Universidade Federal do Paraná Departamento de Informática

Reconhecimento de Padrões

Métodos não Paramétricos

Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net

Métodos Não Paramétricos

- Introduzir métodos não paramétricos para aprendizagem supervisionada.
 - Histograma
 - Estimação de Densidade
 - Janelas de Parzen
 - -kNN

Métodos não Paramétricos

- A teoria de decisão Bayesiana assume que a distribuição do problema em questão é conhecida
 - Distribuição normal
- A grande maioria da distribuições conhecidas são unimodais.
- Em problemas reais a forma da função densidade de probabilidade (fdp) é desconhecida
- Tudo que temos são os dados rotulados
- Estimar a distribuição de probabilidades a partir dos dados rotulados.

Métodos não Paramétricos

- Métodos não paramétricos podem ser usados com qualquer distribuição.
 - Histogramas
 - Janelas de Parzen
 - Vizinhos mais próximos.

Histogramas

- Método mais antigo e mais simples para estimação de densidade.
 - Depende da origem e da largura (h) usada para os intervalos.
 - H controla a granularidade.

Histogramas

- Se h é largo
 - A probabilidade no intervalo é estimada com maior confiabilidade, uma vez que é baseada em um número maior de amostras.
 - Por outro lado, a densidade estimada é plana numa região muito larga e a estrutura fina da distribuição é perdida.
- Se h é estreito
 - Preserva-se a estrutura fina da distribuição, mas a confiabilidade diminuir.
 - Pode haver intervalos sem amostra.

Histogramas

- Raramente usados em espaços multidimensionais.
 - Em uma dimensão requer N intervalos
 - Em duas dimensões N² intervalos
 - Em p dimensões, N^p intervalos
- Quantidade grande de exemplos para gerar intervalos com boa confiabilidade.
 - Evitar descontinuidades.

Estimação de Densidade

- Histogramas nos dão uma boa idéia de como estimar densidade.
- Introduziremos agora o formalismo geral para estimar densidades.
- Ou seja, a probabilidade de que um vetor x, retirado de uma função de densidade desconhecida p(x), cairá dentro de uma região R é

 $\hat{P} = \int_{R} p(\mathbf{x}') d\mathbf{x}'$

Estimação de Densidade

 Considerando que R seja continua e pequena de forma que p(x) não varia, teremos

$$\hat{P} = \int_{\mathbb{R}} p(\mathbf{x}') d\mathbf{x}' = p(\mathbf{x}) \times V$$

- Onde V é o volume de R.
- Se retirarmos n pontos de maneira independente de p(x), então a probabilidade que k deles caiam na região R é dada pela lei binomial

$$P_k = \binom{n}{k} P^k (1 - P)^{n - k}$$

Estimação de Densidade

- O número médio de pontos caindo em R é dado pela Esperança Matemática de k, E[k] = n.P
- Considerando n grande

$$\hat{P} = p(\mathbf{x}) \times V \qquad \qquad \hat{P} = \frac{k}{n}$$
$$\hat{p}(\mathbf{x}) \times V = \frac{k}{n}$$

- Logo, a estimação de densidade p(x) é
- $p(x) \approx \frac{k/n}{V}$

Se as regiões Ri não tem interseção, então temos um histograma.

Estimação de Densidade

- Em problemas reais, existem duas alternativas para estimação de densidade
 - Escolher um valor fixo para k e determinar o volume V a partir dos dados
 - Isso nos dá a regra do vizinho mais próximo (kNN)
 - Também podemos fixar o volume V e determinar k a partir dos dados
 - Janela de Parzen

Janelas de Parzen

- Nessa abordagem fixamos o tamanho da região R para estimar a densidade.
- Fixamos o volume V e determinamos o correspondente k a partir dos dados de aprendizagem.
- Assumindo que a região R é um hipercubo de tamanho h, seu volume é h^d

