Karlsruhe Institute of Technology

Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 2

Instructions for week 2 (April 27^{th} to May 1^{st}):

- Work through the remaining part of Section 1.1 in the lecture notes starting with Example 1.4.
- Answer the control questions 1) to 5), and solve Problems 1 to 4 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, May 4th. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

- 1) Why is the Fell topology also called "hit-or-miss topology"?
- 2) Let $f: T \to \widetilde{T}$ be a map between two topological spaces (T, \mathcal{O}_T) and $(\widetilde{T}, \mathcal{O}_{\widetilde{T}})$. Can you find a simple proof for the fact that if f is continuous then f is also sequentially continuous, that is, $f(t_n) \to f(t)$ in \widetilde{T} (as $n \to \infty$) for each convergent sequence $(t_n)_{n \in \mathbb{N}}$ in T with $t_n \to t$?

(Hint: Work with the definition of continuity in topological spaces.)

Note that if T is first countable, then sequential continuity of f implies continuity of f. This fact is a little harder to prove, but can you still do it?

(**Hint:** Assume that f is not continuous; take an open set $V \subset \widetilde{T}$ such that $U := f^{-1}(V)$ is not open; take a point p on the topological boundary of U and construct a sequence $p_n \in T \setminus U$ with $p_n \to p$ using that T is first countable; conclude that f cannot be sequentially continuous.)

3) Let $\varphi: T \to \mathcal{F}(E)$ be a map between a topological space (T, \mathcal{O}_T) and the space $\mathcal{F}(E)$ of closed subsets of a second countable locally compact Hausdorff space (E, \mathcal{O}_E) . Convince yourself that either form of semi-continuity introduced in Definition 1.7 implies measurability of φ with respect to the corresponding Borel- σ -fields.

(Hint: Use Remark 1.9.)

- 4) Consider the collection \mathbb{C}^d of compact subsets of \mathbb{R}^d endowed with the Hausdorff metric as defined in Definition 1.15 of the lecture (see also Problem 4 below). What is the Hausdorff distance $\delta(C, D)$ between the compact sets C and D in the following examples?
 - d = 1, C = [-2, 1], D = [3, 9].
 - d = 1, $C = [-2, -1] \cup [10, 12] \cup \{15\}$, $D = \{-10\} \cup \{1\} \cup \{11\} \cup [20, 25]$.
 - d = 2, $C = [-1, 1]^2$, $D = [3, 5] \times [2, 4]$.
 - d = 2, C = B((0,0),1), D = B((3,4),2).
 - $C = [-1, 1]^d$, D = B((5, ..., 5), 2), (calculate in dependence on the dimension d).
- 5) From the proof of Theorem 1.17: Let $C, C_1, C_2, \ldots \in \mathbb{C}^d \setminus \{\emptyset\}$ with $C_n \subset K$ for some fixed $K \in \mathbb{C}^d$. Assume that $C_n \to C$ (as $n \to \infty$) with respect to the Fell topology.
 - Why is $C_n = \emptyset$ for all but finitely many $n \in \mathbb{N}$ whenever $C = \emptyset$?
 - Why is $C_n \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$ whenever $C \neq \emptyset$?

Exercises for week 2:

Problem 1 (Convergence with respect to the Fell topology – Examples, Part 1)

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d and $x\in\mathbb{R}^d$. Further, let $(r_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers and r>0. Denote by B(x,r) the closed ball of radius r around x.

- a) If $x_n \to x$ and $r_n \to r$ (as $n \to \infty$), then $B(x_n, r_n) \to B(x, r)$ in $(\mathfrak{F}, \mathfrak{O}_{\mathfrak{F}})$, as $n \to \infty$.
- b) If $||x_n|| \to \infty$, then $\{x_n\} \to \emptyset$ in $(\mathfrak{F}, \mathfrak{O}_{\mathfrak{F}})$, as $n \to \infty$.

Problem 2 (Continuity with respect to the Fell topology)

Denote by $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$ the space of closed subsets of \mathbb{R}^d endowed with the Fell topology. Prove that the following maps are continuous:

- a) $a: \mathbb{R}^d \times \mathcal{F}^d \to \mathcal{F}^d$, a(x, F) := F + x.
- b) $r: \mathcal{F}^d \to \mathcal{F}^d$, $r(F) := F^* := -F$.
- c) $e:(0,\infty)\times \mathcal{F}^d\to \mathcal{F}^d$, $e(\alpha,F):=\alpha F$.

