Given a complex number z find all of its indicated nth roots.

Z	nth roots	roots in the trigonometric form
$\sqrt{3}+i$	4	$\sqrt[4]{2} \left[\cos \left(\frac{\pi}{24} + \frac{\pi k}{2} \right) + i \sin \left(\frac{\pi}{24} + \frac{\pi k}{2} \right) \right], k = 0, 1, 2, 3$
$-4+4\sqrt{3}i$	3	$2\left[\cos\left(\frac{2\pi}{9} + \frac{2\pi k}{3}\right) + i\sin\left(\frac{2\pi}{9} + \frac{2\pi k}{3}\right)\right], k = 0, 1, 2$
-32-32i	6	$\sqrt[12]{2048} \left[\cos \left(\frac{5\pi}{24} + \frac{\pi k}{3} \right) + i \sin \left(\frac{5\pi}{24} + \frac{\pi k}{3} \right) \right], k = 0, 1, 2, 3, 4, 5$
-i	2	$\left[\cos\left(\frac{3\pi}{4} + k\pi\right) + i\sin\left(\frac{3\pi}{4} + k\pi\right)\right], k = 0, 1$
16	4	$2\left[\cos\left(\frac{\pi k}{2}\right) + i\sin\left(\frac{\pi k}{2}\right)\right], k = 0, 1, 2, 3$
-64 + 64i	3	$4\sqrt[6]{2}\left[\cos\left(\frac{\pi}{4} + \frac{2\pi k}{3}\right) + i\sin\left(\frac{\pi}{4} + \frac{2\pi k}{3}\right)\right], k = 0, 1, 2$
-81 <i>i</i>	6	$\sqrt[3]{9} \left[\cos \left(\frac{\pi}{4} + \frac{\pi k}{3} \right) + i \sin \left(\frac{\pi}{4} + \frac{\pi k}{3} \right) \right], k = 0, 1, 2, 3, 4, 5$