Automatic Lexicon Expansion for Sentiment Analysis using Evolutionary Algorithms

Airton Bordin Junior

[airtonbjunior@gmail.com]

Mestrado em Ciência da Computação

Universidade Federal de Goiás (UFG) - Instituto de Informática – Junho/2017

Programação

- Introdução
- Heurísticas e Metaheurísticas
- Algoritmos evolucionários
- · Análise de Sentimentos
- Programação Genética
- Referências

Introdução

Problemas computacionais

Tratáveis <a>Intratáveis

- Polinomiais
- Algoritmos determinísticos
- Não polinomiais
- Algoritmos não determinísticos
- Solução determinística inviável
 - Sem solução em tempo hábil

Introdução

Heurística

- Impraticabilidade de encontrar/calcular a melhor resposta para problemas não polinomiais;
- Desafio: produzir, em tempo reduzido, soluções tão próximas quanto possíveis da solução ótima.

Metaheurística

Propriedades e características das metaheurísticas

[SALIBA, 2010]

Estratégias que guiam o processo de busca;

Exploração eficiente do espaço de busca - soluções ótimas ou quase ótimas;

De simples procedimentos de busca local a complexos processos de aprendizado;

Aproximados e usualmente não determinísticos;

Podem incorporar mecanismos para evitar ficar presos em áreas confinadas do espaço de busca;

Não são específicas para um determinado problema;

Podem usar um conhecimento específico do problema na forma de heurísticas que são controladas por uma estratégia de nível superior.

Algoritmos bio-inspirados

[PAPPA, 2013]

Algoritmos

bio-inspirados

Algoritmos evolucionários

Inteligência coletiva

Redes Neurais

Sistemas Imunológicos Algoritmos Genéticos Programação Genética Evolução Gramatical Estratégias Evolucionárias Programação Evolucionária

Colônia de Formigas Enxame de Partículas

MLP – Multi-layer Perceptrons RBF- Radio Basis Function Net SOM- Self-Organizing Maps ARTMap

> Seleção Negativa Expansão Clonal Redes

Algoritmos bio-inspirados

Algoritmos evolucionários

[PAPPA, 2013]

Algoritmos bio-inspirados

Inteligência coletiva

Redes Neurais

Sistemas Imunológicos Algoritmos Genéticos
Programação Genética
Evolução Gramatical
Estratégias Evolucionárias
Programação Evolucionária

Colônia de Formigas Enxame de Partículas

MLP – Multi-layer Perceptrons RBF- Radio Basis Function Net SOM- Self-Organizing Maps ARTMap

> Seleção Negativa Expansão Clonal Redes

Algoritmos evolucionários

- Inspirados na teoria de evolução de Darwin;
- Evolução: mudança das características (genéticas) de uma população de uma geração para a próxima
 - Mutação dos genes;
 - · Recombinação dos genes dos pais.

Algoritmos

volucionário

Inteligênci:

Redes Neurai

Sistemas

Algoritmos bi inspirados

Algoritmos evolucionários

- Evolução é caracterizada basicamente por um processo constituído de 3 passos [VON ZUBEN, 2005]
 - 1. Reprodução com herança genética;
 - 2. Introdução de variação aleatória em uma população de indivíduos;
 - 3. Aplicação da "seleção natural" para a produção da próxima geração.

Análise de Sentimentos

Análise de sentimentos

• [Escrever algo sobre o crescente número de conteúdo na WEB]

Análise de sentimentos

Análise de sentimentos

- Sentiment Lexicon
 - Manual;
 - · Baseada em dicionário;
 - Baseada em *corpus*;

Como computadores podem resolver problemas sem serem explicitamente programados para tal?

- Como computadores podem resolver problemas sem serem explicitamente programados para tal?
 - Evolução de programas computacionais
 - Analogias com mecanismos utilizados da evolução biológica natural;
 - Criação (automatizada) de um programa que resolve um determinado problema.

- Como computadores podem resolver problemas sem serem explicitamente programados para tal?
 - Pode ser vista como uma extensão dos AG's
 - Indivíduos são programas;
 - Espaço de busca são todos os possíveis programas.

- Programas?
 - Funções matemáticas, por exemplo;
 - · Representação feita por meio de árvores.

- Intimamente ligada à ideia de programação funcional (sequência de aplicação de funções a argumentos)
 - Independentemente da linguagem, todos os programas podem ser vistos como uma seqüência de aplicações de funções a argumentos;
 - Compiladores usam esse fato para traduzir um programa em uma árvore sintática.

- Modelo M
 - Relaciona um vetor de entrada com um vetor de saída;
 - · Assume-se que o modelo é desconhecido.

• Fontes de informação sobre o problema

23

- Passos para o correto funcionamento [KOZA, 1992]
 - 1. Determinar conjunto de terminais;
 - 2. Determinar conjunto de funções;
 - 3. Determinar função fitness;
 - 4. Determinar parâmetros e variáveis para controle da execução;
 - 5. Determinar critério de parada.

- Library DEAP Distributed Evolutionary Algorithms in Python;
- Computer Vision and Systems Laboratory (CVSL) at Université Laval, in Quebec city, Canada;

Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, pp. 2171-2175, no 13, jul 2012.

François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 2012.

- Criação da população
 - ·Cria uma população de forma randômica;
 - Profundidade máxima definida por parâmetro;
 - Principais métodos
 - •Full;
 - •Grow;
 - Ramped half-and-half.

