A new notion of Representative Sets for Graph Coloring

Benjamin Bergougnoux, University of Bergen, Norway.

GRAA Seminar, January 27, 2022

Graph Coloring

A coloring of G is a partition of V(G) into independent sets.

Graph Coloring

A coloring of $A \subseteq V(G)$ is a coloring of G[A].

Graph Coloring

q-Coloring

- ▶ Input: a graph G and a non-negative integer q.
- ▶ Question: Does *G* a **coloration** with at most *q* **colors**?

Graph Coloring

- ▶ Input: a graph G.
- ► Output: A coloration of minimum size.

Width measures

- ► Tree-width, clique-width, rank-width, mim-width,...
- ► Measure the **structural complexity** of graphs.
- ► Gives **efficient** algorithms for many **NP-hard** problems.

Recursively decompose your graph...

Branch-decomposition: recursively cut the vertex set in two

Recursively decompose your graph... into simple cuts

Simplicity of a cut is measured with a function $f: cut \to \mathbb{N}$.

 $\label{eq:different} \mbox{Different notions of } \mbox{simplicity} = \mbox{different width measures}.$

Width of a decomposition $D = \max f(\text{cut})$ over the cuts of D.

Width of a graph $G = \min \{ \text{ widths of its decompositions } \}$.

Module-width

Defined from the function $mw(A) := |\{N(v) \cap \overline{A} : v \in A\}|$.

Linearly equivalent to clique-width:

Rao 2006

For all graphs G, we have $mw(G) \le cw(G) \le 2mw(G)$.

Rank-width

Defined from the function $\operatorname{rw}(A) := \operatorname{the\ rank\ of\ adjacency\ matrix}$ between A and \overline{A} over GF(2).

Maximum Induced Matching width (mim-width)

Defined from the function $\min(A) :=$ the size of a maximum induced matching in the bipartite graph between A and \overline{A} .

Conquer Graph Coloring

Tree-width and Graph Coloring

Folklore

q-Coloring is solvable in time $O(q^{\mathsf{tw}}\cdot n).$

Lokshtanov, Marx, Saurabh, SODA 2011

For any $\epsilon>0$, q-Coloring cannot be solved in time $O((q-\epsilon)^{\mathrm{tw}}\cdot n^{O(1)})$ unless **SETH** fails.

Clique-width and Graph Coloring

Courcelle, Durand, Raskin, ArXiv 2021

Given a decomposition of clique-width cw, q-Coloring is solvable in time

$$O(m \cdot \min\{q^{O(2^{\mathsf{cw}})}, 2^{O(q \cdot \mathsf{cw})}\}).$$

Lampis, ICALP 2018

q-Coloring cannot be solved in time $O((2^q-2-\epsilon)^{\mathsf{cw}}\cdot n^{O(1)})$ for any $\epsilon>0$, unless **SETH** fails.

Fomin, Golovach, Lokshtanov, Saurabh, Zehavi, SODA2018

Graph Coloring cannot be solved in time $O(n^{2^{o(\text{cw})}} \cdot n^{O(1)})$ unless ETH fails.

Other-widths and Graph Coloring

Ganian, Hliněný, Obdržálek, EJC 2013

Graph Coloring is solvable in time $O(n^{2^{O(\operatorname{rw}^2)}})$.

Vatshelle, PhD thesis 2012

- ► Graphs of mim-width 1 are perfect ⇒ Polytime solvable.
- ► Circular arc graphs have mim-width at most 2 and a decomposition can be computed in polytime ⇒ NP-hard.

Meta-algorithm for q-Coloring

Bui-Xuan, Telle, Vatshelle, TCS 2013

Given a **branch-decomposition** \mathcal{L} , there is an algorithm for **LCVP** problems whose running time for q-**Coloring** is upper bounded by:

- $ightharpoonup 2^{O(q \cdot \mathsf{rw}(\mathcal{L})^2)} \cdot n^{O(1)}$.
- $ightharpoonup n^{O(q \cdot \min(\mathcal{L}))}$.

Our Results

Theorem

There exists a **greedy** algorithm that, given a decomposition of mim-width 1, solves GRAPH COLORING in time $O(n^2)$.

Theorem

Given a **branch-decomposition** \mathcal{L} , there is an algorithm for q-**Coloring** whose running time is upper bounded by:

- $ightharpoonup q^{O(2^{\mathsf{cw}(\mathcal{L})})} \cdot n^{O(1)}$ and $2^{O(q \cdot \mathsf{cw}(\mathcal{L}))} \cdot n^{O(1)}$.
- $\blacktriangleright \ q^{O(2^{\mathsf{rw}(\mathcal{L})^2})} \cdot n^{O(1)} \text{ and } 2^{O(q \cdot \mathsf{rw}(\mathcal{L})^2)} \cdot n^{O(1)}.$
- $ightharpoonup n^{O(q \cdot \min(\mathcal{L}))}$.

Similar upper bounds for the variant of rank-width in \mathbb{Q} .

