On Logistic Regression: Gradients of the Log Loss, Multi-Class Classification, and Other Optimization Techniques

Karl Stratos

June 20, 2018

▶ **Task.** Given input $x \in \mathbb{R}^d$, predict either 1 or 0 (on or off).

- ▶ **Task.** Given input $x \in \mathbb{R}^d$, predict either 1 or 0 (on or off).
- ▶ **Model.** The probability of on is parameterized by $w \in \mathbb{R}^d$ as a dot product squashed under the **sigmoid/logistic** function $\sigma : \mathbb{R} \to [0,1]$.

$$p(1|\boldsymbol{x}, \boldsymbol{w}) := \sigma(\boldsymbol{w} \cdot \boldsymbol{x}) := \frac{1}{1 + \exp(-\boldsymbol{w} \cdot \boldsymbol{x})}$$

- ▶ **Task.** Given input $x \in \mathbb{R}^d$, predict either 1 or 0 (on or off).
- ▶ **Model.** The probability of on is parameterized by $w \in \mathbb{R}^d$ as a dot product squashed under the **sigmoid/logistic** function $\sigma : \mathbb{R} \to [0,1]$.

$$p\left(1|oldsymbol{x},oldsymbol{w}
ight) := \sigma(oldsymbol{w}\cdotoldsymbol{x}
ight) := rac{1}{1+\exp(-oldsymbol{w}\cdotoldsymbol{x})}$$

The probability of off is

$$p(\mathbf{0}|\mathbf{x}, \mathbf{w}) = 1 - \sigma(\mathbf{w} \cdot \mathbf{x}) = \sigma(-\mathbf{w} \cdot \mathbf{x})$$

- ▶ **Task.** Given input $x \in \mathbb{R}^d$, predict either 1 or 0 (on or off).
- ▶ **Model.** The probability of on is parameterized by $w \in \mathbb{R}^d$ as a dot product squashed under the **sigmoid/logistic** function $\sigma : \mathbb{R} \to [0,1]$.

$$p(1|\mathbf{x}, \mathbf{w}) := \sigma(\mathbf{w} \cdot \mathbf{x}) := \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$

The probability of off is

$$p(\mathbf{0}|\boldsymbol{x}, \boldsymbol{w}) = 1 - \sigma(\boldsymbol{w} \cdot \boldsymbol{x}) = \sigma(-\boldsymbol{w} \cdot \boldsymbol{x})$$

- Today's focus:
 - 1. Optimizing the log loss by gradient descent
 - 2. Multi-class classification to handle more than two classes
 - 3. More on optimization: Newton, stochastic gradient descent

Overview

Gradient Descent on the Log Loss

Multi-Class Classification
More on Optimization

Newton's Method Stochastic Gradient Descent (SGD)

Negative Log Probability Under Logistic Function

▶ Using $y \in \{0, 1\}$ to denote the two classes,

$$-\log p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = -\mathbf{y}\log \sigma(\mathbf{w} \cdot \mathbf{x}) - (1 - \mathbf{y})\log \sigma(-\mathbf{w} \cdot \mathbf{x})$$
$$= \begin{cases} \log(1 + \exp(-\mathbf{w} \cdot \mathbf{x})) & \text{if } \mathbf{y} = 1\\ \log(1 + \exp(\mathbf{w} \cdot \mathbf{x})) & \text{if } \mathbf{y} = 0 \end{cases}$$

is convex in w.

Negative Log Probability Under Logistic Function

▶ Using $y \in \{0, 1\}$ to denote the two classes,

$$-\log p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = -\mathbf{y}\log \sigma(\mathbf{w} \cdot \mathbf{x}) - (1 - \mathbf{y})\log \sigma(-\mathbf{w} \cdot \mathbf{x})$$
$$= \begin{cases} \log(1 + \exp(-\mathbf{w} \cdot \mathbf{x})) & \text{if } \mathbf{y} = 1\\ \log(1 + \exp(\mathbf{w} \cdot \mathbf{x})) & \text{if } \mathbf{y} = 0 \end{cases}$$

is convex in w.

