[20] Consideramos los salarios anuales (variable X) en miles de euros de 500 trabajadores de una empresa de la cual se obtiene la siguiente distribución de frecuencias:

X_i	$ n_i $
2	100
3	80
5	200
10	30
20	30
50	30
100	20
200	10

Se estratifica la población en grupos homogénes de ganancias salariales utilizando como variable de estratificación el propio salario anual mediante el criterio dado por $2 \le X < 10$, $10 \le X < 100$, $100 \le X \le 200$.

- (a) (10 puntos) Realizar las afijacaciones de mínima varianza (afijación óptima) sin reposición de una muestra de tamaño 100 cuando se estima el salario anual medio.
- (b) (10 puntos) Tras la primera afijación, se decide que del estrato $100 \le X \le 200$ sólo se obtendrán 30 observaciones. ¿Como será la nueva afijación óptima?

Solución: Para cada uno de los estratos se tiene: Así, usando la fórmula de afijación óptima se tiene:

$$n_h = n \frac{N_h S_h}{\sum_{h=1}^L N_h S_h} \Rightarrow n_1 \approx 15, n_2 \approx 44, n_3 \approx 41$$

Seleccionamos 30 unidades para el estrato 3, por lo que las 70 unidades restantes deben ser repartidas mediante afijación de mínima varianza entre los dos primeros estratos. Así,

$$n_1 \approx 17$$
 $n_2 \approx 53$ $n_3 \approx 30$