Tracce delle soluzioni

1.

- **2.** Vedi dispense del corso.
- **3.** Vedi dispense del corso.

4.

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = \int_{0}^{2} - K X_{1} - b D X_{1} + K (X_{2} - X_{1}) + b (D X_{2} - D X_{1})$$

$$\int_{0}^{2} M \int_{0}^{2} X_{2} = -K (X_{2} - X_{1}) - b (D X_{2} - D X_{1})$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = F - K X_{1} - b \int_{0}^{2} X_{1} + K (X_{2} - X_{1}) + b \int_{0}^{2} (X_{2} - X_{1})$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = F - K X_{1} - b \int_{0}^{2} X_{1} + K (X_{2} - X_{1}) + b \int_{0}^{2} (D X_{2} - D X_{1})$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = F - K X_{1} - b \int_{0}^{2} X_{1} + K X_{2} - K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1}$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = F - K X_{1} - b \int_{0}^{2} X_{1} + K X_{2} - K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1}$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = \int_{0}^{2} K X_{1} - b \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1}$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = \int_{0}^{2} K X_{1} - b \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1}$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} = \int_{0}^{2} K X_{1} - b \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1}$$

$$\int_{0}^{2} M \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2} X_{2} - b \int_{0}^{2} X_{1} + K X_{1} + b \int_{0}^{2}$$

$$\begin{cases} m s^{2} X_{4} = F - 2KX_{4} - 2b s X_{4} + KX_{2} + b s X_{2} \\ m s^{2} X_{2} = -KX_{2} - b s X_{2} + (K + b s) X_{4} \end{cases}$$

$$\begin{cases} (m s^{2} + 2b s + 2K) X_{4} = F + (K + b s) X_{2} \\ (m s^{2} + b s + K) X_{2} = (K + b s) X_{4} \end{cases}$$

$$\begin{cases} F + (K + b s) X_{2} \\ X_{1} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) X_{2} = (K + b s) X_{2} \\ (m s^{2} + b s + K) X_{2} = (K + b s) \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) (m s^{2} + 2b s + 2K) X_{2} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) (m s^{2} + 2b s + 2K) X_{2} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) (m s^{2} + 2b s + 2K) - (K + b s)^{2} X_{2} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) (m s^{2} + 2b s + 2K) - (K + b s)^{2} X_{2} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) (m s^{2} + 2b s + 2K) - (K + b s)^{2} X_{2} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

$$\begin{cases} (m s^{2} + b s + K) (m s^{2} + 2b s + 2K) - (K + b s)^{2} X_{2} = \frac{1}{m s^{2} + 2b s + 2K} \end{cases}$$

5.

$$V(s) = 2 \cdot 1(t) - 2 \cdot 1(t-2)$$

$$V(s) = 2 \cdot \frac{1}{s} - 2 \cdot e^{-2s} \cdot \frac{1}{s}$$

$$Y(s) = (s) V(s) = \frac{8}{(s+2)(s+4)} \left(\frac{1}{s} - 2e^{-2s} \cdot \frac{1}{s}\right) = \frac{1}{s}$$

$$16 = \frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} = \frac{1$$

y (t	:)	to to	I	2	_	4	e	. 2	ŧ	+	2	-6	-	4.	t -	r	11	t.)													
9 -					2	_	4		e	-2	(£ -		2)		+ .	2	e.	- 6	7 (É		2)]		1	1	t		2)	
fin		t		ϵ	(0	,	2)																							
	4	(t):		2	2 -		4	- 4	e	2	t	+	2	e	- *	41	t														
Per	-	t	7 (5	Į-	2,	+	0	D.)	2 t		4		4	t						2	(2	£	2)			-	4	14	-2	
	4	it	=	= /	2	e		4	-e	4		+ - e	2 2	e t	+	(1	-	+ -	4	2	7	2 -	e	4	t		9				I.I

7.

a) L'equazione caratteristica del sistema è data da 1+L(s)=0 dove il guadagno di anello vale

$$L(s) = K \frac{s+3}{s(s+2)^3}$$

Il grado relativo è $\rho=3$ e quindi avrò tre asintoti separati tra loro da angoli di 120° che si intersecano nel punto ∇_a che viene determinato nel modo seguente

$$\nabla_a = \frac{\sum_i p_i - \sum_i z_i}{\rho} = \frac{-2 - 2 - 2 - 0 - (-3)}{3} = -1$$

