

Characterization of Lipschitz continuous DC functions*

A. Hantoute^{1†}, J.E. Martínez-Legaz^{2‡}

¹Universidad de Chile, Centro de Modelamiento Matemático (CMM)

Avda Blanco Encalada 2120, Piso 7, Santiago, Chile

²Universitat Autònoma de Barcelona

Departament d'Economia i d'Història Econòmica, 08193 Bellaterra, Spain

Abstract

We give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a locally convex space, to be Lipschitz continuous. Our criterion relies on the intersections of the ε -subdifferentials of the involved functions.

Key words. DC functions, Lipschitz continuity, Integration formulas, ε -subdifferential

Mathematics Subject Classification (2010): 26B05, 26J25, 49H05.

1 Introduction

In this paper, we work with a (Hausdorff) real locally convex topological vector space X whose dual is denoted by X^* . The duality product is denoted by $\langle \cdot, \cdot \rangle : X \times X^* \rightarrow \mathbb{R}$, and the zero vector (in X and X^*) by θ .

Classical integration formulas ([8, 9]) have been first established in the Banach spaces setting for proper lower semicontinuous (lsc, for short) convex functions using the Fenchel subdifferential, which is defined for a given function $f : X \rightarrow \mathbb{R} \cup \{+\infty\}$ and a point x in the domain of f , $\text{dom } f := \{x \in X \mid f(x) < +\infty\}$, by

$$\partial f(x) := \{x^* \in X^* : f(y) - f(x) \geq \langle y - x, x^* \rangle \quad \text{for all } y \in X\}.$$

These results have been extended outside the Banach space ([1, 7]) and the non-convex settings ([3]) by using the ε -subdifferential mapping, defined for $\varepsilon > 0$

*The research of the first author has been supported by the CONICYT of Chile (Fondecyt No 1110019 and ECOS-Conicyt No C10E08) and by the MICINN of Spain (grant MTM2008-06695-C03-02). The research of the second author has been supported by MICINN of Spain, grant MTM2008-06695-C03-03, by Generalitat de Catalunya and by the Barcelona GSE Research Network. He is affiliated to MOVE (Markets, Organizations and Votes in Economics).

†ahantoute@dim.uchile.cl

‡juanenrique.martinez.legaz@uab.cat

by

$$\partial_\varepsilon f(x) := \{x^* \in X^* \mid f(y) - f(x) \geq \langle y - x, x^* \rangle - \varepsilon \text{ for all } y \in X\}.$$

In this paper we exploit an idea, recently used in [6], to establish several characterizations for the Lipschitz character of the difference of convex (DC, for short) functions. As a consequence, if the Lipschitz constant is equal to 0 then we obtain an integration formula guaranteeing the coincidence of the involved functions up to an additive constant. The main result is presented in Theorem 1 in a slightly more general form, valid in the locally convex spaces setting, which characterizes the domination of the variations of DC functions by means of a convex continuous functions. The desired integration formula is obtained in Theorem 5.

2 The main result

The desired results providing the characterization of Lipschitz DC functions will be given in Theorem 5, which is a consequence of the following theorem.

In what follows, $f, g : X \rightarrow \mathbb{R} \cup \{+\infty\}$ are two given functions with a common domain

$$D := f^{-1}(\mathbb{R}) = g^{-1}(\mathbb{R}),$$

assumed nonempty and convex.

Theorem 1 *Let $h : X \rightarrow \mathbb{R}$ be a continuous convex function such that $h(\theta) = 0$. Then, the following statements are equivalent:*

(i) *f and g are convex, lsc on D , and satisfy*

$$f(x) - g(x) \leq f(y) - g(y) + h(x - y) \quad \text{for all } x, y \in D.$$

(ii) *For each $x \in D$*

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) + \partial_\varepsilon h(\theta) \quad \text{for all } \varepsilon > 0.$$

(iii) *For each $x \in D$ there exists $\delta > 0$ such that*

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) + \partial_\varepsilon h(\theta) \quad \text{for all } \varepsilon \in (0, \delta).$$

