1/) ` ON COMPUTING INSTANTANEOUS GEOCENTRIC TIDES ALONG SATELLITE TRACKS THE NSWC STT PROGRAM(U) NAVAL SURFACE WEAPONS CENTER DAHLGREN VA E W SCHWIDERSKI ET AL. SEP 82 NSWC/TR-81-264 AD-A128 568 UNCLASSIFIED NL END DATE 6-83

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)				
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
NSWC TR 81-264 A.D.—A125.	568			
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED			
ON COMPUTING INSTANTANEOUS GEOCENTRIC	Final			
TIDES ALONG SATELLITE TRACKS,				
THE NSWC STT PROGRAM	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)			
	1			
E. W. Schwiderski				
L. T. Szeto	<u> </u>			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Naval Surface Weapons Center (K104)				
Dahlgren, Virginia 22448	61152N/ZR000-01-01			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
Chief of Naval Material	September 1982			
Department of the Navy	13. NUMBER OF PAGES			
Washington, DC 20360				
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)			
	UNCLASSIFIED			
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE			
Approved for public release; distribution unlimited.				
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different fro	nan Report)			
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
Ocean Tides and Currents	ļ			
Numerical Modeling				
Tidal Charts				
1 deg				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
- In the following report, the authors present three computer programs to compute geocentric				
tides including ocean and earth tides and ocean-loading effects along "parallel" satellite tracks				
from the harmonic ocean tidal constants listed on the NSWC GOTD Tape (Schwiderski and				
Szeto 1981). The first program prepares a basic standard satellite track (SST), which is shifted				
manufal to itself to define a 10 V 10 CCT and greaters. The accord manufacture between				
parallel to itself to define a 1° x 1° SST grid system. The second program computes harmonic				
	(see back)			

DD 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(20)

Tapes I, II, and III). From the prepared SST GTD tapes, the third (STT) program computes instantaneous tides along parallel satellite tracks by a smooth and fast interpolation scheme. All three programs eliminate various input-error possibilities of their preliminary versions, which have been applied to compute instantaneous geocentric tides along SEASAT tracks. The program descriptions include corresponding User's Guides and Program Listings. An extended version of the STT program is in preparation. It will include group beat effects on all major tidal components by frequency-wise neighboring minor tidal modes.

UNCLASSIFIED

FOREWORD

In this report, the authors describe an efficient computer program to compute geocentric tides along satellite tracks from prepared harmonic tidal constants computed on a standard satellite track grid system. The program is an improved version of a preliminary program, which has been applied to compute instantaneous geocentric tides along SEASAT tracks.

This project was supported by the Naval Surface Weapons Center's Independent Research Fund and by a grant from the National Geodetic Survey of the Department of Commerce/NOS/NOAA.* It is the author's most pleasant obligation to acknowledge the sustained and generous sponsorship of Mr. O. F. Braxton, Head of the Strategic Systems Department, his Associate, Dr. R. J. Anderle, and Mr. C. W. Duke, Jr., Head of the Space and Surface Systems Division. Many critical and stimulating suggestions were gratefully received from the authors' colleagues, Drs. C. J. Cohen, and B. Zondek.

The date of completion was July 1, 1981.

SELECTE D MAY 2 6 1963 Released by

O. F. BRAXTON, Head Strategic Systems Department

Justification		
Distribution/		
Ì		

Accession For

*National Ocean Survey (NOS)

National Oceanographic and Atmospheric Administration (NOAA)

iii

CONTENTS

	Page
FOREWORD	iii
ABSTRACT	vii
1. INTRODUCTION	1
2. NSWC STANDARD SATELLITE TRACK (SST) PROGRAM AND GRID SYSTEM	2
3. NSWC STANDARD SATELLITE TRACK GEOCENTRIC TIDE DATA (SST GTD) PROGRAM	7
4. NSWC STANDARD SATELLITE TRACK GEOCENTRIC TIDE DATA (SST GTD) TAPES I, II, AND III	11
5. NSWC SATELLITE TRACK TIDE (STT) PROGRAM	13
REFERENCES	24
APPENDIXES	
A. SST PROGRAM USER'S GUIDE AND PROGRAM LISTING B. SST GTD PROGRAM USER'S GUIDE AND PROGRAM LISTING C. STT PROGRAM USER'S GUIDE AND PROGRAM LISTING	

DISTRIBUTION

ABSTRACT

In the following report, the authors present three computer programs to compute geocentric tides including ocean and earth tides and ocean-loading effects along "parallel" satellite tracks from the harmonic ocean tidal constants listed on the NSWC GOTD Tape (Schwiderski and Szeto 1981). The first program prepares a basic standard satellite track (SST), which is shifted parallel to itself to define a 1° x 1° SST grid system. The second program computes harmonic geocentric tide data at all SST grid points, which are stored on three magnetic tapes (SST GTD Tapes I, II, and III). From the prepared SST GTD tapes, the third (STT) program computes instantaneous tides along parallel satellite tracks by a smooth and fast interpolation scheme. All three programs eliminate various input-error possibilities of their preliminary versions, which have been applied to compute instantaneous geocentric tides along SEASAT tracks. The program descriptions include corresponding User's Guides and Program Listings. An extended version of the STT program is in preparation. It will include group beat effects on all major tidal components by frequency-wise neighboring minor tidal modes.

1. INTRODUCTION

In an earlier report, the authors (Schwiderski and Szeto 1981) described briefly the major features of the NSWC ocean tide models (Schwiderski 1978a, b, 1979a - e, 1980, 1981a - k, 1982a - d), which require indispensable consideration in various applications. In particular, suggestions were discussed to improve the model accuracy especially in coastal waters. These general discussions were followed by a detailed description of the arrangement and format of the NSWC Global Ocean Tide Data (GOTD) Tape (Schwiderski 1981k), which contains the 1° x 1° gridded harmonic ocean tide constants, i.e., amplitudes and phases.

Using the NSWC GOTD 1981 tape, a Random-Point Tide (RPTIDE) program was elaborated complete with User's Guide and Program Listing. The RPTIDE program computes oceanic and/or geocentric (including earth tides and loading effects) tides at randomly specified geographical points and instances. Since the required GOTD 1981 tape contains over one million data, the general RPTIDE program is cost-wise limited to a relatively small number of random points. It is definitely far too expensive and time consuming to compute, for instance, geocentric tidal heights along satellite tracks, which carry altimeters to measure the instantaneous sea surface height underneath the satellite every half second or so.

It is the purpose of the present report to present the special NSWC Satellite Track Tide (STT) program, which computes efficiently geocentric tidal heights along tracks of altimeter-carrying satellites at the instances sea-surface measurements are being taken. It makes effective use of the fact that the ground tracks of satellites with identical and fixed-orbit parameters are essentially "parallel" to each other (see Figure 2). Indeed, disregarding negligible deviations, two consecutive satellite orbit tracks are congruent to each other in space and time, they differ only in a uniform longitudinal westward shift.

In Section 2, one finds a detailed description of the NSWC SST program and grid system, which generates from an approximately given standard satellite orbital ground track, a (basic) SST upon which the basic SST grid system is defined. Section 3 presents, in detail, the NSWC Standard Satellite Track Geocentric Tide Data (SST GTD) program, which converts the NSWC Global Ocean Tide Data (GOTD 1981) from its 1° x 1° spherical grid to the new SST grid system defined in Section 2. The generated new geocentric tide data are stored on three magnetic tapes (NSWC SST GTD Tapes I, II, and III) described in Section 4. These tapes are used in the NSWC STT program described in Section 5, which computes instantaneous geocentric tides along specified congruent satellite tracks. Finally, the Appendixes A, B, and C contain the corresponding User's Guides and Program Listings of all three NSWC programs (SST, SST GTD, and STT programs).

2. NSWC STANDARD SATELLITE TRACK (SST) PROGRAM AND GRID SYSTEM

The NSWC SST program generates from a given approximate standard satellite ground track between two consecutive ascending nodal points a basic SST, which serves as the basis of the SST grid system defined below.

Definition of ESST and ASST

An "exact" standard satellite track (ESST) is defined as a nonequatorial onerevolution ground track of a satellite (say, SEASAT or GEOS-3) traveling westward around the earth between two consecutive ascending nodal points both "exactly" on the equator. If one or both nodal points deviate slightly off the equator, the track is called "approximate" standard satellite track (ASST).

A. Input Data (ASST)

An ASST is specified by:

- (1) (λ_j, ϕ_j) = longitudes (East, $0^{\circ} \le \lambda_j \le 360^{\circ}$) and latitudes (North, -88° $\le \phi_j \le + 88^{\circ}$) of j = 1, 2, 3, ..., 381 ASST points, which are uniformly spaced by the constant travel time $\Delta \tau = \frac{\Phi}{380}$, where

The input data (1) and (2) must satisfy the following ASST accuracy conditions.

- (a) The λ_j , ϕ_j , $\hat{\gamma}$ values *must* be given to $0.5 \cdot 10^{-3}$ degrees and seconds, respectively.
- (b) The exact ESST condition

$$\phi_1 = \phi_{381} = 0 \tag{1}$$

is in practical applications usually not fulfilled. However, the minimum approximate condition

$$|\phi_1| < 0.5^{\circ} \text{ and } |\phi_{381}| < 0.5^{\circ}$$
 (2)

can and must be enforced to avoid significant losses in accuracy. The SST program checks this condition (see B. below) and rejects the given ASST in case of its violation.

Note 1: The Pole regions are excluded ($|\phi_i| \le 88^\circ$) to avoid, singularities in the grid system. The 381 spacing points along the ASST have been chosen to make the geographical distance between two consecutive points about equal to a one-degree equatorial distance. Of course, any other number of points could be chosen in principle.

B. Main Computation:

The following procedure generates from the given ASST an ESST, which is needed for the largest-integer arithmetic in the STT program of Section 5. This procedure simply shifts all track points along the corresponding parabolic tangents, in order to enforce Equation (1) while maintaining a constant but slightly adjusted travel time between the new consecutive track points (see Figure 1). At the same time the program shifts the resulting ESST to the Equator-Greenwich-Meridian intersection and augments the track by one skew-symetric additional point at each end. This completes the desired generation of the (basic) SST upon which the definition of the SST grid system is based (see Figure 2). The added two points simplify the practical application of the STT program of Section 5.

(1) Check for

$$|\phi_1| < 0.5$$
 and $|\phi_{381}| < 0.5$

if violated, reject given ASST, otherwise compute:

$$\Delta \tau = \hat{\tau}/380$$

$$\Delta \lambda_{1} = \lambda_{1} - \lambda_{2} \ (+360 \text{ if } < 0)$$

$$\Delta \phi_{1} = \phi_{2} - \phi_{1}$$

$$\Delta \lambda_{381} = \lambda_{380} - \lambda_{381} \ (+360 \text{ if } < 0)$$

$$\Delta \phi_{381} = \phi_{381} - \phi_{380}$$

$$\Delta \tau_{1} = \Delta \tau \phi_{1}/\Delta \phi_{1}$$

$$\Delta \tau_{381} = \Delta \tau \phi_{381}/\Delta \phi_{381}$$

$$\hat{\gamma}' = \hat{\gamma} - (\Delta \tau_{381} - \Delta \tau_{1})$$

$$\tilde{\Delta}\tau = (\Delta \tau_{381} - \Delta \tau_{1})/_{380}$$

$$V = \frac{1}{\Delta \tau} \left[(\Delta \lambda_{1})^{2} + (\Delta \phi_{1})^{2} \right]^{\frac{1}{2}}$$

$$\lambda = 360 - \lambda_{1} - \phi_{1} \Delta \lambda_{1}/\Delta \phi_{1}$$

$$\lambda'_{382} = \left[\lambda + \lambda_{381} + \phi_{381} \Delta \lambda_{381}/\Delta \phi_{381} \right] \text{ mod } 360, \ (0 < \lambda' < 360)$$

(2) For j = 2, 3, ..., 380 compute consectively:

$$\Delta \tau_{j} = \Delta \tau_{j-1} + \Delta \widetilde{\tau}, (\Delta \tau_{1} \text{ see above})$$

$$\Delta \lambda_{j} = \lambda_{j-1} - \lambda_{j+1} (+360 \text{ if } < 0)$$

$$\Delta \phi_{j} = \phi_{j+1} - \phi_{j-1}$$

$$S_{j} = \sqrt{\Delta \tau_{j}} / [(\Delta \lambda_{j})^{2} + (\Delta \phi_{j})^{2}]^{\frac{1}{2}}$$

$$\lambda'_{j+1} = (\lambda_{j} + S_{j} \Delta \lambda_{j} + \lambda) \mod 360, (0 \leq \lambda' \leq 360)$$

$$\phi'_{j+1} = \phi_{j} - S_{j} \Delta \phi_{j}$$

Figure 1. Construction of ESST from ASST

- Approximate SST points
 - Exact points

(3) Now generate the (basic) SST

$$\lambda_{1} = 360 - \lambda'_{3}, \phi_{1} = -\phi'_{3}$$

$$\lambda_{2} = 360, \phi_{2} = 0$$

$$\lambda_{j} = \lambda'_{j}, \phi_{j} = \phi'_{j} \quad (j = 3, 4, ..., 381)$$

$$\lambda_{382} = \lambda'_{382}, \phi_{382} = 0$$

$$\lambda_{383} = 2\lambda'_{382} - \lambda'_{381}, \phi_{383} = -\phi'_{381},$$

$$\hat{\lambda} = 720 - \lambda_{382},$$

and

$$\Delta \tau = \frac{\Delta}{\tau}/380$$

(4) Print all SST points (λ_j, ϕ_j) j = 1,2,..., 383, $\hat{\lambda}$, and $\Delta \tau$ on the SST G Tape I as described in Section 4.

Note 2: The User's Guide and Program Listing are given in Appendix A.

Definition of 1° x 1° SST Grid System

A 1° x 1° SST grid system of the earth is defined by shifting the basic SST (see (3) above) one-degree-wise westward "parallel" to itself as shown in Figure 2. Accordingly, the grid points are defined by:

$$\lambda_{jk} = \lambda_{j} + 1 - k (+ 360 \text{ if } < 0)$$
 $j = 1,2,..., 383$ $\phi_{jk} = \phi_{j}$ $k = 1,2,..., 360$

Note 3: As can be seen in Figure 2, the SST grid system is not a unique coordinate system. Indeed, through every given point in the SST range, one finds two crossing SST (ordinate) lines and in the overlapping region around the equator even three. Nevertheless, since only points on shifted SSTs will be considered in the STT program of Section 5, a unique geographical orientation is possible with the help of the travel time $\Delta \tau$ between grid points on the SST.

Figure 2. 1° x 1° SST Grid Scheme

"Parallel" Points

3. NSWC STANDARD SATELLITE TRACK GEOCENTRIC TIDE DATA (SST GTD) PROGRAM

The NSWC (SST GTD) program interpolates at all SST grid points (Section 2) amplitudes and phases of any desired partial ocean tide by second-order ruled surfaces (linear in both east and north directions) using the NSWC GOTD tape described in Schwiderski and Szeto (1981). The interpolated values are modified by harmonic addition of the corresponding amplitudes and phases of the earth tide and of the earth dip in response to the ocean tidal load. These modifications are used in the form of simple Love and Accad-Pekeris approximations as explained in Schwiderski and Szeto (1981). Hence, the generated new harmonic constants on the 1° x 1° SST grid system constitute amplitudes and phases of the total geocentric partial tide.

Note 1: No special effort is made to improve the accuracy of the oceanic tides in coastal waters. If higher accuracies are desired in such areas, instantaneous tidal computations should apply local refinements as suggested in Schwiderski (1981j) and Schwiderski and Szeto (1981).

A. Input Data

- (1) $(\lambda_j, \phi_j) = longitudes$ (East, $0^{\circ} \le \lambda_j \le 360^{\circ}$) and latitudes (North, $-89^{\circ} < \phi_j < +89^{\circ}$) of $j = 1, 2, 3 \dots, 383$ SST points generated by the SST program of Section 2 and printed, e.g., on the NSWC SST GTD Tape I described in Section 4 (Pole regions excluded!).
- (2) $(\xi_{m,n}^i, \delta_{m,n}^i)$ = ocean tide amplitudes (in m) and Greenwich phases (in deg) from GOTD 1981 tape, where m = 1,2, ..., 360 (longitude numbers) n = 1,2, ..., 168 (latitude number), and
- (3) $i = \text{ specified mode number } 1 \le i \le 11.$

Note 2:
$$\xi_{m,n}^i = 9.999$$
, $\delta_{m,n}^i = 999.9$ on land $\delta_{m,n}^i = 360^\circ = 0^\circ$ (phase jump)

(4) Earth tide parameters in GOTD Mode Order (see Schwiderski and Szeto 1981):

B. Main Computation

(1) Transfer to core memory

$$(\lambda_j, \phi_j)$$
 for $j = 1, 2, 3 \dots 383$
Set $j = 1$ and $k = 1$

(2) Compute

$$\overline{\lambda}_{j} = (\lambda_{j} + 1.5 - k) \mod 360, (0 \le \overline{\lambda} \le 360)$$

$$m = \text{Int } [\overline{\lambda}_{j}] + 1,$$

$$\psi = m - \overline{\lambda}_{j}$$

$$n = \text{Int } [90.5 - \phi_{j}] + 1,$$

$$\theta = \overline{\theta} = n - (90.5 - \phi_{i})$$

If n > 169 (Antarctica!), set

$$\xi_{j,k}^i = \delta_{j,k}^i = 0$$

and go to (3) below.

If n ≯ 169, transfer to core memory

$$(\xi_{m-1, n-1}^{i}, \delta_{m-1, n-1}^{i}); (\xi_{m, n-1}^{i}, \delta_{m, n-1}^{i})$$

$$(\xi_{m-1, n}^{i}, \delta_{m-1, n}^{i}), \qquad (\xi_{m, n}^{i}, \delta_{m, n}^{i}),$$

where

$$m - 1 = 0 \rightarrow 360$$
 and for $n = 169$

$$\xi_{m-1,169}^{i} = \xi_{m,169}^{i} = 9.999$$

$$\delta_{m-1,169}^{i} = \delta_{m,169}^{i} = 999.9$$

Check for land points and replace:

(a) if
$$\xi_{m,n-1}^{i} = 9.999$$
, replace $\theta \to 0$

(b) if
$$\xi_{m,n}^i = 9.999$$
, replace $\theta \to 1$

(c) if (a) and (b) hold, replace $\psi \rightarrow 1$

(d) if
$$\xi_{m-1, n-1}^i = 9.999$$
, replace $\overline{\theta} \to 0$

(e) if
$$\xi_{m-1,n}^i = 9.999$$
, replace $\overline{\theta} \to 1$

(f) if (d) and (e) hold, replace $\psi \rightarrow 0$

If (c) and (f) hold (Land!), set

$$\xi_{n,k}^i = \delta_{j,k}^i = 0$$

and go to (3) below, otherwise interpolate $\xi_{i,k}$ on the ruled second-order surface in ψ and θ

$$\xi_{i,k} = (1 - \psi) \left[\theta \xi_{m,n-1}^{i} + (1 - \theta) \xi_{m,n}^{i} \right] + \psi \left[\overline{\theta} \xi_{m-1,n-1}^{i} + (1 - \overline{\theta}) \xi_{m-1,n}^{i} \right]. \tag{*}$$

Test for 360° phase jumps and replace

if
$$\delta_{m, n-1}^{i} - \delta_{m, n}^{i}$$
 $\left\{ \begin{array}{c} > 180, \text{ replace } \delta_{m, n-1}^{i} \rightarrow \delta_{m, n-1}^{i} - 360 \\ < - 180, \text{ replace } \delta_{m, n-1}^{i} \rightarrow \delta_{m, n-1}^{i} + 360 \end{array} \right.$

$$\text{if } \delta_{m-1,\;n-1}^{i} - \delta_{m\;,n}^{i} \begin{cases} > 180, \, \text{replace } \delta_{m-1,\;n-1}^{i} \to \delta_{m-1,\;n-1}^{i} - 360 \\ < -180, \, \text{replace } \delta_{m-1,\;n-1}^{i} \to \delta_{m-1,\;n-1}^{i} + 360, \end{cases}$$

if
$$\delta_{m-1, n}^{i} - \delta_{m, n}^{i}$$

$$\begin{cases} > 180, \text{ replace } \delta_{m-1, n}^{i} \rightarrow \delta_{m-1, n}^{i} - 360 \\ < -180, \text{ replace } \delta_{m-1, n}^{i} \rightarrow \delta_{m-1, n}^{i} + 360 \end{cases}$$

Use adjusted δ 's to interpolate $\delta_{j,k}$ by formula (*) with ξ replaced by δ . Now compute and replace (ocean loading effect, see Schwiderski and Szeto 1981)

$$\xi_{j,k} \rightarrow 0.9333 \; \xi_{j,k}$$

Compute earth tide amplitude function

$$\bar{E}_{j} = \begin{cases} E_{i} \cos^{2} \phi_{j} & \text{for } \nu_{i} = 2 \\ E_{i} \sin^{2} \phi_{j} & \text{for } \nu_{i} = 1 \\ \frac{1}{2} E_{i} (3 \cos^{2} \phi_{j} - 2) & \text{for } \nu_{i} = 0 \end{cases}$$

Finally, compute geocentric harmonic constants by harmonic addition (cos and sin arguments in degrees).

$$\xi_{j,k}^{i} = \left\{ (\xi_{j,k})^{2} + (\overline{E}_{j})^{2} + 2\overline{E}_{j} \xi_{j,k} \cos \left[\delta_{j,k} + \nu_{i} (\lambda_{j} - k + 1) \right] \right\}^{\frac{1}{2}}$$

$$\delta_{j,k}^{i} = \tan^{-1} \frac{\xi_{j,k} \sin \delta_{j,k} - \widetilde{E}_{j} \sin \left[\nu_{i} (\lambda_{j} - k + 1)\right]}{\xi_{j,k} \cos \delta_{j,k} + \widetilde{E}_{j} \cos \left[\nu_{i} (\lambda_{j} - k + 1)\right]}$$

where $0 \le \delta \le 2\pi$ in radians.

