Arquite	ctura de Computadores I	1ª Chamada - 14.Jan.2002				
NOME:		Nº:				
	TEÓRICA					
escolha	stões devem ser respondidas na própria folha do e a múltipla, e apenas uma das respostas está corre desconta 1/3 de valor. As questões 5 e 6 valem 3 v	ecta, valendo 1 valor. Uma resposta				
1.	Considere a seguinte instrução do MIPS seguintes valores corresponde à sua co que o registo \$t0 tem o nº 8 e o registo \$t1 \$\square\$ 0x2128800C \$\square\$ 0x2128FFF4 \$\square\$ 0x2109800C \$\square\$ 0x2109FFF4	dificação em binário, sabendo				
2.	A lei de Amdhal indica que: "o maior aum introduzindo melhorias numa determinada é limitado pela percentagem em que e Considere um programa com T _{exec} =80 seg de inteiros e 10% acessos à memória representa o ganho obtido se o acesso rápido?	a característica de um sistema essa característica é usada". gundos, sendo 90% operações . Qual dos seguintes valores				
	 O desempenho do CPU pode ser T_{exec} =#I*CPI*T_{cc}. Qual das seguintes afir □ Diminuindo T_{cc} para metade o temporograma é também reduzido para metade no menor número de instruções (#I), programa mais rápido. □ Para o mesmo processador obtemos usando um algoritmo e um compilado instruções e que utilize instruções com □ O desenho de processadores com permite reduzir o número de instruções consequentemente, obter tempos de estadores de consequentemente. 	mações é verdadeira: o de execução de qualquer ade. pois de compilado, tenha um resulta invariavelmente num se um programa mais rápido dor que reduza o número de menor CPI. instruções mais complexas es geradas pelo compilador e, xecução menores.				
4.	Considere uma máquina com um espaço uma cache de 128 Kbytes, linhas de 8 parapeamento directo. Qual a distribuição seleccionar o byte correcto na cache: \[\begin{align*} Tag = 16; \text{ Indice} = 12; \text{ Block Offset} = 2; \\ \ext{ Tag} = 15; \text{ Indice} = 13; \text{ Block Offset} = 2; \]	alavras, palavras de 4 bytes e o dos <i>bit</i> s do endereço para ; <i>Byte Offset</i> = 2				

 \square Tag = 15; Índice = 12; Block Offset = 2; Byte Offset = 3 \square Tag = 15; Índice = 12; Block Offset = 3; Byte Offset = 2

NOME:	: Nº:
5.	Explique, tendo em conta a figura anexa, quais os elementos do datapath do MIPS que são utilizados, e por que ordem, para executar a instrução lw \$s0, \$t1(100). Indique os vários estágios de execução da instrução e indique o valor dos sinais de controlo RegDst,
	RegWrite, ALUSrc, PCSrc, MemWrite, MemRead e MemToReg.

NOME:	Nº:
6.	Existem 3 mecanismos de transferência de informação entre controladores de Input/Output (I/O) e a memória : <i>polling</i> , interrupções e DMA. Caracterize cada um destes mecanismos, indicando vantagens e desvantagens quando lhe parecer apropriado.

Nº:

PRÁTICA

As questões devem ser respondidas em folha separada. As questões 1 e 2 valem 4 valores cada. A questão 3 vale 2 valores.

1. Considere um programa escrito em assembly do MIPS com as características apresentadas na tabela, executado numa máquina sem cache misses, com uma frequência do relógio de 100 MHz.

Instrução	Nº instruções	CPI
Lw	900	4
Sw	900	4
add/addi	100	3
slt/slti	100	2

- a) Qual o CPI global e o tempo de execução deste programa?
- b) Se a miss rate de acesso às instruções for 5% e de acesso aos dados 12%, com uma miss penalty de 100ns, qual o CPI global e o tempo de execução do programa?
- c) O processador desta máquina foi substituído por outro com uma frequência 2 vezes superior, mantendo-se constantes todos os outros parâmetros do sistema. Qual o CPI global e o tempo de execução do programa?
- 2. Codifique em assembly do MIPS a seguinte função:

```
int maximo (int pos, int pMax, int *lista) {
    int max;
    if (pos >= 0) {
        if (lista[pos] > pMax)
            max = lista[pos];
        else
            max = pMax;
        if (pos != 0)
            max = maximo(pos-1, max, lista);
        }
    else
        max = pMax;
    return (max);
}
```

3. A seguinte rotina de atendimento a excepções, escrita para o simulador SPIM, pretende identificar a execução de instruções desconhecidas (excepção RI). Identifique, justificando, 4 erros nesta rotina.

```
.ktext
    mfc0 $k0, $13
    andi $k0, $k0, 0x28
    beq $k0, $0, ret
    ... # tratamento de RI
ret: mfc0 $ra, $14
    jr $ra
```