AMPLIFICADOR OPERACIONAL NE5234

A. C. R. TULIC

CONTENIDO

1	Análisis de la polarización										
	1.1	Fuente	s de Corriente	2							
	1.2	Polarización de la etapa de entrada									
	1.3	Polariz	ación de la segunda etapa del Op.Amp	6							
	1.4	s de C.C. de la etapa de salida	O								
	1.5	Transis	tores que se encuentran normalmente inactivos 2	0							
2	Análisis dinámico de bajo nivel del Op.Amp. NE5234										
	2.1 Etapa de Entrada										
	2.2 Segunda Etapa										
	2.3 Etapa de salida										
	2.4 Ganancia de lazo abierto del operacional										
FIGURAS											
•	40	11,13									
Figure 1		1	NE5234 bias circuit	2							
Figure 2		2	Circuito equivalente de la figura 1	3							
Figure 3		3	Esquema simplificado de la etapa de entrada	4							
Figure 4		4	Esquema de la segunda etapa del NE5234								
Figure 5		5	Esquema de la segunda etapa del NE5234								
Figure 6		6	Etapa de salida del NE5234	1							
Figure 7		7	Etapa de salida (bias circuit)	3							
Figure 8		8	Etapa de salida del NE5234 con bias circuit	4							
Figure 9		9	Corrientes calculadas y simuladas	0							
Figure 10		10	Esquema parcial de la etapa de entrada con diodos en ambos pares								
	_		diferenciales	2							
Figure 11		11	Circuito en modo diferencial, etapa de entrada con $V_{IC} << 0.8V$	4							
Figure 12		12	Modelo de pequeña señal, segunda etapa para hallar su transcon-								
	_		ductancia	6							
Figure 13		13	Modelo de pequeña señal para hallar la primer componente de i ₀ 2								
Figure 14		14	Modelo de pequeña señal para hallar la segunda componente de i _o . 28								
Figure 15		15	Modelo de pequeña señal para hallar la segunda componente de i_0 .	9							

ANÁLISIS DE LA POLARIZACIÓN 1

Fuentes de Corriente 1.1

La figura 1 presenta el diagrama esquemático del circuito de polarización del Op.Amp. NE5234.

Figure 1: NE5234 bias circuit.

En la parte inferior de dicho circuito, los transistores Q₄₉ y Q₆₀ así como el resistor R₆₀ forman una fuente de corriente tipo WIDLAR. En dicha fuente, en lugar de conectarse al transistor Q₄₉ como diodo, las corrientes de base de Q₄₉ y Q₆₀ son proporcionadas por un separador (buffer) de ganancia unidad formado por los 4 transistores Q₅₀...Q₅₃ intercalado desde el colector de Q₄₉. Este separador cumple la misma función que se le asigna a un transistor cuando reemplaza el corto circuito en las fuentes tipo espejo disminuyendo la corriente que se le extrae al colector de Q_{49} (beta helper) y haciendo que $V_{CE49} = 2V_{BEu}$ en lugar de V_{BEu} como ocurre si Q₄₉ se conectara como diodo. Una de las razones por las que se utiliza este rebuscado circuito $Q_{50} \dots Q_{53}$ es que si la técnica (beta helper) se llevara a cabo en forma tradicional con un único transistor, este aumento de V_{CE49} generaría un necesario incremento en la tensión de alimentación VCC de manera que los transistores que conducen la corriente de referencia de la fuente o corriente I_{in} operasen en la región lineal fuera de saturación. A cambio de ello, para reducir el requerimiento de VCC

el aludido buffer se conforma como un seguidor por emisor complementario lo cual significa que esta conformado por un par de transistores seguidores tipo pnp Q₅₀ y Q₅₁ y otro par de seguidores npn Q_{52} y Q_{53} . Si $V_{EB51} = V_{BE52}$ entonces en la ecuación de malla $V_{CE49} + V_{EB51} - V_{BE52} - V_{BE53} = 0$ el resultado es que $V_{CE49} = V_{BEu53}$ que reduce en aproximadamente 0,7V el requerimiento de tensión de alimentación comparado con el circuito convencional. Similarmente los transistores seguidores complementarios Q₅₄...Q₅₇ suministran las corrientes de base de los transistores Q₄₇ y Q₅₈ que conforman así otra fuente de corriente en este caso espejo. Asimismo, los transistores Q₄₈ y Q₅₉ operando en configuración base común y que conforman cascode con Q₄₇ y Q₆₀ reducen la dependencia de las corrientes en Q₄₇ y Q₆₀ respecto de la tensión de alimentación VCC.

Para concentrarnos en la parte principal de este circuito de polarización se ha realizado su circuito equivalente en la figura 2, en donde se han removido las partes de beta helpers y cascodes con sus elementos asociados.

Esta simplificación nos permite comprobar que el corazón de dicho circuito de polarización no es mas que una fuente de corriente autopolarizada utilizando a la tensión térmica que fuera ya estudiada en el apartado 5.6.9.3 del capitulo precedente en su figura 5.50.11.

En el circuito de la figura 5.50.11 se describe que los transistores T₃ y T₄ se encuentran apareados y también que el transistor T₂ posee dos emisores mientras que T₁ tiene solo uno, lo cual indica que el área de emisor de T₂ es el doble de la de T₁. Similares condiciones se mantienen en los circuitos de las figuras 1 y 2 en donde el

Figure 2: Circuito equivalente de la figura 1

área de emisor del transistor Q_{60} es el doble de la correspondiente al Q_{49} . Como resultado de ello las corrientes de colector de dichos transistores pueden ser halladas, asumiendo β y V_A ambas infinito, aplicando la ecuación 33:

$$|I_{C47}| = I_{C49} = |I_{C58}| = I_{C60} = \frac{V_T}{R_{60}} ln(2) = \frac{0.026V}{3k\Omega} ln(2) = 6\mu A \tag{1}$$

Si R₆₀ es constante estas corrientes resultan proporcionales a la temperatura absoluta (PTAT). Si bien en el circuito de las figuras 1 y 2 los betas y las tensiones de Early no son infinito, en la practica estas ecuaciones también proporcionan las correspondientes corrientes debido a la utilización de las técnicas de beta helpers y cascode oportunamente incorporadas. El circuito de polarización produce entonces dos tensiones de C.C. en los nodos rotulados Bias1 y Bias5, que son usados para establecer escalares copias de corriente de 6µA en los transistores pnp y npn del amplificador operacional, respectivamente. Así, mientras estas escalares copias de corriente de 6µA son proporcionales a la temperatura absoluta (PTAT), las transconductancias de los transistores que conducen estas corrientes resultan independientes de la temperatura.

El resistor R₅₇ en la figura 1 esta previsto en el circuito de polarización para el caso que no se establezca corriente al aplicar la tensión de alimentación. Sin R₅₇ los transistores podrían permanecer cortados debido a que la diferencia de potencial entre el nodo Bias1 y masa se encuentra muy próximo a VCC. En cambio con la presencia de R₅₇ el transistor Q₅₅ lleva el potencial de Bias1 hacia abajo permitiendo el arranque de la conducción de corriente. En el estado estable, la corriente por R₅₇ causa un incremento de corriente en el transistor Q₅₆ produciendo un pequeño efecto de sobrecarga en la operación del circuito de polarización.

Polarización de la etapa de entrada

La figura 3 presenta un esquema simplificado de la etapa de entrada del amplificador operacional. Dicho circuito muestra una estructura de cascode doblado en dos circuitos amplificadores diferenciales complementarios de modo de lograr una operación rail to rail en lo que respecta a la tensión de entrada de modo común en ambas polaridades y sin embargo la transconductancia de esta etapa de entrada resulta independiente de la tensión de entrada de modo común.

Figure 3: Esquema simplificado de la etapa de entrada.

El nodo Bias1 perteneciente al circuito de polarización de la figura 1 y específicamente Q₅₈ y R₅₈ del mismo, en conjunto con el transistor Q₁₁ y resistor R11 de la figura 3 forman una fuente de corriente espejo con resistencia de degeneración de emisor, de modo que en dicho circuito:

$$|I_{C11}| = \frac{R_{58}}{R_{11}} |I_{C58}| = \frac{33k\Omega}{33k\Omega} 6\mu A = 6\mu A \tag{2}$$

Similarmente, $|I_{C12}| = 3\mu A$ y $|I_{C13}| = |I_{C14}| = 6\mu A$ de modo que despreciando las corrientes de base por simplicidad, los 3µA provenientes de Q₁₂ circulan a través de Q₈ y R₈ fijando la tensión de la base de Q₅ con relación a masa en un valor de:

$$V_{B5} = |I_{C12}|R_8 + V_{BE8} \approx 3\mu A(33k\Omega) - 7V = 0.8V$$
(3)

Asumiendo que en la entrada del Op.Amp. se encuentre aplicada una tensión de entrada de modo común únicamente Vic, los transistores Q3 y Q4 en conjunto pueden ser vistos formando una mitad del amplificador diferencial de entrada con Q₅ como la otra mitad del circuito. Este par diferencial se comporta como un amplificador totalmente desbalanceado por cuando Q₃ y Q₄ en conjunto tienen un área semiconductora de emisor (así como una corriente de saturación) mayor que la del transistor Q5 causando una tensión de Off Set no nula. Despreciando esta tensión de Off Set por simplicidad, entonces si V_{ic} es menor o igual a 0,8V, los 6μ A provenientes de Q_{11} circulan en el par diferencial de entrada pnp Q_3 y Q₄ , y Q₅ y Q₇ así como el par diferencial de entrada npn Q₁ y Q₂ todos permanecen cortados. Por otro lado, si V_{ic} es mayor o igual a 0,8V, el par diferencial de entrada pnp se encuentra cortado y los $6\mu A$ de corriente provenientes de Q_{11} circulan por Q_5 donde es copiada por la fuente de corriente espejo conformada por Q₇ y Q₆ para activar el par diferencial de entrada de npn Q_1 y Q_2 .

En ambos casos extremos, la transconductancia de la etapa de entrada permanece constante, determinada por la corriente de polarización de 6µA. En la región de transición, alrededor de V_{ic} igual a 0,8V, ambos pares diferenciales de entrada Q₁ y Q₂ así como Q₃ y Q_4 se encuentran activos. El ancho de dicha zona es de alrededor de $\pm 3VT = \pm 78mV$. En esta región, parte de los 6μA provenientes de Q₁₁ circulan por el par Q₃ y Q₄ y el resto circula por Q₅ quien finalmente polariza activamente el par Q₁ y Q₂ por intermedio de Q₆. Como consecuencia, la suma de las corrientes de Q₁ y Q₄ no es mas que los 6μA ignorando a sus corrientes de base así como al efecto de modulación del ancho de la base y el desapareamiento. En tanto la transconductancia de cada par diferencial de entrada es proporcional a sus corrientes de polarización y dado que la transconductancia total de la etapa de entrada de este Op.Amp. es la suma de la correspondiente a ambos pares diferenciales, dicha transconductancia total no depende de la tensión de entrada de modo común V_{ic} .

Para obtener una alta ganancia de tensión en esta etapa de entrada, los transistores Q₉, Q₁₀, Q₁₃ y Q₁₄ de las fuentes de corriente que adicionan las salidas de ambos pares diferenciales complementarios, deben operar en su región activa, fuera de saturación a fin de presentar una alta resistencia de salida roe.

