OR estimate (e.g., the OR for face color could be anywhere from 10.5 to 139.9). The p-value measures the likelihood that the association is due to chance (e.g., face color vs. scrapie; there is less than a 0.1 percent probability this association is due to chance alone).

B. Unweighted Genetic Results

Two laboratories were sent cerebellum samples for genetic testing. The first laboratory reported results for codon 171 only; the second laboratory reported results for codons 136, 154, and 171. In addition, the second laboratory tested for the K and H alleles at codon 171. The significance of these alleles to scrapie susceptibility is still being researched.

1. Distribution of sampling

The first laboratory conducted genetic testing on 1,245 randomly selected cerebellum samples. The RR genotype accounted for 15.74 percent of sheep tested at the first laboratory. In addition, all sheep that tested positive for scrapie were submitted for genetic testing.

a. Genotype distribution for tested cerebellum samples (first laboratory), by genotype at codon 171:

Genotype	Tage of the same o	Number		
(Codon 171)		Cerebellum Samples		Percent
QQ		506		40.64
QR		543	**************************************	43.62
RR		196		15.74
Total		1,245		100.00

The second laboratory tested 1,784 cerebellum samples, including 79 "no test" samples from the first laboratory. Also, as a quality control measure, 124 samples from the first laboratory were randomly selected and tested at the second laboratory. In addition, all positive samples were retested at the second laboratory, if tissues were available (see table c, next page).

b. Genotype distribution for all tested cerebellum samples (first and second laboratories), by genotype at codon 171:

Genotype (Codon 171)		Number Cerebellum Samples	i	Percent
QQ		1,138		39.31
QR		1,291	processors	44.60
RR		454		15.68
H*	e de la constante de la consta	9		0.31
K**	*vocament	3		0.10
Total		2,895***	and the state of t	100.00

^{*}Includes: HH, QH, RH (second lab)

^{**} Includes: KQ, KR (second lab)

^{***} Adding the total samples tested at the first laboratory (table a) to the total samples tested at the second laboratory (table c) does not equal the total in table b. This discrepancy is due to duplicate testing and "no test" results.

c. Genotype distribution for tested cerebellum samples (second laboratory), by genotype at codons 136, 154, and 171:

Genotype (Codons 136, 154, 171)	Number Cerebellum Samples	Percent
**/RR/QQ	1 1	0.06
AA/**/QQ	4	0.22
AA/**/QR	10	0.56
AA/**/RR	2	0.11
AA/HH/QQ	5	0.28
AA/HR/QQ	55	3.08
AA/HR/QR	30	1.68
AA/HR/RR	2	0.11
AA/RR/**	2	0.11
AA/RR/HH	1	0.06
AA/RR/KQ	2	0.11
AA/RR/KR	1 :	0.06
AA/RR/QH	4	0.22
AA/RR/QQ	531	29.77
AA/RR/RH	4	0.22
AA/RR/QR	695	38.96
AA/RR/RR	265	14.86
VA/**/QQ	1	0.06
VA/**/QR	2	0.11
VA/HH/QQ	1	0.06
VA/HR/QQ	9	0.50
VA/RR/QQ	86	4.82
VA/RR/QR	63	3.53
VV/RR/QQ	8	0.45
Total	1,784	100.00

^{**}No test

d. Genotype distribution for tested cerebellum samples (second laboratory), by genotype at codon 136:

Genotype	Number	
(Codon 136)	Cerebellum Samples	Percent
AA	1,613	90.47
VA	162	9.08
VV	8	0.45
Total	1,783	100.00

e. Genotype distribution for tested cerebellum samples (second laboratory), by genotype at codons 136 and 171:

Genotype (Codons 136, 171)	Number Cerebellum Samples	Percent
AA/HH	1 1	0.06
AA/KQ	2	0.11
AA/KR	1 1	0.06
AA/QH	4	0.22
AA/QQ	595	33.35
AA/QR	735	41.20
AA/RH	4	0.22
AA/RR	269	15.08
VA/QQ	97	5.44
VA/QR	65	3.64
VV/QQ	8	0.45
AA/**	2	0.11
**/QQ	1	0.06
Total	1,784	100.00

