CB N°12 - PROBABILITES -

Exercice 1

A, B et C lancent successivement un dé équilibré à 6 faces. A joue, puis B, puis C, puis on recommence à A et ainsi de suite jusqu'à l'obtention d'un 6. Celui qui l'obtient gagne le jeu.

Pour tout $n \in \mathbb{N}^*$, on note : A_n l'événement A gagne au n-ième jet, et de même B_n et C_n .

1. Calculer pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(A_n)$, $\mathbb{P}(B_n)$ et $\mathbb{P}(C_n)$.

Pour $k \in \mathbb{N}^*$, on note S_k : "obtenir 6 au k-ième lancer". $\forall k \in \mathbb{N}^*, \mathbb{P}(S_k) = \frac{1}{c}$

On remarque que chaque jour ne joue qu'un coup sur 3.

Pour
$$n \in \mathbb{N}$$
 on a: $A_{3n+1} = \overline{S_1} \cap \overline{S_2} \cap \cdots \cap \overline{S_{3n}} \cap S_{3n+1}$ donc $\mathbb{P}(A_{3n+1}) = \left(\frac{5}{6}\right)^{3n} \times \frac{1}{6}$

Pour
$$n \in \mathbb{N}$$
 on $a: A_{3n+1} = \overline{S_1} \cap \overline{S_2} \cap \cdots \cap \overline{S_{3n}} \cap S_{3n+1}$ donc $\mathbb{P}(A_{3n+1}) = \left(\frac{5}{6}\right)^{3n} \times \frac{1}{6}$.

De même, on trouve $\mathbb{P}(B_{3n+2}) = \left(\frac{5}{6}\right)^{3n+1} \times \frac{1}{6}$, et $\mathbb{P}(C_{3n+3}) = \left(\frac{5}{6}\right)^{3n+2} \times \frac{1}{6}$.

Les autres probabilités sont nulles

2. En déduire la probabilité que A gagne, puis B, puis C.

On note
$$G_A$$
: " A gagne", G_B : " B gagne", et G_C : " C gagne".

On a: $G_A = \bigcup_{n=0}^{+\infty} A_{3n+1}$, donc par σ -additivité, $\mathbb{P}(G_A) = \sum_{n=0}^{+\infty} \left(\frac{5}{6}\right)^{3n} \times \frac{1}{6} = \frac{36}{91}$.

On trouve de même, $\mathbb{P}(G_B) = \frac{30}{91}$, et, $\mathbb{P}(G_C) = \frac{25}{91}$.

3. Calculer la probabilité que le jeu ne se termine pas.

On note T: "le jeu ne termine pas". On a : $T = \overline{G_A \cup G_B \cup G_C}$; G_A , G_B et G_C sont deux à deux incompatibles donc $\mathbb{P}(T) = 1 - (\mathbb{P}(G_A) + \mathbb{P}(G_B) + \mathbb{P}(G_C)) = 0.$

On en déduit que le jeu termine.

Exercice 2

Un joueur lance une pièce équilibrée jusqu'à obtention du premier pile.

S'il a fallu n lancers pour obtenir ce premier pile, on lui fait tirer au hasard une boule parmi n dont une seule est blanche. Il gagne s'il tire cette boule.

1. Quelle est la probabilité que le joueur gagne?

Pour $n \in \mathbb{N}^*$, on note E_n : " le joueur obtient le premier pile au n-ième lancer";

la formule des probabilités composées, et l'indépendance des jets donnent : $\mathbb{P}(E_n) = \frac{1}{2n}$.

On note B: "le joueur n'obtient jamais pile"; alors \overline{B} est l'événement : "le joueur obtient au moins

On note
$$B$$
: "le joueur n'obtient jamais pile"; alors B est l'événement : "le jou
une fois pile", et on a : $\overline{B} = \bigcup_{n=1}^{+\infty} E_n$, donc par σ -addivité, $\mathbb{P}(\overline{B}) = \sum_{n=1}^{+\infty} \mathbb{P}(E_n) = 1$.

On en déduit que $\mathbb{P}(B) = 0$.

On note G: "le joueur gagne". On a $\forall n \in \mathbb{N}^*, \mathbb{P}_{E_n}(G) = \frac{1}{n}$.

