Boolean Algebra

Boolean Algebra Summary

- We can interpret high or low voltage as representing true or false.
- A variable whose value can be either 1 or 0 is called a Boolean variable.
- AND, OR, and NOT are the basic Boolean operations.
- We can express Boolean functions with either an expression or a truth table.
- Every Boolean expression can be converted to a circuit.
- Now, we'll look at how Boolean algebra can help simplify expressions, which in turn will lead to simpler circuits.

Boolean Algebra Summary

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable

Boolean Algebra Summary

- Examples:
 - is read "Y is equal to A AND B."
 - is read "z is equal to x OR y."
 - is read "X is equal to NOT A."

Tabular listing of the values of a function for all possible combinations of values on its arguments Example: Truth tables for the basic logic operations:

AN	AND					
X	У	Z	=	X	· y	
0	0	0				
0	1	0				
1	0	0				
1	1	1				

OR			
X	Y	Z = X+Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT	
X	$Z=\overline{X}$
0	1
1	0

Boolean Operator Precedence

- The order of evaluation is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

Boolean Algebra Postulates

Commutative Law

$$x \cdot y = y \cdot x$$

$$X + y = y + X$$

Identity Element

$$x \cdot 1 = x$$

 $x' \cdot 1 = x'$

$$x + 0 = x$$

$$x' + 0 = x'$$

Complement

$$x \cdot x' = 0$$

$$x + x' = 1$$

Boolean Algebra Theorems

Theorem 1

$$- x \cdot x = x$$

$$X + X = X$$

Theorem 2

$$-x\cdot 0=0$$

$$x + 1 = 1$$

• Theorem 3: Involution

$$-(x')' = x$$

$$(\overline{\overline{X}}) = X$$

Boolean Algebra Theorems

Theorem 4:

- Associative:
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $(x + y) + z = x + (y + z)$

- Distributive:

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

 $x + (y \cdot z) = (x + y) \cdot (x + z)$

• Theorem 5: DeMorgan

$$-(x \cdot y)' = x' + y' \qquad (x + y)' = x' \cdot y' -x \cdot y) = \overline{x} + \overline{y} \qquad (\overline{x} + y) = \overline{x} \cdot \overline{y}$$

• Theorem 6: Absorption

$$- x \cdot (x + y) = x \qquad x + (x \cdot y) = x$$

Truth Table to Verify DeMorgan's

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$
 $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

X	Y	$X \cdot Y$	X+Y	\overline{X}	\overline{Y}	$\overline{X+Y}$	$\overline{X} \cdot \overline{Y}$	$\overline{X \cdot Y}$	\overline{X} + \overline{Y}
0	0	0	0	1	1	1	1	1	1
0	1	0	1	1	0	0	0	1	1
1	0	0	1	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0	0

Generalized DeMorgan's Theorem:

$$\overline{X_1 + X_2 + \dots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdot \dots \cdot \overline{X_n}$$

$$\overline{X_1 \cdot X_2 \cdot \dots \cdot X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}$$

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in relays. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.

Logic Gate Symbols

Logic gates have special symbols:

Boolean Functions

- A Boolean function is a function whose arguments, as well as the function itself, assume values from a two-element set ({0, 1)}).
- Example: F(x, y) = x'y' + xyz + x'y
- After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does.
- You can easily convert between expressions and truth tables.

Boolean Functions

Boolean Expression/Function

Example:
$$F(x, y) = x + y'z$$

· Truth Table

All possible combinations of input variables

Logic Circuit

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Logic Diagrams and Expressions

Tri	1	h	T	<u> </u>	h	0
1 17	411	M		u	bl	le

<u> </u>	Tuble
XYZ	$F = X + \overline{Y} \times Z$
000	0
0 0 1	1
0 1 0	0
0 1 1	0
100	1
1 0 1	1
1 1 0	1
1 1 1	1

Logic Equation/Boolean Function

$$F = X + \overline{Y} Z$$

Logic Circuit

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique, but expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Functions Exercise

The truth table for the function:

$$F(X, Y, Z) = XY + \overline{Y}Z$$
 is:

X	Y	Z	XY	\overline{Y}	$\overline{Y}Z$	$F = X Y + \overline{Y}Z$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Draw the logic circuit for the boolean function above.

