第一章 复数与复变函数

选择题

- 1. $\exists z = \frac{1+i}{1-i}$ 时, $z^{100} + z^{75} + z^{50}$ 的值等于 ()
 - (A) i
- (B) -i
- (C) 1
- 2. 设复数 z 满足 $arc(z+2) = \frac{\pi}{3}$, $arc(z-2) = \frac{5\pi}{6}$, 那么 z = ()

- (A) $-1 + \sqrt{3}i$ (B) $-\sqrt{3} + i$ (C) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (D) $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$
- 3. 复数 $z = \tan \theta i \left(\frac{\pi}{2} < \theta < \pi\right)$ 的三角表示式是(

 - (A) $\sec \theta \left[\cos(\frac{\pi}{2} + \theta) + i\sin(\frac{\pi}{2} + \theta)\right]$ (B) $\sec \theta \left[\cos(\frac{3\pi}{2} + \theta) + i\sin(\frac{3\pi}{2} + \theta)\right]$
 - (C) $-\sec\theta[\cos(\frac{3\pi}{2}+\theta)+i\sin(\frac{3\pi}{2}+\theta)]$ (D) $-\sec\theta[\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)]$
- 4. 若 z 为非零复数,则 $\left|z^2 \overline{z}^2\right|$ 与 $2z\overline{z}$ 的关系是(
 - $(A) |z^2 \overline{z}^2| \ge 2z\overline{z}$
- $(B) |z^2 \overline{z}^2| = 2z\overline{z}$
- $(C) |z^2 \overline{z}^2| \le 2z\overline{z}$

- (D) 不能比较大小
- 5. 设x,y为实数, $z_1=x+\sqrt{11}+yi,z_2=x-\sqrt{11}+yi$ 且有 $\left|z_1\right|+\left|z_2\right|=12$,则动点(x,y)的轨迹是(
 - (A)圆
- (B) 椭圆
- (C) 双曲线
- (D) 抛物线
- 6. 一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 3 个单位,再向下平移 1 个单位后对应的复数为
- $1-\sqrt{3}i$,则原向量对应的复数是(

 - (A) 2 (B) $1+\sqrt{3}i$ (C) $\sqrt{3}-i$ (D) $\sqrt{3}+i$

7. 使得 $z^2 = z ^2$ 成	立的复数z是()	
(A) 不存在的	(B) 唯一的	(C) 纯虚数	(D) 实数
8. 设 z 为复数,则	方程 $z + \overline{z} = 2 + i$ 的	的解是()	
$(A) -\frac{3}{4} + i$	(B) $\frac{3}{4}+i$	(c) $\frac{3}{4}-i$	$(D) -\frac{3}{4} - i$
9. 满足不等式 $\frac{z-z}{z+z}$	$\left \frac{i}{i}\right \leq 2$ 的所有点 z 构	成的集合是()	
(A) 有界区域	(B) 无界区域	(C) 有界闭区域	(D) 无界闭区域
10. 方程 $ z+2-3i $	$=\sqrt{2}$ 所代表的曲线	是()	
(A) 中心为2-3i,	半径为 $\sqrt{2}$ 的圆周	(B) 中心为-2	+ 3 <i>i</i> ,半径为 2 的圆周
(C) 中心为-2+3	i ,半径为 $\sqrt{2}$ 的圆 β	司 (D) 中心为2-3	3 <i>i</i> ,半径为 2 的圆周
11. 下列方程所表示	的曲线中,不是圆周	罰的为 ()	
$(A) \left \frac{z-1}{z+2} \right = 2$		(B) $ z+3 - z-3 $	= 4
(C) $\left \frac{z-a}{1-az} \right = 1 \left(\left a \right \right)$	(D)	$z\overline{z} + a\overline{z} + \overline{a}z + a\overline{a} -$	$c=0\ (c>0)$
$12. \mathop{\mathfrak{l}}\nolimits f(z) = 1 - \bar{z}$	$z_1 = 2 + 3i, z_2 = 5$	$-i$,,则 $f(z_1-z_2)$ =	= ()
(A) -4-4i	(B) $4 + 4i$ (0	$C) 4-4i \qquad \qquad (D)$	-4+4i
13. $\lim_{x \to x_0} \frac{\operatorname{Im}(z) - \operatorname{In}}{z - z_0}$	$\frac{\mathbf{m}(z_0)}{0} ()$		
(A) 等于 <i>i</i>	(B) 等于- <i>i</i>	(C) 等于0	(D) 不存在
14. 函数 f(z) = u(z)	(x,y) + iv(x,y) 在点	$\hat{x}_0 = x_0 + iy_0$ 处连续	的充要条件是()
(A) $u(x,y)$ 在 (x_0)	, v _a) 处连续	(B) v(x, v)在(x	:,, v,,) 处连续

