Ch. 6: Long-Run Economic Growth

Munechika Katayama

Waseda University

2020 Spring

Chapter Outline

- The Sources of Economic Growth
- Long-Rung Growth: The Solow Model
- Endogenous Growth Theory
- Government Policies to Raise Long-Run Living Standards

Output per Capita for Different Countries over Time (1) Level of living standards differs country to country and time to time.

- Gap Minder Trends (Real GDP per Capita, PPP\$)
- http://bit.ly/2k2POr4 (2) Speed of economic growth varies country to country.

D We want to know why such differences arise.

The Sources of Economic Growth Contribution of

ontribution of labor growth.

Production function

$$Y = AF(K, N)$$
 level

• Decompose into growth rate form \rightarrow the growth accounting equation $\Delta Y = \Delta A = \Delta K = \Delta N$

where a_K and a_N are the elasticities disoutput with respect to capital and labor

Output fronts. Contribution of Capital growth.

We can back out product: view growth.

as residual

Sources of Economic Growth in the US

	(1)	(2)	(3)	(4)	(5)
Source of Growth	1929–1948	1948–1973	1973–1982	1929–1982	1982–2013
Labor	1.42	1.40	1.13	1.34	0.99
Capital	0.11	0.77	0.69	0.56	> 1.19
Productivity	1.01	1.53	-0.27	1.02	1.10
Output Growth	2.54	3.70	1.55	2.92	3.28

Table 6.3 Sources of Economic Growth in the US (% per year)

Note: Labor growth and capital growth are contributions of labor and capital $(a_N \frac{\Delta N}{N})$ and $a_K \frac{\Delta K}{K}$.

Productivity Growth and Labor Productivity Growth

• Labor productivity is defined as

• We can relate productivity growth with labor productivity growth

$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + a_K \frac{\Delta K}{K} + a_N \frac{\Delta N}{N}$$

$$= \frac{\Delta A}{A} + a_K \frac{\Delta K}{K} + (1 - a_K) \frac{\Delta N}{N}$$

$$= \frac{\Delta Y}{A} + a_K \frac{\Delta K}{K} + (1 - a_K) \frac{\Delta N}{N}$$
growth rate of $\frac{Y}{N}$
growth rate of capital per unit of labor

Productivity Growth in the US

Source: FRED database, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/series/MFPNFBS, https://fred.stlouisfed.org/series/OPHNFB.

Hayashi and Prescott (2002)

		Factors				
	Growth	TFP	Capital	Workweek	Employment	
Period	Rate	factor	intensity	length	rate	
1960–1973	7.2%	6.5%	2.3%	-0.8%	-0.7%	
1973–1983	2.2%	0.8%	2.1%	-0.4%	-0.3%	
1983–1991	3.6%	3.7%	0.2%	-0.5%	0.1%	
1991–2000	0.5%	0.3%	1.4%	-0.9%	-0.4%	

Table: Accounting for Japanse Growth per Person Aged 20-69

Source: Table 1 from Hayashi and Prescott (2002) "The 1990s in Japan: A Lost Decade" *Review of Economic Dynamics*, Vol. 5, 206–235.

Long-Run Growth: The Solow Model

Two basic questions about economic growth:

- What's the relationship between the long-run standard of living and the saving rate, population growth rate, and rate of technological progress?
- (2) How does economic growth change over time? Will it speed up, slow down, or stabilize?

The Solow Model

Basic Assumptions and Variables

- Population and work force grow at same rate n
- Economy is closed and no government, G = 0
 - $C_t = Y_t I_t$ NX=0 level of
- Production function
- $Y_t \in A^{\mathsf{F}}(K_t, N_t)$ No productivity growth (for now) Constant A
- · Transition equation for capital stock machines available at

I undepreciated

The Solow Model (Cont'd)

Rewrite everything in per-worker terms:

output
$$y_t = \frac{Y_t}{N_t}$$
 $c_t = \frac{C_t}{N_t}$ $k_t = \frac{K_t}{N_t} = \text{capital-labor ratio}$

Newrite eqs. (1)-(3)

$$C_t = Y_t - I_t \qquad \Rightarrow \qquad c_t = y_t - i_t$$

$$Y_t = AF(K_t, N_t) \qquad \Rightarrow \qquad y_t = f(k_t)$$

$$I_t = K_{t+1} - (1-d)K_t \qquad \Rightarrow \qquad i_t = \frac{K_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} - (1-d)\frac{K_t}{N_t}$$

$$= k_{t+1}(1+n) - (1-d)k_t$$

Taplicit assumption. Production temotion has constant returns to stall property. For Cobb - Douglas production turen, X+B=1 Ye = A. F(Ke, Nc) = A. (K) (Ne) (-d. (-; x7 B = 1) Divide the both Sides by Nr. No A. (Kt) a (No) La. Ye = A. (ke) × 1. => Ye = f(ke).

