

408 计算机学科专业基础综合模拟题答案 (三)

- 一、**单项选择题**(第 1~40 小题,每题 2 分,共 80 分。下列每题给出的四个选项中,只有一个选项最符合试题要求)
 - 01.【答案】D
 - 02.【答案】C
 - 03.【答案】A
 - 04.【答案】A
 - 05.【答案】A
 - 06.【答案】B
 - 07.【答案】B
 - 08.【答案】C
 -) 09.【答案】C
 - 10.【答案】C
 - 11.【答案】B
 - 12.【答案】C
 - 13.【答案】B
 - 14.【答案】A
 - 15.【答案】D
 - 16. 【答案】D
 - 17.【答案】C
 - 18. 【答案】D
 - 19.【答案】C
 - 20.【答案】C
 - 21.【答案】B
 - 22.【答案】D
 - 23.【答案】D
 - 24.【答案】A
 - 25.【答案】D
 - 26.【答案】B 🤉
 - 27.【答案】B
 - 28.【答案】B
 - 29.【答案】A
 - 30.【答案】A
 - 31.【答案】C
 - 32.【答案】A
 - 33.【答案】B
 - 34.【答案】A
 - 35.【答案】B

- 36.【答案】A
- 37.【答案】C
- 38.【答案】A
- 39.【答案】B
- 40.【答案】A
- 二、**综合应用题**(第 41~47 题,共 70 分)

41.

1) 邻接矩阵如下:

	∞	2	3	∞	∞	∞	∞	∞
	∞	∞	∞	5	∞	∞	∞	ω
	∞	∞	∞	3	10	∞	∞	œ
	∞	∞	∞	∞	∞	4	∞	ω
7	∞	∞	∞	∞	∞	∞	3	∞
	∞	∞	∞	∞	2	∞	∞	6
	∞	∞	∞	∞	∞	∞	∞	1
	α	∞	∞_{\circ}	ω	∞	∞	∞	∞

- 2) 拓扑序列为: V_1 , V_2 , V_3 , V_4 , V_6 , V_5 , V_7 , V_8 和 V_1 , V_3 , V_2 , V_4 , V_6 , V_5 , V_7 , V_8 0
- 3) 关键路径为: V₁->V₂->V₄->V₅->V₇->V₈、V₁->V₂->V₄->V₆->V₈和 V₁->V₅->V₇->V₈。

V	V_1	V ₂	V_3	V_4	V ₅	V_6	V ₇	V_8
E(V)	0	2	3	7	13	11	16	17
L(V)	0	2	3	7	13	11	16	17

е	$V_1 - > V_2$	V_1 -> V_3	V_2 -> V_4	V ₃ -	$V_3 -> V_5$	V ₄ ->V ₆	$V_6 -> V_5$	$V_5 \rightarrow V_7$	V ₆ ->V ₈	$V_7 - > V_8$
				>V ₄	\$6X		40	190		
E(e)	0	0	2	3	3	7	11	13	11	16
L(e)	0	0	2	4	3	7	11	13	11	16
L(e)-E(e)	0	0	0	1	0	0	0	0	0 0	0

4) 从 V_1 到其他结点的最短路径和距离为: $V_1->V_2$:2、 $V_1->V_3$:3、 $V_1->V_3->V_4$:6、 $V_1->V_3->V_4->V_6$:10、 $V_1->V_3->V_4->V_6$:7、 $V_1->V_3->V_4->V_6$:15、 $V_1->V_3->V_4->V_6$:16

0,1	V ₂	V_3	V_4	V_5	V_6	V_7	V ₈
V_1	2	3	ω	ω	ω . <u>O</u> .	œ	8
V ₁ ,V ₂	-	3	7	ω	Ø	8	ω
V_1, V_2, V_3		- 400	6	13	ω	ω	ω <i>8</i>
V_1, V_2, V_3, V_4		OV X	-	13	10	ω	ω
V ₁ ,V ₂ ,V ₃ ,V ₄ ,V ₆	. 9			12	-	ω ,	16
V ₁ ,V ₂ ,V ₃ ,V ₄ ,V ₆ ,V ₅	AX.		00	P		15	16
$V_1, V_2, V_3, V_4, V_6, V_5, V_7$	rill O.		100			- /	16

42.

1) 算法的基本设计思想: 先将线性表中的元素 a₁ 看成奇号序列的开始, 后续的元素逐个加入到奇号

序列中,由于新加入的元素会挤占原有的偶数号元素的空间,需要将偶数号元素逐个后移。因此当奇数号序列完成时,偶数号序列完成。

2) 代码如下:

3) 时间复杂度为 O(n²), 空间复杂度 O(1)。

43.

