CIRCUITOS ELECTRÓNICOS I

GUÍA DE TRABAJOS PRÁCTICOS Nº 1

Introducción

Cuestionario

- 1) En un transistor NMOS, la corriente entre source y drain ¿es de huecos o de electrones?
- 2) ¿Qué diferencia hay entre el terminal drain y terminal source en un MOSFET?
- 3) ¿Qué sucede se polariza un NMOS con $V_{Sustrato} > V_{Source}$? ¿Y en un PMOS $V_{Sustrato} < V_{Source}$?
- 4) En un MOSFET en estado de corte ¿la corriente I_D es exactamente cero? ¿Qué fenómenos de fuga existen?
- 5) ¿Por qué se usa el acoplamiento capacitivo para conectar la fuente de señal al amplificador?
- 6) Cómo se relaciona la transconductancia g_m con la corriente de colector y la temperatura? Relacionar r_{π} y r_0 con I_C .
- 7) Defina los factores de estabilidad térmica (sensibilidad) de I_C respecto a I_{C0} , V_{BE} y V_{CC} .

Bibliografía

Bibliografía general disponible en la Biblioteca de la Facultad de Ingeniería

<u>Gray, P., Meyer, R.</u> *Análisis y Diseño de Circuitos Integrados Analógicos*. Prentice Hall, 3ra Ed. 1995.

Gray, P., Meyer, R. Analysis and Design of Analog Integrated Circuits. Wiley, 3ra Ed. 1993.

Lewis, S., Hurst, P., Gray, P., Meyer, R. *Analysis and Design of Analog Integrated Circuits*. Wiley, 5ta Ed. 2001.

Millman, J., Grabel, A. Microelectrónica. Hispano Europea. 6ta Ed. 1993, 1ra Ed. 1981.

Rashid, M. *Circuitos Micro-electrónicos: Análisis y Diseño*. International Thompson Editors. 2000.

Malvino, A., Bates, D. *Principios de Electrónica*. Mc Graw-Hill, 7ma Ed. 2007.

Sedra, A., Smith, K. Circuitos Micro-electrónicos. Mc Graw-Hill, 5ta Ed. 2006.

Hambley, A. *Electrónica*. Prentice-Hall, 2da Ed. 2001.

Savant, C., Roden, M. Carpenter, G. Diseño Electrónico. Addison Wesley, 3ra Ed. 2000.

Storey, N. Electrónica: de los Sistemas a los Componentes. Addison Wesley. 1995.

La biblioteca cuenta además con versiones o ediciones anteriores de varios de los libros mencionados, y con una amplia variedad de textos que cubren aspectos específicos del programa de la asignatura.

Bibliografía general disponible en la Cátedra de Circuitos Electrónicos I

Gray, P., Hurst, P., Lewis, S., Meyer, R. Analysis and Design of Analog Integrated Circuits. Wiley, 5ta Ed. 2009.

Neamen, D. Análisis y Diseño de Circuitos Electrónicos. Mc Graw-Hill, 2000.

Fiore, J. Amplificadores Operacionales y Circuitos Integrados Lineales. Thomson, 2002.

PROBLEMAS

Problema Nº 1

- a) Determine la polarización de los dos circuitos de las Figuras 1 y 2.
- b) Determine los factores de sensibilidad respecto a $V_{CC}(\partial I_C/\partial V_{CC})$ de los dos circuitos y estime la variación de I_C para un incremento de 0.5 V en V_{CC} .
- c) Determine también los factores de sensibilidad respecto a I_{C0} y V_{BE} .
- d) Dibuje las rectas de carga estática y dinámica para cada circuito indicando el punto de funcionamiento calculado en a).

Datos Figura 1: $R_A = 1M\Omega$, $R_C = 3.3k\Omega$, $C_B = 1uF$, $V_{CC} = 12V$, $h_{FE} = 180$.

Datos Figura 2: $R_A = 39k\Omega$, $R_B = 120k\Omega$, $R_C = 560\Omega$, $R_E = 100\Omega$, $C_B = 1\mu\text{F}$, $C_E = 10\mu\text{F}$, $V_{CC} = 12\text{V}$, $h_{FE} = 180$.

Problema N° 2:

La figura muestra el circuito que se utiliza para proporcionar una tensión V_{BB} en la etapa de salida de un amplificador operacional. Diseñe para tener $V_{BB} = 1.157$ V con el transistor polarizado con $I_C = 0.9I_{BIAS}$.

Datos: $I_S = 10^{-14} \text{A}$, $I_{BIAS} = 180 \mu \text{A}$. Desprecie la corriente de base.

Problema N° 3:

Considere el par Darlington BiCMOS que se presenta en el siguiente circuito. Los parámetros del transistor son: $k_n = (KW/2L) = 20\mu A/V^2$, $V_{th} = 1V$ y $\lambda = 0$ para M_1 y $\beta = 100$, $V_{BE (activado)} = 0.7V$ y $V_A = \infty$ para Q_2 . Determine los parámetros de pequeña señal para cada transistor así como la transconductancia compuesta.

