Import packages

```
In [92]: %matplotlib inline
    import pandas as pd
    from pandas.api.types import is_numeric_dtype
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns

from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, precision_score, r
    ecall_score, classification_report
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import StandardScaler, LabelEncoder

# Metrics
    from sklearn.metrics import precision_score, recall_score, log_loss, accuracy_score, f1_
    score, confusion_matrix
```

Load the dataset

Out[93]:

	0	1	2	3	4	5	6	7	8	9	 13	14	15	16	17	18	19	20	21	22
0	р	х	s	n	t	р	f	С	n	k	 s	w	w	р	w	o	р	k	s	u
1	е	х	s	у	t	а	f	С	b	k	 s	w	w	р	w	0	р	n	n	g
2	е	b	s	w	t	I	f	С	b	n	 s	w	w	р	w	o	р	n	n	m
3	р	х	у	w	t	р	f	С	n	n	 s	w	w	р	w	o	р	k	s	u
4	е	х	s	g	f	n	f	W	b	k	 s	w	w	р	w	0	е	n	а	g
5	е	х	у	у	t	а	f	С	b	n	 s	w	w	р	w	o	р	k	n	g
6	е	b	s	w	t	а	f	С	b	g	 s	w	w	р	w	o	р	k	n	m
7	е	b	у	W	t	_	f	С	b	n	 s	W	W	р	W	o	р	n	s	m
8	р	х	у	w	t	р	f	С	n	р	 s	w	w	р	w	0	р	k	٧	g
9	е	b	s	у	t	а	f	С	b	g	 s	w	w	р	w	o	р	k	s	m

10 rows × 23 columns

Data Preprocessing

Dealing with missing values

```
In [94]: # Check for missing values
         df.isnull().sum()
Out[94]: 0
               0
         1
               0
         2
               0
               0
         4
               0
         5
               0
         6
         7
               0
         8
               0
         9
         10
               0
               0
         11
               0
         13
               0
         14
               0
         15
               0
         16
               0
         17
               0
         18
               0
         19
               0
         20
               0
         21
               0
         22
               0
         dtype: int64
```

No missing values.

Data Visualization

In [96]: df.describe()

Out[96]:

	0	1	2	3	4	5	6	7	8	9	 13	14	15	16	17
count	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124	 8124	8124	8124	8124	8124
unique	2	6	4	10	2	9	2	2	2	12	 4	9	9	1	4
top	е	X	у	n	f	n	f	С	b	b	 s	w	w	р	w
freq	4208	3656	3244	2284	4748	3528	7914	6812	5612	1728	 4936	4464	4384	8124	7924

4 rows × 23 columns

```
In [97]: df.groupby(df[0]).size()
Out[97]: 0
               4208
          e
               3916
          dtype: int64
In [98]:
          # 4208 edible cases vs 3925 poisonous cases. More or less balanced. Class imbalance will
          not become an issue.
          df=df.apply(LabelEncoder().fit_transform)
In [99]:
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 8124 entries, 0 to 8123
          Data columns (total 23 columns):
                8124 non-null int64
          1
                8124 non-null int64
          2
                8124 non-null int64
                8124 non-null int64
          3
                8124 non-null int64
          4
          5
                8124 non-null int64
          6
                8124 non-null int64
          7
                8124 non-null int64
          8
                8124 non-null int64
          9
                8124 non-null int64
                8124 non-null int64
          10
                8124 non-null int64
          11
                8124 non-null int64
          12
          13
                8124 non-null int64
                8124 non-null int64
          14
          15
                8124 non-null int64
          16
                8124 non-null int64
                8124 non-null int64
          17
          18
                8124 non-null int64
          19
                8124 non-null int64
          20
                8124 non-null int64
          21
                8124 non-null int64
                8124 non-null int64
          dtypes: int64(23)
          memory usage: 1.4 MB
In [100]: #Choose 22 predictor variables
          X = df.iloc[:,1:23]
          #Set column one as target variable
          Y = df.iloc[:,0]
```

