DEFINITION OF THH

CATHERINE LI

ABSTRACT. This document contains notes for the "Definition of THH" talk at MIT Talbot 2024. It discusses a few basic properties of THH for \mathbb{E}_{∞} ring spectra as well as a few example computations.

Contents

1.	Definition	1
2.	Base change formulas	3
3.	Example computations	4
References		7

1. Definition

In the following document, we consider only \mathbb{E}_{∞} ring spectra. Hence we will use the following definition of THH:

Definition 1.1. Let $R \to A$ be a map of \mathbb{E}_{∞} ring spectra. Then we define

$$THH(A/R) = A \otimes_{A \otimes_R A} A.$$

We will denote the THH of A relative to the sphere spectrum \mathbb{S} by THH(A).

When R is an ordinary (discrete) commutative ring, we will use the notation THH(R) := THH(HR), or more generally denote HR by R.

Additionally, for a map of discrete commutative rings $R \to A$, we will use the notation $\mathrm{HH}(A/R) := \mathrm{THH}(HA/HR)$, or $\mathrm{HH}(A) := \mathrm{THH}(HA/H\mathbb{Z})$. In this case, we have that

$$\mathrm{HH}(A/R) = A \otimes_{A \otimes_{R}^{\mathbb{L}} A}^{\mathbb{L}} A,$$

i.e. what is classically known as Shukla homology.

Furthermore, tensor (smash) products of spectra will be over \mathbb{S} unless otherwise noted. Also, \mathbb{S} will denote the ∞ -category of spaces, and \mathbb{S} p will denote the ∞ -category of spectra.

Lastly, everything is always assumed to be \mathbb{E}_{∞} or commutative in this document unless stated otherwise (in case I forget these adjectives somewhere).

1.1. Universal property. An alternative definition of THH for \mathbb{E}_{∞} ring spectra is by universal property: given an \mathbb{E}_{∞} ring A, THH(A) is the "free \mathbb{E}_{∞} A-algebra with S^1 action".

First recall that $\operatorname{CAlg}(\operatorname{Sp})$ is tensored over spaces; i.e. there is a functor $(-)^{\otimes (-)}: \operatorname{CAlg}(\operatorname{Sp}) \times \mathcal{S} \to \operatorname{CAlg}(\operatorname{Sp})$ which preserves colimits separately in each variable, and if $A \in \operatorname{CAlg}(\operatorname{Sp})$, then $A^{\otimes (-)}$ is left adjoint to $\operatorname{Map}_{\mathbb{E}_{\infty}}(A,-)$. We have that if $X \in \mathcal{S}$, then

$$A^{\otimes X} \simeq \operatorname{colim}_X A$$

where the RHS is the colimit of the A-valued constant diagram

$$X \to \mathrm{pt} \to \mathrm{CAlg}(\mathrm{Sp}).$$

If we are viewing A as an \mathbb{E}_{∞} R-algebra and considering the tensor of \mathbb{E}_{∞} R-algebras over spaces, we will use the notation $A^{\otimes_R X}$. (Note: in many sources, $\operatorname{colim}_X A$ is denoted by $A \otimes X$ or $X \otimes A$, but the notation above is preferred by some, since e.g. it can be confused with $A \otimes \Sigma_+^{\infty} X$.)

Then we have the following theorem:

Theorem 1.1 (McClure-Schwänzl-Vogt [MSV97]). Let A be an \mathbb{E}_{∞} ring. Then we have that

$$THH(A) \simeq A^{\otimes S^1}$$
.