(iv) *For each $x \in D$*

$$\partial_\varepsilon f(x) \cap (\partial_\varepsilon g(x) + \partial_\varepsilon h(\theta)) \neq \emptyset \quad \text{for all } \varepsilon > 0.$$

(v) *For each $x \in D$ there exists $\delta > 0$ such that*

$$\partial_\varepsilon f(x) \cap (\partial_\varepsilon g(x) + \partial_\varepsilon h(\theta)) \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

Proof. (i) \implies (ii). Since f is proper ($\text{dom } f \neq \emptyset$), convex and lsc on D , for any given $\varepsilon > 0$ the ε -subdifferential operator $\partial_\varepsilon f$ is nonempty on D ([11, Prop. 2.4.4(iii)]). For $x \in D$, we define the function $\tilde{g} : X \rightarrow \mathbb{R} \cup \{+\infty\}$ as

$$\tilde{g} := g + f(x) - g(x)$$

so that by (i) the inequality $f \leq \tilde{g} + h(\cdot - x)$ holds, as well as $f(x) = \tilde{g}(x) + h(\theta) = \tilde{g}(x)$. Notice that $\text{cl } \tilde{g} = \text{cl } g + f(x) - g(x)$, where cl refers to the corresponding lsc envelope. Hence, as g is lsc on D , $\text{cl } \tilde{g}$ coincides with $g + f(x) - g(x)$ on D , which implies that it is proper. Therefore, since ([4, Lemma 15])

$$\text{cl}(\tilde{g} + h(\cdot - x)) = \text{cl } \tilde{g} + h(\cdot - x) = \text{cl } g + h(\cdot - x) + f(x) - g(x)$$

and $\partial_\delta(\text{cl } \tilde{g})(x) = \partial_\delta \tilde{g}(x) = \partial_\delta g(x)$ (for all $\delta > 0$), by appealing to the sum rule of the ε -subdifferential (e.g., [11, Theorem 2.8.3]) we get

$$\begin{aligned} \partial_\varepsilon f(x) &\subset \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \geq 0 \\ \varepsilon_1 + \varepsilon_2 = \varepsilon}} (\partial_{\varepsilon_1}(\text{cl } \tilde{g})(x) + \partial_{\varepsilon_2} h(\theta)) \\ &= \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \geq 0 \\ \varepsilon_1 + \varepsilon_2 = \varepsilon}} (\partial_{\varepsilon_1} g(x) + \partial_{\varepsilon_2} h(\theta)) \subset \partial_\varepsilon g(x) + \partial_\varepsilon h(\theta); \end{aligned}$$

showing that (ii) holds.

The implication (ii) \implies (iii) \implies (v) and (ii) \implies (iv) \implies (v) are obvious.

(v) \implies (i). We fix $x, y \in D$ and take an arbitrary number $\varepsilon > 0$. For $m = 1, 2, \dots$ we denote

$$x_{m,i} := x + \frac{i}{m}(y - x) \quad \text{for } i = 0, 1, \dots, m.$$

Then, by the current assumption (v) for each i and m there exists $\gamma_{m,i} \in (0, m^{-1})$ such that

$$\partial_{m^{-1}\gamma_m\varepsilon} f(x_{m,i}) \cap [\partial_{m^{-1}\gamma_m\varepsilon} g(x_{m,i}) + \partial_{m^{-1}\gamma_m\varepsilon} h(\theta)] \neq \emptyset \quad \text{for all } \gamma \in (0, \gamma_{m,i}).$$

