인공지능을 위한 머신러닝 알고리즘

14. Theano를 통한 머신러닝 구현

CONTENTS

- 1 Theano란?
 - 2 Theano로 GPU 프로그래밍 실습하기

3 Theano로 신경망 구현하기

학습 목표

■ Theano의 기본적인 문법과 Symbolic Expression을 이해할 수 있다.

> ■ Theano의 GPU 연산 과정을 이해할 수 있다.

> > ■ Theano를 사용하여 신경망을 구현해보 고 실행할 수 있다.

- Theano의 특징
 - LISA Lab(https://mila.umontreal.ca/en/)에서 만든 Python 기반 오픈소스 Package

http://deeplearning.net/software/theano/

❖ 장점

- Symbolic 연산 철학으로 간결하고 빠르게 모델 구현 가능
- Symbolic 미분이 가능하므로 역전파 등을 직접 구현할 필요가 없음
- 동일한 코드를 CPU와 GPU에서 모두 사용 가능
- Python 기반이므로, numpy, scipy 등 다양한 Python 패키지와의 연동할 수 있음

❖ 단점

■ 복잡하고 알기 어려운 에러 메시지

Symbolic expression 정의 - (1) scalar

Symbolic expression 정의 - (2) vector & matrix

Symbolic expression 정의 - (3) theano function

■ Symbolic 미분 연산

```
>>> from theano import tensor as T
>>> x = T.scalar()
>>> y = -1*T.log(3*x**2+5*x)
>>> y prime = T.grad(y,x) \leftarrow
>>> from theano import function
>>> f = function([x], y_prime)
>> f(1)
array(-1.375, dtype=float32)
```

Symbolic 미분 자동으로 Y=-ln(3x²+5x)의 도함수 계산 복잡한 역전파 계산을

직접 구현할 필요가 없음

>>> from theano import shared

shared variables

shared variable은 데이터를 RAM에서 GPU의 VRAM로 옮기는 명령어

```
>> x = shared(0.)
>>> x.get_value()
0.0
                                     CPU
                                                              GPU
                                                   Bottle
                                                   neck
                                     RAM
                                                             VRAM
```

givens

- ◉ symbolic 변수에 shared 데이터를 대입

```
>>> f = function([x, y], x + y)
>>> f(1., 2.)
array(3.0) RAM \rightarrow VRAM \rightarrow GPU 연산
```

```
>>> x_val = theano.shared(1) VRAM → GPU 연산
>>> y_val = theano.shared(2)
>>> f = function([x, y], x + y, givens = [(x, x_val), (y, y_val)])
>>> f()
```


Tacademy

updates

● GPU 연산 결과를 이용해 shared 데이터를 수정

```
>>> x_val = theano.shared(1)
>>> f = function([], x_val, updates = (x_val, x_val+1))
>>> f()
```

실행 시 RAM을 거치지 않고 GPU 내에서 x_val을 1씩 증가시킴

shared variable 예제

```
>>> from theano import shared
>>> x = shared(0.)
>>> from theano.compat.python2x import OrderedDict
>>> updates = OrderedDict()
>>> updates[x] = x + 1
>>> f = function([], updates=updates)
>>> f()
>>> x.get_value()
1.0
>>> x.set_value(100.)
>>> f()
>>> x.get_value()
101.0
```


▶ 신경망 코드

import numpy import theano import theano.tensor as T rng = numpy.random

N = 400

레이블

▶ 신경망 코드

```
training\_steps = 10,000
```

x = T.matrix('x')

y = T.vector('y')

 $w_1 = theano.shared(rng.randn(784, 300), name = 'w1')$

b_1 = theano.shared(numpy.zeros(300,), name = 'b1')

w_2 = theano.shared(rng.randn(300,), name = 'w2')

 $b_2 = theano.shared(0., name = 'b2')$

print w_1.get_value(), b_1.get_value()

print w_2.get_value(), b_2.get_value()

Parameters 3

300

3. Theano로 신경망 구현하기

▶ 신경망 코드

```
타겟이 1일 확률
p_1 = T.nnet.sigmoid(T.dot(T.nnet.sigmoid(T.dot(x, w_1)+b_1), w_2)+b_2)
prediction = p_1 > 0.5
                                          Cross entropy
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
cost = xent.mean() + 0.01 * ((w_1**2).sum() ← L2 regularization를 적용한 손실 함수
          +(w_2**2).sum() + (b_1**2).sum() + (b_2**2).sum())
파라미터의 변화량
                                 prediction
p 1 = sigmoid(h*w 2 + b 2)
             은닉:300 차원 벡터
 h = sigmoid(x*w_1 + b_1)
```

입력: 784 차원 벡터

3. Theano로 신경망 구현하기

▮ 신경망 코드

3. Theano로 신경망 구현하기

▮ 신경망 코드

지금까지 [Theano를 통한 머신러닝 구현]에 대해서 살펴보았습니다.

Theano란?

symbolic 연산 철학으로 간결하고 빠르게 모델 구현 가능 symbolic 미분이 가능하므로 역전파 등을 직접 구현할 필요가 없음 (grad 함수 사 용)

x = T.scalar() y = -1*T.log(3*x**2+5*x) $y_prime = T.grad(y,x)$

Theano로 GPU 프로그래밍 실습하기

shared variables: RAM에서 GPU VRAM으로 데이터를 옮겨줌

givens: symbolic 변수에 shared variables를 대입

updates: GPU 연산 결과를 이용해 shared variables의 값을 수정

Theano로 신경망 구현하기

Theano를 사용하여 머신러닝 알고리즘을 구현할 경우, GPU를 사용하여 빠른 학습 가능 간결한 코드 작성 가능, 미분의 자동 계산으로 프로그래머의 일을 줄여줌