

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 38 791.5

Anmeldetag: 23. August 2002

Anmelder/Inhaber: LuK Lamellen und Kupplungsbau Beteiligungs KG,
Bühl, Baden/DE

Bezeichnung: Antrieb

IPC: F 16 D 23/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 16. Juni 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Dzierzon".

Dzierzon

LuK Lamellen und Kupplungsbau
Beteiligungs KG
Industriestraße 3
77815 Bühl

0793 DE

Patentansprüche

1. Antrieb zur Erzielung einer axialen Relativbewegung zwischen zwei in Umfangsrichtung verdrehbar angeordneten Bauteilen, wobei zumindest ein bezüglich des ersten Bauteiles fixiertes Eingriffsmittel zwischen zumindest zwei benachbarte Windungen einer dem zweiten Bauteil drehfest zugeordneten gewundenen Feder eingreift und zumindest ein Bauteil gegenüber dem anderen drehangetrieben ist, dadurch gekennzeichnet, dass das zweite Bauteil mit einem axial zu verschiebenden weiteren Mittel durch ein Haltemittel lösbar verbunden ist, wobei die Verbindung des zweiten Bauteils mit dem weiteren Mittel in zumindest einer Stellung des ersten Bauteils gegenüber dem zweiten Bauteil gelöst ist.
- 15 2. Antrieb nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Haltemittel in einem ersten axialen Verschiebebereich des ersten Bauteils gegenüber dem zweiten Bauteil eine geschlossenen Stellung einnimmt und in einem zweiten axialen Verschiebebereich des ersten Bauteils gegenüber dem zweiten Bauteil eine geöffnete Stellung einnimmt.

3. Antrieb nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Haltemittel eine in radialer Richtung verschiebbare Klemmfeder ist.
4. Antrieb nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass 5 das Haltemittel eine in radialer Richtung verschwenkbare Klemmfeder ist.
5. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmfeder eine Nase des weiteren Mittels umgreifen kann.
- 10 6. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmfeder von einem Anschlag in dem ersten axialen Verschiebebereich in radialer Richtung festgelegt ist.
- 15 7. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmfeder einen Absatz aufweist.
- 20 8. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmfeder in dem ersten axialen Verschiebebereich durch den Anschlag in die geschlossenen Stellung gedrückt wird .
9. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmfeder in dem zweiten axialen Verschiebebereich durch den Anschlag freigegeben wird.

10. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der Anschlag einen in Umfangsrichtung angeordneten Stift umfasst.

11. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
5 dass der Stift von Fahnen des Anschlags umgriffen und festgelegt ist.

12. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das weitere Mittel ein Ausrücklager einer Kupplung ist.

10 13. Antrieb zur Erzielung einer axialen Relativbewegung zwischen zwei in Um-
fangsrichtung verdrehbar angeordneten Bauteilen, wobei zumindest ein be-
züglich des ersten Bauteiles fixiertes Eingriffsmittel zwischen zumindest zwei
benachbarte Windungen einer dem zweiten Bauteil drehfest zugeordneten
gewundenen Feder eingreift und zumindest ein Bauteil gegenüber dem ande-
ren drehangetrieben ist, dadurch gekennzeichnet, dass das Eingriffsmittel
15 umlaufende Wälzkörper umfasst, die mit der Feder zwischen zwei benach-
barten Windungen in Eingriff stehen.

14. Antrieb nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass
20 die Wälzkörper Kugeln sind.

15. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Kugeln außerhalb ihres Äquatorialumfanges mit der Feder in Eingriff
stehen.

16. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Kugeln auf einer ovalen Bahn umlaufen können.

5 17. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Feder eine Runddrahtfeder oder Formfeder ist.

18. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Kugeln in radialer Richtung auf der Innenseite der Feder angeordnet
10 sind.

19. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Kugeln in radialer Richtung auf der Außenseite der Feder angeordnet
sind.

15

20. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass dieser eine Vorspannfeder umfasst, die ein durch das Eingriffsmittel auf
das zweite Bauteil ausgeübtes Drehmoment aufnehmen kann.

20 21. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das ersten Bauteil durch einen externen Antrieb angetrieben werden
kann.

22. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der externe Antrieb ein Umschlingungsgetriebe ist.

23. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
5 dass der externe Antrieb ein Seilzug ist.

24. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der externe Antrieb ein Keilriemen, Rundriemen, Zahnriemen, verzahnter
Rundriemen oder Kettenantrieb ist.

10

25. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der externe Antrieb ein Zahnradgetriebe ist.

26. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
15 dass das Zahnradgetriebe sowie das Lager innerhalb der Hülse angeordnet
sind.

27. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Zahnradgetriebe sowie das Lager außerhalb der Hülse angeordnet
20 sind.

28. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Zahnradgetriebe sowie das Lager in Verlängerung der Vorspannfe-
der angeordnet sind.

29. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Zahnradgetriebe mehrstufig ist.

5 30. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Zahnradgetriebe ein zweites Zahnrad umfasst, das innenverzahnt
ist.

31. Antrieb nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
10 dass der Drehantrieb des einen Bauteils gegenüber dem anderen Bauteil
durch einen Pneumatikmotor erfolgt.

32. Antrieb nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass
der Pneumatikmotor gesperrt werden kann.

15

33. Antrieb nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass
der Pneumatikmotor unmittelbar das Zahnradgetriebe, das Umschlingungsge-
triebe, den Seilzug, den Keilriemen, Rundriemen, Zahriemen, verzahnter
Rundriemen oder Kettenantrieb antreiben kann.

20

34. Anordnung mehrerer Antriebe nach einem der vorhergehenden Ansprüche.

35. Anordnung von zwei Antrieben nach einem der vorhergehenden Ansprüche zur Betätigung einer Doppelkupplung, insbesondere einer Doppelkupplung eines Kraftfahrzeuges.

5 36. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass diese eine erste Wälzkörperanordnung mit einer ersten Lagerhülse sowie eine zweite Wälzkörperanordnung mit einer zweiten Lagerhülse umfasst, wobei die zweite Lagerhülse die erste Lagerhülse koaxial umfasst.

