

The Need for Wildfire Prediction

Wildfires increasing in severity

Factors: Drought, climate change, development, fire suppression, fuel buildup

Limited firefighting resources

Many fires at once, difficult to prioritize

Beneficiaries: CALFIRE, National Forest Service, National Parks Service, Bureau of Land Management, county fire departments, communities

Problem Statement

In order to maximize the efficiency of California's limited wildland firefighting resources, how can historical wildfire records, along with spatial environment and weather data, be leveraged to predict the severity of wildfires when they occur?

Challenges

Many complex factors, very localized

Influence of weather conditions after fire has started

No explanatory features in wildfire records - need granular spatiotemporal data

Class imbalance

Low spatial/temporal granularity leads to poor predictive power Credit:

http://noiselab.ucsd.edu/ECE228/projects/Report/75Report.pdf

Data Sources: Wildfire Records

Spatial wildfire occurrence data for the United States, 1992-2015 [FPA_FOD_20170508]. 4th Edition. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2013-0009.4

- Discovery date, location (latitude and longitude), total burned area
- 1.88 million records total
- Using California only, 2005-2015: 80,000 wildfires

Data Sources: Explanatory Features

Variable	Source	Format	
Elevation	<u>USGS National Elevation Dataset</u> (via Google Earth Engine)	2D grid, 10.2 m resolution	
Slope	Calculated from elevation dataset	2D grid, 10.2 m resolution	
Aspect	Calculated from elevation dataset	2D grid, 10.2 m resolution	
Temperature	PRISM Daily Spatial Climate Dataset ("tmax" band)	Gridded time series, 4 km resolution	
Dew point	PRISM Daily Spatial Climate Dataset ("dtmean" band)	Gridded time series, 4 km resolution	
Precipitation	PRISM Monthly Spatial Climate Dataset ("ppt" band)	Gridded time series, 4 km resolution	
Wind speed	GRIDMET: University of Idaho Gridded Surface Meteorological Dataset ("vs" band)	Gridded time series, 4 km resolution	
Energy Release Component (ERC)	GRIDMET: University of Idaho Gridded Surface Meteorological Dataset ("erc" band)	Gridded time series, 4 km resolution	
Burning index (BI)	GRIDMET: University of Idaho Gridded Surface Meteorological Dataset ("bi" band) v	Gridded time series, 4 km resolution	

Variable	Source	Format	
100-hour dead fuel moisture	GRIDMET: University of Idaho Gridded Surface Meteorological Dataset ("fm100" band)	Gridded time series, 4 km resolution	
1000-hour dead fuel moisture	GRIDMET: University of Idaho Gridded Surface Meteorological Dataset ("fm1000" band)	Gridded time series, 4 km resolution	
Vegetation Type	<u>CALFIRE</u> Forest and Rangeland Assessment	2D grid, 30 m resolution	
Level III Ecoregions	Ecoregions of the Continental United States, US EPA	Shapefile (polygon vector)	
Burn probability	Wildfire Hazard Potential for the United States, US Forest Service	2D grid, 270 m resolution	
Fire intensity level (1-6)	Wildfire Hazard Potential for the United States, US Forest Service	2D grid, 270 m resolution	

Data Wrangling, Feature Generation

Extract records from SQLite database

Processing Julian dates

Spatiotemporal data: Google

Earth Engine

Other spatial data: GeoPandas,

Rasterio

Leveraging Google Earth Engine

Cloud hosting, cloud processing of spatial data

4D multiband gridded spatiotemporal weather data - temporal averaging

Topographic data - aspect and slope calculations

earthengine-api

Credit: https://r-spatial.github.io/stars/

EDA: Wildfire size

Numerous small fires: 51% 0.25 acres or less

Large fires do majority of damage: 1.2% of wildfires make up 96% of area burned

EDA: Wildfire size

Distribution of wildfire size very skewed

Many small wildfires, a few massive outliers

EDA: Wildfire size

National Wildfire Coordinating Group: Fire Size Classes

Dropping Class A (<0.25 acres)

Small = Class B, C, D (0.25 - 300 acres)

Large = Class E, F, G (>300 acres)

Binary classification: will fire burn >300 acres?

