Fisica per applicazioni di realtà virtuale

Anno Accademico 2022-23

Prof. Matteo Brogi

Dipartimento di Fisica, stanza B3, nuovo edificio

Lezione 7

Meccanica classica: lavoro ed energia (parte 2)

Conservazione energia meccanica: esercizi

Esercizio 4.03: Una palla di massa m = 2.6 kg, partendo da ferma, cade per una distanza verticale h = 55 cm prima di colpire una molla di massa trascurabile disposta lungo l'asse verticale, comprimendola di una lunghezza $\Delta y = 15$ cm.

- a) Determinare la massima velocità raggiunta dalla palla;
- **b**) Determinare la costante elastica della molla.

Misurare tutte le distanze dal punto in cui la palla tocca la molla a riposo.

Esercizio 4.04: Una freccia di massa 0.1 kg viene premuta contro la molla di una pistola giocattolo. La molla, di costante elastica k = 250 N/m, viene compressa per 6 cm e quindi rilasciata. Se la freccia si stacca dalla molla quanto questa raggiunge la sua lunghezza a riposo (x = 0), quale sarà la velocità acquistata dalla freccia?

Esercizio 4.05: Un saltatore di massa 75 kg si lancia da un ponte con la caviglia legata a una corda elastica, e percorre i primi 15 m in caduta libera prima che il cavo inizi ad allungarsi. Il cavo obbedisce in prima approssimazione alla legge di Hooke, con k = 50 N/m. Trascurando la resistenza dell'aria, e la massa del cavo, calcolare la distanza massima raggiunta dal saltatore rispetto alla cima del ponte.

Legame tra forza ed energia potenziale

Se esiste un potenziale, allora la forza può essere ricavata da esso

Forza gravitazionale
$$F = -\frac{GMm}{r^2} = -mg$$
 En. potenziale $U = mgh$

Forza elastica
$$F = -kx$$
 En. potenziale elastica $U = \frac{1}{2}kx^2$

Ricordate: l'energia (potenziale) è la capacità di compiere lavoro

$$U_{\rm f} = -\int_{x_i}^{x_f} F_x x \, dx + U_{\rm i} \qquad F_x = -\frac{dU}{dx}$$

Conseguenza del calcolo integrale: U è primitiva di $f \Rightarrow f$ è derivata di U

Legame tra forza ed energia potenziale (in 3D)

Richiede algebra differenziale in 3 dimensioni

$$U = - \begin{bmatrix} \overrightarrow{F} \cdot \overrightarrow{x} dx \\ F \cdot \overrightarrow{x} dx \end{bmatrix}$$
 l'integrando è un prodotto scalare

$$\overrightarrow{F} = -\left(\frac{\partial U}{\partial x}\hat{u}_x + \frac{\partial U}{\partial y}\hat{u}_y + \frac{\partial U}{\partial z}\hat{u}_z\right) = \overrightarrow{\nabla}U$$

∂/∂x si chiama **derivata parziale** (si calcola considerando y,z costanti) Il simbolo **V** si chiama **gradiente** (la "pendenza" scomposta nelle 3 dimensioni)

Superfici equipotenziali e direzione della forza

Superfici equipotenziali: insieme dei punti con energia potenziale costante

Es.: equipotenziale gravitazionale = curve di livello (alla scala "umana") In realtà sono superfici sferiche

Forza sempre perpendicolare alla superficie equipotenziale

Superfici equipotenziali e orbite planetarie

Orbite circolari avvengono su una superficie equipotenziale, orbite ellittiche no

La potenza in fisica: quanto rapidamente si compie lavoro

La potenza è una quantità scalare

Potenza **media**

$$P = rac{W}{\Delta t}$$

Si noti che il lavoro è W e non ΔW: non esiste un lavoro "di riferimento"

Potenza istantanea

$$P = \frac{dW}{dt} = \frac{d}{dt}(\overrightarrow{F} \cdot \overrightarrow{d})$$

Unità: W [N s⁻¹]
(Watt)

$$P = \overrightarrow{F} \cdot \overrightarrow{v}$$

Utile per forze e/o velocità costanti

Sempre possibile approssimare F = costante su intervalli \Data t piccoli

Potenza e lavoro

Esercizio 4.06: Calcolare la potenza necessaria ad un'automobile di 1400 kg su cui agisce una risultante delle forze ritardanti $F_R = 700 \text{ N}$, nelle seguenti circostanze:

- a) l'automobile sale una collina di 10° di pendenza a una velocità costante di 80 km/h;
- b) l'automobile accelera lungo una strada pianeggiante da 90 a 100 km/h in 6 s, mentre sorpassa un'altra automobile.

Quantità di moto e leggi di Newton

La quantità di moto è una quantità vettoriale

Quantità di moto (momentum)

$$\overrightarrow{p} = m\overrightarrow{v}$$

Unità: kg m s⁻¹ [M L T⁻¹]

II legge Newton generalizzata

$$\sum \overrightarrow{F} = \frac{d}{dt} \overrightarrow{p}$$

Derivata di un prodotto ⇒ due termini

$$\sum \overrightarrow{F} = \frac{dm}{dt}\overrightarrow{v} + m\frac{d\overrightarrow{v}}{dt} = \frac{dm}{dt}\overrightarrow{v} + m\overrightarrow{a}$$

m costante ⇒ "classica" legge di Newton

Le leggi di Newton espresse con la quantità di moto

Se la risultante delle forze è nulla (**F** = 0), allora la quantità di moto si conserva (legge d'inerzia)

$$\sum \overrightarrow{F} = 0 \Rightarrow \overrightarrow{p} = \text{costante}$$

$$\left(\sum \overrightarrow{F} = \frac{d\overrightarrow{p}}{dt}\right)$$

Utile per risolvere problemi dove una massa si divide in due o più parti (prossima unità)

Impulso e variazione di quantità di moto

L'impulso è una quantità vettoriale

$$\vec{I} = \int_{t_0}^{t_1} \vec{F} dt$$

Unità: N s

II legge Newton con q. di moto

$$\overrightarrow{F} = \frac{d\overrightarrow{p}}{dt} \Rightarrow d\overrightarrow{p} = \overrightarrow{F}dt$$
 $\Delta \overrightarrow{p} = \int_{t}^{t_1} \overrightarrow{F}dt \equiv \overrightarrow{I}$

$$\Delta \overrightarrow{p} = \int_{t_0}^{t_1} \overrightarrow{F} dt \equiv \overrightarrow{I}$$

$$\vec{I} = \Delta \vec{p}$$

L'impulso è pari alla variazione della quantità di moto (teorema dell'impulso)

Calcolato su una forza Δt 'media' o costante m

Calcolo dell'impulso con una forza media

Calcoliamo la **media** <**F**> della forza

$$\langle \overrightarrow{F} \rangle = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} \overrightarrow{F} dt$$

$$\vec{I} = \langle \vec{F} \rangle (t_1 - t_0) = \langle \vec{F} \rangle \Delta t$$

Un'approssimazione dell'integrale della forza utile in applicazioni pratiche

Importanza del teorema dell'impulso (in VR e non solo)

Intuito: l'effetto di un'azione dipende da quanto a lungo la esercito (ad es. premo il grilletto del controller)

$$\vec{I} = \vec{F}\Delta t = \Delta \vec{p}$$

Quanto più a lungo applico l'azione (la forza), tanto più cambio lo stato di moto dell'oggetto perturbato

Oggetti di massa enorme (astronavi, asteroidi) richiedono i) una forza enorme per poco tempo, o ii) o una piccola forza applicata a lungo

es. deviare un asteroide in rotta di collisione agendo per 20 anni con piccola forza applicata vs detonare bombe atomiche