$Zadanie\ projektowe\ 1.$

Badanie efektywności operacji dodawania, usuwania oraz wyszukiwania elementów w różnych strukturach danych.

PROWADZĄCY:

dr Jarosław Mierzwa

Spis treści

1	Zał	ożenia projektowe	3
	1.1	Cel	3
	1.2	Technologie	3
	1.3	Przebieg eksperymentu	3
2	Kró	tki opis struktur	4
	2.1	Tablica	4
	2.2	Lista	4
	2.3	Kopiec binarny (maksymalny)	5
	2.4	Drzewo BST	5
	2.5	Drzewo czerwono-czarne	5
	2.6	Drzewo AVL	6
Ri	hling	grafia	7

1 Założenia projektowe

1.1 Cel

Celem projektu jest zbadanie efektywności operacji dodawania, usuwania i wyszukiwania elementów w strukturach danych takich jak:

- tablica
- lista dwukierunkowa
- kopiec binarny (maksymalny)
- drzewo BST
- drzewo AVL
- drzewo czerwono-czarne

1.2 Technologie

Do implementacji wymienionych struktur użyto języka *Kotlin* w wersji *Native*, która jest kompilowana do kodu maszynowego danej platformy.

Wszystkie struktury zostały zaimplementowane samodzielnie, bez użycia gotowych rozwiań z biblioteki standardowej. Należy jednak zwrócić uwagę, że **Kotlin** nie pozwala na bezpośrednie utworzenie tablicy. W zamian udostępnia klasę parametryzowaną Array. Została więc ona wykorzystana jako podstawa implementacji. Jedynymi użytymi metodami tej klasy są set oraz get odpowiadające operatorowi [].

1.3 Przebieg eksperymentu

Każda ze struktur zostanie wypełniona elementami w ilościach 10, 100, 500, 2000, 5000, 8000, 10 000, 15 000, 30 000.

Następnie, po wypełnieniu zostaną wykonane operacje dodawania, usuwania i wyszukiwania elementu. Dla każdej ilości testy zostaną przeprowadzone kilkadziesiat razy dla różnych rozmiarów elementów, a otrzymany wynik zostanie uśredniony. Czas nie będzie liczony dla generowania/wczytywania danych.

2 Krótki opis struktur

Przy tworzeniu poniższych opisów korzystano z Wprowadzenia do algorytmów autorstwa T. Cormen, C. Leiserson, R. Rivest [1] oraz materiałów udostępnionych na stronie dr Tomasza Kapłona [3].

2.1 Tablica

Tablicą nazywamy ciągły blok pamięci, gdzie każda komórka przechowuje informację jednego typu. Do każdej z nich mamy bezpośredni dostęp poprzez indeks.

Dostęp do określonego elementu jest natychmiastowy właśnie dzięki indeksacji. Złożoność czasowa wynosi O(1).

Wyszukanie elementu o zadanej wartości w najgorszym przypadku będzie wymagało przejścia przez całą strukturę – O(n).

Wstawienie elementu na koniec jest proste i tanie (nie licząc ewentualnej potrzeby realokacji tablicy) – sprowadza się do zwiększenia rozmiaru i wstawienia elementu – O(1)

Wstawienie wewnątrz wymaga przesunięcia elementów za wskazanym indeksem – w najgorszym wypadku wstawienie na 1. pozycję skutkuje złożonością rzędu O(n). Usuwanie jest analogiczne do wstawiania – usuwanie z końca ma złożoność O(1), a usuwanie z wewnątrz także wymaga przesunięcia elementów – O(n).

2.2 Lista

Lista jest strukturą, która zawiera elementy składające się z: pola danych oraz wskaźnika na element następny (ewentualnie także poprzedni w liście dwukierunkowej). Dodatkowo lista musi mieć pole zawierające referencję do pierwszego elementu list - głowy (oraz ogona w wariancie dwukierunkowym). Zaletą tej struktury jest brak konieczności zapewnienia ciągłości w pamięci – może ona być w różnych miejscach.

Brak indeksacji powoduje, że dostęp i wyszukiwanie ma złożoność czasową rzędu O(n), gdyż trzeba przechodzić przez kolejne elementy.

Wstawienie sprowadza się do utworzenia nowego elementu i "podłączenia" go do odpowiednich wskaźników – koszt O(1).

Samo usunięcie elementu to O(1), ale trzeba ten element najpierw znaleźć – koszt rośnie więc do O(n).

2.3 Kopiec binarny (maksymalny)

Jest to drzewo binarne (prawie) pełne, w którym wartość rodzica jest zawsze nie mniejsza od obu potomków. Dzięki temu mamy zapewnienie, że w korzeniu znajduje się element maksymalny. Ta struktura może zostać zaimplementowana jako tablica lub lista.

Dostęp istnieje jedynie do elementu w korzeniu.

Po każdej operacji usunięcia i wstawienia elementu konieczne jest wywołanie procedury przywracającej własność kopca – złożoność obliczeniowa wynosi $O(log_2n)$, gdzie log_2n to wysokość drzewa.

2.4 Drzewo BST

Aby drzewo było BST musi dla każdego węzła x spełniać warunek, że wartość każdego elementu lezącego w lewym poddrzewie węzła x jest nie większa niż wartość węzła x, natomiast wartość każdego elementu leżącego w prawym poddrzewie węzła x jest nie mniejsza niż wartość tego węzła. Drzewo BST nie musi być pełne, więc jego wysokość k może być większa niż log_2n – w najgorszym wypadku drzewo może się zdegenerować do listy liniowej – ale można wykazać, że średnia wartość k dla losowo zbudowanego drzewa wynosi $O(log_2n)$. W celu zrównoważenia drzewa stosuje się algorytm DSW lub implementuje drzewa czerwono-czarne albo AVL.

Wyszukanie elementu można wykonać w czasie O(k). Na tę operacje składa się ze schodzenia po drzewie i sprawdzaniu czy szukany klucz jest mniejszy czy większy od aktualnie sprawdzanego węzła.

Wstawienie i usunięcie węzła także ma złożoność O(k)

2.5 Drzewo czerwono-czarne

Dzięki własności czerwono-czarnym [2] to drzewo jest w przybliżeniu zrównoważone.

Wstawienie nowego węzła do drzewa czerwono-czarnego o n węzłach można wykonać w czasie $O(log_2n)$. Najpierw wstawiamy węzeł x do drzewa, a następnie należy naprawić powstałe drzewo.

Usuwanie węzła również odbywa się w czasie $O(log_2n)$.

Wyszukiwanie analogicznie do BST.

2.6 Drzewo AVL

Drzewo binarne jest drzewem AVL, jeśli dla każdego węzła różnica wysokości dwóch jego poddrzew wynosi co najwyżej 1. Własności drzew AVL gwarantują, że nawet w najgorszym przypadku wysokość drzewa wyniesie $1.44 \times log(n+2)$.

 Koszt operacji wyszukiwania, dodawania, usuwania jest analogiczny jak w drzewie BST.

Bibliografia

- [1] T. Cormen, C. Leiserson, R. Rivest *Wprowadzenie do algorytmów*, Wydawnictwa Naukowo-Techniczne Warszawa, Wyd. IV, 2004
- [2] [1] str. 304.
- [3] tomasz.kaplon.staff.iiar.pwr.wroc.pl/, strona dr Tomasza Kapłona
- [4] kotlinlang.org/docs/reference/native-overview.html, dokumentacja języka Kotlin/Native
- [5] eduinf.waw.pl, materiały na stronie I LO w Tarnowie