Si determinano le eventuali radici doppie come segue

$$\sum_{i} \frac{1}{s - p_i} - \sum_{i} \frac{1}{s - z_i} = \frac{1}{s} + \frac{3}{s + 2} - \frac{1}{s + 3} = 0$$

ottenendo l'equazione di secondo grado $s^2+4s+2=0$ risolvendo la quale si ricava che le radici doppie sono in

$$s_1 = -0.5858$$
 e $s_2 = -3.4142$

Per quanto riguarda gli angoli di partenza, è facile determinare che il polo nell'origine avrà angolo iniziale $\theta_1 = \pi$ mentre i tre poli in -2 avranno angoli di partenza $\theta_{1a} = 0$, $\theta_{1b} = \frac{2}{3}\pi$ e $\theta_{1b} = -\frac{2}{3}\pi$. Il luogo delle radici per K > 0 è quindi il seguente

b) L'equazione caratteristica è la seguente

$$1 + K \frac{s+3}{s(s+2)^3} = 0$$

dalla quale viene determinato il polinomio caratteristico

$$p_c(s; K) = s^4 + 6s^3 + 12s^2 + (8 + K)s + 3K$$

Applichiamo il Criterio di Routh e costruiamo la seguente tabella

dove $f(K) = -K^2 - 52K + 512$. Perchè il sistema sia asintoticamente stabile devono quindi valere le condizioni

$$\begin{cases}
-K^2 - 52K + 512 > 0 \\
18K > 0
\end{cases}$$

Risolvendo la disequazione di secondo grado si ottiene che f(K) > 0 per -60.4674 < K < 8.4674, per cui, tenendo conto della seconda condizione ricavata dalla tabella di Routh, possiamo dire che il sistema è asintoticamaente stabile se

$$K \in (0, 8.4674)$$

Per determinare le intersezioni del luogo delle radici con l'asse immaginario, annulliamo la riga 1 della tabella di Routh, ponendo f(K) = 0 ed abbiamo che la tabella di Routh presenta una singolarità completa per K = 8.4674. Ora determino le radici del polinomio ausiliario

$$a_2(s;K) = (64 - K) s^2 + 18 K$$

per K = 8.4674 ed ottengo che le intersezioni del luogo con l'asse immaginario sono in

$$s_{1,2} = \pm 1.6567$$

c) Dal luogo delle radici si nota facilmente che il grado di stabilità G_s è massimo nella radice doppia in -0.5858. Risolvendo l'equazione caratteristica $1 + K^*G(s) = 0$ in s = -0.5858 si ha che

$$K^* = -\frac{1}{G(-0.5858)}$$

e si ottiene che il guadagno K^* che massimizza G_s vale

$$K^* = 0.6863$$

Il controllore (di ordine quattro) è del tipo

$$C(s) = \frac{b_4 s^4 + b_3 s^3 + b_2 s^2 + b_1 s + b_0}{(s^2 + 4)(s^2 + 1)}$$

in cui i quattro poli coniugati in $\pm j2$ e $\pm j1$ servono a rimuovere il disturbo d(t).

Il guadagno ad anello è L(s) = C(s) P(s) e dall'equazione 1 + L(s) = 0 si ricava il polinomio caratteristico

$$p_c(s) = (s^2 + 1)(s^2 + 4)(s + 4) + b_4 s^4 + b_3 s^3 + b_2 s^2 + b_1 s + b_0 =$$

$$= s^5 + (4 + b_4) s^4 + (5 + b_3) s^3 + (20 + b_2) s^2 + (4 + b_1) s + 16 + b_0$$

Dalle specifiche si ricava il polinomio desiderato

$$p_d(s) = (s+1)(s+2)(s+3)(s+5)(s+6) =$$

= $s^5 + 17s^4 + 107s^3 + 307s^2 + 396s + 180$

Impostando l'identità polinomiale $p_c(s) = p_d(s)$ si determina il seguente sistema

$$\begin{cases} b_4 + 4 = 17 \\ b_3 + 5 = 107 \\ b_2 + 20 = 307 \\ b_1 + 4 = 396 \\ b_0 + 16 = 180 \end{cases}$$

risolvendo il quale si ricava

$$b_4 = 13$$
 $b_3 = 102$ $b_2 = 287$ $b_1 = 392$ $b_0 = 164$

Il controllore è quindi

$$C(s) = \frac{13 s^4 + 102 s^3 + 287 s^2 + 392 s + 164}{(s^2 + 4) (s^2 + 1)}$$

Perchè l'errore a regime in condizioni nominali sia nullo, si deve avere $T_{ry}(0) = 1$ da cui

$$F\frac{C(0)P(0)}{1+C(0)P(0)} = F\frac{\frac{164}{4}\frac{1}{4}}{1+\frac{164}{4}\frac{1}{4}} = F\frac{41}{45} = 1$$

Si impone quindi

$$F = \frac{45}{41} = 1.0976$$