# T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte II)*





Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

### Recapitulando

- Vimos a *motivação* por trás da *regressão linear*: encontrar funções que *aproximem o comportamento geral* de um conjunto de amostras (normalmente ruidosas).
- Definimos o *problema matematicamente*.
- Vimos como resolver o problema da regressão, i.e., encontrar os pesos do modelo, através da equação normal e visualmente.
- Aprendemos o que é a *superfície de erro*.
- Discutimos algumas *desvantagens* (e.g., *complexidade e regressão não-linear*) da equação normal e vislumbramos uma solução para essas desvantagens, a qual começaremos a discutir a seguir.



 Vocês se lembram das aulas de cálculo vetorial, onde vocês aprenderam sobre o vetor gradiente?

$$\nabla f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$$

• Qual *informação* ele nos dá sobre a função, f(x)?



• O vetor gradiente aponta na direção em que a função f(x) cresce mais rapidamente a partir do ponto em que é avaliado.



- As magnitudes dos elementos do vetor gradiente indicam a taxa de crescimento da função na direção apontada por ele.
  - Quanto maior a magnitude, maior a taxa de crescimento naquela direção.
- Os *sinais* dos elementos do vetor dizem para que "*lado*" (*aumentar ou diminuir*) os valores dos argumentos, x, devem ir para que o *valor de* f(x) *seja maior do que o atual*.



**Obs**.: No caso da função, f, ter apenas um argumento, x, o vetor gradiente dá a inclinação de uma **reta** tangente ao ponto onde o vetor é calculado.

- O vetor gradiente pode ser também interpretado como a *inclinação de um hiperplano tangente à função no ponto onde ele é calculado*.
  - Quanto maior o valor absoluto do gradiente, mais inclinado é o hiperplano tangente naquele ponto.
  - Portanto, um vetor gradiente igual a 0 indica inclinação nula.
  - Ou seja, a função não varia mais em nenhuma direção.
  - Onde isso ocorre? Nos extremos da função, ou seja, em seus pontos de máximo e de mínimo.

• O **vetor gradiente** de uma função com K argumentos,  $f(x_1, x_2, ..., x_K)$ , é definido pela **derivada parcial em relação a cada um de seus argumentos**  $x_k, k = 1, ..., K$ :

$$\begin{aligned} & \nabla f(x_1, x_2, \dots, x_K) \\ &= \left[ \frac{\partial f(x_1, x_2, \dots, x_K)}{\partial x_1} \quad \frac{\partial f(x_1, x_2, \dots, x_K)}{\partial x_2} \quad \dots \quad \frac{\partial f(x_1, x_2, \dots, x_K)}{\partial x_K} \right]^T. \end{aligned}$$

- Notem que o vetor gradiente é representado pelo símbolo Nabla, ∇, e é
  definido como um vetor coluna, com número de elementos igual ao
  número de argumentos da função.
- **OBS**.: Na sequência, por questões didáticas, mas sem perda de generalidade, nós vamos assumir uma função com apenas um argumento, f(x).

### O vetor gradiente indica o caminho para o ponto de máximo da função

- Imaginem o ponto inicial, x(0), com valor f(x(0)) na figura abaixo.
- Se quisermos que o valor de f(x) aumente, devemos aumentar ou diminuir o valor de x(0)?
- Ou seja, qual *direção* devemos seguir para *maximizar* o valor de f(x)?



## O vetor gradiente indica o caminho para o ponto de máximo da função



- O vetor gradiente calculado no ponto x(0),  $\nabla f(x(0))$ , diz **em qual direção** devemos caminhar para **aumentar o valor da função** f(x) mais rapidamente.
- Se *adicionarmos* uma *porcentagem*\*,  $\alpha$ , do gradiente ao valor de x(0), teremos que o *novo ponto*, x(1), terá um valor de f(x(1)) *maior do que o anterior*, i.e.,

$$f\left(\underbrace{x(0) + \alpha \frac{\partial f(x(0))}{\partial x}}\right) > f(x(0)).$$

<sup>\*</sup> O vetor gradiente dá a direção e não a distância até o ponto de máximo.

