Metagenomics Pipeline

16S/ITS analysis pipeline

Installation of Qiime2 and tutorials:

https://docs.qiime2.org/2019.7/

Building/downloading databases:

https://docs.qiime2.org/2019.7/tutorials/importing/https://docs.qiime2.org/2019.7/data-resources/

Forum for QA:

https://forum.qiime2.org/

Commands used for pipeline:

File preparation

mkdir emp-single-end-sequences

move R1 and index fastq file into the emp-single-end-sequences directory

qiime tools import --type EMPSingleEndSequences --input-path emp-single-end-sequences --output-path emp-single-end-sequences --output-path emp-single-end-sequences.qza

Option1, use the wrapper script:

sh ~/pipelines/Github/MetagenomicsPipeline/16S_pipeline.V8_Mac.sh /Users/chengguo/Desktop/Project/BRA/BRA_merged/MK_BRA_AllWave3Samples_Mapping.txt 10000 1000 Wave ~/Desktop/Hengchuang/16S_reference/gg-13-8-99-515-806-nb-classifier.qza ~/Desktop/Hengchuang/16S_reference/gg-13-5-97.rep_set.otu.qza N Dam

Option2, use individual commands:

qiime demux emp-single --i-seqs emp-single-end-sequences.qza --m-barcodes-file RISE-ITS-mapping.txt --m-barcodes-column BarcodeSequence --o-per-sample-sequences demux.qza --p-rev-comp-barcodes qiime demux summarize --i-data demux.qza --o-visualization demux.qzv

zcat < sequences.fastq.gz | head

qiime dada2 denoise-single --i-demultiplexed-seqs demux.qza --p-trim-left 10 --p-trunc-len 250 --o-representative-sequences rep-seqs-dada2.qza --o-table table-dada2.qza --p-n-threads 0 --o-denoising-stats stats-dada2.qza

qiime feature-classifier classify-sklearn --i-classifier ~/Desktop/Hengchuang/ITS_reference/UNITE/2017.12/unite-ver7-dynamic-classifier-01.12.2017.qza --i-reads rep-seqs-dada2.qza --o-classification taxonomy.qza

mv table-dada2.qza table.qza

mv rep-segs-dada2.gza rep-segs.gza

qiime feature-table summarize --i-table table.qza --o-visualization table.qzv --m-sample-metadata-file RISE-ITS-mapping.txt
qiime feature-table tabulate-seqs --i-data rep-seqs.qza --o-visualization rep-seqs.qzv
qiime alignment mafft --i-sequences rep-seqs.qza --o-alignment aligned-rep-seqs.qza
qiime alignment mask --i-alignment aligned-rep-seqs.qza --o-masked-alignment masked-aligned-rep-seqs.qza
qiime phylogeny fasttree --i-alignment masked-aligned-rep-seqs.qza --o-tree unrooted-tree.qza
qiime phylogeny midpoint-root --i-tree unrooted-tree.qza --o-rooted-tree rooted-tree.qza

for f in rep-seqs.qza table.qza taxonomy.qza; do echo \$f; qiime tools export --input-path \$f --output-path exported; done

giime tools export --input-path rooted-tree.gza --output-path exported/

mv exported/tree.nwk exported/tree.rooted.nwk

qiime tools export --input-path unrooted-tree.qza --output-path exported/

mv exported/tree.nwk exported/tree.unrooted.nwk

biom add-metadata -i exported/feature-table.biom -o exported/feature-table.taxonomy.biom --observation-metadata-fp exported/taxonomy.tsv --observation-header OTUID,taxonomy,confidence

biom convert -i exported/feature-table.taxonomy.biom -o exported/feature-table.taxonomy.txt --to-tsv --header-key taxonomy

biom convert -i exported/feature-table.taxonomy.biom -o exported/feature-table.txt --to-tsvmv exported/tree.nwk exported/tree.rooted.nwk

biom convert -i exported/feature-table.taxonomy.biom -o exported/feature-table.txt --to-tsv

perl ~/pipelines/Github/MetagenomicsPipeline/stat_otu_tab.pl -unif min exported/feature-table.taxonomy.txt -prefix exported/Relative/otu_table --even exported/Relative/otu_table.even.txt -spestat exported/Relative/classified_stat_relative.xls

mv exported/Relative/otu_table.p.relative.mat exported/Relative/otu_table.Phylum.relative.txt mv exported/Relative/otu_table.c.relative.mat exported/Relative/otu_table.Class.relative.txt mv exported/Relative/otu_table.o.relative.mat exported/Relative/otu_table.Order.relative.txt mv exported/Relative/otu_table.f.relative.mat exported/Relative/otu_table.Family.relative.txt mv exported/Relative/otu_table.g.relative.mat exported/Relative/otu_table.Genus.relative.txt mv exported/Relative/otu_table.s.relative.mat exported/Relative/otu_table.Species.relative.txt

