Lezioni su AMPL & CPLEX

Corso di Ricerca Operativa · Prof. Gianpaolo Oriolo

Gianmaria Leo

Università di Roma "Tor Vergata"

3 Ottobre 2014

Informazioni generali

Contatti: Gianmaria Leo (gianmaria.leo@optrail.com)
Prof. Gianpaolo Oriolo (oriolo@disp.uniroma2.it)

Lezioni: venerdì, ore 16:00 - 17:30, aula B4

Presentazioni

Esercitazioni al computer

Materiale: Da definire (Pagina web del Prof. Oriolo / Google groups)

Esame: Da definire (Modeling/Computational challenge)

Ricerca Operativa

La *Ricerca Operativa* come supporto scientifico alle decisioni per design - analisi - improvement di sistemi e processi

- Definizione del problema
- Raccolta dei dati
- Formulazione di un modello matematico
- Studio delle proprietà del modello
- Scelta di metodi di soluzione
- Analisi dei risultati
- Implementazione della soluzione

Focus delle lezioni

Focus delle lezioni

Problema industriale: Miscelazione rottami di alluminio

Si immagini di poter acquistare, in quantitativi limitati, alcuni rottami costituiti in massima parte da alluminio, ma contenenti anche altri elementi chimici, e di volerli miscelare in modo da ottenere, tramite fusione, un materiale che contenga quantitativi prefissati dei vari elementi chimici. Naturalmente, per correggere la qualità dei rottami disponibili, è sempre possibile acquistare, in quantità teoricamente illimitate, ma ad un prezzo sensibilmente più alto, metalli puri.

Il problema diventa quindi quello di stabilire le quantità di rottami e di metalli puri da impiegare in una miscela che rispetti i vincoli imposti sulla qualità e che risulti di costo minimo.

5 / 16

Problema industriale: Miscelazione rottami di alluminio

• Specifiche di qualitatà per la produzione di "alluminio 6063":

	% min	% max		
Si	0.2	0.6		
Mg	0.45	0.9		
Fe		0.35		
Cu		0.1		
Mn		0.1		
Zn		0.1		
Cr		0.1		
Ti		0.1		
ΑI	96.9	100		
Altri		0.15		

• La produzione di alluminio 6063 richiesta ammonta a 4.5 ton

Problema industriale: Miscelazione rottami di alluminio

• Specifiche di materiali (scarti = "Sc.", rottami = "Rt.") e metalli puri:

	Sc. ALMC	Sc. KAC	Rt.	Al	Si	Mg
% Si	0.5	0.5	0.3		100	
% Mg	0.75	0.7	0.5			100
% Fe	0.2	0.2	0.35			
% Cu	0.01	0.01	0.05			
% Mn	0.02	0.02	0.05			
% Zn	0.02	0.02	0.05			
% Cr	0.02	0.02	0.05			
% Ti	0.02	0.02	0.05			
% AI	97	97	90	100		
% Altri	0.06	0.06	0.77			
Disp. max (ton)	0.5	1.2	2.2	∞	∞	∞
Costo (\$/ton)	1230	1230	1230	2140	1300	2442

7 / 16

Definizione del problema

- Dato un insieme di materie prime, determinare la quantità di ciascuna materia prima per la produzione di un semilavorato
- È nota la quantità richiesta del semilavorato da produrre
- È nota la composizione di ciascuna materia prima
- Sono noti i parametri numerici che determinano la qualità del semilavorato
- Sono noti i costi unitari di ciscuna materia prima
- Il risultato della miscelazione deve:
 - garantire la quantità richiesta del semilavorato
 - soddisfare i requisiti specifici sulla qualità
 - minimizzare il costo totale delle materie prime

Modello

Insiemi:

- M: insieme dei materiali da miscelare
- E: insieme degli elementi chimici

Parametri:

- c_j : costo unitario del materiale $j \in M$
- q_i^{\min} , q_i^{\max} : percentuale minima e massima dell'elemento $i \in E$ da osservare
- p_{ij} : percentuale di elemento $i \in E$ presente nel materiale $j \in M$
- d_j^{max} : disponibilità del materiale $j \in M$
- L: quantità di semilavorato da produrre

Formulazione PL

Variabili:

• x_i : Quantità di materiale $i \in M$ da acquistare

Vincoli: • Quantitativo totale da produrre:

$$\sum_{j\in M} x_j = L$$

Disponibilità del materiale:

$$0 \le x_j \le d_j^{\mathsf{max}} \qquad \forall j \in M$$

Qualità della miscela:

$$q_i^{\min} \le \sum_{i \in M} p_{ij} \frac{x_j}{L} \le q_i^{\max} \qquad \forall i \in E$$

Obiettivo:

Minimizzare il costo di acquisto dei materiali:

$$\min \sum_{j \in M} c_j x_j$$

Proviamo a usare AMPL...

 Prima della versione AMPL per il corso, è possibile scaricare un trial (multiplatform) dalla pagina http://www.ampl.com/DOWNLOADS/

 Scaricare il solutore MINOS dalla pagina http://www.ampl.com/DOWNLOADS/details.html#MINOS

 Documentazione disponibile alla pagina http://ampl.com/resources/the-ampl-book/chapter-downloads/

G. Leo (UniRoma2)

Proviamo a usare AMPL...

- lanciare il programma
- specificare un solutore
- dichiarare le variabili
- dichiarare la funzione obiettivo
- dichiarare i vincoli
- risolvere
- visualizzare la soluzione

```
ampl: option solver <path2solver>;
ampl: var <variable>;
ampl: minimize <objFunc_label>: <objFunc_expr>;
ampl: subject to <constr_label>: <constr_expr>;
ampl: solve;
ampl: display <var_1>, <var_2>, <...>;
ampl: quit;
```

Esercizio

Miscelazione Alluminio

Risolvere la formulazione del problema di miscelazione dell'alluminio considerando i dati riportati nelle slide precedenti.

13 / 16

G. Leo (UniRoma2) AMPL & CPLEX 03/10/14

Esempio di Risoluzione - Problema

Una fabbrica metallurgica utilizza un laminatoio che prende delle lastre di acciaio e le trasforma in due tipologie di prodotti semi-lavorati: barre e bobine. Questi semi-lavorati vengono prodotti a differenti ritmi di produzione e vengono venduti a prezzi di mercato differenti:

	ritmi (ton/ora)	prezzi (\$/ton)
Barre	200	25
Bobine	140	30

Questa settimana la fabbrica deve decidere quante tonnellate di barre e di bobine produrre, in modo da non superare le 40 ore di attività, non superare la domanda di 6000 tonnellate di barre e 4000 tonnellate di bobine, e da ottenere il massimo profitto.

Esempio di Risoluzione - Formulazione

Si indica con x il numero di tonnellate di barre prodotte e con y il numero di tonnellate di bobine prodotte:

max
$$25x + 30y$$

s.t. $\frac{1}{200}x + \frac{1}{140}y \le 40$
 $0 \le x \le 6000$
 $0 < y < 4000$

Esempio di Risoluzione - AMPL

• File: example1.txt:

option solver 'minos/minos'; var x: var y; maximize profitto: 25*x + 30*y; subject to tempo: $(1/200)*x + (1/140)*y \le 40$; subject to limite_barre: 0 <= x <= 6000;</pre> subject to limite_bobine: 0 <= y <= 4000;</pre> solve; display x, y; display profitto; quit;

• Comando:

./bin/ampl < examples/example1.txt > logs/ampl_ex1.log

◆□ ト ◆□ ト ◆ □ ト ◆ □ ト ◆ □ ◆ ○ へ ○ ○