CRYPTOGRAPHIC TOOLS

Symmetric Key Cipher

Symmetric Encryption

- The universal technique for providing confidentiality for transmitted or stored data
- Also referred to as conventional encryption or single-key encryption
- Two requirements for secure use:
 - Need a strong encryption algorithm
 - Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep the key secure

Figure 2.1 Simplified Model of Symmetric Encryption

Attacking Symmetric Encryption

Cryptanalytic Attacks

- Rely on:
 - Nature of the algorithm
 - Some knowledge of the general characteristics of the plaintext
 - Some sample plaintextciphertext pairs
- Exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or the key being used
 - If it is successful all future and past messages encrypted with that key are compromised

Brute-Force Attacks

- Try all possible keys on some cipher text until an intelligible translation into plaintext is obtained
 - On average half of all possible keys must be tried to achieve success

_			
	DES	Triple DES	AES
Plaintext block size (bits)	64	64	128
Ciphertext block size (bits)	64	64	128
Key size (bits)	56	112 or 168	128, 192, or 256

DES = Data Encryption Standard

AES = Advanced Encryption Standard

Comparison of Three Popular Symmetric Encryption Algorithms

Data Encryption Standard (DES)

- Until recently was the most widely used encryption scheme
 - FIPS PUB 46
 - Referred to as the Data Encryption Algorithm (DEA)
 - Uses 64-bit plaintext block and 56 bit key to produce a 64-bit ciphertext block
 - Strength concerns:
 - Concerns about the algorithm itself
 - DES is the most studied encryption algorithm in existence
 - Concerns about the use of a 56-bit key

The speed of commercial off-the-shelf processors makes this key length woefully inadequate

Overview of the DES

Algorithm Initial Permutation 64 Encryption Round 1 DES 64 Encryption Round 16 Final Permutation **Encrypts blocks of size 64 bits.**

- Uses a key of size 56 bits.
- Symmetric cipher: uses same key for encryption and decryption
- Uses 16 rounds which all perform the identical operation
- Different subkey in each round derived from main key

The DES Feistel Network

- DES structure is a Feistel network
- Advantage: encryption and decryption differ only in keyschedule

- Bitwise initial permutation, then 16 rounds
 - 1. Plaintext is split into 32-bit halves L_i and R_i
 - 2. R_i is fed into the function f, the output of which is then XORed with L_i
 - 3. Left and right half are swapped
- Rounds can be expressed as:

$$L_i = R_{i-1},$$

 $R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$

The DES Feistel Network

Land R swapped again at the end of the cipher, i.e., after round 16 followed by a final permutation

Initial and Final Permutation

- Bitwise Permutations.
- ► Inverse operations.
- ▶ Described by tables IP and IP-1.

Initial Permutation

			IF)			
58 3	50	42	34	26	18	10	2
60 :							
62 :							
64 :	56	48	40	32	24	16	8
57 4	49	41	33	25	17	9	1
59 :	51	43	35	27	19	11	3
61 :	53	45	37	29	21	13	5
63 :	55	47	39	31	23	15	7

Final Permutation

	IP^{-1}		
40 8 48	16 56	24 64	32
39 7 47	15 55	23 63	31
38 6 46	14 54	22 62	30
37 5 45	13 53	21 61	29
36 4 44	12 52	20 60	28
35 3 43	11 51	19 59	27
34 2 42	10 50	18 58	26
33 1 41	9 49	17 57	25

The f-Function

- main operation of DES
- ► f-Function inputs: R_{i-1} and round key k_i
- ▶ 4 Steps:
 - 1. Expansion E
 - 2. XOR with round key
 - 3. S-box substitution
 - 4. Permutation

The Expansion Function

Е

- 1. Expansion E
- main purpose: increases diffusion

E									
32	1	2	3	4	5				
4	5	6	7	8	9				
8	9	10	11	12	13				
12	13	14	15	16	17				
16	17	18	19	20	21				
20	21	22	23	24	25				
24	25	26	27	28	29				
28	29	30	31	32	1				

Add Round Key

- 2. XOR Round Key
- Bitwise XOR of the round key and the output of the expansion function E
- Round keys are derived from the main key in the DES keyschedule (in a few slides)

The DES S-Boxes

3. S-Box substitution

- Eight substitution tables.
- 6 bits of input, 4 bits of output.
- Non-linear and resistant to differential cryptanalysis.
- Crucial element for DES security!
- Find all S-Box tables and S-Box design criteria in *Understanding Cryptography* Chapter 3.

S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

The Permutation P

4. Permutation P

- ▶ Bitwise permutation.
- ▶ Introduces diffusion.
- Output bits of one S-Box effect several S-Boxes in next round
- Diffusion by E, S-Boxes and P guarantees that after Round 5 every bit is a function of each key bit and each plaintext bit.

