Name:	***************************************	Maths	Class:	******************
-------	---	-------	--------	--------------------

SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics

Preliminary Course

Assessment 1

May, 2017

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A Reference Sheet is attached to the last page of this booklet. You may detach it.

Section 1 Multiple Choice Questions 1-5

5 Marks

Section II Questions 6-13

64 Marks

SECTION I

1. If $a\sqrt{b} = \sqrt{x}$ then x =

ab

Marks

$$ab^2$$

C.
$$a^2b$$

D.
$$a^2b^2$$

2.

1

What is the equation of the line I?

В.

$$A. \quad y = \frac{a}{b}x + a$$

$$B. \quad y = \frac{a}{b}x + b$$

$$C. \quad y = -\frac{a}{b}x + a$$

$$D. \quad y = -\frac{a}{b}x + b$$

3. The equation of the axis of symmetry of the graph of $y = 2x^2 - 8x + 5$ is

1

A.
$$x = 2$$

$$x = 4$$

C.
$$x = -2$$
 D.

D.
$$x = -4$$

4. Make G the subject of the formula $E = 1 - \sqrt{\frac{G}{R}}$.

1

$$A. G = R(1+E)^2$$

$$G = R(1 + E^2)$$

$$C. G = R(1 - E^2)$$

$$D. G = R(1-E)^2$$

5. Another expression for $(-2)^{2n}$ is

1

A.
$$-(2^{2n})$$

C.
$$-4^n$$

D.
$$2^{n^2}$$

SECTION II

Question 6 Start a new page. Marks Evaluate $\frac{1}{(1.05)^{11}-1}$ correct to 3 decimal places (a) 1 Solve |1-2x|=5(b) 2 Write $1 - \frac{a}{h}$ as a single fraction (c) 1 (d) The area of a trapezium is given by 2 $A = \frac{1}{2}h(a+b)$ Find the value of a given A = 624, h = 26 and b = 18Subtract $x^3 - x^2 + 1$ from $2x^2 - 1$ (e) 2 Question 7 Start a new page. Find the exact value of $x^2 + 3x$ if $x = 2\sqrt{5}$ (a) 2 Rationalise the denominator of $\frac{\sqrt{2}}{4-\sqrt{2}}$ (b) 2 (c) Simplify 2 Express 2 950 000 in scientific notation correct to 2 significant figures. (d) 2 Question 8 Start a new page. Factorise fully (a) i. xy + 8x + y + 82 ii. $x^3 - x$ 2 $3a^2 - 7a - 6$ iii. 2 $\frac{3x-4y}{9x^2-16y^2}$ Simplify (b) 2

(a) Solve the following

i.
$$\frac{x-4}{3} + 2 = \frac{3x}{5}$$

ii.
$$2x^2 - 5x + 3 = 0$$

iii.
$$|x-1| > 4$$

(b) Expand and simplify
$$(a + b)(a - b) - a(a - 2b)$$

Question 10 Start a new page.

(a) Sketch the following functions

Note: Use a separate number plane for each part.

Each sketch must be neat and labelled.

Use a ruler to draw the axes.

Label any important points.

i.
$$y = \frac{4}{x}$$

ii.
$$y = 4 - x$$

2

iii.
$$y = 4 - x^2$$

(b) Find the exact solutions of
$$x(2x + 1) = 2$$

Ouestion 11 Start a new page.

Marks

(a) Factorise

i.
$$y^3 - 8$$

ii. $9 - (x + y)^2$

1 2

(b) Consider the function $y = \sqrt{5-x}$

State: i. its natural domain

ii. its range

1

(c) State the three inequalities which combine to define the shaded region shown.

3

Ques	tion 12	Start a new page.	Marks
(a)	i.	Solve simultaneously	3
		x + y = 4	
		xy = 4	
	ii.	What is the significance of this solution in relation to the graphs of	
		x + y = 4 and xy = 4 ?	1
(b)	Solve	x-1 =2x-1	2
(c)	For wl	hat value/s of x is $x \times x < x + x$?	2
<u>Quest</u>	ion 13	Start a new page.	
(a)	Consid	der the function $y = 1 + \frac{1}{x}$	
	i.	For what value of x is the function undefined?	1
	ii.	Find the <i>x</i> intercept	1
	iii.	What is the equation of the horizontal asymptote?	1
	iv.	Hence sketch the curve	2
(b)	i Exp	and $\left(x+\frac{1}{x}\right)^2$	1
	ii If x	$+\frac{1}{x}=4$, find the value of $x^2+\frac{1}{x^2}$ without solving for x.	2

