B2. ガラスの性能から窓の性能を算定する方法

ガラスの熱貫流率、日射熱取得率から、窓(ガラス+建具)の熱貫流率と日射熱取得率を算出する。

B2.1 参考文献

- JIS A2012-1:窓及びドアの熱性能-熱貫流率の計算-第1部:一般
- ・ 窓等の大部分がガラスで構成される開口部(一重建具)の簡易的評価.

https://github.com/BRI-EES-House/03-03-HCLoad-

UValue/blob/master/Basis/Ug_Value_Simple_Evaluation_for_Windows/Ug_Value_Simple_Evaluation_for_Windows.ipynb

- ・ 建築研究所 平成 28 年省エネルギー基準に準拠したエネルギー消費性能の評価に関する技術 情報(住宅) 第3章「暖冷房負荷」第3節「熱貫流率及び線熱貫流率」
- ・ 一般社団法人リビングアメニティ協会: 開口部の熱性能評価プログラム Windeye、http://www.alianet.org/windeye/

B2.2 関連する入力シート

「様式 2-3.(空調)窓仕様入力シート」

様式 2-3. (空調) 窓仕様入力シート

①	2	3	窓 ガラス+建具)の性能			
			4	ガラスの性能		
開口部名称	窓の	窓の		5	6	7
	熱貫流率	日射熱取得率	建具の種類	ガラスの種類	熱貫流率	日射熱取得率
					[W / (m ² ·K)]	[-]
	[W / m²K]	[-]	選択)	選択)	负力)	久力)

B2.3 入力

変数名	説明	単位	参照元
$U_{wind,j,input}$	窓jの熱貫流率	$W/(m^2 \cdot K)$	様式 2-3 ②
$\eta_{wind,j,input}$	窓jの日射熱取得率	1	様式 2-3 ③
	建具の種類		様式 2-3 ④
	ガラスの種類(例:3WgG06)		様式 2-3 ⑤
$U_{glass,j,input}$	ガラス j の熱貫流率	$W/(m^2 \cdot K)$	様式 2-3 ⑥
$\eta_{glass,j,input}$	ガラス j の日射熱取得率		様式 2-3 ⑦

B2.4 出力

変数名	説明	単位	参照先
$U_{wind,j,bl}$	窓等jの熱貫流率(ブラインド無)	$W/(m^2 \cdot K)$	
$U_{wind,j}$	窓等jの熱貫流率(ブラインド有)	$W/(m^2 \cdot K)$	
$\eta_{wind,j,bl}$	窓等jの日射熱取得率(ブラインド無)	_	
$\eta_{wind,j}$	窓等jの日射熱取得率(ブラインド有)	-	

B2.5 算定方法

熱貫流率、日射熱取得率の入力方法には次の3つがある。様式2-3において複数個所に入力がある場合は、方法1が優先され、次いで方法2、方法3の順とする。

• 方法 1: 窓等の熱貫流率と日射熱取得率を直接入力する(様式 2-3②、③)。

・ 方法2: 建具の種類とガラスの種類を選択する(様式2-3④、⑤)。

・ 方法3: 建具の種類を選択し、ガラスの熱貫流率と日射熱取得率を入力する(様式 2-34)、

6, **7**) .

方法1:窓等の熱貫流率と日射熱取得率を直接入力する(様式2-3②、③)

ブラインドがない場合の窓の熱貫流率 $U_{wind,i}$ 及び日射熱取得率 $\eta_{wind,i}$ は、次式で求める。

$$U_{wind,j} = U_{wind,j,input} (1.B1.1)$$

$$\eta_{wind,j} = \eta_{wind,j,input}$$
(1.B1.2)

ブラインドがある場合の熱貫流率及び日射熱取得率は、 $U_{glass,j}$ 、 $\eta_{glass,j}$ の入力があるか否かで場合分けして算出する。

1) ガラスの性能 $U_{glass,i,input}$ 、 $\eta_{glass,i,input}$ の入力がない場合

$$U_{wind,j,bl} = U_{wind,j,input} (1.B1.3)$$

$$\eta_{\text{wind},j,bl} = \eta_{\text{wind},j,\text{input}}$$
(1.B1.4)

