

CLAIMS LISTING

3	1. (CURRENTLY AMENDED) A method for optimizing a wireless electromagnetic
4	communications network, comprising:
5	organizing a wireless electromagnetic communications network, comprising
6	a set of nodes, said set of nodes further comprising,
7	at least a first subset wherein each node is MIMO-capable,
8	comprising:
9	an antennae array of M antennae, where $M \ge$ one,
10	a transceiver for each antenna in said spatially diverse
11	antennae array,
12	means for digital signal processing to convert analog radio
13	signals into digital signals and digital signals into analog
14	radio signals,
15	means for coding and decoding data, symbols, and control
16	information into and from digital signals,
17	diversity capability means for transmission and reception of
18	said analog radio signals,
19	and,
20	means for input and output from and to a non-radio
21	interface for digital signals;
22	linking said set of nodes being deployed according to design rules that
23	favor prefer meeting the following criteria:
24	subdividing said set of nodes further comprising into two or more
25	proper subsets of nodes, with a first proper subset being the a
26	transmit uplink / receive downlink subset, and a second proper
27	subset being the a transmit downlink / receive uplink subset;
28	allowing each node in said set of nodes to simultaneously belong
29	belonging to no more up to as many transmitting uplink or
80	receiving uplink subsets than as it has diversity capability means;

31 <u>allowing</u> each node in a <u>the</u> transmit uplink / receive downlink
32 subset has no more to simultaneously link to up to as many nodes
33 with which it will hold time and frequency coincident
34 communications in its field of view, than <u>as</u> it has diversity
35 capability means;
36 <u>allowing</u> each node in a <u>the</u> transmit downlink / receive uplink
37 subset has no more to simultaneously link to up to as many nodes
38 with which it will hold time and frequency coincident

subset has no more to simultaneously link to up to as many nodes with which it will hold time and frequency coincident communications in its field of view, than as it has diversity capability means;

allowing each member of a the transmit uplink / receive downlink subset eannot hold to engage in simultaneous, time and frequency coincident communications with any other member of that transmit uplink / receive downlink subset only f if both that other member also belongs to a different proper subset and the communication is between different proper subsets;

and,

٠.

allowing each member of a the transmit downlink / receive uplink subset eannot hold to engage in simultaneous, time and frequency coincident communications with any other member of that transmit downlink / receive uplink subset if both that other member also belongs to a different proper subset and the communication is between different proper subsets;

transmitting, in said wireless electromagnetic communications network, independent information from each node belonging to a first proper subset, to one or more receiving nodes belonging to a second proper subset that are viewable from the transmitting node; processing independently, in said wireless electromagnetic communications network, at each receiving node belonging to said second proper subset, information transmitted from one or more nodes belonging to said first proper subset;

62	and,	
63	dynamically adapting the diversity capability means and said proper subsets to	
64	optimize said network.	
65		
66		
67	2. (CURRENTLY AMENDED) A method for optimizing a wireless electromagnetic	
68	communications network, comprising:	
69	organizing a wireless electromagnetic communications network, comprising	
70	a set of nodes, said set of nodes further comprising,	
71	at least a first subset wherein each node is MIMO-capable,	
72	comprising:	
73	a spatially diverse antennae array of M antennae, where M	
74	\geq two,	
75	a transceiver for each antenna in said spatially diverse	
76	antennae array,	
77	means for digital signal processing to convert analog radio	
78	signals into digital signals and digital signals into analog	
79	radio signals,	
80	means for coding and decoding data, symbols, and control	
81	information into and from digital signals,	
82	diversity capability means for transmission and reception of	
83	said analog radio signals,	
84	and,	
85	means for input and output from and to a non-radio	
86	interface for digital signals;	
87	linking said set of nodes being deployed according to design rules that	
88	favor prefer meeting the following criteria:	
89	subdividing said set of nodes further comprising into two or more	
90	proper subsets of nodes, with a first proper subset being a the	
91	transmit uplink / receive downlink subset, and a second proper	
92	subset being a the transmit downlink / receive uplink subset;	

allowing each node in said set of nodes to simultaneously belong belonging to no more up to as many transmitting uplink or receiving uplink subsets than as it has diversity capability means; allowing each node in a the transmit uplink / receive downlink subset has no more to simultaneously link to up to as many nodes with which it will hold time and frequency coincident communications in its field of view, than as it has diversity capability means;

allowing each node in a the transmit downlink / receive uplink subset has no more to simultaneously link to up to as many nodes with which it will hold time and frequency coincident communications in its field of view, than as it has diversity capability means;

allowing each member of a the transmit uplink / receive downlink subset eannot hold to engage in simultaneous time and frequency coincident communications with any other member of that transmit uplink / receive downlink subset only if both that other member also belongs to a different proper subset and the communication is between different proper subsets:

and,

allowing each member of a the transmit downlink / receive uplink subset eannot hold to engage in simultaneous time and frequency coincident communications with any other member of that transmit downlink / receive uplink subset only if both that other member also belongs to a different proper subset and the communication is between different proper subsets;

transmitting, in said wireless electromagnetic communications network, independent information from each node belonging to a first proper subset, to one or more receiving nodes belonging to a second proper subset that are viewable from the transmitting node;

123 processing independently, in said wireless electromagnetic communications 124 network, at each receiving node belonging to said second proper subset, 125 information transmitted from one or more nodes belonging to said first proper 126 subset; 127 and, 128 dynamically adapting the diversity capability means and said proper subsets to 129 optimize said network. 130 131 132 3. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 133 adapting the diversity capability means and said proper subsets to optimize said network 134 further comprises: 135 using substantive null steering to minimize SINR between nodes transmitting and 136 receiving information. 137 138 139 4. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 140 adapting the diversity capability means and said proper subsets to optimize said network 141 further comprises: 142 using max-SINR null- and beam-steering to minimize intra-network interference. 143 144 145 5. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 146 adapting the diversity capability means and said proper subsets to optimize said network 147 further comprises: 148 using MMSE null- and beam-steering to minimize intra-network interference. 149 150 151 6. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 152 adapting the diversity capability means and said proper subsets to optimize said network 153 further comprises:

154		
155	designing the network such that reciprocal symmetry exists for each pairing of	
156	uplink receive and downlink receive proper subsets.	
157		
158	7. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically	
159	adapting the diversity capability means and said proper subsets to optimize said network	
160	further comprises:	
161		
162	designing the network such that substantial reciprocal symmetry exists for each	
163	pairing of uplink receive and downlink receive proper subsets.	
164		
165	8. (original) A method as in claim 1, wherein the network uses TDD communication	
166	protocols.	
167		
168	9. (original) A method as in claim 1, wherein the network uses FDD communication	
169	protocols.	
170		
171	10. (original) A method as in claim 3, wherein the network uses simplex communication	
172	protocols.	
173		
174	11. (original) A method as in claim 1, wherein the network uses random access packets	
175	and receive and transmit operations are all carried out on the same frequency channels for	
176	each link.	
177		
178	12. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically	
179	adapting the diversity capability means and said proper subsets to optimize said network	
180	further comprises	
181		
182	if the received interference is spatially white in both link directions, setting	

- 183 $\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$ and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link,
- where
- 185 $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights used in the
- downlink;
- 187
- but if the received interference is not spatially white in both link directions,
- constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to preferentially satisfy:
- 190
- 191 $\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$
- 192
- 193 $\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2}$
- 194
- 195
- 196 13. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein:
- a proper subset may incorporate one or more nodes that are in a receive-only
- mode for every diversity capability means.
- 199
- 200
- 201 14. (original) A method as in claim 1, wherein:
- the network may dynamically reassign a node from one proper subset to another.
- 203
- 204
- 205 15. (original) A method as in claim 1, wherein:
- the network may dynamically reassign a proper subset of nodes from one proper
- subset to another.

16. (PREVIOUSLY PRESENTED) A method as in claim 7, wherein the step of
 designing the network such that substantial reciprocal symmetry exists for the uplink and
 downlink channels further comprises:

if the received interference is spatially white in both link directions, setting

216
$$\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$$
 and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link, where

 $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights used in the

218 downlink;

but if the received interference is not spatially white in both link directions,

constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to preferentially satisfy:

223
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_{1}^{T}(q) \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n_{1}(q)) \mathbf{g}_{1}^{*}(q) = \sum_{n=1}^{N_{1}} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_{1} \mathbf{i}_{1}}(n) \} = M_{1} R_{1}$$

224
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2}$$

227 17. (CANCELLED)

18. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically adapting the diversity capability means and said proper subsets to optimize said network further comprises

using at each node the receive combiner weights as transmit distribution weights during subsequent transmission operations, so that the network is preferentially designed and constrained such that each link is substantially reciprocal, such that the ad hoc network capacity measure can be made equal in both link directions by setting at both ends of the link:

$$\mathbf{g}_2(k,q) \propto \mathbf{w}_2^*(k,q)$$
 and $\mathbf{g}_1(k,q) \propto \mathbf{w}_1^*(k,q)$,

where $\{\mathbf{g}_2(k,q), \mathbf{w}_1(k,q)\}$ are the linear transmit and receive weights to transmit data $d_2(k,q)$ from node $n_2(q)$ to node $n_1(q)$ over channel k in the downlink, and where $\{\mathbf{g}_1(k,q),\mathbf{w}_2(k,q)\}$ are the linear transmit and receive weights used to transmit data $d_1(k,q)$ from node $n_1(q)$ back to node $n_2(q)$ over equivalent channel k in the uplink.

19. (CURRENTLY AMENDED) A method as in claim 1, wherein the step of each node in a transmit downlink / receive uplink subset having no more nodes with which it will hold time and frequency coincident communications in its field of view, than it has diversity capability means linking said set of nodes according to design rules further comprises:

designing the topological, physical layout of nodes to <u>support the favored criteria</u> enforce this constraint within the node's diversity capability <u>means</u> <u>means'</u> limitations.

