Test Telematico di Calcolo Numerico

Ingegneria Informatica 16/09/2021

- 1) Dire, giustificando la risposta, se le seguenti affermazioni sono vere o sono false:
 - a) $||A B|| \le \rho(A) \rho(B)$, $A, B \in \mathbb{C}^{n \times n}$ b) $||A^{-1}|| \le 1/\rho(A)$, $A \in \mathbb{C}^{n \times n}$ c) $||A|| \le \rho^2(A)$, $A \in \mathbb{C}^{n \times n}$
- 2) La matrice

$$A = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \beta & 1 & 0 & 0 \\ 0 & \beta & 1 & 0 \\ 0 & 0 & \beta & 1 \end{pmatrix}, \qquad \alpha, \beta \in \mathbb{R}$$

è la matrice dei coefficienti di un sistema lineare.

Per quali valori reali di α e β risulta convergente il metodo di Jacobi?

3) È data una matrice $A \in \mathbb{C}^{3\times 3}$. Conoscendo i valori

$$det(A - I) = -1,$$
 $det(A - 2I) = -3,$ $det(A + I) = 3,$ $det(A) = -1,$

calcolare il polinomio caratterisctico di A.

4) Si vuole approssimare il valore dell'integrale

$$\int_{2}^{3} \frac{1}{x - 1} \, dx \, = \, \log 2$$

utilizzando la formula dei trapezi. Indicare quanti sottointervalli sono necessari per avere una approssimazione con un massimo errore assoluto $|E| \le 10^{-3}$.

SOLUZIONE

- 1) a) Falso. Basta porre A = I per avere $||B|| \leq \rho(B)$ che contraddice il Teorema di Hirsh.
 - b) Falso. Se, per esempio, A è reale e simmetrica ed ha autovalori 1, 2, 3, 4, si ha $||A^{-1}||_2 = 1$ mentre $1/\rho(A) = 1/4$.
 - c) Falso. Se, per esempio, $\rho(A)=1/3$, risulta $1/3 \leq \|A\|$ e non può essere vero che risulti $1/9 \geq \|A\|$.
- 2) Risulta

$$H_J = - \begin{pmatrix} 0 & 0 & 0 & \alpha \\ \beta & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \beta & 0 \end{pmatrix}.$$

Gli autovalori di H (basta ricondurla ad una matrice di Frobenius) sono $\lambda = -\sqrt[4]{\alpha\beta^3}$ per cui la condizione cercata $|\alpha\beta^3| < 1$.

3) Basta calcolare il polinomio di interpolazione dedotto dalla tabella di valori

che risulta

$$P(\lambda) = -\lambda^3 + 2\lambda^2 - \lambda - 1.$$

4) Ponendo $f(x) = (x-1)^{-1}$ risulta $f''(x) = 2(x-1)^{-3}$ per cui $M_2 = \sup_{x \in [2,3]} |f''(x)| = 2$. Imponendo che la maggiorazione dell'errore $\frac{1}{12 k^2} M_2$ risulti inferiore a $\frac{10^{-3}}{2}$ si ha che il minimo numero k di intervalli con cui applicare la formula dei trapezi è

$$k = 19$$
.