1

2

WHAT IS CLAIMED IS:

	WHAT IS CERTIFIED IS:	·
1	1: A method of fabricating an	image sensor, comprising:
2	forming a bottom antireflection co	ating over an exposed surface of an active
3	image sensing device structure;	
4	forming a color filter array on the	bottom antireflection coating; and
5	substantially removing exposed po	ortions of the bottom antireflection coating.
1	ı	erein the bottom antireflection coating
2	comprises a dyed organic film-forming n	naterial.
1		erein the bottom antireflection coating
2	comprises a light-absorbing polymeric fi	lm-forming material.
1	4. The method of claim 1, wh	nerein the bottom antireflection coating has a
2	thickness selected to improve an optical	transmission characteristic of one or more
3	colors of the color filter array.	
1	5. The method of claim 1, w	herein the bottom antireflection coating is
2	substantially transmissive to radiation i	n a wavelength range of about 400 nm to
3	about 700 nm.	
1	6. The method of claim 1, w	herein the color filter array comprises a
2	plurality of colored photoresist structure	es.
		y is a second portions of the bottom

- 7. The method of claim 1, wherein exposed portions of the bottom antireflection coating are removed substantially by a plasma etch process.
- 1 8. The method of claim 7, wherein the plasma etch process is a low-2 power buffered oxygen ash process.
- 1 9. The method of claim 7, wherein the plasma etch process removes the bottom antireflection coating at a substantially higher etch rate than the color filter array.

about 700 nm.

l	10. The method of claim 1, wherein the bottom antireflection coating forms	
2	a substantially continuous layer over the exposed surface of the active image sensing	
3	device structure before exposed portions of the bottom antireflection coating are	
4	substantially removed.	
1	11. The method of claim 1, wherein the bottom antireflection coating forms	
2	a protective barrier over metal structures at the exposed surface of the active image	
3	sensing device structure during formation of the color filter array.	
1	12. The method of claim 1, wherein the active image sensor device	
2	structure comprises a complementary metal-oxide-semiconductor (CMOS) image	
3	sensor.	
•		
1	13. An image sensor system, comprising:	
2	an active image sensing device structure;	
3	a color filter array; and	
4	a bottom antireflection coating disposed between the color filter array and a	
5	surface of the active image sensing device structure.	
1	14. The system of claim 13, wherein the bottom antireflection coating	
2	comprises a dyed organic film-forming material.	
1	15. The system of claim 13, wherein the bottom antireflection coating	
2	comprises a light-absorbing polymeric film-forming material.	
1	16. The system of claim 13, wherein the bottom antireflection coating has a	
2	thickness selected to improve an optical transmission characteristic of one or more	
3	1 (1)law filton array	
1	17. The system of claim 13, wherein the bottom antireflection coating is	
2	substantially transmissive to radiation in a wavelength range of about 400 nm to	

1

2

3

- The system of claim 13, wherein the color filter array comprises a 18. 1 plurality of colored photoresist structures. 2
- The system of claim 13, wherein the bottom antireflection coating has a 19. 1 substantially higher plasma etch rate than the color filter array. 2
 - The system of claim 13, wherein the active image sensor device 20. structure comprises a complementary metal-oxide-semiconductor (CMOS) image sensor.

12