## O vetor gradiente indica o caminho para o ponto de máximo da função



- Se, a cada *ponto atual*, nós calcularmos o vetor gradiente e adicionarmos uma *porcentagem* dele ao ponto, teremos um *novo ponto* que leva a um *valor da função* f(x) *maior do que o valor anterior*.
- Portanto, podemos criar um procedimento que vá iterativamente caminhando em direção ao ponto de máximo da função.
- Vamos entender como isso pode ser feito.



- Se o vetor gradiente de f(x) em um *ponto* x(n) qualquer dá a *inclinação da reta* tangente à função naquele ponto, então, nesse ponto, um valor de gradiente com sinal:
  - + (reta com inclinação positiva) indica que o ponto de máximo esta à frente do ponto atual.
  - (reta com inclinação negativa) indica que o ponto de máximo está atrás do ponto atual.
  - 0 (reta com inclinação nula) indica que ponto de máximo foi encontrado.



- Portanto, seguindo na direção indicada pelo vetor gradiente, chegamos ao ponto de máximo da função.
- Um algoritmo iterativo de otimização que siga a direção indicada pelo vetor gradiente para encontrar o ponto de máximo de uma função é conhecido como gradiente ascendente.
- Mas como ele funciona?

- Inicializa-se o argumento x(0) com um valor arbitrário, em geral, um valor aleatório.
- A cada *iteração*, i, calcula-se o *vetor gradiente* da função f(x) no ponto atual, x(i), e atualiza-se o valor do argumento usando uma porcentagem do gradiente, ou seja

$$x(i+1) = x(i) + \alpha \nabla f(x(i)), i \ge 0.$$

• De tal forma, que a cada *iteração* se tenha

$$f(x(i+1)) > f(x(i)), i \ge 0.$$

- As iterações se repetem até que o *ponto de máximo* seja atingido, ou seja,  $\nabla f(x(i)) = 0$  e, consequentemente, o argumento x *não sofra mais atualizações* (i.e., o algoritmo convergiu).
  - Chamamos de *convergência* quando a variação da função f(x) entre iterações consecutivas é muito pequena, ou seja, o valor é praticamente constante.

Porém, se vocês se lembram, no problema da regressão linear nós queremos *encontrar o ponto de mínimo da função de erro* ao invés do seu máximo.

O que fazer?



- Se para encontrarmos o ponto de máximo de uma função basta seguirmos a direção apontada pelo vetor gradiente.
- Portanto, para encontrarmos o ponto de mínimo, basta seguirmos na direção oposta a apontada pelo vetor gradiente em um determinado ponto, x(i)

$$-\nabla f(x(i)).$$



- Quando seguimos na direção contrária a da máxima taxa de crescimento, dada pelo vetor gradiente, estamos indo na direção de decrescimento mais rápido da função.
- Portanto, um elemento do vetor gradiente com sinal:
  - (reta com inclinação negativa) indica que o ponto de mínimo está à frente.
  - + (reta com inclinação positiva) indica que o ponto de mínimo está atrás.
  - 0 (reta com inclinação nula) indica que ponto de mínimo foi encontrado.



 Assim, um algoritmo iterativo de otimização que siga na direção contrária a indicada pelo vetor gradiente para encontrar o ponto de mínimo de uma função é chamado de gradiente descendente (GD).

- Inicializa-se o argumento x(0) com um valor arbitrário, em geral, um valor aleatório.
- A cada *iteração*, i, calcula-se o *vetor gradiente* da função f(x) no ponto atual, x(i), e atualiza-se o valor do argumento usando uma porcentagem do gradiente, ou seja 

  Única diferença para o gradiente ascendente.

Seja 
$$x(i+1) = x(i)$$
 Onica diferença para o gradiente ascendente.

• De tal forma, que a cada iteração se tenha

$$f(x(i+1)) < f(x(i)), i \ge 0.$$

- As iterações se repetem até que o *ponto de mínimo* seja atingido, ou seja,  $\nabla f(x(i)) = 0$  e, consequentemente, o argumento x *não sofra mais* atualizações (i.e., o algoritmo convergiu).
  - Convergência: é quando o valor de x e, consequentemente, de f(x) entre iterações consecutivas é praticamente constante.

