ИДЗ 19.2. Вариант 18. Агаев Хамза РЗ234 (поток 1.5).

Дана таблица распределения 100 заводов по производственным средствам X (тыс. ден. ед.) и по суточной выработке Y (т). Известно, что между X и Y существует линейная корреляционная зависимость. Требуется:

- а) найти уравнение прямой регрессии на х;
- б) построить уравнение эмпиричесой линии регрессии и случайные точки выборки (X, Y).

XY	25 200	25 350	25 500	25 650	25 800	25 950	26 100	26 250	m_{χ}
3150	3	4	2	_	_	_	_	_	9
3200	_	5	7	5	_	_	_	_	17
3250	_	_	_	8	14	6	_	_	28
3300	_	_	_	_	8	9	_	_	23
3350	_	_	_	_	_	5	6	3	14
3400	_	_	_	_	_	_	5	4	9
m_y	3	9	9	19	22	20	11	7	100

Для подсчета числовых характеристик (выборочных средних X' и Y', выборочных средних квадратичных отклонений Sx и Sy и выборочного корреляционного момента Sxy) составляем расчетную таблицу. При заполнении таблицы осуществляем контроль по строкам и столбцам:

$$\sum_{i=1}^{6} m_{xi} = \sum_{j=1}^{8} m_{yj} = n = 100,$$

$$\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} x_i = \sum_{i=1}^{6} m_{xi} x_i = 327150,$$

$$\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} y_j = \sum_{j=1}^{8} m_{yj} y_j = 2578050,$$

$$\sum_{i=1}^{6} \left(x_i \sum_{j=1}^{8} m_{ij} y_j \right) = \sum_{j=1}^{8} \left(y_j \sum_{i=1}^{6} m_{ij} x_i \right) = 8435715000.$$

Вычисляем выборочные средние \overline{x} и \overline{y} , $i = \overline{1, 6}$; $j = \overline{1, 8}$

$$\bar{x} = \frac{\sum \sum m_{ij} x_i}{n} = \frac{\sum m_{xi} x_i}{n} = \frac{327150}{100} = 3271, 5;$$

$$\bar{y} = \frac{\sum m_{yj} y_j}{n} = \frac{2578050}{100} = 25780, 5.$$

Выборочные дисперсии находим по формулам:

$$s_x^2 = \frac{1}{n-1} \left(\sum_{i=1}^n m_{xi} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n m_{xi} x_i \right)^2 \right) =$$

$$= \frac{1}{99} \left(1070757500 - \frac{1}{100} (327150)^2 \right) = 18232, 32;$$

$$s_y^2 = \frac{1}{n-1} \left(\sum_{i=1}^n m_{yi} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^n m_{yi} y_i \right)^2 \right) =$$

$$= \frac{1}{99} \left(66470377500 - \frac{1}{100} (2578050)^2 \right) = 70297, 727.$$

	j	1	2	3	4	5	6	7	8	9	10	11	12	13
i	X\Y	25200	25350	25500	25650	25800	25950	26100	26250	m_{x_i}	$m_{x_i}^{} x_i^{}$	$\sum_{j=1}^{k} m_{ij} y_{j}$	$x^2_{i}m_{ij}$	$x_{i} \sum_{j=1}^{k} m_{ij} y_{j}$
1	3150	3	4	2						9	28350	228000	893025 00	718200000
2	3200		5	7	5					17	54400	433500	174080 000	1387200000
3	3250				8	14	6			28	91000	722100	295750 000	2346825000
4	3300				6	8	9			23	75900	593850	250470 000	1959705000
5	3350						5	6	3	14	46900	365100	157115 000	1223085000
6	3400							5	4	9	30600	235500	104040 000	800700000
7	$m_{y_{j}}$	3	9	9	19	22	20	11	7	100	327150	2578050	107075 7500	8435715000
8	$m_{y_j}^{} y_j^{}$	75600	228150	229500	487350	567600	519000	287100	183750	2578050				
9	$\sum_{i=1}^{m} m_{ij} x_{i}$	9450	28600	28700	61800	71900	65950	37100	23650	327150				
10	$y^2_{j}m_{ij}$	1905120 000	5783602 500	5852250 000	1250052 7500	1464408 0000	1346805 0000	7493310 000	4823437 500	6647037 7500				
11	$y_{j} \sum_{j=1}^{k} m_{ij} x_{i}$	2381400 00	7250100 00	7318500 00	1585170 000	1855020 000	1711402 500	9683100 00	6208125 00					

Корреляционный момент вычисляем по формуле:

$$s_{xy} = \frac{1}{n-1} \left(\sum \sum m_{ij} x_i y_j - \frac{1}{n} \left(\sum m_{xi} x_i \right) \left(\sum m_{yj} y_j \right) \right) =$$

$$= \frac{1}{99} \left(8435715000 - \frac{1}{100} (327150 \cdot 2578050) \right) = 16408, 3.$$

Оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение которой имеет вид

$$y = \bar{y} + r_{xy} \frac{s_y}{s_x} (x - \bar{x}),$$

$$s_x = \sqrt{18232, 32} \approx 135, 03; \quad s_y = \sqrt{70297, 727} \approx 265, 14;$$

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{16408, 3}{135, 03 \cdot 265, 14} = \approx 0, 458.$$

Составляем уравнение эмпирической линии регрессии у на х:

$$y = 25780, 5 + 0, 458 \cdot \frac{265, 14}{135, 03}(x - 3271, 5) =$$
$$= 22838, 4 + 0, 899x$$

Строим линию регрессии и случайные точки $(x_i; y_j)$.

