(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 March 2002 (28.03.2002)

PCT

(10) International Publication Number WO 02/24650 A2

(51) International Patent Classification7: C07D 213/00

(21) International Application Number: PCT/IB01/02082

(22) International Filing Date:

18 September 2001 (18.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

00402583.9 19 September 2000 (19.09.2000)

(71) Applicants (for all designated States except US): JANSSEN PHARMACEUTICA N.V. [BE/BE]; Turn-houtseweg 30, B-2340 Beerse (BE). CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel Ange, F-75794 Paris Cedex 16 (FR). INSTITUT CURIE [FR/FR]; 26, rue d'Ulm, F-75005 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GUILLEMONT, Jérôme [FR/FR]; 51 Bis Route de Muids, F-27430 (FR). BENJAHAD, Abdellah [FR/FR]; 84, rue de Verdun, F-94500 Champigny-Sur-Marne (FR). MABIRE, Dominique [FR/FR]; 14, rue Jean Moulin, F-27230 La Saussaye (FR). N'GUYEN, Chi, Hung [FR/FR]; 96, Avenue due Président Kennedy, F-92160 Antony (FR). GRIERSON, David [CA/FR]; 10, rue Camille Saint Saens, F-78530 Buc (FR). MONNERET, Claude [FR/FR]; 9, Avenue Lamoricière, F-75012 Paris (FR).

BISAGNI, Emile [FR/FR]; 16, rue Bossuet, F-91400 Orsay (FR). SANZ, Gérard [FR/FR]; 6, rue Alfred Dunet, F-76240 Le Mesnil Esnard (FR). DECRANE, Laurence [FR/FR]; 13 Allée de la Trésorerie, F-27100 Le Vaudreuil (FR).

(74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).

(81) Designated States inational): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

) A2

54) Title: PYRIDINONE AND PYRIDINETHIONI

(54) Title: PYRIDINONE AND PYRIDINETHIONE DERIVATIVES HAVING HIV INHIBITING PROPERTIES

(57) Abstract: The present invention is concerned among others with compounds of formula (1), the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein Q is halo, C_{1-6} alkyl or C_{2-6} alkenyl; X is (a-2) with q and r being O and Z being O, S or SO; R_1 is aryl; R_2 is selected from formyl; C_{1-6} alkyloxycarbonylałkyl; Het²; Het² C_{1-6} alkylthio; C_{1-6} alkyl optionally substituted with one or two substituents each independently selected from hydroxy, and halo; R_3 is selected from formyl; C_{1-6} alkyl optionally substituted with one or two C_{1-6} alkyloxy; R_4 is hydrogen, with HIV inhibiting properties.

15

20

25

Pyridinone and pyridinethione derivatives having HIV inhibiting properties

The present invention is concerned with pyridinone and pyridinethione derivatives having Human Immunodeficiency Virus (HIV) replication inhibiting properties. It further relates to processes for their preparation and pharmaceutical compositions comprising them. The invention also relates to the use of said compounds in the manufacture of a medicament useful for the treatment of subjects suffering from HIV infection.

10 Compounds structurally related to the present compounds are disclosed in the prior art.

Naturforsch. B, Anorg. Chem., Org. Chem., 1983, 38 B (3), 398-403 discloses iodine, nitrogen and sulfurylides of 2-pyridones.

Pol. J. Chem., 1979, 53 (11), 2349-2354 discloses N-(tetrahalo-4-pyridyl) aminobenzoic acid derivatives and their use as herbicides.

J. Med. Chem., 1983, 26 (9), 1329-1333 discloses the synthesis of aza analogs of lucanthone useful as antitumor and bactericidal agents.

WO 86/01815 discloses the synthesis of monoazodyes and their use as dyestuffs.

Can. J. Chem., 1980, 58 (5), 501-526 discloses the chemistry of aurodox and related antibiotics.

WO 97/05113 discloses 4-aryl-thio-pyridin-2(1H)-ones and their use for treating HIV related diseases.

WO 99/55676 discloses 3-(amino- or aminoalkyl)pyridinone or pyridinethione derivatives and their use for the treatment of HIV related diseases.

However their activities are still moderate and their use in human therapy also could lead to the emergence of resistant strains. The most active thiopyridinones disclosed in WO 97/05113 have a 50% inhibitory concentration of virus multiplication (IC₅₀) for nevirapine resistant strains of about 260 nM, whereas the free amino or

aminoalkyl pyridinone and pyridinone derivatives disclosed in WO 99/55676 have a

50% inhibitory concentration of virus multiplication for nevirapine resistant strains of more than 10 000 nM.

The Inventors have found a new family of pyridinones and pyridinethiones derivatives which show better HIV inhibitory properties.

The present invention is concerned with compounds of formula

$$R^4$$
 R^3
 R^2
 $X \rightarrow R^1$ (1),

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein Y is O or S;

Q is hydrogen; halo; C₁₋₆alkyl; di(C₁₋₄alkyl)amino; C₁₋₆alkyloxy; C₁₋₆alkyloxyC₁₋₆ C₁₋₆alkylthioC₁₋₆alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkylthio; falkyloxycarbonyl; $C_{1.6}$ alkyl-S(=O)-; $C_{1.6}$ alkyl- $S(=O)_2$ -; hydroxy $C_{1.6}$ alkyl; 15 C₁₋₆alkyloxycarbonylC₁₋ C₁₋₆alkyloxycarbonylC₁₋₆alkyl; polyhaloC₁₋₆alkyl; 6alkylthio; aminocarbonyl6C₁₋₆alkylthio; C₁₋₆alkyloxyC₁₋₆alkyloxycarbonyl; C₂₋ 6alkenyl optionally substituted with halo, hydroxy, cyano, formyl, -COOH, C1-6alkyloxy, C1-6alkylcarbonyl, C1-6alkyloxycarbonyl, C1-6alkylcarbonyloxy, Nhydroxy-imino or aryl; C2-6alkynyl optionally substituted with halo, hydroxy, 20 cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆ 6alkylcarbonyloxy, N-hydroxy-imino or aryl; C3-6cycloalkyl optionally substituted with C₁₋₄alkyl; cyano; carboxyl; formyl; R⁵R⁶N-C(=O)-; R⁵R⁶N-C(=O)-C₁₋₆alkyl; N-hydroxy-imino; N-C₁₋₄alkyloxy-imino; aryl; aryloxy; arylthio; arylC₁₋₆alkyl; arylcarbonyl; arylC₁₋₆alkyloxycarbonyl; C₁₋₆alkyl 25 substituted with hydroxy or aryl; Het1 , Het1 oxy; Het1 thio; Het1 C1-6 alkyl; Het carbonyl; Het C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl-P(OR¹⁵)₂=O or C₁₋₆alkyl- $P(O-C_{1-6}alkyl-O)=O;$

30 X is a bivalent radical of formula

$$-(CH_2)_0$$
 (a-1) or

15

20

25

30

 $-(CH_2)_q^2$ -Z- $(CH_2)_r$ - (a-2);

wherein p is an integer of value 1 to 5;

q is an integer of value 0 to 5;

r is an integer of value 0 to 5;

Z is O, S, NR⁷, C(=O), S(=O), S(=O)₂, CHOR¹³, CH=CH, CH(NR⁷R⁸) or CF₂;

and wherein each hydrogen atom may be replaced by C₁₋₄alkyl or hydroxyC₁₋₄alkyl;

10 R¹ is C₁₋₆alkyl, C₃₋₆cycloalkyl, C₁₋₆alkenyl, C₁₋₆alkoxy, aryl or a monocyclic or bicyclic heterocycle selected from pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, or a radical of formula

$$(CH_2)_n$$
 (b-1) or $(CH_2)_n$ (b-2)

with n being an integer of 1 or 2,

said monocyclic or bicyclic heterocycle or said radical of formula (b-1) or (b-2) optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, polyhaloC₁₋₄alkyl or phenyl;

or Q and X-R¹ may be taken together with the pyridinone to form a tricyclic heterocycle of formula

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{16}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

with R¹⁶ and R¹⁷ being C₁₋₆alkyl or forming together =0.

R² and R³ each independently are selected from hydrogen; halo; formyl; cyano; azido; hydroxy; oxiranyl; amino; mono- or di(C₁₋₄alkyl)amino; formylamino; mercapto(C₁₋₆)alkyl; hydrazino; R^{5a}R^{6a}N-C(=O)-; R⁹-N=C(R¹⁰)-; C₂₋₆alkenyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl,

10

15

20

25

30

C₁₋₆alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy, di(C₁₋₄alkyl)carbamoyl, [di(C₁₋₄alkyl)amino(C₁₋₆alkyl)](C₁₋₄alkyl)carbamoyl, [di(C₁₋₄alkyl)amino(C₁₋₆alkyl)](arylC₁₋₄alkyl)carbamoyl, $di(C_{1-4}alkyloxy)$ $(C_{1-4}alkyl)$ carbamoyl, $(cyanoC_{1-6}alkyl)(C_{1-6}alkyl)$ amino $C_{1-6}alkyl$, N-hydroxyimino, aryl, Het2 Het2carboxamido, Het2(C1-6alkyl)carbamoyl; C2-6alkynyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C₁₋₆alkyloxy; hydroxyC₁₋₆alkyloxy; aminoC₁₋₆alkyloxy; mono- or di(C₁₋₆alkyloxy) 4alkyl)aminoC₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; arylcarbonyl; Het²carbonyl; C₁₋₆ 6alkyloxycarbonyl; C₁₋₆alkylcarbonyloxy; aryl; aryloxy; arylC₁₋₆alkyloxy; arylthio; arylC₁₋₆alkylthio; mono- or di(aryl)amino; Het²; Het²oxy; Het²thio; Het²C₁₋₆alkyloxy; Het²C₁₋₆alkylthio; Het²SO₂; Het²SO; monodi(Het²)amino; C₃₋₆cycloalkyl; C₃₋₆cycloalkyloxy; C₃₋₆cycloalkylthio; C₁₋ 6alkylthio; hydroxyC₁₋₆alkylthio; aminoC₁₋₆alkylthio; mono- or di(C₁₋₆alkylthio; 4alkyl)aminoC₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, carboxyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkylsulfonyl, C₁₋₆alkycarbamoylC₁₋₄alkylthio, C_{1-6} alkyloxy C_{1-6} alkyloxy, C_{1-6} alkyloxy C_{1-6} alkylthio hydroxy C_{1-6} alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, aminocarbonyloxy, monodi(C₁₋₄alkyl)aminocarbonyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonylC₁₋ 6alkyloxy, C1-6alkyloxycarbonylC1-6alkylthio, aryl, Het2, aryloxy, arylthio, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, Het²C₁₋₆alkyloxy, Het²C₁₋₆alkylthio, C₁₋ 6alkyl-S(=O)2-oxy, amino, mono- or di(C1-6alkyl)amino, di(C1-6alkyl)aminoC1-[di(C₁₋₆alkyl)amino(C₁₋₆alkyl)](C₁₋₆alkyl)amino, di(cyanoC₁-6alkylthio, C₁₋₆alkyloxycarbonylamino, C₁₋₆alkyloxyC₁. 6alkyl)amino, di(aryl)amino, monoor di(arylC₁-6alkylcarbonylamino, mono- or 4alkyl)amino, mono- or di(C1-4alkyloxyC1-4alkyl)amino, mono- or di(C1mono- or di(Het²C₁₋₄alkyl)amino, ₄alkylthioC₁₄alkyl)amino, 4alkyl)(C1-4alkyl)amino, (cyanoC1-6alkyl)(C1-6alkyl)amino, C3-6cycloalkylthio, R^{11} -(C=O)-NH-, R^{12} -NH-(C=O)-NH-, R^{14} -S(=O)₂-NH-, C1-6alkyl-P(O- R^{15})2=O, $C_{1.6}$ alkyl-P(O- $C_{1.6}$ alkyl-O)=O or a radical of formula

N— (c-1) or
$$A_2$$

$$A_1$$
—(c-2) or A_2

$$A_1$$

with A₁ being CH or N, and A₂ being CH₂, NR¹³, S or O, provided that when A₁ is CH then A₂ is other than CH₂, said radical (c-1), (c-2) and (c-3) being optionally substituted with one or two substituents each independently selected from Η, C_{1-6} alkyl, alkyloxy, C_{1-6} hydroxy alkyloxycarbonylC₁₋₄alkyl, C_{1.6}alkyloxycarbonyl, C_{1-6} aminoC₁₋₆alkyl, C₁₋₄alkylcarbonyl, arylcarbonyl, aryl, Het¹, Het¹-(C=0)-, hydroxy, cyano, C₁₋₄alkylcyano, CONR¹⁶R¹⁷ with R¹⁶ and R¹⁷ being independently H or alkyl. mono or di(C₁₋₄alkyl)aminoalkyl, 4-hydroxy-4-phenyl or 4-cyano-4-phenyl;

10

5

or R² and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_t$$
- CH_2 - A_3 - CH_2 - $(d-1)$ or -CH=CH-CH=CH- $(d-2)$

- with t being an integer of 0, 1 or 2 and A₃ being CH₂, O, S, NR^{7a} or N[C(=O)R^{8a}] and wherein each hydrogen in said formula (d-1) or (d-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;
- 20 R⁴ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyl, C₂₋₆alkyl, C₂₋₆alkyl, C₂₋₆alkyl, amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyl or aryl;
- or R⁴ and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_1-CH_2-A_4-CH_2-$$
 (e-1) or $-CH=CH-CH=CH-$ (e-2)

with t being an integer of 0, 1 or 2 and A₄ being CH₂, O, S, NR^{7b} or N[C(=O)R^{8b}] and wherein each hydrogen in said formula (e-1) or (e-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

or X-R¹ and R² may be taken together to form a tricyclic heterocycle of formula

with R¹⁶ and R¹⁷ being C₁₋₆alkyl or forming together =O.

5 R⁵ and R⁶ each independently are hydrogen, C₁₋₄alkyl or C₁₋₄alkyloxy;

R^{5a} and R^{6a} each independently are hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkylthio, amino, mono-or di(C₁₋₄alkyl)amino or a radical of formula

$$A_6$$
 A_5 (f-1)

10

25

with A_5 and A_6 each independently being CH_2 , NR^{13} or O;

R⁷, R^{7a} and R^{7b} each independently are hydrogen, formyl or C₁₋₄alkyl;

15 R⁸, R^{8a} and R^{8b} each independently are hydrogen or C₁₋₄alkyl;

R⁹ is hydrogen, hydroxy, C₁₋₄alkyloxy, carboxylC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl-C₁₋₄alkyloxy, C₂₋₄alkenyloxy, C₂₋₄alkynyloxy or arylC₁₋₄alkyloxy;

20 R¹⁰ is hydrogen, carboxyl or C₁₋₄alkyl;

 R^{11} is hydrogen; C_{1-4} alkyl optionally substituted with cyano, C_{1-4} alkyloxy, C_{1-4} alkyloxy; C_{2-4} alkenyl; aryl C_{2-4} alkenyl; C_{2-4} alkenyl; C_{2-4} alkynyl; C_{2-4} alkynyl; C_{2-4} alkynyl; C_{3-6} cycloalkyl; aryl; naphthyl or Het³;

R¹² is C₁₋₄alkyl, arylC₁₋₄alkyl, aryl, arylcarbonyl, C₁₋₄alkylcarbonyl or C₁₋₄alkyloxycarbonyl C₁₋₄alkyl;

R¹³ is hydrogen, C₁₋₄alkyl or C₁₋₄alkylcarbonyl;

R¹⁴ is C₁₋₄alkyl optionally substituted with aryl or Het⁴; polyhaloC₁₋₄alkyl or C₂₋₄alkenyl optionally substituted with aryl or Het⁴;

 R^{15} is C_{1-4} alkyl;

Het¹ and Het² each independently are a heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, 10 tetrahydropyrimidinyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, piperazinyl, hexahydropyridazinyl, hexahydropyrimidinyl, morpholinyl, thiomorpholinyl triazolyl, tetrazolyl, pyrrolyl, pyrazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, indolyl, indazolyl, benzodioxanyl, quinolinyl, 2-oxo-1,2-15 dihydro-quinolinyl, imidazopyridinyl, dihydropyrrolyl or dihydroisoxazolyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from O, S, halo, formyl, amino, hydroxy, cyano, carboxyC₁₋₄alkyl, carbamoylC₁₋₄alkyl, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, 20 carbamoylC₁₋₄alkoxy, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, -OCONH₂, C₁₋₄alkoxyC₁₋₄alkyl, aryl, Het²C₁₋₄alkyl, polyhaloC₁₋₄alkyl, C₃₋₆cycloalkyl or arylC₂₋₆alkenyl,

Het³ is a monocyclic or bicyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, 25 benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 2-oxo-1,2-dihydro-quinolinyl, pyrrolidinyl, quinolinyl, oxazolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl or a radical of formula 30

$$A_{3}$$
 (g-1),

with A₇ or A₈ each independently being selected from CH₂ or O;

each of said monocyclic or bicyclic heterocycles may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

- Het⁴ is a monocyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;
- Het⁵ is pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, piperidinyl, morpholinyl or pyrrolidinyl;
- aryl is phenyl optionally substituted with one, two or three substituents each 15 independently selected from halo; hydroxy; carboxyl; cyano; formyl; acetyl; nitro; amino; mono- or di(C₁₋₄alkyl)amino; C₁₋₄alkylcarbonylamino; mono- or di(C₁₋₄alkyl)aminocarbonylamino; C₁₋₄alkyl-S(=O)₂-NH-; Het⁵(=S)-S-C₁₋₄alkyl ; C₁₋₅alkyloxy; sulfamoyl; (C₁₋₄alkyl)sulfamoyl; arylsulfamoyl; Het²sulfamoyl; O-P=OR¹⁵; C₁₋₆alkyl optionally substituted with halo, hydroxy, cyano, nitro, 20 amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₂₋₆alkenyloxy, C₁₋₆alkylcarbonyloxy, C₁₋₆alkyloxycarbonylthio, N-hydroxyimino, phenyl or Het⁵; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, nitro, formyl, amino, monoor di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, 25 C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het⁵; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C1-C₁₋₆alkyloxycarbonyl, C_{1-6} alkyloxy, C₁₋₆alkylcarbonyl, ₄alkyl)amino, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het⁵; phenyl; phenyloxy; phenyl(C₁₋₄alkyl)thioC₁₋₄alkyl; (C₃₋₆)cyclohexylthioC₁₋₄alkyl or isoxazolinyl 30 optionally substituted by C1-4alkyloxycarbonyl or morpholinylC1-4alkyl

provided that

5,6,7,8-tetrahydro-3-iodo-4-phenoxy-1-phenyl-2(1*H*)quinolinone; 3-iodo-6-methyl-4-phenoxy-2(1*H*)-pyridinone;

2-[(3,5,6-trifluoro-1,2-dihydro-2-oxo-4-pyridinyl)amino]benzoic acid; 1,2-dihydro-6-hydroxy-2-oxo-4-(2-phenylethyl)-3-pyridinecarbonitrile;

1,2-dihydro-6-hydroxy-2-oxo-4-(4-pyridinylmethyl)-3-pyridinecarbonitrile: 4-[(4-bromophenyl)methoxy]-3,5-diodo-1-methyl-2(1*H*)-pyridinone; 4-[(4-bromophenyl)methoxy]-1,2-dihydro-1-methyl-2-oxo-3-pyridinecarboxylic acid; 1,2-dihydro-6-methyl-2-oxo-4-(phenylthio)-3-pyridinecarboxylic acid and the 5 alkyl-4-arylthio-1,2-dihydro-5-methyl-6-methyl-2-oxo-3-pyridine carboxylate 3-bromo-4-[[[2-(3,4-dimethoxyphenyl)ethyl]amino]methyl-2(1H)quinolinone; 3-iodo-7-methoxy-1-methyl-4-phenoxy-2(1H)quinolinone; 1-ethyl-3-iodo-7-methoxy-4-phenoxy-2(1H)quinolinone; 3-iodo-7-methoxy-4-(4-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 10 1-ethyl-3-iodo-7-methoxy-4-(4-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 3-iodo-7-methoxy-4-(3-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 1-ethyl-3-iodo-7-methoxy-4-(3-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 3-iodo-7-methoxy-4-phenoxy-2(1*H*)quinolinone; 4-(3-chloro-4-methoxyphenoxy)-3-iodo-7-methoxy-2(1H)quinolinone; 15 3-iodo-4-phenoxy-2(1*H*)quinolinone: 3-iodo-4-phenoxý-1-phenyl-2(1H)quinolinone; 3-iodo-4-(4-methylphenoxy)-2(1H)quinolinone; 3-iodo-4-(4-methoxyphenoxy)-2(1H)quinolinone: are not included.

20

25

30

35

As used herein C1-4alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as methyl, ethyl, propyl, 1-methylethyl, butyl and the like; C₁₋₆alkyl as a group or part of a group defines straight or branched chain saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as the groups defined for C1-4alkyl and pentyl, hexyl, 2-methylpropyl, 2-methylbutyl and the like; C2-4alkenyl as a group or part of a group defines straight or branched chain hydrocarbon radicals having from 2 to 4 carbon atoms and containing a double bond such as ethenyl, propenyl, butenyl and the like; C₂₋₆alkenyl as a group or part of a group defines straight or branched chain hydrocarbon radicals having from 2 to 6 carbon atoms and containing at least one double bond such as the groups defined for C2-4alkenyl and pentenyl, hexenyl, 2,4-hexadienyl, 1,3-butadienyl, 3-methylbutenyl and the like; C2-4alkynyl as a group or part of a group defines straight or branched chain hydrocarbon radicals having from 2 to 4 carbon atoms and containing one triple bond such as ethynyl, propynyl, butynyl and the like; C₂₋₆alkynyl as a group or part of a group defines straight or branched chain hydrocarbon radicals having from 2 to 6 carbon atoms and containing

one triple bond such as the groups defined such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, 3-methylbutynyl and the like; C₃₋₆cycloalkyl is generic to cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

- As used hereinbefore, the term (=O) forms a carbonyl moiety when attached to a carbon atom, a sulfoxide moiety when attached to a sulfur atom, a sulfonyl moiety when two of said terms are attached to a sulfur atom, a phosphorus atom.
- The term halo is generic to fluoro, chloro, bromo and iodo. As used in the foregoing and hereinafter, polyhalomethyl as a group or part of a group is defined as mono- or polyhalosubstituted methyl, in particular methyl with one or more fluoro atoms, for example, difluoromethyl or trifluoromethyl; polyhaloC₁₋₆alkyl as a group or part of a group is defined as mono- or polyhalosubstituted C₁₋₆alkyl, for example, the groups defined in halomethyl, 1,1-difluoro-ethyl and the like. In case more than one halogen atom is attached to an alkyl group within the definition of polyhalomethyl or polyhaloC₁₋₆alkyl, they may be the same or different.
- The R¹ or Het¹, Het², Het³, Het⁴ or Het⁵ radical as described above for the compounds of formula (I) may be attached to the remainder of the molecule of formula (I) through any ring carbon or heteroatom as appropriate. For example, when Het¹ is pyridyl, it may be 2-pyridyl, 3-pyridyl or 4-pyridyl.
- Lines drawn into ring systems indicate that the bond may be attached to any suitable ring atom.
 - When any variable (e.g. aryl) occurs more than one time in any constituent, each definition is independent.
- It will be appreciated that some of the compounds of formula (I) and their N-oxides, addition salts, quaternary amines and stereochemically isomeric forms may contain one or more centers of chirality and exist as stereochemically isomeric forms.
 - The term "stereochemically isomeric forms" as used herein before defines all the possible stereoisomeric forms which the compounds of formula (I), and their N-oxides, addition salts, quaternary amines or physiologically functional derivatives may possess. Unless otherwise mentioned or indicated, the chemical designation of

10

15

compounds denotes the mixture of all possible stereochemically isomeric forms, said mixtures containing all diastereomers and enantiomers of the basic molecular structure as well as each of the individual isomeric forms of formula (I) and their N-oxides, salts, solvates, quaternary amines substantially free, i.e. associated with less than 10%, preferably less than 5%, in particular less than 2% and most preferably less than 1% of the other isomers. In particular, stereogenic centers may have the R- or S-configuration; substituents on bivalent cyclic (partially) saturated radicals may have either the cis- or trans-configuration. Compounds encompassing double bonds can have an E or Z-stereochemistry at said double bond. Stereochemically isomeric forms of the compounds of formula (I) are obviously intended to be embraced within the scope of this invention.

For therapeutic use, salts of the compounds of formula (I) are those wherein the counterion is pharmaceutically acceptable. However, salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound. All salts, whether pharmaceutically acceptable or not, are included within the ambit of the present invention.

The pharmaceutically acceptable acid and base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and base addition salt forms which the compounds of formula (I) are able to form. The pharmaceutically acceptable acid addition salts can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid, sulfuric, nitric, phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic (i.e. ethanedioic) malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzensulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.

Conversely said salt forms can be converted by treatment with an appropriate base into the free base form.

35 The compounds of formula (I) containing an acidic proton may also be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate

t straights,

4.

5

10

20

25

30

organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. primary, secondary and tertiary aliphatic and aromatic amines such as methylamine, ethylamine, propylamine, isopropylamine, the four butylamine isomers, dimethylamine, diethylamine, diethanolamine, dipropylamine, diisopropylamine, din-butylamine, pyrrolidine, piperidine, morpholine, trimethylamine, thiehylamine, tripropylamine, quinuclidine, pyridine, quinoline and isoquinoline; the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.

Conversely the salt forms can be converted by treatment with acid into the free acid form.

The term addition salt as used hereinabove also comprises the solvates which the compounds of formula (I) as well as the salts thereof, are able to form. Such solvates are for example hydrates, alcoholates and the like.

The term "quaternary amine" as used hereinbefore defines the quaternary ammonium salts which the compounds of formula (I) are able to form by reaction between a basic nitrogen of a compound of formula (I) and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary amine has a positively charged nitrogen.

Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins.

Some of the compounds of formula (I) may also exist in their tautomeric form. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.

Whenever used hereinafter, the term "compounds of formula (I)" or "compounds of formula (I-a)" is meant to include also the N-oxides, the addition salts, the quaternary amines and all stereoisomeric forms.

- 5 A special group of compound contains those compounds of formula (I) wherein
- Q is halo; C_{1-6} alkyl; C_{1-6} alkyloxy; C_{1-6} alkyloxy C_{1-6} alkyl; C_{1-6} alkylthio; C₁₋₆alkylthioC₁₋₆alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl C₁₋₆alkyl-S(=O)- C_{1-6} alkyl- $S(=O)_2$ -; hydroxyC₁₋₆alkyl; polyhaloC₁₋₆alkyl; C₁₋₆alkyloxycarbonylC₁₋₆alkyl; C₁₋₆alkyloxyC₁₋₆alkyloxycarbonyl; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, formyl, C1-6alkyloxy, 10 C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxyimino or aryl; C2-6alkynyl optionally substituted with halo, hydroxy, cyano, C_{1-6} alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, 6alkylcarbonyloxy, N-hydroxy-imino or aryl; C₃₋₆cycloalkyl optionally 15 substituted with C₁₋₄alkyl; cyano; carboxyl; formyl; R⁵R⁶N-C(=0)-; R⁵R⁶N-C(=O)-C₁₋₆alkyl; *N*-hydroxy-imino; *N*-C₁₋₄alkyloxy-imino; aryl; aryloxy; arylthio; arylC₁₋₆alkyl; arylcarbonyl; arylC₁₋₆alkyloxycarbonyl; C₁₋₆alkyl substituted with both hydroxy and aryl; Het1oxy; Het1thio; Het1C1-6alkyl; Het carbonyl; Het C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl-P(OR¹⁵)₂=O or C₁₋₆alkyl-20 $P(O-C_{1-6}alkyl-O)=O$

X is a bivalent radical of formula

hydroxyC₁₋₄alkyl;

R¹ is C₃₋₆cycloalkyl, aryl or a monocyclic or bicyclic heterocycle selected from pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl,

imidazolyl, thiazolyl, oxazolyl, benzopyrrolyl, benzofuranyl, benzothiazolyl, benzothiazolyl, benzoxazolyl, or a radical of formula

$$(CH_2)_n$$
 (b-1) or $(CH_2)_n$ (b-2)

with n being an integer of 1 or 2,

said monocyclic or bicyclic heterocycle or said radical of formula (b-1) or (b-2) optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkyloxy, C_{1-4} alkylcarbonyl, polyhalo C_{1-4} alkyl or phenyl;

R² and R³ each independently are selected from hydrogen; halo; formyl; cyano; 10 azido; hydroxy; oxiranyl; amino; mono- or di(C₁₋₄alkyl)amino; formylamino; R^{5a}R^{6a}N-C(=O)-; R⁹-N=C(R¹⁰)-; C₂₋₆alkenyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C_{2-6} alkynyl optionally 15 substituted with one or two substituents each independently selected from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C₁₋₆alkyloxy; hydroxyC₁₋₆alkyloxy; aminoC₁₋₆alkyloxy; monodi(C₁. or 4alkyl)aminoC₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; arylcarbonyl; Het²carbonyl; 20 C₁₋₆alkyloxycarbonyl; C₁₋₆alkylcarbonyloxy; aryl; aryloxy; arylC₁₋₆alkyloxy; arylthio; arylC₁₋₆alkylthio; mono- or di(aryl)amino; Het²; Het²oxy; Het²thio; Het²C₁₋₆alkyloxy; Het²C₁₋₆alkylthio; mono- or di(Het²)amino; C₃₋₆cycloalkyl; C₃₋₆cycloalkyloxy; C₃₋₆cycloalkylthio; C₁₋₆alkylthio; hydroxyC₁₋₆alkylthio; 25 $aminoC_{1-6}$ alkylthio; mono- or $di(C_{1-4}$ alkyl) $aminoC_{1-6}$ alkylthio; C_{1-6} alkyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyloxy, C₁₋₆alkylthio, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, aminocarbonyloxy, di(C₁₋₄alkyl)aminocarbonyloxy, mono-OT C₁₋₆alkyloxycarbonylC₁₋₆alkyloxy, 30 C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonylC₁₋₆alkylthio, aryl, Het², aryloxy, arylthio, arylC₁₋₆alkyloxy, arylC₁ 6alkylthio, Het²C₁₋₆alkyloxy, Het²C₁₋₆alkylthio, C₁₋₆alkyl-S(=O)₂-oxy, amino, mono- or di(C₁₋₆alkyl)amino, C₁₋₆alkyloxy-carbonylamino, C₁₋₆alkyloxyC₁₋ 6alkylcarbonylamino, mono- or di(aryl)amino, monodi(arylC₁.

