			RESUMEN			OTRAS CLAVE ARCHIVO	IDIOMA
	Computational Thinking and Educational Robotics		In the context o			PRIMARY-SCH 01_sensor	
		Paucar-Curasma, R; Villalba-Condori, K; Arias-Cha				MATHEMATIC 02_1390-1	
	Programming Approaches to Computational Thinki	•	During the last	2018	Logo geometry	; 03_infedu-	17-2 0
4	A simple interactive robot to promote computational	Funk, M; Cascalho, J; Santos, AI; Pedro, F; Medeir	This paper desc		educational rob	. 	04-1
		Montes-Leon, H; Hijon-Neira, R; Perez-Marin, D; M	The teaching-le		Computational		
	On Teaching Programming Fundamentals and Cor		This study aims		computational t		on-1 0
	Robotics and computational thinking in Education:		This article pres		blended teachi		ıfa,+1 2
	Reflections about a didactic sequence of algorithm		This article pres		mathematics e		
	<u> </u>	Moreno-Leon, J; Roman-Gonzalez, M; Garcia-Pera				COMPUTATION 09_485441	
10	Educational Robotics Intervention to Foster Compu	Gerosa, A; Koleszar, V; Tejera, G; Gomez-Sena, L	Computational t	2022	computational t	EXECUTIVE FU10_fpsyg-1	3-90 0
11	The Effect of Unplugged Coding Activities on Comp	Tonbuloglu, B; Tonbuloglu, I	The purpose of		unplugged cod		
	U	, , , , ,	Due to its links			COMPUTATION 12_futureir	itern 0
13	Integrating Computational Thinking into Elementary	Waterman, KP; Goldsmith, L; Pasquale, M	Using an examp	2020	Computational	13_s10956	-019 0
14	Primary Mathematics Teachers' Understanding of (Nordby, SK; Bjerke, AH; Mifsud, L	Computational t		Artificial intellig		
15	Developing Computational Thinking: Design-Based	Wang, DQ; Luo, LQ; Luo, J; Lin, SH; Ren, GJ	As research pro	2022	computational t	SCIENCE; K-1215_applsci	-12-1 0
16	Robot programming versus block play in early child	Yang, WP; Ng, DTK; Gao, HY	Programmable	2022	block play; com	BEHAVIORAL- 16_Brit J E	duca 0
17	Exploring the intersection of algebraic and computa	Brating, K; Kilhamn, C	This article inve	2021	Algebraic think	STUDENTS 17_Explori	ng th 0
18	Elementary Students' First Approach to Computation	Kjallander, S; Mannila, L; Akerfeldt, A; Heintz, F	Digital compete	2021	K-12 education	18_educat	on-1 0
19	Exploring Measurement through Coding: Children's	Welch, LE; Shumway, JF; Clarke-Midura, J; Lee, V	Programming a	2022	early childhood	LENGTH MEAS 19_educat	on-1 0
20	Developing Computational Thinking Teaching Strat	Araya, R; Isoda, M; Moris, JV	COVID-19 has	2021	COVID-19; con	20_ijerph-1	8-12 0
21	Coding in Primary Grades Boosts Children's Execu	Arfe, B; Vardanega, T; Montuori, C; Lavanga, M	Several program	2019	coding; comput	COMPUTATION21_fpsyg-1	0-02 0
22	Investigating Preschool Educators' Implementation	Otterborn, A; Schonborn, KJ; Hulten, M	Modern prescho	2020	Programming;	COMPUTATION 22_s10643	-019 0
23	Effects of a Pair Programming Educational Robot-	Hsu, TC; Chang, C; Wu, LK; Looi, CK	Using education	2022	interdisciplinary	RELIABILITY; \23_fpsyg-1	3-88 0
24	The Cognitive Benefits of Learning Computer Prog	Scherer, R; Siddiq, F; Viveros, BS	Does computer	2019	cognitive skills;	PROBLEM-SOI 24_Schere	r_et_ 0
25	Enriching Elementary School Mathematical Learnin	Araya, R	The steepest de	2021	elementary ma	t 25_mather	natic 0
26	Computer Literacy in Early Childhood Education: D	Berciano-Alcaraz, A; Salgado-Somoza, M; Jimenez	Objective. In thi	2022	Early childhood	ROBOTICS 26_docum	ent.p 1
27	Analysis of the knowledge construction process in	Romero, M; DeBlois, L	The introduction	2022		COMPUTATION 27_s42330	-022 3
28	Comparing learners' knowledge, behaviors, and att	Sun, D; Ouyang, F; Li, Y; Zhu, CF	Background Un	2021	STEM education	COMPUTATION 28_s40594	-021 0
29	Discovering Concepts of Geometry through Roboti	Kim, YR; Park, MS; Tjoe, H	In recent years,	2021	Educational rob	EDUCATIONAL 29_1205-3	778- 0
30	Teacher-student interaction supporting students' cr	Olsson, J; Granberg, C	Studies have sh	2022	Programming;	COMPUTATION 30_Teach	er stu 0
31	Variables in early algebra: exploring didactic potent	Kilhamn, C; Brating, K; Helenius, O; Mason, J	In this paper we		Variables; Early		
32	Developing an Interactive Environment through the	Munoz, L; Villarreal, V; Morales, I; Gonzalez, J; Nie	The article is th	2020	educational rob	EDUCATIONAL 32_sensor	s-20- 0
33	Systematic Design and Rapid Development of Mot	Altanis, I; Retalis, S; Petropoulou, O	During the last t	2018	technology enh	COMPUTER G 33_educat	on-0 0
34	Conceptual development in early-years computing	Kallia, M; Cutts, Q	Background and	2022	Grounded cogr	CONCRETE; M34_Concept	otual 0
35	A Pilot Experience with Software Programming Env	Arroyo, AC; Montes, MR; Quilis, JDS	Software progra	2021	cloud computin	EDUCATION 35_applsci	-11-(0
36	Making programming part of teachers' everyday life	Humble, N; Mozelius, P	Purpose The co	2023	Programming;	QUALITATIVE 36_10-110	8_IJI 0
37	Remaking and reinforcing mathematics and techno	Humble, N; Mozelius, P; Sallvin, L	Purpose The pu	2020	Teacher profes	COMPUTATION 37_10-110	8_IJI 0
38	Programming as a language for young children to	Goldenberg, EP; Carter, CJ	Natural languag			EARLY-CHILDI 38_Brit J E	