Corrigé 5 du jeudi 20 octobre 2016

Exercice 1.

Soit $\alpha > 0$, étudions la convergence de $\sum_{n=1}^{\infty} \frac{\alpha^n}{n^8}$. On pose $a_n = \frac{\alpha^n}{n^8}$.

On applique le critère de Cauchy (critère de la limsup):

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{\alpha}{\sqrt[n]{n^8}} = \alpha \lim_{n \to \infty} \left(\frac{1}{\sqrt[n]{n}}\right)^8 = \alpha.$$

- Si $0 < \alpha < 1$, la série converge;
- Si $\alpha > 1$, la série diverge;
- Si $\alpha = 1$, la série converge. En effet on a

$$\sum_{n=1}^{\infty} \frac{1}{n^8} \le \sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty.$$

Exercice 2.

1.) Soit $(x_n)_{n=0}^{\infty}$ une suite de nombres réels positifs qui est sous-additive au sens que:

$$x_{n+m} \le x_n + x_m, \quad \forall m, n \in \mathbb{N}^*.$$

• Montrons que la suite $\left(\frac{x_n}{n}\right)_{n=1}^{\infty}$ converge vers α où $\alpha = \inf\{\frac{x_1}{1}, \frac{x_2}{2}, \dots, \frac{x_n}{n}, \dots\}$. Avant cela, on observe que pour $p, q, r \in \mathbb{N}^*$, on a:

$$x_{pq+r} \le x_{pq} + x_r \le x_q + x_{(p-1)q} + x_r \le \dots \le px_q + x_r.$$

Soit $\epsilon>0$. Par la propriété de l'inf, il existe $q\in\mathbb{N}^*$ tel que $\alpha\leq\frac{x_q}{q}<\alpha+\frac{\epsilon}{2}$. On prend un entier N>q tq $N>2\max\{x_r:r=0,\ldots,q-1\}/\epsilon$. On a alors, pour n>N:

$$\alpha \leq \frac{x_n}{n} \leq \frac{px_q + x_r}{n} = \frac{px_q}{pq + r} + \frac{x_r}{n} \leq \frac{x_q}{q} + \frac{x_r}{N} < \alpha + \frac{\epsilon}{2} + \frac{\epsilon}{2} = \alpha + \epsilon$$

où on a écrit n de la forme n = pq + r, avec $0 \le r < q$. Ceci prouve la convergence de la suite $\left(\frac{x_n}{n}\right)_{n=1}^{\infty}$ vers α .

- Si on définit la suite $(x_n)_{n=0}^{\infty}$ par $x_n = 0$ si n est pair et $x_n = 1$ si n est impair, la suite est trivialement sous-additive $(x_n + x_m = 0$ si et seulement si n et m sont pairs et alors, n + m est aussi pair) et $(x_n/n)_{n=1}^{\infty}$ n'est pas monotone.
- 2.) Montrons que $C_n \geq 2^n$. Il suffit d'exhiber 2^n telles marches. Partant de $(x_0 = 0, y_0 = 0)$ on choisit le point (x_{k+1}, y_{k+1}) comme soit $(x_k, y_k) + (1, 0)$ soit $(x_k, y_k) + (0, 1)$ jusqu'à k = n. Pour chaque nouveau point, on a deux choix possibles et il y a n points. D'où $C_n \geq 2^n$, car il y a d'autres marches possibles. Selon la partie 1.), il suffit de montrer que la suite $\log C_n$ est sous-additive. En effet, dans ce cas, $\frac{\log C_n}{n}$ converge vers un α qui est positif puisque $\frac{\log C_n}{n} \geq \frac{\log 2^n}{n} = \log 2 > 0$, $\forall n > 0$. On montre que $C_{n+m} \leq C_n C_m$. Appelons X_n l'ensemble de toutes les marches auto-évitantes partant de (0,0) et de longueur n. Il suffit de remarquer que tout $c \in X_{n+m}$ peut se couper en $c_1 \in X_n$ (les n+1 premiers points) et d'un $c_2 \in X_m$ (le reste translaté, avec le dernier point de c_1 comme point de départ). Ceci donne une injection de X_{n+m} dans $X_n \times X_m$. Remarquons, par contre, qu'on ne peut pas "enchaîner" un c_n donné dans X_n et un c_m donné (translaté) dans X_m et espérer construire à coup sûr une marche auto-évitante.

Exercice 3.

Soient $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ deux suites de nombres réels positifs pour lesquelles il existe $n_0\in\mathbb{N}$ tel que:

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$$
, pour tout entier $n \ge n_0$.

1) Montrons que
$$\sum_{n=0}^{\infty} b_n < +\infty \Rightarrow \sum_{n=0}^{\infty} a_n < +\infty$$
.

Démonstration : Par hypothèse, on a

$$\frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n} \le \frac{a_{n-1}}{b_{n-1}} \le \ldots \le \frac{a_{n_0}}{b_{n_0}} = \beta, \quad \forall n \ge n_0.$$

Ainsi $a_n \leq \beta b_n, \forall n \geq n_0$. Si de plus on pose $M = \max_{k=0,\dots,n_0-1} |a_k|$, on a pour $p \geq n_0$,

$$S_a^p = \sum_{k=0}^p a_k = \sum_{k=0}^{n_0-1} a_k + \sum_{k=n_0}^p a_k \le Mn_0 + \beta \sum_{k=n_0}^p b_k \le Mn_0 + \beta \sum_{k=0}^p b_k.$$

Par hypothèse, la suite $\left(\sum_{k=0}^{p} b_k\right)_{p=0}^{\infty}$, qui est croissante, converge ; posons $\ell > 0$ sa limite. On a alors

$$S_a^p \le M n_0 + \beta \ell, \quad \forall p \ge n_0.$$

La suite $(S^p_a)_{p=0}^\infty$ étant de plus croissante, elle converge et donc la série $\sum_{n=0}^\infty a_n$ converge.

2) Montrons que $\sum_{n=0}^{\infty} a_n = +\infty \implies \sum_{n=0}^{\infty} b_n = +\infty.$

Démonstration : C'est une conclusion évidente de la relation suivante obtenue au point 1):

$$\sum_{k=0}^{p} a_k \le M n_0 + \beta \sum_{k=0}^{p} b_k, \quad \forall p \ge n_0.$$