Fiscal Policy and Inequality

12. Fixed Effects Regression

Elliott Ash

15 October 2018

Empirical Application: Estimating Incidence

- ► Evans, Ringel & Stech (1999): What is the incidence of cigarette taxes?
- ▶ How do changes in the cigarette tax affect prices?
 - ▶ Does the burden fall on cigarette companies or smokers?
 - ► Why?
 - What are the welfare implications of this policy?

- Cigarettes taxed at both federal and state level in US
 - ightharpoonup Total revenue \simeq \$35 billion per year, similar to estate taxation
- Variation in excise tax among states within US
 - ▶ from \$0.30 per pack in Virginia to \$4.35 in New York
- Since 1975, more than 200 changes in state taxes
- Exploit these <u>state-level changes</u> using simple diff-in-diff research design

First Difference Estimator

- Basic idea: cigarette taxes raised in state A, but not in state B
 - Assume partial equilibrium (ignore other markets)
- ► Effect on prices in state A?

$$D = [P_{A1} - P_{A0}]$$

- \triangleright D = "First difference" estimator
- Identification assumption (D): absent the tax change, cigarette prices in state A would not have changed between period 0 and 1.

Diff-in-Diff Estimator

- ID assumption is likely violated:
 - Prices fluctuate for many reasons (weather, demand...)
 - ► Hence, first difference estimator (D) likely to be biased
- Better estimator: diff-in-diff (DD)

$$DD = [P_{A1} - P_{A0}] - [P_{B1} - P_{B0}]$$

- Identification assumption (DD): "parallel trends"
 - Absent tax change, trend in prices would have been the same in states A and B.
 - ► Allows for time-invariant differences between the two groups.

Diff-in-Diff Regression

Can estimate the diff-in-diff effect using

$$P_{jt} = \alpha + \gamma \mathsf{Treat}_{jt} + \lambda \mathsf{After}_{jt} + \rho \mathsf{Treat}^* \mathsf{After}_{jt} + \varepsilon_{jt}$$

where Treat is a dummy for being the reform state, and After is a dummy for years after the reform.

- Interpreting coefficients:
 - ightharpoonup lpha, average in non-treated group, pre-treatment
 - $ightharpoonup \gamma$, difference between treated and non-treated in pre-treatment period
 - $ightharpoonup \lambda$, change in the control group after reform
 - ho, the diff-in-diff treatment effect estimate (change in treatment group, relative to change in control group).

Diff-in-diff: Parallel trends assumption

Diff-in-diff: Parallel trends assumption

Things don't always work as we wished they did...

Source: Evans, Ringel and Stech (1999)

Source: Evans, Ringel and Stech (1999)

- ▶ We can use "placebo" DD to test parallel trends assumption
 - Replicate DD estimate at other points in time when there was no tax change
- lacktriangle If DD in other periods is not zero, then $DD_{t=1}$ likely biased
 - Useful to plot long time series of outcomes for treatment and control
 - Pattern should be parallel lines, with sharp change just after reform

- ▶ In practice, Evans et al (1999) analyse many tax changes over 30 years (and 50 states)
- Useful to use panel data to obtain a single incidence estimate
- State j in year t applies policy (tax) T_{jt}
- ▶ Want to estimate effect of T on price P. Cross-sectional OLS regression:

$$P_{jt} = \alpha + \beta T_{jt} + \varepsilon_{jt}$$

- Problem: what if states with higher taxes T_{jt} also have more anti-tobacco campaigns?
 - ► Cov $(T_{jt}, \varepsilon_{jt}) \neq 0$ and $\hat{\beta}^{OLS}$ is **biased**.

Fixed-Effects Estimation

Fixed-effects estimation:

$$P_{jt} = \alpha + \beta T_{jt} + \delta_j + \gamma_t + \varepsilon_{jt}$$

- $ightharpoonup \delta_j$ are state fixed effects
 - a dummy variable equaling one for state j's observations, and zero otherwise
- $ightharpoonup \gamma_t$ are year fixed effects
 - a dummy variable equaling one for year t's observations, and zero otherwise
- Fixed-effects estimation generalises DD to J>2 groups and S>2 periods
- Requires panel (longitudinal) data

Fixed-Effects Estimation (FE)

