4.19 We need to find $P(|X - \mu| \le 3\sigma)$ for the given distributions of X.

so the interval $\mu \pm 3\sigma$ covers the entire range [a, b] of X. Hence

(a) $P(|X - \mu| \le 3\sigma) = P(|Z| \le 3) = \Phi(3) - \Phi(-3) = 0.9987 - 0.0013 = \boxed{0.9974}$

 $3\sigma = \frac{\sqrt{3}}{2}(b-a) > \frac{1}{2}(b-a),$

 $P(|X - \mu| \le 3\sigma) \ge P\left(|X - \mu| \le \frac{1}{2}(b - a)\right) = P(a \le X \le b) = \boxed{1}$

(b) For the Uniform(a, b) distribution, $\mu = \frac{a+b}{2}$ and $\sigma = \frac{b-a}{\sqrt{12}}$. Therefore,