OTÁZKY KE ZKOUŠCE – ADA

- Definice adaptivního systému (AS) základní pojmy adaptivní systém a jeho části, účelová funkce (kritérium), chyba predikce/estimace, algoritmus, filtr, stabilita, konvergence, ... příklady použití AS
- Adaptivní systém = parametry soustavy se mění v závislosti na parametrech zpracovávaného signálu -> soustava reaguje na změny nebo se učí
- LTV časově proměnné parametry
- Použití AS: rozpoznávání řeči a obrazů, automatické řídící systémy, telekomunikace, měřící technika
- části AS: filtr, algoritmus
- Základní prvky: Apriorní infromace = "když nic nevím, tak nic nevyřeším"
 - Souhrn předpokladů a údajů nutných k optimalizaci systému
 - Typ vstup. Sig., typ rušení, typ přenosové cesty
 - Kritérium kvality: návrh systému a hodnocení kvality, kompromis mezi požadavky kvality a realizovatelností
 - Často kvadratické: minimalizace energie chybového signálu
 - Kritérium -> účelová funkce = chybový povrch
 - Algorimus a filtr: filtr produkuje výstupní signál, jeho koeficienty nastavuje algoritmus tak, aby bylo dosaženo minima účelové funkce = konvergence
- AS filtr:

 Estimace signálu: vstup = signál+šum > adaptivní filtr, jehož koef. Se nastavují ve zpětné vazbě tak, aby energie signálu e[n] byla minimální

Cíl > návrh filtru, který potlačí rušení w[n], signály mají často proměnné parametry

- <u>Chybový povrch</u> (konvergence) (ES): "miska", tvar a poloha je dána vlastnostmi filtru a signálu
 - o Kulička překmitává v minimu, pohyb ve 2d = konvergenční stopa
 - Parametr filtru řídící rychlost konvergence > jak rychle se dostane do minima a jak moc bude překmitávat ("tření pro kuličku")
- Kritéria: MMSE => alg. LMS
 - LS => alg. RLS
- Odhady: rekurentní, průběžný
- <u>Stabilita</u> AS: schopnost systému udržet výkon a správně reagovat na změny v prostředí nebo jeho vlastní vstupní podmínky
 - Stabilita je dána konvergenční konstantou
 - o <u>Konvergenční konstanta μ </u>: $0 < \mu < 1/Px$ (Px = výkon signálu)
- Tvarování paměti nekonečná paměť (growing): rekurentní alg. (LTV)
 - exponenciální zapomínání: průběžný alg. (LTI)
 - klouzavé okno
- rovnice aktualizace: $w[n+1] = w[n] + \mu e[n] \cdot x[n]$
- 2. Typické úlohy adaptivní filtrace (AF) filtrace/predikce, estimace, identifikace schémata těchto úloh pro FIR filtry, algoritmy aktualizace koeficientů, podmínky činnosti, diskutovat rozdíly mezi úlohami
- Filtrace/predikce:
- 1 vstup
- rovnice filtrace: $e[n] = x[n] \sum_{i=1}^{M} w_i[n] x[n-i] = x[n] W_n^T x_{n-1}$
- kritérium MMSE: $min_w J = min_w E[e^2[n]]$
- Filtr druhého řádu (2xD), koeficienty $w_{1,2}[n]$ se nastavují (přeškrtnuté kolečko)
- Signál x[n] se porovnává s výstupem filtru (prediktoru) x^[n]

- Algoritmy pro nastavení koeficientů:
 - Blokový/dávkový
 - grad $J = 0 > Yule-Walkerovy rovnice: R_x w = r_P => w = R_x^{-1} \cdot r_P$
 - jednou za 100 vzorků spočítáme korelace těch 100 vzorků, sestavíme normální (Y-W) rovnice a vyřešíme
 - Nasbíráme několik vzorků chybové posloupnosti e[n], vybereme vhodné kritérium, např. Min. Stř. Kvadr. Chyby (tu minimalizujeme), výsledkem budou lineární rovnice, jejichž řešení budou hodnoty w1,2
 - Např. Jednou za 100 vzorků se změní hodnoty w1,2
 - Předpokládáme, že v průběhu filtrace se nemění char. signálu

