Final presentation Github version Adam Wuilmart August Regnell Eric Bojs Ludvig Wärnberg Gerdin

Executive summary

High computational waste due to difficulty determining feasibility in a optimization problem

Machine learning algorithms

SVM

Random Forest

Regression

Deep Learning

Dimensionality Reduction

No significant results with current approach due to nature of problem optimization problem

Client's Value chain: Algorithms to be used in the CMA-ES step

Scope of Work: Additional modules delivered on top of original SOW

Background: Client solves complex non-linear optimization problems

Problem formulation

Client finds new trades for a set of banks which will reduce the sum of **CENSORED** required in the network.

$$\min f(x)$$

s.t. $x \in D$

f is proxy for **total CENSORED** in network $x \in R^{4,000}$ is proxy of **new trades** in the network D is the **feasible** space, by SIMM & CCP constraints Both f and D are **non-trivial**

Extremely computer intensive problem to solve

CMA-ES

Each iteration of the evolutionary algorithm samples 1,024 points in a region. Next steps moves towards the optimum while still being in the feasible region

Data: Data set in use is heavy and highly mobile yielding problems for ML

Extremely large and imbalanced dataset

Algorithms: Machine learning algorithms (I/II)

Algorithm **Description** Support vector machines is a supervised ML-algorithm which finds the best **Support Vector Machines** fitting hyperplane which linearly divides the data RBFSampler is a way to approximate the RBF kernels in SVM methods, but **Radial Basis Function Sampler** with a benefit of being very quick. One combines the approximated kernel with a classifier. The extra speed yields better optimization of parameters Deep learning is part of a broader family of machine learning methods **Deep Learning Networks** based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised Nearest Neighbour search, as a form of proximity search, is the optimization **Nearest Neighbor** problem of finding the point in a given set that is closest, or most similar, to a given point Random forest classifiers are an ensemble of decision trees, each giving **Random Forest** their own classification. The decision made by the ensemble is determined by voting, where the option with most votes from the trees wins

Algorithms: Machine learning algorithms (II/II)

Description

Logistic regression fits a cumulative probability density function using the logit function to the data. This can then be used to classify future samples

Gradient Boosting Machines build an ensemble of shallow trees, in contrast to Random Forest models that build an ensemble of deep trees. Trees are added *sequentially*, each new tree learn with respect to current error

An autoencoder is a type of artificial neural network used to learn efficient coding of unlabelled data. The encoding is validated and refined by attempting to regenerate the input from the encoding

Principal Component Analysis is the process of computing the principal components and using them to perform a change of basis on the data, using only the first few principal components and ignoring the rest

Method: Input from multiple sources yielding standardized testing

Client suggestions

ML-expert suggestions

- 1. At least twice as many training samples as features
- 2. 75% train, 25% test
- 3. Dimensionality reduction infeasible
- 4. More data, 100k samples is not enough
- 5. The problem is very difficult

Standardized model tester

We developed a **python library** with:

- 1. Fixed number of training samples (ca. 8000)
- 2. Fixed number of test samples (ca. 2000)
- 3. Fixed lag between training and test samples
- 4. Hyperparameter tuning
- 5. Several epochs to get confidence intervals

Output:

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	49.65	1.2	(48.79, 50.51)	47.23	51.73
duration [s]	2.12	0.03	(2.1, 2.14)	2.09	2.18
infeasible_percentage [%]	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	35.62	14.46	(25.27, 45.96)	14.84	54.79
feasible_recall [%]	63.8	14.92	(53.12, 74.47)	42.11	85.45
feasible_precision [%]	17.26	2.56	(15.43, 19.09)	13.74	22.65
infeasible_recall [%]	35.5	14.41	(25.19, 45.81)	14.91	54.86
infeasible_precision [%]	82.33	2.47	(80.56, 84.09)	76.92	86
AUC	0.5	0.01	(0.49, 0.51)	0.47	0.52

Results: RBFSampler + Classifier showing the most promising results

Algorithm	Balanced Accuracy	95% Prediction Interval
Support Vector Machine	50.2%	(49.31%, 51.03%)
RBFSampler + Classifier	51.3%	(50.30%, 52.20%)
Nearest Neighbor	50.3%	(49.51%, 51.01%)
Logistic Regression	50.4%	(49.89%, 50.97%)
Random Forest Classifier	50.4%	(49.75%, 50.58%)
Deeplearning (kNN)	50.2%	(50.04%, 50.30%)
Gradient Boosting Machine (GBM)	50.6%	(49.69%, 51.55%)
Autoencoder + GBM	50.1%	(49.82%, 50.33%)

Support Vector Machine: Slow algorithm with poor results

Model

Support vector machines are supervised ML-algorithms which finds the best fitting hyperplane which linearly divides the data.

