Scilab Textbook Companion for Modern Physics by B.L.Theraja¹

Created by
Harshit Bajpai
B.tech
Chemical Engineering
Visvesvaraya National Institute of Technology
College Teacher
Vilas K. Deshpande
Cross-Checked by
Mukul R. Kulkarni

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Modern Physics

Author: B.L.Theraja

Publisher: S.Chand & Company Ltd., New Delhi

Edition: 16

Year: 2008

ISBN: 81-219-0163-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		5
1	ELECTRIC AND MAGNETIC FIELD	9
2	THE ELECTRON	15
3	THE ATOMIC STRUCTURE	18
4	CRYSTALLOGRAPHY	23
5	QUANTUM THEORY	27
7	CLASSIFICATION OF SOLIDS	37
8	X RAYS	40
9	WAVES AND PARTICLES	49
10	THE ATOMIC NUCLEUS	55
11	NATURAL RADIOACTIVTIY	59
12	ARTIFICAL RADIOACTIVTIY	63
13	NUCLEAR REACTIONS	64
14	NUCLEUR FISSION AND FUSION	67
15	NUCLEUR ENERGY SOURCES	70

List of Scilab Codes

Exa 1.1	CALCUALTION OF ELECTROSTATIC FORCE	9	
Exa 1.2	CALCUALTION OF DISTANCE OF SEPARATION	10	
Exa 1.3	CALCULATE FIELD INTENSITY AND FORCE	10	
Exa 1.4	CALCULATE MASS OF OIL DROP	11	
Exa 1.5	CALCULATE VELOCITY OF ELECTRON	11	
Exa 1.6	CALCULATE ENERGY	12	
Exa 1.7	CALCULATE TOTAL ENERGY	13	
Exa 1.8	CALCULATE FORCE AND RADIUS	13	
Exa 2.1	CALCULATE FORCE ACCELERATION AND KINETIC)	
	ENERGY	15	
Exa 2.2	CALCULATE LINEAR VELOCITY AND RADIUS .	16	
Exa 2.3	CALCULATE MASS	16	
Exa 2.4	CALCULATE RADIUS AND CHARGE ON OIL DROP	17	
Exa 3.1	CALCULATE DISTANCE OF CLOSEST APPROACH	18	
Exa 3.2	CALCULATE VELOCITY RADIUS TIME TAKEN AND		
	RYDBERG CONST	18	
Exa 3.3	CALCULATE FREQUENCY	19	
Exa 3.4	CALCULATE FREQUENCY IN FIRST ORBIT	20	
Exa 3.5	AT WHAT SPEED MUST ELECTRON	20	
Exa 3.8	CALCULATE PRINCIPAL QUANTUM NO AND WAVE-	-	
	LENGTH	21	
Exa 3.9	CALCULATE WAVELENGTH FOR LYMAN SERIES	21	
Exa 4.2	CALCULATE DISTANCE BETWEEN ADJACENT ATO	MS	23
Exa 4.3	CALCULATE SPACING	23	
Exa 4.4	CALCULATE DENSITY OF Cu	24	
Exa 4.10	CALCULATION OF INTERPLANAR SPACING	25	
Exa 4.11	CALCULATION OF ANGLE BETWEEN PAIR OF		
	PLANES	25	

Exa 4.13	CALCUALTION OF NO OF ATOMS PER SQMM .	26
Exa 5.1	CALCULATE ENERGY	27
Exa 5.2	HOW MANY PHOTONS	28
Exa 5.3	HOW MANY LIGHT QUANTA	28
Exa 5.4	FIND THE NO OF PHOTOELECTRONS	29
Exa 5.5	HOW MANY PHOTONS AND AT WHAT RATE	29
Exa 5.6	HOW MANY PHOTONS EMITTED BY LAMP	30
Exa 5.7	CALCULATE NUMBER OF PHOTONS	30
Exa 5.8	WITH WHAT VELOCITY	31
Exa 5.9	CALCULATE THRESHOLD FREQUENCY	31
Exa 5.10	CALCULATE MAXIMUM ENERGY AND WORK FUN	C-
	TION	32
Exa 5.11	WHAT IS THRESHOLD WAVELENGTH	32
Exa 5.12	CALCULATE THRESHOLD FREQUENCY	33
Exa 5.13	WHEN VIOLET LIGHT	33
Exa 5.14	CALCULATE THRESHOLD WAVELENGTH AND PLA	NKS
	CONSTANT	34
Exa 5.15	A CERTAIN METAL	34
Exa 5.16	FIND UNKNOWN WAVELENGTH	35
Exa 5.17	LIGHT OF WAVELENGTH 2000 ANGSTROM	35
Exa 5.18	CALCULATE PLANKS CONSTANT	36
Exa 7.1	CALCULATE ENERGY GAP	37
Exa 7.2	FIND MOBILITY OF ELECTRONS	37
Exa 7.3	FIND RESISTIVITY	38
Exa 7.4	CALCULATE WAVELENGTH	38
Exa 8.1	CALCULATE WAVELENGTH	40
Exa 8.2	CALCULATE NUMBER OF ELECTRONS STRIKING	
	PER SECOND	40
Exa 8.3	CALCULATE MIN APPLIED POTENTIAL	41
Exa 8.4	CALCULATE MAX SPEED	41
Exa 8.5	CALCULATE PLANKS CONSTANT	42
Exa 8.6	CALCULATE SCREENING CONST	42
Exa 8.9	CALCULATE LINEAR ADSORPTION COEFF	43
Exa 8.10	CALCULATE ANGLE OF THIRD ORDER REFLEC-	
	TION NOTE CALCUALTION MISTAKE IN BOOK	43
Exa 8.11	HOW MANY ORDERS OF BRAGG RELFLECTION	44
Exa 8.12	CALCULATE INTERPLANAR SPACING	44
Exa 8.13	DETERMINE THE SPACING	45

Exa 8.14	DETERMINE THE TYPE OF CRYSTAL POSSESED	45	
Exa 8.15	CALCULATE SHORT WAVELENGTH AND GALNC-		
	ING ANGLE	46	
Exa 8.16	CALCULATE LATTICE SPACING OF NaCl	47	
Exa 8.17	WHAT IS PRIMARY WAVELENGTH	47	
Exa 8.18	WHAT IS LATTICE PARAMETER	48	
Exa 9.1	WHAT IS DE BROGLIE WAVELENGTH	49	
Exa 9.2	CALCULATE MOMENTUM DE BROGLIE WAVE-		
	LENGTH AND WAVE NUMBER	49	
Exa 9.3	AN ELECTRON INTIALLY AT REST	50	
Exa 9.4	COMPUTE DE BROGLIE WAVELENGTH	51	
Exa 9.5	WHAT IS DE BROGLIE WAVELENGTH OF NEU-		
	TRON	51	
Exa 9.6	CALCULATE THE SCATTERED WAVELENGTH .	52	
Exa 9.7	COMPUTE ENERGY DIFFERENCE	52	
Exa 9.8	CALCULATE THE LOWEST THREE PREMISSIBLE		
	ENERGIES	53	
Exa 10.1	COMPARE DENSITIES OF WATER AND NUCLEUS	55	
Exa 10.2	CALCULATE ENERGY EQUIVALENCE FOR MeV	56	
Exa 10.3	CALCULATE ENERGY EQUIVALENCE FOR kWh	56	
Exa 10.4	CALCULATE BINDING ENERGY	56	
Exa 10.5	CALCULATE BINDING ENERGY OF 17Cl35	57	
Exa 10.6	CALCULATE BINDING ENERGY FOR LITHIUM NU-		
	CLEUS	58	
Exa 11.1	CALCUALTE HOW MUCH RADIUM	59	
Exa 11.2	CALCULATE RADIOACTIVE DISINTEGRATING CON	VST	59
Exa 11.3	COMPUTE DECAY CONST AND HALF LIFE	60	
Exa 11.4	ESTIMATE HALF LIFE OF PLUTONIUM	61	
Exa 11.5	CALCULATE ACTIVITY	61	
Exa 11.6	HALF LIFE OF RADIUM IS 1620 YRS	62	
Exa 12.1	ESTIMATE ITS AGE	63	
Exa 13.1	CALCULATE THE ENERGY AVAILABLE	64	
Exa 13.2	CALCULATE THE ENERGY RELEASED	64	
Exa 13.3	WHAT IS THE Q VALUE OF THE REACTION	65	
Exa 13.4	FIND THE MASS	65	
Exa 13.6	EXPLAIN MASS DEFECT	66	
Exa 14.1		67	

Exa 14.2	FIND ELEMENTARY PARTICLES RELEASED IN BI-	
	NARY FISSION OF 92U235	67
Exa 14.3	HOW MUCH HYDROGEN MUST BE CONVERTED	
	INTO HELIUM	68
Exa 14.4	CALCULATE THE ENERGY LIBERATED	69
Exa 15.1	CALCULATE THE MAXIMUM FRACTION OF THE	
	KE	70
Exa 15.2	CALCULATE THE FISSION RATE	71
Exa 15.3	HOW MANY KG OF U 235	71
Exa 15.4	HOW MUCH U 235 WOULD BE CONSUMED IN THE	
	RUN	72
Exa 15.5	NUCLEUR REACTOR PRODUCES 200MW	73
Exa 15.6	A CITY REQUIRES 100 MW	73
Exa 15.7	BOMBAY REQUIRES 300 MWh	74
Exa 15.8	THE MOTOR OF AN ATOMIC ICE BREAKER	74
Exa 16.1	WHAT MUST BE THE FLUX DENSITY	76
Exa 16.2	WHAT IS FREQUENCY OF ALTERNATING POTEN-	
	TIAL	76
Exa 16.3	A CYCLOTRON OF DEES OF RADIUS 2 METERES	77
Exa 16.4	CALCULATE THE RATIO	78
Exa 16.5	IN A CERTAIN BETATRON	78
Exa 16.6	CALCULATE MASS AND VELOCITY OF ELCTRONS	79
Exa 16.7	DETERMINE THE FREQUENCY OF GENERATOR	79
Exa 16.8	WHAT WOULD BE THE ENERGY OF ELECTRON	80
Exa 16.9	FIND THE MAX ENERGY AND CORRESPONDING	
	WAVELENGTH	80

