Assignment 11

DESABOINA SRI SATHWIK-AI24BTECH11007

GATE-2018:PH

1) An interstellar object has speed v at the point of its shortest distance R from a star of much larger mass M. Given $v^2 = \frac{2GM}{R}$, the trajectory of the object is:

(PH:2018)

a) circle

b) ellipse

c) parabola

d) hyperbola

2) A particle moves in one dimension under a potential $V(x) = \alpha |x|$ with some non-zero total energy. Which one of the following best describes the particle trajectory in the phase space?

(PH:2018)

b)

c)

p

d)

3) Consider an infinitely long solenoid with N turns per unit length, radius R and carrying a current $I(t) = \alpha \cos \omega t$, where α is a constant and ω is the angular frequency. The magnitude of the electric field at the surface of the solenoid is:

(PH:2018)

a) $\frac{1}{2}\mu_0 NR\omega\alpha \sin \omega t$

b) $\frac{1}{2}\mu_0\omega NR\cos\omega t$

c) $\mu_0 NR\omega\alpha \sin \omega t$

d) $\mu_0 \omega NR \cos \omega t$

4) A constant and uniform magnetic field $\mathbf{B} = B_0 \hat{z}$ pervades all space. Which one of the following is the correct choice for the vector potential in Coulomb gauge?

(PH:2018)

(PH:2018)

(PH:2018)

d) $-\frac{1}{2}B_0(x\hat{i}-y\hat{j})$

d) $\frac{\hbar^2}{2m}$

			•	(11112010)
a) $\frac{I^2r}{2\pi a}$, perpendicular to	the axis of the wire and I the axis of the wire and I	pointing inwards		
c) $\frac{I^2r}{\pi a}$, perpendicular to t	the axis of the wire and p	pointing inwards		
d) $\frac{I^2r}{\pi a}$, perpendicular to t	the axis of the wire and p	pointing outwards		
7) Three particles are to b ways of distribution: (i)		degenerate energy levels. cles, and (ii) for identical	Bosons, respect	
a) (i) 24, (ii) 4	b) (i) 24, (ii) 20	c) (i) 64, (ii) 20	d) (i) 64, (ii)	16
8) The term symbol for the	e electronic ground state	of oxygen atom is:		(DII.2019)
				(PH:2018)
a) ${}^{1}S_{0}$	b) ${}^{1}D_{2}$	c) ${}^{3}P_{0}$	d) ${}^{3}P_{2}$	
9) The energy dispersion for $E(k) = E_0 - \frac{1}{2}W \cos ka$, bottom of the band is:		nsional lattice with lattice estants. The effective mas		
octions of the casta is:			((PH:2018)
a) $\frac{2\hbar^2}{Wa^2}$	b) $\frac{\hbar^2}{Wa^2}$	c) $\frac{\hbar^2}{2Wa^2}$	d) $\frac{\hbar^2}{4Wa^2}$	
10) Amongst electrical resitive (<i>Y</i>), and magnetic susce transition temperature?		fluctivity (κ) , specific heatities show a sharp change		
			((PH:2018)
a) ρ, κ, C, Y	b) ρ , C , χ	c) ρ, κ, C, χ	d) κ, Y, χ	
11) A quarter wave plate in parallel and perpendicul incident normally on a caracis as shown.	lar to the optic axis. An	e of $\frac{\lambda}{4}$ between the two coelectromagnetic wave with has its optic axis making	$h \overrightarrow{E} = (\hat{x} + \hat{y})E_0$	$_0e^{i(kz-\omega t)}$ is
	Optic axis	$y \longrightarrow 135^{\circ} x$		

b) $B_0(x+y)\hat{j}$ c) $B_0x\hat{j}$

b) $-\frac{\hbar^2}{m}$

5) If H is the Hamiltonian for a free particle with mass m, the commutator [x, [x, H]] is:

magnitude and direction of the Poynting vector on the surface of the wire is:

c) $-\frac{\hbar^2}{2m}$

6) A long straight wire, having radius a and resistance per unit length r, carries a current I. The

a) $-B_0(x+y)\hat{i}$

a) $\frac{\hbar^2}{m}$

The emergent electromagnetic wave would be

(PH:2018)

- a) elliptically polarized
- b) circularly polarized
- c) linearly polarized with polarization as that of incident wave
- d) linearly polarized but with polarization at 90 deg to that of the incident wave
- 12) A *p*-doped semiconductor slab carries a current I = 100mA in a magnetic field B = 0.2T as shown. One measures $V_y = 0.25mV$ and $V_x = 2mV$. The mobility of holes in the semiconductor is ______ $m^2V^{-1}s^{-1}$ (up to two decimal places).

(PH:2018)

13) An n-channel FET having Gate-Source switch-off voltage $V_{GS(OFF)} = -2V$ is used to invert a 0-5V square-wave signal as shown. The maximum allowed value of R would be ______k\Omega (up to two decimal places).

(PH:2018)

