Verteilte Systeme – Übung

Evaluation von Systemen

Sommersemester 2022

Laura Lawniczak, Tobias Distler

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme)
www4.cs.fau.de

Überblick

Evaluation von Systemen

Evaluation von Systemen

- Analyse des eigenen Systems
 - Leistungsfähigkeit
 - Antwortzeit
 - Durchsatz
 - Ressourcenverbrauch
 - Dienstgüte-Garantien
 - ...
- Vergleich mit anderen Systemen
 - Wie verhalten sich die unterschiedlichen Systeme in bestimmten Situationen?
 - Wo liegen die jeweiligen Stärken und Schwächen?
 - Ab welchen Punkten ist das eine bzw. das andere System besser?
 - ...

Unterscheidung

- Simulation
 - Messungen an einem Simulator, der das gewünschte Verhalten so gut wie möglich imitiert
 - + Oftmals einfach zu realisieren
 - Ergebnisse spiegeln eventuell nicht exakt die Realität wider

- Evaluation
 - Messungen an einem konkreten System (bzw. Prototyp)
 - Im Allgemeinen aufwändiger zu realisieren
 - + Ergebnisse entstammen einem realistischen Szenario

→ Evaluationen besitzen mehr Aussagekraft als Simulationen

Mögliche Probleme

- Nicht bzw. schwer zu evaluierende Merkmale
 - Eingeschränkte Quantifizierungsmöglichkeiten
 - Merkmal ist nicht isoliert messbar
 - ...
- Fehlende Vergleichsmöglichkeiten
 - Eigene Variante ist konkurrenzlos [Eher selten der Fall.]
 - Andere Varianten besitzen abweichenden Fokus
 - ...
- Beispiel: Effizienz vs. Fehlertoleranz
 - Aussagen über das Ausmaß von Fehlertoleranz können oft nicht durch Messergebnisse gestützt werden, stattdessen: oberflächliche Beschreibung (z. B. Anzahl und Art tolerierbarer Fehler)
 - Fehlertoleranz ist (fast) immer mit Effizienzeinbußen verbunden
 - ightarrow Der durch den Einsatz fehlertoleranter Systeme erreichbare Gewinn lässt sich schlechter evaluieren als die damit verbundenen Verluste

Vorgehensweise

- Vorbereitung
 - Konzipierung der Evaluationsszenarien
 - Dokumentation der Evaluationsszenarien, -umgebung
 - Formulierung einer Erwartungshaltung
- Durchführung
 - Abarbeitung der vorbereiteten Szenarien
 - Sammlung der Messergebnisse
- Nachbereitung
 - Aufbereitung der Ergebnisse (z.B. in Diagrammen)
 - Beschreibung der Ergebnisse (textuell)
 - Interpretation der Resultate
 - Abgleich der Resultate mit der Erwartungshaltung

Messungen

- Mögliche Fehlerquellen
 - Existenz einer Aufwärmphase mit atypischen Systemeigenschaften
 - Verfälschung von Messungen durch unbeabsichtigtes Caching
 - Erhöhte Netzwerklatenzen aufgrund außergewöhnlicher Lastsituationen
 - Verzögerungen durch Log- bzw. Debug-Ausgaben
 - Beeinflussung des Systems durch die Messung selbst
 - ...
- Maßnahmen zur Kompensation
 - Messungen später beginnen (nicht bereits ab dem Zeitpunkt o)
 - Messungen mehrfach durchführen
 - Verwendung von externen Messgeräten/-programmen
 - Geschickte Wahl der Messgrößen, z.B. CPU-Zyklen statt Zeit
 - Passende Wahl der Analysegrößen bei der Nachbereitung, z.B. Median vs. arithmetisches Mittel

Zeitmessung in Java

- Verfügbare Methoden (java.lang.System)
 - Aktuelle Zeit in Millisekunden auf Basis der Systemzeit public static long currentTimeMillis();
 - Aktuelle Zeit in Nanosekunden auf Basis präziser(er) Zähler des Betriebssystems public static long nanoTime();
- Hinweise
 - Beide Methoden verwenden die Zeitmessung des Betriebssystems
 - Methoden brauchen selbst Zeit zur Ausführung
- → Die versprochene Granularität wird (eventuell) nicht erreicht!

"This method provides nanosecond precision, but **not necessarily nanosecond resolution** [...] - no guarantees are made except that the resolution is at least as good as that of currentTimeMillis()."

"Differences in successive calls that span greater than approximately 292 years (2⁶³ nanoseconds) will not correctly compute elapsed time due to numerical overflow."