Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs

Wen-Yi Hsiao¹, Jen-Yu Liu¹, Yin-Cheng Yeh¹, Yi-Hsuan Yang^{1,2}

¹Taiwan Al Labs, Taipei, Taiwan ²Academia Sinica, Taipei, Taiwan

Motivation

- Transformer as a strong music generation model
 - Pop music
 - mean: 6432 tokens
 - **max >= 10K** tokens
 - memory complexity
 - \blacksquare vanilla transformer: $O(N^2)$
- Crop one song into segments
- Can we generate a music piece of full-song length?

Motivation

- Reduce the length of the token sequence
 - Novel compact representation of music
 - Compound Word (**CP**)

- Lower Memory Complexity
 - Advanced transformer
 - transformer-XL
 - linear transformer

Overview

- Representation: From MIDI to CP
- Model
- Experiments
 - Tasks
 - Unonditional Generation
 - Conditional Generation
 - Evaluation
 - Quantitative Evaluation
 - Qualitative Evaluation

Representation: MIDI

<note_on, note=60, velocity=94, time=0.0 sec>
<note_on, note=60, velocity=0, time=1.253 sec>
<note_on, note=64, velocity=94, time=1.253 sec>
<note_on, note=64, velocity=0, time=1.879 sec>
<note_on, note=67, velocity=94, time=1.879 sec>
<note_on, note=67, velocity=94, time=2.506 sec>

Sequence Length: 18 9 (notes) x 2 (note on/off) pitch: 60, velocity:94, time: 1.20,

Sequence Length: 54
9 (notes) x 2 (note on/off) x 3 (attributes)

Representation: MIDI

- Problem
 - 1 note, 2 seperated events
 - absolute timing (second)

- Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions (Yu-Siang Huang, Yi-Hsuan Yang)
 - REMI representation
 - note off -> dutation
 - absolute timing -> symbolic timing (beat)

Representation: REMI

<note_on, note=67, duraiton=2, velocity=94, time=6 tick>

duration

```
<note_on, note=60, velocity=94, time=0.0 sec>
<note on, note=60, velocity=0, time=1.253 sec>
<note_on, note=64, velocity=94, time=1.253 sec>
                                                                    Sequence Length: 54
<note_on, note=64, velocity=0, time=1.879 sec>
                                                           9 (notes) x 2 (note on/off) x 3 (attributes)
<note on, note=67, velocity=94, time=1.879 sec>
<note on, note=67, velocity=0, time=2.506 sec>
• • •
<note_on, note=60, duraiton=4, velocity=94, time=0 tick>
                                                                    Sequence Length: 36
<note_on, note=64, duraiton=2, velocity=94, time=4 tick>
                                                                   9 (notes) x 4 (attributes)
```

Representation: REMI

<note_on, note=60, duraiton=4 tick, velocity=94, time=0 tick>

Symbolic Timing System

Representation: REMI


```
<br/>
<bar>
<tempo, bpm=85, tme=0 tick>
<note_on, note=60, duraiton=4, velocity=94, time=0 tick>
<tempo, bpm=85, tme=4 tick>
<note_on, note=64, duraiton=2, velocity=94, time=4 tick>
<note_on, note=67, duraiton=2, velocity=94, time=6 tick>
...
<bar>
<br/>
<br
```

Sequence Length: 54

9 (notes) x 4 (attributes) + 8 (tempos) x 2 (attributes) + 2 (bars)

..

Representation: REMI v2

Remove duplicated tokens

```
<bar>
<tempo, bpm=85, tme=0 tick>
<note_on, note=60, duraiton=4, velocity=94, time=0 tick>
<tempo, bpm=88, tme=4 tick>
• • •
                                                     Velocity 94
                                             Duration 4
                 bpm 85
                                                                     bpm 85
                                     Note 60
         Tick 0
                                                              Tick 4
 Bar
                            Tick 0
```

Remove

Sequence Length: 50

9 (notes) x 4 (attributes) + 8 (tempos) x 2 (attributes) + 2 (bars) -4 (duplicated events)

Representation: Compound Word (CP)

- E events, A attributes for each,
 - O(EA) steps in total
- grouping
- multi-headed ouptut layer

Sequence Length: 30

9 (notes) + 8 (tempos) + 2 (bars) + 11 (tick positions)

Representation: CP

expansion

	head 1	head 2	head 3	head 4	head 5	head 6
step 1	Bar					
step 2		Tick 0				
step 3			Bpm 85			
step 4				Duration 4	Note 60	Velocity 94

Representation: Recap

- From MIDI to CP
 - Symbolize timing
 - Reduce about half sequence length

 The reduction in sequence length would be even greater when we add more attributes per events (e.g. chord)

