《闻道:基于课程教学数据的内容推荐和个性化智能答疑系统》

需求规格说明书

1. 引言

1.1 编写目的

本文档旨在明确"闻道-个性化教育智能系统"的功能需求、技术架构及非功能性约束,为项目的设计、开发、测试和验收提供基准依据。通过定义系统的核心功能(如个性化推荐、智能答疑、知识图谱构建)和技术实现路径,确保开发团队、教育机构用户及技术评审方对项目目标达成一致,并为后续迭代优化提供可追溯的需求基线。

1.2 读者对象

开发团队:包括算法工程师、前后端开发人员及测试人员,需依据本文档实 现技术方案。

教育机构用户: 高校教师及教学管理人员, 需通过文档理解系统功能及预期效益。

项目管理者: 用于监督开发进度、协调资源分配及评估项目风险。

第三方评审方: 如教育技术专家, 需验证系统是否符合智能化教学转型需求。

1.3 项目概述

项目名称: 闻道-个性化教育智能系统

用户单位: 高等院校、在线教育平台

开发单位: 何思成、侯宜辰、龚政源、陶恒轩四人开发团队

软件项目大致功能:

随着人工智能技术的快速发展,教育领域正迎来智能化转型的重要机遇。当前,高校教学中普遍存在学生答疑不及时、学习资源过载、个性化支持不足等问题,传统在线教育平台难以动态适应学生的差异化需求。在此背景下,闻道一个性化教育智能系统应运而生,旨在利用人工智能技术优化教学资源的精准分配,提升学习效率与教学质量。

该系统基于大语言模型 (LLM) 、机器学习算法和知识图谱技术、构建了一

套完整的智能化教学辅助工具。其主要功能包括实时内容推荐、智能问答服务以及知识结构化整合。系统能够自动分析学生的学习行为数据,如导入的作业完成情况、测验成绩和视频观看记录,并据此生成个性化的学习建议,帮助学生快速定位薄弱知识点并推荐相关学习资源。同时,智能问答模块支持全天候即时响应学生提问,结合课程知识图谱和检索增强生成(RAG)技术,确保答案的准确性和上下文连贯性。此外,系统还能整合分散的课程数据(如课件、题库、课堂实录),构建动态更新的知识关联网络,帮助学生建立系统化的知识体系。

该项目的核心目标是通过数据驱动的智能化手段,解决教育场景中的关键痛点。一方面,系统能够显著缩短学生的答疑等待时间,提供精准的学习路径指导;另一方面,通过自动化处理重复性教学任务,减轻教师的工作负担,使其更专注于教学创新。最终,系统将推动教育资源的高效利用,提升整体教学效果,为高校教育的智能化升级提供可扩展的技术方案。

项目目标:

解决学生即时答疑需求, 缩短问题响应时间至秒级。

优化教育资源分配效率,降低教师重复性工作负担 30%以上。 通过数据驱动的精准干预,提升学生知识点掌握率 20%。

1.4 文档概述

本文档包含以下内容:

软件的一般性描述:系统与环境的交互关系、技术假设及约束条件。

功能需求描述: 用例模型、分析模型及核心模块的详细功能定义。

其他需求描述:性能要求、安全性约束、界面设计规范及验收标准。软件原型:关键功能界面示意图及交互流程说明。

2. 软件的一般性描述

2.1 软件产品与其环境之间的关系

本系统采用前后端分离架构,运行于混合云环境,具体组件与外部环境交互 如下:

系统组成部分	外部环境
前端用户界面	浏览器(Chrome/Firefox/Safari)、移
	动端 (Windows)
后端服务	Python 3.8+、Node.js 16+、Flask 框架
数据存储	MySQL(结构化数据)、Elasticsearch
	(全文检索)、Neo4J 知识图谱
算法服务	Ollama(本地部署)或 GPT/Deepseek
	(在线调用)
多媒体处理	FFmpeg(视频流处理)、CNOCR(文
	本提取)、Whisper(语音识别)

2.2 假设与前提条件

我们基于以下假设和前提条件:

用户能力假设:

教师能够熟练上传课程资源(视频、课件、题库),并完成基础权限配置。 学生具备使用浏览器或移动端应用进行在线学习的基本操作能力。

技术依赖条件: s

系统考虑能接入教育平台现有数据库(如教务管理系统、在线学习平台)。 如果需要本地部署 LLM, GPU 服务器需支持 CUDA 11.0+, 以满足大语言 模型实时推理需求。

运行环境约束:

网络带宽≥10Mbps,保障视频流传输与实时问答服务的低延迟。 服务端需部署于 Linux 系统(Ubuntu 20.04+),确保高并发处理稳定性。

3.软件功能需求描述

系统用例如下图:

原有功能用例分析:

本教学系统包含两类用户角色: 教师与学生。系统还包含一部分面向数据处理与智能分析的后台系统功能模块,支持前端用户功能的实现与增强。

教师角色的用例:教师用户是教学系统中的核心管理者,主要职责包括课程内容设计、教学数据管理与学生学习支持等。教师拥有如下功能用例:

- (1) 课程创建(UC10): 教师可以新建课程,设定课程基本信息及结构。
- (2) 资料导入(UC11): 教师可以导入课件、讲义等教学资料, 支持后续教学内容设计。
- (3) 查看共性问题统计(UC14): 教师可基于学生反馈查看常见知识误区,用于改进教学内容。
 - (4) 管理知识图谱(UC15): 教师可手动管理教学中使用的知识图谱结构与内容。
 - (5) 调整教学内容(UC16): 教师可根据教学反馈调整课程内容, 实现个性化教学设计。
- (6) 学生管理(UC12): 教师可以对学生账户信息进行管理,包括添加、编辑、删除等操作。
- (7) 权限设置 (UC13): 教师可设置不同用户或学生的使用权限。
- > 以上用例与多个系统功能模块存在 include 关系,包括课堂数据抓取与清洗 (SYS1)、课堂智能总结 (SYS3)、知识图谱构建 (SYS4)、学习数据分析 (SYS6)等。

学生角色的用例: 学生用户是教学系统的学习主体, 系统为其提供个性化学习路径、智能推荐与自助答疑等功能, 具体包括:

- (1) 搜索教学视频(UC1): 学生可在平台中搜索课程视频。
- (2) 观看视频片段(UC2): 学生可选择观看某个课程中的具体知识点视频片段。
- (3) AI 答疑提问(UC3): 学生可向系统提出问题,由智能问答系统(SYS2)进行答复。
- (4) 查看智能总结(UC4): 学生可查看某堂课的智能总结内容, 快速回顾课堂要点。
- (5) 浏览知识图谱(UC5): 学生可进入知识图谱页面, 了解课程结构与知识间关系。
- (6) 使用评论区(UC6): 学生可在视频页面或课程模块中参与评论与互动。
- (7) 接收个性化推荐 (UC7): 系统基于学生学习数据与行为模式,提供个性化内容推荐 (SYS5)。
- (8) 查看学习数据统计(UC8): 学生可查看个人的学习进度、知识掌握情况等数据。
- (9) 作业个性化答疑(UC9): 学生可对作业中的疑问请求系统答疑,系统支持自动匹配相应知识内容。

系统功能模块用例 (系统自动实现):

系统功能模块为教师与学生提供数据支持、智能分析与内容处理等后端功能,包括:

(1) 课堂数据抓取与清洗 (SYS1) : 系统从课堂行为数据中提取有价值信息,提供给其他模块使用。

- (2) 课程智能问答(SYS2): 支持学生在学习过程中进行自然语言提问,由系统自动返回答案。
- (3) 课堂智能总结 (SYS3) : 系统自动生成课堂内容总结, 供学生快速复习与教师教学参考。
 - (4) 知识图谱构建 (SYS4): 根据课程内容与学生行为, 自动构建与更新知识图谱。
- (5) 个性化推荐(SYS5): 综合分析学生的学习行为与表现, 推荐适合的学习内容或课程模块。
- (6) 学习数据分析(SYS6): 系统分析学生在学习过程中产生的多种数据, 支持教师决策与个性推荐系统。
 - (7) 视频管理 (SYS7): 对教学视频进行分类、剪辑与结构化管理, 支持搜索与观看。
- (8) 评论管理 (SYS8): 系统对用户评论进行管理, 提升讨论区质量与教学互动效果。

3.1 视频答疑功能需求

3.1.1 课堂数据抓取和清洗

用例名	教学资源结构化与文本提取处理
用例描述	将教师上传的课堂视频、课件、作业等教学
	资源,自动解析为结构化数据,并通过
	OCR/ASR 技术提取文本内容,供后续存储与
	使用
参与者	教师、系统模块(管理后台、数据抓取模块、
	OCR/ASR 引擎、数据存储服务)

过程

1. 教师通过管理后台上传课堂视频、课件、作业等教学资源。
2. 管理后台解析上传的资源结构,将资源交由数据抓取模块处理。
3. 数据抓取模块将资源发送至 OCR/ASR 引擎进行文本提取(包括图像文字识别与语音转文字)。
4. OCR/ASR 引擎返回识别后的文本数据至数据抓取模块。
5. 数据抓取模块清洗并结构化文本数据。
6. 清洗后的结构化数据被存储至数据存储服务中。
7. 该流程可重复执行,支持多次教学资源的上传与处理。

3.1.2 课程智能问答

用例名	基于权限的视频问答服务
用例描述	学生通过提问 (文本或语音) 获取视频相关
	课程内容的答复,系统在权限校验通过后调
	用大模型生成回答。
参与者	学生、问答服务接口、权限管理模块、RAG
	引擎、LLM 服务
过程	1. 学生通过前端界面提出问题(文本或语音)

	2. 问答服务接口接收到问题和视频片段 ID
	3. 权限管理模块验证学生是否拥有该课程片
	段的访问权限
	4. 若权限校验失败,返回"无权限访问该课
	程"提示,结束流程
	5. 若权限校验通过, RAG 引擎访问学生学习
	记录、作业、测验、知识图谱等,检索相关
	上下文信息
	6. 返回相关学内容摘要
	7. 构造 Prompt 并调用 LLM 服务
	8. 返回回答结果
	9. 前端界面显示答复内容
重复性	学生可多次发起问答请求, 系统重复上述流
	程处理

3.1.3 课堂智能总结

用例名	课堂内容总结生成
用例描述	系统在预设时间触发任务, 对教学视频资源
	进行分析,提取教学要点并生成总结内容。
参与者	系统、任务调度器、总结处理模块、资源管
	理服务、LLM 服务、知识图谱数据库、总结
	缓存区

过程	1. 系统在时间点到达时触发处理任务
	2. 任务调度器通知总结处理模块
	3. 总结处理模块向资源管理服务请求待处理
	资源列表
	4. 提取视频脚本/课件文本/作业解析数据
	5. 对每个教学单元循环执行以下操作:
	a. 请求教学主旨 + 关键词提取
	b. LLM 返回教学结构 (主旨 + 概念 + 时
	间戳)
	c. 缓存总结结果
	d. (可选) 更新知识图谱重构与链接
	6. 完成总结任务后通知系统
重复性	可根据课程更新周期定期自动执行

用例名	学生查看教学视频总结并提问
用例描述	学生在教学视频界面查看系统生成的教学总
	结, 支持点击跳转关键片段和向 AI 提问获取
	答案。
参与者	学生、前端界面、总结展示模块、总结缓存
	区、视频播放器、问答服务接口
过程	1. 学生进入教学视频页面
	2. 前端界面请求加载该视频的总结内容

	3. 总结展示模块从缓存中获取教学主旨 &
	关键摘要
	4. 前端展示总结 + 跳转锚点
	5. 学生点击跳转按钮,播放器跳转到对应时
	间点
	6. 学生选择"向 AI 提问", 系统附带段落上
	下文提交问题
	7. 问答服务接口处理并返回答复
	8. 前端展示回答内容
重复性	每个视频段落可重复查看总结、重复提问

