ARTIFICIAL INTELLIGENCE

Solving search problems

Uninformed search strategies

Content

Problems

- Problem solving
 - Steps of problem solving
- Solving problem by search
 - Steps of solving problem by search
 - Search strategies

Problems

- Two problem types:
 - Solving in a deterministic manner
 - Computing the sinus of an angle or the square root of a number
 - Solving in a stochastic manner
 - □ Real-world problems → design of ABS
 - □ Involve the search of a solution → AI's methods

Problems

model

- Tipology
 - Search/optimisation problems
 - Planning, satellite's design
 - Modeling problems
 - Predictions, classifications
- inputs outputs model

- Simulation problems
 - Game theory

output

Problem solving

- Identification of a solution
 - □ In computer science (AI) \rightarrow search process
 - □ In engineering and mathematics → optimisation process

■ How?

- □ Representation of (partial) solutions → points in the search space
- □ Design of a search operators → map a potential solution into another one

Steps in problem solving

Problem definition

- Problem analyses
- Selection of a solving technique
 - Search
 - Knowledge representation
 - Abstraction

Solving problems by search

- Based on some objectives
- Composed by actions that accomplish the objectives
 - Each action changes a state of the problem
- More actions that map the initial state of problem into a final state

Steps in solving problems by search Problem definition

- Problem definition involves:
 - A search space
 - All possible states
 - Representation
 - Explicit construction of all possible states
 - Default by using some data structures and some functions (operators)
 - One or more initial state
 - One or more final states
 - One or more paths
 - More successive states
 - A set of rules (actions)
 - Successor functions (operators) next state after a given one
 - Cost functions that evaluate
 - How a state is mapped into another state
 - An entire path
 - Objective functions that check if a state is final or not

Steps in solving problems by search Problem definition

Examples

- Puzzle game with 8 pieces
 - State's space different board configurations for a game with 8 pieces
 - Initial state a random configuration
 - Final state a configuration where all the pieces are sorted in a given manner
 - Rules -> white moves
 - conditions: move inside the table
 - Transformations: the white space is moved up, down, to left or to right
 - Solution optimal sequence of white moves

7	2	1	
	5	6	
3	8	4	
3	8	4	

1	2	3
4	5	6
7	8	

Steps in solving problems by search Problem definition

Examples

- Queen's problem
 - State's space different board configurations for a game with n queens
- a b c d e f g h

 1 2 2
 3 4 5 5
 6 6 6 7
 8 a b c d e f g h

 1 7
 8 a b c d e f g h
 - Initial state a configuration without queens
 - Final state a configuration n queens so that none of them can hit any other in one move
 - Rules -> put a queen on the table
 - conditions: the queen is not hit by any other queen
 - Transformations: put a new queen in a free cell of the table
 - Solution optimal placement of queens

Steps in solving problems by search Problem analyse

- The problem can be decomposed?
 - The sub-problems are independent or not?
- The possible state's space is predictable?
- We want a solution or an optimal solution?
- The solution is represented by a single state or by more successive states?
- We require some knowledge for limiting the search or for identifying the solution?
- The problem is conversational or solitary?
 - Human interaction is required for problem solving?

- Solving by moving rules (and control strategy) in the search space until we find a path from the initial state to the final state
- Solving by search
 - Examination of all possible states in order to identify
 - A path from the initial state to the final state
 - An optimal state
 - The search space = all possible states and the operators that maps the states

Solving by search

- More searching strategies → how we select one of them?
 - Computational complexity (temporal and spatial)
 - □ Completeness → the algorithms always ends and finds a solution (if it exists)
 - □ Optimal → the algorithms finds the optimal solution (the optimal cost of the path from the initial state to the final state)

