ALL PROGRAMMABLE

5G Wireless • Embedded Vision • Industrial IoT • Cloud Computing

Architectura de FPGAs

Objetivos

• Al finalizar el módulo, los alumnos podrán:

- Describir los distintos bloques internos en las FPGAs.
- Enumerar la jerarquía de memorias y sus recursos asociados.
- Identificar los recursos de E/S disponibles
- Enumerar los recursos específicos de hardware disponibles.
- Tener un conocimiento básico de una arquitectura SoC (Procesador + Lógica Programable)

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Introducción

▶ Las FPGAs contienen los siguientes bloques básicos

- Recursos de Lógica
 - Slices (agrupados en "Configurable Logic Blocks" (CLB))
 - Containing combinatorial logic and register resources
 - Memoria
 - Multiplicadores por hardware
- Recursos de Interconexión
 - Interconexión entre CLBs
 - Bloques IOBs
 - Interfaz entre la FPGA y el mundo exterior
- Otros Recursos
 - Global clock buffers
 - Boundary scan logic (JTAG)

Ejemplos de distintas familias de FPGAs

	Más bajo consumo y costo	Mejor relación Precio/Rendimiento	Más alto rendimiento	All Programmable SoC
Celdas Lógicas en miles	33 – 215	66 – 478	583 – 1,139	28 – 444
Block RAM en Mb	2 – 12	4 – 34	28 – 68	2 - 27
DSP Slices	90 – 740	240 – 1,920	1,260 – 3,360	80–2,020
Peak DSP Perf. (GMACs)	929	2,845	5,335	2,622
Transceivers	Up to 16	Up to 32	Up to 88	Up to 16
Transceiver Perf. (Gbps)	6.6	12.5	12.5, 13.1 and 28	6.6, 12.5
Memory Perf. (Mbps)	1066	1866	1866	1333
Pines de E/S	106 – 500	285 – 500	350 – 1,100	54 – 400
Voltajes de E/S	3.3V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below

Arquitectura de FPGAs

➤ Las distintas familias de FPGAs tienen distintas combinaciones de recursos internos, esto permite escalar los diseños en una relación entre el costo y el desempeño del sistema

Ejemplo de arquitectura (Artix 7)

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Bloque Lógico Configurable (CLB)

- Es el recurso principal para implementar sistemas en las FPGAs
 - Funciones combinacionales
 - Flip-flops
- Cada CLB contiene dos slices
- Se conectan a una matriz de conexiones para rutear las señales a otras partes de la FPGA
 - Las Carry chain se rutean verticalmente en columnas de un slice a otro.
 - Las señales de datos se rutean horizontalmente en filas de un CLB a otro.

Los CLBs pueden tener dos combinaciones de Slices

> Hay dos tipos de Slices

- SLICEM: slice completo
 - Su LUT puede usarse para lógica y memoria/SRL
 - Tiene varios multiplexores y carry chain
- SLICEL: para lógica y aritmética solamente
 - Su LUT sólo se puede usar para lógica (no memoria)
 - Tiene menos multiplexores y carry chain

Recursos de un Slice

- Cuatro Look-Up Tables (LUT) de 6 entradas
- **➤** Multiplexores
- **➤** Carry chains
- > SRL
 - Se pueden poner en cascada para ampliar el tamaño del SRL
- Cuatro flip-flops/latches
 - Cuatro flip-flops adicionales para almacenar resultados

LUT de 6 entradas con salida Dual

- Las LUTs se pueden descomponer en 2 LUTs de 5 entradas con la entrada en común
 - No hay pérdidad de velocidad respecto a una LUT de 6 entradas
- ➤ Esto permite implementar una función de 6 variables o 2 funciones de 5 variables

Multiplexores

- > Cada F7MUX combina las salidas de dos LUTs
 - Se puede implementar una función de 7 entradas
 - Se puede implementar un multiplexor 8 a 1
- Cada F8MUX combina las salidas de dos F7MUXs
 - Se puede implementar una función de 8 entradas
 - Se puede implementar un multiplexor de 16 a 1
- ➤ Estos MUXes son controlados por entradas en el slice
- ➤ La salida de esos MUXes pueden ser entrada de circuitos combinacionales o flip-flop/latch

