## Hash tables

DS 2018/2019

#### Content

#### Direct-address tables

Hash tables

Chaining

Hash functions

Open addressing

## Symbol table

- A symbol table S with n records;
- Each record has associated a (unique) key;
- ▶ Operations: search(S, k), insert(S, x), delete(S, x);
- ▶ How to organize the data structure *S*?



3 / 29

### The direct-address table

- ▶  $U = \{0, 1, ..., m 1\}$  the universe set of keys;
- ▶ An array T[0..m-1]:

$$T[k] = \begin{cases} x & \text{if } x \in S \text{ and } x.key = k \\ NULL & \text{otherwise.} \end{cases}$$

► Each position (slot) in the array corresponds to a key in the universe *U*.

▶ If |S| = n, then  $n \le m$ .

4 / 29

FII, UAIC Lecture 11 DS 2018/2019

## The direct-address table - Operations

Operations

```
Function search(T, k)
begin
   return T[k]
end
Procedure insert(T, x)
begin
   T[x.key] = x
end
Procedure delete(T,x)
begin
   T[x.kev] = NULL
end
```

▶ The time complexity of operations:  $\Theta(1)$ 

#### The direct-address table

- ▶ The memory space:  $\Theta(|U|)$ .
- Problems:
  - the keys can be non integers;
  - the domain of keys is very large:
    - numbers on 64 bits (18.446.744.073.709.551.616 of different keys)
    - strings;
  - ▶ the set of stored keys is very small relative to *U*.
- ► Solution: hash tables
  - a generalization of the concept of direct-address table;
  - ▶ an efficient data structure for implementing dictionaries.

#### Content

Direct-address tables

#### Hash tables

Chaining

Hash functions

Open addressing

### Hash tables

▶ It uses a hash function h to associate to the keys of universe U a value from the set  $\{0, 1, \dots, m-1\}$ .



- An element with the key k has associated the position h(k) in the table T.
- ► The hash function reduces the domains of indices and implicitly the size of the stored array.
- ▶ Collision:  $\exists x_1, x_2 \in S$  such that  $h(x_1.key) = h(x_2.key)$

FII, UAIC Lecture 11 DS 2018/2019 8 / 29

#### Content

Direct-address tables

Hash tables

### Chaining

Hash functions

Open addressing

## Collision resolution by chaining

► The records that have associated the same slot will be stored in a linked list. T becomes an array of pointers.



- A simple solution, but it requires additional memory space.
- ▶ Worst case scenario: all keys have associated the same slot
  - the access time:  $\Theta(n)$ .

## Chaining - Operations

```
Function search(T, k)
begin
   search for the element with the key k in the list T[h(k)]
end
Procedure insert(T,x)
begin
   insert x at the beginning of the list T[h(x.cheie)]
end
Procedure delete(T, x)
begin
   delete x from the list T[h(x.cheie)]
end
```

## Chaining - Complexity analysis

Search:

The worst case complexity depends on the length of the list.

► Insertion:

The worst case complexity: O(1).

Deletion:

O(1) for doubly linked lists; for simple linked lists, first search x and store his predecessor in order to restore the link.

## Chaining – The average case complexity analysis

▶ The assumption of simple uniform hashing: each key  $k \in U$  has an equal probability to be stored in any location in the table T and independently of the locations of other keys.

▶ The load factor of the table T is

$$\alpha = n/m$$
,

where n is the number of keys (|S|), and m is the number of locations (the size of the array T).

▶ The time to compute the hash function is  $\Theta(1)$ .



FII, UAIC Lecture 11 DS 2018/2019 13 / 29

# Chaining - The average case complexity analysis

#### Theorem:

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average case time  $\Theta(1+\alpha)$ , under the assumption of simple uniform hashing.

#### Theorem:

In a hash table in which collisions are resolved by chaining, a successful search takes average case time  $\Theta(1+\alpha)$ , under the assumption of simple uniform hashing.

### Corollary:

If the number of slots is at least proportional to the number of elements  $(n = O(m) \text{ or, equivalently, } \alpha = O(1))$ , then the search operation has the complexity, in **average**, O(1).

### Content

Direct-address tables

Hash tables

Chaining

Hash functions

Open addressing



#### The hash function

- ▶ Deterministic: for a key k, the function must provide always the same value h(k).
- Random: aims to minimize collisions.
- ▶ A good hash function distributes the keys uniformly in the locations of the table.
- ▶ The assumption of simple uniform hashing is difficult to guarantee, but there are heuristic techniques that work well in practice (as long as their shortcomings can be avoided).

### Hash functions - The division method

$$h(k) = k \mod m$$

- Assume that all keys are natural numbers.
  - ▶ if the keys are not natural numbers, then we must find a way to interpret them as natural numbers:
  - Example: suppose an identifier of the form (112, 116); in the base 128, it becomes  $(112 \times 128) + 116 = 14452$ .
- Do not choose for m a value with a small divisor d. The predominance of congruent modulo d keys can affect negatively the uniformity.
- ▶ If  $m = 2^r$ , then the value of the function depends only on the lasts r bits of k.
  - Example: k = 1011000111011010 and  $r = 6 \mapsto h(k) = 011010$ .
- ▶ Choose m a prime number that is not close to a power of 2 or 10.

