Что нужно сделать

Согласно книге "Interpretable Machine Learning. A Guide for Making Black Box Models Explainable" by Christoph Molna,

- Интерпретируемость это степень, до которой человек может понять причину решения (Interpretability is the degree to which a human can understand the cause of a decision)
- Интерпретируемость это степень, до которой человек может стабильно предсказывать результат работы модели (Interpretability is the degree to which a human can consistently predict the model's result)

Наша задача - объяснить работу Чёрного ящика через методы FCA. В частности - гипотезы и импликации.

Главным образом нам интересны следующие вопросы:

- 1. Можем ли мы предсказать результат модели зная лишь значения отдельного подмножества признаков? Если да, то насколько уверенными мы можем быть в этом предсказании (сильные и слабые гипотезы)?
- 2. Исходя из п.1, какие признаки и какие значения признаков наиболее "важны" для Чёрного ящика (насколько они влияют на результат предсказания)?

Алгоритм работы

- 1. Бинаризуем исходные данные (каким образом?)
- 2. Находим структуры, шаблоны в бинаризованных данных т.е. определяем понятия
- 3. Определяем результат предсказания для каждого понятия (среднее предсказание для объектов из объёма понятия)
- 4. Убрать "лишние" ассоциативные связи (асс. связь "лишняя" если после её применения предсказание понятия меняется меньше, чем на $\delta o 0$)
- 5. Построить решётку понятий

Объёдинение понятий

Идея

Пусть есть следующие данные:

Признаки =
$$\{\Phi$$
орма, Цвет $\}$
 Φ орма = $\{$ Круглая, Квадратная $\}$
Цвет = $\{$ Зелёный, Салатовый, Красный $\}$

Задача бинарной классификации:

Класс
$$=\{0,1\}$$

Гипотезы:

Форма__Круглая
$$\cap$$
 Цвет__Зелёный $\Rightarrow 1$
Форма__Круглая \cap Цвет__Салатовый $\Rightarrow 1$

Хотелось бы объединить две гипотезы в одну:

Форма__Круглая
$$\cap$$
 {Цвет__Зелёный \cup Цвет__Салатовый} $\Rightarrow 1$

Или же даже создать новый признак:

Оттенок =
$$\left\{ egin{array}{ll} Зелёный, еслиЦвет \in \left\{ Зелёный, Салатовый \right\} \\ Красный, еслиЦвет \in \left\{ Красный \right\} \\ Форма & Круглая \cap Оттенок Зелёный $\Rightarrow 1$$$

При этом, изначально в датасете не было признака Оттенок, т.е. мы создали его самостоятельно, т.к. он делает модель более интерпретируемой.

Реализация

Вариант 1

Сравнивать все понятия на предмет похожести их содержаний. Если два понятия дают похожий результат предсказания и похожи по содержнию - объединять их.

Вариант 2

- Записать все текущие понятия и исходные атрибуты в новый Формальный Контекст.
- Построить на этом контексте монотонные понятия, которые по своей природе объединяют аттрибуты.
- Прочистить получившуюся решётку. Оставить только наиболее общие понятия.
- Визуализировать получившуюся решётку и понятия.

Пример работы

Контекст "Манго"

Контекст (вместе с предсказанием модели)

	color	firm	firm smooth		fruit	prediction	
title							
apple	yellow	False	True	round	True	1	
grapefruit	yellow	False	False	round	True	1	
kiwi	green	False	False	oval	True	1	
plum	blue	False	True	oval	True	1	
toy cube	green	True	True	cubic	False	0	
egg	white	True	True	oval	False	0	
tennis ball	white	False	False	round	False	1	
mango	green	False	True	oval	True	1	

Анализ гипотез

Решётка понятий

Список всех гипотез (17\ штук):

Базовая гипотеза

• 0: _ -> 0.75

Позитивные гипотезы

- 3: round -> 1.00
- 7: green,oval -> 1.00
- 10: white,round -> 1.00
- 11: yellow,round -> 1.00
- 12: smooth,blue,oval -> 1.00
- 13: smooth,green,oval -> 1.00
- 14: smooth, yellow, round -> 1.00

