

NUMBER SYSTEM

$$1 + 2 + 3 + - - - + n = \frac{n(n + 1)}{2}$$

$$(1^2 + 2^2 + 3^2 - \dots + n^2) = \frac{n(n+1)(2n+1)}{6}$$

$$(1^3 + 2^3 + 3^3 - \dots + n^3) = \left[\frac{n(n+1)}{2} \right]^2$$

Points to Remember:

Difference between Arithmetic Progression and Geometric Progression:

Arithmetic Progression: It is the sequence of numbers in which each term after first is obtained by adding a constant to preceding term. The constant term is called as the common difference.

Geometric Progression: It is a sequence of non-zero numbers. The ratio of any term and its preceding term is always constant.

Types of Numbers	Definition	Example	Points to remember
Natural Numbers	Numbers used for counting and ordering	1, 2, 3, 4, 5, natural numbers	
Whole Numbers	All counting numbers along with zero form a set of whole numbers	0, 1, 2, 3, 4 whole numbers	Any natural number is a whole number 0 is a whole no. which is not a natural no.
Integers	Counting numbers + negative counting numbers + zero, all are integers	-2, -1, 0, 1, 2, integers	Positive integers: 0, 1, 2, 3, Negative integers: -1, -2, -3, -4,
Even Numbers	Number divisible by 2 is called as even number	0, 2, 4, 6, 8, even numbers	

Odd Numbers	Number not divisible by 2 is called as even number	1, 3, 5, 7, 9, odd numbers
Prime Numbers	A number having exactly two factors i.e 1 and itself is called as prime number	2, 3, 5, 7, 11, prime numbers
Composite Numbers	Natural numbers which are not prime numbers are called as composite numbers	4, 6, 8, 9, 10, composite nos.
Co Primes	Any two natural numbers x and y are co-prime if their HCF is	(4, 5), (7, 9),Co-prime numbers

Divisibility of Numbers

1) Number divisible by 2

Units digit - 0, 2, 4, 6, 8

Ex: 42, 66, 98, 1124

2) Number divisible by 3

Sum of digits is divisible by 3

Ex: 267 - (2 + 6 + 7) = 15

15 is divisible by 3

3) Number divisible by 4

Number formed by the last two digits is divisible by 4

EX: 832

The last two digits is divisible by 4, hence 832 is divisible by 4

5) Number divisible by 6

The number is divisible by both 2 and 3

EX: 168

Last digit = 8 ---- (8 is divisible by 2)

Sum of digits = (1 + 6 + 8) = 15 ---- (divisible by 3)

Hence, 168 is divisible by 6

6) Number divisible by 11

If the difference between the sums of the digits at even places and the sum of digits at odd places is either 0 or divisible by 11.

Ex: 4527039

Digits on even places: 4 + 2 + 0 + 9 = 15

Digits on odd places: 5 + 7 + 3 = 15

Difference between odd and even = 0

Therefore, number is divisible by 11

7) Number divisible by 12

The number is divisible by both 4 and 3

Ex: 1932

Last two digits divisible by 4

Sum of digits = (1 + 9 + 3 + 2) = 15 ---- (Divisible by 3)

Hence, the number 1932 is divisible by 12

Find the least number which when divided by 12, 27 and 35 leaves 6 as a remainder?

- a) 3774
- b) 3780
- c) 3786
- d) 4786
- e) None of these

Answer - c) 3786

Explanation:

Number = LCM (12, 17, 35) + 6 = 3780 + 6 = 3786

Find the least number which will leaves remainder 5 when divided by 8, 12, 16 and 20.

- A. 240
- B. 245
- C. 265
- D. 235

Answer: Option B

Solution:

We have to find the Least number, therefore we find out the LCM of 8, 12, 16 and 20.

$$8 = 2 \times 2 \times 2$$
;
 $12 = 2 \times 2 \times 3$;
 $16 = 2 \times 2 \times 2 \times 2$;
 $20 = 2 \times 2 \times 5$;
 $LCM = 2 \times 2 \times 2 \times 2 \times 3 \times 5 = 240$;

This is the least number which is exactly divisible by 8, 12, 16 and 20

Thus,

Required number which leaves remainder 5 is,

$$240 + 5 = 245$$

Which among $2^{\frac{1}{2}}$, $3^{\frac{1}{3}}$, $4^{\frac{1}{4}}$, $6^{\frac{1}{6}}$ and $12^{\frac{1}{12}}$ is largest?