259	
260	
261	20. (CURRENTLY AMENDED) A method as in claim 1, wherein the step of each
262	node in a transmit uplink / receive downlink subset having no more nodes with which it
263	will hold time and frequency coincident communications in its field of view, than it has
264	diversity capability means linking said set of nodes according to design rules further
265	comprises:
266	designing the topological, physical layout of nodes to support the favored criteria
267	enforce this constraint within the node's diversity capability means means'
268	limitations.
269	
270	
271	21. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
272	dynamically adapting the diversity capability means and said proper subsets to optimize
273	said network further comprises:
274	allowing a proper subset to send redundant data transmissions over multiple
275	frequency channels to another proper subset.
276	
277	
278	22. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
279	dynamically adapting the diversity capability means and said proper subsets to optimize
280	said network further comprises:
281	allowing a proper subset to send redundant data transmissions over multiple
282	simultaneous or differential time slots to another proper subset.
283	
284	
285	23. (CURRENTLY AMENDED) A method as in claim 1, wherein said transmitting
286	proper subset and receiving proper subset the step of linking and substep of subdividing
287	said set of nodes into two or more proper subsets of nodes, does so using as the diversity
288	capability means for transmission and reception of said analog radio signals spatial
289	diversity of antennae. further comprise:

290	spatial diversity of antennae.	
291		
292		
2 93	24. (CURRENTLY AMENDED) A method as in claim 1, wherein said transmitting	
294	proper subset and receiving proper subset the step of linking and substep of subdividing	
295	said set of nodes into two or more proper subsets of nodes, does so using as the diversity	
296	capability means for transmission and reception of said analog radio signals polarization	
297	diversity of antennae-further comprise:	
298	polarization diversity of antennae.	
299		
300		
301	25. (CURRENTLY AMENDED) A method as in claim 1, wherein said transmitting	
302	proper subset and receiving proper subset the step of linking and substep of subdividing	
303	said set of nodes into two or more proper subsets of nodes, does so using as the diversity	
304	capability means for transmission and reception of said analog radio signals any	
305	combination of temporal, spatial, and polarization diversity of antennae further comprise:	
306	any combination of temporal, spatial, and polarization diversity of antennae.	
307		
308		
309	26. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of	
310	dynamically adapting the diversity capability means and said proper subsets to optimize	
311	said network further comprises:	
312	incorporating network control and feedback aspects as part of the signal encoding	
313	process.	
314		
315		
316	27. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of	
317	dynamically adapting the diversity capability means and said proper subsets to optimize	
318	said network further comprises:	
319	incorporating network control and feedback aspects as part of the signal encoding	
320	process and including said as network information in one direction of the	

321 signalling and optimization process, using the perceived environmental 322 condition's effect upon the signals in the other direction of the signalling and 323 optimization process. 324 325 326 28. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 327 dynamically adapting the diversity capability means and said proper subsets to optimize 328 said network further comprises: 329 adjusting the diversity capability means use between any proper sets of nodes by 330 rerouting any active link based on perceived unacceptable SINR experienced on 331 that active link and the existence of an alternative available link using said 332 adjusted diversity capability means. 333 334 335 29. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 336 dynamically adapting the diversity capability means and said proper subsets to optimize 337 said network further comprises: 338 switching a particular node from one proper subset to another due to changes in 339 the external environment affecting links between that node and other nodes in the 340 network. 341 342 343 30. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 344 dynamically adapting the diversity capability means and said proper subsets to optimize 345 said network further comprises: 346 dynamically reshuffling proper subsets to more closely attain network objectives 347 by taking advantage of diversity capability means availability. 348 349

350	31. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
351	dynamically adapting the diversity capability means and said proper subsets to optimize
352	said network further comprises:
353	dynamically reshuffling proper subsets to more closely attain network objectives
354	by accounting for node changes.
355	
356	
357	32. (PREVIOUSLY PRESENTED) A method as in claim 31, wherein said node
358	changes include any of:
359	adding diversity capability means to a node, adding a new node within the field of
360	view of another node, removing a node from the network (temporarily or
361	permanently), or losing diversity capability at a node.
362	
363	
364	33. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
365	dynamically adapting the diversity capability means and said proper subsets to optimize
366	said network further comprises:
367	suppressing unintended recipients or transmitters by the imposition of signal
368	masking.
369	
370	
371	34. (original) A method as in claim 33, wherein the step of suppressing unintended
372	recipients or transmitters by the imposition of signal masking further comprises:
373	imposition of an origination mask.
374	
375	
376	34. (original) A method as in claim 33, wherein the step of suppressing unintended
377	recipients or transmitters by the imposition of signal masking further comprises:
378	imposition of a recipient mask.
379	
380	

381 35. (original) A method as in claim 33, wherein the step of suppressing unintended 382 recipients or transmitters by the imposition of signal masking further comprises: 383 imposition of any combination of origination and recipient masks. 384 385 386 36. (PREVIOUSLY PRESENTED) A method as in claim 33, wherein the step of 387 dynamically adapting the diversity capability means and said proper subsets to optimize 388 said network further comprises: 389 using signal masking to secure transmissions against unintentional, interim 390 interception and decryption by the imposition of a signal mask at origination, the 391 transmission through any number of intermediate nodes lacking said signal mask. 392 and the reception at the desired recipient which possesses the correct means for 393 removal of the signal mask. 394 395 396 37. (original) A method as in claim 36, wherein the signal masking is shared by a proper 397 subset. 398 399 400 38. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 401 dynamically adapting the diversity capability means and said proper subsets to optimize 402 said network further comprises: 403 heterogenous combination of a hierarchy of proper subsets, one within the other, 404 each paired with a separable subset wherein the first is a transmit uplink and the 405 second is a transmit downlink subset, such that the first subset of each pair of 406 subsets is capable of communication with the members of the second subset of 407 each pair, yet neither subset may communicate between its own members. 408 409

410	39. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of	
411	dynamically adapting the diversity capability means and said proper subsets to optimize	
412	said network further comprises:	
413	using as many of the available diversity capability means as are needed for traffi	
414	between any two nodes from 1 to NumChannels, where NumChannels equals the	
415	maximal diversity capability means between said two nodes.	
416		
417		
418	40. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of	
419	dynamically adapting the diversity capability means and said proper subsets to optimize	
420	said network further comprises:	
421	using a water-filling algorithm to route traffic between an origination and	
422	destination node through any intermediate subset of nodes that has available	
423	diversity capability means capacity.	
424		
425		
426	41. (CURRENTLY AMENDED) A method for optimizing a wireless	
427	electromagnetic communications network, comprising:	
428	organizing a wireless electromagnetic communications network, comprising	
429	a set of nodes, said set further comprising,	
430	at least a first subset of MIMO-capable nodes, each MIMO-	
431	capable node comprising:	
432	a spatially diverse antennae array of M antennae, where M	
433	≥ two, said antennae array being polarization diverse, and	
434	circularly symmetric, and providing 1-to-M RF feeds;	
435	a transceiver for each antenna in said array, said transceiver	
436	further comprising	
437	a Butler Mode Forming element, providing spatial	
438	signature separation with a FFT-LS algorithm,	
439	reciprocally forming a transmission with shared	
440	receiver feeds, such that the number of modes out	

441	equals the numbers of antennae, establishing such
442	as an ordered set with decreasing energy, further
443	comprising:
444	a dual-polarization element for splitting the
445	modes into positive and negative polarities
446	with opposite and orthogonal polarizations,
447	that can work with circular polarizations,
448	and
449	a dual-polarized link CODEC;
450	a transmission/reception switch comprising,
451	a vector OFDM receiver element;
452	a vector OFDM transmitter element;
453	a LNA bank for a receive signal, said LNA
454	Bank also instantiating low noise
455	characteristics for a transmit signal;
456	a PA bank for the transmit signal that
457	receives the low noise characteristics for
458	said transmit signal from said LNA bank;
459	an AGC for said LNA bank and PA bank;
460	a controller element for said
461	transmission/reception switch enabling
462	baseband link distribution of the energy over
463	the multiple RF feeds on each channel to
464	steer up to K_{feed} beams and nulls
465	independently on each FDMA channel;
466	a Frequency Translator;
467	a timing synchronization element controlling
468	said controller element;
469	further comprising a system clock,
470	a universal Time signal element;
471	GPS;

472	a multimode power management element
473	and algorithm;
474	and,
475	a LOs element;
476	said vector OFDMreceiver element comprising
477	an ADC bank for downconversion of
478	received RF signals into digital signals;
479	a MT DEMOD element for multitone
480	demodulation, separating the received signal
481	into distinct tones and splitting them into 1
482	through K_{feed} FDMA channels, said
483	separated tones in aggregate forming the
484	entire baseband for the transmission, said
485	MT DEMOD element further comprising
486	a Comb element with a multiple of 2
487	filter capable of operating on a 128-
488	bit sample; and,
489	an FFT element with a 1,024 real-IF
490	function;
491	a Mapping element for mapping the
492	demodulated multitone signals into a 426
493	active receive bins, wherein
494	each bin covers a bandwidth of 5.75
495	MHz;
496	each bin has an inner passband of
497	4.26 MHz for a content envelope;
498	each bin has an external buffer, up
499	and down, of 745 kHz;
500	each bin has 13 channels, CH0
501	through CH12, each channel having
502	320 kHz and 32 tones, T0 through

503	T31, each tone being 10 kHz, with
504	the inner 30 tones being used
505	information bearing and T0 and T31
506	being reserved;
507	each signal being 100 µs, with 12.5
508	μs at each end thereof at the front
509	and rear end thereof forming
510	respectively a cyclic prefix and
511	cyclic suffix buffer to punctuate
512	successive signals;
513	a MUX element for timing modification
514	capable of element-wise multiplication
515	across the signal, which halves the number
516	of bins and tones but repeats the signal for
517	high-quality needs;
518	a link CODEC, which separates each FDMA
519	channel into 1 through M links, further
520	comprising
521	a SOVA bit recovery element;
522	an error coding element;
523	an error detection element;
524	an ITI remove element;
525	a tone equalization element;
526	and,
527	a package fragment retransmission
528	element;
529	a multilink diversity combining element,
530	using a multilink Rx weight adaptation
531	algorithm for Rx signal weights $\mathbf{W}(k)$

532	to adapt transmission gains $\mathbf{G}(k)$ for each
533	channel k ;
534	an equalization algorithm, taking the signal
535	from said multilink diversity combining
536	element and controlling a delay removal
537	element;
538	said delay removal element separating signal
539	content from imposed pseudodelay and
540	experienced environmental signal delay, and
541	passing the content-bearing signal to a
542	symbol-decoding element;
543	said symbol-decoding element for
544	interpretation of the symbols embedded in
545	the signal, further comprising:
546	an element for delay gating;
547	a QAM element; and
548	a PSK element;
said v	ector OFDM transmitter element comprising:
550	a DAC bank for conversion of digital signals
551	into RF signals for transmission;
552	a MT MOD element for multitone
553	modulation, combining and joining the
554	signal to be transmitted from 1 through K_{feed}
555	FDMA channels, said separated tones in
556	aggregate forming the entire baseband for
557	the transmission, said MT MOD element
558	further comprising
559	a Comb element with a multiple of 2
560	filter capable of operating on a 128-
561	bit sample; and,

