(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 13.10.2004 Patentblatt 2004/42 (51) Int Cl.7: **G01G 17/00**, G01G 9/00

(21) Anmeldenummer: 03008198.8

(22) Anmeldetag: 08.04.2003

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Benannte Erstreckungsstaaten: AL LT LV MK

(71) Anmelder: TEWS ELEKTRONIK Dipi.-ing.
Manfred Tews
22459 Hamburg (DE)

(72) Erfinder:

Herrmann, Rainer
 20253 Hamburg (DE)

 Schlemm, Udo 20259 Hamburg (DE)

 Dr.Zaage, Stefan 30655 Hannover (DE)

(74) Vertreter: Glawe, Delfs, Moll & Partner Patentanwälte Rothenbaumchaussee 58 20148 Hamburg (DE)

Bemerkungen:

Geänderte Patentansprüche gemäss Regel 86 (2) EPÜ.

(54) Verfahren und Vorrichtung zum Bestimmen der Masse von portionierten Wirkstoffeinheiten

(57) Das Verfahren und die Vorrichtung zum Bestimmen der Masse von portionierten Wirkstoffeinheiten (5), insbesondere Kapseln, Tabletten oder Dragees, zeichnet sich dadurch aus, daß die Wirkstoffeinheiten

(5) durch einen Mikrowellenresonator (1) geleitet werden und aus der Verschiebung der Resonanzfrequenz und der Verbreiterung der Resonanzkurve die Masse bestimmt wird.

Fig. 5

Printed by Jouve, 75001 PARIS (FR)

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Bestimmen der Masse von portionierten Wirkstoffeinheiten, insbesondere Kapseln, Tabletten oder Dragees, insbesondere der pharmazeutischen Industrie.

[0002] Bei portionierten Wirkstoffeinheiten ist es wichtig, zu kontrollieren, ob tatsächlich jede Wirkstoffeinheit die gewünschte Masse hat. Dadurch kann z. B. festgestellt werden, wenn eine Umhüllung nicht vollständig oder überhaupt nicht gefüllt ist. Der Abnehmer wäre zu Recht unzufrieden, wenn die von ihm erworbenen Wirkstoffeinheiten nicht die Menge an Wirkstoffen enthalten, die er erwartet. Dies gilt insbesondere auf dem Gebiet der Pharmazie, wo es auf die genaue Dosierung der Wirkstoffeinheiten ankommt.

[0003] In der pharmazeutischen Industrie werden die pharmazeutischen Wirkstoffe zusammen mit bestimmten Füllsubstanzen wie Stärke, Laktose usw. mit speziellen Abfüllmaschinen in Tablettenform gepreßt oder in gelatineartigen Kapseln abgefüllt oder als Dragees ausgebildet. Die entsprechenden Maschinen erreichen hohe Produktionsgeschwindigkeiten mit Abfüllraten von weniger als 50.000 bis zu über 300.000 pro Stunde. Entscheidend für die Wirksamkeit des pharmazeutischen Präparats ist es, daß die Wirkstoffeinheit die nötige Menge an Wirkstoff enthält und dies bei den hohen Abfüllraten auch tatsächlich eingehalten wird. Die Inhaltsmengen der Wirkstoffeinheiten im pharmazeutischen Bereich variieren zwischen 800,mg bei großen Kapseln bis herab zu 50 mg oder bei sehr kleinen Dosen bis zu 5 mg.

[0004] Es ist bekannt, die Massen der erzeugten Wirkstoffeinheiten durch Wiegen festzustellen oder zu kontrollieren (DE 198 19 395 C1). Wegen der großen Zähl von Wirkstoffeinheiten pro Zeiteinheit und aufgrund der Tatsache, daß der mechanische Wiegevorgang naturgemäß eine gewisse Zeit benötigt, können entweder nur Stichproben ausgeschleust und gewogen werden, und/oder es muß eine große Anzahl von parallel angeordneten Einrichtungen für die Verwiegung vorgesehen sein. Mit Stichproben kann aber nur der allgemeine Qualitätszustand der produzierten Wirkstoffeinheiten überprüft werden. Eine Einzelüberprüfung ist nicht möglich, so daß Abweichungen von Einzelproben von der mittleren Qualität nicht kontrolliert und ausgeschleust werden können. Andererseits ist die Wiegung jeder einzelnen Wirkstoffeinheit durch parallel angeordnete Wiegevorrichtungen sehr aufwendig. Selbst wenn man z. B. 20 Wiegevorrichtungen verwenden würde, müßte bei den oben angegebenen Raten jede Wiegevorrichtung noch 15.000 Wirkstoffeinheiten pro Stunde, also rund 4 pro Sekunde wiegen, was immer noch große technische Schwierigkeiten bedeutet. Die einzelnen Wirkstoffeinheiten müssen bei diesen Produktionsgeschwindigkeiten mechanisch auf dem Wiegegutaufnehmer gestoppt und davor und danach beschleunigt werden. Die rück- und stoßartigen Bewegungen führen zu einer beträchtlichen mechanischen Beanspruchung der Wirkstoffeinheiten. Ferner tritt insbesondere bei mit Umhüllungen versehenen Wirkstoffeinheiten mit kleinen Füllmassen der Nachteil auf, daß die statistischen Schwankungen der Masse der Umhüllung sich als Meßfehler des Füllgewichtes voll niederschlagen. Eine separate zweimalige Verwiegung der gleichen Wirkstoffeinheit ohne und mit Befüllung könnte diesen Fehler ausschließen, was aber im Falle der Verwendung der Wiegetechnik die Probleme noch erhöht. Außerdem ist durch die empfindliche mechanische Führung bei diesen Waagen bei Änderung des Formates der zu wiegenden Wirkstoffeinheiten ein erheblicher mechanischer Umbau von Produktführungen erforderlich.

