Compressed sensing of low-rank plus sparse matrices

SIMON VARY

ICTEAM, Université catholique de Louvain, Belgium

joint work with Jared Tanner & Andrew Thompson

XXI Householder Symposium 2022, 16/06/2022

Principal Component Analysis (PCA)

Correlation matrix $M = \frac{1}{N} YY^T$ of a mean-centered samples y_i ,

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. rank $(X) \le r$.

Principal Component Analysis (PCA)

Correlation matrix $M = \frac{1}{N}YY^T$ of a mean-centered samples y_i ,

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. rank $(X) \le r$.

or from subsamped data $b = \mathcal{A}(M) \in \mathbb{R}^p$

$$\min_{X\in\mathbb{R}^{m imes n}}\|\,\mathcal{A}(X)-b\|_{\mathcal{F}},\quad ext{s.t.}\quad ext{rank}\,(X)\leq r,$$

Principal Component Analysis (PCA)

Correlation matrix $M = \frac{1}{N}YY^T$ of a mean-centered samples y_i ,

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. rank $(X) \le r$.

or from subsamped data $b = \mathcal{A}(M) \in \mathbb{R}^p$

$$\min_{X \in \mathbb{R}^{m \times n}} \| \mathcal{A}(X) - b \|_{\mathcal{F}}, \quad \text{s.t.} \quad \operatorname{rank}(X) \leq r,$$

Robust PCA

For a given matrix M, find X

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. $X \in \mathsf{LS}_{m,n}(r,s)$.

where

$$\mathsf{LS}_{m,n}(r,s) = \left\{ egin{array}{l} L + S \in \mathbb{R}^{m imes n} \ \mathsf{rank}(L) \leq r, \|S\|_0 \leq s \end{array}
ight\}.$$

Principal Component Analysis (PCA)

Correlation matrix $M = \frac{1}{N}YY^T$ of a mean-centered samples y_i ,

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. rank $(X) \le r$.

or from subsamped data $b = \mathcal{A}(M) \in \mathbb{R}^p$

$$\min_{X\in\mathbb{R}^{m imes n}}\|\,\mathcal{A}(X)-b\|_{\mathcal{F}},\quad ext{s.t.}\quad \operatorname{rank}\left(X
ight)\leq r,$$

Robust PCA

For a given matrix M, find X

$$\min_{X \in \mathbb{R}^{m \times n}} \|X - M\|_F$$
, s.t. $X \in \mathsf{LS}_{m,n}(r,s)$.

where

$$\mathsf{LS}_{m,n}(r,s) = \left\{ \begin{array}{c} L + S \in \mathbb{R}^{m \times n} \\ \mathsf{rank}(L) \le r, \|S\|_0 \le s \end{array} \right\}.$$

Compressed sensing of low-rank plus sparse matrices

Let
$$b = \mathcal{A}(L_0 + S_0) \in \mathbb{R}^p$$
, where

- \circ rank $(L_0) \leq r$ and $||S_0||_0 \leq s$,
- $\circ \ \mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p$ is a linear subsampling.

Recover L_0 and S_0 only from $b = \mathcal{A}(M)$ and $\mathcal{A}(\cdot)$?

Subsampled dynamic-foreground/static-background seperation

Figure 1: Recovery of a $190 \times 140 \times 150$ video sequence. The video is shaped into 26600×150 and recovered using FJLT from $\delta = 1/3$ using r = 1 and s = 197505.

Incoherence of L (Candès & Recht, 2009):

For the truncated SVD of $L = U\Sigma V^T$ we have

$$\exists \mu \geq 1: \begin{array}{c} \max \limits_{i \in \{1, \dots, r\}} \left\| U^T \mathbf{e}_i \right\|_2 \leq \sqrt{\frac{\mu r}{m}}, \\ \max \limits_{i \in \{1, \dots, r\}} \left\| V^T \mathbf{e}_i \right\|_2 \leq \sqrt{\frac{\mu r}{n}}. \end{array}$$

Incoherence of L (Candès & Recht, 2009):

