TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm*

		ļ				Pressur	e, mmHg					Meltin
Compound		1	5	10	20	40	60	100	200	400	760	point
Name	Formula					Tempe	rature, °C					¹ °C
Acenaphthalene	$C_{12}H_{10}$		114.8	131.2	148.7	168.2	181.2	197.5	222.1	250.0	277.5	95
Acetal	$C_6H_{14}O_2$	-23.0	-2.3	+8.0	19.6	31.9	39.8	50.1	66.3	84.0	102.2	
Acetaldehyde	C_2H_4O	-81.5	-65.1	-56.8	-47.8	-37.8	-31.4	-22.6	-10.0	+4.9	20.2	-123.
Acetamide	C ₂ H ₅ NO	65.0	92.0	105.0	120.0	135.8	145.8	158.0	178.3	200.0	222.0	81
Acetanilide	C ₈ H ₉ NO	114.0	146.6	162.0	180.0	199.6	211.8	227.2	250.5	277.0	303.8	113.
Acetic acid anhydride	$C_2H_4O_2$ $C_4H_6O_3$	-17.2 1.7	+6.3 24.8	17.5 36.0	29.9 48.3	43.0 62.1	51.7 70.8	63.0 82.2	80.0 100.0	99.0 119.8	118.1 139.6	16. -73
Acetone	C ₃ H ₆ O	-59.4	-40.5	-31.1	-20.8	-9.4	-2.0	+7.7	22.7	39.5	56.5	-94.
Acetonitrile	C ₂ H ₃ N	-47.0	-26.6	-16.3	-5.0	+7.7	15.9	27.0	43.7	62.5	81.8	-41
Acetophenone	C_8H_8O	37.1	64.0	78.0	92.4	109.4	119.8	133.6	154.2	178.0	202.4	20.
Acetyl chloride	C ₂ H ₃ OCl	-50.0	-35.0	-27.6	-19.6	-10.4	-4.5	+3.2	16.1	32.0	50.8	-112.
Acetylene	C_2H_2	-142.9	-133.0	-128.2	-122.8	-116.7	-112.8	-107.9	-100.3	-92.0	-84.0	-81.
Acridine	$C_{13}H_9N$ C_3H_4O	129.4 -64.5	165.8 -46.0	184.0 -36.7	203.5 -26.3	224.2 -15.0	238.7 -7.5	256.0 +2.5	284.0 17.5	314.3 34.5	346.0 52.5	110. -87.
Acrolein (2-propenal) Acrylic acid	$C_3H_4O_2$	+3.5	27.3	39.0	-20.3 52.0	66.2	75.0	86.1	103.3	122.0	141.0	14
Adipic acid	$C_6H_{10}O_4$	159.5	191.0	205.5	222.0	240.5	251.0	265.0	287.8	312.5	337.5	152
Allene (propadiene)	C_3H_4	-120.6	-108.0	-101.0	-93.4	-85.2	-78.8	-72.5	-61.3	-48.5	-35.0	-136
Allyl alcohol (propen-1-ol-3)	C ₃ H ₆ O	-20.0	+0.2	10.5	21.7	33.4	40.3	50.0	64.5	80.2	96.6	-129
chloride (3-chloropropene)	C ₃ H ₅ Cl	-70.0	-52.0	-42.9	-32.8	-21.2	-14.1	-4.5	10.4	27.5	44.6	-136.
isopropyl ether	C ₆ H ₁₂ O	-43.7	-23.1 +25.3	-12.9 38.3	-1.8 52.1	+10.9	18.7 76.2	29.0 89.5	44.3	61.7	79.5	-80
isothiocyanate n-propyl ether	C_4H_5NS $C_6H_{12}O$	-2.0 -39.0	+25.3 -18.2	-7.9	52.1 +3.7	67.4 16.4	25.0	89.5 35.8	108.0 52.6	129.8 71.4	150.7 90.5	-80
4-Allylveratrole	$C_{11}H_{14}O_2$	-39.0 85.0	113.9	$\frac{-7.9}{127.0}$	142.8	158.3	169.6	183.7	204.0	226.2	248.0	
iso-Amyl acetate	$C_7H_{14}O_2$	0.0	+23.7	35.2	47.8	62.1	71.0	83.2	101.3	121.5	142.0	
n-Amyl alcohol	$C_5H_{12}O$	+13.6	34.7	44.9	55.8	68.0	75.5	85.8	102.0	119.8	137.8	
iso-Amyl alcohol	$C_5H_{12}O$	+10.0	30.9	40.8	51.7	63.4	71.0	80.7	95.8	113.7	130.6	-117.
sec-Amyl alcohol (2-pentanol)	$C_5H_{12}O$	+1.5	22.1	32.2	42.6	54.1	61.5	70.7	85.7	102.3	119.7	.,
tert-Amyl alcohol sec-Amylbenzene	$C_5H_{12}O$ $C_{11}H_{16}$	-12.9 29.0	+7.2 55.8	17.2 69.2	27.9 83.8	38.8 100.0	46.0 110.4	55.3 124.1	69.7 145.2	85.7 168.0	101.7 193.0	-11.
iso-Amyl benzoate	$C_{12}H_{16}O_2$	72.0	104.5	121.6	139.7	158.3	171.4	186.8	210.2	235.8	262.0	
bromide (1-bromo-3-methylbutane)	C ₅ H ₁₁ Br	-20.4	+2.1	13.6	26.1	39.8	48.7	60.4	78.7	99.4	120.4	
n-butyrate	$C_9H_{18}O_2$	21.2	47.1	59.9	74.0	90.0	99.8	113.1	133.2	155.3	178.6	
formate	$C_6H_{12}O_2$	-17.5	+5.4	17.1	30.0	44.0	53.3	65.4	83.2	102.7	123.3	
iodide (1-iodo-3-methylbutane)	$C_5H_{11}I$	-2.5	+21.9	34.1	47.6	62.3	71.9	84.4	103.8	125.8	148.2	
isobutyrate	C ₉ H ₁₈ O ₂	14.8 +8.5	40.1 33.7	52.8 46.3	66.6 60.0	81.8 75.5	91.7 85.2	104.4 97.6	124.2 117.3	146.0 138.4	168.8 160.2	
Amyl isopropionate iso-Amyl isovalerate	$C_8H_{16}O_2$ $C_{10}H_{20}O_2$	27.0	54.4	68.6	83.8	100.6	110.3	125.1	146.1	169.5	194.0	
n-Amyl levulinate	C ₁₀ H ₂₀ O ₂ C ₁₀ H ₁₈ O ₃	81.3	110.0	124.0	139.7	155.8	165.2	180.5	203.1	227.4	253.2	
iso-Amyl levulinate	$C_{10}H_{18}O_3$	75.6	104.0	118.8	134.4	151.7	162.6	177.0	198.1	222.7	247.9	
nitrate	$C_5H_{11}NO_3$	+5.2	28.8	40.3	53.5	67.6	76.3	88.6	106.7	126.5	147.5	
4-tert-Amylphenol	$C_{11}H_{16}O$	02.0	109.8	125.5	142.3	160.3	172.6	189.0	213.0	239.5	266.0	93
Anethole Angelonitrile	C ₁₀ H ₁₂ O	62.6 -8.0	91.6 +15.0	106.0 28.0	121.8 41.0	139.3 55.8	149.8 65.2	164.2 77.5	186.1 96.3	210.5 117.7	235.3 140.0	22.
Aniline	C_5H_7N C_6H_7N	34.8	57.9	69.4	82.0	96.7	106.0	119.9	140.1	161.9	184.4	-6.
2-Anilinoethanol	C ₈ H ₁₁ NO	104.0	134.3	149.6	165.7	183.7	194.0	209.5	230.6	254.5	279.6	0.
Anisaldehyde	C ₈ H ₈ O ₂	73.2	102.6	117.8	133.5	150.5	161.7	176.7	199.0	223.0	248.0	2.
o-Anisidine (2-methoxyaniline)	C ₇ H ₉ NO	61.0	88.0	101.7	116.1	132.0	142.1	155.2	175.3	197.3	218.5	5.
Anthracene	$C_{14}H_{10}$	145.0	173.5	187.2	201.9	217.5	231.8	250.0	279.0	310.2	342.0	217.
Anthraquinone Azelaic acid	$C_{14}H_8O_2$ $C_9H_{16}O_4$	190.0 178.3	219.4 210.4	234.2 225.5	248.3 242.4	264.3 260.0	273.3 271.8	$285.0 \\ 286.5$	314.6 309.6	346.2 332.8	379.9 356.5	286 106.
Azelaldehyde	C ₉ H ₁₆ O ₄ C ₉ H ₁₈ O	33.3	58.4	71.6	85.0	100.2	110.0	123.0	142.1	163.4	185.0	100.
Azobenzene	$C_{12}H_{10}N_2$	103.5	135.7	151.5	168.3	187.9	199.8	216.0	240.0	266.1	293.0	68
Benzal chloride (α,α-Dichlorotoluene)	C ₇ H ₆ Cl ₂	35.4	64.0	78.7	94.3	112.1	123.4	138.3	160.7	187.0	214.0	-16.
Benzaldehyde	C ₇ H ₆ O	26.2	50.1	62.0	75.0	90.1	99.6	112.5	131.7	154.1	179.0	-26
Benzanthrone	C ₁₇ H ₁₀ O	225.0	274.5	297.2	322.5	350.0	368.8	390.0	426.5	00.0	00.1	174
Benzene Renzenegulfanylahlarida	CH ClOS	-36.7	-19.6	-11.5	-2.6	+7.6	15.4	26.1	42.2	60.6	80.1	+5.
Benzenesulfonylchloride Benzil	C ₆ H ₅ ClO ₂ S C ₁₄ H ₁₀ O ₂	65.9 128.4	96.5 165.2	112.0 183.0	129.0 202.8	147.7 224.5	158.2 238.2	174.5 255.8	198.0 283.5	224.0 314.3	251.5 347.0	14. 95
Benzoic acid	$C_{14}\Pi_{10}O_{2}$ $C_{7}H_{6}O_{2}$	96.0	119.5	132.1	146.7	162.6	172.8	186.2	205.8	227.0	249.2	121.
anhydride	C ₁₄ H ₁₀ O ₃	143.8	180.0	198.0	218.0	239.8	252.7	270.4	299.1	328.8	360.0	42
Benzoin	$C_{14}H_{12}O_2$	135.6	170.2	188.1	207.0	227.6	241.7	258.0	284.4	313.5	343.0	132
Benzonitrile	C ₇ H ₅ N	28.2	55.3	69.2	83.4	99.6	109.8	123.5	144.1	166.7	190.6	-12.
Benzophenone	C ₁₃ H ₁₀ O	108.2	141.7	157.6	175.8	195.7	208.2	224.4	249.8	276.8	305.4	48.
Benzotrichloride (\alpha, \alpha, \alpha - Trichlorotoluene)	C ₇ H ₅ Cl ₃	45.8	73.7	87.6	102.7	119.8	130.0	144.3	165.6	189.2	213.5	-21.
Benzotrifluoride (α,α,α-Trifluorotoluene) Benzoyl bromide	C ₇ H ₅ F ₃ C ₇ H ₅ BrO	-32.0 47.0	-10.3 75.4	-0.4 89.8	$12.2 \\ 105.4$	25.7 122.6	34.0 133.4	45.3 147.7	62.5 169.2	82.0 193.7	102.2 218.5	-29. 0
chloride	C ₇ H ₅ DIO C ₇ H ₅ ClO	32.1	59.1	73.0	87.6	103.8	114.7	128.0	149.5	172.8	197.2	-0.
nitrile	C ₈ H ₅ NO	44.5	71.7	85.5	100.2	116.6	127.0	141.0	161.3	185.0	208.0	33.
Benzyl acetate	$C_9H_{10}O_2$	45.0	73.4	87.6	102.3	119.6	129.8	144.0	165.5	189.0	213.5	-51.
alcohol	C ₇ H ₈ O	58.0	80.8	92.6	105.8	119.8	129.3	141.7	160.0	183.0	204.7	-15.

 $^{^{\}circ}$ Compiled from the extended tables published by D. R. Stull in *Ind. Eng. Chem.*, **39**, 517 (1947). For information on fuels see Hibbard, N.A.C.A. Research Mem. E56121, 1956. For methane see Johnson (ed.), WADD-TR-60-56, 1960.

2-66 PHYSICAL AND CHEMICAL DATA

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

-			-			Pressur	e, mmHg					M. le
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula					Temper	rature, °C			ı	l	°C
Benzylamine	C ₇ H ₉ N	29.0	54.8	67.7	81.8	97.3	107.3	120.0	140.0	161.3	184.5	
Benzyl bromide (α-bromotoluene)	C_7H_9H C_7H_7Br	32.2	59.6	73.4	88.3	104.8	115.6	129.8	150.8	175.2	198.5	-4
chloride (α-chlorotoluene)	C ₇ H ₇ Cl	22.0	47.8	60.8	75.0	90.7	100.5	114.2	134.0	155.8	179.4	-39
cinnamate	$C_{16}H_{14}O_2$	173.8	206.3	221.5	239.3	255.8	267.0	281.5	303.8	326.7	350.0	39
Benzyldichlorosilane	C ₇ H ₈ Cl ₂ Si	45.3	70.2	83.2	96.7	111.8	121.3	133.5	152.0	173.0	194.3	
Benzyl ethyl ether	$C_9H_{12}O$	26.0	52.0	65.0	79.6	95.4	105.5	118.9	139.6	161.5	185.0	
phenyl ether	C ₁₃ H ₁₂ O	95.4 79.5	127.7 107.8	144.0 121.8	160.7	180.1	192.6	209.2	233.2 198.0	259.8 220.4	287.0 243.0	
isothiocyanate Biphenyl	C_8H_7NS $C_{12}H_{10}$	70.6	107.8	117.0	137.0 134.2	153.0 152.5	163.8 165.2	177.7 180.7	204.2	229.4	254.9	69.5
1-Biphenyloxy-2,3-epoxypropane	$C_{15}H_{14}O_2$	135.3	169.9	187.2	205.8	226.3	239.7	255.0	280.4	309.8	340.0	00.0
d-Bornyl acetate	$C_{12}H_{20}O_2$	46.9	75.7	90.2	106.0	123.7	135.7	149.8	172.0	197.5	223.0	29
Bornyl n-butyrate	$C_{14}H_{24}O_2$	74.0	103.4	118.0	133.8	150.7	161.8	176.4	198.0	222.2	247.0	
formate	$C_{11}H_{18}O_2$	47.0	74.8	89.3	104.0	121.2	131.7	145.8	166.4	190.2	214.0	
isobutyrate	$C_{14}H_{24}O_2$	70.0	99.8	114.0	130.0	147.2	157.6	172.2	194.2	218.2	243.0	
propionate	$C_{13}H_{22}O_2$	64.6	93.7	108.0	123.7	140.4	151.2	165.7	187.5	211.2	235.0	C1 F
Brassidic acid Bromoacetic acid	$C_{22}H_{42}O_2$	209.6 54.7	241.7 81.6	256.0 94.1	272.9 108.2	290.0 124.0	301.5 133.8	316.2 146.3	336.8 165.8	359.6 186.7	382.5 208.0	61.5 49.5
4-Bromoanisole	$C_2H_3BrO_2$ C_7H_7BrO	48.8	77.8	91.9	103.2	125.0	136.0	150.1	172.7	197.5	223.0	12.5
Bromobenzene	C_6H_5Br	+2.9	27.8	40.0	53.8	68.6	78.1	90.8	110.1	132.3	156.2	-30.7
4-Bromobiphenyl	$C_{12}H_9Br$	98.0	133.7	150.6	169.8	190.8	204.5	221.8	248.2	277.7	310.0	90.5
1-Bromo-2-butanol	C ₄ H ₉ BrO	23.7	45.4	55.8	67.2	79.5	87.0	97.6	112.1	128.3	145.0	
1-Bromo-2-butanone	C ₄ H ₇ BrO	+6.2	30.0	41.8	54.2	68.2	77.3	89.2	107.0	126.3	147.0	
cis-1-Bromo-1-butene	C ₄ H ₇ Br	-44.0	-23.2	-12.8	-1.4	+11.5	19.8	30.8	47.8	66.8	86.2	
trans-1-Bromo-1-butene	C ₄ H ₇ Br	-38.4	-17.0	-6.4	+5.4	18.4	27.2	38.1	55.7	75.0	94.7	-100.3
2-Bromo-1-butene cis-2-Bromo-2-butene	C ₄ H ₇ Br	-47.3 -39.0	$-27.0 \\ -17.9$	-16.8 -7.2	-5.3 +4.6	+7.2 17.7	15.4 26.2	26.3 37.5	42.8 54.5	61.9 74.0	81.0 93.9	-133.4 -111.2
trans-2-Bromo-2-butene	C_4H_7Br C_4H_7Br	-39.0 -45.0	-17.9 -24.1	-13.8	-2.4	+10.5	18.7	29.9	46.5	66.0	85.5	-111.2 -114.6
1,4-Bromochlorobenzene	C ₆ H ₄ BrCl	32.0	59.5	72.7	87.8	103.8	114.8	128.0	149.5	172.6	196.9	-114.0
1-Bromo-1-chloroethane	C ₂ H ₄ BrCl	-36.0	-18.0	-9.4	0.0	+10.4	17.0	28.0	44.7	63.4	82.7	16.6
1-Bromo-2-chloroethane	C ₂ H ₄ BrCl	-28.8	-7.0	+4.1	16.0	29.7	38.0	49.5	66.8	86.0	106.7	-16.6
2-Bromo-4,6-dichlorophenol	C ₆ H ₃ BrCl ₂ O	84.0	115.6	130.8	147.7	165.8	177.6	193.2	216.5	242.0	268.0	68
1-Bromo-4-ethyl benzene	C_8H_9Br	30.4	42.5	74.0	90.2	108.5	121.0	135.5	156.5	182.0	206.0	-45.0
(2-Bromoethyl)-benzene	C ₈ H ₉ Br	48.0	76.2	90.5	105.8	123.2	133.8	148.2	169.8	194.0	219.0	
2-Bromoethyl 2-chloroethyl ether	C ₄ H ₈ BrClO	36.5	63.2	76.3	90.8	106.6	116.4	129.8 138.0	150.0 160.0	172.3	195.8 213.0	
(2-Bromoethyl)-cyclohexane 1-Bromoethylene	$C_8H_{15}Br$ C_2H_3Br	38.7 -95.4	66.6 -77.8	80.5 -68.8	95.8 -58.8	113.0 -48.1	123.7 -41.2	-31.9	-17.2	186.2 -1.1	+15.8	-138
Bromoform (tribromomethane)	CHBr ₃	-33.4	22.0	34.0	48.0	63.6	73.4	85.9	$\frac{-17.2}{106.1}$	127.9	150.5	8.5
1-Bromonaphthalene	$C_{10}H_7Br$	84.2	117.5	133.6	150.2	170.2	183.5	198.8	224.2	252.0	281.1	5.5
2-Bromo-4-phenylphenol	$C_{12}H_9BrO$	100.0	135.4	152.3	171.8	193.8	207.0	224.5	251.0	280.2	311.0	95
3-Bromopyridine	C ₅ H ₄ BrN	16.8	42.0	55.2	69.1	84.1	94.1	107.8	127.7	150.0	173.4	
2-Bromotoluene	C ₇ H ₇ Br	24.4	49.7	62.3	76.0	91.0	100.0	112.0	133.6	157.3	181.8	-28
3-Bromotoluene	C ₇ H ₇ Br	14.8	50.8	64.0	78.1	93.9	104.1	117.8	138.0	160.0	183.7	39.8
4-Bromotoluene 3-Bromo-2,4,6-trichlorophenol	C ₇ H ₇ Br C ₆ H ₂ BrCl ₃ O	10.3 112.4	47.5 146.2	61.1 163.2	75.2 181.8	91.8 200.5	102.3 213.0	116.4 229.3	137.4 253.0	160.2 278.0	184.5 305.8	28.5
2-Bromo-1,4-xylene	C_8H_9Br	37.5	65.0	78.8	94.0	110.6	121.6	135.7	156.4	181.0	206.7	+9.5
1,2-Butadiene (methyl allene)	C_4H_6	-89.0	-72.7	-64.2	-54.9	-44.3	-37.5	-28.3	-14.2	+1.8	18.5	
1,3-Butadiene	C_4H_6	-102.8	-87.6	-79.7	-71.0	-61.3	-55.1	-46.8	-33.9	-19.3	-4.5	-108.9
<i>n</i> -Butane	C_4H_{10}	-101.5	-85.7	-77.8	-68.9	-59.1	-52.8	-44.2	-31.2	-16.3	-0.5	-135
iso-Butane (2-methylpropane)	C_4H_{10}	-109.2	-94.1	-86.4	-77.9	-68.4	-62.4	-54.1	-41.5	-27.1	-11.7	-145
1,3-Butanediol	$C_4H_{10}O_2$	22.2	67.5	85.3	100.0	117.4	127.5	141.2	161.0	183.8	206.5	77
1,2,3-Butanetriol	$C_4H_{10}O_3$	102.0	132.0 -89.4	146.0 -81.6	161.0 -73.0	178.0	188.0 -57.2	202.5 -48.9	222.0 -36.2	243.5 -21.7	264.0 -6.3	120
1-Butene cis-2-Butene	C_4H_8 C_4H_8	-104.8 -96.4	-81.1	-51.6 -73.4	-73.0 -64.6	-63.4 -54.7	-37.2 -48.4	-46.9 -39.8	-36.2 -26.8	-21.7 -12.0	+3.7	-130 -138.9
trans-2-Butene	C_4H_8 C_4H_8	-90.4 -99.4	-84.0	-76.3	-67.5	-54.7 -57.6	-43.4 -51.3	-39.3 -42.7	-20.3 -29.7	-12.0 -14.8	+0.9	-135.9 -105.4
3-Butenenitrile	C_4H_5N	-19.6	+2.9	14.1	26.6	40.0	48.8	60.2	78.0	98.0	119.0	
iso-Butyl acetate	$C_6H_{12}O_2$	-21.2	+1.4	12.8	25.5	39.2	48.0	59.7	77.6	97.5	118.0	-98.9
n-Butyl acrylate	$C_7H_{12}O_2$	-0.5	+23.5	35.5	48.6	63.4	72.6	85.1	104.0	125.2	147.4	-64.6
alcohol	$C_4H_{10}O$	-1.2	+20.0	30.2	41.5	53.4	60.3	70.1	84.3	100.8	117.5	-79.9
iso-Butyl alcohol	$C_4H_{10}O$	-9.0	+11.6	21.7	32.4	44.1	51.7	61.5	75.9	91.4	108.0	-108
sec-Butyl alcohol	$C_4H_{10}O$	-12.2	+7.2	16.9	27.3	38.1	45.2	54.1	67.9	83.9	99.5	-114.7
tert-Butyl alcohol iso-Butyl amine	$C_4H_{10}O \\ C_4H_{11}N$	-20.4 -50.0	-3.0 -31.0	+5.5 -21.0	14.3 -10.3	24.5 +1.3	31.0 8.8	39.8 18.8	52.7 32.0	68.0 50.7	82.9 68.6	25.3 -85.0
n-Butylbenzene	$C_{10}H_{14}$	22.7	48.8	62.0	76.3	92.4	102.6	116.2	136.9	159.2	183.1	-88.0
iso-Butylbenzene	$C_{10}H_{14}$	14.1	40.5	53.7	67.8	83.3	93.3	107.0	127.2	149.6	172.8	-51.5
sec-Butylbenzene	$C_{10}H_{14}$	18.6	44.2	57.0	70.6	86.2	96.0	109.5	128.8	150.3	173.5	-75.5
tert-Butylbenzene	$C_{10}H_{14}$	13.0	39.0	51.7	65.6	80.8	90.6	103.8	123.7	145.8	168.5	-58
iso-Butyl benzoate	$C_{11}H_{14}O_2$	64.0	93.6	108.6	124.2	141.8	152.0	166.4	188.2	212.8	237.0	
n-Butyl bromide (1-bromobutane)	C ₄ H ₉ Br	-33.0	-11.2	-0.3	+11.6	24.8	33.4	44.7	62.0	81.7	101.6	-112.4
iso-Butyl n-butyrate	$C_8H_{16}O_2$	+4.6	30.0	42.2	56.1	71.7	81.3	94.0	113.9	135.7	156.9	CF.
carbamate Butyl carbitol (diethylene glycol	C ₅ H ₁₁ NO ₂	70.0	83.7 95.7	96.4 107.8	110.1 120.5	125.3 135.5	134.6 146.0	147.2 159.8	165.7 181.2	186.0 205.0	206.5 231.2	65
butyl ether)	$C_8H_{18}O_3$	10.0	30.7	101.0	120.0	100.0	140.0	109.0	101.2	200.0	201.2	
n-Butyl chloride (1-chlorobutane)	C ₄ H ₉ Cl	-49.0	-28.9	-18.6	-7.4	+5.0	13.0	24.0	40.0	58.8	77.8	-123.1
	- T - g		-34.3	-24.5	-13.8	-1.9	+5.9	16.0	32.0	50.0	68.9	-131.2