562	an IFFT element with a 1,024 real-IF
563	function;
564	a Mapping element for mapping the
565	modulated multitone signals from 426
566	active transmit bins, wherein
567	each bin covers a bandwidth of 5.75
568	MHz;
569	each bin has an inner passband of
570	4.26 MHz for a content envelope;
571	each bin has an external buffer, up
572	and down, of 745 kHz;
573	each bin has 13 channels, CH0
574	through CH12, each channel having
575	320 kHz and 32 tones, T0 through
576	T31, each tone being 10 kHz, with
577	the inner 30 tones being used
578	information bearing and T0 and T31
579	being reserved;
580	each signal being-100 µs, with 12.5
581	μs at each end thereof at the front
582	and rear end thereof forming
583	respectively a cyclic prefix and
584	cyclic suffix buffer to punctuate
585	successive signals;
586	a MUX element for timing modification
587	capable of element-wise multiplication
588	across the signal, which halves the number
589	of bins and tones but repeats the signal for
590	high-quality needs;

591	a symbol-coding element for embedding the
592	symbols to be interpreted by the receiver in
593	the signal, further comprising:
594	an element for delay gating;
595	a QAM element; and
596	a PSK element;
597	a link CODEC, which aggregates each
598	FDMA channel from 1 through M links,
599	further comprising
600	a SOVA bit recovery element;
601	an error coding element;
602	an error detection element;
603	an ITI remove element;
604	a tone equalization element;
605	and,
606	a package fragment retransmission
607	element;
608	a multilink diversity distribution element,
609	using a multilink Tx weight adaptation
610	algorithm for Tx signal weights to adapt
611	transmission gains $\mathbf{G}(k)$ for each channel
612	k , such that $\mathbf{g}(q;k) \propto \mathbf{w}^*(q;k)$;
613	a TCM codec;
614	a pilot symbol CODEC element that integrates with said
615	FFT-LS algorithm a link separation, a pilot and data signal
616	elements sorting, a link detection, multilink combination,
617	and equalizer weight calculation operations;
618	means for diversity transmission and reception,
619	and,

620 means for input and output from and to a non-radio 621 interface: 622 623 linking said set of nodes being deployed according to design rules that 624 <u>favor prefer meeting</u> the following criteria: 625 subdividing said set of nodes further comprising-into two or more 626 proper subsets of nodes, with a first proper subset being the a 627 transmit uplink / receive downlink subset, and a second proper 628 subset being the a transmit downlink / receive uplink subset; 629 630 allowing each node in said set of nodes to simultaneously belong 631 belonging to no more only as many transmitting uplink or 632 receiving uplink subsets than as it has diversity capability means; 633 634 allowing each node in a the transmit uplink / receive downlink 635 subset has no more to simultaneously link to only as many nodes 636 with which it will hold time and frequency coincident 637 communications in its field of view, than as it has diversity 638 capability means; 639 640 allowing each node in a the transmit downlink / receive uplink 641 subset has no more to simultaneously link to only as many nodes 642 with which it will hold time and frequency coincident 643 communications in its field of view, than as it has diversity 644 capability means; 645 allowing each member of a the transmit uplink / receive downlink 646 subset eannot hold to engage in simultaneous, time and frequency 647 coincident communications with any other member of that transmit 648 uplink / receive downlink subset only if both that other member 649 also belongs to a different proper subset and the communication is 650 between different proper subsets:

651 and, 652 allowing each member of a the transmit downlink / receive uplink 653 subset eannot hold to engage in simultaneous, time and frequency 654 coincident communications with any other member of that transmit 655 downlink / receive uplink subset only if both that other member 656 also belongs to a different proper subset and the communication is 657 between different proper subsets; 658 659 transmitting, in said wireless electromagnetic communications network, 660 independent information from each node belonging to a first proper subset, to one 661 or more receiving nodes belonging to a second proper subset that are viewable 662 from the transmitting node; 663 664 processing independently, in said wireless electromagnetic communications 665 network, at each receiving node belonging to said second proper subset, 666 information transmitted from one or more nodes belonging to said first proper 667 subset; 668 669 and, 670 671 designing the network such that substantially reciprocal symmetry exists for the 672 uplink and downlink channels by. 673 if the received interference is spatially white in both link directions, setting $\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$ and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link, 674 where $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights 675 676 used in the downlink: 677 678 but if the received interference is not spatially white in both link directions, constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to satisfy: 679

681
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_1^T(q) \mathbf{R}_{\mathbf{i}_1 \mathbf{i}_1} (n_1(q)) \mathbf{g}_1^*(q) = \sum_{n=1}^{N_1} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_1 \mathbf{i}_1} (n) \} = M_1 R_1$$

683
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2};$$

using any standard communications protocol, including TDD, FDD, simplex,

687 and,

optimizing the network by dynamically adapting the diversity capability means between nodes of said transmitting and receiving subsets.

693 42. (CANCELLED)

696 43. (CANCELLED)

44. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of dynamically adapting the diversity capability means and said proper subsets to optimize said network further comprises:

optimizing at each node acting as a receiver the receive weights using a MMSE

technique to adjust the multitone transmissions between it and other nodes.

/03	45. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
706	dynamically adapting the diversity capability means and said proper subsets to optimize
707	said network further comprises:
708	optimizing at each node acting as a receiver the receive weights using the MAX
709	maximum SINR to adjust the multitone transmissions between it and other nodes.
710	
711	
712	46. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
713	dynamically adapting the diversity capability means and said proper subsets to optimize
714	said network further comprises:
715	optimizing at each node acting as a receiver the receive weights, then optimizing
716	the transmit weights at that node by making them proportional to the receive
717	weights, and then optimizing the transmit gains for that node by a max-mir
718	criterion for the link capacities for that node at that particular time.
719	
720	
721	47. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
722	dynamically adapting the diversity capability means and said proper subsets to optimize
723	said network further comprises:
724	including, as part of said network, one or more network controller elements that
725	assist in tuning local node's maximum capacity criteria and link channel diversity
726	usage to network constraints.
727	
728	
729	48. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
730	dynamically adapting the diversity capability means and said proper subsets to optimize
731	said network further comprises:

characterizing the channel response vector $\mathbf{a}_1(f,t;n_2,n_1)$ by the observed 732 (possibly time-varying) azimuth and elevation $\{\theta_1(t;n_2,n_1),$ 733 $\varphi_1(f,t;n_2,n_1)$ of node n_2 observed at n_1 . 734 735 736 737 49. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 738 dynamically adapting the diversity capability means and said proper subsets to optimize 739 said network further comprises: characterizing the channel response vector $\mathbf{a}_1(f,t;n_2,n_1)$ as a superposition of 740 direct-path and near-field reflection path channel responses, e.g., due to scatterers 741 in the vicinity of n_1 , such that each element of $a_1(f,t;n_2,n_1)$ can be modeled 742 743 as a random process, possibly varying over time and frequency. 744 745 746 50. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 747 dynamically adapting the diversity capability means and said proper subsets to optimize 748 said network further comprises: presuming that $\mathbf{a}_1(f,t;n_2,n_1)$ and $\mathbf{a}_1(f,t;n_1,n_2)$ can be substantively 749 750 time invariant over significant time durations, e.g., large numbers of OFDM 751 symbols or TDMA time frames, and inducing the most significant frequency and 752 time variation by the observed timing and carrier offset on each link. 753 754 755 51. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of 756 dynamically adapting the diversity capability means and said proper subsets to optimize 757 said network further comprises:

758 in such networks. e.g., TDD networks, wherein the transmit and receive frequencies are identical $(f_{21}(k) = f_{12}(k) = f(k))$ and the transmit and 759 receive time slots are separated by short time intervals $(t_{21}(l) = t_{12}(l) + \Delta_{21}$ 760 $pprox \mathit{t}(l)$), and $\mathbf{H}_{21}(k,l)$ and $\mathbf{H}_{12}(k,l)$ become substantively reciprocal, 761 such that the subarrays comprising $\mathbf{H}_{21}(k,l)$ and $\mathbf{H}_{12}(k,l)$ satisfy 762 $\mathbf{H}_{21}(k,l;n_2,n_1) \approx \delta_{21}(k,l;n_1,n_2) \ \mathbf{H}_{12}^T(k,l;n_1,n_2)$, where 763 $\delta_{21}(k \;,\; l \;; n_1, n_2)$ is a unit-magnitude, generally nonreciprocal scalar, 764 765 equalizing the observed timing offsets, carrier offsets, and phase offsets, such that $\lambda_{21}(n_2,n_1) \approx \lambda_{12}(n_1,n_2), \quad \tau_{21}(n_2,n_1) \approx \tau_{12}(n_1,n_2), \text{ and }$ 766 $v_{21}(n_1,n_2) \approx v_{12}(n_1,n_2)$, by synchronizing each node to an external, 767 universal time and frequency standard, obtaining $\delta_{21}(k, l; n_2, n_1) \approx 1$, 768 and establishing network channel response as truly reciprocal $\mathbf{H}_{21}(k,l) pprox$ 769 $\mathbf{H}_{12}^{T}(k,l)$. 770

771772

773

774

52.(original) A method as in claim 51, wherein the synchronization of each node is to Global Position System Universal Time Coordinates (GPS UTC).

775776

777

778

53. (original) A method as in claim 51, wherein the synchronization of each node is to a network timing signal.

779

54. (original) A method as in claim 51, wherein the synchronization of each node is to a combination of Global Position System Universal Time Coordinates (GPS UTC) and a

784 network timing signal.

