Human Benchmark

Introdução:

O "Human Benchmark" consiste no desenvolvimento de um sistema embarcado destinado a medir o tempo de reação de um usuário a estímulos visuais e auditivos. O principal objetivo é avaliar a rapidez com que uma pessoa responde a determinados sinais, fornecendo feedback imediato sobre seu desempenho.

Para a implementação deste sistema, foram estabelecidos requisitos essenciais:

Requisitos Funcionais:

- Medição do Tempo de Reação: O sistema deve detectar o momento em que o usuário responde a um estímulo e calcular o intervalo de tempo decorrido.
- Feedback Imediato: Após cada tentativa, o dispositivo deve exibir o tempo de reação medido na tela OLED.

Requisitos Não Funcionais:

• Usabilidade: A interface deve ser intuitiva, permitindo que usuários de diferentes idades e habilidades utilizem o sistema sem dificuldades.

O funcionamento do sistema inicia com uma tela de boas-vindas, orientando o usuário a pressionar um botão para começar. Após a confirmação, uma contagem regressiva de três segundos é exibida, acompanhada por sinais sonoros e visuais. Em seguida, após um intervalo aleatório, um estímulo é apresentado, e o usuário deve responder o mais rápido possível pressionando o botão correspondente. O tempo decorrido entre o estímulo e a resposta é calculado e mostrado na tela, permitindo que o usuário avalie seu desempenho.

A justificativa para a realização deste projeto reside na crescente demanda por ferramentas que auxiliem no monitoramento e aprimoramento das capacidades cognitivas e motoras. Medir o tempo de reação é uma prática comum em diversas áreas, como esportes, medicina e ergonomia, sendo um indicador relevante da saúde neuromuscular e da prontidão mental. Além disso, o projeto serve como uma plataforma educacional para demonstrar a integração de diferentes componentes de hardware e software em sistemas embarcados.

Embora existam projetos similares disponíveis, como cronômetros de reação baseados em microcontroladores—por exemplo, o desenvolvimento de um periodímetro microcontrolado para aplicações em física experimental (REFERENCIA)—este projeto se destaca por sua abordagem didática e pela combinação específica de componentes utilizados, proporcionando uma experiência única tanto para o usuário quanto para o desenvolvedor.

Adicionalmente, este sistema pode ser particularmente útil para indivíduos com condições de saúde que afetam os reflexos, como doenças neurológicas ou decorrentes do envelhecimento. Ao medir o tempo de reação, é possível estimar o grau de comprometimento dos reflexos e monitorar a progressão ou melhoria da condição ao longo do tempo. Ferramentas que avaliam o tempo de reação fornecem informações sobre os reflexos e a velocidade de tomada de decisões, sendo úteis em avaliações de saúde para detectar condições como a doença de Parkinson.

Hardware:

Diagrama de blocos:

Função de Cada Bloco

Cada componente do sistema desempenha uma função específica na medição do tempo de reação do usuário. O Raspberry Pi Pico atua como a unidade de processamento central, gerenciando os periféricos e executando a lógica de controle do sistema. Os botões físicos (GPIO 5, GPIO 6 e GPIO 22) são usados para capturar a interação do usuário e registrar o tempo de resposta com precisão. O display OLED SSD1306, operando via barramento I2C, exibe mensagens de inicialização, contagem regressiva e o resultado do tempo de reação. O microfone (ADC Canal 2, Pino 28) é utilizado como fonte de entropia para a inicialização do gerador randômico do sistema, garantindo variação nos tempos aleatórios de estímulo. Além disso, possibilita futuras expansões do sistema para medições baseadas em estímulos sonoros. O LED Neopixel (GPIO 7) gera estímulos visuais sincronizados com os eventos do sistema, enquanto o buzzer (PWM, GPIO 21) emite sinais acústicos que auxiliam na marcação do tempo de resposta do usuário.