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

IABLE 2-10 Vapor Pressures of O	rganic com	pourius	, up 10 1	ann (Co	minuea	Processir	e, mmHg					
Compound		1	5	10	20	40	60	100	200	400	760	Melting
Name	Formula	1		10	20		rature, °C		200	100	100	point,
sec-Butyl chloride (2-Chlorobutane)	C ₄ H ₉ Cl	-60.2	-39.8	-29.2	-17.7	-5.0	+3.4	14.2	31.5	50.0	68.0	-131.3
tert-Butyl chloride	C ₄ H ₉ Cl	00.2	00.0	20.2	11.1	-19.0	-11.4	-1.0	+14.6	32.6	51.0	-26.5
sec-Butyl chloroacetate	C ₆ H ₁₁ ClO ₂	17.0	41.8	54.6	68.2	83.6	93.0	105.5	124.1	146.0	167.8	
2-tert-Butyl-4-cresol	$C_{11}H_{16}O$	70.0	98.0	112.0	127.2	143.9	153.7	167.0	187.8	210.0	232.6	
4-tert-Butyl-2-cresol	C ₁₁ H ₁₆ O	74.3	103.7	118.0	134.0	150.8	161.7	176.2	197.8	221.8	247.0	
iso-Butyl dichloroacetate	$C_6H_{10}Cl_2O_2$	28.6	54.3	67.5	81.4	96.7	106.6	119.8	139.2	160.0	183.0	22.5
2,3-Butylene glycol (2,3-butanediol) 2-Butyl-2-ethylbutane-1,3-diol	$\begin{array}{c c} C_4H_{10}O_2 \\ C_{10}H_{22}O_2 \end{array}$	44.0 94.1	68.4 122.6	80.3 136.8	93.4 151.2	107.8 167.8	116.3 178.0	127.8 191.9	145.6 212.0	164.0 233.5	182.0 255.0	22.5
2-butyl-2-ethylphenol	$C_{10}H_{22}O_2$ $C_{12}H_{15}O$	76.3	106.2	121.0	137.0	154.0	165.4	179.0	200.3	223.8	247.8	
n-Butyl formate	$C_5H_{10}O_2$	-26.4	-4.7	+6.1	18.0	31.6	39.8	51.0	67.9	86.2	106.0	
iso-Butyl formate	$C_5H_{10}O_2$	-32.7	-11.4	-0.8	+11.0	24.1	32.4	43.4	60.0	79.0	98.2	-95.3
sec-Butyl formate	$C_5H_{10}O_2$	-34.4	-13.3	-3.1	+8.4	21.3	29.6	40.2	56.8	75.2	93.6	
sec-Butyl glycolate	$C_6H_{12}O_3$	28.3	53.6	66.0	79.8	94.2	104.0	116.4	135.5	155.6	177.5	
iso-Butyl iodide (1-iodo-2-methylpropane)	C ₄ H ₉ I	-17.0	+5.8 28.0	17.0 39.9	29.8	42.8	51.8	63.5	81.0 106.3	100.3 126.3	120.4	-90.7
isobutyrate isovalerate	$C_8H_{16}O_2$ $C_9H_{18}O_2$	+4.1 16.0	41.2	53.8	52.4 67.7	67.2 82.7	75.9 92.4	88.0 105.2	124.8	126.3	147.5 168.7	-80.7
levulinate	$C_9H_{16}O_3$	65.0	92.1	105.9	120.2	136.2	147.0	160.2	181.8	205.5	229.9	
naphthylketone (1-isovaleronaphthone)	C ₁₅ H ₁₆ O	136.0	167.9	184.0	201.6	219.7	231.5	246.7	269.7	294.0	320.0	
2-sec-Butylphenol	$C_{10}H_{14}O$	57.4	86.0	100.8	116.1	133.4	143.9	157.3	179.7	203.8	228.0	
2-tert-Butylphenol	$C_{10}H_{14}O$	56.6	84.2	98.1	113.0	129.2	140.0	153.5	173.8	196.3	219.5	
4-iso-Butylphenol	$C_{10}H_{14}O$	72.1	100.9	115.5	130.3	147.2	157.0	171.2	192.1	214.7	237.0	
4-sec-Butylphenol	$C_{10}H_{14}O$	71.4 70.0	100.5 99.2	114.8 114.0	130.3 129.5	147.8 146.0	157.9 156.0	172.4 170.2	194.3 191.5	217.6 214.0	242.1 238.0	99
4-tert-Butylphenol 2-(4-tert-Butylphenoxy)ethyl acetate	$C_{10}H_{14}O$ $C_{14}H_{20}O_3$	118.0	150.0	165.8	183.3	201.5	212.8	228.0	250.3	277.6	304.4	99
4-tert-Butylphenyl dichlorophosphate	$C_{10}H_{13}Cl_2$	96.0	129.6	146.0	164.0	184.3	197.2	214.3	240.0	268.2	299.0	
test Both about lectors (similarly areas)	O ₂ P	E7 0	05.7	99.0	114.9	130.4	140.8	1540	175.0	197.7	220.0	
tert-Butyl phenyl ketone (pivalophenone) iso-Butyl propionate	$C_{11}H_{14}O$ $C_7H_{14}O_2$	57.8 -2.3	85.7 +20.9	32.3	114.3 44.8	58.5	67.6	154.0 79.5	97.0	116.4	136.8	-71
4-tert-Butyl-2,5-xylenol	C ₁₂ H ₁₈ O	88.2	119.8	135.0	151.0	169.8	180.3	195.0	217.5	241.3	265.3	'-
4-tert-Butyl-2,6-xylenol	$C_{12}H_{18}O$	74.0	103.9	119.0	135.0	152.2	163.6	176.0	196.0	217.8	239.8	
6-tert-Butyl-2,4-xylenol	$C_{12}H_{18}O$	70.3	100.2	115.0	131.0	148.5	158.2	172.0	192.3	214.2	236.5	
6-tert-Butyl-3,4-xylenol	$C_{12}H_{18}O$	83.9	113.6	127.0	143.0	159.7	170.0	184.0	204.5	226.7	249.5	
Butyric acid iso-Butyric acid	$C_4H_8O_2$ $C_4H_8O_2$	25.5 14.7	49.8 39.3	61.5 51.2	74.0 64.0	88.0 77.8	96.5 86.3	108.0 98.0	125.5 115.8	144.5 134.5	163.5 154.5	-74 -47
Butyronitrile	$C_4H_8O_2$ C_4H_7N	-20.0	+2.1	13.4	25.7	38.4	47.3	59.0	76.7	96.8	117.5	-41
iso-Valerophenone	$C_{11}H_{14}O$	58.3	87.0	101.4	116.8	133.8	144.6	158.0	180.1	204.2	228.0	
Camphene	$C_{10}H_{16}$			47.2	60.4	75.7	85.0	97.9	117.5	138.7	160.5	50
Campholenic acid	$C_{10}H_{16}O_2$	97.6	125.7	139.8	153.9	170.0	180.0	193.7	212.7	234.0	256.0	
d-Camphor	$C_{10}H_{16}O$	41.5	68.6	82.3	97.5	114.0	124.0	138.0	157.9	182.0	209.2	178.5
Camphylamine Capraldehyde	$C_{10}H_{19}N$ $C_{10}H_{20}O$	45.3 51.9	74.0 78.8	83.7 92.0	97.6 106.3	112.5 122.2	122.0 132.0	134.6 145.3	153.0 164.8	173.8 186.3	195.0 208.5	
Capric acid	$C_{10}H_{20}O_2$	125.0	142.0	152.2	165.0	179.9	189.8	200.0	217.1	240.3	268.4	31.5
n-Caproic acid	$C_6H_{12}O_2$	71.4	89.5	99.5	111.8	125.0	133.3	144.0	160.8	181.0	202.0	-1.5
iso-Caproic acid	$C_6H_{12}O_2$	66.2	83.0	94.0	107.0	120.4	129.6	141.4	158.3	181.0	207.7	-35
iso-Caprolactone	$C_6H_{10}O_2$	38.3	66.4	80.3	95.7	112.3	123.2	137.2	157.8	182.1	207.0	
Capronitrile	$C_6H_{11}N$	9.2	34.6	47.5	61.7	76.9	86.8	99.8	119.7	141.0	163.7	20.0
Capryl alcohol (2-octanol) Caprylaldehyde	$C_8H_{18}O$	32.8 73.4	57.6 92.0	70.0 101.2	83.3 110.2	98.0 120.0	107.4 126.0	119.8 133.9	138.0 145.4	157.5 156.5	178.5 168.5	-38.6
Caprylic acid (octanoic acid)	$\begin{array}{c} C_8H_{16}O \\ C_8H_{16}O_2 \end{array}$	92.3	114.1	124.0	136.4	150.6	160.0	172.2	190.3	213.9	237.5	16
Caprylonitrile	$C_8H_{15}N$	43.0	67.6	80.4	94.6	110.6	121.2	134.8	155.2	179.5	204.5	10
Carbazole	$C_{12}H_9N$						248.2	265.0	292.5	323.0	354.8	244.8
Carbon dioxide	CO_2	-134.3	-124.4	-119.5	-114.4	-108.6	-104.8	-100.2	-93.0	-85.7	-78.2	-57.5
disulfide	CS ₂	-73.8	-54.3	-44.7	-34.3	-22.5	-15.3	-5.1	+10.4	28.0	46.5	-110.8
monoxide	CO COSe	-222.0 -117.1	-217.2 -102.3	-215.0 -95.0	-212.8 -86.3	-210.0 -76.4	-208.1 -70.2	-205.7 -61.7	-201.3 -49.8	-196.3 -35.6	-191.3 -21.9	-205.0
oxyselenide (carbonyl selenide) oxysulfide (carbonyl sulfide)	COSe	-117.1 -132.4	-102.3 -119.8	-93.0 -113.3	-106.0	-76.4 -98.3	-70.2 -93.0	-85.9	-49.6 -75.0	-62.7	-21.9 -49.9	-138.8
tetrabromide	CBr ₄	102.4	110.0	110.0	100.0	96.3	106.3	119.7	139.7	163.5	189.5	90.1
tetrachloride	CCl ₄	-50.0	-30.0	-19.6	-8.2	+4.3	12.3	23.0	38.3	57.8	76.7	-22.6
tetrafluoride	CF_4	-184.6	-174.1	-169.3	-164.3	-158.8	-155.4	-150.7	-143.6	-135.5	-127.7	-183.7
Carvaerol	$C_{10}H_{14}O$	70.0	98.4	113.2	127.9	145.2	155.3	169.7	191.2	213.8	237.0	+0.5
Carvone Chavibetol	$C_{10}H_{14}O$	57.4	86.1	100.4	116.1	133.0	143.8	157.3	179.6	203.5	227.5	
Chloral (trichloroacetaldehyde)	C ₁₀ H ₁₂ O ₂ C ₂ HCl ₃ O	83.6 -37.8	113.3 -16.0	127.0 -5.0	143.2 +7.2	159.8 20.2	170.7 29.1	185.5 40.2	206.8 57.8	229.8 77.5	254.0 97.7	-57
hydrate (trichloroacetaldehyde hydrate)	$C_2H_3Cl_3O_2$	-9.8	+10.0	19.5	29.2	39.7	46.2	55.0	68.0	82.1	96.2	51.7
Chloranil	C ₆ Cl ₄ O ₂	70.7	89.3	97.8	106.4	116.1	122.0	129.5	140.3	151.3	162.6	290
Chloroacetic acid	C ₂ H ₃ ClO ₂	43.0	68.3	81.0	94.2	109.2	118.3	130.7	149.0	169.0	189.5	61.2
anhydride 2-Chloroaniline	C ₄ H ₄ Cl ₂ O ₃ C ₆ H ₆ ClN	67.2 46.3	94.1 72.3	108.0 84.8	122.4 99.2	138.2 115.6	148.0 125.7	159.8 139.5	177.8 160.0	197.0 183.7	217.0 208.8	46
3-Chloroaniline	C_6H_6CIN C_6H_6CIN	63.5	89.8	102.0	116.7	133.6	144.1	158.0	179.5	203.5	228.5	-10.4
4-Chloroaniline	C ₆ H ₆ ClN	59.3	87.9	102.0	117.8	135.0	145.8	159.9	182.3	206.6	230.5	70.5
Chlorobenzene	C ₆ H ₅ Cl	-13.0	+10.6	22.2	35.3	49.7	58.3	70.7	89.4	110.0	132.2	-45.2
2-Chlorobenzotrichloride			101.0	11	107.0	1500	1.5-	165.	2000	202.0	2027	
(2-α,α,α-tetrachlorotoluene)	$C_7H_4Cl_4$	69.0	101.8	117.9	135.8	155.0	167.8	185.0	208.0	233.0	262.1	28.7

2-68 PHYSICAL AND CHEMICAL DATA

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

IABLE 2-10 Vapor Pressures of Organic Com			, op 10 1	ann (C		Pressur	e, mmHg					
Compound		1	5	10	20	40	60	100	200	400	760	Melting
Name	Formula			1		Tempe	rature, °C					point,
2-Chlorobenzotrifluoride												
$(2\text{-chloro-}\alpha,\alpha,\alpha\text{-trifluorotoluene})$	C ₇ H ₄ ClF ₃	0.0	24.7	37.1	50.6	65.9	75.4	88.3	108.3	130.0	152.2	-6.0
2-Chlorobiphenyl	C ₁₂ H ₉ Cl	89.3 96.4	109.8 129.8	134.7 146.0	151.2 164.0	169.9 183.8	182.1 196.0	197.0 212.5	219.6 237.8	243.8 264.5	267.5 292.9	34 75.5
4-Chlorobiphenyl α-Chlorocrotonic acid	$C_{12}H_9Cl$ $C_4H_5ClO_2$	70.0	95.6	108.0	121.2	135.6	144.4	155.9	173.8	193.2	292.9	10.0
Chlorodifluoromethane	CHClF ₂	-122.8	-110.2	-103.7	-96.5	-88.6	-83.4	-76.4	-65.8	-53.6	-40.8	-160
Chlorodimethylphenylsilane	C ₈ H ₁₁ ClSi	29.8	56.7	70.0	84.7	101.2	111.5	124.7	145.5	168.6	193.5	
1-Chloro-2-ethoxybenzene 2-(2-Chloroethoxy) ethanol	C ₈ H ₉ ClO C ₄ H ₉ ClO ₂	45.8 53.0	72.8 78.3	86.5 90.7	101.5 104.1	117.8 118.4	127.8 127.5	141.8 139.5	162.0 157.2	185.5 176.5	208.0 196.0	
bis-2-Chloroethyl acetacetal	$C_4H_9ClO_2$ $C_6H_{12}Cl_2O_2$	56.2	83.7	97.6	112.2	127.8	138.0	150.7	169.8	190.5	212.6	
1-Chloro-2-ethylbenzene	C ₈ H ₉ Cl	17.2	43.0	56.1	70.3	86.2	96.4	110.0	130.2	152.2	177.6	-80.2
1-Chloro-3-ethylbenzene	C ₈ H ₉ Cl	18.6	45.2	58.1	73.0	89.2	99.6	113.6	133.8	156.7	181.1	-53.3
1-Chloro-4-ethylbenzene 2-Chloroethyl chloroacetate	C ₈ H ₉ Cl C ₄ H ₆ Cl ₂ O ₂	19.2 46.0	46.4 72.1	60.0 86.0	75.5 100.0	91.8 116.0	102.0 126.2	116.0 140.0	137.0 159.8	159.8 182.2	184.3 205.0	-62.6
2-Chloroethyl 2-chloroisopropyl ether	$C_4\Pi_6CI_2O_2$ $C_5H_{10}Cl_2O$	24.7	50.1	63.0	77.2	92.4	102.2	115.8	135.7	156.5	180.0	
2-Chloroethyl 2-chloropropyl ether	$C_5H_{10}Cl_2O$	29.8	56.5	70.0	84.8	101.5	111.8	125.6	146.3	169.8	194.1	
2-Chloroethyl α-methylbenzyl ether	C ₁₀ H ₁₃ ClO	62.3	91.4	106.0	121.8	139.6	150.0	164.8	186.3	210.8	235.0	00.5
Chloroform (trichloromethane) 1-Chloronaphthalene	$CHCl_3$ $C_{10}H_7Cl$	-58.0 80.6	-39.1 104.8	-29.7 118.6	-19.0 134.4	-7.1 153.2	+0.5 165.6	$10.4 \\ 180.4$	25.9 204.2	42.7 230.8	61.3 259.3	-63.5 -20
4-Chlorophenethyl alcohol	C ₁₀ H ₁₇ ClO	84.0	114.3	129.0	145.0	162.0	173.5	188.1	210.0	234.5	259.3	-20
2-Chlorophenol	C ₆ H ₅ ClO	12.1	38.2	51.2	65.9	82.0	92.0	106.0	126.4	149.8	174.5	7
3-Chlorophenol	C ₆ H ₅ ClO	44.2	72.0	86.1	101.7	118.0	129.4	143.0	164.8	188.7	214.0	32.5
4-Chlorophenol 2-Chloro-3-phenylphenol	C ₆ H ₅ ClO C ₁₂ H ₉ ClO	49.8 118.0	78.2 152.2	92.2 169.7	108.1 186.7	125.0 207.4	136.1 219.6	150.0 237.0	172.0 261.3	196.0 289.4	220.0 317.5	42 +6
2-Chloro-6-phenylphenol	$C_{12}H_9ClO$ $C_{12}H_9ClO$	119.8	153.7	170.7	189.8	208.2	220.0	237.0	261.6	289.5	317.0	Τ0
Chloropicrin (trichloronitromethane)	CCl_3NO_2	-25.5	-3.3	+7.8	20.0	33.8	42.3	53.8	71.8	91.8	111.9	-64
1-Chloropropene	C ₃ H ₅ Cl	-81.3	-63.4	-54.1	-44.0	-32.7	-25.1	-15.1	+1.3	18.0	37.0	-99.0
2-Chloropyridine 3-Chlorostyrene	C ₅ H ₄ ClN C ₈ H ₇ Cl	13.3 25.3	38.8 51.3	51.7 65.2	65.8 80.0	81.7 96.5	91.6 107.2	104.6 121.2	125.0 142.2	147.7 165.7	170.2 190.0	
4-Chlorostyrene	C ₈ H ₇ Cl	28.0	54.5	67.5	82.0	98.0	107.2	121.2 122.0	143.5	166.0	191.0	-15.0
1-Chlorotetradecane	C ₁₄ H ₂₉ Cl	98.5	131.8	148.2	166.2	187.0	199.8	215.5	240.3	267.5	296.0	+0.9
2-Chlorotoluene	C ₇ H ₇ Cl	+5.4	30.6	43.2	56.9	72.0	81.8	94.7	115.0	137.1	159.3	
3-Chlorotoluene 4-Chlorotoluene	C ₇ H ₇ Cl C ₇ H ₇ Cl	+4.8 +5.5	30.3 31.0	43.2 43.8	57.4 57.8	73.0 73.5	83.2 83.3	96.3 96.6	116.6 117.1	139.7 139.8	162.3 162.3	+7.3
Chlorotriethylsilane	C ₆ H ₁₅ ClSi	-4.9	+19.8	32.0	45.5	60.2	69.5	82.3	101.6	123.6	146.3	+1.5
1-Chloro-1,2,2-trifluoroethylene	C_2ClF_3	-116.0	-102.5	-95.9	-88.2	-79.7	-74.1	-66.7	-55.0	-41.7	-27.9	-157.5
Chlorotrifluoromethane	CClF ₃	-149.5	-139.2	-134.1	-128.5	-121.9	-117.3	-111.7	-102.5	-92.7	-81.2	
Chlorotrimethylsilane trans-Cinnamic acid	C_3H_9ClSi $C_9H_8O_2$	-62.8 127.5	-43.6 157.8	-34.0 173.0	-23.2 189.5	-11.4 207.1	-4.0 217.8	+6.0 232.4	21.9 253.3	39.4 276.7	57.9 300.0	133
Cinnamyl alcohol	$C_9H_{10}O$	72.6	102.5	117.8	133.7	151.0	162.0	177.8	199.8	224.6	250.0	33
Cinnamylaldehyde	C ₉ H ₈ O	76.1	105.8	120.0	135.7	152.2	163.7	177.7	199.3	222.4	246.0	-7.5
Citraconic anhydride	$C_5H_4O_3$	47.1	74.8	88.9	103.8	120.3	131.3	145.4	165.8	189.8	213.5	
cis-α-Citral d-Citronellal	$C_{10}H_{16}O \\ C_{10}H_{18}O$	61.7 44.0	90.0 71.4	103.9 84.8	119.4 99.8	135.9 116.1	146.3 126.2	160.0 140.1	181.8 160.0	205.0 183.8	228.0 206.5	
Citronellic acid	$C_{10}H_{18}O_2$	99.5	127.3	141.4	155.6	171.9	182.1	195.4	214.5	236.6	257.0	
Citronellol	$C_{10}H_{20}O$	66.4	93.6	107.0	121.5	137.2	147.2	159.8	179.8	201.0	221.5	
Citronellyl acetate	$C_{12}H_{22}O_2$	74.7	100.2	113.0	126.0	140.5	149.7	161.0	178.8	197.8	217.0	50
Coumarin o-Cresol (2-cresol; 2-methylphenol)	$C_9H_6O_2$ C_7H_8O	106.0 38.2	137.8 64.0	153.4 76.7	170.0 90.5	189.0 105.8	200.5 115.5	216.5 127.4	240.0 146.7	264.7 168.4	291.0 190.8	70 30.8
m-Cresol (3-cresol; 3-methylphenol)	C ₇ H ₈ O	52.0	76.0	87.8	101.4	116.0	125.8	138.0	157.3	179.0	202.8	10.9
p-Cresol (4-cresol; 4-methylphenol)	C_7H_8O	53.0	76.5	88.6	102.3	117.7	127.0	140.0	157.3	179.4	201.8	35.5
cis-Crotonic acid	$C_4H_6O_2$	33.5	57.4	69.0	82.0	96.0	104.5	116.3	133.9	152.2	171.9	15.5
trans-Crotonic acid cis-Crotononitrile	$C_4H_6O_2$ C_4H_5N	-29.0	-7.1	80.0 +4.0	93.0 16.4	107.8 30.0	116.7 38.5	128.0 50.1	146.0 68.0	165.5 88.0	185.0 108.0	72
trans-Crotononitrile	C_4H_5N	-19.5	+3.5	15.0	27.8	41.8	50.9	62.8	81.1	101.5	122.8	
Cumene	C_9H_{12}	+2.9	26.8	38.3	51.5	66.1	75.4	88.1	107.3	129.2	152.4	-96.0
4-Cumidene	$C_9H_{13}N$	60.0	88.2	102.2	117.8	134.2	145.0	158.0	180.0	203.2	227.0	
Cuminal Cuminyl alcohol	$C_{10}H_{12}O$ $C_{10}H_{14}O$	58.0 74.2	87.3 103.7	102.0 118.0	117.9 133.8	135.2 150.3	146.0 161.7	160.0 176.2	182.8 197.9	206.7 221.7	232.0 246.6	
2-Cyano-2- <i>n</i> -butyl acetate	$C_7H_{11}NO_2$	42.0	68.7	82.0	96.2	111.8	121.5	133.8	152.2	173.4	195.2	
Cyanogen	C_2N_2	-95.8	-83.2	-76.8	-70.1	-62.7	-57.9	-51.8	-42.6	-33.0	-21.0	-34.4
bromide	CBrN	-35.7	-18.3	-10.0	-1.0	+8.6	14.7	22.6	33.8	46.0	61.5	58
chloride iodide	CClN CIN	-76.7 25.2	-61.4 47.2	-53.8 57.7	-46.1 68.6	-37.5 80.3	-32.1 88.0	-24.9 97.6	-14.1 111.5	-2.3 126.1	+13.1 141.1	-6.5
Cyclobutane	C_4H_8	-92.0	-76.0	-67.9	-58.7	-48.4	-41.8	-32.8	-18.9	-3.4	+12.9	-50
Cyclobutene	C_4H_6	-99.1	-83.4	-75.4	-66.6	-56.4	-50.0	-41.2	-27.8	-12.2	+2.4	
Cyclohexane	C_6H_{12}	-45.3	-25.4	-15.9	-5.0	+6.7	14.7	25.5	42.0	60.8	80.7	+6.6
Cyclohexaneethanol Cyclohexanol	$C_8H_{16}O$ $C_6H_{12}O$	50.4 21.0	77.2 44.0	90.0 56.0	104.0 68.8	119.8 83.0	129.8 91.8	142.7 103.7	161.7 121.7	183.5 141.4	205.4 161.0	23.9
Cyclohexanone	$C_{6}H_{10}O$	+1.4	26.4	38.7	52.5	67.8	77.5	90.4	110.3	132.5	155.6	-45.0
2-Cyclohexyl-4,6-dinitrophenol	$C_{12}H_{14}N_2O_5$	132.8	161.8	175.9	191.2	206.7	216.0	229.0	248.7	269.8	291.5	
Cyclopentane	C_5H_{10}	-68.0	-49.6	-40.4	-30.1	-18.6	-11.3	-1.3	+13.8	31.0	49.3	-93.7
Cyclopropane Cymene	C_3H_6 $C_{10}H_{14}$	-116.8 17.3	-104.2 43.9	-97.5 57.0	-90.3 71.1	-82.3 87.0	-77.0 97.2	-70.0 110.8	-59.1 131.4	-46.9 153.5	-33.5 177.2	-126.6 -68.2
o _j ene	O10**14	1 11.0	10.0	1 31.0	11.1	51.0	31.2	110.0	101.1	100.0	111.2	30.2