10 37. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die erste Lagerhülse eine erste Verzahnung und/oder die zweite Lagerhülse eine zweite Verzahnung aufweist.

15 38. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Verzahnung mit einem ersten Verstellzahnrad und/oder die zweite Verzahnung mit einem zweiten Verstellzahnrad in Eingriff sind.

20 39. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das erste Verstellzahnrad und das zweite Verstellzahnrad koaxial angeordnet sind.

40. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das erste Verstellzahnrad und das zweite Verstellzahnrad von koaxial angeordneten Antriebswellen antreibbar sind.

41. Fahrzeugkupplung mit mindestens einem Ausrücklager umfassend einen Antrieb nach einem der vorhergehenden Ansprüche.

5 42. Maschinenbauteil mit einem in den vorliegenden Unterlagen offenbarten Merkmal.

LuK Lamellen und Kupplungsbau

Beteiligungs KG

Industriestraße 3

77815 Bühl

0793 DE

Antrieb

Die vorliegende Erfindung betrifft einen Antrieb zur Erzielung einer axialen Relativbewegung zwischen zwei in Umfangsrichtung verdrehbar angeordneten Bau-

5 teilen, wobei zumindest ein bezüglich des ersten Bauteiles fixiertes Eingriffsmittel zwischen zumindest zwei benachbarte Windungen einer dem zweiten Bauteil drehfest zugeordneten gewundenen Feder eingreift und zumindest ein Bauteil gegenüber dem anderen drehangetrieben ist.

10 Ein gattungsgemäßer Antrieb ist aus der DE 100 33 649 bekannt. Nachteilig an derartigen Antrieben nach Stand der Technik ist eine aufwändige Montage des Antriebes mit den anzutreibenden Mitteln wie beispielsweise einer Fahrzeugkupplung.

15 Der vorliegenden Erfindung liegt daher das Problem zugrunde, einen Antrieb der eingangs genannten Art zu schaffen, der eine einfachere Verbindung des Antriebes mit anzutreibenden Mitteln ermöglicht.

Dieses Problem wird durch einen Antrieb gelöst, bei dem das zweite Bauteil mit
20 einem axial zu verschiebenden weiteren Mittel durch ein Haltemittel lösbar verbunden ist, wobei die Verbindung des zweiten Bauteils mit dem weiteren Mittel in

zumindest einer Stellung des ersten Bauteils gegenüber dem zweiten Bauteil gelöst ist. Das weitere Mittel kann daher in einer Position des Antriebes von diesem gelöst werden. Dies ist insbesondere bei einem Antrieb einer Fahrzeugkupplung vorteilhaft, wenn die Fahrzeugkupplung durch eine Vorlastfeder in einem Teilbereich eine Zugbelastung auf den Antrieb ausübt. In diesem Fall kann der Bereich,

- 5 in dem das weiteren Mittel von dem Antrieb gelöst ist , in den Druckbereich der Kupplung gelegt werden, sodass im Normalbetrieb durch die von dem Antrieb auf das weiteren Mittel ausgeübte Druckkraft keine auf Zug belastbare Verbindung zwischen beiden notwendig ist. Die Erfindung ermöglicht eine Demontage und
- 10 Montage in Verbindung mit zu übertragenden Zug- und Druckkräften.

Vorzugsweise ist vorgesehen, dass das Haltemittel in einem ersten axialen Verschiebebereich des ersten Bauteils gegenüber dem zweiten Bauteil eine geschlossenen Stellung einnimmt und in einem zweiten axialen Verschiebebereich

- 15 des ersten Bauteils gegenüber dem zweiten Bauteil eine geöffnete Stellung einnimmt. Unter Verschiebebereich ist der im Betrieb erzielbare Verschiebeweg des Antriebes zu verstehen, der in den ersten sowie den zweiten Verschiebebereich aufgeteilt ist. Dieser ist somit in einen Bereich unterteilt, in dem das weitere Mittel auf Zug und Druck mit dem Antrieb verbunden ist und einen Bereich, in dem nur
- 20 eine Druckkraft von dem Antrieb auf das weitere Mittel übertragen werden kann.

Der Bereich der gelösten Verbindung beider Baugruppen ist somit genau definiert.

Das Haltemittel kann eine in radialer Richtung verschiebbare oder verschwenkbare Klemmfeder sein. Unter Klemmfeder wird hier jedes Verbindungsmitte ver-

standen, das eine kraft- oder formschlüssige Verbindung in einer Stellung herstellen kann. Das Verbindungsmitel muss dabei selbst keine ausgeprägte Nachgiebigkeit aufweisen. Vorzugsweise gelangt eine verschwenkbare Klemmfeder zum Einsatz, da diese Bewegung durch die Möglichkeit, die Klemmfeder einseitig 5 drehbar festzulegen, einfacher zu realisieren ist.

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Klemmfeder eine Nase des weiteren Mittels umgreifen kann. Eine klauenartige Verbindung ist besonders einfach genau zu fertigen und gewährleistet einen sicheren Sitz beider 10 Teile. Unter Nase wird dabei jeder Vorsprung verstanden, der eine in axialer Richtung mit einer Kraft beaufschlagbare Fläche oder Kante bildet.

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Klemmfeder von einem Anschlag in dem ersten axialen Verschiebebereich in radialer Richtung festgelegt ist. Der Anschlag kann dabei drehbar mit der Klemmfeder verbunden sein 15 und zudem gehäusefest festgelegt sein.

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Klemmfeder einen Absatz aufweist. Der Absatz ermöglicht es, bei axialer Verschiebung gegen beispielweise den Anschlag eine Drehbewegung herbeizuführen. 20

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Klemmfeder in dem ersten axialen Verschiebebereich durch den Anschlag in die geschlossenen Stellung gedrückt wird.

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Klemmfeder in dem zweiten axialen Verschiebebereich durch den Anschlag entlastet wird.

- 5 In einer Weiterbildung des Antriebes ist vorgesehen, dass der Anschlag einen in Umfangsrichtung angeordneten Stift umfasst. Der Stift kann mit dem zuvor genannten Absatz der Klemmfeder eine Führungsbahn bilden, entlang derer die zuvor genannte Drehbewegung der Klemmfeder erfolgen kann.

