EDA PROJECT

import all required packages

In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

In [2]: path=r"C:\Users\Sruth\Downloads\data.xlsx - Sheet1.csv"
 df=pd.read_csv(path)
 df

Out[2]:

,		Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	G
	0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	
	1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	
	2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	
	3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	
	4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	
	•••	•••							
	3993	train	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	
	3994	train	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	
	3995	train	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	
	3996	train	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	
3	3997	train	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	

3998 rows × 39 columns

which determines how many rows and columns present in dataframe

In [3]: # there are 3998 rows and 39 columns present in data frame
df.shape

Out[3]: (3998, 39)

size

In [4]: # size gives over all elements in data set

df.size

Out[4]: **155922**

head

Out[5]:		Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	D
	0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2/19
	1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	10/4
	2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	8/3
	3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	12/5
	4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2/27

5 rows × 39 columns

←

tail

In [6]: # tail gives last five rows of dataframe

df.tail()

Out[6]:		Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	Ge
	3993	train	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	
	3994	train	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	
	3995	train	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	
	3996	train	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	
	3997	train	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	

5 rows × 39 columns

dtypes -->checking the columns that are which types -->categorical columns(object) -->numerical columns(int,float)

In [7]: df.dtypes

```
Out[7]: Unnamed: 0
                                  object
                                   int64
        ID
                                 float64
        Salary
        DOJ
                                  object
        DOL
                                  object
        Designation
                                  object
        JobCity
                                  object
        Gender
                                  object
        DOB
                                  object
                                 float64
        10percentage
        10board
                                  object
        12graduation
                                   int64
                                 float64
        12percentage
        12board
                                 object
        CollegeID
                                   int64
                                   int64
        CollegeTier
        Degree
                                  object
        Specialization
                                 object
        collegeGPA
                                 float64
        CollegeCityID
                                   int64
        CollegeCityTier
                                   int64
        CollegeState
                                  object
        GraduationYear
                                   int64
                                   int64
        English
        Logical
                                   int64
        Quant
                                   int64
        Domain
                                 float64
        ComputerProgramming
                                   int64
        ElectronicsAndSemicon
                                   int64
        ComputerScience
                                   int64
        MechanicalEngg
                                   int64
        ElectricalEngg
                                   int64
        TelecomEngg
                                   int64
        CivilEngg
                                   int64
        conscientiousness
                                 float64
        agreeableness
                                 float64
                                 float64
        extraversion
        nueroticism
                                 float64
                                 float64
        openess_to_experience
        dtype: object
```

Checking whether missing values are present

```
In [8]: # there is no missing values are present in data
df.isnull().sum()
```

```
Out[8]: Unnamed: 0
                               0
        ID
                               0
        Salary
                               0
        DOJ
                               0
        DOL
                               0
        Designation
                               0
        JobCity
                               0
                               0
        Gender
        DOB
                               0
                               0
        10percentage
                               0
        10board
                               0
        12graduation
        12percentage
                               0
        12board
                               0
        CollegeID
                              0
        CollegeTier
                              0
                              0
        Degree
        Specialization
                          0
        collegeGPA
                              0
        CollegeCityID
        CollegeCityTier
                              0
        CollegeState
                              0
        GraduationYear
                             0
        English
                              0
                              0
        Logical
        Quant
                              0
        Domain
        ComputerProgramming
                              0
        ElectronicsAndSemicon
        ComputerScience 0
        MechanicalEngg
        ElectricalEngg
                             0
        TelecomEngg
                             0
        CivilEngg
                              0
        conscientiousness
        agreeableness
                              0
        extraversion
                              0
        nueroticism
        openess_to_experience 0
        dtype: int64
```

categorical columns

Out[10]: **12**

numerical columns

Univariate_analysis

Here dropped an ID column which contain unquue items

```
In [13]: numerical_cols=df.drop(columns=['ID'])
    numerical_cols
```

13]:		Unnamed:	Salary	DOJ	DOL	Designation	JobCity	Gender	
	0	train	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2
	1	train	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	f 2
	2	train	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	
	3	train	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	f 2 n 1 f 1 n 2 n 8 n 6
	4	train	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2
	•••			•••	•••			•••	
	3993	train	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	m	4
	3994	train	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	f	8
	3995	train	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	m	m ⁴ f ⁸ m
	3996	train	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	f	3
	3997	train	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	f	2
	2000 -	20 col	umana						

3998 rows × 38 columns

describe

In [14]: numerical_cols.describe()

