

Qualcomm Technologies, Inc.



# MSM8994.LA Charger Software

**User Guide** 

80-NM328-56 B

April 14, 2015

Confidential and Proprietary - Qualcomm Technologies, Inc.

© 2014-2015 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

**NO PUBLIC DISCLOSURE PERMITTED:** Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.



**Restricted Distribution:** Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

# **Revision history**

| Revision | Date     | Description                                     |
|----------|----------|-------------------------------------------------|
| Α        | Jul 2014 | Initial release                                 |
| В        | Apr 2015 | Added Section 2.6, updated Sections 2.4 and 3.7 |



# Contents

| 1 In | itroduction                                         | 6  |
|------|-----------------------------------------------------|----|
|      | 1.1 Purpose                                         | 6  |
|      | 1.2 Conventions                                     | 6  |
|      | 1.3 Technical assistance                            | 6  |
| 2 CI | harger Programmable Features                        |    |
|      | 2.1 Overview                                        | 7  |
|      | 2.2 Charge cycle                                    | 7  |
|      | 2.2.1 Charge conditions                             | 8  |
|      | 2.2.2 Charge completion                             | 9  |
|      | 2.3 AICL                                            | 9  |
|      | 2.2.2 Charge completion                             | 10 |
|      | 2.5 JEITA compliance                                | 12 |
|      | 2.5 JEITA compliance                                | 13 |
| 3 CI | harger Driver Configuration                         | 14 |
|      | 3.1 PMI8994 charger driver                          | 14 |
|      | 3.2 Configuring the software                        |    |
|      | 3.3 End-of-Charge (EoC)                             |    |
|      | 3.4 Disable/enable the charger                      |    |
|      | 3.5 Charger interrupts                              |    |
|      | 3.6 PMI8994 parallel charging with SMB1357          |    |
|      | 3.7 PMI8994 charger bringup without battery profile |    |
| A R  | References                                          | 23 |
|      | A.1 Related documents                               |    |
|      | Δ 2 Acronyms and terms                              |    |

# **Figures**

| Figure 2-1 | 1 Charging algorithm                                                              | 8                 |
|------------|-----------------------------------------------------------------------------------|-------------------|
| Figure 2-2 | 2 BMD registers                                                                   | 11                |
| Figure 2-3 | Reduced charging voltage and/or current outside conventional battery temp         | perature range 12 |
| Figure 3-1 | Charger shutdown                                                                  | 20                |
| Figure 3-2 | 2 Wipower transmission ready                                                      | 21                |
|            |                                                                                   |                   |
|            |                                                                                   |                   |
|            |                                                                                   |                   |
| Tables     | S                                                                                 |                   |
|            |                                                                                   |                   |
| Table 2-1  | AICL enable/disable registers                                                     | 10                |
| Table 3-1  | Configuration parameters                                                          | 14                |
| Table 3-2  | Charger interrupts                                                                | 19                |
|            |                                                                                   |                   |
|            | °D, °C                                                                            |                   |
|            | 80 COU.                                                                           |                   |
|            | 53. and                                                                           |                   |
|            | 19. 25                                                                            |                   |
|            | OZ AKUTI                                                                          |                   |
|            | 01,416,0                                                                          |                   |
|            | 18 No.                                                                            |                   |
|            | 2018-07-02-13-50-10 Tonn<br>2018-07-02-13-18-18-18-18-18-18-18-18-18-18-18-18-18- |                   |
|            | 40                                                                                |                   |
|            |                                                                                   |                   |
|            |                                                                                   |                   |

# 1 Introduction

#### 1.1 Purpose

This document describes the programmable features for the charger and the software driver configuration for the PMI8994. It is intended for customers using the PMI8994 chip. To properly configure the charging parameters in the device tree file, users must have a complete understanding of the hardware specifications.

#### 1.2 Conventions

Function declarations, function names, type declarations, and code samples appear in a different font, e.g., #include.

#### 1.3 Technical assistance

For assistance or clarification on information in this document, submit a case to Qualcomm Technologies, Inc. (QTI) at https://support.cdmatech.com/.

