MIE (0) --- h)
$$= \sum_{i=1}^{K} n_i = n \quad \text{and} \quad \sum_{i=1}^{K} p_i = 0$$

$$\frac{ni}{pi} = (i)$$

$$pi = \frac{ni}{\gamma}$$

$$i = \sum_{i=1}^{K} x_i$$

1 Buyes mented of Estimation

We have X = (MI) M3 ---- NK) MUSHi (PI, P21 P3-- P14)

By Bayes theorem we can write

Pr (MP) > Data Junction

of (PIN) > Posterior Distribution

of (P) > Prior distribution

I Pr (n/p) J(p) dp => uniquelly defined marginal distribution.

i , D Lie , d wor

For multinomial data function we have a Drichlet distribution as conjugate prior this also implies Posterior distribution as Drichlets distribution.

Scanned with CamScanner

$$\int (P) = \int \left(\sum_{i=1}^{k} \alpha_i \right) \int_{i=1}^{k} P_i \alpha_i^{i-1}$$

where
$$pi \in (0,1)$$
 $\underset{i=1}{\overset{k}{=}} pi = (1)$

By is we have,

Hence
$$f(p|x)$$
 is a drichlet distribution with parameter (ni + qi)

$$\int (P|X) = \int \left(\sum_{i=1}^{k} \pi_{i} + \alpha_{i}\right) \frac{1}{\prod_{i=1}^{k} \prod_{j=1}^{k} \prod_{i=1}^{k} \prod_{j=1}^{k} \prod_{i=1}^{k} \prod_{j=1}^{k} \prod_{j=1}^{k} \prod_{i=1}^{k} \prod_{j=1}^{k} \prod_{j=1}^{k} \prod_{i=1}^{k} \prod_{j=1}^{k} \prod_{j$$

للفاطات فعلمان سير فتر إينان خ

We have mean of Posteriar distribution

=
$$\frac{\alpha'i + \pi i}{\sum_{i \in I} x_i} = \frac{\alpha'i + \pi i}{\sum_{i \in I} x_i}$$

Where and prior mean.

Prior mean = $\frac{\pi i}{\sum_{i \in I} x_i}$

MLE = $\frac{\pi i}{\pi}$
 $\frac{\alpha'i + \pi i}{\pi} = \frac{\alpha'i}{\sum_{i \in I} x_i} + \frac{\alpha'i}{\pi}$
 $\frac{\alpha'i + \pi i}{\lim_{i \in I} x_i} = \frac{\alpha'i}{\lim_{i \in I} x_i} + \frac{\alpha'i}{\lim_{i \in I} x_i}$

$$\frac{\alpha_i + \alpha_i}{\sum_{i=1}^{K} \alpha_i + \alpha_i} = \frac{1}{\sum_{i=1}^{K} \alpha_i} + \frac{1-\alpha_i}{\sum_{i=1}^{K} \alpha_i} + \frac{1-\alpha_i}{\sum_{i=1}^{K} \alpha_i}$$

Solving we get
$$k = \underbrace{\sum_{i=1}^{k} x_i}_{n+\underbrace{\sum_{i=1}^{k} x_i}} < 0$$

MLE

<u>3a</u>

we have

Rating = nR + mC

where (B) > actual average rating of

"maximum likelihood Estimation" or MLE

Hence MLE = (R)

n -> number of votes & for the movie

m > minimum number of votes required

C = 5.5 (mean rating of all report)

By above expression it could be worked

(is the estimate of Drichlet prior

 $C = \frac{\alpha'i}{\Xi \alpha'i}$

· so for the scenario

5 41 = 2500

 $4 = 2500 \times 5.5$ = 13750

Top 10 movies

Imdb-id	Rasing
1 -> tt 5074352	8.345830
2 -> tt 8108 819B	8.266026
3 -> tt 829 1224	8.207242
4 -> tt 454470	8.10 8951
5 -> tt 4430212_	8.005411
6 -> tt 3322420	8.085018
7 → tt 2356 180	8.066135
0 → tt 0073707	8.061031
9 -> tt 22 63 748	B. 055511
10 -> tt 1639426	B.039 54 2