

SEQUENCE LISTING

<110> Jay Short
Eric Mathur
William Michael Lafferty
Nelson Barton
Kevin Chow

<120> Method of Making a Protein Polymer and Uses of the Polymer

<130> 564462010900

<140> 09/997,807

<141> 2001-11-30

<150> 60/250,426

<151> 2000-11-30

<160> 37

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 624

<212> DNA

<213> Pyrodictium abyssi

<400> 1

gtgaagtaca caaccctagc tatagcggtt	attattgcct	cggctgccgc	cctcgccctc	60
ctaggcaggct tcgcccaccac ccagagcccc	ctcaacagct	tctacgcccac	cggtagcaga	120
caggcagtaa gcgagccaat agacgttagaa	agccacacctg	gcagcataac	ccccgcagcc	180
ggcgcacagg gcagtgcacga	cataggttac	gcaatagtgt	ggataaagga	240
gtatgtaaac tgaagggtac	cctgcgttaac	gctgagcagc	ccaggtcaat	300
ctacagatac agataacaag	cggctatgag	acgaacagca	cagctctagg	360
gagaccaagg ctgtgataag	cctcgacaac	cccagcgccg	tgatagtact	420
gatatacgag tgctctatcc	ggacaagacc	ggttacacaa	acacttcgat	480
ggtgaacctg acaagataat	tgtctacaac	gagacaaagc	cagtagctat	540
aaggccttct acgaggctaa	ggagggtatg	ctattcgaca	actgaacttc	600
ttccaggtgc tacaagttagg	ctaa	gcctgccagt	gatattcaac	624

<210> 2

<211> 207

<212> PRT

<213> Pyrodictium abyssi

<400> 2

Val	Lys	Tyr	Thr	Thr	Leu	Ala	Ile	Ala	Gly	Ile	Ile	Ala	Ser	Ala	Ala
1					5				10				15		

Ala	Leu	Ala	Leu	Leu	Ala	Gly	Phe	Ala	Thr	Thr	Gln	Ser	Pro	Leu	Asn
					20			25			30				

Ser	Phe	Tyr	Ala	Thr	Gly	Thr	Ala	Gln	Ala	Val	Ser	Glu	Pro	Ile	Asp
	35				40					45					

Val	Glu	Ser	His	Leu	Gly	Ser	Ile	Thr	Pro	Ala	Ala	Gly	Ala	Gln	Gly
50					55					60					

Ser	Asp	Asp	Ile	Gly	Tyr	Ala	Ile	Val	Trp	Ile	Lys	Asp	Gln	Val	Asn
65					70				75			80			

Asp	Val	Lys	Leu	Lys	Val	Thr	Leu	Arg	Asn	Ala	Glu	Gln	Leu	Lys	Pro
					85				90			95			

Tyr	Phe	Lys	Tyr	Leu	Gln	Ile	Gln	Ile	Thr	Ser	Gly	Tyr	Glu	Thr	Asn
						100			105					110	
Ser	Thr	Ala	Leu	Gly	Asn	Phe	Ser	Glu	Thr	Lys	Ala	Val	Ile	Ser	Leu
						115			120				125		
Asp	Asn	Pro	Ser	Ala	Val	Ile	Val	Leu	Asp	Lys	Glu	Asp	Ile	Ala	Val
						130			135			140			
Leu	Tyr	Pro	Asp	Lys	Thr	Gly	Tyr	Thr	Asn	Thr	Ser	Ile	Trp	Val	Pro
						145			150			155			160
Gly	Glu	Pro	Asp	Lys	Ile	Ile	Val	Tyr	Asn	Glu	Thr	Lys	Pro	Val	Ala
						165			170			175			
Ile	Leu	Asn	Phe	Lys	Ala	Phe	Tyr	Glu	Ala	Lys	Glu	Gly	Met	Leu	Phe
						180			185			190			
Asp	Ser	Leu	Pro	Val	Ile	Phe	Asn	Phe	Gln	Val	Leu	Gln	Val	Gly	
						195			200			205			

