Automated Cardiac Disease Challenge (ACDC)

Eliza Giane, Shirui Li, Lydia Yang

Background about MRI

- Non-invasive technique
- Uses a strong magnetic field and radio waves to produce images
- Representation:
 - Matrices whose positions represent spatial locations
 - Each value is a voxel (pixel with volume) - 0.5 to 4mm
 - MRIs consist of multiple "slices": 2D arrays of intensity values that represent the signal at different locations.
 - A stack of slices can be represented as a 3D array (a volume)
 - fMRI images are a series of 3D volumes over time, so they are actually 4D arrays

Introduction and Dataset

- Using cine-MRI data from 150 patients, classify heart scans into 5 subgroups
- Subgroups:
 - Healthy NOR
 - Myocardial infarction MINF
 - Dilated cardiomyopathy DCM
 - Hypertrophic cardiomyopathy HCM
 - Abnormal right ventricle RV
- Previous solutions
 - 1D CNN for practicality to use normal CPU, achieving 97% on training and 96% on testing (Hussain 2021)

Data Processing

- Loaded a certain random portion of the whole dataset
 - Balanced distribution of patient diseases
 - Uneven image slice numbers between patients
- Resizing the image to standard dimensions
- Training and testing data already given as splitted data
- Choosing an 80-20 split between training and validation data

CNN₁D Block Structure

Results and Evaluation

- Valid/Test accuracy: 35.8% / 39.5%
- Balanced accuracy score: 39.7%
- Confusion matrix
- Classification report

	precision	recall	f1-score	support
0 1 2 3 4	0.36 0.41 0.48 0.42 0.34	0.37 0.41 0.20 0.59 0.42	0.37 0.41 0.28 0.49 0.37	265 237 290 285 197
accuracy macro avg weighted avg	0.40 0.41	0.40 0.39	0.39 0.38 0.38	1274 1274 1274

