Properties of Materials

Theme: Selection

Lecture 6: Materials Index

Dr James Kratz <u>james.kratz@bristol.ac.uk</u> Room 0.65 Queen's Building

1

Typical Design Process

How can the vast range of material data be evaluated to give a designer the greatest freedom to consider alternatives?

➤ Material property charts (often referred to as Ashby plots)

Image: Ashby, Materials selection in Mechanical Design, 5th Ed, 2017.

Intended Learning Objectives

- Create Material Property Charts (Ashby Plots) to select materials for Engineering problems
- Translate a problem into a Materials Index
- Demonstrate how Shape can enhance structural efficiency of materials
- Select materials for wing elements

3

Material Selection

Car data (right side) is screened to meet the constraints. The surviving candidates are ranked to meet the objective.

7

Activity

In groups of 2 or 3, select the best family saloon car.

Audi A4

BMW 3 series

Mercedes C-class

	Possible Attributes to consider.
Functions	Carry certain number occupants. Possessions.
Constraints	Colour. Fuel type. Power. Brand.
Objectives	Lowest monthly payment. Lowest emissions. Longest range.
Free Variables	Colour. Fuel type. Power. Brand.

Translation

What must a thing **do**?

- Bridge must not wobble
- Drive shaft must not break
- Heat sink must cool component

What attributes must it have

- Low deflection under load
- Resist plastic strain/fracture
- High heat transfer

What **properties** must it have?

- High elastic modulus E
- High Strength or Toughness
- High conductivity /heat capacity

Function What must the component do?

Constraints What non-negotiable conditions must be met? (Hard)

What negotiable but desirable conditions? (Soft)

Objectives What is to be maximised or minimised? Free Variable What parameters are we free to change?

9

Free Variables

- Attributes we are able to change
 - Frame length fixed but thickness free

Spoke length fixed but spoke radius free

- We are usually free to choose structural properties such as thickness and crosssectional areas
- Rarely the case that all dimensions are fixed or all free
- If something is fixed (say by a design code) we stop 'caring' about it

Attributes

Constraints

- Minimum attributes of a component
- Pass or fail
- No benefit to exceeding a constraint
 - Just adds cost
 - Reduces performance

Objectives

- Attribute to maximise or minimise
- Continuous scale from bad to good
- Always try to make an objective better
 - Lower price
 - Higher performance

11

Example: Bike frame

 Compare objectives and constraints for a bike intended for a professional vs day-to-day use

Simple analysis: Two attributes – mass and price

<u>Objective</u>: Light as possible <u>Constraint</u>: Even teams have

money limits

Constraint: Not so heavy it

can't be used

Objective: Cheap as possible

Mass = Density x Volume

$$m=
ho AL$$

Material property Dimension

Price = Cost per unit mass x Density x Volume

$$C = C_m \rho AL$$
Material properties

Deflection

$$\delta = \frac{1}{E} \frac{FL}{A}$$
Load and dimension dimension

If we are to make rational choices we ideally want functions to describe objectives and constraints

13

Ranking Materials for Stiffness

If non-property attributes are fixed then ranking is very easy

Coupled Constraints

Combine the objectives and constraints using the free variable (example: cross-section of tie)

Objective - minimise mass

Minimise density and area to minimise mass

$$m = \rho A L$$

Constraint - deflection below a certain value

If we change density (material) we also change E so A needs to change to meet constraint.

Coupled constraints - Eliminate A

$$m \geq (F^*)$$
 (L) $(\frac{\rho}{E})$ Material Properties

Functional Constraint — Geometric Constraint (Tensile Force up to deflection δ)

15

Coupled Material Index

Appear as straight lines on bubble charts

$$M = \frac{E}{\rho}$$

Material Index

(invert Material Properties)

Not pass/fail

Greater distance from line = higher ranking (better material)

Material Indices

 Material indices are the objective functions to be minimised or maximised when conducting material selection (our optimisation problem)

Image from: Ashby M – Materials Selection for Mechanical Design (4th Ed.), Elsevier, 2014

Multi-Property Index

Most material indices take the form

Bubble charts are usually log scale so:

e.g. modulus $M = \frac{P_1^{\alpha}}{P_1}$ e.g. 1, 1/2, 1/3, 2/3 $\log(M) = \alpha \log P_1 + \log P_2$ $\log P_1 = \frac{1}{\alpha} (\log P_2 + \log M)$

e.g. density P_2 Straight line defines ranking line P_2 Straight line defines ranking line P_2 P_3 P_4 P_5 P_6 P_6 P_6 P_7 P_8 P_8

Summary

A **Materials Index** can be developed for an Engineering problem to select the best material

- Identify the objective (quantity to be maximised or minimised), the constraints, and the free variables
- 2. Write an equation for the objective (tie example used mass, m).
- 3. If the objective equation has a free variable, eliminate the free variable (tie example, A was free)
- 4. Create a Materials Index for the combination of material properties to select a material(s) that maximise or minimise the objective (usually mass or cost).

19

Properties of Materials

Theme: Selection

Lecture 7: Material Selection for a Lightweight Wing Spar

Dr James Kratz <u>james.kratz@bristol.ac.uk</u> Room 0.65 Queen's Building

I'm working on a Project

Design and build a set of wings for a blimp

Every kg of mass requires m³ of Helium for buoyancy

Where do you start? → The wings must be light.

21

The Effect of Shape

- Shape also affects the performance of structural elements
- The best material-andshape combination depends on the mode of loading
 - Axial loading
 - Bending
 - Torsion
 - Buckling

Note: Not all shapes are available for a given material (e.g. need to consider process)

25

The Effect of Shape

- · Let us describe the effect of shape for bending
- The bending stiffness S is the flexural modulus: S = EI
- Where $I = \int y^2 dA$
- So we can get the same bending stiffness using different crosssection shapes:

Shape Factor

- The shape factor ϕ is defined as: $\phi = \frac{S}{S_0}$ Where S_0 is the stiffness for a reference shape in this
- case the solid square cross-section

Material-Shape Co-Selection

- The shape factor can be combined with material properties in co-selection
- Example: lightweight wing spar $M = \frac{E^{1/2}}{\rho}$
- Accounting for shape: $M = \frac{(\phi E)^{1/2}}{\rho}$
- To generate bubble charts we need to modify the axes: $E^* = \frac{E}{\phi}$ $\rho^* = \frac{\rho}{\phi}$

Upper Limits for Shape Factors

- Difficulty making thin-walled tubes or I-sections
- Local buckling of very thin structures
- Loading mode influences shape factor

Note: Steel higher shape factor than aluminium in bending. Opposite is true in torsion.

33

Summary

- The best choice of material often depends of which shapes it can be formed
- Shape factors describe the efficiency of materials in each loading mode
 - Materials performing better in Bending might not be the best option in Torsion (steel vs. aluminium)
 - Some shapes will also perform better in Bending than in Torsion (I-beam vs. hollow tube)

