# Методы оптимизации Оптимизация с ограничениями неравенства. Выпуклое программирование

Н. В. Артамонов

МГИМО МИД России

6 октября 2023 г.



## Содержание

- 📵 Постановка задачи. Выпуклая оптимизация
- 💿 Функция Лагранжа
- ③ Функция Лагранжа в форме Куна-Таккера
- Пример: Consumption—Leisure choice

## Задача максимизации

$$\max_{s.t.} \begin{cases} g_1(x) \le C_1 \\ \vdots \\ g_k(x) \le C_k \end{cases} \tag{1}$$

#### Важно!

Согласованность знаков неравенства в ограничениях с максимизацией целевой функции.

## Задача минимизации

$$\min_{s.t.} \begin{cases} g_1(x) \ge C_1 \\ \vdots \\ g_k(x) \ge C_k \end{cases} \tag{2}$$

#### Важно!

Как и раньше согласованность знаков неравенства в ограничениях с минимизацией целевой функции.

## Задача минимизации

$$\min_{s.t.} \begin{cases} g_1(x) \ge C_1 \\ \vdots \\ g_k(x) \ge C_k \end{cases} \tag{2}$$

#### Важно!

Как и раньше согласованность знаков неравенства в ограничениях с минимизацией целевой функции.

Очевидно, что задача (2) сводится к задаче (1) с целевой функцией (-f) и с ограничениями  $-g_j(\mathbf{x}) \leq -C_j$ .

## Задача выпуклой оптимизации

Для глобального экстремума потребуется выпуклость функций в задаче оптимизации.

#### Определение

Экстремальная задача (1) называется задачей выпуклого программирования или выпуклой оптимизации, если

- f вогнута
- g<sub>1</sub>,..., g<sub>k</sub> выпуклы

#### Определение

Экстремальная задача (2) называется задачей выпуклого программирования или выпуклой оптимизации, если

- f выпукла
- $g_1, \ldots, g_k$  вогнуты

## Матричная запись ограничений

#### Обозначим

$$g(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_k(x) \end{pmatrix}$$
  $c = \begin{pmatrix} C_1 \\ \vdots \\ C_k \end{pmatrix}$ 

Перепишем задачи (1), (2) в виде

$$\max f(x)$$
  $\min f(x)$   
 $s.t. \ g(x) \le c$   $s.t. \ g(x) \ge c$ 

1 Постановка задачи. Выпуклая оптимизация

- Функция Лагранжа
- ③ Функция Лагранжа в форме Куна-Таккера

4 Пример: Consumption–Leisure choice

## Функция Лагранжа

Функцией Лагранжа для задачи (1) и задачи (2) имеет вид

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{j=1}^{k} \lambda_j (g_j(\mathbf{x}) - C_j) = f(\mathbf{x}) - \boldsymbol{\lambda}^{\top} (\mathbf{g}(\mathbf{x}) - \mathbf{c})$$

Дополнительные переменные  $\lambda = (\lambda_1, \dots, \lambda_k)^{\top}$  называются множителями Лагранжа (Lagrange multipliers).

## Условие Слейтера

#### Определение

Будем говорить, что для ограничений задачи (1) выполнено условие Слейтера, если существует  $\mathbf{x}_0 \in \mathbb{R}^n$  такой, что

$$g(x_0) < c$$

Будем говорить, что для ограничений задачи (2) выполнено условие Слейтера, если существует  $\mathbf{x}_0 \in \mathbb{R}^n$  такой, что

$$g(x_0) > c$$

#### Замечание

Условие Слейтера относится только к системе ограничений и не касается целевой функции

# Основной результат для (1)

#### Теорема

Пусть задача (1) является задачей выпуклого программирования и для ограничений выполнено условие Слейтера.

Тогда  $\hat{\mathbf{x}}$  является решением экстремальной задачи тогда и только тогда, когда он удовлетворяет системе

$$\begin{cases}
\mathcal{L}'_{x_i} = 0 & i = 1, \dots, n \\
\lambda_j \mathcal{L}'_{\lambda_j} = 0 & j = 1, \dots, k \\
\lambda_j \ge 0, \mathcal{L}'_{\lambda_j} \ge 0 & j = 1, \dots, k
\end{cases}$$
(3)

Кроме того,  $\hat{x}$  – глобальный максимум в задаче (1).

