Offenlegungsschrift

① DE 3540988 A1

(51) Int. Cl. 4: G01R 1/20

> G 01 R 15/00 G 01 D 5/12 G 08 C 19/16

DEUTSCHES PATENTAMT

P 35 40 988.6 Aktenzeichen: 19.11.85 Anmeldetag:

21. 5.87 (43) Offenlegungstag:

Behördeneigentum

71) Anmelder:

Camille Bauer Meßinstrumente AG, Wohlen, Aargau, CH

(74) Vertreter:

Otte, P., Dipl.-Ing., Pat.-Anw., 7250 Leonberg

② Erfinder:

Ludin, Ludwig, Dipl.-Ing., Anglikon, Aargau, CH

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Schaltung zur Meßumformung mit galvanischer Trennung

Bei einer Schaltung zur Meßumformung mit galvanischer Trennung, die einen Zweileiter-Meßumformer mit Strommeßwandler mit überlagertem Steuersignal betrifft, wird vorgeschlagen, einerseits die Speiseenergie für den das Meßsignal liefernden Meßumformer und andererseits das vom Meßumformer kommende Meßsignal gegenläufig über einen als gemeinsame Potentialtrennstelle arbeitenden Übertrager zu führen. Dabei wird die Pulsdauer eines den Übertrager primärseitig speisenden und jeweils in die Sättigung treibenden Kippgenerators vom Sättigungsverhalten des Übertragers bestimmt und dieses ergibt sich aus der Summe des vom Kippgenerator gelieferten Primärstroms und des vom Meßumformer gelieferten, meßgrößenbehafteten Sekundärstroms.

Patentansprüche

1. Schaltung zur Meßumformung mit galvanischer Trennung, insbesondere Zweileiter-Meßumformer mit Strommeßwandler mit überlagertem Steuersignal, wobei der einen Wicklung (Sekundärwicklung) eines Übertragers mit weichmagnetischem Kern das Meßsignal (X) zugeführt und die andere Wicklung (Primärwicklung) mit einer in ihrer Polarität in Abhängigkeit zum magnetischen Sätti- 10 gungszustand umsteuerbaren Spannungsquelle verbunden ist, dadurch gekennzeichnet, daß gleichzeitig die Speiseenergie für den das Meßsignal (12) liefernden Meßumformer (MU) einerseits und das vom Meßumformer (MU) kommende 15 Meßsignal (12) andererseits in gegenläufigen Richtungen über den als gemeinsame Potentialtrennstelle arbeitenden Übertrager (W) geführt sind.

2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß der Übertrager (W) Teil eines über 20 die Zweidrahtverbindung an den Meßumformer (MU) angeschlossenen Speisetrennwandlers (ST) ist, wobei die Sekundärwicklung (W2) des Übertragers von einer in ihrer Polarität umpolbaren, an die Primärwicklung angeschlossenen Spannungsquelle (Konstantspannungsquelle Ko) die vom Meßumformer benötigte Grundenergie (Io) erhält und rückwirkend durch einen Signalanteil (Ix) im über die Zweidrahtverbindung fließenden Strom (I2) das Sättigungsverhalten des weichmagnetischen Übertragerkerns (K) mitbestimmt.

3. Schaltung nach Anspruch 2, dadurch gekennzeichnet, daß die Primärwicklung (W1) des Übertragers (W) von einem Kippgenerator (KG) mit amplitudenstabiler Spannung (u1) gespeist wird 35 und die gleichgerichtete Spannung (U2) der Sekundärwicklung (W2) den Meßumformer (MU) speist, wobei der vom Meßumformer (MU) gesteuerte, die Meßgröße (X) abbildende Sekundärstrom (I2) den Übertragerkern (K) vormagnetisiert und dadurch über die an der Primärwicklung abgegriffene Spannung (us) das Tastverhältnis des Kippgenerators (KG) sättigungsbezogen und damit proportional zum Sekundärstrom (I2) verändert.

4. Schaltung nach einem der Ansprüche 1 bis 3, da- 45 durch gekennzeichnet, daß die Primärwicklung (W1) über einen Begrenzungswiderstand (Rb) von dem Kippgenerator (KG) mit der amplitudenstabilen Spannung gespeist ist.

