See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/248344315

# Gas/particle partitioning of low-molecularweight dicarboxylic acids at a suburban site in Saitama, Japan

ARTICLE in ATMOSPHERIC ENVIRONMENT · JANUARY 2009

Impact Factor: 3.28 · DOI: 10.1016/j.atmosenv.2009.09.014

15 36

**6 AUTHORS**, INCLUDING:

**CITATIONS** 



63 PUBLICATIONS 469 CITATIONS

SEE PROFILE



**READS** 

Q. Wang

Saitama University

88 PUBLICATIONS 199 CITATIONS

SEE PROFILE

# **Accepted Manuscript**

Title: Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a suburban site in Saitama, Japan

Authors: Linfa Bao, Mariko Matsumoto, Tsutomu Kubota, Sekiguchi Kazuhiko, Qingyue Wang, Kazuhiko Sakamoto

PII: \$1352-2310(09)00779-1

DOI: 10.1016/j.atmosenv.2009.09.014

Reference: AEA 9293

To appear in: Atmospheric Environment

Received Date: 17 April 2009 Revised Date: 13 July 2009

Accepted Date: 7 September 2009

Please cite this article as: Bao, L., Matsumoto, M., Kubota, T., Kazuhiko, S., Wang, Q., Sakamoto, K. Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a suburban site in Saitama, Japan, Atmospheric Environment (2009), doi: 10.1016/j.atmosenv.2009.09.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



- Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a
- 2 suburban site in Saitama, Japan
- 3 Linfa Bao, Mariko Matsumoto, Tsutomu Kubota, Sekiguchi Kazuhiko, Qingyue Wang, Kazuhiko
- 4 Sakamoto\*
- 5 Department of Environmental Science and Technology, Graduate School of Science and Engineering,
- 6 Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
- 7 \*Corresponding author. Tel/Fax: +81-48-858-9542, Email: sakakazu@env.gse.saitama-u.ac.jp (K.
- 8 Sakamoto)
- 9 Abstract

10

11

12

13

14

15

16

17

18

19

20

21

Low-molecular-weight dicarboxylic acids (diacids) exhibit semivolatile behavior in the atmosphere, but their partitioning between the gaseous and particulate phases is still unclear. An annular denuder–filter pack system with a cyclone  $PM_{2.5}$  was employed to investigate the gaseous and particulate phase concentrations of diacids, with high collection efficiency of most target compounds. Saturated diacids, unsaturated diacids, ketocarboxylic acids, and dicarbonyls were determined in gaseous and particulate samples collected from a suburban site in Japan, during 2007 summer, 2008 late-winter and early-winter. The concentrations of gaseous and particulate diacids in early-winter were lower than those in summer, but higher than those in late-winter. Individual diacid in gaseous phase showed a relatively good correlation with ambient oxidants, but a low correlation with a primary pollutant (NO gas). Particulate fraction to the total amount ( $F_p$ ) of individual acid was larger in winter than in summer, and also was larger at night than in the daytime. In the same sample, individual diacid and ketocarboxylic acid had higher particulate phase occurrence ( $F_p > 56\%$  in summer), whereas unsaturated diacid had higher gaseous phase occurrence ( $F_p < 18\%$  in summer). In

| summer, gas/particle partitioning of diacids varied diurnally; $F_{\rm P}$ values of oxalic and glyoxylic acids |
|-----------------------------------------------------------------------------------------------------------------|
| increased from their lowest values in the morning to their highest values at night, exhibiting the similar      |
| diurnal variation of relative humidity in the atmosphere. The higher humidity at night may lead to the          |
| formation of droplets in which water-soluble gaseous phases can dissolve, thus promoting gas-to-particle        |
| conversion. These results suggest that gas/particle partitioning of diacids depends not only on the             |
| concentration in the gaseous phase by photochemical oxidation, but also on the characteristics of the           |
| atmosphere (e.g., temperature, sunlight, and relative humidity) and the aerosol (e.g., acidity, alkaline        |
| composition, and water content).                                                                                |

- Keywords: Gas/particle partitioning, Dicarboxylic acids, Oxygenated organic aerosol, Atmospheric
   sampling, Collection efficiency
  - 1. Introduction

Water-soluble dicarboxylic acids (diacids) may affect an aerosol's hygroscopic and cloud-nucleating properties (Cruz and Pandis, 1998; Peng et al., 2001; Abbatt et al., 2005). Diacids are considered to be principally associated with the particulate phase, owing to their relatively low vapor pressures and their hygroscopic behavior (Saxena and Hildemann, 1996). However, recent investigations have shown that low-molecular-weight (LMW) diacids display semivolatile behavior (Limbeck et al., 2001, 2005; Erdakos and Pankow, 2004; Ray and McDow, 2005). Thus, the collection of particulate diacids may be complicated by potential interference from the gaseous phase. Sampling artifacts related to interactions with vapor-phase compounds can occur in two ways: by adsorption of gaseous organic acids onto the sampling filter, inducing a positive artifact; and by volatilization of particulate organic acids collected on the filter,

| 42 | which causes a negative artifact. A suitable approach to the correction of these artifacts is the use of a |
|----|------------------------------------------------------------------------------------------------------------|
| 43 | denuder–filter-adsorbent system for sample collection (Limbeck et al., 2005).                              |

| Several studies have reported the use of annular denuder–filter systems to determine both gaseous and                              |
|------------------------------------------------------------------------------------------------------------------------------------|
| particulate semivolatile organic species: for example, polycyclic aromatic hydrocarbons in indoor                                  |
| laboratory room air (Gundel et al., 1995); semivolatile ozone oxidation of monoterpenes in smog chamber                            |
| experiments (Yu et al., 1999; Kalberer et al., 2000); semivolatile carbonyls in the atmosphere (Matsunaga et                       |
| al., 2005; Ortiz et al., 2006, 2009); and carboxylic acids over the Atlantic Ocean (Baboukas et al., 2000). So                     |
| far, few investigations of gas/particle partitioning of LMW diacids in the atmosphere have been reported                           |
| (Arai and Sakamoto, 1999; Limbeck et al., 2005). Following Ye et al. (1991), Arai and Sakamoto (1999)                              |
| developed an annular denuder-filter pack system to measure gaseous and particulate oxalic acid (C2 diacid)                         |
| in the atmosphere. Since the handling and instrumental setup of denuder-filter systems are very complex in                         |
| most studies, Limbeck et al. (2005) collected C <sub>2</sub> –C <sub>9</sub> dicarboxylic acids in the gaseous phase by adsorption |
| onto Teflon filters, with less effort than is necessary for the comparison with denuder systems.                                   |

In this study, we investigated the concentrations of saturated and unsaturated diacids as well as those of ketocarboxylic acids and dicarbonyls in gaseous and particulate phases at a suburban site using an annular denuder–filter pack (AD-FP) system. We evaluated the collection efficiency of the AD-FP system, and investigated in detail the gas-to-particle partitioning of diacids, including its diurnal variation and seasonal differences.