Así, mientras Bias1 es ajustado de modo que $|I_{C13}| = |I_{C14}| = 6\mu A$ BiasCM deberá ser ajustado de modo que I_{C9} e I_{C10} también sean exactamente de 6μA. Si acaso estas corrientes I_{C9} e I_{C10} fueran simplemente determinadas por este valor constante (y no hubiera modo de ajustar BiasCM) la tensión de modo común de salida en los nodos 9 y 10 se volvería muy sensible a pequeños desapareamientos entre los transistores Q₉, Q₁₀, Q₁₃ y Q₁₄. Por ejemplo, suponiendo que por Q₉ y Q₁₀ circularan los 6μA como se esperaba pero por Q₁₃ y Q₁₄ la corriente fuese de unos 6.1μA cada uno causado por un pequeño incremento en el área semiconductora de sus emisores, entonces la tensión de salida de modo común se incrementaría con el objeto de que se satisfaga la ley de Kirchoff en los nodos 9 y 10 forzando a los transistores Q₁₃ y Q₁₄ a operar en su región de saturación para hacer bajar

sus corrientes a 6μ A. Similarmente si Q_9 y Q_{10} impulsaran corrientes levemente superiores a las correspondientes a Q₁₃ y Q₁₄ la tensión de salida de modo común debería caer hasta que se alcance a cumplir la ley de Kirchoff en los nodos referidos. La situación asi descripta determina que la tensión de salida de modo común no se encontraría bien controlada en el circuito de la figura 3 correspondiente a esta primera etapa. Este problema es superado por intermedio de la segunda etapa del Op.Amp. la cual ajusta el valor de BiasCM de modo de determinar la tensión de salida de modo común en el valor adecuado para que los transistores Q_9 , Q_{10} , Q_{13} y Q_{14} todos operen fuera de saturación.

Polarización de la segunda etapa del Op.Amp.

La figura 4 presenta el circuito esquemático de la segunda etapa del NE5234. Los nodos 9 y 10 son los terminales de salida de la primera etapa y por consecuencia la entrada de esta segunda. Los capacitores C₂₁ y C₂₂ son utilizados para introducir compensación de frecuencia y evitar así perjudiciales oscilaciones, tema que se tratara oportunamente. El otro terminal del capacitor C₂₂ se conecta en la salida del Op.Amp. como se vera al estudiar su etapa de salida. Ambos capacitores son ignorados en el presente análisis. Las configuraciones seguidor por emisor de los transistores Q₂₁ y Q₂₂ tienen por objeto reducir la carga de la segunda etapa sobre la primera. Para un primer análisis ignore la presencia de Q₂₃ y Q₂₄ ya que los mismos se encuentran normalmente cortados (protecciones). Los transistores Q₂₅, Q₂₆, Q₂₇ y Q₂₈ forman un par diferencial en el cual cada rama del par diferencial se compone de dos transistores. Este par diferencial tiene por objetivo amplificar la tensión de salida diferencial de la primera etapa v_{od1} y su desdoblamiento permite obtener dos salidas, ambas en fase entre si, una sobre el nodo 25 y la otra en el nodo 26, tal como es requerido por la etapa de salida.

De la misma forma como se describiera en la primera etapa, ahora Q₁₅ y R₁₅ en conjunto con Q₅₈ y R₅₈ del circuito de polarización de la figura 6.34, forman una nueva fuente de corriente no simétrica de modo de establecer una corriente de

$$|I_{C15}| = \frac{R_{58}}{R_{15}} |I_{C58}| = \frac{33\Omega}{66k\Omega} 6\mu A = 3\mu A$$

Similarmente

$$|I_{C16}| = |I_{C19}| = 4\mu A$$

 $|I_{C17}| = |I_{C18}| = 21\mu A$

y también

$$|I_{C20}| = 6.6 \mu A$$

Por simplicidad asuma que I_{C19} e I_{C16} determinan que $V_{EB21} = V_{EB22} = 0.7V$. Despreciando las corrientes de base, la corriente I_{C15} circula a través del diodo Schotky D1 determinando que la diferencia de potencial que aparece entre bornes de dicho diodo sea

$$V_{D1} = V_T ln \left\{ \frac{|I_{C15}|}{Is(D1)} \right\}$$

en donde IS(D1) es la corriente de saturación inversa de dicho diodo. Tomando a dicha corriente en un valor de $6*10^{-13}$ A, dicha tensión resulta

Figure 4: Esquema de la segunda etapa del NE5234.

$$V_{D1} = 0.026 \left\{ \frac{3 * 10^{-6}}{6 * 10^{-13}} \right\} = 0.4V$$

El resistor R₂₉ en conjunto con los transistores Q₂₉ y Q₃₀ conforman una fuente de corriente WIDLAR y como sabemos la ecuación de malla en la que intervienen los diodos base emisor de esta fuente

$$V_T ln(I_{C30C}/I_{S30}) - V_T ln(I_{C29C}/I_{S29}) - I_{C29}R_{29} = 0$$

En el Op.Amp. NE5234 la relación IS29/IS30 = 7 por lo que

$$V_T ln(7I_{C30C}/I_{c29}) = I_{C29}R_{29}$$

Dado que $I_{C30} = I_{C20} = 6,6\mu A$ la solución por prueba y error de esta ecuación arroja como resultado una corriente $I_{C29} = 42\mu A$. En consecuencia la corriente disponible para activar a los transistores Q_{25} , Q_{26} , Q_{27} y Q_{28} es $I_{C29} - I_{D1} = 39 \mu A$. Digamos que V_9 y V_{10} representen los potenciales de los nodos 9 y 10 contra masa y aceptemos que $V_9 = V_{10}$. **Entonces**

$$I_{C25} = I_{C26} = I_{C27} = I_{C28} = \frac{39}{4} \mu A \approx 10 \mu A$$

Por simplicidad asuma que estas corrientes determinan también que

$$V_{BE25} = V_{BE26} = V_{BE27} = V_{BE28} = 0.7V$$

Digamos ahora que V_{cmout1} represente la tensión de modo común de salida de la primera etapa incluyendo tanto su componente de continua como la componente de señal. Esta tensión es el valor medio de las tensiones presentes en los nodos 9 y 10, es decir

$$V_{cmout1} = \frac{1}{2}(V_9 + V_{10})$$

Similarmente digamos que Vbiascm represente la tensión del nodo BiasCM con referencia a la masa. Principios de funcionamiento de la primera y segunda etapa determinan conjuntamente a ambas tensones, como se anticipó precedentemente y se pasa a describir detalladamente a continuación.

Considere la primera etapa en donde V_{biascm} y V_{cmout1} son respectivamente una tensión de entrada y la otra de salida de la misma. La relación entre estas dos tensiones esta determinada por la transferencia del amplificador emisor común con resistencia de degeneración en su emisor (Q9 y Q10) y su carga activa (Q13 y Q14). Digamos que Vbiascm, V9, V10 representen a los cambios en las tensiones entre los nodos BiasCM, 9 y 10 con referencia a masa, respectivamente. Llamemos asimismo A a la ganancia de pequeña señal definida por el cociente (v9/vbiascm), entonces también A = vbiascm/v10 debido a la simetría. En otras palabras A es la ganancia de tensión de modo común establecida entre el nodo BiasCM y la salida de la primera etapa. La polaridad de esta ganancia A es negativa ya que si se incrementa la tensión del nodo BiasCM esto aumenta las corrientes de Q₉ y Q₁₀ reduciendo la tensión de salida de modo común. La magnitud de la ganancia A es grande pero no será calculada en esta oportunidad por cuanto su valor no es importante para realizar un estudio de primera aproximación para hallar los puntos de operación. Asuma que A es infinito cuando Q_9 , Q_{10} , Q_{13} y Q_{14} operan en su zona activa y lineal.

Asuma que la tensión de entrada de modo común del amplificador operacional Vic es mucho menor que los 0,8V de umbral antes definido. Entonces Q₁ y Q₂ se encuentran cortados. Mientras las diferencias de potencial de C.C. sobre las resistencia R₁₃ y R14 son

$$|I_{C13}| = |I_{C14}| = 6 \mu A$$

$$V_{R13} = V_{R14} = 6 \mu A (33 k \Omega) = 0.2 V$$

Si, $V_{CE13(sat)} = V_{CE14(sat)} = -0.1V$, Q_{13} y Q_{14} operan en la región lineal mientras V_{cmout1} este por debajo de VCC 0, 3V.

Para cumplimentar la ley de Kirchoff en los nodos 9 y 10, Q9 y Q10 deben adaptarse y conducir la misma corriente impuesta por los transistores Q₁₃ y Q₁₄ la cual es de 6μA bajo condiciones nominales. Asumamos que estas corrientes determinan que las tensiones $V_{BE9} = V_{BE10} = 0.7V$. También, mientras vic sea menor o igual a 0.8V y la corriente de C.C. a través de R₉ y R₁₀ es

$$I_{R9} = I_{R10} = I_{C9}$$

$$I_{C3} = I_{C10}$$

$$I_{C4} = 9\mu A$$

y como resultado la tensión de C.C. sobre estas resistencias es

$$V_{R9} = V_{R10} = 9\mu A(22k\Omega) = 0.2V$$

Asumamos que $V_{CE9(sat)} = V_{CE10(sat)} = 0.1V$. Entonces Q_9 y Q_{10} operan en la región activa y si V_{cmout1} es mayor a 0,3V entonces V_{biascm} es

$$V_{\text{biascm}} = V_{\text{R9}} + V_{\text{BE9}} = V_{\text{R10}} + V_{\text{BE10}} = 0.9V$$

Este comportamiento esta resumido en la grafica de la figura 5 en donde se presentan dos curvas de V_{cmout1} en relación a V_{biascm} una de ellas rotulada como Características del Amplificador. Para V_{biascm} menor que 0,9V ella describe que V_{cmout1} permanece constante en un valor VCC $\tilde{\ }$ 0,3V por cuanto Q_{13} y Q_{14} saturan. Para $V_{biascm}>0$,9V esta curva describe que Vcmout1 permanece constante en un valor 0,3V por que Q9 y Q10 saturan. Para V_{biascm} igual a 0,9V $V_{\text{cmout}1}$ cae desde VCC 0,3V a 0,3V por cuanto $A=-\infty$ como se asumió previamente.

Figure 5: Curvas de V_{cmout1} en relación a V_{biascm}.

La 5 representa las curvas de V_{cmout1} en relación a V_{biascm}. La característica del Amplificador originada en la primer etapa y la características de realimentación derivada de la segunda etapa.

