Arquitectura de computadores I

El computador y sus componentes

Conceptos generales

- Sistemas de hardware son inflexibles
- Hardware de propósito general puede realizar diferentes tareas, si recibe las señales de control apropiadas
- El cableado interno de control, provee las señales de control

Conceptos generales

¿Que es un programa?

- Una secuencia de pasos
- Por cada paso, una operación aritmética o lógica es realizada
- Por cada operación, se requiere un conjunto de señales de control

Function of Control Unit

- Para cada operación un único código es requerido
 - -e.g. ADD, MOVE
- Un segmento de hardware acepta el código y se generan las señales de control

¡Esto es un computador!

Componentes

- La unidad de control y la unidad lógica contituyen la Unidad Central de Proceso (Central Processing Unit - CPU)
- Datos e instrucciones necesitan ser obtenidos dentro del sistema y sus resultados deben salir del sistema
 - —Entradas/Salidas
- Se requiere almacenamiento temporal de código
 - -Memoria principal

Componentes del computador: Vista alto nivel

Ciclo de instrucción

- Consta de dos pasos:
 - —Captación
 - —Ejecución

Ciclo de captación

- El contador de programa (PC) indica la dirección de la siguiente instrucción a captar
- El procesador capta la instrucción desde una localización de memoria indicada por PC
- Incrementa PC
- Instrucción es cargada en el registro de instrucciones (IR)
- El procesador interpreta la instrucción y la ejecuta

Ciclo de ejecución

- Procesador a memoria
 - Datos transferidos entre la CPU y la memoria principal
- Procesador a E/S
 - —Transferencia de datos entre la CPU y el modulo E/S
- Procesamiento de datos
 - Algunas operaciones aritmeticas y lógicas son realizadas
- Control
 - —Alteración de la secuencia de operaciones
 - —Ejemplo: Salto

Ejemplo de la ejecución de un programa

Diagrama de ejecución de una instrucción

Interrupciones

- Mecanismo para que otros módulos (ejemplo E/S) puedan ejecutar una interrupción normal de un proceso
- Programa
 - —Desbordamiento, división por cero
- Tiempo
 - —Generado por el procesador de tiempo interno
 - —Usado en multitarea
- E/S
 - —Desde un controlador E/S

Control de flujo en un programa

Ciclo de interrupción

- Añadido a la instrucción
- Procesador busca interrupciones
 - -Indicada por una señal de interrupción
- Si no hay interrupción, capta la siguiente instrucción
- Si hay una interrupción pendiente
 - -Suspende la ejecución del programa actual
 - —Guarda contexto
 - Establece PC en la dirección donde inicial la rutina de interrupción
 - —Interrumpe el proceso
 - Restaura contexto y continua el programa interrumpido

Transferencia de control vía interrupción

Ciclo de instrucción con interrupciones

Ciclo de instrucción con interrupciones

Múltiples interrupciones

Apagar interrupciones

- El procesador ignora otras interrupciones mientras esté procesando una
- Estas quedan una lista de interrupciones pendientes

Definir prioridad

- Interrupciones de baja prioridad pueden ser interrumpidas por interrupciones de alta prioridad
- —Se una interrupción detiene el proceso de una interrupción de menor prioridad, esta continua después de la interrupción de mayor prioridad

Múltiples interrupciones

Conexiones

- Todas las unidades del computador deben estar conectadas
- Diferentes tipos de conexiones para diferentes tipos de unidades
 - -Memoria
 - —Entrada/Salida
 - -CPU

Módulos del computador

Conexión de la memoria

- Recibe y envía datos
- Recibe direcciones (localizaciones)
- Recibe señales de control
 - -Leer
 - —Escribir

Conexiones de dispositivos E/S

- Similar a las conexiones de memoria
- Salida
 - Recibe datos desde el computador
 - Envía datos a un periférico
- Entrada
 - Envia datos al computador

Conexiones de la CPU

- Leen instrucciones y datos
- Escriben datos de salida
- Envía señales de control a otras unidades
- Recibe interrupciones

Buses

- Hay un gran número de sistemas interconectados
- Las estructuras simples y múltiples de buses son muy comunes
- Ejemplo: Buses de control, de direccionamiento, de datos, etc

¿Que es un bus?

- Es una vía de comunicación que conecta dos o más dispositivos
- Es de comunicación de doble vía
- Usualmente están agrupados
 - —Un número de canales (caminos) en un bus
 - Ejemplo: un bus de 32 bits, tiene 32 canales de 1 bit

Bus de datos

- Acarrea datos
 - No hay diferencia entre datos e instrucciones en este nivel
- El ancho del bus es clave determinante del rendimiento
 - -8, 16, 32, 64 bit

Bus de direcciones

- Identifica la fuente y el destino de los datos
- Ejemplo: La CPU lee una instrucción en memoria que es localizada por una dirección
- El ancho del bus determina la máxima capacidad de memoria del sistema
 - —Ejemplo un bus de 16 bit permite manejar un sistema de 64K de memoria

Bus de control

- Controla el flujo de la información
 - -Señales de lectura/escritura de memoria
 - Requerimiento de interrupciones
 - —Señales de reloj

Esquema de interconexión de un bus

Realización fisica de una arquitectura de bus

Realización fisica de una arquitectura de bus

Problemas de buses simples

- Presentan problemas de retrasos en la programación (Lags)
- Muchos sistemas utilizan buses múltiples para solucionar estos problemas

Modelo tradicional (ISA) de Bus

Configuración de alto rendimiento de Bus

Tipos de buses

- Dedicados
 - —Separan datos y direcciones
- Multiplexados
 - Lineas compartidas
 - Linea de control indicando si es un dato o una dirección
 - —Ventajas: pocas lineas
 - —Desventajas
 - Control complejo

Arbitraje de buses

- Más de un modulo puede controlar un bus
- Ejemplo CPU y Memoria
- Sólo un modulo puede controlar al tiempo al bus
- El arbitraje puede ser centralizado o distribuido

Arbitraje de buses

- Centralizado
 - —Un hardware controla el bus
 - Controlador de bus
 - Arbitro
 - —Puede ser parte de la CPU o no
- Distribuido
 - Cada modulo reclama el control del bus
 - Existe una lógica de control en todos los modulos

Control de tiempo

- Coordinación de los eventos del bus
- Sincrono
 - Los eventos son determinados por señales de reloj
 - —Todos los dispositivos pueden leer el reloj

Diagrama de tiempo sincrono

Bus PCI

- Conexiones de componentes perifericos
- 32 o 64 bit
- 50 lineas

Lineas de bus PCI

- Lineas del sistema
 - —Incluyen reloj y reset
- Direcciones y datos
 - —32 lineas multiplexadas
 - Lineas de interrupciones
- Interface de control
- Lineas de error

Arbitro bus PCI

Gracias

¿Preguntas? Próxima clase: Memoria cache :) Feliz fin de semana