Lecture Summary: Descriptive Statistics of Normal Samples

Source: Lecture 7.8.pdf

Key Points

- Introduction to Normal Samples:
 - Consider X_1, X_2, \ldots, X_n as iid normal random variables with mean μ and variance σ^2 .
 - Sample statistics such as mean \bar{X} and variance S^2 are random variables derived from the data.
- Sample Mean:
 - Definition:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- Properties:
 - * \bar{X} is normally distributed.
 - * Mean of \bar{X} :

$$\mathbb{E}[\bar{X}] = \mu.$$

* Variance of \bar{X} :

$$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}.$$

- Sum of Squares:
 - Definition:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

– For normal samples, S^2 is scaled chi-squared distributed:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

- Intuition:
 - * Only n-1 terms are independent due to the dependency introduced by \bar{X} .
 - * The chi-squared distribution arises from the sum of squared normal variables.
- Joint Distribution of \bar{X} and S^2 :
 - Remarkable result: \bar{X} and S^2 are independent.
 - Joint distribution is the product of their marginal distributions.
- Special Cases:

– For standard normal samples ($\sigma^2 = 1$), the sum of squares is:

$$\sum_{i=1}^{n} X_i^2 \sim \chi_n^2.$$

 This property is foundational in deriving confidence intervals and hypothesis tests for normal data.

• Applications:

- Statistical inference: Building models assuming normality.
- Hypothesis testing: Independence of \bar{X} and S^2 simplifies many calculations.

Simplified Explanation

Key Results: 1. Sample mean \bar{X} is normally distributed, with:

$$\mathbb{E}[\bar{X}] = \mu, \quad \operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}.$$

2. Sample variance S^2 follows a scaled chi-squared distribution:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

3. \bar{X} and S^2 are independent.

Why It Matters: - Normal distributions simplify statistical procedures. - Independence of \bar{X} and S^2 aids in creating efficient models.

Conclusion

In this lecture, we:

- Explored properties of sample mean and variance for normal samples.
- Discussed the chi-squared distribution and its role in statistics.
- Highlighted the independence of \bar{X} and S^2 , a critical result for inference.

These concepts are foundational for advanced statistical methods, enabling accurate and efficient data analysis.