4alkyl)amino, mono- or di(C_{1-4} alkyloxy C_{1-4} alkyl)amino, mono- or di(C_{1-4} alkyl)amino, mono- or di(Het 2 C₁₋₄alkyl)amino, R¹¹-(C=O)-NH-, R¹²-NH-(C=O)-NH-, R¹⁴-S(=O)₂-NH-, C₁₋₆alkyl-P(O-R¹⁵)₂=O, C₁₋₆alkyl-P(O-C₁₋₆alkyl-O)=O or a radical of formula

$$N-$$
 (c-1) or A_2 A_1 (c-2),

5

with A₁ being CH or N, and A₂ being CH₂, NR¹³, S or O, provided that when A₁ is CH then A₂ is other than CH₂, said radical (c-1) and (c-2) being optionally substituted with one or two substituents each independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkyloxy, hydroxy C₁₋₄alkyl, C₁₋₆ alkyloxycarbonyl, C₁₋₆ alkyloxycarbonylC₁₋₄alkyl, aminoC₁₋₆alkyl, carbonyl, hydroxy, cyano, CONR¹⁶R¹⁷ with R¹⁶ and R¹⁷ being independently H or alkyl, mono or di(C₁₋₄alkyl)aminoalkyl, 4-hydroxy-4-phenyl or 4-cyano-4-phenyl;

or R² and R³ may be taken together to form a bivalent radical of formula

15

10

$$-(CH_2)_t-CH_2-A_3-CH_2-(d-1)$$
 or $-CH=CH-CH=CH-(d-2)$

20

with t being an integer of 0, 1 or 2 and A₃ being CH₂, O, S, NR^{7a} or N[C(=O)R^{8a}] and wherein each hydrogen in said formula (d-1) or (d-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁴ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, C₁₋₆alkylcarbonyloxyC₁₋₆alkyl, C₂₋₆alkenyl, amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyl or aryl;

25

or R4 and R3 may be taken together to form a bivalent radical of formula

$$-(CH_2)_{t}-CH_2-A_4-CH_2-$$
 (e-1) or $-CH=CH-CH=CH-$ (e-2)

30 1

with t being an integer of 0, 1 or 2 and A₄ being CH₂, O, S, NR^{7b} or N[C(=O)R^{8b}] and wherein each hydrogen in said formula (e-1) or (e-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

10

15

20

25

35

R⁵ and R⁶ each independently are hydrogen, C₁₋₄alkyl or C₁₋₄alkyloxy;

R^{5a} and R^{6a} each independently are hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkylthio, amino, mono- or di(C₁₋₄alkyl)amino; or a radical of formula

$$A_6$$
 A_5 (f-1)

with A₅ and A₆ each independently being CH₂, NR¹³ or O;

R⁷, R^{7a} and R^{7b} each independently are hydrogen, formyl or C₁₋₄alkyl;

R⁸, R^{8a} and R^{8b} each independently are hydrogen or C₁₋₄alkyl;

 R^9 is hydrogen, hydroxy, C_{1-4} alkyloxy, carboxyl C_{1-4} alkyloxy, C_{1-4} alkyloxy, C_{2-4} alkyloxy, C_{2-4} alkyloxy, C_{2-4} alkynyloxy or aryl C_{1-4} alkyloxy;

R¹⁰ is hydrogen, carboxyl or C₁₋₄alkyl;

R¹¹ is hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkyl-S(=O)₂-, aryl or Het³; C₁₋₄alkyloxy; C₂₋₄alkenyl; arylC₂₋₄alkenyl; Het³C₂₋₄alkynyl; Het³C₂₋₄alkynyl, arylC₂₋₄alkynyl; C₃₋₆cycloalkyl; aryl; naphthyl or Het³;

 R^{12} is C_{1-4} alkyl, aryl C_{1-4} alkyl, aryl, arylcarbonyl, C_{1-4} alkyloxycarbonyl, or C_{1-4} alkyloxycarbonyl C_{1-4} alkyl;

R¹³ is hydrogen, C₁₋₄alkyl or C₁₋₄alkylcarbonyl;

R¹⁴ is C₁₋₄alkyl optionally substituted with aryl or Het⁴; polyhaloC₁₋₄alkyl or C₂₋₄alkenyl optionally substituted with aryl or Het⁴;

30 R¹⁵ is C₁₋₄alkyl;

Het¹ and Het² each independently are a heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl,

3.0

15

25

hexahydropyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl or 2-oxo-1,2-dihydro-quinolinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

Het³ is a monocyclic or bicyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, 2-oxo-1,2-dihydro-quinolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl or a radical of formula

$$(g-1),$$

with A₇ or A₈ each independently being selected from CH₂ or O; each of said monocyclic or bicyclic heterocycles may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

Het⁴ is a monocyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

Het⁵ is pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl or oxazolyl;

aryl is phenyl optionally substituted with one, two or three substituents each independently selected from halo; hydroxy; carboxyl; cyano; formyl; nitro; amino; mono- or di(C₁₋₄alkyl)amino; C₁₋₄alkylcarbonylamino; mono- or di(C₁₋₄alkyl)aminocarbonylamino; C₁₋₄alkyl-S(=O)₂-NH-; C₁₋₆alkyloxy; C₁₋₆alkyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy,

C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkylcarbonyloxy, *N*-hydroxy-imino, phenyl or Het⁵; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, *N*-hydroxy-imino, phenyl or Het⁵; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, *N*-hydroxy-imino, phenyl or Het⁵; phenyl or phenyloxy;

A special group of compound contains those compounds of formula (I) wherein Q is halo, C₁₋₆alkyl or C₂₋₆alkenyl;

X is (a-2) with q and r being 0 and Z being O, S or SO;

R₁ is aryl;

R₂ is selected from formyl; C₁₋₆alkyloxycarbonylalkyl; Het²; Het²C₁₋₆alkyl; 15 C₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with one or two substituents each independently selected from hydroxy or halo;

 R_3 is selected from formyl; C_{1-6} alkyl optionally substituted with one or two C_{1-6} alkyloxy;

R₄ is hydrogen.

20

25

Particular compounds are those compounds of formula (I) wherein Q is iodo.

Preferred compounds are those compounds of formula (I) wherein Q is iodo, $X-R_1$ is a 3,5-dimethylphenylthio or a 3,5-dimethylphenyloxy and R_2 is a hydroxymethyl or a N-morpholinomethyl or a 3-phenylpropyl or a furan-2-yl-methylthiomethyl. Also preferred compounds are those compounds of formula (I) wherein Q is iodo, $X-R_1$ is a 3-(2-cyano-vinyl)-5-iodophenyloxy or 5-bromo-3-(2-cyano-vinyl) and R_2 is ethyl.

Most preferred compounds are compounds n° 242, 255, 43, 264, 124, 249, 298, 326, 133, 241, 253, 306, 328, 46, 105, 234, 254, 256, 272, 284, 296, 319, 83, 88, 108, 109, 315, 277, 286, 299, 45, 85, 86, 231, 244, 297, 250, 257, 307, 324, 81, 92, 140, 143, 217, 221, 230, 232, 245, 309, 321, 322, 31, 218, 222, 314, 8, 99, 121, 219, 233, 280, 551, 470, 375, 483, 547, 606, 618, 662, 694, 700, 709 and 713 of table 1.

10

The present invention also relates to a method of treating warm-blooded animals suffering from HIV infection. Said method comprises the administration of the therapeutically effective amount of a compound of formula (I) or any sub group thereof, a N-oxide form, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof in admixture with a pharmaceutical carrier.

The compounds of formula (I) can be prepared according to art-known procedures.

In general, compounds of formula (I) wherein X is an oxygen and R₁ a 3,5-dimethylphenyl, said compound being represented by formula (I-a) can be prepared by reacting an intermediate of formula (II) with a derivative of formula (III)

$$R^3$$
 R^2
 (III)
 R^3
 R^2
 (III)
 (III)
 (III)
 (III)
 (III)

In this and the following preparations, the reaction products may be isolated from the reaction medium and, if necessary, further purified according to methodologies generally known in the art such as, for example, extraction, crystallization, distillation, trituration and chromatography.

The compounds of formula (I) wherein X is a sulphur, said compound being represented by formula (I-b) can be prepared by reacting an intermediate of formula (IV) with a derivative of formula (V) in an appropriate solvent such as for example methanol, ethanol, propanol, butanol, dioxane, tetrahydrofurane, 2-methoxyethylether or toluene, and the like. This reaction can be performed at a temperature comprised between 20 and 130°C.

15

20

10

15

.20

25

$$R^3$$
 R^2
 CI
 R^3
 R^2
 R^2
 R^3
 R^2
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3

The compounds of formula (I) may further be prepared by converting compounds of formula (I) into each other according to art-known group transformation reactions.

The compounds of formula (I) may be converted to the corresponding *N*-oxide forms following art-known procedures for converting a trivalent nitrogen into its *N*-oxide form. Said *N*-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with an appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboperoxoic acid, peroxoalkanoic acids, e.g. peroxoacetic acid, alkylhydroperoxides, e.g. t.butyl hydro-peroxide. Suitable solvents are, for example, water, lower alcohols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents.

Some of the compounds of formula (I) and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, liquid chromatography and the like methods. Enantiomers can be obtained from racemic mixtures by first converting said racemic mixtures with suitable resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said

WO 02/24650 PCT/IB01/02082

21

mixtures of diastereomeric salts or compounds by, for example, selective crystallization of chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur stereospecifically.

An alternative manner of separating the enantiomeric forms of the compounds of formula (I) and intermediates involves liquid chromatography using a chiral stationary phase.

Some of the intermediates and starting materials are known compounds and may be commercially available or may be prepared according to art-known procedures.

15

20

25

30

5

The compounds of formula (I) as prepared in the hereinabove described processes may be synthesized as a mixture of stereoisomeric forms, in particular in the form of racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stereoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ . enantiomerically pure starting materials.

BNSDDCID: <WO 0224650A2 L s

It will be appreciated by those skilled in the art that in the processes described above the functional groups of intermediate compounds may need to be blocked by protecting groups.

Functional groups which it is desirable to protect include hydroxy, amino and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl groups (e.g. tert-butyldimethylsilyl, tert-butyldiphenylsilyl or trimethylsilyl), benzyl and tetrahydropyranyl. Suitable protecting groups for amino include tert-butyloxycarbonyl or benzyloxycarbonyl. Suitable protecting groups for carboxylic acid include C₁₋₆alkyl or benzyl esters.

The protection and deprotection of functional groups may take place before or after a reaction step.

- The use of protecting groups is fully described in 'Protective Groups in Organic Chemistry', edited by J W F McOmie, Plenum Press (1973), and 'Protective Groups in Organic Synthesis' 2nd edition, T W Greene & P G M Wutz, Wiley Interscience (1991).
- The compounds of the present invention show antiretroviral properties, in particular against Human Immunodeficiency Virus (HIV), which is the aetiological agent of Acquired Immune Deficiency Syndrome (AIDS) in humans. The HIV virus preferentially infects human T-4 cells and destroys them or changes their normal function, particularly the coordination of the immune system. As a result, an infected patient has an everdecreasing number of T-4 cells, which moreover behave abnormally. Hence, the immunological defense system is unable to combat infections and neoplasms and the HIV infected subject usually dies by opportunistic infection include thrombocytopaenia, Kaposi's sarcoma and infection of the central nervous system characterized by progressive demyelination, resulting in dementia and symptoms such as progressive dysarthria, ataxia and disorientation. HIV

10

15

infection further has also been associated with peripheral neuropathy progressive generalized lymphadenopathy (PGL) and AIDS-related complex (ARC).

The present compounds also show activity against HIV-1 strains that have acquired resistance to art-know non-nucleoside reverse transcriptase inhibitors. They also have little or no binding affinity to human α -1 acid glycoprotein.

Due to their antiretroviral properties, particularly their anti-HIV properties, especially their anti-HIV-1-activity, the compounds of the present invention are useful in the treatment of individuals infected by HIV and for the prophylaxis of these individuals. In general, the compounds of the present invention may be useful in the treatment of warm-blooded animals infected with viruses whose existence is mediated by, or depends upon, the enzyme reverse transcriptase. Conditions which may be prevented or treated with the compounds of the present invention, especially conditions associated with HIV and other pathogenic retroviruses, include AIDS, AIDS-related complex (ARC), progressive generalized lymphadenopathy (PGL), as well as chronic CNS diseases caused by retroviruses, such as, for example HIV mediated dementia and multiple sclerosis.

The compounds of the present invention or any subgroup thereof may therefore be used as medicines against above-mentioned conditions. Said use as a medicine or method of treatment comprises the systemic administration to HIV-infected subjects of an amount effective to combat the conditions associated with HIV and other pathogenic retroviruses, especially HIV-1.

25

30

The compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically

10

15

20

25

30

acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid sugars, kaolin, lubricants, binders, disintegrating agent and the like in the case of powders pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the list advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be These compositions may be helpful for preparing the desired compositions. administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment.

To aid solubility of the compounds of formula (I), suitable ingredients, e.g. cyclodextrins, may be included in the compositions. Appropriate cyclodextrins are α , β , γ -cyclodextrins or ethers and mixed ethers thereof wherein one or more of the hydroxy groups of the anhydroglucose units of the cyclodextrin are substituted with C_{1-6} alkyl, particularly methyl, ethyl or isopropyl, e.g. randomly methylated β -CD;

10

15

hydroxyC₁₋₆alkyl, particularly hydroxyethyl, hydroxy-propyl or hydroxybutyl; carboxyC₁₋₆alkyl, particularly carboxymethyl or carboxy-ethyl; C₁₋₆alkylcarbonyl, particularly acetyl. Especially noteworthy as complexants and/or solubilizers are β -CD, randomly methylated β -CD, 2,6-dimethyl- β -CD, 2-hydroxyethyl- β -CD, 2-hydroxyethyl- β -CD, and in particular 2-hydroxypropyl- β -CD (2-HP- β -CD).

The term mixed ether denotes cyclodextrin derivatives wherein at least two cyclodextrin hydroxy groups are etherified with different groups such as, for example, hydroxy-propyl and hydroxyethyl.

The average molar substitution (M.S.) is used as a measure of the average number of moles of alkoxy units per mole of anhydroglucose. The average substitution degree (D.S.) refers to the average number of substituted hydroxyls per anhydroglucose unit. The M.S. and D.S. value can be determined by various analytical techniques such as nuclear magnetic resonance (NMR), mass spectrometry (MS) and infrared spectroscopy (IR). Depending on the technique used, slightly different values may be obtained for one given cyclodextrin derivative. Preferably, as measured by mass spectrometry, the M.S. ranges from 0.125 to 10 and the D.S. ranges from 0.125 to 3.

20

25

30

Other suitable compositions for oral or rectal administration comprise particles obtainable by melt-extruding a mixture comprising a compound of formula (I) and an appropriate water-soluble polymer and subsequently milling said melt-extruded mixture. Said particles can then be formulated by conventional techniques into pharmaceutical dosage forms such as tablets and capsules.

Said particles consist of a solid dispersion comprising a compound of formula (I) and one or more pharmaceutically acceptable water-soluble polymers. The preferred technique for preparing solid dispersions is the melt-extrusion process comprising the following steps:

a) mixing a compound of formula (I) and an appropriate water-soluble polymer,

- b) optionally blending additives with the thus obtained mixture,
- c) heating the thus obtained blend until one obtains a homogenous melt,
- d) forcing the thus obtained melt through one or more nozzles; and
- e) cooling the melt till it solidifies.

25

INCOMOTO MAN MANAGEMAN I

The solid dispersion product is milled or ground to particles having a particle size of less than 1500 μm , preferably less than 400 μm , more preferably less than 250 μm and most preferably less than 125 μm .

The water-soluble polymers in the particles are polymers that have an apparent viscosity, when dissolved at 20°C in an aqueous solution at 2 % (w/v), of 1 to 5000 mPa.s, more preferably of 1 to 700 mPa.s, and most preferred of 1 to 100 mPa.s. For example, suitable water-soluble polymers include alkylcelluloses, hydroxyalkylcelluloses, carboxyalkylcelluloses, alkali metal salts of carboxyalkylcelluloses, carboxyalkylcelluloses, carboxyalkylcellulose esters, starches, pectines, chitin derivates, polysaccharides, polyacrylic acids and the salts thereof, polymethacrylic acids and the salts and esters thereof, methacrylate copolymers, polyvinylalcohol, polyalkylene oxides and copolymers of ethylene oxide and propylene oxide. Preferred water-soluble polymers are Eudragit E[®] (Röhm GmbH, Germany) and hydroxypropyl methylcelluloses.

Also one or more cyclodextrins can be used as water soluble polymer in the preparation of the above-mentioned particles as is disclosed in WO 97/18839. Said cyclodextrins include the pharmaceutically acceptable unsubstituted and substituted cyclodextrins known in the art, more particularly α , β , γ -cyclodextrins or the pharmaceutically acceptable derivatives thereof.

Substituted cyclodextrins which can be used include polyethers described in U.S. Patent 3,459,731. Further substituted cyclodextrins are ethers wherein the hydrogen of one or more cyclodextrin hydroxy groups is replaced by C₁₋₆alkyl,

hydroxy C_{1-6} alkyl, carboxy- C_{1-6} alkyl or C_{1-6} alkyloxycarbonyl C_{1-6} alkyl or mixed ethers thereof. In particular such substituted cyclodextrins are ethers wherein the hydrogen of one or more cyclodextrin hydroxy groups is replaced by C_{1-3} alkyl, hydroxy C_{2-4} alkyl or carboxy C_{1-2} alkyl or more in particular by methyl, ethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, carboxy-methyl or carboxyethyl.

Of particular utility are the β -cyclodextrin ethers, e.g. dimethyl- β -cyclodextrin as described by M. Nogradi (*Drugs of the Future*, (1984) Vol. 9, No. 8, p. 577-578) and polyethers, e.g. hydroxypropyl β -cyclodextrin and hydroxyethyl β -cyclodextrin, being examples. Such an alkyl ether may be a methyl ether with a degree of substitution of about 0.125 to 3, e.g. about 0.3 to 2. Such a hydroxypropyl cyclodextrin may for example be formed from the reaction between β -cyclodextrin an propylene oxide and may have a MS value of about 0.125 to 10, e.g. about 0.3 to 3.

15

20

25

10

5

A more novel type of substituted cyclodextrins is sulfobutylcyclodextrines.

The ratio of the compound of formula (I) over cyclodextrin may vary widely. For example ratios of 1/100 to 100/1 may be applied. Interesting ratios of the compound of formula (I) over cyclodextrin range from about 1/10 to 10/1. More interesting ratios range from about 1/5 to 5/1.

It may further be convenient to formulate the compounds of formula (I) in the form of nanoparticles which have a surface modifier adsorbed on the surface thereof in an amount sufficient to maintain an effective average particle size of less than 1000 nm. Useful surface modifiers are believed to include those which physically adhere to the surface of the compound of formula (I) but do not chemically bond to said compound.

30 Suitable surface modifiers can preferably be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low

molecular weight oligomers, natural products and surfactants. Preferred surface modifiers include nonionic and anionic surfactants.

- Yet another interesting way of formulating the compounds of formula (I) involves a pharmaceutical composition whereby the compounds of formula (I) are incorporated in hydrophilic polymers and applying this mixture as a coat film over many small beads, thus yielding a composition which can conveniently be manufactured and which is suitable for preparing pharmaceutical dosage forms for oral administration.
- Said beads comprise a central, rounded or spherical core, a coating film of a hydrophilic polymer and a compound of formula (I) and a seal-coating polymer layer.
- Materials suitable for use as cores in the beads are manifold, provided that said materials are pharmaceutically acceptable and have appropriate dimensions and firmness. Examples of such materials are polymers, inorganic substances, organic substances, and saccharides and derivatives thereof.
- It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions and the like, and segregated multiples thereof.
- Those of skill in the treatment of HIV-infection could determine the effective daily amount from the test results presented here. In general, it is contemplated that an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to

WO 02/24650 PCT/IB01/02082

29

administer the required dose at two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.

5

10

15

20

25

30

The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, the weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased of the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective daily amount ranges mentioned hereinabove are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.

Also, the combination of an antiretroviral compound and a compound of the present invention can be used as a medicine. Thus, the present invention also relates to a product containing (a) a compound of the present invention, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment. The different drugs may be combined in a single preparation together with pharmaceutically acceptable carriers. Said other antiretroviral compounds may be known antiretroviral compounds such as nucleoside reverse transcriptase inhibitors, e.g. zidovudine (3'-azido-3'-deoxythymidine; AZT), didanosine (dideoxy inosine; ddI), zalcitabine (dideoxycytidine; ddC) or lamivudine (3'-thia-2'-3'-dideoxycytidine; 3TC) and the like; non-nucleoside transcriptase inhibitors such suramine, pentamidine. thymopentin, castanospermine, efavirenz, rescriptor (BHAP derivative), dextran (dextran sulfate), foscarnet-sodium (trisodium phosphono formate), nevirapine (11-cyclopropyl-5,11dihydro-4-methyl-6*H*dipyrido[3,2-b: 2',3'-e][1,4]diazepin-6-one), tacrine (tetrahydroaminoacridine) and the like; compounds of the TIBO (tetrahydro-

15

20

25

imidazo[4,5,1-jk][1,4]-benzodiazepine-2(1*H*)-one and thione)-type e.g. (S)-8-chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo-[4,5,1-

jk][1,4]benzodiazepine-2(1H)-thione compounds of the α -APA (α -anilino phenyl acetamide) type e.g. α -[(2-nitro-phenyl)amino]-2,6-dichloro-benzene-acetamide and the like; TAT-inhibitors, e.g. RO-5-3335 and the like; protease inhibitors e.g. indinavir, ritanovir, saquinovir, ABT-378 and the like; fusion inhibitors; integrase inhibitors; or immunomodulating agents, e.g. levamisole and the like. The compound of formula (I) can also be combined with another compound of formula (I).

The following examples are intended to illustrate the present invention. The numbers under the formulas correspond to the numbers in the table (I).

Example 1: Ethyl 2-azido-4-(3,5-dimethylphenoxy)- 1,6-dihydro- 5-iodo-6-oxo-3 – pyridinecarboxylate (compound 106)

106

2-chloro-4-hydroxy-6-oxo-1,6-dihydro-pyridine-3-carboxylic acid ethyl ester (intermediate 1) was obtained as described by J. A. Elvidge and N. A. Zaidi (*J. Chem. Soc.*, (1968), 17, 2188) and dichloro-3,5-dimethyliodobenzene (intermediate 2) as described by H.J. Lucas, E.R. Kennedy, Org. Synth. (1955) Vol-III, 482-483.

1.1.: Ethyl 2-chloro-4-(3,5-dimethylphenoxy)-1,6-dihydro-5-iodo-6-oxo-3-pyridinecarboxylate (intermediate 3)

Intermediate 2 (0.73 g, 2.2 mmol) was suspended in 10 ml of water containing sodium carbonate (0.24 g, 2.2 mmol) and stirred for 30 min. at room temperature. To this mixture a solution of intermediate 1 (0.44 g, 2 mmol) in 10 ml of water containing also sodium carbonate (0.22 g; 2 mmol) was added. After stirring for one hour at 20°C the precipitate was filtered off, washed with water, dried in

vacuo and suspended in diglyme (5 ml). After heating at 100°C for 10 min., the solvent was removed *in vacuo*. Purification by flash chromatography (SiO₂, CH₂Cl₂/ethanol 98:2) gave the titled compound (0.6 g, 67%) as yellow microcrystals, m. p. 180-182°C

5

10

1.2.: Ethyl 2-azido-4-(3,5-dimethylphenoxy)-1,6-dihydro-5-iodo-6-oxo-3-pyridinecarboxylate (compound 106)

Sodium azide (0.20 g, 3.12 mmol) was added to a solution of intermediate 3 (0.50 g, 1.56 mmol) in DMSO (5ml), and the mixture was heated at 50°C for 5 hours Reaction mixture was partitioned between water (30 ml) and ethyl acetate (40 ml). The organic layer was dried over magnesium sulfate and concentred. Flash chromatography (SiO_2 , CH_2Cl_2 /ethanol 95:5) gave the desired product (0.49 g, 70%) as a white solid, m. p. = 216-218°C.

15 Example 2: 4-[3,5-dimethylphenyl)-sulfinyl]-5-ethyl-3-iodo-6-methyl-2(1H)-pyridinone (compound 108)

108

4-[3,5-dimethylphenyl)-thio]-5-ethyl-6-methyl-2(1*H*)-pyridinone (intermediate 4) was obtained as described by Dollé *et al.* (*J. Med. Chem.*, (1995), **38**, 4679-4686).

20

25

2.1.: 4-[3,5-dimethylphenyl)-thio]-5-ethyl-3-iodo-6-methyl-2(1*H*)-pyridinone (intermediate 5)

The intermediate 4 (273 mg; 1 mmol) was dissolved in acetic acid (4 ml) and ethyl acetate (4 ml). At room temperature and in the dark N-iodosuccinimide (225 mg; 1 mmol) was added in one portion. After 4 hours under stirring at room

15

25

temperature, the mixture was poured into water (15 ml) and the pH of the solution was adjusted to 7 with 28% ammonia. The combined organic layers obtained by extraction with ethyl acetate (3x30 ml) were washed with brine (10 ml), dried over magnesium sulfate and evaporated to give a gum. It was then purified by flash chromatography on silica gel column with CH_2Cl_2 -ethanol (98:2) as the eluent to give the main fraction containing the titled compound which was recristallized from ethanol furnishing the pure intermediate 5 as yellow microcrystals (122 mg; 51%), m. p. = 252°C.

10 <u>2.2.: 4-[3,5-dimethylphenyl)-sulfinyl]-5-ethyl-3-iodo-6-methyl-2(1H)-pyridinone</u> (compound 108)

m-chloroperbenzoic acid and water (70%, 123 mg; 0.5 mmol) in chloroform (15 ml) was dried over magnesium sulfate and filtered. To this solution at 0°C was added the intermediate 5 (200 mg; 0.5 mmol) and the mixture was kept under stirring for 1 hour. A saturated solution of sodium carbonate (5 ml) was added and the combined organic layers obtained by extraction with CH₂Cl₂ (3x30 ml) were dried over magnesium sulfate and evaporated. The residue obtained was then chromatographed (SiO₂, CH₂Cl₂/ethanol 98:2) to give the titled compound (113 mg; 50%).

20 1H NMR. (200 MHz, CDCl3), d: 0.66 (t, 3H, CH3-CH2, J=6.9 Hz); 2.20-2.90 (m, 11H, CH3-6,3',5', CH2CH3); 7.08 (s, 1H, H-4'); 7.25 (s, 2H, H-2',6'); 12.9 (s, 1H, NH).

Example 3: 4-(3,5-dimethylphenoxy)-1,6-dihydro-5-iodo-2-methyl-6-oxo-3-pyridinecarboxaldehyde (compound 269)

10

15

20

25

Ethyl 4-hydroxy-6-methyl-2-oxo-1,2-dihydro-3-pyridinecarboxylate (intermediate 6) was described by E. Knoevenagel and A. Fries (*Ber.*, (1898), 31, 768).

3.1.: Ethyl 4-hydroxy-5-hydroxymethyl-6-methyl-2-oxo-1,2-dihydro-3-pyridinecarboxylate (intermediate 7)

The mixture of intermediate 6 (1.8 g; 9.1 mmol), Na₂CO₃ (970 mg; 9.1 mmol) and water (30 ml) was heated in an oil bath at 90°C. Three portions of 37% formaldehyde solution in water (1.46 ml; 18.2 mmol each) were added every 45 min. The homogeneous mixture obtained was kept at the same temperature for 30 min. further and the oil bath was removed. When the internal temperature reaches 60°C, ethyl acetate (40 ml) and acetic acid (1.8 ml) were added and after extraction with hot ethyl acetate (4x40 ml) the organic layer was evaporated under reduced pressure. The residue was then purified by flash chromatography on a silica gel column with CH_2Cl_2 /ethanol (95:5) as the eluent to give the expected intermediate 7 (830 mg; 40%), m. p. = 262-265°C.

3.2.: Ethyl 5-formyl-4-hydroxy-6-methyl-2-oxo-1,2-dihydro-3-pyridine-3-carboxylate (intermediate 8)

To a stirred solution of intermediate 7 (500 mg; 2.2 mmol) in CH_2Cl_2 (80 ml) was added at reflux MnO₂ (4 g; 46 mmol) and the reflux was maintained for 50 hours. The hot mixture was filtered off, the solid was washed successively with hot methanol (3x50 ml) and hot ethyl acetate (3x50 ml). The solvents were evaporated and the solid residue obtained was then purified by flash chromatography on a column of silica gel with CH_2Cl_2 /ethanol (98:2) as the eluent to give the intermediate 8 (420 mg; 85%); m. p. = 248-250°C.

3.3.: 4-hydroxy-2-methyl-6-oxo-1,6-dihydro-3-pyridinecarboxaldehyde (intermediate 9)

To a solution of intermediate 8 (350 mg; 1.5 mmol) in 1,4-dioxane (15 ml) was added water (7.6 ml) and 1N HCl (2.4 ml) and the mixture was heated under reflux for 24 hours. The hot solution was extracted with ethyl acetate (3x30 ml) and

15

20

25

0224650821

DMCDOCID: AMO

the solvent was removed under reduced pressure furnishing the titled intermediate 9 as yellow microcrystals (110 mg; 47%); m. p. > 260°C. This compound was used for the next step without any further purification.

5 <u>3.4.: 4-(3,5-dimethylphenoxy)-1,6-dihydro-5-iodo-2-methyl-6-oxo-3-</u> pyridinecarboxaldehyde (compound 269)

Intermediate 2 (1.31 g, 4.32 mmol) was suspended in 25 ml of water containing sodium carbonate (0.46 g, 4.32 mmol) and stirred for 30 min. at room temperature. To this mixture a solution of intermediate 9 (0.55 g, 3.6 mmol) in 25 ml of water containing also sodium carbonate (0.38 g; 3.6 mmol) was added. After stirring for 1hour at 20°C the precipitate was filtered off, washed with water, dried *in vacuo* and suspended in dimethylformamide (15 ml). After heating under reflux for 1h the solvent was removed *in vacuo*. Purification by flash chromatography (SiO₂, CH₂Cl₂/EtOH 95:5) gave the titled compound (1.01 g, 73%) as yellow microcrystals, m. p. >260°C.