For the truncated SVD of $L = U\Sigma V^T$ we have

$$\exists \mu \geq 1: \begin{array}{c} \max \limits_{i \in \{1, \dots, r\}} \left\| U^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{m}}, \\ \max \limits_{i \in \{1, \dots, r\}} \left\| V^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{n}}. \end{array}$$

Incoherence of L (Candès & Recht, 2009):

For the truncated SVD of $L = U\Sigma V^T$ we have

$$\exists \mu \geq 1: \begin{array}{c} \max \limits_{i \in \{1, \dots, r\}} \left\| U^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{m}}, \\ \max \limits_{i \in \{1, \dots, r\}} \left\| V^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{n}}. \end{array}$$

Sparsity pattern of *S* **(Chandrasekaran et al., 2011):**

For the sparse component $S \in \mathbb{R}^{m \times n}$

$$\exists \alpha \in [0,1): \quad \begin{aligned} \|S^T e_i\|_0 &\leq \alpha n \\ \|Se_j\|_0 &\leq \alpha m \end{aligned}$$

Incoherence of L (Candès & Recht, 2009):

For the truncated SVD of $L = U\Sigma V^T$ we have

$$\exists \mu \geq 1: \begin{array}{c} \max \limits_{i \in \{1, \ldots, r\}} \left\| U^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{m}}, \\ \max \limits_{i \in \{1, \ldots, r\}} \left\| V^T e_i \right\|_2 \leq \sqrt{\frac{\mu r}{n}}. \end{array}$$

Sparsity pattern of *S* **(Chandrasekaran et al., 2011):**

For the sparse component $S \in \mathbb{R}^{m \times n}$

$$\exists \alpha \in [0,1): \begin{array}{c} \|S^T e_i\|_0 \leq \alpha n \\ \|Se_j\|_0 \leq \alpha m \end{array}$$

Existing recovery guarantees for Robust PCA

Convex relaxation

The solution to the convex problem

$$\underset{L,S \in \mathbb{R}^{m \times n}}{\arg \min} \|L\|_* + \lambda \|S\|_1, \quad \text{s.t.} \quad L + S = M, \tag{1}$$

identifies (L, S) from M when $s < \mathcal{O}\left(mn/\left(\mu^2 r^2\right)\right)$ (Hsu et al., 2011).

Existing recovery guarantees for Robust PCA

Convex relaxation

The solution to the convex problem

$$\underset{L.S \in \mathbb{R}^{m \times n}}{\operatorname{arg \, min}} \|L\|_* + \lambda \|S\|_1, \qquad \text{s.t.} \quad L + S = M, \tag{1}$$

identifies (L, S) from M when $s < \mathcal{O}(mn/(\mu^2 r^2))$ (Hsu et al., 2011).

Non-convex algorithms

Provable gradient descent methods for the non-convex problem $(\star\star)$ when

$$\underset{L+S \in \mathbb{R}^{m \times n}}{\arg \min} \| (L+S) - M \|_F, \quad \text{s.t.} \quad L+S \in \mathsf{LS}_{m,n}(r,s), \tag{2}$$

identifies (L, S) from M when $s < \mathcal{O}\left(\frac{mn}{(\mu^2 r^3)}\right)$ (Yi et al., 2016; Wei et al., 2019).

Existing recovery guarantees for Robust PCA

Convex relaxation

The solution to the convex problem

$$\underset{L.S \in \mathbb{R}^{m \times n}}{\arg \min} \|L\|_* + \lambda \|S\|_1, \qquad \text{s.t.} \quad L + S = M, \tag{1}$$

identifies (L, S) from M when $s < \mathcal{O}(mn/(\mu^2 r^2))$ (Hsu et al., 2011).

Non-convex algorithms

Provable gradient descent methods for the non-convex problem $(\star\star)$ when

$$\underset{L+S \in \mathbb{R}^{m \times n}}{\arg \min} \| (L+S) - M \|_F, \quad \text{s.t.} \quad L+S \in \mathsf{LS}_{m,n}(r,s), \tag{2}$$

identifies (L, S) from M when $s < \mathcal{O}\left(\frac{mn}{(\mu^2 r^3)}\right)$ (Yi et al., 2016; Wei et al., 2019).

