Review of some important concepts (I) Examples of convex and affine sets (II) (§2.2) Operations that preserve convexity (§2.3) Separating and supporting hyperplanes (§2.5)

Convex Sets (II)

Lecture 2, Convex Optimization

National Taiwan University

March 3, 2023

Table of contents

- Review of some important concepts (I)
 - Review of linear algebra topics
 - Singular value decomposition (§A.5.4)
 - Norms
 - Schur complement (§A.5.5)
- Examples of convex and affine sets (II) (§2.2)
 - Norm balls and norm cones (§2.2.3)
 - Polyhedra (§2.2.4)
 - Positive semidefinite cone (§2.2.5)
- Operations that preserve convexity (§2.3)
 - Intersection
 - Affine functions
 - Linear-fractional and perspective functions
- 4 Separating and supporting hyperplanes (§2.5)
 - Separating hyperplane theorem
 - Supporting hyperplanes

Orthogonal Complements

Orthogonal Complement

The orthogonal complement of a nonempty subset S of \mathbf{R}^n , denoted by S^{\perp} (read "S perp"), is the set of all vectors in \mathbf{R}^n that are orthogonal to every vector in S. That is,

$$S^{\perp} = \{ \mathbf{v} \in \mathbf{R}^n \mid \mathbf{v} \cdot \mathbf{u} = 0, \forall \mathbf{u} \in S \}.$$

Properties of Orthogonal Complements

- 1. The orthogonal complement of any nonempty subset of ${f R}^n$ is a subspace of ${f R}^n$
- 2. For any nonempty subset \mathcal{S} of \mathbf{R}^n , we have $\mathcal{S}^\perp = (\operatorname{Span} \mathcal{S})^\perp$. In particular, the orthogonal complement of a basis for a subspace is the same as the orthogonal complement of the subspace.
- 3. For any matrix A, with its ith row being denoted by a_i^T , the orthogonal complement of the row space of A is the null space of A; that is

$$(\operatorname{Span} \{a_i\})^{\perp} = (\mathcal{R}(A^T))^{\perp} = \mathcal{N}(A).$$

Orthogonal Projections

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbf{R}^n . Then, for any vector \mathbf{u} in \mathbf{R}^n , there exist unique vectors \mathbf{w} in W and \mathbf{z} in W^\perp such that $\mathbf{u}=\mathbf{w}+\mathbf{z}$. In addition, if $\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_k\}$ is an orthonormal basis for W, then

$$\mathbf{w} = (\mathbf{u} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{u} \cdot \mathbf{v}_2)\mathbf{v}_2 + \dots + (\mathbf{u} \cdot \mathbf{v}_k)\mathbf{v}_k.$$

Orthogonal Projection

Let W be a subspace of \mathbf{R}^n and $\mathbf{u} \in \mathbf{R}^n$. The orthogonal projection of \mathbf{u} on W is the unique vector \mathbf{w} such that $\mathbf{u} - \mathbf{w} \in W^{\perp}$.

Closest Vector Property

Let W be a subspace of \mathbf{R}^n and \mathbf{u} be a vector in \mathbf{R}^n . Among all vectors in W, the vector closest to \mathbf{u} is the orthogonal projection of \mathbf{u} on W.

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

• Let T be a linear operator on \mathbb{R}^n . A nonzero vector v in \mathbb{R}^n is called an **eigenvector** of T if T(v) is a multiple of v, that is,

$$T(v) = \lambda v$$

for some λ . The scalar λ is called the **eigenvalue** of T that corresponds to v.

• Let A be an $n \times n$ matrix. A nonzero vector v in \mathbf{R}^n is called an eigenvector of A if

$$Av = \lambda v$$

for some scalar λ . The scalar λ is called the **eigenvalue** that corresponds to v.

Diagonalizability

Diagonalizability

An $n \times n$ matrix A is called **diagonalizable** if $A = PDP^{-1}$ for some diagonal $n \times n$ matrix D and some invertible $n \times n$ matrix P.

Diagonalizability and Eigen-decomposition

- and $n \times n$ matrix A is diagonalizable if and only if there is a basis for \mathbf{R}^n consisting of eigenvectors of A.
- lacktriangle If $P \in \mathbf{R}^{n \times n}$ is invertible and $D \in \mathbf{R}^{n \times n}$ is diagonal, then

$$A = PDP^{-1}$$

if and only if the columns of P are a basis for \mathbf{R}^n consisting of eigenvectors of A and the diagonal entries of D are the eigenvalues corresponding to the respective columns of P.

Orthogonal Diagonalizability

Orthogonal Matrix

A matrix P is called an **orthogonal matrix** if $P^TP = I_n$.

Orthogonal Diagonalizability

An $n \times n$ matrix A is called **orthogonally diagonalizable** if $A = PDP^{-1}$ for some diagonal $n \times n$ matrix D and some $n \times n$ orthogonal matrix P.

- If A is orthogonally diagonalizable, then $A = PDP^{-1} = PDP^{T}$.
- Then, we have $A^T = (PDP^T)^T = PD^TP^T = PDP^T = A$, i.e, A is symmetric.
- ullet Conversely, if $A \in \mathbf{S}^n$, then A is orthogonally diagonalizable.
- There exists an orthonormal basis for \mathbb{R}^n in which every vector is an eigenvector of A.

Properties of Symmetric Matrices (1/2)

• Let $A \in \mathbf{S}^n$. Then, there exist a diagonal matrix D and an orthogonal matrix P such that

$$A = PDP^{T}$$
.

