IN-STK5000 Project 2

Fall 2023

Helene Bøsei Olsen, Sander Finnset Ørnes, Even Tronstad, Andreas Christian Poole

Agenda

- Data Leakage
- Reproducibility
- Pipeline
- Model evaluation performance metrics
- Ranges of performance metrics
- Privacy

Baseline model: Data leakage

We considered data leakage through all steps in our analysis:

Scope reduction:

Deleted samples based on gender and race

Based on the whole data set. Danger!

Train-Test split:

- Done very early
- Seperate data sets through most of the process

Data Analysis Primarily performed only on training set

- Outliers, correlations
- For missing data performed on whole data set
 - Should not cause data leakage

Data leakage

Data manipulation:

- Do operations on training and test set in separate steps
- Separation of data to be corrected and data used to correct (train data)

Example:

```
train = handle_outliers(train, train_outlier_bounds)
test = handle_outliers(test, train_outlier_bounds)
```

Feature selection:

- Mostly used non data-driven criteria:
 - Common sense and cost of collection
- Temperature removed based on low variance (train data)

Data leakage

Classification:

- Simple classifier with manually set hyperparameters.
 - Might have been unconsciously set based on info from test set Danger!

Correction of data leakage issues:

- Not delete non whites and females
- Hyperparameter tuning with grid search cross validation

New implementation: Pipeline

- Never edits the actual data set.
 - all preprocessing and formatting in the pipeline.
- Preprocessing
 - imputes and scales without using test set by design.
- No scope reduction.
 - include gender and race (one hot encoder with 'other' if prevalence less than 0.1)
- Hyperparameter tuning with grid search cross validation.
 - on max_depth and complexity parameter ccp_alpha.

Pipeline Structure

- Custom transformers imputes Obesity and Polydipsia
- General preprocessing
- Decision tree as classifier
- Finally, grid search on tree depths and complexity parameter (not displayed)

Reproducibility

Ensure reproducibility through the following steps:

- All code and documentation available on GitHub
 - Installation script for easy usage
- Set a global seed
 - Separate seed for privacy
- requirements.txt file available with versions of packages / libraries etc.
- Thorough instructions on how to run experiments
- Simplifying code with pipelines
- Pytest for reproducibility

Model evaluation - performance metrics

Business case recap:

- Work for the Public health authorities
- Diagnosing and treatment handled by the Private health service
- Machine Learning system on website for evaluation of diabetes risk
- Goal: Get the right people tested

Accuracy:

- Only ~10% of population have diabetes
- Can achieve high accuracy by always predicting negative
- Flawed measure of how system help us achieve our goal

Model evaluation - performance metrics

Precision:

 High precision tells us we are not advising too many people to go into the doctor's office

Recall:

 High recall tells us we do not miss many positive cases of diabetes

F₁-score:

- Balance between precision and recall
- High F₁ score tells us we are able to detect many cases of diabetes, without many negative tests
- Most important evaluation metric for how system help us achieve our goals

Performance of our classifier:

	1est set
Accuracy	92.7%
Precision	95.4%
Recall	92.5%
F1	93.9%

T--4 --4

Ranges and methodology

Repeated Bootstrap

- Draw training set as bootstrap sample of the size of the entire data set
- All datapoints not included in bootstrap sample is the test set
 - ~40% of total data set
- Train on training set
- Predict and evaluate performance on test set

Why this method?

- Simple and transparent
- Can generate any number of estimates for the metrics
 - Not limited by number of folds as CV

Results - ranges

Ranges for 100 estimates of the chosen metrics

Training data almost always obtains perfect scores

Quite low spread of scores on test set

Low standard deviations

F1-score has the smallest standard deviation of all metrics

Model seems robust, and performs well across metrics and test sets!

	Train mean	Train stdev	Test mean	Test stdev
Accuracy	99.7%	0.003	91.1%	0.027
Precision	99.9%	0.002	93.8%	0.026
Recall	99.6%	0.005	91.6%	0.036
F1	99.8%	0.003	92.6%	0.023

Table 1: Performance on original data

Hyperparameters - plots

- Grid defined by tree depth and cost-complexity pruning (ccp)
- Optimal parameters found using cross-validation on grid

Figures show optimal parameters for each sample

Feature importance

Built in method of sklearn

- Measures Gini importance
- Higher Gini importance means more important variable

Privacy

Dataset: Personally identifiable health information

Anonymize the binary data (Majority of data)

- Sensitive data:
 - genital thrush, obesity, gender etc.

Adding controlled noise through Differential privacy (ε-differential privacy)

- Allow us to train a machine learning model on the data without compromising information on specific individuals
- Avoids de-anonymization with possible future datasets.
 - In contrast, K-anonymity gives no such guarantee

Privacy procedure

- Randomized response:
 - Coin flipping with a probability of answering truthfully = theta
- Column wise:
 - Calculated independently for each column
 - o measure privacy guarantee- Calculate epsilon for each column
- Set a separate random seed for anonymization
- Result in new dataset for reproducing experiments
- Not randomized target
 - Small dataset
 - Less meaningful performance metrics when comparing noisy target
- We experiment with two different cases: theta = 0.5 and theta = 0.95
 - o epsilon = 1.09 and epsilon = 3.66

Experiments with different theta

Table 3: Theta = 0.5

Privacy is not free

	Original data		Anonymized data	
	Test mean	Test stdev	Test mean	Test stdev
Accuracy	91.1%	0.027	85.7%	0.026
Precision	93.8%	0.026	89.1%	0.031
Recall	91.6%	0.036	87.3%	0.036
F1	92.6%	0.023	88.1%	0.022

Table 7: Comparing results on test set for original data and anonymized data with theta = 0.95

Privacy: future work

- Differential privacy to proof against current and future datasets
 - Only applied to binary features
- Possible improvement:
 - combine differential privacy with other methods such as k-anonymity to increase the level of privacy.
 - or combine with Laplace for continuous data
 - Anonymise target