Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Filip Binkiewicz

Nr albumu: 332069

Skończony wymiar asymptotyczny kompleksów kostkowych CAT(0)

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem prof. dr hab. Sławomira Nowaka Instytut Matematyki

Czerwiec 2015

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

Celem tej pracy jest udowodnienie, że wymiar asymptotyczny skończenie wymiarowych kompleksów kostkowych CAT(0) jest ograniczony przez ich wymiar topologiczny.

Słowa kluczowe

CAT(0), wymiar asymptotyczny, kompleks kostkowy

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.1 Matematyka

Klasyfikacja tematyczna

 $\begin{array}{c} 14 \ \text{Algebraic Geometry} \\ 54\text{F}45 \ \text{Dimension theory} \end{array}$

Tytuł pracy w języku angielskim

Finite asymptotic dimesion for CAT(0) cube complexes

Spis treści

Motywacja	
1. Wprowadzenie	
1.1 Przestrzenie CAT(0)	<u> </u>

Motywacja

Motywacja bpeaasdgdagafg

Rozdział 1

Wprowadzenie

Pierwszy rozdział tej pracy poświęcę przypomnieniu podstawowych definicji, twierdzeń i przykładów dotyczących jej tematu. Aby zachować ciągłość pracy, postaram się uniknąć przytaczania rozległych dowodów. Dla zainteresowanych w odpowiednich miejscach znajdą się odsyłacze do literatury.

1.1. Przestrzenie CAT(0)

Niech (X,d) będzie przestrzenią metryczną. Odcinkiem geodezyjnym nazywamy przekształcenie izometryczne $\mathbb{R} \supset I \xrightarrow{\rho} X$, gdzie I = [a,b] jest odcinkiem. Przestrzeń X nazwiemy (jednoznacznie) geodezyjną, jeśli każde dwa punkty można połączyć (jednoznacznie wyznaczonym) odcinkiem geodezyjnym.

Przykład 1.1.1. Każda przestrzeń euklidesowa \mathbb{R}^n jest jednoznacznie geodezyjna, jak również każdy jej wypukły podzbiór. Sfera S^2 jest geodezyjna, ale nie jednoznacznie - dwa bieguny można połączyć ścieżką geodezyjną na nieskończenie wiele sposobów. Każdy spójny graf metryczny jest przestrzenią geodezyjną.

Dalej będziemy rozważać przestrzenie geodezyjne. Dla wygody przez [x, y] będziemy oznaczać (dowolny) odcinek geodezyjny łączący $x \in X$ z $y \in X$ (a dokładniej obraz tego odcinka).

Zwróćmy uwagę, że jeśli X jest przestrzenią geodezyjną, to dla każdej trójki $(x,y,z) \in X^3$ istnieje trójka $(\overline{x},\overline{y},\overline{z}) \in (\mathbb{R}^2)^3$ taka, że $d(x,y) = d_{\mathbb{R}^2}(\overline{x},\overline{y}), \ d(x,z) = d_{\mathbb{R}^2}(\overline{x},\overline{z}), \ d(y,z) = d_{\mathbb{R}^2}(\overline{y},\overline{z}).$ Innymi słowy, każdemu trójkątowi z X można przypisać trójkąt z przestrzeni euklidesowej \mathbb{R}^2 o bokach takiej samej długości. Taki trójkąt jest wyznaczony jednoznacznie z dokładnością do izometrii przestrzeni \mathbb{R}^2 i nazwiemy go trójkątem porównania (x,y,z).

Definicja 1.1.1. Powiemy, że przestrzeń geodezyjna X jest $\mathbf{CAT}(\mathbf{0})$, jeśli dla każdej trójki $(x,y,z)\in X^3$ oraz punktu $p\in [y,z]$ oraz odpowiadającym im trójkątowi porównania $(\overline{x},\overline{y},\overline{z})\in (\mathbb{R}^2)^3$ i punktowi $\overline{p}\in [\overline{y},\overline{z}]$ zachodzi nierówność:

$$d(x,p) \leqslant d_{\mathbb{R}^2}(\overline{x},\overline{p})$$

Innymi słowy, w przestrzeniach CAT(0) trójkąty są "szczuplejsze" niż w przestrzeniach euklidesowej. O takich przestrzeniach powiemy, że mają niedodatnią krzywiznę.

Przykład 1.1.2. Nietrudno jest o kilka przykładów takich przestrzeni:

- Każda przestrzeń euklidesowa \mathbb{R}^n jest CAT(0). Wówczas wymieniona nierówność jest po prostu równością.
- Graf metryczny jest przestrzenią CAT(0) wtedy i tylko wtedy, gdy jest drzewem.