HW - Optimization

컴퓨터과학과

2018147563 주우진

1) 의사결정변수를 정의하고, 목적함수, 제약식을 수식으로 표현하시오.

공장 i에서 j로 운송하는 제품 수를 x_{ii} 라 한다.

1. 의사결정변수: 총 수송 비용을 최소화할 수 있는 각 공장에서 각 도시로의 운송할 제품수

 x_{11} : Seattle -> New York

 x_{12} : Seattle -> Chicago

 x_{13} : Seattle -> Topeka

 x_{21} : San Diego -> New York

 x_{22} : San Diego -> Chicago

 x_{23} : San Diego -> Topeka

- 2. 목적함수: 두 개의 공장에서 세 판매점에 보내는 데 드는 운송비용의 합의 최솟값이므로 min $2.5x_{11}$ + $1.7x_{12}$ + $1.8x_{13}$ + $2.5x_{21}$ + $1.8x_{22}$ + $1.4x_{23}$
- 3. 제약식: 한 공장에서 제품 수가 Capacity를 넘어선 안되고, 한 판매점에서 제품 수가 Demands를 넘어서야 한다.

Capacity 제약: $x_{11} + x_{12} + x_{13} \le 350$, $x_{21} + x_{22} + x_{23} \le 600$

Demand 제약: $x_{11} + x_{21} \ge 325$, $x_{12} + x_{22} \ge 300$, $x_{13} + x_{23} \ge 275$

2) Excel solver를 이용하여 최적의 해를 구하시오.

7	А	В	С	D	E	F	G	Н	1	J	K	L	М	N
1														
2								운송 7	데품 수					
3	Plants	New York	Chicago	Topeka	Markets			New York	Chicago	Topeka			운송비 합	계
4	Seattle	2.5	1.7	1.8	350		Seattle				0		Seattle	0
5	San Diego	2.5	1.8	1.4	600		San Diego)			0		San Diego	0
6	Demands	325	300	275	Supplies			0	0	0			합계	0
7														
8														

위와 같이 틀을 작성하였다. 가장 왼쪽의 표엔 각 공장에서 각 판매점으로의 단위 운송비용이 적혀있고 운송 제품 수 표의 각 열과 행의 끝엔 제품 수의 총합이 나타나도록 하였다. 마지막으로 운송비 합계 표엔 SUMPRODUCT를 이용하여 공장 별 운송비 총합과 두 공장의 운송비 총합이 나타나게 하였다. 이후, 한 공장의 제품 수가 Capacity를 안 넘도록, 한 판매점의 제품 수가 Demands를 넘도록, 그리고 제품의 수가 정수가 되도록 설정하여 다음과 같이해 찾기를 실행하였다.

해 찾기를 실행한 후, 다음과 같은 결과를 얻었다.

G	Н	1	J	K	L	M	N
	운송 제	제품 수					
	New York	Chicago	Topeka			운송비 합계	
Seattle	0	300	0	300		Seattle	510
San Diego	325	0	275	600		San Diego	1197.5
	325	300	275			합계	1707.5

즉, 최적의 해는 다음과 같다.

 x_{11} : 0, x_{12} : 300, x_{13} : 0

 x_{21} : 325, x_{22} : 0, x_{23} : 275

3) 운송비가 10% 상승한 경우, 10% 감소한 경우에 대하여 최적해를 구하고 비교하시오.

8					
9	3-1) 운송비	10% 상승			
10					
11	Plants	New York	Chicago	Topeka	Markets
12	Seattle	2.75	1.87	1.98	350
13	San Diego	2.75	1.98	1.54	600
14	Demands	325	300	275	Supplies
15					
16					
17	3-2) 운송비	10% 감소			
18					
19	Plants	New York	Chicago	Topeka	Markets
20	Seattle	2.25	1.53	1.62	350
21	San Diego	2.25	1.62	1.26	600
22	Demands	325	300	275	Supplies
23					
24					

먼저 위와 같이 단위 배송 비용을 설정하였다. 그 후 2)와 같은 방법으로 해를 찾아보니 다음과 같은 결과가 나왔다.

8												
9	3-1) 운송비	10% 상승										
10							운송 기	해품 수				
11	Plants	New York	Chicago	Topeka	Markets		New York	Chicago	Topeka		운송비 합계	
12	Seattle	2.75	1.87	1.98	350	Seattle	0	300	0	300	Seattle	561
13	San Diego	2.75	1.98	1.54	600	San Diego	325	0	275	600	San Diego	1317.25
14	Demands	325	300	275	Supplies		325	300	275		합계	1878.25
15												
16												
17	3-2) 운송비	10% 감소										
18							운송 기	해품 수				
19	Plants	New York	Chicago	Topeka	Markets		New York	Chicago	Topeka		운송비 합계	
20	Seattle	2.25	1.53	1.62	350	Seattle	0	300	0	300	Seattle	459
21	San Diego	2.25	1.62	1.26	600	San Diego	325	0	275	600	San Diego	1077.75
22	Demands	325	300	275	Supplies		325	300	275		합계	1536.75
23												
24												

최적의 해는 2)와 동일하였다. 즉, 운송비 10%의 증가 또는 감소가 최적 해에 영향을 미치지 못하였다.