Лекция 3

Выборка из нормального распределения и теорема Фишера

График «квантиль-квантиль»

Распределение выборочного среднего и выборочной доли

Напоминалка 1: нормальное распределение

Случайная величина X имеет нормальное распределение с параметрами μ и $\sigma^2 > 0$, если её функция плотности имеет вид

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$

Обозначение: $X \sim N(\mu, \sigma^2)$.

Напоминалка 1: нормальное распределение

Свойства нормальных случайных величин:

1°. Пусть
$$X \sim N(\mu, \sigma^2)$$
.

Тогда
$$E(X)=\mu$$
, $D(X)=\sigma^2$.

2°. Пусть
$$X \sim N(\mu, \sigma^2)$$
, $Y = aX + b$, $a \neq 0$.

Тогда
$$Y \sim N(a\mu + b, a^2\sigma^2)$$
.

3°. Пусть
$$X$$
, Y независимы, $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$.

Тогда
$$X+Y\sim N\left(\mu_X+\mu_Y,\sigma_X^2+\sigma_Y^2\right)$$
.

Важный частный случай свойства 2:

$$Z=rac{X-\mu}{\sigma}\sim N(0\,,\,1).$$
 стандартное нормальное

распределение

Напоминалка 2: распределение хи-квадрат

Пусть случайные величины $Z_1, ..., Z_k$ независимы, $Z_i \sim N(0, 1)$.

Распределение случайной величины

$$Y = Z_1^2 + ... + Z_k^2$$

Называется распределением хи-квадрат с k степенями свободы.

Обозначение: $Y \sim \chi_k^2$.

$$E(Y)=k$$
, $D(Y)=2k$.

плотность для 2, 3, 4, 5 степеней свободы:

Напоминалка 2: распределение хи-квадрат

Пусть случайные величины $Z_1, ..., Z_k$ независимы, $Z_i \sim N(0, 1)$.

Распределение случайной величины

$$Y = Z_1^2 + ... + Z_k^2$$

Называется распределением хи-квадрат с k степенями свободы.

Обозначение: $Y \sim \chi_k^2$.

$$E(Y)=k$$
, $D(Y)=2k$.

а теперь 20, 30, 40, 50 степеней свободы:

Выборка из нормального распределения. Теорема Фишера.

Пусть $X_1,...,X_n$ независимы, $X_i \sim N(\mu,\sigma^2)$.

Тогда:

(1)
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right);$$

(2)
$$\frac{nS^2}{\sigma^2} = \frac{(n-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2;$$

(3) \overline{X} и S^2 независимы.

(\bar{X} и $\hat{\sigma}^2$ тоже независимы)

Напоминалка:

$$\bar{X} = \frac{X_1 + ... + X_n}{n}; \quad S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2; \quad \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

В упаковке должно содержаться в среднем 100 грамм чая со стандартным отклонением не более 3 грамм. Время от времени отдел контроля качества отбирает 16 упаковок для проверки и рассчитывает среднее \bar{X} и оценку стандартного отклонения $\hat{\sigma}$.

Партия чая проходит контроль качества, если выполняются два условия:

(1)
$$98 \le \bar{X} \le 102$$
;

(2)
$$\hat{\sigma} \leq 4.28$$
.

Если хотя бы одно из них нарушается, процесс упаковки останавливается для переналадки.

Предположим, что масса чая распределена нормально со средним 100 грамм и стандартным отклонением 3 грамма. С какой вероятностью процесс упаковки будет остановлен (произойдёт ложная тревога)?

В упаковке должно содержаться в среднем 100 грамм чая со стандартным отклонением не более 3 грамм. Время от времени отдел контроля качества отбирает 16 упаковок для проверки и рассчитывает среднее \bar{X} и оценку стандартного отклонения $\hat{\sigma}$.

Партия чая проходит контроль качества, если выполняются два условия:

- (1) $98 \le \bar{X} \le 102$;
- (2) $\hat{\sigma} \leq 4.28$.

Если хотя бы одно из них нарушается, процесс упаковки останавливается для переналадки.

Предположим, что масса чая распределена нормально со средним 100 грамм и стандартным отклонением 3 грамма. С какой вероятностью процесс упаковки будет остановлен (произойдёт ложная тревога)?