• For any $n \geq 1$, we have

$$A^{n} = \underbrace{(PDP^{T})(PDP^{T})\cdots(PDP^{T})}_{n \text{ times}} = \cdots = PD^{n}P^{T}.$$

• If $A \in \mathbf{S}_{+}^{n}$, then all diagonal entries of D are nonnegative, i.e., $D = \mathbf{diag} \ ([\lambda_{1}, \cdots, \lambda_{n}]^{T})$ where $\lambda_{i} \geq 0$ for all i.

Properties of Symmetric Matrices (2/2)

Positive definite matrices and Positive semidefinite matrices

A symmetric matrix $A \in \mathbf{S}^n$ is said to be **positive definite** if for all $v \in \mathbf{R}^n \setminus \{0\}$, $v^T A v > 0$.

A symmetric matrix $A \in \mathbf{S}^n$ is said to be **positive semidefinite** if for all $v \in \mathbf{R}^n$, $v^T A v > 0$.

Eigenvalues of positive-definite and positive semidefin matrices

A symmetric matrix $A \in \mathbf{S}^n$ is positive definite if and only if every eigenvalue of A is positive.

A symmetric matrix $A \in \mathbf{S}^n$ is positive semidefinite if and only if every eigenvalue of A is nonnegative.

Square root of a (positive semidefinite) symmetric matrix

We define $D^{1/2} = \mathbf{diag} \ ([\lambda_1^{1/2}, \cdots, \lambda_n^{1/2}]^T)$ and

$$A^{1/2} - PD^{1/2}P^T$$

Properties of Matrices

Properties of Symmetric Matrices

Let $X \in \mathbf{S}^n$ with eigenvalues $\lambda_1, ..., \lambda_n \in \mathbf{R}$, then

•
$$\operatorname{tr} X = \sum_{k=1}^{n} \lambda_k$$
.

• det
$$X = \prod_{k=1}^{n} \lambda_k$$
.

Some more properties of traces and determinants

- $\mathbf{tr}(AB) = \mathbf{tr}(BA)$ for any $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{n \times m}$.
- $\det(AB) = \det(BA)$ for any $A, B \in \mathbf{R}^{n \times n}$

Singular Value Decomposition (1/4)

Singular Value Decomposition

Suppose $A \in \mathbf{R}^{m \times n}$ with rank A = r. Then A can be factored as

$$A = U\Sigma V^T$$
,

where $U \in \mathbf{R}^{m \times r}$ satisfies $U^T U = I$, $V \in \mathbf{R}^{n \times r}$ satisfies $V^T V = I$, and $\Sigma = \mathbf{diag}(\sigma_1, \dots, \sigma_r)$, with $\sigma_1 > \sigma_2 > \dots > \sigma_r > 0$.

Such a factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular vectors of A, the columns of V are right singular vectors, and the numbers σ_i are the singular values.

The singular value decomposition can be written

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T,$$

where $u_i \in \mathbf{R}^m$ are the left singular vectors, and $v_i \in \mathbf{R}^n$ are the right singular vectors.

Singular Value Decomposition (2/4)

- The singular value decomposition of a matrix A is closely related to the eigenvalue decomposition of the (symmetric, nonnegative definite) matrix $A^TA \in \mathbf{R}^{n \times n}$.
- Using $A = U\Sigma V^T$ we can write

$$A^T A = V \Sigma^2 V^T = \left[\begin{array}{cc} V & \tilde{V} \end{array} \right] \left[\begin{array}{cc} \Sigma^2 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} V & \tilde{V} \end{array} \right]^T$$

where \tilde{V} is any matrix for which $\left[\begin{array}{cc} V & \tilde{V} \end{array}\right]$ is orthogonal.

- It is observed that the nonzero eigenvalues of A^TA are the singular values of A squared, and the associated eigenvectors of A^TA are the right singular vectors of A.
- Similarly, nonzero eigenvalues of AA^T are the singular values of A squared, and the associated eigenvectors of AA^T are the left singular vectors of A.

Singular Value Decomposition (3/4)

ullet The first or largest singular value is also written as $\sigma_{\max}(A)$, and can be expressed as

$$\sigma_{\max}(A) = \sup_{x,y \neq 0} \frac{x^T A y}{\|x\|_2 \|y\|_2} = \sup_{y \neq 0} \frac{\|Ay\|_2}{\|y\|_2},$$

- ¹ showing that the maximum singular value is the ℓ_2 operator norm² of A.
- ullet The minimum singular value of $A \in \mathbf{R}^{m imes n}$ is given by

$$\sigma_{\min}(A) = \begin{cases} \sigma_r(A) & r = \min\{m, n\} \\ 0 & r < \min\{m, n\}, \end{cases}$$

which is positive if and only if A is full rank.

 $^{^1}$ The notation sup denotes supremum, which will be introduced in a subsequent lecture. It can be thought of as \max for now.

²The operator norm is to be defined shortly.

Singular Value Decomposition (4/4)

- The singular values of a symmetric matrix are the absolute values of its nonzero eigenvalues, sorted into descending order.
- The singular values of a symmetric positive semidefinite matrix are the same as its nonzero eigenvalues.
- The condition number of a nonsingular $A \in \mathbf{R}^{n \times n}$, denoted $\operatorname{cond}(A)$ or $\kappa(A)$, is defined as

$$\operatorname{cond}(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}.$$

Norms

Norms

A function $f: \mathbf{R}^n \to \mathbf{R}$ (with $\mathbf{dom}\ f = \mathbf{R}^n$) is called a **norm** if for any $x,y \in \mathbf{R}^n, t \in \mathbf{R}$, we have

- $f(x) \ge 0$ (f is nonnegative).
- f(x) = 0 only if x = 0 (f is definite).
- f(tx) = |t|f(x) (f is homogeneous).
- $f(x+y) \le f(x) + f(y)$ (f satisfies the triangle inequality).

