Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2019 Examination: Third Year VI Semester

Course Code: ECC604 and Course Name: Artificial Neural Networks and Fuzzy Logic

Time: 2 Hour and 30 Min

Note to the st	udents: - All the Questions are compulsory and carry equal marks.			
Q1.	XOR problem is exceptionally interesting to neural network researchers because			
Option A:	It can be expressed in a way that allows you to use a neural network			
Option B:	It is complex binary operation that cannot be solved using neural networks			
Option C:	It can be solved by a single layer perceptron			
Option D:	It is the simplest linearly inseparable problem that exists.			
Ориси				
Q2.	The network that involves backward links from output to the input and hidden			
Q2.	layers is called as			
Option A:	Self-organizing maps			
Option B:	Perceptron			
Option C:	Recurrent neural network			
Option D:	Multi layered perceptron			
<u> </u>				
Q3.	Automated vehicle is an example of			
Option A:	Supervised Learning			
Option B:	Unsupervised Learning			
Option C:	Kohonen Learning			
Option D:	Reinforcement Learning			
Q4.	In an Unsupervised learning			
Option A:	Specific output values are given			
Option B:	Specific output values are not given			
Option C:	No specific Inputs are given			
Option D:	Both inputs and outputs are given			
<u> </u>				
Q5.	computes the output volume by computing dot product between all			
Q3.	filters and image patch.			
Option A:	Input Layer			
Option B:	Convolution Layer			
Option C:	Activation Function Layer			
Option D:	Pool Layer			
	If an input image is a matrix of size 28 X 28 and a kernel/filter of size 7 X 7 with a			
Q6.	If an input image is a matrix of size 28 A 28 and a kerton stride of 1. What will be the size of the convoluted matrix?			
Option A:	20 x 20			
Option B:	26 x 26			
Option C:	24 x 24			
Option D:	22 x 22			
	11020			

1 | Page

F398EFC1F13F4B2A267CB6C11E0ABB2E

In a simple Multi-layer Perceptron neural network model with 10 neurons in the input layer, 4 neurons in the hidden layer and 1 neuron in the output layer. What i
the size of the weight matrices between hidden output layer and input hidden
layer?
[1 X 4], [4 X 10]
[[X X], [X X I]] [[4 X I], [10 X 4]
[10 X 4], [4 X 1]
[10 X 4], [1 X 4]
In a fuzzy set, the membership function generally in ranges
In a fuzzy set, the membership function generally
10-100
100-1000
1-10
0-1
Three main basic features involved in characterizing membership function are
Intuition, Inference and Rank ordering
Weighted Average, Mean of maximum, Centroid
Fuzzification, Defuzzification, Knowledge base
Core, Support and Boundary
그는 그는 전도 함께 없는 것이 하셨다. 말한 하고 하는 역 교육 모양 모르는
In SVM, if the number of input features is 2, then the hyper plane is a
Line
Plane
Circle
Square

Q2	Solve any Four out of Six (5 marks each)
A	Compare Artificial Neurons with Biological Neurons. Draw the structure of Biological Neuron.
В	What are Support Vectors in Support Vectors Machines (SVM)? How SVM differs from conventional classifiers?
C	Draw two input AND gate using MP neuron
D	What do you mean by K Means algorithm? Where is it used?
E	What are the different types of Neural Network architectures?
F	Prove Demorgans's Theorem for the given two fuzzy sets Fuzzy set $A = \left\{ \frac{0.4}{10} + \frac{0.9}{20} + \frac{0.1}{30} \right\}$ and Fuzzy set $B = \left\{ \frac{0.2}{10} + \frac{0.7}{20} + \frac{0.6}{30} \right\}$

Q3	Solve any Two out of Three
3 2 4	What is Mamdani Fuzzy Inference (10 marks Each)
В	knowledge base and rule base in FIS? Draw the block diagram of FIS. Organize the given samples (1 1 0 0), (0 0 0 1), (1 0 0 0) into two clusters using Kohonen self-organizing map. Assume the learning rate as 0.1. The weight matrix is given by

	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$w_{ij} = \begin{pmatrix} 0.1 & 0.6 \\ 0.2 & 0.8 \\ 0.8 & 0.2 \end{pmatrix}$
C		With neat flow chart, describe the training algorithm for Perceptron network.

Q4	Solve any Two out of Three (10 marks each)
A	Design a fuzzy controller to determine the wash time of a fuzzy washing machine. Assume the two fuzzy inputs are dirtiness of cloth and washing load. Consider 3 descriptors for both inputs and output. Show that wash time is high if clothes are soiled to higher degree. Draw Hopfield network with four output nodes. List the steps involved in
В	its testing algorithm. For an input vector (1.1.0.1), calculate the weight matrix.
С	Draw the architecture of simple Convolution Neural Network. Define the following terms with respect to CNN. i. Convolution ii. Max Pooling iii. ReLU Activation
	iv. Flattening