Київський національний університет імені Т.Шевченка

Звіт

До лабораторної роботи №1

ГЕНЕРУВАННЯ ПСЕВДОВИПАДКОВИХ ЧИСЕЛ

Кирило Байбула Аленович Група К-21 Факультету комп'ютерних наук та кібернетики

Київ 2021

META

Написати програму, що реалізує десять генераторів псевдовипадкових чисел. Кожний генератор викликати за допомогою меню, яке реагує на ввід цілого числа: 1, . . . , 10. Згенерувати послідовність псевдовипадковіх чисел, яка має якнайдовший період (не менше 100).

Побудувати гістограму, яка ілюструє розподіл чисел на інтервалах [0;1] (для нормального розподілу), [-3;3] (для нормального розподілу), [0; 100] — для решти розподілів. Гістограму подати у вигляді таблиці. Наприклад, для рівномірного розподілу вона виглядатиме приблизно так. Частота обчислюється як дріб, чисельником якого є кількість потраплянь випадкових чисел в певний інтервал, в знаменником — повна кількість згенерованих чисел.

Інтервал	Частота
[0.1;0.2]	0.15
[0.2;0.3]	0.1
[0.3;0.4]	0.12
[0.4;0.5]	0.15
[0.5;0.6]	0.05
[0.6;0.7]	0.08
[0.7;0.8]	0.16
[0.8; 0.9]	0.04
[0.9;1.0]	0.1

Генератори псевдовипадкових чисел, як правило, породжують ціле число X, яке лежить в інтервалі від 0 до деякого заздалегідь заданого числа m. Тому дійсні псевдовипадкові числа, рівномірно розподілені між 0 і 1, обчислються за формулою

$$U = X/m$$

МЕТОДИ ГЕНЕРУВАННЯ

Методи генерування рівномірно розподілених чисел

Лінійний когуруентний

$$X_{n+1} = (aX_n + c) \mod m,$$

 $U_{n+1} = X_{n+1}/m, n \ge 0,$

де m – модуль, m>0, a – множник, $0 \le a < m,$ c – приріст, $0 \le < m,$ X_0 – початкове значення, $0 \le X_0 < m.$

Таблиця інтервалів та частот попадання чисел для лінійного конгурентного методу при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0.0; 0.1]	0.10
[0.1; 0.2]	0.10
[0.2; 0.3]	0.10
[0.3; 0.4]	0.10
[0.4; 0.5]	0.10
[0.5; 0.6]	0.09
[0.6; 0.7]	0.10
[0.7; 0.8]	0.10
[0.8; 0.9]	0.10
[0.9; 1.0]	0.10

[0.0;	0.1]	0.10	#########
[0.1;	0.2]	0.10	##########
[0.2;	0.3]	0.10	##########
[0.3;	0.4]	0.10	#########
[0.4;	0.5]	0.10	#########
[0.5;	0.6]	0.09	########
[0.6;	0.7]	0.10	#########
[0.7;	0.8]	0.10	#########
[0.8;	0.9]	0.10	#########
[0.9;	1.0]	0.10	########

Квадратичний конгруентний метод

$$X_{n+1} = (dX_n^2 + aX_n + c) \mod m,$$

 $U_{n+1} = X_{n+1}/m, n \ge 0,$

Таблиця інтервалів та частот попадання чисел для квадратичного конгруентного методу при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0.0; 0.1]	0.12
[0.1; 0.2]	0.09
[0.2; 0.3]	0.12
[0.3; 0.4]	0.08
[0.4; 0.5]	0.11
[0.5; 0.6]	0.16
[0.6; 0.7]	0.08
[0.7; 0.8]	0.11
[0.8; 0.9]	0.07
[0.9; 1.0]	0.06

[0.0;	0.1]	0.12	##########
[0.1;	0.2]	0.09	########
[0.2;	0.3]	0.12	#########
[0.3;	0.4]	0.08	#######
[0.4;	0.5]	0.11	#########
[0.5;	0.6]	0.16	################
[0.6;	0.7]	0.08	#######
[0.7;	0.8]	0.11	#########
[0.8;	0.9]	0.07	######
[0.9;	1.0]	0.06	######