[0005] Es wurde auch versucht, obige Nachteile, die durch die Trägheit der Wiegetechnik hervorgerufen werden, durch kapazitive Meßtechniken zu überwinden (US 4,223,751 A, US 5,602,485 A, DE-OS 29 39 406). Es kann mit dieser Methode bei mit hoher Geschwindigkeit durch den Kondensator bewegten Wirkstoffeinheiten ein masseproportionales elektrisches Signal nur dann bestimmt werden, wenn der Feuchtegehalt der Wirkstoffeinheiten und des Füllmaterials exakt konstant bleibt. Durch leichte Fluktuationen des Wassergehaltes des Wirkstoffs in den Wirkstoffeinheiten wird infolge der großen Dielektrizitätskonstante des Wassers eine überproportionale Änderung des Massesignals erzeugt. Eine kleine Veränderung der Feuchte erzeugt somit eine große Abweichung des Massesignals von der tatsächlichen Masse.

[0006] Die Aufgabe der Erfindung besteht in der Schaffung eines Verfahrens und einer Vorrichtung der eingangs genannten Art, mit dem die Masse der Wirkstoffeinheiten zuverlässig, genau und schnell ohne übermäßigen Aufwand bestimmt werden kann.

[0007] Die erfindungsgemäße Lösung besteht bei einem Verfahren der eingangs genannten Art darin, daß die Wirkstoffeinheiten durch einen Mikrowellenresonator geleitet werden und aus der Verschiebung der Resonanzfrequenz und der Verbreiterung der Resonanzkurve die Masse bestimmt wird.

[0008] Die Erfindung kann dabei Gebrauch machen von einem Verfahren, mit dem die Masse und/oder die Feuchtigkeit eines Materials bestimmt werden kann (EP 0 468 023 B1). Es ist das Verdienst der Erfindung, erkannt zu haben, daß das Prinzip der Messung mit Mikrowellen auch für die Bestimmung der Masse von portionierten Wirkstoffeinheiten verwendet werden kann. Die Messung mit Mikrowellen hat dabei den Vorteil, daß sie sehr schnell ist. Entsprechend schnell wird sich die Verschiebung der Resonanzfrequenz oder die Breite der Resonanzkurve ändern, wenn Teilchen durch den Mikrowellenresonator hindurchgeleitet werden. Die Erfindung hat hier erkannt, daß/das erzeugte Signal so ausgewertet werden kann, daß trotzdem die Masse der einzelnen Wirkstoffeinheiten bestimmt werden kann. Dies geschieht z. B. durch Bestimmung jeweils des Ma20

25

ximums der Verschiebung der Resonanzfrequenz und/ oder der Breite der Resonanzkurve beim Durchgang einer Wirkstoffeinheit.

[0009] Das genannte bekannte Verfahren (EP 0 468 023 B1) und ähnliche bekannte Verfahren ermöglichen die gleichzeitige Messung zweier Eigenschaften des dielektrischen Produktes, das sich gerade im Meßfeld des Resonators befindet:

- Die Veränderung A der Resonanzfrequenz gegenüber der Resonanzfrequenz des leeren Zustands, ein Effekt, der proportional zur Dielektrizitätskonstanten (Realteil) der Wirkstoffeinheit und daher ihrer Masse ist.
- 2. Die Zunahme B der Halbwertsbreite der Resonanzkurve gegenüber derjenigen des leeren Zustands, ein Effekt, der nicht nur proportional zur Masse der Wirkstoffeinheit, sondern auch zu Umwandlung von Mikrowellenenergie in Wärme durch das in Produkt enthaltene Wasser ist (Imaginärteil der Dielektrizitätskonstanten).

