成果物資料 引っ越し需要予測のための機械学習モデル

目次

- 1. 概要
- 4. 手法
- 2. 背景
- 5. 結果と効果
- 3. 目的
- 6. 今後の施策

概要

引越し業者における最適な人員配置・価格設定のため 機械学習を利用した**受注件数の予測モデル**を開発

最終的なモデルは

- 長期的な件数変動のトレンドを捉えるモデル
- 日々の細かい件数の変動を捉えるモデル

2つの基本モデルを組み合わせて構築

予測誤差は平均して±7件程度と**高精度** 引っ越し需要の予測に有用であることが示された

今後本モデルを発展させ、さらなる 引っ越し業界の課題解決に役立つことが期待される

背景ー引つ越し業界が直面する課題。

季節や曜日によって需要は大きく変動

人員配置・価格設定で需給バランス調整

予測を誤ると...

- 人員不足 → 受注逃し
- 人員過剰 → 人件費増
- ・ 料金設定ミス → 収益悪化

的確な需要予測が不可欠

本成果物の目的

機械学習を活用した引っ越し需要予測モデルの構築

- ✓ 時期・価格設定等によって複雑に変化する需要を 人の経験や勘ではなく、
 - 機械学習を用いてデータに基づいて的確に予測
- ✓ 最適な人員配置・価格設定を実現し、生産性・利益率を向上

従来 人の経験と勘による予測

> 昨年同時期と比べると、 おそらくこの週は 1日に50~80件くらい?

本成果物 機械学習を活用した正確な予測

> データA, B, C, Dを勘案し モデルから算出すると、 この日はxx件です

手法1-データ紹介

引越し業者の価格と需要などに関する 以下のデータからモデルを構築

(データ分析コンペから引用)

属性名	説明
datetime	日時(YYYY-MM-DD)
у	引越し件数
client	法人契約での引っ越しに関する
	フラグ
close	休業日
price_am	午前の料金区分
price_pm	午後の料金区分

全2101件

datetime	У	client	close	price	price
				_am	_pm
2010/7/1	17	0	0	-1	-1
2010/7/2	18	0	0	-1	-1
2010/7/3	20	0	0	-1	-1
2016/3/29	98	1	0	4	4
2016/3/30	99	1	0	5	4
2016/3/31	105	1	0	5	4

5が最高値 -1は欠損

手法2-モデルに背景を理解させる6

機械学習モデルは「この日は祝日だから特別」と 勝手に**背景まで理解してはくれない… (**)**

モデルに背景を把握させるためにデータの属性情報を追加

- 年、四半期、月
- 四半期や月の始まり・終わり
- 曜日、土日、祝日・休日
- (午前・午後価格の合計、差分、積)

人が暗黙のうちに感じている季節性やタイミングを 認識できるようになり、**予測精度が向上**

手法3 - 休業日と引う越し件数

休業日(年末年始やお盆)は必ず引っ越し件数ゼロ(赤丸)といった**明確な法則**よって機械学習ではなくルールにしたがって出力

機械学習モデルの負担を軽減

手法4-2種類のモデルを合体

Prophet: 大まかな全体の傾向を捉えるのが得意

勾配ブースティング木: 日ごとの細かな変動や 突発的なギザギザした動きが得意

2つのモデルの強みを組み合わせ、より高い精度での予測を実現

結果と効果

誤差:平均±約7件(コンペ内順位上位2%)

予測にかかる時間:5~10秒程度 (標準的なノートPC)

ノデータに基づいた高精度な予測を実現

✓最適な人員配置・価格設定のための重要なツールに

今後の施策1-データ属性の追加

データ属性を更に追加

- . ○○日前の需要といった過去の情報
- . 気温・天気などの気象情報
- . 景気動向などの経済情報
- . 他社の引越し件数などの業界動向(可能なら)

id	datetime	у	y_ln	client	price_am	price_pm	year	quarter	month	week	ordinal_day	day	week_of_month	day_of_week	quarter_start	quarter_end	month_start
str	date	i64	f64	i64	i64	i64	i32	i8	i8	i8	i16	i8	i8	i8	i32	i32	i32
"2011- 01-04"	2011-01- 04	16	2.772589	0	0	0	2011	1	1	1	4	4	1	2	0	0	0
"2011- 01-05"	2011-01- 05	16	2.772589	0	0	0	2011	1	1	1	5	5	1	3	0	0	0
"2011- 01-06"	2011-01- 06	13	2.564949	0	0	0	2011	1	1	1	6	6	1	4	0	0	0
"2011- 01-07"	2011-01- 07	14	2.639057	0	0	0	2011	1	1	1	7	7	2	5	0	0	0
"2011- 01-08"	2011-01- 08	16	2.772589	0	0	0	2011	1	1	1	8	8	2	6	0	0	0

今後の施策2-幅を持たせた予測

○○%の確率で実際の需要はこの範囲内に収まる

より柔軟性のある施策が打てるように

今後の施策3-価格と需要から利益まで算出2

料金設定

日時	価格 (午前)	価格 (午後)
2016/4/1	XX	уу
•••	XX	уу
	XX	уу
	XX	уу
	XX	уу

利益 = 需要 × 料金 – 人件費 – その他変動費

収益性の評価まで実現

必要な追加データ

- 各料金区分の具体的な金額
- スタッフの時給や作業時間
- 車両関連費、資材費など

ご清聴ありがとうございました。

(Appendix)苦労点 -納期がある中での工夫14

今回の分析は、事業所での疑似就労企画の一環として取り組んだ

企画の設定

顧客役:アップル引越センター マネージャー

依頼内容:機械学習を使って需要予測をして欲しい

上 先輩社員役:モデル構築や資料作成について相談

● 自分:

モデル構築、仕様書作成、発表資料作成を担当 顧客役、先輩社員役と連絡を取りながら納期内に 顧客の要求を満たすものを作成

行ったこと

- 顧客の要求のヒアリング
- モデル作成、仕様書作成、発表資料作成のスケジュール管理
- 作成しているものが顧客の要求に沿っているか中間報告
- ・ モデル納品。発表

(Appendix)手法5 – モデル検証時の注意点15

既知データの一部を使い、モデルの精度を検証する しかし**既知データに過剰適合すると、未知データに対する精度が低下** ↓

精度検証のためのデータセットを複数パターン用意

することで、検証の信頼性を担保

ただし、時系列データでは注意が必要

通常のk-fold(単純な5分割) ではなく

未来の情報を使ってしまわないように注意 (ズルになってしまう)

(Appendix)今後の施策4-最適な需要から価格を逆算¹

値付けを何度も試行錯誤して計算させる必要なく 目的の需要を満たす値付けの逆算が可能に

Appendix -特徵量重要度

特徴量重要度

price_am、ordinal_day、price_productの3つが特に重要だという結果に

ordinal_dayはその日がその年の1月1日から数えて通算何日目であるかを示す特徴量

→時期を表す情報としてモデルが活用しているものと推察

price_productはprice_amとprice_pmを乗算した特徴量

Appendix -予測誤差の分布

予測誤差の分布について

平均すると誤差は ±約7件 程度 多くの場合 ±10件以内に収まる

しかし、稀に数十件程度の誤差が 生じる場合もある

実務では、予測は一点の決め打ち ではなく信頼区間も表示させた ほうが良い?

