

# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

# СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

DE.E.34.010.A № 50708

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Стенд измерительный для СБИС Agilent 93000 C200e

ЗАВОДСКОЙ НОМЕР DE39700195

ИЗГОТОВИТЕЛЬ

Фирма "Agilent Technologies Deutschland GmbH SOC Order FulFillment", Германия

РЕГИСТРАЦИОННЫЙ № 53466-13

ДОКУМЕНТ НА ПОВЕРКУ МП 010/551-2013

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **14 мая 2013 г.** № **483** 

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

| Заместитель Руководителя Федерального агентства | Ф.В.Булыг | гин |
|-------------------------------------------------|-----------|-----|
|                                                 | "" 2013 r |     |

Серия СИ № 009630

## ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

## Стенд измерительный для СБИС Agilent 93000 C200e

#### Назначение средства измерений

Стенд измерительный для СБИС Agilent 93000 C200e предназначен для контроля и измерения параметров сверхбольших интегральных схем (СБИС) на пластине и в корпусе при разработке, испытаниях, производстве, и эксплуатации изделий электронной техники в ЗАО «ПКК Миландр», г. Москва, Зеленоград.

#### Описание средства измерений

Принцип работы стенда измерительного для СБИС Agilent 93000 C200e основан на методах функционального и параметрического контроля.

Для проведения функционального контроля на измеряемую микросхему подается входной набор сигналов, при этом выходной набор сигналов от объекта контроля сравнивается с ожидаемым набором сигналов. Формирование входного набора сигналов производится генератором тестовой последовательности, или алгоритмическим генератором тестов и драйверами каналов в соответствии с заранее определенной программой контроля. Выходной набор сигналов от объекта контроля преобразуется компараторами в цифровой код, и производится его сравнение с ожидаемыми данными, с отображением результатов контроля.

Для проведения параметрического контроля используются источники-измерители и измерительные источники питания, при этом на объект подается заданное значение напряжения (силы тока), и измеряется соответствующее значение силы тока (напряжения).

Методы параметрического и функционального контроля реализуются с помощью программы, создаваемой пользователем для каждого тестируемого объекта. Создание и вызов программы контроля производятся средствами специализированного пакета программного обеспечения, входящего в комплект поставки.

В режиме функционального контроля каждый из измерительных каналов выполняет измерения параметров СБИС в определенной тестовой последовательности. Стандартная частота смены векторов тестовой последовательности 50 МГц может быть повышена в мультиплицированном режиме до 200 МГц путем задания на каждый такт вектора тестовой последовательности до 8 временных меток, формирующих до 4 выходных импульсов драйвера канала, и до 4 временных меток, формирующих 4 стробирующих импульсов компараторов канала. Максимальная длина тестовой последовательности составляет 56 Мбайт векторов в линейном режиме. Во всём диапазоне частот каждый канал может быть сконфигурирован в режимы: формирование тестовой последовательности, контроль ожидаемых состояний, двунаправленный режим. В двунаправленном режиме любой канал может переключаться из режима формирования воздействий в режим контроля, и обратно в любых векторах тестовой последовательности. Для формирования тестовой последовательности в виде импульсов с регулируемыми параметрами на входе объекта контроля предназначен драйвер канала. Параметры тестовой последовательности по амплитуде, положению фронтов и спадов выходных импульсов на оси времени внутри вектора тестовой последовательности задаются независимо по каждому каналу. Амплитуда импульса определяется значениями напряжения двух уровней драйвера: верхним уровнем и нижним уровнем. Положения фронтов и спадов импульса определяется временными метками, общим количеством до 8. Для контроля ожидаемых состояний в виде последовательности импульсов с выхода объекта используются компараторы. Параметры компараторов (верхний и нижний уровни напряжения, время контроля) задаются независимо по каждому каналу.

