BRAINSTORM GROUP (BSG) CHM111 TEST 2 (2021/22)

ANSWER ALL QUESTIONS

1.		g emissions has equivalent	12	. In 1899, Rutherford bomba	
	velocity of $3.8 \times 10^8 \mathrm{m}$	1S ⁻¹		to produce oxygen	
	A. α B. β C. Υ	D. n		A. alpha and proton respect	
2.		ther corroborated with		B. beta and proton respective	vely
	Albert Einstein on			C. alpha and neutron	
	A. Compton Effect	B. Photoelectric Effect		D. beta and position	
	C. Pair production pro	ocess D. Atomic Fusion	13	. An Italian scientist who pio	neer the building of
3.	Which of the following is not associated with			nuclear reaction was	in the year.
	Compton effect			A. Stressmann in 1938	
	A. when energy exceeds 1.2 MeVB. energy of Υ rays become lessC. operation within the ray of 0.6MeV and 4MeV			B. Hann in 1945	
				C. Enrico Fermi in 1942	(h)
				D. Enrico Fermi in 1945	
	of energy			. Based on neutron to proton	
	D. It does not result to low secondary energy			A. $^{209}_{83}Bi$ is stable	B. ${}_{6}^{12}C$ is unstable
	radiation.			C. $^{20}_{10}Ne$ is unstable	D. $_{26}^{56}Fe$ is stable.
4.	<u> </u>	tron was discovered by	15	pioneered the work o	f ionizing effect of
	and	_ respectively.		radioactivity which lead to	discovery of α , β and
	A. David Carl Anderso	n and J. J. Thomson		Υ.	
	B. Henrich Hertz and	Ernest Rutherford		A. Henri Becquerel in 1886	
	C. David Carl Anderson and James Chadwick			B. Ernest Rutherford in 190	0
	D. Ernest Rutherford and Henrich Hertz			C. Marie Curie and Pierre Cu	ırie in 1898
5.	What does p and q re	present in the following		D. Henri Becquerel in 1900.	
	expression? $^{75}_{33}As($	$(p,q)_{35}^{78}Br$	16	. The particle which travels f	ew centimetre in air i
	A. n, e	Β. α, β		A. β particle	B. α particle
	C. α, n	D. β, Υ		C. positron	D. gamma
6.	Calculate the decay co	onstant for the element D	17	. In which of the following eq	uation is the
	which has a half-life o	f 20days.		daughter nuclide greater th	an parent nuclide.
	A. 0.035hr ⁻¹	B. 0.84hr ⁻¹		A. $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}H$	
	C. 0.04hr ⁻¹	D. 16.8hr ⁻¹		B. ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$	
7.	In writing and balanci	ng nuclear equations, one		C. ${}^{14}_{7}N + {}^{4}_{2}H \rightarrow {}^{17}_{8}O + {}^{1}_{1}P$	
	of the major rules foll	owed is that of		D. $_{27}^{54}CO$ $_{26}^{56}Fe + _{1}^{0}e$	
	A. Hess' law	B. Le Chatelier's law	18	. The electron was discovere	d by
	C. Millikan-Flecher	D. Rutherford-Soddy		A. R. A. Millikan B. J.	J. Thompson in 1897
8.	found out th	at photographic negative of		C. David Anderson in 1933	•
	object could be made	by using a crystal of		D. Ernest Rutherford in 190	9
	uranium which fluore		19	. Atomic fission was discover	ed by and
	A. Rutherford	B. J. J. Thompson		in year w	=
	C. Albert Einstein	D. Henri Becquerel		uranium with neutron.	·
9.	Which of the following	g represent the tangential		A. Hann and Stressman in 1	938
	slope of concentration plotted against time?			B. Hann and Stressman in 1	942
	A. Initial rate	B. Instantaneous rate		C. Enrico Fermi and Hann ir	n 1938
	C. Average rate	D. Reduction rate		D. Hann and Hertz in 1942	
10.	Isotopes/nuclides wit	h high neutron to proton	20	. The first atomic bomb was	dropped at Hiroshim
	ratio (n/p) gets stabil	ized by		and Nagasaki in	11
	A. electron capture	B. particle emission		A. Japan 1945	B. Nigeria 1843
	C. proton emission	D. position capture.		C. Iraq in 1938	D. China in 1986
11.	Isotopes whose neutr	on to proton ratio equals	21	. It was observed that increas	
	unity are said to be			a specie had no effect on the	
	A. stable	B. unstable		reaction is order w	
	C. partially stable	D. partially unstable.		specie.	•

