Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Estatística

Relatório Atividade 2 Análise de Regressão

Grupo: Andrielle Couto - 770295

Crystiane Souza - 760955

Douglas Nestlehner - 752728

Eric Sato - 729739

Setembro, 2021

Sumário

1	Introdução Resultados				
2					
	2.1	Intervalos de Confiança para β_0 e β_1 considerando toda a amostra	5		
	2.2	Intervalos de Confiança para β_0 e β_1 considerando apenas parte da amostra	7		
	2.3	Tabela ANOVA e Teste de Hipóteses	9		
	2.4	Intervalo de Confiança para $\mathbb{E}[Y_0]$	9		
	2.5	Intervalo de Predição para uma nova resposta	10		
	2.6	Intervalo de Predição para a média de m novas respostas	11		
	2.7	Teste Linear Geral	11		
${f A}$	Cóc	ligo	16		

Capítulo 1

Introdução

Este trabalho tem como objetivo abordar uma aplicação do modelo de regressão linear simples, o qual é dado por:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

em que Y_i é a variável resposta do i-ésimo ensaio, β_0 é o valor esperado da variável resposta quando a variável independente vale zero, β_1 é o efeito aditivo da variável independente no valor esperado da variável resposta, x_i é o valor da i-ésima observação da variável independente e ϵ_i é o erro aleatório do i-ésimo indivíduo.

Para isso, utilizamos o conjunto de dados com $n=1000000~(10^6)$ observações e l=199 covariáveis que geramos na Atividade 1 através do software de linguagem de programação Python, e para essa Atividade, consideramos apenas as observações da covariável x_3 . Em seguida, construímos intervalos de confiança para β_0 e β_1 considerando primeiro toda a amostra e depois apenas parte dela. Também, geramos a Tabela ANOVA a fim de conduzirmos um Teste de Hipóteses para testarmos $H_0: \beta_1=0$. Depois disso, construímos um intervalo de confiança para $\mathbb{E}[Y_0]$ considerando apenas parte da amostra e dois específicos x_0 , um próximo de \bar{x} e um longe de \bar{x} . Logo depois, considerando toda a amostra novamente, calculamos intervalos de predição para uma nova resposta e para a média de m novas respostas. Por fim, conduzimos um Teste Linear Geral para testar $H_0: \beta_1 = \beta_2 = \beta_3 = 0$.

Nesse sentido, no Capítulo 2 apresentamos os resultados obtidos pelo o que foi citado anteriormente e no Apêndice está o código que foi utilizado para a realização dessa atividade.

Capítulo 2

Resultados

Neste capítulo, apresentamos os resultados obtidos.

Antes, vale lembrar o começo do que foi feito na Atividade 1. Primeiro, geramos um conjunto de dados com $n = 10^6$ observações e l = 199 covariáveis, ou seja, $x_{i1}, x_{i2}, ..., x_{i199}, i = 1, ..., 10^6$, de diferentes distribuições (Distribuições Normal, Uniforme, Exponencial, Beta e Gamma), obtendo a Figura 2.1 abaixo:

```
x197
             x1
                       x2
                                 х3
                                                         x198
                                                                    x199
       -0.306653 -0.785878 0.153280
                                          17.670058 3.487106
                                                                5.211530
       0.537779 0.421365 -0.944903
                                           8.682123
                                                                0.048897
                                     . . .
                                                     1.831579
       0.509093 -0.009545 0.148196
                                          12.636960 2.508360
                                                                0.078390
3
       -0.655666 0.321823 0.617224
                                          11.467218 5.855939
                                                                8.373159
       -0.599789 1.180766
                          0.795135
                                     ... 12.625468 2.353158
                                                               16.160959
999995 0.051659 -0.358460 -1.217553
                                           8.019396
                                                     2.779270
                                                                6.715539
999996 -0.565747 0.541477 -0.074514
                                           9.001532
                                                     2.589704
                                                                1.340682
999997 -0.106465 -0.775124 -1.384023
                                           4.142704
                                                     4.136626
                                                                0.480302
999998 -0.723440 0.606755 0.307154
                                                     1.019886
                                          10.501333
                                                                5.380319
      0.670020 -0.899993 -0.723158
                                          10.428158
                                                    2.791444
                                                                2.464120
```

[1000000 rows x 199 columns]

Figura 2.1: Base de dados das covariáveis.

Após isso, tomamos $\beta_0 = 10$ e geramos os outros 199, ou seja, $\beta_1, \beta_2, ..., \beta_{199}$ por meio de uma Distribuição Normal(0,2), obtendo a Figura 2.2:

```
[-3.17814026 0.82174032 0.64914096 -1.04403025 1.67897664 0.03355381
 0.36548631 -0.53472134 -4.40452794 -3.72488118 2.22921507 -2.56674148
 -0.2218001 -0.30273885 -1.14344852 -1.4108977 -2.24284415 -0.34993769
 -0.29480631 -1.45472404 -1.30804015 1.21252752 -1.27263772
                                                           0.01834462
 -4.07926342 -0.02983682
                        2.1492547
                                    0.54072849
                                               3.36359461 -3.43577417
 -0.61956996 -1.65899187 -1.48100326 -0.82904771
                                               2.49938852
                                                           0.95582614
 1.64313732
            0.72736667 -0.21834761
                                   0.56758481
                                               1.68079489 -0.60776302
             2.64512003 -1.2904296
 -5.41942787
                                    3.71243567 -1.83064893 -1.72123276
 3.07093598 -0.22050032
                        1.01880253 -2.93309822
                                               2.46228704 -1.42007188
           -0.67000704
                        3.78614346 0.58582059
                                               0.40857637 -1.99265093
 -1.3490867
 -1.34064886 0.87039185 -4.48876381 1.28099526 -4.94923955 -0.71667124
 3.34536237
            3.66304458 0.06446188 2.1599863
                                                1.40821561 -0.70820471
             1.8310001
                       -0.94333349 1.18312055 -0.60613177
                                                           0.14803882
 0.15991261
                                    0.51514558
 -0.034801
             0.9503359
                         2.71121137
                                               1.18204787 -3.07282414
 -0.49542716
            3.39707191 0.42507642
                                   3.16467326 -2.16076843 -3.48066186
 1.73087323
            2.3443886
                       -1.85691189 -0.9167518
                                                1.6385639
                                                          -0.23156519
             1.39692614 -0.07161874
 -1.58362555
                                   1.82576022 -0.64032545
                                                           2.31952762
 -3.94114947
             1.59773054
                        0.22193928 -2.41061498
                                               1.42927481
                                                           3.11419923
 0.13967969
             0.62888182 -0.61918391 2.10651299
                                               0.7852024
                                                           1.8853202
 -0.99024665 -0.51201348 1.4677751 -0.89813128 -0.50220247
                                                           1.25297738
 2.23353315 -1.86371397 -1.56774697 0.54172092
                                               0.17889165 -0.9968165
 0.0181375 -0.52523938 -3.55193009
                                    0.70593984
                                               0.50482978 -0.42993725
 -2.97575416 -1.06684421 -2.66857689
                                    0.10760858
                                               2.54887705
                                                           1.08836041
                        4.60465302 -4.14096941 -0.3081288
 1.52770122 -0.52997377
                                                           2.29917931
 2.22362534 -2.21540078
                        0.19454106
                                   0.34293316 -0.56450044 -2.53945319
 1.84909421 -0.17591821
                         2.24440917
                                    0.50252927 -0.28893614 -1.9561467
 -2.32435807
             0.0770403
                         1.09228597
                                   2.71488892
                                               2.33796042
             2.52247565 -1.6330807
                                   -1.3042549
                                              -0.19458548 -0.45940525
 0.99685207
 -1.31746202 -0.79962706 -1.16531094 -1.39055513 -2.59285303 0.2597009
 -1.32777504 -0.75517182 0.3447409
                                    0.27240809 -0.05282772 -0.18319746
 -0.89783316 1.1382691 -0.73467581 -1.52279924
                                               1.84284837 -0.43858816
 -1.20277471 -0.80515865 -0.42935529 0.84206293
                                               0.1525661
                                                           1.83328626
 0.35378042]
```

