

A. E16

B. P60

Fig. 1

Figure 2

Nestin RT-PCR of 50 rat islets

Amplification of a single band of the correct size of 834 bp. In between the forward [GCAGGGGCGGTGCGTGACTAC] and reverse primer [GGGTGGTGAGGGTTGAGGTTGTG] are 3 introns located.

Figure 3

Nestin positive cells proliferate around islets in vitro

Phase contrast image of cells
surrounding cultured islets (200x)

Figure 4

Development of islet-like structures in vitro

100x

200x

Fig. 5

Figure 6

Induction of nestin mRNA expression by high glucose in pancreatic islets

RT-PCR of 50 rat islets incubated for 4 days at 5.6 mM or 16.7 mM glucose

Figure 7 (v)

Nestin Amino Acid Sequence:

"MEGCMGEESFQMWELNRRLEAYLGRVKALEEQNELLSAGLGGLR
RQSADTSWRAHADDELAALRALVDQRWREKHAEVARDNLAAELEGVAGRCEQLRL
ARERTTEEVARNRAVEAEKCARAWLSSQGAELERELEALRVAHEEVGLNAQAAC
APRLPAPPRPPAPAPEVEELARRLGEAWRGAVRGYQERVAHMETSLDQTRERLARAVQ
GAR
EVRELQQLQAERGGLERRAALEQRLEGRWQERLRATEKQLAVEALEQEKKQGLQSQ
IAQVLEGRQQLAHLKMSLSLEVATYRTLLEAENSRLQTPGGGSKTSFQDPKLELQF
PRTPEGRRLLGSLLPVLSPTSLPSPLPATLETPVPAFLKNQEFLQARTPTLASTPIPPT
PQAPSPAVDAEIRAQDAPSLQTQGGRKQAPEPLRAEARVAIPASVLPGPEEPGGQR
QEASTGQSPEDHASLAPPLSPDHSSLEAKDGESGGSRVFSICRGEGEQIWGLVEKET
AIEGKVVSSLQQEIWEEDLNRKEIQDSQVPLEKETLKSLGEEIQESLKTLENQSHET
LERENQECPRSLEEDLETLSLEKENKRAIKCGGGSETSRKRGCRQLKPTGKEDTQTL
QSLQKENQELMKSLEGNLETFLPGTENQELVSSLQENLESATALEKENQEPLRSPEV
GDEEALRPLTKENQEPLRSLEDENKEAFRSLEKENQEPLKTLLEEDQSIVRPLETENH
KSLRSLEEQQDQETLRTLEKETQQRRSLGEQDQMTLRPPEKVDLEPLKSLDQEARIAPL
ENENQEFLKSLKEESVEAVKSLETEILESLKSAGQENLETLKSPETQAPLWTPEEINK
SGGNESSRKGNRTTGVCGSEPRDIQTPGRGESGHIIEISGSMEPGEFEISRGVDKESQ
RNLEEEENLGKGEYQESLRSLLEEGQELPQSADVQRWEDTVEKDQELAQESPPGMAGV
ENKDEAELNLREQDGFTGKEEVVEQGELNATEEVWFPGEGH PENPEPKEQRGLVEGAS
VKGGAEGLQDPQGSQQVGTGPLQAPQGLPEAIEPLVEDDVAPGGDQASPEVMLGSEP
AMGESAAGAEPGLQGVGGLDPGHLTREEVMEPPLLEESLEAKRVQGLEGPRKDLEE
AGGLGTEFSELPGKSRDPWEPPREGREESEAAPRGAAEEAFPAETLGHGSDAPSPWP
LGSEEAEEDVPPVLVSPSPTYTPILEDAPGLQPQAEQSQEASWGVQGRAEAGKVESEQ
EELGSGEIPEGLQEEGEESREESEEDELGETLPDSTPLGFYLRSPRWTPLESRGH
PLKETGKEGWDPAVLASEGLEEPSEKEEGEEGEEECGRDSLSEEFEDLGTEAPFLPG
VPGEVAEPLGQVPQLLDPAAWDRDGESDGFADEEESGEEGEEDQEEGREPGAGRWGP
GSSVGSLQALSSSQRGEFLESDSVSVWPDDSLRGAVAGAPKTALETESQDSAEPSG
SEEESDPVSLEREDKVPGPLEIPSGMEDAGPGADIIGVNGQGPNLEGKSQHVNGGVMN
GLEQSEESGARNALVSEGDRGSPFQEEEGSALKRSSAGAPVHLGQGQFLKFTQREGDR
ESWSSGED"

Nestin Nucleotide Sequence:

BASE COUNT 1238 a 1176 c 1676 g 764 t ORIGIN 1

atggagggtc gcatggggga ggagtcgtt cagatgtggg agctcaatcg gcgcctggag 61
gcctacccgtt gccgggtcaa ggccgtggag gagcagaatg agctgcttag cgccggactc 121
ggggggctcc ggccacaatc cgccggacacc tcctggcggg cgcatgccga cgacgagctg 181
gcggccctgc gtgcgtcgt tgaccaacgc tggcggaga agcacgcggc cgaggtggcg 241
cgcgacaacc tggctgaaga gctggagggc gtggcaggcc gatgcgagca gctgcggctg 301
gcccgggagc ggacgacgga ggaggtagcc cgcaaccggc ggcggctcgaa ggcagagaaa
361 tgcgccccggg cctggctgag tagccagggg gcagagctgg agcgcgagct agaggctcta
421 cgctggcgc acgaggagga gcgcgtcggt ctgaacgcgc aggctgcctg tgccccccgc

Figure 7 (continued) (2)

481 ctgcccgcgc cgccccggcc tcccgccgcg gccccggagg tagaggagct ggcaaggcga
541 ctggcgagg cgtggcgccg ggcagtgcgc ggctaccagg agcgcgtggc acacatggag
601 acgtcgctgg accagacccg cgagcgcctg gcccggcggtgc cccgcgaggtc
661 cgcctggagc tgcaagcagct ccagggctgag cgcggaggccc tcctggagcgc cagggcagcg
721 ttgaaacaga ggttggaggg ccgcgtggcag gagcggctgc gggctactga aaagttccag
781 ctggctgtgg aggccctgga gcaggagaaa cagggcctac agagccagat cgctcaggtc
841 ctggaaggcgc ggcagcagct ggcgcaccc aagatgtccc tcagcctgga ggtggccacg
901 tacaggaccc tcctggaggg tgagaactcc cggctgcaaa caccctgggg tggctccaag
961 acttccctca gctttcagga ccccaagctg gagctgcaat tccctaggac cccagaggc
1021 cggcgtctt gatcttgc cccagtcctg agcccaactt ccctccctc acccttgct
1081 gctaccctt gacacacctgt gccagccctt cttagaacc aagaattcc ccaggcccgt
1141 accccctaccc tggccagcac cccatcccc cccacaccc tcctgctgt
1201 gatgcagaga tcagagccca ggtatgcctt ctctctgc tccagacaca gggtgggagg
1261 aaacaggcctc cagagccctc gcgggctgaa gccagggtgg ccatttcgtc cagcgtcctg
1321 cctggaccagg aggaggctgg gggccagcgg caagaggcca gtacaggcca
gtccccagag 1381 gaccatgcctt ccttggcacc acccctcagc cctgaccact ccagtttaga
ggctaaggat 1441 ggagaatccg gtgggtctag atgttcagc atatgccgag gggaaagggtga
agggcaaatac 1501 tgggggttgg tagagaaaga aacagccata gggcaaaag tgtaaggcag
cttgcagcag 1561 gaaatatggg aagaagagga tctaaacagg aaggaaatcc aggactccca
gtttcccttg 1621 gaaaaagaaa ccctgaagtc tctggagag gagattcaag agtcaactgaa
gactctggaa 1681 aaccagagcc atgagacact agaaaggggg aatcaagaat gtccgaggc
tttagaagaa 1741 gacttagaaa cactaaaaag tctagaaaag gaaaataaaa gagctattaa
aggatgtgga 1801 ggttagtggaa cctctagaaa aagaggctgt aggcaactt agcctacagg
aaaagaggac 1861 acacagacat tgcaatccct gcaaaaaggag aatcaagaac taatgaaatc
tcttgaaggt 1921 aatctagaga cattttttt tccaggaacg gaaaatcaag aatttagtaag
ttctctgcaa 1981 gagaacttag agtcattgac agctctggaa aaggagaatc aagagccact
gagatctcca 2041 gaagttagggg atgaggaggc actgagaccc ctgacaaaagg agaatcagga
accctgagg 2101 tctcttgaag atgagaacaa agaggccctt agatctctag aaaaagagaa
ccaggagcca 2161 ctgaagactc tagaagaaga ggaccagagt attgtgagac ctctagaac
agagaatcac 2221 aaatcactga ggtctttaga agaacaggac caagagacat tgagaactct
tgaaaaagag 2281 actcaacagc gacggaggc tctagggaa caggatcaga tgacattaag
accffffcggaa 2341 aaagtggatc tagaaccact gaagtctt gaccaggaga tagcttagacc
tcttgaaaat 2401 gagaatcaag agttctaaa gtcactcaaa gaagagagcgt tagaggcagt
aaaatctta 2461 gaaacagaga tcctagaatc actgaagtct gccccgacaag agaaccctgg
aacactgaaa 2521 tctccagaaaa ctcaagcacc actgtggact ccagaagaaa taaataaaatc
agggggcaat 2581 gaatccctta gaaaaggaaa ttcaagaacc actggagct gtggaaatgt
accaagagac 2641 attcagactc ctgaaagagg agaattcggg atcattgaga tctctggag
catggaaacct 2701 ggagaatttgg agatctccag aggatgtagac aaggaaatgc aaagggatct
ggaagaggaa 2761 gagaacctgg gaaaggaga gtaccaagag tcactgaggt ctctggagga
ggagggacag 2821 gagctggcgc agtctgcaga tgtgcagagg tggaaagata cggtggagaa
ggaccaagaa 2881 ctggctcagg aaagccctcc tggatggct ggagtggaaa ataaggatga
ggcagagctg 2941 aatctaaggg agcaggatgg ctctactggg aaggaggagg tggtagagca
gggagagctg 3001 aatgccacag aggaggctg gttcccgaggc gaggggcacc

