LETTERS TO THE EDITOR

Discharge Coefficient of Bingham Fluid

Editor, Can. J. Chem. Eng.:

A uthors Y. C. Yen and C. Tien (Can. J. Chem. Eng., 41, 83 (1963) present an expression for the discharge coefficient of a jet of a Bingham plastic fluid issuing from a capillary tube under steady laminar flow conditions. The method used was developed by Hagenbach⁽¹⁾ and applied by Gaskins and Philippoff⁽¹⁾ to arrive at an expression for the discharge coefficient of a pseudoplastic fluid. Yen and Tien performed the calculation for a Bingham fluid defined by the shear stress-shear rate relationship

$$\tau - \tau_y = \beta \left(-\frac{dv}{dr} \right) \dots (1)$$

An expression for the kinetic energy flux of the jet stream is utilized in the method which contains the radius of the capillary in lieu of the radius of the free-flowing jet. If the actual radius of the jet is used, then it can be shown that the following expression is obtained for evaluation of the discharge coefficient

$$C_{v} = \frac{r_{\sigma}v_{\sigma}^{3/2}}{\left[2\int_{\sigma}^{s} v^{3} r dr\right]^{1/2}}....(2)$$

Applying Equation (2), the expression obtained for the discharge coefficient of a Bingham fluid is given by

$$C_{\varepsilon} = \frac{\left(1 + \frac{2}{3}C + \frac{1}{3}C^{2}\right)^{3/2}}{\left(2 + \frac{116}{35}C + \frac{94}{35}C^{2}\right)^{1/2}}...(3)$$

and, similarly, for a "power-law" pseudoplastic fluid

$$\tau = K \left(-\frac{dv}{dr} \right)^n,$$

the expression obtained is

$$C_s = \frac{\left(\frac{1+n}{1+3n}\right)^{3/2}}{\left(1 - \frac{6n}{1+3n} + \frac{6n}{2+4n} - \frac{2n}{3+5n}\right)^{1/2}}...(4)$$

In the case of a Newtonian fluid, the predicted discharge coefficient is 0.7070 as compared with the previous value of 0.7937. These two values serve to indicate the effect of the correction on the evaluation of the discharge coefficient by this method.

In view of the simplifying assumptions which were necessitated in the energy balance analysis to permit one to arrive at an explicit relation for the discharge coefficient, the discharge coefficient predicted by this method is only an approximation. An analogous approximate result ($C_v = 0.75$, in the case of a Newtonian fluid) is also derivable based on momentum considerations⁽²⁾. Middleman and Gavis⁽³⁾ present more complete analyses of the energy and momentum balance for a Newtonian fluid which allow for observed expansions as well as contractions of the jet stream and also for variation of the discharge coefficient with the conditions of ejection. However, without specific information concerning the dissipation function or the integral of the normal stress at the capillary exit, one cannot predict the dependence of C_r on Re. A correlation of their experimental data yielded an empirical relationship between the dissipation function and Reynold's number. Metzner et al(4,5) also present a rigorous analysis involving the conservation of momentum. However, an expression for evaluating normal scresses from capillary jet measurements was the object of their study.

An examination of available data indicates that the discharge coefficient predicted by Equation (2) is low, the deviation decreasing with increasing Reynolds number. For example, the data of Middleman and Gavis indicate a minimum value of 0.77 compared with the predicted of 0.707. The expressions should be of some use in estimating the effect of variations in *n* or *C* on the discharge coefficient.

References

- (1) Gaskins, F. H. and W. Philippoff, Trans. Soc. Rheol., 3, 181 (1959).
- (2) Harmon, D. B., J. Franklin Inst., 259, 519 (1955).
 (3) Middleman, S. and J. Gavis, Phys. Fluids, 4, 355 (1961).
 (4) Magner, A. B. Houghton, W. T. Sailor, P. A. and J. Gavis, Phys. Rev. A and J. Charles, Phys. Rev. A and J. Charles, Phys. Rev. A and J. Charles, Phys. Rev. B 4, 2014.
- (4) Metzner, A. B., Houghton, W. T., Sailor, R. A. and J. L. White, Trans. Soc. Rheol., 5, 133 (1961).
 (5) White, J. L. and A. B. Metzner, ibid, 7, 295 (1963).