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100\,,\,3^2\big).$

Нужно найти
$$1-P(\{98 \leq \overline{X} \leq 102\} \cap \{\hat{\sigma} \leq 4.28\}).$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100\,,\,3^2\big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \leq \overline{X} \leq 102\} \cap \{\hat{\sigma} \leq 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

Сначала разберёмся со средним.

$$\bar{X} \sim N\bigg(100, \frac{9}{16}\bigg)$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

Сначала разберёмся со средним.

$$\bar{X} \sim N \bigg(100, \frac{9}{16} \bigg)$$

$$Z = \frac{\bar{X} - 100}{\sqrt{9/16}} = \frac{\bar{X} - 100}{3/4} \sim N(0,1).$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

Сначала разберёмся со средним.

$$\bar{X} \sim N\bigg(100, \frac{9}{16}\bigg)$$

$$Z = \frac{\bar{X} - 100}{\sqrt{9/16}} = \frac{\bar{X} - 100}{3/4} \sim N(0,1).$$

$$P(98 \le \bar{X} \le 102) = P\left(\frac{98-100}{3/4} \le Z \le \frac{102-100}{3/4}\right) =$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \, , \, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

Сначала разберёмся со средним.

$$\bar{X} \sim N\bigg(100, \frac{9}{16}\bigg)$$

$$Z = \frac{\bar{X} - 100}{\sqrt{9/16}} = \frac{\bar{X} - 100}{3/4} \sim N(0,1).$$

$$P(98 \le \overline{X} \le 102) = P\left(\frac{98 - 100}{3/4} \le Z \le \frac{102 - 100}{3/4}\right) = P\left(-\frac{8}{3} \le Z \le \frac{8}{3}\right) = P\left(-\frac{8}{3} \le Z \le \frac{8}{3}$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P({98 \le \bar{X} \le 102} \cap {\hat{\sigma} \le 4.28}) = P({98 \le \bar{X} \le 102})P({\hat{\sigma} \le 4.28}).$$

Сначала разберёмся со средним.

$$\bar{X} \sim N\bigg(100, \frac{9}{16}\bigg)$$

$$Z = rac{ar{X} - 100}{\sqrt{9/16}} = rac{ar{X} - 100}{3/4} \sim N(0,1).$$
 волшебная функция

$$P(98 \le \overline{X} \le 102) = P\left(\frac{98 - 100}{3/4} \le Z \le \frac{102 - 100}{3/4}\right) = P\left(-\frac{8}{3} \le Z \le \frac{8}{3}\right) = 0.9923.$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} = \frac{15\hat{\sigma}^2}{9} \sim \chi_{15}^2.$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} = \frac{15\hat{\sigma}^2}{9} \sim \chi_{15}^2.$$

$$P(\hat{\sigma} \le 4.28) = P(\hat{\sigma}^2 \le 4.28^2) =$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} = \frac{15\hat{\sigma}^2}{9} \sim \chi_{15}^2.$$

$$P(\hat{\sigma} \le 4.28) = P(\hat{\sigma}^2 \le 4.28^2) = P\left(\frac{15\hat{\sigma}^2}{9} \le \frac{15 \times 4.28^2}{9}\right) = \chi_{15}^2$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100\,,\,3^2\big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} = \frac{15\hat{\sigma}^2}{9} \sim \chi_{15}^2.$$

$$P(\hat{\sigma} \le 4.28) = P(\hat{\sigma}^2 \le 4.28^2) = P(\underbrace{\frac{15\hat{\sigma}^2}{9}}_{\chi_{15}^2} \le \underbrace{\frac{15 \times 4.28^2}{9}}_{g}) = P(\underbrace{\frac{15\hat{\sigma}^2}{9}}_{g} \le 30.53) = \underbrace{\chi_{15}^2}_{g}$$

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \, , \, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102) P(\hat{\sigma} \le 4.28).$$

Теперь займёмся стандартным отклонением.

$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} = \frac{15\hat{\sigma}^2}{9} \sim \chi_{15}^2.$$

$$P(\hat{\sigma} \le 4.28) = P(\hat{\sigma}^2 \le 4.28^2) = P\left(\frac{15\hat{\sigma}^2}{9} \le \frac{15 \times 4.28^2}{9}\right) = P\left(\frac{15\hat{\sigma}^2}{9} \le 30.53\right) = 0.9899.$$

снова волшебная функция

Решение. Пусть X_i — вес упаковки i в выборке. Тогда X_1, \dots, X_{16} независимы, $X_i \sim N \big(100 \,,\, 3^2 \big).$

Нужно найти $1-P(\{98 \le \overline{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}).$

По т. Фишера $ar{X}$ и $\hat{\sigma}^2$ независимы, так что

$$P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = P(98 \le \bar{X} \le 102)P(\hat{\sigma} \le 4.28).$$

Итак,

$$P(98 \le \bar{X} \le 102) = 0.9923.$$

$$P(\hat{\sigma} \le 4.28) = 0.9899$$
.

