On-line Learning

- On-line learning vs. batch learning
 - Data available in a sequential order
 - Not by learning on the entire training data set at once
- Learning method
 - Dynamically adapt to new patterns

출처: Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn, Keras, and Ternsorflow

Introduction

- Time series prediction models require new learning as data changes over time.
- For typical batch learning methods, learning is carried out using all the data so far for new learning.
- Batch learning methods require a long time and a large amount of storage space for learning, as they require all the data so far.

Introduction

Batch learning vs Online learning

Logistic Regression example

```
def calc prob(b, x):
    dot = np.array(b).dot(np.array(x))
   if dot >= 7.6:
       prob = 1.0
        prob = np.exp(dot) / (1 + np.exp(dot))
   return prob
def calc err(p, y):
    err = np.log2(np.power(p, y) * np.power((1-p),(1-y)))
    if err <= 1e-10:
       err = 1e+10
   return abs(err)
def relDiff(a, b):
   diff = abs(a - b) / (abs(a) + abs(b))
   return diff
def update(b, x, lr, y, p):
    for i in range(len(b)):
       b[i] += lr * x[i] * (y-p)
def OLR(x, y, threshold, epsilon, lr_i, delta, instances, B, W, fn, theta):
    instances.append((x, y)) # add x, y to the set of observed instances.
   H = sum(W) # w i returns the weight value associated with parameter i
    rand idx = int(np.random.choice(range(len(W)), 1, p = [i / H for i in W]))
    b = B[rand_idx].copy() # sample a random b r, r is it's index in B
    loss i = 0 # initial loss value
    loss est = 1e+10 # infinite
    t = 0 # initial trial value
   prob = calc prob(b, x) # calculate probability of potential
    if calc err(prob, y) >= threshold: # The prediction makes mistake
       lr = lr_i / (1 + np.exp(1)/delta)
       b est = b.copy() # initial a new parameter
       W[rand idx] *= fn # update weight value of b r
        err = 0
        if len(B) < theta:
            while relDiff(loss est, loss i) > epsilon:
                for (x i, y i) in instances:
                   p = calc_prob(b_est, x_i)
                   b_est = update(b, x_i, lr, y_i, p)
                   err += calc err(p, y i)
                loss est = loss i
                loss_i = -err
                t += 1
            B.append(b est)
            W.append(1)
    return prob, B, W, instances
```

```
Algorithm 3 OLR(x, y, \epsilon, \epsilon, \eta_0, \delta, \Omega, \mathcal{B}, W, \omega, \theta)
      Input:
             • x, y : Input vector x and its true label y.
                 \epsilon: Threshold value \epsilon \in \mathbb{R}, \epsilon > 0
                            : Minimum relative error improvement \varepsilon \in \mathbb{R}, \varepsilon > 0
                         : Initial learning rate \eta_0 \in \mathbb{R}, \eta_0 > 0
                           : Annealing rate \delta \in \mathbb{R}, \delta > 0
                   \Omega: Set of observed instances
                   \mathcal{B}: Set of parameter vectors, \mathcal{B} = \{\beta_1, \beta_2, ..., \beta_{|\mathcal{B}|}\}
                   W: Set of associated weight of \mathcal{B}, W = \{w_1, w_2, ..., w_{|\mathcal{B}|}\}
                   \omega: A reduction function \omega = e^{-\alpha}, \alpha > 0
             • \theta: Maximum size of \mathcal{B}, \theta \in \mathbb{R}, \theta > 0
       Output: p, \mathcal{B}, W, \Omega
 1 \Omega \leftarrow (x, y) /* add x, y to the set of observed instances */
      H \leftarrow \sum_{i=1}^{|\mathcal{B}|} w_i / * w_i returns the weight value associated with parameter i * / w_i
3 \beta_r \leftarrow \text{sampling}\left(\frac{w_1}{H}, \frac{w_2}{H}, \dots, \frac{w_{|\mathcal{B}|}}{H}\right) /* sample a random \beta_r, r is it's index in \mathcal{B} */
4 ℓ ← 0 /* initiate loss value */
5 \quad \hat{\ell} \leftarrow \infty
6 t \leftarrow 0 /* initiate trial value */
   p \leftarrow \frac{e^{(\beta_T^T \cdot x_T)}}{1 + e^{(\beta_T^T \cdot x_T)}} /* Calculate probability of potential */
    IF abs(\log_2(p^y(1-p)^{(1-y)})) \ge \epsilon THEN /* The prediction makes mistake */
         \eta_e \leftarrow \frac{\eta_0}{1+e/\delta}
          \hat{\beta} \leftarrow \beta_r /* initiate a new parameter */
           w_r \leftarrow w_r \times \omega /* update weight value of \beta_r*/
           IF |\mathcal{B}| < \theta THEN
12
             WHILE relDiff(\hat{\ell}, \ell) > \varepsilon /* Define relDiff(a, b) = \frac{abs(a-b)}{abs(a)+abs(b)} */
13
              FOR i \leftarrow 1 TO |\Omega| DO
               p_i = \frac{e^{\beta \cdot x_i}}{1 + e^{(\hat{\beta} \cdot x_i)}}
15
                 \hat{\beta} \leftarrow \hat{\beta} + \eta_{\rho} x_i (I(y_i = 1) - p_i)
16
                 /* The indicator function I(a = 1) returns 1 if a = 1, otherwise 0 */
              ENDFOR
17
              \hat{\ell} \leftarrow \ell
18
              \ell \leftarrow -\sum_{i \leq |\Omega|} \log \left( p_i^{y_i} (1 - p_i)^{(1 - y_i)} \right)
19
              t \leftarrow t + 1
21
             ENDWHILE
             \mathcal{B} \leftarrow \hat{\mathcal{B}}
             W \leftarrow 1
23
24
           ENDIF
        ENDIF
        RETURN p, \mathcal{B}, W, \Omega
```

