³⁵K ε+β⁺ decay (175 ms) 1980Ew02

Parent: 35 K: E=0; $J^{\pi}=3/2^{+}$; $T_{1/2}=175$ ms 2; $Q(\varepsilon)=11874.4$ 9; $\%\varepsilon+\%\beta^{+}$ decay=100

- 1980Ew02,1979Ca15: A 600-MeV proton beam was produced from the synchrocyclotron at CERN-ISOLDE and bombard a ScC₂ target. The 45 Sc(p,8n3p) spallation reaction products diffused out of the target and reached a tungsten surface ionization source where potassium isotopes were selectively ionized. The beam was extracted from the ion source, separated by the ISOLDE analyzing magnet, and collected by a mylar foil for γ -ray measurements and then a carbon foil for proton measurements. γ rays were detected using a Ge(Li) detector. Time for positron activities were determined using a 700- μ m thick silicon detector. Protons were detected using a $20-\mu$ m- $700-\mu$ m thick Δ E-E telescope of silicon surface barrier detectors with FWHM=50 keV. Measured E γ <4.8 MeV, I γ , E $_p$ >0.9 MeV, I $_p$. Deduced Deduced levels, J, π , decay branching ratios, log ft, parent 35 K T $_{1/2}$, and coeffcients of the isobaric multiplet mass equation for A=36, T=2 quartets. Comparisons with shell-model calculations and the mirror nucleus 35 Cl. Also see abstracts 1979HaZY, 1979HaZT.
- 2018Sa54: A 36-MeV/nucleon 36 Ar primary beam was produced from the K500 cyclotron at Texas A&M University. The secondary 35 K beam was produced via the 1 H(36 Ar, 35 K)2n reaction of 36 Ar bombarding a LN₂-cooled hydrogen gas target, separated by MARS, and implanted into a 45- μ m DSSD sandwiched between a 140- μ m SSSD and a 1-mm Si-pad detector in a pulsed-beam mode. ε + β +-delayed protons were detected by the implantation detector. γ rays were detected by two HPGe detectors. Measured E_p>300 keV, I_p, E γ , I γ , p γ -coin, $\gamma\gamma$ -coin. Deduced parent 35 K T_{1/2}.
- 2019ChZU: Same beam production as 2018Sa54. 35 K was implanted into the AstroBox2 detector filled with 800-Torr P5 gas. ε + β ⁺-delayed protons were detected by the implantation detector. γ rays were detected by 4 Clover Ge detectors. Measured E_p >100 keV, I_p , $E\gamma$, $I\gamma$, $p\gamma$ -coin, $\gamma\gamma$ -coin.
- 1998Sc19: A polarized 35 K beam was produced via the fragmentation of 500-MeV/nucleon 40 Ca impinging on a 9 Be target at GSI, separated using Δ E-tof by FRS, momentum-selected by slits, and implanted into a KBr single crystal placed in the central region of a magnet. Positrons were detected using plastic scintillators. γ rays were detected using a Ge detector. Measured β -decay asymmetry and $\beta\gamma$ -coin. Deduced polarization and g-factor of 35 K ground state from β -NMR and 35 K $T_{1/2}$ from $\beta\gamma$ -decay time spectra.
- 2006Me04: A polarized 35 K beam was produced via the proton-pickup reaction 36 Ar(9 Be, 10 Li) 35 K, separated by NSCL-A1900, and implanted into a KBr crystal. Positrons were detected using plastic scintillators. Deduced the magnetic dipole moment and g-factor of 35 K ground state from β -NMR.

 35 K also decays to 34 Cl by ε p (0.37% 15) (1980Ew02).

Theoretical studies involving ³⁵K decay: shell model (1985Br29, 2003Sm02, Surender et al., Annals of Physics 470, 169772 (2024)).

35 Ar Levels

E(level) [†]	$\mathtt{J}^{\pi \#}$	Comments
0	3/2+	
1184.01 25	1/2+	
1750.7 <i>3</i>	$(5/2)^+$	
2638.0 <i>3</i>	$3/2^+,5/2^+$	
2982.79 12	$3/2^+,5/2^+$	
4065.0? <i>4</i>	$1/2^+, 3/2^+, 5/2^+$	
4528.2 <i>4</i>	$1/2^+, 3/2^+, 5/2^+$	
4725.9 6	1/2+	
4785.8 11	1/2+	
5572.66 <i>15</i>	3/2+	T=3/2
7510? [‡] 20	1/2+,3/2+,5/2+	
8395? [‡] 20	1/2+,3/2+,5/2+	
8393! 7 20	1/2, 3/2, 3/2	

[†] From a least-squares fit to γ -ray energies in 1980Ew02.

 $^{^{35}\}text{K-J}^{\pi}$, $T_{1/2}$: From Adopted Levels of ^{35}K .

 $^{^{35}}$ K-T_{1/2}: Weighted average of 175 ms 2 (2018Sa54), 178 ms 8 (1998Sc19), and 190 ms 30 (1980Ew02).

 $^{^{35}}$ K-Q(ε + β ⁺): From 2021Wa16.

[‡] Tentative identification based on proton groups by authors in 1980Ew02.

[#] From Adopted Levels.

