

_{₹ 1.} 9/19/1

05893081 GENERAL-PURPOSE LIQUID OIL COMPOSITION

Pub. No.: 10-176181 A]

Published: June 30, 1998 (19980630)

Inventor: GOTO NAOHIRO

WATANABE HIROYUKI NISHIDE TSUTOMU YASUKAWA TAKUJI

Applicant: KAO CORP [000091] (A Japanese Company or Corporation), JP (Japan)

Application No.: 09-278827 [JP 97278827]

Filed: October 13, 1997 (19971013)

International Class: [6] C11C-003/06; A23D-009/00; A23D-009/007; C11B-005/00;

C12P-007/64

JAPIO Class: 14.6 (ORGANIC CHEMISTRY -- Liquid Fuel, Oils & Fats); 11.4

(AGRICULTURE -- Food Products)

ABSTRACT

PROBLEM TO BE SOLVED: To obtain a liquid oil which inhibits the increase in triglycerides (neutral fats) in blood, hardly accumulates in a human body, and can be used for all the applications of edible oils by selecting an oil which contains 1,3—diglycerides in a specified amount or higher and monoglycerides in an amount lower than a specified amount and in which unsaturated fatty acids account for at least a specified proportion of all the fatty acids constituting the diglycerides.

SOLUTION: This liquid oil contains 40–90wt.% 1,3–diglycerides and lower than 1.5wt.% monoglycerides, and at least 93wt.% of the fatty acids constituting the diglycerides are unsaturated Such an oil is obtained by using, as the raw material, fatty acids obtained e.g. by removing saturated fatty acids by wintering from fatty acids obtained by hydrolyzing rapeseed oil, soybean oil, etc. Thus obtained oil preferably has a smoke point of 170 deg.C or higher and an acid value of 1.0 or lower. Preferably an antioxidant and a crystallization inhibitor having an HLB of 4 or lower are added to the oil.

JAPIO (Dialog® File 347); (c) 2001 JPO & JAPIO All rights reserved

C1997-2001 The Dialog Corporation -

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-176181

(43)公開日 平成10年(1998) 6月30日

(51) Int.Cl. ⁶	識別記号	F I
C11C 3/06		C11C 3/06
A 2 3 D 9/00	506	A 2 3 D 9/00 5 0 6
9/007		C11B 5/00
•		C12P 7/64
C11B 5/00		A 2 3 D 9/00 5 1 6
# C12P 7/64		審査請求 未請求 請求項の数10 OL (全 8 頁)
(21)出廢番号	特麗平9-278827	(71)出願人 000000918
(21)山映伊万	TURN TO DIOCE.	花王株式会社
(00) IIIEE E	平成9年(1997)10月13日	東京都中央区日本橋茅場町1丁目14番10号
(22)出願日	中成3 中(1001) 10/110 日	(72)発明者 後藤 直宏
care to the same of the	特願平8-276072	茨城県鹿島郡神栖町東深芝20 花王株式会
(31)優先権主張番号	平8 (1996)10月18日	社研究所内
(32)優先日	中 (1990/10 / 10 L 日本 (JP)	(72) 発明者 渡邊 浩幸
(33)優先権主張国	DA (JF)	栃木県芳賀郡市貝町赤羽2606 花王株式会
		社研究所内
		(72) 発明者 西出 勤
		茨城県鹿島郡神栖町東深芝20 花王株式会
		社研究所内
		最終頁に続く
		(74)代理人 弁理士 古谷 磐 (外3名)

(54) 【発明の名称】 液状汎用型油脂組成物

(57)【要約】

【課題】 食後の血中トリグリセリド(中性脂肪)の増加が抑制され、体への蓄積性が少なく、しかも保存安定性及び風味が良好で汎用性がある食用油脂組成物を提供する。

【解決手段】 油脂中に 1,3-ジグリセリドを40重量% 以上含有し、モノグリセリドを1.5重量%未満含有する油脂組成物であって、且つ油脂中のジグリセリドの構成脂肪酸中、93重量%以上が不飽和脂肪酸である液状汎用型油脂組成物。

