Lecture 2: Sorting Algorithms

Sorting Problem

- Sorting problem
 - \bullet Input: an array A[1..n] with n integers
 - Output: a sorted array A (in ascending order)

- \bullet Problem is: sort A[1..n]
- Input:
 | 8 | 6 | 1 | 3 | 7 | 2 | 5 | 4 |
- Output:
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Our Roadmap

- Comparison-based Sorting
 - Quadratic Cost
 - Selection Sort, Insertion Sort, Bubble Sort
 - O(n log n) Cost
 - Merge Sort, Heap Sort (we will skip here)
 - Quick Sort
- Other sorting algorithms
 - Counting sort, radix sort, bucket sort

Selection Sort

Selection Sort

- Idea of a selection sort method
 - Start with empty hand, all cards on table
 - Pick the smallest card from table
 - Insert the card into the hand

8
5
2
6
9
1
4
0
7

Selection Sort Algorithm

SelectionSort

- 8 | 6 | 1 | 3 | 7 | 2 | 5 | 4
- Input: an array A of n numbers
- Output: an array A of n numbers in the ascending order
- \diamond Selection-Sort (A[1..n])
 - 1. for integer i ← 1 to n–1
 - 2. $k \leftarrow i$
 - 3. for integer $j \leftarrow i+1$ to n sorted unsorted
 - 4. if A[k] > A[j] then
 - 5. $k \leftarrow j$
 - 6. swap A[i] and A[k]

Selection Sort Time Complexity

- Selection Sort
 - Input: an array A of n numbers
 - Output: an array A of n numbers in the ascending order
 - \diamond Selection-Sort (A[1..n])

```
1. for integer i \leftarrow 1 to n-1
```

- 2. $k \leftarrow i$
- 3. for integer $i \leftarrow i+1$ to n
- 4. if A[k] > A[j] then
- 5. $k \leftarrow j$
- 6. swap A[i] and A[k]

Cost:
$$n-1=O(n)$$

Cost:
$$n-1=O(n)$$

Cost:
$$n-1+n-2+...+1=O(n^2)$$

Cost: $O(n^2)$

Cost: $O(n^2)$

Cost: O(n)

- Selection sort total cost:
- $O(n)+O(n)+O(n^2)+O(n^2)+O(n^2)+O(n^2)$

Insertion Sort

Insertion Sort

- Idea of a insertion sort method
 - One input each iteration, growing a sorted output list
 - Remove one element from input data
 - Find the location it belongs within the sorted list
 - Repeat until no input elements remain

6 5 3 1 8 7 2 4

Insertion Sort Algorithm

- InsertionSort
 - Input: an array A of n numbers
 - Output: an array A of n numbers in the ascending order
 - ightharpoonup Insertion-Sort (A[1..n])
 - 1. for integer $i \leftarrow 1$ to n
 - 2. for integer $j \leftarrow i$ to 1 (j-1>0)
 - 3. if A[j-1] > A[j] then
 - 4. swap A[j-1] and A[j]
- 8 | 6 | 1 | 3 | 7 | 2 | 5 | 4 sorted unsorted 8 | 6 | 1 | 3 | 7 | 2 | 5 | 4

Insertion Sort Time Complexity

- Insertion Sort
 - Input: an array A of n numbers
 - Output: an array A of n numbers in the ascending order
 - \diamond Insertion-Sort (A[1..n])
 - 1. for integer $i \leftarrow 1$ to n
 - 2. for integer $j \leftarrow i$ to 1 (j-1>0)
 - 3. if A[j-1] > A[j] then
 - 4. swap A[j-1] and A[j]

- Cost: n-1=O(n)
- Cost: $1+...+n-2=O(n^2)$
- Cost: $O(n^2)$
- Cost: $O(n^2)$

- Insertion sort total cost:
 - $O(n)+O(n^2)+O(n^2)+O(n^2)=O(n^2)$

Bubble Sort

Bubble Sort

- Idea of a bubble sort method
 - For each pass
 - Compare the pair of adjacent item
 - Swap them if they are in the wrong order
 - Repeat the pass through until no swaps are needed

