Emory University **MATH 347 Non Linear Optimization**

Learning Notes

Jiuru Lyu

January 24, 2024

Contents

1	Math Preliminaries	2
	1.1 Introduction to Optimization	2
	1.2 Linear Algebra Review	4
2	Unconstrained Optimization	11
3	Least Square	12
4	Constrained Optimization	13

1 Math Preliminaries

1.1 Introduction to Optimization

Definition 1.1.1 (Optimization Problem). The main optimization problem can be stated as follows

$$\min_{x \in S} f(x),\tag{1}$$

where

- x is the *optimization variable*,
- S is the feasible set, and
- *f* is the *objective function*.

Remark 1.1 $\max_{x \in S} f(x) = -\min_{x \in S} -f(x)$. Hence, we will only study minimization problems.

Theorem 1.1.2 Solving an Optimization Problem

- Theoretical Analysis: analytic solution
- Numerical solution/optimization

Definition 1.1.3 (Solution Methods depend on the type of x, S, and f).

• When x is continuous (e.g., \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{m \times n}$, ...), then the optimization problem stated in Eq. (1) is a *continuous optimization problem*. *It will also be the focus of this class*.

Opposite to continuous optimization problems, we have *discrete optimization problem* if x is discrete.

If x has both types of components, then we call the problem *mixed*.

- \bullet Depending on S, we can have
 - Unconstrained problems: where $S = \mathbb{R}^n$, $S = \mathbb{R}^{m \times n}$, ... (m, n are fixed).
 - Constrained problems: where $S \subsetneq \mathbb{R}^n$, $S \subsetneq \mathbb{R}^{m \times n}$,

Both types of problems will be studied.

- Depending on f, we have
 - $Smooth\ optimization\ problems:\ f$ has first and/or second order derivatives.

Only smooth optimization problems will be studied.

- Non-smooth optimization problems: f is not differentiable.

Definition 1.1.4 (Linear Optimization/Program). If f is linear and S consists of linear constrains, then the optimization problem is called a *linear problem/program*.

Example 1.1.5 Classification of Optimization Problems

1. Consider the following problem

$$\min_{x_1, x_2, x_3} x_1^2 - 4x_1x_2 + 3x_2x_3 + \sin x_3$$

Solution 1.

- Optimization variable: $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. \longrightarrow continuous.
- Feasible set: $S = \mathbb{R}^3$. \longrightarrow unconstrained.
- Objective function: $f(x_1, x_2, x_3) = x_1^2 4x_1x_2 + 3x_2x_3 + \sin x_3$. \longrightarrow smooth but non-linear.

2. Consider the following problem

$$\max_{\substack{4x_1+7x_2+3x_3\leq 1\\x_1,x_2,x_3\geq 0}} x_1+2x_2+3x_3$$

Solution 2.

- Optimization variable: $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. \longrightarrow continuous.
- Feasible set: $S = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \ge 0, 4x_1 + 7x_2 + 3x_3 \le 1\} \subsetneq \mathbb{R}^3.$ constrained.
- Objective function: $f(x_1, x_2, x_3) = x_1 + 2x_2 + 3x_3$. \longrightarrow smooth and linear.

Remark 1.2 This problem can be considered as the budget constrained optimization problem in Economics.

3. Consider the following problem

$$\min_{x_1, x_2 \ge 0} 4x_1 - 3|x_2| + \sin(x_1^2 - 2x_2)$$

Solution 3.

• Optimization variable: $x = (x_1, x_2) \in \mathbb{R}^2$. \longrightarrow continuous.

- - Feasible set: $S = \{(x_1, x_2) : x_1, x_2 \ge 0\} \subsetneq \mathbb{R}62. \longrightarrow \text{constrained.}$
 - Objective function: $f(x_1, x_2) = 4x_1 3|x_2| + \sin(x_1^2 2x_2)$. \longrightarrow non-smooth and non-linear.

Remark 1.3 In this particular problem, $x_2 \ge 0$, and so $f(x_1, x_2) = 4x_1 - 3x_2 + \sin(x_1^2 - 2x_2)$ on the feasible set. Hence, this problem can be equivalently written as

$$\min_{x_1, x_2 \ge 0} 4x_1 - 3x_2 + \sin\left(x_1^2 - 2x_2\right),\,$$

which is a smooth optimization problem.

1.2 Linear Algebra Review

Example 1.2.1 Why linear algebra for optimization?

Consider $\min_{x \in \mathbb{R}} f(x)$, where $f(x) = c + bx + ax^2, \ a, b, c \in \mathbb{R}$.

