Chapitre 6

Dérivation

Taux de variation

f est une fonction définie (au moins) sur un intervalle I,

a et x = a + h sont deux points distincts de $I(h \neq 0)$.

Formule 1)

Définition:

a et b étant deux réels distincts de l'intervalle I, le taux de variation de la fonction f entre a et b est le quotient :

$$\frac{f(b)-f(a)}{b-a}$$

Avec x=a+h, ce quotient s'écrit aussi :

$$\frac{f(a+h)-f(a)}{h}$$

Remarque:

On parle également d'accroissement moyen.

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$, le taux de variation entre a et a+h est : $\frac{(a+h)^2-a^2}{h} = \frac{a^2+2ah+h^2-a^2}{h} = 2a+h$

$$\frac{(a+h)^2 - a^2}{h} = \frac{a^2 + 2ah + h^2 - a^2}{h} = 2a + h$$

2) Interprétation graphique

Soient A et B deux points de C_f tels que : A(a; f(a)) et B(b; f(b)).

Le quotient
$$\frac{f(b)-f(a)}{b-a}$$

est le **coefficient directeur** de la sécante (AB) à la courbe C_f représentant la fonction f.

Remarque:

• On utilise la notation :

$$\frac{\Delta y}{\Delta x} = \frac{accroissement\ des\ ordonn\'ees}{accroissement\ des\ abscisses}$$

• En posant b=a+h, avec $h \neq 0$, le taux de variation de f entre a et a+h s'écrit :

$$\frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}$$

• Le taux de variation de f entre a et a+h est donc égale au coefficient directeur de la sécante (AB) avec A(a; f(a)) et B(a+h; f(a+h))

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$ et a=2,

le taux de variation entre 2 et 2+h est :

$$\frac{\Delta y}{\Delta x} = \frac{f(2+h) - f(2)}{2+h-2} = \frac{(2+h)^2 - 2^2}{h} = \frac{4+4h+h^2 - 4}{h} = \frac{4h+h^2}{h} = 4+h$$

<u>Cas particulier</u>: coût marginal d'une unité produite Soit C(q) le coût total lorsque l'on a fabriqué q unités.

• Le coût de production par unité produite est appelé coût moyen de production :

$$C_{M}(q) = \frac{C(q)}{q}$$

• Le **coût marginal** de la *q*-ième unité produite est l'accroissement de coût dû à cette dernière unité produite, soit :

$$C_m(q) = C(q) - C(q-1)$$

II. Nombre dérivé en a

f est une fonction définie (au moins) sur un intervalle I, a et x = a+h sont deux points distincts de I $(h \neq 0)$.

1) <u>Limite en 0</u>

Principe:

Si f est une fonction définie sur un intervalle I contenant 0, on admet que chercher la **limite de f en 0** revient à calculer l'image de 0 par f:

$$\lim_{x \to 0} f(x) = f(0)$$

Exemple:

Soit f(x)=(x+3)(x-1), la fonction polynôme définie sur \mathbb{R} ;

f(0) existe, donc si $x \to 0$, alors $f(x) \to f(0) = (0+3)(0-1) = -3$.

Ainsi
$$\lim_{x\to 0} (x+3)(x-1) = -3$$
.

Nombre dérivé en a 2)

Définition:

Si le quotient $\frac{f(a+h)-f(a)}{h}$ tend vers un nombre lorsque h tend vers 0, alors la fonction f est

dérivable en a.

La limite de ce taux de variation est le **nombre dérivé de** f en a.

On le note f'(a).

On a donc:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Exemple:

Pour la fonction
$$f$$
 définie sur \mathbb{R} par $f(x) = x^2$ et $a = 3$,
$$\frac{f(3+h) - f(3)}{h} = \frac{(3+h)^2 - 3^2}{h} = \frac{9+6h+h^2-9}{h} = 6+h$$

Ainsi $\lim_{h\to 0} 6+h=6$ donc f'(3)=6.

