Velocidades e Jacobiano de Manipuladores

Data de Entrega: 28 de Novembro 2020

HOMEWORK #3

RESOLUÇÃO OBRIGATÓRIA para os problemas : 1, 4 e 12

1. Considere um manipulador cilíndrico (*PRP-RR*) ao qual corresponde a tabela de DH que se apresenta. O vector das variáveis de junta é dado por $q = [d_1, \theta_2, d_3, \theta_4, \theta_5]$.

	$\overline{ heta_{_i}}$	$d_{_i}$	a_{i}	$\alpha_{_i}$
0->1	90°	$d_{_1}$	0	90°
1->2	$90^{\circ} + \theta_2$	0	0	90°
2->3	0°	$d_{_3}$	0	-90°
3->4	$ heta_{_4}$	0	0	90°
4->G	$ heta_{\scriptscriptstyle 5}$	5	0	0°

Obtenha:

a) O Jacobiano Geométrico do manipulador ${}^{0}J_{6x5}$;

b) Analise as singularidades do manipulador. Justifique devidamente a resposta e desenhe o manipulador nas configurações singulares;

(AJUDA : Analise para que configurações do manipulador se anula uma qualquer componente de velocidade);

- c) Assumindo que se desloca a primeira junta do manipulador com uma velocidade \dot{d}_1 , obtenha as equações de velocidade para as restantes juntas do manipulador de modo a garantir $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$.
- d) Se aplicar no punho do manipulador uma força ${}^4F_{4,App} = \begin{bmatrix} 2 & -1 & 3 & 0 & 10 & 0 \end{bmatrix}^T$, estando o manipulador na sua configuração "home" ($q = \begin{bmatrix} 10 & 0^\circ & 10 & 0^\circ & 0^\circ \end{bmatrix}^T$), quais os valores de binário/força nas juntas do manipulador que asseguram o seu equilíbrio estático.
- 2. Considere o manipulador com 3 graus de mobilidade RPR cujas matrizes de transformação de junta se apresenta:

$${}^{0}T_{1} = \left[\begin{array}{ccccc} C_{1} & 0 & -S_{1} & L_{1} \cdot C_{1} \\ S_{1} & 0 & C_{1} & L_{1} \cdot S_{1} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right], {}^{1}T_{2} = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{array} \right], {}^{2}T_{E} = \left[\begin{array}{cccccc} 0 & S_{3} & C_{3} & L_{2} \cdot C_{3} \\ 0 & -C_{3} & S_{3} & L_{2} \cdot S_{3} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- a) Obtenha o Jacobiano do manipulador, ${}^GJ_{6x3}$, que expressa a velocidade linear e angular do *end-effector* em função da velocidade das juntas.
- b) Obtenha o Jacobiano de movimento angular expresso no referencial 1 (${}^{1}J_{\omega}$). O que é que esse jacobiano lhe diz em termos da velocidade angular segundo a direção x? Explique as diferenças verificadas entre o Jacobiano de velocidade angular obtido e o Jacobiano angular expresso no referencial base ${}^{0}J_{\omega}$.
- c) Recorrendo a ${}^1J_{\nu}$, obtenhas as configurações singulares do manipulador e explique quais as restrições de movimento que acontecem em cada caso (Ajuda: Usando as matrizes de transformação fornecidas, desenhe o esquemático do manipulador em estudo).
- 3. Considere o robot 4R da figura anexa do qual se conhecem as matrizes de transformação dos elos,

$${}^{0}_{1}T = \begin{bmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{1}_{2}T = \begin{bmatrix} C_{2} & 0 & S_{2} & 0 \\ S_{2} & 0 & -C_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}_{3}T = \begin{bmatrix} C_{3} & 0 & S_{3} & 0 \\ S_{3} & 0 & -C_{3} & 0 \\ 0 & 1 & 0 & L \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{3}_{4}T = \begin{bmatrix} C_{4} & -S_{4} & 0 & L \cdot C_{4} \\ S_{4} & C_{4} & 0 & L \cdot S_{4} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Os sistemas de coordenadas de D-H são os apresentados na figura, correspondendo a configuração apresentada ao vector de variáveis de junta

$$q = \begin{bmatrix} 0 & \frac{6\pi}{10} & \pi & \frac{6\pi}{10} \end{bmatrix}^T \equiv \begin{bmatrix} 0^{\circ} & 108^{\circ} & 180^{\circ} & 108^{\circ} \end{bmatrix}^T.$$

