MA2001

LIVE LECTURE 9

Q&A: log in to PollEv.com/vtpoll

Topics for week 9

- 5.1 Inner Products in Rⁿ
- 5.2 Orthogonal and Orthonormal Bases
- 5.3 Best Approximation (preview)

Dot product

$$\mathbf{u} = (u_1, u_2, ..., u_n), \ \mathbf{v} = (v_1, v_2, ..., v_n)$$
 vectors in \mathbf{R}^n

The dot product of \boldsymbol{u} and \boldsymbol{v} is defined as

product of two vectors
$$\boldsymbol{u} \cdot \boldsymbol{v} = [u_1 v_1 + u_2 v_2 + ... + u_n v_n]$$
 scalar

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^T$$

 \boldsymbol{u} and \boldsymbol{v} regarded as row matrices $\boldsymbol{u} \cdot \boldsymbol{V} = \boldsymbol{u} \boldsymbol{v}^T$ \boldsymbol{v} and \boldsymbol{v} regarded as column matrices $\boldsymbol{u} \cdot \boldsymbol{V} = \boldsymbol{u}^T \boldsymbol{v}$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

$$\mathbf{A}\mathbf{b} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{pmatrix} \mathbf{b} = \begin{pmatrix} \mathbf{a}_1 \cdot \mathbf{b} \\ \mathbf{a}_2 \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_n \cdot \mathbf{b} \end{pmatrix}$$

u regarded as row matrix, v regarded as column matrix?

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}$$

Length, distance and angles in Rⁿ

$$\mathbf{u} = (u_1, u_2, ..., u_n), \ \mathbf{v} = (v_1, v_2, ..., v_n)$$
 vectors in \mathbf{R}^n

Dot product	u·v	$u_1 v_1 + u_2 v_2 + \dots u_n v_n$
Norm (length)	<i>u</i>	$\sqrt{\mathbf{u} \cdot \mathbf{u}}$ $\sqrt{u_1^2 + u_2^2 + + u_n^2}$
Distance	u - v	$\sqrt{(\mathbf{U} - \mathbf{V}) \cdot (\mathbf{U} - \mathbf{V})}$ $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + + (u_n - v_n)^2}$
Angle	between u and v	$\cos^{-1}\left(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{ \boldsymbol{u} \boldsymbol{v} }\right)$ $\cos^{-1}\left(\frac{u_1v_1+u_2v_2++u_nv_n}{ \boldsymbol{u} \boldsymbol{v} }\right)$

Comparing vectors

Among the three vectors $\mathbf{u}_1 = (1,1,0,0), \quad \mathbf{u}_2 = (0,1,1,0), \quad \mathbf{u}_3 = (1,0,0,1)$ which is the best approximation of $\mathbf{v} = (1,2,3,4)$?

Compare the distance between \mathbf{v} and each of \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3

$$|| \mathbf{v} - \mathbf{u}_1 || = \sqrt{(1-1)^2 + (2-1)^2 + (3-0)^2 + (4-0)^2} = \sqrt{26}$$

$$|| \mathbf{v} - \mathbf{u}_2 || = \sqrt{(1-0)^2 + (2-1)^2 + (3-1)^2 + (4-0)^2} = \sqrt{22}$$

$$|| \mathbf{v} - \mathbf{u}_3 || = \sqrt{(1-1)^2 + (2-0)^2 + (3-0)^2 + (4-1)^2} = \sqrt{22}$$

The smaller the distance between two vectors, the better is the approximation

The smaller the angle between two vectors, the better is the approximated ratio among the coordinates

Properties of dot product

Let c be a scalar and u, v, w vectors in \mathbf{R}^n .

