

NextGen Infrastructure for Big Data

Anil Vasudeva, President & Chief Analyst, IMEX Research

Author: Anil Vasudeva, IMEX Research

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA and author unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

 NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

Abstract

♦ NextGen Infrastructure for Big Data

This session will appeal to Business Planning, Marketing, Technology System Integrators and Data Center Managers seeking to understand the drivers behind the demand for and rise of Big Data.

Abstract

- The internet has spawned an explosion in data growth in the form of data sets, called Big Data, that are so large they are difficult to store, manage and analyze using traditional RDBMS which are tuned for Online Transaction Processing (OLTP) only. Not only is this new data heavily unstructured, voluminous and streams rapidly and difficult to harness but even more importantly, the infrastructure cost of HW and SW required to crunch it using traditional RDBMS, to derive any analytics or business intelligence online (OLAP) from it, is prohibitive.
- To capitalize on the Big Data trend, a new breed of Big Data technologies (such as Hadoop and others) many companies have emerged which are leveraging new parallelized processing, commodity hardware, open source software and tools to capture and analyze these new data sets and provide a price/performance that is 10 times better than existing Database/Data Warehousing/Business Intelligence Systems.

Learning Objectives

- The presentation will illustrate the existing operational challenges businesses face today using RDBMS systems despite using fast access in-memory and solid state storage technologies. It details how IT is harnessing the emergent Big Data to manage massive amounts of data and new techniques such as parallelization and virtualization to solve complex problems in order to empower businesses with knowledgeable decision-making.
- It lays out the rapidly evolving big data technology ecosystem different big data technologies from Hadoop, Distributed File Systems, emerging NoSQL derivatives for implementation in private and hybrid cloud-based environments, Storage Infrastructure Requirements to Store, Access, Secure, Prepare for analytics and visualization of data while manipulating it rapidly to derive business intelligence online, to run businesses smartly.

Big Data in IT Industry Roadmap

IT Industry Roadmap

Analytics – BI

Predictive Analytics - Unstructured Data

From Dashboards Visualization to Prediction Engines using Big Data.

Cloudization

On-Premises > Private Clouds > Public Clouds

DC to Cloud-Aware Infrast. & Apps. Cascade migration to SPs/Public Clouds.

Automation

Automatically Maintains Application SLAs

(Self-Configuration, Self-Healing MEX, Self-Acctg. Charges etc.)

Virtualization

Pools Resources. Provisions, Optimizes, Monitors

Shuffles Resources to optimize Delivery of various Business Services

Integration/Consolidation

Integrate Physical Infrast./Blades to meet CAPSIMS ***

Cost, Availability, Performance, Scalability, Inter-operability, Manageability & Security

Standardization

Standard IT Infrastructure- Volume Economics HW/Syst SW

(Servers, Storage, Networking Devices, System Software (OS, MW & Data Mgmt. SW)

NextGen IT Infrastructure

Request for data from a remote client to a Data Center or Cloud crosses a myriad of systems and devices. Key is identifying bottlenecks & improving performance

Harnessing Big Data for Business Insights

Information is at the center of New Wave of opportunity

Majority of data growth is being driven by unstructured data and billions of large objects

80% of world's data is unstructured driven by rise in Mobility devices, collaboration machine generated data.

Corporate Need: Business Perf... Optimization

Unstructured Big Data can provide Next Gen Analytics to help businesses make informed, better decision in:

- Product Strategy
- Targeting Sales
- Just-In-Time Supply-Chain Economics
- Business Performance Optimization
- Predictive Analytics & Recommendations
- Country Resources Management

Corporate Need: Real Time Analytics

Source: IBM

OLTP

Corporate Need: Business Insights

Item	Issue	Solution	
Store	Information Exploding Volume: Digital Content doubling every 18 months. Velocity: >80% growth driven from unstructured data. Variety: sources of data changing	A unified information/content storage methodology that enables users to manage the volume, velocity and variety of information from multiple sources	
Manage	Complexity in "managing" information Need to classify, synchronize, aggregate, integrate, share, transform, profile, move, cleanse, protect, retire	A solution portfolio of tools and services to manage all types of information in a hybrid storage environment	
Analyze	Current solutions limited to BI tools focused on structured and lagging information	Build/buy packaged Real-Time Predictive Analytical Solutions for unstructured analytics tools	
Collaborate	Multiple access methods needed to meet needs of a diverse audience.	Centralized share, collaborate and act on insights anytime, anywhere on any device.	
Model/ Adapt	Ability to understand how the information impacts the business. How to transfer to action.	Model Information on current operations w/potential strategy impact. Leverage Tech. to adapt.	

