Lista 3 - Geometria Analítica - Inversa de Matrizes e Determinantes

Observações: Faça uma leitura de cada exercício antes de iniciar. Procure compreender e assimilar aquilo que está fazendo. Esta é uma lista complementar aos exercícios dos livros textos adotados. Procure outros exercícios também.

1. Em cada item abaixo, use escalonamento para decidir se a matriz dada é invertível e, caso seja, determine sua inversa.

$$(a) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad (b) \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix} \quad (c) \begin{bmatrix} 3 & -1 & 5 & 0 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & -1 & 3 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$

2. Encontre uma matrix X tal que $XA - B = \mathbf{O}$ (matriz nula) sendo que

$$A = \begin{bmatrix} 2 & -3 & 2 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix}.$$

(Sugestão: Inversa de alguma matriz?)

3. Considere a matriz

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -2 \\ -1 & 1 & 0 \end{bmatrix}$$

- (a) Verifique se a matriz A é invertível. Em caso afirmativo determine sua inversa.
- (b) Resolva o sistema linear

$$AX = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

4. Considere a matriz

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 0 & -1 & 1 \end{array} \right]$$

- (a) Mostre que a matriz A é invertível e calcule sua inversa.
- (b) Resolva a equação matricial

$$AX = \begin{bmatrix} 3 & 2 \\ 1 & 2 \\ 4 & 5 \end{bmatrix}.$$

5. Seja

$$A = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 3 & (\lambda + 1) \\ 2 & 1 & 4 \end{array} \right].$$

(a) Encontre o valor do escalar λ para o qual a matriz A é não invertível (=singular).

- (b) Substitua $\lambda = 0$ e calcule a inversa, se existir, da matriz A.
- 6. Seja

$$A = \begin{bmatrix} 2 - \beta & 0 & 1 \\ 2 & 1 & 0 \\ -6 & -3 & (2 - \beta) \end{bmatrix}$$

- (a) Encontre o(s) valor(es) do escalar β para o(s) qual(is) a matriz A não seja invertível.
- (b) Substitua $\beta = 1$ e calcule a inversa, se existir, da matriz A.
- 7. Sejam A e B matrizes tais que

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 20 & 10 & 0 \\ 40 & 10 & 0 \\ 0 & 0 & 30 \end{bmatrix}$$

- (a) Mostre que a matriz A é invertível e calcule sua inversa.
- (b) Calcule a inversa da matriz AB.
- 8. Em cada um dos itens abaixo, calcule det A, verifique se A é inversível e, em caso afirmativo, determine A^{-1} .

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 1 & 1 & 4 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$.

9. Mostre que para qualquer valor de α , a matriz A é sempre invertível, sendo que

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -3 & 5 & -1 \\ 3\alpha - 4 & 0 & \alpha + 1 \end{bmatrix}$$

10. Sejam *A* e *B* as matrizes

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array} \right] \quad B = \left[\begin{array}{cc} 3 & -1 \\ 0 & 1 \end{array} \right]$$

Calcule

- (a) det(A) + det(B).
- (b) $\det(A+B)$.
- (c) det(AB).
- 11. Encontre a(s) solução(ões) do sistema AX = 2X sendo que

$$A = \left[\begin{array}{rrr} 3 & 2 & -1 \\ -1 & 1 & 1 \\ -1 & 6 & 3 \end{array} \right] .$$

12. Considere sistema linear homogêneo $(A - \lambda I)X = \mathbf{O}$ sendo que

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{bmatrix} \qquad A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 & -2 \\ 2 & 1 - \lambda & -2 \\ 2 & 2 & -3 - \lambda \end{bmatrix} \quad \text{e} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- (a) Calcule, em função de λ , det $(A \lambda I)$.
- (b) Para que valores de λ tem-se que $\det(A \lambda I) = 0$?
- (c) Substitua $\lambda=1$ e depois $\lambda=-1$ no sistema acima e resolva-os (são dois sistemas lineares homogêneos mesmo).

