Estado	Finalizado
Comenzado	martes, 6 de mayo de 2025, 10:14
Completado	martes, 6 de mayo de 2025, 10:26
Duración	12 minutos 12 segundos
Calificación	67 de 100
Pregunta 1	

Correcta

Se puntúa 33 sobre 33

Indique cual de las siguientes expresiones corresponde al test MAP que se realiza en un receptor con canal AWGN.

Seleccione una:

- a. Ninguna es correcta. ⊘
- \bigcirc b. Selectionar la \hat{H}_j que maximice $+\frac{||e_j||^2}{2} \frac{N_0}{2}lnP_H(j)$.
- \bigcirc c. Selectionar la \hat{H}_j que maximice $||y-c_j||^2-N_0lnP_H(j)$.
- \bigcirc d. Selectionar la \hat{H}_j que minimice $\int r(t)w_j^*(t)dt \frac{||w_j||^2}{2} + \frac{N_0}{2}lnP_H(j)$.

Respuesta correcta

La respuesta correcta es: Ninguna es correcta.

Pregunta 2

Correcta

Se puntúa 34 sobre 34

Indique las opciones correctas

Seleccione una o más de una:

- a. La respuesta al impulso del filtro apareado es $h(t) = b^*(T t)$, siendo T un parámetro seleccionado de manera Θ Verdadero. que h(t) sea causal.
- \square b. La salida de un filtro apareado se expresa como $y(t)=\int r(\alpha)b^*(t-\alpha)d\alpha$, siendo r(t) la entrada al receptor y b(t) una función $\psi_j(t)$ o $w_j(t)$.
- \square c. Para obtener una implementación de $\int r(t)b^*(t)dt$ la salida del filtro apareado debe ser muestreada. \bigcirc Verdadero.
- \square d. La única forma de implementar una operación de tipo $\int r(t)b^*(t)dt$ es a través de la utilización de un filtro apareado.

Respuesta correcta

Las respuestas correctas son: Para obtener una implementación de $\int r(t)b^*(t)dt$ la salida del filtro apareado debe ser muestreada., La respuesta al impulso del filtro apareado es $h(t) = b^*(T-t)$, siendo T un parámetro seleccionado de manera que h(t) sea causal.

Pregunta 3

Incorrecta

Se puntúa 0 sobre 33

Los siguientes parámetros permiten calcular el bit error rate para una modulación antipodal (por ejemplo BPSK)

 P_T =Potencia de señal transmitida [watts]

 $\lambda \,$ =Longitud de onda de la portadora $\,[m]$

 G_T =Ganancia de la antena transmisora

 G_R =Ganancia de la antena receptora

d = distancia [Km]

 T_N = Temperatura de ruido del receptor [kelvin]

 R_b = bit rate [kbps]

Escriba una función en python3 BER(pt,lda,gt,gr,d,tn,rb) que devuelva el bit error rate (BER)

Exprese el resultado con con 4 decimales (para su corrección automática)

Ayuda:

incluya la librería numpy para acceder a la función sqrt()

incluya la librería scipy para acceder a la función Q

"from scipy.stats import norm"

Editor online: https://repl.it/languages/python3

Por ejemplo:

Prueba	Resultado	
print(BER(16.8 ,0.13,575.44 ,1.38e6 ,1.6e8,13.5 ,117.6))	0.012	

Respuesta: (sistema de penalización: 10, 20, ... %)

Reiniciar respuesta

```
#incluir librerías necesarias
kb=1.381e-23 #Constante de Boltzmann
def BER(pt,lda,gt,gr,d,tn,rb):
    # tu código
    return bit_error_rate
```

Debug: source code from all test runs

Run 1

```
#incluir librerías necesarias
kb=1.381e-23 #Constante de Boltzmann
def BER(pt,lda,gt,gr,d,tn,rb):
    # tu código
    return bit_error_rate
 _student_answer__ = """#incluir librerías necesarias
kb=1.381e-23 #Constante de Boltzmann
def BER(pt,lda,gt,gr,d,tn,rb):
    # tu código
    return bit_error_rate"""
SEPARATOR = "#<ab@17943918#@>#"
print(BER(16.8 ,0.13,575.44 ,1.38e6 ,1.6e8,13.5 ,117.6))
print(SEPARATOR)
print(BER(16.8 ,0.26,575.44 ,1.38e6 ,1.6e11,13.5 ,117.6))
print(SEPARATOR)
print(BER(10.8 ,0.13,300 ,1.38e5 ,1.6e8,10.5 ,117.6))
print(SEPARATOR)
print(BER(1 ,0.15,1 ,100 ,800,300 ,1000))
```

Run 2

```
#incluir librerías necesarias
kb=1.381e-23 #Constante de Boltzmann
def BER(pt,lda,gt,gr,d,tn,rb):
    # tu código
    return bit_error_rate

__student_answer__ = """#incluir librerías necesarias
kb=1.381e-23 #Constante de Boltzmann
def BER(pt,lda,gt,gr,d,tn,rb):
    # tu código
    return bit_error_rate"""

SEPARATOR = "#<ab@17943918#@>#"
print(BER(16.8 ,0.13,575.44 ,1.38e6 ,1.6e8,13.5 ,117.6))
```

	Prueba	Esperado	Conseguido	
⊗	<pre>print(BER(16.8 ,0.13,575.44 ,1.38e6 ,1.6e8,13.5 ,117.6))</pre>	0.012	<pre>***Error*** Traceback (most recent call last): File "testerpython3", line 15, in <module> print(BER(16.8 ,0.13,575.44 ,1.38e6 ,1.6e8,13.5 ,117.6)) File "testerpython3", line 5, in BER return bit_error_rate NameError: name 'bit_error_rate' is not defined</module></pre>	*

Prueba cancelada debido a un error.

Su código debe superar todas las pruebas para conseguir puntuación. Vuelva a intentarlo.

Mostrar diferencias

► Show/hide question author's solution (Python3)

Puntos para este envío: 0/33.