Maximum likelihood estimation

Least Squares Estimation

works by minimising the squared 'distances' between each observation and the line of best fit

Probability distribution (& mass) functions

- A probability mass function (PMF) is a function that gives the probability that a discrete random variable is exactly equal to some value.
- A probability density function (PDF) is, roughly speaking, the alternative for a continuous random variable. We use it all the time to calculate probabilities and to gain an intuitive feel for the shape and nature of the distribution. Important: P(X = x) = 0 for a continuous random variable.

[https://cmjt.shinvapps.io/probable/]

R distribution functions and what they tell you

The likelihood function

The likelihood function, is a function of the parameter(s) for fixed data. It gives the probability of a fixed observation for every possible value of the parameter(s).

What is a derivative?

The binomial likelihood function (finding the MLE)

The likelihood function, $L(\theta; x)$ is a function of the parameter(s) θ for fixed data x and it gives the probability of a fixed observation x for every possible value of the parameter(s) θ , P(X = x).

The binomial likelihood function (finding the MLE)

$$L(\theta;s) = P(S=s) = \binom{n}{s} \theta^s (1-\theta)^{n-s}.$$

Setting $\frac{\delta L}{\delta \theta} = 0$ and solve for θ :

$$\frac{\delta L}{\delta \theta} = (1-\theta)^{n-s-1} \theta^{s-1} \{s-n\theta\} = 0.$$

There are, technically, three possible solutions to this:

- 1. when $\theta^{s-1}=0 \to \theta=0$,
- 2. when $s n\theta = 0 \rightarrow \theta = \frac{s}{n}$, or
- 3. when $(1-\theta)^{n-s-1} \rightarrow \theta = 1$.

The binomial likelihood function (finding the MLE)

```
optimise(likelihood, c(0,1), maximum = TRUE)
```

likelihood <- function(theta) dbinom(x = 79, size = 159, prob = theta)

The binomial log-likelihood function (finding the MLE)

$$\begin{aligned} \log(L(\theta;s)) &= \log\binom{n}{s} + \log(\theta^s) + \log((1-\theta)^{n-s}) \\ &= \log\binom{n}{s} + s\log(\theta) + (n-s)\log(1-\theta). \end{aligned}$$

Differentiating this:

$$\frac{\delta \log(L(\theta;s))}{\delta \theta} = 0 + \frac{s}{\theta} \times 1 + \frac{n-s}{1-\theta} \times (-1)$$
$$= \frac{s}{\theta} - \frac{n-s}{1-\theta}$$

Setting this to zero we get

$$rac{s}{ heta} = rac{n-s}{1- heta}
ightarrow s(1- heta) = heta(n-s)
ightarrow s - s heta = heta n - s heta
ightarrow s + (s heta - s heta) = heta n
ightarrow heta = rac{s}{n}.$$

Therefore, as above

$$\hat{\theta} = \frac{s}{n}$$
.

The binomial log-likelihood function (finding the MLE)

```
log_likelihood <- function(theta) dbinom(x = 79, size = 159, prob = theta, log = TRUE)
```

optimise(log likelihood, c(0,1), maximum = TRUE)

The Poisson likelihood function (finding the MLE)

Suppose that x_1, \ldots, x_n are iid observations from a Poisson distribution with unknown parameter λ :

$$L(\lambda; x_1, \ldots, x_n) = Ke^{-n\lambda} \lambda^{n\overline{x}},$$

where $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$, and $K = \prod_{i=1}^n \frac{1}{x_i!}$ is a constant that doesn't depend on λ .

We differentiate $L(\lambda; x_1, \ldots, x_n)$ and set to 0 to find the MLE:

$$egin{aligned} 0 &= rac{\delta}{\delta\lambda} L(\lambda\,;x_1,\ldots,x_n) \ &= K\left(-ne^{-n\lambda}\,\lambda^{nar{x}} + nar{x}e^{-n\lambda}\,\lambda^{nar{x}-1}
ight) \ &= Ke^{-n\lambda}\lambda^{nar{x}-1}\left(-n\lambda + nar{x}
ight) \end{aligned}$$

$$\rightarrow \lambda = \infty, \lambda = 0, \text{ or } \lambda = \overline{x}.$$

The Poisson log-likelihood function (finding the MLE)

Suppose that x_1, \ldots, x_n are iid observations from a Poisson distribution with unknown parameter λ :

$$L(\lambda; x_1, \ldots, x_n) = Ke^{-n\lambda} \lambda^{n\overline{x}},$$

where $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$, and $K=\prod_{i=1}^n \frac{1}{x_i!}$ is a constant that doesn't depend on λ .

$$\begin{split} \log(L(\lambda\,;x_1,\ldots,x_n)) &= \sum_{i=1}^n \log(\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}) \\ &= \sum_{i=1}^n \log(\frac{1}{x_i!}) + \log(\lambda^{x_i}) + \log(e^{-\lambda}) \\ &= \sum_{i=1}^n \log(\frac{1}{x_i!}) + x_i \log(\lambda) + (-\lambda) \\ &= K' + \log(\lambda) \sum_{i=1}^n x_i - n\lambda \quad \text{where } K' \text{ is a constant} \\ &= K' + \log(\lambda) n\overline{x} - n\lambda. \end{split}$$

Differentiate and set to 0 for the MLE:

$$0 = \frac{\delta}{\delta\lambda} \log(L(\lambda; x_1, \dots, x_n))$$
$$= \frac{\delta}{\delta\lambda} (K' + \log(\lambda) n \overline{x} - n\lambda)$$
$$= \frac{n \overline{x}}{\lambda} - n$$

assuming a unique maximum in $0<\lambda<\infty$ the MLE is $\hat{\lambda}=\overline{x}$ as before.