#### Замечание

В отличие от задачи оптимизации с ограничениями равенства здесь важен знак  $\lambda_j$ 

## Необходимые условия минимума

#### Следствие (Необходимые условия минимума)

Чтобы точка x была локальным минимумом в задаче (2) необходимо, чтобы для некоторых чисел  $\hat{\lambda}_1,...,\hat{\lambda}_k$  выполнялась система

$$\begin{cases}
\mathcal{L}'_{x_i} = 0 & i = 1, \dots, n \\
\lambda_j \mathcal{L}'_{\lambda_j} = 0 & j = 1, \dots, k \\
\lambda_j \ge 0, \mathcal{L}'_{\lambda_j} \le 0 & j = 1, \dots, k
\end{cases} \tag{4}$$

Кроме того,  $\hat{x}$  – глобальный минимум в задаче (11).

#### Определение

Условие  $\lambda_j \mathcal{L}'_{\lambda_j} = 0$  называются условием дополняющей нежесткости

## Интерпретация множителей Лагранжа

Пусть  $\hat{x}$  – решение задачи (1) или задачи (2). Рассмотрим это решение как функцию от  $C_1, \ldots, C_k$ :

$$\hat{\mathbf{x}} = \hat{\mathbf{x}}(C_1, \dots, C_k)$$
  $\hat{f} = f(\hat{\mathbf{x}}) = \hat{f}(C_1, \dots, C_k)$ 

#### Теорема

Оптимальное решение есть гладкая функция от  $C_1, \ldots, C_k$  и выполнены равенства

$$\frac{\partial \hat{f}}{\partial C_i} = \hat{\lambda}_j \qquad \qquad j = 1, \dots, k$$

1 Постановка задачи. Выпуклая оптимизация

- Функция Лагранжа
- Функция Лагранжа в форме Куна-Таккера

④ Пример: Consumption–Leisure choice

#### Задача максимизации

Рассмотрим задачу максимизации с ограничениями неравенства в следующей форме

$$\max_{s.t.} \begin{cases} g_j(x) \le C_j & j = 1, ..., k \\ x_i \ge 0 & i = 1, ..., n \end{cases}$$
 (max)

#### Особенности

- $\bullet$  Всего n+k ограничений
  - k «нетривиальных» ограничений
  - ▶ п ограничений неотрицательности переменных
- согласованность знаков неравенств в ограничениях с максимизацией целевой функции

## Задача минимизации

Аналогично для задачи минимизации:

$$\min_{s.t.} \begin{cases} g_j(x) \ge C_j & j = 1, ..., k \\ x_i \ge 0 & i = 1, ..., n \end{cases}$$
 (min)

#### Особенности

- ullet Всего n+k ограничений
  - k «нетривиальных» ограничений
  - ▶ п ограничений неотрицательности переменных
- согласованность знаков неравенств в ограничениях с минимизацией целевой функции

#### Задача выпуклой оптимизации

Для глобального экстремума потребуется выпуклость функций в задаче оптимизации.

#### Определение

Экстремальная задача (max) называется задачей выпуклого программирования или выпуклой оптимизации, если

- f вогнута
- g<sub>1</sub>,..., g<sub>k</sub> выпуклы

#### Определение

Экстремальная задача (min) называется задачей выпуклого программирования или выпуклой оптимизации, если

- f выпукла
- $g_1, \ldots, g_k$  вогнуты

## Матричная запись ограничений

#### Обозначим

$$g(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_k(x) \end{pmatrix}$$
  $c = \begin{pmatrix} C_1 \\ \vdots \\ C_k \end{pmatrix}$ 

Перепишем задачи (max), (min) в виде

$$\max f(x) \qquad \min f(x)$$

$$s.t. \begin{cases} g(x) \le c \\ x \ge 0 \end{cases} \qquad s.t. \begin{cases} g(x) \ge c \\ x \ge 0 \end{cases}$$

## Функция Лагранжа в форме Куна-Таккера

Определим для задач (max), (min) функцию Лагранжа в форме Куна — Таккера, включив в нее только нетривиальные ограничения

$$\mathcal{Z}(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{j=1}^{k} \mu_j(g_j(\mathbf{x}) - C_j) = f(\mathbf{x}) - \boldsymbol{\mu}^{\top}(\mathbf{g}(\mathbf{x}) - \mathbf{c})$$

