Homework 2

1. In this question you will work with the dataset **HW2a.dta**, which contains information about arrest records and characteristics of a group of individuals in 1986. All the variables in this dataset have been labeled. We are interested in understanding the determinants of crime and how effective incarceration is.

Using this information answer the following questions:

(a) Create the variable race equals to 1 if the individual is white, and 0 if not (black or hispanic). Show a table providing summary statistics (mean, standard deviation) of narr86, qemp86, inc86, tottime by race.

race	Freq.	Percent	Cum.
0	1,032	37.87	37.87
.1	1,693	62.13	100.00
Total	2,725	100.00	

race	Mean	SD
0	.5784884 2.118314 45.52016 1.452326	1.044891 1.632889 61.20629 6.170497
.1000000	.2982871 2.425281 60.72558 .4647372	.7022276 1.585849 69.11189
Total	.4044037 2.309028 54.96705 .8387523	.8590768 1.610428 66.62721 4.607019

⁽b) Run the following regression: narr86i = β 0 + β 1pcnvi + β 2avgseni + β 3tottimei + β 4ptime86i + β 5qemp86i + ϵ i Interpret the result of each coefficient.

Source	SS	df	MS		er of obs	=	2,725 24.29
Model	85.9532425	5	17.1906485	•	2719) > F	=	0.0000
Residual	1924.39391	2,719	.707757967		uared	_	0.0428
					R-squared	=	0.0410
Total	2010.34716	2,724	.738012906	_	MSE	=	.84128
narr86	Coefficient	Std. err.	t	P> t	[95% co	onf.	interval]
pcnv avgsen	1512246 0070487	.040855 .0124122		0.000 0.570	231334 03138	-	0711145 .0172897
tottime	.0120953	.0095768	1.26	0.207	006683	33	.030874
ptime86	0392585	.0089166	-4.40	0.000	056742	25	0217745
qemp86	1030909	.0103972	-9.92	0.000	123478	82	0827037
_cons	.7060607	.0331524	21.30	0.000	.641054	42	.7710671

B0 - shows the predicted number of assets of someone with no prior convictions, no sentence, no incarceration time, no employment time, and not employed in 1986

$\beta1(pcnv) = -0.1512246$

For each additional unit increase in proportion of prior conviction, the predicted number of arrests in 1986 changed by $\beta 1$ units, ceteris paribus.

$\beta 2(avgseni) = -0.0070487$

For each additional unit increase in average sentence length, the predicted number of arrests in 1986 changes by β 2, ceteris paribus.

β 3(tottimei) = 0.0120953

For each additional unit of total time incarcerated, the predicted number of arrests in 1986 changes by β 3, ceteris paribus.

β 4(ptime86i) = -0.0392585

For each additional unit increase in the proportion of time employed in 1986, the predicted number of arrests changes by β4, ceteris paribus.

$\beta 5$ (qemp86i) = -0.1030909

If the person was employed in 1986, the predicted number of arrest in 1986 changes by β 5 compared to someone who was not employed, ceteris paribus.

(c) Calculate the standard error for the estimate of avgsen. To do this, you will need to apply the formula seen in class and calculate all the relevant elements separately. (Notice that this is not equivalent to just reporting the value from the regression output).

Avgsen = .00459489

(d) Using your results from part (c) compute a 95% confidence interval for the estimate of avgsen

[-.01605849, .00196117]

(e) Plot the residuals of the regression. Do the errors of the regression appear to be homoskedastic or heteroskedastic? [Hint: you can use the rvfplot command].

The errors seem more heteroskedastic because some spread of the residuals will change as the fitted values increase or decrease.

(f) Create a new variable avgsen2 equals to the average sentence length squared. Run the same regression of part (b) including avgsen2. How does the estimate of avgsen change?

. regress narr86 pcnv avgsen avgsen2 tottime ptime86 qemp86

Source	SS	df	MS		r of obs 2718)	=	2,725 20.71
Model	87.8807329	6	14.6467888	Prob	> F	=	0.0000
Residual	1922.46642	2,718	.707309206	•		=	0.0437 0.0416
Total	2010.34716	2,724	.738012906	_	-squared MSE	=	.84102
narr86	Coefficient	Std. err.	t	P> t	[95% co	onf.	interval]
pcnv avgsen avgsen2 tottime ptime86 qemp86	1537432 .0146266 0005272 .0065568 0387868 1025872	.0408706 .0180657 .0003194 .0101447 .0089183 .0103984	0.81 -1.65 0.65 -4.35	0.000 0.418 0.099 0.518 0.000	233883 020797 001153 013335 056274 122976	73 84 62 12	0736027 .0500504 .000099 .0264489 0212994 0821976

The coefficient of avgsen2 got smaller and reached into the negative.

(g) Run the following regression, employing heteroskedasticity-robust standard errors:

narr86i = α 0 + α 1pcnvi + α 2avgseni + α 3avgsen2 i + α 4ptime86i + α 5qemp86i+ α 6inc86i + α 7racei + α 8tottimei + vi

Is there any change in the estimated coefficient of tottime?

