Gates, Circuits, and Boolean Algebra

- A gate is a device that performs a basic operation on electrical signals
- Gates are combined into circuits to perform more complicated tasks

Constructing Gates

- A transistor is a device that acts, depending on the voltage level of an input signal, either as a wire that conducts electricity or as a resistor that blocks the flow of electricity
 - A transistor has no moving parts, yet acts like a switch
 - It is made of a semiconductor material, which is neither a particularly good conductor of electricity, such as copper, nor a particularly good insulator, such as rubber

Constructing Gates

The connections of a transistor

- A transistor has three terminals
 - A source
 - A base
 - An emitter, typically connected to a ground wire
- If the electrical signal is grounded, it is allowed to flow through an alternative route to the ground (literally) where it can do no harm

- There are three different, but equally powerful, notational methods for describing the behavior of gates and circuits
 - Boolean expressions
 - logic diagrams
 - truth tables

 Boolean algebra: expressions in this algebraic notation are an elegant and powerful way to demonstrate the activity of electrical circuits

- Logic diagram: a graphical representation of a circuit
 - Each type of gate is represented by a specific graphical symbol
- Truth table: defines the function of a gate by listing all possible input combinations that the gate could encounter, and the corresponding output

Gates

- Let's examine the processing of the following six types of gates
 - NOT
 - AND
 - OR
 - XOR
 - NAND
 - NOR
- Typically, logic diagrams are black and white, and the gates are distinguished only by their shape

NOT Gate

 A NOT gate accepts one input value and produces one output value

Various representations of a NOT gate

NOT Gate

- By definition, if the input value for a NOT gate is 0, the output value is 1, and if the input value is 1, the output is 0
- A NOT gate is sometimes referred to as an *inverter* because it inverts the input value

AND Gate

- An AND gate accepts two input signals
- If the two input values for an AND gate are both 1, the output is 1; otherwise, the output is 0

OR Gate

 If the two input values are both 0, the output value is 0; otherwise, the output is 1

XOR Gate

- XOR, or exclusive OR, gate
 - An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise
 - Note the difference between the XOR gate and the OR gate; they differ only in one input situation
 - When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

XOR Gate

Various representations of an XOR gate

NAND and NOR Gates

 The NAND and NOR gates are essentially the opposite of the AND and OR gates, respectively

Various representations of a NAND gate

Various representations of a NOR gate

Gates with More Inputs

- Gates can be designed to accept three or more input values
- A three-input AND gate, for example, produces an output of 1 only if all input values are 1

Constructing Gates

It turns out that, because the way a transistor works, the easiest gates to create are the NOT, NAND, and NOR gates. Source is a consistent voltage source.

$$V_{out} = V_{in}'; V_{out} = (V_1 V_2)'; V_{out} = (V_1 + V_2)'$$

Circuits

- Two general categories
 - In a combinational circuit, the input values explicitly determine the output
 - In a sequential circuit, the output is a function of the input values as well as the existing state of the circuit
- As with gates, we can describe the operations of entire circuits using three notations
 - Boolean expressions
 - logic diagrams
 - truth tables

Combinational Circuits

 Gates are combined into circuits by using the output of one gate as the input for another

Combinational Circuits

Α	В	С	D	E	Х
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

- Because there are three inputs to this circuit, eight rows are required to describe all possible input combinations
- This same circuit using Boolean algebra:

$$(AB + AC)$$

Now let's go the other way; let's take a Boolean expression and draw

Consider the following Boolean expression: A(B + C)

Α	В	С	B+C	A(B+C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

- Now compare the final result column in this truth table to the truth table for the previous example
 - They are identical

Properties of Boolean Algebra

Property	AND	OR
Commutative	AB = BA	A + B = B + A
Associative	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive	A(B + C) = (AB) + (AC)	A + (BC) = (A + B)(A + C)
Identity	A1 = A	A + 0 = A
Complement	A(A') = 0	A + (A') = 1
DeMorgan's law	(AB)' = A' + B'	(A + B)' = A'B'

Adders

- Circuit diagram representing a half adder
- Two Boolean expressions:

$$sum = A \oplus B$$
$$carry = AB$$

Adders

 A circuit called a full adder takes the carry-in value into account

Truth Table

A	В	Carry- in	Sum	Carry- out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Multiplexers

- Multiplexer is a general circuit that produces a single output signal
 - The output is equal to one of several input signals to the circuit
 - The multiplexer selects which input signal is used as an output signal based on the value represented by a few more input signals, called select signals or select control lines

Multiplexers

A block diagram of a multiplexer with three select control lines

S0	S1	S2	F
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

 The control lines S0, S1, and S2 determine which of eight other input lines (D0 through D7) are routed to the output (F)

Circuits as Memory

- Digital circuits can be used to store information
- These circuits form a sequential circuit, because the output of the circuit is also used as input to the circuit