POWER & PERMUTATION

10.14.2020

RECAP

- * t-tests : can tell you whether the mean of a sample is different from some value (like zero) or from another sample
 - * requires the sample to be gaussiandistributed
 - * but that's ~fine because of the central limit theorem

RECOMMENDED READING

- * Inferential Thinking Chapter 14
- * Prob 140 Textbook Chapter 6.1

- * power is the probability of rejecting the null hypothesis if the alternative hypothesis is actually true
 - * i.e. how often you say "this is significant!" for a real effect

Effect is Effect is Not Real Real True False Test Positive Positive **Significant** (TP) (FP) False True **Test Not** Negative Negative **Significant** (FN) (TN)

Power = TP / (TP + FN)

* 80% power means that 20% of the time you get a false negative: the test says "not significant" when the effect is real

- * power depends upon the p-value threshold that you choose for a test
 - * smaller
 threshold =
 lower power
 - * (but also fewer false positives!)

- * it's also related to the effect size
 - * bigger effects are easier to detect, so bigger effect size = higher power
- * and to the sample size (n)
 - * bigger samples make it easier to detect effects, so have higher power

* finally, power is also related to whether the assumptions of the test are valid

* e.g. if you have paired samples but use an un-paired t-test, then that could reduce your power to find a real effect

- * many (if not most) data analysis
 questions boil down to this:
 - * is something about sample A different than sample B?
- * permutation testing turns this question into a counterfactual

- * suppose sample A and sample B are not different
 - * then it shouldn't matter if we scramble up (permute) samples A and B and then re-divide them into new samples

- * let's say sample A & B are each 10 data
 points
- * imagine we throw all 20 data points from samples A & B into a bag
- * then we pull out 10 random data points to form a new "sample A*1"
- * and use the other 10 to form a new "sample B*1"

- * let's compute the difference between the means of sample A*1 and sample B*1, and call this M1
- * now let's suppose we do this 1000 times, each time randomizing which data goes into A*i and B*i, and computing Mi

- * this gives us a distribution of permuted mean differences [M1, M2, M3, ...]
- * if there really was no difference between sample A and sample B, then the *true* mean difference, M=mean(A-B), should be somewhere in the middle of the distribution of permuted mean differences

- * recall the definition of the p-value:
 - * "if the null hypothesis (there is no difference between A and B) were true, what's the probability of finding a value at least this extreme?"

- * the permuted mean differences tell us exactly what the null distribution looks like
- * so we can ask directly: how often does randomly dividing the data into A* and B* yield a mean difference as extreme as the one we see?

- * NB: what I've described here is not a "true" permutation test, because we typically don't test every possible permutation
- * instead, we test only a small number (like 1000)
- * technically this is known as "Monte Carlo permutation test" because it involves randomization

- * permutation tests can work with many different statistics, not just the mean
 - * for example, you could use permutation to test whether the variances of two samples are the same

- * permutation tests don't care what distribution your data comes from
- * so they work even when t-tests don't!

END