Applications of GANs

- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
- Generative Adversarial Text to Image Synthesis

Using GANs for Single Image Super-Resolution

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi

Problem

How do we get a high resolution (HR) image from just one (LR) lower resolution image?

Answer: We use super-resolution (SR) techniques.

http://www.extremetech.com/wp-content/uploads/2012/07/super-resolution-freckles.jpg 3

Previous Attempts

SRResNet

SRGAN

original

SRResNet

SRGAN

SRGAN - Generator

- G: generator that takes a low-res image I^{LR} and outputs its high-res
- θ_G : parameters of G, $\{W_{1:L},\,b_{1:L}\}$ l^{SR} : loss function measures the difference between the 2 high-res images

$$\hat{\theta}_G = \arg\min_{\theta_G} \frac{1}{N} \sum_{n=1}^{N} l^{SR}(G_{\theta_G}(I_n^{LR}), I_n^{HR})$$

SRGAN - Discriminator

- D: discriminator that classifies whether a high-res image is I^{HR} or I^{SR}
- θ_D : parameters of D

$$\min_{\theta_G} \max_{\theta_D} \mathbb{E}_{I^{HR} \sim p_{\text{train}}(I^{HR})} [\log D_{\theta_D}(I^{HR})] + \\ \mathbb{E}_{I^{LR} \sim p_G(I^{LR})} [\log(1 - D_{\theta_D}(G_{\theta_G}(I^{LR}))]$$

SRGAN - Perceptual Loss Function

Loss is calculated as weighted combination of:

- Content loss
- Adversarial loss
- Regularization loss

SRGAN - Content Loss

Instead of MSE, use loss function based on ReLU layers of pre-trained VGG network. Ensures similarity of content.

- $oldsymbol{\phi}_{i,j}$: feature map of jth convolution before ith maxpooling
- W_{i,j} and H_{i,j}: dimensions of feature maps in the VGG

$$l_{VGG/i,j}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j}(G_{\theta_G}(I^{LR}))_{x,y})^2$$

9

 \rightrightarrows

SRGAN - Adversarial Loss

Encourages network to favour images that reside in manifold of natural images.

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$$

SRGAN - Regularization Loss

Encourages spatially coherent solutions based on total variations

$$l_{TV}^{SR} = \frac{1}{r^2 W H} \sum_{x=1}^{rW} \sum_{y=1}^{rH} ||\nabla G_{\theta_G}(I^{LR})_{x,y}||$$

SRGAN - Examples

Figure 5: Reference HR image (left: a,b) with corresponding SRResNet (middle left: c,d), SRGAN-MSE (middle: e,f), SRGAN-VGG2.2 (middle right: g,h) and SRGAN-VGG54 (right: i,j) reconstruction results.

SRGAN - Examples

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Work by Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus

Short Background

Conditional Generative Adversarial Nets (CGAN)

 $\begin{aligned} \mathbf{GAN} \quad \min_{G} \max_{D} V(D,G) &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))] \end{aligned}$

 $\mathbf{CGAN} \min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathrm{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\underline{\boldsymbol{y}})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\underline{\boldsymbol{y}}))]$

Laplacian pyramid

Burt and Adelson (1983)

17

Laplacian pyramid

Burt and Adelson (1983)

Laplacian Pyramid Generative Adversarial Network (LAPGAN)

Image Generation

$$\tilde{I}_k = u(\tilde{I}_{k+1}) + \tilde{h}_k = u(\tilde{I}_{k+1}) + G_k(z_k, u(\tilde{I}_{k+1}))$$

0.7

Training

Generation: Coarse to fine

Different draws, starting from the same initial 4x4 image

Some thoughts on the method

21

The Laplacian Pyramid Framework is independent of the Generative Model

22

Some thoughts on the method

The Generative Models at each step can be totally different!

Some thoughts on the method

The Generative Models at each step can be totally different!

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee

Author's code available at: https://github.com/reedscot/icml201627

Motivation

Current deep learning models enable us to...

