# **Tuning and Temperaments**

Chris Harvey

# Overview

frequency and pitch consonance versus dissonance temperament scales

# Frequency vs. Pitch



### Pitch vs. Frequency



#### Harmonics

- every sound (except a pure tone) has harmonics
- integer multiples of a fundamental frequency (Hz)
- the combination of these harmonics makes the timbre
  - we can identify an instrument's sound by its timbre

| 220 | 440 | 66o            | <b>880</b>     | 1320           | 1100           | 1540              | 1760              | ••• |
|-----|-----|----------------|----------------|----------------|----------------|-------------------|-------------------|-----|
| A   | A   | E              | A              | C#             | E              | (G)               | A                 | ••• |
| do  | do  | sol            | do             | mi             | sol            | (te)              | do                | ••• |
| 1   | P8  | P <sub>5</sub> | P <sub>4</sub> | M <sub>3</sub> | m <sub>3</sub> | (m <sub>3</sub> ) | (M <sub>2</sub> ) | ••• |

#### Consonance

- consonance:
  - subjective
  - varies by opinion
  - no measurable unit
- frequencies of smaller integer ratios are more consonant than those with larger integer ratios
  - Two notes, 200 Hz and 100 Hz have a ratio of 2:1. They will be more consonant than 199:100 even though both ratios have approximately the same value.
- because overtones 'ride' on top of each other

#### Overlapping Overtones

- the greater the number of overtones two fundamentals share, the more consonant they will sound
- we can attribute this to Pythagoras (585-500 BCE)

| Perfect Octave |     |      |      |      |      |      |      |     |  |
|----------------|-----|------|------|------|------|------|------|-----|--|
| 220            | 440 | 66o  | 880  | 1100 | 1320 | 1540 | 1760 | ••• |  |
| 440            | 880 | 1320 | 1760 | 2200 | 2640 | 3080 | 3520 | ••• |  |

| Perfect Fifth |     |     |      |      |      |      |      |      |     |
|---------------|-----|-----|------|------|------|------|------|------|-----|
| 220           | 440 | 660 | 88o  | 1100 | 1320 | 1540 | 1760 | 1980 | ••• |
| 330           | 660 | 990 | 1320 | 1650 | 1980 | 2310 | 2640 | 2970 | ••• |

# **Scales and Systems**

Pythagorean Just Mean-Tone Equal

#### Pythagorean Scale

- Pythagoras found that P8 and P5 were 'consonant'
- created a scale derived from only octaves and fifths with the following rules:
  - factor of 2 = P8
  - factor of  $3 = P_{12}$
  - multiply to increase pitch, divide to decrease pitch
- used the first three harmonics (first two overtones)

#### Pythagorean Scale

- Pythagoras went around the circle of fifths to derive every note in the major (and twelve-tone) scale
  - multiply 3:2 by a frequency to obtain a P5 above

- this created a problem with the circle of fifths:
- add 12 fifths and then subtract 7 octaves:
  - a bit sharp  $\frac{\left(\frac{3}{2}\right)^{12}}{2^7} \approx 1.014$
- subtract 12 fifths and then add 7 octaves:
  - a bit flat

|    | liale |     |
|----|-------|-----|
| C. | HCK   | (0) |
| 4  |       | -   |

| fa    | <u>do</u> | sol | re    | la    | mi    | ti      |
|-------|-----------|-----|-------|-------|-------|---------|
| 4:3   | 1         | 3:2 | 9:8   | 27:16 | 81:64 | 243:128 |
| 1.333 | 1         | 1.5 | 1.125 | 1.688 | 1.266 | 1.898   |

$$\frac{2^7}{\left(\frac{3}{2}\right)^{12}} \approx 0.987$$

#### 'Spiral' of Fifths

- The farther we deviate from the fundamental, the more out of tune we become.
- This makes it nearly impossible to play in other keys without playing out of tune.
- The small error is known as a 'comma.'