Chapter 1

ELECTRIC AND MAGNETIC FIELD

Scilab code Exa 1.1 CALCUALTION OF ELECTROSTATIC FORCE

```
1 clc; clear;
2 //Example 1.1
3 // Comparision of electrostatic force of replusion
     between two particles with the gravitational
      forces between them
4
5 //given values
6 q1=3.2*10^-19;
7 q2=q1;//q1 and q2 are the values of charge on alpha-
      particle in C
8 d=10^-13; // distance between two alpha-particles in m
9 m1=6.68*10^-27;
10 m2=m1; //m1 and m2 are masses of alpha-particles in
11 G=6.67*10^-11; // Gravitational constant in N-(m^2)/(
     kg^2)
12
13 //calculation
14 F1 = (9*10^9)*(q1*q2)/(d^2); // calculation of
```

```
electrostatic force
15 disp(F1, 'The electrosatic force(in N) is');
16 F2=G*(m1*m2)/(d^2);//calculation of electrostatic force
17 disp(F2, 'The gravitational force (in N) is')
```

Scilab code Exa 1.2 CALCUALTION OF DISTANCE OF SEPARATION

Scilab code Exa 1.3 CALCULATE FIELD INTENSITY AND FORCE

```
1 clc;clear;
2 //Example 1.3
3 //Calculation of electric intensity between plates
         and force on proton
4
5 //given values
```

```
6 d=0.02//distance between plates in m
7 V=400;//potential differnce of plates in V
8 q=1.6*10^-19;//charge on a proton in C
9
10 //calculation
11 E=V/d;//
12 disp(E, 'The electric field intensity(in V/m) between plates is');
13 F=q*E;//
14 disp(F, 'The force(in N) on proton is')
```

Scilab code Exa 1.4 CALCULATE MASS OF OIL DROP

```
1 clc; clear;
2 //Example 1.4
3 // calculation of mass of oil drop
4
5 // given values
6 d=0.02// distance between plates in m
7 q=1.6*10^-19; // charge on oil drop in C
8 V=6000; // potential difference of plates in V
9 g=9.81; // acceleration due to gravity in m/(s^2)
10
11 // calculation
12 E=V/d; // electric field intensity between plates in V
/m
13 F=q*E; // electrostatic force on oil drop in N
14 m=F/g; // equating the weight of oil drop to the electrostatic force on it
15 disp(m, 'The mass(in kg) of oil drop')
```

Scilab code Exa 1.5 CALCULATE VELOCITY OF ELECTRON

```
clc;clear;
//Example 1.5
//Calculation of velocity of an electron

//given values
V=150;//potential difference between anode and cathode in V
m=9.31*10^-31;//mass of an electron in kg
q=1.6*10^-19;//charge on an electron in C

//Calculation
E=q*V;//energy(in J) gained by electron during speeding from cathode to anode
vel=sqrt(E*2/m);//equating with kinetic energy of electron i.e m(v^2)/2
disp(vel,'The velocity(in m/s) is')
```

Scilab code Exa 1.6 CALCULATE ENERGY

Scilab code Exa 1.7 CALCULATE TOTAL ENERGY

```
1 clc; clear;
2 //Example 1.7
3 // Calculation of the total energy
4
5 //given values
6 r=0.528*10^-10; //radius of the orbit in m
7 q=-1.6*10^-19; //charge on electron in C
8 Q=1.6*10^-19; //charge on Hydrogen nucleus in C
9 Eo=8.854*10^-12; // permittivity in free space in F/m
10
11 // calculation
12 E=(q*Q)/(8*3.14*Eo*r); //
13 disp(E, 'The total energy(in J) is ');
14 E1=E/(1.6*10^-19); //
15 disp(E1, 'The total energy(in eV) is ')
```

Scilab code Exa 1.8 CALCULATE FORCE AND RADIUS

```
1 clc; clear;
2 //Example 1.8
3
4 //given values
5 Q=3.2*10^-19; //charge on alpha-particle in C
6 m=6.68*10^-27; //mass on alpha-particle in kg
7 B=1.5; //transverse magnetic field of flux density in Wb/(m^2)
8 v=5*10^6; //velocity of alpha-particle in m/s
9
10 //Calculation
```

```
11 F=B*Q*v;//
12 disp(F, 'The force(in N) on particle is');
13 R=m*v/(Q*B);//
14 disp(R, 'The radius(in m) of its circular path')
```

Chapter 2

THE ELECTRON

Scilab code Exa 2.1 CALCULATE FORCE ACCELERATION AND KINETIC ENERGY

```
1 clc; clear;
\frac{2}{\sqrt{\text{Example } 2.1}}
4 //given values
5 E=2400; // electric field intensity in V/m
6 V=90; //potential difference in V
7 e=1.6*10^-19; //the charge on electron in C
8 m=9.12*10^-31; //mass of electron in kg
10 // Calculation
11 F=e*E;
12 disp(F, 'The force(in N) on electron is');
13 a=F/m;
14 disp(a, 'Its acceleration (in m/s^2)');
15 KE=e*V;
16 disp(KE, 'The Kinetic Energy(in J) of particle is');
17 v = sqrt(2*KE/m);
18 disp(v, 'The velocity(in m/s) of the electron')
```

Scilab code Exa 2.2 CALCULATE LINEAR VELOCITY AND RADIUS

```
1 clc; clear;
2 //Example 2.2
3
4 //given values
5 V=900; // potential difference in V
6 B=0.01; // uniform magnetic field in Wb/m^2
7 em=1.76*10^11; // value of e/m in C/kg
8
9 // calculation
10 v=sqrt(2*em*V);
11 disp(v, 'The linear velocity(in m/s) of electron is')
;
12 R=v/(em*B);
13 disp(R, 'The radius(in m) of the circular path is')
```

Scilab code Exa 2.3 CALCULATE MASS

```
clc; clear;
//Example 2.3

//given values
d=6*10^-3; // distance between plates in m
V=900; // potential difference in V
B=0.5; // uniform magnetic field in Wb/m^2
Q=1.6*10^-19; // the charge on electron in C
R=10.6*10^-2; // circular track radius in m
// calculation
// calculation
v=V/(B*d);
m=R*Q*B/v;
```

```
14 disp(m, 'The mass(in kg) of particle')
```

Scilab code Exa 2.4 CALCULATE RADIUS AND CHARGE ON OIL DROP

```
1 clc; clear;
2 //Example 2.4
4 //given values
5 V=6920;//potential difference in V
6 d=1.3*10^-3; // distance between in m
7 v=1.9*10^-4; // velocity in m/s
8 p=0.9*10^3; //density of oil in kg/m<sup>3</sup>
9 n=1.81*10^-5; // coefficient of viscosity in N-s/m<sup>2</sup>
10 g=9.81; // accelaration due to gravity in m/s<sup>2</sup>
11 pi=3.14; //standard constant
12
13 //calculation
14 a = sqrt((9*n*v)/(2*g*p));
15 disp(a, 'The radius(in m) of the drop is');
16 E=V/d;
17 Q=4*pi*(a^3)*p*g/(3*E);
18 disp(Q, 'The value of charge(in C) on oil drop is')
```

Chapter 3

THE ATOMIC STRUCTURE

Scilab code Exa 3.1 CALCULATE DISTANCE OF CLOSEST APPROACH

```
clc; clear;
//Example 3.1

//given values
Z=79; //atomic number of gold
e=1.6*10^-19; //electron charge in C
Eo=8.854*10^-12; //absolute permitivity of free space in F/m
K=7.68*1.6*10^-13; //kinectic energy in J
pi=3.14; //standard constant

// calculations
D=(2*Z*e^2)/(4*pi*Eo*K);
disp(D,'The closest distance(in m) of approach is')
```

Scilab code Exa 3.2 CALCULATE VELOCITY RADIUS TIME TAKEN AND RYDBERG CONST

```
1 clc; clear;
2 //Example 3.2
4 //given values
5 Z=1; //atomic number of hydrogen
6 e=1.6*10^-19; //electron charge in C
7 pi=3.14; //standard constant
8 h=6.625*10^-34; //plank's constant in J-s
9 m=9.1*10^-31; //mass of an electron in kg
10 Eo=8.854*10^-12; //absolute permittivity of free space
      in F/m
11 c=3*10^8; //speed of light in m/s
12 n=1; //ground state
13
14 //calculation
15 v=9*10^9*(2*pi*Z*e^2)/(n*h);
16 disp(v, 'velocity(in m/s) of ground state');
17 r=(Eo*n^2*h^2)/(pi*m*e^2);
18 disp(r, 'radius(in m) of Bohr orbit in ground state')
19 t=(2*pi*r)/v;
20 disp(t, 'time taken(in s) by electron to traverse the
      bohr first orbit');
21 R = (m*e^4)/(8*Eo^2*h^3*c);
22 disp(R, 'Rhydberg contstant (in m^-1)')
```

