

ECE 462 – Data and Computer Communications

Lecture 24-25: Internet Protocol Overview

Bijan Jabbari, PhD

Dept. of Electrical and Computer Eng. George Mason University bjabbari@gmu.edu

Outline

- Internetworking
- Network layer functions
- CL vs. CO
- Routing
- Addressing
- Summary

2

Internetworking Terms

- Internet
- Intranet
- End System (ES)
- Intermediate System (IS)
- Edge Router
- Core Router
- Internet Service Provider (ISP)

LANs and Bridges

 Each PC is connected to the Ethernet LAN by an interface board (NIC) with a physical address

- A bridge allows packet exchange between two LANs
 - It converts the format of the packet

The Internet

Interdomain level

UUNET's Network

Internet Protocol (IP) in Context

Internet Protocols

- IP: Internetworking Protocol (Internet Protocol)
- TCP: Transmission Control Protocol
- UDP: User Datagram Protocol
- HTTP: Hypertext Transfer Protocol
- SMTP: Simple Mail Transfer Protocol
- FTP: File Transfer Protocol
- RTP: Real-time Transport Protocol
- DNS: Domain Name System

Review 1- The OSI Architecture

Review 2- The OSI Architecture

2007

2007

Reassembly

Unblocking

The Internet Network layer

Host, router network layer functions:

Network Layer Functions

- Transport packet from sending to receiving hosts
- Network layer protocols in every host, router

Three important functions:

- path determination: route taken by packets from source to dest. Routing algorithms
- switching: move packets from router's input to appropriate router output
- call setup: some network architectures require router call setup along path before data flows

IP Packet Forwarding

Connectionless Packet Forwarding

The Network Layer

The Network Layer Operation

PDU Operation

ECE 462

PDU Operation

PDU Operation

Header contains source and destination physical addresses; network protocol type

Eth om of	Frame
Ethernet	Check
Header	ا م
	Sequence

ECE 462

How Packets Are Routed

2458 12

Ports or Network Interface Cards

Routing

ECE 462

27

Routers

CISCO

Routing in the Internet

- The Global Internet consists of Autonomous Systems (AS) interconnected with each other:
 - Stub AS: small corporation
 - Multihomed AS: large corporation (no transit)
 - Transit AS: provider
- Two-level routing:
 - Intra-AS: administrator is responsible for choice
 - Inter-AS: unique standard

- Routing: decision that determines the path
 - next hop, source routing, VC setup
- Forwarding: transfer of packet from input to output

Creating the Routing Tables

- Need information on state of links
 - link up/down; congested; delay or other metrics
- Need to distribute link state information using a routing protocol
 - what information is exchanged? how often?
 - exchange with neighbors; broadcast or flood
- Need to compute routes based on information
 - single metric; multiple metric
 - single route; alternate routes

Design Requirements

- Responsiveness to changes
 - topology or bandwidth changes, congestion
 - rapid convergence of routers to consistent set of routes
 - freedom from persistent loops
- Optimality
 - resource utilization, path length
- Robustness
 - continues working under high load, congestion, faults, equipment failures, incorrect implementations
- Simplicity
 - Efficient software implementation, reasonable processing load

IP Addressing

- IP address: 32-bit identifier for host, router interface
- *interface:* connection between host, router and physical link
 - router's typically have multiple interfaces
 - host may have multiple interfaces
 - IP addresses associated router

with interface, not host, 223.1.1.1 = 11011111,00000001,00000001,00000001 223

IP address:

- network part (high order bits)
- host part (low order bits)

What's a network ?

(from IP address perspective)

- device interfaces with same network part of IP address
- can physically reach each other without intervening router

network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address)

IP Addressing

- Detach each interface from router, host
- create "islands of isolated networks

Interconnected system consisting of six networks

223.1.2.1

IP Addresses

■ There is also Class E with prefix of 1111, reserved for experimentation

IP Addresses- Detailed

0	4	8	16 1	9 2	24	<u>31</u>		
Version	IHL	Type of Service	Total Length					
Identification			Flags	Flags Fragment Offset				
Time t	to Live	Protocol	Header Checksum			n		
Source IP Address								
Destination IP Address								
Options					Padding			

IP Header Format

- Version (4 bits)
- Internet header length (4 bits): in 32-bit words
 - Min header is 5 words or 20 bytes
- Type of service (8 bits): Reliability, precedence, delay, and throughput
- Total length (16 bits): header + data in bytes
 - Total must be less than 64 kB
- Identifier (16 bits): Helps uniquely identify the datagram during its life for a given source, destination address

IP Header Format (Cont'd)

- Flags (3 bits): More flag used for
 - Fragmentation
 - No-fragmentation
 - Reserved
- Fragment offset (13 bits): In units of 8 bytes
- Time to live (8 bits): Specified in router hops
- Protocol (8 bits): Next level protocol to receive the data
- Header checksum (16 bits): 1's complement sum of all 16-bit words in the header

IP Header Format (Cont'd)

- Source Address (32 bits): Original source
 - Does not change along the path.
- Destination Address (32 bits): Final destination
 - Does not change along the path
- Options (variable): Security, source route, record route, stream id (used for voice) for reserved resources, timestamp recording
- Padding (variable): Makes header length a multiple of 4
- Data (variable): Data + header < 65,535 bytes

IP Protocol Numbers

- 0 Reserved
- 1 ICMP (Internet Control Message Protocol)
- 2 IGMP (Internet Group Management Protocol)
- 4 ST (Stream Protocol)
- 5 TCP (Transmission Control Protocol)
- 8 EGP (Exterior Gateway Protocol)
- 9 IGP (Interior Gateway Protocol)
- 17 UDP (User Datagram Protocol)

