Analyse

Séries Numériques

Question 1/17

Convergence absolue

Réponse 1/17

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 2/17

Comparaison par dominance

Réponse 2/17

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 3/17

Critère d'Abel

Réponse 3/17

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 4/17

Série de Bertrand

Réponse 4/17

$$\sum_{n=2}^{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 5/17

 $\sum u_n$ diverge grossièrement

Réponse 5/17

 (u_n) ne tend pas vers 0

Question 6/17

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 6/17

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq \sum_{k=n_0+1}^{n} (f(t)) dt$$

Question 7/17

Règle de Riemann

Réponse 7/17

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de

 $n \in \mathbb{N}$, alors $\sum u_n$ diverge

Question 8/17

$$\sum_{i\in I}(a_i)$$

Réponse 8/17

$$\sup \left\{ \left\{ \sum_{i \in I} (a_i), \ J \in \mathcal{P}_f(I) \right\} \right\}$$

Question 9/17

Produit de Cauchy

Réponse 9/17

Si $\sum a_n$ et $\sum b_n$ sont absolument convergentes

et
$$c_n = \sum_{k=0}^{\infty} (a_k b_{n-k})$$
, alors $\sum c_n$ est absolument

convergente
$$\left(\sum_{n=0}^{+\infty} (a_n)\right) \left(\sum_{n=0}^{+\infty} (b_n)\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} (a_k b_{n-k})\right)$$

Question 10/17

Série alternée

Réponse 10/17

$$\sum u_n$$
 est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$

Question 11/17

Série de Riemann

Réponse 11/17

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}}\right)$$

Une série de Riemann converge si et seulement si $\alpha>1$

Question 12/17

Théorème spécial de convergence des séries alternées

Réponse 12/17

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 13/17

Formule du binôme négatif

Réponse 13/17

$$\sum_{n=0}^{+\infty} \left(\frac{1}{n}\right)$$

$$\sum_{n=0}^{+\infty} \left(\frac{n!}{(n-p)!} z^{n-p} \right) = \frac{p!}{(1-z)^{p+1}}$$
$$\frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{+\infty} \left(\binom{n+p}{p} z^n \right)$$

Question 14/17

Théorème de comparaison des séries à termes positifs

Réponse 14/17

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 15/17

Sommabilité

Réponse 15/17

$$(a_i)$$
 est sommable si $\sum_{i \in I} (|a_i|) < +\infty$

Question 16/17

Semi-convergence

Réponse 16/17

Convergence sans convergence absolue

Question 17/17

Règle de d'Alembert

Réponse 17/17

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement