

Solution Review: Nested Loop with Multiplication (Basic)

This review provides a detailed analysis of the different ways to solve the nested loop with multiplication problem

We'll cover the following ^

- Solution
 - Time Complexity

Solution

```
n = 10 # n can be anything, this is just an example
 2
    sum = 0
    pie = 3.14
 3
 4 \text{ var} = 1
 5 while var < n:
         print(pie)
 7
         for j in range(1, n, 2):
 8
             sum += 1
 9
         var *= 3
10 print(sum)
11
\triangleright
                                                                                       []
```

Time Complexity

The outer loop in this problem, i.e., everything under **line 5**, while var < n runs $log_3(n)$ times since var will first be equal to 1, then 3, then $9, \cdots$, until it is 3^k such that $3^k \le n$. This means that the outer loop runs a total of $log_3(n)$ times. The inner loop, on the other hand, runs a total of $log_3(n) \times \frac{n}{2}$. So,

Statement	Number of Executions
n = 10	1
sum = 0	1
pie = 3.14	1
var = 1	1
while var < n:	$log_3(n)$

Statement	Number of Executions	
print(pie)	$log_3(n)$	
j in range(1,n,2):	$log_3(n) imes rac{n}{2}$	
sum++;	$log_3(n) imesrac{n}{2}$	
var *= 3	$log_3(n)$	
print(sum)	1	

Running Time Complexity =

$$egin{align} 5 + log_3(n) + log_3(n) + (log_3(n) imes rac{n}{2}) + (log_3(n) imes rac{n}{2}) + log_3(n) \ &= 5 + 3log_3(n) + 2(rac{nlog_3(n)}{2}) \ &= 5 + 3log_3(n) + nlog_3(n) \ \end{split}$$

Now, to find the Big O complexity,

- 1. Drop the leading constants $\Rightarrow log_3(n) + nlog_3(n)$
- 2. Drop lower order terms $\Rightarrow nlog_3(n)$

Using $log_3(n)=\frac{log_2(n)}{log_2(3)}=\frac{log_2(n)}{1.585}$, we can turn this into $\frac{nlog_2(n)}{1.585}$. Dropping the constants, given us:

Big O Time Complexity $\Rightarrow O(nlog_2(n))$

HCXC /

Challenge 4: Nested Loop with Multipl...

Challenge 5: Nested Loop with Multipl...

✓ Completed

? Ask a Question

(https://discuss.educative.io/tag/solution-review-nested-loop-with-multiplication-basic__introduction-to-complexity-measures__data-structures-for-coding-interviews-in-python)