qiime taxa barplot --i-table table.Wave3.MS.qza --i-taxonomy taxonomy.qza --m-metadata-file MK_BRA_Wave3_Mother.Stool_MappingUpdate1.txt --o-visualization taxa-bar-plots.qzv

giime diversity alpha --i-table table. Wave 3. BM. gza --p-metric chao 1 --o-alpha-diversity core-metrics-results/chao 1 vector. gza

for c in faith_pd evenness shannon observed_otus chao1; do echo \$c; qiime diversity alpha-group-significance --i-alpha-diversity core-metrics-results/\${c}_vector.qza --m-metadata-file MK_BRA_Wave3_Breast.Milk_MappingUpdate.txt --o-visualization core-metrics-results/\${c}-group-significance.qzv; done

qiime diversity core-metrics-phylogenetic --i-phylogeny rooted-tree.qza --i-table table.Wave3.IS.qza --p-sampling-depth 10000 -- m-metadata-file InfantStool_Mapping_20190806.txt --output-dir core-metrics-results

qiime diversity alpha-rarefaction --i-table table.Wave3.IS.qza --p-max-depth 10000 --m-metadata-file InfantStool_Mapping_20190806.txt --i-phylogeny rooted-tree.qza --p-metrics chao1 --p-metrics shannon --p-metrics observed_otus --p-metrics faith_pd --o-visualization alpha-rarefaction_withchao1.qzv

###Procruste analysis

qiime diversity procrustes-analysis --i-reference exported.NoS/core-metrics-results.9800/unweighted_unifrac_pcoa_results.qza --i-other exported.NoS/picrust2_out_pipeline/pathways_out/core-metrics-results/bray_curtis_pcoa_results.qza --output-dir procrustes-analysis

qiime emperor procrustes-plot --i-reference-pcoa exported.NoS/core-metrics-results.9800/unweighted_unifrac_pcoa_results.qza --i-other-pcoa exported.NoS/picrust2_out_pipeline/pathways_out/core-metrics-results/bray_curtis_pcoa_results.qza --m-metadata-file mapping_all_20200910.txt --o-visualization procrustes-analysis/procrustes-plot.qzv

qiime diversity mantel --i-dm1 exported.NoS/core-metrics-results.9800/unweighted_unifrac_distance_matrix.qza --i-dm2 exported.NoS/picrust2_out_pipeline/pathways_out/core-metrics-results/bray_curtis_distance_matrix.qza --o-visualization procrustes-analysis/mantel.qzv

Saved Visualization to: procrustes-analysis/mantel.qzv

###

Picrust2 for functional prediction with 16S data

Official tutorial: https://github.com/picrust/picrust2

Commands used for pipeline:

Metagenomics analysis pipeline

Background information:

http://huttenhower.sph.harvard.edu/humann2

https://bitbucket.org/biobakery/biobakery/wiki/metaphlan2

https://ccb.jhu.edu/software/kraken2/index.shtml?t=manual

https://ccb.jhu.edu/software/bracken/

https://github.com/jiwoongbio/FMAP

https://bitbucket.org/biobakery/biobakery/wiki/lefse

 $\underline{https://github.com/gc26762524/MetagenomicsPipeline.git}$

Commands used for pipeline:

##Raw fastq files should be analyzed with IlluminaPipelines to the step of hostsubtraction.

ls /share/data/IlluminaData/PCS/Host_subtracted_2019-01-12/bowtie/host_repeats_genomic/P*R1.host_repeats_genomic.unmapped.R1.fastq.gz > PCS.hostsubR1R1.list

#Metaphlan2

perl run metaphlan2.pl RAO.hostsubR1R1.list PE 2

python ~/software/metaphlan2/utils/merge metaphlan tables.py LGY-0* > LGY.merged metaphlan table.20180301.txt

python ~/software/metaphlan2/utils/metaphlan_hclust_heatmap.py -c bbcry --top 25 --minv 0.1 -s log --in LGY.merged_metaphlan_table.20180301.txt --tax_lev g --out LGY.merged_abundance_table.genus.png

python ~/software/metaphlan2/utils/metaphlan_hclust_heatmap.py -c bbcry --top 25 --minv 0.1 -s log --in LGY.merged metaphlan table.20180301.txt --tax lev p --out LGY.merged abundance table.phylum.png

python ~/software/metaphlan2/utils/metaphlan_hclust_heatmap.py -c bbcry --top 25 --minv 0.1 -s log --in LGY.merged_metaphlan_table.20180301.txt --tax_lev f --out LGY.merged_abundance_table.family.png

python ~/software/metaphlan2/utils/metaphlan_hclust_heatmap.py -c bbcry --top 100 --minv 0.1 -s log --in LGY.merged_metaphlan_table.20180301.txt --tax_lev s --out LGY.merged_abundance_table.species.png

