Le	cture 6: More Evaluation
	_
Two	reasons to evaluate .
	(1) get a measure of gen. perf.
	(2) model selection:
	es. Choosing a tuning parameter > k in kNN
	-> k in kNN
	L> which covariates to include
G:	Can we use a fest/train split (or X-validation to do (2)?
	to do (2)?
H.	Yes, but we need to be careful.
D. 70	charles to a later to a later to
Trope	r way to do this: split data into 3 datasets
	(1) trains used to directly fit the model
	(1) traing used to directly fit the model (e.g. min RSS)
	2) validation used to select among my models
	models of J
	(ef. Chooc &)
	(3) test to estimate gen-perf. of my final chosen model.
	my final Chosen Model.

Pretend we only

two test/train

fit on train date

The val. Model (NBP) (NBP) eval. on my test date output: test err satisfied w test err refine model

refine model + report

change tuning

params

test err Cardinel Sin: can't let my ML also see the Q: Did my model see the test data? After all, my also only fit using the trainy data. A! Yeah, Kinda. By iteratuly refing model based on test err. - the fest data has influenced the MBP. Still need a true "hold-out" dutaset to est. Sen. peif.

Consequently, use split into 3 datasets 1) train Zused to build/choise 2) val. 5 model. (3) test train on traing data Eval. on Val. data Youtput final model Ev. Choosing le fer leNN Split data into train val., test For k in seg of les -> train on training data using le neishbors -> eval. on val. data mre = RMSE of val. preds arguin Mp = i.e. val. of the that
produces min Mp

THEN to est. my gen, perf. I fit PENN using the neighbors on combined train/val and then eval. on my testing duta Can une do this in a X-validation vay?

Called: nested cross validation Split data into I folds For V=1, ---, L - hold out feld i for testing -> use ofter folds for train-val -> Split train-val into J folds For (=1,...) > hold out fold j as val. data -> vsc otter folds as traing data For k in seq of ks > fit benn vsiy train and k neighbors -> evd on val m(i) = RMSE en val. me = mean (me (j))

> choose & = argmin Mk model w/ le on train-val > eval ony my test data M: = RMSE of le model en test this I have e.s. gen. perf. might be mean(Mi)