CS 207: Discrete Structures

Graph theory
Eulerian graphs, Bipartite graphs

Lecture 24 Sept 15 2014

Topic 3: Graph theory

Textbook Reference

- \blacktriangleright Introduction to Graph Theory, 2^{nd} Ed., by Douglas West.
- ► Low cost Indian edition available, published by PHI Learning Private Ltd.

).

Topic 3: Graph theory

Textbook Reference

- ▶ Introduction to Graph Theory, 2^{nd} Ed., by Douglas West.
- ► Low cost Indian edition available, published by PHI Learning Private Ltd.

Topics covered in the first two lectures:

- ▶ What is a Graph?
- ▶ Paths, cycles, walks and trails; connected graphs.
- ▶ Eulerian graphs and a characterization
- ▶ Bipartite graphs and a characterization

Reference: Section 1.1, 1.2 of Chapter 1 from Douglas West.

Definition

A simple graph G is a pair (V, E) of a set of vertices/nodes V and edges E between unordered pairs of vertices called end-points: e = vu means that e is an edge between v and u $(u \neq v)$.

- ▶ The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., $|\{vw \in E \mid w \in V\}|$. A vertex of degree 0 is called an isolated vertex.
- ▶ A walk is a sequence of vertices $v_1, ..., v_k$ such that $\forall i \in \{1, ..., k-1\}, (v_i, v_{i+1}) \in E$. The vertices v_1 and v_k are called the end-points and others are called internal vertices.

- The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- ▶ A walk is a sequence of vertices $v_1, ..., v_k$ such that $\forall i \in \{1, ..., k-1\}, (v_i, v_{i+1}) \in E$. The vertices v_1 and v_k are called the end-points and others are called internal vertices.
- ► A path is a walk in which no vertex is repeated. Its length is the number of edges in it.

- The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- ▶ A walk is a sequence of vertices $v_1, ..., v_k$ such that $\forall i \in \{1, ..., k-1\}, (v_i, v_{i+1}) \in E$. The vertices v_1 and v_k are called the end-points and others are called internal vertices.
- ▶ A path is a walk in which no vertex is repeated. Its length is the number of edges in it.
- ▶ A walk is called **closed** if it starts and ends with the same vertex, i.e., its endpoints are the same.

- The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- ▶ A walk is a sequence of vertices $v_1, ..., v_k$ such that $\forall i \in \{1, ..., k-1\}, (v_i, v_{i+1}) \in E$. The vertices v_1 and v_k are called the end-points and others are called internal vertices.
- ▶ A path is a walk in which no vertex is repeated. Its length is the number of edges in it.
- ▶ A walk is called **closed** if it starts and ends with the same vertex, i.e., its endpoints are the same.
- ▶ A closed walk is called a cycle if its internal vertices are all distinct from each other and from the end-point.
- ▶ A graph is called **connected** if there is a path (or walk) between any two of its vertices.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof:

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof: (\Longrightarrow)

- ightharpoonup Suppose G is Eulerian: every vertex has even degree.
 - each passage through a vertex uses two edges (in and out).
 - ▶ at the first vertex first edge is paired with last.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof: (\Longrightarrow)

- ightharpoonup Suppose G is Eulerian: every vertex has even degree.
 - each passage through a vertex uses two edges (in and out).
 - ▶ at the first vertex first edge is paired with last.
- ▶ Any two edges are in the same walk implies graph is connected (unless it has isolated vertices).

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

▶ Let P be a maximal path in G. It starts from some u.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

- ▶ Let P be a maximal path in G. It starts from some u.
- \triangleright Since P cannot be extended, every nbr of u is already in P.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

- ▶ Let P be a maximal path in G. It starts from some u.
- \triangleright Since P cannot be extended, every nbr of u is already in P.
- ▶ As $d(u) \ge 2, \exists v \text{ in } P \text{ such that } uv \notin P$.
- ▶ Thus we have the cycle $u \dots vu$.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

- \blacktriangleright Let P be a maximal path in G. It starts from some u.
- \triangleright Since P cannot be extended, every nbr of u is already in P.
- ▶ As $d(u) \ge 2, \exists v \text{ in } P \text{ such that } uv \notin P$.
- ▶ Thus we have the cycle $u \dots vu$.

Is this true if G were infinite?

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

- \blacktriangleright Let P be a maximal path in G. It starts from some u.
- \triangleright Since P cannot be extended, every nbr of u is already in P.
- ▶ As $d(u) \ge 2$, $\exists v \text{ in } P \text{ such that } uv \notin P$.
- ▶ Thus we have the cycle $u \dots vu$.

Is this true if G were infinite?

No! Consider $V = \mathbb{Z}, E = \{ij : |i - j| = 1\}.$

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof (\iff): By induction on number of edges m.

▶ Base case: m = 1.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof (\iff): By induction on number of edges m.

▶ Induction step: m > 1. By Lemma G has a cycle C.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - ightharpoonup Delete all edges in cycle C and (new) isolated vertices.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \triangleright Delete all edges in cycle C and (new) isolated vertices.
 - Get G_1, \ldots, G_k . Each G_i is
 - connected
 - ▶ has < m edges.
 - ▶ all its vertices have even degree (why? degree of any vertex was even and removing C, reduces each vertex degree by 0 or 2.)

