PROJECT 2: Useless Symbols, FIRST and FOLLOW sets, and Predictive Parsing

CSE 340 Spring 2017

Rida A. Bazzi

Project 2 Goals

- I have introduced in class predictive parsing and FIRST and FOLLOW sets
- The goal of this project is to show you how the process of building a predictive parser can be automated
- Another important goal of the project is to give you experience in writing a substantial program which is non-trivial conceptually
 - This will make you a better programmer
 - You will have a better understanding of the power of abstraction in building code
 - You will have a better appreciation of the material covered so far

Outline

- Set representation
- Grammar representation
- Calculating useless symbols
- Calculating FIRST sets
- Calculating FOLLOW sets
- Determining if a grammar has a predictive parser

• We can assign an index to each element in our set. Here we have:

"a" has index o

"b" has index 1

"c" has index 2

. . .

0	1	2	3	4
"a"	"b"	"c"	"d"	"e"

• We can assign an index to each element in our set. Here we have:

"a" has index o
"b" has index 1
"c" has index 2
...

• We can assign an index to each element in our set. Here we have:

• We can assign an index to each element in our set. Here we have:

• We can assign an index to each element in our set. Here we have:

Operations on sets: Union

In general

S1, S2, S3

for i = o to universe_size - 1 S₃[i] = S₁[i] or S₂[i]

Operations on sets: Membership

```
boolean is_element(S : set, i : integer)
       if ((i > = 0) & (i < universe\_size - 1))
               return S[i];
        else
               return false;
```

Operations on sets: Printing a set

```
0 1 2 3 4

universe "a" "b" "c" "d" "e"
```

Summary

- Universe array contains the actual names of the elements
- For all set manipulations an element is simply an index
- An element is in a set if the array entry corresponding to the element (index) is true
- To print an element, print the corresponding entry in the universe array

$S \rightarrow ABC$	(1)	Universe	e for I	FIRST	and	FOLL	OW s	sets	0	1	2	3	4	5
$A \rightarrow DE$ $B \rightarrow bB$	(2)								"#"	"\$ "	"b"	"c"	"d"	"e"
$B \rightarrow \varepsilon$	(3) (4)	All Sym								7%				M.
$C \rightarrow c C$	(5)		0	1	2	3	4	5	6	7	8	9	10	11
$C \rightarrow \varepsilon$ $D \rightarrow d D$	(6) (7)		\\# "	"\$ "	"b"	"c"	"d"	"e"	"S"	"A"	"B"	"C"	"D"	"E"
D → ε E → e E	(8) (9)	Rule 1											×	
E → ε	(10)			RHS RHS			9							

$S \rightarrow ABC$	(1)	Univers	e for I	FIRST	and	FOLL	.OWs	sets	0	1	2	3	4	5
$A \rightarrow DE$	(2)								"#"	"\$ "	"b"	"c"	"d"	"e"
$B \rightarrow b B$ $B \rightarrow \varepsilon$	(3) (4)	All Sym	ools							1100	1			
$C \rightarrow c C$	(5)		0	1	2	3	4	5	6	7	8	9	10	11
$C \rightarrow \epsilon$	(6)		"# "	"\$ "	"b"	"c"	"d"	"e"	"S"	"A"	"B"	"C"	"D"	"E"
$D \rightarrow dD$ $D \rightarrow \epsilon$	(7) (8)	-		70	100									
E → e E	(9)	Rule 2		LHS	_									
Ε→ε	(10)			RHS		0 11								
					S_size	2: 2								

$S \rightarrow ABC$	(1)	Universe	e for I	FIRST	and	FOLL	.OW s	sets	О	1	2	3	4	5
$A \rightarrow DE$	(2)								"# "	" \$ "	"b"	"c"	"d"	"e"
$B \rightarrow b B$ $B \rightarrow \epsilon$	(3) (4)	All Syml	ools						33	1100	15		17%	No.
$C \rightarrow c C$	(5)		0	1	2	3	4	5	6	7	8	9	10	11
$C \rightarrow \epsilon$	(6)		"# "	"\$ "	"b"	"c"	"d"	"e"	"S"	"A"	"B"	"C"	"D"	"E"
$D \rightarrow dD$ $D \rightarrow \epsilon$	(7) (8)				5-75	900	511					VET	36.5	-
E → e E	(9)	Rule 2												
Ε→ε	(10)			LHS RHS		8								
					S_size									

Useless Symbols

A symbol is useless if it does not appear in the derivation of a string of terminals or in the derivation of the empty string

A symbol is not useless if it appears in the derivation of a string of terminals or in a derivation of the empty string

$$S \stackrel{*}{\Rightarrow} x A y \stackrel{*}{\Rightarrow} w \in T^*$$

Calculating Useless Symbols

- We start by calculating generating symbols
 - A symbol is generating if it can derive a string in T* (zero or more sequence of terminals)
- Then we determine reachable symbols
 - A symbol A is reachable if S can derive a sentential form containing the symbol:

$$S \stackrel{*}{\Rightarrow} x A y$$

Calculating generating symbols

- 1. Initialization
 - all terminals are generating
 - ε is generating
- 2. If $A \rightarrow A_1 A_2 \dots A_k$ is a grammar rule and
 - A₁ generating and
 - A₂ generating and
 - ... and
 - ...
 - A_k generating