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

IABLE 2-10 Vapor Pressures or	J		,			Pressur	e, mmHg					
Compound		1	5	10	20	40	60	100	200	400	760	Melting
Name	Formula					Tempe	rature, °C					point, °C
cis-Decalin	C ₁₀ H ₁₈	22.5	50.1	64.2	79.8	97.2	108.0	123.2	145.4	169.9	194.6	-43.3
trans-Decalin	$C_{10}H_{18}$	-0.8	+30.6	47.2	65.3	85.7	98.4	114.6	136.2	160.1	186.7	-30.7
Decane	$C_{10}H_{22}$	16.5	42.3	55.7	69.8	85.5	95.5	108.6	128.4	150.6	174.1	-29.7
Decan-2-one	$C_{10}H_{20}O$	44.2	71.9	85.8	100.7	117.1	127.8	142.0	163.2	186.7	211.0	+3.5
1-Decene Decyl alcohol	$\begin{array}{c} C_{10}H_{20} \\ C_{10}H_{22}O \end{array}$	14.7 69.5	40.3 97.3	53.7 111.3	67.8 125.8	83.3 142.1	93.5 152.0	106.5 165.8	126.7 186.2	149.2 208.8	172.0 231.0	+7
Decyltrimethylsilane	C ₁₀ H ₂₂ O C ₁₃ H ₃₀ Si	67.4	96.4	111.0	126.5	144.0	154.3	169.5	191.0	215.5	240.0	Τ1
Dehydroacetic acid	$C_8H_8O_4$	91.7	122.0	137.3	153.0	171.0	181.5	197.5	219.5	244.5	269.0	
Desoxybenzoin	$C_{14}H_{12}O$	123.3	156.2	173.5	192.0	212.0	224.5	241.3	265.2	293.0	321.0	60
Diacetamide	$C_4H_7NO_2$	70.0	95.0	108.0	122.6	138.2	148.0	160.6	180.8	202.0	223.0	78.5
Diacetylene (1,3-butadiyne) Diallyldichlorosilane	C_4H_2 $C_6H_{10}Cl_2Si$	-82.5 +9.5	-68.0 34.8	-61.2 47.4	-53.8 61.3	-45.9 76.4	-41.0 86.3	-34.0 99.7	-20.9 119.4	-6.1 142.0	+9.7 165.3	-34.9
Diallyl sulfide	$C_6H_{10}S$	-9.5	+14.4	26.6	39.7	54.2	63.7	75.8	94.8	116.1	138.6	-83
Diisoamyl ether	$C_{10}H_{22}O$	18.6	44.3	57.0	70.7	86.3	96.0	109.6	129.0	150.3	173.4	
oxalate	$C_{12}H_{22}O_4$	85.4	116.0	131.4	147.7	165.7	177.0	192.2	215.0	240.0	265.0	
sulfide	$C_{10}H_{22}S$	43.0	73.0	87.6 165.6	102.7 182.2	120.0 200.2	130.6 212.2	145.3 227.3	166.4 249.8	191.0 274.3	216.0 300.0	-26
Dibenzylamine Dibenzyl ketone (1,3-diphenyl-	$C_{14}H_{15}N$ $C_{15}H_{14}O$	118.3 125.5	149.8 159.8	177.6	195.7	216.6	229.4	246.6	272.3	301.7	330.5	34.5
2-propanone)	01511140	120.0	100.0	111.0	100.1	210.0	220.1	210.0	212.0	501.1	000.0	01.0
1,4-Dibromobenzene	$C_6H_4Br_2$	61.0	79.3	87.7	103.6	120.8	131.6	146.5	168.5	192.5	218.6	87.5
1,2-Dibromobutane	$C_4H_8Br_2$	7.5	33.2	46.1	60.0	76.0	86.0	99.8	120.2	143.5	166.3	-64.5
dl-2,3-Dibromobutane meso-2,3-Dibromobutane	$C_4H_8Br_2$ $C_4H_8Br_2$	+5.0 +1.5	30.0 26.6	41.6 39.3	56.4 53.2	72.0 68.0	82.0 78.0	95.3 91.7	115.7 111.8	138.0 134.2	160.5 157.3	-34.5
1,2-Dibromodecane	$C_{4}\Pi_{8}BI_{2}$ $C_{10}H_{20}Br_{2}$	95.7	123.6	137.3	151.0	167.4	177.5	190.2	209.6	229.8	250.4	-34.3
Di(2-bromoethyl) ether	$C_4H_8Br_2O$	47.7	75.3	88.5	103.6	119.8	130.0	144.0	165.0	188.0	212.5	
α,β-Dibromomaleic anhydride	$C_4H_2Br_2O_3$	50.0	78.0	92.0	106.7	123.5	133.8	147.7	168.0	192.0	215.0	
1,2-Dibromo-2-methylpropane	$C_4H_8Br_2$	-28.8	-3.0	+10.5	25.7	42.3	53.7	68.8	92.1	119.8	149.0	-70.3
1,3-Dibromo-2-methylpropane 1,2-Dibromopentane	$C_4H_8Br_2$ $C_5H_{10}Br_2$	14.0 19.8	40.0 45.4	53.0 58.0	67.5 72.0	83.5 87.4	93.7 97.4	107.4 110.1	117.8 130.2	150.6 151.8	174.6 175.0	
1,2-Dibromopropane	$C_{3}H_{6}Br_{2}$	-7.0	+17.3	29.4	42.3	57.2	66.4	78.7	97.8	118.5	141.6	-55.5
1,3-Dibromopropane	$C_3H_6Br_2$	+9.7	35.4	48.0	62.1	77.8	87.8	101.3	121.7	144.1	167.5	-34.4
2,3-Dibromopropene	$C_3H_4Br_2$	-6.0	+17.9	30.0	43.2	57.8	67.0	79.5	98.0	119.5	141.2	
2,3-Dibromo-1-propanol	C ₃ H ₆ Br ₂ O	57.0	84.5	98.2	113.5	129.8	140.0	153.0	173.8	196.0	219.0	70
Diisobutylamine 2,6-Ditert-butyl-4-cresol	$C_8H_{19}N$ $C_{15}H_{24}O$	-5.1 85.8	+18.4 116.2	30.6 131.0	43.7 147.0	57.8 164.1	67.0 175.2	79.2 190.0	97.6 212.8	118.0 237.6	139.5 262.5	-70
4,6-Ditert-butyl-2-cresol	$C_{15}H_{24}O$	86.2	117.3	132.4	149.0	167.4	179.0	194.0	217.5	243.4	269.3	
4,6-Ditert-butyl-3-cresol	$C_{15}H_{24}O$	103.7	135.2	150.0	167.0	185.3	196.1	211.0	233.0	257.1	282.0	
2,6-Ditert-butyl-4-ethylphenol	$C_{16}H_{26}O$	89.1	121.4	137.0	154.0	172.1	183.9	198.0	220.0	244.0	268.6	
4,6-Ditert-butyl-3-ethylphenol	$C_{16}H_{26}O$	111.5 63.2	142.6	157.4	174.0 120.3	192.3	204.4	218.0 161.8	241.7	264.6 205.8	290.0 229.5	
Diisobutyl oxalate 2,4-Ditert-butylphenol	$C_{10}H_{18}O_4$ $C_{14}H_{22}O$	84.5	91.2 115.4	105.3 130.0	146.0	137.5 164.3	147.8 175.8	190.0	183.5 212.5	205.6	260.8	
Dibutyl phthalate	$C_{16}H_{22}O_4$	148.2	182.1	198.2	216.2	235.8	247.8	263.7	287.0	313.5	340.0	
sulfide	$C_8H_{18}S$	+21.7	51.8	66.4	80.5	96.0	105.8	118.6	138.0	159.0	182.0	-79.7
Diisobutyl d-tartrate	$C_{12}H_{22}O_6$	117.8	151.8	169.0	188.0	208.5	221.6	239.5	264.7	294.0	324.0	73.5
Dicarvacryl-mono-(6-chloro-2-xenyl) phosphate	C ₃₂ H ₃₄ ClO ₄ P	204.2	234.5	249.3	264.5	280.5	290.7	304.9	323.8	342.0	361.0	
Dicarvacryl-2-tolyl phosphate	$C_{27}H_{33}O_4P$	180.2	209.3	221.8	237.0	251.5	260.3	272.5	290.0	309.8	330.0	
Dichloroacetic acid	$C_2H_2Cl_2O_2$	44.0	69.8	82.6	96.3	111.8	121.5	134.0	152.3	173.7	194.4	9.7
1,2-Dichlorobenzene	$C_6H_4Cl_2$	20.0	46.0	59.1	73.4	89.4	99.5	112.9	133.4	155.8	179.0	-17.6
1,3-Dichlorobenzene 1,4-Dichlorobenzene	$C_6H_4Cl_2$	12.1	39.0	52.0	66.2	82.0	92.2	105.0	125.9	149.0	173.0	-24.2
1,4-Dichlorobenzene 1,2-Dichlorobutane	$C_6H_4Cl_2$ $C_4H_8Cl_2$	-23.6	-0.3	54.8 +11.5	69.2 24.5	84.8 37.7	95.2 47.8	108.4 60.2	128.3 79.7	150.2 100.8	173.9 123.5	53.0
2,3-Dichlorobutane	$C_4H_8Cl_2$ $C_4H_8Cl_2$	-25.2	-3.0	+8.5	21.2	35.0	43.9	56.0	74.0	94.2	116.0	-80.4
1,2-Dichloro-1,2-difluoroethylene	C ₂ Cl ₂ F ₂	-82.0	-65.6	-57.3	-48.3	-38.2	-31.8	-23.0	-10.0	+5.0	20.9	-112
Dichlorodifluoromethane	CCl ₂ F ₂	-118.5	-104.6	-97.8	-90.1	-81.6	-76.1	-68.6	-57.0	-43.9	-29.8	
Dichlorodiphenyl silane Dichlorodiisopropyl ether	C ₁₂ H ₁₀ Cl ₂ Si C ₆ H ₁₂ Cl ₂ O	109.6 29.6	142.4 55.2	158.0 68.2	176.0 82.2	195.5 97.3	207.5 106.9	223.8 119.7	248.0 139.0	275.5 159.8	304.0 182.7	
Di(2-chloroethoxy) methane	$C_{5}H_{10}Cl_{2}O_{2}$	53.0	80.4	94.0	109.5	125.5	135.8	149.6	170.0	192.0	215.0	
Dichloroethoxymethylsilane	C ₈ H ₈ Cl ₂ OSi	-33.8	-12.1	-1.3	+11.3	24.4	32.6	44.1	61.0	80.3	100.6	
1,2-Dichloro-3-ethylbenzene	$C_8H_8Cl_2$	46.0	75.0	90.0	105.9	123.8	135.0	149.8	172.0	197.0	222.1	-40.8
1,2-Dichloro-4-ethylbenzene	C ₈ H ₈ Cl ₂	47.0	77.2	92.3	109.6	127.5	139.0	153.3	176.0	201.7	226.6	-76.4
1,4-Dichloro-2-ethylbenzene cis-1,2-Dichloroethylene	$C_8H_8Cl_2$ $C_2H_2Cl_2$	38.5 -58.4	68.0 -39.2	83.2 -29.9	99.8 -19.4	118.0 -7.9	129.0 -0.5	144.0 +9.5	166.2 24.6	191.5 41.0	216.3 59.0	-61.2 -80.5
trans-1,2-Dichloro ethylene	$C_2H_2Cl_2$ $C_2H_2Cl_2$	-55.4 -65.4	-39.2 -47.2	-29.9 -38.0	-19.4 -28.0	-7.9 -17.0	-10.0	-0.2	+14.3	30.8	47.8	-50.5 -50.0
Di(2-chloroethyl) ether	$C_4H_8Cl_2O$	23.5	49.3	62.0	76.0	91.5	101.5	114.5	134.0	155.4	178.5	30.0
Dichlorofluoromethane	CHCl ₂ F	-91.3	-75.5	-67.5	-58.6	-48.8	-42.6	-33.9	-20.9	-6.2	+8.9	-135
1,5-Dichlorohexamethyltrisiloxane	$C_6H_{18}Cl_2$	26.0	52.0	65.1	79.0	94.8	105.0	118.2	138.3	160.2	184.0	-53.0
Diehleremethylphoryleilene	O ₂ Si ₃	35.7	63.5	77.4	92.4	109.5	120.0	134.2	155 5	180.2	205.5	
Dichloromethylphenylsilane 1,1-Dichloro-2-methylpropane	C ₇ H ₈ Cl ₂ Si C ₄ H ₈ Cl ₂	-31.0	-8.4	+2.6	92.4 14.6	28.2	37.0	48.2	155.5 65.8	85.4	106.0	
1,2-Dichloro-2-methylpropane	$C_4H_8Cl_2$ $C_4H_8Cl_2$	-25.8	-4.2	+6.7	18.7	32.0	40.2	51.7	68.9	87.8	108.0	
1,3-Dichloro-2-methylpropane	$C_4H_8Cl_2$	-3.0	+20.6	32.0	44.8	58.6	67.5	78.8	96.1	115.4	135.0	
2,4-Dichlorophenol	C ₆ H ₄ Cl ₂ O	53.0	80.0	92.8	107.7	123.4	133.5	146.0	165.2	187.5	210.0	45.0
2,6-Dichlorophenol	C ₆ H ₄ Cl ₂ O	59.5	87.6	101.0	115.5	131.6	141.8	154.6	175.5	197.7	220.0	L