[0010] Bei einer vorteilhaften Ausführungsform wird zusätzlich zur Masse auch die Feuchte bestimmt, um so Qualitätsschwankungen besser feststellen zu können

[0011] Beim Bestimmen der Masse von portionierten Wirkstoffeinheiten, die aus einer Umhüllung und dem darin enthaltenen Wirkstoff bestehen, kann bei einer vorteilhaften Ausführungsform vorgesehen werden, daß die Masse der Umhüllung ohne Wirkstoff und anschließend die Gesamtmasse der Wirkstoffeinheit nach der Befüllung mit dem Wirkstoff bestimmt wird. Dadurch kann sichergestellt werden, daß auch bei ungleichförmiger Masse der Umhüllungen immer die gleiche Wirkstoffmenge in die Umhüllungen enthalten ist.

[0012] Man könnte vorsehen, daß die leeren Umhüllungen nach Masse sortiert und anschließend chargenweise mit gleicher Masse gefüllt werden und die Gesamtmasse bestimmt wird. Zweckmäßiger ist es aber, wenn die Masse der Umhüllung unmittelbar vor der Befüllung bestimmt wird. Die einzelne Wirkstoffeinheit, deren Geschwindigkeit bekannt ist, kann dann elektronisch von der ersten Meßstelle zur zweiten Meßstelle verfolgt werden, so daß das Leergewicht und das befüllte Gewicht jeder einzelnen Wirkstoffeinheit miteinander korreliert werden können.

[0013] Zweckmäßigerweise werden die Messungen mit Mikrowellenfrequenzen von 1 bis 60 GHz, insbesondere 2 bis 30 GHz durchgeführt.

[0014] Wird mit dem Verfahren eine Abweichung der Wirkstoffmasse von einem vorgegebenen Toleranzbereich festgestellt, so kann die Wirkstoffkapsel mit an sich bekannten Verfahren wie z. B. eine mechanische Weiche oder einen Luftstoß ausgeschleust werden.

[0015] Eine weitere Lösung der Aufgabe besteht in der Schaffung einer Vorrichtung, die einen Mikrowellen-

generator, einen Mikrowellenresonator, eine Einrichtung zum Führen der Wirkstoffeinheit durch den Mikrowellenresonator, eine Meß- und Auswertungselektronik zum Bestimmen der Masse und eine Einrichtung zum Ausschleusen einzelner Wirkstoffeinheiten aufweist.

[0016] Die Einrichtungen zum Führen der Wirkstoffeinheiten können eine Röhre aufweisen, durch die die
Wirkstoffeinheiten mit einem Luftstrom befördert werden. Andererseits kann vorgesehen werden, daß ein
Endlosband mit Vertiefungen vorgesehen ist, in die die
Wirkstoffeinheiten eingelegt werden und das durch den
Resonator hindurchbewegt wird.

[0017] Eine weitere vorteilhafte Alternative besteht in einer kreisrunden Scheibe, an deren Umfang die Wirkstoffeinheiten mit Hilfe von Unterdruck festgehalten werden. Nach dem Meßvorgang können die Teilchen dann durch einen leichten Überdruck schnell von der Scheibe entfernt werden.

[0018] Wird ein Träger in Form eines Endlosbandes oder einer Scheibe verwendet, so trägt dessen Masse zur Verschiebung und Verbreiterung der Resonanzkurve bei. Dieser Beitrag muß vorher bestimmt werden. Falls das Band oder die Scheibe nicht vollständig gleichmäßig ist, müssen dabei die Ungleichmäßigkeiten mit dem Ort auf dem Band oder der Scheibe korreliert werden, so daß für verschiedene Wirkstoffeinheiten unterschiedliche Korrekturen vorgenommen werden. Alternativ oder zusätzlich kann dieser Massenbeitrag aber auch zwischen einzelnen Wirkstoffeinheiten an einer Stelle gemessen werden, wo sich keine Wirkstoffeinheit befindet. Dies eröffnet die Möglichkeit, allmähliche Änderungen durch z. B. Verschmutzung oder Temperaturänderungen festzustellen und zu kompensieren.

[0019] Eine zweckmäßige Vorrichtung zur Bestimmung der Masse von Wirkstoffeinheiten, die aus einer Umhüllung und dem darin enthaltenen Wirkstoff bestehen, zeichnet sich dadurch aus, daß die einen zweiten Mikrowellenresonator mit Meß- und Auswertungselektronik zum Bestimmen der Masse der Wirkstoffeinheiten vor der Befüllung aufweist.

