

AATGAAAGACCCACCTGTAGGTTGGCAAGCTAGCTTAAGTAACGCCAT  
TTGCAAGGCATGGAAAAATACATAACTGAGAATAGAAAAGTCAGATCA  
AGTCAGGAACAGATGGAACAGCTGAATATGGGCCAAAGCGGATATCTGT  
GGTAAGCAGTTCCTGCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTG  
AATATGGGCCAAACAGGATACTGTGGAAGCAGTTCCTGCCCGGCTCA  
GGGCCAAGAACAGATGGTCCCCAGATGCGGTCCAGCCCTCAGCAGTTCT  
AGAGAACCATCAGATGTTCCAGGGTGCCCCAAGGACCTGAAATGACCT  
GTGCCTTATTGAACTAACCAATCAGTCGCTCTCGCTTCTGTCGCGC  
GCTTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTCGGG  
CGCCAGTCCTCCGATTGACTGAGTCGCCCCGGTACCCGTATCCAATAA  
ACCCTCTTGCAGTTGCATCCGACTTGTGGTCTCGCTGTCCTGGGAGGG  
TCTCCTCTGAGTGATTGACTACCCGTCAAGCAGGGGTCTTCATTGGGG  
CTCGTCCGGGATCGGGAGACCCCTGCCAGGGACCACCGACCCACCG  
GGAGGTAAGCTGGCCAGCAACTTACTGTGCTGTCGATTGTCTAGTGT  
CTATGACTGATTTATGCGCTCGTGGTACTAGTTAGCTAACTAGCTC  
TGTATCTGGCGGACCCGTGGTGGAACTGACGAGTTCGGAACACCCGGCCG  
CAACCCCTGGGAGACGTCCCAGGTGGGGGCCGTTTGTGGCCGACCTG  
AGTCCAAAAAATCCGATCGTTGGACTCTTGGTGCACCCCCCTAGAG  
GAGGGATATGTGGTCTGGTAGGAGACGAGAACCTAAAACAGTCCCGCC  
TCCGCTGAATTGGCTTCCGTTGGACCGAAGCCGCGCCGCGTC  
TTGCTGCTGCAGCATCGTTCTGTGTTGTCTGTACTGTGTTCTG  
TATTGCTGAAAATATGGGCCGGCCAGACTGTTACCACTCCCTTAAG  
TTGACCTTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACACCAGT  
CGGTAGATGTCAAGAACAGACGTTGGTTACCTCTGCTGAGAACATGG  
CCAACCTTAACGTGGATGGCGCGAGACGGCACCTAACCGAGACCT  
CATCACCCAGGTTAAGATCAAGGTCTTACCTGGCCGACGGACACC  
CAGACCAGGTCCCCTACATCGTACCTGGAAAGCCTGGCTTGAACCC  
CCTCCCTGGGCAAGCCCTTGTACACCCCTAACGCTCCGCCCTTCC  
TCCATCCGCCCGTCTCTCCCCCTGAACCTCCCTGACCCGCCCT  
GATCCTCCCTTATCCAGCCCTACTCCTCTAGGCGCCCCATATGG  
CCATATGAGATCTTATATGGGGCACCCCCGCCCTGTAAACTCCCTGA  
CCCTGACATGACAAGAGTTACTAACAGCCCTCTCCAAGCTCACTTAC  
AGGCTCTACTTAGTCCAGCACGAAGTCTGGAGACCTCTGGCGGAGCC  
TACCAAGAACAACTGGACCGACCGGGTGGTACCTCACCCCTACCGAGTCGG  
CGACACAGTGTGGGTCGCCGACACCAGACTAACAGAACCTAGAACCTCGCT  
GGAAAGGACCTACACAGTCTGCTGACCACCCCCACCGCCCTCAAAGTA  
GACGGCATCGCAGCTGGATACACGCCGCCACGTGAAGGCTGCCGACCC  
CGGGGGTGGACCACCTCTAGACTGCCGGATCCCAGTGTGGTGGTAGGGA  
ATTCAAGCTGATCTCTATAATCTCGCGCAACCTATTTCCTCGAACCA  
CTTTTAAGCCGTAGATAAACAGGCTGGACACTTCACATGAGCGAAAAAA  
TACATCGTCACCTGGGACATGTTGACAGATCCATGCACGTAAACTCGCAA  
GCCGACTGATGCCCTCTGAACAAATGGAAAGGCATTATTGCCGTAAGCCGT  
GGCGGTCTGGTACCGGTGGGTGAAGACCAGAACAGCACCTCGATCTGAG  
CCGCGATATTGCCAGCGTTCAACCGCCTGATGGCGAGATCGATCCCG  
TCGTTTACAACGTGACTGGAAAACCTGGCGTTACCCAACCTTAAT  
GGCCTGGAGGACATCCCCCTTCGCCAGCTGGCGTAATAGCGAACAGGC

