Fundamentos Lógicos de la Informática Lógica Proposicional

Grupo docente FLI

Dpto. Ingeniería de al Información y las Comunicaciones Facultad de Informática Universidad de Murcia

- Introducción
- Sintaxis
- 6 Formalización
- 4 Interpretación
- 6 Decidibilidad y Satisfacibilidad
- 6 Equivalencias
- Razonamientos Válidos

Desarrollo

- Introducción

- 6 Decidibilidad y Satisfacibilidad

Lógica Proposicional

Lógica de Declaraciones o Lógica de Enunciados

- Las oraciones lógicas en L0 reciben el nombre de Proposiciones.
- Las oraciones lógicas atómicas (oraciones enunciativas simples) reciben el nombre de "sentencias" o "proposiciones atómicas".
 - p: "Juan no es estudiante de informática"
- Símbolos similares a la aritmética.

Artimética	Lógica Proposicional
2 ① (-3)	$p\otimes (eg q)$
$\odot \in \{+, -, \times, \div\}$	$\otimes \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

- Los esquemas lógicos utilizados son los deductivos formalmente válidos.
 - De lo general a lo particular, con conclusiones necesariamente ciertas.

Desarrollo

- Sintaxis

- 6 Decidibilidad y Satisfacibilidad

Sintaxis de la Lógica Proposicional

Alfabeto o vocabulario

Constantes. Son los símbolos reservados verdadero (V) y falso (F). $\mathbb{B} = \{V, F\}$.

Proposiciones atómicas o letras proposicionales. Formados por un conjunto arbitrario de letras. También se denominan átomos. El conjunto de todos los átomos se denotarán por \mathcal{P} .

Conectivos u operadores booleanos.

- ∧ Conjunción (y)
- V Disyunción (o)
- ¬ Negación (no)
- Otros símbolos. paréntesis '()', corchetes '[]', etc.

Se utilizan para leer mejor las expresiones con conectivos lógicos.

→ Implicación

→ Doble implicación

Sintaxis de la Lógica Proposicional

Gramática o Sintaxis

Definición (Construcción de Fórmulas Proposicionales)

El conjunto de fórmulas, denotado por \mathcal{F}_0 , es el menor conjunto de fórmulas que se puede obtener al aplicar las siguientes reglas gramaticales:

- Paso Básico: Cualquier átomo P ∈ P es una fbf.
- Paso Recursivo: Si α y β son dos fbf también lo son:
 - $\neg \alpha$, la negación de la fbf. Se lee "no α ".
 - $(\alpha \land \beta)$, la conjunción de las dos fbfs. Se lee " α y β ".
 - $(\alpha \vee \beta)$, la disyunción de las dos fbfs. Se lee " α o β ".
 - $(\alpha \to \beta)$, el condicionamiento de las dos fbfs. Se lee " α implica β ".
 - $(\alpha \leftrightarrow \beta)$, el doble condicionamiento de las fbf. " α si y solo si β ".

Definición (Literal. Cláusula)

- Un literal es una expresión atómica o su negación.
- Una **cláusula** es un literal o la disyunción de dos o más literales (quitando todos los naréntesis)

Reglas de simplificación de paréntesis

Precedencia/Prioridad de operadores

El orden de prioridad de los operadores es: $(1) \neg$, $(2) \lor$, \land , $(3) \rightarrow$, \leftrightarrow . En el caso de que dos operadores tengan la misma prioridad, será precedente el situado más a la izquierda.

Regla para añadir paréntesis

Cualquier expresión α que no se corresponda con una negación se le puede añadir paréntesis para construir la oración (α).

Ejemplo: No se puede aplicar la regla a $\neg (p \lor q)$. Aplicada a $p \lor q$, construye $(p \lor q)$.

Regla para añadir paréntesis con prioridad de operadores

Consiste en aplicar la "Regla para añadir paréntesis", primero a los patrones \vee y \wedge ; y después a los patrones \rightarrow y \leftrightarrow .

Ejemplo: Aplicar esta regla dos veces a $p \lor q \to q$ genera $(p \lor q) \to q \lor ((p \lor q) \to q)$.

Expresiones sin paréntesis

Definición (Expresión con menos paréntesis)

Una fbf α se puede expresar con menos paréntesis según β sii al aplicar continuamente la regla para añadir paréntesis con prioridad de operadores sobre β se obtiene α

Definición (Expresión con el menor número de paréntesis)

Una fbf α se puede expresar con el menor número de paréntesis según β sii cumple simultáneamente estas condiciones.

- β es una expresión con menos paréntesis de α .
- β contiene la menor cantidad de paréntesis posibles para que se cumpla el paso anterior. Es decir, si a β se le guitara otro par de paréntesis no se obtendría α .

Desarrollo

- 6 Formalización
- 6 Decidibilidad y Satisfacibilidad

De lo natural a lo formal

Lo más sencillo

Una oración lógica del lenguaje natural se puede representar como:

- V, si la oración siempre es cierta.
 - Ser o no ser.
- F, si la oración siempre es falsa.
 - Ser y no ser.
- p, q, r, \ldots , un literal, si la oración es atómica (un sintagma verbal).
 - Oraciones pasivas: Se vende piso (pasiva sintética).
 - Oraciones impersonales: Llueve, Maltrataron a Juan.
 - Oraciones personales:
 - Propiedades: Daniel es músico (monaria).
 - Relaciones: Elena es hermana de Daniel (binaria), Elena es hija de María y Daniel (ternaria), Daniel juega a la pelota en la calle con Juan (cuaternaria), etc.

De lo natural a lo formal

Lo más difícil

- $\alpha, \beta, \gamma, \ldots$, una fbf no atómica, si la oración es compuesta.
 - Coordinadas copulativas (expresan adición o gradación). Usan los nexos: y, e, ni.
 - Javier estudia informática y psicología. p ∧ q
 - Él ni ganó ni recibió premio. ¬p ∧ ¬q
 - Coordinadas adversativas (expresan oposición o exclusión) Usan los nexos: pero, mas, sin embargo, sino, no obstante, cuando, aunque... \(\Lambda\)
 - Coordinadas disyuntivas (expresan opciones a elegir). Usan los nexos: o, u
 - O estudias o trabajas. p ∨ q
 - Coordinadas consecutivas (expresan una causa y una consecuencia). Usan los nexos: luego, conque, así [es] que, de modo que, de manera que, de forma que, de suerte que
 - Pepe no vino, así que nos fuimos sin él $p \rightarrow q$
 - Juan va solo si va María juan → maria
- EJERCICIO. Buscar los tipos de oraciones compuestas existentes y determinar el tipo de conectivo más adecuado. No existe una regla

exacta de aplicación general

Algunas orientaciones

Se puede extender a expresiones α y β cualesquiera

 $\neg \alpha$

- No es el caso de α.
- No α.
- No es cierto que α .
- Es falso que α .
- No sucede que α.
- La negación de α .

 $\alpha \to \beta$

- Si α, β.
- Si α entonces β .
- α sólo si β .
- Sólo α si β.
- Es suficiente α para que β .
- Siempre que α entonces β .
- Es necesario β para que α .
- No α a menos que β .
- A no ser que β no α .

 $\alpha \wedge \beta$

- α ∨ β.
- Alternativas a "y": pero, aunque, además, sin embargo, también, a la vez, aún, no obstante.

 $\alpha \vee \beta$

- O α ο β.
- Ya α , ya β , ya ambas.

 $\alpha \leftrightarrow \beta$

- α si y sólo si β .
- α equivale a β .
- α cuando y sólo cuando β .
- α cuando únicamente β.
- α es condición suficiente y necesaria para que β .

Desarrollo

- 4 Interpretación
- 6 Decidibilidad y Satisfacibilidad

Evaluación I

Definición (Interpretación)

La interpretación, I, de una oración α se define como el procedimiento que traduce las fórmulas atómicas a oraciones naturales del mundo.

Definición (Asignación)

Una asignación, v_I, es establecer un valor de verdad a una fórmula atómica según una interpretación 1.

- Una asignación se denota por v_I , para poner de relieve la necesidad de una interpretación.
- En L0 no se suele hacer distinción entre interpretación y asignación.
- En otras lógicas sí se matiza claramente la diferencia.

