(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 22224

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Solve any <u>FIVE</u> of the following:	10
	a)	If $f(x) = x^3 - 5x^2 - 4x + 20$ show that $f(0) = -2f(3)$	02
	Ans	$f(x) = x^3 - 5x^2 - 4x + 20$	
		$\therefore f(0) = (0)^3 - 5(0)^2 - 4(0) + 20 = 20$	1/2
		$\therefore f(3) = (3)^3 - 5(3)^2 - 4(3) + 20$	1/2
		=-10	
		$\therefore -2f(3) = -2 \times -10 = 20 = f(0)$	1
	b)	State whether the function $f(x) = x^3 - 3x + \sin x + x \cos x$, is odd or even.	02
	Ans	$f(x) = x^3 - 3x + \sin x + x \cos x$	
		$\therefore f(-x) = (-x)^3 - 3(-x) + \sin(-x) + (-x)\cos(-x)$	1/2
		$= -x^3 + 3x - \sin x - x \cos x$	1/2
		$= -\left(x^3 - 3x + \sin x + x \cos x\right)$	1/2
		=-f(x)	
		∴ Given function is odd.	1/2
	c)	If $y = \sin x \cdot \cos 2x$, find $\frac{dy}{dx}$	02
	Ans	$y = \sin x \cdot \cos 2x$	

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION
Model Answer

Subject Code:

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c)	$\therefore \frac{dy}{dx} = \sin x (-\sin 2x) \times 2 + \cos 2x \cos x$ $= -2\sin x \sin 2x + \cos 2x \cos x$	02
	d)	Evaluate: $\int \cos^2 x dx$	02
	Ans	$\int \cos^2 x dx = \int \frac{1 + \cos 2x}{2} dx$	1
		$=\frac{1}{2}\int (1+\cos 2x)dx$	
		$=\frac{1}{2}\left(x+\frac{\sin 2x}{2}\right)+c$	1
	e)	Evaluate: $\int \frac{1}{3x+5} dx$	02
	Ans	$\int \frac{1}{3x+5} dx$	
		$=\frac{1}{3}\log(3x+5)+c$	02
	f)	Find the area between the line $y = 2x$, x -axis and ordinates $x = 1$ to $x = 3$.	02
	Ans	Area $A = \int_{a}^{b} y \ dx$	
		$=\int_{1}^{3}2xdx$	1/2
		$=2\left[\frac{x^2}{2}\right]_1^3 \qquad \text{or} \left[x^2\right]_1^3$	1/2
		$=2\left[\frac{9}{2}-\frac{1}{2}\right] \qquad \text{or} \left[3^2-1^2\right]$	1/2
		=8	1/2
	g)	Find approximate root of the equation $x^2 + x - 3 = 0$ in (1,2) by using Bisection method. (Use two iterations)	02

