Econ 711 – Fall 2020 – Problem Set 4

Due online Monday night October 5 at midnight.

Please feel free to work together on these problems (and all homeworks), but each student needs to write up his/her own answers at the end, rather than directly copying from one master solution.

Question 1. Choice rules from preferences

Let X be a choice set and \succeq a complete and transitive preference relation on X. Show that the choice rule induced by \succeq ,

$$C(A, \succsim) = \{x \in A : x \succsim y \ \forall y \in A\}$$

must satisfy the Weak Axiom of Revealed Preference (WARP).

Question 2. Preferences from choice rules

Let X be a choice set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ a nonempty choice rule. Show that if C satisfies WARP, then the preference relation \succeq_C defined on X by

$$x \succsim_C y$$
 if and only if there exists a set $A \subseteq X$ such that $x, y \in A$ and $x \in C(A)$

is complete and transitive, and that the choice rule it induces, $C(\cdot, \succsim_C)$, is equal to C.

Question 3. Choice over finite sets

Let X be a **finite** set, and \succeq a complete and transitive preference relation on X.

- (a) Show that the induced choice rule $C(\cdot, \succeq)$ is nonempty that $C(A, \succeq) \neq \emptyset$ if $A \neq \emptyset$.
- (b) Show that a utility representation exists.

(Hint: for part (a), fix X finite, and prove that for $A \neq \emptyset$, $C(A, \succeq) \neq \emptyset$ by induction on the number of elements in the set A. For part (b), use induction on |X| to prove the stronger result that when X is finite, a utility representation exists with range $\{1, 2, \ldots, |X|\}$.)