Real Analysis

Professor Rishi Vyas

Shubhro Gupta

Week 1 Due Monday, 18 August

Collaborators: Khushi Tyagi

QUESTION A 2 Points

To Show. The set $(-\infty, a)$ is open, i.e., $B(x, \delta) \subseteq (-\infty, a)$ for some $x \in (-\infty, a), \delta > 0$.

Proof. Let $x \in (-\infty, a)$, then $-\infty < x < a$.

Let $\delta = min(x + \infty, a - x)$.

This means $\delta \leq x + \infty$ and $\delta \leq a - x$.

We have to show that $B(x - \delta, x + \delta) \subseteq (-\infty, a)$.

From above $x - \delta \le x - (x + \infty) = -\infty$ and $x + \delta \le x + (a - x) = a$. (By subtracting x from both sides).

Thus, $B(x - \delta, x + \delta) \subseteq (-\infty, a)$.

Since for any $x \in (-\infty, a)$, we can find a $\delta > 0$ such that $B(x - \delta, x + \delta) \subseteq (-\infty, a)$, the set $(-\infty, a)$ is open.

To Show. The set $(\infty, a]$ is not open, i.e., $B(x, \delta) \not\subseteq (\infty, a]$ for any $x \in (\infty, a], \delta > 0$.

Proof. Let $x \in (\infty, a]$, then $x \le a < \infty$.

Assume x = a, and $B(x, \delta) \subseteq (\infty, a] \implies B(a - \delta, a + \delta) \subseteq (\infty, a]$.

This means $a + \delta \le a \implies \delta \le 0$.

But $\delta > 0$, hence $B(x, \delta) \not\subseteq (\infty, a]$.

Thus, for any $x \in (\infty, a]$, we cannot find a $\delta > 0$ such that $B(x, \delta) \subseteq (\infty, a]$. Hence, the set $(\infty, a]$ is not open.

QUESTION B 2 Points

To Determine. All $x \in \mathbb{R}$ that satisfies |x+3|+|x-2|=9. Solution.

Case 1: $x \ge 2$.

Then |x+3| = x+3 and |x-2| = x-2.

Thus, $x + 3 + x - 2 = 9 \implies 2x + 1 = 9 \implies x = 4$.

Case 2: $-3 \le x < 2$.

Then |x+3| = x+3 and |x-2| = -x+2.

Thus, $x + 3 - x + 2 = 9 \implies 5 = 9$ which is not possible.

Thus, there are no solutions for $-3 \le x < 2$.

QUESTION C 2 Points

To Show. \mathbb{Z}^c is open in \mathbb{R} .

Proof.

$$\mathbb{Z}^c = \bigcup_{n \in \mathbb{Z}} (n, n+1).$$

Let $x \in \mathbb{Z}^c$, then $x \in (n, n+1)$ for some $n \in \mathbb{Z}$.

Let $\delta = min(x - n, n + 1 - x)$.

Then $x - \delta \le x - (x - n) = n$ and $x + \delta \le x + (n + 1 - x) = n + 1$.

 $B(x,\delta)=(x-\delta,x+\delta)$. Consider $x-\delta$. If $x-\delta=n$, then $x-\delta\in(n,n+1)$.

If $x - \delta < n$, then $x - \delta \in (n - 1, n)$.

Similarly, $x + \delta \in (n, n + 1)$ or (n, n + 1).

Therefore $B(x, \delta) = (x - \delta, x + \delta) \subseteq (n, n + 1) \subseteq \mathbb{Z}^c$.

QUESTION E 2 Points

To Show. $\sup(S) \notin S$ for any non-empty, bounded above set $S \subseteq \mathbb{R}$.

Proof. Assume $\sup(S) \in S$, and $\sup(S) = x$.

Since S is open, $\exists \delta > 0$ such that $B(x, \delta) = (x - \delta, x + \delta) \subseteq S$.

Since x is the supremum of $S, \forall s \in S, s \leq x$.

 $x < x + \delta$, since $\delta > 0$.

Also, $x + \delta \in S$, since $x + \delta \in B(x, \delta) \subseteq S$.

But $x + \delta > x$, which contradicts the fact that x is the supremum of S.

Thus, $\sup(S) \notin S$ for any non-empty, bounded above set $S \subseteq \mathbb{R}$.

QUESTION **F** 4 Points

To Find. Closure and limit of

 $(1) (0, 3] \subseteq \mathbb{R}$

Solution.

Closure $(0,3] = (0,3] \cup \{0\}.$

We have to show that $B(x, \delta) \cap (0, 3] \neq \emptyset$ for any $x \in (0, 3]$ and $\delta > 0$.

Let $y = min \frac{0+\delta}{2}, 1.5$.

Since $0 < y < 1.5, y \in (0, 3]$.