 (B, E_1, E_2, \cdots) est un système complet d'événements, donc la formule des probabilités totales donne :

$$\mathbb{P}(G) = \mathbb{P}(B \cap G) + \sum_{n=1}^{+\infty} \mathbb{P}(E_n \cap G) = 0 + \sum_{n=1}^{+\infty} \frac{1}{n} \times \frac{1}{2^n} = \ln(2).$$

2. Sachant que le joueur a gagné, quelle est la probabilité qu'il ait obtenu le premier pile au troisième

$$\mathbb{P}_{G}(E_{3}) = \frac{\mathbb{P}(E_{3}) \times \mathbb{P}_{E_{3}}(G)}{\mathbb{P}(G)} = \frac{\left(\frac{1}{2}\right)^{3} \times \frac{1}{3}}{\ln 2} = \frac{1}{24 \ln 2}$$

Exercice 3

On dispose de deux urnes U_1 et U_2 . L'urne U_1 contient une boule blanche et deux boules noires, l'urne U_2 contient une boule blanche et une boule noire.

Deux joueurs A et B effectuent des tirages successifs avec remise, A tire dans U_1 et B dans U_2 .

A commence. Le premier qui obtient une boule blanche gagne le jeu.

Pour tout $n \in \mathbb{N}^*$ on note:

 A_n l'événement "A gagne au n-ième tirage"

 B_n l'événement "B gagne au n-ième tirage".

1. Calculer pour tout $n \in \mathbb{N}^* \mathbb{P}(A_n)$ et $\mathbb{P}(B_n)$.

Soit $k \in \mathbb{N}^*$; on note T_k : "le joueur tire une boule blanche au k-ième tirage".

$$\operatorname{On}\, \mathbf{a}: \mathbb{P}(T_k) = \left\{ \begin{array}{l} \frac{1}{3} & \text{si } k \text{ est impair} \\ \\ \frac{1}{2} & \text{si } k \text{ est pair} \\ \\ \operatorname{Pour}\, n \in \mathbb{N}, \, \text{on } \mathbf{a}: A_{2n+1} = \overline{T_1} \cap \overline{T_2} \cap \cdots \cap \overline{T_{2n}} \cap T_{2n+1}. \end{array} \right.$$

La formule des probabilités composées donne :

$$\mathbb{P}(A_{2n+1}) = \mathbb{P}(\overline{T_1}) \times \mathbb{P}_{\overline{T_1}}(\overline{T_2}) \times \dots \times \mathbb{P}_{\overline{T_1} \cap \overline{T_2} \cap \dots \cap \overline{T_{2n}}}(T_{2n+1}) = \left(\frac{2}{3} \times \frac{1}{2}\right)^n \times \frac{1}{3} = \frac{1}{3^{n+1}}$$

De même, on trouve :
$$\mathbb{P}(B_{2n+2}) = \left(\frac{2}{3} \times \frac{1}{2}\right)^n \times \frac{2}{3} \times \frac{1}{2} = \left(\frac{1}{3}\right)^{n+1}$$
.

Les autres probabilités sont nulles

2. En déduire les probabilités des événements "A gagne le jeu", "B gagne le jeu", et "le jeu ne se termine

On note
$$G_A$$
: "A gagne" et G_B : "B gagne"; on a:

$$G_A = \bigcup_{n=0}^{+\infty} A_{2n+1}$$
 donc par σ -additivité : $\mathbb{P}(G_A) = \sum_{n=0}^{+\infty} \frac{1}{3^{n+1}} = \frac{1}{2}$;

de même,
$$\mathbb{P}(G_B) = \frac{1}{2}$$
.

On note T: "le jeu ne termine pas". On a : $T = \overline{G_A \cup G_B}$; G_A et G_B sont incompatibles donc $\mathbb{P}(T) = 1 - (\mathbb{P}(G_A) + \mathbb{P}(G_B)) = 0$. On en déduit que le jeu termine.

Exercice 4

Deux archers A_1 et A_2 disputent un match. Ils tirent alternativement sur une cible jusqu'à ce que l'un d'eux la touche. A_1 tire en premier.

Pour $i \in \{1, 2\}$, l'archer A_i touche la cible avec la probabilité p_i . Les tirs sont indépendants.

On note G_i l'événement A_i gagne pour $i \in \{1, 2\}$.

1. Calculer la probabilité que A_i gagne au rang 2n+i, pour $i \in \{1,2\}, n \in \mathbb{N}$.

Pour $i \in \{1,2\}$ et $k \in \mathbb{N}^*$, on note $E_{i,k} : "A-i$ gagne au k-ième tir".