ab.pusan.ac.kr

Logistic Regression example

Data – Telecom-CostomerChunk.csv (7032 rows, 16 columns)

```
# experiments
x = data.iloc[:, :-1]
y = data.iloc[:, -1]
B = [np.zeros like(x.iloc[0].to numpy())]
W = [1]
lr i = 0.01
instances = []
threshold = 2
epsilon = 0.1
delta = 2
fn = np.exp(-0.5)
theta = 800
probs = list()
for i in range(x.index.size):
    p, B, W, instances = OLR(x.iloc[i].to_numpy(), y.iloc[i], threshold, epsilon,
                             lr_i, delta, instances, B, W, fn, theta)
    probs.append(p)
```


parameter vector updated (1 step)

```
[0.6065306597126334, 1]
```

parameter weight vector updated (1 step)

Logistic Regression example

• Compare to TLR (Traditional Logistic Regression)

OLR acc: 0.7436TLR acc: 0.7996

• The greater theta, the better the acc

theta 200 : 0.7463theta 500 : 0.7571

• theta 800 : 0.7651

$$abs(log_2(p^y(1-p)^{(1-y)}))$$

when y = 0, the err value according to p

threshold = 2 means when y = 0 and p >= 0.7 (y = 1, p <= 0.25)

LSTM example

Algorithm OLL

INPUT:

- x, y: Input vector x and true value y
- model: pretrained LSTM model
- *m*: margin of error
- η_0 : initial learning rate
- δ : learning rate reduction rate
- ε : minimum error improvement
- R(x,d): learning rate reduction function

```
OUTPUT: e, e', train

y' = model(x)
e = mae(y, y')

IF e > m THEN

e' = e
\eta' = \eta
train = 1

WHILE e' > \varepsilon
model update using <math>\eta'
y' = model(x)
e' = mae(y, y')
\eta' = R(\eta, \delta)

ELSE

e' = e
train = 0
```

RETURN e, e', train

Experiment Overview

Proposed method

Learning Rate Reduction

 $lr': new \ learning \ rate, \qquad t: traing \ count,$

 δ : learning rate reduction rate

$$lr' = lr - \delta t$$

linear Reduction

$$lr' = \frac{lr}{(1 + \tanh(\delta))^t}$$

tanh Reduction

$$lr' = \frac{lr}{(1 + \exp(\delta))^t}$$

exp Reduction

Proposed method

Evaluation Index

MAE_i : Mean error of values predicted by the initial model

MAE_n: Mean error of values predicted by the new(evolved) model

Train count: Number of times over margin

:p://baelab.pusan.ac.kr

- Experiment Data
 - KOSPI
 - CSI
 - Gold (London Gold Exchange Market price (\$))
 - 10 years, 3652 days

	mean	std	min	max
KOSPI	2036.37	192.63	1552.79	2598.19
CSI	3140.42	629.56	2086.97	5353.75
Gold	20.79	13.67	6.17	55.77

