

Step III: Between (a+b)* and (ab+ba), there is a .(dot) sign, and so an extra state is added

Step IV: Between ab and ba, there is + sign, and so there will be parallel edges between q1

Step V: Between 'a' and b, there is a + sign. So, between q0 and qf there is a parallel edge.

Step VI: Between 'a' and 'b' and between 'b' and 'a', there are .(dots). So, two extra states are added between q_1 and q_f . An extra state is added between q_0 and q_1 for $a(a + b)^*$.

278 | Introduction to Automata Theory, Formal Languages and Computation

step VII: The * between q_4 and q_1 is removed by adding an extra state with label a, b, and the \in transition from q_4 to that state and from that state to q_1 .

Step VIII: Removing ∈, the automata become

9. construct an FA equivalent to the RE, L = (00+11)*11(0+1)*0.

Solution:

Step I: Take a beginning state q_0 and a final state q_f Between the beginning and fi nal state, place the RE.

Step II: There are four (dots) in between $(00+11)^*$ and I, I and $(0+1)^*$, and $(0+1)^*$ and 0. So, the four extra states are added in between q_0 and q_{f^*}

Step III: The * between q_0 and q_1 is removed by adding an extra state with label 00 and 11 as Loop and \in transition from q0 to that state and from that state to q1 The same is applied for the removal of * between q3 and q4.

Step IV Removing the + sign between 00 and 11, parallel edges are added and for two .(dots) signs (between 0, 0 and 1,1), two extra states are added.

Step V: Use the \in removal technique to find the corresponding DFA.

10. Construct an FA for the RE 10+(0+11)0*1.

Solution:

280 | Introduction to Automata Theory, Formal Languages and Computation

11. Convert an RE (0+1)*(10)*(00)*(11)* to an NFA with \in move.