2

【特許請求の範囲】

【請求項1】 油脂中に 1,3-ジグリセリドを40~90重 量%およびモノグリセリドを1.5重量%未満含有し並び に油脂中のジグリセリドの構成脂肪酸中93重量%以上が 不飽和脂肪酸である液状汎用型油脂組成物。

1

【請求項2】 油脂中に1.3-ジグリセリドを45~80重 量%およびモノグリセリドを1.5重量%未満含有し並び に油脂中のジグリセリドの構成脂肪酸中93重量%以上が 不飽和脂肪酸であり、さらに不飽和脂肪酸中のモノ不飽 和の脂肪酸含有量が60重量%以下である請求項1に記載 10 した組成物。

グリセリドの構成脂肪酸が大豆油脂肪酸 【請求項3】 からウインタリングにより飽和脂肪酸を除去した脂肪酸 である請求項2に記載した組成物。

【請求項4】 発煙点が 170℃以上である請求項1~3 のいずれか1項に記載した組成物。

【請求項5】 酸価(AV)が 1.0以下である請求項1 ~3のいずれか1項に記載した組成物。

1種又は2種類以上の抗酸化剤をさらに 【請求項6】 含む請求項1~3のいずれか1項に記載した組成物。

【請求項7】 HLBが4以下である結晶抑制剤をさら に含む請求項1~3のいずれか1項に記載した組成物。

【請求項8】 抗酸化剤が天然抗酸化剤、トコフェロー ル、アスコルビルパルミテート及びリン脂質からなる群 から選ばれ、油脂に対して50~2000ppm含む請求項6に 記載した組成物。

【請求項9】 抗酸化剤としてアスコルビルパルミテー トとトコフェロールを併用する請求項8に記載した組成

【請求項10】 結晶抑制剤がポリグリセリン脂肪酸エ 30 ステル、ショ糖脂肪酸エステル及びソルビタン脂肪酸エ ステルからなる群から選ばれ、油脂に対して200~5000p pm含む請求項7に記載した組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、一般に使用されて いる食用油脂と比較して、食後の血中トリグリセリド (中性脂肪) の増加が抑制され、体への蓄積性が少な く、しかも保存安定性及び風味が良好で汎用性(低温で も液状であって、通常の調理油に代えて使用可能)があ 40 る食用油脂組成物に関するものである。

[0002]

【従来の技術】人は必要なカロリーを主に糖質及び脂質 から摂取しているが、現代のようにともすれば栄養の摂 取の仕方が偏り、しかも摂取カロリー量が過剰となるよ うな状態では、肥満を助長し、成人病などの問題を引き 起こす原因となる。特に近年、先進諸国の食生活におい ては脂質の摂取量は増大しており、このことは血中トリ グリセリド (中性脂肪) 濃度の増加、肥満を招き、成人

