| FC                | R  | N.  | <b>IEL</b> | S | Δ   | N.  | đΝ | ÆΤ | T.         | IN  | C   |
|-------------------|----|-----|------------|---|-----|-----|----|----|------------|-----|-----|
| $\mathbf{r} \sim$ | JΙ | ·Ιν | TEL        | ı | ∕1. | .IV | TT | 11 | <i>ı</i> . | ノエト | LT. |

| Trigonometrische Fu | ınktionen |
|---------------------|-----------|
|---------------------|-----------|

|          |              |                      |                      |                      |                  | _                     |                       |                       |                  |                       |                       |                       |                  |                       |                       |                       |              |
|----------|--------------|----------------------|----------------------|----------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|--------------|
|          | 0            | $\frac{1}{6}\pi$     | $\frac{1}{4}\pi$     | $\frac{1}{3}\pi$     | $\frac{1}{2}\pi$ | $\frac{2}{3}\pi$      | $\frac{3}{4}\pi$      | $\frac{5}{6}\pi$      | π                | $\frac{7}{6}\pi$      | $\frac{5}{4}\pi$      | $\frac{4}{3}\pi$      | $\frac{3}{2}\pi$ | $\frac{5}{3}\pi$      | $\frac{7}{4}\pi$      | $\frac{11}{6}\pi$     | $2\pi$       |
|          | $0^0$        | 30°                  | $45^{0}$             | 60°                  | 90°              | $120^{0}$             | $135^{0}$             | 150 <sup>0</sup>      | 180 <sup>0</sup> | 210°                  | $225^{0}$             | $240^{0}$             | $270^{0}$        | $300^{0}$             | $315^{0}$             | $330^{0}$             | $360^{0}$    |
| $\sin x$ | 0            | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1                | $\frac{\sqrt{3}}{2}$  | $\frac{\sqrt{2}}{2}$  | $\frac{1}{2}$         | 0                | $-\frac{1}{2}$        | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1               | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{1}{2}$        | .0           |
| $\cos x$ | 1            | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0 ·              | $-\frac{1}{2}$        | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1               | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{1}{2}$        | 0                | $\frac{1}{2}$         | $\frac{\sqrt{2}}{2}$  | $\frac{\sqrt{3}}{2}$  | 1            |
| $\tan x$ | 0            | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | ±∞               | $-\sqrt{3}$           | -1                    | $-\frac{\sqrt{3}}{3}$ | 0                | $\frac{\sqrt{3}}{3}$  | 1                     | $\sqrt{3}$            | ±∞               | $-\sqrt{3}$           | -1                    | $-\frac{\sqrt{3}}{3}$ | 0            |
| $\cot x$ | $\pm \infty$ | $\sqrt{3}$           | 1                    | $\frac{\sqrt{3}}{3}$ | 0                | $-\frac{\sqrt{3}}{3}$ | -1                    | $-\sqrt{3}$           | ±∞               | $\sqrt{3}$            | 1                     | $\frac{\sqrt{3}}{3}$  | 0                | $-\frac{\sqrt{3}}{3}$ | -1                    | $-\sqrt{3}$           | $\pm \infty$ |

### Additionstheoreme

| $\cos(x \pm y)$ | = | $\cos x \cos y \mp \sin x \sin y$               |
|-----------------|---|-------------------------------------------------|
| $\sin(x \pm y)$ | = | $\sin x \cos y \pm \cos x \sin y$               |
| $\tan(x \pm y)$ | = | $\frac{\tan x \pm \tan y}{1 \pm \tan x \tan y}$ |

### doppelter Winkel

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$\sin 2x = 2\sin x \cos x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