(3) If j < 383, replace $j \rightarrow j + 1$ and repeat (2) above.

If $j \leq 383$, print all data $(\xi_{i,k}^i, \delta_{i,k}^i)$

j = 1, 2, ..., 383 and k on the magnetic tape SST GTD I, II, or III depending on the mode i as described in Section 4.

If k < 360, replace $k \rightarrow k + 1$, $j \rightarrow 1$, and repeat (2) above.

If $k \ge 360$, stop program.

Note 3: The User's Guide and Program Listing of this program are presented in Appendix B. Evidently, by applying this program for all mode numbers i = 1, 2, 3, ..., 11, one generates the SST GTD Tapes I, II, and III described in Section 4.

4. NSWC STANDARD SATELLITE TRACK GEOCENTRIC TIDE DATA (SST GTD) TAPES I, II, AND III

The NSWC SST GTD Tapes I, II, and III contain the geocentric (including earth tide and loading effects) harmonic tidal constants; i.e., amplitudes and phases

$$\left(\xi_{j,k}^{i} \cdot \delta_{j,k}^{i} \right) \left\{ \begin{array}{l} i = 1, 2, \dots, 11 \\ j = 1, 2, \dots, 383 \\ k = 1, 2, \dots, 360 \end{array} \right.$$
 (*)

generated by the SST GTD program described in Section 3. The data are defined on a 1° x 1° SST grid system, which is defined in Section 2 on the basis of an SST specified by the longitudes (East, in deg) and latitudes (North, in deg), respectively,

$$(\lambda_i, \phi_i)$$
 (j = 1,2, ..., 383) (**)

which are also listed on SST GTD Tape 1.

Computationally, the tidal data (*) are arranged by modes i(= 1, 2, ..., 11) on the three magnetic tapes in the order shown in Table 1 below.

Table 1: Mode Arrangement on SST GTD Tapes

SST GTD I	i = 1 : M ₂	i = 2 : S ₂	$i=3:K_1$	$i = 4 : O_1$	SST
SST GTD II	$i = 5 : N_2$	$i = 6 : P_i$	i = 7 : K ₂	$i = 8 : Q_1$	-
SST GTD III	i = 9 : Mf	i = 10 : Mm	i = 11 : Ssa	_	

In each mode i(= 1, 2, ..., 11), the tidal constants (*) are arranged by SST-numbers k (= 1, 2, ..., 360) in consecutive pairs of blocks with each block containing 384 words j (= 1,2, ..., 384). The first 383 words (in Format F10.8) in the first block are amplitudes $\xi_{j,k}^i$ (in m) and in the second block Greenwich phases $\delta_{j,k}^i$ (in rad). The last word (j = 384) in each block (in Formate I 10) gives the SST number k (= 1,2, ..., 360) of the block pair.

As shown in Table 1, the SST GTD Tape I contains two additional (final) blocks of 384 words j(=1, 2, ..., 384) in Format F 10.6. The first 383 words in the first block represent the SST latitudes ϕ_j (in deg) and in the second block the SST longitudes λ_j (in deg). The last word j = 384 in the first block gives the SST spacing time $\Delta \tau$ (in sec), and in the second block the periodic longitude shift $\hat{\lambda}$ of the SST (in deg.).

All data have been blockwise generated on the corresponding magnetic tapes (Table 1) by the BUFFER-OUT Statement on the CDC 6700 computer. These tapes have the following standard properties: 7 track, BDC form, even parity, 556 bpi, and unlabeled.

Note: On land (see Schwiderski 1978c) all tide data (*) are set to zero (see Section 3), i.e.

$$\xi_{j,k}^i = \delta_{j,k}^i = 0$$
 for land.

5. NSWC SATELLITE TRACK TIDE (STT) PROGRAM

The NSWC STT program uses the SST GTD Tapes I, II, and III described in Sections 3 and 4 to compute efficiently instantaneous geocentric tides at equidistant points and instances along "constrained satellite (say, SEASAT) tracks CST's" that are essentially parallel-displaced segments of the basic SST defined in Section 2 (see Figures 1, 2, and 3). The computed geocentric tides include the ocean tides superposed with the corresponding earth tides and earth dips in response to the oceanic tidal loads (see Schwiderski and Szeto 1981). When all leading tidal modes $(M_2, S_2, K_1, O_1, N_2, P_1, K_2, Q_1, Mf, Mm, and Ssa; see Table 2)$ are included, the resulting instantaneous tidal elevations carry a 10-cm accuracy anywhere over open ocean areas (see Schwiderski 1978a, b, 1979a-e, 1980, 1981a-j, and 1982a-d). This accuracy diminishes somewhat in coastal waters where special improved computations are suggested in Schwiderski (1981j) and Schwiderski and Szeto (1981).

Definition of Constrained Satellite Tracks (CST)

- A CST is a uniformly spaced (at least two points) segment of a satellite ground track, which (see Figure 3):
- (a) Is almost parallel (congruent) to the basic SST of the SST GTD Tapes I, II, and III defined in Sections 2, 3, and 4.
 - (b) Is gridwise continuous, i.e., it is without gaps in equidistant spacing points.
- (c) Lies almost entirely between the track's two consecutive ascending nodal points on the equator.
- (d) Lies almost entirely over the global ocean area specified by non-zero tidal constants listed on the SST GTD Tapes I, II, and III of Section 4.
- Note 1: If condition (a) is violated, say, by more than 0.5° along the given CST when shifted to coincide with the SST, then a new appropriate SST and corresponding, SST GTD tapes *must* be prepared (see Sections 2, 3, and 4).
- Note 2: Satellite tracks that are not gridwise continuous, cross the equator, say, by more than 5 sec and/or pass over land areas *must* be broken up into separate segments of CSTs to fulfill the conditions (b, c, and d) above.

A. Input Data:

- (1) y = year > 1975 (fixed for one run!)
- (2) d = day of year y (d = 1 for January 1st, also fixed for one run!)

- (3) $t_1 = initial time (in sec) of first CST point (<math>\lambda_1, \phi_1$) relative to Greenwich midnight of day d (universal time)
- (4) $\Delta t = \text{constant time step (in sec) along CST}$
- (5) N(>1) = total number of CST points
- (6) (λ_n, ϕ_n) = longitudes (East) and latitudes of first two (n = 1, 2) CST points (in deg.)
- (7) (λ_a, λ_b) = equator-crossing longitudes (in deg.) corresponding to the two consecutive ascending nodes of the track containing the CST
- (8) $(t_a, t_b) = \text{equator-crossing times (in sec) relative to Greenwich midnight of day } d_1(d+1), \text{ or } (d-1) \text{ for } t_a \text{ belonging to } \lambda_a \text{ and of day } d, (d-1), \text{ or } (d+1) \text{ for } t_b \text{ belonging to } \lambda_b$
- (9) $(\xi_{j,k}^i, \delta_{j,k}^i)$ = geocentric tidal amplitudes (in m) and Greenwich phases (in rad) from SST GTD Tapes I, II, and III, where $i = 1, 2, ..., I (\leq 11)$ = mode numbers j = 1, 2, ..., 383 = SST spacing points
- k = 1, 2, ..., 360 = SST ordinate lines (see Figures 2 and 3) (10) I = total number of tidal modes $(1 \le I \le 11)$ to be superposed
- (11) $\Delta \tau = SST$ time step from SST GTD Tape I (in sec)
- (12) $\hat{\lambda}$ = period longitude shift (in deg) of SST from SST GTD Tape I

Note 3: The CST data (3, 4, 5, and 6) must satisfy the CST definition above, necessary splits will be requested!

Note 4: For the equator-crossing longitudes (λ_a, λ_b) and the corresponding times t_a and t_b error bounds of less than 0.1° and 1.0 sec, respectively, are strongly recommended. Errors of more than 0.4° and 4.0 sec will be **rejected** for corrections (see B(3) and (4) below).

Note 5: The tidal data

$$\xi_{i,k}^i = \delta_{i,k}^i = 0$$
 signal land, and

$$\delta_{i,k}^i = 2\pi = 0$$
 a phase jump.

Table 2. Constants of Major Tidal Modes

Tidal Mode	<i>K</i> (m)	σ (10 ⁻⁴ /sec)	χ (deg)					
Semidiurnal Species								
M ₂ = Principal Lunar	0.242 334	1.405 19	$2h_0-2s_0$					
S ₂ = Principal Solar	0.112 841	1.454 44	0					
N ₂ = Elliptical Lunar	0.046 398	1.378 80	$2h_0 - 3s_0 + p_0$					
K ₂ ≈ Declination Luni-Solar	0.030 704	1.458 42	$2h_0$					
Diurnal Species								
$K_1 = Declination Luni-Solar$	0.141 565	0.729 21	$h_0 + 90$					
O ₁ = Principal Lunar	0.100 574	0,675 98	$h_0 - 2s_0 - 90$					
P ₁ = Principal Solar	0.046 843	0.725 23	$-h_0 - 90$					
Q ₁ = Elliptical Lunar	0.019 256	0.649 59	$h_0 - 3s_0 + p_0 - 90$					
Long-Period Species								
Mf = Fortnightly Lunar	0.041 742	0.053 234	2s ₀					
Mm = Monthly Lunar	0.022 026	0.026 392	$s_0 - p_0$					
Ssa = Semiannual Solar	0.019 446	0.003 9821	$2h_0$					

K =amplitude of the partial tide

where

 $T = [27\ 392.500\ 528 + 1.000\ 000\ 035\ 6D]/36\ 525$

D = d + 365(y - 1975) + Int [(y - 1973)/4]

d = day number of year (d = 1 for January 1)

y > 1975 = year number,

and

Int [x] = integral part of x

 $[\]sigma$ = frequency of the partial tide

 $[\]chi$ = astronomical argument of the partial tide

⁽h_o, s_o, p_o) = mean longitudes of sun, moon, and lunar perigee at Greenwich midnight

 $h_0 = 279.69668 + 36000.768925485T + 3.03 \cdot 10^{-4}T^2$

 $s_0 = 270.434\ 358 + 481\ 267.883\ 141\ 37T - 0.001\ 133T^2 + 1.9 \cdot 10^{-6}\ T^3$ $p_0 = 334.329\ 653 + 4\ 069.034\ 032\ 957\ 5T - 0.010\ 325T^2 - 1.2 \cdot 10^{-5}\ T^3$

B. Computation of SST Grid Brackets and Other Constants for CST

In the following preliminary computations, the given CST will be bracketed between two consecutive SST grid ordinates k and (k + 1) as shown in Figure 3. Subsequently, time and space constants will be computed, which are needed in the following main computations.

- (1) Transfer to core memory the CST data
- y, d, t_1 , Δt , N, t_a , t_b , λ_a , λ_b , (λ_1, ϕ_1) , (λ_2, ϕ_2) , and from the SST GTD Tape I the SST data

$$\Delta \tau$$
 and $\hat{\lambda}$.

(2) Compute and adjust day count

$$\lambda^1 = 360 - \lambda_h + \lambda_a + 360 \text{ if } < 360),$$

$$\hat{t} = t_h - t_a$$
 (+ 86400 if < 0),

$$\hat{\tau} = 380 \Delta \tau, \tau_1 = t_1 - t_2$$

If $\tau_1 > 3\hat{t}$, replace

$$\tau_1 \rightarrow \tau_1 - 86400, t_1 \rightarrow t_1 - 86400, d \rightarrow d + 1.$$

If $\tau_1 < -3t$, replace

$$\boldsymbol{\tau}_1 \rightarrow \boldsymbol{\tau}_1 + 86400,\, \boldsymbol{t}_1 \rightarrow \boldsymbol{t}_1 + 86400,\, \boldsymbol{d} \rightarrow \boldsymbol{d} - 1.$$

(3) Compute and check

$$\tau_{N} = \tau_{1} + (N-1) \Delta t.$$

If $\tau_1 < -\Delta \tau/2$ and/or $\tau_N - \hat{\tau} > \Delta \tau/2$, stop and print: Check Track Data! Otherwise compute and replace

$$\Delta t \rightarrow \Delta t \hat{\tau}/\hat{t}, \quad t_{\epsilon} = t_{a},$$

$$\tau_1 \rightarrow \tau_1 \hat{\tau}/\hat{t}$$

$$\lambda_{\epsilon} = \lambda_{a} + \frac{1}{2} (\lambda^{1} - \hat{\lambda}) \begin{cases} +360 \text{ if } < 0 \\ -360 \text{ if } > 360 \\ +0 \text{ otherwise.} \end{cases}$$

(4) If
$$|\tau_1| < \Delta \tau$$
 compute

$$\phi = \phi_1/(\phi_2 - \phi_1),$$

$$\Delta\lambda_1 = \lambda_1 - \lambda_2 \ (+360 \ if < 0),$$

$$\Delta \lambda = \lambda_{\epsilon} - \lambda_{1}$$
 (+ 360 if < - 10),

$$\Delta \lambda' = \phi \Delta \lambda_1$$
,

$$\tau_i' = \phi \Delta t$$
.

If
$$|\tau_1 - \tau_i'| > 0.4 \Delta \tau$$

and/or

$$|\Delta\lambda - \Delta\lambda|^2 > 0.4$$

stop and print: Check Track Data! Otherwise replace

$$t_{\epsilon} \rightarrow t_{\epsilon} + \tau_{1} - \tau_{i}^{\bullet}, \tau_{1} \rightarrow \tau_{i}^{\bullet},$$

$$\lambda_{\epsilon} \rightarrow \lambda_{1} + \Delta \lambda^{\prime} \qquad \begin{cases} +360 \text{ if } < 0 \\ -360 \text{ if } > 360 \\ +0 \text{ otherwise.} \end{cases}$$

(5) Compute the CST bracket data (see Figure 3)

$$k = Int [361 - \lambda_{\epsilon}], \lambda = (361 - \lambda_{\epsilon}) - k.$$

Replace

$$k = 361 \rightarrow 1.$$

Compute and replace

$$J = Int \left[2 + \tau_1/\Delta\tau\right],$$

$$M = Int \left[4 - J + \tau_N/\Delta\tau\right],$$

$$\tau_1 \rightarrow \tau_1 - (J - 2)\Delta \tau$$

(6) Compute the constants

$$\Delta \widetilde{\tau} = 1/\Delta \tau, \ \widetilde{\tau}_1 = \Delta \widetilde{\tau}/2, \ \widetilde{\tau}_2 = \widetilde{\tau}_1 \ \Delta \widetilde{\tau}, \widetilde{\tau}_3 = \widetilde{\tau}_2 \ \Delta \widetilde{\tau}$$

With the tidal parameters h_0 , s_0 , p_0 , and $(\sigma_i, \chi_i; i = 1, 2, ..., 11)$ listed in Tables 1 and 2 computed for i = 1, 2, ..., 11.

$$\overline{\sigma}_i = \sigma_i \Delta \tau, \overline{\chi}_i = \sigma_i t_e - 2 \overline{\sigma}_i + \pi \chi_i / 180$$

Keep the constants I, J, k, M, N, λ , Δt , $\Delta \tau$, $\Delta \tilde{\tau}$, τ_1 , $\tilde{\tau}_1$, $\tilde{\tau}_2$, $\tilde{\tau}_3$, and $(\tilde{\sigma}_i, \tilde{\chi}_i; i = 1, 2, ..., 11)$ for the main computations.

C. First Rough Interpolation

In this first step tidal amplitudes and phases are mode-wise linearly interpolated at the SST-spacing points on the CST using the data along the neighboring SST ordinate lines k and (k+1) as shown in Figure 3. Subsequently, instantaneous geocentric tides $\overline{\xi}_m$ are computed from the interpolated harmonic constants, which are automatically mode-wise superposed.

- (1) Set: i = 1 and $\xi_m = 0$ for m = 1, 2, ..., M
- (2) Transfer to core memory the tidal constants

$$(\xi_{j,k}^i, \delta_{j,k}^i)$$
 and $(\xi_{j,k+1}^i, \delta_{j,k+1}^i)$

for j = 1, 2, ..., 383 and i and k fixed $(k + 1 = 361 \rightarrow 1!)$

Set

$$i = J, m = 1$$

Figure 3. Scheme of Tide Interpolation

- (x), x = SST Spacing Points on CST
- = CST Spacing Points on CST

(3) Check for land points and define (λ_1, λ_2) as follows

For
$$\xi_{j,k}^i$$

$$\begin{cases}
>0 \text{ set } \lambda_2 = \lambda \\
>0 \text{ set } \lambda_2 = 1
\end{cases}$$
For $\xi_{j,k+1}^i$

$$\begin{cases}
>0 \text{ set } \lambda_1 = 1 - \lambda \\
>0 \text{ set } \lambda_1 = 1
\end{cases}$$

Now interpolate linearly

$$\xi_{m} = \lambda_{1} \xi_{j,k}^{i} + \lambda_{2} \xi_{j,k+1}^{i}$$
 (*)

check for 2π -phase jumps and replace δ 's for

$$\delta_{j,k}^{i} - \delta_{j,k+1}^{i} \begin{cases} > \pi \text{ replace } \delta_{j,k+1}^{i} \to \delta_{j,k+1}^{i} + 2\pi \\ < -\pi \text{ replace } \delta_{j,k}^{i} \to \delta_{j,k}^{i} + 2\pi \end{cases}$$

Use adjusted δ 's to compute δ_m by formula (*) with $\xi \to \delta$

Now compute the superposed instantaneous tide

$$\overline{\xi}_m \rightarrow \overline{\xi}_m + \xi_m \cos(\overline{\sigma}_i j + \overline{\chi}_i - \delta_m)$$

If m < M, replace $m \to m + 1$, $j \to j + 1$, and repeat (3) above. If $(m \le M)$, go to (4) below.

(4) If i < I, replace $i \rightarrow i + 1$ and repeat (2) above.

If (i \leq I), follow D below, but keep the constants M, N, Δt , $\Delta \tau$, $\Delta \widetilde{\tau}$, τ_1 , $\widetilde{\tau}_1$, $\widetilde{\tau}_2$, $\widetilde{\tau}_3$, and $\overline{\xi}_m$ (m = 1,2, ..., m).