- 10 Der Stift kann zur Erzielung einer belastbaren Verbindung mit dem Anschlag von Fahnen des Anschlags umgriffen und festgelegt sein. Der Stift dient als Notentriegelung. Wenn der Axialantrieb im Zugbetrieb ausfällt, kann der Stift gedreht werden und die Klemmeinrichtung wird entlastet. Das Lager ist frei und die Kupplung kann demontiert werden.

15

Vorzugsweise ist vorgesehen, dass das weitere Mittel ein Ausrücklager einer Kupplung ist.

- 20 Der vorliegenden Erfindung liegt des weiteren die Aufgabe zugrunde, den benötigten Bauraum für den Antrieb zu verringern. Dieses Problem wird durch einen Antrieb zur Erzielung einer axialen Relativbewegung zwischen zwei in Umfangsrichtung verdrehbar angeordneten Bauteilen, wobei zumindest ein bezüglich des ersten Bauteiles fixiertes Eingriffsmittel zwischen zumindest zwei benachbarte Windungen einer dem zweiten Bauteil drehfest zugeordneten gewundenen Feder

eingreift und zumindest ein Bauteil gegenüber dem anderen drehangetrieben ist gelöst, bei dem das Eingriffsmittel umlaufende Wälzkörper umfasst, die mit der Feder zwischen zwei benachbarten Windungen in Eingriff stehen. Die Wälzkörper können beliebige aus Wälzlagern bekannte Formen, beispielsweise Zylinder, Kegel, Tonnenformen, aufweisen.

Vorzugsweise sind die Wälzkörper Kugeln. Hier können handelsübliche aus Kugellagern bekannte Kugeln verwendet werden.

- 10 In einer Weiterbildung des Antriebes ist vorgesehen, dass die Kugeln außerhalb ihres Äquatorialumfanges mit der Feder in Eingriff stehen. Damit ist gemeint, dass diese nur mit einem Teil, der kleiner als der Durchmessers ist, mit der Feder in Eingriff stehen.
- 15 In einer Weiterbildung des Antriebes ist vorgesehen, dass die Kugeln auf einer ovalen Bahn umlaufen können. Statt einer ovalen Bahn können hier beliebige Bahnen, die innerhalb des durch die Feder begrenzten Umfanges verlaufen und nur über einen kleinen Teil des Umfanges der Feder mit dieser in Berührung kommen, gewählt werden.

20

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Feder eine Runddrahtfeder oder eine Formfeder ist.

In einer Weiterbildung des Antriebes ist vorgesehen, dass die Kugeln in radialer Richtung auf der Innenseite der Feder angeordnet sind. Alternativ können die Kugeln in radialer Richtung auf der Außenseite der Feder angeordnet sein.

- 5 In einer Weiterbildung des Antriebes ist vorgesehen, dass dieser eine Vorspannfeder umfasst, die ein durch das Eingriffsmittel auf das zweite Bauteil ausgeübtes Drehmoment aufnehmen kann. Bei einer Drehung des Eingriffsmittels übt dieses durch die zwischen diesem und der Feder zwangsläufig bestehende Reibung ein Drehmoment auf das zweite Bauteil aus. Dieses Drehmoment wird nun nicht mehr über gesonderte Führungsmittel, wie eine axial verlaufende Nut / Federkombination, sondern einzig durch die Vorspannfeder aufgenommen.
- 10

- 15 In einer Weiterbildung des Antriebes ist vorgesehen, dass das erste Bauteil durch einen externen Antrieb angetrieben werden kann. Somit kann auf einen innerhalb des Antriebes angeordneten elektromotorischen Antrieb, bei dem Teile des Antriebes als Rotor und andere Teile als Stator ausgebildet sind, verzichtet werden.

- 20 Der externe Antrieb kann ein Umschlingungsgetriebe sein. Darunter ist jeder Antrieb, der von einem Seilartigen Antriebsmittel Gebrauch macht, zu verstehen. Dies kann beispielsweise ein Seilzug, ein Keilriemen, Rundriemen, Zahnriemen, verzahnter Rundriemen, Kettenantrieb oder dergleichen sein.

Alternativ kann der externe Antrieb als ein Zahnradgetriebe ausgeführt sein.

Dabei kann das Zahnradgetriebe sowie das Lager innerhalb oder außerhalb der Hülse angeordnet sein.

In einer Weiterbildung des Antriebes ist vorgesehen, dass das Zahnradgetriebe

5 sowie das Lager in Verlängerung der Vorspannfeder angeordnet sind.

In einer Weiterbildung des Antriebes ist vorgesehen, dass das Zahnradgetriebe mehrstufig ist. Diese Maßnahme dient der Erhöhung der erzielbaren Übersetzung.

10 In einer Weiterbildung des Antriebes ist vorgesehen, dass das Zahnradgetriebe ein zweites Zahnrad umfasst, das innenverzahnt ist. Durch die Kombination innen- und außenverzahnter Zahnräder kann ein besonders geringer Bauraum des Getriebes erzielt werden.

15 In einer Weiterbildung des Antriebes ist vorgesehen, dass der Drehantrieb des einen Bauteils gegenüber dem anderen Bauteil durch einen Pneumatikmotor erfolgt. Als Pneumatikmotor kommen hier beliebige Hub- oder Drehkolbenmotoren oder Turbomaschinen in Frage. Dabei ist es vorteilhaft, wenn der Antrieb als solcher selbsthemmend ist. In diesem Fall kann auf eine zusätzliche Sperre des

20 Pneumatikmotors verzichtet werden. Alternativ kann auch der Pneumatikmotor gesperrt werden, beispielsweise durch eine mechanische Blockierung oder durch Sperren der Druckluftzuleitung eines Drehkolbenmotors.

