

Analog IC Design

Lecture 07 Cascode Amplifiers

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- ☐ Cascode amplifier
- ☐ Telescopic vs folded cascode
- ☐ Super cascode

Outline

- □ Recapping previous key results
- ☐ Cascode amplifier
- ☐ Telescopic vs folded cascode
- ☐ Super cascode

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- \square Always in saturation ($V_{DS} = V_{GS} > V_{ov}$)
- \square Body effect: $g_m \rightarrow g_m + g_{mb}$ (if G is ac gnd)

Why GmRout?

$$R_{in} = v_{in}/i_{in}$$

$$R_{out} = v_x/i_x @ v_{in} = 0$$

$$G_m = i_{out,sc}/v_{in}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- Divide and conquer
 - Rout simplified: $v_{in} = 0$
 - Gm simplified: $v_{out} = 0$
 - We already need Rin/out and Gm
 - We can quickly and easily get Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D v_{in} R_S	R_D v_{out} R_S	R_D $v_{in} \circ v_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Outline

- ☐ Recapping previous key results
- Cascode amplifier
- ☐ Telescopic vs folded cascode
- ☐ Super cascode

Boosting Voltage Gain

☐ The max gain of a single transistor amplifier is the intrinsic gain (body effect may add).

$$A_i = g_m r_o$$

- \Box $g_m r_o$ is quite small for modern deep submicron technologies.
 - May be less than 10!
 - But we need high voltage gain to design an op-amp.
- How to boost the gain?
 - Both CS and CG stages provide voltage gain.
 - 1. Use a cascade of CS stages: CS + CS + CS + ...
 - 2. Use a cascode amplifier: CS + CG + CG + ...
 - Single cascode: CS + CG
 - Double cascode: CS + CG + CG

• ...

Cascode

$$\Box$$
 CS + CG

Cascode Gain Using GmRout

☐ Transconductance is always related to the input transistor (VCCS)

$$i_{out,sc} \approx -g_{m1}v_{in}$$

$$G_m = \frac{i_{out,sc}}{v_{in}} \approx -g_{m1}$$

Same Gm of CS

$$R_{out} \approx r_{o2}[1 + (g_{m2} + g_{mb2})r_{o1}]$$

$$\approx r_{o2}(g_{m2} + g_{mb2})r_{o1}$$

Rout significantly boosted

$$A_v \approx -g_{m1}r_{o1}(g_{m2} + g_{mb2})r_{o2}$$

 \blacksquare Assume all g_m and r_o are equal and neglect body effect

$$A_v = -(g_m r_o)^2$$

Cascode as CS + CG

$$CS: \frac{v_x}{v_{in}} = -g_{m1}(r_{o1}//\infty)$$

CG:
$$\frac{v_{out}}{v_x} = (g_{m2} + g_{mb2})r_{o2}$$

$$A_v = \frac{v_x}{v_{in}} \cdot \frac{v_{out}}{v_x}$$
$$\approx -g_{m1} r_{o1} (g_{m2} + g_{mb2}) r_{o2}$$

lacksquare Assume all g_m and r_o are equal and neglect body effect

$$A_v = -(g_m r_o)^2$$

Quiz

- The circuit below shows a double cascode.
- $oldsymbol{\square}$ Find the voltage gain. Assume all g_m and r_o are equal and neglect body effect.

What if R_D is small?

- Is this cascode useful?
 - Not useful for boosting the gain
 - But useful for boosting the BW (more about this later)

Cascode Load

- ☐ If you want to keep the large Rout, you must use cascode load
- lacktriangled Assume all g_m and r_o are equal and neglect body effect

$$A_v = -\frac{(g_m r_o)^2}{2}$$

 \Box Output swing $\approx V_{DD} - 4V_{ov}$

Cascode Bias Voltage

☐ Keep M1 in sat

$$V_B > V_{GS2} + (V_{in,max} - V_{TH1})$$

 $V_{in,max} < V_{TH1} + V_B - V_{GS2}$

☐ Keep M2 in sat

$$V_B < V_{TH2} + V_{out,min}$$

 $V_{out,min} > V_B - V_{TH2}$

- $lacktriang{large}$ Increasing/decreasing V_B either hurts V_{in} range or V_{out} range
 - Input and output ranges are coupled oppositely

Quiz: Cascode Bias Voltage

- \square Assume $V_{TH}=0.4~V$ and $V_{ov}=0.1~V$.
- lacksquare Find minimum V_B .
- If V_B is set at 0.1~V above the minimum value, find $V_{in,max}$ and $V_{out,min}$.