- 60 2. Experimental
- 61 2.1 Sampling

| 62 | Atmospheric samples were collected at Saitama University, which is located in a suburban area of                  |
|----|-------------------------------------------------------------------------------------------------------------------|
| 63 | Saitama, about 30 km northwest of central Tokyo and about 4 km east of the business center of Saitama             |
| 64 | City. The sampling site was located on top of a 10-story office building at the university, about 37 m above      |
| 65 | the ground level, to avoid possible interference from local emission sources. Ambient air samples in              |
| 66 | summer were taken in summer (24–27 July 2007, $n = 13$ ), late-winter (30 January–2 February 2008, $n = 8$ ),     |
| 67 | and early winter (7-13 December 2008, $n = 14$ ), with four times a day (00:00-05:30, 06:00-11:30,                |
| 68 | 12:00-17:30, and 18:00-23:30 Japan Standard Time [JST]) in summer and two times a day (07:00-18:30                |
| 69 | and 19:00-06:30 JST) in winter.                                                                                   |
| 70 | An AD-FP system was used to collect semivolatile organic acids in gaseous and particulate phases                  |
| 70 | All AD-11 system was used to conect semivolatile organic acids in gaseous and particulate phases                  |
| 71 | (Fig. 1). The AD-FP system consisted of a $PM_{2.5}$ cyclone (URG-2000-30EN, University Research                  |
| 72 | Glassware, North Carolina, USA), followed by three annular denuders (URG-2000-30B) in series, and a               |
| 73 | filter pack with three quartz filters (Pallflex 2500 QAT-UP). The first denuder was coated with a 5 wt %          |
| 74 | solution of potassium iodide (KI) in a 1:1 mixture of methanol:water to remove ozone; the next two                |
| 75 | denuders were coated with 1 wt % potassium hydroxide (KOH) in a 1:1 mixture of methanol:water to                  |
| 76 | collect gaseous phase organic acids. The first filter was a quartz fiber filter for collection of fine particles  |
| 77 | $(PM_{2.5})$ ; the next two quartz filters were impregnated with a 2 wt % KOH solution in a 1:1 mixture of        |
| 78 | methanol:water for collection of organic acids that volatilized from the particles on the first filter during the |
| 79 | sampling. The sampler was operated at a flow rate of 16.7 L min <sup>-1</sup> .                                   |
| 80 | Gaseous-phase samples were extracted in situ from the denuders by adding 5 mL of ultrapure water                  |
| 81 | into the denuder, and then shaking and rotating it for 1 min. The process was repeated three times for each       |

82 extraction. The extracted solutions were stored in amber vials at 4  $^{\circ}$ C until analysis. After sampling, the

filters were stored in Petri slides inside aluminum-laminated hermetic bags at -40 °C until analysis.

2.2 Chemical analysis of organic compounds

Water-soluble diacids, ketocarboxylic acids, and dicarbonyls in denuder and filter samples were analyzed by BF<sub>3</sub>/n-butanol derivatization to their esters followed by gas chromatography/mass spectrometry (GC/MS) determination (Kawamura and Yasui, 2005). Each filter was ultrasonically extracted with 8 mL ultrapure water in an ice bath for 15 min, and this process was repeated more twice times. The extracts were passed through a hydrophilic polytetrafluoroethylene filter (Advantec DISMIC-13HP) to remove filter debris. The solutions of both gaseous and particulate samples were concentrated to ca. 0.5 mL in a rotary evaporator under a vacuum at ca. 48 °C. After the extracts were further dried under a nitrogen stream, 14% BF<sub>3</sub>/n-butanol (300  $\mu$ L) was added to derivatize the carboxyl groups to butyl esters, and the aldehyde groups to dibutoxy acetals, at 100 °C for 30 min. After the addition of 300  $\mu$ L acetonitrile and 10 mL pure water, the derivatives were extracted with 10 mL n-hexane, and then washed two times with pure water (10 mL). The n-hexane phase was concentrated under a nitrogen stream to ca. 50  $\mu$ L. After addition of an internal standard compound (tridecane), the derivatives were dissolved in 100  $\mu$ L n-hexane for GC/MS analysis.

Dibutyl esters and other derivatives were determined with a GC/MS (GCMS-QP 5050, Shimadzu Corporation, Kyoto, Japan) equipped with a split/splitless injector and a fused silica capillary column (DB-5; 30.0 m  $\times$  I.D. 0.32 mm  $\times$  0.25  $\mu$ m film thickness). The operating conditions were an injection temperature of 300 °C, a column initial temperature of 50 °C for 2 min, ramped to 120 °C at 30 °C min<sup>-1</sup>,

and then to 250 °C at 8 °C min<sup>-1</sup> with a 5 min hold; the carrier gas was helium (flow rate, 50 mL min<sup>-1</sup>; pressure, 80 kPa). The target compounds were five saturated *n*-dicarboxylic acids (C<sub>2</sub>: oxalic; C<sub>3</sub>: malonic; C<sub>4</sub>: succinic; C<sub>5</sub>: glutaric; and C<sub>6</sub>: adipic acid), two unsaturated diacids (M: maleic and F: fumaric acid), two ketocarboxylic acids (Pyr: pyruvic and WC<sub>2</sub>: glyoxylic acid), and two dicarbonyls (Gly: glyoxal and MeGly: methylglyoxal) (Table 1). These target compounds were identified by comparison of GC retention times with mass spectrums of authentic standards containing quantities of 100, 250, 500, 1000, 2500, and 5000 ng of each compound. The calibration curves were evaluated by the ratios of the peak area of each compound in the mass ion chromatogram to the peak of the internal standard. The peak area was calculated from the response to typical ion fragmentations of the corresponding derivatives of the target compounds (Table 1). The concentrations of diacids and other target compounds reported in this paper have been corrected by those of the procedural blanks, but they are not corrected for the collection efficiency of the sampling system and the recoveries of the authentic standards.