13. Considere o sistema de equações lineares $(A - \alpha I)X = 0$, sendo que αI é a matriz identidade multiplicada por uma constante α , e matriz A é dada por

$$A = \left[\begin{array}{ccc} 1 & 8 & 3 \\ 0 & 2 & 0 \\ 0 & 4 & 0 \end{array} \right]$$

- (a) Para qualquer valor de α o sistema sempre tem solução? Justifique sua resposta.
- (b) Determine valores para α tais que o sistema tenha:
 - (i) Solução única.
 - (ii) Infinitas soluções.

Neste último caso, para cada valor de α encontrado, determine o conjunto solução.

14. Se D é a matriz abaixo, para quais valores de β a matriz escalonada reduzida da matriz D é a matriz identidade?

$$D = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 12 & \beta & -11 & 21 \\ 3 & 0 & -1 & 5 \\ 4 & 0 & 1 & \beta \end{bmatrix}$$

15. Seja

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 3 \\ 2 & 3 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 4 \end{array} \right].$$

- (a) Calcule $\det A$.
- (b) Calcule det $\left(2A^5(A^t)^{-1}\right)$.
- **16**. Seja *C* a matriz

$$C = \begin{bmatrix} 2 & 1 & -3 & 0 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & 3 & 0 \\ 1 & 3 & 0 & 4 \end{bmatrix}$$

determine

- (a) det(C);
- (b) o determinante da matriz inversa de *C*.
- 17. Sejam

$$A = \begin{bmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -6 & 4 & 3 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 3 & 10 & -30 & 0 \\ 0 & -1 & e^{\pi} & 5 \\ 0 & 0 & \sqrt{2} & 42 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Calcule

- (a) Calule det(A);
- (b) $\det\left(\frac{e^{\pi}}{\sqrt{2}}(A^{-1})^t B\right)$;
- (c) A^{-1} .
- 18. Considere uma matriz A e sejam L_i , i=1,2,3,4, as linhas da matriz A. Suponha que a matriz

$$B = \begin{bmatrix} 2 & 10 & 9 & 11 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 1 & 15 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

tenha sido obtida de A aplicando-se sucessivamente as seguintes operações elementares:

- (a) Troca da linha L_2 com a linha L_3 ;
- (b) Substituição da linha L_3 por $L_3 + 7L_1$;
- (c) Substituição da linha L_4 por $\frac{1}{3}L_4$.

Dessa forma, calcule det(A).

19. Sejam *a, b, c, d* números reais não nulos. Mostre que o determinante da matriz

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ bcd & acd & abd & abc \\ 0 & 3 & 2 & 1 \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} & \frac{1}{d} \end{bmatrix}$$

é igual a 0.

- 20. Decida se as seguintes afirmativas são verdadeiras ou falsas, justificando suas respostas.
 - (a) O determinante da matriz produto $B = A^t A$ é sempre não negativo.
 - (b) Se uma matriz quadrada A é tal que $A=A^3$ então $\det(A)=\pm 1$.
 - (c) Se A é uma matriz simétrica invertível, então A^{-1} é simétrica.
 - (d) Se o produto das matrizes AB é uma matriz invertível, então A e B são invertíveis.

- (e) Se A é uma matriz $n \times n$ tal que todos os elementos da diagonal principal de A são diferentes de 0, então A é invertível.
- (f) Seja A uma matriz quadrada $n \times n$. Se n é par e $A^t = -A$, então det A = 0.
- (g) Se A é uma matriz quadrada singular (não invertível), então existe uma matriz $B \neq 0$ tal que AB = 0.
- (h) Se existe A^{-1} , então a solução do sistema linear AX = B + C é dada por $X = A^{-1}B + A^{-1}C$.
- (i) Seja A uma matriz $n \times n$ tal que $A^3 = \mathbf{0}$. Então

$$(I - A)^{-1} = I + A + A^2$$

Bons estudos.