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 22224

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	g)Ans	$Let f(x) = x^2 + x - 3$	
	8)	f(1) = -1	
		f(2) = 3	
		$\therefore \text{ the root is in } (1,2)$	1/2
		$x_1 = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$	1/2
			1/2
		f(1.5) = 0.75 > 0	
		$x_2 = \frac{x_1 + a}{2} = \frac{1.5 + 1}{2} = 1.25$	1/2
		OR	
		Let $f(x) = x^2 + x - 3$	1/2
		f(1) = -1, f(2) = 3 : the root is in $(1,2)$	
		Itomotion	
		Iteration a b $x = \frac{a+b}{2}$ $f(x)$	
		I 1 2 1.5 0.75	11/2
		II 1 1.5 1.25	
2.		Solve any <u>THREE</u> of the following:	12
	a)	Find $\frac{dy}{dx}$ if $x^3 + xy^2 = y^3 + yx^2$	04
	Ans	dx $x^3 + xy^2 = y^3 + yx^2$	04
		$x(x^2 + y^2) = y(y^2 + x^2)$	1
		x = y	1
		$\frac{dy}{dx} = 1$	1
		$\frac{dx}{OR}$	2
		$x^3 + xy^2 = y^3 + yx^2$	
		$3x^{2} + 2xy\frac{dy}{dx} + y^{2} = 3y^{2}\frac{dy}{dx} + 2xy + x^{2}\frac{dy}{dx}$	2
		$\frac{dy}{dx}(2xy-3y^2-x^2) = 2xy-3x^2-y^2$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Q.	Sub	A.m. e	Marking
No.	Q. N.	Answers	Scheme
2.	a)	$\frac{dy}{dx} = \frac{2xy - 3x^2 - y^2}{2xy - 3y^2 - x^2}$	1
	b)	Find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$ if $x = a\cos^3\theta$, $y = b\sin^3\theta$	04
	Ans	$x = a\cos^3\theta$	
		$\therefore \frac{dx}{d\theta} = 3a\cos^2\theta\left(-\sin\theta\right)$	1
		$=-3a\cos^2\theta\sin\theta$	
		$y = b \sin^3 \theta$	
		$\therefore \frac{dy}{d\theta} = 3b\sin^2\theta\cos\theta$	1
		$=3b\sin^2\theta\cos\theta$	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$	
		$\frac{1}{dx} = \frac{1}{\frac{dx}{dx}}$	
		$a\theta$ $3b\sin^2\theta\cos\theta$	
		$-\frac{1}{-3a\cos^2\theta\sin\theta}$	1
		$=-\frac{b}{a}\tan\theta$	
		at $\theta = \frac{\pi}{1}$	
		4	
		$\frac{dy}{dx} = -\frac{b}{a} \tan \frac{\pi}{4}$	
		$=-\frac{b}{a}$	1
		a	
	c)	A manufacture can sell x items per week at price $(23-0.001x)$ rupees each. It cost	04
		(5x+2000) rupees to produce x items Find the number items to be produced eper week	
		for maximum profit.	
	Ans	Let number of item be x	
		Selling price = $(23-0.001x)x$	
		$=23x-0.001x^2$	1/2

