#### **UNIT-III**

# Introduction to Combinational Logic Circuits

Lecture 17
Prepared By:
Dr.Krishan Arora
Assistant Professor and Head

### What is Adder?

 Adder: In electronics an adder is digital circuit that perform addition of numbers. In modern computer adder reside in the arithmetic logic unit (ALU).

### **Adders**

Adders are important not only in the computer but also in many types of digital systems in which the numeric data are processed.

Types of adder:

Half adder

Full adder

### Half adder

- The half adder accepts two binary digits on its inputs and produce two binary digits outputs, a sum bit and a carry bit.
- The half adder is an example of a simple, functional digital circuit built from two logic gates. The half adder adds two one-bit binary numbers x and y. The output is the sum of the two bits (S) and the carry (C).

#### The truth table for the half adder is listed below:

**Table 4-3** Half Adder

| <u>x</u> | y | С | 2 |
|----------|---|---|---|
| 0        | 0 | 0 | 0 |
| 0        | 1 | 0 | 1 |
| 1        | 0 | 0 | 1 |
| 1        | 1 | 1 | 0 |

S: Sum C: Carry

$$S = x'y + xy'$$
  
 $C = xy$ 

## K-map for half adder



K-map for Carry

| AB | 0   | 1   |
|----|-----|-----|
| 0  | 0   | 1 1 |
| 1  | 1 2 | 3   |

K-map for Sum

Carry 
$$C = AB$$
 and  $Sum$   $C = AB + \overline{AB}$ .



# Implementation of Half-Adder





(a) 
$$S = xy' + x'y$$
  
 $C = xy$ 

(b) 
$$S = x \oplus y$$
  
 $C = xy$ 

# Full-Adder

 One that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

| Tab  | le | 4   | 4  |
|------|----|-----|----|
| Full | Ac | ide | 25 |

| x   | y | z | C | 5 |
|-----|---|---|---|---|
| 0   | 0 | 0 | 0 | 0 |
| 0   | O | 1 | 0 | 1 |
| 0   | 1 | 0 | 0 | 1 |
| 0   | 1 | 1 | 1 | 0 |
| 1   | 0 | 0 | 0 | 1 |
| . 1 | O | 1 | 1 | 0 |
| 1   | 1 | 0 | 1 | 0 |
| 1   | 1 | 1 | 1 | 1 |

# -

### Full Adder

 A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit

| X | Y | Z | С | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |



$$S = X'Y'Z + X'YZ'$$
$$+ XY'Z' + XYZ$$
$$= X \oplus Y \oplus Z$$



$$C = XY + YZ + XZ$$



# Logic Diagram of Full Adder





### Logic Diagram of Full Adder

```
S = \Sigma m(1,2,4,7)
   = X' Y' C_{in} + X' Y C_{in}' + X Y' C_{in}' + X Y C_{in}
   = X' (Y' C_{in} + Y C_{in}') + X (Y' C_{in}' + Y C_{in})
   = X' (Y \oplus C_{in}) + X (Y \oplus C_{in})'
   = X \oplus Y \oplus C_{in}
C_{\text{out}} = \Sigma m(3,5,6,7)
   = X' Y C_{in} + X Y' C_{in} + X Y C_{in}' + X Y C_{in}
   = (X'Y + XY')C_{in} + XY(C_{in}' + C_{in})
   = (X ⊕ Y) C<sub>in</sub> + XY
```



# What is the difference between half adder and a full adder circuit?

The main difference between a half-adder and a full- adder is that the full-adder has three inputs and two outputs. The first two inputs are A and B and the third input is an input carry designated as CIN. When a full adder logic is designed we will be able to string eight of them together to create a byte-wide adder and cascade the carry bit from one adder to the next.

The output carry is designated as COUT and the normal output is designated as S.

## Quick Quiz (Poll 1)

Total number of inputs in a half adder is

a) 2

b) 3

c) 4

d) 1

### Quick Quiz (Poll 2)

- In which operation carry is obtained?
  - a) Subtraction
  - b) Addition
  - c) Multiplication
  - d) Both addition and subtraction

## Quick Quiz (Poll 3)

- If A and B are the inputs of a half adder, the sum is given by \_\_\_\_\_
  - a) A AND B
  - b) A OR B
  - c) A XOR B
  - d) A EX-NOR B

### Quick Quiz (Poll 4)

- The difference between half adder and full adder is
  - a) Half adder has two inputs while full adder has four inputs
  - b) Half adder has one output while full adder has two outputs
  - c) Half adder has two inputs while full adder has three inputs
  - d) All of the Mentioned