OUTCOMES:

Upon completion of the course, the student will be able to

- Design algorithms by employing Map Reduce technique for solving Big Data problems.
- Identify similarities using appropriate measures.
- Point out problems associated with streaming data and handle them.
- Discuss algorithms for link analysis and frequent itemset mining.
- Design solutions for problems in Big Data by suggesting appropriate clustering techniques.

REFERENCES:

- 1. Jure Leskovec, AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, Second Edition, 2014.
- 2. Jiawei Han, MichelineKamber, Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufman Publications. Third Edition. 2011.
- 3. Ian H.Witten, Eibe Frank "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufman Publications, Third Edition, 2011.
- 4. David Hand, HeikkiMannila and Padhraic Smyth, "Principles of Data Mining", MIT Press,2001.

СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	V		V	√			V	V	V
2.			√	√		√	V		
3.	V		√	√			V	V	V
4.	V		√	√			V	V	V
5.	V		√	√			V	$\sqrt{}$	V

CP5084

PARALLEL ALGORITHMS

LT P C 3 0 0 3

OBJECTIVES:

- To learn parallel algorithms development techniques for shared memory and DCM models.
- To study the main classes of fundamental parallel algorithms.
- Learn to design efficient parallel algorithms.
- To study the complexity and correctness models for parallel algorithms.
- To understand parallel solutions for bitwise computation.

UNIT I INTRODUCTION

9

Introduction to Parallel Algorithms – Models of computation – Selection – Merging on EREW and CREW – Median of two sorted sequence – Fast Merging on EREW – Analyzing Parallel Algorithms

UNIT II SORTING & SEARCHING

9

Sorting Networks – Sorting on a Linear Array – Sorting on CRCW, CREW, EREW – Searching a sorted sequence – Searching a random sequence – Bitonic Sort

UNIT III ALGEBRAIC PROBLEMS

9

Permutations and Combinations – Matrix Transpositions – Matrix by Matrix Multiplications – Matrix by Vector Multiplication.

UNIT IV GRAPH & GEOMETRY

9

Connectivity Matrix - Connected Components - All Pair Shortest Paths - Minimum Spanning Trees - Point Inclusion - Intersection, Proximity and Construction Problems

UNIT V OPTIMIZATION & BIT COMPUTATIONS

9

Prefix Sums – Job Sequencing – Knapsack – Adding Two Integers – Adding n Integers – Multiplying Two Integers – Selection

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student will be able to

- Understand the difference between sequential and parallel algorithms.
- Design parallel algorithms in various models of parallel computation.
- Apply a suitable model for developing a parallel algorithm.
- Know the basic issues associated with implementing parallel algorithms.
- Understand the differences among several algorithms used for solving the same problem and recognize which one is better under different conditions.

REFERENCES:

- 1. Selim G. Akl, "The Design and Analysis of Parallel Algorithms", Prentice Hall, New Jercy, 1989.
- 2. Michael J. Quinn, "Parallel Computing: Theory & Practice", Tata McGraw Hill Edition, 2003.
- 3. Joseph JaJa, "Introduction to Parallel Algorithms", Addison-Wesley, 1992.

СО	РО						PSO		
	1	2	3	4	5	6	1	2	3
1.	√		√	√			√	√	
2.	V		V	V			V	V	
3.	V		V	V			V	V	V
4.	V		V	V			V	V	V
5.	V		V	V		√	V	V	V