Opportunity: Converting Big Data Deluge into Predictive Analytics & Insights

Big Data Predictive Analytics

Personal Location Services Data Generated by	TB/Year
Navigation Devices	600
Navigation Apps on Phones	20
Smart Phone Opt-In Tracking	1000
Geo Targeted Ads	20
People Locator (Emergency Calls/Search)	10
Location based Services (e.g.Games)	5
Other	45
Total (Est.)	1700

Issues with Existing RDBMS

Key Issues with RDBMS Technologies

Handling Mixed Unstructured Data

RDBMs don't handle non-tabular data
 (Notorious for doing a poor job on recursive data structure)

Legacy Archaic Architecture

RDBMS don't parallelize well to accommodate commodity HW clusters

Speed

- Seek time of physical Storage has not kept pace with network speed improvements

Scale

 Difficult to scale-out RDBMS efficiently – Clustering beyond few servers notoriously hard

Integration

- Data processing tasks need to combine data from nonrelated sources, over a network

Volume

- Data volumes have grown from 10s GB >100s TB > PBs in recent years. Existing Tabular RDBMS can't handle such large DBs

Issues with Existing RDBMS

Present RDBMS struggling to Store & Analyze Big Data

Big Data - Database Solutions

Big Data – The New Face of DBs

Big Data Paradigm - The New face of DB Systems

- Adopts Schema-Free Architecture
- Can do away with Legacy Relational DB Systems
 Some data have sparse attributes, do not need relational property
- Key Oriented Queries
 Some data stored/retrieved mainly by primary key, w/o complex joins
- Trade-off of Consistency, Availability & Partition Tolerance
- Scale Out, not up, Online Load balancing cluster growth

Analytics – The Next Frontier in IT

Key Innovations: HW Technologies

Storage - IOPS/GB & Price Erosion - HDD vs. SSDs

Note: 2U storage rack, • 2.5" HDD max cap = 400GB / 24 HDDs, de-stroked to 20%, • 2.5" SSD max cap = 800GB / 36 SSDs

Key to Database performance are random IOPS. SSDs outshine HDD in IO price/performance – a major reason, besides better space and power, for their explosive growth.

Innovations – DB SW Technologies SNIA

Tech Innovation	1985	1990	1995	2000	2005	2010	2015
OLTP Transactions DB SW	Rows Locking	Optimizer	Parallel Query	Clustering	XML	Grid	Open Source / Hadoop
OLAP- Analytics DB SW	Indexing	Partitioning	Columnar	Materialized View	Bit Mapped Index	In-Memory	Query Binding
Hardware	32 bit	SMP	NUMA	64 bit	Multi-core/ Blades	Flash	MPP
Big Data					Multi-core	Columnar In-Memory	MPP Visualization

OLTP Database Innovation Progress

Big Data: Analytics DB Technology Impact

Big Data - Key Requirements

Big Data – Architectural Goals

Meet Requirements of V3

Optimize capital investments based on 6 Petabytes of information

Analyze 100k records/ second to address customer satisfaction in real time

Analyze telemetry, fuel consumption, schedule and weather patterns to optimize shipping logistics.

Big Data Platform

Meet Enterprise Criterion

High availability architecture to support hardware or application failure.

Failure Tolerance

Runs on scalable hardware with the ability to dynamically add additional nodes.

Scale Economically

Security protection for granular data access control.