Временные интервалы контроля уровней напряжения определяются метками, (общим количеством до 4), формирующими стробирующие импульсы компаратора. Для формирования токов положительной и отрицательной полярности на выходах объекта контроля используется активная нагрузка канала. Параметры активной нагрузки по амплитуде силы тока, уровням напряжения переключения полярности тока, и режимы работы задаются независимо по каждому каналу. При работе в динамическом режиме активная нагрузка автоматически отключается при переходе канала в режим формирования тестовой последовательности, и включается в режиме контроля. В статическом режиме активная нагрузка включена постоянно. Динамический режим применяется для каналов, сконфигурированных в двунаправленный режим. Статический режим применяется только для каналов, сконфигурированных в режим контроля.

В режиме <u>параметрических измерений</u> используется источник-измеритель РМU или прецизионный источник-измеритель НРРМU в режиме воспроизведения напряжения и измерения силы тока, или в режиме воспроизведения силы тока и измерения напряжения. Параметры источника-измерителя задаются независимо по каждому каналу.

Для формирования требуемых параметров питания объектов предназначен измерительный источник питания GPDPS (E7002AA).

Стенд измерительный для СБИС Agilent 93000 C200e выполнен в виде измерительного головного блока, манипулятора, вспомогательной стойки, установки водяного охлаждения, и управляющей ПЭВМ. На верхнюю панель измерительного блока устанавливается измерительная оснастка с объектом контроля, или переходное устройство сопряжения с зондовой установкой. В конструкции измерительного головного блока отсутствуют элементы подстройки и регулировки на панелях блока. Внешний вид стенда измерительного для СБИС Agilent 93000 C200e представлен на рисунке ниже.



Внешний вид стенда измерительного для СБИС Agilent 93000 C200e

В состав измерительного головного блока входят следующие основные части:

- универсальные 16-ти канальные измерительные платы, общее количество до 12 шт., всего до 192 универсальных измерительных каналов (каждый канал включает: драйвер, два компаратора, активную нагрузку, память векторов, средства управления тестовой последовательностью, источник-измеритель PMU);

- источники питания GPDPS (E7002AA) до 12 шт.

По условиям эксплуатации стенд измерительный для СБИС Agilent 93000 C200e соответствует группе 2  $\Gamma$ OCT 22261-94 с рабочим диапазоном температур от 20 до 30  $^{\circ}$ C.

#### Программное обеспечение

Программное обеспечение выполняет функции создания, редактирования параметров функционального контроля, задания параметров параметрических измерений, источников питания, универсальных каналов и других устройств системы, а также обработку и документирование измерительной информации.

Общие сведения о программном обеспечении приведены в таблице ниже.

| класс риска                    | A по WELMEC 7.2 для категории $U$ |
|--------------------------------|-----------------------------------|
| идентификационное наименование | SmarTest                          |
| идентификационный номер версии | 4.3.13 и выше                     |

