#### Aprendizado de Máquina: Classificação de Dados

# Prof. Arnaldo Candido Junior UTFPR – Medianeira

### Abordagens de Aprendizado



### Classificação

- Atribuir objetos a uma dentre várias categorias pré-definidas
- Ex.:
  - Classificação de letras e números
  - Reconhecimento de faces
  - Análise de crédito
  - Diagnóstico médico

## Classificação (2)

- Dado um conjunto de treinamento, em que cada exemplo possui um conjunto de atributos e um deles o rótulo ou classe
  - Encontrar um modelo para o atributo classe como uma função dos valores de entrada
  - Função alvo ou modelo de classificação

# Classificação (3)

- Utilidades do modelo de classificação
  - Modelagem descritiva: explica como são descriminados objetos de diferentes classes
    - Extração de conhecimento: resume os dados
  - Modelagem preditiva: permite predizer o rótulo de novos dados de entrada
    - Não vistos anteriormente

# Classificação (4)

- Supor a tarefa de aprender a classificar carros em duas classes
  - Carro esporte (+)
  - Carro passeio (-)
- Dados de entrada:
  - Características de um carro
    - Preço (x<sub>i1</sub>) e cilindrada (x<sub>i2</sub>)

# Classificação (5)



# Classificação (6)

- Dados exemplos de treinamento, encontrar um modelo
- Modelagem descritiva: o que representa um carro de passeio?
- Modelagem preditiva: qual a classe de um novo carro?

#### Teoria do Aprendizado Estatístico

- Fornece uma interpretação estatística sobre o aprendizado de máquina
- Vamos usar uma notação diferente da tradicional
  - Notações variam muito de acordo com autor ou algoritmo

### Notação

- x, x<sub>1</sub>, u, v, ...: valores de instâncias (sem a classe) ou escalares
- x̂, x̂₁, û, v̂, ...: instâncias ou pontos ou vetores
   Note que: x̂ = (x₁, x₁, ..., xₙ)
- f(x̂), d: classe real (ou desejada) de uma instância.
  - Vale 1 ou 0 na classificação binária (foco inicial) (alternativamente, "+" ou "-")

# Notação <sub>(2)</sub>

- h: hipótese o recorte no espaço que permite que a classificação aconteça
- h(x̂), y: classe predita para uma instância
- h\*: hipótese ótima aquela que mais se aproxima de f
- X: um dataset ou uma matrizes

# Notação (3)

- Exemplo:
  - Instância Gol (x̂);
  - Preço: R\$ 30.000 (x<sub>1</sub>)
  - Cilindrada: 1.000 (x<sub>2</sub>)
  - Classe: passeio (0 classe positiva)
  - Notação:  $\hat{x} = (30.000, 1.000)$  $f(\hat{x}) = 0$

## Notação (4)

- Uma instância é dada por seus atributos:
   x̂ = (x₁, x₂, ..., xₙ)
- Um conjunto de dados (dataset) é dado por várias instâncias

$$X = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix} \qquad X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & & & x_{2n} \\ \vdots & & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}$$

## Notação (5)

 No aprendizado supervisionado, os datasets são rotulados, isto é, dados são pares x̂ e y

$$X = \begin{bmatrix} \hat{x}_{1} & d_{1} \\ \hat{x}_{2} & d_{2} \\ \vdots & \vdots \\ \hat{x}_{n} & d_{n} \end{bmatrix} \qquad X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} & d_{1} \\ x_{21} & & & x_{2n} & d_{2} \\ \vdots & & & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} & d_{n} \end{bmatrix}$$

# Teoria do Aprendizado Estatístico (2)

- Como exemplo, utilizaremos hipóteses na forma de retângulos (hipercubos)
  - São mais fáceis de interpretar
  - Formato:

$$h(\hat{x}) = 1$$
 Se  $v_1 \le x_1 \le v_2$  E  $v_3 \le x_2 \le v_4$   
0 caso contrário

v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub> e v<sub>4</sub> delimitam o hipercubo