Configuração de Cada Bloco

A configuração dos componentes foi realizada considerando os requisitos de tempo real e eficiência do sistema:

- Raspberry Pi Pico: Configurado para operar com múltiplos periféricos simultaneamente, utilizando GPIOs para controle digital, I2C para comunicação serial
 com o display, PWM para controle de sinal sonoro e ADC para leitura de entrada analógica.
- Botões (GPIO 5, GPIO 6, GPIO 22): Configurados como entradas digitais com resistores pull-up internos ativados para garantir níveis de tensão estáveis e evitar leituras espúrias.
- Display OLED SSD1306 (I2C, GPIO 14 e GPIO 15): Configurado como slave I2C, operando a uma taxa de comunicação de 400 kHz para garantir atualização rápida da interface gráfica.
- Microfone (ADC, Pino 28 Canal 2): Configurado como entrada analógica utilizando o Conversor Analógico-Digital (ADC) de 12 bits do RP2040, permitindo
 medições precisas do sinal de entrada. O valor lido do microfone é utilizado como seed do gerador randômico, garantindo que os tempos aleatórios de
 exibição do estímulo não sigam um padrão fixo e sejam mais imprevisíveis.
- LED Neopixel (GPIO 7): Controlado por modulação de largura de pulso (PWM Serial), utilizando um protocolo específico de comunicação que permite o
 controle individual de cada LED no barramento.

 Buzzer (PWM, GPIO 21): Operando em modo PWM, com frequência ajustável entre 1 kHz e 4 kHz, permitindo a geração de sinais sonoros diferenciados para cada estado do sistema

Especificações Técnicas e Atendimento aos Requisitos

O projeto foi desenvolvido para atender aos requisitos de tempo de resposta rápido e comunicação eficiente entre os componentes. O Raspberry Pi Pico, com seu processador dual-core ARM Cortex-M0+ a 133 MHz, garante baixa latência na execução do código e resposta imediata aos estímulos. O uso do barramento I2C permite uma comunicação eficiente com o display OLED sem comprometer os demais periféricos. O ADC de 12 bits proporciona medições de alta precisão, garantindo a captura exata de sinais analógicos. O microfone, além de permitir futuras expansões para estímulos sonoros, melhora a aleatoriedade da geração de tempos de reação, tornando o teste mais confiável. Os botões e o joystick foram configurados para minimizar ruídos elétricos, garantindo leituras consistentes. O uso de PWM para o controle do buzzer e dos LEDs Neopixel possibilita um controle eficiente dos sinais sonoros e visuais.

Esse conjunto de especificações garante que o sistema opere dentro dos requisitos estabelecidos, possibilitando a medição precisa do tempo de reação e proporcionando uma interface responsiva ao usuário.

Lista de Materiais e Descrição

Raspberry Pi Pico W

Microcontrolador baseado no ARM Cortex-M0+ com 2MB de Flash e suporte a comunicação sem fio, utilizado como unidade de processamento central do sistema para gerenciar periféricos e processar os dados do tempo de reação.

Display OLED SSD1306

Tela monocromática de 128x64 pixels operando via barramento I2C a 400 kHz, utilizada para exibir informações como instruções, contagem regressiva e o tempo de reação do usuário.

Botões tácteis (3 unidades)

Interruptores mecânicos momentâneos conectados aos GPIOs do microcontrolador, responsáveis pela interação do usuário, permitindo iniciar o teste e registrar a resposta ao estímulo.

Buzzer Piezoelétrico

Componente que opera entre 3V e 5V, controlado via sinal PWM, utilizado para gerar alertas sonoros que indicam diferentes estados do sistema, como início do teste e exibição do resultado.

LED (25 LEDs)

Conjunto de LEDs RGB endereçáveis individualmente, controlados via protocolo WS2812, responsáveis por fornecer estímulos visuais sincronizados com os eventos do sistema.

Microfone Analógico

Sensor de captação de áudio com sensibilidade de -42 dBV/Pa, utilizado para leitura de sinais analógicos e como fonte de entropia para inicialização do gerador randômico do sistema, garantindo tempos de estímulo imprevisíveis.

Descrição da Pinagem Usada

- GPIO 5 Entrada digital conectada ao Botão A, utilizado para iniciar o teste ou interagir com o sistema.
- GPIO 6 Entrada digital conectada ao Botão B, permitindo outra opção de interação do usuário.
- GPIO 22 Entrada digital conectada ao Botão do Joystick, utilizado para registrar a resposta ao estímulo.
- GPIO 14 (SDA) Linha de dados do barramento I2C, utilizada para comunicação com o Display OLED SSD1306.
- GPIO 15 (SCL) Linha de clock do barramento I2C, responsável pela sincronização da comunicação com o Display OLED SSD1306.
- GPIO 28 (ADC Canal 2) Entrada analógica conectada ao Microfone, utilizado tanto para captação de áudio quanto como seed para o gerador randômico.
- GPIO 7 Saída digital conectada ao LED Neopixel, permitindo o controle individual dos LEDs via protocolo WS2812.
- GPIO 21 Saída PWM conectada ao Buzzer, utilizada para gerar sinais sonoros de diferentes frequências e durações.