ℓ_p -norm

Let $p \geq 1$. Then the ℓ_p -norm is defined as

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

Question: When p < 1, is $||x||_p$ still a norm?

Examples of ℓ_p -norm

• When p=2, the ℓ_2 -norm is actually the Euclidean norm:

$$||x||_2 = (x_1^2 + \dots + x_n^2)^{1/2}.$$

• When p=1, the ℓ_1 -norm is the sum-absolute-value:

$$||x||_1 = |x_1| + \cdots + |x_n|.$$

• When $p \to \infty$, the ℓ_{∞} -norm is defined as:

$$||x||_{\infty} \triangleq \lim_{n \to \infty} ||x||_p = \lim_{n \to \infty} (|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

It can be shown that $||x||_{\infty} = \max\{|x_1|, \cdots, |x_n|\}.$

Unit Ball

Unit ball

Given a norm $||\cdot||$, the **unit ball** with respect to the norm is defined as

$${x \mid ||x|| \le 1}.$$

• What are the unit balls with respect to the ℓ_p -norm with $p=1,2,\infty$?

P-Quadratic Norms

• For $P \in \mathbf{S}_{++}^n$, the **P-quadratic norm** is defined as

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2.$$

- If rank P < n, is $||x||_P$ still a norm?
- The unit ball of a quadratic norm,

$$\{x \in \mathbf{R}^n \mid ||x||_P \le 1\},\,$$

is an ellipsoid.

Matrix Norms – Norms Defined On $\mathbf{R}^{m \times n}$ (1/2)

Matrix Norms

A function $f: \mathbf{R}^{m \times n} \to \mathbf{R}$ (with dom $f = \mathbf{R}^{m \times n}$) is called a **norm** if for any $X, Y \in \mathbf{R}^{m \times n}, t \in \mathbf{R}$, we have

- $f(X) \ge 0$ (f is nonnegative).
- f(X) = 0 only if X = 0 (f is definite).
- f(tX) = |t|f(X) (f is homogeneous).
- $f(X+Y) \le f(X) + f(Y)$ (f satisfies the triangle inequality).
- The Frobenius norm, defined on $\mathbf{R}^{m \times n}$, is

$$||X||_F = (\mathbf{tr} \ (X^T X))^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}.$$

- The sum-absolute-value norm: $||X||_{\text{sav}} = \sum_{i=1}^{m} \sum_{j=1}^{n} |X_{ij}|$.
- The maximum-absolute-value norm:

$$||X||_{\text{max}} = \max\{|X_{ij}| \mid i = 1, \dots, m, j = 1, \dots, n\}.$$

Matrix Norms – Norms Defined On $\mathbf{R}^{m \times n}$ (2/2)

• Suppose $||\cdot||_a$ and $||\cdot||_b$ are norms on \mathbf{R}^m and \mathbf{R}^n , respectively. The **operator norm** of $X \in \mathbf{R}^{m \times n}$, induced by the norms $||\cdot||_a$ and $||\cdot||_b$, is defined as

$$||X||_{a,b} = \sup\{||Xu||_a \mid ||u||_b \le 1\}.$$

• If a = b = 2, we obtain the **spectral norm** of X, which equals to the maximum singular value of X:

$$||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}.$$

It is also called ℓ_2 -norm of X.

Schur complement

Schur complement

Consider a matrix $X \in \mathbf{S}^n$ partitioned as

$$X = \left[\begin{array}{cc} A & B \\ B^T & C \end{array} \right]$$

where $A \in \mathbf{S}^k$. If $\det A \neq 0$, the matrix

$$S = C - B^T A^{-1} B$$

is called the **Schur complement** of A in X.

- It can be shown that
 - \bigcirc det $X = \det A \det S$.
 - (2) $X \succ 0$ if and only if $A \succ 0$ and $S \succ 0$.
 - \bullet If $A \succ 0$, then $X \succeq 0$ if and only if $S \succeq 0$.

Norm balls and norm cones (§2.2.3) Polyhedra (§2.2.4) Positive semidefinite cone (§2.2.5)

- Review of some important concepts (I)
 - Review of linear algebra topics
 - Singular value decomposition (§A.5.4)
 - Norms
 - Schur complement (§A.5.5)
- 2 Examples of convex and affine sets (II) (§2.2)
 - Norm balls and norm cones (§2.2.3)
 - Polyhedra (§2.2.4)
 - Positive semidefinite cone (§2.2.5)
- 3 Operations that preserve convexity (§2.3)
 - Intersection
 - Affine functions
 - Linear-fractional and perspective functions
- 4 Separating and supporting hyperplanes (§2.5)
 - Separating hyperplane theorem
 - Supporting hyperplanes

Norm Balls and Norm Cones

Norm Balls and Norm Cones

- Suppose $||\cdot||$ is a norm on \mathbf{R}^n .
- It can be shown that a **norm ball** of radius r and center x_c , given by $\{x \mid ||x x_c|| \le r\}$, is convex.
- The norm cone associated with the norm || · || is the set

$$C = \{(x, t) \mid ||x|| \le t\} \subseteq \mathbf{R}^{n+1}.$$

Second-Order Cone

The **second-order cone** is the norm cone for the Euclidean norm, i.e.,

$$C = \left\{ (x,t) \in \mathbf{R}^{n+1} \mid ||x||_2 \le t \right\}$$
$$= \left\{ \begin{bmatrix} x \\ t \end{bmatrix} \mid \begin{bmatrix} x \\ t \end{bmatrix}^T \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le 0, \ t \ge 0 \right\}.$$

It is also known as the quadratic cone, the Lorentz cone, or ice-cream cone.