# $\cot 2x =$

halber Winkel 
$$\cos \frac{x}{2} = \star \int \frac{1}{2}(1 + \cos x)$$

$$\sin \frac{x}{2} = \star \int \frac{1}{2}(1 - \cos x)$$

$$\tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$$

$$= \star \int \frac{1 - \cos x}{1 + \cos x}$$

$$\cot \frac{x}{2} = \frac{1 + \cos x}{\sin x} = \frac{\sin x}{1 - \cos x}$$

### Symmetrie

| $\cos(-x)$ | = | $\cos x$  | gerade Funktion   |
|------------|---|-----------|-------------------|
| $\sin(-x)$ | = | $-\sin x$ | ungerade Funktion |
| $\tan(-x)$ | = | $-\tan x$ | ungerade Funktion |
| $\cot(-x)$ | = | $-\cot x$ | ungerade Funktion |

$$\cos^2 x + \sin^2 x = 1$$

| $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$                     | $\sin x = *$                     | $\frac{\tan x}{\pm \sqrt{1 + \tan^2 x}}$   |
|-----------------------------------------------------------|----------------------------------|--------------------------------------------|
| $\sin^2 x = \frac{1}{2}(1-\cos 2x)$                       | $\cos x = *$                     | $\frac{1}{\pm\sqrt{1+\tan^2x}}$            |
| $\cos x = \sin(\frac{\pi}{2} \pm x)$                      | $\tan x =$                       | $\frac{\sin x}{\cos x}$                    |
| $\sin x = \cos(\frac{\pi}{2} - x)$                        | $\cot x =$                       | $\frac{\cos x}{\sin x} = \frac{1}{\tan x}$ |
| $\sin x + \sin y = 2\sin^{\frac{\alpha}{2}}$              | $\frac{x+y}{2}\cos\frac{x-y}{2}$ | · <u>y</u>                                 |
| $\sin x - \sin y = 2\cos^{\frac{\alpha}{2}}$              | $\frac{x+y}{2}\sin\frac{x-y}{2}$ | <u>y</u>                                   |
| $\sin x \cdot \sin y = \frac{1}{2} (\cos x)$              | (x-y)                            | $\cos(x+y)$                                |
| $\cos x + \cos y = 2\cos^{\frac{\alpha}{2}}$              | $\frac{x+y}{2}\cos\frac{x-y}{2}$ | <u>-y</u>                                  |
| $\cos x - \cos y = -2\sin x$                              | $\frac{x+y}{2}\sin\frac{x}{2}$   | $\frac{-y}{2}$                             |
| $\cos x \cdot \cos y = \frac{1}{2} (\cos x)$              | (x - y) + (x - y) + (y - y)      | $\cos(x+y)$                                |
| $\sin x \cdot \cos y = \frac{1}{2} \left( \sin x \right)$ | (x-y)+s                          | $\sin(x+y)$                                |

\* Vorzeichen je nach Quadranten!

# Hyperbelfunktionen

$$\begin{vmatrix}
\cosh x = \frac{1}{2}(e^x + e^{-x}) \\
\sinh x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1}
\end{vmatrix}$$

$$\cosh x = \frac{1}{2}(e^x - e^{-x})
\begin{vmatrix}
\coth x = \frac{\cosh x}{\sinh x} = \frac{e^{2x} + 1}{e^{2x} - 1}
\end{vmatrix}$$

$$\cosh 0 = 1, \sinh 0 = 0, \tanh 0 = 0$$

$$\cosh^2 x - \sinh^2 x = 1$$

 $\cosh(-x) = \cosh x$ ,  $\sinh(-x) = -\sinh x$ ,  $\tanh(-x) = -\tanh x$ ,  $\coth(-x) = -\coth x$ 

### Additionstheoreme

 $\sinh 2x = 2 \sinh x \cosh x$ 

$$\begin{aligned} \cosh(x\pm y) &= \cosh x \cosh y \pm \sinh x \sinh y \\ \sinh(x\pm y) &= \sinh x \cosh y \pm \cosh x \sinh y \end{aligned}$$

$$\sinh(x \pm y) = \sinh x \cosh y \pm \sinh x \sinh y$$
  

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$
  

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$\cosh\frac{x}{2} = \sqrt{\frac{1}{2}(\cosh x + 1)}$$

$$\sinh \frac{x}{2} = \pm \sqrt{\frac{1}{2}(\cosh x - 1)}, \quad \text{für } \begin{cases} x \ge 0 \\ x < 0 \end{cases}$$

$$\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$$

$$\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1}), \quad \text{für } x \ge 1$$

### Überlagerung von Schwingungen

$$A_1 \sin(\omega t + \varphi_1) + A_2 \sin(\omega t + \varphi_2) = A \sin(\omega t + \varphi)$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_1 - \varphi_2)}$$

$$\tan \varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$$
 (Quadranten beachten!)

