APPM Statistics Preliminary Exams

December 1, 2024

August 2024

- 1. Let $\lambda > 0$ and $0 be real constants. Suppose that <math>N \sim \text{Poisson}(\lambda)$ and that, conditioned on $N = n, B \sim \text{Binomial}(n, p)$. In particular, B = 0 when N = 0.
 - (a) Show that $B \sim \text{Poisson}(\lambda p)$.
 - (b) Without further calculations, what should the distribution of (N-B) be?
 - (c) Finally, show that B and (N B) are independent.
- 2. In what follows, \xrightarrow{p} and \xrightarrow{d} denote convergence in probability and distribution of random variables, respectively. Additionally, "a.s." stands for almost surely.
 - (a) Is it TRUE that if $X_n \stackrel{d}{\to} 0$ then $X_n \stackrel{p}{\to} 0$? If so, show this using the definitions of convergence in probability and distribution, otherwise provide a counter-example.
 - (b) Let $(X_i)_{i\geq 0}$ be a sequence of independent and identically distributed (i.i.d.) random variables with mean 2 and variance 1. Invoking well-known a.s. convergence results, which you must name explicitly as part of your solution, justify the existence of the following limit in the a.s. sense, and determine it explicitly.

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n X_i^2}{\sqrt{n\cdot\sum_{i=1}^n \left(X_i-\bar{X}\right)^2}}, \text{ where } \bar{X}:=\frac{1}{n}\sum_{i=1}^n X_i.$$

- 3. Suppose X_1, \ldots, X_n with n > 3 are i.i.d. exponential with rate parameter $\lambda > 0$ (that is, with mean $1/\lambda$). We will consider estimation of λ .
 - (a) Find the expectation of $1/\bar{X}$.
 - (b) Based on (a), find an unbiased estimator for λ .
 - (c) Find the mean squared error (MSE) of $1/\bar{X}$, and the MSE of your estimator from part (b). Which one is smaller?
- 4. Suppose X_1, \ldots, X_n are i.i.d. with p.d.f.

$$f(x;\lambda) = \lambda^2 x e^{-\lambda x}, \quad x > 0,$$

where $\lambda > 0$ is unknown.

- (a) Find a maximum likelihood estimator (MLE) for λ .
- (b) Find the asymptotic distribution of your MLE from (a).
- (c) Find an MLE for $e^{-\lambda}$.
- (d) Find the asymptotic distribution of your MLE from (c).
- 5. Let Y_1, \ldots, Y_n be independent, with $Y_i \sim \text{Poisson}(a_i \cdot \nu)$ for some known constants a_i and unknown $\nu > 0$.
 - (a) Find the joint p.m.f. of Y_1, \ldots, Y_n
 - (b) Find a sufficient and complete statistic for ν .
 - (c) Determine the unique UMVUE of ν .
 - (d) Determine the unique UMVUE of ν^2 .
- 6. Let Y_1, \ldots, Y_n be independent, with $Y_i \sim \text{Poisson}(a_i \cdot \nu)$ for some known constants a_i and unknown $\nu > 0$.
 - (a) Find the joint p.m.f. of Y_1, \ldots, Y_n
 - (b) Find a sufficient and complete statistic for ν .
 - (c) Determine the unique UMVUE of ν .
 - (d) Determine the unique UMVUE of ν^2 .