Реляционная теория

Задачи для самостоятельного решения

R1 Музыкант Компания

KZ		
Песня	Музыкант	Жанр

R3	
Радиостанция	Жанр

Радиостанция По	есня Д	l _{ата}

- 1. Найти музыканта, все песни которого проигрывались на радиостанции "Relax FM"
- 2. Найти компании, песни артистов которых проигрывались на радиостанции "Европа Плюс"
- 3. Найти песни, которые проигрывались на одной и той же радиостанции более одного раза
- 4. Найти жанры, характерные для радиостанций, на которых выступает группа "Ума Турман"
- 5. Найти песни, которые проигрывались на одной и той же радиостанции только 1 раз

Реляционная алгебра

• Реляционная алгебра — это коллекция операций, которые принимают отношения в качестве операндов и возвращают отношение в качестве результата.

Операции реляционной алгебры

Традиционные операции с множествами (булевы / теоретико-множественные)

- объединение: A UNION B, A \cup B;
- пересечение: A INTERSECT
 В, А ∩В;
- разность: A MINUS B ,A-B;
- декартово произведение A TIMES B ; $A \times B$

Специальные реляционные операции

- сокращение (выборка)АWHERE p;
- проекция;
- соединение ;A JOIN B;A⋈B
- Деление; A ÷ В.

Переименование атрибута

Булевы / теоретико-множественные операции

объединение: A UNION B, A∪B;

• пересечение: A INTERSECT B, A∩B;

• *разность:* A MINUS В ,А-В ;

• декартово произведение A TIMES B ; A × B

Объединение

- Если даны отношения а и b одного и того же типа, то объединение этих отношений а UNION b является отношением того же типа с телом, которое состоит из всех кортежей t, присутствующих в а или b, или в обоих отношениях.
- a∪b={t: t∈a V t∈b }

Объединение. пример

Α			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ООП	4

В			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Α	UNION	В	
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ооп	4
3	Сидоров С.С.	Информатика	5

Объединение. Свойства

• Коммутативность $a \cup b = b \cup a$

Двуместный оператор g называется коммутативным, если g(a,b) = g(b,a) для любых a и b

Ассоциативность а∪(b ∪a)= (a∪b) ∪c

Двуместный оператор g называется ассоциативным, если g(a,g(b,c)) = g(g(a,b),c) для любых a, b, c.

Пересечение

- Если даны отношения а и b одного и того же типа, то пересечением этих отношений а INTERSECT b является отношение того же типа с телом, состоящим из всех кортежей t, таких, что t присутствует одновременно в а и b.
- a∩b={t: t∈a, t∈b }

Пересечение. пример

Α			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ооп	4

В			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Α	INTERSECT	В	
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5

Пересечение. Свойства

• Коммутативность $a \cap b = b \cap a$

Двуместный оператор g называется коммутативным, если g(a,b) = g(b,a) для любых a и b

• **Ассоциативность** $a \cap (b \cap a) = (a \cap b) \cap c$

Двуместный оператор g называется ассоциативным, если g(a,g(b,c)) = g(g(a,b),c) для любых a, b, c.

Разность

- Если даны отношения а и b одного и того же типа, то разностью этих отношений а MINUS b (в указанном порядке), является отношение того же типа с телом, состоящим из всех кортежей t, таких, что t присутствует в а, но не в b.
- a-b={t: t∈a, : t∉b }

Разность. пример

Α			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ооп	4

В			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Α	MINUS	В	
S#	ФИО	Дисциплина	Оценка
2	Петров П.П.	ООП	4
В	MINUS	Α	
S#	ФИО	Дисциплина	Оценка
3	Сидоров С.С.	Информатика	5

Декартово произведение

- декартово произведение а TIMES b отношений а и b, не имеющих общих атрибутов, как отношение, заголовок которого представляет собой (теоретико-множественное) объединение заголовков отношений а и b, а тело состоит из всех кортежей t, таких, что t является (теоретикомножественным) объединением кортежа, принадлежащего к отношению а, и кортежа, принадлежащего к отношению b.
- a×b={t:t=(t1,t2) t1∈a, t2∈b }

Декартово произведение. пример

Α	A						
S#	ФИО	Оценка					
1	Иванов И.И.	Проектир. БД.	5				
2 Петров П.П. ООП		ООП	4				
В	В						
S# ФИО Ди		Дисциплина	Оценка				
1	Иванов И.И.	Проектир. БД.	5				
3	Сидоров С.С.	Информатика	5				

С	
P#	Преподаватель
Экзамен	Карпов А.А.
Контрольная	Тунцов К.К.

