

Evaluation & Credibility Issues

- What measure should we use?
 - Classification accuracy might not be enough.
- How reliable are the predicted results?
- How much should we believe in what was learned?
 - Error on the training data is not a good indicator of performance on future data.
 - The classifier was computed from the very same training data, any estimate based on that data will be optimistic.

Evaluation Questions

- How to evaluate the performance of a model?
- How to obtain reliable estimates of performance?
- How to compare the relative performance among competing models?
- Given two equally performing models, which one should we prefer?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model.
- Confusion matrix:

		Predicted Class	
		+	-
Actual Class	+	f_{++} (TP)	f_{+-} (FN)
Actual Class	-	f_{-+} (FP)	f (TN)

Accuracy

		Predicted Class	
		+ -	
Actual Class	+	f_{++} (TP)	f ₊₋ (FN)
Actual Class	-	f_{-+} (FP)	f (TN)

The most widely-used metric is accuracy:

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Misleading Accuracy

- Consider a two-class problem:
 - Number of class 0 instances = 9990
 - Number of class 1 instances = 10
- Suppose a model predicts everything to be class 0.
 - It's accuracy is 9990/10000=99.9%.
 - It's accuracy is misleading, because the model does not predict any class 1 instance.

Data Understanding Data Preprocessing

Cost Matrix

		Predicted Class	
		+	
A 4 1 Cl	+	C(+ +)	C(- +)
Actual Class		C(+ -)	C(- -)

C(i|j) is the cost of misclassifying a class j instance as class i

Computing the Cost of Classification

		Predicted Class	
		+	-
Actual	+	-1	100
Class	-	1	0

		Predicted Class	
		+	
Actual	+	150	40
Class	<u>-</u>	60	250

		Predicted Class	
		+	-
Actual	+	250	45
Class	_	5	200

$$Accuracy = 80\%$$

 $Cost = 3910$

$$Accuracy = 90\%$$

 $Cost = 4255$

Data Understanding Data Preprocessing

Accuracy

		Predicted Class	
		+ -	
Actual Class	+	f_{++} (TP)	f_{+-} (FN)
Actual Class		f_{-+} (FP)	$f_{}$ (TN)

True positive (TP) or f_{++} : positive instances correctly predicted. False negative (FN) or f_{+-} : positive instances wrongly predicted. False positive (FP) or f_{-+} : negative instances wrongly predicted. True negative (TN) or f_{--} : negative instances correctly predicted.

Data Understanding Data Preprocessing

Confusion Matrix

		Predicted Class	
		+	
Actual Class	+	f ₊₊ (TP)	f ₊₋ (FN)
Actual Class	-	f_{-+} (FP)	$f_{}$ (TN)

True positive rate (TPR): fraction of positive instances correctly predicted. False positive rate (FPR): fraction of positive instances wrongly predicted. False negative rate (FNR): fraction of negative instances wrongly predicted. True negative rate (TNR): fraction of negative instances correctly predicted.

Confusion Matrix

		Predicted Class	
		+	
Actual Class	+	f ₊₊ (TP)	f ₊₋ (FN)
Actual Class		f_{-+} (FP)	$f_{}$ (TN)

True positive rate (TPR): TPR = TP/(TP + FN).

False positive rate (FPR): FPR = FP/(TN + FP).

False negative rate (FNR): FNR = FN/(TP + FN).

True negative rate (TNR): TNR = TN/(TN + FP).

Cost-Sensitive Measures

$$Precision(p) = \frac{TP}{TP + FP}$$

$$Recall(r) = \frac{TP}{TP + FN}$$

As precision \uparrow , false positives (TN) \downarrow . As recall \uparrow , false negatives (FN) \downarrow .

F₁ Measure

$$F_1 \text{ measure } = \frac{2rp}{r+p} = \frac{2 \times TP}{2 \times TP + FP + FN}$$

$$F_1 \text{ measure } = \frac{2}{\frac{1}{r} + \frac{1}{n}}$$

As F_1 measure \uparrow , false positives (FP) and false negatives (FN) \downarrow .

F_{β} Measure

$$F_{\beta}$$
 measure = $\frac{(\beta^2 + 1)rp}{r + \beta^2 p}$

Both precision and recall are special cases of F_{β} where $\beta = 0$ and $\beta = \infty$, respectively. Low values of β make F_{β} closer to precision; high values make it closer to recall.

