

MOTIVATION

Classifiers discussed so far

- ▶ Both assume linear decision boundary
- ▶ Perceptron: Linear separability; placement of boundary rather arbitrary

More realistic data

MOTIVATION: KERNELS

Idea

- ▶ The SVM uses the scalar product $\langle \mathbf{x}, \tilde{\mathbf{x}}_i \rangle$ as a measure of similarity between \mathbf{x} and $\tilde{\mathbf{x}}_i$, and of distance to the hyperplane.
- ▶ Since the scalar product is linear, the SVM is a linear method.
- ▶ By using a *nonlinear* function instead, we can make the classifier nonlinear.

More precisely

► Scalar product can be regarded as a two-argument function

$$\langle .,. \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

▶ We will replace this function with a function $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and substitute

$$k(\mathbf{x}, \mathbf{x}')$$
 for every occurrence of $\langle \mathbf{x}, \mathbf{x}' \rangle$

in the SVM formulae.

 Under certain conditions on k, all optimization/classification results for the SVM still hold. Functions that satisfy these conditions are called kernel functions.

THE MOST POPULAR KERNEL

RBF Kernel

$$k_{\text{RBF}}(\mathbf{x}, \mathbf{x}') := \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\sigma^2}\right)$$
 for some $\sigma \in \mathbb{R}_+$

is called an **RBF kernel** (RBF = radial basis function). The parameter σ is called **bandwidth**.

Other names for k_{RBF} : Gaussian kernel, squared-exponential kernel.

If we fix \mathbf{x}' , the function $k_{\text{RBF}}(\cdot, \mathbf{x}')$ is (up to scaling) a spherical Gaussian density on \mathbb{R}^d , with mean \mathbf{x}' and standard deviation σ .

CHOOSING A KERNEL

Theory

To define a kernel:

- ▶ We have to define a function of two arguments and prove that it is a kernel.
- ► This is done by checking a set of necessary and sufficient conditions known as "Mercer's theorem".

Practice

The data analyst does not define a kernel, but tries some well-known standard kernels until one seems to work. Most common choices:

- ► The RBF kernel.
- ▶ The "linear kernel" $k_{SP}(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x}, \mathbf{x}' \rangle$, i.e. the standard, linear SVM.

Once kernel is chosen

- Classifier can be trained by solving the optimization problem using standard software.
- ▶ SVM software packages include implementations of most common kernels.

WHICH FUNCTIONS WORK AS KERNELS?

Formal definition

A function $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called a **kernel** on \mathbb{R}^d if there is *some* function $\phi: \mathbb{R}^d \to \mathcal{F}$ into *some* space \mathcal{F} with scalar product $\langle \, . \, , \, . \, \rangle_{\mathcal{F}}$ such that

$$k(\mathbf{x}, \mathbf{x}') = \left\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \right\rangle_{\mathcal{F}} \quad \text{for all } \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d \ .$$

In other words

- \triangleright *k* is a kernel if it can be interpreted as a scalar product on some other space.
- If we substitute k(x, x') for ⟨x, x'⟩ in all SVM equations, we implicitly train a linear SVM on the space F.
- ► The SVM still works: It still uses scalar products, just on another space.

The mapping ϕ

- \triangleright ϕ has to transform the data into data on which a linear SVM works well.
- ▶ This is usually achieved by choosing \mathcal{F} as a higher-dimensional space than \mathbb{R}^d .

MAPPING INTO HIGHER DIMENSIONS

Example

How can a map into higher dimensions make class boundary (more) linear? Consider

Mapping into Higher Dimensions

Problem

In previous example: We have to know what the data looks like to choose ϕ !

Solution

- ▶ Choose high dimension h for \mathcal{F} .
- ► Choose components ϕ_i of $\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_h(\mathbf{x}))$ as different nonlinear mappings.
- ► If two points differ in R^d, some of the nonlinear mappings will amplify differences.

