Návrh analogových integrovaných obvodů Ústav mikroelektroniky FEKT VUT v Brně			Jméno Tomáš	Vavrinec	ID 240893
			Ročník 3.	Obor MET	Skupina MET/3
Spolupracoval –	Měřeno dne –	lne –	Hodnocen		
Název zadání Extrakce parametrů tranzistorů MOSFET ze SPICE modelu					

ZADÁNÍ ÚLOHY

Detailní popis jednotlivých úloh s návodem najdete v NAO_PC.pdf, který je dostupný v E-learningu.

- Simulací získejte hodnoty prahového napětí U_{TH0} pro dvě různé řady rozměrů tranzistorů.
 - konstantní poměr W/L = 5, kdy\$L\$ = 0.18; 0.3; 0.5; 0.8; 1; 2; 3; 5; 10,
 - různé rozměry: W/L = 0.22/0.18; 1/0.5; 2/0.5; 2/1; 5/1; 5/2; 10/5; 10/10; 40/10,
 - výše uvedené dva body budou provedeny pro tranzistor NMOS i PMOS.
- Závislost prahového napětí U_{TH} na U_{SB}/U_{BS} (bulk efekt) Simulací získejte hodnoty prahového napětí U_{TH} pro napětí U_{BS} (NMOS) resp. U_{SB} (PMOS) v rozsahu 0[V] až 500[mV] s krokem 50[mV].
- Závislost parametru modulace délky kanálu (λ) na délce kanálu (L) Simulací získejte hodnoty parametru λ tranzistoru NMOS a PMOS pro L v rozmezí 200[nm] až $10[\mu m]$.

Bonusové otázky (1 b.)

 \bullet Popište, jak byste simulací (mimo analýzu op) zjistili transkonduktanci gm. Nakreslete schéma, popište nastavení a odečet hodnot.

1 Vypracování

1.1 Prahové napětí U_{TH0}

Mezi uzly V_{CC} a GND je umístěn napěťový zdroj s napětím $V_{CC}=1.8[V]$, pro zjednodušení jen není uveden ve schematu, což bude platit i u dalších zapojení.

Obr. 1: Zapojení pro určení U_{TH0} pro tranzistor NMOS a PMOS

1.1.1 Prahové napětí U_{TH0} při konstantním poměru W/L=5

Listing 1: Použitý kod simulace při konstantním poměru W/L=5

```
LTspice 24.0.9 for Windows
Circuit: * C:\Users\TVavrinec\Documents\skola\NAO\lab-1\sim\Draft1N.aso
                                                                                                                                                                           LTspice 24.8.9 for Windows
Circuit: * C:\Users\TVavrinec\Documents\skola\NAO\lab-1\sim\DraftIP.asc
Start Time: Tue Feb 27 19:43:43 2024
solver = Normal
Maximum thread count: 16
Start Time: Tue Feb 27 18:25:54 2024
solver = Normal
Maximum thread count: 16
Warning: Pd = 0 is less than W.
Warning: Ps = 0 is less than W.
                                                                                                                                                                            Warning: Pd = 0 is less than W.
Warning: Ps = 0 is less than W.
 step lset=1.8e-07
                                                                                                                                                                            .step lset=1.8e-07
 step lset=3e-07
                                                                                                                                                                            .step lset=3e-07
 step lset=5e-07
 step lset=8e-07
                                                                                                                                                                            step lset=8e-07
                                                                                                                                                                            .step lset=1e-06
 step lset=3e-06
 .step lset=5e-06
tnom = 27
temp = 27
method = modified trap
.step lset=1e-05
                                                                                                                                                                            temp = 27
method = modified trap
.step lset=1e-05
 leasurement: uth
   asurement: uth step v(vg) at 1 0.417456 0.417456 2 0.43441 0.43441 3 0.418739 0.418739 4 0.396187 0.396187 6 0.366924 0.368924 7 0.366924 0.368924 7 0.362938 0.362938 0.362938
                                                                                                                                                                                        1.32926 0.476742
1.33485 0.465151
1.3419 0.458103
1.35183 0.448168
1.3566 0.443399
1.36797 0.432027
                                                      (NMOS)
                                                                                                                                                                                                                                 (PMOS)
```

