Mémoire de Master

Benjamin Dosse

Année Académique 2022–2023

ii .

SOMMAIRE

Ι	Mouvement Brownien (multi)fractionnaire					
	I.1	Mouve	ement Brownien fractionnaire	1		
		I.1.1	Définition et propriétés	1		
		I.1.2	Régularité et auto-similarité	1		
		I.1.3	Intégration	1		
	I.2 Mouvement Brownien multifractionnaire		ement Brownien multifractionnaire	1		
		I.2.1	Définition et propriétés	1		
		I.2.2	Liens avec le mBf	1		
		I.2.3	Régularité	1		
II Processus harmonisables						
	II.1	Représ	sentation en série orthogonale	3		
	II.2	Représ	sentation intégrale	3		
	II.3	I.3 Représentation en moyenne mobile				
	II.4	Le cas	du mouvement Brownien (multi)fractionnaire	3		
IIIExtensions du mBf						
	III.1	Mouve	ement Brownien fractionnaire de Levy	5		
		III.1.1	Régularité	5		
	III.2	Feuille	Brownienne fractionnaire	5		
		III.2.1	Régularité	5		

IV Extensions du mBm						
IV.1 Extension isotrope	7					
IV.2 Extension anisotrope	7					
IV.3 Régularité des extensions	7					
IV.3.1 Continuité	7					
IV.3.2 Conditions de Hölder	7					
IV.4 Du fBm au mBm	7					
Ribliographie	7					

I

MOUVEMENT BROWNIEN (MULTI)FRACTIONNAIRE

On peut définir le mouvement Brownien (standard) au moyen de sa représentation intégrale. On peut également le définir au moyen de sa fonction moyenne μ et son opérateur de covariance K. Plus précisément, si $B = \{B(t) : t \in [0, \infty[\} \text{ désigne un mouvement Brownien standard sur l'espace de probabilité filtré <math>(\Omega, \mathcal{A}, \mathcal{F}, \mathbb{P})$, alors la fonction moyenne μ est donnée par $\mu(t) = 0$ et la fonction de covariance est donnée par $K(t,s) = \min(t,s)$. Cette définition ne permet pas de préserver une forme de « mémoire » du processus ; notion définie via la Définition ??.

Ce chapitre introduit le mouvement Brownien fractionnaire, et établit ces propriétés mémorielles selon la valeur prise par l'exposant de Hurst H.

I.1 Mouvement Brownien fractionnaire

- I.1.1 Définition et propriétés
- I.1.2 Régularité et auto-similarité
- I.1.3 Intégration

I.2 Mouvement Brownien multifractionnaire

- I.2.1 Définition et propriétés
- I.2.2 Liens avec le mBf
- I.2.3 Régularité

I. MOUVEMENT BROWNIEN (MULTI)FRACTIONNAIRE

II

PROCESSUS HARMONISABLES

La notion de processus harmonisable est présentée par M. Loève [loeve1945]. Dans ce chapitre, on notera $R_X(t_1,t_2)$ l'auto-corrélation d'un processus centré X aux temps t_1,t_2 , pour autant que $\mathbb{E}\left[|X|^2\right]<\infty$. S'il existe une fonction d'auto-corrélation γ de variation bornée telle que

$$R_X(t_1, t_2) = \iint e^{i(t_1 s_1 - t_2 s_2)} d\gamma(s_1, s_2),$$

alors on dira que R_X est harmonisbale.

On dira qu'un processus $X \in L^2(\Omega)$ est un processus harmonisable s'il existe une variable aléatoire $Y \in L^2(\Omega)$ telle que R_Y est harmonisable et telle que

$$X(t) = \int e^{its} dY(s)$$

où l'égalité est entendue au sens de la convergence presque sûre. Nous allons montrer qu'un processus est harmonisable si, et seulement si, sa fonction d'auto-corrélation est harmonisable. Nous donnerons ensuite des *représentations harmonisables* de tels processus, tout en donnant quelques propriétés remarquables de ceux-ci.

- II.1 Représentation en série orthogonale
- II.2 Représentation intégrale
- II.3 Représentation en moyenne mobile
- II.4 Le cas du mouvement Brownien (multi)fractionnaire

4	II. PROCESSUS HARMONISABL	ES

III

EXTENSIONS DU MBF

- III.1 Mouvement Brownien fractionnaire de Levy
- III.1.1 Régularité
- III.2 Feuille Brownienne fractionnaire
- III.2.1 Régularité

IV

EXTENSIONS DU MBM

- IV.1 Extension isotrope
- IV.2 Extension anisotrope
- IV.3 Régularité des extensions
- IV.3.1 Continuité
- IV.3.2 Conditions de Hölder
- IV.4 Du fBm au mBm