- a > 0: $x^* = -\frac{b}{2a}$ is a global minimum and $f(x^*) = c \frac{b^2}{4a}$.
- a < 0: no minimum exists.
- a = 0: f(x) = c + bx.
 - $b \neq 0$: no minimum exists.
 - b = 0: f(x) = c, and every x is a minimum point.

We can approximate any smoothing function using Taylor's approximation and make them simple into the case discussed above.

Theorem 1.2.2 Taylor's Approximation

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2}_{q(x)} + \underbrace{\varepsilon(x - x_0)(x - x_0)^2}_{\text{error}},$$

where $\lim_{x\to x_0} \varepsilon(x-x_0)$.

Remark 1.4 The hope is that the quadratic approximation will inform us on the behavior of f near x_0 and be useful for instance in referring x_0 on the subject of optimality.

Definition 1.2.3 (Quadratic Approximation in Higher Dimensions). When d>1, we consider $\min_{x\in\mathbb{P}^d}f(x)$. Then, the *quadratic approximation* of f is defined as

$$q(x) \coloneqq c + \langle b, x \rangle + \langle x, Ax \rangle,$$

where $c \in \mathbb{R}$, $b \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times d}$.

Remark 1.5 Then, to know if a minimum exists, we need information on the matrix A and the vector b.

Definition 1.2.4 (Vector, \mathbb{R}^d). We define a *vector* in \mathbb{R}^d as a column vector.

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in \mathbb{R}^d, \ x_i \in \mathbb{R}.$$

On \mathbb{R}^d , we also have the following operations defined

• Addition:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_d + y_d \end{pmatrix}, \ x_i, y_i \in \mathbb{R}$$

Scalar multiplication:

$$\alpha \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_d \end{pmatrix}, \alpha, x_i \in \mathbb{R}$$

Definition 1.2.5 (Basis of \mathbb{R}^d). A collection of vectors $v_1 \dots, v_d \in \mathbb{R}^d$ is a *basis* in \mathbb{R}^d if $\forall x \in \mathbb{R}^d$, $\exists ! \alpha_1, \dots, \alpha_d \in \mathbb{R}$ *s.t.* $x = \alpha_1 v_1 + \dots + \alpha_d v_d$.

Example 1.2.6 The Standard Basis

The standard basis is defines as

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix},$$

where 1 is at the *i*-th position for $1 \le i \le d$. Note that $\forall x \in \mathbb{R}^d, \ x = x_1e_1 + \cdots + x_de_d$.

Notation 1.7.

$$0_d = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Definition 1.2.8 (Inner Product). $\langle \cdot, \cdot \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is an *inner product* if

- (symmetry) $\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in \mathbb{R}^d$
- (additivity) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \quad \forall x, y, z \in \mathbb{R}^d$
- (homogeneity) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \forall x, y \in \mathbb{R}^d, \ \lambda \in \mathbb{R}$
- (positive definiteness) $\langle x, x \rangle \geq \forall x \in \mathbb{R}^d$ and $\langle x, x \rangle = 0 \iff x = 0$

Example 1.2.9 Examples of Inner Products

1. **Definition 1.2.10 (Dot Product).** The *dot product* of $x, y \in \mathbb{R}^d$ is defined as

$$\langle x, y \rangle = x_1 y_1 + \dots + x_d y_d = \sum_{i=1}^d x_i y_i \quad \forall x, y \in \mathbb{R}^d.$$

It is also referred as the *standard inner product*, and we often use the notation $x \cdot y$ to denote it.

2. **Definition 1.2.11 (Weighted Dot Product).** The *weighted dot product* of $x, y \in \mathbb{R}^d$ with some weight w is defined as

$$\langle x, y \rangle_w = \sum_{i=1}^d w_i x_i y_i,$$

where $w_1, \ldots, w_d > 0$ are called *weights*.

Remark 1.6 When d=2, then $\langle x,y\rangle=|x||y|\cos\angle(x,y)$. Dot product measure how correlated are two vectors (with respect to their directions).

Definition 1.2.12 (Vector Norm). $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ is a *norm* if

- (non-negativity) $||x|| \ge 0 \quad \forall x \in \mathbb{R}^d \text{ and } ||x|| = 0 \iff x = 0$
- (positive homogeneity) $\|\lambda x\| = |\lambda| \|x\| \quad \forall \lambda \in \mathbb{R}, \ x \in \mathbb{R}^d$
- (triangular inequality) $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^d$.

Remark 1.7 *Vector norm introduces the notion of length of vectors in* \mathbb{R}^d .

Example 1.2.13 Examples of Vector Norms

• If $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^d , then

$$||x|| = \sqrt{\langle x, x \rangle} \quad \forall x \in \mathbb{R}^d$$

is a norm. For instance,

$$||x||_2 = \sqrt{x \cdot x} = \left(\sum_{i=1}^d x_i^2\right)^{\frac{1}{2}}.$$

This norm is called the *standard (Euclidean)* or ℓ_2 norm in \mathbb{R}^d .