The Per-Worker Production Function

Figure: The Per-Worker Production Function

The Solow Model (Cont'd)

Steady state (SS): all variables stay constant over time

Two key equations at the steady state:

$$i = (n+d)k \tag{4}$$

$$c = f(k) - (n+d)k \tag{5}$$

- In a steady state, gross investment must
- (i) replace depreciated capital (dk)
 - (ii) expand so the capital stock grows as the economy grows (nk)

it = ken (1 in) - (1-d) kt. Reg = Re = R. 2 = k (l+n) - (l-d)k. i= (n+d)k. Ce= Ye- Te. C = 4 - Z. C = f(k) - (n-ed)k. 55° output
per worker. SS investment
per worker. There can be many different Steady States.

Figure: Steady-State Per Worker Consumption and the Capital-Labor Ratio

Moving Toward the Steady State

• Suppose saving is proportional to current income:

$$S_t = sY_t$$

where 0 < s < 1 is the saving rate

- In a per-worker term, per-worker saving is $sf(k_t)$.
- In the steady state, saving equals to investment

$$sf(k) = (n+d)k$$

Saving per

of investment per worker.

Moving Toward the Steady State (Cont'd)

At A, investment = breab-even investud R2.= R1 + SR. R3 = R2 + DR. Break-even k* steady state capital stock.

Summary of the Solow Growth Model

- The only possible steady-state capital-labor ratio is k^* , such that $f(k^*) = (n+d)k^*$
- The steady-state k^* determines steady-state values of y^* and c^*
- With no productivity growth, the economy reaches a steady state, where capital-labor ratio (k), output per worker (y), and consumption per worker (c) stay constant

Fundamental Determinants of Long-Run Living Standards

- The saving rate
- Population growth
- Productivity growth

Figure: The Effect of an Increased Saving Rate on k^*

As the saving rate of, k of. y*f. Optimal Saving vate that will support. the Golden-Rule Steady State.

The Role of Population Growth

Figure: The Effect of a Higher Population Growth Rate on k^*

41= f(kx). The Role of Productivity Growth = 1A (kr)2. f2 (k) After: $y = f_2(k)$ The key factor in Before: $y = f_1(k)$ economic growth is Productivity productivity improvement Productivity improvement raises output per worker for a given level of the

capital-labor ratio

Figure: An Improvement in Productivity

Capital-labor ratio, k

The Role of Productivity Growth (Cont'd)

Figure: The Effect of a Productivity Improvement on k^*

The Role of Productivity Growth (Cont'd)

- In equilibrium, productivity improvement increases k y, and c.
- Productivity growth is the dominant factor for higher living standards!

Economic Growth of China

Fig. 6.10 Real GDP growth in China and the United States, 2001–2017

 $Source: FRED\ database,\ Federal\ Reserve\ Bank\ of\ St.\ Louis,\ https://fred.stlouisfed.org/series/NYGDPPCAPKDCHN,\ https://fred.stlouisfed.org/series/GDPC1.$

Factors behind China's Economic Growth

- Huge increase in capital investment
- Fast productivity growth (in part from changing to a market economy)
- Increased trade

Will China be able to Keep Growing Rapidly?

- · Rapid growth because of
 - use of underemployed resources
 - using advanced technology developed elsewhere
 - making transition from centrally-planned economy to market economy
- Such gains may not last
- It may take China a long time to catch up with the rest of the developed world

- Endogenous Growth Theory (Exogenous growth in productivity in the Slow)
 - Tries to explain the sources of productivity growth
 - Aggregate production function

$$Y = AK$$

- Constant MPK
 - Human capital (knowledge, skills, training of individuals)
 - Research and development
 - Increases in capital and output generate increased technical knowledge, which offsets decline in MPK from having more capital

Endogenous Growth Theory (Cont'd)

Suppose saving is a constant fraction of output

$$S = sY = sAK$$

Investment is given by

$$I = \Delta K + dK$$

Saving = Investment gives us

$$sAK = \Delta K + dK$$

• Dividing both sides by K yields

$$\frac{\Delta K}{K} = \underline{SA - d}$$
Growth rate
of capital suck.

Endogenous Growth Theory (Cont'd)

• Since output is proportional to capital, we have

$$\frac{\Delta Y}{Y} = \frac{\Delta K}{K}$$

• Thus,

$$\frac{\Delta Y}{Y} = sA - d$$

 The saving rate affects the long-run growth rate (not true in the Solow model)

Summary of Endogenous Growth Theory

- It attempts to explain, rather than assume the economy's growth rate
- The growth rate depends on many things, such as the saving rate, that can be affected by government policies

Government Policies to Raise Long-Run Living Standards

- Affecting the saving rate
- Lowering population growth (in developing countries)
- Stimulating the rate of productivity growth

Policies to Raise the Rate of Productivity Growth

- Improving infrastructure (highways, bridges, utilities, dams, airports, and so on)?
- Building human capital (education policies, worker training programs, and health programs)
- Encouraging research and development (support scientific research, government research facilities, grants, and so on)