Отчёт по лабораторной работе 4

Студент: Кочкожаров Иван Вячеславович

Группа: <u>М8О-308Б-22</u>

1 Цель работы

Подобрать такую эллиптическую кривую, порядок точки которой полным перебором находится за 10 минут на ПК. Исследовать алгоритмы и теоремы, существующие для облегчения и ускорения решения задачи полного перебора.

2 Теоретическая часть

2.1 Эллиптические кривые над конечным полем

Эллиптическая кривая над конечным полем \mathbb{F}_p (где p — простое число) определяется уравнением:

$$y^2 \equiv x^3 + ax + b \pmod{p} \tag{1}$$

При условии, что $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$ (условие несингулярности).

Точки эллиптической кривой образуют абелеву группу с операцией сложения, определенной геометрически. Порядок точки P — это наименьшее положительное целое число n такое, что $nP = \mathcal{O}$ (бесконечно удаленная точка).

2.2 Оценка производительности

Для оценки среднего времени выполнения одной операции сложения точек был проведен эксперимент с кривой над полем \mathbb{F}_p при $p = 50\,000\,017$:

```
p=50000017, a=6470481, b=8975775, P=(12195349,21713483), order
=49992337, time=100.81s
Avg iter time = 2.0164165265300723e-06
```

Среднее время одной операции сложения составило примерно $2.02 \cdot 10^{-6}$ с.

2.3 Оценка времени вычисления порядка точки

Если каждая операция сложения занимает примерно $2 \cdot 10^{-6}$ с $(2~\mu s)$, то за 10~ минут (600~ с) вы сможете сделать порядка

$$\frac{600 \text{ c}}{2 \cdot 10^{-6} \text{ c/операцию}} = 3 \cdot 10^8 \text{ скалярных сложений.}$$

Поскольку порядок точки на «случайной» кривой над \mathbb{F}_p примерно равен p (в пределах $\pm \sqrt{p}$) по теореме Хассе, чтобы перебор kP для $k=1\dots p$ занял около 600 с, достаточно взять

$$p \approx 3 \cdot 10^8.$$

Например, одно из ближайших простых чисел порядка $3 \cdot 10^8$ —

```
p = 300\,000\,007.
```

Его используем для начального приближения кривой.

3 Практическая часть

3.1 Реализация алгоритмов

Для решения задачи были реализованы следующие компоненты:

- 1. Kласс EllipticCurve для представления эллиптической кривой
- 2. Kласс Point для представления точек на кривой
- 3. Функции для операций над точками: add и mul
- 4. Функция brute_order для вычисления порядка точки методом полного перебора
- 5. Функции для генерации случайных кривых и точек

3.2 Подбор параметров кривой

Для поиска подходящей кривой был реализован алгоритм, который:

- 1. Генерирует случайную эллиптическую кривую над полем \mathbb{F}_p
- 2. Генерирует случайную точку на этой кривой
- 3. Вычисляет порядок точки методом полного перебора
- 4. Проверяет, что время вычисления находится в заданном диапазоне (9-11 минут)

Были проведены эксперименты с различными значениями р:

```
p=300000007, a=139493976, b=266004513, P=(101097864,85148484), order
=300002521, time=440.46s

Too fast: only 440.46s
p=30000007, a=127506766, b=130653405, P=(125936178,88420890), order
=150015410, time=225.28s
Too fast: only 225.28s
p=300000007, a=41635840, b=112170592, P=(107361594,131765451), order
=300010261, time=445.85s
Too fast: only 445.85s
p=300000007, a=177004968, b=43109284, P=(184984415,9153220), order
=300000181, time=446.48s
Too fast: only 446.48s
```

```
p=426000017, a=64982240, b=19135670, P=(228072906,97062984), order

=213018587, time=332.94s

Too fast: only 332.94s

p=426000017, a=131325779, b=8713283, P=(230519031,147449158), order

=425998575, time=658.79s

Selected curve and point:
```

```
g y^2 = x^3 + 131325779x + 8713283 (mod 426000017)
Point P = (230519031, 147449158), order = 425998575, computed in 658.79
s

p=387272759, a=331128336, b=169430433, P=(164198548,22675309), order
=129094316, time=204.41s
Too fast: only 204.41s
p=387272759, a=145203106, b=273166277, P=(116919177,167275377), order
=96815321, time=155.08s
Too fast: only 155.08s
p=387272759, a=124860295, b=2186117, P=(223741075,161701677), order
=387264450, time=621.83s

Selected curve and point:
y^2 = x^3 + 124860295x + 2186117 (mod 387272759)
Point P = (223741075, 161701677), order = 387264450, computed in 621.83
```