D. Second Refined Interpolation

The finally desired instantaneous geocentric tides ζ_n (n=1,2,...,N) at the given CST spacing points are generally computed by a "cubic-parabolic spline" interpolation to achieve a smooth tangent variation along the ζ_n . In order to compute the tide ζ_n , say, between the SST-spaced data $\overline{\zeta}_2$ and $\overline{\zeta}_3$ (see C and Figure 3) a "cubic" polynomial is forced through $\overline{\zeta}_2$ and $\overline{\zeta}_3$ with the corresponding "parabolic" slopes

$$\vec{\xi}_m' = (\vec{\zeta}_{m+1} - \vec{\zeta}_{m-1})\tau$$
, for m = 2, and 3

Naturally, for shorter CSTs; e.g., between land areas (signaled by $\overline{\xi} = 0$ data) only ordinary parabolic or linear interpolation is used. In detail, the following tests must be made, which lead to the different interpolation cases 1, 2, 3, 4, and (subsequently) 5.

(1) If
$$M > 2$$
 and $\overline{\zeta}_2 \neq 0$, and

$$(1.1) \quad \overline{\zeta}_3 \neq 0, and$$

(1.1.1)
$$\bar{\xi}_1 \neq 0$$
, set $\tau = \tau_1$, m = 1, n = 1, and go to case 3

(1.1.2)
$$(\overline{\zeta}_1 = 0)$$
, set $\tau = \tau_1 - \Delta \tau$, m = 2, n = 1, and

(1.1.2.1) for
$$M > 3$$
 and $\overline{\zeta}_4 \neq 0$, go to case 3

(1.1.2.2) otherwise go to case 2

(1.2)
$$(\bar{\zeta}_3 = 0)$$
, and

(1.2.1)
$$\overline{\zeta}_1 \neq 0$$
, set
$$\tau = \tau_1, m = 1, n = 1 \text{ and go to case } 2$$

(1.2.2)
$$(\bar{\xi}_1 = 0)$$
, go to case (1)

(2.1)
$$M \gg 2, \overline{\zeta}_2 \neq 0$$
, and $\overline{\zeta}_1 \neq 0$, set $\tau = \tau_1$, $m = 1$, $n = 1$, and go to case 2

Now compute the interpolutions

Case 1. Constant interpolation for one oceanic datum $\bar{\zeta}_1 \neq 0$ or $\bar{\zeta}_2 \neq 0$

Compute

$$\zeta_n = \overline{\zeta}_1 + \overline{\zeta}_2$$
 for $n = 1, 2, ..., N$, and go to E

Case 2: Linear interpolation for two oceanic data $\overline{\xi}_m \neq 0$ and $\overline{\xi}_{m+1} \neq 0$

With $a = \Delta \widetilde{r}(\overline{\xi}_{m+1} - \overline{\xi}_m)$, $b = a \Delta t$, compute

$$\zeta_1 = \overline{\zeta}_m + a \tau$$
, for $n = 1$

$$\xi_n = \xi_{n-1} + b$$
, for $n = 2, 3, ..., N$, and go to E

Case 3: Parabolic interpolation for three oceanic data $\overline{\xi}_m \neq 0$, $\overline{\xi}_{m+1} \neq 0$, and $\overline{\xi}_{m+2} \neq 0$

(a) Compute:

$$a = \widetilde{\tau_1} \ (-3 \ \overline{\xi}_m + 4 \ \overline{\xi}_{m+1} - \overline{\xi}_{m+2}), b = \widetilde{\tau_2} \ (\overline{\xi}_m - 2 \ \overline{\xi}_{m+1} + \overline{\xi}_{m+2}), and go for$$

$$M < m+3, \text{ or } \overline{\xi}_{m+3} = 0 \text{ to (b), otherwise go to (c)}$$

(b) Compute

$$\zeta_n \approx (b\tau + a)\tau + \overline{\zeta}_m$$

If n < N, replace $n \rightarrow n + 1$, $\tau \rightarrow \tau + \Delta t$, and repeat (b).

If $(n \leq N)$, go to E.

(c) Compute

$$\zeta_{\rm n} \approx (b\tau + a) \tau + \overline{\zeta}_{\rm m}$$

Replace $n \rightarrow n + 1$ and $\tau \rightarrow \tau + \Delta t$

If $\tau < \Delta \tau$, repeat (c)

If $(\tau \triangleleft \Delta \tau)$, replace $\tau \rightarrow \tau - \Delta \tau$, $m \rightarrow m + 1$, and go to Case 4 below.

- Case 4: Cubic-parabolic interpolation for four oceanic data, $\overline{\xi}_{m-1} \neq 0$, $\overline{\xi}_m \neq 0$, $\overline{\xi}_{m+1} \neq 0$, and $\xi_{m+2} \neq 0$:
 - (a) Compute

$$a = \widetilde{\tau}_1 (\overline{\xi}_{m+1} - \overline{\xi}_{m-1}), b = \widetilde{\tau}_2 (2 \overline{\xi}_{m-1} - 5 \overline{\xi}_m + 4 \overline{\xi}_{m+1} - \overline{\xi}_{m+2})$$

$$c = \widetilde{\tau}_3 \ (\overline{\xi}_{m+2} - 3 \ \overline{\xi}_{m+1} + 3 \ \overline{\xi}_m - \overline{\xi}_{m-1})$$
, and go to (b) below

(b) Compute

$$\zeta_n = [(c \tau + b)\tau + a)j \tau + \overline{\zeta}_m$$

Replace $n \rightarrow n + 1$ and $\tau \rightarrow \tau + \Delta t$

If $\tau < \Delta \tau$, repeat (b)

If $(\tau \leqslant \Delta \tau)$, replace $\tau \to \tau - \Delta \tau$, and $m \to m+1$, and if M < m+2, or $\overline{\zeta}_{m+2} = 0$, go to

Case 5, otherwise repeat (a) above.

- Case 5: Parabolic end-point interpolation for three oceanic data $\bar{\xi}_{m-1} \neq 0$, $\bar{\xi}_m \neq 0$, and $\bar{\xi}_{m+1} \neq 0$:
 - (a) Compute

$$a = \widetilde{\tau_1} \ (\overline{\xi_m} - \overline{\xi_{m-1}}), b = \widetilde{\tau_2} (\overline{\xi_{m+1}} - 2 \overline{\xi_m} + \overline{\xi_{m-1}}), and go to (b) below$$

(b) Compute

$$\zeta_n = (b \tau + a) \tau + \overline{\zeta}_m$$

If n < N, replace $n \rightarrow n + 1$, $\tau \rightarrow \tau + \Delta t$ and repeat (b)

If
$$(n \triangleleft N)$$
, go to E

E. Output Data

List and/or print on tape all tidal data

$$\zeta_n : n = 1, 2, ..., N$$

as specifically requested.

Note 5: The User's Guide and Program Listing of this program are given in Appendix C.

REFERENCES

- 1. Schwiderski, E. W. 1978a. Global Ocean Tides, Part 1: A Detailed Hydrodynamical Interpolation Model, NSWC/DL TR-3866.
- 2. Schwiderski, E. W., 1978b. "A Detailed Hydrodynamical Interpolation Model of Worldwide Ocean Tides," presented at the Int. Symp. on Interaction of Marine Geodesy and Ocean Dynamics, Miami, Florida, October 10-15.
- 3. Schwiderski, E. W., 1978c. Hydrodynamically Defined Ocean Bathymetry, NSWC/DL TR-3888.
- 4. Schwiderski, E. W., 1979a. "NSWC Ocean Tide Program," presented at the NASA SEASAT ALT/POD Calibration Workshop, Austin, Texas, June 11-15.
- 5. Schwiderski, E. W., 1979b. "Detailed Ocean Tide Models of (N_2, M_2, S_2, K_2) and (K_1, P_1, O_1, Q_1) Including an Atlas of Tidal Charts and Maps," presented at the XVIIth General Assembly of the International Union of Geodesy and Geophysics in Canberra, Australia, December 2-15.
- 6. Schwiderski, E. W., 1979c. "Ocean Tides, Part I: Global Tidal Equations," *Marine Geodesy*, 3, p. 161.
- 7. Schwiderski, E. W., 1979d. "Ocean Tides, Part II: A Hydrodynamical Interpolation Model," *Marine Geodesy*, 3, p. 219.
- 8. Schwiderski, E. W., 1979e. Global Ocean Tides, Part II: The Semidiurnal Principal Lunar Tide (M₂), Atlas of Tidal Charts and Maps, NSWC TR 79-414.
- 9. Schwiderski, E. W., 1980. "On Charting Global Ocean Tides," Reviews of Geophysics and Space Physics, 18, p. 243.
- 10. Schwiderski, E. W., 1981a. Global Ocean Tides, Part III: The Semidiurnal Principal Solar Tide (S₂), Atlas of Tidal Charts and Maps, NSWC TR 81-122.
- 11. Schwiderski, E. W., 1981b. Global Ocean Tides, Part IV: The Diurnal Luni-Solar Declination Tide (K_1) , Atlas of Tidal Charts and Maps, NSWC TR 81-142.
- 12. Schwiderski, E. W., 1981c. Global Ocean Tides, Part V: The Diurnal Principal Lunar Tide (O₁), Atlas of Tidal Charts and Maps, NSWC TR 81-144.

- 13. Schwiderski E. W., 1981d. Global Ocean Tides, Part VI: The Semidiurnal Elliptical Lunar Tide (N₂), Atlas of Tidal Charts and Maps, NSWC TR 81-218.
- 14. Schwiderski E. W., 1981e. Global Ocean Tides, Part VII: The Diurnal Principal Solar Tide (P₁), Atlas of Tidal Charts and Maps, NSWC TR 81-220.
- 15. Schwiderski, E. W., 1981f. Global Ocean Tides, Part VIII: The Semidiurnal Luni-Solar Declination Tide (K₂), Atlas of Tidal Charts and Maps, NSWC TR 81-222.
- 16. Schwiderski, E. W., 1981g. Global Ocean Tides, Part IX: The Diurnal Principal Lunar Tide (Q_1) , Atlas of Tidal Charts and Maps, NSWC TR 81-224.
- 17. Schwiderski, E. W. 1981h. Similarities of the Leading Semidiurnal (N_2, M_2, S_2, K_2) and Diurnal (K_1, P_1, O_1, Q_1) Ocean Tides, Naval Surface Weapons Center Technical Report in preparation.
- 18. Schwiderski, E. W., 1981i. Exact Expansions of Arctic Ocean Tides, NSWC TR 81-494.
- 19. Schwiderski, E. W., 1981j. "On the Application of the NSWC Ocean Tide Models to Interactions of Oceanic and Terrestrial Tides", Proceedings of the 9th International Symposium on Earth Tides at Columbia University, New York, N.Y., July 17-22.
- 20. Schwiderski, E. W., 1981k. NSWC Ocean Tide Data Tape, GOTD 1981, available at the Naval Surface Weapons Center, Dahlgren, Virginia 22448.
- 21. Schwiderski, E. W., 1982a. Global Ocean Tides, Part X: The Fortnightly Lunar Tide (Mf), Atlas of Tidal Charts and Maps, NSWC TR 82-151.
- 22. Schwiderski, E. W., 1982b. Global Ocean Tides, Part XI: The Monthly Lunar Tide (Mm), Atlas of Tidal Charts and Maps, NSWC TR 82-147.
- 23. Schwiderski, E. W., 1982c. Global Ocean Tides, Part XII: The Semianual Solar Tide (Ssa), Atlas of Tidal Charts and Maps, NSWC TR 82-149.
- 24. Schwiderski, E. W., 1982d. Similarities of the Leading Long-Period (Mf, Mm, Ssa) Ocean Tides, Naval Surface Weapons Center Technical Report in preparation.
- 25. Schwiderski, E. W. and Szeto L. T., 1981. The NSWC Global Ocean Tide Data Tape (GOTD). Its Features and Application, Random-Point Tide Program, NSWC TR 81-254.

APPENDIX A

SST PROGRAM USER'S GUIDE AND PROGRAM LISTING

APPENDIX A

1. SST PROGRAM USER'S GUIDE

The Standard Satellite Track (SST) program generates from a given Approximate Standard Satellite Track (ASST) (see Section 2, Part A) an Exact Standard Satellite Track (ESST) that is used by the SSTGTD (see Section 3) program.

The following listing shows the SST program written in CDC Fortran Extended for the CDC 6700 computer under the SCOPE 3.4 operating system.

Input to the SST program consist of the ASST file attached to TAPE1 and a data card containing the orbital period in seconds with E20.9 format. The computed ESST is written onto a file called TAPE2. This ESST will be called the SST.

2. SST PROGRAM LISTING

```
PAGE
01/14/83 17.14.35
 FTN 4.6+433
                                                                                                                                                                    REAL LONG(384), LAT(384)
REAL LATP(384), LONGP(384)
READ LATP(384), LONGP(384)
READ IN ASST(APPROXIMATE STANDARD TRACK) DATA
READ(1) (( LAT(I), LONG(I)), I=1,381)
CHECK MINIMUM APPROXIMATE CONDITIONTO AVOID
SIGNIFICANT LOSSES IN ACCURACY.
CALL CHECK( LAT)
READ S.PERIOD
FORMAT(E20.9)
SPACIN* PERIOD/380.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GENERATE THE BASIC SST

DO 300 J=2,380

DP1=2,381

DP1= DT1+ DTT

UM1=J-1

UP1=3,381

DP=LAT(JP1)- LONG(JP1)

IF(DL.LT.O.) DL=DL+360.

DP=LAT(JP1)- LAT(JM1)

S= V+DT1/ SQRT( DL+DL+ DP-DP)

LONGP(JP1)= LONG(J)+ S*DL+ RL

LONGP(JP1)= LONG(J)+ S*DL+ RL

CONSP(JP1)= LAT(J)- S*DP
                                                                           ..SST(STANDARD SATELLITE TRACK) PROGRAM AUTHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           V= SORT( DL1*DL1+ DP1*DP1)/ SPACIN
RL=360. LONG(1)- LAT(1)*DL1/ DP1
RRL= RL+ LONG(381)+ LAT(381)*DL / DP
LONGP(382)= AMOD( RRL,360.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LONG(382) * LONGP(382)
LONG(383) * LONGP(382) *2. - LONGP(381)
LAT(382) *0.
                                                                                                                                                                                                                                                                                                                          DL(1*LONG(1)-LONG(2)

IF(DL(1.T.O.) DL(1+360.)

DP(1*LAT(2)-LAT(1)

DL=LONG(380)-LONG(381)

IF( DL.T.O.) DL=DL+360.

OP=LAT(381)-LAT(380)

DT1*SPACIN*LAT(381)/ DP1

DT1*SPACIN*LAT(381)/ DP1

THP=PERIOD-(DT-DT1)

DT1*(DT-DT1)/380.
                                             PROGRAM SST(INPUT,OUTPUT, TAPE1, TAPE2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ENDO0
LONG(1)* 360.- LONGP(3)
LONG(2)* 360.
LAT(1)* -LATP(3)
                                                                                                                                                  CDC FORTRAN EXTENDED
    0PT=1
                                                                                                                   L. T. SZETO
    73/74
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          LAT(2)=0.
                                                                                                                                  LANGUAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8
    PROGRAM SST
                                                                            0000000
                                                                                                                                                                                                              U
                                                                                                                                                                                                                                         ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           O O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               U
                                                                                                                                                                                   9
                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                        25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                စ္က
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ပ္ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5
                                                                                                                                                                                                                                                          ŧ
```

8						7		ę	2 C				31	2. 4.		46	20							
PAGE					21	25		Ç	69 69	2+61			27	53	48	2 • 42	52	9						
17.14.35				46	50	DEF INED	77		13	2+60	;	8	5 6	-	DEF INED	32	52	2*56				Ç	<u> </u>	
01/14/83	w.			2*45	DEF INED	88	DEFINED 27	,	DEFINED	4 80	39	2*47	2+25	DEFINED	61	31	ro -	55			-	45	DEFINED	
433	THE THE SST IN DEGREES			2*43	. e	2+45	DEFINED	53	8 C	4	DEFINED	46	2+22	6 9 9	9 60	2+23	.	51	47	DEFINED	32	DEFINED	2 8 2 8	30
FTN 4.6+433	HE THE SST			33	2*30	32	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	DEFINED	69	4 E	4:	4	1 6	8 4	- E	2+20	DEF INED	47	46	7 8 7 8	DEFINED	8 1	27 DEFINED	DEF INED
	0			2*24	2*21	27	58	88	2*13	6 G	45	4 4	0	2 • 4 4 5 8 4	e -	0	0 89	=	33	9 -	. e	46	76 66	45
	TIME IN SECONDS LONGITUDE SHIFT OF 182) 384)			REFS	REFS	REFS	REFS	REFS	REFS	REFS	REFS	REFS DEFINED	REFS	32 7	REFS	REFS	80 G	REFS	DEFINED	REFS	REFS	REFS	X 0X T 17 V 17 V 10 V 10	REFS
0PT=1	LAT(383)=-LATP(381) DD 500 J=3.381 LDNG(J)= LDNGP(J) LAT(J)= LATP(J) LAT(J)= LATP(J) LAT(384)=SST SPACING TIME IN SECONDS LAT (384)=TPR/380LONG(384)=PERIODIC LONGITUDE SHIFT LONG(384)=TOLONG(382) WRITE(2) (LAT(1),1=1,384) END		ENCES	RELOCATION																				
13/14	LAT(383)=-LATP DO 500 J=3.381 LONG(J)= LAT(J)= L CONTINUE ENDDO LAT(384)=SST SI LAT(384)=THP. LONG(384)=PE. LONG(384)=T20. WRITE(2) (LAT(WRITE(2)(LONG(MAP (R=3)	REFERENCES	R									ARRAY		ARRAY	ARRAY		ARRAY						
PROGRAM SST	8 000 0	SYMBOLIC REFERENCE MAP	DEF LINE	SN TYPE REAL	REAL	REAL	REAL	REAL	KEAL	INTEGER	INTEGER	INTEGER	REAL		REAL	REAL		REAL		REAL	REAL	REAL	REAL	REAL
PROC	65 65 70	SYMBOLI	ENTRY POINTS 10222 SST	iles Ol	0.1	9	200	TTQ	- -	7	T M	ا	LAT		LATP	LONG		LONGP		PER 100	7 Z	S	THE	>
	9 9 1		ENTRY 10222	VARIABLES 10435 DL	10433	10436	10440	10442	1043	10446	10447	10450	11252		12052	10452		12652		10431	10445	10451	10432	10443

	PROGRAM SST	M SST	13/14	0PT=1		FTN 4.6+433	01/14/83 17.14.35	17.14.35	PAGE
FILE NAMES	AMES INPUT	MODE		READS	17				
2043	OUTPUT TAPE 1 TAPE 2	UNFMT		READS	13 69 70	•			
EXTERNALS CHE SOR	ALS CHECK SORT	TYPE	ARGS 1 1 LIBRARY	REFERENCES 16 Y 30	24 12				
INLINE	INLINE FUNCTIONS TYPE AMOD REAL	TYPE REAL	ARGS 2 INTRIN	DEF LINE	REFERENCES 33 47				
STATEMENT 10414 5 0 30	LABEL	FINT	DEF LINE 18 49 62	REFERENCES 17 36 59	CES				
L00PS 10226 10310 10361	1.48£L 300 5 500	INDEX 1 2	FROM-10 13 13 36 49 59 62	LENGTH 10B 34B 4B	PROPERTIES EXT REFS EXT REFS INSTACK	د ، در			
STATIS PROGI BUFFI	STATISTICS PROGRAM LENGTH BUFFER LENGTH		3236B 10214B	1694 4236					

01/14/83 17:14:35				
01/14/83				
73/74 DPT=1 FIN 4.6+433	SUBROUTINE CHECK(LAT) REAL LAT(384) A:= ABS(LAT(!)	A381*ABS(LAT(381)) IF(.NOT.((A1.LT.O.5).AND.(A381.LT.O.5))) GD T020 RETURN	ENDIF PRINTSO FORMAT(*ERROR*) STOP ** STOPPED IN CHECK SUBROUTINE**	END
SUBROUTINE CHECK	-		c 20	
			-	

(R=3)
MAP
REFERENCE
SYMBOL 1C

ENTRY POINTS 3 CHECK	DEF LINE	REFERENCES 6	S .				
	TYPE	RELOC	RELOCATION	REFS	en i	DEF INED	e 4
27 A381 0 LAT	REAL	ARRAY	я.	REFS	p 04	3	₹ ₹
FILE NAMES OUTPUT	MODE		WRITES	თ			
INLINE FUNCTIONS TYPE ABS REAL	REAL	ARGS 1 INTRIN	DEF LINE	REFERENCES 3	•		
STATEMENT LABELS 14 20 22 30 FM	S	DEF LINE 7 10	REFERENCES 5 9	CES			
STATISTICS	7	348	28				

NSWC TR 81-264

APPENDIX B

SSTGTD PROGRAM USER'S GUIDE AND PROGRAM LISTING

APPENDIX B

1. SSTGTD PROGRAM USER'S GUIDE

(job card)

The standard Satellite Track Geocentric Tide Data (SSTGTD) program generates geocentric harmonic constants at SST (see Section 2) grid points. This data will be used by the STT (Section 5) program.

