BASIC DATA ANALYTICS TECHNIQUES

LEARNING OBJECTIVES

- Understand the origin and function of business intelligence.
- Understand and be able to apply a selection of fundamental data analysis concepts and techniques.
- Exposure to a simple but comprehensive data analysis pipeline process from data collection to data presentation, in preparation for carrying out a similar process in the upcoming lab.

OUTLINE

- **Background and Process**
- Insight via Number Crunching: Some Core Concepts
- Insight via Number Crunching: Some Core Techniques
- Worked Example: The Chinook Database
- Next Week: A Different Context

INTRODUCTION AND REVIEW

BASIC DATA ANALYTICS TECHNIQUES

WHAT WE'VE COVERED SO FAR...

- Data modeling and conceptual analysis
- Data collection
- Data transformation
- Data storage
- Data exploration
- Data presentation

WHAT WE'VE COVERED SO FAR...

- Data modeling and conceptual analysis
- Data collection
- Data transformation
- Data storage
- Data exploration
- Data presentation

Today:

Putting it all together in the context of business intelligence and data analysis for business intelligence.

BACKGROUND AND PROCESS

BASIC DATA ANALYTICS TECHNIQUES

BUSINESS INTELLIGENCE – BUSINESS ANALYTICS

Use data (and information) about <u>internal operations</u> and <u>the state of the market</u> to support informed decision making about business operations and business strategy.

No firmly agreed upon definition of these terms – is one a subset of the other?

Goals: increased situational awareness + improved foresight

HISTORY OF BUSINESS INTELLIGENCE

Late 1800s: people started to recognize that they could use data to gain a competitive advantage

1950s: advent of the first business database for decision support

1980s -1990s: computers and data becoming increasingly available data warehouses, data mining – still very technical and specialized

2000s: trying to take business analytics out of the hands of data miners and other specialists and more into the hands of domain experts

Now: big data and specialized techniques have arrived on the scene, but so has data visualization, dashboards, software as a service

1865

1950s

1980-90s

2000S

2019

BUSINESS INTELLIGENCE AND DATA SCIENCE

Historically, one of the streams contributing to modern day Data Science

- System of interest: the commercial realm the market in which you are involved
- Sources of data: transaction data, financial data, sales data, organizational data
- Goals: provide awareness of competitors, consumers and internal activity and use this to support decision making
- **Culture and preferred techniques**: datamarts, key performance indicators, consumer behaviour, slicing and dicing, business 'facts'

The ultimate goal is still the same - insight into your system of interest.

BUSINESS INTELLIGENCE AND THE DATA PIPELINE

Our general data pipeline model also works for business intelligence.

What are some aspects of the business intelligence pipeline that might distinguish it from a more generic analysis pipeline?

INSIGHT VIA # CRUNCHING: CORE CONCEPTS

BASIC DATA ANALYTICS TECHNIQUES

FINDING PATTERNS, GENERALIZATIONS AND STRUCTURE

- Pattern: A predictable, repeating regularity
- **Structure**: An organization of elements in a system
- **Generalization**: Creation of more general or abstract concepts from more specific concepts or instances

Underlying goal during analysis - find patterns or structure in our data, draw conclusions via these patterns or structures.

Finding patterns and structure is not bad or wrong, per se, it's how you use these discoveries - the conclusions that you draw - that is important.

INDEPENDENT VS DEPENDENT VARIABLES

In an experimental setting:

- Control/Extraneous Variables: We do our best to keep these controlled and unchanging while other variables are changed
- **Independent**: We control the values of the variable. We suspect that they influence the dependent variables.
- **Dependent**: We don't control the values they are generated in some way during the experiment, and presumably are dependent on everything

How do these translate over to other datasets?

TYPES OF DATA

Numerical Data: integers or continuous numbers

1, 7, 34.654, 0.000004

Text Data: strings of text – may be restricted to a certain number of characters

"Welcome to the park", "AAAAA", "345", "45.678"

Categorical Data: a fixed number of values, may be numeric or represented by strings. There is no specific or inherent ordering

('red','blue','green'),('1','2','3')

Ordinal Data: Categorical data with an inherent ordering. Unlike integer data, the spacing between values is **not** defined

(very cold, cold, tepid, warm, super hot)

TURNING CATEGORICAL DATA INTO NUMERICAL (COUNT) DATA

We can useful turn categorical data into numeric data by generating frequency counts of the different values of the categorical variable.

