

CM0230

Taller 0. Cálculo I. CM0230.

Graficas básicas de funciones y relaciones

Rectas

a) y = x+3, b) y = 3-x, c) 2x-3y = 6, d) y-2x = 4, e) 3y+2x = 6, f) -2y+3x = 4

g)
$$y = \frac{x^2 - 3x - 4}{x + 1}$$
, h) $y = \frac{x^2 + 3x - 4}{1 - x}$, i) $\frac{x^2 - 2x + 1}{x - 1}$,

j) pasa por (1,2) y $m = \frac{1}{2}$, *k*) pasa por (1,-2) y m = -3, *l*) pasa por (0,3) y $m = -\frac{3}{4}$,

m) pasa por (1,2) y paralela a y = 2x - 3, n) pasa por (-1,-2) y paralela a 2y + 3x = 6,

o) pasa por (3,0) y paralela a y = 6-3x, p) pasa por (5,4) y paralela a la recta 2y = 6+3x,

o) pasa por (1,2) y perpendicu lar a y = 2x - 3, p) pasa por (-1,-2) y perpendicu lar a 2y + 3x = 6

q) pasa por (3,0) y perpendicular a 2y-3x=6, r) pasa por (3,0) y perpendicular a y=6-3x

r) pasa por (1,2) y perpendicu lar a y=-3, s) pasa por (-1,-2) y perpendicu lar a 3x=6

t) pasa por (3,0) y perpendicu lar a 2y-6=0, v) pasa por (3,0) y perpendicu lar a 0=6-3x

Parábolas abren eje y (completación de cuadrados)

a)
$$y = x^2 - 4$$
, b) $y = 3-x^2$, c) $y = x^2 - 6x + 7$, d) $y = 2x^2 - 3x + 7$, e) $y = 1-2x-2x^2$

f)
$$y = 1 + x^2$$
, g) $y = 3-2x^2$, h) $y = x^2 - 6x$, i) $y = 2x^2 + 3x - 7$, j) $y = -7 - 2x^2 + 3x$

k) $y = 6x - x^2$, l) $y = -2x^2 + x$, m) $y = x^2 - 6x - 5$, n) $y = 2x^2 - 3x + 7$, o) $y = -7 - 2x^2 - 3x$

CM0230

p)
$$y = \frac{x^3 - 1}{x - 1}$$
, q) $y = \frac{x^3 - 3x^2 + 4x - 2}{1 - x}$, r) $y = \frac{2x^3 + 3x^2 - 1}{x + 1}$, s) $y = \frac{2x^3 - 3x^2 + x}{x^2 - x}$

t)
$$y = (x+1)^2 + 1$$
, $y = -(x-1)^2 - 1$, $y = 3 - 2(x+1)^2$, $y = (2-x)^2 + 1$

Hipérbolas equiláteras (división)

a)
$$y = 1 + \frac{1}{x - 1}$$
, b) $y = \frac{3x - 2}{x - 1}$, c) $y = \frac{2x - 1}{3 - x}$, d) $y = 2 - \frac{3}{x + 2}$, e) $y = \frac{x + 2}{2x + 4}$

f)
$$y = 1 - \frac{1}{x - 2}$$
, $g(y) = \frac{2 - 3x}{x - 1}$, $h(y) = \frac{2x - 1}{3 - 2x}$, $i(y) = 2 - \frac{3}{x - 2}$, $j(y) = \frac{2 - x}{2x + 4}$

k)
$$y = \frac{5x-6}{3-x}$$
, l) $y = \frac{-3x+2}{x-1}$

Parábolas abren eje x (racionalización)

a)
$$y = \sqrt{x-2}$$
, b) $y = -\sqrt{2-x}$, c) $y = 2-\sqrt{2-x}$, d) $y = -2-\sqrt{2-x}$, e) $y = 3+2\sqrt{2x+3}$

$$f) \ \ y = \frac{x}{\sqrt{x+1}-1}, \ \ g) \ \ y = \frac{x-1}{\sqrt{x}-1} \ , \quad h) \ \ y = \frac{x}{\sqrt{1-x}-1}, \quad i) \ \ y = \frac{x-1}{\sqrt{2x+1}-\sqrt{3}}, \quad j) \ \ y = 1+\sqrt{x}$$

k)
$$y = \frac{x}{3 - \sqrt{9 - x}}$$
, l) $y = -3 - 2\sqrt{-2x - 3}$

Valor absoluto

a)
$$y = 2 + |x|$$
, b) $y = 2 - |2 - x|$, c) $y = |1 - |x + 2|$ d) $y = |x^2 - 6x + 1| + 1$, e) $y = |x^2 + x - 6|$

f)
$$y = \left| \frac{x-1}{\sqrt{2x+1} - \sqrt{3}} \right|$$
, g) $y = \left| \frac{x}{\sqrt{x+1} - 1} \right| + 2$, h) $y = 1 - \left| 2 - \sqrt{2 - x} \right|$, i) $y = 3 - \left| \frac{x}{\sqrt{x+1} - 1} \right|$

Circunferencia

CM0230

a)
$$x^2 + (y-2)^2 = 4$$
, b) $x^2 - 2x + y^2 - 4y = 9$, c) $y = 2 - \sqrt{9 - x^2}$, d) $y = -2 + \sqrt{9 - x^2}$

$$b) x^2 - 2x + y^2 - 4y = 9,$$

c)
$$y = 2 - \sqrt{9 - x^2}$$
,

$$d) \ \ y = -2 + \sqrt{9 - x^2}$$

e)
$$x^2 + (y-c)^2 = c^2$$

$$f(x-c)^2 + y^2 = c$$

e)
$$x^2 + (y-c)^2 = c^2$$
, f) $(x-c)^2 + y^2 = c^2$, g) $y = 2 - \sqrt{9-x^2}$, h) $y = -2 - \sqrt{9-x^2}$

h)
$$y = -2 - \sqrt{9 - x^2}$$

i)
$$x^2 + (y+c)^2 = c^2$$
, j) $(x+c)^2 + y^2 = c^2$, k) $y = -2 - \sqrt{25 - x^2}$, l) $y = -1 + \sqrt{9 - x^2}$

$$(x+c)^2 + y^2 = c$$

$$v = -2 - \sqrt{25 - x^2}$$

$$l) \ \ y = -1 + \sqrt{9 - x^2}$$

Elipse

a)
$$9(x-1)^2 + 4y^2 = 36$$
,

b)
$$9x^2 + 4(y-2)^2 = 36$$

a)
$$9(x-1)^2 + 4y^2 = 36$$
, b) $9x^2 + 4(y-2)^2 = 36$, c) $9(x-1)^2 + 4(y-2)^2 = 36$

d)
$$9x^2 + 4y^2 = 36$$
, $y \ge 0$. e) $y = 3 + \sqrt{16 - 4x^2}$, f) $y = -2 - \sqrt{16 - 4x^2}g$)

$$e) \quad y = 3 + \sqrt{16 - 4x^2}$$

$$f) \ \ y = -2 - \sqrt{16 - 4x^2} \ g$$

g)
$$4(x-3)^2 + 9y^2 = 36$$
.

$$h) \quad x^2 + 2y^2 - 6y + 14 = 0$$

g)
$$4(x-3)^2 + 9y^2 = 36$$
, h) $x^2 + 2y^2 - 6y + 14 = 0$, i) $x^2 + 2y^2 - 6y + 4x + 10 = 0$,

Hipérbola

a)
$$9(x-1)^2 - 4y^2 = 36$$

b)
$$9x^2 - 4(y-2)^2 = 36$$

a)
$$9(x-1)^2 - 4y^2 = 36$$
, b) $9x^2 - 4(y-2)^2 = 36$, c) $9(x-1)^2 - 4(y-2)^2 = 36$

d) $9x^2 - 4y^2 = 36$, $y \ge 0$. e) $y = 3 + \sqrt{4x^2 - 16}$, f) $y = -2 - \sqrt{4x^2 - 16}$

e)
$$y = 3 + \sqrt{4x^2 - 16}$$

$$f) \ \ y = -2 - \sqrt{4x^2 - 16}$$

$$g) \quad 4x^2 - 9y^2 = 36, \quad y \ge 0$$

g)
$$4x^2 - 9y^2 = 36$$
, $y \ge 0$. h) $y = -3 + \sqrt{4x^2 - 16}$, i) $y = -2 - \sqrt{4x^2 - 16}$

i)
$$y = -2 - \sqrt{4x^2 - 16}$$

$$j) \quad x^2 - 6x - y^2 + 4y = 4$$

$$k) -4x^2 + 9y^2 = 36, \quad y \ge 0.$$

j)
$$x^2 - 6x - y^2 + 4y = 4$$
, k) $-4x^2 + 9y^2 = 36$, $y \ge 0$. l) $-x^2 - 6x + y^2 + 4y = 4$,

Graficas por tramos

1.
$$y = \begin{cases} -x & si & x < 0 \\ x^2 & si & 0 < x \le 2 \\ 4 & si & x > 2 \end{cases}$$

3.
$$y = \begin{cases} x^2 - 2 & si & x \le 1 \\ 1 - x & si & 1 < x \le 3, \\ (x - 4)^2 - 3 & si & x > 3 \end{cases}$$

5.
$$y = \begin{cases} 2 & si & x \le -2 \\ x^2 - 2 & si & -2 < x \le 1, \\ x - 1 & si & x > 1 \end{cases}$$