Linear regression	Number of obs	=	2,725
	F(8, 2716)	=	29.62
	Prob > F	=	0.0000
	R-squared	=	0.0709
	Root MSE	=	.8293

narr86	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
pcnv	14091	.0336876	-4.18	0.000	2069659	074854
avgsen	.0082296	.018623	0.44	0.659	028287	.0447462
avgsen2	0004479	.0002067	-2.17	0.030	0008532	0000425
ptime86	0408901	.0067811	-6.03	0.000	0541868	0275933
qemp86	0532344	.0144953	-3.67	0.000	0816573	0248114
inc86	0014949	.0002288	-6.53	0.000	0019435	0010463
race	-2.474556	.3613003	-6.85	0.000	-3.183008	-1.766105
tottime	.0070592	.0135159	0.52	0.602	0194433	.0335616
_cons	.8240443	.0495821	16.62	0.000	.7268219	.9212668

Yes, the coefficient went from 0.0120953 to 0.0070592

The decrease of the coefficient may mean that the relationship between time spent and the outcome is weaker.

(h) Name one potential confounder in the specification of part (g). Explain your reasoning

Education is a potential confounder variable because it is associated with the dependent and independent variable. People with less years of education tend to show longer sentences and are more likely to be involved in criminal activity.

- 2. The dataset HW2b.dta contains information about a job training experiment for a group of men conducted during the years 1976-1977. The objective in this question is to test whether participation in this training program had an effect on the unemployment probability and earnings in 1978.
- (a) Create a table showing descriptive statistics (mean and standard deviation) of age, educ, black, married, Ire74, Ire75, Ire78 according to job training status. Do you observe relevant differences between both groups?

> train = 0					
	I				
Variable	0bs	Mean	Std. dev.	Min	Max
age	260	25.05385	7.057745	17	55
educ	260	10.08846	1.614325	3	14
black	260	.8269231	.3790434	0	1
married	260	.1538462	.3614971	0	1
lre74	260	.4028257	.8860645	583936	3.678089
lre75	260	.2375096	.7819199	-2.480641	3.136885
lre78	260	1.033777	1.111929	-3.106541	3.675883
> train = 1					
Variable	0bs	Mean	Std. dev.	Min	Max
age	185	25.81622	7.155019	17	48
educ	185	10.34595	2.01065	4	16
black	185	.8432432	.3645579	0	1
married	185	.1891892	.3927217	0	1
lre74	185	.4437147	.8883716	809299	3.556493
lre75	185	. 3327594	.8160968	-2.599059	3.224548
lre78	185	1.279188	1.157459	-1.238599	4.099463

There doesn't seem to be much of a difference between the 2 groups. There is a small increase when train =1, which might suggest that the training program helped decrease unemployment probability and increase earnings in 1978.

(b) Run a simple regression of Ire78 on train. What is the estimated effect of participating in job training on real earnings in 1978?

Source	SS	df	MS	Number of obs - F(1, 443)	=	445 5.09
Model Residual	6.50986591 566.731219	1 443	6.50986591 1.27930298	L Prob > F	=	0.0246 0.0114 0.0091
Total	573.241085	444	1.29108353		=	1.1311
lre78	Coefficient	Std. err.	t	P> t [95% c	onf.	interval]
train _cons	.2454107 1.033777	.1087913 .0701455	2.26 14.74	0.025 .03159 0.000 .89591		.4592219 1.171637

The people who participated in the job training program had a positive and statistically significant effect on real earnings in 1978 because earnings increased by about 25% with a 95% confidence interval of [0.0315995, 0.4592219]

(c) Calculate the standard error of the estimate of train. (As in Question 1 part (c), this is not the same as reporting the value from the regression output).

standard error of the estimate of train = 2.7206646

(d) Now add as controls to the regression in part (b) the variables re74, re75, educ, age, black, and hisp. Compare your results of the effect of job training with respect to part (b).

Source	SS	df	MS		er of obs	-	445
				- F(7,	437)	=	3.77
Model	32.6286203	7	4.66123147	P rob	> F	=	0.0006
Residual	540.612465	437	1.23709946	R-sq	uared	=	0.0569
				- Adj	R-square	d =	0.0418
Total	573.241085	444	1.29108353	Root	MSE	=	1.1122
lre78	Coefficient	Std. err.	t	P> t	[95% (conf.	interval]
train	.2321856	.1079703	2.15	0.032	.019	998	. 4443911
re74	001559	.0130975	-0.12	0.905	0273	009	.0241829
re75	.0281702	.0223654	1.26	0.209	015	787	.0721274
educ	.0299756	.0299254	1.00	0.317	02884	401	.0887913
age	.0059764	.0075001	0.80	0.426	0087	645	.0207172
black	6167444	.1977614	-3.12	0.002	-1.0054		2280627
hisp	0731651	.2637241	-0.28	0.782	59149		.4451601
_cons	1.067114	.4146426	2.57	0.010	. 25217		1.882056

The people who participated in the job training program had a positive and statistically significant effect on real earnings in 1978 because earnings increased by about 23%.

