(2010 年度後期 担当:佐藤)

問題 1.1. (省略)

問題 **1.2.** (1)
$$\vec{u} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
, $|\vec{u}| = \sqrt{10}$ (2) $\vec{u} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$, $|\vec{u}| = \sqrt{50}$ (3) $\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, $|\vec{u}| = 5$

問題 **1.3.** ベクトル \vec{a} と実数 c に対し, $|c\vec{a}|=|c|\cdot|\vec{a}|$ が成り立つ.ここで,|c| は実数の絶対値を表し, $|\vec{a}|$ はベクトルの長さを表すことに注意せよ.したがって, $|c\vec{a}|=1$ となるためには $c=\pm\frac{1}{|\vec{a}|}$ とすればよい.

(1)
$$c = \pm \frac{1}{\sqrt{2}}$$
 (2) $c = \pm \frac{2}{\sqrt{5}}$ (3) $c = \pm \frac{1}{2\sqrt{3}}$

問題 **1.4.** (1) $|\vec{u}| = 2$, $|\vec{v}| = 4$, $\vec{u} \cdot \vec{v} = 4$, $\cos \theta = \frac{1}{2}$ (つまり, $\theta = \frac{\pi}{3}$).

- (3) $|\vec{u}| = \sqrt{21}$, $|\vec{v}| = \sqrt{29}$, $\vec{u} \cdot \vec{v} = -6$, $\cos \theta = -\frac{6}{\sqrt{609}}$ ($\cos \theta < 0$ であるから, θ が鈍角であることがわかる).
- $(4) \ |\vec{u}| = \sqrt{14}, \ |\vec{v}| = \sqrt{78}, \ \vec{u} \cdot \vec{v} = 3, \ \cos\theta = 3\frac{6}{\sqrt{1092}} \quad (\cos\theta > 0 \ \text{であるから}, \ \theta \ \text{が 鋭角であることがわかる}).$

(5)
$$\vec{u} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} -5 \\ 1 \\ -5 \end{pmatrix}$. したがって, $|\vec{u}| = \sqrt{11}$, $|\vec{v}| = \sqrt{5}$, $\vec{u} \cdot \vec{v} = -9$, $\cos \theta = -\frac{9}{\sqrt{55}}$.

問題 **1.5.** c=1

問題 1.6. (省略)