Politecnico di Milano Scuola di Ingegneria Industriale e dell'Informazione

APPLIED STATISTICS June 15th, 2020

Problem n.4

The file revenues.txt collects the average daily revenues y [k \in] during the lockdown of 70 minimarkets located in Milan. The dataset also reports the UTM coordinates s_i of the shops, the resident population in the neighborhood around the shop $p(s_i)$, and the Euclidean distance $d(s_i)$ [m] between the location of the shop and the Duomo $d(s_i) = ||s_i - s_d||$, with $s_d = (514711.6, 5033903.0)$. Consider for the revenue $y(s_i)$, i = 1, ...70, the following model

$$y(s_i) = a_0 + a_1 \cdot p(s_i) + \delta(s_i),$$

with $\delta(s_i)$ a stationary residual.

- a) Estimate via generalized least squares the parameters a_0, a_1 of the model. Report the model estimated for $\delta(s_i)$, and discuss the model assumptions.
- b) Provide a kriging prediction $y^*(s_0)$ of the revenues at a shop located in the Brera district at location $s_0 = (514703.8, 5035569.3)$. For this purpose, use a point estimate of the resident population $p(s_0)$ obtained through a linear model in the variable distance from the Duomo (detail the model assumptions for $p(s_0)$ and its point estimate).
- c) Report the kriging variance $\sigma^2(s_0)$ of the point prediction at point (b). Would you deem the variance $\sigma^2(s_0)$ to be fully representative of the uncertainty associated with the prediction $y^*(s_0)$?