Micro₂ CH₁₂

Shen, r10323001

$\mathbf{Q}\mathbf{1}$

(5pts, solution 3 + show 2)

			В	
		B1	B2	B3
	A1	3, 7	2,8	3,9
A	A2	4, 3	5, 5	5, 7
	A3	5 , 10	9, 6	4,8

- (a) 請問在 Nash 均衡中, A 是否可能用 A1 的策略?
- (b) 請寫出所有的 Nash 均衡。
- (a) No, since A2 strictly dominates A1, A will not play A1 in Nash equilibrium.
- (b) We can eliminate the dominated strategies repeatedly to exclude the impossible pure strategies.

		В		
		B1	B_2	B3
	A1	3,7	2,8	3,9
A	A2	4, 3	5, 5	5, 7
	A3	5 , 10	9 , 6	4,8

We first eliminate A1 since it is dominated by A2. Second, eliminate B2 since it is dominated by B3.

Now assume the mixed strategy $\sigma = (pA2 + (1-p)A3, qB1 + (1-q)B3)$ is a NE. We could compute the utilities for both players.

$$U_A(\sigma) = 4pq + 5p(1-q) + 5(1-p)q + 4(1-p)(1-q)$$
$$= (-2q+1)p + (q+4)$$

$$U_B(\sigma) = 3pq + 7p(1-q) + 10(1-p)q + 8(1-p)(1-q)$$
$$= (-6p+2)q + (8-p)$$

The best response correspondings are

$$\mathcal{B}_{1}(q) = \begin{cases} p = 1, & \text{if } q < \frac{1}{2} \\ p \in [0, 1], & \text{if } q = \frac{1}{2} \end{cases} \qquad \mathcal{B}_{2}(p) = \begin{cases} q = 1, & \text{if } p < \frac{1}{3} \\ q \in [0, 1], & \text{if } p = \frac{1}{3} \end{cases} \\ p = 0, & \text{if } q > \frac{1}{2} \end{cases}$$

The intersection of the best responses are $(p=0,q=1), (p=\frac{1}{3},q=\frac{1}{2}), (p=1,q=0)$, so the NEs are $(A3,B1), (\frac{1}{3}A2 + \frac{2}{3}A3, \frac{1}{2}B1 + \frac{1}{2}B3), (A2,B3)$.

$\mathbf{Q2}$

(5pts)

	Co	Column player		
H	a	b	c	
player d	6, 10	0,0	3 , 3	
e	0,0	4 , 10	3, 3	
<u> </u>				

- (a) 請找出 column player 的 dominant strategy (包括混合策略在內)。
- (b) 利用 (a) 的結果來簡化賽局, 並寫出簡化賽局中的 Nash 均衡。
- $(a)^1$ There is no pure dominant strategy² for Column player.
- (b) Consider the mixed strategy pa + (1-p)b for Column player. The expected pay-off is 10p when Row player plays d; and is 10-10p for e. Therefore, c is dominated by $\frac{3}{10} . After eliminating c, we can assume the mixed strategy <math>\sigma = (pd + (1-p)e, qa + (1-q)b)$

¹Will not be graded since the hint is somehow misleading.

²A pure strategy s_i is strictly dominant if every other pure strategy s_i' is strictly dominated by s_i , that is, $u_i(s_i', s_{-i}) < u_i(s_i, s_{-i}) \quad \forall s_{-i} \in \mathcal{S}_{-i}$. Note that a mixed strategy will never be a dominant strategy.

is a NE, and compute the utilities for both players.

$$U_1(\sigma) = 6pq + 4(1-p)(1-q)$$
$$= (10q - 4)p + (4-4q)$$

$$U_2(\sigma) = 10pq + 10(1-p)(1-q)$$
$$= (20p - 10)q + (10 - 10p)$$

The best response correspondings are

$$\mathcal{B}_{1}(q) = \begin{cases} p = 1, & \text{if } q > \frac{2}{5} \\ p \in [0, 1], & \text{if } q = \frac{2}{5} \end{cases} \qquad \mathcal{B}_{2}(p) = \begin{cases} q = 1, & \text{if } p > \frac{1}{2} \\ q \in [0, 1], & \text{if } p = \frac{1}{2} \end{cases}$$

$$p = 0, & \text{if } q < \frac{2}{5} \end{cases} \qquad \mathcal{B}_{2}(p) = \begin{cases} q = 1, & \text{if } p > \frac{1}{2} \\ q \in [0, 1], & \text{if } p = \frac{1}{2} \end{cases}$$

The intersections of the best responses are $(p=0,q=0), (p=\frac{1}{2},q=\frac{2}{5}), (p=1,q=1),$ so the NEs for this game are $(e,b), (\frac{1}{2}d+\frac{1}{2}e,\frac{2}{5}a+\frac{3}{5}b), (d,a)$.

