Py 202	Day 37
-> clicker: channel Clicker Q anly selends on	J-iel)
(† 1) A († 1)	(1) el (13)
5 a me	E
Smaller F	1-rger F
Qui2 1	
metal sphere metal sphere + + + + + + + + + + + + + + + + + + +	++++
extensed obj	

point charges don't have these complications

Dehavior of conductor

Diff. of point q's and extended objects between

Derivatives Into
Dother HW comment:

-> DRAW SKETCHES (Earefully)

answer in terms of q_1, Q_1, m_1, p_1 $F'_{\alpha} = -mg f$ $F'_{\alpha} = k \frac{q_1 Q_1}{y_2^2} f = k \frac{q_2 Q_1}{y_2^2} f$ $y_0 = \sqrt{k \frac{q_1 Q_1}{mg}}$

displace mass m by DY restoring force: X2 +2X, AY Δ Y << Y₀ k4Q - 270 DY KQQ Y. 4 2/3 AY - 2 % DY KZ Q $\frac{1}{\sqrt{2}}$ DY CC YO

$$\frac{kqQ}{\gamma_0^2} - mg = 0$$

$$= \frac{kqQ}{\gamma_0^2} = mg$$

$$-\frac{2\Delta y \, k \, q \, Q}{y_0} = -\frac{2\Delta y \, m \, q}{y_0}$$

$$= F_{restoring} = M \frac{32\Delta y}{3 \pm 2}$$

$$\frac{\partial^2 \Delta y}{\partial t^2} + \frac{29}{\gamma_0} \Delta y = 0$$

$$\frac{113^{2}x}{3E} + \omega^{2}x = 0$$

Continuous Charge Distribution

Linear charge density: λ Surface charge density δ Volume charge density ρ C/m^2 C/m^2

electric field: due to an infitessimal

Charge d^{2} (d^{2} is small, so it acts like a point charge) $\int d\vec{E} = \vec{E}$ $= \sum_{i=1}^{n} \sum_{k=1}^{n} \int d\vec{E} \times \vec{E}$

Ly: JdEy

total charge Q = AL Q = 6A $Q = \rho V$

newrite in terms of 0, 4, Q