^{**}No test

Tissue samples from the 33 sheep that tested positive for scrapie were submitted for genetic testing. All 33 samples were of the QQ genotype at codon 171. This genotype has been characterized as the least resistant to scrapie.

f. Genotype distribution for postive cerebellum samples (second laboratory), by genotype at codons 136, 154, and 171:

Genotype (Codo 136, 154, 171)	ns	Number Cerebellum Samples	Percent
AA/RR/QQ		30	90.91
**/RR/QQ		1	3.03
VA/RR/QQ		2	6.06
Total		33	100.00

^{**}No test

Section II: Methodology

A. Background

1. Mature sheep slaughter and marketing

Federally-inspected slaughter for 2002 accounted for 94.1 percent of the total commercial slaughter. There were 148,000 mature sheep slaughtered in Federally-inspected plants in 2002. Slaughter numbers for tables a and b were taken from the Livestock Slaughter Annual Summary published by NASS.

a. Sheep and lamb slaughter in the United States (1,000 head):

	Sheep and Lamb Slaughter ¹ (1,000 Head)									
	_	C	Commercia	l Slaughte	r	Farm Slaughter	Total Slaughter ²			
		Fede	rally Inspe	cted	Other ³	Jiauginter				
Year		Mature Sheep	Lambs	Total	Sheep and Lambs	Sheep and Lambs	Sheep and Lambs			
1999		188	3,368	3,556	145	65	3,766			
2000		167	3,141	3,308	152	67	3,527			
2001		144	2,921	3,065	157	68	3,290			
2002	Magazina e	148	2,944	3,092	194	65	3,351			

¹NASS Livestock Slaughter Annual Summary

²Total commercial slaughter plus farm slaughter

³State and other nonfederally inspected commercial slaughter

The number of mature sheep slaughtered varies only slightly from month to month. For 2002, mature sheep slaughter ranged from a low of 10,000 head in January to a high of 14,000 head in May and October.

b. Monthly distribution of Federally-inspected mature sheep slaughter in the United States (1,000 head):

	M	lature	Sheep S	laugh	ter ¹ (1,000) Head	d)
Year	1999		2000		2001		2002
January	13	Water and the same of the same	13	1	12		10
February	13	i	13		10	1	11
March	17		15		13	* * 100	11
April	17	1	13		12		12
May	15		16		13		14
June	17		15		12		12
July	15		13		12	1	13
August	16		15		12	1	12
September	17		14		10	-	13
October	15		14		13		14
November	16	Approximately	13	ффф	12		13
December	17		13		13		13
Total	188		167		144		148

¹Nass Livestock Slaughter Annual Summary

2. Mature sheep marketed to Mexico

The San Angelo, Texas market sold approximately 244,000 mature sheep in 2002 (estimated based on a summary of weekly auction reports), of which approximately 201,000 (82.5 percent) were exported to Mexico. This market was selected for the SOSS study because large numbers of mature sheep are shipped to Mexico through this market and thus are not represented in U.S. slaughter plants. The following table shows: a recent history of the number of sheep and lambs exported to Mexico (Foreign Agricultural Service (FAS)); the Texas live-market volume; the estimated number of mature sheep sold through the market (60 to 65 percent of the market volume); and that a high percentage (80 to 85 percent) of the mature sheep sold through the market go to Mexico (USDA-Texas Department of Agriculture Market News estimate).

a. Annual sheep exports to Mexico (FAS) and sheep sold at the Texas live market (USDA-Texas Department of Agriculture Market News estimate):

	Live Sheep	Texas Live Market ²						
	Exported to Mexico ¹	Total Sheep and Lambs	_	Mature Sheep		re Sheep Mexico		
Year	No. (1,000 Head)	No. (1,000 Head)	No (1,000		of No.			
1999	435	404	25	3 62.6	209	82.5		
2000	378	448	26	9 60.0	222	82.5		
2001	383	337	21	1 62.5	174	82.5		
2002	403	390	24	4 62.5	5 201	82.5		