The following program listing shows SSTGTD written in CDC Fortran Extended for the CDC 6700 computer under the SCOPE 3.4 operating system.

Input for the SSTGTD program consist of three files and two other values using the free-format READ statement. These two values are the species number and the earth-tide amplitude of the tide that is being processed. The computed values are put on two other files (TAPE4 and TAPE5).

The following gives the control cards and data card for a sample run of the SSTGTD program for the M_2 tide.

```
(account card)
FTN, R=3, A.
ATTACH, TAPE2, the SST file generated by the SST (Section 2) program.
ATTACH, TAPE1, \xi_{m,n}^{i} (amplitude in meters) m = 1, 2,..., 360 (longitude number)
                                                  n = 1,2,..., 168 (colatitude number)
ATTACH, TAPE3, \delta_{m,n}^{i} (phase in degrees)
                                                  Ji = tidal mode being processed
                                                   Tapes 1 and 3 contain GOTD values
                                                   made randomly accessible by colalitude
                                                   number n.
REQUEST, TAPE4, *PF.
REQUEST, TAPE5, *PF.
LGO.
CATALOG, TAPE4, \xi_{j,k}^i (amplitudes in meters) j = 1,2,...,383 (SST points)
CATALOG, TAPE 5, \delta_{j,k}^i (phases in radians) \begin{cases} k = 1,2,..., 360 \text{ (SST number)} \\ i = \text{tidal mode being processed} \end{cases}
(end of record)
(SSTGTD program)
(end of record)
```

(data card) for i = 1 (M₂ tide): (2, 0.148308)

2. SST GTD PROGRAM LISTING

THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

AND THE PROPERTY AND THE PERSON

```
01/18/83 11.40.06
                                                           TAPE4*65, TAPE5*65)
..SSIGTO(STANDARD SATELLITE TRACK GEOCENTRIC TIDE DATA) PROGRAM FORMERLY CALLED SSSTOT.
                                                                                                                                                                                                                                                                                                                                                                                                           **FOR EACH STANDARD SATELLITE TRACK(SST) NUMBER(K).

DO 6000 K=1.360
**GENERATE AMPLITUDES AND PHASES(XJK(J), DUK(J)) FOR THE
**TOTAL GEOCENTRIC PARTIAL TIDE AT EACH SST POINT(J).

DO 4000 J=1.383
  FTN 4.6+433
                                                                                                                                                                                                                                                                                                                                          ISST=2
DTR= PI/180.
**INPUT THE SPECIES(NU) AND EARTH TIDE AMPLITUDE(E)
** FOR THE CORRESPONDING TIDAL MODE.
READ*,NU.E
                                                                                                                                                                                                                               REAL LAM
DIMENSION XDUK(768), XUK(384), DUK(384)
DIMENSION LVL(192),LA(170),XN(361), X(361)
EQUIVALENCE (XDUK(1), XUK(1)),( XDUK(385), DUK(1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ( K, U, ISST
. PHI, LAM, M, N, T, TB
. PSI )
LATITUDE AND LONGITUDE(PHI, LAM) OF SST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .XD,X
.XN,DMN,DM1N,MM1,DMN1,DM1N1
.PSI, T. TB, ICF )
IF(.NOT.(ICF.Eq.1)) GD TG 1050
XJK(U)=0.
                                                                                                                                                                                                                                                                                     **SETUP RANDOM ACCESS FILE O'N UNITS 1 AND 3 CALL OPENMS( 1,LVL, 192.0)
CALL OPENMS(3,L4,170.0)
PI=3.14159
                                   PROGRAM SSTGTD(INPUT=65.0UTPUT=65.TAPE1=65
,TAPE2.TAPE3=65
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(.NDT.(N.GT.169)) GD TD 1020
XJK(J)=0.
DJK(J)=0.
GD TD 3055
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DJK(J)=0.
GD TD 3050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ARE IN DEGREES.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CALL LATLON
                                                                                                                           LANGUAGE
CDC FORTRAN EXTENDED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL GTD
     0PT=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ELSE
                                                                                                                                                                              GTD
JUMPS
LATLON
                                                                                                                L. T. SZETO
                                                                                                                                                                   ET IDE
   73/74
                                                                                                                                                     CALLS TO
                                                                                                     AUTHOR
     PROGRAM SSTGTD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                نە > ئ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    000
                                                                                                                                                                                                                                                                                                                                                                                                                                       ပပ
                                                                                                                                                                                                                                                                                                                                                                     ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                      ပ
                                                                               000000000000
                                                                                                                                                                                                                                                                                 ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ပ္ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S
                                                                                                                                                                                                                                                                                                                                                                                                          9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        35
                                                                                                                                                                                                                     ñ
                                                                                                                                                                                                                                                                                 8
                                                                                                                                                                                                                                                                                                                                              25
                                                                                                                                                        9
```

```
PAGE
 01/18/83 11 40 06
                                                                                                                                                                                                                                                                                                                                                                                    COMPUTE GEDCENTRIC HARMONIC CONSTANTS BY HARMONIC ADDITION.

EB2= EB*EB

XI = XJK(J)*XJK(J)

XI = XJK(J)*DR

DR = DJK(J)*DR

RNUL(J)*DR

RNUL(J)*SORT(XI = EB*21*EB*XI

COS(DR+RNULK1))

DIT = XI*SIN(DR) - EB*SIN(RNULK1)

DID = XI*COS(DR) + EB*COS(RNULK1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ***4 QUADRANT ARCTANGENT FUNCTION ARTNO
RETURNS DUK ,O.LE.DUK.LT.2*PI
DUK(J)* ARTNO(D1T,D1D)
XUK,DUK ARE IN METERS AND RADIANS RESPECTIVELY.
                                                                                                                                                                         **SKIP PHASE JUMP CHECK(JUMPS SUBROUTINE)
**WHEN N,M ARE THE SAME (XD.LE.O.O) AS THE
**PREVIOUSLY COMPUTED N.M.
IF(.MOT.(XD.GI.O.O)) GO TO 2080
CALL JUMPS(DIM.DMIN.DMIN.)
CONTINUE
     FTN 4.6+433
                                          CONTINUE
INTERPOLATE

T1=1, -7

TB1=1, -TB

TB1=1, -TB

YUK(J) = PSI 1*(XN(M)*T+T1*X(M))

+PSI*(XN(MM1)*T8+TB1*X(MM1))

ADD OCEAN LOADING EFFECT.

XUK(J) = XUK(J)* O.933333
                                                                                                                                                                                                                                                                                  INTERPOLATE FOR DUK(J)

DUK(J)=PSI1*( DMN1*7F+71*DMN)

+PSI*( DM1N1*TB+TB1*DM1N)

PHIR= PHI*DTR

CALL ETIDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ENDDO
XJK(384)*K
BUFFER OUT(4,1) ( XJK(1), XJK(384))
IF(UNIT(4)) 5020,12,13
DJK(384)*K
BUFFER OUT(5,1) (DJK(1), DJK(384))
IF(UNIT(5)) 5021,12,13
CONTINUE
                                                                                                                                                                                                                                                                                                                                                     (E.PHIR.NU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                              ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ENDIF
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
       0PT=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ENDDO
PRINT6050
       73/74
       PROGRAM SSTGTD
                                                                                                                                                                                                                                                                                                                                                          پ ک
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3050
C
3055
C
4000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                5021
6000
C
                                                                                                                                                                                                                                                   2080
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5020
                                               ე
გე
                                                                                                                                                                                                                                                                                                                                                                                    U U U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  95
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ŝ
                                                                                                                                                                                                                                                                             75
                                                                                                                                                                                                                                                                                                                                              8
                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                             2
                                                                           8
                                                                                                                                            63
```

	P.RO	PROGRAM SSTGTO	73/74 OPT=1		FTN 4.6	4.6+433	01/18/83	11.40.06	PAGE	e
=	ស្	6050 12 13	FORMAT(* *,*SSTGTO F CALL EXIT STOP *12.STOPPED IN STOP *13.STOPPED IN END	*,*SSTGTD PROGRAM COMPLETED*) STOPPED IN SSTGTD* STOPPED IN SSTGTD*						
	SYMBOL	SYMBOLIC REFERENCE MAP	MAP (R=3)							
3170	POINTS SSTGTD	DEF LINE	REFERENCES							
ARIABLES 4336 DJ	LES DUK	SN TYPE REAL	RELOCATION ARRAY	REFS 17	6.0	89	2 * 109	DEF INED	45	52
35.12	2	REAL		REFS 48		11				
3517	N	REAL				77				
3520		REAL				77				
3532	8	REAL		REFS 91	92	63	DEFINED	68		
3500	ور د د	REAL			1000	06 6	DEFINED	26		
3534	5 5	REAL				6 6				
3502		REAL			DEF	29				
3526	68	REAL				91	92	93		
3527	EB2	REAL			DEFI	86				
3521	101	INTEGER			DEE INED	ני				
3504	, ,	INTEGER				45	54	55	63	2+66
				77 87	2+88	68	91	97		
0000	3					90	90	11150	ç	
3475	, H	REAL				<u> </u>	00	DET 1MED	25	
5136	3	INTEGER	ARRAY	REFS 18	22	}				
5436	٦,	INTEGER	ARRAY	REFS 18		0				
35 16	į	INTEGER			~	50.7				
3507	z	INTEGER				48				
3501	⊋ :	INTEGER			06	DEF INED	29			
2000	Ē	KEAL			7 3 9 0	79				
3476		REAL				2.5				
3512	PSI	REAL				62	63	77		
3524	PSI 1					DEF INED	62			
3533	PNULK				95	66	LEF INED	06		
3510	- {	REAL				9	63			
3511	8 5	REAL			# F	61	63	1.1		
3523	5 -	REAL				DEFINED	- 0			
6461	. *	REAL	ARRAY			2+63	}			
3513	2	REAL								
3536	¥;	REAL	ARRAY		2 • 19	c	0000	7		
3531	X12	REAL		REFS 91	DEFI	7 8 0	DEF INED	ò		

	POCERA	POCCEAM SSTGTD	73/74 0	0PT=1		u.	FTN 4.6+433	33	01/18/83	11,40.06	PAGE
VARIABLES		I TYPE REAL	RELOC. ARRAY	RELOCATION	REFS	7 4	e 70	66 63	87 66	2+88	2 * 106 105
	ž	REAL	ARRAY		REFS	6	4	2+63			
FILE NAMES O INP 142 DUT	AMES INPUT DUTPUT TAPE 1	MODE FREE FMT		READS	114						
446 2511 2653 3015	TAPES TAPES TAPE4 TAPE5	BUF BUF		WRITES	90 90 90						
FXTERNALS	MLS	ň	ARGS	REFERENCES	ıo						
	ARTNO COS	REAL REAL	2 1 LIBRARY		2+93						
	ETIDE EXIT		• 0 •	1 9 8 8 8							
	GTD JUMPS		ī 4 ö	72 36	ć						
	OPENINS	;	4	22	23						
	SIN	REAL REAL	1 LIBRARY		110						
	3	KEAL									
STATEMENT	MENT LABELS	S	DEF LINE	œ	110						
3345			61.18	107	110						
3212			9 60 1	53							
3243			13 66	26							
3321 3321			50	46 86							
00	4000 2000 2000 2000	INACTIV		10							
000		INACTIVE	•	32							
3455		FMT	115	414							
2203	S LABEL	INDEX	FROM-TO 32 112	LENGTH 1408	PROPERTIES	EXT REFS	EXITS	NOT INNER	NE R		
3204			103	1208							
E001	EQUIV CLASSES XDJK	LENGTH 768	MEMBERS -	- BIAS NAME(LENGTH) O XUK (384) •	(384)	384	DUK	(384)			
STAT PR	STATISTICS PROGRAM LENGTH BUFFER LENGTH	H H	4061B 3157B	3 2097 8 1647							

	·		ļ							
-	G	SUBRUCI INE CITUE	<u> </u>	J. N.						
			. £8)							
,	ACT	A .								
ın	7									
		C.C FORTRAN EX	TENDED							
		CALLED BY								
	ပ	SSTGTD								
ð		Ca that the EO	. 05 (11	0 4012						
		ALCADI CADICAL	OP (//	! } !						
		GO TO 4013								
		FISE)							
Š	1012		OS(PHIR)							
•))	CPHI2= COSPHI *COSPHI	SPHI *COS	HI						
		IF (NU. EQ.	2) TEMP=	CPHIZ	0 0/1					
	ပ	IF(NU.EQ.O) TEMP= (3.0*)	O) TEMP=	(3.0*CPH12-2.3/2.0 4.5*CPH12-1.	. 1/4.0					
,	,	TE (NO. EQ.								
2	£013	END IF								
		CONT. + TEMP								
		EBSE * CEMP								
		RETURN								
		2								
SYMBOLIC	C REFERENCE MAP (R=3)	MAP (R=3)								
	1111	OCCCOUNTE								
ENTRY POINTS 3 ETIDE	1	23								
	SN TYPE	RELOCATION	110N		9++0	DEF INCO	Ē			
33 COSPHI	REAL			2 1 1 2	2.7	100	DEFINED	16		
34 CPH12	REAL			7 T T S	- 6	DEFINED	-	-		
	REAL			NEET WED	; -	22				
	REAL			REFS	Ξ	11	19	DEFINED	-	
	0F4!			REFS	12	15	DEF INED	- !	ç	
32 TEMP	REAL			REFS	22	DEFINED	12		<u>-</u>	
CYTEDMAIS	TYPE	ARGS REI	REFERENCES							
NIS SIN	REAL	IBRARY	15 12							
CTATEMENT ARFIS	V 1:	DEF LINE	REFERENCES	ËS						
12 4012 25 4013		15	± £							
STATISTICS	7	ar c	60							
PROGRAM LEN	I .	acs	Ĉ,							

```
PAGE
01/18/83 11.40.06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      **RESTRICTED IN FORMULATIONS SO THAT

**RESTRICTED IN FORMULATIONS SO THAT

**N.EQ. 1 DOES NOT OCCURE.

NI*N-1

IF(MM1.EQ.0) MM1=360

CALL READMS(1, X(1), 361,N)

CALL READMS(3, D(1), 361,N)

CALL READMS(3, D(1), 361,N)

CALL READMS(3, D(1), 361,N)
        FTN 4.6+433
                                                                                                                                         ( N. M .XD.X .XD.X .XN.DMN.DMN1.DMN1.DM1N1 .YN.DMN1.DM1N.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1N1.DM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DIMENSION XN(361), X(361),D(361),DN(361)
REAL LAND
DATA NOLD/777/,N10LD/-2/,MOLD/-2/
DATA LAND/9.999/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF(.NDT.(XN(M).EQ.LAND)) GO TO 100
T=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CDC FORTRAN EXTENDED CALLED BY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONT INUE
                 73/74 OPT=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                          SUBROUTINE GTD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                            SSTGTD
                                                                                                                                                                                                                                                                                              L. T. SZETO
                                                                                                                                                                                                                                                                       AUTHOR
                                                                                                                                                  ن > > ن
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        55
                      SUBROUTINE GTD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ပ္ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ပပ
                                                                                                                                                                                                                                                                             0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ß
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               8
                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ŧ.
```

	SUBROU	SUBROUTINE GTD	73/74	74 OPT=1			FTN 4.6+433	+433	01/18/83	11.40.06	PAGE	8
d	8 8	2 200	1F(IF(.NOT.(X(M).EQ.LAND)) GO TO 200 IB=1 T=1, CONTINUE END!F IF(IA+IB.EQ.2) PSI=1, IF(.NOT.(XN(MM1).EQ.LAND)) GO TO :	(M).EQ.LAND)) GD INUE .EQ.2) PSI=1. N(MM1).EQ.LAND))	TO 200						
ř	0	8 8	A I	TB=0. CONTINUE ENDIF IF(.NOT.(X(MM1).EQ.LAND)) GD TO 400 IE=1 TB=1. CONTINUE	.EQ.LAND)) 6	50 TO 400						
•	5	υ U	Z I I I Z Z Z	ENDIF 1F(1D+1E.EQ.2) PSI=O. 1F(1D+1E.EQ.2) ICF=1 NOLD=N N1OLD=N1 MOLD=N1) PSI=0. E.EQ.4) ICF=	.						
4	Q	3	CUNITAGE ENDIF RETI	RETURN								
	SYMBOL	SYMBOLIC REFERENCE MAP)E MAP (R=3)	:3)								
NTRY 3	NTRY POINTS 3 GTD	DEF LINE		REFERENCES 81								
ARIABLES 211 D	LES	SN TYPE REAL	ARRAY	RELOC	REFS	13	37	42	43			
00		REAL		a. a.	DEF INED		4 4	4 80				
00	2 Z Z	REAL			DEFINED DEFINED	- -	4 4 6 10	47				
202	8 5 1	REAL	ARRAY		R R R R F S F S	e e e	4 5 5 1	44 DEFINED	2 4 5 2 6 5	ខ្ម		
808	<u> </u>	INTEGER	.	F. P.	DEFINED	5 - 4	. O. 1	75	` °	ก น ก บ		
25	1	INTEGER			REFS	12:	5.7.	DEFINED	3 62 7	82		
173		REAL	_	Q	REFS DEFINED	4 9 9	9 9	£0 ₹	64	69	r C	a
•	i				78	DEF INED	; - ç	7 4	: :			2
9					DEFINED	g - (24	25.) 	Ď	n O	
0	2	INTEGER		ď.	REFS REFS	19 19 19	DEFINED	31	35 35	36	37	94
170	NOLD	INTEGER	_		REFS	19	50	31	DEF INED	ĉ	92	

REGIS	SUBROUTINE GTD	73/74	73/74 OPT=1			FTN 4.6+433	9	01/18/83	01/18/83 11.40.06	PAGE	ю
VARIABLES	SN TYPE		RELOCATION								
200 200 200 200 200 200 200 200 200 200	INTEGER			REFS	33	34	77	DEF INED	23		
171 M10L				DEFINED	<u>.</u>	77					
0 PSI			۳. به.	DEF INED	_	63	74				
0			т. Б.	DEFINED	-	54	9				
0 18	REAL		F.P.	DEFINED	-	99	7.				
×	REAL	ARRAY	F.P.	REFS	1 3	36	58	69	DEF INED	-	49
				30							
9	REAL		F. P.	DEFINED	-	6	20				
NX O	REAL	ARRAY	т О.	REFS	£	33	53	64	DEF INED	-	
EXTERNALS	TYPE	ARGS	REFERENCES	s							
READMS	S M	4	33	34	36	37					
STATEMENT LABELS	ABELS	DEF LI		NCES							
45 40		38	35								
45 55		04									
94 70		5									
73 100		26									
102 200		61									
115 300		49									
124 400		72									
143 700		19									
STATISTICS PROCEDAR LENGTH	ENSTH	1533R	α α								

20 C C C AL C C C AL C C C C C C C C C C C	ROUTINE JUMPS(LED BY SSTGTD SSTGTD DMN1 - DMN DM11 - TRO DM11 - T	PHASE EDWIN 1 PH	DMN 1, DM 1N 1) 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0						
U	200000000000	PHASE DMN							
	22222222222	1 MAG = 1 MAG							
	(17180.0) (17180.0) (17180.0) (17180.0) (17180.0) (17180.0) (17180.0)	N							
	LT:-180.0)	DE MAN							
SYMBOLIC REFERENCE MAP	NP (R=3)								
ENTRY POINTS DEF LINE 3 JUMPS 1	REFERENCES 23								
VARIABLES SN TYPE O DMN REAL	RELOCATION F.P.	REFS	ın -	φ (L ;	5.5	<u>*</u>	16	
O DMN1 REAL	F.P.	REFS	- w -	<u>, eo :</u>	<u>.</u> o č	e = 6	81	20	
O DM1N REAL	۳. ص	REFS	- ~ •	- o f	5 5 5	5 t t	19	21	
O DM1N1 REAL	F.P.	REFS DEFINED	- w -	် ထင့	<u>.</u> 0 t	- 6 6	11	22	
102 D1 REAL		REFS PEFS	÷.	5 5 5	DEFINED	ពួល៤			
03.5		REFS	រិក្	. .	DEFINED	۰ د			
04		REFS	17	# 5 5	DEF INED	ထော			
107 DG REAL		REFS	21	22	DEF INED	ō			

