Practical machine learning

Anteneh

July 14, 2015

First we load the necessary packages and set the seed inorder to get reproduceable results and set our working directory.

```
library(AppliedPredictiveModeling)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(rattle)
## Loading required package: RGtk2
## Rattle: A free graphical interface for data mining with R.
## Version 3.5.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
## Loading required package: rpart
library(randomForest)
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
```

Our data may have NA, blank and #DIV/0!. To get rid of these we defined vector of na.strings and replace by NA.Because both data sets contain columns with all missing values, we will delete these and this help us to clean a data.

```
## [1] 19622 160
## [1] 20 160
```

After that we have checked the dimension of the new data set and then delete columns with missing values.

The first 7 columns such as user_name, raw_timestamp_part_1, raw_timestamp_part_2 cvtd_timestamp, new_window, and num_window are unnecessary for predicting our project, we delete all these variables.

Our new training data set contains 53 variables and 19622 observations where as the testing data set contains 53 variables and 20 observations.

```
## [1] 19622 53
## [1] 20 53
```

Since the data we are working is too large to performe an algorithm, the given training data set partitioned into two: Training data set into two data sets, 60% for myTraining, and subTest 40%. This can be performed with random sampling without replacement.

```
## [1] 11776 53
## [1] 7846 53
```

#	roll_belt pi	tch_belt y	aw_belt	total_accel_	belt gyros_	_belt_x	
# 2	1.41	8.07	-94.4		3	0.02	
# 6	1.45	8.06	-94.4		3	0.02	
# 7	1.42	8.09	-94.4		3	0.02	
# 8	1.42	8.13	-94.4		3	0.02	
# 9	1.43	8.16	-94.4		3	0.02	
# 11	1.45	8.18	-94.4		3	0.03	
#	gyros_belt_y	gyros_bel	t_z acce	el_belt_x acc	el_belt_y a	accel_belt	_z
# 2	0)	.02	-22	4		22
# 6	0)	.02	-21	4		21
# 7	0)	.02	-22	3		21
# 8	0)	.02	-22	-22 4		21
# 9	0	0 -0.02		-20	2		24
# 11	. 0	– C	.02	-21	2	2 23	
#	magnet_belt_	_x magnet_b	elt_y ma	agnet_belt_z	roll_arm pi	itch_arm y	aw_arm
# 2	-	-7	608	-311	-128	22.5	-161
# 6		0	603	-312	-128	22.0	-161
# 7	-	- 4	599	-311	-128	21.9	-161
# 8	-	-2	603	-313	-128	21.8	-161
# 9		1	602	-312	-128	21.7	-161
# 11		-5	596	-317	-128	21.5	-161
#	total_accel_	_arm gyros_	arm_x gy	yros_arm_y gy	ros_arm_z a	accel_arm_	x
# 2		34	0.02	-0.02	-0.02	-29	0
# 6		34	0.02	-0.03	0.00	-28	9
# 7		34	0.00	-0.03	0.00	-28	9
# 8		34	0.02	-0.02	0.00	-28	9
# 9		34	0.02	-0.03	-0.02	-288	
# 11		34	0.02	-0.03	0.00	-29	0
#	accel_arm_y	accel_arm_	z magnet	t_arm_x magne	et_arm_y mag	gnet_arm_z	
# 2	110	-12	-125 -369		337	513	
# 6	111	-12	-122 -369		342	513	
# 7	111	-12	-125 -373		336	509	
# 8	111	-12	-124 -372		338	510	
# 9	109	-12	-122 -369		341	341 518	
# 11	110	-12	:3	-366	339	509	
#	roll_dumbbel	l pitch_du	mbbell y	yaw_dumbbell	total_accel	L_dumbbell	
# 2	13.1307	74 -70	.63751	-84.71065		37	
# 6	13.3824	16 –70	.81759	-84.46500		37	
# 7	13.1269	95 –70	.24757	-85.09961		37	
# 8	12.7508	12.75083 -70.34768		-85.09708		37	
# 9	13.1546	13.15463 -70.42520		-84.91563		37	
# 11	13.1307	74 -70	.63751	-84.71065		37	
#	gyros_dumbbe	ell_x gyros	_dumbbe	ll_y gyros_du	mbbell_z ac	ccel_dumbb	ell_x
# 2	_	0	_(-0.02			-233
			0.02 0 0.02 0			-234	
# 6		U	_(0.02	U		-234

