Matematická analýza KMA/MA2I Riemannův integrál - pokračování

1 Věty o střední hodnotě integrálního počtu

Věta 1 (o střední hodnotě integrálního počtu) Nechť f má na $\langle a,b \rangle$ integrál, označíme $m = \inf_{\langle a,b \rangle} f$, $M = \sup_{\langle a,b \rangle} f$. Pak existuje $c \in \langle m,M \rangle$ tak, že

$$\int_{a}^{b} f(x) \, \mathrm{d}x = c(b-a).$$

 $\emph{Je-li f nav\'e spojit\'a na } \langle a,b \rangle, \ \emph{pak existuje} \ \xi \in \langle a,b \rangle \ \emph{tak}, \ \emph{\'ze}$

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a).$$

Důkaz. Zřejmě

$$m \le f(x) \le M \qquad \forall x \in \langle a, b \rangle.$$

Pak

$$m(b-a) = \int_a^b m \, \mathrm{d}x \le \int_a^b f(x) \, \mathrm{d}x \le \int_a^b M \, \mathrm{d}x = M(b-a).$$

Podělením těchto nerovností výrazem b-a dostáváme

$$m \le \frac{\int_a^b f(x) \, \mathrm{d}x}{b-a} \le M. \tag{1}$$

Označíme

$$c = \frac{\int_a^b f(x) \, \mathrm{d}x}{b - a}.$$

Tedy

$$\int_{a}^{b} f(x) \, \mathrm{d}x = c(b-a)$$

a z (1) plyne, že $c \in \langle m, M \rangle$. Kdyby byla f navíc spojitá na $\langle a, b \rangle$, pak víme, že

$$f(\langle a, b \rangle) = \langle m, M \rangle.$$

Tedy existuje $\xi \in \langle a, b \rangle$ takové, že $c = f(\xi)$.

Poznámka 2 Číslu c z této věty se říká integrální průměr.

Zobecněním je následující věta (pokuste se ji dokázat – inspirujte se důkazem předchozí věty).

Věta 3 Nechť f, g mají na $\langle a,b \rangle$ integrál a g je na $\langle a,b \rangle$ nezáporná, označíme $m=\inf_{\langle a,b \rangle} f$, $M=\sup_{\langle a,b \rangle} f$. Pak existuje $c \in \langle m,M \rangle$ tak, že

$$\int_{a}^{b} f(x)g(x) dx = c \int_{a}^{b} g(x) dx.$$

 $\textit{Je-li f navíc spojitá na $\langle a,b\rangle$, pak existuje $\xi \in \langle a,b\rangle$ tak, $\check{\textit{z}e}$}$

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx.$$

Poznámka 4 Speciální volbou $g \equiv 1$ dostáváme předchozí větu.

Věta 5 Nechť f a g mají na $\langle a,b \rangle$ integrál. Je-li g monotonní na $\langle a,b \rangle$, pak existuje $\xi \in \langle a,b \rangle$ tak, že

$$\int_a^b f(x)g(x) dx = g(a) \int_a^\xi f(x) dx + g(b) \int_\xi^b f(x) dx.$$

Poznámka 6 Pro $g \equiv 1$ dostáváme důsledek již známého tvrzení. Důležitý je také geometrický význam této věty pro $f \equiv 1$ – viz tabuli.

2 Aplikace integrálu

Nyní se podíváme na použití integrálu při výpočtech délky křivky, obsahu rovinných útvarů, objemu a povrchu těles. Pro odvození některých vzorečků viz [Kopáček1].

2.1 Délka křivky

Nechť je dána křivka v rovině – tzn. zobrazení $\psi:\langle a,b\rangle\to\mathbb{R}^2$. Množinu $\psi(\langle a,b\rangle)$ nazýváme jejím geometrickým obrazem. Například zobrazení

$$\psi(t) = (\cos t, \sin t)$$
 $t \in \langle 0, 2\pi \rangle$,

je křivka jejímž geometrickým obrazem je jednotková kružnice. Dá se dokázat, že délka křivky $\psi=(\psi_1,\psi_2)$ takové, že $\psi_1,\,\psi_2$ mají spojité derivace na $\langle a,b\rangle$ a

$$(\psi_1'(t), \psi_2'(t)) \neq (0, 0) \quad \forall t \in \langle a, b \rangle$$

je dána vzorcem

$$l(\psi) = \int_a^b \sqrt{(\psi_1'(t))^2 + (\psi_2'(t))^2} \, \mathrm{d}t.$$

Příklad 7 Je-li

$$\psi(t) = (\cos t, \sin t)$$
 $t \in \langle 0, 2\pi \rangle$,

pak

$$l(\psi) = \int_0^{2\pi} \sqrt{(-\sin t)^2 + (\cos t)^2} \, dt = \int_0^{2\pi} \, dt = 2\pi.$$