Α	TIMES	С			
S#	ФИО	Дисциплина	Оценка	P#	Преподавате
1	Иванов И.И.	Проектир. БД	5	Экзамен	Карпов А.А.
1	Иванов И.И.	Проектир. БД	5	Контрольная	Тунцов К.К.
2	Петров П.П.	ООП	4	Экзамен	Карпов А.А.
2	Петров П.П.	ООП	4	Контрольная	Тунцов К.К.

Специальные реляционные операции

- сокращение (выборка)
- проекция;
- соединение:
 - Естественное соединение
 - Тета-соединение
 - Эквисоединение
- Деление; A ÷ В.

• Переименование атрибута

Выборка (сокращение)

• Операция выборки применяется к одному отношению R и определяет результирующее отношение, которое содержит только те кортежи (строки) из отношения R, которые удовлетворяют заданному условию (предикату).

- Сигма $\sigma_{npedukam}(R)$
- σ_{X=x}(a)= {t: t∈a, t(X)=x}

Выборка пример

Α			
S#	ФИО	Дисциплина	Оценка
:	L Иванов И.И.	Проектир. БД.	5
	Петров П.П.	ООП	4
;	В Сидоров С.С.	Информатика	5

$$\sigma_{O$$
ценк $a=5}ig(Aig)$

A WHERE Оценка=5

S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Свойства выборки

- Выборка дистрибутивна относительно пересечения, объединения и разности
 - Одноместный оператор f называется ducmpuбутивным относительно двуместного оператора g, если f(g(a,b)) = g(f(a),f(b)) для любых a и b.
- Выборка дистрибутивна относительно соединения при условии, что условие выборки не сложнее, чем конъюнкция (AND) двух различных условий, по одному для каждого из двух операндов.

Проекция

- Операция проекции применяется к отношению R и определяет новое отношение, содержащее вертикальное подмножество отношения R, создаваемое посредством извлечения значений указанных атрибутов и исключения из результата строк-дубликатов
- π_x(a)={t(x), : t∈a }

Проекция пример

Α			
S#	ФИО	Дисциплина	Оценка
	L Иванов И.И.	Проектир. БД.	5
	Петров П.П.	ООП	4
	В Сидоров С.С.	Информатика	5

$$\pi_{{\{S\#,\Phi MO,\mathcal{A}$$
исциплина\}}}ig(Aig)

А OVER S#, ФИО, Дисциплина

S#	ФИО	Дисциплина
1	Иванов И.И.	Проектир. БД.
2	Петров П.П.	ООП
3	Сидоров С.С.	Информатика

$$\pi_{O$$
ценка (A)

A OVER Оценка

Оценка	
	4
	5

Свойства проекции

- Ни один из атрибутов не может быть указан в разделенном запятыми списке имен атрибутов больше одного раза
- Проекция дистрибутивна относительно объединения
 - Одноместный оператор f называется β истрибутивным относительно двуместного оператора g, если f(g(a,b)) = g(f(a),f(b)) для любых α и b.
- Проекция дистрибутивна относительно соединения при условии, что все атрибуты, по которым производится соединение, включены в проекцию.

Соединение

- *Ecmecmвенное соединение A JOIN B,* A⋈B
- Tema-coeдинение (A TIMES B) WHERE X θ У, А⋈_FВ
- Эквисоединение (A TIMES B) WHERE X = У, А⋈_FВ

Тета-соединение

R⋈_FS. Операция тета-соединения определяет отношение, которое содержит кортежи из декартова произведения отношений R и S, удовлетворяющие предикату F. Предикат F имеет вид R.a_i θ S.b_i, где вместо θ может быть указана одна из операций сравнения (<, ≤, >, ≥,=,≠).

Тета-соединение

Α				
S#		ФИО	Дисциплина	Оценка
	1	Иванов И.И.	Проектир. БД.	5
	2	Петров П.П.	ООП	4

l.	D	
	D#	Преподаватель
	Информатика	Карпов А.А.
	ООП	Тунцов К.К.

1	4	TIMES	D			
5	S#	ФИО	Дисциплина	Оценка	D#	Преподаватель
	1	. Иванов И.И.	Проектир. БД.	5	Информатика	Карпов А.А.
	1	. Иванов И.И.	Проектир. БД.	5	ООП	Тунцов К.К.
	2	Петров П.П.	ООП	4	Информатика	Карпов А.А.
	2	Петров П.П.	ООП	4	ООП	Тунцов К.К.