The RBF kernel is an extreme case

- ▶ The function k_{RBF} can be shown to be a kernel, however:
- F is infinite-dimensional for this kernel.

DETERMINING WHETHER *k* IS A KERNEL

Mercer's theorem

A mathematical result called *Mercer's theorem* states that, if the function k is positive, i.e.

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) f(\mathbf{x}') d\mathbf{x} d\mathbf{x}' \ge 0$$

for all functions f, then it can be written as

$$k(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^{\infty} \lambda_j \phi_j(\mathbf{x}) \phi_j(\mathbf{x}')$$
.

The ϕ_j are functions $\mathbb{R}^d \to \mathbb{R}$ and $\lambda_i \geq 0$. This means the (possibly infinite) vector $\phi(\mathbf{x}) = (\sqrt{\lambda_1}\phi_1(\mathbf{x}), \sqrt{\lambda_2}\phi_2(\mathbf{x}), \ldots)$ is a feature map.

Kernel arithmetic

Various functions of kernels are again kernels: If k_1 and k_2 are kernels, then e.g.

$$k_1 + k_2$$
 $k_1 \cdot k_2$ const. $\cdot k_1$

are again kernels.

THE KERNEL TRICK

Kernels in general

- ▶ Many linear machine learning and statistics algorithms can be "kernelized".
- ► The only conditions are:
 - 1. The algorithm uses a scalar product.
 - 2. In all relevant equations, the data (and all other elements of \mathbb{R}^d) appear *only inside a scalar product.*
- ▶ This approach to making algorithms non-linear is known as the "kernel trick".

KERNEL SVM

Optimization problem

$$\begin{split} & \min_{\mathbf{v}_{\mathrm{H}},c} & & \|\mathbf{v}_{\mathrm{H}}\|_{\mathcal{F}}^2 + \gamma \sum_{i=1}^n \xi^2 \\ & \mathrm{s.t.} & & y_i(\langle \mathbf{v}_{\mathrm{H}}, \phi(\tilde{\mathbf{x}}_i) \rangle_{\mathcal{F}} - c) \geq 1 - \xi_i \quad \text{ and } \xi_i \geq 0 \end{split}$$

Note: \mathbf{v}_H now lives in \mathcal{F} , and $\|.\|_{\mathcal{F}}$ and $\langle.,.\rangle_{\mathcal{F}}$ are norm and scalar product on \mathcal{F} .

Dual optimization problem

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^n} \qquad & W(\pmb{\alpha}) := \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j \tilde{y}_i \tilde{y}_j \big(\pmb{k}(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j) \ + \ \frac{1}{\gamma} \mathbb{I}\{i=j\} \big) \\ \text{s.t.} \qquad & \sum_{i=1}^n y_i \alpha_i = 0 \qquad \text{and} \qquad \alpha_i \geq 0 \end{split}$$

Classifier

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i}^{*} k(\tilde{\mathbf{x}}_{i}, \mathbf{x}) - c\right)$$

SVM WITH RBF KERNEL

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} y_i \alpha_i^* k_{RBF}(\mathbf{x}_i, \mathbf{x})\right)$$

- ► Circled points are support vectors. The the two contour lines running through support vectors are the nonlinear counterparts of the convex hulls.
- The thick black line is the classifier.
- ▶ Think of a Gaussian-shaped function $k_{RBF}(., \mathbf{x}')$ centered at each support vector \mathbf{x}' . These functions add up to a function surface over \mathbb{R}^2 .
- ► The lines in the image are contour lines of this surface. The classifier runs along the bottom of the "valley" between the two classes.
- ightharpoonup Smoothness of the contours is controlled by σ

DECISION BOUNDARY WITH RBF KERNEL

The decision boundary runs here.

The decision boundary of the classifier coincides with the set of points where the surfaces for class +1 and class -1 have equal value.

SUMMARY: SVMS

Basic SVM

- ► Linear classifier for linearly separable data.
- ▶ Positions of affine hyperplane is determined by maximizing margin.
- ▶ Maximizing the margin is a convex optimization problem.

