Chapitre 5 : Oscillateur mécanique en régime forcé

I Equation différentielle du mouvement de l'oscillateur harmonique amorti en régime sinusoïdal forcé

A) Mise en équation

x est l'élongation du ressort = $l - l_0$

Bilan des forces sur M:

- Tension du ressort $\vec{T} = -k(l l_0)\vec{i} = -kx\vec{i}$
- Frottement visqueux $\vec{F}_{v} = -\mu \times \vec{v}_{/(R_{lab})} = -\mu \times \dot{x}i$ (O fixe dans (R_{lab}))
- Force excitatrice sinusoïdale $\vec{F}_e = F_e \cos(\Omega t) \times \vec{i}$

Relation fondamentale de la dynamique appliquée à M dans $(R_{\rm lab})$ galiléen :

$$m\vec{\alpha}_{_{M/\mathrm{R}\,\mathrm{lab}}} = \vec{T} + \vec{F}_{_{\boldsymbol{v}}} + \vec{F}_{_{\boldsymbol{e}}}$$

$$\Leftrightarrow m\ddot{x} = -kx - \mu\dot{x} + F_e \cos(\Omega t)$$

$$\Leftrightarrow \ddot{x} + \frac{\mu}{m}\dot{x} + \frac{k}{m}x = \frac{F_e}{m}\cos(\Omega t)$$

On pose
$$\begin{cases} 2\lambda = \frac{\mu}{m} \\ \omega_0^2 = \frac{k}{m} \end{cases}$$
 ou
$$\begin{cases} \frac{\omega_0}{Q} = 2\lambda = \frac{\mu}{m} \\ \omega_0^2 = \frac{k}{m} \end{cases}$$

Ainsi,
$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{F_e}{m} \cos(\Omega t)$$

Rappel:

 λ est le coefficient d'amortissement $[\lambda] = s^{-1}$ ω_0 est la pulsation propre $[\omega_0] = \text{rad.s}^{-1}$

Q est le facteur de qualité [Q] = 1

B) Analogie électrocinétique

Équation de maille :

$$E\cos(\Omega t) = Ri + L\frac{di}{dt} + \frac{q}{c}$$
 avec $i = \frac{dq}{dt}$

donc
$$\ddot{q} + \frac{R}{L}\dot{q} + \frac{q}{LC} = \frac{E}{L}\cos(\Omega t)$$

Electrocinétique	q	i	L	1/ <i>C</i>	R	E
Mécanique	x	v	m	k	μ	F_e

C) Solution de l'OHA excité par une force sinusoïdale

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{F_e}{m} \cos(\Omega t)$$

Solution générale x(t) = SGH + SP

Equation homogène = équation différentielle d'un OHA

• Solution générale homogène :

 $Q > \frac{1}{2}$: régime pseudo - périodique

 $\begin{cases} Q = \frac{1}{2} : \text{régime critique} \end{cases}$

 $Q < \frac{1}{2}$: régime apériodique

 \rightarrow Solution exponentiellement décroissante, $T_{\chi} = 1/\lambda$ (régime transitoire)

• Solution particulière : on choisit l'unique solution particulière périodique à la pulsation Ω , appelée régime sinusoïdal forcé ou régime permanent sinusoïdal.

$$x_{\rm RSF} = X\cos(\Omega t + \varphi)$$

$$\rightarrow x(t) = x_{SGH} + x_{RSF}$$

II Résonance d'élongation

A) Solution du RSF(Ω)

