1

PI: PRODUCTION AND INDUSTRIAL ENGINEERING

EE25BTECH11023-Venkata Sai

Duration: Thre	ee Hours		Maximum Marks: 1	00
	<u> </u>	-	et are Rs. 20000 and Rs. 50 per univen, the unit price of the items in l	
a) 50	b) 75	c) 90	d) 100	
			(GATE PI 20)	13)
2) Therbligs	refer to the			
b) fundamc) basic ty	rpes of fixtures used in machining ental motions used in manual wo rpes of waste in manufacturing prental types of material handling s	rk ocess		
			(GATE PI 202	13)
their arriv	al. The average time taken for ississon process and service times a	suing a ticket is 1 r	and tickets are issued in the order min. Assuming that customer arriv stributed, the average waiting time	als
a) 3	b) 4	c) 5	d) 6	
	planks of 10 mm diameter are pungth of aluminum is 80 MPa.The		(GATE PI 202 minum sheet of 2 mm thickness.T g force required (in kN) is	
a) 2.57	b) 3.29	c) 5.03	d) 6.33	
	thread of pitch 2 mm and thread a the diameter of the best size wire	-	(GATE PI 20) ed for its pitch diameter using 3-w	,
a) 0.866	b) 1.000	c) 1.154	d) 2.000	
6) Match the	CORRECT pairs.		(GATE PI 20)	13)
o) Water the	P.Processes	1.Characteristics /	Applications	
	Q.Gas Metal Arc Welding	2. Joining of thick		
	R.Tungsten Inert Gas Welding	3.Consumable elec		
	S.Electroslag Welding		drical dissimilar materials	
	-			

7) In a rolling process,	the state of stress of the r	nater	ial undergoing deforr	nation is	(GATE PI 2013)
a) pure compressionb) pure shear			compression and shear	ear	
wall; with the bound is generated uniform a) The direction of h b) The maximum term c) The temperature of	sional steady state heat coary surfaces (x=0 and x=L) ly throughout the wall. Cheat transfer will be from perature inside wall must listribution is linear listribution is symmetric all	L) manoose 100°C be g	intained at temperature the CORRECT state to 0°C greater than 100°C	res of 0°C	C and 100°C. Heat
, ·	5 m ³ of an ideal gas at a pr Ill its pressure increases to		•	-	
a) 804.7	b) 953.2	c)	981.7	d) 1012	2
· •	matic chain is formed with oints. The link to be fixed	_			
a) PQ	b) QR	c)	RS	d) SP	
11) Let X be a normal r	andom variable with mean	1 aı	nd variance 4. The pr	obability	(GATE PI 2013) $P\{X < 0\}$ is
a) 0.5b) greater than 0 and	l less than 0.5		greater than 0.5 and 1.0	less than	1.0
12) Choose the CORRE	CCT set of functions which	n are	linearly dependent.		(GATE PI 2013)
a) $\sin x$, $\sin^2 x$, $\cos^2 x$ b) $\cos x$, $\sin x$, $\tan x$			$\cos 2x, \sin^2 x, \cos^2 x$ $\cos 2x, \sin x, \cos x$		
a) complex with non	a symmetric matrix are all: -zero positive imaginary p -zero negative imaginary p	art			(GATE PI 2013)
					(GATE PI 2013)

c) P-2, Q-3, R-4, S-1

d) P-2, Q-4, R-1, S-3

a) P-4, Q-3, R-1, S-2

b) P-4, Q-2, R-3, S-1

- 14) The partial differential equation $\frac{\partial u}{\partial t} + \frac{u\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$ is a
 - a) linear equation of order 2

- c) linear equation of order 1
- b) non-linear equation of order 1

d) non-linear equation of order 2

(GATE PI 2013)

15) Match the **CORRECT** pairs.

