Covering Groups

1 Schur Multiplier

 A_n as quotient group of $2.A_n$.

Let $+\pi$ and $-\pi$ be the two preimages of $\pi \in A_n$ under the natural quotient map. But there is no canonical choice of which element gets which sign.

Let +1 be the identity in $2.A_n$. For each $\pi \in A_n$, we define $+\pi$ to be the element which multiplied together with +1 gives itself, and $-\pi$ for the other one.

Definition 1.1. \tilde{G} is a covering group of G if $Z(\tilde{G}) \leq \tilde{G}'$ and $\tilde{G}/Z(\tilde{G}) \cong G$.

If $|Z(\tilde{G})| = 2, 3$, then the covering group is called double, triple cover.

Theorem 1.2 (Schur). Every finite perfect group G has a unique maximal covering group \tilde{G} , with the property that every other covering group is a quotient of \tilde{G} . We call \tilde{G} the universal covering group of G and $Z(\tilde{G})$ the Schur multiplier of G, denoted as M(G).

Example 1.3 (non-perfect). $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle \alpha \rangle \times \langle \beta \rangle$ has four maximal covering groups: one Q_8 and three D_8 .

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}, Z(Q_8) = \{\pm 1\}, Q_8/Z(Q_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

$$D_8 = \langle a \rangle : \langle b \rangle, \ Z(D_8) = \langle a^2 \rangle, \ D_8/Z(D_8) = \langle Z(D_8)a \rangle \times \langle Z(D_8)ab \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Only one of 3 different subgroups of $D_8/Z(D_8)$ could map to the normal subgroup $\langle a \rangle$ of D_8 . Thus there are 3 different covering groups of $\mathbb{Z}_2 \times \mathbb{Z}_2$. However, Q_8 has more symmetric structure coinciding with $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Example 1.4. The alternating groups A_n (n > 4) only have double covers, except for A_6 and A_7 both with the same Schur multiplier \mathbb{Z}_6 .

2 Double Covers of A_n and S_n

Now we define $2.S_n$.

Firstly, let G be a set of order 2n!, with a map φ onto S_n such that each $\pi \in S_n$ has exactly two preimages denoted as $+\pi$ and $-\pi$.

Intuitively, we should define the multiplication of G as $+\pi + \sigma = +(\pi\sigma)$ and $+\pi - \sigma = -(\pi\sigma)$.

WLOG, we denote $+(1\ 2)$ as $[1\ 2]$ and $-(1\ 2)$ as $-[1\ 2]$. Then for each transposition $\pi \in S_n$, taking $(+\pi)^{-1}$ to be a preimage of π , define the products (of 3 elements in G) $[i\ j]^{+\pi}$ and $[i\ j]^{-\pi}$ to be a same preimage of $(i^{\pi}\ j^{\pi})$, we denote it as $-[i^{\pi}\ j^{\pi}]$. That is $[i\ j]^{\pm\pi} = -[i^{\pi}\ j^{\pi}]$.

Then define the preimage of $(a_i, a_{i+1}, \dots, a_i)$ by

$$[a_i \ a_{i+1} \ \cdots \ a_j] = [a_i \ a_{i+1}][a_i \ a_{i+2}] \cdots [a_i \ a_j].$$

Finally by multiplying together disjoint cycles in the usual way, we obtain all elements.

The multiplication defined above is well-defined. That is, if we compute the same product in two different ways, we get the same result. A proof using construction of double cover of orthogonal group is given in Section 3.9.

Note that, by the rule $[i \ j]^{\pm \pi} = -[i^{\pi} \ j^{\pi}]$ to define $[i \ j]$'s, all the elements $\pm [i \ j]$ are conjugate. Thus they are all square to 1 or -1 simotaneously. If $(\pm [i \ j])^2 = 1$, then the elements like $\pm [1 \ 2][3 \ 4]$ square to -1. And vice versa.

Therefore, we obtain two distinct double cover of S_n . We denote $2.S_n^+$ (actually $\mathbb{Z}_2 \times S_n$) as the one with $|[i\ j]| = 2$ (where $(i\ j)$ is identified with a coset $Z(2.S_n)a$ with a of order 2), and $2.S_n^-$ as the other one with $|[i\ j]| = 4$ ($(i\ j)$ a coset of an element of order 4). However, both of them has the same subgroup $2.A_n \cong \mathbb{Z}_2 \times A_n$ of index 2, which is the unique double cover of A_n .

3 Triple Covers of A_6 and A_7