Calculatrice:

3) Interprétation graphique

Soit f une fonction dérivable en a et C_f sa courbe représentative.

A le point de C_f d'abscisse a et M un point mobile de C_f d'abscisse a+h, avec h proche de 0.

Lorsque h tend vers 0 alors l'abscisse de M tend vers l'abscisse de A et donc le point M se rapproche du point A.

Le quotient $\frac{f(a+h)-f(a)}{h}$ tend vers le nombre f'(a) donc la sécante (AM) se rapproche de la droite Δ .

Tangente

Définition:

La **tangente** à la courbe C_f au point A d'abscisse a est **la droite** passant par A dont le **coefficient directeur** est le nombre **dérivé** de f en a.

Son équation réduite est :

$$y = f'(a)(x-a) + f(a)$$

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$, la tangente au point A d'abscisse 3 a pour équation réduite :

$$y = f'(3) \times (x-3) + f(3) = 6(x-3) + 9 = 6x - 18 + 9$$

donc y=6x-9

Cas particulier: coût marginal instantané

Soit C(q) le coût total pour des grandes quantités d'objets, ou des quantités divisibles (en t, en kg, en L, ...)

On admet que le **coût marginal instantané** au niveau q est assimilable au nombre dérivé du coût total en q:

$$C_{mi}(q) = C'(q)$$

Approximation affine

Théorème :

La tangente en A à la courbe C_f est la représentation d'une fonction affine g.

On admet que la fonction g est la meilleure approximation affine de f en a.

Pour un réel x proche de a, l'image f(x) est proche de g(x):

$$f(x) \approx f'(a)(x-a) + f(a)$$

III. Fonction dérivée

1) Définition

Définition

Une **fonction** f est **dérivable** sur un intervalle I lorsque, pour tout réel x de l'intervalle, le nombre dérivé de f en x existe.

Alors la fonction $f': x \mapsto f'(x)$ est appelé fonction dérivée de f sur I.

Exemples:

Pour la fonction f définie sur \mathbb{R} par f(x)=k, (k fixé)

pour tout
$$x \in \mathbb{R}$$
:
$$\frac{f(x+h) - f(x)}{h} = \frac{k-k}{h} = 0$$

Ainsi:
$$(k)': x \mapsto_{\underline{}} f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0$$

• Pour la fonction f définie sur \mathbb{R} par f(x)=x,

pour tout
$$x \in \mathbb{R}$$
: $\frac{(x+h)-x}{h} = \frac{h}{h} = 1$

Ainsi:
$$(x)': x \mapsto_{\underline{}} f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 1$$

• Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$,

pour tout
$$x \in \mathbb{R}$$
: $\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + ^2h - x^2}{h} = 2x + h$

Ainsi:
$$(x^2)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 2x$$

• Pour la fonction
$$f$$
 définie sur $[0; +\infty[$ par $f(x) = \sqrt{x},$ pour tout $x \in]0; +\infty[$:
$$\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{1}{\sqrt{(x+h)}+\sqrt{(x)}} \text{ de plus } \lim_{h\to 0} \sqrt{x+h} = \sqrt{x}$$

Ainsi, pour
$$x \in]0; +\infty[: (\sqrt{x})' : x \mapsto_{h\to 0} f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h} = \frac{1}{2\sqrt{x}}$$

2) Interprétation graphique

Dire que f est dérivable sur I signifie que, pour tout réel x de I, la courbe C_f , représentant la fonction f, admet une seule tangente, de coefficient directeur :

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

3) Sens de variation

Théorème:

Soit f une fonction dérivable sur un intervalle I.

- Si la dérivée est **positive** sur *I*, alors la fonction *f* est **croissante** sur *I*.
- Si la dérivée est **négative** sur *I*, alors la fonction *f* est **décroissante** sur *I*.
- Si la dérivée est **nulle** en toute valeur de *I*, alors la fonction *f* est **constante** sur *I*.

