Principal Component Analysis

Qingyang Li

1 Introduction

PCA involves a mathematical procedure that transforms a set of correlated variables into a smaller set of uncorrelated variables called principal components (PCs). These PCs are linear combination of original variables and can be thought as "new" variables.

1.1 Characteristic of Principal Components

- Uncorrelated with each other
- 1st principal component accounts for as much variability in the data as possible
- Each successive principal component accounts for as much variability in the data as possible.

2 PCA with covariance matrix

Let $\mathbf{x} \sim (\mu, \Sigma)$ and \mathbf{x} is $p \times 1$ vector, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$. Notice that we do not use a multivariate normal distribution assumption.

2.1 First Principal Component

• $Y_1 = \mathbf{a}_1^{\mathsf{T}}(\mathbf{x} - \mu) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \\ \vdots \\ x_p - \mu_p \end{bmatrix} = a_{11}(x_1 - \mu_1) + a_{12}(x_2 - \mu_2) + \dots + a_{1p}(x_p - \mu_p)$, where \mathbf{a}_1 is $p \times 1$ vector chosen so that $Var[\mathbf{a}_1^{\mathsf{T}}(\mathbf{x} - \mu)]$ is maximized over all

 $a_{1p}(x_p - \mu_p)$, where $\mathbf{a_1}$ is $p \times 1$ vector chosen so that $Var[\mathbf{a_1}^\intercal(\mathbf{x} - \mu)]$ is maximized over all vectors.

- The constraint for $\mathbf{a}_1^{\mathsf{T}}$ is that the length is equal to 1, which is $a_{11}^2 + a_{12}^2 + \dots + a_{1p}^2 = 1$.
- The maximum value of the variance is the largest eigenvalue of Σ , which is denoted as λ_1 . The $\mathbf{a_1}$ itself is the eigenvector corresponding to the largest eigenvalue.
- Since the variance of Y_1 is being maximized, the new variable Y_1 will explain as much variability of \mathbf{x} as possible.

2.2 Second Principal Component

- $Y_2 = \mathbf{a_2^T}(\mathbf{x} \mu)$, where $\mathbf{a_2}$ is the eigenvector corresponding to the second largest eigenvalue λ_2 from Σ .
- Y_1 and Y_2 are uncorrelated, which implies that $\mathbf{a_1}$ and $\mathbf{a_2}$ are orthogonal $(\mathbf{a_1}'\mathbf{a_2} = 0)$.

2.3 Total Variance

$$oldsymbol{\Sigma} = egin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \ dots & dots & \ddots & dots \ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}$$

The total variance is then defined as the sum of the diagonal elements of the population covariance matrix Σ .

$$tr(\Sigma) = \sum_{i=1}^{p} \sigma_{ii} = \sigma_{11} + \sigma_{22} + \ldots + \sigma_{pp}$$

Also notice the trace of the matrix is the sum of the eigenvalues.

$$tr(\Sigma) = \sum_{i=1}^{p} \lambda_i$$

Then a measure of the importance of the j^{th} principal component is $\frac{\lambda_j}{\sum_{i=1}^p \lambda_i}$. The larger the value, the more variability the j^{th} principal component accounts for.

2.4 Estimation

Since μ and Σ are usually NEVER known, the corresponding estimates $\hat{\mu}$ and $\hat{\Sigma}$ are used instead in calculations. Therefore, we will from now on use

$$\hat{Y}_j = \hat{\mathbf{a}}_j(\mathbf{x} - \hat{\mu}), j = 1, 2, \cdots, p$$

where the j^{th} largest eigenvalue of $\hat{\Sigma}$ and its corresponding eigenvector are denoted as $\hat{\lambda}_j$ and $\hat{\mathbf{a}}_j$ respectively.

2.5 Possible Issues with PCA

- If original set of variables are already uncorrelated, PCA will not help.
- PCA does not generally eliminate variables, because the principal components are linear combinations of the original variables.
- The original variables need to be measured in the same units and have similar variances. The solution for this issue is to use standardized data. Equivalently, use \mathbf{R} in place of $\widehat{\Sigma}$, because sample correlation matrix is the sample covariance matrix of standardized random variables.

3 PCA with the correlation matrix

PCA is most often performed using the correlation matrix \mathbf{P} rather than the covariance matrix $\mathbf{\Sigma}$ to eliminate the problem with different numerical scales being used with variables. Again, because \mathbf{P} will not be known, we will use the sample correlation matrix \mathbf{R} instead. The corresponding eigenvalues and eigenvectors are denoted by $\hat{\lambda}_{j}^{*}$ and $\hat{\mathbf{a}}_{j}^{*}$, respectively.

3.1 Determine the number of principal components

- 1. Plot $\hat{\lambda}_1^*, \hat{\lambda}_2^*, \dots, \hat{\lambda}_p^*$ vs. $1, 2, \dots, p$. When the point on the plot level off close to 0, the corresponding principal component are probably not contributing too much information to understand the data.
- 2. Find the number of eigenvalues greater than 1.

3.2 PC scores

For each observation, we calculate the j^{th} principal component value or score based on sample covariance matrix as:

$$\hat{y}_{ij} = \hat{\mathbf{a}}_{\mathbf{i}}^{\mathsf{T}}(\mathbf{x_i} - \hat{\boldsymbol{\mu}})$$

For each observation, we calculate the j^{th} principal component value or score based on sample correlation matrix as:

$$\hat{y}_{ij}^* = \hat{\mathbf{a}}_{\mathbf{j}}^{*\mathsf{T}} \mathbf{z}_{\mathbf{i}} = \begin{bmatrix} \hat{a}_{j1}^* & \hat{a}_{j2}^* & \cdots & \hat{a}_{jp}^* \end{bmatrix} \times \begin{bmatrix} z_{i1} \\ z_{i2} \\ \vdots \\ z_{ip} \end{bmatrix}$$

where $i=1,2,3,\cdots,n$ represents the number of observations in the data; and $j=1,2,3,\cdots,p$ represents the number of principal components.