Alpha Garbage

A Simple Solution to garbage detection & classification.

Project goal

- Boundary/Object detection
- Garbage type classification

What we did to try and achieve the goal

- RetinaNet

- Boundary detection
- Bad performance when garbage are gathered/ covered
- Slow to train
- MobileNetV2
- ViT

What we did to try and achieve the goal

- RetinaNet

- MobileNetV2

- Leveraged from ssd_mobilenet_v2_coco
- Fine-tuned the last layer to TACO dataset
- Perform bad for garbages combined with fresh foods

- ViT

- Leveraged from google/vit-base-patch16-224-in21k
- Fine-tuned with the garbage classes dataset
- Proform bad for complex backgrounds

Performance metrics

	MobileNetV2	ViT
Accuracy	92%	95.6%

What went well

- There are powerful models that we can leverage transfer learning
- ViT is pretty fast and simple for fine-tuning

Didn't go well

- Some of the categories do not exist in pre-built model, so we did a mapping to make it fit
- RetinaNet and MobileNetV2 are slow, hard to tune hyperparameters
- ViT can not be used to detect the objects

Possible improvements

Overall level:

- More garbage class type
- More accurate boundary detection

Model level:

- RetinaNet is sensitive to learning rate, using Ir_scheduler to control learning rate
- More hyperparameter tuning

Alpha Garbage

Thank You!