# Teoria do Aprendizado Estatístico (3)

Exemplo:

• 
$$h(\hat{x}) = 0$$
 Se  $1.000 \le x_1 \le 30.000$  E  
 $1.000 \le x_2 \le 2.000$   
1 caso contrário

# Teoria do Aprendizado Estatístico (4)



### Teoria do Aprendizado Estatístico (5)

- Falso positivo (classe de referência: passeio):
   h(x̂) = 1; f(x̂) = 0
- Falso negativo:  $h(\hat{x}) = 0$ ;  $f(\hat{x}) = 1$
- Erro empírico conta o número de erros que a hipótese h comete em um determinado dataset D

$$e(h|X) = \sum_{\hat{x} \in X} h(\hat{x}) \neq f(\hat{x})$$

# Teoria do Aprendizado Estatístico (6)

- Chamaremos de H o conjunto de todas as hipóteses possíveis sobre um dataset
  - Normalmente, H é infinito
- Tentaremos encontrar h que melhor generalize os dados (isto é, h\*)
- h\* idealmente deve incluir todos os exemplos positivos e nenhum exemplo negativo
- Obs: pode haver mais de um h\*

# Teoria do Aprendizado Estatístico (7)



# Teoria do Aprendizado Estatístico (8)

- Fronteira específica:
  - É mais propensa a falsos negativos para dados não vistos em treinamento
- Fronteira geral:
  - É mais propensa a falsos positivos

#### Espaços

- Temos dois espaços importantes
  - Espaço de instâncias
  - Espaço de hipóteses
    - Subespaço de versões

### Espaço de instâncias

- Cada ponto é uma instância
- Tem a forma de nuvem de pontos
- Objetivo: recortar esse espaço
- É o que estudamos até o momento:
  - No exemplo dado, é o R<sup>2</sup>

# Espaço de instâncias (2)



### Espaço de hipóteses

- Cada ponto representa uma hipótese / recorte / classificador
- Tem a forma de encosta
- Objetivo: descer a encosta

### Espaço de hipóteses

- Todo o recorte no espaço de instâncias se transforma em um ponto no espaço de hipóteses
- Precisamos converter nossos retângulos e seus respectivos erros empíricos em pontos
  - No exemplo, isto pode ser feito da seguinte forma: h = (v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, v<sub>4</sub>, e)

### Espaço de hipóteses (2)

- Versão original (R<sup>5</sup>):  $h = (v_1, v_2, v_3, v_4, e)$
- Simplificando para visualização (R²): H = (v₂, e)
  - Lembrando: v<sub>2</sub> armazena o preço máximo de um veículo de passeio
  - v₂ grande → falsos negativos
     v₂ pequeno → falsos positivos

# Espaço de hipóteses (3)



### Espaço de hipóteses (4)

- Regra informal: coisas parecidas andam juntas
  - h's parecidos possuem erros empíricos parecidos
  - Percorremos hipóteses em H em busca de h\*
  - Formalmente: estamos minimizando o erro empírico

### Espaço de hipóteses (5)

- Classificadores fazem uma busca no espaço de hipóteses
  - Informada: no exemplo, heurística = erro empírico
  - Normalmente gulosa: se não encontrar h\*, se contenta com uma aproximação boa o bastante h'
  - Normalmente descida de encosta (down hill): minimiza uma função de custo
  - Obs: erro empírico não é a melhor função de custo, pois não é suave, existem outras...

