5.0 Acoustic Modeling

References: 1. 2.2, 3.4.1, 4.5, 9.1~ 9.4 of Huang

"Predicting Unseen Triphones with Senones",
 IEEE Trans. on Speech & Audio Processing, Nov 1996

Unit Selection for HMMs

Possible Candidates

— phrases, words, syllables, phonemes.....

Phoneme

— the minimum units of speech sound in a language which can serve to distinguish one word from the other e.g. bat / pat , bad / bed

— phone : a phoneme's acoustic realization the same phoneme may have many different realizations e.g. sat / meter

Coarticulation and Context Dependency

- context: right/left neighboring units
- coarticulation: sound production changed because of the neighboring units
- right-context-dependent (RCD)/left-context-dependent (LCD)/ both
- intraword/interword context dependency

• For Mandarin Chinese

character/syllable mapping relation

— syllable: Initial (聲母) / Final (韻母) / tone (聲調)

tea it クラ two at クメ forget

target

Unit Selection Principles

Primary Considerations

- accuracy: accurately representing the acoustic realizations
- trainability: feasible to obtain enough data to estimate the model parameters
- generalizability: any new word can be derived from a predefined unit inventory

Examples

- words: accurate if enough data available, trainable for small vocabulary,
 NOT generalizable
- phoneme : trainable, generalizable
 difficult to be accurate due to context dependency
- syllable: 50 in Japanese, 1300 in Mandarin Chinese, over 30000 in English

Triphone

 a phoneme model taking into consideration both left and right neighboring phonemes

$$(60)^3 \rightarrow 216,000$$

 very good generalizability, balance between accuracy/ trainability by parameter-sharing techniques

Sharing of Parameters and Training Data for Triphones

Sharing at Model Level

Generalized Triphone

clustering similar triphones
 and merging them together

Sharing at State Level

Shared Distribution Model (SDM)

 those states with quite different distributions do not have to be merged

• Quantity of Information Carried by an Event (or a Random Variable)

Assume an information source: output a random variable m_j at time j

- Define $I(x_i)$ = quantity of information carried by the event m_j = x_i Desired properties:
 - 1. $I(x_i) \ge 0$
 - $2.\lim_{p(x)\to 1} I(x_i) = 0$
 - 3. $I(x_i) > I(x_i)$, if $P(x_i) < P(x_i)$
 - 4.Information quantities are additive

$$-I(x_i) = \log \left[\frac{1}{p(x_i)}\right] = -\log \left[P(x_i)\right] = -\log_2 \left[P(x_i)\right] \text{ bits (of information)}$$

$$= \sum_{i=1}^{M} P(x_i) I(x_i) = -\sum_{i=1}^{M} P(x_i) \left\{ \log [P(x_i)] \right\} = E [I(x_i)]$$

= the average quantity of information carried by each random variable

$$M=2$$
, $\{x_1, x_2\} = \{0, 1\}$

$$S \rightarrow U = 110100101011001...$$

P(0) = P(1) = ½

$$U = 111111111...$$

$$P(1) = 1, P(0) = 0$$

$$P(1) \approx 1$$
, $P(0) \approx 0$

$$M=4$$
, $\{x_1, x_2, x_3, x_4\} = \{00, 01, 10, 11\}$

$$S \rightarrow U = 0.1 0.0 1.0 1.0 0.1 \dots$$

Examples

-
$$M = 2$$
, $\{x_1, x_2\} = \{0,1\}$, $P(0) = P(1) = \frac{1}{2}$
 $I(0) = I(1) = 1$ bit (of information), $H(S) = 1$ bit (of information)
 $U = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \dots \dots$

This binary digit carries exactly 1 bit of information

- M =4,
$$\{x_1, x_2, x_3, x_4\}$$
= $\{00, 01, 10, 11\}$, $P(x_1)$ = $P(x_2)$ = $P(x_3)$ = $P(x_4)$ = $\frac{1}{4}$
 $I(x_1)$ = $I(x_2)$ = $I(x_3)$ = $I(x_4)$ = 2 bits (of information),
 $H(S)$ = 2 bits (of information)
 $U = 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ \dots \dots$

This symbol (represented by two binary digits) carries exactly 2 bits of information

0.42 bit of information

This binary digit carries This binary digit carries 2 bits of information

M=3,
$$\{x_1, x_2, x_3\} = \{0, 1, 2\}$$

P(0) = p, P(1) = q, P(2) = 1-p-q
[p, q, 1-p-q]

• Jensen's Inequality

$$-\sum_{i=1}^{M} p(x_i) \log[p(x_i)] \le -\sum_{i=1}^{M} p(x_i) \log[q(x_i)]$$

$$q(x_i): \text{ another probability distribution, } q(x_i) \ge 0, \sum_{i=1}^{M} q(x_i) = 1$$
equality when $p(x_i) = q(x_i)$, all i

- proof: $\log x \le x-1$, equality when x=1

$$\sum_{i} p(x_i) \log \left[\frac{q(x_i)}{p(x_i)} \right] \leq \sum_{i} p(x_i) \left[\frac{q(x_i)}{p(x_i)} - 1 \right] = 0$$

- replacing $p(x_i)$ by $q(x_i)$, the entropy is increased using an incorrectly estimated distribution giving higher degree of uncertainty
- Kullback-Leibler(KL) Distance (KL Divergence)

$$D[p(x)||q(x)] = \sum_{i} p(x_i) \log \left[\frac{p(x_i)}{q(x_i)}\right] \ge 0$$