### Observação

- Os conceitos vistos até agora foram apresentados para uma função com um único argumento, f(x).
- Porém todos eles são válidos para funções com vários argumentos,  $f(x_0, x_1, ..., x_K)$ .
- Esse será o caso das funções que iremos utilizar em breve.
- No nosso caso, a função será a do erro quadrático médio (EQM), que terá como argumentos os pesos da função hipótese.

Como neste curso queremos *minimizar a função de erro*, iremos focar no *gradiente descendente*.

### Características do gradiente descendente

- Algoritmo genérico de otimização: pode ser aplicado não apenas a problemas de aprendizado de máquina, mas a qualquer problema que envolva encontrar os parâmetros que minimizam uma função.
- O único requisito é que essa função seja diferenciável.
  - No caso da regressão linear, a função de erro deve ser diferenciável.
- Escalona melhor do que o método da *equação normal* para grandes conjuntos de dados.
- É de fácil implementação.
- Não precisamos nos preocupar com matrizes *mal condicionadas*, ou seja, matrizes com *determinante próximo de 0* (i.e., quase *singulares*).
- Pode ser usado com modelos não-lineares.

## Como aplicamos o algoritmo do **gradiente descendente** ao problema da **regressão linear**?

Ou seja, como encontramos os pesos ótimos da função hipótese usando o gradiente descendente?

 $a \leftarrow$  inicializa o vetor de pesos em um ponto aleatório do espaço de pesos loop até convergir ou atingir o número máximo de iterações do

$$\nabla J_e(a) \leftarrow \text{c\'alculo do vetor gradiente}, \frac{\partial J_e(a)}{\partial a}$$
  
 $a \leftarrow a - \alpha \times \nabla I_o(a)$  (regra de atualização dos p

 $a \leftarrow a - \alpha \times \nabla J_e(a)$  (regra de atualização dos pesos)



- OBS.: O passo de aprendizagem,  $\alpha$ , dita o tamanho do deslocamento dado na direção oposta a apontada pelo vetor gradiente.
  - Ele é sempre um valor maior do que zero.
- Na sequência, encontraremos o vetor gradiente da função de erro.

### Calculando o vetor gradiente

 Para calcularmos o vetor gradiente, vamos considerar o EQM como função de erro e a função do hiperplano como função hipótese:

$$\hat{y}(n) = h(n) = a_0 + a_1 x_1(n) + \dots + a_K x_K(n) = \sum_{i=0}^{\infty} a_i x_i(n) = \mathbf{a}^T \mathbf{x}(n),$$

onde n é o número do exemplo (ou amostra), K é o número atributos,  $a_i$ ,  $\forall i$  e  $x_i$ ,  $\forall i$  são os pesos e atributos da função hipótese, respectivamente,  $x_0 = 1$  (i.e., atributo de bias) e a e a e a e a e vectores coluna com todos os pesos e atributos da a-ésima amostra, respectivamente.

Agora podemos encontrar o vetor gradiente.

### Calculando o vetor gradiente

O vetor gradiente da função de\_erro em relação aos pesos é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = \frac{\partial}{\partial \boldsymbol{a}} \left| \frac{1}{N} \sum_{n=0}^{N-1} (y(n) - \hat{y}(n))^2 \right|$$

$$=-\frac{2}{N}\sum_{n=0}^{N-1}[y(n)-\widehat{y}(n)]x(n)=-\frac{2}{N}X^{T}(y-\widehat{y}),$$
 Versão matricial do vetor gradiente

onde X é a matriz de atributos com dimensão  $(N \times K + 1)$  e y e  $\hat{y}$  são vetores coluna  $(N \times 1)$  com todos os valores esperados e de saída da função hipótese para os N exemplos coletados, respectivamente.

• OBS.: Esse cálculo pode ser diretamente estendido para polinômios.

