Data collection

Importing libraries

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Importing dataset

In [2]:

data=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset.csv")
data

Out[2]:

:		Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Hei Ra
	0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	
	1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
	2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
	3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
	4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
	•••	•••		•••	•••	•••	•••	•••	•••	•••		
	369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
	370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	
	371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
	372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
	373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	

374 rows × 13 columns

head

```
In [3]: # to display first 8 dataset values
    da=data.head(8)
    da
```

Out[3]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	140/90	85
6	7	Male	29	Teacher	6.3	6	40	7	Obese	140/90	82
7	8	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70
•											•

info

```
In [4]:
```

to identify missing values
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
11	COTUMN	Non Nail Counc	Бсурс
0	Person ID	374 non-null	int64
1	Gender	374 non-null	object
2	Age	374 non-null	int64
3	Occupation	374 non-null	object
4	Sleep Duration	374 non-null	float64
5	Quality of Sleep	374 non-null	int64
6	Physical Activity Level	374 non-null	int64
7	Stress Level	374 non-null	int64
8	BMI Category	374 non-null	object
9	Blood Pressure	374 non-null	object
10	Heart Rate	374 non-null	int64
11	Daily Steps	374 non-null	int64
12	Sleep Disorder	374 non-null	object
d+vn	$ac \cdot f(a) + 64(1) + 64(7)$	object(E)	

dtypes: float64(1), int64(7), object(5)
memory usage: 38.1+ KB

describe

```
In [5]: # to display summary of the dataset
    data.describe()
```

Out[5]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	6816.844920
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	1617.915679
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	3000.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	5600.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	7000.000000
75 %	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	8000.00000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	10000.000000

columns

Out[7]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Hea Ra
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
•••						•••					

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Hea Ra
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	

374 rows × 13 columns

EDA and Visualization

```
In [9]: sns.pairplot(a)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x24b367a4df0>

distribution plot

```
In [10]: sns.displot(a["Age"])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x24b397b8310>

correlation

Out[11]: <AxesSubplot:>

To train the model-Model Building

```
In [12]:
          x=a[['Quality of Sleep']]
          y=a['Stress Level']
In [13]:
           # to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]:
          from sklearn.linear_model import LinearRegression
          lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
          print(lr.intercept )
          15.387000700770844
In [16]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
                        Co-efficient
Out[16]:
          Quality of Sleep
                          -1.360481
In [17]:
           prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
         <matplotlib.collections.PathCollection at 0x24b3bd9a3a0>
Out[17]:
          10
           9
           8
           7
           6
           5
                       4
                                5
                                         6
In [18]:
           print(lr.score(x_test,y_test))
          0.7868966696986355
In [19]:
          lr.score(x_train,y_train)
```

```
Out[19]: 0.8153567061610236
```

Ridge regression

```
In [20]: from sklearn.linear_model import Ridge,Lasso

In [21]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
    rr.score(x_test,y_test)

Out[21]: 0.789481927139916

In [22]: rr.score(x_train,y_train)

Out[22]: 0.8147272781833158

Lasso regression

In [23]: la=Lasso(alpha=10)
```