On a:
$$E_{1,2n+1} = \overline{E_{1,1}} \cap \overline{E_{2,2}} \cap \cdots \cap \overline{E_{2,2n}} \cap E_{1,2n+1}$$
.

La formule des probabilités composées et l'indépendance des tirs donnent :

$$\mathbb{P}(E_{1,2n+1}) = (1-p_1) \times (1-p_2) \times \cdots \times (1-p_2) \times p_1 = ((1-p_1)(1-p_2))^n \times p_1;$$
 on trouve de même :
$$\mathbb{P}(E_{2,2n+2}) = ((1-p_1)(1-p_2))^n \times (1-p_1) \times p_2.$$

2. En déduire $\mathbb{P}(G_i)$ pour $i \in \{1, 2\}$, puis la probabilité que le jeu dure indéfiniment.

$$G_1 = \bigcup_{n=0}^{+\infty} E_{1,2n+2} \text{ donc par } \sigma\text{-additivit\'e}, \ \mathbb{P}(G_1) = \sum_{n=0}^{+\infty} \left((1-p_1)(1-p_2) \right)^n \times p_1 = \frac{p_1}{1-(1-p_1)(1-p_2)};$$

on trouve de même, $\mathbb{P}(G_2) = \frac{(1-p_1)p_2}{1-(1-p_1)(1-p_2)}$

On note T: "le jeu ne termine pas". On a: $T = \overline{G_1 \cup G_2}$; G_1 et G_2 sont incompatibles donc $\mathbb{P}(T) = 1 - (\mathbb{P}(G_1) + \mathbb{P}(G_2)) = 0$. On en déduit que le jeu termine.

- **3.** A quelle condition le jeu est-il équitable (c'est-à-dire $\mathbb{P}(G_1) = \mathbb{P}(G_2)$)? $\mathbb{P}(G_1) = \mathbb{P}(G_2) \Leftrightarrow p_2 = \frac{p_1}{1 - p_1}.$
- **4.** Que dire si $p_1 > \frac{1}{2}$? Si $p_1 > \frac{1}{2}$, alors $\frac{p_1}{1-p_1} > 1$ donc dans ce cas, le jeu ne peut pas être équitable.

Exercice 5

Soit X une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda > 0$, et Y un variable aléatoire indépendante de X, qui suit une loi de Bernoulli de paramètre p.

On définit la variable aléatoire Z par Z=0 si Y=0, et Z=X sinon.

1. Déterminer la loi de Z, et la loi de Y conditionnée par (Z=0).

On a, d'après la formule des probabilités totales :

$$\mathbb{P}(Z=0) = \mathbb{P}_{(Y=0)}(Z=0) \times \mathbb{P}(Y=0) + \mathbb{P}_{(Y\neq 0)}(Z=0) \times \mathbb{P}(Y\neq 0)$$

 $\mathbb{P}(Z=0)=\mathbb{P}_{(Y=0)}(Z=0)\times \mathbb{P}(Y=0)+\mathbb{P}_{(Y\neq 0)}(Z=0)\times \mathbb{P}(Y\neq 0)$ De plus, $\mathbb{P}_{(Y\neq 0)}(Z=0)=\mathbb{P}(X=0)$ et $\mathbb{P}(Y\neq 0)=\mathbb{P}(Y=1),$ on en déduit que

$$\mathbb{P}(Z=0) = 1 \times (1-p) + p \times e^{-\lambda}.$$

Pour
$$k \in \mathbb{N}^*$$
, $\mathbb{P}(Z=k) = \mathbb{P}(Y \neq 0 \cap X=k) = \mathbb{P}(Y=1) \times \mathbb{P}(X=k) = p \frac{\lambda^k}{k!} e^{-\lambda}$.

Pour
$$k \in \mathbb{N}^*$$
, $\mathbb{P}(Z = k) = \mathbb{P}(Y \neq 0 \cap X = k) = \mathbb{P}(Y = 1) \times \mathbb{P}(X = k) = p \frac{\lambda^k}{k!} e^{-\lambda}$.
 $\mathbb{P}_{(Z=0)}(Y = 0) = \frac{\mathbb{P}((Z = 0) \cap (Y = 0))}{\mathbb{P}(Z = 0)} = \frac{\mathbb{P}_{(Y=0)}(Z = 0) \times \mathbb{P}(Y = 0)}{\mathbb{P}(Z = 0)} = \frac{1 - p}{1 - p + pe^{-\lambda}}$.