### Atualizando os pesos

 Substituindo o vetor gradiente na equação de atualização dos pesos, temos

$$\boldsymbol{a} = \boldsymbol{a} - \alpha \frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = \boldsymbol{a} + \alpha \frac{2}{N} \sum_{n=0}^{N-1} [y(n) - \hat{y}(n)] \boldsymbol{x}(n) = \boldsymbol{a} + \frac{2\alpha}{N} \boldsymbol{X}^T (\boldsymbol{y} - \hat{\boldsymbol{y}}).$$

• Percebam que o vetor gradiente é a *média da diferença* entre o rótulo e a saída da função hipótese vezes os atributos *tomada ao longo de todos os N exemplos do conjunto de treinamento*.

#### Observações:

- O sinal + é devido ao vetor gradiente encontrado ter sinal negativo.
- Por ser constante, o termo 2/N pode ser absorvido por  $\alpha$ .

### Atualizando os pesos

a ← inicializa o vetor de pesos em um ponto aleatório do espaço de pesos
 loop até convergir ou atingir o número máximo de iterações do

$$\boldsymbol{a} \leftarrow \boldsymbol{a} + \alpha \frac{2}{N} \sum_{n=0}^{N-1} [y(n) - \hat{y}(n)] \boldsymbol{x}(n)$$

- Lembrem-se que *a cada iteração* (i.e., *loop*) do gradiente descendente, precisamos *calcular o vetor gradiente*.
- Isso envolve calcular o somatório acima para cada iteração.
- Assim, se o conjunto de treinamento e o modelo forem muito grandes, o treinamento pode ser muito longo e consumir muita CPU e memória.

### Versões do gradiente descendente

- Portanto, para lidar com essa situação, podemos ter 3 versões diferentes, dependendo da quantidade de exemplos considerados no somatório do vetor gradiente:
  - Gradiente descendente em batelada (GDB)
  - Gradiente descendente estocástico (GDE)
  - Gradiente descendente em mini-lotes (GDML)

### Gradiente descendente em batelada

$$\mathbf{a} = \mathbf{a} + \alpha \frac{2}{N} \sum_{n=0}^{N-1} [y(n) - \hat{y}(n)] \mathbf{x}(n).$$

- Considera todos os exemplos do conjunto de treinamento para calcular o vetor gradiente.
- Pode ser computacionalmente custoso dependendo do tamanho do modelo e do conjunto de dados.
  - Por processar todos os exemplos a cada iteração, pode ser lento e consumir muita
     CPU e memória com conjuntos muito grandes.
- Convergência para o mínimo global é garantida quando a função de erro é convexa e o passo de aprendizagem,  $\alpha$ , não for muito grande.
- É a versão que obtém os melhores resultados.

### Características do GD em batelada



- Por usar todos os exemplos, *segue diretamente*, sem alterar a direção, para o *ponto de mínimo*.
  - Nesse exemplo, segue uma linha reta entre  $a_1$  e  $a_2$ , pois a taxa de decrescimento da superfície de erro é igual para os dois pesos (contornos são circulares).
- Convergência é garantida dado que o passo de aprendizagem não seja muito grande e se espere tempo suficiente.
  - Não fica "oscilando" em torno do ponto de mínimo após alcançá-lo, pois o vetor gradiente neste ponto é praticamente nulo.

### Gradiente descendente estocástico

$$a = a + \alpha 2[y(n_{\text{random}}) - \hat{y}(n_{\text{random}})]x(n_{\text{random}}).$$

- Utiliza a cada iteração de atualização dos pesos apenas um exemplo do conjunto de treinamento para calcular uma estimativa estocástica do vetor gradiente.
  - É estocástica pois a cada iteração toma-se uma amostra aleatória do conjunto de treinamento para calcular a estimativa do vetor gradiente.
- Por usar uma estimativa, não segue diretamente a direção de máxima declividade da função de erro, mudando de direção várias vezes.

### Gradiente descendente estocástico



$$\boldsymbol{a} = \boldsymbol{a} + \alpha 2[y(n_{\text{random}}) - \hat{y}(n_{\text{random}})]\boldsymbol{x}(n_{\text{random}}).$$

- Quando os dados de treinamento estão contaminados com ruído, a estimativa do gradiente é ruidosa, fazendo com que a convergência não ocorra ou não seja garantida.
  - O algoritmo oscila em torno do ponto de mínimo sem nunca convergir.
- Entretanto, é *mais rápido e menos complexo computacionalmente*, usando menos CPU e memória do que o GDB.

