

모자이크

샐마는 벽에 점토 모자이크를 색칠할 계획이다. 모자이크는 초기에 N^2 개의 색칠되지 않은 1×1 정사각형 타일들로 이루어진 $N\times N$ 격자이다. 모자이크의 행들은 위에서 아래 방향으로 0부터 N-1까지 번호가 붙어있고, 열들은 왼쪽에서 오른쪽으로 0부터 N-1까지 번호가 붙어있다. i 행과 j 열 $(0\le i< N,\, 0\le j< N)$ 의 타일은 (i,j)로 나타낸다. 각 타일은 흰색 (0으로 나타냄) 또는 검은색 (1로 나타냄)으로 색칠 해야만 한다.

모자이크를 색칠하기 위해 샐마는 우선 길이 N의 두 배열 X와 Y를 선택하는데, 배열의 각 원소는 0 또는 1의 값을 가지고 X[0]=Y[0]을 만족한다. 그녀는 먼저 배열 X에 따라서 가장 위쪽 행(0 행)의 타일들을 색칠하는데, 타일 (0,j)의 색은 X[j] $(0 \le j < N)$ 와 같다. 그녀는 그 다음 배열 Y에 따라서 가장 왼쪽 열(0 열)의 타일들을 색칠하는데, 타일 (i,0)의 색은 Y[i] $(0 \le i < N)$ 와 같다.

그 후 그녀는 모든 타일들을 색칠할 때까지 다음 과정들을 반복한다:

- 그녀는 위쪽 이웃 (타일 (i-1,j))과 왼쪽 이웃 (타일 (i,j-1))이 이미 모두 색칠된 임의의 색칠되지 않은 타일 (i,j)을 찾는다.
- 그런 후, 그녀는 두 이웃 모두가 흰색이면 타일 (i,j)를 검은색으로, 그렇지 않으면 흰색으로 색칠한다.

타일들의 최종 색깔은 샐마가 색칠하는 순서와 상관 없음을 보일 수 있다.

야스민은 모자이크의 타일들의 색깔에 대해서 매우 호기심이 많다. 그녀는 샐마에게 0부터 Q-1까지 번호가 붙은 Q개 질의를 묻는다. 질의 k $(0 \le k \le Q)$ 에서, 모자이크의 부분 직사각형 영역을 다음과 같이 제시한다:

- 가장 위쪽 행 T[k]와 가장 아래쪽 행 B[k] $(0 \le T[k] \le B[k] < N)$,
- 가장 왼쪽 열 L[k]와 가장 오른쪽 열 R[k] $(0 \le L[k] \le R[k] < N)$.

질의에 대한 답은 이 부분 직사각형에 속하는 검은색 타일들의 수이다. 구체적으로, 샐마는 $T[k] \leq i \leq B[k]$, $L[k] \leq j \leq R[k]$ 를 만족하고 검은색인 타일 (i,j)가 몇 개 존재하는지 찾아야 한다.

야스민의 질의들에 답하는 프로그램을 작성하시오.

Implementation Details

당신은 다음 함수를 구현해야만 한다.

```
std::vector<long long> mosaic(
    std::vector<int> X, std::vector<int> Y,
    std::vector<int> T, std::vector<int> B,
    std::vector<int> L, std::vector<int> R)
```

- X, Y: 각각 가장 위쪽 행 $(0 \ blue{ b$
- T, B, L, R: 야스민이 물은 질의들을 나타내는 길이 Q의 배열들.
- 함수는 길이 Q의 배열 C를 반환해야 한다. 여기서, C[k]는 질의 k (0 < k < Q)의 답이다.
- 이 함수는 각 테스트 케이스에 대해 정확히 한 번 호출된다.

Constraints

- $1 \le N \le 200\,000$
- 1 < Q < 200000
- ullet $0 \leq i < N$ 인 각 i에 대해서, $X[i] \in \{0,1\}$ 이고 $Y[i] \in \{0,1\}$
- X[0] = Y[0]
- $0 \leq k < Q$ 인 각 k에 대해서, $0 \leq T[k] \leq B[k] < N$ 이고 $0 \leq L[k] \leq R[k] < N$

Subtasks

Subtask	Score	Additional Constraints
1	5	$N \leq 2; Q \leq 10$
2	7	$N \leq 200; Q \leq 200$
3	7	$T[k] = B[k] = 0 \ (0 \le k < Q$ 인 각 k 에 대해)
4	10	$N \leq 5000$
5	8	$X[i] = Y[i] = 0 \ (0 \leq i < N$ 인 각 i 에 대해)
6	22	$T[k] = B[k]$ 그리고 $L[k] = R[k]$ ($0 \leq k < Q$ 인 각 k 에 대해)
7	19	$T[k] = B[k]$ ($0 \leq k < Q$ 인 각 k 에 대해)
8	22	추가적인 제약조건이 없다.

Example

다음 호출을 생각해보자.

```
mosaic([1, 0, 1, 0], [1, 1, 0, 1], [0, 2], [3, 3], [0, 0], [3, 2])
```

이 예제는 아래에 그림으로 보여진다. 왼쪽 그림은 모자이크의 타일들의 색깔을 보여준다. 중간과 오른쪽 그림은 각각 야스민이 첫번째와 두번째 질의에서 물은 부분 직사각형을 보여준다.

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

	0	1	2	3
0	1	0	1	0
1	1	0	0	1
2	0	1	0	0
3	1	0	1	0

질의들(다시 말해서, 그늘진 직사각형 영역 속 1의 수)에 대한 답은 각각 7과 3이다. 그러므로, 함수는 [7,3]를 반환해야 한다.

Sample Grader

입력 형식:

```
N
X[0] X[1] ... X[N-1]
Y[0] Y[1] ... Y[N-1]
Q
T[0] B[0] L[0] R[0]
T[1] B[1] L[1] R[1]
...
T[Q-1] B[Q-1] L[Q-1] R[Q-1]
```

출력 형식:

```
C[0]
C[1]
...
C[S-1]
```

여기서, S는 mosaic에 의해 반환된 배열 C의 길이이다.