2.3 Aerosol mass spectrometer and data analysis

An Aerodyne aerosol mass spectrometer (AMS, Aerodyne Research Inc., Boston, USA) was used to measure the compositions (water content, organics, sulfate, nitrate, chloride, ammonium, etc.) of submicron aerosols (PM<sub>1</sub>) during 24–27 July 2007 and 7–13 December 2008. The mass concentrations of hydrocarbon-like organic aerosols (HOA) and oxygenated organic aerosols (OOA) were further separated, using m/z 57 (mostly C<sub>4</sub>H<sub>9</sub><sup>+</sup>) and m/z 44 (mostly CO<sub>2</sub><sup>+</sup>) as their tracers (Hagino et al., 2007). In addition, data for atmospheric pollutants and meteorological information (such as concentrations of suspended particulate matter [SPM] and ambient oxidants, temperature, and relative humidity) were provided by the

- 122 Atmospheric Environmental Regional Observation System of Japan, at a site located in the Saitama
- 123 Institute of Public Health, which is about 700 m from the sampling site.
- 124 3. Results and discussion
- 3.1 Collection efficiency of LMW diacids by the AD-FP system
- The AD-FP system included two KOH-coated denuders in series; therefore, we evaluated the denuder
- 127 collection efficiency of each individual diacid in gaseous phase ( $\varepsilon_d$ ) by applying Eq. (1):

$$\varepsilon_{\rm d} = C_{\rm d1} / (C_{\rm d1} + C_{\rm d2}), \qquad (1)$$

- where  $C_{\rm d1}$  is the concentration in the first denuder and  $C_{\rm d2}$  is the concentration in the second denuder. We
- obtained the collection efficiencies of the first denuder by applying Eq. (1) to data sampled in summer 2007
- 131 (Table 2). The average  $\varepsilon_d$  of total diacids (C<sub>2</sub>–C<sub>6</sub>, F, and M) in the first denuder was 0.86. If the collection
- efficiencies of the first and second denuders were equal and they were not affected by the concentration,
- then the collection efficiency of total diacids by the two denuders  $(1 (1 \varepsilon_d)^2)$  was as high as 0.98,
- suggesting that two KOH-coated denuders in series are efficient to collect gaseous LMW diacids.
- Although quartz fiber filters are known to be essentially 100% efficient in removing aerosol particles,
- 136 semivolatile compounds such as LMW diacids may partly evaporate from the first quartz filter during
- sampling (Limbeck et al., 2005; Ray and McDow, 2005) and then be adsorbed onto the subsequent
- KOH-impregnated filters. The collection efficiency of particulate phase diacids by the first quartz filter ( $\varepsilon_f$ )
- was evaluated by applying Eq. (2):

$$\varepsilon_{\rm f} = C_{\rm Q} / (C_{\rm Q} + C_{\rm KOH}), \qquad (2)$$

| where $C_Q$ is the concentration on the first quartz filter, and $C_{KOH}$ is the sum of the concentrations on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| second ( $C_{\rm f2}$ ) and third ( $C_{\rm f3}$ ) filters. The average $\varepsilon_{\rm f}$ of total diacids on the first filter was 0.80, based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sampling data from summer 2007 (Table 2). Gaseous diacids from the first filter can be collected with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| certain collection efficiency by KOH-impregnated filters. The low collection efficiency of M was due to its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| low concentration on the first filter in summer. Oxalic acid $(C_2)$ with its relatively high vapor pressure was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| the most abundant diacid in gaseous and particulate phases, and its average $\varepsilon_f$ on the second, KOH filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(C_{\rm f2}/(C_{\rm f2}+C_{\rm f3}))$ was 0.96 during summer 2007. The other diacids $(C_3-C_6, F, and M)$ on the second filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| presented low concentrations and they were usually below the detection limit on third filters. Therefore, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| three-filter system with two tandem KOH-impregnated filters is an efficient to collect particulate LMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| diacids. In particular, the $\varepsilon_f$ of malonic acid (C3) was largest among the detected diacids, possibly owing to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| its relatively low vapor pressure compared with $C_2$ and its relatively strong acidity compared with $C_4$ – $C_6$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| its relatively low vapor pressure compared with $C_2$ and its relatively strong acidity compared with $C_4$ – $C_6$ .  3.2 Gaseous and particulate phase concentrations of diacids in summer and winter                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.2 Gaseous and particulate phase concentrations of diacids in summer and winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.2 Gaseous and particulate phase concentrations of diacids in summer and winter  Gaseous and particulate phase concentrations of the target compounds in different seasons are shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.2 Gaseous and particulate phase concentrations of diacids in summer and winter Gaseous and particulate phase concentrations of the target compounds in different seasons are shown in Table 3. The concentrations of gaseous and particulate diacids in early-winter were lower than those in                                                                                                                                                                                                                                                                                                                                                          |
| 3.2 Gaseous and particulate phase concentrations of diacids in summer and winter  Gaseous and particulate phase concentrations of the target compounds in different seasons are shown in Table 3. The concentrations of gaseous and particulate diacids in early-winter were lower than those in summer, but higher than those in late-winter. In summer 2007, the average concentrations of total diacids                                                                                                                                                                                                                                               |
| 3.2 Gaseous and particulate phase concentrations of diacids in summer and winter  Gaseous and particulate phase concentrations of the target compounds in different seasons are shown in Table 3. The concentrations of gaseous and particulate diacids in early-winter were lower than those in summer, but higher than those in late-winter. In summer 2007, the average concentrations of total diacids (C <sub>2</sub> –C <sub>6</sub> , F, and M) in gaseous and particulate phases were 530 and 734 ng m <sup>-3</sup> , respectively. As the final                                                                                                |
| 3.2 Gaseous and particulate phase concentrations of diacids in summer and winter  Gaseous and particulate phase concentrations of the target compounds in different seasons are shown in Table 3. The concentrations of gaseous and particulate diacids in early-winter were lower than those in summer, but higher than those in late-winter. In summer 2007, the average concentrations of total diacids $(C_2-C_6, F, \text{ and } M)$ in gaseous and particulate phases were 530 and 734 ng m <sup>-3</sup> , respectively. As the final photochemical reaction product, $C_2$ was the most abundant species in both gaseous and particulate phases. |

be further oxidized to  $C_2$  diacid in gaseous and particulate phases.

