Entregable 1 de estadistica en R Trabajo realizado por Sergio Tobal

Ejercicio 1. Horas de una persona que pasa por el cafe.

Suponiendo que los datos se cargaran de la siguiente manera:

datos <- read.csv(file ="horasCafeJubilado.csv", header = TRUE, sep="\t')</pre>

1. Representar los datos en un diagrama de puntos (Ver opciones de stripchart())y en un diagrama de hojas (stem()).

stripchart(datos\$horas, main="Horas de cafe", pch = 2, col = "blue")

Horas de cafe

stem(datos\$horas)

The decimal point is 1 digit(s) to the right of the |

120 | 579 121 | 01458 122 | 11379 123 | 1255689 124 | 336779 125 | 0259

2. ¿Que tipo de variable esta utilizando?

La variable es de tipo cuantitativa discreta.

3. Calcular los estadisticos de tendencia central.

Media: 1231.567 Mediana: 1233.5 Moda: 1221

4. Escribir la tabla de frecuencias correspondiente.

	<u>horas</u>	Freq	FreqAc	Rel	<u>RelAc</u>
1	(1205,1211]			0.167	
2	(1211,1217]	2	7	0.067	0.233
3	(1217,1223]	4	11	0.133	0.367
4	(1223,1229]	2	13	0.067	0.433
5	(1229,1235]	4	17	0.133	0.567
6	(1235,1241]	3	20	0.100	0.667
7	(1241,1247]	5	25	0.167	0.833
8	(1247,1253]	3	28	0.100	0.933
9	(1253,1259]	2	30	0.067	1.000

5. Calcular el porcentaje de veces que el cartero pasa antes de las 12:22.

10%

6. Representar los datos de la tabla en un histograma.

hist(datos\$horas)

Histogram of datos\$horas

Ejercicio 2. Hemos medido un muelle segun el peso y hay que responder a estas respuestas.

1. Representar los datos en un diagrama de dispersion (puntos) plot(x = datos peso, y = datos longitud, pch = 2, col = "blue")

2. Calcular el coeficiente de correlacion.

0.9890407

3. Calcular la recta de regresion correspondiente a la longitud en funcion del peso. regresion <- lm(longitud ~ peso, data = datos) abline(regresion, col="green")

- 4. Segun este modelo, ¿Que longitud se prevee q alcance un muelle al que se aplica un peso de 12 gramos?
 - 226.3841
- 5. ¿Cual es el error cometido en (x1, y1) = (5.00, 37.72) ? 44.06843