1.
$$y =\begin{cases} -x & si & x < 0 \\ x^2 & si & 0 < x \le 2, \\ 4 & si & x > 2 \end{cases}$$
2. $y =\begin{cases} x^2 - 2 & si & x \le 1 \\ 1 - x & si & 1 < x \le 3 \\ (x - 4)^2 - 3 & si & x > 3 \end{cases}$
3. $y =\begin{cases} x^2 - 2 & si & x \le 1 \\ 1 - x & si & 1 < x \le 3, \\ (x - 4)^2 - 3 & si & x > 3 \end{cases}$
4. $y =\begin{cases} 2 - x^2 & si & x \le 1 \\ x - 1 & si & 1 < x \le 3 \\ (x - 4)^2 & si & x > 3 \end{cases}$
5. $y =\begin{cases} 2 & si & x \le -2 \\ x^2 - 2 & si & -2 < x \le 1, \\ x - 1 & si & x > 1 \end{cases}$
6. $y =\begin{cases} \sqrt{x^2 - 1} & si & x \le -1 \\ x^2 - 1 & si & -1 < x < 1 \\ (x - 2)^2 - 1 & si & x > 1 \end{cases}$
7. $y =\begin{cases} x + 2 & si & x < -1 \\ 2(x - 1) & si & 1 < x < 3, \\ 1 - \sqrt{x - 3} & si & x > 3 \end{cases}$
8. $y =\begin{cases} x - 1 & si & x \le -2 \\ x^2 - 2 & si & -2 < x \le 1, \\ 2 & si & 1 < x < 3, \\ 2 + \sqrt{x - 3} & si & x > 3 \end{cases}$
9. $y =\begin{cases} 4 & si & x \le -1 \\ 2 - \sqrt{x + 1} & si & -1 < x \le 8, \\ 2x - 7 & si & x > 8 \end{cases}$

9.
$$y = \begin{cases} 4 & si & x \le -1 \\ 2 - \sqrt{x+1} & si & -1 < x \le 8 \\ 2x - 7 & si & x > 8 \end{cases}$$

2.
$$y = \begin{cases} x^2 - 2 & si & x \le 1 \\ 1 - x & si & 1 < x \le 3 \\ (x - 4)^2 - 3 & si & x > 3 \end{cases}$$

4.
$$y = \begin{cases} 2 - x^2 & si & x \le 1 \\ x - 1 & si & 1 < x \le 3 \\ (x - 4)^2 & si & x > 3 \end{cases}$$

6.
$$y = \begin{cases} \sqrt{x^2 - 1} & si & x \le -1 \\ x^2 - 1 & si & -1 < x < 1 \\ (x - 2)^2 - 1 & si & x > 1 \end{cases}$$

8.
$$y = \begin{cases} x-1 & si & x \le -2 \\ x^2 - 2 & si & -2 < x \le 1 \\ 2 & si & 1 < x < 3 \\ 2 + \sqrt{x-3} & si & x > 3 \end{cases}$$

Intersección de curvas

1. Encuentre el (o los) punto (s) de intersección de las siguientes curvas. Realice en un

mismo plano ambas curvas.
a)
$$\begin{cases} x^2 - 2x + y - 7 = 0 \\ 3x - y + 1 = 0 \end{cases}$$
 Rta : (-3,-8) y (2,7)
b)
$$\begin{cases} y = \sqrt{x+2} \\ x + y = 4 \end{cases}$$
 Rta : (2,2)
c)
$$\begin{cases} y = x^2 - 9 \\ 2x + y = 3 \end{cases}$$
 Rta : $(1 \pm \sqrt{13}, 5 \mp 2\sqrt{13})$
d)
$$\begin{cases} x^2 = 5 - y \\ x = y + 1 \end{cases}$$
 Rta : (-3,-4) y (2,1)
e)
$$\begin{cases} y = 4 + 2x - x^2 \\ y = x^2 + 1 \end{cases}$$
 Rta : (-3,2)
f)
$$\begin{cases} x^2 = y^2 + 13 \\ y = x^2 - 15 \end{cases}$$
 Rta : (12,-12)

b)
$$\begin{cases} y = \sqrt{x+2} \\ x + y = 4 \end{cases}$$
 Rta : (2,2)

c)
$$\begin{cases} y = x^2 - 9 \\ 2x + y = 3 \end{cases}$$
 Rta : $(1 \pm \sqrt{13}, 5 \mp 2\sqrt{13})$

d)
$$\begin{cases} x^2 = 5 - y \\ x = y + 1 \end{cases}$$
 Rta : (-3,-4) y (2,1)

e)
$$\begin{cases} y = 4 + 2x - x^2 \\ y = x^2 + 1 \end{cases}$$
 Rta : (-3,2)

f)
$$\begin{cases} x^2 = y^2 + 13 \\ y = x^2 - 15 \end{cases}$$
 Rta : (12,-12)

CM0230

g)
$$\begin{cases} x = y + 1 \\ y = 2\sqrt{x + 2} \end{cases}$$
 Rta : ϕ

g)
$$\begin{cases} x = y + 1 \\ y = 2\sqrt{x + 2} \end{cases}$$
 Rta : ϕ
h) $\begin{cases} y = \frac{4}{x} \\ 3y = 2x + 2 \end{cases}$ Rta : $\left(-3, -\frac{4}{3}\right)$, $(2,2)$
i) $\begin{cases} y = x^3 \\ x - 2y = 0 \end{cases}$ Rta : $(0,0)$, $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{4}\right)$

i)
$$\begin{cases} y = x^3 \\ x - 2y = 0 \end{cases}$$
 Rta : $(0,0)$, $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{4}\right)$