Table of Contents

Lecture Organisation and Content Teaser

Statistical Learning Recap

Supervised Statistical Learning – Population Leve Supervised Statistical Learning – Sample Level Data Spit and Cross Validation Supervised Model Classes

Model Comparison / Scoring Functions

Calibration Assessment / Identification Functions

Binary Classification

Bibliographie

 $\begin{tabular}{ll} Figure: Scale calibration \\ source: https://ssec-epos.co.uk/hardware/weighing-scale-calibration-and-service/ \\ \end{tabular}$

Motivation for Calibration

- ▶ Is the model fit for its prediction task?
- ▶ How well does the predictions align with observations?
- Detect bias and discrimination.

Bias can result in bad news.

Motivation for Calibration

- Is the model fit for its prediction task?
- ▶ How well does the predictions align with observations?
- Detect bias and discrimination.

Bias can result in bad news.

Machine Bias		
There's software used across the country to predict future criminals. And it's biased against blacks.		
by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016		
Prediction Fails Differently for Black Defendants		
	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Figure: ProPublica article on COMPAS.

Measuring Model Calibration

Distance

Is m(x) calibrated?

Measuring Model Calibration

Distance

Is m(x) calibrated?

2 Notions of Calibration

Definition

Given a feature–response pair (X, Y), the model m(X) is **conditionally calibrated** for the functional T if

$$m(\boldsymbol{X}) = T(Y|\boldsymbol{X})$$

almost surely.

The model m(X) is **auto-calibrated** for T if

$$m(\boldsymbol{X}) = T(Y|m(\boldsymbol{X}))$$

almost surely.

Note

- Calibration uncovers the use of information
- Conditional calibrated models use information ideally and predict **oracle** function $x \to T(Y|X = x)$.

- The trivial model m(X) = T(Y) is auto-calibrated, but a.s. not conditionally calibrated.
- **Unconditional calibration** does not have such a definition in terms of T and m(x).

Identification Functions

Definition

Let $\mathcal F$ be a class of probability distributions where the functional T is defined on. A **strict** $\mathcal F$ -identification function for T is a function V(z,y) in a forecast z and an observation y such that

$$\int V(z,y) \, \mathrm{d}F(y) = 0 \quad \Longleftrightarrow \quad z \in T(F) \qquad \text{for all } z \in \mathbb{R}, \ F \in \mathcal{F}. \tag{22}$$

If only the implication \iff in (22) holds, then V is just called an \mathcal{F} -identification function for T. If T admits a strict \mathcal{F} -identification function, it is **identifiable** on \mathcal{F} .

Canonical strict identification functions

Functional	Strict Identification Function	Domain of y , z
expectation $\mathbb{E}[Y]$	V(z,y)=z-y	\mathbb{R}
lpha-expectile	$V(z,y) = 2 \mathbb{1}\{z \ge y\} - \alpha (z-y)$	\mathbb{R}
median $F_Y^{-1}(0.5)$	$V(z,y) = \mathbb{1}\{z \ge y\} - 1/2$	\mathbb{R}
$lpha$ -quantile $F_Y^{-1}(lpha)$	$V(z,y) = \mathbb{1}\{z \ge y\} - \alpha$	\mathbb{R}

Osbands's Principle for Scoring Functions

Assume $\mathbb{P}(Y=a)=p$ and $\mathbb{P}(Y=b)=1-p$. Then, for any S consistent for T and smooth in its first argument, the expected score $\epsilon(c)=pS(c,a)+(1-p)S(c,b)$ is minimised at c=t fulfilling

$$\epsilon'(t) = pS_{(1)}(t,a) + (1-p)S_{(1)}(t,b) = 0.$$

Furthermore, (22) implies

$$pV(t, a) + (1 - p)V(t, b) = 0.$$

Combining them gives for all pairwise distinct a, b and $t \in D$

$$S_{(1)}(t,a)/V(t,a) = S_{(1)}(t,b)/V(t,b) = \text{function in } t \text{ alone}$$

and we can write, for some function $h: D \rightarrow D$

$$S_{(1)}(z,y) = h(z)V(z,y).$$
 (23)

Osbands's Principle for Identification Functions

Characterisation⁷

Subject to mild regularity conditions on \mathcal{F} and V: If V is a strict identification function for $T: \mathcal{F} \to A \subseteq \mathbb{R}^k$, then

$$\{h(z)V(z,y)|h:A\to\mathbb{R}^{k,k},\det h(z)\neq 0 \text{ for all } z\in A\}$$
 (24)

is the entire class of strict identification functions for T.