Evaluación II

Definición (Interpretación/Asignación, ➤ en L0)

Una interpretación/asignación de una fórmula α cualquiera es una función v_l que asigna a cada fórmula atómica de α , $P \in \mathcal{P}_{\alpha}$, una constante de \mathbb{B} . Si el literal es una constante, vi le asigna la misma constante. Es decir:

$$v_I: \mathcal{P}_{\alpha} \longrightarrow \mathbb{B}$$
 $P \longmapsto V \circ F$
 $V \longmapsto F$

Observa: La cte. V en \mathcal{P} es una oración, pero en \mathbb{B} es un valor de verdad.

Evaluación III

¿Cuál es el valor de verdad de α ? A ese valor se llama **evaluación**.

Definición (Evaluación)

Una evaluación, \mathbf{v} , para una interpretación \mathbf{v}_{l} , es una función que se define de forma recursiva: $\mathbf{v}: \mathcal{F}_0 \longrightarrow \mathbb{B}$

- Regla Base: Si $\alpha \in \mathcal{P}$, entonces $v(\alpha) = v_I(\alpha)$. Regla base cuando α es un átomo (una letra latina).
- **Regla Recursiva:** Si $\alpha \notin \mathcal{P}$, entonces aplicar la tabla de verdad correspondiente según la siguiente tabla.

α	v(β)	$v(\alpha)$
$\neg \beta$	V	F
	F	V

lpha	$v(\beta)$	$v(\gamma)$	$v(\alpha)$
$\beta \wedge \gamma$	V	V	
	otro	F	
$\beta \vee \gamma$	F	F	
	otro	caso	V

α	$v(\beta)$	$v(\gamma)$	$v(\alpha)$
$\beta \to \gamma$	V	F	F
	otro	caso	V
$\beta \leftrightarrow \gamma$	ν(β) =	$= v(\gamma)$	V
	otro	caso	F

Desarrollo

- 6 Decidibilidad y Satisfacibilidad

Problema de la Decidibilidad

Encontrar un algoritmo que decida si una oración es satisfacible

¿Cómo sé si una oración es cierta en una interpretación?

Algoritmo basado en "Tablas de Verdad"

- Determinar el número n de elementos atómicos de α .
- Construir una tabla con tantas columnas como n + (número de operadores) y con tantas filas como interpretaciones posibles, 2^n .
- Establecer asignaciones para cada interpretación.
- Obtener las evaluaciones según el orden de construcción de la oración.
- El valor de verdad viene dada por la última columna completada.
- El procedimiento siempre termina.

Tipos de Oraciones

Las oraciones no son ni V ni F, dependen de la interpretación.

	<i>v</i> ₁ ()					v()			
	P_1	P ₂		P_n	α	β	γ	ψ	ϕ
V_{l_1}						V		F	
	÷	÷	÷	÷		:		i	
V_{I_i}					V	V		F	F
	÷	:	:	÷		:		:	
V_{I_j}						V	F	F	V
	:	:	:	:		:		:	
$V_{I_{2^n}}$						V		F	
					S	V/T	Fa	I/C	Ct

S: Satisfacible. $(p \land q)$ Fa:Falseable. $(p \lor q)$

V/T: Válida o tautología. $(p \lor \neg p)$ I/C: Insatisfacible o contradicción. $(p \land \neg p)$

Tipos de **Conjunto** de Oraciones

Satisfacible

Definición (Conjunto Satisfacible)

Un conjunto de fórmulas $\mathcal{F} = \{\alpha_1, \dots, \alpha_n\}$ es **Satisfacible** sii existe (al menos) una interpretación v_i tal que $v(\alpha_i) = V$, para todos los α_i . En cuyo caso, la interpretación se llama un **modelo** para \mathcal{F} .

$v_I()$				v()			
Р	Q		R	α_1			α_n
v ^P	v ^Q		v ^R	V	V	V	V

$$v(P) = v^P, v(Q) = v^Q, \dots, v(R) = v^m$$
 es el modelo.

Ejemplo: $\{v^P = F, v^Q = V\}$ es un modelo para el conjunto $\{P \lor Q, P \to Q\}$ (esa interpretación lo hace satisfacible)

Tipos de Conjunto de Oraciones

Insatisfacible

Definición (Conjunto Insatisfacible)

Un conjunto de fórmulas $\mathcal{F} = \{\alpha_1, \dots, \alpha_n\}$ es insatisfacible sii para cada interpretación v_i , existe una oración α_i tal que $v(\alpha_i) = F$.