Figure 7 (continued) (3)

cagagaaccc tgagccaaa 3061 gagcagagag gcctgggtga gggagccagt
gtgaaggggag gggctgaggc cctccaggac 3121 cctgaagggc aatcacaaca
ggtggggacc ccaggccctcc aggctccccca ggggctgcc 3181 gaggtcgatag agcccctgg
ggaagatgtat gtggcccccag ggggtgacca agccctccccca 3241 gaggtcatgt tggggtcaga
gcctgcccattt ggtgagtctg ctgcgggagc tgagccaggc 3301 ctggggcagg gggtgggagg
gctgggggac ccaggccatc tgaccaggga agaggtgatg 3361 gaaccacccc
tggaagagagga gagtttggag gcaaagaggg tttagggctt ggaagggcct 3421 agaaaggacc
tagaggaggc aggtggctg gggacagact tctccgagct gcctgggaag 3481 agcagagacc
cttgggagcc tcccaggaggg ggttagggagg agtcagaggc tgaggccccc 3541
aggggagcag aggaggcggtt ccctgctgag accctgggccc acactggaaat tgatggccct 3601
tcaccttggc ctctggggtc agaggaagct gaggaggatg taccaccagt gctggctcc 3661
cccagcccaa cgtacacccc gatcctggaa gatccccctg ggctccagcc tcaggctgaa 3721
gggagtcagg aggctagctg ggggggtcag gggagggtctg aagctggaa atgatggagc 3781
gagcaggagg agttgggttc tggggagatc cccgaggggcc tcctggaggg 3841
agcagagaag agagcgagga ggtatggatc ggggagaccc ttccagactc cactccccctg 3901
ggcttctacc tcaggtcccc cacccccc aggtggaccc cactggagag cagaggccac 3961
ccctcaagg agactggaaa ggagggtctgg gatcctgctg tcctggcttc cgaggccctt 4021
gagaaacctt cagaaaagga ggagggggag gagggagaag aggatgtgg ccgtgactct
4081 gacctgtcag aagaatttga ggacctgggg actgaggcac cttttttcc tggggccct
4141 ggggaggtgg cagaacctct gggccaggtg ccccaactgc tactggatcc tgcaggctgg
4201 gatcgagatg gggagtctga tgggtttgca gatgagggaaat aaagtggggaa ggagggagag
4261 gaggatcagg aggagggggag ggagccaggc gctggcggt gggggccagg gtcttctgtt
4321 ggcagccctcc agggccctgag tagctccctt agagggaaat tcctggatgc tgattctgtt
4381 agtgtcagcg tccccctggaa tgacagcttgg ggggttgcag tggctgggtgc ccccaagact
4441 gcccctggaaa cggagtccca ggacagtgtt gggccctctg gctcagagggaa agagtctgac
4501 cctgtttctt tggagggggaa ggacaaaatgc cctggccctc tagagatccc cagttggatg
4561 gaggatgcag gcccaggggc agacatcatt ggtgttaatg gccagggtcc caacttggag
4621 gggaaatgcac agcatgtaaa tggggggatgatgaaacgggc tggagcagtc tgaggaaatg
4681 gggcaagggaa atgcgtatg ctctggggaa gaccggggaa gccccttca ggagggagg
4741 gggagtgctc tgaagaggc ttccggcaggc gctcccttgc acctggggcca gggtcagttc
4801 ctgaaggta tcagaggga aggataga ggttccttgggaa ggac //

A

B

C

Fig 9

A

B

C

D

FIG 10

A

CK19 / Nestin

B

C

Nestin / CK19

FIG 11

endocrine cell

Model 1
Specialized regions of epithelial cells

DUCT

Model 2

mesenchymal niche

morphogens

STEM CELL

lumen

DUCT

endocrine cell

epithelial cells

FIG 13A

Fig 13 B

Sequential appearance of transcription factors during development of the endocrine pancreas (mouse)

**NEURO-
ENDOCRINE EXOCRINE HEPATIC**

SYN

AMY

TTR

HGFR

CARB

HGF

GLUT-2

E-CAD

XBP

AFP

