查询AM71LS95供应商

Am71/81LS95 • Am71/81LS96 Am71/81LS97 • Am71/81LS98

Three-State Octal Buffers

DISTINCTIVE CHARACTERISTICS

- · Three-state outputs drive bus line directly
- Typical propagation delay Am71/81LS95, Am71/81LS97

13ns Am71/81LS96, Am71/81LS98 10ns

Typical power dissipation

80mW

- Am71/81LS95, Am71/81LS97 Am71/81LS96, Am71/81LS98
 - 65mW
- · PNP inputs reduce DC loading on bus lines
- Am71/81LS96 and Am71/81LS98 are inverting; Am71/81LS95 and Am71/81LS97 are non-inverting
- 20-pin hermetic and molded DIP packages
- 100% product assurance testing to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am71/81LS95, Am71/81LS96, Am71/81LS97 and Am71/ 81LS98 are octal buffers fabricated using Advanced Low-Power Schottky technology. The 20-pin package provides improved printed circuit board density for use in memory address and clock driver applications.

The Am71/81LS95 and Am71/81LS97 present true data at the outputs, while the Am71/81LS96 and Am71/81LS98 are inverting. The Am71/81LS95 and Am71/81LS96 have a common enable for all eight buffers with access through a 2-input NOR gate. The Am71/81LS97 and Am71/81LS98 octal buffers have four buffers enabled from one common line, and the other four buffers enabled from another common line. In all cases the outputs are placed in the three-state condition by applying a high logic level to the enable pins. All parts feature low current PNP inputs.

MAXIMUM RATINGS above which the useful life may be impaired

MAXIMOIII TIX CO.	-65°C to +150°		
Storage Temperature	-55°C to +125°C		
Temperature (Ambient) Under Bias			
Supply Voltage to Ground Potential	-0.5V to +7.0V		
DC Voltage Applied to Outputs for HIGH Output State	$-0.5V \text{ to } +V_{CC} \text{ max.}$ -0.5V to +7.0V		
DC Input Voltage	150mA		
DC Output Current	-30mA to +5.0mA		
DC Input Current	-3011A to +3.011A		

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

 $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ $V_{CC} = 5.0\text{V} \pm 5\%$ (MIN. = 4.75V MAX. = 5.25V) $T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $V_{CC} = 5.0\text{V} \pm 10\%$ (MIN. = 4.50V MAX. = 5.50V) COM'L MIL

DC CHARACTERISTICS OVER OPERATING RANGE

Am71/81LS95 Am71/81LS96 Am71/81LS97 Am71/81LS98

Parameters Description		Test Conditions			Min.	Typ. (Note 1)	Max.	Units		
V _{IH}	High Level Input Vo					2			Volts	
	Low Level Input Vol							0.8	Volts	
V _{IL}			V Min I	= -18mA					-1.5	Volts
Vi	Input Clamp Voltage			V _{CC} = Min., I _I = -18mA					-1.0	
юн (High Level Output O	Current	MIL COM'L					-2.6	mA	
						$I_{OH} = -5.0 \text{mA}$	2.4			
V _{ОН}	High Level Output Voltage		$V_{CC} = Min., V_{IH} = 2.0V$ $V_{IL} = 0.8V$		COM'L	$I_{OH} = -5.0$ mA $I_{OH} = -2.6$ mA	2.7			Volts
					MIL, I _{OH} = -1.0mA		2.5			
			COM'L					16	mA	
loL	Low Level Output C	Current	MIL					8		
	V _{OL} Low Level Output Voltage		V _{CC} = Min., V _{IH} = 2.0V				0.5	v		
VOL					= 8.0mA			0.4		
	Off-State (High-Impedance) State) Output Current		V _{CC} = Max., V _{IH} = 2.0V				-20	μΑ		
I _{O(OFF)}					V _O = 2.4V				20	
11	Input Current at Ma	ıximum	V _{CC} = Max., V _I = 7.0V					0.1	mA	
1	High Level Input Co	urrent	V _{CC} = Max., V _I = 2.7V					20	μΑ	
liH .	Tilgit Level impar e				uts at 2.0V	V ₁ = 0.5V			-50	μΑ
	Low Level Input Current	A Input Vcc = Max	V _{CC} = Max.	Both \overline{G} inputs at 0.4V $V_1 = 0.4V$		V _I = 0.4V			-0.36	mA
ונ		G Input			V _I = 0.4V				-0.36	
los	Short Circuit Outpu	t Current	V _{CC} = Max.	ax. (Note 2)			-30	-60	-130	mA
.09	Short Silver Super Salver		Am71/81LS95, Am71/81LS97				16	26	mA.	
lcc	Supply Current	V _{CC} = Max.	Am71/81	LS96, Am71/81LS98			13	21		

Notes: 1. All typical values are at $V_{CC}=5.0V$, $T_A=25^{\circ}C$. 2. Not more than output should be shorted at a time, and duration of the short circuit should not exceed one second.

SWITCHING CHARACTERISTICS V _{CC} = 5.0V, T _A = 25°C			Am71/81LS95 Am71/81LS97			Am71/81LS96 Am71/81LS98				
Parameter	rs Description	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
t _{PLH}	Propagation Delay Time, Low-to-High Level Output			11	16		6	10	ns	
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	C_L = 15pF, R_L = 2k Ω		15	22		13	17	ns	
tzH	Output Enable Time to High Level			16	25		17	27	ns	
	Output Enable Time to Low Level			13	20		16	25	ns	
^t ZL				13	20		13	20		
t _{HZ}	Output Disable Time from HIGH Level Output Disable Time from Low Level	$C_L = 5pF, R_L = 2k\Omega$		19	27		18	27	ns	

SWITCHING CHARACTERISTICS TEST CONDITIONS

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

LIC-495

- Notes: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - 2. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - 3. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
 - 4. Pulse generator characteristics: PRR \leq 1MHz, Z_{OUT} \approx 50 Ω , t_f \leq 15ns, t_f \leq 6ns.
 - 5. When measuring tpLH and tpHL, switches S1 and S2 are closed.

APPLICATIONS

Am71/81LS96 USED AS SYSTEM AND/OR MEMORY BUS DRIVER

LIC-497

LIC-496

INDEPENDENT 4-BIT BUS DRIVERS/RECEIVERS IN A SINGLE PACKAGE

LIC-498

ORDERING INFORMATION

	Tamparahura	Order Number							
Package Type	Temperature Range	Am71/81LS95	Am71/81LS96	Am71/81LS97	Am71/81LS98				
Molded DIP Hermetic DIP Hermetic DIP Dice	0°C to +70°C 0°C to +70°C -55°C to +125°C 0°C to +70°C	DM81LS95N DM81LS95J DM71LS95J AM81LS95X	DM81LS96N DM81LS96J DM71LS96J AM81LS96X	DM81LS97N DM81LS97J DM71LS97J AM81LS97X	DM81LS98N DM81LS98J DM71LS98J AM81LS98X				