• **Definition 1.2.14** (ℓ_p **Norms).** Suppose $p \ge 1$, then

$$\|x\|_p := \left(\sum_{i=1}^d x_i^p\right)^{\frac{1}{p}}.$$

• Definition 1.2.15 (∞ -Norms).

$$||x||_{\infty} \coloneqq \max_{1 \le i \le d} |x_i| \quad \forall x \in \mathbb{R}^d.$$

Remark 1.8 $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.

Theorem 1.2.16 Cauchy-Schwarz Inequality

Assume that $\langle \cdot, \cdot \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is an inner product, then

$$\left|\langle x, y \rangle\right|^2 \le \langle x, x \rangle \cdot \langle y, y \rangle \quad \forall x, y \in \mathbb{R}^d.$$

In particular, if $||x|| = \sqrt{\langle x, x \rangle}$, then

$$|\langle x, y \rangle| \le ||x|| \cdot ||y|| \quad \forall x, y \in \mathbb{R}^d.$$

For the standard inner product, we have

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \|x\|_2 \cdot \|y\|_2 \quad \forall x, y \in \mathbb{R}^d.$$

The equality holds when \boldsymbol{x} and \boldsymbol{y} are linearly dependent.

Definition 1.2.17 (Matrix). Let $d, m \in \mathbb{N}$. We say that $A \in \mathbb{R}^{d \times m}$ is a $d \times m$ matrix if

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d1} & a_{d2} & \cdots & a_{dm} \end{pmatrix} = \left(a_{ij}\right)_{i=1,j=1}^{d,m}$$

Definition 1.2.18 (Operations with Matrices).

- Let $A, B \in \mathbb{R}^{d \times m}$, then $\left(A + B\right)_{i,j} = a_{ij} + b_{ij} \quad \forall i, j$.
- Let $A \in \mathbb{R}^{d \times m}$ and $\alpha \in \mathbb{R}$, then $(\alpha A)_{ij} = \alpha a_{ij} \quad \forall i, j$.
- Let $A \in \mathbb{R}^{d \times m}$ and $B \in \mathbb{R}^{m,n}$, then $AB \in \mathbb{R}^{d \times n}$, and $\left(AB\right)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} \quad \forall i,j$.

Remark 1.9 *Matrix multiplication is not commutative. In fact, if* $A \in \mathbb{R}^{d \times m}$ *and* $B \in \mathbb{R}^{m \times n}$, then BA is defined if and only if n = d. In that case, $AB \in \mathbb{R}^{d \times d}$ and $BA \in \mathbb{R}^{m \times m}$, and so if $m \neq d$, AB and BA have different sizes. Finally, even if m = d = n, $AB \neq BA$ in general.

Definition 1.2.19 (Linear Transformation). The mapping $\mathcal{L}: \mathbb{R}^m \to \mathbb{R}^d$ is called *linear* if $\mathcal{L}(\alpha x_1 + \beta x_2) = \alpha \mathcal{L}(x_1) + \beta \mathcal{L}(x_2)$.

Theorem 1.2.20 Matrices and Linear Transformation

 $\forall A \in \mathbb{R}^{d \times m}$, $\mathcal{L}_A(x) = Ax$ is a linear mapping from \mathbb{R}^m to \mathbb{R}^d . Moreover, $\forall \mathcal{L} : \mathbb{R}^m \to \mathbb{R}^d$ linear, $\exists ! A \in \mathbb{R}^{d \times m}$ s.t. $\mathcal{L} = \mathcal{L}_A$.

Proof 1. Here, we offer an intuition on why this is true. Suppose $A \in \mathbb{R}^{d \times m}$ and $x \in \mathbb{R}^m$ s.t.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{d1} & \cdots & a_{dm} \end{pmatrix} \quad \text{and} \quad x \in \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \in \mathbb{R}^{m \times 1}.$$

Then, $Ax \in \mathbb{R}^{d \times 1}$ is the following

$$Ax = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{d1} & \cdots & a_{dm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1m}x_m \\ \vdots \\ a_{d1}x_1 + \cdots + a_{dm}x_m \end{pmatrix} \in \mathbb{R}^{d \times 1}.$$

So, if $\mathcal{L}_A(x) = Ax$ for $x \in \mathbb{R}^m$, then $\mathcal{L}_A : \mathbb{R}^m \to \mathbb{R}^d$ is linear.