Ainsi, la loi conditionnelle de Y sachant (Z=0) est une loi de Bernoulli de paramètre $\frac{pe^{-\lambda}}{1-n+ne^{-\lambda}}$

2. Z admet-elle une espérance? Admet-elle une variance? Si oui, la ou les calculer. D'après le critère de d'Alembert, les séries de termes généraux $kp\frac{\lambda^k}{k!}e^{-\lambda}$ et $k^2p\frac{\lambda^k}{k!}e^{-\lambda}$ convergent, et

on a:
$$\mathbb{E}(Z) = 0 \times (1-p) + \sum_{k=1}^{+\infty} kp \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda}p\lambda e^{\lambda} = p\lambda.$$

$$\mathbb{E}(X^2) = 0^2 \times (1-p) + e^{-\lambda} p \sum_{k=1}^{+\infty} \frac{k(k-1) + k}{k!} \lambda^k = e^{-\lambda} p \left(\lambda^2 e^{\lambda} + \lambda e^{\lambda}\right) = p\lambda(\lambda + 1).$$

On déduit de la formule de König-Huygens : $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = p\lambda(\lambda + 1 - p\lambda)$.

Exercice 6

On définit sur \mathbb{N} l'application P donnée par : $\forall n \in \mathbb{N}, P(\{n\}) = \frac{1}{2^{n+1}}$

1. Vérifier que P est une probabilité sur \mathbb{N} .

$$\forall n \in \mathbb{N}, P(n) \in [0,1]$$
 et $\sum_{n=0}^{+\infty} p(n) = 1$ donc P définit bien une probabilité sur \mathbb{N} .

2. Dans \mathbb{N} muni de la probabilité P, les événements $2\mathbb{N}$ et $3\mathbb{N}$ sont-ils indépendants?

On a, pour
$$a \in \mathbb{N}$$
, $P(a\mathbb{N}) = \sum_{n=0}^{+\infty} P(an) = \sum_{n=0}^{+\infty} \frac{1}{2^{an+1}} = \frac{2^{a-1}}{2^a - 1}$.

Ainsi, $P(2\mathbb{N}) = \frac{2}{3}$, $P(3\mathbb{N}) = \frac{4}{7}$ et $P(2\mathbb{N} \cap 3\mathbb{N}) = P(6\mathbb{N}) = \frac{32}{63}$, on en déduit que les les événements $2\mathbb{N}$ et 3N ne sont pas indépendants

3. Calculer la probabilité des événements : $\{k \in \mathbb{N}, 2 \nmid k \text{ et } 3 \nmid k\}$ et $\{k \in \mathbb{N}, 2 \mid k \text{ et } 3 \nmid k\}$.

On a :
$$A = \{k \in \mathbb{N}, 2 \nmid k \text{ et } 3 \nmid k\} = 2\mathbb{N} \cap 3\mathbb{N}, \text{ donc}$$

$$P(A) = 1 - P(2\mathbb{N} \cup 3\mathbb{N}) = 1 - (P(2\mathbb{N}) + P(3\mathbb{N}) - P(2\mathbb{N} \cap 3\mathbb{N})) = \frac{38}{69}$$

et
$$B = \{k \in \mathbb{N}, 2 | k \text{ et } 3 \nmid k\} = 2\mathbb{N} \cap \overline{3\mathbb{N}}; \text{ on a donc}:$$

$$P(B) = P_{2\mathbb{N}}(\overline{3\mathbb{N}}) \times P(2\mathbb{N}) = (1 - P_{2\mathbb{N}}(3\mathbb{N})) \times P(2\mathbb{N}) = \left(1 - \frac{P(6\mathbb{N})}{P(2\mathbb{N})}\right) P(2\mathbb{N}) = \frac{10}{63}.$$

4. La variable aléatoire de loi $(n, P(\{n\}))$ admet-elle une espérance? Admet-elle une variance? Si oui, la ou les calculer.

On note X une variable aléatoire suivant la loi $(n, P(\{n\}))$.