Internal factors

External factors

Solving by search

- More searching strategies → how we select one of them? → Computational complexity (temporal and spatial)
 - Strategy's performance depends on
 - Time for running
 - Memory for running
 - Size of input data
 - Computer's performance
 - Compiler's quality
 - □ Can be evaluated by complexity → computational efficiency
 - Spatial → required memory for solution identification
 - S(n) memory used by the best algorithms A that solves a decision problem f with n input data
 - Temporal → required time for solution identification
 - T(n) running time (number of steps) of the best algorithm A that solves a decision problem f with n input data

- Problem solving by search can be performed by:
 - Step by step construction of solution

Optimal solution identification

- Problem solving by search can be performed by:
 - Step by step construction of solution
 - Problem's components
 - Initial state
 - Operators (successor functions)
 - Final state
 - Solution = a path (of optimal cost) from the initial state to the final state
 - Search space
 - All the states that can be obtained from the initial state (by using the operators)
 - A state = a component of solution
 - Example
 - Traveling Salesman Problem (TSP)
 - Algorithms
 - Main idea: start with a solution's component and adding new components until a complete solution is obtained
 - Recurrent → until a condition is satisfied
 - The search's history (path from initial state to the final state) is retained in LIFO/FIFO containers
 - Advantages
 - Do not require knowledge (intelligent information)

- Problem solving by search can be performed by:
 - Optimal solution identification
 - Problem's components
 - Conditions (constraints) that must be satisfied by the solution
 - Evaluation function for a potential solution → optimum identification
 - Search space
 - All possible and complete solutions
 - State = a complete solution
 - Example
 - Queen's problem
 - Algorithms
 - Main idea: start with a state that doesn't respect some conditions and change it for eliminating these violations
 - Iterative \rightarrow a single state is retained and the algorithm tries to improve it
 - The searches history is not retained
 - Advantages
 - Simple
 - Requires a small memory
 - Can find good solutions in (continuous) search spaces very large (where other algorithms can not be utilised)

- Solving problem by search involves:
 - Very complex algorithms (NP-complete problems)
 - Search in an exponential space

- Topology of search strategies:
 - Solution generation
 - Constructive search
 - Solution is identified step by step
 - Ex. TSP
 - Perturbative search
 - A possible solution is modified in order to obtain another possible solution
 - Ex. SAT Propositional Satisfaction Problem
 - Search space navigation
 - Systematic search
 - The entire search space is visited
 - Solution identification (if it exists) → complete algorithms
 - Local search
 - Moving from a point of the search space into a neighbor point → incomplete algorithms
 - A state can be visited more times
 - Certain items of the search
 - Deterministic search
 - Algorithms that exactly identify the solution
 - Stochastic search
 - Algorithms that approximate the solution
 - Search space exploration
 - Sequential search
 - Parallel search

Topology of search strategies:

- Number of objectives
 - Single-objective search
 - The solution must respect a single condition/constraint
 - Multi-objective search
 - The solution must respect more conditions/constraints
- Number of solutions
 - single-modal search
 - There is a single optimal solution
 - multi-modal search
 - There are more optimal solutions
- Algorithm
 - Search over a finite number of steps
 - Iterative search
 - The algorithms converge through the optimal solutions
 - Heuristic search
 - The algorithms provide an approximation of the solution
- Search mechanism
 - traditional search
 - modern search
- where the search takes place
 - local search
 - global search

Topology of search strategies:

- Type (linearity) of constraints
 - Linear search
 - non-linear search
 - Clasical (deterministic)
 - Direct based on evaluation of the objective function
 - Indirect based on derivative (I and/or II) of the objective function
 - Enumeration-based
 - How solution is identified
 - Uninformed the solution is the final state
 - Informed deals with an evaluation function for a possible solution
 - Search space type
 - Complete the space is finite (if solution exists, then it can be found)
 - Incomplete the space is infinite
 - Stochastic search
 - Based on random numbers
- Agents involves in search
 - Search by a single agent → without obstacle for achieving the objectives
 - Adversarial search → the opponent comes with some uncertainty