Theorem 1.2.21 Matrix Multiplication as Composite Linear Transformations

Suppose $\mathcal{L}_A: \mathbb{R}^m \to \mathbb{R}^d$ and $\mathcal{L}_B: \mathbb{R}^n \to \mathbb{R}^m$, where $A \in \mathbb{R}^{d \times m}$ and $B \in \mathbb{R}^{m \times n}$. Define $\mathcal{L}(x) = \mathcal{L}_A \circ \mathcal{L}_B(x) = \mathcal{L}_A(\mathcal{L}_B(x)) \quad \forall x \in \mathbb{R}^n$. Then, $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^d$. Since \mathcal{L}_A and \mathcal{L}_B are linear, we found that \mathcal{L} is also linear. Hence, $\mathcal{L} = \mathcal{L}_C$ f.s. $C \in \mathbb{R}^{d \times n}$. It turns out that C = AB.

Definition 1.2.22 (Transpose of Matrix). Let $A \in \mathbb{R}^{d \times m}$, then its transpose $A^T \in \mathbb{R}^{m \times d}$, and

$$\left(A^T\right)_{ij} = a_{ji}.$$

Corollary 1.2.23: If $x, y \in \mathbb{R}^d$, then $\langle x, y \rangle = \sum_{i=1}^d x_i y_i = x^T y = x y^T$.

Proof 2. Suppose
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$
, then $x^T = \begin{pmatrix} x_1 & \cdots & x_d \end{pmatrix}$.

$$x^T y = \begin{pmatrix} x_1 & \cdots & x_d \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = x_1 y_1 + \cdots + x_d y_d.$$

Corollary 1.2.24 Cauchy-Schwarz: $|x^Ty| \le ||x||_2 ||y||_2$.

Definition 1.2.25 (Trace of a Matrix). Assume that $A \in \mathbb{R}^{d \times d}$, the *trace* of A, denoted as Tr(A), is defined as

$$\operatorname{Tr}(A) = \sum_{i=1}^{d} a_{ii}.$$

Definition 1.2.26 (Determinant of a Matrix). Assume that $A \in \mathbb{R}^{d \times d}$, the *determinant* of A, denoted as det(A), is defined as

$$\det(A) = \sum_{\sigma \in S_d} (-1)^{i(\sigma)} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{d\sigma(d)},$$

where S_d is the set of all possible permutation of size d and $i(\sigma)$ denotes the sign of the permutation.

Definition 1.2.27 (Eigenvalue and Eigenvector). Assume that $A \in \mathbb{R}^{d \times d}$. We say that λ is an *eigenvalue* for A if $\exists x \in \mathbb{R}^d \setminus \{0\}$ *s.t.* $Ax = \lambda x$. In this case, x is called an *eigenvector*.

Definition 1.2.28 (Diagonalizability). A matrix $A \in \mathbb{R}^{d \times d}$ is called *diagonalizable* if \exists basis v_1, \ldots, v_d s.t. $Av_i = \lambda v_i \quad \forall 1 \leq i \leq d$.

Theorem 1.2.29 Diagonalization, Singular Value Decomposition (SVD) of Squared **Matrices**

Assume that A is diagonalizable and

$$V = \begin{pmatrix} v_1 & v_2 & \cdots & v_d \end{pmatrix}.$$

Then, $A = VDV^{-1}$, where D is a diagonal matrix such that

$$D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_d \end{pmatrix}.$$

Example 1.2.30 Application of Diagonalization

$$A^2 = (VDV^{-1})(VDV^{-1}) = VD\underbrace{V^{-1}V}_{I}DV^{-1} = VD^2V^{-1}.$$

Generally,

$$A^{n} = VD^{n}V^{-1} = V \begin{pmatrix} \lambda_{1}^{n} & 0 \\ & \ddots & \\ 0 & v_{d}^{n} \end{pmatrix} V^{-1}.$$

Remark 1.10 Remarks on Diagonalization

- There might be repeating eigenvalues. Typically, we enumerate λ 's s.t. $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$.
- In general, it is hard to decide whether A is diagonalizable. For example, rotation matrices have no eigenvectors nor eigenvalues.
- If A is symmetric; that is $A = A^T$, then A is diagonalizable. Moreover, we can choose basis v_1,\ldots,v_d s.t.

$$v_i^T v_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}.$$

Such bases are called orthonormal. In matrix form, if $V = \begin{pmatrix} v_1 & v_2 & \cdots & v_d \end{pmatrix}$, then

$$V^T V = \begin{pmatrix} v_1^T \\ \vdots \\ v_d^T \end{pmatrix} \begin{pmatrix} v_1 & \cdots & v_d \end{pmatrix} = I.$$

That is, $V^T = V^{-1}$, and hence $A = VDV^{-1} = VDV^T$.

2 Unconstrained Optimization

3 Least Square

4 Constrained Optimization