

Team 60: Solar Lighting System Bi-Weekly Update 5

Josh George, Jeb Malek, Lyric Haylow Sponsor: Dr. Wonhyeok Jang

TA: Rhett Guthrie

Project Summary

- A need for clean, renewable sources becomes more apparent than ever.
- Our home indoor and outdoor lighting system is the first step towards this, using solar power.
- Design an indoor/outdoor home lighting system that operates with a battery, power conversion, mobile application functionality, BT microcontroller for switch automation from motion sensors.

Integrated System Diagram

Project Timeline

Subsystem	Subsystems	Integration of	Integration of	Final	System Test	Validation	Demo and
Designs	ordered and	Bluetooth	Solar Charge	Integration	(to complete	(to	Report
(completed	soldered	and Arduino	Controller and	(to	by 4/8)	complete	(to
01/16)	(2/14)	(3/18)	MCU (3/29)	complete by		by 4/8)	complete
				4/1)			by 4/17)

Solar Charge Controller

Lyric Haylow

Accomplishments since last update 14 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Validated charging and fully charged systems are set. Validated board does not operate for faulty/wrong batteries New battery ordered Completed final design of the project 	 Issue with getting amp draw Test Charge Controller with new battery Test limits of solar panels given indoor and outdoor conditions Modify 3D print to fit battery chosen

Solar Charge Controller

Lyric Haylow

Main Issue: Charge Controller reads charging, however no current is being pulled.

Fixes attempted:

- Changing R3 and R4 values for better acclimation from input.
- Changing R2 and R1 values to fit an expected Li-lon battery input value of 8.4V
- Hooking up Electronic Load to total system to pull load.

Solar Charge Controller

Lyric Haylow

Fixes to be attempted:

- Trying Lithium Ion battery, should work for Wh amount necessary. Will require redesign of 3D print.
- Switching Lead-Acid batteries used, there is a slight chance the one I've used is faulty, as shown by its low voltage value of 10.4V
- Soldering is not an issue, as voltage values travel across the board and the board was personally checked by Dr. Lusher.

Power Subsystem

Jeb Malek

Accomplishments since 403 10 hrs of effort	Ongoing progress/problems and plans until the next presentation
Power Supply Verified	Converter Attach Arduino, Sensor, Light Loads

Tested Converter with 5A Fuse attached to Battery

Power Subsytem

Jeb Malek

Testing & Verification of 12-5V Converter
Switch & Sensor Load Bench Supply

Supply	11V 1A
Voltage	4.91 V
Current	21 mA

Switch, Sensor, Arduino, & BT Module Battery Supply

Supply	12.27V 1A
Voltage	4.91 V
Current	18.183 mA

Microcontroller Subsystem

Jeb Malek

Accomplishments since 403 10 hrs	Ongoing progress/problems and plans until the next presentation
Testing of Bluetooth Signa Availability	Synchronization of switch operation and motion sensing with distance sensitivity. Bluetooth Communication with Android Software

Further Investigation of Time Delay and Switching Signal

Microcontroller Subsytem

Jeb Malek

Arduino & Bluetooth Module Load

Supply	11V 1A
Voltage	4.998 V
Current	37 mA
Power	184-186 mW

Mobile Application

Josh George

Accomplishments since last update 5 hrs of effort	Ongoing progress/problems and plans until the next presentation
-Solved an issue where HC05 Bluetooth module was not discoverable by appUpdated graphing page to be more user friendly and cleanerAdded text explaining pageImplemented graphic displaying relative charge percentage	-Begin testing microcontroller, lights, sensor, and app integrationFind solution for obtaining battery percentage from solar charge controller.

Mobile Application

Old New

Mobile Application

Josh George

Execution Plan

TASK	21-Jan-24	28-Jan-24	4-Feb-24	11-Feb-24	18-Feb-24	25-Feb-24	3-Mar-24	10-Mar-24	17-Mar-24	24-Mar-24	31-Mar-24	7-Apr-24	14-Apr-24
Application													
Bluetooth Widget													
Bluetooth Screen													
Working Connection to Arduino													
Data input to MCU													
Data output to MCU													
Graphing Interface													
Battery Preferences													
Arduino Voltage Input													
Arduino Voltage Output													
Complete Interface													
Solar Charge Controller (SCM)													
Solar Panel Testing													
Order Parts													
MK2 PCB Designing & Ordering													
Soldering Solar-PCB-Battery													
Test Battery Charging over time													
Design 3D print enclosure													
Solar-to-MPPT Testing and Verification													
Implement System													

