Controle de Estabilização de um Pêndulo Invertido Rotacional

JOSÉ A. DA SILVA $^{\rm a,1}$, KAUA LESSA L. DOS SANTOS $^{\rm b,2}$, PABLO MUNIH S. DE CARVALHO $^{\rm c,3}$ and PLÁCIDO AUGUSTUS DE O. CORDEIRO $^{\rm d,4}$

Prof. ICARO BEZERRA QUEIROZ DE ARAUJO

Resumo—Este relatório apresenta a primeira etapa do projeto da disciplina de sistemas de controle 1, de um pêndulo invertido rotacional. Será inicialmente abordado a descrição do sistema, justificativa da relevância, objetivos, materiais necessários e cronograma de execução.

Keywords—pêndulo invertido, controle rotacional, estabilização, sistemas não lineares

1. Introdução

pêndulo invertido é um sistema clássico utilizado como plataforma de testes no estudo de controle de sistemas dinâmicos instáveis. Seu comportamento não linear e naturalmente instável o torna ideal para o desenvolvimento e avaliação de diferentes estratégias de controle. Esse tipo de sistema está presente em aplicações reais como segways, foguetes e robôs bípedes autobalanceados.

1.1. Importância

De acordo com (CASAS et al., EasyChair, 2024), os modelos de pêndulos são úteis tanto por razões pedagógicas e de pesquisa, como por representarem versões simplificadas de sistemas mecânicos que surgem na robótica e sistemas espaciais. Já (BREGANON et al., 2021) destaca modelos de pêndulos, como o aeropêndulo e o Pêndulo de Furuta, como ferramentas importantes para o ensino de conteúdos relacionados ao controle de sistemas.

1.2. Arquiteturas

Na literatura, é possível encontrar duas arquiteturas principais de pêndulos invertidos: A linear (Figura 1a), considerada a forma mais comum de pêndulo invertido, tem o pêndulo montado sobre uma base com um carrinho que pode se movimentar livremente sobre um plano horizontal (DIAO, 2016); E o modelo rotacional (Figura 1b), também conhecido como Pêndulo de Furuta, onde o pêndulo está conectado a um braço giratório acionado por um motor. Este último representa um sistema subatuado e com maior complexidade dinâmica, sendo mais desafiador do ponto de vista de controle.

Figura 1. (a) Pêndulo Invertido Linear. (b) Pêndulo Invertido Rotacional.

Fonte: (OGATA, 2010) e (NATH; MITRA, 2014).

O Pêndulo de Furuta foi proposto por Katsuhita Furuta em 1992 no Instituto de Tecnologia de Tóquio (HOUCK; KATZSCHMANN; SOUZA, 2013), e tem sido amplamente utilizado em contextos acadêmicos e experimentais. Devido às suas características, o modelo rotacional foi o escolhido neste projeto.

1.3. Objetivo

Este relatório apresenta a primeira etapa do desenvolvimento de um sistema de controle para estabilização do pêndulo rotacional. Os objetivos incluem a descrição conceitual do sistema, definição das variáveis envolvidas, revisão de abordagens de controle aplicadas e levantamento dos materiais e métodos necessários para a implementação prática e simulação do protótipo.

2. Descrição do Sistema

O sistema proposto consiste em um **pêndulo invertido rotacional**, também conhecido como Pêndulo de Furuta. Trata-se de uma estrutura clássica na área de controle de sistemas dinâmicos, composta por uma barra vertical (pêndulo) acoplada a um braço horizontal giratório, que é acionado por um motor DC. A base do sistema permanece fixa, e o movimento ocorre simultaneamente em dois planos: o braço gira no plano horizontal, enquanto o pêndulo oscila no plano vertical.

Esse tipo de pêndulo é especialmente interessante do ponto de vista didático e experimental, pois combina características desafiadoras como a instabilidade natural e a subatuação — ou seja, o número de entradas de controle (um único motor) é inferior ao número de variáveis dinâmicas relevantes (dois ângulos). Isso impõe restrições significativas ao projeto do controlador, que deve ser capaz de estabilizar o sistema mesmo com essa limitação.