O	4	Γ1	Л	٦.
υu	L	ΙТ	4	

	Salary	10percentage	12graduation	12percentage	CollegeID	College
count	3.998000e+03	3998.000000	3998.000000	3998.000000	3998.000000	3998.00
mean	3.076998e+05	77.925443	2008.087544	74.466366	5156.851426	1.92
std	2.127375e+05	9.850162	1.653599	10.999933	4802.261482	0.26
min	3.500000e+04	43.000000	1995.000000	40.000000	2.000000	1.00
25%	1.800000e+05	71.680000	2007.000000	66.000000	494.000000	2.00
50%	3.000000e+05	79.150000	2008.000000	74.400000	3879.000000	2.00
75%	3.700000e+05	85.670000	2009.000000	82.600000	8818.000000	2.00
max	4.000000e+06	97.760000	2013.000000	98.700000	18409.000000	2.00

8 rows × 26 columns

skewness for each numeric column

```
In [15]: for i in num_cols[1:]:
             skew=round(df[i].skew(),2)
             print(f"skew of column {i} is '{skew}'")
        skew of column Salary is '6.45'
        skew of column 10percentage is '-0.59'
        skew of column 12graduation is '-0.96'
        skew of column 12percentage is '-0.03'
        skew of column CollegeID is '0.65'
        skew of column CollegeTier is '-3.25'
        skew of column collegeGPA is '-1.25'
        skew of column CollegeCityID is '0.65'
        skew of column CollegeCityTier is '0.87'
        skew of column GraduationYear is '-63.07'
        skew of column English is '0.19'
        skew of column Logical is '-0.22'
        skew of column Quant is '-0.02'
        skew of column Domain is '-1.92'
        skew of column ComputerProgramming is '-0.78'
        skew of column ElectronicsAndSemicon is '1.2'
        skew of column ComputerScience is '1.53'
        skew of column MechanicalEngg is '4.03'
        skew of column ElectricalEngg is '5.06'
        skew of column TelecomEngg is '3.04'
        skew of column CivilEngg is '10.32'
        skew of column conscientiousness is '-0.53'
        skew of column agreeableness is '-1.2'
        skew of column extraversion is '-0.52'
        skew of column nueroticism is '0.17'
        skew of column openess_to_experience is '-1.51'
```

kurtosis for each numeric column

```
In [16]: for i in num_cols[1:]:
    kurt=round(df[i].kurt(),2)
    print(f"kurtosis of column {i} is '{kurt}'")
```

```
kurtosis of column Salary is '80.93'
kurtosis of column 10percentage is '-0.11'
kurtosis of column 12graduation is '1.95'
kurtosis of column 12percentage is '-0.63'
kurtosis of column CollegeID is '-0.77'
kurtosis of column CollegeTier is '8.55'
kurtosis of column collegeGPA is '10.23'
kurtosis of column CollegeCityID is '-0.77'
kurtosis of column CollegeCityTier is '-1.24'
kurtosis of column GraduationYear is '3984.37'
kurtosis of column English is '-0.25'
kurtosis of column Logical is '-0.22'
kurtosis of column Quant is '-0.1'
kurtosis of column Domain is '3.9'
kurtosis of column ComputerProgramming is '-0.67'
kurtosis of column ElectronicsAndSemicon is '-0.21'
kurtosis of column ComputerScience is '0.69'
kurtosis of column MechanicalEngg is '15.02'
kurtosis of column ElectricalEngg is '24.88'
kurtosis of column TelecomEngg is '7.81'
kurtosis of column CivilEngg is '109.04'
kurtosis of column conscientiousness is '0.12'
kurtosis of column agreeableness is '3.39'
kurtosis of column extraversion is '0.64'
kurtosis of column nueroticism is '-0.19'
kurtosis of column openess_to_experience is '5.79'
```

covariance matrix

```
In [17]: numerical_cols.cov(numeric_only=True)
```

Out[17]:

	Salary	10percentage	12graduation	12percentage	
Salary	4.525724e+10	371684.456159	-56771.565543	398412.208861	-1.
10percentage	3.716845e+05	97.025700	4.397119	69.710710	9.
12graduation	-5.677157e+04	4.397119	2.734391	4.714096	2.
12percentage	3.984122e+05	69.710710	4.714096	120.998528	1.
CollegeID	-1.212565e+08	997.261052	2017.184639	1179.911862	2.
CollegeTier	-1.000579e+04	-0.325618	0.012009	-0.290720	8.
collegeGPA	2.260530e+05	25.143547	1.161489	31.096999	6.
CollegeCityID	-1.212565e+08	997.261052	2017.184639	1179.911862	2.
CollegeCityTier	1.500495e+03	0.527071	-0.002287	0.657967	1.
GraduationYear	-6.813186e+04	-4.330051	0.761563	-4.532195	-2.
English	3.978683e+06	362.593281	25.669208	245.744098	-1.
Logical	3.309785e+06	270.138109	15.195251	232.515001	-1.
Quant	6.000532e+06	382.660566	0.278868	420.294392	-6.
Domain	1.043457e+04	0.362683	-0.026476	0.382008	-1.
ComputerProgramming	5.053027e+06	108.421537	-16.297969	182.558565	-3.
ElectronicsAndSemicon	2.240082e+04	132.769360	-1.541392	203.850411	-1.
ComputerScience	-3.755551e+06	-32.687912	85.047828	-83.932520	8.
MechanicalEngg	3.856527e+05	48.678119	5.753526	40.621034	-4.
ElectricalEngg	-8.868903e+05	64.203771	17.923053	61.660745	9.
TelecomEngg	-5.061435e+05	50.998564	4.069324	50.980677	1.
CivilEngg	2.935306e+05	10.833465	-0.286551	2.383094	1.
conscientiousness	-1.403798e+04	0.685534	0.175763	0.659664	3.
agreeableness	1.150482e+04	1.267615	0.064135	1.077373	-2.
extraversion	-2.067186e+03	-0.043855	0.097479	-0.078347	2.
nueroticism	-1.172182e+04	-1.314998	-0.123908	-1.045919	-4.
openess_to_experience	-2.425976e+03	0.364343	-0.025119	0.070213	-5.

26 rows × 26 columns

correlation

In [18]: correlation_data=df.corr(numeric_only=True)
 correlation_data

	ID	Salary	10percentage	12graduation	12percentage
ID	1.000000	-0.247294	0.044547	0.673102	0.007069
Salary	-0.247294	1.000000	0.177373	-0.161383	0.170254
10percentage	0.044547	0.177373	1.000000	0.269957	0.643378
12graduation	0.673102	-0.161383	0.269957	1.000000	0.25916
12percentage	0.007069	0.170254	0.643378	0.259166	1.000000
CollegeID	0.284540	-0.118690	0.021082	0.254021	0.022336
CollegeTier	0.035160	-0.179332	-0.126042	0.027691	-0.10077
collegeGPA	0.047144	0.130103	0.312538	0.086001	0.34613
CollegeCityID	0.284540	-0.118690	0.021082	0.254021	0.022336
CollegeCityTier	-0.035977	0.015384	0.116707	-0.003016	0.130462
GraduationYear	0.027539	-0.010053	-0.013799	0.014457	-0.01293
English	0.135505	0.178219	0.350780	0.147925	0.212888
Logical	0.102215	0.179275	0.316014	0.105887	0.24357
Quant	-0.055134	0.230627	0.317640	0.001379	0.312413
Domain	-0.125639	0.104656	0.078563	-0.034163	0.074099
ComputerProgramming	0.018859	0.115665	0.053600	-0.047995	0.080818
ElectronicsAndSemicon	-0.115601	0.000665	0.085179	-0.005891	0.117117
ComputerScience	0.482626	-0.100720	-0.018933	0.293439	-0.043534
MechanicalEngg	-0.026147	0.018475	0.050364	0.035459	0.03763!
ElectricalEngg	0.104454	-0.047598	0.074419	0.123751	0.06400
TelecomEngg	-0.049272	-0.022691	0.049378	0.023470	0.04420
CivilEngg	-0.017871	0.037639	0.030002	-0.004727	0.005910
conscientiousness	0.175557	-0.064148	0.067657	0.103329	0.058299
agreeableness	0.024837	0.057423	0.136645	0.041182	0.103998
extraversion	0.120979	-0.010213	-0.004679	0.061956	-0.007486
nueroticism	-0.146289	-0.054685	-0.132496	-0.074369	-0.094369
openess_to_experience	0.031359	-0.011312	0.036692	-0.015069	0.006332

27 rows × 27 columns

- correlation tells about how much relation between two variables
- denotes with r, r varies -1 to +1

- -1 to 0 indicates negative relation
- 0 to 1 indivates positive relation
- 0 indicates no relation

```
In [19]: sns.heatmap(correlation_data)
  plt.title('Heat map')
  plt.show()
```


Histogram analysis for numerical columns

```
In [22]: for i in num_cols[1:]:
    plt.hist(numerical_cols[i],bins=30,alpha=0.7,color='blue')
    plt.title(i)
    plt.xlabel('Value')
    plt.ylabel("Frequency")
    plt.show()
```