LNOAGINS	SUBROUTINE LATLON	73/74 OPT=1		FTN 4.6+433	433	01/18/83	11.40.06	PASE
~	() > a	SUBROUTINE LATLON	K. J. ISST PHI, LAM, M. N. T. T PSI	18				
en Ç	₽	. SZETO FORTRAN EXTENDE LED BY LEG BY						
š ž	Š	AMBA 4). 5ST SST	IR LONG(384) 1).AND.(J.Eq.1))) GO TO 200 ((LAT(I),I*1,384) ((LONG(I),I*1,384)	0 0				
8	U U	ENDIF PHI=LAT(J) LAM=LONG(J) LATITUDE AND LONGITUDE(PHI,LAM) FROM LAMBAR 1.5.4 LAM IF(LAMBAR 1.5.0) LAMBAR LAMBAR+360.	ENDIF LAMILONG(J) LAMILONG(J) LAMITUDE AND LONGITUDE(PHI,LAM) FROM SST ARE IN DEGREES LAMEMER : 1.5-X+ LAW IF(LAMBAR-11.0.0) LAMBAR+360.	ST ARE IN DE	GREES			
22		IF(LAMBAR.GT.360.) M= LAMBAR+1 PG=90.5-PHI N=P9+1. PS=1.	LAMBAR≈ LAMBAR~360.					
8		18-1 18-1 18-1 END END						
SYMBOLI ENTRY POINTS	SYMBOLIC REFERENCE MAP (R*3) OINTS DEF LINE REFER	MAP (R*3) References						
VARIABLES	YT NS	RELOCATION	REFS	9	DEFINED	ត្	9	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INTEGER	۵.۵.۵ ساسا	•	1/0 REFS 19	15 20 20 20	16 DEFINED	**	
O LAM O LAMBAR 62 LAMBAR	INTEGEN REAL REAL	. a.	REFS 12	2*22	DEF INED 2+24	25	20 28	
65 LAT 665 LONG	REAL REAL	ARRAY ARRAY F D	REFS 13	23 19 20 06F INFD	DEFINED DEFINED	15 16 25		
	INTEGER REAL REAL		۵	DEFINED DEFINED 28	(19		
50 49	REAL		REFS 27	50	DEFINED	97		

SUBROUTINE LATLON	. LATLON	73/74 OPT=1	0PT = 1			FTN 4.6+433		01/18/83 11.40.06	11.40.06	PAGE	7
VARIABLES SN TYPE RELOCATION O T REAL F.P. O TB REAL F.P.	TYPE REAL REAL	RELO	CATION F.P. F.P.	REFS DEFINED	90 -	DEF INED	-	29			
VARIABLES	USED AS 1	FILE NAMES.	SEE ABOVE			:					
STATEMENT LABELS 15 200		DEF LINE REFERENCES	REFEREN	KES							
STATISTICS PROGRAM LENGTH		14658	821								

APPENDIX C

STT PROGRAM USER'S GUIDE AND PROGRAM LISTING

APPENIDX C

1. STT PROGRAM USER'S GUIDE

The Satellite Track Tide (STT) program computes instantaneous geocentric tides at equidistant points along a given Constrained Satellite Track (CST).

The following program listing shows the STT (program) subroutine written in CDC Fortran Extended for the CDC 6700 computer under the SCOPE 3.4 operating system.

The STT subroutine is called with the following statement:

CALL STT (MODES, YEAR, DAY, TIME1, NTOTAL, IUNIT, ISST, CSTLAT, CSTLON, ELONA, ELONB, ETIMEA, ETIMEB, TIDE, DT, NPTS, ISTOP)

where

MODES = the number of tidal modes to process

YEAR = year \geq 1975

DAY = day of YEAR, example: February 1, 1978, DAY = 32

TIME1 = time (in sec) of 1st point of the CST to be processed relative to Greenwich midnight of DAY

NTOTAL = number of points on the CST to be processed

IUNIT = beginning unit number of (2 x MODES) consecutive units to which the SSTGTD files are attached

ISST = unit number to which the SST file is attached

CSTLAT = array containing latitudes of the lst 2 CST points in degrees

CSTLON = array containing longitudes (EAST) of the 1st 2 CST points in degrees

ELONA = equator crossing longitudes (in deg) corresponding to the 2

ELONB = I consecutive ascending modes of the track containing the CST

ETIMEA = equator crossing times (in sec) relative to Greenwich midnight

ETIMEB = of DAY, (DAY-1), or (DAY+1) for ETIMEA belonging to ELONA and ETIMEB belonging to ELONB

TIDE = array containing the generated tide values

DT = time in sec between consecutive points of the CST

NPTS = number of tide values returned by STT in TIDE(1) through TIDE (NPTS), $1 \le NPTS \le 100$

ISTOP = flag, if ISTOP = 0, the last set of tide values have been generated for the given CST.

For each CST track to be processed, the STT subroutine (program) is called repeated until a zero is returned for the ISTOP variable. For each successive return from STT, NPTS indicates the number of successive tide values generated and stored in the TIDE array. ($1 \le NPTS \le 100$) Also, NPTS must be set to -1 before the first call to STT for each track. The BUFFER IN statement in STT bring in data files (SSTGTD) that are in binary form. The SSTGTD magnetic tapes are in coded form as described in Section 4. The SST data file is also described in Section 4. The following shows how the SSTGTD files are attached.

2. STT PROGRAM LISTING

```
PAGE
16, 18, 59
01/21/83
                                                                                                                                                                                                                                                                                                                                                                                                                 (CSTLAT.CSTLON, DAY,SSTTS,HAT
.ETIMEA.ETIMEB.ELONA.ELONB.TIME1,NTOTAL
, ETIME.ELONG, K. TAU1. RLATD.JCAP.MCAP.TAUN
                                           (MODES, YEAR, DAY, TIME!, NTOTAL, IUNIT, ISST
.CSTLAT, CSTLON, ELONA, ELONB, ETIMEA, ETIMEB
. TIDE
. DT.NPTS,NMINUS)
 FTN 4.6+433
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ( MODES, JCAP, K, MCAP, N707AL, RLATD
, DT, SSTTS, DTAUT, TAU1, TAUN, IUNIT
, FREQB, ASTROB
, TIDEB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ETIME. SSTTS. DTAUT )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ..COMPUTE INSTANTANEOUS GEOCENTRIC TIDES(TIDE) AT GIVEN CST-SPACINGS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ..THE 1ST ROUGH INTERPOLATION OF TIDAL HEIGHTS(TIDEB) WITH SST-SPACING ALONG THE CST THAT IS BEING PROCESSED. CALL INTRP1
                                                                                                                                                                                                                                                                       IF(.NOT.(NPTS.LT.O)) GO TO 6080
..PERFORM THE FOLLOWING IF THIS IS
THE 1ST CALL TO STT FOR THE CURRENT
CST(CONSTRAINED SATELLITE TRACK)THAT
IS BEING PROCESSED.
NCASE=0
REWIND ISST
                                                                                                                                                                                                                                                                                                                                                                 ..READ FROM THE SST FILE.
READ(ISST) (SSTLAT(1),1=1,383),SSTTS
READ(ISST) (SSTLON(1),1=1,383),HAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(.NOT. ( NMINUS.LT.100)) GD TD 7020
NPTS= NMINUS
CONTINUE
                                                                                                                                                                              DIMENSION TIDE(100), TIDEB(383)
DIMENSION CSTLON(4), CSTLAT(4)
DIMENSION SSTLAT(383), SSTLON(383)
DIMENSION ASTROB(11), FREGB(11)
INTEGER YEAR, DAY
DATA NCASE/O/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (DAY, YEAR, E ASTROB, FREOB,
 OPT=0 TRACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NMINUS=NTDTAL
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                       CALL ECROSS
                                       SUBROUTINE STT
                                                                                                                             ECROSS
INTRP 1
INTRP 2
                                                                                                                   CONST
 74/74
                                                                                                      CALLS TO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NPTS= 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    END I F
                                                    0 0 × m
                                                                                                                                                                                                                                                                                                                                                                                                                      ଓ ଓ ≻ ଅ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ن >
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ७७७≻
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6080
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        7020
 SUBROUTINE STT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ပ
                                                                                                      00000
                                                                                                                                                                                                                                                                                       0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ပပ
                                                                                                                                                                                                                                                                                                                                                                  ပ
                                                                                                                                                         9
                                                                                                                                                                                                                         ō
                                                                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                                                                                      25
                                                                                                                                                                                                                                                                                                                                                                                                                      8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 52
```

SUB	SUBROUTINE	STT	74/74	OPT=O TRACE	wi C		FTN 4.6+433	‡ 33	01/21/83	16, 18, 59	PAGE	~
9		<i>∪</i>	5	RP2 (MCAP.NTOTAL. , TAU1. NMINUS , TIDE , NCASE NMINUS-NPTS	DTAL, DT.SSTTS, DTAUT MINUS, TIDEB, NPTS)	DTAUT						
မှာ ဖ			END END END									
SYM	WBDLIC F	SYMBOLIC REFERENCE MAP	MAP (R=3)									
ENTRY POINTS 4 STT	41S	DEF LINE	REFERENCES 65	ENCES								
뒱	NS SE		RE	RELOCATION	9	ñ	76	4				
2432 ASI 0 CST	ASTRUB	REAL	ARRAY	F.P.	REF.S	, to	53	DEF INED	-			
	CSTLON	REAL	ARRAY	a i	REFS	د	53	DEFINED	t OEETMED	•		
OOA	_	INTEGER		a a	REFS	16 29	6 4 1 4	. S	DEF INED	- •		
	DTAUT	REAL		•	REFS		4-	58				
	ELONA	REAL		d. 1	REFS		DEFINED					
	ELONB	REAL		۳. م.	REFS		DEF INED	-				
224 ELU	FILME	REAL			REFS	29	34					
	ETIMEA	REAL		F.P.	REFS	29	DEFINED	-				
0	ETIMEB	REAL		۳. وز	REFS	29 4E	DEFINED	- ;				
2445 FRE	FREOB	REAL	AKKAY		2 2 2	2 - 2	DEFINED	- 58 - 54				
	_	INTEGER			REFS	27	28	DEF INED	27	28		
	ST	INTEGER		م د	DEFINED	- ;	I/O REFS	25	27	28		
INDI O	IONII	INTEGER			REFS	53	41	•				
	i	INTEGER			REFS	29	4 1					
	A P	INTEGER		4	REFS	29	41	58				
	MODES	INTEGER		ŗ.	REFS		DEFINED	1.	24			
	NMINUS	INTEGER		F.P.	REFS	51	25	58	63	DEF INED	•	46
197	0.010	CATATA			63 nff 1Nfn	64						
, 0	3	INTEGER		a.	REFS	19	58	63	64	DEF INED	-	20
	•			(52	ć	;	70	q	OF CIMED	•	
0 NTC	NTOTAL	INTEGER		.	X E F S	5 6 7 8	4 4	2	0	0511450		
	SCT! AT	DEAL	ARCAY		REFS	4	DEFINED	27				
	SSTLON	REAL	ARRAY		REFS	4	DEF INED	28				
	SSTTS	REAL			REFS	53	34	4-	58	DEFINED	2.2	
	3 :	REAL Dr.			REFS	29	4 4	ų				
226 TAU1	- Y	REAL	VAGGA	a	25.5	2 5	80	DEFINED	-			
	958	REAL	ARRAY		REFS	12	4	58				
0	TIME 1	REAL		۳. و.	REFS	59	DEF INED	-				

SUBROUTINE STI	STT	74/74	74/74 OPT=0 TRACE			FTN 4.6+433	+433	01/21/83	01/21/83 16.18.59	PAGE	m
VARIABLES SN TYPE O YEAR INTEGER VARIABLES USED AS FILE	TYPE INTEGER USED AS		RELOCATION F.P. NAMES, SEE ABOVE	REFS	16	34	DEFINED	-			
EXTERNALS CONST ECROSS INTRP 1 INTRP 2	TYPE	ARGS 7 20 11 11 11	REFERENCES 34 29 41 58 58								
STATEMENT LABELS / 63 6080 74 7020		DEF LINE 47 53	E REFERENCES 19 51	v							
STATISTICS PROGRAM LENGTH		24608	1328								

```
PAGE
 01/21/83 16.18.59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ASTRO(11)=HO2
DD 6060 1=1,11
FREQ(I)*SSTTS
ASTROB(I)=FREQ(I)*STME- 2.0*FREOB(I)*ASTRO(I)*DTR
CONTINUE
 FTN 4.6+433
                                                                                                                                                                                                                                                                                                                                 **COMPUTE MEAN LONGITUDES OF SUN.MOON, AND LUNAR
PERIGEE AT GREENWICH MIDNIGHT. (DEGREES)
HO=279.69668+ 36000.768925485*T+(3.02E-4*T2)
SO=270.434358+481267.88314137*T-0.001133*T2+
(1.9E-6*T3)
PO=334.329653+4069.0340329575*T-0.010325*T2
-(1.2E-5*T3)
HO2*HO+HO
SO2=SO+SO
SO3=SO2+SO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    **COMPUTE ASTPONOMICAL ARGUMENTS ,ASTRO()IN DEGREES, OF THE PARTIAL TIDES.
ASTRO( 1)=HO2-SO2
                                                                                                                           DIMENSION ASTRO (11), FREQ (11)

INTEGER DAY, YEAR

DATA PI/3, 1415926535898

DATA (FREQ= 1, 40519E-4, 1, 4544E-4, 0, 72921E-4

DATA (FREQ= 1, 40519E-4, 1, 4544E-4, 0, 72921E-4

O.67598E-4, 1, 37880E-4, 0, 72528-4, 1, 45842E-4

O.64959E-4, 0.53234E-5, 0, 26392E-5, 0, 39821E-6)

DTR= PI/180.

DTAUT= 1/SSTTS

D=DAY+365-(YEAR-1975)+ INT((YEAR-1973)/4.0)

T=(27392,500528+1,000000356+D)/36525.
                                                          SSTTS
                                                                         DTAUT
                                                             ETIME.
                                                        (DAY, YEAR, E1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ASTRO(2)=0.
ASTRO(3)=H0+90.
ASTRO(4)=H0-502-90.
ASTRO(5)=H0-503-P0.
ASTRO(6)=H0-90.
ASTRO(7)=H0-90.
ASTRO(9)=H0-503+P0-90.
ASTRO(9)=S02-P0
    OPT=O TRACE
                                              SUBROUTINE CONST
    74/74
                                                                                        CALLED BY
STT
                                                                                                                                                                                                                                                                                                              T3=T2*T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ENDDO
RETURN
END
                                                                                                                                                                                                             - 4
                                                              5 >
      SUBROUTINE CONST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ر
9090
                                                                                           U U
                                                                                                                                                                                                                                                                                                                                              ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          υU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Q
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ပ္ဖ
                                                                                                                                                                                 ō
                                                                                                                                                                                                                                                         ā
                                                                                                                                                                                                                                                                                                                              8
                                                                                                                                                                                                                                                                                                                                                                                                       25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             8
```

	SUBROU	SUBROUTINE CONST	74/74	OPT=0 TRACE	ж		FTN 4.6+433	1433	01/21/83	16, 18, 59	PAGE	8
	SYMBOL	SYMBOLIC REFERENCE MAP	E MAP (R=3)									
ENTRY	ENTRY POINTS 4 CONST	DEF LINE	E REFERENCES 50	NCES								
VARIABLES	iles	SN TYPE	REL	RELOCATION								
220	220 ASTRO	_	ARRAY		REFS	7	47	DEF INED	34	32	36	37
					38	38	9	4	42	43	44	
0	ASTRO8	REAL	ARRAY	F. P.	REFS	7	DEFINED	-	47			
8	٥	REAL			REFS	17	DEF INED	16				
0	DAY	INTEGER		я. 9.	REFS	o	9	DEF INED	-			
0	DTAUT	REAL		F.P.	DEF INED	-	ŧ,					
Š	DTR	REAL			REFS	47	DEFINED	4				
0	ET IME	REAL		F. P.	REFS	47	DEF INED	-				
233	FREO	REAL	ARRAY		REFS	7	46	47	DEFINED	=		
0	FREOB	REAL	ARRAY	F.P.	REFS	7	47	DEF INED	-	46		
211	£	REAL			REFS	2*28	36	37	39	4		
					DEFINED	23						
214	H02	REAL			REFS	34	38	40	4	DEFINED	28	
217	-	INTEGER			REFS	2*46	4 * 47	DEF INEO	45			
9	Ы	REAL			REFS	4	DEFINED	5				
213	2	REAL			REFS	38	4	43	DEF INED	56		
0	SSTTS	REAL		F. P.	REFS	ō	46	DEFINED	-			
212	S	REAL			REFS	2 * 29	3	43	DEFINED	24		
215	203	REAL			REFS	ခွ	34	37	42	DEF INED	29	•
216	503	REAL			REFS	38	4	DEFINED	30			
506	-	REAL			REFS	2 * 18	6	23	24	26		
					DEF INED	17						
201	12	REAL			REFS	1	23	24	26	DEF INED	₽	
20	T3	REAL			REFS	24	56	DEFINED	19			
0	VEAR	INTEGER		я. Э.	REFS	6	2 * 16	DEFINED	-			
INE THE	FLANCTIONS	NS TYPE	ARGS	DEF LINE	REFERENCES							
		-	1 INTRIN		16							
STATEM	STATEMENT LABELS	ST:	DEF LINE	8	KES							
0	0909		48	4								
L00PS 142	LABEL 6060	INDEX I	FROM-10 45 48	LENGTH 148	PROPERTIES OPT							
STATISTICS	ATISTICS POOCDAM I FNGTH	HI	265R	181								
! !			1	. !								

```
(CSTLAT, CSTLON, D. SSTTS, HAT
.ETIMEA.ETIMEB.ELONA.ELONB, TIMET, NTOTAL
.ETIME, ELONG, K, TAUT, RLATD, JCAP, MCAP, TAUN
. DT
SUBROUTINE ECROSS
                  ७७ > ∞
```

```
..COMPUTE LONGITUDE(ELONG) AT WHICH THE CST CROSSES
LATITUDE LINE SSTLAT(JCAP)
..COMPUTE THE TIME(ETIME) AT WHICH THE CST CROSSES
LATITUDE LINE SSTLAT(JCAP)
IF(.NDT.(fTAUT.LT.-SSTTS2).DR.(TAUN-TAUHAT.GT.SSTTS2)))GOTO1070
STOP "STOPPED IN ECROSS.CHECK TRACK DATA"
CONTINUE
HH= TAUHAT/THAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(.NOT.(ABS(TAU!).LT.SSTTS)) GD TO 1090
DL!= CSTLON(!)-CSTLON(2)
IF( DL!.LT.O.) DL!=DL!+360.
FH!= CSTLAT(!)/( CSTLAT(?)-CSTLAT(!))
DL= ELDNG-CSTLON(!)
IF(DL.LT.-10.) DL=DL+360.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ELONG=ELONA+ .5+(RL1- HAT)
IF(ELONG.LT.O.)ELONG=ELONG+36O.
IF(ELONG.GT.36O.) ELONG=ELONG-36O.
                                                                                                                                                             REAL CSTLAT( 4), CSTLON( 4)
RL1=360.=ELONS+ELONA
IF(RL1.LT.360.) RL1=RL1+360.
THAT=ETIMEA
IF(THAT.LT.0.) THAT=THAT+86400
TAUHAT= 380.*SSTTS
TAUHAT= 380.*SSTTS
TAUH= TIME1- ETIMEA
IT: *** THAT**
IF(NOT. ( TAU1.GT.T3)) GD TD 1020
TAU1**
TAU1*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(.NDT.( TAU1.LT.-T3)) GD TD 1030 TAU1* TAU1+86400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SSTTS2= SSTTS/2.
TAUN=TAU1+ (NTOTAL-1)+DT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TIME 1= TIME 1+86400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TAU1= TAU1+HH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ETIME = ETIMEA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONT INUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
CALLED BY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1070
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ပ
ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00000
                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                                                               ŧ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ပ္တ
```

