

Unclassified CONITY CLASSIFICATION OF THIS PAGE (When Dete Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM CIPIENT'S CATALOG NUMBER 1. REPORT NUMBER 16222.3-EL TYPE OF REPORT & PERIOD COVERED 4. TITLE (med Subtitte) Technical Applications of Stochastic Models for Image 6. PERFORMING ORG. REPORT NUMBER Data Compresson . CONTRACT OR GRANT NUMBER(.) 7. AUTHOR(+) Sheng-Huey Wang DAAG29 78 G 0206 -Anil K. Jain PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROCRAM ELEMENT, PROJECT, TASK University of California Davis, California 95616 12. REPORT DATE CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Research Office September 1979 13. NUMBER OF PAGES P. O. Box 12211 Research Triangle Park, JC 27709 15. SECURITY CLASS. (of this report) L MONITORING AGENCY NAME & ADDRE Unclassified 15. DECLASSIFICATION/DOWNGRADING DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from Report) SUPPLEMENTARY NOTES The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 9. KEY NORDS (Continue on reverse side if necessary and identity by block number) data compression coding images mathematical models stochastic processes ABSTRACT (Continue on reverse side it necessary and identify by block number) Intraframe image data compression systems are analyzed in this thesis using stochastic modeling concepts. The formulations of stochastic image models are obtained from different classes of partial differential equations. Their application to the coding problem shows the connection between predictive, hybrid and

DD . 1473 4

distortion curve

SPITION OF I NOV 45 IS OBSOLETE

Unclassified

transform coding schemes. The resulting coding schemes are evaluated in terms of tangible system terms such as signal to noise ratio, mean square error and rate

APPLICATIONS OF STOCHASTIC MODELS FOR IMAGE DATA COMPRESSON

Technical Report

by

Shenq-Huey Wang Anil K. Jain

Signal & Image Processing Laboratory

Department of Electrical Engineering

University of California

Davis, California 95616

September, 1979

APPLICATIONS OF STOCHASTIC MODELS FOR IMAGE DATA COMPRESSON.

9 Technical Report.

by

Shenq-Huey Wangs

D D C

PROPRIE

DEC 28 1979

USUS SUPERIOR

E

Signal & Image Processing Laboratory

Department of Electrical Engineering

University of California

Davis, California 95616

(15) DAA629-78-G-0206

(18) ARO | (19) 16222.3-EL

This decument has been approved for public release and sale; is distribution is unlimited.

*The author was with the Signal & Image Processing Laboratory,

Department of Electrical Engineering, University of California,

Davis, California 95616. He is now with the Picker Corporation,

Mayfield Village, Ohio 44143.

411 110

mit

The research work reported in this dissertation has been supported in part by the Naval Ocean Systems Center, San Diego, California, under contract N6600-1-78-CO15MJE, and in part by the U.S. Army Research Office, Durham, North Carolina, under grant DAAG29-78-G0206.

Acces	sion For	1
NTIS	GRALI	17
DDC 1	AB	
Unann	ounced	П
Justi	fication	
Ву		
Distr	ibution/	
Avei	lability (odes
	Availand	/or
Dist	special	
a	1 1	
11		

TABLE OF CONTENTS

	Page
ABSTRACT	vii
ACKNOWLEDGMENTS	ix
LIST OF FIGURES	x
LIST OF TABLES	zv1
CHAPTER ONE: INTRODUCTION	
1.1 The Problem	. 1
1.2 Background Material	. 3
1.2.1 Differential Pulse Code Modulation (DPCM)	. 3
1.2.2 Transform Coding	. 3
1.2.3 Hybrid (Transform/DPCM) Coding	. 4
1.2.4 Contour Coding and Edge Extraction	. 5
1.3 Organization	. 5
CHAPTER TWO: DISCRETE GAUSSIAN RANDOM FIELDS AND STOCHASTIC IMAGE MODELS	
2.1 Introduction	. 7
2.2 Causal, Semicausal and Noncausal Estimates	. 7
2.2.1 Causal Estimate	. 1
2.2.2 Semicausal Estimate	. 8
2.2.3 Noncausal Estimate	. 8
2.3 Stochastic Representations of Gaussian Random Field	. 9
2.3.1 Minimum Variance Representation	. 9
2.3.2 White Noise Driven Representation	. 10
2.4 Spectral Density Function of the Gaussian Random Field Represented by Linear Models	. 10
2.5 Image Representations	. 12
2 5 1 Causel Penyagentation	. 12

	2.5.2 Semicausal Representations	13
	2.5.3 Noncausal Representations	16
2.6	Basis Restriction Data Compression Efficiency of Image Models	19
	2.6.1 Zonal Filter Design	20
	2.6.2 Experimental Results	21
2.7	Summary and Conclusions	22
CHAPTER TO	HREE: SEMICAUSAL MODELS AND HYBRID CODING	
3.1	Introduction	35
3.2	Semicausal Image Models and Hybrid Coding	35
	3.2.1 Hybrid Coding of Separable Covariance Image Fields	36
	3.2.2 Semicausal Representations as Two Source Models for Finite Random Fields	38
	3.2.3 Stochastic Decoupling of Semicausal Models by the Cosine Transform	41
	3.2.4 Stochastic Decoupling of Stationary Semicausal Fields	44
3.3	Hybrid Coder Design for Semicausal Random Fields	46
	3.3.1 DPCM Equations	46
	3.3.2 Bit Allocation	47
	3.3.3 Integer Bit Allocation	54
3.4	Adaptive Hybrid Coding	55
	3.4.1 Adaptive Variance Estimation	55
	3.4.2 Adaptive Classification	58
3.5	Experimental Results	60
	3.5.1 Nonadaptive Hybrid Coding	61
	3.5.2 Adaptive Variance Estimation	62
	3.5.3 Adaptive Classification	62

3.6	Extensions of Hybrid Coding	66
	3.6.1 Hybrid Encoded Image with Channel Error	66
	3.6.2 Higher Order Predictor in DPCM Loop of Hybrid	
	3.6.2 Higher Order Predictor in DPCM Loop of Hybrid Coding	67
	3.6.3 Hybrid Coding of Noisy Image	68
3.7	Summary of Results and Conclusions	71
CHAPTER FO	OUR: NONCAUSAL MODELS AND TRANSFORM CODING	
4.1	Introduction	106
4.2	Image Transform	107
4.3	Stochastic Decoupling of Noncausal Models by Sine	
	Transform	112
	4.3.1 NC1 Model	113
	4.3.2 NC2 del	116
	4.3.3 NC3 Model	120
4.4	Stochastic Formulation of Noncausal Models by Cosine Transform	122
4.5	Transform Coder Design for Noncausal Models via Cosine Transform	125
4.6	Fast KL (Sine) Transform Data Compression	128
4.7	Experimental Results	129
4.8	Classification Transform Coding	130
CHAPTER FI	VE: IMAGE MODELS FOR FEATURE CODING	
5.1	Introduction	144
5.2	Feature Extraction via Image Models	144
	5.2.1 Image Modeling Operator	145
	5.2.2 Approximate Rational Function Operator	149
	5.2.3 Edge Information Subtraction Procedure	149
	5.2.4 Image Enhancement	151

.

V

5.3	Transf sent at	orm Coding using Nonstationary Image Repre-	15
5.4	Experi	mental Results and Comparisons	15
	5.4.1	Feature Transform Coding	15
	5.4.2	Classification Feature Transform Coding	15
	5.4.3	Conclusions	160
CHAPTER S	IX: SUM	MARY AND RECOMMENDATIONS FOR FUTURE RESEARCH	180
APPENDICES	s		
APPE	NDIX A:	QUANTIZER CONSIDERATIONS	
	A.1	Introduction	183
	A.2	Quantizer Structures	183
		A.2.1 Optimum Nonuniform Quantizer	184
		A.2.2 Optimum Uniform Quantizer	18
		A.2.3 Useful Approximation to the Optimum Nonuniform Quantizer	187
	A.3	Results and Comparisons	189
	A.4	Conclusions	199
APPE	NDIX B:	DERIVATION OF APPROXIMATE RATIONAL FUNCTION OPERATOR	224
APPE	NDIX C:	UNIQUE INVERSE SOLUTION OF FUNCTION $g_1'(x)$	229
LIST OF R	EFERENCE	s	231
			227

0

ABSTRACT

0

O

Q

0

0

2

Intraframe image data compression systems are analyzed in this thesis using stochastic modeling concepts. The formulations of stochastic image models are obtained from different classes of partial differential equations. Their application to the coding problem shows the connection between predictive, hybrid and transform coding schemes. The resulting coding schemes are evaluated in terms of tangible system terms such as signal to noise ratio, mean square error and rate distortion curve.

Most of the existed intraframe coding schemes are either ad hoc or lack a complete mathematical basis. By paying attention to the boundary points of an image random field, it is shown that the remaining image random field can be fairly described by stochastic image models which in turn can be processed via well-defined fast transform algorithms (Sine and Cosine transforms are used here). The eigenvalues associated with these transform algorithms are important for coding application. To properly handle a nonstationary image random field, a new method based on representing an image as a composition of two sources, viz., stochastic and deterministic, is suggested. The stochastic part is dealt with by known statistical properties of stochastic image models and the deterministic part representing features such as edges, is obtained as the residual after the stochastic part is removed. Two simple adaptive schemes, i.e., Adaptive Variance Estimation and Adaptive Classification, are considered for updating the model parameters with the variations in image statistics. The computational complexity is increased only marginally, but the improvement in the reconstructed image quality is substantial.

Simulation studies are performed on three image data consisting of Girl, Earth and Chemical Plant images. The Results indicate that the proposed schemes can be practically implemented and will reproduce a good image at comparable signal to noise ratio. Hybrid coding of noisy image and sensitivity of human viewer to the sharp features are also partially addressed.

ACKNOWLEDGMENTS

0

0

0

8

0

I wish to express my gratefulness and appreciation to my thesis advisor, Professor Anil K. Jain. I cannot thouk him adequately for the guidance, encouragement and support which he has so generously given me during the course of this research.

I would like to thank Dr. Peter D. Scott and Dr. Demetrios G.

Lainiotis for graciously agreeing to serve on my Ph.D. program

committee, and Dr. Gary Ford of the University of California, Davis,

for serving as the outside reader.

Valuable discussions and assistance provided by Mr. Jaswant R. Jain and Mr. Surendra Ranganath, both Ph.D. students under Professor Jain's supervision, are also greatly appreciated.

Finally, a special note of thanks goes to Ms. Nora Rogers for the difficult job of typing the manuscript and putting extra hours on weekends to meet my schedule.

LIST OF FIGURES

Figure		Page
2.1	The Region S for Estimating (i,j)	24
2.2	Basis Restriction Efficiency Implementation	24
2.3	Causal Model (C1) Fourier Transform Domain Model Zonal Patterns for a 32 × 32 Image Block Size with Various Sample	
	Reduction Ratios	2,5
2.4	Semicausal Model (SC1) Fourier Transform Domain Model Zonal Patterns for a 32 × 32 Image Block Size with Various Sample	
	Reduction Ratios	26
2.5	Noncausal Model (NCl or NC2-A or NC2-B) Fourier Transform Domain Model Zonal Patterns for a 32 × 32 Image Block Size	
	with Various Sample Reduction Ratios	27
2.6	Basis Restriction Mean Square Error versus Sample Reduction Ratio for the Fourier Transform Model Zonal Sampling of a	
	256 × 256 Girl Image with 16 × 16 Image Block Size	28
2.7	Basis Restriction Mean Square Error versus Sample Reduction Ratio for the Fourier Transform Model Zonal Sampling of a	
	256 × 256 Earth Image with 16 × 16 Image Block Size	28
*2.8	Fourier Transform Model Zonal Sampled Girl Image with 16×16 Image Block Size	29
*2.9	Fourier Transform Model Zonal Sampled Earth Image with 16 × 16 Image Block Size	30
3.1	Hybrid Coding System	74
3.2	The i-th DPCM Channel	74
3.3	Realization of Semicausal Model Decomposition	75
3.4	Adaptive Variance Estimation Hybrid Coding Scheme	76
3.5	Adaptive Classification Hybrid Coding Scheme	76
3.6	Nonadaptive Hybrid Coding Scheme for Various Image Models of the Girl Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate.	77
3.7	Nonadaptive Hybrid Coding Scheme for Various Image Models of the Chemical Plant Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus	
	Bit Rate	77

^{*} These figures contain images

3.8	Comparison of Adaptive Variance Estimation Hybrid Coding Scheme for Various Image Models of the Girl Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate	78
3.9	Comparison of Adaptive Variance Estimation Hybrid Coding Scheme for Various Image Models of the Chemical Plant Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate	78
3.10	Classification Map of the Left Quarter Portion 16 × 32 Transformed Sub-columns of an Image with 16 DPCM Channels (a) Girl Image (b) Chemical Plant Image	79
3.11	Comparison of Adaptive Classification Hybrid Coding Scheme for Various Image Models of the Girl Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate	80
3.12	Comparison of Adaptive Classification Hybrid Coding Scheme for Various Image Models of the Chemical Plant Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate	80
3.13	Bit Allocations for Adaptive Classification, k = 4, Girl Image, (a) Actual Measurement Model (b) SCl Model (c) SC2 Model	81
3.14	Bit Allocations for Adaptive Classification, k = 4, Chemical Plant Image, (a) Actual Measurement Model (b) SC1 Model (c) SC2 Model	82
3.15	Histogram of Image Column Activities (Variances), Girl Image is Used	83
3.16	Histogram of Image Column Activities (Variances), Chemical Plant Image is Used	84
3.17	Hybrid Coding Results for Separable Covariance Model of the Girl Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Bit Rate versus Signal to Noise Ratio.	85
3.18	Hybrid Coding Results for SCl Model of the Girl Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Bit Rate versus Signal to Noise Ratio	85
3.19	Hybrid Coding Results for SC2 Model of the Girl Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Bit Rate versus Signal to Noise Ratio	85
3.20	er itt 116 Emmed automotivati adelt filt i det et et et e meter	86
	on to to the trace terono promote morne metro	00

3.21	Hybrid Coding Results for SC2 Model of the Chemical Plant Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Bit Rate versus Signal to Noise Ratio	86
3.22	Hybrid Encoded Girl Image at 1 Bit/Pixel Approximately	87
* 3.23	Hybrid Encoded Girl Image at 1.7 to 2 Bits/Pixel Approximately	88
3.24	Hybrid Encoded Chemical Plant Image at 1 Bit/Pixel Approximately	89
* 3.25	Hybrid Encoded Chemical Plant Image at 1.7 to 2 Bits/Pixel Approximately	90
* 3.26	Actual Measurement Model Hybrid Encoded Image at 1 and 2 Bits/Pixel Approximately	91
3.27	Model of a Binary Symmetric Channel	92
3.28	Effect of Channel Errors	92
3.29	Hybrid Encoded Girl Image with Channel Error p = 0.0001 at 1 Bit/Pixel Approximately	93
* 3.30	Hybrid Encoded Girl Image with Channel Error p = 0.001 at 1 Bit/Pixel Approximately	94
3.31	Higher Order Predictor and DPCM Channel	95
3.32	Kalman Filter DPCM Loop for the i-th Channel in Hybrid Coding	95
* 3. 33	Restored Images of the Kalman Filter DPCM Loop Scheme Implemented on a Noisy Girl Image (S/N = 5)	96
4.1	Conventional Image Transform Coding System	133
4.2	Spatial Structures of Three Noncausal Image Representations .	133
4.3	Realization of Noncausal Model Decomposition	134
4.4	Transform Coding via 2-Dimensional Noncausal Model (a) Cosine Transform (b) Fast KL (Sine) Transform	135
4.5	Integer Bit Allocation for NC1 Model Cosine Transform Encoded Girl Image with Average Bit Rate = 1 Bit/Pixel	136
4.6	Transform Coding Results of NC1 Model of the Cirl Image with Block Size 64 × 64 (a) Rate Distortion Curve (b) Bit Rate	
	va. CNR	137

	4.7	Transform Coding Results of NC1 Model of the Chemical Plant Image with Image Block Size 64 × 64, (a) Rate Distortion	
		Curve (b) Bit Rate vs. SNR	137
*	4.8	Cosine Transform Encoded Girl Image (a) 0.5 Bit/Pixel Standard (b) 1 Bit/Pixel, Standard (c) 2 Bits/Pixel, Standard (d) 0.5 Bit/Pixel, Classification (e) 1 Bit/ Pixel, Classification (f) 2 Bits/Pixel, Classification	138
*	4.9	Cosine Transform Encoded Chemical Plant Image (a) 0.5 Bits/Pixel, Standard (b) 1 Bit/Pixel, Standard (c) 2 Bits/Pixel, Standard (d) 0.5 Bit/Pixel, Classification (e) 1 Bit/Pixel, Classification (f) 2 Bits/Pixel, Classification	139
	4.10	Bit Allocation with Classification (k = 2, Girl Image and 64 × 64 Image Block Size)	140
	4.11	Classification Map and Image Block Measure Varainces with Two Classes and Equal Probabilities (p _k = 0.5) (a) Girl Image (b) Chemical Plant Image	141
*	5.1	Edge Pictures with t = 20, (a) Discrete Fourier Transform (b) Discrete Cosine Transform	162
	5.2	Realization of Stochastic Decomposition	163
*	5.31	Image Decomposition of the Girl Image with 3111 (t = 20) Edge Points	164
*	5.311	Image Enhancement of the Girl Image with 3111 (t = 2σ) Edge Points	165
*	5.41	Image Decomposition of the Chemical Plant with 3653 (t = 20) Edge Points	166
*	5.411	Image Enhancement of the Chemical Plant with 3653 (t = 20) Edge Points	167
	5.5	Transform Coding Based on Stochastic Segmentation	168
	5.6	Feature Transform Coding Results for the Girl Image versus Various Edge Quantizer's Bits with 5737 (t = 1.50) Detected Edge Points	169
	5.7	Feature Transform Coding Results for the Cirl Image versus Various Edge Quantizer's Bits with 3111 (t = 20) Detected Edge Points	169
	5.8	Feature Transform Coding Results for the Girl Image versus Various Thresholds with 2 Bits Assigned to the Edge Point	

Q

5.9	Classification Feature Transform Coding Results for the Cirl	
	Image versus Various Thresholds with 2 Bits Assigned to the Edge Quantizer	170
5.10	Feature Transform Coding Results for the Chemical Plant Image versus Various Edge Quantizer's Bits with 7079	171
	(t = 1.5g) Detected Edge Points	1/1
5.11	Feature Transform Coding Results for the Chemical Plant Image versus Various Edge Quantizer's Bits with 3653 (t = 20) Detected Edge Points	171
5.12	Feature Transform Coding Results for the Chemical Plant Image versus Various Thresholds with 2 Bits Assigned to the Edge Quantizer	172
5.13	Classification Feature Transform Coding Results for the Chemical Plant Image versus Various Thresholds with 2 Bits Assigned to the Edge Quantizer	172
5.14	Comparison of Standard Transform and Feature Transform	
3.14	Encoded Girl Images	173
*5.15	Comparison of Standard Transform and Feature Transform Encoded Chemical Plant Images	174
5.16	Feature Transform Encoded Girl Image with ne = 2 Bits and t = 1.50 (5737 Detected Edge Points)	175
5.17	Feature Transform Encoded Chemical Plant Image with n = 2 Bits and 5 = 1.50 (7079 Detected Edge Points)	176
۸.1	Quantizer Characteristics	196
A.2	Nonuniform Quantizer (Compandor)	197
A.3	Analog Model for Nonlinear Quantization	197
A.4	Flow Chart of Determining the 'Decision Levels' and 'Quantization Levels' for an Optimum Nonumiform Quantizer with a Given Probability Density Function, p(x)	198
A.5	Mean Square Error vs. Number of Quantizer Bits for Signal with Gaussian Density (Mean = 0, Variance = 1)	199
A.6	Mean Square Error vs. Number of Quantizer Bits for Signal with Laplacian Density (Mean = 0, Variance = 1)	199
A.7	Signal to Noise Ratio vs. Number of Quantizer Bits for	200

Q

A.8	Signal to Noise Ratio vs. Number of Quantizer Bits for Signal with Laplacian Density (Mean = 0, Variance = 1)	200
A.9	Entropy vs. Number of Quantizer Bits for Signal with Gaussian Density (Mean = 0, Variance = 1)	201
A.10	Entropy vs. Number of Quantizer Bits for Signal with Laplacian Density (Mean = 0, Variance = 1)	201
A.11	Quantizer Output Levels and their Probability Distribution (N = 8)	202
в.1	Construction Diagram of R (1) (z1,z2)	225
B.2	Construction Diagram of $R^{(2)}(z_1,z_2)$	225
B.3	Construction Diagram of R (3) (z ₁ ,z ₂)	226
B.4	Construction Diagram of R ⁽⁴⁾ (z ₁ ,z ₂)	227
B.5	Construction Diagram of R (5) (z ₁ .z ₂)	228

LIST OF TABLES

Table		Page
2.1	Summary of Some PDE Models and Their Discrete Approximates D[u] ■ ∈ Used for Image Modeling	31
2.2	Actual Parameters Measured for Various Models of the 256×256 Image to Match the 16×16 Covariance Matrix of the Image	32
2.3	Basis Restriction Mean Square Error of the Girl Image Represented by (a) Causal Image Model (Cl) (b) Semicausal Image Model (SCl) (c) Noncausal Image Model (NCl or NC2-A or NC2-B)	33
2.4	Basis Restriction Mean Square Error of the Earth Image Represented by (a) Causal Image Model (C1) (b) Semicausal Image Model (SC1) (c) Noncausal Image Model (NC1 or NC2-A or NC2-B)	34
3.1	Bit Allocation Patterns Based on Equation (3.3.2-25), Girl Image (a) SC1 Model (b) SC2 Model	97
3.2	Bit Allocation Patterns Based on Equation (3.3.2-21), Girl Image (a) Separable Covariance Model (b) SC1 Model (c) SC2 Model	98
3.3	Parameters of Image Models Used in Hybrid Coding	99
3.4	Hybrid Coding Results of the Girl Image Encoded via 16 × 256 Image Strip (a) Separable Covariance Model (b) SCl Model (c) SC2 Model (d) Actual Measurement Model	100
3.5	Hybrid Coding Results of the Chemical Plant Image Encoded via 16 × 256 Image Strip (a) SC1 Model (b) SC2 Model (c) Actual Measurement Model	101
3.6	Hybrid Coding Results with Communication Channel Errors, Girl Image Encoded via 16 × 256 Image Strip (a) Separable Covariance Model (b) SC1 Model (c) SC2 Model (d) Actual Measurement Model	102
3.7	The Experimental Results of Higher Order Predictor Implemented on the Girl Image with 16 DPCM Channels	103
3.8	Predictor Coefficients of Various Orders for Different Channels in Hybrid Coding	103
1.0	Discrete Kalman Filter and DPCM Algorithms	104

The Experimental Results of Kalman Filter Implemented on the Noisy Girl Image (a) $S/N = 1$ (b) $S/N = 2$ (c) $S/N = 5$	105
Summary of Important Formulas of Noncausal Represented Image Random Fields	142
Girl Image, Cosine Transform Coding Results, NC1 Model with 64 × 64 Image Block	143
Chemical Plant Image, Cosine Transform Coding Results, NC1 Model with 64 × 64 Image Block	143
Thresholds and No. of Detected Edge Points Relation (a) Girl Image (b) Chemical Plant Image	177
Feature Transform Coding Results for the Girl Image with 5737 (t = 1.50) Detected Edge Points	178
Feature Transform Coding Results for the Girl Image with 3111 (t = 20) Detected Edge Points	178
Feature Transform Coding Results for the Girl Image with 2 Bits Assigned to the Edge Quantizer	178
Classification Transform Coding Results for the Girl Image with 2 Bits Assigned to the Edge Quantizer	178
Feature Transform Coding Results for the Chemical Plant Image with 7079 (t = 1.50) Detected Edge Points	179
Feature Transform Coding Results for the Chemical Plant Image with 3653 (t = 20) Detected Edge Points	179
Feature Transform Coding Results for the Chemical Plant Image with 2 Bits Assigned to the Edge Quantizer	179
Classification Feature Transform Coding Results for the Chemical Plant Image with 2 Bits Assigned to the Edge Quantizer	179
Approximate Average Amount of CDC Cyber 173 Computer Time Required to Determine the Quantizer Structure with Gaussian Distributed Input Signal	203
Approximate Average Amount of CDC Cyber 173 Computer Time Required to Determine the Quantizer Structure with Laplacian	203
	Noisy Girl Image (a) S/N = 1 (b) S/N = 2 (c) S/N = 5 Summary of Important Formulas of Noncausal Represented Image Random Fields

A.3	Optimum Uniform Quantizers for Signal with Gaussian Density (Mean = 0, Variance = 1)	204
A.4	Optimum Uniform Quantizers for Signal with Laplacian	
	Density (Mean = 0, Variance = 1)	204
A.5	Optimum Nonuniform Quantizers for Signal with Gaussian Density (Mean = 0, Variance = 1)	205
A.6	Optimum Nonuniform Quantizers for Signal with Laplacian Density (Mean = 0, Variance = 1)	207
A.7	Compandors for Signal with Gaussian Density (Mean = 0, Variance = 1)	209
A.8	Compandors for Signal with Laplacian Denstiy (Mean = 0, Variance = 1)	211
A.91	Analytic Models for Some Often Used Quantizer for Unity Variance Probability Density Functions	213
A.911	Formulas for h(x) for Different Quantizers	214
A.10	Optimum Nonumiform Quantizers with Quantization Levels N = 2,, 36 for Signal with Gaussian Density (Mean = 0, Variance = 1)	215
A.11	Optimum Nonumiform Quantizer with Quantization Levels N = 2,, 36 for Signal with Laplacian Density (Mean = 0, Variance = 1)	217
A.12	Optimum Uniform Quantizers with Quantization Levels N = 2,,36 for Signal with Gaussian Density (Mean = 0, Variance = 1)	219
A.13	Optimum Uniform Quantizers with Quantization Levels N = 2,,36 for Signal with Laplacian Density (Mean = 0, Variance = 1)	. 219
A.14	Compandors with Quantization Levels N = 2,,36 for Signal with Gaussian Density (Mean = 0, Variance = 1)	. 220
A.15	Compandors with Quantization Levels N = 2,,36 for Signal with Laplacian Density (Mean = 0, Variance = 1)	. 222

Appropriate decrease asserts of the transfer III Computer. The Appropriate Asserts of the section of the continue of the Computer as well as the continue of t

helpting alls em

CHAPTER ONE

INTRODUCTION

1.1 The Problem

Q

0

0

0

Digital image processing has attracted attention and found applications in diverse fields such as transmission of satellite pictures. enhancement of biomedical images, radar, seismic signal communication and many others. Generally speaking, digital image processing deals with two-dimensional data which is first sampled in spatial coordinates and then quantized in brightness. For typical images (used here), 256 x 256 image samples are taken and the brightness is quantized to 28 levels. This amounts to an equivalent data rate of $256 \times 256 \times 8 = 5.24 \times 10^5$ bits per image. Based on the current telemetry channel capacity of the order of 16.2 kbits/second [10], it would take about 32 seconds to transmit 5.24 × 105 bits. For many other data sources, such as satellite and biomedical image sources, the data rate are even higher. The large quantities of image data generated for real-time digital processing make it mandatory to consider data compression techniques. Data compression refers to representing an image by as small a number of bits as possible at an acceptable fidelity level.

Most image data are highly redundant, so that compression can be achieved by removing this redundancy before transmission over a communication channel. Data compression schemes for two- and three-dimensional images have been studied by many researchers. One particular class of methods is called statistical data compression where a class of images is characterized by a stochastic process which is described in terms of a mean and covariance function represented by a mathematical model.

Franks [12] has suggested a model for spectral density of two-dimensional video signals from which a separable covariance function can be developed. Nahi et al [48,49] and Habibi [20] and others have used this separable function model for processing images. This model, although mathematically convenient, is not very representative for many images. Jain [31] has proposed an approach where the image models are obtained by a finite difference approximation of second order partial differential equations (PDEs). This approach offers a rich mathematical basis for formulating and solving many important problems in image processing.

In this research, there are several objectives to be achieved. The primary objective is to further investigate the two-dimensional image models developed by Jain [31] for intraframe image data compression.

The use of image models, i.e., causal, semicausal and noncausal, shows the connection between predictive, hybrid and transform coding schemes. From the choice of an appropriate image model, one would be able to determine an efficient algorithm for data compression. The second objective is to extend these modeling concepts to images which may be viewed as a composition of a stationary field and a deterministic field (e.g., edges which may vary with different images). Therefore, a coding technique can be designed to the sharp brightness changes and also to preserve the nice property of conventional transform coding. This technique is called feature transform coding.

1.2 Background Material

There are several important data compression techniques or concepts relevant to this research. They are briefly stated as follows:

1.2.1 Differential Pulse Code Modulation (DPCM)

The basic principle of a DPCM system is to quantize and encode the changes between successive samples, rather than the instantaneous sample values. It was first proposed by Cutler [9] in 1952 that a reduction in quantization noise for the same bit rate could be obtained by taking advantage of the redundancy or correlation between samples. Such correlation exists in practically all signals. It can be shown that the variance of the difference signals is considerably smaller than the variance of the original signals unless there is no correlation between successive samples. Harrison [23] showed the DPCM concept through the use of prediction theory. Later work published by O'Neal [50] showed a design procedure for DPCM and its application to television signals. His results gave some verification of modeling video signals by a first order Markov process. Other work related to the design of DPCM systems may be found in [10,45,68]. In our work we will use DPCM schemes in conjunction with transform coding and show their origin in some of the image models.

1.2.2 Transform Coding

0

An ideal transform coding system consists of a unitary, linear mapping of a block of correlated samples into a set of statistically independent coefficients. Data compression is then accomplished by

sorting and quantizing the transform coefficients according to their information capacity.

Andrews and Pratt [5] introduced the concept of transform coding of images via Fourier transform in 1968, which led to the investigation of utilizing various unitary transforms for image processing [1,3,4,21,26,55,70] Among the candidates for transform coding, the Karhunen-Loeve transform provides minimum mean square error for any fixed rate. Common image transforms are discrete Fourier, Hadamard, Cosine, Sine, Slant, etc. (refer to Chapter 4).

In our work we will show that a particular class of image models, namely noncausal models, lead naturally to transform coding algorithms. It will be shown that the choice of transform and the coder design parameters are determined via the model parameters.

1.2.3 Hybrid (Transform/DPCM) Coding

Hybrid coding is a technique which combines the advantages of transform coding and DPCM coding, which was first proposed by Habibi [17] for two-dimensional images modeled by a separable covariance function.

Subsequently, Roese et al [58] extended this technique for interframe coding of images. Recursive filtering of two- and three-dimensional images based on hybrid coding concept was proposed by Jain and Angel [33].

Other studies of hybrid coding schemes can be found in [18].

In our work, semicausal image models lead naturally to the hybrid coding algorithms and the adaptive and nonadaptive schemes of implementing those algorithms are presented in detail.

1.2.4 Contour Coding and Edge Extraction

Since a significant amount of visual information in an image lies in the edges, it is reasonable to consider coding schemes where the edges are treated more adequately so that the processed image would appear acceptable to a human observer.

In 1958 Schreiber and Graham [15,62-65] introduced an edge coding technique called synthetic highs, in which a scanned video signal is segmented into its high and low frequency components and they are transmitted separately. The high frequency component essentially contains the edge information. At the receiver, the high frequency component is synthesized from the addresses of the image edges and combined with low frequency component to generate the original video signal. Yan and Sakrison [74] proposed a similar scheme where an image is represented by two sources, texture and edge. Image quality can be improved by simply preprocessing with an appropriate method before transmission and postprocessing with its inverse after reception.

Use of image models for segmenting high and low frequency components will be shown in this research where several simulation results are illustrated to show the effectiveness of the new process.

1.3 Organization

0

0

Having outlined the background material and the importance of data compression, we can now describe the organization of the thesis.

Chapter two provides a general discussion of image models and their properties. The efficiency of these models is measured by comparing their data compression ability in terms of basis restriction errors (for definition see Chapter two). Chapter three is devoted to the development of

Hybrid (Transform/DPCM) coding algorithms. It is shown that the semicausal class of models leads to such algorithms. Four different semicausal models have been considered. Adaptive schemes are designed by simply adapting the model parameters to cope with the changes in image statistics. The effect of a noisy transmission channel on the Hybrid coding system is also studied. It is shown that the semicausal image models may be used to develop a Hybrid coding system for compression of noisy images. In Chapter four, we show how the noncausal image models may be used to design transform coders. Adaptive and nonadaptive algorithms are considered. In Chapter five, we extend the algorithms of Chapter four to represent images as a composition of two sources. One of the sources is a stationary component and the other is a nonstationary or deterministic component. Examples of computer simulation of all the algorithms on image data are given and comparisons are made.

Finally, the Appendices contain the derivation and proofs that relate to various topics throughout the thesis. In particular, Appendix A provides useful tabulated data for various quantizers and serves as a good reference for engineers interested in designing quantizers for image processing applications.

DISCRETE GAUSSIAN RANDOM FIELDS AND STOCHASTIC IMAGE MODELS

2.1 Introduction

0

0

0

0

In discussing image representations, we think of characterizing images as two-dimensional random fields. If D is a constant coefficient difference equation operator, we consider representations of the form

$$D[u_{ij}] = \varepsilon_{ij} \qquad (2.1-1)$$

where $\{u_{ij}^{}\}$ denotes the array of image pixels, $\{\varepsilon_{ij}^{}\}$ is a two dimensional white noise process or a moving average field.

In this chapter, we consider causal, semicausal and noncausal representations which are of the form of (2.1-1). These representations, as we will see in Chapters 3, 4 and 5, will aid in developing useful algorithms for many image coding problems. Here we will study data compression efficiency of these models measured by the basis restriction error.

2.2 Causal, Semicausal and Noncausal Estimates

Let $\{u_{i,j}^{}\}$ represent a zero mean, stationary two-dimensional discrete Gaussian random field whose covariance function is defined as

$$E v_{i,j}^{u_{i+k,j+\ell}} = r(k,\ell)$$
. (2.2-1)

Let u, denote an estimate of the random variable u, . We consider the following three types of estimates.

2.2.1 Causal Estimate

Suppose the elements of the random field $\{u_{i,j}\}$ are arranged in any

desired, one-dimensional, ordered sequence. Then $u_{i,j}$ is a causal estimate of $u_{i,j}$ if it depends only on the elements that occur before the element $u_{i,j}$. A common example occurs when the image is scanned column by column and $u_{i,j}$ is a linear estimate based on all the elements scanned before arriving at (i,j), i.e.,

$$u_{i,j} = \sum_{m,n \in S} a(m,n)u_{i-m,j-n}$$
 (2.2.1-1)

where $S = \{m, n: n > 0, \forall m\} \cup \{m, n: n = 0, m > 0\}$. Fig. 2.1(a) shows the set S for causal estimate at (i,j).

2.2.2 Semicausal Estimate

If the estimate $u_{i,j}$ is causal in one of the coordinates and noncausal in the other, it is called a semicausal estimate. For example, a linear semicausal estimate which is causal in "j" and noncausal in "i" would be of the form

$$u_{i,j} = \sum_{m,n \in S} a(m,n)u_{i-m,j-n}$$
 (2.2.2-1)

where $S = \{m, n: n > 0, \forall m\} \bigcup \{m, n: n = 0, \forall m \neq 0\}$ and is shown in Fig. 2.1(b).

2.2.3 Noncausal Estimate

The quantity $u_{i,j}$ is a linear noncausal estimate of $u_{i,j}$ if it can be written as a linear function of possibly all the variables in the random field, except $u_{i,j}$ itself. For example, a linear noncausal estimate would be of the type

$$u_{i,j} = \sum_{m,n \in S} a(m,n)u_{i-m,j-n}$$
 (2.2.3-1)

where $S = \{m,n: \forall (m,n) \neq (i,j)\}$ and is shown in Fig. 2.1(c). Note that $u_{i,j}$ contains terms from all the four quadrants about the point (i,j).

2.3 Stochastic Representations of Gaussian Random Field

Let $u_{i,j}$ be an arbitrary estimate of $u_{i,j}$, then a stochastic representation of the Gaussian random field $\{u_{i,j}\}$ is defined as

$$u_{i,j} = \overline{u}_{i,j} + \varepsilon_{i,j}$$
 (2.3-1)

where $\{\epsilon_{i,j}\}$ is another random field.

8

0

0

0

0

0

There are two types of representations which are of interest to be considered here. These are as follows:

- 1) Minimum variance representation.
- 2) White noise driven representation.

2.3.1 Minimum Variance Representation

A minimum variance estimate is one which minimizes the mean square error

$$e_{i,j} = E(u_{i,j} - \overline{u}_{i,j})^2$$
 (2.3.1-1)

at each (i,j). For Gaussian random field, the minimum variance estimate would be linear. The coefficients a(m,n) in (2.2.1-1), (2.2.2-1) or (2.2.3-1) could be determined from the covariance function r(k,l) and the orthogonality relation

$$E(u_{i,j} - \overline{u}_{i,j})u_{p,q} = E\left[u_{i,j} - \sum_{m,n \in S} a(m,n)u_{i-m,j-n}\right]u_{p,q} = \beta_{i,j}^{2} \delta_{i,p} \delta_{j,q}$$
for all $p,q \in \hat{S}$. $\hat{S} = SU(i,j)$ (2.3.1-2)

where S depends on whether $\overline{u}_{i,j}$ is causal, semicausal or noncausal, and $\beta_{i,j}^2$ is defined to be the minimized value of $e_{i,j}$ of (2.3.1-1).

For minimum variance representation, $u_{1,j}$ is chosen to be a minimum variance estimate. This representation could be causal, semicausal or noncausal in its spatial structure.

2.3.2 White Noise Driven Representation

A white noise random field $\{x_{i,j}\}$ is defined as one whose elements are mutually uncorrelated, i.e.,

$$Ex_{i,j}x_{k,\ell} = \beta_{i,j}^2 \delta_{i,k} \delta_{j,\ell}.$$
 (2.3.2-1)

For white noise driven representation, $\{\varepsilon_{i,j}\}$ in (2.3-1) is chosen to be a white noise random field.

2.4 Spectral Density Functions of the Gaussian Random Field Represented by Linear Models

Consider the stationary Gaussian random field $\{u_{i,j}\}$ defined on the infinite plane, $-\infty < i,j < \infty$. The two-dimensional z-transform of the covariance function, called the covariance generating function, is defined as

$$F(z_1,z_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i,j)z_1^{-i}z_2^{-j}.$$

^{*} Two-dimensional z-transform is defined as

$$S_{u}(z_{1},z_{2}) = \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} r(k,\ell) z_{1}^{-k} z_{2}^{-k}$$
 (2.4-1)

Substituting $e^{j\omega_1}$ and $e^{j\omega_2}$ for z_1 and z_2 , respectively, we have

0

Q

0

0

0

$$S_{u}(\omega_{1}, \omega_{2}) = S_{u}(z_{1}, z_{2})$$

$$z_{1} = e^{j\omega_{1}}, z_{2} = e^{j\omega_{2}}. \qquad (2.4-2)$$

This becomes the spectral density function (SDF) of $\{u_{i,j}\}$. For simplicity, we refer to $S_u(z_{1,z_2})$ as the spectral density function of the Gaussian random field $\{u_{i,j}\}$ at various places in the following chapters without further notification.

The discrete operator of (2.1-1) can be written as

$$D(z_{1}, z_{2}) = 1 - \sum_{m,n \in S} a(m,n) z_{1}^{-m} z_{2}^{-n}$$
 (2.4-3)

If $S_{\epsilon}(z_1, z_2)$ is the spectral density function of $\{\epsilon_{i,j}\}$, then the spectral density function of $\{u_{i,j}\}$ is given by

$$S_{u}(z_{1},z_{2}) = \frac{S_{\varepsilon}(z_{1},z_{2})}{D(z_{1},z_{2})D(z_{1}^{-1},z_{2}^{-1})}$$
 (2.4-4)

The covariance function of $\{u_{i,j}\}$ is obtained simply by the inverse Fourier transform of $S_u(z_1,z_2)$

$$R(k,\ell) = \frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} S_{u}(\omega_{1},\omega_{2}) \exp(j\omega_{1}k+j\omega_{2}\ell) d\omega_{1}d\omega_{2} \qquad (2.4-5)$$

2.5 Image Representations

Now we consider different types of random field representations as candidates for image modeling.

2.5.1 Causal Representations

The general form of causal representations of an image field is given by

$$u_{i,j} = \overline{u}_{i,j} + \varepsilon_{i,j}$$
 (2.3-1)

where $u_{i,j}$ is the causal estimate of $u_{i,j}$ defined in (2.2.1-1).

As an example, one causal representation is of the type

$$u_{i,j} = a_1 u_{i-1,j} + a_2 u_{i,j-1} + a_3 u_{i-1,j-1} + \epsilon_{i,j}$$
 (2.5.1-1)

whose spatial structure is depicted in Table 2.1 and it is obvious that $u_{i,j}$ is causally related with three points which occurred at the left upper quadrant. It has been shown that this equation and other similar causal representations can be obtained by discrete approximation of hyperbolic partial differential equations [34].

Using the spatial structure and measured covariances of a given image field, one may identify the coefficients a_1 , a_2 , a_3 and the random field $\{\epsilon_{i,j}\}$ via least square regression techniques. For the covariance function

$$r(k,\ell) = Eu_{i,j}u_{i+k,j+\ell} = \rho_1^{|k|}\rho_2^{|\ell|}$$
 (2.5.1-2)

where ρ_1 and ρ_2 are the vertical and horizontal correlations respectively.

The model of (2.5.1-1) is its exact realization when

$$a_1 = \rho_1$$
, $a_2 = \rho_2$, $a_3 = -\rho_1 \rho_2$ (2.5.1-3)

and $\{\epsilon_{\mathbf{i},\mathbf{j}}\}$ is a white noise field with zero mean and covariance function

$$E \in_{i,j} \in_{i+k,j+l} = \beta^2 \delta_{k,0} \delta_{l,0}, \quad \beta^2 = (1-\rho_1^2)(1-\rho_2^2).$$
 (2.5.1-4)

The corresponding discrete operator and spectral density function of (2.5.1-1) subject to (2.5.1-3) are given as follows:

$$D(z_1, z_2) = (1 - \rho_1 z_1^{-1}) (1 - \rho_2 z_2^{-1})$$
 (2.5.1-5a)

$$s_{\epsilon}(z_1, z_2) = \beta^2 = (1-\rho_1^2)(1-\rho_2^2)$$
 (2.5.1-5b)

$$s_{u}(z_{1},z_{2}) = \frac{\beta^{2}}{(1-\rho_{1}z_{1})(1-\rho_{1}z_{1}^{-1})(1-\rho_{2}z_{2})(1-\rho_{2}z_{2}^{-1})}$$
 (2.5.1-5c)

In image processing literature, this model has been used for differential PCM and filtering of images [34].

2.5.2 Semicausal Representations

0

0

0

0

A semicausal representation is causal in one of the image coordinates (say, j) and is noncausal in the other (say, i). For example,

$$u_{i,j} = \alpha(u_{i-1,j} + u_{i+1,j}) + \gamma u_{i,j-1} + \varepsilon_{i,j}$$
 (2.5.2-1)

where
$$|\alpha| < \frac{1}{2}$$
, $|\gamma| < 1$ and $|2\alpha + \gamma| < 1$. (2.5.2-1a)

This is a semicausal representation of the Gaussian random field.

Conditions of (2.5.2-la) insure the stability of (2.5.2-l). The

covariance function generated by this equation depends on the covariance

function chosen for the random field $\{\varepsilon_{i,j}\}$. For example, when $\{\varepsilon_{i,j}\}$ is a white noise field, i.e.,

$$r_{\epsilon}(k,\ell) = E\epsilon_{i,j}\epsilon_{i+k,j+\ell} = \beta^2 \delta_{k,0}\delta_{\ell,0}. \qquad (2.5.2-2)$$

The spectral density function of $\{u_{i,j}\}$ is then given by

$$s_{u}(z_{1},z_{2}) = \frac{\beta^{2}}{(1-\alpha z_{1}^{-\alpha z_{1}^{-1}}-\gamma z_{2}^{-1})(1-\alpha z_{1}^{-1}-\alpha z_{1}^{-\gamma z_{2}^{-1}})}.$$
 (2.5.2-3)

This white noise driven representation will be called the white noise driven SC1 model.

As a generalization, consider the case when $\{\epsilon_{i,j}\}$ has its covariance function given by

$$r_{\epsilon}(k,\ell) = E\epsilon_{i,j}\epsilon_{i+k,j+\ell} = \beta^2\delta_{\ell,0}(\delta_{k,0}-\alpha_1\delta_{k-1,0}-\alpha_1\delta_{k+1,0}).$$
 (2.5.2-4)

The corresponding SDFs are given by

$$S_{\epsilon}(z_1, z_2) = \beta^2 [1 - \alpha_1(z_1 + z_1^{-1})]$$
 (2.5.2-5a)

$$s_{u}(z_{1}, z_{2}) = \frac{s_{\varepsilon}(z_{1}, z_{2})}{(1 - \alpha z_{1}^{-1} - \gamma z_{2})(1 - \alpha z_{1}^{-1} - \alpha z_{1}^{-\gamma} z_{2}^{-1})}.$$
 (2.5.2-5b)

For $\alpha_1 = 0$, (2.5.2-3) results, we have white noise driven model.

For $\alpha_1 = \alpha$, the quantity [see (2.5.2-1)]

$$u_{i,j}^{*} = \alpha(u_{i-1,j} + u_{i+1,j}) + \gamma u_{i,j-1}$$
 (2.5.2-6)

becomes the best linear mean square estimate of u, j given k, l belonging to

$$S = \{k, \ell: \ell < j, \forall k\} \cup \{k, \ell: \ell = j, \forall k \neq i\}.$$

This follows by observing that the orthogonality relation

$$Eu_{i,j}^{*}(u_{i,j}-u_{i,j}^{*})=Eu_{i,j}^{*}\varepsilon_{i,j}=0, \forall i,j$$
 (2.5.2-7)

is satisfied when $\alpha_1 = \alpha$.

Then (2.5.2-1) becomes a <u>minimum variance SC1 representation</u>, since $E(u_{i,j} - u_{i,j}^*)^2$ is minimum over the set of lattice points of S. The spectral density function of the minimum variance semicausal representation is obtained by setting $\alpha_1 = \alpha$ in (2.5.2-5).

It has been shown by Jain [28] that the separable covariance function [see (2.5.1-2)] has a semicausal minimum variance realization given by

$$u_{i,j} = \alpha_1(u_{i-1,j} + u_{i+1,j}) - \rho_2\alpha_1(u_{i-1,j-1} + u_{i+1,j-1}) + \rho_2u_{i,j-1}\epsilon_{i,j}$$
(2.5.2-8)

where $\{\varepsilon_{i,j}^{}\}$ is chosen to have its covariance given as

$$r_{\epsilon}(k,\ell) = \frac{(1-\rho_1^2)(1-\rho_2^2)}{(1+\rho_1^2)} \delta_{\ell,0}(-\alpha_1 \delta_{k,-1} - \alpha_1 \delta_{k,1} + \delta_{k,0}) \qquad (2.5.2-9)$$

and

0

0

0

O

$$\alpha_1 = \frac{\rho_1}{1 + \rho_1^2}$$

with corresponding SDF

$$S_{\varepsilon}(z_1, z_2) = \frac{(1-\rho_1^2)(1-\rho_2^2)}{(1+\rho_1^2)} (1-\alpha_1 z_1 - \alpha_1 z_1^{-1}) . \qquad (2.5.2-10)$$

This will be called the minimum variance SC2 representation. Interestingly, the spectral density function $S_u(z_1,z_2)$ of this minimum variance SC2 representation and that of the white noise driven C1 representation are identical. For more general minimum variance semicausal models, see [34].

The semicausal representations will be shown to lead some useful hybrid algorithms for image coding. A hybrid algorithm is a recursive algorithm obtained after transforming each row (or column) of the image by a unitary transformation. Note that above mentioned semicausal representations can also be obtained by discrete difference approximation of parabolic partial differential equations [34].

2.5.3 Noncausal Representations

The noncausal representations are boundary value problems in each coordinate and have correspondence with the elliptic class of partial differential equations (PDEs) [34]. For example, the noncausal representation (NC1)

$$u_{i,j} = \alpha(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}) + \epsilon_{i,j}, |\alpha| < \frac{1}{4}$$
(2.5.3-1)

is a discrete approximation of a Poisson PDE.

In general, $\{\epsilon_{i,j}\}$ may be chosen such that

$$r_{\varepsilon}(k,\ell) = E\varepsilon_{i,j}\varepsilon_{i+k,j+\ell} = \beta^{2}[\delta_{k,0}\delta_{\ell,0} - \alpha_{1}(\delta_{k,-1}+\delta_{k,1})\delta_{\ell,0} - \alpha_{1}(\delta_{\ell,-1}+\delta_{\ell,1})\delta_{k,0}] , |\alpha_{1}| < \frac{1}{2}$$

$$(2.5.3-2)$$

The spectral density functions for $\{\epsilon_{i,j}\}$ and $\{u_{i,j}\}$ are then obtained as

$$S_{\epsilon}(z_1, z_2) = \beta^2[1 - \alpha_1(z_1 + z_1^{-1} + z_2 + z_2^{-1})]$$
 (2.5.3-3)

$$s_u(z_1, z_2) = \frac{s_c(z_1, z_2)}{[1 - \alpha(z_1 + z_1^{-1} + z_2 + z_2^{-1})]^2}$$
 (2.5.3-4)

There are three types of NC1 models to be considered here.

3

Q

0

0

- a. $\alpha_1 = 0$. $\{\epsilon_{i,j}\}$ becomes a white noise process and (2.5.3-1) is a white noise driven NC1 representation.
- b. $\alpha_{1} = \alpha$, we get the <u>minimum variance NC1 representation</u>. Note that in the spectral density function S_{u} a pole-zero cancellation occurs and the S_{u} becomes

$$s_{u}(z_{1},z_{2}) = \frac{\beta^{2}}{[1 - \alpha(z_{1}+z_{1}^{-1}+z_{2}+z_{2}^{-1})]}.$$
 (2.5.3-5)

c. For α₁ ≠ α, (2.5.3-1) may be considered as a noncausal autoregressive moving average (ARMA) model, denotes a NCl ARMA model. According to Jain [34], model identification experiments have shown for several images (for example, Girl, Moon and Earth) that this model gives a better fit to the real data than the previous two models.

Another type of noncausal representation can be derived from a biharmonic PDE [34], and gives a 13-neighbor model

$$u_{i,j} = a(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}) - a\alpha(u_{i-1,j-1} + u_{i-1,j+1}) + u_{i+1,j-1} + u_{i+1,j+1}) - \frac{a\alpha}{2}(u_{i-2,j} + u_{i+2,j} + u_{i,j-2} + u_{i,j+2}) + \frac{\varepsilon_{i,j}}{(1+4\alpha^2)}$$

$$(2.5.3-6)$$
where $a = \frac{2\alpha}{(1+4\alpha^2)}$.

If covariances of $\{\varepsilon_{i,j}\}$ are taken as

$$r_{\epsilon}(k,\ell) = E\epsilon_{i,j}\epsilon_{i+k,j+\ell} = \beta^{2} \begin{cases} -a_{1} & \text{, if } \ell=\pm 1, \ k=0 \text{ or } \ell=0, \ k=\pm 1 \\ a_{1}^{\alpha}_{1} & \text{, if } \ell=\pm 1, \ k=\pm 1 \\ \\ \frac{a_{1}^{\alpha}_{1}}{2} & \text{, if } \ell=\pm 2, \ k=0 \text{ or } k=\pm 2, \ \ell=0 \\ \\ 1 & \text{, if } k=\ell=0 \\ \\ 0 & \text{, otherwise} \end{cases}$$

where
$$|a_1| < \frac{2}{5}$$
, $|a_1| < \frac{1}{4}$; (2.5.3-7)

then, for $a_1 = a$, $\alpha_1 = \alpha$

Eqn. (2.5.3-6) becomes a minimum variance NC2 representation. Spectral density functions for this mode are given by

$$S_{\epsilon}(z_1, z_2) = \beta^2 [1 - \alpha_1(z_1 + z_1^{-1} + z_2 + z_2^{-1})]^2$$
 (2.5.3-8)

$$S_{u}(z_{1}, z_{2}) = \frac{S_{\varepsilon}(z_{1}, z_{2})}{\left[1 - \alpha(z_{1} + z_{1}^{-1} + z_{2} + z_{2}^{-1})\right]^{4}}$$
 (2.5.3-9)

The noncausal representations discussed above often realize nearly isotropic $S_u(z_1,z_2)$.

Not all noncausal models give near-isotropic random fields. For example, consider the noncausal model (NC3)

$$u_{i,j} = \alpha_1(u_{i-1,j} + u_{i+1,j}) + \alpha_2(u_{i,j-1} + u_{i,j+1})$$

$$- \alpha_1\alpha_2(u_{i+1,j+1} + u_{i+1,j-1} + u_{i-1,j+1} + u_{i-1,j-1}) + \epsilon_{i,j}.$$
(2.5.3-10)

If the covariances of $\{\varepsilon_{i,j}\}$ are given by

$$r_{\varepsilon}(k,\ell) = E \varepsilon_{i,j} \varepsilon_{i+k,j+\ell} = \beta^{2} \begin{cases} 1 & , & \text{if } k=\ell=0 \\ -\alpha_{1} & , & \text{if } k=\pm 1, \ \ell=0 \\ -\alpha_{2} & , & \text{if } k=0, \ \ell=\pm 1 \end{cases}$$
 (2.5.3-11)
$$\alpha_{1}\alpha_{2} & , & \text{if } k=\pm 1, \ \ell=\pm 1 \\ 0 & , & \text{otherwise}$$

where
$$\beta^2 = \frac{(1-\rho_1^2)(1-\rho_2^2)}{(1+\rho_1^2)(1+\rho_2^2)}$$
, $\alpha_1 = \frac{\rho_1}{(1+\rho_1^2)}$, $\alpha_2 = \frac{\rho_2}{(1+\rho_2^2)}$.

SDFs of (2.5.3-10) are given by

0

0

0

$$S_{\varepsilon}(z_1, z_2) = \frac{\beta^2}{[1 - \alpha_1(z_1 + z_1^{-1})][1 - \alpha_1(z_2 + z_2^{-1})]}$$
 (2.5.3-12)

$$s_{\mathbf{u}}(z_1, z_2) = \frac{(1-\rho_1^2)(1-\rho_2^2)}{(1-\rho_1 z_1)(1-\rho_2 z_2)(1-\rho_2 z_2^{-1})}.$$
 (2.5.3-13)

Notice that the form of $S_u(z_1z_2)$ is the same as the SDF of causal DPCM C1 model and semicausal SC2 model, so it generates the separable covariance model which is non-isotropic.

2.6 Basis Restriction Data Compression Efficiency of Image Models

The performance of the foregoing image models in image data compression can be analyzed by studying their basis restriction efficiency. The scheme is shown in Fig. 2.2. First, the original image $\{u_{i,j}\}$ is transformed by a unitary matrix A (see Chapter 4, the definition of transformation). Next, a two-dimensional sample selection function $\{w(i,j)\}$ (also called zonal filter), which at each (i,j) takes on the

value of zero or one, is applied to the transformed image $\{v_{i,j}\}$. Only those samples for which $\{w(i,j)=1\}$ are stored, zeros placed at other locations. This zonal filtered image $\{\hat{v}_{i,j}\}$ is inverse transformed by A^{-1} to give $\{\hat{u}_{i,j}\}$.

The basis restriction mean square error (B.R.M.S.E.) is defined as

B.R.M.S.E. =
$$\sum_{i j}^{n} E (u_{i,j} - \hat{u}_{i,j})^{2} / \sum_{i j}^{n} u_{ij}^{2}$$

= $\sum_{i j}^{n} E (v_{i,j} - \hat{v}_{i,j})^{2} / \sum_{i j}^{n} v_{ij}^{2}$
= $\sum_{i j}^{n} E \left[v_{i,j}^{n} (1 - w(i,j)) \right]^{2} / \sum_{i j}^{n} v_{ij}^{2}$ (2.6-1)

where we have used the fact that A is a unitary transform. Associated with this error is the sample reduction ratio (S.R.R.)

This ratio is a measure of data compression.

2.6.1 Zonal Filter Design

The zonal filter w(i,j) is designed as follows.

- Let t be the number of samples to be selected for transmission for a given S.R.R. Clearly t = NM/S.R.R. for an M × N image.
- 2. Find the variances $\sigma_{m,n}^2$ of the transformed image samples $v_{m,n}$. If A is the DFT, and N is large, an estimate of $\sigma_{m,n}^2$ is

$$\sigma_{m,n}^{2} = \begin{cases} s_{u} \left(\frac{2\pi m}{M}, \frac{2\pi n}{N}\right), & 0 \leq |m| \leq \frac{M}{2}, & 0 \leq |n| \leq \frac{N}{2} \end{cases}$$

$$\sigma_{m,n}^{2} = \begin{cases} s_{u} \left(\frac{2\pi m}{M}, \frac{2\pi n}{N}\right), & 0 \leq |m| \leq \frac{M}{2}, & 0 \leq |n| \leq \frac{N}{2} \end{cases}$$
otherwise

3. Arrange $\sigma_{m,n}^2$ in a decreasing order. Then w(m,n) = 1 for the first t_n addresses (m,n) and w(m,n) = 0 otherwise.

Since w(m,n) depend on $\sigma_{m,n}^2$ or the SDF, the zonal filter functions will be different for different image models.

2.6.2 Experimental Results

Ò

魯

For easy reference, all the image representations (models) presented in Section 2.5 are summarized in Table 2.1. It is seen that various partial differential equation (PDE) operators are also listed. Table 2.2 shows model parameters used for three different images. These parameters were found by least square matching of the 16 × 16 image covariances with the model covariances.

Simple basis restriction error experiments have been performed to compare the various image models for the Girl and Earth images. We have used the discrete Fourier transform to be the unitary transform operator. Since the image models differ in their SDFs, in the transform domain, the variances of the samples $v_{i,j}$ will have different distributions. Figs. 2.3 - 2.5 show the zonal filters at various sample reduction ratios for causal, semicausal and noncausal models. Table 2.3 lists the results of basis restriction mean square error versus image block size for the Girl image. Table 2.5 lists the corresponding results for the Earth image. Figs. 2.6 - 2.7 show the plots of basis restriction errors versus

sample reduction ratios. In general, basis restriction error of the noncausal model is lower for most sample reduction ratios (indicating its superior fitting of the image data than the other two types of models. For very large sample reduction ratios, since few transform domain image pixels are transmitted, all the models select the same pixels (see Figs. 2.6 - 2.7)).

The above conclusion could also be drawn from Figs. 2.8 and 2.9, which show the Basis Restriction Data Compression of Girl and Earth images using a 16×16 image block size. Clearly, noncausal models give the best results followed by semicausal models.