Boxplot

Outliers are present in each numerical column

```
In [23]: for i in num_cols[1:]:
    year_data=numerical_cols[i]
    plt.boxplot(year_data,vert=False)
    plt.xlabel(i)
    plt.show()
```


1.2

1.0

1.4

CollegeTier

1.6

1.8

2.0

CollegeCityID

Ó

Logical

ElectronicsAndSemicon

Ó

MechanicalEngg

The probability and frequency distribution of each numerical column

```
import warnings
warnings.filterwarnings('ignore')
for i in num_cols[1:]:
    plt.figure(figsize=(12,6))
    sns.histplot(numerical_cols[i],bins=20,kde=True,stat='density')
```

```
plt.title(f"Frequency distribution of {i}")
plt.xlabel(i)
plt.ylabel('Density')
plt.show()

prob_dist=numerical_cols[i].value_counts(normalize=True)
print(f"Probablity distribution of {i}: \n{prob_dist}\n")
```


Probablity distribution of Salary:

Salary 300000.0 0.073287 180000.0 0.059780 200000.0 0.051276 325000.0 0.047024 120000.0 0.041271 2050000.0 0.000250 144000.0 0.000250 1320000.0 0.000250 755000.0 0.000250 925000.0 0.000250

Name: proportion, Length: 177, dtype: float64

Probablity distribution of 10percentage:

78.00 0.019010 82.00 0.017759 85.00 0.016758 76.00 0.016508 80.00 0.016258 . . . 82.56 0.000250 87.04 0.000250

0.000250

0.000250

10percentage

81.14

61.75

78.72

0.000250 Name: proportion, Length: 851, dtype: float64

Probablity distribution of 12graduation:

12graduation 2009 0.263132 2008 0.233867 2010 0.185593 2007 0.132066 2006 0.101801 2005 0.040020 2004 0.018259 2011 0.011506 2003 0.006253 2002 0.003502 2012 0.002501 2001 0.000500 1995 0.000250 1998 0.000250 2013 0.000250 1999 0.000250

Probablity distribution of 12percentage:

12percentage

•	•
70.00	0.018009
72.00	0.017009
74.00	0.015758
62.00	0.014507
68.00	0.014507
58.50	0.000250
74.45	0.000250
95.41	0.000250
83.58	0.000250
82.55	0.000250

Name: proportion, Length: 801, dtype: float64

Probablity distribution of CollegeID:

CollegeID

0.023512
0.009505
0.008754
0.008754
0.008254
•••
0.000250
0.000250
0.000250
0.000250
0.000250

Name: proportion, Length: 1350, dtype: float64

 ${\bf Probablity} \ {\bf distribution} \ {\bf of} \ {\bf College Tier} :$

CollegeTier

2 0.9257131 0.074287

Probablity distribution of collegeGPA:

collegeGPA

```
70.00
         0.028014
72.00
         0.024762
75.00
         0.020760
65.00
         0.019760
71.00
         0.018759
           . . .
71.68
         0.000250
73.15
         0.000250
90.01
         0.000250
71.36
         0.000250
70.42
         0.000250
```

Name: proportion, Length: 1282, dtype: float64

Probablity distribution of CollegeCityID:

CollegeCityID

272	0.023512
64	0.009505
11759	0.008754
44	0.008754
47	0.008254
128	0.000250
5068	0.000250
5000	0.000230
8637	0.000250
8637	0.000250

Name: proportion, Length: 1350, dtype: float64

Frequency distribution of CollegeCityTier

Probablity distribution of CollegeCityTier:

CollegeCityTier

0 0.6996

1 0.3004

Name: proportion, dtype: float64

Probablity distribution of GraduationYear:

 ${\tt GraduationYear}$

2013 0.295398 2014 0.259130 2012 0.211856 2011 0.126813 2010 0.073037 2015 0.023512 2009 0.006003 2017 0.002001 2016 0.001751 0.000250 0 2007 0.000250

Probablity distribution of English:

Englis	h
475	0.040020
545	0.037769
465	0.037519
535	0.034517
405	0.027764
180	0.000250
875	0.000250
825	0.000250
870	0.000250

0.000250

334

Name: proportion, Length: 111, dtype: float64

Probablity distribution of Logical:

```
Logical
495
       0.039520
545
       0.037769
555
       0.037769
485
       0.037769
505
       0.029265
310
       0.000250
795
       0.000250
534
       0.000250
454
       0.000250
660
       0.000250
```

Name: proportion, Length: 107, dtype: float64

Probablity distribution of Quant:

Quant	
605	0.035768
485	0.032516
545	0.031266
575	0.029015
515	0.024762
	• • •
805	0.000250
175	0.000250
214	0.000250
860	0.000250
394	0.000250

Name: proportion, Length: 138, dtype: float64

Probablity distribution of Domain:

Don	naın	
-1	000	,

0.938588

Domain	
-1.000000	0.061531
0.622643	0.028264
0.538387	0.027514
0.486747	0.026513
0.744758	0.025763
0.999250	0.000250
0.010995	0.000250
0.639587	0.000250
0.031150	0.000250

Name: proportion, Length: 243, dtype: float64

0.000250

Probablity distribution of ComputerProgramming:

ComputerProgramming -1 0.217109 0.037769 445 435 0.036018 475 0.034767 465 0.033517 0.000250 214 494 0.000250 840 0.000250 0.000250 394

0.000250

554

Name: proportion, Length: 79, dtype: float64

${\bf Probablity} \ {\bf distribution} \ {\bf of} \ {\bf ElectronicsAndSemicon:}$

ElectronicsAndSemicon

-1	0.713857	
333	0.031016	
300	0.028514	
366	0.025763	
266	0.022011	
400	0.021011	
292	0.018509	
324	0.016508	
356	0.016508	
233	0.013257	
388	0.011756	
433	0.011506	
200	0.010755	
260	0.009005	
466	0.007754	
452	0.007254	
228	0.006003	
500	0.005753	
420	0.005503	
196	0.004002	
166	0.003002	
484	0.002501	
516	0.002251	
533	0.001501	
548	0.001251	
566	0.001001	
133	0.001001	
164	0.000750	
612	0.000500	
lamo.	nnonontion	4+

Probablity distribution of ComputerScience:

-1 0.774387 0.032016 407 376 0.030765 346 0.029515 438 0.027764 0.020010 469 315 0.019260 500 0.016008 0.012506 284 530 0.011256 253 0.007504 561 0.005503 223 0.003502 592 0.003502 623 0.002501 653 0.002251 0.000750 192 715 0.000500 684 0.000250 130 0.000250

ComputerScience

Probablity distribution of MechanicalEngg:

ity distribution	of	Ν
alEngg		
0.941221		
0.005003		
0.004002		
0.003752		
0.003502		
0.003252		
0.003252		
0.003252		
0.003002		
0.002751		
0.002501		
0.002501		
0.002001		
0.001751		
0.001501		
0.001501		
0.001251		
0.001251		
0.001251		
0.001001		
0.001001		
0.000750		
0.000750		
0.000750		
0.000750		
0.000750		
0.000500		
0.000250		
	CalEngg 0.941221 0.005003 0.004002 0.003752 0.003502 0.003252 0.003252 0.003252 0.003252 0.002751 0.002501 0.002501 0.002501 0.001501 0.001501 0.001501 0.001551 0.001251 0.001251 0.001251 0.001251 0.001001 0.000750 0.000750 0.000750	0.941221 0.005003 0.004002 0.003752 0.003502 0.003252 0.003252 0.003252 0.003252 0.002501 0.002501 0.002501 0.001501 0.001501 0.001501 0.001251 0.001251 0.001251 0.001001 0.001750 0.000750 0.000750 0.000750 0.000750 0.000750 0.000750 0.000500

Name: proportion, dtype: float64

623 0.000250

Probablity distribution of ElectricalEngg:

```
ElectricalEngg
```

```
-1
        0.959730
        0.004002
420
446
        0.003502
388
        0.002501
473
        0.002501
        0.002501
452
356
        0.002251
500
        0.002001
580
        0.002001
366
        0.001751
324
        0.001751
393
        0.001751
553
        0.001501
313
        0.001501
516
        0.001251
260
        0.001001
292
        0.001001
340
        0.000750
228
        0.000750
526
        0.000750
484
        0.000750
633
        0.000750
548
        0.000500
433
        0.000500
606
        0.000500
612
        0.000500
660
        0.000500
286
        0.000500
676
        0.000250
411
        0.000250
206
        0.000250
```


Probablity distribution of TelecomEngg:

TelecomEngg

	88
-1	0.906453
393	0.011256
366	0.010755
260	0.008754
313	0.008504
340	0.008004
286	0.007754
420	0.006503
446	0.004002
388	0.003502
233	0.003502
473	0.003252
292	0.003252
356	0.003002
324	0.002751
206	0.002001
500	0.001251
526	0.001251
516	0.001001
484	0.001001
228	0.000750
548	0.000500
153	0.000250
196	0.000250
164	0.000250
452	0.000250

