Project1

David Lewis

Assignment

- 1. for the assignment use the second dataset called TCGA_breast_cancer_ERpositive_vs_ERnegative_PAM50.tsv that shows ER assignment for each sample (Positive vs. Negative)
- 2. compute 5-fold and 10-fold cross-validation estimates of prediction accuracies of ER using all genes by utilizing logistic regression and compare with NNC (2x2 table).
- 3. modify the R markdown document template to report your computation and results in a table format.
- 4. comment on the quality of results
- 5. In the second part of the assignment use Project1fs.R to process a large data set by first removing all genes with sd < 1 and subsequently use Feature selection to pick top 50 genes vs top 100 genes for cross-validation based on the t-test statistic.
- 6. For extra credit please replace centroid based classifier with one utilizing logistic or lasso regression similarly to the first part of the assignment and report on any difficulties.

Reading data

Please add R code that reads data here - reading file: TCGA_breast_cancer_ERpositive_vs_ERnegative_PAM50.tsv

```
## user system elapsed
## 0.141 0.009 0.149
```

Computation

Please add R code that computes the results

```
## user system elapsed
## 1.196 0.079 1.276
```

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code.

Results

These are our results:

5-fold cross validation

	GLM	kNNC
5-fold	mean= $0.0676 \text{ sd} = 0.0232$	
10-fold	mean = 0.0694 sd = 0.02	mean= $0.0637 \text{ sd} = 0.0277$

Discussion

This is what I found out

Part 2

Change eval=TRUE when ready to include Project1fs.R

[1] "top 50 genes"

Х

0.0618 sd = (0.038)

[1] "top 100 genes"

Х

0.0622 sd = (0.0496)