In [2]:

```
import pandas as pd
```

In [12]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"])#parsing dates from 1/2016
df.head()
```

Out[12]:

	Date	Country	Price in US Dollars
0	2016-01-01	Argentina	2.39
1	2016-01-01	Australia	3.74
2	2016-01-01	Brazil	3.35
3	2016-01-01	Britain	4.22
4	2016-01-01	Canada	4.14

In [11]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 652 entries, 0 to 651
Data columns (total 3 columns):
```

#	Column	Non-Null Count	Dtype
0	Date	652 non-null	<pre>datetime64[ns]</pre>
1	Country	652 non-null	object
2	Price in US Dollars	652 non-null	float64
dtyp	es: datetime64[ns](1)	, float64(1), ob	ject(1)
memo	ry usage: 15.4+ KB		

Create a Multiindex with set index method

In [26]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"])#parsing dates from 1/2016
df.head()
```

Out[26]:

	Date	Country	Price in US Dollars
0	2016-01-01	Argentina	2.39
1	2016-01-01	Australia	3.74
2	2016-01-01	Brazil	3.35
3	2016-01-01	Britain	4.22
4	2016-01-01	Canada	4.14

```
In [20]:
```

```
df.nunique()
```

Out[20]:

Date 12 Country 58 Price in US Dollars 330

dtype: int64

In [29]:

```
df.set_index(keys=["Date","Country"],inplace=True)
```

In [30]:

df

Out[30]:

Price in US Dollars

Date	Country	
2016-01-01	Argentina	2.39
	Australia	3.74
	Brazil	3.35
	Britain	4.22
	Canada	4.14
2010-01-01	Turkey	3.83
	UAE	2.99
	Ukraine	1.83
	United States	3.58
	Uruguay	3.32

652 rows × 1 columns

In [32]:

```
df.sort_index(inplace=True)#ascending L>>H
```

```
In [33]:
```

```
df.head()
```

Out[33]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [44]:

```
df.index
```

Out[44]:

```
MultiIndex([('2010-01-01',
                                  'Argentina'),
             ('2010-01-01',
                                  'Australia'),
             ('2010-01-01',
                                     'Brazil'),
             ('2010-01-01',
                                    'Britain'),
             ('2010-01-01',
                                     'Canada'),
             ('2010-01-01',
                                      'Chile'),
                                      'China'),
             ('2010-01-01',
             ('2010-01-01',
                                   'Colombia'),
             ('2010-01-01',
                                 'Costa Rica'),
             ('2010-01-01', 'Czech Republic'),
             ('2016-01-01',
                                'Switzerland'),
             ('2016-01-01',
                                     'Taiwan'),
             ('2016-01-01',
                                   'Thailand'),
             ('2016-01-01',
                                     'Turkey'),
             ('2016-01-01',
                                         'UAE'),
             ('2016-01-01',
                                    'Ukraine'),
                             'United States'),
             ('2016-01-01',
             ('2016-01-01',
                                    'Uruguay'),
             ('2016-01-01',
                                  'Venezuela'),
             ('2016-01-01',
                                    'Vietnam')],
            names=['Date', 'Country'], length=652)
```

In [50]:

```
df.index.names
```

Out[50]:

```
FrozenList(['Date', 'Country'])
```

```
In [54]:
```

```
type(df.index)
```

Out[54]:

pandas.core.indexes.multi.MultiIndex

In [56]:

```
df.index[0]
```

Out[56]:

(Timestamp('2010-01-01 00:00:00'), 'Argentina')

Extract index levels values based on get_level_values()

In [59]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"],index_col=["Date","Country"])#parsing date
df.sort_index(inplace=True)
df.head()
```

Out[59]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [65]:

```
df.index.get_level_values("Date")
df.index.get_level_values(0)
```

Out[65]:

```
DatetimeIndex(['2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01', '2016-01-01'], dtype='datetime64[ns]', name='Date', length=652, freq=None)
```

In [66]:

```
df.index.get_level_values("Country")
df.index.get_level_values(1)
```

Out[66]:

change index level names with set_names method

In [67]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"],index_col=["Date","Country"])#parsing date
df.sort_index(inplace=True)
df.head()
```

Out[67]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [71]:

```
df.index.set_names(names=["Day","Location"],inplace=True)#change index col names
```

In [72]:

```
df.head()
```

Out[72]:

Price in US Dollars

Day	Location	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [75]:

```
#to change only one index
df.index.set_names(names="Day",level=0)#1
df.index.set_names(names="Date",level="Day",inplace=True)#2
df.head()
```

Out[75]:

Price in US Dollars

Date	Location	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [77]:

```
df.index.set_names(names="Place",level=1,inplace=True)#1
df.head()
```

Out[77]:

Price in US Dollars

Da	te	Place	
2010-01-	01	Argentina	1.84
		Australia	3.98
		Brazil	4.76
		Britain	3.67
		Canada	3.97

```
In [82]:
df.columns.set_names(names="Price",inplace=True)
In [83]:
df.head()
Out[83]:
                Price
                      Price in US Dollars
                Place
      Date
 2010-01-01
            Argentina
                                   1.84
             Australia
                                   3.98
               Brazil
                                   4.76
               Britain
                                   3.67
              Canada
                                   3.97
In [90]:
df.rename(columns={"Price":"Price($)"},inplace=True)
In [91]:
df.head()
Out[91]:
                Price Price($)
      Date
                Place
 2010-01-01
            Argentina
                          1.84
             Australia
                          3.98
               Brazil
                          4.76
```

The sort_index() on mutItiindex DF

3.67

3.97

Britain

Canada

In [103]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"],index_col=["Date","Country"])#parsing date
df.head()
```

Out[103]:

