Regresión Lineal Múltiple

Regresión Linear Múltiple (R)

La regresión linear utiliza el método de mínimos cuadrados para encontrar la recta que resulta en la menor suma de errores al cuadrado (RMSE: Root Mean Square Error). La palabra múltiple se refiere a que la variable respuesta dependerá de más de 1 variable independiente: Y = f(X1, ..., Xn)

Escenario del problema

25

77044.01

Queremos encontrar la relación que existe entre un conjunto de variables y el salario que podemos esperar tener cuando lo hayamos conseguido. ¡Vamos a ello!

```
# 1. Importar librerías
library(caTools)
library(ggplot2)
# 2. Importar datos
datos <- read.csv('../Datos/4.1.Empresas.csv')</pre>
# 3. Codificcar variables categóricas
datos$Pais <- factor(datos$Pais,</pre>
                      levels = c('Nueva York', 'California', 'Florida'),
                      labels = c(1, 2, 3))
datos
##
      Investigacion Administracion Marketing Pais Beneficio
## 1
          165349.20
                          136897.80 471784.10
                                                   1 192261.83
## 2
          162597.70
                          151377.59 443898.53
                                                   2 191792.06
## 3
          153441.51
                          101145.55 407934.54
                                                   3 191050.39
## 4
          144372.41
                          118671.85 383199.62
                                                   1 182901.99
## 5
          142107.34
                           91391.77 366168.42
                                                   3 166187.94
## 6
          131876.90
                           99814.71 362861.36
                                                   1 156991.12
## 7
          134615.46
                          147198.87 127716.82
                                                   2 156122.51
## 8
          130298.13
                          145530.06 323876.68
                                                   3 155752.60
## 9
          120542.52
                          148718.95 311613.29
                                                   1 152211.77
## 10
          123334.88
                          108679.17 304981.62
                                                   2 149759.96
## 11
          101913.08
                          110594.11 229160.95
                                                   3 146121.95
## 12
          100671.96
                           91790.61 249744.55
                                                   2 144259.40
## 13
           93863.75
                          127320.38 249839.44
                                                   3 141585.52
## 14
           91992.39
                          135495.07 252664.93
                                                   2 134307.35
## 15
          119943.24
                          156547.42 256512.92
                                                   3 132602.65
## 16
          114523.61
                          122616.84 261776.23
                                                   1 129917.04
## 17
           78013.11
                          121597.55 264346.06
                                                   2 126992.93
## 18
           94657.16
                          145077.58 282574.31
                                                   1 125370.37
## 19
           91749.16
                          114175.79 294919.57
                                                   3 124266.90
## 20
           86419.70
                          153514.11
                                          0.00
                                                   1 122776.86
## 21
                          113867.30 298664.47
           76253.86
                                                   2 118474.03
## 22
           78389.47
                          153773.43 299737.29
                                                   1 111313.02
## 23
           73994.56
                          122782.75 303319.26
                                                   3 110352.25
## 24
           67532.53
                          105751.03 304768.73
                                                   3 108733.99
```

1 108552.04

99281.34 140574.81

```
## 26
          64664.71
                         139553.16 137962.62
                                                2 107404.34
## 27
                        144135.98 134050.07
                                                3 105733.54
          75328.87
## 28
          72107.60
                        127864.55 353183.81
                                                1 105008.31
## 29
          66051.52
                        182645.56 118148.20
                                                3 103282.38
## 30
          65605.48
                        153032.06 107138.38
                                                1 101004.64
## 31
          61994.48
                                                3 99937.59
                        115641.28 91131.24
## 32
          61136.38
                        152701.92 88218.23 1 97483.56
## 33
                        129219.61 46085.25
                                                2 97427.84
          63408.86
## 34
          55493.95
                        103057.49 214634.81
                                                3 96778.92
## 35
          46426.07
                        157693.92 210797.67
                                                2 96712.80
## 36
          46014.02
                        85047.44 205517.64
                                                1 96479.51
## 37
          28663.76
                        127056.21 201126.82
                                                3 90708.19
## 38
          44069.95
                          51283.14 197029.42
                                               2 89949.14
## 39
          20229.59
                                             1 81229.06
                          65947.93 185265.10
## 40
          38558.51
                         82982.09 174999.30
                                                2 81005.76
## 41
          28754.33
                         118546.05 172795.67
                                                2 78239.91
## 42
                                                3 77798.83
          27892.92
                        84710.77 164470.71
## 43
          23640.93
                         96189.63 148001.11
                                                2 71498.49
## 44
                        127382.30 35534.17
                                                1 69758.98
          15505.73
## 45
          22177.74
                        154806.14 28334.72
                                                2 65200.33
## 46
           1000.23
                        124153.04
                                    1903.93 1 64926.08
## 47
            1315.46
                       115816.21 297114.46 3 49490.75
## 48
              0.00
                                        0.00
                                                2 42559.73
                        135426.92
## 49
            542.05
                         51743.15
                                        0.00
                                                1 35673.41
## 50
              0.00
                        116983.80 45173.06
                                                2 14681.40
# 3. Separar en Entrenamiento y Validación
set.seed(123)
split <- sample.split(datos$Beneficio, SplitRatio = 0.7)</pre>
entrenamiento <- subset(datos, split==TRUE)</pre>
              <- subset(datos, split==FALSE)
validacion
train <- entrenamiento
test <- validacion
# 4. Construir el Modelo
regresor <- lm(formula = Beneficio ~ .,
               data = train)
# 5. Hacer las prediciones para el conjunto de Validación
y fit <- predict(regresor, newdata = train)</pre>
y_pred <- predict(regresor, newdata = test)</pre>
# 7. Calcular el error
library(Metrics)
y_real <- test$Beneficio</pre>
RMSE <- rmse(y_real, y_pred)</pre>
print(RMSE)
```

[1] 12062.72