PHƯƠNG PHÁP CASIO – VINACAL BÀI 30. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỰC

I) KIẾN THỨC NỀN TẢNG

1. Các khái niệm thường gặp

- Hệ trục thực ảo gồm có 2 trục vuông góc với nhau: Trục nằm ngang là trục thực, trục đứng dọc là trục ảo
- Số phực z = a + bi khi biểu diễn trên hệ trục thực ảo là điểm M(a;b)
- Môđun của số phức z = a + bi là độ lớn của vecto \overrightarrow{OM}

2. Lênh Caso

- Để xử lý số phức ta sử dụng lệnh tính số phức MODE 2
- Lênh giải phương trình bâc hai MODE 5 3
- Lệnh giải phương trình bậc ba MODE 5 4

II) VÍ DU MINH HOA

VD1-[Câu 31 Đề minh họa THPT Quốc Gia lần 1 năm 2017]

Cho số phức z thỏa mãn (1+i)z=3 i. Hỏi điểm biểu diễn số

phức z là điểm nào trong các điểm M, N, P, QA điểm P

B.điểm O **C**.điểm M **D**.điểm N

GIĂI

Sử dụng máy tính Casio trong môi trường CMPLX để tìm z

MODE 2 = 3 - ENG ▼ 1 + ENG =

1-2i.

 $\Rightarrow z = 1$ 2i và điểm biểu diễn z trong hệ trục thực ảo có tọa độ (1; 2). Điểm có thực dương và ảo âm sẽ nằm ở góc phần tư thứ IV \Rightarrow Điểm phải tìm là Q và đáp án chính xác là **B**

VD2-[Thi thử trung tâm Diệu Hiền – Cần thơ lần 1 năm 2017]

Điểm biểu diễn số phức z = 7 + bi với $b \in R$, nằm trên đường thẳng có phương trình là:

A.
$$x = 7$$

B.
$$v = x$$

B.
$$v = x$$
 C. $v = x + 7$

D.
$$v = 7$$

- Điểm biểu diễn số phức z = 7 + bi là điểm M có tọa độ M(7;b)Ta biết điểm M thuộc đường thẳng d nếu toa đô điểm M thỏa mãn phương trình đường thẳng d
- Thử đáp án A ta có $x = 7 \Leftrightarrow 1.x + 0.y$ 7 = 0. Thế tọa độ điểm M vào ta được: 1.7 + 0.b 7 = 0 (đúng)

Vậy điểm M thuộc đường thẳng $x = 7 \Rightarrow \text{Dáp án } \mathbf{A}$ là chính xác

VD3-[Thi thử Group Nhóm toán – Facebook lần 5 năm 2017]

Các điểm M, N, P lần lượt là điểm biểu diễn cho các số phức

$$z_1 = \frac{4i}{i-1}$$
; $z_2 = (1 i)(1+2i)$; $z_3 = 1+2i$

A. Tam giác vuông

B. Tam giác cân

C.Tam giác vuông cân GIÁI

D. Tam giác đều

Rút gọn z_1 bằng Casio

2-2i

Ta được $z_1 = 2$ 2i vậy điểm M(2; 2)

Rút gọn z_2 bằng Casio \triangleright

(1 — ENG) (1 + 2 ENG) =
$$(1-i)(1+2i)$$
 Math \triangle

3+i

Ta được $z_2 = 3 + i$ vậy điểm N(3;1)

Tương tự $z_2 = 1 + 2i$ và điểm P(1;2)

Để phát hiện tính chất của tam giác MNP ta nên biểu diễn 3 điểm M, N, P trên hệ trục tọa độ

Dễ thấy tam giác MNP vuông cân tại $P \Rightarrow$ đáp án C chính xác

VD4-[Thi thử báo Toán học Tuổi trẻ lần 4 năm 2017]

Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức $z_1=1\quad {\rm i}, z_2=3+2i \ .$ Gọi G là trọng tâm tam giác $O\!M\!N$, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây.

A.5 i

B. 4+i **C**. $\frac{4}{3}+\frac{1}{3}i$

D. $2 + \frac{1}{2}i$

GIÅI

- ightharpoonup Điểm M biểu diễn số phức $z_1=1$ $i\Rightarrow$ tọa độ $M(1;\ 1)$ Điểm N biểu diễn số phức $z_2=3+2i\Rightarrow$ tọa độ N(3;2) Gốc tọa độ O(0;0)

VD5-|Thi thử THPT Hàm Rồng – Thanh Hóa lần 1 năm 2017|

Trong mặt phẳng tọa độ Oxy, gọi M là điểm biểu diễn số phức z=3 4i, điểm M' là điểm biểu diễn số phức $z'=\frac{1+i}{2}z$. Tính diện tích $\Delta OMM'$

