Why Convolutional NN?

- Sharing of weights ends up reducing the overall number of trainable weights hence introducing sparsity
- 2. After several convolutional and pooling layers, the image size (feature map size) is **reduced and more complex features are extracted**.
- 3. The usage of CNNs are motivated by the fact that they can capture / are able to **learn relevant features** from an image at different levels similar to a human brain.

Convolution?

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

F ₁₁	F ₁₂
F 21	F 22

Input X

Filter F

X ₁₁ F ₁₁	X ₁₂ F ₁₂	X ₁₃
X ₂₁ F ₂₁	X ₂₂ F ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

Filter F

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

How Convolutional NN better?

Computational Graph - Convolution Operation

 $\frac{\partial Z}{\partial x}$ & $\frac{\partial Z}{\partial y}$ are local gradients $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Convolution Operation

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

Input X

F 11	F ₁₂
F 21	F 22

Filter F

X ₁₁ F ₁₁	X ₁₂ F ₁₂	X ₁₃
X ₂₁ F ₂₁	X ₂₂ F ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

Filter F

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Computational Graph - Convolution Operation

$$\frac{\partial 0}{\partial X}$$
 & $\frac{\partial 0}{\partial F}$ are local gradients $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Chain Rule.

Local Gradients

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{11} , F_{12} , F_{21} and F_{22}

$$\frac{\partial O_{11}}{\partial F_{11}} = X_{11}$$
 $\frac{\partial O_{11}}{\partial F_{12}} = X_{12}$ $\frac{\partial O_{11}}{\partial F_{21}} = X_{21}$ $\frac{\partial O_{11}}{\partial F_{22}} = X_{22}$

Similarly, we can find the local gradients for O_{12} , O_{21} and O_{22}

Applying chain rule

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{11}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{11}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{11}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{11}}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{12}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{12}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{12}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{12}}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{21}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{21}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{21}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{21}}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{22}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{22}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{22}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

Applying chain rule

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} \times X_{11} + \frac{\partial L}{\partial O_{12}} \times X_{12} + \frac{\partial L}{\partial O_{21}} \times X_{21} + \frac{\partial L}{\partial O_{22}} \times X_{22}
\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} \times X_{12} + \frac{\partial L}{\partial O_{12}} \times X_{13} + \frac{\partial L}{\partial O_{21}} \times X_{22} + \frac{\partial L}{\partial O_{22}} \times X_{23}
\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} \times X_{21} + \frac{\partial L}{\partial O_{12}} \times X_{22} + \frac{\partial L}{\partial O_{21}} \times X_{31} + \frac{\partial L}{\partial O_{22}} \times X_{32}
\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} \times X_{22} + \frac{\partial L}{\partial O_{12}} \times X_{23} + \frac{\partial L}{\partial O_{21}} \times X_{32} + \frac{\partial L}{\partial O_{22}} \times X_{33}$$

Convolution Representation

<u>∂L</u> ∂F ₁₁	$\frac{\partial L}{\partial F_{12}}$			X ₁₁	X ₁₂	X ₁₃		$\frac{\partial L}{\partial O_{_{11}}}$	$\frac{\partial L}{\partial O_{12}}$	
∂L	∂L	= Convolution		X ₂₁	X ₂₂	X ₂₃		∂L	<u>∂L</u>	
∂F_{21}	∂F ₂₂		\	X ₃₁	X ₃₂	X ₃₃	,	$\overline{\partial O}_{21}$	$\overline{\partial O}_{22}$	
			/]			/

where

Chain rule

For every element of X_i

$$\frac{\partial L}{\partial X_{i}} = \sum_{k=1}^{M} \frac{\partial L}{\partial O_{k}} * \frac{\partial O_{k}}{\partial X_{i}}$$

Local Gradients

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Differentiating with respect to X_{11} , X_{12} , X_{21} and X_{22}

$$\frac{\partial O_{11}}{\partial X_{11}} = F_{11} \quad \frac{\partial O_{11}}{\partial X_{12}} = F_{12} \quad \frac{\partial O_{11}}{\partial X_{21}} = F_{21} \quad \frac{\partial O_{11}}{\partial X_{22}} = F_{22}$$