[0020] Die Erfindung wird im folgenden anhand von vorteilhaften Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen beispielsweise beschrieben. Es zeigen:

Figur 1 den Einfluß unterschiedlicher in der Pharmaindustrie üblicher Kapselgrößen auf die Verschiebung der Resonanzfrequenz und die Verbreiterung der Resonanzkurve eines Mikrowellenresonators;

Figur 2 die Abhängigkeit des Mikrowellenmassewertes vom Gewicht der Kapseln;

Figur 3 die Änderung der Differenz des mit Mikrowellen gemessenen Massewertes zum entsprechenden Massewert der leeren Umhüllungen für unterschiedliche Kapselgewichte:

Figur 4 die Abhängigkeit des gemessenen Massewertes von der Füllmenge bei sehr kleinen Füllmengen;

Figur 5 die Anordnung eines Mikrowellenresonators am Ausgang einer Maschine zur Herstellung/Befüllung von Wirkstoffeinheiten;

Figur 6 das Mikrowellensignal beim Durchgang einer Wirkstoffeinheit durch den Resonator;

Figur 7 eine Ausführungsform eines Mikrowellenresonators;

Figur 8 eine andere Ausführungsform eines Mikrowellenresonators;

Figur 9 eine noch andere Ausführungsform eines Resonators mit einer unterschiedlichen Führung für die Wirkstoffeinheiten; und

Figur 10 noch eine andere Anordnung zur Messung des Masse der Wirkstoffeinheiten.

[0021] Die Wirkung auf die Mikrowellenresonanz durch die unterschiedlichen in der Pharmaindustrie üblichen Kapselgrößen zeigt Figur 1. Je größer die Masse der Kapsel ist, um so größer ist die Verschiebung A der Resonanzfrequenz gegenüber der ganz rechts angeordneten Resonanzkurve des leeren Resonators. Um so größer ist auch die Dämpfung und Verbreiterung B der Resonanzkurve, hervorgerufen durch das im Pulver der Kapsel enthaltene Wasser. Der Quotient beider Grö-Ben, F=B/A ist unabhängig von der Masse der Kapsel und ein Maß für den prozentualen Anteil des Wassers. Dies gilt natürlich auch für Tabletten, Dragees oder andere Wirkstoffeinheiten. Damit bietet das Resonatorverfahren nicht nur eine Masse proportionale Meßgröße A (oder B) zur Massebestimmung, sondern auch eine Größe F zur Feuchtebestimmung und gleichzeitig zur Kompensation des Feuchteeinflusses auf das Massesignal. Eine einfache, aber wirkungsvolle Methode besteht z. B. darin, die Masse M der Wirkstoffeinheit gegenüber einer direkten Massemessung mit einer Waage bei zwei unterschiedlichen Feuchten zu kalibrieren und damit die Koeffizienten k1 und k2 folgender Gleichung zu bestimmen:

M=k1*(1+k2*F)*A

[0022] In der Regel ist k2 eine für die betreffende Wirkstoffeinheit typische Konstante und kann im Speicher der CPU der Füllmaschine abgelegt und unter dem entsprechenden Stichwort für das Füllmaterial (z. B. Stärke oder Laktose usw.) abgerufen werden. Zur ein-

fachen Schnellkalibration genügt dann die Bestimmung der Konstanten k1 als Ein-Punkt-Kalibration. Dies kann auch online dadurch geschehen, daß die stichprobenartige Kontrolle, die oftmals wegen der Eichfähigkeit der Wägemethode vom Pharmahersteller vorgeschrieben wird, beibehalten wird, und somit durch Vergleich zwischen dem Waagenwert und dem Mikrowellenwert die Konstante k1 online abgeglichen wird.

[0023] Figur 2 zeigt, wie präzise der Mikrowellenmassewert die unterschiedlichen Kapselfüllungen für alle möglichen Kapselgrößen zwischen Volumina von 23*8.5 mm bis herab zu 11*4.5 mm repräsentiert, wobei jede Kapselsorte mit einer definierten Füllung zehnmal vermessen wurde. Dabei sind die Schwankungen der Meßwerte der einzelnen Kapseln auf die statistischen Schwankungen der Massen der leeren Gelatinekapseln zurückzuführen. Die Mikrowellenmesswerte für die verschiedenen Kapselgrößen liegen auf parallel verschobenen Geraden, wobei die Lage durch den Mikrowelleneffekt der leeren Kapseln bestimmt wird. Dies zeigt Figur 3, in der die Änderungen des Mikrowelleneffektes gegenüber dem leeren Resonator aufgetragen ist. Die Beziehung zwischen der Änderung des Mikrowellen-Massemesswertes gegenüber dem der leeren Kapsel und der Füllmasse der Kapsel läßt sich somit in guter Näherung als eine einzige Gerade darstellen.

[0024] Figur 4 zeigt, daß selbst bei kleinsten Kapselfüllmengen von nur 5 mg ein deutlicher Anstieg des Signals gegenüber den leeren Kapseln zu erkennen ist.
Allerdings ist beim Vergleich der Streubreite der Mikrowellen-Messignale der leeren und der gefüllten Kapsel
zu erkennen, daß die Massevariationen innerhalb der
leeren Kapsel bereits die Größenordnung der Menge
des zu messenden Füllmaterials haben. In diesem Falle
ist zur Erlangung einer ausreichenden Messpräzision
entweder eine Zweifachmessung der Kapsel mit zwei
Mikrowellenresonatoren erforderlich (einer vor und einer nach der Befüllung), oder aber eine Vorsortierung
der Kapseln, so daß nur Kapseln mit identischer Masse
eingesetzt werden.

