CSE 453

The FPGA

The Field Programmable Gate Array (FPGA)

- Types
 - SRAM based
 - Antifuse based
 - Flash based
- Elements in an FPGA
 - Combinational Logic
 - Interconnections
 - I/O Pins

SRAM Based FPGAs

- Configuration held in static memory (SRAM)
 - SRAM output continuously drives circuit
 - DRAM not used due to required refresh
- Advantages
 - Easily Reprogrammable
 - Dynamically Reconfigurable
 - ♦ Can be reprogrammed while system is in operation
 - Fabrication uses standard VLSI processes
- Disadvantages
 - Power Consumption
 - Bits Susceptible to Theft

History of the FPGA

- Inventor Ross Freeman
- Early FPGA Manufacturers
 - Xilinx
 - Altera
 - Actel
- Early Uses of the FPGA
 - Glue Logic
 - Prototyping Devices
- Today's Uses of the FPGA
 - Wide Variety of Digital Systems
 - High speed telecommunications equipment
 - Video accelerators in home personal video recorders

FPGA Characteristics

- Standard Parts
 - Not designed for particular function
 - Programmed by customer for particular purpose

- Implement Multilevel Logic
 - Logic blocks can be connected in networks of arbitrary depth
 - ♦ Compare to PLDs
 - √ Two levels of NAND/NOR.

FPGA Programming

- FPGA "program" is know as a "personality" interwoven into a logic structure
 - Programming directly implements logic functions & interconnects
 - Does NOT fetch instructions
- Compare to Stored Program Computer

Programming the FPGA

- Permanently Programmed vs. Reprogrammable
- Reprogrammable devices are know as reconfigurable devices
 - Ideal for
 - ♥ Prototyping
 - Machines that serve different functions at different times

FPGA Logic

- Fine-Grained Logic
 - Logic elements implement a smaller function (with a handful of gates) & a register
- Coarse-Grained Logic
 - Logic elements implement a larger function (such as an ALU) & a register
- Platform FPGAs
 - Newer category
 - Incorporates several different types of structures
 - Large systems can be implemented by mapping parts on type best suited for it
 - Typically includes CPU so some functions can be run in software
 - May also include specialized bus logic

FPGA vs. Custom VLSI

- Application Specific Integrated Circuit (ASIC)
 - The alternative to the FPGA
 - Uses predesigned layout as opposed to a full custom layout
 - Few large digital chips other than microprocessors require a significant amount of custom layout
- Disadvantage of ASICs
 - Time
 - Requires several months before it can even be tested
 - Cost
 - ♦ More expensive when manufactured in low quantities

Advantages of ASICs

- Faster*
- Power Consumption*
- Cost
 - Less expensive when manufactured in high quantities
 - * Faster & more energy efficient since they are designed for a particular purpose

Trends Resulting in Use of FPGAs Over ASICs for Custom Logic

- Moore's Law
 - Using additional transistors, design process can be simplified
- Skyrocketing Mask Costs

Technology	Mask Cost
0.09 μm	\$1,000,000
0.18 μm	\$250,000
0.25 μm	\$120,000
0.35 μm	\$60,000

Table 1-1, page 13, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

FPGA allows cost to be absorbed across a larger population

FPGA-Based System Design

- Goals & Techniques
 - Performance
 - ♦ Latency, Throughput
 - Power/Energy
 - ♦ Power Budget
 - ✓ Battery Powered Systems
 - Battery Capacity
 - ✓ Power-Grid Powered Systems
 - Cooling
 - Design Time
 - ♦ FPGA Allows Quick Prototyping
 - ♥ Use of FPGA Final Design
 - Design Cost
 - Reduction in Design Time Reduces Cost
 - Required Support Tools Less Expensive Than Custom VLSI Tools
 - Manufacturing Costs
 - Cost of replicating system many times
 - ♥ Generally FPGA is more expensive than ASIC
 - ✓ Due to overhead of programming
 - The fact that FPGAs are standard parts helps to reduce costs

FPGA Fabrics

- aka, FPGA Structures
- Major Elements
 - Combinational Logic
 - Interconnects
 - I/O Pins
- General Structure

Figure 3-1, page 106, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

- Logic Element (LE)
 - star Aka, Combinational Logic Block (CLB)
- I/O Block (IOB)
 - ♥ Consists of I/O Blocks & Pins

Interconnects

- Connections made between LEs and wires
- Wires organized into "wiring channels" or "routing channels" which run vertically & horizontally through the chip
 - Segments of varying length vs. offset segments

Figure 3-2, page 107, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

Interconnects

Figure 3-3, page 108, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

FPGA Configuration

- FPGA must be "programmed" or "configured"
 - All major elements must be configured
 - ♦ Logic
 - ♦ Interconnects
- Three Major Circuit Technologies for Configuring FPGA
 - SRAM
 - Anitfuse
 - Flash
- Consider a system designer who wishes to use an FPGA
 - What questions need be addressed?
 - ♦ How much logic can fit on the FPGA?
 - ✓ Depends on FPGA architecture, logic, design process
 - ♦ How many I/O pins are available?
 - ✓ Fairly straightforward answer
 - ♦ How fast will the design run?
 - ✓ Depends on FPGA architecture, logic, design process
 - These questions lead to the following questions when selecting an FPGA:
 - ♦ How many logic elements should the FPGA have?
 - How large should each element be?
 - How much interconnect should it have?
 - How many types of interconnect structures should it have?
 - ♦ How long should each type of interconnect be?
 - How many pins should the FPGA have?

