8086/8088 Hardware Specifications

Lecture 05

Asst Prof Athar Mohsin

Pin layout

- Virtually no difference
 - Both are 40 pin
 - 16 bit microprocessors
 - Maj difference is the width of data bus
 - Another Difference is one of the control signal

16 bit data bus 8 bit data bus

AD0-AD15 AD0-AD7

M/IO pin IO/\overline{M} pin

BHE pin SSO pin

Pin Functions

- AD7-AD0 (8088): Multiplexed Address and Data bus
 - Memory address or port numbers when ALE is active(1)
 - Data when ALE is inactive (0)
 - High impedance state during hold acknowledge
- A15- A8 (8088): address appears throughout the entire bus cycle
- AD15-AD0 (8086): Multiplexed Address/ Data bus contains
 - Address information or IO port numbers when ALE is active
 - Data when ALE is inactive
 - High impedance during hold ack

5

Pin Functions

- A19-A16/S6-S3: Address and status pins are multiplexed and contains
 - Address bus bits with ALE
 - Status bits without ALE
 - S6 always at logic 0
 - S5 indicate condition of 1 flag bit
 - S3 & S4 indicates which segment is accessed during the current bus cycle
- RD: this strobe becomes a logic 0 during reception of data from memory or IO
- READY: when HIGH execute instructions and when LOW, WAIT states are inserted

Pin Functions

- INTR: used to request hardware interrupt
- NMI: Nonmaskable Interrupt:
 - causes a type 2 interrupt at the end of the current instruction
- RESET: Reset the processor, if remains high for a minimum of four clock
- CLK: to provide basic timings for the processor
- NM/MX: used to select the minimum and maximum mode of operation

7

Clock Generator (8284A)

- 8086 requires clock signals from an external clock, to synchronize the internal operations, it provide fol main functions:
 - Clock Generation
 - RESET synchronization
 - READY synchronization
 - Peripheral Clock signal
 - CLK pin provide clock input signal to 8086 and other components
 - PCLK: provide clock signal to peripheral eqpt in the system
- 8284A has a 14.7456 MHz crystal connected to it
 - The clock signal is produced by Freq of the crystal divided by three (14.7456/3)
 - The actual freq for 8086 is 4.915 MHz
 - The PCLK freq is half of the clock freq so it is 2.45 MHz

Clock Operation

- Crystal Oscillator has two inputs X1 and X2
 - Oscillator will generate the signal of the same freq as the crystal
 - The generated signal will be fed to AND gate and to an Inverting buffer to provide output signal
 - When F/C is at logic 0 the oscillator output is fed to divide by three counter
- The output of divide by 3 counter generate the timings for
 - ready synchronization, divide by 2 counter and CLK signal
- A divide by 2 counter cascaded with the divide by 3 provide divide by 6 output as PCLK

q

Bus Buffering

<u>Buses</u>

- Three buses required to interface memory and I/O:
 - Address bus , To provide the memory and I/O with the addresses and the port numbers
 - Data Bus , Transfers data to and from memory and I/O in the system
 - Control bus, To provide the control information to the memory and the I/o

11

8086/88 Buses

- Control, Data and Address buses
- Data and Address buses are multiplexd once leave the 8086 labeled as ADDR/DATA
 - To save pins
 - Lower 16 bits of addresses are multiplexed on the data bus
 - To access the memory or port 8086 sends out lower 16 bits of address on data bus
 - Latches holds the address during the read / write operation and output on ALE signal

Buses

- Demultiplexing is the technique of extracting the information form these multiplexed pins
- Why to demultiplex the pins?
 - Memory and port requires that address must remain valid throughout read and write operation
 - If not demultiplexed, address changes at the memory and I/O

13

Buffered System

- If more than 10 unit load is attached to any bus pin, then the system should be buffered
- A fully buffered 8086 system requires
 - Demultiplexed address pins are buffered by three address latches
 - Data bus has two Octal bidirectional bus buffers
 - Control bus signals M/IO, RD and WR has a buffer

8286 - Transceiver

- Bidirectional three state buffer
 - Not req for smaller system
 - Req when more devices are added
- To ensure proper fast and speedy supply of current high speed drive buffers are used
- These are bi directional because
 - They send out and read in the data on the data bus
- These should have three state output:
 - so that data can be floated during a bus operation

DT/R Signal

- Data Transmit and Receive DT/R' signal sets the direction in which the data will pass through the buffers
 - When DT/R' is asserted high the buffers will setup to transmit data from 8086 to ROM, RAM or port
 - When DT/R' is asserted low the buffers will setup to allow the data from ROM, RAM or port to 8086
- DEN' signal is asserted to enable the three state output on data bus buffers

17

Basic 8086 system Timings

Ω

Timing

- One clock cycle is called a "State"
 - Measured from falling edge of one clock pulse to the falling edge of next clock pulse
 - Time for a state is determined by the frequency of the clock signal
- Basic microprocessor operation is called a " Machine Cycle"
 - Machine cycle consists of several states
- The time a microprocessor requires to fetch and execute an entire instruction is referred as "instruction cycle"
 - Consists of one or more machine cycle

M/IO signal

- 8086 asserts M/IO
 - High if the read is from memory
 - -Low if the read is from a port

RD signal

- RD signal is used to enable the addressed memory or port device
- RD signal low turns ON the addressed memory or port, which then output the desired data on the data bus
- To complete the cycle the 8086 brings the RD line high, that cause the addressed memory to floats its output on the data bus

WAIT State

- Inserting the wait state freezes the action on the buses
- WAIT state give an extra clock cycle to the addressed device to put valid data
- WAIT state is inserted to accommodate the operation of slower devices (like ROM)
- NO WAIT state is inserted in a read machine cycle for reading data from a faster device (like RAM)

DEN & DT/R Signals

- DEN signal Enable the buffers at the appropriate time in the machine cycle
- DT/R signal is connected to the buffers will set them for input during a read operation or set them for output during a write operation