Negative Log Probability Under Logistic Function

▶ Using $y \in \{0,1\}$ to denote the two classes,

$$-\log p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = -\mathbf{y}\log \sigma(\mathbf{w} \cdot \mathbf{x}) - (1 - \mathbf{y})\log \sigma(-\mathbf{w} \cdot \mathbf{x})$$
$$= \begin{cases} \log(1 + \exp(-\mathbf{w} \cdot \mathbf{x})) & \text{if } \mathbf{y} = 1\\ \log(1 + \exp(\mathbf{w} \cdot \mathbf{x})) & \text{if } \mathbf{y} = 0 \end{cases}$$

is convex in w.

Gradient given by

$$\nabla_{\boldsymbol{w}} \left(-\log p\left(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{w} \right) \right) = -(\boldsymbol{y} - \sigma(\boldsymbol{w} \cdot \boldsymbol{x})) \boldsymbol{x}$$

▶ Given iid samples $S = \left\{(x^{(i)}, y^{(i)})\right\}_{i=1}^n$, find w that minimizes the empirical negative log likelihood of S ("log loss"):

$$J_S^{ ext{LOG}}(oldsymbol{w}) := -rac{1}{n} \sum_{i=1}^n \log p\left(oldsymbol{y^{(i)}} igg| oldsymbol{x^{(i)}}, oldsymbol{w}
ight)$$

Gradient?

▶ Given iid samples $S = \left\{(x^{(i)}, y^{(i)})\right\}_{i=1}^n$, find w that minimizes the empirical negative log likelihood of S ("log loss"):

$$J_S^{\mathrm{LOG}}(oldsymbol{w}) := -rac{1}{n} \sum_{i=1}^n \log p\left(oldsymbol{y^{(i)}} \middle| oldsymbol{x}^{(i)}, oldsymbol{w}
ight)$$

Gradient?

$$\nabla J_{\mathbf{S}}^{\text{LOG}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \sigma \left(\mathbf{w} \cdot \mathbf{x}^{(i)} \right) \right) \mathbf{x}^{(i)}$$

▶ Given iid samples $S = \left\{ (x^{(i)}, y^{(i)}) \right\}_{i=1}^n$, find w that minimizes the empirical negative log likelihood of S ("log loss"):

$$J_S^{ ext{LOG}}(oldsymbol{w}) := -rac{1}{n} \sum_{i=1}^n \log p\left(oldsymbol{y^{(i)}} \middle| oldsymbol{x}^{(i)}, oldsymbol{w}
ight)$$

Gradient?

$$\nabla J_{\mathbf{S}}^{\text{LOG}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \sigma \left(\mathbf{w} \cdot \mathbf{x}^{(i)} \right) \right) \mathbf{x}^{(i)}$$

▶ Unlike in linear regression, there is no closed-form solution for

$$oldsymbol{w}_{oldsymbol{S}}^{ ext{LOG}} := rg \min_{oldsymbol{w} \in \mathbb{R}^d} J_{oldsymbol{S}}^{ ext{LOG}}(oldsymbol{w})$$

▶ Given iid samples $S = \left\{(x^{(i)}, y^{(i)})\right\}_{i=1}^n$, find w that minimizes the empirical negative log likelihood of S ("log loss"):

$$J_S^{ ext{LOG}}(oldsymbol{w}) := -rac{1}{n} \sum_{i=1}^n \log p\left(oldsymbol{y^{(i)}} \middle| oldsymbol{x}^{(i)}, oldsymbol{w}
ight)$$

Gradient?

$$\nabla J_{S}^{\text{LOG}}(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \sigma \left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \right) \right) \boldsymbol{x}^{(i)}$$

▶ Unlike in linear regression, there is no closed-form solution for

$$oldsymbol{w}_{oldsymbol{S}}^{ ext{LOG}} := rg \min_{oldsymbol{w} \in \mathbb{R}^d} J_{oldsymbol{S}}^{ ext{LOG}}(oldsymbol{w})$$

▶ But $J_S^{LOG}(w)$ is **convex** and **differentiable**! So we can do gradient descent and approach an optimal solution.

