<u>الامتحان الأول في مادة</u> العلوم الفيزيائية

<u>المدة: 2 ساعة</u>

B

h

Epp =

التمرين الأول: (7 ن)

نترك كرية تسقط بدون سرعة ابتدائية من الموضع \mathbf{A} أعلى مستوي مائل لتمر بالمواضع \mathbf{B} و \mathbf{C} . نهمل جميع الاحتكاكات.(الشكل في الأسفل)

• باعتبار الجملة (كرية + أرض)

1- أحسب سرعةُ الكرية عند وصولها إلى الموضع B ؟ إذا علمت أن: h = 60 cm

2- أستنتج قيمة زاوية الميل α ،

إذا كان: AB = 120 cm

D **C** هل سرعة الكرية في النقطة $\mathbf{V}_{\mathbf{C}} = \mathbf{V}_{\mathbf{B}}$ ولماذا؟ **B** في نفسها في النقطة **B**

عندما تصل الكرية إلى الموضع C تسقط داخل خندق حتى تصل إلى الموضع D.

4- مثل كيفيا مسار الكرية بين الموضعين C و D ، ثم مثل القوى المؤثرة عليها أثناء السقوط.

5- انجز الحصيلة الطاقوية للجملة (كرية) بين الموضعين C و C.

6- أكتب معادلة انحفاظ الطاقة بين الموضعين السابقين.

 $V_D = 4,64 \, \text{m/s}$: هي: $D_D = 4,64 \, \text{m/s}$ الذي تصل بها الكرية إلى الموضع $D_D = 4,64 \, \text{m/s}$ الذي سقطت منه الكرية (عمق الخندق). يعطى: $D_D = 0,8 \, \text{N/kg}$ الذي سقطت منه الكرية (عمق الخندق).

التمرين الثاني: (13 ن)

نترك كرية صغيرة كتلتها m = 100 g تنطلق من الموضع A بدون سرعة ابتدائية. لتمر بالمواضع: m = 100 g حيث: AC : ربع دائرة نصف قطرها m = 50 cm و CE : طريق أفقي. (أنظر الشكل في الأسفل).

نعتبر المستوى المرجعي للطاقة الكامنة الثقلية المستوي الأفقي المار بالنقاط: E · D · C . نأخذ: g = 10 N/Kg

1- باعتبار الجملة (كرية + أرض).

أ- أنجز الحصيلة الطاقوية للجملة السابقة أثناء انتقال الكرية من A إلى B.

ب- أكتب معادلة انحفاظ الطاقة بين الموضعين السابقين.

ج - أوجد عبارة الطاقة الكامنة الثقلية في الموضع A ثم احسب قيمتها.

د- بين أن عبارة الطاقة الكامنة الثقلية في الموضع $\bf B$ تعطى بالعبارة: (Epp $_{\bf B}$ = m.g.R(1- cos α) عبارة الطاقة الكامنة الثقلية في الموضع α = 60°

ه- استنتج قيمة الطاقة الحركية Ec_B في الموضع B. ثم أحسب سرعة الكرية في نفس الموضع.

2- تواصل الكرية حركتها حتى الموضع 2.

أ- مثل القوى المؤثرة على الكرية في الموضع B بإهمال قوى الاحتكاك.

ب- أنجز الحصيلة الطاقوية للجملة (كرية) بين الموضعين B و C. ثم أكتب معادلة انحفاظ الطاقة.

ج -أحسب سرعة الكرية لحظة وصولها إلى الموضع C.

 $V_D = 2 \text{ m/s}$ \bar{D} $\bar{D$

• باعتبار قوة الاحتكاك بين C و C ثابتة شدتها f وأن المسافة C و C

أ- مثل القوى المؤثرة على الكرية أثناء انتقالها من C إلى D.

ب- أحسب شدة قوة الاحتكاك f

E حتى الموضع $\mathcal{X} = 10 \, \text{cm}$ مسافة مسافة $\mathcal{X} = 10 \, \text{cm}$ مع نابض أفقي فتضغطه مسافة $\mathcal{X} = 10 \, \text{cm}$ معادلة الموضع أ- أنجز الحصيلة الطاقوية للجملة (كرية + نابض) بين الموضعين: $\mathcal{X} = 10 \, \text{cm}$ ثم أكتب معادلة انحفاظ الطاقة.

ب- أحسب ثابت مرونة النابض K .

