4. Computerarithmetik

Arithmetische Operationen

- werden in ALU (Arithmetic Logic Unit) durchgeführt
- **operation** wählt die durchzuführende Operation aus

MIPS Zweierkomplementdarstellung

32 bit signed integers:

Zweierkomplement-Operationen

- Negieren eine Zweierkomplement-Zahl
 - invertiere alle Bits und addiere eine 1
 - merke: "negieren" und "invertieren" sind etwas ganz Verschiedenes!
- Konvertieren von n-bit Zahlen in mehr als n Bits
 - MIPS 16 bit immediate Zahlen werden in 32 bit für Arithmetik konvertiert
 - Kopiere das höchstwertige Bit (das Vorzeichenbit) in die dazukommenden Bits (z.B. bei *load byte*: 1b)

$$\begin{array}{c}
0010 \ 1011 \rightarrow 0...0 \ 0010 \ 1011 \\
1010 \ 1011 \rightarrow 1...1 \ 1010 \ 1011
\end{array}$$

• "Vorzeichenerweiterung" für vorzeichenlose Zahlen (z.B bei *load byte unsigned*: lbu)

$$1010\ 1011 \rightarrow 0...0\ 1010\ 1011$$
 lbu

Addition & Subtraktion

- Zweierkomplement Addition
 - normale binäre Addition
 - ein evtl. entstehendes Carry-Bit wird ignoriert
- Subtraktion
 - Addition der negierten Zahlen
 - statt

$$\begin{array}{r} 0111 \\ - 0110 \\ \hline 0001 \end{array}$$

rechnet man

Addition & Subtraktion (2)

- Überlauf (overflow, Ergebnis zu groß für endliches Computerwort)
 - die Addition zweier *n*-bit Zahlen ist nicht immer mit *n* bit darstellbar:
 - Beispiel

$$0111 7 1001 -7$$
 $+ 0001 +1 +1011 -5$
 $1000 -8 10100 4$

- Beachte
 - Bei der Addition zweier positiver Zahlen kann eine negative entstehen, bei der Addition zweier negativer eine positive.
 - Entsprechend bei der Subtraktion zweier Zahlen mit verschiedenen Vorzeichen

Überlauf-Erkennung

- kein Überlauf
 - Addition: Operanden haben unterschiedliche Vorzeichen
 - das Ergebnis liegt zwischen der negativen und der positiven Zahl, ist also darstellbar
 - Subtraktion: Operanden haben dasselbe Vorzeichen
 - wegen A-B = A + (-B) auf Addition zurückgeführt
- Überlauf entsteht durch Übertrag in das Vorzeichenbit hinein
- Überlaufbedingungen

Operation	Operand A	Operand B	Ergebnis
A+B	≥ 0	≥ 0	< 0
A+B	< 0	< 0	≥ 0
A-B	≥ 0	< 0	< 0
A-B	< 0	≥ 0	≥ 0

Überlauf-Erkennung (2)

• Überlauferkennung mithilfe von

- Vorzeichen der Operanden
- Art der Operation
- Vorzeichen des Ergebnisses
- bei vorzeichenlosen Zahlen ist Überlauf am Carry-Bit erkennbar
- ⇒ einfaches Schaltnetz löst das Problem
- Betrachte die Operationen A + B und A B.
 - Kann Überlauf entstehen, falls B = 0?
 - Kann Überlauf entstehen, falls A = 0?

Was passiert bei Überlauf?

