

Tema 4: Subsistema de E/S

Unidad 3: Sincronización por consulta de estado / interrupciones

> Rafael Casado González Rosa María García Muñoz María Teresa López Bonal Universidad de Castilla-La Mancha

E/S por consulta de estado (o polling)

- Los interfaces de E/S tienen un bit de estado
 - que indica si el periférico está preparado para la transferencia
- La CPU debe
 - □ consultar periódicamente ese bit
 - □ transmitir cuando esté activo

E/S por consulta de estado

E/S por consulta de estado Inconvenientes

- La CPU no sabe cuándo el periférico estará preparado para enviar o recibir datos
 - □ Lo consulta continuamente
 - Mientras realiza consultas,
 la CPU no realiza otro trabajo
- El periférico puede estar preparado, y sin embargo debe esperar al próximo período de consulta

Máximo de 256x256 píxeles

LED Matrix 0

Each LED maps to a 24-bit register storing an RGB color value, with B stored in the least significant byte.

The byte offset of the LED at coordinates (x, y) is: offset = $(y + x*N_LEDS_ROW) * 4$

Parameters:

	raidificters					
	Name	Value				
	Height	25				
	Width	35				
	LED size	8				

Register map

Name	Address	R/W?	Size	^
LED_0	0x0	R/W	24	
LED_1	0x4	R/W	24	
LED_2	0x8	R/W	24	
LED_3	0xc	R/W	24	v

Exports

#define LED_MATRIX_0_BASE (0xf0000000)

#define LED_MATRIX_0_SIZE (0xdac)

#define LED_MATRIX_0_WIDTH (0x23)

#define LED_MATRIX_0_HEIGHT (0x19)

Tema 4: Subsistema de E/S Unidad 3: Sincronización

Máximo de 32 conmutadores

Switches 0

Each switch maps to a bit in the memory-mapped register of the peripheral. switch n = bit n

D-Pad 0

Each button maps to a 32-bit register, with the least-significant bit indicating the state of the button.

If the D-pad window is in focus, the buttons may be pressed using the "WASD" keys of the keyboard.

	_					
Register map						
Name	Address	R/W?	Size			
UP	0x0	R	1			
DOWN	0x4	R	1			
LEFT	0x8	R	1			
RIGHT	0xc	R	1			

Exports
#define D_PAD_0_BASE (0xf0000000)
#define D_PAD_0_SIZE (0x10)
#define D_PAD_0_UP_OFFSET (0x0)
#define D_PAD_0_UP (0xf0000000)
#define D_PAD_0_DOWN_OFFSET (0x4)
#define D_PAD_0_DOWN (0xf0000004)
#define D_PAD_0_LEFT_OFFSET (0x8)
#define D_PAD_0_LEFT (0xf0000008)
#define D_PAD_0_RIGHT_OFFSET (0xc)
#define D_PAD_0_RIGHT (0xf000000c)


```
I/O exports
#ifndef RIPES_IO_HEADER
#define RIPES IO HEADER
// ***********************
// * LED MATRIX 0
// *************************
#define LED_MATRIX_0_BASE
                         (0xf0000000)
#define LED_MATRIX_0_SIZE
                         (0xdac)
#define LED_MATRIX_0_WIDTH
                         (0x23)
#define LED_MATRIX_0_HEIGHT
                         (0x19)
// ***********************
// * SWITCHES 1
// ***********************
#define SWITCHES_1_BASE
                         (0xf0000db0)
#define SWITCHES_1_SIZE
                         (0x4)
#define SWITCHES_1_N (0x8)
// ********************************
// * SWITCHES 0
// ***********************
#define SWITCHES_0_BASE
                         (0xf0000dac)
#define SWITCHES_0_SIZE
                         (0x4)
#define SWITCHES 0 N (0x8)
#endif // RIPES_IO_HEADER
```

E/S por consulta de estado **Ejemplo**

- Escribir un programa que
 - ☐ Espere a que el bit 2 del **switch 0** valga 1
 - ☐ Entonces imprima en pantalla tantos píxeles rojos como indique el switch 1


```
.text
            a0, LED_MATRIX_0_BASE
            s0,0xff0000 # rojo en RGB
5 sondeo:
            s1,SWITCHES_0_BASE
      andi s1, s1, 0x4
      begz s1, sondeo
            s2,SWITCHES_1_BASE
11 pinto:
      begz s2,fin
           s0,0(a0)
      addi a0,a0,4
      addi s2,s2,-1
            pinto
18 fin:
            a7,10
      ecall
```

