

Departamento de Comunicação e Arte

1º teste - SCMM I

29 de Outubro de 2012

			_
	ome:		
N'	Mec	·	
NZ	otas:		
		atantamento e teste entes de iniciar a que realização	
•		atentamente o teste antes de iniciar a sua realização.	
•		ncha os seus dados pessoais, nos campos indicados	
*		oonda na própria folha do teste, assinalando com uma cruz () a resposta cert o se engane, rasure a resposta com um quadrado (█).	ta.
		ıção do teste: 1H00m	
•			
		erguntas com respostas múltiplas:	
		cada resposta certa soma 1,5 valor;	
		cada resposta errada desconta : 0,5 valores	
		erguntas com respostas abertas:	
	•	indicada entre parêntesis.	
			—
1 -		n sinal eletromagnético de um sistema que opere à frequência de 1GHz tem, e	
		ação a um outro sinal eletromagnético com frequência 10GHz, um comprimento o	de
	on	da:	
	a) 2 v	vezes maior	
	b) 2 v	vezes menor	
	c) 10	vezes menor	
	d) Ne	enhuma das anteriores	
2 -		n sinal eletromagnético com uma frequência F e fase 0° tem, em relação a um out	iro
	sin	al eletromagnético com frequência F e fase 180°, um desfasamento de:	
	a) 1/4	do comprimento de onda	
	b) ½	comprimento de onda	
		do comprimento de onda	
		enhuma das anteriores	
3 -		funcionamento do serviço NVoD (que foi, em tempos, implementando em Portuga	al)
	im	plicava, necessariamente, a existência de:	
	a) un	n canal de retorno e um sistema de codificação de imagem e som	
		n sistema de codificação de imagem e som (não era necessário canal de retorno)	
		n canal de retorno (não era necessário um sistema de codificação)	
	· · ·	enhuma das anteriores	<u> </u>
	G)[INC	onnama aas antonores	<u> </u>
4 -	- A f	uncionalidade de time-shift TV implica que:	
	_		
		ista um red-button do lado do cliente	_
		ista capacidade de storage (gravação) do lado do cliente ou na cloud	<u> </u>
		cliente tenha um televisor HD	<u> </u>
	d) Ne	enhuma das anteriores	

	Para que um jogo interativo, com as característica do jogo do Hugo (que funcionou r TV portuguesa), possa ser operacionalizado:	na
a)	é necessário que a transmissão da televisão e o canal de retorno sejam ambos digitais	
b)	é suficiente que a transmissão da televisão seja analógica e que os comandos interativos sejam garantidos por DTMF	
c)	é obrigatoriamente necessário que a transmissão da televisão seja analógica	
d)	Nenhuma das anteriores	
6 -	A diminuição do erro de quantização é possível através:	
,	de um aumento do número de amostras (frequência de amostragem)	
	de uma diminuição do número de bits por amostra	
c)	de um aumento do número de bits por amostra	
d)	Nenhuma das anteriores	
7 -	Numa rede com uma taxa de transmissão, efetiva, de 1Gbps são transportados:	
,	1x10^9 = 1.000.000 bits por segundo	
,	2^30 = 1.024x1.024x1.024 bits por segundo	
	2^30 = 1.024x1.024x1.024 bytes por segundo	
d)	Nenhuma das anteriores	
8 -	No caso da digitalização, com 256 níveis de quantização, de um sinal de áud analógico (mono e com frequência máxima de 5 KHz), a duração temporal do sin digital ao fim das primeiras 1000 amostras é de:	
a)	110 acquados	
	10 segundos	
	0,2 segundos	
c)	0,2 segundos 1 segundo	
c)	0,2 segundos	
c)	0,2 segundos 1 segundo	
c) d) 9 -	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado	
c) d) 9 - a) b)	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra	
c) d) 9 - a) b)	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado	
c) d) 9 - a) b)	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra	
c) d) 9 - a) b) c)	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra a digitalização de um sinal não respeita o teorema de Nyquist	ăo de
c) d) 9 - a) b) c) d)	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra a digitalização de um sinal não respeita o teorema de Nyquist Nenhuma das anteriores Se tiver que enviar (de 1 em 1 minuto) uma informação digital, correspondente à altu de um balão meteorológico (que suba até aos 10Kms de altitude), com uma resolução de 1 centímetro, qual a taxa de transmissão mínima (em bps) que o seu sistema o comunicação tem que garantir (considere só a informação a transmitir, excluindo todo	ăo de
c) d) 9 - a) b) c) d) 10 -	0,2 segundos 1 segundo Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra a digitalização de um sinal não respeita o teorema de Nyquist Nenhuma das anteriores Se tiver que enviar (de 1 em 1 minuto) uma informação digital, correspondente à altu de um balão meteorológico (que suba até aos 10Kms de altitude), com uma resoluçã de 1 centímetro, qual a taxa de transmissão mínima (em bps) que o seu sistema o comunicação tem que garantir (considere só a informação a transmitir, excluindo todo os possíveis overloads de informação, e um valor inteiro da taxa de transmissão):	ăo de
c) d) 9 - a) b) c) d) 10 - a) b)	0,2 segundos Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra a digitalização de um sinal não respeita o teorema de Nyquist Nenhuma das anteriores Se tiver que enviar (de 1 em 1 minuto) uma informação digital, correspondente à altu de um balão meteorológico (que suba até aos 10Kms de altitude), com uma resoluçã de 1 centímetro, qual a taxa de transmissão mínima (em bps) que o seu sistema o comunicação tem que garantir (considere só a informação a transmitir, excluindo todo os possíveis overloads de informação, e um valor inteiro da taxa de transmissão):	ăo de
c) d) 9 - a) b) c) d) 10 -	0,2 segundos Nenhuma das anteriores O efeito de aliasing ocorre quando: a digitalização de um sinal recorre a um número de bits por amostra elevado a digitalização de um sinal não respeita o número mínimo de bits por amostra a digitalização de um sinal não respeita o teorema de Nyquist Nenhuma das anteriores Se tiver que enviar (de 1 em 1 minuto) uma informação digital, correspondente à altu de um balão meteorológico (que suba até aos 10Kms de altitude), com uma resoluçã de 1 centímetro, qual a taxa de transmissão mínima (em bps) que o seu sistema o comunicação tem que garantir (considere só a informação a transmitir, excluindo todo os possíveis overloads de informação, e um valor inteiro da taxa de transmissão): 1bps 2bps	ăo de

te g si	se a digitalização de um sinal analógico, com 10 segundos de duração (em que enham utilizado 256 níveis de quantização e respeitado o teorema de <i>Nyquist</i>), terado um ficheiro com um tamanho de 100MBytes, calcule a frequência máxima quinal analógico tem. (5
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	

Bom trabalho

Jorge T. Ferraz de Abreu, Telmo Silva