ÁLGEBRAS ASSOCIADAS A GRAFOS ORIENTADOS EM NÍVEIS

10° SEMANA DA LICENCIATURA EM MATEMÁTICA
DEPARTAMENTO DE ÁREAS ACADÊMICAS II
COORDENAÇÃO DA ÁREA ACADÊMICA DE MATEMÁTICA
IFG - CÂMPUS GOIÂNIA, GO, BRASIL

Kariny de Andrade Dirino (IFG - Câmpus Goiânia) - xxxx Paulo Ferreira Viana Filho (IFG - Câmpus Goiânia) - xx José Eder Salvador de Vasconcelos (IFG - Câmpus Goiânia) - xxx

Introdução

Consideremos o seguinte polinômio com coeficientes em um anel não comutativo $P(t)=t^2+a_1t+a_2$ e $x_1,\,x_2$ suas raízes à direita com a diferença x_1-x_2 invertível e t uma variável central. Sejam,

$$x_{1,2} = (x_2 - x_1)x_2(x_2 - x_1)^{-1}, \ x_{2,1} = (x_1 - x_2)x_1(x_1 - x_2)^{-1}.$$
 (1)

Temos,

$$x_1^2 + a_1 x_1 + a_2 = 0$$
 e $x_2^2 + a_1 x_2 + a_2 = 0$. (2)

Disso,

$$0 = x_1^2 - x_2^2 + a_1(x_1 - x_2) = x_1^2 - x_1x_2 + x_1x_2 - x_2^2 + a_1(x_1 - x_2)$$

$$= x_1(x_1 - x_2) + (x_1 - x_2)x_2 + a_1(x_1 - x_2)$$

$$= x_1 + (x_1 - x_2)x_2(x_1 - x_2)^{-1} + a_1$$
(3)

Logo,

$$a_1 = -x_1 - (x_1 - x_2)x_2(x_1 - x_2)^{-1} = -x_1 - x_{1,2}.$$
 (4)

Substituindo na primeira equação de (2) temos,

$$0 = x_1^2 - (x_1 + (x_1 - x_2)x_2(x_1 - x_2)^{-1}x_1 + a_2$$

= $x_1^2 - x_1^2 - (x_1 - x_2)x_2(x_1 - x_2)^{-1}x_1 + a_2$ (5)

Donde,

$$a_2 = (x_1 - x_2)x_2(x_1 - x_2)^{-1}x_1 = x_{1,2}x_1.$$
 (6)

Então,

$$p(t) = t^{2} + (-x_{1} - x_{1,2})t + x_{1,2}x_{1} = t^{2} - x_{1}t - x_{1,2}t + x_{1,2}x_{1}$$

$$= (t - x_{1,2})t + (t - x_{1,2})(-x_{1})$$

$$= (t - x_{1,2})(t - x_{1}).$$
(7)

Com um procedimento análogo, pode-se mostrar que $P(t)=(t-x_{2,1})(t-x_2)$. Assim temos duas fatorações diferentes de P(t). Essas duas fatorações implicam as seguintes identidades entre as pseudo raízes:

$$x_{1,2} + x_1 = x_{2,1} + x_2, \ x_{1,2}x_1 = x_{2,1}x_2.$$

É natural estudar a álgebra Q_2 com geradores $x_{1,2}$, $x_{2,1}$, x_1 , x_2 satisfazendo as relações acima. Em [2] Gelfand, Retakh, Serconek and Wilson, introduziram uma nova classe de álgebras $A(\Gamma)$ associadas a grafos em níveis. A álgebra $A(\Gamma)$ é gerada pelas arestas do grafo. As relações são definidas associando cada caminho em Γ a um polinômio com coeficientes na álgebra associativa livre sobre o conjunto de arestas e determinando que caminhos distintos com mesmo inicio e fim representam a fatoração do mesmo polinômio em variáveis não comutativas. Essas álgebras são uma generalização das álgebras Q_n introduzidas por Gelfand, Retakh and Wilson em [1].

Preliminares

Sejam K um corpo e para qualquer conjunto W seja T(W) a álgebra associativa livre em W sobre K. Seja $\Gamma = (E, V)$ um grafo onde V é o conjunto de vértice e E é o conjunto de arestas de Γ , existem funções $t, h: E \to V$, t(e):=vértice inicial de e e h(e):=vértice final de e. Dizemos que Γ é um grafo em níveis se, $V = \bigcup_{i=0}^{n} V_i$, $E = \bigcup_{i=0}^{n} E_i$. e para $e \in E_i$, $t(e) \in V_i$ e $h(e) \in V_{i-1}$.