6 5 3 1 8 7 2 4

Bubble Sort Algorithm

- BubbleSort
 - Input: an array A of n numbers
 - Output: an array A of n numbers in the ascending order
 - \bullet Bubble-Sort (A[1..n])
 - 1. for integer $i \leftarrow 1$ to n-1
 - 2. for integer $j \leftarrow 2$ to n i + 1
 - 3. if A[j-1] > A[j] then
 - 4. swap A[j-1] and A[j]
- 8 | 6 | 1 | 3 | 7 | 2 | 5 | 4

unsorted sorted

6 | 1 | 3 | 7 | 2 | 5 | 4 | 8

1 | 3 | 6 | 2 | 5 | 4 |

Bubble Sort Time Complexity

- Bubble Sort
 - Input: an array A of n numbers
 - Output: an array A of n numbers in the ascending order
 - \bullet Bubble-Sort (A[1..n])

```
1. for integer i \leftarrow 1 to n-1 Cost: n-1=O(n)
```

- 2. for integer $j \leftarrow 2$ to n Cost: $n-1+...+1=O(n^2)$
- 3. if A[j-1] > A[j] then Cost: $O(n^2)$
- 4. swap A[j-1] and A[j] Cost: $O(n^2)$
- Bubble sort total cost:
 - $O(n) + O(n^2) + O(n^2) + O(n^2) = O(n^2)$

Pop Quiz

• We say a sorting algorithm is "stable" if it does not change the relative order of elements with equal keys, which of the following is/are stable ()

A: Selection sort B: Insertion Sort C: Bubble Sort

- Watch a video:
 - 1) Which sorting algorithm is used in that video?
 - 2) I am No. ???

Merge Sort (Divide-and-Conquer)

Divide and Conquer

- Divide and Conquer: an algorithmic technique
 - Divide: divide the problem into smaller subproblems
 - Conquer: solve each subproblem recursively
 - Combine: combine the solution of subproblems into the solution of the original problem

Example: Merge Sort

- Sorting problem
 - \bullet Input: an array A[1..n] with n integers
 - Output: a sorted array A (in ascending order)

- \bullet Original problem is: sort A[1..n]
 - | 8 | 6 | 1 | 3 | 7 | 2 | 5 | 4 |

- What is a subproblem?
 - Sort a subarray A[l..r]

| 7 | 2 | 5 | 4 |

Merge Sort

Merge Sort

- Divide: divide the array into two subarrays of n/2 numbers each
- Conquer: sort two subarrays recursively
- <u>Combine</u>: merge two sorted subarrays into a sorted array

Merge-Sort(*A*, *n*)

```
1. if n > 1

\begin{array}{ccc}
2. & p \leftarrow \lfloor n/2 \rfloor \\
3. & B[1..p] \leftarrow A[1..p] \\
4. & C[1..n-p] \leftarrow A[p+1..n]
\end{array}
```

5. Merge-Sort(B, p)

6. Merge-Sort(*C*, *n*-*p*)

-[7. $A[1..n] \leftarrow Merge(B, p, C, n-p)$

We'll discuss the Combine phase ("Merge" function) later

Merge Sort: Combine Phase

Running time of Merge

Sorted arrays

Merge(
$$L$$
, n_L , R , n_R)

- 1. n $\leftarrow n_L + n_R$
- 2. let A[1..n] be a new array
- $3.i \leftarrow 1; j \leftarrow 1$
- 4. for $k \leftarrow 1$ to n
- 5. if $i \le n_L$ and $(j > n_R \text{ or } L[i] \le R[j])$
- 6. $A[k] \leftarrow L[i]$; $i \leftarrow i + 1$
- 7. else
- 8. $A[k] \leftarrow R[j]$; $j \leftarrow j + 1$
- 9. return A

• Let $n = n_L + n_R$ be the total number of items

- \bullet Time of merge: O(n) time
 - ♦ Line 1: 0(1)

 - ♦ Line 3: 0(1)
 - Lines 4-8: O(n)

Running time of Merge Sort

Merge-Sort(*A*, *n*)

- 1. if n > 1
- 2. $p \leftarrow \lfloor n/2 \rfloor$
- 3. $B[1..p] \leftarrow A[1..p]$
- 4. $C[1..n-p] \leftarrow A[p+1..n]$
- 5. Merge-Sort(B, p)
- 6. Merge-Sort(C, n-p)
- 7. $A[1..n] \leftarrow \text{Merge}(B, p, C, n-p)$

