Learning Properties from Quantum Systems

Bian Kaiming

Collaborate with: Wu Bujiao

overview

- Introduction
- Classical shadows
- Fermionic computing
- Shallow Fermionic shadow

overview

- Introduction
 - Learning properties from quantum systems
 - Quantum state tomography (QST)
 - Drawbacks of QST
- Classical shadows
- Fermionic shadows
- Shallow Fermionic shadow

Hook

Problem: After we manipulating the quantum systems, how can we know certain properties of the system? Say $\operatorname{tr}(O\rho)$.

Figure 1: Al generation: Learning Properties from Quantum Systems

Quantum State Tomography

Figure 2: illustrating QST (a figure from bing)

A solution in stone age:

Quantum state tomography[1]

Expanding state in Pauli basis
Extracting information by insane
measurement.

$$\rho = \frac{1}{2^n} \sum c_i P_i, \quad c_i = \operatorname{tr}(\rho P_i), \quad P_i \in \mathcal{P}_n$$

Drawbacks of QST

- A theorem promise that **the number of measurements is exponential** to the number of qubits if we want to get the full information of the quantum state.
- A way out
 - learn "main information" rather than "full information"
 - Example: If we only care $\operatorname{tr}(\rho Z)$, we only need to measure Z basis.

$$\operatorname{tr}\left(\frac{I+Z}{2}\right) = \operatorname{tr}\left(\frac{I+Z+X}{2}\right)$$

overview

- Introduction
- Classical shadows
 - Shadow protocol
 - Shallow shadows
- Fermionic shadows
- Shallow Fermionic shadow

Classical Shadows Protocol

Classical shadows [2]: Using random shadows (or projections, sections) to predict the expectation value.

Figure 3: (pennylane.ai)

- Randomly choose a Clifford gate U.
- Apllly U to ρ , get $U\rho U^{\dagger}$
- Measure $U \rho U^\dagger$ in computational basis, get $|b \rangle$
- Undo the U, get $U^{\dagger}|b\rangle\langle b|U$ (shadows $\hat{\rho}$)
- using shadows to calculate the expectation value of O.

Drawbacks of Classical Shadows

The depth of the shadow protocol is $\mathcal{O}(n^2)$

Bibliography

- [1] M. A. Nielsen and I. L. Chuang, "Quantum computation and quantum information," Phys. Today, vol. 54, no. 2, p. 60–61, 2001.
- [2] H.-Y. Huang, R. Kueng, and J. Preskill, "Predicting many properties of a quantum system from very few measurements," Nature Physics, vol. 16, no. 10, pp. 1050–1057, 2020.