Representación del conocimiento

Javier Béjar

Inteligencia Artificial - 2021/2022 1Q

CS - GEI- FIB

Representación del conocimiento

- Todo problema es más sencillo de resolver si disponemos de conocimiento específico sobre él
- Este conocimiento dependiente del dominio se combina con el conocimiento general sobre cómo resolver problemas
- Este conocimiento ha de permitir guiar a los mecanismos de IA para obtener soluciones de manera más eficiente
- Problemas
 - ¿Cómo escoger el formalismo de representación que nos permita hacer una traducción fácil del mundo real a la representación?
 - o ¿Cómo ha de ser esa representación para que pueda ser utilizada de forma eficiente?

- Llamaremos información al conjunto de datos básicos, sin interpretar, que se obtienen como entrada del sistema.
 - o Por ejemplo:
 - o Los datos numéricos que aparecen en una analítica de sangre,
 - o Los datos de los sensores de una planta química
- O Llamaremos conocimiento al conjunto de datos de primer orden, que modelan de forma estructurada la experiencia que se tiene sobre un cierto dominio o que surgen de interpretar los datos básicos.
 - Por ejemplo:
 - La interpretación de los valores de la analítica de sangre o de los sensores de la planta química para decir si son normales, altos o bajos, preocupantes, peligrosos, ...
 - El conjunto de estructuras de datos y métodos para diagnosticar a pacientes a partir de la interpretación del análisis de sangre, o para ayudar en la toma de decisiones de que hacer en la planta química

- O Los sistemas de IA necesitan diferentes tipos de conocimiento que no suelen estar disponibles en bases de datos y otras fuentes de información:
 - o Conocimiento sobre los objetos en un entorno y posibles relaciones entre ellos
 - Conocimiento sobre los procesos en los que interviene o que le son útiles
 - Conocimiento difícil de representar como datos básicos, como la intensionalidad, la causalidad, los objetivos, información temporal, conocimiento que para los humanos es "de sentido común", etc.
- Intuitivamente podemos decir

Conocimiento = Información + Interpretación

- Para representar algo necesitamos saber
 - Su forma o estructura
 - Que uso le dan los seres inteligentes
 - o Que uso le dará una inteligencia artificial
 - Como adquirir el conocimiento
 - o Como almacenarlo y manipularlo
- Por desgracia no hay respuestas completas para todas estas preguntas desde el punto de vista biológico o neurofisiológico
 - o Construiremos modelos que simulen la adquisición, estructuración y manipulación del conocimiento y que nos permitan crear sistemas artificiales inteligentes.

- Un esquema de representación es un instrumento para codificar la realidad en un ordenador
- Es importante distinguir entre
 - El mundo real (lo que queremos representar) → Dominio
 - \circ Su representación \to uno o más esquemas de representacion
- Desde un punto de vista informático un esquema de representación puede ser descrito como una combinación de
 - Estructuras de datos que codifican el problema en curso con el que se enfrenta el agente → Parte estática
 - Estructuras de datos que almacenan conocimiento referente al entorno en el que se desarrolla el problema y procedimientos que manipulan las estructuras de forma consistente con una interpretación plausible de las mismas → Parte dinámica

- La parte estática está formada por
 - Estructura de datos que codifica el problema
 - o Operaciones que permiten crear, modificar y destruir elementos en la estructura
 - o Predicados que dan un mecanismo para consultar esta estructura de datos
 - Semántica de la estructura: se necesita definir la relación entre la realidad y la representación escogida

R(Elemento_estructura, Mundo Real)

- O La parte dinámica esta formada por:
 - Estructuras de datos que almacenan conocimiento referente al entorno/dominio en el que se desarrolla el problema
 - Procedimientos que permiten
 - Interpretar los datos del problema (de la parte estática) a partir del conocimiento del dominio (de la parte dinámica)
 - o Controlar el uso de los datos: estrategias de control
 - Adquirir nuevo conocimiento

- Se ha de tener siempre en cuenta que nuestra representación siempre es incompleta, debido a:
 - Modificaciones: el mundo es cambiante, pero nuestras representaciones son de un instante
 - \circ Volumen: mucho (demasiado) conocimiento a representar ightarrow representación parcial
 - Complejidad: La realidad tiene una gran riqueza en detalles
- El problema de modificación del mundo esta ligado a los procedimientos de adquisición y mantenimiento de la representación (Frame Problem)
- O Los problemas de volumen y complejidad de la realidad están relacionados con la granularidad de la representación.