Scilab code Exa 3.3 CALCULATE FREQUENCY

```
1 clc; clear;
2 //Example 3.3
3
4 //given values
5 B=2.179*10^-16; //a constant in J
6 h=6.625*10^-34; //plank's constant in J-s
7
8 //calculation
```

```
9 E3=-B/3^2;

10 E2=-B/2^2;

11 f=(E3-E2)/h;

12 disp(f, 'frequency(in Hz) of radiation')
```

Scilab code Exa 3.4 CALCULATE FREQUENCY IN FIRST ORBIT

```
1 clc; clear;
2 //Example 3.4
3
4 //given values
5 Z=1; //atomic number of hydrogen
6 e=1.6*10^-19; //electron charge in C
7 h=6.625*10^-34; //plank's constant in J-s
8 m=9.1*10^-31; //mass of an electron in kg
9 Eo=8.854*10^-12; //absolute permitivity of free space in F/m
10 n=1; //ground state
11
12 //Calculations
13 f=(m*Z^2*e^4)/(4*Eo^2*h^3);
14 disp(f,'the frequency(in Hz) is')
```

Scilab code Exa 3.5 AT WHAT SPEED MUST ELECTRON

```
1 clc; clear;
2 //Example 3.5
3
4 //given data
5 Z=1;
6 n=1;
7 e=1.6*10^-19; //the charge on electron in C
8 h=6.625*10^-34; //Plank's constant
```

Scilab code Exa 3.8 CALCULATE PRINCIPAL QUANTUM NO AND WAVELENGTH

```
1 clc;clear;
2 //Example 3.8
3
4 //given data
5 h=6.625*10^-34; //Plank's constant
6 c=3*10^8; //speed of light in m/s
7 E1=10.2; //in eV energy
8 E2=12.09; //in eV energy
9 e=1.6*10^-19; //the charge on electron in C
10
11 //calcualtion
12 //principal quantum no are 2 & 3 respectively
13 W=c*h/(E1*e)*10^10;
14 disp(W,'wavelength in angstrom is for 10.2 eV');
15 W=c*h/(E2*e)*10^10;
16 disp(W,'wavelength in angstrom is for 12.09 eV')
```

Scilab code Exa 3.9 CALCULATE WAVELENGTH FOR LYMAN SERIES

```
1 clc; clear;
2 //Example 3.9
3
4 //given data
5 R=10967700; //Rydberg constant in 1/m
6
7 //calculation
8 W1=4/(3*R); //as n1=1 and n2=2
9 disp((W1*10^10), 'Long wavelength in angstrom');
10 W2=1/R; //as n1=1 and n2=infinity
11 disp((W2*10^10), 'Short wavelength in angstrom')
```

Chapter 4

CRYSTALLOGRAPHY

Scilab code Exa 4.2 CALCULATE DISTANCE BETWEEN ADJACENT ATOMS

```
1 clc; clear;
2 //Example 4.2
3
4 //given data
5 d=2180; //density of NaCl
6 M=23.5+35.5; // Molecular weight
7 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
8 n=4; //for f.c.c
9
10 //calculations
11 a=(n*M/(Na*d))^(1/3);
12 d=a/2;
13 disp((d*10^10), 'distance between to adajcent atoms in angstrom')
```

Scilab code Exa 4.3 CALCULATE SPACING

```
clc;clear;
//Example 4.3

//given data
d=2.163;//density in gm/cm^3
M=58.45;
Na=6.02*10^23;//Avgraodo no. in 1/gm mole

//calcualtions
n=Na/M;//no. of molecules/gram
n=n*d;//no. of molecules/cm^3
n=2*n;//no. of atom/cm^3;
n=n^(1/3);//no. of atoms in a row 1cm long
d1=1/n;
disp((d1*10^8), 'Spacing in angstrom')
```

Scilab code Exa 4.4 CALCULATE DENSITY OF Cu

```
1 clc; clear;
2 //Example 4.4
3
4 //given data
5 r=1.278; //radius in A.U
6 n=4; //structure is f.c.c
7 M=63.54;
8 Na=6.02*10^23; //Avgraodo no. in 1/gm mole
9
10 //calculations
11 a=4*r/(sqrt(2));
12 V=a^3;
13 d=n*M/(Na*V);
14 disp((d*(10^8)^3), 'Density in g/cm^3')
```

Scilab code Exa 4.10 CALCULATION OF INTERPLANAR SPACING

```
1 clc; clear;
2 //Example 4.10
3
4 //given data
5 r=1.746; //atomic radius in angstrom
7 //calulations
8 a=4*r/sqrt(2);
9 //for (i)
10 h=2; k=0; l=0;
11 d=a/sqrt(h^2+k^2+1^2);
12 disp(d, 'distace for (200) in A.U');
13 //for (ii)
14 h=2; k=2; l=0;
15 d=a/sqrt(h^2+k^2+1^2);
16 disp(d, 'distace for (220) in A.U ')
17 // for (iii)
18 h=1; k=1; l=1;
19 d=a/sqrt(h^2+k^2+l^2);
20 disp(d, 'distace for (111) in A.U')
```

Scilab code Exa 4.11 CALCULATION OF ANGLE BETWEEN PAIR OF PLANES

```
1 clc; clear;
2 //Example 4.11
3
4 //calculations
5 //for (i)
6 l=1; m=0; n=0;
7 p=0; q=1; r=0;
8 d=acosd((l*p+m*q+n*r)/(sqrt(l^2+m^2+n^2)*sqrt(p^2+q^2+r^2)));
```

```
9 disp(d, 'angle b/w pair of miller incdices in (i)');
10 //for (ii)
11 l=1;m=2;n=1;
12 p=1;q=1;r=1;
13 d=acosd((l*p+m*q+n*r)/(sqrt(l^2+m^2+n^2)*sqrt(p^2+q^2+r^2)));
14 disp(d, 'angle b/w pair of miller incdices in (ii)')
```

Scilab code Exa 4.13 CALCUALTION OF NO OF ATOMS PER SQMM

```
1 clc; clear;
2 //Example 4.13
3
4 //given data
5 a=3.61*10^-7; //lattice constant in mm
7 //calcualtions
8 //for (i) plane (100)
9 SA=a*a;
10 tamc=2; //total atoms included according to sketch
11 ans=tamc/SA;
12 disp(ans, 'atoms per mm^2 for (i)');
13 //for (ii) plane (110)
14 A=a*(sqrt(2)*a);
15 tamc=2; //total atoms included according to sketch
16 ans=tamc/A;
17 disp(ans, 'atoms per mm^2 for (ii)');
18 //for (iii) plane (111)
19 A=0.866*a*a;
20 tamc=2;//total atoms included according to sketch
21 ans=tamc/A;
22 disp(ans, 'atoms per mm^2 for (iii)')
```

Chapter 5

QUANTUM THEORY

Scilab code Exa 5.1 CALCULATE ENERGY

```
1 clc; clear;
2 //Example 5.1
3
4 //given values
5 W1=4; //wavelength in Angstrom
6 W2=1; //wavelength in Angstrom
7 e=1.6*10^-19; //the charge on electron in C
8 m=9.12*10^-31; //mass of electron in kg
9
10 //calculation
11 disp("Part (i)");
12 E = 12400/W1;
13 disp(E, 'The energy in eV is');
14 v = sqrt(E*e*2/m);
15 disp(v,'The velocity in m/s is');
16 disp("Part (ii)");
17 E=12400/W2;
18 disp(E, 'The energy in eV is');
19 v = sqrt(E*e*2/m);
20 disp(v, 'The velocity in m/s is')
```

Scilab code Exa 5.2 HOW MANY PHOTONS

```
1 clc; clear;
2 //Example 5.2
3
4 //given values
5 f=880*10^3; //frequency in Hz
6 P=10*10^3; //Power in W
7 h=6.625*10^-34; //Plank's constant
8
9 //calculation
10 E=h*f;
11 n=P/E;
12 disp(n, 'The number of photons emitted per second are
')
```

Scilab code Exa 5.3 HOW MANY LIGHT QUANTA

```
1 clc; clear;
2 //Example 5.3
3
4 //given values
5 P=200; //power in W
6 W=6123*10^-10; // wavelength in m
7 c=3*10^8; //speed of light in m/s
8 h=6.625*10^-34; //Plank's constant
9
10 //calculation
11 Op=0.5*P; //radiant o/p
12 E=h*c/W;
13 n=2/E;
14 disp(n,'No. of Quanta emitted/s')
```

Scilab code Exa 5.4 FIND THE NO OF PHOTOELECTRONS

```
1 clc; clear;
2 //Example 5.4
4 //given values
5 \text{ N=}5*10^4; //\text{no. of photons}
6 W=3000*10^-10; //wavelength in A
7 J=5*10^-3; //senstivity for W in A/W
8 h=6.625*10^-34; // Plank's constant
9 c=3*10^8; //speed of light in m/s
10 e=1.6*10^-19; //the charge on electron in C
11
12 //calculation
13 E=h*c/W;//energy content of each photon
14 TE=N*E; //total energy
15 I=J*TE;//current produced
16 \text{ n=I/e};
17 disp(n, 'no. photoelectrons emitted are')
```