Circuito:

Software:

Blocos funcionais:

Descrição de funcionalidades e definição das variáveis:

Camada de Aplicação

Descrição das funcionalidades:

- Gerencia a interface com o usuário, exibindo informações no display OLED e controlando os LEDs Neopixel.
- Monitora a interação do usuário por meio dos botões e do joystick.
- Atualiza a tela com mensagens visuais e exibe os tempos de reação.

Definição das variáveis:

- ssd \rightarrow Buffer do display OLED.
- linha1, linha2, texto_piscar → Strings exibidas na tela.
- x1, x2, y_texto, x_piscar, y_piscar → Coordenadas para exibição no display.
- countdown → Controla a contagem regressiva antes do estímulo.

Camada de Controle

Descrição das funcionalidades:

- Implementa a máquina de estados do sistema, controlando a progressão das telas.
- Aguarda entradas do usuário e gerencia o tempo de reação.
- Calcula o tempo de resposta e decide as transições entre estados.

Definição das variáveis:

- current_screen → Estado atual do sistema (inicial, contagem regressiva, medição, resultado).
- start_time, end_time → Armazenam os tempos de início e fim da medição.
- reaction_time → Tempo de reação calculado do usuário.
- exibir_piscar → Controla o efeito de piscar na tela inicial.

Camada de Hardware

Descrição das funcionalidades:

- Controla os periféricos do sistema, incluindo buzzer, display OLED, LEDs Neopixel e botões.
- Gera estímulos sonoros e visuais para o usuário.
- Obtém leituras dos botões e sensores.

Definição das variáveis:

- BUTTON_A , BUTTON_B , JOYSTICK_BUTTON \rightarrow Definem os pinos GPIO dos botões.
- LED_PIN, LED_COUNT → Configuram os LEDs Neopixel.
- $\bullet \quad \mathsf{MIC_PIN} \,, \, \mathsf{MIC_CHANNEL} \, \to \mathsf{Definem} \,\, \mathsf{a} \,\, \mathsf{entrada} \,\, \mathsf{analogica} \,\, \mathsf{do} \,\, \mathsf{microfone}.$
- BUZZER_PIN → Pino do buzzer para sinais sonoros.

Camada de Inicialização

Descrição das funcionalidades:

- Configura os periféricos, incluindo GPIOs, ADC, PWM e I2C.
- Define as funções dos pinos de entrada e saída.
- Prepara o sistema para execução contínua.

Definição das variáveis:

- ssd1306_i2c_clock → Define a frequência da comunicação I2C.
- frame_area → Estrutura para renderização do display OLED.
- last_press , last_blink → Controlam os tempos de resposta e efeitos visuais.
- slice_num, wrap, divider \rightarrow Configuram os sinais PWM do buzzer.

Fluxograma:

Inicialização - Processo de Inicialização do Software

O processo de inicialização ocorre dentro da função main(), onde os periféricos são configurados e as variáveis são inicializadas antes da execução do loop principal. Os seguintes passos são executados:

1. Configuração dos GPIOs:

- Os botões (BUTTON_A, BUTTON_B, JOYSTICK_BUTTON) são configurados como entradas digitais com resistores de pull-up ativados (gpio_pull_up()).
- O pino do buzzer (BUZZER_PIN) é configurado como saída PWM para geração de sinais sonoros.
- Os LEDs Neopixel (LED_PIN) são inicializados para permitir o controle individual dos LEDs RGB.

2. Inicialização dos periféricos:

- o A interface I2C (i2c1) é configurada e habilitada para comunicação com o display OLED SSD1306.
- O ADC é ativado (adc_init()) e configurado para ler o sinal do microfone conectado ao pino correspondente (adc_select_input(MIC_CHANNEL)).

3. Inicialização das variáveis globais:

- o current_screen é definido como SCREEN_INITIAL, estabelecendo o estado inicial do sistema.
- reaction_time, start_time e end_time são inicializados para armazenar o tempo de reação do usuário.
- o O buffer do display ssd é zerado (memset()) antes da primeira atualização da tela.

Após essas etapas, o sistema entra em um loop infinito, onde a máquina de estados gerencia a execução e a transição entre diferentes telas e funcionalidades.