If you do not have access to the CDMATech Support website, register for access or send email to support.cdmatech@qti.qualcomm.com.

# 2 Charger Programmable Features

#### 2.1 Overview

The PMI8994 provides three major functions to the end system:

- Input selection and arbitration
- System output supply and control
- Battery charging

The device is fully programmable via the SPMI interface and configuration is accessible through registers. The switching architecture in conjunction with programmability enables faster charging from current limited inputs such as USB.

## 2.2 Charge cycle

See Section 3.2 for the programming procedure for the charge cycle.

The PMI8994 provides four main charging phases:

- Trickle-charge
- Preconditioning (precharge)
- Constant current (fast charge)
- Constant voltage (taper charge)

The order is not critical because they will be set by the driver before the charger is enabled. All phases, except trickle charge voltage, which is 2.1 V by default, are fully programmable.

Programmable parameters are:

- Precharge current
- Fast-charge current
- Termination current
- Float voltage
- Precharge voltage threshold
- Input current limit (DCIN/USBIN)
- Safety timer duration
- Battery thermal limits

#### 2.2.1 Charge conditions

- Valid charger connection
  - □ Input voltage < OVLO
  - □ Input voltage > UVLO
  - □ Input voltage > VBAT+0.1 V
- Trickle-charge
  - $\Box$  VBAT < 2.1 V
  - □ IBAT 45 mA
- Precharge
  - □ VBAT from 2.4 V to 3.0 V
  - □ IBAT from 100 to 250 mA
- Constant current charge
  - $\Box$  IBAT from 300 mA to 3000 mA
- Constant voltage charge
  - $\hfill\Box$  VFLOAT from 3.6 V to 4.5 V
- Charger cycle plot The programmable charging algorithm is shown in Figure 2-1.



Figure 2-1 Charging algorithm

#### 2.2.2 Charge completion

The charge cycle is considered complete when the charge current reaches the programmed termination current threshold.

- Automatic battery recharge conditions
  - □ VBAT < VFLOAT V\_RECH
  - Battery temperature returns to normal
- Charger inhibit threshold
  - □ This is programmable to prevent charging initiation upon power cycling or charge enabling/disabling unless the battery voltage is 50 mV, 100 mV, 200 mV, or 300 mV below the float voltage.
  - □ When the charge inhibit function is enabled, the automatic recharge threshold will be overridden to the (higher) charge inhibit voltage threshold.

#### **2.3 AICL**

Automatic Input Current Limit (AICL) is hardware-based. AICL prevents charger voltage collapse by finding the maximum current that the adapter can support and using that as the input current limit. The rule of lowest current wins applies; e.g., if AICL is enabled for an adapter capable of supplying 1 A and the input current limit is programmed for 700 mA, the part will limit the input current at 700 mA.

If AICL is enabled, three events can immediately trigger the hardware-based AICL:

- Automatic input current limit operation is running, but not yet completed.
- Automatic input current limit operation is completed, but the source voltage has collapsed,
   e.g., AICL did not find the true limit and the system load caused a collapse.
- The current setting in the volatile register was updated with a value lower than the AICL setting.

Reasons for AICL reruns are:

- AICL only runs once if no rerun function is enabled.
- Hardware AICL might stop at a lower current under certain conditions.
- ICL is changed to be higher.
- PMI8994 provides both USB AICL rerun and DC AICL rerun.

The hardware will periodically rerun AICL after a specific time period if the rerun option is enabled in the beginning. The minimal programmable time of AICL rerun is 45 sec.

To reduce power consumption, AICL is able to rerun only once by enabling the rerun option and then disabling it immediately. It is suggested that the Input Current Limitation (ICL) should initially be set to the maximum allowable value and then let AICL adjust it. The ICL is initially set in OTP in the CSIR file. The software can change the ICL for USBIN and DCIN using the following two registers:

- SMBCHG\_USB\_CHGPTH\_USBIN\_IL\_CFG 0x000013F2
- SMBCHG\_DC\_CHGPTH\_DCIN\_IL\_CFG 0x000014F2

AICL enable/disable registers are shown in Table 2-1.