Feature Importance

```
In [106]: # Feature importance using XGBoost feature selection
    from xgboost import XGBClassifier
    model = XGBClassifier(n_estimators=500)
    model.fit(X, Y)
    feature_importance = model.feature_importances_
    indices= np.argsort(feature_importance)
    plt.figure(figsize=(10, 5))
    plt.bar(range(len(feature_importance)), feature_importance, align='center', color ="G")
    plt.xticks(range(len(feature_importance)), features, rotation='vertical')
    plt.title('Feature importance rankings')
    plt.ylabel('Importance')
    plt.xlabel('Features')
    plt.show()
```



```
In [105]: table = pd.DataFrame(model.feature_importances_, columns=['weights'], index=features)
    table = table.sort_values(by ='weights', ascending=False)
    table
```

Out[105]:

	weights
gill-color	0.478012
population	0.143534
stalk-shape	0.097710
stalk-color-above-ring	0.063925
gill-size	0.053242
bruises	0.026120
habitat	0.023842
stalk-root	0.023567
spore-print-color	0.022758
stalk-color-below-ring	0.017927
odor	0.015328
cap-surface	0.014461
ring-number	0.007542
stalk-surface-below-ring	0.007219
cap-color	0.001744
ring-type	0.001670
stalk-surface-above-ring	0.001126
gill-spacing	0.000201
cap-shape	0.000074
veil-color	0.000000
veil-type	0.000000
gill-attachment	0.000000

In [108]: #Order of importances : 9, 21, 10, 14, 8, 4, 22, 11, 20, 15, 5, 2, 18, 12, 7, 1, 17, 16,

Modeling

In [111]: from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.7) model = RandomForestClassifier() evaluate_metrics(X_train, Y_train, X_test, Y_test, model)

Log loss: 0.0022 Training accuracy: 1.0000 Model accuracy: 0.9998

precision recall f1-score support 0 1.00 1.00 1.00 2947 1 1.00 1.00 1.00 2740 avg / total 1.00 1.00 1.00 5687

C:\Users\cyine\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Deprecati onWarning: The truth value of an empty array is ambiguous. Returning False, but in futur e this will result in an error. Use `array.size > 0` to check that an array is not empt y.

if diff:

C:\Users\cyine\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Deprecati onWarning: The truth value of an empty array is ambiguous. Returning False, but in futur e this will result in an error. Use `array.size > 0` to check that an array is not empt y.

if diff:

Log loss: 0.4818

Training accuracy: 0.9860 Model accuracy: 0.9856

	precision	recall	f1-score	support
0	0.98	0.99	0.99	2947
1	0.99	0.98	0.98	2740
avg / total	0.99	0.99	0.99	5687

C:\Users\cyine\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Deprecati onWarning: The truth value of an empty array is ambiguous. Returning False, but in futur e this will result in an error. Use `array.size > 0` to check that an array is not empt y.

if diff:

C:\Users\cyine\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Deprecati onWarning: The truth value of an empty array is ambiguous. Returning False, but in futur e this will result in an error. Use `array.size > 0` to check that an array is not empt y.

if diff:

Log loss: 0.0129

Training accuracy: 0.9988 Model accuracy: 0.9977

	precision	recall	f1-score	support		
0	1.00	1.00	1.00	2951		
1	1.00	1.00	1.00	2736		
avg / total	1.00	1.00	1.00	5687		

In [127]: from sklearn.ensemble import RandomForestClassifier
 from sklearn.cross_validation import train_test_split
 X3=df[[9, 21, 10, 14, 8, 4, 22, 11, 20, 15, 5, 2, 18, 12, 7, 1, 17]]
 X_train, X_test, Y_train, Y_test = train_test_split(X3, Y, test_size=0.7)
 model = RandomForestClassifier()
 evaluate_metrics(X_train, Y_train, X_test, Y_test, model)

Log loss: 0.0039

Training accuracy: 1.0000 Model accuracy: 0.9986

support	f1-score	recall	precision	
2976	1.00	1.00	1.00	0
2711	1.00	1.00	1.00	1
5687	1.00	1.00	1.00	avg / total

