EXHIBIT 8

U.S. Patent No. 8,085,802 ("the '802 Patent") Exemplary Infringement Chart

The Accused MoCA Instrumentalities are instrumentalities that Charter deploys to provide a whole-premises DVR network over an on-premises coaxial cable network, with devices operating with data connections compliant with MoCA 1.0, 1.1, and/or 2.0. The Accused MoCA Instrumentalities include the Charter Arris DCX3510, Charter Arris DCX3520, Charter Arris DCX3600, Charter Arris DCX3600, Charter Arris DCX3220, and substantially similar instrumentalities. Charter literally and/or under the doctrine of equivalents infringes the claims of the '802 Patent under 35 U.S.C. § 271(a) by using the Accused MoCA Instrumentalities.

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
3. A method for transmitting packets from a	The Accused Services are provided using at least the Accused MoCA
Broadband Cable Network (BCN) modem to a	Instrumentalities including gateway devices (including, but not limited to, the
plurality of nodes in a broadband cable network,	Charter Arris DCX3510, Charter Arris DCX3520, Charter Arris DCX3600, and
the method comprising:	devices that operate in a similar manner), client devices (including, but not
	limited to, the Charter Arris DCX3200, Charter Arris DCX3220, and devices that
	operate in a similar manner), and substantially similar instrumentalities. The
	Accused MoCA Instrumentalities operate to form a broadband cable network
	over an on-premises coaxial cable network as described below.
	The Charter full-premises DVR network constitutes a broadband cable network
	as claimed. The Charter full-premises DVR network is a MoCA network created
	between gateway devices and client devices using the on-premises coaxial cable
	network. This MoCA network is compliant with MoCA 1.0, 1.1, and/or 2.0.
	"The MoCA system network model creates a coax network which supports
	communications between a convergence layer in one MoCA node to the
	corresponding convergence layer in another MoCA node."
	(MoCA 1.0, Section 1. See also MoCA 1.1, Section 1.1; MoCA 2.0, Section
	1.2.2)

"The MoCA Network transmits high speed multimedia data over the in-home coaxial cable infrastructure." (MoCA 1.0, Section 2. See also MoCA 1.1, Section 2; MoCA 2.0, Section 5)
"PHY data packets carry MAC data and control frames as PHY payload. Figure 4-3 shows an example of how a PHY data packet is constructed from a MAC frame. In this example, the FEC-padded MAC frame is encrypted and encoded into two Reed-Solomon code words, the last code word being shortened to minimize FEC padding. The encoded data is ACMT padded, scrambled and modulated onto the sub-carriers of three ACMT symbols. The ACMT symbols are bin-scrambled and then transformed to the time-domain where a cyclic prefix is added to each ACMT symbol to obtain the PHY data payload. Finally, a preamble is prepended to the PHY data payload and is filtered and upconverted to RF for transmission onto the media. In practice, the number of Reed-Solomon code words and number of ACMT symbols per PHY data packet will vary as a function of the MAC frame size and modulation profile. The processing steps referred to here are specified in Section 4.3." (MoCA 1.0, Section 4.2.1.2. See also MoCA 1.1, Section 4.2.1.2, MoCA 2.0, Section 14.2) Charter utilizes the MoCA standard to provide an on-premises DVR network over an on-premises coaxial cable network as shown below:

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
	MoCA Router Connection IP Client Router 802.11 b/g/n DCX3600-M Router 802.11 b/g/n 2.4 GHz b/g/n Tablets Smartphones
	MoCA Enabled Router 5 GHz n Wireless IP Client Figure 5 - A Typical Mixed MoCA/WiFi Home Network
formatting the packets in a MAC subsystem that	The Accused MoCA Instrumentalities operate to format the packets in a MAC
transmits the packets within the broadband cable	subsystem that transmits the packets within the broadband cable network,
network, including formatting a data and control	including formatting a data and control packet for transmission within the
packet for transmission within the broadband cable	broadband cable network, the data and control packet having a header and a
network, the data and control packet having a	variable length payload, the header having at least five fields selected from the
header and a variable length payload, the header having at least five fields selected from the group consisting of a transmit clock field, packet type	group consisting of a transmit clock field, packet type field, packet subtype field, version field, source node ID field, destination node ID field, and header check sequence field as described below.

