

Universidade Federal do Ceará – UFC Centro de Ciências – CC Mestrado e Doutorado em Ciências da Computação - MDCC Estruturas de Dados

Exercício: Complexidade de Algoritmos

Objetivos: Exercitar os conceitos relacionados à Complexidade de Algoritmos.

Data da Entrega: 08/09/2022

OBS 1: Exercício Individual.

OBS 2: A entrega da lista deverá ser realizada via SIGAA.

OBS 3: Esta lista poderá ser solucionada utilizando-se as linguagens Go, Rust, Escala ou C++.

NOME: Wellington Wagner Ferreira Sarmento MATRÍCULA: 486043

Questão 1

As funções f(n) mostradas abaixo fornecem o tempo de processamento T(n) de um algoritmo resolvendo um problema de tamanho n. Complete a tabela abaixo colocando, para cada algoritmo, sua complexidade (O maiúsculo) e a ordem do mais eficiente para o menos eficiente. Em caso de empate repita a ordem (por exemplo: 1°,2°, 2°,).

f(n)	$O(\ldots)$	ordem
$5 + 0.001n^3 + 0.025n$	$O(n^3)$	9
$500n + 100n^{1.5} + 50n\log_{10}n$	$O(n^{1.5})$	5
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$	O(n ^{1.75})	6
$n^2 \log_2 n + n(\log_2 n)^2$	O(n²logn)	8
$n\log_3 n + n\log_2 n$	O(n logn)	2
$3\log_8 n + \log_2 \log_2 \log_2 n$	O(logn)	1
$100n + 0.01n^2$	O(n ²)	7
$0.01n + 100n^2$	O(n ²)	7
$2n + n^{0.5} + 0.5n^{1.25}$	O(n ^{1.25})	4
$0.01n\log_2 n + n(\log_2 n)^2$	O(n (logn) ²)	3
$100n\log_3 n + n^3 + 100n$	O(n ³)	9
$0.003\log_4 n + \log_2 \log_2 n$	Ω(logn)	

Questão 2

Os algoritmos abaixo são usados para resolver problemas de tamanho **n**. Descreva e informe para cada algoritmo sua complexidade no pior caso (O maiúsculo/Ômicron). Tente entender o problema antes de apresentar uma resposta.

a) O pior caso vai ser inferior a O(n logn²)

```
for ( i=1; i < n; i *= 2 ) { for ( j = n; j > 0; j /= 2 ) { for ( k = j; k < n; k += 2 ) { sum += (-j * k) << i/2; } } }
```

b) O pior caso vai ser inferior a O(n² logn²)

```
Leia(n);

x \leftarrow 0;

Para i \leftarrow 1 até n faça

Para k \leftarrow 1 até j-i faça

x \leftarrow x + 1
```

Questão 3

Suponha um algoritmo A e um algoritmo B com funções de complexidade de tempo $a(n) = n^2 - n + 549$ e b(n) = 49n + 49, respectivamente. Determine quais são os valores de n pertencentes ao conjunto dos números naturais para os quais A leva menos tempo para executar do que B.

Para todo $n \ge 14$