- ► ID assumption (FE): absent the tax change, the trend in the outcome (price) would have been the same in treatment and control groups
 - ▶ In other words, there are no time-varying omitted variables.
 - Equivalent to "parallel trends"
- Implicit assumption in FE: treatment effect is additive and constant (in this case, across states)
- FE obtains identification from within-state variation over time
 - nationwide factors, such as federal tax changes, do not affect FE estimates

Threats to validity for FE and DiD

- If the groups are different in levels, maybe they evolve differently?
- Why did the treatment group adopt the policy, and not the control group?
- Policies are usually implemented in bundles (the timing of the treatment may not be by chance) → the outcome variable may be affected by these other policies
- The treatment should not affect the control group
- The composition of the treatment and control groups should not change as a result of treatment

Usual checks

- The two groups evolved similarly in the past (although this is not a guarantee for validity)
- The timing of the adoption of the policy was as good as random
- No other policies were adopted at the same time
- Verify that there is no reason to believe that the control group might be affected
- Add group-specific trends in outcome variable as additional regressor.

Let's Try It

What about all the othere regression outputs?

- ► Most are not that useful.
- ► R² tells you how much of the variance in the outcome is explained by the right-hand-side variables.
 - can be used to decide between two models, e.g., whether to take the log of your outcome variable.
 - can be arbitrarily increased by adding more variables; this is not a reason to add more variables.

Effect of cig taxes on cig prices (Evans et al 1999)

Main regression model:

$$P_{jt} = \alpha + \beta T_{jt} + \delta_j + \gamma_t + \varepsilon_{jt}$$

- $ightharpoonup P_{jt} = ext{average retail price per pack in state } j, ext{ year } t ext{ (in $ cents)}$
- T_{jt} = total per pack tax (state+federal) in state j, year t (in \$ cents)
- δ_j = state fixed effects. Control for any time-invariant differences in prices across states (eg, age distribution).
- γ_t = year fixed effects. Control for shocks to prices that are common to all states but may vary across years (eg, federal tax change).

Evans, Ringel & Stech (1999): Results

TABLE 2
OLS Estimates, Retail Price Model: Tobacco Institute Data

Independent variable	Average s pri 1985-	ce,	Net retail price in Tennessee, 1970–1994	
	Nominal (1)	Real (2)	Nominal (3)	Real (4)
Nominal/real tax	1.01 (0.04)	0.92 (0.04)		
Nominal/real wholesale price			1.07 (0.02)	0.86 (0.04)
R^2	0.972	0.933	0.989	0.963
Observations	612	612	25	25

Standard errors in parentheses. Real prices in 1997 cents/pack. Models in columns (1) and (2) control for state effects.

Source: Evans, Ringel and Stech (1999)

Evans, Ringel & Stech (1999): Results

- ▶ 100% pass-through implies $\varepsilon_D = 0$ or $\varepsilon_S = \infty$ at state level
 - Why? Try using a graph to understand this
- ▶ Why not $\varepsilon_D = 0$?
 - Would imply zero effect of taxes on consumption, which we can rule out (next slide).
- ▶ Consider $\varepsilon_S = \infty$:
 - ► Tobacco companies can easily send inventories from high-tax to low-tax states, affecting prices by reducing supply
 - Pass-through would be lower at national level

▶ To estimate ε_D , they use this model:

$$\ln (Q_{jt}) = \beta T_{jt} + X_{jt}\alpha + \mu_{1j} + \mu_{2j} \cdot \mathsf{Time}_t + \nu_t + \varepsilon_{jt}$$

- ▶ $ln(Q_{jt}) = log per capita consumption, state j, year t$
- $ightharpoonup T_{jt} = \text{state+federal tax per pack, in $ cents}$
- $\blacktriangleright \mu_{1j} = \text{state fixed effects}$
- $\blacktriangleright \mu_{2i} \cdot \mathsf{Time}_t = \mathsf{state} \cdot \mathsf{specific time trends}$
- $ightharpoonup
 u_t = \text{year fixed effects}$

▶ To estimate ε_D , they use this model:

$$\ln\left(Q_{jt}\right) = \beta T_{jt} + X_{jt}\alpha + \mu_{1j} + \mu_{2j} \cdot \mathsf{Time}_t + \nu_t + \varepsilon_{jt}$$

