Table 1: We conduct a quantitative study on the SYNTHIA [2] to Cityscapes [1] adaptation task using ResNet-101 as the backbone. The evaluation is performed under the FGSM attack across 13 common semantic classes shared between the two datasets

ϵ	road	sidewalk	building	light	sign	vegetation	sky	person	rider	car	snq	motor cycle	bike	mIoU	mIoU drop	mIoU*
0.00 (clean)	82.4	39.4	75.6	21.6	16.5	76.6	77.8	54.3	20.0	80.2	46.8	23.5	43.6	50.64	0.00	50.64
0.03	80.0	37.5	73.1	20.0	16.2	74.0	76.4	53.5	18.0	78.0	45.3	22.1	42.0	48.93	1.71	50.64
0.10	60.0	29.4	55.6	11.6	6.5	56.6	57.8	39.3	9.0	60.2	26.8	11.7	28.6	34.85	15.78	50.64
0.25	36.4	28.4	35.6	13.6	4.6	26.5	43.8	24.3	8.7	40.2	9.1	13.5	23.6	23.71	26.93	50.64

Figure 1: **t-SNE** We visualize the alignment of domains across both clean and adversarial inputs using features extracted from the shared feature extractor (i.e., the output of \mathcal{F}).

Figure 2: t-SNE visualization of feature across different domains at various training phases, illustrating the nature of progressive alignment strategy.

Table 2: Natural accuracy (Nat.) and robust accuracy under the PGD20 attack with $\epsilon = 2/255$ (PGD) are reported on the target test data across the DomainNet dataset, covering four subdomains(Clipart,Art,Real,Painting). † Results are not reported in the mean \pm standard deviation format.

Method		C→P	$\mathbf{C} \rightarrow \mathbf{R}$	$\mathbf{C} { ightarrow} \mathbf{S}$	$P \rightarrow C$	$P \rightarrow R$	$\mathbf{P} \rightarrow \mathbf{S}$	$\mathbf{R} { ightarrow} \mathbf{C}$	$\mathbf{R} \rightarrow \mathbf{P}$	$\mathbf{R} { ightarrow} \mathbf{S}$	$\mathbf{S} \rightarrow \mathbf{C}$	$S \rightarrow P$	$S \rightarrow R$	Avg.
Ours	Nat.	35.7 ± 0.3	51.2 ± 0.2	42.4 ± 0.4	40.7 ± 0.3	52.1 ± 0.1	35.4 ± 0.4	49.1 ± 0.3	49.4 ± 0.2	37.5 ± 0.1	51.6 ± 0.3	42.9 ± 0.2	51.1 ± 0.4	44.9 ± 0.1
Ours	PGD	31.9 ± 0.1	46.1 ± 0.3	36.5 ± 0.2	37.9 ± 0.1	48.2 ± 0.3	30.2 ± 0.2	44.9 ± 0.1	45.8 ± 0.4	31.3 ± 0.2	45.0 ± 0.2	35.8 ± 0.1	43.9 ± 0.3	39.7 ± 0.2

Table 3: Comparison of convergence speed over iterations for two datasets: Office-Home (Art \rightarrow Clipart) and PACS (Photo \rightarrow Sketch)

Dataset	Method	Adversarial Sample	Iterations	Nat.(%)	PGD(%)
	DANN	Х	20K	$49.1 {\pm} 0.3$	$2.6 {\pm} 0.4$
Office-Home	SRoUDA	✓	25K	$48.2 {\pm} 0.5$	$38.9 {\pm} 0.5$
$(Ar \rightarrow Cl)$	DART	✓	25K	$50.4 {\pm} 0.9$	$42.2 {\pm} 0.6$
	OURS	✓	35K	$55.6 {\pm} 0.3$	$\textbf{47.8} {\pm} \textbf{0.2}$
	DANN	Х	20K	74.0 ± 1.1	0.0 ± 0.0
PACS	SRoUDA	✓	25K	50.2 ± 3.8	41.9 ± 2.7
$(\mathrm{Ph} \to \mathrm{Sk})$	DART	✓	25K	$79.9 {\pm} 0.9$	74.0 ± 0.9
	OURS	✓	30K	$81.7 {\pm} 0.1$	$\textbf{78.7} {\pm} \textbf{0.2}$

Table 4: Natural accuracy (Nat.) and robust accuracy (PGD) on the VisDA dataset, evaluated under a PGD-20 attack with $\epsilon = \frac{2}{255}$, using ResNet-50 and ResNet-101 as backbone networks.