- Eine Ausnahmebehandlung (exception) wird angestoßen (Details s.u.).
 - Kontrolle springt an vordefinierte Adresse.
 - Rücksprungadresse wird gespeichert, damit dort nach Fehlerbehandlung evtl. weitergearbeitet werden kann.
 - Details hängen von Software (Betriebssystem/Programmiersprache) ab.
 - Nicht immer soll ein Überlauf auch entdeckt werden.
- Neue MIPS Instruktionen (u = unsigned)
 - addu, addiu, subu, sltu, sltiu
 - 32 bit Operanden werden als vorzeichenlose, also nicht-negative 32 bit Zahlen interpretiert
 - wie add, addi, sub, slt, slti nur ohne Exceptions
 - Achtung: addiu macht immer noch Vorzeichenerweiterung für den immediate Operanden! (Zweierkomplementzahl)
 - Beachte: es gibt keine MIPS Instruktionen subi oder subiu
 - addi bzw. addiu können statt dessen negative Zahlen addieren

ALU (Arithmetic Logic Unit)

 Wir bauen eine 1-Bit ALU, und benutzen 32 Stück davon.

- mögliche Implementierung
 - DNF oder minimiertes Polynom

Wiederholung: Multiplexer

- selektiert einen der Eingänge und reicht ihn zum Ausgang weiter, je nach Wertekombination an den Steuerungseingängen
- hier vereinfachtes Blockschaltbild

Wir bauen unsere ALU mithilfe eines MUX.

Verschiedene Implementierungen

- es ist nicht einfach, die "beste" Variante zu finden
 - möglichst geringe Tiefe der Schaltung (Durchlaufverzögerung)
 - möglichst geringe Anzahl von Gattern (Kosten)
 - möglichst geringe Zahl von Eingängen an den Gattern (Kosten)
- Übersichtlichkeit ist für uns im Moment am wichtigsten
- Volladdierer: 1-Bit ALU für Addition

Konstruktion einer 32-Bit ALU

1-Bit ALU für AND, OR, ADD

Subtraktion (a - b)

- benutze Zweierkomplement: negiere b und addiere zu a
- Wie wird negiert?
 - invertieren
 - 1 addieren (benutze CarryIn = 1)

Anpassen der ALU an MIPS

- Unterstützung der set-on-less-than Instruktion
 - slt \$t1, \$t2, \$t3
 - Erinnerung: slt ist eine arithmetische Instruktion
 - erzeugt eine 1 falls \$t2 < \$t3 und 0 sonst
 - benutze Subtraktion: (a-b) < 0 ist äquivalent zu a < b
- Unterstützung für Test auf Gleichheit
 - beq \$t5, \$t6, 25
 - benutze Subtraktion: (a-b) = 0 ist äquivalent zu a = b

Unterstützung von s1t

1-Bit ALU für die unteren 31 Bits Extraeingang für das Resultat der slt Instruktion

1-Bit ALU für höchstwertiges Bit (benötigen Vorzeichenbit des Resultats zum Setzen des niederwertigsten Bits)

32-Bit ALU mit Unterstützung für slt

Test auf Gleichheit: vollständige ALU

Operation Bnegate Steuerleitungen CarryIn a0 Result0 0000 = andALU0 b0 -Less 0001 = orCarryOut 0010 = add0110 = subtractCarryIn 0111 = sltResult1 ALU1 1100 = norLess Zero CarryOut Operation CarryIn Result2 ALU2 Less Bnegate CarryOut Ainvert CarryIn Result31 CarryIn Set b31-ALU31 Less Overflow

MIPS ALU

• ALU operation:

0000 = and

0001 = or

0010 = add

0110 = subtract

0111 = slt

1100 = nor

Abschließende Bemerkungen

Primäres Ziel: Verständnis

- einfache Architektur mit Multiplexer und Ripple-Carry Adder
- nur wenige Instruktionen

Reale ALU

- Addition
 - Carry Look Ahead Addierer statt Ripple Carry Addierer
- Multiplikation
 - Addierer-Baum mit Carry Save Addierer und einem Carry Look Ahead Addierer am Ende
- viele weitere Instruktionen