... and the support set of S is well spread with $\alpha \leq \sqrt{s/mn}$.

A simple example of non-closedness

Consider the best $LS_{3,3}(1,1)$ approximation to M

$$\min_{X\in\mathbb{R}^{3\times3}}\|X-M\|_F,\qquad \text{s.t.}\quad X\in\mathsf{LS}_{3,3}(1,1),$$
 with $M=\begin{bmatrix}0&1&1\\1&0&0\\1&0&0\end{bmatrix}$

A simple example of non-closedness

Consider the best $LS_{3,3}(1,1)$ approximation to M

$$\min_{X \in \mathbb{R}^{3 \times 3}} \|X - M\|_F, \qquad \text{s.t.} \quad X \in \mathsf{LS}_{3,3}(1,1),$$
 with $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{X_\varepsilon \in \mathsf{LS}_{3,3}(1,1)} = \underbrace{\begin{bmatrix} 1/\varepsilon & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{L_\varepsilon} + \underbrace{\begin{bmatrix} -1/\varepsilon & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{S_\varepsilon}.$

A simple example of non-closedness

Consider the best $LS_{3,3}(1,1)$ approximation to M

$$\min_{X \in \mathbb{R}^{3 \times 3}} \|X - M\|_F, \quad \text{s.t.} \quad X \in \mathsf{LS}_{3,3}(1,1),$$
 with $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{X_\varepsilon \in \mathsf{LS}_{3,3}(1,1)} = \underbrace{\begin{bmatrix} 1/\varepsilon & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{L_\varepsilon} + \underbrace{\begin{bmatrix} -1/\varepsilon & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{S_\varepsilon}.$

- As $\varepsilon \to 0$, the error $\|X_{\varepsilon} M\|_F = 2\varepsilon \to 0$.
- However, X_{ε} converges to M which is outside of the feasible set LS_{3,3}(1,1).
- As $\varepsilon \to 0$ $\|L_{\varepsilon}\|_F$ and $\|S_{\varepsilon}\|_F$ become unbounded.

Matrix rigidity in complexity theory

Matrix rigidity (Valiant 1977)

The smallest number of entries of M that need to be changed such that the rank becomes at most r:

$$Rig(M, r) = \min \{ ||S||_0 : rank(M - S) \le r \} = \min \{ s : M \in LS_{m,n}(r, s) \},$$

 $\le (m - r)(n - r).$

It can happen that $M_{\epsilon} \in \mathsf{LS}_{m,n}(r,s) o M$ and Rig(M,r') > s where $r' \geq r$.

Matrix rigidity in complexity theory

Matrix rigidity (Valiant 1977)

The smallest number of entries of M that need to be changed such that the rank becomes at most r:

$$Rig(M, r) = \min \{ ||S||_0 : rank(M - S) \le r \} = \min \{ s : M \in LS_{m,n}(r, s) \},$$

 $\le (m - r)(n - r).$

It can happen that $M_{\epsilon} \in \mathsf{LS}_{m,n}(r,s) o M$ and Rig(M,r') > s where $r' \geq r$.

Related to complexity of linear transforms

• Lower bound of the form $Rig(A, \epsilon n) \ge n^{1+\delta}$, for some constants $\epsilon, \delta > 0$, implies that multiplication by $A \in \mathbb{R}^{n \times n}$ cannot be computed in $\mathcal{O}(n \log n)$.

Matrix rigidity in complexity theory

Matrix rigidity (Valiant 1977)

The smallest number of entries of M that need to be changed such that the rank becomes at most r:

$$Rig(M, r) = \min \{ ||S||_0 : rank(M - S) \le r \} = \min \{ s : M \in LS_{m,n}(r, s) \},$$

 $\le (m - r)(n - r).$

It can happen that $M_{\epsilon} \in \mathsf{LS}_{m,n}(r,s) \to M$ and Rig(M,r') > s where $r' \geq r$.

Related to complexity of linear transforms

• Lower bound of the form $Rig(A, \epsilon n) \geq n^{1+\delta}$, for some constants $\epsilon, \delta > 0$, implies that multiplication by $A \in \mathbb{R}^{n \times n}$ cannot be computed in $\mathcal{O}(n \log n)$.