Gradient Descent for Logistic Regression

Input: training objective

$$J_S^{\text{LOG}}(\boldsymbol{w}) := -\frac{1}{n} \sum_{i=1}^n \log p\left(\boldsymbol{y^{(i)}} \middle| \boldsymbol{x^{(i)}}, \boldsymbol{w}\right)$$

number of iterations T

 $\textbf{Output} \colon \mathsf{parameter} \: \hat{\pmb{w}} \in \mathbb{R}^n \: \mathsf{such} \: \mathsf{that} \: J_S^{\mathrm{LOG}}(\hat{\pmb{w}}) \approx J_S^{\mathrm{LOG}}(\pmb{w}_S^{\mathrm{LOG}})$

- 1. Initialize θ^0 (e.g., randomly).
- 2. For $t = 0 \dots T 1$,

$$\theta^{t+1} = \theta^t + \frac{\eta^t}{n} \sum_{i=1}^n \left(\mathbf{y^{(i)}} - \sigma \left(\mathbf{w} \cdot \mathbf{x^{(i)}} \right) \right) \mathbf{x^{(i)}}$$

3. Return θ^T .

Overview

Gradient Descent on the Log Loss

Multi-Class Classification

More on Optimization

Newton's Method

Stochastic Gradient Descent (SGD)

From Binary to m Classes

A logistic regressor has a single $w \in \mathbb{R}^d$ to define the probability of "on" (against "off"):

$$p(\mathbf{1}|\boldsymbol{x}, \boldsymbol{w}) = \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x})}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x})}$$

From Binary to m Classes

A logistic regressor has a single $w \in \mathbb{R}^d$ to define the probability of "on" (against "off"):

$$p(\mathbf{1}|\boldsymbol{x}, \boldsymbol{w}) = \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x})}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x})}$$

▶ A log-linear model has $w^y \in \mathbb{R}^d$ for each possible class $y \in \{1 \dots m\}$ to define the probability of the class equaling y:

$$p\left(\mathbf{y}|\mathbf{x},\theta\right) = \frac{\exp(\mathbf{w}^{\mathbf{y}} \cdot \mathbf{x})}{\sum_{y'=1}^{m} \exp(\mathbf{w}^{y'} \cdot \mathbf{x})}$$

where $heta = \left\{ oldsymbol{w}^t
ight\}_{t=1}^m$ denotes the set of parameters

From Binary to m Classes

A logistic regressor has a single $w \in \mathbb{R}^d$ to define the probability of "on" (against "off"):

$$p(\mathbf{1}|\boldsymbol{x}, \boldsymbol{w}) = \frac{\exp(\boldsymbol{w} \cdot \boldsymbol{x})}{1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x})}$$

▶ A log-linear model has $w^y \in \mathbb{R}^d$ for each possible class $y \in \{1 \dots m\}$ to define the probability of the class equaling y:

$$p\left(\mathbf{y}|\mathbf{x},\theta\right) = \frac{\exp(\mathbf{w}^{\mathbf{y}} \cdot \mathbf{x})}{\sum_{y'=1}^{m} \exp(\mathbf{w}^{y'} \cdot \mathbf{x})}$$

where $heta = \left\{ oldsymbol{w}^t
ight\}_{t=1}^m$ denotes the set of parameters

Is this a valid probability distribution?

Softmax Formulation

We can transform any vector $z \in \mathbb{R}^m$ into a probability distribution over m elements by the **softmax function** softmax : $\mathbb{R}^m \to \Delta^{m-1}$,

$$\operatorname{softmax}_i(\boldsymbol{z}) := \frac{\exp(\boldsymbol{z}_i)}{\sum_{j=1}^m \exp(\boldsymbol{z}_j)} \qquad \forall i = 1 \dots m$$

Softmax Formulation

We can transform any vector $z \in \mathbb{R}^m$ into a probability distribution over m elements by the **softmax function** softmax : $\mathbb{R}^m \to \Delta^{m-1}$,

$$\operatorname{softmax}_i(\boldsymbol{z}) := \frac{\exp(\boldsymbol{z}_i)}{\sum_{j=1}^m \exp(\boldsymbol{z}_j)} \qquad \forall i = 1 \dots m$$