Значит,

$$1 - P(\{98 \le \bar{X} \le 102\} \cap \{\hat{\sigma} \le 4.28\}) = 1 - 0.9923 \times 0.9899 = 0.0177.$$

Ответ. Вероятность ложной тревоги составляет 1.77%

Как понять, что выборка взята именно из нормальной генеральной совокупности?

Гистограмма

Можно построить гистограмму и сравнить её с нормальной функцией плотности.

Пример. Данные о зарплатах 1492 рабочих в Бельгии, 1994 год.

$$\bar{X} = 11.05$$

$$\hat{\sigma}_{x}^{2} = 19.81$$

$$\bar{X}^* = 2.33$$

$$\hat{\sigma}_{x}^{2}*=0.13$$

Недостатки:

- нужно много наблюдений,
- некоторые существенные отклонения от нормальности сложно заметить.

График «квантиль-квантиль»

(Q-Q plot)

1. Оцениваем параметры нормального распределения по выборке:

$$ar{X} = rac{X_1 + \ldots + X_n}{n}; \qquad \hat{\sigma}^2 = rac{1}{n-1} \sum_{i=1}^n \left(X_i - ar{X}
ight)^2.$$
 (есть варианты)

- 2. Рассчитываем выборочные квантили порядка $\frac{1}{n+1}, \frac{2}{n+1}, ..., \frac{n}{n+1}$
 - это будет просто упорядоченный по возрастанию ряд $X_{(1)}, \dots, X_{(n)}$.

$$\hat{Q}\!\left(\!rac{1}{n\!+\!1}\!
ight)\!\!=\!X_{(1)}$$
, $\hat{Q}\!\left(\!rac{2}{n\!+\!1}\!
ight)\!\!=\!X_{(2)}$, ...

3. Рассчитываем квантили нормального распределения с параметрами $\mu = \bar{X}$ и $\sigma^2 = \hat{\sigma}^2$ («теоретические» квантили):

$$Q\left(\frac{1}{n+1}\right) = \bar{X} + \hat{\sigma} \Phi^{-1}\left(\frac{1}{n+1}\right), \ Q\left(\frac{2}{n+1}\right) = \bar{X} + \hat{\sigma} \Phi^{-1}\left(\frac{2}{n+1}\right), \dots$$

4. Строим график в осях (Q,\hat{Q}) - для выборок из нормального распределения должно быть $Q(p){\approx}\hat{Q}(p)$ (график выстраивается вдоль биссектрисы угла, образованного осями).

Возьмём выборку

5

Оценим среднее и дисперсию: $\bar{X} = 5$, $\hat{\sigma}^2 = 5.5 = \hat{\sigma} = \sqrt{5.5} \approx 2.35$.

$$\bar{X} = 5$$
, $\hat{\sigma}^2 = 5.5$

порядок	выборочная квантиль	квантиль N(0, 1)	теоретическая квантиль
квантили, p	$\hat{m{Q}}(m{p})$	$\Phi^{-1}(p)$	$Q(p)=5+2.35\Phi^{-1}(p)$
1/6	1	-0.97	2.73
² / ₆	5	-0.43	3.99
³ / ₆	6	0.00	5.00
4 / 6	6	0.43	6.01
⁵ / ₆	7	0.97	7.27

График «квантиль-квантиль»:

По горизонтали — теоретические квантили, по вертикали — выборочные.

График «квантиль-квантиль» для зарплат в Бельгии

логарифмы

Среднее в выборке из не нормальной генеральной совокупности

Есть случайная выборка $X_{\scriptscriptstyle 1}, \ldots, X_{\scriptscriptstyle n}$, такая что

$$X_i \sim \text{i.i.d.}; \quad E(X_i) = \mu; \quad D(X_i) = \sigma^2, \ 0 < \sigma^2 < \infty.$$

Тогда:

$$rac{ar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{
m asy}{\sim} N \, (0, 1).$$
 по центральной предельной теореме

