Replace the loading with an equivalent system, i.e., find F_R and h.

$$\frac{1}{7} = \frac{1}{2} (73.58 - 29.4) 3 = 66.27 \text{ KN}$$

$$\frac{1}{7} = \frac{1}{2} (73.58 - 29.4) 3 = 66.27 \text{ KN}$$

$$\frac{1}{7} = 29.4 (3) = 88.2 \text{ KN}$$

$$\frac{1}{7} = 7 + 7 = 66.27 + 88.2 = 154.5 \text{ KN}$$

$$\frac{1}{7} = 7 + 7 + 7 = 66.27 + 7 = 198.6 \text{ KN} = 66.27 (1) + 88.2 (1.5) = 198.6 \text{ KN} = 66.27 (1) + 88.2 (1.5) = 198.6 \text{ KN} = 154.5 = 1.286 \text{ m}$$

Also, we could have treated the loading as two triangles

$$T_{Te_1} = \frac{1}{Z}(73.58)(5) = 183.95 \text{ KN}$$
 $T_R = T_{Te_2} - T_{Te_2}$
 $T_{Te_2} = \frac{1}{Z}(29.4)(2) = 29.4 \text{ KN}$
 $T_{Te_2} = \frac{1}{Z}(29.4)(2) = 29.4 \text{ KN}$

$$h_{TR_{2}}^{2} = \frac{3+\frac{2}{3}}{3}$$
 $\sum_{i=183.95}^{2} \frac{5}{3} = \frac{7}{4} \frac{198.6}{3} = \frac{198.6}{154.5} = \frac{1.286}{154.5} = \frac{1.286}{154.5}$

If the soil exerts a trapezoidal distribution of load on the bottom of the footing, determine the intensities w_1 and w_2 of this distribution needed to support the column loadings.

The form is used to cast a concrete wall having a width of 5 m. Determine the equivalent resultant force the wet concrete exerts on the form AB if the pressure distribution due to the concrete can be approximated as shown. Specify the location of the resultant force, measured from point B.

$$\int_{P} dA = \int_{0}^{4} 4\pi^{\frac{1}{2}} dz$$

$$= 4\left(\frac{2}{3} + \frac{3}{2}\right) A$$

$$= 4\left$$

FR = 21.33(5)=107K

$$\bar{q} = \bar{z}$$
 $A = \frac{z}{3}ah$
 $A = \frac{z}{3}(8)(4) = 21.33$
 $A = \frac{z}{3}(8)(4) = 2.4m$