Foreign Agricultural Service (FAS)

²USDA—Texas Department of Agriculture Market News

3. Projected number of sheep culled

a. In the United States, the number of mature sheep culled in a single year varies and is difficult to measure directly. Four different methods were used to project or estimate the number of head culled in 2002:

Method	Projected Number of Sheep Culled in 2002
FSIS FY02 mature sheep slaughter +Export of live animals to Mexico =Cull indicator or total culled	144,201 403,000 547,201
NASS annual mature slaughter +Export of live animals to Mexico =Cull indicator or total culled	148,000 403,000 551,000
3. Ewes* (Jan. 1 end-of-year NASS inventory) Rams* (Jan. 1 end-of-year NASS inventory) Ewe cull rate @ 18.3 percent (NAHMS) + Ram cull rate @ 23.8 percent (NAHMS) =Ewes and rams culled x Mature culled @ 90 percent (estimate)	3,789,000 191,500 693,387 45,577 738,964 665,068
 4. Replacement lambs (Jan. 1 end-of-year NASS inventory) - Sheep deaths (NASS) = Cull indicator or total culled 	701,500 (263,900) 437,600

^{*}Ewes/Rams 1 year or older

Methods 1 and 2 use similar calculations but different slaughter components. Method 1 uses FY02 data and sums the mature sheep slaughter in Federally-inspected plants (144,201 head) and the number of live sheep exported to Mexico (403,000 head) for a total of 547,201 head culled. Method 2 uses NASS annual slaughter data for mature sheep and yields a total of 551,000 head culled. The results from these two slaughter indicators are similar. The results assume that: most culled sheep that remain in the United States are slaughtered in Federally-inspected facilities; most live sheep exported to Mexico are cull sheep; and that there is not a substantial number of cull sheep exported to other countries.

The third method applies the overall culling rate. Data from the NAHMS Sheep 2001 study indicated that 18.3 percent of ewes and 23.8 percent of rams were culled. Further, it is roughly estimated that 90 percent of culled sheep are mature sheep, resulting in an estimate for 2002 of 665,068 head. However, the 2002 estimate may be high since sheep culled from one producer could have ended up in another producer's inventory and been counted twice.

The fourth method uses the NASS end-of-year estimate for the number of replacement lambs. NASS estimated the number of replacement lambs for January 1, 2003, to be 701,500 head. These lambs not only replaced the cull breeding stock but also replaced any mature sheep death loss that occurred during the year. NASS provides separate estimates of death loss for sheep and for lambs. The resulting indicator for number culled in 2002 is 437,600 head.

For all four methods, these approaches yield estimates for number of sheep culled in 2002 at 547,201, 551,000, 665,068, and 437,600 head, respectively. The two slaughter approaches yield similar results. The two inventory approaches vary widely on each side of the slaughter approaches. For SOSS purposes, a rounded "average" of 550,000 head was chosen to represent the cull sheep population.

If the U.S. slaughter is estimated at 148,000 (NASS), then the remaining 403,000 are exported (primarily to Mexico). In 2002 an estimated 244,000 cull sheep moved through the market at San Angelo, Texas (USDA-Texas Department of Agriculture Market News). Of these 244,000 animals, approximately 80 to 85 percent (201,000) went to Mexico and the rest remained in the United States. Thus, the San Angelo market represents about 50 percent (201,000/403,000) of the mature sheep export to Mexico.

B. Sampling

1. Total sample size

A minimum sample size requirement of 11,000 was calculated based on the previous prevalence estimate of 0.07 percent (+/- .05 percent, with 95-percent confidence). The actual sampling plan exceeded this estimate in order to ensure an adequate sample size.