Model: Multi-headed Ouput

Model: Multi-headed Ouput

$$\begin{aligned} \mathbf{h}_t &= \mathrm{Self\text{-}attn}\left(\vec{\mathbf{x}}_{t-1}\right)\,, \\ \widehat{f}_t &= \mathrm{Sample}_{\mathcal{F}}\left(\mathrm{softmax}(\mathbf{W}_{\mathcal{F}}\mathbf{h}_t)\right)\,, \\ \mathbf{h}_t^{\mathrm{out}} &= \mathbf{W}_{\mathrm{out}}\left[\mathbf{h}_t \oplus \mathrm{Embedding}_{\mathcal{F}}(\widehat{f}_t)\right], \\ \widehat{w_{t,k}} &= \mathrm{Sample}_k\left(\mathrm{softmax}(\mathbf{W}_k\mathbf{h}_t^{\mathrm{out}})\right)\,,\,\,k = 1,...,K\,, \end{aligned}$$

- Training: teacher forcing
- Inference: stochastic sampling

Model: Adaptive Embedding

- Difficulty of learning
 - Hard: velocity
 - Easy: bar & beat

Model: Adaptive Sampling

- Inference Stage
 - temperature t
 - o top-k
 - top-p (nucleus)

Model: Compound Word Transformer

- Compound Word Transformer (CP Transformer)
 - Compound Word Representation
 - Adaptive Embedding
 - Multi-Headed Ouput Module
 - Two-stage Prediction
 - Adaptive Sampling (Inference Time)

Dataset

- Corpus
 - 17K pop piano music dataset
- Tasks
 - Unconditional Generation
 - Conditional Generateion:
 - lead sheet to performance

Audio Clip

- Transcription: Onset and Frames
- Synchronization: madmom
- Quantization
- Analysis
 - Melody Extraction
 - Symbolic Chord Recognition

MIDI File

Task1: Unconditional Generation

- Beat Sychronized Feature
 - Chord
 - Tempo
- New type token: End of sequence <EOS>

Task2: Conditional Generation

- lead sheet to performance
- New type token: track (T)
 - Lead Sheet track (LS)
 - Piano track (P)
- Encoder-free prefix LM (from google's "T5")

Given

Autoregressive

generation

Experiments

• Sequence Length

Task	Repre.)	
lask	ксргс.	mean (\pm std)	max
Conditional	REMI	$6,432 (\pm 1,689)$	10,240
Conditional	CP	$3,142 (\pm 821)$	5,120
Unconditional	REMI	$4,873 (\pm 1,311)$	7,680
Unconditional	CP	$2,053 (\pm 580)$	3,584

- Backbone Models
 - Transformer-XL: recurrence
 - Linear Transformer: kernelization

Quantitative Evaluation

- Single GPU (2080ti, 11GB)
- Training & Inference Time

Task	Representation + model@loss	Training	GPU Inference (/song)		e (/song)
Task	Representation + moder@ioss	time	memory	time (sec)	tokens (#)
	Training data	i —	-	_	_
	Training data (randomized)	-	_		L
Conditional	REMI + XL@0.44	3 days	4 GB	88.4	4,782
Conditional	REMI + XL@0.27	7 days	4 GB	91.5	4,890
	REMI + linear@0.50	3 days	17 GB	48.9	4,327
	CP + linear@0.27	0.6 days	10 GB	29.2	18,200
Unconditional	REMI + XL@0.50	3 days	4 GB	139.9	7,680
Unconditional	CP + linear@0.25	1.3 days	9.5 GB	19.8	9,546

Quantitative Evaluation

- Metrics for conditional generation
 - Melody matchness
 - Bar-wise Longest Common Sub-sequence (LCS) Matchness

$$Matchness_{Melody} = \frac{|LCS(Seq_{Melody}, Seq_{Piano})|}{|Seq_{Melody}|}$$

- Chord matchness
 - Segmentwise Cosine Similarity of chormagramss

Quantitative Evaluation

	melody Matchness	chord Matchness
Training data	0.755	0.838
Training data (randomized)	0.049	0.239
REMI + XL@0.44	0.872	0.785
REMI + XL@0.27	0.866	0.800
REMI + linear@0.50	0.779	0.709
CP + linear@0.27	0.829	0.733

User Study

Repre. + model@loss	F	R	H	C	0
REMI + XL@0.44	4.05	3.12	3.38	3.55	3.31
REMI + XL@0.27	4.29	3.14	3.70	3.64	3.35
REMI + linear@ 0.50	4.03	3.09	3.48	3.46	3.29
CP + linear@0.27	4.09	3.13	3.50	3.31	3.08

(a) Conditional generation

Repre. + model@loss	R	Н	S	О
REMI + XL@0.50	3.11	3.46	2.91	3.03
CP + linear@0.22	3.33	3.68	3.11	3.34

(b) Unconditional generation

Table 5: Result of subjective evaluation (Fidelity, Richness, Humanness, Correctness, Structureness, Overall).

Summary

- Long sequence modeling
 - memory-efficient transformer
 - compact representation
- Compound Word Transformer
- Faster in training and inference, with comparable performance

Summary

- Full Song Generation?
 - EOS token generaion
 - transformer-XL

linear transformer

- Structural Pattern? (like AABA forms)
 - still No

Demo

- Sound Cloud
 - https://soundcloud.com/yating_ai/sets/compound-word-transformer-demo

- Github
 - https://github.com/YatingMusic/compound-word-transformer