

Samira Naghiloo IOT analytics

Samira.naghiloo@gmail.com

Indoor Localization

Many real world applications need to know the localization of a user in indoor environment.

Why Not GPS:

- Doesn't work indoors
- Operate just in two dimension

Indoor Localization Technique:

- Ultra Wideband
- Wi-Fi
- Bluetooth
- RFID
- Camera
- 0

Goal: Build models that predict the location of user from the WAPs signal in indoor

Wifi positioning system

Data Explanation

Data Set Includes three buildings of Jaume I university in Spain, with 4 or 5 floors

Includes:

- 19937 records in training data set
- 1111 records in validation data set
- 529 variables

Variables:

- 520 Waps
- Longitude/ Latitude
- Building ID/ Floor
- Space ID
- Relative Position
- User ID/ Phone ID
- Timestamp

Training data set

Validation data set

Initial Preprocessing

- Transformed the type of some variable
- Converted undetected signals to -105 (-104 to 0)
- Removed all WAPs (column) and records (row) with zero variance values
- Removed repeated observations
- Converted signals less than -90 to -105 (Unusable)
- Converted signals higher than -30 to -105 (Amazing but not typical or desirable in the real world)

We didn't find any missing value

Initial Result

	KNN		C	5.0	SVM		
L	Accuracy	Kappa	Accuracy	Kappa	Accuracy	Kappa	
Building ID	0.9784	0.9660	0.9919	0.9872	0.9937	0.9900	
Floor	0.865	0.8141	0.7858	0.7069	0.8893	0.8458	

	KNN			Ranger			SVM		
	RMSE	R2	MAE	RMSE	R2	MAE	RMSE	R2	MAE
Latitude	14.298	0.958	7.72	10.198	0.9805	7.17	28.548	0.8348	20.85
Longitude	19.624	0.9734	8.60	10.727	0.992	7.63	58.557	0.7986	39.66

Final Result (Building ID)

Preprocessing:

- > Remove the waps which are not in the validation data
- ➤ Add highest wap for each record
 - Remove waps that are among the highest waps in validation data but never provide the best signal in training data
 - Remove waps that selected as HighWap in more than 1 building

Selected feature:

Highest Wap + Building ID

ranger		C	5.0	SVM		
Accuracy	Kappa	Accuracy Kappa		Accuracy	Kappa	
1	1	1	1	1	1	

Final Preprocessing Floor/Latitude/Longitude

Preprocessing:

- Removed the waps which are not in the validation data
- Found the model per each building separately
- Normalized the waps value between (0-1) and chose strongest signal (Building 1)
- Find the acceptable RSSI range per building
- Transform waps value to exponential (Latitude/Longitude)
- Exclude relocated waps

Final Result (Floor)

Selected feature:

Waps + Building ID + Floor

Floor	KN	NN	Ran	iger	SVM		
	Accuracy	Kappa	Accuracy	Kappa	Accuracy	Kappa	
Building 0	0.9627	0.9473	0.972	0.9604	0.9646	0.9499	
Building 1	0.9251	0.8892	0.9511	0.9268	0.9251	0.89	
Building 2	0.959	0.9444	0.944	0.9239	0.9515	0.9342	

Error Point Building_0(Floor Prediction)

Confusion Matrix and Statistics

Reference Prediction 0 1 2 3 0 74 1 0 0 1 3 206 6 0 2 1 1 158 2

Error Point Building_1(Floor Prediction)

Confusion Matrix and Statistics

Reference

Prediction 0 1 2 3 0 24 2 0 0 1 4 137 1 0 2 2 4 82 0 3 0 0 4 47

Error Point Building_2(Floor Prediction)

Confusion Matrix and Statistics

Reference
Prediction 0 1 2 3 4
0 23 2 0 0 0
1 1 108 1 0 0
2 0 1 52 0 0
3 0 0 0 38 3
4 0 0 1 2 36

Final Result (Latitude/Longitude)

Latitude	KNN			xgbTree			Ranger		
	RMSE	R2	MAE	RMSE	R2	MAE	RMSE	R2	MAE
Building 0	4.8295	0.9772	3.08	5.33	0.9729	3.78	7.4534	0.9453	5.42
Building 1	9.2365	0.9311	6.38	15.505	0.8796	10.91	9.483	0.9273	6.69
Building 2	8.1180	0.9226	5.30	10.863	0.864	8.113	8.8588	0.9072	5.89

Longitude	KNN			xgbTree			Ranger		
	RMSE	R2	MAE	RMSE	R2	MAE	RMSE	R2	MAE
Building 0	5.676	0.9541	3.451	8.4112	0.8978	6.06	6.640	0.9399	4.60
Building 1	9.2727	0.9595	5.97	13.164	0.9196	9.82	8.4308	0.966	6.04
Building 2	10.019	0.9034	6.47	12.969	0.8370	9.19	10.014	0.8985	6.61

Indoor Position:
Building/Floor
Latitude/Longitude

Conclusion

WAPs signal can be a good resource for indoor positioning

- The best way of predicting **building** is using the WAP with the highest RSSI
- For predicting Floor, Latitude and Longitude we need Building ID and all signals value

Indoor Positioning Application:

- Indoor Navigation (control robots, find places)
- People (personnel) tracking
- Asset tracking (Staff, supply chain, high value items)
- Museum tours: Give you contextual information based on your location

•