A log-linear model is a linear transformation by a matrix $W \in \mathbb{R}^{m \times d}$ (with rows $\boldsymbol{w}^1 \dots \boldsymbol{w}^m$) followed by softmax:

$$p\left({\color{red} {\pmb{y}}} | {\pmb{x}}, W \right) = \operatorname{softmax}_{{\pmb{y}}}(W {\pmb{x}})$$

Negative Log Probability Under Log-Linear Model

▶ For any $y \in \{1 \dots m\}$,

$$-\log p\left({\color{red} {\boldsymbol{y}}{{\left| {\boldsymbol{x},\theta} \right.}}} \right) = \underbrace {\log \left({\sum\limits_{y'=1}^m {\exp \left({{\boldsymbol{w}^{y'}} \cdot \boldsymbol{x}} \right)} } \right)} - \underbrace {{\boldsymbol{w^y} \cdot \boldsymbol{x}}}_{\text{linear}}$$

is convex in each $w^l \in \theta$.

Negative Log Probability Under Log-Linear Model

▶ For any $y \in \{1 \dots m\}$,

$$-\log p\left({\color{red} {\boldsymbol{y}} {\big|}} {\color{blue} {\boldsymbol{x}}}, \theta \right) = \underbrace{\log \left(\sum_{y'=1}^m \exp \left({\color{blue} {\boldsymbol{w}}}^{y'} \cdot {\color{blue} {\boldsymbol{x}}} \right) \right)}_{\text{Constant wrt. } {\color{blue} {\boldsymbol{y}}}} - \underbrace{{\color{blue} {\boldsymbol{w}}}^{\color{blue} {\boldsymbol{y}}} \cdot {\color{blue} {\boldsymbol{x}}}}_{\text{linear}}$$

is convex in each $\boldsymbol{w}^l \in \boldsymbol{\theta}$.

lacksquare For any $l\in\{1\dots m\}$, the gradient wrt. $oldsymbol{w}^l$ is given by

$$\nabla_{\boldsymbol{w}^{l}}\left(-\log p\left(\boldsymbol{y}\big|\boldsymbol{x},\theta\right)\right) = \left\{ \begin{array}{ll} -(1-p\left(l\big|\boldsymbol{x},\theta\right))\boldsymbol{x} & \text{if } l = \boldsymbol{y} \\ p\left(l\big|\boldsymbol{x},\theta\right)\boldsymbol{x} & \text{if } l \neq \boldsymbol{y} \end{array} \right.$$

Log-Linear Model Objective

▶ Given iid samples $S = \left\{(x^{(i)}, y^{(i)})\right\}_{i=1}^n$, find w that minimizes the empirical negative log likelihood of S

$$J_S^{\text{LLM}}(\boldsymbol{w}) := -\frac{1}{n} \sum_{i=1}^n \log p\left(\boldsymbol{y^{(i)}} \middle| \boldsymbol{x^{(i)}}, \theta\right)$$

This is the so-called **cross-entropy loss**.

Again convex and differentiable, can be optimized by gradient descent to reach an optimal solution.

Overview

Gradient Descent on the Log Loss
Multi-Class Classification
More on Optimization
Newton's Method
Stochastic Gradient Descent (SGD)

One Way to Motivate Gradient Descent

At current parameter value $\theta \in \mathbb{R}^d$, choose update $\Delta \in \mathbb{R}^d$ by minimizing the first-order Taylor approximation around θ with squared l_2 regularization:

$$J(\theta + \Delta) \approx \underbrace{J(\theta) + \nabla J(\theta)^{\top} \Delta + \frac{1}{2} ||\Delta||_{2}^{2}}_{J_{1}(\Delta)}$$
$$\Delta^{\text{GD}} = \operatorname*{arg\,min}_{\Delta \in \mathbb{R}^{d}} J_{1}(\Delta) = -\nabla J(\theta)$$

One Way to Motivate Gradient Descent

At current parameter value $\theta \in \mathbb{R}^d$, choose update $\Delta \in \mathbb{R}^d$ by minimizing the first-order Taylor approximation around θ with squared l_2 regularization:

$$J(\theta + \Delta) \approx \underbrace{J(\theta) + \nabla J(\theta)^{\top} \Delta + \frac{1}{2} ||\Delta||_{2}^{2}}_{J_{1}(\Delta)}$$
$$\Delta^{\text{GD}} = \operatorname*{arg\,min}_{\Delta \in \mathbb{R}^{d}} J_{1}(\Delta) = -\nabla J(\theta)$$