Number Integration Schemes	Order of fitting polynomial
P.Simpson's 3/8 Rule	1.First
Q.Trapezoidal Rule	2.Second
R.Simpson's 1/3 Rule	3.Third

a) P-2, Q-1, R-3

c) P-1, Q-2, R-3

b) P-3, Q-2, R-1

d) P-3, Q-1, R-2

(GATE PI 2013)

16) A rod of length L having uniform cross-sectional area A is subjected to a tensile force P as shown in the figure below. If the Young's modulus varies linearly from E_1 to E_2 along the length of the rod, the normal stress developed at section SS is

Fig. 1

a) $\frac{P}{A}$

- c) $\frac{PE_2}{AE_1}$

d) $\frac{PE_1}{AE_2}$

(GATE PI 2013)

17) For steady, fully developed flow inside a straight pipe of diameter D, neglecting gravity effects, the pressure drop Δp over length L and the wall shear stress tau_w are related by

a)
$$\tau_w = \frac{\Delta pD}{4L}$$

b)
$$\tau_w = \frac{\Delta p D^2}{4L^2}$$
 c) $\tau_w = \frac{\Delta p D}{2L}$ d) $\tau_w = \frac{4\Delta p L}{D}$

c)
$$\tau_w = \frac{\Delta pL}{2L}$$

d)
$$\tau_w = \frac{4\Delta pL}{D}$$

(GATE PI 2013)

- 18) For a ductile material, toughness is a measure of
 - a) resistance to scratching

- c) ability to absorb energy till elastic limit
- b) ability to absorb energy up to fracture
- d) resistance to indentation

(GATE PI 2013)

19) A cube shaped casting solidifies in 5 min. The solidification time in min for a cube of the same material, which is 8 times heavier than the original casting, will be

a) 10

b) 20

c) 24

d) 40

(GATE PI 2013)

20) A steel bar 200 mm in diameter is turned at a feed of 0.25 mm/rev with a depth of cut of 4 mm. The rotational speed of the workpiece is 160 rpm. The material removal rate in mm³/s is

a) 160 b)	167.6	c) 160	0	d) 1675.5	
				(GATE PI 2013)
21) In the 3-2-1 principle of fix	ture design, 3	refers to the	number of		
a) clamps required	6				
b) locators on the primary dc) degrees of freedom of the					
d) operations carried out on	-	atum face			
e, eperations carried out on	one primary of			(1	GATE PI 2013)
22) In simple exponential smoot	hing forecastin	ng, to give high	her weightage	,	,
the smoothing constant mus	t be close to				
a) -1 b) :	zero	c) 0.5		d) 1	
,		,		,	CATE DI 2012)
22) A company manufactures 1	000 toxic over	y doy. On on	overege 10%	,	GATE PI 2013)
23) A company manufactures 1 40% of the defective toys of	•	•	_	_	
toys manufactured daily is	in be reworke	a into defect i	ree ones. The	average numbe	or defect free
a) 900 b) 9	920	c) 940)	d) 960	
				6	CATE DI 2012)
24) The type of control chart us	sed to monitor	the amount o	f dispersion in	,	GATE PI 2013)
a) c-chart b) j	o-chart	c) \bar{x} -cl	hart	d) R-chart	t
				C	GATE PI 2013)
25) Which one of the following	is modeled b	ased on adapta	ation capabiliti	,	,
a) Relational database			nulated anneali		
b) Fuzzy system		d) Ger	netic algorithm	1	
				(GATE PI 2013)
26) A company plans to purchas	e a machine w	hose uptime no	eeds to be at le	,	,
two models of the machine		_		-	
	Machine	MTBF (hr)	MTTR (hr)		
	Model M	60	4		
	Model N	48	2		
The company should buy					
a) only Model M		c) eith	er Model M o	or N	
b) only Model N			ther Model M		
•				,	CATE DI 2012)
27) A manufacturer produces b	are decioned	to be of 10 m	am diameter v	,	GATE PI 2013)
Historical data indicates that	_				
deviation of 0.15 mm. The			areage aranic	101 01 3 1 3 0 111111	Will a starrour a
	0.12	c) 0.18	8	d) 0.27	
,		,		,	CAME DI 2012
28) Lat (D) denote the linear m	agramming fa	rmulation of a	trononautation		GATE PI 2013)
28) Let (P) denote the linear programming formulation of a transportation problem with <i>m</i> sources and <i>n</i> destinations. Then, the dual linear program of (P) has					

a) *nm* variables and *nm* constraints
b) *nm* variables and *n + m* constraints
d) *n + m* variables and *nm* constraints

(GATE PI 2013)

29) Following data refers to an automat and a center lathe, which are being compared to machine a batch of parts in a manufacturing shop.

