)	forcement Learning.
Ty	pes of learning —
	Supervised learning: "Tutor provides examples to learn from
	Duspervised learning: You're on your own
	Reinforcement learning text focuses on this Russella Norving text also contains other types of learning
	Reinforcement learning: learning from interaction

"Learning Problem"	
- State of the environment	
- actions that affect state	Syamoles
- goal(s) related to the state	Example: Medicine
· Uncertainty about the environment	see patient's symptoms, don't
agent's actions affect environment's future st	te know state with
· effects of actions cannot fully be predicted	Medication/ treatment are
	likely to help,
Example: Finance - stock investing	but may not
Iden: invest in a company if you think stock w	
Sell if you think stock will fall [or mond	y better invested elsewhere

Stock prices are indicators of a company's value Uncertainty: accuracy of indicator

Stock prices fluctuate daily, based on world econormy + other factors
uncertainty: predicting world events

Examples: Futures pricing

Can we learn to recognize what the state of the system really is, based on indicators ("evidence") we can collect?

Key elements: policy - mapping from state of environment to actions

(for each possible state, specify an action.

The set of actions you will take for each state is your policy.

Chess: given any state of the board, what is your

Blackjack: given indicators [value of your cards + observed dealer's card] what do you do? (HIT or STAND?)

remard function - mapping from state to an immediate reward

for each state, what is the immediate return?

(e.g. doing chores has negative immediate return in form of work, tedium, etc. but has long-term reward (we hope)

eig. brushing your teeth time consuming (if done properly) but prevents avities

(eig: training commals —
dolphins — give fish for good Parlor's dogs value function: mapping from state to long-term reward eig; having cavities

If not using propor dental care, car problems If not changing oil & other maintenance remard Function is the immediate value of being in a state value function is the vitimate value of being in a state Example: Choice between BIG NICKEL or tiny dime

Game of Nim

n players n stones in a pile

K: on your more, can take 1,2,..., k stones

Object: DO NOT BE THE PLAYER WHO TAKES THE LAST STONE

Example: m=2 players Player1:

n=7 stones Take 2

K=3

Example: m=2 players second player

n=9 stones always wins

K=3 [provided noting

[provided optimal moves are made]

State # stones	action # to take	revard	value
1	1 2 3	-1	
2	1 2 3	ð	
3	1 2 3	0	2 /
Ч	1 2 3	0	3 / 2×
5	<u> </u>	0	
6	1 2 3	0	3 ×
7	1 2 3	0	
8	1 2 3	0	
9	1 2 3	0	3 // []

	V
"Exploration"	Exploitation"
	IF you know that your potential moves
	have specific values associated with the nort s
	have specific values associated with the nort of they produce, exploit This knowledge by
	Chousing best move
	BUT
	if values are only guesses, need to improve
	these values
	*
	"back up" values based on knowledge

Let "value" of a state be prob of a win		
if we are at that state.		
Initially, we con't Know.		
Initially, we con't Know. Start w/ uniform weights		
state		
95		
8 — ·5		
75 65 Play game,		
your first move y _ 5 has state = 6		
$\frac{95}{35}$ this state = 6 chains are		
25		
1 — which yield Charles 2 5 4 3		
Change to 0? 5 4 3 Change to .4 as next states		
All have same value		

Choose explore,
more et random
eig. "2"
state = 4
6 pp brunt cho 6 ses 3
state = 1
our mave - we laste.
Change value of state 1 to 0
NOTE: this game is simple; you always lose from state 1
Maybe should change weight more gradually -
Maybe should change weight more gradually— Something between the value (.5)
and o
value(s) + value(s) + \(\alpha\) (value(s') - value(s')
tearning rate $\alpha \in (0,1)$

Instead change value(1) = .4, not 0

```
Playing a new game ....
               say state = 6 again -
                your chaces yield 5 4 3
Explore try move = 1, yielding 5
  opponent fries move = 1, yielding 4
                state = 4
```

So, value of state 4 should increase — value was .5

win: prol = 1

So back up . 5 + oc (1-.5) => say . 6

value (5) = .6 : value (1) = .4

Exploration

Sometimes, you should choose a random move a learn what. happens, rather than explaining your moves every time.