Najveći prazan krug

Jelena Mrdak

15. decembar 2020.

Problem (LEC). Neka je S skup tačaka u ravni. Odrediti krug najvećeg mogućeg prečnika sa centrom u konveksnom omotaču skupa S takav da ne sadrži nijednu tačku skupa S u svojoj unutrašnjosi.

Na Slici 1 je predstavljen LEC za dati skup tačaka.

Slika 1: LEC

LEC je takođe poznat i kao problem odlaganja otrovnog otpada. Tačke predstavljaju koordinate gradova i potrebno je pronaći mesto za odlaganje otpada

koje je najudaljenije od gradova.

Kako bismo rešili ovaj problem, odredićemo Voronojev dijagram za date tačke.

Definicija 1. Voronojev dijagram predstavlja particionisanje ravni na n oblasi, gde je n broj datih tačaka, pri čemu važi da je svakoj tački u i-toj oblasti najbliža i-ta ulazna tačka. Tačke koje su podjednako udaljene od dve ulazne tačke se nalaze na stranici koja deli dve oblasti. Stranice se susreću u temenima.

Na Slici 2 možemo videti Voronojev dijagram, gde su zelenom bojom predstavljene ulazne tačke, crvenom Voronojeva temena, a belom Voronojeve stranice.

Slika 2: Voronojev dijagram

Kandidati za najveći krug koji tražimo su krugovi sa centrom u Voronojevim temenima i presecima Voronojevih stranica i konveksnog omotača skupa tačaka. Potrebno je efikasno odrediti (u konstantnom vremenu) poluprečnik kruga koji je kandidat. Primer krugova kandidata možemo videti na Slici 3.

Slika 3: Krugovi kandidati

Da bismo konstuisali Voronojev dijagram, odredićemo Deloneovu triangulaciju ulaznih tačaka. Ova dva problema su dualna - Voronojevo teme se dobija iz Deloneovog trougla i dva temena su povezana Voronojevom stranicom ako su njihovi odgovarajući Deloneovi trouglovi susedni (imaju zajedničku stranicu).

Definicija 2. Deloneova triangulacija je triangulacija skupa tačaka S, takva da se nijedna tačka iz skupa S ne nalazi u unutrašnjosti kruga opisanog oko bilo kog trougla iz triangulacije.

Primer Deloneove triangulacije možemo videti na Slici 4.

Slika 4: Deloneova triangulacija

Teorema 1. Neka su $\alpha_1, \alpha_2, ..., \alpha_n$ uglovi svih trouglova neke triangulacije i neka je α_1 najmanji od njih. Deloneova triangulacija maksimizuje α_1 .

Teorema 2. Dato je n tačaka u ravni u opštem položaju. Deloneova triangulacija tih tačaka je jedinstvena.

Za predstavljanje Voronojevog dijagrama i Deloneove triangulacije, koristićemo DCEL¹ strukturu podataka, Takođe, pomoću te strukture ćemo efikasno moći da odredimo poluprečnik kruga koji je kandidat.

1 Analiza složenosti

Lema 3. Dodavanje tačke u nasumičnom redosledu u inkrementalnom algoritmu za konstrukciju Deloneove triangulacije u proseku dovodi do $\mathcal{O}(1)$ okretanja stranica.

¹doubly connected edge list

Teorema 4. Inkrementalni algoritam za konstrukciju Deloneove triangulacije ima vremensku složenost $\mathcal{O}(n \log n)$.

Dokaz. Dokaz direktno sledi iz leme 3.

Kako svako Voronojevo teme odgovara Deloneovom trouglu i svaka Voronojeva stranica odgovara stranici trougla, sledi da je vreme potrebno da se konstruiše Voronojev dijagram iz Deloneove triangulacije $\mathcal{O}(n)$.

U projektu je određen presek Voronojevog dijagrama i konveksnog omotača u složenosti $\mathcal{O}(nh)$, gde je n broj tačaka u ravni i h broj stranica konveksnog omotača. Napominjemo da je pomoću algoritma za odredjivanje preseka segmenata to moguće uraditi u vremenu $\mathcal{O}(n\log n)$, jer je broj preseka $\mathcal{O}(n)$ (jedna Voronojeva stranica može imati najviše dva preseka sa koneksnim omotačem).

Iz prethodnog dobijamo i vreme izvršavanja polaznog problema - $\mathcal{O}(n(h + \log n))$. Optimalno vreme je $\mathcal{O}(n \log n)$.

Deloneova triangulacija	$\mathcal{O}(n \log n)$
Voronojev dijagram	$\mathcal{O}(n)$
Presek Voronojevih stranica sa konveksnim omotačem	$\mathcal{O}(nh)$
Odredđivanje najvećeg kruga	$\mathcal{O}(n)$
LEC	$\mathcal{O}(n(h + \log n))$