

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-24 (EVEN) SET – 1(BATCH 1)

ANSWER KEY

Test: CLA-T1 Date: 09-02-2024
Course Code & Title: 18CSC303J Database Management Systems Duration: 50 Minutes
Year & Sem: III Year / VI Sem Max. Marks: 25

Course Articulation Matrix:

	ourse rarere															
S.	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
No.	Outcome															
1	CO1	3	2	2	-	-	-	ı	-	1	-	-	-	2	2	ı
2	CO2	3	2	2	-	-	-	1	-	ı	-	-	-	2	2	ı
3	CO3	3	3	3	-	-	-	-	-	-	-	-	-	2	2	-
4	CO4	3	3	3	2	-	-	-	-	-	-	-	-	2	2	-
5	CO5	3	2	2	-	-	-	-	-	-	-	-	-	2	2	-

	Part - A					
T	$(10 \times 1 = 10 \text{ Marks})$					
Q. No	uctions: Answer all Question	Marks	BL	СО	PO	PI Code
1	Referred to as "data about data" a) DataWarehouse b) Data Tuple c) Metadata d) Redundant data Answer: C	1	L1	1	1	1.6.1
2	Which of the following is a correct insert statement? a) INSERT INTO Employee VALUES ('suresh', 30000); b) INSERT INTO Employee (name, salary) VALUE ('Suresh', 30000); c) INSERT INTO Employee_details SELECTS name, dob FROM Exmployee; d) INSERT INTO Employee VALUES (name, dob, salary) ('Suresh', '16.03.1998', 30000); Answer: a	1	L2	1	2	2.6.3
3	command is used to restore the data to the last save point. a. Rollback b. Commit c. Save Point d. GOTO Answer: a	1	L1	1	1	1.6.1
4	The language that handles requests for database easy access a) TCL b) DML c) DDL d) DQL Answer: a	1	L1	1	1	1.7.1
5	The language used to retrieve information from the database by the end-user a) Query	1	L1	1	1	1.7.1

	1) D.1 d. 1	I		1	1	1
	b) Relational					
	c) Structural					
	d) Compiler					
	Answer : a					
	Answer: a					
6	Which of the following is incorrect.	1	L1	1	2	2.6.3
U	a) Database management systems (DBMS) are suites of	1		1		2.0.3
	applications that facilitate database development and					
	management.					
	b) One way to build and manage databases is with a					
	database management system (DBMS).					
	c) The term "DBMS" refers to a collection of					
	applications that facilitate the creation and management of					
	databases.					
	d) A DBMS does not consists of a suite of applications					
	that facilitate the creation and upkeep of databases.					
	Answer :d					
7	Which of the following refers to the level of data abstraction	1	L1	1	1	1.6.1
	that describes exactly how the data actually stored?					
	a) Conceptual Level					
	b) Physical Level					
	c) File Level					
	d) Logical Level					
	Angreom h					
8	Answer: b	1	L1	1	1	1.7.1
ð	A table can have only one	1	L	1	1	1./.1
	a) Secondary key b) Alternate key					
	c) Unique key					
	d) Primary key					
	a, ilmaiyacy					
	Answer: d					
9	The view of total database content is	1	L1	1	1	1.6.1
	a) Internal view					
	b) Conceptual view					
	c) Physical view					
	d) External view					
	Answer : b					
10	Collection of information stored in a database at a particular	1	L1	1	1	1.7.1
	moment is:					
	a) Instance					
	b) Schema					
	c) Data					
	d) Metadata					
	A					
	Answer: a					
	Part B $(1 \times 7.5 = 7)$	(.5)				
11.a	List the major disadvantages of keeping organizational	7.5	L2	1	2	2.6.5
	information in a file-processing system.					
	Answer:					
	1. Data Redundancy:					
	It is possible that the same information may be					
	duplicated in different files. This leads to data					
	redundancy results in memory wastage.					
	2. Data Inconsistency:					
	-					
	Because of data redundancy, it is possible that data					
	may not be in consistent state.					