IF(.NOT.(.NOT.((ABS(TAU1-TAU1P).GT.(.4+SSTTS)).OR. (ABS(DL-DLP).GT.O.4)))GGTO 3030

DLP= PHI+DL1 TAU1P=PHI+DT

22

	SUBROUTINE ECROSS	ECROSS	74/74	OPT=0 TRACE	ļų.		FTN 4.6+433	433	01/21/83	16.18.59	PAGE	~
8 2		3030	ETIME ET TAU1 = TA ELONG = CA IF(ELONG IF(ELONG GD TO 30 GL SE CONTINUE	TAU1= TIME+ TAU1- TAU1P TAU1= TAU1P ELONG= CSTLON(1)+ DLP IF(ELONG-LT.O.) ELONG=EL IF(ELONG-GT.360.)ELONG=E GG TO 3040 SE CONTINUE CONTINUE	ETIME=ETIME+ TAU1- TAU1P TAU1= TAU1P ELGUG= CSTLON(1)+ DLP IF(ELDNG.LT.O.) ELDNG=ELDNG+36O. IF(ELDNG.GT.36O.)ELDNG=ELDNG-36O. SE GOTO 304O SE CONTINUE STOP "STOPPED IN ECROSS, CHECK TRACK DATA"	360. 360. X TRACK	DATA"					
00		. 1090 	CONFINCE ENDIF CONTINUE ENDIF **COMPUTE K-BI	CONTINUE ENDIF **COMPUTE K-BRACKETS OF THE EL=361, -ELONG	OF THE CST							
55	ю		K* INT(EL) RLATD* EL- IF(K.EO.3 JCAP* INT(MCAP* INT(K= INT(EL) KLAID= EL-K IF(K.EO.361) K=1 UCAP= INT(2.+ TAU1/SSTTS) MOAP= INT(4 UCAP+ TAUN/SS TAH14 TAH11-(ICAP-3)*STTS	K*1 TAU1/SSTTS) JCAP+ TAUN/SSTTS) AP-3)*SSTTS							
2			RETURN									
	SYMBOLIC REFERENCE MAP	EFERENCE	MAP (R=3)									
ENTRY P	POINTS ECROSS	DEF LINE	REFERENCES 79	INCES								
VARIABLES	NS 14 1T	TYPE	REL ARRAY	RELOCATION F.P.	REFS	5	3+51	DEF INED	-			
00	_	REAL	ARRAY	a. a	REFS	ō •	2+49	52 27	60 DEFINED	DEF INED	- ₊ 2	27
325		REAL			REFS	2+53	26.	DEFINED	52	53		
323	ور 1	REAL			REFS	2*50	5 5 7	DEF INED	0. 4 9. 4	50		
0	•	REAL		я. 9.	REFS	31	4 (55	DEFINED	-	4	
325	EL ELONA	REAL REAL		F. P.	REFS	: -	4 4	DEF INED	ý			
00	ELONB	REAL		u. u	REFS	7.4 2.4 5	DEFINED 2*46	52.7	2*61	2*62	72	
>		7		•	DEFINED	-	44	45	46	09	61	62
00		REAL		م م	REFS	58 53	DEF INED	42	42 DEFINED	80 -		
0	ETIMEB	REAL			REFS	د	DEF INED	·-				
0;		REAL		я. Э.	REFS	4 4 4 -	DEFINED	OFF INED	04			
5	2	TATEGED		a.	2 1 1 2	77	78	DEFINED		16		
0		INTEGER		۵	REFS	74	75	DEF INED	-	73	75	
0		INTEGER		م. د	DEFINED	- ;	77	•				
0;	NTOTAL	INTEGER			RETS PFFS	5 PU	55	DEFINED	51			
7,0	RLATO	REAL		٠. ٩.	DEFINED	; =	4	i I				

	SUBROUTINE ECROSS	3	ROSS	74/7	74/74 OPT=0 TRACE	1=0 1	RACE			FTN 4.6+433	-433	01/21/83 16.18.59	16, 18, 59	PAGE	ო
VARIABLES 312 RL 0 SS	115	SN TYPE REAL REAL	֖֖֖֞֞֞֞֞֝֜֝֝֝֝֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		RELOCATION F.P.	AT10N F.P.		REFS	2+12	44 00	DEFINED 48	+ 1 56	12 76	7.1	78
6 4 0 0	SSTTS2 TAUNAT TAUN TAU1	REAL REAL REAL REAL	444		ي لد	٠. س. سـ	•	REFS REFS REFS REFS REFS REFS REFS REFS	2+37 37 37 18 18 37	DEFINED 40 77 19 58 43	30 DEFINED DEFINED 24 76 59	25 + 25 8 × 8 ×	31 31 0EF [NEO	37	6 9
324 313 315	TAU1P THAT TIME 1	REAL REAL REAL REAL	4444		L	o. u.		REFS REFS REFS	2 + 1 4 1 6 1 8	50 17 20 24	59 40 26 DEFINED	OEFINED DEFINED DEFINED 17	ი <u>~</u> ი ი ~	14 20	26
IN INE	FUNCTIONS ABS 1NT	_	TYPE REAL INTEGER	ARGS 1 IN 1 IN	INTRIN	DEF LINE		REFERENCES 48 73	2*56 76	11					
57ATEM 54 71 113 237 233 236	STATEMENT LABELS 54 1020 71 1030 113 1070 237 1090 233 3030 236 3040	S		DEF	DEF LINE 22 28 39 69 65	REFE 18 124 24 37 56 63	REFERENCES 18 24 37 48 56 63	S							
STATISTICS PROGRAM	ATISTICS PROGRAM LENGTH	Ŧ		••	340B	224	4								

SUBROUTINE	E TNOUT	74/74 OPT=O TRACE		FTN 4.6+433	/10	01/21/83	16. 18, 59	PAG
-	υ	SUBROUTINE INDUT(IN, OUT .X. D. II) CALLED BY	.x. b. 11)					
υn	υ	SSTGTD DIMENSION X(II), D(II) INTEGER DUT, OT 1	;					
•	•	IF(.NUT. (IN.NE.O)) GU 10 Z INTER IN (IN.1) (X(INTER IN+1 IF(UNIT(IN)) 20.12,13	22 X(1), X(11)) 13					
2	55 50 53 50	CONTINUE BUFFER IN(IN1,1) (D(1), D(II)) IF(UNIT(IN1)) 22,12,13 CONTINUE	b(1), b(11))					
ñ	ပပ	ENDIF						
	30	IF(.NOT.(OUT.NE.O)) GD TD 30 BUFFER OUT(OUT,1) (X(1), X(II)) IF(UNIT(OUT)) 30,12,13 CONTINUE	30 X(1), X(11)) 13					
20	U	ENDIF						
	4 t t 3 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t	STOP "13, SUBROUTINE INDUT" STOP "13, SUBROUTINE INDUT" END						
SYMBOLIC	REFERENCE	SYMBOLIC REFERENCE MAP (R=3)						
ENTRY POINTS 4 INOUT	DEF LINE	REFERENCES 21						
VARIABLES SN O D O II	TYPE REAL Integer Integer	RELOCATION ARRAY F.P. R F.P. R F.P. R	REFS 2*4	DEFINED 7 8	1 11 9 DEF	2*11 17 t DEFINED	DEF INED	-
104 IN1 103 071	Integer Integer Integer	*UNDEF F.P. R	REFS 12	DEFINED 16	8 1/0 18 DEF1	1/O REFS DEFINED	Ξ -	
O X REAL VARIABLES USED	A S	I/O ARRAY F.P. R FILE NAMES, SEE ABOVE	I/O REFS 17 REFS 4	2*17 DEF	DEF INED	-	2*7	
EXTERNALS Unit	TYPE REAL	ARGS REFERENCES	12 18					
STATEMENT LABELS 55 12 57 13 0 20 36 22 53 30	INACTIVE	DEF LINE REFERENCES 22 9 23 9 76 10 9 13 6	12 18 12 18 12 18					

01/21/83 16.18.59

PAGE

FTN 4.6+433

74/74 OPT=0 TRACE

75

1138

SUBROUTINE INDUT

STATISTICS PROGRAM LENGTH PAGE

```
01/21/83 16.18.59
                                                                                                                                                                                                                                             **OBTAIN AMPLITUDES( ) AND PHASES( )

**OBTAIN AMPLITUDES( ) AND PHASES( )

**IF NOT 1ST CALL TO BE PROCESSED

**IF NOT (KOLD.NE.-999)) GO TO 1065

**RESTORE TIDEB() VALUES, IF POSSIBLE

1F(.NOT.(K.EQ.KOLD. AND .JCAP.GE.JCAPO)) GO TO 1060

IF(.NOT.(K.EQ.KOLD. AND .JCAP.GE.JCAPO)) GO TO 1060
                                                 ( MODES, UCAP, K, MCAP, NTOTAL, RLATD, DT, SSTTS, DTAUT, TAU1, TAUN.IUNIT FREQB, ASTROB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COMPUTE THE 1ST ROUGH TIDAL HEIGHTS(TIDEB) WITH SST-SPACING ALONG THE CST BY INTERPOLATING BETWEEN THE 2 SSTGTD TRACKS THAT BOUND THE CST.

DO 5070 M=1, J12383

e-CHECK FOR LAND PTS.
  FTN 4.6+433
                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF(.NDT.((K.EQ.KDLD.AND.(JCAP.LT.JCAPD)).OR.K.NE.
KOLD)) GG TG 6020
CALL MOVE(O.,TIDEB(1),383)
DG 6010 I=1, MODES
J=JCAP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (.NOT. (X1(J).LE.O.)) GO TO 2050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(.NOT.(XZ(J).GT.O.)) GOTO 2055
RL1=1.-RLATD
CONTINUE
                                                                                                                                                                             DIMENSION FREOB(11), ASTROB(11),TIDEB(383)
DIMENSION X1(384), X2(384), D1(384), D2(384)
DATA PI/3.14159265/, PIPI/6.28318531/
DATA KOLD/-999/, UCAPO/-999/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ( K, IUNIT, I,KOLD
, X1,X2, D1, D2
**D1 AND D2 VALUES ARE IN RADIANS
                                                                                                                                                                                                                                                                                                                                           ( ISR. JCAP, MCAP
, TIDEB, X1
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONT INUE
  OPT=0 TRACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL SSTGTD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ENDIF
                                        SUBROUTINE INTRP!
                                                                                                                                                                                                                                                                                                                                                                                                                CONT INUE
                                                                                                                                                        SSTGTD
                                                                                                                                                                                                                                                                                                                                                                                                    ENDIF
  74/74
                                                                                                     CALLED BY
                                                                                                                    STT
CALLS TO
                                                                                                                                                                                                                                                                                                                                                                                                                          ENDIF
   SUBROUTINE INTRP 1
                                                                                                                                                                                                                                                                                                                                                                                                    ດ
ດ
ດ
                                                                                                                                                                                                                                                                                                                                                                              1060 c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ر ی
                                                       0 0 0 ×
                                                                                                                                                                                                                                                                                                                                                                9 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2050
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2055
                                                                                                                                                                                                                                                             ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            000000
                                                                                                        00000
                                                                                                                                                                                                                                                                                     8
                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ß
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         33
                                                                                                                                                         ō
                                                                                                                                                                                                                       ţ
                                                                                                                                                                                                                                                                                                                                                     R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ĸ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ŧ,
```

ъ	SUBROUTINE INTRP+	74/74	OPT=O TRACE	CE	L	FTN 4.6+433	433	01/21/83	16.18.59	PAGE	0
9	υυ		ENDIF XM=RL1+X1 ++D1 AND D1J=D1(J) D2J=D2(J) DMD=D1J-D	ENDIF XM=RL1*X1(J)+ RL2*X2(J) **D1 AND D2 VALUES ARE IN RADIANS D1J=D1(J) D2J=D2(J) DMD=D1J-D2J	X2(J) Are in Rad	IANS					
6	•		IF ON IF ON IF ON IF ON	IF(OMD.GT.PI) D2J=D2J+PIPI IF(OMD.LTPI)D1J=D1J+PIPI DM=RL1*D1J+ RL2*D2J IF(.NOT.(I.EQ.2)) GD TO 304O TIDEB(M)=TIDEB(M)+ XM*O.28 *COC(FDECM(7)*.++ ACTDNR(7)*	D2J+PIPI D1J+PIPI U GG TG 3040 B(M)+ XM+O.	28 7)-					
70	3040		ELSE	(DM-0.0349)) GD TD 3050 TIDEB(M)=TIDEB(M)+ XM*	B(W)+ XM*						
75	3050° C 5070	w	CON CON 14-1 CONTINUE ENDDO	CONTINUE							
&	0 0 0 0	ENDDO ENDDO . STOR THEIR	CONTINUE RE THE 1ST CORRECT S	CONTINUE ENDOD STORE THE 1ST ROUGH TIDAL HEIGHTS(TIDEB) IN HEIR CORRECT SST-SPACING POSITIONS.	HEIGHTS(TID SITIONS.	EB) IN					
10 60	6020	CALL SR (CONTINUE)	;R (ISR, UCAP, , TIDEB, X1	ICAP, MCAP X1	•						
8	•	COLD = K UCAPO = UCAP RETURN END									
2	SYMBOLIC REFERENCE	E MAP (R=3)									
ENTRY POINTS 4 INTRP	INTS DEF LINE	E REFERENCES 92	ICES								
VARIABLES 0 AS 303 DM 302 DM	ES SN TYPE ASTROB REAL DMD REAL DT REAL	RELO ARRAY *UNUSED	RELOCATION F.P.	REFS REFS REFS DEFINED	68 68 68 68	68 73 65	73 Defined Defined	DEFINED 66 63	-		
		*UNUSED ARRAY ARRAY	r r	DETINED REFS REFS REFS	- 6 6 5 5 - C 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	38 38	6.5 66 62	DEFINED	6	65	
	EOB	ARRAY	۳. و.	REFS	12	68	73	DEF INED DEF INED	62	64	

	SUBROUTINE INTRP1	TINE IN	VTRP 1	74/74	OPT=0 TRACE	TRACE			FIN	FTN 4.6+433	133	01/21/83	16, 18, 59	PAGE	m
VARIABLES	LES	SN TY	TYPE	RE	RELOCATION	-									
272	_		INTEGER				REFS	38		67	2+73	DEF INED	36		
271	ISR	Z	INTEGER				REF.	52	85	85	DEFINED	42	x		
0 5		Z 2	INTEGER		-		REFS	2 ru	1 100	550	2+59	61	62	68	73
7	•							DEF INED		37	77				
0	JCAP	S	INTEGER		я. О.			11		23	25	33	37	85	91
						_	DEF INED	-							
262	JCAPO	Z	INTEGER				REFS	23		33	DEFINED	<u>5</u>	-6		
270	J1Z383	Z	INTEGER				REFS	47	DEFINED	NED.	17	4		•	
0	¥	Z	INTEGER		G.		REFS	23	N	2+33	38	06	DEFINED	- !	ć
261	KOLD	Z	INTEGER				REFS	21		23	2+33	80 1	DEF INEU	.	9
274	I	Z	INTEGER				REFS	2+68	8	2+13	DEF INED	47			
0	MCAP	Z	INTEGER		٠ د		REFS	25		8 2	DEF INED	-			
0	MODES	IN	INTEGER		й. В		REFS	36	DEF INED	NED	-				
0	NTOTAL	Z	INTEGER	*UNUSED	ď	_	DEFINED	-							
257	PI	REAL	<u>ا</u>				REFS	64		65	DEF INED	+			
260	PIPI	REAL	-				REFS	64		65	DEFINED	4			
}	RIATO	REAL	4		ď.		REFS	49			DEF INED	-			
376	- 70	DEAL	: a				REFS	29			DEFINED	20	26		
77.0	o a	REAL	·				REFS	29		99	DEF INED	49	52		
,	CCTTC	DEAL	: :	TINITED IN	4	c	DEFINED	-							
o	TAIN	RFAI		*UNUSED	4		DEFINED	-							
· c	TAUT	REAL	4	*UNUSED	a.		DEFINED	-							
0	TIDEB	REAL	ار 4	ARRAY	9.7		REFS	12		25	32	68	73	82	
,	 					٥	DEFINED	-		68	73				
277	MX	REAL	۸۲				REFS	68		73	DEF INED	53		!	
304	×	REAL	74	ARRAY			REFS	13		25	38	51	59	85	
10	X	REAL	A.	ARRAY			REFS	13		38	52	53			
CXTEDNALC	V 14	_	TVDE	SUC	REFERENCES	NCFS									
		DEAL	: 4	1 1 180 4	^0	200	7.3								
	503	ŽŲ.	J.) LIGHTL		3 6	2								
				ם כ		2 10	u								
	SSTGTD			n c o	• • •	38	3								
							,								
STATEM	STATEMENT LABELS	ELS		DEF LINE		REFERENCES	s								
;				0 6	•	2 :									
0 0	000			000	14										
3	2020			2 1	., •	- 4									
112	2055			7.0	., ч										
2 6	000			. r	,										
2	3030				•										
o c	200			2 2		. 4									
223	6020			80	, , ,	33									
L00PS	LABEL		Ĕ		LENGTH		PROPERTIES	1							
	6010	- ;		36 80	1318	m ,	ם נ	EXT REFS	NO. INNER	Z Z Z					
7	5070	¥.			108	•	ù								
CTATTETICE	2711														
5084	PROGRAM LENGTH	2TH		3346B	B 1766	96									
1 2 5	HAN LES	:)		2									

```
PAGE
  01/21/83 16,18,59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF(.NOT.(NCASE.EQ.O)) GD TO 2010

Ti=.F.

T2=.F.

Tii =.FALSE.

Tii2 =.FALSE.

Tii2=.FALSE.

Tii2 =.FALSE.

Tii1 =.FALSE.

Tii2 =.FALSE.

Tii4 =.FALSE.

Tii
  FTN 4.6+433
                                                                                                      (MCAP, NTOTAL, DT.SSTTS, DTAUT. TAUT.NMINUS, TIDEB, NPTS, TIDE
                                                                                                                                                               ..INTRP2 COMPUTES INSTANTANEOUS GEOCENTRIC TIDES(TIDE) AT GIVEN CST-SPACINGS BY USING A "CUBIC-PARABOLIC SPLINE" INTERPOLATION OF THE TIDEB VALUES.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DIMENSION TIDE(100), TIDEB(383)
LOGICAL T1,T11,T12,T111,T112,T1121,T1122
LOGICAL T2,T21,T22,T121,T122
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF( 40T. ( T3T.NE.O. )) GO TO 1020
T11=.T.
GO TO 1025
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ENDIF
IF(.NDT.(T1T.NE.O.)) GD TO 1030
T111=T.
T121=T.
GD TO 1035
     DP := 0 TRACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    T12=.T.
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                      SUBROUTINE INTRP2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12=.1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                     NCASE1
NCASE2
NCASE3
NCASE4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ENDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ELSE
                                                                                                                                                                                                                                                                                                                                                                    CALLED BY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ELSE
                                                                                                                                                                                                                                                                                                                                                                                              SST
CALLS TO
     74/74
       SUBROUTINE INTRP2
                                                                                                                     ය ය > ක
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C
1020
1025
                                                                                                                                                                                                                                 0000 00000000
                                                                                                                                                                                                                                                                                                                                               9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ħ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ß
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       55
```