Non-closedness \iff $Rig(\cdot, r)$ is not semicontinuous (Kumar & Lokam 2014)

• Small perturbation A_{ϵ} of A ($\forall \epsilon > 0 : ||A - A_{\epsilon}||_{F} < \epsilon$) may decrease $Rig(A, r) > Rig(A_{\epsilon}, r)$.

Non-closedness generalization

Theorem $(\mathsf{LS}_{n,n}(r,s))$ is not closed for a range of $r,s\in\mathbb{N}$)¹

The set of low-rank plus sparse matrices $LS_{n,n}(r,s)$ is not closed for $r \ge 1$, $s \ge 1$ provided $(r+1)(s+2) \le n$, or provided $(r+2)^{3/2}s^{1/2} \le n$ where s is of the form $s=p^2r$ for an integer $p \ge 1$.

As a consequence, there are matrices $M \in \mathbb{R}^{n \times n}$ for which Robust PCA and low-rank matrix completion are ill-posed in the sense that they have no global minimum.

 $^{^{1}}$ Tanner, Thompson, V. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion

Lemma (Tanner & V., 2020):

Let $s < mn/(\mu^2 r^2)$ and $X = L + S \in \mathsf{LS}_{m,n}(r,s, \mu)$. Then the following holds

(i)
$$|\langle L, S \rangle| \le \mu \frac{r\sqrt{s}}{\sqrt{mn}} \|L\|_F \|S\|_F$$
,

Lemma (Tanner & V., 2020):

Let $s < mn/(\mu^2 r^2)$ and $X = L + S \in LS_{m,n}(r,s,\mu)$. Then the following holds

(i)
$$|\langle L, S \rangle| \leq \mu \frac{r\sqrt{s}}{\sqrt{mn}} \|L\|_F \|S\|_F$$
,

(ii)
$$\|L\|_F \le \left(1 - \mu^2 \frac{r^2 s}{mn}\right)^{-1/2} \|X\|_F \text{ and } \|S\|_F \le \left(1 - \mu^2 \frac{r^2 s}{mn}\right)^{-1/2} \|X\|_F$$

Lemma (Tanner & V., 2020):

Let $s < mn/(\mu^2 r^2)$ and $X = L + S \in LS_{m,n}(r,s,\mu)$. Then the following holds

(i)
$$|\langle L, S \rangle| \leq \mu \frac{r\sqrt{s}}{\sqrt{mn}} \|L\|_F \|S\|_F$$
,

$$\text{(ii)} \quad \|L\|_F \leq \left(1 - \mu^2 \tfrac{r^2 s}{mn}\right)^{-1/2} \|X\|_F \text{ and } \|S\|_F \leq \left(1 - \mu^2 \tfrac{r^2 s}{mn}\right)^{-1/2} \|X\|_F,$$

(iii) $LS_{m,n}(r, s, \mu)$ is a closed set.

Lemma (Tanner & V., 2020):

Let $s < mn/(\mu^2 r^2)$ and $X = L + S \in LS_{m,n}(r,s,\mu)$. Then the following holds

(i)
$$|\langle L, S \rangle| \le \mu \frac{r\sqrt{s}}{\sqrt{mn}} \|L\|_F \|S\|_F$$
,

$$\text{(ii)} \quad \|L\|_F \leq \left(1 - \mu^2 \tfrac{r^2 s}{mn}\right)^{-1/2} \|X\|_F \text{ and } \|S\|_F \leq \left(1 - \mu^2 \tfrac{r^2 s}{mn}\right)^{-1/2} \|X\|_F,$$

(iii) $LS_{m,n}(r, s, \mu)$ is a closed set.

