Boston University Questrom School of Business

MF793 - Fall 2021

Eric Jacquier

ORDINARY LEAST SQUARES

Main differences with the previous note:

We assume the model is linear and we put our hats on!

A Regression OLS: simple regression

B Multiple regression: general model and OLS properties

C Statistical properties of OLS

Recommended Readings: Hansen: Ch 2, 3 if desired

Greene: Ch 2, 3 (ignore or skim 3.5.1, 3.6).

Only what corresponds to what we do

A. Regression and OLS, basic models

A1 Basic model

Results in previous note – on the Conditional Expectation Function – were theoretical.

- We first discussed the conditional expectation from a true but unknown model as in the "true unknown mean".
- Then we discussed using a linear model to approximate the true unknown CEF.

We proved what β should be so the linear model approximates the desired true model properties as best as possible.

• Result was theoretical: β a function of (true but unknown!) expectation of the data.

Now we have data, what do we do?

- .. We talk about estimation! equivalent of the sample mean for the conditional expectation
- Data: y_i , x_i . Model for the data is: $y_i = x_i \frac{\beta}{\beta} + \frac{\epsilon_i}{\epsilon_i}$, ϵ_i : true unknown noise
- Given a candidate value b as an estimate of the unknown β, we have: y_i = x_i b + e_i
 e_i: residual for observation i, an estimate of the noise ε_i.
 - e: the vector of residuals

• Criterion to find the best β:

Sum of errors? silly Sum of absolute errors? No analytics but can be done

A Sample estimate of the MSE: Residual Sum of Squares aka Sum of Squared Errors:

$$\sum_i e_i^2 = e'e = \sum_i (y_i - bx_i)^2$$
 Minimize: Set derivative with respect to b equal to 0

 $\frac{\partial e'e}{\partial h} = 2b\sum_i x_i^2 - 2\sum_i x_i y_i = 0$ Known as the **OLS normal equation**:

$$b \sum_{i} x_{i}^{2} = \sum_{i} x_{i} y_{i}$$

$$b = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$$

Is it a minimum? Check the second derivative

- We do not have the **true** mean squared error E(y-bx)². We computed its sample mean, the **sample mean** of squared errors, and minimized it along b.
- What is b if $x_i = 1$, i = 1, ..., T? The sample mean is the simplest of all OLS estimates.
- This is a toy model: no intercept is very unrealistic Let's get (a bit) more serious.

A2 First (somewhat) serious model: regression with intercept

- Linear model: $y_i = \alpha + x_i \beta + \epsilon_i$, $E(\epsilon_i \mid x) = 0$
- $E(\varepsilon_i \mid x) = 0$ could be wrong. Will need to check this.
 - o Maybe the true model is not linear! The true unknown CEF m_x is unknown.
 - Here we write a feasible linear model. It is known but likely incorrect.
 - Serious econometricians consider this notion of the existence of a true model, naïve at best. All models are wrong, some maybe useful.
- Find (a, b): $y_i = a + b x_i + e_i$, that minimize the sum of squared errors SSE

$$\min_{a,b} SSE \equiv \min_{a,b} \sum_{i} (y_i - a - bx_i)^2$$
 [1]

$$\frac{\partial SSE}{\partial a} = 2\sum_{i}(y_i - a - bx_i)(-1) = 0$$

$$\overline{y} = a + b\overline{x}$$

Regression line goes through the sample mean point (\bar{x}, \bar{y})

• Now find b: Substitute a into the SSE in [1]

$$SSE = \sum_{i} (y_i - a - bx_i)^2 = \sum_{i} (y_i - (\bar{y} - b\bar{x}) - bx_i)^2$$

$$SSE = \sum_{i} (y_i - \bar{y})^2 + b^2 (x_i - \bar{x})^2 - 2b (y_i - \bar{y})(x_i - \bar{x})$$

optimize with respect to b:

$$\frac{\partial SSE}{\partial b} = 0 = 2b \sum (x_i - \bar{x})^2 - 2 \sum (y_i - \bar{y})(x_i - \bar{x})$$

$$b = \frac{Cov(x, y)}{Var(x)}$$

- Fitted value: $\widehat{y}_i = a + x_i b$
- Residual: $e_i = y_i a x_i b = (y_i \bar{y}) b(x_i \bar{x})$ [2] "deviation form"