FAK II - ASSESSMENT I - 2017

·		227
SECTION 1	(e) $2x^2-1-(x^3-x^2+1)$	\$
1. $a\sqrt{b} = \sqrt{x}$	$= 2x^2 - 1 - x^3 + x^2 - 1$	
$(\alpha\sqrt{b})^2 = \sqrt{x}^2$	$=-x^3+3x^2-2$	
$a^2b = x \qquad (c)$		
2. $y = mx + b$ where $m = -\frac{a}{b}$	Question 7	
$\therefore y = -\frac{a}{b}x + a \bigcirc$	(a) $(2\sqrt{5})^2 + 3 \times 2\sqrt{5}$	
3. $y = 2x^2 - 8x + 5$	$= 4 \times 5 + 6\sqrt{5}$	
$x = -\frac{b}{2a}$	= 20+6√5	
$x = \frac{-(-8)}{2 \times 2}$	(b) \(\sqrt{2}\) 4+\(\sqrt{2}\)	
$x = 2$ \triangle	(b) $\sqrt{2}$ $\frac{4+\sqrt{2}}{4+\sqrt{2}}$	
4. $E = 1 - \sqrt{\frac{q}{R}}$	= 4\sqrt{2}+2	
जि <u>स</u> = 1−€	16-2	
G = (I-E)2	$=\frac{4\sqrt{2}+2}{14}$	
$: G = R(I-E)^2 \qquad (D)$	$= 2\sqrt{2} + 1$	
5. $(-2)^{2n} = 4^n$ B	7	
	(c) $a^2b^6 = b^4$	
SECTION II	$\sqrt{\frac{a^4b^2}{a^4b^2}} \sqrt{\frac{a^2}{a^2}}$	
Question 6	$=\frac{b^2}{a}$	
(a) 1-408	(d) 3.0 × 106	一
(b) $ 1-2x = 5$		
1-2x=5 $1-2x=-5$	Question 8	
$2x = 4 \qquad 6 = 2x$	(a) i. $xy + 8x + y + 8$	
$\dot{x} = -2$, 3	= x(y+8)+1(y+8)	
(c) b-a .*	= (x+1)(y+8)	
<u>b</u>	ii. $x(x^2-1)$	
(d) $624 = \frac{1}{2} \times 26$ (a+18)	$= \chi(x+1)(x-1)$	
48 = a + 18		
: a = 30	iii. $3a^2 - 7a - 6$ $3a \times 2$	

 $\therefore a = 30$

$$\begin{array}{c} 3a \times {}^{2} \\ a \times {}^{-3} \\ = (3a+2)(a-3) \end{array}$$

x > 0 $y \le 0$

Question 12	Question 13
(a) i. $x+y=4$ -0	(a) i. $x = 0$
xy=4 -2	$0 = 1 + \sqrt{\frac{1}{x}}$
x= 4-y -3	$\frac{1}{x} = -1$
sub 3 into 2	∴ x=-(
y (4-y) = 4	$\frac{\overline{y} = 1}{111}$
$4y - y^2 = 4$	ìv.
$y^2 - 4y + 4 = 0$	⁹ N
$(y-2)^2=0$	2-
y = 2	
sub y=2 into 3	-1 0 1 50
z = 4-2	
x = 2	И
x=2, y=2	(b) i. $\left(\frac{1}{x} + \frac{1}{x} \right)^2$
ii. The graphs intersect at	$= 3c^2 + 2 + \frac{1}{x^2}$
(2,2).	ìì. from ì.
(b) $ x-1 = 2x-1$	$\alpha^2 + \frac{1}{2} = (\alpha + \frac{1}{2})^2 - 2$
x-1=2x-1-(x-1)=2x-1	$= 4^2 - 2$
$0 = x \qquad -x+1 = 2x-1$	= 14
2 = 3x	
$x = \frac{2}{3}$	
check solutions!	
$\therefore x = \frac{2}{3} \text{ only}$	
(c) x × x < x + x	
$\alpha^2 < 2\alpha$	
$x^2 - 2x < 0$	
x(x-2) < 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	