Plan of Talk

ElGamal Cryptosystem

ElGamal Cryptography

- A public-key cryptosystem related to D-H
- Uses exponentiation in a finite (Galois) field
- Security is based
 - difficulty of computing discrete logarithms, as in D-H
 - difficulty of computational D-H problem.
- The goal here is to motivate how ElGamal came up with the scheme, nearly after eight years of the discovery of DH protocol.
- Let us look at the DH protocol again.

Diffie-Hellman Key Establishment Protocol

- AliceBob
- Choose Na=2
 Choose Nb=6
- $(g^{Na} \mod p)=2^2=4 \pmod{11} = Ma$

$$g^{Nb}$$
 mod p= (2⁶ mod 11)= 9=Mb

- Compute
- $K_{ab} = Mb^{Na} \mod 11 = 9^2 = 4$
- Compute
- $K_{ba} = Ma^{Nb} \mod p = (4^6 \mod 11) = 4$
- $K_{ab} = K_{ba} = 4$

Note that we may use variables p and q for representing primes. And, g and a for generators.

Salient Features

- DH protocol can be formulated over any cyclic group where computing discrete logarithm over the group is hard.
- What is the main objective?
 - Two users connected over insecure channel arrive at a common secret by using only public parameters.
 - In our case, they arrive at g^(ab), g is a generator of the group; a, b are random secrets chosen by the participants respectively.

Different Cyclic Groups

- Z_n: Integers modulo n, n is a positive integer.
- Z_p: Integer modulo p, p is a prime number.
- Residues of Polynomials over Z_p.
- Elliptic Curves over Z_p.

Order of Cyclic Groups

- What is the maximum size of cyclic groups obtained from Z_p?
- (p-1)
- What is the maximum size of cyclic groups obtained from Z_n?
- φ(n) = Numbers of integers < n but relatively prime to n.
- What is the maximum size of cyclic groups obtained from $Z_p[x]$ mod m(x), deg(m(x)) = k?
- Pk_1

A variation of DH

- Let us now assume that one of the users in the DH protocol is fixed in advance. Assume computations mod q, q is a prime. "a": generator of the group.
- Alice generates the key in advance
 - \blacksquare chooses a secret key (number): 1 < x_A < q-1
 - \Box compute her public key: $y_A = a^{x_A} \mod q$
- Bob knows this public key in advance

F

A variation of DH

- Bob
- Choose a random k and compute a mod q
- □ Send a^k mod q to Alice
- \square Since y_A is available, compute the DH common
- \square key $y_{\lambda}^{k} = a^{k x_{A}}$
- □ Hide the message in the common key and send it to Alice
- Bob to Alice: $C = M a^{k x_A}$
- Alice knows her secret x_A
- Obtain the common key in the cipher $(a^k)^{x_A} = a^{k x_A}$
- Recover Message $M = C/a^{k^*x_A}$

The scheme ElGamal Cryptography

- Public-key cryptosystem related to D-H
- Uses exponentiation in a finite (Galois)
- with security based difficulty of computing discrete logarithms, as in D-H
- each user (eg. A) generates their key
 - \blacksquare chooses a secret key (number): 1 < x_A < q-1
 - \Box compute their **public key**: $y_A = a^{x_A} \mod q$
- NOTE: a is the generator here.

ElGamal Message Exchange

- Bob encrypt a message to send to A computing
 - □ represent message M in range 0 <= M <= q-1
 - longer messages must be sent as blocks
 - \blacksquare chose random integer k with $1 \le k \le q-1$
 - □ compute one-time key K = y_A^k mod q
 - \square encrypt M as a pair of integers (C_1 , C_2) where
 - $C_1 = a^k \mod q$; $C_2 = KM \mod q$
- A then recovers message by
 - \blacksquare recovering key K as K = $C_1^{\times A}$ mod q
 - \square computing M as M = C_2 K⁻¹ mod q
- a unique k must be used each time
 - otherwise result is insecure

Image: Control of the con

If k is not unique

- Let $(M_1, C_1 = [C_{11}, C_{12}])$ and
- $(M_2, C_2 = [C_{21}, C_{22}])$ be two message and ciphertext pais using the same randomization parameter k.
- What does this imply for C_1 and C_2 ?
- $C_{11} = a^k \mod q = C_{21} = a^k \mod q$
- If Adversary knows M₁, he can then recover M₂