- Let T(n) be the running time of Merge Sort
 - Lines 3, 4 take O(n) time
 - Line 5 takes T(n/2) time
 - ♦ Line 6 takes T(n/2) time
 - \diamond Line 7 takes O(n) time
- Thus, we obtain the recurrence

$$T(n) = 2 T(n/2) + O(n)$$

 $T(n) = O(n \log n)$

Solving it, we get:

Time Complexity

- \bullet T(n): time complexity of algorithm at input size n
 - Divide the problem into a subproblems
 - \diamond Size of each subproblem is n/b
 - \diamond Combine phase takes f(n) time

Note: *a* and *b* can have different values

- ♦ Recurrence equation: T(n) = a T(n/b) + f(n)
- \bullet E.g., Merge Sort: T(n) = 2 T(n/2) + O(n)

Methods for Solving Recurrences

- Recurrence equation: T(n) = a T(n/b) + f(n)
- Two methods for solving recurrences
 - Master theorem
 - Substitution method
- Master theorem
 - It could be proved by carefully applying the "expansion method", the details are tedious and omitted from this course
- Substitution method (we skip it here)
 - It is mathematical induction

Master Theorem

- Recurrence equation: T(n) = a T(n/b) + f(n)
- Let T(n) be a function that return a positive value for every integer n>0. We know that:
 - T(1) = O(1)
 - $T(n) = \alpha T\left(\left[\frac{n}{\beta}\right]\right) + O(n^{\gamma}) \text{ for } (n \ge 2)$

where $\alpha \ge 1$, $\beta > 1$, and $\gamma \ge 0$. Then:

- \bullet If $\log_{\beta} \alpha < \gamma$, then $T(n) = O(n^{\gamma})$
- \bullet If $\log_{\beta} \alpha = \gamma$, then $T(n) = O(n^{\gamma} \log n)$
- \bullet If $\log_{\beta} \alpha > \gamma$, then $T(n) = O(n^{\log_{\beta} \alpha})$

Master Theorem

- Consider the recurrence of binary search:
 - $T(1) \le c1$
 - ⋄ T(n) ≤ T(n/2) + c2 (for n ≥ 2)
 - ϕ Hence, $\alpha = 1$, $\beta = 2$, and $\gamma = 0$. Since $\log_{\beta} \alpha = \log_2 1 = 0$ 0 = γ , we know that $T(n) = O(n^0 \log n) = O(\log n)$.
- Consider the recurrence of merge sort:
 - $T(1) \le c1$
 - ⋄ T(n) = 2 T(n/2) + O(n) = 2 T(n/2) + c2 n (for n ≥ 2)
 - $_{\odot}$ Hence, α = 2, β = 2, and γ = 1. Since $\log_{\beta} \alpha = \log_2 2 = 1$ = γ , we know that $T(n) = O(n^1 \log n) = O(n \log n)$.

Quick Sort RAM with Randomization

Deterministic & Randomized

- So far in CS203, all our algorithms are deterministic, namely, they do not involve any randomization.
- We will introduce randomized algorithms, e.g., quick sort in the sorting problem.
- Randomized algorithms play an important role in computer science, they often simpler, and sometimes can be provably faster as well.
- Recall the core of the RAM model is a set of atomic operations, we extend this set with:
 - ⋄ RANDOM(x, y): given integers x and y (x <= y), this operation returns an integer chosen uniformly at random in [x,y], i.e., x, x+1, ..., y has the same probability of being returned.

Randomized Algorithm Example

- Find-a-Zero: Given an array of integers with size n, among which there is at least 0. Design an algorithm to report an arbitrary position of A that contains a 0
- Suppose A = (9,18,0,0,15,0), an algorithm can report 3,4 or 6, consider the following randomized algorithm
- ♦ 1. do
- \bullet 2. r \leftarrow RANDOM(1,n)
- 3. until A[r]=0
- 4. return r
- What is the cost of the algorithm? It depends
 - \diamond If all numbers in A are 0, O(1) time. If A has only one 0, O(n) expected time.
 - As before, we care about the worst expected time: O(n)

Quick Sort

- Idea of a quick sort method
 - Randomly pick an integer p in A, call it the pivot
 - Re-arrange the integers in an array A' such that
 - All the integers smaller than p are positioned before p in A'
 - All the integers larger than p are positioned after p in A'
 - Sort the part of A' before p recursively
 - Sort the part of A' after p recursively

