4.0 Hashing

N. F. Stewart

Université de Montréal

Adressage dispersé

Je conçois cela comme une modification de la méthode de "Pigeonholing" avec ajout d'une compression randomisée du champs d'adressage.

À lire: W. Sections 5.1-5.5, pp. 171-189 (3ième éd.)

Cette méthode a déjà été mentionnée dans l'introduction.
 L'idée de base:

- Cette méthode a déjà été mentionnée dans l'introduction.
 L'idée de base:
- On exprime la clef x en bits, et on mélange pour avoir

$$h(x) = hashVal(x) \in \{0, \dots, TableSize - 1\}$$

- Cette méthode a déjà été mentionnée dans l'introduction.
 L'idée de base:
- On exprime la clef x en bits, et on mélange pour avoir

$$h(x) = hashVal(x) \in \{0, \dots, TableSize - 1\}$$

• En recalculant h(x) plus tard, on peut avoir un accès qui est O(1).

- Cette méthode a déjà été mentionnée dans l'introduction.
 L'idée de base:
- On exprime la clef x en bits, et on mélange pour avoir

$$h(x) = hashVal(x) \in \{0, \dots, TableSize - 1\}$$

- En recalculant h(x) plus tard, on peut avoir un accès qui est O(1).
- (Bon, il y a quand même quelques petites difficultés à rêgler!)

$$(x, I(x))$$
 $x = \text{la clef ("Key")}$ $I = \text{Information}$ Opérations:

$$(x, I(x))$$
 $x =$ la clef ("Key") $I =$ Information

Opérations:

Opérations "update the data structure":

$$(x, I(x))$$
 $x =$ la clef ("Key") $I =$ Information

- Opérations "update the data structure":
 - Insérer (x, I(x))

$$(x, I(x))$$
 $x = \text{la clef ("Key")}$ $I = \text{Information}$

- Opérations "update the data structure":
 - Insérer (x, I(x))
 - Retirer (x, I(x))

$$(x, I(x))$$
 $x = \text{la clef ("Key")}$ $I = \text{Information}$

- Opérations "update the data structure":
 - Insérer (x, I(x))
 - Retirer (x, I(x))
- x donné: Trouver I(x)

$$(x, I(x))$$
 $x =$ la clef ("Key") $I =$ Information

- Opérations "update the data structure":
 - Insérer (x, I(x))
 - Retirer (x, I(x))
- x donné: Trouver I(x)
- x donné: Mettre I(x) à jour ("update I(x)")

$$(x, I(x))$$
 $x =$ la clef ("Key") $I =$ Information

- Opérations "update the data structure":
 - Insérer (x, I(x))
 - Retirer (x, I(x))
- x donné: Trouver I(x)
- x donné: Mettre I(x) à jour ("update I(x)")
- Énumérer les éléments dans l'ordre des clefs,

i.e., trouver
$$j_1, \ldots, j_N$$

tels que $x_{j_1} \le x_{j_2} \le \ldots \le x_{j_N}$
ce qui donne $I_{j_1}, I_{j_2}, \ldots I_{j_N}$.

• Le Hashing comme méthode pour TAD Table (suite):

Opérations: on peut distinquer entre

- Le Hashing comme méthode pour TAD Table (suite):
 - Opérations: on peut distinguer entre
 - Trouver (le ou les) I_i t. q. $x_i = x$ ("Exact match")

- Le Hashing comme méthode pour *TAD Table* (suite):
 - Opérations: on peut distinquer entre
 - Trouver (le ou les) I_i t. q. $x_i = x$ ("Exact match")
 - Trouver les $I_{j_1}, I_{j_2}, \dots, I_{j_n}$ pour les clefs telles que $x_{min} \le x_{j_\ell} \le x_{max}$, $\ell = 1, \dots, n$ ("Range Query")

• Le Hashing comme méthode pour TAD Table (suite):

Opérations: on peut distinguer entre

- Trouver (le ou les) I_j t. q. $x_j = x$ ("Exact match")
- Trouver les $I_{j_1}, I_{j_2}, \dots, I_{j_n}$ pour les clefs telles que $x_{min} \le x_{j_\ell} \le x_{max}$, $\ell = 1, \dots, n$ ("Range Query")
- Nous verrons que les opérations (Énumérer, "Range Query", ...) qui font référence à *l'ordre* des clefs ne sont pas efficacement implantées par le Hashing.

• Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)
- Les Splay-tree: coût ammortisé O(log N)

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)
- Les Splay-tree: coût ammortisé O(log N)
- Le Hashing: une méthode O(1) pour

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)
- Les Splay-tree: coût ammortisé O(log N)
- Le Hashing: une méthode O(1) pour
 - Insérer, retirer

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)
- Les Splay-tree: coût ammortisé O(log N)
- Le Hashing: une méthode O(1) pour
 - Insérer, retirer
 - Trouver I(x)

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)
- Les Splay-tree: coût ammortisé O(log N)
- Le Hashing: une méthode O(1) pour
 - Insérer, retirer
 - Trouver I(x)
 - Mettre I(x) à jour

- Des méthodes très simples: O(N), $O(\log N)$, O(1) selon le cas:
 - Tableau trié
 - Tableau non-trié
 - Liste chaînée
- Les arbres binaires de recherche, p.e. Arbre AVL: O(log N)
- Les Skiplist: aussi O(log N)
- Les Splay-tree: coût ammortisé O(log N)
- Le Hashing: une méthode O(1) pour
 - Insérer, retirer
 - Trouver I(x)
 - Mettre I(x) à jour
 - Hmm, pourquoi pas mettre toutes les autres méthodes à la poubelle?

• (Version adressage ouvert): Retrait un peu difficile

- (Version adressage ouvert): Retrait un peu difficile
- Le "load factor" λ doit rester petit:

- (Version adressage ouvert): Retrait un peu difficile
- Le "load factor" λ doit rester petit:
 - Hypothèses au sujet de la mémoire disponible (version adressage ouvert)

- (Version adressage ouvert): Retrait un peu difficile
- Le "load factor" λ doit rester petit:
 - Hypothèses au sujet de la mémoire disponible (version adressage ouvert)
 - O(1) est dans la réalité $O(\lambda)$ (version chaînage extérieur)

- (Version adressage ouvert): Retrait un peu difficile
- Le "load factor" λ doit rester petit:
 - Hypothèses au sujet de la mémoire disponible (version adressage ouvert)
 - O(1) est dans la réalité $O(\lambda)$ (version chaînage extérieur)
- Les opérations qui dépendent de l'ordre des clefs ne sont pas efficacement implantées

- (Version adressage ouvert): Retrait un peu difficile
- Le "load factor" λ doit rester petit:
 - Hypothèses au sujet de la mémoire disponible (version adressage ouvert)
 - O(1) est dans la réalité $O(\lambda)$ (version chaînage extérieur)
- Les opérations qui dépendent de l'ordre des clefs ne sont pas efficacement implantées
- Cela reste quand même une méthode très attrayante.

Movitation: méthode de "Pigeonholing"

Supposons que je n'ais que 52 clefs:
 2♣, 3♣, ..., A♠

Movitation: méthode de "Pigeonholing"

- Supposons que je n'ais que 52 clefs:
 2♣, 3♣, ..., A♠
- Je pourrais allouer une case pour chaque clef: $0 \le x_i \le 51$

Movitation: méthode de "Pigeonholing"

- Supposons que je n'ais que 52 clefs: 2♣, 3♣, ..., A♠
- Je pourrais allouer une case pour chaque clef: $0 \le x_i \le 51$

 Cela pourrait être très commode (indexage directe, séquences, couleurs, ...), et si par exemple 47 cases sur 52 sont toujours vides, ce n'est pas grave.

Méthode de "Pigeonholing" (suite)

 Mais si par contre les clefs sont les noms de variable dans un langage de programmation (application compilateur):

Clef (x_j) Informations (I_j)

SOMME classe, espace alloué,...

Méthode de "Pigeonholing" (suite)

 Mais si par contre les clefs sont les noms de variable dans un langage de programmation (application compilateur):

Clef (x_j) Informations (I_j)

SOMME classe, espace alloué,...

 Si l'identificateur (exemple SOMME) avait même un maximum de 20 caractères, des lettres majuscules seulement, ça ferait déjà 26²⁰ cases.

C'est déjà un peu beaucoup.

Méthode de "Pigeonholing" (suite)

 Mais si par contre les clefs sont les noms de variable dans un langage de programmation (application compilateur):

Clef (x_i) Informations (I_i)

SOMME classe, espace alloué,...

 Si l'identificateur (exemple SOMME) avait même un maximum de 20 caractères, des lettres majuscules seulement, ça ferait déjà 26²⁰ cases.

C'est déjà un peu beaucoup.

