Using the last result we can calculate

$$a = a_x = -a_y = \frac{m_1}{m_1 + m_2} g$$
,
 $T_2 = T_1 = \frac{m_2 m_1}{m_1 + m_2} g$.

Numerical results:

$$a = a_x = \frac{3}{5} \cdot 9.81 \text{ m s}^{-2} = 5.89 \text{ m s}^{-2},$$

 $T_1 = T_2 = 1.18 \text{ N}.$

Problem 2. Water of mass m_2 is contained in a copper calorimeter of mass m_1 . Their common temperature is t_2 . A piece of ice of mass m_3 and temperature $t_3 < 0$ °C is dropped into the calorimeter.

- a) Determine the temperature and masses of water and ice in the equilibrium state for general values of m_1 , m_2 , m_3 , t_2 and t_3 . Write equilibrium equations for all possible processes which have to be considered.
- b) Find the final temperature and final masses of water and ice for $m_1 = 1.00 \text{ kg}$, $m_2 = 1.00 \text{ kg}$, $m_3 = 2.00 \text{ kg}$, $t_2 = 10 \,^{\circ}\text{C}$, $t_3 = -20 \,^{\circ}\text{C}$.

Neglect the energy losses, assume the normal barometric pressure. Specific heat of copper is $c_1 = 0.1 \, \text{kcal/kg} \cdot ^{\circ}\text{C}$, specific heat of water $c_2 = 1 \, \text{kcal/kg} \cdot ^{\circ}\text{C}$, specific heat of ice $c_3 = 0.492 \, \text{kcal/kg} \cdot ^{\circ}\text{C}$, latent heat of fusion of ice $l = 78,7 \, \text{kcal/kg}$. Take $1 \, \text{cal} = 4.2 \, \text{J}$.

Solution:

We use the following notation:

t temperature of the final equilibrium state,

 $t_0 = 0$ °C the melting point of ice under normal pressure conditions,

 M_2 final mass of water,

 M_3 final mass of ice,

 $m_2' \le m_2$ mass of water, which freezes to ice,

 $m_3' \leq m_3$ mass of ice, which melts to water.

a) Generally, four possible processes and corresponding equilibrium states can occur:

1. $t_0 < t < t_2$, $m'_2 = 0$, $m'_3 = m_3$, $M_2 = m_2 + m_3$, $M_3 = 0$. Unknown final temperature t can be determined from the equation

$$(m_1c_1 + m_2c_2)(t_2 - t) = m_3c_3(t_0 - t_3) + m_3l + m_3c_2(t - t_0).$$
 (7)

However, only the solution satisfying the condition $t_0 < t < t_2$ does make physical sense.

2. $t_3 < t < t_0$, $m'_2 = m_2$, $m'_3 = 0$, $M_2 = 0$, $M_3 = m_2 + m_3$. Unknown final temperature t can be determined from the equation

$$m_1c_1(t_2-t) + m_2c_2(t_2-t_0) + m_2l + m_2c_3(t_0-t) = m_3c_3(t-t_3)$$
. (8)

However, only the solution satisfying the condition $t_3 < t < t_0$ does make physical sense.

3. $t = t_0, m'_2 = 0, 0 \le m'_3 \le m_3, M_2 = m_2 + m'_3, M_3 = m_3 - m'_3.$ Unknown mass m'_3 can be calculated from the equation

$$(m_1c_1 + m_2c_2)(t_2 - t_0) = m_3c_3(t - t_3) + m_3'l. (9)$$

However, only the solution satisfying the condition $0 \le m_3' \le m_3$ does make physical sense.

4. $t = t_0$, $0 \le m'_2 \le m_2$, $m'_3 = 0$, $M_2 = m_2 - m'_2$, $M_3 = m_3 + m'_2$. Unknown mass m'_2 can be calculated from the equation

$$(m_1c_1 + m_2c_2)(t_2 - t_0) + m_2'l = m_3c_3(t_0 - t_3).$$
(10)

However, only the solution satisfying the condition $0 \le m_2' \le m_2$ does make physical sense.

b) Substituting the particular values of m_1 , m_2 , m_3 , t_2 and t_3 to equations (7), (8) and (9) one obtains solutions not making the physical sense (not satisfying the above conditions for t, respectively m'_3). The real physical process under given conditions is given by the equation (10) which yields

$$m_2' = \frac{m_3 c_3 (t_0 - t_3) - (m_1 c_1 + m_2 c_2)(t_2 - t_0)}{I}$$
.

Substituting given numerical values one gets $m_2' = 0.11$ kg. Hence, t = 0 °C, $M_2 = m_2 - m_2' = 0.89$ kg, $M_3 = m_3 + m_2' = 2.11$ kg.