Naive Bayes Classifier

Classifiers Determine Posterior Probabilities

- > When we build a model for classification, the output probabilities depend on the observations inputs.
- Essentially, we determine: "Given attributes of this observation, the predicted probability of success is ..."

P(*success* | *attributes*)

This is called a posterior probability.

We might also consider the *prior probabilities* that someone has those attributes or that someone is successful.

Bayesian Classifiers

- > Bayesian Classifiers are based on Bayes' theorem.
- Naïve Bayes Classifiers assume that the effect of the inputs are independent of one another.

Example: Looking at the effect of Car Size and Car Color on whether or not an accident occurred.

 $P(Accident \mid Size = Medium \& Color = Blue) = P(Accident \mid Size = Medium) * P(Accident \mid Color = Blue)$

Bayesian Classifiers

Example: Looking at the effect of Car Size and Car Color on whether or not an accident occurred.

 $P(Accident \mid Size = Medium \& Color = Blue) = P(Accident \mid Size = Medium) * P(Accident \mid Color = Blue)$

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

Inputs/Output

- > Inputs (for basic implementation)
 - > Categorical variables
 - Normally distributed numeric variables
 - Class Target
- > Output
 - > Probabilities that a point belongs to each class.

Bayes' Theorem

- Let $x = \{x_1, x_2, ..., x_p\}$ be a sample observation with components representing values made on a set of p attributes.
 - > x = {"Medium", "Blue"} in example from previous slide.
- \triangleright Let C be target class variable, taking levels $\{c_1, c_2, ..., c_L\}$
 - $ightharpoonup c_1=$ "Accident" and $c_2=$ "No Accident" in previous example (L=2)
- \triangleright We want to predict the posterior probability $P(c_i|x)$
 - > The probability that a given observation belongs to each class, given that we know its attributes.
 - > Bayes' Theorem:

$$P(c_i|\mathbf{x}) = \frac{P(\mathbf{x}|c_i)P(c_i)}{P(\mathbf{x})}$$

$$P(c_i|\mathbf{x}) = \frac{P(\mathbf{x}|c_i)P(c_i)}{P(\mathbf{x})}$$

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

$$P(x|c_i) = \prod_{k=1}^{p} P(x_k|c_i)$$

$$P(Medium \& Blue | Yes) = P(Medium | Yes) * P(Blue | Yes) = \frac{2}{9}$$

$$\frac{2}{3}$$

$$\frac{1}{3}$$

$$P(c_i|\mathbf{x}) = \frac{\frac{2}{9}P(c_i)}{P(\mathbf{x})}$$

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

P(
$$c_i|x$$
) = $\frac{\frac{2}{9}P(c_i)}{P(x)}$

Accident

Yes

Yes

P(Medium & Blue) = $P(Medium)P(Blue)$

$$P(Medium \& Blue) = P(Medium)P(Blue) = \frac{1}{6}$$

$$\frac{2}{6}$$

$$\frac{3}{6}$$

PCHACTICE ASSUMITE
$$P(Yes'| Medium' \& Blue') = \frac{\frac{2}{9}P(c_i)}{\frac{1}{6}}$$

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

$$P(Yes') = \frac{1}{2}$$

Final Result

$$P(Yes'|Medium'\&Blue') = \frac{\frac{2}{9} * \frac{1}{2}}{\frac{1}{6}} = \frac{2}{3}$$

but...what happens when we look at P('No' | 'Medium' & 'Blue') ?

$$P(No'|Medium'\&Blue') = \frac{P(x|c_i)P(c_i)}{P(x)}$$

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

$$P(Medium \& Blue | No) = P(Medium | No) * P(Blue | No) = 0$$

$$0$$

$$\frac{2}{2}$$

$$P(No'|Medium'\&Blue') = 0$$

 $P(Yes'|Medium'\&Blue') = \frac{2}{3}$

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

- ➤ Our independence assumption makes these probabilities *estimates* of the truth.
- > The final probabilities will not necessarily sum to 1.
- We'll run into problems when certain attributes do not occur for certain levels of the outcome.

Inputs/Output

- > Inputs (for basic implementation)
 - Categorical variables Can determine probabilities based on cross-tabulation of each variable with target variable
 - Normally distributed numeric variables Can determine probabilities based on values of the normal (Gaussian) distribution with mean μ and variance σ which would be estimated from the data.

$$g(x_i, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

- > Output
 - Probabilities that a point belongs to each class.

We use the following estimation based on the class independence assumption.

$$P(x|c_i) = \prod_{k=1}^{r} P(x_k|c_i)$$

- \triangleright What happens if there is a class, c_i , and an attribute value x_k such that none of the samples in c_i have that attribute value?
- $ightharpoonup P(x_k|c_i) = 0$ which means necessarily that $P(x|c_i) = 0$, even if the probabilities for all the other attributes are very large!

- > Simplest trick is to add a very small number to each cell in every crosstabulation.
- > For our situation...

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

P(Medium & Blue | No) = P(Medium | No) * P(Blue | No) = 0 $0 \qquad \qquad 2$

	Yes	No
Small	0	2
Medium	2	0
Large	1	1

- > Simplest trick is to add a very small number to each cell in every crosstabulation.
- > For our situation...

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

P(Medium & Blue | No) = P(Medium | No) * P(Blue | No) = 0 0 $\frac{2}{2}$

	Yes	No
Small	0 + 0.01	2 + 0.01
Medium	2 + 0.01	0 + 0.01
Large	1 + 0.01	1 + 0.01

- > Simplest trick is to add a very small number to each cell in every crosstabulation.
- > For our situation...

Size	Color	Accident
Medium	Blue	Yes
Medium	Red	Yes
Large	Red	Yes
Large	Blue	No
Large	Blue	No
Small	Red	No

P(Medium & Blue | No) = P(Medium | No) * P(Blue | No) = 0.0022

 $\frac{0.01}{3.03}$

 $\frac{2}{3.03}$

	Yes	No
Small	0.01	2.01
Medium	2.01	0.01
Large	1.01	1.01

- > This correction is known as a smoothing parameter.
- ➤ In large datasets, it is most commonly set = 1.
- > It is a `hyperparameter' than can be tuned via cross-validation.

Advantages of Naïve Bayes

- > Intuitive/Simple to explain and implement
- > Can produce very good predictions
- > Especially powerful on categorical variables and text
- > Relatively fast computation time
- > Robust to noise and irrelevant attributes

Disadvantages of Naïve Bayes

- > Assumption that variables are independent and equally important for prediction is often faulty. This could lead to poor performance.
- Most easily applied with categorical or normally distributed variables most software will make this assumption behind the scenes, even if variables not normally distributed Careful!
- Requires more storage than other models your training set tables essentially become your model.
- The more variables (counting levels) you have, the larger dataset required to make reliable estimates of each conditional probability
- > Lose the ability to exploit interactions between variables
- > Estimated probabilities are less trustworthy than predicted classes.