性脂肪) 値及び血中コレステロール値は動脈硬化と密接 に関係しているため、これらの値を低く保つことは成人 病予防の点で特に大切なことであり、先進諸国において はこれらの値を低くするよう指導が行われている。しか し、それにもかかわらず実際には循環器系の成人病によ る死亡者数は増加の一途を辿っている。これは脂質(油 脂)を多く使用した食事はおいしく、しかも現代人はこ れら食事に慣れてしまった点に問題がある。実際、脂質 摂取量が少なかったはずの日本人においてもこの傾向は 現れており、ここ50年で摂取エネルギーにおける脂質の 占める割合は3倍に増加している。そのため、これまで 脂質摂取量を減らす目的で、蛋白や糖を物性的に油脂に 近づけ、低カロリーにした油脂代替物が開発されてき た。しかし、これら代替物は、油脂が有する風味、食感 及び物理的特性を完全に代替するには至っていない。し かもこれらは、油脂が有するもう一つの役割である調理 時の熱媒体としての役割を代替することは不可能であ る。そこで、現在使用している油脂と同等の風味、食感 及び物理的性質を有し、しかも熱媒体として使用でき、 20 さらに食後の血中トリグリセリド(中性脂肪)増加を抑 えることが出来る油脂が開発できれば、肥満を防ぎさら には成人病の発病率を低下させることが可能になると考 えられる。この様な油脂としては近年開発が盛んに行わ れている非吸収性油脂がある。たとえばショ糖脂肪酸ポ リエステル (マットソンら:米国特許第3,600,186号明 細書)があり、これは体内で吸収されず排泄されるため 油脂由来のカロリーは0となる。しかし、非吸収性の油 脂であるため、液体状態の脂肪酸ショ糖ポリエステル は、肛門漏洩、脂溶性ビタミン吸収阻害等の問題を一方 で引き起こす。本物質は1996年1月30日、FDAにより 使用を許可された。しかし、一定量のビタミンA、D、 E及びKを添加した融点が37.8℃~71.1℃の半固体もし くは固体のショ糖ポリエステルを塩味スナック菓子のみ に使用するという限定付きでである。これは脂溶性ビタ ミン吸収阻害防止及び肛門漏洩防止のためである。この ことにより現時点において本油脂代替物は汎用性がない ことがわかる。中鎖脂肪酸トリグリセリド(MCT) は、体内で非蓄積であることが公知のこととして知られ ている。しかし、加熱調理に使用した際、低い発煙点 (160 ℃以下)が問題となり、調理油として使用するこ とは困難である。

【0003】長鎖飽和脂肪酸(たとえばベヘン酸)及び 炭素数10以下の中鎖脂肪酸を含有したトリグリセリド (セイデン:特開平2-1799号公報)及び長鎖飽和脂肪 酸(たとえばステアリン酸)及び短鎖脂肪酸を含有した トリグリセリド (クリサム:特表平6-506106号公報) は、生体内で難吸収性の長鎖飽和脂肪酸と体内非蓄積性 の中鎖脂肪酸もしくは短鎖脂肪酸を含有しているため、 食後の血中トリグリセリド(中性脂肪)増加を抑え、成 病の大きな原因となっている。血中トリグリセリド(中 50 人病予防用油脂代替物としての使用が期待できるが、性 状が固体脂であるため汎用性が乏しくなる。米国特許第 4,976,984号明細書には、リン脂質と5~100%のジグリセリドを含有するがリセリド混合物とを含有する食用油組成物が開示されている。また、特開平 4-300825号公報及び特開平 4-300826号公報には、ジグリセリドを有効成分とする血清トリグリセリド濃度低下剤及び体重増加抑制剤が開示されている。また、特開平 8-60180号公報には、構成脂肪酸が長鎖脂肪酸及び中鎖脂肪酸からなるジグリセリドを油脂成分中に含む油脂組成物が開示されている。

[0004]

【発明が解決しようとする課題】本発明の目的は、従来の油と同等の汎用性(低温でも液状であって、通常の調理油に代えて使用可能)を有しながら、動脈硬化の原因の一つである血中トリグリセリド(中性脂肪)の増加を抑制し、体内への蓄積性が少なく、しかも保存安定性及び風味が良好である食用油脂組成物を提供することである。

[0005]

【課題を解決するための手段】そこで本発明者らは、上 20 記課題を解決すべく種々検討した結果、油脂中に 1,3-ジグリセリドを40重量%以上、好ましくは45重量%以上、好ましくは45重量%以上、好ましくは50重量%以上含有し、モノグリセリドを1.5重量%未満、好ましくは1重量%未満含有する油脂組成物であって、且つ油脂中のジグリセリドの構成脂肪酸中、93重量%以上、好ましくは95重量%以上が不飽和脂肪酸である油脂組成物が、通常の食用油より食後の血中トリグリセリド(中性脂肪)の増加が起こりにくく、しかも体脂肪蓄積及び内臓脂肪への蓄積が軽減され、さらに通常の食用油が有するあらゆる用途にも使用 30 出来る液状油脂組成物であることを発見し本発明に至った。