2.7 Summary and Conclusions

In summary, several image representations have been considered.

They originate from finite difference approximations of certain

PDEs. These models have been compared on the basis of their data compression efficiency based on a basis restriction error criterion.

The following conclusions are made.

- The models C1, SC2 and NC3 all generate random fields whose covariance functions are the same as the separable model [see (2.5.1-2)].
- 2. For $\alpha_1 = \alpha$, the spectral density of NC2 is the same as that of NC1 for $\alpha_1 = 0$. However, NC2 is a minimum variance noncausal represention, whereas NC1 is a white noise driven model.
- In a data compression application, the noncausal models give the best performance. A similar conclusion has been made in image filtering applications [34].

4. Figs. 2.3 - 2.5 could be interpreted as the spectral density function indicators. Different types of image models would achieve different shapes of spectral density functions. Figs. 2.3 - 2.5 show the contours of approximately equal spectrum values.

0

0

0

 Higher order models may be needed to represent image SDFs more accurately. Identification of such models remains an open problem.

Figure 2.1 The Region S for Estimating (i,j)

Figure 2.2 Basis Restriction Efficiency Implementation

(a) 2:1 Sample Reduction

数

(c) 8:1 Sample Reduction

(b) 4:1 Sample Reduction

(d) 16:1 Sample Reduction

Figure 2.3 Causal Model (CI) Fourier Transform Domain Model Zonal Patterns for a 32 × 32 Image Block Size with Various Sample Reduction Ratios.

(a) 2:1 Sample Reduction

(c) 8:1 Sample Reduction

(b) 4:1 Sample Reduction

(d) 16:1 Sample Reduction

Figure 2.4 Semicausal Model (SCI) Fourier Transform Domain Model Zonal Patterns for a 32 × 32 Image Block Size with Various Sample Reduction Ratios.

(a) 2:1 Sample Reduction

(c) 8:1 Sample Reduction

(b) 4:1 Sample Reduction

(d) 16:1 Sample Reduction

Figure 2.5 Noncausal Model (NC1 or NC2-A or NC2-B) Fourier Transform Domain Model Zonal Patterns for a 32 × 32 Image Block Size with Various Sample Reduction Ratios.

Figure 2.6 Basis Restriction Mean Square Error versus Sample Ratio for the Fourier Transform Model Zonal Sampling of a 256 × 256 Girl Image with 16 × 16 Image Block Size

Figure 2.7 Basis Restriction Mean Square Error versus Sample Reduction Ratio for the Fourier Transform Model Zonal Sampling of a 256 x 256 Earth Image with 16 x 16 Image Block Size

0

0

(a) NC1, NC2-A, NC2-B, 8:1 Sample Reduction

(d) NC1, NC2-A, NC2-B, 16:1 Sample Reduction

(b) SC1, 8:1 Sample Reduction

(e) SC1, 16:1 Sample Reduction

(c) C1, 8:1 Sample Reduction

(f) C1, 16:1 Sample Reduction

Figure 2.8 Fourier Transform Model Zonal Sampled Girl Image with 16×16 Image Block Size

(a) NC1, NC2-A, NC2-B, 8:1 Sample Reduction

(d) NC1, NC2-A, NC2-B, 16:1 Sample Reduction

(b) SC1, 8:1 Sample Reduction

(e) SC1, 16:1 Sample Reduction

(c) C1, 8:1 Sample Reduction

(f) C1, 16:1 Sample Reduction

Figure 2.9 Fourier Transform Model Zonal Sampled Earth Image with

Table 2.1 Summary of Some PDE Models and Their Discrete Approximates D[u] - c Used for Image Modeling

11)

Q

Yode1	PDE Operator	Discrete Operator D(s ₁ , s ₂)	Spectral Density of c S. (z, . 2)	Spectral Denaity of u Su(x1.2)	Special Structure	Connents
James Co	2 (1.pa. 1.) (1.pa. 1.) (1.pa. 1.) (1.pa. 1.)	(1. 40.1) (1. 40.1)	(1-0 ²), ² - 5 ²	(1-2 ²) ² (1-24 ₁)(1-24 ₁ ²)(1-24 ₂)(1-24 ₂ ²)	7	Hyperbolic wave equation Covarience R(k, I)= 0'p k + I]
Sen (causa) SCI		1-02,-08,1-4.1	**************************************	(1-cz ₁ -cz ₁ -y = 1) (1-cz ₁ -cz ₁ -y = 2)	1000	Parabolic diffusion equation White noise driven model
Sen [causal]	$(\frac{\partial^2}{\partial x^2} + \epsilon_1)(\frac{\partial}{\partial y} + \epsilon_2)$	1-0((-012)(1-12)-012	8 ² (1-a(e ₁ +e ₁ ⁻¹))	5 es es C1	不	$\frac{6}{14p^2} \cdot \hat{b}^2 \cdot \frac{(1-p^2)^2}{(1+o^2)}$ Minimum variance codel
Songward NCI	42 42 42	1-0(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	92[1-01(=1+0]422+02)]	8 ² [1-0 ₁ (x ₁ +x ₁ ⁻¹ +x ₂ +x ₂ ⁻¹)] [1-0(x ₁ +x ₁ ⁻¹ +x ₂ +x ₂ ⁻¹)] ²	+	Elliptic potential equation Minimum variance model when o ₁ = o
Noncausel .	(2/2) 2/2/201	(1-0(4 ₁ +4 ₁ ⁻¹ +4 ₂ +4 ₂ ⁻¹)] ²	8 ² [1-9 ₁ (x ₁ +x ₁ ⁻¹ +x ₂ +x ₂ ⁻¹)] ²	$\frac{9^{2}[1-\alpha_{1}(s_{1}+s_{1}^{1}+s_{2}+s_{1}^{2})_{1}^{2}]}{[1-\alpha(s_{1}+s_{1}^{1}+s_{2}+s_{2}^{2})_{1}^{2}]^{4}}$	*	Elliptic biharmonic equation Minicum variance model when o ₁ = 0 NC2-A when o ₁ = 0 NC2-B when o ₁ = 0
Soncausal SO	(*** ****)(*** ****)	(1-o(s1+s1,))(1-o(s2+s2,))	[1-0(s ₁ +s ₁ ¹)][1-0(s ₂ +s ₂ ¹)]) see a	*	92 - 01-5 ² / ₂ · 0 - 19-2

Table 2.2 Actual Parameters Measured for Various Models of the 256 \times 256 Image to Match the 16 \times 16 Covariance Matrix of the Image

Image ·	Model Parameters		l.s.e.
	C1	ρ = 0.962	0.720
	sc1	$\alpha = 0.4275$, $\gamma = 0.1415$, $\beta^2 = 0.0198$	0.162
	SC2	$\rho = 0.962$, $\alpha = 0.49963$, $\beta^2 = 0.0029$	0.720
Girl	NC1	$\alpha = 0.2494$, $\alpha_1 = 0.95\alpha$, $\beta^2 = 0.0744$	0.377
	NC2-A	$\alpha = 0.2494$, $\alpha_1 = \alpha$, $\beta^2 = 0.0053$	0.598
	NC2-B	$\alpha = 0.2476$, $\alpha_1 = 0$, $\beta^2 = 8 \times 10^{-6}$	1.697
	NC3	$\rho = 0.962$, $\alpha = 0.49963$, $\beta^2 = 0.0015$	0.720
	C1	ρ = 0.968	0.891
Earth	SC1	$\alpha = 0.4275$, $\gamma = 0.1420$, $\beta^2 = 0.0169$	0.572
	SC2	$\rho = 0.968, \gamma = 0.49974, \beta^2 = 0.0020$	0.891
	NC1	$\alpha = 0.24966$, $\alpha_1 = 0.95\alpha$, $\beta^2 = 0.00631$	0.303
	NC2-A	$\alpha = 0.24955$, $\alpha_1 = \alpha$, $\beta^2 = 0.0073$	1,353
	NC2-B	$\alpha = 0.2482$, $\alpha_1 = 0$, $\beta^2 = 3 \times 10^{-6}$	2.877
	NC3	$\rho = 0.968$, $\alpha = 0.49974$, $\beta^2 = 9.7 \times 10^{-4}$	0.891
Chemical Plant	C1	ρ = 0.9536	2.158
	SC1	$\alpha = 0.4275$, $\gamma = 0.1420$, $\beta^2 = 0.0169$	0.827
	SC2	$\rho = 0.9536$, $\alpha = 0.49944$, $\beta^2 = 0.0043$	2.158
	NC1	$\alpha = 0.24966$, $\alpha_1 = 0.95\alpha$, $\beta^2 = 0.0631$	0.401
	NC2-A	$\alpha = 0.02493$, $\alpha_1 = \alpha$, $\beta^2 = 0.0084$	3.677
	NC2-B	$\alpha = 0.24708, \alpha_1 = 0, \beta^2 = 1.5 \times 10^{-3}$	6.724
	NC3	$\rho = 0.9536$, $\alpha = 0.49944$, $\beta^2 = 0.00225$	2.158

Table 2.3 Basis Restriction Mean Square Error of the Girl Image Represented by:

Sample Reduction				
RACTO	8 × 8	16 × 16	32 × 32	64 x 64
		(a) Causal Image Model	(C1)	
2	0. 7747.	0.693%	0.5881	0.5697
4	3.6112	2.226%	2.030%	1.9142
. 8	5. 5402	8.984%	4.6041	4.6567
16	7.7341.	11.1332	13.6621	7.7607
32		13. 2082	14.9752	11.7407
64		16.5532	22.961%	17.7587
128			25.9531	23. 1512
, 256			31.134%	30.7952
512			•	49.0187
1024				60, 9517
	6) Semicausal Image Model	(SC1)	
1	1.334%	1.3987	1.3113	0.943
4	3. 264%	3.6772	3.1041	2.463
	6.0561	5.989%	5.1821	4. 1331
16	10. 9312	9. 2582	8.1212	6. 5431
32		13.791%	12.5212	10.007
64		19.430	18. 2531	14.530
128			26.0897	22.249
256			39. 602%	32.243
512				39.690
1024				60, 951
	(c) Noncaus	sal Image Model (NC1 or No	C2-A or NC2-B)	
2	1. 195%	0.8872	0. 6347,	0.571
160 to 1	3.0621	3.0667.	2.573%	1.977
	6. 232%	5. 291%	4.9091	3.785
16	7.7341	8.551%	8. 1891	6 474
32		13.791%	12.132%	10.002
64		16.5531	17.553t	14 745
128			26.089%	21.272
256			31.154%	30.640
512				39.690
1024				\$1.726

Table 2.4 Busis Restriction Mean Square Error of the Earth Image Represented by:

Sample Reduction	Size of an Image Block					
Ratio		16 × 16	32 × 32	64 x 64		
141	(4) Causal Image Model (C1)				
2	1.9892	1.6602	1.5102	1.4761		
4	7.1661	4.571%	4.5962	4.4502		
	10.1412	13.554%	8. 3072	8. 8811		
16	12.0932	16.1327	18.504%	13.0645		
32		17.7977.	19.399%	18.863		
64		20.534%	25.3252	22.981		
128			27. 203%	27.440		
256			31.288%	33.120		
512				37.983		
1024				46.098		
	(6)	Semicausal Image Model (SC	1)			
2	2.1261	1.8962	1.7652	1.549		
4	5. 7737.	5.4411	4.746%	4.513		
	10. 263%	9.0491	7.7321	7.337		
16	16.062%	12.679%	11.122%	10.751		
32		17.3383	15.614%	14.916		
64		23.4281	21.6991	20.342		
128			27.784%	26, 163		
256			33.762%	32.118		
512				38.608		
1024				44.813		
	(c) Noncaus	al Image Model (NCI or NC2-	-A or NCZ-8)			
1	2.247%	1.723%	1.4901	1.389		
	5. 3307.	4.7521	4. 1862	3.939		
	9.659%	7.9141	7.1751	6.72		
16	12.0932	11.884%	10.9131	10.340		
32		17. 338%	15.445%	14.693		
- 44		20.510%	20.402%	19.84		
128			27.784%	25.97		
256			31.286%	31.34		
512				38.60		
1024				41.93		

CHAPTER THREE

SEMICAUSAL MODELS AND HYBRID CODING

3.1 Introduction

ů

0

0

In this chapter we consider image coding techniques which combine transform and predictive coding techniques. Such techniques have been called Hybrid coding [17] or, more generally, Hybrid processing. The basic idea behind hybrid processing is to first convert a two-dimensional discrete random field (an array of random variables) into a sequence of one-dimensional, independent, discrete random processes via a unitary transformation. Then each of these one-dimensional processes is processed independently by one-dimensional techniques such as recursive filtering (for image restoration applications) or predictive coding (such as DPCM, for image transmission/storage applications).

In this chapter we show the semicausal models considered earlier yield hybrid coding algorithms. Once the parameters of a semicausal model are identified, the entire hybrid coding scheme can be designed. Adaptive hybrid coding schemes can then be designed by simply adapting the semicausal model to changes in image statistics. Some practical adaptive hybrid coding methods which strike a balance between complexity and performance are studied. Application of these models to coding of noisy images are also considered.

3.2 Semicausal Image Models and Hybrid Coding

Let $\{u_{i,j}^{}\}$ represent a zero mean, Caussian, stationary random field whose covariance function is defined as

$$r(k,\ell) = Eu_{i,j}u_{i+k,j+\ell} \quad \forall i,j.$$
 (3.2-1)

Consider an N × M segment of this random field where $1 \le i \le N$ and $1 \le j \le M$, and let u denote the jth column of the image, i.e.,

$$u_j = [u_{1,j}u_{2,j}...u_{N,j}]^T$$
 (3.2-2)

From (3.2-1) it follows that

$$Eu_{j}u_{j+\ell} = R_{\ell}$$
 (3.2-3a)

where Rg is an N × N Toeplitz matrix of elements

$$R_{\ell}(m,n) = r(m-n,\ell)$$
 $1 \le m,n \le N$. (3.2-3b)

3.2.1 Hybrid Coding of Separable Covariance Image Fields

Consider the often used separable covariance model for images

$$\mathbf{r}(\mathbf{k}, \mathbf{\hat{z}}) = \sigma^2 \rho_{\mathbf{y}}^{|\mathbf{k}|} \rho_{\mathbf{h}}^{|\mathbf{\hat{z}}|}$$
 (3.2.1-1)

where $\rho_{_{\mathbf{V}}}$ and $\rho_{_{\mathbf{h}}}$ are the vertical and horizontal correlations, respectively.

This gives

$$R_{\ell} = \sigma^2 \rho_h^{|\ell|} R_{\nu}$$
 (3.2.1-2a)

where

$$R_{v} = \{\rho_{v}^{|m-n|}\}$$
 (3.2.1-2b)

It is well known that $R_{_{_{f V}}}$ is the covariance of a zero mean, first order stationary Markov process whose one step correlation is $\rho_{_{\bf V}}$. Let Ψ denote the Karhunen Loeve (KL) transform of this process (see Chapter 4), i.e.,

y is a unitary matrix that satisfies

$$\Psi R_{\mathbf{v}} \Psi^{\mathbf{T}} = \Lambda \qquad \Psi \Psi^{\mathbf{T}} = \mathbf{I} \tag{3.2.1-3}$$

where $\Lambda = \{\lambda_i\}$ is the diagonal matrix of eigenvalues of $R_{\mathbf{v}}$. Define the transformation

$$v_j \stackrel{\Delta}{=} \Psi u_j$$
 (3.2.1-4)

Using (3.2.1-2a), (3.2.1-3) and (3.2.1-4), one obtains

$$\operatorname{Ev}_{i} \mathbf{v}_{i+\ell}^{T} = \Psi R_{\ell} \Psi^{T} = \sigma^{2} \rho_{h}^{|\ell|} \Lambda \qquad (3.2.1-5a)$$

or
$$Ev_{j}(i)v_{j+\ell}(i+k) = \sigma^{2}\rho_{h}^{|\ell|}\lambda_{i}\delta_{k,0}$$
 (3.2.1-5b)

Eqn. (3.2.1-5b) implies that i) the elements of the transformed column v_j are mutually uncorrelated and ii) for each i, the sequence $\{v_j(i), 1 \le j \le M\}$ is a first order, stationary Markov process. Therefore, we can write

$$v_{i}(i) = \rho_{h}v_{i-1}(i) + e_{i}(i)$$
 (3.2.1-6a)

where

0

0

0

$$Ee_{j}(i) = 0$$
 $Ee_{j}(i)e_{j+k}(i+k) = \sigma^{2}(1-\rho_{h}^{2})\lambda_{i}\delta_{k,0}\delta_{k,0}$ (3.2.1-6b)

and $\{v_j(i), 1 \le i \le N\}$ are the elements of the vector v_j . (3.2.1-6) spells the so called Hybrid coding method for the random field $\{u_{i,j}\}$. First, each column u_j is unitarily transformed (ideally by the KL transform) to obtain v_j and for each sequence $\{v_j(i), j = 1, 2, ...\}$ for $1 \le i \le N$, an independent DPCM channel is used. This overall scheme is shown in Fig. 3.1. Fig. 3.2 shows the details of the ith DPCM channel and the

reconstruction filter at the receiver. Often, a fast unitary transform is used to replace the KL transform to make the scheme more practical (see Chapter 4). For video image data where $\rho_h = \rho_v = 0.95$, the Cosine transform performs very close to the KL transform defined in (3.2.1-3) [1,31,34]

More generally, if any two-dimensional random field $\{u_{i,j}\}$ can be transformed via a unitary transformation to a sequence of independent one-dimensional Markov processes, then a Hybrid coding scheme for transmissions of $\{u_{i,j}\}$ can be designed.

3.2.2 Semicausal Representations as Two Source Models for Finite Random Fields

Consider the given image to be an N \times M segment of the infinite, stationary random field. Semicausal representations we have considered in the previous chapter [see (2.5.2-1) and 2.5.2-9)] when written in an N \times 1 vector notation are of the form

$$Qu_{j} = Pu_{j-1} + \varepsilon_{j} + b_{j}$$
 (3.2.2-1)

where Q is a tridiagonal Toeplitz matrix defined by

$$q_{i,j} = \begin{cases} 1, i = j \\ -\alpha, |i-j| = 1 \\ 0, \text{ otherwise} \end{cases}$$
 (3.2.2-2a)

and

$$P = \begin{cases} \gamma \text{ I, for SC1} \\ \rho_h Q, \text{ for SC2} \end{cases}$$
 (3.2.2-2b)

$$b_{j} = \begin{cases} \alpha[u_{0,j}, 0, \dots, 0, j_{N+1,j}]^{T}, & \text{for SC1} \\ \alpha[b_{1,j}, 0, \dots, 0, b_{N,j}]^{T}, & \text{for SC2} \end{cases}$$

$$(3.2.2-2c)$$

$$b_{1,j} = u_{0,j} - \rho_h u_{0,j-1}.$$

$$b_{N,j} = u_{N+1,j} - \rho_h u_{N+1,j-1}.$$
(3.2.2-2d)

The N × 1 vector $\mathbf{b_j}$ contains only two nonzero entries which depend only on the boundary variables $\{\mathbf{u_{0,j}}\}$ and $\{\mathbf{u_{N+1,j}}\}$ of the jth image column. Note from (3.2-2) that the jth image column, $\mathbf{u_j}$ contains only N elements. The covariance of ϵ_j is

$$R_{\epsilon} = E \epsilon_{j} \epsilon_{k}^{T} = \begin{cases} \beta^{2} I \delta_{j,k}, & \text{for SC1} \\ \beta^{2} Q \delta_{j,k}, & \text{for SC2} \end{cases}$$
(3.2.2-2e)

where
$$\beta^2 = (1 - \rho_v^2)(1 - \rho_h^2)/(1 + \rho_v^2)$$
 for the SC2 model. (3.2.2-2f)

Eqn. (3.2.2-1) can be looked at, in general, as a two source model for the vector sequence $\{u_j^i\}$, whose statistics are specified by the statistics for the "source inputs", $\{\varepsilon_j^i\}$ and $\{b_j^i\}$. We note that (3.2.2-1) may not always qualify to be a vector Markov model

$$Qu_j = Pu_{j-1} = f_j$$
 (3.2.2-3a)

by defining

0

$$f_j = \varepsilon_j + b_j$$
 (3.2.2-3b)

This is because the sequence $\{f_j\}$ is not guaranteed to be white, even though $\{\epsilon_j\}$ is such. From the linearity of (3.2.2-1), the two source outputs can be identified by the solution of the equations

$$Qu_{j}^{o} = Pu_{j-1}^{o} + \varepsilon_{j}$$
 (3.2.2-4a)

$$Qu_j^b = Pu_{j-1}^b + b_j$$
 (3.2.2-4b)

and the image field is the composition [31]

$$u_j = u_j^o + u_j^b$$
. (3.2.2-5)

The second source output u_j^b depends completely on the boundary variables. Hence, as the size of the image column gets larger, one would expect a smaller contribution of u_j^b in influencing the statistical properties of u_j . The N × M random field will be stationary when the statistics of the boundary variables are consistent with those of $\{u_{i,j}\}$. In other words, the case of stationary statistics is only a special case of (3.2.2-5). For minimum variance representations, the orthogonality condition (2.3.1-1) implies that the two source outputs u_j^0 and u_j^b are orthogonal. For stationary, white noise driven, semicausal models, one does not have this condition. If one starts by specifying the boundary variables to be orthogonal to the stationary white noise field $\{\varepsilon_{i,j}\}$, then the finite N × M field $\{u_{i,j}\}$ need not be stationary. Asymptotically, $(N,M+\infty)$, (3.2.2-4) and (3.2.2-5) will yield stationary random field $\{u_{i,j}\}$ (assuming Q is always nonsingular and (3.2.2-1) is a stable recursive relation).

3.2.3 Stochastic Decoupling of Semicausal Models by the Cosine Transform

For a large number of image fields, the adjacent elements of a column (or a row) are highly correlated and often the correlation parameter has a value around 0.95. Thus, for a finite N × M random field, it is reasonable to assume that the boundary variables that need to be specified in (3.2.2-1) satisfy the conditions

$$u_{0,j} = u_{1,j}$$
 $u_{N+1,j} = u_{N,j}$ (3.2.3-1)

This means the two outermost boundary rows of the (N+2) \times M field $\{u_{i,j}; 0 \le i \le N+1, 1 \le j \le M\}$ are equal. This also means that (3.2.2-1) subject to (3.2.3-1) is no longer a stationary field on the $(N+2) \times M$ array of points. Using (3.2.3-1) in (3.2.3-1) and rearranging terms, we get a one source model (the second source is deterministic, as defined by (3.2.3-1))

$$Q_{c}^{u_{j}} = P_{u_{j-1}} + \varepsilon_{j}$$
 (3.2.3-2)

where Q_c is defined as

0

$$Q_{c} \stackrel{\Delta}{=} \begin{bmatrix} 1-\alpha & -\alpha & & & \\ -\alpha & 1 & & & \\ & & & 1-\alpha & \\ & & & & 1-\alpha & \\ \end{bmatrix}$$
 (3.2.3-3a)

and

$$P = \begin{cases} \gamma I, & \text{for SC1} \\ \rho_h^{Q_c}, & \text{for SC2} \end{cases}$$
 (3.2.3-3b)

For SC1 model, $\{\varepsilon_{i,j}\}$ is still assumed to be a stationary white noise field. For SC2 model, (3.2.3-2) should satisfy the minimum variance conditions of (2.3.1-1). When applied to (3.2.3-2), this implies

$$E \epsilon_j \epsilon_k^T = \beta^2 Q_c \delta_{j,k}$$
.

Hence, the covariance of ϵ_i is now given as

$$R_{\varepsilon} = E \varepsilon_{j} \varepsilon_{k}^{T} = \begin{cases} \beta^{2} I \delta_{j,k}, & \text{for SC1} \\ \beta^{2} Q_{c} \sigma_{j,k}, & \text{for SC2}. \end{cases}$$
(3.2.3-4)

Proposition

The KL transform of any vector \mathbf{u}_{j} of the random field of (3.2.3-2) is the discrete Cosine transform (DCT) [1] for SC1 as well as SC2 models. For proof, see [35].

The eigenvalues of Q_c are given by [see (4.2-11c)]

$$\lambda_{ci} = 1 - 2\alpha \cos \frac{(i-1)\pi}{N}$$
 $1 \le i \le N$. (3.2.3-5)

Define $\Psi_{\mathbf{c}}$ to be the DCT matrix. Since it diagonalizes the matrices $Q_{\mathbf{c}}$ and P we have

$$\Psi_c Q_c \Psi_c^T = \Lambda_c = Diagonal \{\lambda_{ci}\}$$
 (3.2.3-6a)

$$\Psi_{c}P\Psi_{c}^{T} = \Gamma_{c} = \{\gamma_{i}\} \qquad \gamma_{i} = \begin{cases} \gamma & \text{, for SC1} \\ \rho_{h}\lambda_{ci} & \text{, for SC2} \end{cases}$$
(3.2.3-6b)

Also, define

0

0

O

$$v_i = v_{c}u_i$$
 (3.2.3-7)

Multiplying both sides of (3.2.3-2) by $\frac{4}{c}$ and using (3.2.3-6) and (3.2.3-7) we obtain

$$\Lambda_{c} v_{i} = \Gamma v_{i-1} + e_{i}$$
 (3.2.3-8a)

where

$$e_j \stackrel{\triangle}{=} \psi_c \varepsilon_j$$
 (3.2.3-8b)

Since Λ_c and Γ are diagonal, (3.2.3-8a) is a set of decoupled equations

$$\lambda_{ci}v_{i}(i) = \gamma_{i}v_{i-1}(i) + e_{i}(i) \quad 1 \leq i \leq N.$$
 (3.2.3-9)

From (3.2.3-4) and (3.2.3-6a) and (3.2.3-8b), $\{e_j(i)\}$ is a white noise field which satisfies the equation

$$Ee_{j}(i)e_{k}(l) = \begin{cases} \beta^{2}\delta_{j,k}\delta_{i,l}, & \text{for SC1} \\ \beta^{2}\lambda_{ci}\delta_{j,k}\delta_{i,l}, & \text{for SC2} \end{cases}$$
(3.2.3-10)

Hence, for each i, the sequence $\{v_j(i), \forall j\}$ is a first order Markov sequence. Moreover, if the initial variables $\{v_0(i), 1 \le i \le N\}$ are uncorrelated then for $\forall j > 0$, $\{v_j(i), 1 \le i \le N\}$ will be uncorrelated elements of the vector v_j . Also, for $u_0 = 0$ or $u_0 = u_\infty$ (i.e., steady state in j), the above condition will always be satisfied. For arbitrary

initial conditions, say $u_0 = c$, where c is an arbitrary random vector, u_1 will have a decomposition

$$u_j = u_j^0 + u_j^c$$
 (3.2.3-11a)

where
$$Q_{c}u_{j}^{o} = Pu_{j-1}^{o} + \varepsilon_{j}$$
 $u_{0}^{o} = 0$ (3.2.3-11b)

and
$$Q_c u_j^c = P u_{j-1}^c$$
 $u_0 = c$. (3.2.3-11c)

The KL transform of u_j^o now will be the DCT. In a practical DPCM system, the statistics of the initial condition do not affect the ultimate system performance because the initial vector can always be quantized accurately and transmitted before starting the DPCM transmission.

3.2.4 Stochastic Decoupling of Stationary Semicausal Fields

Random fields for which (3.2.3-1) is not a reasonable assumption (i.e., one step correlation in the "j" direction is not close to 1) or when stationarity of the random field is an essential requirement of the model, we have to restrict ourselves to (3.2.2-1). The boundary variables (elements of b_j) are random variables which are samples from the stationary random field $\{u_{i,j}\}$ and cannot be specified independently. In that case, (3.2.2-1) admits the decomposition [see (3.2.2-4) - (3.2.2-5)]

$$Qu_{j}^{0} = Pu_{j-1}^{0} + \epsilon_{j} \qquad u_{0}^{0} = 0 \quad j \ge 1$$
 (3.2.4-1a)

$$Qu_j^b = Pu_{j-1}^b + b_j$$
 $u_0^b = u_0$ $j \ge 1$ (3.2.4-1b)

where

$$u_j = u_j^0 + u_j^b$$
 $j \ge 1$ (3.2.4-2)

and un is the initial value of the sequence (u,).

Proposition

O

0

0

0

The KL transform of any column vector \mathbf{u}_{j}^{0} , $j \geq 1$ of the random field $\{\mathbf{u}_{1,j}^{0}\}$ of (3.2.4-la) is the Sine transform for SC1 as well as the SC2 models. For proof see [35].

Let Y be the Sine transform. Then

$$\Psi_s Q \Psi_s = \Lambda_s = Diagonal \{\lambda_i\}$$
 $\lambda_i = 1-2\alpha \cos \frac{i\pi}{N+1}$ $1 \le i \le N$ (3.2.4-3)

$$\Psi_{\mathbf{S}} P \Psi_{\mathbf{S}} = \Gamma = \{ \gamma_{\mathbf{i}} \}$$

$$\gamma_{\mathbf{i}} = \begin{cases} \gamma & \text{for SC1} \\ \\ \rho_{\mathbf{h}} \lambda_{\mathbf{i}} & \text{for SC2} \end{cases}$$

$$(3.2.4-4)$$

Defining

$$v_j = \Psi_s u_j^o \qquad e_j = \Psi_s \varepsilon_j$$
 (3.2.4-5)

and multiplying both sides of (3.2.4-1a) by Ψ_s and using (3.2.4-3), (3.2.4-4) and (3.2.4-5) we get a sequence of decoupled equations

$$\lambda_i v_j(i) = \gamma_i v_{j-1}(i) + e_j(i)$$
 $v_0(i) = 0$ $1 \le i \le N, j \ge 1$ (3.2.4-6a)

$$Ee_{j}(i)e_{k}(l) = \begin{cases} \beta^{2}\delta_{i,l}\delta_{j,k}, & \text{for SC1} \\ \beta^{2}\lambda_{i}\delta_{i,l}\delta_{j,k}, & \text{for SC2}. \end{cases}$$
(3.2.4-6b)

From (3.2.4-6a) and (3.2.4-6b) it is evident that $\{v_j(i)\}$ is a sequence of N, first order Markov processes and for any $j \ge 1$ the elements $\{v_j(i), 1 \le i \le N\}$ are uncorrelated. Hence, Y_s is the KL transform of u_j^0 . Figure 3.3 shows the realization of decomposition of (3.2.4-2) and stochastic decoupling of (3.2.4-6).

3.3 Hybrid Coder Design for Semicausal Random Fields

For the sake of simplicity of presentation, we will only consider the semicausal models of (3.2.3-2) which are decoupled by the Cosine transform. The sequence of decoupled equations (3.2.3-9) and (3.2.3-10) can be rewritten as

$$v_i(i) = \rho_i v_{i-1}(i) + e_i(i) \qquad 1 \le i \le N$$
 (3.3-1)

where

$$\rho_{i} = \frac{\gamma_{i}}{\lambda_{ci}} = \begin{cases} \gamma/\lambda_{ci} , \text{ for SC1} \\ \rho_{h} , \text{ for SC2} \end{cases}$$
(3.3-2a)

and {e,(i)} is a white noise field whose covariances are given by

$$Ee_{j}(i)e_{k}(l) \stackrel{\Delta}{=} \beta^{2}(i)\delta_{j,k}\delta_{i,l}$$

$$\beta^{2}(i) \stackrel{\Delta}{=} \begin{cases} \beta^{2}/\lambda_{ci}^{2}, & \text{for SC1} \\ \beta^{2}/\lambda_{ci}, & \text{for SC2}. \end{cases}$$
 (3.3-2b)

3.3.1 DPCM Equations

Since (3.3-1) is a sequence of N independent Markov processes, each of these sequences could be transmitted via an independent DPCM channel, as shown in Fig. 3.2. The equation at the transmitter and receiver are simply as follows:

Predictor:
$$\overline{v}_{i}(i) = \rho_{i} v_{i-1}^{*}(i)$$
 (3.3.1-1a)

Differential Signal:
$$\hat{e}_j(i) = v_j(i) - \overline{v}_j(i)$$
 (3.3.1-1b)

Quantizer Output:
$$e_{i}^{\star}(i)$$
 (3.3.1-1c)

Reconstruction Filter:
$$v_{j}^{*}(i) = \rho_{i}v_{j-1}^{*}(i) + e_{j}^{*}(i)$$
 (3.3.1-1d)

The encoding scheme requires, first, to take the Cosine transform of each column vector u_j. The DCT is a fast transform and is also the KL transform of each column of the semicausal image fields characterized by (3.2.3-2). This is followed by N DPCM channels for predictive coding of successive Cosine transformed vectors. The receiver simply reconstructs the transformed vectors according to (3.3.1-1d) and performs the inverse Cosine transformation. To complete the design, we now need to specify the quantizers in the various DPCM channels.

3.3.2 Bit Allocation

O

We will assume all the quantizers are identical in their characteristics (i.e., bit rate vs. distortion). Let

P = Average desired bit rate in bits/pixel of the image field.

f(n) = Mean square distortion of a quantizer with 2ⁿ levels for unit variance input random variables. This is a positive, monotonically decreasing convex function. We will assume f(n) has a continuous first derivative.

 $0 \le n_i$ = Number of bits per pixel, allocated to the ith DPCM channel.

From the definition of P, we have

$$\frac{1}{N} \sum_{i=1}^{N} n_i = P \qquad n_i \ge 0 . \qquad (3.3.2-1)$$

The average mean square distortion in encoding of the image vector u is given by

$$D = \frac{1}{N} E \delta u_j^T \delta u_j \qquad (3.3.2-2)$$

where $\delta u_j \stackrel{\Delta}{=} u_j - u_j^*$.

Since $v_j = v_{c}u_j$ is a unitary transformation and $v_j(i)$ are coded via DPCM, we have

$$\delta v_{j}(i) = v_{j}(i) - v_{j}^{*}(i)$$

$$= v_{j}(i) - \rho_{i}v_{j-1}^{*}(i) - e_{j}^{*}(i)$$

$$= \hat{e}_{j}(i) - e_{j}^{*}(i)$$

$$= \delta \hat{e}_{j}(i)$$
(3.3.2-3)

i.e., the reconstruction error in v_j (i) (assuming noiseless channel) equals the quantization error in the ith channel. This gives

$$D = \frac{1}{N} \operatorname{E} \delta \mathbf{v}_{j}^{\mathsf{T}} \delta \mathbf{v}_{j}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \operatorname{E} (\delta \mathbf{e}_{j}(i))^{2}. \qquad (3.3.2-4)$$

Thus, the average distortion per pixel is the average quantizer distortion. If $\hat{\beta}_j^2(i)$ denotes the variance of the jth quantizer input in the ith DPCM channel, then

$$E(\delta \hat{e}_{j}(i))^{2} = \hat{\beta}_{j}^{2}(i)f(n_{i}) \quad \forall j.$$
 (3.3.2-5)

Using (3.3-1), (3.3.1-1a) and (3.3.2-4) in (3.3.1-1b) and simplifying, we get

$$\hat{e}_{j}(i) = v_{j}(i) - \overline{v}_{j}(i)$$

$$= e_{j}(i) + \rho_{i} \delta \hat{e}_{j-1}(i) . \qquad (3.3.2-6)$$

Eqns. (3.3.2-5) and (3.3.2-6) together give a recursive relation for the variance of $\hat{e}_{i}(i)$ as

$$\hat{\beta}_{j}^{2}(i) = \beta^{2}(i) + \rho_{i}^{2}\hat{\beta}_{j-1}^{2}(i)f(n_{i}) \qquad \hat{\beta}_{0}^{2} = 0 \qquad (3.3.2-7)$$

where we have used the fact that e (i) is uncorrelated with the quantization error at step j-1. In steady state

$$\hat{\beta}_{j}^{2}(i) \triangleq \hat{\beta}^{2}(i) = \frac{\beta^{2}(i)}{1 - \rho_{i}^{2}f(n_{i})}$$
 (3.3.2-8)

Hence, (3.3.2-5) becomes

$$E(\delta \hat{e}_{j}(i))^{2} = \frac{g^{2}(i)f(n_{i})}{1 - p_{i}^{2}f(n_{i})}$$
(3.3.2-9)

giving

0

0

0

$$D = \frac{1}{N} \sum_{i=1}^{N} g_i(n_i) \beta^2(i)$$
 (3.3.2-10a)

where

$$g_i(x) = \frac{f(x)}{1 - \rho_i^2 f(x)} \quad x \ge 0$$
 (3.3.2-10b)

The function $g_i(x)$ represents the mean square distortion of the ith DPCM loop of a Markov process whose prediction error variance is unity. Like the function f(x), for $|\rho_i| < 1$, each $g_i(x)$ is also a positive, monotonically decreasing, convex function with a continuous first derivative.

The bit allocation problem is to minimize (3.3.2-10a) subject to the constraints of (3.3.2-1). This is equivalent to finding

$$D' = \min_{\substack{n_{i} \geq 0 \\ \lambda}} \left\{ \lambda_{P} - \frac{1}{N} \sum_{i=1}^{N} [g_{i}(n_{i})\beta^{2}(i) + \lambda_{n_{i}}] \right\}$$

$$= \min_{\lambda} \left\{ \lambda_{P} - \frac{1}{N} \sum_{i=1}^{N} \max_{\substack{n_{i} \geq 0 \\ i = 1}} [g_{i}(n_{i})\beta^{2}(i) + \lambda_{n_{i}}] \right\}. \quad (3.3.2-11)$$

Solution of constrained minimization problems of this type are well known in optimization theory. Recently, Segall [66] has considered a similar bit allocation problem [with $g_i(x) = g(x)$, $\forall i$] for encoding of vector sources. The solution is given by

$$g_{i}'(n_{i})\beta^{2}(i) + \lambda = 0$$
 $\lambda \le -g_{i}'(0)\beta^{2}(i)$

$$n_{i} = 0$$
 $\lambda > -g_{i}'(0)\beta^{2}(i)$. (3.3.2-12)

Denoting

$$h_i(x) = g_i^{-1}(x)$$
 (3.3.2-13)

we can solve (3.3.2-12) for n as

$$n_{i} = \begin{cases} h_{i} \left(\frac{-\lambda}{\beta^{2}(i)} \right), & \lambda \leq -g'_{i}(0)\beta^{2}(i) \\ 0, & \lambda > -g'_{i}(0)\beta^{2}(i) \end{cases}$$
 (3.3.2-14)

where λ is the root of the nonlinear equation

$$\sum_{\mathbf{i}:\lambda \leq -g_{\mathbf{i}}^{*}(0)\beta^{2}(\mathbf{i})} h\left(-\frac{\lambda}{\beta^{2}(\mathbf{i})}\right) = NP . \qquad (3.3.2-15)$$

The value of the minimum distortion is

$$D_{\min} = \frac{1}{N} \left[\sum_{\substack{\lambda \le -g_{i}'(0)\beta^{2}(i)}} g_{i}(n_{i})\beta^{2}(i) + \sum_{\substack{\lambda \ge -g_{i}'(0)\beta^{2}(i)}} \beta^{2}(i) \right]. \quad (3.3.2-16)$$

Now consider the following special cases.

1. $\hat{\beta}^2(i) = \beta^2(i)$, i.e., the effect of quantization on the variance of the prediction error is ignored. This gives

$$g_{i}(n) \approx f(n) \quad \forall i$$
 (3.3.2-17)

When the quantizer in the DPCM loop is the ideal optimal block encoder (Shannon quantizer) that achieves the rate distortion bound we have

$$f(n) = 2^{-2n}$$
 (3.3.2-18)

which gives

Q

0

$$f'(x) = (-2\log_e 2) 2^{-2x}$$

 $h(x) = f'^{-1}(x) = -\frac{1}{2}\log_2\left(\frac{x}{-2\log_e 2}\right)$ (3.3.2-19)

Defining

$$\theta = \lambda/(2\log_{\theta} 2)$$
 (3.3.2-20)

and using (3.3.2-18) in (3.3.2-14) to (3.3.2-16), we get

$$n_{i} = \begin{cases} l_{i} \log_{2} \left(\frac{\beta^{2}(i)}{\theta} \right) & , & 0 < \theta \le \beta^{2}(i) \\ 0 & , & \theta > \beta^{2}(i) \end{cases}$$
 (3.3.2-21a)

where θ is the solution of

$$\sum_{i=1}^{N} \max \left[0, \frac{1}{2} \log_2 \frac{\beta^2(i)}{\theta} \right] = NP$$
 (3.3.2-21b)

and the minimized distortion is

$$D_{\min} = \frac{1}{N} \sum_{i=0}^{N} \min[\beta^{2}(i), \theta] . \qquad (3.3.2-21c)$$

Eqns. (3.3.2-21) are valid for both SC1 and SC2 models, where $\beta^2(i)$ is defined by (3.3-2b).

 Consider the case when f(•) and g_i(•) are given by (3.3.2-18) and (3.3.2-10b) respectively. Then

$$g_{i}'(x) = \frac{f'(x)}{(1 - \rho_{i}^{2}f(x))^{2}}$$

$$= \frac{(-2\log_{e}^{2})2^{-2x}}{(1 - \rho_{i}^{2}2^{-2x})^{2}}.$$
(3.3.2-22)

From this equation one can obtain a unique inverse (note that $g_1'(x)$ must be nonpositive for all $x \ge 0$), as (see Appendix C)

$$g_{i}^{-1}(x) \stackrel{\triangle}{=} h_{i}(x) = \begin{cases} -\frac{\log_{e} 2 + \rho_{i}^{2} x + \sqrt{(\log_{e} 2)^{2} - (2\log_{e} 2)\rho_{i}^{2} x}}{\rho_{i}^{4} x}, & \rho_{i} \neq 0 \\ -\frac{\log_{e} 2}{2\log_{e} 2}, & \rho_{i} = 0. \end{cases}$$

$$(3.3.2-23)$$

For SCl model, defining

$$\theta = \frac{\lambda}{(2\log_e 2)}$$
 (3.3.2-24)

and using (3.3.2-23) in (3.3.2-14), (3.3.2-15) and (3.3.2-16) we get

$$n_{i} = \begin{cases} \frac{1}{2} \log_{2} \frac{\beta^{2}(i)}{\theta} w(i, \theta) & , & 0 < \theta \le \frac{\beta^{2}(i)}{(1 - \rho_{i}^{2})^{2}} \\ 0 & , & \theta > \frac{\beta^{2}(i)}{(1 - \rho_{i}^{2})^{2}} \end{cases}$$
 (3.3.2-25a)

where

8

Q.

$$\mathbf{w}(\mathbf{i},\theta) \stackrel{\Delta}{=} \left\{ \begin{array}{l} 1 & , & \rho_{\mathbf{i}} = 0 \\ \\ \frac{1}{2\rho_{\mathbf{i}}^{4}} \left[1 + \frac{2\rho_{\mathbf{i}}^{2}\theta}{\beta^{2}(\mathbf{i})} - \left(1 + \frac{4\rho_{\mathbf{i}}^{2}\theta}{\beta^{2}(\mathbf{i})} \right)^{\frac{1}{2}} \right], & \rho_{\mathbf{i}} \neq 0 \end{array} \right. (3.3.2-25b)$$

0 is the solution of

$$\sum_{i:0<\theta \le \frac{\beta^2(i)}{(1-\rho_i^2)^2}} \frac{1}{\beta^2(i)} = NP$$
 (3.3.2-25c)

and the minimum distortion is

$$D_{\min} = \frac{1}{N} \sum_{i=1}^{N} \min[\beta^{2}(i), \theta/w(i,\theta)]. \qquad (3.3.2-25d)$$

In the case of SC2 model, substitution of $\rho_1 = \rho_h = \text{constant}$, (3.3.2-25) above gives the desired bit allocation and distortion formulas. The bit allocations are obtained by first solving (3.3.2-25c) iteratively (by Newton's method, for example) to obtain θ , for a fixed rate P. Given θ , (3.3.2-25a) and (3.3.2-25b) yield the desired allocations $\{n_i\}$ and (3.3.2-25d) gives the corresponding distortion.

3.3.3 Integer Bit Allocation

In the above, we assumed n_i to be a real number. In many practical situations n_i is required to be an integer. An approximate integer bit allocation can be obtained via the foregoing method by rounding n_i to the nearest integer. The actual bit rate then would be

$$P_a = \frac{1}{N} \sum_{i=1}^{N} [n_i]$$

where [x] indicates the nearest integer to x. To obtain the exact solution, the minimization of (3.3.2-10a) is subject to the constraint that $\{n_i\}$ be a set of nonnegative integers. The solution is obtained via an iterative algorithm due to Fox [11] as follows.

Let \underline{n} denote a vector of elements $\{n_i, 1 \le i \le N\}$.

- 1. Start with the allocation $n^0 = 0$.
- 2. Set & = 1.
- 3. $\underline{n}^{\ell} + \underline{n}^{\ell} + e_{i}$ where e_{i} is the 1th unit vector and is any index for which

$$\Delta_{i,\ell} = \beta^2(i)g_i(n_i^{\ell-1}) - \beta^2(i)g_i(n_i^{\ell-1} + 1)$$

is maximum. The quantity $\Delta_{i,\ell}$ is called the marginal return of increasing the ith allocation in ℓ th step by one bit.

4. If $\sum_{i=1}^{N} n_i^{\ell} \ge PN$, terminate; otherwise $\ell + \ell + 1$ and go to step 3.

This algorithm simply means the marginal returns $\Delta_{i,\ell}$ are calculated for $1 \le i \le N$ and $\ell = 1,2,\ldots$, and are arranged in a decreasing order until all the bits are exhausted. Tables 3.1 and 3.2 show the bit

allocations for the SC1, SC2 and separable covariance models for Girl image obtained via real bit allocation and integer bit allocation algorithms described above.

3.4 Adaptive Hybrid Coding

û

0

0

The coding scheme of the previous section can be adapted to image fields whose spatial statistics vary slowly by updating the various coefficients of the image model with variations of the statistics. A complete update of the image model parameters could often increase the complexity of the coder to make it impractical. In the sequel we consider two adaptive schemes which offer reasonable improvement in coder performance with only a marginal increase in its complexity.

3.4.1 Adaptive Variance Estimation

For a fixed predictor in the feedback loop of a DPCM channel, the variance of the prediction error will fluctuate with changes in image statistics. In this scheme we update the variance of the prediction error at each step j. This updated variance is used to adjust the spacing of the quantizer levels in each DPCM channel. For mean square error criterion, the decision and reconstruction levels of a quantizer are directly proportional to the standard deviation of the input random variables. Hence, the above mentioned adaptation can be achieved by simply normalizing the prediction error by its updated standard deviation. The quantizer levels are then fixed and correspond to unit variance random variables. Fig. 3.4 shows this scheme.

Let

$$\hat{\sigma}_{j}^{2}(i) \stackrel{\Delta}{=} \text{Variance of } e_{j}(i)$$
, the prediction error at step j of the ith DPCM loop = $E[e_{j}(i)]^{2}$ (3.4.1-la) $\hat{\sigma}_{j}^{2}(i) \stackrel{\Delta}{=} \text{Variance of the quantized values} = $E[e_{j}^{*}(i)]^{2}$. (3.4.1-lb)$

Since the quantized variables $e_j^*(i)$ are available both at the receiver and the transmitter, it is easy to estimate $\sigma_j^*(i)$. Castellino et al [8] have suggested a formula for an estimate of $\sigma_j^*(i)$ (for single channel DPCM system) as

$$\hat{\sigma}_{j}^{2}(i) = \frac{1-\gamma}{\gamma} \sum_{m=1}^{j} \gamma_{m} e_{j-m+1}^{*2}(i) + \gamma^{j} \hat{\sigma}_{1}^{2}(i) \qquad 0 < \gamma < 1. \quad (3.4.1-2)$$

This has been called an exponential average variance estimator. A more convenient form of (3.4.1-2) is the recursion

$$\sigma_{j+1}^{*2}(i) = (1-\gamma)e_{j}^{*2}(i) + \gamma\sigma_{j}^{*2}(i)$$
 $j = 1,2,...$ (3.4.1-3)

For small quantization errors one may take $\hat{\sigma}_j$ to be equal to $\hat{\sigma}_j$. For Lloyd-Max quantizers [44] a more accurate estimate of $\hat{\sigma}_j$ is possible. Since the variance of a Lloyd-Max quantizer input equals the sum of the variances of the quantizer output and the quantization error, we have

$$\hat{\sigma}_{j}^{2}(i) = \hat{\sigma}_{j}^{2}(i) + f(n_{i})\hat{\sigma}_{j}^{2}(i)$$
or
$$\hat{\sigma}_{j}^{2}(i) = \frac{\hat{\sigma}_{j}^{2}(i)}{1 - f(n_{i})} \quad n_{i} \ge 1 \quad (3.4.1-4)$$

where n_i is the number of bits allocated to the ith channel. Using (3.4.1-4) in (3.4.1-3) we get

$$\hat{\sigma}_{j+1}^{2}(i) = \frac{1-\gamma}{1-f(n_{i})} e_{j}^{*2}(i) + \gamma \hat{\sigma}_{j}^{2}(i) \qquad n_{i} > 1 \quad 0 < \gamma < 1. \quad (3.4.1-5)$$

The above estimate become poor for DPCM channels which are assigned small number of bits $(n_i = 1)$. For these channels $\hat{\sigma}_j(i)$ could be estimated by some sort of extrapolation of the already estimated $\hat{\sigma}_j(i)$. For example, for the SC1 model, we know

$$\hat{\sigma}_{j}^{2}(i) \approx E \hat{e}_{j}^{2}(i) = \frac{\beta^{2}}{[1-\rho_{i}^{2}f(n_{i})]\lambda_{ci}^{2}}$$
 $i \in I$ (3.4.1-6)

where I is the set of, say, m channels for which $n_i > 1$. From (3.4.1-6) an estimate of β^2 at step j, denoted by $\tilde{\beta}_j^2$ is given by

$$\tilde{\beta}_{j}^{2} = \frac{1}{m} \sum_{i \in I} \hat{\sigma}_{j}^{2}(i) \lambda_{ci}^{2} [1 - \rho_{i}^{2} f(n_{i})] . \qquad (3.4.1-7)$$

This gives the extrapolated estimates as

$$\hat{\sigma}_{j}^{2}(i) = \frac{\tilde{\beta}_{j}^{2}}{\lambda_{ci}^{2}[1-\rho_{i}^{2}f(n_{i})]} \qquad i \notin I . \qquad (3.4.1-8)$$

For SC2 model, the equations corresponding to (3.4.1-7) and (3.4.1-8) become

$$\tilde{\beta}_{j}^{2} = \frac{1}{m} \sum_{i \in I} \hat{\sigma}_{j}^{2}(i) \lambda_{ci} [1 - \rho_{h}^{2} f(n_{i})]$$
 (3.4.1-9)

$$\hat{\sigma}_{j}^{2}(i) = \frac{\tilde{\beta}_{j}^{2}}{\lambda_{ci}[1-\rho_{h}^{2}f(n_{i})]} \quad i \notin I. \quad (3.4.1-10)$$

The adaptive variance estimator only needs to solve Eqns. (3.4.1-5), (3.4.1-7) and (3.4.1-8) for SC1 model and (3.4.1-5), (3.4.1-9) and

(3.4.1-10) for SC2 model. We finally note that this adaptive scheme maintains the same constant data rate in each DPCM channel as in the nonadaptive scheme of the previous section.

3.4.2 Adaptive Classification

In this method each image column is classified as belonging to one of K predetermined classes. Each of these classes is determined according to the activity in that image column. The activity in an image column is measured by the variance of that column. For a given class of images the probability distribution function of the variances of all the columns can be pre-determined. (Note that this probability distribution function could depend on the size of the image column used in hybrid coding.)

In the DPCM loop, the transformed signal in each DPCM channel is processed as before except that the differential signal is quantized according to the classification of that image column. Thus, the quantizer in the DPCM loop is adapted to the image activity in each column. The number of quantization levels (or bits) depend on the variance of a class so that columns of high dynamic activity are assigned more bits than those of low activity. In this way quantizing bits are employed more efficiently. However, the classification information for each column needs to be transmitted. This can be done by sending an extra logoK bits per column of $\frac{1}{N} \log_2 K$ bits/pixel. Fig. 3.5 shows the adaptive classification scheme. Experimentally it was found that the variance of successive columns, denoted by $\{\xi_{\mathbf{i}}\}$ (say), are highly correlated. Instead of transmitting the classification map, a DPCM loop for transmission of $\{\xi_i^*\}$ are used for classification at the receiver as well as the transmitter. A two bit quantizer was found to give very accurate reproduction

Let $p(\xi)$ = probability density of the variances ξ of a column.

0

0

0

Suppose the K classes have been predetermined and let (t_k, t_{k+1}) , $1 \le k \le K$ denote the decision boundaries for the kth class. Since $\xi \ge 0$, $t_0 = 0$, $t_{K+1} = \infty$. Then

$$p_{k} = \int_{t_{k}}^{t_{k+1}} p(\xi) d\xi = \text{probability of the kth class}$$
 (3.4.2-1)

$$\xi_{k} = \frac{1}{p_{k}} \int_{t_{k}}^{t_{k+1}} \xi_{p}(\xi) d\xi = \text{variance of the kth class.}$$
 (3.4.2-2)

First assume that the thresholds $\{t_k\}$ has been somehow predetermined and p_k and $\overline{\xi}_k$ are known. Also, we will assume that for each class k, the image model parameters have been predetermined and are known. To this end, let us denote by $\rho_{i,k}$, $\beta^2(i,k)$ $n_{i,k}$, etc., the quantities for the ith DPCM channel and kth class corresponding to the definitions of ρ_i , $\beta^2(i)$, n_i , etc., respectively. Then, following the development of the foregoing sections, we can write the expected average distortion for any image column (in steady state DPCM) as

$$D = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \beta^{2}(i,k) g_{i,k}(n_{i,k}) p_{k}$$
 (3.4.2-3)

where $n_{i,k} \ge 0$ are such that the expected average bit rate must be constant, i.e.,

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} n_{i,k} p_{k} = P. \qquad (3.4.2-4)$$

The bit allocation problem associated with (3.4.2-3) and (3.4.2-4) can be solved along the same lines as in section 3.3. As an example, consider

the case when

$$g_{i,k}(x) = f(x) = 2^{-2x}$$

then one obtains

$$n_{i,k} = \max \left[0, \frac{1}{2} \log_2 \frac{\beta^2(i,k)}{\theta}\right]$$
 (3.4.2-5a)

where 0 is the solution of

$$\sum_{i=1}^{N} \sum_{k=1}^{K} \max \left[0, \frac{1}{2} \log_2 \frac{\beta^2(i,k)}{\theta} \right] p_k = NP$$
 (3.4.2-5b)

and the minimum achievable distortion is

$$D_{\min} = \sum_{i=1}^{N} \sum_{k=1}^{K} \min[\theta, \beta^{2}(i,k)] p_{k}. \qquad (3.4.2-5c)$$

This method of adaptive hybrid coding requires i) measurement of variance of each column and its transmission by an extra DPCM channel, ii) classification of each column to one of K classes based on thresholds $\{t_k\}$, and iii) storing of K bit allocation tables, one for each class.

3.5 Experimental Results

Several computer experiments have been performed on the Girl and Chemical Plant images to simulate the hybrid coding schemes discussed in the previous sections. Table 3.3 shows the parameters of the various image models used here. In all the experiments, the Cosine transform based semicausal models were used. A 256 × 256 image was divided into 16 strips, each of size 16 × 256. Each strip was hybrid coded independently. This way only a 16 step Cosine transform is needed which makes the scheme

feasible for a real time implementation [46]. In all the performance measurements, the signal to noise ratio (SNR) is defined as

SNR =
$$20\log_{10} \left(\frac{\text{Peak to Peak Value of the Signal}}{\text{r.m.s. error}} \right)$$
 (3.5-1)

For an eight bit original data this becomes

8

0

0

SNR =
$$20\log_{10} \frac{255}{\text{r.m.s. error}}$$
 (3.5-2)

The normalized mean square error is measured over the entire 256×256 image and is defined as

NMSE =
$$\frac{\sum_{i=1}^{256} \sum_{j=1}^{256} (u_{i,j} - u_{i,j}^{*})^{2}}{\sum_{i=1}^{256} \sum_{j=1}^{256} u_{i,j}^{2}}.$$
 (3.5-3)

In each DPCM channel a compandor is used as an approximation to the Max quantizer (see Appendix A).

3.5.1 Nonadaptive Hybrid Coding

Figure 3.6 shows the SNR vs. bit rate and rate distortion curve for the SC1, SC2 and the separable covariance image models for the girl image. As expected, the performances of SC2 and separable covariance models are very close. The SC1 model performs better than the other two by about 1.5 to 2 dB, in general, above rates of 1 bit/pixel. The same set of plots for Chemical Plant image is shown in Fig. 3.7. Since the performances of SC2 and separable covariance models are close, for simplicity, the curve for the separable covariance model is not shown in Fig. 3.7.

3.5.2 Adaptive Variance Estimation

Figure 3.8 shows the SNR vs. bit rate and rate distortion curve for the various models of the Girl lamge for this case. In these experiments, the variance estimates were updated only for channels for which $n_i \geq 2$ bits/pixel.

The performance of SC2 and separable covariance model improves by about 1.5 dB at 1 bit rate and about 4 dB at 2 bit rate. These values can be found from Table 3.4, which gives the quantitative comparisons on a model by model basis. The reason for larger improvment at 2 bit rate is that the variance estimates (based on quantized data) are more accurate since many more channels have $n_i \ge 2$ bits/pixel. The performance improvement for SC1 model is less (only 0.5 dB at 1 bit rate and 1.5 dB at 2 bit rate). This could be because the SC1 model performance was already better (than SC2) to start with and the margin of improvement by updating prediction error variance is small. As the size of the image column (N) is increased, the performance of the adaptive variance estimator was found to improve. This is, again, because the number of channels (for a fixed average rate) with bit allocation $n_i \ge 2$ would increase giving a better estimate of the variances (as well as of the extrapolated values). Similar conclusions can be made for the Chemical Plant Image. The corresponding results are shown in Fig. 3.9 and Table 3.5.

3.5.3 Adaptive Classification

Two different experiments utilizing this method were performed. In the first experiment, a probability distribution function of the column variances was determined from the histogram of their sample variances. Classification thresholds $\{t_k\}$ were determined for a K = 4 case assuming equal probability for each class. Then each column of the image was classified. The actual measurements model for the Cosine transformed vectors was assumed, as

0

$$v_{j}(i,k) = \rho_{i,k}v_{j-1}(i,k) + e_{j}(i,k), 1 \le i \le N, k = 1,...4$$
 (3.5.3-1) with
$$Ee_{j}^{2}(i,k) \triangleq \beta^{2}(i,k)$$

$$\triangleq (1-\rho_{i,k}^{2})E[v_{j}(i,k)]^{2}.$$
 (3.5.3-2)

The parameters $\rho_{i,k}$ and $\beta^2(i,k)$ were measured for each class and bit allocation was done according to the method described in the previous chapter. Fig. 3.5 shows the adaptive classification hybrid coding scheme. Fig. 3.10 shows the 16×32 classification map of 16×256 portion of the image with 16 element columns. (Recall that the given 256×256 image was divided into sixteen 16×256 , rectangular subimages.)