Démonstration:

On considère un réel h>0 et tel que $x+h \in I$.

Pour tout réel x de I, x+h>x:

• Si f est croissante sur I, alors $f(x+h) \ge f(x)$; donc $\frac{f(x+h) - f(x)}{h}$ est positif et alors la dérivée sera positive.

De même, si h < 0, on démontrerait que $\frac{f(x+h)-f(x)}{h}$ reste positif.

• Si f est décroissante sur I, alors $f(x+h) \le f(x)$; donc $\frac{f(x+h)-f(x)}{h}$ est positif et alors la dérivée sera négative

De même, si h < 0 , on démontrerait que $\frac{f(x+h)-f(x)}{h}$ reste négatif.

Remarque:

L'étude du signe de la dérivée permet donc de donner le sens de variation d'une fonction.

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$, nous avons vu que f'(x)=2x, on a donc:

X			0		$+\infty$
f'(x)=2x		_	0	+	
$f(x) = x^2$	+∞		0	A	+∞

4) Extremum

Théorème:

Soit f une fonction dérivable sur un intervalle [a;b].

Si la dérivée s'annule en **changeant de signe**, la fonction admet un extremum sur [a;b].

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	х	a		c		b	x	a		c		b
f(x)	f'(x)		_	0	+		f'(x)		+	0	_	
	f(x)		_	minimum	1		f(x)		1	maximum		

IV. Calcul de dérivées

1) Calcul de dérivées

Dérivée d'une somme de fonctions

Théorème:

La somme u+v de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et : (u+v)'=u'+v'

Démonstration:

Soit f(x)=(u+v)(x)=u(x)+v(x) avec u et v dérivables sur I.

Pour tout $x \in I$, $\frac{f(x+h)-f(x)}{h} = \frac{(u+v)(x+h)-(u+v)(x)}{h} = \frac{u(x+h)+v(x+h)-u(x)-v(x)}{h}$

Donc:
$$\frac{f(x+h)-f(x)}{h} = \frac{u(x+h)-u(x)}{h} + \frac{v(x+h)-v(x)}{h}$$

Et *u* et *v* étant dérivables sur *I* :

$$\lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = u'(x) \text{ et } \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = v'(x)$$

ainsi
$$(u+v)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = u'(x) + v'(x)$$

Exemple:

La fonction f définie sur \mathbb{R} par $f(x)=x^2+x$ est la somme de deux fonctions u et v définies par $u(x)=x^2$ et v(x)=x

8

Or u et v sont dérivables sur \mathbb{R} et u'(x)=2x et v'(x)=1

Done pour tout $x \in \mathbb{R}$, f'(x) = 2x + 1

Dérivée d'un produit de fonctions

Théorème :

Le produit uv de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et : (uv)' = u'v + uv'

Démonstration:

Soit $f(x)=(uv)(x)=u(x)\times v(x)$ avec u et v dérivables sur I

Pour tout
$$x \in I$$
, $\frac{f(x+h) - f(x)}{h} = \frac{(uv)(x+h) - (uv)(x)}{h} = \frac{[u(x+h) \times v(x+h)] - [u(x) \times v(x)]}{h}$

Pour tout
$$x \in I$$
, $\frac{f(x+h)-f(x)}{h} = \frac{(uv)(x+h)-(uv)(x)}{h} = \frac{[u(x+h)\times v(x+h)]-[u(x)\times v(x)]}{h}$
Donc: $\frac{f(x+h)-f(x)}{h} = \frac{u(x+h)\times v(x+h)-u(x)\times v(x+h)+u(x)\times v(x+h)-u(x)\times v(x)}{h}$

$$\frac{f(x+h)-f(x)}{h} = \frac{u(x+h)-u(x)}{h} \times v(x+h) + \frac{v(x+h)-v(x)}{h} \times u(x)$$

Et u et v étant dérivables sur I:

$$\lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = u'(x) \text{ et } \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = v'(x) \text{ de plus } \lim_{h \to 0} v(x+h) = v(x) \text{ ainsi } (uv)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = u'(x)v(x) + v'(x)u(x)$$

$$(uv)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = u'(x)v(x) + v'(x)u(x)$$

Exemple:

La fonction f définie sur $[0;+\infty[$ par $f(x)=x\sqrt{x}$ est le produit des deux fonctions u et v définies par : u(x)=x et $v(x)=\sqrt{x}$.

