Name, Vorname	Testat

Stationäres elektrisches Strömungsfeld

Aufgabe 1: Kirchhoffsche Spannungswaage

Mit Hilfe der Kirchhoffschen Spannungswaage kann die elektrische Feldkonstante ε_0 bestimmt werden. Dazu wird mit einem Kraftmesser (z.B. mit einer Federwaage) die Kraft F auf eine bewegliche kreisförmige Kondensatorplatte P_1 gemessen, wenn zwischen den Platten P_1 und P_2 eine Spannung U angelegt ist. Um die Platte P_1 ist ein Metallring S fest angeordnet, der auf dem gleichen Potential liegt wie die Platte P_1 .

Fig. 1: Versuchsaufbau

- a) Skizzieren Sie das elektrische Feld zwischen der kreisförmigen Platte P_2 und der Anordnung aus Ring S und Platte P_1 . Erläutern Sie kurz, welche Funktion der Ring S in der Versuchsanordnung hat.
- **b)** Zeigen Sie, dass für die Kraft F auf die Platte P_1 gilt:

$$F = \frac{1}{2} \varepsilon_0 \pi \left(\frac{rU}{d} \right)^2$$

Hierbei bezeichnet r den Radius der Platte P_1 und d den Abstand zwischen den Platten P_1 und P_2 .

Durch eine geeignete mechanische Vorrichtung wird der Plattenabstand d konstant bei 10mm gehalten. Der Radius r beträgt 7.2cm. In einer Messreihe wird zu verschiedenen Kondensatorspannungen U jeweils die elektrische Kraft F zwischen den Platten gemessen.

<i>U</i> in kV	2.5	3.0	3.5	4.0	4.5	5.0
F in mN	4.3	6.4	8.5	11.0	14.1	17.4

- **c)** Zeichnen Sie ein $U^2 F$ Diagramm.
- d) Erklären Sie, warum der Graph durch eine Gerade durch den 0-Punkt (0,0) und den max.-Punkt (25,17.4) angenähert werden kann. Ermitteln Sie ausserdem aus der Geradensteigung m die elektrischen Feldkonstante ε_0 . Bestimmen Sie den relativen Messfehler in Prozent.

Aufgabe 2: Kapazitätsberechnung

Zwischen zwei im Abstand h befindlichen metallischen Scheiben mit dem Radius a_2 befindet sich ein dielektrischer Zylinder mit der Dielektrizitätskonstanten ε_1 und dem Radius a_1 (siehe **Fig. 2**). Die Scheiben und der Zylinder sind konzentrisch um die z-Achse angeordnet. Dabei bildet die Ebene z=0 die Grenze zwischen der unteren Metallscheibe und dem dielektrischen Zylinder. Ausserhalb des dielektrischen Zylinders befindet sich Luft.

Fig. 2: Anordnung des dielektrischen Zylinders zwischen den Metallscheiben

Zwischen der oberen und der unteren metallischen Scheibe wird die Spannung U_{10} angelegt. Zur Vereinfachung wird innerhalb des dielektrischen Zylinders das homogene z-gerichtete elektrische Feld

$$\vec{E} = E_1 \vec{e}_z$$
 für $0 \le \rho \le a_1$ und $0 \le z \le h$

und im Bereich $a_1 \leq \rho \leq a_2$ das ebenfalls homogene z-gerichtete elektrische Feld

$$\vec{E} = E_2 \vec{e}_z$$
 für $a_1 \le \rho \le a_2$ und $0 \le z \le h$

angenommen. Dieser Feldverlauf ist in der Praxis zwar nur näherungsweise richtig, die vereinfachende Annahme ist aber umso besser erfüllt, je grösser a_2 gegenüber dem Plattenabstand h ist, da sich Abweichungen von dem angenommenen Feldverlauf vor allem am Rand des Plattenkondensators ergeben.

In den Metallscheiben verschwindet sowohl die elektrische Feldstärke ($\vec{E}=0$) als auch die elektrische Flussdichte ($\vec{D}=0$).

- a) Berechnen Sie das elektrische Feld \vec{E} zwischen den Metallscheiben im Bereich $0 \le \rho \le a_2$ und $0 \le z \le h$ in Abhängigkeit der Spannung U_{10} .
- b) Berechnen Sie die elektrische Flussdichte \vec{D} zwischen den Metallscheiben im Bereich $0 \le \rho \le a_2$ und $0 \le z \le h$ in Abhängigkeit der Spannung U_{10} .
- c) Berechnen Sie die Ladung Q, die sich auf der gesamten Unterseite der oberen Metallscheibe befindet, in Abhängigkeit der Spannung U_{10} .
- d) Bestimmen Sie die Kapazität C dieser Anordnung.
- e) Bestimmen Sie die Energieänderung ΔW_e , wenn bei konstant gehaltener Spannung U_{10} der dielektrische Zylinder mit dem Radius a_1 entfernt wird.

Aufgabe 3: Netzwerk aus Kondensatoren mit Gleichspannungsquelle

Gegeben ist ein Kondensatornetzwerk (siehe **Fig. 3**) mit den Kapazitäten C_1 =C, C_2 =2C und C_3 = C_4 =10C. Zwischen den Anschlussklemmen 2-0 wird eine Gleichspannungsquelle mit der unbekannten Spannung U_{20} angeschlossen. Zwischen den Ausgangsklemmen 1-2 wird eine Gleichspannung U_{12} gemessen. In folgenden Teilaufgaben sollen die Ergebnisse in Abhängigkeit von C und U_{20} ausgedrückt werden.

Fig. 3: Netzwerk aus Kondensatoren mit Gleichspannungsquelle

- a) Welchen Ausdruck erhalten Sie für die Spannung U_{12} ?
- b) Geben Sie die Beziehungen für die in jedem Kondensator gespeicherte Energie W_i (i = 1,2,3,4) an.
- c) Die Gleichspannungsquelle U_{20} wird durch ein Kapazitätsmessgerät ersetzt. Welche Gesamtkapazität C_{20} wird zwischen den Klemmen 2-0 gemessen?
- d) Die Gleichspannungsquelle U_{20} wird durch einen Kurzschluss (leitende Verbindung zwischen den Klemmen 2-0) ersetzt. Welche Gesamtkapazität C_{12} wird zwischen den Klemmen 1-2 gemessen?

Aufgabe 4: Netzwerke aus Kondensatoren

(Nicht testatpflichtig)

Nachfolgende Abbildungen (siehe **Fig. 4**) zeigen durch Verschaltung von Kondensatoren gebildete Netzwerke:

Fig. 4: Netzwerke aus Kondensatoren

- a) Berechnen Sie allgemein die Gesamtkapazität C_{Ges} des Netzwerkes mit 9 Kondensatoren aus **Fig. 4a**. Wie gross ist die Gesamtkapazität wenn die Kondensatoren die Werte $C_1 = C_2 = \ldots = C_9 = 100$ nF aufweisen?
 - Überlegen Sie sich ausserdem, welchem Grenzwert sich C_{Ges} nähert, wenn die in **Fig. 4a** dargestellte Kettenschaltung endlos fortgesetzt wird.
- b) Berechnen Sie allgemein die Gesamtkapazität C_{Ges} zwischen den Punkten A und B des Netzwerkes aus **Fig. 4b**. Wie gross ist die Gesamtkapazität wenn die Kondensatoren die Werte $C_1=C_2=C_3=C_4=100$ nF aufweisen?
- c) Berechnen Sie allgemein die Gesamtkapazität C_{Ges} zwischen den Punkten A und B des Netzwerkes aus **Fig. 4c**.