VITMO

Автоматизация отслеживания состояния дорожного покрытия при помощи мобильных устройств водителей

Выполнил: Кулаков Никита Васильевич Руководитель: Логинов Иван Павлович

Проблема

Несвоевременное проведение дорожных работ в 1.5 — 3 раза увеличивает расходы на содержание.

Плохое состояние дорог увеличивает:

- вероятность и серьезность ДТП;
- издержки на содержание транспортных средств;
- время вождения.

Для проведения проверок дорог, как правило, нанимается бригада.

- 1. Необходимость наличия специализированных средств для сбора данных и диагностики.
- 2. Значительные затраты на подготовку, транспортировку, сбор данных.

Цели и задачи

Цель: обеспечение частичного отказа от использования специализированной аппаратуры, предназначенной для сбора данных, благодаря ее замене на датчики мобильных устройств и увеличению объема собираемых данных.

Задачи:

- 1. Анализ предметной области и состояния работ.
- 2. Разработка программной архитектуры.
- 3. Программная реализация средства анализа состояния дорожного покрытия.
- 4. Сбор данных и обработка для получения результатов.
- 5. Анализ результатов и принятых решений.

Альтернативы

Таблица 1 – Сравнительный анализ альтернатив

	«Автострада»	RoadAl	«Дороги России» Средняя	
серверная нагрузка	Низкая	Высокая		
алгоритмы	-	CV (Компьютерное зрение)	Математические алгоритмы	
детализация	Низкая	Высокая	Средняя	
автономность	Нет	Да	Да	
мобильная нагрузка	Низкая	Средняя	Высокая	
ограничения	_	Необходимость фиксации устройства, хорошей погоды и освещенности	-	

Требования к решению

- 1. Мобильное приложение должно работать автономно.
- 2. Мобильное приложение не должно быстро расходовать заряд батареи.
- 3. Мобильное приложение должно обрабатывать случаи отсутствия доступа к серверу.
- 4. Система должна обеспечить сохранение результатов.
- 5. Система должна предоставлять доступ к результатам, на мобильном приложении должны быть отображены оценки состояния дорожного покрытия.

Архитектура системы

Мобильное приложение

Мобильное приложение

Сервис прогнозирования

Список признаков (features):

- 32 частоты акселерометра*;
- 32 частоты гироскопа*;
- макс. магнитуда акселерометра;
- макс. магнитуда гироскопа;
- скорость.

^{*} получено через дискретное преобразование Фурье

Сервис пользовательских запросов ИТМО

GET /points/ $\{z\}/\{x\}/\{y\}$?[begin=][&end=]

Параметры:

- z масштабирование;
- х смещение ячейки по оси долготы;
- у смещение ячейки по оси широты.

Проекция Меркатора

Сервис обработки результатов

Буферизированная вставка результатов в СУБД Clickhouse по триггеру.

Триггеры:

- заполнение буфера до значения THRESHOLD
- прохождение времени PERIOD

Предназначение:

- уменьшение операций вставки
- снижение нагрузки

```
points-consumer-1 | 2024/05/04 08:27:08 clickhouse: inserted 932 rows
points-consumer-1 | 2024/05/04 08:27:13 clickhouse: inserted 1000 rows
points-consumer-1 | 2024/05/04 08:27:17 clickhouse: inserted 1000 rows
```

Тестирование системы

Конфигурация сервера:

- операционная система Ubuntu 22.04.4 LTS x86_64;
- CPU 2 ядра 2.6GHz;
- оперативная память 4 GB.

Сервисы:

- по одному экземпляру;
- подняты в Docker.

Важные конфигурации:

- кол-во атрибутов = 24;
- Алгоритм XGBoost без скорости.

Таблица 2 – Результаты тестирования

140///44 = 1 00///2/4/2/ 100///popa/////					
Величина	Значение				
Кол-во сообщений	4200				
Размер буфера (с.)	30				
Время отправки (с.)	45				
R2	0.70				
Кол-во результатов	34000				
Время исполнения (с.)	150				

Тестирование системы

Заключение

Достигнутые результаты:

- проанализированы существующие решения, определены требования;
- реализована система по сбору данных датчиков мобильных устройств;
- собраны данные, произведено тестирование и анализ.

Дальнейшее развитие:

- внедрение системы в существующие картографические сервисы;
- улучшение алгоритмов предобработки и прогнозирования;
- кеширование запросов;
- агрегация результатов;
- проекционирование координат на дорогу;
- добавление новых характеристик прогнозов.

Спасибо за внимание!

ITSMOre than a UNIVERSITY

Приложение: Тестирование алгоритмов ИТМО

R2 — Коэффициент детерминации

MSE — Среднеквадратическая ошибка

МАЕ — Средняя абсолютная ошибка

RMSE — Корень среднеквадратической ошибки

Таблица 2 – Характеристики регрессии и время исполнения

	R2	Explained variance	MSE	MAE	RMSE	Время исполнения (c)*
1. =0.42, без предобработки	-0.34	0	0.173	0.347	0.416	45
2. =0.42	-0.34	0	0.173	0.347	0.416	105
3. CART, без скорости	0.67	0.67	0.044	0.142	0.210	113
4. Random Forest, без скорости	0.67	0.67	0.042	0.147	0.206	236
5. XGBoost, без скорости	0.70	0.70	0.039	0.131	0.198	150
6. XGBoost	0.89	0.89	0.014	0.065	0.119	150

^{*} Тестирование проводилось на сервере с конфигурацией из слайда Тестирование системы (с. 12)

Приложение: Демо на обучающих данных / ІТМО

Приложение: Ссылки

Telegram: @zubrailx

GitHub: https://github.com/zubrailx (Nikita Kulakov)

Проект: https://github.com/zubrailx/road-condition-monitoring

Telegram

GitHub

Проект