Chap 7 – Quicksort

- 7.1 Description of quicksort
- 7.2 Performance of quicksort
- 7.3 A randomized version of quicksort
 - 7.4. Analysis of quicksort

7.1 Description of quicksort

Quicksort

```
QUICKSORT(A, p, r)

if p < r

q = \text{Partition}(A, p, r)

QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)
```

 $\Theta(n)$ running time, where n = r - p + 1

```
PARTITION (A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1
   if A[j] \leq x
      i = i + 1
      exchange A[i], A[j]
exchange A[i+1], A[r]
return i+1
```

7.1 Description of quicksort

• Partition – an example

Worst-case partitioning

- Maximally unbalanced
- Worst-case input: when the elements are already sorted.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$\Rightarrow T(n) = T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$$

Best-case partitioning

- Equally balanced
- $\circ \quad T(n) \leq 2T(n/2) + \Theta(n) \Rightarrow T(n) = O(n \lg n)$ since the two subarrays have n-1 < n elements in total. or,

$$T(n) = 2T((n-1)/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \lg n)$$

Balanced partitioning

Imagine that Partition always produces a 1-to-9 split Get the recurrence

$$T(n) \le T(n/10) + T(9n/10) + \Theta(n) \Rightarrow T(n) = O(n \lg n)$$

In general, if Partition always produces an $\alpha:1-\alpha$ split, where $0<\alpha\leq 1/2$, we have

$$T(n) \le T(\alpha n) + T((1 - \alpha)n) + \Theta(n) \Rightarrow T(n) = O(n \lg n)$$

It is reasonable to guess that the average case is closer to the best case.

Balanced partitioning

- Intuition for the average case
 - Usually a mix of good and bad splits
 - Don't affect the asymptotic running time

Good and bad splits alternate Good split alone

Both spent $\Theta(n)$ partitioning time

Both have nearly the same subproblems to solve

7.3 A randomized version of quicksort

 Random sampling Choose the pivot unbiasedly at random from A[p..r]RANDOMIZED-PARTITION (A, p, r)i = RANDOM(p, r)exchange A[r] with A[i]**return** PARTITION(A, p, r)RANDOMIZED-QUICKSORT(A, p, r)if p < rq = RANDOMIZED-PARTITION(A, p, r)RANDOMIZED-QUICKSORT (A, p, q - 1)RANDOMIZED-QUICKSORT(A, q + 1, r)

Best-case analysis

$$T(n) = \min_{0 \le k \le n-1} (T(k) + T(n-k-1)) + \Theta(n)$$

Then, $T(n) = \Omega(n \lg n)$ See Ex.7.4-2

Also, $T(n) = O(n \lg n)$

The upper bound follows immediately from the fact that Quicksort takes a time in $\Theta(n \lg n)$ when the input causes

balanced partitioning, because

T(n) = the minimum running time of all cases

≤ the running time of any particular case

Worst-case analysis

$$T(n) = \max_{0 \le k \le n-1} (T(k) + T(n-k-1)) + \Theta(n)$$

How to solve recurrences with max or min?

- Guess where the max or min occurs, pay attention to $0,1, \lfloor n/2 \rfloor, \lceil n/2 \rceil, n-1, n$
- Solve the recurrence using the presumed max or min
- Use the solution to prove that the guess is correct

For the preceding recurrence

- Guess the max occurs when k = 0 or n 1
- Solve $T(n) = T(0) + T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$
- Prove that $T(n) = \Theta(n^2)$

Worst-case analysis

Upper bound

Assume that $T(n) \le cn^2$

$$T(n) = \max_{0 \le k \le n-1} (T(k) + T(n-k-1)) + \Theta(n)$$

$$\leq \max_{0 \le k \le n-1} (ck^2 + c(n-k-1)^2) + \Theta(n)$$

$$= c \cdot \max_{0 \le k \le n-1} (k^2 + (n-k-1)^2) + \Theta(n)$$

Let
$$f(k) = k^2 + (n - k - 1)^2$$

 $f''(k) = 4 > 0$

 \Rightarrow the maximum occurs at k=0 or n-1

Worst-case analysis

Thus,

$$T(n) \le c(n-1)^2 + \Theta(n)$$

$$= cn^2 - c(2n-1) + \Theta(n)$$

$$\le cn^2$$

: We can pick c large enough so that c(2n-1) dominates $\Theta(n)$

Lower bound

Assume that $T(n) \ge cn^2$ and work out

$$T(n) \ge cn^2 - c(2n - 1) + \Theta(n)$$

$$\ge cn^2$$

: We can pick c small enough so that $\Theta(n)$ dominates c(2n-1)