Ahora considere la segunda etapa, en esta la V_{cmout1} es la tensión de entrada, mientras que V_{biascm} es la de salida. Asumamos que en la primer etapa la tensión de salida de modo común se incrementa en vcmout1. Entonces la tensión entre los emisores de los transistores Q₂₁ y _{Q₂₂ y masa también se incrementa en aproximadamente vcmout1 por cuanto estos} transistores se comportan como seguidores por emisor. Estos cambios causan que la tensión entre el colector del transistor Q₂₉ y masa se eleve también aproximadamente vcmout1 por cuanto las tensiones entre base y emisor de los transistores Q₂₅ - Q₂₈ permanecen casi constantes. Estos resultados se originan en el hecho de que la combinación de Q₂₁ y _{O26} por un lado y Q₂₇ y _{O28} por otro forman un par diferencial. Mientras la entrada de este par diferencial es una señal de modo común pura bajo las condiciones descriptas precedentemente, las corrientes de colector de cada uno de estos transistores individualmente son aproximadamente constantes asumiendo que la fuente de corriente de polarización Q₂₉

posee una alta resistencia de salida. Además, desde el punto de vista de las componentes de C.C, los seguidores de emisor Q₂₁ y _{Q22} modifican los niveles de tensión V₉ y V₁₀ hacia arriba en 0,7V. y el par diferencial desdoblado Q₂₅ - _{Q28} cambia el nivel de la salida del seguidor por emisor hacia abajo en la misma cantidad. En consecuencia por cuanto la caída de tensión sobre el diodo Schotky permanece constante, la tensión entre el nodo BiasCM y masa es la tensión de modo común de salida de la primera etapa modificada hacia arriba en 0,4V. Mientras que la tensión de colector de Q₂₉ se eleva en V_{cmout1} en este ejemplo, la tensión entre el nodo BiasCM y masa se eleva en la misma cantidad. Como resultado la tensión entre el nodo BiasCM y masa es

$$V_{biascm} = V_{cmout1} + 0.4V$$

Esta ecuación se ha representado gráficamente en la figura 5. En dicha figura su representación se ha rotulado como Característica de Realimentación (Feedback Characteristic) por cuanto la función de la segunda etapa es tomar una muestra o censar, modificar el nivel y retornar hacia la primera etapa la tensión de salida de modo común para controlar el punto de operación del modo común. Dicho lazo es un ejemplo de realimentación negativa por cuanto si se produjese un aumento de V_{cmout1} ello aumenta vbiascm lo cual entonces reduce V_{cmout1} mediante la operación del amplificador de modo común de ganancia A mencionado al describir el circuito de la primera etapa. No obstante lo dicho cabe aclarar que este lazo de realimentación negativa actúa sobre la tensión de modo común de salida de la primera etapa y no tiene ninguna influencia sobre la tensión de salida de modo diferencial de dicha primera etapa. Por ejemplo, suponga que la tensión V₉ se modifica incrementalmente y la tensión V₁₀ cambia disminuyendo la misma cantidad. Entonces la tensión entre el nodo 29 y masa permanece constante ya que Q₂₅ y _{O26} tendería a aumentarla mientras que Q₂₇ y _{O28} haría lo propio pero para disminuirla y con igual intensidad. Como resultado de ello vbiascm permanece constante y el lazo inactivo. Es por ello que el citado lazo es denominado Lazo de Realimentación de Modo Común.

La figura 5 presenta un análisis gráfico para describir como se alcanza el punto de polarización. Dos variables son las principales en este análisis V_{cmout1} y V_{biascm} . Cada una de estas variables influye sobre la otra de dos formas o caminos: por las características del Amplificador y del Lazo de Realimentación antes descritos. Cuando ambas características se satisfacen el dispositivo opera en el punto de intersección de dichas curvas características donde el valor medio de $V_{biascm} = 0,9V$ y el valor medio de $V_{cmout1} = 0,5V$. En principio, un A finito, $V_{EB21} = V_{EB22}$ diferentes a $V_{BE25} = V_{BE26} = V_{BE27} = V_{BE28}$ altera el punto de operación ligeramente, pero Q9, Q10, Q13 y Q14 en la practica todavía operan en su región activa para un amplio rango de condiciones del proceso, fuentes de alimentación y rangos de temperatura.

Análisis de C.C. de la etapa de salida

En muchos amplificadores operacionales la etapa de salida es una configuración colector común, tal como se viera en el 741. En este ultimo dicha configuración permite obtener el bajo valor deseado de resistencia de salida y una muy buena eficiencia en el manejo de energía pero la principal limitación de dicha configuración es su baja capacidad de excursión ya que su tensión de salida puede variar entre 1,4 V por arriba de la tensión de alimentación negativa (-VEE + 1,4) hasta 0,8 V por debajo de la tensión de alimentación

positiva (VCC – 0,8). Estas características no constituyen serias limitaciones cuando las tensiones de alimentación pueden llegar hasta unos +/- 15 o 20 V, pero significaría excursión prácticamente nula si la alimentación fuera de VCC = +2 V y VEE = o V.

Para superar estas limitaciones el amplificador operacional NE5234 no utiliza transistores en configuración colector común para excitar a su terminal de salida. En la figura 6 se presenta el diagrama esquemático de su etapa de salida. Los nodos 25 y 26 son los terminales de entrada de esta etapa y coinciden con los de salida de su segunda etapa. Allí los capacitores C₂₅ y C₂₆ en serie con los resistores R₂₅ y R₂₆ son los circuitos de compensación de frecuencia que evitan oscilaciones y no serán tenidos en cuenta en este estudio.

Figure 6: Etapa de salida del NE5234.

La salida es excitada por los transistores Q₇₄ y Q₇₅ que operan en configuración emisor común. Resultado de dicha configuración, la resistencia de salida de esta etapa es alta pero la misma se baja dramáticamente mediante aplicación de realimentación negativa por fuera del Op.Amp. La principal razón para utilizar este tipo de etapa de salida es que ello puede excitar a su terminal de salida en un rango de tensión que va desde $V_{CE75(sat)}$ o cerca de 0, 1V por arriba de la tensión de alimentación baja hasta $V_{CE74(sat)}$ o nuevamente 0, 1V por debajo de la tensión de alimentación mas alta. En otras palabras esta etapa permite obtener una excursión de salida del tipo rail to rail.

El objetivo de diseño es lograr que el transistor Q₇₄ este en condiciones de enviar 10μA hacia el terminal de salida. Similarmente, Q₇₅ debería estar en condiciones de enviar los mismos 10μA hacia la carga. La corriente de polarización de los transistores Q₂₅ y Q₂₆ en la figura 4 es de alrededor de 10μA cada una. Para este limite requerido de circulación de corriente hacia o desde los terminales 25 y 26 de dicho circuito, la ganancia de corriente de la etapa de salida debe ser de aproximadamente 1000. Para alcanzar este requerimiento cuando el transistor Q₇₅ impulsa corriente hacia la carga se emplea el seguidor de emisor Q₆₈. La ganancia de corriente entre el terminal 26 y el de salida es aproximadamente $\beta_{75} * \beta_{68} = \beta^2(npn)$ que alcanza un valor mas grande que 1000 por cuanto el mínimo valor de la ganancia de corriente de un transistor npn β^2 (npn) es de 40 para este proceso de fabricación. Por otro lado cuando el transistor Q₇₄ impulsa corriente hacia la carga, la ganancia de corriente podría ser menor que 1000 si Q₇₄ fuera únicamente excitado con un seguidor por emisor ya que la ganancia de corriente de los transistores pnp puede llegar a tener un valor mínimo de 10 en dicho proceso. Para superar este inconveniente el separador que excita la base del transistor Q_{74} es un seguidor por emisor complementario Q_{64} -Q₆₅ consiguiendo una ganancia de corriente entre el terminal 25 y el de salida que resulta aproximadamente $\beta_{64} * \beta_{65} * \beta_{74} = \beta^2(npn)$.

Los nodos rotulados Bias 1 y Bias 5 son los mismos que se han observados en la figura 1. Desde el punto de vista de C.C. dada la fuente espejo también puede aplicarse

$$|I_{C61}| = \frac{R_{58}}{R_{61}} |I_{C58}| = \frac{33k\Omega}{33k\Omega} * 6\mu A = 6\mu A$$

Los transistores Q₆₂ y Q₆₃ en conjunto con los resistores R₆₂ y R₆₃ forman una nueva fuente de corriente espejo no simétrica y en ella se observa que

$$|I_{C63}| = \frac{R_{62}}{R_{63}} * 6\mu A = 70\mu A$$

Sin embargo dicha relación se basa en que la diferencia de potencial en R₆₂ y en R₆₃ son idénticas, ya que la diferencia de potencial en los diodos base emisor de Q₆₂ y Q₆₃ es despreciable. Con las corrientes calculadas precedentemente, la diferencia entre las tensiones base-emisor de los transistores, asumiendo que los mismos son idénticos, resultan ser:

$$V_T * ln(I_{C62}/I_{C63}) = 64mv$$

mientras la diferencia de potencial sobre R_{62} resulta ser $(6\mu A * 14k\Omega) = 84mV$, aquí las diferencias entre las tensiones base emisor antes calculada no resulta despreciable por lo que corresponde plantear la ecuación de la ley de Kirchoff considerando betas infinitos, o sea

$$I_{C62} * R_{62} - I_{C63} * R_{63} = V_{BE63} - V_{BE62} = V_{T} * ln(I_{C63}/I_{C62})$$
 (4)

Así resolviendo por prueba y error el resultado es que $I_{C63} = 33\mu A$ y despreciando las corrientes de base también $I_{C64}=I_{C63}=33\mu A$. La corriente en R_{65} es $I_{R65}=V_{EB74}/R_{65}$ y resulta igual a I_{C65} despreciando las corrientes de base. En la practica, V_{EB74} depende de I_{C74} . Un caso en que I_{C74} es grande (mayor que 1μ A) es considerado mas adelante. En dicho caso, V_{EB74} es también grande. Por ejemplo $V_{EB74} = 0,75V$. Por lo tanto

$$|I_{C65}| = I_{R65} = 100 \mu A$$

Mientras las tensión base-emisor del transistor Q₆₉ es igual a aquella de Q₄₉ en la figura 1, las corrientes $I_{C69} = I_{C49} = 6\mu A$. Despreciando las corrientes de base, también $I_{C68} =$ $I_{C69} = 6\mu A$. Sin embargo considerando dichas corrientes de base no nulas, las mismas tienen a menudo una influencia significativa en el comportamiento de la etapa de salida, especialmente sobre I_{C64}, I_{C65} e I_{C68}, las cuales serán recalculadas tiempo después de haber determinado I_{C74} e I_{C75}. Los transistores Q₇₀, Q₇₂ y Q₇₃ normalmente operan cortados y en principio no serán considerados.

Figure 7: Etapa de salida (bias circuit).

Las corrientes de C.C. de los otros transistores integrantes de la etapa de salida están determinadas por el circuito de polarización de dicha etapa que se representa en la figura 7. Los nodos Pbase y Nbase son los terminales de salida de la etapa de salida y constituyen las entradas a dicho circuito de polarización. El nodo Bias2 es una salida que se transforma en entrada en el circuito de la segunda etapa de la figura 4 y no será considerado en un principio. El nodo Bias3 proviene de la segunda etapa. $V_{BE31} = V_{BE30}$, $I_{C31} = I_{C30} = 6,6\mu A$. Esta corriente es copiada por las configuraciones espejo Q_{32} - Q_{33} y Q_{34} - Q_{35} de modo que $I_{C35}=6,6\mu A$ despreciando las corrientes de base y la modulación del ancho de la base. Aplicando la relación de Widlar arroja $I_{C44} = 6\mu A$. Similarmente $I_{C36} = (R58/R36) * 6\mu A = 14\mu A.$

Entonces $I_{C37} = I_{C38} = I_{C36} = I_{C35} = 7,4 \mu A$. El nodo Bias5 proviene del circuito de polarización de la figura 1. En consecuencia $V_{BE41} = V_{BE49}$ y como en el NE5234 (I_{S41}/I_{S49}) = 3, $I_{C41} = 3 * I_{C49} = 18 \mu A.$

Para describir la interacción entre los circuitos de las figuras 6 y 7, la figura 8 presenta un diagrama esquemático simplificado de la etapa de salida del NE5234 incluyendo su circuito de polarización. Por simplicidad en dicho circuito todos los transistores que normalmente se encuentran cortados no se han incluido y las corrientes de polarización que se han calculado precedentemente se encuentran representadas mediante generadores independientes

de corriente. Como en muchas etapas de salida también en este caso la etapa de salida opera en clase AB. Sin embargo las relaciones básicas entre las corrientes de colector del par de transistores de salida es diferente aquí, comparado con aquellas correspondientes a la mayoría de las etapas de salida de muchos Op. Amp., tal como se detallará mas adelante.

