

الامتدان الوطني الموحد للبكالوريا

المسالك الدولية - خيار فرنسية الدورة العادية 2016

NS22F

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)	الشعبة أو المسلك

INSTRUCTIONS GENERALES

- Nombre de pages : 4 (La première page contient des instructions générales et les composantes du sujet ; les trois autres pages contiennent le sujet de l'examen) ;
- L'utilisation de la calculatrice non programmable est autorisée;
- Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter;
- Certaines notations sont utilisées dans différents exercices, toutefois chaque notation ne concerne que l'exercice où elle est utilisée et ne dépend ni des exercices précédents ni des exercices suivants.

COMPOSANTES DU SUJET

- L'épreuve est composée de quatre exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Suites numériques	2.5 points
Exercice 2	Géométrie dans l'espace	3 points
Exercice 3	Nombres complexes	3 points
Exercice 4	Calcul de probabilités	3 points
Problème	Etude d'une fonction numérique et calcul intégral	8.5 points

- Concernant le problème, In désigne la fonction logarithme népérien.

Exercice 1 (2.5 points)

On considère la suite numérique (u_n) définie par :

$$u_0 = 2$$
 et $u_{n+1} = \frac{3 + u_n}{5 - u_n}$ pour tout entier naturel n

- 0.75 1) Vérifier que $u_{n+1} 3 = \frac{4(u_n 3)}{2 + (3 u_n)}$ pour tout entier naturel n puis montrer par récurrence que $u_n < 3$ pour tout entier naturel n
 - 2)Soit (v_n) la suite numérique définie par : $v_n = \frac{u_n 1}{3 u_n}$ pour tout entier naturel n
- a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$ puis en déduire que $v_n = \left(\frac{1}{2}\right)^n$ pour tout entier naturel n
- b) Montrer que $u_n = \frac{1 + 3v_n}{1 + v_n}$ pour tout entier naturel n puis écrire u_n en fonction de n
 - c) Déterminer la limite de la suite $\left(u_{_{n}}
 ight)$

Exercice 2 (3 points)

0.5

0.5

0.5

0.5

0.5

Dans l'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les points A(2,1,3), B(3,1,1), C(2,2,1) et la sphère (S) d'équation :

$$x^2 + y^2 + z^2 - 2x + 2y - 34 = 0$$

- 0.5 1)a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$
 - b)En déduire que 2x + 2y + z 9 = 0 est une équation cartésienne du plan(ABC)
 - 2)a) Montrer que la sphère (S) a pour centre le point $\Omega(1,-1,0)$ et pour rayon 6
 - b) Montrer que $d(\Omega, (ABC)) = 3$ et en déduire que le plan(ABC) coupe la sphère (S) suivant un cercle (Γ)
 - 3)a)Déterminer une représentation paramétrique de la droite (Δ) passant par le point Ω et orthogonale au plan (ABC)
- 0.5 b) Montrer que le point B est le centre du cercle (Γ)

0.75

0.75

Exercice 3 (3 points)

- 1) Résoudre dans l'ensemble des nombres complexes C l'équation : $z^2 4z + 29 = 0$
- 2) Dans le plan complexe rapporté à un repère orthonormé direct $\left(O,\overrightarrow{e_1},\overrightarrow{e_2}\right)$, on considère les points Ω , A et B d'affixes respectives ω , a et b telles que $\omega=2+5i$, a=5+2i et b=5+8i
- 0.75 a)Soit u le nombre complexe tel que $u=b-\omega$ Vérifier que u=3+3i puis montrer que $\arg u\equiv \frac{\pi}{4}\big[2\pi\big]$
- 0.25 b) Déterminer un argument du nombre complexe \overline{u} (\overline{u} étant le conjugué de u)
 - c) Vérifier que $a-\omega=\bar{u}$ puis en déduire que $\Omega A=\Omega B$ et que $\arg\left(\frac{b-\omega}{a-\omega}\right)\equiv\frac{\pi}{2}[2\pi]$
- d) On considère la rotation R de centre Ω et d'angle $\frac{\pi}{2}$ Déterminer l'image du point A par la rotation R

Exercice 4 (3 points)

Une urne contient 10 boules : quatre boules rouges et six boules vertes.

(Les boules sont indiscernables au toucher)

On tire au hasard, simultanément, deux boules de l'urne.