Price in US Dollars

	Date	Country	
2016-0	1-01	Argentina	2.39
		Australia	3.74
		Brazil	3.35
		Britain	4.22
		Canada	4.14

In [106]:

df.sort_index(ascending=[False,True]).head(10)#date-desc,country-asc #1

Out[106]:

Price in US Dollars

Date	Country	
2016-01-01	Argentina	2.39
	Australia	3.74
	Austria	3.76
	Belgium	4.25
	Brazil	3.35
	Britain	4.22
	Canada	4.14
	Chile	2.94
	China	2.68
	Colombia	2.43
		2016-01-01 Argentina Australia Austria Belgium Brazil Britain Canada Chile China

In [109]:

df.sort_index(ascending=[True,False],inplace=True)#date-asc,country-desc #1

In [110]:

df.head(10)

Out[110]:

Price in US Dollars

Date	Country	
2010-01-01	Uruguay	3.32
	United States	3.58
	Ukraine	1.83
	UAE	2.99
	Turkey	3.83
	Thailand	2.11
	Taiwan	2.36
	Switzerland	6.30
	Sweden	5.51
	Sri Lanka	1.83

In [115]:

df.sort_index(level=1, ascending=True).head()#sort only country #2

Out[115]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
2010-07-01	Argentina	3.56
2011-07-01	Argentina	4.84
2012-01-01	Argentina	4.64
2012-07-01	Argentina	4.16

In [113]:

```
df.head(10)
```

Out[113]:

Price in US Dollars

Date Country	
2010-01-01 Uruguay 3.32	
United States 3.58	
Ukraine 1.83	
UAE 2.99	
Turkey 3.83	
Thailand 2.11	
Taiwan 2.36	
Switzerland 6.30	
Sweden 5.51	
Sri Lanka 1.83	

In [116]:

```
df.sort_index(level="Country", ascending=True).head()#sort only country #2
```

Out[116]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
2010-07-01	Argentina	3.56
2011-07-01	Argentina	4.84
2012-01-01	Argentina	4.64
2012-07-01	Argentina	4.16

EXtract rows from multiindex DF-tuples

In [117]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"],index_col=["Date","Country"])#parsing date
df.sort_index(inplace=True)
df.head()
```

Out[117]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [120]:

```
df.loc["2010-01-01","Argentina"]
```

Out[120]:

Price in US Dollars 1.84

Name: (2010-01-01 00:00:00, Argentina), dtype: float64

In [122]:

```
df.loc["2010-01-01"]
```

Out[122]:

Price in US Dollars

		Price in US Dollars
Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97
	Chile	3.18
	China	1.83
	Colombia	3.91
	Costa Rica	3.52
	Czech Republic	3.71
	Denmark	5.99
	Egypt	2.38
	Euro area	4.84
	Hong Kong	1.91
	Hungary	3.86
	Indonesia	2.24
	Israel	3.99
	Japan	3.50
	Latvia	3.09
	Lithuania	2.87
	Malaysia	2.08
	Mexico	2.50
	New Zealand	3.61
	Norway	7.02
	Pakistan	2.42
	Peru	2.81
	Philippines	2.21
	Poland	2.86
	Russia	2.34
	Saudi Arabia	2.67
	Singapore	3.19
	South Africa	2.46
	South Korea	2.98
	Sri Lanka	1.83

Price in US Dollars

Date	Country	
	Sweden	5.51
Swi	tzerland	6.30
	Taiwan	2.36
	Thailand	2.11
	Turkey	3.83
	UAE	2.99
	Ukraine	1.83
Unite	d States	3.58
	Uruguay	3.32

In [125]:

```
df.loc[("2010-01-01","Argentina")] #tuple #1
```

Out[125]:

Price in US Dollars 1.84

Name: (2010-01-01 00:00:00, Argentina), dtype: float64

In [126]:

```
df.loc[("2010-01-01","Argentina"),["Price in US Dollars"]]#3 --DF <<-- (row) [columns]
```

Out[126]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84

In [127]:

```
df.loc[("2010-01-01","Argentina"),"Price in US Dollars"]#2-- MI series
```

Out[127]:

Date Country

2010-01-01 Argentina 1.84

Name: Price in US Dollars, dtype: float64

```
In [131]:
```

```
df.loc[("2010-01-01")].head() #not a tuple caz no comma ,
```

Out[131]:

Price in US Dollars

D	ate	Country	
2010-01	-01	Argentina	1.84
		Australia	3.98
		Brazil	4.76
		Britain	3.67
		Canada	3.97

In [130]:

```
df.loc[("2010-01-01",)].head() #not a tuple caz no comma ,
```

Out[130]:

Price in US Dollars

Country	
Argentina	1.84
Australia	3.98
Brazil	4.76
Britain	3.67
Canada	3.97

In [136]:

```
df.iloc[0] #iloc
```

Out[136]:

Price in US Dollars 1.84

Name: (2010-01-01 00:00:00, Argentina), dtype: float64

In [134]:

df.iloc[4]

Out[134]:

Price in US Dollars 3.97

Name: (2010-01-01 00:00:00, Canada), dtype: float64

In [142]:

```
df.iloc[[2,4,85,80]]
```

Out[142]:

Price in US Dollars

Date	Country		
2010-01-01	Brazil	4.76	i
	Canada	3.97	
2010-07-01	Uruguay	3.74	
	Thailand	2.17	,

The transpose method()

In [3]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"],index_col=["Date","Country"])#parsing date
df.sort_index(inplace=True)
df.head()
```

Out[3]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [5]:

df.transpose()

Out[5]:

Date 2010-01-01

Country	Argentina	Australia	Brazil	Britain	Canada	Chile	China	Colombia	Costa Rica	Czecł Republic
Price in US Dollars	1.84	3.98	4.76	3.67	3.97	3.18	1.83	3.91	3.52	3.71