This method gave a large improvement (see Fig. 3.11 for the Girl Image and Fig. 3.12 for the Chemical Plant Image) in SNR over the previous two schemes (about 5.5 dB at 1 bit rate and 8 dB at 2 bit rate over nonadaptive). However, the above procedure is somewhat impractical for online transmission (could be acceptable for storage) because it requires identification of the 2NK = 8N parameters, $\rho_{i,k}$ and $E[v_j(i,k)^2]$ for each image. These parameters are then used to determine the bit allocations for various classifications. Assuming eight bits are required to transmit each of these parameters (this is actually a pessimistic estimate), the additional overhead for their transmission is only

 $\frac{8 \times 16 \times 8}{256 \times 256} = \frac{1}{64}$ bit/pixel. The overhead for transmission of the class of the column variance is only 2 bits per column or $\frac{1}{8}$ bit/pixel. Thus, the total overhead is always less than 0.14 bit/pixel. However, the complexity of the scheme at the transmitter is increased substantially.

The complexity of the foregoing method can be reduced considerably by using models for $\rho_{i,k}$ and $\beta^2(i,k)$ according to SC1 or SC2 representations. In our experiments here we assumed

$$\rho_{i,k} = \rho_{i} \quad \forall k \qquad \qquad \rho_{i} = \begin{cases} \gamma/\lambda_{ci}, & \text{for SC1} \\ \rho_{h}, & \text{for SC2} \end{cases}$$

$$\beta^{2}(i,k) = \beta_{0}^{2}(i)\sigma_{k}^{2} \quad \forall k \quad \beta_{0}^{2}(i) = \begin{cases} \beta_{0}^{2}/\lambda_{ci}^{2}, & \text{for SC1} \\ \beta_{0}^{2}/\lambda_{ci}, & \text{for SC2} \end{cases}$$

where σ_k^2 is the variance of the columns belonging to the kth class, $\beta_0^2(i)$ represents the prediction error variance of the ith, unit variance Markov process. Compared to the nonadaptive case, the only additional computation this model requires is the measurement of the sample variance of an image column and classifying it. Figs. 3.13 and 3.14 show the bit allocations for various models used for adaptive classification hybrid coding. Since the first DPCM channel in the Cosine transform represents the d.c. value (or sample mean of the columns), the number of bits allocated to this channel (for a given bit rate and class) were kept the same for all different models. The bit allocation algorithm of previous sections was thus used only for $i=2,\ldots,N$ in the case of SC1 and SC2 models. Figs. 3.11 and 3.12 show the performance of these models when used for adaptive

classification. Generally, the performance of the SCI model is superior to that of the SC2. For the Girl Image, it is better than nonadaptive (separable covariance model) hybrid coding by about 3 dB, but is worse than the previous adaptive classification experiment by 2 to 3 dB. This, of course, is the price the designer has to pay for a simplified system. However, for the Chemical Plant image, the adaptive classification scheme does not give much SNR improvement over the nonadaptive scheme, it is worse than the adaptive variance scheme. This is understood by referring to Figs. 3.15 and 3.16, which are the histograms of image column variances. For the Girl image, the variances have a large dynamical range, whereas the variance of the Chemical Plant image are nearly equal. Hence image column activities of the Chemical Plant image remain invariant and therefore classification does not help. Finally, note that this scheme will produce variable bit rate from one image column to the next because of a possible change in classification.

0

0

0

0

Figs. 3.17-3.19 show the results of various hybrid coding schemes on a model by model basis for the Girl image. Figs. 3.20 and 3.21 are those for the Chemical Plant image. Tables 3.4 and 3.5 give the quantitative comparisons of the above mentioned results. Figs. 3.22 and 3.23 show the encoded Girl image at approximate bit rates of 1 and 2 bits/pixel, and the corresponding figures for the encoded Chemical Plant image are shown in Figs. 3.24 and 3.25. Fig. 3.26 compares the original and the adaptive classified (based on actual measurement model) hybrid encoded images at 1 and 2 bits/pixel.

Finally, observe that as an image column size is increased, the ambiguity in classifying it into different classes will also go up because the activity in a large image column is not likely to be uniform so as to be represented by its variance.

3.6 Extensions of Hybrid Coding

Hybrid coding techniques can be generalized and extended to higher order semicausal models and for coding of noisy images. In this section we briefly discuss the formulations and simulation results.

3.6.1 Hybrid Encoded Image with Channel Error

Since practical communication channels are noisy, it is worthwhile to study the channel noise effects on the Hybrid encoded images. A binary symmetric channel is used here as the noisy communication channel. Fig. 3.27 shows the representation of such a channel, where the probability of receiving an incorrect symbol is P_e and a correct one is $1 - P_e$, regardless of which symbol is transmitted.

Fig. 3.28 shows the effect of channel errors on hybrid coding schemes. Generally, the adaptive classification is quite robust. The nonadaptive and adaptive variance schemes can be made less sensitive to channel errors by reducing somewhat the horizontal correlation parameter. The SCI model adaptive variance estimation seems to be less sensitive than the SC2 model. Fig. 3.29 and 3.30 show the encoded images in the presence of channel errors. Table 3.6 gives the quantitative comparisons of these results.

3.6.2 Higher Order Predictor in DPCM Loop of Hybrid Coding

8

0

0

0

.

This experiment is designed to have a nth order predictor instead of a first order predictor in the DPCM loop. Table 3.7 shows the results of using various predictors. Table 3.8 shows the numerical values of the predictor coefficients which are precalculated on the basis of the statistics of the transformed image strips.

These coefficients, α_i , appear in the nth order autoregressive process (one for each channel)

$$v_j = \sum_{i=1}^{n} \alpha_i v_{j-i} + e_j$$
 (3.6.2-1)

and are evaluated by solving the linear, Toeplitz equations

$$r_k = \sum_{i=1}^{n} r_{k-i}^{\alpha}$$
 (3.6.2-2)

where $r_k = Ev_j v_{j+k}$ is the covariance of the ith channel process in Hybrid coding.

The variance of the differential signal e, is

$$\sigma_{j}^{2} = \sigma^{2} - \sum_{i=1}^{n} \alpha_{i} r_{i}$$
 (3.6.2-3)

where σ^2 is the variance of the input image.

A block diagram of this scheme is shown in Fig. 3.31 and Table 3.7 shows clearly that first order predictor is a reasonable choice for Hybrid Coding, since the signal to noise ratio improvement is small even though the order of the predictor goes up to four.

3.6.3 Hybrid Coding of Noisy Images

In many image transmission applications, the source image may happen to be noisy. This is because of the image spot pick-up sensor characteristics or due to some inherent limitations inside the mechanism. The foregoing developed coding methods can be modified to encode noisy images, if we know the statistics of noisy images beforehand. Let us assume a given noisy image degraded by additive white Gaussian noise with known signal to noise ratio (S/N) a priori, where S/N is defined as

The additive noise in the given image can be filtered by replacing a predictor in the DPCM loop of Hybrid coder by a discrete Kalman filter.

This design allows one to do the joint filtering and coding simultaneously. Fig. 3.32 is the block diagram of this scheme. The message and observation models in the ith channel of Hybrid coder after the transformation are as follows.

Message:
$$v_{i}(i) = p_{h}(i)v_{i-1}(i) + \epsilon_{i}(i)$$
 (3.6.3-1)

Observation:
$$z_{j}(i) = v_{j}(i) + n_{j}(i)$$
 (3.6.3-2)

and

$$E \epsilon_{j}(i) \epsilon_{j}(i+k) = \sigma^{2}(1-\rho_{h}(i))^{2} \lambda_{i} \delta_{\ell,0} \delta_{k,0}$$
 (3.6.3-3)

$$E_{ij}(i)n_{j}(i+k) = (S/N)^{2}\delta_{i,0}\delta_{k,0}$$
 (3.6.3-4)

 $\{\lambda_i\}$ are the diagonal entries of eigenvalue of $R_v = \{\rho_v^{|m-n|}\}, \rho_h$ and ρ_v are the horizontal and vertical corrections respectively.

The encoding scheme requires first taking the Cosine transform of each noisy image column $\mathbf{u}_{\mathbf{j}}$, then applying a bank of discrete Kalman filter DPCM on each row of the resulting image. Other necessary equations used in this scheme are as follows.

Predicted Observation:
$$z_{1/j-1}(i) = \rho_h(i)\overline{v}_{j-1}(i)$$
 (3.6.3-5)

Innovation:
$$e_{j}(i) = z_{j}(i) - z_{j/j-1}(i)$$
 (3.6.3-6)

Current Estimate:
$$v_{j}(i) = \rho_{h}(i)v_{j-1}(i) + k_{j}(e)e_{j}^{*}(i)$$
 (3.6.3-8)

The above equations are very similar to the DPCM equations (page 46). Furthermore, $k_j(i)$ appears in (3.6.3-8), is called the Kalman gain and often referred to as a correction factor to the innovation $\hat{e}_j(i)$, (it is $\hat{e}_j^*(i)$ essentially in this scheme) and can be obtained recursively as follows.

Gain:

$$k_{j}(i) = \overline{v}_{\widetilde{v}_{j/j-1}}(i) [\overline{v}_{\widetilde{v}_{j/j-1}}(i) + \overline{v}_{v_{j}}(i)]^{-1}$$
(3.6.3-9)

A priori Variance:
$$\overline{V}_{\tilde{v}_{j+1/j}}(i) = \rho_h(i)\overline{V}_{\tilde{v}_j}(i)\rho_h(i) + \Psi_{\varepsilon}$$
 (3.6.3-10)

A posteriori Variance:
$$\overline{V}_{\widetilde{V}_{j}}(i) = [1-k_{j}(i)]\overline{V}_{\widetilde{V}_{j/j-1}}(i)$$
 (3.6.3-11)

where

0

0

$$\tilde{v}_{j+1/j}(i) \stackrel{\Delta}{=} v_{j+1}(i) - \bar{v}_{j+1/j}(i)$$
 (3.6.3-12)

$$\tilde{v}_{j}(i) \stackrel{\Delta}{=} v_{j}(i) - \overline{v}_{j}(i)$$
 (3.6.3-13)

$$\bar{v}_{\hat{v}_{j+1/j}}^{(i)} = \text{var } v_{j+1/j}^{(i)}$$
 (3.6.3-14)

$$\tilde{V}_{\tilde{v}_{j}}^{(i)} = \text{var } v_{j}^{(i)}$$
 (3.6.3-15)

For easy reference, the eqns (3.6.3-5) through (3.6.3-15) are summarized in Table 3.9

Since we have a unity variance fixed level quantizer in the DPCM loop, it is required to know the variances of the innovations $e_j(i)$ beforehand. These can be calculated approximately by summing the variances of $\varepsilon_j(i)$ and $\eta_j(i)$. A proper choice of initial conditions $\overline{v_0/0}(i)$ and $\overline{V_0}(i)$ is required. For simplicity, both are assumed to be zero. This means the initial value of ith DPCM channel is available to the receiver without distortion.

Three different values of S/N of noisy image were simulated in this study. Fig. 3.33 shows the restored images of implementing this scheme in a noisy Girl image. Table 3.10 tabulates the corresponding experimental results. The first entry of each category gives the improvement of signal to noise ratio in decibels, SNR₁, the second entry gives the actual signal to ratio, SNR₂, of the filtered image. These two quantities are related as follows.

SNR₁
$$\stackrel{\triangle}{=}$$
 101og₁₀ Error Variance of Noisy Image = 10log₁₀ $\frac{\sigma_b^2}{\sigma_e^2}$

$$SNR_{2} = 10log_{10} \frac{(255)^{2}}{\sigma_{e}^{2}}$$

$$= 10log_{10} \frac{(255)^{2}}{\sigma_{a}^{2}} + 10log_{10} \frac{\sigma_{a}^{2}}{\sigma_{b}^{2}} + 10log_{10} \frac{\sigma_{b}^{2}}{\sigma_{e}^{2}}$$

$$= 10log \frac{(255)^{2}}{\sigma_{a}^{2}} + 20log_{10} \frac{S}{N} + SNR_{1}$$

where σ_a^2 is the variance of noise-free Girl image (in our example it equals 1816.21). Therefore, the above equation becomes

$$SNR_2 = 10log \frac{(255)^2}{1816.21} + 20log_{10} \frac{S}{N} + SNR_1$$
 (3.6.3-16)

In [34] it has shown that semicausal image models can be used to formulate and solve problems in image restoration. Here various hybrid coding schemes based on these models have been extended to encode noisy images. Due to the knowledge of image models, hybrid coding schemes can be successfully applied to encode both noisy and noiseless images. The results of this section promise the effectiveness of previously developed hybrid coding schemes in image data compression applications.

3.7 Summary of Results and Conclusions

8

0

.

Based on the above experiments and the theory discussed in this chapter, the following conclusions are made.

i) It was found that the performance of conventional nonadaptive hybrid coding can be improved up to 5.5 dB at low bit rates (≈1 bit/pixel) by improved statistical characterization of the image via more accurate models and/or via adapting the parameters of the chosen model to changes in image statistics. The actual measurements model applied in the adaptive classification coding scheme gave the best results. However, this model requires identification of a large number of parameters. In general, the SC1 model performed better than SC2 and separable covariance models by 2 to 3 dB. As expected from theoretical considerations, the SC2 and separable covariance models performed almost identically.

- ii) The adaptive variance estimation technique is useful when it is desired to maintain the performance of a hybrid coder, designed for a nominal statistics, in the face of changing statistics (e.g., the correlation parameter). If the image data statistics is close to the design parameters, then the improvement over nonadaptive scheme is marginal (1 to 1.5 dB at 1 bit/pixel). This technique is effective at relatively higher bit rates > 1 bit/pixel and for relatively larger image column sizes. It should be considered not so much for achieving low transmission rates as for achieving higher SNR at moderate rates. The complexity over a nonadaptive scheme is marginal, and it can be hardware implemented very easily. Finally, it maintains a constant bit rate from one image column to the next and its performance in the presence of channel errors is no worse than the nonadaptive schemes.
- iii) The adaptive classification scheme is a variable bit rate technique

 (average bit rate from one column to the next can vary) which is

 robust (with respect to channel errors) and can yield varying degree

 of performances depending upon the coder complexity. It is relatively

more effective at low bit rates (< 1 bit/pixel) and its performance is degraded as the image column size increases.

- iv) The Kalman filter DPCM loop scheme is well suited for designing
 Hybrid coding of noisy images. As expected, the performance of SC2
 and separable covariance models are very close. The SC1 model performs better than the other two by about 1 to 0.5 dB. Three different
 rates have been considered, viz., the infinite (no quantizer in the
 DPCM loop), 2 bits/pixel and 1 bit/pixel rates. The two bit rate
 quantizer gives a restored image with SNR only 0.5 dB less than
 the infinite rate.
- v) The overall Kalman filter DPCM coder performance depends on additive noise vs. quantizer noise (bit rate) considerations. At low signal to noise ratios, the additive noise dominates, and moderate changes in bit rates have only marginal effect on improving the SNR of the encoded signal. (Note that the SNR is bounded by the Kalman filter performance without any quantizer noise). At high signal to noise ratios, the effect of quantization is more visible.

Ψ = One Dimensional Unitary Transform

Figure 3.1 Hybrid Coding System

Figure 3.2 The 1-th DPCM Channel

Q

Figure 3.3 Realization of Semicausal Model Decomposition

Figure 3.4 Adaptive Variance Estimation Hybrid Coding System

Figure 3.5 Adaptive Classification Hybrid Coding System

Figure 3.6 Nonadaptive Hybrid Coding Scheme for Various Image Models of the Girl Image .

Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (b) Signal to
Moise Ratio versus Bit Rate

Figure 3.7 Nonadaptive Hybrid Coding Scheme for Various Image Models of the Chemical Plant Image Encoded via 16 x 256 Image Strip, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate

Figure 3.8 Comparison of Adaptive Variance Estimation Hybrid Coding Scheme for Various Image Models of the Girl Image Encoded via 16 x 256 Image Strip.

(a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate

Figure 3.9 Comparison of Adaptive Variance Estimation Hybrid Coding Scheme for Various Image Models of the Chemical Plant Image Encoded via 16 x 256 Image Strip,

(a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate

4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4

(a)

.

3 3 3 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 2 3 3 3 2 2 2 2 2 1 1 1 2 1 2 2 1 2 3 2 2 2 2 2 2 2 3 3 3 4 4 3 3 3 2 1 1 1 1 1 1 1 2 2 2 2 4 4 4 4

(b)

Figure 3.10 Classification Map of the Left Quarter Portion 16 × 32
Transformed Sub-Columns of an Image (a) Girl Image
(b) Chemical Plant Image, where 1 Indicates the Highest
Activity Sub-Columns, 4 Indicates the Lowest Activity
Sub-Columns.

Figure 3.11 Comparison of Adaptive Classification Hybrid Coding Scheme for Various Image Models of the Girl Image Encoded via 16 x 256 Image Stirp, (a) Rate Distortion Curve (b) Signal to Noise Ratio versus Bit Rate

Figure 3.12 Comparison of Adaptive Classification Hybrid Coding Results for Various Image Models of the Chemical Plant Image Encoded via 16 × 256 Emage Strip,

(a) Rate Distortion Curve (b) Signal to Noise Ratio Versus Bit Rate

A	************	2.375	A	nooccoccoccoc	6.578
H	****		H	n0000000000000	
=	**************	Pit Pate	=	nnan0000000000	1
	*************	Average ?		040000000000000000000000000000000000000	
		Ave		Uman recommendates of the	(c)
A	***************	1.672		A	796.0
H	********		H	**********	•
=	************	Bit Late	#	***********	i
	***************	Average B	-	404000000000000	Average Mt late
		Aver			
£	4 H H O O O O O O O O O O O O	1.339	2	****************	9.578
H	***************************************	Pate .	H	M4400000000000	Bit Rate = 0.578
=	**********	Bit L	Ħ	**************************************	3
	************	Average		***************************************	Amerage
		4			£ 3
2	**********	1.703	A	n00000000000000	8
Ħ	*********	Par.	H	***************************************	Bic Rate - 1.000
H	**********	11	=	************	11c R
	2222442222444444	. derray		44400000000	. Serate
		4			1
	******	91		700000000000000	8
1 1		- 1.316	1	CONTRACTOR CONTRACTOR	- 0.500
H	Nacidana and and and and and and and and and	1	Ħ	n=0000000000000	
=	SECONMUNICATION		Ħ	nn	#
-	*************	Average Mt. Late .	-	nnnn	Average Mtc Mate
				- vilk are according to the first	3
A	***************************************	- 2.015	1	000000000000000000000000000000000000000	- 0.96
H	*************	Str Race	H	***************************************	i
=	***************************************	M	Ħ	400000	#
-	*****************	Average	-	***************************************	berrape Mir Bet.
		•			

-

Pigure 3.13 Bit Allocations for Adaptive Classification, K = 4, Girl Image (a) Actual Measurement Model (b) SCI Model (c) 9C2 Model

1			1		
•		•	•	************	-
		=		~~~~~~~~~~~~~	=
•	00000000	H	•	*************	Ħ
1.016	00000000000000	3	2.063	*************	=
13	the commerce from the party state of the co		1		
1.	00000000	-	•	************	-
	000000000	Ħ			=
•	00000000000PPPPN	H	•		=
0.469	00000000000000	4	1.516	00000000	4
-	022222222		1		
		=	=		=
•	0000000		-		
-	0000000000	Ħ	-	000000	H
.016	00000000000PPNU	4	38	4	A
3 1			1		
•	0000000		•	PPPPNNNNNUGFF0F	-
-	0000000000	=		4400000000000	=
	0000000000PPNN	H	:	00000000	H
0.547	000000000000PN	4	.375	00000000000	4
1				************	-
Ĭ	000000	=		***************	=
M. E	0000000000	Ħ		440000	111
0.969	00000000000PNU	4	1.71	444440000000000	W
13					
3	000000		A	************	-
=	00000000000		=		=
-	0000000000000	Ħ	-		H
0.547	00000000000000	1	1.40		
				The state of the state of the state of	

Figure 3.14 Bit Allocations for Adaptive Classification, K = 4, Chemical Plant Image (a) Actual Measurement Model (b) SCI Model (c) SCI Model

20+362655 = ## 10+3646 | ## 20+350656 = ## 184 | ## 20+350656 = ## 184 | ## 20+350656 | ## 20+350656 | ## 20+350656 | ## 20+3666 |

PSE GUC	Llines	UCLUMAENCES	EACH STAR REPRESENTS	IN OCCUPRENCES
LEVEL	LEVEL			

		100	250	480	640	60u
1 .919450-01	705 I		*********	********		2000
2 .350466.05	100 1	**********	*********			
3 .767756+65	574 1		*********	********	•	
4 .105/06+04				•••		
5 .140r5t+04		**********				
· 1/7531 +64	247 1		•••	-		
7 .21944E+v4	162 1	********				
PO-3145-04	143 1	******				
9 .250362.04	The state of the s	******		-		
10 .315206+04		*******				
11 .350146+04		••••				
15	55 1					
13 .424648+44	47 1					
14 .0504/1:004	33 1					
15 .464466 +64	50 1					
10 .50000004	52 1					
	51 1					
19 .5445-644	17 1	CONTRACTOR OF THE PROPERTY OF				
40 .024016.04	11 1					
150.13-66.01	le I					
134346.04	14 1	CHICAGO CONTRACTOR CON				
23 .704316.04	4 1					
24	le i					
25 .4341/6.06	6 1	PERSONAL PROPERTY AND PROPERTY				
26 .074646+04	0 1					
********* 15	11					
e		MELLOCOM TRACTORISMOST TOTAL CLASS OF THE CO.	**************************************			
Pur 343514. PS						
SO .1-13-1-15	3 1					
31 .104076 + 45	9 1	The second second second second second second				
SE . 10057E+05	2 1					
.1110nc+u5	4 1					
54 .115356.05	4)	THE RESERVE AND ADDRESS OF THE PARTY OF THE				
\$10 Januar 11.	5 1					
30 .102142.05	21					
57 .1252 St . US	e 1					
3d .1e 35e +115	4 1					
59 .15cele .05	1 1					
40 .155316.65	4 1					
1 .150807.65	50 1	•				
46 .10124.115	2 1					
45 .luniue+65	4 1					
.150cfe+05	1 1					
45 .155771.44	2)	Character and Company of the Company	-			
40 .157enc+15	1 1					
4/ .100/01.05	3 1					
40 .!	- 41	AND THE RESIDENCE AND PROPERTY OF				
107/46+05						
50 .1/1851115	5 1					
51 .1/475c+65		THE PARTY OF THE PARTY OF THE PARTY.	er en germann mann i i mean an ann			-
53 .11116.15	4 1					
54 .167216415						
55 .leolut+to						MARKET THE PERSON NAMED IN COLUMN 2 IN COL
56 .142146.65	2 1					
57 .195006+05	1 1					
לוי בחורים מל						
56 .600010.00						
hu .200101-12	,					
61		Manual Action of the American State Contract		-		-
ne1515F+u5	6					
63 .210000.005						
*** *****				ALCOHOL CITATION CONTRACTOR AND A		Market Company of Personal State Sta
		The second secon				

0

0

Figure 3.15 Histogram of Image Column Activities (Variances), Girl Image Is Used

-	
00	
5	
0	
e 3.16	
w	
:.	
-	
-	
-	
-	
Č.	
0	
33	
7	
=	
0	
-	
=	
2	
0.0	
10	
-	
9,	
-	
=	
3	
3	
-	
0	
**	
-	
5	
=	
-	
0	
On	
3	
CO	
7	
-	
23	
- 23	
0	
00	
ces	
ces)	
Histogram of Image Column Activities (Variances),	
ces), (
ces), Ch	
ces), Che	
ces), Chem	
ces), Chemi	
ces), Chemica	
ces), Chemical	
ces), Chemical	
ces), Chemical P	
ces), Chemical Plu	
ces), Chemical Plan	
ces), Chemical Plant	
ces), Chemical Plant	
ces), Chemical Plant I	
ces), Chemical Plant Im	
ces), Chemical Plant Imag	
ces), Chemical Plant Image	
ces), Chemical Plant Image	
ces), Chemical Plant Image I	
ces), Chemical Plant Image Is	
ces), Chemical Plant Image Is U	
ces), Chemical Plant Image Is Us	
ces), Chemical Plant Image Is Use	
ces), Chemical Plant Image Is Used	

SELUC EVEL	LEVEL	GCCU+ REA	CES	FACH STAR	REPRESENTS.	16 OCCURE	FACES
(4)	V 100		16	v 32v	480	1,40	000
			********	*		******	The second secon
5	. 41445E+61		[********		*******		
3	.7e773e+63	718		•••••••	**********	*********	••••
	.10570E +04		1			********	
5	.1400 SE + C4			*********			
-;-	.1/5556+64	411	1	***********			
	.cluant +ta		1	******			
Ç	.245416+64		1 ********				
10	.315606 +64		1 ****	• • • • • • • • • • • • • • • • • • • •			
11	.350146.04	10					
15	.305162+64		i				
13		10	TO RECEIVE AND ADDRESS OF THE PARTY.	A SERVICE SERV			
14	.45647E+04	17					
15	+)+304646.	13	THE RESIDENCE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NA				
17	. 524r2E . u		1			W 10 10 10 10 10 10 10 10 10 10 10 10 10	
10	. >>40+3c7vc.	9	!				
14	.1.24616+04		N. Albertania and Company and Company and Company		-	-	
50	.094356+04		i				
15		21	-				
55	.7341414	-					-
43	.7 muste + u4	4	1				
4	.+04545+04	4	THE COMPANY WAS IN THE PARTY OF				
25	.034172+64	7	1				
27	.474046+64	5	-				
24	. 74 36 96 46 4		A CONTRACT DISCOUNT CONTRACT CO.			-	
50	. 470606+64	1					
56	.101506 +05						
51	.1v487c+v5	5	1				
36	.100376+65	0					
35	.111cot+u5		THE RESIDENCE THE PROPERTY OF THE PARTY OF T				
35	.115356+45	6					
35	.110041.65	· ·	TO 100 100 100 100 100 100 100 100 100 10				
37	.125036 + 05	- 0					
30	.164368415	0					
59	.152011+05	U	-				
40	.139311+03	6	1				
•1	.134006+05	e.	1				
45	.143646 +17	u					
••	.15020E+U5		I				
45	.1537/14405	·	i				
46	.15/ent + v5		THE RESERVE OF THE PARTY OF THE				
47	.1eu7nt +u5	0					
40	.104676467	·					
-4	.107746 +05	0	1	The same of the sa			-
30	.17123E+05	v					
31	-1/4736+65					-	
25	-1/nert ***	. 0					
54	.105212.05	0					
55	.1ca701.05	0					
56	.192196 +65	i	i				
51	.1456ME +45	·	The second of th				
74	.144146 ***	·	1			The service of the se	
50	. Prente + 45	·	1				
- 60			COST - SECURE OF SECURE OF SECURE				
61	.de-not-v5	U					
93	20+ 101615.		!				
64	· ce 41 3c + 05			- Description of the last of t			

0

O

0

.

Figure 3.17 Hybrid Coding Results for Separable Covariance Model of the Girl Image En-Coded via 16 × 256 Image Strip. (a) Rate Distortion Curve (Bit Rate versus Normalized Mean Square Error) (b) Bit Rate versus Signal to Noise Ratio

Figure 3.18 Hybrid Coding Results for SCI Model of the Girl Image Encoded via 16 x 256 Image Strip. (a) Rate Distortion Curve (Bit Rate versus Normalized Mean Square Error) (b) Bit Rate versus Signal to Noise Ratio

Figure 3.19 Hybrid Coding Results for SC2 Model of the Girl Image Encoded via 16 * 256
Image Strip. (a) Rate Distortion Curve (Bit Rate versus Normalized Mean
Square Error) (b) Bit Rate versus Signal to Noise Ratio

Figure 3.20 Hybrid Coding Results for SCl Model of the Chemical Plant Image Encoded via 16 * 256 Image Strip, (a) Rate Distortion Curve (Bit Rate versus Normalized Mean Square Error) (b) Bit Rate versus Signal to Noise Ratio

Figure 3.21 Hybrid Coding Results for SC2 Model of the Chemical Plant Image Encoded via 16 × 256 Image Strip, (a) Rate Distortion Curve (Bit Rate versus Normalized Mean Square Error) (b) Bit Rate versus Signal to Noise Ratio

0

(a) SC1 Model, Nonadaptive

(d) SC2 Model, Nonadaptive

(b) SC1 Model, Adaptive Variance Estimation

(e) SC2 Model, Adaptive Variance Estimation

(c) SC1 Model, Adaptive Classification

(e) SC2 Model, Adaptive Classification

Figure 3.22 Hybrid Encoded Girl Image at 1 Bit/Pixel Approximately

(a) SC1 Model, Nonadaptive (2 Bits/Pixel)

(d) SC2 Model, Nonadaptive (2 Bits/Pixel)

(b) SC1 Model, Adaptive Variance Estimation (2 Bits/Pixel)

(e) SC2 Model, Adaptive Variance Estimation (2 Bits/Pixel)

(c) SC1 Model, Adaptive Classification (1.7 Bits/Pixel)

(f) SC2 Model, Adaptive Classification (1.67 Bits/Pixel)

Figure 3.23 Hybrid Encoded Girl Image at 1.7 to 2 Bits/Pixel Approximately

Q

0

(a) SC1 Model, Nonadaptive

(d) SC2 Model, Nonadaptive

(b) SC1 Model, Adaptive Variance Estimation

(e) SC2 Model, Adaptive Variance Estimation

(c) SCl Model, Adaptive Classification

(f) SC2 Model, Adaptive Classification

Figure 3.24 Hybrid Encoded Chemical Plant Image at 1 Bit/Pixel Approximately

(a) SC1 Model, Nonadaptive (2 Bits/Pixel)

(d) SC2 Model, Nonadaptive (2 Bits/Pixel)

(b) SC1 Model, Adaptive Variance Estimation (2 Bits/Pixel)

(e) SC2 Model, Adaptive Variance Estimation (2 Bits/Pixel)

(c) SCl Model, Adaptive Classification (1.77 Bits/Pixel)

(f) SC2 Model, Adaptive Classification (1.72 Bits/Pixel)

Figure 3.25 Hybrid Encoded Chemical Plant Image at 1.7 to 2 Bits/Pixel Approximately

0

(a) Original Girl

(d) Original Chemical Plant

(b) Actual Measurement Model, 0.97 Bit/Pixel

(e) Actual Measurement Model, 1.02 Bits/Pixel

(c) Actual Measurement Model, 2.02 Bits/Pixel

(f) Actual Measurement Model, 2.06 Bits/Pixel

Figure 3.26 Actual Measurement Model Hybrid Encoded Image at 1 and 2
Bits/Pixel Approximately

Figure 3.27 Model of a Binary Symmetric Channel

Figure 3.28 Effect of Channel Error

8

0

(a) SCI Model, Nonadaptive

(d) SC2 Model, Nonadaptive

(b) SC1 Model, Adaptive Variance Estimation

(e) SC2 Model, Adaptive Variance Estimation

(c) SC1 Model, Adaptive Classification

(f) SC2 Model, Adaptive Classification

Figure 3.29 Hybrid Encoded Girl Image with Channel Error P = 0.0001 at 1 Bit/Pixel Approximately

(a) SC1 Model, Nonadaptive

(d) SC2 Model, Nonadaptive

(b) SC1 Model, Adaptive Variance Estimation

(e) SC2 Model, Adaptive Variance Estimation

(c) SC1 Model, Adaptive Classification

(f) SC2 Model, Adaptive Classification

Figure 3.30 Hybrid Encoded Girl Image with Channel Error P = 0.001 at 1 Bit/Pixel Approximately

Figure 3.31 Higher Order Predictor and DPCM Channel

Figure 3.32 Kalman Filter DPCM Loop for the i-th Channel in Hybrid Coding

(a) SC1 Model, Infinite Rate

(d) SC2 Model, Infinite Rate

(b) SC1 Model, 2 Bits/Pixel

(e) SC2 Model, 2 Bits/Pixel

(c) SC1 Model, 1 Bit/Pixel

(f) SC2 Model, 1 Bit/Pixel

Figure 3.33 Restored Images of the Kalman Filter DPCM Loop Scheme Implemented on a Noisy Girl Image (S/N = 5)

Table 3.1 Bit Allocation Patterns Based on Equation (3.3.2-25), Girl Image

Desired Average Bit Rate		2			1.5			1			0.5	
Type of Bit Allocation POI Channel No.	٩	(n)	n*	6	(n)	n*	•	[n]	n*	•	[n]	ne
			,	(a) SC1 Mo	del							
1	4.27	4	4	3.77	4	4.1	3.15	,	3	2.16	2	2
2	4.12	4	4	3.62	4	4	3.00	3	3	2.01	2	2
3	3.74	4	4	3.24	3	3	2.62	,)	1.63	2	2
	3.28	3	3	2.78	3	3	2.16	2	2	1.17	1	1
5	2.83	3	3	2.33	2	2	1.70	2	2	0.72	1	1
6	2.42	2	2	1.92	2	2	1.30	1	1	0.31	0	0
7	2.06	2	2	1.56	2	2	0.94	1	1	0	0	00000000
	1.75	2	2	1.25	1	1	0.63	1	1	0	0	0
•	1.49	1	1	0.99	1	1	0.37	0	0	0	0	0
10	1.27	1	1	0.77	1	1	0.14	0	0	0		0
11	1.08	1	1	0.58	1	1	0	0	0	0	0	0
12	0.93	1	1	0.43	0	0	0	0	0	0	0	0
13	0.81	1	1	0.31	0	0	0	0	0	0	0	C
14	0.71	t	1	0.21	0	0	0	0	0	0	0	0
15	0.65	1	1	0.15	0	0	0	0	0	0	0	0
16	0.61	ı	1	0.11	0	0	٥	0	0	0	۰	0
Average Bit Rate	2.00	2	2	0.15	1.5	1.5	1.00	1.0	1.0	0.50	0.5	٥.
				(b) SC2 N	lode1							
	5.97			5.30	,	. 1	4.45	4	. 1	3.19	,	,
1 2	3.99	6	6	3.33	3	3	2.51	;	2	1.39	1	i
1	3.05	3	;	2.40	2	2	1.65	2	i	0.77	i	i
	2.50	3	3	1.89	2	2	1.21	i	i	0.51	i	i
	2.13	2	2	1.55	2	1	0.95	i	i	0.38	ò	i
	1.87	2	2	1.32	i	il	0.78	i	i	0.29	0	i
,	1.67	2	2	1.15	i	i 1	0.66	i	i	0.24	0	o
	1.51	2	2	1.02	i	il	0.57	i	i 1	0.20	0	
•	1.39	1	i	0.92	i	il	0.31	i	i	0.17	0	000000
10	1.29	i	i	0.85	i	il	0.45	o	il	0.15	0	0
ii I	1.21	i	i	0.79	i	1 1	0.43	0	i	0.14	0	0
12	1.15	i	i 1	0.75	1	1	0.40	0	i	0.12	0	0
ii I	1.11	1	i	0.71	1	1	0.38	0	0	0.12	. 0	0
14	1.07	i	1	0.69	t	1	0.36	0	0	0.11	0	0
15	1.05	1	1	0.67	1	1	0.35	0	0	0.10	0	0
					1	1	0.35	0	0	0.10	0	0
16	1.04	1	1	0.66			0.33		"	0.10		•

where n: real bit allocation

0

0

0

0

[n]: Indicates the nearest integer of n

no: Integer bit calculated via integer bit allocation algorithm

Table 3.2 Bit Allocation Patterns based on Equation (3.3.2-21), Girl lange

Desired Average Bit Rate		2			1.5			1			0.5	-
Type of hit Allocation PCM Channel No.	•	[n]			[n]		•	[n]	•	n	[n]	n
	St. Salar	(4) Sepa	rable Cov	ariano	e Mode	1					
,	5.39	3	5	4.89	,	,	4.38			3.44	,	•
1	4.05	4		3.56	4	4	3.04	3	3	2.10	2	2
,	3.26	3	3	2.76	3	3	2.25	2	2	1.31	1	1
	2.70	3	3	2.20	2	2 2	1.68	2	2	0.74	1	1
•	2.31	3	2	1.81	2	2	1.30	1	1	0.36	0	0
	1.78	2 2	: 1	1.51	1	1	1.00	1	1	0.06	0	0
	1.59	2	2 2	1.28	i	1	0.76	1	1	0	0	0
•	1.43	i	2	0.93	i	i	0.42	ò	i	0	0	0
10	1.31	1	i	0.81	1	i	0.29	0	0	.0	0	0
11	1.20	1	1	0.70	1	1	0.18	0	0	0	0	0
12	1.11	1	1	0.62	1	1	0.10	0	0	0	0	100000000000000000000000000000000000000
13	1.05	1	1	0.55	1	1	0.03	0	0	0	0	0
14	1.00	1	1	0.50	0 .	0	0	0	0	0	0	
15	0.96	1	1	0.46	0	0	0	0	0	0	0	0
									_			_
Average Bit Rate	2.10	1.94	2	1.51	1.57	1.5	1.00	0.94	1	0.50	0.44	0.
				(b) sc1	Hode 1							
1	4.27	4		3.77	4		3.15	3	3	2.16	2	2
i	4.12		4	3.62			3.00	3	3	2.01	2	2
3	3.74	4	4	3.24	3	3	2.62	3	3	1.63	2	2
•	3.28		3	2.78	3	3	2.16	2	2	1.17	1	1
,	2.83	3 2	3	2.33	2	2	1.70	2	2	0.72	1	
	2.42		2	1.92	2	2	1.30	1	1	0.31	0	0
2	2.06	2	2	1.56	2	2	0.94	1	1	0	0	0
	1.75	1	1	0.99	1	1	0.63	0	0	0	0	000000000000000000000000000000000000000
10	1.27	i	i	0.77	i	i	0.14	0	0	0	0	0
ii	1.08	:	1	0.58	i	i	0	ŏ	0	ō	0	0
12	0.93	1	1	0.43	0	0	0 .	0	0	0	0	0
13	0.81	1	1	0.31	0	0	0	0	0	0	0	0
14	0.71	1	1	0.71	0	0	0	0	0	0	0	0
15	0.65	1	1	0.13	0	0	0	0	0	0	0	0
	2.00	2	2	1.50	1.5	1.5	1.00	1	1	0.50	0.5	_
Average Bit Rate	2.00	<u>.</u>					1.00	<u> </u>		0.30	0.5	-
				(e) SC2	Mode 1					r		
1	6.15		6	3.65			5.12		3	4.07 2.08		
	3.21	:	3	3.67	•	3	3.14	3	3	1.13	1	1
	2.64	1	3	2.14	,	2	1.61	2	2	0.56	i	i
	2.24	3 3 2 2 2 2 1 1 1 1	2	1.74	2 2 1	2	1.22	i	1	0.16	0	0
	1.95	2	2 2	1.45	1	1	0.92	1	1	0	0	0
1 1 1 1 1 1	1.71	2	2	1.21	1	1	0.68	1	1	0	0	0
	1.32	2	?	1.02	1	1	0.49	00000	1	0	0	0
10	1.36	;	1	0.86	1	1	0.33	0	0	. 0		0
10	1.13	1	i	0.63	1	i	0.10	0	0		0	0
12	1.04	1	i	0.54	1	1	0.01	0	0	0	0	0
1)	0.98	1	1	0.48	0	0	0	0	0	0	0	0
14	0.93	1	1	0.43	0 0	0	0	0	0	0 0 0	0	0
15	0.89	1	1	0.39	0	1 0 0 0	0	0	0		000000000000000000000000000000000000000	000000000000000000000000000000000000000
			-			-	,=		•	0.10		_
Average Sit Rate	2.00	2	2	1.50	1.3	1.3	1.00	0.94	1	0.50	0.5	

where a r real bit allocation

[n]: Indicates the nearest integer of n

no: integer bit culculated via integer bit allocation algorithm

Table 3.3 Parameters of Image Models Used in Hybrid Coding

Separable Covariance Model

Q

$$\rho_{h} = \rho_{v} = 0.95$$

$$\beta^{2}(i) = (1-\rho_{h}^{2})/\lambda_{i}$$

$$\lambda_{i} = [\Psi R \Psi]_{i,i}$$

Semicausal Model SC1

$$\alpha = .4275$$
, $\gamma = 0.1415$, $\beta^2 = 0.0198$ (Girl Image)

 $\alpha = .4275$, $\gamma = 0.1420$, $\beta^2 = 0.0169$ (Chemical Plant Image)

 $\lambda_{ci} = 1 - 2\alpha \cos \frac{(i-1)\pi}{N}$, $1 \le i \le N$
 $\beta^2(i) = \beta^2/\lambda_{ci}^2$
 $\rho_i = \gamma/\lambda_{ci}$

Semicausal Model SC2

$$\rho_{h} = \rho_{v} = 0.95, \quad i = \rho_{v} / (1 + \rho_{v}^{2})$$

$$\lambda_{ci} = 1 - 2\alpha \cos \frac{(i-1)\pi}{N}, \quad 1 \le i \le N$$

$$\beta^{2} = (1 - \rho_{h}^{2}) (1 - \rho_{v}^{2}) / (1 + \rho_{v}^{2})$$

$$\beta^{2}(i) = \beta^{2} / \lambda_{ci}$$

$$\rho_{i} = \rho_{h}$$

Actual Measurement Model

$$v_{j}(i) = \rho_{i}v_{j-1}(i) + e_{j}(i)$$

$$\rho_{i} = Ev_{j}(i)v_{j-1}(i) \approx \frac{1}{16M} \sum_{j=2}^{M} \sum_{k=1}^{16} v_{j}^{k}(i)v_{j-1}^{k}(i)$$

$$\beta^{2}(i) = Ee_{j}^{2}(i) = (1-\rho_{i}^{2})Ev_{j}^{2}(i) \approx \frac{(1-\rho_{i}^{2})}{16M} \sum_{j=1}^{M} \sum_{k=1}^{16} [v_{j}^{k}(i)]^{2}$$

where $v_j^k(i)$ = ith element of the jth column of the kth 16 × M size image strip (k=1,...,16 here).

Table 3.4 Hybrid Coding Results of the Girl Image Encoded via 16 × 256 Image Strip

Desired Average Sit Rate		2			1.5			1			0.5	
Method	SNR	N. M. S. E.	Actual Rate	SNR	N.H.S.E.	Actual Rate	SNR	N.M.S.E.	Actual Rate	SNR	N.H.S.E.	Actua
			(*) Sepa	rable Covar	lance Mo	d+1					
Nonadaptive	32. 26	0. 535%	1.94	31.26	0.674%	1.56	29. 57	0.9932	0.94	26.91	1.833%	0.44
Adaptive Variance Estimation	36. 24	0.2141	1.94	34. 33	0. 332%	1.56	31.31	0.6662	0.94	27.47	1.612%	0.44
					(b) SC1 H	ode1		Ne =				
Nonadaptive	34.55	0.3162	2	33.07	0.4442	1.5	31.05	0.707%	1	28.13	1.3847.	0.5
Adaptive Variance Estimation	35. 97	0. 2287.	2	34. 25	0.3382	1.5	31.48	0.640%	1	27.73	1.518%	0.5
Adaptive Classification	35.80	0. 236%	1.70	34.55	0.316%	1.36	33.07	0.444%	s 1	30.74	0.758%	0.5
					(c) SC2 M	odel	na ⁱ	§ 14 (2)	4			
Nonadaçtive	32.30	0. 5291	2	30. 91	0.730%	1.5	29.53	1.003%	0.94	27.03	1.7832	0.5
Adaptive Variance Estimation	36. 25	0. 213%	2	33.17	0.434%	1.5	31.00	.715%	0.94	27.48	1.608%	0.5
Adaptive Classification	32.05	0.5611	1.67	31.31	0.6662	1.38	29.97	.906%	0.98	28.20	1. 362%	0.5
		ing ((d) Acti	sal Measure	ment Node	.1	1,48 4	1 ⁸			
Maptive Classification	40. 59	0.079%	2.02	38. 07	0.1402	1.52	35.01	0. 284%	0.97	31.42	0.6492	0.5

Tabel 3.5 Hybrid Coding Results of the Cheutcal Plant Image Encoded via 16 x 256 Image Strip

Desired Average Bit Rate		2			1.5			1			0.5	
Method	SNR	N.H.S.E.	Actual Rate	SNR	N.M.S.E.	Actual Rate	SNR	N.M.S.E.	Actual Rate	SNR	N.H.S.E.	Actua Rate
				(a)	SC1 Mod	•1						
Nonadaptive	31.54	0.520%	2	30.29	0.6932	1.5	28.55	1.0342	1	25.98	1.8672	1.5
Adaptive Variance Estimation	32.82	0.3871	2	31.23	0.5582	1.5	28.98	0.9382	1	26.09	1.6202	0.5
Adaptive Classification	30.93	0.5921	1.77	29.87	0.7642	1.38	28.66	1.0092	1.02	26.58	1.6302	0.55
				(6)	SC2 Mod	el						
Nonadaptive	28.96	0.9417	2	27.80	1.228%	1.5	26.50	1.6581	0.94	24.56	2.590%	0.5
Adaptive Variance Estimation	33.55	0.3272	2	30.55	0.6532	1.5	28.41	1.0691	0.94	25.05	2.3181	0.5
Adaptive Classification	28.01	1.1712	1.72	27.336	1.3682	1.41	26.40	1.6991	0.97	25.27	2.1991	0.55
*			(e)	Actual M	easurement	Model .			11000			
Adaptive Classification	37.03	0.1472	2.06	34.22	0.280%	1.52	31.48	0.5272	1.02	27.92	1.196%	0.47

Table 3.6 Hybrid Coding Results with Communication Errors, Girl Image Encoded via 16 x 256 Image Strip

hic Error Probability P		0			0.0001			0.001	
Method	SNR	N.M.S.E.	Actual Rate	SNR	N,H,S.E.	Actual Rate	SNR	N.M.S.E.	Actua
		(a)	Separable	Covariat	nce Model				
lonadapt Ive	29.57	0.9932	0.94	29.38	1.039%	0.94	27.99	1.430%	0.94
Maptive Variance Estimation	31.31	0.6662	0.94	28.17	1.373%	0.94	11.77	59.90%	0.94
		(b) SC()	tode l					
Nonadapt (ve	31.05	0.7071	1	30, 97	0.720%	1	29.60	0.9871	1
Adaptive Variance Estimation	31.48	0.6401	1	23.45	4.0641	1	21.60	6. 229%	1
Adaptive Classification	33.07	0.4442	1	32.95	0,4562	1	30.24	0.851%	1
		(e) SC2 H	odel		o.n			
Nonadaptive	29.53	1.0031	0.94	29.31	0. 105%	0.94	25.17	2. 738%	0.94
Adaptive Variance Estimation	31.00	0.7151	0.94	29.95	0.9102	0.94	14.33	33.222	0.94
Adaptive Classification	29.97	0.906%	0.98	29.97	0.9062	0.98	28.97	1.1397.	0.98
		(d) Actu	al Measure	coent Hoc	le1				
Adaptive Classification	35.01	0. 284%	0.97	35.00	0. 2652	0.97	30.88	0.736%	0.97

Table 3.7 The Experimental Results of Higher Order Predictor Implemented on the Girl Image with 15 DPCN Channels

Order of the Predictor	1	2	3	4
Signal to Noise Ratio (dB)	31.202	31.748	31.796	31.792

Table 3.8 Fredictor Coefficients of Various Orders for Different Channels in Hybrid Coding

Order of the Predictor	1		2		3				4	
Channel Number	o,	σ ₁	0,	o,	0,	۰,	01	•2	*3	04
1	0.989	1.457	-0.473	1.465	-0.498	0.017	1.465	-0.508	0.048	-0.02
2	0.967	1.424	-0.472	1.480	-0.643	0.120	1.486	-0.672	0.188	-0.04
3	0.926	1.313	-0.418	1.369	-0.592	0.133	1.372	-0.605	0.164	-0.02
4	0.866	1.815	-0.368	1.220	-0.483	0.097	1.220	-0.482	0.094	0.00
5	0.851	1.100	-0.292	1.130	-0.406	0.104	1.129	-0.400	0.086	0.01
6	0.820	1.026	-0.251	1.039	-0.305	0.053	1.041	-0.317	0.092	-0.03
7	0.742	0.915	-0.233	0.915	-0.233	-0.001	0.915	-0.240	0.029	-0.03
	0.666	0.786	-0.179	0.788	-0.191	0.143	0.788	-0.192	0.020	-0.00
9	0.614	0.699	-0.138	0.698	-0.132	-0.009	0.697	-0.133	-0.004	-0.00
10	0.617	0.660	-0.070	0.661	-0.075	0.009	0.660	-0.075	0.004	0.00
11	0.512	0.551	-0.098	0.548	-0.083	-0.027	0.547	-0.084	-0.018	-0.01
12	0.458	0.500	-0.091	0,501	-0.096	0.011	0.501	-0.093	-0.002	0.02
13	0.401	0.413	-0.032	0.414	-0.042	0.025	0.413	-0.040	0.006	0.04
14	0.326	0.337	-0.035	0.339	-0.052	0.050	0.338	-0.051	0.046	0.01
15	0.283	0.284	-0.007	0.284	-2.003	-0.015	0.285	-0.003	-0.024	0.03
16	0.227	0.236	-0.040	0, 236	-0.043	0.011	0.236	-0.044	0.014	-0.01

Table 3.9 Discrete Kalman Filter and DPCM Algorithms

Message Model	$v_{j+1}(i) = \rho_h(i)v_j(i) + \epsilon_{j+1}(i)$
Observation Model	$z_{j}(i) = v_{j}(i) + \eta_{j}(i)$
Prior Statistics	$\begin{split} & \text{Ee}_{j}(i) = 0, \ \text{Eff}(i) = 0, \ \text{Ev}_{0}(i) = \mu_{V_{0}}(i) = 0 \\ & \text{Eff}_{j}(i) \Pi_{j+k}(i+k) = (S/N)^{2} \delta_{\ell}, 0^{\delta}_{k}, 0 = \Psi_{\eta}^{\delta} \delta_{\ell}, 0^{\delta}_{k}, 0 \\ & \text{Ee}_{j}(i) \epsilon_{j+k}(i+k) = \sigma^{2} (1-\rho_{h}(i)) \lambda_{i} \delta_{\ell}, 0^{\delta}_{k}, 0 = \Psi_{\epsilon}^{\delta} \delta_{\ell}, 0^{\delta}_{k}, 0 \\ & \text{Ee}_{j}(i) \Pi_{j+k}(i+k) = \text{Ee}_{j}(i) v_{0}(i+k) = \text{Eff}_{j}(i) v_{0}(i+k) = 0 \\ & \text{var}[v_{0}(i)] = v_{v_{0}}(i) \end{split}$
Innovation	$\hat{e}_{j}(i) = z_{j}(i) - \rho_{h}(i)\bar{v}_{j-1}(i)$
Filter	$\bar{v}_{j}(i) = \rho_{h}(i)\bar{v}_{j-1}(i) + k_{j}(i)e_{j}^{*}(i)$
Gain	$k_{j}(i) = v_{\widetilde{v}_{j/j-1}}(i) \left[v_{\widetilde{v}_{j/j-1}}(i) + v_{v_{j}}(i) \right]^{-1}$
A Priori Variance	$v_{j+1/j} = \rho_h(i)v_{\tilde{v}_j}(i)\rho_h(i) + Y_e$
A Posteriori Variance	$v_{j}^{(i)} = [1-k_{j}^{(i)}]v_{j/j-1}^{(i)}$
Initial Conditions	$\hat{\mathbf{v}}_{0/0}(i) = \hat{\mathbf{v}}_{0}(i) = \mu_{\mathbf{v}_{0}}(i) = 0$ $\mathbf{v}_{0/0}(i) = \mathbf{v}_{0}(i) = \mathbf{v}_{\mathbf{v}_{0}}(i)$

Table 3.10 The Experimental Scaults of Kalman Filter DFCN Loop Implemented on the Noisy
Girl Image. The First Entry of Each Category Shows the Improvement of Signal
to Noise Ratio in Decibels and the Second Entry Shows Signal to Noise Ratio in
Decibels of the Noisy Encoded Image.

Image Model	••	2	1.5	1	0.5
		(a)	5/N - 1		
Separable Covariance	9.1058	8,3765	8.4023	7.5003	7.5731
Node1	24.6652	23,9359	23.9617	23.0597	23.0825
	9.1327	8,4537	8.4517	8.1968	8.1660
entcausal Model SC1	24.6921	24.0131	24.0111	23.7562	23.7454
	6.7611	8.1918	8.2143	7.4203	7.4409
Semicausal Model SC2	24.3205	23.7512	23.7737	22.9802	23.0003
		(P)	5/N - 2		
Separable Covartance	5.8183	4.5647	4.5878	3.8615	3.8129
Model	27.3983	26.1447	26.1678	25.4415	25.3929
	3.8895	5.2081	5.0295	4.6383	4.0781
Semicausal Model SC1	27.4695	26.7881	26.6095	26.2183	25.6581
	3.7026	4.6184	4.6257	3.9068	3.7119
Semicausal Model SC2	27.2826	26.1984	26.2057	25.4868	25.2919
		(e)	5/5 - 5		
Separable Covariance	2.2492	-0.5675	-0.9584	-1.6039	-3.0860
Model	31.7580	28.9713	28.3804	27.9349	26.4528
	7.6618	1.1673	0.7125	-0.1349	-2.1458
Senicausal Model SC1	32.2006	30.7061	30.2513	29.4039	27.3930
AL SAME WARES	2.2390	-0.5083	-1.1176	-1.5362	-3.3641
Sesicausal Model SC2	31.7778	29.0305	28.4212	23.0026	26.1747

[.] I without quantizer in the DPCM loop

CHAPTER FOUR

NONCAUSAL MODELS AND TRANSFORM CODING

4.1 Introduction

Transform coding has attracted considerable attention in the recent years due to its applications in image storage and transmission. This scheme is different from the classical forms of image coding where either the image samples are directly coded (PCM) or the result of a local operation on pixels is coded (DPCM and predictive coding) [9]. In transform coding the image is first unitary transformed and then the transformed samples are quantized and coded for transmission or storage. Fig. 4.1 shows a typical image transform coding system.

Transform coding has some special characteristics, viz.,

- (a) Energy Packing: The energy of samples in the transform domain is generally concentrated near the low spatial frequences. This property is exploited to achieve data compression.
- (b) Channel Error Immunity: Transform coded images are robust with respect to channel errors. This results from the inherent averaging operation of the transform. Each reconstructed image sample is a weighted function of all transform samples. Hence, the channel error is distributed over all of the reconstructed image samples so that it is less objectionable to a human viewer.

In this chapter, noncausal image representations discussed in Chapter 2 are shown to yield transform coding algorithms. Adaptive transform coding scheme analogous to the classification Hybrid coding method can be designed to account for changes in image statistics.

4.2 Image Transform

3

0

0

0

Consider an N × N image, $\{u_{i,j}, i,j = 1,...,N\}$. Let A be a transform operator with elements $\{a_{i,j,k,\ell}, i,j,k,\ell = 1,...,N\}$ which operates on $\{u_{i,j}\}$ to give

$$v_{k,\ell} = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j,k,\ell} u_{i,j}$$
 (4.2-1)

The operator A is said to be separable if

$$a_{i,j,k,\ell} = a_{i,k} a_{j,\ell}$$
 (4.2-2)

so that (4.2-1) becomes

$$v_{k,\ell} = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,k} a_{j,\ell} u_{i,j}$$
 (4.2-3)

The above equation can be implemented in two steps. First, a one-dimensional transform is taken along each row (or column) of the image $\{u_{i,j}\}$. Then, a one-dimensional transform is taken along each column (or row) of the resulting image. In matrix notation, this becomes

$$V = A U A^{T}$$
 (4.2-4)

Generally, the matrix operator A is further restricted to be unitary, i.e.,

$$A^{-1} = A^{-T}$$
 (4.2-5)

where * denotes complex conjugate and T denotes transpose. This means the image matrix U can be recovered as

$$U = A^{-1}V(A^{T})^{-1} = A^{T}VA^{T}$$
(4.2-6)

and the Parseval's energy conservation rule

$$\sum_{i=1}^{N} \sum_{j=1}^{N} |u_{i,j}|^2 = \sum_{k=1}^{N} \sum_{\ell=1}^{N} |v_{k,\ell}|^2$$
 (4.2-7)

is satisfied. Common examples of transform matrices are the discrete Fourier (F), Sine ($\frac{\Psi}{s}$), Cosine ($\frac{\Psi}{c}$), Hadamard (H), Slant (SL), Karhunen Loeve ($\frac{\Psi}{s}$), etc. These are defined as follows:

a. Fourier Transform [3]. The Fourier transform matrix is defined as

$$F_{k,\ell} = \frac{1}{\sqrt{N}} \exp\left\{\frac{-2\pi i (k-1)(\ell-1)}{N}\right\} \quad 1 \le k, \ell \le N \quad (4.2-8)$$

where $i = \sqrt{-1}$, and the discrete Fourier transform of an image is given by

$$v_{m,n} = \frac{1}{N} \sum_{k=1}^{N} \sum_{\ell=1}^{N} u_{k,\ell} \exp \left\{ -\frac{2\pi i}{N} [(m-1)(k-1) + (n-1)(\ell-1)] \right\}. \quad (4.2-9a)$$

Its inverse transform is

$$u_{k,\ell} = \frac{1}{N} \sum_{m=1}^{N} \sum_{n=1}^{N} v_{m,n} \exp \left\{ \frac{2\pi i}{N} [(m-1)(k-1) + (n-1)(\ell-1)] \right\}. \quad (4.2-9b)$$

b. Sine Transform [27]. The Sine transform matrix $\Psi_{\mathbf{S}}$ is symmetric and is defined as

$$\Psi_{\mathbf{s_{k},\ell}} = \sqrt{\frac{2}{N+1}} \sin \frac{k\ell\pi}{N+1} \quad 1 \le k,\ell \le N .$$
 (4.2-10)

It has been shown [30], if $Q_{\rm S}$ is an arbitrary, symmetric, tridiagonal, Toeplitz matrix

$$Q_{s} = \begin{bmatrix} a & b & O \\ b & b & b \\ O & b & a \end{bmatrix}$$
 (4.2-10a)

then Ψ_s contains the eigenvectors of Q_s and satisfies the relation

$$Q_{S}\Psi_{S} = \Psi_{S}\Lambda_{S} \tag{4.2-10b}$$

where $\boldsymbol{\Lambda}_{_{\mathbf{S}}}$ is a diagonal matrix whose entries are the eigenvalues of $\boldsymbol{Q}_{_{\mathbf{S}}},$ given by

$$\lambda_{s_i} = a + 2b \cos \frac{i\pi}{N+1}$$
 $1 \le i \le N$. (4.2-10c)

c. Cosine Transform [1]. The Cosine transform matrix Y is defined as

$$\Psi_{c_{k}, \ell} = \begin{cases} \frac{1}{\sqrt{N}}, & k = 1, 1 \le \ell \le N \\ \\ \sqrt{\frac{2}{N}} \cos \frac{(2\ell-1)(k-1)\pi}{2N}, & 2 \le k \le N, 1 \le \ell \le N. \end{cases}$$
(4.2-11)

It has been shown [29], the Cosine transform matrix contains the eigenvectors of an arbitrary symmetric tridiagonal matrix $Q_{\mathbf{c}}$ of order N.

$$Q_{c} = \begin{bmatrix} a-b & b & & & \\ b & a & & & \\ & & & b & \\ & & & & b \end{bmatrix}$$
 (4.2-11a)

and satisfies the relation

0

$$Q_{c}\Psi_{c} = \Psi_{c}\Lambda_{c} \tag{4.2-11b}$$

where Λ_{c} is a diagonal matrix whose entries are given by

$$\lambda_{c_i} = a + 2b \cos \frac{(i-1)\pi}{N}$$
 $1 \le i \le N$. (4.2-11c)

d. Hadamard Transform [54]. The Hadamard transform matrix is a square array whose entry takes only binary values ±1 and rows and columns are orthogonal. The lowest size 2 × 2 orthogonal Hadamard matrix is given by

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} . \tag{4.2-12}$$

The construction rule for a Hadamard matrix of size $N=2^n$, where n is an integer, is simple. Let H_N be a Hadamard matrix of size N, the matrix

$$H_{2N} = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{N} & H_{N} \\ -\frac{1}{1} & -H_{N} \\ H_{N} & -H_{N} \end{bmatrix}$$
 (4.2-13)

is a Hadamard matrix of size 2N.

e. Slant Transform [55]. For matrix size of N = 2, the Slant transform matrix is identical to the Hadamard transform of order two.
That is,

$$SL_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 (4.2-14)

The Slant matrix of order N (N=2ⁿ,n=3,4,5,...) can be generated in terms of the Slant matrix of order $\frac{N}{2}$ by the recursive relation

 $SL_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & | & | & 1 & 0 & | & 0$

0

0

0

0

where II_k represents a $k \times k$ identity matrix. The constants $\mathbf{a_N}$ and $\mathbf{b_N}$ may be computed from the recursive relation

$$a_2 = 1$$

$$b_N = [1 + 4(a_{N/2})^2]^{-\frac{1}{2}}$$

$$a_N = 2b_N a_{N/2}$$
(4.2-16)

f. Karhunen Loeve Transform [37,42]. Here, we consider a special transform which depends on the image statistics.