Recall $\bar{y} = a + b\bar{x}$

• Is the model well specified? Must check if it matches properties of the CEF

A3 Properties of OLS residuals

Recall LN 9, we found some obvious properties of the **correct** unknown model (CEF) and error. We hope that our ... likely wrong ... approximate linear model also has these properties

• Theory says $E(\varepsilon_i) = 0$

- From [2]: $\Sigma_{l} e_{i} = \sum_{\lambda} (\lambda_{\lambda} \alpha_{\lambda} \lambda_{\lambda})^{2} = \sum_{\lambda} (\lambda_{\lambda} \alpha_{\lambda})^{2} = \sum_{\lambda} (\lambda_{\lambda} \alpha_{\lambda}$
- Because of the intercept, the residuals have zero sample mean by construction.
- o So ... the regression with no intercept has a potential problem. Always use an intercept.
- Theory says Cov(ε, x) = 0

Is the model well specified?

Noise must truly be unrelated to the predictor X ... or it's not a noise!

$$\sum (\mathbf{x}_i - \bar{\mathbf{x}}) \mathbf{e}_i = \sum (\mathbf{x}_i - \bar{\mathbf{x}})((y_i - \bar{y}) - b(x_i - \bar{x}))$$

$$= \sum (\mathbf{x}_i - \bar{\mathbf{x}})(y_i - \bar{y}) - \sum b(x_i - \bar{x})^2$$
Prove it

By construction, OLS residuals are orthogonal to the predictor x. even if the true noise is related to x!

This is a problem: We need other ways to check for model specification: graphical analysis.

 $Cov(\varepsilon,x) = 0$ is an assumption of the model, $Cov(\varepsilon,x) = 0$ is always true for the OLS.

B (Now the serious) Multiple Regression Model: OLS Properties.

Know the difference between multiple and multivariate regression

Multiple: Several X variables to do a good job forecasting one Y variable

Multivariate: Forecasting several Y variables with the same several X variables

B1 OLS model in Matrix form

•
$$y_i = \beta_0 \mathbf{1} + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \epsilon_i$$
, $i = 1, 2, ..., T$
 $y_i = x_i' \beta + \epsilon_i$, $i = 1, 2, ..., T$

1: a vector of ones

Intercept:
$$x_{0i} = 1$$
, for $i = 1, 2,, T$

Stack the observations:
$$y_1 = x_1' \beta + \varepsilon_1$$

 $y_2 = x_2' \beta + \varepsilon_2$

 $y_T = x_T' \beta + \varepsilon_T$

• Linear model in Matrix notation:
$$Y = X + \epsilon$$

 $Tx1 + TxK + Kx1 + Tx1$

Intercept: is the first of the k+1 betas, corresponds to the first column of X, a column of ones.

X: T x K data matrix

ε: unobservable noise vector

• Residual vector: $\mathbf{e} = \mathbf{Y} - \mathbf{X} \mathbf{b} \neq \boldsymbol{\varepsilon}$! For a choice b for the unknown vector $\boldsymbol{\beta}$

• Sum of squares: now written as the inner product e'e = (y - xb)'(y - xb)

B2 OLS properties in matrix form, the HAT matrix, the M matrix

- Min e'e \Leftrightarrow Min $(Y X\beta)' (Y X\beta)$ $\min_{\beta} (Y'Y 2\beta' X' Y + \beta' X' X \beta)$
- Normal equation: $-2 X'Y + 2 X'X \beta = 0$ <- k x 1 vector of partial derivatives $\partial e'e/\partial \beta$

$$\hat{\beta}_{OLS} = (X'X)^{-1} X' Y$$
 [1]