Table 2-1 AICL enable/disable registers

| Enable/Disable              | Register                                                          |
|-----------------------------|-------------------------------------------------------------------|
| USB AICL enable/disable     | SMBCHG_USB_CHGPTH_USB_AICL_CFG - 0x000013F3 <bit 2=""></bit>      |
| DC AICL enable/disable      | SMBCHG_DC_CHGPTH_DC_AICL_CFG1 - 0x0000014F3 <bit 2=""></bit>      |
| WiPower AICL enable/disable | SMBCHG_USB_CHGPTH_WI_PWR_OPTIONS - 0x0000013FF <bit 1=""></bit>   |
| USB rerun for AICL          | SMBCHG_MISC_CHGR_TRIM_OPTIONS_15_8 - 0x0000016F5 <bit 5=""></bit> |
| DC rerun for AICL           | SMBCHG_MISC_CHGR_TRIM_OPTIONS_15_8 - 0x0000016F5 <bit 4=""></bit> |

# 2.4 Battery Missing Detection (BMD)

The battery must be present before charging starts. BMD can be programmed in four ways:

- BAT\_THERM (pin-based)
- BAT\_ID (pin-based)
- Battery Missing Algorithm (BMA) Check at the beginning of the charge cycle (based on the positive poll of the battery)
- BMA Check every 2.6 sec (based on the positive poll of the battery)
  - □ For each poll, the system provides a 10 mA discharge current for a short period of time (~100 ms).
  - No additional GPIO pins are needed.
  - □ BATT\_MISSING\_INT can be set by PMI8994 registers.
  - □ The driver can support battery\_missing\_handler() if necessary.
- The default pin source can be either BAT\_THERM or BAT\_ID, using the qcom,bmd-pin-src configuration parameter:

```
qcom,bmd-pin-src = "bpd_thm_id"
```

• To enable the battery missing detection algorithm, use the qcom,bmd-algo-disabled configuration parameter:

```
gcom,bmd-algo-disabled=<0>
```

QTI recommends never leavingBAT\_ID floating in the hardware design due to the following known issues:

- Setup Power supply is connected to VBAT; however, BAT\_ID is floating and there is no USB connection
- Issue Pressing the power key, powers up the device. The device resets in SBL and never boots up.

 Root cause – SYSOK (routed to SHDN) is low because BAT\_ID is floating. SBL enables GP1 (same as the external trigger SHDN) reset; after the GP1 S1+S2 timer expires, the device resets.

The BMD registers are shown in Figure 2-2.



Figure 2-2 BMD registers

# 2.5 JEITA compliance

PMI8994 is compatible with the latest Japan Electronics and Information Technology Industries Association (JEITA) compliance standards. JEITA compliance allows battery charging with reduced charging voltage and/or current outside the conventional battery temperature range as shown in Figure 2-3.



Figure 2-3 Reduced charging voltage and/or current outside conventional battery temperature range

Four thresholds divide the battery temperature into five areas:

- Cold
- Cool
- Normal
- Warm
- Hot

The charging current and float voltage adjust based on thermal zones. This function is hardware-based, but JEITA thresholds can be configured with the software via the device tree. Configuration of soft thresholds (warm and cool) is described in Section 3.2.

## 2.6 Ship mode

NOTE: This section was added to this document revision.

To ensure that the battery does not discharge during shipping for nonremovable battery applications, the PMI8994 can switch the bulk connection of the battery to system FET, reversing the body diode direction and completely disconnecting the battery from the system load.

This mode is entered by setting PMI8994 register 0x1240 bit[0] to 1 after unlocking it (unlock is performed by writing 0xA5 to PMI8994 register 0x12D0). If Ship mode is entered with an input present, the charger buck is disabled first before the body diode direction is changed to prevent excessive current from going to the battery.

Ship mode is exited and normal operation resumed by any of the following methods:

- 1. Removal of all power resulting in a dVdd\_raw\_rb
- 2. Transition of USBIN < ~1 V to USBIN > ~1 V. This is a plug-in on USBIN. This transition is ignored for ~13 sec after triggering Ship mode.
- 3. Transition of DCIN  $< \sim 1$  V to DCIN  $> \sim 1$  V. This is a plug-in on DCIN. This transition is ignored for  $\sim 13$  sec after triggering Ship mode.
- 4. KYPDPWR press for at least 10 ms. This transition is ignored for ~13 sec after triggering Ship mode.