#Humann2

perl run humann.pl RAO.hostsubR1R1.list SE

for f in ../../Pool*/Metagenome/Humann/LGY*/*genefamilies.tsv; do echo \$f; In -s \$f./;done

for f in LGY-0*tsv; do echo \$f; humann2 --input \$f --pathways unipathway --output ./; done

humann2 join tables -i ./ -o LGY.all.genefamilies.tsv --file name genefamilies.tsv

humann2_join_tables -i ./ -o LGY.all.pathabundance.tsv --file_name pathabundance.tsv

humann2_join_tables -i ./ -o LGY.all.pathcoverage.tsv --file_name pathcoverage.tsv

humann2_renorm_table -i LGY.all.pathabundance.tsv -o LGY.all.pathabundance.cpm.tsv --units cpm humann2_renorm_table -i LGY.all.genefamilies.tsv -o LGY.all.genefamilies.cpm.tsv --units cpm

#Kraken2/Bracken

perl run_kraken2.pl RAO.hostsubR1R1.list 2 /share/data/software/kraken2/kraken2/Dec_2018_bacteria/ SE

for f in *report; do echo \$f; python $^{\sim}$ /pipelines/Github/Bracken/src/est_abundance.py -i \$f -k /share/data/software/kraken2/bec_2018_bacteria/database140mers.kmer_distrib -I S -o \${f}.bracken;done

perl Braken2_to_OTUtable.pl /share/data/16sData/taxid2OTU_ranks.txt RSA.EuPathKraken2.list

bash ~/pipelines/Github/MetagenomicsPipeline/visualize_otu_table_by_qiime2.sh /Users/chengguo/Desktop/Project/LGY/Kraken2/All.merged.OTU.Renamed.txt /Users/chengguo/Desktop/Project/LGY/LGY_Mapping.Keemei.tsv SampleType,Family,MotherDaughter LGY

while read f; do echo \$f; echo 'perl ~/pipelines/Github/FMAP/FMAP_mapping.pl' \$f '>' \${f}.mapping.txt | qsub -V -N \$f -cwd -l mem=3G,time=24:: -o \$PWD -e \$PWD -pe smp 4; done < x.pool1

for f in *mapping.txt; do echo \$f; perl ~/pipelines/Github/FMAP_quantification.pl \$f > \${f}.abundance.txt; done

Is *abundance.txt | tr "\n" " "

perl ~/pipelines/Github/FMAP/FMAP_table.pl -n Case_P10_AB037.mapping.txt.abundance.txt Case_P10_AB047.mapping.txt.abundance.txt Case_P10_AB049.mapping.txt.abundance.txt Case_P10_AB052.mapping.txt.abundance.txt Control_P9_CD085.mapping.txt.abundance.txt Control_P9_EF027.mapping.txt.abundance.txt Control_P9_EF036.mapping.txt.abundance.txt Control_P9_GH061.mapping.txt.abundance.txt Control_P9_GH062.mapping.txt.abundance.txt Control_P9_GH063.mapping.txt.abundance.txt Control_P9_IJ029.mapping.txt.abundance.txt > all.merged.abundance.KeepID.KO.txt

perl ~/pipelines/Github/MetagenomicsPipeline/ConvergeKO2Module.pl all.merged.abundance.KeepID.KO.txt > all.merged.abundance.KeepID.Module.txt

perl ~/pipelines/Github/MetagenomicsPipeline/ConvergeKO2Pathway.pl ~all.merged.abundance.KeepID.KO.txt > all.merged.abundance.KeepID.Pathway.txt

#LEFSE

Rscript ~/pipelines/Github/MetagenomicsPipeline/make_lefse_input.R -i all.merged.abundance.KeepID.Pathway.txt -m RSA mapping.txt -g Group1,Group2

for f in *.lefse.txt; do echo \$f; perl -p -i.bak -e 's/\r/\n/g' \$f; lefse-format_input.py \$f ''\$f'.in' -c 1 -u 2 -o 1000000; run_lefse.py \$ $\{f\}$.in \$ $\{f\}$.1vsALL.res; run_lefse.py -y 1 \$ $\{f\}$.in \$ $\{f\}$.ALLvsALL.res; done

for f in *res; do echo f; cat f | sort -k3,3 -k4,4 -r > f.

for f in *res.txt; do echo \$f; perl ~/pipelines/Github/MetagenomicsPipeline/ConvertID2Annotation_LEFSE_output.pl ~/pipelines/Github/MetagenomicsPipeline/FMAP data/KEGG orthology pathway module.txt \$f > \${f}.anno; done

perl ~/pipelines/rename.pl 's/KeepID/KeepAnnotation/' *txt.anno

perl ~/pipelines/rename.pl 's/txt\.anno/txt/' *txt.anno

for f in all.merged.abundance.KeepAnnotation*1vsALL.res.txt; do echo \$f; base=\$(basename \$f.txt);echo \$base; perl -p -i.bak -e 's\r\n/g' \$f; lefse-plot_res.py --left_space 0.3 --dpi 300 \${base}.txt \${base}.png; lefse-plot_res.py --max_feature_len 200 -- orientation h --format pdf --left_space 0.3 --dpi 300 \${base}.txt \${base}.pdf; done