| Temporal variations of gaseous and particulate concentrations for the typical diacid (C2),                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ketocarboxylic acid (WC2), and dicarbonyl (Gly) are shown in Fig. 2d, e. In summer 2007, gaseous phase                                                                          |
| curve of $C_2$ and $WC_2$ showed peaks in the daytime, whereas the lowest particulate phase concentrations                                                                      |
| were reached in the morning. Interestingly, maximum daily gaseous phase concentrations of $C_2$ and $WC_2$                                                                      |
| occurred in the afternoon (12:00-17:30) during 24-26 July (Fig. 2d), a behavior similar to the variation of                                                                     |
| oxidants in the atmosphere (Fig. 2a). Further, gaseous phase diacids showed a low correlation with a                                                                            |
| primary pollutant (NO gas): $r = 0.22$ for C <sub>2</sub> ; $r = 0.21$ for C <sub>3</sub> ; $r = 0.16$ for C <sub>4</sub> ; and $r = 0.19$ for C <sub>5</sub> ( $n = 35, 0.1$ ) |
| $). But most diacids showed a relatively good correlation with oxidants: r = 0.56 for C_2; r = 0.51$                                                                            |
| for C <sub>4</sub> ; and $r = 0.45$ for C <sub>5</sub> ( $n = 35$ , $p < 0.05$ ); the exception was C <sub>3</sub> ( $r = 0.28$ , $n = 35$ , $p < 0.1$ ). These results         |
| suggest that an important source of the diacids in the atmosphere was photochemical generation.                                                                                 |

As the typical oxygenated organics, the diacids in particulate phase accounted for about 11.8% (summer) and 8.9% (early-winter) of OOA mass. The concentration line of particulate phase in 2007 summer exhibited a time trend similar to OOA (Fig. 2c); the correlation between the particulate diacid concentrations in summer samples and OOA was good (r = 0.785, n = 13, p < 0.01). In addition, individual organic acid have the better correlation with sulphate than with nitrate.

# 3.3 Gas/particle partitioning of diacids

Particulate fractions to the total amounts  $(F_P = [P]/[G + P])$  of individual diacids, ketocarboxylic acids, and dicarbonyls in summer, late-winter, and early-winter samples are shown in Fig. 3. The variation of  $F_P$  among different compounds was larger than that among different seasons. In summer, LMW diacids

| 181 | $(C_2-C_5)$ and ketocarboxylic acids $(WC_2 \text{ and Pyr})$ had higher particulate phase occurrence $(F_P > 56\%)$ , |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 182 | whereas unsaturated diacids (M and F) had higher gaseous phase occurrence ( $F_P < 18\%$ ). And the $F_P$ values       |
| 183 | of dicarbonyls (Gly and MeGly) were clear smaller than those of LMW diacids and ketocarboxylic acids.                  |
| 184 | The difference of vapor pressure is the most direct explanation for the observed difference of $F_P$ values            |
| 185 | among individual compounds. It is expected that the lower the vapor pressure of a compound is, the higher              |
| 186 | its particulate phase occurrence will be. However, gaseous phase occurrence of $C_4$ – $C_6$ acids were relatively     |
| 187 | higher compared with $C_3$ in summer (Fig. 3), though vapor pressures of $C_4$ – $C_6$ are much lower than it of $C_3$ |
| 188 | at room temperature (1.0E-05 mmHg for $C_3$ , 6.9E-07 mmHg for $C_4$ , 4.1E-06 mmHg for $C_5$ , 1.50E-07               |
| 189 | mmHg for $C_6$ at $T=25^{\circ}C$ ; Saxena and Hildemann, 1996; Bilde et al., 2003). $C_3$ has relatively higher       |
| 190 | acidity and solubility in water than $C_4$ – $C_6$ , and thus is more efficiently scavenged from the gas phase into    |
| 191 | the particulate phase. Therefore, gas/particle partitioning depends not only on vapor pressure but also on             |
| 192 | other physical and chemical processes. For example, adsorption onto available particle surfaces or                     |
| 193 | absorption into the liquid phase of an individual compound may allow some gas-to-particle conversion to                |
| 194 | occur even when the gas phase pressure is below its saturation vapor pressure (Pankow, 1994; Lazaridis,                |
| 195 | 1999; Limbeck et al., 2005). In addition, aqueous phase reactions by OH radical can be a significant source            |
| 196 | of diacids in aerosols. The study by Ervens et al. (2004) showed OH oxidation or photolysis of Gly in the              |
| 197 | gas phase leads to $HO_2$ and $CO$ or formaldehyde, respectively, but in the aqueous phase photolysis does not         |
| 198 | occur because Gly is present as the geminal diol due to its high hydration constant. Product studies of the            |
| 199 | OH reaction in the aqueous phase (Ervens et al., 2003; Carlton et al., 2007) have shown that Gly (the                  |

smallest dicarbonyl) can be oxidized to  $WC_2$  (the smallest ketocarboxylic acid) and might be further

200

201

oxidized to  $C_2$  (the smallest diacid).

As shown in Fig. 3, the average  $F_P$  value of individual diacid was larger in winter than in summer, possibly because of seasonal environmental differences (temperature, sunlight, relative humidity, etc.). Further, the  $F_P$  value of individual diacid was regularly larger at night than in the daytime. The  $F_P$  diurnal variation of  $C_2$ ,  $WC_2$ , and Gly is shown in Fig. 4. In summer, the particulate phase occurrence of  $C_2$  and  $WC_2$  increased from their lowest values in the morning (06:00–11:30) to their highest values at night (18:00–21:30 or 00:00–05:30). Specially, the  $F_P$  diurnal variation of  $WC_2$  is much smaller in winter than in summer. The  $F_P$  diurnal variation of the diacids and ketocarboxylic acids exhibited a similar trend to the diurnal variation of relative humidity in the atmosphere, which is low in the daytime and becomes high at night (Fig. 2a). One interpretation of these results is that water-soluble acids in the gaseous phase dissolved in water contained in the particles. This formation mechanism may be the main gas-to-particle conversion pathway in winter, explaining the higher winter particulate phase occurrence of these acids.

213 3.4 Gas-to-particle sorption

To discuss gas-to-particle sorption on the basis of physical interactions, the gas/particle partition coefficient  $K_P$  is used (Pankow, 1994). The distribution of mass between gaseous and particulate phases at equilibrium can be described by  $K_P$  as follows:

217 
$$K_{\rm P} = [P]/([TSP]^*[G]),$$
 (3)

where  $K_P$  is the gas/particle partition coefficient for the target compound (m<sup>3</sup>  $\mu$ g<sup>-1</sup>), [TSP] is the concentration of total suspended particles (m<sup>3</sup>  $\mu$ g<sup>-1</sup>), [G] is the gaseous phase concentration of the target compound (ng m<sup>-3</sup>), and [P] is the particulate phase concentration (ng m<sup>-3</sup>). During the sampling period, diurnal TSP concentrations were not available; thus, we used the mass concentration of SPM (particle

