Exp. No:8

Implement SVM/Decision tree classification techniques

a) SVM in R

Install and load the e1071 package (if not already installed) install.packages("e1071") library(e1071) # Load the iris dataset data(iris) # Inspect the first few rows of the dataset head(iris) # Split the data into training (70%) and testing (30%) sets set.seed(123) # For reproducibility sample indices <- sample(1:nrow(iris), 0.7 * nrow(iris)) train_data <- iris[sample_indices,] test_data <- iris[-sample_indices,] # Fit the SVM model svm_model <svm(Species ~ ., data = train_data, kernel = "radial") # Print the summary of the model summary(svm_model) # Predict the test set predictions <predict(svm_model, newdata = test_data) # Evaluate the model's performance confusion_matrix <- table(Predicted = predictions, Actual = test_data\$Species)</pre> print(confusion_matrix) # Calculate accuracy accuracy sum(diag(confusion_matrix)) / sum(confusion_matrix) cat("Accuracy:", accuracy * 100, "%\n")

Output:

```
Actual

Predicted setosa versicolor virginica
setosa 14 0 0
versicolor 0 17 0
virginica 0 1 13
> accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
> cat("Accuracy:", accuracy * 100, "%\n")
Accuracy: 97.77778 %
>
```

b) **Decision Tree in R**

Install and load the rpart package (if not already installed) install.packages("rpart") library(rpart) # Load the iris dataset data(iris) # Split the data into training (70%) and testing (30%) sets set.seed(123) # For reproducibility sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris)) train_data <- iris[sample_indices,] test_data <- iris[-sample_indices,] # Fit the Decision Tree model tree_model <- rpart(Species ~ ., data = train_data, method = "class") # Print the summary of the model summary(tree_model) # Plot the Decision Tree plot(tree_model) text(tree_model, pretty = 0) # Predict the test set predictions <- predict(tree_model, newdata = test_data, type = "class") # Evaluate the model's performance confusion_matrix <- table(Predicted = predictions, Actual = test_data\$Species) print(confusion_matrix)

Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
cat("Accuracy:", accuracy * 100, "%\n")</pre>

Output:

Output