Poznámka 8 Je–li křivka dána v polárním tvaru $r = h(\varphi), \varphi \in \langle \alpha, \beta \rangle \subset \langle 0, 2\pi \rangle$ (tzn. $x = h(\varphi) \cos(\varphi), \ y = h(\varphi) \sin(\varphi)$), pak

$$l(\psi) = \int_{\alpha}^{\beta} \sqrt{h^2(\varphi) + (h'(\varphi))^2} \, \mathrm{d}\varphi.$$

Příklad 9 Křivka z předchozího příkladu se dá vyjádřit v polárním tvaru takto

$$r = 1, \quad \varphi \in \langle 0, 2\pi \rangle.$$

Podle vzorce dostáváme opět

$$l(\psi) = \int_0^{2\pi} \sqrt{1^2 + 0^2} \, d\varphi = \int_0^{2\pi} d\varphi = 2\pi.$$

2.2 Plošný obsah rovinných útvarů

Je dána nezáporná funkce fmající na $\langle a,b\rangle$ integrál. Pak obsah rovinného obrazce

$$\{(x,y) \in \mathbb{R}^2: \quad a \le x \le b \ \land \ 0 \le y \le f(x)\}$$

je dán vzorcem

$$S = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Je dána nezáporná funkce hmající na $\langle \alpha, \beta \rangle$ integrál. Pak obsah rovinného obrazce

$$\{(r\cos\varphi, r\sin\varphi) \in \mathbb{R}^2: \quad \alpha < \varphi < \beta \land 0 < r < h(\varphi)\}$$

(obrázek viz tabuli) je roven

$$S = \frac{1}{2} \int_{\alpha}^{\beta} h^2(\varphi) \, \mathrm{d}\varphi.$$

Příklad 10 Odvodíme vzorec pro obsah kruhu o poloměru R>0. Kruh o středu v počátku soustavy souřadnic a poloměru R je dán nerovnicí

$$x^2 + y^2 \le R^2$$
.

Zavedením polárních souřadnic $x = r \cos \varphi$, $y = r \sin \varphi$ dostáváme

$$r^2\cos\varphi+r^2\sin\varphi\leq R^2$$

a tedy

$$r^2 \le R^2$$

a

$$r \leq R$$
.

Kruh o středu v počátku a poloměru R je tedy množina

$$\{(r\cos\varphi,r\sin\varphi)\in\mathbb{R}^2:\quad 0\leq\varphi\leq 2\pi\ \land\ 0\leq r\leq R\}.$$

Pak

$$S = \frac{1}{2} \int_0^{2\pi} R^2 d\varphi = \frac{R^2}{2} \int_0^{2\pi} d\varphi = \frac{R^2}{2} 2\pi = \pi R^2.$$

2.3 Objem rotačního tělesa

Je dána nezáporná spojitá funkce f na intervalu $\langle a,b\rangle$. Nechť V je těleso, které dostaneme otáčením grafu funkce f okolo osy x. Objem tohoto tělesa je roven číslu

$$V = \pi \int_a^b f^2(x) \, \mathrm{d}x.$$

Nechť V je těleso, které dostaneme otáčením množiny

$$\{(x,y) \in \mathbb{R}^2: \quad a \le x \le b \ \land \ 0 \le y \le f(x)\}$$

okolo osy y. Objem tohoto tělesa je roven

$$V = 2\pi \int_{a}^{b} x f(x) \, \mathrm{d}x.$$

2.4 Obsah rotační plochy

Je dána funkce fmající spojitou derivaci na $\langle a,b\rangle.$ Nechť P je plocha daná rotací množiny

$$\{(x,y) \in \mathbb{R}^2 : a \le x \le b \land y = f(x)\}$$

kolem osy x (resp. y). Pak její obsah je dán vzorcem

$$S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^2} dx$$

(resp.
$$S = 2\pi \int_{a}^{b} x \sqrt{1 + (f'(x))^2} \, dx$$
).