Janelas de Parzen

 Para estimar a densidade no ponto x, simplesmente centramos R em x, contamos o número de exemplos em R, e substituímos na equação

$$p(x) \approx \frac{k/n}{V}$$

$$p(x) \approx \frac{3/6}{10}$$

Janelas de Parzen

 Podemos definir uma expressão para encontrar a quantidade de pontos que caem em R, a qual é definida como função de Kernel ou Parzen window

$$\varphi(u) = \begin{cases} 1 & |u_j| \le \frac{1}{2} & j = 1, \dots, d \\ 0 & \text{Caso contrário} \end{cases}$$
1 - Dentro

1/2

2D

0 - Fora

Janelas de Parzen

Considerando que temos os exemplos x₁, x₂, ...,x_n.
 Temos,

$$\varphi(\frac{x - x_i}{h}) = \begin{cases} 1 & |x - x_i| \le \frac{h}{2} & j = 1, \dots, d \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{pmatrix} \mathbb{R} & \\ \bullet & x_i \end{pmatrix} h$$

$$\varphi(\frac{x-x_i}{h}) = \begin{cases} 1 & \text{Se } x_i \text{ estiver dentro do hipercubo com} \\ 0 & \text{largura h e centrado em x} \end{cases}$$
Caso contrário

Janelas de Parzen: Exemplo em 1D

• Suponha que temos 7 exemplos D = {2,3,4,8,10,11,12}, e o tamanho da janela h = 3. Estimar a densidade em x=1.

$$p_{\varphi}(1) = \frac{1}{7} \sum_{i=1}^{l=7} \frac{1}{3} \varphi \left(\frac{1-x_{i}}{3} \right) = \frac{1}{21} \left[\varphi \left(\frac{1-2}{3} \right) + \varphi \left(\frac{1-3}{3} \right) + \varphi \left(\frac{1-4}{3} \right) + \dots + \varphi \left(\frac{1-12}{3} \right) \right]$$

$$\left| -\frac{1}{3} \right| \le 1/2 \quad \left| -\frac{2}{3} \right| > 1/2 \quad \left| -1 \right| > 1/2 \quad \left| -\frac{11}{3} \right| > 1/2$$

$$p_{\varphi}(1) = \frac{1}{7} \sum_{i=1}^{l=7} \frac{1}{3} \varphi \left(\frac{1-x_{i}}{3} \right) = \frac{1}{21} \left[1 + 0 + 0 + \dots + 0 \right] = \frac{1}{21}$$

Janelas de Parzen: Exemplo em 1D

- Para ver o formato da função, podemos estimar todas as densidades.
- Na realidade, a janela é usada para interpolação.
 - Cada exemplo x_i contribui para o resultado da densidade em x, se x está perto bastante de x_i

Janelas de Parzen: Kernel Gaussiano

- Uma alternativa a janela quadrada usada até então é a janela Gaussiana.
- Nesse caso, os pontos que estão próximos a xi recebem um peso maior.
- A estimação de densidade é então suavizada.

$$p_{\varphi}(x) = \frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h^d} \varphi\left(\frac{x - x_i}{h}\right)$$

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$$

Janelas de Parzen: Kernel Gaussiano

 Voltando ao problema anterior D = {2,3,4,8,10,11,12}, para h =1, teriamos

http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletParzen.html

Janelas de Parzen

- Para testar esse método, vamos usar duas distribuições.
 - Usar a estimação das densidades e comparar com as verdadeiras densidades.
 - Variar a quantidade de exemplos n e o tamanho da janela
 - Normal N(0,1) e Mistura de Triangulo/Uniforme.

Janelas de Parzen: Normal N(0,1)

Poucos exemplo e h pequeno, temos um fenômeno similar a um overfitting.

Janelas de Parzen: Normal N(0,1)

FIGURE 4.5. Parzen-window estimates of a univariate normal density using different window widths and numbers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particularly that the $n=\infty$ estimates are the same (and match the true density function), regardless of window width. From: Richard

Janelas de Parzen:Mistura de Triangulo e Uniforme

Janelas de Parzen:Mistura de Triangulo e Uniforme

FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window widths and numbers of samples. Note particularly that the $n=\infty$ estimates are the same (and match the true distribution), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Janelas de Parzen: Tamanho da Janela

- Escolhendo h, estamos "chutando" a região na qual a densidade e aproximadamente constante.
- Sem nenhum conhecimento da distribuição é difícil sabe onde a densidade é aproximadamente constante.