Educated people who participated in the job training program had a negative and statistically significant effect on real earnings in 1978 because earnings decreased by about 61%.

Hispanics who participated in the job training program had a negative and statistically significant effect on real earnings in 1978 because earnings decreased by about 7%.

Hispanics who participated in the job training program had a positive and statistically significant effect on real earnings in 1978 because earnings increased by about 3%.

(e) Create a variable minor equal to 1 if the individual is black or hispanic. Employing this variable incorporate an interaction of minor and train in the regression you run on part (d).

445	s =	ber of ob	Numb	MS	df	SS	Source
3.33	=	, 436)	_ F(8,				
0.0010	=	b > F	8 Prob	4.1217859	8	32.9742878	Model
0.0575	=	quared	3 R-sc	1.2391440	436	540.266798	Residual
0.0402	ed =	R-square	— Adj				
1.1132	=	t MSE	3 Root	1.2910835	444	573.241085	Total
interval]	conf.	[95%	P> t	t	Std. err.	Coefficient	lre78
. 7842925	336	7029	0.914	0.11	.3783482	.0406795	train
.0239922	619	0275	0.892	-0.14	.0131153	0017849	re74
.0718517	L699	0161	0.214	1.24	.0223926	.0278409	re75
.0893307	1495	0284	0.310	1.02	.0299631	.0304406	educ
.0209493	948	0085	0.412	0.82	.007516	.0061773	age
1691295	892	-1.275	0.011	-2.57	.2815587	7225105	black
. 4682332	768	8195	0.592	-0.54	.327617	1756718	hisp
					(omitted)	0	minor
.9837826	345	5670	0.598	0.53	.3945257	.2083741	minor_train
2.038016	471	.2755	0.010	2.58	.4483696	1.156782	_cons

⁽f) Repeat the regression of part (d) including controls for unemployment in 1974 and 1975. How does the estimate of train change?

Source	ss	df	MS		er of ob		445
-				- F(9,		=	2.92
Model	32.6405051	9	3.62672279	Prob	> F	=	0.0023
Residual	540.60058	435	1.24275995	R-squ	ıared	=	0.0569
				- Adj F	R-square	d =	0.0374
Total	573.241085	444	1.29108353	Root	MSE	=	1.1148
lre78	Coefficient	Std. err.	t	P> t	[05%	conf	interval]
CI E / 6	Coerricient	stu. em.	L	-	[37%		Intervat]
train	.2323451	.1085789	2.14	0.033	.0189	405	. 4457497
re74	0009028	.0148956	-0.06	0.952	0301	791	.0283736
re75	.0280921	.0248423	1.13	0.259	0207	338	.076918
educ	.0300719	.0302628	0.99	0.321	0294	076	.0895514
age	.0059079	.0076225	0.78	0.439	0090	736	.0208895
black	6151308	.1990082	-3.09	0.002	-1.006	268	2239937
hisp	069717	.2668389	-0.26	0.794	5941	708	.4547369
unem74	.0198417	.2029549	0.10	0.922	3790	525	.4187359
unem75	0102496	.1750945	-0.06	0.953	354	386	.3338868
_cons	1.057004	.4459142	2.37	0.018	.1805	896	1.933418

The estimate of train in (d) = 0.23211856, now it is 0.2323451. This means that the estimate of trains slightly increased, adding controls for unemployment in 1974 and 1975. This change is not large enough to indicate a major impact.

(g) Repeat the specification used in part (f), including now unem78 as the dependent variable. Interpret the value of the estimate for train in this case.

Source	SS	df	MS	Number	of obs =	445
				F(9, 4	35) =	2.42
Model	4.51942346	9	.502158163	Prob >	F =	0.0109
Residual	90.3030484	435	.207593215	R-squa	red =	0.0477
				- Adj R-	squared =	0.0280
Total	94.8224719	444	.213564126	Root M	SE =	. 45562
unem78	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
train	1135081	.0443771	-2.56	0.011	2007282	026288
re74	0022305	.006088	-0.37	0.714	0141959	.009735
re75	005765	.0101532	-0.57	0.570	0257205	.0141906
educ	0009564	.0123686	-0.08	0.938	0252662	.0233533
age	.0001614	.0031154	0.05	0.959	0059617	.0062844
black	.1844998	.0813362	2.27	0.024	.024639	.3443605
hisp	0433518	.1090591	-0.40	0.691	2577002	.1709965
unem74	.0101425	.0829493	0.12	0.903	1528887	.1731737
unem75	.0017219	.0715625	0.02	0.981	1389293	.1423732
_cons	.2147717	.1822486	1.18	0.239	1434256	.5729691

The coefficient for train(Bo) = -0.1135081. This means that the job training program had a positive effect in reducing unemployment in 1978.