				-	the manual con-	residence and	-
n 17	1 -1				1 1	1 1	- 1
Reg. No.:	1 1	1 1		1 1	-1 -1	. 1 . 1	
C,	1 1	3	1	1 1		-	-

Question Paper Code: 80302

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fifth Semester

Electronics and Instrumentation Engineering

CS 6659 — ARTIFICIAL INTELLIGENCE

(Common to Instrumentation and Control Engineering and Sixth Semester Computer Science and Engineering and Information Technology)

(Regulations 2013)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is Heuristic function?
- 2. What are the categories of production systems?
- 3. List the two levels of knowledge representation.
- 4. What is Alpha-Beta pruning?
- 5. What are fuzzy sets?
- 6. List the properties of fuzzy sets.
- 7. What are the different types of planners?
- 8. Write the difference between supervised learning and unsupervised learning.
- 9. Define an expert system.
- 10. What is XCON?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Exemplify the necessary components to define an AI problem was an example.	ith (6)
		(ii)	Consider a water jug problem. You are given 2 jugs: a 4-gallon a 3-gallon jugs. Neither has any measuring mark in it. There	and is a
			pump that can be used to fill the jugs with water. How can you	get
			exactly 2-gallon of water into a 4-gallon jug? State the product	tion
			rules for the water jug problem.	(10)
			Or	
	(b)	(i)	Write the algorithm for steepest ascent hill climbing.	(4)
		(ii)	Explain DFS algorithm with an example.	(8)
		(iii)	State the characteristics of an AI problem.	(4)
12.	(a)	Expl	ain resolution in predicate logic with suitable example.	(16)
			\mathbf{Or}	
	(b)	Cons	sider the following sentences:	
		•	John like all kinds of food	
		•	Apples are food	
		• .	Chicken is food	
		•	Anything any one eats and isn't killed by is food	
		•	Bill eats peanuts and is still alive	
		•	Sue eats everything Bill eats.	
		(i)	Translate these sentences into formulae in predicate logic	(10)
•		(ii)	Convert the above FOL into clause form.	(6)
13.	(a)		ain in detail about forward chaining and backward chaining rithms.	with (16)
			Or	
	(b).	Wha	t is Dempster-Shafer theory? Explain with suitable example.	(16)
14.	(a)	(i)	Describe hierarchical planning method with an example.	(8)
		(ii)	Describe learning with macro-operators.	(8)
			Or	
	(b)	(i)	Explain the various types of learning in problem solving.	(6)
		(ii)	Explain learning in Decision Tree with example.	(10)
15.	(a)	(i)	Explain about the Knowledge acquisition.	(10)
		(ii)	Brief any six applications of expert systems.	(6)
		<u></u>	Or	(3)
	(b)	Expla	ain with neat diagram the architecture of expert system	and
			ion its features.	(16)