Example

- Topology of search strategies
 - Solution generation
 - Constructive search
 - Perturbative search
 - Search space navigation
 - Systematic search
 - Local search
 - Certain items of the search
 - Deterministic search
 - Stochastic search
 - Search space exploration
 - Sequential search
 - Parallel search

Example

- Constructive, global, determinist, sequential search
- Problem"capra, varza şi lupul"
 - Input:
 - A goat, a cabbage and a wolf on a river-side
 - A boat with a boater
 - Output:
 - Move all the passengers on the other side of the river
 - Taking into account:
 - The boat has only 2 places
 - It is not possible to rest on the same side:
 - The goat and the cabbage
 - The wolf and the goat

Search strategies – Basic elements

- Abstract data types (ADTs)
 - ADT list → linear structure
 - ADT tree → hierarchic structure
 - ADT graph → graph-based structure

ADT

- Domain and operations
- Representation

- Characteristics
 - Are NOT based on problem specific information
 - Are general
 - Blind strategies
 - Brute force methods
- Topology
 - Order of node exploration:
 - USS in linear structures
 - Linear search
 - Binary search
 - USS in non-linear structures
 - Breadth-first search
 - Uniform cost search (branch and bound)
 - Depth first search
 - Limited depth first search
 - iterative deepening depth-first search
 - Bidirectional search

SS in tree-based structures

Basic elements

- f(n) evaluation function for estimating the cost of a solution through node (state) n
- h(n) evaluation function for estimating the cost of a solution path from node (state) n to the final node (state)
- g(n) evaluation function for estimating the cost of a solution path from the initial node (state) to node (state) n
- f(n) = g(n) + h(n)

USS in tree-based structures Breadth-first search – BFS

Basic elements

- All the nodes of depth d are visited before all the nodes of depth d+1
- All children of current node are added into a FIFO list (queue)

Examplu

Visiting order: A, B, C, D, E, F, G, H, I, J, K

Algorithm

Vizitate deja	De vizitat	
Ф	Α	
А	B, C, D	
А, В	C, D, E, F	
A, B, C	D, E, F, G	
A, B, C, D	E, F, G, H, ,I, J	
A, B, C, D, E	F, G, H, I, J	
A, B, C, D, E, F	G, H, I, J	
A, B, C, D, E, F, G	H, I, J	
A, B, C, D, E, F, G, H	I, J	
A, B, C, D, E, F, G, H, I	J, K	
A, B, C, D, E, F, G, H, I, J	К	
A, B, C, D, E, F, G, H, I, J, K	Ф	

USS in tree-based structures Breadth-first search – BFS

Search analyse:

- Time complexity:
 - □ b ramification factor (number of children of a node)
 - d length (depth) of solution
 - $T(n) = 1 + b + b^2 + ... + b^d => O(b^d)$
- Space complexity
 - S(n) = T(n)
- Completness
 - If solution exists, then BFS finds it
- Optimality
 - No

Advantages

Finds the shortest path to the objective node (the shallowest solution)

Disadvantages

- Generate and retain a tree whose size exponentially increases (with depth of objective node)
- Exponential time and space complexity
- Russel&Norving experiment
- Works only for small search spaces

Applications

- Identification of connex components in a graph
- Identification of the shortest path in a graph
- Optimisation in transport networks → algorithm Ford-Fulkerson
- Serialisation/deseralisation of a binary tree (vs. serialization in a sorted manner) allows efficiently reconstructing of the tree
- Collection copy (garbage collection) → algorithm Cheney

Vizitate deja De vizitat			
Ф	В		
В	A, E, F		
B, A	E, F, C		
B, A, E	F, C		
B, A, E, F	С		
B, A, E, F, C	Ф		

USS in tree-based structures Uniform cost search – UCS

Basic elements

- BFS +special expand procedure (based on the cost of links between nodes)
- All the nodes of depth d are visited before all the nodes of depth d+1
- All children of current node are added into a FIFO ordered list.
 - The nodes of minimum cost are firstly expanded
 - When a path to the final state is obtained, it became a candidat to the optimal solution
- Branch and bound algorithm