Example 4: 4-(3,5-dimethylphenoxy)-5-(hydroxymethyl)-3-iodo-6-methyl-2(1*H*)-pyridinone (compound 257)

257

To a stirred solution of compound 269 (500 mg; 1.3 mmol) in methanol (50 ml) was added NaBH₄ (350 mg; 9.2 mmol) in small portions for a period of 10 min. After 1hour on stirring at room temperature, water (20 ml) and a solution 10% potassium carbonate (30 ml) were added. The mixture was extracted with ethyl acetate (3x60 ml) and the organic layer was washed with brine, dried over magnesium sulfate and the solvent was removed under reduced pressure giving colorless microcrystals which correspond to the titled compound (490 mg; 97%) m.p.=248-250°C.

WO 02/24650 PCT/IB01/02082

Example 5: 5-(chloromethyl)-4-(3,5-dimethylphenoxy)-3-iodo-6-methyl-2(1*H*)-pyridinone (compound 125)

125

The heterogeneous solution of compound 257 (450 mg; 1.2 mmol) in CH₂Cl₂ (30 ml) became homogeneous mixture by addition at room temperature of SOCl₂ (2.6 ml). After 2 hours on stirring at room temperature, all the volatiles were removed under reduced pressure giving a yellow solid which corresponds to the expected compound 125 in quantitative yield (470 mg); m. p.= 256-258°C. This compound was used for the next step without any further purification.

10

15

20

5

Example 6: 4-(3,5-dimethylphenoxy)-5-(ethoxymethyl)-3-iodo-6-methyl-2(1H)-pyridinone (compound 255)

255

A solution of compound 125 (60 mg; 0.15 mmol) in absolute ethanol (5 ml) and potassium carbonate (60 mg; 0.44 mmol) was heated under reflux for 16 hours. After evaporation under reduced pressure, water (5 ml) was added and the mixture was extracted with ethyl acetate (3x10 ml). The organic layer was washed with brine (5 ml), dried over magnesium sulfate and the solvent was removed. The colorless solid residue was then purified by flash chromatography on a silica gel column with CH₂Cl₂/ethanol (98:2) as the eluent to give the titled compound 255 (59 mg; 95%); m. p. = 234-236°C.

10

15

20

Example 7: 4-(3,5-dimethylphenoxy)-5-ethyl-3-iodo-6-methyl-2(1*H*)-pyridinone (compound 258)

258

This compound was prepared starting from the 5-ethyl-6-methyl-4-hydroxypyridin-2(1*H*)-one (intermediate 10) which was obtained as described by Dollé *et al.* (*J. Med. Chem.*, (1995), 38, 4679-4686).

Intermediate 2 (3,75 g; 12,4 mmol) was suspended in water (50 ml) containing sodium carbonate (1,31 g; 12,4 mmol) and stirred for 30 min at room temperature. To this mixture a solution intermediate 10 (1,9 g; 12,4 mmol) in water (50 ml) containing also sodium carbonate (1,31 g; 12,4 mmol) was added. After stirring for 1hour at 20°C the precipitate was filtered off, washed with water, dried under vacuum at room temperature and suspended in dimethylformamide (20 ml). The mixture was refluxed for 1hour. The solvent was removed *in vacuo*. Purification by flash chromatography (SiO₂, CH₂Cl₂/ Et OH 98:2) gave the titled compound (4,3 g; 90%) as colorless microcrystals; m. p. = 240°C.

Example 8: 4-(3,5-dimethylphenoxy)-3-ethenyl-5-ethyl-6-methyl-2(1H)-pyridinone (compound 234)

234

Compound 258 (300 mg, 0.1783 mmol) and palladium tetrakistriphenylphosphine (45 mg, 5%mol) were dissolved in toluene (6 ml). Tributyl(vinyl)tin (358 mg, 0.94 mmol) was added at room temperature. The mixture

was refluxed for 12 hours. Water (8 ml) was added and the aqueous layer was extracted with dichloromethane and dried over magnesium sulfate. The solvent was removed under vacuum and the residue was purified by flash chromatography (SiO₂, CH₂Cl₂/ethanol 98:2) to give the titled compound 234 as colorless microcrystals (87 mg, 39%); m. p. = 200°C.

Example 9: 4-(3,5-dimethylphenoxy)-3,5-diethyl-6-methyl-2(1H)-pyridinone (compound 231)

231

Compound 234 (90 mg, 0.318 mmol) was dissolved in absolute ethanol (10 ml). The catalyst palladium on carbon 10% (44 mg) was added. The mixture was stirred under hydrogen atmosphere at room temperature for 12hours. The catalyst was filtered off and the solvent was evaporated under vacuum. The residue was purified by flash chromatography (SiO₂, CH₂Cl₂/ethanol 98:2) to give the desired compound as colorless microcrystals (60 mg, 66%);, m.p. = 180°C.

Example 10: 4-[3,5-dimethylphenyl)-thio]-5-(ethoxymethyl)-3-iodo-6-methyl-2(1H)-pyridinone (compound 86)

20 <u>10.1. Ethyl 4-hydroxy-2-methyl-6-oxo-1,6-dihydro-3-pyridinecarboxylate</u> (intermediate 12)

10

15

This compound was prepared starting from the di-(2,4,6-trichlorophenyl)malonate (intermediate 11) which was obtained as described by Kappe, Th., (Mh. Chem. (1967), 98, 874).

A solution of ethyl 3-aminocrotonate (12.6 g, 97.5 mmol) and of intermediate 11 in diglyme (400 ml) was heated at 100° C for 3 hours during which the product separated out. After cooling, diethylether (1.5 l) was added and the desired intermediate 12 was filtered (14.2 g, 75%). m. p. 243-245°C.

10.2.: Ethyl 4-chloro-2-methyl-6-oxo-1,6-dihydro-3-pyridinecarboxylate (intermediate 13)

To a solution of intermediate 12 (2 g; 10 mmol) and benzyltriethylammonium chloride (9.1 g; 40 mmol) in acetonitrile (40 ml) was added in one portion phosphorus oxychloride (2.2 ml; 24 mmol). The obtained mixture was stirred at room temperature under nitrogen atmosphere for 5 min. and heated under reflux for 2hours. After evaporation of the solvent, cool water (40 ml) was added and the mixture was stirred for 0.5hour. Extraction with CH₂Cl₂ followed by a silica gel column chromatography using CH₂Cl₂/ethanol (99:1) as eluent gave i) ethyl 2,4-dichloro-6-methylpyridin-5-ylcarboxylate (1.7 g; 72%) (which can be transformed into the intermediate 13 and ii) intermediate 13 (506 mg; 24%) m.p.=161-163°C.

20

25

INICOTO MAIO OSSACEDAS L.

10.3.: Ethyl 4-[(3,5-dimethylphenyl)-thio]-1,6-dihydro-2-methyl-6-oxo-3-pyridinecarboxylate (intermediate 14)

A mixture of the intermediate 13 (1.2 g; 5.6 mmol) in ethanol (15 ml), triethylamine (1.5 ml) and 3,5-dimethylthiophenol (1.45 ml; 11 mmol) was heated under reflux for 16 hours. After evaporation under reduced pressure, diethylether (50 ml) was added and the precipitate was filtered off. The intermediate 14 was obtained (1.42 g; 80%) as a colorless solid m.p.= 233-235°C.

10.4.: 4-[(3,5-dimethylphenyl)-thio]-5-(hydroxymethyl)-6-methyl-2(1*H*)-pyridinone (intermediate 15)

10

15

20

Under nitrogen atmosphere, the intermediate 14 (500 mg; 1.6 mmol) was suspended in dry tetrahydrofurane (20 ml) and LiAlH₄ (120 mg; 3.2 mmol) was added at 0°C. The mixture was stirred at room temperature for 18 hours and poured in ethyl acetate (50 ml) at 0°C and a solution 10% H₂SO₄ (100 ml) was added dropwise. The mixture was extracted with ethyl acetate (2x100ml) and the organic layer was removed under reduced pressure giving the intermediate 15 (310 mg; 71%) m.p.=268-270°C.

10.5.: 4-[(3,5-dimethylphenyl)-thio]-5-(chloromethyl)-6-methyl-2(1*H*)-pyridinone (intermediate 16)

A suspension of intermediate 15 (275 mg; 1 mmol) in dichloromethane (10 ml) became homogeneous by addition of SOCl₂ (2.3 ml) at room temperature. After 2 hours of stirring at room temperature, all the volatiles were removed under reduced pressure giving a yellow solid which corresponds to the expected intermediate 16 in quantitative yield (294 mg).

This compound was used for the next step without further purification.

10.6.: 4-[(3,5-dimethylphenyl)-thio]-5-(ethoxymethyl)-6-methyl-2(1*H*)-pyridinone (intermediate 17)

A solution of intermediate 16 (250 mg; 0.85 mmol) in absolute ethanol (10 ml) and triethylamine (0.24 ml) was heated at 50°C for 18 hours. After evaporation under reduced pressure the residue was purified by flash chromatography on a silica gel column with CH_2Cl_2 /ethanol (99:1) as the eluent to give the titled intermediate 17 (243 mg; 94%) m.p. = 203-205°C.

10.7.: 4-[3,5-dimethylphenyl)-thio]-5-(ethoxymethyl)-3-iodo-6-methyl-2(1H)-pyridinone (compound 86)

The intermediate 17 (100 mg; 0.33 mmol) was dissolved in acetic acid (2 ml) and ethyl acetate (2 ml). At room temperature and in the dark N-iodosuccinimide (75 mg; 0.33 mmol) was added in one portion. After 2.5 h under stirring at room temperature, the mixture was poured into water (5 ml) and the pH of the solution was

30

د معمره دردنگون

adjusted to ca.7 with 28% ammonia. The combined organic layers obtained by extraction with CH₂Cl₂ (3x10 ml) were washed with water (15 ml), dried over magnesium sulfate and evaporated to give a solid residue. It was then chromatographed on silica gel column with CH₂Cl₂/ethanol (99:1) as the eluent to give the titled compound 86 as colorless microcrystals (96 mg; 68%) m.p.=220-222°C.

Example 11: 3-bromo-4-[3,5-dimethylphenyl)-thio]- 5-(ethoxymethyl)-6-methyl-2(1H)-pyridinone (compound 85)

10

15

20

5

The intermediate 17 (50 mg; 0.16 mmol) was dissolved in acetic acid (3 ml) and ethyl acetate (3 ml). At room temperature and in the dark *N*-bromosuccinimide (29 mg; 0.16 mmol) was added in one portion. After 30 min. under stirring at room temperature, the mixture was poured into water (10 ml) and the pH of the solution was adjusted to ca.7 with 28% ammonia. The combined organic layers obtained by extraction with ethyl acetate (3x15 ml) were dried over magnesium sulfate and evaporated to give a solid residue. It was then purified by flash chromatography on silica gel column with CH₂Cl₂/ethanol (99:1) as the eluent to give the titled compound 85 as colorless microcrystals (48 mg; 76%) m.p.= 183-184°C.

Example 12: Ethyl 4-[3,5-dimethylphenyl)-thio]-1,6-dihydro-5-iodo-2-methyl-6-oxo-3-pyridinecarboxylate (compound 71)

12.1.: Ethyl 4-[3,5-dimethylphenyl)-thio]-1,6-dihydro-2-methyl-6-oxo-3pyridinecarboxylate (intermediate 18)

3,5-dimethylthiophenol (0.69 ml; 5.1 mmol) was added to a mixture of intermediate 13 (1 g; 4.6 mmol) in triethylamine (1 ml) and ethanol (10 ml). The mixture was stirred and refluxed then brought to room temperature and poured out into water. The precipitate was filtered. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried to yield (1,2 g; 80%) of intermediate 18; m.p. = 230° C.

10

15

5

12.2.: Ethyl 4-[3,5-dimethylphenyl)-thio]-1,6-dihydro-5-iodo-2-methyl-6-oxo-3pyridinecarboxylate (compound 71)

N-iodosuccinimide (0.085 g; 0.4 mmol) was added at room temperature to a solution of intermediate 18 (0.1. g; 0.3 mmol) in ethyl acetate (0.3 ml) and acetic acid (0.3 ml) under nitrogen. The mixture was stirred 48 hours in darkness. The solvent was evaporated. The residue was purified by column chromatography over Kromasil® (CH2Cl2; 100). Two fractions were collected and the solvent was evaporated to give 0.052 g of a compound which was crystallized from diisopropyl ether. The precipitate was filtered off and dried to yield (32 mg; 23%) of compound 71; m.p. = 210° C.

20

Example 4-[3,5-dimethylphenyl)-thio]-5-(hydroxymethyl)-3-iodo-6-methyl-13: 2(1H)-pyridinone (compound 61)

10

15

6

Diisobutylaluminium hydride (20wt.% solution in toluene) (0.75 ml; 0.9 mmol) was added at -70°C to a mixture of compound 71 (0.1 g; 0.2 mmol) in toluene (10 ml). The mixture was stirred at 0°C for 1 hour, poured out into water and extracted with ethyl acetate. The residue was crystallized from diisopropyl ether. The precipitate was filtered off and dried to yield (56 mg; 70%) of compound 61; m.p.= 240°C.

Example 14: 5-(chloromethyl)-4-[3,5-dimethylphenyl)-thio]-3-iodo-6-methyl-2(1H)-pyridinone (compound 60)

60

 $SOCl_2$ (0.9 ml; 12.3 mmol) was added dropwise at 0°C to a solution of compound 61 (0.8 g; 1.9 mmol) in CH_2Cl_2 (90 ml). The mixture was stirred at room temperature overnight and evaporated till dryness. The residue was taken up in CH_2Cl_2 and evaporated (3 times) to yield 0.7 g (89 %) m.p. = 218°C. The product was used without further purification in the next reaction step.

Example 15: 4-[3,5-dimethylphenyl)-thio]-5-[(ethylthio)methyl]-3-iodo-6-methyl-2(1H)-pyridinone (compound 45)

4

A mixture of compound 60 (0.1 g; 0.2 mmol) and ethanethiol (0.036 ml; 0.5 mmol) in triethylamine (0.1 ml) and ethanol (2 ml) was stirred and refluxed for 4 hours. The solvent was evaporated. The residue (0.06 g) was purified by column chromatography over silica gel (eluent : CH₂Cl₂/CH₃OH/NH₄OH; 95/5/0. 1). The pure fractions were collected and the solvent was evaporated. The residue (0.02 g) was crystallized from diisopropylether. The precipitate was filtered off and driedto yield 0.018 g (17 %); m.p.= 210°C.

10 Example 16: 4-[(3,5-dimethylphenyl)-thio]-3-iodo-6-methyl-5-morpholinomethyl-1*H*-pyridin-2-one (compound 43)

43

A mixture of compound 60 (0.05 g; 0.1 mmol), morpholine (0.02 ml; 0.0002 mol) and K_2CO_3 (0.082g; 0.6 mmol) in acetonitrile (2 ml; 0.6 mmol) was stirred at 50°C in a sealed tube for 2 hours, poured out into water and extracted with ethylacetate. The solvent was evaporated. The residue was crystallized from disopropyl ether. The precipitate was filtered off and dried. The residue (0.057 g) was crystallized from isopropanol. The precipitate was filtered off and dried to yield 0.041 g (73 %), m.p. = 230°C.

20

15

Example 17: 6-(diethoxymethyl)-4-(3,5-dimethylphenoxy)-5-ethyl-3-iodo-2(1*H*)-pyridinone (compound 134)

10

15

20

25

134

17.1.: 6-(diethoxymethyl)-5-ethyl-4-hydroxy-2H-pyran-2-one (intermediate 19)

A solution of sodium hydride (60 % dispersion in mineral oil) in tetrahydrofurane (500 ml) was cooled at 0°C under nitrogen. 3-oxo-hexanoïc-acid ethyl ester (25 g; 158 mmol) was added dropwise and the mixture was stirred at 0°C for 15 minutes. Butyllithium 1.6 M (99 ml; 158 mmol) was added dropwise and the mixture was stirred at 0°C for 1 hour. Diethoxy-acetic acid ethyl ester (27.8 g; 0.178 mol) was added drop wise and the mixture was stirred at 0°C for 1 hour. Hydrochloric acid 12 N (50 ml) was added and the mixture was stirred at room temperature for 1 hour and extracted with diethyl ether to yield 20 g (53%) of intermediate 19. The product was used without further purification in the next reaction step.

17.2.: 6-(diethoxymethyl)-5-ethyl-4-hydroxy-2(1H)-pyridinone (intermediate 20)

A mixture of intermediate 19 (20 g; 82 mmol) in CH₃OH/NH₃ (150 ml) was stirred at 60°C for 4 hours, evaporated till dryness and taken up in disopropyl ether. The precipitate was filtered to yield 1.5 g of intermediate 20 (7.5 %). The product was used without further purification in the next reaction step.

17.3.: [6-(diethoxymethyl)-5-ethyl-4-hydroxy-2-oxo-3-pyridinyl]-(3,5-dimethylphenyl)-iodonium,hydroxide, inner salt (intermediate 21)

A mixture of intermediate 20 (3.4 g; 14 mmol) and Na₂CO₃ (3 g; 28 mmol) in water (50 ml) was stirred at room temperature for 15 min to give residue 1. A mixture of intermediate 2 (4.66 g; 15.4 mmol) and Na₂CO₃ (3 g; 28 mmol) in water (50 ml) was stirred at room temperature for 15 min to give residue 2. Residue 1 and residue 2 were combined and then stirred at room temperature for 2 hours. The

precipitate was filtered off, washed with water and dried. Yield 8 g of intermediate 21; m. p. = 125°C).

17.4.: 6-(diethoxymethyl)-4-(3,5-dimethylphenoxy)-5-ethyl-3-iodo-2(1*H*)-pyridinone (compound 134)

A mixture of intermediate 21 (6 g; 12.7 mmol) in DMF (20 ml) was stirred at 120°C for 1 hour. The solvent was evaporated till dryness to yield 5 g of compound 134 (83 %). The residue was used immediately without further purification.

10 **Example 18:** 4-(3,5-dimethylphenoxy)-3-ethyl-1,6-dihydro-5-iodo-6-oxo-2-pyridinecarboxaldehyde (compound 159)

159

A mixture of compound 134 (5 g; 10 mmol) in HCl 3N (30 ml) and tetrahydrofurane (5 ml) was stirred at 100°C for 30 min. and then extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue (5g) was crystallized from diisopropyl ether. The precipitate was filtered off and dried to yield 3.5 g of titled compound 159 (83 %), m.p. = 158°C.

The residue was used without further purification.

20

15

Example 19: 4-(3,5-dimethylphenoxy)-5-ethyl-6-(hydroxymethyl)-3-iodo-2(1H)-pyridinone (compound 133)

NaBH₄ (0.047 g; 1.3 mmol) was added to a mixture of compound 159 (0.5g; 0.013 mol) in methanol (3 ml). The mixture was stirred at room temperature for 1 hour. Water was added. The precipitate was filtered off, taken up in disopropyl ether and dried to yield 0.26 g (52 %), m. p. = 70° C).

Example 20: [3-(5-ethyl-3-iodo-6-methyl-2-oxo-1,2-dihydro-pyridin-4-yloxy)-5-iodo-phenyl]-acetonitrile (compound n° 426)

10

15

5

A mixture of compound 81 (0.1 g; 0.001 mol) and potassium cyanide (0.024 g; 0.0003 mol) in ethanol (2 ml) was stirred at 80°C in a celled tube overnight. $\rm H_2O$ was added. The mixture was extracted with $\rm CH_2Cl_2$. The solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $\rm CH_2Cl_2/CH_3OH$ 99/1; 15-40 µm). The pure fractions were collected and the solvent was evaporated. The residue (0.03 g) was crystallized from DIPE. The precipitate was filtered off and dried to yield 0.21 g (21%), m.p. = 220°C.

Example 21: 4-(3,5-dimethylphenoxy)-3-iodo-6-methyl-5-[2-methylthiazol-4-ylmethylsulfanylmethyl)-1H-pyridin-2-one (compound n° 483)

20 .

21.1: 4-(3,5-dimethylphenoxy)-3-iodo-5-mercaptomethyl-6-methyl-1H-pyridin-2-one (compound n° 451)

A mixture of compound 125 (1.5 g; 0.0037 mol) and thiourea (0.31 g; 0.00408 mol) in DMSO (30 ml) was stirred at room temperature for 1 hour. NaOH 3N was added. The mixture was stirred for 15 minutes, acidified with HCl 3N and extracted with ethylacetate (EtOAc). The organic layer was separated, dried on magnesium sulfate (MgSO₄), filtered and the solvent was evaporated. The residue was taken up in DIPE and filtered. The precipitate (1.2 g) was purified by column chromatography over silica gel (eluent: EtOAc 100%; 35-70 μm) and dried to yield 0.3 g (20%).

10

15

20

5

21.2: 4-(3,5-dimethylphenoxy)-3-iodo-6-methyl-5-[2-methylthiazol-4-ylmethyl-sulfanylmethyl)-1H-pyridin-2-one (compound n° 483)

A mixture of compound 451 (0.07 g; 0.0001 mol) and 4-chloromethyl-2-methylthiazole (0.16 g; 0.0008 mol) in ethanol (3 ml) and triethylamine (0.2 ml) was stirred at 80°C for 1 hour. H₂O was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO₄), filtered and the solvent was evaporated. The residue (0.04 g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH 98/2; 15-40 μm). The pure fractions were collected and the solvent was evaporated and dried to yield 0.018 g.

10

Example 22: 4-(3,5-dimethylphenoxy)-3-iodo-6-methyl-5-(3-phenyl-propyl)-1H-pyridin-2-one (compound 547)

22.1: 2-(1-amino-ethylidene)-5-phenyl-pentanoic acid ethyl ester (intermediate 23)

Ammonium nitrate (3.1 g; 0.039 mol) was added to a solution of intermediate 22 (2-acethyl-5-phenyl-pentanoic acid ethyl ester) (8.8 g; 0.0354 mol) in tetrahydrofuran (90 ml). Ammoniac was bubbled. The mixture was stirred and refluxed for 6 hours, then stirred at room temperature for 12 hours, poured out into H₂O and extracted with CH₂Cl₂. The organic layer was separated, dried on magnesium sulfate (MgSO₄), filtered and the solvent was evaporated and dried to yield 8.3 g.

22.2: ethyl 4-hydroxy-6-methyl-2-oxo-5-(3-phenyl-propyl)-1,2dihydro-pyridine-3-carboxylic acid ethyl ester (intermediate 24)

15

20

25

Sodium ethoxide in ethanol (27.5 ml; 0.0738 mol) was stirred and refluxed. Malonic acid diethyl ester (11.8 ml; 0.0738 mol) was added dropwise. A solution of intermediate 23 (8.3 g; 0.0335 mol) in ethanol (30 ml) was added dropwise. The mixture was stirred and refluxed for 15 hours. Three-quarters of EtOH were evaporated. The mixture was poured out in ice, acidified with HCl 3N and extracted with EtOAc. The organic layer was separated, dried (MgSO₄), filtered and the solvent was evaporated. The residue (19.5 g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/NH₄OH 96/4/0.1; 15-35 µm). Two fractions were collected and the solvent was evaporated and dried to yield 0.43 g (4%).

22.3: 4-hydroxy-6-methyl-5-(3-phenyl-propyl)-1H-pyridin-2-one (intermediate 25)

A mixture of intermediate 24 (0.1 g; 0.003 mol) and sodium hydroxide (0.038 g; 0.0009 mol) in H_2O (1.5 ml) was stirred and refluxed for 15 hours, then cooled to 5°C with HCl 3N. The precipitate was filtered, washed with H_2O , then with isopropanol and dried to yield 0.07 g (91%).

22.4: 4-(3,5-dimethylphenoxy)-3-iodo-6-methyl-5-(3-phenyl-propyl)-1H-pyridin-2-one (compound 547)

A mixture of dichloro-3,5-dimethyliodobenzene (0.096 g; 0.0003 mol) and sodium carbonate (0.12 g; 0.0005 mol) in dimethylformamide (1 ml; 0.5 ml) was stirred at room temperature for 30 minutes. A solution of intermediate 25 (0.07 g; 0.0002 mol) and sodium carbonate (0.6 g; 0.0005 mol) in H_2O (0.5 ml) was added. The mixture was stirred at room temperature for 1 hour. The precipitate was filtered, washed with H_2O , then with DIPE and dried. The residue (0.12 g) was taken up in DMF and stirred at 100°C for 30 minutes. The solvent was evaporated till dryness. The residue (0.1 g) was purified by column chromatography over silica gel (eluent: $CH_2Cl_2/CH_3OH/NH_4OH$ 98/2/0 to 95/5/0.1; 35-70 µm). The pure fractions were collected and the solvent was evaporated. The residue (0.07 g) was taken up in iPrOH. The precipitate was filtered off and dried to yield 0.06 g (44%), m.p. = 220°C.

Example 23: 6-methyl-5-ethyl-3-iodo-4-[(3-bromo,5-acrylonitrilephenoxy]pyridin-2(1H)-one (compound 470)

0224650A2 1 s

NSDCCID: <WO

5

10

15

20

15

20

25

022466042 1 .

23.1. 3-Bromo-5-iodobenzaldehyde dichloride (intermediate 26)

3-Bromo-5-iodobenzaldehyde dichloride (intermediate 26) was obtained as described by H.J. Lucas and E.R. Kennedy, Org. Synth. (1955), III, 482-483.

6-methyl-5-ethyl-3-iodo-4-[(3-bromo,5-formylphenoxy]pyridin-2(1*H*)-one (compound 469)

Intermediate 26 (311 mg, 1 mmol) was suspended in 10 ml of water containing sodium carbonate (106 mg, 1 mmol) and stirred for 30 min. at room temperature. To this mixture a solution of 5-ethyl-6-methyl-4-hydroxypyridin-2(1H)-one (153 mg, 1 mmol) in 10 ml of water containing also Na₂CO₃ (106 mg, 1 mmol) was added. After stirring for 1h at 20°C the precipitate was filtered off, washed with water, dried *in vacuo* and suspended in dimethylformamide (5 mL). After heating at 120°C for 10 min., the solvent was removed. Purification by flash chromatography (SiO₂, CH₂Cl₂/EtOH 98:2) gave the titled compound (205 mg, 44%) as yellow microcrystals, m.p. >260°C.

23.3. 6-methyl-5-ethyl-3-iodo-4-[(3-bromo,5-acrylonitrilephenoxy]pyridin-2(1*H*)-one (compound 470)

To a 0°C magnetically stirred solution of diethyl(cyanomethyl)-phosphonate (113 μL, 0.68 mmol) in anhydrous THF (3 mL), NaH (28 mg; 0.68 mmol) was added (60% in mineral water). After stirring at room temperature for 1 h, compound 469 (80 mg; 0.17 mmol) was added and the reaction mixture was stirred 18 h at room temperature and poured into water (5 ml). The resulting solution was extracted with AcOEt, dried over MgSO₄ and evaporated. The oily residue obtained was then crystallized from Et₂O to give the pure titled compound (65 mg; 77%), m.p.> 260°C.