Probablity distribution of CivilEngg: CivilEngg

CivilEngg			
-1	0.989495		
356	0.001501		
292	0.001501		
388	0.001001		
260	0.000750		
320	0.000750		
500	0.000500		
300	0.000500		
340	0.000500		
516	0.000250		
460	0.000250		
420	0.000250		
280	0.000250		
433	0.000250		
380	0.000250		
452	0.000250		
277	0.000250		
166	0.000250		
322	0.000250		
200	0.000250		
440	0.000250		
400	0.000250		
480	0.000250		

Frequency distribution of conscientiousness

Probablity distribution of conscientiousness:

conscientiousness

CONSCIENC.	Tousiless		
0.2718	0.036268		
0.1282	0.033517		
-0.1590	0.033267		
0.4155	0.032766		
-0.0154	0.032266		
-3.4624	0.000250		
-1.2950	0.000250		
-0.9653	0.000250		
-0.4854	0.000250		
0.8986	0.000250		

Name: proportion, Length: 141, dtype: float64

Probablity distribution of agreeableness:

agreeableness

```
0.3789
          0.048274
0.2124
          0.045023
0.5454
           0.043772
0.0459
           0.041521
0.8784
          0.039520
-3.1264
           0.000250
-3.0094
           0.000250
-3.9501
           0.000250
-1.7223
           0.000250
-0.8320
           0.000250
```

Name: proportion, Length: 149, dtype: float64

Probablity distribution of extraversion:

extraversion

0.4711	0.044772
0.3174	0.044522
0.1637	0.038769
0.7785	0.036518
-0.1437	0.033767
-3.5370	0.000250
-0.4226	0.000250
0.4220	0.000230
1.5791	0.000250
1.5791	0.000250

Name: proportion, Length: 154, dtype: float64

Probablity distribution of nueroticism:

nuo	no+	ic		c m
nue	rot	10	1	SM

-0.48790	0.031516
-0.74150	0.029515
0.01920	0.028014
-0.61470	0.027264
-0.36120	0.026513
1.06113	0.000250
-0.74960	0.000250
0.74200	0.000250
2.76500	0.000250
017.1200	

Name: proportion, Length: 217, dtype: float64


```
Probablity distribution of openess_to_experience:

openess_to_experience

0.6721     0.046773

-0.0943     0.045523

0.0973     0.045523

0.4805     0.044272

0.2889     0.043522

...

-6.8009     0.000250

0.1187     0.000250

-5.6860     0.000250

-1.1291     0.000250

-0.4229     0.000250

Name: proportion, Length: 142, dtype: float64
```

Frequency distribution of each categorical Variable/Column

```
In [25]: frequency_dis={i: df[i].value_counts() for i in cat_cols}

for i,freq in frequency_dis.items():
    print(f"Frequncy distribution for {i}:\n{freq}\n")
```

```
Frequncy distribution for Unnamed: 0:
Unnamed: 0
train
        3998
Name: count, dtype: int64
Frequncy distribution for DOJ:
DOJ
7/1/14 0:00
               199
6/1/14 0:00
               180
8/1/14 0:00
               178
9/1/14 0:00 142
1/1/14 0:00
              142
11/1/15 0:00
                1
11/1/09 0:00
                1
8/1/04 0:00
                 1
9/1/09 0:00
                 1
2/1/07 0:00
                 1
Name: count, Length: 81, dtype: int64
Frequncy distribution for DOL:
DOL
present
              1875
4/1/15 0:00
               573
3/1/15 0:00
               124
5/1/15 0:00
               112
1/1/15 0:00
                99
               . . .
3/1/05 0:00
               1
10/1/15 0:00
                 1
2/1/10 0:00
                 1
2/1/11 0:00
                  1
10/1/10 0:00
                  1
Name: count, Length: 67, dtype: int64
Frequncy distribution for Designation:
Designation
software engineer
                                    539
software developer
                                    265
system engineer
                                    205
programmer analyst
                                    139
systems engineer
                                    118
                                   . . .
cad drafter
                                      1
noc engineer
                                      1
human resources intern
                                      1
                                      1
senior quality assurance engineer
jr. software developer
                                      1
Name: count, Length: 419, dtype: int64
Frequncy distribution for JobCity:
JobCity
Bangalore
                   627
-1
                   461
Noida
                   368
Hyderabad
                   335
Pune
                   290
                   . . .
Tirunelvelli
                    1
Ernakulam
                     1
```

```
Nanded
                      1
Dharmapuri
                      1
Asifabadbanglore
                      1
Name: count, Length: 339, dtype: int64
Frequncy distribution for Gender:
Gender
     3041
m
f
      957
Name: count, dtype: int64
Frequncy distribution for DOB:
DOB
1/1/91 0:00
                 11
7/15/91 0:00
                 10
7/5/91 0:00
                  8
12/13/91 0:00
                  8
6/3/91 0:00
                  8
12/30/92 0:00
                  1
10/20/86 0:00
11/17/89 0:00
                  1
9/30/92 0:00
                  1
4/15/87 0:00
                  1
Name: count, Length: 1872, dtype: int64
Frequncy distribution for 10board:
10board
cbse
                               1395
state board
                               1164
0
                                350
icse
                                281
                                122
SSC
                               . . .
hse,orissa
                                  1
                                  1
national public school
nagpur board
                                  1
jharkhand academic council
                                  1
bse,odisha
Name: count, Length: 275, dtype: int64
Frequncy distribution for 12board:
12board
cbse
                                     1400
state board
                                     1254
                                      359
icse
                                      129
up board
                                       87
jawahar higher secondary school
                                        1
nagpur board
                                        1
bsemp
                                        1
board of higher secondary orissa
                                        1
boardofintermediate
Name: count, Length: 340, dtype: int64
Frequncy distribution for Degree:
Degree
B.Tech/B.E.
                 3700
MCA
                  243
```