Figure 1

60 59 58 57 56 55 54 53 52 51 50

CCGCACCGATGCCCTCCAACAGTTGCGCAGCCTGAATTGGCGAATGG  
CGCTTGCCTGGTTCCGGCACAGAAGCGGTGCCGAAAGCTGGCTGGA  
GTGCGATCTCCTGAGGCCGATACTGTCGTCGCCCCCAAACGGCAGA  
TGCACGGTTACGATGCGCCCCTACACCAACGTGACCTATCCCATTACG  
GTCAATCCGCCGTTGTTCCCACGGAGAACGACTCGACGGGTTGTTACTCGCT  
CACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATT  
ATTTTGATGGCGTTAATCGGCGTTCATCTGTGGTGCAACGGCGCTG  
GGTCGGTTACGGGCAAGACAGTCGTTGGCGTCTAATTGAGCTCGAGC  
GCATATCTACCGCGCCGGAGAAAACCGCCTCGCGGTGATGGTGCCTGCGCTG  
GAGTGACGGGAGTTATCTTGAAGATCAAGATATGTGGCGGATGAGCGGGA  
TTCCGAGCGAAAACGGTCTGCGCTGCCGACGCGCAATTGAATTATGGC  
CCACACCAGAGTGGCGCGCGACTCCAGTTCAACATCAGCCGCTACAG  
TCAACAGCAACTGATGAAACCAAGCCATGCCATCTGCTGCACGCGGAAG  
AACCAGACATGGCTGTTATACGACGGTTCCATATGGGGATTGGTGGCGAC  
GACTCCTGGAGCCCCTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCG  
CTACCATTACCAAGTTGGTCTGGTGTCAAAAAATAATAACCGGGCAGGC  
CATGTCTGCCGTATTGCGTAAGGAAATCATTATGTACTATTTAAC  
TCGAGCGGCCGCCAGCACAGTGGTCGACGATAAAATAAAAGATTTATT  
AGTCTCCAGAAAAAGGGGGAAATGAAAGACCCCACCTGTAGGTTGGCAA  
GCTAGCTTAAGTAACGCCATTGGAAGGCATGGAAAAATACATAACTGA  
GAATAGAGAAGTTCAAGTCAGATCAAGGTAGGAACAGATGGAACAGCTGAATAT  
GGGCCAACAGGATATCTGTGGTAAGCAGTTCTGCCCGGCTCAGGGCC  
AAGAACAGATGGAACAGCTGAATATGGGCCAACAGGATACTGTGGTAA  
GCAGTTCTGCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGG  
TCCAGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGGCC  
CAAGGACCTGAAATGACCTGTGCCTTATTGAACTAACCAATCAGTTCG  
CTTCTCGTTCTGTCGCGCTTCTGCTCCCCGAGCTCAATAAAAGAGC  
CCACAACCCCTCACTCGGGGCCAGTCCTCGATTGACTGAGTCGCCG  
GGTACCCGTATCCAATAAAACCTCTTGCACTGCACTCCGACTTGTGGT  
CTCGCTGTTCTGGAGGGCTCCTCTGAGTGAATTGACTACCGTCAGC  
GGGGGTCTTCATTCTGCATTAAATGAATCGGCCAACGCGCGGGAGAGGC  
GGTTTGCCTATTGGCGCTCTCCGCTTCGCTCACTGACTCGCTGCG  
CTCGCTGTTGGCTGCGAGCGGTATCAGCTCAACTCAAAGGCGTAA  
TACGGTTATCCACAGAACAGGGATAACGCAAGGAAAGAACATGTGAGCA  
AAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGTTGCTGGCGTT  
TTCCATAGGCTCCGCCCTGACGAGCATCACAAAAATGACGCTCAA  
GTCAGAGGTGGCGAAACCCGACAGGACTATAAGAACCCAGGCGTTCCC  
CCTGGAAGCTCCCTCGTGCCTCTGTTCCGACCCCTGCCGTTACCGG  
ATACCTGTCGCCCTTCTCCCTCGGAAGCGTGGCGCTTCTCATAGCT  
CACGCTGTAGGTATCTCAGTTGGTGTAGGTCGCTCCAAAGCTGGC  
TGTGTGCACGAACCCCCGGTCAAGCCGCTGCCCTATCCGGTAA  
CTATCGTCTGAGTCCAACCCGTAAGACACGACTATCGCCACTGGCAG  
CAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACA  
GAGTTCTGAAGTGGTGGCCTAACTACGGCTACACTAGAACGGACAGTATT  
TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGTA  
GCTCTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTGTT

Figure 1

TGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTT  
GATCTTTCTACGGGTCTGACGCTCAGTGGAACGAAAACACGTTAAG  
GGATTGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTTG  
CGGCCGGCCCAAATCAATCTAAAGTATATGAGTAAACTGGTCTGAC  
AGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATT  
TCGTTCATCCATAGTTGCCTGACTCCCCGTGCTGAGATAACTACGATAC  
GGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAACCGCGAGACCCA  
CGCTCACCGGCTCCAGATTATCAGCAATAACCAGCCAGCCGGAAAGGGC  
CGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAGTCTATT  
ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGCGC  
AACGTTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTCGTTGG  
TATGGCTTCATTAGCTCCGGTCCAACGATCAAGGCGAGTTACATGAT  
CCCCCATGTTGCAAAAAAGCGGTTAGCTCCTCGGTCCGATCGTT  
GTCAGAAGTAAGTTGGCCGCAGTGTATCACTCATGGTTATGGCAGCACT  
GCATAATTCTTACTGTCACTGCCATCGTAAGATGCTTCTGTGACTG  
GTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGT  
TGCTCTGCCCGCGTCAACACGGGATAATACCGGCCACATAGCAGAAC  
TTTAAAAGTGCATCATTGGAAAACGTTCTCGGGCGAAAACCTCTCAA  
GGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGTGCACCC  
AACTGATCTCAGCATCTTACTTCAACAGCGTTCTGGGTGAGCAAA  
AACAGGAAGGCAAAATGCCGAAAAAAGGGAATAAGGGCGACACGGAAAT  
GTTGAATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAG  
GGTTATTGTCTCATGAGCGGATACATTTGAATGTATTAGAAAAATAA  
ACAAATAGGGGTTCCCGCGCACATTCCCTGCAT

