11 Embarked

memory usage: 83.7+ KB

889 non-null

dtypes: float64(2), int64(5), object(5)

object

```
In [139]:
                                                                                          H
import pandas as pd
import numpy as np
from sklearn import datasets
In [140]:
df = pd.read_csv(r"D:\PG-DAI\Data Analytics\Assignment 5\titanic.csv")
In [141]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #
     Column
                  Non-Null Count Dtype
                  _____
 0
     PassengerId 891 non-null
                                  int64
 1
     Survived
                  891 non-null
                                  int64
 2
     Pclass
                  891 non-null
                                  int64
 3
     Name
                  891 non-null
                                  object
 4
     Sex
                  891 non-null
                                  object
 5
     Age
                  714 non-null
                                  float64
                  891 non-null
 6
                                  int64
     SibSp
 7
     Parch
                  891 non-null
                                  int64
 8
     Ticket
                  891 non-null
                                  object
 9
                  891 non-null
     Fare
                                  float64
 10 Cabin
                  204 non-null
                                  object
```

In [142]:

df.head()

Out[142]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4										•	

Task

Perform hypothesis test for survival, based on gender.

For hypothesis testing, the following are defined:

Null Hypothesis: There is a significant difference between proportions of survived females to that of survived males.

Alternate Hypothesis:There is not a significant difference between proportions of survived females to that of survived males.

The threshold value of α is assumed to be 0.05. Assuming Null Hypothesis is true.

Out[143]:

342

```
In [144]:

# Percentage of people survived
```

```
Out[144]:
```

38.38383838383838

sum(df.Survived)/len(df)*100

```
In [145]:
```

```
#Number of survivors based on gender
table = pd.crosstab(df['Survived'],df['Sex'])
table
```

Out[145]:

Sex female male

5 4.7.754							
0	81	468					
1	233	109					

In [146]: ▶

```
#Proportions of survivors based on Gender
df.groupby('Sex').Survived.mean()
```

Out[146]:

Sex

female 0.742038 male 0.188908

Name: Survived, dtype: float64

We will be using the Two Sample Z-Test Proportion test here.

In [147]: ▶

```
import matplotlib.pyplot as plt
plt.bar(df.Sex.unique(),df.groupby('Sex').Survived.mean(), color='orange')
```

Out[147]:

<BarContainer object of 2 artists>

In [148]: ▶

df.head(4)

Out[148]:

In [149]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4										•	,

```
# females = df[df["Sex"] == 'female']
# male = df[df["Sex"] == 'male']
```

H

```
H
In [150]:
h1_prop= df['Sex'].value_counts()['male']/len(df)
In [151]:
                                                                                           H
h0_prop= df['Sex'].value_counts()['female']/len(df)
In [152]:
sigma_prop = np.sqrt((h1_prop * (1 - h1_prop))/len(df))
Out[152]:
0.016004281240588843
In [153]:
                                                                                           H
z = (h0\_prop - h1\_prop)/sigma\_prop
Out[153]:
-18.44343756544535
In [154]:
                                                                                           H
p_val = (1-stats.norm.cdf(z))*2
                                      # pval<alpha
p_val
Out[154]:
2.0
                                                                                           H
In [155]:
# male["Survived"].sum()
### Since the p-value is greater than alpha, we accept the null hypothesis.
In [ ]:
                                                                                           H
In [ ]:
```