RF exposure

According to FCC part 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (Mb)	Electric field strength(V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Average time				
(A) Limits for Occupational / Control Exposures								
300 – 1 500			f/300	6				
1 500 - 100000			5	6				
(B) Limits for General Population / Uncontrol Exposures								
300 – 1 500			f/1500	6				
1 500 – 100 000			<u>1</u>	<u>30</u>				

f= frequency in Mb

Friis transmission formula: $Pd = (Pout \times G)/(4 \times pi \times R^2)$

Where,

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Results

<Wireless Lan>

Operation mode / Data Rate	Frequency (MHz)	Peak output power (dBm)	Antenna gain (dBi)	Power density at 20 cm(mW/cm²)	Limit (mW/cm²)
802.11n(HT20) / MCS1 (2 412 Mb ~ 2 462 Mb)	2462	19.394	0.9	0.021 29	1
802.11n(HT40) / MCS2 (2 422 MHz ~ 2 452 MHz)	2422	18.904	0.9	0.019 02	1

<Bluetooth BDR & EDR>

Didctooth box & Lox									
Operation mode / Data Rate	Frequency (MHz)	Peak output power (dBm)	Antenna gain (dBi)	Power density at 20 cm(mW/cm²)	Limit (mW/cm²)				
GFSK/ 1Mbps	2480	6.40	0.9	0.001 07	1				
8-DPSK / 3Mbps	2480	6.15	0.9	0.001 01	1				

WLAN(2 412 MHz \sim 2 462 MHz): Power = 19.394 dBm, Antenna Gain = 0.9 dBi, Power density = 0.021 29 mW/cm² Bluetooth(2 402 MHz \sim 2 480 MHz): Power = 6.40 dBm, Antenna Gain = 0.9 dBi, Power density = 0.001 07 mW/cm² Maximum simultaneous MPE is 0.021 29 mW/cm² + 0.001 07 mW/cm² = 0.022 36 \times 100% = 2.236% which is less than 100%.