• Worst-case analysis

An alternative argument for lower bound

Since Quicksort takes a time in $\Theta(n^2)$ when the input is already sorted, it follows that $T(n) = \Omega(n^2)$, because T(n) = the maximum running time of all cases \geq the running time of any particular case

• Expected running time of RANDOMIZED-QUICKSORT Lower bound Since average-case complexity \geq best-case complexity = $\Theta(n \lg n)$ it follows that the expected running time $T(n) = \Omega(n \lg n)$

- Expected running time of RANDOMIZED-QUICKSORT
 Upper bound
 - Key observation: Partition removes the pivot from future computation each time
 - Partition is called at most k < n times (in the worst case k = n 1)
 - Each call spends $\Theta(\text{number of comparisons})$ time.
 - Quicksort is called at most 2k + 1 times Each call spends $\Theta(1)$ time, excluding partitioning time.

Expected running time of RANDOMIZED-QUICKSORT
 Let X = the total number of comparisons performed in all calls to Partition

LEMMA 7.1

The running time of QUICKSORT is O(n + X).

The expected running time is O(n + E[X]).

Proof

Let the elements be $z_1 < z_2 < \cdots < z_n$

Define the set $Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$

Define the indicator random variable

 $X_{ij} = I\{z_i \text{ is compared to } z_j\}$

- Expected running time of RANDOMIZED-QUICKSORT
 Since the pivot is removed from future consideration
 - ⇒ each pair of elements is compared at most once

$$\Rightarrow X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

Thus,

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

• Expected running time of RANDOMIZED-QUICKSORT Once a pivot x is chosen such that $z_i < x < z_j$, then z_i and z_j will never be compared at any later time.

Therefore,

$$Pr\{z_i \text{ is compared to } z_j\}$$

- = $\Pr\{z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}\}$
- = $Pr\{z_i \text{ is the first pivot chosen from } Z_{ij}\}$

+ $Pr\{z_j \text{ is the first pivot chosen from } Z_{ij}\}$

$$= \frac{1}{j-i+1} + \frac{1}{j-i+1}$$
$$= \frac{2}{j-i+1}$$

Given 1, 2, 3, 4, 5
Pr{2 is compared to 4}=
$$\frac{2}{5} + 2 \times \frac{1}{5} \times \left[\frac{2}{4} + \frac{1}{4} \times \frac{2}{3}\right] = \frac{2}{3}$$

 Expected running time of RANDOMIZED-QUICKSORT Finally,

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \quad \because k = j-i$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n) = O\left(\sum_{i=1}^{n-1} \lg n\right) = O(n \lg n)$$

Analyze expected running time by recurrence
 Define the indicator random variables (Problem 7-2)
 X_k = I{the pivot is the kth smallest element}
 Then,
 E[X_k] = Pr{the pivot is the kth smallest element} =

 $E[X_k] = Pr\{\text{the pivot is the }k\text{th smallest element}\} = 1/n$ Let T(n) be a random variable denoting the running time of Quicksort on n elements

Then,

$$T(n) = \sum_{k=1}^{n} X_k \cdot (T(k-1) + T(n-k) + \Theta(n))$$

Note that only one of the X_k 's has the value 1.