с множителями Лагранжа

$$oldsymbol{\mu} = egin{pmatrix} \mu_1 \ dots \ \mu_k \end{pmatrix}$$

## Условие Слейтера

#### Определение

Будем говорить, что для ограничений задачи (max) выполнено условие Слейтера, если существует  $\mathbf{x}_0 \in \mathbb{R}^n$  такой, что

$$g(x_0) < c x_0 > 0$$

Будем говорить, что для ограничений задачи (min) выполнено условие Слейтера, если существует  $\mathbf{x}_0 \in \mathbb{R}^n$  такой, что

$$g(x_0) > c x_0 > 0$$

#### Замечание

Условие Слейтера относится только к системе ограничений и не касается целевой функции

# Основной результат для (max)

#### Teopeма (Kuhn – Tucker, 1951)

Пусть задача (max) является задачей выпуклого программирования и для ограничений выполнено условие Слейтера.

Тогда  $\hat{x}$  является решением экстремальной задачи тогда и только тогда, когда он удовлетворяет системе

$$\begin{cases} x_{i}\mathcal{Z}'_{x_{i}} = 0 & i = 1, \dots, n \\ \mu_{j}\mathcal{Z}'_{\mu_{j}} = 0 & j = 1, \dots, k \\ x_{i} \geq 0, \ \mathcal{Z}'_{x_{i}} \leq 0 & i = 1, \dots, n \\ \mu_{j} \geq 0, \ \mathcal{Z}'_{\mu_{j}} \geq 0 & j = 1, \dots, k \end{cases}$$
(5)

Кроме того,  $\hat{\mathbf{x}}$  – глобальный максимум в задаче (max).

# Основной результат для (min)

#### Teopeмa (Kuhn – Tucker, 1951)

Пусть задача (min) является задачей выпуклого программирования и для ограничений выполнено условие Слейтера.

Тогда  $\hat{\mathbf{x}}$  является решением экстремальной задачи тогда и только тогда, когда он удовлетворяет системе

$$\begin{cases} x_{i}\mathcal{Z}'_{x_{i}} = 0 & i = 1, \dots, n \\ \mu_{j}\mathcal{Z}'_{\mu_{j}} = 0 & j = 1, \dots, k \\ x_{i} \geq 0, \ \mathcal{Z}'_{x_{i}} \geq 0 & i = 1, \dots, n \\ \mu_{j} \geq 0, \ \mathcal{Z}'_{\mu_{j}} \leq 0 & j = 1, \dots, k \end{cases}$$

$$(6)$$

Кроме того,  $\hat{x}$  – глобальный минимум в задаче (min).

#### Некоторые замечания

Системы (5), (6) имеют n+k уравнений и содержат 2n+2k неравенств для отбора корней.

Алгоритм решения задач (max), (min)

- Проверяем выпуклость/вогнуть целевой функции и ограничений
- Проверяем условие Слейтера для ограничений
- Решаем систему (5) или (6)

## Интерпретация множителей Лагранжа

Множители Лагранжа  $\mu_j$  имеют простую экономическую интерпретацию как предельные значения.

Рассмотрим оптимальное решение задачи (max) и задачи (min) и оптимальное значение целевой функции как функцию от  $C_1, \ldots, C_k$ :

$$\hat{\mathbf{x}} = \hat{\mathbf{x}}(C_1, \ldots, C_k)$$
  $\hat{f} = f(\hat{\mathbf{x}}) = \hat{f}(C_1, \ldots, C_k).$ 

## Интерпретация множителей Лагранжа

Множители Лагранжа  $\mu_j$  имеют простую экономическую интерпретацию как предельные значения.

Рассмотрим оптимальное решение задачи (max) и задачи (min) и оптимальное значение целевой функции как функцию от  $C_1, \ldots, C_k$ :

$$\hat{\mathbf{x}} = \hat{\mathbf{x}}(C_1, \ldots, C_k)$$
  $\hat{f} = f(\hat{\mathbf{x}}) = \hat{f}(C_1, \ldots, C_k).$ 

#### Теорема

 $\hat{\pmb{x}} = \hat{\pmb{x}}(\textit{C}_1, \ldots, \textit{C}_k)$  есть гладкая функция и выполнены равенства

$$\mu_j = \frac{\partial \hat{f}}{\partial C_j}$$
  $j = 1, \dots, k$ 

1 Постановка задачи. Выпуклая оптимизация

Функция Лагранжа

③ Функция Лагранжа в форме Куна-Таккера

4 Пример: Consumption–Leisure choice

#### Постановка задачи

Экономический агент имеет два «товара»: «отдых» I (leisure, в часах) и потребление x.