Or u et v sont dérivables sur $]0;+\infty[$ et on a vu que : u'(x)=1 et $v'(x)=\frac{1}{2\sqrt{x}}$.

Donc, pour tout
$$x > 0$$
, $f'(x) = \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \frac{3}{2}\sqrt{x}$.

Cas particulier:

Soit *u* une fonction dérivable sur un intervalle *I* et *k* un nombre réel.

La dérivée de *ku* est *k* fois la dérivée de *u*.

Si *k* est une constante : $(ku)'(x) = k \times u'(x)$

Exemple: dérivée d'une fonction polynôme

 $f(x)=2x^2+8x+3$ La fonction trinôme définie par :

En utilisant les règles de calculs des dérivées on obtient :

$$f'(x) = 2 \times 2x + 8 \times 1 + 0 = 4x + 8$$

Dérivée d'un quotient de fonctions

Théorème:

u et v sont deux fonctions dérivables sur un intervalle I.

De plus, pour tout x de I, $v(x) \neq 0$

Le quotient $\frac{u}{v}$ est une fonction dérivable sur *I*, et :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Démonstration :

Soit
$$f(x) = \frac{u(x)}{v(x)} = \frac{u(x)}{v(x)}$$
 avec u et v dérivables sur I et $v(x) \neq 0$ pour tout $x \in I$

$$\frac{f(x+h)-f(x)}{h} = \frac{(\frac{u}{v})(x+h)-(\frac{u}{v})(x)}{h} = \frac{\frac{u(x+h)}{v(x+h)} - \frac{u(x)}{v(x)}}{h} = \frac{\frac{u(x+h)\times v(x)-u(x)\times v(x+h)}{v(x+h)\times v(x)}}{h}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{\frac{u(x+h)\times v(x)-u(x)\times v(x)+u(x)\times v(x)-u(x)\times v(x+h)}{v(x+h)\times v(x)}}{h}$$

$$\frac{f(x+h)-f(x)}{h} = \left[\frac{u(x+h)-u(x)}{h}\times v(x) - \frac{v(x+h)-v(x)}{h}\times u(x)\right] \times \frac{1}{v(x+h)\times v(x)}$$

Et u et v étant dérivables sur I:

$$\lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = u'(x) \text{ et } \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = v'(x) \text{ de plus } \lim_{h \to 0} v(x+h) = v(x)$$

ainsi puisque $v(x) \neq 0$ pour tout $x \in I$

$$\left(\frac{u}{v}\right)'(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{u'(x)v(x) - v'(x)u(x)}{v^{2}(x)}$$

Exemple:

La fonction f définie sur $]-\infty; 1[\cup]1; +\infty[$ par $f(x) = \frac{x}{x-1}$ est le quotient des fonctions u et v

définies par : u(x)=x et v(x)=x-1

v ne s'annule pas sur chacun des intervalles $]-\infty;1[$ et $]1;+\infty[$ et u et v sont dérivables sur ces intervalles : u'(x)=1 et v'(x)=1.

Donc f est dérivable sur $]-\infty;1[\,\cup\,]1;+\infty[$ et $f'(x)=\frac{-1\times(x-1)-x\times1}{(x-1)^2}$

Ainsi pour tout $x \in]-\infty; 1[\cup]1; +\infty[, f'(x) = \frac{-1}{(x-1)^2}]$

Cas particulier:

 \overline{v} est une fonction dérivable sur un intervalle I telle que, pour tout $x \in I$, $v(x) \neq 0$.

