Relaciones de orden

Relación de ORDEN

La relación $R \subseteq A^2$ es de orden \Leftrightarrow es

Las relaciones de orden también se denominan de orden amplio.

A las relaciones de ORDEN (amplio) se las suele representar por el símbolo: ≤

a ≤ b decimos "a precede a b" si a es anterior a b en el orden establecido

Cuando en un conjunto hay definida una relación de orden, diremos que dicho conjunto está ordenado y se denota: (A ; \leq)

Una relación R es de orden estricto si y sólo si es a-simétrica y transitiva.

Se dice que el conjunto A es un conjunto estrictamente ordenado y se indica (A; \prec).

ELEMENTOS COMPARABLES En un conjunto ordenado (A, \leq) dos elementos $a, b \in A$ si dicen comparables "sí y solo sí" $a \leq b \lor b \leq a$

Si a ≰ b y b ≰ a, decimos que a y b no son comparables

Relación de orden parcial Una relación R es de orden parcial, si algunos elementos no son comparables entre sí.

Relación de orden total Una relación R es de orden total si todos los elementos son comparables $\forall a,b \in A \colon a \leq b \lor b \leq a$

Ejemplo: la relación "menor o igual que..."

Diagrama de Hasse

Es posible representar un conjunto ordenado y finito mediante un diagrama llamado de Hasse.

En el diagrama se suprimen los bucles y las aristas transitivas

Ejemplo: Sea A = { 2, 3, 6, 9, 12, 36 } ordenado por la relación "es divisor de"

puede omitirse el sentido de las aristas si se las dibuja de abajo hacia arriba.

Elementos Distinguidos de un Conjunto Ordenado

Sea (A; ≤) un conjunto ordenado

Un elemento $a \in A$ es maximal si: $\forall x \in A / a \le x \Rightarrow x = a$

ningún elemento "lo sigue" excepto si mismo

Un elemento $a \in A$ es minimal si: $\forall x \in A / x \le a \Rightarrow x = a$

ningún elemento "lo precede" excepto si mismo

Ejemplo: Sea A = { a, b, c, d, e } ordenado según el diagrama

Observaciones

- > Los maximales y/o minimales pueden no ser únicos
- Si el maximal es único se lo llama máximo o último elemento (1_A) a es máximo $\Leftrightarrow \forall x: x \leqslant a$
- > Si el minimal es único se lo llama mínimo o primer elemento(0_A) a es mínimo $\Leftrightarrow \forall x$: $a \leqslant x$

Átomos: Sea (A; \leq) un conjunto ordenado con primer elemento 0_A , los átomos son los elementos que siguen inmediatamente al primer elemento

Ejemplo: Sea A = { a, b, c, d, e } ordenado según el diagrama de Hasse

Son átomos { b, c }

Cotas

Sean (A, \leq) un conjunto ordenado y B \neq Ø, B \subseteq A

 $ightharpoonup k \in A$ es cota superior de B si $\forall x \in B$, $x \le k$

Las cotas superiores de un subconjunto ordenado son los elementos *que siguen* a todos los elementos del subconjunto.

El conjunto de las cotas superiores se llama conjunto mayorante

 \triangleright k \in A es cota inferior de B si \forall x \in B , k \leqslant x

Las cotas inferiores de un subconjunto ordenado son los elementos *que preceden* a todos los elementos del subconjunto.

El conjunto de las cotas inferiores se llama conjunto minorante

- ✓ A la menor de las cotas superiores se la denomina supremo
- ✓ A la mayor de las cotas inferiores se la denomina ínfimo
- ✓ Si el supremo pertenece a B entonces es máximo de B
- ✓ Si el ínfimo pertenece a B entonces es mínimo de B

Ejemplo:

Sea A = { m, g, a, x, h, v, k, l, e, w } ordenado de la siguiente forma:

Para
$$B = \{ x, v, h \}$$

$$C.S.=\{I, e, w\}$$

Sup= I
$$Max_B = No tiene$$

C.Inf. =
$$\{x, g\}$$

Inf. =
$$x$$
 Min_B = x

Conjunto bien ordenado

Sea (A, \leq) un conjunto ordenado, está **bien ordenado** si todo subconjunto de A tiene primer elemento, es decir que si \forall B \neq Ø, B \subseteq A, B tiene primer elemento.

Ejemplo: El conjunto IN de números naturales con la relación ≤ es un conjunto bien ordenado.

Observaciones

- ❖ ≼ se llama buen orden.
- \clubsuit Si B $\neq \emptyset$, B \subseteq A \Rightarrow B está bien ordenado.
- \clubsuit Si (A, \preccurlyeq) está bien ordenado \Rightarrow A está totalmente ordenado.