Also prove that the map $\tilde{e}: [0, \infty) \times \mathcal{F}^d \to \mathcal{F}^d, \ \tilde{e}(\alpha, F) := \alpha F$ is not continuous.

Hint: By Theorem 1.2, $(\mathcal{F}^d, \mathcal{O}_{\mathcal{F}^d})$ is second countable (hence first countable), and functions defined on first countable spaces are continuous if, and only if, they are sequentially continuous. Apply this fact together with Theorem 1.3.

Problem 3 (Convergence with respect to the Fell topology – Examples, Part 2)

Denote by $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$ the space of closed subsets of \mathbb{R}^d endowed with the Fell topology. For $u \in \mathbb{R}^d$ with ||u|| = 1, and $r \ge 0$, write

$$H_{u,r} := \left\{ x \in \mathbb{R}^d : \langle x, u \rangle = r \right\}.$$

Let u_n be a sequence in \mathbb{R}^d with $||u_n|| = 1$ for each $n \in \mathbb{N}$, and let r_n be a sequence in $[0, \infty)$.

- a) Show that if $u_n \to u$ and $r_n \to r$, then $H_{u_n,r_n} \to H_{u,r}$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$, as $n \to \infty$.
- b) Show that if $u_n \to u$ and $r_n \to \infty$, then $H_{u_n,r_n} \to \varnothing$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$, as $n \to \infty$.

Consider the sequence $(P_n)_{n\in\mathbb{N}}$ of paraboloids $P_n=\left\{z\in\mathbb{R}^d\ \Big|\ \frac{z_1^2+\ldots+z_{d-1}^2}{n}=z_d\right\}$, and $e_d=(0,\ldots,0,1)\in\mathbb{R}^d$.

c) Show that $P_n \to H_{\theta_d,0}$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$, as $n \to \infty$.

Problem 4 (On the Hausdorff metric – Part 1)

Let (\mathbb{X}, d) be a metric space, and recall from the lecture that, for any set $B \subset \mathbb{X}$ and $\varepsilon \geqslant 0$,

$$B_{\oplus \varepsilon} := \{ x \in \mathbb{X} : \operatorname{dist}(x, B) \leqslant \varepsilon \}$$

denotes the ε -parallel set of B. Here, $\operatorname{dist}(x,B) := \inf_{y \in B} d(x,y)$ is the distance from x to B with respect to the metric d on X. Also recall that the Hausdorff metric δ on $\mathbb{C}(X) \setminus \{\emptyset\}$ is defined as

$$\delta(C,C') := \inf \{ \varepsilon \geqslant 0 : C \subset C'_{\oplus \varepsilon}, C' \subset C_{\oplus \varepsilon} \}, \qquad C,C' \in \mathfrak{C}(\mathbb{X}) \setminus \{\emptyset\},$$

and that we put $\delta(\varnothing, C) = \delta(C, \varnothing) := \infty$, $C \in \mathcal{C}(X) \setminus \{\varnothing\}$, as well as $\delta(\varnothing, \varnothing) := 0$. Prove the following assertions:

- $\text{a)} \ \ \delta(\textit{\textbf{C}},\textit{\textbf{C}}') = \max \Big\{ \sup\nolimits_{x \in \textit{\textbf{C}}} \mathsf{dist}(x,\textit{\textbf{C}}'), \ \sup\nolimits_{y \in \textit{\textbf{C}}'} \mathsf{dist}(y,\textit{\textbf{C}}) \Big\}, \quad \textit{\textbf{C}},\textit{\textbf{C}}' \in \mathfrak{C}(\mathbb{X}) \setminus \{\varnothing\} \ ,$
- b) δ is a metric on $\mathcal{C}(X) \setminus \{\emptyset\}$, and
- c) δ is also a metric on $\mathcal{C}(X)$.

The solutions to these problems will be uploaded on May 4th.

Feel free to ask your questions about the exercises in the optional MS-Teams discussion on April 30th (09:15 h).