Carry Chain

- ➤ La lógica de Carry chain permite implementar circuitos muy rápidos de suma y resta
 - El Carry out se propaga verticalmente a través de los 4 LUTs del slice.
 - La lógica de carry chain se propaga de un slice al siguiente de la misma columna en el CLB de arriba.
- ➤ Lógica de Carry look-ahead
 - La lógica combinacional de carry look-ahead se divide en los cuatro LUTs del slice
 - Esto permite implementar lógica de carry en cascada entre los slices

Flip-Flops de Slice y Flip-Flop/Latches para registro de resultados

- ➤ Cada slice tiene 4 flip-flop/latches (FF/L)
 - Pueden ser configurados como flip-flops o como latches
 - La entrada D puede venir de la salida O6 de la LUT, de la carry chain, del multiplexor, o de las entradas del slice AX/BX/CX/DX
- ➤ Cada slice tambien tiene 4 flip-flops (FF)
 - La entrada D puede venir de la salida O5 o de la entrada AX/BX/CX/DX
 - Estos FF no tienen acceso a la carry chain, los multiplexores o las entrada del slice
- Si uno de los FF/L se configura como latch, los otros sólo pueden configurarse como latches, no como FF

Características de los Flip-Flop del Slice

> Entradas tipo D

- Con salida Q solamente

➤ Entrada de reloj (CK)

 El reloj puede invertirse, pero esto afecta a los 4 FF (todos los FF del slice deben usar el CK invertido).

Entradas de set/reset

- Estas entradas pueden ser sincrónicas o asincrónicas
- Configuran la salida del flip-flop a un valor predeterminado

Conjuntos de Control

- ➤ Tanto los flip-flops como los flip-flop/latches comparten las mismas señales CK, SR, y CE
 - A estas señales se las denomina el "conjunto de control" de los flip-flops
 - Las señales CE y SR son activas en alto
 - La señal CK puede invertirse a la entrada del slice
- Si uno de los flip-flop usa CE, todos los otros FF usan el mismo CE
 - La señal CE habilita la señal de reloj a la entrada del slice
 - Esto reduce el consumo
- Si uno de los flip-flop usa las señales SR, los otros FF tambien usan el mismo SR
 - El valor de reset para cada flip-flop se puede configurar individualmente

SLICEM Usado como memoria RAM

- Los slices del tipo SLICEM se pueden usar como elementos de memoria
- La escritura es sincrónica, la lectura es asincrónica
 - Se puede convertir en sincrónica utilizando los FF disponibles en el slice
- Distintas configuraciones de memoria:
 - Single port
 - Una LUT6 = 64x1 o 32x2 RAM
 - En cascada hasta 256x1 RAM
 - Dual port (D)
 - 1 puerto de lectura/escritura + 1 puerto de sólo lectura
 - Dual port simple (SDP)
 - 1 puerto de sólo escritura + 1 puerto de sólo lectura
 - Quad-port (Q)
 - 1 puerto de lectura / escritura + 3 puertos de lectura solamente

Single Port	Dual Port	Simple Dual Port	Quad Port
32x2	32x2 D	32x6 SDP	32x2 Q
32x4	32x4 D	64x3 SDP	64x1 Q
32x6	64x1 D		
32x8	64x2 D		
64x1	128x1 D		
64x2			
64x3			
64x4			
128x1			
128x2			
256x1			

Each Port Has Independent Address Inputs

SLICEM Usado como registro de desplazamiento de 32-bit

- > SRL = Shift Register Lut
- Distintas configuraciones
 - Registros de tamaño variable
 - FIFOs sincrónicas
 - Memoria tipo Content-Addressable Memory (CAM)
 - Generador de patrones
 - Compensador por retardos o latencias
- > Se pueden poner en cascada hasta un registro de 128x1 en un slice

Ejemplo de LUT como registro de desplazamiento

- > Se realizan dos operaciones en paralelo de 20 ciclos de duración, una de ellas se descompone en dos suboperaciones (A y B), y la otra es una sola operación (C)
- ➤ Es necesario agregar una operación D (NOP), lo que implica agregar 17 etapas de pipeline (17 ciclos de ejecución) de 64 bits cada una
 - Son 1,088 flip-flops (o sea 136 slices) o 64 SRLs (o sea 16 slices)

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Requisitos de las interfaces de E/S