Configuração dos Registros - Funções de Configuração dos Registros

A configuração de registradores do microcontrolador RP2040 é realizada por meio das funções da Pico SDK, que ajustam o comportamento dos periféricos:

- PWM (Controle do Buzzer):
 - pwm_set_clkdiv(slice_num, divider): Define o divisor de clock para ajustar a frequência do PWM.
 - o pwm_set_wrap(slice_num, wrap): Configura o período do PWM.
 - pwm_set_gpio_level(pin, wrap / 2) : Define o ciclo de trabalho do PWM.
- GPIOs (Botões e LEDs):
 - o gpio_init(pin): Inicializa os pinos GPIO necessários.
 - gpio_set_dir(pin, GPIO_IN): Configura os botões como entradas digitais.
 - o gpio_pull_up(pin) : Habilita resistores de pull-up internos para garantir leituras estáveis.
- · ADC (Leitura do Microfone):
 - adc_select_input(MIC_CHANNEL): Seleciona o canal ADC correspondente ao microfone.
 - o adc_read(): Obtém a leitura do valor analógico e converte para digital utilizado para seed do gerador de números pseudorrandômicos.
- I2C (Comunicação com o Display OLED SSD1306):
 - i2c_init(i2c1, ssd1306_i2c_clock * 1000) : Inicializa o barramento I2C.
 - o gpio_set_function(14, GPIO_FUNC_I2C) e gpio_set_function(15, GPIO_FUNC_I2C): Configuram os pinos GPIO 14 e 15 como SCL e SDA.

Estrutura e Formato dos Dados - Dados Específicos Usados no Software

O software utiliza diferentes tipos de dados para armazenamento e processamento:

• Enumeração dos Estados do Sistema:

```
enum Screen { SCREEN_INITIAL, SCREEN_COUNTDOWN, SCREEN_MEASURING, SCREEN_RESULT };
```

- o Define os estados da máquina de estados do software.
- . Buffer do Display OLED:

```
uint8_t ssd[ssd1306_buffer_length];
```

- o Armazena os dados que serão renderizados na tela OLED antes de serem transmitidos via I2C.
- · Variáveis de Tempo:

```
absolute_time_t start_time, end_time; float reaction_time;
```

- o Armazena os tempos de início e término da medição, além do tempo de reação do usuário.
- Dados para Controle dos LEDs Neopixel:

```
uint8_t pattern[LED_COUNT];
```

o Define padrões de exibição de LED para representar números ou estados do sistema.

Organização da Memória - Endereços de Memória Usados

A memória é organizada conforme a seguinte estrutura:

- RAM:
 - Variáveis globais e buffers são armazenados na RAM, incluindo ssd , reaction_time e current_screen .
 - Buffers temporários usados na comunicação I2C e controle de LEDs.
- Flash (ROM):
 - o Código do programa armazenado na memória flash.
 - o Strings de mensagens fixas ("Pressione algo" , "AGORA") são mantidas na memória de programa.
- · Registradores do Hardware:
 - o GPIOs, PWM, ADC e I2C são configurados e manipulados diretamente nos registradores do RP2040, via chamadas da Pico SDK.

Protocolo de Comunicação - Descrição do Protocolo

O sistema utiliza I2C para comunicação entre o microcontrolador e o display OLED SSD1306.

- Configuração do I2C:
 - o Interface configurada como mestre (i2c1).
 - Taxa de comunicação definida (ssd1306_i2c_clock * 1000).
 - Pinos GPIO 14 (SDA) e 15 (SCL) utilizados para transmissão de dados.
- Processo de Comunicação:
 - $\circ~$ O microcontrolador envia comandos e dados gráficos ao display via I2C.

- O barramento segue o protocolo padrão: Start -> Endereço do Slave -> Comando/Dados -> Stop .
- Formato do Pacote de Comando:

```
[Start] [Endereço do Display] [Byte de Controle] [Byte de Comando] [Stop]
```

- Utilizado para configurar propriedades do display, como brilho e rolagem de tela.
- Formato do Pacote de Dados:

```
[Start] [Endereço do Display] [Byte de Controle] [Dados da Imagem] [Stop]
```

o Contém os bits de imagem/texto a serem exibidos.

Formato do Pacote de Dados - Formação dos Pacotes

Os pacotes de dados transmitidos seguem o formato especificado pelo protocolo I2C:

• Comandos de Controle (Pacote de 2 bytes)

```
uint8_t command[] = {0x00, 0xAE}; // 0x00 = Byte de Controle, 0xAE = Comando Display OFF
i2c_write_blocking(i2c1, SSD1306_ADDRESS, command, 2, false);
```

- O primeiro byte (0x00) indica que se trata de um comando.
- O segundo byte (0xAE) é o comando específico (nesse caso, desligar o display).
- Envio de Dados para Renderização (Pacote de múltiplos bytes)

```
uint8_t data_packet[128]; // Buffer de dados para um segmento da tela

data_packet[0] = 0x40; // Byte de Controle para indicar dados

memcpy(&data_packet[1], buffer, 127);

i2c_write_blocking(i2c1, SSD1306_ADDRESS, data_packet, 128, false);
```

- o O primeiro byte (0x40) indica que os bytes seguintes contêm dados de imagem.
- o O restante do pacote transmite os pixels a serem exibidos.

