3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen
- 3.4 Der Satz von Rice
- 3.5 Rekursiv aufzählbare Sprachen
- 3.6 Weitere nicht entscheidbare Probleme

3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen
- 3.4 Der Satz von Rice
- 3.5 Rekursiv aufzählbare Sprachen
- 3.6 Weitere nicht entscheidbare Probleme

Definition (Turing-Reduktion)

Eine Turing-Reduktion einer Sprache *A* auf eine Sprache *B* ist eine Turingmaschine, die die Sprache *A* mithilfe eines (hypothetischen) Unterprogramms für die Sprache *B* löst. Turing-Reduktionen werden auch als Unterprogrammtechnik bezeichnet.

Definition (Turing-Reduktion)

Eine Turing-Reduktion einer Sprache A auf eine Sprache B ist eine Turingmaschine, die die Sprache A mithilfe eines (hypothetischen) Unterprogramms für die Sprache B löst. Turing-Reduktionen werden auch als Unterprogrammtechnik bezeichnet.

Definition 3.8 (Many-One-Reduktion)

Eine Many-One-Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine berechenbare Funktion $f\colon \Sigma_1^*\to \Sigma_2^*$ mit der Eigenschaft, dass

$$x \in A \iff f(x) \in B$$

für alle $x \in \Sigma_1^*$ gilt. Existiert eine solche Reduktion, so heißt A auf B reduzierbar und wir schreiben $A \leq B$.

Theorem 3.9

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Theorem 3.9

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Theorem 3.9

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Beweis: Sei $A \leq B$ und sei B entscheidbar. Dann gibt es TM M_B , die B entscheidet, und TM M_f , die die Reduktion f berechnet.

Theorem 3.9

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Beweis: Sei $A \leq B$ und sei B entscheidbar. Dann gibt es TM M_B , die B entscheidet, und TM M_f , die die Reduktion f berechnet.

Konstruiere TM M_A für A wie folgt:

- (1) Berechne bei Eingabe x mit M_f die Zeichenkette f(x).
- (2) Entscheide mit M_B , ob $f(x) \in B$ gilt.

Definition 3.10

Das spezielle Halteproblem H_{ε} sei definiert durch

$$H_{\varepsilon} = \{ \langle M \rangle \mid M \text{ hält auf } \varepsilon \} \subseteq \{0, 1\}^*.$$

Definition 3.10

Das spezielle Halteproblem H_e sei definiert durch

$$H_{\varepsilon} = \{ \langle \mathit{M} \rangle \mid \mathit{M} \text{ h\"alt auf } \varepsilon \} \subseteq \{0,1\}^*.$$

Das vollständige Halteproblem Hall sei definiert durch

$$H_{\text{all}} = \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*.$$

Definition 3.10

Das spezielle Halteproblem H_e sei definiert durch

$$H_{\varepsilon} = \{\langle \mathit{M} \rangle \mid \mathit{M} \text{ h\"alt auf } \varepsilon\} \subseteq \{0,1\}^*.$$

Das vollständige Halteproblem Hall sei definiert durch

$$H_{\text{all}} = \{ \langle \textit{M} \rangle \mid \textit{M} \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*.$$

Die universelle Sprache U sei definiert durch

$$U = \{ \langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0, 1\}^*.$$

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \leq U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \le U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M^* \rangle w & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \le U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M^* \rangle w & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Die TM M^* simuliert das Verhalten von M auf der gegebenen Eingabe Schritt für Schritt, solange bis M terminiert. Anschließend akzeptiert M^* die Eingabe unabhängig von der Ausgabe von M.

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0, 1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \le U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M^* \rangle w & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Die TM M^* simuliert das Verhalten von M auf der gegebenen Eingabe Schritt für Schritt, solange bis M terminiert. Anschließend akzeptiert M^* die Eingabe unabhängig von der Ausgabe von M.