A total of 12,508 animals were sampled between April 1, 2002, and March 31, 2003. Obex, tonsil, and lymph-node tissues from each sheep were tested using the immunohistochemistry (IHC) technique at NVSL and its approved laboratories (see appendix IV). A positive case was defined as having a positive test result on any tissue. Approximately one-fourth of the cerebellum samples were submitted for genetic testing. In addition, all sheep that tested positive for scrapie were submitted for genetic testing.

2. Plant selection and sampling allocation

Slaughter plants were selected based on historical slaughter of mature sheep at Federally-inspected slaughter facilities (FSIS FY2001 data). The 21 highest volume FSIS-inspected plants were selected. In addition, a high-volume State-inspected plant was selected. Plants were grouped into strata based on volume. Each stratum was allocated samples based on historic volume for the stratum. Each plant stratum was then allocated a weekly sampling goal for a total of 15,050 samples allocated for the 50-week collection period. Collections from smaller plants were often taken biweekly or monthly due to the fluctuations in mature sheep slaughter times at these facilities.

a. Number of samples allocated:

		Samples I	Per Week		50-Wee	k Total	
Stratum	No. Plants	Per Stratum	Per Plant	Assessment Empresignment	Per Stratum	Per Plant	Total Samples Collected
1 (mkt.)	1	150	150		7,500	7,500	6,969
2	5	75	15	-	3,750	750	3,052
3	5	40	8	. Company	2,000	400	1,319
4	12	36	3	***************************************	1,800	150	1,168
Total	23	301		-	15,050		12,508

3. Animal selection

Sample collectors were instructed to collect samples using systematic sampling. Sheep were selected based on the number of animals needed to meet the weekly plant allocation.

4. Laboratory allocations

Samples were submitted to NVSL for testing or for distribution to approved laboratories. Laboratory distribution was dependent on the number of laboratories with available testing capacity. Efforts were made to evenly distribute samples from each plant to all participating laboratories. For quality control, all positive samples and one-eighth of all negative samples were retested by NVSL to confirm the results.

5. Genetic testing

One in four cerebellum samples was randomly selected for genetic testing using a random numbers table. In addition, all positive cerebellum samples were submitted for genetic testing. One laboratory provided codon 171 results. A second laboratory provided results at codons 136, 154, and 171.

C. Region of Origin

Sheep were traced to State of origin based on ear tags and/or other information obtained by the collector at the plant or market. For analysis purposes, samples identified to individual States were assigned to one of four defined regions. Sometimes only a listing of multiple States could be obtained for a group of sheep (e.g., market animals accumulated across numerous states). These samples were assigned to the Multiregion category if the States they came from were not all in the same region. In cases where a trace State was not identified by the collector (n = 2,020), a region was assigned based on their official identification information. The 2001 NAHMS Sheep study showed that at least 95 percent of cull sheep movement was within the region of origin.

D. Population Inferences

The study included 22 major mature sheep slaughter plants throughout the United States (21 FSIS inspected, 1 State plant), and one large livestock market in Texas. Inferences cover the population of mature sheep from these sources. The 21 FSIS plants represented approximately two-thirds of the total FSIS mature sheep slaughtered during the study period. The livestock market represented approximately one-half of the live sheep exported to Mexico. All sample data were statistically weighted to reflect the population from which the sample was selected. The number of samples collected from each plant on a specific day was statistically weighted to represent the volume of mature sheep slaughtered (sold) through each plant (market) that specific day. This weight was adjusted for the total volume of mature sheep through the plant (market) from April 2002 through March 2003. Results of genotype testing were unweighted because of the small sample size. Overall, the samples collected from the 22 plants and the livestock market represented 299,000 sheep (54 percent of the cull sheep population, estimated at 550,000 head).

E. Data Validation and Analysis

Data were double-entered into SAS data sets. Data were validated using double entry comparison (SAS Proc Compare). Additional data validation was performed by APHIS/VS/CEAH staff after all data were entered. Final analysis was accomplished using SUDAAN software.