	P								
16	7	20	21	29	12	28	17		
1	15	23	26	5	18	31	10		
2	8	24	14	32	27	3	9		
19	13	30	6	22	11	4	25		

Key Schedule (1)

- Derives 16 round keys (or *subkeys*) k_i of 48 bits each from the original 56 bit key.
- The input key size of the DES is 64 bit. 56 bit key and 8 bit parity:

• Parity bits are removed in a first permuted choice *PC-1*: (note that the bits 8, 16, 24, 32, 40, 48, 56 and 64 are not used at all)

PC-1								
57	49	41	33	25	17	9	1	
58	50	42	34	26	18	10	2	
59	51	43	35	27	19	11	3	
60	52	44	36	63	55	47	39	
31	23	15	7	62	54	46	38	
30	22	14	6	61	53	45	37	
29	21	13	5	28	20	12	4	

Key Schedule (2)

- Split key into 28-bit halves C_0 and D_0 .
- In **rounds** *i* = 1, 2, 9, 16, the two halves are each rotated left by **one bit**.
- In all other rounds where the two halves are each rotated left by two bits.
- In each round i permuted choice **PC-2** selects a permuted subset of 48 bits of C_i and D_i as round key k_i , i.e. **each** k_i **is a permutation of** k!

PC-2									
14	17	11	24	1	5	3	28		
15	6	21	10	23	19	12	4		
26	8	16	7	27	20	13	2		
41	52	31	37	47	55	30	40		
51	45	33	48	44	49	39	56		
34	53	46	42	50	36	29	32		

• **Note:** The total number of rotations:

$$4 \times 1 + 12 \times 2 = 28 \implies D_0 = D_{16} \text{ and } C_0 = C_{16}!$$

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \leftrightarrow 10^{16}$	2^{55} ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \longleftrightarrow 10^{38}$	$2^{127} \text{ ns} = 5.3 \leftrightarrow 10^{21}$ years	$5.3 \leftrightarrow 10^{17} \text{ years}$
168	Triple DES	$2^{168} \approx 3.7 \longleftrightarrow 10^{50}$	$2^{167} \text{ ns} = 5.8 \leftrightarrow 10^{33}$ years	$5.8 \leftrightarrow 10^{29} \text{ years}$
192	AES	$2^{192} \approx 6.3 \longleftrightarrow 10^{57}$	$2^{191} \text{ ns} = 9.8 \leftrightarrow 10^{40}$ years	$9.8 \leftrightarrow 10^{36} \text{ years}$
256	AES	$2^{256} \approx 1.2 \leftrightarrow 10^{77}$	$2^{255} \text{ ns} = 1.8 \leftrightarrow 10^{60}$ years	$1.8 \leftrightarrow 10^{56}$ years

Average Time Required for Exhaustive Key Search

Triple DES (3DES)

- Repeats basic DES algorithm three times using either two or three unique keys
- First standardized for use in financial applications in ANSI standard X9.17 in 1985
- Attractions:
 - 168-bit key length overcomes the vulnerability to brute-force attack of DES
 - Underlying encryption algorithm is the same as in DES
- Drawbacks:
 - Algorithm is sluggish in software
 - Uses a 64-bit block size

Advanced Encryption Standard (AES)

Needed a replacement for 3DES

3DES was not reasonable for long term use

NIST called for proposals for a new AES in 1997

Should have a security strength equal to or better than 3DES

Significantly improved efficiency

Symmetric block cipher

128 bit data and 128/192/256 bit keys Selected
Rijndael in
November 2001

Published as FIPS 197

Practical Security Issues

- Typically symmetric encryption is applied to a unit of data larger than a single 64-bit or 128-bit block
- Electronic codebook (ECB) mode is the simplest approach to multiple-block encryption
 - Each block of plaintext is encrypted using the same key
 - Cryptanalysts may be able to exploit regularities in the plaintext
- Modes of operation
 - Alternative techniques developed to increase the security of symmetric block encryption for large sequences
 - Overcomes the weaknesses of ECB

(a) Block cipher encryption (electronic codebook mode)

(b) Stream encryption

Figure 2.2 Types of Symmetric Encryption

Block & Stream Ciphers

Block Cipher

- Processes the input one block of elements at a time
- Produces an output block for each input block
- Can reuse keys
- More common

Stream Cipher

- Processes the input elements continuously
- Produces output one element at a time
- Primary advantage is that they are almost always faster and use far less code
- Encrypts plaintext one byte at a time
- Pseudorandom stream is one that is unpredictable without knowledge of the input key

Mode of Encryption

ECB (Electronic Code Book): Plain text messages are divided into sub-blocks each of 64 bits. Then each sub-block is encrypted independently

Mode of Encryption

CBC (Cipher Blocker Chaining): One in which a sequence of bits are encrypted as a single unit, or block, with a cipher key applied to the entire block

