20.3: Curl

Calculus III

College of the Atlantic. Winter 2016

We will work with the following vector fields:

$$\vec{E} = x\hat{i} + y\hat{j} , \qquad (1)$$

$$\vec{B} = y\hat{i} - x\hat{j} , \qquad (2)$$

$$\vec{F} = -2\hat{i} , \qquad (3)$$

$$\vec{G} = -(y+1)\hat{i} , \qquad (4)$$

- 0. Let $\vec{a}=3\hat{i}$ and $\vec{b}=2\hat{i}+2\hat{j}$. Calculate $\vec{a}\times\vec{b}$ using both the geometric and algebraic definitions of the cross product.
- 1. Sketch each of the above vector fields.
- 2. Calculate the circulation around a circle of radius a centered at the origin for \vec{E} and \vec{B} .
- 3. Calculate the circulation around a square of side s centered at the origin for \vec{F} and \vec{G} .
- 4. Use your circulation calculations to determine the circulation density of each of the fields.
- 5. Calculate the curl of each of the four fields using the algebraic definition of curl.
- 6. Which of the fields have zero (positive, negative) divergence? Answer using both geometric and algebraic arguments.
- 7. For each of the four fields, use Stokes' Theorem to calculate $\oint_C \vec{F} \cdot d\vec{r}$, where C is a clockwise square of side 2 centered at (5,5). Do your answers depend on the position of the center of the square? Do your answers depend on the side of the square?
- 8. Repeat the above question, but use the field $\vec{H} = -(y^2 + 1)\hat{i}$.

- 9. Let $\vec{F}(x,y,z)$ be a vector field and f(x,y,z) is a scalar function of three variables. Which of the following quantities are vectors and which are scalars. Which are not defined?
 - (a) $\operatorname{div} \vec{F}$
 - (b) $\operatorname{curl} \vec{F}$
 - (c) $\operatorname{div} f$
 - (d) $\operatorname{curl} f$
 - (e) ∇f
 - (f) $\nabla \vec{F}$
 - (g) $\nabla \times \vec{F}$
 - (h) $\nabla \cdot \vec{F}$
 - (i) $\nabla \cdot f$
 - (j) $\nabla \times f$
 - (k) $\nabla \cdot \nabla f$
 - (l) $\nabla \times \nabla f$
 - (m) $\nabla \cdot \nabla \times \vec{F}$