En amplificadores operacionales cuyas etapas de salida se encuentran constituidas por transistores operando en clase AB Clásica, la técnica de polarización consiste en imponer que el producto de las corrientes de polarización de los dos transistores de salida como una constante. Tal el caso del Op. Amp. 741 en donde el par de salida Q₁₄ y Q₂₀ se encuentran polarizados mediante el circuito conformado por los transistores Q₁₈ y Q₁₉ y como se recordara, el planteo de la ley de Kirchoff sobre la malla donde intervienen las tensiones base-emisor de todos dichos transistores arrojaba la ecuación:

Figure 8: Etapa de salida del NE5234 con bias circuit.

lo cual implica que ninguna de las dos corrientes ni I_{C14} ni I_{C20} pueden anularse cuando la restante se hace grande. Sin embargo en la ecuación de Kirchoff en la mencionada malla se han despreciado algunos términos por simplicidad. Por ejemplo las caídas de tensión que aparecen en las resistencias no nulas de las regiones de base y de emisor del par de transistores de salida. Estas caídas extra incrementan la magnitud de la tensión V_{BE} del transistor excitador, en forma proporcional al aumento de la corriente por la carga enviando al corte al transistor inactivo en algún punto. Como resultado de ello se produce un incremento en el tiempo requerido para volver hacia atrás la operación de dicho transistor y se empeora la distorsión de cruce.

Para superar este inconveniente los transistores de la etapa de salida del amplificador operacional NE5234 se encuentran polarizados de modo que nunca pueden cortarse aun en los extremos de excursión máxima de la tensión de salida. El circuito compara las corrientes de los dos transistores de salida y controla la pequeña corriente a través del lazo de realimentación negativa cuando la corriente de salida es grande. Dicha corriente de salida puede ser sensada incorporando elementos en serie con el colector o el emisor

del transistor de salida. Sin embargo la caída de tensión a través de dichos elementos podría no ser nula y reduciría la excursión de la tensión de salida. Entonces para optimizar dicha excursión de salida estas corrientes son sensadas por intermedio de las tensiones base-emisor de los transistores de salida. Estas tensiones son manipuladas y enviadas al par diferencial $Q_{45} - Q_{46}$ para su comparación. Este amplificador diferencial opera sobre las tensiones de las bases de dichos transistores V_{B45} y V_{B46} . Para V_{B46} :

$$V_{B46} = V_{BE75} = V_{T} ln(I_{C75}/I_{S75})$$

En otras palabras, la función logaritmo natural mapea la corriente de colector de Q₇₅ en comparación con su tensión base-emisor la cual es igual a la tensión V_{B46} por la ecuación de malla de Kirchoff.

Por medio de V_{B45}, las variaciones de la tensión emisor-base de Q₇₄ es convertida en variaciones de corriente de colector del transistor Q₄₃ y vuelta atrás a través de Q₄₂ y R₄₂. Entonces de acuerdo a Kirchoff:

$$v_{B45} = V_{BE42} + I_{C43} * R_{42}$$

donde:

$$I_{C43} = \frac{V_{EB74} - V_{EB43}}{R_{43}}$$

como $R_{42} = R_{43}$ sustituyendo la ultima en la anterior se obtiene:

$$V_{B45} = V_{BE42} + V_{EB74} - V_{EB43} = V_{EB74} + V_{T} * ln \frac{I_{S43}}{I_{S42}} = V_{T} * ln \frac{I_{C74}}{I_{S75}}$$
 (5)

en donde se ha asumido que

$$I_{S75} = \frac{I_{S74} * I_{S42}}{I_{S43}}$$

Dicha ecuación expresa que V_{B45} es igual a la tensión base-emisor del transistor equivalente Q₇₅ cuya corriente de colector es I_{C74}. Esta conversión permite que I_{C74} sea comparada con I_{C75} por Q₄₅ Q₄₆ en un modo no sensible a las diferencias entre las corrientes de saturación de los transistores pnp y npn. Si:

$$|V_{B45} - V_{B46}| > 3V_T$$

en el par de transistores, el que mayor tensión de base alcance pasara a funcionar al corte. Bajo esta condición, la tensión de los emisores de estos transistores contra tierra es controlada por aquel transistor de salida que conduzca la mayor corriente. Esta tensión redirige la entrada sobre una de las ramas del amplificador diferencial Q₃₉ Q₄₀. La otra entrada presenta una tensión constante dispuesta por $I_{REF} = I_{C36} - I_{C35}$ circulando por los transistores conectados como diodo Q₃₇ y Q₃₈. Los transistores Q₃₉ y Q₄₀ forman el corazón del amplificador diferencial, y este amplificador funciona dentro de un lazo de realimentación negativa. Por ejemplo, asuma que el transistor Q₇₅ conduce una gran corriente de modo de volcar el terminal de salida hacia abajo. Entonces el lazo controla la corriente de colector de Q74. Si la tensión presente en la base del transistor Q40 crece por alguna razón, entonces I_{C40} es incrementada e I_{C39} es reducida. Como resultado de ello, la tensión entre el nodo 25 y masa se incrementa, lo cual aumenta la tensión entre el nodo Pbase y masa por cuanto Q_{64} y Q_{65} operan como seguidores de emisor. Este cambio reduce V_{B45} por cuanto

el amplificador emisor común Q₄₃ presenta una ganancia de tensión inversora en muy bajas frecuencias. Finalmente reduciendo V_{B45} disminuye la tensión entre la base de Q_{40} y masa por cuanto la diferencia de potencial V_{EB45} permanece siempre constante. En otras palabras, el lazo responde a los cambios en la tensión de la base de Q₄₀ accionando sobre dicha tensión, en la dirección opuesta al cambio original. Un razonamiento similar puede hacerse si se considera que Q₇₄ conduce una gran corriente de modo de llevar al terminal de salida del Op. Amp. a un nivel alto. El lazo descrito posee realimentación negativa. Si la ganancia de dicho lazo es grande entonces el mismo fuerza a que la tensión entre la base de Q₄₀ y masa sea igual a la tensión entre la base de Q₃₉ y masa. Este resultado puede ser visto como aquella característica de equipotencialidad de los terminales de entrada de un amplificador operacional ideal.

Cuando tanto Q₄₅ como Q₄₆ se encuentran ambos en conducción la relación entre las corrientes de colector de Q₇₄ y Q₇₅ queda determinada por la interrelación entre las ecuaciones de Kirchoff de nodos y de mallas que se plantean en el circuito de la figura 8. Primero, a partir de la ecuación de nodo:

$$|I_{C45}| + |I_{C46}| = |I_{C44}| \tag{6}$$

y también a partir de la ecuación de malla:

$$V_{BE75} + V_{EB46} - V_{EB45} - V_{B45} = 0 (7)$$

finalmente, otra vez el planteo de mallas arroja:

$$V_{BE75} + V_{EB46} - V_{BE40} - I_{R40} * R_{40} + I_{R39} * R_{39} + V_{BE39} - V_{EB38} = 0$$

donde I_{R39} e I_{R40} son las corrientes en las resistencias R₃₉ y R₄₀ respectivamente. En tanto que el potencial de la base de Q₄₀ es forzado a coincidir con el potencial de la base de Q₃₉ (ambos con referencia a masa) debido a la acción de la realimentación negativa,

$$V_{BE40} + I_{R40} * R_{40} = V_{BE39} + I_{R39} * R_{39}$$

y por ello la ecuación anterior se reduce a

$$V_{BE75} + V_{EB46} - V_{BE37} - V_{EB38} = 0$$

Introduciendo la ecuación del diodo en cada uno de estos términos:

$$V_T * ln \frac{I_{C75}}{I_{S75}} + V_T * ln \frac{I_{C46}}{I_{S46}} - V_T * ln \frac{I_{C37}}{I_{S37}} - V_T * ln \frac{I_{C38}}{I_{S38}} = 0$$

Ignorando las corrientes de base $I_{C37} = I_{C38} = I_{REF} = I_{C36} - I_{C35}$, por lo que:

$$\frac{I_{C75}}{I_{RFF}} * \frac{I_{S37}}{I_{S75}} = \frac{I_{REF}}{|I_{C46}|} * \frac{|I_{S46}|}{|I_{S38}|}$$
(8)

También, sustituyendo la ecuación del dio en los tres primeros términos de la ecuación 7 así como en la ecuación 5 en su ultimo termino el resultado es:

$$V_{T}*ln\frac{I_{C75}}{I_{S75}}+V_{T}*ln\frac{I_{C46}}{I_{S46}}-V_{T}*ln\frac{I_{C45}}{I_{S45}}-V_{T}*ln\frac{I_{C74}}{I_{S75}}=0$$

Asumiendo que los transistores Q_{45} y Q_{46} son idénticos, se deriva que:

$$fracI_{C75}|I_{S74}| = frac|I_{C45}||I_{S46}|$$

sustituyendo la ecuación 6 en esta ultima

$$fracI_{C75}|I_{S74}| = frac|I_{C44}| - |I_{C46}||I_{S46}|$$

despejando I_{C46} se obtiene:

$$|I_{S46}| = frac |I_{C44}| * |I_{C74}|I_{C75} + |I_{S74}|$$

reemplazando esta corriente en la ecuación 8:

$$\operatorname{fracI}_{C75} * |I_{C74}|I_{C75} + |I_{S74}| = \frac{(I_{REF})^2}{|I_{C44}|} * \frac{I_{S75}}{I_{S37}} * \frac{|I_{S46}|}{|I_{S38}|}$$
(9)

En el Op.Amp. NE5324, $I_{REF}=7.4\mu A$ e $I_{C44}=6\mu A$ tal como se calculara precedentemente. También considerando $(I_{S75}/I_{S37})=10$ en tanto que $(I_{S46}/I_{S38})=2$, cuando la corriente en la carga es nula ($I_L = 0$) la ultima ecuación 9 arroja un resultado de

$$I_{C75} = |I_{C74}| = 2\frac{(7,4\mu A)^2}{6\mu A} * 20 = 360\mu A$$

Cuando I_L es grande y negativa ella circula a través del transistor Q_{75} , haciendo V_{BE75} también grande y suficiente para cortar al transistor Q₄₆. En consecuencia el lazo de realimentación negativa en la figura 8 impone la corriente de colector de Q₇₄. Para hallar el valor de I_{C74} debe plantearse el limite de la ecuación 9 para I_{C75} tendiendo a infinito o sea:

$$\liminf_{\substack{I_{C75} \to \infty}} \frac{I_{C75} * |I_{C74}|}{I_{C75} + I_{C74}} = |I_{C74}| = \frac{(I_{REF})^2}{|I_{C44}|} * \frac{I_{S75}}{I_{S37}} * \frac{|I_{S46}|}{|I_{S38}|} = \frac{(7.5 \mu A)^2}{6 \mu A} * 20 = 180 \mu A$$

Estas ultimas ecuaciones proporcionan la corriente en los transistores de salida inactivos a consecuencia que su complementario impulsa una corriente a la carga tan grande como para cortar a los transistores Q₄₅ y Q₄₆ en cada caso. Estas corrientes resultan ser la mitad de la corriente de polarización que circula por ambos transistores de salida cuando la corriente en la carga es nula.

