PAM

Sisi Guevara García

2/6/2022

PARTITION AROUND MEDOIDS (PAM)

INTRODUCCIÓN

PAM es un algoritmo cuyo objetivo es encontrar k objetos representativos que minimicen la suma de las diferencias de las observaciones con su objeto representativo más cercano. Este método se basa en la búsqueda de k objetos representativos o medoides entre las observaciones del conjunto de datos. Estas observaciones deben representar la estructura de los datos. Después de encontrar un conjunto de k medoides, se construyen k grupos asignando cada observación al medoide más cercano.

Librerías

```
library(cluster)
```

Matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformación de datos

1.- Transformación de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Método PAM

1.- Separación de filas y columnas.

dim(X)

```
## [1] 50 8
```

```
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarización univariante.

```
X.s<-scale(X)</pre>
```

3.- Aplicación del algoritmo

```
pam.3<-pam(X.s,3)
```

4.- Clusters

```
cl.pam<-pam.3$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
	ALADAMA	итариа	AI IZUIIA	MI Kalibab	Calliolnia
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	2	2	2	3
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	3	1	2	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	3	2	3	2	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	2	1	1	2	2
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	1	2	1	2	2

5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualización con Componentes Principales

clusplot(X.s,cl.pam)

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representación gráfica de la eficacia de clasificación de una observación dentro de un grupo.

1.- Generación de los cálculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generación del gráfico

Silhouette for PAM

Average silhouette width: 0.22