If $\{x_i, i=1,...,N\}$ is a one-dimensional first-order Markov process with covariance matrix R, where

$$R = \begin{bmatrix} 1 & \rho & \rho^{2} & \dots & \rho^{N-1} \\ \rho & 1 & \rho & & & \\ \rho^{2} & \rho & 1 & & & \\ \vdots & & \ddots & & & \\ \rho^{N-1} & & & & 1 \end{bmatrix}$$
(4.2-17)

Then the elements of the KL transform matrix \(\mathbf{Y} \) are given by [56]

(N = even)

$$\Psi_{i,j} = \sqrt{\frac{2}{N+\gamma_i^2}} \sin \left[\phi_i (j - \frac{N+1}{2}) + \frac{j\pi}{2} \right]$$
 (4.2-18a)

where

$$\gamma_{i}^{2} = \frac{1 - \rho^{2}}{1 - 2\rho \cos \omega_{i} + \rho^{2}}$$
 (4.2-18b)

and $\{\omega_i\}$ are the positive roots of the transcendental equation

$$\tan n\omega = -\frac{(1-\rho^2)\sin n\omega}{\cos \omega - 2\rho + \rho^2\cos \omega}.$$
 (4.2-18c)

Due to the non-periodicity of the sine terms in (4.2-18a), there is no fast algorithm available for implementing the KL transform matrix.

In matrix form, Y satisfies

$$R\Psi = \Psi \Gamma \tag{4.2-19}$$

where $\Gamma = \{\gamma_i\}$ is the diagonal matrix of eigenvalues of R, which can be calculated via (4.2-18c).

4.3 Stochastic Decoupling of Noncausal Models by Sine Transform [31]

In Chapter 2 we discussed three different noncausal models. Their spatial structures are depicted in Fig. 4.2 together with the boundary elements needed in representation of an N × N square image. Now we show that each model yields a stochastic decomposition by the Sine transform.

4.3.1 NC1 Model

0

Q

C

0

0

3

0

From Chapter 2, we can write the NC1 model (2.5.3-1) in matrix form, as

$$UQ_S + Q_S U = \varepsilon + B \qquad (4.3.1-1)$$

where U and ϵ are N × N matrices, and Q_s is a tridiagonal, symmetric, Toeplitz matrix defined in (4.2-10a) with a = $\frac{1}{2}$, b = $-\alpha$. From (4.2-10c), its eigenvalues are

$$\lambda_{s_i} = \frac{1}{2} - 2\alpha \cos \frac{i\pi}{N+1}$$
 $1 \le i \le N$. (4.3.1-2)

The matrix B is a sparse matrix of the form

$$B = \alpha$$

$$\begin{bmatrix}
u_{01}^{+}u_{10} & u_{02} & u_{03} & \dots & u_{0,N-1} & u_{0,N}^{+}u_{1,N+1} \\
u_{20} & \dots & \dots & u_{2,N+1} \\
u_{30} & \dots & \dots & \dots & \dots \\
\vdots & \dots & \dots & \dots & \dots & \dots \\
\vdots & \dots & \dots & \dots & \dots & \dots \\
u_{N-1,0} & \dots & \dots & \dots & \dots & \dots & \dots \\
u_{N+1,1}^{+}u_{N,0} & u_{N+1,2} & u_{N+1,3} & \dots & u_{N+1,N-1} & u_{N+1,N}^{+}u_{N,N+1}
\end{bmatrix}$$

(4.3.1-3)

Note that the four corner boundary elements u_{00} , $u_{0,N+1}$, $u_{N+1,0}$ and $u_{N+1,N+1}$ are not needed in B (see Fig. 4.2). Alternatively we write

$$B \in S_1^+(u)$$
. (4.3.1-4)

Let us denote \overline{A} as an $N^2 \times 1$ vector of lexicographic ordered elements of an $N \times N$ matrix A. Then (4.3.1-1) has a Kronecker product form

$$J\overline{U} \stackrel{\Delta}{=} (I \otimes Q_s + Q_s \otimes I)\overline{U} = \overline{\epsilon} + \overline{B}$$
 (4.3.1-5)

From (2.5.3-2), the covariance matrix of $\{\varepsilon_{i,j}\}$ (see Table 2.1 under NC1) can be written as

$$R_{\varepsilon} \stackrel{\Delta}{=} E \stackrel{-}{\varepsilon} \stackrel{-}{\varepsilon}^{T} = \beta^{2} (I \otimes Q_{s_{1}} + Q_{s_{1}} \otimes I) \stackrel{\Delta}{=} \beta^{2} J_{1}$$
 (4.3.1-6)

where Q_{s_1} is defined in (4.2-10a) with $a = \frac{1}{2}$, $b = -\alpha_1$. Now from (4.3.1-5) we obtain the decomposition

$$\overline{U} = \overline{U}^{o} + \overline{U}_{b}$$
 or $U = U^{o} + U_{b}$ (4.3.1-7)

where

$$\overline{U}^{\circ} \stackrel{\Delta}{=} J^{-1} \overline{\varepsilon} , \overline{U}_{b} \stackrel{\Delta}{=} J^{-1} \overline{B} .$$
 (4.3.1-7a)

It is clear that \overline{U}_b is obtained by passing the boundary elements B through a noncausal filter J^{-1} . Therefore (4.3.1-7) shows that a discrete random field defined by a noncausal representation has a stochastic decomposition in which U_b is a random field completely determined by

$$S_k(x) = \{ Z[x_{1-k,j}, x_{N+k,j}, x_{i,1-k}, x_{i,N+k}] : 1-k \le i, j \le N+k \}$$

where Z denotes any linear operator.

Let S_k denote the space of all linear boundary elements of a random field $\{x_{i,j}\}$ which is described as

the boundary elements. Fig. 4.3 shows the realization algorithm for noncausal model decomposition of (4.3.1-7).

The covariance matrix of $\overline{\mathbf{U}}^{o}$ is obtained as

$$\begin{split} & R_o \overset{\Delta}{=} E \ \overline{U}^o \overline{U}^o \overset{T}{=} J^{-1} E [\overline{\epsilon} \ \overline{\epsilon}^T] \ J^{-1} = J^{-1} R_{\epsilon} J^{-1} = \beta^2 J^{-1} J_1 J^{-1} & \textbf{(4.3.1-8)} \\ & = \beta^2 [\mathbf{I} \times Q_s + Q_s \otimes \mathbf{I}]^{-1} [\mathbf{I} \otimes Q_{s_1} + Q_{s_1} \otimes \mathbf{I}] [\mathbf{I} \otimes Q_s + Q_s \otimes \mathbf{I}]^{-1}. \end{split}$$

If we denote Ψ_s to be the Sine transform matrix, then from (4.2-10) it diagonalizes Q_s . It follows that Ψ_s should also reduce J, J_1 , R_o , etc. all to their diagonal form. In fact, it is trivial to check that

$$D = (\Psi_s \otimes \Psi_s) \times (\Psi_s \otimes \Psi_s) , \quad \text{for } X = J, J_1, R_0, R_{\varepsilon}$$
 (4.3.1-9)

where D is an $N^2 \times N^2$ diagonal matrix.

Hence $(\Psi_s \otimes \Psi_s)$ is the KL transform of \overline{U}^o , i.e.,

$$\overline{V}^{o} = (\Psi_{s} \otimes \Psi_{s}) \overline{U}^{o}$$
 or $V^{o} = \Psi_{s} U^{o} \Psi_{s}$. (4.3.1-10)

Then V^{O} is the KL transformed matrix and its elements are uncorrelated, i.e.,

$$E V_{i,j}^{o} V_{k,\ell}^{o} = d_{i,j} \delta_{i,k} \delta_{j,\ell} \quad 1 \leq i,j \leq N$$
 (4.3.1-11)

Therefore, it is obvious that one can write [7]

$$D = \beta^{2} (I \otimes \Lambda_{s} + \Lambda_{s} \otimes I)^{-1} (I \otimes \Lambda_{s_{1}} + \Lambda_{s_{1}} \otimes I) (I \otimes \Lambda_{s} + \Lambda_{s} \otimes I)^{-1}$$
(4.3.1-12)

which gives

$$E V_{i,j}^{o^{2}} = d_{ij} = \beta^{2} \frac{\left[\lambda_{s_{1}}^{+\lambda_{s_{1}}}\right]}{\left[\lambda_{s_{i}}^{+\lambda_{s_{j}}}\right]^{2}} \qquad 1 \leq i,j \leq N \qquad (4.3.1-13)$$

where λ_{s_1} is obtained from (4.3.1-2) with α replaced by α_1 .

For a given image the elements $V_{i,j}^{o}$ can be easily realized via the equation

$$v_{i,j}^{o} = \frac{e_{i,j}}{\lambda_{s_{i}} + \lambda_{s_{j}}}$$
 (4.3.1-14)

where $e = \Psi_s \in \Psi_s$, $v^o = \Psi_s v^o \Psi_s$. (4.3.1-14a)

Using the representation (2.5.3-1) and boundary matrix $\{B_{i,j}\}$, find the matrix $\{\epsilon_{i,j}\}$, then from (4.3.1-2) find the values of λ_s and λ_s , and compute the values of $\epsilon_{i,j}$ via $\epsilon = \Psi_s \in \Psi_s$. Since Ψ_s is the Sine transform, a fast algorithm can be used in computing all the equations discussed in the above.

4.3.2 NC2 Mode1

NC2 representation (2.5.3-6) can be written in matrix form as

$$UH + HU + 2Q_SUQ_S = \varepsilon + B$$
 (4.3.2-1)

where

$$H_{i,j} = \begin{cases} \frac{1}{4} + 2\alpha^{2}, & i = j \\ -\alpha, & |i-j| = 1 \\ \alpha^{2}, & |i-j| = 2 \end{cases}$$
(4.3.2-2)
0, otherwise

and Q_s is a tridiagonal, symmetric, Toeplitz matrix defined in (4.2-10a) with $a = \frac{1}{2}$, $b = -\alpha$, and B is an N × N sparse matrix which contains the boundary elements and is defined in the following equation.

	-a'(u_1,K-1***1,K+1) -a'(u_1,***1,K+2)
-a,0,N-1-"2,N+1)	20m2,N+1 -20*(u1,N+1**),N+1) +1) -0*(u0,N**2,N+2)
-0 ¹ 0 ₅ ,9+1	2043,341 -201 (42,841 +44,841) -0143,842
1.W., 4.1°-	20u4,3+1 -2a ² (u _{3,} N+1+u _{5,N+1}) -a ² u _{4,N+2}
	8, 301 0.190 3
0 ¹ / ₃ -2,8+1	220,9-2,9+1 -20 ² (''y-3,8+1***,1,8+1 ² -3 ² 0,8-2,8+2
441.8-1.8-2	200,9-1,8+1 -20. (0,-2,8+1*0,8+1) -1,8+1) -0. (0,-1,8+2*0,+1,8)
2013+1,N-2 -20 ¹ (U _{0+1,N-3} **µ+1,N-1) -0 ¹ *µ+2,N-2	20("s+1,""'s,"s+1) **1," -20°("s-1,"s+1"'s*1,"s-1""s*1,"s+) **1," -0°("s+2,""'s,"s+2)
(9-2) x (9-2) -0.19 +1,3 -0.19 +1,4 -0.19 +1,3 -0.19 +1,3 -0.19 +1,3 -0.19 +1,4 -0.19 +1,4 -0.19 +1,4	(9-2) x (9-2) -0 ³ u _{3+1,4} -1 ³ u _{3+1,4} -1 ³ u _{3+1,4} -1 ³ u _{3+1,4} -1 ³ u _{3+1,8-2} -1 ³ u _{3+1,8-2} -1 ³ u _{3+2,8-2}

\$

An easier notation for B is B ϵ $S_2(u)$ (see page 114 footnote).

In Kronecker product notation, (4.3.2-1) becomes

$$[I \otimes H + H \otimes I + 2Q_s \otimes Q_s]\overline{U} = \overline{\epsilon} + \overline{B}$$
 (4.3.2-4)

$$J\overline{U} = \overline{\varepsilon} + \overline{B}$$
 (4.3.2-4a)

where J $\stackrel{\Delta}{=}$ [I \bigotimes H + H \bigotimes I + 2Q $_{_{\bf S}}$ \bigotimes Q $_{_{\bf S}}$] and the covariance matrix of $\stackrel{-}{\epsilon}$ is

$$R_{\varepsilon} = E \overline{\varepsilon} \overline{\varepsilon}^{T} = \beta^{2} J_{1}$$
 (4.3.2-5)

where α is replaced by $\alpha_1^{}$ in $\boldsymbol{J}_1^{}$ and Eqn. (4.3.2-4) can be rewritten as

$$\overline{\mathbf{U}} = \overline{\mathbf{U}}^{\mathbf{o}} + \overline{\mathbf{U}}_{\mathbf{b}} \tag{4.3.2-6}$$

where

$$\overline{U}^{O} = J^{-1} \overline{\epsilon}$$
 , $\overline{U}_{b} \stackrel{\Delta}{=} J^{-1} \overline{B}$ (4.3.2-6a)

and the covariance matrix of vo is

$$R_0 = E \overline{U}^0 \overline{U}^0^T = J^{-1} E [\overline{\epsilon} \overline{\epsilon}^T] J^{-1} = \beta^2 J^{-1} J_1 J^{-1}$$
 (4.3.2-7)

Now, the matrix R_0 cannot be diagonalized by the Sine transform matrix ψ_s (see (4.2-10)) and the KL transform of V^0 has to be the biorthogonal transform which simultaneously reduces H and Q_s matrices to their diagonal form.

It is noted that H can be further decomposed as

$$H = Q_a^2 + H^b$$
 (4.3.2-8)

where Hb is a sparse matrix of only two nonzero elements

$$H^{b} = \begin{bmatrix} \alpha^{2} \\ \vdots \\ \alpha^{2} \end{bmatrix}. \qquad (4.3.2-9)$$

Recalling the requirement of $|\alpha| < \frac{1}{4}$ for NC2 model (see (2.5.3-6)), we may assume $H^b \simeq [0]$ and a reasonable approximation of H is

$$H = Q_s^2$$
. (4.3.2-10)

Substituting (4.3.2-10) into (4.3.2-14a) yields

\$

0

O

0

0

$$J = I \otimes H + H \otimes I + 2Q_{s} \otimes Q_{s}$$

$$\cong I \otimes Q_{s}^{2} + Q_{s}^{2} \otimes I + 2Q_{s} \otimes Q_{s}$$

$$= J'.$$
(4.3.2-11)

If Y denotes the Sine transform, it is trivial to prove that

$$(\Psi_{s} \otimes \Psi_{s}) J' (\Psi_{s} \otimes \Psi_{s}) = I \otimes \Lambda_{s}^{2} + \Lambda_{s}^{2} \otimes I + 2\Lambda_{s} \otimes \Lambda_{s}$$
 (4.3.2-12)

where Λ_s is an N × N diagonal matrix with entries defined in (4.3.2-2).

Following the same steps as we developed in the case of NCI model, the Sine transform is a good approximation to the biorthogonal transformation in the case of NC2 model.

$$E v_{ij}^{o^{2}} \approx \beta^{2} \frac{\begin{bmatrix} \lambda_{s_{1_{i}}} + \lambda_{s_{1_{i}}} \end{bmatrix}^{2}}{\begin{bmatrix} \lambda_{s_{i}} + \lambda_{s_{j}} \end{bmatrix}^{4}}$$
(4.3.2-13)

Furthermore, since Ψ_s is independent of α , a fast Sine transform exists and the values of $V_{i,j}$ can be easily realized.

4.3.3 NC3 Model

NC3 representation is shown in (2.5.3-10). In matrix notation, it becomes

$$Q_s U Q_s = \varepsilon + B$$
 (4.3.3-1)

where Q_s is a tridiagonal, symmetric, Toeplitz matrix defined in (4.2-10a) with a = 1, b = $-\alpha$, and eigenvalues λ_s as defined in (4.3.1-2)

and
$$B = \alpha Q_s B_1 + \alpha B_2 Q_s - \alpha^2 B_3$$
 (4.3.3-2)

where

$$B_{1} = \begin{bmatrix} u_{01} & u_{02} & \cdots & u_{0,N} \\ & & & & \\ & & & & \\ \hline u_{N+1,1} & u_{N+1,2} & \cdots & u_{N+1,N} \end{bmatrix}$$
(4.3.3-3a)

$$B_{2} = \begin{bmatrix} u_{10} & & & & u_{1,N+1} \\ u_{20} & & & & u_{2,N+1} \\ \vdots & & & & \vdots \\ u_{N,0} & & & & u_{N,N+1} \end{bmatrix}$$
(4.3.3-3b)

$$B_{3} = \begin{bmatrix} u_{00} \\ \vdots \\ u_{0,N+1} \\ \vdots \\ u_{0,N+1} \end{bmatrix} . \qquad (4.3.3-3c)$$

Thus

O

0

0

$$B \in S_1(u) \tag{4.3.3-4}$$

where the definition of S_1 see page 114 footnote.

Rewriting (4.3.3-1) in Kronecker product form, we have

$$(Q_s \otimes Q_s)\overline{U} = J\overline{U} = \overline{\varepsilon} + \overline{B}$$
 (4.3.3-5)

where $J \stackrel{\Delta}{=} Q_{g} \otimes Q_{g}$ (4.3.2-6)

so that

$$\overline{U} = \overline{U}^{O} + \overline{U}_{h} \tag{4.3.3-7}$$

where $\overline{U}^{O} \stackrel{\Delta}{=} J^{-1}\overline{\epsilon}$, $\overline{U}_{b} \stackrel{\Delta}{=} J^{-1}\overline{B}$. (4.3.3-7a)

From Table 2-1, it is noted that the covariance matrix of $\hat{\epsilon}$ can be written as

$$R_{\epsilon} = E \overline{\epsilon} \overline{\epsilon}^{T} = \beta^{2} (Q_{\epsilon} \otimes Q_{\epsilon})$$
 (4.3.3-8)

Thus the covariance matrix of $\overline{\mathbf{U}}^{\mathbf{O}}$ is

$$R_0 = E_0 \overline{U}^0 \overline{U}^0 = J^{-1} E_0 [\overline{\epsilon} \overline{\epsilon}^T] J^{-1} = \beta^2 J^{-1} J^{-1} = \beta^2 J^{-1}$$
. (4.3.3-9)

Let Ψ_s be the Sine transform independent of α , recalling the mathematical development described for NC1 and NC2 models, it is seen that $(\Psi_s \otimes \Psi_s)$ is the KL transform of \overline{U}^0 . Let us define

$$\overline{V}^{o} = (\Psi_{g} \otimes \Psi_{g}) \overline{U}^{o}$$
, which implies $V^{o} = \Psi_{g} U^{o} \Psi_{g}$. (4.3.3-10)

Then

$$E \ v_{i,j}^{o^2} = \frac{\beta^2}{\lambda_{s_i} \lambda_{s_i}}$$
 (4.3.3-11)

Thus the above equation is in a form which is easily realizable. For a given image, the matrix $\{B_{i,j}^{\bullet}\}$ is first computed and leads to the matrix $\{U_{i,j}^{\bullet}\}$. Then from (4.3.1-2) the values of λ_i and λ_j are found. A two-dimensional fast Sine transform is performed over $\{u_{i,j}^{\bullet}\}$. (4.3.3-11) is used to evaluate the variances of each point of the transformed image $\{v_{i,j}^{\bullet}\}$.

4.4 Stochastic Formulation of Noncausal Models by Cosine Transform

The Sine transform could be used to analyze the noncausal representations as described in the previous section. For certain special conditions on the outmost boundary variables (refer to Fig. 4.2), the resulting representations could also be analyzed by the Cosine transform.

For many image fields, the adjacent elements of a column (or a row) are highly correlated and often the correlation parameter has a value close to unity. Let us first consider the NCI model.

For a finite N \times N image random field, the boundary elements of NC1 model that need to be specified in (2.5.3-1) satisfy the conditions

$$u_{0,j} = u_{1,j}$$
 $1 \le j \le N$
 $u_{N+1,j} = u_{N,j}$ $1 \le j \le N$
 $u_{1,0} = u_{1,1}$ $1 \le i \le N$
 $u_{1,N+1} = u_{1,N}$ $1 \le j \le N$ (4.4-1)

This means the two outmost boundary rows of four edges of the $(N+2) \times (N+2)$ field are equal. The NC1 image field subject to (4.4-1) is no longer a stationary field. Rewriting (2.5.3-1) in matrix form with the constraint (4.4-1), we have

$$Q_{c}U + UQ_{c} = \varepsilon \qquad (4.4-2)$$

where $Q_{c} = \begin{bmatrix} \frac{1}{2} - \alpha & -\alpha & & & \\ -\alpha & \frac{1}{2} & & & \\ & & -\alpha & \\ & & -\alpha & \frac{1}{2} - \alpha \end{bmatrix}$ (4.4-3)

and eigenvalues of Q are given by

3

0

0

0

$$\lambda_{c} = \frac{1}{2} - 2\alpha \cos \frac{(i-1)\pi}{N}$$
 $1 \le i \le N$. (4.4-3a)

The subscript c indicates $Q_{\bf c}$ is now diagonalized by the Cosine transform. In Kronecker product form (4.4-2) becomes

$$(1 \otimes Q_c + Q_c \otimes I)\overline{U} = \overline{\epsilon}$$
 (4.4-4)

Therefore
$$\overline{U} = J^{-1}\overline{c}$$
 (4.4-5)

where
$$J \stackrel{\triangle}{=} (I \otimes Q_c + Q_c \otimes I)$$
. (4.4-5a)

The covariance matrix of R is

$$R = E \overline{U} \overline{U}^{T} = J^{-1} E [\overline{\epsilon} \overline{\epsilon}^{T}] J^{-1} = J^{-1} R J^{-1}$$
 (4.4-6)

where
$$R = E \varepsilon \varepsilon^{T}$$
 (4.4-6a)

Eqn. (4.4-5) does not involve a term in \overline{U}_b , compare with (4.3.1-7), any more.

Since we have used the boundary conditions of (4.4-1) in deriving (4.4-2), it means that the error signal $\{\varepsilon_{i,j}\}$ along the four boundary edges is no longer a completely arbitrary random variable. For stationary NC1 model, the covariance matrix of $\overline{\varepsilon}$ was defined in (4.3.1-6), where

$$Q_{s_1} = \begin{bmatrix} \frac{1}{2} & -\alpha_1 & & & & \\ -\alpha_1 & \frac{1}{2} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Imposition of the boundary conditions also implies the $Q_{_{\rm S}}$ could be approximated as $Q_{_{\rm C}}$ where

$$Q_{s_{1}} = Q_{c_{1}} = \begin{bmatrix} \frac{1}{2} - \alpha_{1} & -\alpha_{1} & & & \\ & -\alpha_{1} & \frac{1}{2} & & & \\ & & -\alpha_{1} & \frac{1}{2} - \alpha_{1} \\ & & -\alpha_{1} & \frac{1}{2} - \alpha_{1} \end{bmatrix}.$$
 (4.4-8)

The above equation could be diagonalized by Cosine transform, and the following expression is obtained for $R_{\rm p}$

$$R_{\varepsilon} = \beta^{2}(Q_{c_{1}} \otimes I + I \otimes Q_{c_{1}}) = \beta^{2}J_{1}$$
 (4.4-9)

where

$$J_{1} \stackrel{\triangle}{=} (Q_{c_{1}} \otimes I + I \otimes Q_{c_{1}}) . \qquad (4.4.9a)$$

Substituting (4.4-9) to (4.4-6), yields

$$R = \beta^2 J^{-1} J_1 J^{-1} . \qquad (4.4-10)$$

Following the same procedure as we did in section 4.3.1, it is easy to show $(\Psi_c \otimes \Psi_c)$, where Ψ_c is the Cosine transform matrix, could reduce J and J_1 to their diagonal forms. Therefore

$$\mathbf{E} \ \overline{\mathbf{v}} \ \overline{\mathbf{v}}^{\mathrm{T}} \ \stackrel{\sim}{=} \ \beta^{2} (\Lambda_{\mathbf{c}} \otimes \mathbf{I} + \mathbf{I} \otimes \Lambda_{\mathbf{c}})^{-1} (\Lambda_{\mathbf{c}_{1}} \otimes \mathbf{I} + \mathbf{I} \otimes \Lambda_{\mathbf{c}_{1}}) (\Lambda_{\mathbf{c}} \otimes \mathbf{I} + \mathbf{I} \otimes \Lambda_{\mathbf{c}})^{-1}$$

$$(4.4-11)$$

which implies

$$\mathbf{E} \ \mathbf{v}_{\mathbf{i};\mathbf{j}}^{2} \stackrel{\sim}{=} \beta^{2} \frac{\begin{pmatrix} \lambda_{c_{1_{\mathbf{i}}}} + \lambda_{c_{1_{\mathbf{j}}}} \\ \lambda_{c_{\mathbf{i}}} + \lambda_{c_{\mathbf{j}}} \end{pmatrix}^{2}}{\begin{pmatrix} \lambda_{c_{\mathbf{i}}} + \lambda_{c_{\mathbf{j}}} \end{pmatrix}^{2}} \quad 1 \leq \mathbf{i}, \mathbf{j} \leq N$$
 (4.4-12)

where $\{\lambda_{c_{1}}^{}\}$ and $\{\lambda_{c_{i}}^{}\}$ could be computed from (4.4-3a). It is obvious that the elements $v_{i,j}$ can be quite easily realized and given by

$$v_{i,j} = \frac{e_{i,j}}{\lambda_{c_i} + \lambda_{c_i}}$$
 (4.4-13)

where

0

0

$$e = \Psi_{c} \in \Psi_{c}$$
, $V = \Psi_{c} \cup \Psi_{c}$ (4.4-13a)

Once again, fast algorithm can be used to implement the Cosine transform in the above equations.

For NC2 and NC3, similar models can be obtained by simply assuming the outermost boundary values to be equal. Table 4.1 summarizes the formulas for the three models which are useful in the design of transform coders for random fields represented by noncausal models.

4.5 Transform Coder Design for Noncausal Models via Cosine Transform

In coding problems, one would like to find the minimum number of bits required to represent a random field subject to the specific amount of distortion. A common approach of evaluating the performance of a coding scheme is to obtain its distortion vs. rate characteristics.

Referring to Fig. 4.1, which shows the overall transform coding system, an image U is unitarily transformed to obtain V. Each element of V is then quantized independently by a zero memory quantizer and is used for

transmission and/or storage. For reconstruction of the original image, one simply performs the inverse transformation of the quantized samples.

One basic property of the KL transform is that it completely decorrelates the transform samples. Other unitary transforms reduce the inter-sample correlation. The transform coder efficiency is maximized when the transformed samples are uncorrelated. The quantizer design depends on the probability distribution of the transformed samples. In our study, we have found the transform sample $v_{i,j}$ can be modeled quite well by the Gaussian density model

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp[-(x-\mu)^2/2\sigma^2] \qquad (4.5-1)$$

where μ and σ are the mean and standard deviation of the random variable x. Many times the first sample \mathbf{v}_{11} is modeled by a Rayleigh density, because, for many transforms, it is proportional to the average value (or the so called d.c) of the image data, which for non-negative image data would be a non-negative random variable. However, if the image data has been converted to a zero mean data before processing, then the Gaussian density model suffices. In the sequel, without loss of generality, we will assume $\{\mathbf{u}_{i,j}\}$ to be zero mean random variables, therefore, $\{\mathbf{v}_{m,n}\}$ are also zero mean random variables. Let

$$\sigma_{\mathbf{v}_{m,n}}^2 \stackrel{\Delta}{=} \mathbf{E} \mathbf{v}_{m,n}^2 \tag{4.5-2}$$

be the variance of the transformed sample $v_{m,n}$. In Fig. 4.1 if there are no channel errors, then the coder/decoder will generate a perfect transaction and we will have $\hat{v}_{m,n}^* = v_{m,n}^*$. The average mean square distortion in encoding entire N × N image is defined as

$$D = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} E \left(\hat{u}_{i,j}^{*} - u_{i,j} \right)^2.$$
 (4.5-3)

Since the transformation is unitary, the Parseval's relation implies

$$D = \frac{1}{N^2} \sum_{m=1}^{N} \sum_{n=1}^{N} E \left(\hat{v}_{m,n}^{\dagger} - v_{m,n} \right)^2$$
 (4.5-4)

and in the absence of channel errors

$$D = \frac{1}{N^2} \sum_{m=1}^{N} \sum_{n=1}^{N} E \left(v_{m,n}^{*} - v_{m,n} \right)^2. \qquad (4.5-4)$$

Assuming all the quantizers are identical in their characteristics, f(b), where

f(b) = mean square distortion of a quantizer with 2^b levels for unit variance input random variable

p = desired average bit rate in bits/pixel of the image random
field

we can write

$$D = \frac{1}{N^2} \sum_{m=1}^{N} \sum_{n=1}^{N} f(b_{m,n}) \sigma_{v}^{2}(m,n)$$
 (4.5-5)

where $b_{m,n}$ = number of bits allocated to the sample $v_{m,n}$. Now, since the total number of bits available is fixed, i.e.,

$$\sum_{m=1}^{N} \sum_{n=1}^{N} b_{m,n} = N^{2}p$$
 (4.5-6)

and

0

0

8

$$b_{m,n} \ge 0$$
 (4.5-7)

the overall distortion given by (4.5-5) is minimized by finding the optimal bit allocation among the various samples subject to the constraints

of (4.5-6) and (4.5-7). Following Chapter 3, section 3.3.2, and Appendix A, the bit allocation problem can be solved as before and the distortion vs. rate characteristics can be determined. For the noncausal models considered here, $\sigma_{\rm V}^2({\rm m,n})$ are obtained from Table 4.1 for Cosine transform coding. The overall coding system is shown in Fig. 4.4(a). In general when the conditions of (4.4-1) are invalid, boundary variables are arbitrary, we can use the following method.

4.6 Fast KL (Sine) Transform Data Compression

In either noncausal model (NC1, NC2 or NC3), the decomposition $U = U^O + U_b$ plays an important role in the analysis. Fig. 4.4(b) illustrates a Sine transform data compression scheme. First the boundary samples are quantized and the boundary response U_b^* is computed. Subtracting U_b^* from U gives \tilde{U}^O , which is nearly equal to U^O , if quantization errors in boundary samples are small. The covariance matrix of U^O is a function of Q for NC1 and NC3 models and a function of Q and H for NC2 model. It has been shown that Sine transform serves as the exact KLT for NC1 and NC3 models and a good approximation to the NC2 model. \tilde{U}^O is therefore quantized with a bank of noncausal model influenced quantizers and transmitted over the channel.

In actual implementation, a large image would be first divided into small blocks and each block is coded independently. Since the noncausal models require separate coding of image boundaries, the number of boundary samples that are needed to be quantized for each block can be minimized by overlapping the boundaries of the various image blocks, namely, only the right vertical and lower horizontal need to be quantized. Rate

distortion calculations for one-dimensional noncausal models (with one overlapping boundary point) have shown to give lower bit rates than the conventional KLT or other unitary transform coding without any overlap. Details of these aspects and comparisons with conventional transform coding techniques are given in [36].

4.7 Experimental Results

0

0

Several computer experiments have been performed to simulate the transform coding schemes discussed in the previous sections. In all the experiments only Cosine transform based scheme was implemented. A 256 × 256 image was divided into 16 image blocks, each of size 64 × 64. Each block was transform coded independently. The size of image block could be chosen arbitrarily, the size 64 × 64 being chosen for comparison with the methods of the next chapter.

Figure 4.5 shows a typical bit allocation pattern of a NC1 Cosine transform image. Tables 4.2 and 4.3 summarize the results for the Girl and Chemical Plant images respectively. Figure 4.6 shows rate distortion curve and rate vs. SNR for the Girl image. The corresponding characteristics for the Chemical Plant image are shown in Figure 4.7. Figure 4.8(a)-(c) show encoded Girl images at 0.5 bit/pixel, 1 bit/pixel and 2 bits/pixel. Figure 4.9(a)-(c) show encoded Chemical Plant images at 0.5 bit/pixel, 1 bit/pixel and 2 bits/pixel. As expected, the performance of this model (NC1) is consistent with the conventional transform coding methods.

4.8 Classification Transform Coding

We have mentioned in the last section that in order to increase the transmission efficiency and ease the burden of buffer storage, the test image is divided into small image blocks. Then each image block is transform coded independently. In the classification transform coding, one additional step is added to allocate flexible bits to each transform channel quantizer. It says each image block is classified as belonging to one of K predetermined classes according to its own activity. The activity in the image block is measured by the variance of that image block. For a given class of images the probability distribution function of all the image block variances can be predetermined. Note that this probability distribution function would depend on the size of the image block used in transform coding.

The transform signal in each transform channel is processed as before except that the signal in the transform domain is quantized according to the classification of that image block. In this way, the transform channel quantizer is adapted to the changes of activity in the image blocks.

Image blocks with high activity are assigned more quantizer bits than those of low activity. Therefore the quantizer bits are employed more efficiently. This scheme is somewhat analogous to the adaptive classification hybrid coding described in Chapter three.

This scheme also requires the classification information to be transmitted to the receiver. This can be done by sending an extra $\log_2 K$ bits per image block or $\frac{1}{N^2} \log_2 K$ bits/pixel (where K stands for the number of classes and N is the size of an image block). Experimentally, this value turns out to be very small. For example, in the case of K = 4 and M = 16,

the overhead for its transmission is only $\frac{\log_2 4}{16 \times 16} = \frac{1}{128}$ bit / pixel.

8

0

Let us define $p_k \stackrel{\triangle}{=} probability of the kth class and also assume for each class k, the image model parameters have been predetermined and are known. Then following the same development of adaptive classification hybrid coding, we can write the expected average distortion for each image block as$

$$D = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} \sigma_{v_{i,j}}^2(k) f(b_{i,j,k}) p_k$$
 (4.8-1)

where $b_{i,j,k} \ge 0$ and represents the ijth transform channel quantizer bit and kth class.

Another constraint could be the expected average bit rate must be constant, i.e.,

$$\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} b_{i,j,k} p_k = P. \qquad (4.8-2)$$

The above bit allocation problem can be solved along the same lines in the previous section.

Figure 4.10 shows a typical bit allocation pattern for two-class problem with equal probabilities ($p_k = 0.5$) for each class and size of the image block was 64×64 . Figure 4.11(a) shows the corresponding 4×4 classification map and image block measure variances. Classification map and image block measure variances for the Chemical Plant image with same kind of strategy is shown in Figure 4.12(b).

The scheme requires the following additional steps compared to ordinary transform coding.

- 1. Measurement of the variance of each image block.
- Classification of each image block to one of K classes based on the assumption of p_k.
- 3. Storing of K bit allocation tables, one for each class.

Results from several simulations show that this scheme gives, relatively, a large improvement in SNR for lower bit rates ~0.5 bit / pixel and relatively smaller image block sizes. At higher bit rates (~2 bits/pixel) and larger image block sizes, the improvement in SNR becomes less significant if at all, and is evidenced by appearance of a "blocking" effect in the encoded image. This is because as the image block size is increased, the ambiguity in classifying it into different classes increases since the activity in a large image block is no longer uniform. Generally, the following conclusions can be made.

- Classification transform coding scheme can improve the SNR over the standard transform coding (based on NC1 model) for simple structured image (like Girl image).
- The complexity of implementing this scheme is marginal. Bit allocation
 is wholly determined by the model with a proper adjustment of the
 actual image block variance.
- As the number of classes goes up, the quality of the reconstructed image improves if the size of image block is much less than the actual size of the test image.

Tables 4.2 and 4.3 list the results of classification transform encoded Girl and Chemical Plant images, both with 64 × 64 image block size and two classes. The rate distortion curves of this scheme are shown in Figures 4.6 and 4.7. Finally, the encoded images at 0.5 bit / pixel, 1 bit/pixel and 2 bits/pixel are shown in Figures 4.8 and 4.9.

Q

0

-

Figure 4.1 Conventional Image Transform Coding System

Figure 4.2 Spatial Structures of Three Noncausal Image Representations
(a) NC1 (b) NC2 (c) NC3

Figure 4.3 Realization of Noncausal Model Decomposition

Figure 4.4(a) Cosine Transform Coding via Two-Dimensional Noncausal Model

Figure 4.4(b) Fast KL (Sine) Transform Coding via Two-Dimensional Noncausal Model

Figure 4.5 Integer Bit Allocation for NC1 Model Cosine Transform Encoded Girl Image with Average Bit Rate = 1 Bit/Pixel

0

0

0

8

*

Figure 4.6 Transform Coding Results of NCI Model of the Girl Image with Image Block Size 64 x 64 (a) Rate Distortion Curve (b) Bit Rate versus SNR

Figure 4.7 Transform Coding Results of NC1 Model of the Chemical Plant Image with Image Block Size 64 × 64 (a) Rate Distortion Curve (b) Bit Rate versus SNR

(a) 0.5 Bit/Pixel, Standard

(d) 0.5 Bit/Pixel, Classification

(b) 1 Bit/Pixel, Standard

(e) 1 Bit/Pixel, Classification

(c) 2 Bits/Pixel, Standard

(f) 2 Bits/Pixel, Classification

Figure 4.8 Cosine Transform Encoded Girl Image

Figure 4.9 Cosine Transform Encoded Chemical Plant Image

Figure 4.10 Bit Allocation with Classification at Bit Rate = 1 Bit/Pixel (k=2, Girl Image and 64 × 64 Image Block Size)

2	1	1	1	572.26	2166.34	3136.82	1878.98
2	1	2	2	659.34	1639.23	1199.76	929.15
2	1	2	2	1237.50	1649.39	1190.22	1404.61
1	2	1	1	1988.18	1066.08	5779.13	3405.83

(a)

2	2	2	2	1250.41	780.69	646.67	856.33
2	2	2	1	1209.60	984.43	1171.79	1540.41
1	1	1	1	1462.82	2897.02	2053.08	1366.84
1	1	1	2	2596.36	2464.29	1517.38	1051.94

(b)

Figure 4.11 Calssification Map and Image Block Measurement Variances with Two Classes (Equal Probabilities $P_k = 0.5$)

(a) Girl Image (b) Chemical Plant Image.

where 2 indicates lower activity and 1 indicates higher activity, size of the classification map is obtained as $(\frac{256}{N}) \times (\frac{256}{N})$ and N = 64 in this example.

Table 4.1 Summary of Important Formulas of Noncausal Represented Image Random Fields

Mode1	Cosine	Sine	
NC1 ARMA Nodel	$\overline{U} = J^{-1}\overline{c}$ (4.4)	, b	B (4.3.1-7)
	J = (1 ⊗ Q + Q ⊙ 1) (4.4.	-5a) B	(4.3.1-3)
	Q _c =	$J = 1 \otimes Q_{g} + Q_{g} \otimes I$ $\begin{bmatrix} 1_{g} & -\alpha \\ -\alpha & \end{bmatrix}$	(4.3.1-5)
32,038	v - (v, ⊗ v _c)v	-0	(4.3.1-10)
140.00	$E[v_{1,1}^2] = \beta^2 \frac{\left(\lambda_{c_{11}} + \lambda_{c_{11}}\right)}{\left(\lambda_{c_{1}} + \lambda_{c_{1}}\right)^2} $ (4.4)	$\vec{\mathbf{v}}^{\circ} = (\vec{\mathbf{v}}_{\mathbf{g}} \otimes \vec{\mathbf{v}}_{\mathbf{g}}) \vec{\mathbf{v}}^{\circ} $ $(\lambda_{\mathbf{g}_{1}} + \lambda_{\mathbf{g}_{1}}) + \lambda_{\mathbf{g}_{2}} \vec{\mathbf{v}}^{\circ}$	(4.3.1-10)
	$\binom{c_1}{c_1} = \frac{c_1}{N} - 2\alpha \cos \frac{(i-1)\pi}{N}$ (4.4)	$\left(\lambda_{s_{i}} + \lambda_{s_{i}}\right)$	¹ / ₂ (4.3.1-13)
		$\lambda_{s_1} = \frac{1}{5} - 2a \cos \frac{1\pi}{N+1}$	(4.3.1-2)
NC2 ARMA	v̄ = J ⁻¹ c̄	$\overline{v} = \overline{v}^0 + \overline{v}_b = J^{-1}\overline{c} + J^{-1}$	B (4.3.2-6)
Model	J - 1 ⊗ H + H ⊗ 1 + 20	<u>B</u> .	(4.3.2-3)
	$H = Q_c^2 + H^b$	J = 1 🛇 H + H 🛇 1 + 20,	90 (4.3.2-4a)
46,30	V . (7 & Y) U	$H = Q_6^2 + H^b$	(4.3.2-8)
18,008 86,83 86,12	$E(v_{ij}^2) \approx g^2 \frac{\left(\lambda_{c_1} + \lambda_{c_{j_1}}\right)^2}{\left(\lambda_{c_i} + \lambda_{c_{j_1}}\right)^2}$ Q_c, λ_{c_i} same as NC1 ARMA Model	$\widetilde{V}^{\circ} = (Y_{g} \otimes Y_{g})\widetilde{U}^{\circ}$ $E[Y_{ij}^{\circ 2}] = \beta^{2} \frac{\left(\lambda_{g_{1}}^{\circ} + \lambda_{g_{1}}^{\circ}\right)}{\left(\lambda_{g_{1}}^{\circ} + \lambda_{g_{j}}^{\circ}\right)}$ $Q_{g}, \lambda_{g} \text{ same as NC1 ARMA}$	
	$\overline{v} = J^{-1}\overline{\epsilon}$	$\overline{v} = \overline{v}^{\circ} + \overline{v}_{b} = J^{-1}\overline{\epsilon} + J^{-1}$	Ē (4.3.3-7)
Warfance Model	1 - 0 0 0 0	ī	(4.3.3-2)
Model	1-a -a	J - Q ⊗ Q ,	(4.3.3-6)
aubosi i in reign	$Q_{c} = \begin{bmatrix} -\alpha & 1 \\ 1 & -\alpha \\ -\alpha & 1-\alpha \end{bmatrix}$ $\overline{V} = (Y_{c} \otimes Y_{c})\overline{U}$	Q \[\begin{array}{c} -a \\ -a \\ \\ -a \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	a 1
227		V°- (V, ⊗ V,)U°	(4.3.3-10)
	$E(u_{ij}^2) = \frac{B}{\lambda_{e_i}^{\lambda_{e_j}}}$	$E[v_{ij}^{o2}] = \frac{6^2}{\lambda_{s_i}\lambda_{s_j}}$	(4.3.3-11)
	$\lambda_{e_i} = 1 - 2\alpha \cos \frac{(i-1)^{ij}}{N}$	$\lambda_{s_4} = 1 - 2\alpha \cos \frac{i\pi}{N+1}$	(4.3.1-2)

Table 4.2 Girl Image, Cosine Transform Coding Results,
NCl Model with 64 x 64 Image Block

Q

0

0

Bit Rate	Standa	rd	Classification		
DIC Rate	N.M.S.E. (%)	SNR	N.M.S.E.(%)	SNR	
0.5	0.8213	30.396	0.8208	30.399	
1.0	0.6399	31.480	0.5906	31.828	
1.5	0.4929	32.614	0.3956	33.569	
2.0	0.3075	34.662	0.2556	35.465	

Table 4.3 Chemical Plant Image, Cosine Transform Coding Results, NC1 Model with 64 x 64 Image Block

Bit Rate	Standa	rd	Classification		
DIL Rate	N.M.S.E. (%)	SNR	N.M.S.E.(%)	SNR	
0.5	1.4067	27.214	1.4711	27.020	
1.0	1.0443	28.508	1.0699	28.403	
1.5	0.8320	29.495	0.8087	29.619	
2.0	0.6106	30.830	0.6244	30.742	

CHAPTER FIVE

IMAGE MODELS FOR FEATURE CODING

5.1 Introduction

In this chapter we consider an image coding technique which preserves the attractive characteristics of standard transform coding, i.e., energy packing and channel error immunity, as well as improves the visual appearance of an encoded image. This technique is called Feature transform coding. The basic idea behind this technique lies in segmenting an image which is considered to be a composition of two parts, deterministic and stochastic, where the stochastic part is dealt with by known statistical analysis according to the image model algorithms developed in Chapter 4 and the deterministic part (which could be called features) is obtained as the residual after the stochastic part is removed.

Other two source modeling of images has been considered earlier by Schreiber [62], Yan and Sakrison [74]. The present approach is somewhat more general and is based on stochastic models of images by partial difference equations.

In section 5.2 we demonstrate the concept of feature extraction via image model operators. In section 5.3 we then relate the transform coding scheme with the feature extraction concept and a set of operations performed with this new technique is described in detail. Finally, in section 5.4, we present results of encoded images and compare them with standard NC1 Cosine transform encoded image at the same bit rate.

5.2 Feature Extraction via Image Models

The problem of feature extraction is to determine the rough profile of an object within a given image. It is noted that most important

informations of an image lie on features which contribute the visual appearance of an image. Here a new technique is presented in which the edge points (feature) is detected from the knowledge of image models.

5.2.1 Image Modeling Operator

*

O

A given image, U, can be treated as a sample function of a two-dimensional random field. We consider the random field as a composition of two parts, the first part representing the relatively smooth variations within the image which can be described by stochastic image models and the other representing the unpredictable part or deterministic part called the features or edges. Thus, we can write the image U as

$$U = U_s + U_d$$
 (5.2.1-1)

where $\mathbf{U}_{\mathbf{S}}$ and $\mathbf{U}_{\mathbf{d}}$ represent the stochastic and deterministic parts respectively.

Typically, the stochastic part representing smooth variations consists of background and low spatial frequency information and the deterministic part describes the abrupt changes (large variations) usually caused by the distinct edges of an object. Therefore, a more effective coding method would be to segment the image into the said parts and code them efficiently.

Typically, an infinite, stationary random field may be represented by its spectral density function (SDF). Several candidates have been proposed in Table 2.1. Let 2 denote an operator acting on a discrete image.

Denoting ϵ as the output signal after applying this operator, we can write

$$\varepsilon_{s} \stackrel{\triangle}{=} \chi[v_{s}], \quad \varepsilon_{d} \stackrel{\triangle}{=} \chi[v_{d}].$$
(5.2.1-2)

A common example of Z is the Laplacian operator, which takes the difference of an image element with an algebraic average of its nearest four neighbors. Most feature extraction (or edge detection) problems could be formulated as a segmentation of U_s and U_d in the above equation, of course, with different operators.

Letting t be the arbitrary selected threshold which is employed to classify $\epsilon(i,j)$, the (i,j)th component of ϵ , the segmentation criterion is

$$\varepsilon_{\mathbf{s}}(\mathbf{i},\mathbf{j}) = \begin{cases} \varepsilon(\mathbf{i},\mathbf{j}) & \text{if } |\varepsilon(\mathbf{i},\mathbf{j})| < t \\ t & \text{if } |\varepsilon(\mathbf{i},\mathbf{j})| \ge t \end{cases}$$
 (5.2.1-3)

$$\varepsilon_{\mathbf{d}}(\mathbf{i},\mathbf{j}) = \begin{cases} 0 & \text{if } |\varepsilon(\mathbf{i},\mathbf{j})| < t \\ \varepsilon(\mathbf{i},\mathbf{j}) - \operatorname{Sign} \varepsilon(\mathbf{i},\mathbf{j}) & \text{if } |\varepsilon(\mathbf{i},\mathbf{j})| \ge t \end{cases}$$
(5.2.1-4)

Thus we compare $|\varepsilon(i,j)|$ with t, and if $|\varepsilon(i,j)| \ge t$, then the point (i,j) belongs to the set of boundary points; otherwise, it belongs to the stationary part. The values assigned to ε_s and ε_d are according to the above equations.

† The Laplacian of a continuous function f(x,y) is defined as

$$\varepsilon(x,y) \stackrel{\Lambda}{=} \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

and its discrete equivalent is given by the difference equation

$$\epsilon_{i,j} = (f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1}) - 4f_{i,j}$$

where $f_{i,j} = f(x_i,y_j)$, $\epsilon_{i,j} = \epsilon(x,y)\Delta x \Delta y$, Δx and Δy are the finite difference intervals in the x and y coordinates respectively.

There are two simple ways of selecting the threshold t. First, using the histogram of $|\varepsilon(i,j)|$, a threshold value is picked such that a desired percentage of total image elements would be detected as edge points. Second, we could let $t = c\sigma$, c = constant, $\sigma = standard deviation of <math>|\varepsilon(i,j)|$. Now, let us consider the selection of \mathcal{I} .

$$\{x(i,j)\} \longrightarrow \begin{cases} h(i,j) \\ H(z_1,z_2) \end{cases} \qquad \{y(i,j)\}$$

0

0

0

Let $\{x(i,j)\}$ and $\{y(i,j)\}$ be the input and output sequences, respectively, of a two-dimensional linear system with transfer function $H(z_1,z_2)$. The SDFs of $\{x(i,j)\}$ and $\{y(i,j)\}$ are related by

$$S_y(z_1,z_2) = H(z_1,z_2)H(z_1^{-1},z_2^{-1})S_x(z_1,z_2)$$
 (5.2.1-5)

For an input white noise field $\{w(i,j)\}$, the output would be a stationary random field, say $\{s(i,j)\}$, such that its SDF is given by

$$S_s(z_1, z_2) = H(z_1, z_2)H(z_1^{-1}, z_2^{-1})S_w(z_1, z_2)$$
 (5.2.1-6)

For the sake of simplicity, the SDF of the white noise field is taken to be unity. Then (5.3.1-6) becomes

$$S_s(z_1,z_2) = H(z_1,z_2)H(z_1^{-1},z_2^{-1})$$
 (5.2.1-7)

Therefore the transfer function can be viewed as

$$H(z_1, z_2) = [S_s(z_1, z_2)]^{\frac{1}{2}}$$
 (5.2.1-8)

Taking a two-dimensional Z transform on both sides of (5.2.1-1) yields

$$V(z_1,z_2) = V_s(z_1,z_2) + V_d(z_1,z_2)$$
, (5.2.1-9)

where

$$v = z(u), v_s = z(u_s) \text{ and } v_d = z(u_d).$$
 (5.2.1-9a)

It is obvious that $V_s(z_1,z_2) = H(z_1,z_2)W(z_1,z_2)$ if $\{w(i,j)\}$ and $\{u_s(i,j)\}$ are the input and output of a two-dimensional linear system with transfer function $H(z_1,z_2)$. Substituting (5.2.1-8) into (5.2.1-9) we get

$$V(z_1,z_2) = [s_s(z_1,z_2)]^{l_2} W(z_1,z_2) + V_d(z_1,z_2)$$
 (5.2.1-10)

where $W(z_1, z_2)$ is the two-dimensional Z transform of the white noise field. Rearranging the terms of (5.2.1-10), we have

$$[S_s(z_1,z_2)]^{-1}V(z_1,z_2) = W(z_1,z_2) + [S_s(z_1,z_2)]^{-1}V_d(z_1,z_2)$$
 (5.2.1-11)

Denoting $E(z_1, z_2) \stackrel{\Delta}{=} [S_s(z_1, z_2)]^{-\frac{1}{2}}V(z_1, z_2)$ and taking inverse two-dimensional Z transform on both sides of (5.2.1-11), we get

$$\varepsilon(i,j) = \varepsilon_s(i,j) + \varepsilon_d(i,j) \quad \forall i,j \quad (5.2.1-12)$$

where ε_d is the inverse Z transform of $S_s^{-1}V_d$, and ε_s is the white noise field. For finite image, we define a two-dimensional transform of the image as

$$\mathbf{v} \stackrel{\Delta}{=} \overline{\psi}[\mathbf{v}] = \psi \mathbf{v} \psi^{\mathrm{T}}$$
 (5.2.1-13)

where superscript T indicates conjugate and transpose operations and $\overline{\Psi}$ is the unitary KL transform of U. (The above equation implies $\overline{\Psi}$ is a

separable transform, which will be true for our image models). From the foregoing discussion, if we define

$$Z = \overline{y}^{-1} s_s^{-1/2} \overline{y}$$
 (5.2.1-14)

where superscript -1 indicates inverse operation and S_{S} is the SDF of stationary random field, then Z would be the desired edge detection operator.

5.2.2 Approximate Rational Function Operator

The SDF of NC1 image model is given by

$$S_{s}(z_{1},z_{2}) = \frac{1 - r\alpha(z_{1} + z_{1}^{-1} + z_{2} + z_{2}^{-1})}{\left[1 - \alpha(z_{1} + z_{1}^{-1} + z_{2} + z_{2}^{-1})\right]^{2}}$$
 (5.2.2-1)

where $r\alpha = \alpha_1$ and $\beta^2 = 1$, to be consistent with the formula given in Table 2.1. If we assume $R(z_1, z_2) = [S_s(z_1, z_2)]^{-\frac{1}{2}}$ then the alternative expression for $R(z_1, z_2)$ is given by (see Appendix B)

$$R(z_1, z_2) = 1 - \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots (2n-3)}{2^{n-1} (n-1)!} \left[1 - r + \frac{r}{2n} \right] r^{n-1} x^n$$
 (5.2.2-2)

By picking different values of n, we obtain various orders of $R(z_1, z_2)$ with which the edge detection operator could be defined as

$$\mathcal{Z} = R^{(n)}(z_1, z_2)$$
 $n = 1, 2, ...$ (5.2.2-3)

This implies Z is a two-dimensional nth order difference operator.

5.2.3 Edge Information Subtraction Procedure

We have stated the concepts of image modeling operator and edge points segmentation criterion in the preceding sections. The sequence of operations needed to be performed may now be listed as follows:

- 1. Take discrete unitary transform of the input image, $V = \Psi U \Psi^T$, where Ψ denotes the chosen discrete unitary transform.
- 2. Based on the image model, find the proper representation for the SDF, S_s , in the Ψ domain.
- 3. Calculate $S_s^{-\frac{1}{2}}$ and multiply it with V, yielding $\epsilon = S_s^{-\frac{1}{2}}$ V.
- 4. Take inverse discrete unitary transform of ϵ , obtaining $\epsilon = \psi^{-1} \epsilon \psi^{-T}$.
- 5. Pick a reasonable threshold to segment $\epsilon_{\bf d}$ from $\epsilon_{\bf s}$ according to equations (5.2.1-3) and (5.2.1-4).
- Generate edge address map d which is the set of (i,j) coordinates
 of each detected edge point.

Once the edge information is known, the stationary field $\mathbf{U}_{\mathbf{S}}$ and deterministic field $\mathbf{U}_{\mathbf{d}}$ of the given image can be obtained by the following fairly obvious way:

- 7. Take discrete unitary transform of ϵ_d , getting $\epsilon_d = \Psi \epsilon_d^{\Psi^T}$.
- 8. Premultiply $S_s^{\frac{1}{2}}$ with ϵ_d , and define $V_d = S_s^{\frac{1}{2}} \epsilon_d$.
- 9. Take inverse discrete unitary transform of V_d to obtain $U_d = V^T V_d V$.
- 10. Subtracting U_d from the input image U_s gives the stationary field as $U_s = U U_d$.

We have considered two transforms, i.e., discrete Fourier transform and discrete Cosine transform as the two-dimensional unitary transform operators in our preliminary feature extraction study. The experiments were performed on the 256×256 Girl image in 64×64 image blocks. For

comparison, the thresholds for different methods of edge detection were chosen to yield approximately equal number of detected edge points. The formulas for evaluating the value $S_{\bf g}({\bf k},{\bf k})$ will be different according to which transform is actually implemented and the image model used. The NC1 model was chosen for all experiments. First we let

 $S_{\mathbf{S}}(\mathbf{k},\mathbf{l}) = S_{\mathbf{S}}\left(\mathbf{z}_1 = \mathbf{e}^{\frac{-2\pi\mathbf{k}}{N}}, \mathbf{z}_2 = \mathbf{e}^{\frac{-2\pi\mathbf{l}}{N}}\right)$ be the approximation of the SDF in the discrete Fourier transform domain when N is sufficiently large. However, in the case of Cosine transform, the numerical value of $S_{\mathbf{g}}(\mathbf{k},\mathbf{l})$ is taken from the cosine transform variance formula (see Table 4.1). Figures 5.1(a) and 5.1(b) show the resulting images of these two experiments. A significant visual difference can be observed from these two figures. The block effect obtained with the discrete Fourier transform approximation is not present in using the Cosine transform. Hence, it is preferable to use the Cosine transform in the study of feature extraction concepts.