The Poisson log-likelihood function (finding the MLE)

```
log_likelihood <- function(lambda) dpois(x = 54, lambda, log = TRUE)

optimise(log_likelihood, c(0,100), maximum = TRUE)</pre>
log-likelihood

optimise(log_likelihood, c(0,100), maximum = TRUE)
```


In summary

- 1. The likelihood function tells us the relative probability that a given set of population parameters has generated the data
- 2. Maximum Likelihood Estimation is a common way to estimate parameters in GLM
- 3. It's a very flexible technique, and can be applied to many different distributions

Typically, we also need the second derivative (the rate of change of the rate of change) of the likelihood.

- When it is positive, the likelihood is convex, so we reached a "valley" rather than a peak
- When it is negative, it confirms that the likelihood is concave, and we reached a maximum
- We use second derivatives to compute the standard errors:
 - The second derivative is a measure of the curvature of a function. The steeper the curve, the more certain we are about our estimates
 - The matrix of second derivatives is called "Hessian"
 - The inverse of the Hessian matrix is the variance-covariance matrix of the estimates
 - The standard errors of ML estimates are the square root of the diagonal entries of this matrix

BUT what if it's a relationship we're after?

Recall, with $L(\theta;s)=\binom{n}{s}\theta^s(1-\theta)^{n-s}$

$$egin{array}{ll} \log(L(heta;s)) &= \log(inom{n}{s}) + \log(heta^s) + \log((1- heta)^{n-s}) \ &= \log(inom{n}{s}) + s\log(heta) + (n-s)\log(1- heta). \end{array}$$

Differentiating this:

$$\begin{array}{ll} \frac{\delta \log(L(\theta;s))}{\delta \theta} &= 0 + \frac{s}{\theta} \times 1 + \frac{n-s}{1-\theta} \times (-1) \\ &= \frac{s}{\theta} - \frac{n-s}{1-\theta} \end{array}$$

Setting this to zero we get

$$\hat{\theta} = \frac{s}{n}$$
.

So what if our parameter θ were now a linear equation? Something like $\alpha + \beta \mathbf{x}$...

BUT what if it's a relationship we're after?

The parameters we want to estimate now are α and β . First remember that for a Binomial model θ is a probability and therefore $0 < \theta < 1$. To ensure that this holds we use a link function, typically the logit link function:

$$logit(\theta) = log(\frac{\theta}{1 - \theta}) = \alpha + \beta \mathbf{x}$$

Rearranging

$$\frac{\theta}{1-\theta} = \exp(\alpha + \beta \mathbf{x})$$

and

$$\theta = \frac{\exp(\alpha + \beta \mathbf{x})}{1 + \exp(\alpha + \beta \mathbf{x})}.$$

So, now our log-likelihood function is

$$\begin{split} \log(L(\alpha,\beta,;s)) &= \log\binom{n}{s} + s\log(\theta) + (n-s)\log(1-\theta) \\ &= \log\binom{n}{s} + s\log\left(\frac{\exp(\alpha+\beta\mathbf{x})}{1+\exp(\alpha+\beta\mathbf{x})}\right) + (n-s)\log\left(1 - \frac{\exp(\alpha+\beta\mathbf{x})}{1+\exp(\alpha+\beta\mathbf{x})}\right) \\ &= \log\binom{n}{s} + s\log(\exp(\alpha+\beta x)) - s\log(1 + \exp(\alpha+\beta x)) + (n-s)\log\left(\frac{1}{1+\exp(\alpha+\beta\mathbf{x})}\right) \\ &= \log\binom{n}{s} + s(\alpha+\beta x) - s\log(1 + \exp(\alpha+\beta x)) + (s-n)\log\left(1 + \exp(\alpha+\beta\mathbf{x})\right) \\ &= \log\binom{n}{s} + s(\alpha+\beta x) - n\log\left(1 + \exp(\alpha+\beta x)\right) \end{split}$$

- We can look for the maximum likelihood by taking the partial derivative of the equation in respect to, say, β , and setting it to 0
- Usually done iteratively:
 - Choose some arbitrary starting values of β
 - Evaluate the vector of partial derivatives of the log-likelihood function
 - \circ Update the values of β using the information given by the partial derivatives
 - Stop when we reach values sufficiently close to 0
- And then we do this again for the intercept...
- There are several other optimization algorithms (not discussed in this course)
- The good news is, there's R!

Issues in 2D

Issues in 2D

Issues in 2D