Execution Plan

TASK	21-Jan-24	28-Jan-24	4-Feb-24	11-Feb-24	18-Feb-24	25-Feb-24	3-Mar-24	10-Mar-24	17-Mar-24	24-Mar-24	31-Mar-24	7-Apr-24	14-Apr-24
Power System													
Load Measurements, Operating Conditions													
Topology Selection for DC/AC Inverter													
Pulse Width Modulation Switching Part Select													
PWM Pure Sine Wave Schematic Verification													
Inverter PCB Design													
Inverter PCB Soldering													
MCU Programming													
Transformer Voltage Verification													
Power Regulation Verification/System Integration													
Switching Verification													
Full Load Support Testing													
Full Load Solar Light System Demo													
Microcontroller													
Select Microcontroller													
Select Components for Power Circuits													
Select Motion Sensors and Light Sensor													
Design Battery Monitor													
Order Parts													
Develop Code for Microcontroller													
Verify Sensors													
Verify Power Switches													
Verify Motion Sensor/Switch Synchronization													
Verify Battery Connection/Converter													
Final Testing and Verification	,												

Response Time

Validation Plan

	App Requirements		Į.
3.2.5.1			Beginner code in android studio
3.2.5.2		Android studio establishes a connection with the Android phone when the app is downloaded on the phon	
3.2.5.3	Establish Bluetooth Connection wit	Able to connect to a bluetooth capable device and detect the serial number	Work with microcontroller Bluetooth package to connect to android studio
3.2.5.4	Bluetooth Communication via App	App displays screen with good connection.	Make sure code runs successfully on Android device
3.2.5.5	Main Screen	App is able to display a home screen	Code home screen in Android studio, make sure it runs, debug errors.
3.2.5.6	Data from Charge Controllor	App is able to connect to charge controller and accurately display readings.	Understand how charge controller connects to MCU, adapt code accordingly.
	Solar Panel Battery Charge		
3.2.1.1	Solar Panel Mount	Stays in space mounted for several days time	Verifying Hardware is properly mounted
3.2.1.2	MPPT Functionality	MPPT is working as expected within the IC	Set higher voltage than MPPT, check whether IC brings voltage down to set MPPT voltage level.
3.2.1.3	Charge Controller Verification	Voltage levels are modulated along with Current Levels	Steadily increasing current will be applied to charge controller, to point of max expected
3.2.1.4	Overvoltage Solar Panel Protection		Sending a increasingly higher voltage through the charge controller, eventually checking it functions as predicted
3.2.1.5	Overcurrent Battery Protection		When charging battery, consistently measuring charging current upon increasing supply voltage using DC power supply
3.2.1.6	PWM EMI Interference	Interference does not significantly alter design guidelines	Use a Broadband RF meter if one available, if not then the Oscilloscope to identify interference points.
3.2.1.7	Battery Charging to Capacity	Battery stops being charged once it has a full charge	Feeback voltage will be applied back to IC as shown in documentation
3.2.1.8	State of Charge (SOC)	Measurement for current State of Charge coincides with expected values	Measure the voltage with a multimeter and convert measured voltage to approximate power percentage expected
3.2.1.9	Depth of Discharge (DOD)	Measurement for current State of Charge coincides with expected values after discharge	Measure the voltage with a multimeter and convert measured voltage to approximate power percentage expected
	Power Inverter Characteristics		
3.2.2.3	PWM EMI Interference		In a unipolar switching topology the pulse width modulated signal should be a desired value to obtain suit
3.2.2.5	Output Voltage	Inverter will supply a steady 120 VAC RMS value	With an attached load a benchmark of current drawing configurations to satisify stable pure sine wave voltage of 120 RMS
3.2.2.6	Output Frequency	Inverter will supply a steady output sinusoid at a frequency of 60 Hz	Proper inverted sine waves shall operate at normal operating constraint of 60 Hz
3.2.2.7	DC/DC Conversion	Inverter will supply 3.3 V / 1 A USB-C regulated output	Attaching E-Load to Inverter USB-C Receptacle provides 3.3 V load at varying currents
3.2.2.8	Output Stability	Output Voltage Ripple demonstrates acceptable output harmonic components below certain THD	Measurement with Oscilloscope and E-Load with charging and discharging states can cause voltage flucuation
3.2.2.9	Varying Loads	Inverter will supply light loads of varying configurations	Measurement with Oscilloscope and E-Load with benchmark loads attached while charging, discharging, in all modes of operati
Microcon	troller and Sensor Characteristics		
3.2.3.1	Sensor Detection Rate	The indoor sensor miss rate does not exceed 5% and outdoor sensor miss rate does not exceed 10%	Move an object within detection ranges over a 30 min duration. Monitor for detected objects using its output.
3.2.3.2	Response Time	The time from sensor detection to a I/O signal heading to the relay must be less than 2 seconds	Measure time between output of sensor detection and output from microcontroller to relays.
3.2.3.3	Bluetooth Connectivity	Microcontroller is able to connect to a mobile device via Bluetooth	Use multiple devices and connect to the microcontroller via bluetooth.
3.2.3.4	Peripheral Input Voltages	The input voltages of the microcontroller and peripherals shall be 3V-3.6V	Use a multimeter to validate.
3.2.3.5	Application Communication	· •	
3.2.3.6	System Integration	Arduino receives communication from motion sensors, Verified mobile application instruction	Check Logs of Arduino Bluetooth Communcations with Debugging circuit / application logs for sensor data continuity
	Response Time		