► Equivalent to minimizing a second-order Taylor approximation but with uniform curvature

$$J(\theta) + \nabla J(\theta) \Delta + \frac{1}{2} \Delta^{\top} I_{d \times d} \Delta$$

Newton's Method

Actually minimize the second-order Taylor approximation:

$$J(\theta + \Delta) \approx \underbrace{J(\theta) + \nabla J(\theta)^{\top} \Delta + \frac{1}{2} \Delta^{\top} \nabla^{2} J(\theta) \Delta}_{J_{2}(\Delta)}$$
$$\Delta^{\text{NEWTON}} = \underset{\Delta \in \mathbb{R}^{d}}{\operatorname{arg \, min}} J_{2}(\Delta) = -\nabla^{2} J(\theta)^{-1} \nabla J(\theta)$$

Newton's Method

Actually minimize the second-order Taylor approximation:

$$J(\theta + \Delta) \approx \underbrace{J(\theta) + \nabla J(\theta)^{\top} \Delta + \frac{1}{2} \Delta^{\top} \nabla^{2} J(\theta) \Delta}_{J_{2}(\Delta)}$$
$$\Delta^{\text{NEWTON}} = \underset{\Delta \in \mathbb{R}^{d}}{\operatorname{arg \, min}} J_{2}(\Delta) = -\nabla^{2} J(\theta)^{-1} \nabla J(\theta)$$

 \blacktriangleright Equivalent to gradient descent after a change of coordinates by $\nabla^2 J(\theta)^{1/2}$

Overview

Gradient Descent on the Log Loss
Multi-Class Classification
More on Optimization
Newton's Method
Stochastic Gradient Descent (SGD)

Loss: a Function of All Samples

▶ Empirical loss $J_S(\theta)$ is a function of the **entire data** S.*

$$\underbrace{\frac{1}{2n}\sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)^{2}}_{J_{S}^{\text{LOG}}(\boldsymbol{w})} \qquad \underbrace{-\frac{1}{n}\sum_{i=1}^{n}\log p\left(y^{(i)}\bigg|\boldsymbol{x}^{(i)},\boldsymbol{w}\right)}_{J_{S}^{\text{LOG}}(\boldsymbol{w})}$$

^{*}We're normalizing by a constant for convenience without loss of generality.

Loss: a Function of All Samples

▶ Empirical loss $J_S(\theta)$ is a function of the **entire data** S.*

$$\underbrace{\frac{1}{2n}\sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)^{2}}_{J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{-\frac{1}{n}\sum_{i=1}^{n}\log p\left(y^{(i)}\bigg|\boldsymbol{x}^{(i)},\boldsymbol{w}\right)}_{J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

▶ So the gradient is also a function of the entire data.

$$\underbrace{-\frac{1}{n}\sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\boldsymbol{x}^{(i)}}_{\nabla J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \qquad \underbrace{\frac{1}{n}\sum_{i=1}^{n}\left(y^{(i)}-\sigma\left(\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\right)\boldsymbol{x}^{(i)}}_{\nabla J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

^{*}We're normalizing by a constant for convenience without loss of generality.

Loss: a Function of All Samples

▶ Empirical loss $J_S(\theta)$ is a function of the **entire data** S.*

$$\underbrace{\frac{1}{2n}\sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)^{2}}_{J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{-\frac{1}{n}\sum_{i=1}^{n}\log p\left(y^{(i)}\bigg|\boldsymbol{x}^{(i)},\boldsymbol{w}\right)}_{J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

▶ So the gradient is also a function of the entire data.

$$\underbrace{-\frac{1}{n}\sum_{i=1}^{n}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\boldsymbol{x}^{(i)}}_{\nabla J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \qquad \underbrace{\frac{1}{n}\sum_{i=1}^{n}\left(y^{(i)}-\sigma\left(\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\right)\boldsymbol{x}^{(i)}}_{\nabla J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

► Thus one update in gradient descent requires summing over all *n* samples.

