

■ 공분산과 상관계수

- 산점도: 두 수치변수 간에 관계가 있는지를 시각적으로 확인
- 두 수치변수 간에 <mark>직선관계</mark>가 어느 정도인지를 나타내는 통계값
- 자료표시: $(x_1,y_1), (x_2,y_2), \dots, (x_n,y_n)$

◉ 양(좌)과 음(우)의 관계를 가지는 산점도

● 고려사항

- \circ 위치에 따라 직선관계에는 변화가 없음 \Rightarrow (x, y)를 중심으로
- 좌 그림: (x, y)를 중심으로 1과 3사분면에 자료가 많고 길게 분포 ⇒ 양수로 표시
- 우 그림: (x, y)를 중심으로 2와 4사분면에 자료가 많고 길게 분포 \Rightarrow 음수로 표시
 - \circ (x, y)에서 멀어질수록 직선관계가 명확해짐

$$\Rightarrow (x_i - \overline{x})(y_i - \overline{y})$$

■ 표본공분산(sample covariance)

$$c = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

- ullet 좌 그림: 양의 기울기인 선분에 자료가 모여 있음 $\Rightarrow c > 0$
- ullet 우 그림: 음의 기울기인 선분에 자료가 모여 있음 $\Rightarrow c < 0$
- y_i 를 x_i 로 바꾸면

$$c = \frac{1}{n-1} \sum (x_i - \overline{x})(x_i - \overline{x}) = \frac{1}{n-1} \sum (x_i - \overline{x})^2$$

\odot 직선관계가 없는 산점도 $(c \approx 0)$

● 표본공분산의 간편식

$$c = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y} \right\}$$

$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i \right\}$$

● 올림픽 육상 100미터 우승기록

○ 남자(1900~2016년 자료)

번호	x(연도)	<i>y</i> (기록)	x^2	y^2	xy
1	1900	11	3610000	121	20900
2	1904	11	3625216	121	20944
•	•	•	:	:	:
27	2016	9.81	4064256	96.236	19776.96
합	52940	276.76	103835088	2841.27	542291.2

○ 연도와 남자 우승기록의 표본공분산

$$c = \frac{1}{27 - 1} \left(542291.2 - \frac{1}{27} (52940)(276.71) \right) = \frac{-363.45}{26} = -13.98$$

ㅇ 여자

번호	x(연도)	y(기록)	x^2	y^2	xy
1	1928	12.2	3717184	148.84	23521.6
2	1932	11.9	3732624	141.61	22990.8
•	•	•	•	•	:
21	2016	10.71	4064256	114.794	21591.36
합	41472	234.38	81915488	2619.86	462655.6

○ 연도와 여자 우승기록의 표본공분산

$$c = \frac{1}{21 - 1} \left(462655.6 - \frac{1}{21} (41472)(234.38) \right) = \frac{-211.457}{20} = -10.57$$

■ 표본상관계수(coefficient of correlation)

- 표본공분산의 문제점
 - 측정 단위에 영향을 받기 때문에 그 값 자체로 선형관계의 정도를 알 수는 없음
 - 예】우승기록을 초 ⇒ 분 단위로 표시
 ⇒ 남자의 표본공분산: -13.98/60=-0.233

- 피어슨의 표본상관계수
 - 표준화된 자료의 표본공분산

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

● 표본상관계수의 간편식

$$\begin{split} S_{xy} &= \sum_{i=1}^{n} (x_i - \overline{x}^{\,}) (y_i - \overline{y}^{\,}) = \sum_{i=1}^{n} x_i y_i - n \, \overline{x}^{\,} \overline{y} \\ S_{xx} &= \sum_{i=1}^{n} (x_i - \overline{x}^{\,})^2 = \sum_{i=1}^{n} x_i^2 - n \, \overline{x}^2 \\ S_{yy} &= \sum_{i=1}^{n} (y_i - \overline{y}^{\,})^2 = \sum_{i=1}^{n} y_i^2 - n \, \overline{y}^2 \end{split}$$

$$r = \frac{\sum\limits_{i \, = \, 1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum\limits_{i \, = \, 1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\sum\limits_{i \, = \, 1}^{n} (y_{i} - \overline{y})^{2}}} = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

 \circ Cauchy-Schwartz 부등식: $\left(\sum a_i b_i\right)^2 \leq \sum a_i^2 \sum b_i^2$ $\Rightarrow |r| \leq 1 \Rightarrow -1 \leq r \leq 1$

- 표본상관계수의 성질
 - \circ 기울기를 가지는 직선에 조밀하게 모일수록 |r|는 1에 근접
 - ·모든 관측값들이 직선 위에 위치하면 |r|=1
 - $\cdot r$ 가 음수이면 음의 상관관계가 존재
 - $\cdot r$ 가 양수이면 양의 상관관계가 존재
 - - ㆍ 어떤 관계도 존재하지 않는다는 것은 아님
 - \circ |r|가 얼마 이상이어야 상관관계가 있다고 할 수 있는지? \Rightarrow "통계학의 이해표"

- 올림픽 개최 연도와 우승기록
 - 남자의 상관계수

$$S_{xx} = 103835088 - \frac{52940^2}{27} = 33473.19$$

$$S_{yy} = 2841.27 - \frac{276.76^2}{27} = 4.378$$

$$r_{xy} = \frac{-363.45}{\sqrt{33473.2} \sqrt{4.378}} = -0.949$$

- 여자의 상관계수: -0.892
- 연도와 우승기록 간에는 확실한 음의 상관관계가 있음

■ 상관관계 사용 시 주의할 점

- 두 변수 간에 직선관계가 있는지를 나타낼 뿐 인과관계를 나타내는 것은 아님
 - 예】휴대전화 보급률과 기대수명에 대한 상관계수
 - ・매우 높은 양의 상관관계를 가짐⇒ 기대수명을 늘리기 위해 휴대전화 보급을 늘려야 한다?
 - 잠복변수(lurking varaible): 두 변수에 영향을 주는 변수

 - · 보급률과 기대수명에서 연도의 영향력을 제거하고 상관관계유도

• 통합된 그룹의 상관관계

● 정리

- 직선관계의 정도: 표본공분산, 표본상관계수
- 표본상관계수: 표준화된 자료의 표본공분산
- \circ |r|이 1에 가까울수록 높은 상관관계
- 주의할 점: 허위상관, 통합된 그룹의 상관관계