Отрицательные гипотезы

- 1: green -> 0.67
- 4: smooth -> 0.60
- 5: white -> 0.50
- 6: firm, smooth -> 0.00
- 8: smooth,green -> 0.50
- 9: smooth,oval -> 0.67
- 15: firm, smooth, green, cubic -> 0.00
- 16: firm, smooth, white, oval -> 0.00

Формат записи:

< Номер попатиа / гипотезы > · < узрактеристики объекта > → < вер-ть ито Чёрпый анник иззовёт объект фру

Сильные гипотезы (выделены жирным курсивом) в бинарной классификации - те гипотезы, которые определяют целевой признак однозначно в 1 или однозначно в 0. Например:

- 3; round -> 1
- 7; firm \cap smooth \cap green \cap cubic -> 0

Слабые гипотезы в бинарной классификации - те гипотезы, которые не определяют целевой признако однозначно в 1 или однозначно в 0. Например:

- 1: green -> 0.67 (вер-ть что модель определит объект как фрукт 67%)
- 5: white -> 0.5

Что хотелось бы улучшить?

Родственные сильные гипотезы (вторая - частный случай первой). Например:

- 3: round -> 1
- 10: white ∩ round -> 1
- 11: yellow ∩ round -> 1

Гипотезы 10 и 11 являются частными случаями гипотезы №3, приэтом все они - сильные. Поэтому гипотезы 10 и 11 можно исключить из анализа. Аналогично можно поступить с сильными негативными гипотезами 6, 15, 16.

Оставшиеся гипотезы (11 штук):

Базовая гипотеза

• 0: -> 0.75

Позитивные гипотезы

- 3: round -> 1.00
- 7: green,oval -> 1.00
- 12: smooth,blue,oval -> 1.00
- 14: smooth, yellow, round -> 1.00

Отрицательные гипотезы

- 1: green -> 0.67
- 4: smooth -> 0.60
- 5: white -> 0.50
- 6: firm, smooth -> 0.00
- 8: smooth,green -> 0.50
- 9: smooth,oval -> 0.67

Также, при желании, можно объединить гипотезы 12 и 14:

$$\mathrm{smooth} \cap \left(\mathrm{blue} \cap \mathrm{oval} \bigcup \mathrm{yellow} \cap \mathrm{round}\right) \to 1$$

Прореживаем гипотезы автоматически

На решётке видно, что после отсечения частных сильных гипотез, некоторые пути в графе остаются "незавершёнными". Например,

• Понятие 5: (egg, tennis ball; white) -> 0.5

При этом, объект "egg" также встречается в "сильном" понятии 6:

• Понятие 6: (toy cube, egg; firm, smooth) -> 0

Поэтому удалим все пути, которые не приводят к сильным гипотезам. По крайней мере, именно сильные гипотезы нам и интересны.

Финальный вид решётки понятий Манго

Оставшиеся гипотезы (8 штук):

Базовая гипотеза

• 0: _ -> 0.75

Позитивные гипотезы

- 3: round -> 1.00
- 6: green,oval -> 1.00
- 8: smooth,blue,oval -> 1.00

Отрицательные гипотезы

- 1: green -> 0.67
- 4: smooth -> 0.60
- 5: firm,smooth -> 0.00
- 7: smooth,oval -> 0.67

Итого: мы сократили 17 изначальных гипотез к 8 основным, которые хорошо описывают работу модели Чёрный ящик на имеющихся данных

Монотонная решётка

Что если текущие гипотезы можно каким-либо образом объединить и т.о. ещё сильнее сократить их количество?

Составим новый Формальный контекст на основе полученных ранее понятий и входящих в них отдельных атрибутов.

	oval	round	green	firm	blue	smooth	smooth&oval	green&oval	firm&smooth	smooth&blue&oval	prediction
title											
apple	False	True	False	False	False	True	False	False	False	False	1
grapefruit	False	True	False	False	False	False	False	False	False	False	1
kiwi	True	False	True	False	False	False	False	True	False	False	1
plum	True	False	False	False	True	True	True	False	False	True	1
toy cube	False	False	True	True	False	True	False	False	True	False	0
egg	True	False	False	True	False	True	True	False	True	False	0
tennis ball	False	True	False	False	False	False	False	False	False	False	1
mango	True	False	True	False	False	True	True	True	False	False	1

