```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import wbdata
        import matplotlib.pyplot as plt
        import scipy.stats as st
        from sympy import *
        import time as dt
        import warnings
        from IPython.display import Math,Latex
        from pandas.errors import SettingWithCopyWarning
        from sklearn.linear_model import LinearRegression
        from statsmodels.api import *
        from sklearn.metrics import r2_score
        from sklearn.preprocessing import PolynomialFeatures,StandardScaler,MinMaxScaler
        from scipy.stats import jarque_bera, kstest, kstwobign
```

```
In [2]:
       from country_dict import *
        import os
        from docx import Document
        from docx.shared import Inches, Pt
        from docx.table import Table
        from openpyxl import load_workbook
        from deep_translator import GoogleTranslator
        from docx.enum.text import WD ALIGN PARAGRAPH
        import locale
        locale.setlocale(locale.LC_NUMERIC, 'russian')
        plt.rcParams['axes.formatter.use_locale'] = True
        ########
        #########
        plt.rcParams["font.family"] = "Times New Roman"
        plt.rcParams['mathtext.fontset'] = 'cm'
        ####################
        init_printing(use_unicode=True,use_latex=True)
        ####################
        def add excel table to docx(xlsx file, docx file, sheet name='Sheet1',from row=1
            """Добавляет таблицу из указанного листа Excel в документ Word.
            Args:
                xlsx_file (str): Путь к файлу Excel.
                docx_file (str): Путь к документу Word.
                sheet name (str, optional): Название листа в Excel. По умолчанию 'Лист1'
            # Загрузка данных из Excel
            workbook = load workbook(xlsx file)
            worksheet = workbook[sheet name]
            # Создание нового документа Word или открытие существующего
            document = Document(docx file)
            # Создание таблицы в документе Word
            table = document.add_table(rows=worksheet.max_row, cols=worksheet.max_column
```

```
# Заполнение ячеек таблицы данными из Excel
    for row_idx in range(from_row, worksheet.max_row + 1):
        for col_idx in range(1, worksheet.max_column + 1):
            cell = table.cell(row_idx - 1, col_idx - 1)
            cell.text = str(worksheet.cell(row=row_idx, column=col_idx).value)
    # Сохранение документа Word
    document.save(docx file)
####################
def add_text(docx_file,text:str,font_name='Times New Roman',font_size=12,par_all
    alligments={
        'CENTER': WD ALIGN PARAGRAPH.CENTER,
        'LEFT': WD ALIGN PARAGRAPH. LEFT,
        'RIGHT': WD_ALIGN_PARAGRAPH.RIGHT,
    document = Document(docx_file)
    paragraph = document.add_paragraph()
    paragraph.alignment = alligments[par_allign] # Выравнивание по центру (можн
    run = paragraph.add run(text)
    run.font.size=Pt(font_size)
    run.font.name=font_name
    document.save(docx_file)
###################
def add_image_to_docx(docx_file, image_path, indent_size=-2, width=10.0):
   indent_size=Inches(indent_size)
    width=Inches(width)
    """Добавляет изображение PNG в документ DOCX с заданным отступом слева.
    Args:
        docx file (str): Путь к существующему или новому DOCX файлу.
        image_path (str): Путь к изображению PNG.
        indent_size (Inches, optional): Размер отступа слева в дюймах. По умолча
        width (Inches, optional): Ширина изображения в дюймах. По умолчанию 3 дю
    document = Document(docx file)
    paragraph = document.add paragraph()
   paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER # Выравнивание по центру (м
    run = paragraph.add run()
    run.add_picture(image_path, width=width)
    paragraph.paragraph format.first line indent = indent size
    document.save(docx file)
####################
```

Возьмем данные из библиотеки wbdata

```
data = data.dropna().sort_values('date')

try:
    os.mkdir(f'{country}')
    os.chdir(f'{country}')

except:
    os.chdir(f'{country}')

try:
    data.to_excel(f'{country}_1.xlsx')
except:
    pass

display(data)

document.save(f'{country}.docx')
add_text(f'{country}.docx',f'Кривая Филлипса для страны {country_dict[country]}'
add_text(f'{country}.docx',f'\tПолучим данные о динамике безработицы(Inflation r
add_excel_table_to_docx(f'{country}_1.xlsx',f'{country}.docx')
```

