ESPACIOS VECTORIALES

TRABAJO PRÁCTICO Nº 6

- Enlace al software GeoGebra: https://www.geogebra.org/classic?lang=es-AR
- 1. Si las operaciones de suma y producto por un escalar se definen como se indica en cada caso, determinar cuáles de las siguientes cuaternas constituyen o no un espacio vectorial. Para aquellas que no lo sean, indicar al menos una propiedad que no se cumpla.
 - a) $(Z^3, +, R, \cdot)$ con la suma usual de vectores de Z^3 y el producto de un vector de Z^3 por un número real
 - b) $(R^2, +, R, \cdot)$ con la suma usual de vectores de R^2 y el producto usual de un vector de R^2 por un número real
 - c) $(R^2, +, R, \cdot)$ con la suma definida por $(x_1, y_1) + (x_2, y_2) = (x_1, x_2, y_1, y_2)$ y el producto por un escalar como $k(x_1, y_1) = (kx_1, ky_1)$
 - d) $(R^2, +, R, \cdot)$ con la suma definida por $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ y el producto por un escalar como $k(x_1, y_1) = (0, ky_1)$
 - e) $(R_{[x]}, +, R, \cdot)$ con $R_{[x]} = \{P(x) = a_2 x^2 + a_1 x + a_0 / a_i \in R, \forall i\}$ y con la suma usual de polinomios y el producto usual de un polinomio por un número real
- 2. i) Determinar si W es subespacio vectorial del espacio vectorial especificado en cada caso.
 - a) $W = \{(x, y) \in R^2/y = 3x\} \subseteq (R^2, +, R, \cdot)$
 - b) $W = \{(x, y, z) \in R^3/y + z = -2\} \subseteq (R^3, +, R, \cdot)$
 - c) $W = \{a_2x^2 + a_1x + a_0 \in R_{[x]}/a_1 = a_0\} \subseteq (R_{[x]}, +, R, \cdot)$
 - d) $W = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in R^{2 \times 2} / y = 2x ; w = z \right\} \subseteq (R^{2 \times 2}, +, R, \cdot)$
 - e) $W = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in R^{2 \times 2} / x \ge y \right\} \subseteq (R^{2 \times 2}, +, R, \cdot)$
 - f) $W = \{A \in \mathbb{R}^{n \times n} / A = A^t\} \subseteq (\mathbb{R}^{n \times n}, +, \mathbb{R}, \cdot)$
 - g) $W = \{(x_1, x_2, ..., x_n) \in R^n / x_4 + 4x_2 = 0\} \subseteq (R^n, +, R, \cdot)$
 - h) $W = \{(x, y) \in R^2 / y = x + 6\} \subseteq (R^2, +, R, \cdot)$
 - i) $W = \{(x, y, z) \in R^3 / x = y ; z = x + y\} \subseteq (R^3, +, R, \cdot)$
 - ii) Representar gráficamente en GeoGebra los incisos a, b, h, i; interpretar geométricamente y escribir dos elementos de cada conjunto.

3. Expresar, si es posible, el vector \overrightarrow{v} como combinación lineal de los vectores de A

a)
$$\overrightarrow{v} = (5,2)$$
; $A = \{(1,-1),(3,6)\} \subseteq (R^2,+,R,\cdot)$

b)
$$\vec{v} = (2, 2, 2)$$
; $A = \{(4, 1, -5), (1, 0, -2), (3, 1, -3)\} \subseteq (R^3, +, R, \cdot)$

c)
$$\overrightarrow{v} = (1, -1, 3)$$
; $A = \{(4, 1, -1), (-3, -2, 4), (1, 0, 0)\} \subseteq (R^3, +, R, \cdot)$

d)
$$\overrightarrow{v} = (1, -1, 0, -1)$$
; $A = \{(1, 0, 0, 0), (0, -1, 1, 0), (0, 0, 1, 1)\} \subseteq (R^4, +, R, \cdot)$

e)
$$\vec{v} = (9,3)$$
; $A = \{(3,5), (-6,-10)\} \subseteq (R^2,+,R,\cdot)$

f)
$$\vec{v} = x^2 + 3x - 8$$
; $A = \{x^2 + x - 1; x^2 - x + 2; x^2 - 3x + 3\} \subseteq (R_{[x]}, +, R, \cdot)$

$$\text{g)} \ \overrightarrow{v} = \begin{pmatrix} 1 & 6 \\ 2 & 7 \end{pmatrix}; \ A = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 5 & 2 \\ -6 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \right\} \subseteq (R^{2 \times 2}, +, R, \cdot)$$

h)
$$\vec{v} = \begin{pmatrix} 0 & 3 \\ 0 & 2 \end{pmatrix}$$
; $A = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} \subseteq (R^{2 \times 2}, +, R, \cdot)$