WO 02/24650 PCT/IB01/02082

51

Table 1 lists intermediates and compounds of formula (I) which were made analogous to one of the above examples.

	mp.°C / [MH+]	245		>250		>250		210	
	R4		I	x		~	x		π
	R3		Me	.	2		Me	Z -0	Chem 25
× 55 S 52 S 52	R2	~~~	Chemistry 6	Chemistry 12	Oliennady iz	÷(° √	Chemistry 18		·
	X-R1	~~~	Chemistry 5	Chamietry 11	Chemistry 11	-\(\)	Chemistry 17	%-{	Chemistry 23
	σ		_	_	_		1		
	>	0		0	1	0		0.	{
	=°N	-		И		ဗ		4	

	mp.°C / [MH+]	245	>250	>250	210
	R4	æ	Ξ	π	Ι
	R3	Me	⊚	Me	Chem 25
> = ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	R2	Chemistry 6	HN → HN → Chemistry 12	△ ¼ 🏃 o. Chemistry 18	
	X-R1	× × Chemistry 5	×o× Chemistry 11	× _o ← Chemistry 17	Chemistry 23
	G			_	_
	>	0	. 0	0	0
·	".N	-	7	က	4

			· · · · · · · · · · · · · · · · · · ·		
·	>250	[520]	260-262	230	125
	-	= =	= =	т т	н
	Š	E S	ž S	e W	Chem 55
≥ 8 5 5 5 5 5 5 5 6 7 7 7 8 7 8	Chemistry 30	Chemistry 36	ij	Chemistry 48	☆ . #
	×°o Koemistry 29	×°, Chemistry 35	Chemistry 41	≻s Chemistry 47	Chemistry 53
	-	-	i.Pr	-	-
	0	0	0	0	0
	w	ထ	7	ω	o
l		·			

	[639]	[569]	[693]	[629]	[543]
	Н	Ŧ	Σ	·	т
	Ме	Me	Me	Me	Me
F4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	B S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S	Chemistry 72	Ghemistry 78	Chemistry 84
	. **O	[≻] ° Chemistry 65	Chemistry 71	Chemistry 77	لمرابع Chemistry 83
	-	_	-	 	-
	0	0	0	0	0
	10	7	12	5.	14

	[551]	[629]	[531]	[477]	[463]
	т	т	Ξ	Ŧ	Ξ
	Me	Me	Me	Me	Me
>	Chemistry 90	Chemistry 96	Chemistry 102	FA STANDS	e a la l
	*o Chemistry 89	×₀ Chemistry 95	Chemistry 101	Chemistry 107	Chemistry 113
·	- -				-
	0	0	0	0	0.
	1.	91	11	18	- 60 -

	[531]	240-244	192-194	102-104	170-172
	3		-	· I	Ξ
	2	D 0	e S	₩	Me
> → E & E	o=w=o Sx =o		Ξ	ŭ	ជ
	Chemistry 119	×°Chemistry 125	×o Chemistry 131	Xo Chemistry 137	≻o Chemistry 143
	_	Chem 124	ر ر Chem 130	-	-
-	0	0	0	0	0
	20	21	22	23	24

; ;	225-226	236-238	260-262	118	184
	Ξ	王	Τ	· I	π
·	Me	Me	Me	N OH	Chem 175
× × × × × × × × × × × × × × × × × × ×	ij	Ēŧ	Ēŧ	Ēt	ŢŢ
	×°, ← ← Chemistry 149	×o Chemistry 155	کی کے کے Chemistry 161	^ک ہ Chemistry 167	*o Chemistry 173
	-	. –	-	-	
_	. 0	0	0	0	0
	25	26	27	28	29

·	160	165	>250	150	>250
•	π	ж	т	- T	I
	Me	Me	Me	Me	Me
>=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Chemistry 180	Chemistry 186	^{z-δ} Θ +// Β ΗΟΝ	Chemistry 198	s N
	× _o ← Chemistry 179	× _s ∕ Chemistry 185	× _s ← Chemistry 191	×s Chemistry 197	× _s × Chemistry 203
	-	-		. —	_
	0	0	0	0	0
	. 08	<u>ج</u>	32	33	4¢

Chemistry 203 Chemistry 216 Me		>250	200	[519]	ļ	210
Chemistry 209 Chemistry 210 N Chemistry 227 Et Chemistry 227 Chemistry 227 Et Chemistry 227 Chemistry 227		н	π	Ξ	Ξ	τ
Chemistry 227		Ме	Me	Ho YY	°بِ* Chem 229	Ме
	>=_B	Chemistry 210	Chemistry 216	ឃ	计	Chemistry 234
		, ×o ← Chemistry 209	× _s ← Chemistry 215	×°₀ Chemistry 221	Chemistry 227	× _s ← Chemistry 233
		-		-		-
	ŀ	0		0	0	0
		35		37	es es	o e

	210	>250	>250	230	120
	I	т	T	т	т
·	Chem 241	¥ HON2 Z, Y #O	Me	. — Ж	Me
>	ដ័	ដ័	Shunstry 252	Chemistry 258	Chemistry 264
	^X o Chemistry 239	Chemistry 245	≺o ← Chemistry 251	×s ← Chemistry 257	× _s ← Chemistry 263
		-	-		
	40 0	41 0	42 0	43	0

	210	250	>250	218	>250 .
-	Ι	Ξ	Ι.	Ι	τ
	Me	Me	Me	Chem289	Me
>	ِدْ Shemistry 270	المرابع Chemistry 276	Chemistry 282	严.	chemistry 294
	×s Chemistry 269	×s Chemistry 275	×₀ ← Chemistry 281	[≻] ° Chemistry 287	× _o ← Chemistry 293
-	-		-		-
	45 0	. 46	47 0	48 0	

	226	236	>250	>250	150
	:	E 3	Ξ Ξ	Ξ	н
			e W	ĕ	Me
> → ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	ដ	Chemistry 306	ے کہا کاک Chemistry 312	Chemistry 318	o ⊢ Chemistry 324
	Y O' Chamieth, 200	× _o × Chemistry 305	× _o ← Chemistry 311	×o Chemistry 317	≺o
		-	-	· _	-
	0	0	0	0	0
	50	51	52		54

	>250	>250	>250	182	245
	Ξ	Ξ	Ι	Ē	τ
·	ω	Me	Me	Chem 349	Me
F	√n N	→ S	Formyl	<u>ਜ</u>	CHZNMe2
	×s ← Chemistry 329	×s Shemistry 335	×s Chemistry 341	Chemistry 347	× _s ← Chemistry 353
	. 	ж		·	
	55	56	57 . 0	28	69

		Т			
	218	240	165	235	>250
	3	= = =		c	т т
	2	e e			e W
> = ₹ £ £	CH2CI		ů.	ŭ	Chemistry 384
	, × _s Chemistry 359	× _s Chemistry 365	Chemistry 371	Chemistry 377	×o ← Chemistry 383
	_	-	_	_	. –
	0 09	61 0	62 0	63	64 0

	>250	240	[502]	207-209	
	æ	Ξ	Ξ	Ţ	π
PA N - 4R PA N -	Me	n الم	Chem 403	Me	Me
	, , , , , , , , , ,	Ēŧ	Ēţ	Et	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	× _o Chemistry 389	×°, Chemistry 395	*o Chemistry 401	*o Chemistry 407	$F = \begin{pmatrix} x = 0 \\ R_{2} \neq 0 \end{pmatrix}$ Chemistry 413
	_	_	_	Ме	. т
	0	0	0	0	0
	ស	99		89	69

	224	210	230	184	170
	Σ	Ι	π	·	Ι
	Chem 421	Me	Мө	Chem 439	Chem 445
₹ ₹ × ₹ ₹		°, C02 Et	,∜°, C02Et	Ēţ.	й
	Chemistry 419	×s Chemistry 425	× _s Chemistry 431	[*] °, Chemistry 437	Chemistry 443
	-	-	r	_	· –
	0	0	0	0	0
	. 02	71	. 72	73	74

	95	112	216-218	. 230-232	138-139
	I	x	: =	Ξ	Ξ
	S S S C Chem 451	e V	بر _N می م بر N می م	Ξ	Me
× × × × × × × × × × × × × × × × × × ×	Ęŧ	Chemistry 456	COZEt	Ph	ដ
	chemistry 449	×o←←	Ko Chemistry 461	× _o	×o Chemistry 473
	-		Ψ	-	-
	0	0	0	0	0
	75	76	77	78	79

	178-179	248-250	202-204	258-260	205-207
	x	π	x	· I	Τ
	Ψ		Me	Me	Me
≥	ជ័	ĘĘ	ដ័	ŋ	ب ر Chemistry 504
·	× _o Chemistry 479	, × _o ← α Chemistry 485	×o√	×o ← Chemistry 497	× _e ← Chemistry 503
	<u>-</u>	. -		_	Τ
·	0	0	0	0	0
		8	82	83	84

	183-184	220-222	189-191	1	229-231	288-290
	1	Ι	Ι.	E	Ι	Ι
÷	· •	Φ.	Μ	Θ	Me	
P4 P5 P7 P5 P7	Chemistry 510	∱ ر Chemistry 516	च	E	й	ដ
·	, × _s Chemistry 509	× _s Chemistry 515	Chemistry 521	× _s ← Chemistry 527	×s Chemistry 533	× _o ⇔ Chemistry 539
	œ.		COZEt	-	Τ.	-
	8 8 2	98	0 28	88	68	0

	238	220	160	218	214
	Ι	π	==	Т	т
	Me	· eW	Chem 569	Ā	Chem 671
>=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH2NMe2	Chemistry 552	11	Chemistry 564	Ť.
	,×°, Chemistry 645	×°, Chemistry 551	× _o Chemistry 567	×o∕	Chemistry 569
	_	_		. ·	-
	0	0	0	0	0
	22	92	693	. 8	ထ

		T	1	Т	
	190	>250	240	180	>250
	Ξ		Ι	т	Ι
	S	Мө	Chem 589	Me	Ме
≥	ដែ	Chemistry 582	ŦŢ.	Chemistry 594	→{ ¥
	Chemistry 575	*o←←	Chemistry 587	×₀ ← Chemistry 593	7,0 √ √ Chemistry 599
		· -	_	. –	
	0	0	0	0	0
	ဇ		86	66	100
			· ·		

	210	170	170	200	>250
		Ţ	Τ	ж	I
	(CH2)3	Chem613	Chem 619	Chem 625	وکران الاطران Chemistry 631
≥	ជ័	ដ	<u>.</u> ب	ដ	ដ ែ
	×°Chemistry 605	Chemistry 611	Chemistry 617	[×] ₀ Chemistry 623	*o
				_	
	0	. 0	0	0	0
	101	102	103	104	105

		· · · · · · · · · · · · · · · · · · ·	Y	
216-218	263-265	1	187-189	240
	= =	Ξ	. т	π
4 NAN 17	M	Me	Ме	Me
CO2Et	ш	Πţ	Ęţ	Chemistry 660
K _o Kohemistry 635	کی کے کار کرکے کی کرکے Chemistry 641	کی میراند Chemistry 647	[×] s Chemistry 653	× _o ← Chemistry 659
-	-	-	Ā	_
0	0	0	0	0
106	107	108	109	110
	O **_O*_O*_O*_O*_O*_O*_O*_O*_O*_O*_O*_O*_O	0	O	0

	r				
	202-204	282-283	283-285	166-168	229-231
	I	т	I	- д	. π
	Me S	NH2	NH2	We	Me
>	ដ <u>េ</u>	Š	N	ដ	ឃ ័
-	کچی ^ا ه Chemistry 665	Chemistry 671	Chemistry 677	3-Methylbenzyl	Chemistry 695
	COZEt	Τ	· 	т	
	0	0	0	0	0
	111	112	113	114	115
Į		<u></u> , <u>L</u>			

		·		<u> </u>	
	[430]		1	266-267	186-187
	Ι	ж	ж	I	I
	CH2Br	Ме	Me	Me	Me
¥	т	Ft	ជា	ដ	ŭ
	Chemistry 701	Chemistry 707	Chemistry 713	× _o ← Chemistry 719	×₀ , , , , , , , , , , , , , , , , , , ,
	យ៉	т		-	_
	0	0	0	0	0
	116	. 117	118	119	120

	225-226	225-227	[639]	140	256-258
	T	Ι	Ŧ	, x	·
	Me	Azido	Me	e Z	Me
¥ £ × × × × × × × × × × × × × × × × × × ×	Ęţ	N O	Chemistry 744	S S S S S S S S S S S S S S S S S S S	CH2CI
	×o NH ₂ Chemistry 731	× _o Chemistry 737	Chemistry 743	Chemistry 749	[≻] o Chemistry 755
			-	_	· _
	0	0	0	0	0
	121	122	123	124	125

	>250	į	>240	230	180
	π	π	Ι	æ	Ι
	M	Me	Me	e	Chem787
₹ ₽ × ₹ ₹ 0 € ₹	Chemistry 762	C=C(CN)2	Chemistry 774	Ho Chemistry 780	й
	, × _o Chemistry 761	×₀ ← Chemistry 767	×₀ ← Chemistry 773	×o Chemistry 779	≺o Chemistry 785
	_	-		-	-
	126 0	127 0	128 0	129 0	130 0

1	1			
130	>240	76	1	>250
	= =		Ξ	Ι
- / Comno	CH2O	СН2ОН	Chem 811	Me
ŭ	ij	й ·	.	Chemistry 816
Chemistry 791	Chemistry 797	*o	Chemistry 809	× _o ← Chemistry 815
				_
,0	0	0	0	0
131	132	133	134	135
	Chemistry 791	O I Chemistry 791 Et CH2NMe2 H Chemistry 797 Et CH2CI H	Chemistry 791	O

	>250	>250	250	[442]	>250
	I	Ξ	Ι	Ē	π.
	W	Me	Ме	/°\\\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'	Me
≥ ₹ × × ₹ × × ₹	Chemistry 822	Chemistry 828	Chemistry 834	.	CHON CHON
	×o	×₀ ← Chemistry 827	Chemistry 833	× _o ← Chemistry 839 ·	≺°o Chemistry 845
	, .	-	-	_	
	0	0	0	0	0
·	136	137	. 138	139	140

·	[508]	[491]	[529]	[540]
	ı	π	x	- ж
	Me	Me	ΘE	Me
25 57 57 57 57 57 57 57 57 57 57 57 57 57	Chemistry 852	Chemistry 858	Chemistry 864	Chemistry 870
	, ×°, Chemistry 851	×₀←	×₀ ← Chemistry 863	×₀ ← Chemistry 869
		_	_	_
	141	142 0	143 0	144 . 0

	[545]	[543]	[593]	[544]
	I	т	Ì	π.
	Me	S		Me
¥ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	Chemistry 876	Chemistry 882	Chemistry 888	Chemistry 894
	×₀ × Chemistry 875	K _o ★ Chemistry 881	× _o Chemistry 887	×₀ ← Chemistry 893
		· 		
	145 0	146 0	147 0	148 0

	[570]	[516]	[619]	[693]
	:	Ι :		т
	:	W Ne	e W	Me
¥ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	- Z	Chemistry 906	Chemistry 912	Chemistry 918
	× vermitter, 800	Chemistry 905	×o€ Chemistry 911	×₀ Chemistry 917
	-			_
·	149	150 0	161	152 0

	[535]	[572]	[586]	[518]
		r	`±	. т
	Me	Me		Me
¥ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	Chemistry 924	Chemistry 930	Chemistry 936	Chemistry 942
	×₀ ← Chemistry 923	≺°o≺ Chemistry 929	×₀ ← Chemistry 935	× _o Chemistry 941
		_	-	-
	153 0	154 0	155 0	156 0

	<u> </u>		<u> </u>		т				·	
	195		200		158		>250			0 5
		Ι	·	I		32		Ţ		
	3 × 10 <	Chem 949	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Chem 955	<i>\frac{1}{2}</i>	Formyl		Me		ø
≥		Ωţ		ŭ		ជ័	·	N Chemistry 966	0=	Chemistry 972
	N N N N N N N N N N N N N N N N N N N	Chemistry 947	Y X	Chemistry 953	x°	Chemistry 959	-__\x	Chemistry 965	×°-{	Chemistry 971
		-		_		-		_		
	157 0	1	158 . 0		0		160		. 161	
									~~~~	

		,	·		
	220	>240	>240	>240	>250
	π	Τ	T	· ±	I
	Me	Me	Me	Ме	Me
≥ 57 S 57 S 57 S 57 S 57 S 57 S 57 S 57 S	Chemistry 978	° C≡CHAc	Chemistry 990	Chemistry 996	Chemistry 1002
	, Koomistry 977	√o √o Chemistry 983	, ×o ← Chemistry 989	×₀ ★ Chemistry 995	‱ Chemistry 1001
	-	-			-
	162 0	163 0	164 0	165 0	166

		T		T	
	242	262	>250	230	[573]
	=		. 1	· I	Ι
	. · · · · · · · · · · · · · · · · · · ·	P. W	S. S.	Me	Me
₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	Chemistry 1008	Chemistry 1014	Chemistry 1020	Chemistry 1026	Chemistry 1032
	≻°o Chemistry 1007	×o Chemistry 1013	× _o Chemistry 1019	× _o Chemistry 1025	× _o Chemistry 1031
	· _		-	-	
F	0	0	0	0	0
	167	168	169	170	171

					1 .
	. [561]	[263]	[525]	[441]	>250
•	-	r :	r	π -	Ξ
		D	D)A	Me	Me.
\$\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Chemistry 1038	Chemistry 1044	· · · · · · · · · · · · · · · · · · ·	Chemistry 1050	HON=0
	× _o ★ Chemistry 1037	×o× Chemistry 1043	Xo Xo Chamletn, 1046	Chemistry 1055	χ _ο Chemistry 1061
	· .	_	_		·
	0	0	0	0	0
	172	173	174	175	176

					
	!	i	1	158-160	>260
	=	:	:	r c	c 3
	2		DE	Ø.	
¥ 8 × × × 8 × × × × × × × × × × × × × × × × × × ×	ŭ	ŭ	i ŭ	ដ	Me
-	Chemistry 1067	Chemistry 1073	Chemistry 1079	× Chemistry 1085	Chemistry 1091
	Ι	CO2Et	COZEt	n-Pr	-
	0	0	0	0	0 -
	177	178	179	180	181

	<u></u>			·	· • · · · · · · · · · · · · · · · · · ·
	158-160	159-161	261-262	263-264	265-267
	:	Ξ.	:	τ τ	- x
	:	e N	e A	Chem 1117	SPh
\$\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{	ũ	ث ث	i	S	ON
	Chemistry 1097	Chemistry 1103	Chemistry 1109	× _o ← Chemistry 1115	×₀ ← Chemistry 1121
	Chem1096	بگر Chem 1102	<u></u>	_	-
-	0	0	0	0	0
	182	183	184	185	186

	T		Г					
224-225	218-220		236-237		242-244		240	
x		Ξ		x		Ē		I
Chem 1129	-z\	Chem1135	X8 \ N2H	Chem 1141	٠٠ ٢°	Chem 1147	-	СН2СН2РЬ
N N		NO		S		CN		Ē
× _o ← Chemistry 1127	×,	Chemistry 1133	-\(\sqrt{\sqrt{\chi}}	Chemistry 1139	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chemistry 1145	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chemistry 1151
_		_		-				
0	0	1	0	-	0			\dashv
187	188		189		190		191	
	O × O Chemistry 1127 CN Chem 1129 H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 0

	[514]	[529]	[685]	[504]	[562]
	Ξ	, x	π	т.	T
	Me	Me	Me	∤ W	Me
× × × × × × × × × × × × × × × × × × ×	Chemistry 1158	Chemistry 1164	Chemistry 1170	Chemistry 1176	Chemistry 1182
·	Chemistry 1157	Xo Chemistry 1163	Chemistry 1169	کی Chemistry 1175	^ک ہ Chemistry 1181
	· <u>-</u>	-			_
	0	0	0	0	0
	192	193	. 194	-1 95	196

	<u></u>				
	[518]	[456]	[503]	[545]	[469]
		Ι.	<u>-</u>	Ε :	т т
		Me	Ð	PE S	Me
¥ 82 × × × × × × × × × × × × × × × × × × ×	o = Training to		Chemistry 1200	Chemistry 1206	Chemistry 1212
	Chemistry 1187	Chemistry 1193	Chemistry 1199	Chemistry 1205	Chemistry 1211
	-				_
	0	0	0	0	0
	197	198	199	200	201

,	[513]	[638]	[481]	[490]	[492]
				- , <u>-</u>	x
	M	Me	Q	e S	Me
≥	Chemistry 1218	Chemistry 1224	Chemistry 1230	Chemistry 1236	Chemistry 1242
	Chemistry 1217	^ک و آگ Chemistry 1223	Chemistry 1229	Chemistry 1236	Chemistry 1241
	_		_		_
	202 0	203 O	204 0	205 0	206 0

	[542]	[505]	[457]	[452]	[516]
·.		= =	c .	I	т
	o N	o v		a) S	Me
* * * * * * * * * * * * * * * * * * *	Chemistry 1248	0=%=0 Head 0= NT 55	o=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Chemistry 1268	Chemistry 1272
	Chemistry 1247	Ko Chemistry 1253	Chemistry 1259	**************************************	^X ₀ Chemistry 1271
				_	_
	0 20	08	0 60	0	0
	207	208	209	210	211

	[514]	[427]	>250	>250	160
	x	Ξ	Ξ	· I	т
	М	Me	Me	Me	Chem 1303
≥ 57 N	Chemistry 1278	Chemistry 1284	HN THE	, , CH=CHCO2Et	ដ
	Chemistry 1277	کی Chemistry 1283	×₀ Chemistry 1289	ممر Chemistry 1295	× _o ←
		_			-
	212 0	213 0	214 0	215 0	216 0

	230	>250	>250	240	264-265
	Ξ	Ξ.	н	Ē	Τ
	ر س Chem 1309	Me	Me	ėW	. 1332
≥ 25 N − 25 N − 25 N − 25	Ēť	HN O Chemistry 1314	HN THINGS Chemistry 1320	CH2NH2	Ć ∱ Chemistry 1332
	×∘←←	×₀ ← Chemistry 1313	× _o ← Chemistry 1319	×o Chemistry 1325	× _s Chemistry 1331
	_	-	_		
	0	0	Ö	0	0
·	217	218	219	220	221

	252-253	243-244	260-262	190	146-147
	x	工	Ξ.	· ±	NH2
·	. 50)3	, 1350	Me	ច
\$\frac{\frac}}}}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}{\fracc	,		Chemistry 1350	CO2Et	ដ
	, × _s Chemistry 1337	×s Chemistry 1343	≻ _s Chemistry 1349	×o←←←Chēmistry 1355	[×] ₀ Chemistry 1361
	_	_	Ι	_	-
-	222 0	223 0	224 0	225 0	226 0

				~~~~~	
	282-284	180-182	240-242	188-190	179-181
	I	Ι	x	Ē	Τ
	$\bigoplus_{g^{\mathcal{X}}}$ Chem 1369	ט	ō	Me	Me
× × × × × × × × × × × × × × × × × × ×	CN	COZEt	CN	Ēţ	Ēţ
	, *o Chemistry 1367	×₀ ← Chemistry 1373	*°° Chemistry 1379	Chemistry 1385	Chemistry 1391
		-	π.	Çhem.1384	ជ័
	0	0	0	0	0
	227	. 528	229	230	231
	74			ν,	

	>240	[623]	198-200	ļ	276-277
	Ξ	· I	Ι	·	π
	Me	Me	Me	3	Ö
× 25 25 25 25 25 25 25 25 25 25 25 25 25	ے اگر Chemistry 1398	Chemistry 1404	五	₹ X (CH2)3	Z O
	×°√√ × Chemistry 1397	×o × Chemistry 1403	×₀← Chemistry 1409	Chemistry 1415	×₀ ← Chemistry 1421
·	_		Vinyi	τ	
	0	0	0	O	0
	232	233	234	235	236

	280-282	>240	>240	I	>240
!	Ξ.	Ξ	π	Ţ	Τ
	Me	Me	Me	Me	Me
¥ 87 × × × 57 × × × 57	Et	NO.	Chemistry 1440	Chemistry 1446	ب م Chemistry 1452
	, × _o , Chemistry 1427	×₀ ← Chemistry 1433	^X o Chemistry 1439	[≻] o Chemistry 1445	Chemistry 1451
		_	_		_
	0	0	0	0	0
	237	238	239	240	241

			γ		
	220	216-217	216-218	212-214	l
	Τ	π	Τ	·	Ι
	Me	Me	Me	Me	Me
× × × × × × × × × × × × × × × × × × ×	но том тере	Chemistry 1464	Chemistry 1470	Chemistry 1476	ជ័រ
	Chemistry 1457	×₀ ← ← Chemistry 1463	×₀ Chemistry 1469	×₀ Chemistry 1475	3-Methylbenzyl
	-			-	Chem 1480
	0	0	0	0	0
	242	. 243	244	245	246
	l				

>240	210	156	141	ļ
Ξ	н	Ι	Ī	π
Me	Me	Me	Me	Me
ii ·	ŢŢ.	2-Methoxyethyl	Chemistry 1512	ញ័
The Chemistry 1487	*°° Chemistry 1493	×o Chemistry 1505	Chemistry 1511	3-Methylbenzyl
エ	-	-	-	Chem 1516
247 S	248 S	249 0	250 O	251 0
	S X Y Chemistry 1487 Et Me	247 S H Chemistry 1487 Et Me H 248 S	247 S H Chemistry 1487 Et Me H 248 S F F F F F F F F F F F F F F F F F F	247 S H Chemistry 1487 Et Me H 248 S Et Me H 249 O

		184-186	224-226	234-236	160-162
	Ι	Σ	Ι.	Ť	π
	Me	Me	Ме	Ме	Σ
× − − − − − − − − − − − − − − − − − − −	ăi	Chemistry 1530	но Дорогия 1536	Chemistry 1542	Chemistry 1548
	3-Methylbenzyl	Chemistry 1529	*°Chemistry 1535	*, Chemistry 1541	*o Chemistry 1547
	Chem 1522	_	_		_
	2	0	0	5 0	0
	252	253	264	265	256

	248-250	240	179	196-197	186-187
	I	Φ.	°, °, °, °, °, °, °, °, °, °, °, °, °, °		т
	• ⊠	⊠	2	Me	Ö
>=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	СН2ОН	ដា	ដ	ដ័	ដ
	Chemistry 1653	Chemistry 1559	*°° Chemistry 1565	∼°° Chemistry 1571	× _o Chemistry 1577
		-	-	SOMe	
	0	0	0	O	0
	257	258	259	260	261

-	210-242	240-242	212	176	>260
	Τ	Ι	π	· . ±	π
	IJ	GI	Me	برگر . بی . Chem 1603	Chem 1609
F 2 - N - E 2 -	Me	Me	2-Methoxyethyl	Me	Ме
	, ×oChemistry 1583	× _o ←	Chemistry 1595	3-Methylbenzoyl	3-Methylbenzoyl
	. Έ	. –		π	_
	0	0	0	0	0
	262	263	264	. 265	266

	210-211	212-214	282-284	192	182
	Ξ	Ξ	π	Ť	π
	ō	Me	Ме	Me	Me
\$ 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ħ	н	ے و Formyl	ŢŢ	ឃ័
	/ کیم کیم Chemistry 1613	×o Chemistry 1619	×₀ ← Chemistry 1625	[×] ∘ Chemistry 1631	[*] ° Chemistry 1637
	π	СН2ОН		ÇC. Chem 1630	Chem 1636
	267 0	768 0	269	270 0	271 0

	186-188	[336]	[313]	[300]	262
	Τ	Ι	π	· II	I
	Me	Me	Me	Me	Me
>	Ęţ.	Ţ	Ēţ	Et	Et
	[×] ₀ Chemistry 1643	3-Methylbenzyl	3-Methylbenzyl	3-Methylbenzyl	[≻] o Chemistry 1667
	SMe	Chem 1648	ا المراج Chem 1654	CO2Me	C=NOH
·	0	0	S	0	0
	272	273	274	275	276

			·	
178	225	166	211	198
r	Ι	Ξ	· I	Ι
Me	Ме	Ме	Ме	Ме
<u>.</u>	ដ	ដា	ដ	й
Chemistry 1673	^ک و Chemistry 1679	*°°Chemistry 1685	Chemistry 1691	Chemistry 1697
OMe	ب^^/ Chem 1678	ر الم الم Chem 1684	SPh	сн(он)Рћ
0	0	0	0	0
277	278	279	280	281
	O OMe Chemistry 1673 Et Me H	OMe Chemistry 1673 Et Me H OMe Chemistry 1673 Et Me H Chem 1678 Chemistry 1679 Et Me H	OMe Chemistry 1673 Et Me H Chem 1678 Chemistry 1679 Et Me H Chem 1684 Chemistry 1685 Et Me H Chem 1684 Chemistry 1685 Et Me H	OMe Chemistry 1673 Et Me H 178 Chem 1678 Chemistry 1679 Et Me H 225 Chem 1684 Chemistry 1685 Et Me H 211 SPh Chemistry 1691 Et Me H 2211

	l	l	240-241	282-284	204-206.
	т	π	н	Ţ	Τ
	Me	Me	Мө	Me	Me
× × × × × × × × × × × × × × × × × × ×	. Et	Ēţ	Et	Et	ដ
	, ————————————————————————————————————	3-Methylbenzyl	*°° Chemistry 1715	[×] ∘ Chemistry 1721	3-Methylbenzyl
	COZEt	CO2H	Br	NO	- -
	0	0	0	0	0
·	282	283	284	285	286

	274-275	260	256	228	222
	π	н	π	· I	π
	Me	Me	Me	Μe	Me
× × × × × × × × × × × × × × × × × × ×	Ι	ជា	ដ័	팿	ជ័រ
	Chemistry 1733	*o ** Chemistry 1739	[≻] o Chemistry 1745	[≻] ° Chemistry 1751	Chemistry 1757
	-	CCPh	CH=CHCO2Et	Formyl	3-Thiophenyl
	0	0	0	0	0
	287	288	289	290	291

	223	228	200	221	232-234.
	π	Ξ	Ξ	Ē	x
	Me	Me	Me	Ме	Me
FA - N - S - S - S - S - S - S - S - S - S	· 超	ដ	ឃ័	Ęŧ	ឃ័
	Chemistry 1763	Chemistry 1769	≺همارک	[⊀] o Chemistry 1781	[*] ° Chemistry 1787
	3-CI-phenyl	2-Furyi	сн20Н	СО2Н	
	0	0	0	0	0
	292	293	294	295	296

·	248-250	250	. 265-266	275-276
	· I	Ξ	Ι.	Ţ
	• ≅	Me	Me	Ме
y N − 27 S7	缸	Ţ,	Ęţ	ដែ
	, *o	Chemistry 1799	[×] o Chemistry 1806	[×] s Chemistry 1811
	_			
	0 767	O	0	000
	297	298	299	300

WO 02/24650 PCT/IB01/02082

114

[290]	[283]	[355]	[299]	[303]
Ι	τ	x	н	т
π.	Me	Me	Me	Ме
T	· ±	T.	Τ	ж
2,5-Dimethoxybenzyl	Chemistry 1823	Chemistry 1829	Chemistry 1835	Chemistry 1841
C02H	Ι	COZEt	СО2Н	CO2Et
0	0	O	0	0
. 301	302	303	304	305
	CO2H 2,5-Dimethoxybenzyl H H H	O CO2H 2,5-Dimethoxybenzyl H H H O Chemistry 1823 H Me H	O CO2Et Chemistry 1829 H Me H CO2Et Chemistry 1829 H Me H CO2Et Chemistry 1829 H Me H	O COZH 2,5-Dimethoxybenzyl H H H H H H H Chemistry 1823 H Me H Me H Me H Me H Me H Me H

	200-202	238-240	212-214	258-260	****	198-199
	I	Ξ	Ι	τ	· I	π
	Me	Me	Me	Me	Me	
× × × × × × × × × × × × × × × × × × ×	Ħ	ដ	ਜ	ដ	ជ	й
	, ×o Chemistry 1859	Xo ← Per Chemistry 1865	3,5-Dimethylbenzyl	κο Non Chemistry 1877	×₀∕∕∕∕⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄	χο OH Chemistry 1889
	-	. –	π		-	
	0	0	0	0	0	0
	306	307	308	309	310	311

	182-183	265-266	210-212	261-262	218-219
	π	π	π.	Ē	
	Me	Me	Ē	Ме	y 1920
¥ 88 × × × × × × × × × × × × × × × × × × ×	Et	Ē	Ęţ	Me	Chemistry 1920
	. ×o√√° × Chemistry 1895	× _o ← Chemistry 1901	Chemistry 1907	[≻] o Chemistry 1913	^ک ہ رک Chemistry 1919
	-		-		_
	0 .	0	0	0	0
	312 .	313	314	315	316

·	230-232	206-208	242-243	241-242	198-200	!
	Ξ	Ι	Ξ	Ť	I	x
			Μ	Me	Me	Me
≥	,	₹ * (CH2)3	ញ	Ēţ	ŭ	ш
	, ≺ _o Chemistry 1925	×°, Chemistry 1931	× _o ← Chemistry 1937	×o Chemistry 1943	×o ×o Chemistry 1949	Х _о Сhemistry 1955
			-	π		_
	0	0	0	0	0	0
	317	318	319	320	321	322

÷	198	184-185	232-233	240	228-229	180-182	228-229
	=	r	. :	- <u>-</u>	C I	I I	
.•	, (C	e M	D. M.		Me	Me	
₹ £	ŭ	ŭ	ŭ	ដែ	ш	Ш X	ů
	Chemistry 1961	3,5-Dimethylbenzyl	Chemistry 1973	[×] ₀ Chemistry 1979	OPh	n do O	Chemistry 2003
	CO2Et	CO2Et	Τ		Ι-		CO2Et
·	323 0	324 0.	325		327 0		330 0