Obr. 2: Printscreeny logů simulací při konstantním poměru W/L=5 pro NMOS i PMOS

$L[\mu m]$	$U_{TH0}[V]$		$L[\mu m]$	$U_{TH0}[V]$
0.18	0.417456		0.18	0.470742
0.3	0.434410		0.3	0.465151
0.5	0.418739		0.5	0.458103
0.8	0.396187		0.8	0.448168
1	0.386941		1	0.443399
2	0.368024		2	0.432027
3	0.362038		3	0.428072
5	0.357358		5	0.425053
10	0.353717		10	0.423131
		•		
(N)	MOS)		(PI	MOS)

Tabulka 1: Výsledky simulace při konstantním poměru W/L=5

${f 1.1.2}$ Prahové napětí U_{TH0} při různém poměru W/L

```
1 .lib cmos018.txt
2 .param wset=table(n, 1,0.22u, 2,1u, 3,2u, 4,2u, 5,5u, 6,5u, 7,10u, 8,10u, 9,40u)
3 .param lset=table(n, 1,0.18u, 2,0.5u, 3,0.5u, 4,1u, 5,1u, 6,2u, 7,5u, 8,10u, 9,10u)
4 .step param n 1 9 1
5 .meas DC UTH FIND V(VG) WHEN Id(M1)=100n*wset/lset
6 .dc VGS2 0 1 1m
```

Listing 2: Použitý kod simulace při různém poměru W/L

```
LTspice 24.0.9 for Windows
Circuit: * C:\Users\TVavrinec\Documents\skola\NAO\lab-1\sim\Draft2N.asc
Start Time: Tue Feb 27 20:03:06 2024
solver = Normal
Maximum thread count: 16
                                                                                                                                                         LTspice 24.0.9 for Windows
Circuit: * C:\Users\TVavrinec\Documents\skola\NAO\lab-1\sim\Draft2P.asc
Start Time: Tue Feb 27 20:04:21 2024
                                                                                                                                                          solver = Normal
Maximum thread count: 16
   rning: Pd = 0 is less than W.
rning: Ps = 0 is less than W.
                                                                                                                                                          Warning: Pd = 0 is less than W.
Warning: Ps = 0 is less than W.
                                                                                                                                                          .step n=1
                                                                                                                                                          .step n=2
 .step n=3
 step n=4
                                                                                                                                                          .step n=
 .step n=6
 step n=7
tnom = 27
temp = 27
method = modified trap
                                                                                                                                                          temp = 27
method = modified trap
.step n=9
                                                (NMOS)
                                                                                                                                                                                                         (PMOS)
```

Obr. 3: Printscreeny logů simulací ruzných pomněru W/L pro NMOS i PMOS

$L[\mu m]$	$W[\mu m]$	$U_{TH0}[V]$
0.22	0.18	0.382200
1	0.5	0.417049
2	0.5	0.418458
2	1	0.386640
5	1	0.386941
5	2	0.368009
10	5	0.357377
10	10	0.353754
40	10	0.353720
	1	1

$L[\mu m]$	$W[\mu m]$	$U_{TH0}[V]$
0.22	0.18	0.407517
1	0.5	0.454446
2	0.5	0.457553
2	1	0.443062
5	1	0.443399
5	2	0.432227
10	5	0.425288
10	10	0.423483
40	10	0.423156

(NMOS) (PMOS)

Tabulka 2: Výsledky simulace při různém poměru W/L=5

1.2 Závislost prahového napětí U_{TH} na napětí bulku

Obr. 4: Zapojení pro určení závislosti U_{TH} na napětí bulku pro tranzistor NMOS a PMOS

Listing 3: Kod simulace pro určení závislosti U_{TH} na napětí bulku

Obr. 5: Závislost U_{TH} na napětí bulku

Z grafu jsou odstranění hodnoty U_{TH} při vysokém napětí V_{SB} res V_{BS} , protože v simulaci vycházeli nulové. Z grafu je patrné, že U_{TH} je pro napětí V_{SB} res V_{BS} menší než 0.8[V], závislé zhruba lineárně.

