Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный университет им. Н.И. Лобачевского

Институт информационных технологий, математики и механики

Отчёт по лабораторной работе №3 «Применение преобразования Фурье при обработке изображений»

Выполнили:

студенты ф-та ИИТММ гр. 381908-1

Гордеев. В.В.

Шурыгина А.К.

Витулин И.А.

Проверила:

ассистент кафедры МОСТ, ИИТММ

Гетманская А.А.

Содержание

Введение	3
Ряд Фурье	
Преобразование Фурье	
Постановка задачи	
Описание алгоритмов	
Дискретное преобразование Фурье	
Заключение	
Приложение	
Код программы	
Результат работы	

Введение

Ряд Фурье

Понятие «Ряд Фурье» науке известно уже давно. И, как понятно из названия лабораторной, нам нон понадобится для решения поставленной задачи. Итак: Ряд Фурье

$$g(x) = \sum_{k=0}^{\infty} (A_k \cos(k \omega_0 x) + B_k \sin(k \omega_0 x))$$

представляет периодическую функцию g(x), заданную на интервале [a, b], в виде бесконечного ряда по синусам и косинусам. То есть периодической функции g(x) ставится в соответствие бесконечная последовательность коэффициентов Фурье:

Это называется рядом Фурье, а постоянные множители A_k , B_k являются коэффициентами Фурье функции g(x). Соответствующие коэффициенты, которые изначально неизвестны, могут быть однозначно получены из исходной функции g(x). Этот процесс обычно называют Фурье-анализ. Фурье не хотел ограничивать эту концепцию периодическими функциями и постулировал, что непериодические функции также могут быть описаны как суммы синусоидальных и косинусных функций. Хотя это в принципе подтвердилось, для этого обычно требуется - помимо кратных основной частоты ($k \omega_0$) - бесконечно много плотно расположенных частот. Полученное разложение называется интегралом Фурье:

$$g(x) = \int_{0}^{\infty} A_{\omega} \cos(\omega x) + B_{\omega} \sin(\omega x) d\omega$$

Коэффициенты A_{ω} , B_{ω} , снова являются весами для соответствующих функций косинуса и синуса с (непрерывной) частотой ω . Каждый коэффициент A_{ω} и B_{ω} определяет амплитуду соответствующей функции косинуса или синуса соответственно. Таким образом, коэффициенты определяют, «какая часть каждой частоты» вносит вклад в данную функцию или сигнал g(x). Коэффициенты A_{ω} и B_{ω} для функции g(x) можно определить однозначно:

$$A_{\omega} = A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x) * \cos(\omega x) dx$$

$$B_{\omega} = B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x) * \sin(\omega x) dx$$

Поскольку это представление функции g(x) включает бесконечно много плотно расположенных значений частоты ω , соответствующие коэффициенты A_{ω} и B_{ω} также действительно являются непрерывными функциями. Они содержат непрерывное распределение частотных компонент, содержащихся в исходном сигнале, которое называется «спектром»

Преобразование Фурье

В отличие от интеграла Фурье, преобразование Фурье рассматривает как исходный сигнал, так и соответствующий спектр как комплексные функции, что значительно упрощает получаемые обозначения. На основе функций A_{ω} и B_{ω} , определенных в интеграле Фурье, спектр Фурье $G(\omega)$ функции g(x) имеет вид:

$$G(\omega) = \sqrt{\frac{\pi}{2}} [A(\omega) - i * B(\omega)] = \sqrt{\frac{\pi}{2}} [\frac{1}{\pi} \int_{-\infty}^{\infty} g(x) * \cos(\omega x) dx - i * \frac{1}{\pi} \int_{-\infty}^{\infty} g(x) * \sin(\omega x) dx] = \dots$$

$$\dots = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) * [\cos(\omega x) - i * \sin(\omega x)] dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) * e^{-i\omega x} dx$$

Переход от функции g(x) к ее спектру Фурье $G(\omega)$ называется преобразованием Фурье (F). И наоборот, исходная функция g(x) может быть полностью восстановлена по ее спектру Фурье $G(\omega)$ с помощью обратного преобразования Фурье (F^{-1}), определенного как:

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(x) * [\cos(\omega x) + i * \sin(\omega x)] d\omega = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(x) * e^{i\omega x} d\omega$$

Очевидно, это "частотное пространство" и исходное "сигнальное пространство "являются двойственными и взаимозаменяемыми математическими представлениями

Постановка задачи

Имеется несколько снимков электронной микроскопии. С помощью преобразования спектра Фурье необходимо избавиться от полос на данных снимках.

Описание алгоритмов

Дискретное преобразование Фурье

На практике нам приходиться работать с дискретными сигналами конечной длины. Любое изображение представляет собой двумерный дискретный сигнал, что в нашем случае является проблемой. Чтобы обойти её, нужно вообразить, что наш сигнал имеет бесконечное число точек слева и справа от наших реальных данных. Если наши воображаемые точки будут копиями исходных N точек сигнала, то сигнал будет выглядеть дискретным периодическим с периодом в N точек. В этом случае применяется дискретное преобразование Фурье (ДПФ).