M.Tech./M.E. 53 M.Sc. (Tech.) 2

Name: count, dtype: int64

Frequncy distribution for Specialization:

Specialization	
electronics and communication engineering	880
computer science & engineering	744
information technology	660
computer engineering	600
computer application	244
mechanical engineering	201
electronics and electrical engineering	196
electronics & telecommunications	121
electrical engineering	82
electronics & instrumentation eng	32
civil engineering	29
electronics and instrumentation engineering	27
information science engineering	27
instrumentation and control engineering	20
electronics engineering	19
biotechnology	15
other	13
industrial & production engineering	10
applied electronics and instrumentation	9
chemical engineering	9
computer science and technology	6
telecommunication engineering	6
mechanical and automation	5
automobile/automotive engineering	5
instrumentation engineering	4
mechatronics	4
aeronautical engineering	3
electronics and computer engineering	3
electrical and power engineering	2
biomedical engineering	2
information & communication technology	2
industrial engineering	2
computer science	2
metallurgical engineering	2
power systems and automation	1
control and instrumentation engineering	1
mechanical & production engineering	1
embedded systems technology	1
polymer technology	1
computer and communication engineering	1
information science	1
internal combustion engine	1
computer networking	1
ceramic engineering	1
electronics	1
industrial & management engineering	1

Name: count, dtype: int64

Frequncy distribution for CollegeState:

CollegeState

Uttar Pradesh	915
Karnataka	370
Tamil Nadu	367
Telangana	319

262
225
196
193
189
180
174
172
162
113
33
28
27
24
16
10
7
5
5
3
2
1
int64

Bi-Variate Analysis

Relationships between numerical columns using Scatter plots


```
In [38]: df['Degree'].unique()
Out[38]: array(['B.Tech/B.E.', 'MCA', 'M.Tech./M.E.', 'M.Sc. (Tech.)'],
                dtype=object)
In [39]: df['Degree'].nunique()
Out[39]: 4
In [41]: df['JobCity'].value_counts()
Out[41]: JobCity
                              627
          Bangalore
          -1
                              461
          Noida
                              368
          Hyderabad
                              335
          Pune
                              290
          Tirunelvelli
                                1
          Ernakulam
                                1
          Nanded
                                1
          Dharmapuri
                                1
          Asifabadbanglore
                                1
          Name: count, Length: 339, dtype: int64
In [43]: df['Gender'].value_counts()
Out[43]: Gender
               3041
                957
          Name: count, dtype: int64
In [44]: for i in df['Gender'].unique():
             con=df['Gender']==i
```

```
print(f"The number of employees according to gender {i} is: {count}")
        The number of employees according to gender f is: 957
        The number of employees according to gender m is: 3041
In [45]: df['10board'].value_counts()
Out[45]: 10board
          cbse
                                        1395
          state board
                                        1164
          0
                                         350
          icse
                                         281
                                         122
          SSC
          hse,orissa
                                           1
          national public school
          nagpur board
                                           1
          jharkhand academic council
          bse,odisha
          Name: count, Length: 275, dtype: int64
         there a relationship between gender and specialization?
In [49]: cat_cols
Out[49]: Index(['Unnamed: 0', 'DOJ', 'DOL', 'Designation', 'JobCity', 'Gender', 'DOB',
                 '10board', '12board', 'Degree', 'Specialization', 'CollegeState'],
                dtype='object')
In [50]: from scipy.stats import chi2_contingency
         contingency_table=pd.crosstab(df['Gender'],df['Specialization'])
         print('contingency_table:')
         print(contingency_table)
         chi2,p,dof,expected=chi2 contingency(contingency table)
         print("\nChi-squared Test:")
         print(f"Chi-squared statistics :{chi2}")
         print(f"P-value:{p}")
         sns.countplot(df,x='Specialization',hue='Gender')
         plt.title("Gender VS Speclization")
         plt.xlabel("Specializatio")
         plt.ylabel("count")
         plt.legend(title='Gender')
         if p<0.05:
             print("\nThere is a siginificant relationship between gender and Specializat
             print("\nThere is no siginificant relationship between gender and Specializa
```