Set

$$\gamma_m := \min_{i \in \{1, \dots, m\}} \gamma_{m,i},$$

so that $\gamma_m > 0$, and choose $u_{m,i}^* \in \partial_{m^{-1}\gamma_m\varepsilon} f(x_{m,i})$, $v_{m,i}^* \in \partial_{m^{-1}\gamma_m\varepsilon} g(x_{m,i})$ and $w_{m,i}^* \in \partial_{m^{-1}\gamma_m\varepsilon} h(\theta)$ such that $u_{m,i}^* = v_{m,i}^* + w_{m,i}^*$ for $i = 1, \dots, m-1$. In this way, if $u^* \in \partial_\varepsilon f(x)$ and $v^* \in \partial_\varepsilon g(y)$ are given we write

$$\begin{aligned} f(x_{m,1}) - f(x) &\geq \frac{1}{m} \langle y - x, u^* \rangle - \varepsilon \\ f(x_{m,i+1}) - f(x_{m,i}) &\geq \frac{1}{m} \langle y - x, u_{m,i}^* \rangle - m^{-1}\gamma_m\varepsilon \quad (i = 1, \dots, m-1) \\ g(x_{m,i-1}) - g(x_{m,i}) &\geq -\frac{1}{m} \langle y - x, v_{m,i}^* \rangle - m^{-1}\gamma_m\varepsilon \quad (i = 1, \dots, m-1) \\ g(x_{m,m-1}) - g(y) &\geq -\frac{1}{m} \langle y - x, v^* \rangle - \varepsilon. \end{aligned}$$

Adding up these inequalities and using the facts that $x_{m,m} = y$ and $x_{m,0} = x$, together with $u_{m,i}^* = v_{m,i}^* + w_{m,i}^*$, we obtain that

$$\begin{aligned} f(y) - f(x) + g(x) - g(y) &\geq \frac{1}{m} \langle y - x, u^* - v^* \rangle + \frac{1}{m} \sum_{i=1}^{m-1} \langle y - x, w_{m,i}^* \rangle \\ &\quad - 2(m-1)m^{-1}\gamma_m\varepsilon - 2\varepsilon. \end{aligned}$$

Thus, since $w_{m,i}^* \in \partial_{m^{-1}\gamma_m\varepsilon} h(\theta)$ we deduce that

$$\begin{aligned} f(y) - f(x) + g(x) - g(y) &\geq \frac{1}{m} \langle y - x, u^* - v^* \rangle - \frac{m-1}{m}h(x-y) \\ &\quad - 2(m-1)m^{-1}\gamma_m\varepsilon - 2\varepsilon \end{aligned}$$

which gives us, as m goes to ∞ (recall that $0 < \gamma_m \leq m^{-1}$),

$$f(y) - f(x) + g(x) - g(y) \geq -h(x-y) - 2\varepsilon.$$

Hence, by letting ε go to 0 we get

$$f(x) - g(x) \leq f(y) - g(y) + h(x-y);$$

that is, (i) follows. ■

The particular case $h := 0$ in Theorem 1 yields a new integration result, which relies on the intersection of the ε -subdifferentials of the nominal functions. We will denote by f_D and g_D the restrictions of f and g to D , respectively.

Corollary 2 (cf. [2, Corollary 2.5]) *The following statements are equivalent:*

- (i) *f and g are convex, lsc on D , and $f_D - g_D$ is constant.*
- (ii) *For each $x \in D$*

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) \quad \text{for all } \varepsilon > 0.$$

- (iii) *For each $x \in D$ there exists $\delta > 0$ such that*

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) \quad \text{for all } \varepsilon \in (0, \delta).$$

- (iv) *For each $x \in D$*

$$\partial_\varepsilon f(x) \cap \partial_\varepsilon g(x) \neq \emptyset \quad \text{for all } \varepsilon > 0.$$

- (v) *For each $x \in D$ there exists $\delta > 0$ such that*

$$\partial_\varepsilon f(x) \cap \partial_\varepsilon g(x) \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

The following corollary, giving a criterion for integrating the Fenchel subdifferential, is an immediate consequence of Corollary 2 in view of the straightforward relationships $\partial f(x) \subset \partial_\varepsilon f(x)$ and $\partial g(x) \subset \partial_\varepsilon g(x)$ for every $x \in D$ and every $\varepsilon > 0$.