## 8	0	-0.02	0	-234
## 9	0	-0.02	0	-232
## 11	0	-0.02	0	-233
## accel_	dumbbell_y accel_	_dumbbell_z mag	net_dumbbell_x ma	agnet_dumbbell_y
## 2	47	-269	-555	296
## 6	48	-269	-558	294
## 7	47	-270	-551	295
## 8	46	-272	- 555	300
## 9	47	-269	-549	292
## 11	47	-269	-564	299
## magnet	_dumbbell_z roll_	_forearm pitch_	forearm yaw_forea	arm
## 2	-64	28.3	-63.9 -1	153
## 6	-66	27.9	-63.9 -1	152
## 7	-70	27.9	-63.9 -1	152
## 8	-74	27.8	-63.8 -1	152
## 9	-65	27.7	-63.8 -1	152
## 11	-64	27.6	-63.8 -1	152
## total_	accel_forearm gy:	ros_forearm_x g	yros_forearm_y gy	ros_forearm_z
## 2	36	0.02	0.00	-0.02
## 6	36	0.02	-0.02	-0.03
## 7	36	0.02	0.00	-0.02
## 8	36	0.02	-0.02	0.00
## 9	36	0.03	0.00	-0.02
## 11	36	0.02	-0.02	-0.02
## accel_	forearm_x accel_f	forearm_y accel	_forearm_z magnet	_forearm_x
## 2	192	203	-216	-18
## 6	193	203	-215	- 9
## 7	195	205	-215	-18
## 8	193	205	-213	- 9
## 9	193	204	-214	-16
## 11	193	205	-214	- 17
	_forearm_y magnet		sse	
## 2	661	473	A	
## 6	660	478	A	
## 7	659	470	A	
## 8	660	474	A	
## 9	653	476	A	
## 11	657	465	A	

#	roll belt pito	ch belt y	aw belt	total accel	belt gyro	s belt x		
# 1	1.41	8.07	- -94.4		3	0.00		
# 3	1.42	8.07	-94.4		3	0.00		
# 4	1.48	8.05	-94.4		3	0.02		
# 5	1.48	8.07	-94.4		3	0.02		
# 10	1.45	8.17	-94.4		3	0.03		
# 14		8.21	-94.4		3	0.02		
#	gyros belt y	gyros bel	t z acce	el belt x acc	cel belt y	accel belt	Z	
# 1	0.00	- -	.02	 _21	4	-	22	
# 3	0.00	-0	.02	-20	5		23	
# 4	0.00	-0	.03	-22	3		21	
# 5	0.02	-0	.02	-21 2			24	
# 10	0.00	0	.00	-21	4		22	
# 14				-22	4		21	
#	magnet belt x			agnet belt z	roll arm	pitch arm y	aw arm	
# 1	-3		 599	-313	- -128	22.5	_ _161	
# 3	-2		600	-305	-128	22.5	-161	
# 4	-6		604	-310	-128	22.1	-161	
# 5	-6		600	-302	-128	22.1	-161	
# 10	-3		609	-308	-128	21.6	-161	
# 14	-8		598	-310	-128	21.4	-161	
#	total_accel_a	rm gyros	arm x qy	yros arm y gy	ros arm z	accel arm	x	
# 1		34	0.00	0.00	-0.02	_ _	_	
# 3	3	34	0.02	-0.02	-0.02	-28	39	
# 4	3	34	0.02	-0.03	0.02	-28	39	
# 5	3	34	0.00	-0.03	0.00	-28	39	
# 10)	34	0.02	-0.03	-0.02	-28	-288	
# 14		34	0.02	0.00	-0.03	-28	38	
#	accel_arm_y ac	ccel arm	z magnet	t arm x magne	et arm y m	agnet arm z	2	
# 1	109	-12	-	-368	337	516		
# 3	110	-12	-126 -368		344	513	3	
# 4	111		-123 -372		344	512		
# 5	111	-12		-374	337	506		
# 10		-12			334	516		
# 14	111	-12		-371	331	523		
#	roll dumbbell	pitch du	mbbell y	yaw dumbbell	total acc	el dumbbell	L	
# 1	13.05217	 -70	.49400	-84.87394	_	_ 37	7	
# 3	12.85075	-70	.27812	-85.14078		37	7	
# 4	13.43120		.39379	-84.87363		37	7	
# 5	13.37872		.42856	-84.85306		37		
# 10			.85059	-84.44602		37		
# 14			.99594	-84.28005		37	7	
#	gyros_dumbbell				ımbbell z			
	-	.00	_	0.02	0.00	_	-234	
# 1	0.00							
# 1 # 3	0 .	.00	-(0.02	0.00		-232	

## 5	0.00	-0.02	0.00	-233	
## 10	0.00	-0.02	0.00	-235	
## 14	0.02	-0.02	-0.02	-234	
##	accel_dumbbell_y acc	cel_dumbbell_z	magnet_dumbbell_x	magnet_dumbbell_y	
## 1	47	-271	- 559	293	
## 3	46	-270	-561	298	
## 4	48	-269	-552	303	
## 5	48	-270	-554	292	
## 10	48	-270	- 558	291	
## 14	48	-268	-554	295	
##	magnet_dumbbell_z ro	oll_forearm pit	ch_forearm yaw_for	rearm	
## 1	-65	28.4	-63.9	-153	
## 3	-63	28.3	-63.9	-152	
## 4	-60	28.1	-63.9	-152	
## 5	-68	28.0	-63.9	-152	
## 10	-69	27.7	-63.8	-152	
## 14	-68	27.2	-63.9	-151	
##	total_accel_forearm	gyros_forearm_	x gyros_forearm_y	gyros_forearm_z	
## 1	36	0.0	3 0.00	-0.02	
## 3	36	0.0	3 -0.02	0.00	
## 4	36	0.0	2 -0.02	0.00	
## 5	36	0.0	2 0.00	-0.02	
## 10	36	0.0	2 0.00	-0.02	
## 14	36	0.0	0 -0.02	-0.03	
##	accel_forearm_x acce	el_forearm_y ac	cel_forearm_z mag	net_forearm_x	
## 1	192	203	-215	-17	
## 3	196	204	-213	-18	
## 4	189	206	-214	-16	
## 5	189	189 206		-17	
## 10	190	205	-215	-22	
## 14	193	202	-214	-14	
##	<pre>magnet_forearm_y mag</pre>	net_forearm_z	classe		
## 1	654	476	A		
## 3	658	469	A		
## 4	658	469	A		
## 5	655	473	A		
## 10	656	473	A		
## 14	659	478	A		