^{*}We're normalizing by a constant for convenience without loss of generality.

Gradient Estimation Based on a Single Sample

▶ What if we use a **single uniformly random** sample $i \in \{1...n\}$ to estimate the gradient?

$$\underbrace{-\left(y^{(i)} - \boldsymbol{w} \cdot \boldsymbol{x^{(i)}}\right) \boldsymbol{x^{(i)}}}_{\widehat{\nabla}^{(i)} J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{\left(y^{(i)} - \sigma\left(\boldsymbol{w} \cdot \boldsymbol{x^{(i)}}\right)\right) \boldsymbol{x^{(i)}}}_{\widehat{\nabla}^{(i)} J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

Gradient Estimation Based on a Single Sample

▶ What if we use a **single uniformly random** sample $i \in \{1...n\}$ to estimate the gradient?

$$\underbrace{-\left(y^{(i)} - \boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right) \boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(i)} J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{\left(y^{(i)} - \sigma\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)}\right)\right) \boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(i)} J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

▶ In expectation, the gradient is consistent:

$$\mathbf{E}_{i}\left[\widehat{\nabla}^{(i)}J_{S}(\boldsymbol{w})\right] = \frac{1}{n}\sum_{i=1}^{n}\widehat{\nabla}^{(i)}J_{S}(\boldsymbol{w}) = \nabla J_{S}(\boldsymbol{w})$$

Gradient Estimation Based on a Single Sample

▶ What if we use a **single uniformly random** sample $i \in \{1...n\}$ to estimate the gradient?

$$\underbrace{-\left(y^{(i)} - \boldsymbol{w} \cdot \boldsymbol{x^{(i)}}\right) \boldsymbol{x^{(i)}}}_{\widehat{\nabla}^{(i)} J_S^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{\left(y^{(i)} - \sigma\left(\boldsymbol{w} \cdot \boldsymbol{x^{(i)}}\right)\right) \boldsymbol{x^{(i)}}}_{\widehat{\nabla}^{(i)} J_S^{\mathrm{LOG}}(\boldsymbol{w})}$$

▶ In expectation, the gradient is consistent:

$$\mathbf{E}_{i}\left[\widehat{\nabla}^{(i)}J_{S}(\boldsymbol{w})\right] = \frac{1}{n}\sum_{i=1}^{n}\widehat{\nabla}^{(i)}J_{S}(\boldsymbol{w}) = \nabla J_{S}(\boldsymbol{w})$$

► This is **stochastic gradient descent (SGD)**: estimate the gradient with a single random sample. This is justified as long as the gradient is *consistent* in expectation.

SGD with Mini-Batches

▶ Instead of estimating the gradient based on a single random example i, use a random "mini-batch" $B \subseteq \{1 \dots n\}$.

$$\underbrace{-\frac{1}{|\boldsymbol{B}|} \sum_{i \in \boldsymbol{B}} \left(\boldsymbol{y}^{(i)} - \boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \right) \boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(\boldsymbol{B})} J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{\frac{1}{|\boldsymbol{B}|} \sum_{i \in \boldsymbol{B}} \left(\boldsymbol{y}^{(i)} - \sigma \left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} \right) \right) \boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(\boldsymbol{B})} J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

SGD with Mini-Batches

▶ Instead of estimating the gradient based on a single random example i, use a random "mini-batch" $B \subseteq \{1 \dots n\}$.

$$\underbrace{-\frac{1}{|B|}\sum_{i\in B}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(B)}J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{\frac{1}{|B|}\sum_{i\in B}\left(y^{(i)}-\sigma\left(\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\right)\boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(B)}J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

▶ Still consistent:
$$\mathbf{E}_{B}\left[\widehat{\nabla}^{(B)}J_{S}(oldsymbol{w})\right] = \nabla J_{S}(oldsymbol{w})$$

SGD with Mini-Batches

▶ Instead of estimating the gradient based on a single random example i, use a random "mini-batch" $B \subseteq \{1 \dots n\}$.