Figura 2.2: Valores de $\beta_1, \beta_2, ..., \beta_{199}$.

Também, geramos valores para os erros $\epsilon_i, i=1,...,10^6$ usando uma Distribuição Normal(0,1):

```
[-0.75061472 1.31635732 1.24614003 ... -0.26060049 -1.77081153 1.64005059]
```

Figura 2.3: Valores de ϵ_i .

Com isso, através da fórmula

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{199} x_{i199} + \epsilon_i$$

chegamos nos seguintes valores de Y_i :

```
[-128.77452511 60.28502227 -6.50087476 ... -38.03158261 126.04605317 -4.63388594]
```

Figura 2.4: Valores de Y_i .

2.1 Intervalos de Confiança para β_0 e β_1 considerando toda a amostra

Para determinar o intervalo de confiança para β_0 e β_1 considerando toda a nossa amostra, escolhemos apenas uma covariável com o objetivo de ajustar uma regressão linear simples.

A covariável escolhida dentre as 199 da Figura 2.1 foi x_3 , a qual pode ser observada abaixo:

```
[[ 0.15327959]
 [-0.94490268]
 [ 0.14819629]
 ...
 [-1.38402254]
 [ 0.30715368]
 [-0.72315764]]
```

Figura 2.5: Valores das 10^6 observações da covariável x_3 .

Após isso, geramos valores para os erros ϵ_i , $i=1,...,10^6$, usando uma Distribuição Normal(0,1) e usamos os betas gerados na atividade anterior, ou seja, $\beta_0=10$ e $\beta_1=-3.1781402630116435$ (correspondente ao valor de β_3 na Atividade 1, já que a covariável que estamos utilizando é x_3), para encontrar os valores da variável resposta Y_i , $i=1,...,10^6$, chegando nos seguintes valores:

```
[ 8.76224125 14.31939057 10.77515144 ... 14.13801727 7.25301099 13.93834699]
```

Figura 2.6: Valores das 10^6 variáveis resposta $Y_i, i=1,...,10^6$, geradas.

Desse modo, tendo obtido os valores das variáveis respostas Y_i , $i=1,...,10^6$, e o valor da variável preditora x_3 estimamos, através da regressão linear simples, os valores $\hat{\beta}_0$ e $\hat{\beta}_1$, sendo eles:

$$\hat{\beta}_0 = 9.999146868848243 \quad \text{e} \quad \hat{\beta}_1 = -3.1762718676089308$$

Calculamos em seguida os valores ajustados \hat{Y}_i utilizando a fórmula $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i3}$, $i = 1, ..., 10^6$:

[9.51228922 13.00041466 9.52843517 ... 14.39517872 9.02354327 12.29609212]

Figura 2.7: Valores de
$$\hat{Y}_i$$
, $i = 1, ..., 10^6$.

Depois, calculamos os resíduos e_i , sendo o i-ésimo resíduo a diferença entre o valor observado e o valor correspondente ajustado \hat{Y}_i , obtendo como resultado:

Figura 2.8: Valores observados dos resíduos $e_i, i=1,...,10^6$.

Com os valores anteriores, calculamos a soma de quadrados dos resíduos SSE e o quadrado médio dos resíduos MSE cujas fórmulas são:

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \quad \text{e} \quad MSE = \frac{SSE}{n-2}$$

Sabendo que, no caso da nossa atividade, $n=10^6$, obtivemos assim SSE=998361.8862771506 e MSE=0.9983638830049166.

Os estimadores da variância de $\hat{\beta}_0$ e $\hat{\beta}_1$ foram obtidos através das fórmulas:

$$\hat{V}[\hat{\beta}_0] = MSE \cdot \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$
$$\hat{V}[\hat{\beta}_1] = \frac{MSE}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

e seus resultados foram, respectivamente, $9.98364391\cdot 10^{-07}$ e $1.34002636\cdot 10^{-06}$.

Desse modo, fomos capazes de determinar os intervalos de confiança para β_0 e β_1 , utilizando uma confiança de 95%. O IC de β_0 é:

$$IC(\beta_0; 95\%) = \left[\hat{\beta}_0 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} ; \hat{\beta}_0 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} \right]$$
$$= \left[9.99718850601654 ; 10.001105231679945 \right]$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [9.99718850601654; 10.001105231679945] contém o verdadeiro valor de β_0 . Como sabemos que $\beta_0 = 10$, então concluímos que esse intervalo realmente contém o verdadeiro valor do intercepto.