Scilab code Exa 5.5 HOW MANY PHOTONS AND AT WHAT RATE

```
1 clc; clear;
2 //Example 5.5
3
4 //given values
5 W=5*10^-7; //wavelength in m
6 F=10^-5; //force in N
7 h=6.625*10^-34; //Plank's constant
8 m=1.5*10^-3; //mass in kg
9 c=3*10^8; //speed of light in m/s
```

```
10 S=0.1//specific heat
11
12 //calculation
13 n=F*W/h;
14 disp(n, 'no. of photons');
15 E=F*c/4200;//in kcal/s
16 T=E/(m*S);
17 disp(T, 'the rate of temperature rise')
```

Scilab code Exa 5.6 HOW MANY PHOTONS EMITTED BY LAMP

```
clc; clear;
//Example 5.6

//given values
W=4500*10^-10; // wavelength in m
V=150; // rated voltage in W
h=6.625*10^-34; // Plank's constant
c=3*10^8; // speed of light in m/s

// calculation
P=V*8/100; // lamp power emitted
E=h*c/W;
n=P/E;
disp(n,'No. photons emitted/s')
```

Scilab code Exa 5.7 CALCULATE NUMBER OF PHOTONS

```
1 clc;clear;
2 //Example 5.7
3
4 //given values
5 f=1*10^12;//frequency in Hz
```

```
6 h=6.625*10^-34; // Plank's constant
7
8 // calculation
9 E=h*f;
10 n=E/6.625;
11 disp(n, 'the no. of photons required')
```

Scilab code Exa 5.8 WITH WHAT VELOCITY

```
1 clc; clear;
2 //Example 5.8
3
4 //given values
5 W=5200*10^-10; //wavelength in m
6 h=6.625*10^-34; //Plank's constant
7 m=9.12*10^-31; //mass of electron in kg
8
9 //calculations
10 p=h/W;
11 v=p/m;
12 disp(v,'the velocity in m/s')
```

Scilab code Exa 5.9 CALCULATE THRESHOLD FREQUENCY

```
1 clc; clear;
2 //Example 5.9
3
4 //given data
5 v=7*10^5; //maximum speed in m/sec
6 f=8*10^14; //frequency in Hz
7 h=6.625*10^-34; //Plank's constant
8 c=3*10^8; //speed of light in m/s
9 m=9.12*10^-31; //mass of electron in kg
```

```
10
11 //calulations
12 E=0.5*m*v*v;
13 fo=f-(E/h);
14 disp(fo,'the threshold frequency in Hz is')
```

Scilab code Exa 5.10 CALCULATE MAXIMUM ENERGY AND WORK FUNCTION

```
1 clc; clear;
2 //Example 5.10
3
4 //given data
5 Wo=2300*10; //threshold wavelength in Angstrom
6 W=1800*10; //incident light wavelength in Angstrom
7
8 //calculations
9 w=124000/Wo;
10 disp(w, 'The work function in eV is');
11 E=124000*((1/W)-(1/Wo));
12 disp(E, 'The maximum energy in eV')
```

Scilab code Exa 5.11 WHAT IS THRESHOLD WAVELENGTH

```
1 clc; clear;
2 //Example 5.11
3
4 //given data
5 W=6000; // wavelegth in Angstrom
6 v=4*10^5; // velocity in m/sec
7 m=9.12*10^-31; // mass of electron in kg
8 e=1.6*10^-19; // the charge on electron in C
```

```
// calculations
KE=0.5*m*v^2/e;
disp(KE, 'The Kinetic energy in eV is');
WF=12400/W;
Wo=12400/(WF-KE);
disp(Wo, 'The threshold wavelength in Angstrom is')
```

Scilab code Exa 5.12 CALCULATE THRESHOLD FREQUENCY

```
1 clc; clear;
2 //Example 5.12
3
4 //given data
5 Wo=4.8; //work function in eV
6 W=2220; //wavelength in angstrom
7
8 //calculations
9 E=12400/W;
10 Emax=E-Wo;
11 disp(Emax, 'The maximum Kinetic energy in eV is')
```

Scilab code Exa 5.13 WHEN VIOLET LIGHT

```
1 clc; clear;
2 //Example 5.13
3
4 //given data
5 W=4000*10^-10; //wavelength in m
6 Vs=0.4; //retarding potential in eV
7 h=6.625*10^-34; //Plank's constant
8 c=3*10^8; //speed of light in m/s
9 e=1.6*10^-19; //the charge on electron in C
```

```
//calculations
f=c/W;
disp(f, 'The light frequency in Hz');
E=h*f/e;
disp(E, 'The photon energy in eV');
Wo=E-Vs;
fo=Wo/h*e;
disp(wo, 'The work function in eV');
NE=(E-Wo)*e;
disp(NE, 'The net energy in J')
```

Scilab code Exa 5.14 CALCULATE THRESHOLD WAVELENGTH AND PLANKS CONSTANT

```
1 clc; clear;
2 //Example 5.14
3
4 //given data
5 W1=3310*10^-10; //photon wavelength in m
6 W2=5000*10^-10; //photon wavelength in m
7 E1=3*10^-19; //electron energy in J
8 E2=0.972*10^-19; //electron energy in J
9 c=3*10^8; //speed of light in m/s
10
11 //given values
12 h=(E1-E2)*(W1*W2)/(c*(W2-W1));
13 disp(h, 'the plancks const in Js');
14 Wo=c*h/E1;
15 disp(Wo, 'The threshold wavelength in m')
```

Scilab code Exa 5.15 A CERTAIN METAL

```
1 clc; clear;
2 //Example 5.15
3
4 //given data
5 W=6525; // wavelength in angstrom
6
7 //calcualation
8 Vo=12400*((1/4000)-(1/W));
9 disp(Vo, 'Stopping potential in (a) in volts');
10 Vo=12400*((1/2000)-(1/W));
11 disp(Vo, 'Stopping potential in (b) in volts');
12 Vo=12400*((1/2000)-(2/W));
13 disp(Vo, 'Stopping potential in (c) in volts')
```

Scilab code Exa 5.16 FIND UNKNOWN WAVELENGTH

```
1 clc; clear;
2 //EXample 5.16
3
4 //given data
5 Wo=5000; // wavelength in angstrom
6 V=3.1; // stopping potential in V
7
8 // calcualtion
9 W=1/((V/12400)+(1/Wo));
10 disp(W, 'The unknown wavelength in Angstrom')
```

Scilab code Exa 5.17 LIGHT OF WAVELENGTH 2000 ANGSTROM

```
1 clc; clear;
2 //Example 5.17
3
4 //given values
```

```
5 W=2000; // wavelength in Angstrom
6 Vs=4.2; // Work Function in eV
7 e=1.6*10^-19; // the charge on electron in C
8
9 // calculations
10 E=12400/W;
11 Emax=(E-Vs)*e;
12 disp(Emax, 'KE of fastest photoelectron in J');
13 Emin=0;
14 disp(Emin, 'KE of slowest moving electron in J');
15 Vo=Emax/e;
16 disp(Vo, 'Stopping potential in V');
17 Wo=12400/Vs;
18 disp(Wo, 'The cutoff wavelength in Angstrom')
```

Scilab code Exa 5.18 CALCULATE PLANKS CONSTANT

```
clc; clear;
//Example 5.18

//given values
Vs1=4.6; //Stopping Potential in V
Vs2=12.9; //Stopping Potential in V
f1=2*10^15; //frequency in Hz
f2=4*10^15; //frequency in Hz
e=1.6*10^-19; //the charge on electron in C
// calculations
h=((Vs2-Vs1)*e)/(f2-f1)
disp(h, 'The Plancks const in Js')
```

CLASSIFICATION OF SOLIDS

Scilab code Exa 7.1 CALCULATE ENERGY GAP

```
1 clc; clear;
2 //Example 7.1
3
4 //given data
5 W=11000; // wavelength in angrstrom
6
7 // calcuations
8 Eg=W/12400;
9 disp(Eg, 'Energy Gap in eV')
```

Scilab code Exa 7.2 FIND MOBILITY OF ELECTRONS

```
1 clc; clear;
2 //Example 7.2
3
4 //given data
```

```
5 p=1.7*10^-6; // resistivity in ohm-cm
6 d=8.96; // density in gm/cc
7 W=63.5;
8 Na=6.02*10^23; // Avgraodo no. in 1/g mole
9 e=1.6*10^-19; // the charge on electron in C
10
11 // calcualtions
12 n=8.96*Na/W;
13 ue=1/(p*e*n);
14 disp(ue, 'mobilty of electrons in cm^2/V-s');
```

Scilab code Exa 7.3 FIND RESISTIVITY

```
clc; clear;
//Example 7.3

//given data
d1=2.5*10^19; //density of charge carries in 1/m^3
d2=4.2*10^28; //density of germanium atoms
ue=0.36; //mobilty of electrons in m^2/V-s
Na=6.02*10^23; //Avgraodo no. in 1/g mole
e=1.6*10^-19; //the charge on electron in C

//calcualtions
Nd=d2/10^6;
cn=Nd*e*ue;
pn=1/cn;
disp(pn,'resistivity of doped germanium in ohm-m')
```

Scilab code Exa 7.4 CALCULATE WAVELENGTH

```
1 clc; clear;
2 //Example 7.4
```

```
3
4 //given data
5 Eg=0.75; //energy gap in eV
6
7 //calcualtions
8 W=12400/Eg;
9 disp(W,'wavelength in angstrom')
```

