

Introduction to Computer Graphics with WebGL

Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico

Programming with WebGL Part 1: Background

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Development of the OpenGL API
- OpenGL Architecture
 - OpenGL as a state machine
 - OpenGL as a data flow machine
- Functions
 - Types
 - Formats
- Simple program

Early History of APIs

- IFIPS (1973) formed two committees to come up with a standard graphics API
 - Graphical Kernel System (GKS)
 - 2D but contained good workstation model
 - Core
 - Both 2D and 3D
 - GKS adopted as IS0 and later ANSI standard (1980s)
- GKS not easily extended to 3D (GKS-3D)
 - Far behind hardware development

PHIGS and X

- Programmers <u>Hi</u>erarchical <u>G</u>raphics <u>System (PHIGS)</u>
 - Arose from CAD community
 - Database model with retained graphics (structures)
- X Window System
 - DEC/MIT effort
 - Client-server architecture with graphics
- PEX combined the two
 - Not easy to use (all the defects of each)

SGI and GL

- Silicon Graphics (SGI) revolutionized the graphics workstation by implementing the pipeline in hardware (1982)
- To access the system, application programmers used a library called GL
- With GL, it was relatively simple to program three dimensional interactive applications

OpenGL

The success of GL lead to OpenGL (1992), a platform-independent API that was

- Easy to use
- Close enough to the hardware to get excellent performance
- Focus on rendering
- Omitted windowing and input to avoid window system dependencies

OpenGL Evolution

- Originally controlled by an Architectural Review Board (ARB)
 - Members included SGI, Microsoft, Nvidia, HP, 3DLabs, IBM,.....
 - Now Kronos Group
 - Was relatively stable (through version 2.5)
 - Backward compatible
 - Evolution reflected new hardware capabilities
 - 3D texture mapping and texture objects
 - Vertex and fragment programs
 - Allows platform specific features through extensions

Modern OpenGL

- Performance is achieved by using GPU rather than CPU
- Control GPU through programs called shaders
- Application's job is to send data to GPU
- GPU does all rendering

Immediate Mode Graphics

Geometry specified by vertices

- Locations in space (2 or 3 dimensional)
- Points, lines, circles, polygons, curves, surfaces

Immediate mode

- Each time a vertex is specified in application, its location is sent to the GPU
- Old style uses glVertex
- Creates bottleneck between CPU and GPU
- Removed from OpenGL 3.1 and OpenGL ES 2.0

Retained Mode Graphics

- Put all vertex attribute data in array
- Send array to GPU to be rendered immediately
- Almost OK but problem is we would have to send array over each time we need another render of it
- Better to send array over and store on GPU for multiple renderings

OpenGL 3.1

- Totally shader-based
 - No default shaders
 - Each application must provide both a vertex and a fragment shader
- No immediate mode
- Few state variables
- Most 2.5 functions deprecated
- Backward compatibility not required
 - Exists a compatibility extension

Other Versions

OpenGL ES

- Embedded systems
- Version 1.0 simplified OpenGL 2.1
- Version 2.0 simplified OpenGL 3.1
 - Shader based

WebGL

- Javascript implementation of ES 2.0
- Supported on newer browsers
- OpenGL 4.1, 4.2,
 - Add geometry, tessellation, compute shaders