Průběžný

- S každým novým vzorkem mění hodnoty vah (w1,2)
- Metoda největšího spádu:
 - Rychlejší nastavení koeficientů, ale méně přesně
 - Odhad záporného gradientu pomocí klouzavého okna
 - LMS odhad gradientu: $grad \mathbf{J}_n = -e[n]x_{n-1}$
- LMS alg.: nastavení počátečních wah, nastavení počátečních podmínek, v cyklu filtrujeme a aktualizujeme váhy, dodržení podmínky stability
- Estimace: (kompenzační úloha)
- Apliakce LMS: kompenzace šumů, identifikace osustav, potlačování echa
- 2 vstupy
- Předpokládáme, že korelace mezi u[n] a u'[n] je nenulová (pokud nulová, nedokáže odhadnout šum) ... šumv primárním a referenčním vstupu = požadavek korelace mezi šumem v prim. A ref.
- Zpoždění zajistí kauzální systém, pozdrží vzorky než se objeví ve filtru = požadujeme kauzalitu
- Úkolem je odhadnout co nejlépe signál z reference: u^ = odhad u
- Správný odhad = kompenzace v součtovém budě
- Předpoklady: vzájemná energie s,u=0 a zároveň vzájemná energie s,u'=0
- e = s+u-u^ ... $e[n] = d[n] \widetilde{W}_n x_n$

- Identifikace
- Bereme výstup systému, který chceme identifikovat
- Chceme širokopásmový signál u'[n] = požadavek širokopásmového buzení
 - Větší šířka pásma signálu, než je frekv. Rozsah identifikovaného sig.
- Požadavek nenulové korelace mezi šumem v prim. A ref. Sig. Je automaticky splněn
- Při identifikaci vyrábíme jeden ze signálu tak, že bereme výstup ze sig, který chceme identifikovat.

- Rozdělení algoritmů blokový, rekursivní s exponenciálním zapomínáním; LMS podmínky, princip, souvislost s metodou největšího spádu a s RLS, struktura FIR-LMS algoritmu; RLS – podmínky, princip, souvislost s metodou největšího spádu a s LMS, struktura FIR-RLS algoritmu
- Dávkový (blokový): vynulujeme gradient účelové funkce -> získáme normální rovnice
 - O Normální rce filtrace = Y-W, normální rovnice estimace = Wiener-Hopf
- Průběžné (LMS): nové koeficienty jsou staré koeficienty + oprava
 - o Záporný okamžitý gradient je naše oprava... komžitý platí pro LMS
- RLS = Rekurzivní nejmenší čtverce ... nejmenší čtverce = Gauss
- Kritérium: LS
- A) Hledáme min hodnotu, přes koef. Které nám minimalizují tuto hodnotu
- (Alg. S rostoucí pamětí, neumí sledovat změny > čím více vzorků, tím mají menší váhy)
- B) rekurzivní s growing memory
- Alg: Víme estimaci, chceme nové řešení = staré řešení + oprava
 - o w[n] = Pn . bn, řešení vhodné pro nestac. Signály, dáno součinem dvou matic
 - $Pn = R \times ^-1$, bn = r dx
 - o hledáme závislost: Pn na Pn-1 a bn na bn-1
 - o rekurentní realizace sumy

$$\frac{P_n^{-1}}{b_n} = \frac{P_{n-1}}{b_{n-1}} + \frac{\chi_n}{d_{n-1}} \chi_n^{\top}$$

$$\frac{P_n^{-1}}{b_n} = \frac{P_{n-1}}{b_{n-1}} + \frac{\chi_n}{d_{n-1}} \chi_n^{\top}$$

$$\frac{P_n^{-1}}{\lambda_n} = \frac{P_n^{-1}}{b_n} + \frac{\chi_n}{d_{n-1}} \chi_n^{\top}$$

Věta o inverzi matice

Aktualizace Rx^-1

g)
$$w[n] = \frac{1}{2} \sum_{x} dx = P[n] b[n] = dosaellan \rightarrow upravlan =$$

$$= > b_1 \quad w[n] = w[n-1] + P_n e[n] x_n$$

Porovnání RLS a LMS:

- Okamžitý gradient dělá opravu, Opravy se liší pro RLS a LMS
 - Rx^-1 = čtvercová matice, není naše volba, dána signálem x[n] ⇔korelační struktura
 - µ = matice s jedním prvkem, konstanta, naše volba ⇔ výkon
- o RLS využívá mnohem více informace o signálu než LMS, korelace vs. Výkon
- o Geometrický význam násobení vektoru maticí
 - RLS dojde rychleji k minimu