William Kozicki, K. S. Yuan, Department of Chemical Engineering, University of Ottawa, Ottawa, Ont.

Contents of Volume 41

The Canadian Journal of Chemical Engineering 1963

Page Refe																		
February.																	×	1-42
April													 					43-90
June August																		91-13
August			. ,															139-18
October									 									187-23
December																		235-286

INDEX OF AUTHORS

Baird, M.H.I.	
Resonant Bubbles in a Vertically Vibrating Liquid Column.	52
Basmadjian, D., and Lu, B. CY.	
Algebraic Representation of Binary Excess	
Thermodynamic Properties	177
Basmadjian, D.	
The Separation of H ₂ and D ₂ by Moving Bed Adsorption:	
Correboration of Adorbor Design Faustions	160

Berkowitz, N., Moreland, C., and Round, G. F. The Pipeline Flow of Coal-in-Oil Suspensions	4
Bischoff, K. B.	1
The General Use of Imperfect Pulse Inputs to Find Characteristics of Flow Systems (Note)	0
Blanchard, J. A. C., and Harmathy, T. Z.	-
Transient Temperatures in Slabs Heated or Cooled	
on One Side (Note)	3
Bloore, P. D., and Botterill, J. S. M.	
Channels and Chains of Bubbles in Gas Fluidized Beds111	1
Bott, T. R., and Romero, J. J. B.	
Heat Transfer Across a Scraped Surface	š
Botterill, J. S. M. See Bloore, P. D	1
Brennan, W. C., Osberg, G. L. and Tweddle, A.	
Some Physical and Chemical Properties of Sprayed	
Silver Alloy Catalysts)
Brink, J. A., Jr.	
Air Pollution Control with Fibre Mist Eliminators134	Ļ
Butt, J. B.	
Diffusion of Multicomponent Gases in Porous Solids (Note) 130)

Carne, M

Coeffici

Correla

Fluores

Eichholz.

Ellis, S. I

LETTERS TO THE EDITOR

Discharge Coefficient of Bingham Fluid

Editor, Can. J. Chem. Eng.:

A uthors Y. C. Yen and C. Tien (Can. J. Chem. Eng., 41, 83 (1963) present an expression for the discharge coefficient of a jet of a Bingham plastic fluid issuing from a capillary tube under steady laminar flow conditions. The method used was developed by Hagenbach⁽¹⁾ and applied by Gaskins and Philippoff⁽¹⁾ to arrive at an expression for the discharge coefficient of a pseudoplastic fluid. Yen and Tien performed the calculation for a Bingham fluid defined by the shear stress-shear rate relationship

$$\tau - \tau_y = \beta \left(-\frac{dv}{dr} \right) \dots (1)$$

An expression for the kinetic energy flux of the jet stream is utilized in the method which contains the radius of the capillary in lieu of the radius of the free-flowing jet. If the actual radius of the jet is used, then it can be shown that the following expression is obtained for evaluation of the discharge coefficient

$$C_{v} = \frac{r_{\sigma}v_{\sigma}^{3/2}}{\left[2\int_{\sigma}^{s} v^{3} r dr\right]^{1/2}}....(2)$$

Applying Equation (2), the expression obtained for the discharge coefficient of a Bingham fluid is given by

$$C_{\varepsilon} = \frac{\left(1 + \frac{2}{3}C + \frac{1}{3}C^{2}\right)^{3/2}}{\left(2 + \frac{116}{35}C + \frac{94}{35}C^{2}\right)^{1/2}}...(3)$$

and, similarly, for a "power-law" pseudoplastic fluid

$$\tau = K \left(-\frac{dv}{dr} \right)^n,$$

the expression obtained is

$$C_s = \frac{\left(\frac{1+n}{1+3n}\right)^{3/2}}{\left(1 - \frac{6n}{1+3n} + \frac{6n}{2+4n} - \frac{2n}{3+5n}\right)^{1/2}}...(4)$$

In the case of a Newtonian fluid, the predicted discharge coefficient is 0.7070 as compared with the previous value of 0.7937. These two values serve to indicate the effect of the correction on the evaluation of the discharge coefficient by this method.