The SRAM-Based FPGA

- State of memory continuously and directly controls circuit being configured
- Advantages of Using SRAM
 - Easily reprogrammable
 - ♦ Hence, common choice for prototyping
 - Dynamically reconfigurable systems
 - Can be reprogrammed during system operation
 - FPGA circuits can be fabricated with standard VLSI processes
 - Does not need refreshing
 - ♥ Unlike DRAM

Disadvantages of Using SRAM

- Power dissipation
- Bits susceptable to theft
- Large number of bits required to program FPGA
 - ⋄ Each LE requires many bits
 - Each programming interconnection point requires own bit

Logic Elements

- Basic method used to build CLB is a lookup table (LUT)
- Lookup Table (LUT)
 - SRAM used to implement a truth table
 - Address represents a

combination of inputs

- n-input function requires 2ⁿ locations
- 2²ⁿ functions can be implemented
- ♥ Delay is static
 - ✓ Example
 - 4-input XOR has same delay as a 4-input NAND
 - ✓ Note that static logic gate is generally faster than the LE
- - ✓ Latch or flip-flop is often included in LE

Complex Logic Elements

- Many LEs also contain special circuitry for addition
 - - ✓ Including circuitry to implement carry chain for addition improves performance over standard lookup

Figure 3-4, page 111, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

Figure 3-5, page 112, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

Spartan II CLB

- Two identical slices, each with an LUT
- Each slice includes two "logic cells" (LCs)

Figure with Example 3-1, page 113, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

- Building an Adder
 - ♦ SUM Generation
 - ✓ Carry/Control Logic also includes an XOR gate
 - ✓ Used to generate SUM
 - ♦ Carry Computation
 - ✓ LUT computes carry
- Each slice includes multiplexor to combine results of 2-function generators in slice
 - Another multiplexor combines outputs of multiplexors in 2 slices, generating result for entire CLB
- Registers can be configured as D-type flip-flops or as RS latches
- Each register has clock & clock enable signals
- Each CLB contains two, 3-state drivers (BUFTs) that can be used to drive on-chip busses

Interconnection Networks

An interconnection point controlled by SRAM cell

Bidirectional Interconnection Point:

Figure 3-6, page 118, Wayne Wolf, FPGA-Based System Design, Pearson Education, Inc. (Prentice Hall), 2004

- ✓ Note the CMOS transistor acts as a pass transistor
- "Interconnection Point" aka, "Connection Box"
- Pass transistors are slow
 - Alternative programmable interconnection points exist which offer higher performance
 - ✓ Cost = Additional Chip Area
- Performance
 - Programmable interconnects are slower than interconnects on a custom chip
 - ✓ Why?
 - Pass Transistor
 - Longer Wire Lengths

Wire Categories

- ♦ Short wires used to connect local LEs
- ♦ Global wires used for long distances
 - √ Fewer connection points reduce impedance
 - ✓ Repeaters can reduce effects of delay
- ♦ Special Wires
 - ✓ Dedicated to clock distribution or other register control signals

Spartan II Interconnect System

Interconnect Types

- ♦ Local
- ♥ General Purpose
- ₩ 1/0
- ♥ Global
- ♥ Clock

Local Interconnects

- ♥ Connects LUTs, flip-flops, & acts as a general purpose interconnect
- ♦ Internal CLB feedback
- Direct paths for high speed communication between horizontally adjacent CLBs

General Purpose

- ♥ Bulk of routing
- Types of general purpose interconnects
 - ✓ General Routine Matrix (GRM)
 - Switch matrix used to connect horizontal & vertical routing channels, connections between CLBs & routing channels
 - ✓ 24 Single Length Lines
 - Connects each GRM to 4 nearest GRMs to left, right, above, & below
 - ✓ 96 Hex Lines
 - · Route GRM signals to GRMs 6 blocks away
 - Provide longer interconnects (contain buffering to increase drive capability)
 - 1/3 are bidirectional
 - · 2/3 are unidirectional
 - √ 12 Long Lines
 - · Span entire chip, both vertically & horizontally

Run around edge of chip to allow interconnections to pins

Global

- Designed to distribute high-fanout signals (both clock & logic)
- Primary global routing network
 - ✓ 4 dedicated global nets with dedicated input pins
 - ✓ Each net can drive all CLB, I/O registers, & block RAM clock pins
 - ✓ Clock distribution network is buffered to provide low delay & low skew

Figure with Example 3-3, page 122, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

Secondary Global Routing Network

- ♦ 24 backbone lines
 - ✓ 1/2 along top
 - √ 1/2 along bottom
- Delay-locked loop (DLL) used to regulate internal clock