Security & Privacy

Text

Statistics

Image & Video 🥻

Geospatial

Acoustic

Mathematical

Financial

Times Series

Predictive

Analyze Data in Native Format

Big Data - Market Requirements

Unified system: Pre-integrated for Ease of Installation and Management

- Platform Large Scale Indexing Pre-integrated using Hadoop Foundation,
- Integrated Text Analytics Address Unstructured Data
- Usability User Friendly Admin Console including HDFS Explorer, Query Languages
- Enterprise Class Features Provisioning, Storage, Scheduler, Advance Security
- Supports search-centric, document-based XML data model
 - store documents within a transactional repository.
- Schema-Free
 - No advance knowledge of the document structure (its "schema") needed
 - Index words and values from each of the loaded documents together with its document structure.
- Standard commodity hardware leveraged

Big Data – Market Requirements

Architectural

- Shared-nothing clustered DB architecture
 - programmable and extensible application servers.
- Support massive scalability to petabytes of source data
- Support open-source XQuery- and XSLT-driven architecture
- Simple to Deploy, Develop and Manage (UI & Restful Interface)
- Support extreme mixed workloads a wide variety of data types including arbitrarily hierarchical data structures, images, waveforms, data logs etc.
- Support thousands of geographically dispersed on--line users and programs executing variety of requests from ad hoc queries to strategic analysis
- Loading data before declaring or discovering its structure
- Load data in batch and streaming fashion
- Integrate data from multiple sources during load process at very high rates
 Spread I/O and data across instances
- Provide consistent performance with linear cost
- Leverage Open Source SW Lo Costs, Multiple Sources, Hadoop Foundation Tools
- Connectivity with Oracle DB, Teradata Warehouse, JDBC Connectivity,

Big Data - Market Requirements

Real Time Analytics Execution

- Execute "streaming" analytic queries in real time on incoming load data
- Updating data in place at full load speeds
- Scheduling and execution of complex multi-hundred node workflows
- Join a billion row dimension table to a trillion row fact table without preclustering the dimension table with the fact table

Performance

- Analyze data, at very high rates >GB/sec
- Predictable Sub-ms response time for highly constrained standard SQL queries

Availability

- Ability to configure without any single point of failure
- Auto-Failover Extreme High Availability
 - Automated failover and process continuation without operational interruption when processing nodes fail

Big Data – Product Metrics Choices

	Data Set Size	PB
		ТВ
		GB
	Data Structure	Transaction
		Machine
		Unstructured
		Other
	Access/Use	Transaction
Rig Data		Search
Big Data		Analytics
-	Parallel Processing	Appliance
Product		Cluster < 1K
Metrics		Cluster > 1K
	Memory	In-Memory
		Flash
	DB Technique	Columnar
		Zero Sharing
		No SQL
	Data Cataloging SW	Text
		Image
		Audio
		Video

Advantage: Big Data Products

Characteristic	Legacy Paradigm	Big Data Paradigm
Structure	Transactional/Corporate	Unstructured/Derivative/Internet
Mode	Data Collection	Data Analysis
Focus	•Find Answers	•Find Questions
Facility	•Reportive / What Happened?	Analytic / Why did it Happen? Predictive / What will Happen Next?
Opportunity	Very Small Growth	Massive Growth
Players	Legacy Players	
Impact	Analyze Existing Businesses	Create New Businesses

Advantage: Big Data Products

Characteristic	Traditional RDBMS	Big Data/MapReduce
Data Size	•GB	•PB
Access	•Interactive	Batch/Near Real-Time
Latency	•Low	•High
Data Updates	Read & Write Many Times	Write Once Read Many Times
Schema/Structure	Static Schema	Dynamic Schema
Language	•SQL	•UQL/Procedural (Java,C++)
Integrity	∙High	•Not 100%
Works Well for	◆Process Intensive Jobs	Data Intensive Jobs
Works Well w Data Size	•Gigabytes	•Petabytes
Data/Processing Interactions	Low Latency/High BW – precursor to success. Ntwk. BW can be a bottleneck causing nodes to be idle	Sends Code to Data, instead of Sending Data to other Nodes (Requiring Lower BW in Cluster)
Fault Tolerance	•Coordinating Processes with Node Failures – a challenge	
Access	•Interactive	Batch/Near Real-time
Scaling	Non-linear	•Linear
Pgm-Distribution of Jobs	•Difficult	Simple & Effective

Big Data Ecosystem

Generation

Operational IT

Analytics

Usage

Data Class Types Store Access

Prepare

Analyze

Visualize

Analyze Business

Data Types

- Structured (Relational)
- Unstructured (Adhoc)

Data Class

- Human
- Machine

Data Velocity

- Batch
- Streaming

Data Mgmt & Storage

- Store
- Secure
- Access
- Network

Engines

- Hadoop/MapReduce
- **Apache Tools**
- Cloudera/IBM/EMC ...
- Visualization ...