Inflation rate Unemployment rate

date		
1991	26.132091	6.850
1992	29.212495	6.853
1993	31.060737	6.859
1994	34.243821	6.828
1995	37.745213	6.990
1996	41.133658	7.147
1997	44.080577	7.335
1998	49.912808	7.517
1999	52.243646	7.682
2000	54.338322	7.856
2001	56.391926	8.039
2002	58.815173	8.248
2003	61.053595	8.397
2004	63.353638	8.551
2005	66.043851	8.697
2006	69.872099	8.614
2007	74.324964	8.534
2008	80.530554	8.486
2009	89.294173	8.406
2010	100.000000	8.318
2011	108.911793	8.222
2012	119.235539	8.156
2013	131.180410	8.088
2014	139.924446	7.992
2015	146.790502	7.894
2016	154.054013	7.800
2017	159.181198	7.723
2018	165.451069	7.652
2019	171.621576	6.510
2020	182.988823	7.859
2021	192.378725	6.380
2022	205.266241	4.822

Inflation rate Unemployment rate

date		
2023	216.862025	4.172

Стандартизируем полученные данные

```
In [4]:
        s=StandardScaler()
        x=s.fit_transform(data[['Unemployment rate']])
        s=StandardScaler()
        y=s.fit_transform(data[['Inflation rate']])
        plt.xlabel('Unemployment rate')
        plt.ylabel('Inflation rate')
        plt.grid()
        plt.scatter(x,y)
        try:
            plt.savefig(f'{country}_2.png')
        except:
            pass
        add_text(f'{country}.docx','\n\nСтандартизируем полученные данные и выведем пол
        add_image_to_docx(f'{country}.docx',f'{country}_2.png',0,5)
        plt.show()
```



```
In [5]: plt.plot(data.index,y,color='r')
   plt.plot(data.index,x)
```

```
plt.xticks(rotation=90)
plt.grid()

try:
    plt.savefig(f'{country}_3.png')
except:
    pass

add_text(f'{country}.docx','\n\nПроведем анализ изменения инфляции и безработицы
add_image_to_docx(f'{country}.docx',f'{country}_3.png',0,5)

plt.show()
```



```
In [6]: maxgdp_year=int(*data['Inflation rate']==max(data['Inflation rate'])].index
    maxunemp_year=int(*data[data['Unemployment rate']==max(data['Unemployment rate']
    mingdp_year=int(*data[data['Inflation rate']==min(data['Inflation rate'])].index
    minunemp_year=int(*data[data['Unemployment rate']==min(data['Unemployment rate'])
    add_text(f'{country}.docx',f'\tKak видно из графиков, за рассматриваемый период
```

построим модель линейной регрессии

```
In [7]: x1 = add_constant(x)
    model = OLS(y,x1).fit()

model.summary().as_text()

text = '\n\nПостроим модель линейной регрессии на получившихся данных\n\n' + mod

add_text(f'{country}.docx',text,par_allign='CENTER')
```

Построим модель гиперболической функции

```
In [8]: x1 = add\_constant(x)
         x1 = x1/x
         model = OLS(y,x1).fit()
         model.summary().as_text()
         text = '\n\nПостроим модель гиперболической функции:\n\n' + model.summary().as_t
         add_text(f'{country}.docx',text,par_allign='CENTER')
         model.summary()
                             OLS Regression Results
Out[8]:
             Dep. Variable:
                                                   R-squared:
                                                                 0.090
                                          У
                   Model:
                                        OLS
                                               Adj. R-squared:
                                                                 0.061
                  Method:
                               Least Squares
                                                    F-statistic:
                                                                 3.063
                     Date: Sun, 03 Nov 2024 Prob (F-statistic):
                                                                0.0900
                     Time:
                                    20:45:16
                                               Log-Likelihood: -45.270
         No. Observations:
                                         33
                                                         AIC:
                                                                 94.54
              Df Residuals:
                                         31
                                                          BIC:
                                                                 97.53
                 Df Model:
          Covariance Type:
                                  nonrobust
                   coef std err
                                      t P>|t| [0.025 0.975]
                 0.0578
                          0.033
                                  1.750 0.090
                                               -0.010
                                                        0.125
         const -0.0329
                          0.172 -0.191 0.850
                                               -0.384
                                                        0.319
               Omnibus: 3.368
                                  Durbin-Watson: 0.198
         Prob(Omnibus): 0.186 Jarque-Bera (JB): 2.969
                  Skew: 0.655
                                        Prob(JB): 0.227
                Kurtosis: 2.336
                                       Cond. No.
                                                    5.25
```