Un sistema de representación debe poseer las siguientes propiedades

- Ligados a la representación
 - Adecuación Representacional: habilidad para representar todas las clases de conocimiento que son necesarias en aquel dominio
 - Adecuación Inferencial: habilidad de manipular estructuras de representación de tal manera que devengan o generen nuevas estructuras que correspondan a nuevos conocimientos inferidos de los anteriores

- o Ligados al uso de la representación
 - Eficiencia Inferencial: capacidad del sistema para incorporar información adicional a la estructura de representación, llamada metaconocimiento, que puede emplearse para focalizar la atención de los mecanismos de inferencia con el fin de optimizar los cómputos
 - Eficiencia en la Adquisición: capacidad de incorporar fácilmente nueva información. Idealmente el sistema por sí mismo deberá ser capaz de controlar la adquisición de nueva información y su posterior representación

Conocimiento Declarativo

- El conocimiento se representa de forma independiente a su uso posterior.
- o El control del uso adecuado se logra
 - mediante heurísticas de propósito general que determina la mejor manera de usar el conocimiento
 - mediante la adición de información sobre el control del uso del conocimiento declarativo que dirija al mecanismo de resolución
- Tipos de conocimiento declarativo
 - Conocimiento relacional
 - o Conocimiento heredable
 - Conocimiento inferible

Conocimiento Procedimental

o El conocimiento representado implica la inclusión de información sobre como usarlo

- La forma más simple de representar hechos declarativos es mediante un conjunto de relaciones expresables mediante tablas (como en una Base de Datos)
 - o Ej: colección de información sobre los clientes de una empresa

Cliente	Dirección	Vol Compras	
A. Perez	Av. Diagonal	5643832	
J. Lopez	c/ Industria	430955	

- Problema: tal cual no aporta mucha información
- \odot Hemos de aportar procedimientos que lo enriquezcan \to Motor de inferencia: genera conocimiento a partir de información
 - o Ejs: media de compras en una población, mejor cliente, tipología de clientes
- Las Bases de Datos pueden proporcionar información a los SBC.

Conocimiento Heredable

- Suele ser muy útil el disponer de una estructuración jerárquica del conocimiento (taxonomía jerárquica)
- Se trata de construir un árbol o grafo de conceptos basado en la generalización y/o especialización
 - Los nodos son los conceptos/clases Los arcos las relaciones
 - o is-a (es-un): relación clase-clase
 - Instance-of (instancia-de, ejemplar-de):
 relación clase-ejemplar
- El mecanismo de inferencia es la herencia de propiedades y valores
 - Herencia simple/múltiple
 - Valores por defecto

file=jerarquia,width=3.5cm

- o Conocimiento descrito mediante lógica
- Se puede utilizar la semántica de los operadores y el Modus Ponens para inferir nuevo conocimiento

$$\forall x,y: persona(x) \land \neg menor(x) \land \neg ocupacion(x,y) \rightarrow parado(x)$$

 El mecanismo de inferencia en el caso de la lógica de primer orden se obtiene eligiendo entre los métodos generales de resolución automática de teoremas que existen

- Onocimiento que, a diferencia del declarativo, incluye la especificación de los procesos de uso del conocimiento:
 - Programas: utilizan funciones para obtener el conocimiento a partir de información o de otro conocimiento que ya se tiene
 - Ej: Fecha_nacimiento= DD-MM-AAAA; función Edad (Fecha_nacimiento:entero)
 - Reglas de producción: si se cumplen unas condiciones entonces se realizan unas acciones u otras.
 - o Ej: SI condición ENTONCES acción
- Este tipo de conocimiento suele ser más eficiente computacionalmente, pero hace más difícil la inferencia y la adquisición/modificación.