data-wrangling-quarto

arshiya aggarwal

This project has two raw data files at different scales from a study of infants, children, and adults watching a series of 7 video clips. I wrote Steps 1 and 2 to import and merge the data, and kept them here for your reference. Skip down to Step 3 to work on EDA

SOURCE DESCRIPTION

FILE 1: auc.csv

Columns:

- stim (stimulus video, levels/labels provided below)
- id (unique participant identifier)
- age (in days)
- AUC_sal (area-under-the-curve for a saliency model)
- AUC dist (area-under-the-curve for a distance model)

AUC values indicate how well each model predicted where participants looked when watching a video. AUC values can range from 0-1 where .5 is chance and 1 is perfect prediction

FILE 2: participants_info_full_headers.csv

Columns:

- id (unique participant identifier, matches auc.csv)
- age group (a categorical age variable with levels:
- ".5-1 y" "1-1.5 y" "1.5-2 y" "2-4 y" "4-6 y" "8-10 y" "adult"
- precision (a quality measure of the eye data, smaller is better)

• 7 columns of "Seen X" the stimulus video before the study coded as SEEN (1), NOT SEEN (2), NOT SURE (3)

STEP 1: Read in AUC data

Code stim as a factor.

```
auc <- read_csv(here("data_raw", "auc_bystim.csv"))
stim_levels <- 1:7
stim_labels <- c("Fallon", "Feist", "Pentatonix", "Science", "Rube", "Plane", "Dogs")
auc <- auc %>% mutate(stim = factor(stim, levels = stim_levels, labels = stim_labels))
```

STEP 2: Read in participant info data

Wrangle the ppt info data so that you can merge it into the auc data. Drop any data where the AUC values are missing. In the final, merged data, make the watched variable is coded as a factor with levels "seen" (1), "not seen" (2), "not sure" (3). Write the cleaned file to data_cleaned/.

Read in the ppt data and rename columns to be easier to work with.

```
ppt <- read_csv(here("data_raw","participants_info_full_headers.csv")) %>%
    rename(id = `participant ID`,
        age_group = `Age group`,
        precision = "Precision")
```

Each question about watching each video is a column, so pivot_longer. Then, use separate to get just the video name into its own column.

```
ppt_long <- ppt %>% pivot_longer(cols = starts_with("Seen"), names_to = "stim", values_to =
ppt_long <- ppt_long %>% separate(stim, into = c(NA, "stim"))
```

Code stim and watched as factors.

```
ppt_long <- ppt_long %>% mutate(
   stim = factor(stim, levels = stim_labels, labels = stim_labels),
   watched = factor(watched, levels = 1:3, labels = c("Yes", "No", "Not Sure")))
```

Join the ppt data to the AUC data (by id and by stim since each participant has observations for each stim)

```
ds <- left_join(auc, ppt_long, by = c("id", "stim"))
ds <- ds %>% drop_na(AUC_sal:AUC_dist) #Drop participants for whom we don't have data for the
```

Write the data to file

```
ds %>% write_csv(here("data_cleaned","cleaned.csv"))
```

STEP 3: EXPLORATORY DATA ANALYSIS

3A PRECISION

Visualize the distribution of precision to see if there are values above 2.5

```
ds %>% ggplot(aes(x = precision)) + geom_histogram() + geom_vline(xintercept = 2.5)
```

```
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Create a summary to figure out which participants would we need to exclude if > 2.5 meant the data are unuseable?

