Differential Equations

Total Response for Linear Differential System

Given Equation:

```
\[ \frac{d^2 y(t)}{dt^2} + 2 \frac{y(t)}{dt} = \frac{x(t)}{dt} + x(t) \]
```

with initial conditions (y(0) = 2) and $(\cot\{y\}(0) = 1)$, and input (x(t) = u(t)). The objective is to determine the total response of the system.

Step 1: Express the Differential Equation

Given differential equation:

```
[ \frac{d^2 y(t)}{dt^2} + 2 \frac{y(t)}{dt} = \frac{x(t)}{dt} + x(t) ]
```

and input $\ (x(t) = u(t) \)$, where $\ (u(t) \)$ is the unit step function.

Step 2: Decompose into Homogeneous and Particular Solutions

Split the response into the homogeneous response $\ (y_{h}(t)) \$ and the particular response $\ (y_{p}(t)) \$

```
\[ y(t) = y_{h}(t) + y_{p}(t) \]
```

Step 3: Solve the Homogeneous Equation

The homogeneous differential equation is:

```
\[ \frac{d^2 y_{h}(t)}{dt^2} + 2 \frac{d y_{h}(t)}{dt} = 0 \]
```

Solve the characteristic equation:

```
\[ r^2 + 2r = 0 \]
\[ r(r + 2) = 0 \]
\[ r = 0, -2 \]
```

The general solution for $(y_{h}(t))$ is:

```
\[ y_{h}(t) = C_1 e^{0 \cdot t} + C_2 e^{-2t} \]
\[ \therefore y_{h}(t) = C_1 + C_2 e^{-2t} \]
```

Step 4: Solve for Particular Solution using Input

For $\ (x(t) = u(t) \)$:

The particular solution $(y_{p}(t))$ can be assumed of the form:

```
\[ y_{p}(t) = A u(t) \]
```

Substitute $(y_{p}(t))$ into the original differential equation:

```
\[ 0 + 2 \cdot 0 = \delta(t) + u(t) \]
\[ 0 = 0 + [A \delta(t) + A u(t)] \]
```

Solving for \(A \):

```
\[ 0 = A \cdot 1 \cdot \delta(t) + A u(t) \]
\[ A \cdot \delta(t) + A u(t) = 0 \]
\[ A = 0 \]
```

Thus, the particular solution is:

```
\[ y_{p}(t) = 0 \]
```

Step 5: Combine General and Particular Solutions

```
\[ y(t) = y_{h}(t) + y_{p}(t) \]
\[ y(t) = (C_1 + C_2 e^{-2t}) + 0 \]
\[ y(t) = C_1 + C_2 e^{-2t} \]
```

Step 6: Apply Initial Conditions

Given $\ (y(0) = 2 \)$ and $\ (\dot{y}(0) = 1 \)$:

```
\[ y(0) = C_1 + C_2 = 2 \]
\[ \dot{y}(t) = -2 C_2 e^{-2t} \]
\[ \dot{y}(0) = -2 C_2 = 1 \]
\[ C_2 = -\frac{1}{2} \]
```

So, $(C_1 = 2 - (-\frac{1}{2}) = \frac{5}{2})$

Step 7: Final Solution

The total solution for $\ (\ y(t)\)$:

```
\[ y(t) = \frac{5}{2} - \frac{1}{2} e^{-2t} \]
```

Thus, the total response for the given system is:

```
\[ \boxed{y(t) = \frac{5}{2} - \frac{1}{2} e^{-2t} \]
```