Multimodal Hand Pose Enhancement for Sign Language

Alvaro Budria

alvaro.francesc.budria@estudiantat.upc.edu

Advisors: Laia Tarrés & Xavier Giró

Introduction to Research (I2RCED)

GCED 2021 - 2022

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Intro - Sign Language

Sign languages (SL) spoken by >450 million people

Texts has a discrete representation SL is continuous

Lack of support for SL in communication technologies

Intro - SL processing

Lately, some promising attempts at SL processing through ML and DL

DL systems benefit from large amounts of data

New SL datasets, such as How2Sign

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

How2Sign

Large-scale collection of multimodal sign language videos in American Sign Language (ASL)

Sentence-level alignment for >35k sentences

Annotations include category labels, text annotations, and automatically extracted 2D keypoints

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Body2Hands

Generative Adversarial Network (GAN)

Fully 1d-convolutional encoder-decoder generator

Image feature vector as optional input

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Data Representation

SL does not admit a discrete representation, but... directly processing video is too time-consuming and resource intensive

SL does not admit a discrete representation, but... directly processing video is too time-consuming and resource intensive

Duarte et al. How2Sign: A Large-scale Multimodal Dataset for Continuous American Sign Language. CVPR 2021

...so keypoints are extracted, making systems more robust to changes in background and variability among signers

RGB video

 $v_{t} = (R_{0}, G_{0}, B_{0, ...}, R_{255}, G_{255}, B_{255})$

OpenPose

 $v_t = (x_0, y_{0,...}, x_{49}, y_{49})$

2D to 3D lifting

 $v_t = (x_0, y_0, z_{0, ...,} x_{49}, y_{49}, z_{49})$

Body2Hands (conversational settings)

Body2Hands (sign language)

Skeletal Model & Data Representation

2D keypoints not suitable → not robust against occlusions and changes in angle

2D KPs are lifted to 3D

We defined a kinematic tree

Cartesian to Rotational Representation

3D KPs not robust against changes in scale and length of the speaker's limbs

Rotational representation solves this problem

3D (Cartesian) → axis-angle (rotational) → R6D (rotational)

Pseudo-code

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Transferring Body2Hands to SL

Directly trained Body2Hands model on How2Sign sign language data

Tried conditioning on textual sentence embedding

Tried conditioning on images features of the hands

Body2Hands cannot be directly applied to SL

17

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Finger Unmasking

Input: arms as well as hands, while masking out some of the fingers. The model must reconstruct the masked fingers

The more masked fingers, the less varied are the reconstructions

Left: hand with 1 reconstructed finger Right: ground-truth poses

Left: hand with 5 reconstructed fingers Right: ground-truth poses

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Hand Pose Enhancement

RGB video

 $v_t = (R_0, G_0, B_{0,.}, R_{255}, G_{255})$

OpenPose

 $v_t = (X_0, Y_{0, \ldots, X_{49}, Y_{49}})$

2D to 3D lifting

$$v_t = (X_0, Y_0, Z_{0, ...,} X_{49}, Y_{49}, Z_{49})$$

Hand Pose Enhancement

Qualitative evaluation of the results

Left: enhanced hand poses
Right: original hand poses

Unable to evaluate quantitatively → evaluate against surrogate task: topic detection

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Motivation: provide a more quantitative evaluation of the method

By default, data in How2Sign dataset is at sentence level

Group sentence-level data based on its video of origin → data at video level

Topic Detection - Modeling Setup

Textual data

SL data

1. determine if sentence level data is rich enough to classify

Train a classifier on textual sentence-level data

Conclusion:

not enough information in a single sentence

Therefore we group sentence level data into video level data

2. check if topic detection can be solved with textual data

After hyperparameter tuning, validation accuracy of 77% → topic detection task is solvable with video level data

3. determine if 2D data is suitable for topic detection

Train a classifier on SL 2D video-level data

With 2D keypoints, we cannot tackle the topic detection task

4. compare classification with non-enhanced hand-poses vs. enhanced

No substantial improvement in terms of validation accuracy

Filtered poses seem to prevent over-fitting

- 1. Introduction
- 2. How2Sign
- 3. Body2Hands
- 4. Data Representation
- 5. Transferring Body2Hands to SL
- 6. Finger Unmasking
- 7. Hand Pose Enhancement
- 8. Topic Detection
- 9. Recap & Discussion

Recap & Discussion

We focus on Body2Hands, initially proposed for conversational settings, and transfer it to SL

Body2Hands is not adequate as an off-the-shelf method for our purposes

We encounter the limits of Body2Hands for generating SL hand poses

We show qualitatively promising results in hand pose enhancement

No gain was made on topic detection with enhanced hand poses → a more specific architecture such as SL transformers is in order

Thank you

Alvaro Budria

alvaro.francesc.budria@estudiantat.upc.edu

Advisors: Laia Tarrés & Xavier Giró

Introduction to Research (I2RCED)

GCED 2021 - 2022