In einer Weiterbildung des Antriebes ist vorgesehen, dass der Pneumatikmotor unmittelbar das Zahnradgetriebe, das Umschlingungsgetriebe, den Seilzug, den Keilriemen, Rundriemen, Zahnriemen, verzahnter Rundriemen oder Kettenantrieb antreiben kann. Der Antrieb kann beispielsweise durch eine drehfeste Ankopplung
5 des Pneumatikmotors an eines der Antriebsmittel, beispielsweise ein Zahnrad, eine Riemscheibe oder eine Antriebswelle eines Zahnradgetriebes erfolgen.

Das zuvor genannte Problem wird auch durch eine Anordnung mehrerer Antriebe nach einem der vorhergehenden Ansprüche gelöst. Insbesondere in den Fällen,
10 in denen mehrere anzutreibende Mittel wie Kupplungen oder dergleichen vorhanden sind wirken sich die zuvor dargestellten Vorteile bezüglich Bauraum und Montierbarkeit aus.

Insbesondere wird das zuvor genannte Problem durch eine Anordnung von zwei
15 Antrieben nach einem der vorhergehenden Ansprüche zur Betätigung einer Doppelkupplung, insbesondere einer Doppelkupplung eines Kraftfahrzeuges, gelöst.

In einer Weiterbildung der Anordnung ist vorgesehen, dass diese eine erste Wälzkörperanordnung mit einer ersten Lagerhülse sowie eine zweite Wälzkörperan-
ordnung mit einer zweiten Lagerhülse umfasst, wobei die zweite Lagerhülse die
20 erste Lagerhülse koaxial umfasst.

In einer Weiterbildung der Anordnung ist vorgesehen, dass die erste Lagerhülse eine erste Verzahnung und/oder die zweite Lagerhülse eine zweite Verzahnung aufweist.

- 5 In einer Weiterbildung der Anordnung ist vorgesehen, dass die Verzahnung mit einem ersten Verstellzahnrad und/oder die zweite Verzahnung mit einem zweiten Verstellzahnrad in Eingriff sind. Die Zahnräder müssen im Winkel verdreht sein, wenn sie nicht Mittels Welle und Hohlwelle angetrieben werden.
- 10 In einer Weiterbildung der Anordnung ist vorgesehen, dass das erste Verstellzahnrad und das zweite Verstellzahnrad koaxial angeordnet sind.

In einer Weiterbildung der Anordnung ist vorgesehen, dass das erste Verstellzahnrad und das zweite Verstellzahnrad von koaxial angeordneten Antriebswellen antreibbar sind.

- 15
- 20

Die Erfindung betrifft des weiteren eine Fahrzeugkupplung mit mindestens einem Ausrücklager umfassend einen Antrieb nach einem der vorhergehenden Ansprüche sowie ein Maschinenbauteil mit einem in den vorliegenden Unterlagen offenbarten Merkmal.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen erläutert. Dabei zeigen

Fig. 1 einen Schnitt durch einen erfindungsgemäßen Axialantrieb in Einbaulage in einer hinteren Stellung zusammen mit einer Kupplungsanordnung;

Fig. 2 einen Axialantrieb gemäß Fig. 1 in einer vorderen Stellung;

Fig. 3 einen Axialantrieb gemäß Fig. 2 bei abgezogenem Ausrücklager;

5 Fig. 4a –Fig. 4c einen Anschlag in verschiedenen Ansichten;

Fig. 5 einen Axialantrieb mit umlaufenden Wälzkörpern als Eingriffsmittel;

Fig. 6 einen Axialantrieb mit externem Antrieb;

Fig. 7 den Axialantrieb gem. Fig. 6 vollständig eingefahren;

Fig. 8 den Axialantrieb gem. Fig. 6 teilweise ausgefahren;

10 Fig. 9 eine Seilzugbetätigung eines Axialantriebes;

Fig. 10 eine erste Ausführungsform eines Axialantriebes mit einem Zahnradaantrieb;

Fig. 11 eine zweite Ausführungsform eines Axialantriebes mit einem Zahnradaantrieb;

15 Fig. 12 eine dritte Ausführungsform eines Axialantriebes mit einem Zahnradaantrieb;

Fig. 13 eine vierte Ausführungsform eines Axialantriebes mit einem Zahnradaantrieb;

Fig. 14 die Ausführungsform gemäß Fig. 13 in der Seitenansicht im Teilschnitt

20 Fig. 15 eine Doppelkupplung mit zweifachem Axialantrieb;

Fig. 1 zeigt ein Ausführungsbeispiel eines Axialantriebes 1 mit einer Kupplungsanordnung 2. Der Axialantrieb 1 ist über ein Ausrücklager 3 mit einer Tellerfeder 4 in an sich bekannter Weise mit der Kupplungsanordnung verbunden. Die Kupp-

lungsanordnung als solche ist ebenfalls an sich bekannt und wird daher nicht näher dargestellt.

Der Axialantrieb 1 ist um eine Welle 5 angeordnet und an einem gehäusefesten

5 Bauteil 6 drehfest aufgenommen. Der Axialantrieb 1 umfasst ein um die Welle 5 drehbar angeordnetes Eingriffsmittel 7 sowie eine Schraubenfeder 8. Das Eingriffsmittel 7 ist zwischen den Windungen der Schraubenfeder 8 angeordnet. Bei einer Rotation des Eingriffsmittels 7 werden einzelne Windungen der Schraubenfeder 8 von der einen zur anderen Seite des Eingriffsmittels 7 befördert. Auf diese

10 Weise kann durch rotatorische Bewegung des Eingriffsmittels 7 die gesamte Schraubenfeder 8 von der einen auf die andere Seite des Eingriffsmittels 7 befördert werden und auf so eine axiale Bewegung erzielt werden. Das Eingriffsmittel 7 sowie die Schraubenfeder 8 bilden zusammen eine Federspindel 9.

15 Das Eingriffsmittel 7 ist an einer Hülse 10 angeordnet, die mit Hilfe eines ersten Wälzlagers 11 gegenüber dem gehäusefesten Bauteil 6 drehbar angeordnet ist. Die Hülse 10 zusammen mit dem Eingriffsmittel 7 ist beispielsweise mittels eines elektromotorischen Antriebes in Form eines Stators 12 antreibbar. Die Schraubenfeder 8 wird von einem Gehäuse 13 umgriffen und so als Federpaket zusammengehalten. Das Gehäuse 13 ist in axialer Richtung auf der Hülse 10 verschiebbar.

