Fraud detection in telephone conversations for fifinancial services using linguistic features

———读书笔记

姓名: 曾昕菟 学号: 17211170

一、论文背景及目的

目前电话欺诈的行为屡见不鲜,而得益机器学习发展迅速,该论文提出了一种利用语言的某些特征,从而使得在电话中检测出欺诈的方法。应对的欺诈主要是金融欺诈,例如保险和信用卡的欺诈,该方法考虑到转录的句法和语义信息,进而提取语言特征和客户反应,从而可进行判断。

二、论文研究思路

考虑到目前在金融方面,电话往往是最常用来沟通的途径,因此基于使用自然语言处理 (NLP)可以在早期就揭示可能存在的欺诈行为,从而减少欺诈的发生。但是值得注意的是,能使用的技术应该尽可能透明化并且能够证明对客户无害,否则在这种敏感的行业,会受到处罚,因此有些技术,例如深度神经网络技术难以采用。

该论文认为词语的选择可以反映说话者的情感和认知状态。只有训练才能使说话者控制自己的词汇,以免泄漏任何情绪状态,因此在存在欺骗性词语的话中,很有可能就代表着可能正在进行带有欺诈性的行为,为了提取出带有欺诈性的特征,主要考虑是两个方面,其一是用词,其二是句子的结构,也就是带有的感情色彩。

从局部看,先考虑用词,用词主要是看的某些能够反应特定信息的词汇,比如因果关系往往能够提供某种解释,因此需要注意这类词汇,又比如指代自己的代词,这个是考虑到欺诈方往往不太会指代自己,因此这种用词也一定程度可以反应是否存在潜在的欺诈行为。此外还有很多的具有代表性的用词。更具体可以观看下图。

Marker	Example	
Causation: Providing a certain level of concreteness to an explanation. [10] [13]	Because, Effect, Hence	
Negation: Avoiding to provide a direct response [14]	No, Not, Can't, Didn't	
Hedging: Describes words which meaning implicitly involves fuzziness [15]	May be, I guess, Sort of	
Qualified assertions: Unveils questionable actions [15]	Needed, Attempted	
Temporal Lacunae: Unexplained lapses of time [15]	Later that day, Afterwards	
Overzealous expression: Expresses some level of uncertainty [15]	I swear to God, Honestly	
Memory loss: Feigning memory loss [15]	I forget, Can't remember	
Third person plural pronouns: Possessive determiners to refer to	They, Them, Theirs	
things or people other than the speaker [10]		
Pronouns: Possessive determiners to refer to the speaker by overemphasising their physical presence [10] [6]	I, Me, Mine	
Negative emotion: Negative expressions in word choice [17] [10] [18]	Afraid, Sad, Hate, Abandon, Hurt	
Negative sentiment: Negative emotional effect [18]	Abominable, Anger, Anxious, Bad	
Positive emotion: Positive expressions in word choice [10] [18]	Happy, Brave, Love, Nice, Sweet	
Positive sentiment: Positive emotional effect [18]	Admire, Amazing, Assure, Charm	
Disfluencies: Interruption in the flow of speech [10]	Uh, Um, You know, Er, Ah	
Self reference words: Deceivers tend to use fewer self-referencing expressions [15]	I, My, Mine	
Nominalised verbs: Nouns derived from verbs. Nominalisations tend to hide the real action. [19]	Education, Arrangement	

从整体看,第二个注意点就是句子结构,句子结构在英语中与表达的感情色彩息息相关,而研究表明,在欺诈行为中,消极感情会往往被欺诈方突出表现,该方法基于机器学习,在 IMDB 电影库中使得机器得到学习,从而能够有效判断出言语中带的感情色彩是否消极。

三、论文结果

论文作者从一堆电话对话中人为地判断了 56 个对话,这 56 个对话中有 32 个欺诈电话,总体的平均客户回答次数为 19 次,最少的只有 4 次,而最多的有 101 次。

基于以上真实数据,作者将这 56 个对话套用以上提出的理论方法,并对客户的回答用以上 思路进行分析,即分析用词和整体态度,在提取完特征后采取四种方法分别进行欺诈分析。 结果如下图所示。

Features	Accuracy	Model			
		Naive Bayes	DTree (d=3)	kNN(k=3)	SVM(Linear)
Markers	Training Testing	0.7241 ± 0.03 0.6167 ± 0.20	0.8871 ± 0.04 0.5600 ± 0.17	0.7521 ± 0.02 0.6567 ± 0.20	0.7679 ± 0.03 0.5867 ± 0.28
Sentiment	Training Testing	0.7241 ± 0.03 0.6167 ± 0.20	$\begin{array}{c} 0.8871 \pm 0.04 \\ 0.5600 \pm 0.17 \end{array}$	0.7540 ± 0.02 0.5667 ± 0.30	0.8491 ± 0.04 0.6200 ± 0.16
Markers + Sentiment	Training Testing	0.7222 ± 0.03 0.6233 ± 0.20	0.8871 ± 0.04 0.5600 ± 0.17	0.7500 ± 0.04 0.5933 ± 0.20	0.7560 ± 0.03 0.6900 ± 0.13

在实际应用可以有一种如下的决策树判断,可以看出来比较重要的判断因素是感情数值化后的中值大小、第三人称代词等,这些正如前面思路分析时候提到的一样,与欺诈行为息息相

关,因此可以很好的反应出是否有欺诈倾向。在最后进入 v=0 说明无欺诈, v=1 说明有欺诈。 而事实也说明该决策树的判断准确率达到六成以上。

四、个人感想

该论文产生的主要背景是当前日益严重的电话欺诈,论文从实际出发,人为考虑出电话欺诈中表现出的典型特征,并将其数值化,从而可以判断出是否有欺诈倾向,尤其是现在机器学习发展的越来越如火如荼,因此是一种判断欺诈行为的很好方法,而这种思想究其根本是一个特别有用的思想,从一定量的具体化事物中提取特征统计,而根据这种统计信息往往又能反应某些具体事物的倾向,这种思想其实用的很广泛,在无线通信中,均衡就是如此,均衡有一种盲均衡的方法,该方法正是将发送信息的特征提取出来,并根据特征信息反过来确定信道情况,从而调整抽头系数。因此可以说,虽然该篇论文面向的是一个特定的场景,但是将思想概括出来,可以适用于许多场景。