Junto disso, o IC para β_1 é:

$$IC(\beta_1; 95\%) = \left[\hat{\beta}_1 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} ; \hat{\beta}_1 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} \right]$$
$$= \left[-3.178540715010965 ; -3.1740030202068965 \right]$$

Agora, temos 95% de confiança de que o intervalo [-3.178540715010965; -3.1740030202068965] contém o verdadeiro valor de β_1 . Como sabemos que $\beta_1 = -3.1781402630116435$, então concluímos que esse intervalo realmente contém o verdadeiro valor do slope.

2.2 Intervalos de Confiança para β_0 e β_1 considerando apenas parte da amostra

Nessa seção, faremos os mesmos passos da anterior, porém considerando agora uma amostra aleatória de tamanho 4800 retirada da mesma covariável x_3 , a qual é mostrada abaixo:

```
[[-0.02464019]

[-0.06923491]

[ 1.09485779]

...

[ 1.84945334]

[-1.04604505]

[-1.67696782]]
```

Figura 2.9: Valores das 4800 observações da covariável x_3 .

Após isso, geramos valores para os erros $\epsilon_i, i=1,...,4800$, usando uma Distribuição Normal(0,1) e usamos novamente $\beta_0=10$ e $\beta_1=-3.1781402630116435$ para encontrar novos valores da variável resposta $Y_i, i=1,...,4800$, chegando em:

```
[10.37115253 7.9589889 7.82161447 ... 3.9869818 12.57241937 16.43704434]
```

Figura 2.10: Valores das 4800 variáveis resposta Y_i , i = 1, ..., 4800, geradas.

Desse modo, estimamos, através da regressão linear simples, os valores $\hat{\beta}_0$ e $\hat{\beta}_1$, sendo eles:

$$\hat{\beta}_0 = 10.002770288849836$$
 e $\hat{\beta}_1 = -3.1545368314263604$

Calculamos em seguida os valores ajustados \hat{Y}_i :

[10.08049867 10.22117436 6.54900106 ... 4.1686016 13.30255791 15.29282705]

Figura 2.11: Valores de
$$\hat{Y}_i, i=1,...,4800.$$

Depois, calculamos os resíduos e_i , sendo o i-ésimo resíduo a diferença entre o valor observado e o valor correspondente ajustado \hat{Y}_i , obtendo como resultado:

Figura 2.12: Valores observados dos resíduos $e_i, i=1,...,4800.$

Com os valores anteriores, calculamos a soma de quadrados dos resíduos SSE e o quadrado médio dos resíduos MSE, obtendo SSE = 4763.775615994951 e MSE = 0.992866947893904. Além disso, os estimadores da variância de $\hat{\beta}_0$ e $\hat{\beta}_1$ têm como resultados, respectivamente, 0.00027615 e 0.00020691.

Desse modo, fomos capazes de determinar os intervalos de confiança para β_0 e β_1 , utilizando uma confiança de 95%. O IC de β_0 é:

$$IC(\beta_0; 95\%) = \left[\hat{\beta}_0 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} ; \hat{\beta}_0 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_0]} \right]$$
$$= \left[9.974570259587507 ; 10.030970318112166 \right]$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [9.974570259587507; 10.030970318112166] contém o verdadeiro valor de β_0 . Como sabemos que $\beta_0 = 10$, então concluímos que esse intervalo realmente contém o verdadeiro valor do intercepto.

Junto disso, o IC para β_1 é:

$$IC(\beta_1; 95\%) = \begin{bmatrix} \hat{\beta}_1 - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} ; \hat{\beta}_1 + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{\beta}_1]} \end{bmatrix}$$
$$= \begin{bmatrix} -3.187115395101897 ; -3.121958267750824 \end{bmatrix}$$

Agora, temos 95% de confiança de que o intervalo [-3.187115395101897; -3.121958267750824] contém o verdadeiro valor de β_1 . Como sabemos que $\beta_1 = -3.1781402630116435$, então concluímos que esse intervalo realmente contém o verdadeiro valor do slope.

Comparando essa seção com a anterior, ou seja, a construção dos intervalos de confiança para β_0 e β_1 considerando toda a amostra e depois uma parte dela de tamanho 4800, percebemos que quanto maior o tamanho amostral, menor é a amplitude dos intervalos, isto é, maior é a precisão deles.

2.3 Tabela ANOVA e Teste de Hipóteses

Nessa seção, continuaremos a considerar a amostra retirada anteriormente de tamanho 4800.

A fim de testarmos $H_0: \beta_1 = 0$, ou seja, se há ou não uma associação linear entre x_3 e a variável resposta, geramos a Tabela ANOVA abaixo:

Figura 2.13: Tabela ANOVA.

Observando a Figura 2.13 acima e considerando uma significância de 1%, percebemos que o valor-p=0 < α = 0.01, ou seja, rejeitamos H_0 : β_1 = 0. Desse modo, com valor-p=0, há evidências de que há uma associação linear entre x_3 e a variável resposta.

2.4 Intervalo de Confiança para $\mathbb{E}[Y_0]$

Nessa seção, assim como na anterior, continuaremos a considerar a amostra retirada anteriormente de tamanho 4800 e utilizando o mesmo ajuste e estimação dos parâmetros feitos na Seção 2.2 (que considerava apenas uma amostra de tamanho 4800).

Faremos agora o intervalo de confiança para $\mathbb{E}[Y_0]$, ou seja, para o valor predito da variável resposta, considerando dois específicos x_0 , um próximo de \bar{x} e um longe de \bar{x} . Como temos $\bar{x}=-0.015207517319944928$, consideramos $x_0^{\text{próximo}}=-0.014999$ e $x_0^{\text{longe}}=1.555555$. Através dos valores apresentados agora, obtivemos as variáveis resposta ajustadas: $\hat{Y}_0^{\text{próximo}}=10.04977288763809$ e $\hat{Y}_0^{\text{longe}}=5.0958882475661325$.

Após isso, calculamos os estimadores da variância de $\hat{Y}_0^{\text{próximo}}$ e \hat{Y}_0^{longe} através da fórmula:

$$\hat{V}[\hat{Y}_0] = MSE \cdot \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

chegando em $\hat{V}[\hat{Y}_0^{\text{próximo}}] = 0.00020684730692609572$ e $\hat{V}[\hat{Y}_0^{\text{longe}}] = 0.0008881486777383533$.

Na sequência, construímos os intervalos de confiança para ambos os $\mathbb{E}[Y_0]$, considerando 95% de confiança. Assim, o IC para $\mathbb{E}[Y_0^{\text{próximo}}]$ é:

$$\begin{split} IC(\mathbb{E}[Y_0^{\text{pr\'oximo}}];95\%) &= \left[\; \hat{Y}_0^{\text{pr\'oximo}} - t_{n-2;\frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{pr\'oximo}}]} \; ; \; \hat{Y}_0^{\text{pr\'oximo}} + t_{n-2;\frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{pr\'oximo}}]} \right] \\ &= \left[10.021577209052666 \; ; \; 10.077968566223515 \right] \end{split}$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [10.021577209052666; 10.077968566223515] contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{próximo}}]$. Como sabemos que $\mathbb{E}[Y_0^{\text{próximo}}] = 10.047354289918873$, então concluímos que esse intervalo realmente contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{próximo}}]$.

Junto disso, o IC para $\mathbb{E}[Y_0^{\text{longe}}]$ é:

$$IC(\mathbb{E}[Y_0^{\text{longe}}]; 95\%) = \left[\hat{Y}_0^{\text{longe}} - t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{longe}}]} ; \hat{Y}_0^{\text{longe}} + t_{n-2; \frac{\alpha}{2}} \sqrt{\hat{V}[\hat{Y}_0^{\text{longe}}]} \right]$$
$$= \left[5.037463014632696 ; 5.154313480499569 \right]$$

Agora, temos 95% de confiança de que o intervalo [5.037463014632696; 5.154313480499569] contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{longe}}]$. Como sabemos que $\mathbb{E}[Y_0^{\text{longe}}] = 5.056402820885388$, então concluímos que esse intervalo realmente contém o verdadeiro valor de $\mathbb{E}[Y_0^{\text{longe}}]$.

Comparando esses dois intervalos, ou seja, a construção dos intervalos de confiança para $E[Y_0^{\text{próximo}}]$ e $\mathbb{E}[Y_0^{\text{longe}}]$, percebemos que quanto mais próximo for x_0 de \bar{x} , menor é a amplitude do intervalo, isto é, maior é a precisão dele. Concluímos isso devido à variabilidade de $\hat{Y}_0^{\text{próximo}}$ ser menor do que a de \hat{Y}_0^{longe} .

2.5 Intervalo de Predição para uma nova resposta

Nessa seção, voltaremos a considerar toda a amostra.

A fim de construirmos o intervalo de predição para uma nova resposta, geramos uma nova observação da covariável x_3 , e denotamos essa observação como x_{novo} , sendo $x_{\text{novo}} = -0.08112442165992582$. Através desse valor e utilizando o mesmo ajuste e estimação dos parâmetros feitos na Seção 2.1 (que considerava toda a amostra), obtivemos Y_{novo} e \hat{Y}_{novo} , os quais são, respectivamente, 10.672226800235403 e 10.25682008714271.

Ainda, temos que o intervalo de predição com uma confiança de 95% para $Y_{\rm novo}$ é dado por:

$$IP(Y_{\rm novo};95\%) = \left[\ \hat{Y}_{\rm novo} - t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \ ; \ \hat{Y}_{\rm novo} + t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \right] \right] + \left[\frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right) \right] + \frac{1}{n} \left(\frac{1}{n} + \frac$$

Desse modo, temos:

$$IP(Y_{\text{novo}}; 95\%) = \begin{bmatrix} 8.298456766118457 ; 12.215183408166963 \end{bmatrix}$$

Analisando o resultado acima, temos 95% de confiança de que o intervalo [8.298456766118457; 12.215183408166963] contém o verdadeiro valor de $Y_{\rm novo}$. Como sabemos que $Y_{\rm novo}=10.672226800235403$, então concluímos que esse intervalo realmente contém o verdadeiro valor de $Y_{\rm novo}$.

2.6 Intervalo de Predição para a média de m novas respostas

Nessa seção, também consideraremos toda a amostra.

Com o objetivo de construirmos agora o intervalo de predição para a média de m novas respostas, consideramos m=150 e o mesmo $x_{\rm novo}=-0.08112442165992582$ considerado na seção anterior, e calculamos a média dessas m respostas, encontrando como valor $\bar{Y}_{\rm novo}=10.209972327215253$.

Ainda, temos que o intervalo de predição com uma confiança de 95% para m novas respostas é dado por:

$$IP(\bar{Y}_{\text{novo}};95\%) = \left[\ \hat{Y}_{\text{novo}} - t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(\frac{1}{m} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \ ; \ \hat{Y}_{\text{novo}} + t_{n-2;\frac{\alpha}{2}} \sqrt{MSE \cdot \left(\frac{1}{m} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \right] \right] + \frac{1}{n} \left[\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right) \right] + \frac{1}{n} \left[\frac{1}{n} + \frac{1}{n}$$

Desse modo, temos:

$$IP(\bar{Y}_{\text{novo}}; 95\%) = \left[10.096908375859297 ; 10.416731798426124\right]$$

Portanto, temos 95% de confiança de que o intervalo [10.096908375859297; 10.416731798426124] contém o verdadeiro valor de \bar{Y}_{novo} . Como sabemos que $\bar{Y}_{\text{novo}} = 10.209972327215253$, então concluímos que esse intervalo realmente contém o verdadeiro valor de \bar{Y}_{novo} .

2.7 Teste Linear Geral

Para a realização do teste linear geral e considerando os dados da Figura 2.1, escolhemos 8 covariáveis, sendo elas: x_{60} , x_{79} , x_{120} , x_{127} , x_{145} , x_{160} , x_{175} , x_{194} , para ajustar o modelo de regressão linear múltipla considerando uma amostra escolhida aleatoriamente de tamanho 800. Além disso, dentre os β 's que acompanham essas covariáveis, três são próximos de zero e os outros cinco são mais distantes de zero.

Após escolher as covariáveis e retirar a amostra, para construir o teste linear geral é necessário dar o primeiro passo que é ajustar o modelo completo. Nesse sentido, na Figura 2.14 temos o conjunto de dados das covariáveis que foram usadas para ajustar o modelo completo.

```
x79
                                 x194
                     x127
                                                  x160
                                                              x175
0
     0.106861
                0.818931
                             2.878963
                                             0.317880
                                                          6.879663
1
     0.787219
                0.739447
                             7.864554
                                             1.590331
                                                          4.839365
2
     0.872126
                0.593939
                             3.947550
                                             0.287297
                                                          4.822773
3
     0.862474
                0.613155
                           12.531605
                                             0.718214
                                                          1.801654
4
     0.257793
                0.822022
                             4.423280
                                             0.748059
                                                          1.708784
                      . . .
                                  . . .
                                                   . . .
795
     0.352054
                0.872846
                           12.265217
                                             0.496957
                                                         12.478482
     0.361209
796
                0.797508
                             3.419382
                                             0.385098
                                                          1.996428
797
     0.680479
                0.302043
                             3.224519
                                             0.126229
                                                          8.378537
     0.907782
                0.679589
798
                             8.315152
                                             0.909111
                                                          3.418992
799
     0.817525
                0.658900
                             5.165363
                                             0.019627
                                                          9.910728
```

Figura 2.14: Base de dados das covariáveis para o modelo completo.