#### Метрологические и технические характеристики

| диапазон установки длительности векторов (периода) тестовой последовательности (ТП) |                                                  |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| в стандартном режиме                                                                | от 20 до 163840 нс                               |  |  |
| в мультиплицированном режиме                                                        | от 5 до 40960 нс                                 |  |  |
| пределы допускаемой абсолютной погрешности установки                                |                                                  |  |  |
| длительности Т векторов (периода) ТП                                                | $\pm 1.10^{-3} \cdot T$                          |  |  |
| максимальная длительность фронта (спада) выходных импульсов                         |                                                  |  |  |
| при амплитуде 1 В                                                                   | 1,3 нс                                           |  |  |
| при амплитуде 3 В                                                                   | 1,7 нс                                           |  |  |
| минимальная длительность выходных импульсов                                         |                                                  |  |  |
| при амплитуде 1 В                                                                   | 2,0 нс                                           |  |  |
| при амплитуде 3 В                                                                   | 2,4 нс                                           |  |  |
| диапазон установки временных меток формирования                                     |                                                  |  |  |
| выходных импульсов Е1 – Е8, стробирующих импульсов Е9 – Е14                         | $ot - 4 \cdot T$ до $+ 12 \cdot T$               |  |  |
| крайние значения временных меток                                                    | -4 мкс; $+140$ мкс                               |  |  |
| разрешение временных меток                                                          | 10 пс                                            |  |  |
| пределы допускаемой абсолютной погрешности установки                                |                                                  |  |  |
| временных меток Е1 – Е8                                                             | ± 175 πc                                         |  |  |
| пределы допускаемой абсолютной погрешности установки                                |                                                  |  |  |
| временных меток Е9 – Е14                                                            | ± 350 пс                                         |  |  |
| диапазон воспроизводимых уровней напряжения драйвера                                | от – 1 до + 6 В                                  |  |  |
| разрешение уровней напряжения драйвера                                              | 2,5 мВ                                           |  |  |
| пределы допускаемой абсолютной погрешности                                          |                                                  |  |  |
| воспроизведения уровней напряжения драйвера                                         | $\pm~15~\mathrm{mB}$                             |  |  |
| выходное сопротивление драйвера                                                     | от 45 до 55 Ом                                   |  |  |
| диапазон установки уровней напряжения компаратора                                   | от – 1 до + 6 В                                  |  |  |
| разрешение уровней напряжения компаратора                                           | 2,5 мВ                                           |  |  |
| пределы допускаемой абсолютной погрешности измерения                                |                                                  |  |  |
| уровней напряжения компаратором                                                     | $\pm 15 \text{ MB}$                              |  |  |
| диапазон воспроизведения силы тока активной нагрузки                                | от – 35 до + 35 мА                               |  |  |
| разрешение силы тока активной нагрузки                                              | 12,5 мкА                                         |  |  |
| пределы допускаемой абсолютной погрешности                                          |                                                  |  |  |
| воспроизведения силы тока I активной нагрузки                                       | $\pm (1 \cdot 10^{-2} \cdot I + 75 \text{ MKA})$ |  |  |