Taking x = 0, we have $B(0, \delta) \cap (0, 3]$, we get $y \in B(0, \delta) \cap (0, 3]$.

Thus, $(0,3] = (0,3] \cup \{0\}$.

 $\underline{\text{Limit}} \lim_{x \to 3} (0,3] = 3.$

We have to show that $\forall \epsilon > 0, \exists \delta > 0$ such that $0 < |x - 3| < \delta \implies |f(x) - 3| < \epsilon$.

Let $\delta = \epsilon$.

Then $0 < |x-3| < \delta \implies 0 < x-3 < \delta \implies 0 < x-3 < \epsilon \implies |f(x)-3| < \epsilon$.

Thus, $\lim_{x\to 3} (0,3] = 3$.

(2) \mathbb{Z} Closure is \mathbb{Z} .

Solution.

(3) $\mathbb{Q} \cap (0,1)$ Closure is [0,1].

QUESTION G 4 Points

Of an infinite susbet of \mathbb{R} which is not an interval, and is neither closed or Construct Example. open.

Solution. Consider the set $S = \{1\} \cup (2,3)$.

S is not an interval since it is not connected.

S is not closed since it does not contain its limit points.

S is not open since it does not contain all its boundary points.

Construct Example. Of a set $S \subseteq \mathbb{R}$ which is bounded and has exactly 2 limit points.

Solution. Consider the set S = S is bounded since 0 < S < 3.

The limit points of S are 1 and 2, since

QUESTION H 3 Points

Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

To Show. $x = \inf(S) \iff$ The element x is a lower bound and given $n \in \mathbb{N}, \exists y \in S$ such that $y < x + \frac{1}{n}$.

Proof.

Case 1 $x = \inf(S)$.

Then x is a lower bound of S by definition.

If x is an infimum, then $\forall 1 > \epsilon > 0, \exists y \in S \text{ such that } x \leq y < x + \epsilon.$

Since $\epsilon > 0$, we can write $\epsilon = \frac{1}{n}$ for some $n \in \mathbb{N}$.

Thus, $\forall n \in \mathbb{N}, \exists y \in S \text{ such that } y < x + \frac{1}{n}.$

Case 2 The element x is a lower bound and given $n \in \mathbb{N}, \exists y \in S$ such that $y < x + \frac{1}{n}$.

Let t be any lower bound of S.

Then $t \leq x$ since x is the greatest lower bound.

We have to show that $x \leq t$. Suppose x > t.

Then x - t > 0.

Let $\epsilon = x - t$.

Then $\epsilon > 0$.

Since $\epsilon > 0$, we can write $\epsilon = \frac{1}{n}$ for some $n \in \mathbb{N}$. Thus, $\exists y \in S$ such that $y < x + \frac{1}{n} = t + \epsilon$. $y - \epsilon < t$. But $y - \epsilon < x$.

This contradicts the fact that x is the greatest lower bound.

QUESTION I 7 Points

(1) **To Draw.** A picture of the set $S := \{\frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}\}.$

- (1) The set S is the set of all possible differences between reciprocals of natural numbers.
- (2) **To Show.** The supremum and infimum of S are 1 and 0 respectively.

Let $x = \frac{1}{n} - \frac{1}{m} \in S$.

Then 0 < x < 1.

Thus, 0 is a lower bound of S.

Let $y \in S$, then $y = \frac{1}{n} - \frac{1}{m}$.

Then y < 1 for all $n, m \in \mathbb{N}$.

Thus, 1 is an upper bound of S.

(3) To Show. The set S is not open or closed. **Proof.**

Open Let
$$x \in S$$
, then $x = \frac{1}{n} - \frac{1}{m}$.
Let $\delta = min(\frac{1}{n}, \frac{1}{m})$.
Then $B(x, \delta) = (\frac{1}{n} - \delta, \frac{1}{m} + \delta)$.
Since $\delta < \frac{1}{n}$ and $\delta < \frac{1}{m}$, $B(x, \delta) \not\subseteq S$.
Thus, S is not open.

$$\overline{\text{Let }\delta} = min(\frac{1}{n}, \frac{1}{m})$$

Then
$$B(x,\delta) = (\frac{1}{n} - \delta, \frac{1}{m} + \delta)$$

Since
$$\delta < \frac{1}{n}$$
 and $\delta < \frac{1}{m}$, $B(x, \delta) \not\subseteq S$

Let
$$\delta = min(\frac{1}{n}, \frac{1}{m})$$
.

Then
$$B(x,\delta) = (\frac{1}{n} - \delta, \frac{1}{m} + \delta)$$

Since
$$\delta < \frac{1}{n}$$
 and $\delta < \frac{1}{m}$, $B(x, \delta) \not\subseteq S$

(4) To Calculate. The Closure. Solution.

The closure of S is $\overline{S} = S \cup \{0, 1\}$.