R基本图形II

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

课堂测试时间

1.使用鸢尾花数据iris

- 1) 先用names()观察其结构, 然后用花瓣长度和宽度做散点图
- 2) 在plot函数里面添加细节。修改点的形状和颜色由白色空心圆换成红色雪花;修改坐标轴名称并添加标题 "relationship between width and length of Iris petal"。

2. 使用 airquality 数据

- 1) 绘温度 Temp 直方图,加一个横坐标"Temperature",加一个标题"The Distribution of Temperature"
- 2) 频数变频率,并设置颜色为绿色
- 3) 四幅图放在一个面板里,两个一排。并使用MASS包的trueHist函数画出频率直方图:
 - 第一幅图, airquality里温度变量的直方图(频数)
 - 第二幅图,airquality里该变量的直方图(频率)并添加密度曲线,填充红色
 - 第三幅图,airquality里风速变量的直方图(频数)
 - 第四幅图,airquality里该变量的直方图(频率),并添加密度曲线,填充蓝色

3. 使用mtcars里的mpg做箱图

给箱图添加坐标轴: x轴为"Number of Cylinders", y轴为="Miles Per Gallon"标题"Car Milage Data"。根据不同cyl变量下mpg的箱线图,并添加x轴"Number of Cylinders",y轴"Miles Per Gallon"

4. 按要求作图:

- 1) 创建字符向量colors,元素为"green","orange","brown";创建字符向量months,元素为"一月","二月","三月","四月","五月 ";创建字符向量regions,元素为"东部地区","西部地区","南部地区";创建矩阵values,元素为值
- 2,9,3,11,9,4,8,7,3,12,5,2,8,10,11,要求3行5列
- 2) 使用矩阵values创建推叠的条形图,添加标题为"总收入",x轴名称为"月份",y轴名称为"收入",条形图的标签为字符向量months(使用names.arg参数),推叠台型图的颜色设置为创建的字符向量colors
- 3) 添加图例,内容为字符向量regions,分别对应条形图中的三种颜色

上次课程内容回顾

● 图形函数:

```
* plot(); barplot(); pie(); hist(); boxplot();
```

● 图形参数:

```
* col; font; pch; cex; lty; lwd; xlab; ylab; xlim; ylim; type; main; horiz; beside;
```

● 图例函数:

```
* legend(location, title, legend, ...);
```

● 图形组合:

```
* par(); layout();
```

● 其余函数:

```
* title(); abline(); line(); text(); mtext();
```

图形 R Cookbook

散点图

plot(cars)

plot(cars,

main = "cars: Speed vs. Stooping Distance (1920)",

xlab = "Speed(MPH)",

ylab = "Stooping Distance(ft)")

cars: Speed vs. Stooping Distance (1920)

speed

10

15

Speed(MPH)

20

25

5

10

15

Speed(MPH)

散点图

25

25

20

20

```
plot(cars,
     main = "cars: Speed vs. Stooping Distance (1920)",
    xlab = "Speed(MPH)",
                                                                     cars: Speed vs. Stooping Distance (1920)
    ylab = "Stooping Distance(ft)",
                                                                  120
                                                              Stooping Distance(ft)
    type = "n")
                                                                  80
grid()
                                                                  40
points(cars)
                      低级函数
                                                                         5
                                                                                10
                                                                                         15
          cars: Speed vs. Stooping Distance (1920)
                                                                                    Speed(MPH)
        120
                                                                      cars: Speed vs. Stooping Distance (1920)
   Stooping Distance(ft)
                                                                   120
                                                               Stooping Distance(ft)
                                                                   80
        40
                                                                   40
```

多组散点图

> i	ris				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4	versicolor
52	6.4	3.2	4.5	1.5	versicolor
53	6.9	3.1	4.9	1.5	versicolor
54	5.5	2.3	4.0	1.3	versicolor
55	6.5	2.8	4.6	1.5	versicolor
99	5.1	2.5	3.0	1.1	versicolor
100	5.7	2.8	4.1	1.3	versicolor
101	6.3	3.3	6.0	2.5	virginica
148	6.5	3.0	5.2	2.0	virginica
149					
150	5.9				•