- RLS pro exponenc. Zapomínání
- $1/\lambda = zapomínání, 0 << \lambda < 1$

$$P_{n} = \frac{1}{\lambda} \left(P_{n-1} - \frac{P_{n-1} \times n \times_{n}^{T} P_{n-1}}{\lambda + \chi_{n}^{T} P_{n-1} \times_{n}} \right)$$

- RLS (FIR, řádu M), estimace ... (rekurzivní algoritmus nejmenších čtverců)
 - o Počáteční podmínky, w0, P0, λ
 - Cyklus pro n = 1,2,...

- 4. Konvergenční chování adaptivních algoritmů vysvětlit pojmy: rychlost konvergence, chyba v ustáleném stavu (misadjustment), porovnání algoritmů: LMS, RLS, NLMS, SLMS
- RLS se učí rychleji
- Chybový povrch (ES) = střední kvadr. Hodnota chyby estimace

- Minimum ES: $J_{min} = R_d[0] R_{dx}^R w$
- Alternativní tvar ES: $J = J_{min} + (w w^*)^T R_x (w w^*)$... w^* je vektor poskytující minimum ES
- w* je optimální
- Nová váha LMS je dána jako stará váha + oprava, oprava je daná minus okamžitým gradientem J
- Analýza LMS:
 - o Diferenční rovnice, která řídí algoritmus
 - Diferenční rovnice vzhledem k váze:

$$w_0[n+1] = w_0[n] - 2\mu R_x[0](w_0[n] - w_0^*)$$

Řešení > postupné dosazování (rekurentní řešení)

$$w_0[n] = w_0^* + \frac{(1 - 2\mu R_x[0])^n (w_0[0] - w_0^*)}{(w_0[0] - w_0^*)^n}$$

- Konvergence závisí na hodnotě první závorky a jak daleko odejdeme počáteční podmínkou od optimálního řešení (druhá závorka)
- Analýza řešení Diferenční rovnice:
 - Pro n -> ∞ chceme aby: $w_0[n]$ -> w_0^* ... první závorka musí konvergovat k 1
 - O Za této podmínky řešení dif. Rce konverguje: $1/R_x[0] > \mu > 0$
 - o Pokud je 1-2 μ Rx[0] > 0 ... => 0 < μ < 1/2Rx[0]
 - = > řešení Rovnice (w0[n]) nemění znaménko = nadkritické tlumení
 - o Pokud je $1-2\mu Rx[0] = 0 ... = > < \mu = 1/2Rx[0]$
 - => Řešení nalezeno v 1. iteraci ... w0[n] = w0* ... = kritické tlumení
 - o Pokud je $1-2\mu Rx[0] < 0 ... => 1/2Rx[0] < \mu < 1/Rx[0]$
 - => řešení osciluje ... = podkritické tlumení
 - \circ μ < 0 nebo μ >= 1/Rx[0] ... = diverguje

- RLS je úprava alg LMS tak, aby byl kriticky tlumený
- Časová konst. LMS
 - Jak rychle alg konverguje
 - Hledáme takové n=n0, aby w0n = e^-1
 - \circ n 0 = -1/2 μ Rx[0] = -1/ λ
 - o pro λ ->1 ... n0 ≈ 1/1- λ
 - závislé na výkonu signálu Rx[0] ... to nechceme... proto NLMS
- NLMS = normované LMS
 - \circ $\mu = \alpha/Rx[0] \dots n0 \approx 1/2\alpha$
 - o volba alfa: $0 < \alpha < \frac{1}{2}$... $0 < \mu < \frac{1}{2}\mu Rx[0]$
 - o rovnice NLMS: $w_k[n+1] = w_k[n] + \frac{\alpha}{\varepsilon + \hat{R}_x[0]} e[n] x[n-k], k = 0,1,..., \varepsilon \to 0$
 - ε -> 0 ... zabránění divergence, zabránění dělení 0
 - Odhad R^x[0]:
 - blokové, dávkové (nestranný a konzistentní odhad)
 - nebo průběžný odhad (rychlejší reakce, velká lambda), častější
 - \circ optimální hodnota: $lpha=rac{1-\lambda_I}{2}$, volíme $\lambda_{
 m l}$
- Misadjustment
 - o Chyba v určení koeficientu
 - Značení: "kaligrafické M"
 - o LMS: $M = \mu x^T x = (M+1)R_x[0] ... M = řád filtru$
 - \circ NLMS: $M = (M+1)\alpha$
- SLMS
 - V komunikacích pro odstranění přeslechů v uzlech
 - Chyba estimace e[n] nahrazena sgn(e[n]), popřípadě x[n] nahrazeno sgn(x[n]), nebo nahrazeno obojí zároveň
 - Má větší chybu než LMS
 - Signál v amplitudě < 1, tak e také < 1
 - o Velmi nelineární, závisí na vstupní amplitudě
 - O Velká chyba v ustáleném stavu -> volíme malé μ -> pomalá konvergence
- LMS vhodné pro stacionární signály, s konst. Výkonem
- NLMS vhodne pro signály s proměnným výkonem
- SLMS menší výpočetní nároky (jsou celkem 3 typy), větší vhyba v ustáleném stavu