### Características do GD estocástico



- Apresenta um caminho irregular para o mínimo, mudando de direção várias vezes.
- Quando as amostras contém ruído (caso acima), não converge para o ponto de mínimo, "oscilando" em torno dele.
  - Essa oscilação também pode ser vista na curva de erro.
- Algumas técnicas podem ser usadas para torná-lo mais comportado e talvez convergir: redução do passo, early-stop, momentum, etc.

### Gradiente descendente em mini-lotes

$$a = a + \alpha \frac{2}{MB} \sum_{n=0}^{MB-1} [y(n) - \hat{y}(n)]x(n).$$

- Utiliza a cada iteração um *subconjunto aleatório de exemplos*, de tamanho MB, do conjunto de treinamento para o cálculo do gradiente.
- Em geral, 1 < MB < N, portanto é mais rápido que o GDB e mais preciso e estável do que o GDE.

### Gradiente descendente em mini-lotes

$$a = a + \alpha \frac{2}{MB} \sum_{n=0}^{MB-1} [y(n) - \hat{y}(n)]x(n).$$

- Porém, por MB ser variável, essa versão é vista como uma generalização das duas versões anteriores, pois MB pode ser feito igual a 1 ou N.
- Em caso de *amostras ruidosas*, a convergência depende do tamanho de *MB*, *quanto maior*, *melhor é a estimativa* do vetor gradiente e, consequentemente, *maior a chance de convergência*.

### Características do GD em mini-lotes



- Vejam que conforme MB aumenta,
  - o progresso se torna menos irregular do que o do GDE,
  - e a oscilação ao redor do ponto de mínimo diminui.
- Tem comportamento mais próximo do GD em batelada para mini-lotes maiores.
- Para MB pequenos, pode se beneficiar de técnicas para torná-lo mais comportado e talvez convergir.
  - Essas técnicas podem ajudar a balancear rapidez e convergência.

#### Tarefas

- Quiz: "T319 Quiz Regressão: Parte II" que se encontra no MS Teams.
- Exercício Prático: Laboratório #3.
  - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
  - Vídeo explicando o laboratório: Arquivos -> Recordings -> Laboratório #3
  - Se atentem aos prazos de entrega.
  - Instruções para resolução e entrega dos laboratórios.

#### Referências

- [1] Marcos Eduardo Valle, "Derivadas Direcionais e o Vetor Gradiente", <a href="https://www.ime.unicamp.br/~valle/Teaching/MA211/Aula6.pdf">https://www.ime.unicamp.br/~valle/Teaching/MA211/Aula6.pdf</a>
- [2] Marcos Eduardo Valle, "Fatoração de Cholesky e Condicionamento de uma Matriz."

https://www.ime.unicamp.br/~valle/Teaching/MS211/Aula06.pdf

[3] IFSul, "Matrizes, Determinantes e Sistemas Lineares", <a href="http://tics.ifsul.edu.br/matriz/conteudo/disciplinas/algl/ue/1/4.html">http://tics.ifsul.edu.br/matriz/conteudo/disciplinas/algl/ue/1/4.html</a>

# Obrigado!



#### Online Courses

What they promise you will learn



What you actually learn







GARNING MIJDI GROMUNIVERSITY

ONLINECOURSES

FROM YOUTUBE

GROMARTICLES

FROMMENES



makeameme.org

# Anexo I: Cálculo do vetor gradiente

Vamos considerar o hiperplano como a função hipótese  $\hat{y}(n) = \mathbf{a}^T \mathbf{x}(n)$ .

