目录

第	一部分 基本概念	2
1	频率	2
2	频率的性质:	2
3	公理化	2
	3.1 $P(A) + P(\overline{A}) = 1 \dots \dots$	2
	3.2 对于"完备事件组"中的所有事件来说: $P(A_1) + P(A_2) + + P(A_n) = P(\Omega) = 1$	2
	3.3 $P(A - B) = P(A) - P(AB) \dots \dots$	4
	3.4 若A包含着B, 则有: $P(A - B) = P(A) - P(B)$, 且 $P(A) >= P(B)$	4
	3.5 加法公式: $P(A+B) = P(A) + P(B) - P(AB)$	4
	3.6 加法公式: $P(A+B+C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) +$	
	P(ABC)	5
	A中包含的"基本事件"有多少个	
4	古典概型: $\mathbf{P}(\mathbf{A}) = \frac{\mathbf{A}$ 中包含的"基本事件"有多少个 \mathbf{S} 中"基本事件"的总数	6
5	几何概型	7
	5.1 "古典概率模型"和"几何概率模型"的区别	9

概率

第一部分 频率

做n次试验, A事件发生了m次, 我们就把 $\frac{A$ 事件发生的次数 $m}{ + n$ 次试验 叫做"频率". 记作 $\omega_n(A)$. 比如丢硬币, 丢10次, 丢100次, 丢1000次, 每次的"频率"可能都不一样, 比如结果是 $\frac{7}{10}$, $\frac{55}{100}$, $\frac{508}{1000}$. 所以这就是"频率"和"概率"的区别.

但你可以发现, 随着试验次数n的增大, A事件的"频率"的值, 会接近与"概率"的值. 即: $\lim_{n \to 0} \omega_n(A) \to P$

1 频率的性质:

规范性:

- $\omega_n(\Omega)$ = 1 ← 做n次试验, 里面"必然事件"发生的频率, 是1. 既然是"必然事件 Ω ", 它肯定会发生, 所以频率肯定是1.

- $\omega_n(\Phi) = 0$ ← 做n次试验, 里面"不可能事件"发生的频率, 是0.

可加性:

比如做1000次试验, 即 Ω_{1000} , 则有:

即: "和的频率", 就等于"频率的和".

$$\underbrace{\frac{\omega_n}{\text{做n次试验}}\underbrace{\left(A_1+A_2+\ldots+A_m\right)}_{\text{里面有 $m}$ 个事件}=\omega_n\left(A_1\right)+\omega_n\left(A_2\right)+\ldots+\omega_n\left(A_m\right)}_{\text{做n次试验,里面有 $m}$ 个事件发生了的频率$$

2 古典概型 : $P(A) = \frac{A$ 中包含的"基本事件"有多少个 S中"基本事件"的总数

满足这些条件的, 就属于"古典概率 classical models of probability 模型":

- 样本点是有限的
- 所有样本点出现的可能性, 是相同的. 即"等可能性".

古典概型模型:

古典概率模型的性质:

$$-0 <= P(A) <= 1$$

 $-P(\Omega) = 1, P(\Phi) = 0$

3

- 有限可加: $A_1, A_2, ...A_n$ 是互不相容的. 即 $P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + P(A_n)$

古典概率模型:

- 其优点是: 可以直接套公式来算.
- 但其缺点是:
- (1) 其结果必须是"有限个"的结果(如,掷骰子,结果就是6个基本事件,而不是无限个事件.)
- (2)其结果, 必须是"等可能性".

例

有 a个白, b个黑, 问: 从中连续取出 m个球 (连续取, 就是不放回的意思了) $(1 \le m \le a + b)$, 第m个是白球的概率=?

思路1: 其实我们只要考虑第 m 个位置的这一个球的情况就行了, 其他位置的球,随便它们什么颜色, 我们不用考虑的.

