

Clustering

CS 145
Fall 2015
Wei Wang

Grid-based Clustering Methods

- Ideas
 - Using multi-resolution grid data structures
 - ▶ Use dense grid cells to form clusters
- Several interesting methods
 - ► STING
 - CLIQUE

STING: A Statistical Information Grid Approach

- ► The spatial area area is divided into rectangular cells
- ► There are several levels of cells corresponding to different levels of resolution

STING: A Statistical Information Grid Approach (2)

- ► Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical information of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell
 - ► count, mean, s, min, max
 - ▶ type of distribution—normal, *uniform*, etc.
- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- ▶ For each cell in the current level compute the confidence interval

STING: A Statistical Information Grid Approach (3)

- ▶ Remove the irrelevant cells from further consideration
- ► When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached

STING: A Statistical Information Grid Approach (4)

- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - ightharpoonup O(K), where K is the number of grid cells at the lowest level
- Disadvantages:
 - ► All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

CLIQUE (Clustering In QUEst)

- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - ▶ It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - ▶ A cluster is a maximal set of connected dense units within a subspace

CLIQUE: The Major Steps

- ▶ Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters:
 - ▶ Determine dense units in all subspaces of interests
 - ▶ Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - ▶ Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster

CLIQUE

CLIQUE

Strength and Weakness of CLIQUE

Strength

- It <u>automatically</u> finds subspaces of the <u>highest</u> dimensionality such that high density clusters exist in those subspaces
- It is *insensitive* to the order of records in input and does not presume some canonical data distribution
- ▶ It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases

Weakness

The accuracy of the clustering result may be degraded at the expense of simplicity of the method

Outlier Analysis

- "One person's noise is another person's signal"
- Outliers: the objects considerably dissimilar from the remainder of the data
 - Examples: credit card fraud, Michael Jordon, etc
 - Applications: credit card fraud detection, telecom fraud detection, customer segmentation, medical analysis, etc

Distance-based Outliers

- ► A DB(p, D)-outlier is an object O in a dataset T s.t. at least fraction p of the objects in T lies at a distance greater than distance D from O
- Algorithms for mining distance-based outliers
 - ► The index-based algorithm, the nested-loop algorithm, the cell-based algorithm

Index-based Algorithms

- ▶ Find DB(p, D) outliers in T with n objects
 - ► Find an object having at most [n(1-p)] neighbors with radius D
- Algorithm
 - ▶ Build a standard multidimensional index
 - Search every object O with radius D
 - ▶ If there are at least [n(1-p)] neighbors, O is not an outlier
 - ▶ Else, output O

Pros and Cons of Index-based Algorithms

- Complexity of search O(kN²)
 - More scalable with dimensionality than depthbased approaches
- Building a right index is very costly
 - ► Index building cost renders the index-based algorithms non-competitive

A Naïve Nested-loop Algorithm

- For j=1 to n do
 - ► Set count_j=0;
 - ▶ For k=1 to n do if (dist(j,k)<D) then $count_i++$;
 - ▶ If count_j <= $\lfloor n(1-p) \rfloor$ then output j as an outlier;
- No explicit index construction
 - $ightharpoonup O(N^2)$
- Many database scans

Optimizations of Nested-loop Algorithm

- Once an object has at least [n(1-p)] neighbors with radius D, no need to count further
- Use the data in main memory as much as possible
 - Reduce the number of database scans