O vetor gradiente é calculado como

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = \begin{bmatrix} \partial J_e(\boldsymbol{a}) & \cdots & \partial J_e(\boldsymbol{a}) \\ \partial a_0 & \cdots & \partial a_K \end{bmatrix}^T.$$

Assim, o vetor gradiente da função de erro em relação aos pesos é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = \frac{\partial}{\partial \boldsymbol{a}} \left| \frac{1}{N} \sum_{n=0}^{N-1} (y(n) - \hat{y}(n))^2 \right|.$$

Como a operação de derivada é distributiva, podemos reescrever a equação acima como

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial (y(n) - \hat{y}(n))^2}{\partial \boldsymbol{a}}.$$

Substituindo a função hipótese na equação acima, temos 
$$\frac{\partial J_e(a)}{\partial a} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial \left(y(n) - a^T x(n)\right)^2}{\partial a}.$$

Aplicando a regra da cadeia, reescrevemos a equação anterior como

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{2}{N} \sum_{n=0}^{N-1} (y(n) - \boldsymbol{a}^T \boldsymbol{x}(n)) \frac{\partial \boldsymbol{a}^T \boldsymbol{x}(n)}{\partial \boldsymbol{a}}.$$

Sabendo que a derivada de  $\frac{\partial a^T x(n)}{\partial a}$  é igual a x(n), reescrevemos a equação anterior como

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{2}{N} \sum_{n=0}^{N-1} [y(n) - \hat{y}(n)] \boldsymbol{x}(n).$$

$$\begin{split} & \frac{\partial J_e(a)}{\partial a} = -\frac{2}{N} \sum_{N=1}^{N-1} [y(n) - \hat{y}(n)] x(n) \\ & = -\frac{2}{N} \begin{cases} d(0) \begin{bmatrix} x_0(0) \\ \vdots \\ x_K(0) \end{bmatrix} + d(1) \begin{bmatrix} x_0(1) \\ \vdots \\ x_K(1) \end{bmatrix} + \dots + d(N-1) \begin{bmatrix} x_0(N-1) \\ \vdots \\ x_K(N-1) \end{bmatrix} \end{cases} \\ & = -\frac{2}{N} \begin{cases} d(0) x_0(0) + d(1) x_0(1) + \dots + d(N-1) x_0(N-1) \\ \vdots \\ d(0) x_K(0) + d(1) x_K(1) + \dots + d(N-1) x_K(N-1) \end{bmatrix} \end{cases}. \end{split}$$

Notem que a equação acima é um *vetor coluna* com dimensão  $K+1\times 1$ .

Podemos reescrever a equação (i.e., vetor) anterior como uma multiplicação matricial

$$\frac{\partial J_e(a)}{\partial a} = -\frac{2}{N} \begin{bmatrix} x_0(0) & x_0(1) & \cdots & x_0(N-1) \\ \vdots & \vdots & & \vdots \\ x_K(0) & x_K(1) & \cdots & x_K(N-1) \end{bmatrix} \begin{bmatrix} d(0) \\ d(1) \\ \vdots \\ d(N-1) \end{bmatrix}$$

Percebam que temos a multiplicação de uma matriz com dimensão  $K+1\times N$  por um vetor coluna de dimensão  $N\times 1$ .

A matriz contém em cada linha todos os valores de n=0 a n=N-1 de um **único** atributo.

O vetor contém em cada linha a diferença  $d(n) = y(n) - \hat{y}(n)$  para n = 0 até n = N - 1.

Se definirmos uma matriz que contém todos os N exemplos de todos os

$$K+1 \text{ atributos e que tem dimensão } N\times K+1$$
 
$$X=\begin{bmatrix}x_0(0)&\cdots&x_K(0)\\x_0(1)&\cdots&x_K(1)\\\vdots&&\vdots\\x_0(N-1)&\cdots&x_K(N-1)\end{bmatrix},$$

e dois vetores coluna com dimensões  $N \times 1$  contendo todos os valores esperados (i.e., rótulos) e todos os valores preditos

$$\mathbf{y} = \begin{bmatrix} y(0) \\ \vdots \\ y(N-1) \end{bmatrix}$$
 e  $\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}(0) \\ \vdots \\ \hat{y}(N-1) \end{bmatrix}$ 

Usando a matriz e os vetores definidos no slide anterior, podemos reescrever o vetor gradiente como

$$\frac{\partial J_{e}(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{2}{N} \begin{bmatrix} x_{0}(0) & x_{0}(1) & \cdots & x_{0}(N-1) \\ \vdots & \vdots & & \vdots \\ x_{K}(0) & x_{K}(1) & \cdots & x_{K}(N-1) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(N-1) \end{bmatrix} - \begin{bmatrix} \hat{y}(0) \\ \hat{y}(1) \\ \vdots \\ \hat{y}(N-1) \end{bmatrix} \end{pmatrix} = -\frac{2}{N} \boldsymbol{X}^{T} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$

O resultado da multiplicação matricial acima continua resultando em um **vetor coluna** com dimensão  $K+1\times 1$ , ou seja,  $(K+1\times N)\times (N\times 1)=K+1\times 1$ .

