

ЭТИКЕТКА

СЛКН.431248.007 ЭТ

Микросхема интегральная 564 ИК1Т2ЭП

Функциональное назначение –

Строенный мажоритарно-мультиплексорный элемент

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход информации - D1	9	Вход адреса - А2
2	Вход информации - D3	10	Выход информации - Q3
3	Вход информации - D4	11	Вход информации – D9
4	Вход информации - D6	12	Выход информации - Q2
5	Вход информации - D7	13	Вход информации – D5
6	Вход информации - D8	14	Выход информации - Q1
7	Вход адреса - А1	15	Вход информации – D2
8	Общий 0V	16	Питание V _{CC}

1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; U_{IH} = U_{CC}, \; U_{IL} = 0 \; B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B	U _{ОН}	4,99 9,99	- -
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IL}=3~B,~U_{IH}=7~B$	U _{OL max}		0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3 B, U_{IH} = 7 B	$ m U_{OHmin}$	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC}=10~B,~U_{IL}=0~B,~U_{IH}=10~B$ $U_{CC}=15~B,~U_{IL}=0~B,~U_{IH}=15~B$	I_{IL}	-	/-0,05/ /-0,10/
6. Входной ток высокого уровня, мкА, при: $U_{CC}=10~B,~U_{IL}=0~B,~U_{IH}=10~B$ $U_{CC}=15~B,~U_{IL}=0~B,~U_{IH}=15~B$	I_{IH}	- -	0,05 0,1

Продолжение таблицы 1			
1	2	3	4
7. Входной ток высокого уровня, мкА, при: $U_{CC}=0~B,~U_{IL}=0~B,~U_{IH}=10~B\\U_{CC}=0~B,~U_{IL}=0~B,~U_{IH}=15~B$	I_{IH}	-	0,05 0,10
8. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 5 \; B, \; \; U_{O} = 0,4 \; B$ $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B, \; \; U_{O} = 0,5 \; B$	I_{OL}	0,40 0,90	- -
9. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B, $U_{O} = 2.5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B, $U_{O} = 9.5$ B	I_{OH}	/-0,50/ /-0,50/	- -
$10.\ $ Ток потребления, мкА, при: $U_{CC}=10\ B,\ U_{IL}=0\ B,\ U_{IL}=10\ B$ $U_{CC}=15\ B,\ U_{IL}=0\ B,\ U_{IL}=15\ B$	I_{CC}	-	10 20
11. Время задержки распространения при выключении и включении (от входа к выходу), нс, при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 5 \; B, \; C_L = 50 \; \text{п} \Phi$ $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B, \; C_L = 50 \; \text{п} \Phi$	t _{PLH} t _{PHL}	-	400 150
12. Время задержки распространения при выключении включении (от входа к выходу через мажоритарный элемент), нс, при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 5 \; B, \; C_L = 50 \; \text{п} \Phi$ $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B, \; C_L = 50 \; \text{п} \Phi$	t _{PLH1} t _{PHL1}	- -	500 200
13. Время задержки распространения при выключении включении (от входа адреса к выходу), нс, при: $U_{CC}=5~B,~U_{IL}=0~B,~U_{IH}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~U_{IL}=0~B,~U_{IH}=10~B,~C_L=50~\pi\Phi$	t _{PLH2} t _{PHL2}	- -	500 200
14 . Входная емкость, $\pi\Phi$, π при: $U_{CC} = 10~\mathrm{B}$	C_1	-	12

1.2	Солержание	драгоценных	металлов	в 10	00 шт.	излелий

ЗОЛОТО	Γ,
серебро	Γ,
в том числе:	
золото	г/м
на 16 выводах, длиной	MM.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ С не менее 100000 ч, а в облегченном режиме ($U_{\rm CC}$ от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости ($T_{\rm C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИЙ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-12ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИК1Т2ЭП соответствуют техническим условиям АЕЯР.431200.610-12ТУ и признаны годными для эксплуатации.

Приняты по (извещение, акт и др.)	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка в	произведена		»
Приняты по	от	(дата)	
Место для штампа ОТК			Место для штампа ВП
Цена договорная			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