La salida suministra o drena corriente, dependiendo de la tensión de salida y de la carga. Como resultado de ello, las propiedades de la etapa de salida son dependientes tanto de la tensión como de la corriente de salida. Por ejemplo, asuma que la corriente de salida es $I_L = 1\mu A$ y que fluye hacia fuera del terminal de salida. Asimismo asuma que la resistencia de carga es $R_L = 2k\Omega$ partir de la ley de Kirchoff de los nodos

$$|I_{C74}| = I_{C75} + I_L = I_{C75} + 1\mu A$$

Sustituyendo esta condición en la ecuación (e) precedente y resolviendo I_{C75} para el Op.Amp. NE5324 se obtiene $I_{C75} = 210\mu A$. Por lo tanto $I_{C74} = 1,2\mu A$. Si la corriente en la carga se incrementara en 1,1μA, I_{C75} disminuiría solo unos pocos μA y permanecería en un valor cercano a los 210μA mientras I_{C74} se ubicaría cerca de 1,3μA. En otras palabras, la corriente en Q_{75} es siempre constante bajo estas condiciones por cuanto su corriente esta regulada por el lazo de realimentación negativa antes descripto.

Ahora que las corrientes de colector de Q₇₄ y Q₇₅ han sido determinadas, estamos en condiciones de calcular las corrientes en los colectores de Q₄₂, Q₄₃, Q₄₅ y Q₄₆. Ignorando las corrientes de base, la ley de Kirchoff de las mallas aplicada al circuito de las uniones base-emisor de los transistores Q₄₃ y Q₇₄ da como resultado:

$$|I_{C43}|R_{43} = V_T * ln \frac{|I_{C74}|}{|I_{C43}|} * \frac{|I_{S43}|}{|I_{S74}|}$$

La relación de áreas de emisor de los transistores Q_{43} y Q_{74} es de 3/32, por lo cual:

$$|I_{C43}|*1,3k\Omega = V_T*ln\frac{1200\mu A}{|I_{C43}|}*\frac{3}{32}$$

Resolviendo esta ecuación por el método de prueba y error como en el caso de la fuente de corriente Widlar la misma da como resultado $I_{C43}=28\mu A$. Como consecuencia $I_{C42}=$ 28μA y la tensión de entrada a la etapa diferencial $Q_{45} - Q_{46}$ es:

$$V_{B45} - V_{B46} = V_{BE42} + I_{C42} * R_{42} - V_{BE75}$$

$$= V_{T} * ln(\frac{I_{C42}}{I_{C75}} * \frac{I_{S75}}{I_{S42}}) + I_{C42} * R_{42}$$

Lo que es igual a:

$$= 26 \text{mV} * \ln \frac{28}{210} * \frac{10}{1} + 28 \mu \text{A} * 1,3 \text{k}\Omega = 44 \text{mV}$$

por cuanto la relación de áreas de semiconductor de los emisores de Q₇₅ y Q₄₂ es 10. A partir del estudio de la linealidad del par diferencial:

$$|I_{C45}| = \frac{|I_{C44}|}{1 + e^{\frac{V_{B45} - V_{B46}}{V_T}}} = \frac{6\mu A}{1 + e^{\frac{44}{26}}} = 0,93\mu A$$

$$|I_{C46}| = \frac{|I_{C44}|}{1 + e^{\frac{V_{B46} - V_{B45}}{V_T}}} = \frac{6\mu A}{1 + e^{\frac{-44}{26}}} = 5,1\mu A$$

donde I_{C45} es mayor que I_{C46} debido a que V_{B45} es superior a V_{B46} .

Finalmente con $I_{C74} = 1.2\mu A$ e $I_{C75} = 210\mu A$, recalcularemos las corrientes de colector de los transistores Q_{64} , Q_{65} y Q_{68} , tomando en cuenta las corrientes de base no nulas y asumiendo que $\beta_{npn}=40$ y $\beta_{pnp}=10$, entonces $I_{B74}=\frac{1,2\mu A}{10}=120\mu A$. En consecuencia

$$|I_{C65}| = \frac{\beta_{F(pnp)}}{\beta_{F(pnp)} + 1} * (I_{R65} + |I_{B74}|) = \frac{10}{11} * (100 + 120) \mu A \approx 200 \mu A$$

Esta ecuación ignora a la corriente de base de Q₆₆, cosa razonable ya que el área semiconductora de emisor de dicho transistor es 32 veces mas pequeña que la correspondiente al transistor Q_{74} . Así entonces, para $I_{B65} = 20 \mu A$ y

$$|I_{C64}| = \frac{\beta_{F(npn)}}{\beta_{F(npn)} + 1} * (I_{C63} + |I_{B65}|) = \frac{40}{41} * (33 - 20) \mu A \approx 13 \mu A$$

Similarmente, $I_{B75} = \frac{210 \mu A}{40} = 5,3 \mu A y$

$$|I_{C68}| = \frac{\beta_{F(npn)}}{\beta_{F(npn)} + 1} * (I_{C69} + |I_{B75}|) = \frac{40}{41} * (6 - 5, 3) \mu A \approx 11 \mu A$$

Ignorando la corriente de base de Q_{71} que es diez veces mas pequeña que la de Q_{75} .

La figura 9 presenta la relación de áreas semiconductoras de emisor de todos los transistores del Op.Amp. NE5324, las corrientes de colector calculadas precedentemente, y las corrientes de colector obtenidas mediante la simulación mediante SPICE bajo las condiciones descriptas en los párrafos anteriores. Las corrientes de colector de Q₅₅ y Q₆₄ muestran importantes errores. El transistor Q₅₅ es un seguidor por emisor que excita al nodo Bias1 de la figura 1. El calculo de I_{C55} ignoran a las corrientes de base de todos los transistores que poseen sus bases conectadas a dicho nodo Bias1. Estos cálculos no se vuelven a repetir aquí por cuanto arrojan muy pequeñas diferencias en los parámetros que se determinan posteriormente. Similarmente Q_{64} es un seguidor por emisor que excita al seguidor por emisor Q₆₅ en la figura 6. El error en I_{C64} se debe a los cálculos de I_{C62}. Ignorando las corrientes de base, I_{C62} es estimada en 6μA y la ecuación 4 resuelta por el método de prueba y error determina I_{C63} en 33 μ A. Sin embargo la combinación de corrientes de base de Q_{62} y Q_{63} es entonces $\frac{39\mu A}{\beta_{npn}}$, lo cual es alrededor de 1 μ A con $\beta_{npn}=40$. Como resultado I_{C62} se ubica entre unos 5 o 6 μA. Cuando I_{C63} es recalculada por el procedimiento de prueba y error con la ecuación 4 con el nuevo valor de I_{C62} el resultado es $I_{C63} = 24 \mu A$. Aunque el cambio entre 33 y 24 μA no parece ser importante, la corriente de colector de Q₆₄ se reduce significativamente debido a este cambio por cuanto la misma esta determinada por la diferencia entre estas dos corrientes. A partir de la ley de Kirchoff de los nodos:

$$|I_{C64}| = \frac{\beta_{F(npn)}}{\beta_{F(npn)} + 1} * (I_{C63} + |I_{B65}|) = \frac{40}{41} * (24 - \frac{200}{10}) \mu A \approx 4 \mu A$$

en lugar de los 13µA calculados precedentemente.

Por supuesto que las estimaciones hechas en un principio para las corrientes I_{C55} e I_{C64} podían haberse sustituido por cálculos que contemplaran ya en ese momento a las corrientes de base, sin embargo este procedimiento podría acarrear un significativo nivel de complejidad. En la practica un análisis de primera aproximación permite asumir cierto grado de simplificación. Por ejemplo las corrientes de base siempre pueden despreciarse en los estudios de polarización. Así, después el dispositivo puede ser simulado y mediante la comparación de los resultados con la simulación ello puede indicar el ajuste de algún parámetro que originalmente haya sido despreciado, justo como se ha llevado a cabo en este trabajo. Este procedimiento tiene la ventaja de su simplicidad. Estos análisis simplificados constituyen un método de trabajo muy apropiado en la practica por cuanto el diseño es el procedimiento inverso al análisis. Las hipótesis simplificativas permiten a los diseñadores ajustar sus proyectos realizando rápidas verificaciones de sus comportamientos bajo diferentes condiciones. Estos procedimientos le permiten al diseñador poner énfasis en cada uno de los parámetros que limitan el comportamiento satisfactorio de su proyecto en cada una de dichas condiciones.

Trans.	Rel. Area	<i>I_C</i> (μA) (Calc.)	<i>I_C</i> (μA) (Sim.)	Trans.	Rel. Area	$I_C (\mu A)$ (Calc.)	<i>I_C</i> (μA) (Sim.)
Q_1	2	0	0	Q37	1	7.4	7.29
\widetilde{Q}_{1d}	4	0	0	Q_{38}	1	-7.4	-6.79
\widetilde{Q}_2	2	0	0	\widetilde{Q}_{39}	1	9.0	8.33
Q_{2d}	4	0	0	Q_{40}	1	9.0	8.48
Q_3	2	-3.0	-2.65	Q_{41}	3	18	17.2
Q_{3d}	4	0	0	Q_{42}	1	28	27.3
Q_4	2	-3.0	-2.63	Q_{43}	3	-28	-27.9
Q_{4d}	4	0	0	Q_{44}	1	-6.0	-5.79
Q_5	1	0	0	Q_{45}	2	-0.93	-0.939
Q_6	1	0	0	Q_{46}	2	-5.1	-4.15
Q_7	1	0	0	Q_{47}	1	-6.0	-5.76
Q_8	1	3.0	3.06	Q_{48}	1	-6.0	-5.25
Q_9	2	6.0	6.16	Q_{49}	1	6.0	5.74
Q_{10}	2	6.0	6.17	Q_{50}	1	-6.0	-5.80
Q_{11}	1	-6.0	-5.81	Q_{51}	1	-6.0	-5.01
Q_{12}	1	-3.0	-3.14	Q_{52}	1	6.0	6.73
Q_{13}	1	-6.0	-5.84	Q_{53}	1	6.0	5.74
Q_{14}	1	-6.0	-5.84	Q_{54}	1	-6.0	-5.76
Q_{15}	1	-3.0	-3.13	Q_{55}	1	-6.0	-15.9
Q_{16}	1	-4.0	-4.01	Q_{56}	1	6.0	5.01
Q_{17}	1	-21	-17.6	Q_{57}	1	6.0	5.85
Q_{18}	1	-21	-17.7	Q_{58}	1	-6.0	-5.76
Q_{19}	1	-4.0	-4.01	Q_{59}	1	6.0	5.64
Q_{20}	1	-6.6	-6.35	Q_{60}	2	6.0	5.78
Q_{21}	1	-4.0	-3.25	Q_{61}	1	-6.0	-5.83
Q_{22}	1	-4.0	-3.38	Q_{62}	1	6.0	5.08
Q_{23}	1	0	0	Q_{63}	1	33	25.3
Q_{24}	1	0	0	Q_{64}	1	13	5.04
Q_{25}	1	10	9.13	Q_{65}	8	-200	-216
Q_{26}	1	10	8.94	Q_{66}	1	-37	-43.2
Q_{27}	1	10	6.19	Q_{67}	1	0	0
Q_{28}	1	10	6.19	Q_{68}	1	11	12.0
Q_{29}	7	42	34.0	Q_{69}	1	6.0	5.75
Q_{30}	1	6.6	5.23	Q_{70}	1	0	0
Q_{31}	1	6.6	5.50	Q_{71}	1	21	25.9
Q_{32}	1	-6.6	-4.59	Q_{72}	3	0	0
Q_{33}	1	-6.6	-4.81	Q_{73}	1	0	0
Q_{34}	1	6.6	4.58	Q_{74}	32	-1200	-1260
Q_{35}	1	6.6	4.70	Q_{75}	10	210	264
Q_{36}	1	-14	-12.4				

Figure 9: Corrientes calculadas y simuladas.

