ФКН ВШЭ Домашняя работа 2

Основы Матричных Вычислений Весенний семестр 2025

(теория)

Версия от: 28.02.25 Дедлайн: 12.03.24 в 23:59

- 1. (12 баллов). Пусть P_1 и P_2 являются ортопроекторами на $S_1, S_2 \subseteq \mathbb{R}^n$ соответственно. Покажите, что если они коммутируют, то их композиция является ортопроектором на $S_1 \cap S_2$.
- 2. (12 баллов). Пусть $U = [U_r \ U_r^{\perp}] \in \mathbb{C}^{m \times m}$ матрица левых сингулярных векторов матрицы $A \in \mathbb{C}^{m \times n}$ ранга r. Покажите, что $\ker(A^*) = \operatorname{Im}(U_r^{\perp})$ и запишите ортопроектор на $\ker(A^*)$.
- 3. **(42 балла: по 6 баллов за пункт)**. Вычислите дифференциалы и производные для следующих функционалов:
 - (3.1) $f(x) = ||A xx^{\top}||_F^2$, $A = A^{\top} \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$.
 - (3.2) $f(X) = \text{Tr}((X^{\top}X)^{-1}X^{\top}AX), X \in \mathbb{R}^{n \times p}$ ранга $p, A = A^{\top}$.
 - $(3.3) f(X) = \text{Tr}(X \odot X), X \in \mathbb{R}^{m \times n}.$
 - (3.4) $f(X) = \text{Tr}(X \text{diag}(X)), X \in \mathbb{R}^{n \times n}, \text{diag}(X) = \text{diag}(x_{11}, \dots, x_{nn}).$
 - (3.5) $f(X) = a^{\top} X^2 b, \ a, b \in \mathbb{R}^n, \ X \in \mathbb{R}^{n \times n}.$
 - $(3.6) f(X) = \text{Tr}(I \otimes X + X \otimes I), X \in \mathbb{R}^{n \times n}.$
 - (3.7) $f(U) = F(W + UV^{\top})$ и $g(V) = F(W + UV^{\top})$, $W \in \mathbb{R}^{m \times n}$, $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$. Считайте, что вы умеете вычислять $\partial F(X)/\partial X$. Замечание: производные такого вида возникают при тонкой настройке больших языковых моделей.
- 4. (14 баллов). Найдите кронекеров ранг $m_1m_2 \times n_1n_2$ матрицы с элементами $a_{ij} = i+j$. Считайте, что $m_i, n_i \geq 2$ и нумерация индексов ведется с нуля. Замечание: кронекеров ранг минимальное число слагаемых r для представления A в виде суммы кронекеровых произведений:

$$A = \sum_{\alpha=1}^{r} B_{\alpha} \otimes C_{\alpha}, \quad B_{\alpha} \in \mathbb{R}^{m_1 \times n_1}, \quad C_{\alpha} \in \mathbb{R}^{m_2 \times n_2}.$$

5. **(20 баллов)**. Пусть $A \in \mathbb{R}^{n \times n}$ – заданная симметричная невырожденная матрица и $B \in \mathbb{R}^{n \times n \times n}$ – заданный тензор. Предложите алгоритм поиска $X \in \mathbb{R}^{n \times n \times n}$ с арифметической сложностью $\mathcal{O}(n^4)$ из следующего уравнения:

$$[X; A, I, I] + [X; I, A, I] + [X; I, I, A] = B.$$

Бонусные задачи

- 1. (20 б. баллов). Пусть P_1 и P_2 ортопроекторы на подпространства S_1 и S_2 одинаковой размерности. Введем понятие расстояния между подпространствами как $\operatorname{dist}(S_1, S_2) = ||P_1 P_2||_2$. Докажите, что $\operatorname{dist}(S_1, S_2) = 1$ тогда и только тогда, когда S_1 содержит ненулевой вектор, ортогональный S_2 .
- 2. **(30 б. баллов)**. Дана матрица $A \in \mathbb{R}^{n^2 \times n^2}$. Предложите, обоснуйте и запишите в виде псевдокода алгоритм решения следующей задачи:

$$f(X) = ||A - X \otimes X||_F \to \min_{X \in \mathbb{R}^{n \times n}}$$

в случае произвольной A. Считайте, что помимо базовых арифметических операций с матрицами, вам доступно вычисление собственного разложения матрицы eigs (при условии его существования), а также функции reshape и transpose.

3. (50 б. баллов). Найдите наилучшее приближение матрицы $A \in \mathbb{R}^{m \times n}$ матрицей с ограниченной спектральной нормой:

$$\min_{B: \|B\|_2 \le 1} \|A - B\|_F.$$