数字信号处理 第十一周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年11月25日

作业内容: 4.34, 4.43, 4.49

Problem 4.34

SubProblem a

易得, $H(j\Omega)=e^{-j\Omega T/2}$,而这个连续时间的系统函数在不同的 T 下不唯一。 $h_c(t)=\delta(t-T/2)$ 。

SubProblem b

系统函数造成的效果是 y[n]=x[n+1/2] , 那么 $y[n]=\cos(2.5\pi n-0.5\pi)$ 。

如图1。

图 1: 4.34-b

Problem 4.43

SubProblem a

对 $f_c(t)$ 进行追踪: $Y_c(j\Omega) = F_c(j\Omega)H_{aa}(j\Omega)H(j\Omega)$, 在 F_c 所在的频段,幅度特性为 1 ,相位需要 80π 为 Ω^3 ,那么 $(\omega T)^3 = (800\omega)^3$, $H(e^{j\omega}) = e^{j(800\omega)^3}$,if $|\omega| <= \pi/2$; 0,else

SubProblem b

交叠产生的临界: $400\pi = 2\pi/T - 800\pi$,

T=1/600 ,那么 $H(e^{j\omega})=e^{j(600\omega)^3}$,if $|\omega|<=\pi/2;0$,else 。

Problem 4.49

SubProblem a

分析系统 2 , $W_c(j\Omega)$ 是三角形函数的卷 积。观察 w[n] 和 y[n] 实际无区别,之后的转换也是对应的,因此 $y_1=y_2$ 。

但是不能恢复,因为信号 y_2 的处理中截断了。

如图 2,图 3。

SubProblem b

原始信号采样(连续): 30π ,周期为 $2\pi/T=$

搬移: $30\pi, 50\pi$

离散: $0.75\pi, 0.5\pi$

平方: $0.5\pi, 1.5\pi, 2\pi$ 产生了交叠

SubProblem c

此时 $\Omega_c = 30\pi$, $\Omega_N = 80\pi$,

图 3: 4.49-2

原始信号: 30π 立方: $30\pi, 90\pi$

离散: 0.75π, 0.25π 虽然频带交叠但是没有

混叠

不混叠就有可能恢复。

SubProblem d

可知进行降次的操作可以将信号的频谱进 行压缩,采样要求降低。