| пределы воспроизведения и измерения напряжения                 |                                                                                      |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| источником-измерителем РМU                                     | от – 2 до + 7 В                                                                      |  |  |
| пределы допускаемой абсолютной погрешности                     |                                                                                      |  |  |
| воспроизведения напряжения U РМU                               | $\pm (5 \cdot 10^{-3} \cdot \text{U} + 20 \text{ MB} + \text{I} \cdot \text{R})^{1}$ |  |  |
| пределы допускаемой абсолютной погрешности измерения           | ,                                                                                    |  |  |
| напряжения U PMU                                               | $\pm (5 \cdot 10^{-3} \cdot \text{U} + 10 \text{ mB} + \text{I} \cdot \text{R})^{1}$ |  |  |
| пределы воспроизведения и измерения силы тока PMU              | 10; 100 мкА; 1; 40 мА                                                                |  |  |
| пределы допускаемой абсолютной погрешности воспроизведения с   |                                                                                      |  |  |
| на пределе 10 мкА                                              | $\pm (5 \cdot 10^{-3} \cdot I + 100 \text{ HA})$                                     |  |  |
| на пределе 100 мкА                                             | $\pm (5 \cdot 10^{-3} \cdot I + 500 \text{ hA})$                                     |  |  |
| на пределе 1 мА                                                | $\pm (5 \cdot 10^{-3} \cdot I + 5 \text{ MKA})$                                      |  |  |
| на пределе 40 мА                                               | $\pm (5 \cdot 10^{-3} \cdot I + 200 \text{ MKA})$                                    |  |  |
| пределы допускаемой абсолютной погрешности измерения силы то   |                                                                                      |  |  |
| на пределе 10 мкА                                              | $\pm (5 \cdot 10^{-3} \cdot I + 100 \text{ HA})$                                     |  |  |
| на пределе 100 мкА                                             | $\pm (5 \cdot 10^{-3} \cdot I + 125 \text{ HA})$                                     |  |  |
| на пределе 1 мА                                                | $\pm (5.10^{-3}.I + 1.25 \text{ MKA})$                                               |  |  |
| на пределе 40 мА                                               | $\pm (5.10^{-3}.I + 50 \text{ MKA})$                                                 |  |  |
| пределы воспроизведения и измерения напряжения                 | ,                                                                                    |  |  |
| прецизионным источником-измерителем НРРМU                      | от – 5 до + 8 В                                                                      |  |  |
| пределы допускаемой абсолютной погрешности воспроизведения     | , ,                                                                                  |  |  |
| и измерения напряжения U HPPMU                                 | $\pm (I \cdot R + 2 \text{ MB})^{1}$                                                 |  |  |
| пределы воспроизведения и измерения силы тока І НРРМИ          | 5; 200 мкА; 5; 200 мА                                                                |  |  |
| пределы допускаемой абсолютной погрешности воспроизведения и   |                                                                                      |  |  |
| HPPMU                                                          | •                                                                                    |  |  |
| на пределе 5 мкА                                               | $\pm (5 \cdot 10^{-3} \cdot I + 10 \text{ HA})$                                      |  |  |
| на пределе 200 мкА                                             | $\pm (5 \cdot 10^{-3} \cdot I + 200 \text{ hA})$                                     |  |  |
| на пределе 5 мА                                                | $\pm (5 \cdot 10^{-3} \cdot I + 10 \text{ мкA})$                                     |  |  |
| на пределе 200 мА                                              | $\pm (5 \cdot 10^{-3} \cdot I + 200 \text{ MKA})$                                    |  |  |
| пределы воспроизведения напряжения измерительным               | от – 7 до + 7 В;                                                                     |  |  |
| источником питания GPDPS                                       | от – 8 до + 8 В                                                                      |  |  |
| пределы допускаемой абсолютной погрешности воспроизведения     |                                                                                      |  |  |
| напряжения U GPDPS                                             | $\pm (1 \cdot 10^{-3} \cdot \text{U} + 5 \text{ MB})$                                |  |  |
| максимальная сила тока в нагрузке измерительного источника GPI | OPS                                                                                  |  |  |
| при воспроизведении напряжения + 7 В                           | + 7 A                                                                                |  |  |
| при воспроизведении напряжения + 8 В                           | + 4 A                                                                                |  |  |
| при воспроизведении напряжения – 7 В                           | – 4 A                                                                                |  |  |
| при воспроизведении напряжения – 8 В                           | – 4 A                                                                                |  |  |
| пределы измерения силы тока GPDPS                              | 100 мкА; 10 мА; 0,3; 8 А                                                             |  |  |
| пределы допускаемой абсолютной погрешности измерения силы то   | ока I GPDPS                                                                          |  |  |
| на пределе 100 мкА                                             | $\pm (1 \cdot 10^{-3} \cdot I + 100 \text{ нA})$                                     |  |  |
| на пределе 10 мА                                               | $\pm (1 \cdot 10^{-3} \cdot I + 10 \text{ мкA})$                                     |  |  |
| на пределе 0,3 А                                               | $\pm (1.10^{-3}.I + 300 \text{ MKA})$                                                |  |  |
| на пределе 8 А                                                 | $\pm (1 \cdot 10^{-3} \cdot I + 20 \text{ mA})$                                      |  |  |
| ОБЩИЕ ХАРАКТЕРИСТИКИ                                           |                                                                                      |  |  |
| габаритные размеры (высота × ширина × глубина), мм             |                                                                                      |  |  |
| головной блок с манипулятором и вспомогательной стойкой        | 1650 × 1530 × 2510                                                                   |  |  |
| установка водяного охлаждения                                  | $1150 \times 650 \times 1050$                                                        |  |  |
| примечание 1: R = 0,5 Ом                                       |                                                                                      |  |  |
|                                                                |                                                                                      |  |  |

