2019-Winter Sogang ACM

Minimum Spanning Tree

서강대학교 엄태경

Tree

Acyclic, connected, undirected graph

Tree

Not Tree

Properties of Tree

Edge

- |E| = |V| 1
- A tree with *n* vertices has *n-1* edges

Path

- Any pair of two vertices are connected by exactly one path.
 - Connected Graph

At least one path between two vertices

Spanning Tree of a Graph

Spanning Tree

Any tree with same set of vertices as
 the graph

Two spanning trees

Minimum Spanning Tree

Minimum Spanning Tree

Spanning tree with minimum weight

Minimum spanning trees

1922 네트워크 연결

- 컴퓨터 N (1 ≤ N ≤ 1000) 대를 모두 연결하고 싶다.
- 선 하나로 컴퓨터 두 대를 연결할 수 있다.
- 컴퓨터 a와 컴퓨터 b가 연결이 되어 있다는 말은 a에서 b로의 경로가 존재한다는 것을 의미한다. A에서 b를 연결하는 선이 있고, b와 c를 연결하는 선이 있으면 a와 c는 연결이 되어 있다.
- 두 컴퓨터를 연결할 수 있는 경우의 수는 M (1 ≤ M ≤ 100,000)
- 각 연결마다 비용이 책정 되어있다. (1 ≤ c ≤ 10,000)
- 모든 컴퓨터를 연결할 수 있는 비용의 합을 최소값은?

Naïve Algorithm

Brute Force?

Time Complexity

- 1. For every possible spanning tree:
 - 2. Calculate the sum of weights
 - 3. Keep the minimum sum
- 1: Complete graph has $|V|^{|V|-2}$ spanning trees
- 2: A spanning tree has |V|-1 edges
- $\rightarrow O(|V|-1 \times V^{V-2}) = O(|V|^{|V|})$

Kruskal's Algorithm (1)

Greedy Algorithm

- Continue selecting edges in increasing order of weights if an edge does not make a cycle.
- Repeat until |V|-1 edges are selected.

Kruskal's Algorithm (2)

Example

Kruskal's Algorithm (3)

Kruskal's

```
Time
Complexity
```

```
1 A = \emptyset
2 for each v in V
3 \quad MAKE-SET(v)
4 Sort E by increasing order of weights
5 for each edge (u, v) in E:
6 if FIND-SET(u) != FIND-SET(v) :
7 A = A \cup \{(u, v)\}
        UNION(u, v)
9 return A
1: O(1) 2: |V| iter.
                             3: O(1)
4: O(|E| log|E|)
                             5. |E| iterations
6: O(1) in practice
                          7: O(1)
8: O(1) in practice
\rightarrow O(|E| log |E|) = O(|E| log |V|)
```

Prim's Algorithm (1)

Greedy Algorithm

- Add a random starting vertex to tree T
- Find the shortest edge (u, v) that connects T and G-T
- Add the edge to T
- Continue until T has |V| vertices

Prim's Algorithm (2)

Example

Prim's Algorithm (3)

Prim's

```
define f[v]: true if and only if vertex v is added to MST.
define parent[v]: 'parent' vertex of v.
define key[v]: cost of minimum known edge to v.
1 for each v in V
2 	 f[v] = false
3 f[v0] = true, where v\theta is the starting vertex
4 \text{ key}[v0] = 0.
5 Initialize a priority queue pq of pair (weight, vertex)
6 Add v\theta to pq
7 while pq is not empty:
      u := minimum vertex in pq .
8
      Pop pq
      f[u] = true
10
  for each neighbor w of u:
11
         if !f[w]:
12
             parent[w] = u
13
             key[w] = cost(u,w)
14
             Insert (key[w], w) into pq
15
```

Time Complexity

Line 15 is called at most |E| times. pq insertion is O(log|E|) $\rightarrow O(|E| log|E|)$

Practice

BOJ

- 1922 네트워크 연결
- 1197 최소 스패닝 트리
- <u>6497 전력난</u>
- 1647 도시 분할 계획
- 4343 Arctic Network
- 9373 복도 뚫기