А ⋈_{Дисциплина>D#} D

TIMES

D WHERE Дисциплина>D#

S#	ФИО	Дисциплина	Оценка	D#	Преподаватель
1	Иванов И.И.	Проектир. БД.	5	Информатика	Карпов А.А.
1	Иванов И.И.	Проектир. БД.	5	ООП	Тунцов К.К.
2	Петров П.П.	ООП	4	Информатика	Карпов А.А.

Эквисоединение

 R⋈_FS Определяет отношение, которое содержит кортежи из декартова произведения отношений R и S, удовлетворяющие предикату F (предикат должен предусматривать только сравнение на равенство)

Эквисоединение пример

Α			
S#	ФИО	Дисциплина	Оценка
1	. Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ООП	4

D		
D#	Преподаватель	
Информ	атика Карпов А.А.	
ООП	Тунцов К.К.	

А ⋈_{Дисциплина=D#} D

Α	TIMES	D WHERE Дисциплина=D#		
S#	ФИО	Дисциплина Оценка D# Преподаватель		
2	2 Петров П.П. ООП 4 ООП Тунцов К.К.			

Естественное соединение

 R ⋈ S. Естественным соединением называется соединение по эквивалентности двух отношений R и S, выполненное по всем общим атрибутам x, из результатов которого исключается по одному экземпляру каждого общего атрибута.

Естественное соединение

- Предположим, что отношения а и b, соответст венно, имеют следующие атрибуты. X 1, X 2, . . . , X m, Y 1, Y 2, . . . , Yn
- YI, Y2, ..., Yn, ZI, Z2, ..., Zp
- ЭТО означает, что два рассматриваемых отношения имеют общее множество атрибутов Y, состоящее из атрибутов YI, Y2,..., Yn (и только из этих атрибутов), другие атрибуты отношения а образуют множество x, состоящее из атрибутов X1, X2, Xm, а другие атрибуты отношения b образуют множество z, состоящее из атрибутов Z1, Z2,..., Zp.
- В таком случае (**естественное**) **соединение** а и b выражается следующим образом.
- a JOIN b
- Оно представляет собой отношение с заголовком { X, Y, Z } и телом, состоящим из всех таких кортежей { X x, Y y, z z }, что любой из этих кортежей присутствует и в отношении а, со значением х атрибута х и значением у атрибута Y, и в отношении b, со значением у атрибута Y и значением z атрибута Z.

Естественное соединение пример

	۸	
1	Δ	١
•		•

S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ООП	4

D

Дисциплина	Преподаватель
Информатика	Карпов А.А.
ООП	Тунцов К.К.

A ⋈ D

Α	JOIN	D		
S#	ФИО	Дисциплина	Оценка	Преподаватель
2	Петров П.П.	ООП	4	Тунцов К.К.

Деление

- Предположим, что отношение R определено на множестве атрибутов A, а отношение S — на множестве атрибутов B, причем B ⊆ A (т.е. B является подмножеством A). Пусть C=A-B, т.е. С является множеством атрибутов отношения R, которые не являются атрибутами отношения S. Тогда определение операции деления будет выглядеть следующим образом.
- R ÷ S, Результатом **операции деления** является набор кортежей отношения R, определенных на множестве атрибутов C, которые соответствуют комбинации всех кортежей отношения S.
- R DIVIDEBY S PER C

Деление пример

делимое (DEND) , делитель (DOR), посредник (MED) DEND ⋈ MED ÷ DOR

Дополнительные операторы реляционной алгебры

- Оператор переименования атрибутов S RENAME CITY AS SCITY
- A RENAME Atr_1 , Atr_2 AS $NewAtr_1$, $NewAtr_2$ где Atr_1 , Atr_2 старые значения атрибутов $NewAtr_1$, $NewAtr_2$ новые значения атрибутов атрибутов
- Оператор присвоения Result←операция
- Оператор переименования атрибутов

$$\sigma_{_{\mathit{UMA_cmap}\leftarrow\mathit{UMA_Ho6}}}(R)$$

Оператор переименования

- ρ_{s} (E) или $\rho_{S(a_{1},a_{2},...,a_{n})}(E)$
- Операция переименования позволяет присвоить новое имя S выражению E, а также дополнительно переименовать атрибуты как a_1 , a_2 ,... a_n

Приоритеты операций реляционной алгебры

Операция	Приоритет
Переименование	4
Выборка	3
Проекция	3
Декартово произведение	2
Соединение	2
Пересечение	2
Деление	2
Объединение	1
Разность	1