Prepare Data For

Analytics

- ETIL / Data Integration
- Workflow Scheduler
- System Tools

Data Analytics

- Algorithmics
- Automation
- In Real Time

Business Analytics

- Visualization
- Interoperate with SQL- RDBMS
- BI/EDW

Business <u>Analysis</u>

- Decision Support Just In Time
- **Business Model**

Business Use

- Market Penetration **Enhancements**
- Cash Flow/ROI

Big Data Stack

Merging Hadoop innovations into Nextgen DBMS

Hadoop's Fit in Enterprise Stack

Big Data - Hadoop Architecture

Management (HMS)

Coordination (Zookeeper) Data Flow (Pig)

SQL (Hive)

Programming Languages

Distributed Computing Framework (MapReduce)

Computations

Metadata (HCatalog)

Column-Stg (HBase) Tabular Storage

Hadoop **Distributed File System** (HDFS)

Object **Storage**

Big Data Connectors to EDW/BI

BI Framework - Interoperable with Enterprise Data Warehousing

Big Data Infrastructure – Map Reduce

Map Reduce

- A Distributed Computing Model
- Typical Pipeline: Input>Map>Shuffle/Sort>Reduce>Output
- Easy to Use, Developer writes few functions, Moves compute to Data
- Schedules work on HDFS node with data
- Scans through data, reducing seeks
- Automatic Reliability and re-execution on failure

Big Data Infrastructure – HDFS

HDFS Architecture

Actively Maintaining High Availability

HDFS

- Immutable File System Read, Write, Sync/Flush No random writes
- Storage Server used for Computation Move Computation to Data
- Fault Tolerant & Easy Management Built In Redundancy, Tolerates Disk & Node Failure, Auto-Managing addition/removal of nodes, One operator/8K nodes
- Not a SAN but high bandwidth network access to data via Ethernet
- Used typically to Solve problems not feasible with traditional systems: Large Storage Capacity >100PB raw,
 Large IO/computational BW >4K node/cluster, scale by adding commodity HW, Cost ~\$1.5/GB incl. MR cluster

Hadoop Distributed File System

HDFS Architecture

HDFS Characteristics

- Based on Google GFS (Google File System)
- Redundant Storage for massive amounts of data
- Data is distributed across all nodes at load time – efficient MapReduce processing
- Runs on commodity hardware assumes high failure rate for components
- Works well with lots of large files
- Built around Write once Read many times"
- Large Streaming Reads Not random access
- High Throughtput more important than low latency

Hadoop Architecture - Overview

Hadoop Data Processing Architecture

Key Technologies Required for Big Data

Key Technologies Required for Big Data

- Cloud Infrastructure
- Virtualization
- Networking
- Storage
 - In-Memory Data Base (Solid State Memory)
 - Tiered Storage Software (Performance Enhancement)
 - Deduplication (Cost Reduction)
 - Data Protection (Back Up, Archive & Recovery)

Cloud Infrastructure for Big Data

Service Yeroviders

Cloud Services Providers

Public – Mutitenancy,OnDemand Private - On Premises, Enterprise Hybrid – Interoperable P2P **Examples**

<u>Public</u> - BT, Telstra, T-Systems France Telecom Private –

Hybrid – IBM/Cloudburst,

SaaS

Software-as-a-Service

- Servers, Network, Storage
- Management, Reporting

Examples

eMail - Yahoo!,Google...

Collaboration - Facebook, Twitter ...

Bus.Apps - SalesForce, GoogleApps, Intuit...

PaaS

laaS

Platform Tools & Services

- Deploy developed platforms ready for Application SW on Cloud Aware Infrastructure **Examples**

Amazon EC2

Force.com Navitaire

Infrastructure HW & Services

- Servers, Network, Storage
- Management, Reporting

Examples Amazon S3 Nirvanix

NextGen Infrastru

37

Cloud Infrastructure for Big Data

Application's SLA dictates the Resources Required to meet specific requirements of Availability, Performance, Cost, Security, Manageability etc.