Nesse contexto, denotando $x_1 = x_{79}$, $x_2 = x_{127}$, $x_3 = x_{194}$, $x_4 = x_{60}$, $x_5 = x_{120}$, $x_6 = x_{145}$, $x_7 = x_{160}$ e $x_8 = x_{175}$, e gerando um erro aleatório usando uma Distribição Normal(0,1) temos o seguinte modelo de regressão:

```
Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \beta_6 x_{i6} + \beta_7 x_{i7} + \beta_8 x_{i8} + \epsilon_i, i=1,...,800em que:
```

```
\beta_0=10\;;\;\beta_1=0.018137500871328753\;;\;\beta_2=0.018344615457445486\;; \beta_3=0.02644061506466454\;;\;\beta_4=-1.9926509283527098\;; \beta_5=1.2529773794892074\;;\;\beta_6=2.223625336049015\;; \beta_7=2.7148889203997544\;;\;\beta_8=-1.3277750401412078.
```

e através dos quais podemos percebemos que os três β 's próximos de zero são β_1, β_2 e β_3 . Sendo assim, ao realizar o ajuste do modelo completo através da regressão linear múltipla, temos os valores de Y_i representados na Figura 2.15.

```
[[ 2.62969791e+00]
 [ 8.52342699e+00]
 [ 8.00262183e+00]
 ...
 [ 1.27833355e+00]
 [ 8.72770633e+00]
 [-1.72173784e+00]]
```

Figura 2.15: Valores de Y_i , i = 1, ..., 800.

Além disso, temos que $\hat{\beta}_0 = 9.891565160052185$ e que os valores de $\hat{\beta}_1$ até $\hat{\beta}_8$ são os apresentados na Figura 2.16:

Figura 2.16: Valores de $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_8$.

Desse modo,

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i1} + \hat{\beta}_{2}x_{i2} + \hat{\beta}_{3}x_{i3} + \hat{\beta}_{4}x_{i4} + \hat{\beta}_{5}x_{i5} + \hat{\beta}_{6}x_{i6} + \hat{\beta}_{7}x_{i7} + \hat{\beta}_{8}x_{i8}
= 9.891565160052185 - 0.02838375x_{i1} + 0.30001007x_{i2} + 0.01047673x_{i3} - 1.9567567x_{i4}
+ 1.06379156x_{i5} + 2.1916815x_{i6} + 2.72519925x_{i7} - 1.31080136x_{i8}, i=1,...,800$$

Portanto, após isso, calculamos o SSE (error sum of squares) desse modelo, obtendo:

$$SSE_F = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{n} e_i^2$$

$$= 743.0523238039088.$$

Para continuar o teste linear geral, ajustamos o modelo reduzido. Nesse caso, a fim de testarmos $H_0: \beta_1 = \beta_2 = \beta_3 = 0$, das 8 covariáveis que tínhamos, passamos a considerar apenas as 5 que eram mais distantes de zero. Na Figura 2.17 temos o conjunto de dados das covariáveis que foram utilizadas para ajustar o modelo reduzido.

	x60	x120	x145	x160	x175
0	0.405620	0.825170	0.532528	0.317880	6.879663
1	0.425470	0.019710	0.508636	1.590331	4.839365
2	0.179142	0.772082	0.531151	0.287297	4.822773
3	0.562808	0.423557	0.458763	0.718214	1.801654
4	0.876407	0.831110	0.697260	0.748059	1.708784
795	0.102798	0.235132	0.706814	0.496957	12.478482
796	0.804806	0.416398	0.552890	0.385098	1.996428
797	0.370474	0.486421	0.708183	0.126229	8.378537
798	0.931451	0.740708	0.440223	0.909111	3.418992
799	0.303573	0.423201	0.842520	0.019627	9.910728

Figura 2.17: Base de dados das covariáveis para o modelo reduzido.

A partir disso, o modelo reduzido é,

$$Y_i = \beta_0 + \beta_4 x_{i4} + \beta_5 x_{i5} + \beta_6 x_{i6} + \beta_7 x_{i7} + \beta_8 x_{i8} + \epsilon_i$$
, i = 1,...,800

Com isso, após realizar o ajuste do modelo reduzido através da regressão linear múltipla, temos os valores de Y_i representados na Figura 2.18:

```
[[ 3.30623679e+00]
 [ 8.53766985e+00]
 [ 5.19794417e+00]
 ...
 [ 1.06534564e+00]
 [ 7.17271831e+00]
 [-1.83648375e+00]]
```

Figura 2.18: Valores de Y_i , i = 1, ..., 800.

Ademais, temos os valores de $\hat{\beta}_0 = 10.110555423040278$ e os valores de $\hat{\beta}_3$ até $\hat{\beta}_8$ apresentados na Figura 2.19 abaixo.

$$[-2.02501787 \quad 1.41503217 \quad 1.98297221 \quad 2.72350746 \quad -1.33598369]$$

Figura 2.19: Valores ajustados $\hat{\beta}_3, \hat{\beta}_4, \dots, \hat{\beta}_8$.

Desse modo.

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{4}x_{i4} + \hat{\beta}_{5}x_{i5} + \hat{\beta}_{6}x_{i6} + \hat{\beta}_{7}x_{i7} + \hat{\beta}_{8}x_{i8}$$

$$= 10.110555423040278 - 2.02501787x_{i4} + 1.41503217x_{i5} + 1.98297221x_{i6}$$

$$+ 2.72350746x_{i7} - 1.33598369x_{i8}, i=1,...,800$$

Assim, após isso, vamos calcular novamente o SSE (error sum of squares), mas agora para o modelo reduzido. Logo, temos que,

$$SSE_R = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^n \epsilon_i^2$$

$$= 796.3711652776251.$$

Depois de ambos os modelos serem ajustados, construímos uma estatística teste, a qual foi usada para comparar a soma de quadrados dos erros dos modelo completo e do modelo reduzido, ou seja, comparar SSE_F e SSE_R .