E/S por consulta de estado Ejemplo

- Escribir un programa que
 - Mientras un conmutador esté desactivado
 - □ Compruebe e imprima en pantalla el estado del cursor


```
1 .data
 2 txtUP:
            .string "UP\n"
 3 txtDOWN: .string "DOWN\n"
   .text
   .equ OSExit 10
   .equ OSPrintString 4
9 repeat:
       lw t0 D_PAD_0_UP
       begz t0 noUP
       la a0 txtUP
      li a7 OSPrintString
       ecall
16 noUP:
       lw t0 D_PAD_0_DOWN
       begz t0 noDOWN
       la a0 txtDOWN
       li a7 OSPrintString
       ecall
23 noDOWN:
       lw t0 SWITCHES_0_BASE
       begz t0 repeat
27 fin:
       li a7 OSExit
       ecall
```

E/S por interrupciones Concepto

- Una interrupción es la suspensión temporal de la ejecución de un proceso
 - □ Para pasar a ejecutar una subrutina de servicio de interrupción
- Una vez finalizada dicha subrutina, se reanuda la ejecución del proceso en el punto en el que se quedó
 - de la interrupción

E/S por interrupciones Concepto

Tema 4: Subsistema de E/S
Unidad 3: Sincronización

E/S por interrupciones Interrupciones internas (software)

- Se generan a consecuencia de alguna circunstancia interna de la CPU
 - ☐ Código de operación no valido
 - □ Acceso a memoria no válido
 - ☐ Fallo en la operación ALU
 - Desbordamiento del resultado
 - División por cero
 - □ Interrupción de rastreo
 - En depuración de programas

E/S por interrupciones Interrupciones externas

- Un periférico se encuentra conectado a una patilla de interrupciones del procesador
- La interrupción es asíncrona con respecto a la ejecución del programa
 - No está asociada a ninguna instrucción
 - El periférico lleva la iniciativa

- Conexión individual (en estrella)
 - Consume muchas patillas del procesador
 - Identificación directa del dispositivo
 - Para ejecutar la RSI asociada
 - ☐ Gestión inmediata de las interrupciones

Conexión en cadena

Tema 4: Subsistema de E/S Unidad 3: Sincronización

Conexión en cadena

- Consume pocaspatillas del procesador
- Mecanismo adicional para identificar al dispositivo
 - Y ejecutar la RSI asociada
- ☐ Gestión lenta de las interrupciones

- Conexión mediante controlador de E/S
 - Consume pocas patillas del procesador
 - Hardware adicional
 - Mecanismo adicional para identificar al dispositivo
 - Y ejecutar la RSI asociada
 - ☐ Gestión rápida de las interrupciones

Identificación del dispositivo Interrupciones prefijadas

- Todas las interrupciones están centralizadas en una única RSI
- que sondea los dispositivos, y determina cuál solicitó la interrupción
 - □ También denominadas interrupciones por escrutinio, sondeo o polling
- Lento
 - Implementación software

Identificación del dispositivo Interrupciones vectorizadas

- El dispositivo proporciona
 - □ La dirección de la RSI
 - □ Parte de la dirección de la RSI
 - Un índice de una tabla de "vectores de interrupción"
- Rápido

Identificación del dispositivo Interrupciones vectorizadas

Identificación del dispositivo Interrupciones vectorizadas

Conexión en cadena de margarita (daisy chain)

Identificación del dispositivo Interrupciones vectorizadas

Conexión en cadena de margarita

(daisy chain)

Tema 4: Subsistema de E/S Unidad 3: Sincronización

Identificación del dispositivo Interrupciones vectorizadas

Conexión con controlador de interrupciones

Interrupciones simultáneas Interrupciones simultáneas

¿Qué ocurre cuando varios dispositivos solicitan simultáneamente una interrupción?

 Habrá que atenderlos en función de un esquema de prioridades

Interrupciones simultáneas Resolución de prioridades

- Interrupciones prefijadas
 - □ El orden en la secuencia de escrutinio determina la prioridad

- Interrupciones vectorizadas
 - La posición en la cadena determina la prioridad

Interrupciones simultáneas Anidamiento de interrupciones

■ La CPU debe evitar el anidamiento descontrolado de interrupciones

- Para ello puede deshabilitarlas
 - □ La RSI comienza con la deshabilitación automática de interrupciones
 - ☐ Y termina con su habilitación (instrucción tipo IRET)
- La deshabilitación puede ser jerarquizada
 - □ Sólo se desactivan interrupciones de prioridad igual o menor a la atendida actualmente

EC Tema 4: Subsistema de E/
Unidad 3: Sincronización

Interrupciones simultáneas Inhibición de interrupciones

- Gestión global mediante programa
 - ☐ Instrucciones tipo EI, DI
- Deshabilitación selectiva
 - Mediante registros especiales (máscaras) en los que cada bit identifica un nivel de interrupción
- Interrupciones no enmascarables