2.5 Souřadnice těžiště

Je dána nezáporná spojitá funkce fna intervalu $\langle a,b\rangle.$ Pak obrazec

$$\{(x,y)\in\mathbb{R}^2:\quad a\leq x\leq b\ \land\ 0\leq y\leq f(x)\}$$

má těžiště o souřadnicích

$$\left(\frac{\int_a^b x f(x) \, \mathrm{d}x}{\int_a^b f(x) \, \mathrm{d}x}, \frac{\frac{1}{2} \int_a^b f^2(x) \, \mathrm{d}x}{\int_a^b f(x) \, \mathrm{d}x}\right).$$

3 Přibližný výpočet integrálu

Existují různé vzorce pro přibližný výpočet Riemannova integrálu $\int_a^b f(x) dx$. Uvedeme ty nejjednodušší, které jsou založeny na aproximaci integrované funkce po částech polynomy (Uvedené odhady chyby byly vypočítány pomocí dříve uvedených vět o střední hodnotě integrálního počtu).

3.1 Obdélníková metoda

Odpovídá aproximaci integrované funkce po částech konstantní funkcí. Rozdělíme interval $\langle a,b\rangle$ na n podintervalů délky $h=\frac{b-a}{n}$, označíme

$$x_i = a + ih, \ y_i = f(x_i) \quad i = 0, 1, \dots, n.$$

Pak

$$\int_a^b f(x) \, \mathrm{d}x \approx h(y_1 + \ldots + y_n),$$

přičemž chyba tohoto vzorce je v absolutní hodnotě menší nebo rovna

$$\frac{1}{2}M_1(b-a)h,$$

kde $M_1>0$ je takové, že $|f'(x)|\leq M_1$ pro každé $x\in \langle a,b\rangle.$

3.2 Lichoběžníková metoda

Odpovídá aproximaci integrované funkce spojitou, po částech lineární funkcí. Opět rozdělíme interval na stejné části o délce $h = \frac{b-a}{n}$, označíme

$$x_i = a + ih, \ y_i = f(x_i) \quad i = 0, 1, \dots, n.$$

Pak

$$\int_{a}^{b} f(x) dx \approx h(\frac{1}{2}y_0 + y_1 + \dots + y_{n-1} + \frac{1}{2}y_n),$$

přičemž chyba tohoto vzorce je v absolutní hodnotě menší nebo rovna

$$\frac{1}{12}M_2(b-a)h^2,$$

kde $M_2>0$ je takové, že $|f''(x)|\leq M_2$ pro každé $x\in\langle a,b\rangle.$

3.3 Simpsonova metoda

Odpovídá aproximaci integrované funkce spojitou, po částech kvadratickou funkcí. Opět rozdělíme interval na stejné části o délce $h=\frac{b-a}{n}$, tentokrát n uvažujeme sudé, označíme

$$x_i = a + ih, \ y_i = f(x_i) \quad i = 0, 1, \dots, n.$$

Pak

$$\int_a^b f(x) dx \approx \frac{1}{3} h(y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n),$$

přičemž chyba tohoto vzorce je v absolutní hodnotě menší nebo rovna

$$\frac{1}{180}M_4(b-a)h^4$$
,

kde $M_4 > 0$ je takové, že $|f^{(4)}(x)| \leq M_4$ pro každé $x \in \langle a, b \rangle$.

4 Nevlastní Riemannův integrál

Na minulé přednášce jsme definovali pojem integrál pro omezenou funkci f na omezeném uzavřeném intervalu $\langle a,b\rangle$ - říkali jsme mu Riemannův integrál. Není–li funkce f omezená nebo není–li interval přes který integrujeme omezený a uzavřený, budeme mluvit o tzv. $nevlastním\ Riemannovu\ integrálu$.

4.1 Nevlastní integrál vlivem meze (na neomezeném intervalu)

Definice 11 Nechť funkce f je definovaná na intervalu (a, ∞) , $a \in \mathbb{R}$ a f má Riemannův integrál na každém intervalu (a, b) pro každé b > a. Definujeme

$$F(b) = \int_a^b f(x) dx$$
 pro $\forall b \in (a, \infty)$.

