Дисципліна: "Програмування складних алгоритмів"

Лабораторна робота №2. Рекурсивні алгоритми.

Мета роботи:

Метою лабораторної роботи є набуття практичних навичок з рекурсивними функціями.

Лабораторна робота №2. Рекурсивні алгоритми.

Методичні вказівки

Лабораторна робота спирається на знаннях отриманих при вивченні наступних питань лекції:

- Поняття рекурсії.
- Поняття прямої і непрямої рекурсії.

Завдання до лабораторної роботи:

Розробити програми згідно з алгоритмом з використанням рекурсивної функції та без використання рекурсивної функції. Оцінити час виконання та складність алгоритму.

Варіанти індивідуальних завдань

1.	$s = \prod_{x=1}^{n} \frac{x}{e^x - x^2}$	2.	$r = \sum_{p=3}^{n} \frac{\cos^2 p}{3 p - 3}$
3.	$p = \prod_{a=1}^{n} \frac{1}{a}$	4.	$q = \sum_{l=1}^{k} (2l - 1)$
5.	$p = \prod_{b=1}^{n} \frac{\cos b}{2b - 1}$	6.	$s = \sum_{j=1}^{n} \frac{j^2}{e^j}$
7.	$y = \prod_{i=1}^{m} \frac{3i - 2}{3i}$	8.	$k = \sum_{a=1}^{n} \frac{a^2}{e^a - e^{-a}}$
9.	$r = \prod_{l=2}^{i=1} \frac{\sin l}{(l-1)^2}$	10.	$u = \sum_{i=1}^{m} \frac{2i+1}{i^2}$

Варіанти індивідуальних завдань

11.	$p = \prod_{k=1}^{n} \frac{\sin k}{k}$	12.	$s = \sum_{l=1}^{p} \frac{l}{l^2 + 1}$
13.	$q = \prod_{b=2}^{m} \frac{1}{2b-1}$	14.	$a = \sum_{k=1}^{r} \frac{2k-1}{2k+1}$
15.	$x = \prod_{j=1}^{n} 2j$	16.	$f = \prod_{t=2}^{n} \frac{\sin^3 t}{t^2 - 1}$
17.	$p = \prod_{\substack{x=1\\n}}^{n} \frac{\sin x}{x^2 + 1}$	18.	$d = \prod_{k=1}^{r} \frac{1}{2k}$
19.	$t = \prod_{x=1}^{n} \frac{\cos x}{3x + x^2}$	20.	$y = \sum_{p=1}^{m} \frac{1}{\sin(e^p - 1)}$

Варіанти індивідуальних завдань

21.	$f = \prod_{i=1}^{n} \frac{2i+1}{i^3}$	22.	$q = \sum_{p=2}^{r} \frac{p-1}{p^2}$
23.	$a = \prod_{k=1}^{p} (\frac{2k}{k+1} - k^2)$	24.	$c = \sum_{j=1}^{p} \frac{\ln j}{j^2}$
25.	$p = \prod_{t=1}^{n} \frac{\sqrt{t}}{t^2 + 1}$	26.	$f = \sum_{x=1}^{t} \frac{2x}{x^3 - \sin x}$
27.	$s = \prod_{j=1}^{n} \sqrt{\frac{j^2}{1 + e^{-j}}}$	28.	$q = \sum_{i=1}^{n} \frac{\sin i}{1 + \cos i}$
29.	$m = \prod_{k=1}^{n} \frac{1}{(2k+1)^2}$	30.	$a = \sum_{i=1}^{n} \frac{\sin i \cos i}{1 + \sin^{2} i}$

Лабораторна робота №2. Рекурсивні алгоритми.

```
Приклад. Числа Фібоначі
                                      F(n) = F(n-1) + F(n-2), де F(0)=1, F(1)=1.
    #include <iostream>
                                                        Console Shell
    int fibonacci(int number)
                                                         clang++-7 -pthread -std=c++17 -o main Q X
                                                         ./main
         if (number == 0)
                                                         0 1 1 2 3 }
         return 0;
              else if (number == 1)
              return 1;
    return fibonacci(number-1) + fibonacci(number-2);
    int main()
    for (int count=0; count < 5; ++count)
    std:: cout << fibonacci(count) << " ";
    return 0;}
```

Дисципліна: "Програмування складних алгоритмів"

Лабораторна робота №2. Рекурсивні алгоритми.

