

# Language Models as Inductive Reasoners

Zonglin Yang <sup>1</sup> Li Dong <sup>2</sup> Xinya Du <sup>3</sup> Hao Cheng <sup>2</sup> Erik Cambria <sup>1</sup> Xiaodong Liu <sup>2</sup> Jianfeng Gao <sup>2</sup> Furu Wei <sup>2</sup>

<sup>1</sup>Nanyang Technological University

## <sup>2</sup>Microsoft Research

<sup>3</sup>University of Texas at Dallas

#### Highlights

- The first work on generative inductive reasoning in the sense of deriving explicit natural language hypotheses from observations.
- Connected to the classic AI literature, which is the previous computational paradigm of generative inductive reasoning. Advantages are compared.
- Connected to the philosophy literature, which handles the definition of inductive reasoning. Based on the them, we identify key requirements for inductive reasoning from philosophy literature.
- A new dataset for generative inductive reasoning.
- A method based on the key requirements, with a Bayesian design.
- A comprehensive analysis on how LLMs performs on generative inductive reasoning.

#### A New Paradigm for (Generative) Inductive Reasoning



(a) Formal language as knowledge representation and symbolic reasoner

Drosera is a carnivorous plant.
Drosera has a trapping structure.



All carnivorous plants have trapping structures.

(b) Natural language as knowledge representation and PLM as reasoner

## Systematic Disadvantages of the Previous (Classic AI) Paradigm

Past research works on (generative) inductive reasoning within computer science are investigated by Inductive Logic Programming (ILP), which adopts a classic AI paradigm.

It has three systematic disadvantages:

- 1. Heavily relying on human effort to transform raw inputs such as natural language and images into symbolic declarative form.
- 2. Very sensitive to label error.
- 3. Have no semantic understanding of symbols, resulting in low utilization of annotated data.

The new paradigm can nearly perfectly deal with these systematic issues!

#### **Key Requirements for Inductive Reasoning's Hypotheses**

The definition and requirements of inductive reasoning are handled by philosophy research [?]. There are three key requirements:

- 1. The hypothesis should be deductively consistent with the observations.
- 2. The hypothesis should reflect the reality.
- 3. The hypothesis should generalize (covers a larger information scope) than the observations.

We additionally add a requirement in the NLP context:

4. The hypothesis should be clear and meaningful.

#### **Dataset Construction**

We construct a dataset (named DEER).

- DEER is to analyze LLMs' generative inductive reason ability.
- DEER is fully constructed by an expert (an author of this paper).
- DEER consists of 200 hypotheses, where each hypothesis is annotated with 3 short observations and 3 long observations.
- DEER adopts a relatively open-ended generation, rather than fixed options.

We focus on rules with the following template:

| Rule Template                                                                                                                                                                                                                                                        | Rule Template      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| (First Order Logic)                                                                                                                                                                                                                                                  | (Natural Language) |  |  |
| $\forall x, condition(x) \Longrightarrow conclusion$ $\exists x, condition(x) \Longrightarrow conclusion$ $\forall x, condition(x) [\land condition(x)]^+$ $\Longrightarrow conclusion$ $\forall x, condition(x) [\lor condition(x)]^+$ $\Longrightarrow conclusion$ |                    |  |  |

Table 1. The mapping relation between basic first-order logic rule template and natural language rule template.

An example from DEER:

| Short fact 1                                                                                                                    | Short fact 2                                                                                              | Short fact 3                                                                                                              | Rule                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| The Venus flytrap is a carnivorous plant native to It catches its prey-chiefly insects and arachnids— with a trapping structure | Pitcher plants are several different carnivorous plants which have modified leaves known as pitfall traps | Droserais one of the largest genera of carnivorous plants The trapping and digestion mechanism of Drosera usually employs | If a plant is carnivorous , then it probably has a trapping structure. |

#### **Analysis Regarding Various Input**

| Models | Long facts   | Short facts  | Short facts  | Short facts  | Short facts     |
|--------|--------------|--------------|--------------|--------------|-----------------|
| Models | 1 full facts | 1 full facts | 2 full facts | 3 full facts | 3 missing facts |
|        |              |              |              |              |                 |
| R+F    | 9.35 / 2.16  | 10.87 / 2.33 | 11.16 / 2.36 | 11.20 / 2.37 | 11.52 / 2.40    |
| M1     | 23 12 / 3 40 | 24 75 / 3 52 | 25 22 / 3 55 | 25.28 / 3.56 | 24 67 / 3 51    |
|        | 20.12 / 0.10 | 21.7370.32   | 25.22 / 0.55 | 25.20 / 0.30 |                 |
| M1+M2  | 23.43 / 3.49 | 25.30 / 3.68 | 25.88 / 3.74 | 25.68 / 3.68 | 25.01 / 3.58    |
| M1+M3  | 23.25 / 3.44 | 24.91 / 3.55 | 25.32 / 3.57 | 25.39 / 3.57 | 24.77 / 3.52    |
| M1+M4  | 23.65 / 3.52 | 25.48 / 3.65 | 26.04 / 3.73 | 26.12 / 3.74 | 25.09 / 3.59    |
| M1+M5  | 23.23 / 3.44 | 24.81 / 3.54 | 25.31 / 3.58 | 25.28 / 3.55 | 24.81 / 3.57    |
| CoLM   | 24.03 / 3.60 | 25.89 / 3.73 | 26.71 / 3.85 | 26.44 / 3.78 | 25.41 / 3.65    |

Table 2. Analysis of PLM (GPT-J)'s performance (measured in METEOR / GREEN) with different input lengths and whether fact contains enough information.

### **Error Analysis**



Figure 1. Error Analysis of CoLM with finetuned Module 2/3/4/5. In total 100 rules are manually checked.

## Methods Inspired from Key Requirements

We denote P(A) as the probability indicating whether A is valid for simplicity. The framework can be described in a Bayesian design. Specifically, we can denote P(fact|rule) as  $P_{M2}(fact|rule)P_{M4}(fact|rule)$ , and denote P(rule) as  $P_{M3}(rule)P_{M5}(rule)$ .

Therefore, the full P(rule|fact) can be approximated as:

 $P(rule|fact) \approx P(fact|rule)P(rule) \approx P_{M2}(fact|rule)P_{M3}(rule)P_{M4}(fact|rule)P_{M5}(rule)$ 