Das Gehäuse 13 ist mittels einer Klemmfeder 14 mit einer Nase 15 des Ausrücklagers 3 verbunden. Die Klemmfeder 14 wird von einem Anschlag 16 in ihrer Position festgelegt.

5 In der Darstellung der Fig. 1 befindet sich der Axialantrieb in einer hinteren Stellung, die Schraubenfeder 8 und damit das Ausrücklager 3 sind in einer Stellung, in der diese möglichst weit zum Getriebegehäuse 6b hin bewegt worden sind. Diese Stellung entspricht üblicherweise der eingekuppelten Kupplungsstellung der Kupplungsanordnung 2.

10

In Fig. 2 dargestellt ist die gegenüber der Fig. 1 andere Extremstellung von Schraubenfeder 8, Gehäuse 13 und Ausrücklager 3. Diese Stellung entspricht üblicherweise der ausgetrennten Kupplungsstellung der Kupplungsanordnung 2.

Wie Fig. 2 zu entnehmen ist, ist die Klemmfeder 14 an der dem Ausrücklager 3

15 zugewandten Seite von dem Ausrücklager 3 abgehoben. Die Klemmfeder 14 umgreift daher die Nase 15 des Ausrücklagers nicht mehr. Entsprechend der Darstellung der Fig. 3 lässt sich somit das Ausrücklager 3 zusammen mit der gesamten Kupplungsanordnung 2 von dem Axialantrieb 1 abziehen. Die Klemmfeder 14 ist dazu entsprechend vorgespannt und verfügt über einen Absatz 17.

20 Mehrere Stifte 18 sind an dem Anschlag 16 befestigt. Diese drücken in einem ersten Verschiebebereich gemäß Fig. 1 die Klemmfeder 14 radial nach innen, so dass diese die Nase 15 des Ausrücklagers 3 fest umgreift. In einem zweiten Verschiebebereich gemäß Fig. 2 wird die Klemmfeder 14 von dem Stift 18 in Verbindung mit dem Anschlag 16 nicht mehr radial nach innen gedrückt, so dass diese

durch ihre eigene Vorspannung oder dergleichen in die Position gemäß Fig. 2 geschwenkt wird. Alternativ zu einer Schwenkbewegung wäre hier auch beispielsweise eine translatorische Bewegung in radialer Richtung denkbar.

- 5 Die Klemmfeder 14 als Haltemittel nimmt in einem ersten axialen Verschiebebereich eine geschlossene Stellung und in einem zweiten axialen Verschiebebereich eine geöffnete Stellung ein. Die Klemmfeder 14 wird im ersten axialen Verschiebebereich durch den Anschlag 16 in eine geschlossene Stellung gedrückt. In dem zweiten axialen Verschiebebereich wird der Anschlag 16 entweder in eine geöffnete Stellung gedrückt oder von dem Anschlag 16 gelöst und durch zum Beispiel eigene Vorspannung in die geöffnete Stellung bewegt.
- 10

Der anhand der Fig. 1, 2 und 3 dargestellte Mechanismus hat zur Folge, dass das Ausrücklager 3 nur in einen Bereich, in dem von dem axialen Antrieb 1 eine Zug-

- 15 kraft auf die Kupplungsanordnung 2 auszuüben ist, fest miteinander verbunden sind. In diesem Bereich ist die Kupplung üblicherweise von einer linearen Vorspannfeder unterstützt, sodass die Kupplung gegen die Kraft dieser Feder zu schließen ist. Man zieht in diesem Bereich die Kupplung, nur gegen die Zungensteifigkeit der Feder, weiter zu. In dem Bereich, in dem der axiale Antrieb 1 nur ei-
- 20 ne Druckkraft auf das Ausrücklager 3 ausüben muss, besteht keine formschlüssige Verbindung. In dieser Stellung lässt sich daher der Axialantrieb 1 von der Kupplungsanordnung 2 zur Demontage lösen.

In Fig. 4 dargestellt ist ein Anschlag 16 zusammen mit dem Stift 18. Fig. 4a zeigt dabei eine Draufsicht, Fig. 4b eine Seitenansicht und Fig. 4c einen Schnitt gemäß IV-IV in Fig. 4b. Der Anschlag 16 besteht im Wesentlichen aus einem Blechstreifen, der mittels zweier Ausstanzungen in einer inneren Fahne 19 und einer äußeren Fahne 20 unterteilt ist. Die äußeren Fahnen 20 sind mit im Wesentlichen kreisausschnittförmigen Vertiefungen 21 versehen. Wie Fig. 4c zu entnehmen ist, verfügt der Stift 18 über einen nutartigen Ausschnitt 22. In diesen Ausschnitt 22 greift die innere Fahne 19 ein und legt somit den Stift 18 an dem Anschlag 16 fest.

Der Anschlag 16 verfügt über eine Lasche 23, mit der dieses an dem gehäusefesten Bauteil 6 festlegbar ist.

Fig. 5 zeigt eine alternative Ausführungsform eines erfindungsgemäßen Antriebes mit umlaufenden Wälzkörpern als Eingriffsmittel. Dargestellt ist ein Axialantrieb 1 in der Seitenansicht im Teilschnitt insbesondere für einen Axialantrieb mit in Zug- bzw. Schubrichtung wirksamen Eingriffsmitteln 7 als Wälzkörper 30. Die Wälzkörper 30 sind in radialer Richtung gesehen innerhalb der Schraubenfeder 8 angeordnet. Dazu sind die Wälzkörper 30 in einem Wälzkörperfäfig 31 angeordnet. Der Wälzkörperfäfig 31 ermöglicht ein Umlaufen der Wälzkörper 30. Die Umlaufbahn der Wälzkörper 30 ist dabei exzentrisch, so dass die Wälzkörper 30 nur an einem Punkt mit der Schraubenfeder 8 in Eingriff stehen. Die Umlaufbahn ist in zwei Bereiche aufgeteilt, wobei der erste Bereich den Kontakt mit der Feder ermöglicht. Er ist also kreisförmig. Der zweite Bereich, der ebenfalls kreisförmig ist, gibt die Feder im Umlenkbereich frei. Im vorliegenden Ausführungsbeispiel sind die Wälzkörper 30 in einer ersten Wälzkörperbahn 32 sowie einer zweiten Wälz-

körperbahn 33 angeordnet. In Schubrichtung des Axialantriebes 1 gemäß Fig. 5 sind daher in der Darstellung der Fig. 5 die Wälzkörper 30 der zweiten Wälzkörperfahn 33 mit der Schraubenfeder 8 in Eingriff, in Zugrichtung sind entsprechend die Wälzkörper 30 der ersten Wälzkörperfahn 32 in Eingriff.