Transistores que se encuentran normalmente inactivos

Considere el circuito de la figura 3 y en el que la tensión de entrada de modo común es tal que los transistores Q₁, Q₂ y Q₆ operen la región activa y lineal. Si la tensión de entrada al amplificador diferencial se incrementa, la corriente de Q2 aumenta y la del transistor Q1 disminuye. Por lo tanto la tensión entre el nodo 2 y tierra cae y la correspondiente al nodo 1 con referencia de tierra sube. La cuestión es que cuando Q₁ y Q₂ operan en la región lineal ellos introducen un desplazamiento de fase de 180 o entre las tensiones de sus colectores y las de sus bases. Ahora suponga que la tensión de entrada de modo común se incrementa hasta alcanzar 100 o 200 mV por debajo de VCC de modo que Q₁ y Q₂ pasan a saturación.

Bajo estas condiciones la unión colector-base de estos transistores pasan a polarizarse en forma directa, y la tensión presente en dicha juntura permanece aproximadamente constante. En consecuencia, incrementando la tensión de entrada diferencial del Op. Amp. ello produce un incremento en la tensión presente entre el nodo 2 y tierra y simultáneamente una disminución en la tensión del nodo 1 con igual referencia. En otras palabras, la operación de los transistores en saturación hace que los mismos dejen de invertir la fase de las tensiones que normalmente introducían. Invirtiéndose la polaridad de la ganancia de la etapa de entrada se invierte la polaridad de la ganancia del operacional, transformándose una realimentación negativa en positiva con la consiguiente posibilidad de inestabilidad. Un problema similar ocurre cuando la tensión de entrada de modo común alcanza valores tan negativos como -VEE en los que los transistores Q₃ y Q₄ pasan a saturación (efecto LATCH UP).

Este problema ocurre cuando la tensión de entrada de modo común va mas allá de los limites o rango permitido por el Op. Amp. En principio este problema puede ser subsanado especificando la tensión de entrada de modo común máxima de modo que ningún transistor de entrada pueda llegar a saturar. Sin embargo tomando la precaución de que nunca la polaridad de los terminales de entrada del circuito puedan invertirse se amplia considerablemente el campo de aplicación del Op.Amp.

La figura 10 presenta el diagrama esquemático de una parte de la etapa de entrada del NE5234 con los transistores Q_{1d} , Q_{2d} , Q_{3d} y Q_{4d} los cuales fueran omitidos en la figura 3 por simplicidad. Las uniones base-emisor de estos transistores se encuentran cortocircuitadas, por lo tanto cada uno de estos transistores es en realidad un diodo entre sus terminales de colector y base. Cuando Q₁ y Q₂ saturan, sus junturas colector-base se polarizan en directo. La base de Q_{1d} esta conectada a la base de Q_1 y la base de Q_{2d} se encuentra conectada a la base de Q2. Los colectores de Q1d y Q2d se hallan conectados a los colectores de Q1 y Q2 respectivamente. En consecuencia, con un apareamiento de transistores perfecto y para una tensión de entrada de modo común exclusivamente, $V_{\rm BC1} =$ $V_{BC1d} = V_{BC2} = V_{BC2d}$ y las uniones colector-base de estos cuatro transistores se encuentran igualmente polarizadas.

Para impedir el cambio de polaridad de terminales precedentemente descripto, los transistores Q_{1d} y Q_{2d} poseen mayores áreas semiconductoras que Q₁ y Q₂ (en el NE5234 la relación de áreas es 2). Cuando la uniones base-colector comienzan a tener polarización directa, las uniones de Q_{1d} y Q_{2d} conducen una mayor corriente que aquellas de Q₁ y Q2. De este modo, los cambios en la tensión de entrada aplicada al terminal no inversor ejercen mayor influencia en el nodo 1 que en el nodo 2 y los cambios en la tensión de entrada aplicada al terminal inversor producen mayor influencia en el nodo 2 que en el nodo 1. Como consecuencia, cuando la tensión de entrada diferencial se incrementa, la tensión entre el nodo 1 y tierra aumenta mientras que la del nodo 2 disminuye como ocurre en operación normal. Similar comportamiento tiene lugar en el par diferencial pnp. Este circuito permite que el rango de tensión de entrada de modo común pueda extenderse hasta unos 700 mV por debajo de VCC hasta cerca de unos 700 mV por arriba de -VEE. En los extremos alto y bajo unos cientos de mV por debajo de dichos limites, los transistores de la etapa de entrada operan en saturación y en algunos Op.Amp. sus especificaciones no lo aclaran. Sin embargo la ganancia del amplificador operacional no se invierte en fase en

Figure 10: Esquema parcial de la etapa de entrada con diodos en ambos pares diferenciales.

el rango precedentemente detallado. Excediéndose dicho rango pueden sobrevenir daños en los transistores Q_{1d}, Q_{2d}, Q₃ y Q₄. Es posible incorporar resistores en serie con estos terminales de entrada para evitar dichos daños limitando la corriente a través de dichos diodos cuando pasan a conducción.

Los transistores Q₂₃ y Q₂₄ en la figura 4 normalmente permanecen cortados. Sus bases se encuentran conectadas al nodo Bias2 el cual es una salida del circuito de polarización de la figura 7. La tensión entre el nodo Bias2 y masa es $V_{EB38} = 0.7V$ aproximadamente. Por lo tanto si las tensiones entre el nodo 9 o el nodo 10 contra masa se incrementara hasta alcanzar 1,4 V cuando una señal diferencial grande es aplicada a los terminales de entrada del amplificador operacional, Q₂₃ y Q₂₄ pasan a conducción para prevenir posibles ulteriores incrementos en estas tensiones. Esta limitación es muy importante para evitar que los transistores Q₁₆ y Q₁₉ saturen, reduciendo la demora requerida para un manejo apropiado en caso de una súbita reducción en la magnitud de la tensión diferencial de entrada.

Los transistores Q_{67} y Q_{70} en la figura 6 también se encuentran normalmente cortados. Estos transistores pasan a conducción para limitar la corriente a la carga I_L y prevenir así la destrucción de los transistores Q_{74} y Q_{75} . Por ejemplo si el transistor Q_{67} se encuentra cortado su tensión base-emisor es

$$V_{BF67} = |I_{C66}| * R_{67} - I_{C63} * R_{63}$$

El transistor Q_{67} pasa a conducción cuando su tensión base-emisor alcanza $V_{BEu}=0.7V$ por lo que rescribiendo la anterior ecuación para esta condición:

$$|I_{C66}| = \frac{V_{BE(on)}}{R_{67}} + I_{C63} * \frac{R_{63}}{R_{67}} = \frac{0.7V}{1.5k\Omega} + 33\mu A * \frac{1.2k\Omega}{1.5k\Omega} = 490\mu A$$

Dado que el área semiconductora del transistor Q₇₄ es 32 veces mas grande que la del Q₆₆, Q₆₇ entrara en conducción cuando

$$|I_{C74}| = 32(490 \mu A) = 12 mA$$

Una vez que Q₆₆ entra en conducción , el eleva la caída de tensión en R₆₃ disminuyendo así la corriente I_{C63}. Este cambio reduce la capacidad del transistor Q₆₃ de hacer bajar la

tensión de la base de Q_{65} , el cual limita la capacidad de Q_{65} para hacer bajar la tensión de la base de Q₇₄. Como consecuencia la corriente de este ultimo queda limitada al valor precedentemente estimado de alrededor de 16µA.

Similar comportamiento posee el circuito de limitación de la corriente del transistor Q_{75} . La corriente es sensada por Q₇₁. Cuando I_{C75} se hace grande, Q₇₀ pasa a conducción tirando hacia abajo la tensión del emisor de Q₁₈ en la figura 4, reduciendo la corriente I_{C18} limitando la corriente que el puede proveer para elevar el potencial del nodo 26 y limitar la corriente I_{C75}.

Los transistores Q₇₂ y Q₇₃ en la figura 6 se encuentran normalmente cortados. Su propósito es limitar el grado en que Q₇₄ y Q₇₅ puedan saturar. Esta limitación es importante ya que permite que los transistores de salida alcancen dicha condición sin acumular excesiva carga de portadores minoritarios en su región de base en modo de no incrementar el tiempo necesario para que pasen a la condición contraria disminuyendo así la distorsión de cruce. Si Q₇₄ comienza a saturar su juntura base colector empieza a recibir polarización directa. Como resultado de ello la tensión entre el nodo 25 y masa cambia hacia abajo en o_{7} V por efecto de Q_{74} y simultáneamente para arriba en igual cantidad por Q_{65} , $V_{EB72} = 0$ aproximadamente. El transistor Q₇₂ pasa a operar en su región activa inversa cuando Q₇₄ comienza a saturar. En este modo de operación, la corriente de Q₇₂ circula hacia su terminal de colector y sale por su terminal de emisor y hacia el nodo 25. Esta corriente eleva la tensión presente entre este nodo y tierra el cual reduce la tensión de salida y evita aquel efecto cuando Q₇₄ satura. Similarmente, cuando el transistor Q₇₅ comienza a saturar, su juntura base-colector comienza a polarizarse en forma directa, lo cual polariza en forma directa la juntura base-colector del transistor Q_{73} . Este transistor entonces opera en su región activa inversa colectando corriente desde el terminal 26 para reducir la tensión entre dicho nodo y masa y en el limite evitar las consecuencias de la saturación de Q_{75} .

ANÁLISIS DINÁMICO DE BAJO NIVEL DEL OP.AMP. NE5234 2

Nuestro próximo objetivo es la determinación de las propiedades dinámicas de bajo nivel del amplificador operacional. Con tal objetivo subdividiremos el circuito en tres partes, la etapa de entrada, la segunda etapa y la etapa amplificadora de salida estudiando cada una de ellas. En esta sección consideraremos hf $e_{npn} = \beta_{npn} = 40$, hf $e_{pnp} = \beta_{pnp} = 10$ y $VA_{npn} = 30V$ y $VA_{pnp} = 20V$ salvo aclaración en contrario. Estos valores son tan solo estimados como limites mínimos de lo que se presenta normalmente en la practica.