2) ガラスの性能 $U_{glass,j,input}$ 、 $\eta_{glass,j,input}$ も入力されている場合

$$dR = \frac{0.021}{U_{glass,j}} + 0.022 \tag{1.B1.5}$$

$$U_{wind,j,bl} = 1/(\frac{1}{U_{wind,i,input}} + dR)$$
(1.B1.6)

$$\eta_{wind,j,bl} = \left(\frac{\eta_{wind,j,input}}{\eta_{glass,j}}\right) * (-0.1331 \, \eta_{glass,j}^2 + 0.8258 \, \eta_{glass,j}) \tag{1.B1.7}$$

方法2: 建具の種類とガラスの種類を選択する(様式2-3④、⑤)

「窓性能の一覧データベース」より、入力された建具の種類とガラスの種類から該当する値を抜き出す。このデータベースに記載の値は、開口部の熱性能評価プログラム WindEye により算出されたものである。

窓性能の一覧データベース (WindowHeatTransferPerformance_H28.csv) :

http://www.kenken.go.jp/becc/documents/building/Definitions/WindowHeatTransferPerformance_H28.zip

例: 建具の種類「樹脂」、ガラスの種類「3WgG06」の場合、

$$U_{wind,i} = 1.95, \quad U_{wind,i,bl} = 1.82$$

$$\eta_{wind,j} = 0.39, \quad \eta_{wind,j,bl} = 0.30$$

方法3:建具の種類を選択し、ガラスの熱貫流率と日射熱取得率を入力する(様式2-3④、⑥、⑦)。

$$U_{wind,j} = k_{u,a} * U_{glass,j,input} + k_{u,b}$$

$$(1.B1.8)$$

$$\eta_{wind,j} = k_{\eta} * \eta_{glass,j,input}$$
 (1.B1.9)

$$dR = \frac{0.021}{U_{glass,j,input}} + 0.022 \tag{1.B1.10}$$

$$U_{wind,j,bl} = 1/(\frac{1}{U_{wind,j}} + dR)$$
 (1.B1.11)

$$\eta_{wind,j,bl} = k_{\eta} * (-0.1331 \, \eta_{glass,j,input}^2 + 0.8258 \, \eta_{glass,j,input})$$
(1.B1.12)

係数 $k_{u,a}$ 、 $k_{u,b}$ 、 k_{η} は、建具の種類によって次のように定める。 <2018.02.01 変更>

$$k_{u,a} = \frac{k_{u,a1}}{k_{u,a2}} \tag{1.B1.13}$$

$$k_{u,b} = \frac{k_{u,b1}}{k_{u,b2}} \tag{1.B1.14}$$

表 1.B1.1 窓の熱貫流率への変換係数(建具種類別) < 2018.02 更新 >

建具の種類	$k_{u,a1}$	$k_{u,a2}$	$k_{u,b1}$	$k_{u,b2}$	k_{η}
樹脂製(単層)	1.531000	2.325000	1.888926	2.325000	0.72
樹脂製(複層)	1.531000	2.325000	2.398526	2.325000	0.72
金属樹脂複合製(単層)	1.853000	2.317000	2.026288	2.317000	0.80
金属樹脂複合製(複層)	1.853000	2.317000	2.659888	2.317000	0.80
金属製(単層)	1.883000	2.321000	3.218862	2.321000	0.80
金属製(複層)	1.883000	2.321000	3.498862	2.321000	0.80

入力シートの互換性を担保するために、当面の間、建具の種類を次のように読み替えることとす る。

「樹脂」 → 「樹脂製(複層)」

「アルミ樹脂複合」 → 「金属樹脂複合製(複層)」

「アルミ」 → 「金属製(複層)」

● 参考:変更履歴

Ver.2.4 (201710) までの値

建具の種類	$k_{u,a}$	$k_{u,b}$	k_{η}		
樹脂	0.6435	1.0577	0.72		
アルミ樹脂複合	0.7623	1.2369	0.80		
アルミ	0.7699	1.5782	0.80		