NCEA Level 3 Calculus (Integration) 24. Formal Definitions of exp and ln

Today we will write down formal definitions of the natural exponential and logarithm functions.

The Natural Logarithm

We can integrate x^3 , x^2 , x^{-2017} , and x^0 easily using the reverse power rule (respectively, they become $x^4/4$, $x^3/3$, $-x^{-2016}/2016$, and 0). However, we cannot integrate x^{-1} :

$$\int x^{-1} \, \mathrm{d}x = \frac{1}{-1+1} x^{-1+1} = \frac{1}{0} x^0 = ???$$

But we know that the indefinite integral of x^{-1} must exist, since there is obviously a finite area beneath the curve $y = x^{-1}$ over (for example) the interval [1, 2]. We therefore make the following **definition**:

$$\ln x := \int_{1}^{x} \frac{1}{t} \, \mathrm{d}t.$$

How does one pronounce 'ln'? log.

We can prove the log rules using this definition; as a sampler, we prove that $\ln x + \ln y = \ln xy$:

$$\ln x + \ln y = \int_{1}^{x} \frac{1}{t} dt + \int_{1}^{y} \frac{1}{t} dt$$

$$= \int_{1}^{x} \frac{1}{t} dt + \int_{x}^{xy} \frac{1}{u/x} \frac{1}{x} du \quad (u = tx)$$

$$= \int_{1}^{x} \frac{1}{t} dt + \int_{x}^{xy} \frac{1}{u} du$$

$$= \int_{1}^{x} \frac{1}{t} dt + \int_{x}^{xy} \frac{1}{t} dt$$

$$= \int_{1}^{xy} \frac{1}{t} dt$$

$$= \ln xy.$$

The Exponential Function

We define the exponential function to be the function implicitly defined by $\exp(x) = y \iff \ln(y) = x$. Consider the following (where $y = \exp(x)$):

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}} = \frac{1}{1/y} = y$$

So $\frac{\mathrm{d}}{\mathrm{d}x} \exp(x) = \exp(x)$.

We can also write $\exp(x) \equiv e^x$.

Note that e is the unique number such that $\ln(e) = 1$:

$$ln(e) = ln(e^1) = ln(exp(1)) = 1.$$

Questions

- 1. S Prove the following:
 - (a) $\ln 1 = 0$
 - (b) $\ln x > 0$ for all x > 1.
 - (c) $\ln x < 0$ for all 0 < x < 1.
 - (d) $a \ln x = \ln(x^a)$ (Remember, multiplication is just repeated addition.)
 - (e) $\ln x \ln y = \ln(x/y)$
 - (f) $e^{x+y} = e^x e^y$
 - (g) $e^{x-y} = e^x/e^y$
 - (h) $e^0 = 1$
 - (i) $(e^x)^y = e^{xy}$