In view of the simplifying assumptions which were necessitated in the energy balance analysis to permit one to arrive at an explicit relation for the discharge coefficient, the discharge coefficient predicted by this method is only an approximation. An analogous approximate result ($C_v = 0.75$, in the case of a Newtonian fluid) is also derivable based on momentum considerations⁽²⁾. Middleman and Gavis⁽³⁾ present more complete analyses of the energy and momentum balance for a Newtonian fluid which allow for observed expansions as well as contractions of the jet stream and also for variation of the discharge coefficient with the conditions of ejection. However, without specific information concerning the dissipation function or the integral of the normal stress at the capillary exit, one cannot predict the dependence of C_r on Re. A correlation of their experimental data yielded an empirical relationship between the dissipation function and Reynold's number. Metzner et al(4,5) also present a rigorous analysis involving the conservation of momentum. However, an expression for evaluating normal scresses from capillary jet measurements was the object of their study.

An examination of available data indicates that the discharge coefficient predicted by Equation (2) is low, the deviation decreasing with increasing Reynolds number. For example, the data of Middleman and Gavis indicate a minimum value of 0.77 compared with the predicted of 0.707. The expressions should be of some use in estimating the effect of variations in *n* or *C* on the discharge coefficient.

References

- (1) Gaskins, F. H. and W. Philippoff, Trans. Soc. Rheol., 3, 181 (1959).
- (2) Harmon, D. B., J. Franklin Inst., 259, 519 (1955).
 (3) Middleman, S. and J. Gavis, Phys. Fluids, 4, 355 (1961).
 (4) Magner, A. B. Houghton, W. T. Sailor, P. A. and J. Gavis, Phys. Rev. A and J. Charles, Phys. Rev. A and J. Charles, Phys. Rev. A and J. Charles, Phys. Rev. B 4, 2014.
- (4) Metzner, A. B., Houghton, W. T., Sailor, R. A. and J. L. White, Trans. Soc. Rheol., 5, 133 (1961).
 (5) White, J. L. and A. B. Metzner, ibid, 7, 295 (1963).

William Kozicki, K. S. Yuan, Department of Chemical Engineering, University of Ottawa, Ottawa, Ont.

Contents of Volume 41

The Canadian Journal of Chemical Engineering 1963

Page Refe																		
February.																	×	1-42
April													 					43-90
June August																		91-13
August			. ,															139-18
October									 									187-23
December																		235-286

INDEX OF AUTHORS

Baird, M.H.I.	
Resonant Bubbles in a Vertically Vibrating Liquid Column.	52
Basmadjian, D., and Lu, B. CY.	
Algebraic Representation of Binary Excess	
Thermodynamic Properties	177
Basmadjian, D.	
The Separation of H ₂ and D ₂ by Moving Bed Adsorption:	
Correboration of Adorbor Design Faustions	160

Berkowitz, N., Moreland, C., and Round, G. F. The Pipeline Flow of Coal-in-Oil Suspensions	4
Bischoff, K. B.	1
The General Use of Imperfect Pulse Inputs to Find Characteristics of Flow Systems (Note)	0
Blanchard, J. A. C., and Harmathy, T. Z.	-
Transient Temperatures in Slabs Heated or Cooled	
on One Side (Note)	3
Bloore, P. D., and Botterill, J. S. M.	
Channels and Chains of Bubbles in Gas Fluidized Beds111	1
Bott, T. R., and Romero, J. J. B.	
Heat Transfer Across a Scraped Surface	š
Botterill, J. S. M. See Bloore, P. D	1
Brennan, W. C., Osberg, G. L. and Tweddle, A.	
Some Physical and Chemical Properties of Sprayed	
Silver Alloy Catalysts)
Brink, J. A., Jr.	
Air Pollution Control with Fibre Mist Eliminators134	Ļ
Butt, J. B.	
Diffusion of Multicomponent Gases in Porous Solids (Note) 130)

Carne, M

Coeffici

Correla

Fluores

Eichholz.