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Как видно, гиперболическая функция еще хуже описывает ситуацию

Попробуем совершить полиномиальные преобразования

```
In [9]:
        add_text(f'{country}.docx','Попробуем совершить полиномиальные преобразования',р
        degrees=range(27)
        for deg in degrees:
                 pf = PolynomialFeatures(degree=deg)
                 xp = pf.fit_transform(xp)
                model = OLS(y,xp).fit()
                display((deg, model.rsquared))
                 plt.scatter(model.predict(xp), y)
                 plt.plot([np.min(y),np.max(y)],[np.min(y),np.max(y)],color='red')
                 if deg%6.5==0:
                         try:
                                 plt.savefig(f'{country}_x_deg_{deg}.png')
                                 add_text(f'{country}.docx',f'Степень полинома = {deg},\n
                                 add_image_to_docx(f'{country}.docx',f'{country}_x_deg_{d}
                         except:
                                 pass
                 plt.show()
```

(0, 0.0)

(1, 0.149425381139715)

(2, 0.241969035743383)

(3, 0.259375634204206)

(4, 0.387745316128422)

(5, 0.458711075212763)

(6, 0.725723192334403)

(7, 0.729671039607428)

(8, 0.742017700524081)

(9, 0.742219503378833)

(10, 0.7431827859313)

(11, 0.757813850502449)

(12, 0.765680687726364)

(13, 0.765989254619546)

(14, 0.769235046558645)

(15, 0.769335392444522)

(16, 0.771915294388348)

(17, 0.774083176630271)

(18, 0.774269818010829)

(19, 0.774321718824306)

(20, 0.772967899307067)

(21, 0.77281532752959)

(22, 0.771540206078329)

(23, 0.766909411403903)

(24, 0.764305377060083)

(25, 0.758087151500497)

(26, 0.741578308142467)

Все равно R2 мал.

Если смотреть на график распределения под углом в 90

градусов, то можно предположить, что это полином степени N

```
In [10]: degrees=range(27)
         add_text(f'{country}.docx',f'Все равно R2 счет мал.\n\n Если смотреть на график
         for deg in degrees:
                 yp=y
                  pf = PolynomialFeatures(degree=deg)
                 yp = pf.fit_transform(yp)
                 model = OLS(x,yp).fit()
                 display((deg, model.rsquared))
                  plt.scatter(model.predict(yp), x)
                 plt.plot([np.min(x),np.max(x)],[np.min(x),np.max(x)],color='red')
                 if deg%6.5==0:
                          try:
                                  plt.savefig(f'{country}_y_deg_{deg}.png')
                                  add_text(f'{country}.docx',f'Степень полинома = {deg},\n
                                  add_image_to_docx(f'{country}.docx',f'{country}_y_deg_{d}
                          except:
                                  pass
                  plt.show()
```


(1, 0.149425381139715)

 $(2,\ 0.876476472708803)$

 $(3,\ 0.876533296626221)$

(4, 0.905113104949166)

(5, 0.913770989288803)

(6, 0.934234879808364)

(7, 0.934802372264512)

(8, 0.941420372309881)

(9, 0.956105752402458)

(10, 0.956178078377025)

(11, 0.956267777129556)

(12, 0.956897423044805)

(13, 0.969899049060189)

(14, 0.977225579585309)

(15, 0.982104278775743)