When we look at variable "classe", it contains 5 levels: A, B, C, D and E. A plot of the outcome variable will allow us to see the frequency of each levels in the SubTrainingset data set. As we can see in the figure below level A has more than 4000 occurrences than other levels.

Plot of levels vs frequency in SubTrainingset data set

For predicition we used Decision Tree and Random Forest prediction modesl.

1. Predicting using Decision Tree and Testing the results on SubTestingset data set

Plot of the Decision Tree


```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
                          С
                                    Е
                Α
                     В
                               D
##
           A 2015 316
                         30
                             119
                                   48
##
           В
               46 809
                         63
                              29
                                   74
           С
##
               68
                  165 1120
                             220
                                  190
##
               77
                   121
                         78
                             817
                                   81
##
           Ε
               26
                  107
                         77
                             101 1049
##
## Overall Statistics
##
##
                 Accuracy: 0.7405
##
                   95% CI: (0.7307, 0.7502)
      No Information Rate: 0.2845
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                    Kappa: 0.6705
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.9028
                                  0.5329 0.8187 0.6353 0.7275
## Specificity
                         0.9086 0.9665 0.9007 0.9456
                                                            0.9514
## Pos Pred Value
                         0.7971
                                  0.7924 0.6353
                                                    0.6959
                                                             0.7713
## Neg Pred Value
                         0.9592
                                  0.8961 0.9592
                                                  0.9297
                                                             0.9394
## Prevalence
                         0.2845
                                  0.1935 0.1744
                                                  0.1639
                                                            0.1838
                         0.2568
## Detection Rate
                                  0.1031 0.1427
                                                    0.1041
                                                             0.1337
## Detection Prevalence
                         0.3222
                                  0.1301
                                           0.2247
                                                    0.1496
                                                             0.1733
## Balanced Accuracy
                         0.9057
                                  0.7497
                                           0.8597
                                                    0.7904
                                                             0.8394
```

2. Predicting using Random Forest and Test the results on SubTestingset data set.

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                           C
                 Α
                      В
                                 D
                                      Е
##
            A 2231
                            0
##
            В
                 1 1504
                          14
                                 0
                                      0
            С
##
                 0
                      8 1354
                                22
                                      0
##
                      0
                            0 1261
                                      3
##
            Ε
                 0
                      0
                           0
                                 3 1439
##
## Overall Statistics
##
##
                  Accuracy: 0.9927
                    95% CI: (0.9906, 0.9945)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.9908
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.9996
                                    0.9908 0.9898
                                                      0.9806
                                                               0.9979
## Specificity
                          0.9989
                                    0.9976 0.9954
                                                      0.9995
                                                               0.9995
                          0.9973
## Pos Pred Value
                                    0.9901
                                             0.9783
                                                      0.9976
                                                                0.9979
## Neg Pred Value
                          0.9998
                                    0.9978 0.9978
                                                     0.9962
                                                               0.9995
## Prevalence
                          0.2845
                                    0.1935 0.1744
                                                      0.1639
                                                               0.1838
## Detection Rate
                          0.2843
                                    0.1917
                                             0.1726
                                                      0.1607
                                                                0.1834
## Detection Prevalence
                          0.2851
                                    0.1936
                                             0.1764
                                                      0.1611
                                                                0.1838
## Balanced Accuracy
                          0.9992
                                    0.9942
                                             0.9926
                                                      0.9901
                                                                0.9987
```

As shown above the accuracy for Random Forest model is 0.9927 where as for for Decision Tree model is 0.7405. Therefore Random Forest algorithm is choosen because it performed better than Decision Trees. From our cross-validation data none of the test samples will be missclassified.

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```

```
# Write files for submission
pml_write_files = function(x){
    n = length(x)
    for(i in 1:n){
        filename = paste0("problem_id_",i,".txt")
            write.table(x[i],file=filename,quote=FALSE,row.names=FALSE,col.name
s=FALSE)
    }
}
pml_write_files(predictedresult)
```

References

1. http://www.jstatsoft.org/v28/i05/paper (http://www.jstatsoft.org/v28/i05/paper)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.