If the approximate rational operator $R^{(n)}$ is used, rather than $S_{\mathbf{s}}^{-\frac{1}{2}}$, $\epsilon(i,j)$ could be calculated directly in the spatial domain (because $R^{(n)}$ becomes a two-dimensional nth order difference operator). Segmentation of $\epsilon(i,j)$ could be performed as before. The spatial structure of $R^{(n)}$ as a difference operator is shown for various values of n in Appendix B.

5.2.4 Image Enhancement

C

0

0

A typical image is usually made up of objects having edges at which the brightness changes abruptly. It has been known to investigators in the image processing field that the human visual system is sensitive to these edges. By this argument a "good" image should result if these edge points can be isolated and emphasized so as to make the image appear sharp. We have initiated a study towards this end. Following the concept developed in the previous sections, the stationary (stochastic) field and deterministic (feature) field of any given image can be easily generated. The way to "sharpen" the image can be done by the following equation

$$U' = \alpha U_s + \beta U_d + \gamma_d + \gamma_d$$
 (5.2.4-1)

where $\mathbf{U}_{\mathbf{S}}$ represents the stationary field which contains mostly background information, and $\mathbf{U}_{\mathbf{d}}$ represents the deterministic field which results from the edge information.

Using (5.2.4-1), one can change various values of α and β and achieve different enhancement (sharp or blur) images U'. Figures 5.3II and 5.4II demonstrate the results. The thresholds used in these experiments are given in Table 5.1. It is seen that $U_s + 1.5U_d$ gives the best enhancement image among the six combinations in our study.

The overall block diagram of this system is shown in Fig. 5.2, which consists of two functions, decomposition and synthesis. The stochastic modeling operator χ is determined by a chosen image model, and (5.2.4-1) is implemented by adjusting the two values α and β .

5.3 Transform Coding Using Nonstationary Image Representation

In the foregoing presentation, we considered a new concept of image decomposition, an image can be separated into its stochastic (stationary) and deterministic (feature) components, i.e.,

$$v = v_e + v_d$$
 (5.2.1-1)

One of the possible applications of (5.2.1-1) is to extend it to image coding or data compression. In comparison with current existing coding schemes, including the one presented in Chapter 4, this scheme is found to give better performance in terms of resolution for the same bit rate, and gives more pleasing encoded images to the human viewer.

Let us give an overview of this coding scheme and then describe the various operations in detail. The block diagram of this scheme is given in Figure 5.5. First, U is transformed by a two-dimensional unitary transform. There is a tradeoff between a large image block size to extract sufficient edge information and a small size to save memory and computational effort. We find that a good compromise is achieved by 64 x 64 blocks. Next, applying operator Z' on V (see Fig. 5.5) where V is the transformed image. The output of this operation, &, is segmented next according to (5.2.1-3) and (5.2.1-4). If $|\varepsilon(i,j)| \ge t$, the location (i,j) is recorded as one of the edge addresses, otherwise it is rejected. The value of & at the detected edge point is quantized before transmission to the receiver. This quantized version of ε , ε^* , is also needed to calculate V_d^* as $Z^{-1}\epsilon^*$, where V_d^* is viewed as the deterministic part of the transformed image. Subtracting V_d^* from V, we have V_s , the stochastic part of the transformed image. A conventional transform coding scheme is then implemented on V_s . Finally, V_s^* , ε_d^* together with edge address map, Jd, are used for coding and transmission over the communication channel.

At the receiver, the process proceeds in a fairly obvious way. First, we reconstruct V_d^* based on the received ε_d^* and ε_d^* . Then summing it with V_s^* , yields V^* . Finally, the inverse unitary transform is operated on V^* to recover the input image.

0

0

We now describe details of some of the operations that need to be performed.

1) Run Length Coding

The purpose of this operation is to efficiently transmit the edge address map. The entropy of the run length serves as a measure of bit rate required to recover the original edge address map without distortion. For higher threshold, t, fewer pixels are detected as edge points. In this situation, in order to prevent excessively long runs, pseudo runs are inserted if run length exceeds a fixed number (64 in our experiment).

2) Fixed Level Quantization

Essentially we have only one quantizer at this stage and $\varepsilon_d(i,j)$ is assumed to have a Laplacian distribution with mean zero and variance $\sigma^2_{\varepsilon_d}$ which has to be calculated for each value of t, since the values of $\varepsilon_d(i,j)$ would vary with t. Due to the fact that the values of $\varepsilon_d(i,j)$ are usually small, it has been found that a two bit quantizer gives a very accurate reproduction of $\varepsilon_d(i,j)$. We have studied the effect of assigning different bits to the quantizer. Notice that if the number of detected edge points increases, then assigning too many bits to the quantizer would mean that we are not able to allocate sufficient bits to the transform domain quantizers, and this would cause the objectionable low spatial frequency quantization errors in the encoded image.

3) Transform Domain Quantization

In order to accomplish the task of data compression, we must allocate unequal number of bits to the quantizers for each element of $V_{\mathbf{g}}$. The

fundamental idea of transform coding is that high energy (activity) samples are quantized more accurately than low energy samples. The variances of each element of V_s , the stochastic part of the transformed image, can be estimated from the SDF corresponding to the transform used. The quantization scheme used here is the Lloyd-Max quantizer with the assumption that each element of V_s is Gaussian in distribution.

4) Function of Z'

Q

O.

0

Referring to Fig. 5.5, it is seen that

$$\varepsilon = \mathcal{Z}' V = \overline{\psi}^{-1} S_s^{-\frac{1}{2}} V. \qquad (5.3-1)$$

From the above equation, clearly, we have defined 2 as

$$Z' = \overline{\psi}^{-1} S_s^{-\frac{1}{2}}.$$
 (5.3-2)

Comparing (5.3-2) with (5.2.1-4), it can be seen that Z' is slightly different from Z, the way presented in Fig. 5.5 is easily realizable.

5) Considerations in Deleting Isolated Point

Edge detection is often affected by noise contained in the original image. If we examine the edge picture (picture composed of the detected edge points only) closely, see Fig. 5.1, we would find many isolated spots spread over the scene. Actually, we have no sharp distinction between a "true edge point" or a "noise" point. A simple edge detection scheme in the presence of small amount of noise is to first implement the edge extraction algorithm, then followed by an algorithm that removes the isolated edges (noise) from the scene. In this way, one could get a much

clearer edge profile. We have included this scheme inside edge detection logic box of Figure 5.5.

An advantage of this transform coding method is that it gives us a flexible way to meet any requirement of getting a good visual image subject to a fixed bit rate. There are three adjustable parameters associated with the entire process, viz,

a. Edge point selection threshold

The basic formula is given by $t = c\sigma$, where σ is the rms value of $\varepsilon(i,j)$, and c is an adjustable constant. When $c \to \infty$ no pixel will be detected as an edge point. Some of the operations in Figure 5.5 could be bypassed in this case and a conventional transform coding method is directly performed on the image U.

b. Edge quantizer's bit (n bits/edge)

We have made experiments concerning this fixed integer bit's effect on a bit allocation strategy. The various bit rates used are 1, 2, 3 and 4. The results will be presented in the next section. Experimentally, it has been found that 2 bits (4 levels) gives a proper bit selection.

c. Desired bit rate (n)

It is the desired overall average bit rate in bits/pixel in the final encoded image.

The above mentioned parameters are related by

$$n = n_1 + n_2 + n_3$$
 (5.3-3)

 n_1 : Average bit rate for transform coding of v_s^*

Q

0

0

n₂: Average bit rate for coding the amplitudes of detected edge points

n3: Bit rate required to recover the edge address map, 3.

(Entropy of
$$\vartheta_d$$
) × (Number of Detected Edge Points)

(Number of Image Pixels)

(5.3-5)

Once the edge point selection threshold is given, the number of detected edge points is automatically determined. For a fixed n_e , n_2 and n_3 can be calculated via (5.3-4) and (5.3-5), respectively. If we desire to have bit rate of n (or $\frac{8}{n}$ data compression) in the final encoded image, n_1 has to be calculated via (5.3-3).

5.4 Experimental Results and Comparisons

A series of computer simulations has been conducted to evaluate the performance of this scheme called Feature transform coding. A 256 × 256 image was first divided into 16 equal-sized image blocks, each of size 64 × 64. Each image block was feature transform coded independently. In all the experiments, Cosine transform based NC1 model was used and several definitions of performance measurements, i.e., SNR, NMSE, etc., are defined in section 3.5 of Chapter 3. Two images of different category (statistics) were used in order to test how sensitive the scheme was to the image content.

The quantities $n_{\underline{e}}$ and t are the major parameters in the design of Feature transform coding. In our study, it is done experimentally as presented in the next section.

5.4.1 Feature Transform Coding

In order to find the proper choice of n (edge quantizer's bit) for different values of t (threshold), we plot the curves of SNR and NMSE versus various settings of n for t = 1.50 and t = 20. Figures 5.6-5.7 and Figures 5.10-5.11 are the results for Girl and Chemical Plant images, respectively. It can be seen from these figures that n must be equal to 2, since it gives the minimum NMSE or maximum SNR of all the bit rates. After determining ne, we also plot the curves of SNR and NMSE versus various thresholds. Figure 5.8 demonstrates the curve for the Girl image, and Figure 5.12 is for the Chemical Plant image. It is observed that the SNR increases, while the threshold decreases for moderate bit rate (1~1.5) of both images. For high bit rate (=2) this phenomenon is still observed for Chemical Plant image, but not for Girl image. This could be because the Chemical Plant image is a complicated scene in which more edge points must be separated from the background and encoded adequately. For low bit rate (=0.5), as expected, this scheme performs slightly better than the standard transform coding (in our case NC1 Cosine transform coding) for higher thresholds only. Based on these observations, it seems that t = 1.50 and n = 2 serve as the best parameters to be used to encode any given image at rate greater than 0.5 bit / pixel.

The comparisons of Feature transform encoded and standard transform encoded images are shown in Figure 5.14 for the Girl image and corresponding ones for the Chemical Plant image are shown in Figure 5.15. In all the images the Feature transform coder produces a "better" appearing image (at bit rate > 0.5) than the standard transform coder. It is easily seen that there is a significant difference around the Girl's face and at the sides of the freeway in the Chemical Plant image. In general, the edges

are more clearly defined on the Feature transform encoded image. The above discussion is also supported by referring to the coding results shown in Tables 5.2 through 5.9, which give quantitative comparisons of the above two mentioned schemes. For easy reference, the performances of the standard transform coder at different bit rates are listed along with the Feature transform coder. The performance improves by about 1.5 dB at 1 bit rate for both images and by 2dB at 2 bit rate for Chemical Plant only. It is of interest to note that at 2 bit rate Figure 5.14(f) has less SNR value than Figure 5.14(c). However, by directly looking at the pictures, one can say that Figure 5.14(f) gives a better appearing image since the edges are more sharp regardless of the contrast of the background.

5.4.2 Classification Feature Transform Coding

In this method the edge information map $\frac{1}{d}$ and edge point ϵ_d are encoded and transmitted as before, except that the stochastic portion of the transformed image, V_s , is classified as belonging to one of K predetermined classes. In our case, K=2 and each class is assumed to be equiprobable. The classification maps for the Girl and Chemical Plant images are shown in Fig. 4.11(a) and Fig. 4.11(b). The block diagram of this scheme is analogous to Figure 5.5. However, the Transform Domain Quantization box now contains two types of bit allocation maps, one for each class.

This method gives an additional improvement of SNR over the Feature transform coder about 1 dB at bit rate \geq 1.5 for the Girl image. But it failed for the Chemical Plant image. Figures 5.9 and 5.13 show the coding results versus various thresholds with n_e = 2 assigned to the edge point quantizer. The reason for the discrepancy could be that the Chemical Plant

image is a complicated scene, and once enough detected edge point information has been subtracted from the original nonstationary image field, the resultant image field, i.e. V_s , would tend to have equal variances for each image block, i.e., the corresponding pixels of the remaining field V_s of each image block have approximately equal variances. However, this kind of property is violated for a simple structure image, i.e., Girl image, where after the edge point information is subtracted, some refined work, for example classification, could be applied on V_s if the ultimate goal of coding scheme is to get higher SNR in the final encoded image. We have shown the encoded images of this scheme along with Feature transform encoded images in Figures 5.16 and 5.17.

5.4.3 Conclusions

Based on the above experiments and the theory discussed in Chapter 4, the following conclusions are made:

- (1) Regardless of the computational complexity, Feature transform coding scheme can improve the signal to noise ratio over the standard transform coding scheme (based on NC1 Cosine transform model) by 1 to 2 dB at bit rates above 1 bit/pixel for usual images.
- (2) The complexity of Feature transform coding scheme is simpler than the technique proposed by Yen et al [74] where they ignored the problem of computation time, complexity, and storage. Meanwhile, they had more image dependent parameters that need to be identified. In our case, only two parameters, i.e., n and t, are sufficient.
- (3) The Feature transform coding scheme is useful when it is desired to maintain the attractive characteristics of the transform coding

scheme, i.e., less sensitivity to the image statistics (scene to scene variation), as well as to incorporate the physiological reaction of the human visual system in the overall communication system design.

(4) The Classification Feature transform coding scheme is suited for simple structured images at bit rate ≥ 1 bit/pixel. The complexity over the Feature transform code is marginal and its performance is improved by reducing the size of the image block or, in other words, the number of image blocks is increased.

8

3

3

Figure 5.1 Edge Pictures with $t=2\sigma(a)$ Discrete Fourier Transform (b) Discrete Cosine Transform, where σ is the rms Value of $\varepsilon(i,j)$, and the Total Detected Edge Points are 3612 and 3587 for (a) and (b), respectively.

3

Figure 5.2 Realization of Stochastic Decomposition

(b) Synthesis

U' (U=U when α=B=1)

હ

Figure 5.3I Image Decomposition of the Girl Image with 3111 (t = 2σ) Detected Edge Points

(a) $0.5U_s + 1.5U_d$

0

0

(b) $0.75v_s + 1.25v_d$

(c) U_s + 1.5U_d

(d) U_s + 2U_d

(e) $u_{s} + 2.5 u_{d}$

(f) $v_s + 3v_d$

Figure 5.3II Image Enhancement of the Girl Image with 3111 (t = 20)
Detected Edge Points

Figure 5.4I Image Decomposition of the Chemical Plant Image with 3653 (t = 20) Detected Edge Points

(e) U_s + 2.5 U_d U_s + 3 U_d Figure 5.4II Image Enhancement of the Chemical Plant Image with 3653 (t = 2 σ) Detected Edge Points

Figure 5.5 Transform Coding Based on Stochastic Segmentation

Q

Figure 5.6 Feature Transform Coding Results for the Girl Image versus Various Edge Quantizer's Bits with 5737 (t-1.50) Detected Edge Points

Figure 5.7 Feature Transform Coding Results for the Girl Image versus Various Edge Quantizer's Bits with 3111 (t-20) Detected Edge Points

Figure 5.8 Feature Transform Coding Results for the Girl Image versus Various Thresholds with 2 Bits Assigned to the Edge Quantizer

Figure 5.9 Classification Feature Transform Coding Results for the Girl'Image versus Various Thresholds with 2 Bits Assigned to the Edge Quantizer

Figure 5.10 Feature Transform Coding Results for the Chemical Plant Image versus Various Edge Quantizer's Bits with 7079 (t = 1.50) Detected Edge Points

Figure 5.11 Feature Transform Coding Results for the Chemical Plant Image versus Various Edge Quantizer's Bits with 3653 (t = 20) Detected Edge Points

Figure 5.12 Feature Transform Coding Results for the Chemical Plant Image vs. Various Thresholds with 2 Bits Assigned to the Edge Quantizer

Figure 5.13 Classification Feature Transform Coding Results for the Chemical Plant Image vs. Various Thresholds with 2 Bits Assigned to the Edge Quantizer

(a) 1 Bit/Pixel, Standard Transform

0

(d) 1 Bit/Pixel, Feature Transform

(b) 1.5 Bits/Pixel, Standard Transform

(e) 1.5 Bits/Pixel, Feature Transform

(c) 2 Bits/Pixel, Standard Transform

(f) 2 Bits/Pixel, Feature Transform

Figure 5.14 Comparison of Standard Transform Encoded and Feature Transform Encoded (n = 2 Bits, t = 1.50, 5737 Detected Edge Points) Girl Images

(a) 1 Bit/Pixel Standard Transform

(d) 1 Bit/Pixel, Feature Transform

(b) 1.5 Bits/Pixel, Standard Transform

(e) 1.5 Bits/Pixel Feature Transform

(c) 2 Bits/Pixel, Standard Transform

(f) 2 Bits/Pixel, Feature Transform

Figure 5.15 Comparison of Standard Transform Encoded and Feature Transform Encoded (n₂ = 2 Bits, t = 1.5σ, 7079 Detected Edge Points) Chemical Plant Images

(a) 1 Bit/Pixel

(d) 1 Bit/Pixel, Classification

(b) 1.5 Bits/Pixel

(e) 1.5 Bits/Pixel, Classification

(c) 2 Bits/Pixel

(f) 2 Bits/Pixel, Classification

Figure 5.16 Feature Transform Encoded Girl Image with n = 2 Bits and t = 1.50 (5737 Detected Edge Points)

Figure 5.17 Feature Transform Encoded Chemical Plant Image with n_e = 2 Bits and t = 1.5 σ (7079 Detected Edge Points)

Table 5.1(a) Girl Image Thresholds and No. of Detected Edge Points

.

0

0

0

Threshold	No. of Edge Points	Entropy
t • σ	11624	3.190
t = 1.50	5737	3.626
t = 20	3111	3.949
t = 2.50	1768	3.957
t = 30	1063	3.698

Table 5.1(b) Chemical Plant Image Thresholds and No. of Detected Edge Points

Threshold	No. of Edge Points	Entropy
t = 0	14138	3.102
t = 1.50	7079	3.446
t - 20	3653	3.778
t = 2.50	1843	3.905
t = 30	923	3.585

Table 5.2 Feature Transform Coding Results for the Cirl Image with 5737 (r = 1.50)
Detected Edge Points

Average Rate		1	1.	.5	1		
Edgo Quantizer's Bit	SNR (db)	EMSE(X)	SNR (dB)	MISE(Z)	SNR (db)	NMSE(X)	
n 4	33.714	0.382	33,187	0.432	32.300	0.530	
0, - 3	33.844	0.371	33.252	0.426	32.710	0.482	
	33.966	0.361	33.252	0.426	32.899	0.462	
n 1	34.133	0.347	33.126	0.438	32.687	0.485	
Standard Xform Coding	34.662	0.308	2.614	0.493	31.480	0.640	

Table 5.3 Feature Transform Coding Results for the Girl Image with 3111 (t = 20) Detected Edge Points

Average Rate	2		1.5		1		0.5	
Edge Quantizer's Bit	SNR (dB)	MASE (I)	SNR (dB)	KHSE(X)	SNR (dB)	NNSE(Z)	SNR(dB)	NMSE(2)
0, -4	34.245	0.339	32.964	0.455	32.509	0.505	28.584	1.247
n - 3	34.511	0.318	33.121	0.438	32.659	0.488	29.583	0.990
0 2	34.784	0.299	33.238	0.427	32.699	0.483	30.162	0.867
. 1	34.814	0.297	33.213	0.429	32.543	0.501	30.441	0.813
Standard Xfore Coding	34.662	0.308	32.614	0.493	31.480	0.640	30.396	0.871

Table 5.4 Feature Transform Coding Results for the Girl Image with 2 Bits Assigned to the Edge Quantizer

Average Rate	2		1.5		1.		0.5	
Threshold	583(68)	MISE(I)	SNR (dB)	MMSE(X)	SNR (dB)	MMSE(I)	SNR (dB)	NMSE(Z)
t - 0	33.378	0.413	33.470	0.405				-
t - 1.50	33.966	0.361	33.252	0.426	32.899	0.462		-
t - 20	34.784	0.299	33.238	0.427	32.699	0.483	30.162	0.867
t - 2.50	35.127	0.276	33.261	0.425	32.358	0.523	30.839	0.742
t - 30	35.209	0.271	33.162	0.434	32.159	0.547	30.870	0.736
tandard Xform Coding	34.662	0.308	32.614	0.493	31.480	0.640	30.396	0.821

Table 5.5 Clamaffication Feature Transform Coding Results for the Cirl Image with 2 Bits Assigned to the Edge Quantizer

Average Rate	2		1.	5	1		
Threshold	SNR (da)	MMSE(T)	SNR (db)	MMSE(2)	SNR(da)	MMSE(I)	
t = 1.5a	35.019	0.283	33.142	0.436	32.323	0.527	
t - 20	35.537	0.251	33.632	0.390	32.163	0.547	
t - 2.50	35.750	0.239	33.802	0.375	37.149	0.549	
t - 30	35.873	0.233	33.875	0.369	32.148	0.549	
Standard Morm Coding	34.662	0.308	32.614	0.493	31.480	0.640	

Table 5.6 Feature Tansform Coding Pesults for the Chemical Plant Jeage with 7079 (t = 1.5c) Detected Edge Points

Average Rate	7		1.	\$	1		
Edge Quantizer's Bit	SNR(dB)	NESSE(I)	SNR(db)	ENSE(I)	SNR (dB)	MMSE(I)	
n 4	32.123	0.454	30.971	0.592	27.761	1.240	
0, 13	32.424	0.424	31.236	0.557	28.986	0.936	
1	32,586	0.408	31,482	9.527	29.758	0.783	
0, 1 1	32,228	0.443	31,170	0.566	129.800	0.176	
Standard Mform Coding	30,830	0.611	29.495	0.832	28.508	1.044	

0

Table 5.7 Feature Transform Coding Results for the Chemical Plant Image with 3653 (t = 2g) Detected Edge Points

Average Rate 2		1,5					0.5	
Edge Quantizer's Bit	SNR(dB)	181SE(%)	SNR (dB)	NHSE (X)	ENR (dh)	MISE(Z)	SNR(dB)	MISE(2)
	31.457	0.530	30.405	0.675	29.169	0.897	24.372	2.706
0, + 3	31.697	6.504	30,624	0.642	29.395	0.851	25.562	2.058
1, 11	31.885	4.480	30.791	0.617	29.592	0.814]	26.394	1.699
n + 1	31.836	.485	30,666	0.635	29.479	0.835	26.795	1.549
Standard Mform Coding	30.830	0.611	29.495	0.832	28.508	1.044	27.214	1.467

Table 5.8 Feature Transform Coding Results for the Chemical Image with 2 Bits Assigned to the Edge Quantizer

Average Bate	2		1.5		1	1		0.5	
Threshold	SNR (dB)	Noise (%)	SNR (da)	MMSE(X)	SNR (dB)	NMSE(T)	SNR(dB)	MASE (2)	
1;0	33.402	0.338]	31.751	0.495	-	-	-		
e • 1.5a	32.586	0.408	31.482	0.527	29.758	0.783			
t = 2a	31.885	0.480	30.791	0.617	29.592	0.814	26.394	1.699	
t + 2.50	31.428	0.533	30. 208	0.706	29.062	0.919	27.169	1.421	
t = 3a	31.189	0.563	29.894	0.759	28.837	0.968	27.291	1.382	
tandard Xform Coding	30.830	0.611	29.495	0.832	28.508	1.044	27.214	1.407	

Table 5.9 Classification Feature Transform Coding Results for the Chemical Plant Image with 2 Bits Assigned to the Edge Quantizer

Average Bate			1.	5	1	
Threshold	SNR (da)	MMSE(Z)	SNR (dR)	MARK (X)	SNR (da)	MSE(I)
4 = 1.50	32.461	0.420	11.044	0.542	29.392	0.852
t = 20	31.902	0.478	30.546	0.661	29.106	0.910
t = 2.5a	31.314	0.545	30.095	0.725	28.832	0.969
t = 3d	31.063	0.577	29.893	0.759	28.669	1.066
tandard Xform Coding	30.830	0.611	29.495	0.832	28.508	1.044

CHAPTER SIX

SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

This thesis has shown that the application of the stochastic image models based on PDEs to the problem of image data compression has achieved considerable success. The use of image models has shown the connection between predictive, hybrid and transform coding schemes. From the choice of an approximate image model which gives the best approximation to the actual statistics of a class of images being processed, on would be able to determine the most efficient data compression scheme.

Simple basis restriction error experiments were performed to compare the energy compaction property of various image models. The results show that both the noncausal and semicausal models give superior performance over the causal models. Evidently, different spectral density function shapes of image models were the dominating factor in this aspect of study.

The performance of the hybrid coding scheme was significantly improved by two very simple methods, i.e., (1) Adaptive Variance Estimation: Adapting the variance of the prediction error, in each DPCM channel, the updated variance was used to adjust the spacing of the quantizer levels. (2) Adaptive Classification: Adapting the bit rate to the local variance of each image column.

The adaptive variance estimation scheme was shown having the potential of maintaining the performance of a hybrid coder, designed for a nominal statistics, in the face of changing statistics. The adaptive classification scheme performed more effectively at low bit

rate and was robust with respect to channel errors. Hybrid coding of noisy images was achieved by replacing the predictor in the DPCM loop by a Kalman filter. Experimental results showed that the two bit rate quantizer gave a restored image with SNR slightly less than the infinite rate (without quantizer in the DPCM loop).

Q

0

0

A new technique called feature transform coding for efficient transform coding of images was presented. The experimental results of applying this technique to actual image data (Girl and Chemical Plant images) show that it provides us a flexible way of getting a good visual image (subject to a fixed bit rate) while maintaining the mean square error performance. It is evidenced by referring to Figures 5.6 - 5.13. The incorporation of classification, a scheme analogous to the adaptive classification hybrid coding, results in further improvement in the performance for simple structured images at bit rate ≥ 1 bit/pixel. Moreover, its complexity over the feature transform coder is marginal.

From a practical point of view, the most important results of this research is that it provides a theoretical framework for optimizing the design of an intraframe coding system for two dimensional data modeled by random fields. The various coding algorithms developed here can be easily implemented for designing practical coding systems for images.

Areas in need of further investigation are:

- Inclusion of NC2 and NC3 models to the design of feature transform coder. Since only NC1 model based feature transform coder has been fully explored.
- 2) Extension to the higher order stochastic image models which might be needed to represent image spectral density functions (SDFs) more accurately.
- 3) Application of data compression schemes to biomedical images.
- 4) Study the effects of incorporating variance estimation scheme in the feature transform coder.
- 5) Use of stochastic models in the design of coders in the presence of channel errors.

APPENDIX A

QUANTIZER CONSIDERATIONS

A.1 Introduction

The basic principle in designing a quantizer is to determine the optimum quantization levels so as to minimize the overall mean square error between the original signal and quantized signal. The exact approach to quantization problem can only be solved by wasting a considerable amount of computing time and gives little insight for someone who has a new quantization problem and needs it to be solved in a small period of time. The useful approximation to the optimum quantizer was first proposed by Algazi [2]. In this Appendix, we have modified his formulas slightly and tabulated the characteristics of the resulting quantizer (so called compandor) for Gaussian and Laplacian distributed signals together with the optimum nonuniform (in the minimum mean square error sense) and optimum uniform quantizers which have been considered by Max [44] and others. Also rate-distortion functions f(n) are listed which were obtained by a piecewise exponential curve fitting technique to the tabulated quantizer numerical results.

A.2 Quantizer Structures

卷

A typical quantizer characteristic is shown in Fig. A.1. The quantizer output y is assigned to one of N discrete values (Fig. A.1(a) and Fig. A.1(b) are for N even and odd respectively) depending on the value of input x. The $\mathbf{x_i}$ and $\mathbf{y_i}$ are called the "decision levels" and "quantization levels" respectively. If the probability density function, $\mathbf{p(x)}$, of the quantizer input is given and is assumed to be symmetric, one would

have different quantizers according to the diverse assumptions of design constraints. In this section, we briefly review some of the useful quantizer reults. The interested reader can find detailed information in references [2,40,44,51,72]

A.2.1 Optimum Nonuniform Quantizer

In this quantizer, the design procedure is to find the N y_i 's and associated x_i 's in Fig. A.1 so as to minimize the distortion, D, which is defined as the expected value of W(ϵ), where W is an error weighting function and ϵ is the quantization error. For simplicity, W(ϵ) is assumed to be ϵ^2 , the square value of the quantization error. The distortion is obtained as

Case 1: N = even

$$D = 2 \sum_{i=1}^{N/2} \int_{x_{i-1}}^{x_i} (y_i - x)^2 p(x) dx$$
 (A.2.1-1)

where $x_0 = 0$, $x_{\frac{N}{2}} = \infty$, and y_i lies between x_{i-1} and x_i .

Case 2: N = odd

$$D = \int_{-x_1}^{x_1} (y_1 - x)^2 P(x) dx + 2 \sum_{i=1}^{\frac{N-1}{2}} \int_{x_i}^{x_{i+1}} (y_{i+1} - x) P(x) dx \qquad (A.2.1-2)$$

where $y_1 = 0$, $x_1 > 0$, $x_{N+1} = \infty$, and y_i lies between x_{i-1} and x_i .

In order to minimize D for a fixed N, the necessary conditions are obtained by differentiating D with respect to the $\mathbf{x_i}$'s and $\mathbf{y_i}$'s and setting

the results equal to zero. After simple numerical manipulation, we have

Case 1: N = even

0

0

0

$$x_i = \frac{1}{2}(y_i + y_{i+1})$$
 $i = 1, ..., \frac{N}{2} - 1$ (A.2.1-3a)

$$\int_{x_{i-1}}^{x_i} (y_i - x) p(x) dx = 0 \qquad i = 1, \dots, \frac{N}{2}$$
 (A.2.1-3b)

Case 2: N = odd

$$x_i = k_2(y_i + y_{i+1})$$
 $i = 1, ..., \frac{N-1}{2}$ (A.2.1-4a)

$$\int_{x_{i-1}}^{x_i} (y_i - x) p(x) dx = 0 \qquad i = 2, ..., \frac{N+1}{2}$$
 (A.2.1-4b)

The above equations mean that x_i lies midway between the adjacent quantization levels and y_i is the centroid of the area under p(x) and lies between the adjacent decision levels.

A.2.2 Optimum Uniform Quantizer

This quantizer gives the minimum distortion under the constraint

$$x_{i}^{-x}_{i-1} = y_{i}^{-y}_{i-1} = q \quad \forall i$$
 (A.2.2-1)

where q is the equal length spacing between adjacent decision levels or quantization levels.

This is an easier problem to be solved than the previous optimum nonuniform quantizer. For this case, the distortion, D, becomes a function of q and of any particular value of N. If the probability density function of the quantizer input is assumed to be known and symmetric, then a symmetric answer for the decision levels and quantization levels will be obtained. The distortion, D, can be obtained as

Case 1: N = even

$$D = 2 \sum_{i=1}^{\frac{N}{2}-1} \int_{(i-1)q}^{iq} \left[\left(\frac{2i-1}{2} \right) q - x \right]^2 p(x) dx + 2 \int_{(\frac{N}{2}-1)q}^{\infty} \left[\left(\frac{N-1}{2} \right) q - x \right]^2 p(x) dx \qquad (A.2.2-2)$$

Case 2: N = odd

$$D = \int_{1}^{\frac{q}{2}} x^{2} p(x) dx + 2 \sum_{i=1}^{N-3} \int_{1-\frac{1}{2}q}^{(i+\frac{1}{2})q} (iq-x)^{2} p(x) dx + 2 \int_{1-\frac{q}{2}q}^{\infty} \left[\left(\frac{N-1}{2} \right) q - x \right]^{2} p(x) dx$$

$$= \frac{q}{2} \qquad (A.2.2-3)$$

The optimum uniform quantizer step size q can be obtained by differentiating D with respect to q and setting the results equal to zero. We have

Case 1: N = even

$$\frac{dD}{dq} = 2 \sum_{i=1}^{\frac{N}{2}-1} (2i-1) \int_{(i-1)q}^{iq} \left[\left(\frac{2i-1}{2} \right) q - x \right] p(x) dx + 2(N-1) \int_{\left(\frac{N}{2} - 1 \right)q}^{\infty} \left[\left(\frac{N-1}{2} \right) q - x \right] p(x) dx = 0$$
(A.2.2-4)

Case 2: N = odd

$$\frac{dD}{dq} = 2 \sum_{i=1}^{\frac{N-3}{2}} i \int_{(i-\frac{1}{2})q}^{(i+\frac{1}{2})q} (iq-x)p(x)dx + (N-1) \int_{\left(\frac{N-2}{2}\right)q}^{\infty} \left[\left(\frac{N-1}{2}\right)q-x\right]p(x)dx = 0$$
(A.2.2-5)

In either case, the problem is quite acceptable to machine computation when p(x) and N are specified.

益

0

O

A.2.3 Useful Approximation to the Optimum Nonumiform Quantizer [2]

Since a quantizer is often easier to implement, we consider the nonuniform quantizer as the case cade of two nonlinear devices and of a uniform quantizer as shown in Fig. A.2. With a given uniform quantizer and a given probability density function, p(x), the two nonlinear devices $f(\cdot)$ and $g(\cdot)$ in Fig. A.2 are chosen so as to minimize the distortion, $D = E[W\{g(y)-x\}]$, where W as defined in section A.2.1 is an error weighting function. The distortion is made up of two parts:

- 1. The distortion $\mathbf{D}_{\mathbf{n}}$ obtained within the range of the uniform quantizer.
- 2. The distortion in the tails D_T for which the nonlinear devices $f(\cdot)$ and $g(\cdot)$ are completely ineffective.

The analog system is shown in Fig. A.3. The quantization noise due to uniform quantizer is assumed to be independent of the input signal for a large number of quantization levels, the effect of which has been discussed in detail by many researchers. Referring to Fig. A.3, the two extreme points of the output of the first nonlinear device is a dominating factor in the determination of the overall distortion, in other words, D is a function of $f(x_{max})$ and $f(x_{min})$, and $f(x_{max})-f(x_{min})=Nq$, q being the step size of the uniform quantizer. The output of the second nonlinear device, g(y), is expressed in terms of n and f(x) as

$$g(y) = g[f(x) + n] = g[f(x)] + ng'[f(x)]$$
 (A.2.3-1)

If the quantization error is small, a Taylor series expression of g(y) gives the above equation directly. And the expression for $D_{\mathbf{n}}$ can be written as

$$D_{n} = \int_{-\frac{q}{2}}^{\frac{q}{2}} \int_{w_{\text{in}}}^{x_{\text{max}}} w\{q[f(\alpha)+\beta] - \alpha\}_{p_{x}}(\alpha)p_{n}(\beta)d\alpha d\beta \qquad (A.2.3-2)$$

The limits on the integrals are $-\frac{q}{2}$ to $\frac{q}{2}$ for the integral in β and x_{min} to x_{max} ($f(x_{max})$ - $f(x_{min})$ = Nq) for the integral in α .

If we assume $W(\varepsilon) = \varepsilon^2$ and g(y) is sufficiently smooth and the quantization error is small, then following the development in [2], one would be able to obtain

$$D_{n} = \frac{1}{12N^{2}} \left[\sum_{\mathbf{x}_{min}}^{\mathbf{x}_{max}} [p_{\mathbf{x}}(\alpha)]^{\frac{1}{3}} d\alpha \right]^{3}$$
 (A.2.3-3)

If we take into account the probability of occurence of $\mathbf{D}_{\mathbf{n}}$ and $\mathbf{D}_{\mathbf{T}}$, we have

$$p = p_{n} \left[1 - \int_{-\infty}^{x_{min}} p_{x}(\alpha) d\alpha - \int_{x_{max}}^{\infty} p_{x}(\alpha) d\alpha \right] + \int_{-\infty}^{x_{min}} \left[(x_{min} + \frac{q}{2}) - x \right]^{2} p_{x}(\alpha) d\alpha$$

$$+ \int_{x_{max}}^{\infty} \left[(x_{max} - \frac{q}{2}) \right]^{2} p_{x}(\alpha) d\alpha \qquad (A.2.3-4)$$

For a symmetric probability density function, we set $x_{max} = -x_{min} = X$, and

$$D = \frac{2}{3N^2} \left[\int_{0}^{X} [p_{x}(\alpha)]^{\frac{1}{3}} d\alpha \right]^{3} \left[1 - 2 \int_{X}^{\infty} p_{x}(\alpha) d\alpha \right] + 2 \int_{X}^{\infty} [(X - \frac{q}{2}) - x]^{2} p_{x}(\alpha) d\alpha \quad (A.2.3-5)$$

Equation (A.2.3-5) has to be minimized by proper choice of X. Once X is determined, then it can be shown that

$$f(x) = \frac{\int_{0}^{X} [p_{x}(\alpha)]^{\frac{1}{3}} d\alpha}{\int_{0}^{X} [p_{x}(\alpha)]^{\frac{1}{3}} d\alpha}$$
 (A.2.3-6)

It is noted from the above equation that the step size of the uniform quantizer will not affect the resulting nonuniform quantizer.

The characteristic of this quantizer for 2^m (m = 1,...,9) quantization levels is given and discussed in the next section. We mention here that the derivation given in [2] erred in assuming the two extremes of the uniform quantizer shown in Fig. A.3 to be $\pm \left(\frac{N-1}{2}\right)q$ instead of $\pm \left(\frac{N}{2}\right)q$.

A.3 Results and Comparisons

G

0

0

The structures for the optimum uniform, optimum nonuniform and approximate nonuniform (compandor) quantizers are described in the previous sections. In this section, we present some nice characteristics of the approximate nonuniform quantizer along with the optimum uniform and optimum nonuniform quantizers. The equations defining the optimum nonuniform quantizer yield closed-form solution only in certain special cases, depending solely on the probability density function of the quantizer input signal. For example, even for the Gaussian distributed signal, for lack of the closed-form solution for the x₁ (decision levels) and y₁ (reconstruction levels), some sort of numerical solution must be sought.

Max [44] suggested an iterative procedure to calculate x₁ and y₂ and

tabulated the values of x and y for N (number of levels) up to 36, since the time required to determine the quantizer structure increases exponentially with the total number of levels of the quantizer, Max's [44] work cannot be extended beyond N = 36. Kurtenbach and Wintz [40] applied the same numerical approach and tabulated the value of x_i and y_i to N = 512 $(N = 2^n, n = 9, n : number of quantizer bits)$ for the Gaussian distributed signal. They confessed also that the determination of the quantizer structure for m = 6, 7, 8, 9 is limited because of the computer time required for each case. Paez and Glisson [51] published the quantizer results for the Laplacian and Gamma distributed signals facing the same kind of difficulty, and tabulated the data only up to N = 32. So the exact approach to the optimum nonuniform quantizer gives little insight and sometimes prsents someone who has a new quantization problem with a considerable amount of computation time to obtain a significant result. The second advantage of designing the approximate nonuniform quantizer is that it is easily implementable with only a marginal increase in its complexity compared to the optimum uniform quantizer.

Tables A.1 and A.2 list the approximate average amount of CDC CYBER

173 computer time required to determine the quantizer structure for the
optimum nonuniform, optimum uniform and approximate nonuniform quantizers.

A comparison of these three quantizers can be easily made from the entries
of Tables A.1 and A.2 to conclude that the approximate nonuniform quantizer
is the best choice as far as computation time is concerned.

Note that we have used our own numerical approach to solve the values of x₁ and y₁ for a given quantizer. The procedure is described as follows:

If the probability density function is known, we make an initial guess for x_i ($i=1,\ldots,\frac{N}{2}-1$), where the x_i are uniformly spaced. $x_{\frac{N}{2}}$ is assumed to be equal to five times the standard deviation of the input signal. Then y_i is calculated ($i=1,\ldots,\frac{N}{2}$) by solving (A.2.1-3b). x_i ($i=1,\ldots,\frac{N}{2}-1$) is updated, denoted as \hat{x}_i , by using Newton's numerical method on (A.2.1-3a) compute resulting error $e=x_i-\hat{x}_i$. If it satisfies the required error bound, then x_i was chosen correctly, otherwise the process is repeated. Fig. A.4 shows the flow chart of this numerical procedure.

The correctness of the computer program was checked by printing out the numerical value of each data entry to five digits after the decimal point. Comparing the results with Max's [44], we have precise value for each x_i and y_i, and furthermore our accuracy is extended to five digits instead of four digits after the decimal point.

As a by-product of determining the quantizer structures, most of the useful information quantities were obtained. There are (a) the mean square error (M.S.E.) introduced in the quantization process, (b) the entropy at the quantizer output, (c) the signal to noise ratio, (d) the rate distortion function or source information rate. In addition, all the data entries tabulated are constructed for quantizer input signal with unit standard deviation (r.m.s. value). To obtain the 'decision levels' x_i or "quantization levels' y_i for signals with standard deviation different from unity, we simply need multiply the given values of data entries by the actual standard deviation. The M.S.E. is found by multiplying the given M.S.E. by the variance of the signal.

In all the measurements, after obtaining the values of x_i and y_i , the mean square errors (M.S.E.) are calculated by (A.2.1-1), (A.2.2-2) and (A.2.3-5) for optimum nonuniform, optimum uniform and approximate nonuniform quantizer respectively. Here we assume that the distribution of the quantizer input signal and quantizer structure is symmetric and that the total number of quantizer output levels is even. This constraint is not restrictive. For example, we have plotted Tables A.10-A.15 for $N = 2, \dots, 36$, which has both cases N = even and N = odd.

For entropy it is possible to treat the quantizer output as a discrete data source and can be calculated from the following formula.

Entropy =
$$-2 \sum_{i=1}^{\frac{N}{2}} p_i \log_2 p_i$$
 bits per sample (A.3-1)
where $p_i = p [y=y_i] = p [x_{i-1} \le x \le x_i] = \int_{x_{i-1}}^{x_i} p(x) dx$ $i = 1, ..., \frac{N}{2}$.

Gaussian and Laplacian signal distributions were considered. These are the two commonly used assumptions for the signal distribution in the image processing area.

Guassian density:
$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

rms value = σ

(A.3-2)

Laplacian density:
$$p(x) = \frac{\alpha}{2} e^{-\alpha |x|}$$

rms value = $\sigma = \frac{\sqrt{2}}{\alpha}$ (A.3-3)

The exact formula for p in either case can be expressed as follows:

Laplacian distributed:

$$p_{i} = \int_{x_{i-1}}^{x_{i}} p(x) dx = \int_{x_{i-1}}^{x_{i}} \frac{\alpha}{2} e^{-\alpha |x|} dx = -\frac{1}{2} \left[e^{-\alpha x_{i}} - e^{-\alpha x_{i-1}} \right] \quad i = 1, \dots, \frac{N}{2}$$
(A.3-4)

Gaussian distributed:

0

O

0

$$p_{i} = \int_{x_{i-1}}^{x_{i}} p(x) dx = \int_{x_{i-1}}^{x_{i}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^{2}}{2\sigma^{2}}} dx = \frac{1}{2} \left[erf(x_{i}/\sqrt{2}\sigma) - erf(x_{i-1}/\sqrt{2}\sigma) \right]^{\frac{1}{2}}$$

$$i = 1, \dots, \frac{N}{2}$$
(A. 3-5)

The signal to noise ratio (S.N.R.) is defined as

S.N.R. (dB) = 10
$$\log_{10} \frac{1}{\text{mean square error (M.S.E.)}}$$
 (A.3-6)

where we assume unity variance for the quantizer input signal.

Tables A.3 - A.8 tabulate the characteristics of three different quantizers with Gaussian and Laplacian distributed quantizer input signal.

In order to better compare the performances of these three quantizers, we have plotted the curves of all three quantizers into one single graph according to differene categories, i.e., mean square error, signal to noise ratio, and entropy. These are shown in Figs. A.5 - A.10. It is seen

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

⁺ We use the National Bureau of Standards definition for the error function, i.e.,

from these figures that approximate nonuniform quantizers (compandor) perform virtually as good as optimum nonuniform quantizers, since the characteristic curves of these two quantizers are so close together. Fig. A.11 shows the unequal probabilities of quantizer output levels for the case of N = 8. Again, the similarity of the compandor and the nonuniform quantizer can be easily observed. Another significant result that can be observed from Figs. A.5 - A.10 is that the advantage of the optimum nonuniform quantizer and approximate nonuniform quantizer (compandor) over the optimum uniform quantizer starts with n = 2 and increases as n increases. This effect is due to the fact that both former quantizer structures have more quantization levels near the origin than the optimum uniform quantizer. Here we make the assumption that our quantizer structure is symmetric with respect to the origin. But the optimum uniform quantizer still has its own advantages. It is easily calculable for the x, (decision levels) and y (quantization levels). Also Wood [72] showed that it gives the minimum distortion among the three quantizer structures if a fixed entropy of the quantizer output is required.

Since we have presented many tables for optimum nonuniform, optimum uniform and approximate nonuniform quantizers, all these tables are created under the assumption that we have a unity variance input signal. Using f(n) to denote M.S.E., there is no closed-form expression to relate f(n) and n (n:number of quantizer bits). However, one still can easily approximate the numerical results of f(n) by a piecewise exponential fitting numerical technique. Table A.9I shows the analytic models of f(n). If we denote $h(x) = f^{-1}(x)$, the corresponding analytic models of h(x) are shown in Table A.9II. Tables A.9I and A.9II serve as a useful tool for solving the Rate-Distortion problem in information theory.

A.4 Conclusions

3

3

0

23

We have obtained the approximate nonuniform quantizer characteristics for Gaussian and Laplacian distributed signals and investigated the performance of this quantizer with optimum nonuniform quantizer as well as optimum uniform quantizer. We have also extended the performances of optimum nonuniform and optimum uniform quantizers to large quantization levels N = 512 ($N = 2^n : n = 9$) accompanied by useful information, viz., mean square error, signal to noise ratio and entropy, etc.

In practical implementation, approximate nonuniform quantizer seems as good as an optimum nonuniform quantizer, and it is easily calculable with only a marginal increase in its complexity compared to the optimum uniform quantizer. Also it is an acceptable and good quantizer structure if the computer system doesn't have enough buffer space to store the entire tabulated data for every large N or m.

The scheme described in this Appendix can be easily extended to other input signal processes and is not restricted to just Gaussian and Laplacian processes.

Figure A.1 Quantizer Characteristics

O

Figure A.2 Nonuniform Quantizer (Compandor)

Figure A.3 Analog Model for Nonlinear Quantization

Figure A.4 Flow Chart of Determining the 'Decision Levels' and the 'Quantization Levels' for an Optimum Nonuniform Quantizer with a Given Probability Density Function, p(x).

Q

0

0

Figure A.5 Mean Square Error versus Number of Quantizer Bits for Signal with Gaussian Density (Mean = 0. Variance = 1)

Figure A.6 Mean Square Error versus Number of Quantizer Bits for Signal with Laplacian Density (Mean = 0, Variance = 1)

Figure A.7 Signal to Noise Ratio versus Number of Quantizer Bits for Signal with Gaussian Density (Mean = 0, Variance = 1)

Figure A.8 Signal to Noise Ratio versus Number of Quantizer Bits for Signal with Laplacian Density (Nean = 0, Variance = 1)

G

Figure A.9 Entropy versus Number of Quantizer Bits for Signal with Gaussian Density (Mean = 0, Variance = 1)

Figure A.10 Entropy versus Number of Quantizer Bits for Signal with Laplacian Density (Mean = 0, Variance = 1)

Figure A. 11 Quantizer Output Lovels and their Probability Distribution (N - 8)

Table A.1 Approximate Average Amount of CDC Cyber 173 Computer Time Required to Determine the Quantizer Structure with Gaussian Distributed Input Signal

No. of Quantizer Bit	CDC Cyber	173 Computer Tim	e (Seconds)
n resident of the state of the	Optimum Uniform	Optimum Nonuniform	Approximate Nonuniform (Compandor)
1 2 3		an a	21 miles (* 12 miles) 12 miles - 20 miles
4 5			3
7 8		382.331	
9	10.193		4.816

0

The times shown are the cumulative computation times that are required to calculate the quantizers up to the corresponding value of n.

Table A.2 Approximate Average Amount of CDC Cyber 173 Computer
Time Required to Determine the Quantizer Structure
with Laplacian Distributed Input Signal

No. of Quantizer Bit	CDC Cyber 1	73 Computer Tim	ne (Seconds)
n	Optimum Uniform	Optimum Nonniform	Approximate Nonuniform (Compandor)
1	(1286.7)	1	1
2			
3			
4		1915	
5			
6			
7		128.628	
8	•		
9	8.504		3.904

The times shown are the cumulative computation times that are required to calculate the quantizers up to the corresponding value of n.

Table A.3 Optimum Uniform Quantizers for Signal with Gaussian Density (Mean = 0, Variance = 1)

. OF PITS . NO.	OF CUTPUT LEVELS	STEP SIZE	M.S.C.	S.W.P. (DB)	ENTROPY
	,	1.59577	.36338	4,39639	1.00000
		.77567	.11885	7.25015	1.90373
,		.58602	.03744	14.26668	2.76057
•	16	.33520	.01154	19.37676	3.60242
5	32	.18614	.60350	24.56527	4.44926
6	64	-10406	.00104	29.62948	5.30869
1	128	.05487	.00030	35-16651	6.16253
•	256	.03076	.00009	40.57067	7.06944
•	517	.01650	.00002	46.03469	7.96846

Table A.4 Optimum Uniform Quantizers for Signal with Laplacian Density (Mean = 0, Variance = 1)

. 04 8115	NO. OF DUTPUT LEVELS	3144 2176 .	m.s.f.	S.N.K.(DB)	ENTROPT
1	,	1.41421	.50000	3.01030	1.00000
1		1.65739	.19630	7.67075	1.75066
3		.73643	.07175	11.44191	2.39100
•	16	.46100	.62535	15.96005	3.06342
5	32	.27549	.00e72	20.59821	3.78130
	64	.16566 (.00291	25.35595	4.53703
1	120	.64610	.66645	30.22910	16556.6
	256	.03464	.00030	35.20027	6.13130
•	512	.03000	.0000	40.28120	6.95970

Table A.5 Optimum Nonuniform Quantizers for Signal with Gaussian Density (Mean = 0, Variance = 1)

O

		•10	:::	748	14.61	140	3.76 20.22 3.76	230	32 .60 26.01	250	31.90 5.70	940	17.00 37.00	910
1	111)	741)	2(1)	7111	1(1)	*(1)	1(1)	*(1)	***	***	2411	*(1)	****	7(1)
1 2 3 4 9 6 7 6 9 10 11 12 13 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	•.••••	·1010	.90163	1.5279	0.00000 .30039 1.03002 1.74800	.79401 .79409 1.34397 2.19201	0.00000 .23630 .32253 .79973 1.09953 1.43761 1.86361 2.66106	.12643 .30410 .405043 .04256 1.25640 1.01032 2.36620 2.73203	0.00000 .11212 .24502 .3998 .3998 .3998 .67674 .62100 .97238 1.1120 1.30011 1.40238 1.40238 1.90007 2.17430 2.30544 2.97684	.00507 .19628 .3173 .00721 .00557 .70700 .00562 1.00972 1.2120 1.30700 1.37731 1.70632 2.02000 2.31077 2.04200	0.00000 .00710 .1338 .20182 .20456 .33773 .40615 .47364 .54557 .61659 .6	.01356 .10072 .100072 .10000 .23360 .30131 .37100 .3000 .31003 .3200 .72073 .7003 .6717 .9000 .0203 .11023 1.11023 1.11023	0.0000 .01-25 .0001 .10279 .11711 .17147 .20100 .2000 .10000	.0171 .0213 .0250 .1199 .1291 .1291 .1291 .2213 .2013
10											1.32433	1.30020	.02051	
21											1.41505	1.50005	.70107	.0634
22											1.01146	1.00204	.73042	.7371
21											1.03002	1.00022	.01147	.7950
20											1.95101	2.01302	.05201	. 4041
27											2.22701	2.30304	. 02433	. 4444
:											2.30910	2.47525	1.00440	1.0200
30											2.79050	2.92102	1.0.000	4.0000
**											3.49347	3.24742	1.11000	1.1100
"													1-17201	1.1000
**													1.23000	1.2374
34													1.30319	1.325
**													1.30002	1.017
**													1.44000	1.012
*													1.33775	1.304
					-								1.90707	1.0030
**													1.70716	1.710
**													1.00151	1.4321
**													1.02220	1.453
**			. 198										1.00010	2.4171
91													2-11-50	2.01-1
**			Marie .										8-1-110	2.220
*													2.20731	2.100
50													2.52030	2.570
37		rule.											2.02004	2.070
;;													2.03074	2.100
													45100.3	3.071
41 42 44 47 46 47 48 49 90 91 92 91 92 93 93 94 95 96 96 96 96 96 96 96 96 96 96 96 96 96													3.15022	3.400
•)													3.00359	1.746

Table A.5 (cont'd) Optimum Nonuniform Quantizers for Signal with Gaussian Density (Mean = 0, Variance = 1)

IT IVEL	234 0.00						512 0.000	NO1								- 110	
STROPT		541					8.69	131								Y	
1	1(1)	¥(1)	. 1	1(1)	7(1)	1	X(1)	¥(1)	1	*(1)	Y(1)	,	I(1)	T(1)		R(I)	*(
1	0.000000	.000014	45	1.2218	1.7326	1	0.000000	.0075065	65	.96096	. 94.845	129	1.9245	1.9370	193	2.9287	2.01
	.018079	.02/943	44	1.2435	1.2544	1	.015013	.022519	64	.97598	.983-7	1 10	1.9396	1.9472	194	2.9457	2.95
,	.036054	.043073	67	1.2634	1.2744	,	.oxm??	.03/532	.7	.99100	. 99819	111	1.9548	1.9673	195	2.9629	2.97
:	.072127	.041143	**	1.2475	1.2956	•	.015540	.052545	4.3	1.0000	1.0115	132	1.9699	1.9775	196	2.9601	2.95
:	.070168	.099189	70	1.3098	1.3209	;	.000053	.047558	20	1.0210	1.0265	133	1.9651	1.9926	197	2.9975	3.0
,	.10A22	.11724	71	1. 3548	1.3442	;	,090080	.097585	71	1.0511	1.0586	134	2.0003	2.0230	198	3.0150	3.0
	.12627	.13530	72	1.3776	1.3031		.10509	.11760	72	1.0561	1.0/14	136	2.0306	2.0362	200	3.0502	3.0
•	.14434	.15337	73	1.4007	1.4122	•	.17011	.12761	73	1.0811	1.0686	137	2.0456	2.0534	201	3.0480	3.0
17	.14741	.17145	74	1.4239	1.4356	10	.13517	.14762	14	1.0962	1.1036	134	2.0410	2.0646	202	3.0859	3.0
11	.18050	.20765	75	1.4774	1.4501	11	.13013	.15764	75	1.3117	1.1187	130	2.0762	2.0834	201	3.1040	3.11
13	.21471	.225/7	17	1.4950	1.5070	13	.16515	.17745	76	1.1262	1.1337	140	2.0914	2.0990	704	3.1222	3.1
14	.23444	.74 300	78	1.5192	1.5113	14	.19317	.20268	78	1.1563	1.1637	141	2.1067	2.1142	205	3.1496	3.10
15	.25296	. 76.206	79	1.5434	1.5559	13	.21019	.21769	79	1.1713	1.1788	143	2.1371	2.1447	201	3.1778	3.1
16	.27115	,24023	80	1.5653	1.5407	14	.22520	.23270	80	1.1863	1.1936	144	7.1524	2.1600	208	3.1947	3.2
17	.23933			1.5933	1.6059	17	.24021	.24777		1.2013	1.2088	145	2.1676	2.1752	209	3.2157	3. 2
18	. 30754	.31444	82	1.4144	1.6313	18	.2552)	.26773	.2	1.7144	1.2230	144	2.1879	2.1905	710	. 3.2350	3.20
19	.32577	.35315	83	1.6701	1.6571	19	.28525	.27774	83	1.2314	1.2389	147	2.1982	2.2038	211	3. 2544	3.20
71	.36230	.37144	85	1.6964	1.7096	21	30027	.30777	83	1.2464	1.2689	148	2.2135	2.2211	212	3.2741	3.20
27	.38060	. 39976	84	1.7230	1.7364	22	.31328	. 32278	86	1.7765	1.2840	370	2.7288	2.2364	713	3. 2939	3.3
23	. 39893	.40619	47	1.7500	1.7634	23	. 33030	. 33780	27	1.2915	1.2990	153	7.7594	7.2671	215	3.3344	3.3
24	.41730	.42448		1.7724	1.7911	24	. 34531	. 35781	8.8	1. 3566	1. 1140	152	2.2748	2.28:4	216	3. 3551	3.3
25	.4 1369	.44440		1.8032	1.8197	25	. 36032	.36782		1.3216	1.3291	153	2.2902	2.2973	717	3.3760	3. 1
24	.45412	.46334	90	1.8521	1.8476	26	. 37534	. 38284	90	1.3366	1.3441	154	2.3055	2.3132	218	3.3972	3.4
25	.49109	.50034	97	1.8912	1.9059	27	. 19035	.39785	*1	1.3517	1.3591	155	2.3209	2.3286	219	3.4188	3.4
29	.50962	.31890	91	1.9709	1.9350	79	.47038	.42788	93	1.3817	1.3807	156	2.1363	2.3594	220	3.4407	3.4
30	.52870	.33750	94	1.9511	1.9443	10	.43539	.44249	94	1.7968	1.4041	158	2.3672	2.3749	222	3.4855	3.4
31	.54482	.53614	95	1.9319	1.9974	31	.49941	.45790	95	1.4118	1.4191	159	2.3827	2.3704	223	3.5056	3.5
32	.36349	.37643	96	2.0112	7.0290	32	.44542	.47292	96	1.4269	1.4343	140	7. 3982	2.4059	224	3.5320	3.5
33	.584.0	.34324	97	2.0432	2.0614	33	.48043	.48793	• 7	1.4417	1.4494	161	7.4137	2.4214	223	3.5559	3.5
34	.60296	.611734	**	2.0179	2.1261	34	.49545	.30293	**	1.4569	1.4644	147	2.4292	2.4369	726	3.58%	3.5
15	.64463	.63004	100	2.1434	2.1627	35	.57548	.51796	100	1.4870	1.4795	163	7.4447	2.4525	727	3.6308	3.6
17	45954	.6450	121	2.1904	2.1**1	37	34049	.34799	101	1.5071	1.50%	105	2.4759	2.4837	229	3.6570	3.6
34	.67851	. GREDO	102	2.2162	2.2343	38	. 55551	. 36 300	102	1.5171	1.3246	166	2.4915	2.4993	230	3.6837	3.4
39	.49753	.70706	103	2.2530	2.2716	39	. 57057	.57RG2	193	1.5322	1.5397	167	2.5072	2.5156	201	3.7112	3.7
40	.71662	.72617	104	2.2905	2. 3199	40	. 58554	.39303	104	1.5477	1.5547	14.6	2.5229	2.5307	232	3.7395	3.7
41	.73577	.74536	103	2.3296	2.3493	41	.60055	.60803	105	1.5623	1.3679	149	7.5384	7.5444	233	3.7686	3.7
47	.73497	.78440	105	7.4109	2.3999	47	.61557	.63808	106	1.5774	1.5519	\$70	7.554)	2.5621	234	3.7985	3.8
**	.79362	.00331	108	2.4536	2.4753	**	.64340	.65309	105	1.6075	1.6130	171	2.5701	2.5779	235	3.8295	3.6
45	.81 305	.#2277	107	2.4975	2.5703	45	.66051		109	1.6275 .	1.6300	173	2.6017	2.6096	237	3.8948	3.9
**	.83233	. 842 11	110	2.3436	2.5640	44	.67563	.44312	110	1.6376	1.6451	174	2.6176	2.6255	238	3.9293	3.4
47	.85213	.05193	111	2.5912	2.6155	47	. 6 3054	.64816	111	1.4527	1.64.02	175	2.6335	2.6414	239	3:9652	3.4
**	.87179	.44143	117	2.6409	7.4467	4.	. 70556	.71315	117	1.4475	1.6753	176	2.6494	2.6574	240	4.0078	4.9
30	.91134	.90142	113	2.7472	2.7750	50	.71549	.77817	113	1.6528	1.6901	177	2.6654	2.6734	241	4.0471	4.0
51	.93128	.94126	1115	7.7044	2. #117	51	75071	.75820	115	1.7130	1.7205	170	2.6815	2.4894	242	4.0815	4.1
52	.95130	.94132	114	2.8641	2.8918	32	.76573	.77122	116	1.7781	1.7734	150	2.7117	2.7217	243	4.1771	4.1
53	.97141	.95148	117	2.9255	2.9618	33	.750174	.78824	117	1.7412	1.7507	181	2.7298	2.7379	243	4.2225	4.2
54	.97142	1.0017	115	2.9971	3.0324	34	.79576	.87325	114	1.7342	1.7454	142	2.7461	2.7541	244	4.2751	4.)
55	1.9119	1.0221	119	3,4764	3.1034	35	.81078	.41827	119	1.7733	1.790	183	2.7623	2.7705	247	4. 3319	4.7
54	1.0324	1.9474	120	3.1497	3.1909	34	. #2579	.83129	170	1.7584	1.7769	194	2.7787	2.7849	248	4. 3935	4.4
37	1.0529	1.0432	121	3. 2361	3, 3413	37	.85581	.84317	171	1.8186	1.6111	185	2.7951	2.0032	249	4.4411	4.4
57	1,094)	1.1047	173	3.4100	3.4745	50	ATORS	.87814	177	1.8317	1.8411	144	2.8115	2.8197	250	4.5360	4.9
60	1.1152	1.1757	174	3.3596	1.4747	60			174	1.8489	1.8544	150	7.8444	2.8529	251	4.7174	4.5
61	1.1163	1.1448	125	3, 7970	3.7792	.1	.9000	. 4118.74	125	1.8640	1.8715	189	2.9411	7.8496	200	4.4718	4.8
47	1.1574	1.1689	124	3.4751	3.9714	62	.91 /99	.9/119	124	1.8791	1.8544	190	2.8790	2.8844	234	4.9775	3.0
67	1.1787	1.1894	177	4.1907	4.2301	*1		.91841	177	1.8942	1.7918	191	2.8948	2.9012	233	3.1375	3.7
	1.2777	1.7199	174	4.4144	4.4437		.94194	.95363	178	1.0004	1.9147	197	2.9117	2.9701	214	3.4374	3.4