Ellis, S. I

	Carne, M.	Knudsen, J. G., and Williams, P. S.
I	Studies of the Critical Heat-Flux for Some Binary	Local Rates of Heat Transfer and Pressure Losses in the Vicinity of Annular Orifices
ı	Mixtures and Their Components	Kozicki, W. See Cuffel, R. F.
ă	Coalescence of Drops in Liquid-Liquid Extraction Columns 150	Kozicki W. and Vaun K. S.
1	Cavers, S. D. See Caswell, J. E	Discharge Coefficient of Bingham Fluid (Letter)280
ă	Cha, L. C., and Fan, LT.	Lama, R. See Graham, W
ä	Age Distributions for Flow Systems	Lama, R. See Graham, W
1	Charles, M. E., and Hodgson, G. W. The Pipeline Low of Capsules.	Larson, P. P. See Caswell, J. E
ı	Part I: The Concept of Capsule Pipelining	Leaist, G. T. See Klock, R. I
ı	Charles, M. E.	Leaist, G. T. See Klock, R. J
ı	The Pipeline Flow of Capsules. Part 2: Theoretical	Yield Studies in Packed Tubular Reactors, Part 1:
1	Analysis of the Concentric Flow of Cylindrical Forms 46	Mathematical Model for Design and Analysis273
ł	Charles, M. E. Pipeline Flow of Capsules (Letter)	Levenspiel, O. On Models for Flow of Fluids Through Vessels (Letter)13;
1	Chrysikopoulos, S., Graydon, W. F., and Tombalakian, A. S.	Low, D. I. R. See Hodgins, J. W
1	Ion-Exchange Diaphragms for Caustic-Chlorine Cells 91	Lu, B. CY. See Basmadjian, D
1	Cuffel, R. F., Kozicki, W., and Sage, B. H.	Lu, B. CY. See Desphande, A. K 84
ı	Latent Heat of Vaporization of 1-Pentene	Luus, R. See Graydon, W. F
ı	Desphande, A. K., and Lu, B. CY. Extension of Binary Vapor-Liquid Equilibrium Data (Note) 84	MacKay, G. D. M., and Mason, S. G. The Gravity Approach and Coalescence of Fluid Drops
ä	De Witt, K. J., and Thodos, G.	at Liquid Interfaces
ı	Coefficient of Thermal Expansion: Reduced State	at Liquid Interfaces
ä	Correlation for Water in the Gaseous and Liquid States258	Fugacity Coefficients of Alcohols (Note)
ı	Eichholz, G. G., and Flint, T. R.	Marangozis, J. See Johnson, A. I
	Fluorescence Effects in Ion Exchange Resins	Marangozis, J. See Johnson, A. I
8	Sieve Tray Gas and Liquid Film Efficiencies	Maroudas, N. G.
Ø	Epstein, N.	Advantages of an MT Combination Reactor for Fast
	Concentric Laminar Flows (Letter)	Exothermic Reactions (Letter)
ı	Fan, LT. See Cha, L. C. 62 Farley, R. W., and Schechter, R. S.	Mason, S. G. See MacKay, G. D. M
S	Interfacial Tension Gradients and Droplet Behavior 103	Laminar-Turbulent Transition in Capsule Form (Letter) 279
	Flint, T. R. See Eichholz, G. G	May, Z. See Graydon, W. F
H	Forward, F. A.	McIrvine, J. D., and Rodger, I.
ı	Chemical Metallurgy and the Chemical Industry iii	The Decomposition of Spent PETN Nitration Acids 87 Meadley, C. K.
G	Gauvin, W. H., and Themelis, N. J. Heat Transfer to Clouds of Particles	A Theoretical and Experimental Investigation of Fibre
	Graham, W., and Lama, R.	Suspension Drainage in the Turbulent Regime. Part 2: An
	Sedimentation in Inclined Vessels	Experimental Study of Turbulent Drainage Using Model
	Graham, W., and Lama, R.	Nylon Fibres with Application to Practical
П	Continuous Thickening in an Inclined Thickener. 162 Graydon, W. F. See Chrysikopoulos, S. 91	Papermaking Suspensions