<210> 3

<211> 513

<212> DNA

<213> Pyrodictium abyssi

<400> 3

gtgaaggccta	cggctcttagc	cctggctgt	atcattgcct	cggtgtccga	cctcgccctg	60
ctagcaggct	tcgcccaccac	ccagagcccg	ctcaacagct	tctacgcccc	cgacacagca	120
gccgcaacaa	gcgagccaat	agacgttagag	agccacctca	gcagcatagc	ccctgctgct	180
ggcgcacagg	gcagccagga	cataggctac	ttcaacgtga	ccgccaagga	tcaagtgaac	240
gtgacaaaaga	taaagggtgac	cctggctaac	gctgaggcgc	taaagcccta	cttcaagtac	300
ctacagatacg	tgctaaagag	cgaggttagct	gacgagatca	aggccgtaat	aagcatagac	360
aaggcttagcg	ccgtcataat	actagacagc	caggacttcg	acagcaacaa	cagagcaaag	420
ataagcgccta	ctgcctacta	cgaggctaaq	gaggcatgc	tattcgacag	cctaccgcta	480
atattcaaca	tacagtgct	aagcgtcagc	taa			513

<210> 4

<211> 170

<212> PRT

<213> Pyrodictium abyssi

<400> 4

Val	Lys	Pro	Thr	Ala	Leu	Ala	Leu	Ala	Gly	Ile	Ile	Ala	Ser	Ala	Ala
1					5			10			15				
Asp	Leu	Ala	Leu	Leu	Ala	Gly	Phe	Ala	Thr	Thr	Gln	Ser	Pro	Leu	Asn
							20		25			30			
Ser	Phe	Tyr	Ala	Thr	Gly	Thr	Ala	Ala	Ala	Thr	Ser	Glu	Pro	Ile	Asp
							35		40			45			
Val	Glu	Ser	His	Leu	Ser	Ser	Ile	Ala	Pro	Ala	Ala	Gly	Ala	Gln	Gly
							50		55			60			
Ser	Gln	Asp	Ile	Gly	Tyr	Phe	Asn	Val	Thr	Ala	Lys	Asp	Gln	Val	Asn
							65		70			75			80
Val	Thr	Lys	Ile	Lys	Val	Thr	Leu	Ala	Asn	Ala	Glu	Gln	Leu	Lys	Pro
							85		90			95			
Tyr	Phe	Lys	Tyr	Leu	Gln	Ile	Val	Leu	Lys	Ser	Glu	Val	Ala	Asp	Glu
							100		105			110			
Ile	Lys	Ala	Val	Ile	Ser	Ile	Asp	Lys	Pro	Ser	Ala	Val	Ile	Ile	Leu
							115		120			125			
Asp	Ser	Gln	Asp	Phe	Asp	Ser	Asn	Asn	Arg	Ala	Lys	Ile	Ser	Ala	Thr
							130		135			140			
Ala	Tyr	Tyr	Glu	Ala	Lys	Glu	Gly	Met	Leu	Phe	Asp	Ser	Leu	Pro	Leu
							145		150			155			160
Ile	Phe	Asn	Ile	Gln	Val	Leu	Ser	Val	Ser						
							165		170						

<210> 5
<211> 537
<212> DNA
<213> Pyrodictium abyssi

<400> 5
atgaggtaca cgacccttagc tctggccggc atagtggcct cggctgccgc cctcgccctg
ctagcaggct tcgcccacgac ccagagcccc ctaagcagct tctacgcccc cggcacagca
caagcagtaa gcgagccaat agacgttagag agccacccat acaacaccat agccctgct
gccgggtgcac agggctacaa ggacatgggc tacattaaga taactaacca gtcaaaagtt
aatgtataaa agctgaaggt gactctcgct aacggcgagc agctaaagcc ctacttcgac
tacctacacg tagtactcac aagcaacgcc actggcaccg acatggttaa ggctgtgcta
agcctcgaga agcctagcgc agtcataata ctagacaacg atgactacga tagactaaca
aagatacagc taaagtaga agcctactat gaggttaagg agggcatgct attcgacagc
ctaccagtaa tactgaactt ccaggtactg agcggccgtt gcagtcctt gtggta
537