5. Schaltung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Gleichrichter (G) im Sekundärkreis des Übertragers ein Einweggleichrichter
ist

6. Schaltung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kippgenerator 55 (KG) ein von der unmittelbar an der Primärwicklung (W1) des Übertragers (W) abfallenden Spannung (us) über einen zwischengeschalteten Verstärker (V) gesteuerter Umschalter ist.

7. Schaltung nach Anspruch 6, dadurch gekennzeichnet, daß der Umschalter von zwei hintereinandergeschalteten, beidseitig an jeweils positiver und negativer Hilfsspannung (UH+, UH-) liegenden Halbleiterschaltern (Transistoren T1, T2) gebildet ist, deren gemeinsamer Ausgang mit antiparallel 65 geschalteten Begrenzerdioden (Konstantspannungsdioden D1, D2) verbunden ist, wobei an diesen Ausgang über den Begrenzungswiderstand

(Rb) sowohl die Primärwicklung (W1) des Übertragers (W) als auch ein die zeitverschlüsselte Information über die Meßgröße (X) auswertendes Meßglied (VI) angeschlossen ist.

8. Schaltung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Primärwicklung (W1) des Übertragers (W) über beidseitige Vorwiderstände (Rv) mit den beiden Eingängen des als Operationsverstärker ausgebildeten Verstärkers (V) verbunden ist, dessen Ausgang die zusammengeführten Steueranschlüsse der beiden die Halbleiter bildenden Schalttransistoren (T1, T2) ansteuert. 9. Schaltung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Sekundärspannung (12) des Übertragers (W) nach Einweggleichrichtung zur Bildung des den Meßumformer (MU) speisenden und gleichzeitig eine Information über die Eingangsmeßgröße (X) enthaltenden Meßgleichstroms (I2 = I0 + Ix) über Kondensatoren (C1, C2)gefiltert und, gegebenenfalls über einen weiteren Vorwiderstand (R), dem Meßumformer (MU) zugeführt ist.

10. Schaltung nach Anspruch 9, dadurch gekennzeichnet, daß die Amplitude der Restwelligkeit der gleichgerichteten Meßumformer-Speisespannung (U2) durch Änderung der Filterwirkung einstellbar ist zur Erzeugung eines vom Meßumformer (MU) auszuwertenden, ergänzenden Steuersignals.

11. Schaltung nach Anspruch 10, dadurch gekennzeichnet, daß ein Schalter (5) vorgesehen ist, mit welchem ein der Filterung der Meßumformer-Speisespannung (12) dienender zusätzlicher Kondensator (C2) zu- oder abgeschaltet wird.

12. Schaltung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die unterschiedlichen, ein Maß für die Eingangsmeßgröße (X) darstellenden Periodendauerintervalle (t1, 2-Tastverhältnis) der vom Kippgenerator (G) gelieferten Ausgangsrechteckspannung als digitale Zeitwerte (beispielsweise durch Auszählen) ermittelt und aus diesen ein numerischer Wert für die Meßgröße (X) errechnet wird

13. Schaltung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der zeitliche Mittelwert der vom Kippgenerator (KG) gelieferten, amplitudenstabilisierten Spannung (u1) als Maß für den Meßgleichstrom (12) und insofern für die Meßgröße (X) unmittelbar durch Beaufschlagung eines vom Kippgenerator (KG) nachgeschalteten integrierenden Operationsverstärkers (VI) gebildet und in ein analoges Ausgangssignal umgewandelt wird

14. Schaltung nach Anspruch 13, dadurch gekennzeichnet, daß der Einfluß des konstanten Grundanteils (B) am Meßgleichstrom (B) durch eine entsprechende (negative) Vorspannung am das Meßglied bildenden integrierenden Operationsverstärker (VI) kompensiert wird, derart, daß die Ausgangsspannung des Verstärkers ein auf Null bezogenes meßgrößenproportionales Ausgangssignal (XA) liefert.