Polyhedra

Polyhedra

A **polyhedron** is defined as the solution set of a finite number of linear equations and linear inequalities:

$$\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, \dots, m, c_j^T x = d_j, j = 1, \dots, p\}.$$

 A polyhedron is the intersection of a finite number of halfspaces and hyperplanes.

Polyhedra

- Polyhedra are convex sets.
- Affine sets (including subspaces, hyperplanes, and lines) are polyhedra.
- Rays, line segments, and hyperplanes are polyhedra.
- A bounded³ polyhedron is called a polytope.

³A subset C of \mathbf{R}^n is called bounded if there exists B>0 such that any $x\in C$ satisfies $|x_i|\leq B$ for any $i\in\{1,2,...n\}$.

Polyhedra

The polyhedron

$$\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, \dots, m, c_j^T x = d_j, j = 1, \dots, p\}$$

can be rewritten as

$$\mathcal{P} = \{x \mid Ax \leq b, Cx = d\}$$

where

$$A = \left[egin{array}{c} a_1^T \ dots \ a_m^T \end{array}
ight] ext{ and } C = \left[egin{array}{c} c_1^T \ dots \ c_n^T \end{array}
ight],$$

and the symbol \leq denotes vector inequality or componentwise inequality in \mathbf{R}^m : $u \leq v$ means $u_i \leq v_i$ for $i = 1, \dots, m$.

Polyhedra – An example

The set of nonnegative numbers

Let ${\bf R}_+$ denote the set of nonnegative numbers. Let ${\bf R}_{++}$ denote the set of positive numbers.

Nonnegative orthant

The nonnegative orthant in \mathbb{R}^n is

$$\mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \ge 0, \ i = 1, \dots, n\} = \{x \in \mathbf{R}^{n} \mid x \succeq 0\}.$$

• The nonnegative orthant is a polyhedron and a cone (called a polyhedral cone).

Simplexes – Another example of polyhedra

Affinely Independent

The k+1 points $v_0, v_1, \dots, v_k \in \mathbf{R}^n$ are called **affinely** independent if $\{v_1 - v_0, \dots, v_k - v_0\}$ is linearly independent.

Simplex

Suppose the k+1 points $v_0, v_1, \cdots, v_k \in \mathbf{R}^n$ are affinely independent. The simplex determined by these k+1 points is

$$C = \mathbf{conv} \ \left\{ v_0, \cdots, v_k \right\} = \left\{ \theta_0 v_0 + \cdots + \theta_k v_k \mid \theta \succeq 0, \mathbf{1}^T \theta = 1 \right\}$$

where ${f 1}$ is the vector with all entries one.

The above defined simplex is sometimes called a
 k-dimensional simplex in Rⁿ, since its affine dimension is k.

Examples of Simplexes

- A 1-dimensional simplex is a line segment.
- A 2-dimensional simplex is a triangle (including its interior).
- A 3-dimensional simplex is a tetrahedron.

Unit Simplex

The unit simplex in \mathbb{R}^n is the *n*-dimensional simplex determined by the zero vector and the unit vectors: $\{0, e_1, \dots, e_n\}$.

The unit simplex can be expressed as

$$\{x \mid x \succeq 0, \mathbf{1}^T x \le 1\}.$$

Example of Simplexes – Probability Simplex

- The probability simplex in \mathbb{R}^n is the (n-1)-dimensional simplex determined by the unit vectors $\{e_1, \dots, e_n\}$.
- It can be expressed as

$$\left\{x \mid x \succeq 0, \quad \mathbf{1}^T x = 1\right\}.$$

• Vectors in the probability simplex correspond to probability distributions on a set with n elements.

Expressing A Simplex as A Polyhedron

Consider the simplex

$$C = \operatorname{conv}\ \left\{v_0, \cdots, v_k\right\} = \left\{\theta_0 v_0 + \cdots + \theta_k v_k \mid \theta \succeq 0, \mathbf{1}^T \theta = 1\right\}$$

Let

$$B = [v_1 - v_0 \quad \cdots \quad v_k - v_0] \in \mathbf{R}^{n \times k}$$

and $A = \left[egin{array}{c} A_1 \\ A_2 \end{array}
ight] \in \mathbf{R}^{n imes n}$ be a nonsingular matrix such that

$$AB = \left[\begin{array}{c} A_1 \\ A_2 \end{array} \right] B = \left[\begin{array}{c} I_k \\ 0_{(n-k)\times k} \end{array} \right].$$

ullet Then, we have $x \in C$ if and only if

$$A_2x = A_2v_0, \quad A_1x \succeq A_1v_0, \quad \mathbf{1}^T A_1x \le 1 + \mathbf{1}^T A_1v_0.$$

(a form of a polyhedron)

Convex Hull Description of Polyhedra (1/2)

ullet Consider the convex hull of the finite set $\{v_1,\cdots,v_k\}$,

$$\begin{aligned} & \operatorname{conv}\left\{v_1,\cdots,v_k\right\} \\ &= & \left\{\theta_1v_1+\cdots+\theta_kv_k \mid \theta_i \geq 0, \ i=1,\cdots,k, \ \theta_1+\cdots+\theta_k=1\right\} \\ &= & \left\{\theta_1v_1+\cdots+\theta_kv_k \mid \theta \succeq 0, \ \mathbf{1}^T\theta=1\right\} \end{aligned}$$

- It is a polyhedron and is bounded. (why?)
- How can we express $\operatorname{\textbf{conv}}\{v_1,\cdots,v_k\}$ in the form

$$\mathcal{P} = \{x \mid a_i^T x \leq b_i, \ i = 1, \dots, m, \ c_i^T x = d_i, j = 1, \dots, p\}$$
?