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics Model Answer

No. Q.N. Cost price = $(5x + 2000)$ profit = selling price - cost price $\therefore p = 23x - 0.001x^2 - (5x + 2000)$ $= 23x - 0.001x^2 - 5x - 2000$ $= 18x - 0.002x$ $\frac{d^2}{dx} = 18 - 0.002x$ $\frac{d^2p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ Ans d) Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx} = e^x$ $\frac{d^2y}{dx} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dy} = e^0 - 1$	Marking
profit = selling price - cost price $\therefore p = 23x - 0.001x^2 - (5x + 2000)$ $= 23x - 0.001x^2 - 5x - 2000$ $= 18x - 0.002x$ $\frac{dp}{dx} = 18 - 0.002x$ $\frac{d^2p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{d}{dx} = \frac{18}{0.002} = 9000$ d) Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{d^2y}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	Scheme
profit = selling price - cost price $\therefore p = 23x - 0.001x^2 - (5x + 2000)$ $= 23x - 0.001x^2 - 5x - 2000$ $= 18x - 0.001x^2 - 2000$ $\frac{dp}{dx} = 18 - 0.002x$ $\frac{d^2p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{d}{dx} = e^x$ $\frac{d^2y}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$	
$\therefore p = 23x - 0.001x^2 - (5x + 2000)$ $= 23x - 0.001x^2 - 5x - 2000$ $= 18x - 0.001x^2 - 2000$ $\frac{dp}{dx} = 18 - 0.002x$ $\frac{d^2p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{d}{dx} = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$	
$= 23x - 0.001x^{2} - 5x - 2000$ $= 18x - 0.001x^{2} - 2000$ $\frac{dp}{dx} = 18 - 0.002x$ $\frac{d^{2}p}{dx^{2}} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{dy}{dx} = e^{x}$ $\frac{dy}{dx} = e^{x}$ $\frac{d^{2}y}{dx^{2}} = e^{x}$ $\frac{d^{2}y}{dx^{2}} = e^{x}$ $\frac{dy}{dx} = e^{x}$ $\frac{d^{2}y}{dx^{2}} = e^{x}$ $\frac{dy}{dx} = e^{x} - 1$	1/2
$\frac{dp}{dx} = 18 - 0.001x^2 - 2000$ $\frac{dp}{dx} = 18 - 0.002x$ $\frac{d^2p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{dy}{dx} = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$	
$\frac{d^{2}p}{dx} = 18 - 0.002x$ $\frac{d^{2}p}{dx^{2}} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{dy}{dx} = e^{x}$ $\frac{dy}{dx} = e^{x}$ $\frac{d^{2}y}{dx^{2}} = e^{x}$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dy} = e^{0} - 1$	1./
$\frac{d^2 p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{d}{dx} = e^x$ Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2 y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dy} = e^0 - 1$	1/2
$\frac{d^2 p}{dx^2} = -0.002$ $\therefore \text{ profit is maximum}$ Let $18 - 0.002x = 0$ $x = \frac{18}{0.002} = 9000$ $\frac{d}{dx} = e^x$ Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2 y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dy} = e^0 - 1$	1/2
∴ profit is maximum Let $18-0.002x = 0$ $x = \frac{18}{0.002} = 9000$ Thing the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis ∴ $x = 0$ $\frac{dy}{dy} = e^0 - 1$	1/2
Let $18-0.002x = 0$ $x = \frac{18}{0.002} = 9000$ d) Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	
$x = \frac{18}{0.002} = 9000$ Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	
d) Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. Ans $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$	1/
d) Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. Ans $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	1/2
d) Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the Y-axis. Ans $y = e^x$ $\frac{dy}{dx} = e^x$ $\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	1
Ans $\begin{aligned} y &= e^x \\ \frac{dy}{dx} &= e^x \\ \frac{d^2y}{dx^2} &= e^x \\ \text{curve crosses Y-axis } \therefore x = 0 \\ \frac{dy}{dx} &= e^0 - 1 \end{aligned}$	1
Ans $\begin{aligned} y &= e^x \\ \frac{dy}{dx} &= e^x \\ \frac{d^2y}{dx^2} &= e^x \\ \text{curve crosses Y-axis } \therefore x = 0 \\ \frac{dy}{dx} &= e^0 - 1 \end{aligned}$	
Alls $ \frac{dy}{dx} = e^{x} $ $ \frac{d^{2}y}{dx^{2}} = e^{x} $ curve crosses Y-axis $\therefore x = 0$ $ \frac{dy}{dx} = e^{0} - 1 $	04
$\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	1
$\frac{d^2y}{dx^2} = e^x$ curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	1
curve crosses Y-axis $\therefore x = 0$ $\frac{dy}{dx} = e^0 - 1$	1
$\frac{dy}{dy} = e^0 = 1$	1
$\frac{dy}{dx} = e^0 = 1$	
$\frac{dx}{dx}$	1/2
$d^{-}V$	
$\frac{dy}{dx^2} = e^0 = 1$	1/2
$\frac{d^{2}y}{dx^{2}} = e^{0} = 1$ $\rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}$ $= \frac{\left(1 + 1^{2}\right)^{\frac{3}{2}}}{1} = 2^{\frac{3}{2}} = 2.828$	
$\left(\begin{array}{c} 1+\left(\frac{z}{dx}\right)\end{array}\right)$	
$\rho = \frac{1}{d^2 y}$	
dx^2	
$(1+1^2)^{\frac{3}{2}}$ $3^{\frac{3}{2}}$ $3^{\frac{3}{2}}$ $3^{\frac{3}{2}}$	1
$=\frac{1}{1}$ = 2 ² = 2.828	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.		Solve any <u>THREE</u> of the following	12
	a)	Find equation of tangent and normal to the curve $2x^2 - xy + 3y^2 = 18$ at (3,1)	04
	Ans	$2x^2 - xy + 3y^2 = 18$	
		$\therefore 4x - \left(x\frac{dy}{dx} + y.1\right) + 6y\frac{dy}{dx} = 0$	1
		$\therefore 4x - x\frac{dy}{dx} - y + 6y\frac{dy}{dx} = 0$	
		$\therefore (6y - x) \frac{dy}{dx} = y - 4x$	1/2
		$\therefore \frac{dy}{dx} = \frac{y - 4x}{6y - x}$	1/2
		at (3,1)	
		$\therefore \frac{dy}{dx} = \frac{1 - 4(3)}{6(1) - 3}$	
		$\therefore \frac{dy}{dx} = \frac{-11}{3}$	
		$\therefore \text{ slope of tangent }, m = \frac{-11}{3}$	1/2
		Equation of tangent at $(3,1)$ is	
		$y-1=\frac{-11}{3}(x-3)$	
		$\therefore 3y - 3 = -11x + 33$	1/2
		$\therefore 11x + 3y - 36 = 0$	1/2
		∴ slope of normal, $m' = \frac{-1}{m} = \frac{3}{11}$	72
		Equation of normal at $(3,1)$ is	
		$y-1=\frac{3}{11}(x-3)$	
		$\therefore 11y - 11 = 3x - 9$	1/
		$\therefore 3x - 11y + 2 = 0$	1/2
	b)	Differentiate with respect to x : $x^x + 5^x + x^5 + 5^5$	04

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Code: 22224 **Model Answer Subject Name: Applied Mathematics**

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	b)Ans	$y = x^x + 5^x + x^5 + 5^5$	
	- /		1/2
		Let $u = x^x$, , ,
		$\log u = \log x^x$	1
		$\log u = x \log x$	1
		$\frac{1}{u}\frac{du}{dx} = x.\frac{1}{x} + \log x.1$	
			1/2
		$\frac{du}{dx} = u\left(1 + \log x\right) = x^{x}\left(1 + \log x\right)$	
		$\therefore \frac{dy}{dx} = x^x \left(1 + \log x \right) + 5^x \log 5 + 5x^4$	2
	c)	If $x^3 ext{.} y^2 = (x+y)^5$, show that $\frac{dy}{dx} = \frac{y}{x}$	04
	Ans	$x^3 \cdot y^2 = \left(x + y\right)^5$	
		$\log\left(x^3.y^2\right) = \log\left(x+y\right)^5$	1/2
		$\log x^3 + \log y^2 = 5\log(x+y)$	1/2
		$3\log x + 2\log y = 5\log(x+y)$	1/2
		$3\frac{1}{x} + 2\frac{1}{y}\frac{dy}{dx} = 5\frac{1}{x+y}\left(1 + \frac{dy}{dx}\right)$	1
		$\frac{3}{x} + \frac{2}{y} \frac{dy}{dx} = \frac{5}{x+y} + \frac{5}{x+y} \frac{dy}{dx}$	
		x y dx x + y x + y dx	
		$\frac{2}{3} \frac{dy}{dy} - \frac{5}{3} \frac{dy}{dy} = \frac{5}{3} - \frac{3}{3}$	
		y dx x + y dx x + y x	
		$\frac{dy}{dx}\left(\frac{2}{y} - \frac{5}{x+y}\right) = \frac{5x - 3x - 3y}{x(x+y)}$	
		$\frac{dy}{dx} \left(\frac{2x+2y-5y}{y(x+y)} \right) = \frac{5x-3x-3y}{x(x+y)}$	1/2
		$\frac{dy}{dx} \left(\frac{2x - 3y}{y} \right) = \frac{2x - 3y}{x}$	
		$\frac{dy}{dx} = \frac{y}{x}$	1

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Code: 22224 **Subject Name: Applied Mathematics Model Answer**

