Transcript quantification

We will be using RSEM to quantify the expression levels of the transcripts that have been assembled by Trinity. But because we do not have proper biological replicates for the Red Sisken RNAseq data, we will be using *Candida glabrata* transcriptome data. The paper from which these data are derived examined *C. glabrata* in two conditions, nutrient rich (wt) and under nitrosative stress (GNSO).

Make sure that you are in your /pool/genomics/<username>/RNAseg SMSC/ directory.

To use RSEM, we will use the wrapper script included in the Trinity package called align and estimate abundance.pl.

This script makes it very easy to take Trinity output and run RSEM.

Create another job file with <u>QSubGen</u>. This will be a serial job and you should reserve 4GB of memory. It will also run fine in the short queue.

Load the trinity module and enter the following program command:

```
align_and_estimate_abundance.pl --seqType fq \
    --left data/diff_ex/GSNO_SRR1582648_1.fastq \
    --right data/diff_ex/GSNO_SRR1582648_2.fastq \
    --transcripts data/diff_ex/trinity_out_dir.Trinity.fasta \
    --est_method RSEM --aln_method bowtie \
    --trinity_mode --prep_reference --coordsort_bam \
    --output_dir GSNO_SRR1582648.RSEM
```

Save the script into a file called <code>trinity_rsem_GNSO_SRR1582648.job</code>. Since there are six biological replicates, we'll need to make six of these files -- one for each replicate.

Take some time to create the five other files for the other treatments. Be sure to change both the names of the reads, and the __output_dir according to the sample name. Double check that you are calling both the correct reads and using the correct names. It is always important to check twice, run once.

Now you can submit each of these jobs using <code>qsub_job_file_name</code>. This is the magic of parallel computing clusters--you can run many jobs at once.

These jobs should run pretty fast. Once they are finished, you can check the output with, e.g.:

```
$ head GSNO_SRR1582648.RSEM/RSEM.genes.results | column -t
```

Your output should look something like:

gene_id	transcript_id(s)	length	effective_length	expected_coun
t TPM FPKM				
TRINITY_DN100_c0_g	1 TRINITY_DN100_c0_g1_i1	253.00	123.83	2.00
1014.01 4866.18				
TRINITY DN103 c0 c	1 TRINITY_DN103_c0_g1_i1	524.00	394.48	57.00
9071.81 43534.9				
	1 TRINITY DN103 c1 g1 i1	152.00	27.95	3.00
6739.18 32340.8		132.00	27.033	
		174 00	47 05	0.00
	1 TRINITY_DN104_c0_g1_i1	1/4.00	47.00	0.00
0.00 0.00				
	1 TRINITY_DN105_c0_g1_i1	221.00	92.16	0.00
0.00 0.00				
TRINITY_DN105_c1_g	1 TRINITY_DN105_c1_g1_i1	238.00	108.94	1.00
576.30 2765.60				
TRINITY_DN107_c0_g	1 TRINITY_DN107_c0_g1_i1	161.00	35.48	1.00
1769.44 8491.42				
TRINITY DN108 c0 c	1 TRINITY_DN108_c0_g1_i1	190.00	62.01	0.00
0.00 0.00				
	1 TRINITY_DN108_c1_g1_i1	195.00	66.79	1.00
940.01 4511.05		173.00	00.15	1.00
940.01 4511.05				

Generate a transcript counts matrix and perform cross-sample normalization

Each rsem file holds the expression estimates for each of the samples. Now we will use these samples to create a counts matrix and to perform cross-sample normalization. The script included in the Trinity packages does this for you according to the TMM method. If you want to read more about this normalization method, you can do so in this paper, "A scaling normalization method for differential expression analysis of RNA-seq data."

Go ahead and generate a job file using the QSubGen. Assuming that you set up the remaining 5 jobs the same way that you did the first job, your job command would be:

```
abundance_estimates_to_matrix.pl --est_method RSEM \
    --gene_trans_map data/diff_ex/trinity_out_dir.Trinity.fasta.gene_trans_map \
    --out_prefix Trinity_trans --name_sample_by_basedir \
    GSNO_SRR1582648.RSEM/RSEM.isoforms.results \
    GSNO_SRR1582646.RSEM/RSEM.isoforms.results \
    GSNO_SRR1582647.RSEM/RSEM.isoforms.results \
    wt_SRR1582649.RSEM/RSEM.isoforms.results \
    wt_SRR1582651.RSEM/RSEM.isoforms.results \
    wt_SRR1582651.RSEM/RSEM.isoforms.results \
    wt_SRR1582650.RSEM/RSEM.isoforms.results \
```

Choose a serial key and 2GB of memory. Either save the job file and transfer it to Hydra, or copy and paste the text into your terminal window with nano. Subit the job.

