Computer Science 305 Operating Systems

- ◆ Course Requirements
- ◆ To Do Now
- ◆ Review Introductory Material (Chap 1-3)
- ◆ SLIDES: Prof. John Hine

VUW Computer Science 305: Introduction

3/3/99

Course Requirements

- ◆ http://www.mcs.vuw.ac.nz/courses/COMP3 05
- ♦ Staff
- ◆ Objectives
- ◆ Textbook
- ◆ Assessment
- ◆ Laboratories

VUW Computer Science 305: Introduction

3/3/99

Comp 305 Staff

◆ Organiser

Reuven Aviv COTTON 241

reuven.aviv@mcs.vuw.ac.nz

♦ TAs

Stuart Marshall COTTON 235 Rhys Owen

♦ Hours tba

VUW Computer Science 305: Introduction

3/3/99

Objectives

- ◆ Knowledge of Operating System Algorithms
 - Concurrency and Synchronization
 - Resource Management
 - Process Structures
 - Information Storage
- ◆ Practical Experience
 - In depth experience
 - Implementation Problems

VUW Computer Science 305: Introduction

3/3/99

Textbook

- A. Silberschatz and P. Galvin Operating System Concepts
 5th edition, Addison-Wesley, 1997.
- ◆ 4th edition acceptable See lecture schedule

/UW Computer Science 305: Introductio

3/3/90

Assessment

- ◆ 35% Three laboratory exercises
 - Thread Synchronisation (30 March, 10%)
 - System Calls & User Programs (6 May, 10%)
 - File System (27 May, 15%)
- ◆ 20% Occasional problem sets
- ♦ 45% Examination

/LIW Computer Science 305: Introduction

3/3/99

Laboratory Exercises

- ◆ Team works compulsory
- ♦ Groups of 2 or 3
- ♦ 4 slip days
- ◆ Nachos
- ◆ More details in first tutorial

VIIW Computer Science 305: Introduction

3/3/99

To Do Now

- ◆ User Code Form
- ◆ Read the Web pages
- ◆ Create teams and notify C.C.

VUW Computer Science 305: Introduction

3/3/99

What Is an Operating System?

- ◆ Authors:
 - "resource allocator" or "control program"
- ◆ Dietel
 - "programs that make the hardware usable"
- ♦ Goal:
- "convenience for the user"
- ◆ What is usable? What is convenient?

VUW Computer Science 305: Introduction

/3/99

OS Architecture

- ◆ Most users see total package: Windows, MacOS8
- ◆ Tighter integration in modern systems.

VUW Computer Science 305: Introduction

3/3/99

OS Goals

- ◆ Efficient Use of Resources
 - Avoid bottlenecks that affect performance.
 - Keep all components as busy as possible.
- ◆ Convenience and Productivity for Users
 - The user costs more than the machine.
 - Deliver function as efficiently as possible.
- ◆ Availability and Reliability
 - Computer systems are critical.
 - A failed system can mean a failed company.

VUW Computer Science 305: Introduction

3/3/9

Evolution of Operating Systems

- ◆ Program Libraries
- ◆ Single Batch Systems

Read Compute Print

Read Compute Prin

JW Computer Science 305: Introduction

3/3/99

Evolution of Operating Systems

- ◆ Program Libraries
- ◆ Single Batch Systems with spooling

Evolution of Operating Systems

- ◆ Program Libraries
- ◆ Single Batch Systems with spooling
- ◆ Multiprogrammed Batch Systems

Evolution of Operating Systems

- ◆ Program Libraries
- ◆ Single Batch Systems with spooling
- ◆ Multiprogrammed Batch Systems
- **◆** Timesharing Systems

Evolution of Operating Systems

- ◆ Program Libraries
- ◆ Single Batch Systems with spooling
- ◆ Multiprogrammed Batch Systems
- ◆ Timesharing Systems
- ◆ Interactive Systems

Evolution of Operating Systems

- ◆ Program Libraries
- ◆ Single Batch Systems with spooling
- ◆ Multiprogrammed Batch Systems
- **◆** Timesharing Systems
- ◆ Interactive Systems
- ◆ Personal Computer Systems

Distributed Operating Systems

◆ "The system is the network."

System Components

- ◆ Process and Thread Management
- ◆ Main Memory Management
- ◆ Secondary Storage Management
- ♦ I/O System Management
- ◆ File System Management
- ◆ Protection and Security
- ◆ Networking
- ◆ User Services

VUW Computer Science 305: Introduction

2/2/00

Process and Thread Management

- ◆ A thread executes
- ◆ A process consists of
 - memory, open files, threads
 - state(s) (program counter, registers, etc.)
- ♦ General functions are:
 - Create/delete processes/threads
 - Suspend/resume thread
 - Support synchronisation and ipc
 - Allocate resources

VUW Computer Science 305: Introduction

3/3/00

Main Memory Management

- ◆ Problems vary with system and hardware support
- ◆ Delay binding of addresses as long as possible
- ♦ Manage memory in use, free, clean/dirty
 - Allocate memory to processes

VUW Computer Science 305: Introduction

3/3/9

Secondary Storage Management

- ♦ Manage disk storage
 - Storing and retrieving files
 - Free/in use space
 - Scheduling

VUW Computer Science 305: Introduction

3/3/99

I/O System Management

- ◆ Hide device peculiarities
- **◆** Components
 - Memory management for buffering, caching and spooling
 - General device driver interface (abstraction)
 - Specific drivers

VIIW Computer Science 305: Introduction

3/3/90

File System Management

- ♦ Key user interface
 - Create/delete files/directories
 - Manipulate file/directory attributes
 - Mapping to storage
 - Backup and archiving
- ◆ A minimal set of operations -
 - create, delete, open, close
 - read, write, seek
 - get or set attributes

VUW Computer Science 305: Introduction

3/3/99

24

Protection and Security

- ◆ Integrated with other components
- ♦ Own functions
 - Authentication
 - Protection
- ◆ Network functions increasingly important

VUW Computer Science 305: Introduction

3/3/99

Networking

- ◆ Increasingly a part of the system
- ◆ Four different types of systems:
 - Stand alone
 - Multi-processor -- shared clock, UMA
 - Networked -- no shared clock, NUMA
 - Distributed
- ◆ Two communication models
 - Messaging passing
 - Shared memory.

VUW Computer Science 305: Introduction

3/3/99

OS Services

- ◆ User Services
 - Program execution
 - I/O
 - File manipulation
 - Communications
 - Error detection
- ◆ Resource allocation
- ◆ Accounting
- ◆ Protection

VUW Computer Science 305: Introduction

3/3/99

System Structure - UNIX

USERS

VUW Computer Science 305: Introduction

3/3/99