```
ds %>% group_by(id, age_group) %>%
  summarize(precision = mean(precision, na.RM = T)) %>%
  filter(precision > 2.5) %>% kable()
```

`summarise()` has grouped output by 'id'. You can override using the `.groups` argument.

id	age_group	precision
52	1-1.5 y	3.025000
78	.5-1 y	3.450000
79	.5-1 y	4.890000
81	.5-1 y	2.680000
84	4-6 y	2.635714
108	.5-1 y	4.100000

ds %>% filter(precision > 2.5) %>% kable()

stim	id	age	AUC_sal	AUC_dist	age_group	precision	watched
Feist	52	539	0.54673	0.50661	1-1.5 y	3.025000	No
Science	52	539	0.44698	0.35551	1-1.5 y	3.025000	No
Plane	$\frac{52}{52}$	539	0.44030 0.49770	0.38661 0.48446	1-1.5 y 1-1.5 y	3.025000	No
Dogs	$\frac{52}{52}$	539	0.45770	0.47044	1-1.5 y 1-1.5 y	3.025000	No
Feist	78	198	0.50675	0.44941	.5-1 y	3.450000	No
Pentatonix	78	198	0.50075 0.57668	0.44941 0.57997	.5-1 y .5-1 y	3.450000 3.450000	No
Science	78	198	0.57003 0.75457	0.87997	.5-1 y .5-1 y	3.450000 3.450000	No
Plane	78	198	0.73437	0.52150 0.55452	.5-1 y .5-1 y	3.450000 3.450000	No
					=		No
Dogs	78 70	198	0.49372	0.48506	.5-1 y	3.450000	
Feist	79 70	226	0.60023	0.59731	.5-1 y	4.890000	No
Pentatonix	79	226	0.60949	0.64914	.5-1 y	4.890000	No
Feist	81	285	0.61159	0.58766	.5-1 y	2.680000	No
Pentatonix	81	285	0.58287	0.48083	.5-1 y	2.680000	Yes
Plane	81	285	0.53034	0.54342	.5-1 y	2.680000	No
Dogs	81	285	0.56804	0.56273	.5-1 y	2.680000	No
Feist	84	1757	0.57606	0.77110	4-6 y	2.635714	Yes
Pentatonix	84	1757	0.54066	0.63486	4-6 y	2.635714	No
Science	84	1757	0.65263	0.64523	4-6 y	2.635714	No
Plane	84	1757	0.58816	0.57367	4-6 y	2.635714	No
Dogs	84	1757	0.55541	0.58090	4-6 y	2.635714	No
Feist	108	194	0.62370	0.58747	.5-1 y	4.100000	No
Pentatonix	108	194	0.57016	0.61872	.5-1 y	4.100000	No
Science	108	194	0.68565	0.76453	.5-1 y	4.100000	No
Plane	108	194	0.55109	0.57446	.5-1 y	4.100000	No
Dogs	108	194	0.58014	0.65896	.5-1 y	4.100000	No

Use a summary table and plots to investigate whether data equally precise for participants of different ages

ds %>% group_by(age_group) %>% summarize(across(precision, list(M = mean, MIN = min, MAX = maximum))

age_group	precision_M	precision_MIN	precision_MAX
.5-1 y	2.109234	1.250000	4.890000
1-1.5 y	1.658714	1.292857	3.025000
1.5-2 y	1.644224	1.207143	2.375000
2-4 y	1.715520	1.428571	1.957143
4-6 y	1.680247	1.178571	2.635714
8-10 y	1.586332	1.300000	2.042857

age_group	precision_M	precision_MIN	precision_MAX
adult	1.498571	1.150000	1.985714

```
ds %>% ggplot(aes(x = age_group, y = precision)) + geom_boxplot() + geom_hline(yintercept = 3
ds %>% ggplot(aes(x = age, y = precision)) + geom_point() + geom_hline(yintercept = 2.5)
```

3B Age

Convert age to years so that it can be more easily compared to age_group. Visualize age in years by age_group to see whether participants are the correct age for their group

```
ds <- ds %>% mutate(age_years = age/365.25)
ds %>% group_by(id, age_group) %>%
   summarize(age_years = mean(age_years)) %>%
   ggplot(aes(y = age_group, x = age_years)) + geom_boxplot()
```

`summarise()` has grouped output by 'id'. You can override using the `.groups` argument.

Another option would be to facet by age group and to let the scales be "free" to get a better look

```
ds %>% group_by(id, age_group) %>%
  summarize(age_years = mean(age_years)) %>%
  ggplot(aes(y = age_years)) +
  geom_boxplot() +
  facet_wrap("age_group", scales = "free")
```

`summarise()` has grouped output by 'id'. You can override using the `.groups` argument.

Make a summary table of age in years by age group to check whether all participants' ages are correct ds %>% group_by(age_group) %>% summarize(min_age = min(age_years), max_age = max(age_years)) %>% kable()