多组散点图

with(iris,plot(Petal.Length,Petal.Width))

with(iris,plot(Petal.Length,Petal.Width,pch=as.integer(Species)))

legend(1.5, 2.4, c("setosa", "versicol", "virginica"), pch = 1:3)

f <- factor(iris\$Species)
with(iris,plot(Petal.Length, Petal.Width, pch=as.integer(Species)))
legend(1.5, 2.4, as.character(levels(f)), pch = 1:3)</pre>

回归线

strongx m <- lm(crossx ~ energy, data = strongx)

plot(crossx ~ energy, data = strongx)
abline(m)

> strongx

	momentum	energy	crossx	sd
1	4	0.345	367	17
2	6	0.287	311	9
3	8	0.251	295	9
4	10	0.225	268	7
5	12	0.207	253	7
6	15	0.186	239	6
7	20	0.161	220	6
8	30	0.132	213	6
9	75	0.084	193	5
10	150	0.060	192	5

多变量散点图

每个因子水平的散点图

Mar	nufacturer	Model	Туре			Max.Price MPG.c	ity M	IPG.highway		AirBags	Dri	.veTrain Cy	linders Er	ngineSize	1.		Waisht Onisis	Males
1	Acura	Integra	Small	12.9	15.9	18.8	25	31		None		Front	4	1.8	1	uggage.room	Weight Origin	Make Acura Integra
2	Acura	-	Midsize		33.9	38.7	18	25 D)river	° & Passenger		Front	6	3.2	2	15		Acura Legend
3	Audi		Compact	25.9		32.3	20	26		Driver only		Front	6	2.8	3	14	3375 non-USA	Audi 90
4	Audi		Midsize		37.7	44.6	19		river	& Passenger		Front	6	2.8	4	17	3405 non-USA	Audi 100
5	BMW		Midsize		30.0		22	30		Driver only		Rear	4	3.5	5	13	3640 non-USA	BMW 535i
b Па.		_	Midsize	14.2			22	31	مالممد	Driver only		Front	4 • Posm so	2.2	6	16	2880 USA	Buick Century
пог	•			man. trans.		Fuel.tank.capac	_	assenger's Le	_									
1	140 63		2890		Yes		3.2	5	177	102	68	3		26.5				
2	200 55	500	2335		Yes	1	8.0	5	195	115	71	3	8	30.0				
3	172 55	500	2280		Yes	1	6.9	5	180	102	67	3	7	28.0			1//	2
4	172 55		2535		Yes		1.1	6	193	106	70	3		31.0		ne	nnse	Cars93
5	208 57	700	2545		Yes	2	1.1	4	186	109	69	3	9	27.0		110	, and	
_																		

Given : Origin coplot(Horsepower ~ MPG.citylOrigin, data = Cars93)

MPG.city

条形图

```
> head(airquality)
 Ozone Solar.R Wind Temp Month Day
     41
            190 7.4
                       67
            118 8.0
     36
                       72
     12
            149 12.6
                       74
     18
            313 11.5
                       62
             NA 14.3
                       56
     NA
     28
             NA 14.9
                       66
```


barplot(height)

- > height <- tapply(airquality\$Temp, airquality\$Month, mean)</pre>
- > height

5 6 7 8 9

65.54839 79.10000 83.90323 83.96774 76.90000

Mean Temp. by Month

barplot(height,

main = "Mean Temp. by Month",

May Jun Jul names.arg = c("May", "Jun", "Jul", "Aug", "Sep"),

ylab = "Temp(deg.F)")

Temp(deg.F)