Automat Center Lathe

Machine Setup Time (min) 120 30

	Automat	Center Lathe
Machine Setup Time (min)	120	30
Machine Setup Cost (Rs./min)	800	150
Machining Time per piece (min)	2	25
Machining Cost (Rs./min)	500	100

Automat will be economical if the batch size exceeds

a) 28

b) 32

c) 61

d) 75

(GATE PI 2013)

30) Cylindrical pins of $25.010^{+0.020}_{+0.010}$ mm diameter are electroplated in a shop. Thickness of the plating is 30 ± 0.2 microns. Neglecting gage tolerances, the size of the GO gage in mm to inspect the plated components is

a) 25.042

b) 25.052

c) 25.074

d) 25.084

(GATE PI 2013)

31) During the electrochemical machining (ECM) of iron (atomic weight = 56, valency = 2) at a current of 1000 A with 90% current efficiency, the material removal rate was observed to be 0.26 gm/s. If titanium (atomic weight = 48, valency = 3) is machined by the ECM process at the current of 2000 A with 90% current efficiency, the expected material removal rate in gm/s will be

a) 0.11

b) 0.23

c) 0.30

d) 0.52

(GATE PI 2013)

32) Specific enthalpy and velocity of steam at inlet and exit of a steam turbine, running under steady state, are as given below:

	Specific enthalpy (kJ/kg)	Velocity (m/s)
Inlet steam condition	3250	180
Exit steam condition	2360	5

The rate of heat loss from the turbine per kg of steam flow rate is 5 kW. Neglecting changes in potential energy of steam, the power developed in kW by the steam turbine per kg of steam flow rate is

a) 901.2

b) 911.2

c) 17072.5

d) 17082.5

(GATE PI 2013)

33) A simply supported beam of length L is subjected to a varying distributed load $\sin(3\pi x/L) \text{ Nm}^{-1}$, where the distance x is measured from the left support. The magnitude of the vertical reaction force in N at the left support is

(GATE PI 2013) 34) The probability that a student knows the correct answer to a multiple choice question is $\frac{2}{3}$. If the student does not know the answer, then the student guesses the answer. The probability of the guessed answer being correct is $\frac{1}{4}$. Given that the student has answered the question correctly, the conditional probability that the student knows the correct answer is					
a) $\frac{2}{3}$	b) $\frac{3}{4}$	c) $\frac{5}{6}$	d) 8/9		
35) The solu	tion to the differential equation		(GATE PI 2013)		
		$\frac{d^2u}{dx^2} - k^2u = 0$			
where k	is a constant, subjected to the b	coundary conditions $u(0) = \frac{u(0)}{u(0)}$	= 0 and $u(L) = U$, is		
a) $u = \frac{Ux}{L}$	b) $u = U(\frac{1 - e^{kx}}{1 - e^{kL}})$	c) $u = U(\frac{1 - e^{-kx}}{1 - e^{-kL}})$	$d) u = U(\frac{1+e^{-kx}}{1+e^{-kL}})$		
36) The valu	e of the definite integral $\int_{1}^{e} \ln(x)$	dx is	(GATE PI 2013)		
a) $\frac{4\sqrt{e^3}}{9}$ +	$\frac{2}{9}$ b) $\frac{2\sqrt{e^3}}{9} - \frac{4}{9}$	c) $\frac{2\sqrt{e^3}}{9} + \frac{4}{9}$	d) $\frac{4\sqrt{e^3}}{9} - \frac{2}{9}$		
	$x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ where S is the sph		(GATE PI 2013) r the given steady velocity vector is the outward unit normal vector		
The valu	e of the surface integral is	JJ_s 4 (* 1)			
a) π	S	$c) \frac{3\pi}{2}$			
b) 2π		c) $\frac{3\pi}{4}$ d) 4π			
38) The func $0, \frac{df}{dt}(0) =$	(GATE PI 2013) 38) The function $f(t)$ satisfies the differential equation $\frac{d^2f}{dt^2} + f = 0$ and the auxiliary conditions $f(0) = 0$, $\frac{df}{dt}(0) = 4$ The Laplace transform of $f(t)$ is:				
a) $\frac{2}{s+1}$	b) $\frac{4}{s+1}$	c) $\frac{4}{s^2+1}$	d) $\frac{2}{s^4+1}$		
(GATE PI 2013) 39) A flywheel connected to a punching machine has to supply energy of 400 Nm while running at a mean angular speed of 20 rad/s. If the total fluctuation of speed is not to exceed $\pm 2\%$, the mass moment of inertia of the flywheel in kg·m² is					
a) 25	b) 50	c) 100	d) 125		
(GATE PI 2013) 40) A single riveted lap joint of two similar plates has the following data:					

c) L/π

d) $2L/\pi$

b) $L/3\pi$

a) zero

Fig. 2

Plate width = 200 mm

Plate thickness = 5 mm

Number of rivets = 3, Rivet diameter = 10 mm

Rivet hole diameter = 11 mm

Allowable tensile stress of plate $\sigma_p = 200 \text{ MPa}$

Allowable bearing stress of rivet $\sigma_c = 150$ MPa.