2-70 PHYSICAL AND CHEMICAL DATA

 TABLE 2-10
 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

MADLE 2-10 Vapor Pressures of			•	· ·	· ·	Pressur	e, mmHg					
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula					Temper	rature, °C					°C
α,α-Dichlorophenylacetonitrile	C ₈ H ₅ Cl ₂ N	56.0	84.0	98.1	113.8	130.0	141.0	154.5	176.2	199.5	223.5	
Dichlorophenylarsine	C ₆ H ₅ AsCl ₂	61.8	100.0	116.0	133.1	151.0	163.2	178.9	202.8	228.8	256.5	
1,2-Dichloropropane	$C_3H_6Cl_2$	-38.5	-17.0	-6.1	+6.0	19.4	28.0	39.4	57.0	76.0	96.8	
2,3-Dichlorostyrene	C ₈ H ₆ Cl ₂	61.0	90.1	104.6	120.5	137.8	149.0	163.5	185.7	210.0	235.0	
2,4-Dichlorostyrene 2,5-Dichlorostyrene	$C_8H_6Cl_2$ $C_8H_6Cl_2$	53.5 55.5	82.2 83.9	97.4 98.2	111.8 114.0	129.2 131.0	140.0 142.0	153.8 155.8	176.0 178.0	200.0 202.5	225.0 227.0	
2,6-Dichlorostyrene	$C_8H_6Cl_2$ $C_8H_6Cl_2$	47.8	75.7	90.0	105.5	122.4	133.3	147.6	169.0	193.5	217.0	
3,4-Dichlorostyrene	$C_8H_6Cl_2$	57.2	86.0	100.4	116.2	133.7	144.6	158.2	181.5	205.7	230.0	
3,5-Dichlorostyrene	$C_8H_6Cl_2$	53.5	82.2	97.4	111.8	129.2	140.0	153.8	176.0	200.0	225.0	
1,2-Dichlorotetraethylbenzene	$C_{14}H_{20}Cl_2$	105.6	138.7	155.0	172.5	192.2	204.8	220.7	245.6	272.8	302.0	
1,4-Dichlorotetraethylbenzene 1,2-Dichloro-1,1,2,2-tetrafluoroethane	$C_{14}H_{20}Cl_2$ $C_2Cl_2F_4$	91.7 -95.4	126.1 -80.0	143.8 -72.3	162.0 -63.5	183.2 -53.7	195.8 -47.5	212.0 -39.1	238.5 -26.3	265.8 -12.0	296.5 +3.5	-94
Dichloro-4-tolylsilane	C ₂ Cl ₂ F ₄ C ₇ H ₈ Cl ₂ Si	46.2	71.7	84.2	97.8	113.2	122.6	135.5	-20.5 153.5	175.2	196.3	-94
3,4-Dichloro-α,α,α-trifluorotoluene	C ₇ H ₃ Cl ₂ F ₃	11.0	38.3	52.2	67.3	84.0	95.0	109.2	129.0	150.5	172.8	-12.1
Dicyclopentadiene	$C_{10}H_{8}$		34.1	47.6	62.0	77.9	88.0	101.7	121.8	144.2	166.6	32.9
Diethoxydimethylsilane	$C_6H_{16}O_2Si$	-19.1	+2.4	13.3	25.3	38.0	46.3	57.6	74.2	93.2	113.5	
Diethoxydiphenylsilane	C ₁₆ H ₂₀ O ₂ Si	111.5	142.8	157.6	174.3	193.2	205.0	220.0	243.8	259.7	296.0	0.1
Diethyl adipate Diethylamine	$\begin{array}{c} C_{10}H_{18}O_4 \\ C_4H_{11}N \end{array}$	74.0	106.6	123.0 -33.0	138.3 -22.6	154.6 -11.3	165.8 -4.0	179.0 +6.0	198.2 21.0	219.1 38.0	240.0 55.5	-21 -38.9
N-Diethylaniline	$C_{10}H_{15}N$	49.7	78.0	91.9	107.2	123.6	133.8	147.3	168.2	192.4	215.5	-34.4
Diethyl arsanilate	C ₁₀ H ₁₆ As											
	NO_3	38.0	62.6	74.8	88.0	102.6	111.8	123.8	141.9	161.0	181.0	
1,2-Diethylbenzene	$C_{10}H_{14}$	22.3	48.7	62.0	76.4	92.5	102.6	116.2	136.7	159.0	183.5	-31.4
1,3-Diethylbenzene 1,4-Diethylbenzene	$C_{10}H_{14}$ $C_{10}H_{14}$	20.7 20.7	46.8 47.1	59.9 60.3	74.5 74.7	90.4 91.1	100.7 101.3	114.4 115.3	134.8 136.1	156.9 159.0	181.1 183.8	-83.9 -43.2
Diethyl carbonate	$C_{5}H_{10}O_{3}$	-10.1	+12.3	23.8	36.0	49.5	57.9	69.7	86.5	105.8	125.8	-43
cis-Diethyl citraconate	C ₉ H ₁₄ O ₄	59.8	88.3	103.0	118.2	135.7	146.2	160.0	182.3	206.5	230.3	
Diethyl dioxosuccinate	$C_8H_{10}O_6$	70.0	98.0	112.0	126.8	143.8	153.7	167.7	188.0	210.8	233.5	
Diethylene glycol	$C_4H_{10}O_3$	91.8	120.0	133.8	148.0	164.3	174.0	187.5	207.0	226.5	244.8	
Diethyleneglycol-bis-chloroacetate Diethylene glycol dimethyl ether	$C_8H_{12}Cl_2O_5$	148.3	180.0	195.8	212.0	229.0	239.5	252.0	271.5	291.8	313.0	
Di(2-methoxyethyl) ether	$C_6H_{14}O_3$	13.0	37.6	50.0	63.0	77.5	86.8	99.5	118.0	138.5	159.8	
glycol ethyl ether	$C_6H_{14}O_3$	45.3	72.0	85.8	100.3	116.7	126.8	140.3	159.0	180.3	201.9	
Diethyl ether	$C_4H_{10}O$	-74.3	-56.9	-48.1	-38.5	27.7	-21.8	-11.5	+2.2	17.9	34.6	-116.3
ethylmalonate	$C_9H_{16}O_4$	50.8	77.8	91.6	106.0	122.4	132.4	146.0	166.0	188.7	211.5	
fumarate glutarate	$C_8H_{12}O_4$	53.2 65.6	81.2 94.7	95.3 109.7	110.2 125.4	126.7 142.8	137.7 153.2	151.1 167.8	172.2 189.5	195.8 212.8	218.5 237.0	+0.6
Diethylhexadecylamine	$C_9H_{16}O_4$ $C_{20}H_{43}N$	139.8	175.8	194.0	213.5	235.0	248.5	265.5	292.8	324.6	355.0	
Diethyl itaconate	C ₉ H ₁₄ O ₄	51.3	80.2	95.2	111.0	128.2	139.9	154.3	177.5	203.1	227.9	
ketone (3-pentanone)	$C_5H_{10}O$	-12.7	+7.5	17.2	27.9	39.4	46.7	56.2	70.6	86.3	102.7	-42
malate	$C_8H_{14}O_5$	80.7	110.4	125.3	141.2	157.8	169.0	183.9	205.3 177.8	229.5 201.7	253.4 225.0	
maleate malonate	$C_8H_{12}O_4$ $C_7H_{12}O_4$	57.3 40.0	85.6 67.5	100.0 81.3	115.3 95.9	131.8 113.3	142.4 123.0	156.0 136.2	155.5	176.8	198.9	-49.8
mesaconate	$C_9H_{14}O_4$	62.8	91.0	105.3	120.3	137.3	147.9	161.6	183.2	205.8	229.0	10.0
oxalate	$C_6H_{10}O_4$	47.4	71.8	83.8	96.8	110.6	119.7	130.8	147.9	166.2	185.7	-40.6
phthalate	$C_{12}H_{14}O_4$	108.8	140.7	156.0	173.6	192.1	204.1	219.5	243.0	267.5	294.0	1.0
sebacate 2,5-Diethylstyrene	$C_{14}H_{26}O_4$ $C_{12}H_{16}$	125.3 49.7	$156.2 \\ 78.4$	172.1 92.6	189.8 108.5	207.5 125.8	218.4 136.8	234.4 151.0	255.8 173.2	280.3 198.0	305.5 223.0	1.3
Diethyl succinate	$C_{12}H_{16}$ $C_{8}H_{14}O_{4}$	54.6	83.0	96.6	111.7	127.8	138.2	151.1	171.7	193.8	216.5	-20.8
isosuccinate	$C_8H_{14}O_4$	39.8	66.7	80.0	94.7	111.0	121.4	134.8	155.1	177.7	201.3	
sulfate	$C_4H_{10}O_4S$	47.0	74.0	87.7	102.1	118.0	128.6	142.5	162.5	185.5	209.5	-25.0
sulfide sulfite	$C_4H_{10}S$	-39.6	-18.6	-8.0	+3.5	16.1 74.2	24.2	35.0	51.3	69.7	88.0	-99.5
d-Diethyl tartrate	$C_4H_{10}O_3S$ $C_8H_{14}O_6$	10.0 102.0	34.2 133.0	46.4 148.0	59.7 164.2	182.3	83.8 194.0	96.3 208.5	115.8 230.4	137.0 254.8	159.0 280.0	17
dl-Diethyl tartrate	$C_8H_{14}O_6$	100.0	131.7	147.2	163.8	181.7	193.2	208.0	230.0	254.3	280.0	1,
3,5-Diethyltoluene	$C_{11}H_{16}$	34.0	61.5	75.3	90.2	107.0	117.7	131.7	152.4	176.5	200.7	
Diethylzinc	$C_4H_{10}Zn$	-22.4	0.0	+11.7	24.2	38.0	47.2	59.1	77.0	97.3	118.0	-28
1-Dihydrocarvone Dihydrocitronellol	$C_{10}H_{16}O$	46.6 68.0	75.5 91.7	90.0 103.0	106.0	123.7 127.6	134.7 136.7	149.7 145.9	171.8 160.2	197.0 176.8	223.0 193.5	
1,4-Dihydroxyanthraquinone	$C_{10}H_{\underline{22}}O \\ C_{14}H_8O_4$	196.7	239.8	259.8	115.0 282.0	307.4	323.3	344.5	377.8	413.0	450.0	194
Dimethylacetylene (2-butyne)	C_4H_6	-73.0	-57.9	-50.5	-42.5	-33.9	-27.8	-18.8	-5.0	+10.6	27.2	-32.5
Dimethylamine	C_2H_7N	-87.7	-72.2	-64.6	-56.0	-46.7	-40.7	-32.6	-20.4	-7.1	+7.4	-96
N,N-Dimethylaniline	$C_8H_{11}N$	29.5	56.3	70.0	84.8	101.6	111.9	125.8	146.5	169.2	193.1	+2.5
Dimethyl arsanilate Di(α-methylbenzyl) ether	C ₈ H ₁₂ AsNO ₃		39.6	51.8	65.0	79.7	88.6	101.0 206.8	119.8	140.3	160.5	
2,2-Dimethylbutane	$C_{16}H_{18}O \\ C_{6}H_{14}$	96.7 -69.3	128.3 -50.7	144.0 -41.5	160.3 -31.1	179.6 -19.5	191.5 -12.1	-2.0	229.7 + 13.4	254.8 31.0	281.0 49.7	-99.8
2,3-Dimethylbutane	$C_{6}H_{14}$	-63.6	-30.7 -44.5	-34.9	-31.1 -24.1	-19.3 -12.4	-12.1 -4.9	+5.4	21.1	39.0	58.0	-128.2
Dimethyl citraconate	$C_7H_{10}O_4$	50.8	78.2	91.8	106.5	122.6	132.7	145.8	165.8	188.0	210.5	
1,1-Dimethylcyclohexane	C_8H_{16}	-24.4	-1.4	+10.3	23.0	37.3	45.7	57.9	76.2	97.2	119.5	-34
cis-1,2-Dimethylcyclohexane	C_8H_{16}	-15.9	+7.3	18.4	31.1	45.3	54.4	66.8	85.6	107.0	129.7	-50.0
trans-1,2-Dimethylcyclohexane trans-1,3-Dimethylcyclohexane	$C_8H_{16} \\ C_8H_{16}$	-21.1 -19.4	+1.7 +3.4	13.0 14.9	25.6 27.4	39.7 41.4	48.7 50.4	61.0 62.5	79.6 81.0	100.9 102.1	123.4 124.4	-88.0 -92.0
cis-1,3-Dimethylcyclohexane	C ₈ H ₁₆ C ₈ H ₁₆	-22.7	0.0	+11.2	23.6	37.5	46.4	58.5	76.9	97.8	120.1	-76.2
cis-1,4-Dimethylcyclohexane	C_8H_{16}	-20.0	+3.2	14.5	27.1	41.1	50.1	62.3	80.8	101.9	124.3	-87.4
trans-1,4-Dimethylcyclohexane	C_8H_{16}	-24.3	-1.7	+10.1	22.6	36.5	45.4	57.6	76.0	97.0	119.3	-36.9

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

IABLE 2-10 Vapor Pressures or C	, g	, , , , , , ,	, op .c .	4 (00		Pressur	e, mmHg					
Compound		1	5	10	20	40	60	100	200	400	760	Melting
Name	Formula						rature, °C					point, °C
Dimethyl ether	C ₂ H ₆ O	-115.7	-101.1	-93.3	-85.2	-76.2	-70.4	-62.7	-50.9	-37.8	-23.7	-138.5
2,2-Dimethylhexane	$C_{8}H_{18}$	-29.7	-7.9	+3.1	15.0	28.2	36.7	48.2	65.7	85.6	106.8	100.0
2,3-Dimethylhexane	C_8H_{18}	-23.0	-1.1	+9.9	22.1	35.6	44.2	56.0	73.8	94.1	115.6	
2,4-Dimethylhexane	C_8H_{18}	-26.9	-5.3	+5.2	17.2	30.5	39.0	50.6	68.1	88.2	109.4	00.5
2,5-Dimethylhexane 3,3-Dimethylhexane	C_8H_{18} C_8H_{18}	-26.7 -25.8	-5.5 -4.4	+5.3 +6.1	17.2 18.2	$30.4 \\ 31.7$	38.9 40.4	50.5 52.5	68.0 70.0	87.9 90.4	109.1 112.0	-90.7
3,4-Dimethylhexane	C_8H_{18}	-22.1	+0.2	11.3	23.5	37.1	45.8	57.7	75.6	96.0	117.7	
Dimethyl itaconate	$C_7H_{10}O_4$	69.3	94.0	106.6	119.7	133.7	142.6	153.7	171.0	189.8	208.0	38
1-Dimethyl malate	$C_6H_{10}O_5$	75.4	104.0	118.3	133.8	150.1	160.4	175.1	196.3	219.5	242.6	
Dimethyl maleate malonate	$C_6H_8O_4$ $C_5H_8O_4$	45.7 35.0	73.0 59.8	86.4 72.0	101.3 85.0	117.2 100.0	127.1 109.7	140.4 121.9	160.0 140.0	182.2 159.8	205.0 180.7	-62
trans-Dimethyl mesaconate	$C_{5}H_{8}O_{4}$ $C_{7}H_{10}O_{4}$	46.8	74.0	87.8	102.1	118.0	127.8	141.5	161.0	183.5	206.0	-02
2,7-Dimethyloctane	$C_{10}H_{22}$	+6.3	30.5	42.3	55.8	71.2	80.8	93.9	114.0	136.0	159.7	-52.8
Dimethyl oxalate	$C_4H_6O_4$	20.0	44.0	56.0	69.4	83.6	92.8	104.8	123.3	143.3	163.3	100 =
2,2-Dimethylpentane 2,3-Dimethylpentane	$\begin{array}{c c} C_7H_{16} \\ C_7H_{16} \end{array}$	-49.0 -42.0	-28.7 -20.8	-18.7 -10.3	-7.5 +1.1	+5.0 13.9	13.0 22.1	23.9 33.3	40.3 50.1	59.2 69.4	79.2 89.8	-123.7 -135
2,4-Dimethylpentane	C ₇ H ₁₆	-48.0	-20.3 -27.4	-17.1	-5.9	+6.5	14.5	25.4	41.8	60.6	80.5	-119.5
3,3-Dimethylpentane	C ₇ H ₁₆	-45.9	-25.0	-14.4	-2.9	+9.9	18.1	29.3	46.2	65.5	86.1	-135.0
2,3-Dimethylphenol (2,3-xylenol)	$C_8H_{10}O$	56.0	83.8	97.6	112.0	129.2	139.5	152.2	173.0	196.0	218.0	75
2,4-Dimethylphenol (2,4-xylenol)	C ₈ H ₁₀ O	51.8 51.8	78.0 78.0	91.3 91.3	105.0 105.0	121.5 121.5	131.0 131.0	143.0 143.0	161.5 161.5	184.2 184.2	211.5 211.5	25.5 74.5
2,5-Dimethylphenol (2,5-xylenol) 3,4-Dimethylphenol (3,4-xylenol)	$C_8H_{10}O$ $C_8H_{10}O$	66.2	93.8	107.7	122.0	138.0	148.0	161.0	181.5	203.6	225.2	62.5
3,5-Dimethylphenol (3,5-xylenol)	C ₈ H ₁₀ O	62.0	89.2	102.4	117.0	133.3	143.5	156.0	176.2	197.8	219.5	68
Dimethylphenylsilane	C ₈ H ₁₂ Si	+5.3	30.3	42.6	56.2	71.4	81.3	94.2	114.2	136.4	159.3	
Dimethyl phthalate	$C_{10}H_{10}O_4$	100.3	131.8	147.6 122.0	164.0	182.8 152.7	194.0 163.8	210.0	232.7	257.8 221.0	283.7 245.0	51.5
3,5-Dimethyl-1,2-pyrone 4,6-Dimethylresorcinol	$\begin{array}{c c} C_7H_8O_2 \\ C_8H_{10}O_2 \end{array}$	78.6 49.0	107.6 76.8	90.7	136.4 105.8	122.5	133.2	177.5 147.3	198.0 167.8	192.0	215.0	51.5
Dimethyl sebacate	$C_{12}H_{22}O_4$	104.0	139.8	156.2	175.8	196.0	208.0	222.6	245.0	269.6	293.5	38
2,4-Dimethylstyrene	$C_{10}H_{12}$	34.2	61.9	75.8	90.8	107.7	118.0	132.3	153.2	177.5	202.0	
2,5-Dimethylstyrene	$C_{10}H_{12}$	29.0	55.9	69.0	84.0	100.2	110.7	124.7	145.6	168.7	193.0	
α,α-Dimethylsuccinic anhydride Dimethyl sulfide	$C_6H_8O_3$ C_2H_6S	61.4 -75.6	88.1 -58.0	102.0 -49.2	116.3 -39.4	132.3 -28.4	142.4 -21.4	155.3 -12.0	175.8 +2.6	197.5 18.7	219.5 36.0	-83.2
d-Dimethyl tartrate	$C_{6}H_{10}O_{6}$	102.1	133.2	148.2	164.3	182.4	193.8	208.8	230.5	255.0	280.0	61.5
dl-Dimethyl tartrate	$C_6H_{10}O_6$	100.4	131.8	147.5	164.0	182.4	193.8	209.5	232.3	257.4	282.0	89
N,N-Dimethyl-2-toluidine	C ₉ H ₁₃ N	28.8	54.1	66.2	80.2	95.0	105.2	118.1	138.3	161.5	184.8	-61
N,N-Dimethyl-4-toluidine Di(nitrosomethyl) amine	$C_9H_{13}N$ $C_2H_5N_3O_2$	50.1 +3.2	74.3 27.8	86.7 40.0	100.0 53.7	116.3 68.2	126.4 77.7	140.3 90.3	161.6 110.0	185.4 131.3	209.5 153.0	
Diosphenol	$C_{10}H_{16}O_2$	66.7	95.4	109.0	124.0	141.2	151.3	165.6	186.2	209.5	232.0	
1,4-Dioxane	$C_4H_8O_2$	-35.8	-12.8	-1.2	+12.0	25.2	33.8	45.1	62.3	81.8	101.1	10
Dipentene Diahambania	$C_{10}H_{16}$	14.0 108.3	40.4	53.8 157.0	68.2	84.3 194.3	94.6	108.3 222.8	$128.2 \\ 247.5$	150.5 274.1	174.6 302.0	52.9
Diphenylamine Diphenyl carbinol (benzhydrol)	$\begin{array}{c} C_{12}H_{11}N \\ C_{13}H_{12}O \end{array}$	110.0	141.7 145.0	162.0	175.2 180.9	200.0	206.9 212.0	227.5	250.0	275.6	301.0	68.5
chlorophosphate	$C_{12}H_{10}ClPO_3$	121.5	160.5	182.0	203.8	227.9	244.2	265.0	299.5	337.2	378.0	
disulfide	$C_{12}H_{10}S_2$	131.6	164.0	180.0	197.0	214.8	226.2	241.3	262.6	285.8	310.0	61
1,2-Diphenylethane (dibenzyl)	$C_{14}H_{14}$	86.8 66.1	119.8 97.8	136.0 114.0	153.7 130.8	173.7 150.0	186.0 162.0	202.8 178.8	227.8 203.3	255.0 230.7	284.0 258.5	51.5 27
Diphenyl ether 1,1-Diphenylethylene	$\begin{array}{c} C_{12}H_{10}O \\ C_{14}H_{12} \end{array}$	87.4	119.6	135.0	151.8	170.8	183.4	198.6	222.8	249.8	277.0	21
trans-Diphenylethylene	$C_{14}H_{12}$	113.2	145.8	161.0	179.8	199.0	211.5	227.4	251.7	278.3	306.5	124
1,1-Diphenylhydrazine	$C_{12}H_{12}N_2$	126.0	159.3	176.1	194.0	213.5	225.9	242.5	267.2	294.0	322.2	44
Diphenylmethane Diphenyl sulfide	$C_{13}H_{12}$ $C_{12}H_{10}S$	76.0 96.1	107.4 129.0	122.8 145.0	139.8 162.0	157.8 182.8	170.2 194.8	186.3 211.8	210.7 236.8	237.5 263.9	264.5 292.5	26.5
Diphenyl-2-tolyl thiophosphate	$C_{12}H_{10}S$ $C_{18}H_{17}O_3PS$	159.7	179.8	201.6	215.5	230.6	240.4	252.5	270.3	290.0	310.0	
1,2-Dipropoxyethane	$C_8H_{18}O_2$	-38.8	-10.3	+5.0	22.3	42.3	55.8	74.2	103.8	140.0	180.0	
1,2-Diisopropylbenzene	$C_{12}H_{18}$	40.0	67.8	81.8	96.8	114.0	124.3	138.7	159.8	184.3	209.0	105
1,3-Diisopropylbenzene Dipropylene glycol	$C_{12}H_{18}$ $C_6H_{14}O_3$	34.7 73.8	62.3 102.1	76.0 116.2	91.2 131.3	107.9 147.4	118.2 156.5	132.3 169.9	153.7 189.9	177.6 210.5	202.0 231.8	-105
Dipropyleneglycol monobutyl ether	$C_{10}H_{22}O_3$	64.7	92.0	106.0	120.4	136.3	146.3	159.8	180.0	203.8	227.0	
isopropyl ether	$C_9H_{20}O_3$	46.0	72.8	86.2	100.8	117.0	126.8	140.3	160.0	183.1	205.6	
Di-n-propyl ether	$C_6H_{14}O$	-43.3	-22.3	-11.8	0.0	+13.2	21.6	33.0	50.3	69.5	89.5	-122
Diisopropyl ether Di-n-propyl ketone (4-heptanone)	$C_6H_{14}O$ $C_7H_{14}O$	-57.0 23.0	-37.4 44.4	-27.4 55.0	-16.7 66.2	-4.5 78.1	+3.4 85.8	13.7 96.0	30.0 111.2	48.2 127.3	67.5 143.7	-60 -32.6
Di- <i>n</i> -propyl xetone (4-neptanone) Di- <i>n</i> -propyl oxalate	$C_{8}H_{14}O_{4}$	53.4	80.2	93.9	108.6	124.6	134.8	148.1	168.0	190.3	213.5	-32.0
Diisopropyl oxalate	C ₈ H ₁₄ O ₄	43.2	69.0	81.9	95.6	110.5	120.0	132.6	151.2	171.8	193.5	
Di-n-propyl succinate	$C_{10}H_{18}O_4$	77.5	107.6	122.2	138.0	154.8	166.0	180.3	202.5	226.5	250.8	
Di-n-propyl d-tartrate	$C_{10}H_{18}O_6$	115.6	147.7 133.7	163.5 148.2	180.4 164.0	199.7 181.8	211.7 192.6	$\frac{227.0}{207.3}$	250.1 228.2	275.6 251.8	303.0 275.0	
Diisopropyl d-tartrate Divinyl acetylene (1,5-hexadiene-3-yne)	$\begin{array}{c c} C_{10}H_{18}O_6 \\ C_6H_6 \end{array}$	103.7 -45.1	-24.4	-148.2 -14.0	-2.8	+10.0	18.1	29.5	46.0	64.4	84.0	
1,3-Divinylbenzene	$C_{10}H_{10}$	32.7	60.0	73.8	88.7	105.5	116.0	130.0	151.4	175.2	199.5	-66.9
Docosane	$C_{22}H_{46}$	157.8	195.4	213.0	233.5	254.5	268.3	286.0	314.2	343.5	376.0	44.5
n-Dodecane	$C_{12}H_{26}$	47.8	75.8	90.0	104.6	121.7	132.1	146.2	167.2	191.0	216.2	-9.6
1-Dodecene n-Dodecyl alcohol	$\begin{array}{c} C_{12}H_{24} \\ C_{12}H_{26}O \end{array}$	47.2 91.0	74.0 120.2	87.8 134.7	102.4 150.0	118.6 167.2	128.5 177.8	142.3 192.0	162.2 213.0	185.5 235.7	208.0 259.0	-31.5 24
Dodecylamine	$C_{12}H_{26}O$ $C_{12}H_{27}N$	82.8	111.8	127.8	141.6	157.4	168.0	182.1	203.0	225.0	248.0	
Dodecyltrimethylsilane	$C_{15}H_{34}Si$	91.2	122.1	137.7	153.8	172.1	184.2	199.5	222.0	248.0	273.0	
Elaidic acid	$C_{18}H_{34}O_{2}$	171.3	206.7	223.5	242.3	260.8	273.0	288.0	312.4	337.0	362.0	51.5