**Figure 1**

AATGAAAGACCCCACCTGTAGGTTGGCAAGCTAGCGCGGCCGCATAACT  
TCGTATAGCATACATTATACGAAGTTATTAAAGGCGCCCTCTAGC  
TTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGAGAATAG  
AGAAGTTCAGATCAAGGTAGGAACAGATGGAACAGACTGAATATGGGCCA  
AACAGGATATCTGTGGTAAGCAGTCCCTGCCCGGCTCAGGGCCAAGAAC  
AGATGGAACAGCTGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTT  
CCTGCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCAGC  
CCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAAGGA  
CCTGAAATGACCTGTGCCTTATTGAACTAACCAATCAGTCGCTTCTC  
GCTTCTGTTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGGCCACAA  
CCCCTCACTCGGGGCCAGTCCTCGATTGACTGAGTCGCCGGTACC  
CGTGTATCCAATAAACCCCTCTGCAGTTGCATCCGACTTGTGGTCTCGCT  
GTTCTGGGAGGGCTCCTCTGAGTGATTGACTACCCGTAGCAGGGGT  
CTTCATTGGGGCTCGTCCGGATCGGGAGAACCTGCCAGGGACCA  
CCGACCCACCACCGGGAGGTAAGCTGGCAGCAACTATCTGTGTCTGTC  
CGATTGTCTAGTGTCTATGACTGATTGACTTATGCGCCTGCGTCGGTACTAGT  
TAGCTAACTAGCTCTGTATCTGGCGACCCGTGGTGAACGTACGAGTTC  
GGAACACCCGGCCGCAACCCCTGGGAGACGTCCCAGGGACTCGGGGGCG  
TTTTGTGGCCCACCTGAGTCCAAAAAATCCGATCGTTGGACTCTT  
TGGTGCACCCCCCTAGAGGAGGGATATGTGGTCTGGTAGGAGACGAGA  
ACCTAAAACAGTCCCGCCTCGTCTGAATTTCGCTTCGGTTGGAC  
CGAACGCCGCCGCGCGTCTGTCTGCTGCAGCATCGTCTGTGTTGTCT  
CTGCTGACTGTGTTCTGTATTGCTGAAAATAAGGGCCGGCCAGA  
CTGTTACCACTCCCTAACGTTGACCTAGGTCACTGGAAAGATGTCGAG  
CGGATCGCTACAACCAGTCGGTAGATGTCAAGAAGAGACGTTGGTTAC  
CTTCTGCTCTGCAGAATGGCCAACCTTAACGTCGGATGGCCCGAGACG  
GCACCTTAACCGAGACCTCATCACCCAGGTTAACGATCAAGGTCTTCA  
CCTGGCCCGCATGGACACCCAGACCAGGTCCCACATCGTACCTGGGA  
AGCCTTGGCTTTGACCCCCCTCCCTGGGTCAAGCCCTTGACACCTA  
AGCCTCCGCCCTCTCCCTCCATCCGCCCTCTCTCCCCCTGAACCT  
CCTCGTTGACCCCGCCTCGATCCTCCCTTATCCAGCCCTCACTCCTC  
TCTAGGCGCCCCCATATGGCCATATGAGATCTTATATGGGGCACCCCC  
CCCTTGAAACTCCCTGACCCCTGACAAGACAAGAGTTACTAACAGCCC  
TCTCTCCAAGCTCACTACAGGCTCTACTTAGTCCAGCACGAAGTCTG  
GAGACCTCTGGCGGCAGCCTACCAAGAACACTGGACCGACCGGTGGTAC  
CTCACCCCTACCGAGTCGGGACACAGTGTGGTCCGCCGACACCAAGACT  
AAGAACCTAGAACCTCGCTGGAAAGGACCTTACACAGTCCTGCTGACCAC  
CCCCACCGCCCTCAAAGTAGACGGCATCGCAGCTGGATACAGCCGCC  
ACGTGAAGGCTGCCGACCCGGGGTGGACCATCCTCTAGACTGCCGGAT  
CCCAGTGTGGTGGTAGGAAATTCTTAATTAAACGCCACCATGGTGAGCAAG  
GGCGAGGAGCTGTTACCGGGGTGGCCATCCTGGTCAGCTGGACGG  
CGACGTAAACGCCACAAGTTCAGCGTGTGGCGAGGGCGAGGGCGATG  
CCACCTACGGCAAGCTGACCCCTGAAGTTCATCTGCACCACCGCAAGCTG  
CCCGTGCCTGGCCACCCCTCGTGAACCAACCTGACCTACGGCGTGCAGTG  
CTTCAGCCGCTACCCGACCACATGAAGCAGCACGACTTCTCAAGTCCG  
CCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTCTCAAGGACGAC

Figure 2

GGCAACTACAAGACCCGCGCCGAGGTGAAGTCGAGGGCGACACCCCTGGT  
GAACCGCATCGAGCTGAAGGGCATCGACTCAAGGAGGACGGCAACATCC  
TGGGGCACAAGCTGGAGTACAACATACAACAGCCACAACGTCTATATCATG  
GCCGACAAGCAGAAGAACGGCATCAAGGCAGACTTCAGATCCGCCACAA  
CATCGAGGACGGCAGCGTCAGCTCGCCGACCACTACCAGCAGAACACCC  
CCATCGGCGACGGCCCCGTGCTGCTGCCGACAACCAACTACCTGAGCACC  
CAGTCCGCCCTGAGCAAAGACCCCAACGAGAACGCGATCACATGGTCCT  
GCTGGAGTTCTGTGACCGCCGCCGGATCACTCTCGGCATGGACGAGCTGT  
ACAAGTAATGAATTAAATAAGAATTCCAGCTGAGCGCCGGTCGCTACCAT  
TACCAAGTTGGTCTGGTGTCAAAAATAATAAAACCGGGCAGGCCATGTCT  
GCCCGTATTCGCGTAAGGAAATCCATTATGTAATTTAAACTCGAGCG  
GCCGCCGCCAGCACAGTGGTCAGTGTGACAATTAAATCATCGGCATAG  
TATATCGGCATAGTATAATACGACAAGGTGAGGAACAAACCATGGCAA  
GTTGACCAGTGCCGTCCGGTGCTCACCGCGCGACGTGCCGGAGCGG  
TCGAGTTCTGGACCCGACCGGCTCGGGTCTCCCAGGACTTCGTGGAGGA  
CGACTTCGCCGGTGTGGTCCGGGACGACGTGACTCTGTTCATCAGCGCG  
GTCCAGGACCAGGTGGTCCGGACAACACCCCTGGCCTGGGTGTGGTGCG  
CGGCCTGGACGAGCTGTACGCCGAGTGGTCCGGAGGTGTCGTCCACGAAC  
TCCGGGACGCCCTCCGGCCGGCATGACCGAGATCGCGAGCAGCCGTGG  
GGCGGGACTTCGCCCTGCCGACCCGGCCGGCAACTCGCTGCACCTCGT  
GGCCGAGGAGCAGGACTGAACCGTCCCCTAGAAAAGATCAAAGGATCTT  
CTTGAGATCCTTTCTGCGCGTAATCTGCTGCTTGCCTAAAGAGCTACCAACTCT  
CCACCGCTACCAGCGGTGGTTGTTGCCGGATCAAGAGCTACCAACTCT  
TTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATCTGTT  
TTCTAGTGTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGTTAGCACCG  
CCTACATACCTCGCTCTGCTAATCCTGTTACCAAGTGGCTGCTGCCAGTGG  
CGATAAGTCGTGCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATA  
AGGCGCAGCGGTGGCTGAACGGGGGGTCGTGCACACAGCCCAGCTG  
GAGCGAACGACCTACACCGAACCTGAGATACCTACAGCGTGAGCTATGAGA  
AAGCGCCACGCTCCGAAGGGAGAAAGGCGGACAGGTATCCGTAAGCG  
GCAGGGTCGGAACAGGAGAGCGCAGCAGGGAGCTCCAGGGGGAAACGCC  
TGGTATCTTATAGTCCTGTCGGGTTCGCCACCTCTGACTTGAGCGTCG  
ATTTTGTGATGCTCGTCAGGGGGCGGAGCCTATGGAAAAACGCCAGCA  
ACGCGGCCTTTACGGTTCCGCTGGCTTTGCTGGCCTTTGCTCACATA  
TCGATTAGTCCAATTGTTAAAGACAGGATATCAGTGGTCCAGGCTCTAG  
TTTGACTCAACAATATCACCAGCTGAAGCCTATAGAGTACGAGCCATAG  
ATAAAATAAAAGATTATTAGTCTCCAGAAAAAGGGGG

Figure 2

|     |                                                                                   |  |     |  |     |  |     |
|-----|-----------------------------------------------------------------------------------|--|-----|--|-----|--|-----|
|     | 20                                                                                |  | 40  |  | 60  |  | 80  |
| 1   | AAGGGCCCGGCCAGACTGTTACCACTCCCTTAAGTTGACCTTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACAA    |  |     |  |     |  | 80  |
|     | ATGGGCCCCGGCCAGACTGTTACCACTCCCTTAAGTTGACCTTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACAA   |  |     |  |     |  | 80  |
|     | 20                                                                                |  | 40  |  | 60  |  | 80  |
|     | 100                                                                               |  | 120 |  | 140 |  | 160 |
| 81  | CCAGTCGGTAGATGTCAAGAAGAGACGTTGGGTTACCTCTGCTCTGCAGAAATGGCCAACCTTAAACGTGGATGGCCGC   |  |     |  |     |  | 160 |
| 81  | CCAGTCGGTAGATGTCAAGAAGAGACGTTGGGTTACCTCTGCTCTGCAGAAATGGCCAACCTTAAACGTGGATGGCCGC   |  |     |  |     |  | 160 |
|     | 100                                                                               |  | 120 |  | 140 |  | 160 |
|     | 180                                                                               |  | 200 |  | 220 |  | 240 |
| 161 | GAGACGGCACCTTAACCGAGACCTCATCACCCAGTTAACGATCAAGGTCTTTACCTGGCCGCATGGACACCCAGAC      |  |     |  |     |  | 240 |
| 161 | GAGACGGCACCTTAACCGAGACCTCATCACCCAGTTAACGATCAAGGTCTTTACCTGGCCGCATGGACACCCAGAC      |  |     |  |     |  | 240 |
|     | 180                                                                               |  | 200 |  | 220 |  | 240 |
|     | 260                                                                               |  | 280 |  | 300 |  | 320 |
| 241 | CAGGTCCCCAACATCGTGACCTGGGAAGCCTGGCTTTGACCCCCCTCCCTGGGTCAGGCCCTTGTACACCCATAAGCC    |  |     |  |     |  | 320 |
| 241 | CAGGTCCCCAACATCGTGACCTGGGAAGCCTGGCTTTGACCCCCCTCCCTGGGTCAGGCCCTTGTACACCCATAAGCC    |  |     |  |     |  | 320 |
|     | 260                                                                               |  | 280 |  | 300 |  | 320 |
|     | 340                                                                               |  | 360 |  | 380 |  | 400 |
| 321 | TCCGCCTCCCTCTCCATCCGCCCGCTCTCCCCCTTGAACCTCCCTCGTTCGACCCCGCCTCGATCCCTCCCTTATC      |  |     |  |     |  | 400 |
| 321 | TCCGCCTCCCTCTCCATCCGCCCGCTCTCCCCCTTGAACCTCCCTCGTTCGACCCCGCCTCGATCCCTCCCTTATC      |  |     |  |     |  | 400 |
|     | 340                                                                               |  | 360 |  | 380 |  | 400 |
|     | 420                                                                               |  | 440 |  | 460 |  | 480 |
| 401 | CAGCCCTCACTCCTCTAGGCGCCCCATATGGCATATGAGATCTTATATGGGGCACCCCGCCCTTGTAAACCTTC        |  |     |  |     |  | 480 |
| 401 | CAGCCCTCACTCCTCTAGGCGCCCCATATGGCATATGAGATCTTATATGGGGCACCCCGCCCTTGTAAACCTTC        |  |     |  |     |  | 480 |