- 5. Využití ortogonálních transformací pro adaptivní filtraci pro urychlení konvergence LMS algoritmu: jaké ortogonální transformace lze použít a proč urychlují konvergenci
- LMS s ortogonalizací
- Mód konvergence jak rychle konverguje váha
- <u>Coupling</u> = provázání konvergenčních módů
 - O Změna jednoho koeficientu je vázana na změnu i druhého
 - O Rychlost aktualizace koeficientů (konvergenční rychlost) $\Delta w[n+1] = \Delta w[n](I-\mu Rx)$

- Nejpomalejší mód rozhoduje o rychlosti konvergence
- Decoupling = rozvázání módů
 - o Pokud požadujeme rozvázání módů, tak Rx[1]=0

- o Rozvázání módů vyžaduje diagonální matici Rx ⇔ vstup je bílý šum (má diag. Matici)
- O => W-H rovnice ... Rw=rdx
- o Budíme-li RLS a LMS bílým šumem, konvergují stejně rychle
 - Bílý šum rozváže konvergenční módy
- $\bigcirc \Delta w'[n] = \Delta w'[n](I \mu D)$
 - D = diagonální matice vlastních číel daná vztahem Rx=VDV^T
 - Matice V reprezentuje ortogonální transformaci (PCA)
 - Matice V vlastních vektorů
- Ortogonální transformace
 - Barevný šum > bílý šum
 - o PCA: optimální ⇔ signálově závislá
 - DFT: signálově nezávislá -> vyžaduje komplexní LMS (výstup DFT jsou komplex. Čísla)
 - DCT: signálově nezávislá -> stačí reálné LMS, lepší kompresní vlastnosti než DFT
 - o WHT: sig. Nezáv. -> báze z ortogonálních obdélníků
 - Banka filtrů
 - Vlnková transformace
- Máme provázané módy, kdzž vybělíme signál, tak je rozvážeme, signál umíme vybělit ortogonální transformací
- RLS v podstatě pracuje jako alg. S ortogonalizací, je tam "schované" PCA

6. Vysvětlit princip některých aplikací AF – estimace (odhad) frekvence, identifikace LTV systému, ekvalizace přenosové linky, dekorelace a separace signálů, určení směru příchodu signálu (beamforming), jaké jsou podmínky správného použití?

<u>Ekvalizace</u>

- Snažíme se udělat takovou opravu frekvenční charaketristiky přenosové linky, aby to co se přenáší (digi data), aby byla bez jakéhokoliv zkreslení
- "úloha inverzní filtrace"
- o v podstatě <u>slepá dekonvoluce</u> = cíl je získat vstupní signál ze snalosti výstupu
- o inverzní filtr by měl mít přesně inverzní přenos oproti přenosu linky

- Problém nalezení inverzního filtru
 - Ekvalizér musí být stabilní, mít póly uvnitř jednotkové kružnice
- <u>Ekvalizér</u> za úkol najít inverzní funkci
 - o pomocí LMS neumíme zajistit úlohu slepé dekonvoluce
 - o rozhodovací zařízení (kvantizér): potřebný ke správněmu hledání inv fce, často funkce sgn
 - chybový signál pro řízení LMS alg je získám rodílem mezi výstupem LTV FIR a výstupem kvantizéru
 - o alg pro sledovací a rozhodovací fázi se nemění, mění se pouze vstup, pro T=referenční signál, pro R=výstup kvantizéru
 - ekvalizér řízen alg.
 - o FIR-LMS 2 fáze
 - Trénovací fáze (T)– snaží se nastavit ekvalizér tak, aby získal inverzní přenos k lince
 - Rozhodovací fáze (R) jakmile naučíme ekvalizér na přenosovou linku, přepnem do R, ekvalizér provede pomocí LMS slepou dekonvoluci

- LTV linka -> podmínka činnosti: malá chybovost ~ 1%
- Používá se SLMS, šetří operace
- algoritmy pro slepou ekvalizaci
 - Nepotřebují trénovací fázi
 - Pracují s nelinární funkcí
 - Goddadrdův alg (CMA):

7. Princip metody nejmenších čtverců (LS) – účelová funkce, princip ortogonality, normální rovnice, ilustrovat na příkladu nalezení parametrů přímky pro naměřená data

- Proložení data konstantou, tak aby rozdíl mezi daty byl co nejmenší
- aproximace dat polynomem
 - Diskrétní body nahrazujeme spojitou funkcí (aproximující funkce dat)
 - Prokládáme polynomem řádu M
- Úloha aproximace s více proměnnými
 - o Body v N-dim prostoru prokládáme nadplochou

- Účelová funkce

- o Měří odchylky mezi pozorovanými daty a hodnotami, které model předpovídá
- O Gauss = L2 norma: $J = \sum_{n=0}^{N-1} e^2[n] = \sum_{n=0}^{N-1} (y[n] + w_0 + w_1 x_1[n] + w_2 x_2[n])^2$
 - $\hat{\mu}_x = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \dots$ mean
- O Laplac = L1 norma: $J = \sum_{n=0}^{N-1} |e[n]|$
- o Část bez konstanty (praktický obrázek) lineární kombinační člen

- Soustava lin. Rovnice

- o Ax=y ... data=y_i, A∈R^{mxn} známá, cíl určit x
 - m > n ... preurčená soustava rovnic -> LS ⇔ L2

- y nemusí ležet v rovině generované vektory a1,2 > nemá řešení > promítneme y do roviny generované a1,2 > získáme y^ = Ax0 ... x0 = řešení

y^ = průmět y do roviny a1,2

princip ortogonality

- \circ A^Te = 0
- chyba e je kolmá ke všem vektorům, které leží v rovině (e_|_ a1, e_|_ a2)
- o řešení x0 -> Ax0=y^
- e = v-v^
- OLS: $\min ||e||^2 = \min ||y Ax_0||^2 = \min(e^T e) = \min((y^T x_0^T A^T)e) = y^T e x_0^T A^T e = y^T e$... minimální hodnota $||e||^2$
- o Díky tomuto principu dokážeme zjistit, jak velké chyby se dopouštíme (její energie)

Normální rovnice

- $\overline{ \circ A^T e = 0 } > A^T (y Ax_0) = 0 > A^T Ax_0 = A^T y = x_0 = (A^T A)^{-1} A^T y : resent LS$
- O Platí za podmínky, že počet rovnice > počet neznámých ... m > n

- Aproximace přímkou
- $\sum x_i y_i$... vzájemná korelace mezi daty x,y
- Vliv šumu
 - Změněná data se šumem: y_i = y_{i_opt} + y_i(=šum)
 - Je A singulární? (det(A) = 0)
 - Šum + špatně podmíněná matice A (je singulárn) -> velké chyby
- 8. Princip metody Monte Carlo a její použití (např. pro integraci funkce jedné reálné proměnné), princip bayesovské filtrace a skrytých markovovských modelů a jejich vztah ke Kalmánově filtraci
- Historie: simulace fyz. Experimentů, vytviřeí demografického modelu USA (1950-60)
- Nyní: ekonomie, řízení tel. Centrál, řízení dopravy, hromadná obsluha, vyhodnocení metod,...
- opakujeme stejný experiment, ale za jiných podmínek (s jiným signálem)
- Matematika:
- ξ = náhodná veličina ϵ Ω
- Rozdělení: P (a < ξ <= b) = p (pravděpodobnost)
- . ξ padn do int (a,b), f(x) = hustota rozdělení pravděpodobnosti ξ
- Předpokládáme, že lze realizovat pokus, jehož výsledek je hodnota x_i
 - Hodnota náhodné veličiny ξ
 - $X_i \epsilon (a,b) => zdařilý pokus$
 - o Počet zdařilých pokusůůů je n, počet pokusů je m, m < n
 - O Relativní četnost p' jevu, že ξ ∈ (a,b) ... p' = m/n