- 1) Soit A l'évènement : « Les deux boules tirées sont rouges » . Montrer que $p(A) = \frac{2}{15}$
- 2) Soit X la variable aléatoire qui à chaque tirage associe le nombre de boules rouges restantes dans l'urne après le tirage des deux boules.
- 0.5 a) Montrer que l'ensemble des valeurs prises par X est $\{2, 3, 4\}$
- b) Montrer que $p(X=3) = \frac{8}{15}$ puis déterminer la loi de probabilité de la variable aléatoire X

Problème (8.5 points)

On considère la fonction numérique f définie sur IR par : $f(x) = 2x - 2 + e^{2x} - 4e^x$

 $\mathsf{Soit}ig(C_fig)$ la courbe représentative de la fonction f dans un repère orthonormé $ig(O, \vec{i}, \vec{j}ig)$ (unité: 1cm)

- 0.25 | I-1)a)Montrer que $\lim_{x \to \infty} f(x) = -\infty$
- 0.5 b)Montrer que la droite (D) d'équation y=2x-2 est asymptote à la courbe (C_f) au voisinage de $-\infty$
- 0.5 2)a)Montrer que $\lim_{x \to +\infty} f(x) = +\infty$

0.5

0.5

0.75

- 0.5 b)Montrer que $\lim_{x\to +\infty} \frac{f(x)}{x} = +\infty$ puis interpréter géométriquement ce résultat.
- 0.5 3)a)Montrer que $f'(x) = 2(e^x 1)^2$ pour tout nombre réel x
- 0.25 b) Donner le tableau de variations de la fonction f sur $I\!\!R$ (Remarquer que f'(0)=0)
- 0.75 c) Montrer qu'il existe un réel unique α de l'intervalle]1 , $\ln 4$ [tel que $f(\alpha) = 0$
- 4)a)Montrer que la courbe $\left(C_f\right)$ est située au dessus de la droite $\left(D\right)$ sur l'intervalle $\left[\ln 4, +\infty\right[$ et en dessous de la droite $\left(D\right)$ sur l'intervalle $\left]-\infty, \ln 4\right[$
 - b) Montrer que la courbe $\left(C_{_f}
 ight)$ admet un point d'inflexion unique de coordonnées $\left(\:0\:,-5
 ight)$
- c)Construire la droite(D) et la courbe (C_f) dans le même repère (O, \vec{i}, \vec{j}) (on prendra $\ln 4 \approx 1,4$ et $\alpha \approx 1,3$)
- **5)a) Montrer que** $\int_{0}^{\ln 4} \left(e^{2x} 4e^{x}\right) dx = -\frac{9}{2}$
- b) Calculer , en cm^2 , l'aire du domaine plan limité par la courbe $\left(C_f\right)$, la droite $\left(D\right)$, l'axe des ordonnées et la droite d'équation $x=\ln 4$
- 0.5 II-1)a) Résoudre l'équation différentielle (E): y'' 3y' + 2y = 0
 - b) Déterminer la solution g de l'équation (E) vérifiant g(0) = -3 et g'(0) = -2
 - 2)Soit h la fonction numérique définie sur l'intervalle $\ln 4$, $+\infty$ par : $h(x) = \ln \left(e^{2x} 4e^x\right)$
 - a) Montrer que la fonction h admet une fonction réciproque h^{-1} et que h^{-1} est définie sur $I\!\!R$
- 0.75 b) Vérifier que $h(\ln 5) = \ln 5$ puis déterminer $\left(h^{-1}\right)' \left(\ln 5\right)$

الامتدان الوطني الموحد للبكالوريا

المسالك الدولية – خيار فرنسية الدورة العادية 2016

NR22F

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)	الشعبة أو المسلك

On prendra en considération les différentes étapes menant à la solution . On acceptera toute autre méthode correcte .

Exercice 1 (2.5 points)

0.75 | 1) 0.25 pour la vérification et 0.5 pour le raisonnement par récurrence

1.75 2)a) 0.5 pour (v_n) est une suite géométrique et 0.25 pour $v_n = \left(\frac{1}{2}\right)^n$

b) 0.25 pour l'égalité et 0.25 pour l'écriture de u_n en fonction de n

c) 0.25 pour $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ et **0.25** pour $\lim_{n \to +\infty} u_n = 1$

Exercice 2 (3 points)

1 1)a) 0.5

b) 0.5

1 2)a) 0.5

b) 0.25 pour la formule de la distance et 0.25 pour la déduction

1 3)a) 0.5

2.25

b) 0.5

Exercice 3 (3 points)

0.75 1) 0.25 pour le calcul du discriminant et 0.25 pour chaque solution

(on attribuera 0.75 pour toute autre méthode permettant de déterminer les deux solutions de l'équation)

2)a) 0.25 pour la vérification et 0.5 pour un argument de u

b) 0.25

•

c) 0.25 pour la vérification et 0.25 pour l'égalité $\Omega A = \Omega B$ et 0.25 pour un argument de $\frac{b-\omega}{a-\omega}$

d) 0.5

Exercice 4 (3 points)

1 1) 1 pour le résultat

2 2) a) 0.5

b) 0.75 pour $p(X=3) = \frac{8}{15}$, **0.25 pour** $p(X=2) = \frac{2}{15}$ et **0.5 pour** $p(X=4) = \frac{1}{3}$

