HYPOTHESIS TESTING

Zack Kertcher

Statistics for Management Fall 2016

Plan for today

- 1. Distributions
- 2. Sampling and confidence interval
- 3. Hypothesis testing
- 4. *Final project discussion

Midterm Grades

DISTRIBUTIONS

Distribution functions

Function (prefix)	Description
d	Given a distribution, return the values of Probability <u>D</u> ensity Function (PDF)
р	Find a <u>p</u> robability, given a distribution. This is result from a Cumulative Distribution Function (CDF)
q	Find a <u>q</u> uantile, given a distribution. This is a result of the inverse CDF.
r	Given a distribution and relevant parameters (vary by distribution type), <u>r</u> andomize a vector of numbers

?Distributions (to obtain information on various distributions found in R) http://www.statmethods.net/advgraphs/probability.html
OpenIntro Statistics, Chapter 3

SAMPLING AND CONFIDENCE INTERVALS

Why sampling?

- ✓ We typically do not have full data (although this is changing!)
- ✓ Instead, we use random samples from the population to estimate parameters.
- We use the following terms to distinguish samples:

Point estimation = a single parameter estimate (e.g., sample mean) Standard error (SE) = sd

Donations example

- ✓ Load realestate data
- ✓ What is the shape of the price distribution?
- ✓ Assign a sample of 30 house prices to price_samp. Hint: use set.seed(123). What is the shape of the price_samp distribution?
- ✓ What is the different between the <u>mean</u> of the entire price column (population mean) and the <u>mean</u> of **price_samp** (sample mean)?
- ✓ What is the difference between the following point estimates and the population parameter: median and standard deviation

Sampling assumptions

- ✓ Point estimates from a single random sample, especially a <u>relatively</u> <u>small sample</u>, are often insufficient
- Estimates taken from many samples will approximate the population parameter.

- ✓ Using the previous exercise, increase the sample size to a 100
- ✓ By how much are the point estimates more accurate?

Sampling assumptions (cont.)

- ✓ Estimates taken from <u>many samples</u> will approximate the population parameter.
- ✓ Regardless of the population, estimates will follow a normal distribution.

- ✓ Using the previous exercise, continue using n=100, and take 1000 samples (<u>Hint</u>: copy and modify the for loop in the example).
- ✓ What is the difference between the means of the sample parameters and the population?
- ✓ Are the sample point estimates normally distributed?

Confidence interval

- ✓ What it means is confidence level that the actual population parameter is between low-high limits.
- ✓ In practical terms: x*SE from point estimate. Common values of x: $95\% = \pm 1.96SE$; $99\% = \pm 2.58SE$ (These numbers are known as z-scores).

Caveats

- ✓ Sample observations are independent (Simple random sample with n<10% of N).</p>
- ✓ Sample size is n=>30, but when expecting outliers (as we have seen earlier) n=>100, or more.
- ✓ Population distribution is not very skewed. (For very skewed distributions, we will need to use methods such as bootstrap. A good example is boot.ci function in the boot package).

Let's try it with a terribly skewed variable, and then examine a "reasonably" skewed variable.

- ✓ set.seed(your_uid)
- ✓ At a 95% CI, what is the mean home **price** in the **realestate** data?
- ✓ At a 99% CI, what is the mean **lotsize** in the realestate data?

HYPOTHESIS TESTING

Why do we use it?

- ✓ Formal test
- ✓ Draws conclusion about the population from a sample

Assumptions

- ✓ DV is measured as an interval (not continuous)
- ✓ Sample is random
- Observations are independent from one another
- ✓ Population distribution of approximately normal

Procedure

- ✓ Start by declaring your null hypothesis (H₀) and the alternative hypothesis (H₁)
 (H₁ is your research hypothesis)
- (Opposite of the research hypothesis, e.g., no difference in population mean and a value)
- ✓ Determine your α level (Typically set at 0.05)
- ✓ Interpret the result (If p > α cannot reject the null; if p < α reject the null)

Do you reject or accept the null hypotheses:

- **✓ price** of houses with <u>2 stories</u> is the same as houses with <u>3 and 4</u> stories, at α =0.99?
- **✓ price** of houses with 2 stories is the same as houses with 1 story, at α =0.95?

FINAL PROJECT DISCUSSION

Hypotheses from your projects