785786

787 55. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of

dynamically adapting the diversity capability means and said proper subsets to optimize

789 said network further comprises:

for such parts of the network where the internode channel responses possess substantive multipath, such that $\mathbf{H}_{21}(k, l; n_2, n_1)$ and $\mathbf{H}_{12}(k, l; n_1, n_2)$ have rank greater than unity, making the channel response substantively

793 reciprocal by:

794

795

(1) forming uplink and downlink transmit signals using the matrix formula

$$\mathbf{s}_{1}(k,l;n_{1}) = \mathbf{G}_{1}(k,l;n_{1}) \, \mathbf{d}_{1}(k,l;n_{1})$$

797
$$\mathbf{s}_{2}(k,l;n_{1}) = \mathbf{G}_{2}(k,l;n_{2}) \mathbf{d}_{2}(k,l;n_{2});$$

798 (2) reconstructing the data intended for each receive node using the matrix formula

$$\mathbf{y}_{1}(k,l;n_{1}) = \mathbf{W}^{H}_{1}(k,l;n_{1}) \mathbf{x}_{1}(k,l;n_{1})$$

801
$$\mathbf{y}_{2}(k,l;n_{2}) = \mathbf{W}^{H}_{2}(k,l;n_{2}) \mathbf{x}_{2}(k,l;n_{2});$$

(3) developing combiner weights that $\{\mathbf{w}_1(k,l;n_2,n_1)\}$ and $\{\mathbf{w}_2(k,l;n_1,n_2)\}$ that substantively null data intended for recipients during the symbol recovery operation, such that for $n_1 \neq n_2$:

804	(4) developing distribution weights $\{\mathbf{g}_1(k,l;n_2,n_1)\}$ and
805	$\{\mathbf{g}_2(k,l;n_1,n_2)\}$ that perform equivalent substantive nulling
806	operations during transmit signal formation operations;
807	(5) scaling distribution weights to optimize network capacity and/or power
808	criteria, as appropriate for the specific node topology and application
809	addressed by the network;
810	(6) removing residual timing and carrier offset remaining after recovery of
811	the intended network data symbols;
812	and
813	(7) encoding data onto symbol vectors based on the end-to-end SINR
814	obtainable between each transmit and intended recipient node, and
815	decoding that data after symbol recovery operations, using channel coding
816	and decoding methods develop in prior art.
817	
818	56. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically
819	adapting the diversity capability means and said proper subsets to optimize said network
820	further comprises:
821	forming substantively nulling combiner weights using an FFT-based least-squares
822	algorithms that adapt $\{\mathbf w_1(k,l;n_2,n_1)\}$ and $\{\mathbf w_2(k,l;n_1,n_2)\}$ to
823	values that minimize the mean-square error (MSE) between the combiner output
824	data and a known segment of transmitted pilot data;
825	applying the pilot data to an entire OFDM symbol at the start of an adaptation
826	frame comprising a single OFDM symbol containing pilot data followed by a
827	stream of OFDM symbols containing information data;
828	wherein the pilot data transmitted over the pilot symbol is preferably given by

$$p_1(k; n_2, n_1) = d_1(k, 1; n_2, n_1)$$

$$= p_{01}(k) p_{21}(k; n_2) p_{11}(k; n_1)$$

831
$$p_2(k; n_1, n_2) = d_2(k, 1; n_1, n_2)$$

$$= p_{02}(k) p_{12}(k; n_1) p_{22}(k; n_2)$$

such that the "pseudodelays" $\delta_1(n_1)$ and $\delta_2(n_2)$ are unique to each transmit node (in small networks), or provisioned at the beginning of communication with any given recipient node (in which case each will be a function of n_1 and n_2), giving each pilot symbol a pseudorandum component;

maintaining minimum spacing between any pseudodelays used to communicate with a given recipient node that is larger than the maximum expected timing offset observed at that recipient node, said spacing should also being an integer multiple of 1/K, where K is the number of tones used in a single FFT-based LS algorithm;

and if K is not large enough to provide a sufficiency of pseudodelays, using additional OFDM symbols for transmission of pilot symbols, either lengthening the effective value of K, or reducing the maximum number of originating nodes transmitting pilot symbols over the same OFDM symbol;

also providing K large enough to allow effective combiner weights to be constructed from the pilot symbols alone;

then obtaining the remaining information-bearing symbols, which are the uplink and downlink data symbols provided by prior encoding, encryption, symbol randomization, and channel preemphasis stages, in the adaptation frame, by using

851
$$d_1(k, l; n_2, n_1) = p_1(k; n_2, n_1) d_{01}(k, l; n_2, n_1)$$

852
$$d_2(k, l; n_1, n_2) = p_2(k; n_1, n_2) d_{02}(k, l; n_1, n_2);$$

removing at the recipient node, first the pseudorandom pilot components from the received data by multiplying each tone and symbol by the pseudorandom components of the pilot signals, using

856
$$d_2(k, l; n_1, n_2) = p_2(k; n_1, n_2) d_{02}(k, l; n_1, n_2)$$

857
$$\mathbf{x}_{02}(k, l; n_2) = c_{01}(k; n_2) \mathbf{x}_2(k, l; n_2);$$

thereby transforming each authorized and intended pilot symbol for the recipient node into a complex sinusoid with a slope proportional to the sum of the pseudodelay used during the pilot generation procedure, and the actual observed timing offset for that link, and leaving other, unauthorized pilot symbols, and symbols intended for other nodes in the network, untransformed and so appearing as random noise at the recipient node.

57. (PREVIOUSLY PRESENTED) A method as in claim 55, wherein the FFT-Least Squares algorithm further comprises:

using a pilot symbol, which is multiplied by a unit-norm FFT window function; passing that result to a QR decomposition algorithm and computing orthogonalized data $\{\mathbf{q}(k)\}$ and an upper-triangular Cholesky statistics matrix \mathbf{R} ;

then multiplying each vector element of $\{\mathbf{q}(k)\}$ by the same unit-norm FFT 871 872 window function and passing it through a zero-padded inverse Fast Fourier 873 Transform (IFFT) with output length PK, with padding factor P to form uninterpolated, spatially whitened processor weights $\{\mathbf{u}(m)\}$, where lag index 874 m is proportional to target pseudodelay $\delta(m) = m/PK$; 875 876 then using the spatially whitened processor weights to estimate the mean-square-877 error (MSE) obtaining for a signal received at each target pseudodelay, $\varepsilon(m) = 1 - ||\mathbf{u}(m)||^2$, yielding a detection statistic (pseudodelay indicator 878 879 function), with an extreme at IFFT lags commensurate with the observed 880 pseudodelay and designed to minimize interlag interference between pilot signal 881 features in the pseudodelay indicator function; 882 using an extremes-finding algorithm to detect each extreme; 883 estimating the location of the observed pseudodelays to sub-lag accuracy; 884 determining additional ancillary statistics; 885 selecting the extremes beyond a designated MSE threshold: 886 interpolating spatially whitened weights U from weights near the extremes; 887 using the whitened combiner weights U to calculate both unwhitened combiner weights $\mathbf{W} = \mathbf{R}^{\text{-1}}\mathbf{U}$ to be used in subsequent data recovery operations, and to 888 estimate the received channel aperture matrix $\mathbf{A} = \mathbf{R}^H \mathbf{U}$, to facilitate ancillary 889 890 signal quality measurements and fast network entry in future adaptation frames: 891 and, lastly, using an estimated and optimized pseudodelay vector $\boldsymbol{\delta}_*$ to generate $\mathbf{c}_1(k) =$ 892 $\exp\{-j2\pi\delta_*k\}$ (conjugate of $\{p_{11}(k;n_1)\}$ during uplink receive 893 operations, and $\{p_{22}(k;n_2)\}$ during downlink receive operations), which is then 894 895 used to remove the residual observed pseudodelay from the information bearing 896 symbols.

898

58. (original) A method as in claim 55, wherein the pseudodelay estimation is refined using a Gauss-Newton recursion using the approximation:

$$\exp\{-j2\pi\Delta(k-k_0)/PK\}\approx 1-j2\pi\Delta(k-k_0)/PK.$$

902

903

59. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein wherein dynamically adapting the diversity[capability means and said proper subsets to optimize said network further comprises:

907 using the linear combiner weights provided during receive operations are 908 construct linear distribution weights during subsequent transmit operations, by weight $\mathbf{g}_1(k, l; n_2, n_1)$ 909 distribution setting proportional to $\mathbf{w}^*_1(k, l; n_2, n_1)$ during uplink 910 transmit operations, and $\mathbf{g}_2(k,l;n_1,n_2)$ proportional to $\mathbf{w}^*_2(k,l;n_1,n_2)$ during downlink 911 912 transmit operations; thereby making the transmit weights substantively nulling 913 and thereby allowing each node to form frequency and time coincident two-way 914 links to every node in its field of view, with which it is authorized (through 915 establishment of link set and transfer of network/recipient node information) to 916 communicate.

917

918

919 60. (CURRENTLY AMENDED) A method as in claim 1, wherein the substep of
920 dynamically adapting the diversity capability means and said proper subsets to optimize
921 said network at each node in the first subset of nodes further comprises:

using a LEGO implementation element and algorithm.

925 61. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 926 adapting the diversity capability means and said proper subsets to optimize said network 927 further comprises: 928 balancing the power use against capacity for each channel, link, and node, and 929 hence for the network as a whole by: establishing a capacity objective $\{\beta(m)\}$ for a user 2 node receiving 930 931 from a user 1 node as the target to be achieved by the user 2 node; 932 solving, at the user 2 nod the local optimization problem: $\min \Sigma_{\mathbf{q}} \pi_{\mathbf{l}}(q) = \mathbf{1}^{\mathrm{T}} \pi_{\mathbf{l}}$, such that 933 $\Sigma_{q \in O(m)} \log(1 + \gamma(q)) \ge \beta(m),$ 934 where $\pi_{\mathrm{l}}(q)$ is the transmit power for link number q for the user 935 936 1 node, $\gamma(q)$ is the signal to interference and noise ratio (SINR) seen at 937 938 the output of the beamformer, 1 is a vector of all 1s. 939 940 and, π_1 is a vector whose q^{th} element is $\pi_1(q)$, 941 the aggregate set Q(m) contains a set of links that are grouped 942 943 together for the purpose of measuring capacity flows through those 944 links; 945 using at the user 2 node the local optimization solution to moderate the 946 transmit and receive weights, and signal information, returned to [user 1 947 node; 948 and,

using said feedback to compare against the capacity objective $\{\beta(m)\}$ 950 951 and incrementally adjust the transmit power at each of the user 1 node and 952 the user 2 node until no further improvement is perceptible. 953 954 955 62. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein dynamically 956 adapting the diversity capability means and said proper subsets to optimize said network 957 further comprises: 958 using the downlink objective function $\min \Sigma_q \pi_2(q) = \mathbf{1}^T \mathbf{\pi}_2$ such that $\Sigma_{q \in O(m)} \log(1 + \gamma(q)) \ge$ 959 $\beta(m)$ 960 961 at each node to perform local optimization; 962 reporting the required feasibility condition, $\sum_{q \in \mathrm{O}(\mathrm{m})} \, \pi_1(q) \le R_1(m);$ 963 964 and, modifying $\beta(m)$ as necessary to stay within the constraint. 965 966 967 968 63. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein: the capacity constraints $\beta(m)$ are determined in advance for each proper subset 969 970 of nodes, based on known QoS requirements for each said proper subset. 971 972 973 64. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein said network 974 further seeks to minimize total power in the network as suggested by $\sum_{q \in O(m)} \log(1 + \gamma(q)) \ge \beta(m)$. 975

977 65. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein said network sets

978 as a target objective for the network $\{\beta(m)\}$ the QoS for the network.