[0006]

【発明の実施の形態】以下、本発明について詳細に説明する。1,3-ジグリセリドはトリグリセリド(通常の油脂の構造)と異なり、摂取後、十二指腸で加水分解されると、主に1-モノグリセリドを生じる(トリグリセリドからは2-モノグリセリドが主に生じる)。その結果、小腸上皮細胞でのトリグリセリドの再合成が抑制され、リンパ管中の血中トリグリセリド(中性脂肪)が低下し、体脂肪蓄積及び内臓脂肪への蓄積軽減効果につかない。1,2-ジグリセリドは十二指腸で分解されると2-モノグリセリドを主に生じるため、このような効果は発揮しない。よって、「血中トリグリセリド(中性脂肪)の増加抑制」、「体脂肪蓄積軽減」及び「内臓脂肪蓄積軽減」という効果を発現するためには、油脂中に40重量%以上の1,3-ジグリセリドを含有することが必須である。

【0007】本発明においては、汎用性の液状油脂であるという観点より、用途としては汎用型食用油(例えば 50

調理油)が考えられる。そのため、通常調理が行われる温度(170 ℃)以上の発煙点を有することが好ましい(より好ましくは180 ℃以上、更に好ましくは190 ℃以上)。また風味の点より、油脂組成物中のモノグリセリド含量が1.5重量%未満、好ましくは1重量%未満、酸価(AV)は 1.0以下であることが望ましい。

【0008】さらに、保存時及び調理時の酸化安定性の点より、抗酸化剤を油脂に対して50~2000ppm、特に400~1000ppm添加することが好ましく、天然抗酸化剤、トコフェロール、アスコルビルパルミテート、アスコルビルステアレート、BHT、BHA及びリン脂質等から選ばれる1種類もしくは2種類以上の抗酸化剤の添加が好ましく、特に好ましい例としては、天然抗酸化剤、トコフェロール、アスコルビルパルミテート及びリン脂質等から選ばれる1種類もしくは2種類以上の抗酸化剤がある。アスコルビルパルミテートとトコフェロールの併用が最も好ましい。

【0009】本油脂組成物の主なる使用目的は汎用型食用油(例えば調理油)であるため、保存状態において結晶生成及び固化が起こっては都合が悪い。このことより、冷蔵庫内で保存した場合、結晶生成及び固化が起こらない条件として、油脂中の1,3-ジグリセリドの含有量が90重量%以下(好ましくは80重量%以下、より好ましくは75重量%以下)とすることが好ましく、またジグリセリド中の不飽和脂肪酸含有量を93重量%以上、好ましくは95重量%以上とすることが必須となる。ジグリセリドを構成する脂肪酸の炭素数は12~24、好ましくは16~22である。

【0010】さらに不飽和脂肪酸中のオレイン酸などの モノ不飽和脂肪酸含有量が60重量%以下、好ましくは、 50重量%以下であることが望ましい。残部はリノール 酸、リノレン酸などの高度不飽和脂肪酸である。さらに 特定するとジグリセリド中の不飽和脂肪酸含有量が93重 量%以上、不飽和脂肪酸中のモノ不飽和脂肪酸含有量が 60重量%以下である油脂組成物が好ましい。最も好まし いのはジグリセリド中の不飽和脂肪酸含有量が95重量% 以上、不飽和脂肪酸中のオレイン酸含有量が50重量%以 下の油脂組成物である。このような組成の油脂組成物 は、例えばナタネ油、大豆油などを加水分解して得た脂 肪酸をウインタリングして飽和脂肪酸を除去した脂肪酸 を原料とすることにより得ることができる。また、HL B(それぞれの化合物に適した経験式より求めたHLB 値を使用。例えばポリグリセリン脂肪酸エステルならば Griffin の経験式)が4以下、好ましくは3以下の結晶 抑制剤 (例えば、ポリグリセリン脂肪酸エステル、ショ 糖脂肪酸エステル、ソルビタン脂肪酸エステル等)を油 脂に対して200 ~5000ppm 、特に500 ~2000ppm 添加 し、低温での安定性を改善する方法も好ましい。