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3				
Страна	Город			
Корея	Пхенчхан			
Россия	Сочи			

R4	
Спортсмен	Страна

1. Найти страны, спортсмены которых участвовали в олимпиаде в Пхенчхане

$$R124 \leftarrow R1 \bowtie R2 \bowtie R4$$

R124					
Спортсмен	Дисциплина	Олимпиада	Место	Город	Страна

Ответ
$$\Pi_{\text{{crpana}}} \left(\sigma_{\text{{ropo}} d = \Pi x \text{eh} + x \text{ah}} \left(R1 \bowtie R2 \bowtie R4 \right) \right)$$

Спортсмен Дисциплина Олимпиада Место	R1			
	Спортсмен	Дисциплина	Олимпиада	Место
· · · · · · · · · · · · · · · · · · ·				

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

2. Найти страны, которые участвовали в олимпиаде в Корее и заняли 1-е места

 $R23 \leftarrow R2 \bowtie R3$

$$R14 \leftarrow R1 \bowtie R4$$

R23		
Город	Олимпиада	Страна

R14				
ФИО	Дисциплина	Олимпиада	Место	Страна

Ответ
$$\Pi_{\text{{crpaha}}}\left(\sigma_{\text{{mecto}=1, ctpaha1=Kopes}}\left(\left(\rho_{R23'\text{{(город,олимпиада, ctpaha1)}}}(R23)\right)\bowtie R14\right)\right)$$

$$\Pi_{\text{{crpaha}}} \left(\sigma_{\text{{mecto}=1}, \atop \text{{crpaha}} = \text{{Kopes}}} \left(\left(\sigma_{\text{{crpaha}} \leftarrow \text{{crpaha}} 1} \left(R23 \right) \right) \bowtie R14 \right) \right)$$

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4 Спортсмен Страна

3. Найти страну, в которой поводилось больше 1 олимпиады

$$R23 \leftarrow R2 \bowtie R3$$

$$R2323 \leftarrow R23 \bowtie \left(\rho_{R23'(город1,олимпиада1,страна)}(R23)\right)$$

R23					
Город	Олимпиада	Страна			

R2323				
Город	Олимпиада	Страна	Город1	Олимпиада1

Ответ
$$\Pi_{\text{{crpana}}}\left(\sigma_{\text{олимпиада}<>\text{олимпиада}1}\left(R23\bowtie\left(\rho_{R23'\text{{ropog1,олимпиада}1,crpana}}\right)\right)\right)$$

$$R2323' \leftarrow \Pi_{\text{{crpana}}} \left(\sigma_{\text{олимпиада} <> \text{олимпиада} 1} (R2323) \right)$$

R1			
Спортсмен	Дисциплина	Олимпиада	Место
		<u> </u>	

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4 Спортсмен Страна

4. Найти страну, в которой поводилось НЕ больше 1 олимпиады

$$R23 \leftarrow R2 \bowtie R3$$

$$R2323 \leftarrow R23 \bowtie \left(\rho_{R23'(\text{город1,олимпиада1,страна})}(R23)\right)$$

R2323				
Город	Олимпиада	Страна	Город1	Олимпиада1

$$R2323' \leftarrow \Pi_{\text{{crpana}}} \left(\sigma_{\text{олимпиада} <> \text{олимпиада} 1} (R2323) \right)$$

Ответ
$$\Pi_{\{\text{страна}\}}(R3) - R2323'$$

Страна

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

5. Найти страны, спортсмены которых не участвовали в олимпиаде в Пхенчхане

$$R124 \leftarrow R1 \bowtie R2 \bowtie R4$$

R124					
Спортсмен	Дисциплина	Олимпиада	Место	Город	Страна

OTBET
$$\Pi_{\text{{crpana}}}(R4) - \Pi_{\text{{crpana}}} \left(\sigma_{\text{{ropo}} d = \Pi x e h u x a h} \left(R1 \bowtie R2 \bowtie R4 \right) \right)$$

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

6. Найти страны, спортсмены которых участвовали во всех олимпиадах

$$R14 \leftarrow R1 \bowtie R4$$

R14				
ФИО	Дисциплина	Олимпиада	Место	Страна

Ответ
$$\Pi_{\text{{crpana,0}},\text{{0}}$$
лимпиада} $(R1 \bowtie R4) \div \Pi_{\text{{0}}$ лимпиада} $(R2)$

