Math 501 Homework (§5.2 Continuous Functions)

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function that is continuous on \mathbb{R} . Suppose that $c \in \mathbb{R}$ such that f(c) > 0. Show that there exists a $\delta > 0$ such that the function f is positive on the δ -neighborhood of c. What if we only require continuity in c as opposed to \mathbb{R} ?

Solution. Since f is continuous there exists an $\epsilon > 0$ for every $\delta > 0$ such that f(x) is in the ϵ -neighborhood of f(c). Since f(c) > 0, there are infinitely many +ve numbers in every neighborhood of it. And since f is continuous in all neighborhoods of c, at least one such neighborhoods contains f > 0.

A continuity on *just* c does not guarantee that there exists a neighborhood of f(c) where f > 0.