- $p = 300\,000\,007$ (результаты оказались слишком быстрыми, около 440 с)
- $p = 426\,000\,017$ (найдена кривая с временем вычисления 658.79 с)
- $p = 387\,272\,759$ (найдена кривая с временем вычисления 621.83 с)

4 Результаты

В результате экспериментов была найдена оптимальная эллиптическая кривая:

$$y^2 = x^3 + 124860295x + 2186117 \pmod{387272759}$$
 (2)

$$P = (223741075, 161701677) \tag{3}$$

Порядок точки
$$P = 387264450$$
 (4)

Время вычисления
$$= 621.83 \text{ c}$$
 (5)

Это значение находится в пределах заданного диапазона (9-11 минут) и подтверждает теоретические оценки.

5 Алгоритмы для ускорения вычисления порядка точки

Существуют более эффективные алгоритмы для вычисления порядка точки на эллиптической кривой:

5.1 Алгоритм Шенкса (Baby-step Giant-step)

Алгоритм Шенкса позволяет найти порядок точки за время $O(\sqrt{n}),$ где n — порядок группы. Основная идея:

- 1. Выбрать параметр $m \approx \sqrt{n}$
- 2. Вычислить и сохранить точки jP для $j=0,1,\ldots,m-1$
- 3. Вычислить точки $P_0 imP$ для $i = 0, 1, \dots, m$, где P_0 некоторая известная точка
- 4. Найти совпадение между двумя наборами точек

5.2 Алгоритм Полларда ρ

Алгоритм Полларда использует псевдослучайную функцию для поиска цикла в последовательности точек. Время работы также $O(\sqrt{n})$, но требует меньше памяти, чем алгоритм Шенкса.

5.3 Теорема Хассе

Теорема Хассе утверждает, что порядок эллиптической кривой E над полем \mathbb{F}_p находится в диапазоне:

$$p + 1 - 2\sqrt{p} \le \#E(\mathbb{F}_p) \le p + 1 + 2\sqrt{p}$$
 (6)

Это позволяет существенно сузить область поиска порядка кривой.

5.4 Алгоритм Шуфа

Алгоритм Шуфа позволяет вычислить точное значение порядка эллиптической кривой за полиномиальное время. Он основан на вычислении порядка кривой по модулю малых простых чисел и последующем применении Китайской теоремы об остатках.

6 Характеристики вычислителя

- Процессор: AMD Ryzen 5 5600H (8 ядер, 16 потоков)
- Оперативная память: 16 ГБ DDR4 3200 МГц
- Операционная система: Arch Linux (ядро 6.14.6-arch1-1)
- Python: версия 3.13.3

7 Выводы

- 1. Была подобрана эллиптическая кривая, для которой вычисление порядка точки методом полного перебора занимает около 10 минут (621.83 с).
- 2. Экспериментально подтверждены теоретические оценки времени вычисления.
- 3. Рассмотрены более эффективные алгоритмы для вычисления порядка точки, которые могут значительно ускорить процесс по сравнению с полным перебором.
- 4. Полученные результаты демонстрируют важность использования оптимизированных алгоритмов при работе с эллиптическими кривыми в криптографических приложениях.