- Notice that: $\beta = \frac{d \ln(Q)}{dT} \approx \frac{\Delta Q/Q}{\Delta T}$
- ▶ Recall that: $\varepsilon_D = \frac{\Delta Q}{\Delta P} \frac{\bar{P}}{\bar{Q}}$, where \bar{P} and \bar{Q} are mean values
- ▶ Since $\varepsilon_S \approx \infty$, then $\Delta \dot{P} \approx \Delta T$
- ► Hence:

$$\hat{\varepsilon}^{D} = \frac{\Delta Q}{\Delta T} \frac{\bar{P}}{\bar{Q}}$$

$$\Rightarrow \hat{\varepsilon}^{D} = \hat{\beta} \cdot \bar{P}$$

TABLE 3 OLS Estimates, Log Per Capita Consumption Model, Tobacco Institute Data, 1985–1996

	Coefficients (standard errors) on							
Independent variable	Real tax			Real price				
	(1)	(2)	(3)	(4)	(5)	(6)		
Current value	-0.254 (0.037)	-0.165 (0.040)	-0.173 (0.041)	-0.176 (0.027)	-0.176 (0.027)	-0.167 (0.029)		
1-year lag		-0.215 (0.413)	-0.188 (0.047)		-0.027 (0.032)	-0.031 (0.032)		
2-year lag			-0.061 (0.045)			-0.017 (0.033)		
Price elasticity	-0.424 (0.062)	-0.635 (0.074)	-0.705 (0.090)	-0.294 (0.045)	-0.337 (0.058)	-0.359 (0.072)		
R^2	0.975	0.977	0.977	0.975	0.975	0.976		

Standard errors in parentheses. The dependent variable is the log per capita consumption. There are 512 observations in each model. The mean price is \$1.75/pack, and the mean per capita consumption is 105. All models include year effects, state effects, state-specific time trends, and log re capita consumption, plus measures of the fraction of adults in three age, three education, and two race groups.

Source: Evans, Ringel and Stech (1999)

- ► We have:
 - $\hat{\beta} = -0.254$
 - $\bar{P} = \$1.75$
- ▶ Demand model estimate implies: $\varepsilon_D = -0.42$
 - ▶ 10% increase in price induces a 4.2% reduction in consumption
- ► This is the **short-run** elasticity. In the paper, they also estimate long-run elasticities.

Practice Exam Question

Consider the market for diamonds in a closed economy. You estimate the following regression:

$$P_{jt} = \alpha + \beta T_{jt} + \delta_j + \gamma_t + \varepsilon_{jt}$$

where P_{jt} is the consumer price of diamonds in province j and year t, and T_{jt} is the excise tax on diamonds.

- 1. You obtain a point estimate $\widehat{\beta}=0$. Interpret what this coefficient estimate means. What do you learn about the elasticity of supply and/or demand for diamonds?
- 2. Given your answer to (a) and economic intuition, who bears the incidence of this tax? Use the tax incidence formula.

A note on standard errors

- Imagine we want to estimate effect of a pill on longevity, sample is 1000 individuals each from Zurich and Zug.
- ► Two proposals for assigning to treatment and control:
 - 1. Flip a coin once: tail, individuals from Zurich are treated, heads, individuals from Zug are treated
 - 2. Flip coin 2000 times, once for each individual: tails, assigned to treatment; heads, assigned to control
- Which of the proposals is more informative about the impact of the treatment? Why?
 - ► OLS standard errors are similar in both cases.
- What's wrong? Presence of a common random effect:
 - In proposal 1, there might be some common shock affecting all individuals in the treatment group or in the control group.
 - ➤ OLS standard errors assume that all observations are independent realizations. Standard errors have to be corrected to account for the presence of a common random effect.

What about fixed effects regressions

- Consider the case of cigarette taxes. We have 50 states, times 50 years, equals 2500 observations.
 - if i only included the 10 years before and after the reform, i would have 20 years, or 1000 observations, but its essentially the same information, although standard errors would be bigger.
 - We need to account for serial correlation within state.

Solution: Clustering Standard Errors

- Cluster standard errors:
 - statistically acknowledges how many independent sources of information there are in the data.
 - can cluster by state and by time, to allow for correlation in errors along both dimensions.
- In python linearmodels:

How to cluster?

- ▶ In general, cluster at the level of your treatment variation:
 - ightharpoonup state-level reforms ightarrow cluster by state
 - ightharpoonup city-level reforms ightharpoonup cluster by city
 - etc.
- Clustering is important, and in general will dramatically affect statistical significance of results (Bertrand, Duflo, and Mullainathan QJE 2004).