[0025] In Figur 5 ist die Anordnung eines Mikrowellenresonators 1 am Ausgang einer Maschine zur Befüllung von Kapseln dargestellt. Der Mikrowellenresonator 1 wird von einem Mikrowellengenerator, der bei 3 schematisch dargestellt ist, mit Mikrowellenenergie gespeist. Die austretende Mikrowellenenergie wird dann durch eine bei 4 angedeutete Schaltung gemessen und mit einer darin enthaltenen Elektronik ausgewertet. Ergibt die Messung einer Kapsel 5, daß ihre Masse nicht innerhalb vorgegebener Toleranzgrenze liegt, so wird die entsprechende Kapsel 5 durch eine bei 20 angedeutete Auswerfeinrichtung mit Hilfe eines Luftstoßes oder z. B. in Form einer Weiche in Richtung des Pfeiles 6 aus dem Strom der Kapseln 5 herausgelenkt, der normalerweise in Richtung des Pfeiles 7 verläuft, wobei die Kapseln durch einen Luftstrom transportiert werden, der bei 21 angedeutet ist. Über entsprechende Weichen oder Luftimpulse kann auch eine Sortierung der Kapseln nach unterschiedlichen Massen bzw. Feuchten in unterschiedlichen Behältern durchgeführt werden. Dabei kann die Mikrowellenresonator-Meßeinheit 1, 3, 4 entweder zusammen mit dem Auswurfmechanismus in die Maschine 2 selbst integriert werden oder aber als eigenständige Einheit neben der Maschine 2 positioniert werden, die die Kapseln aus einem Zwischenpuffer entnimmt.

[0026] Im besonderen Fall sehr kleiner Füllmassen in Kapseln 5 bei denen der Schwankungsbereich der leeren Kapselnmasse im Bereich des Kapselinhaltes liegt, ist es sinnvoll, eine Kapselfüllanlage mit zwei Mikrowellenresonatoren auszustatten. Zusätzlich zum Mikrowellenresonator 1 am Ausgang der Maschine 2 kann ein weiterer Mikrowellenresonator 8, der in Figur 6 gestrichelt dargestellt ist, am Eingang der Maschine 2 vorgesehen sein. Dieser ist ebenfalls mit einem Mikrowellengenerator 3 und einer Meß- und Auswerteschaltung 4 versehen, die aber in Figur 5 nicht gezeigt sind. Wenn der Steuerrechner der Maschine 2 den Weg jeder einzelnen Kapsel verfolgt, kann er die Differenz der entsprechenden vollen und leeren Kapselmassen bestimmen und den Inhalt klassifizieren bzw. die Kapseln sortieren.

[0027] Die besondere Anforderung an das Mikrowellenmessfeld zur Wirkstoffeinheit-Massemessung besteht darin, daß es homogen sein muß über die gesamte Zone, durch die sich die Wirkstoffeinheit bewegt und die für den Messwert bestimmend ist. Nur dann ist gewährleistet, daß das masseproportionale Messsignal nicht von der Art der Bewegung und Stellung der Wirkstoffeinheit im Messfeld bzw. der Art der Verteilung der Pulvermasse innerhalb der Kapsel abhängt. Auf diese Art erzeugt eine sich bewegende Wirkstoffeinheit mit einer bestimmten Gesamtmasse unabhängig von der Art der Bewegung oder Verteilung der Masse innerhalb der Probe einen zeitlichen Signalverlauf, der zwar im einzelnen von der konkreten Bewegungsart abhängt, aber einen identischen, durch die Probenmasse definierten Maximumwert aufweist. Denn während der Bewegung der Wirkstoffeinheit durch den Resonator nehmen die masseproportionalen Werte A und B zu, erreichen ein Maximum, wenn sich die gesamte Wirkstoffeinheit im elektrischen Messfeld des Resonators befindet. Das über die Probe konstante Mikrowellenfeld wirkt wie ein Intergrationsglied und erzeugt einen Maximalwert 9, der eindeutig ein Maß für die Masse der Wirkstoffeinheit ist, wie dies in Figur 6 gezeigt ist. Die drei Kurven zeigen dabei die Signale identischer Wirkstoffeinheiten, die sich aufgrund unterschiedlicher Bewegungsverläufe beim Durchgang durch den Resonator unterscheiden. Sie welsen aber denselben Maximalwert 9 auf, der ein Maß für die Masse der Wirkstoffeinheit ist.

