Det matematisk-naturvitenskaplige fakultet Universitetet i Bergen Eksamen i MNF130 DISKRETE STRUKTURER

18.mai 2017 9-12.

Skriv kandidatnummeret på hvert ark og besvar alle oppgavene på den angitte plassen. Ingen hjelpemidler er tillatt. Oppgavesettet har 10 sider med en oppgave på hver side.

Oppgave 1. Funksjonen f er gitt ved

$$f(n) = \lfloor \frac{2n-1}{3} \rfloor$$

der |x| er største heltall mindre eller lik x for reelle tall x (runde ned).

a) Fyll ut tabellen

	n = -1	n = 0	n = 1	n=2	n=3	n=4	n = 5	n = 6
f(n)								

b) La A betegne domenet (definisjonsmengden) $A \subseteq \mathbb{Z}$ og B være kodomenet (verdimengden) $B \subseteq \mathbb{Z}$ til funksjonen $f: A \mapsto B$. For forskjellige A og B avgjør om f er surjektiv eller injektiv. For hvert utsagn i tabellen, skriv Sant (True) hvis utsagnet er sant og Usant (False) hvis utsagnet er usant. Her får du -1 poeng for feil svar, 0 poeng for blankt svar og 1 poeng for riktig svar.

A	В	f er surjektiv	f er injektiv
{1,3,4,6}	{0,1,2,3}		
{1,2,3,4}	{0,1,2}		
{-1,0,1}	$\{-1,0,1\}$		
{3,4,5}	{0,1,2,3}		

Oppgave 2. Fibonacci tallene f_0, f_1, f_2, \ldots er gitt ved $f_0 = 0, f_1 = 1,$ og

$$f_n = f_{n-1} + f_{n-2} \text{ for } n \ge 2.$$

I oppgaven skal det vises at 3 deler $f_0, f_4, f_8 \dots$, det vil si at $f_{4j} \mod 3 = 0$ for $j \ge 0$.

a) Fyll ut tabellen

	n = 0	n=1	n=2	n = 3	n=4	n = 5	n=6	n=7	n = 8
$\int f_n$	0	1							
$f_n \bmod 3$									

- b) Hva er basissteget?
- c) Hva er induksjonshypotesen?

 $\mathbf{d})$ Vis induksjonssteget.

Kandidatnummer:

Oppgave 3. La diskursuniverset være alle heltall $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$. La P(x, y) være x + 2y = xy. I tabellen under gi sannhetsverdien til hvert uttrykk ved å skrive True eller False. Her får du -1 poeng for feil svar, 0 poeng for blankt svar og 1 poeng for riktig svar.

Logisk uttrykk	Sannhetsverdi
P(1,-1)	
P(0,0)	
$\exists y P(3,y)$	
$\forall x \exists y \ P(x,y)$	
$\exists x \forall y \ P(x,y)$	
$\forall y \exists x \ P(x,y)$	
$\exists y \forall x \ P(x,y)$	
$\neg \forall x \exists y \neg P(x,y)$	
$\exists x \exists y (P(x,0) \land P(1,y))$	
$\exists x \exists y \neg (P(x,y) \to P(1,1))$	

Oppgave 4. Følgen a_0, a_1, a_2, \ldots er gitt ved $a_0 = 2, a_1 = 4$ og

$$a_n = 4a_{n-1} - 3a_{n-2}$$
 for $n \ge 2$.

I oppgaven skal det vises at $a_n = 3^n + 1$ for $n \ge 0$.

a) Fyll ut tabellen

	n = 0	n = 1	n=2	n=3	n=4
a_n	2	4			
$3^n + 1$					

- b) Hva er basissteget?
- c) Hva er induksjonshypotesen?

d) Vis induksjonssteget.