### Subespaço de versões

- É um pedaço do espaço de hipóteses no qual...
  - ... cada hipótese separa perfeitamente o conjunto de treinamento X (erro empírico = 0)
  - Ou seja, ótimo global da encosta
  - Pode ser vazio (comum)
  - Pode ter uma ou mais fronteiras específicas
  - Pode ter uma ou mais fronteiras gerais

### Subespaço de versões (2)

- É propenso a hipóteses que fazem overfitting
  - Acertar o conjunto de treinamento sugere memorização
  - Por causa disso, avaliações normalmente são feitas por um dataset separado, chamado de conjunto de teste

#### Dimensão VC

- Dá uma ideia do poder de um classificador
  - E também se ele é propenso a overfitting
- N pontos podem ser rotulados de 2<sup>N</sup> possíveis maneiras como +/-
- Mede a capacidade de um classificador de classificar corretamente esses 2<sup>N</sup> problemas
  - Dimensão varia de acordo com conjunto de treinamento

## Dimensão VC (2)

- Seja um classificador linear em um espaço bidimensional
  - Para os três pontos abaixo, temos 8 problemas de separação (2³)
  - Todos os problemas são linearmente separáveis



# Dimensão VC (3)

- Seja um classificador linear em um espaço bidimensional
- N = 4 -- 16 problemas
  - Alguns problemas não são linearmente separáveis



$$VC(H) = 3$$

VC(H) para um classificador linearmente separável em um espaço bidimensional é 3

# Dimensão VC (4)

- Depende de:
  - Espaço de hipóteses
  - Número de atributos
  - Quais são os N dados escolhidos de X



# Dimensão VC (5)

- Seja um classificador na forma de retângulo em um espaço bidimensional
  - N = 4 (16 problemas)

# Dimensão VC (6)

- Seja um classificador na forma de retângulo em um espaço bidimensional
  - N = 4 (16 problemas)
    - Todos os problemas são separáveis por um retângulo



## Dimensão VC (7)

- Independe da distribuição de probabilidade com que exemplos são gerados
  - Depende do número de atributos
  - Depende da representação das hipóteses
    - Se H for uma tabela de busca
    - Dimensão VC é infinita

# Dimensão VC (8)

- Pode parecer pessimista
  - Muitas das possíveis combinações dado-classe não ocorrem na prática
  - Dados reais são mais regulares: exemplos de uma mesma classe tendem a estar próximos
    - "Coisas parecidas andam juntas"
  - Na prática, classificadores separam conjuntos maiores de dados

# Dimensão VC <sub>(9)</sub>

- Dimensão VC é um conceito teórico
  - É difícil de calcular com exatidão para a maioria dos classificadores
  - Quanto mais flexível o classificador, maior tende a ser sua dimensão VC

### Classificação

- Técnica de classificação: abordagem sistemática para construir um classificador
  - Ex. RNs, SVMs, árvores de decisão
  - Cada técnica emprega um algoritmo de aprendizado para procurar pela melhor hipótese no espaço de hipóteses
  - Modelo gerado deve se ajustar aos dados e permitir a predição da classe de novos exemplos

# Classificação (2)





### Tipos de Classificação

- Classificação Binária
- Classificação com uma Classe (detecção de novidades)
- Classificação Multiclasse
- Classificação Multi-rótulos
- Classificação com Ranking
- Classificação Hierárquica
- Existem outras

### Classificação Binária

- Mais comum
  - Dados podem pertencer a uma dentre 2 classes
    - Classe positiva
    - Classe negativa



# Classificação Binária (2)

- Existem várias métricas para avaliação dos classificadores
- Problema:
  - Desbalanceamento das classes
  - Nem toda tarefa de classificação é binária

### Classificação com Uma Classe

- Dados somente da classe +1 (positiva)
- Ou poucos dados
- Obter exemplos negativos: difícil, custoso



## Classificação com Uma Classe (2)

- Aprendizado com apenas exemplos positivos
  - Contra-exemplos (normalmente condições anômalas) são caros, difíceis de obter
  - Ou difíceis de caracterizar
- Exemplos negativos são importantes na definição do grau de generalização
  - Ausência dificulta indução de um classificador adequado

### Problemas Multiclasses

- Várias técnicas de AM podem induzir apenas classificadores binários
- Existe um grande número de problemas reais com mais que 2 classes
  - Problemas de classificação multiclasses
    - Para serem resolvidos, são utilizadas estratégias multiclasses