(16, 0.99364633885899)

(17, 0.99542351404418)

(18, 0.99721409426392)

 $(19,\ 0.999332621602501)$

(20, 0.999377864687939)

 $(21,\ 0.999620790163873)$

(22, 0.999740505545667)

(23, 0.999742652261439)

(24, 0.999743909971418)

(25, 0.999785028662359)

(26, 0.999780516437845)

Мы нашли модель со R2 = 0.999780516437845

```
In [11]: add_text(f'{country}.docx', f'Мы нашли модель c R2 = {model.rsquared}')
model.summary()
```

Out[11]:

OLS Regression Results

		OLS ricg	103310111	Courts		
Dep. Variable:			у	ı	R-squared:	1.000
Model:		OLS		Adj. R-squared:		0.999
Method:		Least Squares		F-statistic:		1518.
Date:		Sun, 03 Nov 2024		Prob (F-statistic):		3.16e-12
Time:		20:46:23		Log-Likelihood:		92.175
No. Observations:		33			AIC:	-134.3
Df Residuals:			8		BIC:	-96.94
Df Model:			24			
Covariance Type:		nor	robust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.7705	0.031	25.120	0.000	0.700	0.841
х1	-0.4420	0.329	-1.342	0.216	-1.201	0.317
х2	0.1699	1.905	0.089	0.931	-4.224	4.563
х3	-5.9797	13.087	-0.457	0.660	-36.157	24.198
х4	-9.8588	32.131	-0.307	0.767	-83.952	64.235
х5	123.7688	178.368	0.694	0.507	-287.548	535.086
х6	89.4388	242.660	0.369	0.722	-470.135	649.013
х7	-1057.9965	1181.311	-0.896	0.397	-3782.104	1666.111
х8	-107.1445	1054.086	-0.102	0.922	-2537.871	2323.582
х9	4651.3676	4471.359	1.040	0.329	-5659.606	1.5e+04
x10	-1309.6939	3149.427	-0.416	0.688	-8572.285	5952.897
x11	-1.17e+04	1.05e+04	-1.118	0.296	-3.59e+04	1.24e+04
x12	6216.7514	7119.985	0.873	0.408	-1.02e+04	2.26e+04
x13	1.795e+04	1.57e+04	1.144	0.286	-1.82e+04	5.41e+04
x14	-1.309e+04	1.18e+04 -1.11		0.299	-4.03e+04	1.41e+04
x15	-1.702e+04	1.5e+04	-1.133	0.290	-5.16e+04	1.76e+04
x16	1.599e+04	1.34e+04	1.191	0.268	-1.5e+04	4.69e+04
x17	9409.5899	8727.918	1.078	0.312	-1.07e+04	2.95e+04
x18	-1.201e+04	1e+04	-1.201	0.264	-3.51e+04	1.11e+04
x19	-2253.4417	2726.070	-0.827	0.432	-8539.771	4032.888
x20	5450.1625	4599.656	1.185	0.270	-5156.664	1.61e+04
x21	-407.4663	815.200	-0.500	0.631	-2287.321	1472.388
x22	-1337.6353	1149.198	-1.164	0.278	-3987.691	1312.421

	x23	372.558	8 3/9).195	0.982	0.355	-501.86	1246.984
	x24	115.540	1 103	3.502	1.116	0.297	-123.137	7 354.217
	x25	-64.517	1 62	2.367	-1.034	0.331	-208.337	7 79.302
	x26	7.788	1 9	.257	0.841	0.425	-13.559	9 29.135
	Oı	mnibus:	12.495	Du	rbin-Wa	tson:	2.662	
F	Prob(On	nnibus):	0.002	Jarq	ue-Bera	(JB):	19.576	
		Skew:	0.804		Prob	o(JB):	5.61e-05	
	К	(urtosis:	6.413		Cond	l. No.	1.72e+15	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.11e-14. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Тестируем

Проверим остатки на нормальность визуально

```
In [12]: add_text(f'{country}.docx', f'\n\n Проведем тестирование модели. \n\n Проверим с
In [13]: ost = (x-model.predict(yp))**2
plt.hist(ost)
plt.grid()

try:
    plt.savefig(f'{country}_5.png')
except:
    pass

add_image_to_docx(f'{country}.docx',f'{country}_5.png')
plt.show()
```


Расскажем про Тест Колмогорова - Смирнова

```
ks_teor = """
In [14]:
         Тест Колмогорова-Смирнова (или К-S тест) — это непараметрический статистический
         Основные этапы алгоритма теста Колмогорова-Смирнова:
         Сбор данных. Получаем выборку, для которой нужно проверить соответствие распреде
         Определение теоретического распределения. Выбираем теоретическое распределение,
         Построение эмпирической функции распределения (ЭФР):
         Вычисляем кумулятивные частоты значений в выборке, чтобы построить эмпирическую
         Построение теоретической функции распределения (ТФР):
         На основе выбранного теоретического распределения рассчитываем его кумулятивную
         Вычисление статистики Колмогорова-Смирнова:
         Определяем максимальное отклонение между эмпирической и теоретической функциями
         Сравнение с критическим значением:
         Полученное значение D сравнивается с критическим значением для заданного уровня
         Если D превышает критическое значение, гипотеза о совпадении распределений откло
         Интерпретация результатов:
         Если D меньше критического значения: гипотеза о том, что данные следуют теоретич
         Если D больше критического значения: гипотеза о соответствии распределению откло
```

```
Tect Колмогорова-Смирнова часто используется для проверки нормальности и других """ add_text(f'{country}.docx', f'\n\nK-S тect',font_size=15) add_text(f'{country}.docx', ks_teor,font_size=12, par_allign='LEFT')
```

Jarque-Bera

```
In [15]: jb_teor= '''
         Тест Джарка-Бера (Jarque-Bera) — это статистический тест, используемый для прове
         Основные этапы алгоритма теста Джарка-Бера:
         Сбор данных. Получаем выборку, для которой нужно проверить нормальность.
         Вычисление параметров:
         п: объем выборки.
         Среднее значение выборки.
         Стандартное отклонение выборки.
         Рассчитываем асимметрию и эксцесс:
         Асимметрия (skewness). Измеряет, насколько данные симметричны относительно средн
         Эксцесс (kurtosis). Показывает, насколько распределение «пикообразно» или «плоск
         Расчет статистики теста Джарка-Бера: JB = (n/6) * (S^2 + (K^2)/4). Чем больше зн
         Сравнение с критическим значением:
         Полученное значение статистики ЈВ сравнивается с критическим значением из распре
         Если ЈВ превышает критическое значение, то гипотеза нормальности отклоняется.
         Интерпретация результатов:
         Если ЈВ меньше критического значения: гипотеза о нормальности не отклоняется, и
         Если ЈВ больше критического значения: гипотеза о нормальности отклоняется, что г
         Этот тест полезен для предварительного анализа данных и проверки предположения о
In [16]:
        add_text(f'{country}.docx', f'\n\nJarque-Bera',font_size=15)
         add_text(f'{country}.docx', jb_teor,font_size=12, par_allign='LEFT')
         jb_stat, jb_p_value = jarque_bera(model.resid)
         print("Статистика Jarque-Bera:", jb stat)
         add_text(f'{country}.docx', f'Статистика Jarque-Bera: {jb_stat}')
         print("p-значение:", jb_p_value)
         add_text(f'{country}.docx', f'p-значение: {jb_p_value}')
         if jb_p_value < 0.05:</pre>
             print("Данные не распределены нормально")
             add text(f'{country}.docx', "Данные не распределены нормально")
         else:
             print('Данные распределены нормально')
             add_text(f'{country}.docx', "Данные распределены нормально")
```

Статистика Jarque-Bera: 19.57625069164637 р-значение: 5.611399306311759e-05 Данные не распределены нормально

