

2018 FAST CAMPUS

DATA SCIENCE SCHOOL PROJECT(1)

REGRESSION ANALYSIS TEAM: FORTUNTELLER

- 01. INTRODUCE
- 02. EDA
- 03. FEATURE SELECTION
- 04. OLS MODELING
- 05. CONCLUSION
- 06. 시계열 모형 (MOVING AVERAGE)
- 07. SUMMARY

1. Introduce

Walmart Recruiting II: Sales in Stormy Weather

Objective

Predict how sales of weather - sensitive products are affected by snow and rain

Data Set

- Weather: 2012.01.01 2014.10.31의 각 station날씨
- Key: Store와 Weather Station간의 관계 Mapping
- Train: 2012.01.01 2014.10.31의 각 Store, Item 별 Units Data (test날짜 제외)
- Test: 2013.04.01 이후 Weather Event가 발생한 전후 3일

1. Introduce (Continued)

Walmart Recruiting II: Sales in Stormy Weather

Rules

- 외부데이터 사용 금지
- Train data set에서 2013-04-01 이전 데이터를 Training data로 정의한다
- You do not need to forecast weather in addition to sales (it's as though you have a perfect weather forecast at your disposal)

Assumptions

- Weather event는 문제에서 정의한 Preciptotal > 1 inch, Snowfall > 2inch 를 따른다
- Target value "units"는 독립변수(들)의 선형조합이다

2. EDA (Exploratory data analysis)

DATA SCIENCE SCHOOL

2. EDA (Exploratory data analysis)

[1] 요일 별 유닛 총 판매량

[2] Store_nbr 1의 아이템별 공휴일/비공휴일 판매량

2. EDA (Exploratory data analysis)

Unit vs Date (Weather Event Highlighted)

Warning!: 85221 2012-03-19

177573 2012-10-13

2. EDA (Exploratory data analysis)

1번 스토어 9번 아이템 Pair Plot

2. EDA (Exploratory data analysis)

1번 스토어 9번 아이템 Correlation Plot

units	0.00	-0.00	-0.00		-0.00	0.00	-0.00	0.00		-0.00	-0.00	0.00	0.00	-0.00	0.00	0.00			1.00	0.88	0.32	0.38	-0.01	-0.02	0.01
log_units	-0.00	-0.00	-0.00		-0.00	0.00	0.00	-0.00		-0.00	0.00	0.00	-0.00	-0.00	0.00	0.00			0.88	1.00	0.30	0.36	-0.03	-0.06	0.04
weekday	0.00	-0.00	-0.00		0.00	0.00	0.00	0.00		0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00			0.32	0.30	1.00	0.79	-0.05	-0.17	0.17
weekend	-0.00	0.00	0.00		0.00	-0.00	-0.00	0.00		-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00			0.38	0.36	0.79	1.00	0.00	-0.11	0.18
holiday	0.00	-0.00	0.00		-0.00	-0.00	-0.00	0.00		-0.00	-0.00	0.00	-0.00	0.00	0.00	0.00			-0.01	-0.03	-0.05	0.00	1.00	0.83	0.54
weekday_holiday	0.00	0.00	0.00		-0.00	-0.00	0.00	0.00		0.00	-0.00	0.00	-0.00	0.00	0.00	0.00			-0.02	-0.06	-0.17	-0.11	0.83	1.00	-0.02
weekend_holiday	0.00	-0.00	0.00		-0.00	0.00	-0.00	-0.00		-0.00	-0.00	-0.00	0.00	-0.00	0.00	0.00			0.01	0.04	0.17	0.18	0.54	-0.02	1.00
	tmax	tmin	tavg	depart	dewpoint	wetbulb	heat	000	snowfall	preciptotal	stnpressure	sealevel	resultspeed	resultdir	avgspeed	event	store_nbr	item_nbr	nnits	log_units	weekday	weekend	holiday	day_holiday	end_holiday
3 FFATI	IRF	SF	I FO	TI	\bigcirc N						•		_											weekc	weeke