Монотонная решётка:

Получилось 28 понятий, поэтому все гипотезы лучше не выводить. Однако, интересно посмотреть на следующие гипотезы:

- 5 : blue \bigcup smooth \cap blue \cap oval \bigcup green \cap oval \rightarrow 1
- 9 : round \bigcup blue \bigcup smooth \cap blue \cap oval \rightarrow 1
- $11 : \text{round} \bigcup \text{green} \cap \text{oval} \to 1$
- 15 : round \bigcup blue \bigcup smooth \cap blue \cap oval \bigcup green \cap oval \rightarrow 1

При этом, гипотеза 15 - ближайщий нижний сосед гипотез 5, 9 и 11.

Перепишем гипотезы с учётом свойств бинарных операций

- 5 : blue \bigcup green \cap oval \rightarrow 1
- $9 : \text{round} \bigcup \text{blue} \rightarrow 1$
- 11 : round \bigcup green \cap oval \rightarrow 1
- 15 : round \bigcup blue \bigcup green \cap oval \rightarrow 1

При этом, гипотеза 15 - ближайщий нижний сосед гипотез 5, 9 и 11.

Видно, что одной сложносочинённой гипотезой 15 можно выразить условия гипотез 5, 9, 11. Автоматизируем данный процесс

Алгоритм:

- 1. Пусть есть два понятия C_1 , C_2 где C_2 ближайщий нижний сосед C_1 . Если оба понятия соответствуют сильным гипотезам одинакового знака (полож. или отриц.), то понятие C_1 частное понятие от C_2 и его можно удалить.
- 2. Повторить п.1 пока существуют понятия, удовлетворящие условиям из п.1.
- 3. Удалить все понятия, соответствующие слабым гипотезам.

Скорее всего существует вариант не удалять все слабые гипотезы, но он пока не придуман.

Оставшиеся гипотезы (3 штуки):

Базовая гипотеза

• $0:\emptyset\to0.75$

Позитивные гипотезы

• $2 : \text{round} \bigcup \text{blue} \bigcup \text{smooth} \cap \text{blue} \cap \text{oval} \bigcup \text{green} \cap \text{oval} \rightarrow 1$

Отрицательные гипотезы

• 1: firm \bigcup firm \cap smooth ->0

Оставшиеся гипотезы (после упрощения) (3 штуки):

Базовая гипотеза

• $0:\emptyset \rightarrow 0.75$

Позитивные гипотезы

• $2 : \text{round} \bigcup \text{blue} \bigcup \text{green} \cap \text{oval} \to 1$

Отрицательные гипотезы

• 1 : firm - > 0

Итого

Получилось два набора гипотез:

- полученные через антимонотонные понятия (8 штук)
- полученные через комбинацию антимонотонных и монотонных понятий (3 штуки)

Базовая гипотеза

• $0:\emptyset \rightarrow 0.75$

Позитивные гипотезы

Антимонотонные

- $3 : \mathbf{round} \rightarrow \mathbf{1}$
- $6 : \mathbf{green} \cap \mathbf{oval} \to \mathbf{1}$
- $8 : \mathbf{smooth} \cap \mathbf{blue} \cap \mathbf{oval} \rightarrow \mathbf{1}$

Монотонные (только сильные)

• $2 : \mathbf{round} \bigcup \mathbf{blue} \bigcup \mathbf{green} \cap \mathbf{oval} \to \mathbf{1}$

Отрицательные гипотезы

Антимонотонные

- $1: green \rightarrow 0.67$
- $4 : smooth \rightarrow 0.60$
- $5: \mathbf{firm} \cap \mathbf{smooth} \to \mathbf{0}$
- $7 : smooth \cap oval \rightarrow 0.67$

Монотонные (только сильные)

• 1: firm - > 0

И положительный и отрицательный класс описываются одной составной сильной гипотезой, при этом, все исходные объекты попадают либо под первую, либо под вторую гипотезу. Иначе говоря, предсказания для всех имеющихся объектов можно получить с помощью двух найденных монотонных гипотез.

Почему получилось именно так? Возможно контекст "Манго" слишком прост, т.к. содержит всего 8 объектов. Надо провести похожий анализ на каком-нибудь более реальном, практичном датасете.