2-72 PHYSICAL AND CHEMICAL DATA

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

						Pressur	e, mmHg					Malii
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula			'		Tempe	rature, °C				I	°C
Epichlorohydrin	C ₃ H ₅ ClO	-16.5	+5.6	16.6	29.0	42.0	50.6	62.0	79.3	98.0	117.9	-25.6
1,2-Epoxy-2-methylpropane	C_4H_8O	-69.0	-50.0	-40.3	-29.5	-17.3	-9.7	+1.2	17.5	36.0	55.5	
Erucic acid	$C_{22}H_{42}O_2$	206.7	239.7	254.5	270.6	289.1	300.2	314.4	336.5	358.8	381.5	33.5
Estragole (p-methoxy allyl benzene) Ethane	$C_{10}H_{12}O$ $C_{2}H_{6}$	52.6 -159.5	80.0 -148.5	93.7 -142.9	108.4 -136.7	124.6 -129.8	135.2 -125.4	148.5 -119.3	168.7 -110.2	192.0 -99.7	215.0 -88.6	-183.2
Ethoxydimethylphenylsilane	$C_{10}H_{16}OSi$	36.3	63.1	76.2	91.0	107.2	127.5	131.4	151.5	175.0	199.5	100.2
Ethoxytrimethylsilane	C ₅ H ₁₄ OSi	-50.9	-31.0	-20.7	-9.8	+3.7	11.5	22.1	38.1	56.3	75.7	
Ethoxytriphenylsilane	$C_{20}H_{20}OSi$	167.0	198.2	213.5	230.0	247.0	258.3	273.5	295.0	319.5	344.0	
Ethyl acetate acetoacetate	$C_4H_8O_2$ $C_6H_{10}O_3$	-43.4 28.5	-23.5 54.0	-13.5 67.3	-3.0 81.1	+9.1 96.2	16.6 106.0	27.0 118.5	42.0 138.0	59.3 158.2	77.1 180.8	-82.4 -45
Ethylacetylene (1-butyne)	$C_{6}H_{10}O_{3}$ $C_{4}H_{6}$	-92.5	-76.7	-68.7	-59.9	-50.0	-43.4	-34.9	-21.6	-6.9	+8.7	-130
Ethyl acrylate	$C_5H_8O_2$	-29.5	-8.7	+2.0	13.0	26.0	33.5	44.5	61.5	80.0	99.5	-71.2
α-Ethylaerylie acid	$C_5H_8O_2$	47.0	70.7	82.0	94.4	108.1	116.7	127.5	144.0	160.7	179.2	
α-Ethylacrylonitrile	C ₅ H ₇ N	-29.0	-6.4	+5.0	17.7	31.8	40.6	53.0	71.6	92.2	114.0	110
Ethyl alcohol (ethanol) Ethylamine	C_2H_6O C_2H_7N	-31.3 -82.3	-12.0 -66.4	-2.3 -58.3	+8.0 -48.6	19.0 -39.8	26.0 -33.4	34.9 -25.1	48.4 -12.3	63.5 +2.0	78.4 16.6	-112 -80.6
4-Ethylaniline	$C_{8}H_{11}N$	52.0	80.0	93.8	109.0	125.7	136.0	-25.1 149.8	-12.5 170.6	194.2	217.4	-30.0 -4
N-Ethylaniline	$C_8H_{11}N$	38.5	66.4	80.6	96.0	113.2	123.6	137.3	156.9	180.8	204.0	-63.5
2-Ethylanisole	$C_9H_{12}O$	29.7	55.9	69.0	83.1	98.8	109.0	122.3	142.1	164.2	187.1	
3-Ethylanisole	C ₉ H ₁₂ O	33.7	60.3	73.9	88.5	104.8	115.5	129.2	149.7	172.8	196.5	
4-Ethylanisole Ethylbenzene	$C_9H_{12}O \\ C_8H_{10}$	33.5 -9.8	60.2 +13.9	73.9 25.9	88.5 38.6	104.7 52.8	115.4 61.8	128.4 74.1	149.2 92.7	172.3 113.8	196.5 136.2	-94.9
Ethyl benzoate	$C_9H_{10}O_2$	44.0	72.0	86.0	101.4	118.2	129.0	143.2	164.8	188.4	213.4	-34.6
benzoylacetate	$C_{11}H_{12}O_3$	107.6	136.4	150.3	166.8	181.8	191.9	205.0	223.8	244.7	265.0	
bromide	C_2H_5Br	-74.3	-56.4	-47.5	-37.8	-26.7	-19.5	-10.0	+4.5	21.0	38.4	-117.8
α-bromoisobutyrate	$C_6H_{11}BrO_2$	10.6	35.8	48.0	61.8	77.0	86.7	99.8	119.7	141.2	163.6	00.0
n-butyrate isobutyrate	$C_6H_{12}O_2$ $C_6H_{12}O_2$	-18.4 -24.3	+4.0 -2.4	15.3 +8.4	27.8 20.6	41.5 33.8	50.1 42.3	62.0 53.5	79.8 71.0	100.0	121.0 110.0	-93.3 -88.2
Ethyleamphoronic anhydride	$C_{11}H_{16}O_5$	118.2	149.8	165.0	181.8	199.8	211.5	226.6	248.5	272.8	298.0	00.2
Ethyl isocaproate	$C_8H_{16}O_2$	11.0	35.8	48.0	61.7	76.3	85.8	98.4	117.8	139.2	160.4	
carbamate	$C_3H_7NO_2$		65.8	77.8	91.0	105.6	114.8	126.2	144.2	164.0	184.0	49
carbanilate	$C_9H_{11}NO_2$	107.8	131.8	143.7	155.5	168.8	177.3	187.9	203.8	220.0	237.0 342.0	52.5
Ethylcetylamine Ethyl chloride	$C_{18}H_{39}N$ C_2H_5Cl	133.2 -89.8	168.2 -73.9	186.0 -65.8	205.5 -56.8	226.5 -47.0	239.8 -40.6	256.8 -32.0	283.3 -18.6	313.0 -3.9	+12.3	-139
chloroacetate	C ₄ H ₇ ClO ₂	+1.0	25.4	37.5	50.4	65.2	74.0	86.0	103.8	123.8	144.2	-26
chloroglyoxylate	$C_4H_5ClO_3$	-5.1	+18.0	29.9	42.0	56.0	65.2	76.6	94.5	114.7	135.0	
α-chloropropionate	C ₅ H ₉ ClO ₂	+6.6	30.2	41.9	54.3	68.2	77.3	89.3	107.2	126.2	146.5	1.0
trans-cinnamate 3-Ethylcumene	$C_{11}H_{12}O_2$	87.6 28.3	108.5 55.5	134.0 68.8	150.3 83.6	169.2 99.9	181.2 110.2	196.0 124.3	219.3 145.4	245.0 168.2	271.0 193.0	12
4-Ethylcumene	$C_{11}H_{16}$ $C_{11}H_{16}$	31.5	58.4	72.0	86.7	103.3	113.8	124.3	148.3	171.8	195.8	
Ethyl cyanoacetate	C ₅ H ₇ NO ₂	67.8	93.5	106.0	119.8	133.8	142.1	152.8	169.8	187.8	206.0	
Ethylcyclohexane	C_8H_{16}	-14.5	+9.2	20.6	33.4	47.6	56.7	69.0	87.8	109.1	131.8	-111.3
Ethylcyclopentane	C_7H_{14}	-32.2	-10.8	-0.1	+11.7	25.0	33.4	45.0	62.4	82.3	103.4	-138.6
Ethyl dichloroacetate N,N-diethyloxamate	$C_4H_6Cl_2O_2$ $C_8H_{15}NO_3$	9.6 76.0	34.0 106.3	46.3 121.7	59.5 137.7	74.0 154.4	83.6 166.0	96.1 180.3	115.2 202.8	135.9 226.5	156.5 252.0	
N-Ethyldiphenylamine	$C_{14}H_{15}N$	98.3	130.2	146.0	162.8	182.0	193.7	209.8	233.0	258.8	286.0	
Ethylene	C_2H_4	-168.3	-158.3	-153.2	-147.6	-141.3	-137.3	-131.8	-123.4	-113.9	-103.7	-169
Ethylene-bis-(chloroacetate)	C ₆ H ₈ Cl ₂ O ₄	112.0	142.4	158.0	173.5	191.0	201.8	215.0	237.3	259.5	283.5	
Ethylene chlorohydrin (2-chloroethanol)	C ₂ H ₅ ClO	-4.0	+19.0	30.3	42.5	56.0	64.1	75.0	91.8	110.0	128.8	-69
diamine (1,2-ethanediamine) dibromide (1,2-dibromethane)	$C_2H_8N_2$ $C_2H_4Br_2$	-11.0 -27.0	+10.5 +4.7	21.5 18.6	33.0 32.7	45.8 48.0	53.8 57.9	62.5 70.4	81.0 89.8	99.0 110.1	117.2 131.5	8.5 10
dichloride (1,2-dichloroethane)	$C_2H_4Gl_2$ $C_2H_4Cl_2$	-44.5	-24.0	-13.6	-2.4	+10.0	18.1	29.4	45.7	64.0	82.4	-35.3
glycol (1,2-ethanediol)	$C_2H_6O_2$	53.0	79.7	92.1	105.8	120.0	129.5	141.8	158.5	178.5	197.3	-15.6
glycol diethyl ether	$C_6H_{14}O_2$	-33.5	-10.2	+1.6	14.7	29.7	39.0	51.8	71.8	94.1	119.5	
(1,2-diethoxyethane) glycol dimethyl ether	$C_4H_{10}O_2$	-48.0	-26.2	-15.3	-3.0	+10.7	19.7	31.8	50.0	70.8	93.0	
(1,2-dimethyrether)	$C_4\Pi_{10}O_2$	-40.0	-20.2	-13.3	-5.0	+10.7	19.7	31.0	30.0	10.0	95.0	
glycol monomethyl ether	$C_3H_8O_2$	-13.5	+10.2	22.0	34.3	47.8	56.4	68.0	85.3	104.3	124.4	
(2-methoxyethanol)												
oxide	C ₂ H ₄ O	-89.7	-73.8	-65.7	-56.6	-46.9	-40.7	-32.1	-19.5	-4.9	+10.7	-111.3
Ethyl α-ethylacetoacetate fluoride	$C_8H_{14}O_3$	40.5 -117.0	67.3 -103.8	80.2 -97.7	94.6 -90.0	110.3 -81.8	120.6 -76.4	133.8 -69.3	153.2 -58.0	175.6 -45.5	198.0 -32.0	
formate	C_2H_5F $C_3H_6O_2$	-60.5	-103.3 -42.2	-33.0	-90.0 -22.7	-31.3 -11.5	-4.3	-09.3 -5.4	20.0	37.1	54.3	-79
2-furoate	$C_7H_8O_3$	37.6	63.8	77.1	91.5	107.5	117.5	130.4	150.1	172.5	195.0	34
glycolate	$C_4H_8O_3$	14.3	38.8	50.5	63.9	78.1	87.6	99.8	117.8	138.0	158.2	
3-Ethylhexane	C_8H_{18}	-20.0	+2.1	12.8	25.0	38.5	47.1	58.9	76.7	97.0	118.5	
2-Ethylhexyl acrylate Ethylidene chloride (1,1-dichloroethane)	$C_{11}H_{20}O_2$	50.0	77.7 -41.9	91.8 -32.3	106.3	123.7 -10.2	134.0	147.9	168.2 22.4	192.2	216.0	06.7
fluoride (1,1-difluoroethane)	$C_2H_4Cl_2$ $C_2H_4F_2$	-60.7 -112.5	-41.9 -98.4	-32.3 -91.7	-21.9 -84.1	-10.2 -75.8	-2.9 -70.4	+7.2 -63.2	-52.0	39.8 -39.5	57.4 -26.5	-96.7 -117
Ethyl iodide	$C_2H_4F_2$ C_2H_5I	-54.4	-34.3	-24.3	-13.1	-0.9	+7.2	18.0	34.1	52.3	72.4	-105
Ethyl <i>l</i> -leucinate	$C_8H_{17}NO_2$	27.8	57.3	72.1	88.0	106.0	117.8	131.8	149.8	167.3	184.0	
Ethyl levulinate	$C_7H_{12}O_3$	47.3	74.0	87.3	101.8	117.7	127.6	141.3	160.2	183.0	206.2	1
Ethyl mercaptan (ethanethiol) Ethyl methylcarbamate	C ₂ H ₆ S	-76.7	-59.1 51.0	-50.2	-40.7	-29.8	-22.4	-13.0	+1.5	17.7	35.0	-121
Ethyl methyl carbamate Ethyl methyl ether	$C_4H_9NO_2$ C_3H_8O	26.5 -91.0	51.0 -75.6	63.2 -67.8	76.1 -59.1	91.0 -49.4	100.0 -43.3	112.0 -34.8	130.0 -22.0	149.8 -7.8	170.0 +7.5	
zanji meniyi ener	U3118U	01.0	10.0	01.0	50.1	10.4	10.0	54.0	22.0	1.0	1 1.0	1

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

·			•			Pressur	e, mmHg					No lee
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula				1	Tempe	rature, °C			'		°C
1-Ethylnaphthalene	$C_{12}H_{12}$	70.0	101.4	116.8	133.8	152.0	164.1	180.0	204.6	230.8	258.1	-27
Ethyl α-naphthyl ketone	CHO	124.0	1555	171.0	100 1	206.9	218.2	233.5	255.5	280.2	306.0	
(1-propionaphthone) Ethyl 3-nitrobenzoate	$C_{13}H_{12}O$ $C_9H_9NO_4$	108.1	155.5 140.2	155.0	188.1 173.6	192.6	205.0	220.3	244.6	270.6	298.0	47
3-Ethylpentane	C_7H_{16}	-37.8	-17.0	-6.8	+4.7	17.5	25.7	36.9	53.8	73.0	93.5	-118.6
4-Ethylphenetole	$C_{10}H_{14}O$	48.5	75.7	89.5	103.8	119.8	129.8	143.5	163.2	185.7	208.0	45
2-Ethylphenol 3-Ethylphenol	$C_8H_{10}O$ $C_8H_{10}O$	46.2 60.0	73.4 86.8	87.0 100.2	101.5 114.5	117.9 130.0	127.9 139.8	141.8 152.0	161.6 171.8	184.5 193.3	207.5 214.0	-45 -4
4-Ethylphenol	$C_8H_{10}O$	59.3	86.5	100.2	115.0	131.3	141.7	154.2	175.0	197.4	219.0	46.5
Ethyl phenyl ether (phenetole)	$C_8H_{10}O$	18.1	43.7	56.4	70.3	86.6	95.4	108.4	127.9	149.8	172.0	-30.2
Ethyl propionate Ethyl propyl ether	$C_5H_{10}O_2$ $C_5H_{12}O$	-28.0 -64.3	-7.2 -45.0	+3.4 -35.0	14.3 -24.0	27.2 -12.0	35.1 -4.0	45.2 +6.8	61.7 23.3	79.8 41.6	99.1 61.7	-72.6
Ethyl salicylate	$C_9H_{10}O_3$	61.2	90.0	104.2	119.3	136.7	147.6	161.5	183.7	207.0	231.5	1.3
3-Ethylstyrene	$C_{10}H_{12}$	28.3	55.0	68.3	82.8	99.2	109.6	123.2	144.0	167.2	191.5	
4-Ethylstyrene	$C_{10}H_{12}$	26.0	52.7	66.3	80.8	97.3	107.6	121.5	142.0	165.0	189.0	
Ethylisothiocyanate 2-Ethyltoluene	C_3H_5NS C_9H_{12}	-13.2 9.4	+10.6 34.8	22.8 47.6	36.1 61.2	50.8 76.4	59.8 86.0	71.9 99.0	90.0 119.0	110.1 141.4	131.0 165.1	-5.9
3-Ethyltoluene	C_9H_{12}	7.2	32.3	44.7	58.2	73.3	82.9	95.9	115.5	137.8	161.3	-95.5
4-Ethyltoluene	C_9H_{12}	7.6	32.7	44.9	58.5	73.6	83.2	96.3	116.1	136.4	162.0	
Ethyl trichloroacetate	C ₄ H ₅ Cl ₃ O ₂	20.7	45.5	57.7	70.6	85.5 -9.0	94.4 -1.2	107.4	125.8	146.0 42.8	167.0	
Ethyltrimethylsilane Ethyltrimethyltin	$C_5H_{14}Si$ $C_5H_{14}Sn$	-60.6 -30.0	-41.4 -7.6	-31.8 +3.8	-21.0 16.1	30.0	38.4	+9.2 50.0	25.0 67.3	87.6	62.0 108.8	
Ethyl isovalerate	$C_7H_{14}O_2$	-6.1	+17.0	28.7	41.3	55.2	64.0	75.9	93.8	114.0	134.3	-99.3
2-Ethyl-1,4-xylene	$C_{10}H_{14}$	25.7	52.0	65.6	79.8	96.0	106.2	120.0	140.2	163.1	186.9	
4-Ethyl-1,3-xylene	$C_{10}H_{14}$	26.3 22.1	53.0 48.8	66.4 62.1	80.6 76.5	97.2 92.6	107.4 103.0	121.2 116.5	141.8 137.4	164.4 159.6	188.4 183.7	
5-Ethyl-1,3-xylene Eugenol	$C_{10}H_{14}$ $C_{10}H_{12}O_2$	78.4	108.1	123.0	138.7	155.8	167.3	182.2	204.7	228.3	253.5	
iso-Eugenol	$C_{10}H_{12}O_2$	86.3	117.0	132.4	149.0	167.0	178.2	194.0	217.2	242.3	267.5	-10
Eugenyl acetate	$C_{12}H_{14}O_3$	101.6	132.3	148.0	164.2	183.0	194.0	209.7	232.5	257.4	282.0	295
Fencholic acid d-Fenchone	$C_{10}H_{16}O_2$ $C_{10}H_{16}O$	101.7 28.0	128.7 54.7	142.3 68.3	155.8 83.0	171.8 99.5	181.5 109.8	194.0 123.6	215.0 144.0	237.8 166.8	264.1 191.0	19 5
dl-Fenchyl alcohol	$C_{10}H_{18}O$	45.8	70.3	82.1	95.6	110.8	120.2	132.3	150.0	173.2	201.0	35
Fluorene	$C_{13}H_{10}$		129.3	146.0	164.2	185.2	197.8	214.7	240.3	268.6	295.0	113
Fluorobenzene	C_6H_5F	-43.4	-22.8	-12.4	-1.2	+11.5	19.6	30.4	47.2	65.7	84.7	-42.1
2-Fluorotoluene 3-Fluorotoluene	C_7H_7F C_7H_7F	-24.2 -22.4	-2.2 -0.3	+8.9 +11.0	21.4 23.4	34.7 37.0	43.7 45.8	55.3 57.5	73.0 75.4	92.8 95.4	114.0 116.0	-80 -110.8
4-Fluorotoluene	C_7H_7F	-21.8	+0.3	11.8	24.0	37.8	46.5	58.1	76.0	96.1	117.0	-110.0
Formaldehyde	CH_2O			-88.0	-79.6	-70.6	-65.0	-57.3	-46.0	-33.0	-19.5	-92
Formamide	CH ₃ NO	70.5	96.3	109.5	122.5	137.5	147.0	157.5	175.5	193.5	210.5	
Formic acid trans-Fumaryl chloride	CH_2O_2 $C_4H_2Cl_2O_2$	-20.0 +15.0	-5.0 38.5	+2.1 51.8	10.3 65.0	24.0 79.5	32.4 89.0	43.8 101.0	61.4 120.0	80.3 140.0	100.6 160.0	8.2
Furfural (2-furaldehyde)	$C_5H_4O_2$	18.5	42.6	54.8	67.8	82.1	91.5	103.4	121.8	141.8	161.8	
Furfuryl alcohol	$C_5H_6O_2$	31.8	56.0	68.0	81.0	95.7	104.0	115.9	133.1	151.8	170.0	
Geraniol Geranyl acetate	$C_{10}H_{18}O$ $C_{12}H_{20}O_2$	69.2 73.5	96.8 102.7	110.0 117.9	125.6 133.0	141.8 150.0	151.5 160.3	165.3 175.2	185.6 196.3	207.8 219.8	230.0 243.3	
Geranyl n-butyrate	$C_{12}H_{20}O_2$ $C_{14}H_{24}O_2$	96.8	125.2	139.0	153.8	170.1	180.2	193.8	214.0	235.0	257.4	
Geranyl isobutyrate	$C_{14}H_{24}O_2$	90.9	119.6	133.0	147.9	164.0	174.0	187.7	207.6	228.5	251.0	
Geranyl formate	$C_{11}H_{18}O_2$	61.8	90.3	104.3	119.8	136.2	147.2	160.7	182.6	205.8	230.0	05.5
Glutaric acid Glutaric anhydride	$C_5H_8O_4$ $C_5H_6O_3$	155.5 100.8	183.8 133.3	196.0 149.5	210.5 166.0	226.3 185.5	235.5 196.2	247.0 212.5	265.0 236.5	283.5 261.0	303.0 287.0	97.5
Glutaronitrile	$C_5H_6N_2$	91.3	123.7	140.0	156.5	176.4	189.5	205.5	230.0	257.3	286.2	
Glutaryl chloride	$C_5H_6Cl_2O_2$	56.1	84.0	97.8	112.3	128.3	139.1	151.8	172.4	195.3	217.0	
Glycerol Chyperol dishlorobydrin	C ₃ H ₈ O ₃	125.5 28.0	153.8 52.2	167.2 64.7	182.2 78.0	198.0 93.0	208.0 102.0	220.1 114.8	240.0 133.3	263.0 153.5	290.0 174.3	17.9
Glycerol dichlorohydrin (1,3-dichloro-2-propanol)	C ₃ H ₆ Cl ₂ O	20.0	32.2	04.7	10.0	93.0	102.0	114.0	100.0	100.0	174.5	
Glycol diacetate	$C_6H_{10}O_4$	38.3	64.1	77.1	90.8	106.1	115.8	128.0	147.8	168.3	190.5	-31
Glycolide (1,4-dioxane-2,6-dione)	$C_4H_4O_4$	50.4	103.0	116.6	132.0	148.6	158.2	173.2	194.0	217.0	240.0	97
Guaicol (2-methoxyphenol) Heneicosane	$C_7H_8O_2 \\ C_{21}H_{44}$	52.4 152.6	79.1 188.0	92.0 205.4	106.0 223.2	121.6 243.4	131.0 255.3	144.0 272.0	162.7 296.5	184.1 323.8	205.0 350.5	28.3 40.4
Heptacosane	$C_{27}H_{56}$	211.7	248.6	266.8	284.6	305.7	318.3	333.5	359.4	385.0	410.6	59.5
Heptadecane	$C_{17}H_{36}$	115.0	145.2	160.0	177.7	195.8	207.3	223.0	247.8	274.5	303.0	22.5
Heptaldehyde (enanthaldehyde)	C ₇ H ₁₄ O	12.0	32.7	43.0	54.0	66.3	74.0	84.0	102.0	125.5	155.0	-42
n-Heptane Heptanoic acid (enanthic acid)	C_7H_{16} $C_7H_{14}O_2$	-34.0 78.0	-12.7 101.3	-2.1 113.2	+9.5 125.6	22.3 139.5	30.6 148.5	41.8 160.0	58.7 179.5	78.0 199.6	98.4 221.5	-90.6 -10
1-Heptanol	C ₇ H ₁₆ O	42.4	64.3	74.7	85.8	99.8	108.0	119.5	136.6	155.6	175.8	34.6
Heptanoyl chloride (enanthyl chloride)	C ₇ H ₁₃ ClO	34.2	54.6	64.6	75.0	86.4	93.5	102.7	116.3	130.7	145.0	
2-Heptene	C_7H_{14}	-35.8	-14.1	-3.5	+8.3	21.5	30.0	41.3	58.6	78.1	98.5	
Heptylbenzene Heptyl cyanide (enanthonitrile)	$C_{13}H_{20}$ $C_7H_{13}N$	64.0 21.0	94.6 47.8	110.0 61.6	126.0 76.3	144.0 92.6	154.8 103.0	170.2 116.8	193.3 137.7	217.8 160.0	244.0 184.6	
Hexachlorobenzene	C_6Cl_6	114.4	149.3	166.4	185.7	206.0	219.0	235.5	258.5	283.5	309.4	230
Hexachloroethane	C_2Cl_6	32.7	49.8	73.5	87.6	102.3	112.0	124.2	143.1	163.8	185.6	186.6
Hexacosane Hexadecane	$C_{26}H_{54}$	204.0 105.3	240.0	257.4	275.8	295.2	307.8	323.2	348.4 231.7	374.6	399.8	56.6
1-Hexadecene	$C_{16}H_{34}$ $C_{16}H_{32}$	105.3	135.2 131.7	149.8 146.2	164.7 162.0	181.3 178.8	193.2 190.8	208.5 205.3	226.8	258.3 250.0	287.5 274.0	18.5 4
n-Hexadecyl alcohol (cetyl alcohol)	$C_{16}H_{34}O$	122.7	158.3	177.8	197.8	219.8	234.3	251.7	280.2	312.7	344.0	49.3
	1 20 01-					l					· · · · · · · · · · · · · · · · · · ·	