Notation: we use **b** or $\hat{\beta}$ to denote the **estimator** of β

- Regression plane goes through the Data sample means: $\overline{Y} = \overline{x}' \hat{\beta}$ Prove it Look at the 1st row of Normal equation
- What is X'e at the OLS estimate? $X'e = (y x\beta) = 0$ Prove it. = xy x'x x'x
- X'X Sample Cross-product matrix of the K regressors (including the intercept)
 Need to invert X'X => X is kxk, it needs to be of full rank K
 None of the K variables can be written as a linear function of the others
 How many observations do we need? T > K

$$\frac{\partial^2 e'e}{\partial \beta \partial \beta'} = X'X$$
 must be positive definite matrix (like a

Fitted value is a projection of Y on the space of X: the P matrix: (aka the HAT matrix)

$$\hat{\mathbf{Y}} = X \hat{\beta} = X (X'X)^{-1} X' Y = \mathbf{P} \mathbf{Y}$$
 dim(P) = TxT

$$P = X(X'X)^{-1}X'$$

 $P = X(X'X)^{-1}X'$ P matrix projects The T dimensions of Y onto the space of X.

$$= X$$

= X ... we are already in X!

Symmetric: P = P'

Projecting twice: PP' = P'P = PP = P Idempotent, already in X!

• Residual $e = Y - X\hat{\beta}$ and the M matrix

$$\mathbf{e} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{Y} - \mathbf{PY} = (\mathbf{I} - \mathbf{P}) \mathbf{Y} = \mathbf{M} \mathbf{Y}$$

$$M = I - P$$

M matrix projects Y onto the space of residuals

M is symmetric, idempotent

Recall residuals are orthogonal to X, consistent with:

$$MX = (I - P) X = X - X = 0$$

$$MP = (I - P) P = 0$$

• $Y = \hat{Y} + e = PY + MY$

• ... The Variance decomposition It is just Pythagoras:

Y'Y =
$$(\widehat{Y} + e)'(\widehat{Y} + e) = \widehat{Y}'\widehat{Y} + e'e + 2 Y'M'PY = \widehat{Y}'\widehat{Y} + e'e$$

• $Y = \hat{Y} + e = PY + MY$

• ... The variance decomposition It is just Pythagoras:

Y'Y =
$$(\widehat{Y} + e)'(\widehat{Y} + e) = \widehat{Y}'\widehat{Y} + e'e + 2 Y'M'PY = \widehat{Y}'\widehat{Y} + e'e$$

Ωηατ δο ψου μεαν θυστηαγορασ, ψου δωεεβ ?!

B3 What is the purpose of the multiple regression?

 $\beta_{i} = (x_{i}^{T} X_{i}^{T})^{T} x_{i}^{T} Y$ $\beta_{i} = (x_{i}^{T} X_{i})^{T} X_{i}^{T} Y$

Multiple regression: $Y = X_1 \beta_1 + X_2 \beta_2 + \epsilon = X \beta + \epsilon$

• When X_1 and X_2 are not correlated, The estimates of β_1 , β_2 are equal to those from two separate regression Y on X_1 and Y on X_2 Prove it

 $\beta = (x'x)^{-1}x'Y = (\hat{x})$

• Heard on the street:

"If X_1 and X_2 are correlated it's a problem for the estimation of β_1 , β_2 because of multicollinearity"

• The purpose of the multiple regression **is exactly** to properly estimate β_1 and β_2 when X_1 , X_2 are correlated, by taking into account their correlation.

• Result: Y=XB+E, where $X=(X_1|X_E)$ B_E

When X_1 and X_2 are correlated, the estimate of β_2 is equal to the OLS estimate of the regression of not (Y on X_2), but of (the residual of Y on X1) on (the residual of X2 on X1)

 $Y \perp X_1$ No Proof $X_2 \perp X_1$

We only have a problem when X₁ and X₂ are extremely highly correlated.
 As their correlation increases, the variance of b₁ and b₂ increases.
 If X₁ and X₂ are perfectly correlated, β₁ and β₂ are not separately identifiable.

It's a silly situation easily avoided: Don't use quasi-perfectly correlated regressors!

