• In your own words, compare and contrast **parametric** and **nonparametric** statistics.

former we Assume the parameters and diet of population is known

Latter doesn't require any dist known before hand not Parameters And there is no Assumption

• What are two reasons why researchers might choose a nonparametric test over its parametric equivalent?

1. Analyzed data is nominal or Ordinal

2. underlying data doesn't meet the assumption about the population Sample

• List the nonparametric tests we've discussed that are appropriate for **paired** samples.

Sign Test Wiloxon Signed Rank Test

List the nonparametric tests we've discussed that are appropriate for **independent** samples.

Mann-Withney test kruskal - wallis Test

Randomness and Independence, Random Sampling

1. The following data record the number of ear infections each of 7 swimmers had before (X_i) taking a medication designed to prevent infections and after (Y_i) taking the medication. Using the data provided, answer the following questions:

Swimmer	X_i	Y_i	D_i	Sign
A	3	2	1	+
В	0	1	-1	-
\mathbf{C}	5	4	t	+
D	4	0	4	+
E	2	1	1	+
F	4	3	ſ	+
G	3	1	2	+

- a. Consider $D_i = X_i Y_i$. Fill in the D_i column. Then fill in the "Sign" column with the sign of the differences
 - b. Use the **sign test** to conduct a hypothesis test assessing whether there is a difference between the population distributions of X and Y.
 - i. Write the null and alternative hypotheses in words and in symbols;
 - ii. Calculate a test statistic M;
 - iii. Calculate the relevant binomial probability;
 - iv. Can you reject the null hypothesis, assuming $\alpha = .05$?

i)
$$P(D_i > 0) = P$$

Ho $i P = 0.5$ H_R ; $P \neq 0.5$ $W = 6$
 $P = 0.5$ H_R ; $P \neq 0.5$ $W = 6$
 $P = 0.5$ $P = 0.5$ $P(z > 6 | z \sim Bin(7, \frac{1}{2})) + P(z \le | z \sim Bin(7, \frac{1}{2}))$
 $= 2(\frac{7}{6})(9.5)^{14}) = \frac{1}{8} > 0.05$
 $= 2(\frac{7}{6})(9.5)^{14} = \frac{1$

1) Fall to Reject Ho with both test

2. The coded values for a measure of brightness in paper (light reflectivity), prepared by two different processes, are as shown in the accompanying table for samples of size 9 drawn randomly from each of the two processes. Do the data present sufficient evidence to indicate a difference in locations of brightness measurements for the two processes? Give the attained significance level.

Process A	Process B
6.1	9.1
9.2	8.2
8.7	8.6
8.9	6.9
7.6	7.5
7.1	7.9
9.5	8.3
8.3	7.8
9.0	8.9

- a. Answer the question by using the Mann-Whitney U test.
- b. Answer the question by using the **independent samples** *t***-test**.
- c. Provide the null and alternative hypotheses for parts a and b, along with any assumptions made for each test.

a)
$$U_A = 11, 112 + \frac{11}{2} - 10 - 10 = 81 + \frac{90}{2} - 94 = 32$$
 $U_B = 81 + \frac{9-10}{2} - 77 = 49$

So $U = 32$ and P -value is $2P(U(32) = 2 \cdot 0.2447 = 0.44894$

The critical value of $U(Q) = 0.025$ ($S = 17 < 32$)

which is Seying the result is NoT Significant

We can not Reject to.

b) By USing two Sample Test, we get the $U_1 - U_2 = 0$

b) By using two sample rest, we get Ho; $U_1 - u_2 = 0$ Us Ha= $U_1 - U_2 \neq 0$ $\widetilde{V}_1 \approx 8.27$, $\widetilde{Y}_2 \approx 8.13$, $S_p^2 \approx 0.868$ HI = $\frac{|8.27 - 8.13|}{|0.868|^{\frac{2}{7}|}} = 0.319$ P-value > 0.2 (two tables) Ho Aecepted

C) For a . Ho: The distributions of populations I and II are identical

Ha: The distribution of populations I and II differs locationally,

Sample was selected Randomly and indeplently from population

For b. Ho: $M_1 - M_2 = 0$ Ho: $M_1 - M_2 \neq 0$ Independence / normality / hognogeneity of variance, Bandom Sampling

3. Consider the Friedman statistic

$$F_r = \frac{12b}{k(k+1)} \sum_{i=1}^{n} k (\bar{R}_i - \bar{R})^2.$$

Square each term in the sum, and show that an alternative form of F_r is

$$F_r = \frac{12}{bk(k+1)} \sum_{i=1}^{k} R_i^2 - 3b(k+1).$$

 $\textit{Hint:} \text{ Recall that } \bar{R}_i = \tfrac{R_i}{b} \text{ and } \bar{R} = \tfrac{k+1}{2}, \text{ and note that } \sum_{i=1}^k R_i = \text{sum of all the ranks} = \tfrac{bk(k+1)}{2}.$

$$\begin{aligned}
F_{Y} &= \frac{12 \cdot b}{k[k+1)} \sum_{k} \left(\frac{\bar{k}_{1}^{2} - 2\bar{k}_{1}^{2} \bar{k} + \bar{k}^{2}}{k^{2}} \right) \\
&= \frac{12 \cdot b}{k(k+1)} \sum_{k} \left(\frac{R_{1}^{2}}{b^{2}} - \frac{(k+1)R_{1}^{2}}{b} + \frac{(k+1)^{2}}{4} \right) \\
&= \frac{12 \cdot b}{k \cdot (k+1)} \sum_{k} \frac{R_{1}^{2}}{b^{2}} - \frac{(2 \cdot b - b \cdot k \cdot (k+1)}{k \cdot b \cdot k} + \frac{(2 \cdot b(k+1) \cdot k)}{4k} \\
&= \frac{12}{b \cdot k(k+1)} \sum_{k} R_{1}^{2} - 3 \cdot b \cdot (k+1)
\end{aligned}$$

4. A quality control chart has been maintained for a measurable characteristic of items taken from a conveyor belt at a fixed point in a production line. The measurements obtained today, in order of time from top left to bottom right (68.2 the earliest recorded and 70.1 the latest), are as follows:

- a. Classify the measurements in this time series according to whether each is above or below the overall sample mean and determine, using the **runs test**, whether there are runs of high or low measurements, suggesting a lack of stability in the production process.
- b. Divide the time period into two equal parts and compare the means of each, using the t-test, with $\alpha = .05$. Do the data provide evidence of a shift in the mean level of the quality characteristic? Explain.

AAAA BBBBB A B ABA

₽ =) h,= Nz = 8

Non-Random fluctuation would be implied by Small # of Rows

By table 1s., Pralue = P(R(7) = 0.217)

Then non-Random fluctuation Court be Concluded.

B) Divide data into equal parts $\overline{y}_1 = 68.05$ (for the 1st Pow) $\overline{y}_2 = 67.29$ (for 2nd Yow) $\overline{y}_2 = 67.29$ (for 2nd Yow)

For two-sample Test 1H = $\frac{[68.05-67.27]}{\sqrt{7.07(\frac{2}{8})}} \approx 0.5867$ $\overline{DF} = 14$, $\alpha = 0.05$ give critical value of 1.761 > 0.5867

Ho Accepted