		I	ſ		γ
	192-193		132	207	216
	Ξ	r	Ξ	x	т
	Me	Me	n-Pr	Me	Me
× × × × × × × × × × × × × × × × × × ×	· Ę	Į,	н	Ť.	й
	3,5-Dimethylbenzyl	3,5-Dimethylbenzyl	Benzyl	3-Methylbenzoyl	3-Methylbenzyl
	ه رم Chem 2008	C02H	NO	Chem 2026	Chem 2032
	0	0	0	0	0
-	331	332	333	334	335

	<u></u>	
	185	
	ı	r
2	KeH3	(CH2)4
	3-Methylhenzy	3-Methylbenzyl
	0 9 NC 1 C	CH2NH2
•	0	0
-		
٠.	336	337

		 		1		
	mp.°C / (MH+)	245	176	[460]	[324,326]	[292,294]
	R4	Ξ	I	π	Ι	Ι
	R3	ہر Me		Υ Me	X We	λ. M 9
·	R2	Chemistry 4	Chemistry 9	/ 🕶	Ĭ.	₹ \
₹ 8 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	X-R1	≻ _e ← Chemistry 3	× _s × Chemistry 8		, , , , , , , , , , , , , , , , , , ,	^۲ و Chemistry 23
	٥	Ī.	¥`	- - -	# 	را کر ای
	N°≡	338	339	340	341	342

-					,	
	mb.°C / (MH+)	[298]	[462]	[688]	909]	[304]
	R4	Ï	Ξ.	Ξ	x	π
	R3	بر	Y	۲ We	۲ Me	We م
· · · · · · · · · · · · · · · · · · ·	R2		Ęt	- / ∖	Chemistry 44	
¥ 87 S7 S7 S7	X-R1	×°chemistry 28	×o∼ Chemistry 33		-	
	ø	Chemistry 27	·*		· -7-4	الالم د در ا
·	۱, N	343	344	346	346	347

	mp.°C / (MH+)	[627]	[610]	[618]	[604]	[615]
	R4	¥	Ι	I	π	Ι
	R3	Υ. We	X W	۲	よ Me	We .
		*	*\	*\	*\	*\
\$7 85 S7 87 S7 87	X-R1	×o ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	×o · · · · · · · · · · · · · · · · · · ·	×o Chemistry 63 Et	×o ← e ← Et Chemistry 68	× _o
	a	- *	- \	\bar{\chi}	- }	<u>-</u> ¥
	n.N	348	349	360	361	362

!			1			
	mb.°C / (MH+)	[679	[969]	[640]	[614]	205
	R4	Ξ	エ	Ι.	Ξ	π
	R3	\ \	ېر Me		الله Me	λ, Me
· ! .	R2	- <u>-</u> -∖-	*	Ψ	ı	Chemistry 99
¥ &	X-R1	. ★o. ★o. Chemistry 78			0 0= >	
		`. * *	-\f\-	- \tag{*}	- \	- \
	Ø = •N	353	354	926	366	357

	mp.°C / (MH+)	210	>260		[487]	[670]	[455]
	R4	π	Ι		I	Ŧ	ェ
	R3	X Me		DIA	<i>∀</i>	¥	γ We
	R2	Chemistry 104			Chemistry 114	z /\	
₹ 82 × × 83 × × × 83	X-R1	× _s Chemistry 103	**************************************		≻ _s ← Chemistry 113	Chemistry 118	
	Ö	- }	7-		- - -	- - -	¥
	n _o N	368	369		360	361	362

	mp.°C / (MH+)	215	205	>250	240	135
•	R4	x	Ξ	工	π	Ξ
	R3	₩	۲ •	. γ	λ M9	۲× Me
	R2	Chemistry 129	Chemistry 134	Chemistry 139	Chemistry 144	Chemistry 149
Y#O Y#O	X-R1	[★] e ← Chemistry 128	[×] _e × Chemistry 133	×e ×c Chemistry 138	Chemistry 143	ا ×وم Chemistry 148
	٥	·	- +	- - -	- - -	- -
	ii N	363	364	365	366	367

			r		<u> </u>	
·	mp.°C / (MH+)	>260	>260	>260	>260	>260
	R4	Ξ	Ξ.	I	π	Ξ
J	R3	** *** **** **** ***** ***** ***** *****	. Y	λ, Me	ہر Me	ہر Me
	R2	N≡ N N N N N N N N N N N N N N N N N N		,	→ \	Chemistry 174
¥ & & Om Y \	X•R1	Chemistry 163	×₀ × Chemistry 168	× _s ∠ Chemistry 163	[×] ∘ Chemistry 168	^خ م کار Chemistry 173
	a	4	\	<u>-</u> -\	Ŧ	٠
	ů N	368	369	370	371	372

	mp.°C / (MH+)	>250	170		. 220	>260	>250
	R4	I	Ξ		x	Ι	Ξ
	R3	. , , , , , , , , , , , , , , , , , , ,	\ '	IAI G	Ψ •	۲ . Me	HO YY O OH Chemistry 200
* * * * * * * * * * * * * * * * * * *	R2	Chemistry 179	themistry 184	Cheminally 104	Chemistry 189	s s s s s s s s s s s s s s s s s s s	↓ √
¥ & & & & & & & & & & & & & & & & & & &	X-R1	Chemistry 178			Chemistry 188		,o
	Q	- *	<u>,</u>		\ \ -	- - -	- -
	N N	373	374		376	376	377

	mp.°C / (MH+)	>260	[386]	[398]	230	226
	R4	I	I	x	π	Ŧ
•	R3	\- \- \-	Ž Z	H₃ V ÇK CH2NH2		γ, We
	R2	H ₂ N	- { \	→ \	Chemistry 219	Chemistry 224
γ=0 γ=0 γ=0	X-R1	[×] o × Chemistry 203	Chemistry 208	Chemistry 213	*o Chemistry 218	×o Chemistry 223
	ø		~ *	- -	~ *	- - -
	ů Ž	378	379	380	381	382

	mp.°C / (MH+)	[532]	[640]	[512]	[266]	[258]	[384]
	R4	工	Ξ	Ι	ı.	π	x
	R3	-} We	₩.	X Me	→		Me
	R2	ا لار Et	Chemistry 234	Chemistry 239		1	- \
> ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	X-R1		≻°c Chemistry 233	[×] o ← Chemistry 238			× _o ← Chemistry 253
	٥	Chemistry 227 Chemistry 228	- -	- - -	Vinyl	* \	+\
	s N	383	384	386	386	387	388

	mp.°C / (MH+)	>260	>250	>260	239	220
	R4	Ē	I	Ξ	π	I
	R3	<i>≻</i> ₩	λ W e	A. Me	ew.	پر Me
	R2	HO HO HO Chemistry 269	-	H₂N → CH2NH2	Chemistry 274	
¥ 85 S	X-R1	Chemistry 268	[×] o Chemistry 263	×s ×s Chemistry 268	[×] ∘ Chemistry 273	لمرابع Chemistry 278
	a	- -	- - -	14	- ¥	\
	II S	389	380	391	392	393

	mp.°C / (MH+)	[468]	240	190	>240	>250
	R4	±	Ξ	I	Ξ	Ι
	R3	Me .	. ⊀ Me	Me	ہر Me	Υ
· · · · · · · · · · · · · · · · · · ·	R2	Chemistry 284	Chemistry 289	Chemistry 294		Chemistry 304
\$\frac{1}{2} \frac{1}{2} \frac	X-R1	^X o , Chemistry 283	g-{	≻s ≻s Chemistry 293	[⊁] o Chemistry 298	.e-{
	~	· *	Ž.	- +	· 4	- \
	۵ ا	394	39 60 70	986	397	860 -

	mp.°C / (MH+)	>250	>250	212	238	98
	R4	I	x	π	Ξ	· I
	R3	₩	<i>\</i> ⁺ W o	. [*]	۲٠ We	We .
	R2	Chemistry 309	Chemistry 314	Chemistry 319	Ho Ho Chemistry 324	Chemistry 329
¥ & & & & & & & & & & & & & & & & & & &	X-R1	[×] o Chemistry 308	× _o ← Chemistry 313	[×] o	^ک و کارکا Chemistry 323	Chemistry 328
	ō	Ī,	·	- *	, +	*
	II S	388	400	401	402	403

	mb.°C / (MH+)	104	240	148	214	[308,310]
	R4	±	Ŧ	エ	工	Ξ
	R3	Μe Me	٦.	∀ ∑	Ho Ho Chemistry 350	γ
	R2	Chemistry 334	Chemistry 339	Chemistry 344	Ēt 👉	↓\
\$\frac{\frac}\}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	X-R1	*o Chemistry 333	,,,		,-<	×e Ke
	ø	` * -	- - -	÷ ÷	Ž	ه ۲
	, Z	404	405	406	407	408

	mp.°C / (MH+)	[326]	[541]	[429]	220	>260
	R4	Ξ.	Ξ	x	工	Ŧ
·	R3	Me.	χ	We A	₹ We	۲ We
	R2	Ēt ∕⊹	Chemistry 364			
Уж. 25 Х. 25 Х. 25 Х. 27 Х. 27	X-R1	*°° Chemistry 368	. ×s	K _e Kenistry 368	× _e ← Chemistry 373	≻ _e Chemistry 378
	a	CF3	· ~	- - - -	- \	\.\.*
	ıı Z	408	410	411	412	413

		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	i.			
i Z	a	X-R1	R2	R3	R 4	mp.°C / (MH+)
414	4	×e Chemistry 383	Chemistry 384	۲ We	Ξ	[667]
415	- - -	Chemistry 388	t √ N OH	K. Me	Ξ	162
416	~ -	کی کے کے کاریک کے Chemistry 393	Chemistry 394	بر	π	><240
417	رود Chemistry 397	Chemistry 397 Chemistry 398	⊹ √	γ, γ	x	[328]
418	. λ R	Chemistry 402 Chemistry 403	# .	٧ •	x	[362,364]

	mp.°C / (MH+)	248	226	174	[360]	[476]
	R4	Ϊ	Œ	Ξ	π	π
	R3	₹ ™	γ ,	Αθ	HO)HO	CH(OH)Ph
\$	R2	Chemistry 409	Chemistry 414	Chemistry 419	Et 🔨	↑ \
Ywo Sa	X-R1	Chemistry 408	[≻] o Chemistry 413	. ≻s Chemistry 418	[≻] o Chemistry 423	[×] ₀ Chemistry 428
	a	- -	Ť	Ī+	Ť *	- -
•	n Ž	6 1 4	420	421	422	423

							· · · · · · · · · · · · · · · · · · ·
	mp.°C / (MH+)	156	236	[621]	234	204	[556]
	R4	π	Ξ	IL	Ŧ	æ	π
	3	λ .	λ,	\ *	7	7	*
	R3	Me	Me	24	\$	Ğ	<u>₩</u>
ţ	R2	Chemistry 434	Chemistry 439	→ \	Chemistry 449	Chemistry 454	CO2Et
Y=0 Y=0 Y=X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-	X-R1	Ke K	≻s Chemistry 438	× _o ← Chemistry 443	[≻] o Chemistry 448	Chemistry 463	# # # # # # # # # # # # # # # # # # #
	a	<u>`</u> .	,	`. `*].\t	- - - -	*
	s. Z	424	426	426	427	428	429

					<u> </u>	
!	mp.°C / (MH+)	[674]	[410]	[432]	236	>250
	R4	Ξ	π	Ŧ	Ŧ	x
	R3	*\	₹ We	W +	₹ We	, t
	R2	∰. 	- 7 \	*\	Chemistry 479	Ho Chemistry 484
Y*O X*R1	X-R1	×o Chemistry 463	≻°o ✓ ✓ ✓ Chemistry 468	[×] o × Chemistry 473	≻° Chemistry 478	[×] o Chemistry 483
	Ö	, } }	ا المرابع کوک (Chemistry 467 Chemistry 468	ر المراجد المر Chemistry 472	1.4	-\ -\
	n N	430	431	432	433	434

	mp.°C / (MH+)	200	>250	[442]	186	[370]
• .	R4	æ	± .	Ξ	Ξ	π
	R3	\ \	W We	Chemistry 500	но у С	We .
. t	R2	* Of the state of	- 	·	∄	→
¥ 87 × × 87 × × × × 87 × × × × × × × × × × × × × × × × × × ×	γ≖Ο X•R1	x X	Chemistry 493	[⊁] o ↑ Chemistry 498	[,] ★o Chemlstry 503	×°, ← ← Chemistry 608
	g	- }-	Ā	- \ -\	- -	- -
	N°S	436	436	437	438	439

	mp.°C / (MH+)	[514]	[372]	[390,392]	[380]	[430]
	R4	エ ・ ;	ж	Ι	I	Ι
	R3	よ Me	پ Me	بر	ہر Me	X. We
	R2				↑	↑
\$\frac{\pi}{\sqrt{\sq}\}}}\sqrt{\sq}}}}}}\sqrt{\sq}}}}}}}}\sqit{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	X-R1	[×] _o Chemistry 513	× _o ← Chemistry 518			×°∕√°, Chemistry 533
	ø	٦٠/	¥ -	- -	1.44	+
	s, N	440 .	441	442	443	444

·	mp.°C / (MH+)	[314]	[366]	[625]	[636]	>240
	R4	I	. エ	Ξ	Ξ	π
	R3	λ⁄ Me	\ \	₩.	Me	
 :	R2	Ēt 👉	÷\	*	Ęŧ	Chemistry 569
\$\frac{\frac}\}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	X-R1		-	, , , , , , , , , , , , , , , , , , ,	×o Chemistry 553	,o-(=)
	a	oh کوکہ Chemistry 537	Chemistry 642 Chemistry 643	- -	-\tau_	- - -
	n N	445	. 446	447	448	449

	<u></u>		T	ı	r		<u> </u>
	mp.°C / (MH+)	230	230	140	210	230	[434,436]
	R4	ж	x	· ±	π	エ	π
·	R3	. Υ .	λ M9	, ×	ر ر CH2OMe	رار CH2OMe	CH2OMe
	R2	Chemistry 564	HS → HS → Chemistry 569	Chemistry 574	°‱ cozme	, to	
γ _{±0}	X-R1	*°° Chemistry 563	[≻] o Chemistry 668	Chemistry 673	کے۔ Chemistry 578	×o←←	^~o~Chemistry 688
	σ	- *	- 7-	- - +	- -	Ī+	~
	N°S	450	451	462	463	454	456

•	mp.°C / (MH+)	232	230			190	240
·	R4	=	ェ		x	x	I
	R3	CH2O OM	₹_ ₹	СН2ОН	* *	۲ Me	Υ
\ \	R2	Chemistry 694		Chemistry 599	Chemistry 604	Chemistry 609	
P4 N N N N N N N N N N N N N N N N N N N	X-R1	Chemistry 593	X S	Chemistry 598	Chemistry 603	Chemistry 608	Themistry 613
•	Ö	¥	ž		- -	· +	- ۲
	= °Z	456	467		468	469	460

	mp.°C / (MH+)	204	248	220	[583]	[676,578]
	R4	Ι	π	π	エ	Ι
	R3	λ Me	<i>\</i> +	× ×	ہر Me	₩e
)	R2	Chemistry 619	S S S S S S S S S S S S S S S S S S S	Chemistry 629	Chemistry 634	Chemistry 639
≥ N	X-R1	K Kennistry 618	کرا Chemistry 623	[≻] e Chemistry 628	Хо Уон Chemistry 633	×o ← ← α Chemistry 638
	Ö	- - -	\	<i>\</i>		- -
	ji Ž	461	462	463	464	465

	mp.°C / (MH+)	[560,562]	[542]	[668]	[462,464]	[485,487]
	R4	Ξ	I	Œ	I .	π .
	R3	ہر Me	ہر Me	λ{ Me	. X	₩ .
	R2	Chemistry 644	ے کے اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	s ∫ Chemistry 654	Ēt.	↑ \
\$\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\	X-R1	× _o Chemistry 643	, κ _ο οι Chemistry 648	OH	K _o ← Chemistry 658	
	ø	٦̈́	٦̈́	- \frac{1}{4}	Ť.	Ī-t
	S.N.	466	467	468	469	470

	<u></u>					Τ	·
	mp.°C / (MH+)	[380]	[808]	[507]	165	[306]	142
	R4	æ	π	Ŧ	Ι	x	æ
	R3	۲×	× هه	<i>₹</i>	CH2OMe	CH2OMe	CH2OMe
	R2	Ēt	⊹ ∖	*\	Ç02Me	₹ }	₩
¥ 87 Ou Y	X-R1	·	×°chemistry 673	Ko Chemistry 678	≻ _s Chemistry 683		
	ø	Chemistry 667 Chemistry 668	- *	- - -	⁺ +	**	\ \ -
· .:	s 2	471	472	473	474	476	476

	R2 R4 mp.°C / (MH+)	H 198	47	CH2CI CH2OMe	<i></i>	Chemistry 709 CH20Me	F 487]	Chemistry 714 CH2OH	¥ + ₹ \$.	
₹ 85 >	X-R1	Chemistry 698	×	Chemistry 703	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chemistry 708	, , , , , , , , , , , , , , , , , , ,	Chemistry 713	x-<	
	O	- -	<u>*</u>	÷	- \		~		¥	
	» Z	477	478		479		480		481	

	mp.°C / (MH+)	168	[613]	200	[486]	220
	72	x	Ŧ	エ	Ξ	I
	R3	₩	۲ Me	+ We	۲ We	Me *
	R2	Chemistry 724	Chemistry 729	4 \	ے کہ کے Chemistry 739	Chemistry 744
≥	X-R1	[≻] o Chemistry 723	[≺] o Chemistry 728	*°° Chemistry 733	[×] o Chemistry 738	Chemistry 743
	a	- - *	- -}	- *	Ž+	
· [n,	482	483	484	486	486

·	mp.°C / (MH+)	174	204	>250	162	[009]
	R4	x	π	±	π	Ι
	R3	ہر Me	We A	بر	لا Me	We Y
<u>.</u>	R2	Chemistry 749	Chemistry 764		→	
\$\frac{\frac}}}}}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{\frac{	X-R1	≻s Chemistry 748	, ×°o ← Chemistry 753	≻°o⊄ Yound try 768	[≻] o Chemistry 763	→
	σ	-}-\ - -	·	- -	- -	- - -
	ı, Z	. 487	488	489	490	491

· .	mp.°C / (MH+)	[500]	164	[513]	206	
·	R4	Ι	ж	π	Ŧ	x
	R3	λ⁄ . Me	λ. Me	X Me	λ Me	Me , *
	R2	Chemistry 774	Chemistry 779		Chemistry 789	
> ₹ & & Om Y	X-R1	≻ _s ⊢ Chemistry 773	≻ _s Chemistry 778		[≻] o → Chemistry 788	,-{\rightarrow}
	ø	- }	٦̈́	- ~	- - - - - - -	Ī+
	n n	492	493	494	495	496

	mp.°C./ (MH+)	[460]	[498]	[495]	203	204
	R4	±	Ξ	Ξ	Ι	π
	R3	ر ر CH2OMe	<i>₹</i>	We A	\ W o	Me .
· . !	R2	رُ آ Chemistry 799	Chemistry 804	Chemistry 809	Chemistry 814	Chemistry 819
Z	X-R1	≺°Chemistry 788	[★] o ★ Chemistry 803	★s Chemistry 808	≺ _e ← Chemistry 813	×°o Chemistry 818
	o	\ *	· -\	<u>-</u> *	ا <i>. د</i>	- - -
	F N	497	498	489	. 600	501

	mp.°C / (MH+)	168	217		200				506	
·	R4	Ι	Ι		±		r		Ι	
	R3	<i>\</i> +	*	Ме	*	Ме	*	We	ኣ	Me
	R2	Chemistry 824		Chemistry 829		Chemistry 834	₹,	כאלכו		Chemistry 844
≥	X-R1	×s ×s Chemistry 823	→	Chemistry 828	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Chemistry 833	×	CHEMISTRY 636	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Chemistry 843
	a	,	1,2%		*\		+	AIA	*	Me
·	 2	502	503		604	-	808 8		506	

,	_						
	mb.°C / (MH+)	170	218		200	166	213
	R4	π	Ι		π	I	Ξ
	R3	۲⁄ Me	×	Ме	۲ Me	*	<i>≯</i>
	R2	°,‱∕ co2et	÷	СН2ОН	Chemistry 859	Chemistry 864	z
γ**ο ×**R1	X-R1	≻ _s ≻ Chemistry 848		Chemistry 853	[≺] s Chemistry 858	[×] e ← Chemistry 863	. × . Chemistry 868
	ø	۲٠ ۱۳۵	+	Me	λ, Me	Ž+	- T
	ıı Z	607	608	-	509	610	511

ļ	ন					<u>_</u>
	mb.°C / (MH+)	[610]	[761]	[667]	[418,420]	[472]
	R4	I	π	工	Ξ	I
	R3	۲.	λ Me	We Me	۲ We	₩e
*	R2	Chemistry 874	. ,	s		- - - - - -
×	X•R1	× _o Chemistry 873	κο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	z	, Koomistry 888	×o√° ×o√° Chemistry 893
·	ø	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	÷	- -	, γ	- - -
	ຶ່ນ	512	513	514	516	. 516.

	mp.°C / (MH+)	[621]	[416]	[556]	[452,454,456]	[434,436]
	R4	π	x	I	Ξ	Ι
	R3	٦٠ We	X. We	٦	بر Me	₩ ₩
, i	R2	∫ Chemistry 899	Ēt.	chemistry 909		Et .
\$7 \$7 \$7 \$7 \$7 \$7	X-R1	× _o ← Pr Chemistry 898	40 OH			× _o Chemistry 918
	Ö	· Ā.	- -	- -	<u>-</u> *	· *
÷.	ıı N	617	518	619	620	621

	£			J		
	mp.°C / (MH+)	[476]	. [617]	[362]	[384]	[450]
	R4	π	Ι	I.	x	Ξ
	R3	₩	۲ 8		¥ ,	λ Mθ
	R2	→ \	Chemistry 929		*\	ر کاریکاری Chemistry 944
N#O × RB × R	X•R1	×o∕∕° Chemistry 923	‱ ×ochemistry 928			×o ← ← Chemistry 943
	ø	- - -	- -	ر ماری الماری الماری الماری الماری الماری الماری Chemistry 932 Chemistry 933	ر ۱۳۹۶ بر Chemistry 937 Chemistry 938	-\ -\ -\
	ıı N	622	623	524	625	626

	mp.°C / (MH+)	[399]	[381]	[282]	210	144	[612]
	R4	π	x	Σ	π	± ·	π
	R3	Λ. Me	∀ ₩	A Me	۸ć	. ₹	. У.С.
,	R2	£!		chemistry 959	Er € € € € € € € € € € € € € € € € € € €	Chemistry 969	сн20н
¥± 85 0=∀	X-R1	× _o K ^N _{oH} Chemistry 948	≺o Chemistry 953	Chemistry 958	[≻] o Chemistry 963	×s ✓ ✓ ✓ ✓ Chemistry 968	×o , – – – – – – – – – – – – – – – – – – –
	p	- -	- \f	- *r	- X * .	٦.	-
	- N	627	628	629	630	531	532

		≥ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹			·	
₽ N	a	X-R1	R2	R3	R4	mp.°C / (MH+)
533	- -	×o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	↑ ∫ Chemistry 979	₩ 9	· エ	629]
634	`\ \	[×] o ×o Chemistry 983	Chemistry 984	λ. Me		[469]
636	, x	≻°≻°Chemistry 988	September Sep	کہ Me	Ξ	[486]
636	·	≺o Chemistry 993		X Me	н	[380]
637	14	≺o HH, H M—N Chemistry 998	₩	አ Me	Ι	[424]
53 8	- -	[×] o Chemistry 1003	Chemistry 1004	₩e }	π	[494]

	mp.°C / (MH+)	203	230	[510]	206	>260
	R4	Ξ	π	± ·	五	エ
	R3	λ γ	ት · መ	∤	٠\ W e	₹ ₩
· · · · · · · · · · · · · · · · · · ·	R2	Chemistry 1009	Chemistry 1014	Chemistry 1019	Chemistry 1024	Chemistry 1029
≥	X-R1	[×] o . Chemistry 1008	کر Chemistry 1013	Chemistry 1018	[×] s Chemistry 1023	≺s Chemistry 1028
	ø	-\ -\	٠	- - -	ğ.	∀ Me
	⊒ S	539	640	641	542	543

	mp.°C / (MH+)	[560,562,564]	248	100	220	[469]
	R4	Ι	н	x	Ξ	Ξ
	R3	We .	٦.	We A	ہر Me	. ∀
	R2	Chemistry 1034	* \	∻ ∖		
≥	X-R1	≺ _e ✓ ✓ Chemistry 1033	×°, Chemistry 1038	× ₈ × Stanton 1043	[≿] o≜ Chemistry 1048	×°∕√°∕ ×°°∕√°Chemistry 1053
		.	*	Ť	Ť	. ¥
	g " Ž	544	545	546	547	648 88

	mp.°C / (MH+)	[431]	[398]	[421]	[370]	[298]
	R4	I	π	т	π	π
•	R3	ہر Me	ہر Me	Me	λ Me	Y. Y.
		*\	*	*\	*\	*
<u> </u>	R2	 	ជ័	ដ	ដ	缸
×	X-R1	°°, w°°.	×°Chemistry 1063	×o ← Chemistry 1068	^۲ و ۲۰۰۰ Chemistry 1073	کرم کرم Chemistry 1078
	a		- -		CO2Et	
	r Z	649	550	551	552	553

	mp.°C / (MH+)	[424]	[376,378]	[009]	[435]	194
	R4	エ	π	π	r	. т
	R3	X Me	. Y	۲ Me	۲ W	بر
	R2	Et 🖈	1 4	→ \	↑ \	Chemistry 1104
¥ 87 OHY	X-R1	×o Free Chemistry 1083	≻o Fr Chemistry 1088	χου Chemistry 1093	⊁o કું~ખ ₂	k _o Chemistry 1103
	ø	* -	, ہر Br	<u>-</u> *	- -\	- -
·	n N	85 4	55 55 55	556		568

	mp.°C / (MH+)	146	168	>250		232
	R4	I.	Ι	π	π.	Ι
	R3	. X	ナ We	× We	¥ We	We A
7. 	R2	Chemistry 1109	→			
×	X-R1	× ₈ ∠ Chemistry 1108	· /=<		کره Chemistry 1123	[×] o Po Chemistry 1128
		- - -	~	- - -	7-	· 4
· ·	Ø. ≅N	55 50 50	560	561	662	563

	mp.°C / (MH+)	>260	. 235	210	202	[330]
	R4	Ξ	Ŧ	I	Ξ.	æ
	R3	₹ We	Chemistry 1140	چ ب	₩ ₩	X بر
·	R2	Chemistry 1134	°,√°, Cozet	Chemistry 1144	Chemistry 1149	. o
× × × × × × × × × × × × × × × × × × ×	X-R1	×o Chemistry 1133	. Xe Chemistry 1138	[×] s Chemistry 1143	×o Chemistry 1148	×o Kohemistry 1163
	g	, +	*- *-	-	*************************************	+ +
	n N	564	. 666	86 8	299	999

	mp.°C / (MH+)	[302]	[371]	>260	230	249
	R4	I	Ŧ	π	Ξ	. т
	R3	Μ e	X We	We Me	X We	₩ 8
3	R2	CH2CH2CO2H	Chemistry 1164	Chemistry 1169	Chemistry 1174	المراد (Chemistry 1179
\$\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\fint{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac}\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}	X-R1	×o ✓ ✓ ✓ Chemistry 1168	×o× Chemistry 1163	[★] o ★ Chemistry 1168	× _o ← Chemistry 1173	×°chemistry 1178
	ø	÷ +	÷ +	- *	- ₹	- 1 -4
	N°3	699	670	571	672	673

	mp.°C / (MH+)	>250	216	>250	[472]
	R4	ж	I	Ŧ	I
	R3	۲ Me	Ψ	\ \ \	, Y
	R2	Chemistry 1184			
¥ & & & & & & & & & & & & & & & & & & &	X-R1	^X وکم Chemistry 1183	×o ✓ ✓ ✓ Chemistry 1188		\ \ \
	۵	, , ,	<u>-</u> \	- -	ן. - איר
	₽°N	574	675	. 676	577

	mp.°C /(MH+)	[427]	[468]	[467]	[469]	[502]	[515]
	R4	Ι	Ξ	н	Ι	I	Ξ
	R3	Me	Me	Me	Ме	Me	Ме
		+ \	*\	*	<i>‡</i> \	*\	+\
	R2	耳	ដ	ដ	Ęŧ	豆	챕
¥ 87 0= Y × × × × × × × × × × × × × × × × × × ×	X-R1	^x , Chemistry 3	* Chemistry 8	3	م	^ک و Chemistry 23	Themistry 28
	o.		-	-	-	-	· —
•	ຶ່ນ	578	579	580	581	582	583

•	mp.°C /(MH+)	[498]	180	168	236	228	>250
	R4	H	H	Н	. エ	Ŧ	Ι
	R3	Ме	Me	Me	Me	Ме	Ме
	R2	. → . Et	المراث (Chemistry 39	ربي Chemistry 44	ريا ريا Chemistry 49	Chemistry 54	Chemistry 59
¥ 89 0= Y	X-R1	Chemistry 33	× Chemistry 38	کے کے کہ کہ کہ کہ کہ کہ کہ کہ Chemistry 43	کی کے کہ Chemistry 48	×, Chemistry 53	Chemistry 58
	a	-	-	-			-
	₽ ₀ N	584	585	586	587	588	589