Identifiability and elicitability

Under some richness assumptions on the class \mathcal{F} and continuity assumptions on T: For one-dimentional functionals T, identifiability and elicitability are equivalent.

T. Dimitriadis, T. Fissler and J. Ziegel. "Osband's Principle for Identification Functions".

Identification Functions and Calibration

Let V be any strict \mathcal{F} -identification function for T.

Conditional calibration

Suppose that \mathcal{F} contains the conditional distributions $F_{Y|X=x}$ for almost all $x \in \mathcal{X}$.

Application of (22) to these conditional distributions yields that $m(\mathbf{x}) \in T(Y|\mathbf{X}=\mathbf{x})$ if and only if $\int V(m(\mathbf{x}),y) \, \mathrm{d}F_{Y|\mathbf{X}=\mathbf{x}}(y) = 0$. This shows that m is conditionally calibrated for T if and only if

$$\mathbb{E}[V(m(\mathbf{X}), Y)|\mathbf{X}] = 0 \qquad \text{almost surely.}$$
 (25)

Auto-Calibration

Suppose the conditional distributions $F_{Y|m(X)=z}$ are in \mathcal{F} for almost all $z \in \mathbb{R}$. Then m is auto-calibrated for \mathcal{T} if and only if

$$\mathbb{E}[V(m(X), Y)|m(X)] = 0 \quad \text{almost surely.}$$
 (26)

Note

By the tower property of the conditional expectation, conditional calibration implies auto-calibration for identifiable functionals with a sufficiently rich class \mathcal{F} .

Unconditional Calibration

Definition

Let V be any strict identification function for T. We say that m(X) is unconditionally calibrated for T relative to V if $\mathbb{E}[V(m(X,Y)] = 0$.

Unless $m(\mathbf{X})$ is constant, and in stark contrast to conditional calibration and auto-calibration, the notion of unconditional calibration depends on the choice of the identification function V used.

Assessing Calibration: Overview

Notion	Definition	Check
conditional calibration	$m(\mathbf{X}) = T(Y \mathbf{X})$	$\mathbb{E}[V(m(\boldsymbol{X}),Y) \boldsymbol{X}]=0$ a.s.
auto-calibration	$m(\mathbf{X}) = T(Y m(\mathbf{X}))$	$\mathbb{E}[V(m(\boldsymbol{X}),Y) m(\boldsymbol{X})]=0$ a.s.
unconditional calibration	$\mathbb{E}[V(m(\mathbf{X}), Y)] = 0$	$\mathbb{E}[V(m(\boldsymbol{X}),Y)]=0$

Table: Types of calibration for an identifiable functional T with strict identification function V.

Assessing Calibration: Test Functions

How to measure good calibration on a sample level?

Test functions

$$\mathbb{E}[V(m(\boldsymbol{X}), Y)|\boldsymbol{X}] = 0$$
 a.s.

is equivalent to

$$\mathbb{E}[\varphi(\mathbf{X})V(m(\mathbf{X}),Y)] = 0 \quad \text{for all (measurable) test functions } \varphi \colon \mathcal{X} \to \mathbb{R}. \tag{27}$$

Similarly, auto-calibration is equivalent to

$$\mathbb{E}[\varphi(m(\boldsymbol{X}))V(m(\boldsymbol{X}),Y)] = 0 \quad \text{for all (measurable) test functions } \varphi \colon \mathbb{R} \to \mathbb{R}. \quad (28)$$

Here, φ is a univariate function (only).

