

Problem and Data

Click-Through Rate Prediction

Let's consider an automatic recommendation problem

- Given a set of restaurant indexed on a a web platform (think Tripadvisor)
- ...We want to estimate how likely a user is to actually open the restaurant card

This is know as click-through rate

This example (and the approach) is based on this TensorFlow Lattice Tutorail

Loading the Data

We are going to use a synthetic dataset for this use case

- avg_rating is the average rating of the reviews for this restaurant
- num_reviews is the number of said reviews
- dollar_rating tells us how expensive the restaurant is
- clicked tells use whether a use actually click on the card, when it was displayed

Data Distribution

Let's check the attribute distribution on the training set

- Most restaurants in our dataset have a good rating
- The number of review is close to unifor
- Most restaurants are in the mid-low tier in terms of price

Data Distribution

...Then on a second dataset, that we are going to use for testing

- In truth, this dataset is mean to be a validation set
- ...But for now we are going to treat it as a test set
- We will revisit this use case later in the course and understand the reason

Loading the Data

Not all users have the same preferences

...So, when presented with the same restaurant may make opposite decisions:

In [5]:	tr	[(tr[dt_	in] == tr.	iloc[4][d	lt_in]
Out[5]:		avg_rating	num_reviews	dollar_rating	clicked
	4	3.099026	118.0	DD	0
	5	3.099026	118.0	DD	1
	6	3.099026	118.0	DD	1
	7	3.099026	118.0	DD	1
	8	3.099026	118.0	DD	1

- Every row corresponts to a restaurant visualization event
- ...And, therefore, many input vectors in the dataset are duplicated
- The clicked column may be either 1 or 0 in these cases

Formally, we are studying a stochastic process

Target Function

However, what we want to learn is the probability of a click

We know exactly how that changes, since we are working with synthetic data

...But of course we'll pretend we don't have this information

Click-Through Rate Prediction

Problem Formalization

A System Model

Let's start by modeling the system

We can view both the restaurant information and the clicks as random variables:

- lacktriangledown X, representing the restaurant information
- Y, representing the act of clicking (1 = click, 0 = no click)

The two variables are related

We can model this formally via their joint distribution:

$$X, Y \sim P(X, Y)$$

We want to learn the probability of clicking, given observed restaurant information

In other words, the conditional probability:

Our Data

Our training data consists of a collection of examples $\{x_i, y_i\}_{i=1}^m$

- x_i is the restaurant data for on visualization event
- $y_i = 1$ if the user clicked, and 0 otherwise

Say that we try to learn an approximatation $\hat{f}(x;\theta)$ for $P(Y\mid X)$

In this case, training for maximum likelihood estimation means solving:

$$\underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{m} y_{i} \hat{f}(x_{i}; \theta) + (1 - y_{i})(1 - \hat{f}(x_{i}; \theta))$$

- ullet The estimated probability should be high in case of clicks (i.e. $y_i=1$)
- ...And low in case of non-clicks (i.e. $1-y_i$)

This is (almost) exactly how most classifiers are trained

With most types of ML techniques...

When you train a classifier ... You are actually training a probabilistic model

Click-Through Rate Prediction

A Solution Approach

Preparing the Data

We will start by tackling the problem using a Multi Layer Perceptron

We normalize the numeric data:

```
In [7]: nf = ['avg_rating', 'num_reviews']
    scale = tr[nf].max()
    tr_s = tr.copy()
    tr_s[nf] = tr_s[nf] / scale
    val_s = val.copy()
    val_s[nf] = val_s[nf] / scale
    ts_s = ts.copy()
    ts_s[nf] = ts_s[nf] / scale
```

We also adopt a one-hot encoding for the categorical data:

```
In [8]: tr_sc = pd.get_dummies(tr_s).astype(np.float32)
  val_sc = pd.get_dummies(val_s).astype(np.float32)
  ts_sc = pd.get_dummies(ts_s).astype(np.float32)
  dt_in_c = [c for c in tr_sc.columns if c != 'clicked']
```


Preparing the Data

Here is the result of our preparation

In [9]: tr_sc

Out[9]:

835 rows × 7 columns

Building a Baseline Model

Our model will be a simple Neural Network

In particular we will use a small deep network

Training the Baseline Model

We'll train the model to convergence

```
In [11]: nn2 = util.build_nn_model(input_shape=(len(dt_in_c),), output_shape=1, hidden=[16, 8, 8], output_shape = util.train_nn_model(nn2, tr_sc[dt_in_c], tr_sc['clicked'], loss='binary_crossentroutil.plot_training_history(history, figsize=(figsize[0], 0.5 * figsize[1]), display_loss_current
Final loss: 0.5006 (training)
```

- More shallow models require more training iterations to reach convergence via gradient descent
- On the other hand, deeper models require more computational effort per evaluation

Evaluating the Predictions

This is not a classification problem, so accuracy is not a good metric

- The output of our system is meant to be interpreted as a probability
- ...So, rounding to obtain a deterministic prediction may be too restrictive

Instead, we will make a first evaluation using a ROC curve

A Receiver Operating Characteristic curve is a type of plot

- We consider multiple threshold values
 - Each threshold is meant to be used for discriminating between classes
 - The usual rounding approach is equivalent to a 0.5 threshold
- ullet On the $oldsymbol{x}$ axis, we report the false positive rate for each threshold
- lacktriangle On the y axis, we report the true positive rate for each threshold

Evaluating the Predictions

A ROC curve looks like this (image from wikipedia)

- The large the Area Under Curve (AUC), the better the performance
- The AUC value is guaranteed to be in the [0, 1] interval

Evaluating the Predictions

Let's compute the AUC values for the two sets we are focusing on

```
In [12]: pred_tr2 = nn2.predict(tr_sc[dt_in_c], verbose=0)
    pred_val2 = nn2.predict(val_sc[dt_in_c], verbose=0)
    auc_tr2 = roc_auc_score(tr_sc['clicked'], pred_tr2)
    auc_val2 = roc_auc_score(val_sc['clicked'], pred_val2)
    print(f'AUC score for the deeper NN: {auc_tr2:.2f} (training), {auc_val2:.2f} (test)')
AUC score for the deeper NN: 0.81 (training), 0.80 (test)
```

The model works reasonably well on both the training and the test data

Checking the Learned Response Surfaces

Here we have again the ground truth for our click rate

Checking the Learned Response Surfaces

Here is the full response surface for the deeper NN

