M1 Chapter 9: Constant Acceleration

Three Derived Formulae

"suvat" equations (Part 2)

The other "suvat" equations can be derived using v = u + at and $s = \left(\frac{u+v}{2}\right)t$.

Eliminating t:

$$t = \frac{v - u}{a}$$

$$s = \left(\frac{u + v}{2}\right) \left(\frac{v - u}{a}\right)$$

$$= \cdots$$

$\mathscr{P} v^2 = u^2 + 2as$

Eliminating u:

$$u = v - at$$

$$s = \left(\frac{v - at + v}{2}\right)t$$

$$= \left(\frac{2v - at}{2}\right)t$$

$$\mathscr{F} s = vt - \frac{1}{2}at^2$$

Eliminating v:

$$s = \left(\frac{u+u+at}{2}\right)t$$
$$= \left(\frac{2u+at}{2}\right)t$$

$$\mathscr{F} s = ut + \frac{1}{2}at^2$$

Note: Because this is quadratic in t, we typically end up with two different possible times.

Note: Exam questions that use this *suvat* formula are rare.

Examples

[Textbook] A particle is moving along a straight line from A to B with constant acceleration 5 ms⁻². The velocity of the particle is 3 ms⁻¹ in the direction \overrightarrow{AB} . The velocity of the particle at B is 18 ms⁻¹ in the same direction. Find the distance from A to B.

$$s = ?, u = 3, v = 18, a = 5$$

$$v^2 = u^2 + 2as$$

 $18^2 = 3^2 + 2 \times 5 \times s$
 $s = 31.5$

•
$$v = u + at$$

•
$$s = \left(\frac{u+v}{2}\right)t$$

•
$$v^2 = u^2 + 2as$$

•
$$s = ut + \frac{1}{2}at^2$$

• $s = vt - \frac{1}{2}at^2$

•
$$s = vt - \frac{1}{2}at^2$$

[Textbook] A particle is moving in a straight horizontal line with constant deceleration 4 ms⁻². At time t=0 the particle passes through a point O with speed 13 ms⁻¹ travelling towards a point A, where OA = 20 m. Find:

- (a) the times when the particle passes through A
- (b) the value of t when the particle returns to 0.

a

The t = 0 solution is expected because the particle started at O.

Examples

[Textbook] A particle is moving along a straight line from A to B with constant acceleration 5 ms⁻². The velocity of the particle is 3 ms⁻¹ in the direction \overrightarrow{AB} . The velocity of the particle at B is 18 ms⁻¹ in the same direction. Find the distance from A to B.

$$s = ?, u = 3, v = 18, a = 5$$

$$v^2 = u^2 + 2as$$

 $18^2 = 3^2 + 2 \times 5 \times s$
 $s = 31.5$

•
$$v = u + at$$

•
$$s = \left(\frac{u+v}{2}\right)t$$

•
$$v^2 = u^2 + 2as$$

•
$$s = ut + \frac{1}{2}at^2$$
•
$$s = vt - \frac{1}{2}at^2$$

•
$$s = vt - \frac{1}{2}at^2$$

[Textbook] A particle is moving in a straight horizontal line with constant deceleration 4 ms⁻². At time t=0 the particle passes through a point O with speed 13 ms⁻¹ travelling towards a point A, where OA = 20 m. Find:

- (a) the times when the particle passes through A
- (b) the value of t when the particle returns to O.

a
$$s = 20, u = 13, a = -4, t = ?$$

 $s = ut + \frac{1}{2}at^2$
 $20 = 13t - \frac{1}{2} \times 4t^2$
 $2t^2 - 13t + 20 = 0$
 $(2t - 5)(t - 4) = 0$
 $t = \frac{5}{2}, t = 4$

s = 0, u = 13, a = -4, t = ? $s = ut + \frac{1}{2}at^2$ $0 = 13t - 2t^2$ = t(13 - 2t) $t = 0, or t = \frac{1}{2}$

Particle returns after 6.5 s

The t = 0 solution is expected because the particle started at O.

Test Your Understanding

Edexcel M1 May 2013 Q4

A lorry is moving along a straight horizontal road with constant acceleration. The lorry passes a point A with speed u m s⁻¹, (u<34), and 10 seconds later passes a point B with speed 34 m s⁻¹. Given that AB = 240 m, find

(a) the value of u,

(3)

(b) the time taken for the lorry to move from A to the mid-point of AB.

