Problemas de derivabilidad de funciones. Estudio local de funciones.

1. Realizar un estudio completo y la gráfica correspondiente de la función $f(x) = x^3 - 5x^2 + 12$.

Solución

a) Dominio.

El dominio de la función es \mathbb{R} al ser una función polinómica.

b) Puntos de discontinuidad.

No tiene ya que su dominio es \mathbb{R} .

- c) Puntos de corte:
- Eje de abscisas o eje X. Hemos de resolver la ecuación f(x) = 0:

$$x^3 - 5x^2 + 12 = 0.$$

Probamos con Ruffini en x = 2:

Vemos que x=2. Para hallar las demás hemos de resolver la ecuación siguiente de segundo grado:

$$x^{2} - 3x - 6 = 0, \Rightarrow x = \frac{3 \pm \sqrt{9 + 24}}{2} = \frac{3 \pm \sqrt{33}}{2} \approx -1.3723, 4.3723.$$

Entonces la función f pasa por los tres puntos siguientes: $(2,0), \left(\frac{3\pm\sqrt{33}}{2},0\right)$.

- Eje de ordenadas o eje Y. El valor de f(0) és f(0) = 12. Por tanto, la función f pasa por el punto (0, 12).
- d) Simetrías.

El valor de f(-x) vale $f(-x) = -x^3 - 5x^2 + 12$, valor que no está relacionado con $f(x) = x^3 - 5x^2 + 12$. Por tanto, no tiene simetrías respecto al eje Y ni respecto al origen.

e) Asíntotas.

Al ser una función polinómica, la función f(x) no tiene asíntotas.

f) Crecimiento y decrecimiento.

Para estudiar el crecimiento y el decrecimiento, hemos de hallar la función derivada:

$$f'(x) = 3x^2 - 10x.$$

Los posibles extremos se hallan resolviendo f'(x) = 0:

$$3x^2 - 10x = 0$$
, $\Rightarrow x(3x - 10) = 0$, $\Rightarrow x = 0$, $x = \frac{10}{3}$.

Hemos hallado dos candidatos a extremos. Hallemos a continuación la región de crecimiento y el tipo de extremos que son los candidatos hallados:

\overline{x}	$-\infty$		0		$\frac{10}{3}$		∞
y'		+		_		+	
y		7		\searrow		7	

La función es creciente en la región $(-\infty,0) \cup \left(\frac{10}{3},\infty\right)$, es decreciente en el intervalo $\left(0,\frac{10}{3}\right)$, tiene un máximo en el punto $\left(0,12\right)$ y un mínimo en el punto $\left(\frac{10}{3},\left(\frac{10}{3}\right)^3-5\cdot\left(\frac{10}{3}\right)^2+12\right)=\left(\frac{10}{3},-\frac{176}{27}\right)\approx (3.3333,-6.5185).$

g) Concavidad y convexidad.

Para estudiar la concavidad y la convexidad, hemos de hallar la función derivada segunda:

$$f''(x) = 6x - 10.$$

Los posibles puntos de inflexión se hallan resolviendo f''(x) = 0:

$$6x - 10 = 0, \Rightarrow x = \frac{10}{6} = \frac{5}{3} \approx 1.6667.$$

Hemos hallado un candidato a punto de inflexión. Hallemos a continuación la región de concavidad y convexidad:

x	$-\infty$		$\frac{5}{3}$		∞	
y''		_		+		
y		\cap		\bigcup		

La función será cóncava en el intervalo $\left(-\infty,\frac{5}{3}\right)$, convexa en el intervalo $\left(\frac{5}{3},\infty\right)$ y tiene un punto de inflexión en $\left(\frac{5}{3},\left(\frac{5}{3}\right)^3-5\cdot\left(\frac{5}{3}\right)^2+12\right)=\left(\frac{5}{3},\frac{74}{27}\right)\approx (1.6667,2.7407).$

Usando todas propiedades anteriores ya podemos dibujar la función y=f(x):

2. Realizar un estudio completo y la gráfica correspondiente de la función $f(x) = \frac{x+1}{x^2+1}$.

Solución

a) Dominio.

El dominio de la función es \mathbb{R} al ser una función racional donde el denominador no tiene raíces reales ya que la ecuación $x^2 + 1 = 0$ no tiene soluciones reales.

b) Puntos de discontinuidad.

No tiene ya que su dominio es \mathbb{R} .

- c) Puntos de corte:
- Eje de abscisas o eje X. Hemos de resolver la ecuación f(x) = 0:

$$\frac{x+1}{x^2+1} = 0, \Rightarrow x+1=0, \Rightarrow x=-1.$$

Corta el eje X en el punto (-1,0).

- Eje de ordenadas o eje Y. El valor de f(0) és $f(0) = \frac{0+1}{0^2+1} = 1$. Por tanto, la función f pasa por el punto (0,1).
- d) Simetrías.

El valor de f(-x) vale $f(-x) = \frac{-x+1}{x^2+1}$, valor que no está relacionado con $f(x) = \frac{x+1}{x^2+1}$. Por tanto, no tiene simetrías respecto al eje Y ni respecto al origen.

