GATE

CS & IT

Database Management System

DPP: 1

Query Languages

- Q1 Consider the following statements:
 - **S₁:** $\pi_{\text{List N}} (\pi_{\text{List N-1.....}}(\pi_{\text{List 1}}(R)))$

$$\equiv {}^{\pi}_{\text{List 1}}({}^{\pi}_{\text{List 2.....}}({}^{\pi}_{\text{List N}}(R))$$

$$\textbf{S_2:}~\sigma_{c_n}\left(\sigma_{c_{n-1}}.....\left(\sigma_{c_1}\left(R\right)\right)\right)$$

$$\equiv \sigma_{\mathrm{c}_{1}}\left(\sigma_{\mathrm{c}_{2}}....\left(\sigma_{\mathrm{C_{\mathrm{N}}}}\left(\mathrm{C}
ight)
ight)
ight)$$

Which of the following statement(s) is/are

correct?

- (A) S₁ only
- (B) S₂ only
- (C) Both S_1 and S_2 only
- (D) Neither S₁ nor S₂
- Q2 Consider the following table

I	(pc	ĺ

J(qr)

K(rs)

13)
S
3
7
11
3

The number of tuples in $(I\bowtie J\bowtie K)$ where \bowtie is the natural join is

- (A) 5
- (B) 8
- (C) 10
- (D) 11
- **Q3** Let R_1 and R_2 be two relations which are union compatible with the same set of attributes.

S₁:
$$R_1 \cap R_2 = R_1 \bowtie R_2$$

S₂:
$$R_1 \cup R_2 = R_1 \bowtie R_2$$

Which of the above statement(s) are

INCORRECT?

- (A) S_1 only
- (B) S_2 only
- (C) Both S_1 and S_2 only
- (D) Neither S₁ nor S₂
- **Q4** Consider the following relations: Enroll (Sid, Papercode), Paper(Papercode, Desc)

Which of the following relational algebra displays the sid's who only enrolled for Papercode having descriptions (Desc) as "CS"?

(A) π_{sid} (Enroll \bowtie Paper)

(B) $_{\pi \text{sid}}$ (Enroll) – $_{\pi \text{sid}}$ ((Enroll $\bowtie \sigma$ Paper))

(C) $_{\pi sid}$ (Enroll) $-_{\pi sid}$ (Enroll $\bowtie \sigma$ (Paper))

Desc < > CS

- (D) None
- Q5 Consider a relation work (EmpID, Project ID) The suitable relational algebra expression that projects the employee ids who work exactly in one project is-

(A)
$$p_{\text{Empid}}$$
 (Work) – p_{Empid} (Work \bowtie $r_{\text{E, P}}$ (work))

Project Id = P

(B)
$$p_{Empid}$$
 (Work $\bowtie r_{E, P}$ (work))

(C) p_{Empid} (work) $-p_{Empid}$ (work $\bowtie p_{E, P}$ (work))

Project ID ≉ P

- (D) None
- Q6 Consider the relation R(ABCD) which of the following relational algebra expression return the lowest value of B? (R_1 and R_2 are rename of R) I.

$$\Pi_{\mathrm{R}_{2},\mathrm{R}}$$

 $(R_1 \bowtie_{R1.B < R2.B} R_2)$

II.

Android App | iOS App | PW Website

$$\Pi_{\mathrm{B}}\left(\mathrm{R}\right)-\Pi_{\mathrm{R}_{1}.\mathrm{B}}$$

$$(R_1 \bowtie_{R1.B > R2.B} R_2)$$
III.

$$\Pi_{\mathrm{B}}\left(\mathrm{R}\right)-\Pi_{\mathrm{R}_{1}.\mathrm{B}}$$

$$(R_1 \bowtie_{R1.B < R2.B} R_2)$$
IV.

$$\Pi_{\mathrm{B}}\left(\mathrm{R}\right)$$

(A) I

- (B) II
- (C) III
- (D) IV
- Q7 Consider a Schema with Two Relations P (U, V, X) and Q (X, Y, Z) where all values are integer. There is

no assumptions about the keys. Consider the following relational algebra expression.