2.1. Funcionamento do Sistema

O motor aplica um torque τ na base giratória, fazendo com que o braço horizontal, com inércia I_0 , rotacione ao redor do eixo vertical. Essa rotação transfere momento ao pêndulo, gerando uma interação dinâmica entre os dois corpos. A gravidade atua diretamente sobre o pêndulo vertical, fazendo com que ele tenda naturalmente a cair. O objetivo do sistema de controle é calcular e aplicar um torque adequado no braço giratório para gerar forças inerciais que mantenham o pêndulo em pé, na posição vertical invertida.

A interação entre os dois graus de liberdade $(\theta_0 e \theta_1)$ cria um sistema acoplado e não linear. A ausência de controle direto sobre o pêndulo (pois o motor atua apenas sobre o braço) impõe desafios adicionais, exigindo que o controlador manipule o braço de forma inteligente para influenciar o movimento do pêndulo de maneira indireta, especialmente durante oscilações rápidas ou diante de perturbações externas.

2.2. Variáveis do Sistema

O sistema possui uma única entrada e duas saídas principais:

- Variável de entrada (atuador): torque τ aplicado pelo motor na base.
- · Variáveis de saída (controladas):
 - $-\theta_0$: ângulo de rotação da base (braço horizontal), medido pelo *encoder acoplado ao motor*. Representa o movimento de rotação no plano horizontal.
 - θ_1 : ângulo do pêndulo em relação à vertical, medido pelo encoder incremental localizado no eixo de articulação entre o pêndulo e o braço horizontal. Essa é a principal variável a ser estabilizada pelo controle, idealmente mantendo-se próxima de zero (posição vertical invertida).

^a Engenharia da Computação, Universidade Federal de Alagoas

^bEngenharia da Computação, Universidade Federal de Alagoas

^cEngenharia da Computação, Universidade Federal de Alagoas

Além dessas variáveis, outros parâmetros físicos são essenciais para a modelagem e controle do sistema, como as massas dos componentes (m_0, m_1) , os comprimentos dos braços (L_0, L_1) , os momentos de inércia (I_0, I_1) e a constante gravitacional g.

o ponto de vista de modelagem em espaço de estados, o sistema é classificado como um sistema dinâmico não linear de quarta ordem, pois seu comportamento é descrito por quatro variáveis de estado:

- θ_0 e sua derivada temporal ω_0 (velocidade angular do braço)
- θ_1 e sua derivada temporal ω_1 (velocidade angular do pêndulo).

Essas quatro variáveis constituem o vetor de estado e são suficientes para representar completamente a evolução dinâmica do sistema ao longo do tempo.

2.3. Esquema do Sistema

A Figura 2 apresenta uma representação tridimensional do sistema, destacando os principais parâmetros físicos e as coordenadas angulares relevantes. Esse modelo será utilizado como referência para a modelagem matemática e implementação do controlador nas etapas seguintes do projeto.

Figura 2. Representação tridimensional do pêndulo invertido rotacional com seus parâmetros físicos e coordenadas. Fonte: (DUART et al., 2017)

3. Revisão Bibliográfica

O controle de um pêndulo rotacional invertido normalmente é dividido em duas etapas: swing-up (balanço inicial), que leva o pêndulo da posição para baixo até próximo da posição invertida, e estabilização, que mantém o pêndulo equilibrado no ponto de equilíbrio.

Diversas estratégias podem ser utilizadas na fase de estabilização. Estudos como os de (MATHEW; RAO; SIVAKUMARAN, 2013) mostram que controladores PID bem sintonizados podem apresentar desempenho satisfatório em torno do ponto de equilíbrio, sendo uma boa escolha para projetos introdutórios. Outras técnicas mais avançadas incluem o controle por linearização por realimentação, detalhado na obra de (SPONG; VIDYASAGAR, 2008), o controle robusto não linear, exemplificado por (FURUTA; YAMAKITA; KOBAYASHI, 1992), e o controle preditivo baseado em modelo (MPC), como abordado por (DEEPAK; SHARMA; ANANTHAN, 2019), mas estas exigem maior conhecimento em controle.

Além dessas variáveis, outros parâmetros físicos são essenciais para a modelagem e controle do sistema, como as massas dos componentes (m_0, m_1) , os comprimentos dos braços (L_0, L_1) , os momentos de inércia (I_0, I_1) e a constante gravitacional g.