条形图上色

barplot(c(3,5,4),col = c("red","white","blue"))


```
rel.hts <- (height - min(height)) / (max(height) - min(height))
grays <- gray(1 - rel.hts)
barplot(height,col = grays,ylim = c(50, 90), xpd = FALSE,main = "Mean
Temp. By Month",names.arg = c("May", "Jun", "Jul", "Aug", "Sep"),ylab =
"Temp(deg.F)")

Mean Temp. By Month
```


线图

plot(pressure)

plot(pressure, type = "l")

绘制函数

curve(sin, -3, 3) curve(dnorm, -3.5, +3.5, main="Std.Normal Density"

Std.Normal Density

f <- function(x) exp(-abs(x)) * sin(2*pi*x) curve(f, -5, +5, main = "Dampend Sine Wave")

Dampend Sine Wave

图形控制 R Graphs Cookbook

一页显示多个图形

par(mfrow=c(2,3))
plot(rnorm(100),col="blue",main="Plot No.1")
plot(rnorm(100),col="blue",main="Plot No.2")
plot(rnorm(100),col="green",main="Plot No.3")
plot(rnorm(100),col="black",main="Plot No.4")
plot(rnorm(100),col="green",main="Plot No.5")
plot(rnorm(100),col="orange",main="Plot No.6")

par(mfcol=c(2,3))
plot(rnorm(100),col="blue",main="Plot No.1")
plot(rnorm(100),col="blue",main="Plot No.2")
plot(rnorm(100),col="green",main="Plot No.3")
plot(rnorm(100),col="black",main="Plot No.4")
plot(rnorm(100),col="green",main="Plot No.5")
plot(rnorm(100),col="orange",main="Plot No.6")

一页显示多个图形

par(mfrow=c(2,3))
plot(rnorm(100),col="blue",main="Plot No.1")
plot(rnorm(100),col="blue",main="Plot No.2")
plot(rnorm(100),col="green",main="Plot No.3")
plot(rnorm(100),col="black",main="Plot No.4")
plot(rnorm(100),col="green",main="Plot No.5")
plot(rnorm(100),col="orange",main="Plot No.6")

par(mfcol=c(2,3))
plot(rnorm(100),col="blue",main="Plot No.1")
plot(rnorm(100),col="blue",main="Plot No.2")
plot(rnorm(100),col="green",main="Plot No.3")
plot(rnorm(100),col="black",main="Plot No.4")
plot(rnorm(100),col="green",main="Plot No.5")
plot(rnorm(100),col="orange",main="Plot No.6")

ylim=c(0,300),

plot(rain\$Tokyo,type="l",col="red",

main="Monthly Rainfall in major cities",

lines(rain\$NewYork,type="l",col="blue",lwd=2)

xlab="Month of Year",ylab="Rainfall (mm)",lwd=2)

图例 - 基本例子

```
lines(rain$London,type="l",col="green",lwd=2)
lines(rain$Berlin,type="l",col="orange",lwd=2)
legend("topright",
    legend=c("Tokyo","New York","London","Berlin"),
    col=c("red","blue","green","orange"),
    lty=1,lwd=2)
                              rain<-read.csv("cityrain.csv",header=TRUE)
plot(rain$Tokyo,type="l",col="red",
   ylim=c(0,250),
   main="Monthly Rainfall in major cities",
   xlab="Month of Year",ylab="Rainfall (mm)", lwd=2)
lines(rain$NewYork,type="l",col="blue",lwd=2)
lines(rain$London,type="l",col="green",lwd=2)
lines(rain$Berlin,type="l",col="orange",lwd=2)
legend("top",
    legend=c("Tokyo","New York","London","Berlin"),
    ncol=4,cex=0.8,bty="n",
    col=c("red","blue","green","orange"),
    Ity=1,Iwd=2
```