Execução do projeto:

A metodologia aplicada na execução deste projeto seguiu uma abordagem estruturada baseada no desenvolvimento modular e na integração progressiva dos componentes de hardware e software. Inicialmente, foi realizada a especificação dos requisitos funcionais e não funcionais, garantindo que todas as funcionalidades estivessem alinhadas com os objetivos do sistema. A implementação seguiu uma abordagem bottom-up, onde os módulos de hardware foram configurados e testados individualmente antes da integração com a lógica principal do sistema. A configuração do barramento I2C foi validada isoladamente para garantir a comunicação correta entre o microcontrolador RP2040 e o display OLED SSD1306. Da mesma forma, os sinais de entrada e saída foram testados separadamente, incluindo a resposta dos botões, o acionamento do buzzer via PWM e a geração de padrões luminosos nos LEDs Neopixel. A lógica do software foi estruturada utilizando uma máquina de estados finitos, garantindo transições bem definidas entre os diferentes estágios do sistema, desde a tela inicial até a exibição dos resultados de tempo de reação.

Os testes de validação foram conduzidos de maneira empírica, executando o dispositivo pelo menos 30 vezes para garantir a precisão e a confiabilidade do sistema. Essa abordagem permitiu identificar e corrigir bugs e comportamentos inesperados que poderiam comprometer a funcionalidade do sistema. A resposta dos botões foi avaliada verificando a detecção de pressões sucessivas e garantindo que o debounce estivesse adequado para evitar leituras inconsistentes. A funcionalidade do display foi testada enviando diferentes padrões gráficos e mensagens para confirmar a correta renderização das informações. O tempo de reação do usuário foi medido comparando os valores registrados pelo software com medições externas realizadas por um cronômetro digital, assegurando que os cálculos internos estivessem corretos e coerentes. O buzzer foi testado para confirmar a geração dos diferentes tons necessários para os alertas sonoros e sua sincronização com os estímulos visuais apresentados. Durante os testes, foi possível verificar se o comportamento do sistema era consistente em diferentes execuções e se a apresentação dos estímulos ocorria de maneira uniforme.

A análise dos resultados demonstrou que o sistema foi capaz de medir com precisão o tempo de reação do usuário, apresentando variações consistentes entre diferentes execuções. O desempenho do sistema mostrou-se adequado, com transições suaves entre os estados da máquina de estados e uma interface responsiva às interações do usuário. Durante os testes, foi observado que o tempo de reação dos participantes variou conforme o estímulo apresentado, validando a funcionalidade do sistema para medir tempos de resposta neuromotores. Além disso, a repetição dos testes possibilitou a identificação de falhas sutis, como pequenas inconsistências na detecção do pressionamento dos botões e na sincronização dos estímulos sonoros e visuais, permitindo ajustes para aumentar a confiabilidade do sistema.

Diante dos resultados obtidos, conclui-se que o sistema atende aos requisitos estabelecidos e demonstra grande potencial para aplicações práticas na avaliação de tempos de reação humana. A capacidade de medir com precisão a resposta a estímulos visuais e sonoros, aliada à facilidade de uso e portabilidade do dispositivo, faz com que este projeto tenha aplicabilidade em diversas áreas, incluindo pesquisa académica, esportes e avaliações médicas. A modularidade do sistema permite futuras expansões e melhorias, como a inclusão de armazenamento de dados para análise estatística ou a integração com redes sem fio para monitoramento remoto. Além disso, a abordagem utilizada na implementação deste sistema pode servir de referência para projetos semelhantes, reforçando a importância de uma metodologia estruturada no desenvolvimento de sistemas embarcados. Assim, o projeto demonstrou ser uma ferramenta eficaz para medições de tempo de reação, proporcionando uma base sólida para aprimoramentos e aplicações futuras.

Vídeo demonstrativo: https://www.youtube.com/watch?v=UB9qdzY9bRk Repositório: https://github.com/PedroSampaioDias/Human-Benchmark