[0028] Eine Ausführungsform für einen Mikrowellenresonator 1 zeigt die Figur 7. Ein Resonator 1 im E010-Grundmodus ist mit einem dielektrischen Probenrohr 10 versehen, dessen Innendurchmesser von 10 mm etwas größer als der größte zu erwartende Wirkstoffeinheitdurchmesser ist. Die elektrische Feldstärke 11 ist sowohl in Bewegungsrichtung als auch in der dazu senkrechten Ebene im Bereich des Probenrohres konstant, wenn sich die Probe in der Mitte des Resonators befindet, weshalb dieser Resonatortyp zur Massebestimmung in Wirkstoffeinheiten formatunabhängig mit Probendurchmessern zwischen 9.5 mm und 2 mm gut geeignet ist. Bei 12 und 13 sind Anschlüsse gezeigt, über die die Mikrowellen in den Resonator 1 und aus demselben herausgekoppelt werden.

[0029] Figur 8 zeigt einen Resonatortyp zur Vermessung von Tabletten 14 mit relativ großen Durchmessern (z. B. Brausetabletten), wobei durch die rechteckige Probenführung 15 eine Integration über die gesamte Tablette möglich ist, wenn die Tablette sich in der Resonatormitte befindet. Auch dieser Resonator wird in Resonanz im E010-Modus angeregt, wobei die leichte Inhomogenität im Feldlinienbild bei sehr großen Probeführungs-Dimensionen um so weniger ins Gewicht fällt, je niedriger die Meßfrequenz, d. h. je größer der Resonatordurchmesser gewählt wird. Begrenzt wird diese Herabsetzung der Meßfrequenz durch die Maßgabe, daß bei Frequenzen unterhalb von 1 GHz die Verluste aufgrund von lonenleitfähigkeitseffekten gegenüber den Wasserdipoverlusten nicht mehr vernachlässigt werden können und damit eine zuverlässige Feuchtemessung nicht mehr möglich ist.

[0030] Figur 9 zeigt einen Resonator 1 vom Typ eines einseitig geöffneten Gabelresonators, durch den die Wirkstoffeinheiten in senkrechter Position geführt werden können, wobei sie über eine radförmige Kunststofführung 16 und Unterdruckansaugung 17 in ihrer Position gehalten werden. Der Mikrowellenresonator 1 wird dabei in einer vom zylindrischen Resonator bekannten E010-Resonanz angeregt, wobei die Wandflächen so aufgetrennt wurden, daß die Wandströme nicht beeinträchtigt werden. Sieht man genügend stark ausgebildete Seitenwände vor, so daß innerhalb dieses Bereiches nach außen ein exponentieller Feldabfall möglich ist, ist dieser Resonator trotz großer Öffnungen vollkommen abstrahlungsfrei und besitzt quer zur Bewegungsrichtung der Wirkstoffeinheiten ein sehr homogenes Messfeld. Damit sind die Voraussetzungen für eine präzise Masse- und Feuchtemessung gegeben. Ein weiterer Vorteil dieser Anordnung des Resonators ist, daß zu jedem Zeitpunkt die exakte Position der Wirkstoffeinheiten bekannt ist, so daß die anschließende Behandlung und Sortierung der Wirkstoffeinheiten nach den Ergebnissen der Messung leicht möglich ist. Um die exakten Mikrowellenmesswerte der Wirkstoffeinheiten zu erhalten, müssen vorher die Mikrowelleneffekte Ao und Bo der Wirkstoffeinheitführung im Zustand ohne Wirkstoffeinheit vermessen werden. Dies kann z. B. in einer separaten Tarierungsprozedur zu Beginn des eigentlichen Produktionsprozesses nach Einschalten der Maschine im Leerlauf geschehen. Die eigentlichen Wirkstoffeinheit-Messwerte ergeben sich dann als Differenzwerte aus den aktuellen Messwerten A und B und den für die

15

30

35

einzelnen Positionen gültigen Messwerten der Wirkstoffeinheitführung Ao und Bo. Sieht man in dem Führungsrad eine oder mehrere Positionen vor, an denen der Mikrowelleneffekt alleine durch das Führungsrad ohne Wirkstoffeinheit gemessen werden kann (z. B. die in der Fig. 9 mit 22 bezeichneten Positionen), ist durch Vergleich mit den entsprechenden Werten der Anfangstarierung eine Online-Tarierung möglich, so daß auch im vielstündigen Non-Stop-Betrieb der Effekt von Temperaturänderungen oder Resonator-Verschmutzungen automatisch kompensiert werden kann, ohne den Prozess anzuhalten. Damit wird eine präzise Masse- und Feuchtemessung auch bei Veränderung der Temperatur und Verschmutzung der Messzone garantiert. Bei Änderung des Formates der Wirkstoffeinheiten ist lediglich ein Austausch des Führungsrades 16 mit den geelgneten Passformen 22 für die neuen Wirkstoffeinheiten vorzunehmen.