2-74 PHYSICAL AND CHEMICAL DATA

 TABLE 2-10
 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

						Pressur	e, mmHg					Molecon
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula					Tempe	rature, °C					°C
n-Hexadecylamine (cetylamine)	C ₁₆ H ₃₅ N	123.6	157.8	176.0	195.7	215.7	228.8	245.8	272.2	300.4	330.0	
Hexaethylbenzene	$C_{18}H_{30}$		134.3	150.3	168.0	187.7	199.7	216.0	241.7	268.5	298.3	130
n-Hexane	C_6H_{14}	-53.9	-34.5	-25.0	-14.1	-2.3	+5.4	15.8	31.6	49.6	68.7	-95.3
1-Hexanol	$C_6H_{14}O$	24.4	47.2	58.2	70.3	83.7	92.0	102.8	119.6	138.0	157.0	-51.6
2-Hexanol 3-Hexanol	$C_6H_{14}O$ $C_6H_{14}O$	14.6 +2.5	34.8 25.7	45.0 36.7	55.9 49.0	67.9 62.2	76.0 70.7	87.3 81.8	103.7 98.3	121.8 117.0	139.9 135.5	
1-Hexene	C_6H_{12}	-57.5	-38.0	-28.1	-17.2	-5.0	+2.8	13.0	29.0	46.8	66.0	-98.5
n-Hexyl levulinate	$C_{11}H_{20}O_3$	90.0	120.0	134.7	150.2	167.8	179.0	193.6	215.7	241.0	266.8	
<i>n</i> -Hexyl phenyl ketone (enanthophenone)	C ₁₃ H ₁₈ O	100.0	130.3	145.5	161.0	178.9	189.8	204.2	225.0	248.3	271.3	
Hydrocinnamic acid	$C_9H_{10}O_2$	102.2	133.5	148.7	165.0	183.3	194.0	209.0	230.8	255.0	279.8	48.5
Hydrogen cyanide (hydrocyanic acid)	CHN	-71.0	-55.3	-47.7	-39.7	-30.9	-25.1	-17.8	-5.3	+10.2	25.9	-13.2
Hydroquinone 4-Hydroxybenzaldehyde	$C_6H_6O_2$ $C_7H_6O_2$	132.4 121.2	153.3 153.2	163.5 169.7	174.6 186.8	192.0 206.0	203.0 217.5	216.5 233.5	238.0 256.8	262.5 282.6	286.2 310.0	170.3 115.5
α-Hydroxyisobutyric acid	$C_{7}H_{6}O_{2}$ $C_{4}H_{8}O_{3}$	73.5	98.5	110.5	123.8	138.0	146.4	157.7	175.2	193.8	212.0	79
α-Hydroxybutyronitrile	C ₅ H ₉ NO	41.0	65.8	77.8	90.7	104.8	113.9	125.0	142.0	159.8	178.8	
4-Hydroxy-3-methyl-2-butanone	$C_5H_{10}O_2$	44.6	69.3	81.0	94.0	108.2	117.4	129.0	146.5	165.5	185.0	
4-Hydroxy-4-methyl-2-pentanone	$C_6H_{12}O_2$	22.0	46.7	58.8	72.0	86.7	96.0	108.2	126.8	147.5	167.9	-47
3-Hydroxypropionitrile	C ₃ H ₅ NO	58.7	87.8	102.0	117.9	134.1	144.7	157.7	178.0	200.0	221.0	
Indene	C ₉ H ₈	16.4	44.3	58.5	73.9	90.7	100.8	114.7	135.6	157.8	181.6	-2
Iodobenzene Iodononane	C_6H_5I $C_9H_{19}I$	24.1 70.0	50.6 96.2	64.0 109.0	78.3 123.0	94.4 138.1	105.0 147.7	118.3 159.8	139.8 179.0	163.9 199.3	188.6 219.5	-28.5
2-Iodotoluene	C_7H_7I	37.2	65.9	79.8	95.6	112.4	123.8	138.1	160.0	185.7	211.0	
α-Ionone	$C_{13}H_{20}O$	79.5	108.8	123.0	139.0	155.6	166.3	181.2	202.5	225.2	250.0	
Isoprene	C_5H_8	-79.8	-62.3	-53.3	-43.5	-32.6	-25.4	-16.0	-1.2	+15.4	32.6	-146.7
Lauraldehyde	$C_{12}H_{24}O$	77.7	108.4	123.7	140.2	157.8	168.7	184.5	207.8	231.8	257.0	44.5
Lauric acid	$C_{12}H_{24}O_2$	121.0	150.6	166.0	183.6	201.4	212.7	227.5	249.8	273.8	299.2	48
Levulinaldehyde Levulinic acid	$C_5H_8O_2$ $C_5H_8O_3$	28.1 102.0	54.9 128.1	68.0 141.8	82.7 154.1	98.3 169.5	108.4 178.0	121.8 190.2	142.0 208.3	164.0 227.4	187.0 245.8	33.5
d-Limonene	$C_{10}H_{16}$	14.0	40.4	53.8	68.2	84.3	94.6	108.3	128.5	151.4	175.0	-96.9
Linalyl acetate	C ₁₂ H ₂₀ O ₂	55.4	82.5	96.0	111.4	127.7	138.1	151.8	173.3	196.2	220.0	00.0
Maleic anhydride	$C_4H_2O_3$	44.0	63.4	78.7	95.0	111.8	122.0	135.8	155.9	179.5	202.0	58
Menthane	$C_{10}H_{20}$	+9.7	35.7	48.3	62.7	78.3	88.6	102.1	122.7	146.0	169.5	
1-Menthol	$C_{10}H_{20}O$	56.0	83.2	96.0	110.3	126.1	136.1	149.4	168.3	190.2	212.0	42.5
Menthyl acetate benzoate	$C_{12}H_{22}O_2$ $C_{17}H_{24}O_2$	57.4 123.2	85.8 154.2	100.0 170.0	115.4 186.3	132.1 204.3	143.2 215.8	156.7 230.4	178.8 253.2	202.8 277.1	227.0 301.0	54.5
formate	$C_{17}H_{24}O_2$ $C_{11}H_{20}O_2$	47.3	75.8	90.0	105.8	123.0	133.8	148.0	169.8	194.2	219.0	04.0
Mesityl oxide	$C_6H_{10}O$	-8.7	+14.1	26.0	37.9	51.7	60.4	72.1	90.0	109.8	130.0	-59
Methacrylic acid	$C_4H_6O_2$	25.5	48.5	60.0	72.7	86.4	95.3	106.6	123.9	142.5	161.0	15
Methacrylonitrile	C_4H_5N	-44.5	-23.3	-12.5	-0.6	+12.8	21.5	32.8	50.0	70.3	90.3	
Methane	CH ₄	-205.9	-199.0	-195.5	-191.8	-187.7	-185.1	-181.4	-175.5	-168.8	-161.5	-182.5
Methanethiol Methoxyacetic acid	CH_4S $C_3H_6O_3$	-90.7 52.5	-75.3 79.3	-67.5 92.0	-58.8 106.5	-49.2 122.0	-43.1 131.8	-34.8 144.5	-22.1 163.5	-7.9 184.2	+6.8 204.0	-121
N-Methylacetanilide	$C_9H_{11}NO$	02.0	103.8	118.6	135.1	152.2	164.2	179.8	202.3	227.4	253.0	102
Methyl acetate	$C_3H_6O_2$	-57.2	-38.6	-29.3	-19.1	-7.9	-0.5	+9.4	24.0	40.0	57.8	-98.7
acetylene (propyne)	C_3H_4	-111.0	-97.5	-90.5	-82.9	-74.3	-68.8	-61.3	-49.8	-37.2	-23.3	-102.7
acrylate	$C_4H_6O_2$	-43.7	-23.6	-13.5	-2.7	+9.2	17.3	28.0	43.9	61.8	80.2	
alcohol (methanol)	CH ₄ O	-44.0	-25.3	-16.2	-6.0	+5.0	12.1	21.2	34.8	49.9	64.7	-97.8
Methylamine N-Methylaniline	CH_5N C_7H_9N	-95.8 36.0	-81.3 62.8	-73.8 76.2	-65.9 90.5	-56.9 106.0	-51.3 115.8	-43.7 129.8	-32.4 149.3	-19.7 172.0	-6.3 195.5	-93.5 -57
Methyl anthranilate	C ₈ H ₉ NO ₂	77.6	109.0	124.2	141.5	159.7	172.0	187.8	212.4	238.5	266.5	24
benzoate	$C_8H_8O_2$	39.0	64.4	77.3	91.8	107.8	117.4	130.8	151.4	174.7	199.5	-12.5
2-Methylbenzothiazole	C_8H_7NS	70.0	97.5	111.2	125.5	141.2	150.4	163.9	183.2	204.5	225.5	15.4
α-Methylbenzyl alcohol	$C_8H_{10}O$	49.0	75.2	88.0	102.1	117.8	127.4	140.3	159.0	180.7	204.0	
Methyl bromide 2-Methyl-1-butene	CH ₃ Br	-96.3	-80.6	-72.8	-64.0	-54.2	-48.0 -37.3	-39.4	-26.5	-11.9	+3.6	-93
2-Methyl-2-butene 2-Methyl-2-butene	C_5H_{10} C_5H_{10}	-89.1 -75.4	-72.8 -57.0	-64.3 -47.9	-54.8 -37.9	-44.1 -26.7	-37.3 -19.4	-28.0 -9.9	-13.8 +4.9	+2.5 21.6	20.2 38.5	-135 -133
Methyl isobutyl carbinol (2-methyl-	051110	10.1	01.0	41.0	01.0	20.1	10.1	0.0	14.0	21.0	00.0	100
4-pentanol)	$C_6H_{14}O$	-0.3	+22.1	33.3	45.4	58.2	67.0	78.0	94.9	113.5	131.7	
n-butyl ketone (2-hexanone)	$C_6H_{12}O$	+7.7	28.8	38.8	50.0	62.0	69.8	79.8	94.3	111.0	127.5	-56.9
isobutyl ketone (4-methyl-2-pentanone)	$C_6H_{12}O$	-1.4	+19.7	30.0	40.8	52.8	60.4	70.4	85.6	102.0	119.0	-84.7
n-butyrate	$C_5H_{10}O_2$	-26.8	-5.5	+5.0	16.7	29.6	37.4	48.0	64.3	83.1	102.3	0.45
isobutyrate caprate	$C_5H_{10}O_2$ $C_{11}H_{22}O_2$	-34.1 63.7	-13.0 93.5	-2.9 108.0	+8.4 123.0	21.0 139.0	28.9 148.6	39.6 161.5	55.7 181.6	73.6 202.9	92.6 224.0	-84.7 -18
caprate	$C_{11}\Pi_{22}O_2$ $C_7H_{14}O_2$	+5.0	30.0	42.0	55.4	70.0	79.7	91.4	109.8	129.8	150	-10
caprylate	$C_9H_{18}O_2$	34.2	61.7	74.9	89.0	105.3	115.3	128.0	148.1	170.0	193.0	-40
chloride	CH ₃ Cl		-99.5	-92.4	-84.8	-76.0	-70.4	-63.0	-51.2	-38.0	-24.0	-97.7
chloroacetate	$C_3H_5ClO_2$	-2.9	19.0	30.0	41.5	54.5	63.0	73.5	90.5	109.5	130.3	-31.9
cinnamate	$C_{10}H_{10}O_2$	77.4	108.1	123.0	140.0	157.9	170.0	185.8	209.6	235.0	263.0	33.4
α-Methylcinnamic acid Methylcyclohexane	$C_{10}H_{10}O_2$	125.7 -35.9	155.0 -14.0	169.8 -3.2	185.2	201.8 22.0	212.0 30.5	224.8	245.0	266.8 79.6	288.0 100.9	_106.4
Methylcyclopentane	C_7H_{14} C_6H_{12}	-35.9 -53.7	-14.0 -33.8	-3.2 -23.7	+8.7 -12.8	-0.6	+7.2	42.1 17.9	59.6 34.0	52.3	71.8	-126.4 -142.4
Methylcyclopropane	$C_{4}H_{8}$	-96.0	-80.6	-72.8	-64.0	-54.2	-48.0	-39.3	-26.0	-11.3	+4.5	1.12.1
Methyl n-decyl ketone (n-dodecan-2-one)	$C_{12}H_{24}O$	77.1	106.0	120.4	136.0	152.4	163.8	177.5	199.0	222.5	246.5	
dichloroacetate	$C_3H_4Cl_2O_2$	3.2	26.7	38.1	50.7	64.7	73.6	85.4	103.2	122.6	143.0	
N-Methyldiphenylamine	$C_{13}H_{13}N$	103.5	134.0	149.7	165.8	184.0	195.4	210.1	232.8	257.0	282.0	-7.6

 TABLE 2-10
 Vapor Pressures of Organic Compounds, up to 1 atm* (Continued)

Name	TABLE 2-10 Vapor Pressures of O	igaine con	poonas	, op 10 1	4 1111 /c	commoca	Pressui	re, mmHg					
Methylarda berylate formation California	Compound		1	5	10	20				200	400	760	Melting
Methylate broade (althorounchane)		Formula	-		10						100	100	
Methylsheptone Meth			99.3	130.0	145.5	161.3	<u> </u>			228.2	253.3	278.0	
Methyle-telly ketomic (2-butanenee)			-35.1	-13.2	-2.4		23.3						-52.8
2-Medis/3-derlopename													-96.7
Substitution Clifs													
Methylfhoratic anlythride C,H,Q, -142 -575 -1856 -392 -275 -219													
α. Methylghutaric anhydride CH, O, and the Methylghutaric anhydride CH, O, and the Methylghutaric anhydrogenes CH, O, and the Methylghutaric anhydrogenes 1.95 (al.) and the Methylghutaric anhydrogenes 2.95 (al	Methyl fluoride	CH ₃ F	-147.3	-137.0	-131.6	-125.9	-119.1	-115.0	-109.0	-99.9	-89.5	-78.2	
Methyl glovalate													-99.8
2-Mednyshepatescane													
3-Methylheptane			119.8								279.8	306.5	
													-109.5
2-Methyls-beptene													
6-Methyl-3-bepten-2-ol C,H,O 41,6 650 76.7 893, 102.7 111.5 122.6 139.5 136.6 175.5 10-Methyl-breame C,H,O 41,6 660 77.8 94, 104.0 112.8 123.8 1400 136.6 175.5 12.2 Methyl-breame C,H,O 41,6 600 77.8 94, 104.0 12.8 123.8 1400 136.6 175.5 12.2 Methyl-breame C,H,O 41,6 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5													121.1
2-Methylheame	6-Methyl-3-hepten-2-ol												
3-Methylheame													_118.9
Methyl folded													-110.2
leval methacylate	Methyl iodide	CH_3I		-55.0	-45.8	-35.6	-24.2		-7.0				-64.4
methacrylate myristate complethone CaHo,										150.4	175 0	107.7	5
amyristate or, anghthyl ketone (1-acetonaphthone) C _h H ₀ Q 115.0 145.7 160.8 177.8 195.8 297.5 222.6 245.3 260.8 295.8 187.0 β-maphthyl ketone (2-acetonaphthone) C _H H ₀ O 120.2 120.2 123.3 168.5 185.7 203.8 241.7 229.3 224.0 15.0 23.2 240.1 15.0 22.3 240.1 15.0 21.3 13.0 148.6 160.1 181.2 202.3 22.3 24.0 15.2 22.3 24.0 15.2 22.3 24.0 15.2 24.0 15.0 14.6 181.2 20.0 18.3 18.6 18.1 39.0 14.5 18.0 22.1 22.4 4.0 7.0 42.1 41.6 03.3 31.0 14.6 24.2 25.5 291.7 31.0 33.3 35.6 35.8 39.1 24.1 41.6 03.3 -13.2 24.0 25.5 291.7 31.5 38.4 26.6 38.3 35.7													
β-μπριβικήν ketone (2-acetona/phthone) C ₁₁ H ₁₀ O 1202 152.3 168.5 155.7 203.8 214.7 292.8 251.6 275.8 301.0 55.7													18.5
n-nowly ketone (undecan-2-one) C ₁₁ H ₂ O ₂ 134,3 166.8 168.4 202.5 201.5 30 148.6 161.0 181.2 202.3 224.0 15 18 n-pentadecyl ketone (2-heptdecanone) C ₁₇ H ₃ O ₄ 129.6 161.6 178.0 196.4 214.3 226.7 242.0 255.8 291.7 319.5 30 24.8 24													
palmitate													55.5
							139.0	140.0	101.0	101.2	202.3	224.0	
3-Methyl-pentanne	n-pentadecyl ketone (2-heptdecanone)	$C_{17}H_{34}O$	129.6	161.6	178.0	196.4							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													-118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							51.3				102.6	121.2	-103
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													07.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													-87.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													-77.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	isopropyl ketone (3-Methyl-2-butanone)	$C_5H_{10}O$											
$ \begin{array}{c} c. Methyl styrene \\ 4. Methyl styrene \\ (2. hexadecanone) \\ (2. hexadecanone) \\ (2. hexadecanone) \\ (2. hexadecanone) \\ (3. hexadecanone) \\ (2. hexadecanone) \\ (3. hexadecanone) $													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													-23.2
	4-Methyl styrene												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CHO	100.0	151 5	167.2	1046	202.7	215 0	220 5	054.4	270.0	207.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													-51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	isothiocyanate										97.8		35.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													28.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c} \dot{Myr} \dot{myr} istalde hyde \\ \dot{Myr} istal de hyde \\ \dot{Myr} istal de hyde \\ \dot{Myr} ista acid (tetra decanoic acid) \\ \dot{C}_{14} H_{28} O_{2} & 199.0 & 132.0 & 148.3 & 166.2 & 186.0 & 198.3 & 214.5 & 240.4 & 267.9 & 297.8 & 23.4 \\ \dot{Myr} my$	Myrcene												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_{14}H_{28}O$											23.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													57.5 80.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													160.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Naphthoic acid	$C_{11}H_8O_2$	160.8	189.7	202.8	216.9	231.5	241.3	252.7	270.3	289.5	308.5	184
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-Naphthol	$C_{10}H_8O$	94.0										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			104.3										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Naphthylamine				157.6			208.1		249.7	277.4	306.1	111.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													71.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Nitroaniline												146.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Nitrobenzaldehyde	C ₇ H ₅ NO ₃	85.8	117.7	133.4	150.0	168.8	180.7	196.2	220.0	246.8	273.5	40.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitroglycerin	$C_3H_5N_3O_9$	127	167	188	210	235	251					11
2-Nitrophenyl acetate $ C_8H_7NO_4 100.0 128.0 142.0 155.8 172.8 181.7 194.1 213.0 233.5 253.0 $	2-Nitrophenol 2-Nitrophenyl acetate	$C_6H_5NO_3$ $C_8H_7NO_4$	100.0	128.0	142.0	155.8	172.8	181.7	194.1	213.0	233.5	253.0	40

