A Multiscale approach to modeling the municipal spread of COVID-19

Colin Roberts

■ Claire Valva, NYU Courant Center for Atmosphere and Ocean Science.

■ Elijah Pivo, MIT Institute for Data, Systems, and Society.

NT 4 41 4 41 1	

Note that the phrase,

"All models are wrong, but some are useful"

is in play.

■ Discuss agent, compartmental, and multiscale modeling.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.
 - ii. Class periods.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.
 - ii. Class periods.
 - **b.** (Compartmental): municipal disease spread.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.
 - ii. Class periods.
 - **b.** (Compartmental): municipal disease spread.
 - i. University-city coupling.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.
 - ii. Class periods.
 - **b.** (Compartmental): municipal disease spread.
 - i. University-city coupling.
 - **c.** (Multiscale): interactions involving both levels.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.
 - ii. Class periods.
 - **b.** (Compartmental): municipal disease spread.
 - i. University-city coupling.
 - c. (Multiscale): interactions involving both levels.
 - i Staggered schedules.

- Discuss agent, compartmental, and multiscale modeling.
- 2. Describe the multiscale modeling approach.
- 3. Give results
 - a. (Agent): contact rate in the university.
 - i. Class sizes.
 - ii. Class periods.
 - **b.** (Compartmental): municipal disease spread.
 - i. University-city coupling.
 - c. (Multiscale): interactions involving both levels.
 - i Staggered schedules.
 - ii Quarantining/presymptomatic.

How do schools and universities impact the spread of COVID-19 in the surrounding community?

Ideas

 \blacksquare Use an $(non\ deterministic\ and\ heterogeneous)$ agent based approach.

Ideas

- Use an (non deterministic and heterogeneous) agent based approach.
- Use a (deterministic and homogeneous) compartmental model approach.

Agent based simulations

 \blacksquare Treat every individual as a single agent (entity).

Agent based simulations

- Treat every individual as a single *agent* (entity).
- Describe every agent's schedule, movement, and infection status at every instant in time.

Agent based simulations

- Treat every individual as a single *agent* (entity).
- Describe every agent's schedule, movement, and infection status at every instant in time.
- Let agents interact with one another and keep track of the disease progression.

Examples

■ Particle based simulations. (3Blue1Brown)

Examples

■ Network based simulations. (covasim)

Benefits of agent models:

Benefits of agent models:

 \blacksquare Heterogeneous social structure.

Benefits of agent models:

- \blacksquare Heterogeneous social structure.
- Stochastic.

Benefits of agent models:

- Heterogeneous social structure.
- Stochastic.
- (Typically) less ad-hoc parameter tuning.

Drawbacks of agent models:

Drawbacks of agent models:

■ Complicated to design.

Drawbacks of agent models:

- Complicated to design.
- Slow to run.

Drawbacks of agent models:

- Complicated to design.
- Slow to run.
- Stochastic nature requires ensembles to generate statistics.

■ Consider an entire homogeneous population.

- Consider an entire homogeneous population.
- Ignore individualistic behavior for coarse-grained homogeneity.

- Consider an entire homogeneous population.
- Ignore individualistic behavior for coarse-grained homogeneity.
- Assume efficient and homogeneous mixing.

Example

■ SIR Model (Kermack and McKendrick, 1927)

SIR equations

We can write any ODE as a first order update of a state \vec{x} by

$$\dot{ec{x}} = ec{f}(t, ec{x}).$$

SIR equations

We can write any ODE as a first order update of a state \vec{x} by

$$\dot{\vec{x}} = \vec{f}(t, \vec{x}).$$

The SIR equations then read

$$\begin{pmatrix} \dot{S} \\ \dot{I} \\ \dot{R} \end{pmatrix} = \begin{pmatrix} -\beta C \frac{I}{N} \\ +\beta C \frac{I}{N} - \gamma I \\ +\gamma I \end{pmatrix},$$

where S, I, and R denotes the *susceptible*, *infected*, and *removed* populations respectively. Note, N = S + I + R is the total (conserved) population size.

The equation

$$\dot{S} = -\beta C \frac{I}{N},$$

can be thought of as a first order chemical reaction

$$S+I\to\dots$$

The equation

$$\dot{S} = -\beta C \frac{I}{N},$$

can be thought of as a first order chemical reaction

$$S+I\to\dots$$

 $lue{C}$ describes how many contacts with other molecules per unit time species S experiences.