X RAYS

Scilab code Exa 8.1 CALCULATE WAVELENGTH

```
1 clc; clear;
2 //Example 8.1
3
4 //given data
5 V=60000; //working voltage in V
6
7 //calculation
8 Wmin=12400/V;
9 disp(Wmin, 'Wavelength emitted in Angstrom')
```

Scilab code Exa $8.2\,$ CALCULATE NUMBER OF ELECTRONS STRIKING PER SECOND

```
1 clc; clear;
2 //Example 8.2
3
4 //given data
5 V=12400; //Volatage applied in V
```

```
6 I=0.002; // current drop in A
7 e=1.6*10^-19; // the charge on electron in C
8
9 // calculations
10 n=I/e;
11 disp(n,'No. of electrons');
12 v=(5.93*10^5)*(sqrt(V));
13 disp(v,'the speed with which they strike in m/s');
14 Wmin=12400/V;
15 disp(Wmin,'shortest wavelength in Angstrom')
```

Scilab code Exa 8.3 CALCULATE MIN APPLIED POTENTIAL

```
1 clc; clear;
2 //Example 8.3
3
4 //given values
5 Wmin=1; //shortest wavelength in Angstrom
6
7 //calculations
8 V=(12400/Wmin)/1000;
9 disp(V,'The minimum applied voltage in kV')
```

Scilab code Exa 8.4 CALCULATE MAX SPEED

```
1 clc; clear;
2 //Exmaple 8.4
3
4 //given data
5 I=0.005; //current in A
6 V=100000; // potential difference in V
7
8 //calcualtions
```

```
9 v=(5.98*10^5)*(sqrt(V));
10 disp(v, 'Maximum speed in m/s');
11 IP=V*I; //incident power in W
12 P=.999*IP; //power converted into heat in W
13 H=P/4.18;
14 disp(H, 'The heat produced/second in cal/s');
```

Scilab code Exa 8.5 CALCULATE PLANKS CONSTANT

```
1 clc; clear;
2 //Example 8.5
3
4 //given data
5 V=30000; // potential difference in V
6 Wmin=0.414*10^-10; // short wavelength limit in m
7 e=1.602*10^-19; // the charge on electron in C
8 c=3*10^8; // speed of light in m/s
9
10 // calcualtions
11 h=(e*V*Wmin)/c;
12 disp(h, 'The Plancks const in Js')
```

Scilab code Exa 8.6 CALCULATE SCREENING CONST

```
1 clc; clear;
2 //Example 8.6
3
4 //given data
5 W=1.43*10^-10; // wavelength in m
6 Z=74; //atomic no
7 R=10.97*10^6; //Rydberg constant in 1/m
8
9 //calcualation
```

```
10 b=74-sqrt(36/(5*R*W));//Transition from to M to L
11 disp(b, 'the screening const.')
```

Scilab code Exa 8.9 CALCULATE LINEAR ADSORPTION COEFF

```
1 clc;clear;
2 //Example 8.9
3
4 //given data
5 um=0.6;//mass adsoption coeffcient in cm^2/g
6 p=2.7;//density of aluminium in g/cm^3
7
8 //calculations
9 u=p*um;
10 disp(u, 'linear adsorption coefficent of aluminium in 1/cm');
11 T=0.693/u
12 disp(T, 'the hvl in cm');
13 x=(log(20))*(1/u);
14 disp(x, 'the thickness in cm')
```

Scilab code Exa 8.10 CALCULATE ANGLE OF THIRD ORDER REFLECTION NOTE CALCUALTION MISTAKE IN BOOK

```
1    clc; clear;
2  //Example 8.10
3
4  //given values
5  D=12; //glancing angle in Degree
6  n=1;
7  d=3.04*10^-10; //grating space in m
8
9  //calculation
```

```
10 W=(2*d*sind(D));
11 disp((W/(10^-10)), 'the wavelength in Angstrom');
12 D3=asind((3*W)/(2*d));
13 disp(D3, 'the angle for third order reflection in degrees')
```

Scilab code Exa $8.11\,$ HOW MANY ORDERS OF BRAGG RELFLECTION

```
1 clc; clear;
2 //Example 8.11
3
4 //given data
5 d=1.181; // distance of seperation in Angstrom
6 W=1.540; // wavelength in Angstrom
7
8 // calculations
9 n=2*d/W; // sin(D) = 1 for max value
10 disp(n, 'the orders of bragg reflection')
```

Scilab code Exa 8.12 CALCULATE INTERPLANAR SPACING

```
1 clc; clear;
2 //Example 8.12
3
4 //given data
5 W=0.6; //wavelength in angstrom
6 D1=6.45;
7 D2=9.15;
8 D3=13; //angles in degree
9
10 //calculation
11 d=W/(2*sind(D1));
```

```
disp(d, 'interplanar spacing for (a) in angstrom');
d=W/(2*sind(D2));
disp(d, 'interplanar spacing for (b) in angstrom');
d=W/(2*sind(D3))*2;//n=2 for (c)
disp(d, 'interplanar spacing for (c) in angstrom')
```

Scilab code Exa 8.13 DETERMINE THE SPACING

```
1 clc; clear;
2 //Example 8.13
3
4 //given data
5 W=3*10^-10; // wavelength in m
6 D=40; // angle in degree
7 n=1;
8
9 // calculation
10 d=n*W/(2*sind(D));
11 disp((d/10^-10), 'spacing in AU')
12 a=2*d;
13 v=a^3;
14 disp(v, 'the volumne in m^3 is')
```

Scilab code Exa 8.14 DETERMINE THE TYPE OF CRYSTAL POSS-ESED

```
1 clc; clear;
2 //Example 8.14
3
4 //given data
5 D1=5.4;
6 D2=7.6;
7 D3=9.4; //angles in degree
```

```
8
9 //calcualtion
10 d1=1/(2*sind(D1));
11 d2=1/(2*sind(D2));
12 d3=1/(2*sind(D3));
13 m=min(d1,d2,d3);
14 d1=d1/m;
15 d2=d2/m;
16 d3=d3/m;
17 disp(d1,d2,d3,'d1:d2:d3 =')
```

Scilab code Exa 8.15 CALCULATE SHORT WAVELENGTH AND GALNCING ANGLE

```
1 clc; clear;
2 //Example 8.15
3
4 //given data
5 V=50000; //applied voltage in V
6 p=1.99*10^3; // density in kg/m^3
7 n=4;
8 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
9 M=74.6; // molecular mass
10 W=0.248*10^-10; // wavelength in m
11
12 //calculation
13 Wmin = 12400/V;
14 disp(Wmin, 'short wavelength limit');
15 a=(n*M/(Na*p))^(1/3);
16 d=a/2;
17 D=asind(W/(2*d));
18 disp(D, 'glancing angle in degree')
```

Scilab code Exa 8.16 CALCULATE LATTICE SPACING OF NaCl

```
1 clc; clear;
2 //Example 8.16
3
4 //given data
5 W=1.54; //wavelength in angstrom
6 D=15.9; //angle in degree
7 M=58.45//molecular weight
8 p=2164*10^3; // density in kg/m^3
9 n=2; //for NaCl molecule
10
11 //calculation
12 d=W/(2*sind(D));
13 disp(d, 'lattice spacing in angstrom');
14 d=d*10^-10;
15 Na=M/(2*d^3*p);
16 disp(Na, 'Avogrado number in 1/gm mole')
```

Scilab code Exa 8.17 WHAT IS PRIMARY WAVELENGTH

```
1 clc; clear;
2 //Example 8.17
3
4 //given data
5 D=60; //angle in degree
6 W=0.254; //wavelength in angstrom
7
8 //calcualtion
9 dW=0.024*(1-cosd(D));
10 W1=W-dW;
11 disp(W1, 'primary X-ray wavelength in angstrom')
```

Scilab code Exa 8.18 WHAT IS LATTICE PARAMETER

```
clc; clear;
//Example 8.18

//given data
D=32; // angle in degree
W=1.54*10^-10; // wavelength in angstrom
h=2; k=2; l=0; // lattice consts

// calcualtions
d=W/(2*sind(D));
a=d*sqrt(h^2+k^2+l^2);
disp(a, 'lattice parameter in m');
r=sqrt(2)*a/4;
disp(r, 'radius of atom in m')
```

WAVES AND PARTICLES

Scilab code Exa 9.1 WHAT IS DE BROGLIE WAVELENGTH

```
1 clc; clear;
2 //Example 9.1
3
4 //given data
5 V=20000; //applied voltage in V
6
7 //calculation
8 W=12.25/(sqrt(V));
9 disp(W,'de broglie wavelength in angstrom')
```

Scilab code Exa 9.2 CALCULATE MOMENTUM DE BROGLIE WAVELENGTH AND WAVE NUMBER

```
1 clc; clear;
2 //Example 9.2
3
4 //given data
5 V=5000; //applied voltage in V
```

```
6 e=1.602*10^-19; // the charge on electron in C
7 m=9.12*10^-31; // mass of electron in kg
8 d=2.04*10^-10; // distance in m
9
10 // calculations
11 p=sqrt(2*m*e*V);
12 disp(p, 'momentum in kg-m/s^2');
13 W=12.25/sqrt(V);
14 disp(W, 'de broglie wavelength in angstrom');
15 v=1/(W*10^-10);
16 disp(v, 'the wave number in m');
17 D=asind((W*10^-10)/(2*d));
18 disp(D, 'the Bragg angle in degrees')
```