979

980

981 66. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein said network sets

as a target objective for the network $\{eta(m)\}$ a vector of constraints.

983

984

985 67. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the local

986 optimization problem is further defined such that:

987

988

the receive and transmit weights are unit normalized with respect to the

989 background interference autocorrelation matrix;

990

991

the local SINR is expressed as

$$\gamma(q) = \frac{P_{rt}(q,q)\pi_t(q)}{1 + \sum_{j \neq q} P_{rt}(q,j)\pi_t(j)}$$

992

993 994

and the weight normalization

995
$$\sum_{q \in O(m)} \log(1 + \gamma(q)) \ge \beta(m)$$

996 is used to enable $D_{12}(\mathbf{W}, \mathbf{G}) = D_{21}(\mathbf{G}^*, \mathbf{W}^*)$, where $(\mathbf{W}_2, \mathbf{G}_1)$

and (W_1, G_2) represent the receive and transmit weights employed by all nodes in the network during uplink and downlink operations, respectively, at that node, thereby allowing the uplink and downlink function to be presumed identical rather than separately computed.

rather than separately computed.

- 68. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein:
- very weak constraints to the transmit powers are approximated by using a very
- simple approximation for $\gamma(q)$.

- 69. (PREVIOUSLY PRESENTED) A method as in claim 61, for the cases wherein all
- the aggregate sets contain a single link and non-negligible environmental noise is present,
- wherein the transmit powers are computed as Perron vectors from

$$D_{21} = \log \left(1 + \frac{1}{\rho(\mathbf{P}_{21}) - 1} \right)$$

$$= \log \left(1 + \frac{1}{\rho(\mathbf{P}_{12}^T) - 1} \right);$$

$$= D_{12}$$

and a simple power constraint is imposed upon the transmit powers.

- - 70. (PREVIOUSLY PRESENTED) A method as in claim 69, wherein the optimization
 - is performed in alternating directions and repeated.

- 71. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein each node
- presumes the post-beamforming interference energy remains constant for the adjustment
- interval and so solves

1022
$$\min_{\pi_1(q)} \sum_{q} \pi_1(q) = \mathbf{1}^T \ \boldsymbol{\pi}_1 \quad \text{, subject to the constraint of}$$

$$\Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m)$$

- 1024 using classic water filling arguments based on Lagrange multipliers, and then uses a
- similar equation for the reciprocal element of the link.

10261027

- 1028 72. (PREVIOUSLY PRESENTED) Amethod as in claim 61, wherein at each node the
- 1029 constrained optimization problem stated in

1030
$$\max_{m} \sum_{q \in Q(m)} \log(1 + \gamma(q))$$
, such that

1031
$$\sum_{q \in Q(m)} \pi_1(q) \le R_1(m), \ \gamma(q) \ge 0$$

is solved using the approximation

1033
$$\gamma(q) = \frac{P_{21}(q,q)\pi_1(q)}{i_2(q)}$$

- and the network further comprises at least one high-level network controller that controls
- the power constraints $R_1(m)$, and drives the network towards a max-min solution.

1036

1037

- 1038 73. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein each node:
- is given an initial γ_0 ;
- generates the model expressed in

1041
$$L(\gamma, \mathbf{g}, \beta) = \mathbf{g}^T \gamma, \Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m)$$

1042
$$\mathbf{g} = \nabla_{\mathbf{y}} f(\mathbf{y}_0);$$

1043 updates the new γ_{α} from

1044
$$\gamma_* = \arg\min_{\gamma} L(\gamma, \mathbf{g}, \beta), \ \gamma_{\alpha} = \gamma_0 + \alpha(\gamma_* - \gamma_0);$$

determines a target SINR to adapt to; and,

updates the transmit power for each link q according to

1047
$$\pi_2(q) = \gamma_\alpha i_1(q) / |h(q)|^2$$

1048
$$\pi_1(q) = \gamma_\alpha i_2(q) / |h(q)|^2.$$

1050 74. (PREVIOUSLY PRESENTED) A method as in claim 61, for each node wherein the

1051 transmit power relationship of

1052
$$\pi_2(q) = \gamma_\alpha i_1(q) / |h(q)|^2$$

1053
$$\pi_1(q) = \gamma_\alpha i_2(q) / |h(q)|^2$$

is not known, that:

1049

uses a suitably long block of N samples is used to establish the relationship, where

N is either 4 times the number of antennae or 128, whichever is larger;

uses the result to update the receive weights at each end of the link;

optimizes the local model as in

$$\gamma_{\bullet} = \arg\min_{\gamma} L(\gamma, \mathbf{g}, \beta)$$

1060
$$\mathbf{\gamma}_{\alpha} = \mathbf{\gamma}_0 + \alpha (\mathbf{\gamma}_* - \mathbf{\gamma}_0);$$

and then applies

1062
$$\pi_2(q) = \gamma_\alpha i_1(q) / |h(q)|^2$$

1063
$$\pi_1(q) = \gamma_\alpha i_2(q) / |h(q)|^2.$$

1065 75. (PREVIOUSLY PRESENTED) A method as in claim 61 that, for an aggregate

proper subset m:

- 1067 for each node within the set m, inherits the network objective function model 1068 given in
- $L_m(\mathbf{y},\mathbf{g},\,\beta) = \sum_{q \in Q(m)} \mathbf{g}_q \, \mathbf{y}(q)$ 1069
- $\Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m)$ 1070
- $g(q) = i_1(q)i_2(q)/|h(q)|^2 ;$ 1071
- 1072 eliminates a step of matrix channel estimation, transmitting instead from
- 1073 that node as a single real number for each link to the other end of said link
- 1074 an estimate of the post beamforming interference power;
- 1075 and,
- 1076 receives back for each link a single real number being the transmit power.
- 1078 76. (PREVIOUSLY PRESENTED) A method as in claim 74, that for each pair of
- 1079 nodes assigns to the one presently possessing the most processing capability the power 1080
- management computations. 1081

1077

1082

1086

1087

- 1083 77. (PREVIOUSLY PRESENTED) A method as in claim 75 that estimates the transfer
- 1084 gains and the post beamforming interference power using simple least squares estimation
- 1085 techniques.
- 1088 78. (PREVIOUSLY PRESENTED) A method as in claim 75 that, for estimating the
- 1089 transfer gains and post beamforming interference power:
- 1091 instead solves for the transfer gain h using
- $y(n) = hg_S(n) + \varepsilon(n)$; 1092
- 1093 uses a block of N samples of data to estimate h using

1094
$$h = \frac{\sum_{n=1}^{N} s^*(n) y(n)}{\sum_{n=1}^{N} |s(n)|^2 g}$$

1095 obtains an estimation of residual interference power [$R_{arepsilon}$] using

$$R_{\varepsilon} = \left\langle \left| \varepsilon(n) \right|^{2} \right\rangle$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left(\left| y(n) \right|^{2} - \left| ghs(n) \right|^{2} \right)$$

1097 and,

obtains knowledge of the transmitted data symbols S(n) from using

remodulated symbols at the output of the codec.

79. (PREVIOUSLY PRESENTED) A method as in claim 78 wherein, instead of obtaining knowledge of the transmitted data symbols S(n) from using remodulated symbols at the output of the codec, the node uses the output of a property restoral algorithm used in a blind beamforming algorithm.

80. (PREVIOUSLY PRESENTED) A method as in claim 78 wherein, instead of obtaining knowledge of the transmitted data symbols S(n) from using remodulated symbols at the output of the codec, the node uses a training sequence explicitly transmitted to train beamforming weights and asset the power management algorithms.

1114 81. (CURRENTLY AMENDED) A method as in claim 78 wherein, instead of obtaining knowledge of the transmitted data symbols S(n) from using remodulated 1115 1116 symbols at the output of the codec, the node uses any combination of: 1117 the output of a property restoral algorithm used in a blind beamforming algorithm; 1118 a training sequence explicitly transmitted to train beamforming weights and asset 1119 the power management algorithms; 1120 or, and, 1121 other means known to the art. 1122 1123 1124 82. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein each node 1125 incorporates a link level optimizer and a decision algorithm. 1126 1127 83. (PREVIOUSLY PRESENTED) A method as in claim 82, wherein the decision 1128 algorithm is a Lagrange multiplier technique. 1129 1130 1131 84. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the solution to $\min_{\pi_1(q)} \sum_{q} \pi_1(q) = \mathbf{1}^T \mathbf{\pi}_1$ is implemented by a penalty function technique. 1132 1133 1134 1135 85. (PREVIOUSLY PRESENTED) A method as in claim 84, wherein the penalty 1136 function technique: takes the derivative of $\gamma(q)$ with respect to π_1 ; 1137 1138 and. 1139 uses the Kronecker-Delta function and the weighted background noise. 1140

86. (PREVIOUSLY PRESENTED) A method as in claim 84, wherein the penalty

1143 function technique neglects the noise term.

1144

1145

87. (PREVIOUSLY PRESENTED) A method as in claim 84, wherein the penalty

function technique normalizes the noise term to one.

1148

1149

88. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the

approximation uses the receive weights.

1152

1153

89. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein adaptation to the

1155 target objective is performed in a series of measured and quantized descent and ascent

1156 steps.

1157

90. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein the adaptation to

the target objective is performed in response to information stating the vector of change.

1160

1161

91. (PREVIOUSLY PRESENTED) A method as in claim 61, which uses the log linear

1163 mode

1164
$$\beta_q \approx \log \left(\frac{a \ \pi_1(q) + a_0}{b \ \pi_1(q) + b_0} \right) = \hat{\beta}_q(\pi_1(q))$$

1165 and the inequality characterization $\hat{\beta}_q(\pi_1(q)) \ge \beta$ to solve the approximation

problem with a simple low dimensional linear program.