Мораль. На больших выборках можно пользоваться нормальным приближением:

$$ar{X} \stackrel{\mathsf{app}}{\sim} N\Big(\mu\,, rac{\sigma^2}{n}\Big).$$

asy — asymptotically (асимптотически) app — approximately (приближённо)

Пример: распределение среднего в выборке из равномерного распределения

Пример: распределение среднего в выборке из показательного распределения

Распределение выборочной доли

Пусть X_1, \ldots, X_n независимы,

$$X_i \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}.$$

Вспомним характеристики:

$$E(X_i) = p; D(X_i) = p(1-p).$$

Выборочная доля:

$$\hat{p} = \frac{X_1 + \dots + X_n}{n}.$$

Распределение выборочной доли:

$$\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \overset{\text{asy}}{\sim} N(0,1).$$

$$\hat{p} \overset{\text{app}}{\sim} N\bigg(p\,,\frac{p(1-p)}{n}\bigg).$$

Перед выборами проводится опрос, цель которого — определение доли избирателей, поддерживающих кандидата А. Планируется опросить 100 человек.

Какова вероятность того, что большинство опрошенных выскажутся в поддержку кандидата А, если его поддерживают 40% всех избирателей?

Перед выборами проводится опрос, цель которого — определение доли избирателей, поддерживающих кандидата А. Планируется опросить 100 человек.

Какова вероятность того, что большинство опрошенных выскажутся в поддержку кандидата А, если его поддерживают 40% всех избирателей?

Решение. По условию $n=100,\,p=0.4,\,$ так что

$$\hat{p} \stackrel{\mathsf{app}}{\sim} N \bigg(0.4 \, , \frac{0.4 (1 \! - \! 0.4)}{100} \bigg).$$

Перед выборами проводится опрос, цель которого — определение доли избирателей, поддерживающих кандидата А. Планируется опросить 100 человек.

Какова вероятность того, что большинство опрошенных выскажутся в поддержку кандидата А, если его поддерживают 40% всех избирателей?

Решение. По условию $n=100,\,p=0.4,\,$ так что

$$\hat{p} \stackrel{\mathsf{app}}{\sim} N\bigg(0.4\,,\frac{0.4\,(1-0.4)}{100}\bigg).$$

$$P(\hat{p}>0.5) = P\bigg(\frac{\hat{p}-0.4}{\sqrt{\frac{0.4\,(1-0.4)}{100}}} > \frac{0.5-0.4}{\sqrt{\frac{0.4\,(1-0.4)}{100}}}\bigg)$$

Перед выборами проводится опрос, цель которого — определение доли избирателей, поддерживающих кандидата А. Планируется опросить 100 человек.

Какова вероятность того, что большинство опрошенных выскажутся в поддержку кандидата А, если его поддерживают 40% всех избирателей?

Решение. По условию $n=100,\,p=0.4,\,$ так что

$$\hat{p} \stackrel{\mathsf{app}}{\sim} N\bigg(0.4, \frac{0.4(1-0.4)}{100}\bigg).$$

$$P(\hat{p}>0.5) = P\bigg(\frac{\hat{p}-0.4}{\sqrt{\frac{0.4(1-0.4)}{100}}} > \frac{0.5-0.4}{\sqrt{\frac{0.4(1-0.4)}{100}}}\bigg) = P\bigg(\frac{\hat{p}-0.4}{\sqrt{\frac{0.4(1-0.4)}{100}}} > 2.04\bigg)$$

Перед выборами проводится опрос, цель которого — определение доли избирателей, поддерживающих кандидата А. Планируется опросить 100 человек.

Какова вероятность того, что большинство опрошенных выскажутся в поддержку кандидата А, если его поддерживают 40% всех избирателей?

Решение. По условию $n=100,\,p=0.4,\,$ так что

$$\hat{p} \stackrel{\mathsf{app}}{\sim} N\bigg(0.4\,, \frac{0.4(1-0.4)}{100}\bigg).$$

$$P(\hat{p}>0.5) = P\bigg(\frac{\hat{p}-0.4}{\sqrt{\frac{0.4(1-0.4)}{100}}} > \frac{0.5-0.4}{\sqrt{\frac{0.4(1-0.4)}{100}}}\bigg) = P\bigg(\frac{\hat{p}-0.4}{\sqrt{\frac{0.4(1-0.4)}{100}}} > 2.04\bigg) \approx 0.0206\,.$$

Ответ. 0.0206.

Следующая лекция

Доверительные интервалы для параметров нормальной генеральной совокупности