## Hash functions – The multiplication method

$$h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$$

- $ightharpoonup A \in (0,1)$  is a constant.
- ▶ The value of *m* is not critical (usually a power of 2).

$$h(k) = (kA \mod 2^w) rsh(w - r)$$

- $m = 2^r$ , (machine with words of w-bits).
- ► A is an odd integer in the range  $(2^{w-1}, 2^w)$ .
- rsh is the bitwise right shift operator.

### Hash functions – The multiplication method

• Example:  $m = 2^3$  and words on w = 7 bits.

- ▶ Do not choose A too close to  $2^{w-1}$  or  $2^w$ .
- Knuth:  $A = (\sqrt{5} 1)/2$ .
- ▶ The multiplication modulo  $2^w$  is faster compared to the division; the operator *rsh* is fast.

# Hash functions - Universal hashing

$$h(k) = [(ak + b) \mod p] \mod m$$

- ▶ p a prime number with p > |U|;
- ▶ a, b random numbers in  $\{0, ..., p-1\}$ .

 $k_1 \neq k_2$ ,  $Pr_{a,b}\{h(k_1) = h(k_2)\} = 1/m$ .

FII, UAIC Lecture 11 DS 2018/2019 20 / 29

#### Content

Direct-address tables

Hash tables

Chaining

Hash functions

Open addressing



# Solving collisions by open addressing

- ▶ All items are stored inside the table *T*; no additional memory space is used, except for the hash table.
- ► The insert function examines the table until an empty location is found.
- ► The hash function depends on the key as well as on the number of examination:

$$h: U \times \{0, 1, ..., m-1\} \mapsto \{0, 1, ..., m-1\}$$

- ▶ The sequence of examinations (**probe sequence**)  $< h(k,0), h(k,1), \cdots, h(k,m-1) >$  must be a permutation of  $\{0,1,..,m-1\}.$
- ▶ Disadvantages: the table can be filled; the deletion may become difficult.

FII, UAIC Lecture 11 DS 2018/2019 22 / 29

## Open addressing - Operations

```
Function search(T, k)
begin
    i \leftarrow 0
    repeat
       j \leftarrow h(k, i)
        if T[j] == k then
            return i
        else
            i \leftarrow i + 1
    until T[i] == NULL \ OR \ i == m;
    return NULL
end
```

## Open addressing - Operations

```
Function insert(T, k)
begin
    i \leftarrow 0
    repeat
        j \leftarrow h(k, i)
        if T[j] == NULL then
             T[j] \leftarrow k
             return i
        else
            i \leftarrow i + 1
    until i == m;
    return -1
end
```

# Open addressing – Strategies for probing

#### Linear probing:

$$h(k,i) = (h'(k) + i) \mod m$$

- $\blacktriangleright$  h'(k) an ordinary hash function.
- $\blacktriangleright$  For a key k, the probe sequence is

$$h'(k), h'(k) + 1, h'(k) + 2, ..., m - 1, 0, 1, ..., h'(k) - 1.$$

- Advantage: a simple method.
- ▶ Disadvantage: *primary clustering* − long strings of occupied slots build up, increasing the average search time.

# Open addressing – Strategies for probing

#### Quadratic probing:

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

- $\blacktriangleright$  h'(k) an ordinary hash function.
- For a key k, the first location probed is h'(k), and the next positions probed are offset by amounts that depend in a quadratic manner on the previously probed position.
- ▶ Disadvantage: *secondary clustering* if two keys have the same initial probe position, then their probe sequences are the same.
- ▶ It works better than linear probing.

26 / 29

# Open addressing - Strategies for probing

#### Double hashing:

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m$$

- ▶  $h_1(k)$  si  $h_2(k)$  two ordinary hash functions.
- For a key k, the first location probed is  $h_1(k)$ , and the next positions probed are offset by  $h_2(k) \mod m$  towards the previous position.
- ▶ This method has in general good results, assuming that  $h_2(k)$  is relatively prime to m. One way to accomplish this is to consider m a power of 2 and to choose  $h_2(k)$  such that to result only odd numbers.

FII, UAIC Lecture 11 DS 2018/2019 27 / 29

## Open addressing - Complexity analysis

The uniform hashing assumption: each key is equally likely to have any of the m! permutations as probe sequence.

#### Theorem:

Given an open-address hash table with load factor  $\alpha < 1$ , assuming uniform hashing, the average number of probes is at most

- $ightharpoonup \frac{1}{1-\alpha}$  in an unsuccessful search, and
- $ightharpoonup \frac{1}{\alpha} ln \frac{1}{1-\alpha}$  in a successful search.

### Corollary:

If  $\alpha$  is constant, then accessing an open-address hash table requires in average a constant time,  $\Theta(1)$ .

### **Applications**

- ► Hash tables are used for: database indexing, compilers symbol tables, caches, etc.
- ▶ Applications of hash functions: CRC, Cryptographic hash functions, etc.