$V_{SB}[V]$	0.2	0.25	0.3	0.4	0.5
$\overline{NMOS}[V]$	0.71819	0.78115	0.84387	0.96864	1.09260
PMOS[V]	0.79697	0.86120	0.92520	1.05258	1.17922

Tabulka 3: U_{TH} pro různá napětí bulku

1.3 Závislost modulace délky kanálu (λ) na délce kanálu (L)

Mezi uzly V_{CC} a GND je umístěn napěťový zdroj s napětím $V_{CC} = 1.8[V]$, pro zjednodušení jen není uveden ve schematu, což bude platit i u dalších zapojení.

Obr. 6: Zapojení pro určení závislosti modulace delky kanálu λ na delce kanálu L

```
.lib cmos018.txt

.step param lset 0.1u 10u 0.02u

.param wset=9.2*lset; pro PMOS

.param wset=2.3*lset; pro NMOS

.meas DC ID1 FIND Id(M1) WHEN V(VD)=0.5

.meas DC ID2 FIND Id(M1) WHEN V(VD)=1.3

.meas DC ID0 FIND Id(M1) WHEN V(VD)=0.9

.meas rout param (1.3-0.5)/(ID2-ID1)

.meas lambda param 1/(ID0*rout)

.dc UDS 0.5 1.3 10m
```

Listing 4: Kod simulace použítí pro získání závislosti modulované délky kanálu λ na délce kanálu L

Obr. 7: Závislost U_{TH} na napětí bulku

$L[\mu m]$	0.5	0.8	1	1.2	2	5
NMOS $\lambda[V^{-1}]$	0.120549	0.0870843	0.0747581	0.065668	0.0438342	0.0186193
PMOS $\lambda[V^{-1}]$	0.199475	0.14448	0.123983	0.109605	0.0787029	0.0459147

Tabulka 4: λ pro různé délky kanálu L

2 Závěr

$L[\mu m]$	$U_{TH0}[V]$
0.18	0.417456
0.3	0.434410
0.5	0.418739
0.8	0.396187
1	0.386941
2	0.368024
3	0.362038
5	0.357358
10	0.353717

$L[\mu m]$	$U_{TH0}[V]$
0.18	0.470742
0.3	0.465151
0.5	0.458103
0.8	0.448168
1	0.443399
2	0.432027
3	0.428072
5	0.425053
10	0.423131

(NMOS)

(PMOS)

Tabulka 1: Výsledky simulace při konstantním poměru $W/L=5\,$

$L[\mu m]$	$W[\mu m]$	$U_{TH0}[V]$
0.22	0.18	0.382200
1	0.5	0.417049
2	0.5	0.418458
2	1	0.386640
5	1	0.386941
5	2	0.368009
10	5	0.357377
10	10	0.353754
40	10	0.353720

$L[\mu m]$	$W[\mu m]$	$U_{TH0}[V]$
0.22	0.18	0.407517
1	0.5	0.454446
2	0.5	0.457553
2	1	0.443062
5	1	0.443399
5	2	0.432227
10	5	0.425288
10	10	0.423483
40	10	0.423156

(NMOS)

(PMOS)

Tabulka 2: Výsledky simulace při různém poměru $W/L=5\,$

$V_{SB}[V]$	0.2	0.25	0.3	0.4	0.5
NMOS[V]	0.71819	0.78115	0.84387	0.96864	1.09260
PMOS[V]	0.79697	0.86120	0.92520	1.05258	1.17922

Tabulka 3: ${\cal U}_{TH}$ pro různá napětí bulku

$L[\mu m]$	0.5	0.8	1	1.2	2	5
NMOS $\lambda[V^{-1}]$	0.120549	0.0870843	0.0747581	0.065668	0.0438342	0.0186193
PMOS $\lambda[V^{-1}]$	0.199475	0.14448	0.123983	0.109605	0.0787029	0.0459147

Tabulka 4: λ pro různé délky kanálu L

Reference