Practical Considerations

- Check for calibration on the training as well as on the test set.
- Quantify calibration by making a choice for the test function φ and report $\overline{V}_{\varphi}(m; D) = \frac{1}{n} \sum_{i=1}^{n} \varphi(\mathbf{x}_{i}) V(m(\mathbf{x}_{i}), y_{i})$. Consider at least
 - $ightharpoonup \varphi(\mathbf{x}) = 1$
 - ightharpoonup all projections to single components of the feature vector x
 - $\phi(\mathbf{x}) = m(\mathbf{x})$ to assesses auto-calibration.

Continuous features can be binned, e.g., $\varphi(\mathbf{x}) = \mathbb{1}\{\text{lower} \le x^1 < \text{upper}\}.$

- Assess calibration visually:
 - Plot the generalised residuals $V(m(\mathbf{x}_i), y_i)$ versus $\varphi(\mathbf{x}_i)$ for the above choices of test functions φ . Average of the generalised residuals should be around 0 for all values of the test function.
 - Another possibility is to plot the values of $\overline{V}_{\varphi}(m;D)$ for different φ , for instance projections to single feature columns.
 - A reliability diagram assesses auto-calibration: a graph of the mapping $m(x) \to T(Y|m(x))$, see [5]. T(Y|m(x)) can be estimated by isotonic regression of y_i against $m(x_i)$. For an auto-calibrated model, the graph is the diagonal line.

Unconditional Calibration in Numbers

Would we have made profit or loss (on test set) on the portfolio?

Note: Ideally neither loss nor profit, i.e. balanced.

 $n_{\rm test} = 20504$

	$\frac{1}{n}\sum_{i}m(\boldsymbol{x}_{i})-y_{i}$	<i>p</i> -value of <i>t</i> -test
Trivial	-24	9.5×10^{-1}
GLM Gamma	-1207	8.8×10^{-4}
GLM Poisson	125	$7.3 imes10^{-1}$
XGBoost	-2044	$1.4 imes10^{-8}$

 \Rightarrow unconditional calibration: $\mathbb{E}[m(\textbf{X}) - Y] \approx 0$

Unconditional Calibration in Numbers

Would we have made profit or loss (on test set) on the portfolio?

Note: Ideally neither loss nor profit, i.e. balanced.

 $n_{\text{test}} = 20504$

	$\frac{1}{n}\sum_{i}m(\boldsymbol{x}_{i})-y_{i}$	<i>p</i> -value of <i>t</i> -test
Trivial	-24	9.5×10^{-1}
GLM Gamma	-1207	8.8×10^{-4}
GLM Poisson	125	$7.3 imes10^{-1}$
XGBoost	-2044	$1.4 imes 10^{-8}$
XGBoost corr	96	7.9×10^{-1}

Recalibrate XGBoost by a multiplicative constant (on training set).

 \Rightarrow unconditional calibration: $\mathbb{E}[m(X) - Y] \approx 0$

Calibration Conditional on Gender

Is there a gender bias in the models?

	$\frac{1}{n}\sum_{i\in subse}$	$\frac{1}{n} m(\mathbf{x})_i - y_i$ bias M
model	bias F	bias M
Trivial	-4240	1167
GLM Gamma	-807	-1320
GLM Poisson	477	26
XGBoost	-3536	-1623
XGBoost corr	-865	367

Auto-Calibration

Are policies with same (actuarial) price self-financing?

Reliability diagram: Estimate $\mathbb{E}[Y|m(X)]$ via isotonic regression (PAV) and plot vs m(X).

 \Rightarrow auto-calibration: $\mathbb{E}[m(\textbf{X}) - Y | m(\textbf{X})] \approx 0$

Exercises

Exercise 14

Find a strict identification $V(z_1,z_2,y):\mathbb{R}^3 \to \mathbb{R}^2$ for the pair (mean, variance).

Exercise 15

Plot a reliability diagram for your model(s). Hint: The R package monotone might help.

Exercise 16

What are the differences between assessing calibration and the analysis of residuals with ordinary least squares.

Table of Contents

Lecture Organisation and Content Teaser

Statistical Learning Recap

Supervised Statistical Learning – Population Leve Supervised Statistical Learning – Sample Level Data Spit and Cross Validation Supervised Model Classes

Model Comparison / Scoring Functions

Calibration Assessment / Identification Functions

Binary Classification

Bibliographie