Grading

- Grading
 - Homework (10% 20%)
 - ► Midterm (40%)
 - Final (40% 60%)
 - Project (10% 20%)
- The final grade will be given on a curve

Final Exam

- ▶ TBD...
- Most likely:
 - in the 18-19th weeks

Project

- #1. Programming assignments the default option
 - 2 problems
 - To be done individually, no grouping
- #2. Define your own project
 - Use what you have learned in this course to solve a problem of your choice.
 - At most 4 people in a group
 - Expected workload: (#1 workload) × (group size)
 - Evaluation criteria
 - relevance to this course
 - substance, soundness, novelty
 - quality of the report and presentation
- ▶ Available at BB course menu → Project

Project

- Schedule
 - **#1**
 - To be released today
 - Due: 11:59pm, June 12, Sun
 - **#**2
 - Presentation on June 8, Wed
 - ▶ Report due: 11:59pm, June 10, Fri
 - Make your choice by 11:59pm, May 25, Wed
 - ▶ If option #2, enter your group members
 - ▶ BB course menu → Project → Project Registration

Project

- Plagiarism
 - All projects must be done by yourself
 - #1: Do not use any external code (other than those indicated in the problem description)
 - Plagiarism detection software will be used
 - #2: You may use external libraries, but must list them in your presentation and report
 - We will manually check your submitted code
- Plagiarism punishment
 - Zero point on the project
 - When one student copies from another student, both students are responsible

Lectures

- Week 15-17
 - No lectures
 - I will hold QA sessions online during 8:30-10am MW
 - Same Tencent Meeting ID
- June 8, Wed (week 17)
 - Presentation for project option #2

Final Review

What we have covered

- Text normalization
- 3. Word representation
- Text classification
- Text clustering
- Language modeling
- Contextual word representation
- Sequence labeling
- Constituency parsing
- Dependency parsing
- 11. Lexical semantics
- 12. Sentence semantics
- 13. Information extraction
- 14. Discourse analysis
- 15. Sequence to sequence

What we have covered -- grouped

- Basics
 - Text normalization
 - Word representation, Lexical semantics
 - Text classification
 - Text clustering
- Sequences
 - Language modeling
 - Pretrained LM & contextual word representation
 - Sequence labeling
 - Sequence to sequence
- Structures
 - Constituency parsing
 - Dependency parsing
 - Sentence semantics
 - Discourse analysis
- Applications
 - Information extraction

Text Normalization

- Word tokenization
 - Regular expression, BPE
- Word normalization
 - Lemmatization, stemming
- Sentence segmentation
- Methods: Rules + ML

Word Representation

- Sparse vector representations
 - Co-occurrence matrices
 - Weighting: tf-idf, PPMI
- Dense vector representations
 - Singular value decomposition, LSA
 - Word2vec: Skip-gram
- Evaluation

Lexical Semantics (Symbolic Word Representation)

- Word Senses
- WordNet
 - Organizing word senses according to their semantic relations
- Word Sense Disambiguation

Text Classification

- Rule-based methods
 - Regular expression
- Machine learning methods
 - Generative classifiers
 - Naive Bayes
 - Discriminative classifiers
 - Logistic regression
- Evaluation
 - Precision, recall, F-measure
 - Macro-/micro-averaging

Text Clustering

- Mixture of Gaussian
- (Unsupervised) Naive Bayes
- Topic models
 - pLSA, LDA
- Learning
 - Expectation-maximization

Language Modeling

- Compute the probability of a sentence
 - Chain rule: predicting the next word
 - Evaluation: perplexity
- n-gram LM
 - Probability of each word is conditioned on the preceding n-1 words.
- Recurrent neural networks
 - Probability of each word is conditioned on a hidden vector summarizing all the preceding words
- Transformers
 - Probability of each word is computed by attending to preceding words

Contextual word representations (& pretrained LM)

- ELMo
 - ▶ BiLSTM + LM
- BERT
 - Transformer + MLM (+NSP)
- Pretrain+finetune paradigm

