

MERL DSU

RISC-V Pipeline Core

TABLE OF CONTENTS

- Overview
- Implementation of Fetch Cycle
- Implementation of Decode Cycle
- Implementation of Execute Cycle
- Implementation of Memory Cycle
- Implementation of Write Back Cycle
- Implementation of Pipeline Top
- Pipeline Hazards
- Implementation of Hazard Unit
- Implementation of Pipeline Top II

Overview of RISC-V Pipeline Architecture

Pipelining

We design a pipelined processor by subdividing the single-cycle processor into five pipeline stages. Thus, five instructions can execute simultaneously, one in each stage. Because each stage has only one-fifth of the entire logic, the clock frequency is approximately five times faster.

Pipeline Datapath

Implementation of Fetch Cycle

Abstract View of Pipelining

Fetch Cycle Datapath

Modules to be Integrated:

- 1) PC Mux
- 2) Program Counter
- 3) Adder
- 4) Instruction Memory
- 5) Fetch Stage Registers

Implementation of Decode Cycle

Decode Cycle Datapath

Modules to be Integrated:

- 1) Control Unit
- 2) Register File
- 3) Extender
- 4) Decode Stage Registers

Implementation of Execute Cycle

Execute Cycle Datapath

Modules to be Integrated:

- 1) AND Gate
- 2) Mux
- 3) Adder
- 4) ALU
- 5) Execute Stage Registers

X

V

Implementation of Memory Cycle

Pipeline Datapath

Memory Cycle Datapath

Modules to be Integrated:

- 1) Data Memory
- 2) Memory Stage Registers

Implementation of Write Back Cycle

Write Back Cycle Datapath

Modules to be Integrated:

1) Mux

Implementation of Pipeline Top

Pipeline Datapath

Pipeline Hazards

Pipeline Hazard

• Structural Hazard

- 1. Hardware does not support the execution of instruction in same clock cycle.
- 2. Without having Two memories RISC-V pipelining architecture will have structural hazard.

Data Hazard

- Data to be executed is not available.
- 2. May occur when pipeline is stalled.
- 3. Solve by using **forwarding** or **bypassing** technique.

Data Hazard In Pipelining

Solution of Data Hazards

- Solving Data Hazards with nops
- Solving Data Hazard with Forwarding / Bypassing

Using Nops

Using Forwarding / Bypassing

Updated Pipeline Top Architecture

Implementation of Hazard Unit

Condition Table

Mux control	Source	Explanation
ForwardA = 00	ID/EX	The first ALU operand comes from the register file.
ForwardA = 10	EX/MEM	The first ALU operand is forwarded from the prior ALU result.
ForwardA = 01	MEM/WB	The first ALU operand is forwarded from data memory or an earlier ALU result.
ForwardB = 00	ID/EX	The second ALU operand comes from the register file.
ForwardB = 10	EX/MEM	The second ALU operand is forwarded from the prior ALU result.
ForwardB = 01	MEM/WB	The second ALU operand is forwarded from data memory or an earlier ALU result.

Condition for Data Hazard

Memory Stage

if (RegWriteM and (RdM != 0) and (RdM == Rs1E))
ForwardAE = 10

if (RegWriteM and (RdM != 0) and (RdM == Rs2E))
ForwardBE = 10

WriteBack Stage

if (RegWriteW and (RdW != 0) and (RdW == Rs1E))
ForwardAE = 01

if (RegWriteW and (RdW != 0) and (RdW == Rs2E))
ForwardBE = 01

Implementation of Pipeline Top II

Updated Pipeline Top Architecture

Thank You