- Criação da população
 - Método Grow
 - · Respeita o critério de profundidade máxima da árvore;
 - Escolhe aleatóriamente entre funções e terminais em qualquer nível da árvore, podendo criar estruturas irregulares.

- Criação da população
 - Método Full
 - Árvores com a profundidade máxima;
 - Escolhe aleatóriamente somente funções, até que um nó de profundidade máxima seja atingido, aí então escolhendo somente terminais.

- Criação da população
 - Método Ramped half-and-half
 - Utiliza o método Grow e Full;
 - Gera um número igual de árvores para cada profundidade;
 - 50% utilizará o método full e 50% o método Grow.

- Funções e terminais
 - Funções: funções aritiméticas (+, -, /, *), funções booleanas, funções matemáticas, etc;
 - Terminais: constantes numéricas, dados externos, variáveis.

- Funções e terminais
 - Funções: funções aritiméticas (+, -, /, *), funções booleanas, funções matemáticas, etc.
 - Terminais: constantes numéricas, dados externos, variáveis.

Funções e terminais

```
pset.addPrimitive(operator.add, [float, float], float)
pset.addPrimitive(operator.sub, [float,float], float)
pset.addPrimitive(operator.mul, [float, float], float)
pset.addPrimitive(protectedDiv, [float, float], float)
pset.addPrimitive(math.cos, [float], float)
pset.addPrimitive(math.sin, [float], float)
pset.addPrimitive(protectedLog, [float], float)
pset.addPrimitive(invertSignal, [float], float)
pset.addPrimitive(positiveHashtags, [str], float)
pset.addPrimitive(negativeHashtags, [str], float)
pset.addPrimitive(polaritySum, [str], float)
pset.addEphemeralConstant("r", lambda: float(random.randint(-1,1)), float)
```


- Operadores genéticos
 - Reprodução;
 - Crossover;
 - Mutação;
 - Permutação;
 - Edição;
 - Encapsulamento;
 - Destruição.

Operadores genéticos

Reprodução

- Um indivíduo com uma bom valor após função de avaliação (fitness) é escolhido;
- É feita uma cópida idêntica do indivíduo para a próxima geração.

Operadores genéticos

- Crossover
 - Troca entre partes dos indivíduos selecionados;
 - Partes escolhidas de forma aleatória nas duas árvores.

Operadores genéticos

- Crossover
 - Troca entre partes dos indivíduos selecionados;
 - Partes escolhidas de forma aleatória nas duas árvores.

- Crossover
 - Troca entre partes dos indivíduos selecionados;
 - Partes escolhidas de forma aleatória nas duas árvores.

- Mutação
 - Mudança aleatória em um dos nós da árvore;
 - · Adiciona diversidade na população.

- Mutação
 - Mudança aleatória em um dos nós da árvore;
 - · Adiciona diversidade na população.

- Mutação
 - Mudança aleatória em um dos nós da árvore;
 - · Adiciona diversidade na população.

- Mutação
 - Mudança aleatória em um dos nós da árvore;
 - · Adiciona diversidade na população.

- Mutação
 - Mudança aleatória em um dos nós da árvore;
 - Adiciona diversidade na população.

- Permutação
 - Escolhe um ponto aleatório e inverte os terminais e/ou funções.

- Permutação
 - Escolhe um ponto aleatório e inverte os terminais e/ou funções.

- Permutação
 - Escolhe um ponto aleatório e inverte os terminais e/ou funções.

- Permutação
 - Escolhe um ponto aleatório e inverte os terminais e/ou funções.

- Edição
 - Forma de simplificação e edição de expressões;
 - Muito custosa Cosumo considerável de tempo;
 - Torna a expressão menos vulnerável ao crossover.

Expressão: X+X-X

- Edição
 - Forma de simplificação e edição de expressões;
 - Muito custosa Cosumo considerável de tempo;
 - Torna a expressão menos vulnerável ao crossover.

- Encapsulamento
 - Identifica subárvores potencialmente útil;
 - Dá um nome para que possa ser referenciada futuramente.

- Encapsulamento
 - Identifica subárvores potencialmente útil;
 - Dá um nome para que possa ser referenciada futuramente.

- Encapsulamento
 - Identifica subárvores potencialmente útil;
 - Dá um nome para que possa ser referenciada futuramente.

- Encapsulamento
 - Identifica subárvores potencialmente útil;
 - Dá um nome para que possa ser referenciada futuramente.

Destruição

- Casos complexos, grande parte da população pode ter um *fitness* muito ruim, causando uma perda de diversidade rápida e um custo computacional muito grande;
- Forma de destuir indivíduos medíocres nas gerações iniciais;
- Parâmetros
 - Quantidade de indivíduos mantidos;
 - Condição em que o operador será invocado;
- Indivíduos sobreviventes são escolhidos com base no fitness.

Referências

- ZUBEN, F. V. Representação e Operadores Evolutivos
- ZUBBEN, F. B. Programação Genética
- KOZA, J.R. Genetic Programming: On the Programming of Computers by means of Natural Selection
- NETO, A. G. Programação Genética
- · CRUZ, A. J. O. Algoritmos Genéticos
- · MEDEIROS, D. Programação Genética
- FORTIN, F, RAINVILLE, F, Marc-André GARDNER, M, PARIZEAU, M, GAGNÉ, C. DEAP: Evolutionary Algorithms Made Easy
- FORTIN, F, RAINVILLE, F, Marc-André GARDNER, M, PARIZEAU, M, GAGNÉ, C. DEAP: A Python Framework for Evolutionary Algorithms