	Graydon, W. F., Luus, R., and May, Z.	Mickley, H. S. See Letts, R. W. M. 273 Mirkovich, V. V., and Missen, R. W.
	The Electrification of Fluids in Turbulent Flow165	A Study of the Condensation of Binary Vapors of Miscible
N.	Graydon, W. F., Hayashi, R., and Hudgins, R. R.	Liquids. Part 2: Heat Transfer Coefficients for Filmwise
	Kinetics of the Catalytic Oxidation of Benzene	and Non-Filmwise Condensation
2	Grieves, R. B. Pressure-Temperature Critical Loci for	Missen, R. W., and Tenn, F. G. A Study of the Condensation of Binary Vapors of
Á	Multicomponent Hydrogen Mixtures	Miscible Liquids. Part 1: The Equilibrium Relations 12
M	Grieves, R. B., Kelman, S., Obermann, W. R., Wood, R. K.	Missen, R. W. See Mirkovich, V. V
	Exploratory Studies on Batch and Continuous Foam	Mitten, L. G., and Nemhauser, G. L.
ş	Separation	Optimization of Multistage Separation Processes by Dynamic Programming
ı	Viscous Flow Around Fluid Spheres at Intermediate	Moreland, C.
ī	Reynolds Numbers	Viscosity of Suspensions of Coal in Mineral Oil 24
A . S. D.	Harmathy, T. Z. See Blanchard, J. A. C	Moreland, C.
u	Harris, I. J., and Roper, G. H.	Settling Velocities of Coal Particles
	The Absorption of Carbon Dioxide by Sodium Hydroxide on a Sieve Plate	Moreland, C. See Berkowitz, N
ı	Hay, J. M., and Smy, K. G.	Isobaric Vapor-Liquid Equilibrium Data for
ı	An Economic Study of Propane Propylene	Binary Systems
ı	Splitter Operation	Nemhauser, G. L. See Mitten, L. G
۱		Osberg, G. L. See Brennan, W. C
ı	Hodgins, J. W., and Low, D. I. R. The Effect of Acoustic Turbulence on Mass Transfer	Page, R. D. See Klock, R. J
ã	at a Column Wall241	Ouinn, J. A., and Sigloh, D. B.
ğ	Hodgson, G. W. See Charles, M. E	Phase Inversion in the Mixing of Immiscible Liquids 15
ä	Hudgins, R. R. See Graydon, W. F	Reed, L. A., and Stevens, W. F.
e	Ingraham, T. R., and Marier, P.	Optimal Design of a Continuous Stirred-Tank Reactor
ı	Kinetic Studies on the Thermal Decomposition of	by a Gradient Method
ı	Calcium Carbonate	Robertson, A. A. See Mason, S. G
ı	Kinetics of the Reaction of Niobium Pentachloride	Rodger, I. See McIrvine, J. D
ı	with Water Vapor	Roper, G. H. See Harris, I. J
ı	Johnson, A. I., Trass, O., and Vassilatos, G.	Rose, L. M. See Ellis, S. R. M
۱	Absorption of Carbon Dioxide by Aqueous Ammonia	Round, G. F. See Berkowitz, N
۱	in a Packed Tower. 7	Sage, B. H. See Cuffel, R. F
ı	Johnson, A. I., Marangozis, J., and Trass, O. Mass Transfer in Turbulent Flow With and Without	Schechter, R. S. See Farley, R. W
ı	Chemical Reaction	Shemilt, L. W. See Mann, R. S
۱	Johnson, A. I., and Marangozis, J.	Sigloh, D. B. See Quinn, J. A
ı	A Correlation of Mass Transfer Data of Solid-Liquid	Smith, A. R. See Caswell, J. E
ı	Systems in Agitated Vessels (Addendum)	Smy, K. G. See Hay, J. M
ı	Kelman, S. See Grieves, R. B	Spall, B. C. Phase Equilibria in the System Sulphur Dioxide Water
ı	Klock, R. J., Lane, A. D., Leaist, G. T., and Page, R. D. The Thermal and Hydraulic Characteristics of Power	Phase Equilibria in the System Sulphur Dioxide-Water from 25-300°C
ı	Reactor Fuel Bundle Designs	Stevens, W. F. See Reed, L. A
al I	200	,