 Warning: This "silly situation" is more likely to occur in situation with very large data sets and little subject matter knowledge, as mechanical non parametric models may use many Xs. y'y= ŷiŷ +e'e

XB = 9

B4. Variance decomposition, R-square and Adjusted R-square $\sqrt[3]{3}$

• The mean-centered variance decomposition (similar but different from P. 11, no proof)

 $(\mathbf{Y} - \mathbf{1}\bar{Y})'(\mathbf{Y} - \mathbf{1}\bar{Y}) = (\hat{Y} - \mathbf{1}\bar{Y})'(\hat{Y} - \mathbf{1}\bar{Y}) + e'e$ $\leq \mathbf{M} - \mathbf{M}$

SST Total Sum Squares

SSR Regression SS SSE SS Errors

• $R^2 = 1 - SSE / SST$ R² is a measure of *goodness of fit*.

Problem: R² increases automatically as X variables are added Why?

- 0<R²<1 only if regression has an intercept. R² is not as useful if there is no intercept. No proof
- Very minor improvement: $\overline{R}^2 = 1 \frac{SSE}{SST}$ Adjusted R^2

K increases as one adds X variables: the adjusted R² does not necessarily increase.

This penalty is very minor, one can show that: (no proof)

Adjusted \overline{R}^2 increases when adding a variable to the regression if its squared t-statistic is higher than 1

• R² is a good measure of fit for one given model, but we need better measures for model comparison! (such as Akaike or BIC, will see later)

C Statistical Properties of the OLS

- So far, we said <u>nothing</u> about the <u>statistical</u> properties of ε . .. We did not need to!
- Is $\hat{\beta}_{OLS}$ a good estimator?

Unbiased: Do we get the true β on average, in repeated samples if we use OLS?

Precise: How far is $\hat{\beta}_{OLS}$ from the true β ... on average, in repeated samples?

Is $\hat{\beta}_{OLS}$ best?

Distribution of $\hat{\beta}_{OLS}$?

Repeated sampling => different ε each time.

 \bullet To answer these questions, we must make assumptions about the statistical properties of the noise ϵ

C1. Assumptions of the Linear Model

• Already have:

- .. Linearity ! $y = X\beta + \varepsilon$, Y is linear in X
- .. Full rank

 Data matrix X has full column rank K None of the k variables is a linear combination of the others
- .. Exogenous X variables: $E(\varepsilon \mid X) = 0$ then $Cov(X, \varepsilon) = 0$, $E(g(X) \varepsilon) = 0$. As in LN9.
- Add: Homoskedastic and non correlated errors:

 $E(εε' | X) = σ^2 |_{T}$ generalizes the i.i.d sample from the mean estimation problem

- .. Often, one assumes X is non-stochastic. That is, the analysis is done "given X".
- .. $\varepsilon \sim N$? No need yet, let's bring it only when / if we need it.
- Rewrite the OLS estimator as a function of the true noise:

$$\hat{\beta}_{OLS} = (X'X)^{-1} X' Y = (X'X)^{-1} X' (X \beta + \varepsilon)$$

$$\hat{\beta}_{OLS} = \beta + (X'X)^{-1} X' \varepsilon$$

$$E[\hat{\beta}_{OLS}] = \beta + E[(X'X)^{-1} X' \varepsilon]$$
[1]

C2 Unbiasedness

LN 9 Assumptions of the model:
$$E(\varepsilon|X) = 0$$
 => $E(g(X) \varepsilon) = 0$ [2]

Then [2] =>
$$E(\hat{\beta}_{OLS}) = \beta + E[(X'X)^{-1}X' \epsilon]$$

= $\beta + 0$ = β [3]

- Questions:
 - 1. Did we need to know the distribution of ε ? \sqrt{C}
 - 2. What is the only assumption we needed?
 - 3. When would we not have : $E(\varepsilon) = 0$?
 - $E(\varepsilon) = 0$? Omitteel Some X2 $E(\varepsilon \mid X) = 0$? which is Correlated with X 4. When would we not have: {

C3 Variance of $\hat{\beta}_{OLS}$

•
$$V(\hat{\beta}_{OLS})$$
 = $E[(\hat{\beta}_{OLS} - E(\hat{\beta}_{OLS}))(\hat{\beta}_{OLS} - E(\hat{\beta}_{OLS}))']$
= $E[(\hat{\beta}_{OLS} - \beta)(\hat{\beta}_{OLS} - \beta)']$
= $E[(X'X)^{-1} X' \epsilon ((X'X)^{-1} X' \epsilon)']$
= $(X'X)^{-1} X' E(\epsilon \epsilon') X (X'X)^{-1}$