A.
$$2^{\frac{1}{2}}$$

B.
$$3^{\frac{1}{3}}$$

C.
$$4^{\frac{1}{4}}$$

D.
$$12^{\frac{1}{12}}$$

Answer: Option B

Solution:

LCM in power 2, 3, 4, 6, 12 is 12

We multiplied the LCM to the power of the numbers.

$$2^{\frac{1\times12}{2}}$$
, $3^{\frac{1\times12}{3}}$, $4^{\frac{1\times12}{4}}$, $6^{\frac{1\times12}{6}}$ and $12^{\frac{1\times12}{12}}$

We get,

$$= 2^6, 3^4, 4^3, 6^2, 12$$

Hence, greatest number would be $3^{\frac{1}{3}}$

The rightmost non-zero digit of the number 30²⁷²⁰ is

- A. 1
- B. 3
- C. 7
- D. 9

Answer: Option A

Solution:

(30)²⁷²⁰, we can write it as[(30)⁴]⁶⁸⁰

 $Or,[(10 \times 3)^4]^{680}$

The right most non-zero digit depends on the unit digit of [(3)⁴]⁶⁸⁰

Unit digit of $[(3)^4]^{680}$,

Or, (81)⁶⁸⁰

The unit digit of 81 is 1 so any power of 81 will always give its unit digit as 1

Thus, required unit digit is 1

On a road three consecutive traffic lights change after 36, 42 and 72 seconds respectively. If the lights are first switched on at 9:00 AM sharp, at what time will they change simultaneously?

- A. 9:08:04
- B. 9:08:24
- C. 9:08:44
- None of these

Answer: Option B

Solution:

LCM of 36, 42 and 72,

$$36 = 2 \times 2 \times 3 \times 3$$

$$42 = 2 \times 3 \times 7$$

$$72 = 2 \times 2 \times 2 \times 3 \times 3$$

LCM =
$$2 \times 2 \times 2 \times 3 \times 3 \times 7 = 504$$
 seconds.

LCM of 36, 42 and 72 is 504

Hence, the lights will change simultaneously after 8 minutes and 24 seconds.

The last digit of the number obtained by multiplying the numbers $81 \times 82 \times 83 \times 84 \times 86 \times 87 \times 88 \times 89$ will be

- A. 0
- B. 6
- C. 7
- D. 2
- E. :

Answer: Option B

Solution:

The last digit of multiplication depends on the unit digit of $(81 \times 82 \times 83 \times 84 \times 86 \times 87 \times 88 \times 89)$ which is given by the remainder obtained on dividing it by 10.

$$\frac{(81\times82\times83\times84\times86\times87\times88\times89)}{10}$$

We take individual remainder of each digit,

$$\frac{(1\times2\times3\times4\times6\times7\times8\times9)}{10}$$

Numbers multiplied,

$$\frac{(24 \times 42 \times 72)}{10}$$

Individual Remainder has been taken,

$$\frac{(4\times2\times2)}{10}$$

$$Or, \frac{(16)}{10}$$

Or, 6

Remainder = 6

So, the last digit will be 6

The smallest number which must be subtracted from 8112 to make it exactly divisible by 99 is :

- A. 91
- B. 92
- C. 93
- D. 95

Answer: Option C

Solution:

On dividing 8112 by 99, we get 93 as remainder.

So, the required number to be subtracted is 93.

The greatest number by which the product of three consecutive multiples of 3 is always divisible is :

- A. 54
- B. 81
- C. 162
- D. 243

Answer: Option C

Solution:

Three consecutive multiples of 3 are 3m, 3(m + 1) and 3(m + 2)

Their product =
$$3m \times 3(m + 1) \times 3(m + 2)$$

$$= 27 \times m \times (m + 1) \times (m + 2)$$

Putting m = 1, this product is $(27 \times 1 \times 2 \times 3) = 162$

So, this product is always divisible by 162

Given that $(1^2 + 2^2 + 3^2 + + 20^2) = 2870$, the value of $(2^2 + 4^2 + 6^2 + ... + 40^2)$ is :

- A. 2870
- B. 5740
- C. 11480
- D. 28700

Answer: Option C

Solution:

$$= (2^{2} + 4^{2} + 6^{2} + \dots + 40^{2})$$

$$= (1 \times 2)^{2} + (2 \times 2)^{2} + (2 \times 3)^{2} + \dots + (2 \times 20)^{2}$$

$$= 2^{2} \times (1^{2} + 2^{2} + 3^{2} + \dots + 20^{2})$$

$$= (4 \times 2870)$$

$$= 11480$$

If
$$a + b + c = 0$$
, $(a + b) (b + c) (c + a)$ equals

- A. ab (a + b)
- B. $(a + b + c)^2$
- C. abc
- D. $a^2 + b^2 + c^2$

Answer: Option C

Solution:

$$a + b + c = 0$$

 $\Rightarrow (a + b) = -c$
 $(b + c) = -a$
and $(c + a) = -b$
 $\Rightarrow (a + b) (b + c) (c + a)$
 $= (-c) \times (-a) \times (-b)$
 $= -(abc)$

