Idea for research project topic:

- 1. Investigate robustness of current RL TSC methods with respect to wrong information.
 - o Wrong vehicle speed detection
 - $\circ \ \ \text{Wrong vehicle type detected}$
 - $\circ \ \ \text{Wrong number of vehicles detected}$
 - Vehicles turning from the wrong line
 - o Vehicles driving through red lights
 - Shut-down traffic light (only in multi-intersection simulations)

Relevant papers:

https://par.nsf.gov/servlets/purl/10214068

- 2. Adapt existing strategy for an environment with both pedestrians and cyclists as well as cars.
 - o Need to add features and simulation resources
 - o Occasionally cyclists may use car lanes
- 3. Investigate whether using Recurrent NNs could be useful.
 - Can RNNs outperform other models with less input data? Other models may be able to keep up using feature engineering.
 - What Features are useful to give models time-context information?
 - Time since last phase change
 - · Change of queue length in some past time interval
- 4. Investigate how different RL algorithms affect learning and/or final performance (DDPG, PPO, A2C, etc.)

TODOs:

- 1. create an overview of possible input and output features for TSC controller.
- check how to change simulation and NN inputs to add noise, pedestrians or make other adjustments
- 3. check where the NNs are defined
- 4. check how to change the learning algorithm used
- 5. decide which road network to use
- 6. decide which input and output features to use. (use communication?)
- 7. run experiments

Experiment Ideas:

- 1.1 Compare different RL TSC methods on an environment with noisy feature vectors. Simulate defective loop detectors, cameras, etc.
 - => plots:
 - x-axis: noise level in testing
 - y-axis: performance metric (throughput/ wait time/ trip time/ reward)
 - Evaluate existing techniques trained in ideal conditions on different noise levels (one line per technique)
 - Train new model on different noise levels (lines labelled with noise level in legend)
 - + If the trained models for existing techniques can be obtained, they could be used for evaluation without modification being necessary.
- 1.2 Compare effects of different error causes (wrong vehicle speed, wrong queue length, wrong vehicle behaviour, etc.)
 - => plots: one plot per error type, one plot for all errors combined
 - x-axis: noise level in testing
 - y-axis: performance metric (throughput/ wait time/ trip time/ reward)
 - Evaluate existing techniques trained in ideal conditions on different noise levels
 - + If the trained models for existing techniques can be obtained, they could be used for evaluation without modification being necessary.
- 2.1 Compare performance of 1-3 methods in 2-3 scenarios:
 - Scene 1: just cars
 - Scene 2: cars + pedestrians
 - Scene 3: cars + cyclists + pedestrians
 - What adaptations are necessary to accommodate cyclists and pedestrians?
 - Do existing techniques still perform well with cyclists and pedestrians on the road?
 - may need to retrain all methods for comparison due to possibly increased feature vector size. Depends on which signal phases are allowed. Methods with communication may need larger communication bandwidth.
- 3.1
- need to retrain all methods for comparison for different feature vectors.
- 4.1 Compare loss during training, learned policy for various RL algorithms.
 - => plots
 - a. x-axis: epoch number
 - y-axis: training/validation loss
 - b. x-axis: time in s
 - y-axis: queue lengths for different traffic directions
 - colour: current phase (possibly simplified)
 - need to retrain all methods with each algorithm