MIT OpenCourseWare http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe, 6.189 Multicore Programming Primer, January (IAP) 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 12

StreamIt Parallelizing Compiler

Common Machine Language

- Represent common properties of architectures
 - Necessary for performance
- Abstract away differences in architectures
 - Necessary for portability
- Cannot be too complex
 - Must keep in mind the typical programmer
- C and Fortran were the common machine languages for uniprocessors
 - Imperative languages are not the correct abstraction for parallel architectures.
- What is the correct abstraction for parallel multicore machines?

Common Machine Language for Multicores

- Current offerings:
 - OpenMP
 - MPI
 - High Performance Fortran
- Explicit parallel constructs grafted onto imperative language
- Language features obscured:
 - Composability
 - Malleability
 - Debugging
- Huge additional burden on programmer:
 - Introducing parallelism
 - Correctness of parallelism
 - Optimizing parallelism

Explicit Parallelism

- Programmer controls details of parallelism!
- Granularity decisions:
 - if too small, lots of synchronization and thread creation
 - if too large, bad locality
- Load balancing decisions
 - Create balanced parallel sections (not data-parallel)
- Locality decisions
 - Sharing and communication structure
- Synchronization decisions
 - barriers, atomicity, critical sections, order, flushing
- For mass adoption, we need a better paradigm:
 - Where the parallelism is natural
 - Exposes the necessary information to the compiler

Unburden the Programmer

- Move these decisions to compiler!
 - Granularity
 - Load Balancing
 - Locality
 - Synchronization
- Hard to do in traditional languages
 - Can a novel language help?

Properties of Stream Programs

- Regular and repeating computation
- Synchronous Data Flow
- Independent actors with explicit communication
- Data items have short lifetimes

Benefits:

- Naturally parallel
- Expose dependencies to compiler
- Enable powerful transformations

Outline

- Why we need New Languages?
- Static Schedule
- Three Types of Parallelism
- Exploiting Parallelism

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { }

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { A }

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { A, A }

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { A, A, B }

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { A, A, B, A }

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { A, A, B, A, B }

- All data pop/push rates are constant
- Can find a Steady-State Schedule
 - # of items in the buffers are the same before and the after executing the schedule
 - There exist a unique minimum steady state schedule

Schedule = { A, A, B, A, B, C }

Initialization Schedule

- When peek > pop, buffer cannot be empty after firing a filter
- Buffers are not empty at the beginning/end of the steady state schedule
- Need to fill the buffers before starting the steady state execution

Initialization Schedule

- When peek > pop, buffer cannot be empty after firing a filter
- Buffers are not empty at the beginning/end of the steady state schedule
- Need to fill the buffers before starting the steady state execution

Outline

- Why we need New Languages?
- Static Schedule
- Three Types of Parallelism
- Exploiting Parallelism

Types of Parallelism

Task Parallelism

- Parallelism explicit in algorithm
- Between filters without producer/consumer relationship

Types of Parallelism

Task Parallelism

- Parallelism explicit in algorithm
- Between filters without producer/consumer relationship

Data Parallelism

- Between iterations of a stateless filter
- Place within scatter/gather pair (fission)
- Can't parallelize filters with state

Pipeline Parallelism

- Between producers and consumers
- Stateful filters can be parallelized

Types of Parallelism

Traditionally:

Task Parallelism

Thread (fork/join) parallelism

Data Parallelism

Data parallel loop (forall)

Pipeline Parallelism

Usually exploited in hardware

Outline

- Why we need New Languages?
- Static Schedule
- Three Types of Parallelism
- Exploiting Parallelism

Baseline 1: Task Parallelism

- Inherent task parallelism between two processing pipelines
- Task Parallel Model:
 - Only parallelize explicit task parallelism
 - Fork/join parallelism
- Execute this on a 2 core machine ~2x speedup over single core
- What about 4, 16, 1024, ... cores?

Evaluation: Task Parallelism

Baseline 2: Fine-Grained Data Parallelism

- Each of the filters in the example are stateless
- Fine-grained Data Parallel Model:
 - Fiss each stateless filter N ways
 (N is number of cores)
 - Remove scatter/gather if possible
- We can introduce data parallelism
 - Example: 4 cores
- Each fission group occupies entire machine

Evaluation: Fine-Grained Data Parallelism

Baseline 3: Hardware Pipeline Parallelism

- The BandPass and BandStop filters contain all the work
- Hardware Pipelining
 - Use a greedy algorithm to fuse adjacent filters
 - Want # filters <= # cores</p>
- Example: 8 Cores

Baseline 3: Hardware Pipeline Parallelism

- The BandPass and BandStop filters contain all the work
- Hardware Pipelining
 - Use a greedy algorithm to fuse adjacent filters
 - Want # filters <= # cores</p>
- Example: 8 Cores
- Resultant stream graph is mapped to hardware
 - One filter per core
- What about 4, 16, 1024, cores?
 - Performance dependent on fusing to a load-balanced stream graph

Evaluation: Hardware Pipeline Parallelism

The StreamIt Compiler

- 1. Coarsen: Fuse stateless sections of the graph
- 2. Data Parallelize: parallelize stateless filters
- 3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture

11.2x mean throughput speedup over single core

Phase 1: Coarsen the Stream Graph

- Before data-parallelism is exploited
- Fuse stateless pipelines as much as possible without introducing state
 - Don't fuse stateless with stateful
 - Don't fuse a peeking filter with anything upstream

Phase 1: Coarsen the Stream Graph

- Before data-parallelism is exploited
- Fuse stateless pipelines as much as possible without introducing state
 - Don't fuse stateless with stateful
 - Don't fuse a peeking filter with anything upstream
- Benefits:
 - Reduces global communication and synchronization
 - Exposes inter-node optimization opportunities

Phase 2: Data Parallelize

Phase 2: Data Parallelize

Data Parallelize for 4 cores

Task parallelism!

Each fused filter does equal work

Fiss each filter 2 times to occupy entire chip

Phase 2: Data Parallelize

Evaluation: Coarse-Grained Data Parallelism

Simplified Vocoder

Data Parallelize

Target a 4 core machine

Data + Task Parallel Execution

We Can Do Better!

Phase 3: Coarse-Grained Software Pipelining

Greedy Partitioning

To Schedule:

Target 4 core machine

Evaluation: Coarse-Grained Task + Data + Software Pipelining

Summary

- Streaming model naturally exposes task, data, and pipeline parallelism
- This parallelism must be exploited at the correct granularity and combined correctly

	Task	Fine- Grained Data	Hardware Pipelining	Coarse-Grained Task + Data	Coarse-Grained Task + Data + Software Pipeline
Parallelism	Application Dependent	Good	Application Dependent	Good	Best
Synchronization	Application Dependent	High	Application Dependent	Low	Lowest

Robust speedups across varied benchmark suite