- 222 diameter < 10 µm, a good approximation to TSP in Saitama city) instead of TSP concentration in Eq. (3). 223 The  $K_P$  values of individual compounds in different seasons are showed in Table 4. The  $K_P$  values of 224 diacids in late-winter (the average temperature 4.2 °C) were clear larger than those in summer (the average 225 temperature 26.2 °C). The log K<sub>P</sub> values of individual compounds showed a good negative correlation with 226 the ambient temperature: r = -0.74 for C<sub>2</sub> (Fig. 5), r = -0.75 for C<sub>3</sub>, r = -0.78 for C<sub>4</sub>, r = -0.62 for C<sub>5</sub>, r = -0.78227 = -0.53 for C<sub>6</sub>, r = -0.78 for WC<sub>2</sub>, r = -0.72 for Gly; n = 35, p < 0.01. These results indicated the 228 temperature dependence of gas-particle partitioning in the atmosphere, which is consistent with the 229 observed seasonal variation of gas/particle partitioning in Fig. 3.
- When we take the logarithm of the Eq. (3) and put the log  $K_P$  for y-axis and log [TSP] for x-axis, the curve is linear with a slope of -1:

$$\log K_{\rm P} = -\log \left[ {\rm TSP} \right] + \log \left( [P]/[G] \right) \tag{4}$$

To investigate the effect of the aerosol composition on gas-to-particle conversion, the relationship of  $K_P$  and sorption medium is expressed as Eq.5:

$$\log K_{\rm P} = m \log [{\rm sorption \ medium}] + b \tag{5}$$

236

237

238

239

240

Under equilibrium conditions, the expected slope (m) of Eq. 5 is a constant. However, sampling condition, sampling artifacts and /or nonequilibrium conditions may lead to variation of m values. Interpretation of the intercept term (b) depends on the assumed mechanism of particle-gas interaction. We used the concentrations of water content, sulfate, nitrate, ammonium, and organics in PM<sub>1</sub> (measured by AMS) instead of TSP as the sorption medium in Eq. (5).

| Based on the sampling data in 2007 summer and 2008 early-winter, regression statistics of log $K_P$                         |
|-----------------------------------------------------------------------------------------------------------------------------|
| against log [sorption medium] are carried out (Table 5). Sulfate and water content showed a strong bias to                  |
| Eq. (5) for most target organic compounds. $SO_4^{2-}$ are secondary formation in fine particles, and can                   |
| enhance the surface area and polarity of the existing particles, causing gas phase organic acids to be easily               |
| adsorbed and absorbed. Further, $\log K_P$ showed a particularly strong correlation with $\log$ [water content] for         |
| $C_2$ - $C_5$ diacids (Table 5), especially for $C_3$ ( $r = -0.89$ , $n = 27$ , $p < 0.01$ ; Fig. 6). The amounts of polar |
| organic compounds would be clearly increased as relative humidity rises above $\sim \! 50\%$ (Seinfeld et al.,              |
| 2001; Erdakos and Pankow, 2004). The higher humidity may cause formation of droplets in which the                           |
| gaseous phase organic acids can dissolve, thus promoting gas-to-particle conversion. A weak correlation                     |
| between $\log [K_P]$ and $\log$ [nitrate] was observed for all target compounds (Table 5), suggesting that the              |
| nitrate component in aerosols are not a good sorption medium for water-soluble organic acids. These                         |
| results suggest that gas/particle partitioning of diacids depends not only on physical and chemical                         |
| characteristics of the individual organic acid (vapor pressure, water solubility, acidity constant, etc.) but               |
| also on the compositions of the aerosols, such as its water content (affecting aerosol's sorption properties),              |
| sulfate (affecting secondary particle formation), and ammonium (affecting aerosol acidity and ammonium                      |
| salt formation).                                                                                                            |

# 4. Conclusions

An annular denuder-filter pack system using KOH as the sorbent can efficiently collect gaseous and particulate dicarboxylic acids in the atmosphere. Concentrations of LMW diacids determined by GC/MS were higher in summer than in winter, and exhibited higher particulate phase occurrence than gaseous

| 261 | phase occurrence. Gaseous diacid concentrations tended to be higher in daytime and showed a good           |
|-----|------------------------------------------------------------------------------------------------------------|
| 262 | correlation with oxidants, whereas particulate diacid concentrations were lowest in the morning and their  |
| 263 | occurrence showed a similar trend to the diurnal variation of relative humidity in the atmosphere. These   |
| 264 | findings suggest that photochemical generation is an important source of gaseous diacids, but that         |
| 265 | gas-to-particle partitioning of diacids depends not only on the concentration level of gaseous phase by    |
| 266 | photochemical oxidation but also on the atmosphere state (such as temperature, sunlight, and relative      |
| 267 | humidity) and aerosol characteristics (such as particle mass, aerosol acidity, particle surface, and water |
| 268 | content, etc.).                                                                                            |
| 269 | Acknowledgments                                                                                            |
| 270 | This work was supported in part by a grant-in-aid from Saitama University and conducted as a part of       |
| 271 | the research activities of the Japan Petroleum Energy Center.                                              |
| 272 | References                                                                                                 |
| 273 | Abbatt, J.P.D., Broekhuizen, K., Pradeep Kumar, P., 2005. Cloud condensation nucleus activity of           |
| 274 | internally mixed ammonium sulfate/organic acid aerosol particles. Atmospheric Environment 39,              |
| 275 | 4767–4778.                                                                                                 |
| 276 | Arai, T., Sakamoto, K., 1999. Measurements of gaseous and particulate Oxalic acid in an urban              |
| 277 | environment. Journal of Aerosol Research, Japan 14, 40–45.                                                 |
| 278 | Baboukas, E.D., Kanakidou, M., Mihalopoulos, N., 2000. Carboxylic acids in gas and particulate phase       |
| 279 | above the Atlantic Ocean. Journal of Geophysical Research 105, 14459–14471.                                |

| 280 | Bilde, M., Svenningsson, B., Mønster, J., Rosenørn, T., 2003. Even-odd alternation of evaporation rates                    |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 281 | and vapor pressures of C <sub>3</sub> –C <sub>9</sub> dicarboxylic acid aerosols. Environmental Science and Technology 37, |
| 282 | 1371–1378.                                                                                                                 |
| 283 | Carlton, A.G., Turpin, B.J., Altieri, K.E., Seitzinger, S., Reff, A., Lim, H., Ervens, B., 2007. Atmospheric               |
| 284 | oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments.                                |
| 285 | Atmospheric Environment 41, 7588–7602.                                                                                     |
| 286 | Cruz, C.N., Pandis, S.N., 1998. The effect of organic coatings on the cloud condensation nuclei activation                 |
| 287 | of inorganic atmospheric aerosol. Journal of Geophysical Research 103, 13111–13123.                                        |
| 288 | Erdakos, G.B., Pankow, J.F., 2004. Gas/particle partitioning of neutral and ionizing compounds to single-                  |
| 289 | and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar                  |
| 290 | and low-polarity organic compounds. Atmospheric Environment 38, 1005–1013.                                                 |
| 291 | Ervens, B., Feingold, G., Frost, G.J., Kreidenweis, S.M., 2004. A modeling study of aqueous production of                  |
| 292 | dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. Journal of                                 |
| 293 | Geophysical Research 109, D15205, 4440, doi: 10.1029/2003JD004387.                                                         |
| 294 | Ervens, B., Gligorovski, S., Herrmann, H., 2003. Temperature-dependent rate constants for hydroxyl                         |
| 295 | radical reactions with organic compounds in aqueous solutions. Physical Chemistry Chemical Physics                         |
| 296 | 5, 1811–1824.                                                                                                              |
| 297 | Gundel, L., Lee, V., Mahanama, K., Stevens, R., Daisey, J., 1995. Direct determination of the phase                        |
| 298 | distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmospheric                        |
| 299 | Environment 29, 1719–1733.                                                                                                 |