Existuje—li vlastní limita $\lim_{b\to\infty}F(b),$ říkáme, že nevlastní integrál

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

konverguje a klademe $\int_a^\infty f(x)\,\mathrm{d}x = \lim_{b\to\infty} F(b)$. Jestliže $\lim_{b\to\infty} F(b)$ neexistuje nebo je nevlastní, říkáme, že nevlastní integrál $\int_a^\infty f(x)\,\mathrm{d}x$ diverguje.

Poznámka 12 Podobně definujeme nevlastní integrál

$$\int_{-\infty}^{a} f(x) \, \mathrm{d}x.$$

Příklad 13

(1)
$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} dx = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left(-\frac{1}{b} + 1 \right) = 1$$

tedy tento integrál konverguje.

(2)
$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \left[\ln |x| \right]_{1}^{b} = \infty$$

tedy diverguje.

Definice 14 Nechť f je definována na $\mathbb R$ a pro nějaké $c \in \mathbb R$ konvergují oba integrály

$$\int_{-\infty}^{c} f(x) dx \quad \text{a} \quad \int_{c}^{\infty} f(x) dx.$$

Pak říkáme, že integrál

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

konverguje a pokládáme

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx.$$

Příklad 15

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$$
$$= \lim_{a \to -\infty} \left[\operatorname{arctg} x \right]_{a}^{0} + \lim_{b \to \infty} \left[\operatorname{arctg} x \right]_{0}^{b} = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Z příkladů je vidět, že pro výpočet nevlastního integrálu jsme použili metodu výpočtu integrálu – Newtonův vzorec. Následující věta tento fakt shrnuje.

Věta 16 Nechť f je spojitá na (a, ∞) a F je primitivní funkce k funkci f na (a, ∞) . Pak

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} F(b) - F(a).$$

Při výpočtech neurčitých integrálů lze použít zobecněné metody per partes a substitucí. Například:

Věta 17 Nechť u, v mají spojité derivace u', v' na $\langle a, \infty \rangle$ a existuje vlastní limita $\lim_{x \to \infty} u(x)v(x)$. Pak

$$\int_a^\infty u(x)v'(x)\,\mathrm{d}x = [u(x)v(x)]_a^\infty - \int_a^\infty u'(x)v(x)\,\mathrm{d}x.$$

Příklad 18 Určete, pro jaká $\alpha \in \mathbb{R}$ konverguje

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x.$$

4.1.1 Kriteria konvergence

Často nás u nevlastních integrálů nezajímá jejich hodnota, ale pouze fakt, zda integrál konverguje či nikoliv. K tomu nám mohou posloužit následující věty.

Věta 19 (srovnávací kritérium) Nechť $0 \le f(x) \le g(x)$ pro $x \in (a, \infty)$. Pak

$$\int_{a}^{\infty} g(x) dx \text{ konverguje} \implies \int_{a}^{\infty} f(x) dx \text{ konverguje,}$$

$$\int_{a}^{\infty} f(x) dx \text{ diverguje} \implies \int_{a}^{\infty} g(x) dx \text{ diverguje.}$$

Poznámka 20 Tyto implikace jsou intuitivně zřejmé – stačí si uvědomit geometrický význam nevlastního integrálu

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

pro nezápornou funkci f na (a, ∞) .

Příklad 21 Rozhodněte o konvergenci integrálu

$$\int_{1}^{\infty} \frac{\sin^2 3x}{\sqrt[3]{x^4 + 1}} \, \mathrm{d}x.$$

 $\check{R}e\check{s}en\acute{i}$. Hledání primitivní funkce k $\frac{\sin^2 3x}{\sqrt[3]{x^4+1}}$ by asi bylo složité. Použijeme předchozí větu. Zřejmě

$$0 \le \frac{\sin^2 3x}{\sqrt[3]{x^4 + 1}} \le \frac{1}{\sqrt[3]{x^4}} \quad \text{pro } x \in \langle 1, \infty \rangle.$$

Navíc

$$\int_{1}^{\infty} \frac{1}{\sqrt[3]{x^4}} \, \mathrm{d}x = \lim_{b \to \infty} \left[\frac{x^{\frac{1}{3}}}{-\frac{1}{3}} \right]_{1}^{b} = \frac{1}{3} \in \mathbb{R}.$$

Tedy zadaný integrál konverguje.