4. Encontrar el valor de *k* para que:

a)
$$\vec{v} = (3, -7, 2k)$$
 sea combinación lineal de los vectores $\vec{u} = (1, -2, 3)$ y $\vec{w} = (-1, 3, k)$

b)
$$\overrightarrow{v}=(-1,1,k,2)$$
 sea combinación lineal de los vectores $\overrightarrow{u}=(1,0,-1,2)$ y $\overrightarrow{w}=(0,1,3,k)$

c)
$$A = \begin{pmatrix} 1 & -3 \\ k & 2k \end{pmatrix}$$
 sea combinación lineal de las matrices $B = \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}$ y $C = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$

d)
$$p_{(x)} = kx^2 - 6x + 11$$
 sea combinación lineal de los polinomios $q_{(x)} = x^2 + 3x - 4$ y $r_{(x)} = 2x^2 + 3x + k$

5. Determinar si los vectores del conjunto *A*, del espacio vectorial que se indica, constituyen un conjunto de vectores linealmente independiente (LI) o linealmente dependiente (LD). En este último caso, expresar uno de ellos como combinación lineal de los demás

a)
$$A = \{(2, 2, 0), (4, -4, 9), (-1, -5, 2)\} \subseteq (R^3, +, R, \cdot)$$

b)
$$A = \{(-1, -2, 3), (-3, 2, -1), (-5, 6, -5)\} \subseteq (R^3, +, R, \cdot)$$

c)
$$A = \{(4,1), (-12,3)\} \subseteq (R^2, +, R, \cdot)$$

d)
$$A = \{(2, -4), (0, -2), (3, 1)\} \subseteq (R^2, +, R, \cdot)$$

e)
$$A = \left\{ \begin{pmatrix} 1 & 6 \\ -1 & 7 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 8 & 0 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ -6 & 0 \end{pmatrix} \right\} \subseteq (R^{2x2}, +, R, \cdot)$$

f)
$$A = \{x^2 - 2x + 3; -2x^2 + x + 1; -2x^2 - x + 6\} \subseteq (R_{[x]}, +, R, \cdot)$$

g)
$$A = \{(2, -1, 0, 1, 0), (0, -2, 1, 2, 0), (-2, -1, 1, 1, 0)\} \subseteq (R^5, +, R, \cdot)$$

h)
$$A = \left\{ \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 2 & 6 \end{pmatrix} \right\} \subseteq (R^{2x^2}, +, R, \cdot)$$

6. Para cada uno de los siguientes conjuntos:

a)
$$A = \{(k, 0, 1), (-2, k, -3), (2, 1, 1)\}$$

b)
$$A = \{(1, 0, k, -1), (0, 1, -1, k), (0, 2, k, 2k)\}$$

c)
$$A = \{-x^2 + x : x^2 + kx + 2 : kx + 3\}$$

d)
$$A = \left\{ \begin{pmatrix} 1 & k \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} k & 1 \\ 0 & 2k \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

e) $A = \left\{ \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} k & 5 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ k & 2 \end{pmatrix} \right\}$

- f) $A = \{5x^2 + 2x + 1; kx^2 + x; kx + 5\}$
- i. Determinar los valores de k para que A resulte linealmente independiente
- ii. Determinar los valores de k para que A resulte linealmente dependiente
- 7. Determinar si los vectores del conjunto *A*, de cada ítem, constituyen un sistema de generadores (SG) del espacio que se indica. En caso negativo, indicar el subespacio que generan

a)
$$A = \{(1, 1, 1), (-3, 0, -2), (-3, 3, -1)\} \subseteq (R^3, +, R, \cdot)$$

b)
$$A = \{(-3, -1, 2), (0, 1, -1), (1, -2, 2)\} \subseteq (R^3, +, R, \cdot)$$

c)
$$A = \{(3, -4), (-4, 2)\} \subseteq (R^2, +, R, \cdot)$$

d)
$$A = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix} \right\} \subseteq (R^{2x2}, +, R, \cdot)$$

e)
$$A = \{-5x + 4; 3x + 2\} \subseteq (R_{[x]}, +, R, \cdot)$$

f)
$$A = \{(-1, -1, 2), (2, 3, -1)\} \subseteq (R^3, +, R, \cdot)$$

8. Completar según corresponda:

Dado un conjunto $A = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, de vectores de un espacio vectorial V:

- b) Si un vector $\vec{v}_i = \vec{0}$ del conjunto A, entonces A es linealmente:
- c) Si el conjunto A es linealmente independiente, entonces el subconjunto $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_i\}$ con i < n es linealmente:
- e) Todo vector $\vec{v}_i \neq \vec{0}$ del conjunto A constituye un conjunto linealmente:
- f) El vector $\vec{0}$ constituye un conjunto linealmente:
- g) Si el conjunto A es linealmente independiente y Dim V = n, entonces A es un: de V
- h) Si el conjunto A es sistema generador de V y Dim V = n, entonces A es linealmente:
- 9. Determinar los subespacios vectoriales que generan los siguientes conjuntos:

a)
$$A = \{(2, -1, 0), (4, -2, 1)\}$$

b)
$$B = \{x^2 + 2 : x - 1\}$$

c)
$$C = \{(2, -1), (-4, 2)\}$$

d)
$$D = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

e)
$$E = \{(1,0,0), (0,-1,1)\}$$

f)
$$F = \{(1,0,2), (1,2,3), (1,-2,1)\}$$

Verificar los incisos a, c, e y f con GeoGebra: Sugerencia: representar los vectores; representar gráficamente el subespacio generado (recta o plano); e interpretar geométricamente.

10. Establecer si cada uno de los siguientes conjuntos de vectores forma una base del espacio indicado

a)
$$A = \{(3,1), (-4,2), (2,-2)\} \subseteq (R^2, +, R, \cdot)$$

b)
$$A = \{(-1, 1), (2, -2)\} \subseteq (R^2, +, R, \cdot)$$

c)
$$A = \{-x^2 + 3x ; x^2 + x - 2 ; -x^2 + x + 1\} \subseteq (R_{[x]}, +, R, \cdot)$$

d)
$$A = \{(2,2,3), (1,0,4), (-1,-2,3)\} \subseteq (R^3,+,R,\cdot)$$

e)
$$A = \{(1, 9, 0, 2, 4), (1, 7, 1, 8, 1)\} \subseteq (R^5, +, R, \cdot)$$

f)
$$A = \{\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ -3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 3 & 3 \end{pmatrix}\} \subseteq (R^{2 \times 2}, +, R, \cdot)$$

11. Encontrar las coordenadas del vector \vec{v} respecto de las bases indicadas

a)
$$\vec{v} = (1,2)$$
; $[B] = \{(2,6), (0,-1)\} \subseteq (R^2, +, R, \cdot)$

b)
$$\vec{v} = (2, -5, 2); [B] = \{(1, -3, 2), (2, -5, 0), (-1, 2, 3)\} \subseteq (R^3, +, R, \cdot)$$

c)
$$\vec{v} = (1,0,2); [B] = \{(1,-2,4), (2,0,-2), (-1,-1,4)\} \subseteq (R^3,+,R,\cdot)$$

d)
$$\vec{v} = \begin{pmatrix} 2 & -12 \\ 15 & 5 \end{pmatrix}$$
; $[B] = \{\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\} \subseteq (R^{2 \times 2}, +, R, \cdot)$

e)
$$\vec{v} = -5x^2 - 8x - 3$$
; [B] = $\{x^2 + 2x - 2; 3x^2 + 4x + 4; 2x - 7\} \subseteq (R_{[x]}, +, R, \cdot)$

f)
$$\vec{v} = (2, 0, -10, -8); [B] = \{(1, 0, 0, 0), (1, 2, 3, 4), (1, 0, 0, 2), (2, 2, -2, 1)\} \subseteq (R^4, +, R, \cdot)$$

g)
$$\vec{v} = (6, 1, 2); [B] = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \subseteq (R^3, +, R, \cdot)$$

