BOOTSTRAP

10.15.2018

RECAP

- * Binomial test
 - * Simulation
 - * Analytic solution
- * Mean & median
- * Variance, standard deviation

DATA

- * suppose we have a dataset: an electrophysiological recording from a spiking neuron
- * we want to estimate the mean background spike rate of the neuron
- * but we have a limited sample of data!

DATA

- * we can estimate the mean directly
 (data.mean())
- * but our data is just a sample. how close is our data mean to the true mean?
- * how would we know? we only have the data we have
 - * ...or do we?

STANDARD ERROR

- * in statistics, everything you compute is an estimate
- * we often want to know how well an estimate based on a finite sample of data approximates the "true" value
- * the **standard error** is a number that says how variable an estimate is

STANDARD ERROR

- * repeat the same experiment 100 times, and estimate your desired statistic (e.g. the mean) using each of the 100 datasets
- * the standard deviation of those 100 estimates is the standard error
- * can we get this number without actually running 100 experiments?

Brad Efron

- * we don't know what distribution the data comes from
- * but we know one thing: the data
- * so: we sample from the data to create "new" datasets, then use these to examine the variability of the mean

- * creating a bootstrap sample:
 - * suppose we have N numbers
 - * choose from among them N times with replacement (i.e. the same number can be chosen more than once)


```
* e.g.: data = [1,3,5,9]
```

- * bootstrap_1 = [5,1,1,3]
- * bootstrap_2 = [3,3,9,5]
- * bootstrap_3 = [1,3,5,5]
- * etc.

* each bootstrap sample is a reasonable dataset that could have happened!

- * after taking many samples (with replacement), and computing the average of each, let's look at their distribution
- * on average, the *true population mean* should fall inside the middle 95 percentiles of the bootstrap statistics 95% of the time

BOOTSTRAP STANDARD ERROR

- * the standard deviation of the bootstrap statistics is called the bootstrap standard error
- * it's a pretty good estimate of the standard error! we will see how good when we get to situations where we can compute an analytic standard error

CENTRAL LIMIT THEOREM

- * let's take a bunch of random values (from the same distribution)
- * and take their average
- * let's do this many times

CENTRAL LIMIT THEOREM

- * as the number of samples we take increases, the distribution of their averages converges to..
- * a gaussian distribution!

END