Die Funktion f ist berechenbar, da $\langle M^{\star} \rangle$ für gegebenes $\langle M \rangle$ konstruiert werden kann.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert das Verhalten von M. $\Rightarrow M^*$ hält auf w. $\Rightarrow M^*$ akzeptiert w.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert das Verhalten von M. $\Rightarrow M^*$ hält auf w. $\Rightarrow M^*$ akzeptiert w.
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle w \in U$ gilt.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert das Verhalten von M. $\Rightarrow M^*$ hält auf w. $\Rightarrow M^*$ akzeptiert w.
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle w \in U$ gilt.
- 2. Fall: *x* ∉ *H*
 - Entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert das Verhalten von M. $\Rightarrow M^*$ hält auf w. $\Rightarrow M^*$ akzeptiert w.
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle w \in U$ gilt.
- 2. Fall: *x* ∉ *H*
 - Entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
 - Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin U$.

Zu zeigen: $x \in H \iff f(x) \in U$.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert das Verhalten von M. $\Rightarrow M^*$ hält auf w. $\Rightarrow M^*$ akzeptiert w.
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle w \in U$ gilt.

2. Fall: *x* ∉ *H*

- Entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
- Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin U$.
- Sonst: M^* simuliert das Verhalten von M. $\Rightarrow M^*$ hält nicht auf w. $\Rightarrow M^*$ akzeptiert w nicht. Dies bedeutet, dass $f(x) = \langle M^* \rangle w \notin U$ gilt.

Theorem 3.12

Das spezielle Halteproblem $H_{\varepsilon}=\{\langle \mathit{M}\rangle\mid \mathit{M} \text{ h\"{a}lt auf } \varepsilon\,\}\subseteq\{0,1\}^*$ ist nicht entscheidbar.

Theorem 3.12

Das spezielle Halteproblem $H_{\varepsilon}=\{\langle \mathit{M}\rangle\mid \mathit{M} \text{ h\"{a}lt auf }\varepsilon\}\subseteq\{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \le H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

Theorem 3.12

Das spezielle Halteproblem $H_{\varepsilon}=\{\langle \mathit{M}\rangle\mid \mathit{M} \text{ h\"{a}lt auf }\varepsilon\}\subseteq\{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \le H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M^* \rangle & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Theorem 3.12

Das spezielle Halteproblem $H_{\varepsilon} = \{\langle M \rangle \mid M \text{ hält auf } \varepsilon\} \subseteq \{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \leq H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M^* \rangle & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Die TM M^* löscht die Eingabe und simuliert das Verhalten von M auf w Schritt für Schritt.

Theorem 3.12

Das spezielle Halteproblem $H_{\varepsilon} = \{\langle M \rangle \mid M \text{ hält auf } \varepsilon\} \subseteq \{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \leq H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M^* \rangle & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Die TM M^* löscht die Eingabe und simuliert das Verhalten von M auf w Schritt für Schritt.

Die Funktion f ist berechenbar, da $\langle M^{\star} \rangle$ für gegebene $\langle M \rangle$ und w konstruiert werden kann.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert für jede Eingabe das Verhalten von M auf w. $\Rightarrow M^*$ hält auf ε .
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle \in H_{\varepsilon}$ gilt.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert für jede Eingabe das Verhalten von M auf w. $\Rightarrow M^*$ hält auf ε .
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle \in H_{\varepsilon}$ gilt.
- 2. Fall: *x* ∉ *H*
 - Entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert für jede Eingabe das Verhalten von M auf w. $\Rightarrow M^*$ hält auf ε .
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle \in H_{\varepsilon}$ gilt.
- 2. Fall: *x* ∉ *H*
 - Entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
 - Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin H_{\varepsilon}$.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

- 1. Fall: $x \in H$
 - $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
 - M^* simuliert für jede Eingabe das Verhalten von M auf w. $\Rightarrow M^*$ hält auf ε .
 - Dies bedeutet, dass $f(x) = \langle M^* \rangle \in H_{\varepsilon}$ gilt.

2. Fall: *x* ∉ *H*

- Entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
- Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin H_{\varepsilon}$.
- Sonst: M^{*} simuliert bei jeder Eingabe das Verhalten von M auf w. ⇒ M^{*} hält nicht auf ε. Dies bedeutet, dass f(x) = ⟨M^{*}⟩ ∉ H_ε gilt.

3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen

3.4 Der Satz von Rice

- 3.5 Rekursiv aufzählbare Sprachen
- 3.6 Weitere nicht entscheidbare Probleme

3.4 Der Satz von Rice

Sei $\Sigma = \{0, 1\}$. Es bezeichne

$$\mathcal{R} = \{f \colon \Sigma^* \to \Sigma^* \cup \{\bot\} \mid \exists \text{ Turingmaschine } M \text{ mit } f_M = f\}$$

die Menge aller von Turingmaschinen berechenbaren Funktionen.

