Integrantes:

David Steven Santos Santos Esteban Camilo Ruiz Tapias

Capítulo 2

Ejemplo 5

Dado el i= 2,5% periódica mes vencido, hallar una tasa nominal anual trimestral vencida equivalente.

Solución.

2. Diagrama de equivalencia de tasas:

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada.
- j = Tasa nominal anual vencida.
- ja = Tasa nominal anual anticipada.
- m₁ = Período de la tasa i₁
- m2 = Período de la tasa i2

3. Declaración de Fórmulas

 $(1+i_1)^{m1}=(1+i_2)^{m2}$ Equivalencia de tasas $j_2=i_2m_2$ Tasa nominal anual

4. Desarrollo Matemático

$$(1+0,025)^{12} = (1+i_2)^4$$

 $(1,0025)^{12/4} - 1 = i_2$

$$j_2 = 30,756\% \text{ natv}$$

$i_2 = 7,6890625\% ptv$	
$j_2 = 7,6890625\% \text{ ptv } x \text{ 4 ptv}$	

Suponga que una cuenta de ahorros de un banco le paga una tasa efectiva anual del 19%, ¿Cuál sería la tasa periódica diaria? Asuma un año de 365 días. **Solución.**

2. Diagrama de equivalencia de tasas:

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada.
- j = Tasa nominal anual vencida.
- ja = Tasa nominal anual anticipada.
- m₁ = Período de la tasa i₁
- m2 = Período de la tasa i2

3. Declaración de Fórmulas $(1+i_1)^{m1} = (1+i_2)^{m2} \text{ Equivalencia de tasas } j_2 = i_2 m_2 \text{ Tasa nominal anual }$ 4. Desarrollo Matemático $(1+0,19)^1 = (1+i_2)^{365}$ $(1,19)^{1/365} - 1 = i_2$ $i_2 = 0,498\% \ pdv$ $j_2 = 0,498\% \ pdv \ x \ 365 \ pdv$ $j_3 = 0,498\% \ pdv \ x \ 365 \ pdv$

Ejemplo 7

¿Cuál es la tasa de interés nominal anual trimestre vencido, equivalente al 18% nominal anual mes vencido?

Solución.

2. Diagrama de equivalencia de tasas:

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada.
- j = Tasa nominal anual vencida.
- ja= Tasa nominal anual anticipada.
- m1 = Período de la tasa i1
- m2 = Período de la tasa i2

3. Declaración de Fórmulas

$(1+i_1)^{m1} = (1+i_2)^{m2}$ Equivalencia de tasas	$j_2 = i_2 m_2$ Tasa nominal anual
---	------------------------------------

4. Desarrollo Matemático

$$(1+0,015\%)^{12} = (1+i_2)^4$$

$$(1,015)^{12/4} - 1 = i_2$$

$$i_2 = 0,04567\% \ ptv$$

$$j_2 = 0,04567\% \ ptv \ x \ 4 \ ptv$$

$$j_3 = 0,04567\% \ ptv \ x \ 4 \ ptv$$

Dado el 36 % nominal anual mes vencido hallar:

Parte a. Una tasa efectiva anual.

Solución.

2. Diagrama de equivalencia de tasas:

- i = Tasa periódica vencida.
- i_{a =} Tasa periódica anticipada. j = Tasa nominal anual vencida.
- ja= Tasa nominal anual anticipada.
- m₁ = Período de la tasa i₁

m_2 = Período de la tasa i_2				
3. Declaración de Fórmulas				
$(1+i_1)^{m1} = (1+i_2)^{m2}$ Equivalencia de tasas	$j_2 = i_2 m_2$ Tasa nominal anual			
4. Desarrollo Matemático				
$(1+0,003\%)^{12} = (1+i_2)^1$	$j_2 = 42, 576 \% EA$			
$(1,003)^{12/1} - 1 = i_2$				
$i_2 = 42,576088685\% \ pav$				
$j_2 = 42,576088685\% \ pav \ x \ 1 \ pav$				

Dado el 36 % nominal anual mes vencido hallar:

Parte b. Una tasa nominal anual semestre vencido.

Solución.

1. Declaración de Variables $j_1 = 36\% \ namv \Rightarrow i_1 = 36\% \ namv \ /12 \ pmv = 3\% \ pmv$ $m_1 = 12 \ pmv$ $j_2 = ?\% \ nasv$ $j_2 = ?\% \ nasv$

2. Diagrama de equivalencia de tasas:

i = Tasa periódica vencida.

ia = Tasa periódica anticipada.

j = Tasa nominal anual vencida.

ja = Tasa nominal anual anticipada.

m₁ = Período de la tasa i₁

m2 = Período de la tasa i2

3. Declaración de Fórmulas

 $(1+i_1)^{m1}=(1+i_2)^{m2}$ Equivalencia de tasas $j_2=i_2m_2$ Tasa nominal anual

4. Desarrollo Matemático

$$(1+0,003\%)^{12} = (1+i_2)^2$$
 $j_2 = 38,81 \% nasv$ $(1,003)^{12/2} - 1 = i_2$ $i_2 = 19,405229653 \% psv$ $j_2 = 19,405229653 \% psv. x 2 psv$

Dado el 36 % nominal anual mes vencido hallar:

Parte c. Una tasa periódica bimensual vencida.

Solución.