- Bernouliho věta: $\lim_{n \to \infty} = P\left(\left|\frac{m}{n} p\right| < \varepsilon\right) = 1$
 - o Při ∞ velkém množtvím pokusů, není rozdíl mezi teoretickou p a relativní četností
 - Při dostatečně velkém počtu nezávislých pokusů se rel četnost jevu liší libovolně málo od pravděpodobnosti p

- Řešení metodou MC

- o Modelování pokusů pomocí náhodných čísel
- Alg: i = 1,..n ... počet pokusů, m = 0 (poč. Zdařilých pokusů)
 - Vybereme xi o rozdělení f(x) (častá volba rovnoměrné rozdělení, jinak nutné použít transformaci náhodných veličin)
 - Provedeme pokus: h = 1 (zdařilý), = 0 m = m+h
 - Konec cyklu, další i
- \circ P = m/n

- Použití MC pro integraci funkce

- o podmínka/omezení: 0 <= g(x) <= 1
- Můžeme použít pouze tehdy, pokud Integrand bude splňovat podmínku, že se jedná o pravděpodobnost
 - = g(x) >= 0
 - když integrujeme přes definiční obor (+-∞) získáme =1 (úplná p)
- snažíme se vyčíslit plochu, kterou uzavírá křivka proti ose x
- generace náhodných čísel, budeme je umisťovat do roviny a zjišťovat, která čísla padnou do červené oblasti
- o implementace MC:
 - generujeme xi a yi (rand) ... rouřadnice bodu v Ω
 - [xi,yi] ∈ ω
 - yi < g(xi) -> h -> m = m+h
 - konec cyklu pro i
 - integrál je =~ m/n ... pro dostatečně velké n
- přesnost výpočtu chcili zjistit chybu -> musím výpočet opakovat
 - o lze určit var, med, kvantily, histogram,... výsledků integrálů
- řešení lineárních rovnic: Markovovy řetězce
- baysovská fitlrace u KF

- 9. Kalmánova filtrace (KF) předpoklady pro její použití, účelová funkce (kritérium), princip KF bloková struktura algoritmu, jednoduché příklady použití; (případně porovnání KF s Wienerovou filtrací)
- Wienerův filtr použití pro stac. Náhodné procesy (kritérium MMSE)
- KF pro nestacionární náhodné signály s LTV systémem
- Použití: odhad stavu systémů
- Kritérium: iterační řešení, MMSE (J = E[|e[n]|^2])
- Výstup KF: parametry systému, signály, odhad stavu
 - Stav. Systém: napětí, proud uvnitř obvodu (stav veličiny), pozice systému (kyvadlo,...)
 - KF odhaduje hodnoty stavového vektoru
- KF je iterativní výpočet kombinující predikci a korekci
 - o Predikce je založena na stavovém popisu a přechodu mezi stavy (stav. Popis)
 - o Model Stavu: $x_{n+1} = x_n + w[n]$... $w[n] = \tilde{s}um$ (nepřesnost), stav je skrytý (KF odhaduje)
 - Ví kde jsme, ale neví kde budeme, to odhaduje pomocí modelu
 - Predikce stavu je opravena (korigována) získaným měřením
 - O Stav x_n -> predikce -> stav x_{n+1}^n -> měření -> korekce -> zpět do stavu x_n
 - Predikce bez měření, korekce na základě měření
 - \circ Model měření: $y_n = x_{n+1} + v_n$... wn a vn jsou bílé šumy (modely nepřesností)