A.
$$S_{\Delta OMM} = \frac{25}{4}$$
 B. $S_{\Delta OMM} = \frac{25}{2}$ **C.** $S_{\Delta OMM} = \frac{15}{4}$ **D.** $S_{\Delta OMM} = \frac{15}{2}$

GIÅI

ightharpoonup Điểm M biểu diễn số phức $z_1 = 3$ $4i \Rightarrow$ tọa độ M(3; 4) Điểm M' biểu diễn số phức $z' = \frac{1+i}{2}z \Rightarrow$ tọa độ $N\left(\frac{7}{2}; \frac{1}{2}\right)$

Gốc tọa độ O(0;0)

Dể tính diện tích tam giác *OMM* ' ta ứng dụng tích có hướng của 2 vecto trong không gian. Ta thêm cao độ 0 cho tọa độ mỗi điểm O, M, M ' là xong

$$O\vec{M}\left(3;\ 4;0\right)\ ,\ O\vec{M'}\left(\frac{7}{2};\ \frac{1}{2};0\right) \Rightarrow S = \frac{1}{2}\left[\left[O\vec{M};O\vec{M'}\right]\right]$$

Tính $O\vec{M}; \vec{OM'}$

 \div 2 \equiv 0 \equiv AC SHIFT 5 3 SHIFT 5 7 SHIFT 5 4 \equiv

Vậy
$$\left[\overrightarrow{OM}; \overrightarrow{OM'} \right] = 12.5 = \frac{25}{2} \Rightarrow S_{OMM} = \frac{1}{2} \left[\overrightarrow{OM}; \overrightarrow{OM'} \right] = \frac{25}{4}$$

⇒A là đáp án chính xác

<u>VD6</u>-[Đề thi minh họa bộ GD-ĐT lần 2 năm 2017]

Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình $4z^2-16z+17=0$. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức $w=iz_0$

$$\mathbf{A}.M\left(\frac{1}{2};2\right)$$

$$\mathbf{A}.M\left(\frac{1}{2};2\right)$$
 $\mathbf{B}.M\left(\frac{1}{2};2\right)$ $\mathbf{C}.\left(\frac{1}{4};1\right)$

$$C.\left(\begin{array}{c} \frac{1}{4};1 \end{array}\right)$$

$$\mathbf{D}.M\left(\frac{1}{4};1\right)$$

GIÁI

Sử dụng lệnh giải phương trình bậc hai MODE 5 3 để giải phương trình $4z^2$ 16z + 17 = 0

$$2 - \frac{1}{2}i$$

Vậy phương trình $4z^2$ 16z + 17 = 0 có hai nghiệm $z = 2 + \frac{1}{2}i$ và z = 2 $\frac{1}{2}i$

Để z_0 có phần ảo dương $\Rightarrow z = 2$ $\frac{1}{2}i$. Tính $w = z_0i$

MODE 2 (2 + = 1 ▼ 2 ► ENG) ENG = Math ▲

$$\left(2+\frac{1}{2}\mathbf{i}\right)\mathbf{i}$$

Vậy phương trình $w = \frac{1}{2} + 2i \Rightarrow \text{Diểm biểu diễn số phức } w \text{ là } M\left(\frac{1}{2}; 2\right)$ ⇒ B là đáp án chính xác

II) BÀI TẬP TỰ LUYỀN

Bài 1-[Thi thử chuyên Khoa học tự nhiên lần 2 năm 2017]

Cho số phức z = 2 + i. Hãy xác định điểm biểu diễn hình học của số phức $w = \begin{pmatrix} 1 & i \end{pmatrix} z$

 \mathbf{A} . Điểm M

 \mathbf{B} . Điểm N

C.Điểm P

D. Điểm Q

<u>Bài 2</u>-[Thi thử facebook nhóm toán lần 5 năm 2017]

Cho số phức z thỏa mãn $\begin{pmatrix} 2 & i \end{pmatrix} z = 4z + 5$. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M, N, P, Q ở hình bên .