This command will run estimates for both genes and isoforms. The output of this command will produce:

- RSEM.isoform.counts.matrix : the estimated RNA-Seq fragment counts (raw counts)
- RSEM.isoform.TPM.not_cross_norm : a matrix of TPM expression values (not cross-sample normalized)
- RSEM.isoform.TMM.EXPR.matrix : a matrix of TMM-normalized expression values

First lets look at the at the first 20 lines of the isoform counts.

```
$ head -20 Trinity_trans.isoform.counts.matrix | column -t
```

The resulting output will look someting like this:

GSNO_SRR1582648	GSNO_SRR1582646	GSNO_SRR1582647	wt_SRR1582649	wt_SRR158265
1 wt_SRR1582650				
TRINITY_DN270_c0_g1_i1 0.00 1.00	0.00	0.00	0.00	1.00
TRINITY_DN286_c0_g1_i1	38.00	36.00	39.00	5.00
7.00 8.00				
TRINITY_DN472_c0_g1_i1 0.00 0.00	2.00	0.00	0.00	0.00
0.00 0.00 TRINITY_DN269_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00				
TRINITY_DN378_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00				
TRINITY_DN258_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00				
TRINITY_DN392_c0_g1_i1	0.00	0.00	2.00	0.00
0.00 0.00				
TRINITY_DN407_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00
TRINITY_DN328_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00
TRINITY_DN61_c0_g1_i1 0.00 0.00	0.00	0.00	0.00	0.00
TRINITY_DN221_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00
TRINITY_DN260_c1_g1_i1	3 00	4.00	7.00	8.00
8.00 5.00	3.00	4.00	7.00	0.00
TRINITY_DN357_c0_g1_i1	0 00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00	0.00
TRINITY_DN63_c1_g1_i1	19.00	26.00	33.00	3.00
4.00 3.00	23.00			
TRINITY DN401 c0 g1 i1	2.00	3.00	4.00	3.00
6.00 2.00				
TRINITY_DN637_c0_g1_i1	0.00	0.00	0.00	1.00
2.00 1.00				
TRINITY DN288 c0 g1 i1	0.00	0.00	1.00	0.00
0.00 0.00				
TRINITY DN625 c0 g1 i1	0.00	0.00	1.00	2.00
3.00 1.00				
TRINITY_DN97_c0_g1_i1	0.00	0.00	0.00	0.00
0.00 0.00				

Now look at the output generated for the isoforms from the TMM normalized counts:

The output from this file will look a bit different. As described in the paper linked to above, this normalization method assumes that most transcripts are not differentially expressed and linearly scales the values with that assumption in mind.

GSNO_SRR1582648	GSNO_SRR1582646	GSNO_SRR1582647	wt_SRR1582649	wt_SRR158265
1 wt_SRR1582650				
TRINITY_DN270_c0_g1_i1	0.000	0.000	0.000	1382.140
0.000 1599.	862			
TRINITY_DN286_c0_g1_i1	19831.723	15748.460	16547.800	2036.568
3442.755 3763.	621			
TRINITY_DN472_c0_g1_i1		0.000	0.000	0.000
0.000 0.000				
TRINITY_DN269_c0_g1_i1		0.000	0.000	0.000
0.000 0.000				
TRINITY_DN378_c0_g1_i1		0.000	0.000	0.000
0.000 0.000				
TRINITY_DN258_c0_g1_i1		0.000	0.000	0.000
0.000 0.000				
TRINITY_DN392_c0_g1_i1		0.000	2511.305	0.000
0.000 0.000				
TRINITY_DN407_c0_g1_i1		0.000	0.000	0.000
0.000 0.000				
TRINITY_DN328_c0_g1_i1		0.000	0.000	0.000
0.000 0.000		0.000		
TRINITY_DN61_c0_g1_i1		0.000	0.000	0.000
0.000 0.000		0.000	0.000	0.000
TRINITY_DN221_c0_g1_i1 0.000 0.000		0.000	0.000	0.000
		1002 202	2220 057	2540 721
TRINITY_DN260_c1_g1_i1 4288.504 2556.		1902.282	3228.057	3540.731
TRINITY_DN357_c0_g1_i1		0.000	0.000	0.000
0.000 0.000		0.000	0.000	0.000
TRINITY_DN63_c1_g1_i1		13440.787	16537.510	1442.567
2337.418 1666.		13440.707	10557.510	1442.507
TRINITY DN401 c0 g1 i1		1621.389	2095.379	1507.745
3671.449 1161.		1021.009	203000,3	13071713
TRINITY_DN637_c0_g1_i1		0.000	0.000	1155.640
2970.275 1337.				
TRINITY_DN288_c0_g1_i1		0.000	243.398	0.000
0.000 0.000				
TRINITY DN625_c0_g1_i1		0.000	1048.765	2006.101
3821.984 1160.				
TRINITY_DN97_c0_g1_i1		0.000	0.000	0.000
0.000 0.000				