In particular, the unit map $i: A \to \mathrm{THH}(A)$ (induced by $\mathrm{pt} \to S^1$) is initial among maps from A to \mathbb{E}_{∞} rings with S^1 action; i.e. it induces the following equivalence for every \mathbb{E}_{∞} ring B with S^1 action:

$$\operatorname{Map}_{\mathbb{E}_{\infty}}^{S^1}(\operatorname{THH}(A), B) \simeq \operatorname{Map}_{\mathbb{E}_{\infty}}(A, B).$$

Proof. S^1 is a pushout in S, and we simply apply $A^{\otimes (-)}$:

Here we used the fact that $A \otimes_{\mathbb{S}} A$ is the coproduct in CAlg(Sp) (meaning that this doesn't work for associative ring spectra, for example). Simultaneously, we have the pushout

$$\begin{array}{cccc} A \otimes A & \longrightarrow & A \\ \downarrow & & \downarrow & \\ A & \longrightarrow & A \otimes_{A \otimes A} A \end{array}$$

and so we have that $THH(A) = A \otimes_{A \otimes A} A \simeq A^{\otimes S^1}$ as desired. The universal property follows from the equivalence

$$\operatorname{Map}_{\mathbb{E}_{\infty}}^{S^1}(\operatorname{colim}_{S^1}A,B) \simeq \operatorname{Map}_{\mathbb{S}}^{S^1}(S^1,\operatorname{Map}_{\mathbb{E}_{\infty}}(A,B)) \simeq \operatorname{Map}_{\mathbb{E}_{\infty}}(A,B).$$

2. Base change formulas

In this section, we describe a few basic properties of THH. Throughout this document, we will also the fact that THH is a symmetric monoidal functor $\mathrm{CAlg}(\mathrm{Sp}) \to \mathrm{CAlg}(\mathrm{Sp})$. In general, proofs of these facts can be found in [KN18] or in the Homotopy Theory Münster Youtube lectures, though the proofs we present may be a bit different.

Theorem 2.1. Let $R \to R'$ and $R \to A$ be maps of \mathbb{E}_{∞} rings. Then

$$\operatorname{THH}(A/R) \otimes_R R' \simeq \operatorname{THH}(A \otimes_R R'/R')$$

Proof. Let B be an \mathbb{E}_{∞} R'-algebra with S^1 action. Then we show that the LHS has the universal property of the RHS:

$$\operatorname{Map}_{R'}^{S^{1}}(\operatorname{THH}(A/R) \otimes_{R} R', B) \simeq \operatorname{Map}_{R}^{S^{1}}(\operatorname{THH}(A/R), B)$$

$$\simeq \operatorname{Map}_{R}(A, B)$$

$$\simeq \operatorname{Map}_{R'}(A \otimes_{R} R', B)$$

$$\simeq \operatorname{Map}_{R'}^{S^{1}}(\operatorname{THH}(A \otimes_{R} R'/R'), B)$$

as desired, where we've applied the extension/restriction of scalars adjunction given by $-\otimes_R R'$ a couple times to obtain the above equivalences. \square

Theorem 2.2. Suppose that we have a commutative diagram of \mathbb{E}_{∞} ring maps

$$\begin{array}{ccc}
A &\longleftarrow C &\longrightarrow B \\
\uparrow & & \uparrow & \uparrow \\
R &\longleftarrow T &\longrightarrow S.
\end{array}$$

Then we have that

$$\operatorname{THH}(A \otimes_C B/R \otimes_T S) \simeq \operatorname{THH}(A/R) \otimes_{\operatorname{THH}(C/T)} \operatorname{THH}(B/S).$$

We will not prove this formula explicitly; we will instead prove the following simpler case, since the style of proof used would be the same (i.e. by manipulations of universal properties).