- I. $\pi_{U.Z}$ (P $\bowtie \sigma_{X=3}$ Q)
- II. $\pi_{\mathrm{U.Z}}\left(\pi_{\mathrm{U}}\left(\mathrm{P}\right) imes\sigma_{\mathrm{C=3}}\left(\mathrm{Q}
 ight)
 ight)$
- III. $\pi_{\mathrm{U}}\left(\sigma_{\mathrm{x=3}}\left(\mathrm{P}\right)\right) imes \pi_{\mathrm{E}}\left(\sigma_{\mathrm{x=3}}\left(\mathrm{Q}\right)\right)$
- IV. $\pi_{\mathrm{U.}}\left(\sigma_{\mathrm{x=3}}\left(\mathrm{P}\right) \times \pi_{\mathrm{x}}\left(\mathrm{Q}\right)\right)$

Which of the above are equivalent?

(A) I

- (B) II
- (C) III
- (D) IV
- Q8 Consider the following RA expression-
 - **P:** p_{sid} (student) $-p_{sid}$ (student $\bowtie r_{I, G, M}$ (Student))

Marks < M

 \land Gender = G

On a relation student (sid, Gender, Marks) and $r_{l=sid}$, $r_{G=Gender}$, $r_{M=Marks}$.

The above R.A displays?

(A) The sid of the student who obtained the maximum marks.

- (B) The sids of the male and female students who obtained the maximum marks in their respective gender.
- (C) The sids of male student who scored higher than all the female students
- (D) None
- Q9 Consider the relation-

Works (Eid Pid) project (Pid, Name)

The relational algebra expression that displays the Eids who work in every project named 'M' is?

- (A) p_{Eid, Pid} (works)/ p_{Pid} (s_{Name = M} (Project))
- (B) $\pi_{\rm Eid}$ (Work)

$$-rac{\pi}{\mathrm{Eid}} \left[egin{array}{l} \pi_{\mathrm{Eid}} \left(\mathrm{Work}
ight) \ imes \pi_{\mathrm{pid}} \left(egin{array}{l} \sigma & \left(\mathrm{Project}
ight) \ -\pi_{\mathrm{Eid} \, \mathrm{Pid}} & \left(\mathrm{works}
ight) \end{array}
ight]$$

(C) π_{Eid} (Work)

$$\pi_{
m Eid} \left({
m Work}
ight) \ imes \pi_{
m pid} \left(egin{array}{c} \sigma & ({
m Project}) \ {
m Name} < > {
m M} \end{array}
ight) - \pi_{
m Eid \ Pid} \ \left({
m works}
ight)$$

(D) None

Q10 Consider the two relations R_1 and R_2 such that they have no attributes in common then-

S₁:
$$R_1 \bowtie R_2 = R_1 \times R_2$$

$$S_2$$
: $R_1 \bowtie R_2 = \phi$

Which of the given statement(s) is/are correct?

- (A) S₁ only
- (B) S_2 only
- (C) Both S_1 and S_2
- (D) Neither S₁ nor S₂

Android App | iOS App | PW Website

GATE

Answer Key						
Q1	(B)	Q6 (B)				
Q2	(A)	Q7 (A, C, D)				
Q3	(B)	Q8 (B)				
Q4	(C)	Q9 (A, B)				
Q5	(C)	Q10 (A)				

Android App | iOS App | PW Website

3 of 5 02/09/24, 10:25

GATE

Hints & Solutions

Q1 Text Solution:

Selection is commutative whereas projection is not commutative.

Consider the following relation R (A, B, C)
3 2 0
1 2 5

I. Statement S₁: Incorrect 2 3 4 $\pi_{\rm B}\left(\pi_{\rm B,C}\left({
m R}\right)\right)$ $\pi_{\rm B,C}\left(\pi_{\rm B}\left({
m R}\right)\right)$

$$\pi_{
m B} \left[egin{array}{ccc} {
m B} & {
m C} \ {
m 2} & {
m 0} \ {
m 2} & {
m 5} \ {
m 3} & {
m 4} \end{array}
ight]$$

 $\pi_{
m B,C} egin{bmatrix} 2 \ 2 \ 3 \end{bmatrix}$

 \rightarrow Not Possible

II. Statement S₂: Correct

$$\sigma_{B=2} (\sigma_{c>0} (R)) = [1 \ 2 \ 5]$$

 $\sigma_{c>0} (\sigma_{B=2} (R)) = [1 \ 2 \ 5]$

Q2 Text Solution:

I(p	oq)	J(c	ır)	K(rs)		
p	q		q	r	r	S
0	1		1	2	2	3
4	5		5	2	6	7
8	9		5	6	10	11
			5	10	10	3
			13	10		

$(I\bowtie J)$			(I)	IJ₽	⊲ K)		
p	q	r		p	q	r	S
0	1	2		0	1	2	3
4	5	2		4	5	2	3
4	5	6		4	5	6	7
4	5	10		4	5	10	11
				4	5	10	3

Total 5 tuples in result. Option (a) is correct

Q3 Text Solution:

 R_1 and R_2 are union compatible means they have the same number of attributes and the domains of the attributes also the same.

