15.7: Triple Integrals in Cylindrical & Spherical Coordinates

Cylindrical Coordinates

- Represent point P in space by ordered triples (r, θ, z) (r > 0)
- 1. r and θ are polar coordinates for the projection of P onto the xy-plane
- 2. z is the rectangular vertical coordinate

Usage

Should be used when...

- there is an axis of symmetry
- an integrand involves $x^2 + y^2$
- we're integrating over a circle (or part of) in the xy-plane

Very similar to using polar coordinates w/ double integrals, but with an added z component for triple integrals.

Spherical Coordinates

- Represent point P in space by ordered triples (ρ, ϕ, θ)
- 1. ρ is distance from P to the origin $(\rho \ge 0)$
- 2. ϕ is the angle \overrightarrow{OP} makes with the +z-axis $(0 \le \phi \le \pi)$
- 3. θ is the angle from cylindrical coordinates

Converting Rectangular to Spherical

$$ho^2 = x^2 + y^2 + z^2 = r^2 + z^2$$
 $r =
ho \sin \phi$
 $z =
ho \cos \phi$
 $x = r \cos \theta =
ho \sin \phi \cos \theta$
 $y = r \sin \theta =
ho \sin \phi \sin \theta$

Triple Integral Definition

$$\iiint_T dV = \iiint_T
ho^2 \sin \phi \, d
ho \, d\phi \, d heta$$

Why?

 ΔV is the curved box above. Assuming ΔV is a rectangular prism (when ΔV is very small, it's essentially a rectangular prism),

$$\Delta V = (\Delta
ho) \overbrace{(
ho \, \Delta \phi)}^{
m arclength \ from \ the \ side}_{
m arclength \ from \ the \ top}$$

$$=
ho r\,\Delta
ho\,\Delta\phi\,\Delta heta \ =
ho(
ho\sin\phi)\,\Delta
ho\,\Delta\phi\,\Delta heta \ =
ho^2\sin\phi\,\Delta
ho\,\Delta\phi\,\Delta heta$$

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Related: purely algebraic derivation

#week9