Shapiro-Wilk

```
In [17]: add_text(f'{country}.docx', f'\n\nShapiro-Wilk',font_size=15)

stat, p_value = st.shapiro(model.resid)
print("Статистика Shapiro-Wilk:", stat)
add_text(f'{country}.docx', f'Статистика Shapiro-Wilk: {stat}')

print("p-значение:", p_value)
add_text(f'{country}.docx', f'p-значение: {p_value}')

if p_value > 0.05:
    print("Pacпределение данных похоже на нормальное")
    add_text(f'{country}.docx', "Pacпределение данных похоже на нормальное")
else:
    print('Pacпределение данных отличается от нормального')
    add_text(f'{country}.docx', "Pacпределение данных отличается от нормального")

Cтатистика Shapiro-Wilk: 0.8510308430092555
```

р-значение: 0.0003587078429321765 Распределение данных отличается от нормального

Helwig

```
In [18]:
        add_text(f'{country}.docx', f'\n\nHelwig',font_size=15)
         def helwig_test(data):
             # Шаг 1: Сортируем данные и определяем размер выборки
             add_text(f'{country}.docx', f'Шаг 1: Сортируем данные и определяем размер вы
             data_sorted = np.sort(data)
             n = len(data)
             # Шаг 2: Оценка среднего и стандартного отклонения
             add_text(f'{country}.docx', f'Шаг 2: Оценка среднего и стандартного отклонен
             mean, std = np.mean(data), np.std(data, ddof=1)
             # Шаг 3: Вычисляем эмпирическую функцию распределения (ЭФР)
             add_text(f'{country}.docx', f'Шаг 3: Вычисляем эмпирическую функцию распреде
             ecdf = np.arange(1, n + 1) / n
             # Шаг 4: Строим теоретическую нормальную функцию распределения (НФР)
             theoretical_cdf = st.norm.cdf(data_sorted, mean, std)
             add_text(f'{country}.docx', 'Шаг 4: Строим теоретическую нормальную функцию
             # Шаг 5: Вычисляем максимальное отклонение между ЭФР и НФР
             add_text(f'{country}.docx','Шаг 5: Вычисляем максимальное отклонение между Э
             max_deviation = np.max(np.abs(ecdf - theoretical_cdf))
             # Вывод результата
             add text(f'{country}.docx', 'Вывод результата')
             print("Максимальное отклонение (D):", max_deviation)
```

```
add_text(f'{country}.docx',f'Максимальное отклонение (D): {max_deviation}')
return max_deviation

n = len(model.resid)

alpha = 0.05
critical_value = kstwobign.ppf(1 - alpha) / np.sqrt(n)
if helwig_test(model.resid) > critical_value:
    print(f"Гипотеза о нормальности отвергается на уровне значимости {alpha}.")
    add_text(f'{country}.docx',f"Гипотеза о нормальности отвергается на уровне з
else:
    print(f"Нет оснований отвергнуть гипотезу о нормальности на уровне значимост
    add_text(f'{country}.docx',f"Нет оснований отвергнуть гипотезу о нормальности
```

Максимальное отклонение (D): 0.2560889275648254 Гипотеза о нормальности отвергается на уровне значимости 0.05.

Сравнение тестов

In [19]: t = '''Сравнение методов согласия Хельвига, Шапиро-Вилька и Джарка-Бера (Jarque-

1. Тест Хельвига

Цель: Метод Хельвига основан на анализе корреляций и используется для оценки сог Применение: Обычно применяется для оценки многомерного согласия признаков или пр Преимущества:

Хорошо подходит для многомерных данных, поскольку анализирует согласие между нес Позволяет оценить общую структуру корреляций между признаками, что важно для ана Недостатки:

Не подходит для проверки нормальности распределения данных.

Может требовать больших выборок для корректного анализа многомерных данных.

2. Тест Шапиро-Вилька

Цель: Проверка нормальности распределения данных в выборке.

Применение: Часто используется для малых и средних выборок (до 2000 наблюдений), Преимущества:

Очень чувствителен к отклонениям от нормальности, особенно в малых выборках.