EDA: Wildfire Frequency

Seasonal oscillations, summer peaks

33 days with 100+ new wildfires. 38 new wildfires per day in August.

Elevation

p<0.0001

Aspect

p=0.8398

(later processed as a cyclical variable)

100-hour fuel moisture

p<0.0001

Wind speed

p=0.0093

Two-tailed T test

Small vs large wildfires

Most variables have statistically significant difference

Feature	T-Score	P Value	Feature	T-Score	P Value
elevation	-13.2816	<0.0001	fm100	27.1172	<0.0001
slope	-17.3167	<0.0001	fm1000	23.7555	<0.0001
aspect	-0.2021	0.8398	burn probability	-8.2959	<0.0001
day of the year	-2.1209	0.0342	fire intensity level 1	1.9139	0.0559
precipitation	-2.9386	0.0034	fire intensity level 2	-9.2578	<0.0001
dew point	6.8842	<0.0001	fire intensity level 3	-10.3161	<0.0001
max temp	-13.2021	<0.0001	fire intensity level 4	-4.4639	<0.0001
wind speed	-2.6042	0.0093	fire intensity level 5	-1.2976	0.1947
energy release component	-20.6889	<0.0001	fire intensity level 6	-1.0156	0.31
burn index	-7.5722	<0.0001			

Categorical features

Modelling Approach

Preprocessing

- Transformations by feature
- For each feature, transformation that reduces skew the most
- Cyclical variables > dual harmonic features (aspect and discovery day of the year

Evaluation Metric

- F2 Score (most important to correctly classify positive samples)
- Confusion matrices (on validation set)

Evaluation Method

10-fold cross validation

Modelling Approach

Hyperparameter Tuning

- RandomizedSearchCV
- Optuna

Addressing Class Imbalance

- Class weighting
- SMOTE Oversampling/Random Undersampling Imbalanced Learn

Algorithms tested

- Logistic regression, random forest, XGBoost, LightGBM
- With/without SMOTE

Model Evaluation & Selection

Ordered by CV Mean F2 score:

	Cross Validation Mean			Validation Set		
	f2	recall	roc auc	f2	recall	roc auc
LGBM (Optuna)	0.296	0.457	0.688	0.287	0.434	0.678
LGBM	0.280	0.447	0.68	0.259	0.415	0.662
XGB	0.260	0.55	0.699	0.258	0.535	0.694
RF	0.255	0.413	0.661	0.268	0.447	0.674
LGBM (SMOTE)	0.248	0.476	0.674	0.243	0.440	0.662
RF (SMOTE)	0.240	0.507	0.678	0.234	0.522	0.678
XGB (SMOTE)	0.239	0.493	0.674	0.249	0.509	0.683
LR	0.232	0.748	0.731	0.243	0.780	0.749
Dummy	0.025	0.025	0.500	0.019	0.019	0.496

Model Evaluation & Selection

Selected Model

LightGBM model turned with optuna

Hyperparameter	Value
n_estimators	850
learning_rate	0.037
num_leaves	200
max_depth	12
min_data_in_leaf	200
lambda_l1	50
lambda_l2	100
min_gain_to_split	0.322
bagging_fraction	0.800
bagging_freq	1.000
feature_fraction	0.500

Selected Model: Performance on Test Set

f2	recall	roc auc	
0.297	0.467	0.691	

Confusion Matrix (Normalized)

Conclusion: Opportunities

Refine/add explanatory features:

- Revisit time frames for weather features
- Proximity to roads, CALFIRE airports
- Quantitative environmental variables:
 Normalized Difference Vegetation Index (NDVI), canopy density, fuel load, etc.

Scope/training:

- Expand timeframe from 2005-2015 to 1992-2018 (new data available)
- Limit model to peak fire wildfire season months and/or high hazard areas

Conclusion: Using the Model

Make predictions for future wildfires as they occur.

Front-end interface:

- Wildfire location via map
- Date
- Automatic generation of explanatory features

Batch processing: upload shapefile, geojson, or csv of new wildfire locations