(0.5

Epp = 0 --

D

W(P)

تصحيح <u>الامتحان الأول في مادة</u> العلوم الفيزيائية

 $\mathbf{E}_{\mathbf{CD}}$

<u>الثانوبة الحديدة/ المحمل</u> المستوى: 2 ع تحريبية

التمرين الأول: (7 ن)

- باعتبار الجملة (كرية + أرض)
- 1- حساب سرعة الكرية عند وصولها إلى الموضع B : لدينا من معادلة انحفاظ الطاقة: $Epp_A = Ec_B$
- $V_B^2 = 2.g.h$ إذن: $p_A'.g.h = \frac{1}{2}.p_A'V_B^2$ ومنه: $V_B = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 0.6} = \frac{3.42 \text{ m/s}}{0.5}$
- 0.5sin α = استنتاج قيمة زاوية الميل α : لدينا: الوتر/ المقابل α
- ومنه: $\alpha = 30$ = 0,5 $\alpha = 1,2 = 0,5$ ومنه: $\alpha = 0.5$ = 0,6 $\alpha = 0.5$ ومنه: $\alpha = 0.5$ = 0.5 $\alpha = 0.5$ ومنه: $\alpha = 0.5$ ومنه:

4- تمثيل كيفيا مسار الكرية بين الموضعين **C** و **D** مع تمثيل القوى المؤثرة عليها أثناء السقوط. (الشكل).

5- انجاز الحصيلة الطاقوية للجملة (كرية) بين الموضعين C و D . (الشكل).

6- كتابة معادلة انحفاظ الطاقة بين الموضعين السابقين: $Ec_C + W(P) = Ec_{0.5}$

 $Ec_{C} + W(P) = Ec_{D} = Ec_{D} = -7$ $Ec_{C} + W(P) = Ec_{D} = -7$ $Ec_{C} + W(P) = Ec_{D} = -7$ $e_{C} + W(P) = -7$

التمرين الثاني: (13 ن)

1- باعتبار الجملة (كرية + أرض).

أ- انجاز الحصيلة الطاقوية للجملة السابقة أثناء انتقال الكرية من A إلى B: (الشكل) ب- كتابة معادلة انحفاظ الطاقة بين الموضعين السابقين:

 $Ec_B = Epp_A - Epp_B$ ومنه: $Ec_A + Epp_A = Ec_B + Epp_B$ ومنه:

الدينا: $\frac{\text{Epp}_{B} = \text{m.g.h}}{\text{h} = \text{R} - \text{h}_{1}}$ ؛ $\frac{\text{Epp}_{B} = \text{m.g.h}}{\text{Epp}_{B}}$ ؛ $\frac{\text{Legal}}{\text{Epp}_{B}}$ = $\frac{\text{R}(1 - \cos \alpha)}{\text{Epp}_{B}}$ = $\frac{\text{Epp}_{B}}{\text{Epp}_{B}}$ = $\frac{\text{O.5}}{\text{O.5}}$

ه- استنتاج قيمة الطاقة الحركية $\mathbf{Ec_B}$ في الموضع \mathbf{E} . ثم حساب سرعة الكرية في نفس الموضع: $\mathbf{Ec_B} = 0.5 - 0.25 = \frac{0.25}{0.25} \, \text{i}$ $\mathbf{Ec_B} = \mathbf{Epp_A} - \mathbf{Epp_B} \, \frac{0.5}{0.5} : \mathbf{Ec_B} = \frac{0.5}{2.m.V_B^2} = 2.Ec_B / m$ $\mathbf{Ec_B} = \frac{1}{2.m.V_B^2} : \mathbf{Ec_B} = \frac{1}{2.m.V_B^2} : \mathbf{Ec_B} = \frac{1}{2.m.V_B^2}$ $\mathbf{Ec_B} = \sqrt{2 \times 0.25 / 0.1} = \frac{2.23 \, \text{m/s}}{0.5}$ $\mathbf{V_B} = \sqrt{2.Ec_B / m} = \sqrt{2 \times 0.25 / 0.1} = \frac{2.23 \, \text{m/s}}{0.5}$

A R O O h

2- تواصل الكرية حركتها حتى الموضع C . أ- تمثيل القوى المؤثرة على الكرية في الموضع B بإهمال قوى الاحتكاك. (أنظر الشكل)

ب- انجاز الحصيلة الطاقوية للجملة (كرية) بين الموضعين $E_{C_B} + W(P) = E_{C_C}$ معادلة انحفاظ الطاقة (0.5 $V_C = - 0.5$ V_C

3- أ- تمثيل القوى المؤثرة على الكرية أثناء انتقالها من C إلى D: (الشكل)

ب-حساب شدة قوة الاحتكاك : f : f : f : f الاحتكاك f :

E حتى الموضع $\mathfrak{X}=10~\mathrm{cm}$ مسافة مسافة $\mathfrak{X}=10~\mathrm{cm}$ حتى الموضع أفقي فتضغطه مسافة $\mathfrak{X}=10~\mathrm{cm}$ حتى الموضع أ- انجاز الحصيلة الطاقوية للجملة (كرية + نابض) بين الموضعين: \mathfrak{D} و \mathfrak{D} . ثم أكتب معادلة انحفاظ الطاقة:

 $Ec_D + Epe_D = Ec_E + Epe_E$ ومنه: $Ec_D = Epe_E$ 0.5