

Structural Breaks in Inflation Dynamics within the European Monetary Union

Thomas Windberger, Achim Zeileis

http://glogis.R-Forge.R-project.org/

Overview

- Introduction and Data
- Model
- Example
- Results
- Conclusion

Introduction and Data

- Did European Monetary Union (EMU) change inflation dynamics?
- Economic reasons
 - Former Council for Mutual Economic Assistance (COMECON) member states
 - Ex-Yugoslavia countries
 - Southern European countries
 - Central European countries
- Harmonised Index of Consumer Prices (HICP) for 21 countries.
 Monthly unadjusted data up to March 2010
- Source: OECD Statistics
- 3 groups
 - EURO countries
 - EU members without Exchange Rate Mechanism II (ERM II)
 - ERM II countries

Model

- Our approach:
 - Track evolution of distribution over time for each country
 - Investigate changes in mean, variance, and skewness over time
 - Idea: Identify changes associated with interventions, crises, etc.
- Of less interest in this analysis:
 - Correlation over time (e.g., ARIMA, GARCH)
 - Correlation between countries (e.g., VAR)
- Selected method:
 - Maximum likelihood for flexible distribution: Generalized logistic distribution allowing for fat tails, and potential skewness
 - Testing and dating of structural breaks
 - Neglect correlation structure or treat as nuisance parameter

Generalized Logistic (GL) Distribution

For return series $y_t = 100 \cdot log(HICP_t/HICP_{t-1})$ (t = 1, ..., n) we assume a GL distribution given by:

$$f(y|\theta,\sigma,\delta) = \frac{\frac{\delta}{\sigma} \cdot \exp^{-\frac{y-\theta}{\sigma}}}{(1 + \exp^{-\frac{y-\theta}{\sigma}})^{(\delta+1)}}$$

with location θ , scale σ and shape δ . Moments:

$$E(y) = \theta + \sigma(\psi(\delta) - \psi(1))$$

$$VAR(y) = \sigma^{2}(\psi'(1) + \psi'(\delta))$$

$$SKEW(y) = \frac{\psi''(\delta) - \psi''(1)}{(\psi'(1) + \psi'(\delta))^{\frac{3}{2}}}$$

Framework

Assuming $\phi = (\theta, \sigma, \delta)$ is stable over time t, it can be estimated by maximum likelihood, or equivalently solving the estimating equations:

$$\hat{\phi} = \underset{\phi}{\operatorname{argmax}} \sum_{t=1}^{n} \log f(y_t | \phi),$$
$$\sum_{t=1}^{n} s(y_t | \hat{\phi}) = 0,$$

Question: Is the assumption valid or do the ϕ_t vary over time?

$$H_0: \phi_t = \phi_0 \quad (t = 1, ..., n)$$

This can be assessed using the empirical scores $s(y_t|\hat{\phi})$ as measures of model deviation.

Scores

Score function has 3 components $(s_{\theta}, s_{\sigma}, s_{\delta})$, with $\tilde{y} = \exp^{-\frac{y-\theta}{\sigma}}$

$$\begin{split} s_{\theta}(y|\theta,\sigma,\delta) &= \frac{\delta \log f(y|\theta,\sigma,\delta)}{\delta \theta} \\ &= \frac{1}{\sigma} - (\delta+1) \cdot \frac{\frac{1}{\sigma}\tilde{y}}{(1+\tilde{y})} \\ s_{\sigma}(y|\theta,\sigma,\delta) &= \frac{\delta \log f(y|\theta,\sigma,\delta)}{\delta \sigma} \\ &= -\frac{1}{\sigma} + \frac{1}{\sigma^2}(y-\theta) - (\delta+1) \times \frac{\frac{1}{\sigma^2}(y-\theta)\tilde{y}}{(1+\tilde{y})} \\ s_{\delta}(y|\theta,\sigma,\delta) &= \frac{\delta \log f(y|\theta,\sigma,\delta)}{\delta \delta} \\ &= \frac{1}{\delta} - \log(1+\tilde{y}) \end{split}$$

Empirical Fluctuation Process

The empirical fluctuation process $efp(\cdot)$ captures systematic deviations from zero over time:

$$efp(t) = \hat{V}^{-1/2} n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} s(y_i | \hat{\theta}, \hat{\sigma}, \hat{\delta}) \quad (0 \le t \le 1),$$

Functional central limit theorem (FCLT) for $efp(\cdot)$: converges to a 3-dimensional Brownian bridge:

$$efp(\cdot) \stackrel{d}{\rightarrow} W^0(\cdot)$$

Test

 $\mathit{efp}(\cdot)$ could be aggregated to test statistic in various ways.

