IMPLEMENTATION OF METHODS IN COMPUTER PROGRAMS; EXAMPLES SAP, ADINA

LECTURE 5

56 MINUTES

LECTURE 5 Implementation of the finite element method

The computer programs SAP and ADINA

Details of allocation of nodal point degrees of freedom, calculation of matrices, the assemblage process

Example analysis of a cantilever plate

Out-of-core solution

Effective nodal-point numbering

Flow chart of total solution process

Introduction to different effective finite elements used in one, two, three-dimensional, beam, plate and shell analyses

TEXTBOOK: Appendix A, Sections: 1.3, 8.2.3

Examples: A.1, A.2, A.3, A.4, Example Program STAP

11/1/11/1								
manna.	IMPLEMENTATION OF		Ŧ					
11111111	THE FINITE ELEMENT	$\underline{K}^{(m)} = \int_{(m)} \underline{B}^{(m)} \underline{C}^{(m)} \underline{B}^{(m)} dV^{(m)}$						
IIIIIII.	METHOD							
mminn		$\underline{R}_{B}^{(m)} = \int_{V(m)} \underline{H}^{(m)T} \underline{f}^{B(m)} dV^{(m)}$						
minn	We derived the equi-	H ^(m)	•					
1111111	librium equations	-	<u>B</u> (m)	N ≈ no. of d.o.f.				
min	KII - B	k × N	lx N	of total structure				
mm	$\underline{K}\underline{U} = \underline{R} ; \underline{R} = \underline{R}_{\underline{B}} + \dots$	In practice	, we calculat	e compacted				
MANA	where	element ma	-	<u> </u>				
nnanninnannannannannannannannannannannan	$\underline{K} = \sum_{m} \underline{K}^{(m)} ; \underline{R}_{B} = \sum_{m} \underline{R}_{B}^{(m)}$. n = no. of				
mm		nxn	nxi	element d.o.f.				
minimi		<u>H</u>	<u>B</u>					
		kxn	ℓ.xn					

The stress analysis process can be understood to consist of essentially three phases:

- 1. Calculation of structure matrices K, M, C, and R, whichever are applicable.
- 2. Solution of equilibrium equations.
- 3. Evaluation of element stresses.

The calculation of the structure matrices is performed as follows:

- 1. The nodal point and element information are read and/or generated.
- 2. The element stiffness matrices, mass and damping matrices, and equivalent nodal loads are calculated.
- 3. The structure matrices $\,K$, $\,M$, $\,C$, and $\,R$, whichever are applicable, are assembled.

Fig. A.1. Possible degrees of freedom at a nodal point.

Fig. A.2. Finite element cantilever idealization.

In this case the ID array is given by

and then

Also

 $\chi^{T} = [0.0 \ 0.0 \ 0.0 \ 60.0 \ 60.0 \ 120.0 \ 120.0 \ 120.0]$ $\gamma^{T} = [0.0 \ 40.0 \ 80.0 \ 0.0 \ 40.0 \ 80.0 \ 0.0 \ 40.0 \ 80.0]$ $Z^{T} = [0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0]$ $T^{T} = [70.0 \ 85.0 \ 100.0 \ 70.0 \ 85.0 \ 100.0]$

For the elements we have

Element 1: node numbers: 5,2,1,4; material property set: 1

Element 2: node numbers: 6,3,2,5; material property set: 1

Element 3: node numbers: 8,5,4,7; material property set: 2

Element 4: node numbers: 9,6,5,8; material property set: 2

CORRESPONDING COLUMN AND ROW NUMBERS

For compacted matrix	1	2	3	4	5	6	7	8
For <u>K</u>]	3	4	0	0	0	0	1	2

$$LM^{T} = [3 \ 4 \ 0 \ 0 \ 0 \ 1 \ 2]$$

Similarly, we can obtain the LM arrays that correspond to the elements 2,3, and 4. We have for element 2,

$$LM^{T} = [5 \ 6 \ 0 \ 0 \ 0 \ 3 \ 4]$$

for element 3,

$$LM^{T} = [9 10 3 4 1 2 7 8]$$

and for element 4,

$$LM^{T} = [11 \ 12 \ 5 \ 6 \ 3 \ 4 \ 9 \ 10]$$

Fig. 10. Typical element pattern in a stiffness matrix using block storage.

Fig. 10. Typical element pattern in a stiffness matrix using block storage.

(b) Good nodal point numbering, m_k + 1 = 16.

Fig. A.4. Bad and good nodal point numbering for finite element assemblage.

Fig. A.5. Flow chart of program STAP. *See Section 8.2.2.

Fig. 13. Two-dimensional plane stress, plane strain and axisymmetric elements. p..A.43.

Fig. 16. Thin shell element (variable-number-nodes) p. A.46.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.