Classification

Given features, want to predict **binary** or **categorical** variables

Classification problems

Is this a **cat** or a **dog**? (e.g. robot, automatic car) (cat)

Classification problems

Shoulder Bags for Women Large Ladies Crossbody Bag with Tassel ★★★☆~630 \$3899 - \$3999

Leather Tote Womens Shoulder Handbag \$1790 - \$1890

Crossbody Bag for Women Waterproof Shoulder Bag Messenger Rag Casual Nylon Purse Handbag ★★★★☆~197

\$1849 - \$2199

SOLP Fashion Women's Leather Handbags ladies Waterproof Shoulder Rag Tote Bags **★★★☆** ~ 426

\$2598 -\$3399

Leather Fashion Hobo Shoulder Bags with Adjustable Shoulder Strap ********

\$4222

Tote Bags Wallets ★★★☆☆~260 \$1499 - \$2799

Handbags for Women Shoulder

Fanspack Women's Canvas Hobo Handbags Simple Casual Top Handle Tote Bag Crossbody Shoulder Bag Shopping Work Bag ★★★★☆~225

\$1399

Laptop Tote Bag Laptop Bag for Women Large Capacity Briefcase Lightweight Computer Bags Fit Up to 15.6 in Laptop Notebook ******

\$4300

(no)

Probabilistic framework

Instead of directly predicting 0's and 1's

we could predict the probability of being in each class:

Applications

Ranking of the search results by probabilities

but they yearn for support and love.

Medical diagnosis

▶ Looking at the heart rate, blood pressure etc., what is the chance of contracting a heart disease?

Binary classification

Given: an instance with features x and possible label y = 0 or y = 1.

Goal: Predict the probability of the instance being in class 0 and 1:

$$P(y=0|x)$$
 and $P(y=1|x)$

We then make the following prediction:

$$\hat{y} = \begin{cases} \mathbf{0} & \text{if } P(y=1|\mathbf{x}) \le 0.5 \\ \mathbf{1} & \text{if } P(y=1|\mathbf{x}) > 0.5 \end{cases}$$

Multiclass classification

Given: an instance with features x and possible label y = 1, 2, ..., N.

Goal: Predict the probability of the instance being in class 1, 2, ..., N:

$$P(y = j | x)$$
 for $j = 1, 2, ..., N$

We then make the following prediction:

$$\hat{y} = J$$
 if $P(y = J|x) > P(y = j|x)$ for any other j

Predicting probability

Can we use linear regression to do this?

We need some function that stays between 0 and 1.

Predicting probability

Instead, we need something like this:

That is, we are looking for a function with the following properties:

- 1. Stays between 0 and 1
- 2. Continuous
- 3. Symmetric

Sigmoid function:
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

- ▶ If $x \to -\infty$ then $\sigma(x) \to 0$.
- ▶ If $x \to \infty$ then $\sigma(x) \to 1$.

From features to probability

If the data is (x_1, y)

Find *coefficients* $A = [a_0, a_1, \dots, a_m]$ such that

$$P(y=1|x) = \frac{1}{1 + e^{-(a_0 + a_1x_1 + \dots + a_mx_m)}} = \frac{1}{1 + e^{-A \cdot x}}$$

$$P(y=1|x) = \frac{1}{1 + e^{-(a_0 + a_1x_1 + \dots + a_mx_m)}} = \frac{1}{1 + e^{-A \cdot x}}$$

- ▶ If $a_0 + a_1x_1 + \ldots + a_mx_m \to \infty$ then $\sigma(x) \to 1$.
- ▶ If $a_0 + a_1x_1 + \ldots + a_mx_m \to -\infty$ then $\sigma(x) \to 0$.

Find *coefficients* $A = [a_0, a_1, \dots, a_m]$ such that

$$P(y = 1|x) = \frac{1}{1 + e^{-(a_0 + a_1x_1 + \dots + a_mx_m)}} = \frac{1}{1 + e^{-A \cdot x}}$$
best fit the data

What is P(y = 0|x)?

Log-odds

How can we interpret the linear function $a_0 + a_1x_1 + ... + a_mx_m$ in this model?

$$\log\left(\frac{P(\mathbf{x})}{1-P(\mathbf{x})}\right) =$$

Log-odds

How can we interpret the linear function $a_0 + a_1x_1 + ... + a_mx_m$ in this model?

$$\log\left(\frac{P(\mathbf{x})}{1-P(\mathbf{x})}\right) =$$

- This is called log-odds or logit.
- ▶ 1 unit increase in x = 1 unit increase in log-odds

Maximum-likelihood principle

Principle: If the data point (x, y) already appears in the data, then the probability P(y|x) is high.

$$= [x_1, x_2, ..., x_{784}]$$

Goal: **Maximize** the probability P(y|x) **for all** data points (x, y).

