Expirement2

The purpose of this experiment was to generate **precise binary masks** for **irregular blue dots** from a **custom dataset**. These masks capture the exact shape of the blue dots and are intended for use in training segmentation models like U-Net or for further shape analysis.

Dataset Description

- The dataset was **manually created** by cutting **pink paper into circular patches** and placing them on a plain background.
- **Blue dots** were created by **dropping blue watercolor** inside the pink circles, resulting in **irregular-shaped marks**.
- The resulting images were captured under consistent lighting and stored for processing.
- Each image was **manually annotated** using the **YOLOv11 polygon format**, labeling:
 - o Class 0: Blue Dots (foreground target for detection and masking)
 - Class 1: Pink Paper (background ignored in mask generation)

Note: Only **Class 0** (**blue dots**) are used to create the binary masks.

What This Code Does

- Parses YOLOv11 polygon-format .txt files.
- Extracts and converts **normalized coordinates** into **pixel-level polygons**.
- Fills the blue dot regions with white (255) on a black (0) background.
- Generates one binary .png mask per input image, saved in the masks/ directory.

□ Workflow Summary

Step	Function	Description
1	parse_yolo_polygon_line()	Reads and extracts class $+$ (x, y) polygon points from each annotation line
2	create_mask_from_annotations()	Fills only blue dot (class 0) polygons in white (255); ignores pink paper
3	convert_dataset_to_masks()	Converts all annotated images to masks
4	verify_mask_statistics() (optional)	Checks how many masks contain dots and how much area they cover
5	main()	Entry point to run the full conversion on the dataset

Why This Approach Works

- Manual annotations ensure precise labelling of irregular shapes.
- **Polygon-based filling** captures the **true outline** of each blue dot, unlike bounding boxes.
- **Black-and-white binary masks** are ideal for use in segmentation pipelines.

Outputs i.e., masked images of blue dots are stored in the folder named "maskedBlueDots"