Beschreibung

Stand der Technik

Die Erfindung geht aus von einer Schaltung zur Meß-

verbessern.

umformung mit galvanischer Trennung nach der Gattung des Hauptanspruchs. Eine solche Schaltung ist bekannt (DE-PS 11 53 452) und umfaßt einen Strommeßwandler, bestehend aus einem Übertrager mit weichmagnetischem Kern und einer Primärentwicklung, der der 5 zu messende Strom nach Amplitude und Richtung zugeführt ist und die den Kern des Übertragers entsprechend vormagnetisiert. Ferner sind zwei Sekundärwicklungen vorgesehen, von denen eine in Reihe mit der Meßanordnung und einem Kippgenerator geschaltet ist. 10 Die Meßanordnung erfaßt an dieser Sekundärwicklung eine Größe, die ein Abbild des der Primärwicklung zugeführten Meßstroms ist. Die Meßanordnung kann beispielsweise ein einen arithmetischen Mittelwert anzeigender Strommesser sein. Die andere Sekundärwick- 15 lung ist mit einer Steuereinrichtung in Reihe geschaltet, die so ausgebildet ist, daß die dann, wenn die durch den Kippgenerator über die erste Sekundärwicklung in der zweiten Sekundärwicklung (Steuerwicklung) induzierte EMK infolge Eintritts des magnetischen Sättigungszu- 20 standes abfällt, über elektronische Schaltmittel den Kippgenerator derart beaufschlagt, daß er sprunghaft die Polarität seiner Ausgangsspannung wechselt, bei Beginn der Sättigung also jeweils kippt. Hierdurch gelingt die unverzögerte Übertragung von Primärstrom- 25 änderungen und die Erzielung einer möglichst linearen Abhängigkeit zwischen Primärstrom und Sekundärstrom. Problematisch ist allerdings, daß die in Reihe mit der vom Kippgenerator erregten Wicklung des Übertragers liegende und das gewandelte Strommeßsignal 30 auswertende Meßeinrichtung (Strommesser) von den steilen Schaltspitzen des vom Kippgenerator gelieferten Erreger-Wechselstroms durchflossen ist und ein derart geformter Strom als Meßsignal an diese meßwertverarbeitende Einrichtung hohe Anforderungen 35 stellt, wobei zudem die Impedanz der Meßeinrichtung die Magnetisierung des Kerns mit beeinflußt. Besonders problematisch dürfte ferner die in der Primärentwicklung induzierte Wechselspannung sein, welche sich dem primären Meßkreis störend überlagert und mit erhebli- 40 chem Aufwand und Verlusten unterdrückt werden muß. Ein praktisches, in Fig. 2 dieser Veröffentlichung (DE-PS 11 53 452) gezeigtes Ausführungsbeispiel benö-

Das Grundprinzip der Meßwertübertragung unter 50 Verwendung eines Übertragers mit gesättigtem Kern ist ferner bekannt aus der DE-PS 9 05 169 und der DE-PS 9 07 673, die in ihren Maßnahmen jedoch hinter der an erster Stelle genannten DE-PS 11 53 452 zurückbleiben.

tigt einen Übertrager mit mindestens vier Teilwicklun-

für den Meßumformer selbst eine separate Gleichspan-

nungsquelle erforderlich ist, damit das der Primärwick-

lung zugeführte Strommeßsignal vom Meßumformer

erzeugt werden kann.

Es ist ferner allgemein bekannt, zur Meßwertübertragung eine separat erzeugte Pilotfrequenz als Steuersignal einem Zweileiter-Meßumformerkreis zu überlagern.

Der Erfindung liegt die Aufgabe zugrunde, bei einer 60 solchen Schaltung zur Meßumformung bei gleichzeitiger Sicherstellung einer hohen Übertragungsgenauigkeit sowohl die Funktion der Speisung des eigentlichen Meßumformers, die Funktion der galvanischen Signaltrennung und die Funktion der Übertragung und Bildung des Meßsignals (Meßwertübertragung) in einem Element zu vereinen und hierdurch eine solche Schaltung insgesamt entscheidend zu vereinfachen und zu