3.1.4 视频列表及搜索功能

用例名	学生搜索并查看教学视频内容
用例描述	学生通过输入关键词进行搜索,系统匹配课
	程知识点并返回相关视频及片段时间点供查
	看。
参与者	学生、前端界面、搜索接口、课程知识图谱、
	视频资源库
过程	1. 学生在前端界面输入关键词发起搜索请求
	2. 前端界面将关键词提交给搜索接口(可包
	含筛选条件)
	3. 搜索接口基于关键词与课程知识点进行相
	关性匹配

	4. 检索匹配的视频及片段信息
	5. 返回包含视频标题与关键时间点的视频结
	果列表
	6. 前端界面展示查询结果,学生可点击观看
重复性	学生可根据不同关键词多次搜索, 系统持续
	响应返回匹配视频信息

3.1.5 视频播放功能

用例名	学生观看教学视频
用例描述	学生通过前端播放器观看教学视频, 支持清
	晰度选择和播放控制
参与者	学生
过程	1. 学生通过前端播放器组件发起播放请求
	(包括播放、暂停、快进、跳转时间、选择
	清晰度等操作)
	2. 播放器组件向视频接口请求分片视频流
	(含分辨率信息)
	3. 视频接口从视频资源库读取对应教学视频
	流
	4. 视频接口将分片视频数据返回给播放器组
	件
	5. 播放器组件推送视频数据至学生端进行播
	放,支持时间跳转等操作

6. 学生继续播放视频,或进行其他播放控制操作

3.1.6 留言板

用例名	学生评论视频片段
用例描述	学生在观看教学视频过程中, 可以对视频片
	段发表评论并查看他人评论
参与者	学生
过程	1. 学生在评论区前端组件中输入并发布评论
	内容
	2. 前端将评论内容与视频片段 ID 一并提交
	给评论服务
	3. 评论服务将评论内容、时间、用户 ID 存
	人评论数据库
	4. 数据库返回写入成功, 评论服务反馈"评
	论成功"给前端

- 5. 学生查看评论时,前端拉取当前视频段落的评论
- 6. 评论服务从数据库查询相关评论列表,并 按时间排序返回
- 7. 前端展示评论内容给学生

3.2 知识图谱和个性化学习需求

3.2.1 课程知识图谱构建

用例名	课程知识图谱构建			
用例描述	教师上传课程资源后,系统自动清洗数据、提取关键词并构建知识图谱			
参与者	教师			
过程	1. 教师上传课程资源(视频/作业/作业记录)或选择已有记录上触发构建 2. 管理后台触发数据清洗任务 3. 数据处理模块进行 OCR/语音转文字处理 4. 提取关键词和实体信息			

- 5. 返回结构化数据
- 6. 存储知识图谱节点及其关系到数据库中
- 7. NLP 引擎确认存储成功并返回状态
- 8. 管理后台将构建状态返回给教师
- 9. 教师收到构建完成通知

3.2.2 个性化学习推荐

用例描

的学习视频资源

述

系统通过协同过滤与知识图谱双重策略,结合学生的行为与掌握状态,推荐适合

参与者	学生
过程	1. 学生访问学习界面,触发推荐流程 2. 推荐引擎请求学生的学习行为数据(如作业、测试、观看记录) 3. 用户画像模块返回用户特征向量 4. 推荐引擎查询学生知识掌握状态 5. 知识图谱服务返回学生薄弱知识点 6. 推荐引擎检索相关教学片段 7. 视频数据服务返回视频元数据信息 8. 推荐引擎基于双重策略(协同过滤 + 知识图谱)计算权重排序 9. 向前端展示推荐列表(含视频播放时长等信息) 10. 学生点击播放继续学习

3.2.3 学习数据统计

用例名	学习数据统计
用例描述	系统统计学生的学习记录数据,并以图表方式展示学生学习情况,包括作业完成 情况、观看进度、提问记录等
参与者	学生
过程	 学生访问前端界面,点击查看学习记录/统计图 前端发送"获取学习概况"请求至统计分析模块