field, packet subtype field, version field, source

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
node ID field, destination node ID field, and	For example, by virtue of their compliance with MoCA, the Accused MoCA
header check sequence field;	Instrumentalities include circuitry and/or associated software modules that
	format the packets in a MAC subsystem that transmits the packets within the
	broadband cable network, including formatting a data and control packet for
	transmission within the broadband cable network, the data and control packet
	having a header and a variable length payload, the header having at least five
	fields selected from the group consisting of a transmit clock field, packet type
	field, packet subtype field, version field, source node ID field, destination node
	ID field, and header check sequence field.
	"The MAC protocol includes the transmission of control packets and data
	packets. Control packets are used for Link Layer control operations such as
	network admission, link maintenance operations, transmit opportunity
	assignment via MAP's, transmit power control and bandwidth requests. Data
	packets transport upper layer information across the network. To facilitate
	admission, the Network Coordinator transmits Beacons at fixed intervals.
	Beacons are messages which contain basic information for the network's
	operation."
	(MoCA 1.0, Section 2.3.1. See also MoCA 1.1, Section 2.3.1; MoCA 2.0,
	Section 5.3.1)

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
	2)
	"The general format of the header part of a MoCA MAC control/data frame is given in Table A-1 below. The header is fixed in length and consists of a transmit clock time stamp, type and subtype of the packet, the version of the MoCA specification, IDs of the source and destination nodes of the packet, length of the packet and a header checksum." (MoCA 1.0, Section A.1. See also MoCA 1.1, Section A.1; MoCA 2.0, Section 6.1)
	"The payload of a MAC frame MAY vary in length from 8 bytes to 1518 bytes. Its format is dependent on the FRAME_TYPE and FRAME_SUBTYPE fields in the MAC frame header." (MoCA 1.0, Section A.2. <i>See also</i> MoCA 1.1, Section A.2; MoCA 2.0, Section 6.1)

Field Length Usage		
TRANSMIT_CLOC	32 bits	System Time when the first bit is transmitted onto the
K		medium
PACKET_SUBTYP	4 bits	If packet type == MAP
E		0x0 = Asynchronous MAP
		If packet_type == Reservation Request
		0x0 = Asynchronous data reservation request
		If packet type == Link control
		0x0 – Type I/III Probe Report
		0x1 - Admission Request
		0x2 – Admission response
		0x3 – Key distribution
		0x4 – Dynamic Key distribution
		0x5 - Type I/III Probe Report Request
		0x6 – Link Acknowledgement
		0x7 – Type II Probe Report
		0x8 – Periodic Link Packet
		0x9 – Power Control
		0xA – Power Control Response
		0xB – Power Control Acknowledgement
		_
		0xC - Power Control Update
		0xD - Topology update 0xE - Unicast MAC Address Notification
		0xF - Reserved
PACKET_TYPE	4 bits	Indicates the type of MAC packet being transmitted
		0x0 - MAP
		0x1 – Reservation Request
		0x2 – Link control
		0x3 – Ethernet unicast/broadcast
		0x4 - Reserved
		0x5 – MPEG
		0x6 - DSS
		0x7 - 0xF - Reserved
VERSION	8 bits	Indicates the MAC frame version implemented by a rade
VERSION	o ons	Indicates the MAC frame version implemented by a node.
		0x00 – node complies with this specification
		All other values Reserved
RESERVED	8 bits	0x00; Type I
	8 bits	Node ID of the source node
SOURCE_NODE_I D	o ons	Mode II) of the source flode
	0.1-24-	0+00, Thurs I
RESERVED	8 bits	0x00; Type I
DESTINATION_N ODE_ID	8 bits	Node ID of the destination node
PACKET_LENGT	16 bits	Length of payload and Payload CRC portion of this MAC
н _		Frame in bytes, (excluding the MAC Frame header).
RESERVED	32 bits	Type III
HEADER CHECK	16 bits	Header CRC