1167

1169 92. (PREVIOUSLY PRESENTED) A method as in claim 61, develops the local mode 1170 by matching function values and gradients between the current model and the actual 1171 function. 1172 1173 1174 93. (PREVIOUSLY PRESENTED) A method as in claim 61, which develops the model 1175 as a solution to the least squares fit, evaluated over several points. 1176 1177 1178 94. (PREVIOUSLY PRESENTED) A method as in claim 61, which reduces the cross-1179 coupling effect by allowing only a subset of links to update at any one particular time, 1180 wherein the subset members are chosen as those which are more likely to be isolated 1181 from one another. 1182 1183 1184 95. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein: 1185 the network further comprises a network controller element; 1186 said network controller element governs a subset of the network; 1187 said network controller element initiates, monitors, and changes the target 1188 objective for that subset; 1189 said network controller communicates the target objective to each node in that 1190 subset; 1191 and. 1192 receives information from each node concerning the adaptation necessary to meet 1193 said target objective. 1194 1195 1196 96. (PREVIOUSLY PRESENTED) A method as in claim 95, wherein said network 1197 further records the scalar and history of the increments and decrements ordered by the 1198 network controller. 1199

1200	
1201	97. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a
1202	target objective may be a power constraint.
1203	
1204	
1205	98. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a
1206	target objective may be a capacity maximization subject to a power constraint.
1207	
1208	
1209	99. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a
1210	target objective may be a power minimization subject to the capacity attainment to the
1211	limit possible over the entire network.
1212	
1213	
1214	100. (PREVIOUSLY PRESENTED) A method as in claim 61, wherein for any subset, a
1215	target objective may be a power minimization at each particular node in the network
1216	subject to the capacity constraint at that particular node.
1217	
1218	
1219	101. (CURRENTLY AMENDED) A wireless electromagnetic communications
1220	network, comprising:
1221	a wireless electromagnetic communications network, comprising
1222	a set of nodes, said set further comprising,
1223	at least a first subset wherein each node is MIMO-capable,
1224	comprising:
1225	a spatially diverse antennae array of M antennae, where M
1226	\geq one,
1227	a transceiver for each antenna in said array,
1228	means for digital signal processing,
1229	means for coding and decoding data and symbols,
1230	means for diversity transmission and reception,

1231	and,	
1232	means for input and output from and to a non-radio	
1233	interface;	
1234	said set of nodes further comprising one or more proper subsets of nodes,	
1235	being at least one transmitting and at least one receiving subset, with said	
1236	transmitting and receiving subsets having a topological arrangement	
1237	whereby:	
1238	each node in a transmitting subset has no more nodes with which it	
1239	will simultaneously communicate in its field of view, than it has	
1240	number of antennae;	
1241	each node in a receiving subset has no more nodes with which it	
1242	will simultaneously communicate in its field of view, than it can	
1243	steer independent nulls to;	
1244	and,	
1245	each member of a non-proper subset cannot communicate with any	
1246	other member of its non-proper subset;	
1247	means for transmitting independent information from each node in a first non-	
1248	proper subset to one or more receiving nodes belonging to a second non-proper	
1249	subset that are viewable from the transmitting node;	
1250	means for processing independently information transmitted to a receiving node	
1251	in a second non-proper subset from one or more nodes in a first non-proper subset	
1252	is independently by the receiving node;	
1253	and,	
1254	means for optimizing the network by dynamically adapting the means for diversity	
1255	transmission and reception between nodes of said transmitting and receiving subsets.	
1256		
1257		
1258	102. (PREVIOUSLY PRESENTED) An apparatus as in claim 101, further	
1259	comprising means for scheduling according to a Demand-Assigned, Multiple-Access	
1260	algorithm.	
1261		

1262	
1263	103. (CURRENTLY AMENDED) An apparatus as in claim 101, further comprising a
1264	<u>LEGO adaptation-element</u> for each node in said first subset-a LEGO adaptation element .
1265	
1266	
1267	104. (CURRENTLY AMENDED) An apparatus as in claim 101, further comprising:
1268	a LEGO adaptation-element for each node in said first subset-a LEGO adaptation-
1269	element; and,
1270	one or more network controllers.
1271	
1272	
1273	105. (PREVIOUSLY PRESENTED) A method as in claim 1, wherein the step of
1274	dynamically adapting the diversity capability means and said proper subsets to optimize
1275	said network further comprises:
1276	matching each transceiver's degrees of freedom (DOF) to the nodes in the
1277	possible link directions;
1278	equalizing those links to provide node-equivalent uplink and downlink capacity.
1279	
1280	
1281	106. (original) A method as in claim 105, further comprising, after the DOF matching:
1282	assigning asymmetric transceivers to reflect desired capacity weighting;
1283	adapting the receive weights to form a solution for multipath resolutions;
1284	employing data and interference whitening as appropriate to the local conditions;
1285	and,
1286	using retrodirective transmission gains during subsequent transmission operations
1287	
1288	
1289	107. (original) A method as in claim 105, wherein the receive weights are matched to the
1290	nodes in the possible link directions.
1291	
1202	

1293	108. (CURRENTLY AMENDED) A method for optimizing a wireless electromagnetic	
1294	communications network, comprising:	
1295	organizing a wireless electromagnetic communications network, comprising	
1296	a set of nodes, said set of nodes further comprising,	
1297	at least a first subset wherein each node is MIMO-capable,	
1298	comprising:	
1299	an antennae array of M antennae, where $M \ge$ one,	
1300	a transceiver for each antenna in said spatially diverse	
1301	antennae array,	
1302	means for digital signal processing to convert analog radio	
1303	signals into digital signals and digital signals into analog	
1304	radio signals,	
1305	means for coding and decoding data, symbols, and control	
1306	information into and from digital signals,	
1307	diversity capability means for transmission and reception of	
1308	said analog radio signals;	
1309	and,	
1310	means for input and output from and to a non-radio	
1311	interface for digital signals;	
1312	linking said set of nodes being deployed according to design rules that	
1313	favor prefer meeting the following criteria:	
1314		
1315	subdividing said set of nodes further comprising into two or more	
1316	proper subsets of nodes, with a first proper subset being the a	
1317	transmit uplink / receive downlink subset, and a second proper	
1318	subset being the a transmit downlink / receive uplink subset;	
1319		
1320	allowing each node in said set of nodes to simultaneously belong	
1321	belonging to no more up to as many transmitting uplink or	
1322	receiving uplink subsets than as it has diversity capability means;	
1323		

1324 allowing each node in a the transmit uplink / receive downlink 1325 subset has no more to simultaneously link to up to as many nodes 1326 with which it will hold time and frequency coincident 1327 communications in its field of view, than as it has diversity 1328 capability means; 1329 1330 allowing each node in a the transmit downlink / receive uplink 1331 subset has no more to simultaneously link to up to as many nodes 1332 with which it will hold time and frequency coincident 1333 communications in its field of view, than as it has diversity 1334 capability means; 1335 1336 allowing each member of a the transmit uplink / receive downlink 1337 subset eannot hold to engage in simultaneous time and frequency 1338 coincident communications with any other member of that transmit 1339 uplink / receive downlink subset only if both that other member 1340 also belongs to a different proper subset and the communication is 1341 between different proper subsets; 1342 and, 1343 allowing each member of a transmit downlink / receive uplink 1344 subset cannot hold to engage in simultaneous time and frequency 1345 coincident communications with any other member of that transmit 1346 downlink / receive uplink subset only if both that other member 1347 also belongs to a different proper subset and the communication is 1348 between different proper subsets; 1349 transmitting, in said wireless electromagnetic communications network, 1350 independent information from each node belonging to a first proper subset, to one 1351 or more receiving nodes belonging to a second proper subset that are viewable 1352 from the transmitting node; 1353

1354 processing independently, in said wireless electromagnetic communications 1355 network, at each receiving node belonging to said second proper subset, 1356 information transmitted from one or more nodes belonging to said first proper 1357 subset; 1358 optimizing at the local level for each node for the channel capacity D_{21} 1359 1360 according to $D_{21} = \max \beta$ such that $\beta \le \sum_{q \in U(m)} \sum_{k} \log(1 + \gamma(k, q)),$ $\gamma(k,q) \geq 0$ $\sum_{m} R_{1}(m) \leq R,$ 1361 $\pi_1(k,q) \ge 0$, $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \pi_1(k,q) \le R_1(m)$ 1362 solving first the reverse link power control problem; then treating the forward link 1363 problem in an identical fashion, substituting the subscripts 2 for 1 in said 1364 equation; 1365 1366 dynamically adapting the diversity capability means and said proper subsets to 1367 optimize said network. 1368 1369 1370 109. (PREVIOUSLY PRESENTED) A method as in claim 108, futher comprising:

1371

1372

1373

 β , as described in

for each aggregate subset m, attempting to achieve the given capacity objective,

 $\min_{\pi_r(q)} \sum_{q \in Q(m)} \pi_r(q),$ 1374 such that $\beta = \sum_{q \in Q(m)} \log (1 + \gamma(q))$ 1375 1376 by: 1377 (1) optimizing the receive beamformers, using simple MMSE processing, to 1378 simultaneously optimize the SINR; 1379 (2) based on the individual measured SINR for each Q index, attempt to 1380 incrementally increase or lower its capacity as needed to match the current target; 1381 and, 1382 (3) stepping the power by a quantized small step in the appropriate direction: 1383 then, 1384 when all aggregate sets have achieved the current target capacity, then the network can either increase the target capacity eta, or add additional users to 1385 1386 exploit the now-known excess capacity. 1387 1388 110. (PREVIOUSLY PRESENTED) A method as in claim 107, wherein the network 1389 1390 optimizes for QoS and not diversity capability means capacity. 1391 1392 111. (PREVIOUSLY PRESENTED) A method as in claim 95, wherein: 1393 said network controller adds, drops, or changes the target capacity for any node in 1394 the set the network controller controls. 1395 1396 1397 112. (PREVIOUSLY PRESENTED) A method as in claim 95, wherein: said network controller may, either in addition to or in replacement for altering β . 1398 1399 add, drop, or change channels between nodes, frequencies, coding, security, or

1400	protocols, polarizations, or traffic density allocations usable by a particular node	
1401	or channel.	
1402		
1403		
1404	113. (PREVIOUSLY PRESENTED) A wireless electromagnetic communications	
1405	network, comprising:	
1406	a set of nodes, said set further comprising,	
1407	at least a first subset wherein each node is MIMO-capable,	
1408	comprising:	
1409	a spatially diverse antennae array of M antennae, where M	
1410	\geq one,	
1411	a transceiver for each antenna in said array,	
1412	means for digital signal processing,	
1413	means for coding and decoding data and symbols,	
1414	means for diversity transmission and reception,	
1415	pilot symbol coding & decoding element	
1416	timing synchronization element	
1417	and,	
1418	means for input and output from and to a non-radio	
1419	interface;	
1420	said set of nodes further comprising two or more proper subsets of nodes,	
1421	there being at least one transmitting and at least one receiving subset, with	
1422	said transmitting and receiving subsets subset having a diversity	
1423	arrangement whereby:	
1424	each node in a transmitting subset has no more nodes with which it	
1425	will simultaneously communicate in its field of view, than it has	
1426	number of antennae;	
1427	each node in a receiving subset has no more nodes with which it	
1428	will simultaneously communicate in its field of view, than it can	
1429	steer independent nulls to;	
1430	and,	

each member of a non-proper subset cannot communicate with any other member of its non-proper subset over identical diversity channels;

a LEGO adaptation element and algorithm;

a network controller element and algorithm;

