All models are wrong, some models are useful.

- George Box, Statistician

CSE455 & CSE 552 Machine Learning

Spring 2025 Semester

Introduction

© 2013-2025 Yakup Genc

Today

- Introductions
- Administrative Details
- Syllabus

2

- Introduction to ML
- Linear Classifiers

February 2025 CSE455/CSE552 Machine Learning

1

Introductions

- Dr. Genc Instructor:
 - PhD from CS @ UIUC in 1999
 - 20+ years research and R&D management experience
 - Tel: x2220
- Office Hours
 - Mondays 3:30pm-4:30pm

February 2025

CSE455/CSE552 Machine Learning

Admin: Communication

- The course communication will be done via Teams
 - CSE552 ML 2025 Spring | General | Microsoft Teams
 - Make sure you register as soon as possible

February 2025

CSE455/CSE552 Machine Learning

Admin: Grading

- Grading for undergrads and grads
 - %35 Homeworks
 - %25 Project
 - %20 Midterm
 - %20 Final

February 2025

CSE455/CSE552 Machine Learning

Admin: Reading Material

- Book (suggestions):
 - Introduction to Machine Learning by Ethem Alpaydin
 - Machine Learning by Tom M. Mitchell
- Other reading materials will be provided as needed

February 2025

6

CSE455/CSE552 Machine Learning

5

Admin: Assignments

- Homework
 - Implementations (5-6)
 - Python programming language
 - Datasets will be provided
 - No late submission

February 2025

CSE455/CSE552 Machine Learning

Admin: Projects & Presentations

- Projects
 - A problem and solution
 - List to be provided in two weeks
 - Presentations and demos to be done at the end of the term

February 2025

CSE455/CSE552 Machine Learning

Aim of this Course

- Lectures to discuss basics of ML methods
- In depth discussions on the implications on real world problems
 - Lots of buzz about ML and its application let's get on the bandwagon!
 - Big data ...
 - Al
 - Superintelligence
- Let's learn through trying on real problems...

February 2025

11

CSE455/CSE552 Machine Learning

10

9

Introduction

Some of the following slides are adapted from E. Alpaydin

Why Machine Learning?

- Most of the real world problems are:
 - NP-Hard
 - scene matching, big data problems ...
 - Ill-defined
 - 3D reconstruction from a single image, missing data
 - The right answer is subjective
 - Image segmentation, language, ...
 - · Hard to model
 - · scene classification, customer behavior
- Machine Learning tries to use statistical reasoning to find approximate solutions for tackling the above difficulties

February 2025 CSE455/CSE552 Machine Learning Joshi et al

13

14

NP-Hard Example: Turning halting Problem NP -Hard Example: Vertex covering Problem Example: Shortest path Here P != NP February 2025 CSE455/CSE552 Machine Learning

Halting Problem

Can you write the Python procedure halts(s):

- Input:
 - s: a string representing a Python program.
- Output:
 - true: if evaluating the input program would ever finish.
 - · false: otherwise.

February 2025

CSE455/CSE552 Machine Learning

Halting Problem

Proving non-existence by contradiction:

- 1. Show X does not make sense.
- 2. Show that if you have A you can make X.
- 3. Therefore, A must not exist.

```
def paradox():
    if halts(paradox):
        while True:
            pass
```

February 2025

CSE455/CSE552 Machine Learning

18

20

February 2025

17

What is Machine Learning

- ... a computer program that can learn from experience with respect to some class of tasks and performance measure ..." Mitchell 1997
- " ... ML is the science of getting computers to learn, without explicitly programmed..." -Ng
- ML is more than just memorizing facts:
 - learning the underlying structure of the problem or data
- · Also known as:
 - Regression
 - Pattern recognition
 - Data mining

February 2025

19

CSE455/CSE552 Machine Learning

Black Box Model of ML Training Data Magic Black Box Result Apple Training data: Sample images of the class of objects to be learned Model: The model can identify any koala images... CSE455/CSE552 Machine Learning February 2025

Halting Problem

Noncomputability

(Alan Turing)

CSE455/CSE552 Machine Learning

A = Algorithm that solves HALTING problem

Proving non-existence by contradiction:

2. Show that if you have A you can make X.

X = paradox procedure

1. Show X does not make sense.

3. Therefore, A must not exist.

Learning Algorithms

- Supervised Learning
 - Generative/Discriminative models
 - ANN/Boosting/Decision Tree/NNA/Random Forests
- Unsupervised Learning
 - Clustering
 - K-Means/Dirichlet/Gaussian Processes/EM
- Semi-Supervised Learning
 - Constrained Clustering/Distance Metric Learning/Manifold based Learning/Compressed Sensing/Active Learning

Joshi et al

February 2025

CSE455/CSE552 Machine Learning

21

Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

February 2025

CSE455/CSE552 Machine Learning

21

22

When We Talk About "Learning" ...