Corollary 3 (cf. [6, Theorem 1]) *The following statements are equivalent:*

(i) *For each $x \in D$*

$$\emptyset \neq \partial f(x) \subset \partial g(x).$$

(ii) *For each $x \in D$*

$$\partial f(x) \cap \partial g(x) \neq \emptyset.$$

(iii) *For each $x \in D$*

$$\emptyset \neq \partial f(x) = \partial g(x).$$

If these statements hold, then f and g are convex, lsc on D , and $f_D - g_D$ is constant.

Remark 4 a) The preceding results remain true if X is an arbitrary locally convex real topological vector space, not necessarily Hausdorff. Indeed, the equivalence between the convex and lsc character of a function and the nonemptiness of its ε -subdifferentials is a reformulation of the Fenchel-Moreau Theorem, the validity of which in non-Hausdorff spaces has been proved by S. Simons [10, Theorem 10.1].

b) The equivalence between (i) and (ii) in Corollary 2 also follows from a well-known characterization of global minima of DC functions due to J.-B. Hiriart-Urruty [5, Theorem 4.4]. Indeed, according to this characterization, if f and g are convex then one has $\partial_\varepsilon f(x) \subset \partial_\varepsilon g(x)$ for all $\varepsilon > 0$ if and only if x is a global minimum of $f_D - g_D$. Hence, that condition holds for every $x \in D$ if and only if every $x \in D$ is a global minimum of $f_D - g_D$, which is obviously equivalent to $f_D - g_D$ being constant on D .

From now on we suppose that X is a normed space with a norm denoted by $\|\cdot\|$ whose dual norm is $\|\cdot\|_*$. We use $B_*(\theta, K)$ to denote the closed ball in $(X^*, \|\cdot\|_*)$ with center θ and radius $K \geq 0$, and for $A, B \subset X^*$ we set

$$d(A, B) := \inf \{\|a - b\|_* : a \in A, b \in B\},$$

with the convention that $d(A, B) := +\infty$ if A or B is empty.

At this moment, we easily get the main result of the paper by taking $h := K \|\cdot\|$ in Theorem 1:

Theorem 5 *Let $K \geq 0$. Then, the following statements are equivalent:*

- (i) *f and g are convex, lsc on D , and $f_D - g_D$ is Lipschitz with constant K .*
- (ii) *For each $x \in D$*

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) + B_*(\theta, K) \quad \text{for all } \varepsilon > 0.$$

- (iii) *For each $x \in D$ there exists $\delta > 0$ such that*

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) + B_*(\theta, K) \quad \text{for all } \varepsilon \in (0, \delta).$$

(iv) For each $x \in D$

$$\partial_\varepsilon f(x) \cap [\partial_\varepsilon g(x) + B_*(\theta, K)] \neq \emptyset \quad \text{for all } \varepsilon > 0.$$

(v) For each $x \in D$ there exists $\delta > 0$ such that

$$\partial_\varepsilon f(x) \cap [\partial_\varepsilon g(x) + B_*(\theta, K)] \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

(vi) For each $x \in D$

$$d(\partial_\varepsilon f(x), \partial_\varepsilon g(x)) \leq K \quad \text{for all } \varepsilon > 0.$$

(vii) For each $x \in D$ there exists $\delta > 0$ such that

$$d(\partial_\varepsilon f(x), \partial_\varepsilon g(x)) \leq K \quad \text{for all } \varepsilon \in (0, \delta).$$

Proof. The proofs of the equivalences (i) \iff (ii) \iff (iii) \iff (iv) \iff (v) follow from Theorem 1 by observing that $\partial_\varepsilon(K\|\cdot\|)(\theta) = B_*(\theta, K)$. The implications (iv) \implies (vi) \implies (vii) are obvious. To prove (vii) \implies (i), given $x \in D$ we notice that (vii) implies the existence of $\delta > 0$ such that, for all $\gamma > 0$,

$$\partial_\varepsilon f(x) \cap [\partial_\varepsilon g(x) + B_*(\theta, K + \gamma)] \neq \emptyset \quad \text{for all } \varepsilon \in (0, \delta).$$

Hence, by the equivalence between (v) and (i), f and g are convex, lsc on D , and $f_D - g_D$ is Lipschitz with constant $K + \gamma$. Therefore, since γ is arbitrary, $f_D - g_D$ is Lipschitz with constant K . ■