Является одним из самых мощных тестов для проверки нормальности, так как учитыва Недостатки:

Может давать ложные результаты для больших выборок (более 2000 наблюдений), так Не подходит для многомерных данных, так как используется для одномерного распред

3. Тест Джарка-Бера (Jarque-Bera)

Цель: Проверка нормальности распределения путем оценки асимметрии (skewness) и э Применение: Часто применяется для данных больших объемов, особенно в эконометрич Преимущества:

Хорошо подходит для больших выборок, так как рассчитывается на основе асимметрии Удобен для случаев, когда нужны простые показатели нормальности (асимметрия и эк Недостатки:

Менее чувствителен для малых выборок, так как асимметрия и эксцесс могут быть не Не учитывает порядок значений в выборке, что делает его менее точным для малых в

Вывод:

Для малых выборок (до 2000 наблюдений) тест Шапиро-Вилька наиболее подходит для Для больших выборок (более 2000 наблюдений) тест Джарка-Бера предпочтителен, так Тест Хельвига лучше использовать, когда требуется оценить согласие нескольких пе Таким образом, выбор метода зависит от цели исследования, объема выборки и харак

print(t)

```
add_text(f'{country}.docx', f'\n\nСравнение тестов',font_size=15)
add_text(f'{country}.docx', t,font_size=12, par_allign='LEFT')
```

Сравнение методов согласия Хельвига, Шапиро-Вилька и Джарка-Бера (Jarque-Bera) по лезно для выбора подходящего теста для проверки нормальности распределения данны х. Каждый из этих методов имеет свою область применения и особенности, которые мо гут быть полезны в разных контекстах.

1. Тест Хельвига

Цель: Метод Хельвига основан на анализе корреляций и используется для оценки согл асия признаков, особенно в социально-экономических и психометрических исследовани ях.

Применение: Обычно применяется для оценки многомерного согласия признаков или при проведении факторного анализа.

Преимущества:

Хорошо подходит для многомерных данных, поскольку анализирует согласие между неск олькими переменными.

Позволяет оценить общую структуру корреляций между признаками, что важно для анал иза взаимозависимости.

Недостатки:

Не подходит для проверки нормальности распределения данных.

Может требовать больших выборок для корректного анализа многомерных данных.

2. Тест Шапиро-Вилька

Цель: Проверка нормальности распределения данных в выборке.

Применение: Часто используется для малых и средних выборок (до 2000 наблюдений), чтобы оценить, насколько распределение данных близко к нормальному.

Преимущества:

Очень чувствителен к отклонениям от нормальности, особенно в малых выборках.

Является одним из самых мощных тестов для проверки нормальности, так как учитывае т порядок значений в выборке.

Недостатки:

Может давать ложные результаты для больших выборок (более 2000 наблюдений), так к ак становится излишне чувствительным к малейшим отклонениям.

He подходит для многомерных данных, так как используется для одномерного распреде ления.

3. Тест Джарка-Бера (Jarque-Bera)

Цель: Проверка нормальности распределения путем оценки асимметрии (skewness) и эк сцесса (kurtosis).

Применение: Часто применяется для данных больших объемов, особенно в эконометриче ских и финансовых исследованиях.

Преимущества:

Хорошо подходит для больших выборок, так как рассчитывается на основе асимметрии и эксцесса, которые более устойчивы в больших объемах данных.

Удобен для случаев, когда нужны простые показатели нормальности (асимметрия и экс цесс).

Недостатки:

Менее чувствителен для малых выборок, так как асимметрия и эксцесс могут быть нес табильными.

Не учитывает порядок значений в выборке, что делает его менее точным для малых вы борок.

Вывод:

Для малых выборок (до 2000 наблюдений) тест Шапиро-Вилька наиболее подходит для п роверки нормальности, поскольку он высокочувствителен к отклонениям и учитывает п орядок значений.

Для больших выборок (более 2000 наблюдений) тест Джарка-Бера предпочтителен, так как он основан на асимметрии и эксцессе, что стабильно в больших объемах данных. Тест Хельвига лучше использовать, когда требуется оценить согласие нескольких пер еменных, а не нормальность, так как он лучше подходит для анализа многомерных зав исимостей.

Таким образом, выбор метода зависит от цели исследования, объема выборки и характ еристик данных.