- 각 Store_nbr, Item_nbr별로 나누어 Modeling해야 한다.
- Weather와 log_units(또는 units)는 큰 상관관계가 없어 보인다.
- Weekday와 Holiday가 log_units(또는 units)와 약간의 상관관계가 있어 보인다.(Item_nbr에 따라 다름)

4. OLS MODELING (Trial & Error)

Trial Test

Trial 1. 2등(뒤에서)

 $\begin{aligned} \log_{\text{units}} &\sim \text{C(store_nbr)} + \text{C(item_nbr)} + \text{C(weekday)} + \text{C(holiday)} \\ &+ \text{C(event)} + 0 \end{aligned}$

Trial 2. 485명중 350등

C(store_nbr):C(item_nbr) + C(weekday) + C(holiday) + C(event) + 0

Trial 2-1

C(store_nbr):C(item_nbr) + C(weekday) + C(holiday) + snowfall + preciptotal + 0

4. OLS MODELING (Trial & Error)

Trial Test

log_units ~ C(station_nbr):C(store_nbr):C(item_nbr) + C(weekday) + C(holiday) + C(event) + 0

Memory Error 발생 Station nbr별로 나눠서 OLS실행

Trial4.

 $log_units \sim C(store_nbr):C(item_nbr) + C(weekday) + C(holiday) + C(event) + 0$

Trial5.

log_units ~ C(store_nbr):C(item_nbr) + C(weekday) + C(holiday) + snowfall + preciptotal + 0

Store_nbr별로 나눠서 OLS Event 제외 결과 좋지 않음

4. OLS MODELING (Final)

Final Model Result

5. CONCLUSION

- 각 요일, Item_nbr별 Units의 평균치를 구하는 모델
- 잔차가 Non-normal함
 - 요인)
 - 1) Units에 영향을 주는 알 수 없는 Feature들이(Disturbance)충분히 많지 않아 정규분포로 수렴하지 못함
 - 2) 잔차끼리 독립이 아님(선형 회귀 모형이 아닌 시계열 모형을 사용해야하는 결론)

6. 시계열 모형 (MOVING AVERAGE)

			144			
96	▲ 6	35957	•••	0.10521	26	Зу
97	▲ 13	anaef	<u></u>	0.10530	7	Зу
98	4	Victor Mayrink		0.10553	37	3у
99	^ 1	TheAnalyticProphet	•	0.10570	23	Зу
100	4 3	99247	9	0.10586	11	Зу

• 1번 Store의 51번 Item의 MA을 이용한 Fit 그래프.

7. SUMMERY

- 종속변수 Units는 독립변수 Store_nbr, Item_nbr, Weekday, Holiday, Event의 선형조합으로 결정되는 기대 값과 고정된 분산을 가지는 정규분포를 따른다 라고 가정하였다.
- 각 스토어의 아이템별 Units vs. Date 플롯은 판매량이 Random함을 알 수 있었다.
- 그 Random함이 Weekday, Holiday, Event에 영향을 받은 것인지 알아보기 위해 다수의 OLS를 시행하였다.
- Holiday와 Event의 영향력이 없다고 판단하고, Item_nbr와 Weekday의 Interaction을 모수로 사용하는 OLS를 최종 모델로 채택하였다.
- 최종 모델에서 잔차의 분포가 정규분포를 따르지 않음을 확인하였다.
- 각 스토어의 아이템별 잔차가 정규분포를 따르지 않음을 확인하였고 그 이유는 잔차 간의 독립이 성립되지 않기 때문이라고 생각한다.
- 잔차 간 독립이 성립하지 않음은 종속변수 간의 관계가 있음을 나타내고 따라서 시계열 모형 (이동평균선)을 이용하여 y_hat값을 재 추정해 보았다.
- 회귀모형보다 좋은 결과값을 확인하였다.

