MA151 Algebra 1, Assignment 4

Dyson Dyson

Question 1

Let R be a non-zero ring. Let $a \sim b$ be the relation "a is an associate of b", meaning there exists a unit $v \in R$ such that av = b.

Q1 (a)

Prove that $a \sim b$ is an equivalence relation on R.

An equivalence relation is reflexive, transitive, and symmetric.

For reflexivity, if $a \sim b$, then $\exists v \in R$ such that av = b and v is a unit. Then $avv^{-1} = bv^{-1} \implies bv^{-1} = a$, so $b \sim a$.

Now for transitivity, suppose $a \sim b$ and $b \sim c$, so $\exists v, u \in R$ such that av = b and bu = c. Then $(av)u = bu = c \implies a(vu) = c$, so $a \sim c$.

And for symmetry, a1 = a, so $a \sim a$.

Therefore this is an equivalence relation.

Q1 (b)

Describe the equivalence classes in the case $R = \mathbb{Z}$.

The only units in \mathbb{Z} are $\{1, -1\}$, so $a \sim b$ if and only if a = b or a = -b. Therefore 0 is equivalent to nothing, and every positive integer x gets the equivalence class $[x]_{\sim} = \{x, -x\}$.

Let R be a ring and let $a \in R$.

Q2 (a)

Show that if R is commutative, $aR = \{ar \mid r \in R\}$ is an ideal of R.

For aR to be an ideal of R, we need (aR, +) to be a subgroup of (R, +), and we need $xy \in aR$ and $yx \in aR$ for all $x \in R$, $y \in aR$. Since R is commutative, we only need to worry about one of these.

First, the ABC test for subgroups. The identity in (R, +) is just 0, which is trivially in aR. The sum of two terms ar_1 and ar_2 is $a(r_1 + r_2)$. Clearly $r_1+r_2 \in R$, so $a(r_1+r_2) \in aR$. The inverse of an element ar is just -ar = a(-r), and $-r \in R$, so $-ar \in aR$. Therefore (aR, +) is a subgroup of (R, +).

Now consider an arbitrary element $ar \in aR$ and an arbitrary element $x \in R$. Their product is arx = a(rx), and since $rx \in R$, $a(rx) \in aR$. Therefore aR is an ideal of R.

Q2 (b)

Show by an example that this may be false if R is not commutative.

Choose $R = GL_2(\mathbb{R})$ and $a = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Then right-multiplying an element of aR by an element of R would keep the result in aR, but left-multiplying wouldn't necessarily. Therefore aR is not an ideal of R in this case.

Q3 (a)

List the elements of $(\mathbb{Z}/7\mathbb{Z})^*$, the group of units in the ring $\mathbb{Z}/7\mathbb{Z}$.

$$(\mathbb{Z}/7\mathbb{Z})^* = \{1, 2, 3, 4, 5, 6\}$$

Q3 (b)

List the elements of $(\mathbb{Z}/8\mathbb{Z})^*$, the group of units in the ring $\mathbb{Z}/8\mathbb{Z}$.

$$(\mathbb{Z}/8\mathbb{Z})^* = \{1, 3, 5, 7\}$$

Q3 (c)

Show that $((\mathbb{Z}/7\mathbb{Z})^*,\times_7)$ is a cyclic group but $((\mathbb{Z}/8\mathbb{Z})^*,\times_8)$ is not a cyclic group.

We shall just draw the Cayley tables for these groups.

First, $(\mathbb{Z}/7\mathbb{Z})^*$,

\times_7	1	2	3	4	5	6
1	1	2 4 6 1 3 5	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

And then, $(\mathbb{Z}/8\mathbb{Z})^*$,

Just from looking at these tables, we can deduce that $((\mathbb{Z}/7\mathbb{Z})^*, \times_7) \cong C_6$ and $((\mathbb{Z}/8\mathbb{Z})^*, \times_8) \cong K_4$. But K_4 is not cyclic, so $((\mathbb{Z}/8\mathbb{Z})^*, \times_8)$ is not cyclic.

Let $R = M_{2\times 2}(\mathbb{Q})$, the ring of 2×2 matrices with rational entries under matrix addition and multiplication. Show that the only ideals of R are $\{0\}$ and R.

Let $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. If an ideal of R did not contain $\mathbf{0}$, then it wouldn't be a subgroup under addition because it wouldn't have an additive identity. Therefore every ideal needs $\mathbf{0}$. Also note that $\{\mathbf{0}\}$ is itself an ideal of R, since multiplying by anything from R just results in $\mathbf{0}$ again.

Now suppose we have some ideal I containing $\mathbf{0}$ and some $X \neq \mathbf{0}$. Since (I, +) is a group, it must also contain all integer multiples of X. And since $mX \in I$ and $Xm \in I$ for all $m \in R$, I must expand to include all of R.