Example

Visiting oreder: A, C, B, D, G, E, F, I, H, J, K

Algorithm

```
bool UCS(elem, list) {
      found = false;
      visited = \Phi;
      toVisit = {start};
                               //FIFO sorted list
      while ((to Visit !=\Phi) && (!found)) {
             node = pop(toVisit);
             visited = visited U {node};
             if (node== elem)
                found = true;
             else
                aux = \Phi;
             for all (unvisited) children of node do{
                aux = aux U {child};
             } // for
             toVisit = toVisit U aux:
             TotalCostSort(toVisit);
      } //while
      return found:
```


visited	toVisit
Ф	A
А	C(3), B(7), D(9)
A, C	B(7), D(9), G(3+7)
A, C, B	D(9), G(10), E(7+10), F(7+15)
A, C, B, D	G(10), I(9+3), J(9+4) ,H(9+5), E(17), F(22)
A, C, B, D, G	I(12), J(13) ,H(14), E(17), F(22)
A, C, B, D, G, I	J(13) ,H(14), E(17), F(22), K(9+3+7)
A, C, B, D, G, I, J	H(14), E(17), F(22), K(19)
A, C, B, D, G, I, J, H	E(17), F(22), K(19)
A, C, B, D, G, I, J, H, E	F(22), K(19)
A, C, B, D, G, I, J, H, E, F	K(19)
A, C, B, D, G, I, J, H, E, F, K	Ф

USS in tree-based structures

Uniform cost search – UCS

Complexity analyse

- Time complexity
 - □ *b* ramification factor
 - □ *d* length (depth) of solution
 - \Box $T(n) = 1 + b + b^2 + ... + b^d => O(b^d)$
- Space complexity
 - \Box S(n) = T(n)
- Completness
 - yes if solutions exists, then UCS finds it
- Optimality
 - Yes

Advantages

Finding the minimum cost path to the objective node

Disadvantages

Exponential time and space complexity

Applications

■ Shortest path → Dijkstra algorithm

Vizitate deja	De vizitat
Φ	A(0)
A(0)	B(5), C(10)
A(0), B(5)	F(8), C(10), E(14)
A(0), B(5), F(8)	C(9), E(10)
A(0), B(5), F(8), C(9)	E(10), H(14)
A(0), B(5), F(8), C(9), E(10)	H(14)

USS in tree-based structures depth-first search – DFS

Basic elements

- Expand a child and depth search until
 - The final node is reached or
 - The node is a leaf
- Coming back in the most recent node that must be explored
- All the children of the current node are added in a LIFO list (stack)

Examplue

Visiting order: A, B, E, F, C, G, D, H, I, K, J

Algorithm

```
bool DFS(elem, list) {
      found = false;
      visited = \Phi;
      toVisit = {start};  //LIFO list
      while ((to Visit !=\Phi) && (!found)) {
            node = pop(toVisit);
            visited = visited U {node};
            if (node== elem)
               found = true;
            else{
                   aux = \Phi;
                   for all (unvisited) children of node do{
                      aux = aux U {child};
                   toVisit = aux U toVisit;
         //while
      return found;
```


Vizitate deja	De vizitat	
Φ	A	
A	B, C, D	
A, B	E, F, C, D	
A, B, E	F, C, D	
A, B, E, F	C, D	
A, B, E, F, C	G, D	
A, B, E, F, C, G	D	
A, B, E, F, C, G, D	H, I, J	
A, B, E, F, C, G, D, H	I, J	
A, B, E, F, C, G, D, H, I	K, J	
A, B, E, F, C, G, D, H, I, K	J	
e\$, B, E, F, C, G, D, H, I, K, J	Ф 32	