On cherche une solution $x(t) = X \cos(\Omega t + \varphi)$

Donc
$$\underline{x}(t) = Xe^{j(\Omega t + \varphi)} = Xe^{j\varphi} \times e^{j\Omega t} = \underline{X}e^{j\Omega t}$$

$$x \text{ solution de l'ED} \Leftrightarrow -\Omega^2 \underline{x} + \frac{\omega_0}{Q} j\Omega \underline{x} + \omega_0^2 \underline{x} = \frac{F_e}{m} e^{j\Omega t}$$

$$\Leftrightarrow -\Omega^2 \underline{X} + \frac{\omega_0}{Q} j\Omega \underline{X} + \omega_0^2 \underline{X} = \frac{F_e}{m}$$

$$\Leftrightarrow \underline{X} = \frac{F_e}{m} \times \frac{1}{\omega_0^2 - \Omega^2 + j \frac{\omega_0 \Omega}{Q}} = \frac{F_e/(m\omega_0^2)}{1 - \left(\frac{\Omega}{\omega_0}\right)^2 + j \frac{\Omega/\omega_0}{Q}}$$

$$\Leftrightarrow \underline{X} = \frac{F_e/(m\omega_0^2)}{1 - y^2 + j \frac{y}{Q}} \quad \text{avec } y = \frac{\Omega}{\omega_0}$$

Ainsi
$$x(t) = |\underline{X}| \cos(\Omega t + \text{Arg}\underline{X})$$

$$|\underline{X}| = X = \frac{F_e / (m\omega_0^2)}{\sqrt{(1 - y^2)^2 + \frac{y^2}{Q^2}}}$$

$$\operatorname{Arg} \underline{X} = -\operatorname{Arg}(1 - y^2 + j\frac{y}{Q}) = \begin{cases} -\operatorname{Arctan} \frac{y/Q}{1 - y^2} & \text{si } y < 1 \ (y \ge 0) \\ \pi - \operatorname{Arctan} \frac{y/Q}{1 - y^2} & \text{si } y > 1 \end{cases}$$

B) Résonance d'élongation

Etude de $X(\Omega)$ ou X(y) (analogue de l'étude de $U_C(\Omega)$, tension aux bornes du condensateur)

$$X(y) = \frac{F_e / (m\omega_0^2)}{\sqrt{(1 - y^2)^2 + \frac{y^2}{Q^2}}}, \quad y \in \mathbb{R}^+$$

$$\lim_{y \to 0} X(y) = \frac{F_e}{m\omega_0^2} \qquad \lim_{y \to \infty} X(y) = 0$$

Les y tels que X(y) soit un extremum sont exactement les y tels que $\underbrace{\left(1-y^2\right)^2+\frac{y^2}{Q^2}}_{f(y)}$ soit un extremum.

On a:

$$f'(y) = 0 \Leftrightarrow 2(1 - y^2)(-2y) + \frac{2y}{Q^2} \Leftrightarrow y(\frac{1}{Q^2} - 2(1 - y^2)) = 0$$

 $\Leftrightarrow y = 0 \text{ ou } y = \sqrt{1 - \frac{1}{2Q^2}} \quad (y \ge 0)$

• Cas
$$1 - \frac{1}{2Q^2} > 0 \Leftrightarrow Q > 1/\sqrt{2}$$

y = 0: Minimum relatif (tracer la courbe)

$$y = \sqrt{1 - \frac{1}{2Q^2}}$$
: Maximum de $X(y)$

si
$$Q \gg 1$$
, $X_{\text{max}} \approx Q \frac{F_e}{m\omega_0^2}$

• Cas
$$1 - \frac{1}{2Q^2} < 0 \Leftrightarrow Q < 1/\sqrt{2}$$

y = 0: Maximum de X(y)

Pulsations de coupure définies par $X(\Omega) = \frac{X_{\text{max}}}{\sqrt{2}}$

Si Q est assez grand : deux solutions $\Omega_- < \Omega_{\text{résonance}} = \omega_0 \sqrt{1 - \frac{1}{2O^2}} < \Omega_+$

Largeur de bande passante = $\Omega_+ - \Omega_-$ et $\frac{\Omega_+ - \Omega_-}{\Omega_+} \approx \frac{1}{Q}$ si Q >> 1

III Résonance de vitesse A) Solution pour $v = \dot{x}$.

