Reg. No		

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

Second Semester

21EEC101J - ELECTRIC CIRCUITS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

	e: 3 Hours	iswer booklet.	Max.	Mark	s: 75
	PART - A (20 × 1 = 2 Answer all Ques		Mark	s BL	CO
1.	The currents of 10 A and 5 A are entering 3A and I A of currents are leaving the node (A) 18 A (C) 12 A		1	2	1
2.	The nodal method of circuit analysis is base (A) KVL and Ohm's law (C) KVL and KCL	ed on (B) KCL and Ohm's law (D) KVL, KCL and Ohm's law	1	1	1
3.	A practical voltage source consists of (A) an ideal voltage source in series with an internal resistance (C) an ideal current source in series with an internal resistance	(B) an ideal voltage source in parallel with an internal resistance(D) an ideal current source in parallel with an internal resistance	1	1	Proof.
4.	The power dissipation in each of three parpower dissipation of the circuit? (A) 0.33 W (C) 3 W	rallel branches is 1 W. What is the total (B) 4 W (D) 5 W	1	1	1
5.	In a two terminal passive element the voltary $v(t) = 0.8 \cos (\omega t - 600) V$ and $i(t) = 4 \cos ($		1	2	2
6.	With ω = 100 rad./sec., the impedance of the (A) j 0.001 Ω (C) j 1000 Ω	e 10 μF capacitor is (B) - j 0.001 Ω (D) - j 1000 Ω	1	3	2
7.	A series RLC circuit has $R = 10 \Omega$, $X_L = 20 \Omega$ circuit is (A) $(10 + j 50) \Omega$ (C) $(10 + j 10) \Omega$	Ω and X_C = 30 Ω . The impedance of the (B) (10 - j 10) Ω (D) (10 - j 50) Ω	1	3	2
8.	In a RLC series circuit connected to variab is less than the resonance frequency (A) X _C > X _L and the power factor is lagging (C) X _L > X _C and the power factor is lagging	 le frequency supply, when the frequency (B) X_C > X_L and the power factor is leading (D) X_L > X_C and the power factor is leading 	1	2	2

9.	Thevenin's equivalent circuit consists of (A) voltage source in series with an impedance.	(B) voltage source in parallel with an impedance.	1	1	3
	(C) current source in series with an impedance.	(D) current source in parallel with an impedance			
10.	Superposition theorem is valid only for (A) non-linear circuits (C) linear circuits	(B) both linear and non-linear circuits (D) coplanar circuits	1	1	3
11.	The dual pair of capacitance is(A) capacitance (C) resistance	(B) inductance (D) current source	1	1	3
12.	Which one of the following theorems is a of energy? (A) Compensation theorem (C) Thevenin's theorem	manifestation of the law of Conservation (B) millman's theorem (D) Tellegan's theorem	1	1	3
13.	Time constant of an RC circuit with R = 20 (A) 12.5 μ s (C) 0.08 s	Ω and $C = 250 μF$ is (B) 0.125 s (D) 5ms	1	3	4
14.	In an RL circuit with time constant 2 s, in value of zero to the final value of 1.5 A. In (A) iL(t) = 1.5 (1- eA -2 t) A (C) iL(t) = 1.5 eA - 0.5 t A		1	3	4
15.	A capacitor of 0.2 F has zero initial charge. (A) $0.2 / s$ (C) $5s$	Its transform impedance is (B) 0.2 s (D) 5/s	1	2	4
16.	Transient behavior occurs in any circuit who (A) the applied voltage is constant (C) circuit is connected or disconnected from the load	en (B) the source voltage is open (D) the output voltage is varying	1	1	4
17.	. Real power consumed by a balanced three-phase load can be computed as (A) $P = \sqrt{3} E_{\xi} I_{\xi} \cos \theta$ (B) $P = E_{\xi} I_{\xi} \cos \theta$ (C) $P = \sqrt{3} E_{ph} I_{ph} \cos \theta$ (D) $P = 3 E_{\xi} I_{\xi} \cos \theta$		1	1	5
18.	With three-phase balanced supply voltage h (A) Voltage V_{AB} leads voltage V_{A} by 60°	aving a phase sequence of ABC (B) Voltage V _{AB} lags voltage V _A by 60°	1	2	5
	(C) Voltage V_{AB} lags voltage V_{A} by 30°	(D) Voltage V_{AB} leads voltage V_{A} by 30°			
19.	The inverse hybrid parameter g ₁₁ is (A) impedance (C) voltage ratio	(B) admittance (D) current ratio	1	1	5
20.	The transmission parameter B is (A) impedance (C) voltage ratio	(B) admittance (D) current ratio	1	1	5
PART - B (5 × 8 = 40 Marks) Answer all Questions					CO

21. (a) Using mesh analysis, find the current supplied by the voltage source from the given circuit.

(b) Using the nodal analysis, find the current in 10Ω resistor.

22. (a) The circuit voltage and the circuit current in a passive linear circuit are v(t) = 75 cos (10t + 20°) V and i(t) = 20 sin (10t + 60°). Find the instantaneous power and the average power.

8 3

3

1

(OR)

- (b) For an RLC series circuit supplied with 220V, 50 Hz ac supply, $R=40~\Omega$, L=0.2~H, $C=20~\mu F$, calculate the impedance of the circuit, the power factor of the circuit, and the voltages across each of the three elements in the circuit.
- 23. (a) Calculate the current through the 1 Ω resistor in the given circuit.

8 3

3

(b) Determine the Thevenin's equivalent circuit across a-b in the given circuit.

24. (a) A capacitor in an RC circuit with $R=30~\Omega$ and $C=60~\mu F$ is being charged with initial zero voltage. What is the time taken for the capacitor voltage to reach 20 % of its steady state value?

8 4 4

(OR)

- (b) In a RL circuit with time constant of 2 s, inductor current increases from the initial value of zero to the final value of 2 A.
 - (i) Calculate the inductor current at time 0.3 s, 0.5 s and 2 s.
 - (ii) Find the time at which the inductor current reaches 0.2 A, 0.4 A and 0.8 A.

- 25. (a) Explain the measurement of three phase real power in a star connected load using two wattmeter method. Derive and obtain the equation for total power consumed by the load.
- 8 4 4

(OR)

(b) Determine the h parameters for the circuit shown below.

PART - C (1 × 15 = 15 Marks) Answer any 1 Questions

Marks BL CO

26. Determine the voltages at the nodes in the circuit given below.

15 4 1

27. Determine the Y parameters for the given circuit.

15 4 5