USS in tree-based structures depth-first search – DFS

Complexity analyse

- Time complexity
 - b ramification factor
 - dmax maximal length (depth) of explored tree
 - $T(n) = 1 + b + b^2 + ... + b^{dmax} = O(b^{dmax})$
- Space complexity
 - $S(n) = b * d_{max}$
- Completness
 - No → the algorithm does not end for infinite paths (there is no sufficient memory for all the nodes that are visited already)
- Optimality
 - No → depth search can find a longer path than the optimal one

Advantages

Finding the shortest path with minimal resources (recursive version)

Disadvantages

- Dead paths
 - Infinite cycles
 - Longer solution than the optimal one

Applications

- Maze problem
- Identification of connex components
- Topological sorting
- Testing the graph planarity

USS in tree-based structures depth-first search – DFS


```
bool DFS edges(elem, list) {
  discovered = \Phi;
  back = \Phi:
  toDiscover = \Phi; //LIFO
  for (all neighbours of start) do
       toDiscover = toDiscover U {(start, neighbour)}
  found = false;
  visited = {start};
  while ((toDiscover !=\Phi) && (!found)) {
        edge = pop(toDiscover);
       if (edge.out !e visited) {
           discovered = discovered U {edge};
           visited = visited U {edge.out}
           if (edge.out == end)
                found = true;
           else{
                aux = \Phi;
                for all neighbours of edge.out do{
                aux = aux U {(edge.out, neighbour)};
           toDiscover = aux U toDiscover;
           back = back U {edge}
  } //while
  return found:
```

Muchia	Muchii vizitate deja	Muchii de vizitat	înapoi	Noduri vizitate
	Ф	AB, AF	Ф	А
AB	AB	BC, BK, AF	Ф	A, B
ВС	AB, BC	CD, BK, AF	Ф	A, B, C
CD	AB. BC, CD	DE, BK, AF	Ф	A, B, C, D
DE	AB, BC, CD, DE	EF, EH, BK, AF	Ф	A, B, C, D, E
EF	AB, BC, CD, DE, EF	FI, FG, EH, BK, AF	Φ	A, B, C, D, E, F
FI	AB, BC, CD, DE, EF, FI	FG, EH, BK, AF	Ф	A, B, C, D, E, F, I
FG	AB, BC, CD, DE, EF, FI, FG	GA, EH, BK, AF	Ф	A, B, C, D, E, F, I, G
GA	AB, BC, CD, DE, EF, FI, FG	EH, BK, AF	GA	A, B, C, D, E, F, I, G
EH	AB, BC, CD, DE, EF, FI, FG	HJ, HN, BK, AF	GA	A, B, C, D, E, F, I, G, H
HJ	AB, BC, CD, DE, EF, FI, FG, HJ	HN, BK, AF	GA	A, B, C, D, E, F, I, G, H, J
HN	AB, BC, CD, DE, EF, FI, FG, HI, HN	BK, AF	GA	A, B, C, D, E, F, I, G, H, N

Basic elements

- DFS + maximal depth that limits the search (d_{lim})
- Solved the completeness problems of DFS

Example

- Visiting order: A, B, E, F, C, G, D, H, I, J

Algorithm

```
bool DLS(elem, list, dlim) {
      found = false;
      visited = \Phi;
      toVisit = {start}; //LIFO list
      while ((to Visit !=\Phi) && (!found)) {
             node = pop(toVisit);
            visited = visited U {node};
             if (node.depth <= dlim) {</pre>
                   if (node == elem)
                      found = true;
                   else{
                      aux = \Phi;
                      for all (unvisited) children of node do{
                                aux = aux U {child};
                      toVisit = aux U toVisit;
                   }//if found
             }//if dlim
      } //while
      return found;
```


Vizitate deja	De vizitat
Ф	Α
Α	B, C, D
A, B	E, F, C, D
A, B, E	F, C, D
A, B, E, F	C, D
A, B, E, F, C	G, D
A, B, E, F, C, G	D
A, B, E, F, C, G, D	H, I, J
A, B, E, F, C, G, D, H	l, J
A, B, E, F, C, G, D, H, I	J
A, B, E, F, C, G, D, H, I, K, J	Φ