Пусть w – почасовая оплата и P – цена потребления.

Агент располагает общим временем H, которое он может тратить на работу и на отдых, и также имеет фиксированный доход M (non-labor income).

Функция полезности экономического агента U(x, I).

## Постановка задачи

Рассмотрим задачу оптимизации

$$\max U(x, I)$$

$$s.t. \begin{cases} Px + wI \le wH + M \\ 0 \le I \le H \\ x \ge 0 \end{cases}$$

Вопрос: какая интерпретация у такой постановки?

## Функция Лагранжа в форме К.-Т.

Перепишем в виде задачи (max)

$$\max_{s.t.} \begin{cases} Px + wl \le wH + M \\ l \le H \\ x, l \ge 0 \end{cases}$$

## Функция Лагранжа в форме К.-Т.

Перепишем в виде задачи (max)

$$\max_{s.t.} U(x, I)$$

$$\int_{I \le H} Px + wI \le wH + M$$

$$I \le H$$

$$x, I \ge 0$$

Функция Лагранжа имеет вид

$$\mathcal{Z}(x, l, \mu_1, \mu_2) = U(x, l) - \mu_1(Px + wl - wH - M) - \mu_2(l - H)$$

И

$$\mathcal{Z}_{x}' = U_{x}' - \mu_{1}P \qquad \qquad \mathcal{Z}_{I}' = U_{I}' - \mu_{1}w - \mu_{2}$$

# Consumption—Leisure choice как задача выпуклой оптимизации

Ограничения задаются линейными функциями  $\Rightarrow$  выпуклыми функциями.

Если функция полезности U вогнута, то задача Consumption—Leisure choice есть задача выпуклой оптимизации.

# Consumption—Leisure choice как задача выпуклой оптимизации

Ограничения задаются линейными функциями  $\Rightarrow$  выпуклыми функциями.

Если функция полезности U вогнута, то задача Consumption—Leisure choice есть задача выпуклой оптимизации.

#### Вывод

Если функция полезности U вогнута, то решение системы уравнений-неравенств (5) есть решение задачи оптимизации.

## Система К.-Т. для Consumption-Leisure choice

#### Система (5) имеет вид

$$\begin{cases} x_{i}Z'_{x_{i}} = 0 \\ \mu_{j}Z'_{\mu_{j}} = 0 \\ Z'_{x_{i}}, Z'_{\mu_{j}} \leq 0 \\ x_{i}, \mu_{j} \geq 0 \end{cases} \Rightarrow \begin{cases} x(U'_{x} - \mu_{1}P) = 0 \\ I(U'_{l} - \mu_{1}w - \mu_{2}) = 0 \\ -\mu_{1}(Px + wl - wH - M) = 0 \\ -\mu_{2}(I - H) = 0 \\ U'_{x} - \mu_{1}P \leq 0 \\ U'_{l} - \mu_{1}w - \mu_{2} \leq 0 \\ wH + M - Px - wl \geq 0 \\ H - I \geq 0 \\ x, I, \mu_{1}, \mu_{2} > 0 \end{cases}$$

$$(7)$$

# Общие свойства решения сситемы (7)

Если 
$$\mu_1=0$$
, то  $U_{\mathsf{x}}'-\mu_1P\leq 0\Rightarrow U_{\mathsf{x}}'\leq 0$ 

## Общие свойства решения сситемы (7)

Если 
$$\mu_1=$$
 0, то

$$U_x' - \mu_1 P \le 0 \Rightarrow U_x' \le 0$$

Ho! Стандартные условия на функцию полезности:  $U'_{\mathsf{x}},\,U'_{\mathsf{I}}>0$ .

Противоречие!

# Общие свойства решения сситемы (7)

Если  $\mu_1 = 0$ , то

$$U_x' - \mu_1 P \le 0 \Rightarrow U_x' \le 0$$

Ho! Стандартные условия на функцию полезности:  $U'_{\mathsf{x}},\,U'_{\mathsf{I}}>0.$ 

#### Противоречие!

Следовательно всегда  $\mu_1>0$  и на оптимальном решении

$$Px + wI = wH + M$$

т.е. ограничение будет равенством.