- 1. $u \cdot v = v \cdot u$ commutative law
- 2. $(u + v) \cdot w = u \cdot w + v \cdot w$ $w \cdot (u + v) = w \cdot u + w \cdot v$ distributive law
- 3. $(cu) \cdot v = u \cdot (cv) = c(u \cdot v)$ scalar mult.
- 4. ||cu|| = |c|||u|| norm (not c ||u||)
- 5. (i) $u \cdot u \ge 0$ $u \cdot u = ||u||^2$ (ii) $u \cdot u = 0$ if and only if u = 0.
- 6. $| \boldsymbol{u} \cdot \boldsymbol{v} | \le ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}||$ Cauchy-Schwarz Inequality

"Orthogonal" meaning

- Two vectors u and v are orthogonal if u · v = 0.
 (geometrically: u and v are perpendicular)
- A set $S = \{u_1, u_2, ..., u_k\}$ is an orthogonal set if every pair of distinct vectors in S are orthogonal:

$$u_1 \cdot u_2 = 0$$
, $u_1 \cdot u_3 = 0$, ... $u_{k-1} \cdot u_k = 0$

- A set $S = \{u_1, u_2, ..., u_k\}$ is an orthogonal basis of a vector space V if S is an orthogonal set and a basis for V
- A vector u is orthogonal to a vector space V if
 u is orthogonal to every vector in V.
 i.e. u · v = 0 for all v ∈ V

Nullspace vs Row space

$$Ab = 0$$

b belongs to the nullspace of **A**

$$\begin{pmatrix} \mathbf{a}_1 \cdot \mathbf{b} \\ \mathbf{a}_2 \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_n \cdot \mathbf{b} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

b is orthogonal to every row of **A**

Row space of **A**

Nullspace of **A**

$$(c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + ... + c_n \mathbf{a}_n) \cdot \mathbf{b}$$

$$c_1 \mathbf{a}_1 \cdot \mathbf{b} + c_2 \mathbf{a}_2 \cdot \mathbf{b} + \dots + c_n \mathbf{a}_n \cdot \mathbf{b} = 0$$

b is orthogonal to the row space of **A**

8

Orthogonal set VS orthonormal set

Orthogonal basis

$$\{e_1, e_2, e_3\}$$

- basis for \mathbb{R}^3
- orthogonal basis
- orthonormal basis

$$\{(1,0,0), (1,1,0), (1,1,1)\}$$

- basis for R³
- not orthogonal basis
- not orthonormal basis

$$\{(2,0,0), (0,1,1), (0,1,-1)\}$$

- basis for R³
- orthogonal basis
- not orthonormal basis

$$\{(1,0,1), (0,1,0), (1,1,1)\}$$

- not basis for R³
- not orthogonal basis
- not orthonormal basis

Gram-Schmidt Process Visualization tool

Define
$$\mathbf{V_1} = \mathbf{u_1}$$

$$\mathbf{v_2} = \mathbf{u_2} - \frac{\mathbf{u_2} \cdot \mathbf{v_1}}{\|\mathbf{v_1}\|^2} \mathbf{v_1} \quad \text{orthogonal to } \mathbf{v_1}$$

$$\mathbf{v_3} = \mathbf{u_3} - \frac{\mathbf{u_3} \cdot \mathbf{v_1}}{\|\mathbf{v_1}\|^2} \mathbf{v_1} - \frac{\mathbf{u_3} \cdot \mathbf{v_2}}{\|\mathbf{v_2}\|^2} \mathbf{v_2} \quad \text{orthogonal to } \mathbf{v_1} \text{ and } \mathbf{v_2}$$

$$\vdots \quad \mathbf{v_k} = \mathbf{u_k} - \frac{\mathbf{u_k} \cdot \mathbf{v_1}}{\|\mathbf{v_1}\|^2} \mathbf{v_1} - \frac{\mathbf{u_k} \cdot \mathbf{v_2}}{\|\mathbf{v_2}\|^2} \mathbf{v_2} - \dots - \frac{\mathbf{u_k} \cdot \mathbf{v_{k-1}}}{\|\mathbf{v_{k-1}}\|^2} \mathbf{v_{k-1}} \quad \text{orthogonal to } \mathbf{v_1} \cdot \mathbf{v_2} \cdot \dots \cdot \mathbf{v_{k-1}}$$

$$\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}\} \quad \text{is an orthogonal basis for } \mathbf{V}.$$