Convex Hull Description of Polyhedra (2/2)

Conversely, how do we express a polyhedron

$$\mathcal{P} = \left\{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m, \ c_j^T x = d_j, \ j = 1, \dots, p \right\}$$

in the form of convex hull description **conv** $\{v_1, \dots, v_k\}$?

Example: consider

$$C = \{x \mid |x_i| \le 1, \ i = 1, \dots, n\}$$

(with 2n linear inequalities). Then we have

$$C = \mathsf{conv}\left\{v_1, \cdots, v_{2^n}\right\},\,$$

where v_1, \dots, v_{2^n} are the 2^n vectors whose components are all 1 or -1.

Notations for Sets of Symmetric Matrices

• The notation S^n denotes the set of symmetric $n \times n$ matrices:

$$\mathbf{S}^n = \left\{ X \in \mathbf{R}^{n \times n} \mid X = X^T \right\}.$$

- S^n is a vector space with dimension n(n+1)/2.
- The notation \mathbb{S}^n_+ denotes the set of symmetric positive semidefinite matrices:

$$\mathbf{S}_{+}^{n} = \{ X \in \mathbf{S}^{n} \mid X \succeq 0 \} .$$

• The notation S_{++}^n denotes the set of symmetric positive definite matrices:

$$\mathbf{S}_{++}^n = \{ X \in \mathbf{S}^n \mid X \succ 0 \} .$$

Isomorphism of Symmetric Matrix Subspace (1/2)

Symmetric Vectorization

We define the symmetric vectorization function $svec: \mathbf{S}^n \to \mathbf{R}^{n(n+1)/2}$ with $\mathbf{dom}\ svec = \mathbf{S}^n$ and

$$\operatorname{svec}(Y) \triangleq \left[\begin{array}{c} Y_{11} \\ \sqrt{2}Y_{12} \\ Y_{22} \\ \sqrt{2}Y_{13} \\ \sqrt{2}Y_{23} \\ Y_{33} \\ \vdots \\ Y_{nn} \end{array} \right] \in \mathbf{R}^{n(n+1)/2}.$$

Isomorphism of Symmetric Matrix Subspace (2/2)

The symmetric vectorization is an isometric isomorphism

It can be shown that svec is an isometric isomorphism:

- $\|\operatorname{svec} X \operatorname{svec} Y\|_2 = \|X Y\|_F$.
- $(\operatorname{svec} X)^T \operatorname{svec} Y = \operatorname{tr} (XY).$

Norm balls and norm cones (§2.2.3 Polyhedra (§2.2.4) Positive semidefinite cone (§2.2.5)

Positive Semidefinite Cone

Convexity of Positive Semidefinite Cones

The set \mathbf{S}^n_+ is a convex cone:

if
$$\theta_1, \theta_2 \geq 0$$
 and $A, B \in \mathbf{S}^n_+$, then $\theta_1 A + \theta_2 B \in \mathbf{S}^n_+$

Proof:

Positive Semidefinite Cone in S^2

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2} \Longleftrightarrow x \ge 0, \quad z \ge 0, \quad xz \ge y^{2}.$$

- Review of some important concepts (I)
 - Review of linear algebra topics
 - Singular value decomposition (§A.5.4)
 - Norms
 - Schur complement (§A.5.5)
- 2 Examples of convex and affine sets (II) (§2.2)
 - Norm balls and norm cones (§2.2.3)
 - Polyhedra (§2.2.4)
 - Positive semidefinite cone (§2.2.5)
- Operations that preserve convexity (§2.3)
 - Intersection
 - Affine functions
 - Linear-fractional and perspective functions
- 4 Separating and supporting hyperplanes (§2.5)
 - Separating hyperplane theorem
 - Supporting hyperplanes

Intersection Preserves Convexity

Intersection Preserves Convexity

If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex.

Intersection of an infinite number of sets

If S_{α} is convex for every $\alpha \in \mathcal{A}$, then

$$\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$$

is convex. Here, ${\cal A}$ is the set of indices and can be finite or infinite.

• Example: A polyhedron is the intersection of halfspaces and hyperplanes (which are convex), and therefore is convex.

Positive Semidefinite Cone

Positive Semidefinite Cone

The positive semidefinite cone \mathbf{S}^n_+ can be expressed as

$$\bigcap_{z \neq 0} \left\{ X \in \mathbf{S}^n \mid z^T X z \ge 0 \right\}$$

and is convex.

• For each $z \neq 0$, $z^T X z$ is a linear function of X, so the set

$$\left\{ X \in \mathbf{S}^n \mid z^T X z \ge 0 \right\}$$

is a halfspace in \mathbf{S}^n

An Example

Consider the set

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = \sum_{k=1}^{m} x_k \cos kt$.

 The set S can be expressed as the intersection of an infinite number of slabs:

$$S = \bigcap_{|t| \le \pi/3} S_t$$

where

$$S_t = \left\{ x \mid -1 \le (\cos t, \cdots, \cos mt)^T x \le 1 \right\}.$$

ullet So. S is convex.