$$x(t) = X\cos(\Omega t + \varphi)$$

$$\Rightarrow \dot{x}(t) = -\Omega X \sin(\Omega t + \varphi) = \Omega X \cos(\Omega t + \varphi + \pi/2)$$

ou
$$\underline{\dot{x}} = \underline{V}e^{j\Omega t}$$
 où $\underline{V} = j\Omega \underline{X}$

Donc
$$V = \Omega X$$
 et $Arg\underline{V} = Arg\underline{X} + \pi/2$

$$V = \Omega X = \frac{F_e}{m\omega_0} \frac{y}{\sqrt{(1 - y^2)^2 + \frac{y^2}{Q^2}}}$$

B) Etude de V(y). Résonance de vitesse

Analogue de l'étude de la résonance d'intensité du RLC série $\lim_{y\to 0} V(y) = 0$ $\lim_{y\to \infty} V(y) = 0$

Si V admet un extremum en y, alors V^2 en admet un aussi en y

On pose
$$f(y) = V(y)^2 \frac{1}{(F_e/(m\omega_0))^2} = \frac{y^2}{(1-y^2)^2 + \frac{y^2}{O^2}}$$

On a alors:

$$f'(y) = 0 \Leftrightarrow 2y \left((1 - y^2)^2 + \frac{y^2}{Q^2} \right) - y^2 \left(2(1 - y^2)(-2y) + 2y/Q^2 \right) = 0$$

$$\Leftrightarrow 2y \left((1 - y^2)^2 + \frac{y^2}{Q^2} + 2(1 - y^2)y^2 - \frac{y^2}{Q^2} \right) = 0$$

$$\Leftrightarrow 2y(1 - y^2)(1 - y^2 + 2y^2) = 0$$

$$\Leftrightarrow y = 0 \text{ ou } y = 1$$

On a donc un maximum de $V(\Omega)$ pour $\Omega = \omega_0$ (y = 0 est un minimum)

Donc
$$V_{\text{max}} = V(y = 1) = Q \frac{F_e}{m\omega_0}$$

Pulsations de coupure $V(\Omega) = \frac{V_{\text{max}}}{\sqrt{2}}$

$$\Leftrightarrow \frac{V(\Omega)^2}{\left(F_e/(m\omega_0)\right)^2} = \frac{V_{\text{max}}^2}{2\left(F_e/(m\omega_0)\right)^2} \Leftrightarrow \frac{y^2}{\left(1-y^2\right)^2 + \frac{y^2}{O^2}} = \frac{Q^2}{2}$$

$$\Leftrightarrow y^2 = \dots = Q^2 (1 - y^2)^2 \Leftrightarrow y = Q |1 - y^2| = \varepsilon Q (1 - y^2)$$
 avec $\varepsilon = \pm 1$

$$\Leftrightarrow y^2 + \frac{\varepsilon \times y}{Q} - 1 = 0 \quad (1/\varepsilon = \varepsilon)$$

$$\Delta = \frac{1}{Q^2} + 4$$

Donc
$$y = \frac{\Omega}{\omega_0} = \frac{\frac{-\varepsilon}{Q} \pm \sqrt{\frac{1}{Q^2} + 4}}{2}$$

$$y \ge 0$$
 donc $y_{-} = \frac{\Omega_{-}}{\omega_{0}} = \frac{\frac{-1}{Q} + \sqrt{\frac{1}{Q^{2}} + 4}}{2}$ et $y_{+} = \frac{\Omega_{+}}{\omega_{0}} = \frac{\frac{1}{Q} + \sqrt{\frac{1}{Q^{2}} + 4}}{2}$

$$\frac{\Omega_{+} - \Omega_{-}}{\omega_{0}} = y_{+} - y_{-} = \frac{1}{Q} \quad (\forall Q)$$