- > Velocidades muy altas manteniendo la integridad de la señal
 - Operación Source-synchronous (clock forwarding)
 - Operación System-synchronous (common systems clock)
 - Terminaciones en las líneas de transmisión para evitar reflexiones de señal
- ➤ Generar y recibir datos en buses paralelos muy anchos
 - Compensar por bus skew y errores de temporizacion de reloj
 - Conversión entre datos serie y paralelo
 - Conseguir bit rates muy altos (> 1 Gbps)
- ▶ Interfaces Single Data Rate (SDR) o Double Data Rate (DDR)
- > Interfaces a distintos estandares
 - Diferentes voltajes, capacidades de bus y protocolos

FPGA E/S

- ➤ Amplio rango de voltajes
 - -1.2V a 3.3V
- **➤** Soporte a distintos estandares de E/S
 - Single ended y diferencial
 - Entradas referenciadas
 - Capacidad 3-state
- > Alto rendimiento
 - Hasta 1600 Mbps LVDS
 - Hasta 1866 Mbps single-ended para DDR3
- > Fácil interfaz a memorias
 - Soporte en Hardware para QDRII+ y DDR3
- Impedancia controlada digitalmente
- Opciones para reducción de consumo

Distintos tipos de E/S

Dos tipos de E/S:

- High Range (HR)
 - Soporta estándares de E/S con voltajes Vcco hasta 3.3V
- High Performance (HP)
 - Soporta estándares de E/S con voltajes Vcco hasta 1.8V solamente

I/O Types	Artix-7 Family	Kintex-7 Family	Virtex-7 Family	Virtex-7 XT/HT Family
High Range	All	Most	Some	
High Performance		Some	Most	All

Características eléctricas de la interfaz E/S

- **▶** Los pines P y N se pueden configurar como:
 - Señales single-ended individuales o
 - Pares diferenciales
- ➤ Los receptores pueden ser CMOS standard o comparadores de voltaje
 - Cuando son CMOS standard
 - 0 lógico cuando está cerca de tierra
 - 1 lógico cuando está cerca de V_{CCO}
 - Referenciado a V_{REF}
 - 0 lógico cuando está por debajo de V_{REF}
 - 1 lógico cuando está por encima de V_{REF}
 - Diferencial
 - 0 lógico cuando $V_P < V_N$
 - 1 lógico cuando V_P > V_N

Recursos asociados a la interfaz de E/S

Dos bloques de lógica por cada par E/S

- Master y slave
- Pueden operar en forma independiente o concatenada

> Cada bloque contiene:

- ILOGIC/ISERDES (input logic/input serial)
 - SDR, DDR, o lógica de entrada de alta velocidad
- OLOGIC/OSERDES (output logic/output serial)
 - SDR, DDR, o lógica de salida de alta velocidad
- IDELAY
 - Retardo de entrada configurable
- ODELAY
 - Retardo de salida configurable
- Estos últimos disponibles solo en interfases HP

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Bloques RAM y FIFO

- ➤ Este bloque es el mismo en los distintos miembros de la familia
- > Son de operación completamente sincrónica
 - Todas las salidas tienen registros latch
- Opcionalmente hay un registro interno para pipeline, para lograr mayores frecuencias de operación
- ➤ Los datos se pueden acceder a través de dos puertos independientes
 - Las direcciones, reloj, y señales de control son independientes en cada puerto
 - Los tamaños de datos también son independientes por puerto

Bloques RAM and FIFO

- > Hay distintas opciones de configuración:
 - True dual-port, simple dual-port, single-port
- Hay lógica integrada para ponerlos en cascada
- Se puede realizar escrituras en tamaño byte en buses anchos
- Lógica de control integrada para FIFOS rápidas
- Códigos de corrección de Hamming de 64 /72-bit por hardware
- Alimentación Vbram separada e independiente

Block Ram Single-Port

- Un único puerto de lectura/escritura
 - Señales Reloj: CLKA, Dirección: ADDRA, Habilitación de escritura:
 WEA, Escribir datos: DIA, Leer datos: DOA
- > Configuración en bloques de un total de 36-kbit
 - 32k x 1, 16k x 2, 8k x 4, 4k x 9, 2k x 18, 1k x 36
- ➤ Configuración en bloques de un total de 18-kbit
 - 16k x 1, 8k x 2, 4k x 4, 2k x 9, 1k x 18, 512 x 36
- **➤** Modo de escritura configurable
 - WRITE_FIRST: Los datos escritos en DIA aparecen en DOA
 - READ_FIRST: El contenido de la RAM en ADDRA se muestra en DOA al momento de escribir en DIA
 - NO_CHANGE: El valor de DOA se mantiene durante las escrituras
- Opcionalmente puede haber un registro de salida (DOA_REG=1)

