第3周参考解答

 $\frac{1.2.15}{1.2.15}$ (4) 先证明 $\sqrt{n} \rightarrow |(n \rightarrow +\infty) \Leftrightarrow \lim_{n \rightarrow \infty} \frac{1}{n} = 0$ (由stole显然) $\frac{1}{1.2.15}$ (4) 先证明 $\sqrt{n} \rightarrow |(n \rightarrow +\infty) \Leftrightarrow \lim_{n \rightarrow \infty} \frac{1}{n} = 0$

(5) 由 $\lim_{n\to\infty} \frac{\ln \alpha}{n} = 0$ 和 $\lim_{n\to\infty} \sqrt{\alpha} = 1$, $\forall \alpha \in \mathbb{R}^+$ 故由 $|\cos^2| \leq |\cos^2| + \cdots + \cos^2 n| \leq |n|$ 我 $\lim_{n\to\infty} |\cos^2| + \cdots + \cos^2 n| = |n|$

 $17.(1)\frac{\Omega_{n+1}}{\Omega_n} = 1 - \frac{1}{z^{n+1}} < 1$,又 $\Omega_n > 0$, 即知 Ω_n)单调适减有下界,从而收敛 (z) $\Omega_{n+1} - \Omega_n = \frac{1}{3^{n+1}+1} > 0$,又 $\Omega_n < \frac{1}{3} + \cdots + \frac{1}{3^n} < \frac{1}{2}$,即知 Ω_n)单调适增且有上界,从而收敛。

18.(3) 由 $\Omega_{n+1} = \frac{1}{2}(\Omega_n + \frac{\alpha}{\alpha_n}) \geqslant \sqrt{\alpha}$, $\frac{1}{2}(\Omega_n + \alpha_n) = \frac{1}{2}\frac{\alpha - \alpha_n^2}{\alpha_n} \le 0$, $n \in \mathbb{N}^+$ 故 $(\Omega_n)_{n=1}$ 单词选液有下界,从而可没加加 $\Omega_n = A \geqslant \sqrt{\alpha} > 0$ 故 $A = \lim_{n \to \infty} \Omega_n = \lim_{n \to \infty} \frac{1}{2}(\Omega_n + \frac{\alpha}{\alpha_n}) = \frac{1}{2}(A + \frac{\alpha}{A})$, 即台 $\lim_{n \to \infty} \Omega_n = \sqrt{\alpha}$.

(5) 易知 ann = sin an 且用,)目的法不难告到 0 < an < | 故 ann = sin an < an, 进而可设 lim an = X = lim sin an = sin X → lim an = 0.

19. 由 $(a_n-b_n)+a = a_n = a$, $a = b_n = (b_n-a_n)+a$ 估分夹通定理知 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$.

21. 由超设和 $\frac{a_{nn}}{b_{nn}} \leq \frac{a_{n}}{b_{n}}$,从而 $\frac{a_{n}}{b_{n}}$) 单调通减且有下界 0, 进而收敛 故 $a_{n} = \frac{a_{n}}{b_{n}} \cdot b_{n}$ 也是收敛的.

 $\frac{1}{|Q_{n+p}-Q_n|} = |Q_{mp}|Q^{n+p} + \dots + |Q_{n+1}|Q^{n+1}| \leq M(|Q_1|^{n+p} + \dots + |Q_1|^{n+1})$ $= \frac{|Q_1|^{n+1}(|-|Q_1|^p)}{|-|Q_1|} \longrightarrow O(n \to +\infty, \forall p \in N) \quad \text{And } |Q_n| \to |A_n| \to |A_n|$

= $\sum_{i=1}^{r} \left[\frac{1}{(n+i)} - \frac{1}{(n+i+1)} \right] = \frac{1}{n+1} - \frac{1}{n+p+1} \longrightarrow O(n \rightarrow +\infty, \forall p \in \mathbb{N}) \text{ Kin (an) With$

20. Pf: 由 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = l > 1$ 於 $\exists N_0 \in N^+$, $\forall n > N_0$, $\frac{a_n}{a_{n+1}} > \frac{l+1}{2} \triangleq s > 1$ 故 $a_{N_0} > s a_{N_0+1} > \cdots > s \stackrel{>}{\sim} n - N_0} a_n (\forall n > N_0) \Rightarrow o < a_n < \frac{l}{s^{n-N_0}} a_{N_0}$ 由 走 追 定理 $\sin a_n = 0$.

23. 由 lim an = ∞ 名 ∀M > 0, ∃No ∈ N+, ∀n > No, 有 |an| > 分 枝 |an bn| > b.分 = M, ∀n > No, 即移 lim an bn = ∞.

24. $\sqrt[h]{N}$ $= \lim_{n\to\infty} \sqrt[h]{n!} = \lim_{n\to\infty} e^{\frac{\ln (n+1)! - \ln n!}{(n+1)-n}} = \lim_{n\to\infty} (n+1) = +\infty,$ 故 $\sqrt[h]{N}$ 为 无 序 引 且 趋 $+\infty$; 注意 到 $\forall M>0$, $(4M+1)\sin\frac{(4M+1)\pi}{2} > M$, $(2M)\sin\frac{2M\pi}{2} = 0$, 从 而 $(n\sin\frac{n\pi}{2})$ 为 无 不 序 列 , 也 不 趋 $+\infty$.

Rmk. Stirling is $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1$

25. 用数学归的法证明 an≥√n, ∀n∈N+

①当n=1时,Q=1星然成立