Assumindo a configuração $q_1 = \begin{bmatrix} 0 & 3\pi/4 & \pi & \pi \end{bmatrix}^T$ e fazendo L = 1m,

- a) Obtenha o Jacobiano básico ${}^0{\cal J}_{6x4}$.
- b) Mostre que na configuração q_1 o manipulador consegue concretizar a velocidade $\begin{bmatrix} {}^0v & {}^0\omega \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & -L & 0 & -\frac{\sqrt{2}}{2} & 0 \end{bmatrix}^T.$
- c) Considerando unicamente a velocidade linear ${}^{0}v$, verifique se perante a configuração q_{1} o manipulador se encontra numa configuração singular.
- 4. Observe o manipulador *PRR* apresentado na figura.
 - a) Obtenha o modelo geométrico directo do manipulador.
 - i. (NOTA: Respeite os sistemas de coordenadas que se apresentam para a base e garra do manipulador)
 - b) Obtenha o Jacobiano básico do manipulador ${}^{^B}J_{_{6 \times 3}}.$
 - c) Obtenha as expressões das velocidades angulares $\dot{\theta}_2$, $\dot{\theta}_3$, e linear \dot{d}_1 , que asseguram o movimento retilíneo com uma velocidade

linear constante de $|v_{B_X}| = 10cm/s$ sobre o plano Ω .

- d) Se quiser aplicar com o gripper uma força constante sobre o plano Ω igual a ${}^GF = \begin{bmatrix} 10 & 0 & 0 & 0 & 0 \end{bmatrix}^T$, quais as expressões para os binários das juntas função da trajectória.
- 5. Considere o manipulador *PPR* da figura. Um vector de força é aplicado ao end-effector e medido no sistema de coordenadas {0} como

sendo igual a
$${}^{0}F_{G,App} = \begin{bmatrix} 0 & 1 & 0 & 2 & -1 & 0 \end{bmatrix}^{T}$$
,

estando o manipulador na configuração

$$[d_1 = 25cm \quad d_2 = 25cm \quad \theta_3 = 90^\circ]$$
. Considere $d_3 = 10cm$.

Sabendo que
$$_{G_{J}} = \begin{bmatrix} 0 & 0 & 0 \\ C_{3} & -S_{3} & d_{3} \\ S_{3} & C_{3} & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- a) Determine os binários nas juntas que asseguram o equilíbrio estático do manipulador.
- b) Quais os valores de força e binário em cada junta do manipulador.
- c) Qual a força e binário que uma ferramenta acoplada ao end-effector aplica quando são aplicadas nas juntas os binários calculados na alínea a). Considere que a ferramenta está alinhada com o eixo \hat{X}_G e que possui um comprimento L15cm.
- 6. Observe o manipulador RRR da figura. Sabendo que as matrizes de transformação $^{i-1}T_i$ são conhecidas e iguais a

$${}^{0}_{1}T = \begin{bmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}_{2}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & L_{2}C_{2} \\ S_{2} & C_{2} & 0 & L_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{2}_{3}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{3}C_{3} \\ S_{3} & C_{3} & 0 & L_{3}S_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

obtenha:

- a) O Jacobiano, ${}^{0}J_{6x4}$, que expressa a velocidade linear e angular do *end-effector* em função da velocidade das juntas.
- b) Para que configurações se encontra o manipulador numa singularidade? Desenhe as configurações singulares, justificando claramente cada singularidade, indicando qual o movimento condicionado com cada singularidade. (Ajuda: para simplificar os cálculos, converta o jacobiano obtido em a) para 1J).
- c) Para cada singularidade observada, pretende-se incorporar uma junta adicional para resolver essa singularidade. Para cada situação, desenhe o esquemático do manipulador resultante e justifique porque razão a singularidade fica resolvida com a nova junta.
- d) Um vector de força é aplicado ao end-effector e medido no sistema de coordenadas $\{G\}$ como sendo igual a ${}^GF_{G,App} = \begin{bmatrix} -1 & 2 & 1 & 0 & 0 & 10 \end{bmatrix}^T$, estando o manipulador na

configuração $\left[\theta_1=0^\circ,\theta_2=\sqrt[\pi]{4},\theta_3=\sqrt[\pi]{2}\right]$. Obtenha o valor dos binário/força das juntas do manipulador que asseguram o equilíbrio estático. Considere $L_1=L_2=L_3=1$.

7. Considere o manipulador RRP, cujas matrizes de transformação de elos são conhecidas e representadas por

- a) Obtenha o Jacobiano geométrico do manipulador $^{E}J_{6\sqrt{3}}$.
- b) Identifique as configurações singulares de velocidade linear do manipulador. Desenhe as configurações singulares encontradas e explique porque razão são singulares.
- c) Para que configurações das juntas de rotação se obtém a máxima manipulabilidade posicional do manipulador? Justifique.
- d) Qual a configuração do manipulador que assegura o seu equilíbrio estático aplicando binarios/forças nulos nas juntas do manipulador quando se aplica no end-effector o vetor de forças ${}^{0}F_{E,App} = \begin{bmatrix} 0 & -f_{y} & 0 & -w_{x} & 0 & 0 \end{bmatrix}^{T}$?
- e) Assumindo que o vetor de forças da alínea d) era aplicado ao end-effector do manipulador na configuração $(\theta_1 = 0^\circ, \theta_2 = 45^\circ, d_3 = 5cm)$, sendo a = 5, b = 1, obtenha os valores de força e binário em cada junta do manipulador na situação de equilíbrio estático?

8. Considere o manipulador RRRR cujos parâmetros de DH são apresentados na tabela.

	$\boldsymbol{\theta}_{i}$	d_{i}	a_{i}	α_{i}	Offset
0 →1	$ heta_{\scriptscriptstyle 1}$	0	$l_{_1}$	$-\frac{\pi}{2}$	0
1→2	$ heta_2$	0	l_2	$\frac{\pi}{2}$	0
$2 \rightarrow 3$	θ_3	0	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$
$3 \rightarrow 4$	$ heta_{\scriptscriptstyle 4}$	d	0	0	0

- a) Desenhe o esquemático do manipulador na sua posição de repouso ("home"). Apresente os eixos x_i e z_i dos sistemas referenciais associados a cada junta.
- b) Conhecendo a matriz de "pose" do "end-effector" no referencial base $\binom{0}{4}T$), i.e., conhecendo $\binom{0}{4}R$ e $\binom{0}{p_{04}}$, obtenha a expressão que permite conhecer $\binom{0}{p_{02}}$.
- c) Obtenha as expressões de cinemática inversa para as juntas do manipulador, i.e, $(\theta_1,\theta_2,\theta_3,\theta_4)$. Considere comprimentos unitários para l_1,l_2,d .
- d) Obtenha o Jacobiano geométrico do manipulador, ${}^{\scriptscriptstyle 0}J_{{}_{6x4}}$.
- e) Identifique as configurações singulares do manipulador. Represente as configurações singulares encontradas e explique porque razão são singulares.

9. Considere a existência de dois sistemas referenciais $\{A\}$ e $\{B\}$, relacionados através da seguinte matriz de transformação

$${}^{A}T_{B} = \begin{bmatrix} \sqrt{3} \\ 2 & -0.5 & 0 & 5.0 \\ 0.5 & \sqrt{3} \\ 2 & 0 & 10.0 \\ 0 & 0 & 1 & 0.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Um observador situado na origem do referencial $\{ {\it B} \}$ vê um corpo rígido ${\it P}$ localizado em ${}^{\it B}P = \begin{bmatrix} 2,1,1 \end{bmatrix}^{\it T}$ e mede a velocidade de ${\it P}$ no referencial $\{ {\it B} \}$ como sendo igual a ${}^{\it B}v_{\it P} = \begin{bmatrix} v_{1x3} & w_{1x3} \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 & -1 & 5 & 2 \end{bmatrix}^{\it T}$. Entretanto um observador colocado na origem do referencial $\{ {\it A} \}$ mede a velocidade do referencial $\{ {\it B} \}$ como sendo igual a ${}^{\it A}v_{\it B} = \begin{bmatrix} 0 & 3 & 0 & 0 & -5 & 10 \end{bmatrix}^{\it T}$.