Precision and Recall

Precision,
$$p = \frac{TP}{TP + FP}$$

$$Recall, r = \frac{TP}{TP + FN}$$

$$F_{1} measure = \frac{2rp}{r + p} = \frac{2 \times TP}{2 \times TP + FP + FN}$$

$$F_{1} measure = \frac{2}{\frac{1}{r} + \frac{1}{p}}$$

Receiver Operating Characteristic (ROC)

- Developed in the 1950s for signal detection theory to analyze noisy signals.
- ROC curve plots TP (on the y-axis) against FP (on the x-axis).
 - Performance of each classifier represented as a point on the ROC curve.
 - Changing the threshold of algorithm, sample distribution, or cost matrix changes the location of the point.

Data Understanding Data Preprocessing

ROC Curve

Data Preprocessing

Classification & Regression

ROC Curve

Generating ROC Curves

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	\mathbf{p}	.8	12	\mathbf{n}	.39
3	\mathbf{n}	.7	13	\mathbf{p}	.38
4	\mathbf{p}	.6	14	\mathbf{n}	.37
5	\mathbf{p}	.55	15	\mathbf{n}	.36
6	\mathbf{p}	.54	16	\mathbf{n}	.35
7	\mathbf{n}	.53	17	\mathbf{p}	.34
8	\mathbf{n}	.52	18	\mathbf{n}	.33
9	\mathbf{p}	.51	19	\mathbf{p}	.30
10	\mathbf{n}	.505	20	\mathbf{n}	.1

Generating ROC Curves

\mathbf{Inst}	\mathbf{Class}		\mathbf{Score}
no.	True	Hyp	•
1	p	\mathbf{Y}	0.99999
2	${f p}$	${f Y}$	0.99999
3	${f p}$	${f Y}$	0.99993
4	${f p}$	${f Y}$	0.99986
5	${f p}$	${f Y}$	0.99964
6	${f p}$	${f Y}$	0.99955
7	${f n}$	${f Y}$	0.68139
8	${f n}$	${f Y}$	0.50961
9	${f n}$	${f N}$	0.48880
10	\mathbf{n}	${f N}$	0.44951

Dominating Classifiers in ROC Space

(a) Case 1: FPR(A) > FPR(B)

(b) Case 2:
$$FPR(A) = FPR(B)$$

Area Under the ROC Curve

Data Preprocessing

Precision-Recall Curves

(a) Convex hull in ROC space

(b) Curves in ROC space

(c) Equivalent curves in PR space

ROC and PR Curves

ROC is Skew Insensitive

Prediction	Class I	Class II
$\mu_0 = max$	1	1
$\mu_1 = \mu_0 - \epsilon_1$	1	0
$\mu_2 = \mu_1 - \epsilon_2$	0	0
$\mu_3 = \mu_2 - \epsilon_3$	0	0
$\mu_4 = \mu_3 - \epsilon_4$	1	1
$\mu_5 = \mu_4 - \epsilon_5$	1	0
$\mu_6 = \mu_5 - \epsilon_6$	0	0
$\mu_7 = \mu_6 - \epsilon_7$	0	0
•		
		· · · · · · · · · · · · · · · · · · ·
$\mu_n = \mu_{n-1} - \epsilon_n$		

Precision-Recall is Skew Sensitive

· · · · · · · · · · · · · · · · · · ·		
Prediction	Class I	Class II
$\mu_0 = max$	1	1
$\mu_1 = \mu_0 - \epsilon_1$	1	0
$\mu_2 = \mu_1 - \epsilon_2$	0	0
$\mu_3 = \mu_2 - \epsilon_3$	0	0
$\mu_4 = \mu_3 - \epsilon_4$	1	1
$\mu_5 = \mu_4 - \epsilon_5$	1	0
$\mu_6 = \mu_5 - \epsilon_6$	0	0
$\mu_7 = \mu_6 - \epsilon_7$	0	0
$\mu_n = \mu_{n-1} - \epsilon_n$		

Optimizing the AUROC vs. AUPR

(a) Comparing AUC-ROC for two algorithms

Curve I

AUROC: 0.813 AUPR: **0.514**

(b) Comparing AUC-PR for two algorithms

Curve II

AUROC: **0.875**

AUPR: 0.038

Lift Charts

- *Lift* is a measure of the effectiveness of a predictive model calculated as the ratio between the results obtained with and without the predictive model.
- The greater the area between the lift curve and the baseline, the better the model.

Example: Direct Marketing

- Mass mailout of promotional offers (1,000,000).
- The proportion who normally respond is 0.1% (1,000).
- A data mining tool can identify a subset of a 100,000 for which the response rate is 0.4% (400).
- In marketing terminology, the increase of response rate is known as the *lift factor* yielded by the model.
- The same data mining tool may be able to identify 400,000 households for which the response rate is 0.2% (800).
- The overall goal is to find subsets of test instances that have a high proportion of true positives.

Example: Direct Marketing

Data Understanding

Data Preprocessing

Classification & Regression