Quicksort

- Quick Sort
 - Input: an array A of n numbers
 - Output: an array A of n numbers in the ascending order
 - Quicksort (A[1..n], lo=1, hi=n)
 - 1. $p \leftarrow partition(A, lo, hi)$
 - 2. Quicksort(A,lo,p-1)
 - 3. Quicksort(A,p+1,hi)

Quicksort

- Partition(A, lo, hi)
 - 1. $p \leftarrow RANDOM(lo, hi)$;
 - 2. pivot \leftarrow A[p];
 - 3. L \leftarrow lo, R \leftarrow hi
 - 4. for integer i from lo to hi
 - 5. if(A[i] < pivot) A'[L++] \leftarrow A[i]
 - 6. else A'[R--] \leftarrow A[i]
 - 7. $A[lo, hi] \leftarrow A'$
 - 8. return L;

Question:

- If we set p ← lo or hi in Line 1, quick sort is still correct?
- What are the difference between p ← lo/hi and p ← RANDOM(lo, hi)?

Quicksort Example

Quicksort Time Complexity

- Quicksort's running time is not attractive in the worst case: it is $O(n^2)$ (why?) However, quick sort is fast in expectation, i.e., O(nlogn), remember this holds for every input array A.
- Whether quicksort has any advantage over merge sort? which guarantees O(nlogn) in the worst case.
- No in theory, but there is an advantage in practice
- Quicksort permits a faster implementation that leads to a smaller hidden constant compared to merge sort. (why?)

Quicksort Time Complexity

- Let X be the number of comparisons in quicksort algorithm. The running is bounded by O(n+x).
- We prove that E[X]=O(n log n)
- Denote e_i be the i-th smallest integer in A, consider e_i and e_i for any i,j such that i!=j
- What is the probability that quicksort compares e_i and e_i?
 - Every element will be selected as pivot precisely once
 - \bullet e_i and e_j are not compared, if any element between them gets selected as a pivot before them.
 - ⋄ Therefore, e_i and e_j are compared if and only if either one is the first among e_i , e_{i+1} ,..., e_i picked as a pivot
 - The probability is 2/(j-i+1) (random pivot selection)

Quicksort Time Complexity

- Define random variable X_{ij} to be 1, if e_i and e_j are compared. Otherwise, X_{ij} to be 0. Thus, we have
- $Pr[X_{ij} = 1] = 2/(j-i+1)$, that is $E[X_{ij}] = 2/(j-i+1)$
- Since $X = \sum_{i,j} X_{ij}$, hence:
- $E[X] = \sum_{i,j} E[X_{ij}] = \sum_{i,j} \frac{2}{j-i+1}$
- \Rightarrow = 2 $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$
- = $2\sum_{i=1}^{n-1} O(\log(j-i+1)) (1+1/2+...+1/n = O(\log n))$
- $\bullet = 2\sum_{i=1}^{n-1} O(\log n)$
- $\bullet = O(n \log n)$
- Harmonic series: 1+1/2+...+1/n, which is frequently encountered in computer science.

Summary

Sort	Average	Space	Stable
Selection	$O(n^2)$	0(1)	Yes
Insertion	$O(n^2)$	0(1)	Yes
Bubble	O(n ²)	0(1)	Yes
Неар	O(nlogn)	0(1)	No
Merge	O(nlogn)	Depends	Yes
Quick	O(nlogn)	0(1)	Yes

- \bullet Comparison lower bound of sorting algorithm: $\Omega(n \log n)$
- We omit the proof here.

Other Sorting Methods

Other Sorting Algorithms

- Counting sort (Chapter 8.2)
 - ightharpoonup it is applicable when each input is known to belong to a particular set, S, of possibilities. The algorithm runs in O(|S| + n) time and O(|S|) memory where n is the length of the input.
- Radix sort (Chapter 8.3)
 - ightharpoonup radix sort is an algorithm that sorts numbers by processing individual digits. n numbers consisting of k digits each are sorted in $O(n \cdot k)$ time
- Bucket sort (Chapter 8.4)
 - Bucket sort is a divide and conquer sorting algorithm that generalizes counting sort by partitioning an array into a finite number of buckets.

Thank You!