<- definition

<- unbiased $E(\hat{\beta}_{OLS}) = \beta$

use assumption [2] again

$$\beta_{ols} - \beta = (\chi \chi) \chi \mathcal{E}$$

$$\mathbf{E}(\mathbf{\epsilon}\mathbf{\epsilon}') = \sigma^2 \mathbf{I}_{\mathsf{T}} - (\delta^2, \mathcal{O})$$

New critical assumption: Noise is iid:

$$V(\hat{\beta}_{OLS}) = (X'X)^{-1} X' \sigma^2 I X (X'X)^{-1} = \sigma^2 (X'X)^{-1}$$

Intuition? Do it for one regressor

Note: This proof was " | X)", it can be generalized by iterated expectation. (No proof)

• Gauss-Markov result: $\widehat{\beta}_{OLS}$ is the Best Linear Unbiased Estimator (BLUE) of β Linear estimator? Here, linear refers to linear in the noises; i.e., of the form K ϵ No proof

C4. Distribution of $\hat{\beta}_{OLS}$

Recall:
$$\hat{\beta}_{OLS} = \beta + (X'X)^{-1} X' \epsilon = \beta + \begin{bmatrix} \vdots \\ \vdots \\ \xi \end{bmatrix}$$

 $\hat{\beta}_{OLS}$ is a linear combinations of ϵ , the weights are the Xs.

Two possibilities

- 1. ε normally distributed => $\hat{\beta}_{OLS}$ exactly normally distributed
- 2. Don't know ε 's distribution:

Large sample => $\hat{\beta}_{OLS}$ approximately normally distributed by CLT

$$V(\hat{\beta}_{ols}) = \underline{e}^{2}(XX)^{-1}$$

M is Symmetric

OLS has nothing to say about the estimation of $\sigma^2 = E(\epsilon^2)$

e'e = E'm'm E = E'm F

We now have the residual \underline{e} , an estimate of ϵ :

$$e = My = M(X\beta + \varepsilon) = M\varepsilon$$

Crazy question: if I know $e = M_{\varepsilon}$, why can't I back out the true ε from e? Answer?

$$tr(M) = tr(I_T - P) = T - tr(\frac{X}{X}(X'X)^{-1}X')$$

= T - tr(\(\frac{X}{X}X)^{-1}X'\frac{X}{X}\) = T - tr(I_K)
= T - K

 $E(e'e|X) = (T-k) \sigma^2$. An unbiased estimator of σ^2 is:

$$s^2 = \frac{e'e}{T - K}$$

s² is also called the MSE of the regression, if ε is normal we can show that (T-k)s²/ σ ² ~ χ ²(T-k)

Intuition: e'e is a sum of T squared normals but only T-k of them are independent. Proof later, in $\chi 2$ results, LN 11

C7 Remaining Issues

- Estimate of the variance of $\hat{\beta}_{OLS}$: $Var(\hat{\beta}_{OLS}) = s^2(X'X)^{-1}$
- Large Sample behavior of $\widehat{\beta}_{\mathit{OLS}}$ with random X

Requires X'X and X'y to be well behaved as the sample gets large, i.e.,:

$$\lim_{T \to \infty} \left(\frac{1}{T} X' X\right) = V(X) \qquad \qquad \lim_{T \to \infty} \left(\frac{1}{T} X' y\right) = Cov(X, y)$$

Then: $plim\hat{\beta} = plim\left(\frac{1}{T}X'X\right)^{-1}$ $plim\left(\frac{1}{T}X'y\right) = V(X)^{-1}$ Cov(X,y) $plim\left(\frac{1}{T}X'y\right) = V(X)^{-1}$ $plim\left(\frac{1}$

- Even If the noise ϵ is not normal, $\widehat{\beta}_{\textit{OLS}}$ is asymptotically normal by CLT with large sample.
- s^2 is a consistent estimator of σ^2 under reasonable circumstances