Věta 22 (limitní, srovnávací) Nechť f, g jsou nezáporné na $\langle a, \infty \rangle$ a existuje limita (vlastní nebo nevlastní)

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = k.$$

Pak

$$(1) \qquad k < \infty \ a \ \int_a^\infty g(x) \, \mathrm{d}x \ konverguje \implies \int_a^\infty f(x) \, \mathrm{d}x \ konverguje$$

$$(2) \qquad k>0 \ a \ \int_a^\infty f(x) \, \mathrm{d}x \ \mathit{diverguje} \implies \int_a^\infty g(x) \, \mathrm{d}x \ \mathit{diverguje}$$

Poznámka 23 Z věty vyplývá pro $k \in (0, \infty)$ ekvivalence

$$\int_a^\infty f(x)\,\mathrm{d}x \text{ konverguje } \iff \int_a^\infty g(x)\,\mathrm{d}x \text{ konverguje.}$$

Příklad 24 Vyšetřete konvergenci

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{\sqrt{4x + \ln x}}.$$

Řešení. Označme

$$f(x) = \frac{1}{\sqrt{4x + \ln x}}, \quad g(x) = \frac{1}{\sqrt{x}}.$$

Pak

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{1}{2} \in (0, \infty).$$

Protože $\int_1^\infty \frac{1}{\sqrt{x}} \, \mathrm{d}x = \infty$, zadaný integrál diverguje.

Poznámka 25 Existují další kriteria konvergence – např. Abelovo, Dirichletovo – viz literaturu.

4.2 Nevlastní integrál vlivem funkce

Definice 26 Nechť funkce f je definovaná na intervalu (a,b), $a,b \in \mathbb{R}$, a < b, f je neomezená na $\mathcal{R}^-(b)$ a f má na (a,c) Riemannův integrál pro každé $c \in (a,b)$. Definujeme funkci

$$F(c) = \int_a^c f(x) dx, \quad \text{pro } \forall c \in (a, b).$$

Existuje—li vlastní limita $\lim_{c\to b^-} F(c)$, pak říkáme, že integrál $\int_a^b f(x)\,\mathrm{d}x$ konverguje a klademe

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{c \to b^{-}} F(c).$$

Neexistuje–li vlastní limita $\lim_{c\to b-}F(c),$ říkáme, že integrál $\int_a^b\!f(x)\,\mathrm{d}x$ diverguje.

Poznámka 27 Analogicky definujeme nevlastní integrál funkce f na (a, b), kde f je neomezená na $\mathcal{R}^+(a)$ a má Riemannův integrál na každém intervalu $\langle c, b \rangle$, kde $c \in (a, b)$.

Definice 28 Nechť f je definována na intervalu (a,b), a, $b \in \mathbb{R}$, a < b, f je neomezená na $\mathcal{R}^+(a)$, $\mathcal{R}^-(b)$ a f má na $\langle c,d \rangle$ integrál pro každé c, d takové, že a < c < d < b. Jestliže pro nějaké $x_0 \in (a,b)$ konvergují integrály

$$\int_{a}^{x_0} f(x) dx \qquad a \qquad \int_{x_0}^{b} f(x) dx$$

pak říkáme, že integrál $\int_a^b f(x)\,\mathrm{d}x$ konverguje a klademe

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0}} f(x) dx + \int_{x_{0}}^{b} f(x) dx.$$

Příklad 29 Vypočtěte

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}.$$

Řešení.

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}} = \lim_{a \to 0+} \int_a^1 \frac{\mathrm{d}x}{\sqrt{x}} = \lim_{a \to 0+} \left[2\sqrt{x} \right]_a^1 = \lim_{a \to 0+} (2 - 2\sqrt{a}) = 2 \in \mathbb{R}.$$

Poznámka 30 I pro tento typ integrálu platí věty o integraci per partes, substituční věty a kritéria podobná jako pro nevlastní integrál vlivem meze.

Doporučená literatura

KOPÁČEK J. Matematická analýza pro fyziky I. Matfyzpress, Praha, 2005. DOŠLÁ Z., KUBEN J. Diferenciální počet funkcí jedné proměnné. MU Brno, 2004. ISBN 80-210-3121-2. Krupková, Fuchs: Matematická analýza 1, elektronický text.