-	mp.°C /(MH+)	[399]	144	>250	192	212
	R4	x	π	=	Ξ	±
	R3	Me We	Ме	Me	Me	Me
 !	R2	Chemistry 64	°, Chemistry 69	المرابع Chemistry 74	Chemistry 79	Chemistry 84
¥ & & O= Y	X-R1	چے Chemistry 63	×, Chemistry 68	Č Chemistry 73	Č Chemistry 78	[×] ° ⇔ Chemistry 83
	Ø	π	-	<u>-</u>	_	-
	, N	590	591	592	593	594 -

	mp.°C /(MH+)	>250	[466]	>250	[227]	[255]	[244]
	R4	Ή	π	н	Ι.	Ξ	π
	R3	Ме	Me	Ме	Ме	Me	Me
	R2	[‡] ہُے۔ Chemistry 89	X_} Chemistry 94	رگرائی Chemistry 99	+ + · · H	+	Ŧ
¥ & & O≡Y × × × × × × × × × × × × × × × × × × ×	X-R1	Č Chemistry 88	*∱ Chemistry 93	مُمُّ Chemistry 98	دراً بر جمل بر Chemistry 103	المراك رام Chemistry 108	, ✓, Chemistry 113
	Ø	_	_	-	Chemistry 102	Chemistry 107	Chemistry 112
	ů. N	595	596	597	598	669	009

	mp.°C /(MH+)	[291]]	[508]	[427]	[429]	178
	R4	x	π	I	エ	Ξ
	R3	Me	Me	Me	Me	Me
))	R2	‡ T	Et	₩	₩	Chemistry 139
γ= γ	X-R1	x, √ √ √ × × Chemistry 118	جُوْلُونِ Chemistry 123	Chemistry 128	** Chemistry 133	ِرُ Chemistry 138
	Ø	Chemistry 117		_	_	
	₽°N	601	602	603	604	909

	mp.°C /(MH+)	120	>250	[437]	[439]	[426]	>250
	R4	I	±	π	Ι	π	±
	R3	Me	Ме	Ме	Ме	Me	Me
	R2	المرابع Chemistry 144	المراكبي المراكبين المراك	المراجعة ال	ات ا	المُرْمِ رمَّ Chemistry 164	Chemistry 169
¥ 83 0= ¥ 30 × 30 × 30 × 30 × 30 × 30 × 30 × 30	X-R1	Chemistry 143	ِدُ Chemistry 148	کْ Chemistry 153	Č Chemistry 158	×,	×, C
	a	·	- .	-		-	_
	ji Ž	909	607	809	609	610	611

	mb.°C /(MH+)	[302]	[381]	[338,340]		>250	>250
·	R4	æ.	Ξ	Ξ	π_	×	π
	R3	Ме	Me	Me	Me	Ме	Me
i	R2	°, co2€t	°,≾°, CO2Et	_т } СН2ОН	°, CH2CI	را Chemistry 194	Chemistry 199
× × × × × × × × × × × × × × × × × × ×	X-R1	Chemistry 173	Chemistry 178	×, ← Chemistry 183	کرگی Chemistry 188	×, A	کی کے کہ Chemistry 198
	a	Н	Br	Br	Br	Br	-
	₽°Z	612	613	614	615	616	617

	mp.°C /(MH+)	[451]	[513]	[639]	[456]	[582]	[428]
	R4	I	Ξ	x	Ξ	π	π
·	R3	Ме	Ме	Ме	Ме	Ме	Me
	R2	کرک Chemistry 204	Chemistry 209	Chemistry 214	رگر Chemistry 219	Chemistry 224	÷ CH2CH2CO2H
× × × × × × × × × × × × × × × × × × ×	X-R1	×, C	Chemistry 208	×, ← Chemistry 213	Chemistry 218	×, ✓✓, Chemistry 223	×, ⇔ Chemistry 228
	a			-	- -	-	
	ı, N	618	619	620	621	622	623

·	mp.°C /(MH+)	[554]	[629]	[453]	[481]	[641]
	R4	Ξ	I	エ	н	Ι
	R3	Me	M M	Me	Ме	Me
· · · · · · · · · · · · · · · · · · ·	R2	cH2CH2CO2H	Chemistry 239	رگار Chemistry 244	رگی Chemistry 249	Chemistry 254
¥ & O= Y	X-R1	∠, (Chemistry 233	×°,← Chemistry 238	, √ ≻°, ← Chemistry 243	, , Chemistry 248	ے۔ کپے Chemistry 253
	Ø	1	1	_	_	-
	, N°, N°,	624	625	626	627	628

1						
	mp.°C /(MH+)	[510]	[483]	[478]	[492]	[586]
	R4	I	Ι	н .	π	Ι
	R3	Me	Ме	Ме	Ме	Me
	R2	Chemistry 259	Chemistry 264	Chemistry 269	chemistry 274	Chemistry 279
¥ &	X-R1	Chemistry 258	×, Chemistry 263	, , , , , , , , , , , , , , , , , , ,	×°,€ Chemistry 273	کی کی کی کی کی از از کاری کرده Chemistry 278
	Ø	· -	-	_	-	-
	ı, N	629	630	631	632	633

	mp.°C /(MH+)	[493]	[536]	[511]	[623]	[508]
	R4	Ι		I	π	Ŧ
	R3	Me	Ме	Me	Ме	Me
· · · · · · · · · · · · · · · · · · ·	R2	Chemistry 284	Chemistry 289	Chemistry 294	ر رئے Chemistry 299	Chemistry 304
≥	X-R1	پے Chemistry 283	∽, Chemistry 288	Chemistry 293	×°,€ Chemistry 298	Chemistry 303
	Ø	-	-	-	-	
	ıı N	634	635	636	637	638

	mp.°C /(MH+)	[584]	[571]	[484]	[498]	[510]
	R4	Ι	п	x	π	π
	R3	Me	Me	Me	Me	Me
	R2	Chemistry 309	Chemistry 314). Et	£ .	 ↑
>=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X-R1	پے کپ Chemistry 308	、、、、、Chemistry 313		To themistry 323	Chemistry 328
	Ø			<u>-</u>	-	-
	₽ _o N	639	640	641	642	643

	mp.°C /(MH+)	mp.°C /(MH+) [545] [514]		[546]		>250	165
	R4	Ι	π	π	Ι	I	工
·	R3	Me	Me	Ме	Me	Me	Me
 !	R2	.} Et	± √ .	₽	_}↓ Et	ن رياً Chemistry 354	Chemistry 359
¥ 8 0 ° × × × × × × × × × × × × × × × × × ×	X-R1	Chemistry 333	Chemistry 338	Chemistry 343	*. Chemistry 348	×, Chemistry 353	×, \\ Chemistry 358
	a	-	-	-	-	-	-
	ii N	644	645	646	647	648	649

	mp.°C /(MH+)	181	[497]	[515]	[443]	[371]	[245]
	R4	π	π .	I	Ξ	Ŧ	工
	R3	Me	Me	Me	Me	Ме	Me
	R2	Chemistry 364	ē.	.} Et	V°⊕ [†]		· +\ 近
\$\$ \$\$ 0≡\$> \[\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\fr	X-R1	×, ⇔ Chemistry 363	×, Chemistry 368	×, Chemistry 373	کرگیر Chemistry 378	×ہ ﴿ ﴿ ﴿ لَمُعَلِّمُ اللَّهُ ال	×o∯ Chemistry 388
·	ø	-	_		-	-	Η.
	 N	650	651	652	653	654	655

	mp.°C /(MH+)	[386]	[401]	[386]	[206]	>250	>250
<u>.</u>	R4	x	Н	I	π	π	工
	R3	Ме·	Me	Me	Me	Ме	- Me
	R2	±∕ -	. †	Et	Et	Chemistry 414	Chemistry 419
¥= &	X-R1	ر پ Chemistry 393	·			×, ← Chemistry 413	
	Ö	-	· 	-	-	L	ī.
·	, N	656	. 299	658	659	099	661

	mp.°C /(MH+)	>250	[562]	[483]	[533]
	R4	I	ж	工	Ξ
	R3	Ме	Me .	Ме	Me
	R2	راران المسال Chemistry 424	Chemistry 429	Chemistry 434	Chemistry 439
× × × × × × × × × × × × × × × × × × ×	X-R1	×, Ć Chemistry 423	*~~ Chemistry 428	*o~\\	*ەرگەرگەرلىكىنىڭ كىلىنىڭ كىلىن
	σ	-	- -	—	-
	N°.	662	663	. 664	665

	mp.°C /(MH+)	[559]	[516]	[516]	[505]
	R4	I	I	Ξ	±
	R3	Ме	Me	Me	Me
· · · · · · · · · · · · · · · · · · ·	R2	Chemistry 444	Chemistry 449	Chemistry 454	Chemistry 459
¥ & 0=>	X-R1	*°		×o—(×o
	σ		_	_	
	N°S.	999	667	899	699

	mp.°C /(MH+)	[497]	[513]	[588]	[558]
	R4	≖ .	I	I	I
	R3	Me	Ме	Me	Me
	R2	رگر ا ا Chemistry 464	Chemistry 469	Chemistry 474	Chemistry 479
Y=0 X-R3 X-R3	X-R1	ِّہُ کُہُ کُہُ کے کہ کہ کہ کہ کہ کہ کہ کہ Chemistry 463	*ەرگ Chemistry 468	[×] ەركى Chemistry 473	
	G			-	-
	ı, N	670	671	672	673

	mp.°C /(MH+)	[465]	[559]	[521]	[525]
·	R4	· エ	π	Ξ	I
	R3	Ме	Me	Me	Ме
	R2	° Chemistry 484	Chemistry 489	ر جارگار Chemistry 494	chemistry 499
¥ 8 0 → × 0 → × × × × × × × × × × × × × × ×	X-R1	×وکرے Chemistry 483	*ەكرىكى كەرگىلىكى كەرگىكىلىكى كەرگىكىلىكىلىكىلىكىلىكىلىكىلىكىلىكىلىكىلىكى	ِمْ مُرْمُ و	*°- </th
	a	_	-	– .	-
	" .⊠	674	675	929	677

	mp.°C /(MH+)	>250	>250	>250	[392]	[440]
	R4	Ή	Н	Ŧ	π	π
·	R3	Me	Ме	Me	Me	Me
	R2	Chemistry 504	Chemistry 509	Chemistry 514	°, cozet	+ √
¥ &	X-R1	, , , Chemistry 503	کی کے کار Chemistry 508	×ورگیر Chemistry 513	کیار میاری Chemistry 518	Chemistry 523
	ø				·H	
· <u>-</u>	ı, Z	678	679	089	681	682

	mp.°C /(MH+)	[492]	[486]	[412]	[414]	[398]
	R4	±	エ	Ι.	π	τ
	R3	Me	Me	Ме	Me	Ge
1		<i>‡</i> \	*\	<i>‡</i> \	*\	*\
	82	竝	ដ	丗	缸	並
× & & O= × O= ×	X-R1	رُمُ رُمُّارُ رُمُّارُہُ Chemistry 528	Chemistry 533	Chemistry 538	Chemistry 543	Chemistry 548
	Q		_	_	-	-
	ıı S	683	. 684	685	989	687

			<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	mp.°C /(MH+)	[272]	[344]	[272]	[471]	[531]
	R4	Ξ	· エ	I	Ξ	エ
	R3	Ме	Me	Me	Me	Θ
	R2		.} Et		°Ç™ X Chemistry 569	. ↑\
\$ & & & & & & & & & & & & & & & & & & &	Y=0 X-R1	Chemistry 553	ِرُ Chemistry 558	ِرُ المار Chemistry 563	Č Chemistry 568	Chemistry 573
	a	Ξ	COZEt	π	· -	_
,	 Z	688	· 689	069	691	692

•	mp.°C /(MH+)	[468]	[572]	[544]	[531]	[482]
	R4	x	=	I	Ξ	工
	R3	Me	Me	Ме	Me	Мe
:: :	R2	Chemistry 579	Chemistry 584	Chemistry 589	Chemistry 594	Chemistry 599
¥ % 0= Y	X-R1	کی کے کہ کہ Chemistry 578	*, ***********************************		×, C	×, Chemistry 598
	a	· -	.	~	-	_
	s, N	693	694	695	969	697

	mp.°C /(MH+)	[557]	[598,600,602]	[548]	[496]	[532]
	R4	π	Ξ	エ	π	工
	R3	Me	Ме	Me	Me	Me
	R2	Chemistry 604	رب المرابع Chemistry 609	Chemistry 614	Chemistry 619	Chemistry 624
¥ 87 0= × N − 87 0= × N − 87 0= × Y − 87 0= ×	X-R1	Chemistry 603	×, ← ← Chemistry 608	پ Chemistry 613	چگرگر Chemistry 618	×, Chemistry 623
	σ	· . —	_	-		_
	ا. 2	869	669	700	701	702

	mp.°C /(MH+)	[544]	>250	[630]	[450]	[542,544]
	R4	π	x	π	I	т
	R3	Me	Ме	Me	Me	Me
· · · · · · · · · · · · · · · · · · ·	R2	Chemistry 629	Chemistry 634	Chemistry 639	Chemistry 644	Chemistry 649
Σ	X-R1	ے کپ Chemistry 628	Č Chemistry 633	کہے۔ Chemistry 638	∠, Ch Chemistry 643	×, \\ Chemistry 648
	a				-	-
	" N°≓	703	704	705	206	707

	mp.°C /(MH+)	[514,516]	[528,530]	[513]	[438]	[451]	[437]
•	R4	Н	н	н	Ξ	Ξ	I
	R3	Me	Ме	Ме	Me	Me	Me
	R2	Chemistry 654	Chemistry 659	Chemistry 664	ارگار استار Chemistry 669	رگر سراری Chemistry 674	Chemistry 679
Y=0 Y=0	X-R1	, , , Chemistry 653	×, () Chemistry 658	· Č Chemistry 663	×, C	×, ← Chemistry 673	×。 Chemistry 678
	σ	- -	-		·		-
	ı, N	708	709	710	. 711	712	713

	mp.°C /(MH+)	[465]	[513]	[530]	[512]	[450]
	R4	π	æ	Ξ	π	Ŧ
	R3	Me	Me	Ме	Me	Me
 	R2	المرامين Chemistry 684	Chemistry 689	Chemistry 694	Chemistry 699	Chemistry 704
¥8 85 0≡Y ××87 × ×87 × × × × × × × × × × × × × × ×	X-R1	کیگی Chemistry 683	Chemistry 688	Chemistry 693	×, Chemistry 698	کے کے کہ کے کہ اس کر کے کہ کے کہ کہ کرتا Chemistry 703
	a	-	—	· - -	-	-
	, N	714	715	716	717	718

		₹ 87 O=Y				
N	a	X-R1	R2	R3	R4	mp.°C /(MH+)
719	-	×, ⇔ Chemistry 708	Chemistry 709	Me	工	[466]
720	-	×°Chemistry 713	Chemistry 714	Ме	E	[512]
721	-	×, A	رگر Chemistry 719	Me	н	[464]
722	—	×, C	Chemistry 724	Ме	н	[478]
723		×, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Chemistry 729	Me	π	[450]

	mp.°C /(MH+)	[526]	[537]	[537]	>250	164
	R4	x .	π	π	Ξ	Ξ.
	R3	Me	Me	Me	Me	Ме
<u>;</u>	R2	Chemistry 734	Chemistry 739	Chemistry 744	Chemistry 749	Chemistry 754
₹ & O= × × × V= V= × × × V= V= V= × × V= V= V= × × V= V= V= × × V= V= V= × × V= × V=	X-R1	×°, ⇔ Chemistry 733	, , Chemistry 738	Chemistry 743	Chemistry 748	×,⇔⇔
	Ø	_	-	-	-	- -
. •	₽°N	724	725	726	727	728

		mp.°C /(MH+)	[254]	[464,466]	[338,340]	[285]	[450,451]	[371]
		R4	Н	x	н	±	Н	Ξ.
		R3	Ме	Me	Ме	Me	Ме	Me
			* \	† \	* \	+\	<i>‡</i> \	÷ž
r—		R2	世	អ្ន	竝	苗	兵	NH2
	¥ & 0= × ×	X-R1	خرگی Chemistry 758	×, Chemistry 763	×, Chemistry 768	الله بحريث حصرت من الله الله الله الله الله Chemistry 773	×وگرم Khemistry 778	×o←Chemistry 783
		a	Н	-	Н	Н	-	
		ı, S	729	730	731	732	733	734

	mp.°C /(MH+)	[475]	[491]	[399]	[428]	[461]	248
	R4	I	Ξ	π	x	н	Ξ
	R3	Me	Me	Me	Me	Me	Me
; ;	R2	Chemistry 789	Chemistry 794	 NM62		Chemistry 809	Chemistry 814
≥	X-R1	×, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×, ← ← Chemistry 793	×, Chemistry 798	Č Chemistry 803	چے کیے Chemistry 808	Chemistry 813
	Ø	-	-		CO2Et	- .	-
	, N	735	736	737	738	739	- 740

σ -	Y=0 X-R1 X-R1 X-R1 Chemistry 818	R2	R3 Me	<u>7</u> т	mp.°C/(MH+)
	×₀⇔ Chemistry 823	Chemistry 824	Me	x	[486]
	×o, ← ← Chemistry 828	رگی Chemistry 829	Ме	π	[504,506,508]
l .	×, A	Chemistry 834	Ме	ж	[513]
	Chemistry 838	Chemistry 839	Ме	x	[562

	mp.°C /(MH+)	[563]	[527]	[563,565]	[486]	[515]	[500]
	R4	Ή	π	H	x	π	Ξ
	R3	Ме	Ме	Me	Me	Ме	Me
	R2	Chemistry 844	Chemistry 849	Chemistry 854	Chemistry 859	Chemistry 864	Chemistry 869
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X-R1	Chemistry 843	Chemistry 848	*, Chemistry 853	×o⇔ Chemistry 858	*, Chemistry 863	Chemistry 868
	σ			-	<u>-</u>	-	_
	II o	746	. 747	748	749	750	751

			 1				
	mp.°C /(MH+)	[499]	[514]	>250	[466]	[478]	>250
	R4	π	н	Ι	π	Ж	Ξ
	R3	Ме	Me	Ме	Ме	Ме	Ме
	R2	Chemistry 874	Chemistry 879	Chemistry 884	÷ .	Chemistry 894	Chemistry 899
₹ 55 0=Y × 57 0=Y	X-R1	کی کے کہ کے کہ کے کہ کہ کار Chemistry 873	کی کے کی استرادی Chemistry 878	* Chemistry 883	± Ø	* Ĉ	ِرُّ الْمُ
	a		-		~	-	
	⊪ N	752	753	754	755	756	757

	mp.°C /(MH+)	>250	213	207	>250	[437]	[458]
	R4	Ι	X	Ή	π	I	æ
	R3	Me	Ме	Me	Ме	Me	Me
	R2	Chemistry 904	رگا Chemistry 909	Chemistry 914	Chemistry 919	Et	∓ √
\$ & O O O O O O O O O O O O O O O O O O	X-R1	×, ← Chemistry 903	×, ← ← Chemistry 908	×, ⇔ Chemistry 913	Chemistry 918	×°, √, c Chemistry 923	*
	Ö	-		÷	-	-	-
	N°≡	758	759	092	761	762	763

	mp.°C /(MH+)	[321]	[286]	[429]	[284]	[388]
	R4	x	π	エ	T .	±
	R3	Me	Me	Ме	Me	Me.
		+	*\	*\	*\	*\
	R2	並	世	豆	世	世
\$ \$ \$ 0	X-R1	Č, Chemistry 933	Chemistry 938	رگر Chemistry 943	Chemistry 948	ِرُمُ Chemistry 953
	Ø	Vinyl	Ξ	_	Ι	CO2Et
	N°#	764	765	766	767	768

	mp.°C /(MH+)	[316]	[442]	[380,382]	[308,310]	>250	[481]
	R4	±	π	Ι	π	π	ェ
	R3	Me	Ме	Me	Me	Me	Me
	R2	元	Et 👉	.}. Et	Et	Chemistry 979	Chemistry 984
¥ & O=Y	X-R1	Č , Å, Chemistry 958	ِرْمُ رکُہِرُر Chemistry 963		×° Chemistry 973	, , , , , , , , , , , , , , , , , , ,	
	g	н	- -	COZEt	Ξ	-	_
	" .∇	769	770	122	772	773	774

		¥ & & & & & & & & & & & & & & & & & & &				
ii S	Ø	Y=0 X-R1	R2	R3	R 4	mp.°C /(MH+)
775	_	×, Chemistry 988	Chemistry 989	Me	I	[545]
776		×, Chemistry 993	Chemistry 994	Me	F	[476]
777		×, ← Chemistry 998	Chemistry 999	Me	I	[484]
778	_	×. △ ✓ Chemistry 1003	Chemistry 1004	Me	Ŧ	[588]
779	_	×, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Chemistry 1009	Me	I	[560]

	mp.°C /(MH+)	[547]	[591]	[089]	[546]	[574]
·	R4	Ι	Ξ	Ι	Ξ	π
· · · · · · · · · · · · · · · · · · ·	R3	Me	Ме	Me	Me	Me
,	R2	Chemistry 1014	Chemistry 1019	Chemistry 1024	Chemistry 1029	Chemistry 1034
¥ & O= Y	X-R1	×, Chemistry 1013	Chemistry 1018	پْ رمان Chemistry 1023	×, △ Chemistry 1028	× _e \
	Ø		-		-	
	J°N N°E	780	781	782	783	784

•	r		<u> </u>	,		
•	mp.°C /(MH+)	[614,616,618]	[564]	[548]	[552]	[560]
	R4	Ξ	π	Ξ	H	Ξ
	R3	Me	Ме	Me	Ме	Me
	R2	Chemistry 1039	Chemistry 1044	Chemistry 1049	Chemistry 1054	Chemistry 1059
¥ 83 0=Y	X-R1	×, 🖒 Chemistry 1038	×, Å Chemistry 1043	×, Chemistry 1048	×₅ ⇔	×, Chemistry 1058
	Ø	-	<u>-</u>	-	-	
	S	785	786	787	788	789

•							
	mp.°C /(MH+)	[989]	[530,532]	[604]	[580]	[493]	[260]
	R4	x	π	Ξ,	Ι	π	Ι
	R3	Me	Me	Me	Me	Me	Me
	R2	Chemistry 1064	Chemistry 1069	Chemistry 1074	Chemistry 1079	Chemistry 1084	CH2OH
₹ 55 O= × × × × × × × × × × × × × × × × × × ×	X-R1	ِ کہ۔ Chemistry 1063	×, A Chemistry 1068	×, △ Chemistry 1073	×₅ ⇔ Chemistry 1078	×, ∠, △ Chemistry 1083	∠, Chemistry 1088
	g	1	. 	-	1	_	Ι
	∑	790	791	792	793	794	795

	mp.°C /(MH+)		>250	245	>250	232
	R4	π	Ξ	·π	π	π
	R3	Me	Me	Me	Me	Me
	R2	t°, CH2CI	Chemistry 1099	Chemistry 1104	Chemistry 1109	Chemistry 1114
¥ &	X-R1	×, Chemistry 1093	×, Chemistry 1098	×, 🖒 Chemistry 1103	ِکُمُ Chemistry 1108	Chemistry 1113
	đ	Ŧ.	Ξ		-	<u>-</u>
	 Z	796	797	798	799	800

,	mp.°C /(MH+)	224	184	>250	>250	>250
	R4	Ξ	I	Ι	Ξ	Ι
	R3	Me	Ме	Me	Ме	Ме
	R2	Chemistry 1119	大作 ⁽ 广	Chemistry 1129	Chemistry 1134	Chemistry 1139
¥ & O=Y	X-R1	×, Chemistry 1118	ِکُم Chemistry 1123	Č Chemistry 1128	Č Chemistry 1133	^ک و Chemistry 1138
	ø	- -	-	-		
	ıı N	801	802	. 803	804	805

	mp.°C /(MH+)	>250	250	198	[363]	[347]	[361]
	R4	Œ	x	I	I	I	Ξ
	R3	Ме	Me	Me	Ме	Me	Me
	R2	Chemistry 1144	Chemistry 1149	سُکُمُّ Chemistry 1154	~. CO2Et	~, [‡] .° co2€t	^, [†] , co2Et
Y=0 Y=0	X-R1	≺, Chemistry 1143	×, A	, , , , , , , , , , , , , , , , , , ,	کہ۔ Chemistry 1158	×, Chemistry 1163	×, \\ Chemistry 1168
	σ	-			NO2	NH2	NM62
	ı. N	806	807	808	808	810	811

	mp.°C /(MH+)	146	[337]	178	168	[493]	[493]
	R4	I	Ξ	π	I	I	Ξ.
·	R3	Me	Ме	Me	Ме	Me	Me
·	R2	сн2ОН	°, CH2CI	رگ Chemistry 1184	Chemistry 1189	Chemistry 1194	Chemistry 1199
φ	X-R1	×, Chemistry 1173	*, Chemistry 1178	Chemistry 1183	Č Chemistry 1188	ِرُمُ Chemistry 1193	* Chemistry 1198
	σ	NMe2	NMe2	NMe2	NMe2	-	-
	∥°N	812	813	. 814	815	816	817

	mp.°C /(MH+)	>250	>250
	R4	Ι	π
	R3	Me	Мв
	R2	Chemistry 1234	Chemistry 1239
¥π 8π 0=Υ × × × × × × × × × × × × × × × × × × ×	X-R1	×, ⇔. Chemistry 1233	×, ←
	Ø	-	1
·	ı.ºZ	824	825

215

A rapid, sensitive and automated assay procedure was used for the in vitro evaluation of anti-HIV agents. An HIV-1 transformed T4-cell line, MT-4, which was previously shown (Koyanagi *et al.*, *Int. J. Cancer*, (1985), 36, 445-451) to be highly susceptible to and permissive for HIV infection, served as the target cell line. Inhibition of the HIV-induced cytopathic effect was used as the end point. The viability of both HIV-and mock-infected cells was assessed spectrophotometrically via the *in situ* reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The 50% cytotoxic concentration (CC50 in μ M) was defined as the concentration of compound that reduced the absorbance of the mock-infected control sample by 50%. The percent protection achieved by the compound in HIV-infected cells was calculated by the following formula:

$$(OD_C)_{HIV} - (OD_C)_{HIV}$$

 $(OD_C)_{MOCK} - (OD_C)_{HIV}$

expressed in %,

whereby (OD_T)_{HIV} is the optical density measured with a given concentration of the test compound in HIV-infected cells; (OD_C)_{HIV} is the optical density measured for the control untreated HIV-infected cells; (OD_C)_{MOCK} is the optical density measured for the control untreated mock-infected cells; all optical density values were determined at 540 nm. The dose achieving 50% protection according to the above formula was defined as the 50% inhibitory concentration (IC₅₀ in μM). The ratio of CC₅₀ to IC₅₀ was defined as the selectivity index (SI). The compounds of formula (I) were shown to inhibit HIV-1 effectively. Particular IC₅₀, CC₅₀ and SI values are listed in Table 2 hereinbelow.

5

10

WO 02/24650 PCT/IB01/02082

Table 2

N°	IC50(μm)	С	SI	С	CC50(µm)
242	0,0006	>	158489	>	100
255	0,0006	>	15849	>	10
684	0,0008	>	125893	>	100
43	0,0010	1	10000		10
264	0,0010	>	10000	>	10
470	0,0010		12589		13
483	0,0010	>	100000	>	100
551	0,0010		12589		13
124	0,0013	>	7943	>	10
249	0,0013	>	25119	>	. 32
298	0,0013	>	7943	>	10
326	0,0013		7943		10
375	0,0013	>	79433	>	100
589	0,0013	>	7943	>	10
606	0,0013		15849		20
133	0,0016	>	6310	>	10
241	0,0016	>	63096	>	100
253	0,0016	>	6310	>	10
306	0,0016	>	19953	>	32
328	0,0016	> -	63096	>	100
370	0,0016	>	63096	>	100
662	0,0016	>	63096	>	100
426	0,0016	· ·	39811		63
46	0,0020	>	50119	>	100
105	0,0020	>	5012	>	10
234	0,0020		5012		10
254	0,0020	>	15849	>	32
256	0,0020	>	5012	>	10
272	0,0020		12589		25
284	0,0020	>	5012	>	10
296	0,0020		12589		25
319	0,0020	>	50119	>	100
574	0,0020	.>	50119	>	100
618	0,0020		25119		50
. 650	0,0020	>	50119	· > .	100
83	0,0025		3162		8
88	0,0025	>	39811	>	100
108	0,0025		19953		50
109	0,0025		12589		32
115	0,0025	·	3162		8

WO 02/24650 PCT/IB01/02082

277	0,0025	>	39811	>,.	100
286	0,0025	>	12589	>	-32
299	0,0025		32		0
713	0,0025	>	39811	>	100
45	0,0032	>	31623	>	100
85	0,0032	>	31623	>	100
86	0,0032	>	31623	>	100
231	0,0032		3162		10
409	0,0032		12589		40
244	0,0040	>	25119	>	100
297	0,0040	>	7943	>	32
250	0,0050		5012		25
257	0,0050	>	6310	>	32
307	0,0050	>	6310	>	32
324	0,0050		6310		32
81	0,0063		1995		13
92	0,0063	>	5012	> .	32
140	0,0063	>	1585	>	10
143	0,0063	>	1585	>	10
217	0,0063	>	1585	>	10
221	0,0063	>	3162	>	20
230	0,0063		1259		8
232	0,0063	·>	5012	>	32
245	0,0063	>	15849	>	100
309	0,0063		1585		10
321	0,0063	>	15849	>	100
322	0,0063	>	15849	>	100
547	0,0063	>	15849	>	100
31	0,0079	>	12589	>	100
218	0,0079	>	1259	>.	10
222	0,0079		251		2
700	0,0079	>	1000	>	8
314	0,0079	>	3981	>	32
701	0,0100		6310		63
8	0,0100	>	10000	>	100
99	0,0100	.>	10000	>	100
121	. 0,0100	>	10000	>	100
219	0,0100	>	3162	>	32
233	0,0100	·>	1000	>	10
694	0,0100		39811		63
280	0,0100		2512		25
696	0,0158	>	2512	>	40

218

CLAIMS

1. Compounds of formula (I)

$$R^4$$
 Q $X-R^1$ (I),

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein Y is O or S;

O is hydrogen; halo; C₁₋₆alkyl; di(C₁₋₄alkyl)amino; C₁₋₆alkyloxy; C₁₋₆alkyloxyC₁₋₆ C_{1-6} alkylthio C_{1-6} alkyl; C_{1-6} alkylcarbonyl; C₁₋₆alkylthio; C_{1-6} alkyl-S(=O)-; C_{1-6} alkyl- $S(=O)_2$ -; hydroxy C_{1-6} alkyl; 6alkyloxycarbonyl; 10 C₁₋₆alkyloxycarbonylC₁₋₆alkyl; C₁₋₆alkyloxycarbonylC₁₋ polyhaloC₁₋₆alkyl; 6alkylthio; aminocarbonyl₆C₁₋₆alkylthio; C₁₋₆alkyloxyC₁₋₆alkyloxycarbonyl; C₂₋ falkenyl optionally substituted with halo, hydroxy, cyano, formyl, -COOH, C1-6alkyloxy, C1-6alkylcarbonyl, C1-6alkyloxycarbonyl, C1-6alkylcarbonyloxy, Nhydroxy-imino or aryl; C2-6alkynyl optionally substituted with halo, hydroxy, 15 cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆ 6alkylcarbonyloxy, N-hydroxy-imino or aryl; C3-6cycloalkyl optionally substituted with C₁₋₄alkyl; cyano; carboxyl; formyl; R⁵R⁶N-C(=O)-; R⁵R⁶N-C(=O)-C₁₋₆alkyl; N-hydroxy-imino; N-C₁₋₄alkyloxy-imino; aryl; aryloxy; arylthio; arylC₁₋₆alkyl; arylcarbonyl; arylC₁₋₆alkyloxycarbonyl; C₁₋₆alkyl 20 substituted with hydroxy or aryl; Het1; Het1oxy; Het1thio; Het1C1-6alkyl; Het carbonyl; Het C1-6alkyloxycarbonyl; C1-6alkyl-P(OR15)2=O or C1-6alkyl-P(OR $P(O-C_{1-6}alkyl-O)=O;$

25 X is a bivalent radical of formula

-(CH₂)_p- (a-1) or
-(CH₂)_q-Z-(CH₂)_r- (a-2);
wherein p is an integer of value 1 to 5;
q is an integer of value 0 to 5;
r is an integer of value 0 to 5;
Z is O, S, NR⁷, C(=O), S(=O), S(=O)₂, CHOR¹³, CH=CH, CH(NR⁷R⁸) or CF₂;

and wherein each hydrogen atom may be replaced by C_{1-4} alkyl or hydroxy C_{1-4} alkyl;

R¹ is C₁₋₆alkyl, C₃₋₆cycloalkyl, C₁₋₆alkenyl, C₁₋₆alkoxy, aryl or a monocyclic or bicyclic heterocycle selected from pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, or a radical of formula

$$(CH_2)_n$$
 (b-1) or $(CH_2)_n$ (b-2)

with n being an integer of 1 or 2, said monocyclic or bicyclic heterocycle or said radical of formula (b-1) or (b-2) optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, polyhaloC₁₋₄alkyl or phenyl;

or Q and X-R¹ may be taken together with the pyridinone to form a tricyclic heterocycle of formula

$$R^{4}$$

$$R^{3}$$

$$X$$

$$(h-1)$$

with R^{16} and R^{17} being C_{1-6} alkyl or forming together =0.