To see this, we can imagine an arbitrary "target" matrix $t \in R$, then find the matrix m such that Xm = t. Let $X = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$, $m = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$, and $t = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$px + ry = a$$
$$qx + sy = b$$
$$pz + rw = c$$
$$qz + sw = d$$

Since x, y, z, w, a, b, c, d are all known, these equations can always be solved for p, q, r, s. Therefore $\forall t \in R, \exists m \in R$ such that Xm = t. Therefore I must contain all elements of R, so I = R.

Therefore the only ideals of R are $\{0\}$ and R.

Let $R = \mathbb{R}[x]$, the ring of polynomials with real coefficients. Let

$$I = \{ f(x) \in \mathbb{R}[x] \mid f(0) = 0 \}.$$

Q5 (a)

Show that I is an ideal of R with $I \neq R$.

Clearly $I \neq R$, since there exists polynomials in $f(x) \in \mathbb{R}[x]$ where $f(0) \neq 0$. Take $f(x) = x^2 + 1$, for instance. In this case, f(0) = 1. Therefore $I \neq R$.

For I to be an ideal of R, we need (I, +) to be a subgroup of (R, +), for which we will use the ABC test, and we need $ir \in I$ and $ri \in I$ for all $r \in R, i \in I$, but multiplication is commutative here, so we only need to worry about one of these.

First, the ABC test for subgroups. The identity in (R, +) is just 0, which is trivially in I. The sum of two polynomials with zero constant term is another polynomial with zero constant term, so the sum of two elements in I is another element in I. And the inverse of a polynomial with zero constant term is the negative version of that polynomial, which also has zero constant term, so (I, +) has inverses. Therefore (I, +) is a subgroup of (R, +).

Now consider an arbitrary polynomial r from $\mathbb{R}[x]$ and an arbitrary polynomial i from I. To find the constant term of their product, we just find the product of their constant terms. Since i has a constant term of 0, ri and ir both have a constant term of 0, so are both members of I.

Therefore I is an ideal of R.

Q5 (b)

Prove that if J is an ideal of R with $I \subsetneq J$ then J = R.

Since I definitionally includes all polynomials with zero constant term, J must include at least one polynomial with non-zero constant term. Without loss of generality, assume we have some $j(x) \in J$ where j(0) = a and $a \neq 0$. Then for J to be an ideal of R, we need $r(x)j(x) \in J$ and $j(x)r(x) \in J$ for all $x \in R$, although multiplication is commutative here, so we only need to worry about one of these.

Since r(x) could be any element from $\mathbb{R}[x]$, we will end up generating all of $\mathbb{R}[x]$. We know that J already contains every combination of real coefficients for powers of x, but we only know that it contains constant term a. But we can obtain any constant term b by multiplying by some particular r(x) with

 $r(0)=\frac{b}{a}$, since j(0)=a and $a\neq 0$. Then r(0)j(0)=b, so J must contain polynomials that cover all real constant terms.

Thus, J must contain every polynomial from $\mathbb{R}[x]$, so J=R.

Q6 (a)

Show that $x^3 + x^2 + x + 1$ is not irreducible over \mathbb{Q} .

$$x^{3} + x^{2} + x + 1 = (x+1)(x^{2}+1)$$

Q6 (b)

Show that $x^4 + 1$ is irreducible over \mathbb{Q} but not irreducible over \mathbb{R} .

Let $f(x) = x^4 + 1$. We can use Eisenstein's criterion to show that f(x) is irreducible over \mathbb{Q} , recalling the fact that f(x) is irreducible if and only if f(x+1) is irreducible. In this case $f(x+1) = x^4 + 4x^3 + 6x^2 + 4x + 2$.

Now we will choose our prime p=2. p divides all the coefficients, excluding the coefficient of the term with the highest degree. $p \nmid 1$, and $p^2 \nmid 2$. Therefore f(x+1) fulfils Eisenstein's criterion and is therefore irreducible over \mathbb{Q} . Therefore f(x) is irreducible over \mathbb{Q} .

But $x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$, so f(x) is not irreducible over \mathbb{R} .

Q6 (c)

Show that $x^2 + x + 4$ is irreducible over $\mathbb{Z}/11\mathbb{Z}$. Here any coefficients should be interpreted modulo 11.

Let $f(x) = x^2 + x + 4$. If f(x) were not irreducible over $\mathbb{Z}/11\mathbb{Z}$, then we could write $x^2 + x + 4 = (ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$, which gives the following system of equations,

$$\begin{array}{ccc} ac \stackrel{11}{\equiv} & 1 \\ ad + bc \stackrel{11}{\equiv} & 1 \\ bd \stackrel{11}{\equiv} & 4 \end{array}$$

And then I get stuck.

Q6 (d)

Show that x^4+1 is not irreducible over $\mathbb{Z}/5\mathbb{Z}$. Here any coefficients should be interpreted modulo 5.

Consider $f(x) = x^4 + 1$. The question says this is not irreducible over $\mathbb{Z}/5\mathbb{Z}$, but I don't know why. I can't find a root modulo 5, so it has no linear factors, but factoring into two quadratics doesn't seem to work either because I get two simultaneous equations mod 5 and nothing satisfies both.