P(第m位置是白球 $)=\frac{\text{在第m} \wedge \text{位置} L, \text{ Ma} \wedge \text{白球里取} 1 \wedge \text{放上 } L.$ 剩下数量的其他位置上, 依然做全排列所有球的全排列

即
$$P($$
第 m 位置是白球 $)=rac{C_{\hat{b}a\dot{a}\dot{a}}^{\hat{a}-\hat{b},\;\hat{x}_{m}1\wedge\hat{a}\hat{b}_{m}+\hat{b}_{m}}C_{\hat{b}a\dot{a}\dot{a}}^{\hat{a}-\hat{b},\;\hat{x}_{m}1\wedge\hat{b}_{m}}}{C_{\hat{b}a\dot{a}\dot{a}}^{\hat{a}\dot{a}\dot{a}+\hat{b}_{b}\underline{m}}-1}$

思路2:或者我们也只需考虑前m个数量的球就行了,后面其他的球,爱怎样颜色怎样颜色,不用我们考虑.

$$P\left(第m位置是白球\right) = \frac{ \sum_{\hat{k}=-b, \; \hat{k} \pi 1 \wedge [a] \pi, \; \hat{k} \in \hat{k} \pi n \wedge [a] L \; \hat{m} - [b] \pi 1 + [a] \pi 1$$

其实你有没有发现? "在第m个位置上出现白球"这个"m索引位置",其实是个障眼法.白球出现在任何其他位置,它出现在第1个位置,第10个位置,最后一个位置,对我们的计算结果没有任何影响.因为不管白球出现在第几个位置上,它出现的概率都是相同的,因为是古典概率嘛!所以,"位置为几"其实不重要.

所以,我们就有了第三种思路:我们就把这个白球,让它直接出现在第1个位置就好了: (在第1个位置上)从自球里,取1个的取法数量

$$P\left(f{\mathfrak{B}}1$$
个位置是白球 $ight)=rac{C_{\dot{\mathbb{D}}a\dot{\mathbb{D}}}^1}{C_{\dot{\mathbb{D}}a\dot{\mathbb{D}}+\dot{\mathbb{D}}b\mathbb{H}}^1}=rac{a}{a+b}$

3 几何概型

几何概型 geometric models of probability, 即这类概率问题, 能够转换成用"几何问题"来求解.

例

有甲乙两人,相约在 6-7点见面 (其实这个具体的时间点也是个障眼法,只要在1个小时的区间就行). 先到者,最多等对方15分钟,然后就离开了.

甲乙两人, 在这1小时内的任意时刻, 都可能到达.

问, 他们能相见的概率是多少?

我们令

- 事件A:表示两人见到了面

- x:表示甲到达的时间点

- v:表示乙到达的时间点

他们要能见到面, 即 $|y-x| \le 15$ 分钟. 那么这就有两种可能性:

- 甲先到. 即 $x \le y$ (甲来到的时间点x, 比乙来到的时间点y 要小 (早)), 即 $y - x \le 15$

- 乙先到. 即 $y \le x$, 即 $x - y \le 15$

这两组不等式,能用函数图形来表示出来,如下图. x和y轴上的60,分别代表两人的1小时区间(60分钟). 中间的交集区域,就是两人可以见到面的时间段.

显然, 这就是求几何面积的问题.

即:
$$P(A) = \frac{60.60 - \overbrace{45.45}^{\text{上面的 "边长为45" 的三角形的面积}} \underbrace{7 \text{ 下面的 "边长为45" 的三角形的面积}}_{\text{上面的 "边长为60分钟" 的矩形}} \underbrace{45.45}_{\text{2}} = 0.4375$$

例

(法国)布丰(1707-1788) 投针 Buffon's needle problem.

说:有两条平行的直线,相聚为 D(distance),距离单位不重要. 你哪一个针 (长度为 L(length)), L < D),随机地投向针. 问:针与那两条平行直线相交的概率是?