- 3. 统计分析模块查询学习记录数据库中的数据(包括作业、观看、提问等)
- 4. 数据库返回学生相关学习记录数据
- 5. 统计分析模块对数据进行整理和分析
- 6. 返回图表所需统计数据给前端
- 7. 前端渲染并展示统计图表给学生查看

3.2.5 知识图谱展示

用例名	知识图谱展示				
用例描述	学生点击某知识点后,系统查询该点相关概念与前后继节点,并可视化呈现知识 图谱网络				
参与者	学生				
过程	1. 学生在前端页面点击某个知识点 2. 前端发送请求至图谱查询模块,查询该知识点的相关概念与上下游节点 3. 图谱查询模块向知识图谱数据库发起查询请求,获取相关节点及边数据 4. 数据库返回节点关系数据 5. 图谱查询模块将结构化数据返回给前端 6. 前端根据数据可视化呈现知识网络图				

3.2.6 作业个性化答疑 (编程题)

	用例名	作业个性化答疑
	用例描述	学生提交编程题相关问题后,系统结合历史作业记录与 LLM 服务, 生成个性化答疑内容提供给学生
作业个性化答疑	参与者	学生
化合架	过程	1. 学生在前端界面提交编程题相关问题 (包括代码与题目 ID) 2. 编程答疑引擎接收请求并获取该题目的历史答题信息 3. LLM 服务结合作业数据与评测历史,分析问题并构建 prompt 4. LLM 服务返回智能答疑建议 (如修改建议或代码提示) 5. 编程答疑引擎返回答疑结果至前端 6. 前端将答疑建议展示给学生查看与理解

3.3 教师管理后台功能需求

3.3.1 课程创建与资料导入

课程创建与资料导入用例表

用例名	课程创建与资料导人					
用例描述	教师在后台填写课程信息并上传资源,系统完成课程创建并将资料保存,触发数据清洗及构建任务					
参与者	教师					
过程	步 操作 系统响应					
	1	教师填写课程信息并点击创建课程				
课程创	2	教师后台界面提交请求至课程管理服务	3. 课程管理服务创建课程记录 并返回课程 ID			
建	4	教师上传课程资料 (视频/作业/题目)				
	5	教师后台将文件上传至资源存储服务并 附带课程 ID	6. 资源存储服务返回存储结果			
数据处理	7	同时触发数据清洗模块进行 OCR/语音转 文本/格式化处理				
数据更新	8	清洗后结果用于构建知识图谱任务, 更新 课程数据库信息				

3.3.2 导入学生

用例名	学生导入模块			
用例描述	教师通过上传学生名单文件(Excel/CSV),系统对数据进行校验与清洗后,批量导入学生信息并完成课程绑定			
参与者	教师			
过程	 教师在教师管理界面上传学生名单(Excel/CSV 格式) 学生管理服务调用数据校验模块,执行格式校验与数据清洗 数据校验模块返回处理后的学生列表 教师管理界面展示处理结果 教师确认后发起批量导入请求 学生管理服务写入学生账号和课程绑定信息至用户数据库 用户数据库返回写入结果 学生管理服务返回写入成功/失败列表 教师界面展示最终导入结果 			

3.3.3 权限设置

3.3.4 共性问题统计与诊断

项目	内容		
用例名	共性问题统计与诊断		
用例描述	教师通过后台发起共性问题分析请求,系统基于学生的答题记录与提问内容,统计常见错误、高频问题并生成可视化图表		
参与 者	教师		
过程	 教师在教师管理界面请求查看共性问题 教师管理界面向统计分析服务发送请求 统计分析服务查询答题记录数据库获取问题与回答内容 返回答题内容与时间戳 统计分析服务生成词云/高频问题分布图等图表 图表生成依赖可视化模块完成渲染资源 最终返回图表资源给教师管理界面展示统计图表与关键词列表 		

4. 其它软件需求描述

4.1 性能要求

系统并发能力: 支持至少 200 个并发用户同时在线,确保在高峰时段系统 仍能稳定运行。

响应时间:普通查询请求的响应时间不超过 2 秒,复杂检索请求(如多关键字匹配)的响应时间不超过 5 秒。

资源占用:服务器内存占用率应控制在 70% 以下,单个进程的 CPU 占用率不超过 50%。

数据处理能力: 系统每日支持处理 500GB 以上的视频数据, 并支持高效的视频转码与索引构建。

4.2 设计约束

硬件约束: 服务器端建议采用至少 16 核 CPU、64GB 内存和 1TB SSD 存储。

前端兼容主流浏览器 (Chrome、Firefox、Edge) , 适配 PC 端及移动端访问。

网络要求: 服务器带宽不低于 10Mbps, 支持 CDN 加速。需确保服务器稳定访问外部 API。

技术栈: 后端采用 Python (Flask) + MySQL, 前端使用 Vue.js, 视频存储使用对象存储 (如阿里云 OSS) 。AI 模型调用需兼容 PyTorch, 并支持 GPU 加速。

4.3 界面要求

交互体验: 采用 WebSocket 实现视频播放过程中 AI 关键字实时推荐。 界面组件需具备即时反馈, 如加载动画、错误提示。

美观性:采用现代化 UI 设计,符合高校教学平台的视觉风格。 重要信息采用卡片式布局,提升可读性。

4.4 进度要求

为了确保"闻道"项目按计划推进,整个开发周期划分为以下关键阶段,每个阶段需满足相应的里程碑目标:

- ·需求分析与设计(第 4-5 周)完成系统需求分析,明确核心功能和技术架构;形成完整的需求规格说明书;设计数据库结构及主要模块的接口文档。
- ·核心功能开发(第7-11周)完成视频上传、转录和关键字索引模块的开发;实现基本的文本搜索和视频检索功能;进行单元测试,确保核心功能稳定运行。
- · 系统集成与优化 (第 12-14 周) 结合前后端,完成完整的推荐系统开发进行算法优化,提高搜索和推荐的准确度;进行系统负载测试,优化性能瓶颈。
- ·测试与调优 (第 15-16 周) 进行功能、性能、安全性测试; 修复 Bug, 提高系统稳定性; 进行用户体验优化, 确保界面友好性。
- ·验收与部署 (第 17 周) 进行最终系统验收,满足所有功能和非功能性需求。编写相关文档,完成系统交付。

4.5 交付要求

"闻道"项目在验收阶段需交付以下内容,以确保系统完整性和可维护性: 代码与执行文件:包含前后端完整源码,符合代码规范,并附带详细注释。提供可执行程序或可部署的 Docker 镜像。

技术文档:《需求规格说明书》《需求获取说明书》《验收测试计划书》 《API 接口文档》

测试报告:包括功能测试、性能测试、安全测试报告。记录所有已知问题及修复情况。用户操作手册说明如何使用"闻道"系统的各项功能。提供常见问题解答 (FAQ)。

部署与运维文档:包含系统安装、配置、运行指南;说明运维监控、日志管

理、故障排除方法。

4.6 验收要求

系统稳定性: 需稳定运行 24 小时以上, 无严重错误。服务器故障恢复时间 不超过 10 分钟。

功能完整性: 确保所有核心功能 (视频上传、转录、检索、推荐) 正常运行。 兼容 MP4、AVI、MKV 等主流视频格式。

代码质量: 遵循 PEP8 规范, 代码模块化设计, 具备完整的单元测试。

文档交付: 提供详细的 API 文档、运维手册及用户指南。

5. 软件原型

5.1 前端界面原型

首页包括: 侧边栏导航,提供"推荐课程""学习进度""笔记本""AI助手"等功能模块人口。课程推荐展示区: 在页面中央以卡片形式展示平台推荐的课程内容。每个课程卡片包含: 封面图片,课程名称,教师信息与课程标签,学习人数与评分信息课时数量,该页面直观展示平台优质内容,帮助用户快速选择学习方向。

