# Projeções de curto prazo para número de hospitalizados por SRAG no município de São Paulo

Baseado nas notificações de SRAG Hospitalizados na base SIVEP Gripe Observat'orio~COVID-19~BR  $13\text{-}04\text{-}2020\text{\_}17h31min35s}$ 

#### Sumário executivo

- Este relatório usa notificações de casos de SRAG Hospitalizados na base **SIVEP-Gripe** do dia 13 de abril de 2020.
- Nesta base de dados, observamos 8262 casos hospitalizados de **SRAG**. Destes, 2567 estão hospitalizados em UTI. Corrigindo para o atraso de notificação, estimamos que o número de hospitalizados está entre 8570 e 9750, e número de casos em UTI está entre 2659 e 3047.
- No cenário pessimista, utilizando um crescimento **Exponencial**, a projeção para dia 19 de abril do total de casos hospitalizados é de entre 14908 e 27327, e de casos em UTI é de entre 4164 e 7598.
- No cenário otimista, utilizando um crescimento **Logístico**, a projeção para dia 19 de abril do total de casos hospitalizados é de entre 8631 e 13857, e de casos em UTI é de entre 2689 e 4593.

#### Projeções de número total de casos de SRAG hospitalizados

Tabela 1: Projeção do número de casos hospitalizados de SRAG para os próximos 6 dias no cenário pessimista.

| Data       | Previsto | Limite Inferior | Limite Superior |
|------------|----------|-----------------|-----------------|
| 2020-04-14 | 14617    | 10804           | 19193           |
| 2020-04-15 | 15643    | 11628           | 20620           |
| 2020-04-16 | 16774    | 12242           | 22020           |
| 2020-04-17 | 18001    | 13086           | 23719           |
| 2020-04-18 | 19104    | 13966           | 25507           |
| 2020-04-19 | 20534    | 14908           | 27327           |

Tabela 2: Projeção do número de casos hospitalizados de SRAG pra os próximos 6 dias no cenário otimista.

| Data       | Previsto | Limite Inferior | Limite Superior |
|------------|----------|-----------------|-----------------|
| 2020-04-14 | 10213    | 8047            | 12744           |
| 2020-04-15 | 10442    | 8160            | 13056           |
| 2020-04-16 | 10612    | 8283            | 13284           |
| 2020-04-17 | 10825    | 8443            | 13470           |
| 2020-04-18 | 10866    | 8486            | 13761           |
| 2020-04-19 | 11012    | 8631            | 13857           |

### Gráfico das projeções

- Pontos pretos : número de casos hospitalizados observados a cada dia.
- Região e linha vermelha : correção para ao atraso de notificação dos casos hospitalizados. Média e intervalo de confiança de 95%.
- Região azul e linhas pontilhadas : Previsão usando modelos de curto prazo em diferentes cenários. Média de intervalo de confiança de 95%.



Figura 1: Estimativas de crescimento (A) exponencial e (B) logistico para os próximos 6 dias para número de internações por SRAG.

### Projeções de número de casos de SRAG hospitalizados em leitos de UTI

Tabela 3: Projeção do número de casos hospitalizados de SRAG em leitos de UTI para os próximos 6 dias no cenário pessimista.

| Data       | Previsto | Limite Inferior | Limite Superior |
|------------|----------|-----------------|-----------------|
| 2020-04-14 | 4278     | 3173            | 5556            |
| 2020-04-15 | 4539     | 3318            | 5947            |
| 2020-04-16 | 4783     | 3529            | 6282            |
| 2020-04-17 | 5095     | 3745            | 6759            |
| 2020-04-18 | 5420     | 3953            | 7196            |
| 2020-04-19 | 5747     | 4164            | 7598            |

Tabela 4: Projeção do número de casos hospitalizados de SRAG em leitos de UTI pra os próximos 6 dias no cenário otimista.

| Data       | Previsto | Limite Inferior | Limite Superior |
|------------|----------|-----------------|-----------------|
| 2020-04-14 | 3257     | 2525            | 4152            |
| 2020-04-15 | 3336     | 2555            | 4248            |
| 2020-04-16 | 3415     | 2612            | 4313            |
| 2020-04-17 | 3474     | 2638            | 4427            |
| 2020-04-18 | 3547     | 2670            | 4546            |
| 2020-04-19 | 3597     | 2689            | 4593            |

# Gráfico das projeções para número de casos de SRAG hospitalizados em leitos de UTI

- Pontos pretos : número de casos hospitalizados observados a cada dia.
- Região e linha vermelha : correção para ao atraso de notificação dos casos hospitalizados. Média e intervalo de confiança de 95%.
- Região azul e linhas pontilhadas : Previsão usando modelos de curto prazo em diferentes cenários. Média de intervalo de confiança de 95%.



Figura 2: Estimativas de crescimento (A) exponencial e (B) logistico para os próximos 6 dias para número de internações em UTI por SRAG.