1434

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1455

whereby each node in a first non-proper subset transmits independent information to one or more receiving nodes belonging to a second non-proper subset that are viewable from the transmitting node;

each receiving node in said second non-proper subset processes independently information transmitted to a from one or more nodes in a first non-proper subset is independently by the receiving node;

each node uses means to minimize SINR between nodes transmitting and receiving information;

the network is designed such that substantially reciprocal symmetry exists for the uplink and downlink channels by,

if the received interference is spatially white in both link directions, setting

$$\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$$
 and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link,

where $\mathbf{g}_2(q)$, $\mathbf{W}_1(q)$ } are the linear transmit and receive weights used in the downlink;

but if the received interference is not spatially white in both link directions, constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to satisfy:

$$\sum_{q=1}^{Q_{21}} \mathbf{g}_1^T(q) \mathbf{R}_{\mathbf{i}_1 \mathbf{i}_1}(n_1(q)) \mathbf{g}_1^*(q) = \sum_{n=1}^{N_1} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_1 \mathbf{i}_1}(n) \} = M_1 R_1$$

1454
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2};$$

the network uses any standard communications protocol; and, the network is optimized by dynamically adapting the means for diversity transmission and reception between nodes of said transmitting and receiving subsets. 114. (PREVIOUSLY PRESENTED) A wireless electromagnetic communications network as in claim 113: wherein each node may further comprise a Butler Mode Forming element, to enable said node to ratchet the number of active antennae for a particular uplink or downlink operation up or down. 115. (PREVIOUSLY PRESENTED) A wireless electromagnetic communications network as in claim 101: incorporating a dynamics-resistant multitone element. 116. (original) The use of a method as described in claim 1 for fixed wireless electromagnetic communications. 117. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 for fixed wireless electromagnetic communications. 118. (original) The use of a method as described in claim 1 for mobile wireless electromagnetic communications. 119. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 for mobile wireless electromagnetic communications.

1487 120. (original) The use of a method as described in claim 1 for mapping operations using 1488 wireless electromagnetic communications. 1489 1490 121. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1491 for mapping operations using wireless electromagnetic communications. 1492 1493 122. (original) The use of a method as described in claim 1 for a military wireless 1494 electromagnetic communications network. 1495 1496 123. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1497 for a military wireless electromagnetic communications network. 1498 1499 124. (original) The use of a method as described in claim 1 for a military wireless 1500 electromagnetic communications network for battlefield operations. 1501 1502 125. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1503 for a military wireless electromagnetic communications network for battlefield 1504 operations. 1505 1506 126. (original) The use of a method as described in claim 1 for a military wireless 1507 electromagnetic communications network for Back Edge of Battle Area (BEBA) 1508 operations. 1509 1510 127. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1511 for a military wireless electromagnetic communications network for Back Edge of Battle 1512 Area (BEBA) operations. 1513 1514 128. (original) The use of a method as described in claim 1 for a wireless electromagnetic 1515 communications network for intruder detection operations. 1516

1517 129. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1518 for a wireless electromagnetic communications network for intruder detection operations. 1519 1520 130. (original) The use of a method as described in claim 1 for a wireless electromagnetic 1521 communications network for logistical intercommunications. 1522 1523 131. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1524 for a wireless electromagnetic communications network for logistical 1525 intercommunications. 1526 1527 132. (original) The use of a method as described in claim 1 in a wireless electromagnetic 1528 communications network for self-filtering spoofing signals. 1529 1530 133. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1531 for a wireless electromagnetic communications network for self-filtering spoofing 1532 signals. 1533 1534 134. (original) The use of a method as described in claim 1 in a wireless 1535 electromagnetic communications network for airborne relay over the horizon. 1536 1537 135. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 1538 for a wireless electromagnetic communications network for airborne relay over the 1539 horizon. 1540 1541 136. (original) The use of a method as described in claim 1 in a wireless electromagnetic 1542 communications network for traffic control. 1543 1544 137. (PREVIOUSLY PRESENTED) The use of a method as in claim 1, further 1545 comprising the use thereof for air traffic control. 1546

138. (PREVIOUSLY PRESENTED) The use of a method as in claim 1, further comprising the use thereof for ground traffic control. 139. (PREVIOUSLY PRESENTED) The use of a method as in claim 1, further comprising the use thereof for a mixture of ground and air traffic control. 140. (PREVIOUSLY PRESENTED) The use of an apparatus as described in claim 101 for a wireless electromagnetic communications network for traffic control. 141. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101, further comprising the use thereof for air traffic control 142. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101, further comprising the use thereof for ground traffic control. 143. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101, further comprising the use thereof for a mixture of ground and air traffic control. 144. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for emergency services. 145. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless electromagnetic communications network for emergency services. 146. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for shared emergency communications without interference. 147. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless electromagnetic communications network for shared emergency communications without interference.

1578 148. (original) The use of a method as in claim 1 in a wireless electromagnetic 1579 communications network for positioning operations without interference. 1580 1581 149. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a 1582 wireless electromagnetic communications network for positioning operations without 1583 interference. 1584 1585 150. (original) The use of a method as in claim 1 in a wireless electromagnetic 1586 communications network for high reliabilty networks requiring graceful degradation 1587 despite environmental conditions or changes... 1588 1589 151. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a 1590 wireless electromagnetic communications network for high reliability networks requiring 1591 graceful degradation despite environmental conditions or changes.. 1592 1593 152. (original) The use of a method as in claim 1 in a wireless electromagnetic 1594 communications network for a secure network requiring assurance against unauthorized 1595 intrusion. 1596 1597 153. (original) The use of a method as in claim 1 in a wireless electromagnetic 1598 communications network for a secure network requiring message end-point assurance. 1599 1600 154. (original) The use of a method as in claim 1 in a wireless electromagnetic 1601 communications network for a secure network requiring assurance against unauthorized 1602 intrusion and message end-point assurance. 1603 1604 155. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a 1605 wireless electromagnetic communications network for a secure network requiring 1606 assurance against unauthorized intrusion. 1607

156. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless electromagnetic communications network for a secure network requiring message end-point assurance. 157. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 In a wireless electromagnetic communications network for a secure network requiring assurance against unauthorized intrusion and message end-point assurance. 158. (original) The use of a method as in claim 1 in a cellular mobile radio service. 159. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a cellular mobile radio service. 160. (original) The use of a method as in claim 1 in a personal communication service. 161. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a personal communication service. 162. (original) The use of a method as in claim 1 in a private mobile radio service. 163. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a private mobile radio service. 164. (original) The use of a method as in claim 1 in a wireless LAN. 165. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wireless LAN. 166. (original) The use of a method as in claim 1 in a fixed wireless access service.

167. (currently amended) The use of an apparatus as in claim 50[101] in a fixed wireless access service. 168. (original) The use of a method as in claim 1 in a broadband wireless access service. 169. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a broadband wireless access service. 170. (original) The use of a method as in claim 1 in a municipal area network. 171. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a municipal area network. 172. (original) The use of a method as in claim 1 in a wide area network. 173. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in a wide area network. 174. (original) The use of a method as in claim 1 in wireless backhaul. 175. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless backhaul. 176. (original) The use of a method as in claim 1 in wireless backhaul. 177. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless backhaul.

178. (original) The use of a method as in claim 1 in wireless SONET.

1670	179. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless
1671	SONET.
1672	SONLI.
1673	
1674	190 191 (CANCELLED)
	180-181. (CANCELLED)
1675	
1676	190 (' ' 1) TH
1677	182. (original) The use of a method as in claim 1 in wireless Telematics.
1678	
1679	
1680	183. (PREVIOUSLY PRESENTED) The use of an apparatus as in claim 101 in wireless
1681	Telematics.
1682	
1683	
1684	184. (NEW) An apparatus as in claim 101, wherein the means for digital signal
1685	processing in said first subset of MIMO-capable nodes further comprises:
1686	an ADC bank for downconversion of received RF signals into digital signals;
1687	
1688	a MT DEMOD element for multitone demodulation, separating the received
1689	signal into distinct tones and splitting them into 1 through $K_{ m feed}$ FDMA
1690	channels, said separated tones in aggregate forming the entire baseband for the
1691	transmission, said MT DEMOD element further comprising
1692	a Comb element with a multiple of 2 filter capable of operating on a 128-
1693	bit sample; and,
1694	an FFT element with a 1,024 real-IF function;
1695	
1696	a Mapping element for mapping the demodulated multitone signals into a 426
1697	active receive bins, wherein
1698	each bin covers a bandwidth of 5.75MHz;
1699	each bin has an inner passband of 4.26MHz for a content envelope;
1700	each bin has an external buffer, up and down, of 745kHz;

1701	each bin has 13 channels, CH0 through CH12, each channel having 320		
1702	kHz and 32 tones, T0 through T31, each tone being 10kHz, with the inner		
1703	30 tones being used information bearing and T0 and T31 being reserved;		
1704	each signal being 100µs, with 12.5µs at each end thereof at the front and		
1705	rear end thereof forming respectively a cyclic prefix and cyclic suffix		
1706	buffer to punctuate successive signals;		
1707	and,		
1708	a symbol-decoding element for interpretation of the symbols embedded in the		
1709	signal.		
1710			
1711			
1712	185. (NEW) A wireless electromagnetic communications network, comprising		
1713	a set of nodes, said set further comprising,		
1714	at least a first subset of MIMO-capable nodes, each MIMO-capable node		
1715	comprising:		
1716	a spatially diverse antennae array of M antennae, where $M \ge two$,		
1717	said antennae array being polarization diverse, and circularly		
1718	symmetric, and providing 1-to-M RF feeds;		
1719	a transceiver for each antenna in said array, said transceiver		
1720	further comprising:		
1721	a Butler Mode Forming element, providing spatial		
1722	signature separation with a FFT-LS algorithm,		
1723	reciprocally forming a transmission with shared receiver		
1724	feeds, such that the number of modes out equals the		
1725	numbers of antennae, establishing such as an ordered set		
1726	with decreasing energy, further comprising:		
1727	a dual-polarization element for splitting the		
1728	modes into positive and negative polarities with		
1729	opposite and orthogonal polarizations, that can		
1730	work with circular polarizations; and,		
1731	a dual-polarized link CODEC;		