(C) u(x,y) 和 v(x,y) 在 (x_0,y_0) 处连续(D) u(x,y)+v(x,y) 在 (x_0,y_0) 处连续

15. 设
$$z \in C$$
且 $|z|=1$,则函数 $f(z)=\frac{z^2-z+1}{z}$ 的最小值为(

(A) -3 (B) -2 (C) -1 (D) 1

二、填空题

2.
$$\forall z = (2-3i)(-2+i)$$
, $y = 0$

3. 设
$$|z| = \sqrt{5}$$
, $\arg(z - i) = \frac{3\pi}{4}$, 则 $z =$ ______

4. 复数
$$\frac{(\cos 5\theta + i \sin 5\theta)^2}{(\cos 3\theta - i \sin 3\theta)^2}$$
 的指数表示式为_____

5. 以方程
$$z^6 = 7 - \sqrt{15}i$$
 的根的对应点为顶点的多边形的面积为_____

7. 方程
$$\left| \frac{2z-1-i}{2-(1-i)z} \right| = 1$$
 所表示曲线的直角坐标方程为______

9. 对于映射
$$\omega = \frac{i}{z}$$
,圆周 $x^2 + (y-1)^2 = 1$ 的像曲线为______

10.
$$\lim_{z \to 1+i} (1+z^2+2z^4) = \underline{\hspace{1cm}}$$

三、若复数 z满足 $z\overline{z} + (1-2i)z + (1+2i)\overline{z} + 3 = 0$,试求 |z+2| 的取值范围.

四、设 $a \ge 0$,在复数集C中解方程 $z^2 + 2|z| = a$.

五、设复数 $z \neq \pm i$,试证 $\frac{z}{1+z^2}$ 是实数的充要条件为 |z|=1 或 IM(z)=0 .

六、对于映射 $\omega = \frac{1}{2}(z + \frac{1}{z})$,求出圆周 |z| = 4 的像.

七、试证 $1.\frac{z_1}{z_2} \ge 0$ $(z_2 \ne 0)$ 的充要条件为 $|z_1 + z_2| = |z_1| + |z_2|$;

2.
$$\frac{z_1}{z_2} \ge 0 \ (z_j \ne 0, k \ne j, k, j = 1, 2, \cdots, n)$$
) 的充要条件为

$$|z_1 + z_2 + \dots + z_n| = |z_1| + |z_2| + \dots + |z_n|.$$

八、若 $\lim_{x \to x_0} f(z) = A \neq 0$,则存在 $\delta > 0$,使得当 $0 < |z - z_0| < \delta$ 时有 $|f(z)| > \frac{1}{2}|A|$.

九、设
$$z = x + iy$$
,试证 $\frac{|x| + |y|}{\sqrt{2}} \le |z| \le |x| + |y|$.

十、设z = x + iy, 试讨论下列函数的连续性:

1.
$$f(z) = \begin{cases} \frac{2xy}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

2.
$$f(z) = \begin{cases} \frac{x^3 y}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

答案