5

Der Wälzkörperfäfig 31 ist an der Hülse 10 angeordnet und entspricht zusammen mit den Wälzkörpern 30 dem Eingriffsmittel 7. Die Hülse 10 ist mittels eines Wälzlagers 35 drehbar gelagert und fungiert gleichzeitig als Rotor eines elektromotorischen Antriebes. Dazu ist eine Statorwicklung 36 innerhalb des Axialantriebes 1 angeordnet.

Im dargestellten Ausführungsbeispiel sind die Wälzkörper 30 Kugeln, alternativ können hier aber auch andere Wälzkörpergeometrien wie beispielsweise tonnenartige Wälzkörper zum Einsatz gelangen. Die Kugeln sind im vorliegenden Aus-

15führungsbeispiel so angeordnet, dass diese nur mit einem Teil ihres Umfangsdurchmessers mit der Schraubenfeder 8 in Eingriff stehen. Die Bahn der Kugeln

hat einen gleichmäßigen Durchmesser bis auf einen Bereich von 65° , in dem sie auf einen kleineren Durchmesser wechselt. Somit trägt jede Bahn über einen Bereich von 360° -Umlenkbereich. Anders ausgedrückt, stehen die Kugeln außerhalb

20 ihres Äquatorialumfanges mit der Feder in Eingriff. Die durch den Wälzkörperfäfig

31 vorgegebene Umlaufbahn der Kugeln ist im folgenden Ausführungsbeispiel in etwa oval ausgelegt, so dass diese nur an einer Stelle mit der Schraubenfeder 8 in Eingriff stehen. Statt einer in etwa ovalen Umlaufläche könnte hier beispielsweise auch eine exzentrisch angeordnete, etwa kreisförmige Umlaufbahn Anwen-

dung finden. Als Schraubenfeder 8 kann im vorliegenden Beispiel, wie auch der Fig. 5 zu entnehmen ist, eine einfache Runddrahtfeder eingesetzt werden. Gegenüber aus flachen Federwindungen bestehenden Federn sind derartige aus Runddraht bestehende Federn einfacher und kostengünstiger herzustellen und 5 üblicherweise als Normteile zu beziehen.

Das Gehäuse 13 ist beispielsweise mit nicht dargestellten Nut- und Federsystemen gegen Verdrehen gegenüber dem gehäusefesten Bauteil 6 gesichert. Das gehäusefeste Bauteil 6 verfügt beispielsweise über einen umlaufenden Flansch 10 41 mit Bohrungen 42 zur Befestigung des Axialantriebes 1 an einem nicht dargestellten Getriebegehäuse 6b.

Das Gehäuse 13 verfügt über Anschlagmittel 43, mit denen dieses mit einem in Fig. 5 nicht dargestellten Ausrücklager entsprechend Fig. 1 zusammenwirkt. Das 15 Ausrücklager kann dabei entsprechend der Darstellung der Fig. 1 mit dem Gehäuse 13 befestigt sein. In dem hier dargestellten Ausführungsbeispiel ist die Schraubenfeder 8 in radialer Richtung gesehen außerhalb der Wälzkörper 30 angeordnet.

20 Fig. 6 zeigt eine weitere alternative Ausführungsform eines erfindungsgemäßen Axialantriebes mit einem externen Antrieb. Hier ist die in den vorher beschriebenen Ausführungsformen eingesetzte elektromotorische Verstellung, bei der innerhalb des Axialantriebes ein Rotor sowie ein Stator angeordnet sind, ersetzt durch einen externen Antrieb. Dieser externe Antrieb kann beispielsweise ein pneumati-

scher, hydraulischer oder elektromotorischer Motorantrieb oder ein Seilzugmechanismus oder dergleichen sein.

Die gegenüber dem zuvor dargestellten Ausführungsbeispiel identischen Bauteile
5 sind hier identisch bezeichnet. Der Axialantrieb 1 umfasst ein gehäusefestes
Bauteil 6, das mit einem Flansch an einem nicht dargestellten Gehäuse befestigt
werden kann. Eine Schraubenfeder 8 wird von einem Gehäuse 13 eingefasst und
ermöglicht die axiale Verstellung eines Ausrücklagers 3. Die Axialbewegung der
Schraubenfeder 8 erfolgt mit Hilfe von Wälzkörpern 30, die in einem Wälzkörper-
10 käfig 31 entsprechend der Darstellung der vorherigen Ausführungsform angeord-
net sind. Im Unterschied zu der zuvor dargestellten Ausführungsform sind die
Wälzkörper 31 hier in radialer Richtung außerhalb der Schraubenfeder 8 ange-
ordnet. Die Bahn der Wälzkörper 30 verläuft also außerhalb der Schraubenfeder
8. Der Wälzkörperfäig 31 ist mit einer Antriebshülse 37 verbunden, in die bei-
15 spielsweise ein Antriebszapfen 38 eingreift. Eine Schutzhülse 39 dient der Ab-
dichtung der gesamten Anordnung nach außen hin.

Fig. 7 zeigt einen Axialantrieb gemäß Fig. 6 im vollständig eingefahrenen Zu-
stand, entsprechend zeigt Fig. 8 einen Axialantrieb gemäß Fig. 6 und 7 bei mittle-
20 rem Hub.

