# Fundamentals of Econometrics Models



#### Vicenç Soler

v.soler@tbs-education.org

vincent.soler@tbs-education.org



#### Fitted model and Theoretical model

#### tlos Business School

#### Our data comes from a sample





Theor. model:

$$Y = 20 + 8X + \varepsilon$$
$$\varepsilon \sim N(0; 10)$$

**Unique but unknown** 

Fitted model:

sample of 
$$n = 10$$

$$\widehat{Y} = \underbrace{41,9} + \underbrace{5,6X} + e$$

Known but they change from sample to sample

50 lines from 50 different samples

#### Fitted model and Theoretical model



Our data comes from a sample



Sample vs. Population = Fitted model vs. Theoretical model

### Atypical observations





As the goal is to generate a general model, it is always better to exclude the atypical values when generating the Regression Model

## Residuals: Quick reminder







**Residuals**: actual Y – predicted Y ( $\widehat{y}$ )



GOAL: To understand the relationship between y and x and/or to predict values of y given x

#### Model validation



R2 value

Analysis of the residuals

## Analysis of the residuals





## Analysis of the residuals Homoscedasticity vs Heteroscedasticity



#### Constant variance in the residuals

#### Dispersion must be constant



Homoscedastic data



Heteroscedastic data

### Analysis of the residuals



## We maybe need to transform data to convert it to linear





#### We maybe need to transform data to convert it to linear Example

#### tlos Business School

### It looks as if it is needed a change in the model to better fit

#### **Residuals = Actual - Predicted**



Actual data and its regression line

#### **Versus Fits**



We should see a random pattern and this is not a random pattern

What about these residuals?

Positive->negative->positive

## We maybe need to transform data to convert it to linear



Example



**Next step:** As it seems data follows an



#### Residuals in Excel...





Enable it to display graphs of residuals

### Analysis of Residuals



#### Transformations (ln, sqrt, $x^2$ , etc.):

- Allow us to obtain a better linear model when data is not linear, and predict better.
- It is more difficult to interpret the model and the relationships between variables.

## Factor Variables in R



#### Factor variables

- Linear Regressions in R allow to work with factor variables.
- The variables display in the Table of Coefficients will always display all the categories but one.
- And it is important when interpreting the equation

#### Analysis of Residuals



## QUESTIONS?

# Fundamentals of Econometrics Models



#### Vicenç Soler

v.soler@tbs-education.org

vincent.soler@tbs-education.org