$\mathbf{S} o \mathbf{T}$	Syn -	$ ightarrow \mathbf{Re}$	${f Re} o {f Syn}$			
Method	Nat.	PGD	Nat.	PGD		
DANN	67.4 ± 0.2	0.5 ± 0.2	78.6 ± 0.9	0.8 ± 0.1		
ARTUDA	45.2 ± 4.8	32.5 ± 2.7	72.5 ± 2.5	62.6 ± 0.3		
SRoUDA	48.2 ± 2.7	33.4 ± 0.7	81.2 ± 1.4	72.9 ± 1.3		
DART	69.5 ± 0.2	58.0 ± 0.5	87.3 ± 0.3	85.3 ± 0.2		
$CAM+SPLR^{\dagger}$	72.8	65.9	89.5	87.1		
Ours(Resnet50)	$\textbf{75.3}\pm\textbf{0.1}$	$\textbf{66.6}\pm\textbf{0.2}$	$\textbf{89.7}\pm\textbf{0.1}$	$\textbf{88.0}\pm\textbf{0.2}$		
${ m Ours}({ m Resnet}101)$	$\textbf{78.9}\pm\textbf{0.1}$	$\textbf{69.5}\pm\textbf{0.3}$	$\textbf{92.4}\pm\textbf{0.1}$	$\textbf{89.3}\pm\textbf{0.1}$		

Table 5: Natural and robust accuracy (Fast Gradient Sign Method, Projected Gradient Descent, and AutoAttack) evaluated using different methods and backbone networks (Resnet50, Resnet101. ViT-B/16).

	1 - 7																
Backbone	Method	$Pr \rightarrow Re$			Pr→Ar				Cl→Pr				Sk→Re				
		Nat.	FGSM	PGD	AA	Nat.	FGSM	PGD	AA.	Nat.	FGSM	PGD	AA.	Nat.	FGSM	PGD	AA.
ResNet-50	DANN	60.0 ± 0.6	12.2 ± 0.4	0.3 ± 0.1	0.0 ± 0.0	49.1 ± 0.3	11.7 ± 0.2	$0.2 {\pm} 0.1$	0.0 ± 0.0	47.9 ± 0.8	$9.4 {\pm} 0.3$	$3.6{\pm}1.0$	1.1 ± 0.3	67.4 ± 0.2	$13.5 {\pm} 0.1$	$0.5{\pm}0.2$	0.0 ± 0.0
	DART	63.5 ± 0.8	$54.7 {\pm} 0.2$	$43.6 {\pm} 0.5$	$42.6 {\pm} 0.5$	43.7 ± 2.5	$34.5 {\pm} 0.3$	$21.5 {\pm} 0.8$	$20.0 {\pm} 1.0$	57.0 ± 0.3	$51.7 {\pm} 0.1$	$45.5 {\pm} 0.6$	$44.8 {\pm} 0.5$	69.5 ± 0.2	$62.4 {\pm} 0.3$	$58.0 {\pm} 0.5$	$55.7 {\pm} 0.1$
	Ours	70.1 ± 0.3	$62.9 {\pm} 0.1$	$54.7 {\pm} 0.2$	$53.4 {\pm} 0.1$	50.4 ± 0.2	$42.7 {\pm} 0.2$	$32.3 {\pm} 0.1$	$30.9 {\pm} 0.3$	62.7 ± 0.2	57.4 ± 0.1	$52.5 {\pm} 0.3$	$50.9 {\pm} 0.2$	75.3 ± 0.1	$70.9{\pm}0.5$	$66.6 {\pm} 0.2$	$65.3 {\pm} 0.1$
ResNet-101	Ours	75.9 ± 0.3	69.2 ± 0.2	59.6 ± 0.1	$56.8 {\pm} 0.1$	55.7 ± 0.4	51.2 ± 0.1	37.4 ± 0.1	$35.2 {\pm} 0.3$	67.1 ± 0.2	$63.3 {\pm} 0.1$	$58.1 {\pm} 0.3$	$56.8 {\pm} 0.1$	78.9 ± 0.1	73.4 ± 0.1	$69.5 {\pm} 0.2$	67.5 ± 0.3
ViT	Ours	82.3 ± 0.2	79.4 ± 0.1	$68.6 {\pm} 0.2$	$65.2 {\pm} 0.2$	64.1 ± 0.1	59.3 ± 0.1	46.9 ± 0.2	$43.8 {\pm} 0.3$	75.3 ± 0.1	72.4 ± 0.3	66.1 ± 0.2	$64.9 {\pm} 0.2$	82.1 ± 0.3	$78.5 {\pm} 0.1$	73.4 ± 0.1	71.5 ± 0.2

Table 6: Comparison of natural and robust accuracy (PGD) between individual classifier heads and their average at inference on three dataset .

Dataset	Hea	d H1	Hea	d H2	Avg(H1+H2)		
	Nat. (%)	PGD (%)	Nat. (%)	PGD (%)	Nat. (%)	PGD (%)	
Office-Home (Re→Cl)	59.5	54.3	59.2	54.2	59.6	54.5	
PACS (Ca→Sk)	86.2	83.4	86.0	83.1	86.4	83.5	
VisDA (Syn→Real)	75.3	66.6	75.4	66.5	75.6	66.8	

References

- [1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3213–3223, 2016.
- [2] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3234–3243, 2016.