1732	a transmission/reception switch comprising:
1733	a vector OFDM receiver element;
1734	a vector OFDM transmitter element;
1735	a LNA bank for a receive signal, said LNA Bank
1736	also instantiating low noise characteristics for a
1737	transmit signal;
1738	a PA bank for the transmit signal that receives
1739	the low noise characteristics for said transmit
1740	signal from said LNA bank;
1741	an AGC for said LNA bank and PA bank;
1742	a controller element for said
1743	transmission/reception switch enabling baseband
1744	link distribution of the energy over the multiple
1745	RF feeds on each channel to steer up to K_{feed}
1746	beams and nulls independently on each FDMA
1747	channel;
1748	a Frequency Translator;
1749	a timing synchronization element controlling said
1750	controller element;
1751	further comprising a system clock,
1752	a universal Time signal element;
1753	GPS;
1754	a multimode power management element and
1755	algorithm;
1756	and,
1757	a LOs element;
1758	said vector OFDM receiver element comprising:
1759	an ADC bank for downconversion of received
1760	RF signals into digital signals;
1761	a MT DEMOD element for multitone
1762	demodulation, separating the received signal into

1763	distinct tones and splitting them into 1 through
1764	K_{feed} FDMA channels, said separated tones in
1765	aggregate forming the entire baseband for the
1766	transmission, said MT DEMOD element further
1767	comprising:
1768	a Comb element with a multiple of 2
1769	filter capable of operating on a 128-bit
1770	sample; and,
1771	an FFT element with a 1,024 real-IF
1772	function;
1773	a Mapping element for mapping the demodulated
1774	multitone signals into a 426 active receive bins,
1775	wherein
1776	each bin covers a bandwidth of 5.75
1777	MHz;
1778	each bin has an inner passband of 4.26
1779	MHz for a content envelope;
1780	each bin has an external buffer, up and
1781	down, of 745 kHz;
1782	each bin has 13 channels, CH0 through
1783	CH12, each channel having 320 kHz and
1784	32 tones, T0 through T31, each tone
1785	being 10 kHz, with the inner 30 tones
1786	being used information bearing and T0
1787	and T31 being reserved;
1788	and,
1789	each signal being 100 µs, with 12.5 µs at
1790	each end thereof at the front and rear end
1791	thereof forming respectively a cyclic
1792	prefix and cyclic suffix buffer to
1793	punctuate successive signals;

1794	a MUX element for timing modification capable
1795	of element-wise multiplication across the signal,
1796	which halves the number of bins and tones but
1797	repeats the signal for high-quality needs;
1798	a link CODEC, which separates each FDMA
1799	channel into 1 through M links, further
1800	comprising:
1801	a SOVA bit recovery element;
1802	an error coding element;
1803	an error detection element;
1804	an ITI remove element;
1805	a tone equalization element;
1806	and,
1807	a package fragment retransmission
1808	element;
1809	a multilink diversity combining element, using a
1810	multilink Rx weight adaptation algorithm for Rx
1811	signal weights $\mathbf{W}(k)$ to adapt transmission
1812	gains $G(k)$ for each channel k ;
1813	an equalization algorithm, taking the signal from
1814	said multilink diversity combining element and
1815	controlling a delay removal element;
1816	said delay removal element separating
1817	signal content from imposed pseudodelay
1818	and experienced environmental signal
1819	delay, and passing the content-bearing
1820	signal to a symbol-decoding element;
1821	said symbol-decoding element for
1822	interpretation of the symbols embedded
1823	in the signal, further comprising:

1824	an element for delay gating;
1825	a QAM element; and
1826	a PSK element;
1827	said vector OFDM transmitter element comprising:
1828	a DAC bank for conversion of digital signals into
1829	RF signals for transmission;
1830	a MT MOD element for multitone modulation,
1831	combining and joining the signal to be
1832	transmitted from 1 through K_{feed} FDMA
1833	channels, said separated tones in aggregate
1834	forming the entire baseband for the transmission;
1835	said MT MOD element further comprising
1836	a Comb element with a multiple of 2
1837	filter capable of operating on a 128-bit
1838	sample; and,
1839	an IFFT element with a 1,024 real-IF
1840	function;
1841	a Mapping element for mapping the modulated
1842	multitone signals from 426 active transmit bins,
1843	wherein
1844	each bin covers a bandwidth of 5.75
1845	MHz;
1846	each bin has an inner passband of 4.26
1847	MHz for a content envelope;
1848	each bin has an external buffer, up and
1849	down, of 745 kHz;
1850	each bin has 13 channels, CH0 through
1851	CH12, each channel having 320 kHz and
1852	32 tones, T0 through T31, each tone
1853	being 10 kHz, with the inner 30 tones

1854	being used information bearing and T0
1855	and T31 being reserved;
1856	each signal being-100 μs , with 12.5 μs at
1857	each end thereof at the front and rear end
1858	thereof forming respectively a cyclic
1859	prefix and cyclic suffix buffer to
1860	punctuate successive signals;
1861	a MUX element for timing modification capable
1862	of element-wise multiplication across the signal,
1863	which halves the number of bins and tones but
1864	repeats the signal for high-quality needs;
1865	a symbol-coding element for embedding the
1866	symbols to be interpreted by the receiver in the
1867	signal, further comprising:
1868	an element for delay gating;
1869	a QAM element; and
1870	a PSK element;
1871	a link CODEC, which aggregates each FDMA
1872	channel from 1 through M links, further
1873	comprising:
1874	a SOVA bit recovery element;
1875	an error coding element;
1876	an error detection element;
1877	an ITI remove element;
1878	a tone equalization element;
1879	and,
1880	a package fragment retransmission
1881	element;
1882	a multilink diversity distribution element, using a
1883	multilink Tx weight adaptation algorithm for Tx
1884	signal weights to adapt transmission gains

1885	$\mathbf{G}(k)$ for each channel k , such that $\mathbf{g}(q;k)$
1886	$\propto \mathbf{w}^*(q;k);$
1887	a TCM codec;
1888	a pilot symbol CODEC element that integrates with said FFT-LS
1889	algorithm a link separation, a pilot and data signal elements
1890	sorting, a link detection, multilink combination, and equalizer
1891	weight calculation operations;
1892	means for diversity transmission and reception,
1893	and,
1894	means for input and output from and to a non-radio interface;
1895	
1896	said set of nodes being linked according to design rules that favor the following
1897	criteria:
1898	subdividing said set of nodes further comprising into two or more proper
1899	subsets of nodes, with a first proper subset being the a transmit uplink /
1900	receive downlink <u>sub</u> set, and a second proper subset being the <u>a</u> transmit
1901	downlink / receive uplink subset;
1902	
1903	allowing each node in said set of nodes to simultaneously belong
1904	belonging to no more only as many transmitting uplink or receiving uplink
1905	subsets than as it has diversity capability means;
1906	
1907	allowing each node in a the transmit uplink / receive downlink subset has
1908	no more to simultaneously link to only as many nodes with which it will
1909	hold time and frequency coincident communications in its field of view,
1910	than as it has diversity capability means;
1911	
1912	allowing each node in a the transmit downlink / receive uplink subset has
1913	no more to simultaneously link to only as many nodes with which it will

1914 hold time and frequency coincident communications in its field of view, 1915 than as it has diversity capability means; 1916 allowing each member of a the transmit uplink / receive downlink subset 1917 eannot hold to engage in simultaneous, time and frequency coincident 1918 communications with any other member of that transmit uplink / receive 1919 downlink subset only if both that other member also belongs to a different 1920 proper subset and the communication is between different proper subsets; 1921 and, 1922 allowing each member of a the transmit downlink / receive uplink subset 1923 cannot hold to engage in simultaneous, time and frequency coincident 1924 communications with any other member of that transmit downlink / 1925 receive uplink subset only if both that other member also belongs to a 1926 different proper subset and the communication is between different proper 1927 subsets: 1928 1929 means for transmitting, in said wireless electromagnetic communications network, 1930 independent information from each node belonging to a first proper subset, to one 1931 or more receiving nodes belonging to a second proper subset that are viewable 1932 from the transmitting node: 1933 1934 for processing independently, in said wireless electromagnetic 1935 communications network, at each receiving node belonging to said second proper 1936 subset, information transmitted from one or more nodes belonging to said first 1937 proper subset; 1938 1939 and, 1940 1941 means for deploying said set of nodes such that substantially reciprocal symmetry 1942 exists for the uplink and downlink channels by, 1943 if the received interference is spatially white in both link directions, setting

1944 $\mathbf{g}_2(q) \propto \mathbf{w}_2^*(q)$ and $\mathbf{g}_1(q) \propto \mathbf{w}_1^*(q)$ at both ends of the link,

where $\{\mathbf{g}_2(q), \mathbf{w}_1(q)\}$ are the linear transmit and receive weights used in the downlink;

1947

but if the received interference is not spatially white in both link

directions, constraining $\{\mathbf{g}_1(q)\}$ and $\{\mathbf{g}_2(q)\}$ to satisfy:

1950

1951
$$\sum_{q=1}^{Q_{21}} \mathbf{g}_1^T(q) \mathbf{R}_{\mathbf{i}_1 \mathbf{i}_1} (n_1(q)) \mathbf{g}_1^*(q) = \sum_{n=1}^{N_1} \operatorname{Tr} \{ \mathbf{R}_{\mathbf{i}_1 \mathbf{i}_1} (n) \} = M_1 R_1$$

1952

1953
$$\sum_{q=1}^{Q_{12}} \mathbf{g}_{2}^{T}(q) \mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n_{2}(q)) \mathbf{g}_{2}^{*}(q) = \sum_{n=1}^{N_{2}} \operatorname{Tr}\{\mathbf{R}_{\mathbf{i}_{2}\mathbf{i}_{2}}(n)\} = M_{2}R_{2};$$

1954

using any standard communications protocol, including TDD, FDD, simplex,

1956

1957 and,

1958

means for optimizing the network by dynamically adapting the diversity capability means between nodes of said transmitting and receiving subsets.

1961

1962

1963 186. (NEW) An apparatus as in claim 185, wherein said a transmission/reception switch further comprises an element for tone and slot interleaving.

1965

1966 187. (NEW) An apparatus as in claim 185, wherein said TMC codec and SOVA bit recovery element are replaced with a Turbo codec.