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	Evaluate: $\int \frac{e^x (x+1)}{\sin^2 (xe^x)} dx.$	04
	Ans	$\int \frac{e^x(x+1)}{\sin^2(xe^x)} dx$	
		$put xe^x = t$	
		$(xe^{x} + e^{x}.1)dx = dt$ $e^{x}(x+1)dx = dt$	2
			2
		$=\int \frac{dt}{\sin^2 t}$	1/2
		$= \int \cos ec^2 t dt$ $= -\cot t + c$	1
		$=-\cot\left(xe^{x}\right)+c$	1/2
			0.4
4		Solve any <u>THREE</u> of the following:	04
	a)	Evaluate: $\int \frac{x-3}{x^3 - 3x^2 - 16x + 48} dx$	
		$\int \frac{x-3}{x^3 - 3x^2 - 16x + 48} dx$	
		$=\int \frac{x-3}{(x-3)(x-4)(x+4)} dx$	1/2
		$=\int \frac{dx}{(x-4)(x+4)}$	
		Consider $\frac{1}{(x-4)(x+4)} = \frac{A}{x-4} + \frac{B}{x+4}$	1/2
		1 = A(x+4) + B(x-4)	
		put $x = 4$ $A = \frac{1}{8}$,	1/2
		put $x = -4$ $B = -\frac{1}{8}$	1/2
	<u> </u>		1

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION Model Answer

Subject Code:

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a)	$ \therefore \int \frac{dx}{(x-4)(x+4)} $ $ = \int \left(\frac{\frac{1}{8}}{x-4} + \frac{-\frac{1}{8}}{x+4}\right) dx $	
		$= \frac{1}{8} \left(\log \left(x - 4 \right) - \log \left(x + 4 \right) \right) + c$	2
	b)	Evaluate: $\int \frac{1}{2 + 3\cos x} dx$	04
	Ans	$\int \frac{1}{2+3\cos x} dx$	
		Put $\tan \frac{x}{2} = t$ $\cos x = \frac{1 - t^2}{1 + t^2}$, $dx = \frac{2dt}{1 + t^2}$	1
		$\therefore \int \frac{dx}{2 + 3\cos x} = \int \frac{1}{2 + 3\left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{2dt}{1 + t^2}$	
		$=2\int \frac{1}{5-t^2} dt$	1
		$=2\int \frac{1}{\left(\sqrt{5}\right)^2-t^2}dt$	1/2
		$=2\times\frac{1}{2\sqrt{5}}\log\left(\frac{\sqrt{5}+t}{\sqrt{5}-t}\right)+c$	1
		$= \frac{1}{\sqrt{5}} \log \left(\frac{\sqrt{5} + \tan \frac{x}{2}}{\sqrt{5} - \tan \frac{x}{2}} \right) + c$	1/2
	c)	Evalute: $\int e^x \cdot \sin 4x dx$	04
	Ans	$\int e^x \cdot \sin 4x dx$	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Code: 2224 **Subject Name: Applied Mathematics Model Answer**