$$\underbrace{-\frac{1}{|B|}\sum_{i\in B}\left(y^{(i)}-\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(B)}J_{S}^{\mathrm{LS}}(\boldsymbol{w})} \qquad \underbrace{\frac{1}{|B|}\sum_{i\in B}\left(y^{(i)}-\sigma\left(\boldsymbol{w}\cdot\boldsymbol{x}^{(i)}\right)\right)\boldsymbol{x}^{(i)}}_{\widehat{\nabla}^{(B)}J_{S}^{\mathrm{LOG}}(\boldsymbol{w})}$$

- lacksquare Still consistent: $\mathbf{E}_{m{B}}\left[\widehat{
 abla}^{(m{B})}J_S(m{w})
 ight] =
 abla J_S(m{w})$
- ▶ Mini-batches allow for a more stable gradient estimation.
 - ▶ SGD is a special case with |B| = 1.

Stochastic Gradient Descent

Input: training objective $J(\theta) \in \mathbb{R}$ of form

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} J_i(\theta)$$

, number of iterations T

Output: parameter $\hat{\theta} \in \mathbb{R}^n$ such that $J(\hat{\theta})$ is small

- 1. Initialize $\hat{\theta}$ (e.g., randomly).
- 2. For $t = 0 \dots T 1$,
 - 2.1 For $i \in \{1 \dots n\}$ in random order,

$$\hat{\theta} \leftarrow \hat{\theta} - \eta^{t,i} \nabla J_i(\hat{\theta})$$

3. Return $\hat{\theta}$.

Stochastic Gradient Descent for Linear Regression

Input: training objective

$$J_{S}^{\mathrm{LS}}(oldsymbol{w}) := rac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - oldsymbol{w} \cdot oldsymbol{x}^{(i)}
ight)^2$$

number of iterations T

 $\textbf{Output} \text{: parameter } \hat{\boldsymbol{w}} \in \mathbb{R}^n \text{ such that } J_S^{\mathrm{LS}}(\hat{\boldsymbol{w}}) \approx J_S^{\mathrm{LS}}(\boldsymbol{w}_S^{\mathrm{LS}})$

- 1. Initialize \hat{w} (e.g., randomly).
- 2. For $t = 0 \dots T 1$,
 - 2.1 For $i \in \{1 \dots n\}$ in random order,

$$\hat{\boldsymbol{w}} \leftarrow \hat{\boldsymbol{w}} - \eta^{t,i} \Big(y^{(i)} - \hat{\boldsymbol{w}}^{\top} \cdot \boldsymbol{x}^{(i)} \Big) \, \boldsymbol{x}^{(i)}$$

3. Return $\hat{\boldsymbol{w}}$.

Stochastic Gradient Descent for Logistic Regression

Input: training objective

$$J_S^{\text{LOG}}(\boldsymbol{w}) := -\frac{1}{n} \sum_{i=1}^n \log p\left(y^{(i)} \middle| \boldsymbol{x}^{(i)}, \boldsymbol{w}\right)$$

number of iterations T

 $\textbf{Output} \text{: parameter } \hat{\pmb{w}} \in \mathbb{R}^n \text{ such that } J_S^{\text{LOG}}(\hat{\pmb{w}}) \approx J_S^{\text{LOG}}(\pmb{w}_S^{\text{LOG}})$

- 1. Initialize \hat{w} (e.g., randomly).
- 2. For $t = 0 \dots T 1$,
 - 2.1 For $i \in \{1 \dots n\}$ in random order,

$$\hat{\boldsymbol{w}} \leftarrow \hat{\boldsymbol{w}} + \eta^{t,i} \Big(y^{(i)} - \sigma \left(\hat{\boldsymbol{w}} \cdot \boldsymbol{x}^{(i)} \right) \Big) \boldsymbol{x}^{(i)}$$

3. Return $\hat{\boldsymbol{w}}$.

Summary

- Logistic regression: binary classifier that can be trained by optimizing the log loss
- Log-linear model: multi-class classifier that can be trained by optimizing the cross-entropy loss
- Newton's method: local search using the curvature of the loss function
- ▶ **SGD**: gradient descent with stochastic gradient estimation
 - Cornerstone of modern large-scale machine learning