Table A.6 Optimum Nonuniform Quantizers for Signal with Laplacian Density (Mean = 0, Variance = 1)

1 VEL 5.6.	1.00	4 10	1:22	19	12.63	***	10.1	1222	23.4	1010	7.7	301	120 -140 -140 -140 -140	177
	***	4413	241)	1410	111)	111)	*(1)	7(1)	2(1)	7113	1(1)	711)	3(1)	7133
		.757107	1-12-49	1.43397	3.104800 -53121 1.25277 2.37965	.233418 .23299 1.07293 3.03676		.124001 .4040 .72676 1.11110 1.57774 2.17758 3.01713	0.000000 -13729 -27330 -27534 -57731 -76363 -75571 1.16773 1.40260 3.66710	.84482 .70949 .34627 .50281 .67181 .65545 1.00448 1.27648 1.52642 1.50756	0-000000 -06631 -13977 -20550 -27667 -35465 -63303 -51462 -59947 -68785	.037638 .09999 .16954 .29199 .31988 .39301 .97300 .93620 .6274 .73299	0-800000 -0332A -06729 -10175 -13676 -17739 -20961 -20965 -20996	.01455 .0502 .2643 .1191 .1544 .1903 .2244 .2440
17									1.96951 2.32765 2.74728	2.13144	.78806	. 02716	.39995 .39995 .43943	.3799
1							,		3.24051	3-14031	1.19493	1.11769	-40092 -52281 -56553	-5016 -5035
											1.43727	1.50100	-65161	-631 -676
22											2.02476	2.10942	.74545 .79248 .84137	-767
15											2.40523 2.40523 2.40632	2-71627 2-71627 2-96-35 3-2-530	.99101 .99103 1.0-710	1.020
			0								3.76041	3.95166	1-19190	1.129
32											4.71824 5.43785 6.56474	5-61607 5-65762 7-27105	1-27-60	1.354
13													1-52910	1.567
17													1-04072	1.754
•													1-97640	2.020
13										100			2-24414 2-34444 2-44143	7-241
:												1-12	2-45-748 2-45-728 2-77705	2.422
													8-90171 3-03412 3-17533	3.152
												*100.1	3-40743	3-572
						1							4-96740	3.990
								73					0-5471A- 0-871A- 0-27500 0-64763	3.013
3													6-10707 6-70744 8-07733	5.442 1.322 0.724

Table A.6 (cont'd) Optimum Monuntform Quantizer for Signal with Laplacian Density (Mean = 0, Variance = 1)

11	234	-					512										
	0.00	107					.00										
NIE.	. (04) 41.M						47.45										3 - 17
		-														•	
	1(1)	1(1)	. 1	1(1)	4(1)	1	x(1)	T(1)	1	1(1)	7(1)	1	x(1)	T(1)		E(1)	**
1	.017074	.0035027	**	1.5365	1.5195	1	0.000000	.0057117	65	.88A70	91736	120	2.0368	2.0449	193	3.6705	3.65
;	.01/0/4	.042927	67	1,5704	1.5535	3	.023779	.029756	67	.92058	.92837	131	2.0572	2.0674	194	3.7652	3.72
	.051019	.000110		1.6054	1.6341		.035767	.041777		.97662	.9464)	132	2.0982	2.1085	196	3.7760	3.79
3	.069133	.077915		1.4410	1.6588	5	.047821	.033844		.95271	.94076	133	2.1169	2.1293	197	3.4122	3.81
	.040772	-091425	30	1.6769	1.6950		.059941	.00e016	70	.96586	.97694	134	2.1397	2.1501	198	3.0489	3.60
,	.10434	.11349	71	1.7135	1.7319	,	.072127	.078235	71	.98508	.00310	133	2.1606	2.1711	199	3.8862	3.90
•	.17749	.14943	72	1.7506	1.7694		.084378	.000519	77	1.0014	1.0095	136	2.1616	2.1921	200	3.9241	1.94
	.11018	.16797	73	1.7884	1.8075	10	.10904	.11320	73	1.0177	1.0259	137	2.2027	2.2133	201	3.9626	3.95
1	.17720	.15014	75	1.8660	1.8857	11	.12133	.12776	75	1.0505	1.0558	139	2.2453	2.2560	202	4.0017	4.00
12	.19575	.20507	76	1.9058	1.9259	12	.13404	.14031	76	1.0671	1.0753	140	2.2647	2.2775	204	4.0670	4.10
)	.21444	.22364	77	1.9444	1.9669	1)	.14442	.15292	77	1.0836	1.0919	141	2.7843	2.2991	203	4.1232	4.14
4	.23334	.24:81	78	1.9578	2.0064	14	.15426	.14540	78	1.1001	1.1086	142	2.3100	2.3209	204	4.1641	4.18
•	.25738	.26193	79	2.0299	2.0511	15	.17197	.17634	79	1.1170	1.1253	143	2.3318	2.3427	207	4.2076	4.22
,	.27158	.30049	80	2.0728	2.0945	14	.18475	.19115	80	1.1337	1.1471	144	2.3538	2.3647	206	4.2513	4.27
	.31051	. 32032	81	2.1613	2.1387	17	.21030	.20402	81	1.1506	1.1759	145	2.1758	2.3869	210	4.3404	4.31
•	. 13023	.34014	1)	2.2069	2.2300	19	.22347	.27997		1.1844	1.1929	147	2.4204	2.4315	211	4.3870	4.41
0	.35013	.3601)	84	2.2335	2.2771	20	.23630	. 24 30 3		1.2014	1.2049	148	2.4428	2.4541	212	4.4340	4.45
11	.37022	. 38071		2.3011	2.3252	21	.24940	.23617	83	1.7183	1.2270	149	2.4654	2.4768	m	4.4871	4.50
2	. 39049	.40067	86	2.3496	2.3744	22	.26277	.26936	86	1.2354	1.2441	150	2.4882	2.4996	214	4.5312	4.55
,	.41095	.42122	.7	2.1996	2.4247	23	.27600	.28263	87	1.2528	1.2614	151	2.5111	2.5226	113	4.5814	4.50
	.43244	.44197	5.0	2.4505	2.4743	24	.28529	.29595		1.2700	1.2787	157	2.5342	2.5457	214	4.6327	4.6
3	.47349	.48104	**	2.5027	2.5291	25	.30763	.30935	**	1.3047	1.3134	153	2.3574	2.3690	217	4.6853	4.7
,	.49473	.30141	91	2.6109	7.6186	27	.32957	.33632	*1	1.3272	1.1309	155	2.6042	2.6160	210	4.7901	4.76
8	.51819	. 52676	.2	7.6671	2.6934	20	.34 312	. 34 991	92	1.3397	1.3484	134	2.6279	2.6398	270	4.4304	4.8
	.53745	.34873	•)	2.1748	2.7540	29	.35674	. 36355	93	1.3572	1.3560	157	2.6519	2.6637	271	4.9048	4.01
0	.55972	.57071	94	2.7841	7.0141	30	.37042	. 17727	-	1.3749	1.3837	154	2.6750	2.6878	277	4.9684	4.91
11	.58181	.59291	*5	2.8450	2.8759	31	.38416	.39104	*5	1.3926	1.4014	159	2.7000	2.7121	223	3.0296	5.04
2	.40417	.61533	**	2.9077	2.9395	32	. 39797	.401.60	**	1.4103	1.4197	160	2.7744	2.7366	224	5.0926	5.13
3	.62566	.61779	97	2.9723	3.0051	33	.47378	.43273	97	1.4287	1.4550	161	2.7490	2.7613	223	5.1975	3.1
15	.67743	.68379	**	3.0389	3.1425	35	.43978	44478	**	1.4640	1.4730	162	2.7737	2.7861	226	5.2912	3.2
16	.69365	.70736	100	3.1786	3.2146	36	.45384	LEDER	100	1,4820	1.4410	164	2.8719	2.8364	228	5. 3644	5.4
17	.71916	.73097	101	3.2319	3.2892	37	.46706	.47503	101	1.5001	1.5097	165	2.8492	2.8419	229	5.4380	3.47
18	.74790	.75483	102	3.1279	1.3444	38	.48215	.48925	102	1.5183	1.5274	164	2.8748	2.8876	230	. 5.5142	3.35
19	.76639	.77593	101	3,4067	3.4469	39	.47640	. 30234	103	1.5365	1.5456	167	2,9005	2.9135	231	3.5932	3.67
0	.77114	.00313	104	3.4864	1.5301	40	.31077	. 51755	104	1.5548	1.5639	168	2.9265	2.9396	In	3.6751	5.71
1	.84045	.85291	105	3.5734	3.6168	41	.52510	.51229	105	1.5732	1.5023	170	2.9328	2.9659	2))	5.7603	3.8
	.84552	.87917	107	3,7543	3.8014	43	.33404	.56130	107	1.6101	1.6193	171	3.0060	3.0193	234	3.8440	5.89
	, 890A7	.90141	108	3.8507	3.9001	44	. 34860	. 37429	103	1.6287	1.6350	177	3.0329	3.0444	234	6.0391	6.0
15	.01651	.97940	100	1.9518	4.0035	45	. 56 323	. 59055	100	1.8471	1.6566	173	3.0601	3.0738	237	6.1393	6.19
	.94244	.9534.0	110	4.0579	4.1122	46	.59792	.60527	110	1.660	1.6754	174	3.0876	3.1014	238	4.2455	6.24
17	.96948	.94188	111	4.1693	4.2247	47	.61267	.62003	111	1.4844	1.4042	175	3.1151	3.1292	239	6.3572	6.41
	.99524	1.0084	112	4.2873	4.3476	48	.62748	.43499	112	1.7037	1.7131	176	3.1423	3.1574	210	6.4751	6.57
19	1.0491	1.0430	113	4.3444	4,4741	49	.64234	.64477	113	1.7276	1.7321	177	3.1714	3.1858	261	6.3979	4.60
31	1.0744	1.0007	113	4,6856	4.7585	31	.47710	**1460	113	1.7404	1,7703	170	3.2291	3.2145	242	6.7325	6.0
52	1.1047	1.1187	115	4. 4365	4,9151	32	.44774	. 60400	114	1.7799	1.7855	180	3.2593	3.2729	744	7.0211	7.15
33	1.1179	1.1471	117	4.9997	3.0812	33	.70244	. Frem	117	1.7792	1.8089	141	3.2878	3. 1026	245	7.1880	7.2
54	1.1415	1.1759	118	5.1741	5.2679	34	.71746	.72.75	11*	1.0185	1.4742	187	3.3176	3.3324	244	7. 3645	7.4
33	1.1905	1.2000	119	5. 3445	3.4400	35	.71290	.74033	110	1.4170	1.8474	143	3.1478	3.3629	247	7.5570	7.4
36	1.7194	1.7144	120	3.5401	3.4911	**	.74871	.75'A4	120	1.8574	1.8477	194	3.3793	3.1914	748	7.7684	7.8
57	1.2796	1.7948	171	5.4152	4.2201	17	.7615A .77900	.77124	171	1.4770	1,9055	185	3.4644	3.4247	249	8.0016	8.11
59	1.7102	1.3255	123	4, 1421	6.3440	19	,79449	B0:24	123	1,5164	1.9743	197	3,4771	3.4880	230	8.2441	8.4
60	1.3411	1.1547	124	6.7353	4.9245	10	.81004	. 81 782	174	1.9352	1.9467	185	3.5041	3.5202	201	8.9240	9.11
61	1.3725	1.304)	123	1.1700	7.1911	41	.87141	.83144	125	1.9%	1.9641	149	3.5345	3.5578	203	9.1487	9. W
62	1.4044	1.4204	176	7.6911	7.9929	4.7	.84117		126	1.9747	1.4842	100	3.5471	3.5859	PM.	9.8019	10.11
.1	1.4347	1.4574	127	4.4127	8.8325	41	.85305	.44592	127	1.99()	2.0041	191	3.4024	3.6191	255	10.402	11.02
	1.4444	1.4559	174	4,5396	10.747	44	.87284	. ##1174	222	7.0145	7.0744	197	3.6741	3.4533	274	21.728	12.41

Table A.7 Compandors for Signal with Gaussian Density (Mean = 0, Variance = 1)

Q

	• • • • • • • • • • • • • • • • • • • •	121	:::	999	12.00	341	10.11	***	2:1	317	31.31	331	37.61 6.70	017
	****	****	.en	****	***	111)	***	761)	3(1)	7177	1(1)	7(1)	8413	7413
2 3 4 5 5 6 7 7 6 7 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	\$.eecea 1.62146	.72138		.42026	8.00000 .07100 .07100 .08100 1.55772 2.50383	.13335 .71642 1.26439 1.47439	0.00000 .74907 .50303 .74702 1.00000 1.37701 1.77010 2.27105 2.96000	.12-971 .3/52-6 .3/6-5 .70-27-9 1-20-22 1-3-6-22 2-3-6-38	0.02208 .12916 .29903 .39239 .52203 .64387 .74861 1.10240 1.245-3 1.44852 2.07136 2.37402 2.74685 3.41266		8.3000 .364.62 .13214 .154.6 .252.0 .332.04 .335.04 .335.04 .345.2 .664.2 .746.7 .271.7 .271.7 .271.7 .271.7 .385.6 .736.7 .385.7 .385.6 .385.6 .385.7 .385.6 .385.6 .385.6 .385.7 .385.6 .385.	- 81361 - 67907 - 16527 - 27851 - 34354 - 52286 - 571286 - 571286 - 62189 - 77851 - 63189 - 101189 - 101	0.0000 -033-3 -06044 -10735 -11384 -10741 -20103 -20473	.0167 .0501 .0626 .1171 .1506 .1171 .2516 .2517 .2516
47 43 44 45 47 46 47 48 49 51 51 52 53 53 54 57 56 57 58 64 64 64 64 64 64 64 64 64 64 64 64 64													1-55779 1-668 c 1-6687 1-7139 1-7139 1-7139 1-7139 1-7139 2-0119 2-0119 2-2716 2-2716 2-3071 2-2751 2-3751 2-57175 2-67175	1.6329 1.6329 1.6526 1.7977 1.6540 1.7977 1.6740 2.1651 2.1651 2.1652 2.1652 2.1652 2.1653 2.

Table A.7 (cont'd) Companders for Signal with Gaussian Sensity (Mean - 0, Mariance - 1)

IT IVFL .S. K. N.R.	216 0.00 (08) 43.42 PT 2.96	361					512 0.000 49.641 8.695	31									
1	x(t)	¥(1)	1	X(1)	Y(1)	t	x(1)	T(1)	1	X(1)	Y(f)		X(1)	*(!)	1	z (t)	**
1	0.00000	.0054141	65	1.1530	1.1550	1	0,0000000	.0012715	65	.569:n	.55414	179	1.1630	1.1653	193	1.950)	1.050
;	.DIAA32	.025749	56	1.1792	1.1495	3	.0084470	.012671	66	.55834	.56304	170	1.1736	1.1789	194	1.9007	2.00
:	.030.03	.055724	67	1.2220	1,2112	3	.025342	.029366	67	. 37641	.57175 .58088	1117	1.1843	1.2031	196	2.02/9	2.02
;	.067345	.075743	67	1.2437	1.2546	5	.031790	.0 (NOI)	65	. 36515	.5 *** 2	173	1.7037	1.2111	107	2.0443	2.05
	.084193	.092620	70	1.2655	1.2756		.042219	.056464	70	.59430	. 59878	134	1.2165	1.2219	198	2.0618	2.07
7	.10105	.10948	71	1.2576	1.2954	7	.050659	.054915	11	.60177	.6077*	135	1.2273	1.2327	199	2.0611	2.06
	.11792	.12633	72	1.3099	1.3217	. 3	.059141	.061367	72	.61225	.61675	136	1.2382	1.2436	500	7.0054	2.10
•	.13479	.14324	73	1.3324	1.3438		.067591	.071830	73	.62121	.62576	137	1.24+1	1.2546	201	2.1151	2.12
1	.16559	.17704	74	1.3557	1.3666	10	.084504	.068732	75	.43930	.64733	138	1,2601	1.2655	501	2.1342	2.15
2	.18551	.1939/	76	1.4014	1.4111	12	.0*2*52	.097197	76	.41815	.65239	140	1.2872	1.2876	201	2.170A	2.18
3	.20244	.71097	77	1.4749	1.4167	13	.10142	.10363	77	.65742	.66196	141	1.2934	1.2939	205	2.1095	2.19
	.21940	.72759	78	1.4486	1.4600	14	.10985	.11412	28	.66651	.67100	142	1.3045	1.3102	204	2.2084	2.21
5	.21636	.24448	79	1.4724	1.4447	25	.11835	.12258	29	.67562	.68017	143	1.3158	1.3714	207	2.2276	2.23
•	.25338	.24159	10	1.4949	1.5097	16	.12682	.13105	80	.44474	.68*11	144	1.3271	1.3326	208	2.2470	2.25
	.28745	.27893	#1 #2	1.5215	1.5340	10	.13329	.13953	81	.70304	.70763	144	1.3384	1.3441	201	2.265A	2.27
	. 30434	. 31 309	*1	1.3717	1.5844	19	.15224	.15648	53	,71723	.71683	167	1.3499	1.3556	211	2.3071	2.24
0	.32165	. 33021	84	1.5973	1.6102	20	.16072	.16497	84	.77143	.72604	145	1.3729	1.3787	212	2.3278	2.33
1	.33879	.34737	85	1.6232	1.6363	21	.16921	.17345	8.5	.73065	.73527	149	1.3845	1.2903	213 .	2.3455	2.35
2	. 35596	.36456	86	1.6495	1.6628	2.2	.17770	.18194		.73995	.74453	140	1.3961	1.4020	214	2.3702	7.38
,	.37317	. 35179	8.7	1.6762	1.6897	23	.15619	.19044	87	.74916	.75380	151	1.4078	1.4137	215	2.3919	2.40
•	.39012	.41636	53	1.7011	1.7170	24	.70319	.19894	88	.75545	.76310	157	1.4196	1.4255	216	2,6140	2.43
:	.40770	.43371	90	1.7587	1.7729	26	,71170	.21594	50	.76775	.77747	151	1.4434	1.4494	217	2,4575	2.47
,	.41740	.45110	93	1,7572	1.8015	27	,22021	.22543	91	.78644	.79117	155	1.4554	1.4614	21.7	2.4829	7.49
	.45931	.46533	92	1.8161	1.5307	28	.22873	.23299	97	. 19581	.60051	156	1.4674	1.4735	220	7.3047	2.51
	.47727	48602	*)	1.8455	1.8604	29	.23776	.24152	93	.89571	.60997	157	1.4796	1,4857	221	2.5310	2.54
0	.49478	,30333	94	1.8755	1.8907	30	.74579	25003	44	.81443	.81935	156	1.4418	1.4979	222	2.5543	2.55
11	.31734	.57114	*5	1,9060	1.9715	31	.25432	.21819	95	.82408	. 875.41	1.59	1.5041	1.5102	273	2.5612	7.59
12	.54761	.53877	97	1.9572	1.9530	33	.76786	.77367	96	.84 105	.84781	160	1.5288	1,5551	224	2.6071	2.64
14	.36534	37422	98	2.0014	2.0179	34	.27997	.28475	55	.65757	.85734	147	1.5414	1.5476	226	2.6609	2.67
15	.55312	. 59704	**	2.0346	2.0515	35	.26253	.29751	99	.86212	.341.90	163	1.5539	1,5503	227	2.6857	7.70
	.60097	.60991	100	2.0653	2,0858	16	.79710	. 301 18	100	.87169		164	1.5666	1.5730	278	2.7372	2.73
17	.61837	.62785	101	2,1033	2.1210	37	. 10567	.30006	101	.88130	.68511	145	1.5794	1.5858	229	2.7445	7.75
1.0	.43685	.64534	102	2.1389	2.1371	3.8	.31425	.31855	103	.89092	.89575	366	1.5922	1,5587	230	2.7766	2.79
•	.63439	.64704	103	2.1755	7.7322	40	.32283	.32714	101	.90038	.90547	167	1.6032	1.6247	231	2,8075	2.87
10	.67301	,70032	104	2.2517	2.2714	41	35005	.36436	105	.91997	.97494	169	1.6387	1.6179	232	2.8395	7.83
2	.70945	.71563	106	2.2914	2.3114	47	, 14867	. 35298	106	97977	,534.0	170	1.6645	1.6511	234	2.9063	2.92
13	.77781	,73701	107	2.3323	2.3335	43	.33729	. 36161	107	.91949		171	1.6578	1.6645	235	2.9414	7.93
14	.74674	.75548	105	2.1748	7.3964	44	.36593	.37023	3 (45.	.94929	,95470	112	1.6712	1.6780	236	2.9778	2.99
13	.76475	. 77404	107	2.4187	7.4412	45	.3765.7	.31859	100	.95917	.96405	173	1.6847	1.6915	237	3.0155	1.01
17	.80204	.79765	111	2.4642	2.4875	4.7	.38327	.39521	111	.91594	.94343	175	1.6983	1.7052	238	3.0348	3,07
	.42042	.83025	117	2,5605	2.5859	48	.40035	.404.69	112	77887	.99378	176	1.7759	1,7378	240	3,1383	3.16
	.43970	.41918	111	2.6115	2.6384	49	.43923	.41358	111	.99576	1.0038	177	1.7798	1.7468	241	3.1829	3.20
50	.83564	.84.922	114	2.4655	7.4014	30	.41792	.42727	114	1.0004	1.0138	175	1.7538	1.7539	247	3.2234	3.25
11	.87777	.88715	115	2.7219	2.7513	51	14454	43098	115	1.0183	1.0738	179	1.7680	1.7751	243	3.2791	3.30
17	.89474	. 90440	336	2.7814	2.8124	37	44406	41770	114	1.0250	1.0000	150	1.7623	1.7895	744	3.3313	3.35
13	.91627	.92595	117	2.9112	7.8777	53	.45280	45717	117	1.0589	1.0341	141	1.7447	1,5039	745	3,4437	3.47
15	.95322	.94504	119	2.9878	3.0266	55	46154	44592	119	1.0592	1.0541	151	1.4259	1,8133	241	3.4451	3.54
14	.974.49	94476	120	1.0559	3.1004	34	.470 50	47444	120	1.0094	1,6745	144	1.8437	1,0551	748	3.3775	3.61
57	.99457	1.0044	121	1.1415	3.1852	57	.47907	.45346	171	1,0747	1.0948	185	1.8556	1.4471	744	1.6521	3.44
	1.0146	1.0254	122	3.2352	3.2444	34	.40/27	.49725	172	1.6399	1.0951	184	1.8707	1,8752	250	1.7341	3.77
59	1.0346	1.0007	173	1.1149	3, 3925	50	.49655 .50558	30105	174	1,1663	1.1138	187	1.4459	1,8735	251	3.8254	3.47
41	1.0757	1.0430	124	3.4517	3,4589	61	51428	\$1849	175	1.1104	1.1747	149	1.9012	1,9745	212	4.0481	4.11
.,	1.0754	1,1039	174	1,7511	3.8331	62	.57311	.52753	124	1,1114	1.1367	199	1.9124	1,9501	234	4.1912	4.21
	1.1161	1.1267	127	3.9377	4.0577	61	.51156	.53639	127	1.1419	1.1477	191	1.9487	1.9142	255	4. 3448	4.48
			174	4.2071	4.3812	44	. Mon?	. 54524	175	1.1524	1.1577	192	1.9647	1.9722		4.6123	4.77

Table A.8 Compandors for Signal with Laplacian Density (Mean = 0, Variance = 1)

-

tvtt	2.00	***	7.34		12.45	714	17.55 17.55 3.55	624	23.7	*23		100)2.43)3.43 6.37	734
	1(1)	7111	*(1)	7411	Ritt	veta	reto	Yen	x (1)	Yen	*(1)	7(1)	1(1)	Yeth
1	1.7-617		4.41000 2.41924	1.4.4.77	0.00000 .9532 1.13957 2.06014 3.73994	.23191 .74923 1.54727 2.73794	e.ctccs .22318 .54071 .67543 1.24622 1.75367 2.36425 3.26560	.12761 .39268 .76656 1.06165 1.09709 2.00562 2.76741 3.93790	0.00000 .12700 .26646 .41339 .57126 .74143 .92732	.06354 .17664 .33565 .67665 .67665 .67255 1.02653	0.00000 .06531 .13269 .20226 .27.23 .5.871 .42596	.03248 .07473 .16728 .23775 .31114 .35675 .46757	0.00000 .03286 .06628 .10622 .13470 .16476 .20540	.0163/ .065/ .083/ .1173 .1521/ .1875 .2234
10 11 12 13 14							•		1.35545 1.66657 1.67241 2.22231 2.61312 3.67257	1.74491 2.05095 2.40872 2.63932 3.36019	.5675 .67590 .76624 .86660 .95935	-63213 -72357 -61287 -90740 1-31650 1-11667	.27654 .31698 .35429 .39320 .43285	.2972 .3351 .3736 .4129 .4529
15								,	3.71307 4.57366 6.12683	\$.15797 \$.22465	1.171 A1 1.286 60 1.40745 1.53667 1.67371 1.62021	1.72843 1.34641 1.47134 1.46448 1.74578	.51442 .55442 .57926 .44297 .48764	.5352 .5777 .6210 .6652 .7163
22											1.97759 2.14759 2.33241 2.53488 2.75673 3.00902	2.06049 2.23799 2.43123 2.64389 2.86018 3.14619	.77545 .82751 .87626 .92616 .97726	.8517 .9516 .9515 1.0632 1.0563
27 20 27 30 31											3.42059 4.00840 4.48333 5.09421	3.65545 3.65545 4.73260 4.76771 5.46507	1.13639	1-11 CF 1-1664 1-223A 1-2427 1-3432
32 33 34 35 36 37											7.44720	6.57711	1.37-25 1.43755 1.50279 1.57011 1.63964 1.71152	1.4056
38 35 40 41 42 43													1.70592 1.86303 1.94304 2.02620 2.11274 2.20297	1.8241 1.9624 1.9841 2.6691 2.1571 2.2491
45													2.47721 2.37583 2.47727 2.60778 2.72757	2.5454
50 51 52 53													2.97223 3.10901 3.25522 3.11226	3.0399
46 47 46 47 50 51 52 53 54 55 55 56 57 59 66 61 62 63													3.74471 3.74471 3.74412 4.17127	3.44. 3.44. 4.076 4.317
61													9.72344 9.74972 9.43547 9.76732 6.51566 7.37614	5.2324 5.6541 6.1645 6.8444 7.4751

Table A.S (cent'd) Companders for Signal with Laplacian bensity (Mean - 0, Variance - 1)

EVIL. S.E. N.E.	(DE) 41.64	267					0,000 47,651 8,382	60							1		
1	X(1)	1(1)	1	x (1)	Y(1)	1	x(t)	1(1)	1	1(1)	1(1)	1	X(1)	Y(1)	1	x(1)	*(1
1	0.000000	.0052360	65	1.4535	1.4695	1	0. onenone	.0041304	65	.60739	.41290	129	1.4618	1.4700	19)	2.9151	2.931
2	.016304	.02+805	**	163	1.5000	2	,0052683	.012415	66	. 61841	.62194	130	1,4783	1.4866	144	2.9479	2.964
,	.033138	.041304	6.7	1.5197	1.5364	3	.016570	.020711	6.7	.67659	.63505	131	1.4949	1.5033	195	2.9813	7.99
:	108800	100000	68	1.5537	1.5704	:	.021904	.029053	68	,65181	.65743	132	1.5117	1.5371	196	3.0157	3.01
	.061336	.092404	210	1.6232	1.6404		.041670	.041883	70	66366	.663.71	134	1.5456	1.5542	198	3.0847	3.10
,	.10101	.10765	71	1.6368	1.6/60	1	.010101	(25433)	71	.67437	44905	115	1.5628	1,5714	199	3.1204	3.13
	.11632	.12701	72	1.6951	1.7134		.054570	.062815	72	.1.3574	.69145	136	1.5801	1.5858	200	3.1566	3,17
	.13527	.14436	73	1.7319	1.7504	,	.067071	.071334	7.1	.69 18	.70292	137	1.5975	1.6063	201	3.1935	3.71
10	.15337	.16223	74	1.75.94	1.788)	10	.075606	,6798.85	74	.765.7	.71464	138	1.6151	1.6240	202	3.7310	3.25
11	.17117	.18005	73	1.5075	1.4270	11	.084175	.058473	25	. 72023	.72603	139	1.6329	1.6418	203	3.7692	3.28
13	.20701	.21615	76	1.6562	1.9063	13	.10142	.1057)	76	.73155	.73769	140	1.6503	1.6799	204	3. 3081	3.32
14	.72527	.23443	78	1.9766	1.9479	14	.11009	.11444	78	.75529	.76118	142	1.6570	1.6962	204	3. 3881	3.50
15	.24363	.25257	79	1.9677	1.4044	15	.118*0	.17317	79	.76710	.77303	143	1.70%	1.7146	207	3.4297	3.45
16	.26215	.27147	50	2,0097	2.0110	15	.12755	.13194	50	.725 DA	.7#495	144	1.7239	1.7332	208	3.4717	3.49
17	. 75/354	.29024	81	2.0525	2.03+3	1.7	.13633	.24074	81	.79093	,71693	145	1.7476	1.7520	204	3.5140	3.53
	.29569	.30918	6.2	2.0962	2.1154	18	.14515	.14957	E 2	.85745	. 505 FE	146	1.7614	1.7709	210 .	1.5577	3.37
10	.31571	.32525	83	2.1565	7.1635	19	,15401	.16736	81	.61503	.83329	147	1.7805	1.5003	711	3.6023	3.63
71	.35727	36702	53	2.2331	2.2567	21	.17183	,17631	55	.83941	.84554	149	1.6190	1.8288	212	3.6479	3.71
17	. 37681	. 33665	86	2,2807	2.3049	22	18020	.18530	86	.55170	.85787	150	1.5385	1,8484	714	3.7421	3.76
23	. 39634	.40647	87	2.3294	2.3547	. 23	.16950	.19432	87	.51-407	.87078	151	1.8583	1.8687	715	3.7908	3.41
24	.41645	. 47645	84	2.3793	2.4047	24	.19535	.20338	83	.87053	.28275	132	1.5752	1.8892	716	3.8407	3. No
15	.43655	.41665	84	2.4304	2.4564	25	.20793	.71749	89	.88902	.59577	153	1.8453	1.6095	217	3.8917	3.91
74	.47734	45707	90	2.1827	2.3094	26	.21705	,27163 ,23081	90	.90160 .91426	.90792 .92067	154	1.4185	1.9288	71A 719	3,9441	4.02
78	.49803	. 50943	*1	2.5364	2.5637	21	.23622	,24003	52	92700	.93340	155	1.9391	1,9194	770	4.0523	4.08
19	.31892	32944	93	2.5580	7.4265	79	.24466	.24729	*)	93987	. 92525	157	1,9806	1,9912	221	4,1093	4.11
10	,54002	.55065	94	2.7050	2.7337	30	.23194	,25840	64	.93221	. 93918	158	2.0017	2.0124	222	4.1673	4.15
31	.56133	. 57267	*>	2.7657	2.1962	31	.26326	.76794	93	.96543	.97719	159	2.0231	2,6338	221	4.2274	4.25
32	. 54746	.59371	96	2.6272	2.8556	3.7	.7726.1	.27732	*6	. 97573	,45574	160	2.0446	2.0554	274	4 7884	4.31
"	.60461	.61557	. 97	2,8904	2.92.8	33	.24203	.28675 -	97	. 99186	. 59846	161	2,0663	7.0773	225	4.4168	4.35
34	.67659	.63766	95	3.9556	3.0574	34	.30027	.79577	55	1.0051	1.0117	162	7.1105	2.0094	227	4.4541	4.5
36	.67123	65754	100	3.0974	3.1740	36	.32050	.31325	100	1.0315	1.0385	164	2.1379	7.1217	228	4,5535	4.3
37	.89391	. 20534	191	3.1642	3.7011	37	.32003	. 324#8	101	1.0552	1.0520	165	2.1556	2,1671	229	4.62	4.50
38	.71654	.72839	107	3.2305	3.7768	38	.3796*	.33457	182	1.6358	1.5656	166	2.1765	2,1901	230	4.6947	4.7
39	.74001	.75170	101	3.3156	3.3552	39	. 339 %	,36620	103	1.0724	1.0793	167	2.2017	2,2134	241	4.7747	4.81
40	.75315	. 77576	204	3.3754	3.4367	40	-T-204	. 35193	104	1.6861	1.0930	1+8	7.7251	2.2370	232	4.8366	4.8
41	.78714	.79909	105	3.47#7	3.5215	-1	.13801	.36371	103	1.0999	1.1059	169	2.2488	2.7608	233	3.0761	5.0
47	.81110	,84756	104	3,6553	3.4098	42	37865	15337	105	1.1139	1.1309	170	2.2728	2.3092	223	5.1162	5.16
44.	.85985	.87221	104	3,7493	3.7987	**	.38834	19130	103	1.1419	1.1490	172	2,3715	2.3339	236	5.2103	3.2
45	.80165	.89714	109	1.4480	3.8990	45	. 35827	40326	109	1.1561	1.1633	173	2.3463	2.3588	237	5.3088	5.)
46	.40975	.97740	110	3.9513	4.0010	44	.40875	41326	110	1.17%	1.1776	174	2.3714	2.3843	238	5.4121	5.4
47	.93314	.94793	111	4,5600	4.1164	47	.41828	.42371	111	1.1558	1.1329	175	7.3968	2.4096	239	5.5207	5.5
45	. 94/3/4	.97301	117	4.1744	6.5141	4.5	.47874	.41141	112	1.1993	1.7065	176	7.4775	2,4355	344	5,6351	5.65
50	. 0111	1.0245	113	4.2955	4.4910	50	.46465	.45175	1114	1.7138	1.2359	177	2.4749	2,4417	247	5,8843	3.8
51	1.0132	1.0513	113	4.5604	4.4322	11	45887	46400	113	1.2333	1,2307	179	2.5015	2.5150	743	6.0208	6.0
57	1.0669	1.0805	116	4,7065	4.7835	32	.46916	47430	115	1.2342	1.7657	180	7.5785	2.5622	744	6.1667	6.7
53	1.0942	1.1041	117	4.8611	4.9543	53	.47947	. 64444	117	1.27)2	1.28/17	151	2.3559	2.5497	245	6. 1714	6.40
34	1.1720	1.1350	114	3.0324	5.1227	34	.48954	49504	115	1.7533	1.2958	182	2.3834	2.1476	744	6.4976	6.5
33	1.1501	1.1642	117	3.7147	5.3151	55	ACTOR.	.50549	112	1.3335	1.3111	143	2.4117	2.4259	247	6.6764	4.7
36	1.1785	1.1979	170	3.4182	3.5267	36	.51071	.51379	120	1.31/3	1.3265	184	7.6402	2.4545	249	6.8777	6.9
57	1,2144	1.2219	127	3,8498	6.021.2	5.5	.51151	.37454	171	1.3437	1.3575	184	7.6490	7.7130	250	7.1002	7.2
59	1.2643	1.2417	121	6.1718	6.32*3	59	.54747	\$4700	121	1.3654	1.1732	157	7.7279	2.7479	231	7.6303	7.71
60	1.2951	1. 1115	124	6.4972	6. 44117	80	.35313	,55851	124	1.3811	1,3891	188	2.7550	2.7712	252	7.9551	8.1
61	1.3758	1.3423	125	.ARIN	7.1016	41	.56319	\$692A	175	1.3970	1,4050	189	2.7RR5	2,8039	251	R. 3337	8.7
62	1.357#	1.1715	124	7.1515	7.4323	6.2	. 5744.N	.58010	124	1.4110	1.4711	100	7.6194	2.8351	234	R. R974	9.00
**	1.3592	1.4657	128	7.9557	9,4011	64	.38553	. 55097	127	1.4792	1.4371	191	7.8709	2. 5.4.6.7	255	9 . Gross	9.7
64	1.4711	1,4372	129	10,241	9,4033	60	.5765)	.60191	128	1.4554	1.4535	192	2.8827	2.8988	256	10.254	10.8

Table A.91 Analytic Models for Some Often Used Quantizers for Unity Variance Probability Density Functions

Q

Quantizer	Probability Density	Mean Square Error Model, f(n) n = number of bits 2 ⁿ = number of levels
Shannon	Arbitrary, Unitary Variance	$f(n) = 2^{-2n}, n \ge 0$
Optimum Nonuniform	Gaussian $N(0,1)$ $\frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$	$f(n) = \begin{cases} 2^{-1.5047n}, & 0 \le 2^n < 5\\ 1.5253 \cdot 2^{-1.8274n}, & 5 \le 2^n < 36\\ 2.2573 \cdot 2^{-1.9626n}, & 36 \le 2^n \le 51 \end{cases}$
Optimum Nonuniform	Laplacian Unity Variance $\frac{1}{\sqrt{2}} \exp(-\sqrt{2} x)$	$f(n) = \begin{cases} 2^{-1.1711n} & , 0 \le 2^n < 5 \\ 2.0851 \cdot 2^{-1.7645n}, 5 \le 2^n < 36 \\ 3.6308 \cdot 2^{-1.9572n}, 36 \le 2^n \le 51 \end{cases}$
Optimum Nonuniform	Gaussian $N(0,1)$ $\frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$	$f(n) = \begin{cases} 2^{-1.5012n}, & 0 \le 2^n < 5\\ 1.2477 \cdot 2^{-1.6883n}, & 5 \le 2^n < 36\\ 1.5414 \cdot 2^{-1.7562n}, & 36 \le 2^n \le 51 \end{cases}$
Optimum Uniform	Laplacian Unity Variance $\frac{1}{\sqrt{2}} \exp(-\sqrt{2} x)$	$f(n) = \begin{cases} 2^{-1.1619n}, & 0 \le 2^n < 5 \\ 1.4156 \cdot 2^{-1.4518n}, & 5 \le 2^n < 36 \\ 2.1969 \cdot 2^{-1.5944n}, & 36 \le 2^n \le 51 \end{cases}$
Approximate Optimum Nonuniform (Compandor)	Gaussian $N(0,1)$ $\frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$	$f(n) = \begin{cases} 2^{-1.4864n}, & 0 \le 2^n < 5 \\ 1.5597 \cdot 2^{-1.8239n}, & 5 \le 2^n < 36 \\ 0.2677 \cdot 2^{-1.35752}, & 36 \le 2^n \le 51 \end{cases}$
Approximate Optimum Nonuniform (Compandor)	Laplacian Unity Variance $\frac{1}{\sqrt{2}} \exp(-\sqrt{2} x)$	$f(n) = \begin{cases} 2^{-1.1491n}, & 0 \le 2^n < 5 \\ 2.2164 \cdot 2^{-1.7710n}, & 5 \le 2^n < 36 \\ 4.2461 \cdot 2^{-1.9928n}, & 36 \le 2^n \le 51 \end{cases}$

Table A.9II Formulas for h(x) for Different Quantizers

Quantizer	$h(x) = f'(x)^{-1}$	
Shannon	$h(x) = -\frac{1}{2} \log_2(-x/2 \log_e^2)$ all $x < 0$	
Optimum Nonuniform (Gaussian	$h(x) = \begin{cases} 0.0403 - 0.6646 \log_2(-x), -1.0430 \le x \le -0.1020 \\ 0.5199 - 0.5472 \log_2(-x), -0.1020 \le x \le -0.0027 \\ 0.8247 - 0.5195 \log_2(-x), -0.0027 \le x \le -1.48 x \end{cases}$	5
Optimum Nonuniform (Laplacian	$h(x) = \begin{cases} -0.8247 - 0.5195 \log_2(-x), -0.0027 \le x \le -1.48 \ x \end{cases}$ $h(x) = \begin{cases} -0.2569 - 0.8539 \log_2(-x), -0.8117 \le x \le -0.1490 \\ 0.7654 - 0.5667 \log_2(-x), -0.1490 \le x \le -0.0044 \\ 1.1753 - 0.5109 \log_2(-x), -0.0044 \le x \le -2.45 \ x \end{cases}$	
Optimum Uniform (Gaussian Density)	$h(x) = \begin{cases} 0.0382 - 0.6661 \log_2(-x), -1.0406 \le x \le -0.0965 \\ 0.3234 - 0.5923 \log_2(-x), -0.0965 \le x \le -0.0035 \\ 0.5170 - 0.5694 \log_2(-x), -0.0035 \le x \le -3.28 x \end{cases}$	
Optimum Uniform (Laplacian Density)	$h(x) = \begin{cases} -0.2688 - 0.8607 \log_2(-x), & -0.8054 \le x < -0.1377 \\ 0.3516 - 0.6888 \log_2(-x), & -0.1377 \le x < -0.0080 \\ 0.8026 - 0.6272 \log_2(-x), & -0.0080 \le x \le -1.16 x \end{cases}$	10-
Approximate Optimum Nonuniform (Gaussian Density)	$h(x) = \begin{cases} 0.0290 - 0.6728 \log_2(-x), -1.0303 \le x < -0.1047 \\ 0.5371 - 0.5483 \log_2(-x), -0.1047 \le x < -0.0019 \\ -1.4658 - 0.7368 \log_2(-x), -0.0019 \le x \le -5.29 x \end{cases}$	10-
Approximate Optimum Nonuniform (Laplacian Density)	$h(x) = \begin{cases} -0.2857 - 0.8702 \log_2(-x), -0.7965 \le x < -0.1573 \\ 0.8154 - 0.5647 \log_2(-x), -0.1573 \le x < -0.0046 \\ 4.2461 - 0.5018 \log_2(-x), -0.0046 \le x \le -2.34 x \end{cases}$	10-

Table A.10 Optimum Nomunitorm Quantizers with Quantization Levels N = 2,...,36 for Signal with Gaussian Density (Year = 0, Variance = 1)

O

LEVEL N.S.Z. S.N.R. (D ENTROPY	.)				.1	4 1748 003								
1	x(1)	Y(1)	X(1)	Y(1)	X(1)	Y(t)	x(1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)
1 2 3 4	0.0000	,79788	.41201	0.00000 1.2240	0.00000 .98162	.45279 1.5104	.38230 1.2444	9,00000 .76459 1.7242	0.00000 .63694 1.4469	.31773 1.0001 1.8936	.28030 .87440 1:6108	0.00000 .56060 1.1882 2.0334	0.00000 .50059 1.0500 1.7480	. 75605 1. 3440 2. 1520
LEVEL H. S. E. S. N. R. (D ENTROPY	8) 15.	9 027853 351 9826									19.1 19.1 3.5	12232	19.6 3.6	10737
1	X(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	Y(I)
1	.22184	0.00000	0.00000	.19965	.18376	0.00000	0.00000	.16847	.15692	0.00000	0.00000	.14574	.13696	0.0000
2	.68178	.41368	.40479	.60992	.55999	. 36751	. 34020	.51193	.47610	. 31323	.29358	.44142	.41442	.2739
	1.1977	.91486	.83393	1.0579	.96571	.75246	.69442	.87693	.81274	.63836	. 59601	. 75059	.70312	.5549
4	1.8656	1.4765	1.3247	1.5914	1.4159	1.1789	1.0814	1.2859	1.1843	.98710	.91821	1.0858	1.0132	. 6513
5		2.2547	1.9683	2.3452	2.0593	1.6978	1.5345	1.7832	1.6231	1.3314	1.2768	1.4677	1.3607	1.1751
						2.4259	2.1409	2.4986	2.2147	1.8647	1.7033	2.6253	2.3439	2.0067
;										2.5647	2.2820	2.623	2.3434	2,6811
LEVEL M. S. E. S. N. R. (D ENTROPT	(8) 20.	16 0095010 222 7652	20.7	7 054669 23	21.1	5 075932 96 0275	21.0	9 9068482 944 9023	22.0	0 062078 071 0773	27.4	1 056533 77 410	22.6	2 0051700 045 056
1	x(1)	Y(1)	X(1)	Y(1)	x(1)	Y(I)	X (1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	Y(I)
						*****	10031		0.00000	.10391	000778	0.00000	0.00000	.9471
1	0.00000	.12841	.12154	0.00000	0.00000	.11481	.10925	0.00000	,20837	. 31293	.29900	.19845	.19005	.285
3	.52255	.61693	.6202A	.49104	.46549	.58450	.55529	.44053	.41983	. 52671	.50786	. 39955	. 36242	.4794
	.79975	.94256	.88769	.74930	.70932	.83413	.79102	.67004	.63778	.74883	.71399	.60617	.57964	.6798
,	1.0993	1.2565	1.1785	1.0259	.96874	1.1024	1.0426	.91193	. 86643	.98400	.93638	.82179	.78476	. 5896
6	1.4374	1.6163	1.5080	1.3312	1.2513	1.4002	1.3187	1.1732	1.1114	1.2349	1.1756	1.0510	1.0016	1.1135
7	1.8433	2.0593	1.9060	1.6848	1.5733	1.7464	1.6340	1.4642	1.3814	1.5235	1.4399	1.3702	1.2355	1.3574
	2.4011	2.7328	1.4542	2.1273	1.9639	2.1813	2.0177	1.6937	2.0643	2.2791	2.1158	1.5797	1.4949	1.6321
•				7.7616	2.5037	2.8261	2.5501	2.8684	2.5937	2.9083	2.6349	2.3237	2.1606	2.3659
10											The state of the s	2.9460	2.6738	2.9817

Table A.10 (cont'd) Optimum Nonuniform Quantizers with Quantization Levels N = 2,...,36 for Signal with Gaussian Density (Mean = 0, Variance = 1)

LEVEL N.S.E. S.N.R. (D ENTROPY		047462	23.5 4.3	04 3725	23.9 4.3	040413	24.2 4.4	037464	24.50 24.50 4.45	134826	.00 24.81 4.54	32458	25.11 4.5	30323
_1	x(1)	¥(1)	X(1)	Y(I)	X(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)
1	.090899	0.00000	0.00000	.037128	.083864	0.00000	0.00000	.080654	.077844	0.00000	0.00000	.075078	.072635	0.00000
2	.27371	.18180	.17470	.26227	. 25348	.16773	.16166	-24266	.23416	.15569	.15044	.22580	.21842	.14527
3	.45963	. 36561	. 35120	.44013	.42333	. 33704	. 32474	.40681	. 39242	. 31264	. 30202	.37824	. 36576	.29156
4	.65103	.55364	.53144	.62274	.59852	.50962	.49076	. 57469	.55402	.47219	.45595	. 53366	.51580	.4 3995
3	.85077	.74841	. 71764	.81254	.78007	.68740	.66142	.74813	.72060	.63584	.61358	.69348	.66981	.59163
6	1.0626	.95312	.91258	1.0126	.97067	.87273	.83877	.92950	.89414	.80535	. 77646	.85942	. 829 31	.74797
7.	1.2918	1.1721	1.1199	1.2272	1.1739	1.0686	1.0254	1.1214	1.0772	.98292	.94652	1.0336	.99419	.91063
	1.3466	1.4116	1.3448	1.4624	1.3949	1.2792	1.2249	1.3283	1.2732	1.1715	1.1263	1.2189	1.1729	1.0817
	1.8408	1.6816	1.5954	1.2283	1.6416	1.5105	1.4423	1.5561	1.4872	1.3750	1.3191	1.4193	1.3628	1.2640
10	2.2029	2.0001	1.8834	2.0426	1.9277	1.7725	1.6854	1.8145	1.7270	1.5995	1.5300	1.6407	1.5705	1.4615
11	1.7107	2.4038	2.2431	2.4437	2.2813	2.0829	1.9579	2.1213	2.0062	J. 8546	1.7668	1.8928	1.8047	1.6501
12		3.0156	2.7458	3.0479	2.7792	2.4797	2.3177	2.5141	2.3524	2.1578	2.0428	2.1928	2.0778	1.9293
13						3.0787	2.6111	3,1081	7.8416	2.5470	2.3855	2.5784	2.4174	2.2263
24										3.1363	2.8709	3.1634	2.8989	2.6085
15														3.1593
ENTROPT	4.6	386	4.6	816	4.7	291	4.7	723	4.6	142	4.8	550	4.8	946
1	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	k(1)	1(1)
1	0.00000	.070224	.068081	0.00000	0.00000	.065965	.054067	0.00000	0.00000	.062193	.060503	0.00000	0.00000	.0588
2	.14068	.21114	.20467	.13616	.13212	.19828	.19255	.12813	.12455	.18690	.13150	.12100	.11780	.1767
3	.28230	. 35 346	. 34253	.27316	. 26502	. 33175	. 32210	.23497	.24974	. 31257	. 30400	.74760	.23614	.2955
	.42583	.49819	.48260	.41189	. 39948	.46721	.45347	. 38723	. 37624	. 4 3990	.42771	. 34539	. 35559	.4156
4		.64647	.62589	. 55329	. 53439	.60557	.58740	.51971	.50478	. 54964	.55364	.49003	.47675	.5378
;	.37233		.77359	.69847	.67674	.74789	.72513	.45528	.63615	. 70264	.68256	.61725	.60027	.6627
:	.72305	. 79967			. AZ166		.85749	. 79496	.77127	. 83789	.81536	.74786	.72691	. 7911
•		.95978	.92714	.84870		.89542								.9239
	.72305 .87936 1.0434	.95978 1.1275	1.0884	1.0056	.97258	1.0497	1.0160	.93999	.91125	.98259	.95312	.88284	.85735	
	.72305	.95978 1.1275 1.3071	.92714 1.0884 1.2596	1.0056	1.1313	1.0497	1.0160	.93799	1.0574	1.1323	1.0972	1.0234	.99325	1.0625
7 8 9	.72305 .87936 1.0434 1.2173 1.4045	.95978 1.1275 1.3071 1.5019	.92714 1.0884 1.2596 1.4443	1.0056	.97758 1.1313 1.3001	1.0497 1.2128 1.3874	1.0160 1.1723 1.3389	.93999 1.0919 1.2527	1.0574	1.1323	1.0972	1.0234	.99325	1.2041
5 6 7 8 9	.72303 .87936 1.0434 1.2173 1.4045 1.6098	.95978 1.1275 1.3071 1.5019 1.7177	.92714 1.0884 1.2596 1.4443 1.6471	1.0056 1.17// 1.348/ 1.5404	.97758 1.1313 1.3001 1.4824	1.0497 1.2128 1.3874 1.5773	1.0160 1.1723 1.3389 1.5189	.93999 1.0919 1.2527 1.4250	1.0574 1.2115 1.3760	1.1323 1.2909 1.4611	1.0972	1.0234 1.1710 1.3276	.99325 1.1353 1.2855	1.3628
5 6 7 8 9 10 11 12	.72305 .87936 1.0434 1.2173 1.4045 1.6098 1.8410	.95978 1.1275 1.3071 1.5019 1.7177 1.9642	.92714 1.0884 1.2596 1.4443 1.6471 1.8757	1.0056 1.1711 1.3481 1.5404 1.7538	.97258 1.1313 1.3001 1.4824 1.6828	1.0497 1.2128 1.3874 1.5773 1.7883	1.0160 1.1723 1.3389 1.5189 1.7171	.93999 1.0919 1.2527 1.4250 1.6127	1.0574 1.2115 1.3760 1.3539	1.1323 1.2909 1.4611 1.6467	1.0972 1.2493 1.4117 1.5876	1.0234 1.1710 1.3276 1.4958	.99325 1.1353 1.2855 1.4460	1.3628
4 5 6 7 8 9 10 11 12 13	.77305 .87936 1.0434 1.2173 1.4045 1.6098 1.8410 2.1113	.95978 1.1275 1.3071 1.5019 1.7177 1.9642 2.2584	.92714 1.0884 1.2596 1.4443 1.6471 1.8757 2.1434	1.0056 1.1711 1.3481 1.5404 1.7538 1.9977	.97258 1.1313 1.3001 1.4824 1.6828 1.9091	1.0497 1.2128 1.3874 1.5773 1.7883 2.0298	1.0160 1.1723 1.3389 1.5189 1.7171 1.9411	.93999 1.0919 1.2527 1.4250 1.6127 1.8215	1.0574 1.2115 1.3760 1.5539 1.7501	1.1323 1.2909 1.4611 1.6467 1.8534	1.0972 1.2493 1.4117 1.5876 1.7818	1.0234 1.1710 1.3276 1.4958 1.6794	.99325 1.1353 1.2855 1.4460 1.6201	1.3628 1.3628 1.5292 1.7110
4 5 6 7 8 9 10 11 12 13 14	.77305 .87936 1.0434 1.2173 1.4045 1.6098 1.8410 2.1113 7.4479	.95978 1.1275 1.3071 1.5019 1.7177 1.9642 2.2584 2.6375	.92714 1.0884 1.2596 1.4443 1.6471 1.8757 2.1434 2.4772	1.0056 1.1711 1.3481 1.5404 1.7538 1.9977 2.2892	.97758 1.1313 1.3001 1.4824 1.6828 1.9091 2.1743	1.0447 1.2128 1.3874 1.5773 1.7883 2.0298 2.3188	1.0160 1.1723 1.3389 1.5189 1.7171 1.9411 2.2040	.93999 1.0919 1.2527 1.4250 1.6127 1.8215 2.0507	1.0574 1.2115 1.3760 1.5539 1.7501 1.9720	1.1323 1.2909 1.4611 1.6567 1.8534 7.0905	1.0972 1.2493 1.4117 1.5876 1.7818 2.0017	1.0234 1.1710 1.3276 1.4958 1.6794 1.8842	.99325 1.1353 1.2855 1.4460 1.6201 1.8124	1.2081 1.3626 1.5292 1.7110 1.9138
4 5 6 7 8 9 10 11 12 13 14 15	.77305 .87936 1.0434 1.2173 1.4045 1.6098 1.8410 2.1113	.95978 1.1275 1.3071 1.5019 1.7177 1.9642 2.2584	.92714 1.0884 1.2596 1.4443 1.6471 1.8757 2.1434	1.0056 1.1711 1.3481 1.5404 1.7538 1.9977 2.2892 2.6653	.97758 1.1313 1.3001 1.4824 1.6828 1.9091 2.1743 2.5054	1.0447 1.2128 1.3874 1.5773 1.7883 2.0298 2.3188 2.6921	1.0160 1.1723 1.3389 1.5189 1.7171 1.9411 2.2040 2.5326	.93994 1.0919 1.2527 1.4250 1.6127 1.8215 2.0907 2.3473	1.0574 1.2115 1.3760 1.5539 1.7501 1.9720 2.2325	1.1323 1.2909 1.4611 1.6567 1.8534 2.0905 2.3748	1.0972 1.2493 1.4117 1.5876 1.7818 2.0017 2.2602	1.0234 1.1710 1.3276 1.4958 1.6794 1.8842 2.1197	.99325 1.1353 1.2855 1.4460 1.6201 1.8124 2.0303	1.2081 1.3628 1.5292 1.7110 1.9138 2.1469
4 5 6 7 8 9 10 11 12 13 14 15 16	.77305 .87936 1.0434 1.2173 1.4045 1.6098 1.8410 2.1113 7.4479	.95978 1.1275 1.3071 1.5019 1.7177 1.9642 2.2584 2.6375	.92714 1.0884 1.2596 1.4443 1.6471 1.8757 2.1434 2.4772	1.0056 1.1711 1.3481 1.5404 1.7538 1.9977 2.2892	.97758 1.1313 1.3001 1.4824 1.6828 1.9091 2.1743	1.0447 1.2128 1.3874 1.5773 1.7883 2.0298 2.3188	1.0160 1.1723 1.3389 1.5189 1.7171 1.9411 2.2040	.93999 1.0919 1.2527 1.4250 1.6127 1.8215 2.0507 2.3473 2.7179	1.0574 1.2115 1.3760 1.5539 1.7501 1.9720 2.2326 2.5588	1.1323 1.2909 1.4611 1.6567 1.8534 2.0905 2.3748 2.7428	1.0972 1.2493 1.4117 1.5876 1.7818 2.0017 2.2602 2.5841	1.0234 1.1710 1.3276 1.4958 1.6794 1.8842 2.1192 2.4013	.99325 1.1353 1.2855 1.4460 1.6201 1.8124 2.0303 2.2869	1.2081 1.3628 1.5292 1.7110 1.9138 2.1469 2.4269
4 5 6 7 8 9 10 11 12 13 14 15	.77305 .87936 1.0434 1.2173 1.4045 1.6098 1.8410 2.1113 7.4479	.95978 1.1275 1.3071 1.5019 1.7177 1.9642 2.2584 2.6375	.92714 1.0884 1.2596 1.4443 1.6471 1.8757 2.1434 2.4772	1.0056 1.1711 1.3481 1.5404 1.7538 1.9977 2.2892 2.6653	.97758 1.1313 1.3001 1.4824 1.6828 1.9091 2.1743 2.5054	1.0447 1.2128 1.3874 1.5773 1.7883 2.0298 2.3188 2.6921	1.0160 1.1723 1.3389 1.5189 1.7171 1.9411 2.2040 2.5326	.93994 1.0919 1.2527 1.4250 1.6127 1.8215 2.0907 2.3473	1.0574 1.2115 1.3760 1.5539 1.7501 1.9720 2.2325	1.1323 1.2909 1.4611 1.6567 1.8534 2.0905 2.3748	1.0972 1.2493 1.4117 1.5876 1.7818 2.0017 2.2602	1.0234 1.1710 1.3276 1.4958 1.6794 1.8842 2.1197	.99325 1.1353 1.2855 1.4460 1.6201 1.8124 2.0303	1.20*1 1.3628 1.5292 1.7110 1.9138 2.1469