Vorteile der Erfindung

Die Erfindung löst diese Aufgabe mit den kennzeichnenden Merkmalen des Hauptanspruchs und hat den Vorteil, daß bei gleichzeitiger Erzielung sehr guter Meßergebnisse insbesondere hinsichtlich Präzion und Störsicherheit ein besonders einfacher Aufbau sowohl im Bereich des eigentlichen Meßumformerkreises als auch mit Bezug auf die sonst erforderliche Speisung des Meßumformers selbst erzielt wird. Tatsächlich benötigt der Meßumformer keine separate Gleichspannungsquelle zur Speisung, denn die Energie für seine Speisung wird von der das Signal verarbeitenden Einrichtung über die Zweileiter-Verbindung zum Meßfumformer geführt, auf welcher auch von diesem das Meßsignal zur auswertenden Meßeinrichtung gelangt. Mit anderen Worten über das gleiche Leitungspaar und über eine gemeinsame Trennstelle, welche durch einen induktiven Übertrager gebildet ist, der gleichzeitig als Transformator und als Meßwandler arbeitet, erfolgt die Speisung des Meßumformers aus dem Signalkreis und, gegenläufig zu diesem Energiefluß, die Meßsignalübertragung und Auswertung.

Dabei ist ferner von besonderem Vorteil, daß die eigentliche dem Kreis mit dem galvanischen Trennwandler nachgeschaltete Meßsignal-Auswerteeinrichtung ein praktisch störspannungsfreies Rechteckwellensignal, unmittelbar von einem Kippgenerator gewonnen, zur Auswertung zugeführt wird es ausschließlich das Taktverhältnis bzw. die Zeitpunkte der Nulldurchgänge dieser Rechteckspannung sind, die daher in pulsdauermodulierter Form ein Maß für das Meßsignal sind. Ist daher die Speisespannung für den Kippgenerator stabilisiert bzw. liefert dieser zur Auswertung eine amplitudenstabilisierte Wechselspannung, dann kann ein für die Meßgröße oder das Meßsignal bestimmendes Ausgangssignal entweder unmittelbar durch analoge Integration gewonnen werden oder die Taktintervalle des Kippgenerators werden als digitale Zeitwerte ermittelt und dienen der Errechnung eines numerischen Werts für das Meßsignal.

Besonders vorteilhaft ist ferner, daß die erfindungsgegen, wobei für die Lieferung der notwendigen Energie 45 mäße Ausbildung der Speiseenergiezuführung zum Meßumformer zur ergänzenden Signalgabe im Sekundärkreis ausgenutzt werden kann, und zwar dadurch, daß die Amplitude der Restwelligkeit der dann gleichgerichteten Meßumformer-Speisespannung einstellbar ausgebildet ist und je nach Restwelligkeit entsprechende Steuersignale zusätzlich gewonnen und ausgewertet werden können, etwa zur Auslösung von Prüfvorgängen. Der Meßumformer kann dann mit einer zusätzlichen Steuereinrichtung versehen sein, die selektiv auf 55 eine Erhöhung der Restwelligkeit der Speisespannung anspricht und den Meßumformer veranlaßt, weitere Funktionen zu übernehmen.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Schaltung zur Meßumformung möglich. Besonders vorteilhaft ist die einfache, durchlaufend von einem einzigen Leiterpaar, unter Einschluß der von dem Übertrager mit weichmagnetischem Kern gebildeten Trennstel-65 le, gebildete Reihenschaltung der einzelnen Teilkomponenten, also beginnend vom Ort der Meßwerterzeugung, des Meßumformers, eines zwischen diesen und der Sekundärwicklung des Übertragers geschalteten

Gleichricht- und Siebteils, des an die Primärwicklung des Übertragers angeschlossenen Kippgenerators und eines diesem nachgeschalteten, beispielsweise als integrierender Verstärker ausgebildeten Meßwert-Auswerteeinrichtung, wobei eine externe Spannungszuführung ausschließlich im Bereich des Kippgenerators zu dessen Speisung erfolgt.

Zeichnung

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1 ein erstes, vereinfachtes Ausführungsbeispiel, im wesentlichen in Form eines Blockschaltbildes,

Fig. 2 eine detaillierte Darstellung einer Ausführungsform vorliegender Erfindung zur Meßumformung mit galvanischer Trennung,

Fig. 3 als detailliertes Schaltungsbeispiel eine mögliche Ausführungsform des Kippgenerators und

Fig. 4 in Form von Diagrammen über der Zeit Kurvenverläufe elektrischer Größen, wie sie an bestimmten Punkten der Schaltung auftreten.

