# ☐ Determine the flip flop input equations from the <u>next-state</u> <u>equations</u> using K-maps

- > Always copy X's from next state maps onto input maps first
- Fill in the remaining squares with 0's

| Type<br>of FF | Input | Q = 0  |        | Q = 1  |        | Rules for forming input map from next state map |                      |
|---------------|-------|--------|--------|--------|--------|-------------------------------------------------|----------------------|
|               |       | Q+ = 0 | Q+ = 1 | Q+ = 0 | Q+ = 1 | Q = 0 Half of Map                               | Q = 1 Half of Map    |
| D             | D     | 0      | 1      | 0      | 1      | No change                                       | No change            |
| Т             | Т     | 0      | 1      | 1      | 0      | No change                                       | Complement           |
| S-R           | S     | 0      | 1      | 0      | х      | No change                                       | Replace 1's with X's |
|               | R     | х      | 0      | 1      | 0      | Replace 0's with X's<br>Replace 1's with 0's    | Complement           |
| J-K           | J     | 0      | 1      | х      | Х      | No change                                       | Fill in with X's     |
|               | К     | х      | х      | 1      | 0      | Fill in with X's                                | Complement           |

| Туре           | Q+             |  |
|----------------|----------------|--|
| D Flip-Flop    | D              |  |
| S-R Flip-Flop  | S + R'Q        |  |
| J-K Flip-Flop  | JQ' + K'Q      |  |
| T Flip-Flop    | TQ' + T'Q      |  |
| D-CE Flip-Flop | D(CE) + Q(CE)' |  |

### One-hot state assignment: One flip-flop for each state



S<sub>0</sub> = 100, S<sub>1</sub> = 010, S<sub>2</sub> = 001

Write next-state and output (Z) equations directly by inspecting the state graph

• 
$$Q_0^+ = F'R'Q_0 + F'RQ_1 + FQ_2$$

• 
$$Q_1^+ = F'R'Q_1 + F'RQ_2 + FQ_0$$

• 
$$Q_2^+ = F'R'Q_2 + F'RQ_0 + FQ_1$$

• 
$$Z = Z_0Q_0 + Z_1Q_1 + Z_2Q_2$$



### Completely Specified State Graph

#### Properties

- ➤ <u>OR</u> together all input labels on arcs emanating from a state, the result can reduce to 1
  - Cover all conditions: F + F'R +F'R' = F + F' = 1
- > AND together any pair of input labels on arcs emanating from a state, the result can reduce to 0
  - Only one arc is valid:  $F \cdot F'R = 0$ ,  $F \cdot F'R' = 0$ ,  $F'R \cdot F'R' = 0$





## State Equivalence

#### Definition

- > N<sub>1</sub>, N<sub>2</sub>: sequential circuits (not necessarily different)
- ➤ X: a sequence of inputs of arbitrary length
- Then, state p in  $N_1 \equiv$  state q in  $N_2$  if and only if  $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$  for every possible input sequence X
  - λ: output
- > Difficult to check the equivalence using this definition!
  - · Infinite number of input sequences

#### ☐ Theorem

- $\triangleright$  Two states p and q of a sequential circuit are equivalent if and only if for every single input X, the outputs are the same and the next states are equivalent, i.e.,  $\lambda(p,X) = \lambda(q,X)$  and  $\delta(p,X) \equiv \delta(q,X)$ 
  - δ: next state
  - Note that the next state do not have to be equal, just equivalent



Static-1: 在 1 框框中間加上 bridge 的 1 框框 Static-0: 在 0 框框中間加上 bridge 的 0 框框

Multi-level 中,

- SOP: Static-1 一樣用發生在需要 bridge 時; Static-0 發生在 (AA')x 這種 complement 時。

essential hazard: caused by different delay in same input gate.

Shannon expansion theorem: 函數的降微, $f(A,B,C,D) = D' \cdot f(A,B,C,0) + D \cdot f(A,B,C,1)$ \$

Latches: (閘)

- SR-Latch (Set to 1, Reset to 0):  $Q^+ = S + R'Q$
- Gated-D Latch (Gated-Direct): \$Q^+ = G'Q + GD\$

Flip-Flop: (注意看是 rising-edge trigger 還是 falling-edge trigger)

- D-FF: D 是多少就是多少
- SR-FF: S=1 時 Set to 1; R=0 時 Reset to 0 (S=R=1 is illegal)
- JK-FF: J=1 時 Jump to 1; R=0 時 Clear to 0 (S=R=1 is toggle, 0 變 1, 1 變 0)
- T-FF: T=1 時 Toggle