Etapa de Entrada 2.1

La etapa de entrada de este amplificador diferencial es un circuito totalmente diferencial, formado por dos pares de emisores comunes y su resistencia de entrada depende de cual de los pares están conduciendo. Supongamos que $V_{IC} < 0.8V$. Entonces el par npn $Q_1 - Q_2$ se encuentra cortado, y Q_{11} se encuentra polarizando al par pnp $Q_3 - Q_4$. La figura 11. presenta el medio circuito equivalente para este modo de operación. La resistencia de carga es $\frac{R_{in2}}{2}$, la cual es la mitad de la resistencia de entrada de la segunda etapa. Mientras

el transistor Q₃ opera con su emisor a masa de pequeña señal, la resistencia de entrada de este medio circuito diferencial es h_{ie3} y por lo tanto la resistencia de entrada diferencial es:

$$R_{id} = 2hie_3$$

Entonces, dado que $|I_{C11}| = 6\mu A$, $|I_{C3}| = |I_{C4}| = 3\mu A$

$$R_{id} = 2 \frac{\beta_{pnp}}{gm_3} = 2 \frac{\beta_{pnp}}{|I_{C3}|} V_T = 2 \frac{10}{3\mu A} 25 \text{mV} = 170 \text{k}\Omega$$

Para una tensión de entrada diferencial, los terminales de base de Q₉ y Q₁₃ de pequeña señal también están conectados a masa como se puede observar en la figura 11. Por consecuencia ambos transistores operan como amplificadores base común y como ambos poseen resistencias conectadas en sus terminales de emisor a tierra, sus resistencias de salida que llamaremos R_{up1} para Q₁₃ y R_{down1} para Q₉ resultan:

Figure 11: Circuito en modo diferencial, etapa de entrada con $V_{\rm IC} << 0.8V$

$$R_{up1} = r_{oe13}(1 + hfe_{13} \frac{R_{13}}{R_{13} + R_{B13} + hie_{13}})$$

con $R_{B13} = 0$, así

$$R_{up1} = 3,33 * 10^6 (1 + 10 * \frac{33}{3 + 0 + 41,6}) = 3,33 * 10^6 * 5,42 = 18M\Omega$$

Similarmente, si la resistencia de salida por colector de Q₃ es mucho mas grande que R₉, entonces la resistencia de salida R_{down1} es:

$$R_{down1} = r_{oe9}(1 + hfe_9 \frac{R_9}{R_9 + R_{B9} + hie_9})$$

con $R_{B9} = 0$, así

$$R_{down1} = 5 * 10^6 (1 + 40 * \frac{22}{22 + 0 + 166.4}) = 5 * 10^6 * 5.42 = 27M\Omega$$

con la cual, la resistencia de salida de la primer etapa es:

$$Ro_1 = \frac{R_{up1}}{R_{dowm1}} = \frac{18M\Omega}{27M\Omega} = 11M\Omega$$

La transconductancia diferencial de la primera etapa, que definiremos como Gmd1 = $\frac{I_{\text{cd9}}}{V_{\text{id}}}$, dada su carga activa resultara:

$$Gmd1 = gm_3 \frac{R_9}{hib_9 + R_9} = gm_3 \frac{gm_9R_9}{1 + gm_9R_9} = 40 * 3 * 10^{-6} * \frac{40 * 6 * 10^{-6} * 22 * 10^3}{1 + 40 * 6 * 10^{-6} * 22 * 10^3}$$

$$Gmd1 = 10\mu A/V * 0.84 = 100\mu A/V$$

Como se apunto oportunamente, la transconductancia diferencial de la primera etapa del Op.Amp. no depende de la tensión de entrada de modo común.

Segunda Etapa

Mientras los potenciales de los nodos 9 y 10 son iguales y de signo contrario cuando la excitación es exclusivamente diferencial, los emisores de los transistores Q₂₅ y Q₂₈ se encuentran conectados a tierra para pequeña señal (tierra virtual). Entonces la resistencia de entrada de la segunda etapa resulta ser:

$$R_{i2} = 2(hie_{21} + (hfe_{21} + 1) * \frac{hi2_{25}}{hie_{26}})$$

suponiendo que la resistencia que se observa en el colector de Q₁₆ es mucho mayor que (hie₂₅//hie₂₆). Dado que hie₂₅ = hie₂₆

$$R_{i2} = 2 * (\frac{10}{40 * 4 * 10^{-6}} + \frac{11}{2} * \frac{401}{40 * 4 * 10^{-6}} = 1,3M\Omega$$

Para hallar la resistencia de salida previamente determinaremos la resistencia vista desde los colectores de Q₁₇ y Q₁₈ hacia arriba del circuito, que llamaremos R_{up2} para luego hacer lo propio con la parte inferior del circuito desde dichos colectores a la que llamaremos R_{down2}. En el primer caso se trata de sendos circuitos del tipo R_e sin puentear por lo que

$$R_{up2} = r_{oe17}(1 + hfe_{17} \frac{R_{17}}{R_{17} + R_{B17} + hie_{17}})$$

con $R_{B17} = 0$, así

$$R_{up2} = 0.952 * 10^6 (1 + 10 * \frac{9.3}{9.3 + 0 + 11.9}) = 0.952 * 10^6 * 5.38 = 5.1 M\Omega$$

Ahora mirando hacia abajo desde los colectores de Q₂₅ y Q₂₆

$$R_{down2} = r_{o25}(1 + gm_{25}R_{E25})$$

Donde R_{E25} es la resistencia equivalente de pequeña señal que presenta el circuito conectado en el emisor de Q₂₅. Suponiendo que la resistencia vista desde el colector de Q₂₉ es muy alta como para ser despreciada, R_{E25} es la resistencia vista desde los emisores de Q₂₆ y Q₂₈. Mientras los colectores de Q₂₇ y Q₂₈ están conectados a masa para pequeña señal (VCC), la resistencia vista entre cada uno de sus emisores y masa es hib₂₇ y

 $hib_{28} = (1/gm28)$. Sin embargo para Q_{26} su determinación resulta mucho mas complicada por cuanto la resistencia conectada en su colector puede ser muy grande. Llamemos Rin3 a la resistencia de entrada de la tercer etapa en el nodo 26, entonces R_{E25} es

$$R_{E25} = (r_{e26} + \frac{\beta_{0npn}}{\beta_{0npn} + 1} * \frac{R_{up2} || R_{in3(26)}}{gm_{26} * r_{026}}) || r_{e27} || r_{e28}$$

$$con r_e = h_{ib} = \frac{1}{gm}$$

Si $(R_{in3(26)}/gm_{26}^2*r_{o26}) << r_{e26}$ que se convierte en realidad debido al bajo valor de β_{0npn} aquí supuesto entonces:

$$\begin{split} R_{E25} &\approx \frac{\beta_{0npn}}{\beta_{0npn}+1}*(\frac{1}{gm_{26}}||\frac{1}{gm_{27}}||\frac{1}{gm_{28}})\\ R_{E25} &\approx \frac{40}{41}*(\frac{26mV}{10\mu A}||\frac{26mV}{10\mu A}||\frac{26mV}{10\mu A}) = 0,85k\Omega \end{split}$$

Sustituyendo este resultado en la ecuación anterior de R_{down2}:

$$R_{down2} = \frac{30V}{10\mu A} * (1 + \frac{10\mu A}{26mV} 0, 85k\Omega) = 4M\Omega$$

Como resultado de ello la resistencia de salida de la segunda etapa vista hacia adentro del terminal 25 resulta:

$$R_{o2} = R_{up2} || R_{down2} = 2.2 M\Omega$$

La figura 12 representa el circuito equivalente de la segunda etapa preparado para la determinación de la transconductancia de la misma. El resistor identificado como R_{up2} representa la resistencia de pequeña señal vista desde el colector de Q₁₇ o de Q₁₈ en el circuito de la figura 4. Dicha resistencia fue calculada precedentemente y su resultado fue de $5\mathrm{M}\Omega$ cada una. Las resistencias rotuladas como R_{in3(25)} y R_{in3(26)} como se dijo precedentemente representan las resistencias de entrada de la tercera etapa en los terminales 25 y 26, respectivamente. Llamemos V_9 , V_{10} y V_{25} a las diferencias de potencial de pequeña señal referidas a masa en los nodos 9, 10 y 25, respectivamente. Los emisores de los transistores $Q_{25}-Q_{28}$ se encuentran flotantes en la figura 12 por cuanto Q29 en la figura 4 opera como una fuente de corriente con una resistencia de salida mucho mas grande que la resistencia vista hacia dentro de los emisores de $Q_{25} - Q_{28}$. Llamemos av21 y av22 a las ganancia de tensión de pequeña señal de los seguidores por emisor Q_{21} y Q_{22} en la figura 4, respectivamente.

Figure 12: Modelo de pequeña señal, segunda etapa para hallar su transconductancia.

Cada seguidor de emisor tiene como carga $R_L = hie_{25}//hie_{26} = hie_{27}//hie_{28} = hie_{25}/2$ por lo que las mencionadas ganancias de tensión de dichas etapas resultan:

$$\begin{split} \alpha \nu 21 &= \alpha \nu 22 = \frac{(h f e_{21} + 1) * (roe_{21} \| (hie_{25}/2)))}{hie_{21} + ((h f e_{21} + 1) * (roe_{21} \| (hie_{25}/2)))} \\ \alpha \nu 21 &= \alpha \nu 22 = \frac{11 * (\frac{40 * 26 mV}{2 * 10 \mu A} \| \frac{20V}{4 \mu A})}{\frac{10 * 26 mV}{4 \mu A} + 11 * (\frac{40 * 26 mV}{2 * 10 \mu A} \| \frac{20V}{4 \mu A})}{\alpha \nu 21} \\ \alpha \nu 21 &= \alpha \nu 22 = 0,90 \end{split}$$

La transconductancia de la segunda etapa la definimos como (con $v_{25} = 0$):

$$G_{m2} = \frac{i_0}{v_9 - v_{10}}$$

Por cuanto la tensión de modo común de salida de la primera etapa se fija en un valor constante, tal como se mostró en la figura 5, $v_9 = vod1 - 2$ y $v_{10} = -vod1 - 2$, donde vod1es la tensión de modo diferencial de salida de la primera etapa. Por simplicidad en la búsqueda de la transconductancia de esta segunda etapa, asumiremos que $v_{10} = 0$. Este cambio introduce una tensión de modo común no nula en la entrada de la segunda etapa. Sin embargo esta entrada de modo común causa un muy pequeño cambio en G_{m2} debido a que la fuente de corriente Q₂₉ de polarización de la segunda etapa posee una muy elevada resistencia de salida. Imponiendo $v_{10} = 0$ también reduce la tensión de entrada diferencial a la segunda etapa a la mitad pero como el modelo de pequeña señal es lineal ello se vera compensado al considerar también la mitad de la corriente de salida io y no cambia el valor de G_{m2} . Como resultado

$$G_{m2} = \frac{i_0}{v_0}$$

Debido a la característica de linealidad del circuito equivalente de pequeña señal para la determinación de la corriente io es posible aplicar el teorema de superposición. La figura 13 presenta un circuito equivalente adecuado para la determinación de la primera de las componentes de i_o.

Figure 13: Modelo de pequeña señal para hallar la primer componente de io.

Los terminales de base de los transistores $Q_{25}\ y\ Q_{26}$ son excitados separadamente, y la base de Q₂₆ se halla conectada a masa de pequeña señal en este paso en que se intenta determinar la primera de las componentes i_{01} o. Las resistencias conectadas al nodo 25 se han eliminado ya que la corriente i₀₁ circula por ellas. Para hallar i₀₁ el transistor Q₂₅ responde a la configuración tipo emisor común con resistencia de emisor sin puentear. La resistencia equivalente dinámica total conectada en el terminal de emisor de Q₂₅ en

los cálculos previos la hemos llamado $R_{E25} = 0.85 k\Omega$. A partir de las características de transferencia de dicha configuración amplificadora:

$$i_{o1} = \frac{gm_{25}}{1 + gm_{25}R_{E25}} * av21 * v_9$$

La figura 14 presenta el circuito equivalente adecuado para la determinación de la segunda de las componentes de la corriente i_o en este segundo paso.