- In designing digital circuits, the designer often begins with a truth table describing what the circuit should do.
- The design task is largely to determine what type of circuit will perform the function described in the truth table.
- While some people seem to have a natural ability to look at a truth table and immediately envision the necessary logic gate or relay logic circuitry for the task, there are procedural techniques available for the rest of us.
- Here, Boolean algebra proves its utility in a most dramatic way!

- This problem will be solved by showing that any Boolean function can be represented by a Boolean sum of Boolean products of the variables and their complements or the product of sums.
- There are two ways to convert from truth tables to Boolean functions:
 - 1. Using Sum of Products / Minterms
 - 2. Using Product of Sums / Maxterms

· Minterm

- Product (AND function)
- Contains all variables
- Evaluates to '1' for a specific combination

Example

	A B C	Minterm
0	0 0 0	$\mathbf{m_0} \mid \overline{A} \overline{B} \overline{C}$
1	0 0 1	$\mathbf{m_1} \mid \overline{A} \overline{B} C$
2	0 1 0	$\mathbf{m_2} \mid \overline{A} B \overline{C} \mid$
3	0 1 1	$\mathbf{m}_3 \mid \overline{A} B C$
4	1 0 0	$\mathbf{m_4} A \overline{B} \overline{C}$
50	1 0 1	$\mathbf{m}_{5} \ A \overline{B} C$
6	1 1 0	$\mathbf{m_6} \ AB\overline{C}$
7	1 1 1	\mathbf{m}_7 ABC

Maxterm

- Sum (OR function)
- Contains all variables
- Evaluates to '0' for a specific combination

Example

$$A = 1$$

$$B = 1$$

$$C = 1$$

$$0 \cdot 0 \cdot 0 = 0$$

	A	В	C	M	axterm
0	0	0	0	$\mathbf{M_0}$	A+B+C
1	0	0	1	$\mathbf{M_1}$	$A+B+\overline{C}$
2	0	1	0	M_2	$A + \overline{B} + C$
3	0	1	1	M_3	$A + \overline{B} + \overline{C}$
4	1	0	0	$\mathbf{M_4}$	$\overline{A} + B + C$
5	1	0	1	\mathbf{M}_{5}	$\overline{A} + B + \overline{C}$
6	1	1	0	$\mathbf{M_6}$	$\overline{\overline{A} + \overline{B} + C}$
7	1	1	1	M ₇	$\overline{A} + \overline{B} + \overline{C}$

Truth Table to Boolean Function

A B C	F	$F = \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$
0 0 0	0	† † † †
0 0 1	1	
0 1 0	0	
0 1 1	0	
1 0 0	1	
1 0 1	1	
1 1 0	0	
1 1 1	1	
	-	Using Minterms

Truth Table to Boolean Function

Sum of Minterms

$$F = \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC + ABC$$
 $F = m_1 + m_4 + m_5 + m_7$
 $F = \sum (1,4,5,7)$

Product of Maxterms

$$\overline{F} = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\overline{F} = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\overline{F} = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F = \overline{ABC} \cdot \overline{ABC} \cdot \overline{ABC} \cdot \overline{ABC}$$

F = (A + B + C	$(A + \overline{B} + C)$	$(A+\overline{B}+\overline{C})(\overline{C})$	$\overline{A} + \overline{B} + C$
$F = M_0$	$oldsymbol{M}_2$	M_3	M_{6}

$$F = \prod (0,2,3,6)$$

	A B	C	F	F
0	0 0	0	0	1
1	0 0	1	1	0
2	0 1	0	0	1
3	0 1	1	0	1
4	1 0	0	1	0
5	1 0	1	1	0
6	1 1	0	0	1
7	1 1	1	1	0