Section 2

• 識別1 (3,4章)

3. 識別 一概念学習一

学習データ (テニスをする日; weather.nominal.arff)

3.4 決定木の学習

• 結果として得られる決定木

3.4 決定木の学習

- 決定木学習の考え方
 - 節はデータを分割する条件を持つ
 - できるだけ同一クラスのデータが偏るように
 - 分割後のデータ集合に対して、同様の操作を行う
 - 全ての葉が単一クラスの集合になれば終了

属性の分類能力(1/2)

- 分類能力の高い属性を決定する方法
 - その属性を使った分類を行うことによって、なる べくきれいにクラスが分かれるように
 - ・エントロピー
 - データ集合 S の乱雑さを表現
 - 正例の割合: p^+ , 負例の割合: p^-
 - エントロピーの定義

属性の分類能力 (2/2)

- 情報獲得量
 - 属性 A を用いた分類後のエントロピーの減少量
 - 値 v を取る訓練例の集合:Sv
 - Sv の要素数: |Sv|
 - 情報獲得量の定義

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|Sv|}{|S|} Entropy(Sv)$$

計算例

• 情報獲得量

Gain(S, outlook)=0.246

Gain(S, humidity)=0.151

Gain(S, windy)=0.048

Gain(S, temperature)=0.029

バイアスの検討

なぜ単純な木の方がよいか

• オッカムの剃刀

「データに適合する最も単純な仮説を選べ」

- 複雑な仮説
 - → 表現能力が高い
 - → 偶然にデータを説明できるかもしれない
- 単純な仮説
 - → 表現能力が低い
 - → 偶然にデータを説明できる確率は低い
 - → でも説明できた!
 - \rightarrow 必然

連続値属性の扱い

連続値 A を持つ属性から真偽値 (A < c?) を値 とするノードを作成

→ c をどうやって決めるか

気温	40	48	60	72	80	90
playTennis	No	No	Yes	Yes	Yes	No

• 最大事後確率則による識別

$$C_{MAP} = \arg\max_{i} P(\omega_i | \boldsymbol{x})$$

max f(x): f(x) の最大値

 $\operatorname{argmax} f(x)$: f(x) が最大となる x

 $oldsymbol{x}$:特徴ベクトル

 ω_i $(1 \le i \le c)$: クラス

• データから直接的にこの確率を求めるのは難しい

• ベイズの定理
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$C_{MAP} = \arg \max_{i} P(\omega_{i}|\mathbf{x})$$

$$= \arg \max_{i} \frac{P(\mathbf{x}|\omega_{i})P(\omega_{i})}{P(\mathbf{x})}$$

$$= \arg \max_{i} P(\mathbf{x}|\omega_{i})P(\omega_{i})$$

- ベイズ統計とは
 - 結果から原因を求める
 - ベイズ識別
 - 観測結果 x から、それが生じた原因 ω_i を求める
 - 通常、確率が与えられるのは原因→結果(尤度)
 - ベイズ識別では、事前分布 $P(\omega_i)$ が、観測によって事後分布 $P(\omega_i | \mathbf{x})$ に変化したと考えることができる

- 事前確率 $P(\omega_i)$
 - 特徴ベクトルを観測する前の、各クラスの起こりや すさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

N: 全データ数、 n_i : クラス ω_i のデータ数

- 尤度 $P(x|\omega_i)$
 - 特定のクラスから、ある特徴ベクトルが出現する尤もらしさ
- d 次元ベクトルの場合の最尤推定
 - 値の組合せが データ中に出 現しないもの 多数

Weka の weather.nominal データ 3×3×2×2=36 種類の組合せ

4.2.2 ナイーブベイス識別

- ナイーブベイズの近似
 - 全ての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d | \omega_i)$$

$$\approx \prod_{j=1}^d P(x_j | \omega_i)$$

$$C_{NB} = \arg \max_i P(\omega_i) \prod_{j=1}^d P(x_j | \omega_i)$$

4.2.2 ナイーブベイス識別

• 尤度の最尤推定

$$P(x_j|\omega_i) = \frac{n_{ij}}{n_i}$$

 n_{ij} : クラス ω_i のデータのうち、j 次元目の値が x_j の個数

ゼロ頻度問題

確率の m 推定

$$P(x_j|\omega_i) = \frac{n_{ij} + mp}{n_i + m}$$

p: 事前に見積もった各特徴値の割合

m: 事前に用意する標本数

- ラプラス推定
 - m: 特徴値の種類数、 p: 等確率 とすると、 mp=1

Section2 のまとめ

- 決定木
 - カテゴリデータの学習に適する
 - 学習結果の解釈が可能
- 統計的識別
 - 識別結果を確率付きで出力することができる