- Příklad stavového popisu pro pohyb systému v 1D
 - o diskrétní popis: $x_{n+1} = Ax_n + Bu_n$, $x_n = stav$, $u_n = vstup$

$$y_n = Cx_n + Du_n$$
, $y_n = výstup$, A,B,C = stavové rovnice

o buď setrváváme ve stavu (Pn -> Pn), nebo přejdeme do dalšího (Pn -> P_{n+1})

o stav (např. Pozice Pn) budeme chápat jako pravděpodobnost

- o snažíme se najít max, nejvíce pravděpodobný jev
- o nepřesnosti odhadu stavu a nepřesnost měření modelujeme pomocí šumů

Markovův řetězec

- Staový automat popsaný pravděpodobnostmi
- \circ Podmínka: P(xn|xn-1) = P(xn|x0,x1,..,xn-1)
 - Projde celou minulost

Bayesovská filtrace:

$$p(x_n|y_n) = \int_{x_{n-1}} \frac{p(x_n|x_{n-1})p(y_n|x_n)}{p(y_n|y_{n-1})} p(x_{n-1}|y_{n-1})$$

- P = pravděpodobnost nebo pdf
- o Cílem je určit vztah na základě měření, určit posterior
- Řešení 2 kroky:
 - Predikce $(x_n) = \int p(x_n|x_{n-1})p(x_{n-1}|y_{n-1})$
 - Korekce $(x_n) = p(x_n|y_n) = \eta p(y_n|x_n)pred(x_n)$
- KF: pdf = Gauss, šumy = Gauss, systém je lineární
 - Za těchto předpokladů lze místo pdf použít parametry normálního rozdělení
- <u>Diskrétní úloha Bayesovské filtrace:</u>
 - Predikce: pred(xn) = sum("přechod" . kor(xn-1)
 - "přechod" = Markov (řetězec)
 - o Korekce: kor(xn) = "likelyhood". pred(xn)
 - "likelyhood" měření
- Diskrétní KF
 - o stavový popis: xn = An-1xn-1 + wn
 - o měření: yn = Cnxn + vn
 - o inicializace, počáteční podmínky, stav v čase 0
 - o kovariační matice chyb měření
 - o cyklus:
 - predikce stavu s korekcí
 - odhad chyby
 - Výpočet Kalmánova zisku
 - Odhad stavu
 - Odhad chyby
- Použití: GPS
- Předpoklad: LTI/LTV a Gaussovské šumy

10. Dekorelace vícerozměrných signálů (PCA) – model vzniku signálu, podmínky použití metody, kdy lze pomocí PCA dosáhnout úplné separace signálů?

- PCA: rozklad na hlavní komponenty, rozklad kovarianční matice signálů
 - Máme dva nezávislé signály, ty smícháme (mixážní matice), známe pouze výstupní signály
 - Rotací souřadné soustavy provedeme dekorelaci
 - PCA pracuje s ortogonalní transformací
 - Musíme centrovat signály

- PCA diagonalizuje kovarianční matici dat $Cx = XX^{T} = VDV^{T}...$ (X = matice dat)
 - D diagonální matice vlastních čísel, $D = V^{T}CxV$
 - V ortogonální matice vlastních vektorů

- Dekorelaci dat provádí transformace $Y = V^TX$ (odrotování souřadné soustavy)
 - Y je matice nekorelovaných dat
- Po dosazení za Y a úpravě získáme: $C_Y = V^T C_X V = D$
- C_Y je diagonální -> Y obsahuje dekorelovaná data (Y je matice v1,v2 v obrázku)
- Normujeme (vlastní čísla matice D představují rozptyl)
 - Přenásobíme V^TX s D⁻¹, zbavíme se tím rozptylu, který tam původně nebyl
 - Pokud bude A ortogonální, samotné PCA stačí k dekorelaci
 - Pokud nebude ortogonální, nedotočíme elipsu do "nulových" os
- Předpoklady: lineární kombinace x_i(t) (skalární mixáž
 - Nezávislých signálů $s_i(t)$... mixážní matice x(t) = As(t)
- Řešení může mít jiné pořadí původních signálů
- Řešení může mít opačnou polaritu
- Řešení nezachovává měřítko
- PCA provádí dekorelaci Cxx (kovarianční matice = centrovaná)
- Cxx je odhad s chybou -> další zpracování může zesílit chyby
- PCA hledá směry největšího rozptylu dat (směry jsou určeny vlastními vektory)

11. Separace vícerozměrných signálů (ICA) – model vzniku signálu, podmínky použití, význam použití charakteristik vyšších řádů (např. špičatost); nakreslit kompletní blokové schéma metody separace signálů a vysvětlit význam dílčích bloků.