1 rows × 652 columns

In [6]:

df.head()

Out[6]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [7]:

df=df.transpose()

In [8]:

df

Out[8]:

Date 2010-01-01

Country	Argentina	Australia	Brazil	Britain	Canada	Chile	China	Colombia	Costa Rica	Czecł Republic
Price in US Dollars	1.84	3.98	4.76	3.67	3.97	3.18	1.83	3.91	3.52	3.71

1 rows × 652 columns

```
In [21]:
df.loc["Price in US Dollars",("2010-01-01","Chile")]#Series
Out[21]:
Date
            Country
2010-01-01 Chile
                        3.18
Name: Price in US Dollars, dtype: float64
In [23]:
df.loc[["Price in US Dollars"],("2010-01-01","Chile")]#Dataframe
Out[23]:
            Date 2010-01-01
         Country
                      Chile
Price in US Dollars
                       3.18
In [22]:
df.loc["Price in US Dollars",[("2010-01-01","Chile"),("2010-01-01","China")]]#series
Out[22]:
Date
            Country
2010-01-01 Chile
                        3.18
            China
                        1.83
Name: Price in US Dollars, dtype: float64
In [25]:
df.loc[["Price in US Dollars"],[("2010-01-01","Chile"),("2010-01-01","China")]]#dataframe
Out[25]:
                   2010-01-01
            Date
         Country Chile China
Price in US Dollars
                  3.18
                         1.83
In [28]:
df.loc[["Price in US Dollars"],[("2010-01-01","Chile"),("2010-01-01","China")]]#dataframe
Out[28]:
            Date
                   2010-01-01
         Country Chile China
Price in US Dollars
                  3.18
                        1.83
```

```
In [31]:
```

```
df.loc[("Price in US Dollars",),("2010-01-01","Chile")]#Dataframe
```

Out[31]:

Date 2010-01-01

Country	Chile
Price in US Dollars	3.18

In [41]:

```
df.loc[("Price in US Dollars",),("2010-01-01",)]#Dataframe
```

Out[41]:

Date

Country	Argentina	Australia	Brazil	Britain	Canada	Chile	China	Colombia	Costa Rica	Czecł Republic
Price in US Dollars	1.84	3.98	4.76	3.67	3.97	3.18	1.83	3.91	3.52	3.71

1 rows × 43 columns

In [43]:

```
df.loc[("Price in US Dollars",),("2010-01-01","Australia"):("2010-01-01","Colombia")]#Slici
```

Out[43]:

 Country
 Australia
 Brazil
 Britain
 Canada
 Chile
 China
 Colombia

 Price in US Dollars
 3.98
 4.76
 3.67
 3.97
 3.18
 1.83
 3.91

In [57]:

```
df.columns.unique(level=0)
#df.index.nunique()
```

Out[57]:

```
DatetimeIndex(['2010-01-01', '2010-07-01', '2011-07-01', '2012-01-01', '2012-07-01', '2013-01-01', '2013-07-01', '2014-01-01', '2014-07-01', '2015-01-01', '2015-07-01', '2016-01-01'], dtype='datetime64[ns]', name='Date', freq=None)
```

```
In [59]:
```

```
df.columns.unique(level=1).nunique()
```

Out[59]:

58

In [60]:

```
df.columns.unique(level=1)
```

Out[60]:

In [67]:

```
df.loc[("Price in US Dollars",),("2010-01-01",):("2010-07-01",)]#Dataframe Slicing
```

Out[67]:

Date 2010-01-01

Country	Argentina	Australia	Brazil	Britain	Canada	Chile	China	Colombia	Costa Rica	Czecł Republic
Price in US Dollars	1.84	3.98	4.76	3.67	3.97	3.18	1.83	3.91	3.52	3.71

¹ rows × 86 columns

The swapLevel Method

In [68]:

```
df=pd.read_csv("bigmac.csv",parse_dates=["Date"],index_col=["Date","Country"])#parsing date
df.sort_index(inplace=True)
df.head()
```

Out[68]:

Price in US Dollars

Date	Country	
2010-01-01	Argentina	1.84
	Australia	3.98
	Brazil	4.76
	Britain	3.67
	Canada	3.97

In [72]:

df.swaplevel().head()#chnaging outer and inner Level indices

Out[72]:

Price in US Dollars

Country	Date	
Argentina	2010-01-01	1.84
Australia	2010-01-01	3.98
Brazil	2010-01-01	4.76
Britain	2010-01-01	3.67
Canada	2010-01-01	3.97

```
In [78]:
```

```
df.swaplevel("Date", "Country")
df.swaplevel("Country", "Date")
df.swaplevel(0,1)
df.swaplevel(1,0).head()
```

Out[78]:

Price in US Dollars

Country	Date	
Argentina	2010-01-01	1.84
Australia	2010-01-01	3.98
Brazil	2010-01-01	4.76
Britain	2010-01-01	3.67
Canada	2010-01-01	3.97

In [80]:

```
df=df.swaplevel(0,1)
```

In [81]:

```
df.head()
```

Out[81]:

Price in US Dollars

Country	Date	
Argentina	2010-01-01	1.84
Australia	2010-01-01	3.98
Brazil	2010-01-01	4.76
Britain	2010-01-01	3.67
Canada	2010-01-01	3.97

The .stack()

In [9]:

```
world=pd.read_csv("worldstats.csv",index_col=["country","year"])
world.head()
```

Out[9]:

		Population	GDP	
country	year			
Arab World	2015	392022276.0	2.530102e+12	
	2014	384222592.0	2.873600e+12	
	2013	376504253.0	2.846994e+12	
	2012	368802611.0	2.773270e+12	
	2011	361031820.0	2.497945e+12	

In [26]:

world=world.stack().to_frame()###series to datframe #Stack converts columns to rows