IV Aspect énergétique

A) Résonance de puissance

Puissance p de la force de frottement :

$$p = \vec{F}_v \cdot \vec{v} = -\mu \times \vec{v} \cdot \vec{v} = -\mu \times v^2 = -\mu \times V \times \cos^2(\Omega t + \varphi + \pi/2)$$
(<0)

$$\underbrace{\langle P_d \rangle}_{\text{puissance}} = \langle -p \rangle = \mu \times V^2 \times \frac{1}{2} \quad \left(\langle \cos^2 \rangle = \frac{1}{2} \right)$$

$$= \frac{1}{2} \mu \times \left(\frac{F_e}{m\omega_0}\right)^2 \frac{y^2}{\left(1 - y^2\right)^2 + \frac{y^2}{O^2}} \quad \text{avec } y = \frac{\Omega}{\omega_0}$$

$$\langle P_d \rangle$$
 est maximale si V est maximale, soit $\Omega = \omega_0$ et $\langle P_d \rangle_{\text{max}} = \frac{1}{2} \mu \times \left(\frac{F_e}{m\omega_0} \right)^2 Q^2$

$$\langle P_d \rangle = \frac{\langle P_d \rangle_{\text{max}}}{1 + Q^2 \frac{(1 - y^2)^2}{y^2}} = \frac{\langle P_d \rangle_{\text{max}}}{1 + Q^2 (\frac{1}{y} - y)^2}$$

$$\langle P_d \rangle (\Omega = 0) = \langle P_d \rangle (\Omega = +\infty) = 0$$

$$\langle P_d \rangle (\Omega_- \text{ ou } \Omega_+) = \frac{1}{2} \langle P_d \rangle_{\text{max}}$$

B) Bilan énergétique

Théorème de l'énergie mécanique :

$$\varepsilon_{m} = \varepsilon_{c} + \varepsilon_{p,\text{\'elastique}} = \frac{1}{2}m\dot{x}^{2} + \frac{1}{2}kx^{2}$$

$$= \frac{1}{2}mX^{2}\Omega^{2}\sin^{2}(\Omega t + \varphi) + \frac{1}{2}kX^{2}\cos^{2}(\Omega t + \varphi)$$

$$\langle \varepsilon_{m} \rangle = \frac{1}{4}mX^{2}\Omega^{2} + \frac{1}{4}kX^{2} = \frac{1}{4}mX^{2}\left(\Omega^{2} + \frac{k}{m}\right) = \frac{1}{4}mX^{2}\left(\Omega^{2} + \omega_{0}^{2}\right)$$

Théorème de l'énergie mécanique dans (R_{lab}) galiléen appliqué à M :

$$\begin{split} &\frac{d\varepsilon_{m}}{dt} = P_{\vec{F}_{v}} + P_{\vec{F}_{e}} \\ &\frac{d\left\langle \varepsilon_{m} \right\rangle}{dt} = \left\langle \frac{d\varepsilon_{m}}{dt} \right\rangle = \left\langle P_{\vec{F}_{v}} \right\rangle + \left\langle P_{\vec{F}_{e}} \right\rangle \\ &\left\langle \varepsilon_{m} \right\rangle = cte \left(= \frac{1}{4} m X^{2} \left(\Omega^{2} + \omega_{0}^{2} \right) \right) \Rightarrow \left\langle P_{\vec{F}_{e}} \right\rangle = -\left\langle P_{\vec{F}_{v}} \right\rangle = \left\langle P_{d} \right\rangle \end{split}$$

En régime permanent sinusoïdal la force excitatrice fournit à l'oscillateur une puissance moyenne égale à la puissance moyenne dissipée par frottement.

V Cas d'une force périodique non sinusoïdale

On considère Fe(t) périodique, de période $\frac{2\pi}{\Omega}$

Théorème de Fourier : $F_e(t) = \sum_{n=0}^{+\infty} F_{e,n} \times \cos(n\Omega t + \Psi_n)$

Equation différentielle : $\ddot{x} + \frac{\mu}{m}\dot{x} + \frac{k}{m}x = \frac{F_e(t)}{m}$

Linéarité de l'équation différentielle : $F_{e,n} = RSF(n\Omega) \Rightarrow x_n(t) = X_n \cos(n\Omega t + \varphi_n + \Psi_n)$

Donc, pour Fe(t), $x(t) = \sum_{n=0}^{+\infty} x_n(t)$