Лекція 2.1.

Тема 2. Елементи теорії границь

План

- 1. Верхня і нижня межа множини. Числові послідовності.
- 2. Границя послідовності.
- 3. Нескінченно малі та нескінченно великі послідовності. Властивості нескінченно малих та нескінченно великих послідовностей.

Верхня і нижня межа множини. Числові послідовності

Означення. Якщо кожному натуральному числу n поставлено у відповідність число x_n , то говорять, що задано послідовність

$$x_1, x_2, ..., x_n = \{x_n\}.$$

Загальний елемент послідовності є функцією від n.

$$x_n = f(n)$$
.

Таким чином послідовність може розглядатися як функція.

Для послідовностей можна визначити наступні операції:

- 1) Множення послідовності на число $m: m\{x_n\} = \{mx_n\}, m.e. mx_1, mx_2, ...$
- 2) Додавання (віднімання) послідовностей: $\{x_n\} \pm \{y_n\} = \{x_n \pm y_n\}$.
- 3) Добуток послідовностей: $\{x_n\} \cdot \{y_n\} = \{x_n \cdot y_n\}$.
- 4) Частка послідовностей: $\frac{\{x_n\}}{\{y_n\}} = \left\{\frac{x_n}{y_n}\right\}$ при $\{y_n\} \neq 0$.

Означення. Послідовність $\{x_n\}$ називається **обмеженою**, якщо існує таке число M>0, що для будь-якого n справедлива нерівність:

$$|x_n| < M$$
.

тобто усі члени послідовності належать проміжку (-M; M).

Означення. Послідовність $\{x_n\}$ називається обмеженою зверху, якщо для будь-якого n існує таке число M, що

$$x_n \leq M$$
.

Означення. Послідовність $\{x_n\}$ називається обмеженою знизу, якщо для будь-якого n існує таке число M, що

$$x_n \ge M$$
.

Границя послідовності

Означення. Число **a** називається **границею** послідовності $\{x_n\}$, якщо для будь-якого додатного $\varepsilon > 0$ існує такий номер N, що для всіх n > N виконується умова:

$$|a-x_n|<\varepsilon.$$

Це записується: $\lim x_n = a$.

У цьому випадку говорять, що послідовність $\{x_n\}$ збігається до a при $n \to \infty$.

Якщо відкинути будь-яке число членів послідовності, то отримуються нові послідовності, при цьому якщо збігається одна з них, то збігається і інша.

<u>Теорема.</u> Послідовність не може мати більш, ніж одну границю.

Теорема. Якщо $x_n \to a$, то $|x_n| \to |a|$.

Теорема. Якщо $x_n \to a$, то послідовність $\{x_n\}$ обмежена.

Означення. 1) Якщо $x_{n+1} > x_n$ для всіх n, то послідовність зростаюча.

- 2) Якщо $x_{n+1} \ge x_n$ для всіх n, то послідовність неспадна.
- 3) Якщо $x_{n+1} < x_n$ для всіх n, то послідовність спадна.
- 4) Якщо $x_{n+1} \le x_n$ для всіх n, то послідовність незростаюча

Всі ці послідовності називаються монотоними. Зростаючі і спадні послідовності називаються строго монотоними.

Теорема. Монотонна обмежена послідовність має границю.

Означення. Число A називається границею числової послідовності $\{x_n\}$, якщо для будь-якого як завгодно малого числа $\varepsilon > 0$, знайдеться натуральний номер N такий, що для усіх чисел $n \ge N$ виконуватиметься нерівність

$$|x_n-A|<\varepsilon$$
.

Нескінченно малі та нескінченно великі послідовності. Властивості нескінченно малих та нескінченно великих послідовностей

Послідовність a_n називається нескінченно малою, тоді, коли її границя дорівнює нулеві.

 a_n — нескінченно мала $\Leftrightarrow \lim_{n\to\infty} a_n = 0$, тобто для будь-якого $\varepsilon > 0$ існує N,

таке що для будь-якого n>N виконується нерівність

 $|a_n| < \varepsilon$.

<u>Теорема.</u> Сума нескінченно малих величин ϵ нескінченно мала мала величина.

 α_n, β_n — нескінченно малі величини $\Rightarrow \alpha_n + \beta_n$ — нескінченно мала величина.

<u>Teopema.</u> Добуток нескінченно малих величини ϵ нескінченно мала величина. Произведение бесконечно малого есть бесконечно малое.

 α_n, β_n — нескінченно малі величини $\Rightarrow \alpha_n \beta_n$ — нескінченно мала величина.

Теорема. Добуток обмеженої послідовності на нескінченно малу послідовність ϵ нескінченно мала послідовність.

 a_n – обмежена послідовність;

 α_n — нескінченно мала послідовність $\Rightarrow a_n\alpha_n$ — нескінченно мала послідовність.

$$\lim_{n\to\infty} a_n = a \Leftrightarrow a_n = a + \alpha_n$$

Послідовність a_n має скінченну границю a тоді і тільки тоді, коли вона представлена у вигляді $a_n = a + \alpha_n$,

де α_n – нескінченно мала величина.

Теореми про границі числових послідовностей

1) Теорема про границю суми:

Нехай
$$\lim_{n\to +\infty} a_n = a$$
 і $\lim_{n\to +\infty} b_n = b \Longrightarrow \lim_{n\to +\infty} (a_n + \beta_n) = a + b$.

2) Теорема про добуток границь:

Нехай
$$\lim_{n\to +\infty} a_n = a$$
 і $\lim_{n\to +\infty} b_n = b \Rightarrow \lim_{n\to +\infty} a_n b_n = ab$.

3) Теорема про границю частки:

Нехай
$$\lim_{n\to +\infty} a_n=a$$
 і $\lim_{n\to +\infty} b_n=b$, $b\neq 0$ $\lim_{n\to +\infty} a_n/b_n=a/b$.

Нескінченно великі послідовності

Означення.

1) $\lim_{n\to\infty} a_n = +\infty$, якщо $\forall \varepsilon > 0 \exists N : \forall n > N \Rightarrow a_n > \varepsilon$, де ε – як завгодно мале

число.

- 2) $\lim_{n\to+\infty} a_n = -\infty$, якщо $\forall \varepsilon > 0 \exists N : \forall n > N \Rightarrow a_n < -\varepsilon$.
- 3) $\lim_{n\to +\infty} a_n = \infty \Leftrightarrow \forall \varepsilon > 0 \exists N: \forall n > N \Rightarrow |a_n| > \varepsilon.$

Послідовності, які мають скінченну границю називають збіжними. Інакше послідовність називається розбіжною.

Будь-яка нескінченно велика величина не обмежена. Протилежне твердження невірне.

Теорема.

Нехай
$$\exists \lim_{n\to+\infty} a_n = a < \infty \Rightarrow a_n - \text{обмежена}.$$

Теорема.

Якщо
$$\exists \lim_{n\to+\infty} a_n=a < \infty$$
, то a - єдине.

Теорема.

- 1) a_n нескінченно велика величина $\Rightarrow 1/a_n$ нескінченно мала величина;
- 2) α_n нескінченно мала величина, $\alpha_n \neq 0 \ (\forall n > N_0) \Rightarrow 1/\alpha_n$ нескінченно велика величина;
 - 3) α_n нескінченно мала величина \Rightarrow lim α_n =0.