If the plates are designed to avoid tearing failure, the maximum permissible load P in kN is

a) 83

c) 167

b) 125

d) 501

(GATE PI 2013)

41) Two cutting tools are being compared for a machining operation. The tool life equations are:

Carbide tool : $VT^{1.6} = 3000$

HSS tool : $VT^{0.6} = 200$

where V is cutting speed in m/min and T is tool life in min. The carbide tool will provide higher tool life if the cutting speed in m/min exceeds

a) 15.0

b) 39.4

c) 49.3

d) 60.0

(GATE PI 2013)

42) In a CAD package, mirror image of a 2D point P(5, 10) is to be obtained about a line which passes through the origin and makes an angle of 45° counterclockwise with the X-axis. The coordinates of the transformed point will be

a) (7.5, 5)

b) (10, 5)

c) (7.5, -5)

d) (10, -5)

(GATE PI 2013)

43) In water jet machining, the water jet is issued through a 0.3 mm diameter orifice at a pressure of 400 MPa. The density of water is 1000 kg/m³. The coefficient of discharge is 1.0. Neglecting all losses during water jet formation through the orifice, the power of the water jet in kW is

a) 25.3

b) 50.6

c) 75.9

d) 101.2

(GATE PI 2013)

44) A linear programming problem is shown below:

Maximize

$$3x + 7y$$

Subject to:

$$3x + 7y \le 10$$
$$4x + 6y \le 8$$
$$x, y \ge 0$$

It has:

- a) an unbounded objective function
- b) exactly one optimal solution

- c) exactly two optimal solutions
- d) infinitely many optimal solutions

(GATE PI 2013)

45) Consider a two-machine flow shop where jobs are first processed in Machine X and then in Machine Y, in the same sequence. The processing times of four jobs (1, 2, 3 and 4) on the machines are:

Job	Processing	time (in min)
	Machine X	Machine Y
1	6	5
2	3	4
3	7	6
4	5	4

The sequence of jobs on the machines that minimizes make span is:

- a) 2-3-1-4
- b) 1-2-3-4
- c) 2-1-3-4 d) 3-1-4-2

(GATE PI 2013)

46) Match the CORRECT pairs:

Group 1	Group 2
1	1
P. Man-machine chart	1.Determines standard time of jobs
Q. Learning curve	2. Finds the preferred method of doing work
R. Time study	3. Measures work improvement
S. Motion study	4. Shows idle times

- a) P-2, Q-3, R-4, S-1
- b) P-3, Q-2, R-4, S-1

- c) P-4, Q-1, R-3, S-2
- d) P-4, Q-3, R-1, S-2

(GATE PI 2013)

47) A firm produces 120 units of product in every 8-hour shift. Four operations as given below are needed to manufacture each unit:

Operation	Precedence	Processing time(in min)
P	none	1
Q	P	1
R	P	4
S	Q,R	3

The above operations are to be assigned to workstations such that one or more operations are performed in each workstation. Only one unit of product will be processed in each workstation at a time. The minimum number of workstations that will achieve the production target, without violating the precedence constraints, is:

	a) 1	b) 2	c) 3	d)	4
	Common Data Qu				(GATE PI 2013)
	Common Data for Q	Questions 48 and	49:		
		ing operation is t	ındertaken at a coı		nm/rev with a depth of of 90 m/min in a CNC
48)	Neglecting the contrib J/mm ³ is:	oution of the feed	d force towards cu	atting power, the spe	ecific cutting energy in
	a) 0.2	b) 2	c) 200	d)	2000
49)	Assuming approach as	nd over-travel of	the cutting tool to	be zero, the machin	(GATE PI 2013) ing time in minutes is:
	a) 2.93	b) 5.86	c) 6.66	d)	13.33
	Common Data for Q	Questions 50 and	51:		(GATE PI 2013)
50)	<u>-</u>	cost is Rs. 200 p 'he retailer's curr	per order and the lent policy is to or	nolding cost is Rs. 0 der 200 kg every 5 d	·
	a) 40	b) 60	c) 80	d)	120
51)	If the retailer uses an as compared to the cu			otal cost,the saving	
	<i>u)</i> 10	0) 20	<i>c)</i> 10	u)	
	Linked Answer Ques Statement for Linked A project consists of shown in the table be	d Answer Quest seven activities, v	whose durations ar	*	(GATE PI 2013) all random variables, as and ending node j .
	Activity (node <i>i</i> - no	de j) Mean du	ration (in days)	Standard deviation (i	n days)
	1 - 2		6	1	 _
	1 - 3		9	2	
	2 - 3		2	0.5	
	2 - 4 3 - 4		7	0.5	
	3 - 4		8	1	
	4 - 5		4	1	