Verificar los incisos a, b y c con GeoGebra: Sugerencia: por barra de entrada: ingresar los vectores de [B]; ingresar la combinación lineal de dichos vectores tomando como escalares las coordenadas halladas; comprobar que el vector resultante es \vec{v}

- 12. Dado el siguiente vector $\vec{v} = (-8, 5)$:
 - a. Representar gráficamente el vector \vec{v} como combinación lineal de los vectores de la base canónica de R^2

- b. Determinar las coordenadas del vector \vec{v} respecto de la base $[B] = \{(1,2), (-2,3)\}$
- c. Representar gráficamente, en el mismo sistema de ejes del ejercicio anterior, el vector \overrightarrow{v} como combinación lineal de los vectores de la base [B]
- d. Verificar que el vector \vec{v} , gráficamente, es el mismo en ambas bases.
- 13. Sean las bases $B_1 = \{(1,2,0), (0,1,2), (1,0,3)\}$ y $B_2 = \{(0,0,1), (2,1,0), (0,1,1)\}$ de \mathbb{R}^3 , encontrar las coordenadas del vector:
 - a. $\overrightarrow{v} = (1, -2, 3)$ respecto de la base B_2
 - b. $\overrightarrow{v}_{B_1} = (1,4,2)$ respecto de la base canónica
 - c. $\overrightarrow{v}_{B_2} = (2, 2, 3)$ respecto de la base B_1
- 14. Para cada espacio W construir una base e indicar su dimensión

a)
$$W = \{(x, y, z) \in \mathbb{R}^3 / x = y + 2z\} \subseteq (\mathbb{R}^3, +, \mathbb{R}, \cdot)$$

b)
$$W = \{(x, y, z) \in R^3 / x = -2z; y = z\} \subseteq (R^3, +, R, -1)$$

c)
$$W = \{(x, y, z, w) \in R^4/x = 2w; y = 0\} \subseteq (R^4, +, R, \cdot)$$

d)
$$W = \{(x, y, z) \in R^3 / x - y + 5z = 0\} \subseteq (R^3, +, R, \cdot)$$

e)
$$W = \{a_2 x^2 + a_1 x + a_0 \in R_{[x]} / a_2 - a_0 = 0\} \subseteq (R_{[x]}, +, R, \cdot)$$

f)
$$W = \left\{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in R^{2 \times 2} / x = 2y ; z = y \right\} \subseteq (R^{2 \times 2}, +, R, \cdot)$$

g)
$$W = \{(x, y, z, w) \in R^4/z = x - 2y\} \subseteq (R^4, +, R, \cdot)$$

h)
$$W = \{A \in \mathbb{R}^{2 \times 2} / A = -A^t\} \subseteq (\mathbb{R}^{2 \times 2}, +, \mathbb{R}, ...)$$

15. Justificar aplicando propiedades, por qué el conjunto A es linealmente dependiente o independiente, y en qué caso A constituye una base

a)
$$A = \{(3,2), (0,0)\} \subseteq (R^2, +, R, \cdot)$$

b)
$$A = \{(1, -1, 2), (0, -2, -1)\}$$
 tal que $B = \{(1, -1, 2), (0, -2, -1), (0, 0, -1)\} \subseteq (R^3, +, R, .)$ es LI

c)
$$A = \{(1, 1, -4), (3, 3, -12), (1, 2, 0)\} \subseteq (R^3, +, R, \cdot)$$

d)
$$A = \{(0,0,0)\} \subseteq (R^3,+,R,\cdot)$$

e)
$$A = \{(2, 6, -1)\} \subseteq (R^3, +, R, \cdot)$$

f)
$$A = \{(2,0), (0,4), (1,1)\} \subseteq (R^2, +, R, \cdot)$$

g)
$$A = \{(1,0,0), (0,-1,0), (0,0,-2)\} \subseteq (R^3,+,R,\cdot)$$
 tal que A es SG de R^3

16. Para cada una de las representaciones gráficas de subconjuntos de \mathbb{R}^3 :

- i. Demostrar que el subconjunto representa un subespacio vectorial de \mathbb{R}^3
- ii. Indicar tres vectores del subespacio vectorial
- iii. Determinar los vectores que generan el subespacio vectorial
- iv. Calcular la dimensión del subespacio
- v. Demostrar que $A = \{(1,0,1),(0,1,-2)\}$ también es un sistema generador del conjunto de vectores del inciso a
- 17. A partir de los siguientes gráficos determinar, geométricamente, las coordenadas de \vec{v} respecto de la base canónica y de la base indicada en cada caso. Verificar analíticamente.