In [28]:

```
world.head()
```

Out[28]:

0

country	year				
Arab World	2015	Population	0	new	3.920223e+08
		GDP	0	new	2.530102e+12
	2014	Population	0	new	3.842226e+08
		GDP	0	new	2.873600e+12
	2013	Population	0	new	3 765043e+08

In [31]:

```
world.rename(columns={0:"new"},inplace=True)#cxhsning column name 0 to new
```

```
In [32]:
```

```
world.head()
```

Out[32]:

 country
 year

 Arab World
 2015
 Population
 0
 new
 3.920223e+08

 GDP
 0
 new
 2.530102e+12

 2014
 Population
 0
 new
 3.842226e+08

 GDP
 0
 new
 2.873600e+12

 2013
 Population
 0
 new
 3.765043e+08

The .unstack() mrhtod

In [33]:

```
world=pd.read_csv("worldstats.csv",index_col=["country","year"])
world.head()
```

Out[33]:

		Population	GDP
country	year		
Arab World	2015	392022276.0	2.530102e+12
	2014	384222592.0	2.873600e+12
	2013	376504253.0	2.846994e+12
	2012	368802611.0	2.773270e+12
	2011	361031820.0	2.497945e+12

In [37]:

```
s=world.stack()
s.head()
```

Out[37]:

dtype: float64

In [51]:

```
s.unstack().unstack()
```

Out[51]:

country year Population 1960 Afghanistan 8.994793e+06 Albania NaN Algeria 1.112489e+07 Andorra NaN Angola NaN **GDP** 2015 West Bank and Gaza 1.267740e+10 World 7.343364e+13 Yemen, Rep. NaN Zambia 2.120156e+10 Zimbabwe 1.389294e+10 Length: 28224, dtype: float64

In [53]:

s.unstack().unstack().to_frame().head()#series to frame

Out[53]:

 Population
 1960
 Afghanistan
 8994793.0

 Albania
 NaN

 Algeria
 11124892.0

 Andorra
 NaN

 Angola
 NaN

unstack() part 2

In [55]:

world.head()

Out[55]:

		Population	GDP
country	year		
Arab World	2015	392022276.0	2.530102e+12
	2014	384222592.0	2.873600e+12
	2013	376504253.0	2.846994e+12
	2012	368802611.0	2.773270e+12
	2011	361031820.0	2.497945e+12

In [101]:

```
s=world.stack()#three level series
s
```

Out[101]:

country	year						
Arab World	2015	Population	3.920223e+08				
		GDP	2.530102e+12				
	2014	Population	3.842226e+08				
		GDP	2.873600e+12				
	2013	Population	3.765043e+08				
			• • •				
Zimbabwe	1962	GDP	1.117602e+09				
	1961	Population	3.876638e+06				
		GDP	1.096647e+09				
	1960	Population	3.752390e+06				
		GDP	1.052990e+09				
1 th. 22422							

Length: 22422, dtype: float64

In [67]:

s.unstack().unstack().head()#no level which is inner level

Out[67]:

	year	1960	1961	1962	1963	1964	1965	196
	country							
•	Afghanistan	8994793.0	9164945.0	9343772.0	9531555.0	9728645.0	9935358.0	10148841.0
	Albania	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	Algeria	11124892.0	11404859.0	11690152.0	11985130.0	12295973.0	12626953.0	12980269.
	Andorra	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	Angola	NaN	NaN	NaN	NaN	NaN	NaN	Nal

5 rows × 112 columns

In [66]:

s.unstack().unstack(0).head()#moving outer layer (level=0) to columns

Out[66]:

country	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Arab World	Argentina	Arm
year									
1960	8994793.0	NaN	11124892.0	NaN	NaN	NaN	NaN	NaN	
1961	9164945.0	NaN	11404859.0	NaN	NaN	NaN	NaN	NaN	
1962	9343772.0	NaN	11690152.0	NaN	NaN	NaN	NaN	21287682.0	
1963	9531555.0	NaN	11985130.0	NaN	NaN	NaN	NaN	21621845.0	
1964	9728645.0	NaN	12295973.0	NaN	NaN	NaN	NaN	21953926.0	

5 rows × 504 columns

In [69]:

s.unstack(1).head()#moving outer layer (level=0) to columns

Out[69]:

	year	1960	1961	1962	1963	1964
country						
Afghanistan	Population	8.994793e+06	9.164945e+06	9.343772e+06	9.531555e+06	9.728645e+06
	GDP	5.377778e+08	5.488889e+08	5.466667e+08	7.511112e+08	8.000000e+08
Albania	Population	NaN	NaN	NaN	NaN	NaN
	GDP	NaN	NaN	NaN	NaN	NaN
Algeria	Population	1.112489e+07	1.140486e+07	1.169015e+07	1.198513e+07	1.229597e+07

5 rows × 56 columns

In [70]:

s.head()

Out[70]:

dtype: float64

In [79]:

s.unstack(-1).head()#selecting particular index to move into columns with negative numbers
s.unstack(2).head()

Out[79]:

		Population	GDP
country	year		
Afghanistan	1960	8994793.0	5.377778e+08
	1961	9164945.0	5.488889e+08
	1962	9343772.0	5.466667e+08
	1963	9531555.0	7.511112e+08
	1964	9728645.0	8.000000e+08

In [80]:

```
s.unstack(-2).head()#1
s.unstack(1).head()
```

Out[80]:

	year	1960	1961	1962	1963	1964
country						
Afghanistan	Population	8.994793e+06	9.164945e+06	9.343772e+06	9.531555e+06	9.728645e+06
	GDP	5.377778e+08	5.488889e+08	5.466667e+08	7.511112e+08	8.000000e+08
Albania	Population	NaN	NaN	NaN	NaN	NaN
	GDP	NaN	NaN	NaN	NaN	NaN
Algeria	Population	1.112489e+07	1.140486e+07	1.169015e+07	1.198513e+07	1.229597e+07