Neste trabalho, adotaremos como principal referência o documento elaborado por (YAMANE et al., 2021) intitulado "Projeto Mecânico e

Síntese do Controlador de um Pêndulo de Furuta". Essa obra propõe diretamente a modelagem do pêndulo invertido rotacional

O autor apresenta uma modelagem detalhada baseada em:

- · Cálculo da energia cinética e potencial do sistema
- Aplicação das equações de Euler-Lagrange
- Obtenção das equações de movimento para os subsistemas mecânico e eletromecânico
- Construção de um modelo não linear acoplado no ambiente MATLAB Simulink

Além disso, o trabalho realiza a síntese e simulação de um controlador LQR, validando os resultados por meio de experimentos com um protótipo real.

Adicionalmente, será utilizada como referência complementar prática a obra "Modular Control of a Rotary Inverted Pendulum System" (DIAO, 2016), que apresenta uma abordagem didática e direta para implementação prática do controle de um pêndulo rotacional. Essa obra fornece os modelos dinâmicos (linear e não linear), parâmetros físicos e estratégias de controle PID e swing-up modulares, sendo ideal para aplicação em ambiente real e simulações no MATLAB/Simulink. Sua linguagem clara e foco na execução o fizeram um bom candidato para esse projeto.

4. Materiais e Métodos Propostos

Para a implementação do sistema, serão utilizados os seguintes componentes, organizados em categorias de componentes eletrônicos e mecânicos.

4.1. Componentes Eletrônicos

- Microcontrolador: Esp32 (ESPRESSIF SYSTEMS, 2023), utilizado para controle do sistema de balanceamento e leitura dos sensores.
- Motor com Encoder: JGA25-371 12V DC 18-1930RPM (ELECTRONICS SHOP, DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UBC, 2007), motor DC com encoder incremental para acionar o pêndulo e medir o ângulo.
- Driver de Motor (Ponte H): BTS7960 (INFINEON TECHNO-LOGIES AG, 2017), utilizado para controlar a direção e a velocidade do motor.
- Encoder Incremental: E38S6G5-600B-G24N (AUTONICS CORPORATION, 2022), para medir a posição do pêndulo e enviar os dados de feedback para o microcontrolador.
- Fonte de Alimentação: Fonte de 12V para alimentar os motores, encoder e o microcontrolador.

4.2. Componentes Mecânicos

- Estrutura impressa em 3D: A estrutura do protótipo será totalmente impressa em 3D, incluindo a base e os suportes necessários para o sistema de pêndulo.
- Parafusos: Para fixação das partes mecânicas, serão usados parafusos, assegurando que os componentes fiquem firmemente montados.

Figura 3. Esquema do Pêndulo Invertido Rotacional e seus Componentes.

Tabela 1. Lista de Peças Utilizadas na Construção do Protótipo

Número	Peça	Qtd	Preço
1	Торо	1	R\$ -
2	Base	1	R\$ -
3	Suporte	4	R\$ -
4	Braço	1	R\$ -
5	Encoder Incremental	1	R\$ 80,34
6	Motor com Encoder	1	R\$ 55,17
7	Pêndulo	1	R\$ -
8	Parafuso M3x6	5	R\$ 2,00
9	Parafuso M6x25	8	R\$ 4,00
10	Ponte H	1	R\$ 31,56
11	Esp Wroom 32	1	R\$ 33,04
Total	-	-	R\$ 206,11

Note: A quantidade dos componentes foi estimada com base no modelo 3D e pode ser ajustada durante a montagem.

4.3. Descrição do Circuito e Ligações

O circuito do sistema é composto por um microcontrolador ESP32 DevKit, responsável pelo controle do motor, leitura dos encoders e execução dos algoritmos de estabilização do pêndulo. A Figura 4 ilustra as conexões entre os principais componentes.

A alimentação principal é fornecida por uma fonte de 12 V, que alimenta diretamente o driver de motor BTS7960 pelos terminais B+ e B-. O mesmo GND da fonte é compartilhado com o GND do ESP32 para garantir a referência comum entre os sinais de controle e potência.