- Train: Valid: Test = 0.5: 0.1: 0.4 (1826, 365, 1461)
- window len: 7

• Offline Learning Test Result

AVG_mae	Margin exceeded
20.388	92

• Online Learning Test Result : no reduction – initial lr

Margin: 60Epsilon: 25

		1e-2	2.5e-3	1e-3	2.5e-4	1e-4
	MAE_i	93.072	62.595	29.702	19.943	22.072
KOSPI	MAE_n	18.348	20.281	18.821	19.052	21.306
	Train	927	742	210	21	19

• Online Learning Test Result : linear reduction – initial lr

• Margin: 60

• Epsilon: 25

delta = lr * 0.75

	delta	75%	50%	25%	10%
	MAE_i	37.766	105.796	57.031	40.185
1e-2	MAE_n	22.557	18.881	20.747	22.806
	Train	155	796	307	163
	MAE_i	27.224	40.399	30.233	25.333
2.5e-3	MAE_n	21.040	22.442	20.507	22.353
	Train	89	234	117	65
	MAE_i	23.071	23.703	21.064	15.695
1e-3	MAE_n	20.825	19.712	19.590	15.058
	Train	47	75	28	15
	MAE_i	22.770	20.718	21.210	18.137
2.5e-4	MAE_n	21.810	19.979	20.276	17.100
	Train	23	18	22	26
	MAE_i	17.461	16.543	20.927	15.608
1e-4	MAE_n	16.739	15.888	20.336	15.054
	Train	19	16	17	16

• Online Learning Test Result: tanh reduction – initial lr

Margin: 60Epsilon: 25

	delta	1	0.75	0.5	0.25	0.1
	MAE_i	23.434	27.492	32.419	39.192	33.171
1e-2	MAE_n	20.904	23.863	25.316	23.648	23.703
	Train	50	69	119	200	154
	MAE_i	21.685	20.452	23.153	23.904	21.917
2.5e-3	MAE_n	20.248	17.887	21.044	20.716	17.983
	Train	35	56	46	65	76
	MAE_i	20.342	20.066	20.843	18.479	20.490
1e-3	MAE_n	19.633	19.364	20.008	17.836	19.233
	Train	16	15	18	14	31
	MAE_i	16.269	17.967	19.096	20.064	22.930
2.5e-4	MAE_n	15.390	17.346	18.338	18.964	21.840
	Train	24	18	19	29	28
	MAE_i	19.604	20.838	14.568	17.080	15.961
1e-4	MAE_n	19.029	20.117	13.945	16.646	15.406
	Train	15	19	18	13	15

Online Learning Test Result : exp reduction – initial lr

Margin: 60Epsilon: 25

	delta	1	0.75	0.5	0.25	0.1
	MAE_i	24.907	24.841	21.888	22.055	23.441
1e-2	MAE_n	23.350	23.122	20.695	20.549	22.023
	Train	45	49	35	40	33
	MAE_i	16.951	18.563	18.532	22.209	17.973
2.5e-3	MAE_n	15.951	17.379	17.506	20.942	17.035
	Train	27	33	29	28	22
	MAE_i	23.257	18.714	17.358	17.245	16.736
1e-3	MAE_n	21.837	17.587	16.368	16.348	15.720
	Train	35	29	24	23	24
	MAE_i	14.747	16.644	17.752	20.310	16.398
2.5e-4	MAE_n	14.104	15.877	16.880	19.630	15.544
	Train	17	20	23	18	23
	MAE_i	15.804	15.419	15.464	16.033	16.327
1e-4	MAE_n	15.319	14.863	14.938	15.546	15.816
	Train	13	15	15	14	14

• Online Learning Test Result : Effect of epsilon

initial lr: 1e-4Margin: 60

linear delta: 10%tanh delta: 0.5exp delta: 0.75

	MAE_i	MAE_n	Train
no_reduction	221.991	22.029	22
linear	22.040	21.221	18
tanh	20.485	19.711	17
exp	21.056	20.299	17

epsilon: 14.3 (mean of train data variance)

	MAE_i	MAE_n	Train
no_reduction	21.965	20.945	22
linear	20.140	19.292	17
tanh	21.515	20.348	24
exp	18.398	17.415	20

epsilon: 5

	MAE_i	MAE_n	Train
no_reduction	19.649	18.827	17
linear	18.411	17.435	21
tanh	21.652	20.779	19
exp	20.024	18.981	22

epsilon: 10

	MAE_i	MAE_n	Train
no_reduction	23.483	21.515	42
linear	20.416	19.811	11
tanh	23.288	21.679	34
exp	22.54	21.416	24