Table A.11 Optimum Nonuniform Quantizers with Quantization Levels N = 2,...,36 for Signal with Laplacian Density (Year = 0, Variance = 1)

LEVEL M.S.E. S.N.R. ENTRO	(DS) 3.0	2 00000 103 000	5.7	3 16424 1800 1169	.1	4 7619 401 287	9.2	5 1981 152 466	10.4	6 59868 64 071	11.6	6088		
1	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(I)	K(1)	Y(I)	X(I)	Y(I)
1 2 3 4	0.00000	. 70711	.70712		0.00600	.41976 1.8340	.41977 1.5467	0.00000 .83953 2.2538	0.00000 .71936 1.8464	.29979 1.1393 2.5535	.29979 1.0194 2.1462	0.00000 .59958 1.4391 2.8533	0.00000 .53321 1.2528 2.3797	.23341 .83299 1.6725 3.0868
LEVEL H.S.E. S.N.R. ENTROP	(DB) 13.5	9 43850 80 011	14.3	0 36545 372 3519	11 .03 15.14 2.9	6	15.6	2 926213 915 9907	16.4	3 922536 971 893	17.0	4 19720 51 955		
1	1(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	T(1)	x(1)	Y(I)
1	.23342	0.00000	0.00000	.19118	.19118	0.00000	0.00000	.16192	.16197	0.00000	0.00000	.14044	.14045	0.00000
;	.76663	.46683	.42460	.65801	.61578	.38236	. 35 310	.54429	.5150 3	. 37 385	. 30237	.46429	.44782	.28989
3	1.4862	1.0664	.95781	1.2376	1.1490	.84920	.77771	1.0111	.93964	. 70622	.65348	.84667	. 79594	.60474
4	2.6131	1.9060	1.6774	2.0971	1.8686	1.4488	1.3109	1.6107	1.4729	1.1731	1.0801	1.3135	1.2206	.98717
5		3. 3202	2.5043	3.5114	2.9955	2.2883	2.0305	2.4503	2.1924	1.7727	1.6133	1.9131	1.7538	1.4540
						3.7026	3.1574	3.8645	3.3193	2.6122	2.3329	2.7527	2.4733	2.0536
										4.0264	3.4598	4.1669	3.6002	2.8931 4.3073
LEVEL	1	6	1	,	1		,	9	,	10		1		2
M.S.E.		15373		13688		12320		11104		10094		091873		084219
S.N.R.	(DS) 18.1 7 3.4	33	18.6	521	3.6	341	3.7	040	3.7	1776	3.6	413	3.9	081
1	X(1)	¥(1)	X(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	x(1)	Y(I)
1	0.00000	.12400	.17401	0.00000	0.00000	.11102	.11102	0.00000	0.00000	.10049	.10050	0.00000	0.00000	.09179
2	.26445	.40490	. 38347	.24801	.23503	. 35903	. 34605	.22204	.21151	. 32253	. 31202	.20099	.19229	. 29279
3	.56683	.72876	.69085	.52891	.49949	.63931	.61052	.47006	.44655	.57056	.54706	.42304	.40362	.51484
	.91995	1.1111	1.0440	.85278	.80188	.96380	.91291	.75097	.71102	.85148	.81153	.67107	.63686	. 76286
3	1.3446	1.5780	1.4686	1.2352	1.1550	1.3462	1.2660	1.0748	1.0134	1.1753	1.1139	.95199	.90334	1.0438
	1.8778	2,1776	2.0018	1.7020	1.5796	1.8130	1.6907	1.4572	1.3665	1.5577	1.4671	1.2759	1.2057	1.3677
!	3.7243	3.0171	2.7214	2.3016	2.1129	2.4126	2.2239	1.9241	1.7912	2.0246	1.8917	1.6583	1.5589	1.7501
	3.1243	4.4314	3.8483	4.5554	3.9523	4.6664	4.0704	3.3632	3.0449	3.4637	3.1445	2.1251	2.5167	2.2159
				4.3334	217373	4.0004	4.0104	31 30 34	3.12441		3. (44)	6.1641	4.719/	2.010)
9								4.7775	4.1709	4.8780	4.2714	3.5643	3.2363	3.6561

Table A.11 (cont'd) Optimus Nonunifore Quantizers with Quantization Levels N = 2,...,36 for Signal with Laplacian Density (Mean = 0, Variance = 1)

LEVE N.S. S.N. ENTR	E .00 R.(DB) 21.12	77275	21.46 4.0	071332	21.6 4.0	065898	22.1 22.1 4.1	061192 33			22.7 4.2	0530N 51	29 .00 23.04 4.28	49563
1	x(1)	Y(1)	x(1)	v(t)	x(t)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)
1	.091798	0.00000	0.00000	.084484	.084487	0.00000	0.00000	.078233	.078257	0.00000	0.00000	.072880	.072883	0.00000
2	. 28410	.18360	.17629	.26508	.26073	.16897	.16274	.24723	.2:101	. 15651	.15114	. 22940	.22403	.1457
3	.49563	. 38460	. 36859	.46909	.45309	. 35258	. 33904	.43054	.41731	. 32550	. 31 389	. 39839	. 38679	. 3022
	. 73068	.60665	.58012	.69115	.66462	.55359	.53135	.63186	.60963	. 50911	.49020	. 58201	.56310	.4712
5	.99516	. 85469	.81518	.93919	.89968	.77365	.74289	. 85 39 2	.82117	.71013	.68252	. 78303	.75542	.6549
6	1.2976	2.1356	1.0797	1.2201	1.1642	1.0237	.97795	1.1020	1.0552	.9 3220	.89407	1.0051	.96678	.8559
7	1.6507	1.4595	1.3821	1.5440	1.4666	1.3046	1.2424	1.3629	1.3207	.1.1503	1.1291	1.2532	1.2070	1.0780
8	2.0753	1.8419	1.7352	1.9264	1.8197	1,6285	1.5448	1.7068	1.6231	1.4612	1.3936	1.5341	1.4665	1.3261
9 .	2.6085	2.3087	2.1598	2.3932	2.2563	2,0109	1.8980	2.0892	1.9761	1.7851	1.6960	1.8580	1.7689	1.6070
10	3. 3281	2.9083	2.6931	2.9929	2.7776	2.4778	2. 3226	2.5560	2.4000	2.1675	2.0492	2.2404	2.1221	1.9309
11	4.4550	3.7479	3.4126	3.8324	3.4971	3.0774	2.8558	3.1556	2.9341	7.6343	2.4738	2.7072	2.5467	2.3133
12		5.1621	4.5395	5.2466	4,6240	3.9169	3.5754	3.995?	3.6537	3.2339	3.0070	3.3068	3.0799	2.7801
13						5.3311	4.7023	5.4094	4.7805	4.0735	3.7266	4.1465	3.7995	3.3797
14										5.4877	4.6535	5.5606	4.9264	4.2193
15														5.6335
M. S.	E00	46466	.0 23.6	043585		041022 70		038627		636481 179	24.6		24.8	
M. S.	E00 R.(08) 23.32	146466	.0	043585	.0	041022	24.1	038627	24.	036481	24.6	034469	24.8	032655
M. S.	E00 R.(08) 23.32	146466	23.6	043585	23.8	041022	24.1	038627	24.	G36481 179	24.6	0 34469	24.8	032655 60 907
M.S. S.N. ENTR	E00 R.(08) 23.33 OPY 4.33	046466 27 366	23.6 4.3 X(1)	043585 07 808 Y(1)	23.8 4.4	041022 70 764	x(1)	038627 31 650	21.5	636481 179 1109	x(1)	0034469 626 6503	24.8	032655 60 907 Y (1)
M.S. J.N. ENTR	E00 R.(08) 23.33 OPY 4.33 X(1) 0.00000	Y(1)	23.6 4.3 X(1)	043585 07 808 Y(1)	23.8 4.4 x(1)	041022 70 764 Y(1)	x(1)	038627 31 680 Y(1)	x(i)	(109 Y(1)	x(1)	034469 526 5503 Y(1)	X(1)	032655 60 907 Y(1)
H. S. J. N. ENTR	E00 R.(08) 23.33 OPY 4.33	Y(1)	x(1)	043585 07 808 Y(1) 0.00000	x(1) 0.00000	041022 70 764 Y(1) .064082	x(1)	0.00000	x(i) 0.00000	(10) (10) (10) (10)	x(1)	Y(1)	x(1)	907 Y(1) .0571 .1780 .3062
1 1 2	E00 R.(08) 23.33 OPT 4.33 X(1) 0.00000 .14105	Y(1) .058198	x(1) 068201 .20929	043585 07 808 Y(1) 0.00000 .13640	x(1) 0.00000 .13229	041022 20 264 Y(1) .064082 .20049	x(1) .064085	7(1) 0.00000 12517	X(7) 0.00000 .12452	036481 179 109 Y(1) .060435 .18861 .32503 .47082	X(1) .060439 .18497 .31727 .45838	Y(1) 9 0.00000 12088 24906 38548	X(1) 0.00000 .11762 .24216 .37447	907 Y(1) .0571 .1780 .3063
H. S. J. N. ENTR	E00 R.(D8) 23.33 OPT 4.33 X(1) 0.00000 .14108 .29223	946466 27 1666 Y(1) .058198 .21397 .37050 .53950 .72312	x(1) 068201 20929 36043	043585 07 808 Y(1) 0.00000 .13640 .28218	x(1) 0.00000 .13229 .27338	041022 170 264 Y(1) .064042 .70049 .34627	x(1) .064085 .19638 .33248 .48864 .65142	7(1) 0.00000 1261 26458 41637 .56691	x(i) 0.00000 .12452 .25682 .37793 .54910	03.6481 179 1009 1(1) .060435 .18861 .32501 .47082 .62737	x(1) .060435 .18497 .31727 .45838 .60955	V(1) 0 .00000 12088 .24906 .38548 .53128	X(1) 0.00000 .11762 .24216 .37447 .51558	907 Y(1) .0571 .1780 .3063 .4426 .5884
1 1 2 3 4	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500	946466 29 366 Y(1) .058198 .21397 .37050 .53950	.0 23.6 4.3 X(1) .068201 .20929 .36045 .52322	043585 07 808 Y(1) 0.00000 .13440 .28218 .43871	x(1) 0.00000 .13229 .27338 .42454 .58731 .76363	041022 70 264 Y(1) .064082 .70049 .34627 .50281 .67161 .85543	x(1) .064085 .19638 .33248 .48864 .65142 .82774	038627 31 660 Y(1) 0.00000 .12617 .26458 .41037 .56691 .73592	X(7) 0.00000 .12452 .23682 .39793 .54910 .71168	03.6481 179 109 1(1) .060435 .18861 .32503 .47082 .62737 .79638	X(1) .060439 .18497 .31727 .45838 .60955 .77234	V(1) 0.00000 12088 24906 .38548 .53128 .68783	X(1) 0.00000 .11762 .24216 .37447 .51558 .66676	907 Y(1) .0571 .1780 .3062 .4426 .5884 .7450
1 1 2 3 4	E00 R.(DE) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82354 1.0352	Y(1) .058198 .21397 .37050 .53950 .72312 .92415	.0 23.6 4.3 X(1) .068201 .20929 .36043 .52322 .69953 .89187 1.1034	043585 07 808 Y(1) 0.00000 .13640 .28218 .43871 .60772 .79135 .99238	.0 23.8 4.4 x(1) 0.00000 .13279 .27338 .42454 .58731 .76363 .95597	041022 270 264 Y(1) .064082 .70049 .34627 .50281 .67181 .85545	x(1) .064085 .19638 .33248 .48864 .65142 .82774	7(1) 0.00000 12617 .26458 .41037 .56691 .73592 .91956	X(7) 0.00000 12452 23682 39793 54910 71168 88820	03.481 179 1109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .96002	X(1) .060439 .18497 .31727 .45838 .60955 .77234 .94867	V(1) 0.00000 12088 .24906 .38548 .53128 .68783 .83684	X(1) 0.00000 .11762 .24216 .37447 .31558 .66676 .82954	032655 60 907 Y(1) .0571 .1780 .3062 .4426 .5884 .7450
1 1 2 3 4 5 6 7 8	E00 R.(DB) 23.32 OPY 4.32 2(1) 0.00000 .14108 .29223 .45500 .63131 .82364 1.0352 1.2703	946466 29 366 Y(1) .058198 .21397 .37050 .53950 .72312 .92415 1.1462 1.3943	.0 23.6 4.3 x(1) .068201 .20929 .36045 .52322 .69953 .89187 1.1034 1.3385	043585 07 808 Y(1) 0.00000 .13440 .28218 .43871 .60772 .79135 .99238 1.2145	.0 23.8 4.4 x(1) 0.00000 .13229 .27338 .42454 .58731 .76363 .95397 1.1675	041022 200 264 Y(1) .064082 .20049 .34627 .50281 .67181 .85343 1.0565 1.2786	x(1) .064085 .19638 .33248 .48864 .65162 .82774 1.0201 1.2316	038627 31 650 Y(1) 0.00000 .12517 .26458 .41037 .56691 .73592 .91955	X(7) 0.00000 .12452 .25682 .37.93 .54910 .711683 .56820 1.0605	036481 179 109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .96002 1.1811	X(1) .060439 .18497 .31727 .45838 .60955 .77234 .94867 1.1410	V(1) 0.00000 12088 24906 .38548 .53128 .68783 .83684 1.0405	24.8 4.5 0.00000 .11762 .24216 .37447 .51558 .66676 .82954	032655 60 907 Y(1) .0571 .1780 .3062 .4426 .5884 .9140 1.0977
1 1 2 3 4 5 6 7 8 9	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82164 1.0352 1.2703 1.5348	Y(1) .058198 .21397 .37050 .53950 .72312 .92415 1.1462 1.3943 1.6752	.0 23.6 4.3 X(1) .068201 .20929 .36043 .52322 .69953 .89187 1.1034 1.3385 1.6030	043585 07 808 Y(1) 0.00000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 1.4625	x(1) 0.00000 .13279 .27388 .42454 .58731 .76363 .95597 1.1675 1.4026	041022 70 264 Y(1) .064082 .20049 .34627 .50281 .67161 .85545 1.0765 1.2786 1.3766	X(1) .064085 .19638 .33248 .48864 .65142 .82774 1.0201 1.2316 1.4667	038627 31 6680 Y(1) 0.00000 .12617 .26458 .41037 .56691 .73592 .91925 1.1205 1.3427	X(7) 0.00000 .12452 .25682 .32793 .54910 .71168 .86820 1.0663	03.6481 179 109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .98002 1.1811 1.4031	X(1) .060435 .18497 .31727 .45838 .60935 .77234 .94867 1.1410	V(1) 0.00000 12088 24906 .38548 .53128 .68783 .85684 1.0405	24.8 4.5 0.00000 .11762 .24216 .37447 .51558 .66676 .87954	032655 60 907 Y(1) .0571 .1780 .3062 .4426 .5884 .7450 .1.0977 1.2987
1 1 2 3 4 5 6 7 8 9	E00 R.(DE) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82164 1.0352 1.2703 1.5348 1.8772	046466 29 366 Y(1) .058198 .21397 .37050 .53950 .72312 .92415 1.1462 1.3943 1.6752 1.5991	.0 23.6 4.3 X(1) .068201 .20929 .36043 .52322 .69953 .89137 1.1034 1.3385 1.6030 1.9054	043585 07 808 Y(1) 0.09000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 1.4625 1.7435	.0 23.8 4.4 X(1) 0.00000 .13229 .27338 .42454 .58731 .76363 .95597 1.1675 1.4026 1.6671	041022 70 764 Y(1) .064082 .70049 .34627 .50281 .67181 .85353 1.0565 1.2786 1.5766 1.5766	X(1) .064085 .19638 .33748 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7312	7(1) 0.00000 1251 26458 41037 56691 1.73592 91955 1.1206 1.3427	X(7) 0.00000 .12452 .23682 .32793 .54910 .71168 .86820 1.0605 1.2621 1.5272	036481 179 1109 Y(1) .060435 .18861 .32503 .47082 .62737 .79638 .98002 1.1811 1.4031 1.6512	X(1) .060433 .18497 .31727 .45838 .60955 .77234 .94867 1.1410 1.3526 1.5877	V(1) 0.00000 1.268 .24906 .38548 .53128 .68783 .83684 1.0405 1.2415 1.4636	24.8 4.5 X(1) 0.00000 .11762 .24216 .37447 .51558 .66676 .82954 1.0059 1.1982 1.4098	032655 60 907 Y(1) .0571 .1780 .3062 .4426 .5884 .7450 .9140 1.0977 1.2987
1 1 2 3 4 5 6 7 8 9 10 11	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82364 1.0352 1.2703 1.5348 2.8372 2.1903	046466 199 1666 Y(1) .058198 .21.997 .37050 .53950 .72312 .92415 1.1462 1.3943 1.6752 1.5991 2.3815	X(1) .068201 .20929 .36045 .52322 .69953 .89187 1.1034 1.3385 1.6030 1.9054 2.2585	043583 07 808 Y(1) 0.09000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 1.4455 1.7435	x(1) 0.00000 .13279 .27338 .42434 .58731 .76363 .95597 1.1675 1.4026 1.6671 1.9695	041022 70 264 Y(1) .064082 .70049 .34627 .50281 .67181 .85343 1.0565 1.2786 1.8076 2.1314	.664085 .1964085 .196408 .39348 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7312 2.0336	038627 31 6680 Y(1) 0.00000 .12617 .26458 .41037 .56691 .73592 .91956 1.1204 1.3427 1.5907	x(i) 0.00000 .12452 .2542 .3573 .54910 .71168 .5680 1.7621 1.5272 1.7917	036481 179 1109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .98002 1.1811 1.4031 1.4031 1.5512 1.9321	x(1) .060435 .18497 .31727 .45838 .60955 .77234 .94867 1.1410 1.3526 1.5677	V(1) 0.00000 12088 .24906 .38548 .53128 .68783 .83684 1.0405 1.7415 1.4636 1.7117	.00 24.8 4.5 X(1) 0.00000 .11762 .24216 .37447 .31558 .66576 .82954 1.0059 1.1982 1.4098	032655 60 907 Y(1) .0571 .1780 .3062 .4426 .5884 .7459 .9140 1.0977 1.2987 1.5208
1 1 2 3 4 5 6 7 8 9 10 111 12	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82364 1.0352 1.2703 1.5348 2.8722 2.1903 2.6149	046466 179 1866 179 1866 1797 1797 1797 1797 1797 1797 1797 17	23.6 4.3 X(1) .068201 .20929 .36043 .52322 .69953 .89187 1.1034 1.3385 1.6030 1.9054 2.2585 2.6832	043583 07 808 Y(1) 0.00000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 1.4425 1.7435 2.0673 2.4497	.0 23.8 4.4 x(1) 0.00000 .13229 .27338 .42454 .58731 .76363 .93597 1.1675 1.4026 1.6671 1.9695 2.3227	041022 70 264 Y(1) .064082 .70049 .34627 .50281 .67181 .85545 1.2786 1.8766 2.1314 2.5138	.6 24.1 4.4 x(1) .064085 .19638 .33248 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7112 2.0336	038627 31 6680 Y(1) 0.00000 .12517 .26458 .41037 .56691 .73592 .91956 1.1205 1.3227 1.5997 1.8717 2.1954	24.1 4.5 (1) 0.00000 .12452 .25482 .37:73 .54910 .71168 .56820 1.0603 1.201 1.5272 1.7917 2.0941	036481 179 1109 1609 1609 160435 18861 32503 47082 62737 79638 98002 1.1811 1.4031 1.4031 1.4031 1.5312 1.9321 2.7380	X(1) .060433 .18497 .31727 .45838 .60955 .77234 .94867 1.1410 1.3526 1.5877 1.8522 2.1546	V(1) V(1)	.00 24.8 4.5 X(1) 0.00000 .11762 .24216 .37447 .31558 .66676 .82954 1.0039 1.1982 1.4098 1.6549 1.9094	032655 60 907 Y(1) .0571 .1780 .3063 .4426 .5884 .7450 .9140 1.0977 1.5987 1.7689 2.0498
1 1 2 3 4 5 6 7 8 9 10 111 112	E00 R.(DE) 23.33 OPT 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82164 1.0352 1.2703 1.5348 1.8372 2.1903 2.6149 3.1462	046466 29 366 Y(1) .058198 .21397 .37050 .53950 .72312 .92415 1.1462 1.3943 1.6752 1.5991 2.3815 2.8484 3.4480	.0 23.6 4.3 x(1) .068201 .20929 .36045 .52322 .69953 .89137 1.1034 1.3385 1.6030 1.9054 2.2585 2.6832 3.2164	043583 07 808 Y(1) 0.00000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 1.4455 2.0673 2.4497 2.9156	.0 23.8 4.4 x(1) 0.00000 .13229 .27338 .42454 .58731 .76363 .95397 1.1675 1.4026 1.6671 1.9095 2.3227 2.7473	041022 70 264 Y(1) .064082 .20049 .34627 .50281 .67181 .85545 1.0565 1.2786 1.5766 2.1314 2.51387	.60 24.1 4.6 x(1) .064085 .19638 .33748 .48864 .65142 .82774 1.0201 1.2316 1.7312 2.0336 2.3868	038627 31 6680 Y(1) 0.000000 .12617 .26458 .41037 .56691 .73592 .91956 1.1206 1.3427 2.19597 1.8717 2.1958	24.1 4.5 x(7) 0.00000 .12452 .25682 .32793 .54910 .71168 .58620 1.0605 1.7921 1.5272 1.7917 2.0951	036481 179 1109 1109 1009 1000	X(1) .060433 .18497 .31727 .45838 .60935 .77234 .94867 1.1410 1.3526 2.1546 2.1547	Y(1) 0.00000 1.268 .24906 .38548 .53128 .68783 .83684 1.0405 1.2415 1.4636 1.7117 1.9926 2.3165	.00 24.8 4.3 X(1) 0.00000 .11762 .24216 .37447 .31358 .66576 .82954 1.0099 1.1982 1.4098 1.6494 1.9649 2.2118	032655 60 9907 Y(1) .0571 .1780 .3063 .4425 .5884 .7450 .9140 1.0977 1.2987 1.7689 2.0448 2.3737
1 2 3 4 5 6 7 8 9 10 11 12 13 14	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82364 1.0352 1.2703 1.5348 2.8372 2.1903 2.6149 3.1462 3.8677	046466 199 1666 Y(1) .058198 .21.997 .37050 .53950 .72312 .92415 1.1462 1.3943 1.6752 1.3943 1.6752 1.3943 1.6752 1.34480 4.2875	23.6 4.3 X(1) .068201 .20929 .36045 .52322 .69953 .89187 1.1034 1.3385 1.6030 1.9054 2.2585 2.6832 3.2164 3.9°460	043583 07 808 Y(1) 0.09000 .13640 .28218 .43871 .60772 .79135 .9238 1.2145 1.465 1.7435 2.0473 2.9447 2.9166	x(1) 0.00000 13229 2738 42454 58731 76363 95397 1.1675 1.4626 1.6671 1.9695 2.3227 2.7473 3.2805	041022 70 264 Y(I) .064082 .70049 .3627 .50281 .67161 .85545 I.0565 I.2786	x(1) .064085 .19638 .33248 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7312 2.0336 2.3888 2.8113	038627 31 6680 Y(1) 0.000000 .12517 .26458 .41037 .56691 .73592 .9195 1.3027 1.3027 2.1959 1.327 2.1959	X(1) 0.00000 .12452 .25482 .39193 .54910 .71168 .54910 .1.0603 1.2021 1.5271 2.0941 2.4472 2.4729	036481 179 1109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .98002 1.1811 1.4031 1.4031 1.6512 1.9321 2.7340 2.6381 3.1053	X(1) .060435 .18497 .31727 .45838 .60935 .77234 .94867 .1.1410 1.3526 1.5877 1.8527 2.1546 2.5077	V(1) 0.00000 12088 .24906 .38548 .53128 .68783 .83684 1.0405 1.2415 1.4636 2.3165 2.3165 2.6989	24.8 4.5 X(1) 0.00000 .11762 .24216 .37447 .31558 .66676 .82954 1.0059 1.1982 1.4049 1.9094 2.2118 2.5649	032655 60 9907 Y(1) .0571 .1780 .3065 .4426 .5884 .7450 .9140 1.0977 1.2981 1.5200 1.7689 2.3733
1 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14	E00 R.(DE) 23.33 OPT 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82164 1.0352 1.2703 1.5348 1.8372 2.1903 2.6149 3.1462	046466 29 366 Y(1) .058198 .21397 .37050 .53950 .72312 .92415 1.1462 1.3943 1.6752 1.5991 2.3815 2.8484 3.4480	.0 23.6 4.3 x(1) .068201 .20929 .36045 .52322 .69953 .89137 1.1034 1.3385 1.6030 1.9054 2.2585 2.6832 3.2164	043583 07 808 Y(1) 0.00000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 2.0673 2.0673 2.0673 3.5162 4.357	.0 23.8 4.4 x(1) 0.00000 .13229 .27338 .42454 .58731 .76363 .93597 1.1675 1.4026 1.4621 1.9695 2.3227 2.7473 3.2805	041022 70 264 Y(1) .064082 .70049 .34627 .50281 .67181 .85545 1.2786 1.8766 1.8076 2.1314 2.5138 2.9907 3.5803	.60 24.1 4.4 x(1) .064085 .19638 .33248 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7312 2.0336 2.8114 3.34642	038627 31 6680 Y(1) 0.00000 12517 24458 41037 56641 73502 91936 1.1206 1.3427 1.5907 1.8717 2.1958 2.5780 3.0148	24.1 4.5 K(i) 0.00000 .12452 .25682 .37793 .54910 .71168 .56825 1.7917 1.7917 2.4472 2.8719 1.4551	036481 179 1109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .98002 1.1811 1.4031 1.4031 1.4031 1.5312 1.9321 2.7360 2.6381 3.1033 3.7049	X(1) .060433 .18497 .31727 .45838 .60955 .77234 .9486 1.3526 1.3526 1.5877 1.8522 2.1546 2.5077 2.9373	V(1) V(1)	.00 24.8 4.5 X(1) 0.00000 .11762 .24216 .37447 .31558 .66676 .82954 1.0039 1.1982 1.4098 1.6449 2.2118 2.3648 2.2189 2.3689	032655 60 9907 Y(1) .0571 .1780 .3062 .4426 .5884 .7450 .9160 1.0977 1.2987 1.5087 2.0498 2.3733 2.7583
1 2 3 4 5 6 7 8 9 10 111 112 113 114 115 116	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82364 1.0352 1.2703 1.5348 2.8372 2.1903 2.6149 3.1462 3.8677	046466 179 1666 179 1666 1797 1797 1797 1799 1799	23.6 4.3 X(1) .068201 .20929 .36045 .52322 .69953 .89187 1.1034 1.3385 1.6030 1.9054 2.2585 2.6832 3.2164 3.9°460	043583 07 808 Y(1) 0.09000 .13640 .28218 .43871 .60772 .79135 .9238 1.2145 1.465 1.7435 2.0473 2.9447 2.9166	x(1) 0.00000 13229 2738 42454 58731 76363 95397 1.1675 1.4626 1.6671 1.9695 2.3227 2.7473 3.2805	041022 70 264 Y(I) .064082 .70049 .3627 .50281 .67161 .85545 I.0565 I.2786	x(1) .064085 .19638 .33248 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7312 2.0336 2.3888 2.8113	038627 31 6680 Y(1) 0.000000 .12617 .24458 .41037 .56691 .73502 .91956 1.1204 1.3907 1.8717 2.1958 3.6148 3.6148 4.4210	24.1 4.5 x(7) 0.00000 .12452 .25682 .32793 .54910 .71168 .58520 1.0803 1.2921 1.5272 1.7917 2.0941 2.4472 2.4472 2.4793 3.4051	036481 179 1109 Y(1) .060435 .18861 .32503 .47082 .62737 .79638 .96002 1.1811 1.4031 1.4031 1.4031 1.4031 1.5512 1.27340 2.6381 3.1033 3.7049 6.5444	X(1) .060433 .18497 .31727 .45838 .60935 .77234 .94867 1.1410 1.3526 2.1546 2.5077 7.29323 3.4656 4.1852	Y(1) 0.0000 10000 10088 24906 .38548 .53128 .68783 .83684 1.0405 1.7415 1.4636 1.7117 1.9926 2.3165 2.6989 3.1658 3.7654	.00 24.8 4.3 X(1) 0.00000 .11762 .24216 .37447 .31538 .66676 .82954 1.0098 1.4098 1.6494 2.2118 2.5649 2.9649 3.5228	032655 60 9907 Y(1) .0571 .1780 .3062 .4426 .5884 .7459 .9140 1.0977 1.5208 1.7689 2.3737 2.7351 3.2230
1 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15	E00 R.(DB) 23.33 OPY 4.33 X(1) 0.00000 .14108 .29223 .45500 .63131 .82364 1.0352 1.2703 1.5348 2.8372 2.1903 2.6149 3.1462 3.8677	046466 179 1666 179 1666 1797 1797 1797 1799 1799	23.6 4.3 X(1) .068201 .20929 .36045 .52322 .69953 .89187 1.1034 1.3385 1.6030 1.9054 2.2585 2.6832 3.2164 3.9°460	043583 07 808 Y(1) 0.00000 .13640 .28218 .43871 .60772 .79135 .99238 1.2145 2.0673 2.0673 2.0673 3.5162 4.357	.0 23.8 4.4 x(1) 0.00000 .13229 .27338 .42454 .58731 .76363 .93597 1.1675 1.4026 1.4621 1.9695 2.3227 2.7473 3.2805	041022 70 264 Y(1) .064082 .70049 .34627 .50281 .67181 .85545 1.2786 1.8766 1.8076 2.1314 2.5138 2.9907 3.5803	.60 24.1 4.4 x(1) .064085 .19638 .33248 .48864 .65142 .82774 1.0201 1.2316 1.4667 1.7312 2.0336 2.8114 3.34642	038627 31 6680 Y(1) 0.00000 12517 24458 41037 56641 73502 91936 1.1206 1.3427 1.5907 1.8717 2.1958 2.5780 3.0148	24.1 4.5 x(7) 0.00000 .12452 .25682 .32793 .54910 .71168 .58520 1.0803 1.2921 1.5272 1.7917 2.0941 2.4472 2.4472 2.4793 3.4051	036481 179 1109 1(1) .060435 .18861 .32503 .47082 .62737 .79638 .98002 1.1811 1.4031 1.4031 1.4031 1.5312 1.9321 2.7360 2.6381 3.1033 3.7049	X(1) .060433 .18497 .31727 .45838 .60955 .77234 .9486 1.3526 1.3526 1.5877 1.8522 2.1546 2.5077 2.9373	V(1) V(1)	.00 24.8 4.5 X(1) 0.00000 .11762 .24216 .37447 .31558 .66676 .82954 1.0039 1.1982 1.4098 1.6449 2.2118 2.3648 2.2189 2.3689	032655 60 9907 Y(1) .0571 .1780 .3062 .4426 .5884 .7450 .9160 1.0977 1.2987 1.5087 2.0498 2.3733 2.7583

Table A.12 Optimum Uniform Quantizers with Quantization Levels N = 2,...,36 for Signal with Gaussian Density (Mean = 0, Variance = 1)

NO. OF OUTPUT LEVELS	STEP SIZE	M.S.E.	S.N.R. (DB)	ENTROP
2	1.5958	.36338	4.3264	1,0000
3	1.2240	.19017	7.2085	1.5358
4	.99569	.11885	9.2502	1.9037
	.84299	.082274	10.857	2.1831
	.73343	.065657	12.171	2.4085
,	.65077	.046860	13.292	2.5976
	.58602	.037449	14.267	2.7606
•	.51382	.030636	15.129	2,9039
10	.49078	.025657	15.903	3.0319
11	.45462	.021856	16,604	3.1476
12	.42379	.018853	17.246	3.2532
13	.39716	.016453	17.838	3.3503
14	.37391	.014500	18.356	3.4402
15	.35341	.012889	16.893	3.5240
16	.33520	.011543	19.377	3.6024
17	.31890	.010405	19.828	3.6761
18	.30423	.0094339	20.253	3.7456
19	.29093	.0085979	20.656	3.8115
20	.27883	.0078727	21.019	3.8740
21	.26776	.0072390	21.403	3.9334
22	.25760	.0066818	21.751	3,9902
23	.24823	,0061890	22.084	4.0445
24	.23957	.0057510	22.403	4.0965
25	.23153	.0053596	22.709	4.1464
26	.22405	.0050084	23.003	4.1944
21	.21707	.0046920	23.286	4.2407
28	.21054	.0044058	23.560	4.2853
29	. 20442	.0041460	23.824	4.3283
30	.19867	.0039094	24.079	4.3699
31	.19325	.0036932	24.326	4.4102
32	.18814	.0034952	24.565	4.4493
33	.18331	.0033133	24.797	4.4871
34	.17874	.0031458	25.021	4.5239
35	.17441	.6029912	25.242	4.5596
36	.17029	.0028481	25.454	4.5943

办

Table A.13 Optimus Uniform Quantizers with Quantization Levels N = 2,...,36 for Signal with Laplacian Density (Nean = 0, Variance = 1)

O. OF OUTPUT LEVELS	STEP SIZE	M.S.E.	S.N.R. (DE)	ENTROPY
,	1.4142	. 50000	3.0193	1.0000
3	1.4142	. 26424	5.7800	1.3169
	1.0874	.19630	7.0707	1.7507
,	1.0245	.13300	8.7616	1.8649
6	.87070	.10951	9.6056	2.1254
7	.82175	.083087	10.805	2.2073
	.73093	.071748	11.442	2.3919
,	.69397	.057992	12.366	2.4608
10	.63346	.031488	12.883	2.6029
11	.60481	.043319	13.633	2.6637
12	.56131	.039174	14.070	2.7789
13	.53847	.033881	14.700	2.8336
14	.50555	.031044	15.060	2.9303
15	.48688	.027395	15.623	2.9802
16	.46100	.025351	15.960	3.0634
17	.44544	.022716	16.437	3.1093
18	.42449	.021185	16.740	3.1823
19	.41130	.019212	17.164	3.2248
20	. 39396	.018029	17.440	3,2898
21	. 38261	.016509	17.823	3, 3294
22	, 36800	.015574	18.076	3.3879
23	.35813	.014374	18.424	3,4249
24	.34562	.013619	18.659	3.4782
25	. 33694	.012654	18.978	3,5130
26	.3/611	.012033	19.196	3,5618
. 27	.31841	.011244	19.491	3.5947
28	.30892	.010727	19.695	3.6398
29	.30204	.010072	19.969	3.6708
30	. 29365	.0096354	20.161	1.7127
31	.28746	.0090851	20.417	3.7422
32	.27999	.0087132	20.598	3.7813
33	.274 19	. 0082459	20.638	3,8094
34	.76768	.0079258	21.010	3.8460
35	.26258	.0075251	21.235	3.8728
36	. 25652	,0072473	21.398	3.9073

Table A.14 Compandors with Quantization Levels N = 2,...,36 for Signal with Gaussian Density (Mean = 0, Variance = 1)

H.S.S S.N.S ENTRO	(DB) 4	.36838 .3371 .0000													
1	x(1)	Y	(1)	x(1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	1(1)	x(1)	Y(1)
1 2 3 4 5	0.0000		2720	.53576 1.9056	0.00000	0.00000 .87607 2.0971	.42426 1.3933	.35172 1.1217 2.2425	0.00000 .71874 1.5976	0.00000 .61084 1.3122 2.3601	. 30071 .94207 1.7554	.26282 .81451 1.4672 2.4588	0.00000 .53188 1.1298 1.8855	0.00000 .47144 .98145 1.5972 2.5438	.23355 .71862 1.2692 1.9959
LEVEL N.S.I S.N.I	L.(DB) 15	.028747 5.414 5.0398		16.2	23678	17.0	19842	17.7	2 16968 29 242	18.3	3 14516 82 317	14 .0 18.9 3.6	12623		
1	X(1)	,	(1)	x (t)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)
1	.2102		0000	0.00000	.19119	.17536	0,00000	0.00000	.16197	.15051	0.00000	0.00000	.14058	.13183	0.00000
,	.6436		2360	.38474	.58324	.53349	,35253	. 32538	.49174	.45618	. 30216	.28208	.42551	. 39877	.26454
;	1.1224		7461	.78974	1.0082	.91629	.72048	.66277	84054	.77688	.61389	.57191	. 72253	.67553	.53543
	1.7091			1.7440	1.5055	1.3506	1.1246	1.0277	1.2276	1.1269	.94706	.87882	1.0426	.97082	.82019
5	2.618			1.8069	2.1762	1.8938	1.6025	1.4455	1.6891	1.5308	1.3199	1.2164	1.4033	1.2976	1.1292
6				2.6853		2.7455	2.2517	1.9718	2.3199	2.0425	1.7674	1.6982	1.8396	1.6790	1.4793
								2,8003		2.8506	2.3520	2.1072	2.4390	2.1664	2.4917
LEVE	L	16		1	,	1		1	9	,	0	,			2
M.S.		.009799	1	.0	087297		078261		070557		06 39 35		058203		053207
	(DB) 20			20.5		21.0		21.5		21.9		22.3		22.7	448
ENTRE	OPY :	3.8117		3.4	19 38	3.9	713	4.0	448	4.1	147	4.1	81Z	•	***
1	x(1)		(1)	"(1)	Y(1)	X(1)	¥(1)	x(1)	Y(1)	x(1)	Y(1)	x(t)	Y(t)	X(I)	Y(1)
1	0.0000	w .1	2421	.11739	0.00000	0.00000	.11129	.10579	0.00000	0.00000	.10082	.096295	0.00000	0.00000	.09216
•	. 2490		7524	. 354 37	.23533	.22304	. 33573	.31698	.21199	.20195	. 30 384	.29009	. 19299	.18459	.27754
3	. 50 14		3445	.59821	.47511	.44986	.56598	.53713	.42721	.40676	. 51114	.48759	. 36821	. 371 30	.46616
4	. 769	9. 05	0879	.85458	.72441	.68471	.80574	.76419	.64927	.61741	.72506	.69167	. 58861	.56244	.66049
5	1.054			1.1313	.98977	.93293	1.0643	1.0053	.83259	. 93764	.93282	.99587	.79125	.76071	. 86 355
6	1.3720			1.4405	1.2808	1.2070	1.3479	1.2676	1.1332	1.0724	1.1973	1.1359	1.0182	.96952	1.0793
7	1.744			1.8044	1.6136	1.3040	1.5734	1.5630	1.4102	1.3287	1.4684	1.3859	1.2571	1.1935	1.3132
	2.721		405	2.2729	2.0202	1.8605	2.0723	1.9129	1.7271	1.6182	1.7813	1.4700	1.5228	1.4395	1.5740
,	2.950	•		3.01A7	2.5862	2.3207	2.6290	2.3656	2.1211	1.9420	2.1669	2.0082	2.2102	2.0518	2.2510
10						3.0544		3.0881	2.6692	3.1200	2.7071	3.1503	2.7430	2.4854	2.7771
11										3.1200		3.1303	2.000	3.1792	

Table A.14 (cont'd) Compandors with Quantization Levels N = 2,...,36 for Signal with Gaussian Density (Mean = 0, Variance = 1)

.

O

0

1 .088371 0.00000 0.00000 .084881 0.81658 0.00000 0.00000 .078672 .075898 0. 2 .26604 .17697 .16997 .25546 .24571 .16330 .13751 .22667 .22528 . 3 .44656 .35582 .34159 .28557 .41159 .32647 .31633 .39667 .38245 . 4 .63208 .53855 .51644 .60607 .58217 .49648 .47287 .56013 .59973 . 5 .82517 .72750 .69715 .79020 .75818 .66931 .64368 .72875 .70159 . 6 1.0291 .92555 .68559 .98375 .94241 .84910 .81552 .90459 .86983 . 7 1.2483	7 035775 64 257	24.	28 .0033331 .772 .5758	25.0	29 0031128 069 6241
2 .26604 .17697 .16997 .25546 .24571 .16350 .15751 .23667 .22828 . 3 .44636 .35582 .34159 .42857 .41199 .32847 .31633 .39667 .32245 . 4 .65208 .53855 .51664 .66607 .58217 .49468 .47787 .36013 .39667 .32245 . 5 .82317 .72750 .69715 .79020 .75818 .66911 .64368 .72875 .70159 . 6 1.0291 .92555 .88559 .98375 .94241 .84910 .81362 .90459 .86983 . 7 1.2483 1.1365 1.0832 1.1905 1.1380 1.0385 .99602 1.0903 1.0467 . 8 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1880 1.2875 1.2353 1.0 . 8 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1880 1.2875 1.2353 1.0 . 9 1.7648 1.6223 1.3378 1.6680 1.5830 1.4628 1.3957 1.5075 1.4398 1. 10 2.0931 1.9203 1.8084 1.9618 1.2497 1.7113 1.6239 1.7524 1.6667 1. 11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1. 12 3.2068 2.8095 2.5554 2.6304 2.5879 2.3616 2.2031 2.3950 2.2393 2.412 3.2232 3.2585 2.8699 2.6190 2.5981 2.6488 2. 14 3.2232 3.2585 2.8699 2.6190 2.5981 2.6488 2. 15 X(I) Y(I) X(I)	Y(1)	X(1)	Y(1)	X(I)	Y(I)
2 .26604 .17697 .16997 .25546 .24571 .16350 .15751 .23667 .22828 . 3 .44656 .35582 .34159 .42857 .41199 .32847 .31633 .39667 .38245 . 4 .63208 .53855 .51664 .60607 .58217 .4946.8 .47787 .56013 .53973 . 5 .62517 .72750 .69715 .79020 .75818 .66911 .61368 .72875 .70159 . 6 1.0791 .92555 .68559 .98375 .94241 .84910 .81582 .90459 .86983 . 7 1.2485 1.1365 1.0852 1.1905 1.1380 1.0385 .99602 1.0903 1.0467 . 8 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1680 1.2875 1.2353 1. 9 1.7648 1.6223 1.5378 1.6680 1.5850 1.5850 1.6288 1.3957 1.5075 1.4398 1. 10 2.0931 1.9203 1.8084 1.9618 1.8497 1.7113 1.6259 1.7524 1.6667 1. 11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1. 12 3.2068 2.8095 2.5554 2.8504 2.5879 2.3616 2.2051 2.9360 2.2939 2. 13 3.2932 3.2585 2.8699 2.6100 2.5981 2.6488 2. 14 3.2332 3.2585 2.8699 2.6100 2.5981 2.6488 2. 15 X(I) Y(I) X(I) Y(I) X(I) Y(I) X(I) Y(I) X(I) Y(I) X(I) Y(I) .30000 0.000000	0.00000	0.00000	.07331	4 .07090	0.3000
3 .44656 .35582 .34159 .42857 .41199 .32847 .31633 .39667 .38245 .4 6.63208 .53855 .51664 .60607 .58217 .49648 .47787 .56013 .53973 .5 .82317 .72750 .69715 .79020 .75818 .66931 .64568 .72875 .70159 .6 1.0291 .92555 .68559 .99375 .94241 .84910 .81562 .90459 .86983 .7 1.7483 1.11065 1.0392 1.1905 1.1380 1.0385 .99602 1.0903 1.04678 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1880 1.2935 1.2553 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	. 15194	.14676			.1419
4 .63208 .53855 .51664 .60607 .58217 .49648 .47787 .50613 .53923 .5 .82517 .72750 .69715 .79020 .75818 .66931 .64368 .72875 .70159 . 6 1.0291 .92555 .68559 .98375 .94241 .84910 .81562 .90459 .86983 . 7 . 1 .7485 .1.165 1.0832 1.1905 1.1380 1.0385 .99602 1.0903 1.0467	. 30507	.29458		. 35692	.2848
6 1.0291 .92555 .68559 .98375 .94241 .84910 .81352 .90459 .86983 .7 1.2483 1.1365 1.0832 1.1905 1.1380 1.0385 .99602 1.0903 1.0467 .8 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1880 1.2995 1.2953 1. 9 1.7648 1.6223 1.3378 1.6680 1.5830 1.4628 1.3957 1.5075 1.4398 1. 10 2.0931 1.9203 1.8084 1.9618 1.8497 1.7113 1.6259 1.7524 1.6667 1. 12 .5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1. 12 .5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1. 12 .3 .2066 2.8095 2.5554 2.8504 2.5879 2.3616 2.2051 2.3950 2.2391 2. 13 .232 3.232 3.2585 2.8699 2.6190 2.5981 2.6488 2. 13 .2322 3.2865 2.6696 2.6190 2.5981 2.6488 2. 13 .2322 3.2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2827 3.3060 2. 13 .2828 3.28	.46062	.44459		.50316	.4296
7 1.2483 1.1363 1.0832 1.1903 1.1380 1.0385 .99602 1.0903 1.0467 .8 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1880 1.2955 1.2953 1.2953 1.9 1.9 1.7648 1.6223 1.378 1.6680 1.5830 1.4628 1.3957 1.5075 1.4998 1.10 2.0931 1.9203 1.8084 1.9618 1.8497 1.7113 1.6239 1.7524 1.6667 1.11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1.11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1.12 3.2066 2.8095 2.5354 2.8504 2.5879 2.3616 2.2051 2.9950 2.2391 2.313 3.2332 3.2585 2.8699 2.6190 2.5981 2.488 2.3282 3.2585 2.8699 2.6190 2.5981 2.488 2.32827 3.3060 2.185 3.2827 3.3060 3.2827 3.3060 2.185 3.2827 3.3060 3.2828 3.28	.61998	. 59801		.65308	.5775
8 1.4901 1.3660 1.3003 1.4157 1.3493 1.2413 1.1880 1.2895 1.2353 1. 9 1.7648 1.6223 1.5378 1.6680 1.5830 1.4628 1.3957 1.5075 1.4398 1. 10 2.0931 1.9203 1.8084 1.9618 1.8497 1.7113 1.6259 1.7524 1.6667 1. 11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1. 12 3.2068 2.8095 2.5354 2.8504 2.5879 2.3616 2.2051 2.3950 2.2391 2. 13 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 14 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 14 3.2523 3.2668 2.5936 2.5931 2.6488 2. 15 30 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 15 30 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 15 30 3.2585 2.8699 2.6150 2.5981 2.6488 2. 15 30 3.2827 3.3060 2. 15 32 33 34 32 33 34 32 33 34 34 34 34 34 34 34 34 34 34 34 34	. 78478	.75628		.80837	.7298
9 1.7648 1.6223 1.5378 1.6680 1.5830 1.4628 1.3957 1.5075 1.4398 1. 10 2.0931 1.9203 1.8084 1.9618 1.4497 1.7113 1.6259 1.7524 1.6667 1. 11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9265 1. 12 3.2064 2.8095 2.5554 2.8504 2.5879 2.3616 2.2031 2.3950 2.2391 2. 13 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 14 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 15 30 3.2332 3.2585 2.8699 2.6150 2.5981 2.6488 2. 15 30 31 32 32 33 34 1.5.E. 0.029136 0.027329 0.025685 0.024185 0.002 1.5.N.R.(DB) 25.356 25.634 25.993 26.165 26.418 1. X(1) Y(1) X(1) Y(1) X(1) Y(1) X(1) Y(1) X(1) Y(1) X(1) 1 0.00000 0.68642 0.66524 0.00000 0.00000 0.64533 0.62658 0.00000 0.00000 0.00000 2 1.13739 20616 1.9997 1.3315 1.7916 1.9396 1.8830 1.7540 1.2185 0.000000	95703	.92115		.96984	.8879
1.	1.1393	1.0948	1.1859	1.1405	1.0539
11 2.5213 2.2897 2.1323 2.3265 2.1696 2.0011 1.8891 2.0386 1.9266 1. 12 3.2068 2.8095 2.5554 2.8504 2.5879 2.3616 2.2051 2.9500 2.2991 2. 13 3.2332 3.2585 2.8699 2.6100 2.5981 2.6488 2. 14 3.2332 3.2585 2.8699 2.6100 2.5981 2.6488 2. 14 3.2332 3.2585 2.8699 2.6100 2.5981 2.6488 2. 15 3.2827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 15 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 16 2.8827 3.3060 2. 17 2.13739 2.0636 2.066524 0.00000 0.00000 0.04533 0.05658 0.00000 0.00000 0.00000 2. 17 2.13739 2.0636 2.1999 1.3315 2.17916 2.19396 2.8830 0.00000 0.00000 0.00000 2. 17 2.13739 2.0636 2.1999 1.3315 2.17916 2.19396 2.18830 2.1248 2. 17 2.1586 3.4540 3.3441 2.26708 2.25903 3.2448 3.1495 2.5146 2.4632 2. 18 2.1586 3.4540 3.4540 3.4541 2.26708 2.25903 3.2448 3.1495 2.5146 2.4632 2. 18 2.1586 3.4540 3.4541 2.6708 2.25903 3.2448 3.1495 2.5146 2.4632 2. 18 2.1586 3.4540 3.3441 2.26708 2.25903 3.2448 3.1495 2.5146 2.4632 2. 18 2.1586 3.4540 3.3441 2.26708 2.25903 3.2448 3.1495 2.5146 2.4632 2. 18 2.1586 3.4540 3.3441 2.26708 2.25903 3.2448 3.1495 2.7146 2.4632 2. 18 2.1584 3.4570 3.4680 3.9039 4.4587 4.4330 7.7887 3.4630 2. 18 2.1586 3.4540 3.3441 2.26708 2.2903 2.488 3.1495 2.7146 2.4632 2.86687 7.7081 7.07835 6.4076 6.2187 2. 18 2.1584 4.1570 4.8670 4.7130 4.0244 3.9039 4.4587 4.4330 7.7887 3.4801 2. 18 2.1584 4.1570 4.1582 4.1682 4.1826 2.1427 2.0659 2.0720 2. 18 2.1584 4.1570 4.1826 2.1427 2.0659 2.0720 2. 18 2.1584 4.1827 2.1624 2.1826 2.1427 2.0659 2.0720 2. 18 2.1584 4.1870 2.1826 2.1427 2.0659 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720 2.0720	1.3352	1.2803	1.3787	1.3231	1.2301
12 3.2064 2.8095 2.5554 2.8504 2.5879 2.3616 2.2051 2.3950 2.2391 2.351 3.2312 3.2585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.5981 2.6488 2.3585 2.8699 2.6150 2.6981 2.6488 2.3585 2.8699 2.6155 2.6418 2.3585 2.8699 2.6165 2.66087 7.3081 7.0835 6.6406 6.2187 2.8585 2.66087 7.3081 7.0835 6.6406 6.2187 2.8585 2.66087 7.3081 7.0835 6.6406 6.2187 2.8585 2.6418 2.3586 2.3590 2.35	1.5499	1.4818	1.5904	1.5218	1.4201
3.2332 3.2585 2.8699 2.6190 2.5981 2.6488 2. 2.2827 3.3060 2. EVELS 30 31 32 33 34 6.5.E. ,0029136 .0027329 .0025685 .0024185 .002 -N.R.(D8) 25.356 25.634 25.993 26.165 26.418 ENTROPY 4.6709 4.7162 4.7601 4.8027 4.844 1 X(1) Y(1) X(1) Y(1) X(2) Y(2) X(2) Y(2) X(1) Y(1) X(3) 1 0.00000 .068642 .065524 0.00000 0.00000 .084533 .062638 0.00000 0.00000 2 .13739 .20636 .19997 .13315 .12916 .19396 .18830 .12540 .12185 . 3 .27566 .34540 .33461 .26708 .25903 .32448 .31495 .25146 .2432 . 4 .41570 .48670 .47139 .40264 3.9039 .45687 .44330 .37887 .36801 . 5 .55553 .63132 .61120 .54072 .52403 .59199 .57414 .50836 .49362 . 6 .70526 .78030 .75481 .68232 .66087 .73081 .70835 .64076 .62187 . 7 .85724 .93571 .90402 .82864 .80197 .87451 .84695 .77703 .75364 . 8 1.0161 1.0988 1.0603 .98115 .94861 1.0245 .99121 .91828 .85993 . 9 1.1841 1.2723 1.2257 2.1417 1.0024 1.1826 1.1427 1.0659 1.0320 1. 10 1.5600 1.6659 1.3967 1.4973 1.4034 1.3352 1.3035 1.218 1.1813 1. 11 1.5600 1.6659 1.3967 1.4973 1.4056 1.5338 1.4764 1.3862 1.3400 1. 12 1.7784 1.8990 1.8125 1.7013 1.6318 1.3332 1.0055 1.5886 1.5109 1. 12 1.7784 1.8990 1.8125 1.7013 1.6318 1.3332 1.6655 1.5686 1.5109 1. 12 2.3326 2.5152 2.3613 2.2029 2.0914 2.2319 2.1205 1.9937 1.9971 2. 15 2.7310 3.0002 2.7564 2.5323 2.3889 2.5685 2.4156 2.2599 2.1486 2.	1.7916	1.7056	1.8290	1.7428	1.6290
1 32 33 34 35 35 34 35 35 34 35 35	2.0744	1.9624	2.1086	1.9967	1.8647
EVELS 30 31 32 33 34 6.5. E	2.4270	2.2716	2.4576	2.3207	2.1413
EVELS 30 31 32 33 34 (5.E. ,0029136 ,0027329 ,0025685 ,0024185 ,002 (5.E. ,0029136 ,0027329 ,0025685 ,0024185 ,002 (5.E. ,0.029136 ,0027329 ,0025685 ,0024185 ,002 (5.E. ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.029136 ,0.02913 ,0.	2.9252	2.6773	2.9512	2.7047	2.4870
I.S. E. .0029136 .0027329 .0025683 .0024185 .002 .N. R.(DR) 23, 356 25,634 25,993 26,165 26,418 26,418 NTROPY 4,6709 4,7162 4,7601 4,8027 4,844 1 X(I) Y(I) X(I) X(I) X(I)		3. 3285		3.3501	2.9762
X(I) Y(I) X(I) Y(I) X(I) Y(I) X(I) Y(I) X(I) Y(I) X(I)			35		X
X(1) Y(1) X(1) Y(1) X(2) Y(1) X(1) Y(1) X(1) Y(1) X(1) X(1) Y(1) X(1) X(1) Y(1) X(1)	0022812		0021553		0020395
I x(I) Y(I) x(I) X(.665	26.	
1 0.00000	8441	4.	.8843	4.1	234
2 .13739 .20636 .19997 .13315 .12916 .19396 .18830 .12540 .12185 3 .27566 .34540 .33461 .26708 .25903 .32448 .31495 .55146 .24432 4 .41570 .48670 .47139 .40264 3.9039 .45687 .44330 .37887 .34801 5 .55853 .63137 .61101 .54072 .52403 .59199 .57414 .50836 .49362 .6 .70526 .78050 .75481 .66212 .66087 .73081 .70835 .64076 .62187 .8 .10.161 1.0988 1.0603 .98115 .94861 1.0245 .99121 .91828 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .85993 .9128 .859	Y(1)	X(1)	Y(I)	x(1)	Y(I)
3 .27566 .34540 .33461 .26708 .25903 .32448 .31495 .25146 .24432 .41570 .48670 .47139 .40264 .3.9039 .45687 .44330 .37887 .35801 .55853 .63132 .61101 .54072 .52403 .59139 .57414 .50836 .493626 .70526 .78050 .75481 .68232 .66087 .73081 .70835 .64076 .62187 .785724 .93571 .90402 .82864 .80197 .87451 .84695 .77703 .75364 .785724 .93571 .90402 .82864 .80197 .87451 .84695 .77703 .75364 .785724 .7	.060889	.05921	A 0.00000	0.00000	.0576
4 .41570 .48670 .47130 .40264 3.9039 .45687 .44330 .37887 .36801 .55853 .63132 .61101 .54072 .52403 .59199 .57414 .50836 .49362 .70526 .78050 .75481 .68232 .66087 .73081 .70835 .64076 .62187 .70872 .58724 .63571 .90402 .82864 .80197 .87451 .84695 .77703 .75366 .8 1.0161 1.0988 1.0603 .98115 .94861 1.0245 .99121 .91828 .85993 .9 1.1841 1.2723 1.2257 1.2427 1.1024 1.1826 1.1427 1.0659 1.0720 1.0161 1.5606 1.6659 1.5967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1.15606 1.6659 1.5967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5109 1.1784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5999 1.4486 1.8980 1.8988 1.8988 1.2988	.18297	.17793	.11851	.11534	.1731
5 .55853 .63132 .61101 .54072 .52403 .59199 .57414 .50836 .49362 .6 .70526 .78050 .75481 .68212 .66087 .73081 .70835 .64076 .62187 .87724 .9371 .90402 .82864 .80197 .87451 .84695 .7703 .75364 8 1.0161 1.0988 1.0603 .98115 .94861 1.0245 .99121 .91828 .85993 .9 9 1.1841 1.2723 1.2257 1.2427 1.0245 .99121 .91828 .85993 . 10 1.3640 1.4597 1.4031 1.3127 1.2654 1.3512 1.3035 1.2218 1.1811 1. 11 1.5600 1.6659 1.5967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1. 12 1.7784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686	. 30597	.29749	.23757	.23119	.2894
	.43053	.41848	. 35777	. 34 909	.4071
7 .85724 .91571 .90402 .82864 .80197 .87451 .84695 .77703 .75364 .8 1.0161 1.0988 1.0603 .98115 .94861 1.0245 .99121 .91828 .85993 .9 1.1841 1.2723 1.2257 1.2417 1.2024 1.2826 1.7427 1.0659 1.0320 1.00 1.3640 1.4597 1.4031 1.3127 1.7654 1.3512 1.3035 1.2218 1.1813 1.10 1.5600 1.6659 1.3967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1.1813 1.1913 1.1914 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1.1913 1.2029 2.0295 2.1727 2.0610 1.9318 1.8453 1.9634 1.8768 1.7628 1.7628 1.6979 1.1914 1.8453 1.9634 1.8768 1.7628 1.7628 1.7628 1.7628 1.7628 1.7628 1.7628 1.7784 1.8990 1.8125 1.7013 1.6318 1.7352 1.6655 1.5686 1.5109 1.1913 1.7628 1.762	.55736	. 34156		.46659	. 5266
8 1.0161 1.0988 1.0603 .98115 .94861 1.0245 .99121 .91826 .85993 9 1.1841 1.2723 1.2257 1.2427 1.1024 1.1826 1.1427 1.0659 1.0920 1. 10 1.3640 1.4597 1.4031 1.3127 1.2654 1.3512 1.3035 1.2218 1.1813 1. 11 1.5605 1.6659 1.5967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1. 12 1.7784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1. 3 2.0795 2.1727 2.0610 1.9318 1.8453 1.9634 1.8768 1.7872 1.6979 1. 4 2.3326 2.5152 2.3613 2.2079 2.0914 2.2119 2.1205 1.9937 1.9071 2.4 4 2.3326 2.5152 2.3632 2.3849 2.5685 2.4156 2.2599 2.1486 2. 5 2.7310 3.0002 2.7564 2.3423 2.3849 2.5685 2.4156 7.2599 2.1486 2.	.68726	.66743	.60409	.58733	.6487
9 1.1841 1.2723 1.2257 2.1417 1.7024 1.1876 1.1427 1.0659 1.0320 1. 1.3640 1.4597 1.4031 1.3127 1.7654 1.3512 1.3035 1.218 1.1813 1. 1 1.5600 1.6659 1.5967 1.4075 1.4405 1.5338 1.4764 1.3382 1.3400 1. 12 1.7784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1. 13 2.0795 2.1727 2.0610 1.9318 1.8453 1.9634 1.8768 1.7878 1.8979 1. 14 2.3326 2.5152 2.3613 2.2079 2.0914 2.2319 2.1205 1.9937 1.9071 2.4 15 2.7310 3.0602 2.7564 2.5423 2.3849 2.5685 2.4156 2.2599 2.1486 2.	.82115	. 79694		.71099	.7741
1.3640 1.4597 1.4031 1.3127 1.2654 1.3512 1.3035 1.2218 1.1813 1. 1.5606 1.6659 1.3967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1. 12 1.7784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1. 13 2.0295 2.1727 2.0610 1.9318 1.8453 1.9634 1.8768 1.7678 1.6979 1. 14 2.3326 2.5152 2.3613 2.2079 2.0914 2.2319 2.1205 1.9937 1.9071 2.4 15 2.7310 3.0002 2.7564 2.5423 2.3849 2.5685 2.4156 2.2599 2.1486 2.	.96014	.93106		.83539	.9037
1. 1.5600 1.6659 1.3967 1.4975 1.4405 1.5338 1.4764 1.3882 1.3400 1. 12. 1.7784 1.8990 1.8125 1.7013 1.6518 1.7352 1.6655 1.5686 1.5109 1. 13. 2.0295 2.1727 2.0610 1.9318 1.8453 1.9654 1.8768 1.7678 1.6979 1. 14. 2.3326 2.5152 2.3613 2.2079 2.0914 2.2319 2.1205 1.9937 1.9071 2.4 15. 2.7310 3.0002 2.7564 2.5423 2.3889 2.5685 2.4156 2.2599 2.1486 2.	1.1056	1.0710	1.0002	.97050	1.0387
12 1.7784 1.8990 1.8125 1.7013 1.6318 1.7332 1.6655 1.5686 1.5109 1. 13 2.0795 2.1727 2.0610 1.9718 1.8453 1.9634 1.8768 1.7878 1.8979 1. 14 2.3326 2.5152 2.3613 2.2079 2.0914 2.2119 2.1205 1.9937 1.9071 2.4 15 2.7310 3.0602 2.7564 2.5423 2.3849 2.5685 2.4136 2.299 2.1486 2.	1.2393	1.2184	1.1437	1.1085	1.1802
13 2.0795 2.1727 2.0610 1.9318 1.8453 1.9634 1.8768 1.7878 1.4979 1. 14 2.3326 2.5152 2.3613 2.2079 2.0914 2.2319 2.1205 1.9937 1.9071 2. 15 2.7310 3.0002 2.7564 2.5423 2.3889 2.5685 2.4156 2.2399 2.1486 2.	1.4237	1.3751	1.2954	1.2540	1.3301
14 2.3326 2.5152 2.3613 2.2029 2.0914 2.2319 2.1205 1.9937 1.9071 2.05 2.7310 3.0002 2.7564 2.5423 2.3889 2.5685 2.4156 2.2599 2.1486 2.0000 2.00000000000000000000000000000	1.6020	1.5440	1.4578	1.4089	1.4907
5 2.7310 3.0002 2.7564 2.5423 2.3889 2.5685 2.4156 2.2599 2.1486 2.	1.7992	1.7291	1.6362	1.5759	1.6652
	2.0229	1.9363	1.6294	1.7591	1.8585
1. 1/10 1. 1011 1.0715 2.7800 1.0650 2.8045 2.5017 2.6611 2.	2.2858	2.1758	2.0511	1.9645	2.0783
	2.6181	2.4661	2.3128	2.2020	2.3340
	3.0885	3.4656	2.6416	2.4901	2.6644
3,4179			3.1087	4.5/97	3.1286