We can also examine the generated matrices for genes.

```
$ head -20 Trinity_trans.gene.counts.matrix | column -tt
```

```
$ head -20 Trinity_trans.gene.TMM.EXPR.matrix | column -t
```

Now that we have expression values we can estimate some new statistics. We will use the expression quantification values to calculate the ExN50, which is restricted to only the most highly expressed transcripts. This is more informative of the quality of the assembly since it only uses the transcripts that have suitable coverage.

The file that you generate from QSubGen should choose the short queue and the default RAM. Load the bioinformatics/trinity/2.6.6 module. The command that you should use is:

```
contig_ExN50_statistic.pl data/diff_ex/Trinity_trans.TMM.EXPR.matrix \
data/diff_ex/trinity_out_dir.Trinity.fasta > ExN50.stats
```

When your job is completed, you will see a new output file called, ExN50.stats. Go ahead and take a look at your new file with:

```
$ cat ExN50.stats | column -t
```

Your output should look like this:

```
#E
      min expr
                        num transcripts
                 E-N50
E2
      48510.841
                 470
                        1
E4
      35522.525
                 470
                        2
      35522.525
                 329
Ε6
                        3
      35522.525
Ε7
                 470
                        4
      33698.327
E9
                 453
                        5
      28346.056
                 453
                        6
E11
      22770.403
                        7
                 453
E13
      22770.403
E14
                 416
                        8
      22770.403
E16
                 417
                        9
      22770.403
                 417
                        10
E17
      22770.403
                 417
E18
                        11
E20
      22770.403
                 416
                        12
     22770.403
                        13
E21
                 416
E23
      22770.403
                 417
                        14
E24
      16940.365
                 416
                        15
E25
      16940.365
                 417
                        16
E27
      16940.365
                 453
                        17
```

E28	16940.365	459	18
E29	16940.365	470	19
E30	16940.365	459	20
E31	16940.365	459	21
E32	16940.365	453	22
E33	16940.365	459	23
E35	16940.365	459	24
E36	13602.022	470	25
E37	13602.022	470	26
E38	13602.022	470	27
E39	12842.900	470	29
E40	12842.900	470	30
E41	12842.900	470	31
E42	12842.900	470	32
E43	12842.900	470	33
E44	12842.900	470	34
E45	12842.900	470	36
E46	12842.900	470	37
E47	12842.900	470	38
E48	12099.821	473	40
E49	12099.821	476	41
E50	12099.821	476	43
	11837.930		44
E51		485	
E52	9272.015	485	46
E53	9272.015	489	48
E54	9272.015	489	49
E55	9272.015	489	51
E56	9272.015	490	53
E57	9272.015	490	55
E58	9272.015	489	57
E59	7363.329	485	59
E60	7363.329	485	61
E61	7363.329	489	64
E62	7363.329	489	66
E63	7363.329	489	68
E64	5522.466	485	71
E65	5522.466	476	74
E66	4922.224	473	76
E67	4623.903	473	79
E68	4623.903	473	82
E69	4623.903	470	86
E70	4623.903	470	89
E71	4623.903	470	92
E72	4225.842	468	96
E73	4225.842	459	99

E74	4225.842	456	103
E75	3584.598	453	107
E76	3584.598	453	111
E77	3584.598	443	115
E78	3584.598	440	119
E79	3584.598	434	124
E80	3584.598	422	128
E81	3584.598	422	133
E82	3584.598	420	138
E83	3024.328	417	144
E84	3024.328	416	150
E85	3024.328	416	156
E86	1835.197	415	162
E87	1835.197	404	168
E88	1835.197	388	175
E89	1835.197	380	183
E90	1835.197	376	190
E91	1398.490	373	198
E92	1398.490	362	207
E93	1398.490	355	215
E94	1398.490	341	224
E95	1398.490	337	234
E96	1398.490	329	245
E97	1398.490	328	256
E98	1211.604	320	269
E99	932.114	308	285
E100	0.265	320	324
E100	0	285	690

Now you can look at the N50 stats scaled by the genes with the highest expression. If, for example, you only wanted to see the N50 for the 60% highest expressed genes, it would be \sim 485.