ЗАДАЧА 2. ОПРЕДЕЛЕНИЕ ЭКСПОЗИЦИОННОЙ, ПОГЛОЩЕННОЙ И ЭКВИВАЛЕНТНОЙ ДОЗ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Краткие теоретические сведения

Степень, глубина и форма лучевых поражений, развивающихся среди биообъектов при воздействии на них ионизирующих излучений (ИИ), зависят, прежде всего, от величины поглощенной энергии излучения (дозы излучения).

Доза излучения — это количество поглощенной энергии излучения от ионизации, произведенной в рассматриваемой массе вещества. Доза излучения характеризует меру воздействия ИИ и его возможные последствия.

В зависимости от местонахождения источника облучения различают внешнее и внутреннее облучение. Внешнее облучение происходит от источника излучения, находящегося вне облучаемого объекта. Внутреннее облучение происходит, если источник находится внутри облучаемого объекта.

Источники излучения могут быть как точечными, так и распределенными на поверхности, в объеме или в массе вещества. Для установления закономерностей распространения и поглощения ИИ в среде, в том числе и в биологической ткани, введены характеристики — дозы и мощности доз излучения.

Экспозиционная доза (X) — рассматривается только для воздуха и только для рентгеновского и гамма-излучения, характеризует состояние радиационной обстановки на местности или в помещениях. Это количественная величина этих излучений с энергией до 3 МэВ, основанная на их ионизирующем действии, выраженная как отношение суммарного заряда всех ионов одного знака dQ, возникающего при полном торможении электронов и позитронов, которые были образованы фотонами в элементарном объеме воздуха, к массе dm воздуха в этом объеме:

$$X = \frac{dQ}{dm}. (2.1)$$

Единицей измерения экспозиционной дозы в СИ является *кулон/кг*, внесистемная единица – pehmzeh. $1p=2,58\cdot10^{-4}~\rm Kn/kr$; $1Kn/kr=3,876\cdot10^{3}p$.

Поглощенная доза (D) — отношение средней энергии ионизирующего излучения dE, поглощенной элементарным объемом облучаемого вещества к массе dm этого вещества:

$$D = \frac{dE}{dm} \tag{2.2}$$

В СИ поглощенная доза измеряется в Греях (Гр). $1\Gamma p = 1 Дж/к\Gamma$. Внесистемная единица — рад; $1 pag = 0.01\Gamma p$.

Эквивалентная доза H_{TR} — это поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент (W_R) для данного вида излучения R :

$$H_{TR} = D_{TR} \cdot W_R, \tag{2.3}$$

где D_{TR} – доза, поглощенная биологической тканью излучением R .

Взвешивающий коэффициент W_R учитывает относительную эффективность различных видов излучения в инициировании различных биологических эффектов. Единица измерения в системе СИ - Зиверт (Зв), внесистемная — бэр (биологический эквивалент рада).

Мощность дозы излучения – отношение приращения соответствующей дозы за малый промежуток времени к его длительности.

УСЛОВИЕ ЗАДАЧИ И ИСХОДНЫЕ ДАННЫЕ К НЕЙ:

Рассчитать дозы внешнего фотонного излучения (экспозиционную, поглощенную и эквивалентную) от точечного источника Cs-137, активностью А (мКи), которая равна номеру варианта (порядковый номер по списку группы) на расстоянии 1 м от источника, если работа с источником проводилась в течение 30 суток по 6 часов ежедневно.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧИ

1. Экспозиционная доза (X) в рентгенах (p) определяется по формуле:

$$X = \widetilde{X} \cdot t \,, \tag{2.4}$$

где t — время облучения, ч;

 \widetilde{X} — мощность экспозиционной дозы, р/ч.

$$\tilde{X} = \frac{A \cdot \Gamma_{\gamma}}{R^2},\tag{2.5}$$

где A — активность источника излучения (равна номеру варианта), м Ки;

$$\Gamma_{\gamma}$$
 – гамма-постоянная радионуклида, $\frac{\mathbf{p} \cdot \mathbf{c} \mathbf{m}^2}{\mathbf{q} \cdot \mathbf{m} \mathbf{K} \mathbf{u}}$ (таблица 2.1);

R – расстояние от источника излучения до объекта, см.

Таблица 2.1

Значения гамма- постоянной ($\Gamma_{\scriptscriptstyle \gamma}$) для различных радионуклидов

Радио- нуклид	²³⁵ U	²⁴ Na	⁶⁰ Co	²²⁶ Ra	⁹⁰ Sr	⁶⁴ Cu	¹³⁷ Cs	¹³⁴ Cs	⁴⁰ K	¹³¹ I	⁵⁹ Fe	^{41}Ar
Γ_{γ} ; $\left(rac{\mathbf{p}\cdot\mathbf{c}\mathbf{m}^2}{\mathbf{q}\cdot\mathbf{m}\mathbf{K}\mathbf{u}} ight)$	0,74	19,0	12,9	8,25	14,1	1,16	3,24	8,72	5,07	2,16	8,1	6,58

- 2. Поглощенная доза в радах (рад):
- в воздухе $\left(D_{TR}^{\scriptscriptstyle{\mathrm{B}}}\right)$ по известной экспозиционной дозе определяется:

$$D_{TR}^{\mathrm{B}} = X \cdot K_D^{\mathrm{B}}, \tag{2.6}$$

где $K_D^{\rm B}$ – дозовый коэффициент для воздуха, равный 0,88 рад/р;

- в организме человека, т.е. в биологической ткани $\left(\Box_{TR}^{6.T} \right)$ определяется а) в радах (рад)

$$D_{TR}^{6.T} = X \cdot K_D^{6.T} \tag{2.7}$$

б) в Греях (Гр)

$$D_{TR}^{6.T} = 0.01 \cdot X \cdot K_D^{6.T}, \qquad (2.8)$$

где 0.01 – коэффициент, согласующий размерности (1 рад = 0.01 Гр)

 $K_D^{
m 6.T}$ — дозовый коэффициент для биологической ткани, который равен 0,96 рад/р;

3. Эквивалентная доза (H_{TR}) в организме человека от внутреннего фотонного излучения рассчитывается по формуле:

$$H_{TR} = W_R \cdot D_{TR}^{6.T} , \qquad (2.9)$$

где $D_{TR}^{
m 6.T}$ – поглощенная доза в организме человека, Гр;

 W_R — взвешивающий коэффициент фотонного излучения, Зв/Гр (табл. 1.4).

 $\it T$ аблица 1.4 $\it 3$ начения взвешивающих коэффициентов излучения

Вид излучения	W_R
Фотоны любых энергий	1
Электроны любых энергий, β -излучение	1
Нейтроны $E < 10$ кэВ	5
$E = 10 \div 100 \text{ кэВ}$	10
$E = 100 \text{ кэВ} \div 2 \text{ МэВ}$	20
$E = 2 \div 20 \text{ M} \odot \text{B}$	10
$E > 20 \text{ M} \cdot \text{B}$	5
Протоны с энергией > 2 МэВ	5
α -частицы, осколки деления, ядра отдачи	20

ОТЧЕТ

о выполнении задачи по теме «Расчет и оценка экспозиционной, поглощенной и эквивалентной доз ионизирующего изучения»

студента	учебной группы				
	Вариант №				

Определяемые параметры	Результат, единицы измерения	Оценка
1. Мощность экспозиционной дозы		
2. Экспозиционная доза		
3. Поглощенная доза в воздухе		
4. Поглощенная доза в биологической ткани	1.	
	2.	
5. Эквивалентная доза в организме		