• **Note!** C'est le nombre de clefs *possibles* qui doit être petit (et non pas le nombre de clefs utilisées dans l'application).

$$A, B, C, \ldots, Z$$

$$A, B, C, \ldots, Z$$

On va "mélanger" les bits de la clef en utilisant

public int
$$h(Lettre \ \ell)$$

{ $h \leftarrow position(\ell) \mod 7$

quitte à les mettre dans une table plus petite de 7 cases.

$$A, B, C, \ldots, Z$$

On va "mélanger" les bits de la clef en utilisant

public int
$$h(Lettre \ \ell)$$

{ $h \leftarrow position(\ell) \mod 7$

quitte à les mettre dans une table plus petite de 7 cases.

 Quelle est le danger? Les collisions.
 (En effet, la raison pour vouloir "mélanger" de façon aléatoire est d'éviter autant que possible les collisions.)

$$A, B, C, \ldots, Z$$

• On va "mélanger" les bits de la clef en utilisant

public int
$$h(Lettre \ \ell)$$

 $\{h \leftarrow position(\ell) \mod 7\}$

quitte à les mettre dans une table plus petite de 7 cases.

- Quelle est le danger? Les collisions.
 (En effet, la raison pour vouloir "mélanger" de façon aléatoire est d'éviter autant que possible les collisions.)
- [Exemple au tableau]

Nous avons besoin, donc, d'une politique de collision

• If y a deux approches:

Nous avons besoin, donc, d'une politique de collision

- Il y a deux approches:
 - Adressage ouvert W. Section 5.4, p. 179

Nous avons besoin, donc, d'une politique de collision

- Il y a deux approches:
 - Adressage ouvert W. Section 5.4, p. 179
 - Chaînage Externe

Adressage ouvert: ciblage linéaire

Adressage ouvert. Exemple simple: "linear probing".
 Mettre la clef accidentée dans la première case disponible:

"Probe sequence": $i \leftarrow (i-1) \mod 7$

Adressage ouvert: ciblage linéaire

Adressage ouvert. Exemple simple: "linear probing".
 Mettre la clef accidentée dans la première case disponible:

"Probe sequence": $i \leftarrow (i-1) \mod 7$

• $p(V) = 22 \Rightarrow h(V) = 1$. Donc:

V	Α		J		Е	Т
0	1	2	3	4	5	6

• Adressage ouvert. Exemple simple: "linear probing" (suite).

V	А		J		Е	Т
0	1	2	3	4	5	6

• Adressage ouvert. Exemple simple: "linear probing" (suite).

	V	Α		J		Е	Т
7	0	1	2	3	4	5	6

• $p(C) = 3 \Rightarrow h(C) = 3$. Donc:

	V	Α	С	J		Е	Т
7	0	1	2	3	4	5	6

• Adressage ouvert. Exemple simple: "linear probing" (suite).

	V	А		J		E	Т
1	0	1	2	3	4	5	6

• $p(C) = 3 \Rightarrow h(C) = 3$. Donc:

	٧	Α	С	J		E	Т
_	0	1	2	3	4	5	6

• $p(H) = 8 \Rightarrow h(H) = 1$. Donc:

Ciblage linéaire: possibilité d'amas?

• Adressage ouvert. Exemple simple: "linear probing" (suite et fin).

En regardant ce qui s'est passé à la fin de l'exemple, on peut se poser la question suivante. Est-il possible que nous aurons des "cluster" de clefs, c'est-à-dire des *amas*, qui vont impliquer des longues recherches linéaires?

Deuxième approche: Chaînage Externe Weiss, Sec. 5.3

Ou bien, pour que la recherche au démarrage soit similaire à la recherche plus loin:

• Deuxième approche: **Chaînage Externe** (Weiss, Fig. 5.5)

• Deux questions (heureusement différentes):

- Deux questions (heureusement différentes):
 - Quelle est la probabilité d'une collision?

- Deux questions (heureusement différentes):
 - Quelle est la probabilité d'une collision?
 - Quel est le coût de régler les collisions?

- Deux questions (heureusement différentes):
 - Quelle est la probabilité d'une collision?
 - 2 Quel est le coût de régler les collisions?
- La probabilité dépend de

$$\lambda = N/M$$
.

N = nombre d'éléments

M = nombre de cases (7 dans notre exemple)

- Deux questions (heureusement différentes):
 - Quelle est la probabilité d'une collision?
 - 2 Quel est le coût de régler les collisions?
- La probabilité dépend de

$$\lambda = N/M$$
.

N = nombre d'éléments

M = nombre de cases (7 dans notre exemple)

• Notons que λ peut très bien être supérieur à 1 dans le cas de Chaînage Externe.

• On pourrait penser que peut-être n'utiliser que la moitiée de la table ($\lambda=1/2$) dans le cas d'adressage ouvert serait suffisant pour éviter la majorité de collisions, ou sinon peut-être $\lambda=1/3$?