Scilab code Exa 9.3 AN ELECTRON INTIALLY AT REST

```
clc; clear;
//Example 9.3

//given data
V=54; //applied voltage in V
e=1.602*10^-19; //the charge on electron in C
m=9.12*10^-31; //mass of electron in kg
h=6.625*10^-34; //Plank's constant

//calcualtions
v=sqrt(2*e*V/m);
disp(v,'velocity of electron in m/s');
W=12.25/sqrt(V);
disp(W,'de broglie wavelength in angstrom');
u=h/(2*m*W*10^-10);
disp(u,'phase velocity in m/s')
```

Scilab code Exa 9.4 COMPUTE DE BROGLIE WAVELENGTH

```
1 clc; clear;
2 //Example 9.4
3
4 //given data
5 e=1.6*10^-19;//the charge on electron in C
6 m=9.12*10^-31; //mass of electron in kg
7 c=3*10^8; //speed of light in m/s
8 h=6.625*10^-34; //Plank's constant
9
10 //calculations
11 E=m*c^2;
12 \text{ mp} = 1836 * \text{m};
13 / (0.5*m*v^2) = E
14 mv = sqrt(E*2*mp);
15 W=h/mv;
16 disp((W/10^-10), 'de broglie wavelength in Angstrom')
```

Scilab code Exa $9.5\,$ WHAT IS DE BROGLIE WAVELENGTH OF NEUTRON

```
1 clc; clear;
2 //Example 9.5
3
4 //given data
5 e=1.6*10^-19; //the charge on electron in C
6 m=1.676*10^-27; //mass of neutron in kg
7 c=3*10^8; //speed of light in m/s
8 h=6.625*10^-34; //Plank's constant
9
10 //calculations
11 E=1; //in eV
12 E=1*e; //in V
13 mv=sqrt(2*E*m);
```

```
14 W=h/mv;
15 disp((W/10^-10), 'de broglie wavelength in Angstrom')
```

Scilab code Exa 9.6 CALCULATE THE SCATTERED WAVELENGTH

```
1 clc; clear;
2 //Example 9.6
3
4 //calculations
5 W=0.09; // wavelength in Angstrom
6 D=54; //scattering angle in degree
7 h=6.625*10^-34; // Plank's constant
8 c=3*10^8; //speed of light in m/s
9 e=1.6*10^-19; //the charge on electron in C
10
11 //calculations
12 dW=0.0243*(1-cosd(D));
13 W1 = W + dW;
14 disp(W1, 'wavelegth of scattered X-ray in Angstrom');
15 E=h*c/(W*10^-10);
16 disp((E/(e*10^6)), 'Energy of incident photon in MeV'
     );
17 E=h*c/(W1*10^-10);
18 disp((E/(e*10^6)), 'Energy of scattered photon in MeV
```

Scilab code Exa 9.7 COMPUTE ENERGY DIFFERENCE

```
1 clc; clear;
2 //Example 9.7
3
4 //given data
5 h=6.625*10^-34; //Plank's constant
```

```
6  m=9.12*10^-31; // mass of electron in kg
7
8  // calculations
9  // for (a)
10  nx=1;
11  ny=1;
12  nz=1;
13  L=1;
14  E=h^2*(nx^2+ny^2+nz^2)/(8*m*L^2);
15  disp(E, 'energy in first quantum state in J');
16  // for (b) (nx^2+ny^2+nz^2)=6
17  L=1;
18  E=h^2*6/(8*m*L^2);
19  disp(E, 'energy in second quantum state in J')
```

Scilab code Exa 9.8 CALCULATE THE LOWEST THREE PREMISSIBLE ENERGIES

```
1 clc; clear;
\frac{2}{\sqrt{\text{Example } 9.8}}
3
4 //given data
5 h=6.625*10^-34; //Plank's constant
6 m=9.12*10^-31; //mass of electron in kg
7 L=2.5*10^-10;
8 e=1.6*10^-19; //the charge on electron in C
10 //calcualtions
11 n=1;
12 E1=n^2*h^2/(8*m*L^2*e);
13 disp(E1, 'E1 in eV');
14 n=2;
15 E2=4*E1;
16 disp(E2, 'E2 in eV');
17 n=3;
```

```
18 E3=9*E1;
19 disp(E3, 'E3 in eV');
```

THE ATOMIC NUCLEUS

Scilab code Exa 10.1 COMPARE DENSITIES OF WATER AND NUCLEUS

```
1 clc; clear;
2 //Example 10.1
4 //given data
5 R=1.2*10^-15; // \text{radius} in A^(1/3)-m *A is mass number
6 \text{ mp} = 1.008;
7 mn=mp; //mass of proton and neutron in a.m.u
8 pi=3.14; //const
9 Dw=1000; /// density of water in kg/m<sup>3</sup>
10
11 //calculation
12 Vn=4/3*pi*R^3;
13 mp=mp*1.66*10^-27; //conversion in kg
14 mn = mp;
15 m=mn; //m is combined mass in A-kg
16 Dn=m/Vn;
17 R=Dn/Dw;
18 disp(R, 'the ratio is')
```

Scilab code Exa 10.2 CALCULATE ENERGY EQUIVALENCE FOR MeV

```
1 clc; clear;
2 //Example 10.2
3
4 //calculations
5 amu=1.66*10^-27; //1 amu in kg
6 c=3*10^8; //speed of light in m/s
7 m=amu;
8 E=m*c^2;
9 kWh=1.6*10^-13; //conversion of kWh in J
10 E=E/kWh;
11 disp(E, 'energy equivalence in MeV')
```

Scilab code Exa 10.3 CALCULATE ENERGY EQUIVALENCE FOR kWh

```
clc; clear;
//Example 10.3

//calculations
gm=10^-3;//1 gram in kg
m=gm;
c=3*10^8;//speed of light in m/s
E=m*c^2;
kWh=36*10^5;//1 kWh in J
EE=E/kWh;
disp(EE, 'energy equivalence in kWh')
```

Scilab code Exa 10.4 CALCULATE BINDING ENERGY

```
1 clc; clear;
2 //Example 10.4
3
4 //given data
5 mn=1.00893; //mass of neutron in a.m.u
6 mp=1.00813; //mass of proton in a.m.u
7 md=2.01473; //mass of deuteron in a.m.u
8 ma=4.00389; //mass of alpha-particle in a.m.u
9
10 //calculations
11 dm=md-(mn+mp);
12 disp((-dm*931), 'binding energy in MeV');
13 dm=ma-2*(mn+mp);
14 disp((-dm*931), 'binding energy in MeV')
```

Scilab code Exa 10.5 CALCULATE BINDING ENERGY OF 17Cl35

```
1 clc; clear;
2 //Example 10.5
3
4 //given data
5 m1=1.008665; //mass of 0n1 in a.m.u
6 m2=1.007825; //mass of 1H1 in a.m.u
7 m3=34.9800; //mass 17Cl35 in a.m.u
8 n=17+18;
9
//calculations
11 dm=(17*m2)+(18*m1)-m3;
12 Q=dm*931;
13 disp(Q, 'Binding energy in MeV');
14 BEn=Q/n;
15 disp(BEn, 'Binding energy per nucleon in MeV')
```

Scilab code Exa 10.6 CALCULATE BINDING ENERGY FOR LITHIUM NUCLEUS

```
1 clc; clear;
2 //Example in 10.6
3
4 //given data
5 m1=1.00814; //mass of proton in a.m.u
6 m2=1.00893; //mass of neutron in a.m.u
7 m3=7.01822; //mass of lithium in a.m.u
8
9 //calculations
10 dm=(3*m1)+(4*m2)-m3;
11 Q=dm*931;
12 disp(Q, 'Binding energy in MeV')
```

NATURAL RADIOACTIVTIY

Scilab code Exa 11.1 CALCUALTE HOW MUCH RADIUM

```
clc; clear;
//Example 11.1

//given data
ttg=8378-1898; //total time gap in yrs
hf=1620; // half life in yrs
n=ttg/hf; //no of half-periods
Mo=200; //amt of radium in mg
// calculations
M=Mo*(0.5)^n;
disp(M, 'radium left in mg')
```

Scilab code Exa 11.2 CALCULATE RADIOACTIVE DISINTEGRATING CONST

```
1 clc; clear;
2 //Example 11.2
```

```
// given data
hf=30; // half life in days
// M is intial conc.

// calcualtions
k=0.693/hf;
disp(k,'radioactive disintegration constant in 1/day');
//M/4 is left
t=-log(1/4)/k;
disp(t,'time taken for (ii) in days');
//M/8 is left
t=-log(1/8)/k;
disp(t,'time taken for (iii) in days')
disp(t,'time taken for (iii) in days')
```

Scilab code Exa 11.3 COMPUTE DECAY CONST AND HALF LIFE

```
clc; clear;
//Example 11.3

//given data
No=4750;
N=2700; // rate in counts/minute
t=5; // time in minutes

// calculation
k=log(No/N)/t;
disp(k, 'radioactive disintegration constant in 1/min');
hf=0.693/k;
disp(hf, 'half life in minutes')
```

Scilab code Exa 11.4 ESTIMATE HALF LIFE OF PLUTONIUM

```
clc; clear;
//Example 13.4

//given data
m=4.00387; //mass of alpha particle in a.m.u
M=10^-6; //mass of Pu-239 in kg

//calculations
m=m*1.66*10^-24; //conversion in gm
Mo=2300*m;
k=(Mo/1)/M;
hf=0.693/k;
hf=hf/(365*24*3600); //conversion in yrs
disp(hf, 'half life in yrs')
```