5 rows × 56 columns

In [81]:

```
s.unstack(-3).head()
s.unstack(0).head()
```

Out[81]:

	country	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Arab World	Arţ
year									
1960	Population	8.994793e+06	NaN	1.112489e+07	NaN	NaN	NaN	NaN	
	GDP	5.377778e+08	NaN	2.723638e+09	NaN	NaN	NaN	NaN	
1961	Population	9.164945e+06	NaN	1.140486e+07	NaN	NaN	NaN	NaN	
	GDP	5.488889e+08	NaN	2.434767e+09	NaN	NaN	NaN	NaN	
1962	Population	9.343772e+06	NaN	1.169015e+07	NaN	NaN	NaN	NaN	2128

5 rows × 252 columns

In [83]:

s.head()

Out[83]:

dtype: float64

In [103]:

s.unstack("year").head()#2

Out[103]:

	year	1960	1961	1962	1963	1964
country						
Afghanistan	Population	8.994793e+06	9.164945e+06	9.343772e+06	9.531555e+06	9.728645e+06
	GDP	5.377778e+08	5.488889e+08	5.466667e+08	7.511112e+08	8.000000e+08
Albania	Population	NaN	NaN	NaN	NaN	NaN
	GDP	NaN	NaN	NaN	NaN	NaN
Algeria	Population	1.112489e+07	1.140486e+07	1.169015e+07	1.198513e+07	1.229597e+07

5 rows × 56 columns

In [102]:

```
s.unstack("country").head()
```

Out[102]:

	country	Afghanistan	Albania	Algeria	Andorra	Angola	Antigua and Barbuda	Arab World	Arį
year									
1960	Population	8.994793e+06	NaN	1.112489e+07	NaN	NaN	NaN	NaN	
	GDP	5.377778e+08	NaN	2.723638e+09	NaN	NaN	NaN	NaN	
1961	Population	9.164945e+06	NaN	1.140486e+07	NaN	NaN	NaN	NaN	
	GDP	5.488889e+08	NaN	2.434767e+09	NaN	NaN	NaN	NaN	
1962	Population	9.343772e+06	NaN	1.169015e+07	NaN	NaN	NaN	NaN	2128

5 rows × 252 columns

unstck() part 3

In [104]:

```
world=pd.read_csv("worldstats.csv",index_col=["country","year"])
s=world.stack()
world.head()
```

Out[104]:

		Population	GDP
country	year		
Arab World	2015	392022276.0	2.530102e+12
	2014	384222592.0	2.873600e+12
	2013	376504253.0	2.846994e+12
	2012	368802611.0	2.773270e+12
	2011	361031820.0	2.497945e+12

In [106]:

```
s.head()#converting multiple indices to columns
```

Out[106]:

dtype: float64

In [109]:

```
s.unstack(level=["year","country"])
s.unstack(level=[1,0])
```

Out[109]:

year	2015	2014	2013	2012	2011	201
country	Arab World	Arab Wor				
Population	3.920223e+08	3.842226e+08	3.765043e+08	3.688026e+08	3.610318e+08	3.531122e+(
GDP	2.530102e+12	2.873600e+12	2.846994e+12	2.773270e+12	2.497945e+12	2.103825e+1

2 rows × 11211 columns

In [113]:

```
s.unstack("year",fill_value=0).head()#replace nan with 0
```

Out[113]:

	year	1960	1961	1962	1963	1964
country						
Afghanistan	Population	8.994793e+06	9.164945e+06	9.343772e+06	9.531555e+06	9.728645e+06
	GDP	5.377778e+08	5.488889e+08	5.466667e+08	7.511112e+08	8.000000e+08
Albania	Population	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	GDP	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
Algeria	Population	1.112489e+07	1.140486e+07	1.169015e+07	1.198513e+07	1.229597e+07

5 rows × 56 columns

In [115]:

```
s=s.unstack("year",fill_value=0)#replace nan with 0
```

```
In [116]:
```

```
s.head()
```

Out[116]:

	year	1960	1961	1962	1963	1964
country						
Afghanistan	Population	8.994793e+06	9.164945e+06	9.343772e+06	9.531555e+06	9.728645e+06
	GDP	5.377778e+08	5.488889e+08	5.466667e+08	7.511112e+08	8.000000e+08
Albania	Population	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	GDP	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
Algeria	Population	1.112489e+07	1.140486e+07	1.169015e+07	1.198513e+07	1.229597e+07

5 rows × 56 columns

The pivot method

In [126]:

```
sales=pd.read_csv("salesmen.csv",parse_dates=["Date"])
sales["Salesman"]=sales["Salesman"].astype("category")
sales.head()
```

Out[126]:

	Date	Salesman	Revenue
0	2016-01-01	Bob	7172
1	2016-01-02	Bob	6362
2	2016-01-03	Bob	5982
3	2016-01-04	Bob	7917
4	2016-01-05	Bob	7837

In [127]:

```
sales.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1830 entries, 0 to 1829
Data columns (total 3 columns):
             Non-Null Count Dtype
    Column
    -----
              _____
             1830 non-null
0
    Date
                             datetime64[ns]
1
    Salesman 1830 non-null
                           category
    Revenue 1830 non-null
                             int64
dtypes: category(1), datetime64[ns](1), int64(1)
memory usage: 30.7 KB
```

```
In [128]:
sales["Salesman"].unique()
Out[128]:
['Bob', 'Ronald', 'Dave', 'Jeb', 'Oscar']
Categories (5, object): ['Bob', 'Dave', 'Jeb', 'Oscar', 'Ronald']
In [130]:
len(sales["Salesman"])
Out[130]:
1830
In [131]:
sales["Salesman"].value_counts()
Out[131]:
Bob
          366
          366
Dave
Jeb
          366
          366
0scar
Ronald
          366
Name: Salesman, dtype: int64
In [138]:
#######index=to make index ,columns = to make column indices,values =to put in intersction
sales.pivot(index="Date",columns="Salesman",values="Revenue").head()
```