Coordinate vector w.r.t. orthogonal basis

$$S = \{u_1, u_2, ..., u_k\}$$
: an orthogonal basis for V

For any vector \mathbf{w} in V,

$$\mathbf{W} = \mathbf{C}_{1}\mathbf{U}_{1} + \mathbf{C}_{2}\mathbf{U}_{2} + \dots + \mathbf{C}_{k}\mathbf{U}_{k}$$

$$\mathbf{W} \cdot \mathbf{U}_{1}$$

$$\mathbf{W} \cdot \mathbf{U}_{1}$$

$$\mathbf{U}_{1} \mathbf{U}_{2} \mathbf{U}_{2}^{2}$$

$$\mathbf{W} \cdot \mathbf{U}_{k}$$

$$\mathbf{U}_{k} \mathbf{U}_{2}^{2}$$

$$(\mathbf{w})_{s} = \left(\frac{\mathbf{w} \cdot \mathbf{u}_{1}}{\|\mathbf{u}_{1}\|^{2}}, \frac{\mathbf{w} \cdot \mathbf{u}_{2}}{\|\mathbf{u}_{2}\|^{2}}, \dots, \frac{\mathbf{w} \cdot \mathbf{u}_{k}}{\|\mathbf{u}_{k}\|^{2}}\right)$$

True or false

Can we find an orthogonal set of four vectors in \mathbb{R}^3 ?

Orthogonal ⇒ Linearly independent

Let S be an orthogonal set of nonzero vectors in a vector space.

Then S is linearly independent.

To check whether S is an orthogonal basis for V:

Only need to check:

- (i) S is orthogonal and
- (ii) span(S) = V

A vector orthogonal to a subspace

To **show** a vector \mathbf{v} is orthogonal to $V = \text{span}\{\mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_k}\}\$

```
Show: \mathbf{v} \cdot \mathbf{u_1} = 0, \mathbf{v} \cdot \mathbf{u_2} = 0, ..., \mathbf{v} \cdot \mathbf{u_k} = 0
```

To **find** a vector \mathbf{v} that is orthogonal to $V = \text{span}\{\mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_k}\}$

```
Let \mathbf{v} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) (unknowns)
Set up: \mathbf{v} \cdot \mathbf{u_1} = 0, \mathbf{v} \cdot \mathbf{u_2} = 0, ..., \mathbf{v} \cdot \mathbf{u_k} = 0
Convert into a homogeneous system.
Solve the system.
```


Let W be a subspace of \mathbf{R}^n .

Define $W^{\perp} = \{ u \in \mathbb{R}^n | u \text{ is orthogonal to } W \}$

Exercise 5 Q7 W^{\perp} is also a subspace of \mathbb{R}^n

Every vector in W¹ is orthogonal to every vector in W.

Projection

The projection \boldsymbol{p} of \boldsymbol{v} onto a subspace V:

p is the vector in V "nearest" to the given vector **v**

 \boldsymbol{p} is the best approximation of \boldsymbol{v} in the subspace V

v - p is orthogonal to V

good for checking, but not finding projection

 $S = \{u_1, u_2, ..., u_k\}$: an orthogonal basis for V

The projection \boldsymbol{p} of \boldsymbol{v} onto \boldsymbol{V} is given by:

$$p = \frac{v \cdot u_1}{\|u_1\|\|^2} u_1 + \frac{v \cdot u_2}{\|u_2\|\|^2} u_2 + \dots + \frac{v \cdot u_k}{\|u_k\|\|^2} u_k$$

Alternative method: use least squares solution

Extending orthogonal basis

$$\boldsymbol{u_1} = (1, 2, 2, -1), \, \boldsymbol{u_2} = (1, 1, -1, 1), \, \boldsymbol{u_3} = (-1, 1, -1, -1)$$

 $S = \{u_1, u_2, u_3\}$ orthogonal set

Extend S to an orthogonal basis for R⁴

Two methods:

$$p = \frac{v \cdot u_1}{||u_1||^2} u_1 + \frac{v \cdot u_2}{||u_2||^2} u_2 + \dots + \frac{v \cdot u_k}{||u_k||^2} u_k$$

- 1. Use row space method:
 - i. find the "missing" row \mathbf{r} in the row echelon form;
 - ii. find the projection \boldsymbol{p} of \boldsymbol{r} onto span $\{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}\}$
 - iii. take the vector **r p**
- 2. Find a non-zero vector \mathbf{v} orthogonal to $\mathbf{u_1}$, $\mathbf{u_2}$, $\mathbf{u_3}$ Solve: $\mathbf{u_1} \cdot \mathbf{v} = 0$, $\mathbf{u_2} \cdot \mathbf{v} = 0$, $\mathbf{u_3} \cdot \mathbf{v} = 0$

$$\begin{pmatrix} \mathbf{u}_1 \cdot \mathbf{v} \\ \mathbf{u}_2 \cdot \mathbf{v} \\ \mathbf{u}_3 \cdot \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The projection \mathbf{p} of \mathbf{v} onto a subspace V: $\mathbf{v} - \mathbf{p}$ is orthogonal to V