A New Notion of Representativity

Given two colorings $\mathcal{C}_1, \mathcal{C}_2$ of A and $f: \mathcal{C}_1 \to \mathcal{C}_2$, we say that \mathcal{C}_1 is f-better than \mathcal{C}_2 if f is injective and for every $I \in \mathcal{C}_1$:

$$N(I) \cap \overline{A} \subseteq N(f(I)) \cap \overline{A}$$
.

Given two colorings $\mathcal{C}_1, \mathcal{C}_2$ of A and $f: \mathcal{C}_1 \to \mathcal{C}_2$, we say that \mathcal{C}_1 is f-better than \mathcal{C}_2 if f is injective and for every $I \in \mathcal{C}_1$:

$$N(I) \cap \overline{A} \subseteq N(f(I)) \cap \overline{A}$$
.

Given two colorings $\mathcal{C}_1, \mathcal{C}_2$ of A and $f: \mathcal{C}_1 \to \mathcal{C}_2$, we say that \mathcal{C}_1 is f-better than \mathcal{C}_2 if f is injective and for every $I \in \mathcal{C}_1$:

$$N(I) \cap \overline{A} \subseteq N(f(I)) \cap \overline{A}$$
.

Given two colorings $\mathcal{C}_1, \mathcal{C}_2$ of A and $f: \mathcal{C}_1 \to \mathcal{C}_2$, we say that \mathcal{C}_1 is f-better than \mathcal{C}_2 if f is injective and for every $I \in \mathcal{C}_1$:

$$N(I) \cap \overline{A} \subseteq N(f(I)) \cap \overline{A}$$
.

Given two colorings $\mathcal{C}_1, \mathcal{C}_2$ of A and $f: \mathcal{C}_1 \to \mathcal{C}_2$, we say that \mathcal{C}_1 is f-better than \mathcal{C}_2 if f is injective and for every $I \in \mathcal{C}_1$:

$$N(I) \cap \overline{A} \subseteq N(f(I)) \cap \overline{A}$$
.

New notion of representativity

Between collections of partial colorings

Given two collections K_1 , K_2 of colorings of A, we say that K_1 represents K_2 , if, for every $C_2 \in K_2$, there exists $C_1 \in K_1$ that is better than C_2 .

New notion of representativity

Between collections of partial colorings

Given two collections K_1, K_2 of colorings of A, we say that K_1 represents K_2 , if, for every $C_2 \in K_2$, there exists $C_1 \in K_1$ that is better than C_2 .

For any optimal coloring ${\mathcal C}$ of ${\it G},~\{{\mathcal C}\}$ represents the set of all colorings of ${\it G}$

Fact

The relation "is better" is a **preorder** (quasiorder), it is reflexive and **transitive**.

We can decide whether \mathcal{C}_1 is better than \mathcal{C}_2 in time $O(n^3)$.

Merging

A coloring obtained from C_a and C_b .

 $\mathfrak{C}_a \otimes_q \mathfrak{C}_b = \{ \text{ all the colorings obtained from } \mathfrak{C}_a \text{ and } \mathfrak{C}_b \text{ with at least } q\text{-colors } \}.$

Merging

Given a collection of colorings \mathbf{K}_a of A and \mathbf{K}_b of B.

$$\mathbf{K}_a \otimes_q \mathbf{K}_b = \bigcup_{\mathfrak{C}_a \in \mathbf{K}_a, \mathfrak{C}_b \in \mathbf{K}_b} \mathfrak{C}_a \otimes \mathfrak{C}_b.$$

If \mathcal{C}_a^{\star} is f-better than \mathcal{C}_a , then for every \mathcal{C}_b , $\mathcal{C}_a^{\star} \otimes_q \mathcal{C}_b$ represents $\mathcal{C}_a \otimes_q \mathcal{C}_b$.

If \mathcal{C}_a^{\star} is f-better than \mathcal{C}_a , then for every \mathcal{C}_b , $\mathcal{C}_a^{\star} \otimes_q \mathcal{C}_b$ represents $\mathcal{C}_a \otimes_q \mathcal{C}_b$.

If \mathcal{C}_a^{\star} is f-better than \mathcal{C}_a , then for every \mathcal{C}_b , $\mathcal{C}_a^{\star} \otimes_q \mathcal{C}_b$ represents $\mathcal{C}_a \otimes_q \mathcal{C}_b$.

Corollary

If \mathbf{K}_a^{\star} is represents \mathbf{K}_a , then for every \mathbf{K}_b , $\mathbf{K}_a^{\star} \otimes_q \mathbf{K}_b$ represents $\mathbf{K}_a \otimes_q \mathbf{K}_b$.

Using Representative sets is safe!

Reduction

q-Coloring Merging

- ▶ Input: two collections of colorings K_a of A and K_b of B with $A, B, A \cup B$ being cuts induced by a decomposition \mathcal{L} .
- lacktriangle Output: **a representative set** of $\mathbf{K}_a \otimes_q \mathbf{K}_b$.

