Divide and Conquer Merge Sort

Dr. 何明昕, He Mingxin, Max

program06 @ yeah.net

Email Subject: (L1-|L2-|L3-) + last 4 digits of ID + Name: TOPIC

Sakai: CS203B Fall 2022

Your Lab Class

数据结构与算法分析B Data Structures and Algorithm Analysis

Lecture 6

- ➤ Divide-and-Conquer (Ch4 of Text B)
- Merge Sort (2.2 of Text A)

To be discussed in Lecture 7:

Quick Sort (2.3 of Text A)

DIVIDE AND CONQUER

Algorithm Design Technique

Divide and Conquer

Mathematical Induction Analogy

- Solve the problem by
 - Divide it into smaller parts
 - Solve the smaller parts recursively
 - Merge the result of the smaller parts

Induction

- Prove the smallest case (the basis step)
- Relate how the result from the smaller case constitutes the proof of the larger case (the induction step)
 - What is the relation?
 - $(n-1) \rightarrow n$? (basic induction)
 - $(n-m) \rightarrow n$? (complete induction)

Induction Example

Show that

$$-1+2+3+4+...+n = n(n+1)/2$$

The basis step

$$-1 = 1(1+1)/2$$

true

The Inductive Step

- The inductive step
 - Assume that it is true for (n-1)
 - Check the case (n)

```
• 1 + 2 + 3 + ... + n = (1 + 2 + 3 + ... + (n-1)) + n

• = (n-1)(n) / 2 + n

• = n((n-1)/2 + 1)

• = n(n/2-1/2 + 1)

• = n(n/2 + 1/2)

• = n(n+1)/2
```

The Inductive Step

- The inductive step
 - Assume that it is true for (n-1)
 - Check the case (n)

```
• 1 + 2 + 3 + ... + n = (1 + 2 + 3 + ... + (n-1)) + n

• = \frac{(n-1)(n)}{2 + n}

• = n((n-1)/2 + 1)

• = n(n/2-1/2 + 1)

• = n(n/2 + 1/2)

• = n(n+1)/2
```

By using (n-1)

The Induction

- By using the result of the smaller case
- We can proof the larger case

```
// the d2 day should be equal or after the d1 day
private static int daysPassed (int[] d1, int[] d2) {
   if (d1[Y] == d2[Y] && d1[M] == d2[M]) // same year & month
      return d2[D] - d1[D];
   int days = 0;
   if (d1[Y] == d2[Y]) { // same year
      days = daysPerMonth( d1[Y], d1[M] ) - d1[D];
     for (int m = d1[M]+1; m < d2[M]; m++)
         days += daysPerMonth( d1[Y], m );
      days += d2[D];
   } else {
                         // over years
      days = daysPassed( d1, date(d1[Y], DECEMBER, 31) );
     for (int y = d1[Y]+1; y < d2[Y]; y++)
         days += isLeapYear(y) ? 366 : 365;
      days += 1 + daysPassed( date(d2[Y], JANUARY, 1), d2 );
   return days;
```

Key of Divide and Conquer

- Divide into smaller parts (subproblems)
- Solve the smaller parts recursively
- Merge the result of the smaller parts

Steps in D&C

- Questions
 - What if we has the solution of the subproblem (smaller problem)?
 - What is the subproblem? (how to divide?)
 - What can we do with the result? (how to conquer?)
- If we know the answer, the rest comes automatically from the recursion

Code Example

```
ResultType DandC(Problem p) {
    if (p is trivial) {
        solve p directly
        return the result
    } else {
        divide p into p_1, p_2, \ldots, p_n
        for (i = 1 \text{ to } n)
          r_i = DandC(p_i)
        combine r_1, r_2, \ldots, r_n into r
        return r
```

Code Example

```
ResultType DandC(Problem p) {
      if (p is trivial) {
          solve p directly returTrivial Case
                                                                 t_s
         else
          divide pDivide_1, p_2, ..., p_n
                                                                 t_d
          for (i = 1 to n)
          combine r<sub>1</sub>, r<sub>2</sub>,..., r<sub>n</sub> into r return Combine
```

Examples

Let's see two examples

- Merge Sort (details in notes06B)
- Quick Sort (details in Lecture 7)

MERGE SORT

(Brief Introduction, To Be Tuned in Notes06B)

The Sorting Problem

- Given a sequence of numbers
 - $-A = [a_1, a_2, a_3, ..., a_n]$
- Output
 - The sequence A that is sorted from min to max

The Question

- What if we know the solution of the smaller problem?
 - What is the smaller problem?
 - Try the same problem → sorting

 What if we know the result of the sorting of some elements?