### Spezialfall:

$$B\cos\omega t + C\sin\omega t = A\sin(\omega t + \varphi)$$

$$B = A \sin \varphi$$

$$C = A \cos \varphi$$

$$A = \sqrt{B^2 + C^2}$$

$$\tan \varphi = \frac{B}{C} \quad \text{Quadranten beachten!} \quad \begin{pmatrix} \binom{r}{k} = \frac{r(r-1)\cdots(r-k+1)}{k!} \\ \binom{r}{0} = \binom{r}{r} = 1, & \binom{r}{1} = r \end{pmatrix}$$

# Quadratische Gleichung $x^2 + px + q = 0$

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

### allgemeine Binomialkoeffizienten

$$r \in \mathbb{R}$$
 und  $k = 1, 2, \dots$ 

$$\begin{pmatrix} r \\ k \end{pmatrix} = \frac{r(r-1)\cdots(r-k+1)}{k!} -$$

$$\begin{pmatrix} r \\ 0 \end{pmatrix} = \begin{pmatrix} r \\ r \end{pmatrix} = 1, \quad \begin{pmatrix} r \\ 1 \end{pmatrix} = 1$$

### Polarkoordinaten

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$dF = r dr d\varphi$$

$$r = \sqrt{x^2 + y^2}$$
 $an \varphi = rac{y}{x}$  Quadranten beachten!

$$z = x + iy = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$$





### Rechnen mit Potenzen und Logarithmen

### a: Basis, mit $0 < a \neq 1$

$$a^{x+y} = a^x a^y$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^0 = 1$$

$$(a^x)^r = a^{xr}$$

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \frac{1}{x} = -\log_a x$$

$$\log_a 1 = 0$$

$$\log_a x^r = r \log_a x$$

Logarithmen zu verschiedenen Basen:

$$\log_a x = \frac{\log_b x}{\log_b a}$$
, speziell:  $\log_a x = \frac{\ln x}{\ln a}$ 

### Kosinussatz

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Pythagoras

$$c^2 = a^2 + b^2$$
, falls  $\gamma = 90^0$ .



### Sinussatz

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Zylinderkoordinaten

# Kugelkoordinaten

### $\theta$ : Polabstand



 $x = \rho \sin \theta \cos \varphi$ 

 $y = \rho \sin \theta \sin \varphi$ 

 $z = \rho \cos \theta$ 

 $dV = \rho^2 \sin\theta \, d\rho \, d\theta \, d\varphi$ 

### Kugelkoordinaten $\theta$ : geographische Breite



 $x = \rho \cos \theta \cos \varphi$  $y = \rho \cos \theta \sin \varphi$ 

 $z = \rho \sin \theta$ 

 $dV = \rho^2 \cos\theta \, d\rho \, d\theta \, d\varphi$ 



 $x = r \cos \varphi$ 

 $y = r \sin \varphi$ 

 $dV = r dr d\varphi dz$ 

### Potenzreihen

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{1}{1!} x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots$$
 für  $x \in \mathbb{R}$ 

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - + \cdots \qquad \text{für} \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - + \cdots$$
 für  $x \in \mathbb{R}$ 

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} = x + \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \cdots \qquad \text{für} \qquad x \in \mathbb{R}$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} = 1 + \frac{1}{2!} x^2 + \frac{1}{4!} x^4 + \cdots$$
 für  $x \in \mathbb{R}$ 