Full-fledged SVM

Ingredient	Purpose
Maximum margin	Good generalization properties
Slack variables	Overlapping classes
	Robustness against outliers
Kernel	Nonlinear decision boundary

Use in practice

- ► Software packages (e.g. libsvm, SVMLite)
- ► Choose a kernel function (e.g. RBF)
- ightharpoonup Cross-validate margin parameter γ and kernel parameters (e.g. bandwidth)

UNUSUAL EXAMPLE: GRAPH KERNELS

Terminology

A **graph** G = (V, E) is defined by two sets:

- 1. A set of *V* vertices v_1, \ldots, v_m .
- 2. A set *E* of **edges**, i.e. variables $e_{ij} \in \{0, 1\}$.

 $e_{ij} = 1$ means that v_i and v_j are connected.

The graph is **undirected** if $e_{ij} = e_{ji}$ for all pairs of vertices. (The graphs in the figure are undirected.)

We write G for the set of undirected graphs of finite size.

Problem setting

- ► Training data $(\tilde{G}_i, \tilde{y}_i)_{i \in [n]}$, where each \tilde{G}_i is a graph in \mathcal{G} .
- ► Can we learn a classifier *f* that classifies an unlabeled graph *G*?

GRAPH-VALUED DATA

Example 1: Social Networks

- ightharpoonup Each vertex v_j is a user.
- $e_{ij} = 1$ indicates that users i and j are "friends".

This data is graph-valued, but the data set typically consists of a single, very large graph.

Example 2: Biology

There are dozens of types of graph-valued data in biology. One example is protein-protein interaction data:

- \triangleright Each vertex v_i is a protein.
- $e_{ij} = 1$ indicates that proteins *i* and *j* interact in the given system.

(The graph on the previous slide shows such a data set.)

Graph kernels are designed for problems where we observe a set of graphs.

COUNTING SUBGRAPHS

Modeling assumption

Graph G is characterized by how often certain patterns (= subgraphs) occur in G.

Feature map

- ► Fix a set K of patterns. Example: All subgraphs of size 3.
- ▶ For graphs $G \in \mathcal{G}$, define

$$\phi_F(G) := \frac{\# \text{ occurrences of } F \text{ in } G}{\# \text{subgraphs of size } |F| \text{ in } G}$$

▶ Define the feature map ϕ as the vector

$$\phi(G) = (\phi_F(G))_{F \in \mathcal{K}}$$

This is a mapping $\phi : \mathcal{G} \to \mathbb{R}^d_+$. The dimension is $d = |\mathcal{K}|$.

GRAPH KERNEL

Kernel

The kernel defined by ϕ is

$$k(G, G') := \langle \phi(G), \phi(G') \rangle = \sum_{F \in \mathcal{K}} \phi_F(G) \cdot \phi_F(G')$$

A large value of k indicates there is a subgraph in K that occurs often in *both* graphs.

Classification

We can now train an SVM as usual. For training data $(\tilde{G}_1, \tilde{y}_1), \dots, (\tilde{G}_n, \tilde{y}_n)$, the resulting classifier is

$$f(G) = \operatorname{sgn}\left(\sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i}^{*} k(\tilde{G}_{i}, G) - c\right)$$

REMARKS

Other graph kernels

- ▶ There are various other ways to define graph kernels. For example, *k* could compare *G* and *G'* in terms of the probability that a random walk on *G* and a random walk on *G'* take the same path. (Such kernels are called *random walk kernels*.)
- Each choice of kernel emphasizes a different property in terms of which the graphs are compared.

More generally: Kernels for non-Euclidean data

- We have used the kernel to transform non-Euclidean data (graphs) so that it fits into our classification framework.
- ► There are other, similar methods, e.g. string kernels.
- Note that we have not used the kernel for implicit representation, but rather compute φ explicitly.