Alors la fonction $\frac{1}{v}$ est dérivable sur I et : $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$.

Exemple:

La fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$ est l'inverse de la fonction v définie par $v(x) = x^2 + 1$ ($v(x) \neq 0$ pour tout réel x).

Or pour tout réel x, v'(x)=2x. Donc $f'(x)=\frac{-2x}{(x^2+1)^2}$

2) Conséquences

Dérivées usuelles

A partir des règles de calcul sur les fonctions dérivées établies on peut dresser un tableau des dérivées usuelles à connaître.

fonction f	fonction dérivée f'	validité
f(x)=k	f'(x)=0	k nombre réel ; $x \in \mathbb{R}$
f(x)=x	$\int f'(x)=1$	$x \in \mathbb{R}$
$\int f(x) = x^2$	$\int f'(x) = 2x$	$x \in \mathbb{R}$
$\int f(x) = x^n$	$\int f'(x) = n \times x^{n-1}$	$x \in \mathbb{R}$; $n \in \mathbb{N}$ et $n \ge 2$
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$x \in]0; +\infty[$ ou $x \in]-\infty; 0[$
$f(x) = \frac{1}{x^2}$	$\int f'(x) = -\frac{2}{x^3}$	$x \in]0; +\infty[\text{ ou } x \in]-\infty; 0[$
$f(x) = \frac{1}{x^n}$	$f'(x) = -\frac{n}{x^{n+1}}$	<i>n</i> entier non nul $x \in]0; +\infty[$ ou $x \in]-\infty;0[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	

Approximation de n hausses successives

Soit n un entier naturel et t un taux d'augmentation faible (de l'ordre de 1 %). Une valeur subit n hausses successives de t %, alors cette valeur a augmenté approximativement de nt %.

• Pour n=2

La fonction $f(t)=(1+t)^2$ représente la hausse globale due aux 2 hausses successives.

Pour un réel t proche de 0, l'image f(t) est proche de g(t) (équation de la tangente à C_f en 0):

$$f(t) \approx f'(0)(t-0) + f(0)$$

or $f'(t)=1\times(1+t)+(1+t)\times 1=2+2t$ donc on a f'(0)=2 et f(0)=1

Ainsi: $f(t) \approx 2t + 1$

Et donc:

$$(1+t)^2 \approx 1 + 2t$$

• On généralise la propriété en démontrant que pour t proche de 0: $(1+t)^n \approx 1+nt$

Démonstration :

On souhaite déterminer la tangente à C_f (avec $f(t)=(1+t)^n$) au point d'abscisse t=0.

On ne connaît pas f'(t)

(il faudrait ici une formule sur la dérivée d'une fonction composée).

On va donc « translater » le problème.

On effectue le changement de variables : x=1+t

On cherche alors à déterminer la tangente à C_g (avec $g(x)=x^n$) au point d'abscisse x=1.

On obtient alors:

$$y=g'(1)(x-1)+g(1)$$

avec $g(1)=1^n=1$

et
$$g'(x)=nx^{n-1}$$
 donc $g'(1)=n$.

Ainsi
$$y=n(x-1)+1$$

On conclut alors (avec x-1=t) que l'équation de la tangente à C_f au point d'abscisse t=0. y=nt+1.

Exemple:

On place 1000 € au taux mensuel de 0,25 %.

Au bout d'un an ce capital a augmenté de, approximativement 3 %, car $12 \times 0.25 = 3$.

Nous savons que, en réalité, le coefficient multiplicateur mensuel est 1,0025. Donc le coefficient multiplicateur global sur un an est :

$$CM_{global} = 1,0025^{12} \approx 1,0304$$

pour 1000 €, l'écart n'est que de 0,42 €.