$v_I()$			v()					
Р	Q		$\cdots \mid R \mid \cdots \mid \alpha_i \mid \cdots \mid \alpha_j$					
					F		V	
					F		F	
					V		F	

Ejemplo: El conjunto $\{P \land Q, P \rightarrow \neg Q\}$ es insatisfacible.

Desarrollo

- 6 Decidibilidad y Satisfacibilidad
- 6 Equivalencias

Equivalencia Lógica

Definición (Expresiones lógicamente equivalentes)

Dos expresiones α y β se dice que son equivalentes si y solo si $v(\alpha) = v(\beta)$ para cualquier interpretación v_I considerada. En cuyo caso se indicará por $\alpha \equiv \beta$.

$$\alpha \equiv \beta \stackrel{\mathsf{def}}{\Longleftrightarrow} \forall v_I \ v(\alpha) = v(\beta)$$

Teorema

$$\alpha \equiv \beta \iff \alpha \leftrightarrow \beta$$
 es válida

Importante

No confundir \equiv con \leftrightarrow .

En los examenes ocurre: $\alpha \equiv \beta \iff \alpha \leftrightarrow \beta$ j y ? nos vemos ...

Equivalencias Destacadas I

Propiedades Conmutativas

$$\alpha \wedge \beta \equiv \beta \wedge \alpha$$
$$\alpha \vee \beta \equiv \beta \vee \alpha$$
$$\alpha \leftrightarrow \beta \equiv \beta \leftrightarrow \alpha$$

Propiedades Asociativas

$$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$$
$$\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$$
$$\alpha \leftrightarrow (\beta \leftrightarrow \gamma) \equiv (\alpha \leftrightarrow \beta) \leftrightarrow \gamma$$

Equivalencias Destacadas II

Propiedades de D'Morgan.

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

Propiedades distributivas.

$$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$$

$$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

$$\alpha \rightarrow (\beta \vee \gamma) \equiv (\alpha \rightarrow \beta) \vee (\alpha \rightarrow \gamma)$$

$$\alpha \rightarrow (\beta \wedge \gamma) \equiv (\alpha \rightarrow \beta) \wedge (\alpha \rightarrow \gamma)$$

Equivalencias Destacadas III

Propiedades de Absorción.

$$\alpha \lor (\alpha \land \beta) \equiv \alpha$$
$$\alpha \land (\alpha \lor \beta) \equiv \alpha$$

Expansión Booleana.

$$\alpha \lor (\neg \beta \land \beta) \equiv \alpha$$
$$\alpha \land (\neg \beta \lor \beta) \equiv \alpha$$

Reducción al absurdo.

$$\neg \alpha \rightarrow (\beta \land \neg \beta) \equiv \alpha$$

Equivalencias Destacadas IV

Propiedad de Contraposición (o Transposición).

$$\alpha \to \beta \equiv \neg \beta \to \neg \alpha$$

Exportación.

$$(\alpha \wedge \beta) \to \gamma \equiv \alpha \to (\beta \to \gamma)$$

Idempotencia

$$\alpha \equiv \neg(\neg \alpha)$$
 (Doble Negación)
 $\alpha \equiv \alpha \lor \alpha$
 $\alpha \equiv \alpha \land \alpha$

Equivalencias Destacadas V

Eliminación del Condicional (relación entre implicación y disyunción/conjunción).

$$\alpha \to \beta \equiv \neg \alpha \lor \beta$$
$$\alpha \to \beta \equiv \neg (\alpha \land \neg \beta)$$

Eliminación del Bi-condicional.

$$\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$$
$$\alpha \leftrightarrow \beta \equiv (\alpha \land \beta) \lor (\neg \beta \land \neg \alpha)$$

Equivalencias Destacadas VI

Propiedades sobre tautologías.

```
\alpha \vee \neg \alpha \equiv V (V es la contante Verdadero)
\alpha \vee \beta \equiv \alpha si \alpha es una tautología
\alpha \wedge \beta \equiv \beta si \alpha es una tautología
```

Propiedades sobre Insatisfactibilidad.

```
\alpha \wedge \neg \alpha \equiv F (F es la constante Falso)
\alpha \vee \beta \equiv \beta si \alpha es insatisfactible
\alpha \wedge \beta \equiv \alpha si \alpha es insatisfactible
```

Desarrollo

- 6 Decidibilidad y Satisfacibilidad
- Razonamientos Válidos

Razonamientos

Una premisa y una conclusión.

