

Sinhgad Technical Educational Society's SINHGAD COLLEGE OF ENGINEERING VADGAON PUNE-41

Department of Electronics & Telecommunication

Experiment No (01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Subject: - Mobile Co	mputing	
Name of the Student	: Manas Prashant Patil	_Roll No. 4 º 4 B º 4
Date:	Marks & Signature: -	

TLE:

implement a basic function of Code Division Multiple Access (CDMA) to test the orthogonally & tocorrelation of a code to be used for CDMA operation.

Subject Teacher

M:
ssic function of Code Division Multiple Access (CDMA)

BJECTIVES:

understand function of CDMA used to testorthogonally and autocorrelation of a code

FIWARE & HARDWARE REQUIREMENTS:

OS.: Unix or windows 7/8/10,

Processor: i3/i5/i7

oftware: Python (Jupyter Notebook) or java

THEORY-CONCEPT

CDMA stands for Code Division Multiple Access. It is a digital cellular standard that utilizes spread It Spectrum Technology. It spreads the signal over a fully available spectrum or over multiple channel, et through division. It is a channelization protocol for Multiple Access, where information can be se_{Tl} in simultaneously through several transmitters over a single communication channel.

It is achieved in below steps: A signal is generated which extends over a wide bandwidth. The code which performs this action is called spreading code. Later, a specific signal can be selected with a given code even in the presence of many other signals. It is mainly used in mobile networks like 2G and 3G. is a more secure and private line. It has good voice and data communication capabilities.

Procedure or Working

The station encodes its data bit as follows.

If bit = 0 then -1If bit = 1 then +1

no signal (interpreted as 0) if station is idle 2. Each station is allocated a different orthogonal sequence (code) which is N bit long for N stations

- Each station does a scalar multiplication of its encoded data bit and code sequence.
- The resulting sequence is then stored on the channel.
- 5. Since the channel is common, amplitudes add up and hence resultant channel sequence is the sum of sequences from all channels.
- 6. If station 1 wants to listen to station 2, it multiplies (inner product) the channel sequence with code of
- The inner product is then divided by N to get data bit transmitted from station 2.

How does CDMA work?

To see how CDMA works, we must understand orthogonal sequences (also known as chips).

Let N be the number of stations establishing multiple access over a common channel.

Then the properties of orthogonal sequences can be stated as follows:

An orthogonal sequence can be thought of as a 1xN matrix.

Eg: [+1 -1 +1 -1] for N = 4.

Scalar multiplication and matrix addition rules follow as usual.

Eg: 3.[+1-1+1-1] = [+3-3+3-3]

Eg: [+1 -1 +1 -1] + [-1 -1 -1 -1] = [0 -2 0 -2]

Inner Product: It is evaluated by multiplying two sequences element by element and then adding all elements of the resulting list. Inner Product of a sequence with itself is equal to N [+1 -1 +1 -1].[+1 -1 +1 -1] = 1 + 1 + 1 + 1 = 4 Inner Product of two distinct sequences is zero [+1-1+1-1].[+1+1+1+1] = 1-1+1-1 = 0 Code: import numpy as np c1=[1,1,1,1] c2=[1,-1,1,-1] c3=[1,1,-1,-1] c4=[1,-1,-1,1] rc=[] print("Enter the data bits:") d1=int(input("Enter D1:")) d2=int(input("Enter D2:")) d3=int(input("Enter D3:")) d4=int(input("Enter D4:")) r1=np.multiply(c1,d1) r2=np.multiply(c2,d2) r3=np.multiply(c3,d3) r4=np.multiply(c4,d4) resultant_channel=r1+r2+r3+r4; print("Resultant Channel",resultant_channel) Channel=int(input("Enter the station to listen for C1=1, C2=2, C3=3 C4=4:")) if Channel==1: rc=c1 elif Channel==2: rc=c2 elif Channel==3: rc=c3elif Channel==4: rc=c4inner_product=np.multiply(resultant_channel,rc) print("Inner Product",inner_product) res1=sum(inner_product) data=res1/len(inner_product) print("Data bit that was sent",data) CONCLUSION: no cased successfully demonstrating orthogonality d Jaccess cades for multiple effectively transmitted data bits over a commo efficiency of CDMA in maintaining priva

communication.

	QUESTIONS	S:							
1.	data c	(1) 0 -1 0 -1 0 -1 0 -1	that ahion som	gone ghe	nsur	is to	ficien	medit	a strange
	· Collissi	on	avel-	dance	e De	rices + de	avoi	mupt	smitting ion
	fairnes	t d	Ensi	with	all d	evile	have	17 510	cred by
	- efficie	ency	, · No	eximi	zes c	hanne	on tim	zation	tomen
	Common access of etherne multiple	oth of	coll eno	ntoco	de le de le collài	chion crips	CONT CONT A/CA Lolda	(car	e multip used in ner sens
2.				AUTO-SUT		1CDMA2)	(Code	DMA- division
Re	source Sharing	mull free	iple!	access y band) mel	tiple a	ccess).	ENFIRE	frequent
0	de	H	t Rec	quired	Mo	t Requ	ired	each	used for
5)	nebroniza fino	Hol	Requ	ired	Requ	ited for	γ	Hot n	equired
-	Date Rate	100	ser		Tea	ium r		Highe	r 'r
	Marks (Out of 20)					Signat	ure of Faculty	with Date	
		MR (6)	MP (6)	MU (8)	Total (20)	8 0/1	124		
		MP M	who for Day	rularity MP	Manhy for Day	entation MI	Mout for I	James Para	