[0031] Figur 10 zeigt ein weiteres Ausführungsbeispiel einer Wirkstoffeinheit 18, wobei sich als Resonatortyp wiederum ein einseitig geöffneter oder beidseitig geschlossener Gabel-Resonator 1 mit einem sehr homogenen Querfeld zur präzisen Masse- und Feuchtemessung eignet. Da die Wirkstoffeinheiten 5 in Vertiefungen 22 der Führung 18 abgelegt werden, ist die ex- 25 akte Position der Wirkstoffeinheiten genau bekannt, so daß auch hier eine leichte weitere Sortierung der Wirkstoffeinheiten möglich ist. Wie in Figur 9 muß der Mikrowelleneinfluß der Wirkstoffeinheitführung 18 durch eine Anfangstarierung sowie seine Änderung durch eine punktweise Kontrolle der Führung online sichergestellt werden. Formatänderungen der Wirkstoffeinheiten erfordern auch hier einen Austausch der Führung 18, die hier als Endlosband ausgeführt ist, was aber einfach durchgeführt werden kann.

Patentansprüche

- 1. Verfahren zum Bestimmen der Masse von portionierten Wirkstoffeinheiten, insbesondere Kapseln, Tabletten oder Dragees, dadurch gekennzeichnet, daß die Wirkstoffeinheiten durch einen Mikrowellenresonator geleitet werden und aus der Verschiebung der Resonanzfrequenz und der Verbreiterung der Resonanzkurve die Masse bestimmt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzelchnet, daß zusätzlich die Feuchte bestimmt wird.
- 3. Verfahren zum Bestimmen der Masse von portionierten Wirkstoffeinheiten, die aus einer Umhüllung und dem darin enthaltenen Wirkstoff bestehen, nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Masse der Umhüllung ohne Wirkstoff und anschließend die Gesamtmasse der Wirkstof-

feinheit nach der Befüllung mit dem Wirkstoff bestimmt wird.

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die leeren Umhüllungen nach Masse sortiert und anschließend chargenweise befüllt und die Gesamtmasse bestimmt wird.
- 5. Verfahren nach Anspruch 3, dadurch gekenn-10 zeichnet, daß die Masse der Umhüllung unmittelbar vor der Befüllung bestimmt wird.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Mikrowellen mit Frequenzen von 1 bis 60 GHz, insbesondere 2 bis 30 GHz verwendet werden.
 - 7. Vorrichtung zum Bestimmen der Masse von portionierten Wirkstoffeinheiten (5, 14), insbesondere Kapseln, Tabletten oder Dragees, dadurch gekennzelchnet, daß sie einen Mikrowellengenerator (3), einen Mikrowellenresonator (1), eine Einrichtung (10, 15, 16) zum Führen der Wirkstoffeinheiten (5, 14) durch den Mikrowellenresonator (1) und eine Meß- und Auswertungselektronik (4) zum Bestimmen der Masse.
 - 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß sie eine Einrichtung zum Ausschleusen einzelner Wirkstoffeinheiten (5, 14) aufweist.
 - 9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Einrichtungen zum Führen der Wirkstoffeinheiten eine Röhre (10, 15) aufweisen, durch die die Wirkstoffeinheiten (5,14) mit einem Luftstrom (21) gefördert werden.
 - 10. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Einrichtungen zum Führen der Wirkstoffeinheiten ein Endlosband (18) mit Vertiefungen (22) aufweisen, in die die Wirkstoffeinheiten eingelegt werden.
 - 11. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Einrichtungen zum Führen der Wirkstoffeinheiten eine kreisrunde Scheibe (16) aufweisen, an den Umfang die Wirkstoffeinheiten (5, 14) mit Hilfe von Unterdruck (17) festgehalten werden.
 - 12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß Einrichtungen zum Bestimmen eines Massenwertes der Trageinrichtung für die Wirkstoffeinheiten vorgesehen sind.
 - 13. Vorrichtung nach einem der Ansprüche 8 bis 12 zur Bestimmung der Masse von Wirkstoffeinheiten (5, 14), die aus einer Umhüllung und dem darin enthal-

tenen Wirkstoff bestehen, dadurch gekennzelchnet, daß sie einen zweiten Mikrowellenresonator (8) mit Meß- und Auswertungselektronik zum Bestimmen der Masse der Wirkstoffeinheiten (5) vor der Befüllung aufweist.