Sei $\Sigma = \{0, 1\}$. Es bezeichne

$$\mathcal{R} = \{f \colon \Sigma^* \to \Sigma^* \cup \{\bot\} \mid \exists \text{ Turingmaschine } M \text{ mit } f_M = f\}$$

die Menge aller von Turingmaschinen berechenbaren Funktionen.

Für $\mathcal{S} \subseteq \mathcal{R}$ sei

$$L(S) = \{ \langle M \rangle \mid f_M \in S \}$$

die Menge der Gödelnummern der Turingmaschinen, die eine Funktion aus Sberechnen.

Sei $\Sigma = \{0, 1\}$. Es bezeichne

$$\mathcal{R} = \{f \colon \Sigma^* \to \Sigma^* \cup \{\bot\} \mid \exists \text{ Turingmaschine } M \text{ mit } f_M = f\}$$

die Menge aller von Turingmaschinen berechenbaren Funktionen.

Für $\mathcal{S} \subseteq \mathcal{R}$ sei

$$L(S) = \{ \langle M \rangle \mid f_M \in S \}$$

die Menge der Gödelnummern der Turingmaschinen, die eine Funktion aus Sberechnen.

Theorem 3.13 (Satz von Rice)

Es sei $S\subseteq\mathcal{R}$ mit $S\neq\emptyset$ und $S\neq\mathcal{R}$ eine Teilmenge der berechenbaren Funktionen.

Dann ist die Sprache L(S) nicht entscheidbar.

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen. Dann ist die Sprache L(S) nicht entscheidbar.

Beispiele:

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen. Dann ist die Sprache L(S) nicht entscheidbar.

Beispiele:

ullet Sei $S=\{f\}$ für

$$f(x) = \begin{cases} 1 & val(x) \text{ ist eine Primzahl} \\ 0 & sonst \end{cases}$$

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen.

Dann ist die Sprache $\mathbf{L}(S)$ nicht entscheidbar.

Beispiele:

• Sei $S = \{f\}$ für

$$f(x) = \begin{cases} 1 & val(x) \text{ ist eine Primzahl} \\ 0 & sonst \end{cases}$$

 \Rightarrow L(S) = Menge der Gödelnummern von Turingmaschinen, die korrekt entscheiden, ob die Eingabe eine Primzahl ist.

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen.

Dann ist die Sprache $\mathbf{L}(S)$ nicht entscheidbar.

Beispiele:

• Sei $S = \{f\}$ für

$$f(x) = \begin{cases} 1 & val(x) \text{ ist eine Primzahl} \\ 0 & sonst \end{cases}$$

- \Rightarrow L(S) = Menge der Gödelnummern von Turingmaschinen, die korrekt entscheiden, ob die Eingabe eine Primzahl ist.
- ⇒ Wir können nicht entscheiden, ob eine gegebene Turingmaschine korrekt entscheidet, ob die Eingabe eine Primzahl ist.

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen. Dann ist die Sprache L(S) nicht entscheidbar.

Beispiele:

• Quadrieren als Relation:

$$R = \{(x, y) \mid \operatorname{val}(y) = \operatorname{val}(x)^2\} \subseteq \{0, 1\}^* \times \{0, 1\}^*.$$

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen. Dann ist die Sprache L(S) nicht entscheidbar.

Beispiele:

Quadrieren als Relation:

$$R = \{(x,y) \mid val(y) = val(x)^2\} \subseteq \{0,1\}^* \times \{0,1\}^*.$$

Wir definieren S als die Menge aller berechenbaren Funktionen, die bei jeder Eingabe $x \in \{0, 1\}^*$ eine Ausgabe $y \in \{0, 1\}^*$ mit $(x, y) \in R$ produzieren:

$$S = \{ f \in \mathcal{R} \mid \forall x \in \{0,1\}^* : (x, f(x)) \in R \}.$$

Theorem 3.13 (Satz von Rice)

Es sei $S \subseteq \mathcal{R}$ mit $S \neq \emptyset$ und $S \neq \mathcal{R}$ eine Teilmenge der berechenbaren Funktionen. Dann ist die Sprache L(S) nicht entscheidbar.

Beispiele:

Quadrieren als Relation:

$$R = \{(x,y) \mid val(y) = val(x)^2\} \subseteq \{0,1\}^* \times \{0,1\}^*.$$

Wir definieren S als die Menge aller berechenbaren Funktionen, die bei jeder Eingabe $x \in \{0, 1\}^*$ eine Ausgabe $y \in \{0, 1\}^*$ mit $(x, y) \in R$ produzieren:

$$S = \{ f \in \mathcal{R} \mid \forall x \in \{0,1\}^* : (x, f(x)) \in R \}.$$

⇒ Wir können nicht entscheiden, ob eine gegebene Turingmaschine die Eingabe guadriert.

Beweis mittels Turing-Reduktion von H_{ε} auf L(S):

Dazu konstruieren wir TM $M_{H_{\varepsilon}}$, die H_{ε} mithilfe einer TM $M_{L(S)}$ für L(S) entscheidet.

Beweis mittels Turing-Reduktion von H_{ε} auf L(S):

Dazu konstruieren wir TM $M_{H_{\varepsilon}}$, die H_{ε} mithilfe einer TM $M_{L(S)}$ für L(S) entscheidet.

Es sei $u \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ mit $u(x) = \bot$ für alle $x \in \Sigma^*$. Es gilt $u \in \mathcal{R}$.

Beweis mittels Turing-Reduktion von H_{ε} auf L(S):

Dazu konstruieren wir TM $M_{H_{\varepsilon}}$, die H_{ε} mithilfe einer TM $M_{L(S)}$ für L(S) entscheidet.

Es sei $u \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ mit $u(x) = \bot$ für alle $x \in \Sigma^*$. Es gilt $u \in \mathcal{R}$.

1. Fall: $u \notin S$.

Es sei $f \in S$ beliebig (dann gilt $f \neq u$) und sei M_f eine TM, die f berechnet.

Beweis mittels Turing-Reduktion von H_{ε} auf L(S):

Dazu konstruieren wir TM $M_{H_{\varepsilon}}$, die H_{ε} mithilfe einer TM $M_{L(S)}$ für L(S) entscheidet.

Es sei $u \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ mit $u(x) = \bot$ für alle $x \in \Sigma^*$. Es gilt $u \in \mathcal{R}$.

1. Fall: $u \notin S$.

Es sei $f \in S$ beliebig (dann gilt $f \neq u$) und sei M_f eine TM, die f berechnet.

Beweis mittels Turing-Reduktion von H_{ε} auf L(S):

Dazu konstruieren wir TM $M_{H_{\varepsilon}}$, die H_{ε} mithilfe einer TM $M_{L(S)}$ für L(S) entscheidet.

Es sei $u \colon \Sigma^* \to \Sigma^* \cup \{\bot\}$ mit $u(x) = \bot$ für alle $x \in \Sigma^*$. Es gilt $u \in \mathcal{R}$.

1. Fall: $u \notin S$.

Es sei $f \in S$ beliebig (dann gilt $f \neq u$) und sei M_f eine TM, die f berechnet.

Verhalten der TM M* bei Eingabe x:

Schritt 1: M^* simuliert das Verhalten von M auf ε .

Schritt 2: M^* simuliert M_f auf Eingabe x und übernimmt die Ausgabe.

Verhalten der TM M* bei Eingabe x:

Schritt 1: M^* simuliert das Verhalten von M auf ε .

Schritt 2: M^* simuliert M_f auf Eingabe x und übernimmt die Ausgabe.

Verhalten der TM M* bei Eingabe x:

Schritt 1: M^* simuliert das Verhalten von M auf ε .

Schritt 2: M^* simuliert M_f auf Eingabe x und übernimmt die Ausgabe.

Beobachtung:

M hält nicht auf ε . $\Rightarrow M^*$ hält auf keiner Eingabe. $\Rightarrow M^*$ berechnet u.

Verhalten der TM M* bei Eingabe x:

Schritt 1: M^* simuliert das Verhalten von M auf ε .

Schritt 2: M^* simuliert M_f auf Eingabe x und übernimmt die Ausgabe.

Beobachtung:

M hält nicht auf ε . $\Rightarrow M^*$ hält auf keiner Eingabe. $\Rightarrow M^*$ berechnet u.

M hält auf ε . \Rightarrow M^* erreicht Schritt 2. \Rightarrow M^* berechnet die Funktion f.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \in H_{\varepsilon}$. Dann gilt $w = \langle M \rangle$ für eine TM M, die auf ε hält.

- Sei $w \in H_{\varepsilon}$. Dann gilt $w = \langle M \rangle$ für eine TM M, die auf ε hält.
 - $\Rightarrow M^*$ berechnet f.

- Sei $w \in H_{\varepsilon}$. Dann gilt $w = \langle M \rangle$ für eine TM M, die auf ε hält.
 - $\Rightarrow M^*$ berechnet f.
 - $\Rightarrow \langle M^{\star} \rangle \in L(S)$ wegen $f \in S$.

- Sei $w \in H_{\varepsilon}$. Dann gilt $w = \langle M \rangle$ für eine TM M, die auf ε hält.
 - $\Rightarrow M^*$ berechnet f.
 - $\Rightarrow \langle M^{\star} \rangle \in L(S)$ wegen $f \in S$.
 - $\Rightarrow M_{L(S)}$ akzeptiert die Eingabe $\langle M^* \rangle$.

- Sei $w \in H_{\varepsilon}$. Dann gilt $w = \langle M \rangle$ für eine TM M, die auf ε hält.
 - $\Rightarrow M^*$ berechnet f.
 - $\Rightarrow \langle M^{\star} \rangle \in L(S)$ wegen $f \in S$.
 - $\Rightarrow M_{L(S)}$ akzeptiert die Eingabe $\langle M^{\star} \rangle$.
 - $\Rightarrow M_{H_{\varepsilon}}$ akzeptiert die Eingabe w.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \notin H_{\varepsilon}$.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \notin H_{\varepsilon}$.

Entweder: w ist keine Gödelnummer. $\Rightarrow M_{H_{\varepsilon}}$ verwirft w.

Oder: $w = \langle M \rangle$ für eine TM M, die nicht auf ε hält.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \notin H_{\varepsilon}$.

Entweder: w ist keine Gödelnummer. $\Rightarrow M_{H_{\varepsilon}}$ verwirft w.

Oder: $w = \langle M \rangle$ für eine TM M, die nicht auf ε hält.

 $\Rightarrow M^*$ berechnet u.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \notin H_{\varepsilon}$.

Entweder: w ist keine Gödelnummer. $\Rightarrow M_{H_{\varepsilon}}$ verwirft w.

Oder: $w = \langle M \rangle$ für eine TM M, die nicht auf ε hält.

 $\Rightarrow M^*$ berechnet u.

 $\Rightarrow \langle M^{\star} \rangle \notin L(S)$ wegen $u \notin S$.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \notin H_{\varepsilon}$.

Entweder: w ist keine Gödelnummer. $\Rightarrow M_{H_{\varepsilon}}$ verwirft w.

Oder: $w = \langle M \rangle$ für eine TM M, die nicht auf ε hält.

 $\Rightarrow M^*$ berechnet u.

 $\Rightarrow \langle M^{\star} \rangle \notin L(S)$ wegen $u \notin S$.

 $\Rightarrow M_{L(S)}$ verwirft die Eingabe $\langle M^{\star} \rangle$.

 $M_{H_{\varepsilon}}$ löst das spezielle Halteproblem H_{ε} :

• Sei $w \notin H_{\varepsilon}$.

Entweder: w ist keine Gödelnummer. $\Rightarrow M_{H_{\varepsilon}}$ verwirft w.

Oder: $w = \langle M \rangle$ für eine TM M, die nicht auf ε hält.

 $\Rightarrow M^*$ berechnet u.

 $\Rightarrow \langle M^* \rangle \notin L(S)$ wegen $u \notin S$.

 $\Rightarrow M_{L(S)}$ verwirft die Eingabe $\langle M^* \rangle$.

 $\Rightarrow M_{H_c}$ verwirft die Eingabe w.

2. Fall: $u \in S$.

Es sei $f \in \mathcal{R}$ mit $f \notin S$ beliebig (dann gilt $f \neq u$) und sei M_f eine TM, die f berechnet.

Vorgehen analog zu 1. Fall.