2-76 PHYSICAL AND CHEMICAL DATA

 TABLE 2-10
 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

						Pressur	e, mmHg					Melting
Compound		1	5	10	20	40	60	100	200	400	760	point,
Name	Formula					Tempe	rature, °C					°C
1-Nitropropane	C ₃ H ₇ NO ₂	-9.6	+13.5	25.3	37.9	51.8	60.5	72.3	90.2	110.6	131.6	-108
2-Nitropropane	$C_3H_7NO_2$	-18.8	+4.1	15.8	28.2	41.8	50.3	62.0	80.0	99.8	120.3	-93
2-Nitrotoluene	$C_7H_7NO_2$	50.0	79.1	93.8	109.6	126.3	137.6	151.5	173.7	197.7	222.3	-4.1
3-Nitrotoluene	$C_7H_7NO_2$	50.2	81.0	96.0	112.8	130.7	142.5	156.9	180.3	206.8	231.9	15.5
4-Nitrotoluene	$C_7H_7NO_2$	53.7	85.0	100.5	117.7	136.0	147.9	163.0	186.7	212.5	238.3	51.9
4-Nitro-1,3-xylene (4-nitro-m-xylene)	$C_8H_9NO_2$	65.6	95.0	109.8	125.8	143.3	153.8	168.5	191.7	217.5	244.0	+2
Nonacosane	$C_{29}H_{60}$	234.2	269.8	286.4	303.6	323.2	334.8	350.0	373.2	397.2	421.8	63.8
Nonadecane	$C_{19}H_{40}$	133.2	166.3	183.5	200.8	220.0	232.8	248.0	271.8	299.8	330.0	32
n-Nonane 1-Nonanol	C_9H_{20}	+1.4 59.5	25.8 86.1	38.0 99.7	51.2	66.0	75.5	88.1	107.5 170.5	128.2 192.1	150.8 213.5	-53.7 -5
2-Nonanone	$C_9H_{20}O$ $C_9H_{18}O$	32.1	59.0	72.3	113.8 87.2	129.0 103.4	139.0 113.8	151.3 127.4	148.2	171.2	195.0	-19
Octacosane	$C_{9}H_{18}O$ $C_{28}H_{58}$	226.5	260.3	277.4	295.4	314.2	326.8	341.8	364.8	388.9	412.5	61.6
Octadecane	$C_{18}H_{38}$	119.6	152.1	169.6	187.5	207.4	219.7	236.0	260.6	288.0	317.0	28
n-Octane	C ₈ H ₁₈	-14.0	+8.3	19.2	31.5	45.1	53.8	65.7	83.6	104.0	125.6	-56.8
n-Octanol (1-octanol)	C ₈ H ₁₈ O	54.0	76.5	88.3	101.0	115.2	123.8	135.2	152.0	173.8	195.2	-15.4
2-Octanone	$C_8H_{16}O$	23.6	48.4	60.9	74.3	89.8	99.0	111.7	130.4	151.0	172.9	-16
n-Octyl acrylate	$C_{11}H_{20}O_2$	58.5	87.7	102.0	117.8	135.6	145.6	159.1	180.2	204.0	227.0	
iodide (1-Iodooctane)	$C_8H_{17}I$	45.8	74.8	90.0	105.9	123.8	135.4	150.0	173.3	199.3	225.5	-45.9
Oleic acid	$C_{18}H_{34}O_2$	176.5	208.5	223.0	240.0	257.2	269.8	286.0	309.8	334.7	360.0	14
Palmitaldehyde	$C_{16}H_{32}O$	121.6	154.6	171.8	190.0	210.0	222.6	239.5	264.1	292.3	321.0	34
Palmitic acid	$C_{16}H_{32}O_2$	153.6	188.1	205.8	223.8	244.4	256.0	271.5	298.7	326.0	353.8	64.0
Palmitonitrile	$C_{16}H_{31}N$	134.3	168.3	185.8	204.2	223.8	236.6	251.5	277.1	304.5	332.0	31
Pelargonic acid Pentachlorobenzene	$C_9H_{18}O_2$	108.2	126.0 129.7	137.4	149.8	163.7 178.5	172.3	184.4 205.5	203.1	227.5	253.5 276.0	12.5
Pentachlorobenzene Pentachloroethane	C_6HCl_5 C_2HCl_5	98.6 +1.0	129.7 27.2	144.3 39.8	160.0 53.9	178.5 69.9	190.1 80.0	93.5	227.0 114.0	251.6 137.2	160.5	85.5 -22
Pentachloroethylbenzene	C_2HCl_5 $C_8H_5Cl_5$	96.2	130.0	148.0	166.0	186.2	199.0	216.0	241.8	269.3	299.0	-22
Pentachlorophenol	C ₆ HCl ₅ O	30.2	100.0	140.0	192.2	211.2	223.4	239.6	261.8	285.0	309.3	188.5
Pentacosane	$C_{25}H_{52}$	194.2	230.0	248.2	266.1	285.6	298.4	314.0	339.0	365.4	390.3	53.3
Pentadecane	$C_{15}H_{32}$	91.6	121.0	135.4	150.2	167.7	178.4	194.0	216.1	242.8	270.5	10
1,3-Pentadiene	C_5H_8	-71.8	-53.8	-45.0	-34.8	-23.4	-16.5	-6.7	+8.0	24.7	42.1	
1,4-Pentadiene	C_5H_8	-83.5	-66.2	-57.1	-47.7	-37.0	-30.0	-20.6	-6.7	+8.3	26.1	
Pentaethylbenzene	$C_{16}H_{26}$	86.0	120.0	135.8	152.4	171.9	184.2	200.0	224.1	250.2	277.0	
Pentaethylchlorobenzene	$C_{16}H_{25}Cl$	90.0	123.8	140.7	158.1	178.2	191.0	208.0	230.3	257.2	285.0	
n-Pentane	C_5H_{12}	-76.6	-62.5	-50.1	-40.2	-29.2	-22.2	-12.6	+1.9	18.5	36.1	-129.7
iso-Pentane (2-methylbutane)	C_5H_{12}	-82.9	-65.8	-57.0	-47.3	-36.5	-29.6	-20.2	-5.9	+10.5	27.8	-159.7
neo-Pentane (2,2-dimethylpropane)	C_5H_{12}	-102.0	-85.4	-76.7	-67.2	-56.1	-49.0	-39.1	-23.7	-7.1	+9.5	-16.6
2,3,4-Pentanetriol 1-Pentene	$C_5H_{12}O_3$ C_5H_{10}	155.0 -80.4	189.3 -63.3	204.5 -54.5	220.5 -46.0	239.6 -34.1	249.8 -27.1	263.5 -17.7	284.5 -3.4	307.0 +12.8	327.2 30.1	
α-Phellandrene	$C_{10}H_{16}$	20.0	45.7	58.0	72.1	87.8	97.6	110.6	130.6	152.0	175.0	
Phenanthrene	$C_{14}H_{10}$	118.2	154.3	173.0	193.7	215.8	229.9	249.0	277.1	308.0	340.2	99.5
Phenethyl alcohol (phenyl cellosolve)	$C_8H_{10}O_2$	58.2	85.9	100.0	114.8	130.5	141.2	154.0	175.0	197.5	219.5	00.0
2-Phenetidine	C ₈ H ₁₁ NO	67.0	94.7	108.6	123.7	139.9	149.8	163.5	184.0	207.0	228.0	
Phenol	C_6H_6O	40.1	62.5	73.8	86.0	100.1	108.4	121.4	139.0	160.0	181.9	40.6
2-Phenoxyethanol	$C_8H_{10}O_2$	78.0	106.6	121.2	136.0	152.2	163.2	176.5	197.6	221.0	245.3	11.6
2-Phenoxyethyl acetate	$C_{10}H_{12}O_3$	82.6	113.5	128.0	144.5	162.3	174.0	189.2	211.3	235.0	259.7	-6.7
Phenyl acetate	$C_8H_8O_2$	38.2	64.8	78.0	92.3	108.1	118.1	131.6	151.2	173.5	195.9	
Phenylacetic acid	$C_8H_8O_2$	97.0	127.0	141.3	156.0	173.6	184.5	198.2	219.5	243.0	265.5	76.5
Phenylacetonitrile	C ₈ H ₇ N	60.0	89.0	103.5	119.4	136.3	147.7	161.8	184.2	208.5	233.5	-23.8
Phenylacetyl chloride Phenyl benzoate	C ₈ H ₇ ClO	48.0	75.3	89.0	103.6	119.8	129.8	143.5	163.8	186.0	210.0 314.0	70 5
4-Phenyl-3-buten-2-one	$C_{13}H_{10}O_2$ $C_{10}H_{10}O$	106.8 81.7	141.5 112.2	157.8 127.4	177.0 143.8	197.6 161.3	210.8 172.6	227.8 187.8	254.0 211.0	283.5 235.4	261.0	70.5 41.5
Phenyl isocyanate	$C_{10}H_{10}O$ C_7H_5NO	10.6	36.0	48.5	62.5	77.7	87.7	100.6	120.8	142.7	165.6	41.5
isocyanide	C_7H_5NO C_7H_5N	12.0	37.0	49.7	63.4	78.3	88.0	101.0	120.8	142.7	165.0	
Phenylcyclohexane	$C_{12}H_{16}$	67.5	96.5	111.3	126.4	144.0	154.2	169.3	191.3	214.6	240.0	+7.5
Phenyl dichlorophosphate	$C_6H_5Cl_2O_2P$	66.7	95.9	110.0	125.9	143.4	153.6	168.0	189.8	213.0	239.5	
m-Phenylene diamine	0 0 2 2											
(1,3-phenylenediamine)	$C_6H_8N_2$	99.8	131.2	147.0	163.8	182.5	194.0	209.9	233.0	259.0	285.5	62.8
Phenylglyoxal	$C_8H_6O_2$		75.0	87.8	100.7	115.5	124.2	136.2	153.8	173.5	193.5	73
Phenylhydrazine	$C_6H_8N_2$	71.8	101.6	115.8	131.5	148.2	158.7	173.5	195.4	218.2	243.5	19.5
N-Phenyliminodiethanol	$C_{10}H_{15}NO_{2}$	145.0	179.2	195.8	213.4	233.0	245.3	260.6	284.5	311.3	337.8	
1-Phenyl-1,3-pentanedione	$C_{11}H_{12}O_2$	98.0	128.5	144.0	159.9	178.0	189.8	204.5	226.7	251.2	276.5	
2-Phenylphenol	$C_{12}H_{10}O$	100.0	131.6	146.2	163.3	180.3	192.2	205.9	227.9	251.8	275.0	56.5
4-Phenylphenol	$C_{12}H_{10}O$	74.7	102.4	176.2 116.0	193.8	213.0	225.3	240.9	263.2 191.2	285.5 212.8	308.0 235.0	164.5
3-Phenyl-1-propanol Phenyl isothiocyanate	$C_9H_{12}O$ C_7H_5NS	47.2	75.6	89.8	131.2 115.5	147.4 122.5	156.8 133.3	170.3 147.7	169.6	194.0	218.5	-21.0
Phorone	$C_9H_{14}O$	42.0	68.3	81.5	95.6	111.3	121.4	134.0	153.5	175.3	197.2	28
iso-Phorone	$C_9H_{14}O$ $C_9H_{14}O$	38.0	66.7	81.2	96.8	114.5	125.6	140.6	163.3	188.7	215.2	20
Phosgene (carbonyl chloride)	CCl ₂ O	-92.9	-77.0	-69.3	-60.3	-50.3	-44.0	-35.6	-22.3	-7.6	+8.3	-104
Phthalic anhydride	$C_8H_4O_3$	96.5	121.3	134.0	151.7	172.0	185.3	202.3	228.0	256.8	284.5	130.8
Phthalide	$C_8H_6O_2$	95.5	127.7	144.0	161.3	181.0	193.5	210.0	234.5	261.8	290.0	73
Phthaloyl chloride	$C_8H_4Cl_2O_2$	86.3	118.3	134.2	151.0	170.0	182.2	197.8	222.0	248.3	275.8	88.5
2-Picoline	C_6H_7N	-11.1	+12.6	24.4	37.4	51.2	59.9	71.4	89.0	108.4	128.8	-70
Pimelic acid	$C_7H_{12}O_4$	163.4	196.2	212.0	229.3	247.0	258.2	272.0	294.5	318.5	342.1	103
α-Pinene	$C_{10}H_{16}$	-1.0	+24.6	37.3	51.4	66.8	76.8	90.1	110.2	132.3	155.0	-55
β-Pinene	$C_{10}H_{16}$	+4.2	30.0	42.3	58.1	71.5	81.2	94.0	114.1	136.1	158.3	

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

						Pressur	e, mmHg					Melting
Compound		1	5	10	20	40	60	100	200	400	760	point,
Name	Formula					Tempe	rature, °C					°C
Piperidine	$C_5H_{11}N$		-7.0	+3.9	15.8	29.2	37.7	49.0	66.2	85.7	106.0	-9
Piperonal	$C_8H_6O_3$	87.0	117.4	132.0	148.0	165.7	177.0	191.7	214.3	238.5	263.0	37
Propane Propanylhongone	C ₃ H ₈	-128.9 17.5	-115.4 43.8	-108.5 57.0	-100.9 71.5	-92.4 87.7	-87.0 97.8	-79.6 111.7	-68.4 132.0	-55.6 154.7	-42.1 179.0	-187.1 -30.1
Propenylbenzene Propionamide	C_9H_{10} C_3H_7NO	65.0	91.0	105.0	119.0	134.8	144.3	156.0	174.2	194.0	213.0	79
Propionic acid	$C_3H_6O_2$	4.6	28.0	39.7	52.0	65.8	74.1	85.8	102.5	122.0	141.1	-22
anhydride	$C_6H_{10}O_3$	20.6	45.3	57.7	70.4	85.6	94.5	107.2	127.8	146.0	167.0	-45
Propionitrile	C_3H_5N	-35.0	-13.6	-3.0	+8.8	22.0	30.1	41.4	58.2	77.7	97.1	-91.9
Propiophenone	$C_9H_{10}O \\ C_5H_{10}O_2$	50.0 -26.7	77.9 -5.4	92.2 +5.0	107.6 16.0	124.3 28.8	135.0 37.0	149.3 47.8	170.2 64.0	194.2 82.0	218.0 101.8	21 -92.5
n-Propyl acetate iso-Propyl acetate	$C_5H_{10}O_2$ $C_5H_{10}O_2$	-26.7 -38.3	-3.4 -17.4	-7.2	+4.2	17.0	25.1	35.7	51.7	69.8	89.0	-92.3
n-Propyl alcohol (1-propanol)	C ₃ H ₈ O	-15.0	+5.0	14.7	25.3	36.4	43.5	52.8	66.8	82.0	97.8	-127
iso-Propyl alcohol (2-propanol)	C_3H_8O	-26.1	-7.0	+2.4	12.7	23.8	30.5	39.5	53.0	67.8	82.5	-85.8
n-Propylamine	C ₃ H ₉ N	-64.4	-46.3	-37.2	-27.1	-16.0	-9.0	+0.5	15.0	31.5	48.5	-83
Propylbenzene Propyl benzoate	$C_9H_{12} \\ C_{10}H_{12}O_2$	6.3 54.6	31.3 83.8	43.4 98.0	56.8 114.3	71.6 131.8	81.1 143.3	94.0 157.4	113.5 180.1	135.7 205.2	159.2 231.0	-99.5 -51.6
<i>n</i> -Propyl bromide (1-bromopropane)	$C_{10}H_{12}O_{2}$ $C_{3}H_{7}Br$	-53.0	-33.4	-23.3	-12.4	-0.3	+7.5	18.0	34.0	52.0	71.0	-109.9
iso-Propyl bromide (2-bromopropane)	C ₃ H ₇ Br	-61.8	-42.5	-32.8	-22.0	-10.1	-2.5	+8.0	23.8	41.5	60.0	-89.0
n-Propyl n-butyrate	$C_7H_{14}O_2$	-1.6	+22.1	34.0	47.0	61.5	70.3	82.6	101.0	121.7	142.7	-95.2
isobutyrate	$C_7H_{14}O_2$	-6.2	+16.8	28.3	40.6	54.3	63.0	73.9	91.8	112.0	133.9	
iso-Propyl isobutyrate Propyl carbamate	$C_7H_{14}O_2$	-16.3 52.4	+5.8 77.6	17.0 90.0	29.0 103.2	42.4 117.7	51.4 126.5	62.3 138.3	80.2 155.8	100.0 175.8	120.5 195.0	
n-Propyl chloride (1-chloropropane)	$C_4H_9NO_2$ C_3H_7Cl	-68.3	-50.0	-41.0	-31.0	-19.5	-12.1	-2.5	+12.2	29.4	46.4	-122.8
iso-Propyl chloride (2-chloropropane)	C ₃ H ₇ Cl	-78.8	-61.1	-52.0	-42.0	-31.0	-23.5	-13.7	+1.3	18.1	36.5	-117
iso-Propyl chloroacetate	$C_5H_9ClO_2$	+3.8	28.1	40.2	53.9	68.7	78.0	90.3	108.8	128.0	148.6	
Propyl chloroglyoxylate	C ₅ H ₇ ClO ₃	9.7	32.3	43.5	55.6	68.8	77.2	88.0	104.7	123.0	150.0	105
Propylene Propylene glycol (1.2 Proponedial)	C ₃ H ₆	-131.9	-120.7	-112.1	-104.7	-96.5	-91.3	-84.1 132.0	-73.3	-60.9	-47.7	-185
Propylene glycol (1,2-Propanediol) Propylene oxide	$C_3H_8O_2$ C_3H_6O	45.5 -75.0	70.8 -57.8	83.2 -49.0	96.4 -39.3	111.2 -28.4	119.9 -21.3	-12.0	$149.7 \\ +2.1$	168.1 17.8	188.2 34.5	-112.1
_n -Propyl formate	$C_4H_8O_2$	-43.0	-22.7	-12.6	-1.7	+10.8	18.8	29.5	45.3	62.6	81.3	-92.9
iso-Propyl formate	$C_4H_8O_2$	-52.0	-32.7	-22.7	-12.1	-0.2	+7.5	17.8	33.6	50.5	68.3	
4,4'-iso-Propylidenebisphenol	$C_{15}H_{16}O_2$	193.0	224.2	240.8	255.5	273.0	282.9	297.0	317.5	339.0	360.5	
n-Propyl iodide (1-iodopropane)	C ₃ H ₇ I	-36.0	-13.5	-2.4	+10.0	23.6	32.1	43.8	61.8	81.8	102.5	-98.8
iso-Propyl iodide (2-iodopropane) n-Propyl levulinate	C_3H_7I $C_8H_{14}O_3$	-43.3 59.7	-22.1 86.3	-11.7 99.9	0.0 114.0	+13.2 130.1	21.6 140.6	32.8 154.0	50.0 175.6	69.5 198.0	89.5 221.2	-90
iso-Propyl levulinate	$C_8H_{14}O_3$	48.0	74.5	88.0	102.4	118.1	127.8	141.8	161.6	185.2	208.2	
Propyl mercaptan (1-propanethiol)	C_3H_8S	-56.0	-36.3	-26.3	-15.4	-3.2	+4.6	15.3	31.5	49.2	67.4	-112
2-iso-Propylnaphthalene	$C_{13}H_{14}$	76.0	107.9	123.4	140.3	159.0	171.4	187.6	211.8	238.5	266.0	
iso-Propyl β-naphthyl ketone	СНО	133.2	165.4	181.0	197.7	215.6	227.0	242.3	264.0	288.2	313.0	
(2-isobutyronaphthone) 2-iso-Propylphenol	$C_{14}H_{14}O$ $C_{9}H_{12}O$	56.6	83.8	97.0	111.7	127.5	137.7	150.3	170.1	192.6	214.5	15.5
3-iso-Propylphenol	C ₉ H ₁₂ O	62.0	90.3	104.1	119.8	136.2	146.6	160.2	182.0	205.0	228.0	26
4-iso-Propylphenol	$C_9H_{12}O$	67.0	94.7	108.0	123.4	139.8	149.7	163.3	184.0	206.1	228.2	61
Propyl propionate	$C_6H_{12}O_2$	-14.2	+8.0	19.4	31.6	45.0	53.8	65.2	82.7	102.0	122.4	-76
4-iso-Propylstyrene	$C_{11}H_{14}$	34.7	62.3	76.0	91.2	108.0	118.4	132.8 95.0	153.9	178.0	202.5	
Propyl isovalerate Pulegone	$\begin{array}{c} C_8H_{16}O_2 \\ C_{10}H_{16}O \end{array}$	+8.0 58.3	32.8 82.5	45.1 94.0	58.0 106.8	72.8 121.7	82.3 130.2	143.1	113.9 162.5	135.0 189.8	155.9 221.0	
Pyridine	C_5H_5N	-18.9	+2.5	13.2	24.8	38.0	46.8	57.8	75.0	95.6	115.4	-42
Pyrocatechol	$C_6H_6O_2$		104.0	118.3	134.0	150.6	161.7	176.0	197.7	221.5	245.5	105
Pyrocaltechol diacetate					404.0		404.0					
(1,2-phenylene diacetate)	$C_{10}H_{10}O_4$	98.0	129.8	145.7	161.8	179.8	191.6	206.5	228.7	253.3	278.0	133
Pyrogallol Pyrotartaric anhydride	$C_6H_6O_3$ $C_5H_6O_3$	69.7	151.7 99.7	167.7 114.2	185.3 130.0	204.2 147.8	216.3 158.6	232.0 173.8	255.3 196.1	281.5 221.0	309.0 247.4	155
Pyruvic acid	$C_3H_4O_3$	21.4	45.8	57.9	70.8	85.3	94.1	106.5	124.7	144.7	165.0	13.6
Quinoline	C_9H_7N	59.7	89.6	103.8	119.8	136.7	148.1	163.2	186.2	212.3	237.7	-15
iso-Quinoline	C_9H_7N	63.5	92.7	107.8	123.7	141.6	152.0	167.6	190.0	214.5	240.5	24.6
Resorcinol	$C_6H_6O_2$	108.4	138.0	152.1	168.0	185.3	195.8	209.8	230.8	253.4	276.5	110.7
Safrole Salicylaldehyde	$C_{10}H_{10}O_2$ $C_7H_6O_2$	63.8 33.0	93.0 60.1	107.6 73.8	123.0 88.7	140.1 105.2	150.3 115.7	165.1 129.4	186.2 150.0	210.0 173.7	233.0 196.5	11.2 -7
Salicylatdenyde Salicylic acid	$C_7H_6O_2$ $C_7H_6O_3$	113.7	136.0	146.2	156.8	172.2	182.0	193.4	210.0	230.5	256.0	159
Sebacic acid	$C_{10}H_{18}O_4$	183.0	215.7	232.0	250.0	268.2	279.8	294.5	313.2	332.8	352.3	134.5
Selenophene	C_4H_4Se	-39.0	-16.0	-4.0	+9.1	24.1	33.8	47.0	66.7	89.8	114.3	
Skatole	C_9H_9N	95.0	124.2	139.6	154.3	171.9	183.6	197.4	218.8	242.5	266.2	95
Stearaldehyde Stearic acid	$C_{18}H_{36}O$ $C_{18}H_{36}O_2$	140.0 173.7	174.6 209.0	192.1 225.0	210.6 243.4	230.8 263.3	244.2 275.5	260.0 291.0	285.0 316.5	313.8 343.0	342.5 370.0	63.5 69.3
Stearyl alcohol (1-octadecanol)	$C_{18}H_{36}O_2$ $C_{18}H_{36}O$	150.3	185.6	202.0	220.0	240.4	252.7	269.4	293.5	320.3	349.5	58.5
Styrene	C_8H_8	-7.0	+18.0	30.8	44.6	59.8	69.5	82.0	101.3	122.5	145.2	-30.6
Styrene dibromide [(1,2-dibromoethyl)												
benzene]	$C_8H_8Br_2$	86.0	115.6	129.8	145.2	161.8	172.2	186.3	207.8	230.0	254.0	
Suberic acid	$C_8H_{14}O_4$	172.8	205.5	219.5	238.2	254.6	265.4	279.8	300.5	322.8	345.5	142
Succinic anhydride Succinimide	$C_4H_4O_3$ $C_4H_5NO_2$	92.0 115.0	$115.0 \\ 143.2$	128.2 157.0	145.3 174.0	163.0 192.0	174.0 203.0	189.0 217.4	212.0 240.0	237.0 263.5	261.0 287.5	119.6 125.5
Succinfilide Succinyl chloride	$C_4H_5NO_2$ $C_4H_4Cl_2O_2$	39.0	65.0	78.0	91.8	107.5	117.2	130.0	149.3	170.0	192.5	17
α-Terpineol	$C_{10}H_{18}O$	52.8	80.4	94.3	109.8	126.0	136.3	150.1	171.2	194.3	217.5	35
Terpenoline	$C_{10}H_{16}$	32.3	58.0	70.6	84.8	100.0	109.8	122.7	142.0	163.5	185.0	

2-78 PHYSICAL AND CHEMICAL DATA

TABLE 2-10 Vapor Pressures of Organic Compounds, up to 1 atm (Continued)

