Math 623, Fall 2013: Problem set 6

- 1. Suppose f(x) on \mathbf{R}^{d_1} is measurable and g(y) on \mathbf{R}^{d_2} is measurable. Show that F(x,y)=f(x)g(y) on $\mathbf{R}^{d_1+d_2}$ is measurable.
- 2. Let f be an integrable function on \mathbb{R}^d . Show that the graph of f i.e., the set

$$\Gamma = \left\{ (x, y) \in \mathbf{R}^d \times \mathbf{R} : y = f(x) \right\}$$

is a measurable subset of \mathbf{R}^{d+1} and that $m(\Gamma) = 0$.

- 3. Problem 18, p. 93
- 4. Problem 19, p.93.
- 5. (a) Consider the function $f(x,y) = ye^{-(1+x^2)y^2}$ if $x \ge 0$ and $y \ge 0$ and 0 otherwise. Integrate this function over $\mathbf{R} \times \mathbf{R}$ to show that $\int_0^\infty e^{-x^2} dx = \sqrt{\pi}/2$. Justify all your steps carefully!
 - (b) Use part (a) to compute $\int_{\mathbf{R}} e^{-tx^2} dx = \sqrt{\pi/t}$ and to show that $\int x^{2n} e^{-x^2} dx = \frac{(2n)!\sqrt{\pi}}{4^n n!}$ (use Problem 1 in Hwk 5).