Corollary 2.1. Let $R \to A$ be a map of \mathbb{E}_{∞} rings. Then

$$\mathrm{THH}(A/R) \simeq \mathrm{THH}(A) \otimes_{\mathrm{THH}(R)} R.$$

Proof. We want to show that the RHS satisfies the universal property of the LHS. Given an \mathbb{E}_{∞} R-algebra B with S^1 -action, we will first show that

$$\operatorname{Map}_R^{S^1}(\operatorname{THH}(A) \otimes_{\operatorname{THH}(R)} R, B) \simeq \operatorname{Map}_{\operatorname{THH}(R)}^{S^1}(\operatorname{THH}(A), B).$$

In particular, there exists an \mathbb{E}_{∞} "augmentation" map $f: \mathrm{THH}(R) \to R$ given by

$$f: \mathrm{THH}(R) \simeq \operatornamewithlimits{colim}_{S^1} R \to \operatornamewithlimits{colim}_{\mathrm{pt}} R \simeq R.$$

This is a retraction onto the 0th layer, i.e. precomposed with the unit $i: R \to THH(R)$, we obtain the identity on R

$$id_R: R \xrightarrow{i} THH(R) \xrightarrow{f} R,$$

and furthermore f is S^1 -equivariant with respect to the trivial action on R. Then using the restriction/extension of scalars adjunction along this map

$$- \otimes_{\operatorname{THH}(R)} R : \operatorname{CAlg}_{\operatorname{THH}(R)}^{S^1} \rightleftharpoons \operatorname{CAlg}_R^{S^1} : f^*.$$

we directly obtain the above equivalence (where we were a bit imprecise by writing B instead of f^*B).

Then we have the below equivalence between the triangles of S^1 -equivariant maps and triangles of nonequivariant maps

where the dashed maps are uniquely determined by the universal properties of THH(R) and THH(A):

i.e. we have that

$$\operatorname{Map}_{\operatorname{THH}(R)}^{S^1}(\operatorname{THH}(A), B) \simeq \operatorname{Map}_R(A, B)$$

as desired.

3. Example computations

In this section, we discuss a few example computations.

3.1. HH of polynomial algebras. Let R be a discrete commutative ring. Let us now try to compute $\mathrm{HH}_*(R[x_1,\ldots,x_n]/R)$. Since THH commutes with \otimes and $R[x_1,\ldots,x_n]\cong R[x]^{\otimes n}$, it suffices to compute $\mathrm{HH}_*(R[x]/R)$. We claim that

$$\mathrm{HH}_*(R[x]/R) \cong R[x] \otimes \Lambda(dx)$$

i.e. it's just R[x] concentrated in degrees 0 and 1. To begin, let's consider

$$\mathrm{HH}(R[x]/R) = R[x] \otimes_{R[x] \otimes_{R}^{\mathbb{L}} R[x]}^{\mathbb{L}} R[x] \cong R[x] \otimes_{R[a,b]}^{\mathbb{L}} R[x]$$

where the R[a,b] action on R[x] is by $a,b\mapsto x$ and multiplication inside R[x]. Hence we seek to determine $\operatorname{Tor}^{R[a,b]}_*(R[x],R[x])$. We can resolve R[x] as an R[a,b]-module as follows:

$$0 \to R[a,b] \xrightarrow{\cdot (a-b)} \to R[a,b] \to R[a,b]/(a-b) \cong R[x] \to 0$$

and thus we obtain the following complex

$$0 \to R[x] \otimes_{R[a,b]} R[a,b] \xrightarrow{\operatorname{id} \otimes \cdot (a-b)} R[x] \otimes_{R[a,b]} R[a,b] \to 0$$

but of course $\cdot (a - b)$ kills R[x] as an R[a, b] module, and so the above complex simply becomes

$$0 \to R[x] \xrightarrow{0} R[x] \to 0$$

as desired.

3.2. THH(MU). There exists a formula for THH of Thom spectra which allows us to directly compute THH(MU). This formula can be found in [Blu08],[BCS10], and [Sch11]. Another more recent interpretation can be found in [RSV22]. We will list a few variants of this formula, which mostly differ by degrees of multiplicativity; we will not give any proofs of them.

