Code Mobility

Konstantin Selyunin e1228206@student.tuwien.ac.at

Igor Pelesić

igor.pelesic@gmail.com

Miljenko Jakovljević

micky686@gmail.com

06. December 2012

Outline

- Introduction
 - Code mobility overview
 - Level of abstraction
 - Requirements
- System architecture
 - General overview
 - Agents
 - Platform
 - Scheduler
 - Execution Layer
 - Communication Protocol
- Project management
- Tools

Code mobility overview Concept of code mobility

Concept of code mobility

Mobile agent

Strong and weak code mobility

Layered architecture

Advantages of code mobility

Move code close to resources

Enable client customization of remote resources

Performance gains

[FPV98, BCMV06]

Level of abstraction

Requirements

- Agents:
 - simple language
 - support mobility and message exchange
- Platform:
 - execute agents concurrently
 - provide hardware services to agents
- Communication:
 - transfer agents & state strong mobility
 - transfer messages between platforms
 - cross board communication via Zigbee

General overview

3 layered architecture:

- Agent level
- Platform level
- communication & drivers

Mobile agent 1

...

MEASURE: get temp compare acc, ERROR jmpneq SUCCEED move to temp jmp MEASURE: SUCCEED: //do some staff with temp Get temperature value

Platform can provide this service?

yes: do staff

Mobile agent 1

MEASURE: get temp

compare acc, ERROR impneq SUCCEED move to temp imp MEASURE:

SUCCEED:

//do some staff with temp

..

Get temperature value

Platform can provide this service?

yes: do staff

Mobile agent 1

...

MEASURE: get temp compare acc, ERROR jmpneq SUCCEED move to temp jmp MEASURE:

SUCCEED:

//do some staff with temp

••

Get temperature value

Platform can provide this service?

yes: do staff

Mobile agent 1

MEASURE: get temp compare acc, ERROR jmpneq SUCCEED move to temp jmp MEASURE

SUCCEED: //do some staff with temp

Get temperature value

Platform can provide this service?

yes: do staff

General overview Agents Platform Communication Protocol

Platform

Scheduler

Execution Layer

Protocol Design

Requirements

Local and remote communication

bridging layers

Sending agent code

possibly large size

Sending application data

• implicit time information

Network Infrastructure

Protocol Design cont.

Design Principles

Layered design

- Low level CSMA/CA
- High Level Routing

Composability with Zigbee

IEEE 802.15.4

Fairness in network access

Acknowledgement and retry

- Unreliable network
- Congestion avoidance
- Complexity e.g. TCP

Transmission Layers

Byte	MSB	LSB	
0	destination node	payload length	
1	data		
1 1			
14	data		
15	crc		

Figure : Low Level Datagram

Byte MSB		LSB	
o[destination node	payload length	
1	source node	destination board	
2	source board	packet type	
3	frame id		
4	packet id high		
5	packet id low		
6	empty		
7[data		
lıΓ			
14	data		
15	crc		

Figure : High Level Datagram

Network Configuration

Figure: Zigbee Mesh Network

Zigbee Network Configuration

Rerouting Example

Figure: Network after rerouting

- Network Coordinator
 Failed Node
- Network Router
- Message Route

Milestones

Phase 1. Product outline and information gathering

Phase 2. Application requirements and specification

Phase 3. Implementation

Phase 4. Validation and analysis

Gantt diagram

Workpackages

	Name	Interdependencies	Dates	Deliverables
WP1	Documentation	all	25.10.12 - 15.01.13	D1.1 Lab protocol
				D1.2 specification
				D1.3 workshop1
				D1.4 workshop2
WP2	Adaption of drivers		5.12 - 15.12	D2.1 hardware drivers
WP3	Agent language tool		6.12 - 10.12	D2.1 Agent language assembler tool
WP4	Communication	D2.1		Protocol
WP5	Platform	WP3, WP4	10.12 - 21.12	D3.1 Platform

Tools

Version control

Documentation & code repository

File sharing

Project management

IDE

Editors

git

github

amazon s3

redmine

http://nes2012 group 4. herokuapp.com/

Eclipse

Emacs

References

Ezio Bartocci, Flavio Corradini, Emanuela Merelli, and Leonardo Vito.

Model driven design and implementation of activity-based applications in hermes.

Proceedings of the 7th WOA 2006 Workshop, From Objects to Agents (Dagli Oggetti Agli Agenti), Catania, Italy, September 26-27, 2006, 2006.

Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code mobility.

IEEE Transactions on Software Engineering, 24:342–361, 1998.

Questions

Introduction System architecture Project management Tools

Roles

Konstantin Selyunin		
Project manager	internal coordination	
	defining tasks	
	control meeting deadlines	
Igor Pelesić		
System architect	technical decisions	
	determine technical part of the project	
Miljenko Jakovljević		
Documentation responsible	Lab protocol	
	documentation decisions	