Branch: CSE & IT

Batch: Hinglish

WEEKLY TEST – 01 Database Management System

Maximum Marks 15

Q.1 to 5 Carry ONE Mark Each

[NAT]

- **1.** From the given below characteristics, choose the number of characteristics of a primary key:
 - I. Minimal attribute
 - II. Unique
 - III. Non-Null
 - IV. Null
 - V. Duplicate values

[MSQ]

- **2.** Choose the correct statement from the following.
 - (a) A functional dependency $X \rightarrow Y$ is trivial functional dependency if y is a subset of x.
 - (b) A functional dependency $X \rightarrow Y$ is trivial functional dependency if y is a proper superset of X.
 - (c) A functional dependency $X \to Y$ is called non-trivial functional dependency if Y is not a subset of X.
 - (d) A functional dependency $X \to Y$ is called non-trivial functional dependency if Y is proper subset of X.

[MCQ]

- 3. The candidate key other than primary key is called an
 - (a) Super key
- (b) Foreign key
- (c) Alternate key
- (d) None

[MCQ]

- **4.** Choose the correct statement from the following regarding a composite key:
 - (a) Any key such as primary key, candidate key can be called composite key if it has more than one attribute.
 - (b) A super key can be called as a composite key if it has more than one attribute.
 - (c) A key that has more than one attribute is known as composite key.
 - (d) All the statement are true.

[MSQ]

- 5. Given a relation R (X, Y, Z, W, U, V) with (X, Z) and {W, U, V} as the only candidate keys, then choose the super keys for the given relation.
 - (a) $\{X, Z\}$
- (b) $\{X, Z, U\}$
- (c) $\{X, Y\}$
- $(d) \{W, U, V\}$

Q.6 to 10 Carry TWO Marks Each

[NAT]

6. Given the following FD set over a relation R (A, B, C, D, E, F, G, H, I)

 $\{A \rightarrow DE, D \rightarrow BCE, B \rightarrow AFI, AH \rightarrow GI\}$

The number of non-prime attributes for the above FD set is/are?

[MCQ]

7. Consider a relation R (P, Q, R, S, T, U) with the following functional dependencies:

$$PQ \rightarrow R, S \rightarrow TU, R \rightarrow P, QT \rightarrow R, QR \rightarrow S, RU \rightarrow QS, PRS \rightarrow Q, RT \rightarrow PU$$

Which of the following is/are true?

- (a) The closure of QR is {PSTU}
- (b) All attributes present in R are in the closure of QR
- (c) QR is the only candidate key of R
- (d) PQR is a key of R

[NAT]

8. Find the number of candidate keys possible for the given functional dependency set on relation

$$\{p \rightarrow qr, r \rightarrow st, s \rightarrow quvp\}$$

[MCQ]

- 9. Consider a relation R(P, Q, R, S, T) and the set of functional dependency set {P → ST, S → Q, and T → R} if we project R (and therefore its FD sets onto schema R₁ (P, Q, R). Then choose the correct option in the following?
 - (a) Only PQR is a Candidate key
 - (b) Only P is key
 - (c) Only ST is a key
 - (d) None of the above

[MSQ]

- **10.** Consider relation R (P, Q, R, S, T, U) with following functional dependencies:
 - $(i) \quad P \to Q$
- (ii) $RS \rightarrow T$
- (iii) $T \rightarrow P$
- (iv) $Q \rightarrow S$

How many candidate keys does R have? _____.

Answer Key

1. (3)

2. (a, c)

3. (c)

4. (d)

5. (a, b, d)

6. (5)

7. **(b)**

8. (3)

9. (b)

10. (4)

Hints and Solutions

1. (3)

A primary key is a minimal set of attributes, that uniquely identify a tuple in a relation

A primary key is minimal, unique and allows no null values

(a, c)

A trivial functional dependency is of the form $X \to Y$ where $Y \subseteq X$

A non-trivial functional dependency is of the form $X \to Y$ where $Y \cap X = \emptyset$ or $Y \not\subset X$.

3. (c)

The candidate key other than the primary key is called an alternate key.

Example:

EMP_ID as well as EMP_PHNO both are candidate key for relation student but EMP_PHNO will be an alternate key.

4. (d)

Any key such as a primary key, candidate key, or super key can be called composite key if it has more than one attribute.

5. (a, b, d)

Every candidate key is a super key

As already mentioned in the question, there exists only 2 candidate keys for the given relation i.e. $\{X,Z\}$ and $\{WUV\}$, then the super keys will be a

combination of candidate key + other non-prime attributes.

So super keys are $\{X, Z\}$, $\{W, U, V\}$, and $\{X, Z, U\}$.

6. (5)

There exists 3 candidate keys for the given FD set: $A^+ = \{A, D, E, B, C, F, I\} \times \text{not candidate key}$ $AH^+ = \{A, D, E, B, C, F, I, H, G\} \checkmark \text{candidate key}$ $BH^+ = \{B, A, F, I, D, E, H, G, C\} \checkmark \text{candidate key}$ $DH^+ = \{D, H, B, C, E, A, F, I, G\} \checkmark \text{candidate key}$ Prime attribute = $\{A, B, D, H\} = 4$ So, non-prime attributes are 9 - 4 = 5.

7. **(b)**

- (a) False, the closure of QR contains all the attributes.
- (b) True, since QR⁺ contains all the attributes. Therefore, it is candidate key of R.
- (c) False, PQ is also a candidate key.
- (d) False, since PQ is candidate key of R. Therefore, PQR is super key of R.

8. (3)

Candidate key's
$$p^+ = \{p, q, r, s, t, u, v\}$$

 $s^+ = \{s, q, u, v, p, r, t\}$
 $r^+ = \{r, s, t, q, u, v, p\}$
 $qtuv^+ = \{q, t, u, v\} \times$
Only 3 candidate key's possible.

9. (b)

P is not present in RHS of any FD. So P must be the part of a candidate key. So we check/validate it from taking closure of $P(P^+)$.

$$P^+ = \{P, Q, R, S, T\}$$

Closure of P contain all the attributes of the relation thus P is the only key

Hence option (b) is correct.

$$P \rightarrow Q$$

$$RS \rightarrow T$$

$$T \rightarrow P$$

$$Q \rightarrow S$$

$$(P R U)^+ = \{P, Q, R, S, T U\}$$

$$(Q R U)^{+} = \{P, Q, R, S, T U\}$$

$$(S R U)^+ = \{P, Q, R, S, T U\}$$

$$(T R U)^+ = \{P, Q, R, S, T U\}$$

Hence there are 4 candidate keys

For more questions, kindly visit the library section: Link for web: $\underline{https://smart.link/sdfez8ejd80if}$