The equation

$$\dot{S} = -\beta C \frac{I}{N},$$

can be thought of as a first order chemical reaction

$$S+I \rightarrow \dots$$

- $lue{C}$ describes how many contacts with other molecules per unit time species S experiences.
- \blacksquare $\frac{I}{N}$ is the proportion of these molecules of the proper type.

The equation

$$\dot{S} = -\beta C \frac{I}{N},$$

can be thought of as a first order chemical reaction

$$S+I \rightarrow \dots$$

- $lue{C}$ describes how many contacts with other molecules per unit time species S experiences.
- \blacksquare $\frac{I}{N}$ is the proportion of these molecules of the proper type.
- \blacksquare β is the likelihood of reaction.

The parameters β , C, and γ can be thought of as:

The parameters β , C, and γ can be thought of as:

 $\beta \in [0, 1]$ is likelihood of transmission.

The parameters β , C, and γ can be thought of as:

- $\beta \in [0, 1]$ is likelihood of transmission.
- $C \in [0, \infty)$ is the contact rate.

The parameters β , C, and γ can be thought of as:

- $\beta \in [0, 1]$ is likelihood of transmission.
- $C \in [0, \infty)$ is the contact rate.
- $\gamma \in [0, \infty)$ is the recovery + death rate.

Benefits of compartmental models:

Benefits of compartmental models:

■ Easy to build and analyze.

Benefits of compartmental models:

- Easy to build and analyze.
- Quick to compute.

Benefits of compartmental models:

- Easy to build and analyze.
- Quick to compute.
- Captures large scale behavior.

Drawbacks of compartmental models:

Drawbacks of compartmental models:

■ Homogeneous.

Drawbacks of compartmental models:

- Homogeneous.
- Deterministic.

Drawbacks of compartmental models:

- Homogeneous.
- Deterministic.
- Ad-hoc parameter changes.

■ Interesting dynamics for a single system can take place on various spatio-temporal scales.

- Interesting dynamics for a single system can take place on various spatio-temporal scales.
- Small scale interactions drive large scale phenomenon.

- Interesting dynamics for a single system can take place on various spatio-temporal scales.
- Small scale interactions drive large scale phenomenon.
- Couple together small and large scale models to study complicated systems.

- Interesting dynamics for a single system can take place on various spatio-temporal scales.
- Small scale interactions drive large scale phenomenon.
- Couple together small and large scale models to study complicated systems.
- E.g., quantum mechanics \rightarrow molecular dynamics \rightarrow kinetic theory \rightarrow statistical mechanics \rightarrow thermodynamics.

Can we couple an agent based model alongside a compartmental model to remove the drawbacks and gain benefits?

Hierarchical compartmental model

Assume the following:

Hierarchical compartmental model

Assume the following:

■ Two coupled SIR systems S_1 , I_1 , R_1 , and S_2 , I_2 , and R_2 .

Assume the following:

- Two coupled SIR systems S_1 , I_1 , R_1 , and S_2 , I_2 , and R_2 .
- System 1 refers to the university students and System 2 all other citizens in the city that aren't university members.

Assume the following:

- Two coupled SIR systems S_1 , I_1 , R_1 , and S_2 , I_2 , and R_2 .
- System 1 refers to the university students and System 2 all other citizens in the city that aren't university members.

In general, for n systems, we have the equations

$$\begin{pmatrix} \dot{S}_i \\ \dot{I}_i \\ \dot{R}_i \end{pmatrix} = \begin{pmatrix} -\beta S_i \sum_j C_{ij} \frac{I_j}{N_j} \\ +\beta S_i \sum_j C_{ij} \frac{I_j}{N_j} - \gamma I_j \\ +\gamma I_j \end{pmatrix}.$$

In general, for n systems, we have the equations

$$\begin{pmatrix} \dot{S}_i \\ \dot{I}_i \\ \dot{R}_i \end{pmatrix} = \begin{pmatrix} -\beta S_i \sum_j C_{ij} \frac{I_j}{N_j} \\ +\beta S_i \sum_j C_{ij} \frac{I_j}{N_j} - \gamma I_j \\ +\gamma I_j \end{pmatrix}.$$

In this case, the contact rate C becomes the *contact matrix* C_{ij} that describes the contact rate between the systems i and j. Note C_{ij} is symmetric.

Aggregating systems

■ Many systems may comprise a larger system (e.g., System 1 + System 2 from before comprise the entire city).

Aggregating systems

- Many systems may comprise a larger system (e.g., System 1 + System 2 from before comprise the entire city).
- This decomposition allows us to aggregate larger system dynamics by summing over relevant systems.