Theorem 3.1. Let R be an \mathbb{E}_{∞} ring spectrum and X be a connected \mathbb{E}_1 -space. Suppose we have a map $f: X \to BGL_1(R)$; then we have the following equivalence of R-modules

$$THH(Mf/R) \simeq M(LBX \to BGL_1(R))$$

where the map on the RHS is determined by f. If f is an \mathbb{E}_2 map, the equivalence is as \mathbb{E}_1 R-algebras.

The next statement is useful for other classical computations, e.g. for THH of \mathbb{F}_p , \mathbb{Z}/p^n , and \mathbb{Z} , which can be shown to arise as Thom spectra of certain \mathbb{E}_2 -maps.

Theorem 3.2. Let R be an \mathbb{E}_{∞} ring spectrum and X be a connected \mathbb{E}_2 -space. Let $f: X \to BGL_1(R)$ be an \mathbb{E}_2 map, and assume that the \mathbb{E}_2 R-algebra structure on Mf extends to an \mathbb{E}_3 R-algebra structure. Then we have the following equivalence of \mathbb{E}_1 R-algebras

$$THH(Mf/R) \simeq Mf \otimes S[BX].$$

This last statement is the same as the previous, but where everything is \mathbb{E}_{∞} :

Theorem 3.3. Let R be an \mathbb{E}_{∞} ring spectrum, and let G be an \mathbb{E}_{∞} -group. Let $f: G \to BGL_1(R)$ be an \mathbb{E}_{∞} map. Then there is an equivalence of \mathbb{E}_{∞} R-algebras

$$THH(Mf/R) \simeq Mf \otimes S[BG].$$

To compute THH(MU), we can simply plug MU into this formula to obtain the result of the computation, as

$$MU \simeq \operatorname{colim}(BU \to BGL_1(\mathbb{S}) \to \operatorname{Sp})$$

and so we obtain the equivalence

$$THH(MU) \simeq MU \otimes \mathbb{S}[BBU].$$

In particular, one can compute

$$THH_*(MU) = MU_* \otimes \Lambda(x_1, x_2, \ldots)$$

where generators are in odd degrees.

3.3. THH($\mathbb{S}[t]$). Let $\mathbb{S}[t]$ and $\mathbb{S}[\mathbb{N}]$ denote $\Sigma_+^{\infty}\mathbb{N}$. For intuition purposes, let's begin by doing a simpler calculation, THH($\mathbb{S}[\mathbb{Z}]$).

In general, for G an \mathbb{E}_1 -space, we have an equivalence of spectra

$$THH(S[G]) \simeq \Sigma_{+}^{\infty} LBG,$$

where the circle action occurs by rotating the loops. One can see this equivalence via Theorem 3.1; first, the group ring $\mathbb{S}[G]$ arises as the Thom spectrum of the trivial map $G \to BGL_1(\mathbb{S})$:

$$\operatorname{colim}(G \to BGL_1(\mathbb{S}) \to \operatorname{Sp}) \simeq \operatorname{colim}_G(\mathbb{S}) \simeq \Sigma_+^{\infty} G = \mathbb{S}[G].$$

Then it turns out that that the induced map in the formula $LBG \to BGL_1(\mathbb{S})$ is also trivial, so $THH(\mathbb{S}[G]) \simeq \Sigma^{\infty}_+ LBG$ as desired.

Thus, we have that

$$\mathrm{THH}(\mathbb{S}[\mathbb{Z}]) \simeq \Sigma^{\infty}_{+} LS^{1} \simeq \Sigma^{\infty}_{+} \, \mathrm{Map}_{\mathbb{S}}(S^{1}, S^{1}) \simeq \Sigma^{\infty}_{+}(S^{1} \times \mathbb{Z})$$

since $\operatorname{Map}_{S}(S^{1}, S^{1})$ is determined by the choice of basepoint and the number of times you loop around (or in general for $\mathbb{E}_{1} X$, we have $BX \times X \simeq LBX$).