Hyper parameters

Kernel function

Transforms hyperspace since the original is not linearly seperable

Regularization parameter

Amount of missclassifications allowed on train data

Kernel coefficient

Specific to kernel chosen

Results

Weighted accuracy: 50.17%

Precision (inf./feasible): 82.42% / 17.63%

Recall (inf./feasible): 46.55% / 53.79%

Speed: 51.69 s

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	50.17	1.2	(49.31, 51.03)	47.82	51.91
duration [s]	51.69	0.13	(51.59, 51.78)	51.56	51.93
<pre>infeasible_percentage [%]</pre>	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	46.5	23.08	(29.99, 63.02)	3.56	79.93
feasible_recall [%]	53.79	22.77	(37.51, 70.08)	23.2	96.14
feasible_precision [%]	17.63	2.35	(15.95, 19.31)	14.66	22.68
<pre>infeasible_recall [%]</pre>	46.55	23.17	(29.97, 63.12)	3.48	80.51
infeasible_precision [%]	82.42	3.27	(80.08, 84.76)	75.34	85.9
AUC of ROC	0.5	0.02	(0.48, 0.52)	0.46	0.54

Support Vector Machine: Slow algorithm with poor results

Model

Support vector machines are supervised ML-algorithms which finds the best fitting hyperplane which linearly divides the data.

Hyper parameters

Kernel function

Transforms hyperspace since the original is not linearly seperable

Regularization parameter

Amount of missclassifications allowed on train data

Kernel coefficient

Specific to kernel chosen

Results

Weighted accuracy: 50.17%

Precision (inf./feasible): 82.42% / 17.63%

Recall (inf./feasible): 46.55% / 53.79%

Speed: 51.69 s

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	50.17	1.2	(49.31, 51.03)	47.82	51.91
duration [s]	51.69	0.13	(51.59, 51.78)	51.56	51.93
<pre>infeasible_percentage [%]</pre>	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	46.5	23.08	(29.99, 63.02)	3.56	79.93
feasible_recall [%]	53.79	22.77	(37.51, 70.08)	23.2	96.14
feasible_precision [%]	17.63	2.35	(15.95, 19.31)	14.66	22.68
<pre>infeasible_recall [%]</pre>	46.55	23.17	(29.97, 63.12)	3.48	80.51
<pre>infeasible_precision [%]</pre>	82.42	3.27	(80.08, 84.76)	75.34	85.9
AUC of ROC	0.5	0.02	(0.48, 0.52)	0.46	0.54

Gradient Boosting Machine: Poor results due to overfitting

Model

Ensemble of shallow trees.

Trees are added sequentially, each new tree learn with respect to current error.

Hyper parameters

Maximum tree depth

Adjusts the maximum allowed depth of each tree in ensemble

Number of leaves

Maximum number of leaves in one tree

Regularization parameter

Amount of regularization to apply. That is, to shrink the coefficients.

Results

Weighted accuracy: 50.62%

Precision (inf./feasible): 81.69% / 18.16%

Recall (inf./feasible): 96.88% / 4.36%

Speed: 13.87 s

variable	average	std	95.0% PI	min	max
weighted accuracy [%]	50.62	0.75	(49.69, 51.55)	49.93	51.87
duration [s]	13.87	0.61	(13.12, 14.62)	13.25	14.99
<pre>infeasible_percentage [%]</pre>	81.47	2.67	(78.17, 84.78)	77.25	85.06
<pre>infeasible_guessed_percentage [%]</pre>	96.62	3.05	(92.83, 100.41)	91.5	99.95
feasible_recall [%]	4.36	4.19	(-0.84, 9.57)	0	11.5
<pre>feasible_precision [%]</pre>	18.16	11.49	(3.89, 32.42)	0	32.5
<pre>infeasible_recall [%]</pre>	96.88	2.78	(93.42, 100.34)	92.23	99.94
<pre>infeasible_precision [%]</pre>	81.69	2.49	(78.6, 84.79)	77.64	85.04

RBFSampler: Fast algorithm with most promising results

Model

The RBFSampler is a way to approximate the RBF kernels in an efficient way. One combines the approximated kernel with a classifier.