O motor DC com encoder Hall integrado é conectado ao BTS7960 pelos terminais M+ e M-, responsáveis pela potência do motor, e também por quatro fios adicionais que compõem o encoder Hall:

- VCC (vermelho) Alimentação de 5 V fornecida pelo pino VIN do ESP32.
- GND (preto) Terra comum ao ESP32 e à fonte.
- **Canal A** Ligado ao pino GPI034 do ESP32 (entrada apenas), utilizado para leitura de pulsos do encoder.
- Canal B Ligado ao pino GPI035 do ESP32 (entrada apenas), utilizado para determinar o sentido de rotação.

O pêndulo é instrumentado com um encoder incremental E38S6G5-600B-G24N, que possui saída de dois canais (A e B) em quadratura. Esses sinais são conectados aos pinos GPI032 e GPI033 do ESP32, permitindo a leitura da posição angular e do sentido de movimento.

O controle de velocidade e direção do motor é realizado via sinais PWM gerados pelo ESP32:

- RPWM Pino GPI025, responsável pelo controle de rotação em sentido horário.
- LPWM Pino GPI026, responsável pelo controle de rotação em sentido anti-horário.
- EN-R e EN-L Pinos GPI027 e GPI014, respectivamente, usados para habilitar os canais do driver (podendo ser fixados em nível lógico alto se não for necessário controle via software).

Figura 4. Diagrama do circuito do pêndulo invertido rotacional com ESP32, BTS7960, motor DC com encoder Hall e encoder incremental do pêndulo.

4.4. Ambiente de Software

Para a simulação do sistema de controle do pêndulo invertido rotacional, será utilizado o ambiente de simulação **MATLAB/Simulink**. O Simulink permitirá a modelagem gráfica do sistema dinâmico e do controlador, além de possibilitar a simulação do comportamento do sistema em malha fechada. As equações diferenciais que governam o movimento do pêndulo serão implementadas no Simulink, e o controlador será testado em ambiente simulado antes de sua implementação em hardware.

O MATLAB será utilizado para análise dos resultados, ajustes no controlador, e validação da solução por meio de simulações numéricas. Além disso, o MATLAB/Simulink facilita a integração com o Arduino, permitindo a comunicação entre a simulação e a implementação real do sistema.

5. Cronograma de Execução

O cronograma detalhado para as etapas do projeto é apresentado na Tabela 2.

Tabela 2. Cronograma de execução do projeto.

Etapa	Início	Fim
Etapa 1: Descrição do Problema e Revisão Teórica	22/07/2025	01/08/2025
Etapa 2: Modelagem e Simulação	02/08/2025	04/09/2025
Etapa 3: Projeto do Controlador	05/09/2025	09/10/2025
Etapa 4: Implementação e Validação Experimental	10/10/2025	12/11/2025

Tabela 3. Cronograma de execução da Etapa 1

Tarefa	Início	Fim
Definição do Problema	22/07/2025	24/07/2025
Revisão Bibliográfica	25/07/2025	27/07/2025
Levantamento de Materiais e Métodos	28/07/2025	30/07/2025
Detalhes Finais e Apresentação	31/07/2025	01/08/2025

Tabela 4. Cronograma de execução da Etapa 2

Tarefa	Início	Fim
Modelagem Matemática	02/08/2025	12/08/2025
Análise do Modelo	13/08/2025	23/08/2025
Simulação Computacional	24/08/2025	01/09/2025
Síntese dos resultados e Próximos passos	02/09/2025	04/09/2025

Tabela 5. Cronograma de execução da Etapa 3

Tarefa	Início	Fim
Montagem do Protótipo	05/09/2025	10/09/2025
Coleta de Dados Experimentais	11/09/2025	21/09/2025
Comparação e Validação do Modelo	22/09/2025	06/10/2025
Síntese dos Resultados e Próximos Passos	07/10/2025	09/10/2025

Tabela 6. Cronograma de execução da Etapa 4

Tarefa	Início	Fim
Projeto do Controlador	10/10/2025	20/10/2025
Simulação do Sistema Controlado	21/10/2025	28/11/2025
Implementação e Testes no Protótipo	29/11/2025	08/11/2025
Análise Crítica e Conclusão Final	09/11/2025	12/11/2025

Referências

AUTONICS CORPORATION. **E38S6G5-600B-G24N Datasheet**. [S.l.: s.n.], 2022.

https://pt.scribd.com/document/756625816/Datasheet-E38S6G5-600B-G24N, Accessed: 2024-06-06.