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge/model is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior: People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)
- Build a model that is a good and useful approximation to the data

February 2025

CSE455/CSE552 Machine Learning

23

Data Mining

- **Retail**: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Optimization, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Quality of service optimization
- Bioinformatics: Motifs, alignment
- Web mining: Search engines

• ...

February 2025 CSE455/CSE552 Machine Learning

24

23

What is Machine Learning?

- Optimize a performance criterion using example data or past experience
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

February 2025

CSE455/CSE552 Machine Learning

26

Artificial Intelligence Statistical Learning Mathematical formalization · Theoretical Analysis Visualization of Concepts Computational Learning Biologically plausible
 Realizable in wetware ?? Computationally feasible
 Efficient solutions · Scalability · Incorporate constraints · Handle redundancy Parikshit Ram, GA Tech February 2025

25

Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning
- Sparse/Compressed Learning

February 2025

CSE455/CSE552 Machine Learning

27 28

Learning Associations

· Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (ayran | pide) = 0.7

February 2025

CSE455/CSE552 Machine Learning

29

Classification: Applications

- Aka "Pattern Recognition"
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses

31

CSE455/CSE552 Machine Learning

Face Recognition Training examples of a person Test images AT&T Laboratories, Cambridge UK February 2025 CSE455/CSE552 Machine Learning

Classification

• Example: Credit scoring

 Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF *income* > θ_1 AND *savings* > θ_2 THEN low-risk ELSE high-risk

CSE455/CSE552 Machine Learning February 2025

30

Regression

- Example: Price of a used car
- x : car attributes

y: price

 $y = q(x \mid \vartheta)$

g() model, ϑ parameters

February 2025

CSE455/CSE552 Machine Learning

 $y = wx + w_0$

Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

33

34

Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

February 2025

CSE455/CSE552 Machine Learning

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - · Bioinformatics: Learning motifs

February 2025

CSE455/CSE552 Machine Learning

35

Reinforcement Learning

- Learning a policy: A sequence of outputs
- · No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

February 2025

CSE455/CSE552 Machine Learning

38

37

Resources: Journals

- Journal of Machine Learning Research www.jmlr.org
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association

• ...

February 2025

CSE455/CSE552 Machine Learning

Resources: Datasets

• UCI Repository: http://archive.ics.uci.edu/ml/

MNIST Database: ttp://yann.lecun.com/exdb/mnist/

• UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html

• A list ... http://www.dmoz.org/Computers/Artificial_Intelligence/Machine_Learning/Datasets/

• Statlib: http://lib.stat.cmu.edu/

• Delve: http://www.cs.utoronto.ca/~delve/

Resources: Conferences

CSE455/CSE552 Machine Learning

- International Conference on Machine Learning (ICML)
- ICML05: http://icml.ais.fraunhofer.de/
- European Conference on Machine Learning (ECML) ECML05: http://ecmlpkdd05.liacc.up.pt/
- · Neural Information Processing Systems (NIPS)
- NIPS05: http://nips.cc/
- Uncertainty in Artificial Intelligence (UAI)
 - UAI05: http://www.cs.toronto.edu/uai2005/
- Computational Learning Theory (COLT)
 - COLT05: http://learningtheory.org/colt2005/
- International Joint Conference on Artificial Intelligence (IJCAI)
- IJCAI05: http://ijcai05.csd.abdn.ac.uk/
- International Conference on Neural Networks (Europe)
- · ICANN05: http://www.ibspan.waw.pl/ICANN-2005/

February 2025

February 2025

CSE455/CSE552 Machine Learning

Linear Classifiers • Most of SVM related slides are adapted from Mingyue Tan of the University of British Columbia

41 42

Linear Classifiers — Notation Given: Observations $x_i \in R^n, i=1,...,l$ and associated truths y_i by a trusted source Goal: Construct a machine/algorithm that learns the mapping $x_i \to y_i$ The deterministic machine is defined by a set of possible mapping $x_i \to f(x,\alpha)$. A particular choice of α generates a "trained machine".

Notation

Example: Tree recognition problem...

• Observations $x_i \in R^{256}$, i = 1, ..., l comprised of 16x16 image windows representing trees.

• Associated truths $y_i \in \{1, -1\}$ for where 1 is for tree and -1 is no-tree images.

• This is **two-class pattern-recognition** (or classification)...

A Tutorial on SVM for PR by Burges, 1998 february 2025

45 46

49 5

Implementation

- 1-nearest neighbor
 - Applied to large % of low-dimensional problems
- Kernel methods
 - Use weights decreasing smoothly to zero with distance from the target point, rather than the effective 1/0 weights used by k-nearest neighbors
- High dimensions
 - Use distance metrics emphasizing some variables more than others

February 2025

CSE455/CSE552 Machine Learning

53

54

Thanks for listening!