SEEM 5380: Optim. Methods for High–Dim. Statistics

2016–17 Second Term

Homework Set 2

Instructor: Anthony Man-Cho So

Due: March 20, 2017

SOLVE THE FOLLOWING PROBLEMS:

Problem 1 (50pts). Consider the sets $Q^3 = \{(t,x) \in \mathbb{R} \times \mathbb{R}^2 : ||x||_2 \le t\}$ and $H = \{x \in \mathbb{R}^3 : x_1 = x_3\}$. Let $y = (s,u) \in \mathbb{R} \times \mathbb{R}^2$ be arbitrary. Given a non-empty closed convex set $C \subset \mathbb{R}^3$, let $\Pi_C(y)$ denote the projection of y onto C.

(a) **(20pts).** Show that

$$\Pi_{\mathcal{Q}^3}(y) = \left\{ \begin{array}{cc} y & \text{if } \|u\|_2^2 \leq s^2 \text{ and } s \geq 0, \\ \mathbf{0} & \text{if } \|u\|_2^2 \leq s^2 \text{ and } s \leq 0, \\ \\ \frac{s + \|u\|_2}{2\|u\|_2}(\|u\|_2, u) & \text{otherwise.} \end{array} \right.$$

(b) **(15pts).** Show that

$$\Pi_H(y) = \left(\frac{s + u_2}{2}, u_1, \frac{s + u_2}{2}\right).$$

(c) **(10pts).** Show that

$$\Pi_{\mathcal{Q}^3 \cap H}(y) = \frac{(s+u_2)_+}{2}(1,0,1).$$

(d) **(5pts).** Consider the sequence $x^k = (k, 1, k) \in \mathbb{R}^3$ for $k \ge 1$. Using the results in (a)–(c), show that there does not exist a constant $\alpha > 0$ such that the inequality

$$\operatorname{dist}(x, \mathcal{Q}^3 \cap H) \le \alpha \left(\operatorname{dist}(x, \mathcal{Q}^3) + \operatorname{dist}(x, H)\right)$$

holds for all $x \in \mathbb{R}^3$.

Problem 2 (20pts). Let $X \in \mathbb{R}^{m \times n}$ be a rank-r $m \times n$ matrix with $1 \leq r \leq m \leq n$. Suppose that

$$X = U \begin{bmatrix} \Sigma & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} V^T$$

is an SVD of X, where $\Sigma = \text{Diag}(\sigma_1(X), \dots, \sigma_r(X)) \in \mathbb{R}^{r \times r}$ is a diagonal matrix containing the non-zero singular values of X. Let $\|X\|_* = \sum_{i=1}^r \sigma_i(X)$ denote the nuclear norm of X. Show that

$$\partial \|X\|_* = \left\{ U \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & W \end{bmatrix} V^T : \|W\| \leq 1 \right\},$$

where I_r is the $r \times r$ identity matrix and ||W|| is the spectral norm (largest singular value) of W.

Problem 3 (30pts). Consider the problem

$$\min_{X \in \mathbb{R}^{2 \times 2}} \left\{ h(\mathcal{A}(X)) + \|X\|_* \right\},\tag{P}$$

where $h: \mathbb{R}^2 \to \mathbb{R}$ is the function given by

$$h(y) = \frac{1}{2} \left\| B^{1/2} y - B^{-1/2} d \right\|_2^2 \quad \text{with} \quad B = \begin{bmatrix} 3/2 & -2 \\ -2 & 3 \end{bmatrix} \succ \mathbf{0} \text{ and } d = \begin{bmatrix} 5/2 \\ -1 \end{bmatrix},$$

and $\mathcal{A}: \mathbb{R}^{2 \times 2} \to \mathbb{R}^2$ is the linear operator given by

$$\mathcal{A}(X) = (X_{11}, X_{22}).$$

Using the optimality condition of Problem (P) and the result in Problem 2, show that

$$\bar{X}^* = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

is the unique optimal solution to (P).