N

```
PAGE
01/21/83 16.18.59
                                                                                                                                                                                                                                              IF(T1.AND.T11.AND.T111) NCASE=3
IF(.NOT.(T1.AND.T11.AND.T112.AND. T1121))GDT01060
NCASE=3
                                                                                                                                                                                                                                                                                                               ENDIF
IF(.NOT. (T1.AND.T11.AND.T112.AND.T1122))GOTO1065
IF(.NOT.ET.T1.AND.T11.AND.T112.AND.T1122)
    FTN 4.6+433
                                                                          ENDIF
IF(.NDT.(MCAP.GT.3.AND.(T4T.NE.O.))) GD TD 1040
IF(.NDT.(MCAP.GT.3.AND.(T4T.NE.O.))) GD TD 1040
GD TD 1045
                                                                                                                                                                                                                                                                                                                                                                                                                                        TT1=DTAUT/2.
TT2=TT1+DTAUT
TT3=TT2+DTAUT
NEND=NPTS
CASE ENTRY
GD TD( 3010, 3020, 3030, 3040, 3050)NCASE
CASE 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ( TIDEB, M, NEND, DT, DTAUT , NTOTAL,NMINUS, TIDE, TAU
                                                                                                                                            ENDIF
IF(.NOT.(MCAP.LE.2.AND.T2T.NE.O.O.AND.
IF(.NOT.NE.O.O)) GD TD 1050
                                                                                                                                                                                                                                                                                                                                                                       ENDIF
IF (T1. AND. T12. AND. T121) NCASE=2
IF (T1. AND. T12. AND. T122) NCASE=1
IF (T2. AND. T21)
NCASE=2
IF (T2. AND. T22)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NEND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONSTANT INTERPOLATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GD TO 4020
LINEAR INTERPOLATION
CALL NCASE2
                                                                                                                                                                                                                                                                                TAU=TAU1-DT
M=2
       74/74 OPT=0 TRACE
                                                                                                                                                                                                                                                                                                                                          TAU=TAU1-DT
                                                                                                                                                                                   GO TO 1055
                                                                                                                           T1122=.T.
                                                                                                                                                                                                                                                                                                                                                              CONT INUE
                                                                                                                                                                                                      122=.1.
CDNT INUE
                                                                                                                                                                                                                                                                                                     CONTINUE
                                                          T 122= . T.
CONTINUE
                                               T112=.T.
                                                                                                                                                                                                                          ENDIF
TAU=TAU1
M=1
                                                                                                                                                                                               ELSE
                                                                                                                   ELSE
                                        ELSE
                                                                                                                                                                                                                                                                                                                                                                                                                                  ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3010
8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3020
3030
          SUBROUTINE INTRP2
                                                                                                                                                                                                                                                                                                                                                                                                                         2010
C
                                                                                                                                                                                                                                                                                                                                                                 1065
C
                                       0
1030
                                                                                                                    040
1040
245
                                                                                                                                                                                                ດ
1050
1055
ເ
                                                                                                                                                                                                                                                                                                       1060
C
                                                                    1035
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5
                                                                                                                                                                                                                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        505
                                                                                                                                                                                                                                                                                                                                                         8
                                                                                                                                                                                                                                                                                                                                                                                                         9
                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                           9
                                                                                                                                                            9
                                                                                                                                                                                                           73
                                                                                                             63
                                                              8
```

	SUBROUT	SUBROUTINE INTRP2	74/74 OP	OPT=O TRACE	RACE	FTN 4.6+433	-433	01/21/83	16.18.59	PAGE	ю
•	511	3030 3030	GO TO 4020 PARABOLI CALL NCASE	020 0LIC IN 4SE3 ()	GD TD 4020 PARABOLIC INTERPOLATION CALL NCASE3 (TIDEB.SSTTS.NEND.DT. N	MCAP					
¥	120	د 3040 6	GD TO 4020 cubic par call ncase4	. BA P.	GD TO 4020CUBIC PARABOLIC INTERPOLATION CALL NCASE4 (TIDEB, 1, 100,SSTTS, DT						
¥	125	9 3050	GO TO 4020 PARABOLI CALL NCASE	.T. .71 .20 .UC EN	TT1,TT2, TT3, MCAP ,TIDE,M, TAU, NCASE) GD TO 4020PARABGLIC END-POINT INTERPOLATION CALL NCASE5	_					
¥	0 6	ဗဗ			(TIDEB, 1, 100 .TT1, TT2. DT . TIDE. M. TAU)						
¥	135	4020 C	CONTINUE ENDCASE RETURN END	ш							
	SYMBOLI	SYMBOLIC REFERENCE MAP	MAP (R=3)								
ENTRY 4	ENTRY POINTS 4 INTRP2	DEF LINE	REFERENCES	S							
VARIABLES O DT		SN TYPE REAL	RELOCATION F.P.	ATION F.P.	REFS 83	88	112	117	122	128	
442	DTAUT	REAL Integer	LL.	ď.	DEFINED 1 REFS 99 REFS 112	100	101	112	DEFINED DEFINED	1 62	88
0	MCAP	INTEGER	li-	<u>a.</u>	90 REFS 40 DEFINED 1	63	07	117	122		
0	NCASE	INTEGER	12	F.P.	REFS 23	104	117	122 95	DEFINED 96	-	80
446		INTEGER	L.	٠		112 DEFINED	117	DEFINED	102		
000	NPTS NTOTAL SSTTS	INTEGER Integer Real	<u> </u>	a a a	REFS 102 REFS 112 REFS 117	OEF INED DEFINED 122	1 1 DEFINED	-			
; '		REAL	U	6	•	117	122	128	DEF INED	78	83
00	TIDE	REAL	ARRAY	. a.	REFS 19	101	112	117	122	128	
0	TIDEB	REAL	ARRAY F	٠		36	37	38	39	101	112
443	111	REAL			REFS 100 REFS 100	122	128 128	OEFINED DEFINED	99		
445		REAL				DEF INED 80	101	87	6 6	94	

SUBROUTINE INTRP2	INTRP2	74/74		OPT=0 TRACE	ш		FTN 4.6+433	+433	01/21/83	16.18.59	PAGE	4
TYPE		D.	RELOCATION	NOI	DEFINED	24	4					
REAL					REFS	54	70	DEF INED	36			:
LOGICAL	4:				REFS	88	08	8 4	700	DEFINED	56	4
LOGICAL	4 :				25.0	36	, c	R7	DEFINED	28	59	
LOGICAL LOGICAL	i				SEFS.	202		DEF INED	29	54		
LOGICAL	¥				REFS	50	87	DEF INED	30	67		
LOGICAL	Ä				REFS	50	93	94	DEF INED	3	54	
LOGICAL	SAL				REFS	21	93	DEFINED	32	56		
LOGICAL	CAL				REFS	21	94	DEF INED	33	60		
LOGICAL	CAL				REFS	21	95	96	DEF INED	25	77	
REAL					REFS	04	70	DEF INED	37			
LOGICAL	CAL				REFS	21	95	DEFINED	34	72		
361	LOGICAL				REFS	21	96	DEFINED	32	75		
REAL					REFS	47	DEF INED	38				
REAL					REFS	63	DEF INED	39				
-	TYPE	ARGS	REF	REFERENCES								
•	, :	ď		107								
		σ										
		ıσ		111								
		n Ç										
		2 0		10 E								
		n		1								
		DEF LINE	INE	REFERENCES	CES							
		44	-	40								
		45	;~	42								
		51	-	47								
		55		49								
		Ĭ,		P								
		, <u>, , , , , , , , , , , , , , , , , , </u>	h -									
				5 6								
		ָרְ עַּ		S 4								
		2 6	n ••	9 6								
		ה י	,	2 5								
		₹ }		e :								
		60	г.	5								
		á	-	81								
		97	_	23								
		101	1	104								
		112		104								
		117	_	104								
		123		104								
		128		104								
		132	~	110	115	120	126					
				i c								
		į	44/8	293								

SUBROU	SUBROUTINE NCASE 1	74/74	OPT=O TRASE	<u>.</u> ज		FTN 4.6+433	-433	01/21/83 16.18.59	16.18.59	
-	ဖဆ	SUBROUTINE NCASE!	.	TIDEB. Tide	NEND					
es	ပပ ပ	CALLED BY INTRP2 DIMENSION TIDE(1) **COMPUTE DO 2020 N*1, NEND	22 TIDE(100).	CALLED BY INTROZ DIMENSION TIDE(100), TIDEB(383) **COMPUTE DO 2020 N**INFER(3), TIDEB(383)						
ō	2020 C	CONTINUE CONTINUE ENDO RETURN								
SYMBOL	SYMBOLIC REFERENCE MAP (R=3)	MAP (R=3)								
ENTRY POINTS 4 NCASE 1	DEF LINE	REFERENCES	ENCES							
VARIABLES 27 N 0 NEND	SN TYPE INTEGER INTEGER BFAJ	REL	RELOCATION F.P.	8 8 8 8 8 8 8 8 8 8	ကလေးဟ	OEFINED DEFINED DEFINED	∞	თ		
	REAL	ARRAY	ш а	REFS	ဖ	2*9	DEF INED	-		
STATEMENT LABELS 0 2020	ELS	DEF LINE 10	VE REFERENCES	NCES				-		
LOOPS LABEL 20 2020	INDEX	FROM-10 8 10	LENGTH 68	PROPERTIES INSTACK						
STATISTICS PROGRAM LENGTH	БТН	368	30							

PAGE

SUBROUTINE NCAS	IE NCASE2	74/74	OPT=0 TRACE			FIN 4.6+433	433	01/21/83	16, 18, 59	PAGE
~ vo	७७≻ ∪∪∪	SUBROUTINE NCASE2CASE2 IS LINEAR FOR 2 OCEANIC DAT	SUBROUTINE NCASE2 (TIDEB, M, NTOTAL, NMINUS, TIDE, TAU)CASE2 IS LINEAR INTERPOLATION FOR 2 OCEANIC DATA, TIDEB(M) AND TIDEB(M+1) NOT EQUAL TO 0.0	EB. M. AL. NMINUS 'TAU) RPOLATION DEB(M) AND 0 0.0	NEND, DT, DTAUT	r, DTAUT				
õ	ပပ	CALLED BY INTRP2 DIMENSION T N1*1	CALLED BY INTRP2 DIMENSION TIDE(100), TIDEB(383) N1*t	IDEB(383)						
ñ	900	IF(.NOT.(NTOT N1=2 A=DTAUT* B= A+DT TIDE(1)= CONTINUE	DT.(NTOTAL.EQ.NMINUS)) G N1*2 A*DTAUT*(TIDEB(M+1)- TI B* A*OT TIDE(1)* TIDEB(M)+ A*TAU CONTINUE	IF(.NOT.(NTOTAL.EQ.NMINUS)) GOTO 3010 N1=2 A=DTAUT*(TIDEB(M+1)- TIDEB(M)) B= A*OT TIDE(1)* TIDEB(M)+ A*TAU CONTINUE	010					
20	U	ENDIF IF(N1.EQ.1) NM1- IF(N1.EQ.2) NM1- IF(N1	N1.EQ.1) NM1=100 N1.EQ.2) NM1=1 990 I=N1,NEND TIDE(1)= TIDE(NM1)+8	8+ (
25 26	30 0 0	CONTINUE CONTINUE RETURN END	W E							
SYMBOLIC	REFERENCE	SYMBOLIC REFERENCE MAP (R=3)								
ENTRY POINTS 4 NCASE2	DEF LINE	REFERENCES 27	ICES							
VARIABLES SN 73 A	I TYPE	RELC	RELOCATION	REFS	9	17	DEFINED	15		
	REAL		(REFS	23	DEFINED	16			
O DIAUT	REAL			REFS	ត្ ក	DEFINED	~ -			
1 9/	INTEGER		<u>د</u>	REFS	23 2+15	24	DEF INED	22		
NEND	INTEGER		a. u	REFS		DEFINED DEFINED				
	INTEGER			REFS	23	DEFINED	50	21	24	
	INTEGER			REFS	5 <u>2</u>	21	22	DEF INED	12	4
0 TAU 0 TIDE	REAL	ARRAY	u. u.	REFS	- 1	DEFINED	1 DEFINED	- !	11	23
	REAL	ARRAY	٠. ص	REFS	Ξ	2+15	11	DEF INED	•-	
STATEMENT LABELS 45 3010 0 3090	_	DEF LINE 18 25	REFERENCES 13 22	ES						

	SUBROUT	SUBROUTINE NCASE2	74/74	74/74 OPT=0 TRACE	ICE	FTN 4.6+433	01/21/83 16.18.59	PAGE	•
L00PS	100PS LABEL 57 3090	INDEX	FROM-T0 22 25	LENGTH 11B	PROPERTIES OPT				
STATIS	STATISTICS	į	900	G G					

PAGE

01,21/83 16,18.59

	SUBROUT	SUBROUTINE NCASES	74/74	OPT=0 TRACE	w		FTN 4.6+433	+433	01/21/83	16.18.59	PAGE	7
ENTRY	ENTRY POINTS 4 NCASE3	DEF LINE	REFERENCES 49	NCES								
VARIABLES	res	SN TYPE	REL	RELOCATION	, 1	ć	;		ę			
237	< €	REAL			REFS	22	. e	DEFINED	5			
0	0	REAL		d.	REFS	23	35	43	DEFINED	-		
226	DTAU	REAL			REFS	Ξ	34	35	40	DEF INED	0	
227	DTAUT	REAL			REFS	ţ	5	4	DEF INED	=		
0	=	INTEGER		я. 9.	REFS	t.	16	17	8	19	22	31
					42	4	DEF INED	-	42			
0	MCAP	INTEGER		۳. و.	REFS	50	43	DEF INED	- !			
233	ī	INTEGER			REFS	æ :	6	DEF INED	ត្			
234	2	INTEGER			REFS	æ (19	DEFINED	9			
235		INTEGER			REFS	2*20	DEF INED	- 1	į	į	•	
240	z	INTEGER			REFS	25	- o	E C	34	32	- 4	
	THE COLUMN	TATEGER			DEFE	- 5	73	n 4				
,	NCASE	INTEGER		<u>a</u>	25.5	9 <i>0</i>	43	DFFINED	-	34		
0	NEND	INTEGER		a.	REFS	5 6	34	32	. 4	DEFINED	-	
0	SSTTS	REAL		<u>م</u>	REFS	2	43	DEFINED	-			
٥	TAU	REAL		я. Р.	REFS	2+22	23	2+31	35	34	35	9
						DEF INED	-	23	35	4		
0	TIDE	REAL	ARRAY	۳. م.	REFS	ø	43	DEF INED	-	22	31	
0	TIDEB	REAL	ARRAY	F. P.	REFS	ę,	3+18	3+19	20	22	31	43
					DEF INED	-						
230	111	REAL			REFS	Ç	3	43	DEF INED	4 2		
231	TT2	REAL			REFS	₽	19	43	DEFINED	1 3		
232	113	REAL			REFS	43	DEF INED	4				
EXTERNALS	ST	TYPE	ARGS	REFERENCES								
	NCASE4	1	13	43								
STATEM	STATEMENT LABELS	51	DEF LINE	E REFERENCES	SES							
c	2050		24		1							
13	3050		78	50								
116	3070		31	32								
147	4090		37	56								
202	5010		47	39								
50001	LABEL	INDEX	FROM-TO	LENGTH	PROPERTIES							
75	2050	z	21 24		OPT							
STATISTICS	ATISTICS PONCEAM LENGTH	2	265R	ž.								
5	TANK TERM	<u> </u>	3									

PAGE

01/21/83 16.18.59

```
ENDIF

**CHECK FOR NCASE.EQ.5

**CHECK FOR NCAP.LT.M22.QR.(TIDEB(M22).EQ.O.))}GD TO 6075

If (.NOT. (MCAP.LT.M22.QR.(TIDEB(M22).EQ.O.))}GD TO 6075

NCASE=5

CALL NCASE5

(TIDEB, NBGNS, NEND
FTN 4.6+433
                                                                                                              CALL 1D

NCASES

REAL TIDE(100) .TIDEB(383)

DTAU=SSTTS

N=NBEGIN

DGWHILE N.LE.NEND

GD 70 70±0

MN=NH-1

MN=NH-1

MN=NH-1

A=TT1*(TIDEB(MN1)- TIDEB(MM1))

4 4 **TIDEB(MN1)- 5.*TIDEB(M)

+ 4 **TIDEB(MN1)- 3.*TIDEB(M)+ 3.*TIDEB(M)

- TIDEB(MN1))

TIDEB(MN1))
              G (TIDEB, NBEGIN, NEND, SSTTS, DT TT1, TT2, TT3, MCAP TT0, TT0, TAU, NCASE )

G .. CASE4 IS CUBIC-PARABOLIC INTERPOLATION CALLED BY NCASE3

CALL TO
                                                                                                                                                                                                                                                                                                                                                                                                            (TIDEB, NBGNS, NEND
TT1, TT2, DT
TIDE, M, TAU
                                                                                                                                                                                                                                                                           N=N+1
TAU= TAU+DT
TAU= TAU+DT
IF(.NGT.(TAU-GE.DTAU )) GD TO 6070
IAU=TAU-DTAU
M=M+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(.NOT.(N .GT.NEND)) GO TO 2050
   74/74 OPT OFT
                                                                                                                                                                                                                                                                                                                                                                                                                                               N=NEND+1
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ENDDO
RETURN
END
                                                                                                                                                                                                                                                                                                                                                                                                                    ი ი >
       SUBROUTINE NCASEA
                                                                                                                                                                                                                                                                                                                                                                                                                                                             6075
C
7010
C
                                                                                                                                                                                                                                                                                                                                  6070
C
                                                  9 9 9
                                                                                                                                                                                      2050
                                                                                  00000
                                                                                                                                                                                                                                                                                                                                                                                                   8
                                                                                                                                                                                                                                                                                                                                                                                                                                                      Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         £
                                                                                                                                                                                                                                                                                             23
                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                           8
                                                                                                                                                                                         ŧ
                                                                                                                                     5
```

SYMBOLIC REFERENCE MAP (R=3)

REFERENCES 45 DEF LINE ENTRY POINTS

SUBROUTINE NCASE4	E NCASE4	74/74	74/74 OPT=0 TRACE	w		FTN 4.6+433	433	01/21/83	16, 18, 59	PAGE	8
VARIABLES	TYPE	REL	RELOCATION								
	REAL			REFS	23	DEF INED	18				
200	REAL			REFS	23	DEFINED	19				
201 0	REAL			REFS	23	DEF INED	2				
10 0	REAL		F.P.	REFS	25	36	DEFINED	-			
172 DTAU	REAL			REFS	5 6	27	DEF INED	=			
	INTEGER		F.P.	REFS	5	16	17	6	2.	23	28
,				32	36	DEFINED	-	28			
OMCAP	INTEGER		Б.	REFS	33	DEF INED	-				
176	INTEGER			REFS	1	19	21	DEFINED	17		
174 #1	INTEGER			REFS	18	49	21	DEF INED	15		
175 112	INTEGER			REFS	19	21	DEFINED	91			
202 1122	INTEGER			REFS	2+33	DEF INED	32				
173 M	INTEGER			REFS	53	24	34	4 .	DEF INED	12	24
				9							
NIBEGIN O	INTEGER		F. P.	REFS	12	DEF INED	-				
-	INTEGER			REFS	36	DEF INED	34				
_	INTEGER		. b.	DEFINED	-	35					
_	INTEGER		н. Р. Р.	REFS	36	40	43	DEF INED	-		
0 \$\$11\$	REAL		F. P.	REFS	Ξ	DEF INED	-				
O TAU	REAL		F. P.	REFS	3+23	25	56	27	36		
				DEF INED	-	25	27				
O TIDE	REAL	ARRAY	F. P.	REFS	5	36	DEF INED	-	23		
O TIDEB	REAL	ARRAY	٠ س	REFS	9	2*18	4 * 19	4*21	23	33	36
	!			DEFINED	-						
0 111	REAL		ď.	REFS	8	36	DEF INED	_	.•		
0 112	REAL		a.	REFS	19	36	DEFINED	-			
0 113	REAL		a.	REFS	21	DEFINED	-				
	!) 							
EXTERNALS	TYPE	ARGS	REFERENCES								
NCASES		6	36								
STATEMENT LABELS		DEF LINE	E REFERENCES	CES							
14 2050		15									
		29	26								
		4	33								
150 7010		43	4								
STATISTICS											
PROGRAM LENGTH		2048	132								