- Learn feature representations of images & text
- Generate realistic images & text

, pull out images based on captions

- ✓ generate descriptions based on
 ✓ images
- ✓ answer questions about image content

o pizzas sitting on top of a stove top o

Problem - Multimodal distributior

- Many plausible image can be associated with one single text description
- Previous attempt uses Variational Recurrent Autoencoders to generate image from text caption (Mansimov et al. 2016) but the images were not realistic enough.

What GANs can do

- CGAN: Use side information (eg. classes) to guide the learning process
- Minimax game: Adaptive loss function
- V Multi-modality is a very well suited property for GANs to learn.

The Model - Basic CGAN

The Model - Variations

GAN-CLS

different error sources: In order to distinguish

different types of input. discriminator network 3 (instead of 2) Present to the

Algorithm

- 1: Input: minibatch images x, matching text t, mismatching t, number of training batch steps S
- for n=1 to S do
- $h \leftarrow \varphi(t)$ {Encode matching text description}
- $h \leftarrow \varphi(t)$ {Encode mis-matching text description}
- $z \sim \mathcal{N}(0,1)^Z$ {Draw sample of random noise}
- $\hat{x} \leftarrow G(z,h)$ {Forward through generator
- $s_w \leftarrow D(x,h)$ {real image, wrong text $s_r \leftarrow D(x,h)$ {real image, right text}
- $s_f \leftarrow D(\hat{x}, h)$ {fake image, right text} $\mathcal{L}_D \leftarrow \log(s_r) + (\log(1 - s_w) + \log(1 - s_f))/2$
- $\mathcal{L}_G \leftarrow \log(s_f)$ $D \leftarrow D - \alpha \partial \mathcal{L}_D / \partial D$ {Update discriminator}
- 14: end for $G \leftarrow G - \alpha \partial \mathcal{L}_G / \partial G$ {Update generator}

30

The Model - Variations cont.

GAN-IN1

Updated Equation

the output of G: In order to generalize

on the image data and hence fill the gaps to generate new text manifold training set embeddings Interpolate between

> $\mathbb{E}_{t_1,t_2 \sim p_{data}}[\log(1 - D(G(z,\beta t_1 + (1-\beta)t_2)))]$ $\min_G \; \max_D V(D,G) =$ + $\mathbb{E}_{x \sim p_z(z)}[\log(1 - D(G(z)))] +$ {fake image, fake text} $\mathbb{E}_{x \sim p_{data}(x)}[\log D(x)]$

> > Oxford Flowers

GAN-INT-CLS: Combination of both previous variations

Disentangling

- Style is background, position & orientation of the object, etc.
- Content is shape, size & colour of the object, etc.
- Introduce S(x), a style encoder with a squared loss function:

$$\mathcal{L}_{style} = \mathbb{E}_{t,z \sim \mathcal{N}(0,1)} ||z - S(G(z, \varphi(t)))||_2^2$$

 Useful in generalization: encoding style and content separately allows for different new combinations

train and test sets Training - Data (separated into <u>class-disjoint</u>

Caltech-UCSD Birds

MS COCO

Training – Results: Flower & Bird

a tiny bird, with a tiny beak, tarsus and feet, a blue crown, blue coverts, and black cheek patch

GAN - INT

GAN - INT

Training – Results: MS COCO

octopus kite flies above having fun at the beach. a large blue the people

surfboard on a suit riding a a man in a wet

Mansimov et al.

ing in the blue skies. A herd of elephants fly-

the grass field. A toilet seat sits open in

clad vast desert. A person skiing on sand

Training – Results Style disentangling

Text descriptions Images (content) (style)

The bird has a **yellow breast** with **grey** features and a small beak.

This is a large white bird with black wings and a red head.

wings and features grey wings. A small bird with a black head and

wings, and a thin pointy beak. This bird has a **white breast**, brown and white coloring on its head and

A small bird with white base and black stripes throughout its belly, head, and

A small sized bird that has a cream belly and a short pointed bill.

This bird is completely red.

This bird is completely white

This is a **yellow** bird. The **wings are bright blue**.

 $s \leftarrow S(x)$

 $\hat{x} \leftarrow G(s, \varphi(t))$

38

Thoughts on the paper

- Image quality
- Generalization
- **Future work**

39