

Kor 5.32 Unter dem Voraussefringen von Setz 5.29 1st f(x) = \frac{7}{29} ax in Co (-P, P) ind die Ableetingen von f erhält men durch Gredweises différenzièren Formel: $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $x \in (\rho, \rho)$ $f'(x) = \sum_{n=1}^{\infty} n a_n x^n$ $f^{(k)}(x) = \sum_{n \in \mathbb{N}} a_n(n)(n-1) - (n-k+1) \times^{n-k}$ $f^{(k)}(x) = \frac{\sum_{n=k}^{\infty} a_n n!}{n-k!} \times n-k$

Dec 10-lak 2. (238) Koroller 5.34. Set f: (c,d) 31R

ment differentiation, seven

Xo, X E (c,d) Dann gibt es & E (xo,x) mit f(x) - f(xo) + f'(xo) (x-xo)+-- $\frac{1}{(m-1)!}$ Mir fohrer polgende terminologie em: $T_{m} f(x_{j}x_{0}) = f(x_{0}) + f^{(m)}(x_{0})(x_{-x_{0}})^{m}$ \overline{m} Tot dos Taylor Polynom noto Ordning.

(f ECM) und $R_{m}f(x;x_{0}):=f(x)-T_{m}f(x;x_{0})$ ist de lesten Falls f(m+1) -mal deft. Test in Ω , so set $\lim_{x \to \infty} f(x-x_0) = f(m+1)(x) (x-x_0) = \lim_{x \to \infty} f(x-x_0)$

(x-a) x - a) m