Scilab code Exa 11.5 CALCULATE ACTIVITY

```
clc; clear;
//Example 11.5

//given data
ff=2.48*10^5; // half life in yrs
k=8.88*10^-14//decay const in 1/s
Mo=4; // intial mass in mg
Na=6.02*10^23; // Avgraodo no. in 1/gm mole

// calculations
kt=0.693/hf*62000;
M=Mo*(exp(-kt));
disp(M, 'mass remain unchanged in mg');
M=M*10^-3*Na/234;
A=k*N;
disp(A, 'Activity in disintegrations/second ')
```

Scilab code Exa 11.6 HALF LIFE OF RADIUM IS 1620 YRS

```
1 clc; clear;
2 //Example 11.6
3
4 //given data
5 hf=1620; // half life in yrs
6 Mo=1/100; // mass in gm
7
8 // calculations
9 k=0.693/hf;
10 M=(1-Mo);
11 t=log(1/M)/k;
12 disp(t, 'time reqd for (i) in yrs');
13 M=Mo;
14 t=log(1/M)/k;
15 disp(t, 'time reqd for (ii) in yrs')
```

ARTIFICAL RADIOACTIVTIY

Scilab code Exa 12.1 ESTIMATE ITS AGE

```
1 clc; clear;
2 //Example 12.1
3
4 //given data
5 r=0.5; //ratio of mass of Pb206 and mass of U238
6 t=4.5*10^9; // half life in years
7
8 // calculation
9 T=(log(1+r))*(t/0.693);
10 disp(T, 'age in years')
```

NUCLEAR REACTIONS

Scilab code Exa 13.1 CALCULATE THE ENERGY AVAILABLE

```
1 clc; clear;
2 //Example 13.1
3
4 //given data
5 m1=7.0183; // mass of 3Li7 in a.m.u
6 m2=4.0040; //mass of 2He4 in a.m.u
7 m3=1.0082; //mass of 1H1 in a.m.u
8 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
9 / rxn = 3Li7 + 1H1 = 2He4 + 2He4
10
11 //calculations
12 dm=m1+m3-(2*m2);
13 E=dm*931;
14 n=0.1*Na/7;//no of atoms in 100 gm of lithium
15 TE=n*E;
16 disp(TE, 'Total energy available in MeV')
```

Scilab code Exa 13.2 CALCULATE THE ENERGY RELEASED

```
1 clc; clear;
2 //Example 13.2
3
4 //given data
5 m1=6.015126; //mass of 3Li7 in a.m.u
6 m2=4.002604; //mass oh 2He4 in a.m.u
7 m3=1.00865; //mass of 0n1 in a.m.u
8 m4=3.016049; //mass of 1H3 in a.m.u
9 //rxn = 3Li7 + 0n1 = 2He4 + 1H3 + Q
10
11 //calcualtions
12 dm=m1+m3-(m2+m4);
13 Q=dm*931;
14 disp(Q, 'energy released in MeV')
```

Scilab code Exa 13.3 WHAT IS THE Q VALUE OF THE REACTION

```
clc; clear;
//Example 13.3

//given data
m1=14.007515; //mass of 7N14 in a.m.u
m2=4.003837; //mass oh 2He4 in a.m.u
m3=17.004533; //mass of 8O17 in a.m.u
m4=1.008142; //mass of 1H1 in a.m.u
//rxn = 7N14 + 2He14 = 8O17 + 1H1
// calculations
dm=m3+m4-(m1+m2);
Q=dm*931;
disp(Q,'energy released in MeV')
```

Scilab code Exa 13.4 FIND THE MASS

```
1 clc; clear;
2 //Example 13.3
3
4 //given data
5 m1=14.007520; //mass of 7N14 in a.m.u
6 m2=1.008986; //mass oh 0n1 in a.m.u
7 //m3=mass of 6C14 in a.m.u
8 m4=1.008145; //mass of 1H1 in a.m.u
9 //rxn = 7N14 + 0n1 = 6C14 + 1H1 + 0.55 MeV
10
11 // calculations
12 Q=0.55;
13 dm=Q/931;
14 m3=dm+m1+m2-m4;
15 disp(m3, 'mass of 6C14 in a.m.u')
```

Scilab code Exa 13.6 EXPLAIN MASS DEFECT

```
clc; clear;
//Example 13.6

//given data
mo=11.01280; //mass 5B11 in a.m.u
m1=4.00387; //mass of alpha particle in a.m.u
m2=14.00752; //mass of 7N14 in a.m.u
//m3=mass of neutron
E1=5.250; //energy of alpha particle in MeV
E2=2.139; //energy of 7N14 in MeV
E3=3.260; //energy of 0n1 in MeV
// calculations
```

NUCLEUR FISSION AND FUSION

Scilab code Exa 14.1 COMPUTE FISSION ENERGY

```
1 clc; clear;
2 //Example 14.1
3
4 //given data
5 E1=7.8; //avg. B.E per nucleon in MeV
6 E2=8.6; //for fissin fragments in MeV
7
8 //calculations
9 FER=(234*E2)-(236*E1);
10 disp(FER, 'Fission energy released in MeV')
```

Scilab code Exa 14.2 FIND ELEMENTARY PARTICLES RELEASED IN BINARY FISSION OF 92U235

```
1 clc; clear;
2 //Example 14.2
```

```
3
4 //given data
5 m1=235.044; //mass of 92U235 in a.m.u
6 m2=97.905; //mass of 42Mo98 in a.m.u
7 m3=135.917; //mass of 54Xe136 in a.m.u
8 //rxn = 0n1 + 92U235 = 42Mo98 + 54Xe136 + 4 -1e0 + 2 0n1
9
10 //calculation
11 LHSm=1.009+m1;
12 RHSm=m2+m3+(4*0.00055)+(2*1.009);
13 dm=LHSm-RHSm;
14 disp(dm, 'mass defect in a.m.u');
15 E=dm*931;
16 disp(E, 'energy released in MeV')
```

Scilab code Exa 14.3 HOW MUCH HYDROGEN MUST BE CONVERTED INTO HELIUM

```
1 clc; clear;
2 //Example 14.3
3
4 //given data
5 m1=1.00813; //mass of 1H1 in a.m.u
6 m2=4.00386; //mass of 2He4 in a.m.u
7 SC=1.35; //solar constant in kW/m^2
8 d=1.5*10^11; // dist b/w earth and sum in m
9 e=1.6*10^-19; // the charge on electron in C
10 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
11 pi=3.14; // const
12 //rxn = 4 1H1 = 2He4 + 2 1e0
13
14 // calculations
15 dm=(4*m1)-m2
16 E=dm*931; //energy produced in MeV
```

```
17 EP=E/4; //energy produced per atom
18 EP=EP*10^6*e; //conversion in J
19 EPkg=EP*Na; //energy produced by 1 kg of hydrogen
20 SC=SC*1000; //conversion in J/s-m^2
21 SA=4*pi*d^2; //surface area of sphere
22 ER=SC*SA; //energy recieved per second
23 m=ER/EPkg;
24 disp((m/10^3), 'mass of hydrogen consumed in tonnes/second')
```

Scilab code Exa 14.4 CALCULATE THE ENERGY LIBERATED

```
1 clc; clear;
2 //Example 14.4
3
4 //given data
5 m1=2.01478; //mass of 1H2 in a.m.u
6 m2=4.00388; //mass of 2He4 in a.m.u
7 //rxn 1H2 + 1H2 = 2He4 + Q
8
9 //calculations
10 Q=2*m1-m2;
11 Q=Q*931; //conversion in MeV
12 disp(Q, 'energy liberated in MeV')
```

NUCLEUR ENERGY SOURCES

Scilab code Exa 15.1 CALCULATE THE MAXIMUM FRACTION OF THE KE

```
1 clc; clear;
2 //Example 15.1
4 //given data
5 \text{ ma=1};
6 \text{ Ma=2};
7 \text{ mb} = 1;
8 \text{ Mb} = 12;
9 \text{ mc} = 1;
10 Mc=238; //m is mass of neutron and M is mass of other
        neucleus
11
12 //calculation
13 n=(4*ma*Ma/(ma+Ma)^2)*100;
14 disp(n, 'Maximum fraction of KE lost by a neutron for
        (a)');
15 n = (4*mb*Mb/(mb+Mb)^2)*100;
16 disp(n, 'Maximum fraction of KE lost by a neutron for
```

Scilab code Exa 15.2 CALCULATE THE FISSION RATE

```
1 clc;clear;
2 //Example 15.2
3
4 //given data
5 E=200;//energy released per fission in MeV
6 e=1.6*10^-19;//the charge on electron in C
7 Na=6.02*10^26;//Avgraodo no. in 1/kg mole
8
9 //calculations
10 CE=E*e*10^6;//conversion in J
11 RF=1/CE;
12 disp(RF, 'fission rate of one watt in fissions/second');
13 Ekg=CE*Na/235;
14 disp(Ekg, 'Energy realeased in complete fission of 1 kg in J')
```

Scilab code Exa 15.3 HOW MANY KG OF U 235

```
1 clc; clear;
2 //Example 15.3
3
4 //given data
5 R=3*10^7; //rate of energy development in J s
6 E=200; //energy released per fission in MeV
7 e=1.6*10^-19; //the charge on electron in C
```

```
8 t=1000;//time is hours
9 Ekg=8.2*10^13;//energy released per kg of U-235
10
11 //calculation
12 CE=E*e*10^6;//conversion in J
13 n=R/CE;
14 disp(n, 'no of atoms undergo fission/second ');
15 TE=R*t*3600;//energy produced in 1000 hours
16 MC=TE/Ekg;
17 disp(MC, 'mass consumed in kg')
```

