Statistiques spatiales

Filière Geo Data Science : UE2 Analyse de Données

Juste Raimbault¹ 2024-2025

¹LaSTIG, IGN-ENSG-UGE

Statistiques spatiales

Introduction

Régression Géographique Pondérée

Auto-regressions spatiales

Régression multi-niveaux

Non-stationnarité : définition

 X_t processus stochastique avec loi de probabilité jointe F_X

Stationnarité stricte : pour tous τ et t_1, \ldots, t_n

$$F_X(x_{t_1+\tau},\ldots,x_{t_n+\tau})=F_X(x_{t_1},\ldots,x_{t_n})$$

Stationnarité faible : pour tous t, τ, t_1, t_2 , et X_t de variance finie,

$$\mathbb{E}[X_t] = \mathbb{E}[X_{t+\tau}]$$

$$\operatorname{Cov}[X_{t_1}, X_{t_2}] = \operatorname{Cov}[X_{t_1-t_2}, X_0]$$

Non-stationnarité temporelle : exemple

Séries temporelles financières avec moyenne et autocovariance variable dans le temps [Raimbault, 2019]

Non-stationnarité spatiale : exemples

- Tout processus ponctuel dont les moyennes agrégées à d'autres niveaux géographiques varient dans l'espace
- Tout processus de moyenne constante mais dont la fonction d'autocorrélation varie dans l'espace ou n'est pas définie
- En fait la quasi totalité des processus impliquant des structures ou formes spatiales
- Même pour des processus pouvant être stationnaires (géographie physique, climat), celle-ci est locale

Tests de non-stationnarité spatiale

Méthodes variées dépendant de l'approche prise et du contexte :

- test de comparaison des moyennes entre zones géographiques
- variation du spectre [Fuentes, 2005]
- significativité statistique de la variation des coefficients d'une régression géographique pondérée [Leung et al., 2000]
- . . .

Auto-corrélation spatiale : définition et tests

 \rightarrow corrélation entre valeurs voisines d'un processus spatial : $\operatorname{Cov}[X_x,X_x]\neq 0$

Tests statistiques sur les résidus d'un modèle linéaire :

- Test de Moran
- Tests des multiplicateurs de Lagrange

Méthodes

Extensions spatiales des modèles statistiques :

- Régression géographique pondérée
- Auto-régressions spatiales
- Régression multi-niveaux

Méthodes avancées permettant de gérer la non-stationnarité spatiale (GWR et multi-niveau), l'aspect multi-échelle (multi-niveaux) et l'autocorrélation spatiale (GWR et auto-régressions)

Préparation des données

Première partie du TP en R :

- ightarrow construction d'une base des prix immobiliers au niveau départemental, à partir de la base DVF et INSEE
- \rightarrow premières explorations, cartes et diagnostics

Statistiques spatiales

Introduction

Régression Géographique Pondérée

Auto-regressions spatiales

Régression multi-niveaux

Exemple de résidus globaux structurés

Régression géographique pondérée

Comment inclure des effets de voisinage et prendre en compte la non-stationnarité spatiale dans des modèles statistiques ?
[Fotheringham et al., 2003]

Modèle GWR basique pour les variables y_i aux positions $\vec{u_i}$ et variables explicatives x_{ik}

$$y_i = \beta_0(\vec{u}_i) + \sum_k \beta_k(\vec{u}_i) x_{ik} + \varepsilon_i$$

avec les observations pondérées par un poids spatial $w_i(r)$ en fonction de la distance à \vec{u}_i

 Moindres-carrés pondérés, estimés à chaque localisation avec des poids spatiaux variables

AIC: définition

Pour comparer des modèles statistiques ajustés sur le même jeu de données, le **Critère d'Information d'Akaike** permet de prendre en compte le nombre de paramètres :

$$AIC = 2k - 2 \ln L$$

pour un modèle de vraisemblance L et paramètres k

Correction pour les échantillons de petite taille (n observations) :

$$AICc = AIC + \frac{2k(k+1)}{n-k-1}$$

Distance optimale et sélection de modèles

- → sélection de distance optimale par algorithme d'optimisation GSS et minimisation de l'AICc (ou d'un critère de validation croisée) : bw.gwr
- ightarrow sélection de modèle par méthode directe en minimisant l'AICc : gwr.model.selection

Pour aller plus loin: cadre global pour GWR

Application

Deuxième partie du TP en R : analyse GWR

Données : DVF agrégées au niveau départemental construites précédemment

Statistiques spatiales

Introduction

Régression Géographique Pondérée

Auto-regressions spatiales

Régression multi-niveaux

Modèles d'auto-régression spatiale

Ajout d'un terme auto-régressif dans le modèle linéaire :

$$y = \rho W y + \beta X + \varepsilon$$

- Introduction d'effets de voisinages : prise en compte de l'autocorrélation spatiale (spatial Durbin model)
- Correlation avec l'erreur par le terme Wy
- Estimation par Maximum de Vraisemblance : spatialreg::lagsarlm
- Version avec décalage sur la variable X : modèle SLX, spatialreg::lmSLX

Modèles à erreur spatiale

Prise en compte de la structure spatiale dans le terme d'erreur :

$$y = \beta X + \varepsilon$$
$$\varepsilon = \lambda W \varepsilon + u$$

- Erreur auto-régressive dans l'espace
- Test des multiplieurs de Lagrange pour savoir si préférable à un modèle d'auto-régression
- Estimation par Maximum de Vraisemblance : spatialreg::errorsarlm

Modèles de Durbin Spatiaux

Modèles spatiaux "emboîtés" : modèle de Durbin spatial

 \rightarrow combinaison d'un décalage sur Y et sur X

$$y = \rho Wy + \beta X + WX\Theta + \varepsilon$$

- Estimation : spatialreg::lagsarlm(type="mixed")
- Existe aussi avec le terme d'erreur (modèle de Durbin spatial à erreur)

Test des multiplicateurs de Lagrange

Test générique pour des modèles statistiques avec maximum de vraisemblance $\mathcal{L}(\vec{x}, \theta)$, avec le score défini par :

$$s(\theta) = \frac{\partial \log \mathcal{L}(\vec{x}, \theta)}{\partial \theta}$$

Alors $\sqrt{s(\theta_0)/I(\theta_0)}$ avec $I(\theta_0)$ information de Fisher, suit une distribution normale.

ightarrow application aux différents modèles spatiaux via leur maximum de vraisemblance

Application

Troisième partie du TP en R : auto-régressions spatiales

Données : DVF agrégées au niveau départemental construites précédemment

Statistiques spatiales

Introduction

Régression Géographique Pondérée

Auto-regressions spatiales

Régression multi-niveaux

Régression multi-niveau : exemple

Paramètres de l'effet de la distance pour un modèle de migration, spécifiques aux origines et destinations, calculés par une régression multi-niveaux [Dennett and Wilson, 2013]

Régression multi-niveau

Lorsque des données peuvent être groupées par une variable catégorielle, une estimation au sein de chaque groupe est incluse dans la régression ("effets fixes") :

$$y = \alpha + \beta X + \sum_{j} (\alpha_{j} + \beta_{j} X_{j} + \varepsilon_{j})$$

- Random intercepts : constantes α_j uniquement
- Random slopes : coefficients β_j

Application aux données géographiques

- Groupement des observations selon des niveaux géographiques supérieurs, potentiellement plusieurs : régions, pays, . . .
- non-stationnarité prise en compte avec des coefficients variables
- pas de matrice de distance ou de poids spatiaux : niveau géographique exogène; mais prise en compte du caractère multi-échelle dans le cas de plusieurs niveaux
- pas de prise en compte de l'autocorrélation spatiale

Application

Quatrième partie du TP en R : régressions multi-niveaux spatiales

Données : DVF agrégées au niveau départemental, groupement par régions

Résumé des méthodes

Régression	Non- stationnarité	Auto- corrélation	Multi- échelles
géographique pondérée	✓	✓	
Auto-régression spatiale		✓	
Régression multi-niveau	✓		1

Synthèse

- \rightarrow méthodes statistiques adaptées à différents aspects des processus spatiaux
- → méthodes complémentaires, à appliquer selon le contexte et les propriétés des données (tests d'auto-corrélation, de non-stationnarité)
- \rightarrow méthodes allant d'une application basique à un cadre complet plus avancé

A retenir : concepts et principes d'application, utilisation basique en R

References i

Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., et al. (2021).

A route map for successful applications of geographically weighted regression.

Geographical Analysis.

🖥 Dennett, A. and Wilson, A. (2013).

A multilevel spatial interaction modelling framework for estimating interregional migration in europe.

Environment and Planning A, 45(6):1491–1507.

References ii

- Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2003).

 Geographically weighted regression: the analysis of spatially varying relationships.

 John Wiley & Sons.
- Fuentes, M. (2005).

 A formal test for nonstationarity of spatial stochastic processes.

 Journal of Multivariate Analysis, 96(1):30–54.
- Leung, Y., Mei, C.-L., and Zhang, W.-X. (2000).

 Statistical tests for spatial nonstationarity based on the geographically weighted regression model.

 Environment and Planning A, 32(1):9–32.

References iii

🖥 Raimbault, J. (2019).

Second-order control of complex systems with correlated synthetic data.

Complex Adaptive Systems Modeling, 7(1):1–19.