Hyper parameters

Length scale (smoothness)

Adjusts the influence of single data points

Number of components

How many Monte Carlo samples that are used per feature

Parameters of the classifier

Loss-function, penalty-type and penalty-strength: depends on the chosen model

Results

Weighted accuracy: 51.25%

Precision (inf./feasible): 83.23% / 18.25%

Recall (inf./feasible): 63.31% / 39.19%

Speed: 3.74 s

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	51.25	1.32	(50.3, 52.2)	49.01	53.18
duration [s]	3.74	0.81	(3.16, 4.32)	3.21	6.04
infeasible_percentage [%]	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	62.89	12.49	(53.95, 71.82)	45.61	84.33
feasible_recall [%]	39.19	13.93	(29.23, 49.16)	17.24	59.44
feasible_precision [%]	18.25	2.17	(16.7, 19.8)	14.72	21.2
infeasible_recall [%]	63.31	12.19	(54.59, 72.03)	46.55	84.62
infeasible_precision [%]	83.23	2.57	(81.39, 85.06)	76.8	86.07

Deeplearning kNNs: Key takeaway from the models results

k-layer Neural Networks

Using multiple layers of connected neurons features are extracted from the input in a similar way to human learning.

Hyper parameters

k

The number of hidden layers in the network

Learning rate

How fast the network learns from every iteration

Optimizer

How and in which direction the learning algorithm moves

Results

Weighted accuracy: 50.17%

Precision (inf./feasible): 82.62% / 21.09%

Recall (inf./feasible): 92.51% / 7.82%

Speed: 1.24 s

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	50.17	0.18	(50.04, 50.3)	50	50.58
duration [s]	1.24	0.18	(1.1, 1.37)	1.05	1.64
infeasible_percentage [%]	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	92.45	11.58	(84.17, 100.74)	68.07	100
feasible_recall [%]	7.82	11.86	(-0.66, 16.31)	0	32.92
feasible_precision [%]	21.09	28.63	(0.61, 41.57)	0	100
infeasible_recall [%]	92.51	11.52	(84.27, 100.75)	68.25	100
infeasible_precision [%]	82.62	2.38	(80.92, 84.33)	77.38	85.45
auc of roc	0.49	0.01	(0.48, 0.5)	0.46	0.51

Note: Source:

Gradient Boosting Machine: Poor results due to overfitting

Model

Ensemble of shallow trees.

Trees are added sequentially, each new tree learn with respect to current error.

Hyper parameters

Maximum tree depth

Adjusts the maximum allowed depth of each tree in ensemble

Number of leaves

Maximum number of leaves in one tree

Regularization parameter

Amount of regularization to apply. That is, to shrink the coefficients.

Results

Weighted accuracy: 50.62%

Precision (inf./feasible): 81.69% / 18.16%

Recall (inf./feasible): 96.88% / 4.36%

Speed: 13.87 s

variable	average	std	95.0% PI	min	max
weighted accuracy [%]	50.62	0.75	(49.69, 51.55)	49.93	51.87
duration [s]	13.87	0.61	(13.12, 14.62)	13.25	14.99
<pre>infeasible_percentage [%]</pre>	81.47	2.67	(78.17, 84.78)	77.25	85.06
<pre>infeasible_guessed_percentage [%]</pre>	96.62	3.05	(92.83, 100.41)	91.5	99.95
feasible_recall [%]	4.36	4.19	(-0.84, 9.57)	0	11.5
<pre>feasible_precision [%]</pre>	18.16	11.49	(3.89, 32.42)	0	32.5
<pre>infeasible_recall [%]</pre>	96.88	2.78	(93.42, 100.34)	92.23	99.94
<pre>infeasible_precision [%]</pre>	81.69	2.49	(78.6, 84.79)	77.64	85.04

Nearest Neighbor: Key takeaway from the models results

Nearest Neighbor

Classifying new points be performing a plurality vote of its *k* nearest neighbors.

Hyper parameters

k

The number of neighbors considered.

Distance metric

How the distances should be calculated, e.g., I2-norm

Results

Weighted accuracy: 50.26%

Precision (inf./feasible): 82.48% / 17.65%

Recall (inf./feasible): 50.58% / 49.94%

Speed: 1.11 s

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	50.26	1.04	(49.51, 51.01)	48.35	52.12
duration [s]	1.11	0.2	(0.96, 1.25)	0.79	1.43
infeasible_percentage [%]	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	50.51	36.55	(24.36, 76.66)	7.37	96.29
feasible_recall [%]	49.94	35.84	(24.3, 75.57)	2.65	92.75
feasible_precision [%]	17.65	2.85	(15.62, 19.69)	11.84	22.6
infeasible_recall [%]	50.58	36.7	(24.33, 76.84)	7.4	96.08
infeasible_precision [%]	82.48	2.7	(80.55, 84.41)	76.81	85.85
auc of roc	0.5	0.01	(0.5, 0.51)	0.48	0.52

Logistic Regression: Key takeaway from the models results

Logistic Regression

Logistic regression fits a cumulative probability density function using the logit function to the data. This can then be used to classify future samples.