# Problemas Multiclasses (2)

- Dados em várias classes
  - {1, 2, ..., k}
  - Classes mutuamente excludentes
    - gripe
    - sarampo
    - amigdalite



## Problemas Multiclasses (3)

- Duas abordagens têm sido utilizadas:
  - Modificação do Algoritmo de classificação
    - Operações internas refeitas
  - Decomposição do problema multiclasse (foco da aula)
    - Um problema multiclasse é transformado em em múltiplos problemas binários

### Problemas Multiclasses

#### Decomposição

- Geralmente reduz a complexidade do problema
- Permite processamento paralelo
- Veremos decomposição por Matrizes de Códigos (a seguir)

### Matrizes de códigos



# Matrizes de códigos (2)

- OAA (one against all): um contra todos
  - *n* classes → *n* classificadores
  - C<sub>i</sub>: compare a classe i contra todas as demais
  - Classe escolhida: aquela que obteve o maior score

# Matrizes de códigos (3)

- AAA (all against all): todos contra todos
  - C<sub>1</sub>: classe 1 contra classe 2; C<sub>2</sub>: classe 1 contra classe 3; ...
  - Classe escolhida: é feita uma votação em cada classificador
  - Também chamado de "one against one"

# Matrizes de códigos (4)

- ECOC (error correction output codes): correção de erro dos códigos de saída
  - Flexibiliza o número de classificadores
  - Dois casos:
    - Caso 1: mais classificadores do que classes:
      - Saída mais confiável
    - Caso 2: menos classificadores do que classes
      - Menor custo de classificação

## Matrizes de códigos (5)

- Caso 1: mais classificadores do que classes
  - Representamos classes por mapas de bits.
    - Para 4 classes, precisamos de 4 bits
  - Projetista define número de classificadores a ser utilizado
  - Por sorteio, cada classificador emite um mapa de bits diferente

## Matrizes de códigos (6)

- Caso 1: exemplos
  - Classificador 1: sorteado classe 1 contra o resto
    - Saídas: 1000 para classe positiva, 0111 para negativa
  - Classificador 2: sorteado classes 2 e 3 contra o resto
    - Saídas: 0110 para positiva; 1001 para negativa
  - ...
  - Interpretando a saída: fazer a média ponderada entre os bits de todas as saídas: classe mais votada ganha

# Matrizes de códigos (7)

- Caso 2: menos classificadores do que classes
  - Para 4 classes (C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub>) e 2 classificadores usamos dois bits: C<sub>1</sub> = 00; C<sub>2</sub> = 01; C<sub>3</sub> = 10; C<sub>4</sub> = 11
  - Classificador 1: aprende a emitir primeiro bit
     0 = C<sub>1</sub> ou C<sub>2</sub>
     1 = C<sub>3</sub> ou C<sub>4</sub>
  - Classificador 2: aprende a emitir segundo bit 0 = C<sub>1</sub> ou C<sub>3</sub>;
     1 = C<sub>2</sub> ou C4

# Matrizes de códigos (8)

• Exercício: Considere que a saída ECOC do exemplo anterior foi:

$$f_1 = -1$$
 $f_2 = +1$ 
 $f_3 = -1$ 
 $f_4 = +1$ 
 $f_5 = -1$ 
 $f_6 = +1$ 
 $f_7 = -1$ 

Calcule a classe escolhida

## Matrizes de códigos (8)

- Testar no Weka:
  - Meta-classificador multi-classe para classificadores baseados em duas classes
  - weka.classifiers.meta.multiclassifier
  - Testar: AAA, OAO, ECOC

### Classificação Multirrótulos

- Dados em várias classes
  - {1, 2, ..., k}
  - Classes sobrepostas



- amigdalite A sarampo e amigdalite

△ gripe, sarampo e amigdalite



# Classificação Multirrótulos (2)

- Duas abordagens:
  - Adaptar algoritmo de classificação para saída multirrótulo
  - Reduzir problema para multiclasse (foco da aula)