- On pourrait penser que peut-être n'utiliser que la moitiée de la table ($\lambda = 1/2$) dans le cas d'adressage ouvert serait suffisant pour éviter la majorité de collisions, ou sinon peut-être $\lambda = 1/3$?
- "Utiliser" veut dire allouer assez de mémoire pour la table pour que λ reste inférieur à cette valeur. Par exemple, on pourrait aller jusqu'à $\lambda=1/4$, c-à-d allouer 4 fois plus de cases que le nombre attendu de valeurs dans la table, en supposant ce nombre connu.

- On pourrait penser que peut-être n'utiliser que la moitiée de la table ($\lambda = 1/2$) dans le cas d'adressage ouvert serait suffisant pour éviter la majorité de collisions, ou sinon peut-être $\lambda = 1/3$?
- "Utiliser" veut dire allouer assez de mémoire pour la table pour que λ reste inférieur à cette valeur. Par exemple, on pourrait aller jusqu'à $\lambda=1/4$, c-à-d allouer 4 fois plus de cases que le nombre attendu de valeurs dans la table, en supposant ce nombre connu.
- Mais, en fait, c'est sans espoir: Paradoxe des journées de fête.
 - [Explication au tableau.]

 Mais, heureusement, cette mauvaise nouvelle ne dérange pas plus que cela, parce que le coût de trouver la clef restera petit: la longueur des recherches, dans le cas d'une collision, restera courte. Voici des résultats sans preuve:

- Mais, heureusement, cette mauvaise nouvelle ne dérange pas plus que cela, parce que le coût de trouver la clef restera petit: la longueur des recherches, dans le cas d'une collision, restera courte. Voici des résultats sans preuve:
- Chaînage Externe

- Mais, heureusement, cette mauvaise nouvelle ne dérange pas plus que cela, parce que le coût de trouver la clef restera petit: la longueur des recherches, dans le cas d'une collision, restera courte. Voici des résultats sans preuve:
- Chaînage Externe
 - Recherche non-réussie: $C_N' = \lambda = N/M$ (Beaucoup de recherches vont terminer tout de suite, avec une référence nulle.)

- Mais, heureusement, cette mauvaise nouvelle ne dérange pas plus que cela, parce que le coût de trouver la clef restera petit: la longueur des recherches, dans le cas d'une collision, restera courte. Voici des résultats sans preuve:
- Chaînage Externe
 - Recherche non-réussie: $C_N' = \lambda = N/M$ (Beaucoup de recherches vont terminer tout de suite, avec une référence nulle.)
 - Recherche réussie: $C_N \cong 1 + \lambda/2$

- Mais, heureusement, cette mauvaise nouvelle ne dérange pas plus que cela, parce que le coût de trouver la clef restera petit: la longueur des recherches, dans le cas d'une collision, restera courte. Voici des résultats sans preuve:
- Chaînage Externe
 - Recherche non-réussie: $C_N' = \lambda = N/M$ (Beaucoup de recherches vont terminer tout de suite, avec une référence nulle.)
 - Recherche réussie: $C_N \cong 1 + \lambda/2$
- Adressage ouvert: résultats théoriques satisfaisants pour C_N et C_N' à condition que $\lambda << 1$ (par exemple, $\lambda \cong 0.5$). Voir Weiss Fig. 5.12, p. 181.

Comparaison espace (Adr. Ouvert vs. Ch. Externe)

• Le chaînage externe peut prendre beaucoup d'espace si les records (les informations) sont courts par rapport aux pointeurs.

Comparaison espace (Adr. Ouvert *vs.* Ch. Externe) suite

- Le chaînage externe prend donc N + M pointeurs pour enregistrer N records d'information (y compris les clefs).
 - Dans le cas extrême où l'information est la seule présence de la clef, cela donne N+M pointeurs, et l'information prend N fois l'espace pour enregistrer une clef.

Comparaison espace (Adr. Ouvert *vs.* Ch. Externe) suite

- Le chaînage externe prend donc N + M pointeurs pour enregistrer N records d'information (y compris les clefs).
 - Dans le cas extrême où l'information est la seule présence de la clef, cela donne N+M pointeurs, et l'information prend N fois l'espace pour enregistrer une clef.
- L'adressage ouvert n'utilise que la mémoire allouée statiquement. Parce que $\lambda < 1$, il y a donc gaspillage de la mémoire.
 - S'il y a beaucoup d'incertitude autour de la valeur de N, cette méthode devient moins intéressante. (C'est le compromis classique entre tableau de taille fixe et liste chaînée.)