epsilon: 3

• Online Learning Test Result : Effect of margin

initial lr: 1e-4Epsilon: 10

linear delta: 10%tanh delta: 0.5exp delta: 0.75

margin	margin exceeded	
60	92	
50	168	
40	266	
30	374	

Offline test result

	MAE_i	MAE_n	Train
no_reduction	15.238	12.694	82
linear	16.223	13.755	78
tanh	17.225	14.898	78
exp	15.607	13.505	67

margin: 40

	MAE_i	MAE_n	Train
no_reduction	15.471	14.057	35
linear	13.894	12.704	31
tanh	15.886	14.547	35
exp	17.209	15.947	33

margin: 50

	MAE_i	MAE_n	Train
no_reduction	14.833	10.873	158
linear	15.746	11.659	167
tanh	13.931	10.836	130
exp	14.710	11.268	143

margin: 30

Conclusion & Future work

•	This work is a methodological approach to online learning.
•	As with typical batch learning, learning rates are very important hyperparameters.
•	It is directly proportional to margin and MAE_i and inversely proportional to margin and train count.
•	Various combinations are possible, so experimenting with the appropriate set values depending on the data can yield much better results.
•	plan to reinforce the experiment using other reduction functions and learning points.

On-line Learning pseudo-code

```
Algorithm 3 OLR(x, y, \epsilon, \epsilon, \eta_0, \delta, \Omega, \mathcal{B}, W, \omega, \theta)
         Input:
                                       : Input vector x and its true label y.
             x, y
                                       : Threshold value \epsilon \in \mathbb{R}, \epsilon > 0
                                       : Minimum relative error improvement \varepsilon \in \mathbb{R}, \varepsilon > 0
                                       : Initial learning rate \eta_0 \in \mathbb{R}, \eta_0 > 0
                                       : Annealing rate \delta \in \mathbb{R}, \delta > 0
                                       : Set of observed instances
                                       : Set of parameter vectors, \mathcal{B} = \{\beta_1, \beta_2, ..., \beta_{|\mathcal{B}|}\}
                                       : Set of associated weight of \mathcal{B}, W = \{w_1, w_2, ..., w_{|\mathcal{B}|}\}
                                       : A reduction function \omega = e^{-\alpha}, \alpha > 0
                                       : Maximum size of \mathcal{B}, \theta \in \mathbb{R}, \theta > 0
         Output: p, \mathcal{B}, W, \Omega
1.
             \Omega \leftarrow (x, y) / * add x, y to the set of observed instances */
             H \leftarrow \sum_{i=1}^{|\mathcal{B}|} w_i / w_i returns the weight value associated with parameter i * / v_i
             \beta_r \leftarrow \text{sampling}\left(\frac{w_1}{H}, \frac{w_2}{H}, \dots, \frac{w_{|\mathcal{B}|}}{H}\right) /* sample a random \beta_r, r is it's index in \mathcal{B} */
             \ell \leftarrow 0 /* initiate loss value */
             \hat{\ell} \leftarrow \infty
             t \leftarrow 0 /* initiate trial value */
              p \leftarrow \frac{e^{(\beta_T^T \cdot x_T)}}{1 + e^{(\beta_T^T \cdot x_T)}} / * Calculate probability of potential */
               IF abs(\log_2(p^y(1-p)^{(1-y)})) \ge \epsilon THEN /* The prediction makes mistake */
                 \eta_e \leftarrow \frac{\eta_0}{1+e/\delta}
                  \hat{\beta} \leftarrow \beta_r /* initiate a new parameter */
                  w_r \leftarrow w_r \times \omega /* update weight value of \beta_r*/
                  IF |\mathcal{B}| < \theta THEN
12.
                    WHILE relDiff(\ell, \ell) > \epsilon /* Define relDiff(a, b) = \frac{abs(a-b)}{abs(a)+abs(b)} */
13.
                      FOR i \leftarrow 1 TO |\Omega| DO
14.
                      p_i = \frac{e^{\hat{\beta} \cdot x_i}}{1 + e^{(\hat{\beta} \cdot x_i)}}
15.
                        \hat{\beta} \leftarrow \hat{\beta} + \eta_e x_i (I(y_i = 1) - p_i)
16.
                    /* The indicator function I(a = 1) returns 1 if a = 1, otherwise 0 */
                      ENDFOR
1.
                      \ell \leftarrow -\sum_{i \leq |\Omega|} \log(p_i^{y_i} (1 - p_i)^{(1 - y_i)})
                      t \leftarrow t + 1
                    ENDWHILE
                    \mathcal{B} \leftarrow \hat{\beta}
                    W \leftarrow 1
                   ENDIF
                ENDIF
                RETURN p, \mathcal{B}, W, \Omega
```