Math 13 - Week 9: Equivalence Relations

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(t) = (-t, t^3)$ and let $g: \mathbb{R}^2 \to \mathbb{R}$ be given by $g(x, y) = \cos(x^2 + y^2)$. Are these claims valid? If not, explain the error.
 - (a) The function g surjects onto \mathbb{R} because \mathbb{R}^2 is a higher dimensional space than \mathbb{R} .
 - (b) The function f surjects onto \mathbb{R}^2 . To see this, take $(-t, t^3) \in \mathbb{R}^2$. Then $(-t, t^3) = f(t)$, so f is surjective.
 - (c) The function f surjects because for every b in B there is an a in A such that f(a) = b.
 - (d) g is injective because g(x,y) = g(x',y') implies that (x,y) = (x',y').
 - (e) f is injective because the only way for f to hit (-1,1) is to plug in t=1.
- 2. Let \sim be the relation on \mathbb{R}^2 defined by $(x,y) \sim (v,w)$ if and only if $x^2 + y^2 = v^2 + w^2$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Describe the quotient \mathbb{R}^2/\sim . Think geometrically.
- 3. Consider the following claim and proof.

Claim 1. If a relation is symmetric and transitive, then it is reflexive.

Proof. Suppose \sim is a relation on a set S that is symmetric and transitive. Then for any x,y in $S, x \sim y$ implies $y \sim x$ by symmetry. Since $x \sim y$ and $y \sim x$, then $x \sim x$ by transitivity and the relation is reflexive.

Is this proof valid? Why or why not?