MATH311: Homework 7 (due Apr. 19)

손량(20220323)

Last compiled on: Monday 24th April, 2023, 19:25

1 Section 4 #1

We write f as

$$f(x) = \begin{cases} 1 & (x=0) \\ 0 & (x \neq 0) \end{cases}$$

Fix $\epsilon=1/2$, then $|f(x)-f(0)|<\epsilon$ for only x=1, so there is no $\delta>0$ such that $|x-0|<\delta$ implies $|f(x)-f(0)|<\epsilon$ and f is not continuous at x=0. Fix $\epsilon>0$. For all $x\in\mathbb{R}$, there exists $\delta>0$ such that $0<|h|<\delta$ implies $|f(x+h)-f(x-h)|<\epsilon$ since if $x\neq 0$, x is an element of either $(0,\infty)$ or $(-\infty,0)$ which are both open sets. If x=0, for all x=0, such that x=0, x=0, for all x=0, for all x=0, x=0, for all x=0. Thus, the condition does not imply that x=0.

2 **Section 4 #2**

Since f is continuous and $\overline{f(E)}$ is a closed subset of Y, $f^{-1}(\overline{f(E)})$ is also a closed subset of X. $E \subset f^{-1}(\overline{f(E)})$, so $\overline{E} \subset f^{-1}(\overline{f(E)})$ and $f(\overline{E}) \subset \overline{f(E)}$.

Consider $f: E \to \mathbb{R}, x \mapsto 1/(1+e^{-x})$, where $E = \mathbb{R}$. Since $e^{-x} > 0$ for all $x \in E$, f(E) = (0,1). We can see that $f(\overline{E}) = f(E) = (0,1)$, so $f(\overline{E}) \subset \overline{f(E)} = [0,1]$ and $f(\overline{E})$ is a proper subset of $\overline{f(E)}$.

3 Section 4 #3

Let $E := \{0\}$. E is a closed set since $E' = \emptyset$. Then, $f^{-1}(E)$ is also closed since f is continuous. By definition, $f^{-1}(E)$ is the set of all $x \in X$ such that $f(x) \in E$, so $f^{-1}(E) = Z(f)$ and we get the desired result.

4 Section 4 #4

By the result we proved in #3, $f(E) \subset f(X) = f(\overline{E}) \subset \overline{f(E)}$ since E is dense in X. From $f(X) \subset \overline{f(E)}$, all points in f(X) are either point or limit point of f(E) so f(E) is dense in f(X).

Let $h: X \to Y, x \mapsto f(x) - g(x)$, then $h(E) = \{0\}$. By the result we proved earlier, h(E) is dense in h(X) so every point in h(X) is either a limit point or point of h(E). Since $[h(E)]' = \emptyset$, $h(X) \subset \{0\}$, thus $h(X) = \{0\}$ and f(x) - g(x) = 0 for all $x \in X$.

5 Section 4 #5

Using the resule proved in exercise 29 of chapter 2, the complement of E can be written union of at most countably many disjoint open intervals, $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n), \ldots$ with possibly one or both of (a_0, ∞) and $(-\infty, b)$. Let g(x) be a function defined on \mathbb{R} such that

$$g(x) = \begin{cases} f(x) & (x \in E) \\ \frac{f(b_k) - f(a_k)}{b_k - a_k} (x - a_k) + f(a_k) & (x \in (a_k, b_k)) \\ f(a) & (x \ge a) \\ f(b) & (x \le b) \end{cases}$$

For $p \in E^C$, g is continuous at x = p since it is a point in the region where g(x) is a polynomial function. For $p \in E^{\circ}$, g is continuous at x = p since for all $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) - f(p)| < \epsilon$ for all $x \in E^{\circ}$ satisfying $|x - p| < \delta$ and $(x-\delta,x+\delta)\subset E^{\circ}$ as f is continuous at x=p. Consider the case where $p=a_k$, where $k \geq 0$. We can take (p-r, p+r) such that $0 < r < b_k - a_k$ and $b_{k-1} < p-r$ if k > 0. (If k = 0, then we can simply ignore $b_{k-1} condition.) Then, <math>(p - r, a_k] \subset E$ and $(a_k, p+r) \subset E^C$. Fix $\epsilon > 0$, then there exists some $\delta_1 > 0$ such that $|g(x) - g(p)| < \epsilon$ for all $x \in (p-r, a_k]$ satisfying $|x-p| < \delta_1$ as g is continuous in $(p-r, a_k] \subset E$. Also, there exists some $\delta_2 > 0$ such that $|g(x) - g(p)| < \epsilon$ for all $x \in (a_k, p + r)$ satisfying $|x - p| < \delta_2$ as q is a polynomial function in $(a_k, p+r)$ and it's continuous. Let $\delta = \min\{\delta_1, \delta_2\}$ then $|g(x) - g(p)| < \epsilon$ for all $x \in (p - r, p + r)$ satisfying $|x - p| < \delta$ so g is continuous at x = p. We can prove that g is continuous at $x = b_k$ where $k \ge 0$ and x = b using the similar logic. Consider $f:(0,1]\to\mathbb{R}, x\mapsto 1/x$. Suppose that a continuous extension g on \mathbb{R} such that f(x) = q(x) for all $x \in (0,1)$. Since q is a continuous function on \mathbb{R} , $q(0) = \lim_{x \to 0} q(x)$ should hold. However, for sequence $p_n = 1/n$, $\lim_{n\to\infty} p_n = 0$ but $\lim_{n\to\infty} g(p_n) = 1/n$ $\lim_{n\to\infty} n\neq 0$ so it is a contradiction and the result is not generally true for all domains. For continuous vector valued function $\mathbf{f}: E \to \mathbb{R}^k, x \mapsto (f_1(x), f_2(x), \dots, f_k(x))$ defined on closed sets, f_1, f_2, \ldots, f_k are continuous on E. Let g_1, g_2, \ldots, g_k be continuous extensions of f_1, f_2, \ldots, f_k respectively. Then, we can define $\mathbf{g} : \mathbb{R} \to \mathbb{R}^k, x \mapsto$ $(g_1(x), g_2(x), \dots, g_k(x))$ and it is continuous on \mathbb{R} since its components are continuous on \mathbb{R} .