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots \qquad \text{für} \qquad |x| \le 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots \qquad \text{für } -1 < x \le 1$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n = -(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots) \qquad \text{für } -1 \le x < 1$$

$$\sqrt{1+x} = \sum_{n=0}^{\infty} {1 \choose n} x^n = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$$
 für  $|x| \le 1$ 

$$\frac{1}{\sqrt{1+x}} = \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} x^n = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - + \cdots \text{ für } |x| < 1$$

# $\begin{array}{lll} \textbf{geometrische} & \displaystyle \sum_{n=0}^{\infty} x^n & = 1+x+x^2+x^3+\cdots & = \frac{1}{1-x}, & \text{für } |x| < 1 \\ \textbf{endliche} & \displaystyle \sum_{k=0}^{\infty} x^n & = 1+x+x^2+\cdots+x^k & = \frac{1-x^{k+1}}{1-x}, & \text{für } x \neq 1 \\ \textbf{harmonische} & \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^x} & = 1+\frac{1}{2^x}+\frac{1}{3^x}+\cdots & \text{konvergent} \iff x > 1 \\ \end{array}$

 $\sum_{n=1}^{\infty} {r \choose n} x^n = 1 + rx + {r \choose 2} x^2 + {r \choose 3} x^3 + \dots = (1+x)^r, \quad |x| \le 1, \quad r > 0$ binomische Reihe

| $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \infty$ $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$                                                                  | wichtige Grenzwerte $(n \to \infty)$                                                                                                | $\binom{a}{n}$ $\rightarrow 0$ , $a > -1$                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots = e$                                                                                                                                 | $\sqrt[n]{a} \rightarrow 1 \left(\frac{n+1}{n}\right)^n \rightarrow e$                                                              | $\frac{a^n}{n!} \longrightarrow 0$                                                         |
| $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + - \dots = \frac{1}{e}$                                                                                                                      | $\sqrt[n]{n} \rightarrow 1 \left[ (1+\frac{1}{n})^n \rightarrow e \right]$                                                          | $\frac{n^n}{n!}$ $\rightarrow \infty$                                                      |
| $\begin{vmatrix} 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots & = 2 \\ 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \cdots & = \frac{\pi}{4} \end{vmatrix}$                        | $ \sqrt[n]{n!} \to \infty \left[ (1 - \frac{1}{n})^n \to e^{-1} \right] $                                                           | $\frac{a^n}{n^k} \longrightarrow \infty \begin{cases} a > 1 \\ k \text{ fest} \end{cases}$ |
| $ \begin{vmatrix} 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots & = \frac{\pi^2}{6} \\ 1 & 1 & 1 & \dots & \pi^2 \end{vmatrix} $                                                  | $\left  \begin{array}{c} \frac{n}{\sqrt[n]{n!}} \to \mathbf{e} \end{array} \right  \left(1 + \frac{x}{n}\right)^n \to \mathbf{e}^x$ | $a^n n^k \rightarrow 0 \begin{cases}  a  < 1 \\ k \text{ fest} \end{cases}$                |
| $\begin{vmatrix} 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots &= \frac{\pi^2}{12} \\ 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots &= \frac{\pi^2}{8} \end{vmatrix}$ |                                                                                                                                     | $n(\sqrt[n]{a}-1) \to \ln a, \ a > 0$                                                      |

### Differentiations- und Integrationsregeln Produktregel: $(u \cdot v)' = u' \cdot v + u \cdot v'$ Vektorfunktionen (uvw)' = u'vw + uv'w + uvw' $(\lambda \vec{u})' = \lambda' \vec{u} + \lambda \vec{u}'$ $\frac{\int u'v \, dx = uv - \int uv' \, dx}{\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}} \qquad \qquad \frac{\left(\vec{u} \cdot \vec{v}\right)' = \vec{u}' \cdot \vec{v} + \vec{u} \cdot \vec{v}'}{\left(\vec{u}(\lambda(t))\right)' = \vec{u}'(\lambda(t)) \cdot \lambda'(t)}$ partielle Integration: Quotientenregel: $(y(x(t)))' = \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = y'(x(t)) \cdot x'(t)$ Kettenregel: $\int f(x) dx = \int f(g(t)) g'(t) dt \quad \text{, dabel ist } \begin{cases} x = g(t) \\ dx = g'(t) dt \end{cases}$ Substitutionsregel:

|                           |                                                                             | (                                                                                                                                                                                                                                         |
|---------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f                         | f'                                                                          | $\int x^n dx = \frac{1}{n+1}x^{n+1},  (n \neq -1)$ $\int \frac{f'}{f} dx = \ln f $                                                                                                                                                        |
| $x^n$                     | $nx^{n-1}$                                                                  | $\int \frac{1}{x} dx = \ln x  \qquad \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$                                                                                                                                                              |
| $\frac{1}{x^n}$           | $\frac{-n}{x^{n+1}}$                                                        |                                                                                                                                                                                                                                           |
| $x_{-}^{n}$               | $x_1^{n+1}$                                                                 | $\int \frac{dx}{x+a} = \ln x+a  \qquad \int \frac{1}{\sqrt[3]{x}} dx = \frac{3}{2} \sqrt[3]{x^2}$                                                                                                                                         |
| $\sqrt{x}$                | $\frac{1}{2\sqrt{x}}$                                                       | 1 V"                                                                                                                                                                                                                                      |
| $\sqrt[n]{x}$             | $\frac{1}{n\sqrt[n]{x^{n-1}}}$                                              | 0 (x + u)                                                                                                                                                                                                                                 |
| $e^x$                     | $n \vee x^{n-1}$ $e^x$                                                      | $\int \tan x  dx = -\ln \cos x  \qquad \int x e^{ax}  dx = \frac{ax-1}{a^2} e^{ax}$                                                                                                                                                       |
|                           | e-<br>1                                                                     | $\int \sin^2 ax  dx = \frac{1}{2}x - \frac{1}{4a}\sin 2ax \int \ln x  dx = x \ln x - x$                                                                                                                                                   |
| $\ln x$                   | $\frac{\dot{x}}{a^x} \ln a$                                                 | 1.0                                                                                                                                                                                                                                       |
| $a^x$                     |                                                                             | $\int \cos^2 ax  dx = \frac{1}{2}x + \frac{1}{4a}\sin 2ax  \Big   \int x \ln x  dx = x^2 (\frac{\ln x}{2} - \frac{1}{4})$                                                                                                                 |
| $x^x$                     | $x^x(1+\ln x)$                                                              | $\int \ln^2 x  dx \qquad = x \ln^2 x - 2x \ln x + 2x$                                                                                                                                                                                     |
| $\sin x$                  | cos x                                                                       | $\int \sin ax \cos ax  dx = \frac{1}{2a} \sin^2 ax$                                                                                                                                                                                       |
| $\cos x$                  | $-\sin x$                                                                   |                                                                                                                                                                                                                                           |
| $\tan x$                  | $\frac{1}{\cos^2 x}$                                                        | $\int \frac{dx}{\sin ax \cos ax} = \frac{1}{a} \ln  \tan ax $                                                                                                                                                                             |
| $\cot x$                  | $\frac{-1}{\sin^2 x}$                                                       | $\int e^{ax} \sin bx  dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx)$                                                                                                                                                              |
| $\arcsin x$               | $\frac{1}{\sqrt{1-x^2}}$                                                    | $\int e^{ax} \cos bx  dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$                                                                                                                                                              |