|     | 420                                                                               |  | 440 |  | 460 |  | 480 |
|     | 500                                                                               |  | 520 |  | 540 |  | 560 |
| 481 | CCTGACCCCTGACAAGACAAGAGTTACTAACAGCCCCCTCTCTCCAAAGCTCACTTACAGGCTCTACTTAGTCCAGCACGA |  |     |  |     |  | 560 |
| 481 | CCTGACCCCTGACATGACAAGAGTTACTAACAGCCCCCTCTCTCCAAAGCTCACTTACAGGCTCTACTTAGTCCAGCACGA |  |     |  |     |  | 560 |
|     | 500                                                                               |  | 520 |  | 540 |  | 560 |
|     | 580                                                                               |  | 600 |  | 620 |  | 640 |
| 561 | AGTCTGGAGACCTCTGGGGCAGCCTACCAAGAACAACTGGACCGACCGGTGGTACCTCACCGAGTCGGCGACA         |  |     |  |     |  | 640 |
| 561 | AGTCTGGAGACCTCTGGGGCAGCCTACCAAGAACAACTGGACCGACCGGTGGTACCTCACCGAGTCGGCGACA         |  |     |  |     |  | 640 |
|     | 580                                                                               |  | 600 |  | 620 |  | 640 |
|     | 660                                                                               |  | 680 |  | 700 |  | 720 |
| 641 | CAGTGTGGTCCGCCGACACCAGACTAAGAACCTAGAACCTCGTGGAAAGGACCTTACACAGTCCTGCTGACCACCCC     |  |     |  |     |  | 720 |
| 641 | CAGTGTGGTCCGCCGACACCAGACTAAGAACCTAGAACCTCGTGGAAAGGACCTTACACAGTCCTGCTGACCACCCC     |  |     |  |     |  | 720 |
|     | 660                                                                               |  | 680 |  | 700 |  | 720 |
|     | 740                                                                               |  | 760 |  | 780 |  | 800 |
| 721 | ACCGCCCTAAAGTAGACGGCATCGCAGCTGGATACACGCCGCCACGTGAAGGCTGCCGACCCGGGGTGGACCATC       |  |     |  |     |  | 800 |
| 721 | ACCGCCCTAAAGTAGACGGCATCGCAGCTGGATACACGCCGCCACGTGAAGGCTGCCGACCCGGGGTGGACCATC       |  |     |  |     |  | 800 |
|     | 740                                                                               |  | 760 |  | 780 |  | 800 |
|     | 820                                                                               |  |     |  |     |  |     |
| 801 | CTCTAGACTGCCGATCCCACTGTGG (SEQ ID NO:2)                                           |  |     |  |     |  | 826 |
| 801 | CTCTAGACTGCCGATCCCACTGTGG (SEQ ID NO:1)                                           |  |     |  |     |  | 826 |
|     | 820                                                                               |  |     |  |     |  |     |

% Identity = 99.8 (824/826)

Figure 3

Figure 4. ~~Diagram~~ of pMX, pEYK1, pEYK2, pEYK2.1, and pEYK3.1.



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8

16000 12000 8000 4000 0



### pEYK.2.2



Titer:  $7.2 \times 10^6$  IFU / mL

Fold expression: 206



### pEYK.2.3



Titer:  $7.0 \times 10^6$  IFU / mL

Fold expression: 203

Figure 9



Figure 10

Integrated pEYK.2.1 provirus



Figure 11



Figure 12

A) Integrated B/A-pEYK.3.1 provirus



B)



Figure 13