Com isso, devemos considerar as seguintes hipóteses:

$$\begin{cases} H_0: \beta_1 = \beta_2 = \beta_3 = 0; \\ H_1: \beta_i \neq 0, \text{ para pelo menos um i} = 1, 2, 3. \end{cases}$$

Denotando gl_F como os graus de liberdade do modelo completo e gl_R como os graus de liberdade do modelo reduzido, temos que, sob H_0 , a estatística teste é dada por:

$$F_0 = \frac{\frac{SSE_R - SSE_F}{gl_R - gl_F}}{\frac{SSE_F}{gl_F}} \sim F_{gl_R - gl_F, gl_F}$$

Já sabemos quem são SSE_F e SSE_R , e sabemos também que, como temos 800 observações, $gl_F = 800 - 9 = 791$ e $gl_R = 800 - 6 = 794$. Logo, considerando $\alpha = 0.05$, temos como regra de decisão:

$$F_0 < F_{3,791;0.05} = 2.616159809544512 \longrightarrow \text{concluo por } H_0$$

 $F_0 > F_{3,791;0.05} = 2.616159809544512 \longrightarrow \text{concluo por } H_1$

Desse modo, calculando o valor observado da estatística de teste, obtivemos:

$$F_0 = \frac{\frac{796.37 - 743.05}{794 - 791}}{\frac{743.05}{791}}$$
$$= 18.919799792744058$$

Portanto, como $F_0=18.919799792744058>F_{3,791;0.05}=2.616159809544512$, concluímos pela hipótese alternativa H_1 , ou seja, não há evidências de que x_1,x_2 e x_3 têm contribuição nula na explicação de Y_i simultaneamente.