_			
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	c)	$= \sin 4x \int e^x dx - \int \left(\int e^x dx \frac{d}{dx} \sin 4x \right) dx$	1 1/2
		$= \sin 4x e^x - \int \cos 4x \cdot 4 \cdot e^x dx$	72
		$= \sin 4xe^{x} - 4\left[\cos 4x \int e^{x} dx - \int \left(\int e^{x} dx \cdot \frac{d}{dx} \cos 4x\right) dx\right]$	1
		$= \sin 4xe^{x} - 4\left[\cos 4xe^{x} - \int \left(-\sin 4x \cdot 4 \cdot e^{x}\right)dx\right]$	1/2
		$= \sin 4xe^x - 4\left[\cos 4xe^x + 4\int \sin 4x \cdot e^x dx\right]$	
		$= \sin 4xe^{x} - 4\cos 4xe^{x} - 16I$ $I + 16I = \sin 4xe^{x} - 4\cos 4xe^{x}$	
		$17I = \sin 4xe^x - 4\cos 4xe^x$	1/2
		$I = \frac{1}{17} \left(\sin 4x e^x - 4\cos 4x e^x \right)$	1/2
	d) Ans	Evaluate: $\int \frac{e^x}{\left(e^x - 1\right)\left(e^x + 1\right)} dx$	04
	7 1113	$\int \frac{e^x}{\left(e^x-1\right)\left(e^x+1\right)} dx$	
		$put e^x = t$ $e^x dx = dt$	1
		$\int \frac{e^x}{\left(e^x - 1\right)\left(e^x + 1\right)} dx = \int \frac{dt}{\left(t - 1\right)\left(t + 1\right)}$	1
		consider $\frac{1}{(t-1)(t+1)} = \frac{A}{t-1} + \frac{B}{t+1}$	1/2
		1 = A(t+1) + B(t-1)	1/
		put $t = 1, A = \frac{1}{2}$	1/2
		put $t = -1, B = -\frac{1}{2}$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Subject Code:

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	d)	$\frac{1}{(t-1)(t+1)} = \frac{\frac{1}{2}}{t-1} + \frac{-\frac{1}{2}}{t+1}$	
		$\int \frac{dt}{(t-1)(t+1)} = \int \left(\frac{\frac{1}{2}}{t-1} + \frac{-\frac{1}{2}}{t+1}\right) dt$	
		$= \frac{1}{2} \log(t-1) - \frac{1}{2} \log(t+1) + c$	1
		$= \frac{1}{2} \log(e^x - 1) - \frac{1}{2} \log(e^x + 1) + c$	1/2
	e)	Evaluate : $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$	04
	Ans	$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$	
		$= \int_0^{\frac{\pi}{2}} \frac{1}{1 + \frac{\sqrt{\sin x}}{\sqrt{\cos x}}} dx$	1/2
		$I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx $	
		by property $ \therefore I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - x\right)} + \sqrt{\sin\left(\frac{\pi}{2} - x\right)}} dx $	1
		$= \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx (2)$	1
		add (1) and (2)	
		$2I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	1/2

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Applied Mathematics Model Answer Subject Code: 22224

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e)	$2I = \int_0^{\frac{\pi}{2}} 1dx$	
		$\therefore 2I = \left[x\right]_0^{\frac{\pi}{2}}$ $= \frac{\pi}{2} - 0$	1/2
		$=\frac{\pi}{2}-0$	1/2
		$I = \frac{\pi}{4}$ OR	
		$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx (1)$	
		by property $\frac{\pi}{2}$	
		$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}} dx$	1
		$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\cot x}} dx$	1
		$\therefore I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\frac{1}{\tan x}}} dx$	1/2
		$= \int_0^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + 1} dx (2)$	
		add (1) and (2)	
		$2I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\tan x} + 1}{\sqrt{\tan x} + 1} dx$	1/2
		$2I = \int_0^{\frac{\pi}{2}} 1dx$	1/2
		$\therefore 2I = \left[x\right]_0^{\frac{\pi}{2}}$	/2
		$=\frac{\pi}{2}-0$	
		$I = \frac{\pi}{4}$	1/2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION Model Answer