(6)

Test Your Understanding

Edexcel M1 May 2013 Q4

A lorry is moving along a straight horizontal road with constant acceleration. The lorry passes a point A with speed u m s⁻¹, (u < 34), and 10 seconds later passes a point B with speed 34 m s⁻¹. Given that AB = 240 m, find

(a) the value of u,

(3)

(b) the time taken for the lorry to move from A to the mid-point of AB.

(6)

$240 = \frac{1}{2}(u+34)10$	M1 A1
u = 14	A1
	(3)
$34 = 14 + 10a \implies a = 2$	M1 A1
$120 = 14t + \frac{1}{2} \times 2 \times t^2$	M1 A1
$t^2 + 14t - 120 = 0$	
Solving, $t = -20$ or 6	DM1
t = 6	A1
OR	
$34 = 14 + 10a \implies a = 2$	M1 A1
$v^2 = 14^2 + 2 \times 2 \times 120 \Rightarrow v = 26$	
AND $26 = 14 + 2t$	M1 A1
t = 6	DM 1 A1
	(6)
	$u = 14$ $34 = 14 + 10a \implies a = 2$ $120 = 14t + \frac{1}{2} \times 2 \times t^{2}$ $t^{2} + 14t - 120 = 0$ Solving, $t = -20$ or 6 $t = 6$ OR $34 = 14 + 10a \implies a = 2$ $v^{2} = 14^{2} + 2 \times 2 \times 120 \implies v = 26$ AND $26 = 14 + 2t$

Exercise 9.4 The second two formulae

Pearson Stats/Mechanics Year 1 Pages 62-63

Homework Exercise

- 1 A particle is moving in a straight line with constant acceleration $2.5 \,\mathrm{m\,s^{-2}}$. It passes a point A with velocity $3 \,\mathrm{m\,s^{-1}}$ and later passes through a point B, where $AB = 8 \,\mathrm{m}$. Find the velocity of the particle as it passes through B.
- 2 A car is accelerating at a constant rate along a straight horizontal road. Travelling at 8 m s⁻¹, it passes a pillar box and 6 s later it passes a sign. The distance between the pillar box and the sign is 60 m. Find the acceleration of the car.
- 3 A cyclist travelling at 12 m s⁻¹ applies her brakes and comes to rest after travelling 36 m in a straight line. Assuming that the brakes cause the cyclist to decelerate uniformly, find the deceleration.
- 4 A train is moving along a straight horizontal track with constant acceleration. The train passes a signal with a velocity of 54 km h⁻¹ and a second signal with a velocity of 72 km h⁻¹. The distance between the two signals is 500 m. Find, in m s⁻², the acceleration of the train.
- 5 A particle moves along a straight line, with constant acceleration, from a point A to a point B where AB = 48 m. At A the particle has velocity 4 m s^{-1} and at B it has velocity 16 m s^{-1} . Find:
 - a the acceleration of the particle
 - **b** the time the particle takes to move from A to B.
- 6 A particle moves along a straight line with constant acceleration 3 m s⁻². The particle moves 38 m in 4 s. Find:
 - a the initial velocity of the particle
 - **b** the final velocity of the particle.
- 7 The driver of a car is travelling at 18 m s⁻¹ along a straight road when she sees an obstruction ahead. She applies the brakes and the brakes cause the car to slow down to rest with a constant deceleration of 3 m s⁻². Find:
 - a the distance travelled as the car decelerates
 - **b** the time it takes for the car to decelerate from 18 m s⁻¹ to rest.