Eine als Schraubenfeder ausgebildete Vorspannfeder 40 dient zum einen einer
Vorspannung des gesamten Axialantriebes, so dass bei einer von außen aufge-
brachten Druckbelastung eine weitestgehend gleichmäßige Belastung der

Schraubenfeder 8 sowohl in Zug- als auch Druckrichtung erreicht wird, zum anderen dient die Vorspannfeder 40 der Aufnahme des bei Verstellung des Axialantriebes 1 von der Schraubenfeder 8 erzeugten Drehmomentes. Die Starrheit der Vorspannfeder 40 gegenüber Verdrehung ist dazu entsprechend hoch auszuwählen. Die Vorspannfeder 40 ersetzt der axialen Führung dienende Feder-Nutanordnungen.

Bei der anhand der Fig. 6 - 8 dargestellten Ausführungsform eines Axialantriebes 1 sind die Wälzkörper 30 in radialer Richtung gesehen außerhalb der Schraubenfeder 8 angeordnet.

Fig. 9 zeigt einen Seilzugantrieb für einen Axialantrieb mit externem Antrieb gemäß der Ausführungsform der Fig. 6. Da bei dieser Ausführungsform die äußereren Gehäuseteile gegenüber den gehäusefesten Teilen verdreht werden, kann dies mit einem gängigen Umschlingungsantrieb geschehen. Stellvertretend für derartige Antriebe ist in der Ausführungsform gemäß der Darstellung der Fig. 9 eine Seilzugbetätigung beschrieben. Dargestellt ist ein Axialantrieb 1, der mit dem gehäusefesten Bauteil 6 an einem nicht dargestellten Getriebe bzw. Kupplungsgehäuse angeschraubt ist. Ein Endlosseil 44 umschlingt den Axialantrieb 1 in einer dafür vorgesehenen Nut 45. Das Endlosseil 44 ist über eine Rolle 46 geführt, die an einem Ausleger 47 befestigt ist. Das Endlosseil 44 wird von einem Spanner 48 gespannt. Der Spanner 48 wird aus einer zweiten Rolle 49 gebildet, die auf einer Führungsstange 50 verschiebbar angeordnet ist und von einer Feder 51 in Richtung des Axialantriebes 1 gedrückt wird. Der Spanner 48 lenkt so das Endlosseil

44 aus und spannt dieses auf diese Weise. Ein Antrieb des Axialantriebes 1 kann beispielsweise durch einen elektromotorischen, hydraulischen oder pneumatischen Antrieb der Rolle 46 erfolgen.

5 Fig. 10 zeigt eine alternative Ausgestaltung eines Axialantriebes 1. Die Drehung des Wälzkörperkäfigs 31, an dem die Wälzkörper 30 angeordnet sind, folgt hier über eine Verzahnung 52. Diese ist an der dem gehäusefesten Bauteil 6 zugewandten Seite der Hülse 10 angeordnet. Ein mittels einer nicht näher dargestellten gehäusefesten Welle gelagertes Zahnrad 53 dient dem Antrieb des Wälzkörperfäigs 31 mittels der Verzahnung 52. Das erste Zahnrad 53 wird von einem zweiten Zahnrad 54 angetrieben. Im vorliegenden Ausführungsbeispiel ist das Wälzlager 35, dieses dient der Lagerung des Wälzkörperkäfigs 31, an dem gehäusefesten Bauteil 6 angeordnet. Die Hülse 10 umgreift das Wälzlager 35. Die Anordnung von Schraubenfeder 8, Wälzkörpern 30 sowie Wälzkörperkäfig 31 entspricht der Darstellung der Fig. 6. Auch hier dient die Vorspannfeder 40 der Verdrehssicherung des Gehäuses 13.

Fig. 11 zeigt eine Anordnung vergleichbar mit der Darstellung der Fig. 10, bei der das Wälzlager 35 in radialer Richtung gesehen außerhalb der Hülse 10 angeordnet ist. Auch hier ist die Hülse 10 mit einer Verzahnung 52 versehen. Die Verzahnung wird wiederum von einem ersten Zahnrad 53, das mit einem zweiten Zahnrad 54 in Eingriff steht, angetrieben. Eine Abstandshülse 55 dient der axialen Fixierung des Lagers 35 und damit des Wälzkörperkäfigs 31.

Fig. 12 zeigt eine dritte Ausführungsform eines Axialantriebes mit einem Zahnradantrieb. Die Anordnung des Kugellagers 35 entspricht dabei in etwa der Anordnung des Kugellagers 35 in der Ausführungsform gemäß der Darstellung der Fig. 10. Das Kugellager ist hier jedoch radial zu einem kleinen Durchmesser hin versetzt, so dass sich die Vorspannfeder 40 auf dem Kugellager 35 abstützen kann.

Fig. 13 und Fig. 14 zeigen einen Axialantrieb vergleichbar der anhand der Fig. 12 dargestellten Ausführungsform. Im Unterschied dazu wurde hier jedoch eine Kegelverzahnung 52 verwendet, in die das erste Zahnrad 53 eingreift. Ein drittes Zahnrad 56 ist drehfest mit dem ersten Zahnrad 53 verbunden. Das dritte Zahnrad 56 hat einen wesentlich geringeren Durchmesser als das erste Zahnrad 53. Das zweite Zahnrad 54 ist hier innenverzahnt und mit seiner Drehachse außerhalb der gemeinsamen Drehachse des ersten Zahnrads 53 und des dritten Zahnrads 56 angeordnet. Auf diese Weise wird bei sehr kleinem Bauraum ein zweistufiges Getriebe realisiert.