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
	(MoCA 1.0, Table A-1. See also MoCA 1.1, Table A-1; MoCA 2.0, Section 6.1)
receiving the packets from the MAC subsystem at	The Accused MoCA Instrumentalities operate to receive the packets from the
a Modem subsystem that is in signal	MAC subsystem at a Modem subsystem that is in signal communication with
communication with the MAC subsystem and that	the MAC subsystem and that appends information to the packets as described
appends information to the packets; and	below.
	For example, by virtue of their compliance with MoCA, the Accused MoCA
	Instrumentalities include circuitry and/or associated software modules that
	receive the packets from the MAC subsystem at a Modem subsystem that is in
	signal communication with the MAC subsystem and that appends information
	to the packets.
	"The MoCA system includes convergence layers for core networks such as
	IEEE 802.3 (Ethernet), video streams (i.e., MPEG-2 transport) and digital
	satellite streams (i.e. DSS transport). The MoCA system network model creates
	a coax network which supports communications between a convergence layer
	in one MoCA node to the corresponding convergence layer in another MoCA
	node. The protocol stack of a MoCA node is shown in Figure 1-1. The protocol
	stack consists of the physical layer, the MAC layer and one or more convergence
	layers (CL)."
	(MoCA 1.0, Section 1. See also MoCA 1.1, Section 1; MoCA 2.0, Section 5.1)
	"For every PHY data packet, the length of the MAC frame shall be extended, as
	necessary, by appending bytes (also referred to as byte-padding) to the end of
	the MAC frame such that the padded MAC frame length is equivalent to the
	number of input bytes required by the Reed-Solomon encoder. The number of
	pad bytes M _{RSpad} shall be computed according to the methodology described in

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 3 of the '802 Patent
	Section 4.3.3.1." (MoCA 1.0, Section 4.3.1. See also MoCA 1.1, Section 4.3.1; MoCA 2.0, Section 14.3.1)
	Upper Layers (Core Networks)
	Convergence Layers (CL) 802.3 MPEG2 DSS TS
	TS
	MAC Layer
	Physical Layer
	Figure 1-1. MoCA Node Protocol Stack
	(MoCA 1.0, Figure 1-1. <i>See also</i> MoCA 1.1, Figure 1-1; MoCA 2.0, Figure 5-1)
	"All communication over the medium between two or more MoCA devices shall be performed via scheduled exchanges of Physical Layer (PHY) packets. The scheduling of PHY packets shall be in accordance with the rules defined in

The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 3 of the '802 Patent
Section 3 describing the Media Access Control (MAC) Layer. The MAC specifies the time instant at which the first RF sample of the PHY packet shall be present upon the communication medium and the duration of the PHY packet. The MAC specifies the PHY packet duration specifically, but indirectly, via the PHY packet type, configuration and payload duration. This information is exchanged via the PHY Layer Management (PLM) entity as described in Section 3.13." (MoCA 1.0, Section 4.2. See also MoCA 1.1, Section 4.2; MoCA 2.0, Section 14.1)
"The PHY packet consists of a PHY preamble immediately followed by a PHY payload field as shown in Figure 4-1. The PHY preamble provides the receiver a reference signal that the receiver may use to acquire the packet, calibrate its algorithms and eventually, to decode the PHY payload. Depending on the link status and PHY payload data, one of several PHY preamble types may be used. These PHY preamble types are defined in detail in Section 4.4. The PHY payload immediately follows the PHY preamble and transports MAC data frames in the case of PHY data packets and PHY probe data in the case of PHY probe packets. PHY data packet payload generation is defined in detail in Section 4.3. PHY probe packet payload." (MoCA 1.0, Section 4.2. See also MoCA 1.1, Section 4.2; MoCA 2.0, Section 14.1)
The Accused MoCA Instrumentalities operate to upconvert the packets with the
information for transmission via the broadband cable network at a RF subsystem
that is in signal communication with the Modem subsystem as described below.
For example, by virtue of their compliance with MoCA, the Accused MoCA

