定理 $1.23 I_A$ は A 上の恒等関係であり, R が A 上の関係であれば,

- (1) R は対称的である $R = R^c$ が成り立つ。
- (2) R は反対称的である $R \cap R^c \subseteq I_A$ が成り立つ。

【証明】

- (1) "⇒": R が対称的であるので, $\langle x,y \rangle \in R$ ならば, $\langle y,x \rangle \in R$ である。 すなわち, $\langle x,y \rangle \in R \Leftrightarrow \langle x,y \rangle \in R^c$ 。ゆえに, $R = R^c$ が成り立つ。
 - " \leftarrow ": $R = R^c$ とすると , $\langle x, y \rangle \in R \Leftrightarrow \langle x, y \rangle \in R^c$ 。すなわち , $\langle x, y \rangle \in R$ ならば , $\langle y, x \rangle \in R$ である。ゆえに , Rは対称的である。
- (2) "⇒": 任意の $< x,y > \in R \cap R^c$ に対して, $< x,y > \in R$ かつ $< x,y > \in R^c$ 。すなわち, $< x,y > \in R$ かつ $< y,x > \in R$ 。反対称性により,x = y となる。よって, $< x,y > \in I_A$ である。ゆえに, $R \cap R^c \subseteq I_A$ である。
 - " \leftarrow ": 任意の x と y に対して, $\langle x,y \rangle \in R \cap R^c$ とすると, $\langle x,y \rangle \in R$ かつ $\langle y,x \rangle \in R$ である。ここで $R \cap R^c \subseteq I_A$ より, $\langle x,y \rangle \in I_A$,すなわち,x = y である。ゆえに,R は反対称的である。