Pictorially, we have a circle for each integer, and S^1 acts by rotating the nth loop at n-times speed. So we might expect THH($\mathbb{S}[\mathbb{N}]$) to look like Σ_+^{∞} applied something below:

and indeed, the actual answer is as follows:

$$\operatorname{THH}(\mathbb{S}[t]) \simeq \mathbb{S} \oplus \bigoplus_{n \geq 1} \Sigma_{+}^{\infty}(S^{1}/C_{n})$$

i.e. a wedge of a point and a bunch of circles, where the quotient $S^1/C_n \simeq S^1$ is meant to indicate the circle action (again, rotating the *n*th circle at *n*-times speed).

For a sketch of the actual calculation, we first consider

$$\mathrm{THH}(\mathbb{S}[\mathbb{N}]) \simeq \mathbb{S}[\mathbb{N}] \otimes_{\mathbb{S}[\mathbb{N} \times \mathbb{N}]} \mathbb{S}[\mathbb{N}] \simeq \mathbb{S}[\mathbb{N} \otimes_{\mathbb{N} \times \mathbb{N}} \mathbb{N}]$$

and then directly observe the geometric realization which defines the relative tensor product $\mathbb{N} \otimes_{\mathbb{N} \times \mathbb{N}} \mathbb{N}$:

$$|\cdots \rightrightarrows \mathbb{N} \times (\mathbb{N} \times \mathbb{N}) \times \mathbb{N} \rightrightarrows \mathbb{N} \times \mathbb{N}|.$$

For ease of reading, let us denote this complex by

$$X = \cdots \rightrightarrows X_1 \rightrightarrows X_0.$$

Since the arrows preserve sums, we can decompose this geometric realization into a disjoint union indexed by \mathbb{N} , i.e. a disjoint union

$$\coprod_{n\in\mathbb{N}}|\cdots \rightrightarrows X_1^{(n)}\rightrightarrows X_0^{(n)}|$$

where $X_m^{(n)}$ consists of the *m*-simplices which sum to *n*.

For example, for n=0, there is only one way to sum to 0 in all degrees, and so we obtain

$$|\cdots \rightrightarrows X_1^{(0)} \rightrightarrows X_0^{(0)}| = |\cdots \to * \to *| = *.$$

Meanwhile for n = 1, we have a picture that looks like

$$|\cdots \Rightarrow *** \Rightarrow **|$$

where in degree 0, we have simplices (1,0) and (0,1) in $\mathbb{N} \times \mathbb{N}$, and then the four simplices in \mathbb{N}^4 , two of which are nondegenerate, and so on. One can find that this produces S^1 , where we have only four nondegenerate simplices in total (2 points and 2 lines). The rest similarly produce circles (where n should also be the degree after which simplices are entirely degenerate).

One can verify the circle action via the map $THH(S[N]) \to THH(S[Z])$.

References

- [BCS10] Andrew J Blumberg, Ralph L Cohen, and Christian Schlichtkrull. Topological Hochschild homology of Thom spectra and the free loop space. *Geometry & Topology*, 14(2):1165–1242, 2010.
- [Blu08] Andrew J. Blumberg. THH of Thom spectra that are \mathbb{E}_{∞} ring spectra, 2008.
- [KN18] Achim Krause and Thomas Nikolaus. Lectures on topological Hochschild homology and cyclotomic spectra. *preprint*, 2018.
- [MSV97] J. McClure, R. Schwänzl, and R. Vogt. THH(R) $\cong R \otimes S^1$ for \mathbb{E}_{∞} ring spectra. Journal of Pure and Applied Algebra, 121(2):137–159, 1997.
- [RSV22] Nima Rasekh, Bruno Stonek, and Gabriel Valenzuela. Thom spectra, higher THH and tensors in ∞categories. *Algebraic & Geometric Topology*, 22(4):18411903, October 2022.
- [Sch11] Christian Schlichtkrull. Higher topological Hochschild homology of Thom spectra. *Journal of Topology*, 4(1):161189, 2011.