2. Diagrama de equivalencia de tasas:

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada. j = Tasa nominal anual vencida.
- j_a = Tasa nominal anual anticipada. m₁ = Período de la tasa i₁

m ₂ = Período de la tasa i ₂ .				
3. Declaración de Fórmulas				
$(1+i_1)^{m1} = (1+i_2)^{m2}$ Equivalencia de tasas	$j_2 = i_2 m_2$ Tasa nominal anual			
4. Desarrollo Matemático				
$(1+0,003\%)^{12} = (1+i_2)^6$	$i_2 = 6,09 \% pbv$			
$(1,003)^{12/2} - 1 = i_2$				
$i_2 = 6,09 \% pbv$				
$j_2 = 6,09 \% pbv x 6 psv = 36,54 nabv$				

Dado el 36 % nominal anual mes vencido hallar:

Parte d. Una tasa nominal periódica semestre anticipado.

Solución.

1. Declaración de Variables $j_1 = 36\% \ namv \Rightarrow \\ i_1 = 36\% \ namv \ /12 \ pmv = 3\% \ pmv \\ m_1 = 12 \ pmv$ $j_{a2} = ?\% \ nasa$

2. Diagrama de equivalencia de tasas:

i = Tasa periódica vencida.

ia = Tasa periódica anticipada.

j = Tasa nominal anual vencida.

ja = Tasa nominal anual anticipada.

m₁ = Período de la tasa i

m_1 = Período de la tasa i_1 . m_2 = Período de la tasa i_2 .			
3. Declaración de Fórmulas			
$(1+i_1)^{m1} = (1+i_2)^{m2}$ Equivalencia de tasas	$j_{a2}=i_{a2}m_2$ Tasa nominal anual anticipada		
$i_a = \frac{i}{1+i}$ Tasa periódica anticipada			
4. Desarrollo Matemático			
$(1+0,003\%)^{12} = (1+i_2)^2$ $(1,003)^{12/2} - 1 = i_2$ $i_2 = 19,405229653 \% psv$ $i_a = \frac{0.19405229653}{1+0.19405229653} = 16,2515743317 \% psa$ $j_{a2} = 16.2515743317x2$	$j_{a2} = 32, 5 \% nasa$		

Eq	Equivalencia de tasas nominales anuales (j) con periodicidad y modalidad diferente		%EA	
	Valor	Periodo	Modalidad	
_	32,5%	S	а	
d	36,0%	m	V	j = 42.576% naav = 42,576% EA
С	36,54%	b	V	
b	38,81%	S	V	
а	42,576%	а	V	

¿Cuál es la tasa nominal anual (150 días) vencido equivalente a una tasa del 20 % nominal anual (200 días) anticipada? Asumir el año de 365 días. **Solución.**

2. Diagrama de equivalencia de tasas:

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada.
- j = Tasa nominal anual vencida.
- ja= Tasa nominal anual anticipada.
- m1 = Período de la tasa i1
- m2 = Período de la tasa i2

m ₂ = remote de la tasa r ₂		
3. Declaración de Fórmulas		
$(1+i_1)^{m1} = (1+i_2)^{m2}$ Equivalencia de tasas	$j_2 = i_2 m_2$ Tasa nominal anual vencida	
$i_{a1} = j_a m_1$ Tasa periódica anticipada	$i_1=rac{i_{a1}}{1-i_{a1}}$ Tasa periódica vencida	
4. Desarrollo Matemático		
$i_1 = \frac{0.36}{1 - 0.36} = 0.5625 \mathrm{p(200)} \mathrm{dv}$ $(1 + 0.5625)^{0.55} = (1 + i_2)^{0.41}$ $(1,05625)^{0.55/0.41} - 1 = i_2$ $i_2 = 0,076 \mathrm{p(150)} \mathrm{dv}$	$j_2 = 3,116\% \ na(150)dv$	

$j_2 = 0,076 \ p(150) dv \ x \ 0.41 \ p(150) dv$	

Una persona se comprometió a pagar \$250.000 en 3 meses, \$300.000 en 8 meses y \$130.000 en 15 meses. Ante la dificultad de cumplir con las obligaciones tal como están pactadas solicita una nueva forma de pago así: \$60.000 hoy, \$500.000 en 12 meses y el saldo en 18 meses. Suponiendo que la tasa de interés de oportunidad es del 36 % nominal anual mes vencido, determinar el valor del saldo. **Solución.**

1. Declaración de Variables		
j = 36% namv i = $\frac{36\%}{12}$ pmv = 3% pmv P_1 = \$250.000 P_2 = \$300.000 F_3 = \$130.000 P_4 = \$60.000 F_5 = \$500.000	$n_{1} = 5 pmv$ $n_{2} = 0 pmv$ $n_{3} = 7 pmv$ $n_{4} = 8 pmv$ $n_{5} = 4 pmv$	$F_6 = \$?$ $n_6 = 10 pmv$ Fecha focal (ff): en el mes 8 pmv.
2. Diagrama de flujo de caja:		
Deuda Inicial		

 $n_3 = 7pmv$

3. Declaración de Fórmulas

$$F = P(1 + i)^n$$
 Valor futuro

$$P = F(1 + i)^{-n}$$

Valor presente

4. Desarrollo Matemático

$$\begin{aligned} & F_1 + F_2 + F_3 = F_4 + F_5 + F_6 \\ & \$250.000(1+0,03)^5 + \$300.000(1+0,03)^0 + \$130.000(1+0,03)^{-7} \\ & = \$60.000(1+0,03)^8 + \$500.000(1+0,03)^{-4} + F_6(1+0,03)^{-10} \end{aligned}$$

 $F_6 = $235.549, 16$