Beschreibung der Ausführungsbeispiele

Der Grundgedanke vorliegender Erfindung besteht darin, bei einem Meßumformungskreis mit galvanischer Trennung der eingangs genannten Gattung die Speiseenergie für den Meßumformer von der das Signal verarbeitenden Einrichtung zu liefern, bei einem Zweileiter-Meßumformerkreis aber dafür zu sorgen, daß die den Trennübertrager speisende signalverarbeitende Einrichtung einerseits über die vorzugsweise gleichgerichtete Sekundärspannung des Übertragers gleichzeitig die 35 vom Meßumformer benötigte Grundenergie liefert als auch den das Meßsignal bildenden Gleichstrom, der durch die Sekundärwicklung des Übertragers fließt, als Information zu verarbeiten.

In Fig. 1 ist eine Meßumformerschaltung gezeigt, die 40 einen Meßumformer, nämlich Zweileiter-Meßumformer MU umfaßt, der in für sich gesehen bekannter Weise einen festgelegten Bereich der Eingangsmeßgröße X in eine normierte Änderung beispielsweise des den Meßumformer MU speisenden Stroms 12 umformt. Ein 45 solcher Meßumformer kann beispielsweise ein üblicher Zweileiter-Transmitter sein, der eine Eingangsmeßgrö-Be in einen proportionalen Ausgangsstrom umformt. Da bei den dargestellten Ausführungsbeispielen der Erfindung der Speiseenergiefluß umgekehrt, also entgegen- 50 gesetzt zum Fluß oder zur Richtung des vom Meßumformer MU ausgehenden Meßsignals verläuft, wird im folgenden zunächst die Gewinnung der Speiseenergie für den Meßumformer erläutert. In Verbindung mit den in Fig. 1 gezeigten Schaltungsmitteln, die dann gleich- 55 Kondensator C1, der ständig über der Sekundärwickzeitig in zweiter Aufgabe die Signalinformation auswer-

Es ist ein galvanisch trennender Übertrager Wvorgesehen, der einen sättigbaren Kern K, eine Sekundär-Primärwicklung W1 des Übertragers Wwird von einem in seiner Richtung änderbaren Strom il durchflossen, der von einer in ihrer Polarität umsteuerbaren Konstantspannungsquelle Ko zufließt, wobei dieser Strom il den weichmagnetischen Kern K des Übertragers W bis 65 ervorgang aus, wobei entweder der Steuerbefehl so lanin die Sättigung magnetisiert. Die Konstantspannungsquelle Ko bezieht ihre Energie aus einer zugeordneten Gleichspannungsquelle Go und ist im übrigen so ausge-

bildet, daß der Takt für die Umpolung der Konstantspannungsquelle Ko wie etwa bei dem eingangs genannten Strommeßwandler der DE-PS 11 53 452 für sich bekannt, von dem Sättigungsverhalten des Kerns K5 des Übertragers W bestimmt wird, wobei dieses Sättigungsverhalten zusätzlich zu dem in der Primärwicklung W1 fließenden Strom i1 von einem in der Sekundärwicklung W2 fließenden, einen dem Meßsignal entsprechenden Strom 2, je nach Polarität des Gleichrichters G und damit des Meßsignals, unsymmetrisch beeinflußt wird, mit anderen Worten, je nach dem Beitrag und der Richtung des von der Sekundärwicklung W2 erzeugten Magnetflusses ergibt sich ein Auswandern der Nulldurchgänge des die Primärwicklung W1 speisenden 15 Stroms il, so daß das Taktverhältnis der Stromwendung (Polaritätswechsel) sich in der einen oder anderen Richtung ändert, also nicht mehr gleiche Nulldurchgangsabstände vorliegen. Der Grund hierfür ist natürlich darin zu sehen, daß die Polaritätsumsteuerung in Abhängigkeit von der Sättigung des weichmagnetischen Kerns erfolgt und diese ist eine Funktion der Summe der von

beiden Wicklungen erzeugten Magnetflüsse.