Sequence Labeling

- Hidden Markov model (HMM)
 - Inference: Viterbi, Forward, Backward
 - Learning: Maximum Likelihood Estimate, Expectation-Maximization / SGD
- Conditional random filed (CRF)
 - Label bias problem
 - Inference: Viterbi, Forward, Backward
 - Learning: conditional likelihood, margin-based loss, CRF-AE
- Neural models
 - Neural softmax, neural CRF

Sequence to Sequence

- Many applications
 - MT, paraphrase, summarization, ...
- Methods: encoder-decoder
 - Recurrent neural network (with attention)
 - Transformer: cross-attention
- Learning
 - Maximizing conditional likelihood on a parallel corpus
- Decoding
 - Greedy, beam-search
- Extensions
 - Pointer Net / Copy Mechanism
 - Seq2Set, X2Seq, Null2Seq

Constituency Parsing

- Context-Free Grammars
 - Terminals, nonterminals, start symbol, production rules
 - Probabilistic Grammars: each rule has a probability
- Parsing
 - CYK algorithm on CNF
- Learning
 - Supervised: generative & discriminative methods
 - Unsupervised: inside-outside algorithm
- Beyond CFG
 - RG, MCSG (TAG)
 - Span-based, transition-based, sequence labeling, top-down splitting

Dependency Parsing

- Dependency Parsing
 - Projectivity
 - Relation to constituency parsing
- Graph-based parsing
 - 1st-order: Eisner, MST
 - Learning
 - Supervised: discriminative methods
 - Unsupervised: EM, CRF-AE
- Transition-based parsing
 - Arc-standard
 - Learning: from configuration to transition

Sentence Semantics

- Vector vs. symbolic representation of sentences
- Formal Meaning Representation
 - Special-purpose representations
 - General-purpose representations: formal logic, semantic graphs
- Syntax-Driven Semantic Parsing
 - λ-Calculus, Semantic Attachments to CFG
- Neural Semantic Parsing
 - Seq2seq, parsing to graph, ...
- Semantic Role Labeling
 - PropBank, FrameNet
 - Methods: sequence labeling, graph-based methods

Discourse Analysis

- A discourse is a coherent structured group of sentences.
 - Text spans are connected with coherence relations.
 - These relations form a hierarchical structure.
 - Discourse parsing: EDU segmentation + RST parsing
- Coreference Resolution
 - Mention Detection
 - Mention Clustering
 - Binary classification vs. ranking

Information Extraction

- Subtasks
 - Named entity recognition
 - Relation extraction
 - Event extraction
 - ...
- Methods
 - Sequence labeling
 - Span/arc classification
 - Joint extraction
 - ...

Final Remarks

Topics not covered in this course...

- Text generation
- Question answering
- Dialog
- Multilingual NLP
- Multimodal NLP (language+X)
- Interpretability
- Biases in NLP
- Adversarial NLP
- ...

Where to learn more...

- Text books: SLP3, INLP, ...
- Online lectures: Stanford CS224n, ...
- Research papers
 - Conferences
 - ACL: Meeting of the Association for Computational Linguistics
 - EMNLP: Conference on Empirical Methods in Natural Language Processing
 - NAACL: Conference of the North American Chapter of the Association for Computational Linguistics
 - COLING, EACL, AACL, CoNLL, SemEval, ...
 - AI/ML conferences
 - Journals
 - Computational linguistics
 - Transactions of the Association for Computational Linguistics (TACL)

Doing research at SIST... (for undergraduates)

- My research group
 - Focus
 - Linguistic structures: representation, inference, learning
 - Methodology
 - A combination of symbolic, statistical, and neural approaches
 - Learning under low resources
 - Applications
 - Mainly NLP, but also: CV, knowledge representation & reasoning, probabilistic modeling, ...
 - Undergraduate interns
 - Talk to me if GPA≥3.5 for courses in math, CS basics, and AI
- Other groups
 - CV+language

That's all! Good luck in your project and final exam!

CS274A Spring 2022