count=len(df[con])

```
contingency_table:
Specialization aeronautical engineering \
Gender
f
                                       1
m
                                       2
Specialization applied electronics and instrumentation \
Gender
f
                                                       2
                                                       7
Specialization automobile/automotive engineering biomedical engineering \
Gender
                                                0
                                                                         2
f
                                                5
                                                                         0
Specialization biotechnology ceramic engineering chemical engineering \
Gender
f
                            9
                                                 0
                                                                        1
                            6
                                                 1
                                                                        8
m
Specialization civil engineering computer and communication engineering \
f
                                6
                                                                         0
m
                               23
                                                                         1
Specialization computer application \dots internal combustion engine \setminus
Gender
f
                                  59
                                                                     0
                                      . . .
                                 185 ...
                                                                     1
Specialization mechanical & production engineering \
Gender
f
                                                  1
m
Specialization mechanical and automation mechanical engineering \
Gender
f
                                        0
                                                                10
                                        5
                                                               191
Specialization mechatronics metallurgical engineering other \
Gender
f
                                                       0
                                                             0
                           1
                           3
                                                             13
Specialization polymer technology power systems and automation \
Gender
f
                                 0
                                                                0
                                 1
                                                                1
Specialization telecommunication engineering
Gender
f
                                            1
                                            5
m
[2 rows x 46 columns]
Chi-squared Test:
Chi-squared statistics :104.46891913608455
```

There is a siginificant relationship between gender and Specialization

outlier analysis

1995.0 1997.5 2000.0 2002.5 2005.0 2007.5 2010.0 2012.5 12graduation

Box plot

TelecomEngg

ò


```
In [58]: # by using IQR we are able to remove outliers in data
data=df[i]
q1=np.percentile(data,25)
q2=np.percentile(data,50)
q3=np.percentile(data,75)
```

```
IQR=q3-q1
lb=(q1-(1.5*IQR))
ub=(q3+(1.5*IQR))

con1=data>lb
con2=data<ub
con3=con1&con2
non_outliers_data=data[con3]
non_outliers_data</pre>
```

```
Out[58]: 0 -0.4455

1 0.8637

2 0.6721

3 -0.9194

4 -0.1295

...

3993 -0.9194

3994 -0.0943

3995 -0.7615

3996 -0.0943

3997 -0.6035

Name: openess_to_experience, Length: 3903, dtype: float64
```

Extracted dataframe without any outliers

```
In [59]: import warnings
  warnings.filterwarnings('ignore')
  non_outliers_df=df[con3]
  non_outliers_df.dropna(inplace=True)
  non_outliers_df
```

Out[59]:		Unnamed:	ID	Salary	DOJ	DOL	Designation	JobCity	G
	0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	
	1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	
	2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	
	3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	
	4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	
	•••								
	3993	train	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	
	3994	train	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	
	3995	train	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	
	3996	train	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	
	3997	train	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	

3903 rows × 39 columns


```
In [61]: for i in num_cols[1:]:
    height=non_outliers_df['ID']
    sns.boxplot(height,orient='h')
    plt.xlabel([i])
    plt.suptitle('Box_plot')
    plt.show()
```


The difference between actaul dataframe without removing outliers and after removing outliers

```
In [64]: count=len(df)-len(non_outliers_df)
    print(f"The total number of outliers are :{count}")
```

The total number of outliers are :95

Data without any outliers and missing values

In	[72]	non	outliers	df	

Out[72]:	
----------	--

	Unnamed:	ID	Salary	DOJ	DOL	Designation	JobCity	G
0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	
1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	
2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	
3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	
4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	
•••		•••		•••	•••			
3993	train	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	
3994	train	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	
3995	train	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	
3996	train	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	
3997	train	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	

3903 rows × 39 columns