USS in tree-based structures depth-limited search – DLS

Complexity analyse

- Time complexity:
 - □ b ramification factor
 - □ d^{lim} limit of length (depth) allowed for the explored tree
 - $T(n) = 1 + b + b^2 + ... + b^{dlim} = O(b^{dlim})$
- Space complexity
 - $\square S(n) = b * d_{lim}$
- Completeness
 - \square Yes, but $\Leftrightarrow d_{lim} > d$, where d = length (path) of optimal solution
- Optimality
 - \square No \rightarrow DLS can find a longer path than the optimal one

Advantages

- Solves the completeness problems of DFS
- Disadvantages
 - How to choose a good limit d_{lim} ?
- Applications
 - Identification of bridges in a graph

USS in tree-based structures iterative deepening depth search – IDDS

Basic elements

- U DLS(d_{lim}), where $d_{lim} = 1, 2, 3, ..., d_{max}$
- Solves the identification of the optimal limit d_{lim} from DLS
- Usually, it works when:
 - The search space is large
 - The length (depth) of solution is known

Example

Algorithm

```
bool IDS(elem, list) {
    found = false;
    dlim = 0;
    while ((!found) && (dlim < dmax)) {
        found = DLS(elem, list, dlim);
        dlim++;
    }
    return found;
}</pre>
```


Complexity analyse

- Time complexity:
 - \Box b^{dmax} nodes at depth d_{max} are expanded once => 1 * b^{dmax}
 - □ b^{dmax-1} nodes at depth d_{max} -1 are expanded twice => 2 * (b^{dmax-1})
 - o ..
 - □ b nodes at depth 1 are expanded d_{max} times => $d_{max} * b^1$
 - □ 1 node (the root) at depth 0 is expanded $d_{max}+1$ times => $(d_{max}+1)*b^0$

$$T(n) = \sum_{i=0}^{d_{\text{max}}} (i+1)b^{d_{\text{max}}-1} \Rightarrow O(b^{d_{\text{max}}})$$

- Space complexity
 - $S(n) = b * d_{max}$
- Completness
 - yes
- Optimality
 - yes

Advantages

- Requires linear memory
- The goal state is obtained by a minimal path
- Faster than BFS and DFS

Disadvantages

Requires to know the solution depth

Applications

Tic tac toe game

USS in tree-based structures iterative deepening depth search – IDDS

USS in tree-based structures bi-directional search – BDS

Basic elements

- 2 parallel search strategies
 - forward: from root to leaves
 - backward: from leaves to root

that end when they meet

- any SS can be used in a direction
- Requires establishing:
 - the parents and the children of each node
 - the meeting point

Example

Algorithm

Depend on the SS used

USS in tree-based structures bi-directional search – BDS

Complexity analyse

- Time complexity
 - b ramification factor
 - d solution length (depth)
 - $O(b^{d/2}) + O(b^{d/2}) = O(b^{d/2})$
- Space complexity
 - S(n) = T(n)
- Completeness
 - yes
- Optimality
 - yes

Advantages

Good time and space complexity

Disadvantages

- Each state must be reversed.
 - From had to tail
 - From tail to head
- Difficult to implement
- Identification of parents and children for all the nodes
- The final state must be known

Applications

- Partitioning problem
- Shortest path

USS in tree-based structures

USS in tree-based structures

Comparison of performances

SS	Time complexity	Space complexity	Completeness	Optimality
BFS	O(bd)	O(bd)	Yes	Yes
UCS	O(bd)	O(bd)	Yes	Yes
DFS	O(b ^{dmax})	O(b*d _{max})	No	No
DLS	O(b ^{dlim})	O(b*d _{lim})	Yes, if d _{lim} > d	No
IDS	O(bd)	O(b*d)	Da	Yes
BDS	O(b ^{d/2})	O(b ^{d/2})	Yes	Yes