Bei dem dargestellten Ausführungsbeispiel der Fig. 1 wird die an der Primärwicklung W1 des Übertragers 25 anliegende Spannung u1 auf der Sekundärseite von einem Gleichrichter G (Einweggleichrichter) gleichgerichtet und ergibt sich nach Siebung an einem Kondensator C1 und/oder C2 und Passieren eines Widerstandes R als Speisespannung U2 am Eingang des Zweileitermeßumformers MU, wobei es sich versteht, daß auf diese sekundärseitige Gleichrichtung auch verzichtet werden kann, wenn ein fremdgespeister Meßumformer mit aktivem Ausgangssignal verwendet wird, welches z. B. bipolaren Charakter hat. Üblichweise sind Zweileitermeßumformer MU jedoch so ausgebildet, daß sie einen bestimmten Ausgangsstrom, etwa von 4 bis 20 mA, erzeugen, wobei dann die Stromaufnahme des Meßumformers MU ihrerseits von der Meßgröße X gesteuert ist und das Meßsignal 12 bildet. Die Konstantspannungsquelle Ko liefert daher eine durch ihr variables, sättigungsgesteuertes Tastverhältnis zeitverschlüsselte Ausgangsinformationen XT der Eingangsmeßgröße X. Aus der Ausgangsgröße XT kann dann etwa durch Integration und Verstärkung unmittelbar ein analoges Signal gebildet werden oder man kann durch Auszählen mit hochfrequenten Impulsen während der positiven und negativen Impulsdauern, ohne den Umweg über das analoge Signal, direkt einen numerischen Wert für das Eingangsmeßsignal erzeugen.

Es ist möglich, durch Einstellen der Amplitude der Restwelligkeit des gleichgerichteten Speisesignals (Spannung U2) für den Meßumformer ein Steuersignal zu erzeugen, welches von dem Meßumformer MU ausgewertet wird; zu diesem Zweck ist zusätzlich zu dem lung W2 und der Gleichrichtdiode G liegt, ein weiterer Kondensator C2 vorgesehen, der über einen Schalter von beliebiger Art (Halbleiterschalter, insbesondere optisch aktivierbarer Halbleiterschalter zur Erzielung eiwicklung W2 und eine Primärwicklung W1 aufweist. Die 60 ner galvanisch getrennten Aussteuerung) zugeschaltet wird. Das Auftreten eines höheren Wechselspannungsanteils 1/2° auf der Versorgungsspannung U2 wird dann von einer Steuereinrichtung St des Zweileiter-Meßumformers MU detektiert und löst den gewünschten Steuge ansteht, wie das erhöhte Brummsignal vorhanden ist, oder der Steuerbefehl bei jedem Auftreten der erhöhten Brummspannung seinen Zustand ändern kann. Man

kann daher durch Mehrfachbetätigung des Schalters S entsprechend codierte Befehle oder Serien von Befehlen ergänzend dem Meßumformer MU vermitteln.

Die Darstellung der Fig. 2 zeigt insbesondere den Bereich des durch die Erfindung realisierten kombinierten Speise-Trennwandlers ST genauer. Der im Zweileiter-Meßumformerkreis fließende Strom 12 besteht aus zwei Komponenten: R = R + Ix. Der konstante Grundanteil A dient zur Deckung des eigenen Energiebedarfs des Meßumformers MU. Der Meßumformer ist bei dem 10 dargestellten Ausführungsbeispiel so ausgelegt, daß er einen festgelegten Bereich der Meßgröße Xz. B. in eine normierte Änderung Lx von 3...6 mA des speisenden Stroms 12 umformt und verfügt ferner über die weitere vorn schon erwähnte Steuereinrichtung St. Die Kon- 15 stantspannungsquelle Ko ist gebildet von einem Kippgenerator KG, desen eine amplitudenstabile Ausgangswechselspannung u1 führenden Ausgangsanschlüsse über einen Begrenzungswiderstand Rb mit der Primärwicklung W1 des Übertragers W verbunden sind. Die 20 Primärwicklung führt den Erregerstrom is, der den Kern K des Übertragers W daher beidseitig in die Sättigung magnetisiert.

Die unmittelbar an der Primärwicklung W1 abfallende Spannung us, die als Maß für den Sättigungszustand 25 ausgewertet wird, steuert dann den Kippgenerator derart, daß er jeweils bei Erreichung der Sättigung sprunghaft seine Ausgangsspannung u1 umpolt.

Diese Ausgangsspannung ut ist dann ferner zur Gewinnung eines in diesem Falle analogen Ausgangssi- 30 gnals XA für die Meßgröße X einem integrierenden, dem Kippgenerator KG nachgeschalteten Verstärker VIzugeführt.