Fig. 15 zeigt schematisch dargestellt eine Doppelkupplung mit einem zweifachen Axialantrieb. Die Doppelkupplung umfasst eine nicht dargestellte erste Kupplung mit einem ersten Ausrücklager 61 sowie eine nicht dargestellte zweite Kupplung mit einem zweiten Ausrücklager 62. Auf das erste Ausrücklager 61 wirkt ein erster Axialantrieb 63. Dementsprechend wirkt auf das zweite Ausrücklager 62 ein zweiter Axialantrieb 64. Der erste Axialantrieb 63 und der zweite Axialantrieb 64 sind in etwa koaxial zueinander angeordnet. Wie Fig. 15 zu entnehmen ist, umfasst der erste Axialantrieb 63 ein erstes bewegliches Gehäuse 65, welches durch

eine erste Spiralfeder 66 in axialer Richtung bewegt werden kann. Die erste Spiralfeder 66 wird durch eine erste Wälzkörperanordnung 67 in axialer Richtung bewegt. Die erste Wälzkörperanordnung 67 ist in einem drehbaren ersten Käfig 68 angeordnet. Der erste Käfig 68 ist mit einer ersten Lagerhülse 69 verbunden.

- 5 Diese verfügt an der dem ersten Ausrücklager 61 abgewandten Seite über eine erste Verzahnung 70. Ein erstes Verstellzahnrad 71 ist über die Verzahnung 70 mit der ersten Lagerhülse 69 in Eingriff und kann diese um ihre Längsachse rotieren lassen, so dass die erste Spiralfeder 66 das erste bewegliche Gehäuse 65 in axialer Richtung verschieben kann. Der zweite Axialantrieb 64 steht mit dem
- 10 zweiten Ausrücklager 62 in Wirkverbindung und ist sinngemäß entsprechend dem ersten Axialantrieb 63 aufgebaut. Der zweite Axialantrieb 64 umfasst ein zweites bewegliches Gehäuse 72, eine zweite Spiralfeder 73, eine zweite Wälzkörperanordnung 74, einen zweiten Käfig 75, eine zweite Lagerhülse 76 sowie eine zweite Verzahnung 77, die mit einem zweiten Verstellzahnrad 78 in Eingriff ist. Wie dem
- 15 unteren Bereich der Darstellung der Fig. 15 zu entnehmen ist, sind sowohl der erste Käfig 68 als auch der zweite Käfig 75 über ein erstes Kugellager 80 sowie ein zweites Kugellager 81 drehbar, aber in axialer Richtung fixiert, mit einer Halterung 83 verbunden, die wiederum über ein weiteres Kugellager 84 mit einem Haltekranz 85 verbunden ist.

20

Durch Drehung des ersten Verstellzahnrades 71 kann das erste bewegliche Gehäuse 65 in axialer Richtung verstellt werden und so die erste Kupplung über das erste Ausrücklager 61 betätigt werden. Entsprechend kann bei einer Drehung des zweiten Verstellzahnrades 78 das zweite bewegliche Gehäuse 72 verstellt werden

und so über das zweite Ausrücklager 62 eine zweite Kupplung betätigt werden. Das erste Verstellzahnrad 71 und das zweite Verstellzahnrad 78 können beispielsweise über konzentrisch ineinander verlaufende Wellen angetrieben werden, dies heißt, das zweite Verstellzahnrad 78 wird über eine Hohlwelle angetrieben, in der die Verstellwelle für das erste Verstellzahnrad 71 angeordnet ist.

Die mit der Anmeldung eingereichten Patentansprüche sind Formulierungsvorschläge ohne Präjudiz für die Erzielung weitergehenden Patentschutzes. Die Anmelderin behält sich vor, noch weitere, bisher nur in der Beschreibung und/oder

10 Zeichnungen offenbare Merkmalskombination zu beanspruchen.

In Unteransprüchen verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines

15 selbstständigen, gegenständlichen Schutzes für die Merkmalskombinationen der rückbezogenen Unteransprüche zu verstehen.

Da die Gegenstände der Unteransprüche im Hinblick auf den Stand der Technik am Prioritätstag eigene und unabhängige Erfindungen bilden können, behält die

20 Anmelderin sich vor, sie zum Gegenstand unabhängiger Ansprüche oder Teilungserklärungen zu machen. Sie können weiterhin auch selbstständige Erfindungen enthalten, die eine von den Gegenständen der vorhergehenden Unteransprüche unabhängige Gestaltung aufweisen.

Die Ausführungsbeispiele sind nicht als Einschränkung der Erfindung zu verstehen. Vielmehr sind im Rahmen der vorliegenden Offenbarung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche Varianten, Elemente und Kombinationen und/oder Materialien, die zum Beispiel durch Kombination o-

- 5 der Abwandlung von einzelnen in Verbindung mit den in der allgemeinen Beschreibung und Ausführungsformen sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten für den Fachmann im Hinblick auf die Lösung der Aufgabe entnehmbar sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder zu neuen
- 10 Verfahrensschritten bzw. Verfahrensschrittfolgen führen, auch soweit sie Herstell-, Prüf- und Arbeitsverfahren betreffen.

LuK Lamellen und Kupplungsbau
Beteiligungs KG
Industriestraße 3
77815 Bühl

0793 DE

Zusammenfassung

5 Die vorliegende Erfindung betrifft einen Antrieb zur Erzielung einer axialen Relativbewegung zwischen zwei in Umfangsrichtung verdrehbar angeordneten Bauteilen, wobei zumindest ein bezüglich des ersten Bauteiles fixiertes Eingriffsmittel zwischen zumindest zwei benachbarte Windungen einer dem zweiten Bauteil drehfest zugeordneten gewundenen Feder eingreift und zumindest ein Bauteil
10 gegenüber dem anderen drehangetrieben ist.

Das Problem, einen derartigen Antrieb zu schaffen, der eine einfachere Verbindung des Antriebes mit anzutreibenden Mitteln ermöglicht, wird erfindungsgemäß gelöst, indem das zweite Bauteil mit einem axial zu verschiebenden weiteren Mittel durch ein Haltemittel lösbar verbunden ist, wobei die Verbindung des zweiten Bauteils mit dem weiteren Mittel in zumindest einer Stellung des ersten Bauteils gegenüber dem zweiten Bauteil gelöst ist.
15

Fig. 1

Fig. 2

Fig. 3

Fig. 5

LUK

Fig. 6

3

1 2

8
30

13

31

35

37
38

39

10

UK

FIG. 7

UK

Fig. 9

Fig. 12

Fig. 13

Fig. 15