- FastICA využívá špičatost signály budou negaussovské
- Iterční algoritmus
- Logaritmus charakteristické funkce F(ω) -> rozvoj do řady -> koeficienty této řady = kumulanty
- FastICA využívá kumulanty: (součet kumulantů náhodných veličin)

- Kumulant je vyjádření nějakého momentu (1. stř hodnota, 2. rozptyl,..)
- 4. kumulant je špičatost: $c_4 = m_4 3m_3^2$
- Špičatost pomáhá rozlišit typy rozdělení
- Aplikace kumulantů:
 - Sledujeme modul vektoru w = 1

- Nalézt směr w tak, aby c₄(w.v) byl maximální (maximum špičatosti)
 - Podmínka ||w|| = 1
- PCA normuje obě osy > stejné rozptyly obou os (c2 = 1... ve všech směrech stejná hodnota)
- 4. mocnina > vidíme kytičku > pokud je pootočená (měli jsme neortogonální A), je zde nějaká špičatost > ICA vidí pootočení > sesouhlasí směry do os ve 4.mocnině

- 12. Tvarování přijímací charakteristiky pole senzorů (beamforming) pojmy: pole senzorů načrtnout a popsat zvláštní případ lineárního pole (ULA); prostorový vzorkovací teorém. Principiální rozdíl mezi konvenčním (neadaptivním) systémem pro směrový příjem např. DAS (Delay and Sum Beamformer) a adaptivním systémem pro směrový příjem např. Caponova metoda (MVDR Minimum Variance Distortion-less Response Beamformer).
- Určení směru dopadu vlny
- Motivace: příjem EM vlnění a akustika
- Potlačení rušení, které přichází z jiných směrů
- Přenosový řetězec: vysílač > přijímač
- Cíl: získat odhad směru příchodu signálu

- model signálu:
- $a(\theta)$ (vektor)... θ = úhel dopadu vlnoplochy na senzor
 - vlastnosti pole senzorů
- 1-n senzorů s přenosy H a různými zpožděními, τ_i = zpoždění signálu x = s na senzorech
- Signál na výstupu demodulátoru je ovlivněn zpožděním a přenosem senzorů, signál který dopadá na senzory a šum
 - O Diskrétní model: $y[n] = a(\theta)s[n] + e[n] ... (y = data, s = signal, e = šum)$
- Model Maticově pro 1 zdroj: Y = a(θ)s + e ... známe Y, a ... neznáme s,e
- Model pro Více zdrojů: Y = As + e ... (A co sloupec to jeden zdroj $a(\theta)_{1,2,...}$)
- Pole senzorů ULA
- předpoklady
 - O Senzory mají stejné vlastnosti všesměrové stejné senzory: jejich zisk je konstantní
 - Na senzory dopadá rovinná vlna
 - První senzor je referenční
 - Senzory jsou rozmístěny ekvidistantně na přímce ve vzdálenosti d

- ULA => $a(\theta) = [1 \text{ (referenční)}, e^{-j\omega_{c}\tau_{c}^{2}}, ...)$... předp: $|H_{k}(\omega_{c})| = 1$
 - > Báze DTFT
- Prostorový vzorkovací teorém
 - \circ Vzdálenost mezi senzory musí být menší než polovina vlnové délky: d < $\lambda/2$

- DAS

- Zpoždění, parametry D1-Dn <-> odhad zpoždění -> např korelace nebo PSD
 - Max Korelace/PSD odpovídá zpoždění
- V závislosti na zpoždění, preferujeme nějaký směr pohledu
- Nevýhoda: frekvenčně závislý prostorový přenos
- Na obrázku širokopásmový DAS
- Nevyužívá vlastnosti signálu
- o Prostorové rozlišení je závislé na konfiguraci pole senzorů
- o Používá FT pro zjištění odkud jde signál
- Vlastnosi jsou nezávislé na datech je neadaptivní

- Uděláme Fourierku datové rovnice a hledáme maximum

- Adaptivní
- Umí využít vlastnosti signálu
- Dovoluje rozlišit signály z velmi blízkých směrů
- Počítáme skalární součin vektorů a vážených inverzní autokorelační maticí