| масса, не более                                         |                      |
|---------------------------------------------------------|----------------------|
| головной блок с манипулятором и вспомогательной стойкой | 1430 кг              |
| установка водяного охлаждения                           | 280 кг               |
| напряжение питания от сети трехфазного переменного тока |                      |
| частотой ( $50 \pm 1$ ) $\Gamma$ ц                      | от 342 до 418 В      |
| потребляемая мощность от сети 380 В; 50 Гц, не более    | 25 κB·A              |
| температура окружающей среды                            | от 20 до 30 °C       |
| относительная влажность при температуре 30 °C, не более | 80 %                 |
| электромагнитная совместимость                          | по ГОСТ Р 51522-99   |
| безопасность                                            | по ГОСТ Р 52319-2005 |

## Знак утверждения типа

Знак утверждения типа наносится на панель корпуса измерительного головного блока в виде наклейки, и на титульный лист руководства по эксплуатации типографским способом.

### Комплектность средства измерений

| наименование и обозначение                               | кол-во |
|----------------------------------------------------------|--------|
| измерительный головной блок E6978C зав. № DE397 00195    | 1 шт.  |
| манипулятор Е6979А зав. № 913 03 0166                    | 1 шт.  |
| установка водяного охлаждения E2760DA зав. № DE40A 15086 | 1 шт.  |
| стойка вспомогательная                                   | 1 шт.  |
| программа управляющая SmarTest                           | 1 шт.  |
| компьютер HP xw4100                                      | 1 шт.  |
| стенд измерительный для СБИС Agilent 93000 C200e.        | 1 шт.  |
| руководство по эксплуатации                              | 1 ш1.  |
| методика поверки МП 010/551-2013                         | 1 шт.  |
| программа для поверки PR_POV_195                         | 1 шт.  |
| комплект оснастки для поверки в составе:                 |        |
| устройство согласования ТСКЯ.418133.209                  | 1 шт.  |
| плата коммутационная Е7010Е                              | 1 шт.  |
| устройство согласования ТСКЯ.418133096-01                | 1 шт.  |

# Поверка

осуществляется по документу МП 010/551-2013 «Стенд измерительный для СБИС Agilent 93000 C200e DE39700195», утвержденному руководителем ГЦИ СИ ФБУ «Ростест-Москва» 09.04.2013 г.

#### Средства поверки

| средство поверки и требования к его<br>метрологическим характеристикам                                                                                        | рекомендуемое средство поверки и его метрологические характеристики                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| осциллограф цифровой абсолютная погрешность измерения периода и временных интервалов $T$ не более $\pm$ (50 пс $+$ 3,5 $\cdot$ 10 <sup>-4</sup> $\cdot$ $T$ ) | осциллограф цифровой Tektronix DPO7254 абсолютная погрешность измерения периода и временных интервалов T при частоте дискретизации $10 \ \Gamma\Gamma$ ц не более $\pm (6 \ \pi c + 3.5 \cdot 10^{-6} \cdot T)$ |