Here: Employ Andrews' supLM test

$$\sup_{t \in [0.1, 0.9]} \frac{\|efp(t)\|_2^2}{t(1-t)}$$

p-values can be computed from:

$$\sup_{t \in [0.1, 0.9]} \frac{\|W^0(t)\|_2^2}{t(1-t)}$$

Breakpoint Estimation

If instability detected, estimate *B* breakpoints $\tau_1, ..., \tau_B$ via maximization of full segmented likelihood:

$$\sum_{b=1}^{B+1} \sum_{t=\tau_b+1}^{\tau_b} \log f(y_t | \phi^{(b)})$$

All parameters $\tau_1, \ldots, \tau_B, \phi^{(1)}, \ldots, \phi^{(B+1)}$ can be estimated jointly using dynamic programming.

Model selection: Select best B via a modified BIC from fitted models for B = 1, ..., 6.

Slovenia: Data

Slovenia: Fitted Model

Country	Segment	Mean	Variance	Skewness
Slovenia	Feb 1996–Jul 2003	0.631	0.211	0.588
	Aug 2003-Mar 2010	0.244	0.344	0.143

Slovenia: Test

Slovenia: Moment Changes

Slovenia: Breakpoint Selection

LWZ and Negative Log-Likelihood

Slovenia: Fitted Model

Economic Interpretation:

- had to reach Maastricht criteria
 - low inflation rate (< 1.5 percentage points higher than average of 3 best performing)
 - deficit no higher than 3% of GDP
 - gross government debt < 60% of GDP
 - no devaluation in ERM II
- most reforms regarding financial sector introduced in 2003
- strong contraction in money supply (M1) starting in 2003
- from 2003 onwards much lower mean, but higher variance
- entered ERM II in June 2004; declared ready to join by ECB in May 2006

Results

Some countries follow very similar patterns

- Eastern countries: Czech Republic, Estonia, Hungary, Poland and possibly Slovakia
- Belgium and Luxembourg
- Italy and Spain
- Ireland
- No change countries: Finland, Greece, Netherlands
- Further results

Belgium and Luxembourg

Belgium and Luxembourg

Country	Segment	Mean	Variance	Skewness
Belgium	Feb 1991-Dec 1999	0.146	0.064	-0.037
	Jan 2000-Mar 2010	0.177	0.954	0.504
Luxembourg	Feb 1995–Dec 1998	0.088	0.013	0.261
	Jan 1999-Mar 2010	0.224	0.531	-0.484

Italy and Spain

Italy and Spain

Country	Segment	Mean	Variance	Skewness
Italy	Feb 1990-May 1996	0.414	0.041	0.963
	Jun 1996-Dec 2000	0.168	0.020	0.726
	Jan 2001-Mar 2010	0.182	0.321	-0.261
Spain	Feb 1992–May 1996	0.372	0.070	1.139
	Jun 1996-Dec 2000	0.200	0.040	0.019
	Jan 2001-Mar 2010	0.223	0.342	-0.362

Ireland

Country	Segment	Mean	Variance	Skewness
Ireland	Feb 1995-Mar 2008	0.255	0.205	-0.696
	Apr 2008-Mar 2010	-0.131	0.184	-0.995

No Change Countries

No Change Countries

Country	Segment	Mean	Variance	Skewness
Greece	Feb 1995-Mar 2010	0.323	1.480	0.431
Netherlands	Feb 1990-Mar 2010	0.185	0.293	0.598
Finland	Feb 1990-Mar 2010	0.165	0.132	0.280

Conclusion

- Stabilizing Effect of EURO?
- Overall lowering in mean inflation rates
- Overall increase in volatility

HICP

First step: local sub-index of a specific price collected item R_{iv}^t :

$$R_{iy}^t = \frac{(\prod_{j=1}^n p_{iyj}^t)^{1/n}}{(\prod_{j=1}^n p_{iyj}^0)^{1/n}}$$

Second step: sub-index for whole country R_i^t :

$$R_i^t = \sum_{y=1}^m R_{iy}^t G_y$$

$$R_h^{t,T} = R_h^{12,T-1} \left[\frac{\sum_{i=1}^q w_i^T R_i^t / R_i^{12,T-1}}{\sum_{i=1}^q w_i^T} \right]$$

Third step: weighted average of all included individual subindexes:

$$HICP_t = \sum_{i=1}^{n} \gamma_i R_h^{t,T}$$

GL: Skewness

