CATEGORY THEORY MIDLANDS GRADUATE SCHOOL 2023

EXERCISE 3&4 (4 AND 5 APRIL)

NICOLAI KRAUS

REMINDER

Definition 1 (functor). Given categories C and D, a functor $F: C \to D$ consists of:

- a function between the object parts, $F_0: \mathcal{C}_0 \to \mathcal{D}_0$; however, the index is often omitted and one only writes FX for $F_0(X)$.
- for any two objects $X, Y \in C_0$, a function $F_{X,Y}$ from C(X,Y) to D(FX,FY); again, one usually just writes Fg instead of $F_{X,Y}(g)$ for $g \in C(X,Y)$

such that:

- Identities are preserves: $F(id_X) = id_{FX}$
- Composition is preserved: $F(g \circ f) = Fg \circ Ff$.

Exercise 5: Functors preserving structure

By definition, a functor between categories preserves identities and compositions. What else does it preserve?

- **a.** Show that every functor preserves isomorphisms. This means that, if $F: \mathcal{C} \to \mathcal{D}$ is a functor and $k \in \mathcal{C}(X,Y)$ is an isomorphism, then $Fk \in \mathcal{D}(FX,FY)$ is an isomorphism.
- **b.** Assume we have a functor $F: \mathcal{C} \to C$ and an object $A \in \mathcal{C}_0$ such that, for every $X \in \mathcal{C}_0$, the object FX is a product of A and X. We can write $(A \times _)$ as a more suggestive name for this functor F. Show that this functor preserves coproducts.
- c. Find an example of a functor that preserves neither products nor coproducts.

EXERCISE 6 (CONTINUES EXERCISE 1 FROM SUNDAY): FUNCTORS OUT OF THE FREE CATEGORY ON A DIRECTED MULTIGRAPH

For the definitions, please see yesterday's exercise sheet.

Let G = (V, E) be a directed multigraph and \mathcal{D} be a category. Show that the collection of functors $\mathcal{F}_G \to \mathcal{D}$ is in bijection with the collection of pairs (s, t), where $s: V \to \mathcal{D}_0$ is a function and t chooses, for each pair $a, b \in V$ and each edge $e \in E(a, b)$, a morphism in $\mathcal{D}(s(a), s(b))$.

EXERCISE 7: THE CATEGORY CAT

The goal of this exercise is to construct CAT, the "category of all categories". The objects of CAT are categories. The morphisms between $\mathcal C$ and $\mathcal D$ are simply the functors from $\mathcal C$ to $\mathcal D$. Construct the remaining structure and prove the laws required to make CAT a category.

For the purpose of this exercise, you can safely ignore this issue.

¹Note that CAT cannot be an object of CAT, which would lead to Russel's paradox. A "smallness" condition is needed to avoid this. One usually requires that the objects of CAT are categories that have sets of objects, while the objects of CAT itself form a proper class. In type theory, this would correspond to saying that the objects of CAT live in the first universe, while CAT itself lives in the second.