| измеритель постоянного напряжения                                                 | мультиметр цифровой Keithley 2000                                                                    |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| абсолютная погрешность измерения                                                  | абсолютная погрешность измерения                                                                     |
| напряжения на пределах                                                            | напряжения на пределах                                                                               |
| $100 \text{ мB}$ не более $\pm (1 \cdot 10^{-4} \cdot \text{U} + 20 \text{ мкB})$ | $100 \text{ мB}$ не более $\pm (6.5 \cdot 10^{-5} \cdot \text{U} + 3.5 \text{ мкB})$                 |
| 1 В не более $\pm (1 \cdot 10^{-4} \cdot U + 100 \text{ мкВ})$                    | 1 В не более $\pm (3.2 \cdot 10^{-5} \cdot \text{U} + 7 \text{ мкВ})$                                |
| $10 \text{ B}$ не более $\pm (1 \cdot 10^{-4} \cdot \text{U} + 500 \text{ мкB})$  | 10 В не более $\pm (3 \cdot 10^{-5} \cdot \text{U} + 50 \text{ мкВ})$                                |
| калибратор-измеритель постоянного напряжения и силы постоянного тока              | калибратор-мультиметр цифровой<br>Keithley 2420                                                      |
| абсолютная погрешность установки                                                  | абсолютная погрешность установки                                                                     |
| напряжения от 0 до 8 В не более                                                   | напряжения на пределе 20 В не более                                                                  |
| $\pm (1.6 \cdot 10^{-3} \cdot \text{U} + 3 \text{ MB})$                           | $\pm (2 \cdot 10^{-4} \cdot \text{U} + 2.4 \text{ MB});$                                             |
| абсолютная погрешность измерения                                                  | абсолютная погрешность измерения                                                                     |
| напряжения от 0 до 8 В не более                                                   | напряжения на пределе 20 В не более                                                                  |
| $\pm (1,6 \cdot 10^{-3} \cdot \text{U} + 6 \text{ MB})$                           | $\pm (1.5 \cdot 10^{-4} \cdot \text{U} + 1 \text{ MB})$                                              |
| абсолютная погрешность установки силы                                             | абсолютная погрешность установки силы тока                                                           |
| тока на пределах:                                                                 | на пределах                                                                                          |
| 10 мкА не более $\pm (1,6\cdot10^{-3}\cdot I + 33 \text{ нA}),$                   | 10 мкА не более $\pm$ (3,3·10 <sup>-4</sup> ·I + 2 нА),                                              |
| 100 мкА не более $\pm$ (1,6·10 <sup>-3</sup> · I + 40 нА),                        | 100 мкА не более $\pm$ (3,3·10·1+2 нА),<br>100 мкА не более $\pm$ (3,1·10 <sup>-4</sup> ·I + 20 нА), |
| 1 мА не более $\pm (1,6 \cdot 10^{-3} \cdot I + 0,4 \text{ мкА}),$                | 1 мА не более $\pm$ (3,34·10 <sup>-4</sup> ·I + 0,2 мкА),                                            |
| 40 MA He fonee $\pm$ (1,6·10 <sup>-3</sup> ·I + 16 MKA);                          | 100 мА не более $\pm$ (6,6·10 <sup>-4</sup> ·I + 20 мкА);                                            |
| абсолютная погрешность измерения силы                                             | абсолютная погрешность измерения силы тока                                                           |
| тока на пределах:                                                                 | на пределах                                                                                          |
| 10 мкА не более $\pm$ (1,6·10 <sup>-3</sup> ·I + 33 нА),                          | 10 мкА не более $\pm$ (2,7·10 <sup>-4</sup> ·I + 0,7 нA),                                            |
| $100 \text{ мкA}$ не более $\pm (1,6 \cdot 10^{-3} \cdot I + 160 \text{ нA}),$    | 100 мкА не более $\pm$ (2,5·10 <sup>-4</sup> ·I + 6 нА),                                             |
| 1 мА не более $\pm (1,6 \cdot 10^{-3} \cdot I + 1,6 \text{ мкA}),$                | 1 мА не более $\pm (2.5 \cdot 10^{-4} \cdot I + 60 \text{ нA}),$                                     |
| 40 мА не более $\pm (1,6 \cdot 10^{-3} \cdot I + 60 \text{ мкA})$                 | 100 мА не более $\pm (5.5 \cdot 10^{-4} \cdot I + 6 \text{ мкA})$                                    |
| абсолютная погрешность измерения                                                  | калибратор-измеритель напряжения и силы                                                              |
| напряжения от 0 до 8 В при установке                                              | тока Keithley 2651A                                                                                  |
| силы тока от 0 до 7 А не более                                                    | пределы воспроизведения силы тока 5, 10 А;                                                           |
| $\pm (3.3 \cdot 10^{-4} \cdot \text{U} + 1.6 \text{ MB})$                         | абсолютная погрешность измерения                                                                     |
|                                                                                   | напряжения на пределах:                                                                              |
|                                                                                   | 1 В не более $\pm$ (1,5·10 <sup>-4</sup> ·U + 0,3 мВ),                                               |
|                                                                                   | 10 В не более $\pm$ (1,5·10 <sup>-4</sup> ·U + 3 мВ)                                                 |
| измеритель силы постоянного тома                                                  | мультиметр Agilent 3458A                                                                             |
| <u>измеритель силы постоянного тока</u> абсолютная погрешность измерения силы     | абсолютная погрешность измерения                                                                     |
| постоянного тока на пределе 200 мА                                                | силы тока на пределе 1 А не более                                                                    |
| не более $\pm (3.3 \cdot 10^{-4} \cdot I + 66 \text{ мкA})$                       | $\pm (1 \cdot 10^{-4} \cdot I + 10 \text{ mKA})$                                                     |
|                                                                                   |                                                                                                      |
| калибратор постоянного тока                                                       | калибратор-мультиметр цифровой<br>Keithley 2420                                                      |
| абсолютная погрешность установки силы тока:                                       | ·                                                                                                    |
| тока:<br>80 мкА не более ± 0,06 мкА,                                              | абсолютная погрешность установки силы тока: 80 мкА не более ± 0,045 мкА                              |
| 8 мА не более $\pm$ 6 мкА,                                                        | 8 мА не более ± 5,6 мкА                                                                              |
| 300 мА не более $\pm$ 0 мкА, 300 мА не более $\pm$ 0,2 мА,                        |                                                                                                      |
| 4 A не более ± 8 мA,                                                              | калибратор универсальный Fluke 9100 абсолютная погрешность установки силы тока:                      |
| 7 A не более ± 8 мА,                                                              | $300 \text{ мA}$ не более $\pm 0.06 \text{ мA}$ ,                                                    |
| / A HC OUNCE ± 9 MA                                                               | 4 A не более ± 3,1 мA,                                                                               |
|                                                                                   | 4 A не более ± 3,1 мA, 7 A не более ± 4,8 мA                                                         |
|                                                                                   | / A ne conce ± 4,0 MA                                                                                |
|                                                                                   |                                                                                                      |