Computable solution under conditions on identifiability and recoverability

Under some conditions on

- the structure of the matrix matrix $M = L_0 + S_0$ (idenitifiability) and
- \circ the linear subsampling $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p$ (recoverability),

we can retrieve L_0 and S_0 from the subsampled measurement vector $b = \mathcal{A}(M)$, either by solving the convex optimization problem

$$(L^*, S^*) = \underset{L, S \in \mathbb{R}^{m \times n}}{\min} \|L\|_* + \lambda \|S\|_1, \quad \text{s.t.} \quad \|\mathcal{A}(L+S) - b\|_2 \le \epsilon_b, \quad (\star)$$

Computable solution under conditions on identifiability and recoverability

Under some conditions on

- \circ the structure of the matrix matrix $M = L_0 + S_0$ (idenitifiability) and
- \circ the linear subsampling $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p$ (recoverability),

we can retrieve L_0 and S_0 from the subsampled measurement vector $b = \mathcal{A}(M)$, either by solving the convex optimization problem

$$(L^*, S^*) = \underset{L, S \in \mathbb{R}^{m \times n}}{\text{arg min}} \|L\|_* + \lambda \|S\|_1, \quad \text{s.t.} \quad \|\mathcal{A}(L+S) - b\|_2 \le \epsilon_b, \quad (\star)$$

or by solving the following non-convex optimization problem

$$\min_{X \in \mathbb{R}^{m \times n}} \| \mathcal{A}(X) - b \|_{F}, \quad \text{s.t.} \quad X \in \mathsf{LS}_{m,n}(r,s,\mu), \tag{**}$$

where

$$\mathsf{LS}_{m,n}(r,s,\mu) = \left\{ \begin{aligned} & \mathsf{rank}(L) \leq r, \ \|S\|_0 \leq s \\ L + S \in \mathbb{R}^{m \times n} : & \max_{i \in \{1,\dots,m\}} \|U^T e_i\|_2 \leq \sqrt{\frac{\mu r}{m}} \\ & \max_{i \in \{1,\dots,n\}} \|V^T f_i\|_2 \leq \sqrt{\frac{\mu r}{n}} \end{aligned} \right\}.$$

Recoverability via the restricted isometry property

Definition (Restricted isometry property of A on $LS_{m,n}(r,s,\mu)$):

For a linear subsampling $\mathcal{A}:\mathbb{R}^{m imes n} o\mathbb{R}^p$, there exists $\Delta_{r,s,\mu}\in(0,1)$ such that

$$(1 - \Delta_{r,s,\mu}) \|X\|_F^2 \le \|\mathcal{A}(X)\|_2^2 \le (1 + \Delta_{r,s,\mu}) \|X\|_F^2, \tag{3}$$

for all matrices $X \in \mathsf{LS}_{m,n}(r,s,\mu)$ whose low-rank component has bounded coherence by μ .

Recoverability: For which $A(\cdot)$ can we recover (L, S) from b = A(b)?

Theorem (Bound on the RICs for $LS_{m,n}(r,s,\mu)$):

For given $m, n, p \in \mathbb{N}$, $\Delta \in (0,1)$, $s < mn/(\mu^2 r^2)$, and a Gaussian subsampling $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$ there exist constants $c_0, c_1 > 0$ such that $\Delta_{r,s,\mu} \leq \Delta$ when

$$p > c_0(\Delta) \left(r(m+n-r) + s \right) \log \left(\left(1 - \gamma^2 \right)^{-1/2} \frac{mn}{s} \right), \tag{4}$$

with probability at least $1 - \exp\left(-c_1 p\right)$, where $\gamma := \mu \frac{r\sqrt{s}}{\sqrt{mn}}$.

Recovery by the convex relaxation

Recall the convex optimization problem

$$(L^*, S^*) = \underset{L, S \in \mathbb{R}^{m \times n}}{\min} \|L\|_* + \lambda \|S\|_1, \quad \text{s.t.} \quad \|\mathcal{A}(L+S) - b\|_2 \le \epsilon_b. \tag{*}$$

Theorem (Guaranteed convex recovery):

Let $b=\mathcal{A}(M)$ and suppose that $r,s\geq 1$ and $s< mn/(32\mu^2r^2)$ are such that the restricted isometry constant $\Delta_{4r,2s,2\mu}(\mathcal{A})\leq \frac{1}{7}-2\gamma$ where $\gamma:=\mu\frac{4r\sqrt{2s}}{\sqrt{mn}}$. Let $X^*=L^*+S^*$ be the solution of (\star) with $\lambda=\sqrt{2r/s}$, then $\|X^*-M\|_F\leq 42\epsilon_b$.