Exercise 5 Q19 (Hint)

 $\mathbf{A}\mathbf{u} = \mathbf{u} \ (*)$

```
A^2 = A = A^T
(a) show that (\mathbf{A}\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (\mathbf{A}\mathbf{v})
- Regard dot product as matrix multiplication \mathbf{u} \cdot \mathbf{v} = \mathbf{u}' \mathbf{v}
(b) show that Aw is the projection of w onto the subspace
V = \{ \boldsymbol{u} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{u} = \boldsymbol{u} \} \text{ of } \mathbb{R}^n
 Show: w - Aw is orthogonal to V
   Let \mathbf{u} \in V. Show \mathbf{u} \cdot (\mathbf{w} - \mathbf{A}\mathbf{w}) = 0
```

Use part (a) and (*)

Least squares solutions

When a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent

A least squares solution \mathbf{x}_0 of $\mathbf{A}\mathbf{x} = \mathbf{b}$:

x₀ is the best approximation to a solution of Ax = b

$$\mathbf{A}\mathbf{x}_0 \approx \mathbf{b} \quad ||\mathbf{b} - \mathbf{A}\mathbf{x}_0||$$
closest smallest

i.e.
$$||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_0|| \le ||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{v}||$$
 for all \boldsymbol{v} in \mathbf{R}^n

To find the least squares solution \mathbf{x}_0 of $\mathbf{A}\mathbf{x} = \mathbf{b}$: solve the new system $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$

Example (Least Squares)

$$2x + y = 20
6x + y = 18
20x + y = 10
30x + y = 6
40x + y = 2$$

$$A \qquad b$$

$$\begin{pmatrix} 2 & 1 \\ 6 & 1 \\ 20 & 1 \\ 30 & 1 \\ 40 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 20 \\ 18 \\ 10 \\ 6 \\ 2 \end{pmatrix}$$

$$A \qquad b$$

$$\begin{pmatrix} 2940 & 98 \\ 98 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 608 \\ 56 \end{pmatrix}$$

$$A^{T}A \qquad A^{T}b$$

Ax = b is inconsistent

Find least squares solution for Ax = b

Find the actual solutions of $A^TAx = A^Tb$

HW1 Q2(v)

$A^{T}Ax = A^{T}b$

Always consistent!

Finding projection using least squares

Let \mathbf{x}_0 be a least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

Then $\mathbf{A}\mathbf{x}_0 = \mathbf{projection}$ of **b** onto column space of **A**

To find projection **p** of **b** onto a subspace V:

- Find any basis $\{u_1, \dots, u_k\}$ for $V = \text{column space of } \mathbf{A}$
- Form matrix **A** using $u_1, ..., u_k$ as column vectors
- Solve the system $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$ to get \mathbf{x}_0
- $\mathbf{A}\mathbf{x}_0$ = projection \mathbf{p}

Example (Projection)

Find the projection of (1,-1,1) onto the plane V: x + y + z = 0 in \mathbb{R}^3

$$V = span\{(1,-1,0), (1,0,-1)\}$$

Form matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and column vector $\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

Find the least squares solution of Ax = b

Solve
$$\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b}$$
 $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \mathsf{X} \\ \mathsf{y} \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} \mathsf{X} \\ \mathsf{y} \end{pmatrix} = \begin{pmatrix} 4/3 \\ -2/3 \end{pmatrix}$

Projection of (1, -1, 1) on V:
$$\begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4/3 \\ -2/3 \end{pmatrix} = \begin{pmatrix} 2/3 \\ -4/3 \\ 2/3 \end{pmatrix}$$

Announcement

Tutorial

- Tutorial set 8 (include Q23, 27)
- Exercise set 5 solution (to be uploaded this weekend)

Homework

- HW2 results published
- HW2 solutions available
- HW3 due 22 October (next Friday)

❖ MATLAB WS5

- OTOT starting this week
- Online quiz 9
 - Due next Thursday