1 nalen

א. מהנתון, תהי $B - A \rightarrow B - A$ חד-חד-ערכית ועל.

, $A = (A \cap B') \cup (A \cap B)$ בעזרת פילוג החיתוך לגבי האיחוד,

כלומר (איחוד של שתי קבוצות זרות), $A = (A - B) \cup (A \cap B)$

. $B = (B - A) \cup (A \cap B)$ בדומה,

$$g(a) = \begin{cases} f(a) & a \in A - B \\ a & a \in A \cap B \end{cases} : \exists g : A \to B$$
 גדיר

g מעבירה את g באופן חד-חד-ערכי על g מעבירה את נקבל g היא מעבירה את g פועלת כזהות על עצמו. g פועלת כזהות על g היא מעבירה את g באופן חד-חד-ערכי על עצמו. g פועלת בכך ש- g g היא חד-חד-ערכית ועל g הוכחה של טענה כללית יותר, ממנה זה נובע, ראו בפרק g, טענה g טענה g פונקציה חד-חד-ערכית g על g , לכן הן שוות-עוצמה.

, וזהו איחוד אר, $A = (A - B) \cup (A \cap B)$ ב.

וזהו איחוד זר. $B = (B - A) \cup (A \cap B)$ וכן

A,B מכאן, אם A,B **סופיות**, ומתקיים

$$|A - B| = |A| - |A \cap B| = |B| - |A \cap B| = |B - A|$$

. (השלימו הבדיקה) ו- B היא קבוצת הטבעיים הזוגיים (השלימו הבדיקה).

ב הפופה

. $g: J \to \mathbf{Z}$, g(x) = 3x א. נתבונן בפונקציה

. ${f Z}$ ל- J מובן ש- g היא אכן פונקציה של

 $oldsymbol{Z}$ עוד מהגדרת g היא שהפונקציה מובן מובן

x=y אז 3x=3y אם 3x=3y היא חד-חד-ערכית:

 $\|J\| = \|\mathbf{Z}\| = \aleph_0\|$ לכן , \mathbf{Z} לכן של ערכית ועל של הד-חד-ערכית ועל של

. $f: \mathbf{R} \to K$, f(x) = (x, 2x - 10) ב.

. 2x - (2x - 10) = 10 כי K - 10 פונקציה של f

: K היא על f

$$y = 2x - 10$$
 מכאן . $2x - y = 10$, K מהגדרת . $(x, y) \in K$

.
$$f(x) = (x, 2x - 10) = (x, y)$$
 : f מהגדרת

: היא חד-חד-ערכית היא f

$$x_1 = x_2$$
 אז בפרט $(x_1, 2x_1 - 10) = (x_2, 2x_2 - 10)$ אם

. | K | = | \mathbf{R} | = C לכן ,K לכן \mathbf{R} לשל חד-ערכית חד-חד-ערכית מצאנו פונקציה

 $h(x) = (x\,,2x-10)\,:\, T \to M \,$ כך: $A: J \to M \,$ ג. תהי $A: J \to M \,$ ג. ענדיר פונקציה A: J מהסעיף הקודם, אבל אנו מצמצמים את תחום ההגדרה שלה לקבוצה A: J

(!) M -ל J נוכיח שזו אכן פונקציה של

. אברי M מוגדרים עייי קיום שני תנאים, נבדוק את שניהם M

 $x + y \in \mathbf{Z}$ בדיקת התנאי (i)

$$x + 2x - 10 = 3x - 10$$

. מהגדרת J, זהו אכן מספר שלם

$$2x - y = 10$$
 בדיקת התנאי (*ii*)

$$2x - (2x - 10) = 10$$

M-ל J לפיכך h היא אכן פונקציה של

. y=2x-10 מכאן . 2x-y=10 , M מהגדרת . $(x\,,\,y)\in M$ יהי M היא $x+y\in {\bf Z}$ מכאן . $x+y\in {\bf Z}$ נציב בתנאי . $x+2x-10\in {\bf Z}$ ונקבל

. h(x) = (x, 2x - 10) = (x, y) -ש פעת קל לראות א. $x \in J$

 $x_1=x_2$ אז בפרט אז (x_1 , $2x_1-10$) = (x_2 , $2x_2-10$) אז בפרט h

. $\mid M \mid \ = \ \mid J \mid \ = \aleph_0$ לכן M לכן של M לישר-חד-ערכית ועל של לישר אכן פונקציה חד-חד-ערכית ועל א