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
	Instrumentalities include circuitry and/or associated software modules that
	upconvert the packets with the information for transmission via the broadband
	cable network at a RF subsystem that is in signal communication with the
	Modem subsystem.
	"A PHY data packet consists of a PHY preamble immediately followed by a
	PHY payload. The transmitter reference model for generating a PHY data packet
	is shown in Figure 4-2. The PHY preamble consists of both a time-domain
	portion and a frequency-domain portion. As such, the block diagram shows
	these two portions entering the transmission processing chain at different points.
	The time-domain preamble is transmitted first in time followed immediately by
	the frequency domain preamble and finally followed by the ACMT modulated
	MAC frame."
	(MoCA 1.0, Section 4.2.1.1. See also MoCA 1.1, Section 4.2.1.1; MoCA 2.0,
	Section 14.1)
	MAC Frame FEC Padding Encryption FEC Encoder Symbol Symbol Sorambler
	Padding
	Time Domain Preamble Generator Preamble Generator Preamble Generator
	RF RF Signal Upconvert Filter ACMT Bin Subcarrier Modulator Scrambler Mapper
	Figure 4-2. PHY Data Packet Transmission Processing

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 3 of the '802 Patent
	(MoCA 1.0, Figure 4-2. <i>See also</i> MoCA 1.1, Figure 4-2, MoCA 2.0, Figure 14-2)
	"PHY data packets carry MAC data and control frames as PHY payload. Figure 4-3 shows an example of how a PHY data packet is constructed from a MAC frame. In this example, the FEC-padded MAC frame is encrypted and encoded into two Reed-Solomon code words, the last code word being shortened to minimize FEC padding. The encoded data is ACMT padded, scrambled and modulated onto the sub-carriers of three ACMT symbols. The ACMT symbols are bin-scrambled and then transformed to the time-domain where a cyclic prefix is added to each ACMT symbol to obtain the PHY data payload. Finally, a preamble is prepended to the PHY data payload and is filtered and upconverted to RF for transmission onto the media." (MoCA 1.1, Section 4.2.1.2. See also MoCA 1.1, Section 4.2.1.2; MoCA 2.0, Sections 14.2.4, 14.3.10).
wherein at least one of the packets is a beacon packet that has a channel number field, change field, sequence number field, network coordinator ID field, next beacon index field, admission frame length field, admission window, asynchronous MAP length field and a beacon Cyclic Redundancy Checking (CRC) field.	At least one of the packets is a beacon packet that has a channel number field, change field, sequence number field, network coordinator ID field, next beacon index field, admission frame length field, admission window, asynchronous MAP length field and a beacon Cyclic Redundancy Checking (CRC) field as described below. For example, at least one of the packets is a beacon packet that has a channel number field, change field, sequence number field, network coordinator ID field, next beacon index field, admission frame length field, admission window, asynchronous MAP length field and a beacon Cyclic Redundancy Checking (CRC) field in compliance with MoCA.

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 3 of the '802 Patent
	2)
	"Beacon operation is critical to a MoCA system and it is discussed first. Beacon signal is used by new nodes to find and join a MoCA Network. It is also necessary for the continued robust operation of the MoCA Network." (MoCA 1.0, Section 3.1. <i>See also</i> MoCA 1.1, Section 3.1; MoCA 2.0, Section 7.1.1)
	"The NC MUST transmit Beacons at fixed intervals. This interval between two consecutive Beacon packets is called the "Beacon Synch Interval" (BSI). (See Appendix A for parameter values)." (MoCA 1.0, Section 3.3. <i>See also</i> MoCA 1.1, Section 3.3; MoCA 2.0, Section 7.1.1)