Числа Фібоначчі

$$X_{n+1} = (X_n + X_{n-1}) \mod m, n \ge 0$$

 $U_{n+1} = X_{n+1}/m, n \ge 0,$

Таблиця інтервалів та частот попадання чисел для Чисел Фібоначчі при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0.0; 0.1]	0.11
[0.1; 0.2]	0.10
[0.2; 0.3]	0.10
[0.3; 0.4]	0.10
[0.4; 0.5]	0.09
[0.5; 0.6]	0.10
[0.6; 0.7]	0.11
[0.7; 0.8]	0.10
[0.8; 0.9]	0.09
[0.9; 1.0]	0.10

Фотографія гістограмми програми у стандартний поток виводу:

[0.0; 0.1]	0.11	#########
[0.1; 0.2]	0.10	########
[0.2; 0.3]	0.10	#########
[0.3; 0.4]	0.10	#########
[0.4; 0.5]	0.09	#######
[0.5; 0.6]	0.10	#########
[0.6; 0.7]	0.11	#########
[0.7; 0.8]	0.10	########
[0.8; 0.9]	0.09	########
[0.9; 1.0]	0.10	#########

Обернена конгруентна послідовність

$$X_{n+1} = (aX_n^{-1} + c) \mod m, n \ge 0$$

 $U_{n+1} = X_{n+1}/m, n \ge 0,$

Таблиця інтервалів та частот попадання чисел для Оберненого методу при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0.0; 0.1]	0.10
[0.1; 0.2]	0.10
[0.2; 0.3]	0.10
[0.3; 0.4]	0.10
[0.4; 0.5]	0.10
[0.5; 0.6]	0.10
[0.6; 0.7]	0.10
[0.7; 0.8]	0.10
[0.8; 0.9]	0.10
[0.9; 1.0]	0.10

[0.0;	0.1]	0.10	#########
[0.1;	0.2]	0.10	########
[0.2;	0.3]	0.10	#########
[0.3;	0.4]	0.10	########
[0.4;	0.5]	0.10	#########
[0.5;	0.6]	0.10	#########
[0.6;	0.7]	0.10	########
[0.7;	0.8]	0.10	#########
[0.8;	0.9]	0.10	########
[0.9;	1.0]	0.10	#########

Метод об'єднання

$$Z_n = (X_n - Y_n) \mod m, n \ge 0$$

 $0 \le X_n < m, 0 \le Y_n < m' <= m$
 $U_{n+1} = Z_{n+1}/m, n \ge 0,$

Таблиця інтервалів та частот попадання чисел для Методу об'єднання при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0.0; 0.1]	0.10
[0.1; 0.2]	0.10
[0.2; 0.3]	0.10
[0.3; 0.4]	0.10
[0.4; 0.5]	0.10
[0.5; 0.6]	0.10
[0.6; 0.7]	0.10
[0.7; 0.8]	0.10
[0.8; 0.9]	0.10
[0.9; 1.0]	0.10

Фотографія гістограмми програми у стандартний поток виводу:

[0.0;	0.1]	0.10	#########
[0.1;	0.2]	0.10	#########
[0.2;	0.3]	0.10	########
[0.3;	0.4]	0.10	#########
[0.4;	0.5]	0.10	########
[0.5;	0.6]	0.10	########
[0.6;	0.7]	0.10	########
[0.7;	0.8]	0.10	#########
[0.8;	0.9]	0.10	########
[0.9;	1.0]	0.10	#########

