Valószínűségszámítás

5. gyakorlat

Nemkin Viktória $\label{eq:nemkin/viktoria.nemkin/viktoria.nemkin/viktoria.nemkin/viktoria.nemkin/viktoria.nemkin/viktoria.nemkin/viktória <math display="block">2016.\ \ \mathrm{okt.}\ \ 12.$

- 5.1 Az X normális eloszlású valószínűségi változó várható értéke -5 és tudjuk, hogy $\mathbf{P}(-5 \le X < 0) = 0,3$. Mennyi $\mathbf{P}(-5 < X < 4)$? ($\Phi(0,7881) = 0,8$, $\Phi(1,4186) = 0,9222$) Fgy. II.30
- 5.2 Tekintsük az $f(t) = A * e^{-t^2}$ függvényt! Milyen A paraméter esetén lesz ez sűrűségfüggvény? Ha X-szel jelöljük a sűrűségfüggvényhez tartozó valószínűségi változót, akkor mekkora a P(X < 0) valószínűség? Mekkora X várható értéke és szórása? $Fgy.\ II.108$
- 5.3 Az emberek testmagassága normális eloszlással jól közelíthető. Mennyi annak a valószínűsége, hogy egy 10 tagú társaság többsége magasabb az átlagosnál (a változó várható értékénél)?

 Fgy. II.115
- 5.4 Legyen X valószínűségi változó sűrűségfüggvénye $f_X(t) = \frac{1}{\sqrt{2}*\pi} e^{\frac{-(t+2)^2}{2*\pi}}$. Standardizálja X-et! P(X>-2)=? Fqu. II.128
- 5.5 Legyenek $X \in N(m,D)$ és $Z = (\frac{X-m}{D})^2$. Számolja ki Z sűrűségfüggvényét! Fgy. II.61
- 5.6 Egy berendezés élettartama normális eloszlású, 6,3 év várható értékkel és 2 év szórással. Hány év garanciát adjunk, hogy 0,9 legyen annak a valószínűsége, hogy a berendezés csak garanciális idő után hibásodik meg? ($\Phi(-1,28)=0,1$) Fgy. II.71
- 5.7 Legyen $X \in E(\lambda)$ és $Y = X^2$. Adja meg Y sűrűségfüggvényét! Fqy. II.2
- 5.8 Egy szobában 5 telefon van, melyek egymástól teljesen függetlenül szólalhatnak meg. Jelölje X_i val. vál. az i. telefon meszólalásának időpontját percekben, a megfigyelés kezdetétől számítva! Az X_i -kről tudjuk, hogy exponenciális eloszlásúak $\lambda=1$ paraméterrel. Mekkora a valószínűsége annak, hogy a megfigyelés kezdetétől eltelt 1 perc alatt pontosan 2 telefon csörgött? Mekkora valószínűsége annak, hogy a 61. perc végéig pontosan 2 telefon csörgött, ha tudjuk, hogy egy telefon sem csörgött az első 60 percben? Fgy.~II.79
- 5.9 Az $X \in U(0,1)$ valószínűségi változó segítségével generáljunk $Y \in G(\frac{1}{4})$ eloszlású valószínűségi változót! Fgy. II.100
- 5.10 Legyen $X \in U(0,1)$ és $Y = \sqrt{2X}.$ Adja meg Y sűrűségfüggvényét! Fgy.~II.6
- 5.11 Legyen $X \in U(0,1)$ és $f(t) = \frac{1}{t+3}, \ t \in (0,1).$ Ha $Y = f(X), \ P(Y > \frac{7}{24}) = ?$ Fgy. II.106
- 5.12 Tekintsük az $f(x) = \frac{3x^2}{7}$, $x \in [1,2]$ sűrűségfüggvényét! Az $X \in U(0,1)$ segítségével állítsunk elő olyan Y valószínűségi változót, amelynek sűrűségfüggvénye éppen f(x)! $Fgy.\ II.11$
- 5.13 Amerikában a hőmérsékletet Fahrenheitben mérik. Washingtonban a hőmérséklet eloszlása nyaranta $X \in N(86,4)$. Térjünk át a Celsius-skálára! (Átváltási képlet: $Y[C] = \frac{5}{9}(X[F] 32)$. Fqy. II.67
- 5.14 Az autók fogyasztását Amerikában mérföld/gallon-ban (mpg), Európában liter/100 km formában adják meg. Jelölje X valószínűségi változó egy Ford autó fogyasztását mpg-ben! Hogyan kell transzformálnunk a sűrűségfüggvényét, f(x)-et, ha áttérünk a liter/100 km skálára? (1 mérföld = 1.609 km és 1 gallon = 3,785 liter) Fqu. II.68