[0011]

【実施例】以下に実施例をもって本発明の効果をより詳

細に説明するが、本発明はこれらの例に限定されるものではない。尚、例中の%は特記しない限り重量基準である。

[油脂の調製] 固定化1,3位選択的リパーゼである市販 リパーゼ製剤 (リパーゼ商品名:「Lipozyme 3A 」、ノ ボインダストリーA.S.社製)を触媒として、ナタネ油由 来脂肪酸又は大豆油由来脂肪酸(もしくはウインタリン グにより飽和脂肪酸を除去した脂肪酸)およびグリセリ ンを40℃で反応させた。リパーゼ製剤を濾別した後、反 終品を分子蒸留にかけ、常法により精製を行って液状油 脂Aを得た。さらに反応時間をコントロールした同様の 方法で液状油脂B、液状油脂C、液状油脂F、液状油脂 G、液状油脂 I 及び液状油脂 J を得た。さらにナタネ油 由来脂肪酸に適当量の飽和脂肪酸(パルミチン酸及び/ 又はステアリン酸)を添加し、同様の方法で液状油脂D 及び液状油脂Eを得た。また、同様の方法で合成した液 状油脂をカラムクロマトグラフ(和光純薬工業社製ワコ ーゲルC-200とヘキサン/エーテル=70/30にてトリグ リセリド画分とジグリセリド画分を得た)により脂肪酸 画分、モノグリセリド画分を除去し、溶媒を除去するこ とにより液状油脂Hを得た。

【0012】尚、各油脂のグリセリド組成及びジグリセ リドの構成脂肪酸組成は、以下に示す方法により分析し t- -

・グリセリド組成分布の測定

油脂をシリル化剤(関東化学社製、シリル化剤TH)にてシリル化した後、キャピラリーカラム(例えばJ&W社、DBTM-1)を装備した、水素炎イオン検出器付きのガスクロマトグラフィーにて分析し、そのリテンションタイム及びピーク面積比よりグリセリド組成分布及び1,3-ジグリセリド含有量を求めた。

・ジグリセリドの構成脂肪酸分析

10 カラムクロマトグラフ(和光純薬工業社製ワコーゲルC -200とヘキサンでトリグリセリド画分を落とした後、ヘキサン/エーテル=70/30にてジグリセリド画分を得た)により油脂中のジグリセリド画分を集め、その後「日本油化学協会編、基準油脂分析法」中の「2.4.20.2 -77 脂肪酸メチルエステルの調整法」、「2.4.21.2-73 脂肪酸組成」の方法に従い、ガスクロマトグラフィーにて分析した。得られたチャートのリテンションタイム及びピークエリア比よりジグリセリド中の脂肪酸分布を求めた。使用する油脂の組成を表1に示す。また、通常油20 の組成を表2に示す。

[0013]

【表1】

_
"
•

7						
油脂名	内容	グリセリド組成 ジグリセリド中 の脂肪酸組成 (%) (%)		效組成	設価 (AY)	
		MG	1,3-DG	飽和脂 肪酸	不飽和 脂肪酸	(۸1)
液状油脂A	1,3-ジグリセリドを50%含有す るナタネ油脂肪酸由来の油脂	1.4	53.5	3. 0	97.0	0.3
液状油脂B	1,3-ジグリセリドを40%含有するナタネ油脂肪酸由来の油脂	1. 2	41.3	5. 1	94. 9	0.2
液状油脂C	1,3-ジグリセリドを30%含有す るナタネ油脂肪酸由来の油脂	0. 9	33.7	7.0	93.0	0. 2
被状油脂D	ジグリセリド構成脂肪酸中の10 %以上が飽和脂肪酸の油脂	1.3	51, 9	12. 1	87.9	0. 5
液状油脂E	ジグリセリド構成脂肪酸中の10 %以上が飽和脂肪酸の油脂	1.0	46. 4	19.7	80. 3	0.3
被状油脂F	モノグリセリドを 2.2%含有するナダネ油脂肪酸由来の油脂	2. 2	46.8	5.6	94. 4	2. 6
液状油脂G	モノグリセリドを 4.5%含有するナタネ油脂肪酸由来の油脂	4.5	53.2	6. 1	93. 9	3. 0
液状油脂日	1.3-ジグリセリドを92%含有するナタネ油脂肪酸由来の油脂	0.6	91.6	5.3	94.7	0. 2
被状油脂「	1,3-ジグリセリドを40%含有す るウインタリングした大豆脂肪 酸由来の油脂	0.5	40.7	3. 5	96. 5	0.1
液状油脂了	1,3-ジグリセリドを50%含有す るウインタリングした大豆脂肪 酸由来の油脂	0. 5	51.3	4.8	95. 2	0.1

MG:モノグセリド、DG:ジグリセリド

液状油脂A~Hの不飽和脂肪酸中のオレイン酸含有量は約68%、液状油脂I. 』の 不飽和脂肪酸中のオレイン酸含有量は約30%であった。

[0014]

30【表2】

		***************************************	143	,	
		クリ	セリド		
油脂名	内容	(%)			酸価 (AV)
		МG	DG	ТG	(A)
大豆油	市販の油	N. D.	1.0	99. 0	0.1
ナタネ油	市販の油	0.2	2.3	97. 5	0.1

MG:モノグリセリド、DG:ジグリセリド、 TG:トリグリセリド、N.D.:検出できず

【0015】実施例1

各種油脂10%、牛血清アルブミン2%、卵黄レシチン0.2%及び蒸留水87.8%を含む混合液を高圧乳化機を用いて乳化し、平均粒径0.25mmの乳剤を得た。本乳剤を18時間絶食させた13週齢SDラットにラット体重 100g当たり0.73mlとなるように経口投与し、各採血時間群

(0.0.7.1.0.1.7.3.3時間) (各群4匹) ごとに採血し、血中トリグリセリド量変化を観察した。結果を表3に示す。

[0016]

【表3】

10

	液状油脂A	液状油脂B	液状油脂C	ナタネ油	大豆油
時間	(mg/ml)	(mg/ml)	(mg/ml)	(ng/ml)	(mg/ml)
0	0.69±0.09	0.69±0.08	0.72±0.09	0.60±0.12	0.75±0.15
0.7	0.60±0.08*	0.75±0.09°	0.89±0.12	0.96±0.12	1.02±0.15
1.0	0.72±0.06°	1.02±0.15°	1.60±0.15	1.71±0.24	1.76±0.21
1.7	1.23±0.12°	1.48±0.21°	2.32±0.30	2.55±0.42	2.63±0.36
3, 3	1.16±0.16*	1.36±0.30°	2. 19±0. 48	2.48±0.57	2. 19±0.48
3.3	1.16±0.16*	1.36±0.30°	2. 19±0.48	2.48±0.57	2. 19±

*;ナタネ油もしくは大豆油投与群の同時間値に対し、有意(t<0.01)に 血中トリグリセリド(中性脂肪)が抑制

【0017】液状油脂A及び液状油脂Bで飼育したラッ ト群は、ナタネ油及び大豆油を投与したラット群と比較 し、有意(t <0.01)に血中トリグリセリド(中性脂 肪) 増加が抑制されており、液状油脂A及び液状油脂B は、食後の血中トリグリセリド(中性脂肪)増加を抑制 20 する油脂であることがわかる。一方、液状油脂Cは、ナ タネ油及び大豆油を投与したラット群と比較し、有意 (t < 0.01) に血中トリグリセリド (中性脂肪) 増加が 抑制されなかった。