For Steps 2, 3, and 4, the ~13 sec Ship mode reset blocking allows time to box the phone without accidentally activating the Ship mode reset.

To set Ship mode from an adb shell, execute the following commands:

```
adb shell
cd /sys/kernel/debug/spmi/spmi-0
echo 0x12D0 > address
echo 0xA5 > data
echo 0x1240 > address
echo 0x01 > data
```

# 3 Charger Driver Configuration

## 3.1 PMI8994 charger driver

Source code for the charger driver software is located at kernel//drivers/power/qpnp-smbcharger.c.

For charger device configuration, see DTS at kernel/arch/arm/boot/dts/qcom/msm-pmi8994.dtsi.

DTSI documentation is located at kernel/Documentation/devicetree/bindings/power/qpnp-smbcharger.txt.

# 3.2 Configuring the software

The configuration parameters described in Table 3-1 are used to customize the charger driver through the device tree file. The definition of charger parameters can also be found in kernel/Documentation/devicetree/bindings/power/qpnp-smbcharger.txt.

**Table 3-1 Configuration parameters** 

| Configuration parameter | Description                                                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Required properties     | »·                                                                                                                                           |
| qcom,chgr               | Supports charging control and status reporting                                                                                               |
| qcom,bat-if             | Battery status reporting such as presence, temperature reporting, and voltage collapse protection                                            |
| qcom,usb-chgpth         | USB charge path detection and input current limiting configuration                                                                           |
| qcom,dc-chgpth          | DC charge path detection and input current limiting configuration                                                                            |
| qcom,chg-misc           | Miscellaneous features such as safety timers and SYSOK pin control                                                                           |
| qcom,chg-otg            | OTG configuration control                                                                                                                    |
| compatible              | Must be qcom,qpnp-smbcharger                                                                                                                 |
| spmi-dev-container      | Must be included in the parent node to set up the SPMI USB node devices                                                                      |
| #address-cells          | Must be <1>                                                                                                                                  |
| #size-cells             | Must be <1>                                                                                                                                  |
| reg                     | The SPMI initial address and its length for this peripheral                                                                                  |
| interrupts              | Specifies the interrupt associated with the peripheral <slave_id offset="" peripheral_id=""></slave_id>                                      |
| interrupt-names         | Specifies the interrupt names for the peripheral; every available interrupt needs to have an associated name with it to identify its purpose |