Se $v \in V_1(e \in E_1)$ dizemos que o nível de v é i e indicamos por |v| = i. Sejam $V_0 = \{\star\}$ e $V_+ = \bigcup_{i>0}^n V_i$. Para cada $v \in V_+$ fixe algum $e_v \in E$ com $t(e_v) = v$: chamamos esta de aresta indicativa. Um caminho de v a w é uma sequência de arestas $\pi = \{e_1, ..., e_m\}$ tal que $t(e_1) = v$, $h(e_m) = k$ e $t(e_{i+1}) = h(e_i)$. Neste caso, $t(\pi) = v$, $h(\pi) = w$ e dizemos que o comprimento de π é m, denotado por $l(\pi)$. Escrevemos v > w se existe uma caminho de v a w. Para $\pi = \{e_1, ..., e_m\}$ definimos, $e(\pi, k) = v$

$$\sum_{1 \le i_1 \le \dots \le i_k \le m} e_{i_1} e_{i_2} \dots e_{i_k}.$$

Séries de Hilbert das álgebras graduadas $A(\Gamma)$

Sejam V um espaço vetorial com base $\{v_j|j\in J\}$ e $R\subseteq T(V)$. Denotemos por $\langle R\rangle$ o ideal de T(V) gerado por R, isto é,

$$\langle R \rangle = \{ \sum_{i=1}^{k} y_i r_i z_i \mid k \ge 0, y_i, z_i \in T(V), r_i \in R \}$$

Então dizemos que a álgebra quociente $T(V)/\langle R \rangle$ é a álgebra definida por geradores $\{v_j|j\in J\}$ e relações R.

Dizemos que a álgebra definida por geradores $\{v_1,\ldots,v_n\}$ e relações R é uma álgebra quadrática se $R\subseteq V\otimes V$. Seja R o ideal bilateral de T(E) gerado por

$$\{e(\pi_1, k_1) - e(\pi_2, k_2) : t(\pi_1) = t(\pi_2), h(\pi_1) = h(\pi_2), 1 \le k \le l(\pi_1)\}.$$

Definição: $A(\Gamma) = T(E)/R$. Um espaço vetorial é A graduado (veja [3]) se para cada $a \in A$ existe um subespaço V_a tal que $V = \bigoplus_{\alpha \in A} V_a$.

Seja V um espaço vetorial $\mathbb{Z}_{\geq 0}$ -graduado e suponha que cada V_i tem dimensão finita. Definimos a *série de Hilbert* de V, H(V,t), por

$$H(V,t) = \sum_{i>0} (dim(V_i))t^i.$$

Agora, apresentaremos uma expressão que permite calcular a série de Hilbert das álgebras $A(\Gamma)$.

Theor. 1 Seja Γ um grafo em níveis com um único vértice minimal \star de nível 0 e h(t) a série de Hilbert de $A(\Gamma)$. Então,

$$h(t) = \frac{1 - t}{1 + \sum_{v_1 \ge \dots \ge v_l \ge \star} (-1)^l t^{|v_1| - |v_l| + 1}}.$$

A álgebra $A(\Gamma_{\mathcal{P}_5})$

Seja V o conjunto de todos os subconjuntos de $\{1,2,3,4,5\}$ que têm exatamente dois elementos. Dada a condição: dois elementos v_1 e $v_2 \in V$ são adjacentes se $v_1 \cap v_2 = \varnothing$. Essa relação de adjacência define o grafo de Petersen

Construímos o grafo de Hasse do reticulado do grafo de Petersen e calculamos a série de Hilbert da Álgebra $A(\Gamma_{\mathcal{P}_5})$, expressão dada por:

$$H(A(\Gamma),t) = \frac{1}{-6t^3 + 29t^2 - 26t + 1}$$

Referências Bibliográficas

- [1] I. Gelfand, V.Retakh, R.Wilson. Quadratic-linear algebras associated with decompositions on non commutative plynomials and Differential polynomials. Select Math,(N.S.), 7, 493-523, 2001.
- [2] I. Gelfand, V.Retakh, S. Serconek, R.L. Wilson. *On a class of algebras associated to directed graphs.* In Selecta Math, (N.S.) 281-295, 2005.
- [3] N. Jacobson. Lectures in Abstract Algebra, Vol.II Linear Algebra. Nostrand Company.Inc., Princeton, 1953.

Apoio