R² and R³ each independently are selected from hydrogen; halo; formyl; cyano; 20 azido; hydroxy; oxiranyl; amino; mono- or di(C1-4alkyl)amino; formylamino; mercapto(C_{1-6})alkyl; hydrazino; $R^{5a}R^{6a}N-C(=O)$ -; $R^{9}-N=C(R^{10})$ -; C_{2-6} alkenyl optionally substituted with one or two substituents each independently selected cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, from halo, hydroxy, di(C₁₋₄alkyl)carbamoyl, 25 C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy, [di(C₁₋₄alkyl)amino(C₁₋₆alkyl)](C₁₋₄alkyl)carbamoyl, $[di(C_{1-4}alkyl)amino(C_{1-6}alkyl)](arylC_{1-4}alkyl)carbamoyl,$ di(C₁₋₄alkyloxy) $(C_{1-4}alkyl)$ carbamoyl, $(cyanoC_{1-6}alkyl)(C_{1-6}alkyl)$ amino $C_{1-6}alkyl$, N-hydroxyimino, aryl, Het², Het²carboxamido, Het²(C₁₋₆alkyl)carbamoyl; C₂₋₆alkynyl 30 optionally substituted with one or two substituents each independently selected

10

15

20

25

30

from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C1-6alkyloxy; hydroxyC1-6alkyloxy; aminoC1-6alkyloxy; mono- or di(C1-4alkyl)aminoC₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; arylcarbonyl; Het²carbonyl; C₁₋₆ 6alkyloxycarbonyl; C1-6alkylcarbonyloxy; aryl; aryloxy; arylC1-6alkyloxy; arylthio; arylC₁₋₆alkylthio; mono- or di(aryl)amino; Het²; Het²oxy; Het²thio; Het²C₁₋₆alkyloxy; Het²C₁₋₆alkylthio; Het²SO₂; Het²SO; monodi(Het²)amino; C₃₋₆cycloalkyl; C₃₋₆cycloalkyloxy; C₃₋₆cycloalkylthio; C₁₋ 6alkylthio; hydroxyC₁₋₆alkylthio; aminoC₁₋₆alkylthio; mono- or di(C₁₋ 4alkyl)aminoC₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, carboxyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkylsulfonyl, C₁₋₆alkycarbamoylC₁₋₄alkylthio, C₁₋₆alkyloxyC₁₋₆alkylthio hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, aminocarbonyloxy, monodi(C₁₋₄alkyl)aminocarbonyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonylC₁₋₁ 6alkyloxy, C1-6alkyloxycarbonylC1-6alkylthio, aryl, Het2, aryloxy, arylthio, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, Het²C₁₋₆alkyloxy, Het²C₁₋₆alkylthio, C₁₋₆alkyloxy 6alkyl-S(=O)2-oxy, amino, mono- or di(C1-6alkyl)amino, di(C1-6alkyl)aminoC1- $[di(C_{1-6}alkyl)amino(C_{1-6}alkyl)](C_{1-6}alkyl)amino,$ _óalkylthio, C₁₋₆alkyloxycarbonylamino, C₁₋₆alkyloxyC₁₋ 6alkyl)amino, 6alkylcarbonylamino, mono- or di(aryl)amino, monodi(arylC₁₋ 4alkyl)amino, mono- or di(C1-4alkyloxyC1-4alkyl)amino, mono- or di(C1-4alkylthioC₁₋₄alkyl)amino, mono- or di(Het²C₁₋₄alkyl)amino, 4alkyl)(C1-4alkyl)amino, (cyanoC1-6alkyl)(C1-6alkyl)amino, C3-6cycloalkylthio, R^{12} -NH-(C=O)-NH-, R^{14} -S(=O)₂-NH-, C_{1-6} alkyl-P(O- R^{11} -(C=O)-NH-, R¹⁵)2=O, C₁₋₆alkyl-P(O-C₁₋₆alkyl-O)=O or a radical of formula

N— (c-1) or
$$A_2$$
 A_1 —(c-2) or A_1 (c-3)

with A₁ being CH or N, and A₂ being CH₂, NR¹³, S or O, provided that when A₁ is CH then A₂ is other than CH₂, said radical (c-1), (c-2) and (c-3) being optionally substituted with one or two substituents each independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkyloxy, hydroxy C₁₋₄alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆ alkyloxycarbonylC₁₋₄alkyl, aminoC₁₋₆alkyl, C₁₋₄alkylcarbonyl, arylcarbonyl, aryl, Het¹, Het¹-(C=0)-, hydroxy, cyano, C₁₋₄alkylcyano, CONR¹⁶R¹⁷ with R¹⁶

and R¹⁷ being independently H or alkyl, mono or di(C₁₋₄alkyl)aminoalkyl, 4-hydroxy-4-phenyl or 4-cyano-4-phenyl;

or R² and R³ may be taken together to form a bivalent radical of formula

5

10

15

$$-(CH_2)_1-CH_2-A_3-CH_2-(d-1)$$
 or $-CH=CH-CH=CH-(d-2)_1$

with t being an integer of 0, 1 or 2 and A₃ being CH₂, O, S, NR^{7a} or N[C(=O)R^{8a}] and wherein each hydrogen in said formula (d-1) or (d-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁴ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, C₁₋₆alkylcarbonyloxyC₁₋₆alkyl, C₂₋₆alkenyl, amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyl or aryl;

or R⁴ and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_1-CH_2-A_4-CH_2-$$
 (e-1) or $-CH=CH-CH=CH-$ (e-2)

with t being an integer of 0, 1 or 2 and A₄ being CH₂, O, S, NR^{7b} or N[C(=O)R^{8b}] and wherein each hydrogen in said formula (e-1) or (e-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

or $X-R^1$ and R^2 may be taken together to form a tricyclic heterocycle of formula

with R^{16} and R^{17} being C_{1-6} alkyl or forming together =0.

R5 and R6 each independently are hydrogen, C1-4alkyl or C1-4alkyloxy;

5 R^{5a} and R^{6a} each independently are hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkylthio, amino, mono-or di(C₁₋₄alkyl)amino or a radical of formula

$$A_6$$
 A_5 (f-1)

with A₅ and A₆ each independently being CH₂, NR¹³ or O;

10

R⁷, R^{7a} and R^{7b} each independently are hydrogen, formyl or C₁₋₄alkyl;

R⁸, R^{8a} and R^{8b} each independently are hydrogen or C₁₋₄alkyl;

R⁹ is hydrogen, hydroxy, C₁₋₄alkyloxy, carboxylC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl-C₁₋₄alkyloxy, C₂₋₄alkenyloxy, C₂₋₄alkynyloxy or arylC₁₋₄alkyloxy;

R¹⁰ is hydrogen, carboxyl or C₁₋₄alkyl;

- 20 R¹¹ is hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkyl-S(=O)₂-, aryl or Het³; C₁₋₄alkyloxy; C₂₋₄alkenyl; arylC₂₋₄alkenyl; C₂₋₄alkynyl; Het³C₂₋₄alkynyl, arylC₂₋₄alkynyl; C₃₋₆cycloalkyl; aryl; naphthyl or Het³;
- 25 R¹² is C₁₋₄alkyl, arylC₁₋₄alkyl, aryl, arylcarbonyl, C₁₋₄alkylcarbonyl or C₁₋₄alkyloxycarbonylC₁₋₄alkyl;

 R^{13} is hydrogen, C_{1-4} alkyl or C_{1-4} alkylcarbonyl;

R¹⁴ is C₁₋₄alkyl optionally substituted with aryl or Het⁴; polyhaloC₁₋₄alkyl or C₂₋₄alkenyl optionally substituted with aryl or Het⁴;

R¹⁵ is C₁₋₄ alkyl;

35 · Het¹ and Het² each independently are a heterocycle selected from pyrrolyl, furanyl,

thienyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, tetrahydropyrimidinyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, piperazinyl, hexahydropyridazinyl, hexahydropyrimidinyl, morpholinyl, thiomorpholinyl triazolyl, tetrazolyl, pyrrolyl, pyrazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, indolyl, indazolyl, benzodioxanyl, quinolinyl, 2-oxo-1,2dihydro-quinolinyl, imidazopyridinyl, dihydropyrrolyl or dihydroisoxazolyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from O, S, halo, formyl, amino, hydroxy, cyano, hydroxyC₁₋₄alkyl, carboxyC₁₋₄alkyl, carbamoylC₁₋₄alkyl, C₁₋₄alkyl, carbamoylC₁₋₄alkoxy, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, -OCONH₂, C₁₋₄alkoxyC₁₋₄alkyl, aryl, Het²C₁₋₄alkyl, polyhaloC₁₋₄alkyl, C₃₋₆cycloalkyl or arylC₂₋₆alkenyl;

15

20

10

5

Het³ is a monocyclic or bicyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, 2-oxo-1,2-dihydro-quinolinyl, pyrrolidinyl, benzothiazolyl, quinolinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl or a radical of formula

$$A_{7}$$
 (g-1),

25

with A_7 or A_8 each independently being selected from CH_2 or O; each of said monocyclic or bicyclic heterocycles may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkyloxy, C_{1-4} alkylcarbonyl or polyhalo C_{1-4} alkyl;

30

Het⁴ is a monocyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

Het⁵ is pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, piperidinyl, morpholinyl or pyrrolidinyl;

aryl is phenyl optionally substituted with one, two or three substituents each 5 independently selected from halo; hydroxy; carboxyl; cyano; formyl; acetyl; nitro; amino; mono- or di(C₁₋₄alkyl)amino; C₁₋₄alkylcarbonylamino; mono- or di(C₁₋₄alkyl)aminocarbonylamino; C₁₋₄alkyl-S(=O)₂-NH-; Het⁵(=S)-S-C₁₋₄alkyl ; C₁₋₆alkyloxy; sulfamoyl; (C₁₋₄alkyl)sulfamoyl; arylsulfamoyl; Het²sulfamoyl; O-P=OR¹⁵: C₁₋₆alkyl optionally substituted with halo, hydroxy, cyano, nitro, 10 di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, or amino, monoformyl, C_{1-6} alkyloxy, C_{1-6} alkyloxy C_{1-6} alkyloxy, C_{2-6} alkenyloxy, C_{1-6} alkylcarbonyloxy, C₁₋₆alkyloxycarbonylthio, N-hydroxyimino, phenyl or Het⁵; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, nitro, formyl, amino, monoor di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, 15 C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het⁵; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C1- C_{1-6} alkyloxy, C₁₋₆alkylcarbonyl, ₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het⁵; phenyl; phenyloxy; phenyl(C₁₋₄alkyl)thioC₁₋₄alkyl; (C₃₋₆)cyclohexylthioC₁₋₄alkyl or isoxazolinyl 20 optionally substituted by C₁₄alkyloxycarbonyl or morpholinylC₁₄alkyl

provided that

5,6,7,8-tetrahydro-3-iodo-4-phenoxy-1-phenyl-2(1H)quinolinone;

- 25 3-iodo-6-methyl-4-phenoxy-2(1*H*)-pyridinone; 2-I(3.5.6-trifluoro-1,2-dihydro-2-oxo-4-pyridinyl)amino]benzoic acid;
 - 1,2-dihydro-6-hydroxy-2-oxo-4-(2-phenylethyl)-3-pyridinecarbonitrile;
 - 1,2-dihydro-6-hydroxy-2-oxo-4-(4-pyridinylmethyl)-3-pyridinecarbonitrile;
 - 4-[(4-bromophenyl)methoxy]-3,5-diodo-1-methyl-2(1H)-pyridinone;
- 4-[(4-bromophenyl)methoxy]-1,2-dihydro-1-methyl-2-oxo-3-pyridinecarboxylic acid; 1,2-dihydro-6-methyl-2-oxo-4-(phenylthio)-3-pyridinecarboxylic acid and the alkyl-4-arylthio-1,2-dihydro-5-methyl-6-methyl-2-oxo-3-pyridine carboxylate 3-bromo-4-[[[2-(3,4-dimethoxyphenyl)ethyl]amino]methyl-2(1*H*)quinolinone; 3-iodo-7-methoxy-1-methyl-4-phenoxy-2(1*H*)quinolinone;
- 1-ethyl-3-iodo-7-methoxy-4-phenoxy-2(1*H*)quinolinone;3-iodo-7-methoxy-4-(4-methoxyphenoxy)-1-methyl-2(1*H*)quinolinone;

```
1-ethyl-3-iodo-7-methoxy-4-(4-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 3-iodo-7-methoxy-4-(3-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 1-ethyl-3-iodo-7-methoxy-4-(3-methoxyphenoxy)-1-methyl-2(1H)quinolinone; 3-iodo-7-methoxy-4-phenoxy-2(1H)quinolinone; 4-(3-chloro-4-methoxyphenoxy)-3-iodo-7-methoxy-2(1H)quinolinone; 3-iodo-4-phenoxy-2(1H)quinolinone; 3-iodo-4-phenoxy-1-phenyl-2(1H)quinolinone; 3-iodo-4-(4-methylphenoxy)-2(1H)quinolinone;
```

10 are not included.

5

2. Compounds as claimed in claim 1 wherein

3-iodo-4-(4-methoxyphenoxy)-2(1H)quinolinone;

O is halo; C₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkyloxyC₁₋₆alkyl; C₁₋₆alkylthio; C_{1-6} alkylthio C_{1-6} alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; 15 C_{1-6} alkyl-S(=O)-; C_{1-6} alkyl- $S(=O)_2$ -; hydroxy C_{1-6} alkyl; polyhalo C_{1-6} alkyl; C_{1-6} alkyloxycarbonyl C_{1-6} alkyl; C_{1-6} alkyloxy C_{1-6} alkyloxycarbonyl; C_{2-6} alkenyl optionally substituted with halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxyimino or aryl; C2-6alkynyl optionally substituted with halo, hydroxy, cyano, 20 C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C_{1-6} alkyloxycarbonyl, 6alkylcarbonyloxy, N-hydroxy-imino or aryl; C₃₋₆cycloalkyl optionally substituted with C₁₋₄alkyl; cyano; carboxyl; formyl; R⁵R⁶N-C(=O)-; $R^5R^6N-C(=O)-C_{1-6}$ alkyl; *N*-hydroxy-imino; *N*-C₁₋₄alkyloxy-imino; aryl; aryloxy; arylthio; arylC₁₋₆alkyl; arylcarbonyl; arylC₁₋₆alkyloxycarbonyl; C₁₋₆alkyl substituted with both hydroxy and aryl; Het¹; Het¹oxy; Het¹thio; Het¹C₁₋₆alkyl; 25 Het carbonyl; Het C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl-P(OR¹⁵)₂=O or C₁₋₆alkyl- $P(O-C_{1-6}alkyl-O)=O;$

X is a bivalent radical of formula

```
-(CH<sub>2</sub>)<sub>p</sub>- (a-1) or
-(CH<sub>2</sub>)<sub>q</sub>-Z-(CH<sub>2</sub>)<sub>r</sub>- (a-2);
wherein p is an integer of value 1 to 5;
q is an integer of value 0 to 5;
r is an integer of value 0 to 5;
Z is O, S, NR<sup>7</sup>, C(=O), S(=O)<sub>2</sub>, CHOR<sup>13</sup>, CH=CH, CH(NR<sup>7</sup>R<sup>8</sup>) or CF<sub>2</sub>;
```

and wherein each hydrogen atom may be replaced by C₁₄alkyl or hydroxyC₁₄alkyl;

R¹ is C₃₋₆cycloalkyl, aryl or a monocyclic or bicyclic heterocycle selected from pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, or a radical of formula

$$(CH_2)_n$$
 (b-1) or $(CH_2)_n$ (b-2)

with n being an integer of 1 or 2,

said monocyclic or bicyclic heterocycle or said radical of formula (b-1) or (b-2) optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, polyhaloC₁₋₄alkyl or phenyl;

R² and R³ each independently are selected from hydrogen; halo; formyl; cyano; 15 azido; hydroxy; oxiranyl; amino; mono- or di(C₁₋₄alkyl)amino; formylamino; $R^{5a}R^{6a}N-C(=0)$ -; $R^{9}-N=C(R^{10})$ -; C_{2-6} alkenyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, 6alkylcarbonyloxy, N-hydroxy-imino, aryl or Het2; C2-6alkynyl optionally 20 substituted with one or two substituents each independently selected from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C₁₋₆alkyloxy; hydroxyC₁₋₆ 6alkyloxy; aminoC₁₋₆alkyloxy; mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyloxy; C₁₋ Het²carbonyl; 6alkylcarbonyl; C₁₋₆alkyloxycarbonyl; arylcarbonyl; 25 C₁₋₆alkylcarbonyloxy; aryl; aryloxy; arylC₁₋₆alkyloxy; arylthio; arylC₁₋ 6alkylthio; mono- or di(aryl)amino; Het²; Het²oxy; Het²thio; Het²C₁₋₆alkyloxy; Het²C₁₋₆alkylthio; mono- or di(Het²)amino; C₃₋₆cycloalkyl; C₃₋₆cycloalkyloxy; C₃₋₆cycloalkylthio; C₁₋₆alkylthio; hydroxyC₁₋₆alkylthio; aminoC₁₋₆alkylthio; mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with 30 one or two substituents each independently selected from halo, hydroxy, cyano, C_{1-6} alkyloxy, C_{1-6} alkylthio, hydroxy C_{1-6} alkyloxy, C_{1-6} alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, aminocarbonyloxy, monodi(C₁₋₄alkyl)aminocarbonyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonylC₁₋

10

15

25

30

6alkyloxy, C₁₋₆alkyloxycarbonylC₁₋₆alkylthio, aryl, Het², aryloxy, arylthio, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, Het²C₁₋₆alkyloxy, Het²C₁₋₆alkylthio, C₁₋₆alkyl-S(=O)₂-oxy, amino, mono- or di(C₁₋₆alkyl)amino, C₁₋₆alkyloxycarbonylamino, C₁₋₆alkyloxyC₁₋₆alkylcarbonylamino, mono- or di(aryl)amino, mono- or di(arylC₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(Het²C₁₋₄alkyl)amino, R¹¹-(C=O)-NH-, R¹²-NH-(C=O)-NH-, R¹⁴-S(=O)₂-NH-, C₁₋₆alkyl-P(O-R¹⁵)₂=O, C₁₋₆alkyl-P(O-C₁₋₆alkyl-O)=O or a radical of formula

N— (c-1) or
$$A_2$$
 A_1 — (c-2)

with A₁ being CH₂ or N, and A₂ being CH₂, NR¹³, S or O, provided that when A₁ is CH₂ then A₂ is other than CH₂, said radical (c-1) and (c-2) being optionally substituted with one or two substituents each independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkyloxy, hydroxy C₁₋₄alkyl, C₁₋₆ alkyloxycarbonyl, C₁₋₆ alkyloxycarbonylC₁₋₄alkyl, aminoC₁₋₆alkyl, carbonyl, hydroxy, cyano, CONR¹⁶R¹⁷ with R¹⁶ and R¹⁷ being independently H or alkyl, mono or di(C₁₋₄alkyl)aminoalkyl, 4-hydroxy-4-phenyl or 4-cyano-4-phenyl;

or R² and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_t-CH_2-A_3-CH_2-(d-1)$$
 or $-CH=CH-CH=CH-(d-2)$

with t being an integer of 0, 1 or 2 and A₃ being CH₂, O, S, NR^{7a} or N[C(=O)R^{8a}] and wherein each hydrogen in said formula (d-1) or (d-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁴ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₂₋₆alkyl, C₂₋₆alkyl, amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyl or aryl;

or R4 and R3 may be taken together to form a bivalent radical of formula

15

$$-(CH_2)_t-CH_2-A_4-CH_2-$$
 (e-1) or CH=CH-CH=CH- (e-2)

with t being an integer of 0, 1 or 2 and A₄ being CH₂, O, S, NR^{7b} or N[C(=O)R^{8b}] and wherein each hydrogen in said formula (e-1) or (e-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁵ and R⁶ each independently are hydrogen, C₁₋₄alkyl or C₁₋₄alkyloxy;

10 R^{5a} and R^{6a} each independently are hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkylthio, amino, mono-or di(C₁₋₄alkyl)amino or a radical of formula

$$A_6$$
 A_5 (f-1)

with A₅ and A₆ each independently being CH₂, NR¹³ or O;

R⁷, R^{7a} and R^{7b} each independently are hydrogen, formyl or C₁₋₄alkyl;

 R^8 , R^{8a} and R^{8b} each independently are hydrogen or C_{1-4} alkyl;

20 R⁹ is hydrogen, hydroxy, C₁₋₄alkyloxy, carboxylC₁₋₄alkyloxy, C₁₋₄alkyloxy, C₂₋₄alkynyloxy or arylC₁₋₄alkyloxy;

R¹⁰ is hydrogen, carboxyl or C₁₋₄alkyl;

- 25 R¹¹ is hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkyl-S(=O)₂-, aryl or Het³; C₁₋₄alkyloxy; C₂₋₄alkenyl; arylC₂₋₄alkenyl; C₂₋₄alkynyl; Het³C₂₋₄alkynyl, arylC₂₋₄alkynyl; C₃₋₆cycloalkyl; aryl; naphthyl or Het³;
- 30 R¹² is C₁₋₄alkyl, arylC₁₋₄alkyl, aryl, arylcarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl or C₁₋₄alkyloxycarbonylC₁₋₄alkyl;

 R^{13} is hydrogen, C_{1-4} alkyl or C_{1-4} alkylcarbonyl;

35 R^{14} is C_{1-4} alkyl optionally substituted with aryl or Het^4 ; polyhalo C_{1-4} alkyl or

C2-4alkenyl optionally substituted with aryl or Het4;

R15 is C14 alkyl;

Het¹ and Het² each independently are a heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl or 2-oxo-1,2-dihydro-quinolinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

Het³ is a monocyclic or bicyclic heterocycle selected from pyrrolyl, furanyl, thienyl, 15 imidazolyl, oxazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, 2-oxo-1,2-dihydro-quinolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, 20 hexahydropyridazinyl or a radical of formula

$$(g-1),$$

with A₇ or A₈ each independently being selected from CH₂ or O; each of said monocyclic or bicyclic heterocycles may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

Het⁴ is a monocyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

- Het⁵ is pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl or oxazolyl;
- aryl is phenyl optionally substituted with one, two or three substituents each independently selected from halo; hydroxy; carboxyl; cyano; formyl; nitro; 5 amino; mono- or di(C₁₋₄alkyl)amino; C₁₋₄alkylcarbonylamino; mono- or di(C₁₋₄alkyl)aminocarbonylamino; C₁₋₄alkyl-S(=O)₂-NH-; C₁₋₆alkyloxy; C₁₋₁ galkyl optionally substituted with halo, hydroxy, cyano, formyl, amino, monodi(C₁₄alkyl)amino, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxy, or C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or 10 Het⁵; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₁ 6alkylcarbonyl, C1-6alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het3; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C1-4alkyl)amino, C1-6alkyloxycarbonyl, C1-6alkyloxy, C1-15 6alkylcarbonyl, C1-6alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het3; phenyl or phenyloxy;
 - 3. Compounds as claimed in claim 1 wherein
- 20 Q is halo, C₁₋₆alkyl or C₂₋₆alkenyl;

X is (a-2) with q and r being 0 and Z being O, S or SO;

 R_1 is aryl;

25

R₂ is selected from formyl; C₁₋₆alkyloxycarbonylalkyl; Het²; Het²C₁₋₆alkyl; C₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with one or two substituents each independently selected from hydroxy or halo;

R₃ is selected from formyl; C₁₋₆alkyl optionally substituted with one or two C₁₋₆alkyloxy;

R₄ is hydrogen.

- 30 4. Compounds as claimed in any one of claims 1 and 3 wherein Q is iodo.
 - 5. Compounds as claimed in any one of claims 1 to 4 wherein Q is iodo, X-R₁ is a 3,5-dimethylphenylthio or a 3,5-dimethylphenyloxy and R₂ is a hydroxymethyl or a N-morpholinomethyl, or a 3-phenylproyl or a furan-2-yl-methylthiomethyl.

WO 02/24650 PCT/IB01/02082

.231

- 6. Compounds as claimed in any one of claims 1 to 5 wherein Q is iodo, X-R₁ is a 3-(2-cyano-vinyl)-5-iodophenyloxy or 5-bromo-3-(2-cyano-vinyl) and R₂ is ethyl.
- 7. Compounds as claimed in any one of claims 1 to 4 wherein the compounds are 242, 255, 43, 264, 124, 249, 298, 326, 133, 241, 253, 306, 328, 46, 105,234, 254, 256, 272, 284, 296, 319, 83, 88, 108, 109, 115, 277, 286, 299, 45, 85, 86, 231, 244, 297, 250, 257, 307, 324, 81, 92, 140, 143, 217, 221, 230, 232, 245, 309, 321, 322, 31, 218, 222, 314, 8, 99, 121, 219, 233, 280, 551, 470, 375, 483, 547, 606,618, 662, 694, 700, 709, 713 of table 1.

- 8. The use of a compound as claimed in anyone of claims 1 to 7 for the manufacture of a medicine for the treatment of subjects suffering from Human Immuno Deficiency Virus infection.
- 9. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as defined in anyone of claims 1 to 8.
- 10. A process for preparing a pharmaceutical composition as defined in claim 7, characterized in that a therapeutically effective amount of a compound as defined in anyone of claims 1 to 5 is intimately mixed with a pharmaceutically acceptable carrier.
- 11. The combination of a compound of formula (I) as defined in claim 1 and other antiretroviral compounds.
 - 12. A product containing (a) a compound of formula (I) as defined in claim 1 and (b) another antiretroviral compound as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment.

13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound of formula (I) as defined in claim 1 and (b) another antiretroviral compound.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 March 2002 (28.03.2002)

PCT

(10) International Publication Number WO 02/024650 A3

[FR/FR]; 13 Allée de la Trésorerie, F-27100 Le Vaudreuil

beau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(51) International Patent Classification?: C07D 401/12, 213/78, 407/06, 417/06, 401/06, 213/71, 405/04, 213/82, 213/70, 213/69, 409/12, 417/12, 405/12, 491/04, 215/22

(74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regim-

(FR).

(21) International Application Number: PCT/IB01/02082

(22) International Filing Date:

18 September 2001 (18.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

00402583.9

19 September 2000 (19.09.2000) EP

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicants (for all designated States except US): JANSSEN PHARMACEUTICA N.V. [BE/BE]; Tumhoutseweg 30, B-2340 Beerse (BE). CENTRE NA-TIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel Ange, F-75794 Paris Cedex 16 (FR). INSTITUT CURIE [FR/FR]; 26, rue d'Ulm, F-75005 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GUILLEMONT, Jérôme [FR/FR]; 51 Bis Route de Muids, F-27430 (IR). BENJAHAD, Abdellah [FR/FR]; 84, rue de Verdun, F-94500 Champigny-Sur-Marne (FR). MABIRE, Dominique [FR/FR]; 14, rue Jean Moulin, F-27230 La Saussaye (FR). N'GUYEN, Chi, Hung [FR/FR]; 96, Avenue due Président Kennedy, F-92160 Antony (FR). GRIERSON, David [CA/FR]; 10, rue Camille Saint Saens, F-78530 Buc (FR). MONNERET, Claude [FR/FR]; 9, Avenue Lamoricière, F-75012 Paris (FR). BISAGNI, Emile [FR/FR]; 16, rue Bossuet, F-91400 Orsay (FR). SANZ, Gérard [FR/FR]; 6, rue Alfred Dunet, F-76240 Le Mesnil Esnard (FR). DECRANE, Laurence

Declaration under Rule 4.17:

ZA, ZW.

of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report: 8 August 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

NO 02/024650

(54) Title: PYRIDINONE AND PYRIDINETHIONE DERIVATIVES HAVING HIV INHIBITING PROPERTIES

(57) Abstract: The present invention is concerned among others with compounds of formula (1), the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein Q is halo, C₁₋₆ alkyl or C₂₋₆ alkenyl; X is (a-2) with q and r being O and Z being O, S or SO; R₁ is aryl; R₂ is selected from formyl; C₁₋₆alkyloxycarbonylalkyl; Het²; Het²C₁₋₆alkyl, C₁₋₆alkylthio; C1-6alkyl optionally substituted with one or two substituents each independently selected from hydroxy, and halo; R_3 is selected from formyl; $C_{1.6}$ alkyl optionally substituted with one or two C_{1-6} alkyloxy; R_4 is hydrogen, with HTV inhibiting properties.