BREGANON, Ricardo et al. Desenvolvimento de Sistemas de Pêndulos Invertidos como Ferramentas Didáticas em Cursos de Engenharia de Controle e Automação. **HOLOS**, Instituto Federal de Educacao, Ciencia e Tecnologia do Rio Grande do Norte (IFRN), v. 5, p. 1–14, set. 2021. ISSN 1807-1600. DOI: 10.15628/holos.2021.10351. Disponível em: http://dx.doi.org/10.15628/holos.2021.10351>.

CASAS, Vitoriano Medeiros et al. **Construction and Control Design of a Rotational Inverted Pendulum Prototype**. [S.l.], EasyChair, 2024.

DEEPAK, KN; SHARMA, K Rahul; ANANTHAN, T. Model Predictive Control for rotary inverted pendulum using LabVIEW. In: IOP PUBLISHING, 1. IOP Conference Series: Materials Science and Engineering. [S.l.: s.n.], 2019. v. 577, p. 012113.

DIAO, Xiumin. Modular Control of a Rotary Inverted Pendulum System. In: 10.18260/p.25750. 2016 ASEE Annual Conference & Exposition. New Orleans, Louisiana: ASEE Conferences, jun. 2016. https://peer.asee.org/25750.

DUART, J L et al. Dynamic Modeling and Simulation of a Rotational Inverted Pendulum. **Journal of Physics: Conference Series**, IOP Publishing, v. 792, n. 1, p. 012081, jan. 2017. DOI: 10.1088/1742-6596/792/1/012081. Disponível em: https://dx.doi.org/10.1088/1742-6596/792/1/012081>.

ELECTRONICS SHOP, DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UBC. **MOT4 DC Motor Information Sheet**. [S.l.: s.n.], 2007.

https://people.ece.ubc.ca/~eng-services/files/courses/elec391-data_sheets/MOT4-info.pdf. Accessed: 2024-06-06.

ESPRESSIF SYSTEMS. **ESP32 Series Datasheet**. [S.l.: s.n.], 2023. https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf. Accessed: 2024-06-06.

FURUTA, K; YAMAKITA, M; KOBAYASHI, S. Swing-up Control of Inverted Pendulum Using Pseudo-State Feedback. **Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering**, v. 206, n. 4, p. 263–269, 1992. DOI: 10.1243/PIME_PROC_1992_206_341_02. eprint: https://doi.org/10.1243/PIME_PROC_1992_206_341_02. Disponível em: https://doi.org/10.1243/PIME_PROC_1992_206_341_02.

HOUCK, Andrew Careaga; KATZSCHMANN, Robert Kevin; SOUZA, Joao Luiz Almeida. Furuta pendulum. **Department of Mechanical Engineering, Massachusetts Institute of Technology**, v. 2, 2013.

INFINEON TECHNOLOGIES AG. BTS7960: High Current H-Bridge Motor Driver IC. [S.l.: s.n.], 2017. https://www.infineon.com/assets/row/public/documents/10/57/infineon-bts7960-ds-en.pdf?fileId=db3a304412b407950112b43945006d5d. Accessed: 2024-06-06.

MATHEW, Navin John; RAO, K Koteswara; SIVAKUMARAN, N. Swing up and stabilization control of a rotary inverted pendulum. **IFAC Proceedings Volumes**, Elsevier, v. 46, n. 32, p. 654–659, 2013.

NATH, Vishwa; MITRA, R. Swing-up and control of Rotary Inverted Pendulum using pole placement with integrator. In: 2014 Recent Advances in Engineering and Computational Sciences (RAECS). Chandigarh, India: IEEE, mar. 2014.

OGATA, Katsuhiko. **Modern control engineering**. [S.l.]: Prentice hall, 2010.

SPONG, Mark W; VIDYASAGAR, Mathukumalli. Robot dynamics and control. [S.l.]: John Wiley & Sons, 2008.

YAMANE, Lucas de Souza et al. Projeto mecânico e síntese do controlador de um pêndulo de Furuta. Brasil, 2021.