Janelas de Parzen: Tamanho da Janela

- Se h for muito pequeno
 - Fronteiras muito especializadas
- Se h for muito grande
 - Generaliza demais
- Encontrar um valor ideal para h não é uma tarefa trivial, mas pode ser estabelecido a partir de uma base de validação.
 - Aprender h

Janelas de Parzen: Tamanho da Janela Qual problema foi melhor resolvido? h pequeno: Classificação perfeita Um caso de over-fitting Regra de classificação: Calcula-se P(x/c_j), j = 1,...,m e associa x a classe onde P é máxima

Vizinho mais Próximo (kNN)

 Relembrando a expressão genérica para estimação da densidade

$$p(x) \approx \frac{k/n}{V}$$

- Na Janela de Parzen, fixamos o V e determinamos k (número de pontos dentro de V)
- No kNN, fixamos k e encontramos V que contem os k pontos.

kNN

- Um alternativa interessante para o problema da definição da janela h.
 - Nesse caso, o volume é estimado em função dos dados
 - Coloca-se a celula sobre x.
 - Cresce até que k elementos estejam dentro dela.

kNN

- Qual seria o valor de k?
 - Uma regral geral seria k = sqrt(n)
 - Não muito usada na prática.
- Porém, kNN não funciona como uma estimador de densidade, a não ser que tenhamos um número infinito de exemplos
 - O que n\u00e3o acontece em casos pr\u00e1ticos.

kNN

- Entretanto, podemos usar o kNN para estimar diretamente a probabilidade a posteriori P(c_i|x)
- Sendo assim, não precisamos estimar a densidade p(x).

$$p(c_i \mid x) = \frac{p(x,c_i)}{p(x)} = \frac{p(x,c_i)}{\sum_{j=1}^{m} p(x,c_j)} \approx \frac{k_i / n}{V \sum_{j=1}^{m} \frac{k_j / n}{V}} = \frac{k_i}{\sum_{j=1}^{m} k_j} = \frac{k_i}{k}$$

Ou seja, $p(c_i|x)$ e a fração de exemplos que pertencem a classe c_i

kNN

- A interpretação para o kNN seria
 - Para um exemplo n\u00e3o rotulado x, encontre os k mais similares a ele na base rotulada e atribua a classe mais frequente para x.
- Voltando ao exemplo dos peixes

Para k = 3, teriamos 2 robalos e 1 salmão. Logo, classificamos x como robalo.

kNN

- Significado de k:
 - Classificar \mathbf{x} atribuindo a ele o rótulo representado mais freqüentemente dentre as k amostras mais próximas.
 - Contagem de votos.
- Uma medida de proximidade bastante utilizada é a distância Euclidiana:

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Distância Euclidiana

$$x = (2.5)$$
1.41
$$d(x, y) = \sqrt{(2-3)^2 + (5-4)^2} = \sqrt{2} = 1.41$$

$$y = (3.4)$$

k-NN: Um Exemplo

A qual classe pertence

Calcule para os seguintes valores de k:

k=1 não se pode afirmar

k=3 vermelho - 5,2 - 5,3

k=5 vermelho -5,2-5,3-6,2

k=7 azul - 3,2 - 2,3 - 2,2 - 2,1

A classificação pode mudar de acordo com a escolha de *k*.

Matriz de Confusão

- Matriz que permite visualizar as principais confusões do sistema.
- Considere um sistema com 3 classes, 100 exemplos por classe.

100% de classificação

	с1	c2	сЗ
c1	100		
c2		100	
сЗ			100

Erros de classificação

Ī		c1	c2	сЗ
Ī	c1	90	10-	
Ī	c2		100	
I	сЗ	5		95

10 exemplos de C1 foram classificados como C2

kNN: Funciona bem?

