

Fig. 1
(prior art)

Fig. 2 (prior art)

MAP Kinase/Phosphoinositide/ PI3 Kinase Pathways in the Network

Fig. 3

(prior α_{r+})

Measurement of Kinase Activation (Current Technology)

Fig. 4

(prior art) Measurement of Protein Location (via GFP Tag)

1. Develop stably transfected cell lines carrying the overexpressed GFP-tagged protein
2. Fluorescent imaging and pattern recognition
3. Infer protein activity from location

Assay Time ~Minutes

Fig. 5A

Single

Multiple

Fig. 5B

Performing "Population
Average" Measurements

1 Cell 4 Cells 10 Cells

cells beneath
a microlumen

Single Cells or Population Averages

Fig. 5C

Fig. 6A Sampling a Portion of a Cell

Fig. 6B

Sampling the Contents of a Neuronal Process

Fig. 6C

Analyzing A Neuronal Process

Fig. 7

Cell Assay

Fig. 8

Loading Single Cells With Enzyme Substrates

Fig. 9 Loading Multiple Cells With Enzyme Substrates

Electroporation

Optoporation

Passive Techniques

Pinocytosis

Vesicle Fusion

Membrane-Permeant
Substrates

Fig. 10

Nuclear-Localized Substrate for PKC
Fluorescence Image Transmitted Light Image

Fig. 11

Coupling to Other Technologies

Proteomics

Fig. 12A

Coupling to Other Technologies Genomics

Fig. 12B

SIGNAL TRANSDUCTION MICROCHIP

Fig. 13

Coupling to Other Technologies

Flow Cytometry

Cell
Interrogation

Fig. 14

Integration With Other Cellular Analysis Methods

Fluorescence Imaging

Patch Clamp

Fig. 15A

Profiling Signal Transduction Pathways
in Cells with Four Reporters

Fig. 15B

Profiling Signal Transduction Pathways
in Cells with Three Reporters

Fig. 16

Profiling Signal Transduction Pathways
in Cells with Five Reporters

Fig. 17

Profiling Signal Transduction Pathways
in Cells with Ten Reporters

Fig. 18

Profiling Signal Transduction Pathways in Cells with Many Reporters

Fig. 19

Applications

- Drug Discovery and Validation

Fig. 20

Identifying the Cellular Targets of Compounds

Y turns Step A to B Off

Y

OFF ON ON ON ON

Z turns Step Q to R Off

Z

ON ON ON ON OFF

Fig. 21

Applications

- Diagnostics and Prognostics

Fig. 22

Identifying and Targeting Pre-Disease or Disease States

Fig. 23

Analysis of Biologic Systems

DNA Arrays

Mass Spec.,
Protein Arrays

Protein Activity
Maps

Genomics

Proteomics

Signaling

Fig. 24

Serial Analysis of Cells

Fig. 25

Parallel Processing of Cells-

Arrays of Separation Channels

Computer-control of microlumen alignment over cells, lysis, and/or other steps.