35 K ε + β ⁺ decay (175 ms) 1980Ew02 (continued)

ε, β^+ radiations

E(decay)	E(level)	Ι <i>β</i> + †	$\mathrm{I}arepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(3479 20)	8395?	0.06 3	0.00044 18	4.57 19	0.062 26	
(4364 20)	7510?	0.15 6	0.00042 17	4.79 18	0.15 6	
(6301.7 14)	5572.66	36 <i>3</i>	0.026 2	3.31 5	36 <i>3</i>	
(7088.6 18)	4785.8	1.0 4		5.15 18	1.0 4	
(7148.5 15)	4725.9	2.1 4		4.85 9	2.1 4	
(7346.2 14)	4528.2	0.7 4		5.39 25	0.7 4	
(7809.4 14)	4065.0?	0.55 30		5.64 24	0.55 30	
(8891.6 <i>14</i>)	2982.79	26 <i>3</i>	0.0057 7	4.27 6	26 <i>3</i>	
(9236.4 14)	2638.0	≤0.4		≥6.2	≤0.4	
(10123.7 14)	1750.7	11.9 9	0.00171 13	4.91 <i>4</i>	11.9 9	
(10690.4 14)	1184.01	2.2 7		5.77 14	2.2 7	
(11874.4 17)	0	19 <i>4</i>	0.0016 3	5.07 10	19 4	I(ε+ $β$ ⁺): deduced from mirror ³⁵ S to ³⁵ Cl g.s. log ft =5.01 2 correcting for asymmetry systematics

[†] Absolute intensity per 100 decays.

γ (35Ar)

(1980Ew02).

E_{γ}	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
886.8 5	0.9 3	2638.0	3/2+,5/2+	1750.7	(5/2)+	
1044.4 <i>4</i>	1.3 4	5572.66	3/2+	4528.2	1/2+,3/2+,5/2+	
1184.0 <i>3</i>	14.3 7	1184.01	1/2+	0	3/2+	
1426.8 <i>4</i>	3.0 5	4065.0?	1/2+,3/2+,5/2+	2638.0	3/2+,5/2+	
1507.4 5	1.9 <i>4</i>	5572.66	3/2+	4065.0?	$1/2^+, 3/2^+, 5/2^+$	
1750.5 <i>3</i>	28 <i>1</i>	1750.7	$(5/2)^+$	0	3/2+	
1798.9 <i>5</i>	3.5 6	2982.79	$3/2^+,5/2^+$	1184.01	1/2+	
2589.8 <i>1</i>	52 2	5572.66	3/2+	2982.79	$3/2^+,5/2^+$	
2638.0 <i>4</i>	5.5 7	2638.0	$3/2^+,5/2^+$	0	3/2+	
^x 2697.7 6						Unplaced γ ray, accounts for 1.2% β -feeding (1980Ew02).
2934.5 5	3.5 6	5572.66	3/2+	2638.0	$3/2^+, 5/2^+$	
2982.68 <i>13</i>	100 4	2982.79	3/2+,5/2+	0	3/2+	
3542.0 6	2.9 6	4725.9	1/2+	1184.01	1/2+	
3821.7 7	3.5 7	5572.66	3/2+	1750.7	$(5/2)^+$	
4387.2 9	3.5 8	5572.66	3/2+	1184.01	1/2+	
4527.9 7	2.6 7	4528.2	$1/2^+, 3/2^+, 5/2^+$	0	3/2+	
4724.5 11	1.2 5	4725.9	1/2+	0	3/2+	
4785.4 11	1.9 <i>7</i>	4785.8	1/2+	0	3/2+	
5572.3 10	6.1 16	5572.66	3/2+	0	3/2+	1980Ew02 only observed its double escape peak at 4550 keV.

 $^{^{\}dagger}$ From 1980Ew02. ‡ For absolute intensity per 100 decays, multiply by 0.50 2.

 $^{^{}x}$ γ ray not placed in level scheme.

³⁵**K** ε+β⁺ decay (175 ms) 1980Ew02

Decay Scheme

egend	Intensities: I_{γ} pe	r 100 parent decays		
$\begin{array}{lll} - & I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ - & I_{\gamma} < & 10\% \times I_{\gamma}^{max} \\ - & I_{\gamma} > & 10\% \times I_{\gamma}^{max} \end{array}$		$\%\varepsilon + \%\beta^{+} = 100$	/	<u>175 ms 2</u>
1/2+,3/2+,5/2+		8395	$ar{^{ ext{I}eta^+}}$ $ar{^{ ext{I}\epsilon}}$	<u>L</u> .00044 4.
1/2+,3/2+,5/2+		7510	0.15 0.	.00042 4.
3/2 ⁺ 1/2 ⁺ 1/2 ⁺ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺		5572.66 4785.8 4725.9 4528.2 4065.0	36 0. 1.0 2.1 0.7	.026 3. 5. 4. 5.
3/2+,5/2+ 3/2+,5/2+ 3/2+,5/2+		4065.0 / 406	0.55 26 0. ≤0.4	.0057 4. ≥
(5/2) ⁺ 1/2 ⁺		0, 1750.7	11.9 0. 2.2	.00171 4.
<u>3/2</u> +			19 0.	.0016 5.