	SUBROUT II	SUBROUTINE NCASES	14/74	OPT=0 TRACE	CE		FTN 4.6+433	133	01/21/83	16.18.59	PAGE
	-	(9 (9 (SUBROUTINE NCASES	NCASES (71	(TIDEB,NBEGIN, N . TT1 .TT2, DT	NEND					
	I O	0 U U	CALLED BY REAL TIDE(CASES IS PARABOLIC END PO. CALLED BY REAL TIDE(100) ,TIDEB(383) A=TT1+(TIDEB(M)-IIDEB(M-1))	.CASES IS PARABOLIC END POINT INTERPOLATION MALLED BY (FAL TIDE(100) , TIDEB(283) = TT1+(TIDEB(M)-TIDEB(M-1))	ERPOLAT	NO				
-	ō		B=TT2+(TIE DO 3010 N= TIDE(TAU=T	B=TT2+(TIDEB(M+1)-2.* DD 3010 N=NBEGIN,NEND TIDE(N)=(B+TAU+ TAU=TAU+DT	B=TT2+(TIDEB(M+1)-2.*TIDEB(M)+TIDEB(M-1)} DG 3010 N=NBEGIN,NEND TIDE(N)=(B*TAU+ A)*TAU+ TIDEB(M) TAU=TAU+DT	(M-1)					
-	ស៊ី	3010 C	CONTINUE ENDOD RETURN END	N.							
	SVMBOLIC REFERE	REFERENCE	MAP (R=3)								
ENTRY A	ENTRY POINTS 4 NCASES	DEF LINE	REFERENCES 15	ENCES							
VARIABLES		SN TYPE	REL	RELOCATION	REFS	Ŧ	DEFINED	60			
53	C 80	REAL			REFS	= 9	DEFINED	on •			
00	<u>.</u>	REAL		a, a	REFS	12 2*8	3 * 9	- =	DEFINED	-	
) 	t z	INTEGER		:	REFS	=	DEFINED	ō			
, 0	NEGIN	INTEGER		ď	REFS	5 5	DEFINED				
0	NEND	INTEGER		a	REFS	2 .	DEF INED	DEFINED	-	21	
0	TAU	REAL	ADDAY		REFS	7	DEFINED	-	Ξ		
0		REAL	ARRAY	a.	REFS	7	2*8	6+E	=	DEFINED	-
00		REAL		د م س س	REFS	ത ഗ	DEFINED DEFINED				
•	' :		1								
STATEM	STATEMENT LABELS 0 3010	v i	DEF LINE	NE REFERENCES 10	ENCES						
100PS	LABEL 3010	INDEX N	FROM-T0 10 13	LENGTH 148	PROPERTIES OPT						
STATI	STATISTICS PROGRAM LENGTH	Į	1008	8 64							

SUBROUTINE SR	74/74 OPT=0 TRACE	ICE	FT	FTN 4.6+433	33	01/21/83	16.18.59	PAGE	-
ဖ အ ပ ပ	SUBROUTINE SR (ISR. UCAP, MCA) (ISR. UCAP, MCA) (TIDEB, X1) CALLED BY INTRP1 DIMENSION TIDEB(383), X1(384)	ISR, UCAP, MCAP TIDEB, X1) (383), X1(384)							
ပပ	STORE TIDAL HEIGHTS(TIDEB, WITH SST SPACING) IN X1 ARRAY IN THEIR CORRESPONDING POSITIONS IF(.NOT.(ISR.EQ.1)) GO TO 4010 JU* JCAP-1 DO 3070 II=1,MCAP JUII=1,U-1I	rs(TIDEB, WITH S CORRESPONDING) GO TO 4010	SST SPACING POSITIONS	-					
3070 C C 4010	IF(JJII.G) X1(JJII)= CONTINUE ENDDO **ZERO DUT(EXC CONTINUE	IF(JJI.GT.383)STOP"IN SR.NEAR LABEL3070" X1(JJI)= TIDEB(II) CONTINUE ENDO **ZERO OUT(EXCESS AREA IN TIDEB) CONTINUE	R. NEAR LABE	.13070					
U	ENDIF								
00 C	RESTORE TIDAL HEIGHTS(TIDEB. WITH SST SPACING) FROM X1 ARRAY IF(.NOT. (ISR.EQ.2)) GO TO 6070 CALL MOVE(0.0,TIDEB(1), 383) IJ-JCAP-1 **RESTORE TIDE VALUES FROM X1 DO 6063 II=1,MCAP I=1.4*II IF(I.GT.383) STOP "STOPPED IN SR"	TORE TIDAL HEIGHTS(TIDEB, WITH SST X1 ARRAY OT. (ISR.EQ.2)) GO TO 6070 CALL MOVE(0.0,TIDEB(1), 383) IJ=UACAP-1 **RESTOR TIDE VALUES FROM X1 DO 6063 II=1,MCAP I=1J+II IF(I.GT.383) STOP "STOPPED IN IF(I.GT.383)	4 SST SPACII	(G)					
6063 C 6070	TIDEB(II)= X1(I) CONTINUE ENDDO CONTINUE	= X1(I)							
5	END IF								
SYMBOLIC REFERENCE MAP	E MAP (R=3)								
DEF LINE	IE REFERENCES 36								
SN 1VPE INTEGER	RELOCATION	REFS	30	31	DEFINED 29	29 31	DEFINED	12	28
INTEGER		REFS		_	26 DEFINED	-			
INTEGER	. G.	REFS		_	DEFINED +1	-			
INTEGER INTEGER	A88A 0 7 7 7	REFS REFS REFS	4 C 0	25 85 15	DEFINED DEFINED 25	13 1 DEFINED	-	31	
KCAL	- 1 1	,	,)	i I				

SUBROUTINE SR	E SR	74/74	74/74 OPT=O TRACE		_	FTN 4.6+433	+433	01/2//03		
VARIABLES SN O Xt	SN TYPE REAL	REL ARRAY	RELOCATION / F.P.	REFS	ဖ	3	DEF INED	+	2	
EXTERNALS MOVE	TVPE	ARGS 3	REFERENCES 25							
STATEMENT LABELS 0 3070 0 4 4010 0 6063 76 6070		DEF LINE 16 19 32 34	REFEREN 12 10 28 24	CES						
LOOPS LABEL 26 3070 * 60 6063 *	INDEX II II	FROM-T0 12 16 28 32	LENGTH 158 158 158	PROPERTIES Ext ext	REFS					
STATISTICS		900	90							

```
PAGE
  01/21/83 16,18.59
                                                                                                                                             12= 11+1
IF(.NOT.((KOLD.GE.K).OR.(K.FO.1).OR.(KOLD.EQ.-999))) GD TO 2010
REWIND 11
REWIND 12
CONTINUE
   FTN 4.6+433
                                                                                                                                                                                                                                                                            ..POSITION THE SSTGTD FILES SO THAT THE DATA
W.R.T. THE SST NUMBER K WILL GO INTO X1 AND D1 ARRAYS
INCX1= INCX-1
IF(.NOT.( INCX1.NE.O)) G0 TO 4050
DO 4030 I=1,INCX1
CALL INUUT(I1, 0, X1,D1, 384)
                                                                                                                                                                                                                      IF(.NOT. ( INCK.LE.O.DR.KOLD.EO.-999)) GD TO 2015
INCK=K+1
CONTINUE
                                                                                        DIMENSION X1(384), X2(384), D1(384), D2(384)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ..PUT SSTGTD VALUES W.R.T. SST NUMBER(K+1)
INTO X2 AND D2 ARRAYS
CALL INDUT( 11, 0, X2, D2, 384)
RK=X1(384)
IK=D1(384)
REIURN
END
                                               ( K, IUNIT, IMODE, KOLD
, X1, X2, D1, D2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(.NOT.( K+1.EQ.361)) GO TO 4090
REWIND I1
REWIND I2
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                          DO 4060 J=1,384
X1(J)=X2(J)
D1(J)=D2(J)
CONTINUE
                                                                                                               **COMPUTE
I1= IUNIT+ 2*(IMODE-1)
     74/74 OPT=0 TRACE
                                                                                                                                                                                                                                                                                                                                                 CONTINUE
                                     SUBROUTINE SSTGTD
                                                                                                                                                                                                                                                                                                                                                           ENDDO
GD TO 4080
                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                     ENDIF
INCK= K-KOLD
                                                                                  INTRP
                                                                     CALLED BY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ENDIF
                                                                                                                                                                                                                                                                                                                                                                                  ELSE
    SUBROUTINE SSTGTO
                                                 ر ی
                                                                                                                                                                                                                                                                                                                                                                                                                           4060
c
4080
                                                                                                                                                                                                                                                                                                                                                                                c
4050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4090
                                                                                                                                                                                            2010
C
                                                                                                                                                                                                                                                 2015
C
                                                                                                                                                                                                                                                                                                                                                 4030
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ပပ
                                                                                                      υv
                                                                      ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ß
                                                                                                                                                                                                                                                                                                                                                            8
                                                                                                                                                                                                                                                                                                                                                                                                                   35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              45
                                                                                                                                                                                                                                                  8
                                                                                                                                       9
                                                                                                                                                                                             ā
                                                                                                                                                                                                                                                                                                       25
```

	SUBROUT	TINE	SUBROUTINE SSTGTD	74/74	OPT=0 TRACE	ų.		FTN 4.6+433	-433	01/21/83	16, 18, 59	PAGE	7
	SVMBOL	IC R	SYMBOLIC REFERENCE	MAP (R=3)									
ENTRY 4	ENTRY POINTS 4 SSTGTD		DEF LINE	REFERENCES 52	ENCES								
VARTABLES 0 D1	LES D1	S.	TYPE REAL	RE	RELOCATION F.P.	REFS	φ	58	51	DEFINED	-	35	
0.4	1 2 I	•	REAL Integer	ARRAY	F.P.	REFS DEFINED	6 27	32	64	DEF INED	-		
167 0	IK IMODE	*	INTEGER		f. P	DEFINED Refs	— დ	DEFINED	-				
162	INCK		INTEGER			REFS	18 76	25	DEFINED DEFINED	17 25	61		
30	ICNIT		INTEGER		F.P.	REFS	9 65	DEFINED	-	<u>.</u>			
5			INTEGER			REFS 1/0 REFS	- 6	28 42	49	DEF INEO	თ		
161	12	_	INTEGER			DEFINED	=	1/O REFS	4	43			
165	כ :		INTEGER		(REFS	2+34	2+35	DEF INED	33		•	
0	¥		INTEGER		٠ پ	REFS	2+12	۲:	<u>.</u>	4	DEF INED	-	
0 1	KOLD	•	INTEGER		т. Р.	DEFINED	2*12	=	2 0	DEFINED	-		
0	ž	_	REAL	ARRAY	F.P.	REFS	9	28	50	DEF INED	-	34	
0	X2		REAL	ARRAY		REFS	9	34	49	DEFINED	-		
	VARIABLES		USED AS	FILE NAMES.	. SEE ABOVE								
EXTERNALS	IALS		TYPE	ARGS	REFERENCES								
	INOUT			ស	28	49							
STATER	STATEMENT LABELS	ELS		DEF LINE	NE REFERENCES	KES							
•	2010			15	12								
54	2015			20	18								
0	4030			29	27								
75	4050			33	2e								
:	960			9 8	2, 5, 2, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,								
12.5	4090			4	÷								
1.000	LABEL	Ξ	INDEX	FROM-TO	LENGTH	PROPERTIES							
49	4030	*		27 29	82	EXI	EXT REFS						
9	090	2		33 36	9	5							
STATISTICS PROGRAM	ATISTICS PROGRAM LENGTH	GTH		2128	138								

DISTRIBUTION

	Copies		<u>Copies</u>
Library of Congress		Oceanographer of the Navy	
Attn: Gift and Exchange Division	(4)	U. S. Naval Observatory	
Washington, DC 20540		34 and Massachusetts Ave. NW	(1)
wasimig.co., 20 200		Washington, DC 20390	
Director		-	
Defense Mapping Agency, HQ		Naval Oceanographic Office	
Attn: Dr. C. F. Martin	(1)	NSTL Station	
P. W. Schwimmer	(1)	Attn: Dr. T. Davis	(1)
Washington, DC 20360		L. B. Bourquin	(1)
•		D. Atkocins	(1)
Defense Mapping Agency		Bay St. Louis, MS 39522	
Hydrographic-Topographic Center			
6500 Brooks Lane		Technical Director (SP-20)	
Attn: Dr. K. I. Daugherty	(1)	Strategic Systems Project Office	(1)
MAJ J. Jerome	(1)	Washington, DC 20390	
Dr. Randy Smith	(1)		
Mrs. I. Fischer	(1)	Naval Postgraduate School	
Washington, DC 20315		Attn: Prof. R. L. Haney	(1)
-		Prof. M. L. Elsberry	(1)
Defense Mapping Agency		Prof. D. C. Gallacher	(1)
Aerospace Center		Prof. R. W. Garwood, Jr.	(1)
Attn: William P. Wall	(1)	Prof. N. K. Mooers	(1)
Don McEntee	(1)	Monterey, CA 93940	
St. Louis, MO 63118			
•		Fleet Numerical Oceanography Cente	
Office of Naval Research		Attn: CDR B. Schramm	(1)
800 N. Quincy St.		Monterey, CA 93940	
Attn: Dr. G. R. Hamilton	(1)		
Dr. W. S. Wilson	(1)	Director	
Dr. J. G. Heacock	(1)	Naval Research Laboratory	
Dr. D. Conlon	(1)	Attn: V. E. Noble	(1)
R. S. Andrews	(1)	B. S. Yaplee	(1)
Arlington, VA 22203		A. Shapiro	(1)
- .		D. T. Chen	(1)
		Washington, DC 20360	

<u>.</u>	Copies	Co	pies
Army Engineers Topographic Laboratory		NOAA/Pacific Marine Environmental Lab	•
Attn: Library	(1)	Attn: Dr. J. R. Apel	(1)
Ft. Belvoir, VA 22060		H. O. Mofjeld	(1)
		M. Byrne	(1)
Air Force Geodetic Laboratory		Seattle, WA 98105	
L. G. Hanscom Field	(1)		
Bedford, MA 01730		NOAA/Geophysical Fluid Dynamics Lab.	
		Princeton University	
David T. Haislip		Attn: Dr. J. Smagorinsky	(1)
U. S. Coast Guard		Dr. K. Bryan	(1)
400 7th Street, SW	(1)	Dr. M. D. Cox	(1)
Washington, DC 20590		Princeton, NJ 08540	
NOAA/National Ocean Survey		NOAA/National Center for Atmospheric	
National Geodetic Survey		Research	
Attn: Dr. B. Chovitz	(1)	Attn: Dr. W. R. Holland	(1)
Dr. J. M. Diamante	(1)	Boulder, CO 80303	
Dr. B. C. Douglas	(1)		
Dr. C. C. Goad	(1)	NASA/Goddard Space Flight Center	
Dr. F. Morrison	(1)	Attn: Dr. J. W. Siry	(1)
Rockville, MD 20852		D. E. Smith	(1)
		J. G. Marsh	(1)
NOAA/National Ocean Survey		T. L. Felsentreger	(1)
Oceanographic Division		J. Zwaily	(1)
Attn: LCDR A. N. Bodnar	(1)	Greenbelt, MD 20771	
D. C. Simpson	(1)		
D. L. Porter	(1)	NASA/Wallops Station	
R. A. Smith	(1)	Information Processing and Analysis	
B. B. Parker	(1)	Branch	
Rockville, MD 20852	. ,	Attn: C. D. Leitao	(1)
		N. E. Huang	(1)
NOAA/Atlantic Oceanographic and		W. B. Krabill	(1)
Meteorological Lab.		B. Speidel	(1)
Physical Oceanography Laboratory		Wallops Island, VA 23337	(*)
15 Rickenbacker Causeway		•	
Attn: G. A. Maul	(1)	Director	
H. M. Byrne	(1)	U.S. Army Ballistic Research Laboratory	
Miami, FL 33149	. /	Attn: DRDAR-TBS-S (STINFO)	(1)
		Aberdeen Proving Ground, MD 21005	(-/

	Copies		Copies
Smithsonian Astrophysical Observatory	,	Battelle Columbus Laboratories	
60 Garden St.		505 King Ave.	
Attn: Dr. E. M. Gaposchkin	(1)	Attn: A. G. Mourad	(1)
Dr. G. C. Wiffenbach	(1)	Columbus, OH 43201	
B. Stevens	(1)		
Cambridge, MA 02138		Dr. J. W. Chamberlain	
		Rice University	
National Science Foundation		Houston, TX 77001	
1951 Constitution Ave., NW			
Attn: Mathematical Sciences Division		Dr. R. H. Rapp	
Dr. J. G. Gross	(1)	Ohio State University	
Dr. R. E. Wall	(1)	Dept. of Geodetic Science	
Dr. J. Morrison	(1)	1958 Neil Ave.	(1)
Washington, DC 20550		Columbus, OH 43210	
Scripps Institution of Oceanography		Dr. R. O. Reid	
University of California at San Diego		Texas A&M University	(1)
Attn: Dr. W. H. Munk	(1)	College Station, TX 77843	
Dr. M. C. Hendershott	(1)		
Prof. B. D. Zetler	(1)	Florida State University	
Prof. S. M. Smith	(1)	Dept. of Oceanography	
Prof. H. W. Menard	(1)	Attn: Dr. J. J. O'Brien	(1)
Dr. J. H. Filloux	(1)	Dr. W. Sturges	(1)
Dr. B. Bernstein	(1)	Ms. L. Vasant	(1)
Dr. D. S. Luther	(1)	Tallahassee, FL 32306	
LaJolla, CA 92037			
		Prof. F. E. Snodgrass	
Dr. C. Wunsch		Inst. of Geophysics and Planetary Physic	S
MIT/Dept. Earth & Planetary Sciences	(1)	University of California at San Diego	(1)
Cambridge, MA 02139		LaJolla, CA 92037	
Woods Hole Oceanographic Institute		Prof. K. Wyrtki	
Attn: Dr. H. M. Stommel	(1)	University of Hawaii	(1)
Dr. G. Veronis	(1)	Honolulu, HI 96822	
Dr. N. P. Fofonoff	(1)		
Dr. J. Whitehead	(1)	Prof. B. Tapley	
Dr. P. G. Brewer	(1)	Dept. of Aerospace	
Woods Hole, MA 02543		Eng. & Eng. Mechanics	(1)
		WRW 402	
		University of Texas	
		Austin, TX 78712	

	Copies		Copies
Prof. D. Lynch Thayer School of Engineering Dartmouth College Hanover, NH 03755	(1)	Dr. R. H. Estes Business and Technological Systems, Inc. Aerospace Building, Suite 605 10210 Greenbelt Rd. Seabrook, MD 20801	(1)
Prof. T. B. Curtin North Carolina State Univ. at Raleigh Dept. of Marine Science & Engineering P.O. Box 5923 Raleigh, NC 27650	(1)	T. V. Martin Sci. Res. and Appl. Group Washington Analytical Services Center, In 6801 Kenilworth Ave. Riverdale, MD 20840	nc. (1)
University of Washington Dept. of Oceanography WB-10 Attn: Dr. A. J. Clarke Prof. D. Winter Prof. M. Jamart Seattle, WA 98195	(1) (1) (1)	Dr. S. K. Jordan The Analytic Sciences Corporation 6 Jacob Way Reading, MA 01867	(1)
Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive		The Rand Corporation Attn: Director, Climate Program Santa Monica, CA 90406	(1)
Attn: Dr. M. Parke Dr. J. Lorell Dr. G. Born Pasadena, CA 91103	(1) (1) (1)	Local: C D	(1) (1)
Prof. J. T. Kuo Lamont-Doherty Geological Observatory Columbia University	(1)	E31 (GIDEP) E41 (Sullivan) E431 K	(1) (1) (10) (1) (1)
Prof. W. J. Pierson, Jr. 103 Oakland Avenue	(1)	K02 K04 K05 K10 K102	(1) (1) (1) (1)
West Hamstead, NY 11552 Prof. Morris Schulkin Applied Physics Laboratory University of Washington	(1)	K102 K1040 K104U K104S K104Z	(1) (1) (200) (1)
Seattle, WA 98105		K12 K12G K12M	(1) (1) (1)

	Copies
K12S	(1)
K12T	(1)
K12 W	(1)
K13	(1)
K13H	(1)
K14	(1)
K14S	(1)
K20	(1)
K204	(1)
K21	(1)
K21D	(1)
K30	(1)
K40	(1)
K404A	(1)
K404S	(1)
K41	(1)
K42	(1)
K44	(1)
K50	(1)
K51B	(1)
R	(1)
R02	(1)
R04	(1)
R31G	(1)
R40	(1)
R44	(1)
R44VT	(1)

