5 Weak law of large numbers

Property 5.1. Let X be a real random variable and let $f: [0, +\infty[\to [0, +\infty[$ be monotene increasing. Then for any $\epsilon > 0$ with $f(\epsilon) > 0$, the Markov's inequality holds,

$$\mathbf{P}(|X| \ge \epsilon) \le \frac{\mathbf{E}[f(|X|)]}{f(\epsilon)}.$$

In the special case $f(x) = x^2$, we get

$$\mathbf{P}(|X| \ge \epsilon) \le \frac{\mathbf{E}[X^2]}{\epsilon^2}.$$

In particular, if $X \in \mathcal{L}^2(\mathbf{P})$, the Chebyshev's inequality holds:

$$\mathbf{P}(|X - \mathbf{E}[X]| \ge \epsilon) \le \frac{\mathbf{Var}[X]}{\epsilon^2}.$$

Proof. Indeed, let $\epsilon > 0$ with $f(\epsilon) > 0$,

$$\mathbf{E}[f(|X|)] \ge \mathbf{E}[f(|X|)\mathbf{1}_{(f(|X|) \ge f(\epsilon))}]$$

$$\ge \mathbf{E}[f(\epsilon)\mathbf{1}_{(f(|X|) \ge f(\epsilon))}]$$

$$= f(\epsilon)\mathbf{P}(f(|X|) \ge f(\epsilon))$$

$$\ge f(\epsilon)\mathbf{P}(|X| \ge \epsilon).$$

Definition 5.2. Let $X_1, X_2, ...$ be integrable real random variables and let $\tilde{S}_n := \sum_{i=1}^n (X_i - \mathbf{E}[X_i])$. We say that $X_1, X_2, ...$ fulfills the weak law of large numbers if

$$\lim_{n \to +\infty} \mathbf{P}\left(\left| \frac{1}{n} \tilde{S}_n \right| > \epsilon \right) = 0 \quad \text{for any } \epsilon > 0.$$

And we say that X_1, X_2, \ldots fulfills the strong law of large numbers if

$$\mathbf{P}\left(\limsup_{n\to+\infty} \left| \frac{1}{n}\tilde{S}_n \right| = 0 \right) = 1.$$

Remark 5.3. The strong law of large numbers implies the weak law. Indeed, let us suppose that X_1, X_2, \ldots fulfills the strong law of large numbers and let

$$A := \left(\limsup_{n \to +\infty} \left| \frac{1}{n} \tilde{S}_n \right| > 0 \right) \quad \text{and} \quad A_n^{\epsilon} := \left(\left| \frac{1}{n} \tilde{S}_n \right| > \epsilon \right)$$

for any $n \in \mathbb{N}$ and $\epsilon > 0$. Then, since $\mathbf{P}(A) = 0$ and $\limsup_{n \to +\infty} A_n^{1/k} \uparrow A$,

$$\mathbf{P}\left(\limsup_{n\to+\infty}A_n^{\epsilon}\right)=0$$

for any $\epsilon > 0$. Finally, let $\epsilon > 0$; then, by the Fatou's lemma,

$$\begin{split} \limsup_{n \to +\infty} \mathbf{P}(A_n^{\epsilon}) &= 1 - \liminf_{n \to +\infty} \mathbf{E}[\mathbf{1}_{(A_n^{\epsilon})^c}] \\ &\leq 1 - \mathbf{E}\left[\liminf_{n \to +\infty} \mathbf{1}_{(A_n^{\epsilon})^c} \right] \\ &= \mathbf{E}\left[\limsup_{n \to +\infty} \mathbf{1}_{A_n^{\epsilon}} \right] \\ &= \mathbf{E}\left[\mathbf{1}_{\limsup A_n^{\epsilon}} \right] \\ &= 0. \end{split}$$

Theorem 5.4. Let $X_1, X_2, ...$ be uncorrelated square integrable real random variables with $V := \sup_{n \in \mathbb{N}} \mathbf{Var}[X_n] < +\infty$. Then $X_1, X_2, ...$ fulfills the weak law of large numbers. More precisely, for any $\epsilon > 0$, we have

$$\mathbf{P}\left[\left|\frac{1}{n}\tilde{S}_n\right| > \epsilon\right] \le \frac{V}{\epsilon^2 n} \quad \text{for all } n \in \mathbb{N}.$$

Proof. Let $\epsilon > 0$ and $n \in \mathbb{N}$. Then, since $X_1 - \mathbf{E}[X_1], \dots, X_n - \mathbf{E}[X_n]$ are also uncorrelated,

$$\begin{aligned} \mathbf{Var} \left[\frac{1}{n} \tilde{S}_n \right] &= \frac{1}{n^2} \left(\mathbf{Var}[X_1 - \mathbf{E}[X_1]] + \dots + \mathbf{Var}[X_n - \mathbf{E}[X_n]] \right) \\ &= \frac{1}{n^2} \left(\mathbf{Var}[X_1] + \dots + \mathbf{Var}[X_n] \right) \\ &\leq \frac{V}{n}. \end{aligned}$$

And, by Chebyshev's inequality,

$$\mathbf{P}\left[\left|\frac{1}{n}\tilde{S}_n\right| > \epsilon\right] \le \frac{\mathbf{Var}\left[\frac{1}{n}\tilde{S}_n\right]}{\epsilon^2} \le \frac{V}{\epsilon^2 n}.$$

Example 5.5. we present a probabilistic proof of the Weierstraß's approximation theorem

Proof. Exercise. \Box

Exercise 5.1. Let S_n be the number of successes in n Bernoulli trials with probability p for success on each trial.

1. Show, using Chebyshevs inequality, that for any $\epsilon > 0$

$$\mathbf{P}\left[\left|\frac{S_n}{n} - p\right| \ge \epsilon\right] \le \frac{p(1-p)}{n\epsilon^2}.$$

2. Find the maximum possible value for p(1-p) if $0 . Using this result show that for any <math>\epsilon > 0$

$$\mathbf{P}\left[\left|\frac{S_n}{n} - p\right| \ge \epsilon\right] \le \frac{1}{4n\epsilon^2}.$$

Exercise 5.2. Let X_1, \ldots, X_n be independent real random variables and let S_n be their sum. Let $M_n = \mathbf{E}[X_1] + \ldots + \mathbf{E}[X_n]$ and assume that $\mathbf{Var}[X_i] < R$ for all $i \in \mathbb{N}$. Prove that, for any $\epsilon > 0$,

$$\lim_{n \to +\infty} \mathbf{P} \left[\left| \frac{S_n}{n} - \frac{M_n}{n} \right| < \epsilon \right] = 1.$$

Exercise 5.3 (Bernstein-Chernov bound). Let $n \in \mathbb{N}$ and $p_1, \ldots, p_n \in [0, 1]$. Let X_1, \ldots, X_n be independent random variables with $X_i \sim \operatorname{Ber}_{p_i}$ for any $i = 1, \ldots, n$. Define $S_n := X_1 + \ldots + X_n$ and $m := \mathbf{E}[S_n]$. Show that for any $\delta > 0$:

$$\mathbf{P}[S_n \ge (1+\delta)m] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^m$$

and

$$\mathbf{P}[S_n \le (1 - \delta)m] \le e^{-\frac{\delta^2 m}{2}}.$$