Hyper parameters

Penalty

The loss function assigned to missclassifications

Regularization parameter

Amount of missclassifications allowed on train data

Fit interception

Weather or not we should assume that \$\beta_0=0\$ or not

Results

Weighted accuracy: 50.43%

Precision (inf./feasible): 82.79% / 17.65%

Recall (inf./feasible): 36.19% / 64.68%

Speed: 496.05 s

variable	average	std	95.0% CI	min	max
weighted accuracy [%]	50.43	0.75	(49.89, 50.97)	49.02	51.65
duration [s]	496.05	182.34	(365.61, 626.49)	286.23	707.68
infeasible_percentage [%]	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	36.05	9.6	(29.18, 42.92)	22.61	49.71
feasible_recall [%]	64.68	8.87	(58.33, 71.02)	51.31	77.66
feasible_precision [%]	17.65	2.3	(16.01, 19.3)	15.05	22.48
<pre>infeasible_recall [%]</pre>	36.19	9.76	(29.2, 43.17)	22.5	50.06
<pre>infeasible_precision [%]</pre>	82.79	2.69	(80.87, 84.71)	76.52	86.3
AUC of ROC	0.49	0.01	(0.48, 0.5)	0.47	0.51

Random Forest:

Random forest

Random forest classifiers ensembles of decision trees, each giving a classification. Decision made by the ensemble is determined by voting, where the option with most votes from the trees wins

Hyper parameters

Estimators

Number of trees used in the forest

Criterion

How each split is determined

Max depth

Maximum number of levels allowed in the tree

Results

Weighted accuracy: 50.01%

Precision (inf./feasible): 82.58% / 3.32%

Recall (inf./feasible): 98.2% / 1.9%

Speed: 7 minutes

The model is slow and gives poor accuracy. There will be a high need for hyper-parameter tuning in the case that the model works to prevent it form overfitting the data. This will significantly vary from case to case. Thereby, we do not recommend the use of this model for the problem

Source:

Autoencoder + GBM: Key takeaway from the models results

Autoencoder

Neural network used to denoise data. The performance measured by squared cell-wise difference between denoised and original data.

Hyper parameters

Number of layers

Adjust the complexity of the model, I.e. how well-fitted to sample

Learning rate

Distance to jump in each iteration

Activation function

Transformation of output from each layer

Results

Weighted accuracy: 50.08%

Precision (inf./feasible): 82.67% / 12.08%

Recall (inf./feasible): 92.68% / 7.48%

Speed: 198.17 s

variable	average	std	95.0% PI	min	max
weighted accuracy [%]	50.08	0.36	(49.82, 50.33)	49.69	51.08
duration [s]	198.17	20.73	(183.34, 213.0)	170.08	223.45
infeasible_percentage [%]	82.56	2.4	(80.85, 84.28)	77.25	85.45
<pre>infeasible_guessed_percentage [%]</pre>	92.64	20.25	(78.15, 107.12)	31.93	100
<pre>feasible_recall [%]</pre>	7.48	20.77	(-7.39, 22.34)	0	69.74
<pre>feasible_precision [%]</pre>	12.08	11.07	(4.16, 20.0)	0	28.57
<pre>infeasible_recall [%]</pre>	92.68	20.1	(78.3, 107.05)	32.43	100
<pre>infeasible_precision [%]</pre>	82.67	2.14	(81.14, 84.2)	78.44	85.43

Note: Source:

Outcome analysis: Mobility of CMA-ES causing difficulties for ML

Jumps between iterations poses a very difficult challenge for ML-algorithms due to extrapolation

Outcome analysis: Infeasibility of feature reduction due to boundaries

Stability of influential features

If parameter β_i is influential, we would expect it to show up in both sets. However, this was **not found**

Principal Component Analysis

We perform PCA on the in-/feasible solutions seperatly and see if there is redundant information

Feature reduction could **not be done**

Outcome analysis: Insufficient data for algorithms to work with

Outcome analysis: Results due to mobility, information and data size

Insignificant results from ML algorithms

Next steps: Two potential keys to unlock the problem

Transforms and adaptation possible with algorithm understanding

Train on larger datasets or change algorithm approach

