CSCI 338: Assignment 2 (7 points)

River Kelly

Feb 18, 2021

1.1 Give state diagrams of DFAs recognizing the following languages. In all parts, the alphabet is $\{0,1\}$.

1.6.d

 $\{w \mid w \text{ has length at least 3 and its third symbol is a }0\}$

1.6.e

 $\{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length } \}$

- **1.2** Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is $\{0,1\}$.
- **1.7.b** The language of Exercise 1.6c with five states.

Five states that accept the strings over the alphabet $\Sigma=\{0,1\}$ and contains the sub-string 0101.

1.7.c The language of Exercise 1.6l with six states

Problem 1.16.a, Problem 1.16.b (page 86).

1.16.a

1.16.b

Use the procedure described in Lemma 1.55 to convert the following regular expressions to nondeterministic finite automata. (page 86).

1.19.a. $(0 \cup 1) * 000(0 \cup 1*)$

1.19.b. $(((00)*(11)) \cup 01)*$

Problem 1.21.a (page 86).

The regular expression is: $a*b(a \cup ba*b)*$

Prove the following languages are not regular.

1.
$$xy^iz \in A$$
 for $i \ge 0$

3.
$$| xy | \le p$$

(5.1)
$$A = \{a^{n^3} | n \ge 0\}$$
. Here a^x means a string of x a 's.

Proof. Assume that A is regular. Let $S = a^{p^3}$ where p is the pumping length. By the pumping lemma, S decomposes into xyz s.t.

By 3,
$$|y| \le p$$
.

Pumping up,
$$|xy^2z| \le p^3 + p < p^3 + 3p^2 + 3p + 1 = (p+1)^3$$
.

By 2, |y| > 0, hence $p^3 < |xy^2z| < (p+1)^3$. Thus $xy^2z \in A$, a contradiction of the pumping lemma.

$$\therefore$$
 A is not regular.

(5.2)
$$B = \{0^n 1^m 0^n | m, n \ge 0\}.$$

Proof. Assume B is regular. Let $S=0^P10^P$ where p is the pumping length. Then, S decomposes in xyz s.t.

By 3, y consists of only 0's.

Let
$$\delta = |y|$$
 then by 2, $\delta > 0$.

The pumping up, $xy^2z=0^{P+\delta}10^P\notin B$ because the same number of 0's is not the same before and after the 1.

A contradiction of the pumping lemma.

$$\therefore B$$
 is not regular.