【0018】実施例2

各食餌とも6週齢SD系ラットを10匹用い、表4に示す 餌をラットに与えて3週間飼育した時の体重変化と体脂 肪率変化を表5に示す。なお、体脂肪率の測定は、電導 率を利用した小動物用体脂肪率測定装置 (EM-SCAN Mode * 測定することにより行った。 [0019]

【表4】

液状油脂	10%
カゼイン	20%
ミネラル	3.5%
ビタミン	1.0%
DL-メチオニン	0.3%
	60.2%
セルロース	5.0%
合計	100.0%
	カゼイン ミネラル ビタミン DL-メチオニン ポテトスターチ セルロース

[0020]

1 SA-2、EM-SCAN社製) を用い、ネンブタール麻酔下で *30 【表 5】

/ ~/**	1.22				i i
飼育期間	液状油脂A	液状油脂B	液状油脂C	ナタネ油	大豆油
0月目 (体重:g)	140.6±4.8	139.4±5.7	141.0±4.1	140.0±5.8	139. 9±5.5
14日日 (体重:g)	277.7±8.9	280.8±7.5	289.0±7.5	296.3±5.5	299.3±9.0
21日日 (体重:g)	345. 2 ± 11. 1	348.6±10.3	351.2±10.9	359.7±12.8	361.2±11.5
体脂肪率 (%:21日)	12.8±2.0 °	14.8±2.7 **	17.3±2.6	18.0±3.8	19.1±4.1

*;ナタネ油もしくは大豆油投与群に対し、有意(t <0.01)に体脂肪率が抑制

**;ナタネ油もしくは大豆油投与辟に対し、有意(t <0.05)に体脂肪率が抑制

【0021】液状油脂Aで飼育したラット群は、ナタネ 油及び大豆油で飼育したラット群と比較し、有意(tく 0.01) に体脂肪率が低下し、また、液状油脂Bで飼育し たラット群も、ナタネ油及び大豆油で飼育したラット群 と比較し、有意(t <0.05)に体脂肪率が低下した。こ 50 いないことがわかった。

のことから、液状油脂A及び液状油脂Bは、内臓や脂肪 組織(脂肪細胞)への脂肪蓄積が小さい油脂であること がわかる。一方、液状油脂Cは、ナタネ油及び大豆油を 投与したラット群と比較し、有意に体脂肪率が低下して [0022] 実施例3

* [0023] 【表6】

調理評価により調製油の汎用性を評価した。新たに調製

11

した油脂の内容を表6に示す。

組 成
液状油脂A+アスコルビルパルミテート200ppm°+ビタミンE500ppm°
液状油脂 B
液状油脂 F
液状油脂G+アスコルビルバルミテート200ppm*+ビタミンE500ppm*
液状油脂 1 + アスコルビルバルミテート200ppm*+ビタミンE500ppm*

*:油脂を基準とする添加量を示す。

【0024】本油脂組成物の調理油としての評価を、やきそばを作ることにより行った。評価は、調理時における発煙、調理作業性、やきそばの風味と、油っぽさについて、5人によるパネラーで評価する方法によって行った。結果を表7に示した。・発煙

- ◎ 発煙全くなし
- 〇 発煙ほとんどなし
- △ 発煙やや有り
- × 発煙有り
- ・調理作業性
- ◎ 非常に良い
- 0 よい
- △ やや悪い
- × 悪い
- ・風味

※◎ 非常に良い

- O よい
- △ やや悪い
- × 悪い
- 一人分の材料

20液状油脂30 g豚肉50 gキャベツ50 gたけのこ25 gたまねぎ25 gしいたけ15 g中華そば180 g

[0025]

