Machine Learning and Data Mining

VC Dimension

Prof. Alexander Ihler Fall 2012

Slides based on Andrew Moore's

- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power

Example:

$$\hat{c}(x) = \operatorname{sign}(x^T x - \theta_0)$$

- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power

Example:

$$\hat{c}(x) = \operatorname{sign}(\theta_1 x_1 + \theta_2 x_2)$$

- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power

Example:

$$\hat{c}(x) = \operatorname{sign}(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$$

- We've seen many versions of underfit/overfit trade-off
 - Complexity of the learner
 - "Representational Power"
- Different learners have different power
- Usual trade-off:
 - More power = represent more complex systems, might overfit
 - Less power = won't overfit, but may not find "best" learner
- How can we quantify representational power?
 - Not easily…
 - One solution is VC (Vapnik-Chervonenkis) dimension

Some notation

- Let's assume our training data are iid from some distribution p(x)
- Define "risk" and "empirical risk"
 - These are just "long term" test and observed training error

$$R(\theta) = \text{TestError} = \mathbb{E}[\delta(c \neq \hat{c}(x; \theta))]$$

$$R^{\text{emp}}(\theta) = \text{TrainError} = \frac{1}{N} \sum_{i} \delta(c^{(i)} \neq \hat{c}(x^{(i)}; \theta))$$

- How are these related? Depends on overfitting...
 - Underfitting domain: pretty similar...
 - Overfitting domain: test error might be lots worse!

VC Dimension and Risk

- Given some classifier, let H be its VC dimension
 - Represents "representational power" of classifier

$$R(\theta) = \text{TestError} = \mathbb{E}[\delta(c \neq \hat{c}(x; \theta))]$$

$$R^{\text{emp}}(\theta) = \text{TrainError} = \frac{1}{N} \sum_{i} \delta(c^{(i)} \neq \hat{c}(x^{(i)}; \theta))$$

• With "high probability" (1- η), Vapnik showed

TestError
$$\leq$$
 TrainError $+\sqrt{\frac{H\log(2N/H)+H-\log(\eta/4)}{N}}$

- We say a classifier f(x) can shatter points x1...xN iff
 For all y1...yN, f(x) can achieve zero error on
 training data (x1,y1), (x2,y2), ... (xN,yN)
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(\theta x^T)$ shatter these points?

- We say a classifier f(x) can shatter points x1...xN iff
 For all y1...yN, f(x) can achieve zero error on
 training data (x1,y1), (x2,y2), ... (xN,yN)
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(\theta_0 + \theta_1x_1 + \theta_2x_2)$ shatter these points?
- Yes: there are 4 possible training sets...

- We say a classifier f(x) can shatter points x1...xN iff
 For all y1...yN, f(x) can achieve zero error on
 training data (x1,y1), (x2,y2), ... (xN,yN)
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(x^Tx + \theta)$ shatter these points?

- We say a classifier f(x) can shatter points x1...xN iff
 For all y1...yN, f(x) can achieve zero error on
 training data (x1,y1), (x2,y2), ... (xN,yN)
 (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = sign(x^Tx + \theta)$ shatter these points?
- Nope!

- The VC dimension is defined as
 The maximum number of points that can be arranged so that f(x) can shatter them
- Example: what's the VC dimension of the (zero-centered) circle, $f(x;\theta) = sign(x^Tx + \theta)$?

- The VC dimension is defined as
 The maximum number of points that can be arranged so that f(x) can shatter them
- Example: what's the VC dimension of the (zero-centered) circle, $f(x;\theta) = sign(x^Tx + \theta)$?
- VCdim = 1 : can arrange one point, cannot arrange two (previous example was general)

• Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

• Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

VC dim >= 3? Yes

• Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

VC dim >= 3? Yes

VC dim >= 4?

• Example: what's the VC dimension of the twodimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

VC dim >= 4? No...

Any line through these points must split one pair (by crossing one of the lines)

• Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = sign(\theta_1 x_1 + \theta_2 x_2 + \theta_0)$?

VC dim >= 3? Yes

VC dim >= 4? No...
 Any line through these points must split one pair (by crossing one of the lines)

Turns out:

For a general, linear classifier (perceptron) in d dimensions with a constant term:

VC dim = d+1

- VC dimension measures the "power" of the learner
- Does *not* necessarily equal the # of parameters!
- Number of parameters does not necessarily equal complexity
 - Can define a classifier with a lot of parameters but not much power (how?)
 - Can define a classifier with one parameter but lots of power (how?)
- Lots of work to determine what the VC dimension of various learners is...

Using VC dimension

 Recall how we used validation data, or crossvalidation error rates to select a complexity

Using VC dimension

- Recall how we used validation data, or cross-validation error rates to select a complexity
- Use VC dimension based bound on test error similarly
- "Structural Risk Minimization" (SRM)

Using VC dimension

- Recall how we used validation data, or cross-validation error rates to select a complexity
- Use VC dimension based bound on test error similarly
- Other Alternatives
 - Probabilistic models: likelihood under model (rather than classification error)
 - AIC (Aikike Information Criterion)
 - Log-likelihood of training data # of parameters
 - BIC (Bayesian Information Criterion)
 - Log-likelihood of training data (# of parameters)*log(N)
- Similar to VC dimension: performance + penalty
- BIC conservative; SRM very conservative
- Also, "true Bayesian" methods (take prob. learning...)