Solutions

1.
$$T(n) = 3T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 3)

2.
$$T(n) = 4T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2 \log n)$$
 (Case 2)

3.
$$T(n) = T(n/2) + 2^n \Longrightarrow \Theta(2^n)$$
 (Case 3)

4.
$$T(n) = 2^n T(n/2) + n^n \Longrightarrow \text{Does not apply } (a \text{ is not constant})$$

5.
$$T(n) = 16T(n/4) + n \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

6.
$$T(n) = 2T(n/2) + n \log n \Longrightarrow T(n) = n \log^2 n$$
 (Case 2)

7.
$$T(n) = 2T(n/2) + n/\log n \Longrightarrow \text{Does not apply (non-polynomial difference between } f(n) \text{ and } n^{\log_b a})$$

8.
$$T(n) = 2T(n/4) + n^{0.51} \Longrightarrow T(n) = \Theta(n^{0.51})$$
 (Case 3)

9.
$$T(n) = 0.5T(n/2) + 1/n \Longrightarrow \text{Does not apply } (a < 1)$$

10.
$$T(n) = 16T(n/4) + n! \implies T(n) = \Theta(n!)$$
 (Case 3)

11.
$$T(n) = \sqrt{2}T(n/2) + \log n \Longrightarrow T(n) = \Theta(\sqrt{n})$$
 (Case 1)

12.
$$T(n) = 3T(n/2) + n \Longrightarrow T(n) = \Theta(n^{\lg 3})$$
 (Case 1)

13.
$$T(n) = 3T(n/3) + \sqrt{n} \Longrightarrow T(n) = \Theta(n)$$
 (Case 1)

14.
$$T(n) = 4T(n/2) + cn \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

15.
$$T(n) = 3T(n/4) + n \log n \Longrightarrow T(n) = \Theta(n \log n)$$
 (Case 3)

16.
$$T(n) = 3T(n/3) + n/2 \Longrightarrow T(n) = \Theta(n \log n)$$
 (Case 2)

17.
$$T(n) = 6T(n/3) + n^2 \log n \implies T(n) = \Theta(n^2 \log n)$$
 (Case 3)

18.
$$T(n) = 4T(n/2) + n/\log n \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

19.
$$T(n) = 64T(n/8) - n^2 \log n \Longrightarrow \text{Does not apply } (f(n) \text{ is not positive})$$

20.
$$T(n) = 7T(n/3) + n^2 \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 3)

21.
$$T(n) = 4T(n/2) + \log n \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

22. $T(n) = T(n/2) + n(2 - \cos n) \Longrightarrow$ Does not apply. We are in Case 3, but the regularity condition is violated. (Consider $n = 2\pi k$, where k is odd and arbitrarily large. For any such choice of n, you can show that $c \ge 3/2$, thereby violating the regularity condition.)