- A. zero B. first C. second D. third
- 22. ____ give the number of molecule of reactant which take part in a chemical reaction.
 - A. Order B. Molecularity C. Rate D. Order.
- 23. If doubling the concentration of a reaction doubles the rate of reaction, the reaction is said to be _____ order with respect to the specie.
 - A. zero B. first C. second D. third
- 24. The rate expression in terms of oxygen for the reaction: $2H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow 2H_2O_{(g)}$ is

A.
$$r = -\frac{\Delta[O]}{\Delta t}$$

C. $r = -\frac{1}{2} \frac{\Delta[O]}{\Delta t}$

B.
$$r = \frac{\Delta[O_2]}{\Delta t}$$

C.
$$r = -\frac{1}{2} \frac{\Delta[O]}{\Delta t}$$

$$D. r = -\frac{2\Delta[O_2]}{\Delta t}$$

- 25. Which of the following may not be determined experimentally.
 - A. Rate constant
- B. Rate expression
- C. Molecularity
- D. Order.
- 26. The rate expression of a reaction is $-\frac{\Delta P}{\Delta t} = r$, the negative sign implies.
 - A. P is the product
- B. P is decreasing
- C. P is adding
- D. P is increasing.

Use the following graph to answer Q27-29

- 27. The average rate of the reaction is
 - B. II C. III D. IV A. I
- 28. The instantaneous rate of the reaction can be found at
 - C. IV A. III B. II D. I
- 29. The initial rate is
 - A. I B. II C. III D. IV
- 30. Given the reaction:

$$4NH_{3(g)} + 5O_2(g) \rightarrow 4NO_{(g)} + 6H_2O_{(g)},$$

the rate expression is.

A.
$$4\Delta NH_3 + 5\Delta O_2$$

B.
$$R = k[NH_3]^m [O_2]^n$$

C.
$$-\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t} = -\frac{1}{5} \frac{\Delta[O_2]}{\Delta t} = \frac{1}{4} \frac{\Delta[NO]}{\Delta t} = \frac{1}{6} \frac{\Delta[H_{2O}]}{\Delta t}$$

D. $\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t} = \frac{1}{5} \frac{\Delta[O_2]}{\Delta t} = -\frac{1}{4} \frac{\Delta[NO]}{\Delta t} = -\frac{1}{6} \frac{\Delta[H_{2O}]}{\Delta t}$

D.
$$\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t} = \frac{1}{5} \frac{\Delta[O_2]}{\Delta t} = -\frac{1}{4} \frac{\Delta[NO]}{\Delta t} = -\frac{1}{6} \frac{\Delta[H_{2O}]}{\Delta t}$$

- 31. ______ is the index/exponential to which the concentration of a reaction must be raised in a reaction.
 - A. Molecularity
- B. Rate constant
- C. Rate law
- D. Reaction order.
- 32. All the following will increase the rate of chemical reaction except
 - A. increase in pressure
 - B. increase in temperature
 - C. use of powdery form of Mg instead of lump
 - D. increase in activation energy
- 33. The minimum amount of energy that a colliding molecules must possess for their collision to be effective is
 - A. effective energy
- B. collision energy
- C. thermal energy
- D. activation energy.
- 34. Considering the table below, it can be deduced that doubling the concentration of A, increases the rate of reaction by a factor of

[A]	[B]	Initial rate
mol/dm³	mol/dm³	mol∕dm³
0.001	0.001	3.0×10^{-3}
0.002	0.001	1.2×10^{-2}

- B. 3
- C. 11
- D. 4
- 35. A test tube cold to touch, the process taken place

A. exothermic

B. endothermic

C. adiabatic

- D. isochoric
- 36. The energy involved when a substance melts is
 - A. Heat of fusion
- B. Heat of fission
- C. Heat of vaporization D. Activation energy
- 37. A process in which no change in pressure occur is called

A. reversible process

B. adiabatic

C. isochoric

D. isobaric

38. The measure of degree of disorderliness of a

system is ____

A. enthalpy

B. free energy

C. entropy

D. activation energy

39. _____ law of thermodynamics state that if two bodies are individually in equilibrium with a separate body, then the first two bodies are in thermal equilibrium with each other.

A. Zero B. First

C. Second D. Third

40. _____ law explained conversion of mechanical

energy into electrical. A. First B. Second

C. Third

D. Zero

ANSWERS										
1	С	11	Α	21	Α	31	D			
2	В	12	Α	22	В	32	D			
3	Α	13	С	23	В	33	D			
4	С	14	D	24	D	34	D			
5	С	15	В	25	С	35	В			
6	Α	16	В	26	В	36	Α			
7	D	17	В	27	С	37	D			
8	D	18	D	28	В	38	С			
9	В	19	Α	29	Α	39	Α			
10	В	20	Α	30	С	40	Α			