#### Métodos

### Correção do atraso de notificação pelo método de *Nowcasting*

Para corrigir o efeito de atraso da notificação de casos na tabela de notificações, nós utilizamos o método de nowcasting descrito em McGough et al. (2019). Esse método utiliza a diferença entre as datas de primeiro sintoma e notificação do caso no banco de dados para estimar o atraso de inclusão de novos casos no sistema de notificação. O pacote NobBS fornece o número de novos casos esperados por dia pelo modelo de atraso nas notificações.

#### Tempos de hospitalização em leito comum e UTI

Para modelar a ocupação dos hospitais, nós estimamos a distribuição de tempos entre aparecimento de sintomas e internação, internação e evolução, entrada e saída da UTI, e probabilidade de internação em UTI.

#### Estimando número de hospitalizados

O número estimado de hospitalizados por dia é dado pelos indivíduos notificados na tabela original do Sivep-Gripe + indivíduos não-observados mas esperados pelo *nowcast*, que são incluídos na tabela com datas de entrada e evolução simuladas a partir das distribuições de tempos. Esse modelo permite uma avaliação dinâmica da curva de hospitalizações já corrigida pelo atraso de notificação e tempos de permanência no hospital.

#### Projeções de curto prazo utilizando modelos estatísticos

Para realizar as projeções de curto prazo, nós ajustamos duas curvas ao número de casos hospitalizados. As curvas representam cenários diferentes: uma curva exponencial generalizada, que é adequada para modelar o começo de uma epidemia, com crescimento rápido, sendo portanto um cenário pessimista; e uma curva logística generalizada, que apresenta um crescimento que se desacelera com o tempo, representando um cenário otimista. Ambos os modelos são descritos em Wu et al. (2020).

Os modelos usados são dados pelas seguintes equações diferenciais, nas quais C(t) representa o número de hospitalizados, e os parâmetros são definidos como: r taxa de crescimento, p parâmetro de modulação do crescimento (pode variar entre 0 e 1, valores mais baixos correspondem a curvas de crescimento mais lento), e, no caso da logística, K, um parâmetro de assíntota da curva.

• Exponencial generalizada:

$$\frac{dC(t)}{dt} = rC(t)^p$$

• Logística generalizada:

$$\frac{dC(t)}{dt} = rC(t)^p \left(1 - \frac{C(t)}{K}\right)$$

#### Limitações

- O método de nowcasting utilizado assume que a dinâmica de inclusão de novos casos no banco de dados é parecida com o passado. Se o atraso de inclusão aumenta muito, o modelo vai subestimar quantidade de novos casos. O mesmo se aplica aos modelos de distribuição dos tempos de hospitalização e probabilidade de internação em UTI.
- As previsões de curto prazo utilizam curvas fenomenológicas que não se prestam a previsões de longo prazo, portanto não são adequadas para prever a dinâmica da epidemia numa escala de tempo maior. Em particular, o uso de uma curva logística não implica que uma assintota no número de hospitalizações é sugerida pelos dados.

### Referências

McGough, Sarah , Michael A. Johansson, Marc Lipsitch, Nicolas A. Menzies (2019). Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking. bioRxiv 663823; doi: https://doi.org/10.1101/663823

McGough, Sarah, Nicolas Menzies, Marc Lipsitch and Michael Johansson (2020). NobBS: Nowcasting by Bayesian Smoothing. R package version 0.1.0. https://CRAN.R-project.org/package=NobBS

Wu, Ke, Didier Darcet, Qian Wang, and Didier Sornette (2020). Generalized Logistic Growth Modeling of the COVID-19 Outbreak in 29 Provinces in China and in the Rest of the World. arXiv [q-bio.PE]. arXiv. http://arxiv.org/abs/2003.05681.

#### Observatório COVID-19 BR

O Observatório Covid-19 BR é uma iniciativa independente, fruto da colaboração entre pesquisadores com o desejo de contribuir para a disseminação de informação de qualidade baseada em dados atualizados e análises cientificamente embasadas.

Criamos um sítio com códigos de fonte aberta que nos permite acompanhar o estado atual da epidemia de Covid-19 no Brasil, incluindo análises estatísticas e previsões. Modelos estatísticos e matemáticos para previsões da epidemia estão em preparação

Site: https://covid19br.github.io/ Contato: obscovid19br@gmail.com

### Comparação com previsões anteriores

# Validação das previsões usando a base do dia 2020-04-12 contra observados atuais









# Validação das previsões usando a base do dia 2020-04-11 contra observados atuais









# Validação das previsões usando a base do dia 2020-04-10 contra observados atuais









# Validação das previsões usando a base do dia 2020-04-09 contra observados atuais









# Validação das previsões usando a base do dia 2020-04-08 contra observados atuais









# Validação das previsões usando a base do dia 2020-04-07 contra observados atuais









# Validação das previsões usando a base do dia 2020-04-06 contra observados atuais







