Discrete 3D surfaces of revolution Final presentation

Zied BEN ОТНМАNE Thomas BENOIST Adrien BISUTTI Lydie RICHAUME

University of Poitiers

March 2nd, 2016

Outline

Outline

Collaborators and clients

- Clients:
 - Éric ANDRES (Professor and former director of XLIM-SIC department)
 - Gaëlle LARGETEAU-SKAPIN (University lecturer, Discrete geometry)
- Exemple of final user :
 - Aurélie MOURIER (Artist)
- Pedagogic Supervisor :
 - Philippe MESEURE (Professor, Computer Graphics)

Roles

- Team composition :
 - Thomas BENOIST Project manager
 - Zied BEN OTHMANE Quality manager
 - Adrien Bisutti Risks manager
 - Lydie RICHAUME Tasks manager

Context

- Éric Andres and Gaëlle Largeteau-Skapin developed a new algorithm to model discrete surfaces of revolution.
- Display the result with Mathematica

Need of a tool usable by everyone and everywhere

Objectives

- Surfaces visualization tool
 - 3D, slices visualization
 - Choose the generatrix and directrix
 - Export the results
- Algorithm to generate surfaces of revolution
 - Provided by the customers
 - Possible evolution of the algorithm

Outline

Prototype

Demonstration

Difficulties

- Generation
 - Just what do you want
 - All in one pass
- Rendering
 - Calcul à la volé lors de la demende d'affichage
 - Précalcul lors de la génération
 - Ingoré → laissé à la carte graphique
- Implicit curve display
 - Dicretisation of the curve
 - Use a library

Architecture

- Controllers
- Displayers
- Interface managers
- Shaders
- Threads

TODO mettre un diagram?

Outline

Task list

1 - Documentation, test et aide utilisateur				
2 - Conception				
3 - Noyau fonctionnel	V	4 - Interface minimale	V	
6 - Ajout de fonctionnalités	V	5 - Amélioration IHM Choix des courbes	V	
8 - Dessin à main levée méridienne	V	7 - Amélioration IHM Paramètres	V	
9 - Gestion des données	V	10 - Amélioration IHM Rentrer des formules	V	
11 - Ajout courbes utilisateur				
12 - Rédaction	n rap	port technique	V	

Gantt diagram

Diagramme prévisionnel

Diagramme réalisé

Zoom

Diagramme prévisionnel

Diagramme réalisé

Progress

Progress

Progress

Deliverables

N٥	Deliverable	Planned date	Actual date
1	Interface and algorithm result	Dec. 23 rd	Jan. 18 th
2	Minimal application	Jan. 21 st	Jan. 25 th
2 ^{bis}	Multicoupe et paramètres	_	Jan. 29 th
3	Free hand drawing and curves with editable parameters	Jan. 29 th	Feb. 24 th
4	Equations and export	Feb. 19 th	Feb. 24 th
5	Final application	Mar. 2 nd	Mar. 2 nd
5 bis	Final documentation	Mar. 11 th	Mar. 14 th

List of risks

Risk	Gravity	Probability	Criticity
Server linked problems	1	0	0
Panne ou dysfonctionnement des appareils	1	1	1
New client	1	2	1
La validation met en évidence un grave problème technique	2	1	1
Rendu 3D demandant trop de ressources	2	1	1
Evolution of the generation algorithm	1	3	2

*! *

Server linked problems

Gravity	0	1	2	3
Delay	•			
Costs	•			
Receipts	•			
Performance	•			
Other				
Global	•			

Level	Gravity	Probability	Criticity	
0	None	< 1%	No critical	
1	Low (marges)	de 1% à 5%	ino critical	
2	Important	de 5% à 20 %	Critical	
3	Dangerous	> 20%	Citical	

New clients

Level	Gravity	Probability	Criticity	
0	None	< 1%	No critical	
1	Low (marges)	de 1% à 5%	ino critical	
2	Important	de 5% à 20 %	Critical	
3	Dangerous	> 20%	Citical	

Slow rendering

Gravity	0	1	2	3
Delay			•	
Costs	•			
Receipts	•			
Performance			•	
Other				
Global			•	

Level	Gravity	Gravity Probability	
0	None	< 1%	No critical
1	Low (marges)	Low (marges) de 1% à 5%	
2	Important	de 5% à 20 %	Critical
3	Dangerous	> 20%	Citical

• Evolution of the generation algorithm

Gravity	0	1	2	3
Delay	•			
Costs	•			
Receipts	•			
Performance			•	
Other				
Global			•	

Level	Gravity	Probability	Criticity	
0	None	< 1%	No critical	
1	Low (marges)	de 1% à 5%	INO CILICAI	
2	Important	de 5% à 20 %	Critical	
3	Dangerous	> 20%	Critical	

Quality insurance plan

Milestones validation with the clients

ISO 9126

Why ISO-9126?

- International standard for the evaluation of software quality.
- Given a quality note according to different criteria.
- Validation of the application by the clients and the quality manager.
- Externals and internals tests.

Software quality measurment

1	Question	Version 1	Version 2	Version 3	Version 4	Version 5
1	Overall vision	1	1	0.5	1	1
2	The ease to find the information	0.5	0.5	0.5	0.5	1
3	Response speed	0.5	0.5	0.5	1	1
4	Utility of the information	0	0.5	0.5	1	1
5	The choice of title and heading and	0.5	1	1	1	1
	their meanings					
6	The completeness of the	1	0.5	1	1	1
	information found against the need					
7	Rapidité d'exécution	0	0.5	1	1	1
8	Errors rate	0.5	0.5	0.5	1	1
9	Handling the use	1	1	1	0.5	0.5
10	The reliability of the application	0	1	1	1	1
	Total	50%	70%	75%	90%	95%

1	Functionality	Leve	el 1	Le	Level 2		rel3	Lev	rel 4	Leve	15
-	Functionality	INT	EXT	INT	EXT	INT	Ext	INT	Ext	INT	Ext
	Interoperability										
Goal	Ability to interact with one or more systems										
Question	Is the application uses norms and technical standards?										
	Evaluation	90%		75%		85%		100%		95.83%	
1	Adequacy										
Goal	Checking the adequacy of spots against the needs										
Question	Does each function is adequate to the customer need?										
	Evaluation		100%		80%		25%		85%		90%
0.5	Operability										
Goal	The ability to properly use the software system										
Question	At what level the software is usable?										
	Evaluation	25 %	25 %		32.14%	35.71%	35.71%		100%		100%
	Note I/E	76.66 %	83.33%	75%	74.76%	60.35%	30.35%	100%	92.5%	95.83%	95%

Standard divisions

- Quality model
- 2 External metrics
- Internal metrics
- Quality in use metrics

Software quality evaluation

Q.I.P Reviews

- Such techniques to analyze the quality during the requirements phases.
- ② Well-differentiated characteristics of software quality has been developed.
- 3 A large number of software quality-evaluation metrics have been defined.
- Quality can lead to significant savings in software life-cycle costs.

Figure: TODO regénéré cette image

Outline

Conclusion

- Technical Javascript improvement (classes, worker, blob, webgl, etc.)
- Final delivrable in two step
- Perspectives
 - Réutilisation dans quelques semaines
 - Ajout de nouveau(x) algo

Conclusion

- Javascript improvement (classes, worker, blob, etc.)
- WebGl improvement
- Résolution de problème mathématique (matrice de changement de repère, tracer de courbe implicite)

Discrete 3D surfaces of revolution

Final presentation

Thanks for your attention.

Are there any questions?