Appendix I: Sample Profile

a. Number of samples submitted, by face color and by region:

Samples Submited							
	Region						
Face Color	West	Mountain	Central	East	Multiregion	Total	
Black	100	535	680	1,023	453	2,791	
White	493	2,997	1,993	1,283	1,472	8,238	
Mottled	71	305	413	404	194	1,387	
Unknown	6	32	4	42	8	92	
Total	670	3,869	3,090	2,752	2,127	12,508	

b. Number of samples submitted, by age and by region:

	Samples Submited						
Region							
Age	West	Mountain	Central	East	Multiregion	Total	
1-2 years	28	161	178	413	109	889	
3 years	41	163	181	414	100	899	
4 years	100	410	430	1,053	178	2,171	
5+ years	492	3,107	2,293	832	1,723	8,447	
Unknown	9	28	8	40	17	102	
Total	670	3,869	3,090	2,752	2,127	12,508	

c. Number of samples submitted, by month:

Month	Samples Submitted
April 2002	809
May 2002	1,492
June 2002	1,234
July 2002	990
August 2002	1,158
September 2002	1,179
October 2002	1,325
November 2002	926
December 2002	828
January 2003	825
February 2003	832
March 2003	910
Total	12,508

Appendix II: U.S. Sheep Inventory and Operations

			NA:	SS ¹			
			Breeding S 1-year and January 1,	older		Number Operations	
		Ewes	Rams	Tota	l	Sheep 2	002
Region	State	Head (1,000)	Head (1,000)	Head (1,000)	Pct.	Number (1,000)	Pct
West	California	295.0	10.0	305.0		2,800	
	Oregon	125.0	7.0	132.0		3,100	
	Washington	34.0	2.0	36.0		1,200	
	Total	454.0	19.0	473.0	11.9	7,100	11.
Mountain	Arizona	56.0	3.0	59.0		270	
	Colorado	155.0	6.0	161.0		1,900	
	Idaho	184.0	5.0	189.0		1,000	
	Montana	213.0	8.0	221.0		1,700	
	Nevada	65.0	2.0	67.0		300	
	New Mexico	140.0	9.0	149.0		800	
	Oklahoma	41.0	3.0	44.0		1,500	
	Texas	680.0	40.0	720.0		6,800	
	Utah	250.0	9.0	259.0		1,400	
	Wyoming	295.0	10.0	305.0		800	
	Total	2,079.0	95.0	2,174.0	54.6	16,470	25.7
Central	Iowa	135.0	7.0	142.0		4,600	
	Kansas	47.0	2.5	49.5		1,400	
	Minnesota	85.0	5.0	90.0		2,300	
	Missouri	48.0	3.0	51.0		1,600	
	Nebraska	56.0	3.0	59.0		1,500	
	North Dakota	77.0	3.0	80.0		1,000	
	South Dakota	265.0	10.0	275.0		2,300	
	Total	713.0	33.5	746.5	18.8	14,700	22.9
East	Illinois	42.0	3.0	45.0		2,200	
	Indiana	34.0	2.5	36.5		2,000	
	Michigan	41.0	2.0	43.0		1,900	
	New England*	32.0	3.0	35.0		2,000	
	New York	40.0	3.0	43.0		1,500	
	Ohio	97.0	6.0	103.0		3,500	
	Pennsylvania	55.0	5.0	60.0		2,600	
	Virginia	38.0	3.5	41.5		1,500	
	West Virginia	23.0	1.0	24.0		1,100	
	Wisconsin	52.0	3.0	55.0		2,300	
	Other States**	89.0	12.0	101.0		5,300	
	Total	543.0	44.0	587.0	14.7	25,900	40.3
J.S.		3,789.0	191.5	3,980.5	100.0	64,170	100.0

¹Source: National Agricultural Statistics Service (NASS), USDA; NASS Sheep and Goats, January 31, 2003 *New England includes CT, ME, MA, NH, RI, and VT **Other States not published individually include AL, AK, AR, DE, FL, GA, HI, KY, LA, MD, MS, NJ, NC, SC, and TN. Note that AK and HI cannot be removed individually from this grouping.