Obtenha o vector de velocidade 6x1 do corpo rígido P na perspectiva do observador colocado em $\{A\}$.

10. Considere um manipulador cilíndrico (*RRP-RRR*) ao qual corresponde a tabela de DH que se apresenta. O vector das variáveis de junta é dado por $q = [\theta_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6]$.

				-	-
	$ heta_{_i}$	$d_{_i}$	a_{i}	$\alpha_{_i}$	off_i
B->0	$ heta_{_1}$	0	0	−90°	0°
1->2	$ heta_{\scriptscriptstyle 2}$	а	0	−90°	-90°
2->3	0°	$d_{_3}$	0	0°	0
3->4	$ heta_{\scriptscriptstyle 4}$	0	0	90°	90°
4->5	$ heta_{\scriptscriptstyle{5}}$	0	0	−90°	0°
5->G	$ heta_{_6}$	$l_{_G}$	0	0°	-90°

Obtenha:

- a) O esquemático do manipulador na sua configuração "home";
- b) O Jacobiano geométrico do manipulador ${}^{G}J_{6\!\times\!6}$ no sistema de coordenadas da garra.
- c) Considerando um comportamento estático para a junta θ_4 , i.e $\dot{\theta}_4 = 0 rad / s$, e estando a junta na configuração $\theta_4 = 0^\circ$, identifique as configurações singulares de velocidade linear do manipulador. Baseie-se para o efeito no cálculo do Jacobiano linear $^1J_{_{V}}$. Desenhe as configurações singulares encontradas e explique porque razão são singulares.
- d) Para que configurações das juntas se obtém a máxima manipulabilidade posicional do punho do manipulador? Justifique.
- 11. Considere o manipulador RRP que se apresenta na figura. Um vector de força é aplicado na garra e medido no sistema de coordenadas {1} como sendo igual a

Conhecendo as matrizes de transformação $^{^{i-1}}\!T$ do manipulador

$${}_{1}^{0}T = \begin{bmatrix} C_{1} & 0 & S_{1} & l_{1}C_{1} \\ S_{1} & 0 & -C_{1} & l_{1}S_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}_{2}^{1}T = \begin{bmatrix} -S_{2} & 0 & -C_{2} & 0 \\ C_{2} & 0 & -S_{2} & 0 \\ 0 & -1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

obtenha:

- d) A matriz Jacobiana ${}^{1}J_{6x3}$
- e) As configurações singulares para a velocidade linear. Justifique as configurações encontradas.
- f) Os binários nas juntas que asseguram o equilíbrio estático do manipulador.
- g) Os valores de força e binário em cada junta do manipulador.
- h) Os valores da força e binário que uma ferramenta acoplada ao end-effector aplica quando são aplicadas nas juntas os binários calculados na alínea c). Considere que a ferramenta está alinhada com o eixo $\hat{Y_3}$ e que possui um comprimento L=10cm (O eixo dos Z da ferramenta está alinhado segundo o seu eixo).

12. Considere o manipulador *RPP-RR* que se apresenta na figura. O vetor das variáveis de junta é dado por $q = [\theta_1, d_2, d_3, \theta_4, \theta_5]$.

Obtenha:

a. A tabela dos parâmetros de D-H (standard). Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo geométrico direto do manipulador. Apresente as matrizes de transformação associadas a cada elo ($^{i-1}_iT$).

NOTA : A configuração apresentada na figura corresponde à posição de "home".

b. O Jacobiano geométrico (J^0) para o punho do manipulador e identifique as configurações singulares de velocidade linear para o punho.

c. Os valores de força e binário nas juntas, em situação de equilíbrio estático, quando se aplica no punho o vetor de força $_{PApp}^{\quad P}F=[0,-1,0,0,+1,-2]^T$. Qual o vetor de força $_{G}^{\quad G}F$ exercido pela garra na situação de equilíbrio estático para a configuração $\theta_5=\frac{\pi}{4}$?

LABWORK #3

• (AULA 1)

Observe o manipulador *RRP-R* apresentado na figura. Desenvolva um programa em MATLAB que permita visualizar o modo de funcionamento do manipulador. Tenha em atenção os seguintes aspetos:

- 1. Obter o modelo cinemático direto do manipulador recorrendo aos parâmetros de Denavit-Hartenberg.
- 2. Pretende-se mover o manipulador ao longo de trajetórias circulares de raio r centradas no ponto $C=[40,0,20]^{\mathrm{T}}_{(\mathrm{cm})}$. Obter a solução de cinemática inversa do manipulador $([\theta_0,\theta_1,d_2,\theta_3]=f(c_x,c_y,c_z,r))$ que permite efetuar o movimento circular da garra.
- 3. Calcule as expressões para a velocidade de rotação das juntas $\dot{q} = \begin{bmatrix} \omega_1 & v_d & \omega_3 \end{bmatrix}^T$ que asseguram um movimento circular com uma velocidade angular igual a $\pi/2$ rad/s.

4. Realize o movimento do manipulador tendo em atenção a restrição de velocidade anteriormente referida ($|\omega| = \pi/2 \text{ rad/s}$).

Para tal considere as duas possíveis abordagens de controlo:

a. Abordagem Integradora - Controlo de movimento discreto no tempo considerando

$$\dot{q}^* = J(q(k))^{-1} v^*$$

$$q^*(k+1) = q(k) + \Delta t \cdot \dot{q}^*(k)$$

b. Abordagem em malha fechada – A abordagem anterior, puramente integradora, sofre de acumulação de erro posicional, podendo ser *eliminado* recorrendo a uma solução em malha fechada baseada na

diferença entre a pose desejada $p^*(k)$ e a pose atual f(q(k)).

$$\dot{q}^{*}(k) = J(q(k))^{-1}(p^{*}(k) - f(q(k)))$$

$$q^{*}(k+1) = q(k) + K_{p} \cdot \Delta t \cdot \dot{q}^{*}(k)$$

5. (VALORIZAÇÃO ADICIONAL / Facultativo) Considere que substituía a junta de rotação terminal do manipulador por uma garra esférica, dando origem a um manipulador *RRP-RRR*. Estenda a solução implementada em 4. de modo a permitir a realização de movimentos circulares no plano *Z=20cm*.

Os programas a desenvolver deverão apresentar a velocidade das juntas em função do tempo para os requisitos do ponto 3 e 5.

Use as funções da Toolbox Robotics para validar e visualizar os resultados.

• (AULA 2)

Considere o robot planar PRRR apresentado na figura e estudado no labwork #2.

- a) Recupere o modelo geométrico do manipulador de acordo com a metodologia de D-H standard obtido no labwork#2.
- b) Assumindo que os elos apresentam um comprimento $L_1=L_2=L$ e que o eixo prismático realiza um deslocamento $d_1=\delta$, obtenha as expressões para a velocidade de rotação das juntas $\{\omega_1,\omega_2,\omega_3\}$ que garantem o deslocamento da junta de translação com uma velocidade linear igual a $\dot{d}_1=5cm/s$. Considere

que os pontos de acoplamento de ambas as extremidades do manipulador estão afastadas $\begin{bmatrix} x & 0 & z \end{bmatrix}$, sendo que x = z = L. Considere nos cálculos a realizar que a distância d do elo terminal é unitária e que o comprimento dos elos é igual a dois, i.e., L = 2.

c) Simule o movimento identificado em b) usando unicamente a estratégia de controlo em malha fechada.

O programa a desenvolver deverá apresentar a velocidade das juntas em função do tempo para os requisitos do movimento a realizar.

Use as funções da Toolbox Robotics para validar e visualizar os resultados.