思路: 针投上去后的位置状态, 是由两个参数决定的:

- (1) 针的中点, 距离"最近那根直线"的最短距离. \leftarrow 该距离用变量 mDis (midpoint distance)来表示.
- (2) 针倾斜的位置, 与直线的夹角. \leftarrow 我们用变量 θ 来表示. 用上面这两个变量, 我们能分别作为 x轴(表示 θ 变量) 和 y轴(表示 mDis变量), 来画出函数图像.

针投出后, 所有可能的状态, 其全集就是:

$$\Omega = \left\{ (\theta, \text{ mDis}) \mid 0 \leq \underset{\text{\neq}}{\theta} \leq \pi; \quad 0 \leq \underbrace{\text{mDis}}_{\text{th}) = \text{YK} \setminus \text{B}} \leq \underbrace{\frac{D}{2}}_{\text{m}, \text{m} \in \text{T} \setminus \text{S}} \right\}$$

那么, 什么状态下, "针"就与"直线"相交了呢? — 当"从针的中点(沿着针的身体走)到直线"的距离 (下面用变量 keyDis (key distance) 来表示这个距离) \leq 针的一半长度时. 它们就相交了. 否则, 它们就不想交.

即, 就有:

→ 因为 θ 角度有sin值: $\sin \theta = \frac{\text{mDis}}{\text{kevDis}}$,

则有: $\frac{\text{mDis}}{\sin \theta}$, \leftarrow 当该值 $\leq \frac{\text{针长L}}{2}$ 时,针与直线相交.

→ 因为y轴是代表 mDis变量,所以我们要写出 mDis 曲线的函数值:

根据 上面的
$$\text{keyDis} = \frac{\text{mDis}}{\sin \theta} \le \frac{\text{针长L}}{2}$$

就有: $mDis \leq \frac{\text{针长L}}{2} \cdot \sin\theta$

就是 $\frac{1}{2}$ 针长 $L \cdot \sin \theta$ 这条曲线下方的面积了,

即
$$m\mathrm{Dis} = \int_0^\pi \left(\frac{1}{2} \frac{\mathrm{pmDis}}{\mathrm{pmDis}} \frac{\mathrm{modis}}{\mathrm{modis}} \right) d\theta$$

→ 所以,相交的概率

 $=rac{\text{"针"与"直线"相交时的 mDis 与 θ 的所有取值范围}}{\text{针投出后的 所有可能的 mDis 与 θ 的取值范围}}$

$$=\frac{\int_{0}^{\pi} \left(\underbrace{\frac{\mathbb{D} \text{ mDis} \text{ MBmHs}}{\frac{1}{2} \text{ HKL} \cdot \sin \theta}}_{\text{ #by}}\right) d\theta}{\underbrace{\frac{1}{\pi} \cdot \underbrace{\frac{D}{2}}_{\text{ walth}}}_{\text{ walth}} \leftarrow \text{分子上积分的下限是}0, \text{L限是}\pi, \\ \text{ is a Complete of the comp$$

$$=\frac{\frac{1}{2}\text{HKL}\cdot(-\cos\theta)\big|_0^\pi}{\frac{1}{2}\pi\text{D}}=\frac{\text{HKL}\cdot\left[-\cos\pi-(-\cos\theta)\right]}{\pi\text{D}}=\frac{2\text{HKL}}{\pi\text{D}}=\frac{2\text{HKL}}{\pi\text{D}}$$

3.1 "古典概率模型"和"几何概率模型"的区别

- 古典概率模型:

具有"有限可加性"(finite additivity): 是指"有限个"两两互不相容事件的"和事件"的概率,等于"每个事件概率"的和.

即:
$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
 的概率

- 几何概率模型:

具有"完全可加性": 即先求和, 再求概率, 等于先求每个事件概率, 再求和. 即:
$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) \frac{\mathbb{E}[X_i]}{\mathbb{E}[X_i]}$$

注意两者的区别: 一个是"有限(到n)"的加, 一个是"无限(到∞)"的加.