# Classificação Multirrótulos (3)

- Estratégias para reduzir problema para multiclasse:
  - 1. Usar matrizes de código
  - 2. Criar rótulos
  - 3. Eliminar instâncias
  - 4. Eliminar rótulos

# Classificação Multirrótulos (4)

- Estratégia 1: usar matrizes de códigos
  - Reduz multiclasse para binário OU
  - Reduz multirrótulo para binário

#### Problema Multi-rótulo:

Instância 1: classes A and B

Instância 2: classe A

Instância 3: classes A and B

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

#### Problema com única classe:

Classificador Positiva Negativa

1, 2, 3, 6 4,5

1, 3, 5 2, 4, 6

1, 2, 3, 5, 6

## Classificação Multirrótulos (5)

• Estratégia 2: criar novos rótulos

#### **Problema Multirrótulo:**

Instância 1: classes A and B

Instância 2: classe A

Instância 3: classes A and B

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

# Problema monorrótulo:

Instância 1: classe D

Instância 2: classe A

Instância 3: classe D

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

# Classificação Multirrótulos (6)

• Estratégia 3: eliminar instâncias

#### Problema Multi-rótulo:

Instância 1: classes A and B

Instância 2: classe A

Instância 3: classes A and B

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

#### Problema Um-rótulo:

Instância 2: classe A

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

# Classificação Multirrótulos (7)

• Estratégia 4: eliminar rótulos

#### **Problema Multirrótulo:**

Instância 1: classes A and B

Instância 2: classe A

Instância 3: classes A and B

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

#### Problema Um-rótulo:

Instância 1: classe A

Instância 2: classe A

Instância 3: classe B

Instância 4: classe C

Instância 5: classe B

Instância 6: classe A

### Classificação Hierárquica

- Problemas de classificação em que:
  - Classes podem ser divididas em subclasses
  - Classes podem ser agrupadas em superclasse
- Classificação baseada em uma hierarquia
  - Predição obrigatória ou opcional em nós-folha

# Classificação Hierárquica (2)

- Dados hierarquicamente organizados
  - {1, 1.1, 1.2, ..., k, k.1, k.2}
  - Classes assumem uma relação hierárquica



### Tipos de Hierarquia



- (a) Árvore
- (b) Grafo Direcionado Acíclico (DAG)

### Classificação Hierárquica

- Principais abordagens
  - Transformação em um problema de classificação plana (escolher um nível da árvore)
  - Um classificador por nível sem respeitar hierarquia
  - Top-down: um classificador por nível da raíz até as folhas, respeitando hierarquia
  - Big-bang: um classificador só que analisa a hierarquia como um todo

## Classificação Hierárquica (6)

- Avaliação
  - Custo uniforme
    - Mais utilizada
  - Custo baseado em distância
    - Baseada na distância entre classe predita e classe verdadeira
  - Custo baseado na semântica
    - Quanto mais similares as classes, menor a penalização

### Classificação com Ranking

- Caso especial de classificação multirrótulos
  - Responde com as N classes que podem ser atribuídas ao exemplo de entrada
    - Ordenadas por relevância
  - Muito utilizada em recuperação de informação
  - Taxa de erro pode ser medida pela comparação de rankings

### Técnicas de classificação

- Algumas técnicas de classificação:
  - k-vizinhos mais próximos
  - Regras de Decisão
  - Árvores de Decisão
  - Redes Neurais Artificiais
  - Support Vector Machines

#### k-vizinhos mais próximos

- Aprendizado baseado em instância
  - Classifica de acordo com distância aos vizinhos



Simples Armazenamento de dados (não há modelo explícito)

# k-vizinhos mais próximos (2)

Para cada novo exemplo
Definir a classe dos k exemplos mais
próximos
Classificar exemplo na classe
majoritária de seus vizinhos

# k-vizinhos mais próximos (3)

- Quantos vizinhos
  - K muito grande
    - Vizinhos podem ser muito diferentes
    - Predição tendenciosa para classe majoritária
    - Custo computacional mais elevado
  - K muito pequeno
    - Não usa informação suficiente
    - Previsão pode ser instável
- Distâncias podem ser ponderadas

