Le but des quelques exercices qui suivent est de se familiariser avec Mathematica. Quelques remarques importantes :

- Remarquer les crochets verticaux qui apparaissent sur la droite de l'écran. Tout le texte contenu dans le crochet où se trouve le curseur appartient à une cellule. Lorsque l'on ordonne à Mathematica une évaluation (en appuyant sur « Shift+Entrée »), c'est la cellule courante qui est évaluée.
- Pour passer à la ligne dans la cellule courante, il faut appuyer sur « Entrée ».
- L'aide de Mathematica est très bien faite : il ne faut pas (et on ne peut pas) hésiter à l'utiliser.
- L'étoile *, symbole de la multiplication, n'est pas obligatoire dans les expressions, mais il est obligatoire tant que je suis là.
- Le symbole % représente la valeur du dernier résultat calculé par Mathematica.
- Mathematica distingue entre majuscules et minuscules. Ainsi maVariable et MaVariable sont deux noms distincts.
- Il est bon de sauvegarder fréquemment son travail. Si vous perdez une heure de travail suite à une manipulation absurde, ce sera entièrement de votre faute.
- Point crucial : les arguments des fonctions doivent être mis *entre crochets* , et pas entre parenthèses. Ainsi, Sin[Pi/3] est une expression correcte, alors que Sin(Pi/3) ne l'est pas.

Répondre aux questions suivantes. La *valeur* de la réponse n'est pas aujourd'hui très importante. Cela dit, soyez critiques vis à vis de cette réponse (dans certains cas, elle sera apparemment inexacte).

1. Calculer

- (a) 1000!, $\frac{31!}{74!} \frac{82!}{97!}$.
- (b) Le plus grand commun diviseur de 2548998 et 2584711 (GCD).
- (c) $\sin(\frac{\pi}{15})$, $\sin(\frac{\pi}{17})$ (FunctionExpand). Le nombre π est noté Pi avec Mathematica. Parmi les entiers n entre 1 et 50, trouver ceux pour lesquels Mathematica sait calculer $\sin(\frac{\pi}{n})$ (Table).
- 2. Factoriser $F_5 = 2^{2^5} + 1$ (FactorInteger). Fermat pensait que ce nombre était un nombre premier. Avait-il raison? Faire de même avec F_6 , F_7 , F_8 et F_9 , définis de la même façon.
- 3. Soit $p = (X^2-Y)^10*(X+2*Y)^7$ (tapez ceci tel quel : une nouvelle variable nommée p va être créée).
 - (a) Regrouper p suivant les puissances de X (Collect).
 - (b) Développer p et affecter le résultat à une nouvelle variable q (Expand).
 - (c) Factoriser q (Factor).
- 4. Résoudre les équations ci-dessous (Solve)
 - (a) $x^2 x 1 = 0$
 - (b) $x^2 + x + 1 = 0$.
 - (c) $x^3 = x + 1$.
 - (d) $x^4 = x + 1$.
 - (e) x + 2y + z = 3, x y z = 1, 2x 3y + 2z = 1.

5. Sommes

- (a) Calculer $\sum_{i=1}^{n} i^3$, $\sum_{i=1}^{n} i^4$.
- (b) Calculer

$$\sum_{k=0}^{n-1} X^k, \sum_{k=0}^{n-1} k X^k$$

Que pensez-vous du résultat renvoyé? Est-il exact pour n'importe quelle « valeur » de X?

6. Produits

(a) Calculer $\prod_{k=1}^{n} 2^k$

(b) Calculer

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right), \, \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right), \prod_{k=2}^{n} \left(1 - \frac{1}{k^3}\right)$$

- 7. La fonction N permet de calculer une approximation numérique d'un réel.
 - (a) Calculer $\pi, \sqrt{2}, e$ avec 10000 chiffres après la virgule.
 - (b) Calculer $e^{\pi\sqrt{163}}$ avec 10,20,30,40 chiffres après la virgule.
 - (c) Calculer une valeur approchée des racines de l'équation $x^4 = x + 1$.
- 8. Nombres complexes:
 - (a) Calculer module, argument, partie réelle, partie imaginaire, exponentielle de $1+i,\sqrt{3}-i$. Le nombre complexe i est noté I dans Mathematica.
 - (b) Calculer une racine carrée de i, de -i. Un nombre complexe non nul possède 2 racines carrées : pourquoi Mathematica renvoie-t-il l'une plutôt que l'autre? Laquelle des racines Consulter l'aide de la fonction Sqrt et de la fonction Power . En profiter pour se demander ce que renvoie la fonction Arg .
- 9. Calculer:

$$\lim_{n \to \infty} n \left(\sqrt[n]{5} - 1\right)$$

$$\lim_{n \to \infty} \left(3\sqrt[n]{2} - 2\sqrt[n]{3}\right)^n$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

$$\lim_{x \to a} \left(2 - \frac{x}{a}\right)^{\frac{\pi x}{2a}}$$

$$\lim_{x \to a} \frac{a^x - x^a}{\log_a x - \log_x a}$$

- 10. Calculer la dérivée de la fonction $x \mapsto \frac{x^2 + 3x + 1}{x^3 2}$.
- 11. Calculer la dérivée 10ème de la fonction tangente. Qu veut dire Sec? Essayer de simplifier ce résultat (Simplify).
- 12. Calculer les intégrales :

$$\int_0^x t^3 \cos t \, dt, \quad \int_a^b \frac{dx}{\sqrt{(x-a)(b-x)}}, \quad \int_0^x \frac{\sin u}{u} du, \quad \int_0^x e^{-t^2} dt, \quad \int_0^x \frac{1}{t^4+1} dt$$

Les intégrales comportant des paramètres (a, b, x) vont « résister ». Consulter l'aide de Assuming.

- 13. Calculer la limite des trois dernières intégrales ci-dessus lorsque $x \to +\infty$.
- 14. Tracer les courbes suivantes :
 - (a) Courbe représentative de la fonction f définie par $f(x) = \sin x \sin 10x$.
 - (b) La courbe paramétrée $x = \sin 3t, y = \sin 4t$.
 - (c) La courbe en polaires $\rho = \sin 3\theta$.
- 15. Animer les courbes suivantes (Animate, Manipulate) :
 - (a) Courbe représentative de la fonction f définie par $f(x) = \sin x \sin nx$.
 - (b) La courbe paramétrée $x = \sin pt, y = \sin qt$.
 - (c) La courbe en polaires $\rho = \sin k\theta$.
- 16. Tracer les surfaces suivantes :

$$(x,y) \mapsto x^2 + y^2$$
$$(x,y) \mapsto x^2 - y^2$$
$$(x,y) \mapsto \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
$$(x,y) \mapsto \arg\left((x + iy)^3\right)$$