Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
•	$_{1}^{#1}+^{\alpha\beta}$	$_{1}^{#2} + ^{\alpha\beta}$	$_{1}^{\#1}+^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\sqrt{2} kt_3$	0	$\frac{2k^2t_3}{3}$
,				- 2	$\left \frac{1}{3} \vec{l} \right $		
$f_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	0	0	3 0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ <u>3</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}_{+}$	$\frac{\sqrt{2} t_2}{3}$	ر 2 ع	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_{1}^{\#1}_{+\alpha\beta}$	2 <i>t</i> 2 3	$\frac{\sqrt{2}\ t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$+^{\alpha\beta}$	$o_1^{\#2} + \alpha \beta$	$+^{\alpha eta}$	1 + a	$\omega_{1}^{\#2} +^{lpha}$	$\epsilon_{1}^{\#1} +^{\alpha}$	2 †α

Quadratic (free) action
== S
$\text{Im}(\frac{1}{6}\left(-4t_{3}\;\omega^{\alpha\prime}_{\;\;\alpha}\;\omega^{\kappa}_{_{l}\;\;\kappa}+6f^{\alpha\beta}\;\tau_{\alpha\beta}+6\;\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}+8t_{3}\;\omega^{\kappa}_{_{\alpha}\;\kappa}\;\partial_{_{l}}f^{\alpha\prime}-8t_{3}\;\omega^{\kappa}_{_{l}\;\;\kappa}$
$\partial' f^{\alpha}_{\ \alpha} + 4 t_3 \partial_i f^{\kappa}_{\ \kappa} \partial^i f^{\alpha}_{\ \alpha} + 4 t_2 \omega_{i \theta \alpha} \partial^{\theta} f^{\alpha \prime} + 2 t_2 \partial_{\alpha} f_{i \theta} \partial^{\theta} f^{\alpha \prime} - t_2 \partial_{\alpha} f_{\theta_i} \partial^{\theta} f^{\alpha \prime} -$
$t_2\partial_i f_{\alpha \theta}\partial^{\theta} f^{lpha \prime} + t_2\partial_{ heta} f_{lpha \prime}\partial^{ heta} f^{lpha \prime} - t_2\partial_{ heta} f_{lpha}\partial^{ heta} f^{lpha \prime} - 4t_2\omega_{lpha heta \prime}(\omega^{lpha \prime heta} + \partial^{ heta} f^{lpha \prime}) +$
$2t_2 \ \omega_{\alpha\prime\theta} \ (\omega^{\alpha\prime\theta} + 2\partial^{\theta}f^{\alpha\prime}) + 8r_2\partial_{\beta}\omega_{\alpha\prime\theta}\partial^{\theta}\omega^{\alpha\beta\prime} - 4r_2\partial_{\beta}\omega_{\alpha\theta\prime}\partial^{\theta}\omega^{\alpha\beta\prime} +$
$4r_2\partial_\beta\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
$4r_2\partial_ heta \omega_{lpha_Ieta}\partial^ heta \omega^{lphaeta_I} + 4t_3\partial_{\scriptscriptstyle I}f^{lpha_I}\partial_{\kappa}f_{}^{} - 8t_3\partial^{\scriptscriptstyle I}f^{lpha}_{}\partial_{\kappa}f_{}^{})][t,\kappa,y,z]dzdyd\kappadt$

_	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$f_{2^{+}}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\nu_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} - i k \sigma_{1}^{\#1\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} + 2 \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#1\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1 \alpha\beta} = \sigma_{1+}^{\#2 \alpha\beta}$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5
$\sigma_{2^{+}}^{\sharp 1 \alpha \beta} == 0$	5
Total constraints:	32

	<i>O</i> ₀ +	¹ 0 ⁺	ι ₀ +	σ_0^{-1}	_
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0	
$\tau_{0^{+}}^{\#1}$ †	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0	
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	
				βχ	

0

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$