Similarly, we can find local gradients for O_{12} , O_{21} and O_{22}

Representation

$$\frac{\partial L}{\partial X_{11}} = \frac{\partial L}{\partial O_{11}} * F_{11}$$

$$\frac{\partial L}{\partial X_{12}} = \frac{\partial L}{\partial O_{11}} * F_{12} + \frac{\partial L}{\partial O_{12}} * F_{11}$$

$$\frac{\partial L}{\partial X_{13}} = \frac{\partial L}{\partial O_{12}} * F_{12}$$

$$\frac{\partial L}{\partial X_{21}} = \frac{\partial L}{\partial O_{11}} * F_{21} + \frac{\partial L}{\partial O_{21}} * F_{11}$$

$$\frac{\partial L}{\partial X_{22}} = \frac{\partial L}{\partial O_{11}} * F_{22} + \frac{\partial L}{\partial O_{12}} * F_{21} + \frac{\partial L}{\partial O_{21}} * F_{12} + \frac{\partial L}{\partial O_{22}} * F_{11}$$

$$\frac{\partial L}{\partial X_{23}} = \frac{\partial L}{\partial O_{12}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{12}$$

$$\frac{\partial L}{\partial X_{31}} = \frac{\partial L}{\partial O_{21}} * F_{21}$$

$$\frac{\partial L}{\partial X_{32}} = \frac{\partial L}{\partial O_{21}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{21}$$

$$\frac{\partial L}{\partial X_{33}} = \frac{\partial L}{\partial O_{21}} * F_{22}$$

$$\frac{\partial L}{\partial O_{22}} = \frac{\partial L}{\partial O_{22}} * F_{22}$$

Filter F

$\frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$
$\frac{\partial L}{\partial O_{21}}$	$\frac{\partial L}{\partial O_{22}}$

Loss Gradient
$$\frac{\partial L}{\partial \theta}$$

F ₂₂	F ₂₁	
F ₁₂	$F_{11} \frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$
	$\frac{\partial L}{\partial O_{21}}$	<u>∂L</u> ∂ 0 ₂₂

Representation

$\frac{\partial L}{\partial X}$	<u>∂L</u> ∂X	$\frac{\partial L}{\partial X_{12}}$					1	21	21	1
<u>∂L</u>	$\frac{\partial L}{\partial L}$	<u>∂L</u>	Full		F 22	F 21		$\frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$	
∂X_{21}	∂X_{22}	∂X_{23}	Convolution		F ₁₂	F ₁₁	,	<u>∂L</u>	∂L	1 /
$\frac{\partial L}{\partial X_{31}}$	$\frac{\partial L}{\partial X}$	$\frac{\partial L}{\partial X}$				er F		$\partial \mathcal{O}_{21}$	∂ 0 ₂₂] /
31	$\frac{\partial \mathcal{L}_{32}}{\partial \mathcal{L}}$	33		\				Loss Grad	dient $\frac{\partial L}{\partial 0}$	/

Result ∂L/∂F and ∂L/∂X

Representation

Backpropagation in a Convolutional Layer of a CNN

Finding the gradients:

$$\frac{\partial L}{\partial F}$$
 = Convolution (Input X, Loss gradient $\frac{\partial L}{\partial O}$)

$$\frac{\partial L}{\partial X} = \text{Full} \left(\frac{180^{\circ} \text{ rotated}}{\text{Filter F}}, \frac{\text{Loss}}{\text{Gradient}}, \frac{\partial L}{\partial O} \right)$$

Convolution Output

$$O = \frac{W - K + 2P}{S} + 1$$

W = input height or length

K = kernel length or size

P = padding

S = stride

Layer (type)	Output	Shape	Param #
conv2d_2 (Conv2D)	(None,	28, 28, 64)	320
max_pooling2d_2 (MaxPooling2	(None,	14, 14, 64)	0
conv2d_3 (Conv2D)	(None,	14, 14, 32)	8224
max_pooling2d_3 (MaxPooling2	(None,	7, 7, 32)	0
flatten_1 (Flatten)	(None,	1568)	0
dense_2 (Dense)	(None,	256)	401664
dense 3 (Dense)	(None,	10)	2570

Total params: 412,778 Trainable params: 412,778 Non-trainable params: 0

Padding=Valid

1	2	3
4	5	6
7	8	9
10	11	12

padding	VALID
filter	2x2
stride	2x2
input	4x3
output	2x1

Padding=Same

1	2	3
4	5	6
7	8	9
10	11	12

padding	SAME
filter	2x2
stride	2x2
input	4x3
output	2x2

Quiz 7

Support Vector Machine (SVM)

SVM (Videos 12.1 to 12.6) Andrew Ng

https://www.youtube.com/watch?v=hCOIMkcsm_g&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhIRJLN&index=70