This in turn allows us to apply numerical analysis techniques.

House Colour	Frequency	
red	40	
blue	13	
green	2	

THE SPECIAL ROLE OF CATEGORICAL DATA

Categorical data play a special role:

- In data science, we talk about a categorical variable with a pre-defined set of values
- In experimental science, a factor is an independent variable with the levels of the variable defined - it may also be viewed as a category of treatment
- In business analytics, people talk about dimensions (with members) vs measures

However we label these types of variables, we can use these them to subset our data, or roll up/summarize our data.

HIERARCHICAL / NESTED / MULTILEVEL DATA / MODELS

If a categorical variable has multiple levels of abstraction, we can create levels out of this variable.

We can view these levels as new categorical variables, in a sense.

The 'new' categorical variable has a pre-defined relationship with the more detailed level.

This is common with time and space variables – we can 'zoom' in or out.

This lets us talk about the **granularity** of the data – what is the 'maximum zoom'?

Year	Quarter	Count
2012	1	34
2012	2	12
2012	3	52
2012	4	0
2013	1	21
2013	2	9
2013	3	112
2103	4	8

INSIGHTS VIA # CRUNCHING: CORE TECHNIQUES

BASIC DATA ANALYTICS TECHNIQUES

DATA SUMMARIZING

Min: Smallest value of variable

Max: Largest value of variable

Median: Middle value of variable

Mode: Most frequent value

Unique Values: List of unique values

Signal	Туре	
4.31	Blue	
5.34	Orange	
3.79	Blue	
5.19	Blue	
4.93	Green	
5.76	Orange	
3.25	Orange	
7.12	Orange	
2.85	Blue	

ROLLING UP YOUR DATA

We can perform an operation over a set (or subset) of the data - typically over a column of the data.

When we do this, we can think of this as compressing or 'rolling up' the many data values into a single representative value.

Typical roll up functions are 'mean', 'sum' and 'count'.

If we apply the same roll up function to many different columns we can think of this as **mapping** (a list of) columns to functions.

Signal	Туре	
4.31	Blue	
5.34	Orange	
3.79	Blue	
5.19	Blue	
4.93	Green	
5.76	Orange	
3.25	Orange	
7.12	Orange	
2.85	Blue	

CONTINGENCY TABLES / PIVOT TABLES

Contingency Table: A table used to examine the relationship between two categorical variables - specifically the frequency of one variable relative to a second variable (cross tabulation).

Pivot Table: A table generated in a software application by applying operations (e.g. sum, count, mean) to variables, possibly based on another (categorical) variable. Can be used to create a contingency table.

	Large	Medium	Small
Blue	1	32	31
Orange	14	11	0
Green	5	5	5

ANALYSIS THROUGH VISUALIZATION

Analysis broadly defined:

- identifying patterns or structure
- adding meaning to these patterns or structure by **interpreting** them in the context of your system.

Option 1: use analysis techniques to do this.

Option 2: visualize the data and use the analytic power of our (perceptual) brain to come to meaningful conclusions about these patterns.

SOME SIMPLE VISUALIZATIONS TO REVEAL PATTERNS

Scatter plot: best suited for two numeric variables

Line chart: numeric variable and categorical variable

Bar chart: best suited for one categorical and one numeric - or multiple categorical/nested categorical data and

WORKED EXAMPLE: THE CHINOOK DATABASE

BASIC DATA ANALYTICS TECHNIQUES

DATA AND SYSTEM IDENTIFICATION

Identify a system of interest OR identify a dataset that exists and the system that it represents.

DATA RELEVANCE (I)

Determine what data you have about the system of interest OR what data you could have, if you were to collect it.

CONCEPTUAL MODEL

Develop a conceptual model of the system.

GOALS OF ANALYSIS

Determine:

- what questions do you want to answer
- what issue do you want to address
- what decision do you want to make
- what relationships do you want to explore

DATA RELEVANCE (II)

Determine: if you have the data you need to answer these questions, explore these relationships, etc.

If not determine how to get that data OR go back and come up with a question you can answer using your data, a relationship you can explore using your data, etc.

DATA STORAGE

Determine how to store your data.

DATE EXPORT

Determine how to export, transform and/or load your data so that it's available for analysis.

DATA VALIDATION

Determine the quality of your data - what it is representing and how well it is representing that which it is representing.

DATA EXPLORATION

Explore your data and discover patterns, relationships, structures.

DATA PRESENTATION

Present your findings.