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 8

Fig. 9

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 03 00 8198

Kategorie		ments mit Angabe, soweit erforderlich,	Betrifft	KLASSIFIKATION DER	
- Later Colle	der maßgeblic		Anspruch	ANMELDUNG (Int.CI.7)	
X		ASZEWSKI ANDRZEJ W ET	1,6,7	G01G17/00	
ĺ	AL) 10. September	, ,	G01G9/00		
	* Zusammenfassung				
		65 - Spalte 4, Zeile 2 *			
		61 - Spalte 5, Zeile 25;	1		
γ	Abb11dungen 2,3 *		2-5.8-13		
' {			2-5,6-13		
x 1	KRASZEWSKI A. W. E	T AL.: "Contactless	1,7		
- 1	mass determination				
	objects by microway	1 1			
	measurements"	i l			
j	INTERNET, 'Online				
	12. Oktober 1994 (: Gefunden im Interno				
	<pre><url:http: pre="" www.na<=""></url:http:></pre>				
	data/000005/52/0000	1			
	'gefunden am 2003-0				
	* das ganze Dokumer	nt *			
y	DE 201 10 244 II /T	THE ELEKTRONITY DIRL THE			
'	MANFR) 3. April 200	EWS ELEKTRONIK DIPL ING	2	RECHERCHIERTE SACHGEBIETE (Int.CI.7)	
1	* Zusammenfassung *	1 1	G016		
	200 ammerit abbatty		GO1N		
Υ	US 5 515 740 A (GAM	3-5,			
	14. Mai 1996 (1996-	11-13			
	* Zusammenfassung *				
	* Spaire 3, Zeile : 3 *	5 - Zeile 15; Abbildung			
1	J =	****			
Y,D	US 5 602 485 A (OES	STREICH ROGER C ET AL)	8,9		
	11. Februar 1997 (1				
	* Spalte 4, Zeile 9				
	1 *				
i		 -/			
ļ		-/			
		- <u>-</u>	1		
Der vo		irde für alle Patentansprüche erstellt	<u> </u>		
	Racherenent	Absolitu/Bdatum der Recherche		Prüfer	
	DEN HAAG	28. August 2003	Gano	ii, P	
KA	ATEGORIE DER GENANNTEN DOK	UMENTE T : der Erfindung zu E : älleres Patentdol	grunde liegende T	heorien oder Grundsätze	
X : von t	besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindun	itel nach dem Anmel	dedatum veröffent	licht worden ist	
ande	ren Veröffenllichung derselben Kate	gorie L : aus anderen Grü	nden angeführtes	Dokument	
A : techi	nologischer Hintergrund Ischriftliche Offenbarung	***************************************			

Europäisches Betantamt EUROPÄISCHER RECHERCHENBERICHT

EP 03 00 8198

	EINSCHLAGIG	E DOKUMENTE		
Kategorie	Kennzelchnung des Doku der maßgeblic	ments mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
Y,D	DE 40 04 119 A (TE MANFR) 14. August * Spalte 10, Zeile Abbildung 13 *		10	
1	US 2002/139264 A1 AL) 3. Oktober 200. * Zusammenfassung;		9,10,13	
				RECHERCHIERTE SACHGEBIETE (InLCI.7)
Der vor	llegende Recherchenbericht wu	rde für alle Patentansprüche erstellt	7	
	Recherchenort DEN HAAG	Abschlußdatum der Recherche 28. August 2003	Gano	Prùles
X : von b Y : von b ander A : techn O : nicht	TEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrech besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kale blogischer Hintergrund schriftliche Offenbarung schefilieratur	UMENTE T: der Erfindung z E: âlteres Patentol tet nach dem Anne grnit einer D: in der Anmeldu gorie L: aus anderen Gr	ugrunde liegende Ti okument, das jedoc eidedatum veröffent ng angeführtes Dok ünden angeführtes	heorien oder Grundsätze h erst am oder licht worden ist ument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 03 00 8198

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

28-08-2003

-	im Recherchenberi geführtes Patentdok		Datum der Veröffentlichung		Mitglied(er) Patentfam	der illie	Datum der Veröffentlichung
US	5554935	Α	10-09-1996	KEI	NE		
DE	20119344	U	03-04-2003	DE EP US	20119344 1316630 2003097830	A1	03-04-2003 04-06-2003 29-05-2003
US	5515740	A	14-05-1996	IT CH DE FR GB JP JP	1258025 689553 4325569 2694264 2269354 3419826 7284519	A5 A1 A1 A ,B B2	20-02-1996 15-06-1999 03-02-1994 04-02-1994 09-02-1994 23-06-2003 31-10-1995
US	5602485	A	11-02-1997	DE GB JP JP	19651284 2309307 2804469 9206699	A ,B B2	17-07-1997 23-07-1997 24-09-1998 12-08-1997
DE	4004119	A	14-08-1991	DE AT DE WO EP ES US	4004119 129343 59106709 9112518 0468023 2081471 5397993	T D1 A1 A1 T3	14-08-1991 15-11-1995 23-11-1995 22-08-1991 29-01-1992 01-03-1996 14-53-1995
US	2002139264	A1	03-10-2002	DE EP JP	10113885 1217454 2002287544	A2	11-07-2002 26-06-2002 03-10-2002

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82