WHAT IS CLAIMED IS:

1. A compound comprising the formula:

$$R_{1} = \begin{pmatrix} R_{2} \\ C \\ R_{3} \end{pmatrix}_{m} \begin{pmatrix} M \\ a \end{pmatrix}_{a} \begin{pmatrix} C \\ C \\ C \\ C \end{pmatrix}_{E_{2}} \begin{pmatrix} E_{1} \\ C \\ C \\ C \end{pmatrix}_{E_{2}}$$

wherein:

(I)

R_i is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

E₁ is

$$\begin{array}{c|c}
 & Y_2 \\
 & \downarrow \\
 & C \\
 & \downarrow \\
 & R_6
\end{array}$$

 E_{2-4} are independently H, E_1 or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 $R_{2\text{-}10}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroalkoxy;

D₁ and D₂ are independently OH,

$$(IV) \qquad Y_4 \qquad Y_5 \qquad Ar \qquad C \qquad Y_6 \qquad C \qquad B_1 \qquad Y_7 \qquad Y_8 \qquad Y_8 \qquad C \qquad B_1 \qquad Y_8 \qquad C \qquad B_2 \qquad C \qquad B_3 \qquad C \qquad B_4 \qquad C \qquad B_4 \qquad C \qquad B_4 \qquad C \qquad B_5 \qquad C \qquad B_6 \qquad C \qquad B_8 \qquad C \qquad B_9 \qquad B_9$$

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 $\rm B_1$ and $\rm B_2$ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties.

2. The compound of claim 1, wherein R₁ further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C_{1.6} moieties and

3. A compound of claim 2, comprising the formula:

$$E_{2} = \begin{bmatrix} E_{1} & Y_{1} & E_{2} \\ C & N & C \end{bmatrix} + \begin{bmatrix} R_{2} & R_{1} & E_{2} \\ C & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & Y_{1} & E_{1} \\ C & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{1} & R_{2} \\ R_{3} & R_{1} & R_{2} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{1} & R_{2} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{2} \\ R_{3} & R_{3} & R_{3} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{2} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \end{bmatrix} + \begin{bmatrix} R_{2} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} & R_{3} & R_{3} & R_{3} & R_{3} & R_{3} \\ R_{3} & R_{3} \\ R_{3} & R_{3} \\ R_{3} & R_{3} \\ R_{3} & R_{3} \\ R_{3} & R_$$

4. The compound of claim 1, wherein said terminal branching group comprises the formula:

wherein

$$E_{35}$$
 is
$$\begin{array}{c} \begin{array}{c|c} & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$$

 $E_{\mbox{\scriptsize 36-38}}$ are independently H, $E_{\mbox{\scriptsize 35}}$ or

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;

 $R_{6\text{-}10}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroalkoxy;

D'1 and D'2 are independently OH,

or

$$\begin{array}{c|c}
(VII) & E_{45} \\
\hline
-N & C & E_{46} \\
\hline
E_{48} & E_{47}
\end{array}$$

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

 L_1 and L_2 are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

 E_{45} is

$$\begin{array}{c|c}
 & & Y_2 \\
 & & C \\
 & & C \\
 & & R_6
\end{array}$$

 E_{46-48} are independently H, E_{45} or

$$\begin{array}{c|c}
 & & & Y_3 \\
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein

D''1 and D''2 are independently OH,

- 5. The compound of claim 3, Y_1 is O.
- 6. The compound of claim 1, wherein R_1 comprises a polyalkylene oxide residue.
- 7. The compound of claim 6, wherein R_1 comprises a polyethylene glycol residue.
- 8. The compound of claim 3, wherein R_1 comprises a polyethylene glycol residue.
- 9. The compound of claim 6, wherein R_1 is selected from the group consisting of