An Example

$$p(t) = \sum_{k=1}^{m} x_k \cos kt$$

Convex Sets as Intersection of Halfspaces

- We have seen that the intersection of (possibly infinite) halfspaces is convex.
- It will be shown that a converse is true: every closed convex set S is the intersection of (usually infinite) halfspaces.
- A closed convex set $S \subseteq \mathbf{R}^n$ is the intersection of all halfspaces that contain it:

$$S = \bigcap_{\substack{S \subseteq \mathcal{H} \subseteq \mathbf{R}^n \\ \mathcal{H} \text{ is a halfspace}}} \mathcal{H}.$$

Affine functions

Affine function

A function $f: \mathbf{R}^n \to \mathbf{R}^m$ is **affine** if it is a sum of a linear function and a constant. That is, it has the form

$$f(x) = Ax + b,$$

where $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$.

Affine functions preserve convexity

Suppose $S \subseteq \mathbf{R}^n$ is convex and $f : \mathbf{R}^n \to \mathbf{R}^m$ is an affine function. Then the image of S under f,

$$f(S) = \{ f(x) \mid x \in S \},\,$$

is convex.

Affine functions

Affine functions preserve convexity

Suppose $S \subseteq \mathbf{R}^n$ is convex and $f: \mathbf{R}^n \to \mathbf{R}^m$ is an affine function.

Then the **image** of S under f,

$$f(S) = \{ f(x) \mid x \in S \},\,$$

is convex.

Inverse Image under Affine functions

Suppose $S \subseteq \mathbf{R}^n$ is convex and $f : \mathbf{R}^k \to \mathbf{R}^n$ is an affine function. Then the inverse image of S under f,

$$f^{-1}(S) = \{ x \mid f(x) \in S \},\,$$

is convex.

Examples - Scaling, Translation, and Projection

• Scaling: If $S \subseteq \mathbf{R}^n$ is convex, then for any $\alpha \in \mathbf{R}$, the set

$$\alpha S = \{ \alpha x \mid x \in S \}$$

is convex.

• Translation: If $S \subseteq \mathbf{R}^n$ is convex, then for any $a \in \mathbf{R}^n$, the set

$$S + a = \{x + a \mid x \in S\}$$

is convex.

• Projection onto some coordinates: If $S \subseteq \mathbf{R}^m \times \mathbf{R}^n$ is convex, then

$$T = \{x_1 \in \mathbf{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbf{R}^n \}$$

is convex

Cartesian Products of Sets and Sums of Sets

Cartesian Product of two sets

Suppose $S_1 \subseteq \mathbf{R}^m, S_2 \subseteq \mathbf{R}^n$, then the **Cartesian product** of S_1 and S_2 is defined as

$$S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}.$$

• If S_1 and S_2 are convex, then $S_1 \times S_2$ is convex.

Sum of two sets

The sum of two sets, $S_1, S_2 \subseteq \mathbf{R}^n$, is defined as

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}.$$

• If S_1 and S_2 are convex, then $S_1 + S_2$ is convex.

Partial Sums of Sets

Partial sum of two sets

The partial sum of $S_1, S_2 \subseteq \mathbf{R}^n \times \mathbf{R}^m$ is defined as

$$S = \{(x, y_1 + y_2) \mid (x, y_1) \in S_1, (x, y_2) \in S_2, x \in \mathbf{R}^n, y_i \in \mathbf{R}^m, i = 1, 2\}.$$

- Partial sums of convex sets are convex.
- Partial sums are general cases for set intersection (m=0) and set addition (n=0).

Examples - Polyhedra

• The polyhedron $\{x \mid Ax \leq b\}$ can be expressed as the inverse image of the nonnegative orthant under the affine function f(x) = b - Ax:

$$\{x \mid Ax \leq b\} = \{x \mid f(x) \in \mathbf{R}_+^m\}.$$

• More generally, the polyhedron $\{x \mid Ax \leq b, \ Cx = d\}$ can be expressed as the inverse image of the Cartesian product of the nonnegative orthant and the origin under the affine function f(x) = (b - Ax, d - Cx):

$$\{x \mid Ax \leq b, \ Cx = d\} = \{x \mid f(x) \in \mathbf{R}_{+}^{m} \times \{0\}\}.$$

Examples - Ellipsoid

• The ellipsoid

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \right\},\,$$

where $P \in \mathbf{S}^n_{++}$ is the image of the unit Euclidean ball $\{u \mid ||u||_2 \leq 1\}$ under the affine mapping $f(u) = P^{1/2}u + x_c$.

• It is also the inverse image of the unit Euclidean ball under the affine mapping $g(x) = P^{-1/2}(x - x_c)$.

Perspective Functions

Perspective function

The perspective function $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$, with domain dom $P = \mathbf{R}^n \times \mathbf{R}_{++}$, is defined as P(z,t) = z/t.

The perspective function can be interpreted as the action of a pin-hole camera.

Perspective Functions Preserve Convexity

• Let $C \subseteq \text{dom } P = \mathbf{R}^n \times \mathbf{R}_{++}$ be convex, then its image under the perspective function $P : \mathbf{R}^{n+1} \to \mathbf{R}^n$, defined as P(z,t) = z/t, i.e.,

$$P(C) = \{ P(x) \mid x \in C \}$$

is also convex.

Proof idea: A line segment in C is mapped to a line segment in P(C) under $P(\cdot)$.