Table A.15 Compandors with Quantization Levels N = 2,...,36 for Signal with Laplacian Density (Mean = 0, Variance = 1)

LEVEL N.S.E S.N.R ENTRO	(DB)	.500	•							10.2 2.3					
1	X(1)		¥(1)	X(1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(1)	x(1)	Y(I)
3 4 5	0.0000		.69827	.52809 2.2956	0.00000 1.2328	0.00000 .94648 2.6993	.42089 1.6468	.34952 1.2904 3.0232	0.00000 .76821 1.9846	0.00000 .64688 1.5822 3.2956	.79888 1.0634 2.2704	.26113 .90558 1.8358 3.5314		0.00000 .49232 1.1346 2.0601 3.7399	.21191 .78923 1.5473 2.7379
LEVEL H.S.E S.N.R EYTRO	(DB) 1	.046		14.1 2.9	38296	14.9 3.0	32058 41	15.6	27429	16.2 3.2	23579 75	16.8 3.3	20599		
1	X(I		Y(1)	X(1)	Y(1)	X(1)	Y(1)	X(1)	r(1)	X(1)	Y(1)	X(1)	Y(t)	x (t)	Y(1)
1	. 208	. 0	,00000	0,00000	.18961	.17380	0.00000	0,00000	.16045	.14901	0.00000	0.00000	.13911	.13045	0.00000
2	.699		.44001	. 39 785	.62878	.57107	. 36 31 3	. 33404	.52310	.48268	. 30929	. 28799	44811	.41821	.26945
3	1.340)	.99584	.88795	1.1833	1.0602	.80153	.73068	.96050	.87680	.67151	.62131	. 50992	. 75121	.37818
4	2.261		.7511	1.5264	1.9350	1.6970	1.3548	1.2190	1.5129	1.3663	1.1086	1.0170	1.2464	1.1464	.93962
5	3.927	1 2	.9348	2.4441	3.1135	2.6113	2.1053	1.8543	7.2614	2.0003	1.6597	1.5037	1.7966	1.6325	1.3756
6				4.0971		4.2530	3.2771	2.7655	3.4281	2.9087	2.4062	2.1365	2.5414	2.2641	1.9249
								4.3970		4.5 309	3.5684	4.6562	3.6993	3.1676 4.7738	3.6222
LEVEL H.S.E		16			4268		12826		1554		0493	.0	1 095446	22	87410
S.N.R	.(DS) 1 PT	7.950		3.61		3.6		3.75		3.62		3.8		3.95	
1	x(1	,	Y(1)	X(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	X (1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)
1	0.000	~	.12781	.11602	0.00000	0.00000	.10995	.10449	0.00000	0.00000	.029541	.095045	0.00000	0.00000	.0909
;	.253		. 39208	. 36904	.23876	. 22591	. 34859	. 33079	, 21439	. 20 798	. 31 384	.29895	.19455	.16595	.28542
,	. 540		. 70056	.65638	.50785	.47879	.61751	.58303	.45290	.47969	.55224	. 52436	.40876	. 389 78	.49955
	.873		.0617	.98883	. 81510	. 76594	.92554	. 67000	.72147	.582 10	. 82086	.77705	.64705	.61530	.73770
3	1.268		.4971	1.3832	1.1769	1.0941	1.2860	1.2020	1.0295	.96911	1.1285	1.0637	.91554	. 86 768	1.0061
	1.753		.0456	1.8681	1.5119	1.4922	1.7206	1.5957	1.3597	1.3009	1.4885	1.3952		1.1542	1.3134
!	2.384	-	.7874	2.4977	2.1596	1.9765	2.2677	2.0795	2.3703	2.1776	2.4651	2.2713	2.0161	1.4855	2.1060
:	1.285		.9379	4.9897	4.0473	3.5027	4,1510	3,6031	3 1081	2.8047	3.2050	2.8976	2.5514	2.3609	2.5508
10	4.004	•		4.9097	4.0473	5.0893	4,1110	5.1847	4.2496	3.6989	4.3437	3,7903	3.2973	2.9866	3.3857
11						210013				3.2747		5. 3612		3.8778	4.5146
12														3.4442	

Table A.15 (cont'd) Compandors with Quantization Levels N = 2,...,36 for Signal with Laplacian Density (Mean = 0, Variance = 1)

LEVEL M.S.E. S.N.R.(I ENTROPY	08) 20.96	180160	24 .00 21.33 4.07	73930	21.6	5 068263 558 1261	20 21.98 4.13	63338	22.1	7 058825 104 1301	22.64 22.64 4.2	054864	22.9	9 051212 06 1270
1	X(1)	Y (1)	x(1)	Y(1)	X(1)	Y(1)	x(1)	Y(1)	X(I)	Y(1)	x(1)	Y(1)	X(1)	Y(1)
1	.087175	0.00000	0.00000	.083712	.080514	0.00000	0.00000	.077553	.074802	0.00000	0.00000			0.00000
2	.27307	.17809	.17086	.26175	.25133	.16420	.15805	.24172	. 23282	.15234	.14703	.22455	.21685	.14208
,	.47683	. 37251	. 356 70	.45611	.43712	. 34219	. 32883	.41966	.40356	. 31647	. 30 501	. 38865	. 374 80	. 294 36
	.70227	.58656	.56040	.67009	.64076	.53760	.51457	.51392	.58925	.49437	.47571	.56651	.54547	.45842
,	.95454	. 82466	. 78576	.90810	. 86604	. 75041	.71815	.82776	.79277	.68857	.66136	. 76066	.73108	.63625
	1.2-09	1.0929	1.0379	1.1762	1.1181	.98834	.94333	1.0656	1.0179	.90236	.56483	.97439	.93450	. 83035
,	1.5721	1.4000	1.3242	1.4832	1.4042	1.2564	1.1953	1.3335	1.2698	1.1401	1.0899	1.2121		1.0440
	1.9647	1.7393	1.6552	1.8423	1.7351	1.5632	1.4814	1.6403	1.5557	1.4080	1.3417	1.4798	1.4113	1.2817
;	2.4468	2.1921	2.0475	2.2748	2.1272		1.8120	1.9989	1.8862	1.7146	1.6275	1.7863		1.5493
10	3.0718	2.7364	2.5293	2.3186	2.6006	2.3543		2.4309	2.2779		1.9579	2.1447		1.8557
11.	3.9617	3.4704	3.1537	3.5518	3.2324	2.8977	2.6850	2.9738	2.7587	2.5048	2.3494	2.5761	2.4185	2.2139
12	5.5239	4.6021	4.0423	4.6814	4.1198	3,6301	3.3083	3.7055	3.3814		2.8299	3.1183	2.8987	2.6451
13	3.36.39	4.0021	5.6005		5.6743		4.1946	4.8313	4.2667		3.4521	3.8485	3.5205	3.1869
14			3.0003				5.7455		5.8142	4.9024		4.9710	4.4038	3.9165
15											5.8807		5.9451	5.0374
	(08) 23.1	047980	23.4		23.7		23.9		24.2		24.49		24.7	
ENTROP	4.3	132												
1	x(1)	Y(1)	x(1)	Y(t)	x(t)	Y(1)	x(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)	X(1)	Y(1)
1	x(1)	Y(1)	x(1)	Y(t)	x(1)		x(1)		X(1) 0.00000			0.00000	0.00000	.0567
1	X(1) 0.00(4)0	Y(1) .067612	X(1) .055514	Y(1) 0.00000	0.00000	Y(1)	x(1)	Y(1)			X(1)		0.00000	.0567
1	X(1) 0.00930 .13745	Y(1) .057612 .20967	X(1) .055514 .20294	Y(1) 0.00000 .13312	0.00000	Y(1) .063543 .19664	x(I)	Y(1) 0.00000	0.00000	.05993	X(1) 7 .05828)	0.00000	0.00000	.0567
1	X(1) 0.00900 .13745 .28443	Y(1) .067612 .20967 .35192	X(1) .055514 .20294 .34990	Y(I) 0.00000 .13312 .27515	0.00000 .12903 .26646	Y(1) .063543 .19664 .33865	x(1) .061687 .19072 .32811	Y(1) 0.00000 .12522 .25830	0.00000	.05993	X(1) 7 .058283 .17989	0.00000	0.00000 .11500 .23659	.0567 .1749 .3001
1	X(1) 0.00900 .13745 .28443 .44235	Y(1) .067612 .20967 .36192 .52595	X(1) .055514 .20294 .34990 .50779	Y(1) 0.00000 .13312 .27515 .42738	0.00000 .12903 .26645 .41339	Y(1) .063543 .19664 .33865 .49085	x(1) .061687 .19072 .32811 .47502	Y(1) 0.00000 .12522 .25830 .40929	0.00000 .12162 .25063	.05993 .18514 .31821	X(1) 7 .058283 .17989 .30858 .44624	0.00000 .11821 .24340	0.00000 .11500 .23659 .36557	.0567 .1749 .3001 .4331 .5750
1	X(1) 0.00900 .13745 .28443 .44235 .61299	Y(1) .067612 .20967 .36192 .52595 .70374	X(1) .065524 .20294 .34990 .50779 .67839	Y(t) 0.00000 .13312 .27515 .42738 .59138	0.00000 .12903 .26645 .41339 .57126	Y(1) .063543 .19664 .33865 .49085 .65483	x(1) .061687 .19072 .32811 .47502 .63286	Y(1) 0.00000 .12522 .25830 .40629 .53247	0.00000 .12162 .25063 .38800 .53489	.05993 .18514 .31821 .46018	X(1) 7 .058283 .17989 .30858 .44624	0.00000 .11821 .24340 .37645	0.00000 .11500 .23659 .36557 .50291	.0567 .1749 .3001 .4331 .5750
1	X(1) 0.00930 .13745 .28443 .44235 .61299 .79855	Y(1) .067612 .20967 .36192 .52595 .79374 .89780	X(1) .055514 .20294 .36990 .50779 .67839 .66393	Y(t) 0.00000 .13312 .27515 .42738 .59138 .76913	0.00000 .12903 .26646 .41339 .57126 .74183	Y(1) .063543 .19664 .33865 .49085 .65483 .83255	x(1) .061687 .19072 .32811 .47502 .63286 .80340	Y(1) 0.00000 .12522 .25830 .40929	0.00000 .12162 .25063 .38800	.05993 .18514 .31621 .46018 .61233	X(1) 7 .058283 .17989 .30888 .44624 .59311	0.00000 .11821 .24340 .37645 .51840	0.00000 .11500 .23659 .36557 .50291 .64976	.0567 .1749 .3001 .4331 .5750 .7271
1	X(1) 0.00;300 .13745 .28443 .44235 .61299 .79855 1.0019	Y(1) .067612 .20967 .34192 .52595 .75374 .89780 1.1114	X(1) .065514 .20294 .30990 .50779 .67839 .86393 1.0673	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76913 .96313	0.00000 .12903 .26646 .41339 .57126 .74183 .92732	Y(1) .063543 .19664 .33865 .49085 .65683 .83255 1.0265	x(T) .061687 .19072 .32811 .47502 .63286 .80340 .98886	Y(1) 0.00000 .12522 .25830 .40929 .53247 .73642 .89411	0.00000 .12162 .25063 .36800 .53489 .69271 .86322	.05993 .18514 .31621 .46018 .61233 .77626	X(1) 7 .058283 .17989 .30888 .44624 .59311 .75090 .92139	0.00000 .11821 .24340 .37645 .51840 .67054	0.00000 .11500 .23659 .36557 .50291 .64976	.0567 .1749 .3001 .4331 .5750 .7271
1 2 3 4 5 6 7 8	X(1) 0.00;30 .13745 .28443 .44235 .61299 .79855 1.0019 1.2259	Y(1) .067612 .20967 .36192 .52595 .79374 .89780 1.1114 1.3490	x(1) .065514 .20294 .36990 .50779 .67839 1.0673 1.2922	Y(1) 0.00000 .13312 .27515 .42738 .59138 .7923 .96315 1.1767	0.00000 .12903 .26646 .41339 .57126 .74183 .92732 1.1306	Y(1) .063543 .19664 .33865 .49085 .65483 .83255 1.0265	x(1) .061687 .19072 .32811 .47502 .63286 .89340 .98886 1.1921	Y(1) 0.00000 .12522 .25830 .40029 .53247 .71642 .89411 1.0880	0.00000 .12162 .25063 .38800 .53489 .69271	.05993 .18514 .31821 .46018 .61233 .77626 .95291	X(1) 7 .058283 .17989 .30858 .44624 .59311 .75090 .92139 1.1068	0.00000 .11821 .24340 .37645 .51840 .67054 .83444	0.00000 .11500 .23659 .36557 .50291 .64976 .80753	.0567 .1749 .3001 .4331 .5750 .7271 .8910
1 2 3 4 5 6 7 8 9	X(1) 0.00930 .13745 .28443 .41235 .61299 .79855 1.0019 1.2259 1.4786	Y(1) .067612 .70967 .35192 .52595 .70374 .89780 1.1114 1.3490 1.6165	x(1) .055514 .20294 .30990 .50779 .67839 .66393 1.0673 1.2922 1.5438	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76923 .96315 1.1767 1.4142	0.00000 .12903 .26645 .41339 .57126 .74183 .92732 1.1305 1.3555	Y(1) .063543 .19664 .33863 .49085 .65683 .83255 1.0265 1.2401 1.4775	x(1) .061687 .19072 .32811 .47502 .63286 .80340 .98886 1.1921 1.4169	Y(1) 0.00000 .12522 .25830 .40929 .53247 .71642 .89411 1.0680 1.3015	0.00000 .12162 .25063 .38800 .53489 .69271 .86322 1.0487 1.2519	.05993 .18514 .31821 .46018 .61233 .77626 .95291 1.11478	X(1) 7 .058283 .17989 .30858 .44624 .59311 .75090 .92139 1.1068	0.00000 .11821 .24340 .37645 .51840 .67054 .83444	0.00000 .11500 .23659 .36557 .50291 .64976 .80753	.0567 .1749 .3001 .4331 .5750 .7271 .8910 1.0686
1 2 3 4 5 6 7 8 9 10	X(1) 0.00;300 .13745 .28443 .44235 .61299 .79855 1.0019 1.2269 1.4786 1.7642	Y(1) .067612 .20967 .36192 .52595 .70374 .89780 1.1114 1.3490 1.6165 1.9228	x(1) .055514 .20294 .36990 .50779 .67839 .66393 1.0673 1.2922 1.3438 1.5293	y(t) 0.00000 .13312 .27515 .42738 .59138 .76913 .1.1767 1.4142 1.6817	0.00000 .12903 .26645 .41339 .57126 .74183 .92732 1.1305 1.3555 1.6079	Y(1) .063543 .19664 .33865 .49085 .65683 .83255 1.0265 1.2461 1.4775 1.7449	x(1) .061687 .19072 .32811 .47502 .63286 .89340 .98886 1.1921 1.4169 1.6684	Y(1) 0.00000 .12522 .25830 .40629 .53247 .71642 .89411 1.0880 1.3015 1.5389	0.00000 .12162 .25063 .38500 .53489 .69271 .86322 1.0487 1.2519	.05993 .18514 .31821 .46018 .61233 .77626 .95291	X(1) 7 .058283 .17989 .30888 .44624 .59311 .75090 .92139 1.1068 1.3099	0.00000 .11821 .24340 .37645 .51840 .67054 .83444 1.0121	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799	.0567 .1749 .3001 .4331 .5750 .7271 .8910 1.0686 1.2625
1 2 3 4 5 6 7 7 8 9 10 11	X(1) 0.00;300 .13745 .28443 .41235 .61299 .79855 1.0019 1.2269 1.4786 1.7642 2.0943	Y(1) .067612 .20967 .34192 .52595 .70374 .89780 1.1114 1.3490 1.6165 1.9228 2.2899	x(1) .055514 .20294 .34990 .50779 .67839 .66393 1.0673 1.2922 1.5438 1.8293 2.1593	Y(t) 0.00000 .13312 .27515 .42738 .59138 .76913 .96315 1.1767 1.4142 1.6817 1.9879	0.00000 .12903 .26645 .41339 .57126 .74183 .97732 1.1305 1.3555 1.6070 1.8924	Y(1) .063543 .19664 .33865 .49085 .65483 .83235 1.0265 1.2401 1.4775 1.7449 2.0510	x(1) .061687 .19072 .32811 .47502 .63286 .80340 .98886 1.1921 1.4169 1.6684 1.9537	Y(1) 0.00000 .12522 .25830 .40629 .53247 .71642 .89411 1.0280 1.3015 1.5389 1.6062	0.00000 .12162 .25063 .38890 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.7280	.05993 .18514 .31821 .46018 .61233 .77626 .95391 1.11478 1.5986 1.8658	X(1) 7 .058283 .17989 .30858 .44624 .59311 .75090 .92139 1.1068 1.3099 1.5346	0.00000 .11821 .24340 .37645 .51840 .67054 1.0121 1.2059 1.4193	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665	.0567 .1749 .3001 .4331 .5750 .7271 .8910 1.0686 1.2625 1.4758
1 2 3 4 5 6 7 8 9 10 11 12	X(1) 0.00900 .13745 .28443 .42235 .61299 .79855 1.0019 1.2259 1.4786 1.7642 2.0943 2.4854	Y(1) .067612 .70967 .34192 .52595 .79374 .89780 1.1114 1.3490 1.6166 1.9228 2.2809 2.7119	x(1) .055514 .20294 .30990 .50779 .67839 .86393 1.0673 1.2922 1.5438 1.8293 2.1593 2.5502	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76913 .96315 1.1767 1.4142 1.6817 1.9879 2.3458	0.00000 .12903 .26645 .41339 .57126 .74183 .92732 1.1306 1.3555 1.6070 1.8924 2.2223	Y(1) .063543 .19664 .33865 .49085 .65483 .83255 1.0265 1.2401 1.4775 1.7444 2.0510 2.4087	x(1) .061687 .19072 .32811 .47502 .63286 .80340 .98886 1.1921 1.4169 1.6684 1.9537 2.2833	Y(1) 0.00000 .12522 .25830 .40029 .53247 .71642 .89411 1.0680 1.3015 1.5389 1.6067 2.1122	0.00000 .12162 .25063 .38890 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.2289 2.0133	.05993: .18514 .31821 .46018 .61233 .77626 .95391 1.11478 1.3612 1.5986 1.8658 2.1717	X(1) 7 .058283 .17989 .30858 .44624 .59311 .75090 1.1068 1.3099 1.5346 1.7860 2.0712	0.00000 .11821 .24340 .37645 .51840 .67054 .83444 1.0121 1.2059 1.4193 1.6566 1.9238	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665	.0567 .1749 .3001 .4331 .5750 .7271 .8910 1.0686 1.2625 1.4758 1.7131
1 1 2 3 4 5 6 7 8 9 10 11 11 12 13	X(1) 0.00;300 .13745 .28443 .44235 .61299 .79855 1.0019 1.2269 1.4786 1.7642 2.0943 2.4854 2.4854	Y(1) .067612 .20967 .36192 .52595 .70374 .89780 1.1114 1.3490 1.6146 1.9228 2.2809 2.7119 3.2534	X(1) .065514 .20294 .36990 .50779 .67839 1.0673 1.7922 1.3438 1.8293 2.1593 2.5502 3.0299	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76923 .96315 1.1767 1.4142 1.6817 1.987 2.3458 2.7766	0.00000 .12903 .26646 .41339 .57126 .74183 .92732 1.1306 1.3555 1.6070 1.8926 2.2223 2.6131	Y(1) .063543 .19664 .33865 .49085 .65483 .82255 1.0265 1.2401 1.4775 1.7449 2.0510 2.4087 2.8393	x(T) .661687 .19072 .32811 .47502 .61286 .80340 .98886 1.1921 1.4169 1.6684 1.9537 2.2835 2.6742	Y(1) 0.00000 .12522 .25830 .40929 .53247 .71542 .89411 1.0280 1.3015 1.5389 1.6062 2.1122 2.4698	0.00000 .12162 .25063 .36500 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.7280 2.0133 2.3429	.05993; .18514 .31821 .46018 .61233 .77626 .95291 1.11478 1.3612 1.5986 1.8658 2.1717 2.5292	X(1) 7 .058283 .17989 .30858 .44624 .59311 .75090 .92139 1.1068 1.3099 1.5346 1.7860 2.0712 2.4008	0.00000 11821 .24340 .37645 .51840 .67054 1.0121 1.2059 1.4193 1.6566 1.9238 2.2296	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665 1.5911 1.8424 2.1275	.0567 .1749 .3001 .4331 .5750 .7271 .8910 1.0686 1.2625 1.4758 1.7131 1.9802 2.2859
1 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14	X(1) 0.00000 13745 29443 44235 61299 79855 1.0019 1.2259 1.47642 2.0943 2.4854 2.4854 3.5357	Y(1) .067612 .70967 .36192 .52595 .70374 .89780 1.3114 1.3490 1.6146 1.9228 2.2539 2.7119 3.2534 3.9823	X(1) .055514 .20294 .34990 .50779 .67839 .65393 1.0673 1.2922 1.5438 1.8293 2.1593 2.1593 2.5502 3.6508	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76913 1.1767 1.4142 1.6817 1.9879 2.3458 2.3766 3.3177	0.00000 .12903 .26646 .41339 .57126 .74183 .92732 1.1306 1.3555 1.6070 1.8924 2.2273 2.6131 3.0926	Y(1) .063543 .19664 .33865 .49085 .65483 .83255 1.0265 1.2401 1.4775 2.6383 3.3802	x(1) .061687 .19072 .32811 .47502 .63786 .80340 .98886 1.1921 1.4168 1.6684 1.9537 2.2833 2.6742	Y(1) 0.00000 .12522 .25830 .40629 .53247 .73642 .89411 1.0880 1.3015 1.5389 1.6962 2.1122 2.4598	0.00000 .12162 .25063 .38800 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.7280 2.0133 2.3429 2.7335	.05993; .18514 .31821 .46018 .61233 .77626 .95291 1.11478 1.3612 1.5986 1.8658 2.1717 2.5292 2.9595	X(1) 7 .058283 .17989 .30858 .44624 .59311 .75090 .9219 1.1068 1.3099 1.5366 2.0712 2.4008	0.00000 11821 24340 .57645 .51840 .67054 .83444 1.0121 1.2059 1.4193 1.6566 1.9238 2.2296 2.5870	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665 1.5911 1.8424 2.1275 2.4570	.0567 .1749 .3001 .4331 .5750 .7271 .8910 1.0686 1.2625 1.4758 1.7131 1.9802 2.2859 2.6432
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	x(1) 0.00;00 .11745 .28443 .44235 .61299 .79855 1.0019 1.2259 1.4786 1.7642 2.0943 2.4854 2.4854 2.4854 4.4690	Y(1) .067612 .20967 .36192 .52595 .70374 .89780 1.1114 1.3490 1.6146 1.9228 2.2809 2.7119 3.2534	x(1) .065514 .20294 .36990 .30779 .67839 .65393 1.0673 1.2922 1.3438 1.8293 2.1593 2.1593 2.5502 3.6508 4.5323	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76923 .96115 1.1767 1.4827 1.4827 1.4837 1.9837 1.9837 1.9837 1.9837 1.9847	0.00000 .12903 .26646 .41339 .57126 .74183 .92732 1.1306 1.3555 1.6070 1.8924 2.2223 2.6171 3.0926 3.7170	Y(1) .063543 .19664 .33865 .49085 .65481 .83255 1.0265 1.2401 1.4775 1.7449 2.0510 2.4087 2.8093 3.3502	x(1) .061687 .14072 .32811 .47502 .63284 .80340 .98886 1.1921 1.4169 1.6684 1.9537 2.6762 3.1534	Y(I) 0.00000 .12522 .25830 .40629 .53247 .73642 .80411 1.0880 1.3015 1.3015 1.3015 1.4088 2.9003 1.408	0.00000 .12162 .25063 .36800 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.7280 2.0133 2.3429 2.7335 3.2124	.05993; .18514 .31821 .46018 .61233 .77626 .95291 1.11478 1.3612 1.5986 2.1717 2.5292 2.5395 3.4997	X(1) 7 .058283 .17989 .30888 .44624 .59311 .75090 .92139 1.1068 1.3069 1.3069 1.2660 2.20712 2.4091 2.20712 2.4091 2.2091	0.00000 11821 24340 37645 51840 67054 1.0121 1.2059 1.4193 1.6566 1.9238 2.2296 2.2296	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665 1.5911 1.8424 2.1275 2.4570 2.8473	.0567 .1749 .3001 .4333 .5750 .7271 .8910 1.0685 1.2625 1.4758 1.7131 1.9802 2.2859 2.6432 3.0731
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	X(1) 0.00000 13745 29443 44235 61299 79855 1.0019 1.2259 1.47642 2.0943 2.4854 2.4854 3.5357	Y(1) .067612 .70967 .36192 .52595 .70374 .89780 1.3114 1.3490 1.6146 1.9228 2.2539 2.7119 3.2534 3.9823	X(1) .055514 .20294 .34990 .50779 .67839 .65393 1.0673 1.2922 1.5438 1.8293 2.1593 2.1593 2.5502 3.6508	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76923 .96115 1.1767 1.4827 1.4827 1.4837 1.9837 1.9837 1.9837 1.9837 1.9847	0.00000 .12903 .26645 .41339 .57126 .74183 .92732 1.1305 1.3555 1.6079 1.8926 2.2223 2.6131 3.0926 3.7130	Y(1) .063543 .19664 .33865 .49085 .65483 .83255 1.0265 1.2401 1.4775 2.6383 3.3802	x(1) .061687 .19072 .32811 .47502 .63286 .80340 .98886 1.1921 1.4169 1.6684 1.9337 2.6742 3.17534 3.7734	Y(1) 0.00000 12522 25830 40929 53247 731642 89411 1.0280 1.3015 1.5389 1.6062 2.1122 2.4598 2.9003 3.4408 4.1681	0.00000 .12162 .25063 .36890 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.7280 2.0133 2.3429 2.7335 3.2124 3.8321	.05993; .18514 .31821 .46018 .61233 .77626 .95391 1.11478 1.3612 1.5986 1.8658 2.1717 2.5292 2.9595 3.4997 4.2265	X(1) 7 .0582A) .17989 .30888 .44624 .59311 .75090 .92139 1.1068 1.3069 1.3064 1.7860 2.0712 2.4008 2.7911 3.2699 3.8992	0.00000 11821 24340 37645 51840 67054 83444 1.0121 1.2059 1.4193 1.6566 1.9238 2.2296 2.5870 3.0170	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665 1.5911 1.8424 2.1275 2.4570 2.8473 3.3258	.0567 .1749 .3001 .4331 .5750 .7271 .6910 1.0686 1.2625 1.4758 1.7131 1.9802 2.2859 2.6432 3.0733
1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15	x(1) 0.00;00 .11745 .28443 .44235 .61299 .79855 1.0019 1.2259 1.4786 1.7642 2.0943 2.4854 2.4854 2.4854 4.4690	Y(1) .067612 .70967 .36192 .52595 .70374 .89780 1.3114 1.3490 1.6146 1.9228 2.2539 2.7119 3.2534 3.9823	x(1) .065514 .20294 .36990 .30779 .67839 .65393 1.0673 1.2922 1.3438 1.8293 2.1593 2.1593 2.5502 3.6508 4.5323	Y(1) 0.00000 .13312 .27515 .42738 .59138 .76923 .96115 1.1767 1.4827 1.4827 1.4837 1.9837 1.9837 1.9837 1.9837 1.9847	0.00000 .12903 .26646 .41339 .57126 .74183 .92732 1.1306 1.3555 1.6070 1.8924 2.2223 2.6171 3.0926 3.7170	Y(1) .063543 .19664 .33865 .49085 .65481 .83255 1.0265 1.2401 1.4775 1.7449 2.0510 2.4087 2.8093 3.3502	x(1) .061687 .14072 .32811 .47502 .63284 .80340 .98886 1.1921 1.4169 1.6684 1.9537 2.6762 3.1534	Y(I) 0.00000 .12522 .25830 .40629 .53247 .73642 .80411 1.0880 1.3015 1.3015 1.3015 1.4088 2.9003 1.408	0.00000 .12162 .25063 .36800 .53489 .69271 .86322 1.0487 1.2519 1.4766 1.7280 2.0133 2.3429 2.7335 3.2124	.05993; .18514 .31821 .46018 .61233 .77626 .95291 1.11478 1.3612 1.5986 2.1717 2.5292 2.5395 3.4997	X(1) 7 .058283 .17989 .30888 .44624 .59311 .75090 .92139 1.1068 1.3069 1.3069 1.2660 2.20712 2.4091 2.20712 2.4091 2.2091	0.00000 .11821 .24340 .37645 .51840 .67054 .83444 1.0121 1.2059 1.4193 1.6566 1.9238 2.2296 2.5870 3.0170 3.5570	0.00000 .11500 .23659 .36557 .50291 .64976 .80753 .97799 1.1634 1.3665 1.5911 1.8424 2.1275 2.4570 2.8473	Y(1) .0567; .1749 .30014 .4331 .5750 .7271 .8910 1.0686 1.2625 1.4758 1.7111 1.9802 2.2859 2.6432 3.0733 3.6128 4.3386 5.4304

APPENDIX B

Derivation of Approximate Rantional Function Operator

The SDF of an NC1 model image is given by

$$S(z_1, z_2) = \frac{1 - r\alpha(z_1 + z_1^{-1} + z_2 + z_2^{-1})}{\left[1 - \alpha(z_1 + z_1^{-1} + z_2 + z_2^{-1})\right]^2} .$$
 (B-1)

Let $R(z_1, z_2) \stackrel{\Delta}{=} S(z_1, z_2)^{-\frac{1}{2}}$, thus

$$R(z_1, z_2) = \frac{1 - \alpha(z_1 + z_1^{-1} + z_2 + z_2^{-1})}{\left[1 - r\alpha(z_1 + z_1^{-1} + z_2 + z_2^{-1})\right]^{\frac{1}{2}}}.$$
 (B-2)

We know from the following axiom that

$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots$$
 (B-3)

provided x2 < 1 exists.

Then the alternative expression of $R(z_1, z_2)$ is, for simplicity, let $x = \alpha(z_1 + z_1^{-1} + z_2 + z_2^{-1})$,

$$R(z_{1},z_{2}) = \frac{1-x}{(1-rx)^{\frac{1}{2}}}$$

$$= (1-x) \left[1 + \frac{1}{2}rx + \frac{1 \cdot 3}{2^{2}} \frac{r^{2}x^{2}}{2!} + \dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2n} \frac{r^{n}x^{n}}{n!} + \dots \right]$$

$$= 1 + \frac{1}{2}rx + \frac{1 \cdot 3}{2^{2}} \frac{r^{2}x^{2}}{2!} + \dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n}} \frac{r^{n}x^{n}}{n!} + \dots$$

$$-x - \frac{1}{2}rx^{2} - \frac{1 \cdot 3}{2^{2}} \frac{r^{2}x^{3}}{2!} - \dots - \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)}{2^{n-1}} \frac{r^{n-1}x^{n}}{(n-1)!}$$

$$- \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n}} \frac{r^{n}x^{n+1}}{n!} - \dots$$

$$= 1 - \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^{n-1} (n-1)!} \left[-\frac{(2n-1)r}{2n} + 1 \right] r^{n-1} x^{n}$$

$$= 1 - \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^{n-1} (n-1)!} \left(1 - r + \frac{r}{2n} \right) r^{n-1} x^{n}$$
(B-4)

Substitution of n = 1, 2, ..., into (B-4), and after some algebraic manipulations, different order of $R^{(n)}(z_1, z_2)$ is easily obtained as

3

Q

0

-

$$R^{(1)}(z_1,z_2) = 1 - (1 - \frac{r}{2}) \alpha (z_1 + z_1^{-1} + z_2 + z_2^{-1})$$
 (B-5)

$$0 . = 1$$

$$0 . 0$$

$$0 = -(1 - \frac{r}{2})\alpha$$

Figure B.1 Construction Diagram of R(1)(z1,z2)

$$R^{(2)}(z_{1},z_{2}) = 1 - \frac{1}{2}(1 - r + \frac{r}{4})r4\alpha^{2} - (1 - \frac{r}{2})\alpha(z_{1} + z_{1}^{-1} + z_{2} + z_{2}^{-1})$$

$$-\frac{1}{2}(1 - r + \frac{r}{4})r\alpha^{2}\{z_{1}^{2} + z_{1}^{-2} + z_{2}^{2} + z_{2}^{-2} + 2(z_{1}z_{2} + z_{1}^{-1}z_{2}^{-1} + z_{1}^{-1}z_{2} + z_{1}^{-1}z_{2}^{-1})\}$$
(B-5)

Figure B.2 Construction Diagram of $R^{(2)}(z_1,z_2)$

$$R^{(3)}(z_{1},z_{2}) = 1 - \frac{1}{2}(1 - r + \frac{r}{4})r4\alpha^{2} - \left[(1 - \frac{r}{2})\alpha + \frac{1 \cdot 3}{2^{2} \cdot 2!} (1 - r + \frac{r}{6})r^{2}9\alpha^{3} \right]$$

$$\cdot (z_{1} + z_{1}^{-1} + z_{2} + z_{2}^{-1}) - \frac{1}{2}(1 - r + \frac{r}{4})r\alpha^{2} \left[z_{1}^{2} + z_{1}^{-2} + z_{2}^{2} + z_{2}^{-2} + z_{2}^{-2} + 2(z_{1}z_{2} + z_{1}z_{2}^{-1} + z_{1}^{-1}z_{2} + z_{1}^{-1}z_{2}^{-1}) \right] - \frac{1 \cdot 3}{2^{2} \cdot 2!} (1 - r + \frac{r}{6})r^{2}\alpha^{3}$$

$$\cdot \left[z_{1}^{3} + z_{1}^{-3} + z_{2}^{3} + z_{2}^{-3} + 3(z_{1}^{2}z_{2} + z_{1}^{2}z_{1}^{-1} + z_{1}^{-2}z_{2} + z_{1}^{-2}z_{2}^{-1} + z_{1}^{2}z_{2}^{2} + z_{1}^{2}z_{2}^{-1} + z_{1}^{2}z_{2}^{2} + z_{1}^{2}z_{2}^{-1} \right]$$

$$+ z_{1}^{-1}z_{2}^{2} + z_{1}^{-1}z_{2}^{-2}$$

Figure B.3 Construction Diagram of R(3)(z1,z2)

From the foregoing three Figures, $R^{(4)}(z_1,z_2)$ and $R^{(5)}(z_1,z_2)$ can be obtained in the similar manner

Figure B.4 Construction Diagram of R(4)(z1,z2)

$$\begin{aligned} & \cdot = 1 - \frac{1}{2}(1 - r + \frac{r}{4})r4\alpha^2 - \frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!} (1 - r + \frac{r}{8})r^3 36\alpha^4 \\ & 0 = -\left[(1 - \frac{r}{2})\alpha + \frac{1 \cdot 3}{2^2 \cdot 2!} (1 - r + \frac{r}{6})r^2 9\alpha^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 \cdot 4!} (1 - r + \frac{r}{10})r^4 100\alpha^5 \right] \\ & x = -\left[\frac{1}{2}(1 - r + \frac{r}{4})r\alpha^2 + \frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!} (1 - r + \frac{r}{8})r^3 16\alpha^4 \right] \\ & x' = -\left[(1 - r + \frac{r}{4})r\alpha^2 + \frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!} (1 - r + \frac{r}{8})r^3 24\alpha^4 \right] \\ & \Delta = -\left[\frac{1 \cdot 3}{2^2 \cdot 2!} (1 - r + \frac{r}{6})r^2\alpha^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 \cdot 4!} (1 - r + \frac{r}{10})r^4 25\alpha^5 \right] \\ & \Delta' = -\left[3 \cdot \frac{1 \cdot 3}{2^2 \cdot 2!} (1 - r + \frac{r}{6})r^2\alpha^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 \cdot 4!} (1 - r + \frac{r}{10})r^4 80\alpha^5 \right] \\ & \Box = -\frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!} (1 - r + \frac{r}{8})r^3\alpha^4 \\ & + = -\frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 \cdot 4!} (1 - r + \frac{r}{10})r^4\alpha^5 \end{aligned}$$

Figure B.5 Construction Diagram of R(5)(z1,z2)

It is noted that when the order of $R^{(n)}(z_1,z_2)$ goes up, more sample points in the spatial domain would be involved in calculating the approximate rational function operator \mathcal{I} .

APPENDIX C

Unique Inverse Solution of Function g'(x)

The function g'(x) is given by

$$g_i'(x) = \frac{(-2\log_e 2)2^{-2x}}{(1 - \rho_i^2 2^{-2x})^2}$$
 (C-1)

Let $h(\cdot)$ be the inverse of $g'(\cdot)$. For convenience we denote $g'_i(x)$ and 2^{-2x} by z and y respectively, and rewrite (C-1) as

$$z = \frac{(-2\log_e 2) \cdot y}{1 - 2\rho_i^2 y + \rho_i^4 y^2}$$
 (C-2)

Since $y = 2^{-2x}$, we have $1 \ge y \ge 0$ for any given $x \ge 0$. Rearranging (C-2) and getting an explicit expression as a function of y, we have

$$(\rho_i^4 z) y^2 - 2(\rho_i^2 z - \log_e 2) y + z = 0$$
. (C-3)

The roots of (C-3) are

$$y_1 = \frac{-(-\rho_1^2 z + \log_e^2) + \sqrt{-2\rho_1^2 z \log_e^2 + (\log_e^2)^2}}{\rho_1^4 z}$$
 (c-4a)

and

0

3

$$y_2 = \frac{-(-\rho_1^2 z + \log_e^2) - \sqrt{-2\rho_1^2 z \log_e^2 + (\log_e^2)^2}}{\rho_1^4 z} . \quad (C-4b)$$

The admissible root should lie in the interval [0,1]. Since $1>\rho_1^2>0$, and from (C-1), we can observe that

$$0 \ge z \ge -\frac{2\log_e 2}{(1-\rho_i^2)^2}$$
 for $\forall n \ge 0$ (C-5)

i.e., z is nonpositive. Therefore

$$\sqrt{-2\rho_1^2 z \log_e^2 + (\log_e^2)^2} > 0$$
 (C-6a)

$$-\rho_{i}^{2}z + \log_{e} 2 > 0$$
 (C-6b)

and it is easy to prove that

$$-\rho_{1}^{2}z + \log_{e}^{2} > \sqrt{-2\rho_{1}^{2}z \log_{e}^{2} + (\log_{e}^{2})^{2}}.$$
 (C-7)

With the above conditions (C-6) and (C-7), we conclude

$$y_2 \ge y_1 \ge 0$$
 . (C-8)

In a similar manner, using (C-6) and (C-7), it is easy to check that

- i) $y_2 > 1$, hence y_2 is inadmissible.
- ii) $1 \ge y_1 \ge 0$, y_1 is the unique solution.

LIST OF REFERENCES

- N. Ahmed, T. Natrarajan, and K.R. Rao, "On Image Processing and a Discrete Cosine Transform," IEEE Transactions on Computers, Vol. C-23, No. 1, pp. 90-93, January 1974.
- V.R. Algazi, "Useful Approximations to Optimum Quantization," IEEE Transactions on Communication Technology, Vol. COM-14, No. 3, pp. 297-301, June 1966.
- 3. H.C. Andrews, Computer Techniques in Image Processing, Academic Press, New York, 1970.
- H.C. Andrews, J. Kane, and W.K. Pratt, "Hadamard Transform Image Coding," Proceedings of the IEEE, Vol. 57, No. 1, January 1969.
- H.C. Andrews and W.K. Pratt, "Fourier Transform Coding of Images," Hawaii International Conference on System Science, pp. 677-679, January 1968.
- E. Angel and A.K. Jain, "Filtering of Multidimensional Diffusion Processes," 6th Asilomar Conference on Circuits and Systems, November 1972.
- R. Bellman, Introduction to Matrix Analysis, McGraw Hill, New York, 1970.
- P. Castellino, G. Madena, L. Nebbia, and C. Scngliala, "Bit Rate Reduction by Automatic Adaptation of Quantizer Step-Size in DPCM Systems," in Proc. 1974 Int. Zurich Seminar Digital Communications, pp. B6(1)-B6(6), 1974.
- C.C. Cutler, "Differential Quantization of Communication Signals,"
 U.S. Patent No. 2,605,301, July 29, 1952.
- J.E. Essman, "Theory and Application of DPCM and Compression of DPCM with other Time Predictive Techniques," Ph.D. Thesis, Purdue Univ., Electrical Engineering, 1972.
- 11. B. Fox, "Discrete Optimization via Marginal Analysis," Management Science, Vol. 13, pp. 201-216, November 1966.

0

- L.E. Franks, "A Model for the Random Video Process," Bell Systems Technical Journal, pp. 609-630, April 1966.
- W. Frei and C.C. Chen, "Fast Boundary Detection: A Generalization and a New Algorithm," IEEE Transactions on Computers, Vol. C-26, No. 10, pp. 988-998, October 1977.
- J.I. Gimlett, "Use of Activity Classes in Adaptive Transform Image Coding," IEEE Transactions on Communications, Correspondence, Vol. 23, pp. 785-786, July 1975.

- D.N. Graham, "Image Transmission by Two-Dimensional Contour Coding," Proceedings of the IEEE, Vol. 55, No. 3, pp. 336-346, March 1967.
- A.K. Griffith, "Edge Detection in Simple Scenes Using. Apriori Information," IEEE Transactions on Computers, Vol. C-22, pp. 371-381, April 1973.
- A. Habibi, "Hybrid Coding of Pictorial Data," IEEE Transactions on Communications, Vol. COM-22, No. 5, pp. 614-624, May 1974.
- A. Habibi, "Study of On-Board Compression of Earth Resources Data," Final Report, Contract No. NAS 2-8394, TRW No. 26566, September 1975.
- A. Habibi, "Survey of Adaptive Image Coding Techniques," IEEE Transactions on Communications, Vol. COM-25, No. 11, pp. 1275-1284, November 1977.
- A. Habibi, "Two Dimensional Bayesian Estimate of Images," Proceedings of the IEEE, Vol. 60, pp. 878-883, July 1972.
- A. Habibi and P.A. Wintz, "Image Coding Linear Transformation and Block Quantization," IEEE Transactions on Communication Technology, Vol. COM-19, No. 1, pp. 50-62, February 1971.
- A. Habibi and P.A. Wintz, "Linear Transformation for Encoding Two-Dimensional Sources," School of Electrical Engineering, Purdue Univ., Lafayette, Indiana, Technical Report EE 70-2, March 1970.
- C.W. Harrison, "Experiments with Linear Prediction in Television," The Bell Systems Technical Journal, Vol. 31, No. 4, pp. 746-783, July 1952.
- M.H. Hueckel, "An Operator Which Locates Edges in Digitized Pictures," J.A.C.M., Vol. 18, January 1971.
- B.R. Hunt, "Digital Image Processing," Proceedings of the IEEE, Vol. 63, No. 4, pp. 693-708, April 1975.
- A.K. Jain, "A Fast Karhunen-Loeve Transform for a Class of Random Processes," IEEE Transactions on Communications, Concise Paper, pp. 1023-1029, September 1976.
- A.K. Jain, "A Fast Karhunen-Loeve Transform for Finite Discrete Images," Proceedings of the National Electronics Conference, Chicago, Illinois, pp. 323-328, October 1974.
- A.K. Jain, "A Semicausal Model for Recursive Filtering of Two-Dimensional Images," IEEE Transactions on Computers, Vol. C-26, No. 4, pp. 343-350, April 1977.
- A.K. Jain, "A Sinusoidal Family of Unitary Transforms," Technical Report, Dept. of Electrical Engineering, SUNY at Buffalo, New York, July 1977.

- A.K. Jain, "Image Coding via a Nearest Neighbors Image Model," IEEE Transactions on Communications, Vol. COM-23, No. 3, pp. 318-331, March 1975.
- A.K. Jain, "Partial Differential Equations and Finite-Difference Methods in Image Processing, Part I: Image Representation," Journal of Optimization Theory and Applications, Vol. 23, No. 1, pp. 65-91, September 1977.
- 32. A.K. Jain, "Some New Techniques in Image Processing," Image Science Math., Proceedings ONR Symposium on Current Problems in Image Science (1976), (C.O. Wilde & E. Barrett, Editors), West. Periodicals Co., No. Hollywood, California, 1977.
- A.K. Jain and E. Angel, "Image Restoration, Modeling, and Reduction of Dimensionality," IEEE Transactions on Computers, Vol. C-23, No. 5, pp. 470-476, May 1974.

\$

3

0

8

- 34. A.K. Jain and J.R. Jain, "Partial Differential Equations and Finite Difference Methods in Image Processing, Part II: Image Restoration," IEEE Transactions on Automatic Control, Vol. AC-26, No. 5, pp. 817-834, October 1978.
- A.K. Jain and S.H. Wang, "Stochastic Image Models and Hybrid Coding," Naval Ocean Systems Center Contract NOO 953-77-C-003 MJE, Final Report, Dept. of Electrical Engineering, SUNY at Buffalo, February 1978.
- A.K. Jain, S.H. Wang and Y.Z. Liao, "Fast Karhunen Loeve Transform Data Compression Studies," 1976 National Telecommunications Conference, Dallas, Texas, December 1976.
- H. Karhunen, "On Linear Methods in Probability Theory," (1947) (English translation by I. Selin), The Rand Corporation, Doc. T-131, August 11, 1960.
- 38. R.L. Kashyap and A.R. Rao, Dynamic Stochastic Models from Empirical Data. Academic Press, New York, 1976.
- R. Kirsch, "Computer Determination of the Constituent Structure of Biological Images," Comput. Biomed. Res., Vol. 4, pp. 315-328, 1971.
- A.J. Kurtenbach and P.A. Wintz, "Optimum Quantization," Supplement to IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-3, pp. 563-580, November 1967.
- M. Levine, "Feature Extraction: A Survey," Proceedings of the IEEE, Vol. 57, pp. 1391-1405, August 1969.
- 42. M. Loeve, Fonctions Aléatories de Seconde Ordre, Hermann, Paris, 1948.
- 43. J.L. Mannos and D.J. Sakrison, "The Effects of a Visual Fidelity Criterion on the Encoding of Images," IEEE Transactions on Information Theory, Vol. IT-20, No. 4, pp. 525-536, July 1974.

- 44. J. Max, "Quantizing for Minimum Distortion," IRE Transactions on Information Theory, Vol. IT-6, pp. 7-12, March 1960.
- R.A. McDonald, "Signal-to-Noise and Idle Channel Performance of DPCM Systems - Particular Applications to Voice Signals," B.S.T.J., Vol. 45, No. 7, pp. 1123-1151, September 1966.
- R.W. Means, E.H. Wrench and J.J. Whitehouse, "Image Transmission via Spread Spectrum Techniques," ARPA Quarterly Technical Report, ARPA-QR6, Naval Undersea Center, San Diego, California 92132, Jan.-Dec. 1975.
- 47. A.Z. Meiri, "The Pinned Karhunen-Loeve Transform of a Two Dimensional Gauss-Markov Field," Proceedings 1976 SPIE Conference on Image Processing, San Diego, California, 1976.
- 48. N.E. Nahi and T. Assefi "Bayesian Recursive Image Enhancement," IEEE Transactions on Computers, Vol. C-12, pp. 734-738, July 1972.
- N.E. Nahi and C.A. Franco, "Recursive Image Enhancement-Vector Processing," IEEE Transactions on Communications, Vol. COM-21, pp. 305-311, April 1973.
- 50. J.B. O'Neal, "Predictive Quantization Systems (Differential Pulse Code Modulation) for the Transmission of Television Signals," The Bell Systems Technical Journal, Vol. 45, No. 5, pp. 689-721, May-June 1966.
- M.D. Paez and T.H. Glisson, "Minimum Mean-Squared-Error Quantization in Speech PCM and DPCM Systems," IEEE Transactions on Communications (Concise Papers), Vol. COM-20, pp. 225-230, April 1972.
- W.K. Pratt, "Bibliography on Digital Image Processing and Related Topics," Electronics Sciences Laboratory, University of Southern California, USCEE Report 453, September 1973.
- 53. W.K. Pratt, Digital Image Processing, John Wiley & Sons Inc., 1978.
- W.K. Pratt, H.C. Andrews, and J. Kane, "Hadamard Transform Image Coding," Proceedings of the IEEE, Vol. 57, No. 1, pp. 58-68, January 1969.
- W.K. Pratt, W.H. Chen and L.R. Welch, "Slant Transform Image Coding," IEEE Transactions on Communications, Vol. COM-22, No. 8, pp. 1075-1093, August 1974.
- 56. W.D. Ray and R.M. Driver, "Further Decomposition of the Karhunen-Loeve Series Representation of a Stationary Random Process," IEEE Trans. Information Theory, Vol. IT-16, No. 6, pp. 663-668, November 1970.
- 57. L.G. Robert, "Machine Perception of Three Dimensional Solids," in Optical and Electro-Optical Information Processing, J.T. Tippett et al., Eds., MIT Press, Cambridge, MA, pp. 187-197, 1965.

- J.A. Roese, W.K. Pratt, and G.S. Robinson, "Interframe Cosine Transform Image Coding," IEEE Transactions on Communications, Vol. COM-25, pp. 1329-1339, November 1977.
- R.P. Roesser, "A Discrete State-Space Model for Linear Image Processing," IEEE Transactions on Automatic Control, Vol. AC-20, No. 1, pp. 1-10, February 1975.
- A. Rosenfeld and M. Thurston, "Edge and Curve Detection for Visual Scene Analysis," IEEE Transactions on Computers, Vol. C-20, pp. 562-569, May 1971.
- 61. A.P. Sage and J.L. Melsa, Estimation Theory with Applications to Communications and Control, McGraw-Hill, 1971.
- W.F. Schreiber, "Picture Coding," Proceedings of the IEEE, Vol. 55, No. 3, pp. 320-335, March 1967.
- 63. W.F. Schreiber, T.S. Huang, and O.J Tretiak, "Contour Coding of Images," IRE Western Electron Show and Conv., pp. 8/3(1)-8/3(6), August 1968.
- W.F. Schreiber and C.F. Knapp, "TV Bandwidth Reduction by Digital Coding," IRE Natinal Convention Record, Vol. 6, Part 4, pp. 88-89, 1958.
- W.F. Schreiber, C.F. Knapp, and N.D. Kay, "Synthetic Highs: An Experimental TV Bandwidth Reduction System," J. Soc. Motion Picture and Television Engineers, Vol. 68, pp. 525-537, August 1959.
- A. Segall, "Bit Allocation and Encoding for Vector Sources," IEEE Transactions on Information Theory, Vol. IT-22, No. 2, pp. 162-169, March 1976.
- C.E. Shannon, "Coding Theorems for a Discrete Source with a Fidelity Criterion," 1959 IRE Nat'l Conv. Rec., Pt. 4, pp. 152-163.
- R. W. Stroh, "Optimum and Adaptive Differential Pulse Code Modulation," Ph.D. Thesis, Polytechnic Institute of Brooklyn, Electrical Engineering, 1970.
- L.C. Wilkins and P.A. Wintz, "Bibliography on Data Compression, Picture Properties, and Picture Coding," IEEE Transactions on Information Theory, Vol. IT-17, No. 2, pp. 180-197, March 1971.
- 70. P.A. Wintz, "Transform Picture Coding," Proceedings of the IEEE, Vol. 60, No. 7, pp. 809-820, July 1972.
- E. Wong, "Two Dimensional Random Fields and Representation of Images," SIAM J. Appl. Math., Vol. 16, pp. 756-770, July 1968.
- 72. R.C. Wood, "On Optimum Quantization," IEEE Transactions on Information Theory, Vol. IT-5, pp. 248-252, March 1969.

- 73. J.W. Woods, "Two Dimensional Discrete Markov Fields," IEEE Transactions on Information Theory, Vol. IT-18, pp. 232-240, March 1972.
- J.K. Yan and D.J. Sakrison, "Encoding of Images Based on a Two-Component Source Model," IEEE Transactions on Communications, Vol. COM-25, No. 11, pp. 1315-1322, November 1977.
- 75. "Special Issue on Redundancy Reduction," Proceedings of the IEEE, Vol. 55, No. 3, pp. 251-480, March 1967.

Q

0

Shenq-Huey Wang was born in Shanghai, China, on April 8, 1948. He received the B.S. degree in Electrical Communication Engineering from the National Chiao Tung University, Hsinchu, Taiwan, in 1970. He served as a Radio Communication Officer in the Chinese Army from 1970 to 1971. In August, 1971, he was employed as an engineer for General Instrument Corporation of Taiwan Ltd. During 1972-74 he was a graduate assistant with the Department of Electrical Engineering, University of Connecticut, and obtained his M.S.E.E. degree in May, 1974. In September, 1974, he joined the State University of New York at Buffalo, where he was a research and teaching assistant throughout his doctoral program. During the summer of 1975, he worked at NASA, Huntsville, Alabama, where he was involved in developing computer software for satellite image processing. He spent the last half year of his graduate study in the Department of Electrical Engineering, University of California at Davis, where his thesis supervisor was on sabbatical, to complete work on his Ph.D. thesis.

Presently, he holds the position of Image Scientist at the Picker Corporation, Cleveland, Ohio, where he is working on Computed Tomography. His research interests include Digital Signal and Image Processing, Data Compression and Modeling of Images, and Computer Graphics.