$$\begin{bmatrix} n_0 \\ n_1 \\ \vdots \\ n_k \end{bmatrix}_{t+1} = \begin{bmatrix} F_0 & F_1 & \dots & F_k \\ S_0 & 0 & \dots & 0 \\ 0 & \ddots & \dots & 0 \\ 0 & 0 & S_{k-1} & 0 \end{bmatrix} \begin{bmatrix} n_0 \\ n_1 \\ \vdots \\ n_k \end{bmatrix}_t$$

where:

 $n_{k,t+1}$ = number of organisms in age class k at time t+1 F_k = fecundity, the per capita average number of female offspring born from mother of the age class k

 S_k = the fraction of individuals that survives from age class t to age class t+1

$$F_x' = F_x e^{-\beta N}$$

where:

 F'_x = adjusted fertility rate for age class x

 $F_x = \text{maximum fertility rate of age class x}$

 $\beta = \text{constant describing the decay of fertility}$

N = total population size

$$S_{tox,x} = S_x(1 - M_{48})$$

where:

 $S_{tox,x} = {\rm survival}$ rate after toxic for age class x

 $S_x = \text{maximum survival rate of age class x}$

 $M_{48}=48 \mathrm{h}$ mortality rate based on logistic dose response model

$$M_{48} = \frac{1}{1 + e^{-\alpha \times \ln C_0(\frac{1}{2}^{\frac{t}{HL}}) - \beta}}$$

where:

 $\alpha,\beta=$ coefficients of logistic dose response function

 C_0 = chemical initial concentration

HL =chemical half life

t = simulation duration