Die Darstellung der Fig. 3 zeigt eine bevorzugte Ausführungsform eines sättigungsabhängigen Kippgenera- 35 tors, der für die Speisung aus einer dreipoligen Hilfsspannungsquelle mit den Anschlüssen UH+, UH— und Null bzw. Masse ausgelegt ist.

Gebildet ist der Kippgenerator aus zwei mit ihren Emittern verbundenen Transistoren T1, T2 unterschied- 40 lichen Leitungstyps, wobei der Transistor T1 mit seinem Kollektor an der Speisespannung UH+ und der Transistor T2 mit seinem Kollektor an der Speisespannung UH- liegt. Angesteuert werden die zusammengefaßten Basen der Transistoren T1 und T2 vom Ausgang eines 45 Operationsverstärkers V, der über Vorwiderstände Rv beidseitig mit den Anschlüssen der Primärwicklung W1 des Übertragers Wverbunden ist.

Die Emitter der Transistoren T1 und T2 liegen über einen weiteren Vorwiderstand RvO an zwei antiparallel 50 geschalteten Referenzdioden D1, D2 (Zenerdioden) und bilden den die Signalspannung u1 für das nachgeschaltete Meßglied bildenden Ausgang, der gleichzeitig der den Strom is führende Steuerausgang (über den Begrenzungswiderstand Rb) für die Primärwicklung des Überstragers Wist.

Je nach dem Änderungsverhalten der an seinen Eingängen anliegenden, ein Maß für die Sättigung des Übertragers W darstellenden Spannung us ändert der Verstärker V seinen Ausgang von hoch auf nieder und 60 umgekehrt und legt daher über die abwechselnd leitend geschalteten Transistoren T1 und T2 entweder die positive Hilfsspannung UH+ über den Schalttransistor T1 bzw. die negative Hilfsspannung UH— über den durchgeschalteten Transistor T2 auf den Anschlußpunkt der 65 antiparallelen Referenzdioden D1, D2, so daß sich an diesen Dioden D1, D2 die für beide Polaritäten gegen Masse amplitudenstabilisierte Spannung u1 ergibt, wel-

che über den Begrenzungswiderstand Rb an die Wicklung W1 angeschlossen ist und den Erregerstrom is für den Übertrager liefert und andererseits in Form des durch das Sättigungsverhalten des Kerns jeweils pulsdauer-modulierten Signals die zeitverschlüsselte Information für den in der Sekundärwicklung W2 des Übertragers Wfließenden Meßgleichstroms 12.

Entsprechend den Kurvenverläufen der Fig. 4 läßt sich bei a) erkennen, daß die Steuerspannung us für den Verstärker V gegenüber der klaren Rechteckform der Kippgenerator-Ausgangsspannung uß dann abnimmt, praktisch auf Null abfällt, wenn der weichmagnetische Kern K des Übertragers W durch den Strom is in den Sättigungsbereich magnetisiert worden ist. Es reicht dann die Spannung us nicht mehr aus, um über den Verstärker V den durch den Begrenzungswiderstand Rb begrenzten Erregerstrom is mit dieser Polarität zu liefern, so daß die Schaltung jeweils in den komplementären Zustand umkippt.

Andererseits ergibt sich durch die Vormagnetisierung des Kerns K mit dem Meßgleichstrom 12 in der Sekundärwicklung W2 der Sättigungszustand des Kerns in der gleichsinnigen Erregerphase infolge Addition der Magnetflüsse früher, bei gegensinniger Erregung wird der Sättigungszustand infolge Substraktion dann entsprechend später erreicht. Dies ist der Grund dafür, daß sich eine dem Meßgleichstrom 12 proportionale Änderung des Tastverhältnisses, also der Abstände der Nulldurchgänge der Rechteckausgangsspannung u1 des Kippgenerators KG ergibt, mit anderen Worten, wie bei b) in Fig. 4 gezeigt, werden die Halbwellen-Schwingungsdauern 11 und 12 der Rechteckausgangsimpulsfolge ungleich. In der Darstellung der Fig. 4 erkennt man auch den erhebliche Spitzen aufweisenden Erregerstrom is.