<210> 6
<211> 178
<212> PRT
<213> Pyrodictium abyssi

<400> 6
Met Arg Tyr Thr Thr Leu Ala Leu Ala Gly Ile Val Ala Ser Ala Ala
1 5 10 15
Ala Leu Ala Leu Leu Ala Gly Phe Ala Thr Thr Gln Ser Pro Leu Ser
20 25 30
Ser Phe Tyr Ala Thr Gly Thr Ala Gln Ala Val Ser Glu Pro Ile Asp
35 40 45
Val Glu Ser His Leu Asp Asn Thr Ile Ala Pro Ala Ala Gly Ala Gln
50 55 60
Gly Tyr Lys Asp Met Gly Tyr Ile Lys Ile Thr Asn Gln Ser Lys Val
65 70 75 80
Asn Val Ile Lys Leu Lys Val Thr Leu Ala Asn Ala Glu Gln Leu Lys
85 90 95
Pro Tyr Phe Asp Tyr Leu Gln Leu Val Leu Thr Ser Asn Ala Thr Gly
100 105 110
Thr Asp Met Val Lys Ala Val Leu Ser Leu Glu Lys Pro Ser Ala Val
115 120 125
Ile Ile Leu Asp Asn Asp Asp Tyr Asp Ser Thr Asn Lys Ile Gln Leu
130 135 140
Lys Val Glu Ala Tyr Tyr Glu Ala Lys Glu Gly Met Leu Phe Asp Ser
145 150 155 160
Leu Pro Val Ile Leu Asn Phe Gln Val Leu Ser Ala Ala Cys Ser Pro
165 170 175
Leu Trp

<210> 7
<211> 395
<212> DNA
<213> Pyrodictium abyssi

<400> 7
agttctacg ccacccggcac agcacaggca gtaagcgagc caatagacgt ggtaagcagc
ctcggtacgc taaatactgc cgctgggtgca caggtaagc agacgttagg agacataaca
atatatgcgc acaaatgcgt gaacataaca aagctaaagg tcacgcttgc taacgctgca
cagctaagac catacttcaa gtacctgata ataaagctag taagcctgga cagcaacggc
aacgagtccg aggaaaaagg catgataact ctatgaaagc cttacgcccgt gataatacta
300

gaccatgaag atttcaacaa cgacatcgac aatgacggca acaatgacgc caagataagg 360
gtttagcct actatgaggc taaggagggt atgct 395

<210> 8
<211> 131
<212> PRT
<213> Pyrodictium abyssi

<400> 8
Ser Phe Tyr Ala Thr Gly Thr Ala Gln Ala Val Ser Glu Pro Ile Asp
1 5 10 15
Val Val Ser Ser Leu Gly Thr Leu Asn Thr Ala Ala Gly Ala Gln Gly
20 25 30
Lys Gln Thr Leu Gly Asp Ile Thr Ile Tyr Ala His Asn Asp Val Asn
35 40 45
Ile Thr Lys Leu Lys Val Thr Leu Ala Asn Ala Ala Gln Leu Arg Pro
50 55 60
Tyr Phe Lys Tyr Leu Ile Ile Lys Leu Val Ser Leu Asp Ser Asn Gly
65 70 75 80
Asn Glu Ser Glu Glu Lys Gly Met Ile Thr Leu Trp Lys Pro Tyr Ala
85 90 95
Val Ile Ile Leu Asp His Glu Asp Phe Asn Asn Asp Ile Asp Asn Asp
100 105 110
Gly Asn Asn Asp Ala Lys Ile Arg Val Val Ala Tyr Tyr Glu Ala Lys
115 120 125
Glu Gly Met
130

<210> 9
<211> 372
<212> DNA
<213> Pyrodictium abyssi

<400> 9
agtttctacg ccacccggcac agcagaggca acaagcgagc caatagacgt tgtaagcaac 60
cttaacacgg ccatagcccc tgctgccggc gcccaggca gcgtggcat aggacgata 120
acaatagaga acaagactga cgtgaacgtt gtgaagctga agataaccct cgccaacgct 180
gagcagctaa agccctactt cgactaccta cagatagtgc taaagagcgt tgacagcaac 240
gagatcaagg ctgtgctaag cctcgagaag cccagcgcag tcataatact ggacaacgag 300
gacttccagg gcggcgacaa ccagtgcacat agacgcca ccgcctacta cgaggctaag 360
gagggtatgc ta 372

<210> 10
<211> 124
<212> PRT
<213> Pyrodictium abyssi

<400> 10
Ser Phe Tyr Ala Thr Gly Thr Ala Glu Ala Thr Ser Glu Pro Ile Asp
1 5 10 15
Val Val Ser Asn Leu Asn Thr Ala Ile Ala Pro Ala Ala Gly Ala Gln
20 25 30
Gly Ser Val Gly Ile Gly Ser Ile Thr Ile Glu Asn Lys Thr Asp Val
35 40 45
Asn Val Val Lys Leu Lys Ile Thr Leu Ala Asn Ala Glu Gln Leu Lys
50 55 60
Pro Tyr Phe Asp Tyr Leu Gln Ile Val Leu Lys Ser Val Asp Ser Asn
65 70 75 80
Glu Ile Lys Ala Val Leu Ser Leu Glu Lys Pro Ser Ala Val Ile

85	90	95
Leu Asp Asn Glu Asp Phe Gln Gly Gly Asp Asn Gln Cys Gln Ile Asp		
100	105	110
Ala Thr Ala Tyr Tyr Glu Ala Lys Glu Gly Met Leu		
115	120	

<210> 11
<211> 448
<212> DNA
<213> Artificial Sequence

<220>
<223> consensus sequence

<400> 11
tgagacccta gctgcggatt gcctcggtc cccgcctcgcc ctctaggcagg cttcgccaca
cccagagccc ctacagcttc tacgcccaccg gcacagcaca ggcagtaagc gagccaatag
acgttagaaag ccacccata catagccccct gctgccggcg cacagggcag caggacatag
gctacataaa ataacaagat agtgaacgta taaagctgaa ggtgaccctg ctaacgctga
gcagctaaag ccctacttca agtacctaca gatagtgcata aaagcgacag cagggcacacg
agaaggcgtg ataaggctcg agaaggctag cgccgtcata atactagaca acgaggactt
cgaaggcacaa cagaaagaga agcaatagcc tactacgagg ctaaggaggg tatgctattc
gacagcctcc tatataactc aggtctgt

60
120
180
240
300
360
420
448

<210> 12
<211> 140
<212> PRT
<213> Artificial Sequence

<220>
<223> consensus sequence

<400> 12
Val Lys Thr Leu Ala Leu Ala Gly Ile Ile Ala Ser Ala Ala Leu Ala
1 5 10 15
Leu Leu Ala Gly Phe Ala Thr Thr Gln Ser Pro Leu Ser Phe Tyr Ala
20 25 30
Thr Gly Thr Ala Gln Ala Val Ser Glu Pro Ile Asp Val Glu Ser His
35 40 45
Leu Ser Ile Ala Pro Ala Ala Gly Ala Gln Gly Ser Asp Ile Gly Tyr
50 55 60
Ile Ile Lys Val Asn Val Val Lys Leu Lys Val Thr Leu Ala Asn Ala
65 70 75 80
Glu Gln Leu Lys Pro Tyr Phe Lys Tyr Leu Gln Ile Val Leu Ser Ser
85 90 95
Glu Ile Lys Ala Val Ile Ser Leu Asp Lys Pro Ser Ala Val Ile Ile
100 105 110
Leu Asp Glu Asp Phe Ala Ile Ala Tyr Tyr Glu Ala Lys Glu Gly Met
115 120 125
Leu Phe Asp Ser Leu Pro Val Ile Asn Gln Val Leu
130 135 140

<210> 13
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Linker peptide

<400> 13
Gly Gly Gly Gly Ser
1 5

<210> 14
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Polynucleotide sequence of a restriction site

<400> 14
cgcgctggac 10

<210> 15
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15
aaggaggagg 10

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
ctagaagaga ggagaaaacc atg 23

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17
gatcaaaggc gcgcctgcag g 21

<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18
ctagaaggga ggagaaaacc atg 23

<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 19
gatcaaaggc gcgcctgcag g 21

<210> 20
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Polynucleotide sequence of a cleavage site

<221> unsure
<222> (0)...(0)
<223> N = A, G, C or T

<400> 20
gagtcnnnnn 10

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 21
gccagggttt tcccagtcac ga 22

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 22
agcggataac aatttcacac agg 23

<210> 23
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 23
attaaccctc actaaag 17

<210> 24	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 24	21
taatacgact cactataggg g	
<210> 25	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 25	18
ctagttattg ctcagcgg	
<210> 26	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 26	15
cagagccccg ctcaa	
<210> 27	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 27	20
gcagctaaag ccctacttca	
<210> 28	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 28	18
cagtttctac gccaccgg	
<210> 29	
<211> 21	
<212> DNA	

<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 29		
tgtgaagtag acaaccctag c		21
<210> 30		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 30		
gcgccggctg cgggggg		16
<210> 31		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 31		
ctgtgctgtta ccgggtggcg		19
<210> 32		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 32		
agcataccct ccttagcctc		20
<210> 33		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 33		
tagcaggcca tatgaccacc cagagcccc		30
<210> 34		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		

<400> 34	
ctagcaggcc atatgacgac ccagagcc	28
<210> 35	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 35	
ggaggactgg cggccgctgt tagcctac	28
<210> 36	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 36	
atgttagcttagc ggccgc ttta gctgacgc	28
<210> 37	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 37	
ggccgtggcg gccgctgctt cacc	24