Configuration

- Reconfigured by changing SRAM contents
- Lines allocated for configuration
 - Permanent or released to general purpose I/O after configuration
 - Usually bit serial (since reconfiguration is not frequently done)
 - ✓ Could be parallel if configuration time is important

Programmed by

- ♦ PC with download cable
- PROM (programmable read only memory) on printed circuit board with FPGA
 - ✓ FPGA on power-up runs through protocol on configuration pins

SRAM in FPGA

- More conservative than those used in bulk SRAM
 - ✓ Why?
 - Must be as immune as possible to power supply noise
 - ✓ Result
 - Slower to read/write than bulk SRAM cells, but memory is more stable

Scan Chains & JTAG

- Chips & boards must be tested to ensure both were manufactured properly
- - ✓ JTAG standard created to allow chips on boards to be more easily tested
 - √ Boundary Scan
 - Design to scan pins at boundary between chip & board during testing
 - ✓ During testing pins are decoupled from their normal values & used as a shift register
 - ✓ Allows input values to be presented & outputs validated
 - · Process controlled by test access port (TAP) controller
 - ✓ JTAG is built into most FPGAs
- ▼ TAP Controller Pins
 - ✓ TDI
 - · Shift Register Input
 - ✓ TDO
 - Shift Register Output
 - ✓ TCK
 - Test Clock
 - ✓ TMS
 - Test Mode Select
 - ✓ TRST
 - · Test Reset Pin
 - · Optional
 - ✓ Instruction Register (IR)
 - Determines actions taken by TAP
 - State transition graph of TAP defined by JTAG standard

- √ Bypass Register (BP)
 - · Allows bits to be shifted into IR or IR to be left intact
- ✓ Each pin on chip is modified to include JTAG shift register logic
 - · Outside unit controls & observes all pins on chip
- ♦ JTAG Architecture

Figure 3-7, page 126, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

Spartan-II Configuration

- Requires about 200,000 to 1.3 million bits
 - Depends on size of chip
- Configured on one of several modes
 - - ✓ Chip is first in chain
 - ✓ Configuration loaded from EPROM or download cable
 - Slave Serial Mode
 - ✓ Configuration obtained from another slave serial mode chip or the master serial mode chip in chain
 - Slave Parallel Mode
 - ✓ Provides fast 8-bit wide configuration
 - ♦ Boundary Scan Mode
 - ✓ Utilizes standard JTAG pins

Pins Dedicated to Configuration

- ♥ PROGRAM'
 - ✓ Used to initiate configuration
- ♦ M0, M1, M2
 - ✓ Control configuration mode
- ♥ DONE
 - ✓ Signals configuration has finished
- ♥ TDI, TDO, TMS, TCK
 - ✓ Boundary scan pins
 - ✓ Used to configure without using dedicated configuration pins

Spartan 3

- ♦ Optimized for High Density & High Pin Count
- ♦ Ideal for highly integrated data processing applications
- Spartan 3E
 - Udeal for logic integration, DSP co-processing, & embedded control which require significant logic and processing resources
- Spartan 3A
 - Udeal for bridging, differential signaling & memory interfacing functions, which require wide or multiple interfaces

Spartan-3E

- CP132
 - ♦ 8x8 mm
- System Gates
 - ♦ 100K
- Logic Cells
 - \$ 2,160
- Dedicated Multipliers
 - ₩ 4
- Block RAM Bits
 - ♦ 72K
- Distributed RAM Bits
 - ♦ 15K
- Digital Clock Managers (DCMs)
 - ₩ 2
- Max User I/O
 - ♦ 108
- Max Diff. I/O Pairs
 - ₩ 40

The Permanently Programmed FPGA

- Do NOT have to be configured at power-up
 - Only need to be configured once
- Implementations
 - Antifuses
 - Flash

Antifuse Configuration

- Fabricated as normally open
- Programming accomplished by applying a voltage across the antifuse to connect Metal 1 to Metal 2
- - ♦ More resistance than standard via
- Advantages Over a Fuse
 - Most connections in FPGA should be open
 - ✓ Most programming points left in initial state

Figure 3-8, page 128, Wayne Wolf, FPGA-Based System Design, Pearson Education, Inc. (Prentice Hall), 2004

Flash Configuration

- Flash
 - High-quality programmable read-only memory
 - Low-leakage capacitor holds voltage to control transistor gate
 - Programmed Flash Switch

Figure 3-9, page 129, Wayne Wolf, *FPGA-Based System Design*, Pearson Education, Inc. (Prentice Hall), 2004

References

- Wayne Wolf, FPGA-Based System Design, Pearson Education, Inc. (Prentice Hall), 2004
- Spartan-3 Generation FPGAs The Ultimate Low-Cost Applications Platform, Xilinx Inc., PN 0010855-1, 2006
 - http://www.xilinx.com/publications/prod mktg/pn0010983.pdf
- Xilinx Spartan-3E FPGA Family: Data Sheet, Xilinx Inc., August 26, 2009
 - http://www.xilinx.com/support/documentation/data sheets/ds312.pdf