8 Приложение: исходный код

https://github.com/kochkozharov/cryptography-labs/tree/master/lab4

8.1 ес.ру - Реализация эллиптических кривых

```
1 import random
  import signal
 import time
  class EllipticCurve:
      def __init__(self, a, b, p):
6
           self.a = a
           self.b = b
8
           self.p = p
9
          if (4 * a**3 + 27 * b**2) \% p == 0:
10
               raise ValueError("Singular curve")
11
12
  class Point:
13
      def __init__(self, x=None, y=None, curve=None):
14
           self.x = x
15
           self.y = y
16
           self.curve = curve
17
18
      def is_infinity(self):
19
          return self.x is None and self.y is None
20
21
      @staticmethod
      def infinity(curve):
23
          return Point(None, None, curve)
24
25
  def add(P, Q):
26
      curve = P.curve
      p = curve.p
      if P.is_infinity(): return Q
29
      if Q.is_infinity(): return P
30
      if P.x == Q.x and (P.y + Q.y) \% p == 0:
31
          return Point.infinity(curve)
32
      if P.x == Q.x:
          lam = (3 * P.x * P.x + curve.a) * pow(2 * P.y, -1, p) % p
      else:
35
          lam = ((Q.y - P.y) * pow(Q.x - P.x, -1, p)) % p
36
      x_r = (lam * lam - P.x - Q.x) % p
37
      y_r = (lam * (P.x - x_r) - P.y) % p
38
      return Point(x_r, y_r, curve)
40
  def mul(P, n):
41
      R = Point.infinity(P.curve)
42
      Q = P
43
      while n > 0:
44
          if n & 1:
45
               R = add(R, Q)
46
          Q = add(Q, Q)
47
          n >>= 1
48
      return R
49
51 def get_random_xy(E):
```

```
while True:
52
           x = random.randrange(E.p)
53
           rhs = (x**3 + E.a*x + E.b) \% E.p
54
55
           for yy in range(E.p):
56
                if yy*yy % E.p == rhs:
                     y = yy
58
                     break
59
           if y:
60
                break
61
62
           else:
                continue
63
       return x, y
64
65
  def get_random_curve(p):
66
       while True:
67
           a = random.randrange(p)
           b = random.randrange(p)
69
70
           try:
                E = EllipticCurve(a, b, p)
71
                break
72
           except ValueError:
73
                continue
74
       return E
75
76
  class TimeoutError(Exception):
77
       pass
78
79
  def _timeout_handler(signum, frame):
       raise TimeoutError
81
82
  def brute_order(P, max_seconds=660):
83
       signal.signal(signal.SIGALRM, _timeout_handler)
84
       signal.alarm(max_seconds)
85
       start = time.perf_counter()
86
       try:
87
           R = Point.infinity(P.curve)
88
           n = 1
89
           while True:
90
                R = add(R, P)
                if R.is_infinity():
92
                     break
93
                n += 1
94
           elapsed = time.perf_counter() - start
95
           signal.alarm(0)
96
           return n, elapsed
       except TimeoutError:
98
           elapsed = time.perf_counter() - start
99
           signal.alarm(0)
100
           return None, elapsed
101
```

8.2 main.py - Поиск подходящей кривой

```
from ec import *
3
  def find_curve(p, min_seconds=540, max_seconds=660):
      while True:
5
          E = get_random_curve(p)
7
          x, y = get_random_xy(E)
          P = Point(x, y, E)
          order, elapsed = brute_order(P, max_seconds)
9
          print(f"p={p}, a={E.a}, b={E.b}, P=({x},{y}), order={order},
10
             time={elapsed:.2f}s")
          if order is None:
11
              print(f"Timeout after {max_seconds}s")
               continue
13
          if elapsed < min_seconds:</pre>
14
               print(f"Too fast: only {elapsed:.2f}s")
15
               continue
16
          return E, P, order, elapsed
17
18
  if __name__ == '__main__':
19
      p = 387272759
20
      curve, point, order, elapsed = find_curve(p)
21
      print("\nSelected curve and point:")
22
      print(f"y^2 = x^3 + \{curve.a\}x + \{curve.b\} \pmod{\{curve.p\}})")
23
      print(f"Point P = ({point.x}, {point.y}), order = {order}, computed
          in {elapsed:.2f}s")
```

8.3 estimation.py - Измерение среднего времени операции

```
from ec import *
  import time
2
  if __name__ == '__main__':
      p = 50000017
5
      E = get_random_curve(p)
6
      x, y = get_random_xy(E)
      P = Point(x, y, E)
8
      time_sum=0
9
      R = Point.infinity(P.curve)
10
      n = 1
11
      while True:
12
          start = time.perf_counter()
13
          R = add(R, P)
14
          if R.is_infinity():
15
               break
16
          n += 1
17
          elapsed = time.perf_counter() - start
18
          time_sum+=elapsed
19
      print(f"p={p}, a={E.a}, b={E.b}, P=({x},{y}), order={n}, time={m}
20
         time_sum:.2f}s")
      print(f"Avg iter time = {time_sum / (n-1)}")
```