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \triangleright Delete all edges in cycle C and (new) isolated vertices.
 - Get G_1, \ldots, G_k . Each G_i is
 - connected
 - ▶ has < m edges.
 - ▶ all its vertices have even degree (why? degree of any vertex was even and removing C, reduces each vertex degree by 0 or 2.)

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \triangleright Delete all edges in cycle C and (new) isolated vertices.
 - ▶ By indn hyp, each G_i is Eulerian, has a Eulerian walk.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - ightharpoonup Delete all edges in cycle C and (new) isolated vertices.
 - ▶ By indn hyp, each G_i is Eulerian, has a Eulerian walk.
 - ▶ Combine the cycle C and the Eulerian walk of G_1, \ldots, G_k to produce an Eulerian walk of G (how?).

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - ightharpoonup Delete all edges in cycle C and (new) isolated vertices.
 - \blacktriangleright By indn hyp, each G_i is Eulerian, has a Eulerian walk.
 - ▶ Combine the cycle C and the Eulerian walk of G_1, \ldots, G_k to produce an Eulerian walk of G (how?).
 - ▶ Traverse along cycle C in G and when some G_i is entered for first time, detour along an Eulerian walk of G_i .
 - ▶ This walk ends at vertex where we started detour.
 - ▶ When we complete traversal of *C* in this way, we have completed an Eulerian walk on *G*.

Principle of extremality

▶ In proving the lemma we used a "new" important proof technique, called extremality.

Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- ▶ By considering some "extreme" structure, we got some additional information which we used in the proof.

Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- ▶ By considering some "extreme" structure, we got some additional information which we used in the proof.
- ▶ E.g., Above, since a maximal path could not be extended, we got that every neighbour of an endpoint of *P* is in *P*.

Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- ▶ By considering some "extreme" structure, we got some additional information which we used in the proof.
- ▶ E.g., Above, since a maximal path could not be extended, we got that every neighbour of an endpoint of *P* is in *P*.
- ▶ (H.W) Can you show the theorem directly from extremality without using induction?

Applications of Eulerian graphs

Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!

Applications of Eulerian graphs

Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!

An interesting application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

Applications of Eulerian graphs

Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!

An interesting application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

Another application of Eulerian graphs

- ▶ This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.

Another application of Eulerian graphs

- ▶ This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- ▶ So, given a connected graph with |V| > 1 how many trails can it be decomposed into?

Another application of Eulerian graphs

- ▶ This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- ▶ So, given a connected graph with |V| > 1 how many trails can it be decomposed into? half of the odd vertices?

Another application of Eulerian graphs

- ▶ This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- So, given a connected graph with |V| > 1 how many trails can it be decomposed into? half of the odd vertices?
- \triangleright can a graph have 2k+1 odd vertices?

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- ▶ This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- So, given a connected graph with |V| > 1 how many trails can it be decomposed into? half of the odd vertices?
- \triangleright can a graph have 2k+1 odd vertices?

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times

9

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- ightharpoonup i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- \blacktriangleright i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- ightharpoonup Each trail has only 2 ends implies we use at least k trails to satisfy 2k odd edges.

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- \blacktriangleright i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy 2k odd edges.
- \blacktriangleright We need at least one trail since G has an edge.

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- \blacktriangleright i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- \triangleright Each trail has only 2 ends implies we use at least k trails to satisfy 2k odd edges.
- \blacktriangleright We need at least one trail since G has an edge.
- ▶ Thus, we have shown that at least $\max\{k,1\}$ trails are required.

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

▶ If k = 0, one trail suffices (i.e., an Eulerian walk by previous Thm)

Theorem

For a connected graph with |V| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ If k = 0, one trail suffices (i.e., an Eulerian walk by previous Thm)
- ▶ If k > 0 we need to prove that k trails suffice.
 - ▶ Pair up odd vertices in G (in any order) and form G' by adding an edge between them.
 - ightharpoonup G' is connected, by previous Thm has an Eulerian walk C.
 - ▶ Traverse C in G' and for each time we cross an edge of G' not in G, start a new trail (lift pen!).
 - \blacktriangleright Thus, we get k trails decomposing G.

Some simple types of Graphs

▶ We have already seen some: connected graphs.

Some simple types of Graphs

- ▶ We have already seen some: connected graphs.
- paths, cycles.

Some simple types of Graphs

- ▶ We have already seen some: connected graphs.
- ▶ paths, cycles.
- ► Are there other interesting classes of graphs?

Definition

A graph is called bipartite, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- ightharpoonup or $v \in X$ and $u \in Y$

11

Definition

A graph is called bipartite, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- ightharpoonup or $v \in X$ and $u \in Y$

Example: m jobs and n people, k courses and ℓ students.

11

Definition

A graph is called bipartite, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- ightharpoonup either $u \in X$ and $v \in Y$
- ightharpoonup or $v \in X$ and $u \in Y$

Example: m jobs and n people, k courses and ℓ students.

- ▶ How can we check if a graph is bi-partite?
- ► Can we characterize bi-partite graphs?

We will use cycles to characterize them.

- ightharpoonup Recall: A path or a cycle has length n if the number of edges in it is n.
- ▶ A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

Lemma

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk. (Class work; see section 1.2 of Douglas West).

Lemma

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk. (Class work; see section 1.2 of Douglas West).

What about closed even walks?

Characterizing Bipartite graphs

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.