- Certamente o kNN é uma regra simples e intuitiva.
- Considerando que temos um número ilimitado de exemplos
 - O melhor que podemos obter é o erro Bayesiano (E*)
 - Para n tendendo ao infinito, pode-se demonstrar que o erro do kNN é menor que 2E*
- Ou seja, se tivermos bastante exemplos, o kNN vai funcionar bem.

kNN: Diagrama de Voronoi

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the category of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

kNN: Distribuições Multi-Modais

 Um caso complexo de classificação no qual o kNN tem sucesso.

kNN: Como escolher k

- Não é um problema trivial.
 - k deve ser grande para minimizar o erro.
 - k muito pequeno leva a fronteiras ruidosas.
 - k deve ser pequeno para que somente exemplos próximos sejam incluídos.
- Encontrar o balanço não é uma coisa trivial.
 - Base de validação

kNN: Como escolher k

- Para k = 1,...,7 o ponto x é corretamente classificado (vermelho.)
- Para k > 7, a classificação passa para a classe azul (erro)

kNN: Complexidade

- O algoritmo básico do kNN armazena todos os exemplos. Suponha que tenhamos n exemplos
 - O(n) é a complexidade para encontrar o vizinho mais próximo.
 - O(nk) complexidade para encontrar k exemplos mais próximos
- Considerando que precisamos de um n grande para o kNN funcionar bem, a complexidade torna-se problema.

kNN: Reduzindo complexidade

 Se uma célula dentro do diagrama de Voronoi possui os mesmos vizinhos, ela pode ser removida.

Mantemos a mesma fronteira e diminuímos a quantidade de exemplos

kNN: Reduzindo complexidade

- kNN protótipos
 - Consiste em construir protótipos para representar a base
 - Diminui a complexidade, mas não garante as mesmas fronteiras

kNN: Seleção da Distância

• Até então assumimos a distância Euclidiana para encontrar o vizinho mais próximo.

$$D(a,b) = \sqrt{\sum_{k} (a_k - b_k)^2}$$

- Entretanto algumas características (dimensões) podem ser mais discriminantes que outras.
- Distância Euclidiana dá a mesma importância a todas as características

kNN: Seleção da Distância

- Considere as seguintes características
 - Qual delas discrimina a classe verde da azul?

kNN: Seleção da Distância

- Agora considere que um exemplo Y = [1, 100] deva ser classificado.
- Considere que tenhamos dois vizinhos X1 = [1,150] e X2 = [2,110]

$$D(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 1\\150 \end{bmatrix}) = \sqrt{(1-1)^2 + (100-150)^2} = 50 \qquad D(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 2\\110 \end{bmatrix}) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5$$

• Y não será classificado corretamente.

kNN: Normalização

- Note que as duas características estão em escalas diferentes.
 - Característica 1 varia entre 1 e 2
 - Característica 2 varia entre 100 e 200
- Uma forma de resolver esse tipo de problema é a normalização.
- A forma mais simples de normalização consiste em dividir cada característica pelo somatório de todas as características

kNN:Normalização

		Antes da Normalização		Após a Normalização		D:-+6i
Α	1		100	0,0099	0,9900	Distâncias
В	1		150	0,00662	0,9933	A-B = 0,0046
С	2		110	0,0178	0,9821	A-C=0,01125

kNN: Normalização

- Outra maneira eficiente de normalizar consiste em deixar cada característica centrada na média 0 e desvio padrão 1.
- Se X é uma variável aleatória com média μ e desvio padrão σ, então (X – μ)/ σ tem média 0 e desvio padrão 1.

kNN: Seleção da Distância

• Entretanto, em altas dimensões, se existirem várias características irrelevantes, a normalização não irá ajudar.

$$D(a,b) = \sqrt{\sum_{k} (a_k - b_k)^2} = \sqrt{\sum_{i} (a_i - b_i)^2 + \sum_{j} (a_j - b_j)^2}$$
Discriminante Buídos

• Se o número de características discriminantes for menor do que as características irrelevantes, a distância Euclidiana será dominada pelos ruídos.