Scilab code Exa 15.4 HOW MUCH U 235 WOULD BE CONSUMED IN THE RUN

```
1 clc; clear;
2 //Example 15.4
3
4 //given data
5 EPF=180; // Energy consumed per disintegration in MeV
6 E=1200; //average power in kW
7 t=10; //time in hours
8 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
9 e=1.6*10^-19; //the charge on electron in C
10
11 //calculation
12 TE=E*t; //energy consumed in kWh
13 TE=TE*36*10^5; // conversion in J
14 EE=TE/0.2; // efficient energy
15 CE=EPF*e*10^6; // conversion in J
16 \text{ n=EE/CE};
17 m=235*n/Na*1000;
18 disp(m, 'mass consumed in gram')
```

Scilab code Exa 15.5 NUCLEUR REACTOR PRODUCES 200MW

```
1 clc; clear;
2 //Example 15.5
3
4 //given data
5 OE=200; //o/p power in MW
6 E=200; //energy released per fission in MeV
7 WF=3.1*10^10; // fission rate in fissions/second
8 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
9
10 //calculations
11 IE=OE/0.3*10^6; //reactor input in W
12 TFR = WF * IE;
13 n=TFR*24*3600; //no. of U-235 for one day
14 \text{ m} = 235 * n / \text{Na};
15 disp((m*100/0.7), 'amt of natural uranium conumed/day
       in kg')
```

Scilab code Exa 15.6 A CITY REQUIRES 100 MW

```
1 clc; clear;
2 //Example 15.6
3
4 //given data
5 AE=100; // electrical power in MW
6 E=200; //energy released per fission in MeV
7 e=1.6*10^-19; // the charge on electron in C
8 Na=6.02*10^26; // Avgraodo no. in 1/kg mole
9
10 // calculations
11 TE=AE*10^6*24*3600; //energy consumed in city in one day in J
12 EE=TE/0.2;
13 CE=E*e*10^6; // conversion in J
```

```
14 n=EE/CE;
15 m=235*n/Na;
16 disp(m, 'amt of fuel required in kg')
```

Scilab code Exa 15.7 BOMBAY REQUIRES 300 MWh

```
1 clc; clear;
2 //Example 15.7
3
4 //given data
5 OE=3000; //output power in MWh
6 E=200; //energy released per fission in MeV
7 e=1.6*10^-19; //the charge on electron in C
8 Na=6.02*10^26; //Avgraodo no. in 1/kg mole
9
10 //calculations
11 IE=0E/0.2;
12 TE=IE*36*10^8; //conversion in J
13 CE=E*e*10^6; //conversion in J
14 n=TE/CE;
15 m=235*n/Na;
16 disp(m,'daily fuel requirement in kg')
```

Scilab code Exa 15.8 THE MOTOR OF AN ATOMIC ICE BREAKER

```
1 clc; clear;
2 //Example 15.8
3
4 //given data
5 OP=32824; //o/p power in kW
6 E=200; //energy released per fission in MeV
7 Ekg=8.2*10^13; //energy released per kg of U-235
```

```
9 //calculations
10 DOP=OP*1000*24*3600; //daily o/p power in J
11 IP=DOP/0.2;
12 DFC=IP/Ekg; //daily fuel cosumption
13 disp(DFC, 'daily fuel cosumption in kg');
14 DI=DOP/(0.8*4186); //daily input at 80% efficiency
15 Crqd=DI/(7*10^3);
16 disp(Crqd, 'Coal reqd/day in tonnes')
```

PARTICLE ACCELERATORS

Scilab code Exa 16.1 WHAT MUST BE THE FLUX DENSITY

```
1 clc; clear;
2 //Example 16.1
3
4 //given data
5 fo=9*10^6; //frequency in Hz
6 m=6.643*10^-27; //mass in kg
7 pi=3.14; //constant
8 e=1.6*10^-19; //the charge on electron in C
9
10 //calculations
11 Q=2*e;
12 B=fo*2*pi*m/Q;
13 disp(B, 'magnetic flux density in Wb/m^2')
```

Scilab code Exa 16.2 WHAT IS FREQUENCY OF ALTERNATING POTENTIAL

```
1 clc; clear;
```

```
2 //Example 16.2
3
4 //given data
5 B=0.7; //magnetic flux intensity in Wb/m^2
6 m=3.34*10^-27; //mass in Kg
7 e=1.6*10^-19; //the charge on electron in C
8 pi=3.14; //const
9
//calculations
1 Q=e;
12 fo=B*Q/(2*pi*m*10^6);
13 disp(fo, 'The cyclotron frquency in MHz ')
```

Scilab code Exa 16.3 A CYCLOTRON OF DEES OF RADIUS 2 METERES

```
1 clc; clear;
2 //Example 16.3
3
4 //given data
5 B=0.75; // magnetic flux intensity in Wb/m^2
6 m1=1.67*10^-27; // mass in Kg
7 m2=3.31*10^-27; // mass in Kg
8 e=1.6*10^-19; // the charge on electron in C
9 Rm=2; // radius in m
10
11 // calculations
12 Q=e;
13 Emax=3.12*10^12*B^2*Q^2*Rm^2/m1;
14 disp(Emax, 'Maximum energies in Mev for proton');
15 Emax=3.12*10^12*B^2*Q^2*Rm^2/m2;
16 disp(Emax, 'Maximum energies in Mev for deuteron')
```

Scilab code Exa 16.4 CALCULATE THE RATIO

```
1 clc; clear;
2 //Example 16.4
3
4 //given data
5 mo=9.1*10^-31; //mass of electron in kg
6 m=1.67*10^-27; //mass of proton in kg
7 c=3*10^8; //speed of light in m/s
8 E=1; //given energy in MeV
9
10 //calculations
11 Eo=mo*c^2/(1.6*10^-13);
12 mbymo=1+(E/Eo);
13 disp(mbymo, 'Ratio for electron');
14 Eo=m*c^2/(1.6*10^-13);
15 mbymo=1+(E/Eo);
16 disp(mbymo, 'Ratio for proton')
```

Scilab code Exa 16.5 IN A CERTAIN BETATRON

```
1 clc; clear;
2 //Example 16.5
3
4 //given data
5 B=0.5; // magnetic field in Wb/m^2
6 d=1.5; // diameter in m
7 f=59; // frequency in Hz
8 e=1.6*10^-19; // the charge on electron in C
9 c=3*10^8; // speed of light in m/s
10 pi=3.14; // const
11
12 // calculations
13 R=d/2;
14 N=c/(4*(2*pi*50)*R);
```

```
15 E=B*e*R*c/(1.6*10^-13);
16 disp(E, 'final energy in MeV');
17 AE=E/N*10^6;
18 disp(AE, 'average energy in eV')
```

Scilab code Exa 16.6 CALCULATE MASS AND VELOCITY OF ELCTRONS

```
1 clc; clear;
2 //Example 16.6
3
4 //given data
5 E=0.51; // kinetic energy in MeV
6 R=0.15; // radius in m
7 e=1.6*10^-19; //the charge on electron in C
8 mo=9.12*10^-31; //mass of electron in kg
9 c=3*10^8; //speed of light in m/s
10
11 //calculation
12 Eo=E;
13 m = mo * (1 + (E/Eo));
14 b = sqrt(1 - (mo/m)^2);
15 \text{ v=b*c};
16 B=mo*v/(e*R);
17 disp(B, 'magnetic field intensity')
```

Scilab code Exa 16.7 DETERMINE THE FREQUENCY OF GENERATOR

```
1 clc; clear;
2 //Example 16.7
3
4 //given data
5 E=4; //applied voltage in MeV
```

```
6 m=3.334*10^-27; //mass of deuteron in kg
7 R=0.75; //radius in m
8 pi=3.14; //const
9 e=1.6*10^-19; //the charge on electron in C
10
11 //calcualtions
12 E=4*10^6*e;
13 fo=sqrt(E/(2*m))/(pi*R);
14 disp(fo, 'frequnecy of generator in Hz')
```

Scilab code Exa 16.8 WHAT WOULD BE THE ENERGY OF ELECTRON

```
1 clc; clear;
2 //Example 16.8
3
4 //given data
5 roi=15; //rate of increase in Wb/s
6 tr=10^6; // total revolutions
7
8 // calcualtion
9 IE=roi*10^-6; // increased energy in MeV
10 FE=IE*tr;
11 disp(FE, 'Fianl Energy in MeV')
```

Scilab code Exa 16.9 FIND THE MAX ENERGY AND CORRESPONDING WAVELENGTH

```
1 clc; clear;
2 //Example 16.9
3
4 //given data
5 R=0.1; //radius in m
```

```
6 pi=3.14; //const
7 h=6.625*10^-34; //Plank's constant
8 c=3*10^8; //speed of light in m/s
9 roi=15; //rate of increase in Wb/s
10 t=4*10^-4; //period of accerleartion in s
11 e=1.6*10^-19; //the charge on electron in C
12
13 //calculations
14 \ N=c*t/(2*pi*R);
15 IE=roi;//incresed energy in eV
16 ME = N * IE * 10^-6;
17 disp(ME, 'Maximum energy in MeV');
18 ME=ME*10^6*e; //conversion in V
19 p=ME/c;
20 \text{ Y=h/p};
21 disp(Y, 'corresponding wavelength of X-rays in m')
```