Perspective Functions Preserve Convexity

- The inverse image of a convex set under the perspective function is also convex:
- If $C \subseteq \mathbf{R}^n$ is convex, then

$$P^{-1}(C) = \left\{ (x,t) \in \mathbf{R}^{n+1} \mid x/t \in C, \ t > 0 \right\}$$

is convex

Linear-fractional functions

 A linear-fractional function is formed by composing the perspective function with an affine function.

Linear-fractional functions

Let $g: \mathbf{R}^n \to \mathbf{R}^{m+1}$ be affine:

$$g(x) = \left[\begin{array}{c} A \\ c^T \end{array} \right] x + \left[\begin{array}{c} b \\ d \end{array} \right],$$

where $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m, c \in \mathbf{R}^n$, and $d \in \mathbf{R}$. The function $f : \mathbf{R}^n \to \mathbf{R}^m$ given by $f = P \circ g$, i.e.,

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, dom $f = \left\{ x \mid c^T x + d > 0 \right\}$,

is called a linear-fractional (or projective) function.

 Affine functions and linear functions are special cases of linear-fractional functions.

Projective Interpretation (1/2)

• A linear-fractional function can be represented as a matrix

$$Q = \begin{bmatrix} A & b \\ c^T & d \end{bmatrix} \in \mathbf{R}^{(m+1)\times(n+1)}.$$

• The matrix Q maps the point $\left[\begin{array}{c} x \\ 1 \end{array}\right]$ to $\left[\begin{array}{c} Ax+b \\ c^Tx+d \end{array}\right]$, a scalar multiple of $\left[\begin{array}{c} f(x) \\ 1 \end{array}\right]$.

Projective Interpretation (2/2)

- Let us associate \mathbf{R}^n with a set of rays in \mathbf{R}^{n+1} as follows.
- ullet For any $z\in {f R}^n$ we associate the ray

$$\mathcal{P}(z) = \left\{ t \left[\begin{array}{c} z \\ 1 \end{array} \right] \mid t \ge 0 \right\}$$

in \mathbf{R}^{n+1}

- Conversely, any ray in \mathbf{R}^{n+1} , with base at the origin and last component which takes on positive value, can be written as $\mathcal{P}(v) = \left\{ t \left[\begin{array}{c} v \\ 1 \end{array} \right] \;\middle|\; t \geq 0 \right\} \; \text{for some} \; v \in \mathcal{R}^n.$
- ullet The correspondence ${\cal P}$ is therefore one-to-one and onto.
- ullet The linear-fractional function f can be expressed as

$$f(x) = \mathcal{P}^{-1}(Q\mathcal{P}(x)).$$

Linear-fractional Functions Preserve Convexity

- Linear-fractional functions preserve convexity.
- If C is convex and $C \subseteq \operatorname{dom} f = \{x \mid c^T x + d > 0\}$, then its image f(C) is convex.
 - Proof idea: $f = P \circ g$ where P is the perspective function and g is an affine function.
- \bullet Similarly, if $C\subseteq {\bf R}^n$ is convex, then the inverse image $f^{-1}(C)$ is convex.

Linear-fractional Functions – An Example

ullet A set $C\subseteq {f R}^2$ and its image under the linear-fractional function

$$f(x) = \frac{x}{x_1 + x_2 + 1}$$
, dom $f = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid x_1 + x_2 + 1 > 0 \right\}$.

Linear-fractional Functions - An Example

- Suppose u and v are random variables that take on values in $\{1,...,n\}$ and $\{1,...,m\}$, respectively.
- Let $p_{ij} = \operatorname{prob}(u = i, v = j)$. Then the conditional probability $f_{ij} = \operatorname{prob}(u = i | v = j)$ is

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}.$$

• Then, f is obtained by a linear-fractional mapping from p. (what is the mapping?)

- 1 Review of some important concepts (I)
 - Review of linear algebra topics
 - Singular value decomposition (§A.5.4)
 - Norms
 - Schur complement (§A.5.5)
- 2 Examples of convex and affine sets (II) (§2.2)
 - Norm balls and norm cones (§2.2.3)
 - Polyhedra (§2.2.4)
 - Positive semidefinite cone (§2.2.5)
- 3 Operations that preserve convexity (§2.3)
 - Intersection
 - Affine functions
 - Linear-fractional and perspective functions
- 4 Separating and supporting hyperplanes (§2.5)
 - Separating hyperplane theorem
 - Supporting hyperplanes

Separating Hyperplane Theorem (1/2)

Separating Hyperplane

The hyperplane $\{x \mid a^Tx = b\}$ is called a **separating hyperplane** for the sets C and D, or is said to **separate** the sets C and D if $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

Separating Hyperplane Theorem (2/2)

Separating Hyperplane Theorem

Suppose C and D are two convex sets that do not intersect, i.e., $C \cap D = \emptyset$. Then, there exist $a \neq 0$ and b such that the hyperplane $\{x \mid a^Tx = b\}$ separates C and D.

Separating Hyperplane Theorem – Proof of a Special Case (1/2)

- Consider that C and D are both convex, closed, and bounded.
- Assume that the **Euclidean distance** between C and D, defined as

$$dist(C, D) = \inf \{ ||u - v||_2 \mid u \in C, v \in D \},\$$

is positive.

• Since C and D are both closed and bounded, there exist $c \in C$ and $d \in D$ such that

$$||c-d||_2 = \operatorname{dist}(C,D).$$

Separating Hyperplane Theorem – Proof of a Special Case (2/2)

Let

$$a = d - c$$
, $b = \frac{||d||_2^2 - ||c||_2^2}{2}$.