- e) Asíntotas.
- Horizontales. Son de la forma y = b donde b vale:

$$b = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x+1}{x^2+1} = 0.$$

Por tanto, tiene la asíntota horizontal y = 0 que corresponde al eje X.

- Verticales. No tiene ya que no hay valores que anulen el denominador de la función f(x) que serían los candidatos a las asíntotas verticales x = a.
- Oblicuas. Son de la forma y = mx + n, donde m vale:

$$b = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x+1}{x \cdot (x^2+1)} = 0.$$

Como la pendiente es cero, sería una asíntota horizontal y éstas ya están estudiadas.

f) Crecimiento y decrecimiento.

Para estudiar el crecimiento y el decrecimiento, hemos de hallar la función derivada:

$$f'(x) = \frac{x^2 + 1 - 2x \cdot (x+1)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2 - 2x}{(x^2 + 1)^2} = \frac{-x^2 - 2x + 1}{(x^2 + 1)^2}.$$

Los posibles extremos se hallan resolviendo f'(x) = 0:

$$-x^2 - 2x + 1 = 0, \Rightarrow x = \frac{2 \pm \sqrt{4 + 4}}{-2} = \frac{-2 \mp 2\sqrt{2}}{2} = -1 \mp \sqrt{2} \approx -2.4142, \ 0.4142.$$

Hemos hallado dos candidatos a extremos. Hallemos a continuación la región de crecimiento y el tipo de extremos que son los candidatos hallados:

\overline{x}	$-\infty$		$-1-\sqrt{2}$		$-1+\sqrt{2}$		∞
$\overline{y'}$		_		+		_	
y		\searrow		7		\searrow	

La función es creciente en la región $(-1-\sqrt{2},-1+\sqrt{2})$, es decreciente en la región $(-\infty,-1-\sqrt{2})\cup(-1+\sqrt{2},\infty)$, tiene un mínimo en el punto

$$\left(-1-\sqrt{2},\frac{-1-\sqrt{2}+1}{(-1-\sqrt{2})^2+1}\right) = \left(-1-\sqrt{2},\frac{-\sqrt{2}}{4+2\sqrt{2}}\right) \approx (-2.4142,-0.2071),$$

y un máximo en el punto

$$\left(-1+\sqrt{2},\frac{-1+\sqrt{2}+1}{(-1+\sqrt{2})^2+1}\right) = \left(-1+\sqrt{2},\frac{\sqrt{2}}{4-2\sqrt{2}}\right) \approx (0.4142,1.2071).$$

g) Concavidad y convexidad.

Para estudiar la concavidad y la convexidad, hemos de hallar la función derivada segunda:

$$f''(x) = \frac{(-2x-2)\cdot(x^2+1)^2 - 2(x^2+1)\cdot(-x^2-2x+1)}{(x^2+1)^4} = \frac{(-2x-2)\cdot(x^2+1) - 2(-x^2-2x+1)}{(x^2+1)^3} = \frac{2(x-1)(x^2+4x+1)}{(x^2+1)^3}$$

Los posibles puntos de inflexión se hallan resolviendo f''(x) = 0:

$$(x-1)(x^2+4x+1)=0, \Rightarrow x=1, x=\frac{-4\pm\sqrt{16-4}}{2}=-2\pm\sqrt{3}\approx -3.7321, -0.2679.$$

Hemos hallado un candidato a punto de inflexión. Hallemos a continuación la región de concavidad y convexidad:

\overline{x}	$-\infty$		$-2-\sqrt{3}$		$-2+\sqrt{3}$		1		∞
y''		_		+		_		+	
y		\cap		\bigcup		\cap		\bigcup	

La función será cóncava en la región $(-\infty, -2 - \sqrt{3}) \cup (-2 + \sqrt{3}, 1)$, convexa en la región $(-2 - \sqrt{3}, -2 + \sqrt{3}) \cup (1, \infty)$ y tiene tres puntos de inflexión en

$$\left(-2-\sqrt{3}, \frac{-2-\sqrt{3}+1}{(-2-\sqrt{3})^2+1}\right) = \left(-2-\sqrt{3}, \frac{-1-\sqrt{3}}{8+4\sqrt{3}}\right) \approx (-3.7321, -0.183).$$

$$\left(-2+\sqrt{3}, \frac{-2+\sqrt{3}+1}{(-2+\sqrt{3})^2+1}\right) = \left(-2+\sqrt{3}, \frac{-1+\sqrt{3}}{8-4\sqrt{3}}\right) \approx (-0.2679, 0.683).$$

$$\left(1, \frac{1+1}{1^2+1}\right) = (1,1).$$

Usando todas propiedades anteriores ya podemos dibujar la función y = f(x) donde hemos señalado en azul los extremos relativos y en verde, los puntos de inflexión:

3. Realizar un estudio completo y la gráfica correspondiente de la función $f(x) = \ln(\cos^2 x)$.

Solución

4. Realizar un estudio completo y la gráfica correspondiente de la función $f(x) = \frac{x^2}{x-1}$.

Solución