HW 5

Задача 1.1. Покажите, что если U = D(f) главное открытое подмножество в $X = \operatorname{Spec}(A)$, а V главное открытое подмножество в U, то V главное открытое подмножество и в X, выведите отсюда, что пересечение двух открытых аффинных подмножеств произвольной схемы можно покрыть открытыми подмножествами, главными в них обоих.

Доказательство.

$$X = \operatorname{Spec} A$$
 $X_f = U \subset X \Rightarrow U \simeq (\operatorname{Spec} A)_f \simeq \operatorname{Spec}(A_f)$
 $U_g = V \subset U \Rightarrow V \simeq (\operatorname{Spec} A_f)_g \simeq \operatorname{Spec}((A_f)_g)$
 $\simeq \operatorname{Spec} A_{fg} \simeq (\operatorname{Spec} A)_{fg} \Rightarrow V = X_{fg}$
 $U_1 = \operatorname{Spec} A_1$ $U_2 = \operatorname{Spec} A_2 \subset X$
 $U_1 \cap U_2 = \operatorname{Spec} A_2 \subset X$
 $\operatorname{Spec} A_{f_1} = \bigcup \operatorname{Spec} B_{h_i}$
 $\operatorname{Spec} B_{h_1} \hookrightarrow \operatorname{Spec} B \Rightarrow B \to A_{f_1} \to B_{h_1}$
 $\operatorname{Spec} A_f \hookrightarrow \operatorname{Spec} B \Rightarrow B \to A_{f_1} \Rightarrow B_{h_1} \to (A_{f_1})_{\lambda_1}$
 $B_{h_1} - \operatorname{функций} \neq 0$ в h_1 на B
 $(A_{f_1})_{\lambda_1} - \operatorname{функций} \neq 0$ в h_1 на A_f .

$$B_{h_1}$$
 - функции $\neq 0$ в h_1 на B $(A_{f_1})_{\lambda_1}$ - функции $\neq 0$ в h_1 на A_{f_1} Spec $B_{h_1}\subset \operatorname{Spec} A_{f_1}\Rightarrow (A_{f_1})_{\lambda_1}=B_{h_1}$ и так $\forall f_i,h_j$

Задача 1.2. Пусть X схема с открытым аффинным покрытием $U_i = S \sec{(A_i)}$. Докажите, что $\operatorname{Spec}{(A_i/N(A_i))}$, где N обозначает нильрадикал, тоже склеиваются в схему (замечание: она совпадает со схемой X_{red} , определенной на лекциях - т. е. со структурным пучком $\mathcal{O}_X/\mathcal{N}$, где $\mathcal{N}(U)$ состоит из сечений, нильпотентных в любой точке U).

Доказательство. $X = \bigcup U_i = \bigcup \operatorname{Spec} A_i$ $(\operatorname{Spec} \frac{A_i}{N(A_i)}, \frac{A_i}{N(A_i)})$ - аффинная схема $\operatorname{Spec} \frac{A_i}{N(A_i)} \simeq \operatorname{Spec} A_i$ - как топологические пространства $U_{ij} = \operatorname{Spec} \frac{A_i}{N(A_i)} \cap \operatorname{Spec} \frac{A_j}{N(A_j)} \simeq \operatorname{Spec} A_i \cap \operatorname{Spec} A_j$ $f: (U_{ij}, O_{U_{ij}}) \to (U_{ji}, O_{U_{ji}}), f$ - тождеств. как отображения на топологическом пространстве.

$$\begin{split} & \varphi_{ji}^{\star}: O_{x}(U_{ji}) \simeq O_{x}(U_{ij}) \quad \varphi_{ji}^{\star}(N(U_{ji})) = N(U_{ij}) \\ & \Rightarrow \exists f_{ji}^{\star}: \frac{O_{x}(U_{ji})}{N(U_{ji})} \to \frac{O_{x}(U_{ji})}{N(U_{ji})} \\ & \Rightarrow f_{ji}^{\star} \circ f_{ij}^{\star} = \mathrm{id} \quad \text{if } f_{ik}^{\star} = f_{jk}^{\star} \circ f_{ij}^{\star} \end{split}$$

Задача 1.3. Пусть X,YS-схемы, а ZY-схема (в частности, Z тоже S-схема). Проверьте, что $(X\times_S Y)\times_Y Z$ изоморфна $X\times_S Z$.

Доказательство.

$$\begin{split} \varphi: W \to X \\ \psi: W \to Z \\ fg\psi = h\varphi \Rightarrow \exists !\alpha: W \to X \times_S Y, \text{ такое что} \\ p_1 \circ \alpha = \varphi \quad p_2 \circ \alpha = g\psi \\ \Rightarrow \exists !\beta: W \to X \times_S Y \times_Y Z, \text{ такое что} \\ \Pi_2 \circ \beta = \psi \quad \Pi_1 \circ \beta = \alpha \\ \Rightarrow p_1 \circ \Pi_1 \circ \beta = \varphi \quad \Pi_2 \circ \beta = \psi \end{split}$$

При пост композиции с p_1 могла потеряться единственность

Пусть $\exists x: W \to X \times_S Y \times_Y Z$, такое что $p_1 \circ \Pi_1 \circ \gamma = \varphi$ $\Pi_2 \circ \gamma = \psi$ $p_2 \circ \Pi_1 \circ \gamma = g \circ \Pi_2 \circ \gamma = g\psi \Rightarrow \Pi_1 \circ \gamma = \alpha$ (из-за единственности α) $\Pi_2 \circ \gamma = \psi \Rightarrow \gamma = \beta$ из-за единственности β

Задача 1.4.

