Analiza seria 3

Bartosz Kucypera, bk439964

19 maja 2023

Rozwiązanie przygotowałem samodzielnie, ze świadomością, iż etyczne zdobywanie zaliczeń jest, zgodnie z Regulaminem Studiów, obowiązkiem studentek i studentów UW.

Zadanie 1

Niech $f:[a,b]\to (0,\infty)$ bedzie ciągła i rosnąca. Oznaczmy a'=f(a),b'=f(b).

Wykazać, że

$$\int_{a}^{b} f(x)dx + \int_{a'}^{b'} f^{-1}(y)dy = bb' - aa',$$

gdzie f^{-1} oznacza funkcję odwrotną do f.

 $rownanie^*$ - równanie z polecenia

Przypadek a = 0

Jeśli a=0 zadanie wynika natychmiast z interpretacji geometrycznej i wzoru na pole prostokąta.

Przypadek ogólny, równoważność z funkcją przesuniętą

Dla dowolnej stałej s, rozważmy funkcję $g_s: [a+s,b+s] \to (0,\infty)$ daną wzorem $g_s(x+s) = f(x)$. Interpretując geometrycznie, rozważamy funkcję z takim samym wykresem co f, tylko przesuniętą wzdłuż osi Ox. Zauważmy, że:

$$g_s^{-1}(x+s) = f^{-1}(x) + s$$

oraz, że

$$\int_{a+s}^{b+s} g_s(x)dx = \int_a^b f(x)dx,$$

pole pod wykresem takie same, tylko "przesuneliśmy" wykres na bok.

Teraz rozpiszmy $rownanie^*$ dla funkcji g.

$$\int_{a+s}^{b+s} g_s(x)dx + \int_{g_s(a+s)}^{g_s(b+s)} g_s^{-1}(y)dy = (b+s)g_s(b+s) - (a+s)g_s(a+s)$$

czyli,

$$\int_{a}^{b} f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(y) + s \, dy = (b+s)f(b) - (a+s)f(a)$$

czyli,

$$\int_{a}^{b} f(x)dx + \int_{a'}^{b'} f^{-1}(y)dy + (b' - a')s = bb' - aa' + (b' - a')s$$

czyli faktycznie równość dla g jest równoważna równości dla f.

Teraz, dla dowolnej funckjci $f:[a,b] \to (0,\infty)$ spełnienie przez nią $rownania^*$, jest równoważne ze spełnieniem $rownania^*$ przez funkcję g_s dla s=-a czyli dla funckji $g_{-a}:[0,b-s] \to (0,\infty)$, dla której już wiemy, że spełnia ona $rownanie^*$. Czyli każda funckcja spełniająca założenia z teści zadania, spełnia $rownanie^*$.