Private Cloud Requirements for Big Data

Service Catalog

- Choose pre-defined IT Services/user/dept.
- Define SLA to efficiently meet services

Self-Service

- Access Resources on demand to speed deployment and delivery
 - Scale Resource Up/down
 - to optimize their usage,
 - Release when not needed

Private Cloud Storage

Service Analytics

- Monitor & Analyze Usage for Charge back
- Interactively auto-tune performance
 Availability with SLA requirements

Automation

- Automated Provisioning
- Moving Data & Processes Seamlessly
- Allocation, Self Tuning of Resources to meet Workload Requirements

NextGen Infrastructure for Big Data

Virtualization: Workloads Consolidation

- A <u>single server 1.5x larger</u> than standard 2-way server <u>will handle</u> <u>consolidated load of 6 servers</u>.
- VZ manages the workloads + <u>important apps get the compute</u> <u>resources</u> they need automatically w/o operator intervention.
- Physical <u>consolidation of 15-20:1</u> is easily possible
- Reasonable goal for VZ x86
 servers 40-50% utilization on large systems (>4way), rising as dual/quad core processors becomes available
- <u>Savings</u> result in <u>Real Estate</u>,
 <u>Power & Cooling</u>, <u>High Availability</u>,
 <u>Hardware</u>, <u>Management</u>

Source: Dan Olds & IMEX Research 2009

Virtualization: TCO Savings

Storage Infrastructure for Big Data

Storage Efficiency

Virtualization

Mapping P > V, VM Management

Performance

In-Memory DB, Auto-Tiering-SSD/HDD

Costs Reduction

- Thin Provisioning
- Deduplication

Availability

RAID/Auto recover HA, Snapshots, CDP, Cloning, DRS

Security

Encryption/DLP

Service Efficiency

Storage -as-a Service

- Service Catalogs by Workloads etc.
- Policy Infrastructure
 - Service Level Attributes
 - Service Measurements
- Performance Analytics
 - IOPS/Response Time, Bandwidth
- Automation
 - Unified SAN/NAS Protocols
 - Auto learning Workload Forensics
 - Provisioning to Match Workloads
 - Assured Auto recovery

Storage Architecture - Impact from VZ

Data Protection

Back Up/Archive/DR

RAID - 0,1,5,6,10

Virtual Tape

Replication

Storage Efficiency

Virtualization

Thin Provisioning

Deduplication

Auto Tiering

MAID

Virtualization (VZ) requires Shared Storage for

- VMotion
- Storage VMotion
- HA/DRS
- Fault Tolerance

Additional Capacity Consumed for

- VZ snapshots,
- VM Kernel etc.

Source: IMEX Research SSD Industry Report ©2011

Storage – Issues & Solutions

Technologies Reducing Storage Costs

- Replicates only the deduplicated blocks
- Only unique data is replicated to the DR site

Storage Architecture Impacting Big Data

Data Protection

Back Up/Archive/DR

RAID - 0,1,5,6,10

Virtual Tape

Replication

Source: IMEX Research SSD Industry Report ©2011

Data Storage: Hierarchical Usage

I/O Access Frequency vs. Percent of Corporate Data

SSD Storage: Filling Price/Perf.Gaps

Source: IMEX Research SSD Industry Report ©2010-12

Performance
I/O Access Latency

SSD Storage - Performance & TCO

Source: IMEX Research SSD Industry Report ©2011

Workloads Characterization

Source:: IMEX Research - Cloud Infrastructure Report ©2009-12NextGen Infrastructure for Big Data

Source: © IMEX Research – Big Data Industry Report ©2011-12 © 2012 Storage Networking Industry Association. All Rights Reserved.