О	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F
10	F
11	Е

Generating array

11

$S \rightarrow ABC$	(1)	Symbols	0	Т						
$A \rightarrow DE$	(2)	0 1 2 3 4 5 6 7 8 9 10 11	1	F						
$B \rightarrow b B$	(3)	0 1 2 3 4 5 6 7 8 9 10 11 "#" "\$" "b" "c" "d" "e" "S" "A" "B" "C" "D" "E"	2	Т						
B → ε	(4)	# \$ D C d e 3 A B C D E	3	Т						
$C \rightarrow cC$	(5)		4	Т						
$C \rightarrow \varepsilon$		(6)								
$D \rightarrow dD$ $D \rightarrow \epsilon$	(7) (8)	 At the end of the first round (going over 	6	F						
E → e E	(8) (9) (10)	all rules), we get the array on the right	7	F						
$E \rightarrow \varepsilon$		(9) (10)	 Since some entries have changed, we 	8	Т					
		need to do another round	9	Т						
			10	Т						

Generating array

11

$S \rightarrow ABC$	(1)	Symbols	0	Т			
$A \rightarrow DE$	(2)	o 1 2 3 4 5 6 7 8 9 10 11	1	F			
$B \rightarrow b B$	(3)	0 1 2 3 4 5 6 7 8 9 10 11 "#" "s" "b" "c" "d" "e" "S" "A" "B" "C" "D" "E"	2	Т			
$B \rightarrow \epsilon$	(4)		3	Т			
$C \rightarrow cC$	(5)		4	Т			
$C \rightarrow \varepsilon$	(6)		5	Т			
$D \rightarrow dD$ $D \rightarrow \varepsilon$	(7) (8)	 At the end of the first round (going over all rules), we get the array on the right 	6	F			
E → e E	(9)		7	F			
E → ε				(10)	 Since some entries have changed, we 	8	Т
		need to do another round	9	Т			
			10	Т			

Generating array

$S \rightarrow ABC$	(1)
$A \rightarrow DE$	(2)
$B \rightarrow b B$	(3)
$B \rightarrow \epsilon$	(4)
$C \rightarrow c C$	(5)
C → ε	(6)
$D \rightarrow dD$	(7)
$D \rightarrow \epsilon$	(8)
E → e E	(9)
$E \rightarrow \epsilon$	(10)

 We examine the first rule again, but we cannot tell that S is generating because A is not generating

Generating array

 We examine the second rule and now we can tell that A is generating

Generating array

10

"D"

11

"E"

$S \rightarrow ABC$	(1)	Symbols	0	Т
$A \rightarrow DE$	(2)	o 1 2 3 4 5 6 7 8 9 10 11	1	F
$B \rightarrow b B$	(3)	"#" "s" "b" "c" "d" "e" "S" "A" "B" "C" "D" "E"	2	Т
B → ε	(4)	# \$ b C d e 3 A B C B L	3	Т
$C \rightarrow cC$	(5)		4	Т
$C \rightarrow \varepsilon$	(6)		5	Т
$D \rightarrow dD$ $D \rightarrow \epsilon$	(7) (8)	 In the third round, we determine that S is 	6	Т
E → e E	(9)	generating	7	Т
E → ε	(10)	 Since some entries changed in the third 	8	Т
17.00 mg		round, we need to do a fourth round	9	Т
			10	Т
			11	т Т

Generating array

11

$S \rightarrow ABC$	(1)	Symbols	0	Т
$A \rightarrow DE$	(2)	0 1 2 3 4 5 6 7 8 9 10 11	1	F
$B \rightarrow b B$	(3)	"#" "\$" "b" "c" "d" "e" "S" "A" "B" "C" "D" "E"	2	Т
$B \rightarrow \epsilon$	(4)		3	Т
$C \rightarrow cC$	(5)		4	Т
$C \rightarrow \varepsilon$ $D \rightarrow d D$	(6)		5	Т
$D \rightarrow \epsilon$	(7) (8)	 In the fourth round nothing changes and we have our answer 	6	Т
E → e E	(9)	We have our answer	7	Т
$E \rightarrow \epsilon$	(10)		8	Т
			9	Т
			10	Т

Updating the grammar

- After we calculate generating symbols, we remove all rules that have a symbol that is not generating
- We do not have to explicitly delete any rules
 - We can use a boolean array to indicate which rules are eliminated and which are not eliminated

Calculating Useless Symbols

- We start by calculating generating symbols
 - A symbol is generating if it can derive a string in T* (zero or more sequence of terminals)
- Then we remove all rules that have a symbol that is not generating
- Then we determine reachable symbols
 - A symbol A is reachable if S can derive a sentential form containing the symbol:

$$S \stackrel{*}{\Rightarrow} x A y$$

Calculating reachable symbols

- 1. S is reachable
- 2. If $A \rightarrow A_1 A_2 \dots A_k$ is a grammar rule and A is reachable

 A_1 and A_2 and ... and A_k are reachable

Calculating reachable symbols

- Calculation can be done in a way that is similar to how we did generating symbols
- We only consider rules that have not been eliminated in our calculation
- At the end, we have a boolean array indicating which symbols are reachable
- A symbol is not useless if its entries in both the generating array and the reachable array are true, otherwise the symbol is useless

FIRST sets Initialization

Symbols

FIRST and FOLLOW universe

FIRST sets Initialization

FIRST sets Initialization