Theorem

If there exists an **algorithm** that for q-COLORING MERGING whose **runtime** is $|\mathbf{K}_a| \cdot |\mathbf{K}_b| \cdot f(\mathcal{L})$ and **output size** is at most $g(\mathcal{L})$, then q-COLORING is solvable time $O(g(\mathcal{L})^2 \cdot f(\mathcal{L}) \cdot n)$. given a decomposition \mathcal{L} .

Mim-width one

Mim-width

Lemma

If $mim(\mathcal{L}) = |\mathbf{K}_a| = |\mathbf{K}_b| = 1$, then q-Coloring Merging can be solved in time O(n) and the output size in 1.

- ► We represent **independent sets** with one vertex,
- ightharpoonup We do a $O(n^2)$ preprocessing on the branch-decomposition.

Theorem

There exists a **greedy** algorithm that, given a decomposition of mim-width 1, outputs an optimal coloring in time $O(n^2)$.

B

B

mim-width,...

Clique-width, rank-width,

Clique-width, rank-width,...

$$\operatorname{nec}(A) = |\{N(X) \cap \overline{A} \, : \, X \subseteq A| = |\operatorname{neighborhoods across} \, A|.$$

Lemma

 $q\text{-}\mathrm{COLORING}$ MERGING can be solved in time $O(\min(q^{O(\mathsf{nec}(\mathcal{L}))}, \mathsf{nec}(\mathcal{L})^{O(q)} \cdot q^{O(q)}) \cdot n^{O(1)}) \text{ and the output size is at most } \min((q+1)^{\mathsf{nec}(\mathcal{L})}, \mathsf{nec}(\mathcal{L})^q).$

Theorem

Given a decomposition \mathcal{L} , q-Coloring is solvable in time $O(\min(q^{O(\mathsf{nec}(\mathcal{L}))}, \mathsf{nec}(\mathcal{L})^{O(q)} \cdot q^{O(q)}) \cdot n^{O(1)})$.

Clique-width, rank-width,...

Vatshelle, PhD thesis 2012

 $\operatorname{nec}(A)$ is at most $2^{\operatorname{cw}(A)}$, $2^{\operatorname{rw}(A)^2}$ and $n^{\min(A)}$.

Theorem

We have an algorithm, taking a **branch-decomposition** \mathcal{L} as input, for q-**Coloring** whose running time is upper bounded by:

- $ightharpoonup q^{O(2^{\mathsf{cw}(\mathcal{L})})} \cdot n^{O(1)} \text{ and } 2^{O(q \cdot \mathsf{cw}(\mathcal{L}))} \cdot n^{O(1)}.$
- $ightharpoonup q^{O(2^{\operatorname{rw}(\mathcal{L})^2})} \cdot n^{O(1)} \text{ and } 2^{O(q \cdot \operatorname{rw}(\mathcal{L})^2)} \cdot n^{O(1)}.$
- $ightharpoonup n^{O(q \cdot \min(\mathcal{L}))}$.

Similar upper bounds for the variant of rank-width in \mathbb{Q} .

We consider the **equivalence classes** induced by "is better than".

Signature of $\mathcal{C} = \{N(I) \cap \overline{A} : I \in \mathcal{C}\}.$

Lemma

- $ightharpoonup C_1$ and C_2 are equivalent iff they have the same signature.
- ▶ There is at most $(q+1)^{nec(A)}$ and $nec(A)^q$ signatures for the q-colorings of A.

Conclusion

Results

Theorem

There exists a **greedy** algorithm that, given a decomposition of mim-width 1, solves GRAPH COLORING in time $O(n^2)$.

Theorem

Given a **branch-decomposition** \mathcal{L} , we have an algorithm for q-**Coloring** whose running time is upper bounded by:

- $ightharpoonup q^{O(2^{\mathsf{cw}(\mathcal{L})})} \cdot n^{O(1)} \text{ and } 2^{O(q \cdot \mathsf{cw}(\mathcal{L}))} \cdot n^{O(1)}.$
- $\blacktriangleright \ q^{O(2^{\mathsf{rw}(\mathcal{L})^2})} \cdot n^{O(1)} \text{ and } 2^{O(q \cdot \mathsf{rw}(\mathcal{L})^2)} \cdot n^{O(1)}.$
- $ightharpoonup n^{O(q \cdot \min(\mathcal{L}))}$.

Similar upper bounds for the variant of rank-width in \mathbb{Q} .

Representative set for mim-width one

Representative set use by the second algorithm

Representative set of minimum size

Representative of minimum size

Lemma

Minimum size and minimal for the inclusion is the same for the representative sets of the (q-)colorings of A.

Open Question

- ▶ Can you compute in **polynomial time** a coloring in $C_a \otimes_q C_b$ that is not **strictly worse** than another coloring in $C_a \otimes_q C_b$?
- ► Can you compute a minimal representative set S of $\mathcal{C}_a \otimes_q \mathcal{C}_b$ in time $(|S|+n)^{O(1)}$?

Open Question

Can we use this notion of **representativity** in other settings?

- \blacktriangleright Other graph classes? Other parameters?
- ► Other problems?

Thank you