Workloads Characterization

Storage performance, management and costs are big issues in running Databases

Data Warehousing Workloads are I/O intensive

- Predominantly read based with low hit ratios on buffer pools
- High concurrent sequential and random read levels
 - ✓ Sequential Reads requires high level of I/O Bandwidth (MB/sec)
 - ✓ Random Reads require high IOPS)
- Write rates driven by life cycle management and sort operations

OLTP Workloads are strongly random I/O intensive

- Random I/O is more dominant
 - ✓ Read/write ratios of 80/20 are most common but can be 50/50
 - Can be difficult to build out test systems with sufficient I/O characteristics

Batch Workloads are more write intensive

- Sequential Writes requires high level of I/O Bandwidth (MB/sec)
- Backup & Recovery times are critical for these workloads
 - Backup operations drive high level of sequential IO
 - Recovery operation drives high levels of random I/O

Best Practices – Storage in Big Data Apps

Goals & Implementation

- Establish Goals for SLAs (Performance/Cost/Availability), BC/DR (RPO/RTO) & Compliance
- Increase Performance for DB, OLTP and OLAP Apps:
 - \rightarrow Random I/O > 20x , Sequential I/O Bandwidth > 5x
 - > Remove Stale data from Production Resources to improve performance
- Use Partitioning Software to Classify Data
 - > By Frequency of Access (Recent Usage) and
 - > Capacity (by percent of total Data) using general guidelines as:
 - > Hyperactive (1%), Active (5%), Less Active (20%), Historical (74%)

Implementation

- Optimize Tiering by Classifying Hot & Cold Data
 - > Improve Query Performance by reducing number of I/Os
 - > Reduce number of Disks Needed by 25-50% using advance compression software achieving 2-4x compression
- Match Data Classification vs. Tiered Devices accordingly
 - > Flash, High Perf Disk, Low Cost Capacity Disk, Online Lowest Cost Archival Disk/Tape
- Balance Cost vs. Performance of Flash
 - > More Data in Flash > Higher Cache Hit Ratio > Improved Data Performance
- Create and Auto-Manage Tiering (Monitoring, Migrations, Placements) without manual intervention

Best Practices: I/O Forensics in Storage-Tiering SNIA

LBA Monitoring and Tiered Placement

- Every workload has unique I/O access signature
- Historical performance data for a LUN can identify performance skews & hot data regions by LBAs

52

Best Practices: Cached Storage

Application	Improvement over Cached vs.HDD only
Oracle OLTP Benchmarks	681%
SQL Server OLTP Benchmark	1251%
Neoload (Web Server Simulation	533%
SysBench (MySQL OLTP Server)	150%

Response Time

TPS

NextGen Infrastructure for Big Data

Big Data Targets: Analytics

Key Industries Benefitting from Big Data Analytics

Global IT Spending by Industry Verticals 2010-15 \$B

5 Year Cum Global IT Spending 2010-15 (\$B)

CAGR % (2010-15)

Big Data Targets – Storage Infrastructure SNIA

Value Potential of Using Big Data by Data Intensive Verticals

Big Data Targets: Storage Infrastructure

Data Stored by Large US Enterprises

Big Data Storage Potential

Data Stored by Large US Enterprises

Big Data Targets: Savings w Open Source

Legacy BI vs. Open Source Big Data Analytics

Rise of Big Data Adoption

Key Takeaways

Big Data creating paradigm shift in IT Industry

- Leverage the opportunity to optimize your computing infrastructure with Big Data Infrastructure after making a due diligence in selection of vendors/products, industry testing and interoperability.
- Apply best storage technologies listed in this presentation and elsewhere
- Optimize Big Data Analytics for Query Response Time vs. # of Users
 - Improving Query Response time for a given number of users (IOPs) or Serving more users (IOPS) for a given query response time
- Select Automated Storage Management Software
 - Data Forensics and Tiered Placement
 - Every workload has unique I/O access signature
 - Historical performance data for a LUN can identify performance skews & hot data regions by LBAs. Non-disruptively migrate hot data using auto-tiering Software
- Optimize Infrastructure to meet needs of Applications/SLA
 - · Performance Economics/Benefits
 - Typically 4-8% of data becomes a candidate and when migrated for higher performance tiering can provide response time reduction of ~65% at peak loads. Many industry Verticals and Applications will benefit using Big Data

Q&A / Feedback

Many thanks to the following individuals for their contributions to this tutorial.

Source: IMEX Research

Joseph White Anil Vasudeva

Send any questions or comments on this presentation to SNIA: tracktutorials@snia.org