Методи нормального розподілу

Метод об'єднання

$$X_n = m + (sum - 6)\sigma,$$

де m — медіана, σ — дисперсія, sum — сума дванадцяти випадкових чисел, рівномірно розподілених на інтервалі [a, b]. Якщо [a, b] = [0; 1], то m = 0, а σ = 1. Правило 3-сігма стверджує, на проміжку [m–3 σ , m+3 σ] міститься 99,7% всіх випадкових чисел, що мають розподіл N(m, σ 2). Отже для побудови гістограми розподілу N(0,1) достатньо обмежитись інтервалом [-3;3]. Таблиця інтервалів та частот попадання чисел для Правил Трьох сігма при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[-3.0; -2.4]	0.01
[-2.4; -1.8]	0.03
[-1.8; -1.2]	0.07
[-1.2; -0.6]	0.16
[-0.6; +0.0]	0.23
[+0.0; +0.6]	0.22
[+0.6; +1.2]	0.18
[+1.2; +1.8]	0.08
[+1.8; +2.4]	0.02
[+2.4; +3.0]	0.01

```
0.01
               ##
        0.03
        0.07
              #######
-1.21
        0.16
               ##################
        0.23
               0.22
               0.18
               ###############################
               #######
        0.08
        0.02
               ##
        0.01
```

Метод полярних координат

Таблиця інтервалів та частот попадання чисел для Методу полярних координат при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[-3.0; -2.4]	0.01
[-2.4; -1.8]	0.03
[-1.8; -1.2]	0.07
[-1.2; -0.6]	0.17
[-0.6; +0.0]	0.24
[+0.0; +0.6]	0.23
[+0.6; +1.2]	0.14
[+1.2; +1.8]	0.08
[+1.8; +2.4]	0.03
[+2.4; +3.0]	0.01

Фотографія гістограмми програми у стандартний поток виводу:

```
-1.8]
          0.03
                 ##
1.8; -1.2]
          0.07
                 #######
          0.17
                 ###################
                 0.24
                 0.23
                 ##############
          0.14
          0.08
                 #######
          0.03
                 ##
          0.01
```

Метод співвідношень

Таблиця інтервалів та частот попадання чисел для Методу полярних координат при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[-3.0; -2.4]	0.01
[-2.4; -1.8]	0.03
[-1.8; -1.2]	0.07
[-1.2; -0.6]	0.18
[-0.6; +0.0]	0.21
[+0.0; +0.6]	0.22
[+0.6; +1.2]	0.18
[+1.2; +1.8]	0.06
[+1.8; +2.4]	0.02
[+2.4; +3.0]	0.01

Методи генерування інших розподілів

Метод логарифму для генерування показового розподілу

Таблиця інтервалів та частот попадання чисел для Методу логарифму для генерування показового розподілу при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0; 10]	0.27
[10; 20]	0.21
[20; 30]	0.15
[30; 40]	0.10
[40; 50]	0.07
[50; 60]	0.05
[60; 70]	0.04
[70; 80]	0.03
[80; 90]	0.03
[90; 100]	0.02

Фотографія гістограмми програми у стандартний поток виводу:

```
[ 0; 10]
[10; 20]
[20; 30]
                  0.27
                           0.21
                           #####################################
                  0.15
                           ###############
[30; 40]
                  0.10
                           ##########
[40; 50]
                  0.07
                           #######
[50; 60]
[60; 70]
                           #####
                  0.05
                  0.04
                           ###
[70; 80]
                  0.03
                           ##
[80; 90]
                  0.03
                           ##
                  0.02
     100]
```

Метод Аренса для генерування гамма-розподілу порядку

Таблиця інтервалів та частот попадання чисел для Методу логарифму для генерування показового розподілу при 10,000,000 псевдовипадково знегеровних чисел:

Інтервал	Частота
[0; 10]	0.03
[10; 20]	0.08
[20; 30]	0.26
[30; 40]	0.31
[40; 50]	0.11
[50; 60]	0.04
[60; 70]	0.02
[70; 80]	0.01
[80; 90]	0.01
[90; 100]	0.01

```
[ 0; 10]
[10; 20]
             0.08
                    ########
[20; 30]
             0.26
                    0.31
                   [30; 40]
[40; 50]
[50; 60]
             0.11
             0.04
                   ####
[60; 70]
             0.02
                   ##
[70; 80]
             0.01
[80; 90]
             0.01
[90; 100]
             0.01
```