#### Сведения о методиках (методах) измерений

Методы измерений изложены в разделе 3 руководства по эксплуатации.

# Нормативные документы, устанавливающие требования к стенду измерительному для СБИС Agilent 93000 C200e

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 8.027-2001. Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы.

ГОСТ 8.022-91. Государственная система обеспечения единства измерений. Государственный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне  $1 \cdot 10^{-16} \div 30$  А.

# Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции установленным законодательством Российской Федерации обязательным требованиям.

#### Изготовитель

Фирма «Agilent Technologies Deutschland GmbH SOC Order FulFillment», Германия. Herrenberger Strasse 130 D-71034 Boeblingen

#### Заявитель

ЗАО «АКТИ-Мастер»; 125438, г. Москва, 4-й Лихачевский пер., 15, стр. 3; тел./факс (499)154-74-86

#### Испытательный центр

ГЦИ СИ ФБУ «Ростест-Москва» (аттестат аккредитации № 30010-10 от 15.03.2010 г.); 117418 Москва, Нахимовский пр., 31; тел. (499)129-19-11, факс (499)129-99-96

| Заместитель                |      |          |   |              |
|----------------------------|------|----------|---|--------------|
| Руководителя Федерального  |      |          |   |              |
| агентства по техническому  |      |          |   | Ф.В. Булыгин |
| регулированию и метрологии |      |          |   |              |
|                            | М.п. |          |   |              |
|                            |      | <u> </u> | » | 2013 г.      |