# k-vizinhos mais próximos (4)

 Testar no Weka: KNN com diferentes valores de k e diferentes distâncias

### Regras de Decisão

Organiza informações em regras do tipo:

se X então Y senão Z

se temperatura > 37°C e pressão > 12.7 então Doente senão Saudável

Simples
Dificuldade em lidar com dados contínuos
Pouca robustez a dados de grande dimensão

#### Árvore de Decisão

Estrutura composta de nós e ramificações



Compreensibilidade do modelo Dificuldade em lidar com dados contínuos Pouca robustez a dados de grande dimensão

#### Redes Neurais Artificiais

Inspiradas na estrutura/funcionamento do cérebro



Capacidade de representar funções de formas variadas Ajuste de parâmetros Dificuldade de interpretação do modelo

#### **Support Vector Machines**



### Técnicas de Classificação

- Componentes algoritmos de classificação em AM:
  - Representação: viés (bias); super- e subajustamento (over- e under-fitting)
  - Critério de avaliação: taxa de acerto; desempenho computacional; compreensibilidade
  - Método de busca: busca de parâmetros; busca do modelo

Não há técnica universal

#### Combinação de Classificadores

- Binário → multiclasse (homogêneo):
  - AAA, OAA, ECOC
- Classificadores instáveis (homogêneo): Bagging, boosting
- Classificadores diferentes para obter recortes mais poderosos (heterogêneo)
  - Voto, média, outro classificador

# Combinação de Classificadores (2)

- Melhorar o desempenho
- Bagging
- Boosting



## Combinação de Classificadores (3)

- Bagging (Bootstrap Agregating):
  - Cada classificador é treinado com uma diferente amostra do conjunto de treinamento
  - Mesmo tamanho do conjunto original
  - Classe definida por votação
  - Filosofia: só existe um jeito de acertar; mas existem vários jeitos de errar
    - Na média, acerto é mais "votado" do que os vários erros

# Combinação de Classificadores (4)

- Bagging :
  - Indicado para classificadores instáveis
  - Pequena mudança nos dados de treinamento afeta muito a classificação
  - Testar:
    - weka.classifier.meta.bagging

### Combinação de Classificadores (5)

- Boosting
  - Conjunto de técnicas: ex.adaboost
  - Melhora desempenho de algoritmos fracos
    - Pouco melhores que classificação aleatória
  - Desempenho dos classificadores é influenciado pela escolha do conjunto de treinamento
    - Exemplos mais difíceis são escolhidos com maior probabilidade

# Combinação de Classificadores (6)

- Boosting
  - Instável
  - Pouco indicado para dados com ruídos e pequenos conjuntos de dados
  - weka.classifier.meta.adaboost

## Combinação de Classificadores (7)

- Heterogêneo
  - Classificadores de diferentes abordagens
  - Treinados com
    - Todo conjunto de dados
    - Parte do conjunto de dados
  - Avaliação
    - Voto: weka.classifier.meta.vote
    - Stacking: weka.classifier.meta.stacking
    - Outro classificador

#### Exercícios vistos em aula

- Rodar no Weka
- 1. Testar algoritmos de regressão para base Iris
- 2. Knn com diferentes valores de k e diferentes distâncias

### Exercícios vistos em aula (2)

- 3. Meta-classificador multi-classe para classificadores baseados em duas classes (weka.classifiers.meta.multiclassifier)
  - Testar: AAA, OAO, ECOC
- 4. Meta-classificadores baseados em votação (weka.classifiers.meta.vote)

#### Pontos chaves

- Tipos de classificação (binária, uma classe, multiclasse, multi-rótulo, hierárquica, etc)
- K-vizinhos mais próximos (KNN)
- Espaços: de instância, de hipóteses e de versões
- Matrizes de código e combinação de classificadores
- Dimensão VC

### Agradecimentos/referências

Notas de aula do Prof. André de Carvalho (USP)