$$-C(=Y_8)-(CH_2)_f-O-(CH_2CH_2O)_x-A$$
, $-C(=Y_8)-Y_9-(CH_2)_f-O-(CH_2CH_2O)_x-A$,

$$-C(=Y_8)-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-A$$
, $-(CR_{21}R_{22})_e-O-(CH_2)_f-O-(CH_2CH_2O)_x-A$,

$$-NR_{20}$$
- $(CH_2)_f$ - O - $(CH_2CH_2O)_x$ - A , $-C$ (= Y_8)- $(CH_2)_f$ - O - $(CH_2CH_2O)_x$ - $(CH_2)_f$ - C (= Y_8)-,

$$-C(=Y_8)-Y_9-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-Y_9-C(=Y_8)-$$

$$-C(=Y_8)-NR_{20}-(CH_2)-C(CH_2CH_2O)_x-(CH_2)-NR_{20}-C(=Y_8)-$$

$$-(CR_{21}R_{22})_e$$
-O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{21}R_{22})_e$ -, and

wherein:

 Y_8 and Y_9 are independently O, S or NR_{20} ;

x is the degree of polymerization;

R₂₀, R₂₁ and R₂₂ are independently selected from among H, C₁₋₆ alkyls,

 C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls,

 C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

- 10. The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.
- 11. The compound of claim 3, wherein R₁ has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. The compound of claim 3, wherein R₁ has a weight average molecular weight of from about 25,000 to about 60,000.
 - 13. A compound of claim 3, comprising the formula

14. The compound of claim 13, wherein D_1 is

$$\begin{array}{c|c}
(\mathbb{IV}) & Y_4 & F_{11} \\
\hline
 & X_{13} & Y_4 \\
\hline
 & X_{13} & Y_5 \\
\hline
 & X_{12} & Y_6 \\
\hline
 & X_{12} & Y_6
\end{array}$$

15. The compound of claim 13, wherein D_i is

$$\begin{array}{c|c} & E_{35} \\ \hline -N - C - E_{36} \\ \hline \\ E_{38} & E_{37} \end{array}.$$

- 16. The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.
- 17. The compound of claim 1, wherein L_2 is selected from the group consisting of -CH₂-, -CH(CH₃)-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.
- 18. A compound of claim 1, selected from the group consisting of:

wherein R_1 is a PEG residue and D is selected from the group comprising:

$$-NH \longleftrightarrow \frac{1}{2} \longrightarrow \frac{1}{2}$$

where B is a residue of an amine or a hydroxyl- containing drug.

- 19. A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine
- 20. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D_1 is a residue of a biologically active moiety.
- 21. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and NR_{14} ;

 $R_{11\text{-}14}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \begin{cases} R_{2} \\ C \\ R_{3} \end{cases} m \begin{cases} Y_{1} \\ X_{1} \\ X_{2} \\ X_{3} \end{cases} = \begin{cases} Y_{1} \\ X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5} \\ X_{7} \end{cases} = \begin{cases} E_{5} \\ E_{6} \\ E_{7} \end{cases}$$

wherein

$$E_{s} \text{ is } - \left(\begin{array}{c} R_{7} \\ C \\ R_{6} \end{array} \right) \begin{pmatrix} Y_{2} \\ C \\ R_{6} \end{pmatrix} D_{3}$$

E₆₋₈ are independently H, E₅ or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
C & & & \\
 & & & \\
C & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein

 D_3 and D_4 are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

 R_1 is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀; and

 $R_{2\text{-}10}$ are independently selected from the group consisting of hydrogen, $C_{1\text{-}6}$ alkyls, $C_{3\text{-}12}$ branched alkyls, $C_{3\text{-}8}$ cycloalkyls, $C_{1\text{-}6}$ substituted alkyls, $C_{3\text{-}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{-}6}$ heteroalkyls, substituted $C_{1\text{-}6}$ heteroalkyls, $C_{1\text{-}6}$ alkoxy, phenoxy and $C_{1\text{-}6}$ heteroalkoxy;

under conditions sufficient to cause a polymeric conjugate to be formed.