AUTOEVALUACIÓN DE TEORÍA

1 Responder Verdadero o Falso. <u>NO</u> jus	tificar.
a) Dos bases cualesquiera, de un mism elementos.	o espacio vectorial tienen igual número de
b) El vector nulo, forma un conjunto lir	nealmente dependiente.
2 Completar con la respuesta que corre	sponda.
a) Dados n vectores v_1, v_2, v_n y n escal	ares $\alpha_1, \alpha_2 \dots, \alpha_n$ se llama combinación lineal de
	(con i = 1,, n) al vector \vec{u} definido por
$\vec{u} = \dots$	
	n conjunto de vectores $B = \{\overrightarrow{v_1},, \overrightarrow{v_n}\}$ es una base
si solo si	
3 Escribir, en el recuadro y con tinta, la	letra correspondiente a la respuesta correcta. Si
ninguna es escribir N.	
a) Sea (V, +, R, .) un espacio vectorial rea	al y S = $\{v_1, v_2, \dots, v_n\}$ un subconjunto de vectores
de V, es linealmente dependiente si y só	lo si $\sum_{i=1}^{n} \alpha_i \cdot \overrightarrow{v_i} = 0$ admite:
A) Como única solución, la trivial	
B) Infinitas soluciones distintas de la t	rivial
C) Infinitas soluciones incluida la solu	ción trivial
D) Ninguna de las respuestas anteriore	es
b) Sea $(V, +, R, .)$ un espacio vectorial \vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v} entonces los coe	$y [B] = \{\overrightarrow{v_1},, \overrightarrow{v_n}\}$ una base del mismo, sea $\overrightarrow{u} \in $ ficientes α_i son:
A) Las coordenadas de $\vec{u}_{[B]}$ B) Una combinación lineal de $ec{u}$
C) Base de \vec{u} D) Sistema de generadores

AUTOEVALUACIÓN PRÁCTICA

1.- Recuadrar con tinta, la letra correspondiente a las opciones correctas en cada uno de los enunciados.

a) El conjunto $W = \{(x, y) \in R^2 / y = 2 x \}$

es un SEV de R ²	Α	y una base de W es
no es un SEV de R ²	В	y una base de w es

{(1, 2)}	С
$\{(1, 0), (0, 2)\}$	D

LD	A	
LI	В	, y además W

no es un SG de R ²	С
es un SG de R²	

2.- Completar con la respuesta que corresponda. Las respuestas deben escribirse con tinta.

a) Para que
$$A = \begin{pmatrix} -2 & 2k \\ 2k & -6 \end{pmatrix}$$
 sea combinación lineal de: $B = \begin{pmatrix} -4 & -2 \\ 4 & 0 \end{pmatrix}$ y $C = \begin{pmatrix} -2 & 0 \\ 4 & 2 \end{pmatrix}$,

el valor de k debe ser.....

b) Al construir una base para el espacio vectorial $S = \{(x, y, z) \in \mathbb{R}^3 / y = 6 z - x\} \subset (\mathbb{R}^3)$,+,R,.) el resultado es:....

c) Las coordenadas del vector v = (0, 3, 2) en la base $[B] = \{(1, 0, -1), (-1, 1, 1), (0, -1, 1), (0, -1$ 1 , 1) } son

3.- Escribir, con tinta y en el recuadro, la letra correspondiente a la respuesta correcta. Si ninguna es, escribir una N.

- $S = \{x^2 1; x + k; 2x^2 x + 2\}$ sea linealmente independiente, a) Para que el conjunto k debe ser:
 - A) $k \neq -4$
- B) $k \neq 4$ C) k = -4
 - D) $k \neq 0$

b) El conjunto $W = \{(1, -2, 1), (2, -3, -1), (7, -12, 1)\} \subset (R^3, +, R, .)$:

- A) Es un SG de R3
- B) No es SG de R^3 , pero genera el plano de ecuación 5 x + 3 y + z = 0.
- C) No es SG de R^3 , pero genera el plano de ecuación 7 x + 3y = 0.
- D) Es linealmente independiente.