

MOOC Econometrics

Training Exercise 4.1

Questions

We want to explain the income y_i of an individual i = 1, ..., n using the individual's intelligence x_i^* . Suppose that the true relationship between these two variables is

$$y_i = \alpha + \beta x_i^* + u_i,$$

where β gives the impact of intelligence on income. Furthermore, suppose that this model satisfies all the standard assumptions of the linear model. However, the intelligence (x_i^*) cannot be observed directly. We can only observe a test score that equals the true intelligence plus a measurement error, that is, $x_i = x_i^* + w_i$. The measurement error process satisfies the following conditions:

- Mean zero: $E[w_i] = 0$
- Constant variance: $Var[w_i] = \sigma_w^2$
- ullet Zero correlation across individuals: $\mathsf{Cov}[w_i,w_j]=0$ for all i
 eq j
- ullet Uncorrelated with unexplained income and true intelligene: $ext{Cov}[w_i,u_i]=0$ and $ext{Cov}[w_i,x_i^*]=0$

We have data on (y_i, x_i) , for i = 1, ..., n. Suppose we ignore measurement error and simply apply OLS to

$$y_i = \alpha + \beta x_i + \varepsilon_i. \tag{1}$$

- (a) Show that by definition $\varepsilon_i = -\beta w_i + u_i$.
- (b) Derive the covariance between x_i and ε_i . Note: under the assumptions above, the measurement error w_i is uncorrelated with x_i^* .
- (c) Use the above results to give the formal conditions under which x_i is endogenous in (1).

Ezafus,