Ré-identification sans coordination dans les types de données répliquées sans conflits

Matthieu Nicolas (matthieu.nicolas@loria.fr)
20 décembre 2022

Rapporteurs: Hanifa Boucheneb Professeure, Polytechnique Montréal

Davide Frey Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Examinateurs : Hala Skaf-Molli Professeure des Universités, Nantes Université, LS2N
Stephan Merz Directeur de Recherche, Inria Nancy - Grand Est

Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Encadrants ·

MUTE*, un exemple de Local-First Software (LFS)[1]

- · Application pair-à-pair
- · Permet de rédiger collaborativement des documents texte
- · Garantit la confidentialité & souveraineté des données
- *. Disponible à : https://mutehost.loria.fr
- [1]. KLEPPMANN et al., « Local-First Software : You Own Your Data, in Spite of the Cloud ».

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

· Noeuds peuvent être déconnectés

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

В

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)
- Doit garantir convergence à terme [1]...
- ...malgré ordres différents d'intégration des modifications

^{[1].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)
- Doit garantir convergence à terme [1]...
- ...malgré ordres différents d'intégration des modifications

Nécessite des mécanismes de résolution de conflits

[1]. TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System »

Taille du texte comparée à taille de la séquence répliquée

Taille du texte comparée à taille de la séquence répliquée

Constat

- · 1% contenu...
- · ...99% métadonnées

Taille du texte comparée à taille de la séquence répliquée

Constat

- · 1% contenu...
- · ...99% métadonnées

Et ça augmente!

Taille du texte comparée à taille de la séquence répliquée

Constat

- 1% contenu...
- · ...99% métadonnées

Et ça augmente!

Impact

- · Surcoût mémoire...
- ...mais aussi surcoût en calculs et en bande-passante

Comment peut-on réduire le surcoût des

mécanismes de résolution de conflits dans les

applications pair-à-pair?

Plan de la présentation

Plan

• L'origine de la croissance du surcoût des mécanismes de résolution de conflits pour le type Séquence

Plan de la présentation

Plan

- L'origine de la croissance du surcoût des mécanismes de résolution de conflits pour le type Séquence
- Contribution : Un mécanisme pair-à-pair de réduction du surcoût des mécanismes de résolution de conflits

Plan de la présentation

Plan

- L'origine de la croissance du surcoût des mécanismes de résolution de conflits pour le type Séquence
- Contribution : Un mécanisme pair-à-pair de réduction du surcoût des mécanismes de résolution de conflits
- · Conclusion générale & perspectives

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

Convergence forte

Ensemble des noeuds ayant intégrés le même ensemble de modifications obtient des états équivalents, sans nécessiter d'actions ou messages supplémentaires

^{[2].} Shapiro et al., « Conflict-Free Replicated Data Types ».

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

Changements des indices est source de conflits

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

CRDTs pour Séquence

	В	N	J	0		В	Α	N	J	0
	0	1	2	3		0	1	2	3	4
•	_				ins(1,A)	-				• ····

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

· Appartiennent à un espace dense

^{[3].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

· Appartiennent à un espace dense

$$id_0 <_{id} id_{0.5} <_{id} id_1$$

^{[3].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[4].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

· Appartiennent à un espace dense

$$id_0 <_{id} id_{0.5} <_{id} id_1$$

Utilise LogootSplit^[4] comme base

- [3]. PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».
- [4]. ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Identifiant LogootSplit

Identifiant

· Composé d'un ou plusieurs tuples de la forme

pos^{nodeld nodeSeq}

Identifiant

Identifiant

Identifiant

Identifiant

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1}$$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id}$$
 ? $<_{id} i_1^{B1}$

8

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id} i_0^{B1} f_0^{A1} <_{id} i_1^{B1}$$

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

9

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

 Note l'intervalle d'identifiants d'un bloc : pos^{nodeld nodeSeq} begin..end

9

A ------

B•

i^{B1}_{0..1}

Limites de LogootSplit

Sources de la croissance des métadonnées

- · Augmentation non-bornée de la taille des identifiants
- · Fragmentation de la séquence en un nombre croissant de blocs

Diminution des performances du point de vue mémoire, calculs et bande-passante

Figure 1 – Taille du contenu comparée à la taille de la séquence LogootSplit

Solution naïve

· Convertir l'état inefficient...

Solution naïve

- · Convertir l'état inefficient...
- · ...à l'aide d'une nouvelle opération ...

Solution naïve

- · Convertir l'état inefficient...
- · ...à l'aide d'une nouvelle opération ...
- ...en un état optimisé (identifiants de taille minimale, moins de blocs)

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5], pour Treedoc

- · Ré-assigne des identifiants plus courts aux éléments
- · Transforme les opérations insert et remove concurrentes...

