Almost local metrics

The problem at hand is the following: we wish to construct a notion of distance between two points in $B_e(S^1, \mathbb{R}^2)$ by defining a metric, such that the distance between two points is the length of geodesics between the points. As we have seen, the distance induced by the L^2 -metric vanishes on $B_e(S^1, \mathbb{R}^2)$, so we seek to define metrics, which do not vanish. One type of such metrics is almost local metrics, which, given $f \in B_e(S^1, \mathbb{R}^2)$, are metrics of the form

$$G_f^{\Phi}(h,k) = \int_M \Phi(\text{Vol}(f), H_f, K_f) \bar{g}(h,k) \text{vol}(f^*\bar{g}),$$

where $\Phi: \mathbb{R}^3 \to \mathbb{R}_{>0}$ is smooth, $\operatorname{Vol}(f) = \int_M \operatorname{vol}(f^*\bar{g})$ is the total volume of f(M), H_f is the mean curvature of f and K_f is the Gauss curvature of f. Both H_f and K_f are local invariant properties with respect to the Riemannian metric, g, and so Φ is often chosen to only depend on one of the two curvatures.