52) The critical path of the	project, based on the me	ean activity duration, is:	
a) $1-2-3-4-5$	b) 1 – 2 – 3 – 5	c) 1 – 3 – 5	d) 1 – 3 – 4 – 5
53) Let Φ denote the cum probability that all activing 22 days is:			(GATE PI 2013) rmal random variable. The ity duration, are completed
a) $\Phi^{-1}(0.333)$	b) $\Phi^{-1}(0.816)$	c) $\Phi^{-1}(1.664)$	d) $\Phi^{-1}(2.235)$
In orthogonal turning of 4 mm, and cutting velocities	ocity of 90 m/min, it is	meter with a feed of 0.2 observed that the main ((GATE PI 2013) 55 mm/rev, depth of cut of (tangential) cutting force is the main (tangential) cutting
54) The orthogonal rake an	gle of the cutting tool in	degrees is:	
a) zero	b) 3.58	c) 5	d) 7.16
55) The normal force actin	g at the chip-tool interfac	ce in N is:	(GATE PI 2013)
a) 1000	b) 1500	c) 2000	d) 2500
General Aptitude (GA	A) Questions		(GATE PI 2013)
56) Were you a bird, you .a) would flyb) shall flyc) should flyd) shall have flown	in the sky.		(CATE DI 2012)
57) Choose the grammatica	ally INCORRECT senten	ce:	(GATE PI 2013)
a) He is of Asian originb) They belonged to At		c) She is an European.d) They migrated from	India to Australia.
58) Complete the sentence:	Universalism is to partic	cularism as diffuseness is	(GATE PI 2013) to
a) specificity	b) neutrality	c) generality	d) adaptation
59) What will be the maxim	mum sum of 44, 42, 40,	?	(GATE PI 2013)

	a) 502	b) 504	c) 506	d) 500
60) Which one of the following options is the closest in meaning to the word given Nadir			(GATE PI 2013) rd given below?	
	a) Highest	b) Lowest	c) Medium	d) Integration
	Q.61 to Q.65 carry tw	vo marks each		(GATE PI 2013)
61) A tourist covers half of his journey by train at 60 km/h, half of the remainder by the rest by cycle at 10 km/h. The average speed of the tourist in km/h during his				•
	a) 36	b) 30	c) 24	d) 18
62)	(GATE P). 2) The current erection cost of a structure is Rs. 13,200. If the labour wages per day increase by the current wages and the working hours decrease by 1/24 of the current period, then the not of erection in Rs. is:			
	a) 16,500	b) 15,180	c) 11,000	d) 10,120
(GAT) Out of all the 2-digit integers between 1 and 100, a 2-digit number has to be selected What is the probability that the selected number is not divisible by 7?				(GATE PI 2013) s to be selected at random.
	a) 13/90	b) 12/90	c) 78/90	d) 77/90
64)	(GATE PI 64) After several defeats in wars, Robert Bruce went in exile and wanted to commit suicide. Just committing suicide, he came across a spider attempting tirelessly to have its net. Time and the spider failed but that did not deter it from making attempts. Such attempts by the spider Bruce curious. Thus, Bruce started observing the near-impossible goal of the spider to have t Ultimately, the spider succeeded in having its net despite several failures. Such act of the encouraged Bruce not to commit suicide. And then, Bruce went back again and won many a and the rest is history.			
Which one of the following assertions is best supported by the above information?				formation?
	 a) Failure is the pillar of success. b) Honesty is the best policy. c) Life begins and ends with adventures. d) No adversity justifies giving up hope. 			
(GATE PI 2013) 65) Find the sum of the expression $81 + 80 + 1 + \dots + 4 + 3 + 1 + 3 + 2 + 1 + 2 + 1 + 1$				
	a) 7 b) 8		c) 9 d) 10	
				(GATE PI 2013)