D'après le critère de d'Alembert, les séries de termes généraux $\frac{n}{2^{n+1}}$ et $\frac{n^2}{2^{n+1}}$ convergent et on a :

$$\mathbb{E}(X) = \sum_{n=0}^{+\infty} \frac{n}{2^{n+1}} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}} = 1;$$

$$\mathbb{E}(X^2) = \sum_{n=0}^{+\infty} \frac{n(n-1) + n}{2^{n+1}} = \frac{1}{8} \sum_{n=2}^{+\infty} \frac{n(n-1)}{2^{n-2}} + \frac{1}{4} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}} = 2 + 1 = 3$$

On déduit de la formule de König-Huygens que Var(X) = 2

Exercice 7

On définit sur \mathbb{N} l'application P donnée par : $\forall n \in \mathbb{N}, P(\{n\}) = \frac{1}{en!}$.

1. Vérifier que P est une probabilité sur \mathbb{N} .

$$\forall n \in \mathbb{N}, P(n) \in [0,1]$$
 et $\sum_{n=0}^{+\infty} p(n) = 1$ donc P définit bien une probabilité sur \mathbb{N} .

2. Dans \mathbb{N} muni de la probabilité P, calculer la probabilité des événements : $A = \{2k, k \in \mathbb{N}\}$ et $B = \{2k+1, k \in \mathbb{N}\}$.

$$P(A) = \sum_{n=0}^{+\infty} P(2n) = \frac{1}{e} \frac{1}{2n!} = e^{-1} \operatorname{ch}(1)$$

$$P(B) = \sum_{n=0}^{+\infty} P(2n+1) = \frac{1}{e} \frac{1}{(2n+1)!} = e^{-1} \operatorname{sh}(1)$$

3. Les événements A et B sont-ils incompatibles? indépendants?

 $A \cap B = \emptyset$ donc les événements sont incompatibles. Par contre, $P(A \cap B) \neq P(A) \times P(B)$ donc ils ne sont pas indépendants.

4. La variable aléatoire de loi $(n, P(\{n\}))$ admet-elle une espérance? Admet-elle une variance? Si oui, la ou les calculer.

On note X une variable aléatoire suivant la loi $(n, P(\{n\}))$.

D'après le critère de d'Alembert, les séries de termes généraux $\frac{n}{en!}$ et $\frac{n^2}{en!}$ convergent, et on a :

$$\mathbb{E}(X) = e^{-1} \sum_{n=0}^{+\infty} \frac{n}{n!} = e^{-1}e = 1$$

et
$$\mathbb{E}(X^2) = e^{-1} \sum_{n=0}^{+\infty} \frac{n(n-1) + n}{n!} = e^{-1} (e + e) = 2$$

On déduit de la formule de König-Huygens que Var(X)=1

Exercice 8

On effectue une suite infinie de lancers d'une pièce équilibrée. On note X (resp. Y) la VA égale au rang d'apparition du premier pile (resp. face).

1. Déterminer la loi du couple (X,Y).

Le couple (X,Y) prend ses valeurs dans $(\mathbb{N}^*)^2$.

Pour $n \in \mathbb{N}^*$, on note P_n : "obtenir Pile au n-ième lancer".

 $\forall (i,j) \in (\mathbb{N}^*)^2$, on a :

Si
$$i = j, (X = i) \cap (Y = j) = \emptyset$$
 donc $\mathbb{P}((X = i) \cap (Y = j)) = 0$.

Si
$$i \ge 2, j \ge 2, (X = i) \cap (Y = j) = \emptyset$$
 donc $\mathbb{P}((X = i) \cap (Y = j)) = 0$.

Si $1 = i < j, (X = i) \cap (Y = j) = P_1 \cap \cdots \cap P_{j-1} \cap \overline{P_j}$ donc la formule des probabilités composées et l'indépendance des lancers donnent :

$$\mathbb{P}((X=i) \cap (Y=j)) = \left(\frac{1}{2}\right)^{j-1} \times \frac{1}{2} = \frac{1}{2^j}$$
 On obtient de même si $1=j < i$.

Finalement :
$$\mathbb{P}((X=i) \cap (Y=j)) =$$

$$\begin{cases}
\frac{1}{2^j} & \text{si } 1 = i < j \\
\frac{1}{2^i} & \text{si } 1 = j < i \\
0 & \text{sinon}
\end{cases}$$

2. Calculer la covariance du couple (X, Y).

Pour tout $n \in \mathbb{N}^*$, on a clairement $\mathbb{P}(X = n) = \mathbb{P}(Y = n) = \frac{1}{2^n}$, et

$$\mathbb{E}(X) = \mathbb{E}(Y) = \sum_{n=1}^{+\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}} = \frac{1}{2} \frac{1}{\left(1 - \frac{1}{2}\right)^2} = 2.$$

$$\mathbb{E}(XY) = \sum_{n=1}^{+\infty} n \mathbb{P}(XY = n) = \sum_{n=2}^{+\infty} n \left(\mathbb{P}((X = 1) \cap (Y = n)) + \mathbb{P}((Y = 1) \cap (X = n)) \right) = 2 \sum_{n=2}^{+\infty} \frac{n}{2^n}$$

$$= \sum_{n=2}^{+\infty} \frac{n}{2^{n-1}} = \frac{1}{\left(1 - \frac{1}{2}\right)^2} - 1 = 3$$

Finalement, comme X et Y sont indépendantes, on a :

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = -1.$$

3. Déterminer la loi de la VA S = X + Y.

Soit $k \in \mathbb{N}, k \geq 3$;

$$\mathbb{P}(S=k) = \mathbb{P}((X=1) \cap (Y=k-1)) + \mathbb{P}((X=k-1) \cap (Y=1)) = \frac{1}{2^{k-1}} + \frac{1}{2^{k-1}} = \frac{1}{2^{k-2}}.$$

Exercice 9

On note pour tout
$$(i, j) \in (\mathbb{N}^*)^2 : p_{ij} = \frac{1}{i(i+1)j(j+1)}$$
.

1. Montrer que la famille $(i, j, p_{ij})_{(i,j) \in (\mathbb{N}^*)^2}$ est la loi de probabilité d'un couple (X, Y) de VA discrètes.

$$\forall (i,j) \in (\mathbb{N}^*)^2, p_{i,j} \ge 0 \text{ et } \sum_{i=1}^{+\infty} \frac{1}{i(i+1)} = \sum_{i=1}^{+\infty} \left(\frac{1}{i} - \frac{1}{i+1}\right) = 1, \text{ par t\'elescopage};$$

on a donc
$$\sum_{i=1}^{+\infty} \sum_{i=1}^{+\infty} p_{i,j} = \sum_{i=1}^{+\infty} \frac{1}{j(j+1)} = 1.$$

Ainsi, $(i, j, p_{ij})_{(i,j) \in (\mathbb{N}^*)^2}$ est la loi de probabilité d'un couple (X, Y) de VA discrètes.

2. Déterminer les lois marginales de X et Y.

$$\forall i \in \mathbb{N}^*, \mathbb{P}(X = i) = \sum_{j=1}^{+\infty} p_{i,j} = \frac{1}{i(i+1)}.$$

De même pour Y.

3. Montrer que X et Y sont indépendantes.

D'après les questions précédentes, $\forall (i,j) \in (\mathbb{N}^*)^2, \mathbb{P}((X=i) \cap (Y=j)) = \mathbb{P}(X=i)\mathbb{P}(Y=j)$ d'où l'indépendance.

Exercice 10

Soient X et Y deux VA indépendantes suivant une loi de Poisson de paramètres respectifs $\lambda > 0$ et

1. Déterminer la loi de S = X + Y. La reconnaître.

Soit
$$n \in \mathbb{N}$$
; $\mathbb{P}(S = n) = \sum_{k=0}^{n} \mathbb{P}((X = k) \cap (Y = n - k)) = \sum_{k=1}^{n} e^{-(\lambda + \mu)} \frac{\lambda^k \mu^{n-k}}{k!(n-k)!} = \frac{e^{-(\lambda + \mu)}}{n!} (\lambda + \mu)^n$. On reconnaît une loi de Poisson de paramètre $\lambda + \mu$.

2. Soit $n \in \mathbb{N}$. Déterminer la loi conditionnelle de X sachant (S = n). La reconnaître. Soient $n \in \mathbb{N}$, et $k \in [0, n]$.

$$\mathbb{P}_{(S=n)}(X=k) = \frac{\mathbb{P}((X=k) \cap (S=n))}{\mathbb{P}(S=n)} = \frac{e^{-\lambda} \frac{\lambda^k}{k!} e^{-\mu} \frac{\mu^{n-k}}{(n-k)!}}{e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^n}{n!}} = \binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \times \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}.$$

La loi conditionnelle de X sachant (S=n) est donc une loi binomiale $\mathscr{B}\left(n,\frac{\lambda}{\lambda+\mu}\right)$.