A.Điểm N **B**.Điểm P

 \mathbf{C} . Điểm M \mathbf{D} . Điểm Q

Bài 3-[Thi thử báo Toán học tuổi trẻ lần 4 năm 2017]

Trên mặt phẳng tọa độ các điểm A,B,C lần lượt là điểm biểu diễn của số phức $\frac{4}{\frac{2}{5} + \frac{4}{5}i}$,

(1 i)(1+2i), $2i^3$ Khi đó tam giác ABC

 \mathbf{A} . Vuông tại C \mathbf{B} . Vuông tại A

C. Vuông cân tại B D. Tam giác đều

Bài 4-Các điểm A, B, C, A', B', C' trong mặt phẳng phức theo thứ tự biểu diễn các số:

1 i, 2+3i, 3+i và

3i,3 2i,3+2i có G,G' lần lượt là trọng tâm tam giác ABC và A'B'C'. Khẳng định nào sau đây đúng

 $\mathbf{A}.G$ trùng G'

B. Vecto $G\vec{G'} = (1; 1)$

 $\mathbf{C}. \vec{GA} = 3\vec{GA'}$

D. Tứ giác *GAG'B* lập thành một hình bình hành

LỜI GIẢI BÀI TẬP TỰ LUYỆN

Bài 1-[Thi thử chuyên Khoa học tự nhiên lần 2 năm 2017]

Cho số phức z = 2 + i. Hãy xác định điểm biểu diễn hình học của số phức $w = \begin{pmatrix} 1 & i \end{pmatrix} z$

A.Điểm M **B**.Điểm N

C.Điểm P

 \mathbf{D} . Điểm Q

- Tính số phức w = (1 i)z bằng máy tính Casio
 - (1 ENG)(2 + ENG) =

Vây tọa độ của điểm thỏa mãn số phức w là (3; 1). Đây là tọa độ điểm Q

⇒ Đáp số chính xác là **D**

Bài 2-[Thi thử facebook nhóm toán lần 5 năm 2017]

Cho số phức z thỏa mãn $(2 \ i)z = 4z + 5$. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M, N, P, Q ở hình bên.

 \mathbf{A} . Điểm N

 $\mathbf{B}.\mathbf{D}i\hat{\mathbf{e}}\mathbf{m}$ P

C.Điểm M

D. Điểm Q

GIÁI

- Cô lập (2 i)z $4z = 5 \Leftrightarrow (2+i)z = 5 \Leftrightarrow z = \frac{5}{2+i}$
- Tìm số phức $z = \frac{5}{2+i}$

Vậy tọa độ của điểm thỏa mãn số phức z là (2;1). Đây là tọa độ điểm M

⇒ Đáp số chính xác là C

Bài 3-[Thi thử báo Toán học tuổi trẻ lần 4 năm 2017]

Bài 3-[**Thi thư bao 10an học tuổi tre ki**.]

Trên mặt phẳng tọa độ các điểm A, B, C lần lượt là điểm biểu diễn của số phức $\frac{4}{\frac{2}{5} + \frac{4}{5}i}$,

(1 i)(1+2i), $2i^3$ Khi đó tam giác ABC

A. Vuông tại C B. Vuông tại A C. Vuông cân tại B D. Tam giác đều

■ Rút gọn $\frac{4}{\frac{2}{5} + \frac{4}{5}i}$ được 2 4i vậy tọa độ điểm A(2; 4)

• Rút gọn (1 i)(1+2i) được 3+i vậy tọa độ điểm B(3;1)

(1 — ENG) (1 + 2 ENG) =
$$(1-\mathbf{i})(1+2\mathbf{i})^{\text{Math } \blacktriangle}$$

- Rút gọn $2i^3 = 2i \cdot i^2 = 2i$ vậy tọa độ điểm C(0,2)
- lacktriangle Để phát hiện tính chất của tam giác ABC ta chỉ cần biểu diễn trên hệ trục tọa độ là thấy ngay

Dễ thấy tam giác ABC vuông tại C

⇒ Đáp số chính xác là A

Bài 4-Các điểm A, B, C, A', B', C' trong mặt phẳng phức theo thứ tự biểu diễn các số:

$$1 i, 2+3i, 3+i và$$

3i,3 2i,3+2i có G,G' lần lượt là trọng tâm tam giác ABC và A'B'C'. Khẳng định nào sau đây đúng

$$\mathbf{A}.G$$
 trùng G'

B. Vecto
$$\vec{GG'} = (1; 1)$$

$$\mathbf{C} \cdot G\vec{A} = 3G\vec{A}'$$

 $\mathbf{C}. \vec{GA} = 3G\vec{A'}$ **D**. Tứ giác GAG'B lập thành một hình bình hành

■ Ta có tọa độ các đỉnh A(1; 1), B(2;3), $C(3;1) \Rightarrow$ Tọa độ trọng tâm G(2;1)

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} = 2\\ y_G = \frac{y_A + y_B + y_C}{3} = 1 \end{cases}$$

■ Ta có tọa độ các đỉnh A'(0;3), B'(3;2), C'(3;2) \Rightarrow Tọa độ trọng tâm G(2;1)

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} = 2\\ y_G = \frac{y_A + y_B + y_C}{3} = 1 \end{cases}$$

Rõ ràng $G \equiv G' \Rightarrow$ Đáp số chính xác là **A**.