Дискретное преобразование Фурье:

$$G(m) = \frac{1}{\sqrt{M}} \sum_{u=0}^{M-1} g(u) * [\cos(2\pi \frac{mu}{M}) - i * \sin(2\pi \frac{mu}{M})] = \frac{1}{\sqrt{M}} \sum_{u=0}^{M-1} g(u) * e^{-i2\pi \frac{mu}{M}}$$

Обратное дискретное преобразование Фурье:

$$g(u) = \frac{1}{\sqrt{M}} \sum_{u=0}^{M-1} G(m) * [\cos(2\pi \frac{mu}{M}) - i * \sin(2\pi \frac{mu}{M})] = \frac{1}{\sqrt{M}} \sum_{u=0}^{M-1} G(m) * e^{-i2\pi \frac{mu}{M}}$$

Дискретное преобразование Фурье является линейным преобразованием, которое переводит вектор временных отсчётов \vec{x} в вектор спектральных отсчётов той же длины. Таким образом преобразование может быть реализовано как умножение симметричной квадратной матрицы на вектор $\vec{X} = F \vec{x}$ Сама матрица F имеет вид:

$$F = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1\\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \dots & \omega_n^{n-1}\\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \dots & \omega_n^{2(n-1)}\\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \dots & \omega_n^{3(n-1)}\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \dots & \omega_n^{(n-1)} \end{pmatrix}$$

Элементы матрицы задаются следующей формулой: $F(j,k) = \omega_n^{(j-1)(k-1)}$, где $\omega_n = e^{-\frac{2\pi i}{n}}$

Заключение

При работе с данной лабораторной работой мы узнали о дискретном преобразовании Фурье и смогли применить его на практике при работе со снимками электронной микроскопии.

Приложение

Код программы

```
import cv2 as cv
 2 import numpy as np
 3 from matplotlib import pyplot as plt
 4
    import glob
 5
 6
 7
    # Дискретное преобразвание Фурье
8
    def showDFFT(img, fft, name):
9
        magnitude = np.abs(fft)
10
         plt.subplot(121), plt.imshow(img, 'Greys', vmin=0, vmax=255)
11
         plt.title('Input Image'), plt.xticks([]), plt.yticks([])
12
13
        s_min = magnitude.min()
14
        s_max = magnitude.max()
15
       if s_min == s_max:
16
            plt.subplot(122), plt.imshow(magnitude, 'Greys', vmin=0, vmax=255)
17
        else:
18
            plt.subplot(122), plt.imshow(magnitude, 'Greys')
19
20
         plt.title(name), plt.xticks([]), plt.yticks([])
21
         plt.show()
22
23
24
    images = glob.glob('*.png')
25
    for name in images:
        img = np.float32(cv.imread(name, 0))
26
         f = np.fft.fft2(img)
27
         fshift = np.fft.fftshift(f)
28
         showDFFT(img, fshift, 'classic furie')
29
30
31
32
   def DFFTnp(img):
        f = np.fft.fft2(img)
33
         fshift = np.fft.fftshift(f)
35
        return fshift
```

```
36
37
    def reverseDFFTnp(dfft):
38
        f_ishift = np.fft.ifftshift(dfft)
39
         reverse_image = np.fft.ifft2(f_ishift)
40
        return reverse_image
41
42
43
44
    # Sobel
45
    for name in images:
        img = np.float32(cv.imread(name, 0))
46
        fshift = DFFTnp(img)
47
        ksize = 3
48
        kernel = np.zeros(img.shape)
49
50
        sobel_v = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
        sobel_h = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
51
        kernel[0: ksize, 0: ksize] = sobel_h
52
53
        fkshift = DFFTnp(kernel)
54
        mult = np.multiply(fshift, fkshift)
        reverse_image = reverseDFFTnp(mult)
55
         showDFFT(img, reverse_image, 'Sobel')
56
57
58
   # Gauss
59
    for name in images:
         img = np.float32(cv.imread(name, 0))
60
         ksize = 21
61
62
        kernel = np.zeros(img.shape)
        blur = cv.getGaussianKernel(ksize, -1)
63
        blur = np.matmul(blur, np.transpose(blur))
        kernel[0:ksize, 0:ksize] = blur
65
        fkshift = DFFTnp(kernel)
66
        f = np.fft.fft2(img)
67
        fshift = np.fft.fftshift(f)
68
        mult = np.multiply(fshift, fkshift)
69
70
        reverse_image = reverseDFFTnp(mult)
71
         showDFFT(img, reverse_image, 'Gauss')
```

Результат работы

Результаты работы программы находятся в разделе репозитория, соответствующей данной лабораторной, в папке "Results"