- difference in quantity of information (or extra degree of uncertainty) when p(x) replaced by q(x), a measure of distance between two probability distributions, asymmetric
- Cross-Entropy (Relative Entropy)
- Continuous Distribution Versions

Classification and Regression Trees (CART)

- An Efficient Approach of Representing/Predicting the Structure of A Set of Data — trained by a set of training data
- A Simple Example
 - dividing a group of people into 5 height classes without knowing the heights:

Tall(T), Medium-tall(t), Medium(M), Medium-short(s), Short(S)

- several observable data available for each person: age, gender, occupation....(but not the height)
- based on a set of questions about the available data

- 1. Age > 12 ?
- 2. Occupation= professional basketball player?
- 3. Milk Consumption > 5 quarts per week ?
- 4. gender = male?

– question: how to design the tree to make it most efficient?

Node Splitting

Splitting Criteria for the Decision Tree

Assume a Node n is to be split into nodes a and b

weighted entropy

$$\overline{H}_n = \left(-\sum_i p(c_i|n)\log[p(c_i|n)]\right)p(n)$$

p(c|n): percentage of data samples for class i at node n

p(n): prior probability of n, percentage of samples at node n out of total number of samples

entropy reduction for the split for a question q

$$\Delta \overline{\overline{H}}_{n}(q) = \overline{\overline{H}}_{n} - \left[\overline{\overline{H}}_{a} + \overline{\overline{H}}_{b}\right]$$

choosing the best question for the split at each node

$$q^* = \mathop{\arg\max}_{q} \left[\Delta \overline{H}_n(q) \right]$$

• It can be shown

$$\begin{split} \Delta \overline{H}_n &= \overline{H}_n - (\overline{H}_a + \overline{H}_b) \\ &= D\left[a(x) \middle\| n(x)\right] p\left(a\right) + D\left[b(x) \middle\| n(x)\right] p\left(b\right) \\ a(x) &: \text{ distribution in node a, } b(x) \text{ distribution in node b} \\ n(x) &: \text{ distribution in node n } , \quad D\left[\bullet \middle\| \bullet\right] : \text{ KL divergence} \end{split}$$

 weighting by number of samples also taking into considerations the reliability of the statistics

Entropy of the Tree T

$$\overline{H}(T) = \sum_{\text{terminal n}} \overline{H}_n$$

- the tree-growing (splitting) process repeatedly reduces $\overline{H}(T)$

Training Triphone Models with Decision Trees

- Construct a tree for each state of each base phoneme (including all possible context dependency)
 - e.g. 50 phonemes, 5 states each HMM
 5*50=250 trees
- Develop a set of questions from phonetic knowledge
- Grow the tree starting from the root node with all available training data
- Some stop criteria determine the final structure of the trees
 - e.g. minimum entropy reduction, minimum number of samples in each leaf node
- For any unseen triphone, traversal across the tree by answering the questions leading to the most appropriate state distribution
- The Gaussian mixture distribution for each state of a phoneme model for contexts with similar linguistic properties are "tied" together, sharing the same training data and parameters
- The classification is both data-driven and linguistic-knowledgedriven
- Further approaches such as tree pruning and composite questions

(e.g.
$$q_{i}q_{i}+q_{k}$$
)

Training Tri-phone Models with Decision Trees

• An Example: "(_-) b (+_)"

Example Questions:

12: Is left context a vowel?

24: Is left context a back-vowel?

30: Is left context a low-vowel?

32: Is left context a rounded-vowel?

Phonetic Structure of Mandarin Syllables

Syllables (1,345)				
Base-syllables (408)				
INITIAL's (21)	FINAL's (37)			
	Medials (3)	Nucleus (9)	Ending (2)	Tones (4+1)
Consonants (21)	Vowels plus Nasals (12)			()
Phonemes (31)				

Phonetic Structure of Mandarin Syllables

-n: 5 号 -ng: ム 尤 Nasal ending

Tone:聲調

4 Lexical tones 字調

1 Neutral tone 輕聲

Subsyllabic Units Considering Mandarin Syllable Structures

Considering Phonetic Structure of Mandarin Syllables

- INITIAL / FINAL's
- Phone(me)-like-units / phonemes

• Different Degrees of Context Dependency

- intra-syllable only
- intra-syllable plus inter-syllable
- right context dependent only
- both right and left context dependent

• Examples :

- 113 right-context-dependent (RCD) INITIAL's extended from 22
 INITIAL's plus 37 context independent FINAL's: 150 intrasyllable RCD
 INITIAL/FINAL's
- 33 phone(me)-like-units extended to 145 intra-syllable right-context-dependent phone(me)-like-units, or 481 with both intra/inter-syllable context dependency
- At least 4,600 triphones with intra/inter-syllable context dependency

Comparison of Acoustic Models Based on Different Sets of Units

Typical Example Results

- INITIAL/FIANL (IF) better than phone for small training set
- Context Dependent (CD) better than Context Independent (CI)
- Right CD (RCD) better than Left CD (LCD)
- Inter-syllable Modeling is Better
- Triphone is better
- Approaches in Training Triphone Models are Important
- Quinphone (2 context units on both sides considered) are even better