charge due of of the by this

ecessirive at charge nation. e of a sidera-

alyses n fluid ons of ficient

pecific integral predict mental pation resent entum, from charge on dee, the f 0.77

should or C

ol., 3,

1). J. L.

ering,

. . 116

. . 129

..128

. 134) 130 **1963**

St. Pierre, C., and Tien, C. Experimental Investigation of Natural Convection Heat Therefore in Confession Spaces for Non-Non-tonion Fluid	Fluorescence Effects in Ion Exchange Resins — G. G. Eichholz 33 Fugacity Coefficients of Alcohols (Note) — R. S. Mann 38
Transfer in Confined Space for Non-Newtonian Fluid122 Storey, A. H. See Hamielec, A. E246	General Use of Imperfect Pulse Inputs to Find Characteristics of Flow Systems, The (Note) — K. B. Bischoff 129
Tenn, F. G. See Missen, R. W	Gravity Approach and Coalescence of Fluid Drops at Liquid Interfaces, The — G. D. M. MacKay203
Tien, C., and Yau, J. Simultaneous Development of Velocity and Temperature	Heat Transfer to Clouds of Particles — W. H. Gauvin
Profiles for Laminar Flow of a Non-Newtonian Fluid in the Entrance Region of Flat Ducts	Interfacial Tension Gradients and Droplet Behavior —
Tien, C., and Yen, Y. C.	R. W. Farley 103 Ion-Exchange Diaphragms for Caustic-Chlorine Cells —
The Discharge Coefficient of Bingham Fluid (Note) 83 Themelis, N. J. See Gauvin, W. H	S. Chrysikopoulos
Themelis, N. J. See Gauvin, W. H	Systems — I. Nagata
Trass, O. See Johnson, A. I	Calcium Carbonate — T. R. Ingraham
Trass, O. See Johnson, A. I	W. F. Graydon220
Vassilatos, G. See Johnson, A. I	Kinetics of the Reaction of Niobium Pentachloride with Water Vapor — T. R. Ingraham265
Transient Activity and Replacement of Catalyst in Multistage Reactors	Laminar-Turbulent Transition in Capsule Form (Letter) — S. G. Mason
Whalley, B. J. P. See Ingraham, T. R	Latent Heat of Vaporization of 1-Pentene — R. F. Cuffel 19
The Air Flow Resistance of Glass Fibre Filter Paper 67	Local Rates of Heat Transfer and Pressure Losses in the Vicinity of Annular Orifices — J. G. Knudsen
White, E. T. On Deadwater Regions and Stagnant Zones in	Mass Transfer in Turbulent Flow With and Without Chemical Reaction — A. I. Johnson
Mixing (Note)	Models for Flow of Fluids Through Vessels, On
Williams, P. S. See Knudsen, J. G	(Letter) — O. Levenspiel
Yau, J. See Tien, C	Gradient Method — L. A. Reed
Yaun, K. S. See Kozicki, W. 280 Yen, Y C. See Tien, C. 83	Dynamic Programming — L. G. Mitten
	Phase Equilibria in the System Sulphur Dioxide-Water from 25-300°C. — B. C. Spall
INDEX OF PAPERS	Phase Inversion in the Mixing of Immiscible Liquids — J. A. Quinn
THE A CT TAILED	Pipeline Flow of Capsules. Part 1: The Concept of Capsule
Absorption of Carbon Dioxide by Aqueous Ammonia in a Packed Tower — A. I. Johnson	Pipelining, The — M. E. Charles
