ENGG 201 - Chapter 3 — Lennard Jones Potential

M.S. Kallos

April, 2016

Intermolecular Forces

- Several type of forces act between atoms and molecules (see text for details).
 - Some of these tend to pull these particles closer together, i.e. they are attractive forces.
 - Other forces prevent them from coming too close to each other, i.e. they are repulsive forces.

Balance of intermolecular forces

- The sum of these attractive and repulsive forces changes with the distance of separation between the particles.
- If the <u>net sum is attractive</u> the particles will move to come closer and if the <u>net sum of forces</u> <u>happened to be repulsive</u>, the particles will move further apart.
- At some distance the sum will be zero, and at that distance there would be no tendency to move (equilibrium).

Potential Energy

 Potential energy of two molecules separated by a distance 'r' is equal to the work done in bringing these molecules to this distance of separation starting from a very large distance.
 By large distance, we mean so large that the force between the two molecules is zero.
 Mathematically, it means infinity.

Potential Energy Calculation (1)

- Two molecules are sitting a distance 'r' apart
- There is a repulsive force 'F' acting between them. Now you push these molecules closer together a short distance 'dr'

- The work done on the system in moving them a small distance Δr would be force multiplied by the distance, i.e.
- Work = (Force) x (Distance travelled) = $F \cdot \Delta r$

Potential Energy Calculation (2)

- Force is not constant, it varies with the distance 'r' so: $W = F(r)\Delta r$ and for multiple steps $W = \sum F(r)\Delta r$
- Steps are small work done in bringing the molecules to their current separation distance r from an infinite distance

$$W = \int_{-\infty}^{r} F(r) dr$$

 This work done is equal to the potential energy that becomes stored in the pair of molecules

$$\phi(\mathbf{r}) = \int_{\infty}^{\mathbf{r}} F(\mathbf{r}) \, d\mathbf{r}$$

Relationship between Potential and Force

- Potential is the integral of force over the distance travelled starting from a reference position.
- Force is the derivative of the potential function,
 i.e.

$$F = \frac{d\phi}{dr}$$

Now we will look at a model for F=f(r)

Lennard Jones Potential Function

Potential Function:

$$\phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]^{12}$$

Force (take the derivative)

$$F = \frac{d\phi(r)}{dr} = \frac{d}{dr} \left\{ 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \right\} = -\frac{48\epsilon\sigma^{12}}{r^{13}} + \frac{24\epsilon\sigma^{6}}{r^{7}}$$

Net Force

If Net Force is + then attractive (if – then repulsive)

Equilibrium Separation Distance (1)

Equilibrium = Net Force = zero

$$F = -\frac{48\varepsilon\sigma^{12}}{r^{13}} + \frac{24\varepsilon\sigma^{6}}{r^{7}} = 0$$
$$-\frac{2\sigma^{6}}{r^{6}} + 1 = 0$$

$$r^6 = 2\sigma^6$$
, or $r = 2^{(1/6)}\sigma$

The equilibrium distance is given by:

$$r_0 = 1.122 \ \sigma$$

Equilibrium Separation Distance (2)

• Equilibrium $\mathbf{F} = \mathbf{0}$

$$r_0 = 1.122 \, \sigma$$

Plug r_o into Energy (Φ)

$$\phi(r_o) = -\varepsilon$$

This represents the minimum potential energy between 2 molecules (negative epsilon)

Values for ε and σ

- 3
 - List ε/k (units of K) where k is Boltzman constant
 - $k=R/N_A = 1.3805 \times 10^{-23} J/K$

Values for ϵ and σ in Table 3-6

- O
 - Define b_o (units m3/kmol)

$$b_o = \frac{2\pi}{3}\sigma^3 N_a$$

Figure 3-7 Intermolecular Force from Lennard-Jones Potential. F_a, Attractive Force; F_r, Repulsive Force.

Figure 3-8 Lennard-Jones Potential, ϕ_a , Attractive; ϕ_r , Repulsive.

Figure 3-7 Intermolecular Force from Lennard-Jones Potential. F_a, Attractive Force; F_r, Repulsive Force.

Figure 3-8 Lennard-Jones Potential, ϕ_a , Attractive; ϕ_r , Repulsive.

Summary

- Potential energy is zero at $r = \sigma$.
- Potential energy is minimum at the equilibrium distance.
- Net force is zero at the equilibrium distance.
- The equilibrium distance is given by $r_0 = 1.122 \sigma$
- The value of potential at the equilibrium distance is -ε.
- Attractive Force = +, Repulsive Force = -
- Attractive Energy = -, Repulsive Energy = +

$$\phi(r) = \int_{-\infty}^{r} F(r) dr \qquad \phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \qquad F = \frac{d\phi}{dr}$$

ENGG 201 W2016