به نام داناترین

دورهی خلاقیت الگوریتمی و برنامهنویسی پایتون

شمردن بدون شمارش!

دانشکدهی مهندسی کامپیوتر دانشگاه صنعتی شریف تابستان ۱۴۰۲

ببراس تنوعطلب

چند مسیر متفاوت با کمترین طول بین ببراس و خانهاش وجود دارد؟

ا در ا

۲ مسیر

۱ در ۲

۳ مسیر

۲ در ۲

الگوی بین این عددها چیست؟

ببراس به چند روش متفاوت میتواند ابتدا به دریاچه و سپس به کوه سفر کند؟

ببراس به چند روش متفاوت میتواند ابتدا به دریاچه و سپس به کوه سفر کند؟

اصل ضرب

اگر کاری به n روش و کار دیگر به m روش انجام شود، آن دو کار باهم به n x m روش انجام میشوند.

ببراس به چند روش متفاوت می تواند به دریاچه، کوه، و سپس به خانه برود؟

ببراس به چند روش متفاوت میتواند به دریاچه، کوه، و سپس به خانه برود؟

اصل ضرب

اگر کار اول به n_1 روش، کار دوم به n_2 روش، کار سوم به n_3 روش انجام شود آن سه کار باهم به n_4 n_5 روش قابل انجام است.

لباس پوشیدن

ببراس یا پیراهن و شلوار راحتی میپوشد، یا پیراهن و شلوار مهمانی. او ۳ پیراهن و ۲ شلوار راحتی و ۴ پیراهن و ۳ شلوار مهمانی دارد. ببراس به چند شکل ممکن میتواند لباس بپوشد؟

لباس پوشیدن

ببراس یا پیراهن و شلوار راحتی میپوشد، یا پیراهن و شلوار مهمانی. او ۳ پیراهن و ۲ شلوار راحتی و ۴ پیراهن و ۳ شلوار مهمانی دارد. ببراس به چند شکل ممکن میتواند لباس بپوشد؟

 $^{\mu}$ \times $^{\mu}$ + $^{\mu}$ \times $^{\lambda}$

اصل جمع

اگر کاری یا به n روش و یا به m روش دیگر انجام شود، آن کار به n + m روش قابل انجام است.

جایگشت و فاکتوریل

به یک ترتیب از n عضو یک مجموعه، یک جایگشت n عضوی میگوییم. تعداد جایگشتهای n عضوی برابر است با !n n! = n x (n-۱) x (n-۲) ... x ۲ x ۱

صندلیبازی با ترتیب

صندلیبازی با ترتیب

V x β x Δ

تعداد جایگشتهای r عضوی از مجموعهی n عضوی

$$P(n,r) = \frac{n!}{(n-r)!}$$

تعداد زیرمجموعههای r عضوی از مجموعهی n عضوی

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

مثالها

از یک کلاس با ۱۰ دانشآموز به چند روش میتوانیم ۸ نفر را انتخاب و به اردو ببریم؟

مثالها

از یک کلاس با ۱۰ دانشآموز به چند روش میتوانیم ۲ نفر را انتخاب و به اردو ببریم؟

تعداد زیرمجموعههای r عضوی از مجموعهی n عضوی

$$C(n,r) = C(n, n-r) = \frac{n!}{(n-r)!r!}$$

تعداد مسیرهای مختلف ببراس به خانه

شاد و تندرست باشید:-)