Putting them all together

LAN Addresses

MAC Address: 88-B2-2F-54-2A-FE

IP Address: 192.168.10.1

- LAN Address is also called physical address, Ethernet address or MAC address (Media Access Control)
 - It is six-byte long, giving 2⁴⁸ possible LAN addresses.
 - It is permanently burned into the LAN adapter's ROM.
 - No two adapters have the same address.
- LAN Address is typically written in hexadecimal format
 - E.g. 88-B2-2F-54-2A-FE (in binary format it is 10001000 10110010 00101111 01010100 00101010 11111110)

MAC Address: 5C-66-AB-A3-F2-96

IP Addresses

- Each IPv4 Address is 32 bits long, written in dotted decimal notation, e.g. 223.1.1.10
- Original IP Addresses architecture defined four classes of address.
 - Class A, 2⁷ networks and 2²⁴ interfaces
 - Class B, 2¹⁴ networks and 2¹⁶ interfaces
 - Class C, 2²¹ networks and 2⁸ interfaces
 - Class D, multicast addresses

Classless Interdomain Routing (CIDR) Addresses

- CIDR network addresses release the constraint that the network part of the address has to be 8, 16 or 24 bits. It has dotted-decimal form a.b.c.d/x, where x indicates the number of the leading bits that constitutes the network part of the address
 - e.g. 192.168.240.10/20 means the first 20 bits are network address and the rest 12 bits are interface addresses.
- In practice, an organization can further divide the interface addresses to create its own internal network. This procedure is known as subnetting

Classless Interdomain Routing (CIDR) Addresses

Internet Structure

Today

Subnetting

- Add another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part
- Subnets visible only within site

Host	Host number					
Class B address						
111111111111111111111111						
Subnet mask (255.255.25)						
Subnet ID	Host ID					
	B address					

Subnetted address

Subnet Example

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

Forwarding table at router R1

Subnet Number	Subnet Mask	Next	
Нор			_
128.96.34.0 interface 0	255.255.255.1	128	
128.96.34.128 interface 1	255.255.255.1	28	
1289.96.33.0	255.255.255.0) R2 _E	ECE 462

Forwarding Algorithm

```
D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)
   D1 = SubnetMask & D
   if D1 = SubnetNum
      if NextHop is an interface
           deliver datagram directly to D
       else
           deliver datagram to NextHop
```

- Use a default router if nothing matches
- Not necessary for all 1s in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

Supernetting

- Assign block of contiguous network numbers to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair (first_network_address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- All routers must understand CIDR addressing

Route Propagation

- Know a smarter router
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - interior gateway protocol (each AS selects its own)
 - exterior gateway protocol (Internet-wide standard)

Routing

- Routing Basics
- Distance Vector Routing
- Link State Routing
- Internet Routing Protocols

Hierarchical Routing

Our routing study thus far - idealization

- all routers identical
- network "flat" ... not true in practice

scale: with 50 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical Routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "inter-AS" routing protocol
 - routers in different AS can run different inter-AS routing protocol

gateway routers

- special routers in AS
- run inter-AS routing protocol with all other routers in AS
- also responsible for routing to destinations outside AS
 - run intra-AS routing protocol with other gateway routers

Popular Interior Gateway Protocols

- RIP: Route Information Protocol
 - developed for XNS
 - distributed with Unix
 - distance-vector algorithm
 - based on hop-count
- OSPF: Open Shortest Path First
 - recent Internet standard
 - uses link-state algorithm
 - supports load balancing
 - supports authentication

EGP: Exterior Gateway Protocol

Overview

- designed for tree-structured Internet
- concerned with reachability, not optimal routes

Protocol messages

- neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
- neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
- routing updates: peers periodically exchange their routing tables (distance-vector)

BGP-4: Border Gateway Protocol

- AS Types
 - stub AS: has a single connection to one other AS
 - carries local traffic only
 - multihomed AS: has connections to more than one AS
 - refuses to carry transit traffic
 - transit AS: has connections to more than one AS
 - carries both transit and local traffic
- Each AS has:
 - one or more border routers
 - one BGP speaker that advertises:
 - local networks
 - other reachable networks (transit AS only)
 - gives path information

IP Version 6

Features

- 128-bit addresses (classless)
- multicast
- real-time service
- authentication and security
- autoconfiguration
- end-to-end fragmentation
- protocol extensions

Header

- 40-byte "base" header
- extension headers (fixed order, mostly fixed length)
 - fragmentation
 - source routing
 - authentication and security 60
 - other options

MPLS: A basis for the Next Generation Internet

MPLS: Multi Protocol Label Switching

Summary

- IPv4 uses 32-bit addresses organized as network
- prefix and host suffix.
- Four classes of networks: A, B, C, D
- Routers determine next hop using routing tables
- IP provides connectionless unreliable service

Measurements for Traffic delays across Networks - PING

•Ping to GMU from the desktop

Router@ail#ping 10.1.7.2

```
C:\>ping osf1.gmu.edu
Pinging osf1.gmu.edu [129.174.1.13] with 32 bytes of data:
Reply from 129.174.1.13: bytes=32 time<10ms TTL=62
Reply from 129.174.1.13: bytes=32 time<10ms TTL=62
Reply from 129.174.1.13: bytes=32 time<10ms TTL=62</pre>
```

•Ping to a Network Address from a Router

```
Sending 5, 100-byte ICMP Echos to 10.1.7.2, timeout is 2 seconds:
```

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms