Sterownik odtwarzacza mp3

Szymon Borusiewicz, Jakub Zając, Dawid Szłapa, Radosław Szepielak

Maj 2025

1 Temat

Proszę **zaprojektować** automat mogący posłużyć do sterowania jakimś prostym odtwarzaczem plików muzycznych mp3.

Układ powinien mieć następujące przyciski oraz odpowiadające im sygnały i wskaźniki:

- STOP
- PLAY
- NEXT
- PREVIOUS

oraz powinien posiadać dwubitowe wyjście binarne określające numer utworu.

2 Czarna skrzynka

Układ, który chcemy uzyskać będzie prezentował się następująco:

Rysunek 1: Oczekiwany układ

gdzie wejściami będą:

- PLAY wznawianie odtwarzanie utworu,
- STOP zatrzymanie odtwarzanie utworu,
- **NEXT** przełączenie utworu na kolejny,
- PREV przełączenie utworu na poprzedni,
- CLK wejście zegara,
- $\mathbf{RST} \text{reset}$,

a wyjściami:

- **STATE** aktualny stan odtwarzania (0 utwór wznowiony, 1 utwór zatrzymany),
- TUNEO młodszy bit określający piosenkę,
- TUNE1 starszy bit określający piosenkę.

3 Automat

Pożądany przez nas automat pozwala na zmianę stanu odtwarzania utworu oraz na zmianę utworu na poprzedni lub następny.

W celu uniknięcia wielokrotnej aktywacji PREV i NEXT wprowadzamy bit blokujący, który odblokowuje się dopiero przy nie wysyłaniu sygnału z PREV i NEXT.

Ponadto zakładamy możliwość jednoczesnej zmiany stanu odtwarzania i utworu.

Stad:

- Q_3 bit odpowiedzialny za aktualny stan odtwarzania
 - (0 utwór wznowiony, 1 utwór zatrzymany),
- Q_2 bit odpowiedzialny za blokadę wielokrotnego działania PREV i NEXT,
- Q_1 młodszy bit określający piosenkę,
- Q_0 starszy bit określający piosenkę

3.a Projekt

Rysunek 2: Graf przedstawiający automat

Rysunek 3: Szkielet automatu

4 Tabela prawdy sterownika

Reprezentuje ona wyjścia układu w zależności od stanu układu. Możemy zauważyć, że wyjście układu jest takie samo jak jego stan, z pominięciem bitu blokującego.

Y w tabeli prawdy odpowiadają sygnałom wyjściowym układu:

- Y_2 State, Y_1 Tune0, Y_0 Tune1

	(2			Y	
Q_3	Q_2	Q_1	Q_0	Y_2	Y_1	Y_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	1

0	1	1	0	0	1	0
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	0	1	1	0	1
1	0	1	0	1	1	0
1	0	1	1	1	1	1
1	1	0	0	1	0	0
1	1	0	1	1	0	1
1	1	1	0	1	1	0
1	1	1	1	1	1	1

5 Tabela prawdy automatu

Poprzez X oznaczymy sygnały wejściowe układu:

- $X_3 PLAY$
- $X_2 \text{STOP}$
- X_1 NEXT
- $X_0 PREV$

	(5				Y			Q	+	
Q_3	Q_2	Q_1	Q_0	X_3	X_2	X_1	X_0	Q_3^+	Q_2^+	Q_1^+	Q_0^+
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	1	1	1
0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	1	1	0	1	1	0	1
0	0	0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	0	1	1	0	1	0	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0
0	0	0	0	1	1	1	0	0	1	0	1
0	0	0	0	1	0	1	0	0	1	0	1
0	0	0	0	1	0	1	1	0	0	0	0
0	0	0	0	1	0	0	1	0	1	1	1
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	0	1	0	0
0	0	0	1	0	0	1	1	0	0	0	1
0	0	0	1	0	0	1	0	0	1	1	0
0	0	0	1	0	1	1	0	1	1	1	0
0	0	0	1	0	1	1	1	1	0	0	1
0	0	0	1	0	1	0	1	1	1	0	0
0	0	0	1	0	1	0	0	1	0	0	1
0	0	0	1	1	1	0	0	0	0	0	1
0	0	0	1	1	1	0	1	0	1	0	0
0	0	0	1	1	1	1	1	0	0	0	1
0	0	0	1	1	1	1	0	0	1	1	0
0	0	0	1	1	0	1	0	0	1	1	0
0	0	0	1	1	0	1	1	0	0	0	1
0	0	0	1	1	0	0	1	0	1	0	0
0	0	0	1	1	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	1
0	0	1	1	0	0	0	1	0	1	1	0
0	0	1	1	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0	1	1	0	0

0	0	1	1	0	1	1	1	1	0	1	1
0	0	1	1	0	1	0	1	1	1	1	0
0	0	1	1	0	1	0	0	1	0	1	1
0	0	1	1	1	1	0	0	0	0	1	1
0	0	1	1	1	1	0	1	0	1	1	0
0	0	1	1	1	1	1	1	0	0	1	1
0	0	1	1	1	1	1	0	0	1	0	0
0	0	1	1	1	0	1	0	0	1	0	0
0	0	1	1	1	0	1	1	0	0	1	1
0	0	1	1	1	0	0	1	0	1	1	0
0	0	1	1	1	0	0	0	0	0	1	1
0	0	1	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	1	0	1	0	1
0	0	1	0	0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	0	0	1	1	1
0	0	1	0	0	1	1	0	1	1	1	1
0	0	1	0	0	1	1	1	1	0	1	0
0	0	1	0	0	1	0	1	1	1	0	1
0	0	1	0	0	1	0	0	1	0	1	0
0	0	1	0	1	1	0	0	0	0	1	0
0	0	1	0	1	1	0	1	0	1	0	1
0	0	1	0	1	1	1	1	0	0	1	0
0	0	1	0	1	1	1	0	0	1	1	1
0	0	1	0	1	0	1	0	0	1	1	1
0	0	1	0	1	0	1	1	0	0	1	0
0	0	1	0	1	0	0	1	0	1	0	1
0	0	1	0	1	0	0	0	0	0	1	0
0	1	1	0	0	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0	1	1	0
0	1	1	0	0	0	1	1	0	1	1	0
0	1	1	0	0	0	1	0	0	1	1	0
0	1	1	0	0	1	1	0	1	1	1	0
0	1	1	0	0	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1	0	1	0
0	1	1	0	1	1	0	0	0	0	1	0
0	1	1	0	1	1	0	1	0	1	1	0
0	1	1	0	1	1	1	1	0	1	1	0

0	1	1	0	1	1	1	0	0	1	1	0
0	1	1	0	1	0	1	0	0	1	1	0
0	1	1	0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	0	1	0	1	1	0
0	1	1	0	1	0	0	0	0	0	1	0
0	1	1	1	0	0	0	0	0	0	1	1
0	1	1	1	0	0	0	1	0	1	1	1
0	1	1	1	0	0	1	1	0	1	1	1
0	1	1	1	0	0	1	0	0	1	1	1
0	1	1	1	0	1	1	0	1	1	1	1
0	1	1	1	0	1	1	1	1	1	1	1
0	1	1	1	0	1	0	1	1	1	1	1
0	1	1	1	0	1	0	0	1	0	1	1
0	1	1	1	1	1	0	0	0	0	1	1
0	1	1	1	1	1	0	1	0	1	1	1
0	1	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	0	0	1	1	1
0	1	1	1	1	0	1	0	0	1	1	1
0	1	1	1	1	0	1	1	0	1	1	1
0	1	1	1	1	0	0	1	0	1	1	1
0	1	1	1	1	0	0	0	0	0	1	1
0	1	0	1	0	0	0	0	0	0	0	1
0	1	0	1	0	0	0	1	0	1	0	1
0	1	0	1	0	0	1	1	0	1	0	1
0	1	0	1	0	0	1	0	0	1	0	1
0	1	0	1	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	1	1	0	1
0	1	0	1	0	1	0	1	1	1	0	1
0	1	0	1	0	1	0	0	1	0	0	1
0	1	0	1	1	1	0	0	0	0	0	1
0	1	0	1	1	1	0	1	0	1	0	1
0	1	0	1	1	1	1	1	0	1	0	1
0	1	0	1	1	1	1	0	0	1	0	1
0	1	0	1	1	0	1	0	0	1	0	1
0	1	0	1	1	0	1	1	0	1	0	1
0	1	0	1	1	0	0	1	0	1	0	1
0	1	0	1	1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0	0

0	1	0	0	0	0	0	1	0	1	0	0
0	1	0	0	0	0	1	1	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0
0	1	0	0	0	1	1	0	1	1	0	0
0	1	0	0	0	1	1	1	1	1	0	0
0	1	0	0	0	1	0	1	1	1	0	0
0	1	0	0	0	1	0	0	1	0	0	0
0	1	0	0	1	1	0	0	0	0	0	0
0	1	0	0	1	1	0	1	0	1	0	0
0	1	0	0	1	1	1	1	0	1	0	0
0	1	0	0	1	1	1	0	0	1	0	0
0	1	0	0	1	0	1	0	0	1	0	0
0	1	0	0	1	0	1	1	0	1	0	0
0	1	0	0	1	0	0	1	0	1	0	0
0	1	0	0	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	1	1	0	0
1	1	0	0	0	0	1	1	1	1	0	0
1	1	0	0	0	0	1	0	1	1	0	0
1	1	0	0	0	1	1	0	1	1	0	0
1	1	0	0	0	1	1	1	1	1	0	0
1	1	0	0	0	1	0	1	1	1	0	0
1	1	0	0	0	1	0	0	1	0	0	0
1	1	0	0	1	1	0	0	1	0	0	0
1	1	0	0	1	1	0	1	1	1	0	0
1	1	0	0	1	1	1	1	1	1	0	0
1	1	0	0	1	1	1	0	1	1	0	0
1	1	0	0	1	0	1	0	0	1	0	0
1	1	0	0	1	0	1	1	0	1	0	0
1	1	0	0	1	0	0	1	0	1	0	0
1	1	0	0	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	1	0	0	1
1	1	0	1	0	0	0	1	1	1	0	1
1	1	0	1	0	0	1	1	1	1	0	1
1	1	0	1	0	0	1	0	1	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	0	1	0	1	1	1	1	1	0	1
1	1	0	1	0	1	0	1	1	1	0	1

1	1	0	1	0	1	0	0	1	0	0	1
1	1	0	1	1	1	0	0	1	0	0	1
1	1	0	1	1	1	0	1	1	1	0	1
1	1	0	1	1	1	1	1	1	1	0	1
1	1	0	1	1	1	1	0	1	1	0	1
1	1	0	1	1	0	1	0	0	1	0	1
1	1	0	1	1	0	1	1	0	1	0	1
1	1	0	1	1	0	0	1	0	1	0	1
1	1	0	1	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	1	0	1	1
1	1	1	1	0	0	0	1	1	1	1	1
1	1	1	1	0	0	1	1	1	1	1	1
1	1	1	1	0	0	1	0	1	1	1	1
1	1	1	1	0	1	1	0	1	1	1	1
1	1	1	1	0	1	1	1	1	1	1	1
1	1	1	1	0	1	0	1	1	1	1	1
1	1	1	1	0	1	0	0	1	0	1	1
1	1	1	1	1	1	0	0	1	0	1	1
1	1	1	1	1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	0	1	0	0	1	1	1
1	1	1	1	1	0	1	1	0	1	1	1
1	1	1	1	1	0	0	1	0	1	1	1
1	1	1	1	1	0	0	0	0	0	1	1
1	1	1	0	0	0	0	0	1	0	1	0
1	1	1	0	0	0	0	1	1	1	1	0
1	1	1	0	0	0	1	1	1	1	1	0
1	1	1	0	0	0	1	0	1	1	1	0
1	1	1	0	0	1	1	0	1	1	1	0
1	1	1	0	0	1	0	1	1	1	1	0
1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	0	1	1	0	0	1	0	1	0
1	1	1	0	1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1	1	1	1	0
1	1	1	0	1	1	1	0	1	1	1	0
1	1	1	0	1	0	1	0	0	1	1	0
1	I	1	U	1	0	1	U		1	1	

1	1	1	0	1	0	1	1	0	1	1	0
1	1	1	0	1	0	0	1	0	1	1	0
1	1	1	0	1	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	1	0	1	0
1	0	1	0	0	0	0	1	1	1	0	1
1	0	1	0	0	0	1	1	1	0	1	0
1	0	1	0	0	0	1	0	1	1	1	1
1	0	1	0	0	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	0
1	0	1	0	0	1	0	1	1	1	0	1
1	0	1	0	0	1	0	0	1	0	1	0
1	0	1	0	1	1	0	0	1	0	1	0
1	0	1	0	1	1	0	1	1	1	0	1
1	0	1	0	1	1	1	1	1	0	1	0
1	0	1	0	1	1	1	0	1	1	1	1
1	0	1	0	1	0	1	0	0	1	1	1
1	0	1	0	1	0	1	1	0	0	1	0
1	0	1	0	1	0	0	1	0	1	0	1
1	0	1	0	1	0	0	0	0	0	1	0
1	0	1	1	0	0	0	0	1	0	1	1
1	0	1	1	0	0	0	1	1	1	1	0
1	0	1	1	0	0	1	1	1	0	1	1
1	0	1	1	0	0	1	0	1	1	0	0
1	0	1	1	0	1	1	0	1	1	0	0
1	0	1	1	0	1	1	1	1	0	1	1
1	0	1	1	0	1	0	1	1	1	1	0
1	0	1	1	0	1	0	0	1	0	1	1
1	0	1	1	1	1	0	0	1	0	1	1
1	0	1	1	1	1	0	1	1	1	1	0
1	0	1	1	1	1	1	1	1	0	1	1
1	0	1	1	1	1	1	0	1	1	0	0
1	0	1	1	1	0	1	0	0	1	0	0
1	0	1	1	1	0	1	1	0	0	1	1
1	0	1	1	1	0	0	1	0	1	1	0
1	0	1	1	1	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	1	0	0	1
1	0	0	1	0	0	0	1	1	1	0	0
1	0	0	1	0	0	1	1	1	0	0	1

1	0	0	1	0	0	1	0	1	1	1	0
1	0	0	1	0	1	1	0	1	1	1	0
1	0	0	1	0	1	1	1	1	0	0	1
1	0	0	1	0	1	0	1	1	1	0	0
1	0	0	1	0	1	0	0	1	0	0	1
1	0	0	1	1	1	0	0	1	0	0	1
1	0	0	1	1	1	0	1	1	1	0	0
1	0	0	1	1	1	1	1	1	0	0	1
1	0	0	1	1	1	1	0	1	1	1	0
1	0	0	1	1	0	1	0	0	1	1	0
1	0	0	1	1	0	1	1	0	0	0	1
1	0	0	1	1	0	0	1	0	1	0	0
1	0	0	1	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	1	1	1	1
1	0	0	0	0	0	1	1	1	0	0	0
1	0	0	0	0	0	1	0	1	1	0	1
1	0	0	0	0	1	1	0	1	1	0	1
1	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	1	0	1	1	1	1	1
1	0	0	0	0	1	0	0	1	0	0	0
1	0	0	0	1	1	0	0	1	0	0	0
1	0	0	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1
1	0	0	0	1	0	1	0	0	1	0	1
1	0	0	0	1	0	1	1	0	0	0	0
1	0	0	0	1	0	0	1	0	1	1	1
1	0	0	0	1	0	0	0	0	0	0	0

6 Tablice Karnaugh & Wyprowadzenia wzorów

W celu wyznaczenia uproszczonych wzorów pochodzących z tablic Karnaugh skorzystamy ze strony https://www.charlie-coleman.com/experiments/kmap/, która wykorzystuje metodę Petricka do minimalizacji funkcji logicznych.

6.a Stan odtwarzania (D3)

]	D3							\overline{Q}	$_{3}, Q_{2},$	Q_1, ζ	Q_0						
		0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
	0000	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	0001	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	0011	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	0010	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	0110	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0111	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ζ ₀	0101	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_1, λ	0100	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_3, X_2, X_1, X_0	1100	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
X	1101	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	1111	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	1110	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	1010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$D_3=\overline{Q_3}X_3+\overline{Q_3}Q_2+Q_2X_3$$

Rysunek 4: Podukład S3

6.b Bit blokujący (D2)

	D2							Q	$_{3}, Q_{2},$	Q_1, Q_2	Q_0						
		0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0001	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0011	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
	0010	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0110	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0111	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
ζ_0	0101	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_1, λ	0100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X_3, X_2, X_1, X_0	1100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X	1101	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1111	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
	1110	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1010	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1011	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
	1001	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$\begin{split} D_2 &= \overline{X_1} X_0 + X_1 \overline{X_0} + X_0 Q_2 \\ &= X_1 \oplus X_0 + X_0 Q_2 \end{split}$$

Rysunek 5: Podukład S2

$6.\mathrm{c}$ Starszy bit określający n
r piosenkę (D1)

TU	NE1							\overline{Q}	$\overline{_{3},Q_{2}},$	Q_1, ζ	$\overline{Q_0}$						
		0000	0001	0011	0010	0110	0111	0101				1111	1110	1010	1011	1001	1000
	0000	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
	0001	1	0	1	0	1	1	0	0	0	0	1	1	0	1	0	1
	0011	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
	0010	0	1	0	1	1	1	0	0	0	0	1	1	1	0	1	0
	0110	0	1	0	1	1	1	0	0	0	0	1	1	1	0	1	0
	0111	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
K_0	0101	1	0	1	0	1	1	0	0	0	0	1	1	0	1	0	1
X_{1}, Z_{1}	0100	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
X_3, X_2, X_1, X_0	1100	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
X	1101	1	0	1	0	1	1	0	0	0	0	1	1	0	1	0	1
	1111	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
	1110	0	1	0	1	1	1	0	0	0	0	1	1	1	0	1	0
	1010	0	1	0	1	1	1	0	0	0	0	1	1	1	0	1	0
	1011	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
	1001	1	0	1	0	1	1	0	0	0	0	1	1	0	1	0	1
	1000	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0

$$D_1 = \overline{X_1} X_0 \overline{Q_2 Q_1}, \overline{Q_0} + Q_2 Q_1 + X_1 \overline{X_0} \overline{Q_2 Q_1} Q_0 + \overline{X_1 X_0} Q_1 + X_0 Q_1 Q_0 + X_1 Q_1 \overline{Q_0}$$

Rysunek 6: Podukład S1

6.d Młodszy bit określający nr piosenki (D0)

TU	JNE0	Q_3, Q_2, Q_1, Q_0															
		0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
	0000	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
	0001	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	0011	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
	0010	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	0110	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	0111	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
X_0	0101	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
X_2, X_1, X_0	0100	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
$^{3}, X_{2},$	1100	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
X_3 ,	1101	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	1111	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
	1110	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	1010	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	1011	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
	1001	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1
	1000	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0

$$\begin{split} D_0 &= \overline{X_1} \overline{X_0} Q_0 + \overline{X_1} X_0 \overline{Q_2 Q_0} + Q_2 Q_0 + X_1 \overline{X_0} \overline{Q_2 Q_0} + X_1 X_0 Q_0 \\ &= \overline{Q_2} \overline{Q_0} \Big(\overline{X_1} X_0 + X_1 \overline{X_0} \Big) + Q_0 \Big(\overline{X_1} \overline{X_0} + X_1 X_0 + Q_2 \Big) \\ &= \overline{Q_2} \overline{Q_0} \big(X_0 \oplus X_1 \big) + Q_0 \Big(\overline{X_1} \overline{X_0} + \overline{X_0} X_0 + X_1 \overline{X_1} + X_1 X_0 + Q_2 \Big) \\ &= \overline{Q_2} \overline{Q_0} \big(X_0 \oplus X_1 \big) + Q_0 \Big(\Big(\overline{X_1} + \overline{X_0} \Big) \Big(\overline{X_1} + X_0 \Big) + Q_2 \Big) \\ &= \overline{Q_2} \overline{Q_0} \big(X_0 \oplus X_1 \big) + Q_0 \Big(\overline{\overline{X_1}} \overline{X_0} \cdot \overline{X_1} \overline{\overline{X_0}} + Q_2 \Big) \\ &= \overline{Q_2} \overline{Q_0} \big(X_0 \oplus X_1 \big) + Q_0 \Big(\overline{\overline{X_1}} \overline{X_0} + \overline{X_1} \overline{\overline{X_0}} + Q_2 \Big) \\ &= \overline{Q_2} \overline{Q_0} \big(X_0 \oplus X_1 \big) + Q_0 \Big(\overline{\overline{X_1}} \overline{X_0} + \overline{X_1} \overline{\overline{X_0}} + Q_2 \Big) \end{split}$$

Rysunek 7: Podukład S0

7 Implementacja układu w Multisimie

Rysunek 8: Cały układ

8 Testowanie układu

Testowanie układu sprowadza się do porównania sygnałów wyjściowych rzeczywistych do oczekiwanych. Testy, które zastosowaliśmy sprawdzają:

- czy istnieje cykl przy użyciu NEXT,
- czy istnieje cykl przy użyciu PREV,
- czy utwór można wstrzymać, wznowić,
- czy układ poprawnie się resetuje,
- czy poprawna jest reakcja na naciśnięcie na raz PLAY i STOP
- czy poprawna jest reakcja na naciśnięcie na raz PREV i NEXT
- czy bit blokujący działa jak powinien,

Rysunek 9: Układ testujący

Rysunek 10: Konfiguracja generatora słów

Rysunek 11: Przedstawiający poprawność układu

Rysunek 12: Przykład układu uszkodzonego

Rysunek 13: Implementacja całego układu wraz z testerem, generatorem słów i analizatorem logicznym

Sygnał błędu jeśli błąd wystąpił w jakimkolwiek teście rejestrowany jest przez przerzutnik synchroniczny RS (dodatkowe wejście CLK) i zapalana jest dioda X5.

Rysunek 16: Przerzutnik RS

CLK	s	R	Q_{n+1}	$-Q_{n+1}$
1	0	0	Q_n	$-Q_n$
1	0	1	0	1
1	1	0	1	0
1	1	1	X	X
X	X	X	Q_n	$-Q_n$

Tabela 6: Tabela prawdy przerzutnika RS

Sygnał błędu jeśli błąd wystąpił w danym teście rejestrowany jest przez przerzutnik synchroniczny D i zapalana jest dioda X4.

Rysunek 17: Przerzutnik D

CLK	D	SET	RESET	Q_{n+1}
↑	0	0	0	0
†	1	0	0	1
X	X	0	0	Q_n
X	X	1	0	1
X	X	0	1	0
X	Х	1	1	X

Tabela 7: Tabela prawdy dla przerzutnika D

9 Zastosowania

Podstawowym zastosowaniem zaprojektowanego przez nas urządzenia jest sterowanie odtwarzaczem muzycznym mp3. Przyciski STOP i PLAY odpowiadają za wstrzymywanie i wznawianie odtwarzania muzyki. Przy pomocy przycisków PREVIOUS i NEXT możemy zmieniać piosenki. W prezentowanym przez nas układzie, korzystając z 2 bitów wyjścia możemy wybierać odtwarzanie pomiędzy co najwyżej 4 piosenkami. W przypadku, gdybyśmy chcieli mieć możliwość wyboru między większą liczbą piosenek, należałoby dodać więcej przerzutników, które zapisywałyby numer piosenki i obliczyć nowe funkcje przejścia.

9.a Dozownik do napojów

Jednym z alternatywnych zastosowań układu, może być użycie go do obsługi dozownika do napojów. Przyciski START i STOP odpowiadają za wznawianie i wstrzymywanie polewania napoju. Diody obok typu napoju symbolizują aktualnie wybrany napój, który jest kodowany za pomocą 2 bitów i dekodowany za pomocą dekodera.

9.b Winda

Innym z alternatywnych zastosowań układu jest wykorzystanie go do obsługi przycisków w windzie. Stany repre

10 Wnioski

Przerzutniki typu D wykorzystane w głównej części układu są zupełnie wystarczające, gdyż potrzebujemy zapamiętać tylko jeden stan.

Od pewnego rozmiaru tablic Karnaugh, zaznaczanie jak największych obszarów staje się bardzo problematyczne, warto skorzystać z narzędzi służących do szukania funkcji minimalizujących, które pozwalają zaoszczędzić dużo czasu.

Ważne spostrzeżenia, które zaobserwowaliśmy:

- funkcje przejścia dla przerzutników D1, D0 nie zależą od wejść PLAY, STOP
- funkcja przejścia dla przerzutnika D2 zależy jedynie od jego obecnego stanu i wejść NEXT, PREV
- funkcja przejścia dla przerzutnika D3 zależy jedynie od jego obencego stanu i wejść PLAY, STOP

10.a Co można zrobić inaczej?

Uważamy, że można by ewentualnie zmienić przejścia ze stanów, które powodują przejście do następnej lub poprzedniej piosenki, a mianowicie nie zapamiętywać czy piosenka, z której wyszliśmy była odtwarzana czy zatrzymana, tylko zawsze włączać odtwarzanie - tak jak to wygląda choćby na platformie YouTube czy Spotify.

Można by również wykorzystać innego typu przerzutniki zamiast przerzutników typu D, choćby przerzutniki typu JK (do wejścia J podać sygnał D, do wejścia K sygnał \overline{D}).

Do produkcji takich układów lepiej nie tworzyć podukładów S0, S1, S2 oraz S3 i w ten sposób na pewno nie pogorszyć, a jedynie dać szansę na zmniejszenie kosztu produkcji, poprzez nie powielanie tych samych fragmentów implementacji funkcji logicznych na bramkach logicznych.