Out[138]:

Salesman	Bob	Dave	Jeb	Oscar	Ronald
Date					
2016-01-01	7172	1864	4430	5250	2639
2016-01-02	6362	8278	8026	8661	4951
2016-01-03	5982	4226	5188	7075	2703
2016-01-04	7917	3868	3144	2524	4258
2016-01-05	7837	2287	938	2793	7771

The pivot_table() method

In [142]:

```
foods=pd.read_csv("foods.csv")
foods.head()
```

Out[142]:

	First Name	Gender	City	Frequency	Item	Spend
0	Wanda	Female	Stamford	Weekly	Burger	15.66
1	Eric	Male	Stamford	Daily	Chalupa	10.56
2	Charles	Male	New York	Never	Sushi	42.14
3	Anna	Female	Philadelphia	Once	Ice Cream	11.01
4	Deborah	Female	Philadelphia	Daily	Chalupa	23.49

In [143]:

```
foods.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	First Name	1000 non-null	object
1	Gender	1000 non-null	object
2	City	1000 non-null	object
3	Frequency	1000 non-null	object
4	Item	1000 non-null	object
5	Spend	1000 non-null	float64

dtypes: float64(1), object(5)

memory usage: 47.0+ KB

In [144]:

```
foods.pivot_table(values="Spend",index="Gender",aggfunc="mean")
```

Out[144]:

Spend

Gender

Female 50.709629

Male 49.397623

```
In [146]:
```

```
foods.pivot_table(values="Spend",index="Item",aggfunc="sum")
```

Out[146]:

Spend

Item

Burger 7765.73

Burrito 8270.44

Chalupa 7644.52

Donut 8758.76

Ice Cream 8886.99

Sushi 8742.93

In [147]:

```
foods.pivot_table(values="Spend",index="Gender",aggfunc="sum")
```

Out[147]:

Spend

Gender

Female 25963.33

Male 24106.04

In [155]:

```
(foods.pivot_table(values="Spend",index=["Item","Gender","City"],aggfunc="sum"))
```

Out[155]:

ouc[133].			
			Spend
Item	Gender	City	
Burger	Female	New York	1239.04
		Philadelphia	1639.24
		Stamford	1216.02
	Male	New York	1294.09
		Philadelphia	938.18
		Stamford	1439.16
Burrito	Female	New York	978.95
		Philadelphia	1458.76
		Stamford	1820.11
	Male	New York	1399.40
		Philadelphia	1312.93
		Stamford	1300.29
Chalupa	Female	New York	876.58
		Philadelphia	1673.33
		Stamford	1602.35
	Male	New York	1227.77
		Philadelphia	1114.23
		Stamford	1150.26
Donut	Female	New York	1446.78
		Philadelphia	1639.26
		Stamford	1656.96
	Male	New York	1345.27
		Philadelphia	1249.36
		Stamford	1421.13
Ice Cream	Female	New York	1521.62
		Philadelphia	1479.22
		Stamford	1032.03
	Male	New York	1603.63
		Philadelphia	2191.27
		Stamford	1059.22
Sushi	Female	New York	1480.29
		Philadelphia	1742.88
		Stamford	1459.91
	Male	New York	1396.15

Spend

Item	Gender	City	
		Philadelphia	1395.88
		Stamford	1267.82

In [159]:

```
foods.pivot_table(values="Spend",index=["Gender","Item","City"],aggfunc="sum")
```

Out[159]:

			Spend
Gender	Item	City	
Female	Burger	New York	1239.04
		Philadelphia	1639.24
		Stamford	1216.02
	Burrito	New York	978.95
		Philadelphia	1458.76
		Stamford	1820.11
	Chalupa	New York	876.58
		Philadelphia	1673.33
		Stamford	1602.35
	Donut	New York	1446.78
		Philadelphia	1639.26
		Stamford	1656.96
	Ice Cream	New York	1521.62
		Philadelphia	1479.22
		Stamford	1032.03
	Sushi	New York	1480.29
		Philadelphia	1742.88
		Stamford	1459.91
Male	Burger	New York	1294.09
		Philadelphia	938.18
		Stamford	1439.16
	Burrito	New York	1399.40
		Philadelphia	1312.93
		Stamford	1300.29
	Chalupa	New York	1227.77
		Philadelphia	1114.23
		Stamford	1150.26
	Donut	New York	1345.27
		Philadelphia	1249.36
		Stamford	1421.13
	Ice Cream	New York	1603.63
		Philadelphia	2191.27
		Stamford	1059.22
	Sushi	New York	1396.15

Spend

Gender	Item	City	
		Philadelphia	1395.88
		Stamford	1267 82

In [169]:

foods.pivot_table(values="Spend",index=["Gender","Item"],columns="City",aggfunc="sum").head

Out[169]:

	City	New York	Philadelphia	Stamford
Gender	Item			
Female	Burger	1239.04	1639.24	1216.02
	Burrito	978.95	1458.76	1820.11
	Chalupa	876.58	1673.33	1602.35
	Donut	1446.78	1639.26	1656.96
	Ice Cream	1521.62	1479.22	1032.03

In [171]:

foods.pivot_table(values="Spend",index=["Gender","Item"],columns=["Frequency","City"],aggfu

Out[171]:

	Frequency			Daily			Monthly		
	City	New York	Philadelphia	Stamford	New York	Philadelphia	Stamford	New York	Phil
Gender	Item								
Female	Burger	262.67	231.68	144.66	171.86	215.05	238.49	97.89	
	Burrito	224.45	321.57	195.63	122.74	34.28	67.94	189.73	
	Chalupa	43.19	23.49	95.70	158.37	289.96	161.98	35.15	
	Donut	478.10	247.40	124.35	284.53	50.25	229.30	56.07	
	Ice Cream	262.19	177.69	92.88	92.53	74.51	125.85	206.15	
	Sushi	81.07	348.53	393.27	93.16	78.71	108.39	69.33	
Male	Burger	319.46	112.70	197.72	187.29	213.14	27.16	90.32	
	Burrito	236.21	165.76	276.23	147.54	89.58	119.60	86.78	
	Chalupa	54.09	274.81	192.64	333.76	90.70	343.76	199.09	
	Donut	230.00	190.71	129.42	183.73	259.29	119.53	219.63	
	Ice Cream	178.22	148.69	15.17	152.20	386.55	74.36	57.54	
	Sushi	225.57	280.93	NaN	430.86	155.59	93.03	164.01	

12 rows × 24 columns

In [173]:

```
foods.pivot_table(values="Spend",index=["Gender","Item"],columns="City",aggfunc="max")
foods.pivot_table(values="Spend",index=["Gender","Item"],columns="City",aggfunc="max")
```

Out[173]:

	City	New York	Philadelphia	Stamford
Gender	Item			
Female	Burger	98.96	97.79	85.06
	Burrito	92.25	96.79	99.21
	Chalupa	98.43	99.29	98.78
	Donut	95.63	96.52	91.75
	Ice Cream	97.83	88.14	97.44
	Sushi	99.51	99.02	95.43
Male	Burger	90.32	99.68	97.20
	Burrito	98.04	93.27	95.07
	Chalupa	96.44	98.40	99.87
	Donut	86.70	93.12	99.26
	Ice Cream	97.65	99.24	99.17
	Sushi	93.85	97.12	98.48

In [177]:

#pivot table directly on pandas without double quotes for df name
pd.pivot_table(data=foods,values="Spend",index=["Gender","Item"],columns="City",aggfunc="ma")

Out[177]:

	City	New York	Philadelphia	Stamford
Gender	Item			
Female	Burger	98.96	97.79	85.06
	Burrito	92.25	96.79	99.21
	Chalupa	98.43	99.29	98.78
	Donut	95.63	96.52	91.75
	Ice Cream	97.83	88.14	97.44
	Sushi	99.51	99.02	95.43
Male	Burger	90.32	99.68	97.20
	Burrito	98.04	93.27	95.07
	Chalupa	96.44	98.40	99.87
	Donut	86.70	93.12	99.26
	Ice Cream	97.65	99.24	99.17
	Sushi	93.85	97.12	98.48

the pd.melt() method

In [179]:

```
#oop to pivot table()
sale=pd.read_csv("quarters.csv")
sale
```

Out[179]:

	Salesman	Q1	Q2	Q3	Q4
0	Boris	602908	233879	354479	32704
1	Bob	43790	514863	297151	544493
2	Tommy	392668	113579	430882	247231
3	Travis	834663	266785	749238	570524
4	Donald	580935	411379	110390	651572
5	Ted	656644	70803	375948	321388
6	Jeb	486141	600753	742716	404995
7	Stacy	479662	742806	770712	2501
8	Morgan	992673	879183	37945	293710

In [181]:

pd.melt(sale,id_vars="Salesman",)#id vars--> column needs to be kept constant

Out[181]:

,			
	Salesman	variable	value
0	Boris	Q1	602908
1	Bob	Q1	43790
2	Tommy	Q1	392668
3	Travis	Q1	834663
4	Donald	Q1	580935
5	Ted	Q1	656644
6	Jeb	Q1	486141
7	Stacy	Q1	479662
8	Morgan	Q1	992673
9	Boris	Q2	233879
10	Bob	Q2	514863
11	Tommy	Q2	113579
12	Travis	Q2	266785
13	Donald	Q2	411379
14	Ted	Q2	70803
15	Jeb	Q2	600753
16	Stacy	Q2	742806
17	Morgan	Q2	879183
18	Boris	Q3	354479
19	Bob	Q3	297151
20	Tommy	Q3	430882
21	Travis	Q3	749238
22	Donald	Q3	110390
23	Ted	Q3	375948
24	Jeb	Q3	742716
25	Stacy	Q3	770712
26	Morgan	Q3	37945
27	Boris	Q4	32704
28	Bob	Q4	544493
29	Tommy	Q4	247231
30	Travis	Q4	570524
31	Donald	Q4	651572
32	Ted	Q4	321388
33	Jeb	Q4	404995
34	Stacy	Q4	2501

Salesman		variable	value
35	Morgan	Q4	293710

In [182]:

```
pd.melt(sale,id_vars="Salesman",var_name="Quarter")
```

Out[182]:

	Salesman	Quarter	value
0	Boris	Q1	602908
1	Bob	Q1	43790
2	Tommy	Q1	392668
3	Travis	Q1	834663
4	Donald	Q1	580935
5	Ted	Q1	656644
6	Jeb	Q1	486141
7	Stacy	Q1	479662
8	Morgan	Q1	992673
9	Boris	Q2	233879
10	Bob	Q2	514863
11	Tommy	Q2	113579
12	Travis	Q2	266785
13	Donald	Q2	411379
14	Ted	Q2	70803
15	Jeb	Q2	600753
16	Stacy	Q2	742806
17	Morgan	Q2	879183
18	Boris	Q3	354479
19	Bob	Q3	297151
20	Tommy	Q3	430882
21	Travis	Q3	749238
22	Donald	Q3	110390
23	Ted	Q3	375948
24	Jeb	Q3	742716
25	Stacy	Q3	770712
26	Morgan	Q3	37945
27	Boris	Q4	32704
28	Bob	Q4	544493
29	Tommy	Q4	247231
30	Travis	Q4	570524
31	Donald	Q4	651572
32	Ted	Q4	321388
33	Jeb	Q4	404995
34	Stacy	Q4	2501

	Salesman	Quarter	value
35	Morgan	Q4	293710

In [183]:

```
pd.melt(sale,id_vars="Salesman",var_name="Quarter",value_name="Revenue")
```

Out[183]:

	Salesman	Quarter	Revenue
0	Boris	Q1	602908
1	Bob	Q1	43790
2	Tommy	Q1	392668
3	Travis	Q1	834663
4	Donald	Q1	580935
5	Ted	Q1	656644
6	Jeb	Q1	486141
7	Stacy	Q1	479662
8	Morgan	Q1	992673
9	Boris	Q2	233879
10	Bob	Q2	514863
11	Tommy	Q2	113579
12	Travis	Q2	266785
13	Donald	Q2	411379
14	Ted	Q2	70803
15	Jeb	Q2	600753
16	Stacy	Q2	742806
17	Morgan	Q2	879183
18	Boris	Q3	354479
19	Bob	Q3	297151
20	Tommy	Q3	430882
21	Travis	Q3	749238
22	Donald	Q3	110390
23	Ted	Q3	375948
24	Jeb	Q3	742716
25	Stacy	Q3	770712
26	Morgan	Q3	37945
27	Boris	Q4	32704
28	Bob	Q4	544493
29	Tommy	Q4	247231
30	Travis	Q4	570524
31	Donald	Q4	651572
32	Ted	Q4	321388
33	Jeb	Q4	404995
34	Stacy	Q4	2501

Salesman Quarter Revenue 35 Morgan Q4 293710

```
'''id_vars : tuple, list, or ndarray, optional
   Column(s) to use as identifier variables.
value_vars : tuple, list, or ndarray, optional
   Column(s) to unpivot. If not specified, uses all columns that
   are not set as `id_vars`.
var_name : scalar
   Name to use for the 'variable' column. If None it uses
   ``frame.columns.name`` or 'variable'.
value_name : scalar, default 'value'
   Name to use for the 'value' column.
col_level : int or str, optional
   If columns are a MultiIndex then use this level to melt.
ignore_index : bool, default True
   If True, original index is ignored. If False, the original index is retained.
   Index labels will be repeated as necessary.'''
```

In [11]:

```
import pandas as pd
foods=pd.read_csv("foods.csv")
foods.head()
```

Out[11]:

	First Name	Gender	City	Frequency	Item	Spend
0	Wanda	Female	Stamford	Weekly	Burger	15.66
1	Eric	Male	Stamford	Daily	Chalupa	10.56
2	Charles	Male	New York	Never	Sushi	42.14
3	Anna	Female	Philadelphia	Once	Ice Cream	11.01
4	Deborah	Female	Philadelphia	Daily	Chalupa	23.49

In [12]:

```
pd.melt(foods,id_vars="First Name",var_name="Item").head()
```

Out[12]:

	First Name	Item	value
0	Wanda	Gender	Female
1	Eric	Gender	Male
2	Charles	Gender	Male
3	Anna	Gender	Female
4	Deborah	Gender	Female

In [18]:

```
pd.melt(foods,id_vars="First Name",var_name="Items",value_name="value-name").tail()
```

Out[18]:

	First Name	Items	value-name
4995	Donna	Spend	83.53
4996	Albert	Spend	72.88
4997	Jean	Spend	5.85
4998	Jessica	Spend	43.19
4999	Brian	Spend	28.36

In [26]:

```
pd.melt(foods,id_vars="First Name",var_name="Items",value_name="value-name",value_vars="Genc
```

Out[26]:

	First Name	Items	value-name
995	Donna	Gender	Female
996	Albert	Gender	Male
997	Jean	Gender	Female
998	Jessica	Gender	Female
999	Brian	Gender	Male

In [28]:

pd.melt(foods,id_vars="First Name",var_name="Items",value_name="value-name",value_vars="Gen

Out[28]:

	First Name	Items	value-name
995	Donna	Gender	Female
996	Albert	Gender	Male
997	Jean	Gender	Female
998	Jessica	Gender	Female
999	Brian	Gender	Male

In [30]:

```
import pandas as pd
fd=pd.read_csv("foods.csv",index_col="First Name")
fd.head()
```

Out[30]:

	Gender	City	Frequency	Item	Spend
First Name					
Wanda	Female	Stamford	Weekly	Burger	15.66
Eric	Male	Stamford	Daily	Chalupa	10.56
Charles	Male	New York	Never	Sushi	42.14
Anna	Female	Philadelphia	Once	Ice Cream	11.01
Deborah	Female	Philadelphia	Daily	Chalupa	23.49

In []:

```
pd.melt(fd,id_vars="city")
```

In [34]:

```
pd.melt(fd,id_vars="City",ignore_index=False).head()###ignore_index
```

Out[34]:

	City	variable	value
First Name			
Wanda	Stamford	Gender	Female
Eric	Stamford	Gender	Male
Charles	New York	Gender	Male
Anna	Philadelphia	Gender	Female
Deborah	Philadelphia	Gender	Female

In [36]:

```
pd.melt(fd,id_vars="City",ignore_index=True).head()###ignore index
pd.melt(fd,id_vars="City").head()###ignore index
```

Out[36]:

	City	variable	value
0	Stamford	Gender	Female
1	Stamford	Gender	Male
2	New York	Gender	Male
3	Philadelphia	Gender	Female
4	Philadelphia	Gender	Female