Observing that statements (i), (iv), (v), (vi) and (vii) in Theorem 5 are symmetric in f and g , it turns out that, under the assumptions of this theorem, statements (ii) and (iii) are also symmetric; therefore, if one has

$$\emptyset \neq \partial_\varepsilon f(x) \subset \partial_\varepsilon g(x) + B^*(\theta, K) \quad \text{for all } \varepsilon > 0$$

for each $x \in D$, then one also has

$$\emptyset \neq \partial_\varepsilon g(x) \subset \partial_\varepsilon f(x) + B^*(\theta, K) \quad \text{for all } \varepsilon > 0$$

for each $x \in D$. We thus obtain the following corollary:

Corollary 6 Let $K \geq 0$. If some (hence all) of the statements (i)–(vii) of Theorem 5 holds, then for every $x \in D$ and every $\varepsilon > 0$ the Hausdorff distance between $\partial_\varepsilon f(x)$ and $\partial_\varepsilon g(x)$ does not exceed the constant K .

Corollary 7 The following statements are equivalent:

- (i) f and g are convex, lsc on D , and $f_D - g_D$ is constant.
- (ii) For each $x \in D$

$$d(\partial_\varepsilon f(x), \partial_\varepsilon g(x)) = 0 \quad \text{for all } \varepsilon > 0.$$

(iii) For each $x \in D$ there exists $\delta > 0$ such that

$$d(\partial_\varepsilon f(x), \partial_\varepsilon g(x)) = 0 \quad \text{for all } \varepsilon \in (0, \delta).$$

From the previous result we obtain a complement to Corollary 3:

Corollary 8 *The following statements are equivalent:*

(i) *For each $x \in D$*

$$\emptyset \neq \partial f(x) = \partial g(x).$$

(ii) *For each $x \in D$*

$$d(\partial f(x), \partial g(x)) = 0.$$

References

- [1] BACHIR, M., DANIILIDIS, A., PENOT, J.-P. *Lower subdifferentiability and integration.* Set-Valued Anal. 10 (2002), no. 1, 89–108.
- [2] BURACHIK, R. S., MARTÍNEZ-LEGAZ, J. E., ROCCO, M. *On a sufficient condition for equality of two maximal monotone operators,* Set-Valued Var. Anal. 18 (2010), no. 3-4, 327–335.
- [3] CORREA, R., GARCIA, Y., HANTOUTE, A. *Integration formulas via the Fenchel Subdifferential of nonconvex functions,* Nonlinear Analysis (2011), doi: 10.1016/j.na.2011.05.085.
- [4] HANTOUTE, A., LÓPEZ, M. A., ZĂLINESCU, C. *Subdifferential calculus rules in convex analysis: a unifying approach via pointwise supremum functions,* SIAM J. Optim. 19 (2008), no. 2, 863–882.
- [5] HIRIART-URRUTY, J.-B. *From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality.* Nonsmooth optimization and related topics (Erice, 1988), 219–239, Ettore Majorana Internat. Sci. Ser. Phys. Sci., 43, Plenum, New York, 1989.
- [6] KOCOUREK, P. *An elementary new proof of the determination of a convex function by its subdifferential,* Optimization 59 (2010), no. 8, 1231–1233.
- [7] MARCELLIN, S., THIBAULT, L. *Integration of ε -Fenchel subdifferentials and maximal cyclic monotonicity.* J. Global Optim. 32 (2005), no. 1, 83–91.
- [8] MOREAU, J. J. Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles. Collège de France, 1966.
- [9] ROCKAFELLAR, R. T. *On the maximal monotonicity of subdifferential mappings.* Pacific J. Math. 33 (1970), 209–216.
- [10] SIMONS, S. *Banach SSD spaces and classes of monotone sets,* J. Convex Anal. 18 (2011), no. 1, 227–258.
- [11] ZĂLINESCU, C. *Convex analysis in general vector spaces,* World Scientific Publishing Co., Inc., River Edge, NJ, 2002.