TD: série 1

Probabilités

- i. Soit (Ω, \mathcal{F}) un espace de probabilisable et trois événements A, B et C de \mathcal{F} . Traduire à l'aide des opérations sur les ensembles les expressions pour les événements suivants :
 - a. A seul se réalise;
 - b. A et C se réalisent mais pas B;
 - c. au moins l'un des trois événements se réalise ;
 - d. les trois événements se réalisent ;
 - e. aucun ne se réalise;
 - f. au plus l'un des trois se réalise;
 - g. au plus deux des trois se réalisent.
- ii. Soit (Ω, \mathcal{F}, P) un espace de probabilité.
 - a. Montrer que si A et B sont indépendants alors il en va de même pour A et \overline{B} et pour \overline{A} et \overline{B} .
 - b. Montrer que si A, B et C sont mutuellement indépendants, alors A est indépendant de $B \cap C$ et de $B \cup C$.
- iii. On considère deux événements indépendants A et B de probabilités respectives 1/4 et 1/3. Calculer :
 - a. la probabilité que les deux événements aient lieu;
 - b. la probabilité que l'un au moins des deux événements ait lieu;
 - c. la probabilité qu'exactement l'un des deux événements ait lieu.
- iv. Soit A et B deux évènements, d'un même espace de probabilité (Ω, \mathcal{F}, P) , tels que :

$$P(A) = \frac{2}{3}$$
, $P(B) = \frac{1}{3}$ et $P(\overline{A}/B) = \frac{1}{4}$.

- a. Calculer la valeur de la probabilité conditionnelle de A sachant B et celle de B sachant A.
- b. Quelle est la probabilité qu'exactement un des deux évènements se réalise ?
- v. Soit A, B et C trois évènements, d'un même espace de probabilité $((\Omega, \mathcal{F}, P),$ tels que :

$$P(A) = 2/5$$
, $P(C) = 1/2$, $P(A \cup B) = 3/4$, $P(B/A) = 3/10$ et $P(C/A) = 1/4$.

- a. Calculer la valeur de $P(\overline{A}/C)$.
- b. Calculer la valeur de $P(\overline{A}/\overline{C})$.
- c. Calculer la valeur de P(B).
- vi. Un sac contient 5 jetons verts (numérotés de 1 à 5) et 4 jetons rouges (numérotés de 1 à 4).

On y effectue 3 tirages successifs au hasard et sans remise. Calculer les probabilités :

- a. de ne tirer que 3 jetons verts;
- b. de ne tirer aucun jeton vert;
- c. de tirer au plus 2 jetons verts;
- d. de tirer exactement 1 jeton vert.

- vii. L'oral d'un concours comporte au total 100 sujets ; les candidats tirent au sort trois sujets et choisissent alors le sujet a traité parmi ces trois. Un candidat se présente en ayant préparé 60 sujets sur les 100. Quelle est la probabilité pour que le candidat ait révisé :
 - a. aucun des trois sujets tirés.
 - b. un sujet sur les trois tirés;
 - c. au moins deux sujets sur les trois tirés.
- viii. Une maladie affecte statistiquement une personne sur 1000. Un test de dépistage permet de détecter la maladie avec une fiabilité de 99% (i.e. test positif parmi les malades), mais il y a 0,2% de chances que le test donne un faux positif (i.e. une personne est déclarée malade sans l'être).
 - a. Une personne est testée positivement. Quelle est la probabilité qu'elle soit réellement malade ?
 - b. Une personne est testée négativement. Quelle est la probabilité qu'elle soit quand même malade ?
- ix. Un laboratoire d'analyse chimique reçoit un lot de tubes à essai. Ces tubes sont fournis par trois sociétés différentes *A*, *B* et *C* dans les proportions suivantes : 50%, 30% et 20%.

2% des tubes fabriqués par A, 3% de ceux fabriqués par B et 4% de ceux fabriqués par C présentent des défauts. On choisit au hasard un tube à essai dans le lot recu.

- a. Quelle est la probabilité qu'il soit défectueux ?
- b. Sachant que le tube choisi est défectueux, quelle est la probabilité qu'il provienne de la société A?
- x. Une boîte contient n boules noires et b boules blanches (n > 1, b > 1). On tire au hasard une boule puis on la remet dans la boite avec k (k > 0) nouvelles boules de la même couleur que la boule tirée. On choisit de nouveau une boule au hasard dans la boite. Soit N_1 l'événement « la première boule tirée est noire » et N_2 l'événement « la deuxième boule tirée est noire ».
 - a. Calculer la probabilité de N_1 .
 - b. Calculer la probabilité de tirer deux boules noires.
 - c. Calculer la probabilité de N_2 . Déduire de ce qui précède que $P(N_1/N_2) = P(N_2/N_1)$.
- xi. On considère n urnes numérotées de 1 à n. L'urne numéro k contient k boules blanches et n-k boules noires. On choisit une urne au hasard puis on tire une boule dans cette urne. Soit p_n la probabilité d'obtenir une boule blanche.
 - a. Déterminer la valeur de p_1 et celle de p_2 .
 - b. Calculer la valeur de p_n pour $n \ge 2$.
- xii. Un joueur débute un jeu vidéo et effectue plusieurs parties successives. On admet que :
 - la probabilité qu'il gagne la première partie est de 0,1 ;
 - s'il gagne une partie, la probabilité de gagner la suivante est égale à 0,8;
 - s'il perd une partie, la probabilité de gagner la suivante est égale à 0,6.

On note, pour tout entier naturel n non nul : G_n l'événement « le joueur gagne la n -ième partie »; p_n la probabilité de l'événement G_n : $p_n = P(G_n)$.

- a. Calculer la valeur de p_2 .
- b. Le joueur a gagné la deuxième partie. Calculer la probabilité qu'il ait perdu la première.
- c. Calculer la probabilité que le joueur gagne au moins une partie sur les trois premières parties.
- d. Calculer la valeur de p_{n+1} en fonction de p_n (relation de récurrence). En déduire la valeur limite de cette probabilité lorsque n tend vers l'infini.