 Analyze expected running time by recurrence Therefore,

$$E[T(n)] = E\left[\sum_{k=1}^{n} X_k \cdot (T(k-1) + T(n-k) + \Theta(n))\right]$$

$$= \sum_{k=1}^{n} E[X_k \cdot (T(k-1) + T(n-k) + \Theta(n))]$$

$$= \sum_{k=1}^{n} E[X_k] \cdot E[T(k-1) + T(n-k) + \Theta(n)]$$

$$\therefore \text{ independent}$$

$$= \frac{1}{n} \sum_{k=1}^{n} E[T(k-1) + T(n-k) + \Theta(n)]$$

Analyze expected running time by recurrence

$$E[T(n)] = \frac{1}{n} \sum_{k=1}^{n} (E[T(k-1)] + E[T(n-k)] + \Theta(n))$$

$$\therefore \text{ linearity of expectation}$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} E[T(k)] + \Theta(n)$$

How to solve this *full-history* recurrence?

Method A (Problem 7-3)

Prove by substitution that $E[T(n)] = \Theta(n \lg n)$

Method B

Elimination of history

Analyze expected running time by recurrence

$$E[T(n)] = \frac{2}{n} \sum_{k=0}^{n-1} E[T(k)] + \Theta(n) = \frac{2}{n} \sum_{k=0}^{n-1} E[T(k)] + cn$$

Replace $\Theta(n)$ by cn

Multiply both sides by n

$$nE[T(n)] = 2\sum_{k=0}^{n-1} E[T(k)] + cn^2$$
 (1)

Substitute n-1 for n in (1)

$$(n-1)E[T(n-1)] = 2\sum_{k=0}^{n-2} E[T(k)] + c(n-1)^2$$
 (2)

Analyze expected running time by recurrence

$$(1) - (2)$$

$$nE[T(n)] - (n-1)E[T(n-1)] = 2E[T(n-1)] + c(2n-1)$$

Thus,

$$E[T(n)] = \frac{n+1}{n} E[T(n-1)] + c\left(2 - \frac{1}{n}\right)$$
$$= \frac{n+1}{n} E[T(n-1)] + \Theta(1)$$

Now that the history is eliminated, it can be easily solved by repetitive substitution or range transformation.

 Analyze expected running time by recurrence Repetitive substitution

$$E[T(n)] = \frac{n+1}{n} E[T(n-1)] + \Theta(1)$$

$$= \frac{n+1}{n} \left(\frac{n}{n-1} E[T(n-2)] + \Theta(1) \right) + \Theta(1)$$

$$= \frac{n+1}{n-1} E[T(n-2)] + \left(\frac{n+1}{n} + \frac{n+1}{n+1} \right) \Theta(1)$$

$$= \cdots$$

$$= \frac{n+1}{2} E[T(1)] + \left(\frac{n+1}{3} + \dots + \frac{n+1}{n} + \frac{n+1}{n+1} \right) \Theta(1)$$

$$= (n+1) \left(\sum_{k=2}^{n+1} \frac{1}{k} \right) \Theta(1) = (n+1) \Theta(\lg n) \Theta(1) = \Theta(n \lg n)$$

 Analyze expected running time by recurrence Range transformation

$$E[T(n)] = \frac{n+1}{n} E[T(n-1)] + \Theta(1)$$

Define

$$U(n) = \frac{\mathrm{E}[T(n)]}{n+1}$$

Then,

$$U(n) = \frac{E[T(n)]}{n+1} = \frac{E[T(n-1)]}{n} + \Theta\left(\frac{1}{n}\right)$$
$$= U(n-1) + \Theta\left(\frac{1}{n}\right)$$

Analyze expected running time by recurrence
 It is easily seen that

$$U(n) = \sum_{i=1}^{n} \Theta\left(\frac{1}{i}\right) = \Theta\left(\sum_{i=1}^{n} \frac{1}{i}\right) = \Theta(\lg n)$$

It follows that

$$E[T(n)] = (n+1)U(n)$$
$$= (n+1)\Theta(\lg n)$$
$$= \Theta(n \lg n)$$

 Analyze expected running time by recurrence Alternative notation

Instead of defining T(n) as a random variable denoting the running time of Quicksort on n elements, and computing E[T(n)], we may simply define

T(n) =the *expected* running time of Quicksort on n elements and start with

$$T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k) + \Theta(n))$$