Q4 Text Solution:

Sid who enrolled for only 'CS' Papercode-

= All sids – Sid who enrolled for some non CS
Courses/ Papers
=
$$_{\pi sid}$$
 (Enroll) – $_{\pi sid}$ (Enroll \bowtie σ (Paper))
Desc < >cs

∴ Option c is correct.

Q5 Text Solution:

Retrieve employee ID's work exactly in one project

= All emp IDs – Emp IDs who work in at least two projects etc.

= All emp IDs –
$$p_{Empid}$$
 (Work $\bowtie p_{E, P}$ (work))
Empid = E

Project ID 1 P

Q6 Text Solution:

II.

$$\Pi_{\mathrm{B}}\left(\mathrm{R}\right)-\Pi_{\mathrm{R}_{\mathrm{1.R}}}$$

 $(R_1 \bowtie_{R1.B > R2.B} R_2)$

Only II return the lowest value of B.

I, III, IV do not return the lowest value of B.

Q7 Text Solution:

I, III, IV are equivalent. Lets assume P & Q as

	Γ	
U	V	X
1	2	4
	Q	
37	T 7	

	_	
X	Y	Z
3	5	6

I. $\pi_{U.Z}$ (P $\bowtie \sigma_{x=3}$ S)

Produce Empty result because no common attribute value for natural join.

II.
$$\pi_{\mathrm{U.Z}}\left(\pi_{\mathrm{U}}\left(\mathrm{p}\right) imes\sigma_{\mathrm{x=3}}\left(\mathrm{q}\right)\right)$$
 Produce (1, 6) as a result.

$$\begin{split} \text{III.} \quad & \pi_{U}\left(\sigma_{x=3}\left(P\right)\right) \times \pi_{z}\left(\sigma_{x=3}\left(q\right)\right) \\ & \quad & \quad & \\ &$$

IV:

4 of 5

$$egin{aligned} \pi_{\mathrm{u.Z}}\left(\sigma_{\mathrm{x=3}}\left(\mathrm{p}
ight) imes\pi_{\mathrm{x}}\left(\mathrm{s}
ight)
ight) \ & \phi imes3\Rightarrow\mathrm{Produceemptyresult} \end{aligned}$$

Q8 Text Solution:

 $R:p_{sid}\left(Student\bowtie\rho_{I,G,M}\left(Student\right)\right)$

Marks < m

Λ

Gender = G

R will result in the sids of student of the same gender who scored less marks than the same student of the same gender.

 π_{sid} (Student) – R \equiv The sids of the students who scored maximum marks in a particular gender category.

: Hence, b is correct.

Q9 Text Solution:

Relative Eid who works in every project having name = 'M' is equivalent to division operation in relational algebra.

So, (a) is correct.

(b)

Works (Eid, Pid)

A 1

B 2

A 3

C 3

C 2

C 1

A 3

Project (Pid, name)

1 M

2 P

3 M

$$egin{aligned} \underline{\pi_{ ext{Eid}}} \; [ext{P-}\pi_{ ext{EidPid}} \, (ext{Works})] = egin{bmatrix} A & 1 \ A & 3 \ B & 1 \ B & 3 \ C & 1 \ C & 3 \end{bmatrix} - egin{bmatrix} A \ B \ A \ C \ C \ C \ A \end{aligned}$$

Gives Eid who dose not
$$\leftarrow = \pi$$
Eid $\begin{bmatrix} B & 1 \\ B & 3 \end{bmatrix}$
 $= \begin{bmatrix} B \end{bmatrix}$

$$p_{\text{Eid}}\left(\text{Works}\right) - Q = \begin{bmatrix} A \\ B \\ C \end{bmatrix} - [B] = \begin{bmatrix} A \\ B \end{bmatrix} \leftarrow \text{Eids}$$

who works in all 'M' projects

Q10 Text Solution:

If the relations R_1 and R_2 have no attributes in common, the result of natural join is equal to the cross product of R_1 and R_2 .

The condition of equijoin is not inaccessibility between two same attributes. So, S1 is CORRECT.