#### Just Intonation

- goal: more consonant sound, smaller integer ratios
- uses first 16 harmonics to derive scale degrees
  - do: 1st harmonic
  - sol: 3rd harmonic dropped 1 octave
  - mi: 5th harmonic dropped 2 octaves
  - re: 9th harmonic dropped 3 octaves
  - ti: 15th harmonic dropped 3 octaves

| fa        | <u>do</u>  | sol       | re        | la         | mi               | ti            |
|-----------|------------|-----------|-----------|------------|------------------|---------------|
| 4:3       | 1          | 3:2       | 9:8       | 27:16      | 81:64            | 243:128       |
| 1.333     | 1          | 1.5       | 1.125     | 1.688      | 1.266            | 1.898         |
|           |            |           |           |            |                  |               |
| <u>do</u> | sol        | mi        | re        | ti         | fa               | la            |
| <u>do</u> | sol<br>3:2 | mi<br>5:4 | re<br>9:8 | ti<br>15:8 | <b>fa</b><br>4:3 | <b>la</b> 5:3 |

What about fa and la?





- fa taken from Pythagoras 4:3
- la subtract P5 from the 5<sup>th</sup> harmonic and then subtract a P8 - 5:3

| <u>do</u> | sol | mi   | re    | ti    | fa    | la    |
|-----------|-----|------|-------|-------|-------|-------|
| 1         | 3:2 | 5:4  | 9:8   | 15:8  | 4:3   | 5:3   |
| 1         | 1.5 | 1.25 | 1.125 | 1.875 | 1.333 | 1.666 |



- Non-diatonic pitches (the black keys in C Major) are extremely out of tune since they do not exist in the harmonic series, or they exist but are out of tune or too high
  - e.g. minor 7<sup>th</sup> or augmented 4th



http://www.youtube.com/watch?v=teVlrYJGKAE

#### Mean-Tone Temperament

- Temperament scale degrees were purposely changed to become more pleasing to the ear
- mean-tone temperament sounds less nervous and less agitating
- certain notes were tempered to compromise between:
  - perfect intervals of the just systems
  - unlimited modulation in equal temperament
- goal: perfect thirds and acceptable triads in central keys
- sacrifice: the fifth is no longer perfect. thirds and fifths very out of tune in remote keys
- based on the M3, a ratio of 5:4 (harmonic series)
  - remaining notes are interpolated as equally as possible
- 'mean' = geometric mean
  - the geometric mean of a and b is  $\sqrt{(a \cdot b)}$







#### **Equal Temperament**

- Cents We assign 1200 cents per octave such that there are 100 cents per semitone. But just how many Hz are in 100 cents?
- Since pitch is logarithmic with frequency, we can't add a constant value of Hz to obtain the next semitone, because this would change depending on where we are on the keyboard. We have to multiply by some *s*. (Marin Mersenne, 1588, 1648) 2*v*

Scarlatti K<sub>3</sub>80 E.T.



$$s^{12} = 2$$

$$s = \sqrt[12]{2} = 2^{\frac{1}{12}} \approx 1.059$$

#### **Equal Temperament**

- One can play in tune in any key because all keys are treated the same.
- Semitones are equidistant from each other (frequency-ratio wise).
- E.T. thirds are about 14 cents sharper than 'perfect' (harmonic) thirds.
- Feeling of nervousness/agitation compared to just and mean-tone scales
- Motivation for serial music and chromaticism in the 20<sup>th</sup> Century.

# Mean-Tone and Equal Temperaments

| do | re   | mi  | fa     | sol    | la                  | ti                  |
|----|------|-----|--------|--------|---------------------|---------------------|
| 1  | √5:2 | 5:4 | 2:51/4 | 51/4:1 | 5 <sup>3/4</sup> :2 | 5 <sup>5/4</sup> :4 |

| do | re                | mi    | fa            | sol           | la            | ti                        |
|----|-------------------|-------|---------------|---------------|---------------|---------------------------|
| 1  | 2 <sup>2/12</sup> | 24/12 | <b>2</b> 5/12 | <b>2</b> 7/12 | <b>2</b> 9/12 | <b>2</b> <sup>11/12</sup> |



# Pop Quiz!