Apêndice A

Código

Para essa atividade, o seguinte código feito no Python foi utilizado:

```
## CODIGO - ANALISE DE REGRESSAO ##
                            #### ATIVIDADE 1 ####
5 # Bibliotecas utilizadas
6 import random
7 import numpy as np
8 import pandas as pd
9 from sklearn.linear_model import LinearRegression
10 import seaborn as sns
import matplotlib.pyplot as plt
12 from random import sample
13 import scipy.stats
14 from scipy.stats import t
15 import math
16 import statsmodels.api as sm
17 from statsmodels.formula.api import ols
np.random.seed(44)
20 random.seed(44)
22 # Numero de observacoes
23 n = 1000000
25 # Gerando 199 covariaveis oriundas de distribuicoes Normal, Uniforme,
     Exponencial, Beta e Gamma.
26 \text{ dset} = \{\}
27 for i in range(1,40): # Distribuicao Normal
      chave = 'x' + str(i)
      valor = np.random.normal(0,random.random(),n)
      dset[chave] = valor
32 for i in range(40,80): # Distribuicao Uniforme
```

```
chave = 'x' + str(i)
33
      valor = np.random.rand(n)
34
35
      dset[chave] = valor
37 for i in range (80,120):
                             # Distribuicao Exponencial
      chave = 'x' + str(i)
      valor = np.random.exponential(random.randrange(1, 11),n)
      dset[chave] = valor
40
41
42 for i in range (120,160):
                              # Distribuicao Beta
      chave = 'x' + str(i)
      valor = np.random.beta(random.randrange(1, 5),random.randrange(1, 5)
     ,n)
45
      dset[chave] = valor
47 for i in range (160,200):
                              # Distribuicao Gamma
      chave = 'x' + str(i)
      valor = np.random.gamma(random.randrange(1, 5),random.randrange(1,
     5),n)
      dset[chave] = valor
51
52 # Base de dados das covariaveis
53 df = pd.DataFrame(dset)
54 print (df)
56 X = df.iloc[:,list(range(199))].values
57 type(X)
59 # Gerando betas por meio de uma Normal(0,2)
60 betas = []
61 for j in range(0,199):
b = np.random.normal(0,2)
   betas.append(b)
64 print (betas)
66 \text{ soma} = 0
67 for k in range(0,199):
    soma = soma + betas[k]*X[:,k]
70 # Gerando valores para os erros E_i
71 E_i = np.random.normal(0,1,n)
73 # Calculando os valores de Y_i
y = 10 + soma + E_i
75 print(y)
77 # Regressao Linear Multipla
78 reg = LinearRegression()
79 reg.fit(X,y)
```

```
81 # Coeficientes betachapeu_1,...,betachapeu_199
82 print(reg.coef_)
84 # Intercepto betachapeu_0
85 print(reg.intercept_)
# Calculo dos valores ajustados
yi_ajustado = 0
89 for g in range(0,199):
      yi_ajustado = yi_ajustado + reg.coef_[g]*X[:,g]
92 # Calculo dos residuos
93 residuos = y - reg.intercept_ - yi_ajustado
94 print (residuos)
95
                          #### ATIVIDADE 2 ####
96
        ## IC para beta0 e beta1 considerando toda a amostra ##
98
100 # Escolha da covariavel x3
101 X3 = np.array(X[:,2]).reshape((-1,1))
102 print (X3)
104 # Calculo dos valores de Y_i
y_{novo} = 10 + betas[1] *X[:,2] + np.random.normal(0,1,n)
y_novo = np.array(y_novo)
107 print(y_novo)
109 # Regressao Linear Simples
110 model = LinearRegression()
model.fit(X3,y_novo)
print(model.coef_[0]) # valor estimado de beta1
print(model.intercept_) # valor estimado de beta0
114
115 # Calculo dos valores ajustados de Y_i
yi_chapeu = model.intercept_ + model.coef_*X3[:,0]
print(yi_chapeu)
# Calculo dos residuos
120 residuos = y_novo - yi_chapeu
121 print (residuos)
123 # Calculo do SSE e do MSE
124 graus_liberdade= n-2
125 SSE= sum((residuos)**2)
126 print (SSE)
127 MSE = SSE/graus_liberdade
128 print (MSE)
```

```
129
x_media = sum(X3)/n
131 print(x_media)
# Calculo dos estimadores da variancia de b0 e b1
ist_{ist} = ist_
135 print(est_varb1)
136 \text{ est\_varb0} = \text{MSE}*(1/n + (x_media**2/sum((X3-x_media)**2)))
print(est_varb0)
138
t_student = t.ppf(1-0.05/2, graus_liberdade)
# Intervalo de Confianca para beta1
142 lim_inf_beta1 = model.coef_ - t_student*math.sqrt(est_varb1)
143 lim_sup_beta1 = model.coef_ + t_student*math.sqrt(est_varb1)
print(lim_inf_beta1[0],lim_sup_beta1[0])
145
146
147 # Intervalo de Confianca para beta0
148 lim_inf_beta0 = model.intercept_ - t_student*math.sqrt(est_varb0)
149 lim_sup_beta0 = model.intercept_ + t_student*math.sqrt(est_varb0)
      print(lim_inf_beta0,lim_sup_beta0)
                  ## IC para beta0 e beta1 para uma amostra de tamanho 4800 ##
# Amostra aleatoria de tamanho 4800 retirada de x3
amostra = df['x3'].sample(n=4800,replace=False)
amostra = np.array(amostra).reshape(-1,1)
157 print (amostra)
# Calculo dos novos valores de Y_i
_{160} y_novo_amostra = 10 + betas[1]*amostra[:,0] + np.random.normal(0,1,4800)
161 print(y_novo_amostra)
163 # Regressao Linear Simples
164 modelo2 = LinearRegression()
modelo2.fit(amostra,y_novo_amostra)
print(modelo2.coef_[0]) # valor estimado de beta1
print(modelo2.intercept_) # valor estimado de beta0
169 # Calculo dos valores ajustados de Y_i
170 yi_chapeu2 = modelo2.intercept_ + modelo2.coef_*amostra[:,0]
171 print(yi_chapeu2)
172
173 # Calculo dos residuos
174 residuos2 = y_novo_amostra - yi_chapeu2
175 print(residuos2)
177 # Calculo do SSE e do MSE
```

```
178 graus_liberdade2= 4800-2
179 SSE_2= sum((residuos2)**2)
180 print (SSE_2)
MSE_2= SSE_2/graus_liberdade2
182 print(MSE_2)
x_{media2} = sum(amostra)/4800
185 print(x_media2)
# Calculo dos estimadores da variancia de b0 e b1
188 est_varb1_2 = MSE_2/sum((amostra-x_media2)**2)
189 print(est_varb1_2)
190 est_varb0_2 = MSE_2*(1/4800 + (x_media2**2/sum((amostra-x_media2)**2)))
191 print(est_varb0_2)
192
t_{student2} = t.ppf(1-0.05/2, 4800)
# Intervalo de Confianca para beta1
196 lim_inf_beta1_2 = modelo2.coef_ - t_student2*math.sqrt(est_varb1_2)
197 lim_sup_beta1_2 = modelo2.coef_ + t_student2*math.sqrt(est_varb1_2)
198 print(lim_inf_beta1_2[0],lim_sup_beta1_2[0])
200 # Intervalo de Confianca para beta0
201 lim_inf_beta0_2 = modelo2.intercept_ - t_student2*math.sqrt(est_varb0_2)
202 lim_sup_beta0_2 = modelo2.intercept_ + t_student2*math.sqrt(est_varb0_2)
print(lim_inf_beta0_2,lim_sup_beta0_2)
204
                            ## Tabela ANOVA ##
205
207 base_amostra = np.hstack((np.array(amostra),np.array(y_novo_amostra).
      reshape(-1,1)))
208 print (base_amostra)
209 df2 = pd.DataFrame(base_amostra,columns=['x', 'y'])
210 print (df2)
211
212 \mod = ols('y ~ x', data=df2).fit()
213 print(mod.summary())
214 aov_table = sm.stats.anova_lm(mod, typ=1)
215 print(aov_table)
216
                            ## IC para E[Y_0] ##
217
219 # Calculo do valor da media de x
220 print(x_media2[0])
222 # Escolha de um x proximo da media e um longe
x0_proximo_media = -0.0149
x0_longe_media = 1.5555
```

```
# Calculo dos valores ajustados de Y_i proximo e longe
y0_proximo_media = modelo2.intercept_ + modelo2.coef_*x0_proximo_media
