具有遗传性疾病和性状的遗传位点和基因分析

强思维 王海洋 李龙元

问题背景

目标:定位与性状或疾病相关联的位点在染色体或基因中的位置

位点:一些特定位置的单个核苷酸经常发生变异引起DNA的多态性

样本数据

样本编号	样本健康状况	染色体片段位点名称和位点等位基因信息					
		rs100015	rs56341		rs21132		
1	1	TT	CA	•••	GT		
2	0	TT	CC		GG		
3	1	TC	CC	•••	GG		
4	1	TC	CA	•••	GG		
5	0	CC	CC	•••	GG		
6	0	TT	CC		GG		

问题一

碱基(A,T,C,G)编码方式

- 问题分析
 - 数值编码
 - 类别编码

编码方式

健康与患病

碱基对分布

问题二

找出某种疾病最相关的一个或几个致病位点

- ◎ 问题分析
 - 特征选择方法(子集搜索、过滤、包裹、嵌入)
- 所采用方法
 - 具有质量保证的特征选择方法

模型结果

8

模型评估

模型		准确度	召回率	F1 度量	
SVM	SVM(rbf)	0.656	0.6425	0.6492	
	SVM(linear)	0.668	0.6506	0.6592	
	DecisionTree	0.552	0.5692	0.5605	
Tree-based	ExtraTrees	0.704	0.6937	0.6988	
	RandomForest	0.712	0.7208	0.7164	
	SGDClassifier(L1)	0.711	0.6985	0.7046	
	SGDClassifier(L2)	0.714	0.6728	0.6928	
Linear	LogisticRegression(L1)	0.711	0.7129	0.7119	
	LogisticRegression(L2)	0.706	0.7034	0.7047	
Bayes	BernoulliNB	0.721	0.7055	0.7137	
Ensemble	AdaBoost	0.722	0.7013	0.7114	
	GradientBoosting	0.692	0.6945	0.6932	

问题三

找出某种疾病最相关的一个或几个致病基因

- ◎ 问题分析
 - 基因由位点的全集或子集构成
 - 常用方法: 最(次)显著SNP法、组合法、回归法 主成分分析、傅里叶分析
- 所采用方法
 - 回归分析法(逻辑回归、岭回归)

连锁不平衡效应

模型建立

- 逻辑回归
- 岭回归(处理多重共线性)
- 方差分析(决定系数 R-square)

$$R^2 = \frac{SSReg}{SST} = 1 - \frac{SSE}{SST}$$

模型结果

模型评估

	模型	准确度	召回率	F1 统计量
SVM	SVM(rbf)	0.636	0.6668	0.651
SVIVI	SVM(linear)	0.626	0.676	0.65
	DecisionTree	0.62	0.5949	0.6072
Tree-based	ExtraTrees	0.691	0.6873	0.6891
	RandomForest	0.702	0.7108	0.7064
	SGDClassifier(L1)	0.679	0.6916	0.6852
Linear	SGDClassifier(L2)	0.649	0.6827	0.6654
Linear	LogisticRegression(L1)	0.691	0.7092	0.6999
	LogisticRegression(L2)	0.654	0.6834	0.6683
Bayes	BernoulliNB	0.689	0.6951	0.692
Engamble	AdaBoost	0.684	0.684	0.684
Ensemble	GradientBoosting	0.656	0.681	0.6682

问题四

找出与多性状最相关的一个或几个致病位点

- ◎ 问题分析
 - 性状之间相关性
 - 多标签分类问题
- 所采用方法
 - 多标签随机森林

多性状之间相关性

皮尔逊相关系数

均为正相关

相关性趋近

模型建立

- (1) 给定阈值 λ ,将重要的特征和不重要的特征分类两组, \mathbf{X}_{low} 和 \mathbf{X}_{high} 。
- (2) 有放回地抽样训练集 \mathbb{L} , 生成K 份 Bagged 样本 \mathbb{L}_1 , \mathbb{L}_2 , ..., \mathbb{L}_K 。
- (3) 对于每个样本 \mathbb{L}_k ,通过以下方法生成回归树 T_k
 - a) 在每个节点,随机选择 $m = \left[\sqrt{M} \right]$ 个特征,然后区别为 X_{low} 和 X_{high} ,然后用子空间特征作为划分节点的候选人。
 - b) 每个数以不确定的方式生成,在每个叶节点,保持叶节点所有Y值。
 - c) 为每棵树和森林的 out-of-bag 样本,计算每个 X_i 的权重。
- (4) 给定一个概率 τ , α_l 和 α_h ,使得 α_h - α_l = τ ,计算相应的四分位点 $Q_{\alpha l}$ 和 $Q_{\alpha h}$ 。
- (5) 统计每个特征 X_i 重要性评分小于 Q 的次数,生成频率列表,取频率高于 阈值 λ 的特征为最重要的特征。

$$Entropy(D) = -\sum_{j=1}^{q} \left(p(\lambda_j) \log p(\lambda_j) + q(\lambda_j) \log p(\lambda_j) \right)$$

模型结果

多种性状

被选频次

模型评估

建模\结果	1	2	3	4	5	6	7	8	9	10	平均
性状 1	0.759	0.639	0.65	0.672	0.643	0.65	0.666	0.677	0.66	0.67	0.668
性状 2	0.642	0.747	0.638	0.624	0.635	0.649	0.633	0.649	0.672	0.671	0.656
性状 3	0.645	0.659	0.743	0.646	0.644	0.651	0.673	0.649	0.66	0.671	0.664
性状 4	0.665	0.66	0.655	0.77	0.65	0.666	0.67	0.688	0.666	0.677	0.6767
性状 5	0.654	0.634	0.64	0.646	0.742	0.664	0.642	0.634	0.653	0.637	0.655
性状 6	0.656	0.654	0.654	0.655	0.678	0.749	0.653	0.648	0.662	0.66	0.667
性状 7	0.67	0.654	0.669	0.685	0.643	0.652	0.76	0.686	0.688	0.689	0.68
性状 8	0.686	0.656	0.673	0.68	0.654	0.649	0.686	0.749	0.671	0.662	0.677
性状 9	0.667	0.677	0.674	0.66	0.651	0.631	0.676	0.67	0.757	0.666	0.673
性状 10	0.66	0.666	0.664	0.656	0.649	0.643	0.66	0.67	0.66	0.753	0.668
多标签	0.706	0.721	0.722	0.743	0.726	0.707	0.719	0.713	0.737	0.72	0.721

Thank you!