Monthly Rainfall in major cities

图例 - 使用坐标定位

```
rain<-read.csv("cityrain.csv")
plot(rain$Tokyo,type="b",lwd=2, xaxt="n",ylim=c(0,300),col="black",xlab="Month",ylab="Rainfall (mm)",main="Monthly Rainfall in major cities")
axis(1,at=1:length(rain$Month),labels=rain$Month)
lines(rain$Berlin,col="red",type="b",lwd=2)
lines(rain$NewYork,col="orange",type="b",lwd=2)
lines(rain$London,col="purple",type="b",lwd=2)
```

legend("topright",legend=c("Tokyo","Berlin","New York", "London"), lty=1, lwd=2, pch=21, col=c("black","red","orange","purple"), ncol=2, bty="n",cex=0.8, text.col=c("black","red","orange","purple"), inset=0.01)

Monthly Rainfall in major cities

图例 - 使用坐标定位

Monthly Rainfall in major cities

lines(gdp\$USA~gdp\$Year,col=pal[5],lwd=2)

图例 - 边界标记

```
gdp<-read.table("gdp_long.txt",header=T)
library(RColorBrewer)
pal<-brewer.pal(5,"Set1")
par(mar=par()$mar+c(0,0,0,2),bty="I")
plot(Canada~Year,data=gdp,type="l",lwd=2,lty=1,ylim=c(30,60),col=pal[1],main="Percentage change in
GDP",ylab="")
mtext(side=4,at=gdp$Canada[length(gdp$Canada)],text="Canada",col=pal[1],line=0.3,las=2)
                                                                                                 side
lines(gdp$France~gdp$Year,col=pal[2],lwd=2)
                                                                                                 1,2,3,4
mtext(side=4,at=gdp$France[length(gdp$France)],text="France",col=pal[2],line=0.3,las=2)
lines(gdp$Germany~gdp$Year,col=pal[3],lwd=2)
mtext(side=4,at=gdp$Germany[length(gdp$Germany)],text="Germany",col=pal[3],line=0.3,las=2)
lines(gdp$Britain~gdp$Year,col=pal[4],lwd=2)
mtext(side=4,at=gdp$Britain[length(gdp$Britain)],text="Britain",col=pal[4],line=0.3,las=2)
```

mtext(side=4,at=gdp\$USA[length(gdp\$USA)]-2,text="USA",col=pal[5],line=0.3,las=2)

图例 - 边界标记

Percentage change in GDP

折线图 - 网格图

```
rain<-read.csv("cityrain.csv")
plot(rain$Tokyo,type="b",lwd=2, xaxt="n",ylim=c(0,300),col="black", xlab="Month",
ylab="Rainfall (mm)",main="Monthly Rainfall in Tokyo")
axis(1,at=1:length(rain$Month),labels=rain$Month)
```

grid()

grid(nx=NA, ny=8, lwd=1,lty=2,col="blue")

折线图 - 特殊线

rain<-read.csv("cityrain.csv")
plot(rain\$Tokyo,type="b",lwd=2, xaxt="n",ylim=c(0,300),col="black", xlab="Month",
 ylab="Rainfall (mm)",main="Monthly Rainfall in Tokyo")
axis(1,at=1:length(rain\$Month),labels=rain\$Month)</pre>

abline(v=9)

Monthly Rainfall in Tokyo

abline(h=150,col="red",lty=2)

Monthly Rainfall in Tokyo

折线图 - 波形线

```
rain <- read.csv("cityrain.csv")
par(mfrow=c(4,1),mar=c(5,7,4,2),omi=c(0.2,2,0.2,2))
                                                             Tokyo
for(i in 2:5)
plot(rain[,i],ann=FALSE,axes=FALSE,type="l",col="g
ray", lwd=2)
mtext(side=2,at=mean(rain[,i]),names(rain[i]),las=2,c
ol="black")
mtext(side=4,at=mean(rain[,i]),mean(rain[i]),las=2,c
                                                            London
ol="black")
points(which.min(rain[,i]),min(rain[,i]),pch=19,col="bl
ue")
                                                                              48.075
points(which.max(rain[,i]),max(rain[,i]),pch=19,col="r
ed")
```

条形图 - 堆积

citysales<-read.csv("citysales.csv")

box(bty="l")

条形图-方向

```
barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE, legend.text=citysales$City, args.legend=list(bty="n"),col=brewer.pal(5,"Set1"), border="white", xlim=c(0,100), xlab="Sales Revenue (1,000's of USD)",main="Sales Figures")
```


R Graphics II 条形图 - 宽度、颜色、边界

```
barplot(as.matrix(citysales[,2:4]), beside=TRUE, legend.text=citysales$City, args.legend=list(bty="n",horiz=T), col=c("#E5562A","#491A5B","#8C6CA8","#BD1B8A"," #7CB6E4"), border=FALSE,space=c(0,5),ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures")
```

barplot(as.matrix(citysales[,2:4]), beside=T, legend.text=citysales\$City, args.legend=list(bty="n",horiz=T), ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures")

条形图 - 显示数字

```
x<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,
       legend.text=citysales$City,
                                                 y<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE,
       args.legend=list(bty="n",horiz=TRUE),
                                                        legend.text=citysales$City,
       col=brewer.pal(5,"Set1"),
                                                        args.legend=list(bty="n"), col=brewer.pal(5,"Set1"),
       border="white",ylim=c(0,100),
                                                        border="white", xlim=c(0,100),
       ylab="Sales Revenue (1,000's of USD)",
                                                        xlab="Sales Revenue (1,000's of USD)",
       main="Sales Figures")
                                                        main="Sales Figures")
y<-as.matrix(citysales[,2:4])
                                                 x<-as.matrix(citysales[,2:4])
text(x,y+2,labels=as.character(y))
                                                 text(x+2,y,labels=as.character(x))
                                                                               Sales Figures
                      Sales Figures
  100
                                                                     14
                                                                                                   Mumbai
```


条形图 - 显示标记

rain<-read.csv("cityrain.csv")

y<-barplot(as.matrix(rain[1,-1]),horiz=T,col="white",yaxt="n", main="Monthly Rainfall in Major CitiesJanuary", xlab="Rainfall (mm)")

x<-0.5*rain[1,-1]
text(x,y,colnames(rain[-1]))</pre>

条形图 - 增加误差线

```
sales<-t(as.matrix(citysales[,-1]))
colnames(sales)<-citysales[,1]
x<-barplot(sales,beside=T,legend.text=rownames(sales),
       args.legend=list(bty="n",horiz=T),
       col=brewer.pal(3,"Set2"),
                                                                        Sales Figures
       border="white",ylim=c(0,100),
       ylab="Sales Revenue (1,000's of USD)", E
                                                                         ProductA ProductB ProductC
       main="Sales Figures")
                                                      8
                                                   Sales Revenue (1,000's of USD)
arrows(x0=x,
     y0=sales*0.95,
     x1=x
     y1=sales*1.05,
     angle=90,
     code=3,
     length=0.04,
     lwd=0.4)
                                                           Seattle
                                                                           Tokyo
                                                                  London
                                                                                   Berlin
                                                                                          Mumbai
```

x <- rbinom(1000, 10, 0.25) y <- rbinom(1000, 10, 0.25) plot(x,y)

plot(jitter(x), jitter(y))

提问时间!

孙惠平 sunhp@ss.pku.edu.cn

练习

练习-0021

第3、6章

练习-0022

- gdp_long.txt
- 做折线图(网格、特殊线,图例的不同位置)
- · 条形图(正常、堆积、横向、颜色宽度等、显示数字、误 差线)
- cityrain.csv
- · 做折线图(边界标注,slide,mar和bty的含义)

练习-0023

提交方式和上节课一样!

https://www.datacamp.com/courses

谢谢!

孙惠平 sunhp@ss.pku.edu.cn