Terceiro Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

15 de agosto de 2022

Sumário

1	Introdução						
	1.1 O Amp Op						
	• •						
2	Analise nodal do circuito						
3	Resultados preliminares						
	3.1 Montando o circuito						
	3.2 Valores esperados						

1 Introdução

Neste relatório, vamos discutir amplificadores operacionais, e como controlar uma saida de corrente a partir de duas correntes de entrada.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

1.1 O Amp Op

Neste caso o amp op faria uma multiplicacao da corrente V_a na saida V_0 de acordo com um fator de multiplicacao A

2 Analise nodal do circuito

Primeiro vale lembrar que a resisencia de Thevenin e a de Norton sao iguais. Logo obtendo uma tambem obteremos a outra.

Neste caso, resolvendo o sistema vamos obter que esta resistencia en igual a R_c

$$\frac{V_a - V_1}{R_1} + \frac{V_a - V_0}{R_3} + \frac{V_a - V_2}{R_2} = 0$$

$$V_0 = -A * V_a$$
(1)

Que nos da:

$$V_0 = -\frac{AR_1R_3V_2 + AR_2R_3V_1}{(R_2 + R_1)R_3 + (A+1)R_1R_2}$$
 (2)

E para o caso especifico do amp op ideal, fazemos A tender a infinito e simplesmente temos:

$$V_0 = -\frac{R_1 R_3 V_2 + R_2 R_3 V_1}{R_1 R_2}$$

$$V_0 = -\frac{R_3}{R_1} V_1 - \frac{R_3}{R_2} V_2$$
(3)

Dai podemos juntar (1) com (3) e obter:

Isto me da as seguintes equações:

$$A_{v_1} = -\frac{R_3}{R_1}$$

$$A_{v_2} = -\frac{R_3}{R_2}$$
(4)

Tambem en importante notar que as resistencias vistas de V_1 e V_2 sao as seguintes:

$$I_n = \frac{V_1 - V_a}{R_n} \to R_{im_n} = \frac{V_n}{I_n} = R_n * \frac{V_n}{V_n - V_a} = R_n$$
 (5)

3 Resultados preliminares

Aqui vamos fazer uma analise utilizando a teoria demonstrada acima para saber como montar o circuito para termos um ganho $A_1 = -2$ e $A_2 = -4$

3.1 Montando o circuito

Nos temos da equacao (4) como os ganhos se comportam a partir das resistencias do circuito. Entao, basta resolvermos este sistema utilizando valores de resistores comerciais.

$$A_{v_1} = -\frac{R_3}{R_1} = -2$$

$$A_{v_2} = -\frac{R_3}{R_2} = -4$$
(6)

Podemos entao escolher resistores com aproxidamente os seguintes valores:

$$R_1 \approx 100k\Omega$$
 $R_2 \approx 47k\Omega$ (7)
 $R_3 \approx 220k\Omega$

3.2 Valores esperados

Vamos analisar as seguintes combinacoes de tensoes em V_1 e V_2 : -1, 2; -0, 6; 0; 0, 6; 1, 2

A analise sera feita em C# e esta em: https://github.com/Shapis/ufpe_ee/blob/main/4thsemester/labcircuitos/Relatorio3/Program.cs

$V_1 \rightarrow$	-1.2V	-0.6V	0.0V	0.6V	1.2V
$V_2 \downarrow$					
-1.2V	8.26	6.94	5.62	4.30	2.98
-0.6V	5.45	4.13	2.81	1.49	0.17
0.0V	2.64	1.32	0	-1.32	-2.64
0.6V	-0.17	-1.49	-2.81	-4.13	-5.45
1.2V	-2.98	-4.30	-5.62	-6.94	-8.26