Exercise sheet 6: Proteins & Translation

Exercise 1 - The genetic code
The standard genetic code describes how 64 possible codons encode 20 amino acids and the stop translation signal. It enables DNA-encoded mRNA to be translated into amino acid sequences and is common to all living organisms on Earth.
Note
Above you can see the RNA codon table (or "Code-Sonne"). It can be used to translate a sequence of nucleotide triplets into a sequence of amino acids. The tabe is read from the inside to the outside. e.g. the triplet AUG would translate to Methionine (the start codon).
1a)
Which aminoacid is encoded by the codon UAC ?
Hide
Hint: Possible Answers
☐ Histidine ☐ Proline ☐ Tyrosine
Solution
 ☐ Histidine ☐ Proline ☑ Tyrosine
1b)
How many codons encode the aminoacid Valine?

Hide
Hint : Possible Answers $ \begin{array}{c} \square \ 4 \\ \square \ 2 \\ \square \ 3 \end{array} $
Solution
igotimes 4 $igsquare$ 2 $igsquare$ 3
1c)
Which aminoacid sequence is encoded by the following codons?
AUG-UGC-CUU-ACU-AAA-AGU-CGU-CAU-GAC-GAG-CUG-UAC-GGG-UGA
Hide
Hint: Possible Answers
 □ Met-Cys-Leu-Trp-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly □ Met-Trp-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly □ Met-Cys-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
Solution
 □ Met-Cys-Leu-Trp-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly □ Met-Trp-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly □ Met-Cys-Leu-Thr-Lys-Ser-Arg-His-Asp-Glu-Leu-Tyr-Gly
Exercise 2 - Protein structures
2 a)
Name the parts corresponding to the figure below

\mathbf{Hide}	

Hint	Tho	Names	oro
HINT.	- i ne	Names	are

alpha carbon amino group, carboxyl group and side chain.

Solution

- A. amino group
- B. side chain
- C. alpha carbon
- D. carboxyl group

2b)

Select the peptide bound in the following dipeptide.

Hide

Hint A peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids via the carbon atom nr. 1 of the first and the nitrogen atom nr 2 of the second amino acid.

Solution A peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids via the carbon atom nr. 1 of the first and the nitrogen atom nr 2 of the second amino acid.

 \mathbf{B}

2c)

The 3D structure of a protein is very important for its function. Name the structure types in the figure below.

Hide

Hint Match the names

- primary structure
- secondary structure
- tertiary structure
- quaternary structrue
- alpha-helix
- beta-sheet. Note that can be multiple correct options.

Solution

- A. primary structure
- B. secondary structure, beta sheet
- C. secondary structure, alpha helix
- D. tertiary structure
- E. quaternary structure

Exercise 3 - What are enzymes?

Enzymes are important molecules because they can substantially speed up chemical reactions and enhance their specificity. They are sometimes referred to as biocatalysts. Catalysts are compounds that influence chemical reactions being used up as a result. In other words, they are reusable. A single enzyme molecule processes about 100.000 to 5 million molecules every minute.

Shortly explain the function of the further mentioned enzymes regarding their role in prokaryotic translation or transcription

3a)

DNA Polymerase III

Hide

Solution DNA Polymerase III is responsible for bacterial chromosomal DNA replication, along with the helicase and primase, at the replication fork.

3b)

DNA Ligase

Hide
Solution The DNA Ligase catalyze the formation of a phosphodiester bond between the 5'-P group of one single DNA strand with the adjacent 3'-OH group of another chain.
3c)
RNA Polymerase
Hide
Solution RNA Polymerases are enzymes responsible for copying a DNA sequence into an RNA sequence, during the process of transcription.
3d)
RNAse H
Hide
Solution Ribonucleases H are enzymes that cleave the RNA of RNA/DNA hybrids that form during replication and repair and which could lead to DNA instability if they were not processed.
3e)
DNA Helicase

Hide

Solution DNA Helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms.

3f)

DNA Primase

Hide

Solution DNA primase catalyses the synthesis of short RNA molecules used as primers for the DNA polymerase during DNA replication

Exercise 4 - The RCSB Protein Database - PDB

Protein structures are hard to resolve. Therefore, identified protein structures are stored in according databases to enable a fast access and to gather all data associated. An example is the RCSB Protein Data Base (PDB).

Lapinaite, A., Knott, G. J., Palumbo, C. M., Lin-Shiao, E., Richter, M. F., Zhao, K. T., ... & Doudna, J. A. (2020). DNA capture by a CRISPR-Cas9-guided adenine base editor. Science, 369(6503), 566-571.

Access the protein information of the above shown protein SpCas9 with PDB-ID 6VPC and answer the following questions:

https://www.rcsb.org/

4a)

From which organism is this protein?

Hide

Solution Streptococcus pyogenes and Escherichia coli

Note

This is an artificially designed Protein containing the CRISPR-associated endonuclease Cas9 from *Streptococcus pyogenes* and the t-RNA adenine deaminase A v8e (TadA-8e) from *Escherichia coli*.

4b)

How many amino acids does this protein consist of?

\mathbf{Hide}

Solution The Cas9 subunit has 1361 aminoacids, whilst the deaminase consists of 227 amino acids. 1361 + 227 = 1588