Definición ($\alpha \models \beta$)

es consecuencia lógica de α sii (son equivalentes)

- En aquellas interpretaciones donde α es verdad, β necesariamente también es verdad
- En la misma interpretación no puede ser que α sea verdad y β falsa.

Teorema

$$\alpha \models \beta \iff \alpha \rightarrow \beta$$
 es válida.

No confundir el símbolo \rightarrow de la sintaxis para construir una oración, con el símbolo |= que relaciona semánticamente dos oraciones.

Razonamientos

Varias premisa y una conclusión.

Definición

- β es una consecuencia lógica de $\mathcal F$ si todo modelo de $\mathcal F$ lo es necesariamente de β , y se denota por $\mathcal{F} \models \beta$.
- Un razonamiento válido de un conjunto de oraciones \mathcal{F} es cualquier expresión $\mathcal{F} \models \beta$

Observaciones

- Si $\mathcal{F} = \emptyset$, entonces "consecuencia lógica" coincide con "oración válida" (tautología).
 - $\models \beta$ es equivalente a decir: β es una tautología.
- Recuerda: no confundir el símbolo → de la sintaxis con el símbolo ⊨ de relación semántica entre dos oraciones.

Teorema de la Deducción Semántica

Teorema (de deducción semántica)

Si
$$\mathcal{F} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$
, entonces:
 $\mathcal{F} \cup \{\alpha\} \models \beta \text{ sii } \mathcal{F} \models \alpha \rightarrow \beta$

Corolario

- Relación entre = y Tautologías/Validez.
 - a) $\mathcal{F} \models \beta \ \text{sii} \models \alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \rightarrow \beta$.
 - b) $\mathcal{F} \models \beta \text{ sii } \neg(\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \land \neg \beta)$ es válida.
- Relación entre | y Contradicciones/Insatisfictibilidad.

$$\mathcal{F} \models \beta \text{ sii } \alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \land \neg \beta \text{ es insatisfactible.}$$

Muy Importante

Propiedades Básicas de los Razonamientos Válidos

Demuéstralo todo: japrenderás lógica de verdad!

Teorema (Propiedades generales de \models)

- Reflexiva: para cualquier fórmula α , se cumple $\alpha \models \alpha$.
- Transitividad: Si $\mathcal{F} \models \alpha$ y $\alpha \models \beta$, entonces $\mathcal{F} \models \beta$.
- Monotonía: Si $\mathcal{F} \models \alpha$ entonces $\mathcal{F} \cup \{\beta\} \models \alpha$ para cualquier β .
- Si $\mathcal{F} \models \alpha$ y β es válida, entonces $\mathcal{F} \{\beta\} \models \alpha$
- Relación entre ≡ y ⊨ $\alpha \equiv \beta \iff \alpha \models \beta \lor \beta \models \alpha$

Monotonía, un lastre para las lógicas clásicas.

Propiedades Básicas para Razonar I

Demuéstralo todo: japrenderás lógica de verdad!

Por definición o aplicación de propiedades

Razonamientos que se obtienen por comprobación.

Y-eliminación (Simplificación)

$$\begin{array}{ccc}
\alpha \wedge \beta & \models & \alpha \\
\alpha \wedge \beta & \models & \beta \\
\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n & \models & \alpha_i
\end{array}$$

O-introducción (Adición)

$$\begin{array}{ccc}
\alpha & \models & \alpha \lor \beta \\
\beta & \models & \alpha \lor \beta \\
\alpha_i & \models & \alpha_1 \lor \alpha_2 \lor \dots \lor \alpha_n
\end{array}$$

Propiedades Básicas para Razonar II

Demuéstralo todo: japrenderás lógica de verdad!

Definición (Silogismo)

Una forma de razonamiento deductivo que consta de dos proposiciones como premisas y otra como conclusión, siendo la última una inferencia necesariamente deductiva de las otras dos

Silogismos Categóricos Es categórico porque usa Dos premisas "es ..."

Y-introducción (Combinación)

$$\{\alpha, \beta\} \models \alpha \wedge \beta$$

$$\{\alpha_1, \alpha_2, \dots, \alpha_n\} \models \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n$$

Inconsistencia

$$\{\alpha, \neg \alpha\} \models \beta$$

Propiedades Básicas para Razonar III

Demuéstralo todo: japrenderás lógica de verdad!