该页面为课程学习详情页面(视频播放页),核心功能包括:左侧视频播放器:。 右侧功能分栏:视频总结,AI问答以及评论区,还有分集列表,支持按需切换。

登录页面包括右侧为注册表单区域,用户需填写:用户名,邮箱,密码(支持显示切换)以及同意服务条款勾选项;页面底部提供登录跳转链接。

5.2 后台管理界面原型

这是教师端的管理界面,里面包括左侧任务栏,以及各种事务数据:课程数,上传视频数, 待批改作业等等;还有各种操作按键,比如新建课程,发布通知等等。

视频上传界面中,教师可以选择直接拖拽文件来上传视频,或者手动选择本地文件进行上传,如果需要一次性上传多个文件,还有批量上传选项。

5.3 交互流程原型

对于首次使用者,进入首页后点击注册 \rightarrow 成功登录后跳转推荐课程页 \rightarrow 浏览并点击感兴趣课程 \rightarrow 观看视频并使用 AI 问答或评论 \rightarrow 返回首页继续探索。

对于老用户, 登录后直接访问推荐课程 → 查看学习进度 / 继续观看课程 → 与 AI 助手互动或记录笔记。

AI 交互分支在课程播放页,用户可随时切换至"AI 问答"标签 → 提出视频相关问题 → 获取智能回应 → 继续观看或切换章节;在视频播放页还有评论区,用户可以在这里发表评论。

对于老师而言,登录后会跳转到教师端管理界面,教师可以选择课程管理,视频上传,学生管理等各种功能选项。教师选择发布作业→完成发布→学生提交之后选择批改作业;上传视频→选择视频→成功上传后回到教师端首页。

6. 附录

6.1 术语表

英文术语/缩写	中文解释		
LLM (Large Language Model)	大语言模型,一种基于深度学习的自然语言处理模型,能够生成和理解文本		
RAG (Retrieval-Augmented Generation)	检索增强生成,结合信息检索与文本生成的技术,提升回答的准确性和相关性		
OCR (Optical Character Recognition)	光学字符识别, 将图像中的文字转换为 可编辑的文本数据		
ASR (Automatic Speech Recognition)	自动语音识别, 将语音内容转换为文本		
CUDA (Compute Unified Device Architecture)	英伟达推出的并行计算平台, 用于加速 GPU 计算 (如深度学习推理)		
CDN (Content Delivery Network)	内容分发网络,通过分布式服务器加速静态资源的传输		
Elasticsearch	开源的分布式搜索引擎, 支持全文检索 和高性能查询		
Neo4J	图数据库,用于存储和查询知识图谱中的节点与关系		
FFmpeg	开源多媒体处理工具,支持视频转码、 剪辑等操作		
Whisper	OpenAI 开源的语音识别模型,支持多		

英文术语/缩写	中文解释	
	语言转录	
Ollama	支持本地部署的大语言模型管理工具	
PyTorch	开源深度学习框架,用于训练和部署 AI 模型	
WebSocket	网络通信协议,支持客户端与服务器端的实时双向数据传输	
SSD (Solid State Drive)	固态硬盘,高性能存储设备	
Docker	容器化技术, 用于封装和部署应用程序 及其依赖环境	
PEP8	Python 代码风格规范, 定义编写 Python 代码的标准格式	
API (Application Programming Interface)	应用程序接口, 定义不同软件组件之间的交互方式	

6.2 接口文档

内容过长,如果您有头歌存储库权限,<u>请参阅</u>此处

7. 变更记录

7.1 版本历史

版本	负责人	负责内容	完成或修订时间
V1.0	何思成	3. 软件功能需求描述 (用例图、时序图) 6.附录 (术语表、接口文档)	2025-4-3
	侯宜辰	3. 软件功能需求描述 (文字描述、列表)	

龚政源	4. 其他软件需求描述	
陶恒轩	1. 引言 2. 软件的一般性描 述 5. 软件原型	