#### Equação de atualização dos pesos

Utilizando o resultado anterior, podemos reescrever a equação de atualização dos pesos como

$$\mathbf{a} = \mathbf{a} - \alpha \frac{\partial J_e(\mathbf{a})}{\partial \mathbf{a}}$$
$$= \mathbf{a} + \alpha \frac{2}{N} \mathbf{X}^T (\mathbf{y} - \widehat{\mathbf{y}}).$$

A soma acima deve resultar em um vetor coluna com dimensão  $K+1\times 1$ , pois esta é a dimensão dos dois vetores sendo somados.

Lembrem-se que  $K+1\times 1$  é a dimensão do vetor  $\pmb{a}$ , o qual contém todos os pesos do modelo e que  $\frac{2}{N}\pmb{X}^T(\pmb{y}-\widehat{\pmb{y}})$  tem dimensão  $K+1\times 1$  também.

#### Equação de atualização dos pesos

Podemos reescrever a equação de atualização dos pesos como 
$$a = a - \alpha \frac{\partial J_e(a)}{\partial a} = \begin{bmatrix} a_0 \\ \vdots \\ a_K \end{bmatrix} - \alpha \begin{bmatrix} \frac{\partial J_e(a)}{\partial a_0} \\ \vdots \\ \frac{\partial J_e(a)}{\partial a_K} \end{bmatrix}$$
 
$$= \begin{bmatrix} a_0 \\ \vdots \\ a_K \end{bmatrix} + \alpha \frac{2}{N} \begin{bmatrix} x_0(0) & x_0(1) & \cdots & x_0(N-1) \\ \vdots & \vdots & & \vdots \\ x_K(0) & x_K(1) & \cdots & x_K(N-1) \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(N-1) \end{bmatrix} - \begin{bmatrix} \hat{y}(0) \\ \hat{y}(1) \\ \vdots \\ \hat{y}(N-1) \end{bmatrix}$$
 
$$= \begin{bmatrix} a_0 \\ \vdots \\ a_K \end{bmatrix} + \alpha \frac{2}{N} \begin{bmatrix} d(0)x_0(0) + d(1)x_0(1) + \cdots + d(N-1)x_0(N-1) \\ \vdots \\ d(0)x_K(0) + d(1)x_K(1) + \cdots + d(N-1)x_K(N-1) \end{bmatrix}$$
.

# Anexo II: Cálculo do vetor gradiente de uma função hipótese com 2 pesos

*Função hipótese* com 2 pesos,  $a_1$  e  $a_2$ 

$$\hat{y}(n) = h(x(n)) = a_1 x_1(n) + a_2 x_2(n).$$

A função de erro é dada por

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[ y(n) - \left( a_1 x_1(n) + a_2 x_2(n) \right) \right]^2.$$

Cada elemento do vetor gradiente é dado por

$$\frac{\partial J_{e}(\mathbf{a})}{\partial a_{k}} = \frac{\partial \frac{1}{N} \sum_{n=0}^{N-1} \left[ y(n) - \left( a_{1} x_{1}(n) + a_{2} x_{2}(n) \right) \right]^{2}}{\partial a_{k}}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial \left[ y(n) - \left( a_{1} x_{1}(n) + a_{2} x_{2}(n) \right) \right]^{2}}{\partial a_{k}}$$

$$= -\frac{2}{N} \sum_{n=0}^{N-1} \left[ y(n) - \left( a_{1} x_{1}(n) + a_{2} x_{2}(n) \right) \right] x_{k}(n), k = 1,2$$

#### **FIGURAS**











#### Conjunto total de amostras