Silogismos Hipotéticos | Es hipotético porque usa Dos hipótesis "si ..."

Silogismo Hipotético (en singular)

$$\{\alpha \to \beta, \beta \to \gamma\} \models \{\alpha \to \gamma\}$$

Demostración por Casos

$$\{\alpha \to \gamma, \beta \to \gamma\} \models (\alpha \lor \beta) \to \gamma$$

$$\{\alpha_i \to \gamma\}_i \models \alpha_1 \lor \alpha_2 \lor \dots \lor \alpha_n \to \gamma$$

Prueba por Caos

$$\{\alpha \to \beta, \neg \alpha \to \beta\} \models \beta$$

Propiedades Básicas para Razonar IV

Demuéstralo todo: japrenderás lógica de verdad!

Silogismos Hipotéticos Mixtos

Un hipótesis "si ..." y una afirmación categórica "es ..."

Modus Ponens

Modus Ponendo Ponens (en latín, modo que afirmando afirma)

$$\{\alpha \to \beta, \alpha\} \models \beta$$

Modus Tollens

Modus Tollendo Tollens (en latín, modo que negando niega)

$$\{\alpha \to \beta, \neg \beta\} \models \neg \alpha$$

Propiedades Básicas para Razonar V

Demuéstralo todo: japrenderás lógica de verdad!

Silogismos Disyuntivos

Una premisa es una disyunción V y la segunda categórica "es ..."

Modo afirmativo.

(Modus Ponendo Tollens. En latín, modo que afirmando niega)

O bien
$$\alpha$$
, o bien β es α OJO, es un "o" exclusivo.

No es nuestra \vee .

No trabajaremos con esta regla.

Modo negativo: Silogismo Disyuntivo. (Históricamente conocido como modus tollendo ponens. En latín, modo que negando afirma.)

$$\{\alpha \vee \beta, \neg \beta\} \models \alpha$$

Propiedades Básicas para Razonar VI

Demuéstralo todo: japrenderás lógica de verdad!

Definición (Dilemas)

Razonamiento deductivo con una premisa disyunción que representa las opciones del razonamiento, normalmente contrarias.

Dilema constructivo

$$\{\alpha \vee \beta, \alpha \to \gamma, \beta \to \delta\} \models \gamma \vee \delta$$

$$\{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n, \alpha_i \to \beta_i\} \models \beta_1 \vee \beta_2 \vee \ldots \vee \beta_n$$

Dilema destructivo

$$\{ \neg \gamma \lor \neg \delta, \alpha \to \gamma, \beta \to \delta \} \models \neg \alpha \lor \neg \beta$$

$$\{ \neg \beta_1 \lor \neg \beta_2 \lor \dots \lor \neg \beta_n, \alpha_i \to \beta_i \} \models \neg \alpha_1 \lor \neg \alpha_2 \lor \dots \lor \neg \alpha_n$$

Propiedades Básicas para Razonar VII

Demuéstralo todo: japrenderás lógica de verdad!

Definición (Consecuencias por Equivalencias)

Razonamientos obtenidos a partir de leyes de equivalencia.

Transposición

$$\{\alpha \to \beta\} \models \{\neg \beta \to \neg \alpha\}$$

Eliminación de la Equivalencia

$$\{\alpha \leftrightarrow \beta\} \models \{\alpha \to \beta, \beta \to \alpha\}$$

Introducción de la Equivalencia

$$\{\alpha \to \beta, \beta \to \alpha\} \models \alpha \leftrightarrow \beta$$

Estrategias de Razonamiento Deductivo Una transparencia importantísima

El Corolario del Teorema de la Deducción Semántica y las propiedades básicas de equivalencia y razonamientos nos permiten considerar, al menos, dos estrategias de razonomiento deductivo:

- Demostración directa.
 - Comprobar que β es una consecuencia lógica de α , utilizando definiciones, buscando tautologías o teoremas probados con anterioridad (p.e. MP, MT, ...).
- Refutación.
 - Demostración por contradicción: $\alpha \to \beta \equiv \alpha \land \neg \beta \to \gamma \land \neg \gamma$ Añadir la negación de la posible consecuencia y encontrar una contradicción.
 - Búsqueda de contraejemplos. Encontrar un elemento a t.q. $v(\alpha[a] \to \beta[a]) = F$.