Explosive Ordonance Disposal Challenge

ME3-HECM COURSE PROJECT

Alvaro Prat Theophile Sautory

Contents

- 1. File organisation
- 2. Main C source file
 - Main loop
 - Working with the IR signals
 - Finding the beacon
 - Motor control
 - Returning to initial position

Files organisation tree diagram

Main C source file

- 1. Calls the header files and initialises global variables
- 2. Sets up the interrupts
 - Button press interrupt
 - RFID interrupt
- 3. Calls C module functions and initialises the main loop
 - Sets up motor and IR structures values
 - Initialises module registers
 - Enables interrupts
 - Creates main loop variables
 - Sets up the main loop

Interrupts

External interrupts are used to update the 'card_read' flag value.

1. Button press interrupt

• Sets card_read = 0

2. RFID interrupt

- Sets card_read = 1
- Reads the RFID (RCREG) characters into a global character array

Main loop flow chart

 Red boxes indicate interrupt updated values.

IR Signals Processing

Reading

- 1. TMR5 module is configured at 250KHz
- 2. CAPxCON module is set to pulse width measurement mode in CAP1 and CAP2 pins
- 3. Every falling to rising edge CAPx buffers are updated with the TMR5 clock
- 4. These values range from 0 to 12500 (50ms * 250kHz)
- 5. Recorded in IR structure

Mapping

1. Map (0 -> 12500) to (0 -> 200)

Backtrace Routine and Motor Control

Motor Control

Motor speed controlled by its PWM Low/High duty cycle

Search Mode

- Directions and distances stored in searching routine
- Distances stored using a quadrature encoder
 - TMR0 is written through the external TOCKI pin
 - Re set to 0 in every direction change

Return Mode

- Back trace values are accessed with array pointers
- Movements repeated in reverse order and direction

Thank you very much for listening!

Questions?