Recitation 3

Testing for AI-Enabled Systems

Recap: Black-box Testing

- Evaluate the behavior of a system without knowing its internal structure
- You're concerned about the inputs and outputs
- Some types of black-box testing
 - Boundary Value Analysis (with or without robustness variant)
 - Partition Testing (Equivalence Classes)
 - 0 ..

Recap: Partition Testing

- Partition the input domain into groups (based on domain knowledge)
- Choose **representative** equivalence classes of inputs
 - All inputs in an equivalence class will succeed or fail in the same way
- Partitions are complete (cover the input space), and disjoint (two partitions do not overlap)

Recap: Finding Equivalence Classes

- Cases in the specification
- Ranges of each input
- Invalid inputs
- Membership in a group
- Properties of inputs
- Possible outputs
- Risk-based (kinds of errors based on inputs)
- ..

Recap: Example Equivalence Classes

Let's say we have a method that implements binary search.

public boolean search (int[] array, int elementToLookFor)

What are some partitions / equivalence classes we can test for?

Key located in 3 operations

Recap: Example Equivalence Classes

Let's say we have a method that implements binary search.

public boolean search (int[] array, int elementToLookFor)

- Array:
 - **Length**: zero length, non-zero length odd length, even length
 - Sort Order: sorted, not sorted
- elementToLookFor.
 - Output: not present, present lowest index, highest index, in between
 - Number of Occurences: does not occur, occurs once, occurs 2 or more times

Challenges with Testing AI

- The oracle problem
- Evaluating the accuracy of the model using a held-out dataset is typically used
 - o But... held-out datasets are often not comprehensive
- It's possible to overfit (or) underfit
- There are concerns about fairness, robustness, etc.
- A single overall metric makes it difficult to find out where the problems are
 - What does it mean when you have 90% accuracy for example? Is it sufficient?
 - How do you know where the model is making mistakes, and fix them?

Metamorphic Tests

- Invariance tests
 - Apply label-preserving perturbations to inputs
 - You expect the model predictions to remain the same
 - Example: Credit score should not change based on protected attributes (Fairness)
 - Example: Sentiment shouldn't change Mark is a great instructor, Samantha is a great instructor
- Directional expectation tests
 - You expect the label to change in a certain way
 - Example: Housing price prediction
 - Increasing the number of rooms shouldn't decrease the price of the house
 - Decreasing the square footage shouldn't increase the price of the house
 - If this did happen, what do you think could possibly be the reason?

Minimum Functionality Tests

- Simple test cases that target a specific behavior
- Small, focused testing datasets
- Can we apply an approach similar to partition testing here?
 - Partition <-> Subpopulation
 - Test cases in each partition <-> Instances in each subpopulation
 - All instances in a subpopulation should ideally behave the same way
 - Might not strictly apply for ML, but this is the general idea
 - Need domain knowledge to come up with reasonable partitions

Sentiment Analysis on Tweets

- Labels: positive, negative, neutral
- Subpopulations
 - o Different sentiments (positive, negative, neutral)
 - Different tenses (past, present, future)
 - Comparators, superlatives
 - Negations
 - Typos (tests robustness)
 - 0 ...
- Invariant test: Named entities don't affect sentiment
- Directional expectation test: More negative phrases don't make the sentence positive

Activity (10 - 15 mins)

- Pick a scenario
 - o Driverless Cars Detecting Stop Signs Based on Images
 - Detecting Unsafe Sidewalks For Wheelchair Users Based on Images
 - Speech Recognition Based on Audio
 - Cancer Detection Based on Images
- In your breakout room, think about subpopulations
 - How can the test dataset be split into smaller test sets (partitions) for the problem you picked
 - What are some critical subpopulations that need good accuracy?
- Update your points in the slides (a separate PPT will be shared in the chat)

Detecting Unsafe Sidewalks - Wheelchair Users

- Flat surfaces
- Type of surface (brick, cement, etc.)
- Presence / absence of vegetation
- Weather conditions
- Presence / absence of shadows
- Lighting
- Quality of the image
- ..

Driverless Cars - Detecting Stop Signs

- Environmental conditions
- Stop signs may be on poles, walls, etc.
- Lighting
- Held by a person
- Occlusions
- Stop signs with modifiers
- Arms of gates, barriers, etc.
- Stop signs at branching roads

Manually curate a set of "binary predicates" that must be satisfied to pass a unit test:

```
Catch-all stop sign detection: 3451/3468 (99.51%)
Heavy rain/snow: ...
Heavily occluded: ...
Tilted stop signs: ...
Digital stop signs: ...
Person held stop signs: ...
School bus stop signs: ...
Construction stop signs: ...
Hanging stop signs: ...
Toll booth stop signs: ...
Stop signs on gates/arms: ...
Correct prediction of relevance: ...
Correct prediction of time relevance: ...
Stop sign modifier accuracy: ...
```

Speech Recognition

- Accents
- Level of intensity
- Gender
- Pronunciations
- ..

Cancer Detection

- Quality of the image
- Device used to scan the patient
- Age group
- Gender
- ..

Final Note

- Problems keep evolving, and data keeps changing
- That's why
 - Training and testing on just a single static dataset is not sufficient
 - Using a single aggregate metric for the whole dataset might not be sufficient
- There is a need to
 - Source new examples and augment the train/test dataset
 - Gather telemetry
 - o Retrain the model
 - Look for data drift
- Think about subpopulations for movie streaming in your project groups

Thank You!