Máquinas de Turing Jerarquía de la Computabilidad.

March 27, 2019

Agustin Vanzato Federio Gasquez

1. Responder brevemente los siguientes incisos:

- (a) ¿Qué es un problema (computacional) de decisión? ¿Es el tipo de problema más general que se puede formular?
- (b) ¿Qué cadenas integran el lenguaje aceptado por una MT?
- (c) En la clase teórica 1 se hace referencia al problema de satisfactibilidad de las fórmulas booleanas (se da como ejemplo la fórmula $\varphi = (x_1 \vee x_2) \wedge (x_3 \vee x_4)$ y la asignación A = (V, F, V, V)).
 - Formular las tres formas del problema, teniendo en cuenta las tres visiones de MT consideradas: calculadora, aceptadora o reconocedora y generadora.
- (d) ¿Qué postula la Tesis de Church-Turing?
- (e) ¿Cuándo dos MT son equivalentes? ¿Cuándo dos modelos de MT son equivalentes?
- (f) ¿En qué difiere un lenguaje recursivo de un lenguaje recursivamente numerable no recursivo?
- (g) ¿En qué difiere un lenguaje recursivamente numerable de uno que no lo es?
- (h) Probar que $\mathbf{R} \subseteq RE \subseteq \mathcal{L}$.
- (i) ¿Cuándo un lenguaje está en la clase CO-RE? ¿Puede un lenguaje estar al mismo tiempo en la clase RE y en la clase CO-RE? ¿Para todo lenguaje de la clase CO-RE existe una MT que lo acepta?

- (j) Justificar por qué los lenguajes \sum y \emptyset son recursivos.
- (k) Si $L \subseteq \sum^*$, ¿se cumple que $L \in \mathbb{R}$?
- (l) Justificar por qué un lenguaje finito es recursivo.
- (m) Justificar por qué si L1 \in CO-RE y L2 \in CO-RE, entonces (L1 \wedge L2) \in CO-RE
- 2. Dado el alfabeto $\sum = \{a, b, c\}$:
 - (a) Obtener el lenguaje $\sum^* y$ el conjunto de partes del subconjunto de \sum^* con cadenas de a lo sumo dos símbolos. ¿Cuál es el cardinal (o tamaño) de este último conjunto?
 - (b) Dado el lenguaje $L=a^nb^nc^n|n\geq 0$, obtener la intersección $\sum_{}^*\cap$ L, la unión $\sum_{}^*\cup$ L, el complemento de L respecto de $\sum_{}^*$, y la concatenación $\sum_{}^*$. L.
- 3. Construir una MT (puede tener varias cintas) que acepte de la manera más eficiente posible el lenguaje $L = \{a^n b^n c^n | n \ge 0\}$. Plantear primero la idea general.
- 4. Explicar (informal pero claramente) cómo simular una MT por otra que en un paso no pueda simultáneamente modificar un símbolo y moverse.
- 5. Explicar (informal pero claramente) cómo simular una MT por otra que no tenga el movimiento S (es decir el no movimiento).
- 6. Sea USAT el lenguaje de las fórmulas booleanas satisfactibles con exactamente una asignación de valores de verdad. P.ej. $x_1 \wedge x_2$ pertenece a USAT, mientras que $(x_1 \wedge x_2) \vee x_3$ no. Indicar, justificando la respuesta, si la siguiente MTN acepta USAT:
 - (a) Si la fórmula de entrada no es correcta sintácticamente, rechaza.
 - (b) Genera no determinísticamente una asignación A, y si A no satisface la fórmula, rechaza.
 - (c) Genera no determinísticamente una asignación $A' \neq A$. Si A' no satisface la fórmula, acepta, y si A' la satisface, rechaza.

Ayuda: Considerar p.ej. el caso en que la fórmula tiene dos asignaciones que la satisfacen.

7. Considerando el Lema 4 estudiado en la Clase Teórica 2 $(R = RE \cap CO - RE)$:

- (a) Construir la MT M.
- (b) Probar la correctitud de la construcción.
- 8. Sean L_1 y L_2 dos lenguajes recursivamente numerables de números naturales representados en notación unaria (por ejemplo, el número 5 se representa con 11111). Probar que también es recursivamente numerable el lenguaje $L = \{x \mid x \text{ es un número natural representado en notación unaria, y existen y, z, tales que <math>y + z = x$, con $y \in L_1$, $z \in L_2$ }.

Ayuda: la prueba es similar a la de la clausura de RE con respecto a la concatenación.

- 9. Dada una MT M1 con \sum =
 - (a) Construir una MT M_2 que determine si $L(M_1)$ tiene al menos una cadena.
 - (b) ¿Se puede construir además una MT M_3 para determinar si $L(M_1)$ tiene a lo sumo una cadena? Justificar.

Ayuda para la parte (1): Si L(M1) tiene al menos una cadena, entonces existe al menos una cadena w de unos y ceros, de tamaño n, tal que M1 a partir de w acepta en k pasos. Teniendo en cuenta esto, pensar cómo M2 podría simular M1 considerando todas las cadenas de unos y ceros hasta encontrar eventualmente una que M1 acepte (¡cuidándose de los casos en que M1 entre en loop!)