Examen¹ la Geometrie I, seria 10, 09.06.2023

I. Pentru fiecare din obiectele cerute mai jos, dați un exemplu justificat sau explicați de ce nu există.

(0,5p)

(0,5p)

1. Un punct $C \in \mathbb{R}^2$ astfel încât $\triangle ABC$ e dreptunghic, unde A = (1,2) şi B = (2,1).

O infinitate de drepte distincte perpendiculare pe dreapta d: 4x - y = 2 în planul \mathbb{R}^2 .

Nume și prenume: __

Grupa: ____

	Un număr $\alpha \in \mathbb{R}$ astfel încât dreapta $d_{\alpha} = \{(t+1, \alpha t - 2, 2t) \mid t \in \mathbb{R}\}$ să fie perpendiculară pe planul $\pi : x + 2y$ -spațiul \mathbb{R}^3 .	+3 = 0 (0,5p)
4.	O conică nedegenerată $\Gamma \subset \mathbb{R}^2$ cu centrul în punctul $(1,2)$ și tangentă la axele de coordonate.	(0,5p)
5 .	O izometrie $f: \mathbb{R}^2 \to \mathbb{R}^2$ astfel încât cercul $x^2 + y^2 - 4 = 0$ este mulţimea punctelor fixe ale lui f .	(0,5p)
	II. Redactaţi rezolvările complete:	
1.	În planul euclidian \mathbb{R}^2 , fie dreapta $d:4x+3y-2=0$ și punctul $P=(0,4).$	
a)	Demonstrați că $P \notin d$.	(0,25p)
b)	Scrieți ecuația dreptei perpendiculare din P pe d și determinați distanța de la P la d .	(0,75p)
c)	Determinați $s_P(d)$, unde $s_P: \mathbb{R}^2 \to \mathbb{R}^2$ este simetria centrală față de punctul P .	(0,5p)
d)	Există o izometrie $f: \mathbb{R}^2 \to \mathbb{R}^2$ pentru care $f(d) = \{P\}$? Justificați răspunsul.	(0,5p)
2.	În planul euclidian \mathbb{R}^2 , fie conicele $\mathcal{C}: x^2+y^2-2x+2y-7=0$ și $\mathcal{C}_\alpha: x^2+y^2-4y-\alpha^2+4=0$, pentru orice Considerăm mulțimea $M_\alpha=\{f:\mathbb{R}^2\to\mathbb{R}^2\mid f \text{ izometrie}, f(\mathcal{C})=\mathcal{C}_\alpha\}.$	$\alpha > 0$.
a)	Demonstrați că \mathcal{C} și \mathcal{C}_{α} sunt cercuri, pentru orice $\alpha > 0$. Determinați centrele și razele lor.	(0,5p)
b)	Determinați axa radicală a cercurilor $\mathcal C$ și $\mathcal C_{\alpha}$.	(0,5p)
c)	Determinați toate $\alpha > 0$ pentru care $M_{\alpha} \neq \emptyset$.	(0,5p)
d)	Pentru un α determinat anterior, dați exemplu de $f \in M_{\alpha}$, scriind expresia lui f în coordonate.	(0,5p)
e)	Pentru orice α determinat anterior, decideți dacă M_{α} este un grup împreună cu compunerea funcțiilor. Just răspunsul.	stificați (0,5p)
f)	Pentru orice α determinat anterior, decideți dacă M_{α} este infinit. Justificați răspunsul.	(0,5p)
3.	Considerăm planul euclidian \mathbb{R}^2 .	
a)	Fie $\Gamma \subset \mathbb{R}^2$ o conică nedegenerată. Demonstrați că dacă $A,B,C,D \in \Gamma$ sunt vârfurile unui paralelogram cu cer atunci O este și centru al conicei Γ .	ntru <i>O</i> , (1p)
b)	Demonstrați că singura conică nedegenerată în care nu poate fi înscris un paralelogram este parabola.	(0,5p)

¹Se acordă 1 punct din oficiu. Timp de lucru: 3 ore. Succes!