Appendix III: Scrapie: Ovine Slaughter Surveillance – Phase I Information Sheet

APHIS

Info Sheet

Veterinary Services
Centers for Epidemiology and Animal Health

March 2003

Scrapie: Ovine Slaughter Surveillance — Phase I

Overview

The overall objective of the Scrapie: Ovine Slaughter Surveillance (SOSS) study is to estimate the national and regional prevalence of scrapie in mature cull sheep entering slaughter channels. The study was initiated at the request of members of the sheep industry, who wanted to accelerate eradication of the disease.

Beginning in February 2001 and ending in March 2002, Phase I included the study design, methods development, and sample-collection training. The objective of Phase I was to develop and modify the sample collection and testing processes, without emphasizing statistical results.

Phase II, which is the actual prevalence study, started April 1, 2002, and will continue for approximately 1 year. The number of samples to be collected from each participating plant on a weekly or bi-weekly basis was determined based on the number of cull ewes killed at the plant in 2001. Phase III will evaluate and analyze data received during Phase II. Phase III results will be published in fall 2003.

Phase I Methods

The slaughter plants selected to participate in SOSS Phase I were identified based on historical slaughter data obtained through the Food Safety and Inspection Service and the National Agricultural Statistics Service. Since the currently accepted diagnostics are for adult animals, plants that slaughtered large numbers of mature cull ewes were targeted for the SOSS study.

Coordinators and sample collectors were selected for each State with a participating plant. Coordinators served as primary contacts in their States and were responsible for ensuring that the correct number of quality samples were submitted, supplies were ordered and provided to collection personnel, and information was disseminated as needed. Sample collectors were responsible for the actual collection of tissues at the slaughter plants.

Training the sample collectors was a critical component of SOSS Phase I and was accomplished via hands-on instruction and a Procedures Manual that identified the specific anatomical locations of the needed tissues. As the study progressed, regular field reports were produced to inform collectors of the quality of their submitted samples.

Established goals for submitting proper tissue in desirable condition were defined and met prior to Phase II of the study.

Diagnostic laboratories were contracted by the National Veterinary Services Laboratory (NVSL). Three contract labs were used for Phase I. Before SOSS tissues were submitted, laboratory personnel were trained and the labs were approved by NVSL.

To remain consistent with Phase I objectives, convenience sampling, which is sampling at will and without regard to randomness, was used for all samples taken during Phase I.

A standard kit was used that included tools and materials to collect, package, and ship the needed tissues to NVSL.

Samples were collected from the brainstem (obex), cerebellum, both tonsils, both retropharyngeal lymph nodes, and the lymphoid tissue of the third eyelid.

At the time of tissue collection, data regarding each head were recorded on a submission form. These data included a unique sample number, animal identification, face color, and age of the animal based on the number and condition of permanent teeth. Ear tags and plant or market records (when available), and the Veterinary Services generic data base were used to determine the region of animal origin.

Phase I Findings

SOSS Phase I was a "pilot" project. Samples were not collected with the intention of performing rigorous statistical analysis. Therefore, results shown below do not reflect the U.S. cull ewe population.

United States Department of Agriculture • Animal and Plant Health Inspection Service • Safeguarding American Agriculture

Tissue samples were collected from 1,159 cull ewes in 23 slaughter plants from 13 States.

Sheep Face Color	Number	Percent
White	648	55.9
Black	318	27.4
Mottled	143	12.4
Not recorded	50	4.3
Total	1,159	100.0

Age of Sheep	Number	Percent
1 year	54	4.7
2 years	127	10.9
3 years	201	17.3
4 years	407	35.1
5 years or older	338	29.2
Not recorded	32	2.8
Total	1,159	100.0

Tissues were tested using the immunohistochemistry technique (IHC).