Bloque RAM Dual-Port

Dos puertos separados de lectura/escritura

- Cada puerto tiene señales separadas de reloj, dirección, entrada de datos, salida de datos y habilitación de escritura
 - Los relojes de cada puerto pueden ser asincrónicos entre sí.
- Los dos puertos pueden tener diferentes tamaños
 - Están las mismas configuraciones que en Single Port
- Ambos puertos pueden tener distintos modos de escritura
- No hay contención cuando ambos puertos acceden a la misma dirección
 - Excepto que si están temporizados por el mismo reloj, y el puerto que se escribe es READ_FIRST, entonces el puerto que se lee obtiene los datos anteriores

Bloque RAM Dual-Port Simple

- > Un puerto de lectura y un puerto de escritura
 - Cada puerto tiene reloj y dirección separados
- ➤ En configuraciones de 36-kbit, uno de los dos puertos debe ser de 72 bits de ancho
 - El otro puerto puede ser x1, x2, x4, x9, x18, x36, or x72
- ➤ En configuraciones de 18-kbit uno de los dos puertos debe ser de 36 bits de ancho
 - El otro puerto puede ser x1, x2, x4, x9, x18, or x36

Bloques RAM en cascada

- Hay lógica integrada para armar bloques de 64Kx1
 - Esto permite poner en cascada dos bloques RAM adyacentes verticalmente sin usar lógica adicional de los CLB
- > Se pueden poner en cascada para armar bloques mas grandes:
 - 128Kb, 256Kb, 512Kb...
 - Pero se necesita lógica de los CLB
 - Y es un poco mas lenta que los bloques de 64kbx1
 - Para tamaños de palabra mayores se ponen bloques en paralelo.

Memorias FIFO

Distintas opciones

- Relojes de lectura y escritura sincrónicos o asincrónicos
- Cuatro señales de estado:
 - · Lleno, Vacío, casi lleno, casi vacío

➤ Configuraciones:

- Usando blockRam de 36-Kb: 8Kx4, 4Kx9,2Kx18, 1Kx36, 512x72
- Usando blockRam de 18-Kb: 4Kx4, 2Kx9, 1Kx18, 512x36
- El tamaño de datos de lectura y escritura debe ser el mismo
- ➤ Se puede usar corrección de errores integrada cuando el tamaño de palabra es x72

Bloque DSP48E1

Uso del bloque DSP48:

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

XADC y AMS

> XADC es una interface analógica

- ADC dual de 12-bit 1Msps, sensor de temperatura on-chip, 17 entradas, track & holds y acondicionamiento de señal
- Rango de entrada de 1V
- Resolución de conversión de 16-bit
- Ganancia y offset configurable

Analog Mixed Signal (AMS)

 Utilizando la lógica de la FPGA se puede configurar el bloque XADC para linealización,
 calibración, filtrado, y fijación de valor de tensión continua para mejorar el rango dinámico del conversor

Bloque XADC

Conversión

- Tiempo de conversión 1 uS con sampleo simultaneo en ambos conversores
- Distintos modos de disparo (auto disparo y disparo externo)
- Circuito de track/hold separado para cada ADC. Se puede hacer multiplexado de canales

> Entradas analógicas

- Entradas diferenciales.
- Soporte para señales unipolares, bipolares y diferenciales

Bloque XADC

➤ Multiplexado y muestreo interno y externo

- Se pueden muestrear las alimentaciones internas y la temperatura del dispositivo
- Se multiplexan los sensores internos y 17 entradas externas
- Se puede controlar un multiplexor analógico externo para reducir el uso de pines

Conversión configurable

- El resultado de la conversión se guarda en un registro interno
- Los registros de control configuran la fuente de señal, la frecuencia de muestreo y alarmas
- Los registros estan disponibles para la lógica de la FPGA a traves del Dynamic Reconfiguration
 Port (DRP)
- Estos tambien estan disponibles a través de la interfase JTAG
- ➤ Rango de temperatura de –40°C a +125°C