Maximum-likelihood principle

Given data:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)}), y = 0 \text{ or } 1$$

Find $A = [a_0, a_1, a_2, \dots, a_m]$ that maximizes

 ${\sf Likelihood} = {\sf Probability} \ {\sf that} \ {\sf the} \ {\sf data} \ {\sf appear}$

$$L(A) = P(y^{(1)}|x^{(1)} \text{ and } y^{(2)}|x^{(3)} \text{ and } \dots \text{ and } y^{(n)}|x^{(n)})$$

= $P(y^{(1)}|x^{(1)})P(y^{(2)}|x^{(3)})\dots P(y^{(n)}|x^{(n)})$

Maximum-likelihood principle

Example: $A = [a_0, a_1, \dots, a_{784}]$

Example: Credit card data

Is the user going to default on their credit card? y = 1: default, y = 0: not default

	Coefficient	Std. error	Z-statistic	P-value
Intercept	10.8690	0.4923	22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	0.6468	0.2362	2.74	0.0062

Example: Credit card data

Is the user going to default on their credit card? y = 1: default, y = 0: not default

	Coefficient	Std. error	Z-statistic	P-value
Intercept	10.8690	0.4923	22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	0.6468	0.2362	2.74	0.0062

- ▶ 1 baht increase in balance = 0.0055 unit increase in log-odds
- $Z = \frac{\hat{\beta}_i}{\mathsf{SE}(\hat{\beta}_i)}.$
- ▶ $H_0: \beta_1 = 0$ is rejected; there is an association between balance and the probability of default

Predictions

	Coefficient	Std. error	Z-statistic	P-value
Intercept	10.8690	0.4923	22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	0.6468	0.2362	2.74	0.0062

$$\hat{\rho}(y = 1 | x_1 = 1,500, x_2 = 40, x_3 = 1)$$

$$= \frac{1}{1 + e^{-(-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1)}} = 0.058$$

$$\hat{\rho}(y = 1 | x_1 = 1,500, x_2 = 40, x_3 = 0)$$

$$= \frac{1}{1 + e^{-(-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0)}} = 0.105.$$

Non-students have higher chance of defaulting their cards.

Framingham dataset

- ▶ Label: Diagnosed with a heart disease in the next 10 years
- Features: gender, smoking, blood pressure, heart rate, blood sugar, cholesterol, BMI

The model

$$\begin{split} P\big(y = 1 | \mathsf{CigsPerDay}, \; \mathsf{Chol}, \; \mathsf{BMI} \; \ldots \big) \\ &= \frac{1}{1 + e^{-(0.04 \mathsf{CigsPerDay} + 0.002 \mathsf{Chol} + 0.003 \mathsf{BMI} + \ldots)}}. \end{split}$$

- ▶ If $P(y = 1|\text{CigsPerDay}, \text{ Chol}, \text{ BMI }...) = 0.2 \Rightarrow$, classify y as 0
- ▶ If $P(y = 1 | \text{CigsPerDay}, \text{ Chol}, \text{ BMI } ...) = 0.8 \Rightarrow \text{classify } y \text{ as } 1$
- ▶ With everything else fixed, higher CigsPerDay ⇒ higher chance of heart disease.
- ▶ +1 cigarette per day = +0.04 log-odds.

Cross-validation accuracy

$$Accuracy = \frac{\#Correctly \ classified}{\#Total}$$

10-fold cross-validation

- Split data into 10 sets.
- Train on 9 sets, test on the remaining set.
- Keep changing the test set. Obtain 10 accuracies.
- Compute the average accuracy.

	1NN	3NN	5NN	7NN	9NN	Logistic
Accuracy	77.55	81.96	83.18	83.96	84.29	85.40

Multiclass logistic regression

Similar to the binary logistic regression: given features x, the probability of a data point being in each group is defined by

$$P(y = 1|\mathbf{x}) = \frac{e^{A_1 \cdot \mathbf{x}}}{1 + \sum_{i=1}^{n-1} e^{A_i \cdot \mathbf{x}}}$$

$$P(y = 2|\mathbf{x}) = \frac{e^{A_2 \cdot \mathbf{x}}}{1 + \sum_{i=1}^{n-1} e^{A_i \cdot \mathbf{x}}}$$
...
$$P(y = N - 1|\mathbf{x}) = \frac{e^{A_{N-1} \cdot \mathbf{x}}}{1 + \sum_{i=1}^{n-1} e^{A_i \cdot \mathbf{x}}}$$

$$P(y = N|\mathbf{x}) = \frac{1}{1 + \sum_{i=1}^{n-1} e^{A_i \cdot \mathbf{x}}}$$

Now we want to find A_1, A_2, \dots, A_{N-1} that maximizes the likelihood.

Example: number of parameters

Suppose we want to classify 28×28 images into three groups.

Example

When we use the model after training:

▶ If

$$P(y = 1|\mathbf{x}) = 0.3, P(y = 2|\mathbf{x}) = 0.3, P(y = 3|\mathbf{x}) = 0.4$$
 classify $y = 3$.

▶ If

$$P(y = 1|\mathbf{x}) = 0.2, P(y = 2|\mathbf{x}) = 0.4, P(y = 3|\mathbf{x}) = 0.4$$

randomly pick $y = 2$ or $y = 3$.