- 1) 主存地址至少占 4GB / 1B = 4G = 2³², 占 32 位。
- 2) Data cache 共 64KB / 256B = 256 行, 主存地址划分: 标记 (16 位), 行号 (8 位), 块内偏移 (8 位)。
- 3) 数组 a 包含 100 个 int 类型元素,共 4B * 100 = 400B,占用 400B / 256B = 2 块。数组首地址为 0x0000 0800,对应块号为 8,数组 a 存放的主存块号为 8,9。
- 4) 访问数组 a 的过程 cache 缺失数据次数为 2, 缺失率为 2 / 200 = 2%。

44.

- 1) 带符号整数用补码表示, (R₁) + (R₂) = 037AH + F895H = FC0FH, 真值为-(3*16*16+15*16+1)=-1009。
- 2) 无符号整数减法, (R₁) (R₂) = 037AH F895H = 037AH + 076BH = 0AE5H。没有产生进位, CF=
- 1, 产生溢出。
- 3) 浮点数加法, (R1):037AH, 阶码为 0 15 = -15, 尾数为 1.11 0111 1010, (R2):F895H, 阶码为 30 15 = 15, 尾数为 -1.00 1001 0101。对阶 -15 向 15 对齐, R1 的尾数右移 30 位, 变为 0, (R1) + (R2) = -1.00 1001 0101 * 2^{15} , R2 真值为 -100 1001 0101 * 2^{5} = -2^{15} $2^$

45.代码如下:

```
Semaphore f1 = 0;
Semaphore f2 = 0;
Semaphore f3 = 0;
Semaphore sell = 0;
Semaphore pay = 0;
Semaphore goods = 0

Process boss () {
While(true) {
While(true) {
Yerich Semaphore f2 = 0;
Yerich Semaphore goods = 0

Process fan1 () {
While(true) {
Yerich Semaphore f2 = 0;
Yerich Semaphore f3 = 0;
Yerich Semaphore f4 = 0;
```



```
if(磁带和电池)
                                                       V(pay);
         V(f1);
                                                       P(goods);
      Else if(随身听和电池)
                                                       欣赏一首乐曲;
         V(f2);
                                                       V(sell);
      Else
         V(f3);
      P(pay);
      V(goods);
      P(sell);
    }
Process fan2 () {
                                                Process fan3 () {
    While(true) {
                                                     While(true) {
                                                       P(f3);
      P(f2);
      V(pay);
                                                       V(pay);
      P(goods);
                                                       P(goods);
      欣赏一首乐曲;
                                                       欣赏一首乐曲
      V(sell);
                                                       V(sell);
```

46.

1) 缺页中断是一种特殊的中断,它与一般中断的区别: 在指令执行期间产生和处理中断信号。CPU 通常在一条指令执行完后检查是否有中断请求,而缺页中断是在指令执行期间,发现所要访问的指令或数据不在内存时产生和处理的。一条指令在执行期间可能产生多次缺页中断。如一条读取数据的多字节指令,指令本身跨越两个页面,若指令后一部分所在页面和数据所在页面均不在内存,则该指令的执行至少产生两次缺页中断。

2) 采用 FIFO 算法

序	10(0	11(0	104(1	170(1	73(0	309(3	185(1	245(2	246(2	434(4	458(4	364(3
列)))))))))))
页	0		0,8	,		3	40	3		4		4
页			1			1		2	X	2.		3
	T	3	Т			Т		Т	~036	Т		Т

缺页中断6次。

采用 LRU 算法

序	10(0	11(0	104(1	170(1	73(0	309(3	185(1	245(2	246(2	434(4	458(4	364(3
列))))%))))))	1030)
页	0		0	•		0	100	1		4		4
页			1.00			3	3	2		2		3
	Т	7	T			T	Т	Т		Т		Т

缺页中断7次。

3) 设缺页概率为 p, 平均有效访问时间: (1-p) * (10ms + 10ms) + p * (10ms + 25ms + 10ms + 10ms)

<= 22ms。 P<=5.7%。

47.

1) 主机 A 与主机 B 直接通信, 主机 A 和主机 B、主机 C、主机 D 通过路由器通信。

各主机的子网地址和主机地址如下:

主机名	IP地址	子网地址
А	192.155.28.112	192.155.28.96
В	192.155.28.120	192.155.28.96
С	192.155.28.135	192.155.28.128
D	192.155.28.202	192.155.28.192

- 2) 主机 E的 IP 地址范围是 192.155.28.193-192.155.28.222(192.155.28.202 除外)。
- 3) 主机 A 的直接广播地址是 192.155.28.191, 本地广播地址是 255.255.255.255。使用本地广播地址 发送信息,所有的主机都能收到。
- 4) 将子网掩码修改为 255.255.255.0 可以使得网络中的 4 台主机都能够直接通信。