Introduction to Deep Learning CMPT 733

Steven Bergner

Overview

- Renaissance of artificial neural networks
 - Representation learning vs feature engineering
- Background
 - Linear Algebra, Optimization
 - Regularization
- Construction and training of layered learners
- Frameworks for deep learning

Representations matter

- Transform into the right representation
- Classify points simply by threshold on radius axis

Representations matter

- Transform into the right representation
- Classify points simply by threshold on radius axis
- Single neuron with nonlinearity can do this

Depth: layered composition

Computational graph

Components of learning

- Hand designed program
 - Input → Output
- Increasingly automated
 - Simple features
 - Abstract features
 - Mapping from features

Output

Growing Dataset Size

4265554341530830627 1817138542097674168 7512671980694996237

MNIST dataset

Basics

Linear Algebra and Optimization

- Tensor is an array of numbers
 - Multi-dim: 0d scalar, 1d vector, 2d matrix/image, 3d RGB image
- Matrix (dot) product C = AB $C_{i,j} = \sum_k A_{i,k} B_{k,j}$

Dot product of vectors A and B

- Tensor is an array of numbers
 - Multi-dim: 0d scalar, 1d vector, 2d matrix/image, 3d RGB image
- Matrix (dot) product C = AB $C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$

Dot product of vectors A and B

- Tensor is an array of numbers
 - Multi-dim: 0d scalar, 1d vector, 2d matrix/image, 3d RGB image
- Matrix (dot) product C = AB $C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$

Dot product of vectors A and B

- Tensor is an array of numbers
 - Multi-dim: 0d scalar, 1d vector, 2d matrix/image, 3d RGB image
- Matrix (dot) product C = AB $C_{i,j} = \sum A_{i,k}B_{k,j}$

$$C = AB$$

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

Dot product of vectors A and B

Linear algebra: Norms

• L^p norm

$$||\boldsymbol{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

- Most popular norm: L2 norm, p=2
- L1 norm, p=1: $||x||_1 = \sum_i |x_i|$.
- Max norm, infinite $p: ||\mathbf{x}||_{\infty} = \max_{i} |x_{i}|$.

Nonlinearities

[(c) public domain]

Softplus

Logistic Sigmoid

Approximate Optimization

 \boldsymbol{x}

Gradient descent

Critical points

Critical points

Saddle point – 1st and 2nd derivative vanish

Critical points

Saddle point – 1st and 2nd derivative vanish

Poor conditioning: x_1 1st deriv large in one and small in another direction

Tensorflow Playground

- http://playground.tensorflow.org/
 - Try out simple network configurations

- https://cs.stanford.edu/people/karpathy/convnetjs/demo/cla ssify2d.html
 - Visualize linear and non-linear mappings

Regularization

Reduced generalization error without impacting training error

Constrained optimization

Constrained optimization

Squared L2 encourages small weights

Constrained optimization

- Squared L2 encourages small weights
- L1 encourages sparsity of model parameters (weights)

Dataset augmentation

Learning curves

Learning curves 0.20Loss (negative log-likelihood) Training set loss Validation set loss 0.15 0.10 0.050.00 50 100 200 150 250

Time (epochs)

Early stopping before validation error starts to increase

Bagging

Average multiple models trained on subsets of the data

Bagging

- Average multiple models trained on subsets of the data
- First subset: learns top loop, Second subset: bottom loop

Dropout

- Random sample of connection weights is set to zero
- Train different network model each time
- Learn more robust, generalizable features

Ensemble of subnetworks

Multitask learning

- Shared parameters are trained with more data
- Improved generalization error due to increased statistical strength

Components of popular architectures

Convolution as edge detector

Gabor wavelets (kernels)

Gabor wavelets (kernels)

Gabor wavelets (kernels)

Second derivative (curvature)

Local average, first derivative

Gabor wavelets (kernels)

Second derivative (curvature)

Local average, first derivative

Directional second derivative

Gabor-like learned kernels

Features extractors provided by pretrained networks

Max pooling translation invariance

 Take max of certain neighbourhood

Max pooling translation invariance

- Take max of certain neighbourhood
- Often combined followed by downsampling

Max pooling transform invariance

Types of connectivity

Local connection: like convolution, but no sharing

Types of connectivity

Types of connectivity

No structure → fully connected

- No structure → fully connected
- Spatial structure \rightarrow convolutional

- No structure → fully connected
- Spatial structure \rightarrow convolutional
- Sequential structure \rightarrow recurrent

Optimization Algorithm

- Lots of variants address choice of learning rate
- See Visualization of Algorithms
- AdaDelta and RMSprop often work well

Software for Deep Learning

Current Frameworks

- Tensorflow / Keras
- Pytorch
- DL4J
- Caffe
- And many more
- Most have CPU-only mode but much faster on NVIDIA GPU

Development strategy

- Identify needs: High accuracy or low accuracy?
- Choose metric
 - Accuracy (% of examples correct), Coverage (% examples processed)
 - Precision TP/(TP+FP), Recall TP/(TP+FN)
 - Amount of error in case of regression
- Build end-to-end system
 - Start from baseline, e.g. initialize with pre-trained network
- Refine driven by data

Sources

• I. Goodfellow, Y. Bengio, A. Courville "Deep Learning" MIT Press 2016 [link]