Q. No.	Sub Q.N.	Answers	Marking Scheme
5.		Solve any <u>TWO</u> of the following:	12
	a)	Find the area bounded by two parabolas $y^2 = 2x$ and $x^2 = 2y$.	06
	Ans	$y^2 = 2x \text{ and } x^2 = 2y$	
		$put y = \frac{x^2}{2} in y^2 = 2x$	
		$\left(\frac{x^2}{2}\right)^2 = 2x$	
		$x^4 - 8x = 0$	
		$x\left(x^3-2^3\right)=0$	2
		$x = 0, x = 2$ $Let y_1 = \sqrt{2x},$	
		$y_2 = \frac{x^2}{2}$	
		$y_2 = \frac{1}{2}$	
		$Area = \int_{a}^{b} (y_2 - y_1) dx$	
		$=\int_{0}^{2} \left(\frac{x^2}{2} - \sqrt{2x}\right) dx$	1
		$= \int_{0}^{2} \left(\frac{x^{2}}{2} - \sqrt{2}x^{\frac{1}{2}} \right) dx$	
		$= \left[\frac{x^3}{6} - \frac{\sqrt{2}x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^2$	1
		$=\frac{2^3}{6} - \frac{2}{3} \times \sqrt{2} \times 2^{\frac{3}{2}} - 0$	1
		$=\frac{4}{3}=1.333$	1
5.		Solve the following:	06
	b) (i)	Form the differential equation from the relation, $y = A.e^x + B.e^{-x}$	03

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION Model Answer

Subject Code:

Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	Ans	$y = A.e^{x} + B.e^{-x}$ $\therefore \frac{dy}{dx} = A.e^{x} - B.e^{-x}$	1
		$\therefore \frac{d^2 y}{dx^2} = A \cdot e^x + B \cdot e^{-x}$ $\therefore \frac{d^2 y}{dx^2} = y$	1
		$\frac{dx^2}{dx^2} - y = 0$	1
	(ii)	Solve $\frac{dy}{dx} + y \cot x = \cos ecx$	03
	Ans	$\frac{dy}{dx} + y \cot x = \cos ecx$	
		$\therefore \text{ Comparing with } \frac{dy}{dx} + Py = Q$ $P = \cot x , Q = \cos ecx$	
		Integrating factor $IF = e^{\int \cot x dx}$ = $e^{\log(\sin x)}$	
		$= \sin x$ $\therefore y.IF = \int Q.IFdx + c$	1
		$\therefore y \sin x = \int \cos e c x \cdot \sin x dx$	1
		$\therefore y \sin x = \int 1 dx$ $\therefore y \sin x = x + c$	1
	c)	The velocity of a particle is given by $\frac{dx}{dt} = 3t^2 - 6t + 8$. Find distance covered in 2 seconds given that $x = 0$ at $t = 0$	06
	Ans	$\frac{dx}{dt} = 3t^2 - 6t + 8$	
		$\therefore dx = (3t^2 - 6t + 8)dt$ $\therefore \int dx = \int (3t^2 - 6t + 8)dt$	1
		$\therefore \int dx = \int (3t^2 - 6t + 8) dt$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Code: 2224 **Model Answer**

			224
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	c)	$\therefore x = \frac{3t^3}{3} - \frac{6t^2}{2} + 8t + c$	2
		$\therefore x = t^3 - 3t^2 + 8t + c$	
		given that $x = 0$ at $t = 0$	1
		$\therefore c = 0$ $\therefore x = t^3 - 3t^2 + 8t$	
		$\therefore x = t^{2} - 3t^{2} + 8t$ Distance covered in 2 sec,	1
		$\therefore x = (2)^3 - 3(2)^2 + 8(2)$	1
		$\therefore x = 12$	1
6.		Solve any <u>TWO</u> of the following:	12
	0)(;)	Solve the following system of equations by Jacobi-Iteration method	03
	a)(i)	(Two iterations)	
		15x + 2y + z = 18,	
		2x + 20y - 3z = 19,	
		3x - 6y + 25z = 22	
	Ans	15x + 2y + z = 18,	
		2x + 20y - 3z = 19 ,	
		3x - 6y + 25z = 22	
		$x = \frac{1}{15} (18 - 2y - z)$	
		$y = \frac{1}{20} \left(19 - 2x + 3z \right)$	1
		$z = \frac{1}{25} (22 - 3x + 6y)$	
		Starting with $x_0 = y_0 = z_0 = 0$	
		$x_1 = 1.2$	
		$y_1 = 0.95$	1
		$z_1 = 0.88$	

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code:

	1		
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	a)(i)	$x_2 = 1.015$	
		$y_2 = 0.962$	1
		$z_2 = 0.964$	1
	a)(ii)	Solve the following system of equations by using Gauss-Seidal method (Two iterations)	03
		5x - 2y + 3z = 18;	
		x + 7y - 3z = 22	
		2x - y + 6z = 22	
	Ans	5x - 2y + 3z = 18;	
		x+7y-3z=22,	
		2x - y + 6z = 22	
		$x = \frac{1}{5} (18 + 2y - 3z)$	
		$y = \frac{1}{7} (22 - x + 3z)$	1
		$z = \frac{1}{6} \left(22 - 2x + y \right)$	
		Starting with $x_0 = y_0 = z_0 = 0$	
		$x_1 = 3.6$	
		$y_1 = 2.629$	1
		$z_1 = 2.905$	
		$x_2 = 2.909$	
		$y_2 = 3.972$	1
		$z_2 = 3.359$	
	b)	Solve the following equations by Gauss elimination method.	06
		6x - y - z = 19	
		3x + 4y + z = 26	
		x + 2y + 6z = 22	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	SUMMER- 19 EXAMINATION	72	22/
Subject Name: Applied Mathematics	Model Answer	Subject Code:	4

Subje	ct ivaille	: Applied Mathematics	<u>Model Answer</u> Sub	ject Code:
Q. No.	Sub Q.N.		Answers	Marking Scheme
6.	b)Ans	6x - y - z = 19	36x - 6y - 6z = 114	
		$3x + 4y + z = 26 \qquad \text{and} \qquad$	x + 2y + 6z = 22	
		+	+	
		9x + 3y = 45	37x - 4y = 136	
		3x + y = 15	37x - 4y = 136	1+1
		12x + 4y = 60		
		37x - 4y = 136		
		+		1
		49x = 196		
		$\therefore x = 4$		1
		y = 3		1
		z = 2		1
		Note: In the above solution	n, first x is eliminated and then z is eliminated to find	l the value of y
		first. If in case the problem	n is solved by elimination of another unknown i. e., e	either first y or
			given as per above scheme of marking.	
	c)	Using Newton-Raphson met	nod to find the approximate value of $\sqrt[3]{100}$ (perform 4 iteration	ions) 06
	Ans	Let $x = \sqrt[3]{100}$		1/2
		$\therefore x^3 - 100 = 0$		72
		$f\left(x\right) = x^3 - 100$		
		f(4) = -36 < 0		1/2
		f(5) = 25 > 0		1/2
		$f'(x) = 3x^2$		1/2
		Initial root $x_0=5$		1/2
		$\therefore f'(5) = 75$		
		$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 5 - \frac{f(5)}{f(5)}$		1
		$x_2 = 4.6667 - \frac{f(4.6667)}{f(4.6667)} = 4$.6417	1
		j (1 .0007)		

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subie	ct Nam	SUMMER- 19 EXAMINATION e: Applied Mathematics <u>Model Answer</u> Subject Code:	22224
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	$x_3 = 4.6417 - \frac{f(4.6417)}{f(4.6417)} = 4.6416$	1
		$x_4 = 4.6416 - \frac{f(4.6416)}{f(4.6416)} = 4.6416$	1
		OR	
		$Let f(x) = x^3 - 100$	1/2
		f(4) = -36 < 0 $f(5) = 25 > 0$	1/2
		$f'(x) = 3x^2$	1/2
		Initial root $x_0=5$	1/2
		$x_i = x - \frac{f(x)}{f(x)} = x - \frac{x^3 - 100}{3x^2}$	
		$=\frac{3x^3-x^3+100}{3x^2}$	
		$=\frac{2x^3+100}{3x^2}$	2
		$3x^2$ $x_1 = 4.6667$	1/2
		$x_2 = 4.6417$	1/2
		$x_3 = 4.6416$	1/2
		$x_4 = 4.6416$	1/2
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	,