• Then, it can be shown that the affine function

$$f(x) = a^{T}x - b = (d - c)^{T}\left(x - \frac{d + c}{2}\right)$$

is nonpositive on C and nonnegative on D.

Example - A Convex Set and An Affine Set

- Suppose $C \subseteq \mathbf{R}^n$ is convex and $D \subseteq \mathbf{R}^n$ is affine, i.e., $D = \{Fu + g | u \in \mathbf{R}^m\}$, where $F \in \mathbf{R}^{n \times m}$, $g \in \mathbf{R}^n$.
- Suppose C and D are disjoint, so by the separating hyperplane theorem there are $a \neq 0$ and b such that $a^T x \leq b$ for all $x \in C$ and $a^T x > b$ for all $x \in D$.
- $\bullet : a^T x \ge b$ for all $x \in D$, $a^T F u \ge b a^T g$ for all $u \in \mathbf{R}^m$.
- But a linear function is bounded below on \mathbf{R}^m only when it is zero, so we conclude $a^TF=0$ (and hence, $b\leq a^Tg$).
- Thus we conclude that there exists $a \neq 0$ such that $F^T a = 0$ and $a^T x \leq a^T q$ for all $x \in C$.

Convex Sets as Intersection of Halfspaces (Revisit)

- We have seen that the intersection of (possibly infinite) halfspaces is convex.
- It will be shown that a converse is true: every closed convex set S is the intersection of (usually infinite) halfspaces.
- A closed convex set S is the intersection of all halfspaces that contain it:

$$S = \bigcap_{\substack{S \subseteq \mathcal{H} \subseteq \mathbf{R}^n \\ \mathcal{H} \text{ is a halfspace}}} \mathcal{H}.^4$$

⁴In the text book, it was written as $S = \bigcap \{\mathcal{H} \mid \mathcal{H} \text{ halfspace}, S \subseteq \mathcal{H}\}$.

Strict Separation of Convex Sets

Strict separation

For two sets $C,D\subseteq \mathbf{R}^n$, if there exists $a\in \mathbf{R}^n,b\in \mathbf{R}$ such that

$$a^T x < b \ \forall x \in C \ \text{and} \ a^T x > b \ \forall x \in D,$$

then C and D are said to be **strictly separable**, and the hyperplane $\left\{x\mid a^Tx=b\right\}$ is called **strict separation** of C and D.

 Remark: The separating hyperplane theorem only dictates that two disjoint convex sets are separated by a hyperplane. A strict separation is not guaranteed (even when the sets are closed).

Example - A Point and A Closed Convex Set

- Let C be a closed convex set and $x_0 \notin C$. Then there exists a hyperplane that strictly separates $\{x_0\}$ from C.
- Proof idea:
 - The two sets C and $B(x_0, \epsilon)$ do not intersect for some $\epsilon > 0$.
 - Apply the separating hyperplane theorem on C and $B(x_0,\epsilon)$ (getting a^T and b).
 - The affine function

$$f(x) = a^T x - b - \epsilon ||a||_2 / 2$$

strictly separates C and $\{x_0\}$.

 Corollary: A closed convex set is the intersection of all halfspaces that contain it.

Converse of Separating Hyperplane Theorems

- Question: If there exists a hyperplane that separates convex sets C and D, does this imply C and D are disjoint?
 - (No. Consider $C = D = \{0\} \subseteq \mathbf{R}$.)
- Suppose C and D are convex sets, with C open, and there
 exists an affine function f that is nonpositive on C and
 nonnegative on D. Then C and D are disjoint.
 - Hint: f is negative on C.

Theorem

Any two convex sets, at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Supporting Hyperplanes (1/2)

Supporting hyperplanes

Suppose $C \subseteq \mathbf{R}^n$, and x_0 is a point in its boundary \mathbf{bd} C, i.e.,

$$x_0 \in \mathbf{bd}\ C = \mathbf{cl}\ C \setminus \mathbf{int}\ C.^5$$

If $a \neq 0$ satisfies $a^Tx \leq a^Tx_0$ for all $x \in C$, then the hyperplane $\left\{x \mid a^Tx = a^Tx_0\right\}$ is called a **supporting hyperplane** to C at the point x_0 .

- This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x \mid a^Tx = a^Tx_0\}$.
- The hyperplane is tangent to C at x_0 , and the halfspace $\{x \mid a^Tx \leq a^Tx_0\}$ contains C.

⁵The notation cl means the closure of a set, a concept that will be formally introduced in the next lecture.

Supporting Hyperplanes (2/2)

- This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x|a^Tx=a^Tx_0\}$.
- The hyperplane is tangent to C at x_0 , and the halfspace $\{x \mid a^Tx \leq a^Tx_0\}$ contains C.

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

For any nonempty convex set C, and any $x_0 \in \mathbf{bd}$ C, there exists a supporting hyperplane to C at x_0 .

Proof: Use the separating hyperplane theorem.

- If int $C \neq \emptyset$: then by applying the separating hyperplane theorem on $\{x_0\}$ and int C, the statement is proved.
- If int $C=\varnothing$: then C lies in an affine set of dimension less than n. Then any hyperplane that contains this affine set contains both C and x_0 and therefore is a supporting hyperplane.

Converse of the Supporting Hyperplane Theorem

Converse of the Supporting Hyperplane Theorem

If a set C is closed, has nonempty interior, and has a supporting hyperplane at any $x_0 \in \mathbf{bd}$ C, then C is convex.