MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX WITHOUT $\alpha\beta$ -PRUNING

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX WITH $\alpha\beta$ -PRUNING

• α -nodes: Temporary values at MIN-nodes

• β -nodes: Temporary values at MAX-nodes

• Prune: Parent β -node \geq Child α -node

• Prune: Parent α -node \leq Child β -node

• "Deep" cut-off: Ancestor β -node $\geq \alpha$ -node

• Prune: Parent β -node \geq Child α -node

17 static evaluations saved

MiniMax & Constraint Processing: MiniMax Algorithm

PROBLEM 2

Problem 2

• Can the nodes be ordered in such a way that $\alpha\beta$ -pruning can cut off more branches?

MiniMax & Constraint Processing: MiniMax Algorithm

OPTIMIZING $\alpha\beta$ -PRUNING

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX WITH $\alpha\beta$ -PRUNING

19 static evaluations saved

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

PROBLEM

Problem

Come up with a MiniMax algorithm for 3 players and apply on the figure below.

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX FOR 3 PLAYERS

- All players are Max
- Evaluation function given by vector

- Each layer assigned to 1 player
- Turn: every 3 layers

Max third player: third position of vector

- MaxThirdPlayer([1,2,3],[4,2,1]) = [1,2,3]
- MaxThirdPlayer([6,1,2],[7,4,-1]) = [6,1,2]
- MaxThirdPlayer([5,-1,-1],[-1,5,2]) = [-1,5,2]
- MaxThirdPlayer([7,7,-1],[5,4,5]) = [5,4,5]

Second player's move

Max second player: second position of vector

- MaxSecondPlayer([1,2,3],[6,1,2]) = [1,2,3]
- MaxSecondPlayer([-1,5,2],[5,4,5]) = [-1,5,2]

First player's move

Max first player: first position of vector

• MaxFirstPlayer([1,2,3],[-1,5,4]) = [1,2,3]