The Question

- How to divide?
 - Let's try sorting of the smaller array
 - Divide exactly at the half of the array
- How to conquer?
 - Merge the result directly

Idea

- Simplest dividing
 - Divide array into two array of half size
- Laborious conquer
 - Merge the result

Divide

Divide

Θ(1)

Solve by Recursion T(N/2)

Merge

Merge

Analysis

• T(n) = 2T(n/2) + O(n)

Master method (Ch4, TextB; to be tuned in notes06B)

$$-T(n) = O(n \lg n)$$

QUICK SORT

(Brief Introduction, To Be Tuned in Lecture 7)

The Sorting Problem (again)

- Given a sequence of numbers
 - $-A = [a_1, a_2, a_3, ..., a_n]$
- Output
 - The sequence A that is sorted from min to max

Problem of Merge Sort

Need the use of external memory for merging

 Are there any other way such that conquering is not that complex?

The Question

- How to divide?
 - Try doing the same thing as the merge sort
 - Add that every element in the first half is less than the second half
 - Can we do that?
- How to conquer?
 - The sorted result should be easier to merge?

Idea

- Laborious dividing
 - Divide array into two arrays
 - Add the requirement of value of the array
- Simplest conquer
 - Simply connect the result

Is dividing scheme possible?

- Can we manage to have two subproblems of equal size
 - That satisfy our need?

Any trade off?

The Median

- We need to know the median
 - There are n/2 elements which are not more than the median
 - There are another n/2 elements which are not less than the median
- Can we have the median?
 - Hardly possible at this step

Simplified Division

- Can we simplify?
 - Not using the median?

- Using kth member
 - There are k elements which are not more than the median
 - There are another (n-k) elements which are not less than the median
- · Simply pick any member and use it as a "pivot"

Divide

Θ(N)

Solve by Recursion

Conquer

Do nothing!

Analysis

•
$$T(n) = T(k) + T(n - k) + \Theta(n)$$

- There can be several cases
 - Up to which K that we chosen

Analysis: Worst Case

K always is 1st

What should be our T(N)?

What is the time complexity

Analysis: Worst Case

K always is 1st

$$T(n) = T(1) + T(n - 1) + \Theta(n)$$

$$= T(n - 1) + \Theta(n)$$

$$= \Sigma \Theta(i)$$

$$= \Theta(n^2)$$

Not good

Analysis: Best Case

K always is the median

What should be our T(N)?

What is the time complexity

Analysis: Best Case

K always is the median

$$T(n) = 2T(n/2) + \Theta(n)$$
$$= \Theta(n \log n)$$

The same as the merge sort (without the need of extra / external memory)

Fixing the worst case

- When will the worst case happen?
 - When we always selects the smallest element as a pivot
 - Depends on pivot selection strategy

- If we select the first element as a pivot
 - What if the data is sorted?

Fixing the worst case

- Select wrong pivot leads to worst case.
- There will exist some input such that for any strategy of "deterministic" pivot selection leads to worst case.

Fixing the worst case

- Use "non-deterministic" pivot selection
 - i.e., randomized selection
- Pick a random element as a pivot
- It is unlikely that every selection leads to worst case
- We can hope that, on average,
 - it is $O(n \log n)$

Summary

- ➤ Divide-and-Conquer (Ch4 of Text B)
- ➤ Merge Sort (2.2 of Text A, to be continued in notes06B)

To be discussed in Lecture 7:

Quick Sort (2.3 of Text A)