Introduction to Embedded System

Chapter 1

They are Embedded Systems

08/30/18 CS3369, Qijun Gu

2

Advanced Embedded Systems

- Robots
 - Complexity: computing, mechanic, intelligence
- Fly (Festo)
 - https://www.youtube.com/watch?v=nnR8fDW3llo
- Climb (Boston Dynamic, ETH)
 - https://www.youtube.com/watch?v=XEMlkonimvQ
 - https://www.youtube.com/watch?v=ps06qU9-Dpc
- Jump (MIT, Boston Dynamic)
 - https://www.youtube.com/watch?v=_luhn7TLfWU
 - https://www.youtube.com/watch?v=WcbGRBPkrps
- Swarm (ETH)
 - https://www.youtube.com/watch?v=RCXGpEmFbOw
- Many other advanced embedded systems

Definition

- An embedded system is a computerized system that is purpose-built for its application.
 - Computerized: computation is core
 - Purpose-built: software and hardware components
 - Application: functionality, requirement, specification
- Comparison
 - General purpose computer
 - Not purpose-built
 - No specific applications
 - Super computer
 - Purpose-built: high performance computing
 - Not for specific applications, but for providing computational capability

Is it an embedded system?

Characteristics (I)

- Designed to perform dedicated functions for specific applications
 - LED TV
 - A remote controller, a signal receiver, a panel
 - Although the controller has many button's, the TV only has a fixed menu with a fixed set of functions.
 - Change channel
 - Recording
 - Video on demand
 - Change color
 - So, it is feasible to have a manual with a TV, which describes all functions provided by the TV.

Characteristics (II)

- Resource constraints in hardware
 - Sensor
 - Hardware: 4KByte ram, 1MIPS CPU
 - Voice recording
 - 8 bit per sample, 9.6K samples per second (only fair quality)
 - Without compression : 0.41 seconds of recording
 - With compression, each sample should be compressed within 104 instructions.
 - Battery:
 - 1 AÅA battery : 1000mAhr
 - Run for 1 year: 6360 hours (0.15mA in average)
 20mA of operation and 10uA of sleep
 20x + 0.01(6360-x) = 1000, so 46.84 hrs of operation
 0.74% of time for operation
 fewer than a half minute per hour of operation (26.6s)

Characteristics (III)

- Designed with specific quality requirements
 - Deterministically : exactly the same each time
 - Sensor
 - Real time: always reacting to an event fast enough
 - Brake
 - Fault tolerant : tolerable quality degradation in the face of errors
 - Unmanned aviation vehicle (UAV)
 - Agile : instant change of operations on a sudden signal
 - Uninterruptible power supply (UPS)

Characteristics (III)

- Examples:
 - Car's brake controller
 - ABS, ESC, ...
 - 60 mph = 87.5 feet per second
 - A response time of 0.1 second in the brake system means a distance of 8.75 feet.
 - High real-time requirement
 - Car's engine controller
 - Gas and ignition control in response to current speed
 - High reliability requirement : cannot fail over years
 - Airplane : higher
 - Digital TV : lower

Characteristics?

- Modern general purpose embedded systems
 - PDAs, cell phones, ...
 - They were NOT general purpose embedded systems, but are now.
 - Limited resources
 - ?
 - Dedicated functionality
 - ?
 - Specific quality requirements

• ?

System Design

- General design principles
 - Start with applications
 - What functionality (Characteristic I)
 - Determine the function units of software and hardware
 - What requirements (Characteristic III)
 - Determine the performance and quality of software and hardware
 - What restraints (Characteristic II)
 - Determine the limit and cost of software and hardware
- Design case
 - Application: obtain power consumption data in computer
 - Embedded system: power sensor in computer

- Functionality of application
 - Get raw data
 - Power consumed by CPU, memory, hard drive, ...
 - About 30 power lines to get data in a computer
 Need a MCU of more than 30 ADC channels
 - Process raw data
 - Processing integer only with arithmetic computation
 - No need of floating point or digital signal processing (DSP)
 Need a standard MCU
 - Data could be send via USB or network
 - Need a MCU to support USB and network
 - Need software libraries to support USB and network

- Requirement of application
 - Data precision: 8-bit or above and 5% error margin
 - Need a 16-bit MCU or better
 - Processing rate: 1 ~ 200 samples per channel per second (6400 samples per second maximum)
 - Assume each data sample processing needs 1000 clocks
 - This is also a software implement requirement
 Real-time: need a MCU working at 10MHz or above
 - No data caching: no data memory requirement
 - Power requirement

 - Sensor powered by computer chassis
 In-chassis temperature: 20-60 degree celsius
 - Need a MCU of <5W at 3.3V

- Functionality of application
 - Get raw data
 - Power consumed by CPU, memory, hard drive, ...
 - About 30 power lines to get data in a computer
 Need a MCU of more than 30 ADC channels
 - Process raw data
 - Processing integer only with arithmetic computation
 - No need of floating point or digital signal processing (DSP)
 Need a standard MCU
 - Data could be send via USB or network
 - Need a MCU to support USB and network
 - Need software libraries to support USB and network

- Restraints of application
 - What you are going to pay (money, time, people)
 - Production cost: <\$100 per sensor set
 - Need a MCU at \$10 or less
 - Development cost:
 - Software license: free or open-source
 - Prototyping cost: prototype manufacturing
 - Development time: <12 months
 - Need well established libraries, documents and tools
 - Deploy, update and maintenance
 - One or two students to deploy
 - Remote access only for update and maintenance
 - Need a MCU supporting remote control and update
 Need software including remote control and update

Challenges in Development

- Resources constraints:
 - Memory and code space
 - Processor cycles and speed
 - Power consumption
 - Peripherals
 - Compromise in design: tradeable resources
 - Code space vs processor cycles
 - Processor speed vs power consumption
- Uncertainty in hardware
 - Hardware is buggy and not reliable

Challenges in Development

Cost

- Hardware cost
 - Hardware design
 - PCB manufacture
 - Board assembly
 - Parts cost
 - Shipping
 - Custom and tax
- Software cost
 - Software development
 - License
 - Testing
- Support and upgrade

Confront Challenges

- Flexible design
 - Modularity, encapsulation
 - Break system into parts
 - Testing
 - Write test code for each part
 - Documenting
 - What if you will revisit code after a year
 - Tune later
 - Make it happen first
 - Optimize later