| 300 | Hagino, H. Takada, T., Kunimi, H., Sakamoto, K., 2007. Characterization and source presumption of          |
|-----|------------------------------------------------------------------------------------------------------------|
| 301 | wintertime submicron organic aerosols at Saitama, Japan, using the Aerodyne aerosol mass                   |
| 302 | spectrometer. Atmospheric Environment, 41, 8834–8845.                                                      |
| 303 | Kalberer, M., Yu, J., Cocker, D.R., Flagan, R.C., Seinfeld, J.H., 2000. Aerosol formation in the           |
| 304 | cyclohexene-ozone system. Environmental Science and Technology 34, 4894–4901.                              |
| 305 | Kawamura, K., Yasui, O., 2005. Diurnal changes in the distribution of diacids, ketocarboxylic acids and    |
| 306 | dicarbonyls in the urban Tokyo atmosphere. Atmospheric Environment 39, 1945–1960.                          |
| 307 | Lazaridis, M., 1999. Gas-particle partitioning of organic compounds in the atmosphere. Journal of Aerosol  |
| 308 | Sciences, 30, 1165–1170.                                                                                   |
| 309 | Limbeck, A., Kraxner Y., Puxbaum, H., 2005. Gas to particle distribution of low molecular weight diacids   |
| 310 | at two different sites in central Europe (Austria). Journal of Aerosol Science 36, 991-1005.               |
| 311 | Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C., 2001. Semivolatile behavior of diacids and other polar |
| 312 | organic species at a rural background site (Nylsvley, RSA). Atmospheric Environment 31, 1853–1862.         |
| 313 | Matsunaga, S.N., Kato, S., Yoshino, A., Greenberg, J.P., Kajii, Y., Guenther, A.B., 2005. Gas-aerosol      |
| 314 | partitioning of semi volatile carbonyls in polluted atmosphere in Hachioji, Tokyo. Geophysical             |
| 315 | Research Letters 32, L11805.                                                                               |
| 316 | Ortiz, R., Enya, K., Sekiguchi, K., Sakamoto, K., 2009. Experimental testing of an annular denuder and     |
| 317 | filter system to measure gas-particle partitioning of semivolatile bifunctional carbonyls in the           |
| 318 | atmosphere. Atmospheric Environment 43, 382-388.                                                           |

319 Ortiz, R., Hagino, H., Sekiguchi, K., Wang Q., Sakamoto K., 2006. Ambient air measurements of six 320 bifunctional carbonyls in a suburban area, Atmospheric Research 82, 709-718. 321 Pankow, J.F., 1994. An absorption model of the gas/particle partitioning of organic compounds in the 322 atmosphere. Atmospheric Environment 28, 185-188. 323 Peng, C., Chan, M.N., Chan, C.K., 2001. The hygroscopic properties of dicarboxylic and multifunctional 324 acids: measurements and UNIFAC predictions. Environmental Science and Technology 35, 325 4495-4501. 326 Ray, J., McDow, S.R., 2005. Dicarboxylic acid concentration trends and sampling artifacts. Atmospheric 327 Environment 39, 7906-7919. 328 Saxena, P., Hildemann, L.M., 1996. Water-soluble organics in atmospheric particles: A critical review of 329 the literature and application of thermodynamics to identify candidate compounds, Journal of 330 Atmospheric Chemistry 24 (1), 57-109. 331 Seinfeld, J.H., Erdakos, G.B., Asher, W.E., Pankow, J.F., 2001. Modeling the formation of secondary 332 organic aerosols: 2. The predicted effects of relative humidity on aerosol formation in the  $\alpha$ -pinene-, 333 β-pinene-, sabinene-, Δ<sup>3</sup>-carene, and cyclohexene-ozone systems. Environmental Science and 334 Technology 35, 1806-1817. 335 Ye, Y., Tsai, C.J., Pui, D.Y.H., Lewis, C.W., 1991. Particle transmission characteristics of an annular 336 denuder ambient sampling systems. Aerosol Science and Technology 14, 102–111. 337 Yu, J., Cocker, D.R., Griffin, R.J., Flagan, R.C., Seinfeld, J.H., 1999. Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. Journal of Atmospheric Chemistry 34, 207–258.



| 339 | Table Headings                                                                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 340 | Table 1 Retention times, slopes, and regression coefficients $(r^2)$ for calibration curves of the target                 |
| 341 | compounds                                                                                                                 |
| 342 | Table 2 Collection efficiencies of the first denuder for gaseous phase compounds and of the quartz filter for             |
| 343 | particulate phase compounds                                                                                               |
| 344 | Table 3 Concentrations (ng m <sup>-3</sup> ) of diacids, ketocarboxylic acids, and dicarbonyls in gaseous and particulate |
| 345 | phases in different seasons                                                                                               |
| 346 | Table 4 Gas/particle partition coefficient $K_P$ of diacids, ketocarboxylic acids, and dicarbonyls in different           |
| 347 | seasons                                                                                                                   |
| 348 | Table 5 Regression statistics of log $K_P$ against log [sorption medium] for the diacids, ketocarboxylic acids,           |
| 349 | and dicarbonyls in summer and early-winter samples ( $n = 27$ )                                                           |

| 350 |                                                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 351 | Figure Captions                                                                                                                            |
| 352 | Fig. 1. Schematic diagram of the annular denuder–filter pack (AD-FP) system.                                                               |
| 353 | Fig. 2. Temporal variations of (a) ambient oxidant concentration and relative humidity, (b) sulfate, nitrate                               |
| 354 | and ammonium, (c) HOA and OOA, (d) gaseous concentrations and (e) particulate concentrations of mair                                       |
| 355 | organic compounds (D1, 6:00-11:30; D2, 12:00-17:30; N1, 18:00-23:30; N2, 00:00-05:30; D                                                    |
| 356 | 7:00–18:30; N, 19:00–06:30).                                                                                                               |
| 357 | Fig. 3. Particulate fraction $(F_P)$ of the individual diacids, ketocarboxylic acids, and dicarbonyls in different                         |
| 358 | seasons.                                                                                                                                   |
| 359 | Fig. 4. Diurnal variation of particulate fraction (F <sub>P</sub> ) of C <sub>2</sub> , WC <sub>2</sub> , and Gly in different seasons (D1 |
| 360 | 6:00-11:30; D2, 12:00-17:30; N1, 18:00-23:30; N2, 00:00-05:30; D, 7:00-18:30; N, 19:00-06:30).                                             |
| 361 | Fig. 5. Log $K_P$ against $T$ for $C_2$ .                                                                                                  |

Fig. 6. Log  $K_P$  against log [water content] for  $C_3$ .

