UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tjaša Vrhovnik

MINIMALNE PLOSKVE

Magistrsko delo

Mentor: prof. dr. Franc Forstnerič

Zahvala

Kazalo

P	rogram dela	vii
1	$\mathbf{U}\mathbf{vod}$	1
2	Osnovni pojmi	1
3	Izerki o aproksimaciji in interpolaciji minimalnih ploskev	2
Li	teratura	3

Program dela

Osnovna literatura

Literatura mora biti tukaj posebej samostojno navedena (po pomembnosti) in ne le citirana. V tem razdelku literature ne oštevilčimo po svoje, ampak uporabljamo okolje itemize in ukaz plancite, saj je celotna literatura oštevilčena na koncu.

- [?]
- [?]
- [?]
- [?]

Podpis mentorja:

Minimalne ploskve

POVZETEK

Tukaj napišemo	povzetek	vsebine.	Sem	sodi	razlaga	vsebine	in n	e opis	$_{ m tega,}$	kako	jе
delo organiziran	0.										

English translation of the title

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2010): oznake kot 74B05, 65N99, na voljo so na naslovu http://www.ams.org/msc/msc2010.html

Ključne besede:

Keywords:

1 Uvod

2 Osnovni pojmi

Definicija 2.1. Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

Definicija 2.2. 1. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in naj bo preslikava $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . $Variacija preslikave <math>x \circ fiksnim$ robom je 1-parametrična družina \mathcal{C}^2 preslikav

$$x^t \colon M \to \mathbb{R}^n, \ t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (2.1)

če je $x^0 = x$ in za vse t z intervala velja $x^t = x$ na bM.

2. Naj bo $p \in M$. Variacijsko vektorsko polje preslikave x^t je vektorsko polje, definirano kot

$$E(p,t) = \frac{\partial x^t(p)}{\partial t} \in \mathbb{R}^n. \tag{2.2}$$

Definicija 2.3. Naj bo $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Ploskev M imenujemo minimalna ploskev, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Area}(x^t(D)) = 0. \tag{2.3}$$

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area: $D \to \mathbb{R}$.

Izrek 2.4. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Naj bo $E = \partial x^t/\partial t|_{t=0}$ variacijsko vektorsko polje preslikave x^t pri t=0, \mathbf{H} vektorsko polje povprečne ukrivljenosti preslikave x in dA ploščinski element glede na Riemannovo metriko x^*ds^2 definirano na M. Potem za vsako gladko variacijo $x^t \colon M \to \mathbb{R}^n$ imerzije x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} Area(x^t(M)) = -2\int_M E \cdot \mathbf{H} dA. \tag{2.4}$$

Izrek 2.5. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda C^2 . Ploskev M je minimalna natanko tedaj, ko je na M vektor povprečne ukrivljenosti \mathbf{H} preslikave x identično enak 0.

Rezultat Izreka 2.4 imenujemo prva variacijska formula za minimalne ploskve. S podobnimi tehnikami kot v dokazu le-te izpeljemo drugo variacijsko formulo

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Area}(x^t(M)) = \int_M (4|E|^2 K^E + |\nabla E|^2) dA, \tag{2.5}$$

kjer $K^E = K^N$ označuje Gaussovo ukrivljenost ploskve M.

Naj bo ploskev M orientabilna in $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Potem preslikava x določa enolično strukturo Riemannove ploskve na M in x je konformna imerzija. Zato bomo v nadaljevanju obravnavali Riemannove ploskve in pripadajoče konformne imerzije v Evklidski prostor.

Izrek 2.6. Naj bo M odprta Riemannova ploskev, $n \geq 3$ in $x = (x_1, \ldots, x_n) : M \rightarrow \mathbb{R}^n$ konformna imerzija razreda \mathcal{C}^2 . Naslednje trditve so ekvivalentne:

- 1. x je minimalna ploskev.
- 2. Vektorsko polje povprečne ukrivljenosti preslikave x je ničelno, tj. $\mathbf{H} = 0$.
- 3. x je harmonična, tj. $\Delta x = 0$.
- 4. 1-forma $\partial x = (\partial x_1, \dots, \partial x_n)$ z vrednostmi v \mathbb{C}^n je holomorfna in velja

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0. \tag{2.6}$$

5. Naj bo θ holomorfna 1-forma na M, ki ni nikjer enaka 0. Potem je preslikava $f = 2\partial x/\theta \colon M \to \mathbb{C}^n$ holomorfna z vrednostmi na ničelni kvadriki

$$\mathbf{A} = \{ (z_1, \dots, z_n) \in \mathbb{C}^n; z_1^2 + \dots + z_n^2 = 0 \}.$$
 (2.7)

 $Nadalje\ je\ Riemannova\ metrika\ na\ M,\ inducirana\ s\ konformno\ imerzijo\ x,$ enaka

$$g = x^* ds^2 = |dx_1|^2 + \dots + |dx_n|^2 = 2(|\partial x_1|^2 + \dots + |\partial x_n|^2).$$
 (2.8)

Definicija 2.7. Naj bo $x: M \to \mathbb{R}^n$ harmonična preslikava. Njen pretok je homomorfizem grup $\mathrm{Flux}_x \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, definiran s predpisom

$$\operatorname{Flux}_{x}([C]) = \int_{C} d^{c}x. \tag{2.9}$$

V definiciji pretoka je $[C] \in H_1(M, \mathbb{Z})$, integral pa je odvisen le od homološkega razreda poti C, zato bomo v nadaljevanju pisali kar $\operatorname{Flux}_x(C)$.

- **Definicija 2.8.** 1. Naj bo M odprta Riemannova ploskev in $n \geq 3$. Holomorfno imerzijo $z = (z_1, \ldots, z_n) \colon M \to \mathbb{C}^n$, za katero velja $(\partial z_1)^2 + \cdots + (\partial z_n)^2 = 0$, imenujemo holomorfna ničelna krivulja v \mathbb{C}^n .
 - 2. Naj bo $z=x+\imath y\colon M\to\mathbb{C}^n$ holomorfna ničelna krivulja. Njena realni del in imaginarni del, $x,y\colon M\to\mathbb{R}^n$ imenujemo konjugirani minimalni ploskvi.
 - 3. Naj bo $t \in \mathbb{R}$. Predstavnike 1-parametrične družine $x^t = \Re(e^{it}z) \colon M \to \mathbb{R}^n$ imenujemo asociirane minimalne ploskve holomorfne ničelne krivulje z.

Definicija 2.9. Jordanov lok je pot v ravnini, ki je topološko izomorfna intervalu [0,1]. Jordanova krivulja je ravninska krivulja, ki je topološko ekvivalentna enotski krožnici.

Definicija 2.10. Naj bo M gladka ploskev, K končna unija paroma disjunktnih kompaktnih domen s kosoma zvezno odvedljivimi robovi v M ter $E = S \setminus K^{\circ}$ unija končno mnogo paroma disjunktnih gladkih Jordanovih lokov in zaprtih Jordanovih krivulj, ki se dotikajo K kvečjemu v svojih krajiščih in sekajo rob K transverzalno. Kompaktno podmnožico v M oblike $S = K \cup E$ imenujemo $Admissible\ set$.

3 Izerki o aproksimaciji in interpolaciji minimalnih ploskev

Literatura