Homework Exercise

- 8 A stone is sliding across a frozen lake in a straight line. The initial speed of the stone is 12 m s⁻¹. The friction between the stone and the ice causes the stone to slow down at a constant rate of 0.8 m s⁻². Find:
 - a the distance moved by the stone before coming to rest
 - b the speed of the stone at the instant when it has travelled half of this distance.
- 9 A particle is moving along a straight line OA with constant acceleration 2.5 m s⁻². At time t = 0, the particle passes through O with speed 8 m s⁻¹ and is moving in the direction OA. The distance OA is 40 m. Find:
 - a the time taken for the particle to move from O to A
 - **b** the speed of the particle at A. Give your answers to one decimal place.
- 10 A particle travels with uniform deceleration 2 m s^{-2} in a horizontal line. The points A and B lie on the line and AB = 32 m. At time t = 0, the particle passes through A with velocity 12 m s^{-1} in the direction \overrightarrow{AB} . Find:
 - a the values of t when the particle is at B
 - **b** the velocity of the particle for each of these values of t.
- 11 A particle is moving along the x-axis with constant deceleration 5 m s^{-2} . At time t = 0, the particle passes through the origin O with velocity 12 m s^{-1} in the positive direction. At time t seconds the particle passes through the point A with x-coordinate 8. Find:

Problem-solving

The particle will pass through A twice. Use $s = ut + \frac{1}{2}at^2$ to set up and solve a quadratic equation.

- a the values of t (3 marks)
- **b** the velocity of the particle as it passes through the point with x-coordinate -8. (3 marks)

Homework Exercise

- 12 A particle P is moving on the x-axis with constant deceleration 4 m s^{-2} . At time t = 0, P passes through the origin O with velocity 14 m s^{-1} in the positive direction. The point A lies on the axis and OA = 22.5 m. Find:
 - a the difference between the times when P passes through A (4 marks)
 - **b** the total distance travelled by *P* during the interval between these times. (3 marks)
- 13 A car is travelling along a straight horizontal road with constant acceleration. The car passes over three consecutive points A, B and C where AB = 100 m and BC = 300 m. The speed of the car at B is 14 m s⁻¹ and the speed of the car at C is 20 m s⁻¹. Find:
 - a the acceleration of the car (3 marks)
 - **b** the time take for the car to travel from A to C. (3 marks)
- 14 Two particles P and Q are moving along the same straight horizontal line with constant accelerations 2 m s^{-2} and 3.6 m s^{-2} respectively. At time t = 0, P passes through a point A with speed 4 m s^{-1} . One second later Q passes through A with speed 3 m s^{-1} , moving in the same direction as P.
 - a Write down expressions for the displacements of P and Q from A, in terms of t, where
 t seconds is the time after P has passed through A.

 (2 marks)
 - **b** Find the value of t where the particles meet.

(3 marks)

 c Find the distance of A from the point where the particles meet. (3 marks)

Problem-solving

When P and Q meet, their displacements from A are equal.

- 15 In an orienteering competition, a competitor moves in a straight line past three checkpoints, P, Q and R, where PQ = 2.4 km and QR = 11.5 km. The competitor is modelled as a particle moving with constant acceleration. She takes 1 hour to travel from P to Q and 1.5 hours to travel from Q to R. Find:
 - a the acceleration of the competitor
 - **b** her speed at the instant she passes P.

(7 marks)

Homework Answers

```
1 7 m s<sup>-1</sup>
 4 0.175 m s<sup>-2</sup>
 5 a 2.5 \,\mathrm{m\,s^{-2}} b 4.8 \,\mathrm{s}
 6 a 3.5 \,\mathrm{m \, s^{-1}} b 15.5 \,\mathrm{m \, s^{-1}}
 7 a 54 m b 6 s
 8 a 90 m b 8.49 \,\mathrm{m \, s^{-1}} \, (3 \,\mathrm{s.f.})
 9 a 3.3 \text{ s} (1 \text{ d.p.}) b 16.2 \text{ m s}^{-1} (1 \text{ d.p.})
10 a t = 4 or t = 8
     b t = 4: 4 \text{ m s}^{-1} \text{ in direction } \overrightarrow{AB}, t = 8: 4 \text{ m s}^{-1}
          in direction BA.
11 a t = 0.8 or t = 4
     b 15.0 \,\mathrm{m}\,\mathrm{s}^{-1} \,(3 \,\mathrm{s.f.})
12 a 2s b 4m
13 a 0.34 \,\mathrm{m\,s^{-1}} b 25.5 \,\mathrm{s} \,(3 \,\mathrm{s.f.})
14 a P: (4t + t^2) \text{ m} Q: [3(t-1) + 1.8(t-1)^2] \text{ m}
     b t = 6 c 60 \,\mathrm{m}
15 a 4.21 km h<sup>-2</sup> b 0.295 km h<sup>-1</sup>
```