

Compression des Maillages 3D

Codage et Compression Master 1 Imagine

Maillages 3D Triangulaires

- Géométrie : un nuage des points
- Un point v = (x, y, z)
- Connectivité : des triangles
- Résolution peut être augmentée avec plus de points

Maillages 3D Triangulaires

- Ils peuvent avoir des autre caractéristiques aussi!
 - Texture
 - Normals
 - 0
- Tout peut être écrit dans le fichier

1^{ere} Méthode de Compression 3D: Décimation

- Baisse de résolution
- Simplification: Edge collapse
- Lossy

Standard de Compression 3D : Draco

- Créé par Google
- Nouveau standard en industrie
- https://google.github.io/draco/

Draco Encoding: Les étapes principales

- Quantification des points
- Edgebreaker : Compression de connectivité
- Erreurs de prédiction : Compression de géométrie
- Encodage entropique (rANS)

Quantification

- Conserve uniquement certains bits par coordonnée
- Les MSB sont conservés
- Standard: 32-bits par coordonnée

Quantification

- En pratique : plusieurs façons de faire
- Le façon Draco :

Quantification: $c' = (c - BB_{min c}) * 2^{qp} / range$

Déquantification : $c = (c' + BB_{min c}) * range / 2^{qp}$

- c : coordonnée
- c': coordonnée quantifiée
- qp: facteur de quantification
- range : le plus grand côté du boite englobant
- BB_{min_c}: coordonnées minimums du boite englobant

Résultat : un entier non signé et arrondi

Edgebreaker: Encodage

- Encodage de connectivité
- Triangles représentés par un CLERS string
- CLERS étiquette attribuée selon le statut des triangles voisins
- 1 2 bits par triangle

Edgebreaker: Encodage

Edgebreaker : Decodage

- Reconstruire le maillage à partir de CLERS
- Chaque section est "zipped" après L ou E.

Erreurs de prédiction : Compression des points 3D

- Les points sont prédits
- Uniquement des erreurs de prédiction sont écrits
- Des grandes valeurs des petites valeurs sans perte d'information

Prédiction d'un Parallélogramme

- Règle d'un parallélogramme
- Prédiction $\hat{\mathbf{v}} = v_l + v_r v_m$

Encodage Entropique - range Asymetrical Numeral Systems (rANS)

- Utilisé par : Google, Facebook, Apple, Linux...
- Taux de compression arithmétique avec un temps de compression de Huffman

rANS: L'idée

- Alphabet A : [0,...,9]
- Séquence $S = \{3, 2, 0, 8, 9, 1\}$
- On veut représenter S avec un seul entier : X₆ = 320891

$$X_0 = 0$$
 $X_1 = X_0 * 10 + 3$
 $X_2 = X_1 * 10 + 2$
...
 $X_6 = X_5 * 10 + 1$

rANS: L'idée

- Alphabet A : [0,...,9]
- Séquence $S = \{3, 2, 0, 8, 9, 1\}$
- On veut représenter S avec un seul entier : $X_6 = 320891$

$$X_6 = 320891$$
 $X_5 = \lfloor X_6/10 \rfloor, s_6 = mod(X_6, 10)$
 $X_4 = \lfloor X_5/10 \rfloor, s_5 = mod(X_5, 10)$
 \dots
 $X_0 = 0, s_1 = 3$

rANS: L'idée

- Alphabet $A = \{0,...,9\}$
- Séquence S = (3, 2, 0, 8, 9, 1)
- On veut représenter S avec un seul entier : X₆ = 320891
- X₆ est converti en binaire : log₂10 bits/symbole
- Optimal uniquement si chaque symbole est équiprobable.
- Est-ce qu'on peut représenter la même séquence avec moins de bits/symbole?
- rANS : les symboles les plus fréquents → plus petit changement d'échelle.

rANS: Notation

- Alphabet A = $\{a_1, a_2, ..., a_k\}$
- Séquence S = $(s_1, s_2, ..., s_n)$
- Fréquence $F = \{F_{a1}, F_{a2}, ..., F_{ak}\}$ proportionnelle aux probabilités $p = \{p_1, p_2, ..., p_k\}$
- La taille de fréquence $M = \sum_{i=1}^k F_i \longrightarrow p_i = rac{F_{a_i}}{M}$
- Fréquence cumulative $C_{a_i} = \sum_{j=1}^{i-1} F_{a_j}$

rANS: Etats

- Un état de rANS est noté X_t où t = numéro d'état.
- Initialisation : $X_0 = 0$
- X_t basé sur l'état X_{t-1} précédent et le symbole courant s_t : $X_t = C_{rANS}(X_{t-1}, s_t)$
- S_t et X_t récuperer lors du décodage : $s_t, X_{t-1} = D_{rANS}(X_t)$

rANS: Encodage

Alphabet A, Séquence S, Fréquence F, probabilités $p=\{p_1,p_2,....,p_k\}$, taille M, fréquence cumulative C

$$X_t = \left \lfloor rac{X_{t-1}}{F_{s_t}}
ight
floor *M + C_{s_t} + mod(X_{t-1}, F_{s_t})$$

rANS: Décodage

Alphabet A, Séquence S, Fréquence F, probabilités $p=\{p_1,p_2,....,p_k\}$, taille M, fréquence cumulative C

$$egin{aligned} slot &= mod(X_t, M) \ s_t &= C_inv(slot) \ X_{t-1} &= \left | rac{X_t}{M}
ight | *F_{s_t} + slot - C_{s_t} \end{aligned}$$

Mesures de Distortion

- A quel point les maillages sont déformés?
- On compare avec le maillage original :
 - Root Mean Squared Error (RMSE)
 - Distance de Hausdorff

Mesures de Distortion: RMSE

- Root mean squared error
- Le correspondant entre deux maillages est connu

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Mesures de Distortion : Distance de Hausdorff

- Le correspondant entre deux maillages est inconnu
- La plus grande distance au point le plus proche

• Plus coûteux que le RMSE

$$d_H(X,Y) = \max \left\{ \sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y) \right\}.$$

