SC4/SM8 Advanced Topics in Statistical Machine Learning Problem Sheet 2

1. Let k_1 and k_2 be positive definite kernels on \mathbb{R}^p . Verify that the following are also valid kernels.

[Hint: it suffices to identify the corresponding feature.]

- (a) $x^{\top}x'$,
- (b) $ck_1(x, x')$, for $c \ge 0$,
- (c) $f(x)k_1(x,x')f(x')$ for any function $f: \mathbb{R}^p \to \mathbb{R}$,
- (d) $k_1(x,x') + k_2(x,x')$,
- (e) $k_1(x, x')k_2(x, x')$,
- (f) $\exp(k_1(x, x'))$,
- (g) $\exp\left(-\frac{1}{2\gamma^2}||x x'||_2^2\right)$.
- 2. Assume that kernel k is not strictly positive definite, but that there exist $\{a_i\}_{i=1}^n$ and $\{x_i\}_{i=1}^n$, such that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) = 0.$$

Show that then

$$f(x) = \sum_{i=1}^{n} a_i k(x_i, x) = 0 \quad \forall x \in \mathcal{X}.$$

Hence conclude that the RKHS functions of the form $f(x) = \sum_{i=1}^{n} a_i k(x_i, x)$ have zero norm if and only if they are identically equal to zero. [Hint: assume contrary for some $x = x_{n+1}$ and consider $\sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_i a_j k(x_i, x_j)$]

3. (One-Class SVM) A Gaussian RBF kernel on $\mathcal{X} = \mathbb{R}^p$ is given by

$$k(x, x') = \exp\left(-\frac{1}{2\sigma^2} \|x - x'\|^2\right).$$
 (1)

- (i) What is k(x,x) for this kernel? What can you conclude about the norm of the features $\varphi(x)$ of x? What values can the angles between $\varphi(x)$ and $\varphi(x')$ take? Sketch the set $\{\varphi(x): x \in \mathcal{X}\}$ as if the features lived in a 2D space.
- (ii) Let $\{x_i\}_{i=1}^n$ be a set of points in $\mathcal{X} = \mathbb{R}^p$ (no labels are given). The one-class Support Vector Machine (SVM) is a method for outlier detection which in its primal form is defined as

$$\min_{w,\xi,\rho} \frac{1}{2} \|w\|^2 + \frac{1}{\nu n} \sum_{i=1}^n \xi_i - \rho, \quad \text{subject to } \langle w, \varphi(x_i) \rangle \ge \rho - \xi_i, \ \xi_i \ge 0,$$

where ν is a given SVM parameter, features $\varphi(x)$ correspond to the RBF kernel in (1), and ξ_i 's are the non-negative slack variables. The fitted hyperplane $\langle w, \varphi(x) \rangle - \rho$ in the feature space separates the majority of points from the origin (while pushing away from the origin as much as possible) and is used to determine "atypical" x-instances.

Using the 2D intuition from (i), sketch the corresponding hyperplane in the feature space and annotate with ρ , w and a non-zero slack ξ_j for an "outlier" x_j . Would it make sense to use the one-class SVM with a linear kernel?

- (iii) Write the dual form of the one-class SVM, using Lagrangian duality. [Hint: setting to zero the derivative of the Lagrangian with respect to w should give $w = \sum_{i=1}^{n} \alpha_i \varphi(x_i)$, where $\alpha_i \geq 0$ are the Lagrange multipliers of the constraints $\langle w, \varphi(x_i) \rangle \geq \rho \xi_i$]
- 4. Derive the Gram matrix $\tilde{\mathbf{K}}$ of centred features $\tilde{\varphi}(x_i) = \varphi(x_i) \frac{1}{n} \sum_{r=1}^n \varphi(x_r)$ as a function of kernel values $\mathbf{K}_{i,j} = k(x_i, x_j) = \varphi(x_i)^\top \varphi(x_j)$. Show that it takes the form $\mathbf{H}\mathbf{K}\mathbf{H}$, where \mathbf{H} is a matrix you should specify. Verify that \mathbf{H} is symmetric and idempotent, i.e., $\mathbf{H}^2 = \mathbf{H}$.
- 5. Show that

$$\mathrm{MMD}_{k}\left(P,Q\right) = \sup_{f \in \mathcal{H}_{k}: \|f\|_{\mathcal{H}_{k}} \le 1} \left| \mathbb{E}_{X \sim P} f(X) - \mathbb{E}_{Y \sim Q} f(Y) \right|.$$

6. Consider a multilayer perceptron with 1 hidden layer consisting of N hidden units. The MLP is given by the function $f: \mathbb{R}^d \to \mathbb{R}$:

$$f(x) = \sum_{j=1}^{N} w_j h(a_j^{\top} x + b_j)$$

with nonlinearity h and parameters initialised iid as:

$$w_j \sim \mathcal{N}(0, \sigma_w^2/N)$$

$$a_j \sim \mathcal{N}(0, \sigma_a^2 I_d)$$

$$b_j \sim \mathcal{N}(0, \sigma_b^2)$$
(2)

Assume that the nonlinearity has bounded second moment, $\mathbb{E}[h(a^{\top}x+b)^2] \leq V < \infty$ for all $x \in \mathbb{R}^d$. We will consider the behaviour of f at initialisation, in case of a very wide MLP, i.e. $N \to \infty$.

- (a) Show that for each $x \in \mathbb{R}^d$, f(x) is normally distributed as $N \to \infty$, with zero mean and variance $\sigma_w^2 \mathbb{E}[h(a^\top x + b)^2]$ where \mathbb{E} is expectation with respect to random parameters a and b given by the initialisation. Why is the division by N important in (2)?
- (b) Show that for $x, x' \in \mathbb{R}^d$, the pair f(x), f(x') is also jointly normally distributed as $N \to \infty$, with zero mean and variance $\sigma^2_w \mathbb{E}[h(a^\top x + b)h(a^\top x' + b)]$.
- (c) For input-output pair (x, y) and square loss, derive the gradients with respect to w_j , a_j and b_j .
- (d) What do you notice about the typical scales of these gradients at the first step of SGD? For a wide MLP with very large N, how would SGD behave at the first iteration? Specifically, would the first layer parameters (a_j, b_j) change much relative to the second layer parameters (w_j) ? How about for subsequent iterations?
- (e) Would ADAM behave differently?
- (f) Suppose we parameterise our MLP slightly differently:

$$f'(x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} w'_{j} h((a'_{j})^{\top} x + b'_{j})$$

with parameters initialised iid as:

$$w'_{j} \sim \mathcal{N}(0, \sigma_{w}^{2})$$

$$a'_{j} \sim \mathcal{N}(0, \sigma_{a}^{2}I_{d})$$

$$b'_{j} \sim \mathcal{N}(0, \sigma_{b}^{2})$$
(3)

Explain why this does not change the MLP model. How does this change the behaviour of SGD in the first and subsequent iterations?