Problema N° 4:

Determinar para un transistor NMOS, M_1 $V_{th} = 2V$ y $K.(W/L) = 30\mu A/V^2$, el valor de la corriente I_D en los siguientes casos: a) $V_{GS} = 10V$ y $V_{DS} = 3V$. b) $V_{GS} = 10V$ y $V_{DS} = 10V$. c) $V_{GS} = 1V$ y $V_{DS} = 10V$.

Problema N° 5:

Un PMOS en modo de empobrecimiento tiene parámetros $V_{th} = 2V$, $K = 40\mu A/V^2$, y W/L=6. Determinar $V_{SD(sat)}$ para: (a) $V_{SG} = -1$ V, (b) $V_{SG} = 0$, y (c) $V_{SG} = 1$ V. Si el transistor está polarizado en la región de saturación, calcular la corriente de drenaje para cada valor de V_{SG} .

Problema N° 6:

En el circuito de la figura, si V_i es muy pequeña, el transistor NMOS actúa como una resistencia cuyo valor puede aproximarse mediante el inverso de la pendiente en el origen de la característica $I_D(V_{DS})$. Determinar el valor que ha de tener V_{GS} para que $V_o = V_i/4$. Datos: $V_{th} = 1$ V, $K = 25\mu A/V^2$ y W/L = 2.

Problema Nº 7:

Un transistor de enriquecimiento NMOS con una tensión umbral V_{th} de 2V y un factor de transconductancia $k_n = (KW/2L) = 0.1 \text{mA/V}^2$ se utiliza como una resistencia lineal controlada por tensión. Hallar el rango de valores de V_{GS} para el que se obtiene una resistencia comprendida entre 0.5k y 5k.

Problema Nº 8:

Hallar el punto de polarización del transistor MOS en el siguiente circuito, si $K.(W/L) = 2\text{mA/V}^2$ y $V_{th} = 1\text{V}$.

Problema Nº 9:

Dado el circuito de polarización de la figura, calcular el punto de trabajo del transistor, I_{DO} , V_{DSO} .

Datos: $R_2 = 800 \text{k}\Omega$, $R_1 = 400 \text{k}\Omega$, $R_S = 200 \Omega$, $R_D = 200 \text{k}\Omega$, $V_{DD} = 10 \text{V}$, W/L = 1, $K = 20 \mu \text{A/V}^2$ y $V_{th} = 2 \text{V}$.

Problema Nº 10:

La figura muestra un semicircuito del par diferencial de entrada de un amplificador operacional 741. Obtenga la ganancia de tensión y la impedancia de entrada vista desde la base de Q_1 .

Datos: $I_C = 9.5 \mu A$, $\beta = 200$, $V_{AI} = 50 \text{V}$, $r_{od} = 7.18 \text{M}Ω$. (Suponga $V_{A2} = \infty$)

Problema Nº 11:

La figura muestra el circuito equivalente de señal para la etapa de ganancia de tensión en un amplificador operacional 741. La resistencia R_{i2} es la resistencia de entrada de la etapa de ganancia, R_c es la resistencia efectiva de la carga activa y R_{i3} es la resistencia de entrada de la etapa de salida. Determine la ganancia de tensión de esta etapa.

Datos: $\beta = 200$, $R_{i2} = 4M\Omega$, $R_c = 92k\Omega$, $R_{i3} = 4M\Omega$, $R_I = 50k\Omega$, $R_2 = 100\Omega$, $I_{CI} = 15.8\mu$ A, $I_{C2} = 0.54$ mA

Problema Nº 12:

Determine las impedancias de entrada y de salida del amplificador cascode de la siguiente figura.

Problema Nº 13

En los siguientes circuitos calcular la relación $\frac{V_0}{V_g}$ en el caso de utilizar un Amp.

Operacional Ideal donde $a = \infty$, $R_{in} \rightarrow \infty$, $R_o \rightarrow 0$

¿Cuál es la impedancia de entrada de cada circuito? Datos: $R_1 = 100 \Omega$, $R_2 = 100 \text{ k}\Omega$

Problema Nº 14 (Problema de Laboratorio)

- 1. **Integrador.** Determine la función de transferencia del integrador ideal de la Figura 1 (abrir la R en paralelo con C). Idem con $R=10k\Omega$ en paralelo con C. Dibuje las formas de onda de salida que espera en ambos casos cuando inyecta a la entrada una onda cuadrada o una onda triangular de $1V_{PP}$ de amplitud y 1kHz de frecuencia. ¿Qué sucede si aumenta la frecuencia de la señal de entrada?
- 2. **Derivador.** Determine la función de transferencia del derivador ideal de la Figura 1 (cortocircuitar la R en serie con C). Idem con $R=1k\Omega$ en serie con C. Dibuje las formas de onda de salida que espera en ambos casos cuando inyecta a la entrada una onda cuadrada o una onda triangular de 100mV_{PP} de amplitud y 1kHz de frecuencia. ¿Qué sucede si aumenta la frecuencia de la señal de entrada?

