DATE:31-5-23_____RELATIONSHIP B/W SALINITY & WATER TEMP.(ML)

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

->READ THE DATA SET
df=pd.read_csv("/content/bottle.csv")
```

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L STheta O2S

df=df[['Salnty','T_degC']]

05/1 0 HV_060_

TAKING ONLY THE SELECTED TWO ATTRIBUTES FROM DATASET

0000A-3

df.columns=['Sal','Temp']

4903CK-

df.head(10)

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06

9 33.494 9.86

df.isna().any()

Sal True Temp True dtype: bool

df

	Sal	Temp		
0	33.440	10.50		
1	33.440	10.46		
2	33.437	10.46		
3	33.420	10.45		
4	33.421	10.45		
7975	33.609	11.92		
7976	33.600	11.04		
7977	33.647	10.71		
7978	33.930	9.42		
7979	33.964	9.22		
7980 rows × 2 columns				

df1=df.dropna()

df1

https://colab.research.google.com/drive/1msWMvDZG2qejuyTOCh73hNiVCrDRcQiV#scrollTo=AAC1K2gR8ioV&printMode=true

```
Sal Temp

0 33.440 10.50

1 33.440 10.46

2 33.437 10.46

3 33.420 10.45

4 33.421 10.45

... ...

fill_null=["Sal","Temp"]
for column in fill_null:
    mean=df[column].mean()
    df[column].fillna(mean,inplace=True)

<ipython-input-33-85095d992cc0>:4: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus df[column].fillna(mean,inplace=True)

1

```
df.isna().any()
```

Sal False Temp False dtype: bool

sns.lmplot(x='Sal',y='Temp',data=df,order=2,ci=None)

<seaborn.axisgrid.FacetGrid at 0x7f9346e2fee0>

df.describe()

	Sal	Temp
count	7980.000000	7980.000000
mean	33.812703	8.869087
std	0.512919	3.915512
min	32.300000	2.700000
25%	33.492000	5.350000
50%	33.880000	8.420000
75%	34.251000	11.920000
max	34.700000	19.760000

df.fillna(method='ffill',inplace=True)

```
<ipython-input-37-ae2c85fc64fc>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus df.fillna(method='ffill',inplace=True)

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
0.39274942375956456
```

y_pred=regr.predict(x_test)

```
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


df500=df[:][:500]

```
sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
```

<seaborn.axisgrid.FacetGrid at 0x7f933ffbb400>

from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score

model=LinearRegression()
model.fit(x_train,y_train)

▼ LinearRegression
LinearRegression()