

MPC - Modelica System Integration

Stanford University, Lawrence Berkeley National Lab

Fred Fan August 12, 2024

PhD Student Atmosphere/Energy Program Civil and Environmental Engineering Stanford University

Stanford Civil and Environmental Engineering

Big Picture

Real-Time (credit: Lazlo)

Real Berg Structure

Modeled Berg Envelope in Energy Plus
Modeled HP-TES in Modelica

Physical System Layout

Data

Integrated Model Structure

MPC Time Interval

Interval Type	Interval Length	# of Intervals	Length	Aggregated Horizon	Aggregated # of Intervals
1	5 mins	6	0.5 hours	0.5 hours	6
2	30 mins	5	2.5 hours	3 hours	11
3	1 hour	21	21 hours	1 day	32
4	2 hours	48	96 hours	5 days	80

Model Time Definition

wodei	ime Definition				
MPC Time Step					
	Iteration i = 0	Iteration i = 1	Iteration i = 2		
Mode	Start FMU first; Run FMU with default command	Start MPC, optimize, send command to FMU	Run FMU with MPC command; Re-run MPC, optimize, send command to FMU		
Current Time	0:00	0:00	0:05		
MPC Model t=1	/	0:05	0:10		
Solve Time	/	00:00 to 00:05	00:05 to 00:10		
Weather Input	/	Weather forecast at 00:00 of horizon starting at 00:05	Weather forecast at 00:05 of horizon starting at 00:10		
M_States[t=1]	Initial_M_States used to start the FMU	M_States[t=1, i=1] = M_States output from (i = 0)	M_States[t=1, i=2] = M_States[t=2, i=1] at 00:10, or between 00:05 to 00:10		
J_States[t=1]	/	J_States[t=1, i=1] = Initial J_States	J_States[t=1, i=2] = J_States[t=2, i=1] at 00:10, or between 00:05 to 00:10		
Current Action	/	Nothing: from 00:00 to 00:05	D[t=1, i=1]: from 00:05 to 00:10		
Next Optimal Decision	Nothing: from 00:00 to 00:05	D[t=1, i=1]: from 00:05 to 00:10	D[t=1, i=2]: from 00:10 to 00:15		
M_States output	Initial_M_States after doing nothing for 5 minutes	M_States[t=2, i=1] at 00:10, or between 00:05 to 00:10	M_States[t=2, i=2] at 00:15, or between 00:10 to 00:15		
J_States output	/	J_States[t=2, i=1] at 00:10, or between 00:05 to 00:10	J_States[t=2, i=2] at 00:15, or between 00:10 to 00:15		
time points for FMU	[00:00, 00:05]	[00:05, 00:10]	[00:10, 00:15]		
PV_Gen_0	/	PV Generation from 00:00 to 00:05	PV Generation from 00:05 to 00:10		
Battery_SOC_0	/	Battery SOC at 00:00	Battery SOC at 00:05 (InStorageBattery_past[1])		
Battery_SOC[t=1]	/	Battery SOC at 00:05	Battery SOC at 00:10 (InStorageBattery_past[2])		
PV2B[t=1]	/	PV2B[t=1, i=1] = Average POWER from 00:05 to 00:10	PV2B[t=1, i=2] = Average POWER from 00:10 to 00:15		
Curtailment_past	/	Curtailment between 00:00 to 00:05 = 0 (J_States[t=1, i=1])	Curtailment between 00:05 to 00:10 (J_States[t=1, i=2])		
PV2B_past	/	PV2B between 00:00 to 00:05 = 0 (J_States[t=1, i=1])	PV2B between 00:05 to 00:10 (J_States[t=1, i=2])		

Initial States

M State Name	Initial Value
PCM Hot Initial Temperature	48 [°C]
PCM Cold Initial Temperature	11 [°C]
Initial Indoor Temperature	22 [°C]
PCM Hot Capacity	11 [kWh]
PCM Cold Capacity	7 [kWh]
Zone Temperature Cooling Setpoint	22 [°C]
Zone Temperature Heating Setpoint	20 [°C]
Zone Temperature Delta Setpoint	0.5 [°C]
PCM Cold Initial SOC	0.5
PCM Hot Initial SOC	0.5
J State Name	Initial Value
PV Generation at last timestep	0 [kW]
Actual power consumption at last timestep	0 [kW]
Battery Initial SOC	0.5

Berg Structure Modeling

Heating & Cooling Rule-based Controls

	Ti [t] < T_heat - T_delta	T_heat - T_delta <= Ti [t] <= T_heat + T_delta	$Ti[t] > T_heat + T_delta$
Heating Mode $[t-1] = 0$	Heating Mode [t] = 1	Heating Mode $[t] = 0$	Heating Mode [t] = 0
Heating Mode [t-1] = 1	Heating Mode [t] = 1	Heating Mode [t] = 1	Heating Mode [t] = 0

	Ti [t] > T_cool + T_delta	$T_{cool} - T_{delta} \le Ti[t] \le T_{cool} + T_{delta}$	T_cool - T_delta < Ti [t]
Cooling Mode $[t-1] = 0$	Cooling Mode [t] = 1	Cooling Mode [t] = 0	Cooling Mode [t] = 0
Cooling Mode [t-1] = 1	Cooling Mode [t] = 1	Cooling Mode [t] = 1	Cooling Mode [t] = 0

Heating Mode	HP Heating	PCM Hot Discharging
0	0	0
1	0	1
1	1	0
1	1	1

Cooling Mode	HP Cooling	PCM Cold Discharging
0	0	0
1	0	1
1	1	0
1	1	1

PCM Hot / Cold can be charged at anytime as long as its SOC < 1 and there is sufficient thermal power.

MILP Optimization

Modelica Output

Next Steps

- Update epw file (sub-hourly?)
- Improve forecast error modeling
- Finalize passive model and update Julia MPC
- Better modeling parameters such as COP, HP power rate, PCM charge & discharge rate etc.
- Consider more edge cases and make the system more robust