【表7】

×

	ж								
油脂名	液状油脂	液状油脂 2	液状油脂 3	被状油脂	被状油脂 5				
	0	0	Δ	×	©				
別理作業性	0	0	0	0	0				
風味	<u> </u>	0	×	×	0				

【0026】上記結果より液状油脂1、液状油脂2及び液状油脂5は、発煙が起こらず、調理作業性も良好で、しかも風味も良い油脂で、通常油と同等に使用できる油脂であることがわかった。一方、液状油脂3及び液状油40脂4は、風味が悪く、しかも発煙が起こり、炒め物料理には使用できず、しかも風味が悪いことが判明した。

【0027】実施例4

次にこの油脂を用いて揚げ物料理を行った結果を示す。 調理油としての評価は、下記の材料を用いて天ぶらを作り、そのときの発煙の仕方、調理作業性、風味を5人によるパネラーで評価した(評価基準は実施例3の場合と 同じ)。結果を表8に示した。調理評価に使用した材料

油 300g

海老 2尾

南瓜 2切れ

バッター組成

卵 50 g

水 150 g 小麦粉 100 g

[0028]

【表8】

14

13

油脂名	液状油脂 1	被状油脂 2	液状油脂 3	被状油脂	被状油脂 5
発煙	0	0	Δ	×	©
闘理作業性	0	0	0	0	0
風味	0	0	×	×	6

【0029】上記結果より、液状油脂1、液状油脂2及 び液状油脂5は、発煙が起こらず、調理作業性も良好 で、風味も良く、しかも油っぽくない油脂で、通常油と 10 ◎ 結晶生成観察されず (透明) 同等に使用できる油脂であることがわかった。一方、液 状油脂3及び液状油脂4は、風味が悪く、しかも発煙が 起こり、揚げ物料理には使用出来ないことが判明した。

【0030】実施例5

油脂の低温耐性(結晶生成抑制)を5℃の冷蔵庫中に1 週間放置し、その時生成した油脂結晶状態より低温耐性*

- *を評価した。結果を表9に示す。
 - ・低温耐性
- - わずかに濁るが結晶生成は観察されず
 - △ 結晶生成
 - × 油脂全体が固化

[0031]

【表9】

	液状 油脂 A	液状 油脂B	液状 油脂 D	被状 油脂 E	液状 油脂 H	被状 油脂 I	液状 油脂」
低温耐性	0	0	×	×	Δ	0	0

【0032】以上の結果より、液状油脂A、液状油脂 B、液状油脂I及び液状油脂Jには低温耐性(結晶生成 抑制)効果が観察されたが、液状油脂D、液状油脂E及 び液状油脂Hでは結晶生成及び固化が起こり低温耐性が ないことが判明した。

【0033】 実施例6

液状油脂BにHLB2のポリグリセリン脂肪酸エステル を油に対し1000ppm 添加した油脂、同様に液状油脂Bに※

※HLB5のポリグリセリン脂肪酸エステルを油に対し10 00ppm 添加した油脂、および液状油脂1にHLB2のポ リグリセリン脂肪酸エステルを油に対し1000ppm 添加し た油脂の低温耐性(結晶生成抑制)を実施例5と同様の 方法で観察した(評価基準は実施例5の場合と同じ)。 結果を表10に示す。

[0034]

【表10】

	液状油脂 B + HLB2のポリグ リセリン脂肪 酸エステル	被状油脂 B + HLB5のポリグ リセリン脂肪 酸エステル	液状油脂 1 + HLB2のポリグ リセリン脂肪 酸エステル	液状 油脂 B	大豆油
低温耐性	0	0	0	0	0

【0035】これらの結果より、これら油脂の低温耐性 (結晶生成抑制) はHLB4以下の油脂結晶抑制剤で改

良できることが判明した。

フロントページの続き

(72)発明者 安川 拓次

茨城県鹿島郡神栖町東深芝20 花王株式会 社研究所内