Kandidatnummer:	
-----------------	--

Oppgave 5. Fyll ut tabellen

	Spørsmål	Svar
1	Hvor mange bitstrenger med 8 bit har 000 som de tre første bit?	
2	Hvor mange bitstrenger med 8 bit har 11 som de to første bit og 00 som to siste bit?	
3	Hvor mange bitstrenger med 8 bit har nøyaktig 4 bit som er 1?	
4	Hvor mange bitstrenger med 8 bit har 00 som de første bit eller 00 som de to siste bit?	
5	Hva er desimal representasjonen av bitstrengen 10010101 (med 8 bit)?	
6	La A og B være mengder hvor $ A = 4$ og $ B = 10$. Hvor mange funksjoner $f: A \mapsto B$ finnes?	
7	La A og B være mengder hvor $ A = 4$ og $ B = 10$. Hvor mange injektive funksjoner $f: A \mapsto B$ finnes?	
8	La A og B være mengder hvor $ A = 4$ og $ B = 10$. Hvor mange surjektive funksjoner $f: A \mapsto B$ finnes?	
9	Hva er lcm(34,21)?	
10	Hva er gcd(34,21)?	

Oppgave 6. a) Fyll ut sannhetsverditabellen for de forskjellige logiske uttrykkene. (T=True og F=False)

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \lor (q \to r)$	$p \wedge q$	$(p \land q) \to r$
Т	Т	Т					
Т	Т	F					
Т	F	Т					
Т	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					

Bruk sannhetsverditabellen til å avgjøre om de to logiske utrykkene $(p \to r) \lor (q \to r)$ og $(p \land q) \to r$ er ekvivalente.

b) Bruk logisk ekvivalente uttrykk til å vise $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$.

Kandidatnummer:	
Nandidathummer.	

Oppgave 7.a) La A være en mengde og $R \subseteq A \times A$ være en binær relasjon. Forklar hva vi mener med en ekvivalensrelasjon og ekvivalensklassen $[a]_R$ der $a \in A$.

b) La R være en binær relasjon over ordnede par av heltall fra $A = \mathbb{Z} \times \mathbb{Z}$. Da er $R \subseteq A \times A$. For $(a,b) \in A$ og $(c,d) \in A$ er relasjonen definert ved

 $((a,b),(c,d)) \in R$ hvis og bare hvis a+d=b+c

Bevis at R er en ekvivalensrelasjon.

c) La R være relasjonen i b). Finn $[(2,4)]_R$.

Oppgave 8. Backus-Naur formen for en grammatikk G er gitt ved

<S> ::= 0<S>| 0 | <S>1

a) Finn grammatikken G=(V,T,S,P) hvor V er vokabularet, T er sluttsymbolene, S er start symbolet og P er produksjonene.

T =	
V =	
P =	

b)For hver streng w avgjør om strengen kan utledes fra startsymbolet $S, S \stackrel{*}{\Rightarrow} w$. Bruk T eller True for sann og F eller False for usann. Her får du -1 poeng for feil svar, 0 poeng for blankt svar og 1 poeng for riktig svar.

w	$w \in L(G)$	w	$w \in L(G)$
00101		0	
1		00011	
1111		0000	

c) Hva er L(G)?

Kandidatnummer:	

Oppgave 9. Gi to bevis for Pascals likhet

$$\left(\begin{array}{c} n+1 \\ k \end{array}\right) = \left(\begin{array}{c} n \\ k-1 \end{array}\right) + \left(\begin{array}{c} n \\ k \end{array}\right) n \geq k \geq 1.$$

a) Et bevis der du først skriver ned definisjonen av binominal koeffisienten og deretter bruker denne.

b) Et kombinatorisk bevis:

Oppgave 10. a) I tabellen under er alle tallene fra 1 til 50. Bruk Eratosthenes sil til å finne alle primtall mellom 1 og 50. Sett en ring rundt primtallene.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

b) Vis at dersom n er et heltall og n har en primtallsfaktorisering (er sammensatt) da har n en primtallsfaktor som er mindre eller lik \sqrt{n} .