Adding complexity

SIR is lacking. We prefer the SEQIRD compartmental model governed by

$$\begin{pmatrix} \dot{S}_{i} \\ \dot{E}_{i} \\ \dot{Q}_{i} \\ \dot{I}_{i} \\ \dot{R}_{i} \\ \dot{D}_{i} \end{pmatrix} = \begin{pmatrix} -\beta S_{i} \sum_{j} C_{ij} \frac{I_{j}}{N_{j}} \\ -\beta S_{i} \sum_{j} C_{ij} \frac{I_{j}}{N_{j}} - (\gamma_{I} - \gamma_{Q}) E_{i} \\ \beta S_{i} \sum_{j} C_{ij} \frac{I_{j}}{N_{j}} - (\gamma_{I} - \gamma_{Q}) E_{i} \\ \gamma_{I} E_{i} - (\lambda + \kappa) I_{i} \\ \gamma_{Q} E_{i} - (\lambda + \kappa) Q_{i} \\ \lambda (I_{i} + Q_{i}) \\ \kappa (I_{i} + Q_{i}) \end{pmatrix} = \begin{pmatrix} S \equiv \text{ susceptible.} \\ E \equiv \text{ exposed.} \\ Q \equiv \text{ quarantined.} \\ \blacksquare I \equiv \text{ infected.} \\ \blacksquare R \equiv \text{ recovered.} \\ \blacksquare D \equiv \text{ dead.} \end{pmatrix}$$

- $S \equiv \text{susceptible}$.

- $D \equiv \text{dead}$.

Adding complexity

SIR is lacking. We prefer the SEQIRD compartmental model governed by

- $\beta = 0.3 \equiv \text{transmission rate}$.

- \blacksquare $q_{\text{percent}} \equiv \text{percentage quarantining.}$

lacktriangle All parameters but C were determined via measurements in other sources.

- \blacksquare All parameters but C were determined via measurements in other sources.
- lacktriangle We determine the values for C via data assimilation and a agent based model.

- \blacksquare All parameters but C were determined via measurements in other sources.
- lacktriangle We determine the values for C via data assimilation and a agent based model.
- This is where the model becomes multiscale.

Assimilating data

Using measured data from Fort Collins and Larimer County, we estimated a value for C assuming $\beta = 1$.

Assimilating data

Using measured data from Fort Collins and Larimer County, we estimated a value for C assuming $\beta = 1$.

Counting contacts

<u>Idea:</u> Agent based simulator tracks (various types of) contact between students each day.

Adjustable parameters:

- Student body size.
- Number of class periods.
- Class sizes.
- Students per major.
- Schedule staggering.

Contacts and school population

- Students are randomly assigned courses of a certain size.
- We count the number of unique contacts a student makes vs. class size for a three class period day.
- The growth is sublinear, but as the population increases we approach linear behavior.
- This is due to diminishing chances of having repeat students in other randomly drawn classes.

Contacts and major grouping

- To add realism or intervention, we can group students within majors.
- This leads to a decrease in new contacts and sublinear growth due to the effective population size decreasing to the size of the majors (500).

Contacts and class periods

■ Increasing the number of in-person class periods increases contact rate almost linearly when class sizes are small (30).

Integrating the agent model

■ At the beginning of each day, the agent model is ran to compute a contact rate within the university.

Integrating the agent model

- At the beginning of each day, the agent model is ran to compute a contact rate within the university.
- This contact rate is used in the compartmental model and we integrate this ODE for a day.

Integrating the agent model

- At the beginning of each day, the agent model is ran to compute a contact rate within the university.
- This contact rate is used in the compartmental model and we integrate this ODE for a day.
- University members in the Q and D department are removed and the contact rate is recomputed

City-university coupling

- City-university coupling changes the strength of the off diagonal C_{21} element.
- With high coupling, $C_{21} = C_{22}$ and students mix just like typical city members.
- Coupling minimally affects the university, but greatly affects the city.

Figure: I(t) for class size = 15, major size = 500, and no quarantining.

University quarantining

- Quarantining only delays infection within the university.
- Significantly alters aggregated city dynamics and prevents second wave.

Figure: I(t) with 50% quarantine rate, class size of 15, and major size

Staggering schedules

- Day and week staggering flatten the curve and reduce total infected.
- Week staggering performs slightly better due to latent time for infection.

Figure: I(t) with staggering, 50% of infected population quarantining,

Future directions

- Improve and extend the data assimilation for the compartmental model.
- Incorporate different types of contacts.
- Masks, hygiene, and other measures of contact severity.
- Quantify the stochasticity of the agent model.
- More heterogeneity from the agent model (scheduling, transportation, etc.).

Acknowledgements