Field Length Explanation					
TRANSMIT CLOCK	32 bits	System clock when Beacon transmission begins on the			
TRANSMIT_CLOCK	32 bits	medium (beginning of preamble).			
BEACON VERSION	8 bits	= 0x00			
_	8 bits	The lowest MOCA VERSION NUMBER of all nodes			
MOCA_VERSION	8 0118	in the MoCA Network			
		(0x10 corresponds to MoCA 1.0)			
CHANNEL MIMDED	8 bits	RF channel number on which this beacon is being sent			
CHANNEL_NUMBER	o ons				
		(Channel center frequency = 25 MHz Channel Number, 32 is the lowest value allowed for this field.			
TAROO MACK CTART	0.1-14-	This corresponds to 800 MHz center frequency).			
TABOO_MASK_START	8 bits	RF channel number of the lowest frequency channel			
TAROO GHANDEL MAGE	241-4-	covered by the Taboo Channel Mask field.			
TABOO_CHANNEL_MASK	24 bits	Bit value 1 = unusable channel			
		MSB = lowest frequency in the range (starting at			
OTTANOE PIETE	61:4	Taboo Mask Start frequency).			
CHANGE FIELD	6 bits	Used to indicate upcoming NC handoff.			
SEQUENCE_NUMBER	2 bits	Countdown to NC handoff.			
BACKUP_NC_ID	6 bits	Node ID of the backup NC. If no backup NC is			
		available, NC fills this field with its own ID.			
NEXT_BEACON_POINTER	6 bits	Number of milliseconds to the next Beacon			
		transmission. This value MUST be equal to 10. This is			
		equivalent to 500,000 SLOT_TIME's.			
NEXT_NC_ID	6 bits	Node ID of the new NC (NC being handed off to) This			
		field is meaningful only when a handoff is signaled.			
ACF_LENGTH	16 bits	Duration in units of SLOT_TIME of the following			
		Admission Control Frame			
ACF_TYPE	8 bits	Indicates what type of admission frame is scheduled			
		0x00 – Admission Request			
		0x01 – Type A Loopback Transmission			
		0x02 – Type B Loopback Transmission			
		0x03 – Admission Response			
		0x04 – Initial Type I Probe TX by NC			
		0x05 – Initial Type II Probe Report TX to NC			
		0x06 – Type II Probe TX by NC			
		0x07 – Type C Loopback Transmission by NN			
		0x08 – Type II Probe RX by NC			
		0x09 – Type C Loopback Transmission by NC			
		0x0A – Type I Probe TX by NC			
		0x0B – Type I Probe Report TX to NC			
		0x0C – GCD Distribution Report TX by NC			
		0x0D - Link Acknowledgement			
		0x0E – Type II Link Acknowledgement			
		0x0F – No ACF			

U.S. Patent No. 8,085,802	The Accused MoCA Instrumentalities Form a Network That				
	Practices at Least Claim 3 of the '802 Patent				
	ACF_POINTER	18 bits	Other values MUST NOT be used Transmission time of the next Admission Control Frame from the beginning of this BSI, in multiples of SLOT_TIME. This transmission MUST be scheduled at least T5 after the start of the Beacon transmission.		
	ASYNCHRONOUS_MAP_LE NGTH	16 bits	Duration in multiples of SLOT_TIME		
	ASYNCHRONOUS_MAP_PR OFILE	8 bits	The PHY profile used for transmitting the first asynchronous MAP following this Beacon transmission		
	ASYNCHRONOUS_MAP_PO INTER	18 bits	Transmission time of the next Asynchronous MAP from the beginning of this BSI, in units of SLOT_TIME. Value '0' in this field indicates that no Asynchronous MAPs are sent in the beacon period. This transmission MUST be scheduled at least T5 after the start of the Beacon transmission.		
	RESERVED	39 bits	Type III		
	BEACON_BACKOFF	3 bits	Indicates the value in multiple of 3 dB by which the power of this Beacon is reduced relative to the NC's maximum transmit power. This field MUST represent the value of the Beacon Backoff. 0x0 - 0 dB 0x1 - 3 dB 0x2 - 6 dB 0x3 - 9 dB 0x4 - 12 dB 0x5 - 15 dB		
			Other values Reserved		
	NCID	6 bits	Node ID of the Network Coordinator		
	RESERVED	10 bits	Type III		
	BEACON_CRC	32 bit	CRC over all bits (using same algorithm as MAC Frame payload CRC)		
	(MoCA 1.0, Table 3-1. See also MoCA 1.1, Table 3-1; MoCA 2.0, Table 6-2)				