| Configuration parameter             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| interrupt-names for qcom,chgr       | <ul> <li>chg-tcc-thr – Triggers on charge completion</li> <li>chg-taper-thr – Triggers on the taper charge transition</li> <li>chg-inhibit – Notifies when battery voltage is too high to resume charging</li> <li>chg-p2f-thr – Triggers on transitioning from precharge to fast charge</li> <li>chg-rechg-thr – Triggers on battery voltage falling below the resume threshold</li> </ul>                                                                                                                                                                                            |  |
| interrupt-names for qcom,bat-if     | <ul> <li>batt-hot – Triggers on battery temperature hitting the hot threshold; charging stops</li> <li>batt-warm – Triggers on the battery temperature hitting the warm threshold; charging current is reduced</li> <li>batt-cool – Triggers on the battery temperature hitting the cool threshold; charging current is reduced</li> <li>batt-cold – Triggers on the battery temperature hitting the cold threshold; charging stops</li> <li>batt-missing – Battery missing status interrupt</li> <li>batt-low – Triggers on battery voltage falling across a low threshold</li> </ul> |  |
| interrupt-names for qcom,usb-chgpth | <ul> <li>usbin-uv – USB input voltage falls below a valid threshold</li> <li>usbin-src-det – USB automatic source detection finishes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| interrupt-names for qcom,dc-chgpth  | dcin-uv – DC input voltage falls below a valid threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| interrupt-names for qcom,chgr-misc  | <ul> <li>safety-timeout-mins – Charger watchdog timer interrupt</li> <li>temp-shutdown – Triggers when the charger goes over temperature and causes a shutdown</li> <li>power-ok – Triggers when the charger switcher turns on or off</li> </ul>                                                                                                                                                                                                                                                                                                                                       |  |
| Optional properties                 | ×. × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| qcom,iterm-ma                       | Specifies the termination current to indicate EoC; possible values in mA are 50, 100, 150, 200, 250, 300, 500, and 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| qcom,float-voltage-mv               | Float voltage in mV – Maximum voltage up to which the battery is charged; supported range is 3.6 V to 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| qcom,resume-delta-mv                | Specifies minimum voltage drop in mV below float voltage required to initiate a new charging cycle; supported values are 50, 100, 200, and 300 mV                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| qcom,charging-timeout               | Maximum duration in minutes that a single charge cycle may last; supported values are 0, 192, 384, 768, and 1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| qcom,precharging-timeout            | Maximum duration in minutes that a single precharge cycle may last; supported values are 0, 24, 48, 96, and 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| qcom,battery-psy-name               | The name of the main battery power supply that the charger will register; failing to define this property will default the name to "battery"                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| qcom,bms-psy-name                   | The psy name to use for reporting battery capacity; if left unspecified, the capacity uses a preprogrammed default value of 50                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| qcom,dc-psy-type                    | The type of charger connected to the DC path; can be "Mains" or "Wireless"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| qcom,dc-psy-ma                      | The current in mA that the dc path can support; must be specified if dc-psy-type is specified; valid range is 300 mA to 2000 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| qcom,charging-disabled              | Set this if charging should be disabled in the build by default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

| Configuration parameter          | Description                                                                                                                                                                        |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| qcom,resume-delta-mv             | Specifies the minimum voltage drop in millivolts below the float voltage that is required in order to initiate a new charging cycle; supported values are 50, 100, 200, and 300 mV |
| qcom,bmd-algo-disabled           | Indicates if the battery missing detection algorithm is disabled; if this node is present, SMB uses the THERM pin for battery missing detection                                    |
| qcom,bmd-pin-src                 | A string that indicates the source pin for the battery missing detection:                                                                                                          |
|                                  | <ul><li>"bpd_none" – Battery is considered always present</li></ul>                                                                                                                |
|                                  | <ul><li>"bpd_id" – Battery ID pin is used</li></ul>                                                                                                                                |
|                                  | <ul><li>"bpd_thm" – Battery therm pin is used</li></ul>                                                                                                                            |
|                                  | <ul> <li>"bpd_thm_id" – Both pins are used (battery is considered<br/>missing if either pin is floating)</li> </ul>                                                                |
| qcom,iterm-disabled              | Disables the termination current feature; this is a boolean property                                                                                                               |
| qcom,thermal-mitigation          | Array of input current limit values for different system thermal mitigation levels; should be a flat array that denotates the maximum charge current in mA for each thermal level  |
| qcom,soft-vfloat-comp-disabled   | Set this property when the battery is powered via external source and could go above the float voltage                                                                             |
| qcom,parallel-usb-min-current-ma | Minimum current drawn by the primary charger before enabling the parallel charger if one exists; do not define this property if no parallel chargers exist                         |