## Kак решать систему (7)?

Так как  $x,I\geq 0$ , то нужно последовательно рассматривать случаи:

- ① x, l > 0;
- ② x > 0, I = 0;

# Как решать систему (7)?

Так как  $x,I\geq 0$ , то нужно последовательно рассматривать случаи:

- **1** x, l > 0;
- ② x > 0, I = 0;

#### Важно!

Cлучай x=0 не реализуется

#### Случай x=0

B самом деле, если x=0, то

$$Px + wI - wH - M = w(I - H) - M < -M < 0$$
 (t.k.  $I \le H$ )

#### Случай x = 0

B самом деле, если x=0, то

$$Px + wI - wH - M = w(I - H) - M < -M < 0$$
 (т.к.  $I \le H$ )

Из третьего уравнения (7)

$$\mu_1(Px + wI - wH - M) = 0 \Rightarrow \mu_1 = 0$$

#### Случай x=0

B самом деле, если x=0, то

$$Px + wI - wH - M = w(I - H) - M < -M < 0 \quad (\tau.\kappa. I \le H)$$

Из третьего уравнения (7)

$$\mu_1(Px + wI - wH - M) = 0 \Rightarrow \mu_1 = 0$$

Тогда

$$U_x' - \mu_1 P \le 0 \Rightarrow U_x' \le 0$$

Ho! Стандартные условия на функцию полезности:  $U_x', U_I' > 0$ .

Противоречие!

Случай 
$$I = 0, x > 0$$

Так как Px + wI = wH + M, то  $\hat{x} = (M + wH)/P$ .

Так как Px + wI = wH + M, то  $\hat{x} = (M + wH)/P$ .

Из первого уравнения системы (7):

$$U_x' = \mu_1 P \Rightarrow \hat{\mu}_1 = U_x'(\hat{x}, 0)/P.$$

Так как Px + wI = wH + M, то  $\hat{x} = (M + wH)/P$ .

Из первого уравнения системы (7):

$$U_x' = \mu_1 P \Rightarrow \hat{\mu}_1 = U_x'(\hat{x}, 0)/P.$$

Далее  $\mu_2(I-H)=0\Rightarrow \hat{\mu}_2=0$ .

Так как Px + wI = wH + M, то  $\hat{x} = (M + wH)/P$ .

Из первого уравнения системы (7):

$$U_x' = \mu_1 P \Rightarrow \hat{\mu}_1 = U_x'(\hat{x}, 0)/P.$$

Далее  $\mu_2(I-H)=0\Rightarrow \hat{\mu}_2=0.$ 

Осталось неравенство  $U_{l}' - \mu_{1}w - \mu_{2} \leq 0$ .

Так как Px + wI = wH + M, то  $\hat{x} = (M + wH)/P$ .

Из первого уравнения системы (7):

$$U_x' = \mu_1 P \Rightarrow \hat{\mu}_1 = U_x'(\hat{x}, 0)/P.$$

Далее  $\mu_2(I-H)=0\Rightarrow \hat{\mu}_2=0.$ 

Осталось неравенство  $U_l' - \mu_1 w - \mu_2 \le 0$ .

#### Вывод

 $(\hat{x},0)$  – решение задачи Consumption-Leisure Choice  $\iff$ 

$$PU_I'(\hat{x},0) \leq wU_x'(\hat{x},0).$$

### Случай x, I > 0

#### Получим систему

$$\begin{cases} U'_{x} - \mu_{1}P = 0 \\ U'_{I} - \mu_{1}w - \mu_{2} = 0 \\ Px + wI = wH + M \\ \mu_{2}(I - H) = 0 \\ \mu_{1}, \mu_{2}, x, I \ge 0 \\ I \le H \end{cases}$$

## Случай x, I > 0

#### Получим систему

$$\begin{cases} U'_{x} - \mu_{1}P = 0 \\ U'_{I} - \mu_{1}w - \mu_{2} = 0 \\ Px + wI = wH + M \\ \mu_{2}(I - H) = 0 \\ \mu_{1}, \mu_{2}, x, I \ge 0 \\ I \le H \end{cases}$$

#### Два случая

**2** 
$$I < H$$
 и  $\mu_2 = 0$ .