print(y0_proximo_media[0])
y0_longe_media = modelo2.intercept_ + modelo2.coef_*x0_longe_media
print(y0_longe_media[0])
232 # Calculo dos estimadores da variancia de Y_Ochapeu proximo e longe
233 est_var_y0_proximo = MSE_2*(1/4800 + (x0_proximo_media - x_media2)**2/
      sum((amostra-x_media2)**2))
234 print(est_var_y0_proximo[0])
235 est_var_y0_longe = MSE_2*(1/4800 + (x0_longe_media - x_media2)**2/sum((
      amostra-x_media2)**2))
236 print(est_var_y0_longe[0])
# IC para E[Y_0 proximo]
239 lim_inf_y0_proximo = y0_proximo_media - t_student2*math.sqrt(
      est_var_y0_proximo)
240 lim_sup_y0_proximo = y0_proximo_media + t_student2*math.sqrt(
      est_var_y0_proximo)
241 print(lim_inf_y0_proximo[0],lim_sup_y0_proximo[0])
243 # IC para E[Y_O longe]
244 lim_inf_y0_longe = y0_longe_media - t_student2*math.sqrt(
      est_var_y0_longe)
245 lim_sup_y0_longe = y0_longe_media + t_student2*math.sqrt(
      est_var_y0_longe)
246 print(lim_inf_y0_longe[0],lim_sup_y0_longe[0])
248 # Calculo de E[Y_O proximo]
esperanca_y0_proximo = 10 + betas[1]*x0_proximo_media
  print(esperanca_y0_proximo)
252 # Calculo de E[Y_O longe]
esperanca_y0_longe = 10 + betas[1] *x0_longe_media
254 print(esperanca_y0_longe)
255
256
                       ## IP para uma nova resposta ##
257
259 # Gerando uma nova observacao da covariavel x3
260 xnovogerado = np.random.normal(0,1)
261 print(xnovogerado)
262
263 # Calculo de Ynovo
264 ynovo = 10 + betas[1] *xnovogerado + np.random.normal(0,1)
265 print(ynovo)
267 # Calculo de Ynovo_chapeu
268 ychapeu_novo_gerado = model.intercept_+ model.coef_*xnovogerado
```

```
269 print (ychapeu_novo_gerado[0])
271 # IP para uma nova resposta
272 lim_inf_ychapeu_novo_g = ychapeu_novo_gerado - t_student*math.sqrt(MSE
      *(1+1/n + (xnovogerado-x_media)**2/sum((X3-x_media)**2)))
273 lim_sup_ychapeu_novo_g = ychapeu_novo_gerado + t_student*math.sqrt(MSE
      *(1+1/n + (xnovogerado-x_media)**2/sum((X3-x_media)**2)))
  print(lim_inf_ychapeu_novo_g[0],lim_sup_ychapeu_novo_g[0])
275
276
               ## IP para a media de m novas respostas ##
278 # Escolha de um m
_{279} m = 150
y_m = []
282 for w in range(0,m):
      y_m.append(10 + betas[1]*xnovogerado + np.random.normal(0,1))
285 # Calculo da media das m respostas
media_y_m = sum(y_m)/m
287 print(media_y_m)
289 # IP para a media de m novas respostas
290 lim_inf_ychapeu_novo_m = ychapeu_novo_gerado - t_student*math.sqrt(MSE
      *(1/m+1/n + (xnovogerado-x_media)**2/sum((X3-x_media)**2)))
lim_sup_ychapeu_novo_m = ychapeu_novo_gerado
                                                 + t_student*math.sqrt(MSE
      *(1/m+1/n + (xnovogerado-x_media)**2/sum((X3-x_media)**2)))
  print(lim_inf_ychapeu_novo_m[0],lim_sup_ychapeu_novo_m[0])
                        ## Teste Linear Geral ##
294
296 np.random.seed(91)
297 random.seed (91)
298
299 # Escolhendo 3 betas proximos de 0
300 b = sorted(betas)
ordenado = [i for i in b if i > 0]
302 beta1 = ordenado[0]
303 beta2 = ordenado[1]
304 beta3 = ordenado[2]
305
306 # Pegando uma amostra aleatoria de 800 observações de 8 covariaveis
      escolhidas, sendo x79, x127 e x194 as que acompanham os betas
      proximos de 0
x79 = np.array(df['x79'].sample(n=800,replace=False)).reshape(-1,1)
x127 = np.array(df['x127'].sample(n=800,replace=False)).reshape(-1,1)
x194 = np.array(df['x194'].sample(n=800,replace=False)).reshape(-1,1)
x60 = np.array(df['x60'].sample(n=800,replace=False)).reshape(-1,1)
x120 = np.array(df['x120'].sample(n=800,replace=False)).reshape(-1,1)
```

```
x145 = np.array(df['x145'].sample(n=800,replace=False)).reshape(-1,1)
x160 = np.array(df['x160'].sample(n=800,replace=False)).reshape(-1,1)
  x175 = np.array(df['x175'].sample(n=800,replace=False)).reshape(-1,1)
316 ### MODELO COMPLETO
318 # Juntando os dados dessas covariaveis
amostra_comp = np.hstack((x79,x127,x194,x60,x120,x145,x160,x175))
amostra_comp = pd.DataFrame(amostra_comp)
amostra_comp = amostra_comp.iloc[:,list(range(8))].values
322 print(amostra_comp)
324 # Calculo dos Y_i
325 \text{ soma2} = 0
326 betas_comp = [beta1, beta2, beta3, betas [60], betas [120], betas [145], betas
      [160], betas [175]]
327 for q in range (0,8):
       soma2 = soma2 + betas_comp[q]*amostra_comp[:,q]
Y_F = 10 + soma2 + np.random.normal(0,1,800)
331 print(Y_F)
333 # Modelo de Regressao Linear Multipla
modelo_completo = LinearRegression()
modelo_completo.fit(amostra_comp,Y_F)
print(modelo_completo.coef_) # valor estimado de beta1,...,beta8
print(modelo_completo.intercept_) # valor estimado de beta0
339 # Calculo dos valores ajustados
340 yi_estimado_comp = 0
341 for gi in range (0,8):
      yi_estimado_comp = yi_estimado_comp + modelo_completo.coef_[gi]*
      amostra_comp[:,gi]
343 print(yi_estimado_comp)
344
345 # Calculo dos residuos
346 residuos_comp = Y_F - modelo_completo.intercept_ - yi_estimado_comp
347 print(residuos_comp)
349 # Calculo do SSE_F
350 SSE_F = sum((residuos_comp)**2)
  print(SSE_F)
351
352
353 ### MODELO REDUZIDO
354
355 # Juntando os dados das 5 covariaveis que nao acompanham os 3 betas
      proximos de 0
amostra_red = np.hstack((x60,x120,x145,x160,x175))
amostra_red = pd.DataFrame(amostra_red)
```

```
amostra_red = amostra_red.iloc[:,list(range(5))].values
359 print(amostra_red)
361 # Calculo dos Y_i
362 \text{ soma3} = 0
363 betas_red = [betas [60], betas [120], betas [145], betas [160], betas [175]]
364 for qi in range(0,5):
        soma3 = soma3 + betas_red[qi]*amostra_red[:,qi]
365
366
Y_R = 10 + soma3 + np.random.normal(0,1,800)
368 print(Y_R)
370 # Modelo de Regressao Linear Multipla
371 modelo_reduzido = LinearRegression()
modelo_reduzido.fit(amostra_red,Y_R)
373 print(modelo_reduzido.coef_) # valor estimado de beta4,...,beta8
374 print(modelo_reduzido.intercept_) # valor estimado de beta0
376 # Calculo dos valores ajustados
377 yi_estimado_red = 0
378 for gj in range (0,5):
       yi_estimado_red = yi_estimado_red + modelo_reduzido.coef_[gj]*
      amostra_red[:,gj]
380 print(yi_estimado_red)
381
382 # Calculo dos residuos
residuos_red = Y_R - modelo_reduzido.intercept_ - yi_estimado_red
384 print(residuos_red)
386 # Calculo do SSE_R
387 SSE_R = sum((residuos_red)**2)
388 print(SSE_R)
389
390 # Graus de liberdade do modelo completo e do reduzido, respectivamente
391 \text{ glF} = 800-9
392 \text{ g1R} = 800-6
394 # Calculo de SSE_R - SSE_F
395 diferenca = SSE_R - SSE_F
396 print(diferenca)
397
_{398} # Calculo do valor observado da estatistica teste (F_0)
sestat_teste = ((diferenca)/(glR - glF))/(SSE_F/glF)
400 print(estat_teste)
401
402 # Calculo da F
F = scipy.stats.f.ppf(0.95,glR-glF,glF,scale=1)
404 print(F)
```