Use the device tree to configure the PMI8994 charger. A charger device tree example is shown here.

```
Example:
   qcom,qpnp-smbcharger {
        spmi-dev-container;
        compatible = "qcom,qpnp-smbcharger";
        #address-cells = <1>;
        #size-cells = <1>;
        qcom,iterm-ma = <100>;
        gcom,float-voltage-mv = <4200>;
        qcom,resume-delta-mv = <100>;
        qcom,bmd-pin-src = "bpd_thm_id";
        qcom,dc-psy-type = "Mains";
        qcom,dc-psy-ma = <1500>;
        qcom,bms-psy-name = "bms";
        qcom,battery-psy-name = "battery";
        qcom,thermal-mitigation = <1500 700 600 325>;
        qcom,chgr@1000 {
            reg = <0x1000 0x100>;
             interrupts = <0x2 0x10 0x0>,
```

```
<0x2 0x10 0x1>,
               <0x2 0x10 0x2>,
               <0x2 0x10 0x3>,
              <0x2 0x10 0x4>,
               <0x2 0x10 0x5>
              <0x2 0x10 0x6>,
               <0x2 0x10 0x7>;
     interrupt-names = "chg-error",
                    "chg-inhibit",
                    "chg-prechg-sft",
                    "chg-complete-chg-sft'
                    "chg-p2f-thr",
                    "chg-rechg-thr",
                    "chq-taper-thr",
                    "chg-tcc-thr";
};
qcom,otg@1100 {
     reg = <0x1100 0x100>;
};
gcom,bat-if@1200 {
     reg = <0x1200 0x100>;
     interrupts = <0x2 0x12 0x0>,
              <0x2 0x12 0x1>,
              <0x2 0x12 0x2>,
              <0x2 0x12 0x3>,
              <0x2 0x12 0x4>,
              <0x2 0x12 0x5>,
              <0x2 0x12 0x6>,
               <0x2 0x12 0x7>;
     interrupt-names = "batt-hot",
                    "batt-warm",
                    "batt-cold",
                    "batt-cool",
                    "batt-ov",
                    "batt-low",
                    "batt-missing",
                    "batt-term-missing";
};
gcom,usb-chgpth@1300 {
```

```
reg = <0x1300 0x100>;
     interrupts = <0x2 0x13 0x0>,
              <0x2 0x13 0x1>,
              <0x2 0x13 0x2>,
              <0x2 0x13 0x3>,
              <0x2 0x13 0x4>,
              <0x2 0x13 0x5>,
              <0x2 0x13 0x6>;
     interrupt-names = "usbin-uv",
                    "usbin-ov",
                    "usbin-src-det
                    "otg-fail",
                    "otg-oc",
                    "aicl-done",
                    "usbid-change";
};
qcom,dc-chgpth@1400 {
     reg = <0x1400 0x100>;
     interrupts = <0x2 0x14 0x0>,
               <0x2 0x14 0x1>;
     interrupt-names = "dcin-uv",
               acin
"dcin-ov";
};
qcom,chgr-misc@1600 {
     reg = <0x1600 0x100>;
     interrupts = <0x2 0x16 0x0>,
              <0x2 0x16 0x1>,
              <0x2 0x16 0x2>,
              <0x2 0x16 0x3>,
              <0x2 0x16 0x4>,
              <0x2 0x16 0x5>;
     interrupt-names = "power-ok",
                    "temp-shutdown",
                   "safety-timeout",
                    "flash-fail",
                    "otst2",
                    "otst3";
};
```

};

# 3.3 End-of-Charge (EoC)

The charger utilizes the hardware-based EoC, which is generated when IBAT < ITERM. The current termination threshold is configured with the qcom, iterm-ma configuration parameter in the device tree.

## 3.4 Disable/enable the charger

Disable/enable the charger via USB as follows:

5. Enter the following ADB commands:

```
adb root
adb wait-for-devices
adb shell setprop persist.usb.chgdisabled 1
adb root
```

6. To enable the charger, replace 1 with 0.

Disable/enable the charger via Wi-Fi as follows:

1. Enter the following ADB commands:

```
adb root
adb wait-for-devices
adb shell setprop persist.adb.tcp.port 5555 && adb tcpip
adb connect <the target ip>
adb shell setprop persist.usb.chgdisabled 1
```

2. To enable the charger, replace 1 with 0.

# 3.5 Charger interrupts

Different fault conditions can initiate an interrupt (IRQ) output. These conditions can be selected via the corresponding register. Interrupts should be registered in the device tree so that they can be automatically mapped at boot. No driver code modifications should be necessary. Interrupts are shown in Table 3-2.