Table 1 Retention times, slopes, and regression coefficients  $(r^2)$  of the calibration curves for the target

# 364 compounds

363

| Retention time (min) | Target compound (abbr.)           | Туре                          | m/z <sup>a</sup>     | Slope | $r^2$ value |
|----------------------|-----------------------------------|-------------------------------|----------------------|-------|-------------|
| 5.88                 | Methylglyoxal (MeGly)             | Dicarbonyl                    | 41, 57, 103          | 1.72  | 0.971       |
| 6.67                 | Oxalic acid (C <sub>2</sub> )     | Saturated n-dicarboxylic acid | 41, 57               | 2.81  | 0.991       |
| 7.51                 | Malonic acid (C <sub>3</sub> )    | Saturated n-dicarboxylic acid | 41,57, 87, 105, 143  | 2.62  | 0.982       |
| 8.68                 | Maleic acid (M)                   | Unsaturated dicarboxylic acid | 41, 57, 99, 117      | 2.34  | 0.985       |
| 8.95                 | Succinic acid (C <sub>4</sub> )   | Saturated n-dicarboxylic acid | 41, 57, 101, 157     | 2.23  | 0.995       |
| 9.23                 | Fumaric acid (F)                  | Unsaturated dicarboxylic acid | 41, 56, 117, 155     | 1.98  | 0.992       |
| 9.41                 | Pyruvic acid (Pyr)                | Ketocarboxylic acid           | 41, 61, 89           | 1.75  | 0.976       |
| 9.55                 | Glyoxylic acid (WC <sub>2</sub> ) | Ketocarboxylic acid           | 41, 57, 103          | 3.17  | 0.969       |
| 10.23                | Glutaric acid (C <sub>5</sub> )   | Saturated n-dicarboxylic acid | 41, 55, 87, 115, 171 | 2.08  | 0.995       |
| 11.60                | Adipic acid (C <sub>6</sub> )     | Saturated n-dicarboxylic acid | 41, 87, 111, 129,    | 1.86  | 0.993       |
| 11.85                | Glyoxal (Gly)                     | Dicarbonyl                    | 41, 55, 159          | 3.76  | 0.988       |

<sup>&</sup>lt;sup>a</sup> Typical ion fragmentations of corresponding derivatives.

Table 2 Collection efficiencies of the first denuder for gaseous phase compounds and of the quartz filter for

# particulate phase compounds

366

| Compound                      |                    | Denuder           |       | Filter                     |                   |       |  |  |
|-------------------------------|--------------------|-------------------|-------|----------------------------|-------------------|-------|--|--|
|                               | $arepsilon_{ m d}$ | S.D. <sup>a</sup> | $n^b$ | $\mathcal{E}_{\mathrm{f}}$ | S.D. <sup>a</sup> | $n^b$ |  |  |
| Oxalic (C <sub>2</sub> )      | 0.80               | 0.16              | 12    | 0.77                       | 0.18              | 12    |  |  |
| Malonic (C <sub>3</sub> )     | 0.90               | 0.08              | 12    | 0.90                       | 0.14              | 12    |  |  |
| Succinic (C <sub>4</sub> )    | 0.90               | 0.09              | 12    | 0.70                       | 0.15              | 12    |  |  |
| Glutaric (C <sub>5</sub> )    | 0.83               | 0.10              | 12    | 0.82                       | 0.15              | 12    |  |  |
| Adipic acid (C <sub>6</sub> ) | 0.85               | 0.17              | 12    | 0.81                       | 0.12              | 12    |  |  |
| Maleic (M)                    | 0.93               | 0.03              | 8     | 0.52                       | 0.24              | 10    |  |  |
| Fumaric (F)                   | 0.82               | 0.23              | 8     | 0.83                       | 0.14              | 10    |  |  |
| Glyoxylic (WC <sub>2</sub> )  | 0.90               | 0.06              | 12    | 0.93                       | 0.04              | 12    |  |  |
| Methylglyoxal (MeGly)         | 0.94               | 0.07              | 12    | 0.86                       | 0.22              | 12    |  |  |
| Total diacids                 | 0.86               | 0.12              | 12    | 0.80                       | 0.10              | 12    |  |  |

Table 3 Concentrations (ng m<sup>-3</sup>) of diacids, ketocarboxylic acids, and dicarbonyls in gaseous and particulate phases in different seasons