$\mathbf{Q3}$

(2pts, must say he bids at his evaluation)

3. 德國詩人歌德於1797/1/16寫信給一出版商 Vieweg, 商談其作品 Hermann and Dorothea 之交易, 英譯如下:

I am inclined to offer Mr. Vieweg from Berlin an epic poem, Hermann and Dorothea, which will have approximately 2000 hexamesters... Concerning the royalty we will proceed as follows: I will hand over to Mr. Counsel Böttiger a sealed note which contains my demand, and I wait for what Mr. Vieweg will suggest to offer for my work. If his offer is low than my demand, then I take my note back, unopened, and the negotiation is broken. If, however, his offer is higher, then I will not ask for more than what is written in the note to be opened by Mr. Böttiger.

歌德認爲 Mr. Vieweg 會提出什麼樣的價格?

Let G denote the bid made by Goethe, and V the bid made by Mr. Vieweg. Also let θ be the Mr. Vieweg's evaluation for the poem. We claim that Mr. Vieweg will not bid below his evaluation, $V < \theta$. Here are three possible cases with respect to the bid made by Goethe.

- 1. If G < V, in which case Mr. Vieweg wins and pay G. If instead of bidding V, Mr. Vieweg would have bid θ , then he would still win and pay the same price, so in this case bidding his valuation is as good as bidding V.
- 2. If $G > \theta$, in which case Mr. Vieweg loses. If instead of bidding V, Mr. Vieweg would have bid θ , then he would still lose, so bidding his valuation is as good as bidding V.
- 3. If $V < G < \theta$, then Mr. Vieweg loses. If instead of bidding V, Mr. Vieweg would have bid θ , then he would have won the auction and receive a pay-off of θV , making this a profitable deviation, so bidding his valuation is strictly better than V.

It is similar to show that bidding above his valuation $V > \theta$ is worse than bidding his valuation. Hence, V is a dominant strategy³, and thus we conclude that Mr. Vieweg might

³The strategy is a weakly dominant strategy. Although one may find a lot of NEs in the original game, we must further consider that players will not play dominated strategies under the rationality assumption.

offer at his evaluation of Goethe's work.⁴

$\mathbf{Q4}$

(2pts)

4. 請考慮 A、B、C 的三人賽局。枝幹旁的字標示的是各人的策略, 如 A 有策略 A1、A2 等。報酬向量中的三個數字挨序爲 A、B 與 C 的報酬。請找出此賽局的 subgame perfect equilibrium。

After drawing the possible paths using backward induction. The SPNE is (A1, B1B4, C1C4).

Q_5

(3pts)

5. *A*、*B* 分食冰淇淋, *A* 先提議兩人分食的比例, 若 *B* 接受, 則按 *A* 提議方式分配。若 *B* 反對, 輪到 *B* 提案, 只是當 *B* 提案時, 冰淇淋融化只剩原有的2/3。 *A* 若能接受 *B* 的提案, 兩人將分食剩下的2/3。 *A* 若反對 *B* 的意見, 再換回 *A* 提案, 此時 *A* 將考慮如何分配融化中只餘原先大小1/3的冰淇淋, 若 *B* 再表反對, 等不及新提案, 冰淇淋便化光了, 誰都沒得吃。 *A*、*B* 希望自己吃到的越多越好; 兩人精打細算, 完全理性。請問 *A* 最先開始時, 會如何提議分食的比例?

⁴To see more information about this story, please read Moldovanu, B., & Tietzel, M. (1998). Goethe's Second-Price Auction. Journal of Political Economy, 106(4), 854–859. https://doi.org/10.1086/250032

Through backward induction, B will accept the offer in the third stage. Taken this into account, A will offer $x_3 = 1$. For A in the second stage, he will accept the offer if and only if $\frac{2}{3} - \frac{2}{3}x_2 \ge \frac{1}{3}$, if and only if $x_2 \le \frac{1}{2}$. Taken this into account, B will offer $x_2 = \frac{1}{2}$. For B in the first stage, he will accept the offer if and only if $1 - x_1 \ge \frac{1}{3}$, if and only if $x_1 \le \frac{2}{3}$. Taken this into account, therefore, A will offer $x_1 = \frac{2}{3}$ at the beginning.

Q6

(3pts)

- 6. A、B 兩人玩搶4的遊戲: 兩人從0開始, 輪流報加數, 加數可爲1或爲2 (不能 pass), 誰將累加的和湊爲4, 誰就是贏家。A 先開始報。
 - (a) 請繪此遊戲之 game tree。
 - (b) Subgame perfect equilibrium 中, 誰會贏?
 - (c) 假設將搶4改爲搶20,其他遊戲規則相同,如果你來玩,你可選先報或 讓對手先報,你要選先報嗎?爲什麼?(你的目標是贏。)

(a)

- (b) The SPNE for this game are (12, 12) and (12, 22). Both on-path solutions suggest that A will win the game.
- (c) Using backward induction, we know that the one who first reaches 17 wins. Recursively, we conclude that the one who first reaches 2 wins. Hence, the first player always wins the game.