- (a) Пусть X приведенная схема над полем k и L сепарабельное алгебраическое расширение k. Докажите, что $X_L = X \otimes_k L$ тоже приведена.
- (б) Приведите пример схемы, которая приведена, но не геометрически приведена.

Доказательство.

(б)

- (а) X привед. следовательно $X=\bigcup U_i=\bigcup \operatorname{Spec} A_i$, A_i привед. без потери общности $X=\operatorname{Spec} A$, привед. локальное свойство \Rightarrow без потери общности $D(f)\subset \operatorname{Spec}(A\otimes L)$. Рассмотрим D(f) $f=\sum a'\otimes b'$ $A'=\langle a'\rangle$ \Rightarrow без потери общности $\operatorname{Spec} A'\otimes L'$ то есть A' нечет, тогда в нем кон. количество минимальных простых $A'\hookrightarrow \prod_{p_i\in\operatorname{Spec} min}=\bigoplus \frac{A}{p_i}$, тогда без потери общности $A=\bigoplus Q(\frac{A}{p_i})=\bigoplus F_i$ $(\bigoplus F_i)\otimes L=\bigoplus (F_i\otimes_k L)$. Аналогично без потери общности $L=k(b_1,\ldots,b_i,\ldots)$ кон. сеп. $\Rightarrow L=k(\alpha_1)\Rightarrow A\otimes_k L=A(\alpha_1)$ привед.
- $F_p(t^{rac{1}{p}})\otimes F_p(t^{rac{1}{p}})=rac{F_p(t)[x][y]}{(x^p-t)(y^p-t)}$ не привед, так как $x
 eq y\Rightarrow x-y
 eq 0 \qquad (x-y)^p=x^p-y^p=t-t=0$ $F_p(t^{rac{1}{p}})=L \qquad \mathrm{Spec}\, L \times_{\mathrm{Spec}\, k} \mathrm{Spec}\, L$ не привед сх

но $\operatorname{Spec} L$ - спектр поля \Rightarrow привед сх

Задача 1.5. Пусть X,Y целые схемы. Говорят, что морфизм $f:X\to Y$ доминантный, если образ топологического пространства X плотен в Y. Докажите, что следующие условия эквивалетны:

- (а) f доминантный
- (b) общая точка X отображается в общую точку Y
- (c) гомоморфизм пучков $f^{\#}$ инъективен.

Доказательство.

- $(a\Rightarrow b)\;\;y$ общая точка $Y,\,x$ общая точка X $\overline{\{x\}}=X\quad Y=\overline{f(X)}=\overline{f(\overline{\{x\}})}=\overline{f(\{x\})}\Rightarrow f(\{x\})=\{y\}$
- $(b\Rightarrow a) \ \ f(\{x\})=\{y\}\Rightarrow \overline{f(\{x\})}=\overline{f(\overline{\{x\}})}=\overline{\{y\}}=Y$
- $(a\Rightarrow c)$ $0\neq U\subset X$ афф откр $f(U)\subset U\subset Y$ афф откр, $U=\operatorname{Spec} A$ $U=\operatorname{Spec} B$ A,B области \Rightarrow $f|_U:U\to V\to \varphi:B\to A.$ f переводит общую точку в общую точку $\Leftrightarrow \varphi^{-1}((0))=(0)\Leftrightarrow f^\star$ инъ, любое его ограничение на откр. инъ.
- $(c\Rightarrow a)$ f^* инъ, $\forall=\operatorname{Spec} A\subset X$ $V=\operatorname{Spec} B\subset Y$ f(U) $f|_U:U\to V\to \varphi:B\to A$ инъ $\Rightarrow \varphi((0))=(0)\Rightarrow f|_U$ переводит общую точку U в общую точку V и так $\forall U,V$ $f(U)\subset V$ афф $\Rightarrow f$ переводит общую точку X в общую точку Y

Задача 1.6.

- (а) Проверьте, что морфизм $\phi_{n,m}: \mathbb{A}^n_k \times_k \mathbb{A}^m_k \to \mathbb{A}^{mn+n+m}_k$, заданный формулой $(x_1, \dots, x_n, y_1, \dots, y_m) \mapsto (x_1, \dots, x_n, y_1, \dots, y_m, x_1y_1, x_1y_2, \dots, x_ny_m)$ замкнутое вложение, и опишите его образ.
- (б) Проверьте, что формула $((X_0:\dots:X_n),(Y_0:\dots:Y_m))\mapsto (X_0Y_0:X_0Y_1:\dots:X_nY_m)$ задает замкнутое вложение $S_{n,m}:\mathbb{P}^n_k\times_k\mathbb{P}^m_k$ в \mathbb{P}^{mn+m+n}_k .
- (в) Вычислите степень получившейся замкнутой подсхемы в \mathbb{P}_k^{mn+m+n} . Указание: пусть P ее многочлен Гильберта, тогда P(d) при больших d размерность пространства многочленов от X_0, \ldots, Y_m , однородных степени d как по X_i , так и по Y_j .

Доказательство.

- (a)
- (б)
- (B)