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Gestión del Reloj

- Bloques Buffer Global
 - Permiten una distribución del reloj con alto fanout
- Distribución con bajo skew
- Regiones de Reloj
- Bloque Clock management tile (CMT)
 - Un Mixed-Mode Clock Manager (MMCMs) y un Phase Locked
 Loop (PLL) en cada región de reloj
 - Permiten generar diferentes frecuencias, realizar de-skewing, y filtrado para evitar el jitter
- > Se instancian utilizando el Clocking Wizard

Entradas con capacidad de Reloj

- ➤ Todos los diseños sicrónicos requieren una referencia externa de reloj
- Hay una entrada con capacidad de reloj en cada banco de I/O
 - Estas entradas son pines I/O normales con conexiones dedicadas a los recursos de reloj internos.
 - Cada banco de I/O tiene 4 pines con capacidad de reloj Interconnect
 - 2x Multi-Region Clock Capable (MRCC)
 - 2x Single Region Clock Capable (SRCC)
 - Cada entrada de reloj puede ser usada como una entrac single ended o puede utilizarse junto con la entrada adyacente para formar una entrada diferencial

Figure 1-3: Single Clock Region (Right Side of the Device)

Bloque Global Clock Buffer (BUFGCTRL)

- ➤ Los bloques BUFGCTRL (o BUFG) estan en el centro del dispositivo
- ▶ Los bloques BUFGCTRL se pueden comandar con
 - Una entrada con capacidad de reloj (CCIO)
 - Una salida CMT (clock management tile)
 - El reloj de un transceiver Gigabit
 - Otros bloques BUFG, o BUFR
- **▶** Los bloques BUFGCTRL permiten:
 - Simple clock buffer (BUFG)
 - Clock buffer con clock switching (BUFGMUX o BUFGMUX_CTRL)
 - Clock buffer con clock enable (BUFGCE)

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Zynq-7000

- Sistema de procesadores basado en tecnología ARM
 - Incluye Application Processor Unit (APU)
 - Procesador Dual ARM Cortex™-A9
 - · Caches y lógica asociada
 - Controladores de memoria integrados
 - Periféricos de I/O (serial, I2C, SPI, GPIO,etc)
- > Integración con la lógica interna
 - Permite crear aceleradores por hardware

Bloques PS (Processor System) y PL (Programmable Logic)

- ➤ Los dispositivos SoC Zynq-7000 tienen dos bloques principales
 - PS: Processing system
 - Basado en un procesaddor Dual ARM Cortex-A9
 - Multiples periféricos
 - Implementado en silicio (hard core)
 - PL: Programmable logic
 - Similar a otros miembros de la familia

Temario

- Introducción a FPGA
- Recursos de Lógica
- Recursos de I/O
- Recursos de Memoria y DSP48
- Conversor ADC
- Recursos de Temporización
- Introducción a SoC
- Resumen

Resumen

- > Los Slices de la FPGA tienen 4 LUTs de 6 entradas, 8 registros y lógica de carry
 - Las LUTs pueden realizar cualquier función combinacional de hasta seis entradas
 - Las LUTs estan conectadas a multiplexores dedicados y lógica de carry
 - Algunas LUTs se pueden configurar como registros de desplazamiento o memorias
 - Los Slices contienen lógica de carry y los multiplexores MUXF7 y MUXF8
 - Los multiplexores MUXF7 combinan la saalida de las LUTs para crear funciones de 7 entradas o multiplexores de 8 entradas
 - Los multiplexores MUXF8 combinan las salidas de los multiplexores MUXF7 para crear funciones de 8 entradas o multiplexores de 16 entradas
 - La lógica de carry se puede utilizar para implementar funciones rápidas de suma, resta y comparacion
- **▶** Los bloques IOBs contienen registros DDR e interfases SERDES
- ➤ Los bloques de I/O pueden implementar distintos estandares de señales single ended o diferenciales

Resumen

- ▶ Las FPGAs incluyen bloques dedicados de block RAM y Slices DSP
- ➤ Para la gestión del reloj hay bloques MMCM (Mixed Mode Clock Manager), PLL, y recursos de ruteo específicos
- > Se dispone del bloque XADC para señales analógicas
- ➤ Los dispositivos Zynq-7000 son System on a Chip (SoC) con lógica programable y procesadores ARM