| $\arccos x$               | $\frac{-1}{\sqrt{1-x^2}}$                                                   | $\int x \sin ax  dx = \frac{1}{a^2} \sin ax - \frac{x}{a} \cos ax$                                                                                                                                                                        |
| $\arctan x$               | $\frac{1}{1+x^2}$                                                           | $\int x \cos ax  dx = \frac{1}{a^2} \cos ax + \frac{a}{a} \sin ax$                                                                                                                                                                        |
| ar coan a                 | 1 - 1 -                                                                     | $\int x \cos ax  dx = \frac{1}{a^2} \cos ax + \frac{1}{a} \sin ax$                                                                                                                                                                        |
| $\operatorname{arccot} x$ | $\frac{-1}{1+x^2}$                                                          | Bezeichnungen: $X = ax^2 + bx + c$ , $\Delta = 4ac - b^2$ , $a \neq 0$                                                                                                                                                                    |
| $\sinh x$                 | $\cosh x$                                                                   |                                                                                                                                                                                                                                           |
| $\cosh x$                 | $\sinh x$                                                                   | $\int \frac{2}{\sqrt{\Delta}} \arctan \frac{2ax+b}{\sqrt{\Delta}} \qquad (\Delta > 0)$                                                                                                                                                    |
| $\tanh x$                 | $\frac{1}{\cosh^2 x}$                                                       | $\begin{pmatrix} \sqrt{\Delta} & \sqrt{\Delta} \\ -2 & 2ax+b \end{pmatrix}$                                                                                                                                                               |
| coth x                    | $\frac{-1}{\sinh^2 x}$                                                      | $\int dx \qquad \sqrt{-\Delta} \operatorname{artanh} \frac{1}{\sqrt{-\Delta}}$                                                                                                                                                            |
|                           |                                                                             | $\int \frac{dx}{X} = \begin{cases} \sqrt{-\Delta} & \text{at call } \sqrt{-\Delta} \\ 1 & 2ax + b - \sqrt{-\Delta} \end{cases} $ $(\Delta < 0)$                                                                                           |
| $\operatorname{arsinh} x$ | $\frac{1}{\sqrt{x^2+1}}$                                                    | $\int \frac{dx}{X} = \begin{cases} \frac{\sqrt{\Delta}}{\sqrt{-\Delta}} \operatorname{artanh} \frac{2ax+b}{\sqrt{-\Delta}} \\ \frac{1}{\sqrt{-\Delta}} \ln \frac{2ax+b-\sqrt{-\Delta}}{2ax+b+\sqrt{-\Delta}} \end{cases} $ $(\Delta < 0)$ |
| $\operatorname{arcosh} x$ | $\left  \begin{array}{c} \frac{1}{\sqrt{x^2-1}}, & x>1 \end{array} \right $ | $\left(\frac{-2}{2ax+b}\right) \qquad (\Delta = 0)$                                                                                                                                                                                       |
| $\operatorname{artanh} x$ | $\left  \frac{1}{1-x^2},   x  < 1 \right $                                  | for complete the form                                                                                                                                                                                                                     |
| $\operatorname{arcoth} x$ | $\left  \frac{1-x^2}{1-x^2},  x  > 1 \right $                               | $\int \frac{dx}{X^2} = \frac{2ax+b}{\Delta X} + \frac{2a}{\Delta} \int \frac{dx}{X}$                                                                                                                                                      |
|                           | 1-x-                                                                        | $\int x dx$                                                                                                                                                                                                                               |
| $\int g  dx$              | g                                                                           | $\int \frac{x  dx}{X} = \frac{1}{2a} \ln X  - \frac{b}{2a} \int \frac{dx}{X}$                                                                                                                                                             |
|                           |                                                                             |                                                                                                                                                                                                                                           |

$$\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2} \left( x \sqrt{x^2 + a^2} + a^2 \operatorname{arsinh} \frac{x}{a} \right) = \frac{1}{2} \left( x \sqrt{x^2 + a^2} + a^2 \ln(x + \sqrt{x^2 + a^2}) \right)$$

$$\int \sqrt{x^2 - a^2} \, dx = \frac{1}{2} \left( x \sqrt{x^2 - a^2} - a^2 \operatorname{arcosh} \frac{x}{a} \right) = \frac{1}{2} \left( x \sqrt{x^2 - a^2} - a^2 \ln(x + \sqrt{x^2 - a^2}) \right)$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left( x \sqrt{a^2 - x^2} + a^2 \operatorname{arcsin} \frac{x}{a} \right)$$