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5], pour Treedoc

- · Ré-assigne des identifiants plus courts aux éléments
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supporte pas opérations rename concurrentes
- Repose sur un algorithme de consensus pour décider du renommage

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5], pour Treedoc

- · Ré-assigne des identifiants plus courts aux éléments
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supporte pas opérations rename concurrentes
- Repose sur un algorithme de consensus pour décider du renommage

Inadaptée aux applications pair-à-pair

^{[5].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

• . •

Proposition

Mécanisme de renommage supportant les

renommages concurrents

RenamableLogootSplit

Adaptation du mécanisme de renommage pour LogootSplit

Adaptation du mécanisme de renommage pour LogootSplit

- · Opération rename permettant de minimiser le surcoût de l'état
- · Mécanisme de détection des opérations concurrentes
- Algorithme pour intégrer l'effet d'une opération rename dans une opération insert ou remove concurrente

Adaptation du mécanisme de renommage pour LogootSplit

- · Opération rename permettant de minimiser le surcoût de l'état
- · Mécanisme de détection des opérations concurrentes
- Algorithme pour intégrer l'effet d'une opération rename dans une opération insert ou remove concurrente

Conception d'un mécanisme de résolution de conflits pour opérations *rename* concurrentes

Adaptation du mécanisme de renommage pour LogootSplit

- · Opération rename permettant de minimiser le surcoût de l'état
- · Mécanisme de détection des opérations concurrentes
- Algorithme pour intégrer l'effet d'une opération rename dans une opération insert ou remove concurrente

Conception d'un mécanisme de résolution de conflits pour opérations *rename* concurrentes

- Mécanisme pour désigner une époque comme l'époque cible, sans coordination
- · Algorithme pour annuler l'effet d'une opération rename

Adaptation du mécanisme de renommage pour LogootSplit

- · Opération rename permettant de minimiser le surcoût de l'état
- · Mécanisme de détection des opérations concurrentes
- Algorithme pour intégrer l'effet d'une opération rename dans une opération insert ou remove concurrente

Conception d'un mécanisme de résolution de conflits pour opérations *rename* concurrentes

- Mécanisme pour désigner une époque comme l'époque cible, sans coordination
- · Algorithme pour annuler l'effet d'une opération rename

Conception d'un mécanisme de suppression des époques obsolètes

Conclusion générale &

Perspectives

Conclusion

Contributions

- Conception d'un mécanisme de renommage pour CRDTs pour le type Séquence à identifiants densément ordonnés
 - Implémentation et instrumentation de RenamableLogootSplit et de ses dépendances (protocole d'appartenance au réseau, couche de livraison)

Conclusion

Contributions

- Conception d'un mécanisme de renommage pour CRDTs pour le type Séquence à identifiants densément ordonnés
 - Implémentation et instrumentation de RenamableLogootSplit et de ses dépendances (protocole d'appartenance au réseau, couche de livraison)
- Comparaison des différents modèles de synchronisation pour CRDTs...
- · ...et des différentes approches pour CRDTs pour le type Séquence

Limites de RenamableLogootSplit

· Surcoût de l'opération rename

Limites de RenamableLogootSplit

· Surcoût de l'opération rename

Limites de RenamableLogootSplit

· Surcoût de l'opération rename

- Évaluations montrent que le temps d'intégration de l'opération rename peut atteindre 2s
- · A privilégié la correction...
- ...doit améliorer les performances (algorithme et implémentation)

Limites de RenamableLogootSplit

· Surcoût de l'opération rename

- Évaluations montrent que le temps d'intégration de l'opération rename peut atteindre 2s
- · A privilégié la correction...
- ...doit améliorer les performances (algorithme et implémentation)

· Stabilité causale requise pour supprimer les métadonnées

Perspectives

Perspectives autour de RenamableLogootSplit

- Comment définir des relations $priority <_{\varepsilon}$ qui minimisent les renommages vains?
- Peut-on prouver formellement la correction RenamableLogootSplit?

Perspectives

Perspectives autour de RenamableLogootSplit

- Comment définir des relations $priority <_{\varepsilon}$ qui minimisent les renommages vains?
- Peut-on prouver formellement la correction RenamableLogootSplit?

Perspectives autour des CRDTs

- Doit-on encore concevoir CRDTs synchronisés par états ou opérations?
- Peut-on proposer un framework pour conception de CRDTs synchronisés par opérations?

Merci de votre attention, avez-vous des questions?