Absorption of Carbon Dioxide by Sodium Hydroxide on a	the Concentric Flow of Cylindrical Forms, The — M. E. Charles
Sieve Plate, The — I. J. Harris	Pipeline Flow of Capsules (Letter) — M. E. Charles212
Exothermic Reactions (Letter) — N. G. Maroudas	Pipeline Flow of Coal-in-Oil Suspensions, The — N. Berkowitz
Air Flow Resistance of Glass Fibre Filter Paper, The — J. A. Wheat	Pressure-Temperature Critical Loci for Multicomponent Hydrogen Mixtures — R. B. Grieves
Air Pollution Control with Fibre Mist Eliminators —	Resonant Bubbles in a Vertically Vibrating Liquid Column — M. H. I. Baird
J. A. Brink	Sedimentation in Inclined Vessels — W. Graham
Properties — D. Basmadjian	Corroboration of Adsorber Design Equations, The —
P. D. Bloore	D. Basmadjian
F. A. Forward	Sieve Tray Gas and Liquid Film Efficiencies — S. R. M. Ellis. 146 Simultaneous Development of Velocity and Temperature
Columns — J. E. Caswell	Profiles for Laminar Flow of a Non-Newtonian Fluid in the Entrance Region of Flat Ducts — C. Tien
Coefficient of Thermal Expansion: Reduced State Correlation for Water in the Gaseous and Liquid States—K. J. De Witt. 258	Some Physical and Chemical Properties of Sprayed Silver
Concentric Laminar Flows (Letter) — N. Epstein	Alloy Catalysts — W. C. Brennan,
W. Graham	and Their Components — M. Carne
Correlation of Mass Transfer Data of Solid-Liquid Systems in Agitated Vessels, A (Addendum) — A. I. Johnson 133	Liquids. Part 1: The Equilibrium Relations, A —
Deadwater Regions and Stagnant Zones in Mixing, On (Note) — E. T. White	R. W. Missen
Decomposition of Spent PETN Nitration Acids, The -	Liquids. Part 2: Heat Transfer Coefficients for Filmwise and Non-Filmwise Condensation, A — V. V. Mirkovich 73
J. D. McIrvine	Theoretical and Experimental Investigation of Fibre
(Note) — J. B. Butt	Suspension Drainage in the Turbulent Regime. Part 2: An Experimental Study of the Turbulent Drainage Using
C. Tien 83	Model Nylon Fibres with Application to Practical Papermaking Suspensions — C. K. Meadley
Discharge Coefficient of Bingham_Fluid (Letter) — W. Kozicki	Thermal and Hydraulic Characteristics of Power Reactor Fuel Bundle Designs — R. J. Klock
Economic Study of Propane Propylene Splitter Operation, An — J. M. Hay	Transient Activity and Replacement of Catalyst in
Effect of Acoustic Turbulence on Mass Transfer at a Column	Multistage Reactors — C. Y. Wen
Wall, The — D. I. R. Low	Side (Note) — J. A. C. Blanchard
W. F. Graydon	Viscous Flow Around Fluid Spheres at Intermediate
Transfer in Confined Space for Non-Newtonian Fluid —	Reynolds Numbers — A. E. Hamielec
C. St. Pierre	Mathematical Model for Design and Analysis — R. W. M. Letts
Separation — R. B. Grieves	
(Note) — A. K. Desphande	* * *

. . 116

174 . . 52 . . 31

. 269 - 108 - 146

.139

. 260

. 12

. 73

. 95 226

28

128 246

273

063