IADEL 2 TO Tapor From Series of Griganic Com-		Pressure, mmHg										
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula					Tempe	rature, °C		1			°C
1,1,1,2-Tetrabromoethane	$C_2H_2Br_4$	58.0	83.3	95.7	108.5	123.2	132.0	144.0	161.5	181.0	200.0	
1,1,2,2-Tetrabromoethane	$C_2H_2Br_4$	65.0	95.5	110.0	126.0	144.0	155.1	170.0	192.5	217.5	243.5	
Tetraisobutylene	$C_{16}H_{32}$	63.8	93.7	108.5	124.5	142.2	152.6	167.5	190.0	214.6	240.0	F1 1
Tetracosane 1,2,3,4-Tetrachlorobenzene	C ₂₄ H ₅₀	183.8 68.5	219.6 99.6	237.6 114.7	255.3 131.2	276.3 149.2	288.4 160.0	305.2 175.7	330.5 198.0	358.0 225.5	386.4 254.0	51.1 46.5
1,2,3,4-Tetrachlorobenzene 1,2,3,5-Tetrachlorobenzene	$C_6H_2Cl_4$ $C_6H_2Cl_4$	58.2	89.0	104.1	121.6	149.2	152.0	168.0	193.7	220.0	246.0	54.5
1,2,4,5-Tetrachlorobenzene	$C_6H_2Cl_4$ $C_6H_2Cl_4$	00.2	00.0	104.1	121.0	146.0	157.7	173.5	196.0	220.5	245.0	139
1,1,2,2-Tetrachloro-1,2-difluoroethane	$C_2Cl_4F_2$	-37.5	-16.0	-5.0	+6.7	19.8	28.1	38.6	55.0	73.1	92.0	26.5
1,1,1,2-Tetrachloroethane	$C_2H_2Cl_4$	-16.3	+7.4	19.3	32.1	46.7	56.0	68.0	87.2	108.2	130.5	-68.7
1,1,2,2-Tetrachloroethane	$C_2H_2Cl_4$	-3.8	+20.7	33.0	46.2	60.8	70.0	83.2	102.2	124.0	145.9	-36
1,2,3,5-Tetrachloro-4-ethylbenzene	$C_8H_6Cl_4$	77.0	110.0	126.0	143.7	162.1	175.0	191.6	215.3	243.0	270.0	
Tetrachloroethylene	C ₂ Cl ₄	-20.6	+2.4	13.8	26.3	40.1	49.2	61.3	79.8	100.0	120.8	-19.0
2,3,4,6-Tetrachlorophenol	C ₆ H ₂ Cl ₄ O	100.0	130.3	145.3 140.3	161.0	179.1	190.0	205.2 200.5	227.2 223.0	250.4	275.0 273.5	69.5
3,4,5,6-Tetrachloro-1,2-xylene Tetradecane	$C_8H_6Cl_4$ $C_{14}H_{30}$	94.4 76.4	125.0 106.0	120.7	156.0 135.6	174.2 152.7	185.8 164.0	200.5 178.5	201.8	248.3 226.8	252.5	5.5
Tetradecylamine	$C_{14}H_{30}$ $C_{14}H_{31}N$	102.6	135.8	152.0	170.0	189.0	200.2	215.7	239.8	264.6	291.2	0.0
Tetradecyltrimethylsilane	C ₁₇ H ₃₈ Si	120.0	150.7	166.2	183.5	201.5	213.3	227.8	250.0	275.0	300.0	
Tetraethoxysilane	C ₈ H ₂₀ O ₄ Si	16.0	40.3	52.6	65.8	81.1	90.7	103.6	123.5	146.2	168.5	
1,2,3,4-Tetraethylbenzene	$C_{14}H_{22}$	65.7	96.2	111.6	127.7	145.8	156.7	172.4	196.0	221.4	248.0	11.6
Tetraethylene glycol	$C_8H_{18}O_5$	153.9	183.7	197.1	212.3	228.0	237.8	250.0	268.4	288.0	307.8	
Tetraethylene glycol chlorohydrin	$C_8H_{17}ClO_4$	110.1	141.8	156.1	172.6	190.0	200.5	214.7	236.5	258.2	281.5	
Tetraethyllead	C ₈ H ₂₀ Pb	38.4	63.6	74.8	88.0	102.4	111.7	123.8	142.0	161.8	183.0	-136
Tetraethylsilane	C ₈ H ₂₀ Si	-1.0	+23.9	36.3 79.0	50.0	65.3	74.8	88.0	108.0	130.2	153.0 207.2	21.0
Tetralin 1,2,3,4-Tetramethylbenzene	$C_{10}H_{12}$ $C_{10}H_{14}$	38.0 42.6	65.3 68.7	81.8	93.8 95.8	110.4 111.5	121.3 121.8	135.3 135.7	157.2 155.7	181.8 180.0	204.4	-31.0 -6.2
1,2,3,5-Tetramethylbenzene	$C_{10}H_{14}$ $C_{10}H_{14}$	40.6	65.8	77.8	91.0	105.8	115.4	128.3	149.9	173.7	197.9	-24.0
1,2,4,5-Tetramethylbenzene	$C_{10}H_{14}$	45.0	65.0	74.6	88.0	104.2	114.8	128.1	149.5	172.1	195.9	79.5
2,2,3,3-Tetramethylbutane	C_8H_{18}	-17.4	+3.2	13.5	24.6	36.8	44.5	54.8	70.2	87.4	106.3	-102.2
Tetramethylene dibromide												
(1,4-dibromobutane)	$C_4H_8Br_2$	32.0	58.8	72.4	87.6	104.0	115.1	128.7	149.8	173.8	197.5	-20
Tetramethyllead	$C_4H_{12}Pb$	-29.0	-6.8	+4.4	16.6	30.3	39.2	50.8	68.8	89.0	110.0	-27.5
Tetramethyltin	C ₄ H ₁₂ Sn	-51.3	-31.0	-20.6	-9.3	+3.5	11.7	22.8	39.8	58.5	78.0	
Tetrapropylene glycol monoisopropyl ether	$C_{15}H_{32}O_5$	116.6	147.8	163.0	179.8	197.7	209.0	223.3	245.0	268.3	292.7	10 5
Thioacetic acid (mercaptoacetic acid) Thiodiglycol (2,2'-thiodiethanol)	$C_2H_4O_2S$ $C_4H_{10}O_2S$	60.0 42.0	87.7 96.0	101.5 128.0	115.8 165.0	131.8 210.0	142.0 240.5	154.0 285				-16.5
Thiophene	$C_4H_{10}O_2S$ C_4H_4S	-40.7	-20.8	-10.9	0.0	+12.5	20.1	30.5	46.5	64.7	84.4	-38.3
Thiophenol (benzenethiol)	C_6H_6S	18.6	43.7	56.0	69.7	84.2	93.9	106.6	125.8	146.7	168.0	00.0
α-Thujone	C ₁₀ H ₁₆ O	38.3	65.7	79.3	93.7	110.0	120.2	134.0	154.2	177.8	201.0	
Thymol	$C_{10}H_{14}O$	64.3	92.8	107.4	122.6	139.8	149.8	164.1	185.5	209.2	231.8	51.5
Tiglaldehyde	C_5H_8O	-25.0	-1.6	+10.0	23.2	37.0	45.8	57.7	75.4	95.5	116.4	
Tiglic acid	$C_5H_8O_2$	52.0	77.8	90.2	103.8	119.0	127.8	140.5	158.0	179.2	198.5	64.5
Tiglonitrile	C ₅ H ₇ N	-25.5	-2.4	+9.2	22.1	36.7	46.0	58.2	77.8	99.7	122.0	05.0
Toluene	C ₇ H ₈	-26.7 106.5	-4.4 137.2	+6.4 151.7	18.4	31.8 185.7	40.3	51.9 211.5	69.5 232.8	89.5 256.0	110.6 280.0	-95.0 99
Toluene-2,4-diamine 2-Toluic nitrile (2-tolunitrile)	$C_7H_{10}N_2$ C_8H_7N	36.7	64.0	77.9	167.9 93.0	110.0	196.2 120.8	135.0	156.0	180.0	205.2	-13
4-Toluic nitrile (4-tolunitrile)	C ₈ H ₇ N	42.5	71.3	85.8	101.7	109.5	130.0	145.2	167.3	193.0	217.6	29.5
2-Toluidine	C_7H_9N	44.0	69.3	81.4	95.1	110.0	119.8	133.0	153.0	176.2	199.7	-16.3
3-Toluidine	C_7H_9N	41.0	68.0	82.0	96.7	113.5	123.8	136.7	157.6	180.6	203.3	-31.5
4-Toluidine	C_7H_9N	42.0	68.2	81.8	95.8	111.5	121.5	133.7	154.0	176.9	200.4	44.5
2-Tolyl isocyanide	C_8H_7N	25.2	51.0	64.0	78.2	94.0	104.0	117.7	137.8	159.9	183.5	
4-Tolylhydrazine	$C_7H_{10}N_2$	82.4	110.0	123.8	138.6	154.1	165.0	178.0	198.0	219.5	242.0	65.5
Tribromoacetaldehyde	CHBr ₃ O	18.5	45.0	58.0	72.1	87.8 120.2	97.5	110.2	130.0	151.6 192.0	174.0	
1,1,2-Tribromobutane 1,2,2-Tribromobutane	$C_4H_7Br_3$ $C_4H_7Br_3$	45.0 41.0	73.5 69.0	87.8 83.2	103.2 98.6	116.0	131.6 127.0	146.0 141.8	167.8 163.5	188.0	216.2 213.8	
2,2,3-Tribromobutane	$C_4H_7BI_3$ $C_4H_7Br_3$	38.2	66.0	79.8	94.6	111.8	122.2	136.3	157.8	182.2	206.5	
1,1,2-Tribromoethane	$C_2H_3Br_3$	32.6	58.0	70.6	84.2	100.0	110.0	123.5	143.5	165.4	188.4	-26
1,2,3-Tribromopropane	C ₃ H ₅ Br ₃	47.5	75.8	90.0	105.8	122.8	134.0	148.0	170.0	195.0	220.0	16.5
Triisobutylamine	$C_{12}H_{27}N$	32.3	57.4	69.8	83.0	97.8	107.3	119.7	138.0	157.8	179.0	-22
Triisobutylene	$C_{12}H_{24}$	18.0	44.0	56.5	70.0	86.7	96.7	110.0	130.2	153.0	179.0	
2,4,6-Tritertbutylphenol	$C_{18}H_{30}O$	95.2	126.1	142.0	158.0	177.4	188.0	203.0	226.2	250.6	276.3	
Trichloroacetic acid	C ₂ HCl ₃ O ₂	51.0	76.0	88.2	101.8	116.3	125.9	137.8	155.4	175.2	195.6	57
Trichloroacetic anhydride	C ₄ Cl ₆ O ₃	56.2	85.3	99.6	114.3	131.2	141.8	155.2	176.2	199.8	223.0	
Trichloroacetyl bromide	C ₂ BrCl ₃ O	-7.4	+16.7	29.3	42.1	57.2	66.7	79.5	98.4 229.8	120.2	143.0	70
2,4,6-Trichloroaniline 1,2,3-Trichlorobenzene	C ₆ H ₄ Cl ₃ N C ₆ H ₃ Cl ₃	134.0 40.0	$157.8 \\ 70.0$	170.0 85.6	182.6 101.8	195.8 119.8	204.5 131.5	214.6 146.0	229.8 168.2	246.4 193.5	262.0 218.5	78 52.5
1,2,4-Trichlorobenzene	$C_6H_3Cl_3$ $C_6H_3Cl_3$	38.4	67.3	81.7	97.2	119.8	125.7	140.0	162.0	187.7	213.0	52.5 17
1,3,5-Trichlorobenzene	$C_6H_3Cl_3$ $C_6H_3Cl_3$	90.4	63.8	78.0	93.7	110.8	121.8	136.0	157.7	183.0	208.4	63.5
1,2,3-Trichlorobutane	C ₄ H ₇ Cl ₃	+0.5	27.2	40.0	55.0	71.5	82.0	96.2	118.0	143.0	169.0	33.3
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	-52.0	-32.0	-21.9	-10.8	+1.6	9.5	20.0	36.2	54.6	74.1	-30.6
1,1,2-Trichloroethane	$C_2H_3Cl_3$	-24.0	-2.0	+8.3	21.6	35.2	44.0	55.7	73.3	93.0	113.9	-36.7
Trichloroethylene	C_2HCl_3	-43.8	-22.8	-12.4	-1.0	+11.9	20.0	31.4	48.0	67.0	86.7	-73
Trichlorofluoromethane	CCl₃F	-84.3	-67.6	-59.0	-49.7	-39.0	-32.3	-23.0	-9.1	+6.8	23.7	
2,4,5-Trichlorophenol	C ₆ H ₃ Cl ₃ O	72.0	102.1	117.3	134.0	151.5	162.5	178.0	201.5	226.5	251.8	62
2,4,6-Trichlorophenol	C ₆ H ₃ Cl ₃ O	76.5	105.9	120.2	135.8	152.2	163.5	177.8	199.0	222.5	246.0	68.5

 TABLE 2-10
 Vapor Pressures of Organic Compounds, up to 1 atm (Concluded)

india 1 to tape i l'esseres et etganic cen		Pressure, mmHg									_	
Compound		1	5	10	20	40	60	100	200	400	760	Melting point,
Name	Formula					Tempe	rature, °C					°C
Tri-2-chlorophenylthiophosphate	C ₁₈ H ₁₂ Cl ₃ O ₃	188.2	217.2	231.2	246.7	261.7	271.5	283.8	302.8	322.0	341.3	
1,1,1-Trichloropropane	PS C ₃ H ₅ Cl ₃	-28.8	-7.0	+4.2	16.2	29.9	38.3	50.0	67.7	87.5	108.2	-77.7
1,2,3-Trichloropropane	$C_3H_5Cl_3$	+9.0	33.7	46.0	59.3	74.0	83.6	96.1	115.6	137.0	158.0	-14.7
1,1,2-Trichloro-1,2,2-trifluoroethane Tricosane	$C_2Cl_3F_3$ $C_{23}H_{48}$	-68.0 170.0	-49.4 206.3	-40.3 223.0	-30.0 242.0	-18.5 261.3	-11.2 273.8	-1.7 289.8	+13.5 313.5	30.2 339.8	47.6 366.5	-35 47.7
Tridecane	$C_{23}H_{48}$ $C_{13}H_{28}$	59.4	98.3	104.0	120.2	137.7	148.2	162.5	185.0	209.4	234.0	-6.2
Tridecanoic acid	$C_{13}H_{26}O_2$	137.8	166.3	181.0	195.8	212.4	222.0	236.0	255.2	276.5	299.0	41
Triethoxymethylsilane	C ₇ H ₁₈ O ₃ Si	-1.5 71.0	+22.8 98.8	34.6 112.6	47.2 127.2	61.7 143.5	70.4 153.2	82.7 167.5	101.0 188.0	121.8 210.5	143.5 233.5	
Triethoxyphenylsilane 1,2,4-Triethylbenzene	$C_{12}H_{20}O_3Si$ $C_{12}H_{18}$	46.0	74.2	88.5	104.0	121.7	132.2	146.8	168.3	193.7	218.0	
1,3,4-Triethylbenzene	$C_{12}H_{18}$	47.9	76.0	90.2	105.8	122.6	133.4	147.7	168.3	193.2	217.5	
Triethylborine	$C_6H_{15}B$		150.0	-148.0	-140.6	-131.4	-125.2	-116.0 228.6	-101.0	-81.0	-56.2	105
Triethyl camphoronate citrate	$C_{15}H_{26}O_6$ $C_{12}H_{20}O_7$	107.0	150.2 138.7	166.0 144.0	183.6 171.1	201.8 190.4	213.5 202.5	217.8	250.8 242.2	276.0 267.5	301.0 294.0	135
Triethyleneglycol	$C_6H_{14}O_4$	114.0	144.0	158.1	174.0	191.3	201.5	214.6	235.2	256.6	278.3	
Triethylheptylsilane	C ₁₃ H ₃₀ Si	70.0	99.8	114.6	130.3	148.0	158.2	174.0	196.0	221.0	247.0	
Triethyloctylsilane Triethyl orthoformate	C ₁₄ H ₃₂ Si C ₇ H ₁₆ O ₃	73.7 +5.5	104.8 29.2	120.6 40.5	137.7 53.4	155.7 67.5	168.0 76.0	184.3 88.0	208.0 106.0	235.0 125.7	262.0 146.0	
phosphate	$C_6H_{15}O_4P$	39.6	67.8	82.1	97.8	115.7	126.3	141.6	163.7	187.0	211.0	
Triethylthallium	CHES:	+9.3	37.6 -9.7	51.7	67.7	85.4	95.7	112.1	136.0	163.5	192.1	-63.0
Trifluorophenylsilane Trimethallyl phosphate	C ₆ H ₅ F ₃ Si C ₁₂ H ₂₁ PO ₄	-31.0 93.7	131.0	+0.8 149.8	12.3 169.8	25.4 192.0	33.2 207.0	44.2 225.7	60.1 255.0	78.7 288.5	98.3 324.0	
2,3,5-Trimethylacetophenone	$C_{11}H_{14}O$	79.0	108.0	122.3	137.5	154.2	165.7	179.7	201.3	224.3	247.5	
Trimethylamine	C ₃ H ₉ N	-97.1	-81.7	-73.8	-65.0	-55.2	-48.8	-40.3	-27.0	-12.5	+2.9	-117.1
2,4,5-Trimethylaniline 1,2,3-Trimethylbenzene	$\begin{array}{c c} C_9H_{13}N \\ C_9H_{12} \end{array}$	68.4 16.8	95.9 42.9	109.0 55.9	123.7 69.9	139.8 85.4	149.5 95.3	162.0 108.8	182.3 129.0	203.7 152.0	234.5 176.1	67 -25.5
1,2,4-Trimethylbenzene	C_9H_{12}	13.6	38.3	50.7	64.5	79.8	89.5	102.8	122.7	145.4	169.2	-44.1
1,3,5-Trimethylbenzene	C_9H_{12}	9.6	34.7	47.4	61.0	76.1	85.8	98.9	118.6	141.0	164.7	-44.8
2,2,3-Trimethylbutane Trimethyl citrate	$\begin{array}{c c} C_7H_{16} \\ C_9H_{14}O_7 \end{array}$	106.2	146.2	-18.8 160.4	-7.5 177.2	+5.2 194.2	13.3 205.5	24.4 219.6	41.2 241.3	60.4 264.2	80.9 287.0	-25.0 78.5
Trimethyleneglycol (1,3-propanediol)	$C_3H_8O_2$	59.4	87.2	100.6	115.5	131.0	141.1	153.4	172.8	193.8	214.2	
1,2,4-Trimethyl-5-ethylbenzene	$C_{11}H_{16}$	43.7	71.2	84.6	99.7	106.0	126.3	140.3	160.3	184.5	208.1	
1,3,5-Trimethyl-2-ethylbenzene 2,2,3-Trimethylpentane	$\begin{array}{c c} C_{11}H_{16} \\ C_{8}H_{18} \end{array}$	38.8 -29.0	67.0 -7.1	80.5 +3.9	96.0 16.0	113.2 29.5	123.8 38.1	137.9 49.9	158.4 67.8	183.5 88.2	208.0 109.8	-112.3
2,2,4-Trimethylpentane	C_8H_{18}	-36.5	-15.0	-4.3	+7.5	20.7	29.1	40.7	58.1	78.0	99.2	-107.3
2,3,3-Trimethylpentane 2,3,4-Trimethylpentane	C_8H_{18} C_8H_{18}	-25.8 -26.3	-3.9 -4.1	+6.9 +7.1	19.2 19.3	33.0 32.9	41.8 41.6	53.8 53.4	72.0 71.3	92.7 91.8	114.8 113.5	-101.5 -109.2
2,2,4-Trimethyl-3-pentanone	$C_8H_{16}O$	14.7	36.0	46.4	57.6	69.8	77.3	87.6	102.2	118.4	135.0	-103.2
Trimethyl phosphate	C ₃ H ₉ O ₄ P	26.0	53.7	67.8	83.0	100.0	110.0	124.0	145.0	167.8	192.7	
2,4,5-Trimethylstyrene 2,4,6-Trimethylstyrene	$\begin{array}{c c} C_{11}H_{14} \\ C_{11}H_{14} \end{array}$	48.1 37.5	77.0 65.7	91.6 79.7	107.1 94.8	124.2 111.8	135.5 122.3	149.8 136.8	171.8 157.8	196.1 182.3	221.2 207.0	
Trimethylsuccinic anhydride	$C_7H_{10}O_3$	53.5	82.6	97.4	113.8	131.0	142.2	156.5	179.8	205.5	231.0	
Triphenylmethane	$C_{19}H_{16}$	169.7	188.4	197.0	206.8	215.5	221.2	228.4	239.7	249.8	259.2	93.4
Triphenylphosphate Tripropyleneglycol	$C_{18}H_{15}O_4P$ $C_9H_{20}O_4$	193.5 96.0	230.4 125.7	249.8 140.5	269.7 155.8	290.3 173.7	305.2 184.6	322.5 199.0	349.8 220.2	379.2 244.3	413.5 267.2	49.4
Tripropyleneglycol monobutyl ether	$C_{13}H_{28}O_4$	101.5	131.6	147.0	161.8	179.8	190.2	204.4	224.4	247.0	269.5	
Tripropyleneglycol monoisopropyl ether	$C_{12}H_{26}O_4$	82.4	112.4	127.3	143.7	161.4	173.2	187.8	209.7	232.8	256.6	
Tritolyl phosphate Undecane	$\begin{array}{ c c c } C_{21}H_{21}O_4P \\ C_{11}H_{24} \end{array}$	154.6 32.7	184.2 59.7	198.0 73.9	213.2 85.6	$\frac{229.7}{104.4}$	239.8 115.2	252.2 128.1	271.8 149.3	292.7 171.9	313.0 195.8	-25.6
Undecanoic acid	$C_{11}H_{22}O_2$	101.4	133.1	149.0	166.0	185.6	197.2	212.5	237.8	262.8	290.0	29.5
10-Undecenoic acid	$C_{11}H_{20}O_2$	114.0	142.8	156.3	172.0	188.7	199.5	213.5	232.8	254.0	275.0	24.5
Undecan-2-ol n-Valeric acid	$\begin{array}{c c} C_{11}H_{24}O \\ C_{5}H_{10}O_{2} \end{array}$	71.1 42.2	99.0 67.7	112.8 79.8	127.5 93.1	143.7 107.8	153.7 116.6	167.2 128.3	187.7 146.0	209.8 165.0	232.0 184.4	-34.5
iso-Valeric acid	$C_5H_{10}O_2$	34.5	59.6	71.3	84.0	98.0	107.3	118.9	136.2	155.2	175.1	-37.6
γ-Valerolactone Valeronitrile	$C_5H_8O_2$	37.5 -6.0	65.8	79.8 30.0	95.2	101.9 57.8	122.4 66.9	136.5	157.7 97.7	182.3 118.7	207.5 140.8	
Vanillin	C_5H_9N $C_8H_8O_3$	107.0	+18.1 138.4	154.0	43.3 170.5	188.7	199.8	78.6 214.5	237.3	260.0	285.0	81.5
Vinyl acetate	$C_4H_6O_2$	-48.0	-28.0	-18.0	-7.0	+5.3	13.0	23.3	38.4	55.5	72.5	
2-Vinylanisole 3-Vinylanisole	C ₉ H ₁₀ O	41.9 43.4	68.0 69.9	81.0 83.0	94.7 97.2	110.0 112.5	119.8 122.3	132.3 135.3	151.0 154.0	172.1 175.8	194.0 197.5	
4-Vinylanisole	$\begin{array}{c c} C_9H_{10}O \\ C_9H_{10}O \end{array}$	45.4	72.0	85.7	100.0	116.0	126.1	139.7	159.0	182.0	204.5	
Vinyl chloride (1-chloroethylene)	C ₂ H ₃ Cl	-105.6	-90.8	-83.7	-75.7	-66.8	-61.1	-53.2	-41.3	-28.0	-13.8	-153.7
cyanide (acrylonitrile) fluoride (1-fluoroethylene)	C_3H_3N C_2H_3F	-51.0 -149.3	-30.7 -138.0	-20.3 -132.2	-9.0 -125.4	+3.8 -118.0	11.8 -113.0	22.8 -106.2	38.7 -95.4	58.3 -84.0	78.5 -72.2	-82 -160.5
Vinylidene chloride (1,1-dichloroethene)	C_2H_3F $C_2H_2Cl_2$	-149.3 -77.2	-138.0 -60.0	-132.2 -51.2	-125.4 -41.7	-118.0 -31.1	-113.0 -24.0	-106.2 -15.0	-95.4 -1.0	-84.0 +14.8	31.7	-160.5 -122.5
4-Vinylphenetole	$C_{10}H_{12}O$	64.0	91.7	105.6	120.3	136.3	146.4	159.8	180.0	202.8	225.0	
2-Xenyl dichlorophosphate 2,4-Xyaldehyde	C ₁₂ H ₉ Cl ₂ PO	138.2	171.1 85.9	187.0	205.0	223.8 129.7	236.0 139.8	251.5	275.3 172.3	301.5 194.1	328.5	75
2,4-Ayaidenyde 2-Xylene (2-xylene)	$C_9H_{10}O$ C_8H_{10}	59.0 -3.8	+20.2	99.0 32.1	114.0 45.1	59.7 59.5	68.8	152.2 81.3	100.2	194.1	215.5 144.4	75 -25.2
3-Xylene (3-xylene)	C_8H_{10}	-6.9	+16.8	28.3	41.1	55.3	64.4	76.8	95.5	116.7	139.1	-47.9
4-Xylene (4-xylene) 2,4-Xylidine	$\begin{array}{c c} C_8H_{10} \\ C_8H_{11}N \end{array}$	-8.1 52.6	+15.5 79.8	27.3 93.0	40.1 107.6	54.4 123.8	63.5 133.7	75.9 146.8	94.6 166.4	115.9 188.3	138.3 211.5	+13.3
2,6-Xylidine	$C_8H_{11}N$	44.0	72.6	93.0 87.0	107.6	120.2	131.5	146.0	168.0	193.7	217.9	