| Compound        | 200     | 7 summe | er (n = 13)         | 3)   | 2008 | late-wi | nter (n = | = 8)   | 2008 early-winter ( $n = 14$ ) |      |             |      |  |
|-----------------|---------|---------|---------------------|------|------|---------|-----------|--------|--------------------------------|------|-------------|------|--|
| _               | Gaseous |         | Gaseous Particulate |      | Gase | Gaseous |           | culate | Gaseous                        |      | Particulate |      |  |
|                 | Mean    | S.D.    | Mean                | S.D. | Mean | S.D.    | Mean      | S.D.   | Mean                           | S.D. | Mean        | S.D. |  |
| Diacids         |         |         |                     |      |      |         |           |        |                                |      |             |      |  |
| $C_2$           | 302     | 158     | 473                 | 255  | 92   | 99      | 154       | 63     | 148                            | 52   | 304         | 146  |  |
| $C_3$           | 26.8    | 28.3    | 122                 | 98.9 | 3.7  | 3.6     | 32.7      | 23.7   | 4.8                            | 4.0  | 51.3        | 18.6 |  |
| $C_4$           | 54.7    | 36.4    | 70.6                | 39.3 | 3.4  | 2.2     | 26.1      | 22.0   | 7.7                            | 16.8 | 62.1        | 23.0 |  |
| $C_5$           | 20.3    | 14.4    | 27.9                | 35.3 | 12.5 | 10.0    | 16.9      | 17.4   | 5.5                            | 3.8  | 9.8         | 4.2  |  |
| $C_6$           | 38.4    | 16.2    | 28.8                | 16.8 | 6.1  | 5.5     | 16.1      | 22.0   | 31.6                           | 17.2 | 18.0        | 10.9 |  |
| M               | 42.6    | 41.5    | 5.0                 | 3.2  | 1.3  | 0.8     | 2.4       | 2.8    | 34.6                           | 28.7 | 6.1         | 3.5  |  |
| F               | 45.4    | 20.3    | 6.4                 | 3.2  | 6.6  | 5.5     | 2.0       | 3.6    | 15.7                           | 17.7 | 10.2        | 5.9  |  |
| Total diacids   | 530     | 273     | 734                 | 406  | 125  | 105     | 250       | 138    | 248                            | 97   | 462         | 193  |  |
| Other target co | mpounds | ;       |                     |      |      |         |           |        |                                |      |             |      |  |
| $WC_2$          | 29.4    | 17.9    | 56.5                | 44.7 | 6.2  | 4.8     | 45.8      | 27.4   | 29.0                           | 14.4 | 102         | 32.1 |  |
| Pyr             | 37.9    | 17.5    | 61.1                | 51.2 | 8.7  | 4.0     | 10.6      | 5.5    | 41.9                           | 39.8 | 85.3        | 29.7 |  |
| Gly             | 88.0    | 83.9    | 26.7                | 15.9 | 24.4 | 13.1    | 21.7      | 18.2   | 50.3                           | 27.6 | 60.9        | 25.8 |  |
| MeGly           | 31.5    | 26.6    | 19.8                | 13.4 | 37.5 | 60.7    | 18.0      | 16.3   | 65.2                           | 47.9 | 39.3        | 14.3 |  |

Table 4 Gas/particle partition coefficient  $K_P$  of diacids, ketocarboxylic acids, and dicarbonyls in different

# 372 seasons

| Compound |          | $K_{\rm P}  ({\rm m}^3  {\rm \mu g}^{-1})$ |              |
|----------|----------|--------------------------------------------|--------------|
|          | Summer   | Late-winter                                | Early-winter |
|          | (n = 13) | (n = 8)                                    | (n = 14)     |
| $C_2$    | 0.014    | 0.034                                      | 0.025        |
| $C_3$    | 0.018    | 0.044                                      | 0.034        |
| $C_4$    | 0.015    | 0.040                                      | 0.033        |
| $C_5$    | 0.011    | 0.030                                      | 0.024        |
| $C_6$    | 0.010    | 0.029                                      | 0.014        |
| M        | 0.008    | 0.024                                      | 0.010        |
| F        | 0.003    | 0.010                                      | 0.020        |
| $WC_2$   | 0.013    | 0.043                                      | 0.031        |
| Pyr      | 0.010    | 0.026                                      | 0.026        |
| Gly      | 0.008    | 0.021                                      | 0.020        |
| MeGly    | 0.010    | 0.025                                      | 0.017        |

Table 5 Regression statistics of  $\log K_P$  against  $\log$  [sorption medium] for the diacids, ketocarboxylic acids,

and dicarbonyls in summer and early-winter samples (n = 27)

374

375

| Compound Water content <sup>a</sup> |       |       |       | Sulfate |       | Nitrate |       |       | Ammonium |       |       | Organics |       |       |       |
|-------------------------------------|-------|-------|-------|---------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|-------|
|                                     | r b   | m     | b     | r       | m     | b       | r     | Slope | Inter    | r     | Slope | Inter    | r     | Slope | Inter |
| C <sub>2</sub>                      | -0.76 | -0.40 | -1.41 | -0.75   | -0.48 | -1.65   | -0.24 | -0.17 | -1.71    | -0.41 | -0.36 | -1.61    | -0.62 | -0.84 | -1.01 |
| $C_3$                               | -0.89 | -0.48 | -1.20 | -0.86   | -0.57 | -1.49   | -0.29 | -0.22 | -1.56    | -0.52 | -0.48 | -1.43    | -0.68 | -0.97 | -0.77 |
| $\mathbb{C}_4$                      | -0.82 | -0.56 | -1.21 | -0.80   | -0.67 | -1.54   | -0.06 | -0.06 | -1.70    | -0.34 | -0.39 | -1.55    | -0.49 | -0.88 | -0.93 |
| $C_5$                               | -0.69 | -0.41 | -1.46 | -0.61   | -0.45 | -1.72   | -0.04 | -0.03 | -1.83    | -0.14 | -0.15 | -1.78    | -0.42 | -0.66 | -1.24 |
| $C_6$                               | -0.44 | -0.29 | -1.76 | -0.53   | -0.43 | -1.91   | -0.26 | -0.24 | -1.94    | -0.37 | -0.42 | -1.83    | -0.29 | -0.51 | -1.57 |
| M                                   | -0.44 | -0.54 | -1.92 | -0.51   | -0.76 | -2.20   | 0.05  | 0.09  | -2.45    | -0.24 | -0.51 | -2.18    | -0.23 | -0.74 | -1.74 |
| F                                   | -0.69 | -0.78 | -1.49 | -0.63   | -0.87 | -1.96   | 0.27  | 0.42  | -2.37    | 0.00  | 0.00  | -2.21    | -0.20 | -0.60 | -1.66 |
| $WC_2$                              | -0.78 | -0.51 | -1.29 | -0.73   | -0.58 | -1.59   | -0.16 | -0.14 | -1.70    | -0.31 | -0.34 | -1.60    | -0.56 | -0.96 | -0.89 |
| Pyr                                 | -0.60 | -0.45 | -1.43 | -0.49   | -0.45 | -1.72   | -0.05 | -0.05 | -1.83    | -0.06 | -0.07 | -1.81    | -0.39 | -0.76 | -1.15 |
| Gly                                 | -0.77 | -0.69 | -1.37 | -0.64   | -0.70 | -1.81   | 0.01  | 0.02  | -2.01    | -0.15 | -0.23 | -1.90    | -0.37 | -0.89 | -1.20 |
| MeGly                               | -0.54 | -0.38 | -1.64 | -0.60   | -0.52 | -1.84   | -0.30 | -0.28 | -1.88    | -0.35 | -0.42 | -1.79    | -0.46 | -0.85 | -1.21 |

<sup>&</sup>lt;sup>a</sup> The concentrations of water content, sulfate, nitrate, ammonium, and organics in PM<sub>1</sub> are from AMS data;

<sup>&</sup>lt;sup>b</sup> The correlation coefficient (*r*), slope (*m*), and intercept (*b*) of Eq. 5.





Date and time





Date and time