Multiplikation in MIPS

- getrenntes Paar von 32-Bit Registern Hi und L○
- zusammen ergeben sie das 64 Bit Produkt, das als Ergebnis der Multiplikation zweier 32 Bit Zahlen entsteht
- zwei Multiplikations-Instruktionen
 - multiply
 - multiply unsigned
- Zugriff auf Ergebnis über
 - *move from Lo*: mflo
 - move from Hi: mfhi
- MIPS Assembler enthält Pseudoinstruktion mul für Multiplikation mit drei normalen Registern, die mflo benutzt
 - sinnvoll bei kleinen Zahlen, deren Produkt mit 32 Bits darstellbar ist
 - dabei gibt es keinen Test auf Overflow
 - benutze selbst mfhi, um festzustellen, ob Überlauf stattgefunden hat, oder um die oberen 32 Bits des Ergebnisses weiter zu verwenden

Division in MIPS

• sehr ähnlich zur Multiplikation

- wie schriftliches Dividieren
 - Quotient- und Rest-Register
 - Subtraktion statt Addition
- Besonderheit: es gibt Operanden, für die kein Ergebnis berechnet werden kann
 - Division durch 0 (dann Exception, s.u.)

MIPS

- Hardware identisch zur Hardware f
 ür die Multiplikation
- Instruktionen: div und divu
 - Hi enthält den Rest
 - Lo den Quotienten

Gleitkomma-Operationen

Rechenoperationen sind kompliziert

- zusätzlich zu overflow können wir auch underflow haben
- viele Sonderfälle
 - positive Zahl dividiert durch 0 ergibt "infinity"
 - 0 dividiert durch 0 ergibt "not a number"

Genauigkeit kann ein großes Problem sein

- Daten müssen wegen der Darstellung mit Signifikand immer normalisiert werden
- nach dem Normalisieren muss gerundet werden
- vier verschiedene Rundungs-Arten
- beim Runden kann die Zahl wieder denormalisiert werden
- erneutes Normalisieren notwendig

Addition von Gleitpunkt-Zahlen

- Normalerweise werden Schritte 3 und 4 nur einmal durchlaufen.
- Wenn nach dem Runden die Zahl nicht mehr normalisiert ist, muss noch einmal normalisiert werden.

Addition von Gleitpunkt-Zahlen (2)

- Kleine ALU
 bestimmt Differenz
 der Exponenten.
- Multiplexer wählen aus:
 - größeren Exponenten
 - Signifikand der kleineren Zahl
 - Signifikand der größeren Zahl
 - kleinere Zahl wird nach rechts geschoben
- Normalisierung schiebt Summe nach rechts oder links und passt Exponent an

Multiplikation von Gleitpunkt-Zahlen

- das Schieben vor der Rechenoperation entfällt
 - Signifikanden werden direkt multipliziert
 - Exponenten werden addiert
- normalerweise werden Schritte 3
 und 4 nur einmal durchlaufen
- wenn nach dem Runden die Zahl nicht mehr normalisiert ist, muss noch einmal normalisiert werden
- Hardware wird analog aufgebaut

Gleitkommazahlen in MIPS

Register

- eigene floating point register \$f0, ..., \$f31
- Paare von single precision Registern werden f\u00fcr double precision benutzt
 - z.B. \$f0, \$f1

single und double precision werden unterstützt, z.B.

- add.s, add.d
- sub.s, sub.d
- mul.s, mul.d
- div.s, div.d
- diverse Vergleichsoperationen
- Sprünge, die von Vergleichen zweier Gleitkomma-Zahlen abhängen

Zusammenfassung

- Computer Arithmetik ist beschränkt durch begrenzte Genauigkeit
- Bitmuster haben keine inhärente Bedeutung, aber es existieren Standards
 - Vorzeichenlose Zahlen
 - Zweierkomplement
 - IEEE 754 Gleitkommazahlen
- Computer-Instruktionen bestimmen "Bedeutung" der Bitmuster
- Performance und Genauigkeit sind wichtig, daher sind reale Maschinen recht komplex (wegen der Standard-konformen Implementierung der Rechenoperationen)