Non-convex algorithm: Normalized Alternating Hard Thresholding

Recall the non-convex optimization:

$$\min_{X \in \mathsf{LS}_{m,n}(r,s,\mu)} \| \mathcal{A}(X) - b \|_{\mathcal{F}}. \quad (\star\star)$$

Algorithm 1 NAHT

1: **while** not converged **do** Compute the residual $R_i^j = \mathcal{A}^* \left(\mathcal{A}(X^j) - b \right)$ Set $V^j = L^j - \alpha_i^L R_i^j$ Set $L^{j+1} = \mathrm{HT}(V^j; r)$ Set $X^{j+\frac{1}{2}} = I^{j+1} + S^{j}$ Compute the residual $R_{\mathsf{S}}^j = \mathcal{A}^*\left(\mathcal{A}(X^{j+rac{1}{2}}) - b
ight)$ Set $W^j = S^j - \alpha_i^S R_S^j$ Set $S^{j+1} = HT(W^j; s)$ Set $X^{j+1} = I^{j+1} + S^{j+1}$ 10: i = i + 111: end while

Non-convex algorithm: Normalized Alternating Hard Thresholding

Theorem (Guaranteed recovery by NAHT):

Suppose that $r,s \in \mathbb{N}$ and $s < mn/(8\mu^2r^2)$ are such that the restricted isometry constant

$$\Delta_3:=\Delta_{3r,3s,\mu}(\mathcal{A})<rac{1}{9}-\gamma_2$$
 where $\gamma_2:=\murac{2r\sqrt{2s}}{\sqrt{mn}}.$ Then

$$\|L^{j+1} - L_0\|_F + \|S^{j+1} - S_0\|_F \le \frac{6\Delta_3 + \frac{9}{8}\gamma_2}{1 - 3\Delta_3 - \frac{9}{8}\gamma_2} \left(\|L^j - L_0\|_F + \|S^j - S_0\|_F\right). \tag{5}$$

Linear convergence of non-convex recovery

Figure 2: Relative error in the approximate $\|X^{\ell}\|_{F}$ for m=n=100 and $p=(1/2)100^{2}$, $\delta=1/2$ and Gaussian \mathcal{A} , and $\mu\approx3$. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations).

Conclusions

- 1. Non-convex optimisation problems can have no solutions¹.
- 2. For $LS_{m,n}(r, s, \mu)$ to have $s < mn/(\mu^2 r^2)$ closes the set.
- 3. We do not need structure for the supp(S) in Robust PCA and similar problems.
- 4. Restricted isometry constants, guaranteed convex and non-convex solution of the subsampled low-rank plus sparse problem².

¹Tanner, Thompson, V. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion

²Tanner & V. (2020). Compressed sensing of low-rank plus sparse matrices

Thank you for your attention.

Numerical phase transition: Convex relaxation and NAHT

Phase transition δ^* above which recovery is possible, where

subsampling:
$$\delta = \frac{p}{mn}$$
, rank: $\rho_r = \frac{r(m+n-r)}{p}$, sparsity: $\rho_s = s/p$

(a) Convex recovery for 30 \times 30 matrix, $u \approx$ 3.

(b) NAHT recovery for 100×100 matrix, $\mu \approx 3$.

References i

Problems with convex Robust PCA and non-closedness

$$\min_{L \in \mathbb{R}^{m \times n}} \|L\|_* + \lambda \|S\|_1, \quad \text{s.t.} \quad M = L + S,$$

where $\|\cdot\|_*$ is the nuclear norm (sum of the singular values of L) and $\|\cdot\|_1$ denotes the ℓ_1 -norm (sum of the absolute values of the entries of S).

Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Ω in the form of $b = P_{\Omega}(M)$. Solving

$$\min_{X \in \mathbb{R}^{m \times n}} \|P_{\Omega}(X) - b\|_F$$
, s.t. $\operatorname{\mathsf{rank}}(X) \leq r$

recovers M for many r and an entry-wise subsampling operator $P_{\Omega}: \mathbb{R}^{m \times n} \to \mathbb{R}^{p}$.