Tissue Test Result (IHC)	Obex	Tonsil	Lymph Node
Negative	1,079	939	1,139
Positive	2	2	2
Untestable	78	218	18
Total	1,159	1,159	1,159

For more information, contact:

USDA:APHIS:VS:CEAH NRRC Building B., M.S. 2E7 2150 Centre Avenue Fort Collins, CO 80526-8117 970.494.7000 E-mail: NAHMSweb@aphis.usda.gov www.aphis.usda.gov/vs/ceah/cahm

#N390.0303

Genotype results were obtained for 611 of the 1,159 samples.

Genotype Results	Number	Percent
QQ	237	20.4
QR	279	24.1
RR	95	8.2
XX (not testable)	44	3.8
Not tested	504	43.5
Total	1,159	100.0

Two animals out of the 1,159 tested were positive for scrapie. In these animals, all three tissues (obex, tonsil, and lymph node) tested positive. Both were 4-year-old ewes and were QQ genotypes. One was white -faced, the other blackfaced. Neither sample could be identified back to the region of origin.

Lessons Learned

Phase I allowed for the development of plant relations, modification of forms, and the fine-tuning of tissue collection protocols before the implementation of the full study in April of 2002.

Since approximately two-thirds of all mature cull ewes are exported to Mexico annually, a livestock market sampling protocol was developed for Phase II that calls for the sampling of sheep that are typically exported to Mexico and not sent to domestic slaughter plants.

An instructional CD-ROM containing video clips, color pictures, and the SOSS instruction manual was developed and distributed for Phase II. By the time Phase II began, proficiency (percent testable tissues) for each tissue type was at least 80 percent.

Collecting third eyelid tissue from dead animals was extremely difficult and was stopped a few months into Phase I.

Additional diagnostic laboratories were contracted by NVSL to assist with the increased workload during Phase II.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital status or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA. Director, Office of Civil Rights, Room 326-W. Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

United States Department of Agriculture • Animal and Plant Health Inspection Service • Safeguarding American Agriculture

Appendix IV: Laboratory Selection and Results

a. Participating laboratories

Immunohistochemistry:

University of California - Davis (CAHFS)

Colorado State Universtiy Diagnostic Lab

Cornell University Animal Health Diagnostic Laboratory

Kansas State University

Michigan State University

National Veterinary Services Laboratory (NVSL)

University of Nebraska Veterinary Diagnostic Center

Ohio Department of Agriculture Animal Disease Diagnostic Laboratory

Texas Veterinary Medical Diagnostic Laboratory

Wyoming State Veterinary Laboratory

Genetics:

USDA Agricultural Research Service – Pullman, Washington University of California – Davis GeneSeek Qiagen

b. Sample distribution and positive results:

	Samples			
Laboratory	Number Heads Tested	Percent of Total Tested	Number Positive	Percent of Total Positives
University of California – Davis	2,377	19.0	6	18.2
Colorado State University Diagnostic Lab	1,799	14.4	8	24.3
Cornell University Animal Health Diagnostic Laboratory	241	1.9	2	6.1
Kansas State University	284	2.3	1	3.0
Michigan State University	968	7.7	3	9.1
National Veterinary Services Laboratory	1,064	8.5	1	3.0
University of Nebraska Veterinary Diagnostic Center	370	3.0	1	3.0
Ohio Department of Agriculture Animal Disease Diagnostic Laboratory	572	4.6	1	3.0
Texas Veterinary Medical Diagnostic Laboratory ¹	2,232	17.9	4	12.1
Texas Veterinary Medical Diagnostic Laboratory ²	1,256	10.1	2	6.1
Wyoming State Veterinary Laboratory	1,328	10.6	4	12.1
Total	12,491	100.0	33	100.0

¹Amarillo location; ²Texas-College Station location

Appendix V: Age Determination by Teeth Examination

Observe size of first incisors.

Observe size of first incisors.

Observe first incisors and eruption of second incisors.

Observe eruption of third incisors.

Adult sheep with full mouth.

Broken mouth (sheep 5 years and older, incisors erupted).

