Berechnungen

▼ Entfernungsberechnung

▼ Variablen

lat1 + long1 = Breiten und Längengrad des Ausgangspunktes (Beispiel: 49°57'39"N, 8°38'29" O)

lat2 + long2 = Breiten und Längengrad des Zielpunktes

▼ Annahmen

- Berechnung basiert auf Angaben in Bogenmaß. Angaben in Grad müssen mit der Funktion BM(x) umgerechnet werden. Weitere Informationen: http://www.new-media-engineering.com/entfernung/berechnung.php
- Funktion E berechnet die Anzahl Kilometer zwischen Start und Ziel
- PHP-Klasse zur Berechnung von Entferungen und Umrechnungen von Grad->Bogenmaß http://www.multimediamotz.de/GeoClass/
- http://www.phpforum.de/forum/showthread.php?t=164952 gibt es eine Liste von Orten, wo dann auch gleich die GeoPosition und Zeitzone mit drinsteht.

▼ Funktionen

$$BM := (x) \rightarrow \frac{x \cdot \pi}{180}$$

$$E := (lat1, long1, lat2, long2) \mapsto 6371 \cdot \arccos(\sin(lat1) \sin(lat2) + \cos(lat1) \cos(lat2) \cos(long1 - long2))$$

▼ Flugzeitberechnung

Variablen

g=Gesamtent fernung

l=Anzahl der Landungen (Beispiel: A nach B über C = 2 Landungen)

c=Reisegeschwindigkeit des Flugzeugs

Annahmen und Hinweise

Flugzeit() berechnet die Flugzeit in Industrieminuten, d.h. eine Stunde enthält 100

Industrieminuten. Dabei entspricht eine Industriestunde = einer normalen Stunde und 100 Industrieminuten = 60 Zeitminuten.

Die Stunden() und Minuten() Funktionen erwarten Industriestunden als Eingabewert.

V Funktionen

Flugzeit :=
$$(g, l, c) \mapsto \frac{g}{c} + l \cdot .75$$

Stunden := $(Flugzeit) \rightarrow Integer(Flugzeit)$
Minuten := $(Flugzeit) \rightarrow Flugzeit - Stunden(Flugzeit) \cdot 60$

▼ Personalkosten

▼ Variablen

f=Anzahl der Ersten Offiziere a=Anzahl der Flugbegleiter d=Buchungsdauer in Stunden

▼ Annahmen

- Es gibt immer genau einen Kapität (43.000,- EUR)
- Es gibt f Erste Offiziere (30.000,- EUR)
- Es gibt a Flugbegleiter (25.000,- EUR)
- Personalkosten gelten immer pro angefangen Stunde (=d)
- Pro Person werden 2000 Arbeitsstunden angenommen.
- Es wird ein Kalkulationsaufschlag von 1.2 angenommen
- abs ist eine Funktion, die den ganzzahligen Teil einer Gleitkommazahl zurückliefert. abs(d)+1 bewirkt damit die Berechnung eines Preises pro angefangener Stunde.

▼ Funktionen

$$PK := (f, a, d) \to 1.2 \left(\frac{(43000 + f \cdot 30000 + a \cdot 25000)}{2000} \cdot (abs(d) + 1) \right)$$

▼ Grundpreis Flugzeug

▼ Variablen

x=Jährliche Kosten

▼ Annahmen

- Angenommen wird eine jährliche Flugzeit von 2000 Stunden
- Es wird ein Kalkulationsaufschlag von 1.2 angenommen.

- abs ist eine Funktion, die den ganzzahligen Teil einer Gleitkommazahl zurückliefert. abs(d)+1 bewirkt damit die Berechnung eines Preises pro angefangener Stunde.

▼ Funktionen

$$GF := (x) \rightarrow \frac{x}{2000} \cdot (abs(d) + 1) \cdot 1.2$$

▼ Stundenpreis Flugzeug (Zeitflug)

▼ Variablen

y=Stündliche Kosten

▼ Annahmen

- Es wird ein Kalkulationsaufschlag von 1.2 angenommen.
- abs ist eine Funktion, die den ganzzahligen Teil einer Gleitkommazahl zurückliefert. abs(d)+1 bewirkt damit die Berechnung eines Preises pro angefangener Stunde.

▼ Funktionen

$$SP_{Zeit} := (y) \rightarrow 1.2 y \cdot (abs(d) + 1)$$

▼ Stundenpreis Flugzeug (Zielflug)

Variablen

y=Stündliche Kosten

g=Gesamtentfernung

l=Anzahl der Landungen (Beispiel: A nach B über C = 2 Landungen)

c=Reisegeschwindigkeit des Flugzeugs

▼ Annahmen

- Es wird ein Kalkulationsaufschlag von 1.2 angenommen.

Funktionen

$$SP_{ziel} := (y) \rightarrow 1.2 \cdot y \left(\frac{g}{c} + 0.75 \cdot z\right)$$

Angebotskalkulation

Variablen

f=Anzahl der Ersten Offiziere

a=Anzahl der Flugbegleiter

d=Dauer des Flugs in Stunden

y=Stündliche Kosten

g=Gesamtentfernung

l=Anzahl der Landungen (Beispiel: A nach B über C = 2 Landungen)

c=Reisegeschwindigkeit des Flugzeugs

Annahmen

Funktionen

Netto :=
$$(f, a, d, x, y) \rightarrow SP_{ziel}(y) + PK(f, a, d) + GF(x)$$

 $Netto_{Zeitflug} := (f, a, d, x, y) \rightarrow SP_{Zeit}(y) + PK(f, a, d) + GF(x)$
 $Brutto := (Netto) \rightarrow Netto \cdot MwSt_{Normal}$
 $MwSt := (Brutto, Netto) \rightarrow Netto - Brutto$

▶ Beispiele