Figure 14: Modelo de pequeña señal para hallar la segunda componente de i_o.

Aquí el terminal de base del transistor Q₂₅ se encuentra conectado a masa de señal. Para determinar la corriente de colector del transistor Q₂₆ que llamamos ic₂₆ este transistor Q₂₆ se presenta como una nueva configuración amplificadora tipo emisor común con resistencia de emisor sin puentear. La resistencia total y equivalente conectada en el nodo de emisor del transistor Q₂₆ que llamamos R_{E26} corresponde al paralelo de la resistencia de entrada de tres transistores Q₂₇,Q₂₈ y Q₂₅ en configuración base común por lo que.

$$R_{E26} = h_{ib27} ||h_{ib28}||h_{ib25} = \frac{h_{ib27}}{3} = 0,85 \text{k}\Omega$$

Entonces la resistencia de salida por colector de Q₂₆ dada dicha resistencia de emisor resulta ser:

$$R_{C26} = r_{o26}(1 + gm_{26}R_{E26}) = \frac{30V}{10\mu A} * (1 + \frac{10\mu A}{26mV} * 0,85k\Omega) = 4M\Omega$$

Para hallar la corriente de colector de Q₂₆ hay que considerar el divisor resistivo de corriente que se observa conectado en el nodo de colector de dicho transistor, de modo que:

$$\begin{split} i_{c26} &\approx \frac{gm_{26}}{1+gm_{26}R_{E26}}*a\nu21*\nu_9*\frac{R_{C26}}{R_{C26}+R_{up2}||R_{in3(26)}}\\ i_{c26} &\approx \frac{gm_{26}}{1+gm_{26}R_{E26}}*a\nu21*\nu_9 \end{split}$$

en donde se ha considerado que $R_{in3(26)} \ll R_{C26}$ en la ultima aproximación.

Debido a que los transistores Q₂₇,Q₂₈ y Q₂₅ son tres transistores idénticos con sus terminales de base conectados a masa, la corriente ic26 se divide en tres partes iguales de modo que la parte i_{o2} resulta ser

$$\begin{split} G_{m2} &\approx \text{av21}*(\frac{gm_{25}}{1+gm_{25}R_{E25}} - \frac{gm_{26}}{3*(1+gm_{26}R_{E26})} \\ G_{m2} &\approx 0.9*(\frac{\frac{10\mu\text{A}}{26\text{mV}}}{1+\frac{10\mu\text{A}}{26\text{mV}}*0,85\text{k}\Omega} - \frac{\frac{10\mu\text{A}}{26\text{mV}}}{3*(1+\frac{10\mu\text{A}}{26\text{mV}}*0,85\text{k}\Omega)}) \\ G_{m2} &\approx 170\frac{\mu\text{A}}{V} \end{split}$$

La transconductancia así calculada se obtuvo tomando al nodo 25 como terminal de salida de la segunda etapa. Para el circuito que considere como salida al nodo 26 esta misma transconductancia es aplicable tanto como $R_{in3(26)} = R_{in3(25)}$. Cuando $I_{C74} >> I_{C75}$ o I_{C74} << I_{C75} la polarización con realimentación o estabilización en la etapa de salida duplica esta transconductancia para la vía de excitación de salida como se describió antes.

2.3 Etapa de salida

En la sección 1.1 hemos adoptado como corriente de carga $I_L = 1\mu A$. En este caso el circuito de polarización de la etapa de salida regula la corriente de colector del transistor Q₇₅ para que sea siempre constante. Mientras Q_{75} es excitado por el seguidor de emisor Q_{68} , la corriente de base de Q68 debe permanecer constante bajo estas condiciones. Para describir este resultado consideraremos el circuito de la figura 15 el cual presenta el circuito equivalente de pequeña señal de la parte principal de la segunda etapa mas la etapa diferencial Q₃₉ - Q₄₀ proveniente del circuito de polarización que controla a la etapa de salida.

Figure 15: Modelo de pequeña señal para hallar la segunda componente de i_o.

La salida de este modelo circuital son los terminales 25 y 26 que excitan las bases de los transistores Q_{64} y Q_{68} en la figura 6.

Primero consideremos la segunda etapa. Los terminales de salida son excitados por un circuito totalmente balanceado, y la carga conectada en los mismos en la tercer etapa también lo es. Por lo tanto la corriente de pequeña señal que fluye hacia los nodos 25 y 26, rotulada como corriente i en la figura 15 tiene igual valor en ambos terminales.

Ahora consideremos el par diferencial Q_{39} – Q_{40} . Este par conforma una etapa de entrada de un amplificador diferencial que opera dentro de un lazo de realimentación negativa que mantiene I_{C75} siempre constante cuando $I_{C74} >> I_{C75}$, tal como se ha descripto con anterioridad. En la figura 15 la base del transistor Q₃₉ esta referida a masa de señal por cuando

las corrientes de colector de los transistores Q_{37} y Q_{38} en la figura 7 son constantes. Por otro lado la base del transistor Q₄₀ es excitada por una diferencia de potencial de señal rotulada como vb40 aplicada entre dicha base y masa. Mientras Q₇₅ es excitada por Q₆₈ manteniendo constante a la corriente I_{C75}, lo cual significa que la componente de corriente de señal en la base de Q_{68} , es decir i_{b68} debe ser nula aproximadamente. Por lo tanto Q_{40} debe inyectar una corriente de señal i hacia el nodo 26 bajo estas condiciones tal como muestra la figura 15. En razón de que la corriente total del par diferencial es constante, Q₃₉ debe inyectar la misma corriente i al nodo 25. Este resultado duplica el valor de la corriente de pequeña señal en la base de Q64, ib64, llevándolo a (2.i), doblando efectivamente el valor de G_{m2} para la salida 25 y haciendo cero a la transconductancia G_{m2} en la salida 26 cuando $I_{C74} >> I_{C75}$. Por lo tanto en el estudio del comportamiento de la etapa de salida se pondrá énfasis en la parte circuital que tiene como entrada al nodo 25. En el caso opuesto (es decir $I_{C74} \ll I_{C75}$) la parte que tiene al terminal 26 como entrada es la parte predominante. Cuando $I_{C74} = I_{C75}$ ambos trayectos deben ser considerados.

Ignorando la resistencia vista hacia abajo del colector de 6, la resistencia de entrada de la tercer etapa (6) en el nodo 25 es:

$$R_{i3(25)} = hie_{64} + (hfe_{64} + 1) * R_{E64}$$

En esta ecuación R_{E64} es la resistencia dinámica presente en el emisor de Q₆₄, la cual es:

$$R_{E64} = r_{o63}*(1+gm_{63}R_{63})) \| (r_{\pi 65}+(\beta_{0pnp}+1)*R_{E65})$$

Similarmente, R_{E65} es la resistencia dinámica conectada en el terminal de emisor contra masa. Ignorando la resistencia vista desde la base del transistor Q43 en la figura 7, R_{E65} es

$$R_{E65} = R_{65} \| \text{hie}_{66} \| \text{hie}_{74} = R_{65} \| \frac{\text{hfe}_{66} V_T}{I_{C66}} \| \frac{\text{hfe}_{74} V_T}{I_{C74}}$$

Dado que el área de emisor del transistor Q₇₄ es treinta y dos (32) veces mas grande que la del transistor Q_{66} :

$$|I_{C66}| = \frac{|I_{C74}|}{32} = \frac{1200\mu A}{32} = 37\mu A$$

con lo cual:

$$R_{E65} = 7.5 \text{k}\Omega || \frac{10 * 26 \text{mV}}{37 \mu \text{A}} || \frac{10 * 26 \text{mV}}{1200 \mu \text{A}} = 200 \Omega$$

entonces:

$$R_{E64} = \left\{ \frac{30V}{33\mu A} * (1 + \frac{33\mu A}{26mV} * 1, 2k\Omega) \right\} || \left\{ \frac{10 * 26mV}{200\mu A} + 11 * 200\Omega) \right\} = 3,5k\Omega$$

con lo cual reemplazando en la ecuación de R_{i3(25)} y teniendo en cuenta además que tal como se calculo previamente $I_{C64} = 4\mu A$.

$$R_{i3(25)} = \frac{40*26mV}{4\mu A} + 41*3,5k\Omega = 404k\Omega$$

La resistencia de salida de este etapa

$$R_{o3} = r_{o74} || r_{o75} = \frac{40V}{1200\mu A} || \frac{30V}{210\mu A} = 15k\Omega$$

La transconductancia de esta etapa es:

$$G_{m3} = a_{v64} * a_{v65} * a_{m74}$$

Donde a_{v64} y a_{v65} son las ganancias de tensión de los seguidores de emisor Q_{64} y Q_{65} , respectivamente. Dado que $r_{o64} >> R_{E64}$:

$$a_{v64} = \frac{(hfe_{64} + 1) * R_{E64}}{hie_{64} + [(hfe_{64} + 1) * R_{E64}]} = \frac{41 * 3,5 * 10^3}{\frac{40 * 26 mV}{4 \mu A} + 41 * 3,5 * 10^3} = 0,36$$

Dado que $r_{o65} \gg R_{E65}$:

$$a_{v65} = \frac{(hfe_{65} + 1) * R_{E65}}{hie_{65} + [(hfe_{65} + 1) * R_{E65}]} = \frac{11 * 200}{\frac{10 * 26mV}{200 \mu A} + 11 * 200} = 0,63$$

En consecuencia:

$$G_{m3} = 0.36 * 0.63 * \frac{100 \mu A}{26 mV} = \frac{1}{96 \Omega}$$

Ganancia de lazo abierto del operacional

La ganancia de tensión de la primera etapa cuando se encuentra cargada por la segunda:

$$\alpha_{\nu 1} = G_{m1} * (R_{o1} || \frac{R_{i2}}{2}) = 97 \frac{\mu A}{V} * (11 M\Omega || \frac{1,3 M\Omega}{2}) = 60$$

La ganancia de tensión de la segunda etapa cuando se encuentra cargado por la tercera:

$$a_{\nu 2} = 2G_{m2} * (R_{o2} || R_{i3(25)}) = 2 * 170 \frac{\mu A}{V} * (2, 2M\Omega || 404 k\Omega) = 120$$

En la ecuación anterior la transconductancia G_{m2} se ha multiplicado por dos (2) debido al efecto de la polarización con realimentación (estabilización) antes detallado. La ganancia de tensión de la tercera etapa cuando la misma se encuentre cargada por una resistencia equivalente de carga $R_L = 2k\Omega$ por la que circula una corriente de $1\mu A$ es:

$$a_{v3} = G_{m3}(R_{o3}||R_L) = \frac{1}{96\Omega} * (15k\Omega||2k\Omega) = 18$$

Finalmente, la ganancia a lazo abierto del amplificador operacional tipo NE5234 resulta ser:

$$a_{\nu} = a_{\nu 1} * a_{\nu 2} * a_{\nu 3} = 130000$$

Esta ganancia es en realidad el mínimo valor de ganancia que pueda presentarse en estos circuitos integrados en razón de que se ha tomado el mínimo valor de resistencia de carga R_L bajo el cual se aseguran todas las especificaciones del mismo, y además en estos cálculos se han empleado los mínimos valores de tensiones de Early y ganancias de corriente de todos los transistores que puedan aparecer en esta tecnología y por lo tanto los valores típicos de ganancia son mucho mayores. Igual comentario vale para los resultados obtenidos de R_{id} y R_{o3} que se han recuadrado.