Outline

- ☐ Recapping previous key results
- ☐ Cascode amplifier
- ☐ Telescopic vs folded cascode
- ☐ Super cascode

Telescopic vs Folded Cascode

- ☐ Telescopic: CS + CG (both NMOS or both PMOS)
 - Both CS and CG use same bias current
- ☐ Folded: CS + CG (NMOS-PMOS combination)
 - The small signal current is folded up or down
 - Extra bias current is needed
 - Rout is lower (due to I_{B1})
 - Why is it useful?

Folded Cascode Bias Voltage

☐ Input and output ranges are NOT coupled oppositely

$$V_{in,min} > -|V_{TH1}| + V_B - V_{GS2}$$
 $V_{out,min} > V_B - V_{TH2}$

- lacktriangle Choosing small V_B extends both V_{in} and V_{out} ranges
 - Just bias I_{B1} in saturation
- ☐ More on this point when we study operational amplifier design

Quiz: Folded Cascode Bias Voltage

- \square Assume I_{B1} is implemented using a MOSFET, $V_{TH}=0.4~V$, and $V_{ov}=0.1~V$.
- $oldsymbol{\square}$ Find minimum V_B .
- $oldsymbol{\square}$ If V_B is set at 0.1~V above the minimum value, find $V_{in,min}$ and $V_{out,min}$.

Quiz: Rout of Folded Cascode

 $oldsymbol{\square}$ Assume all transistors have the same g_m and r_o , and neglect body effect. Calculate Rout.

Quiz: Rout of Folded Cascode

Assume all transistors have the same V_{ov} and L, CS and CG have the same bias current, and neglect body effect. Calculate Rout in terms of g_m and r_o of M1.

Quiz: Gain of Folded Cascode

 \square Calculate Av = GmRout. Assume all transistors have the same g_m and r_o , and neglect body effect.

Outline

- ☐ Recapping previous key results
- ☐ Cascode amplifier
- ☐ Telescopic vs folded cascode
- ☐ Super cascode

Gain Boosting: Super Transistor

- $\Box g_{m,super} = A_v g_m$
- $\Box r_{o,super} = r_o$

Gain Boosting: Super Transistor

$$\Box G_m \approx \frac{g_{m,super}}{1 + g_{m,super}R_s} \approx \frac{A_s g_m}{1 + A_s g_m R_s} \approx \frac{1}{R_S}$$

- $\square R_{out} \approx r_o (1 + g_{m,super} R_S) = r_o (1 + A_S g_m R_S)$
- $\Box A_v \approx A_s g_m r_o$

Super Cascode

- ☐ A.k.a. regulated cascode or gain boosted cascode
- \Box $G_m \approx g_{m1}$
- $\square R_{out} = r_{o2}(1 + g_{m2,super}r_{o1}) = r_{o2}(1 + A_s g_{m2}r_{o1})$
- $\square A_v \approx A_s(g_{m1}r_{o1})(g_{m2}r_{o2})$
- Gain is boosted while preserving headroom (no extra stacking)
- ☐ But more power, noise, and complexity

Gain Boosting Implementation

- NMOS CS: headroom limitation
 - $V_X = V_{GS3} = V_{TH3} + V_{ov3}$ instead of V_{ov1}
- PMOS CS: M3 in triode
 - $V_{DG3} = V_{GS2} > V_{TH}$
- Folded cascode: M4 provides level shift
 - Can bias the circuit such that $V_{out,min} = V_{ov2} + V_{ov1}$

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015
- ☐ B. Razavi, "Fundamentals of Microelectronics," Wiley, 2nd ed., 2014
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017