Die als Tast- oder Taktverhältnis der Ausgangsrechteckspannung u1 gewonnene Information bezüglich der Meßgröße X kann dann so verarbeitet werden, daß aufgrund der stabilen Amplitude der Spannung u1 deren zeitlicher Mittelwert dadurch unmittelbar als Maß für den Meßgleichstrom /2 ausgewertet wird, daß der als Integrator beschaltete Operationsverstärker V1 mit hochohmigem Eingang je nach der überwiegenden Polarität des dem ansteuernden Signals ein zeitflächenproportionales analoges Ausgangsgleichstromsignal XA bildet, wobei durch eine über den Widerstand R1 dem negierenden Eingang zugeführte Vorspannung der Einfluß des konstanten Grundanteils 10 des Meßgleichstroms 12 kompensiert wird und daher die Ausgangsspannungsverstärker ein auf Null bezogenes Signal liefern kann; oder daß

die Zeitintervalle 11 und 2 zwischen den steilen Flanken der Spannung u1 in bekannter Weise durch Zählen hochfrequenter Impulse digital erfaßt und die unterschiedlichen Abstände numerisch berechnet und in die Ausgangsinformation umgesetzt werden. Es ist daher auch möglich, ohne den Umweg über ein Analogsignal direkt einen Digitalwert für die Eingangsmeßgröße Xzu bilden.

Bei der bisher erläuterten Ausführungsform mit Einweggleichrichtung der in der Sekundärwicklung W2 induzierten (transformierten) Spannung U2 durch die Gleichrichterdiode G ergibt sich im wesentlichen eine meßgrößenabhängige Zeitdauerbeeinflussung nur in der für die Gleichrichterdiode Cleitenden Halbperiode. So fließt zwar, durch die Gleichrichtung und Siebung bewirkt, der Meßgleichstrom 12 in beiden Halbperioden; durch die Sekundärwicklung W2 fließt jedoch in der einen Halbperiode 2, in welcher der Gleichrichter

sperrt, kein Sekundärstrom 2.

Dabei ist der in der leitenden Halbperiode vom Sekundärstrom 2 im Magnetkern erzeugte Fluß und der vom Primärstrom is erzeugte Fluß durch entsprechende Anordnung der Wicklungen gegeneinandergerichtet, so daß, je größer der vom Meßgleichstrom 12 (der wieder von dem normierten, meßgrößenproportionalen Änderungsstrom Ix abhängt) abhängige Sekundärstrom I2 ist, umso später wird der Sättigungszustand des Kerns erreicht. Dies äußerst sich in einer zeitlichen Zunahme in 10 der leitenden Halbperiode entsprechend dem Zeitintervall ti der Fig. 4 bei b). Dabei ist in einem Bereich mäßiger Aussteuerung der Zeitzuwachs von t1 proportional zum Sekundärstrom 2 und damit letztlich zur Meßgrö-Be X. Da in der durch den Gleichrichter gesperrten 15 Halbperiode 2 der Sekundärstrom 2 nicht fließen kann, ist die zeitliche Dauer dieser gesperrten Halbperiode nahezu konstant und bestimmt sich aus den Verhältnissen am Kippgenerator und den sonstigen Gegebenheiten. Die Frquenz des Kippgenerators liegt dabei in der 20 Größenordnung 5 bis 10 kHz.

Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination

miteinander erfindungswesentlich sein.

30

35

40

45

50

55

60

Nummer: Int. Cl.⁴:

Anmeldetag: Offenlegungstag: 35 40 988 G 01 R 1/20

19. November 1985

21. Mai 1987

Abstract

DE3540988-A

Measurement conversion circuit with voltage isolation combines converter supply voltage isolation, measurement signal formation and transfer in single element

A measurement signal (X) is fed to the secondary coil (W2) of a transformer (W) with a weakly magnetic core whose primary coil (W1) is connected to a voltage supply whose polarity is controlled according to the magnetic saturation state. The power supply to the measurement convertor which produces the measurement signal and the measurement signal itself are simultaneously transferred in opposite directions by a transformer acting as a voltage isolation. The transformer is part of a supply isolation transducer (ST) connected to the measurement convertor via a two-wire connection.; Esp. for two-wire measurement converter with a current measurement transducer with a superimposed control signal. High transformation accuracy is ensured.