**Table 3-2 Charger interrupts** 

| Interrupt          | Description                                                |
|--------------------|------------------------------------------------------------|
| batt_hot_irq       | Battery is in the hot zone (hot hard limit threshold)      |
| batt_warm_irq      | Battery is in the warm zone (hot soft limit threshold)     |
| batt_cool_irq      | Battery is in the cool zone (cold soft limit threshold)    |
| batt_cold_irq      | Battery is in the cold zone (cold hard limit threshold)    |
| batt_missing_irq   | Battery missing is detected                                |
| vbat_low_irq       | Battery voltage is low (programmable from 2.5 V to 3.58 V) |
| chg_hot_irq        | Called when the die temperature reaches 140°C              |
| chg_term_irq       | End of charge                                              |
| taper_irq          | Start to taper charge                                      |
| recharge_irq       | Battery recharges                                          |
| safety_timeout_irq | Charger safety timer expires                               |

| Interrupt       | Description                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|
| power_ok_irq    | Called when the switcher turns on or off                                                                                    |
| dcin_uv_irq     | Called when the DC voltage crosses the UV threshold                                                                         |
| usbin_uv_irq    | Called when the USB voltage crosses the UV threshold                                                                        |
| src_detect_irq  | Called when USB charger type is detected                                                                                    |
| chg_inhibit_irq | Called when charger is inserted and the battery voltage is high                                                             |
| chg_hot_irq     | Used primarily for thermal mitigation; it notifies the driver that the charger is going to shut down as shown in Figure 3-1 |
| power_ok_irq    | Used primarily for WiPower, it notifies the driver that WiPower transmission is ready as shown in Figure 3-2                |



Figure 3-1 Charger shutdown



Figure 3-2 Wipower transmission ready

## 3.6 PMI8994 parallel charging with SMB1357

To run two chargers (PMI8994 and SMB1357) simultaneously, ensure the smb135x-charger driver is in the software build as follows:

1. In /kernel/drivers/power/Kconfig, add the following lines:

```
config SMB135X_CHARGER
tristate "SMB135X Battery Charger"
depends on I2C
```

2. In /kernel/drivers/power/Makefile, add the following line:

```
obj-$(CONFIG_SMB135X_CHARGER) += smb135x-charger.o
```

3. In arch/arm/configs/msm8994-perf\_defconfig and arch/arm/configs/msm8994\_defconfig, add the following line:

```
"CONFIG_SMB135X_CHARGER=y" in the appropriate defconfig file.
```

If only the PMI8994 charger is needed, remove the SMB1357 configuration by deleting the above commands.

To enable parallel charging, the following changes are required in the device tree.

1. Add the following node to the I2C bus node to enable the SMB1357 charger in parallel charging mode.

```
smb1357-charger@1c {
    compatible = "qcom,smb1357-charger";
    reg = <0x1c>;
        qcom,parallel-charger;
        qcom,float-voltage-mv = <4250>;
        qcom,recharge-thresh-mv = <100>;
};
```

2. Add the following property to the qpnp-smbcharger node.

```
qcom,parallel-usb-min-current-ma = <1000>;
```

# 3.7 PMI8994 charger bringup without battery profile

NOTE: Numerous changes were made in this section.

Include the following device tree property in your charger device tree node (qcom, qpnp-smbcharger):

```
qcom, charge-unknown-battery;
```

# A References

#### A.1 Related documents

| Title                                                                     | Number        |
|---------------------------------------------------------------------------|---------------|
| PM8994 and PMI8994 Power Management ICS Design Guidelines/Training Slides | 80-NJ117-5    |
| PM8994 Power Management IC Device Specification                           | 80-NJ117-1    |
| PMI8994 Power Management IC Device Specification                          | 80-NJ118-1    |
| MSM8994.LA Linux PMIC Software Drivers Overview w/Audio                   | AU80-NM328-40 |

# A.2 Acronyms and terms

| Acronym or term | Definition                                                          |
|-----------------|---------------------------------------------------------------------|
| AICL            | Automatic Input Current Limit                                       |
| BMA             | Battery Missing Algorithm                                           |
| BMD             | Battery Missing Detection                                           |
| EoC             | End-of-Charge                                                       |
| JEITA           | Japan Electronics and Information Technology Industries Association |
| SPMI            | System Power Management Interface                                   |