3 nalen

א. לפי הגדרת היחסים מעל N היא בדיוק (סעיף 2.3.3), קבוצת היחסים מעל N היא בדיוק א. לפי הגדרת היחסים מעל $P(\mathbf{N} \times \mathbf{N})$ (לא רק שיש להן אותה עוצמה, אלא $P(\mathbf{N} \times \mathbf{N})$ היא קבוצת היחסים מעל N !). כידוע, $\mathbf{N} = \mathbf{N}_0 \cdot \mathbf{N}_0 = \mathbf{N}_0$

 $|P(\mathbf{N} \times \mathbf{N})| = 2^{\aleph_0} = C$: 5.26 ומשפט 5.23 מכאן לפי משפט

 $oldsymbol{N}$ ב. תהי T קבוצת היחסים הטרנזיטיביים מעל

. $|T| \leq C$: (5.1 שאלה א כאן א לכן (סעיף א מעל N, א לכן היחסים מעל T מצד שני, נגדיר פונקציה $P(\mathbf{N}) \rightarrow T$ כך:

לכל .N מובן שהוא טרנזיטיבי. אותו נראה כיחס מעל .R אותו נראה אים את היחס $A\in P(\mathbf{N})$ לכל . $C=|P(\mathbf{N})|\leq |T|$ ולכן ולכן מתוך את מתוך את (ניתן למצוא את חד-חד-ערכית לפי קנטור-שרדר-ברנשטיין, נקבל . |T|=C

4 22162

. $k_1,\,k_2$, m_1,m_2 בהתאמה שעוצמותיהן קבוצות קבוצות A_1,A_2 , B_1,B_2 היינה . $m_1 \leq m_2$, $k_1 \leq k_2$ נתון

כדי לקצר מעט את ההוכחה ניעזר בטריק השימושי הבא: אנו חופשים לבחור כראות עינינו את כדי לקצר מעט את ההוכחה ניעזר בטריק השימושי הקבוצות שנבחר הן בעלות העוצמות הנדרשות. הקבוצות המייצגות את העוצמות השונות, כל עוד הקבוצה חלקית של A_2 שעוצמתה שווה לעוצמת B_1 , וקיימת קבוצה חלקית של B_2 שעוצמתה שווה לעוצמת A_3 , וקיימת קבוצה חלקית של A_2

(!) $B_1 \subseteq B_2$, $A_1 \subseteq A_2$ לכן ב.ה.כ. נניח

. $k_2 \cdot m_2 = |A_2 \times B_2|$, $k_1 \cdot m_1 = |A_1 \times B_1|$ כעת מהגדרת כפל עוצמות

 $A_1\times B_1\subseteq A_2\times B_2$ נקבל קרטזית מכפלה , $B_1\subseteq B_2$, $A_1\subseteq A_2$ -ש אבל מכיוון ש

. $k_1 \cdot m_1 \le k_2 \cdot m_2$,בהסתמך על שאלה 25.1 לכן

ב. מצד אחד, $\aleph_0\cdot C\leq C\cdot C=C$, ולכן בעזרת סעיף א $\aleph_0\leq C \quad ,$ מצד שני $1\leq\aleph_0\cdot C$ ולכן בדומה $1\leq\aleph_0\cdot C$ משני הכיוונים יחד, בעזרת קנטור-שרדר-ברנשטיין, נובע המבוקש.

ג. לפי משפט 5.26, $2^{\aleph_0}=C$, 5.26, לפי משפט ג. $C^C=(2^{\aleph_0})^C=2^{\aleph_0\cdot C}=2^C$

במעברים נעזרנו במשפט 5.27ג ובסעיף ב של שאלה זו.

5 nolen

. מיעזר במשפט 5.13ב. קבוצת הממשיים R היא אינסופית ואינה בת-מניה. אינסופית ואינה בת-מניה. אינסופית ואינה ראינה ובת-מניה. לפי המשפט הנייל, $R-A\mid$ בת-מניה. לפי המשפט הנייל, A

איתי הראבן