			1			
	3. Difficulty in Accessing Data:					
	Accessing data is not convenient and efficient in file					
	processing system.					
	4. Limited Data Sharing:					
	Data are scattered in various files also different files					
	may have different formats and these files may be					
	stored in different folders may be of different					
	departments.					
	So, due to this data isolation, it is difficult to share data					
	among different applications.					
	5. Integrity Problems:					
	Data integrity means that the data contained in the					
	database in both correct and consistent for this purpose					
	the data stored in database must satisfy correct and					
	constraints.					
	6. Atomicity Problems:					
	Any operation on database must be atomic.					
	This means, it must happen in it's entirely or not at all.					
	7. Concurrent Access Anomalies:					
	Multiple users are allowed to access data					
	simultaneously this is for the sake of better					
	performance and faster response.					
	8. Security Problems:					
	Database should be accessible to users in limited way.					
	Each user should be allowed to access data concerning					
	his requirements only.					
111	OR SOL III	7.5	1.2	1	1	171
11.b	OR Demonstrate the categories of SQL with example.	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example.	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks)	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures.	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example:	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype,	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,);	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example:	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50),	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50),	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks)	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database.	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT):	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,)	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,);	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,); Example:	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,); Example: sqlCopy code	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,); Example: sqlCopy code INSERT INTO Students (StudentID, FirstName,	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,); Example: sqlCopy code INSERT INTO Students (StudentID, FirstName, LastName, Age) VALUES (1, 'John', 'Doe', 25);	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR(50), LastName VARCHAR(50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,); Example: sqlCopy code INSERT INTO Students (StudentID, FirstName, LastName, Age) VALUES (1, 'John', 'Doe', 25); Example (UPDATE):	7.5	L2	1	1	1.7.1
11.b	Demonstrate the categories of SQL with example. Data Definition Language (DDL): (2.5 Marks) DDL is used for defining, altering, and deleting database structures. Example: sqlCopy code CREATE TABLE table_name (column1 datatype, column2 datatype,); Example: sqlCopy code CREATE TABLE Students (StudentID INT PRIMARY KEY, FirstName VARCHAR (50), LastName VARCHAR (50), Age INT); Data Manipulation Language (DML): (2.5 Marks) DML is used for manipulating data stored in the database. Example (INSERT): sqlCopy code INSERT INTO table_name (column1, column2,) VALUES (value1, value2,); Example: sqlCopy code INSERT INTO Students (StudentID, FirstName, LastName, Age) VALUES (1, 'John', 'Doe', 25);	7.5	L2	1	1	1.7.1

	T		ı	1	ı	1	1
		column2 = value2 WHERE condition;					
		Example:					
		sqlCopy code					
		UPDATE Students SET Age = 26 WHERE					
		StudentID = 1;					
	•	Example (DELETE):					
		sqlCopy code					
		DELETE FROM table_name WHERE condition;					
		Example:					
		sqlCopy code					
		DELETE FROM Students WHERE StudentID = 1;					
		Data Control Language (DCL): (2.5 Marks)					
		Same control sungange (2 cs). (2 cs 1 suns)					
	•	DCL is used for controlling access to data					
		within the database.					
	•	Example (GRANT):					
		sqlCopy code					
		GRANT privilege ON object TO user;					
		Example:					
		sqlCopy code					
		GRANT SELECT, INSERT ON Students TO					
		user1;					
	•	Example (REVOKE):					
		sqlCopy code					
		REVOKE privilege ON object FROM user;					
		Example:					
		sqlCopy code					
		REVOKE SELECT, INSERT ON Students FROM					
		user1;					
		user1,					
	provide	categories cover the fundamental aspects of SQL and the necessary tools to manage and interact with that databases.					
		Part C (1 X 7.5 = 7.5)					
12	The DE	B Enterprise needs an application that would generate the	7.5	L3	1	3	3.6.2
	retrieva	al of information in the web page. Describe the data which falls under this category.					
	For a w	be application that generates the retrieval of information					
		database, you would need a suitable data model to					
		nt the structure and relationships of the data. A common					
	approac	ch is to use a relational data model, which organizes data					
		les with predefined relationships between them. Here's a					
		vel description of a relational data model for a					
		etical scenario where a web application retrieves					
	informa	ation from a database:					
	Relatio	onal Model:					
		Entities:					
	•	Identify the main entities that the application					
		will manage. For example, in an e-commerce					
		application, you might have entities like Product ,					
		Customer, and Order.					
		Attributes:					
	•	Define attributes for each entity, representing					
		the properties or characteristics of the entities. For a					
		Product entity, attributes might include ProductID,					
		ProductName, Price, etc.					
				_			_

Relationships: Establish relationships between entities. For instance, an **Order** entity might have a relationship with both Customer and Product. This reflects that an order is associated with a specific customer and contains one or more products. **Primary Keys:** Identify primary keys for each entity. Primary keys are unique identifiers for each record in a table. For example, **ProductID** might be the primary key for the **Product** table. Foreign Keys: Use foreign keys to establish relationships between tables. For instance, the **Order** table might have foreign keys like CustomerID and ProductID referring to the primary keys in the Customer and **Product** tables, respectively. Normalization: Apply normalization techniques to ensure the database is well-structured and minimize redundancy. Normalization involves breaking down tables into smaller ones and establishing relationships to reduce data duplication. For example, the **Product**, **Customer**, **Order**, and **OrderItem** tables are interconnected through primary and foreign keys. This is a simplified example, and the actual data model would depend on the specific requirements of your application. The defined data model serves as the foundation for creating the database schema and designing queries to retrieve information for the web application.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

^{*}Program Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.