International Application No PCT/IB 01/02082

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D401/12 C07D213/78 CO7D407/06 CO7D417/06 C07D401/06 CO7D405/04 C07D213/82 CO7D213/70 C07D213/71 C07D213/69 CO7D417/12 CO7D405/12 CO7D491/04 C07D409/12 C07D215/22 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal, WPI Data, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х WO 97 05113 A (CENTRE NAT RECH SCIENT 1,2,7-13 ;BISAGNI EMILE (FR); DOLLE VALERIE (FR); NG) 13 February 1997 (1997-02-13) cited in the application examples 15,16 tables 2,3,5 claims 1,23 WO 99 55676 A (AUBERTIN ANNE MARIE; BISAGNI EMILE (FR); DOLLE VALERIE (FR); Χ 1,8-13 GRIER) 4 November 1999 (1999-11-04) cited in the application examples 1,2 table 3 claims 1.9 Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 0.7 06 2002 21 February 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Seitner, I

Form PCT/ISA/210 (second sheet) (July 1992)

Interlectional Application No PCT/IB 01/02082

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C07D407/04 C07D409/04 C07D213/ C07D407/12 C07D413/06 C07D413/ C07D413/12 C07D213/64		C07D407/14 C07D213/80
According to	International Patent Classification (IPC) or to both national classifica	tion and IPC	•
	SEARCHED		
	cumentation searched (classification system followed by classification	n symbols)	
Documentat	ion searched other than minimum documentation to the extent that su	ich documents are included in th	ne fields searched
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, search to	erms used)
Ciconomic at			
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
x	WO 97 37977 A (HOECHST AG ;KIRSCH	I REINHARD	1,2,7-13
^	(DE); KLEIM JOERG PETER (DE); RIE		7,2,7
	16 October 1997 (1997-10-16)	•	.]
	example 5; table 3		
	tables 1,2		
	claims 1,6		
	•	·/	İ
	·		
			. (
		•	<u> </u>
			{
-			
			Ì
	_		
	ner documents are listed in the continuation of box C.	X Patent family members	are listed in annex.
•		"T" later document published aft or priority date and not in c	er the international filing date onflict with the application but
	ent defining the general state of the art which is not lered to be of particular relevance		ciple or theory underlying the
	document but published on or after the international	"X" document of particular relevant	
"L" docume	ent which may throw doubts on priority claim(s) or		el or cannot be considered to hen the document is taken alone
which citation	is cited to establish the publication date of another n or other special reason (as specified)	"Y" document of particular relev- cannot be considered to in-	ance; the claimed invention volve an inventive step when the
"O" docume	ent referring to an oral disclosure, use, exhibition or		one or more other such docu- eing obvious to a person skilled
"P" docume	ent published prior to the international filing date but	in the art.	
	nan the priority date claimed	"&" document member of the sa	
Date of the	actual completion of the international search	Date of mailing of the intern	ational search report
2	1 February 2002	0 ?	06. 2002
Name and r	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Тх. 31 651 еро пl, Fax: (+31-70) 340-3016	Seitner, I	

Intertiational Application No
PCT/IB 01/02082

0.100=1:-	DOCUMENTS CONSIDERED TO BE PELEVANT	PC1/1B 01/02002
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DOLLE V ET AL: "A NEW SERIES OF PYRIDINONE DERIVATIVES AS POTENT NON-NUCLEOSIDE HUMAN IMMUNODEFICIENCY VIRUS TYPE U SPECIFIC REVERSE TRANSCRIPTASE INHIBITORS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 38, no. 23, 15 October 1995 (1995-10-15), pages 4679-4686, XP002002675 ISSN: 0022-2623 example 17 table 1	1,7-13
X	DATABASE CAOLD [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KOLDER C.R. ET AL: "Tautomerism of Hydroxypyridines - (II) Bromination of 2,4-Dihydroxypyridines and its Ethyl Derivatives" retrieved from STN Database accession no. CA55:1608f XP002190994 CAS RN: 100960-13-2	1,2
X	DATABASE CHEMABS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; RAN, CHONG-ZHAO ET AL: "Synthesis and bio-activity study of the 2(1H)-quinolone compounds" retrieved from STN Database accession no. 134:56548 XP002190976 CAS RN: 313527-90-1; 313527-85-4 abstract & ZHONGGUO YAOKE DAXUE XUEBAO (2000), 31(4), 246-250,	1,9
X	DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; STADLBAUER, WOLFGANG: "Synthesis of 4-azido-2(1H)-quinolones" retrieved from STN Database accession no. 107:134174 XP002190977 CAS RN: 110229-56-6 abstract & MONATSH. CHEM. (1986), 117(11), 1305-23,	1,2
	 -/	

International Application No
PCT/IB 01/02082

X DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EARL, RICHARD A. ET AL: "The preparation of 2(1H)-pyridinones and 2,3-dihydro-5(1H)- indolizinones via transition metal mediated cocyclization of alkynes and isocyanates. A novel construction of the antitumor agent camptothecin" retrieved from STN Database accession no. 102:6913 XP002190978 CAS RN: 88761-67-9; 88761-36-8; 92957-95-4 abstract & J. ORG. CHEM. (1984), 49(25), 4786-800, X DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EARL, RICHARD A. ET AL: "Cobalt-catalyzed cocyclizations of isocyanato alkynes: a regiocontrolled entry into 5-indolizinones. Application to the total synthesis of camptothecin" retrieved from STN Database accession no. 100:85968 XP002190979 CAS RN: 88761-37-9; 88761-41-5; 88761-36-8; 88761-40-4 abstract & J. AM. CHEM. SOC. (1983), 105(23), 6991-3, X DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS,	Relevant to claim No.
CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EARL, RICHARD A. ET AL: "The preparation of 2(1H)-pyridinones and 2,3-dihydro-5(1H)- indolizinones via transition metal mediated cocyclization of alkynes and isocyanates. A novel construction of the antitumor agent camptothecin" retrieved from STN Database accession no. 102:6913 XP002190978 CAS RN: 88761-67-9; 88761-36-8; 92957-95-4 abstract & J. ORG. CHEM. (1984), 49(25), 4786-800, X DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EARL, RICHARD A. ET AL: "Cobalt-catalyzed cocyclizations of isocyanato alkynes: a regiocontrolled entry into 5-indolizinones. Application to the total synthesis of camptothecin" retrieved from STN Database accession no. 100:85968 XP002190979 CAS RN: 88761-37-9; 88761-41-5; 88761-36-8; 88761-40-4 abstract & J. AM. CHEM. SOC. (1983), 105(23), 6991-3,	1,2
CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EARL, RICHARD A. ET AL: "Cobalt-catalyzed cocyclizations of isocyanato alkynes: a regiocontrolled entry into 5-indolizinones. Application to the total synthesis of camptothecin" retrieved from STN Database accession no. 100:85968 XP002190979 CAS RN: 88761-37-9; 88761-41-5; 88761-36-8; 88761-40-4 abstract & J. AM. CHEM. SOC. (1983), 105(23), 6991-3,	
X DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE. COLUMBUS.	1,2
OHIO, US; FITTON, ALAN O. ET AL: "Reactions of formylchromone derivatives. Part 1. Cycloadditions to 2- and 3-(aryliminomethyl)chromones" retrieved from STN Database accession no. 88:22533 XP002190980 CAS RN: 65160-31-8; 6510-32-9 abstract & J. CHEM. SOC., PERKIN TRANS. 1 (1977), (12), 1450-2,	1

International Application No
PCT/IB 01/02082

		 1/02002
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	 1
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MOSHCHITSKII, S. D. ET AL: "Reactions of diethyl 2,3,5,6-tetrachloro-4-pyridylmalonate" retrieved from STN Database accession no. 73:120466 XP002190981 CAS RN: 29168-04-5; 29168-05-6 abstract & KHIM. GETEROTSIKL. SOEDIN. (1970), (6), 791-3,	1,2
A	WO 00 00475 A (DU PONT PHARM CO) 6 January 2000 (2000-01-06) page 16; example 12 table 2 claims 1,12	1,8-13
A	MAO C ET AL: "Rational design of N-[2-(2,5-dimethoxyphenylethyl)]-N'-[2-(5-bromopyr idyl)]-thiourea (HI-236) as a potent non-nucleoside inhibitor of drug-resistant human immunodeficiency virus" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, GB, OXFORD, vol. 9, no. 11, 7 June 1999 (1999-06-07), pages 1593-1598, XP004169626 ISSN: 0960-894X page 1594, table 1: HI-280; HI-281 abstract	1,8-13
	·	

International application No. PCT/IB 01/02082

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-3(all partially); 4-6; 7-13 (all partially)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-3 (all partially); 4-6; 7-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q is halogen as well as their pharmaceutical use and compositions.

2. Claims: 1, 7-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q is hydrogen as well as their pharmaceutical use and compositions.

3. Claims: 1-3 (all partially); 7-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q is C1-6alkyl optionally substituted according to claim 1; C1-6alkyloxyC1-6alkyl; C1-6alkylthioC1-6alkyl; C1-6alkylcarbonyl; C1-6alkyloxycarbonyl; hydroxyC1-6alkyl; polyhaloC1-6alkyl; C1-6alkyloxycarbonyl; C2-6alkenyl optionally substituted according to claim 1; C2-6alkinyl optionally substituted according to claim 1; C3-6cycloalkyl optionally substituted according to claim 1; C3-6cycloalkyl optionally substituted according to claim 1; cyano; carboxyl; formyl; R5R6N-C(=0); R5R6N-C(=0)-C1-6alkyl; aryl; arylC1-6alkyl; arylcarbonyl; arylC1-6alkyloxycarbonyl; Het1; Het1C1-6alkyl; Het1carbonyl; Het1C1-6alkyloxycarbonyl as well as their pharmaceutical use and compositions.

4. Claims: 1,2,8-13 (all partially)

Compound according to formula (I) of claim 1 for which Q is di(C1-4alkyl)amino, N-hydroxy-imino, N-C1-C4alkyloxy-imino as well their pharmaceutical use and compositions.

5. Claims: 1,2,7-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q is C1-6alkyloxy, aryloxy, Hetloxy as well as their pharmaceutical use and compositions.

6. Claims: 1.2.7-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q is

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

C1-6alkylthio, C1-6alkyl-S(=0)-, C1-6alkyl-S(=0)2-, C1-6alkyloxycarbonylC1-6alkylthio, aminocarbonylC1-6alkylthio, arylthio, Het1thio as well as their pharmaceutical use and compositions.

7. Claims: 1,2,7-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q is C1-6alkyl-P(0R15)2=0 or C1-6alkyl-P(0-C1-6alkyl-0)=0 as well as their pharmaceutical use and compositions.

8. Claims: 1,2,8-13 (all partially)

Compounds according to formula (I) of claim 1 for which Q and X-R1 are taken together with the pyridinone to form a tricyclic heterocycle of formula (h-1) as well as their pharmaceutical use and compositions.

Information on patent family members

International Application No
PCT/IB 01/02082

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9705113 A	13-02-1997	FR 2737496 A1 EP 0843663 A1 WO 9705113 A1 JP 11510797 T US 6015820 A	07-02-1997 27-05-1998 13-02-1997 21-09-1999 18-01-2000
WO 9955676 A	04-11-1999	AU 4137899 A BG 104984 A BR 9909976 A CA 2330304 A1 CN 1303378 T CZ 20003978 A3 EE 200000620 A WO 9955676 A1 EP 1073637 A1 HR 20000716 A1 HU 0101595 A2 NO 20005387 A PL 343685 A1 TR 200003113 T2	16-11-1999 31-07-2001 26-12-2000 04-11-1999 11-07-2001 12-09-2001 15-04-2002 04-11-1999 07-02-2001 30-06-2001 28-11-2001 04-12-2000 27-08-2001 21-05-2001
WO 9737977 A	16-10-1997	DE 19613591 A1 AU 2291297 A WO 9737977 A1 EP 1003724 A1 JP 2000508299 T US 6114349 A	09-10-1997 29-10-1997 16-10-1997 31-05-2000 04-07-2000 05-09-2000
WO 0000475 A	06-01-2000	AU 4719799 A EP 1091939 A1 WO 0000475 A1 US 6090821 A	17-01-2000 18-04-2001 06-01-2000 18-07-2000

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 March 2002 (28.03.2002)

PCT

(10) International Publication Number WO 02/024650 A3

(51) International Patent Classification7: C07D 401/12, 213/78, 407/06, 417/06, 401/06, 213/71, 405/04, 213/82, 213/70, 213/69, 409/12, 417/12, 405/12, 491/04, 215/22

PCT/IB01/02082

(22) International Filing Date:

(21) International Application Number:

18 September 2001 (18.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

00402583.9

19 September 2000 (19.09.2000) EP

(71) Applicants (for all designated States except US): JANSSEN PHARMACEUTICA N.V. [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE). CENTRE NA-TIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel Ange, F-75794 Paris Cedex 16 (FR). INSTITUT CURIE [FR/FR]; 26, rue d'Ulm, F-75005 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GUILLEMONT, Jérôme [FR/FR]; 51 Bis Route de Muids, F-27430 (FR). BENJAHAD, Abdellah [FR/FR]; 84, rue de Verdun, F-94500 Champigny-Sur-Marne (FR). MABIRE, Dominique [FR/FR]; 14, rue Jean Moulin, F-27230 La Saussaye (FR). N'GUYEN, Chi, Hung [FR/FR]; 96. Avenue due Président Kennedy, F-92160 Antony (FR). GRIERSON, David [CA/FR]; 10, rue Camille Saint Saens, F-78530 Buc (FR). MONNERET, Claude [FR/FR]; 9, Avenue Lamoricière, F-75012 Paris (FR). BISAGNI, Emile [FR/FR]; 16, rue Bossuet, F-91400 Orsay (FR). SANZ, Gérard [FR/FR]; 6, rue Alfred Dunet, F-76240 Le Mesnil Esnard (FR). DECRANE, Laurence

[FR/FR]; 13 Allée de la Trésorerie, F-27100 Le Vaudreuil (FR).

(74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH. PL, PT, RO, RU, SD, SE, SG, St, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- with amended claims

(88) Date of publication of the international search report: 8 August 2002

Date of publication of the amended claims: 14 November 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

VO 02/024650

(54) Title: PYRIDINONE AND PYRIDINETHIONE DERIVATIVES HAVING HIV INHIBITING PROPERTIES

(57) Abstract: The present invention is concerned among others with compounds of formula (1), the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein Q is halo, C₁₋₆ alkyl or C₂₋₆ alkenyl; X is (a-2) with q and r being O and Z being O, S or SO; R₁ is aryl; R₂ is selected from formyl; C₁₋₆alkyloxycarbonylalkyl; Het²; Het²C₁₋₆alkyl, C₁₋₆alkylthio; C1.6alkyl optionally substituted with one or two substituents each independently selected from hydroxy, and halo; R3 is selected from formyl; C1-6alkyl optionally substituted with one or two C₁₋₆alkyloxy: R₄ is hydrogen, with HTV inhibiting properties.

AMENDED CLAIMS

[received by the International Bureau on 11 July 2002 (11.07.02); original claims 1, 2, 9 and 10 amended; remaining claims unchanged (14 pages)]

1. Compounds of formula (I)

$$\mathbb{R}^4$$
 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4

the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein Y is O or S;

O C_{1-6} alkyl; C_{1-6} alkyloxy; C₁₋₆alkyloxyC₁₋₆alkyl; C₁₋₆alkylthio; C₁₋₆alkylthioC₁₋₆alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyl-S(=O)-; C₁₋₆alkyl-S(=O)₂-; hydroxyC_{1.6}alkyl; 10 polyhaloC1-6alkyl; C₁₋₆alkyloxycarbonylC₁₋₆alkyl: C₁₋₆alkyloxycarbonylC₁₋₆alkylthio; aminocarbonyl₆C₁₋₆alkylthio; C₁₋₆alkyloxyC₁₋₆ 6alkyloxycarbonyl; C2.6alkenyl optionally substituted with halo, hydroxy, cyano, formyl, -COOH, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆ 6alkylcarbonyloxy, N-hydroxy-imino or aryl; C2-6alkynyl optionally substituted 15 with halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino or aryl; C₃₋ 6cycloalkyl optionally substituted with C₁₄alkyl; cyano; carboxyl; formyl; $R^5R^6N-C(=0)-$; $R^5R^6N-C(=0)-C_{1-6}$ alkyl; N-hydroxy-imino; N-C₁₋₄alkyloxyimino; aryloxy; arylthio; arylC₁₋₆alkyl; arylcarbonyl; arylC₁₋₆alkyloxycarbonyl; 20 C₁₋₆alkyl substituted with hydroxy and aryl; Het¹; Het¹oxy; Het¹thio; Het¹C₁₋₆alkyl; Het¹carbonyl; Het¹C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl-P(OR¹⁵)₂=O or C_{1-6} alkyl- $P(O-C_{1-6}$ alkyl-O)=O;

X is a bivalent radical of formula

and wherein each hydrogen atom may be replaced by C₁₋₄alkyl or hydroxyC₁₋₄alkyl;

R¹ is C₃₋₆cycloalkyl, C₁₋₆alkenyl, aryl or a monocyclic or bicyclic heterocycle selected from pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, or a radical of formula

$$(CH_2)_n$$
 (b-1) or $(CH_2)_n$ (b-2)

with n being an integer of 1 or 2, said monocyclic or bicyclic heterocycle or said radical of formula (b-1) or (b-2) optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, polyhaloC₁₋₄alkyl or phenyl;

or Q and X-R¹ may be taken together with the pyridinone to form a tricyclic heterocycle of formula

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{16}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{17}$$

with R¹⁶ and R¹⁷ being C₁₋₆alkyl or forming together =0.

R² and R³ each independently are selected from hydrogen; halo; formyl; cyano; 20 azido; hydroxy; oxiranyl; amino; mono- or di(C14alkyl)amino; formylamino; mercapto(C₁₋₆)alkyl; hydrazino; R^{5a}R^{6a}N-C(=O)-; R⁹-N=C(R¹⁰)-; C₂₋₆alkenyl optionally substituted with one or two substituents each independently selected cyano, formyl, C1-6alkyloxy, C1-6alkylcarbonyl, from halo, hydroxy, di(C₁₋₄alkyl)carbamoyl, 25 C₁₋₆alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy, [di(C₁₋₄alkyl)amino(C₁₋₆alkyl)](C₁₋₄alkyl)carbamoyl, di(C₁₋₄alkyloxy) [di(C₁₋₄alkyl)amino(C₁₋₆alkyl)](arylC₁₋₄alkyl)carbamoyl, (C₁₋₄alkyl)carbamoyl, (cyanoC₁₋₆alkyl)(C₁₋₆alkyl)aminoC₁₋₆alkyl, N-hydroxyimino, aryl, Het², Het²carboxamido, Het²(C₁₋₆alkyl)carbamoyl; C₂₋₆alkynyl optionally substituted with one or two substituents each independently selected 30

10

15

20

25

30

from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²: C₁₋₆alkyloxy; hydroxyC₁₋₆alkyloxy; aminoC₁₋₆alkyloxy; mono- or di(C₁₋₆alkyloxy) 4alkyl)aminoC₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; arylcarbonyl; Het²carbonyl; C₁₋₆ 6alkyloxycarbonyl; C₁₋₆alkylcarbonyloxy; aryl; aryloxy; arylC₁₋₆alkyloxy; arylthio; arylC₁₋₆alkylthio; mono- or di(aryl)amino; Het²; Het²oxy; Het²thio; Het²C₁₋₆alkyloxy; Het²C₁₋₆alkylthio; Het²SO₂; Het²SO; di(Het²)amino; C₃₋₆cycloalkyl; C₃₋₆cycloalkyloxy; C₃₋₆cycloalkylthio; C₁₋ 6alkylthio; hydroxyC₁₋₆alkylthio; aminoC₁₋₆alkylthio; mono- or di(C₁₋ 4alkyl)aminoC₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, carboxyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkylsulfonyl, C₁₋₆alkycarbamoylC₁₋₄alkylthio, hydroxyC₁₋₆alkyloxy, C_{1-6} alkyloxy C_{1-6} alkyloxy, C1-salkyloxyC1-salkylthio C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, aminocarbonyloxy, di(C₁₋₄alkyl)aminocarbonyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonylC₁₋ 6alkyloxy, C₁₋₆alkyloxycarbonylC₁₋₆alkylthio, aryl, Het², aryloxy, arylthio, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, Het²C₁₋₆alkyloxy, Het²C₁₋₆alkylthio, C₁₋₆ 6alkyl-S(=O)2-oxy, amino, mono- or di(C1-6alkyl)amino, di(C1-6alkyl)aminoC1-6alkylthio, [di(C₁₋₆alkyl)amino(C₁₋₆alkyl)](C₁₋₆alkyl)amino, di(cyanoC₁ 6alkyl)amino, C₁₋₆alkyloxycarbonylamino, C₁₋₆alkyloxyC₁₋ mono- or di(aryl)amino, 6alkylcarbonylamino, mono- or di(arylC₁. 4alkyl)amino, mono- or di(C₁₋₄alkyloxyC₁₋₄alkyl)amino, mono- or di(C₁₋ 4alkylthioC₁₋₄alkyl)amino, mono- or di(Het²C₁₋₄alkyl)amino, 4alkyl)(C1-4alkyl)amino, (cyanoC1-6alkyl)(C1-6alkyl)amino, C3-6cycloalkylthio, R^{11} -(C=O)-NH-, R^{12} -NH-(C=O)-NH-, R^{14} -S(=O)₂-NH-, C_{1-6} alkyl-P(O-R¹⁵)2=O, C₁₋₆alkyl-P(O-C₁₋₆alkyl-O)=O or a radical of formula

N— (c-1) or
$$A_2$$
 A_1 —(c-2) or \square_N (c-3)

with A₁ being CH or N, and A₂ being CH₂, NR¹³, S or O, provided that when A₁ is CH then A₂ is other than CH₂, said radical (c-1), (c-2) and (c-3) being optionally substituted with one or two substituents each independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkyloxy, hydroxy C₁₋₄alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆ alkyloxycarbonylC₁₋₄alkyl, aminoC₁₋₆alkyl, C₁₋₄alkylcarbonyl, arylcarbonyl, aryl, Het¹, Het¹-(C=0)-, hydroxy, cyano, C₁₋₄alkylcyano, CONR¹⁶R¹⁷ with R¹⁶

and R¹⁷ being independently H or alkyl, mono or di(C₁₋₄alkyl)aminoalkyl, 4-hydroxy-4-phenyl or 4-cyano-4-phenyl;

or R² and R³ may be taken together to form a bivalent radical of formula

5

10

15

25

$$-(CH_2)_1-CH_2-A_3-CH_2-(d-1)$$
 or $-CH=CH-CH=CH-(d-2)$

with t being an integer of 0, 1 or 2 and A₃ being CH₂, O, S, NR^{7a} or N[C(=O)R^{8a}] and wherein each hydrogen in said formula (d-1) or (d-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁴ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, C₁₋₆alkylcarbonyloxyC₁₋₆alkyl, C₂₋₆alkenyl, amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyl or aryl;

or R⁴ and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_t$$
- CH_2 - A_4 - CH_2 - (e-1) or $-CH$ = CH - CH = CH - (e-2)

with t being an integer of 0, 1 or 2 and A₄ being CH₂, O, S, NR^{7b} or N[C(=O)R^{8b}] and wherein each hydrogen in said formula (e-1) or (e-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁵ and R⁶ each independently are hydrogen, C₁₋₄alkyl or C₁₋₄alkyloxy;

R^{5a} and R^{6a} each independently are hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkylthio, amino, mono-or di(C₁₋₄alkyl)amino or a radical of formula

$$A_6$$
 A_5 (f-1)

with A₅ and A₆ each independently being CH₂, NR¹³ or O;

35 R⁷, R^{7a} and R^{7b} each independently are hydrogen, formyl or C₁₋₄alkyl;

R⁸, R^{8a} and R^{8b} each independently are hydrogen or C₁₋₄alkyl;

R⁹ is hydrogen, hydroxy, C₁₋₄alkyloxy, carboxylC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl-C₁₋₄alkyloxy, C₂₋₄alkynyloxy or arylC₁₋₄alkyloxy;

5

R¹⁰ is hydrogen, carboxyl or C₁₋₄alkyl;

R¹¹ is hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkyl-S(=O)₂-, aryl or Het³; C₁₋₄alkyloxy; C₂₋₄alkenyl; arylC₂₋₄alkenyl; C₂₋₄alkynyl; Het³C₂₋₄alkynyl, arylC₂₋₄alkynyl; C₃₋₆cycloalkyl; aryl; naphthyl or Het³;

R¹² is C₁₋₄alkyl, arylC₁₋₄alkyl, aryl, arylcarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl or C₁₋₄alkyloxycarbonylC₁₋₄alkyl;

15

10

R¹³ is hydrogen, C₁₋₄alkyl or C₁₋₄alkylcarbonyl;

R¹⁴ is C₁₋₄alkyl optionally substituted with aryl or Het⁴; polyhaloC₁₋₄alkyl or C₂₋₄alkenyl optionally substituted with aryl or Het⁴;

20

R¹⁵ is C₁₋₄ alkyl;

Het and Het each independently are a heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, pyridyl, pyrimidinyl, 25 pyrazinyl, pyridazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, tetrahydropyrimidinyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, piperazinyl, hexahydropyridazinyl, morpholinyl, hexahydropyrimidinyl, thiomorpholinyl triazolyl, tetrazolyl, pyrrolyl, pyrazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, indolyl, indazolyl, benzodioxanyl, quinolinyl, 2-oxo-1,2-30 dihydro-quinolinyl, imidazopyridinyl, dihydropyrrolyl or dihydroisoxazolyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from O, S, halo, formyl, amino, hydroxy, cyano, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, carboxyC₁₋₄alkyl, carbamoylC₁₋₄alkyl, carbamoylC₁₋₄alkoxy, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxyC₁₋₄alkyl, 35 cyanoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, -OCONH₂, C₁₋₄alkoxyC₁₋₄alkyl,

aryl, Het²C₁₋₄alkyl, polyhaloC₁₋₄alkyl, C₃₋₆cycloalkyl or arylC₂₋₆alkenyl;

Het³ is a monocyclic or bicyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, 2-oxo-1,2-dihydro-quinolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl or a radical of formula

10

5

with A₇ or A₈ each independently being selected from CH₂ or O; each of said monocyclic or bicyclic heterocycles may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

15

- Het⁴ is a monocyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;
- Het⁵ is pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, tetrazolyl, piperidinyl, morpholinyl or pyrrolidinyl;
- aryl is phenyl optionally substituted with one, two or three substituents each independently selected from halo; hydroxy; carboxyl; cyano; formyl; acetyl; nitro; amino; mono- or di(C₁₋₄alkyl)amino; C₁₋₄alkyl-S(=O)₂-NH-; Het⁵(=S)-S-C₁₋₄alkyl; C₁₋₆alkyloxy; sulfamoyl; (C₁₋₄alkyl)sulfamoyl; arylsulfamoyl; Het²sulfamoyl; O-P=OR¹⁵; C₁₋₆alkyl optionally substituted with halo, hydroxy, cyano, nitro, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxyC₁₋₆alkyloxyC₁₋₆alkyloxy, C₂₋₆alkenyloxy, C₁₋₆alkyloxycarbonylthio, N-hydroxyimino, phenyl or Het⁵; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, nitro, formyl, amino, mono-

or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het⁵; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, phenyl or Het⁵; phenyl; phenyloxy; phenyl(C₁₋₄alkyl)thioC₁₋₄alkyl; (C₃₋₆)cyclohexylthioC₁₋₄alkyl or isoxazolinyl optionally substituted by C₁₋₄alkyloxycarbonyl or morpholinylC₁₋₄alkyl

provided that

- 5,6,7,8-tetrahydro-3-iodo-4-phenoxy-1-phenyl-2(1*H*)quinolinone;
 3-iodo-6-methyl-4-phenoxy-2(1*H*)-pyridinone;
 2-[(3,5,6-trifluoro-1,2-dihydro-2-oxo-4-pyridinyl)amino]benzoic acid;
 1,2-dihydro-6-hydroxy-2-oxo-4-(2-phenylethyl)-3-pyridinecarbonitrile;
 1,2-dihydro-6-hydroxy-2-oxo-4-(4-pyridinylmethyl)-3-pyridinecarbonitrile;
- 4-[(4-bromophenyl)methoxy]-3,5-diodo-1-methyl-2(1*H*)-pyridinone;
 4-[(4-bromophenyl)methoxy]-1,2-dihydro-1-methyl-2-oxo-3-pyridinecarboxylic acid; 1,2-dihydro-6-methyl-2-oxo-4-(phenylthio)-3-pyridinecarboxylic acid and the alkyl-4-arylthio-1,2-dihydro-5-methyl-6-methyl-2-oxo-3-pyridine carboxylate
 3-bromo-4-[[[2-(3,4-dimethoxyphenyl)ethyl]amino]methyl-2(1*H*)quinolinone;
- 3-iodo-7-methoxy-1-methyl-4-phenoxy-2(1*H*)quinolinone;
 1-ethyl-3-iodo-7-methoxy-4-phenoxy-2(1*H*)quinolinone;
 3-iodo-7-methoxy-4-(4-methoxyphenoxy)-1-methyl-2(1*H*)quinolinone;
 1-ethyl-3-iodo-7-methoxy-4-(4-methoxyphenoxy)-1-methyl-2(1*H*)quinolinone;
 3-iodo-7-methoxy-4-(3-methoxyphenoxy)-1-methyl-2(1*H*)quinolinone;
- 1-ethyl-3-iodo-7-methoxy-4-(3-methoxyphenoxy)-1-methyl-2(1*H*)quinolinone; 3-iodo-7-methoxy-4-phenoxy-2(1*H*)quinolinone; 4-(3-chloro-4-methoxyphenoxy)-3-iodo-7-methoxy-2(1*H*)quinolinone; 3-iodo-4-phenoxy-2(1*H*)quinolinone; 3-iodo-4-phenoxy-1-phenyl-2(1*H*)quinolinone;
- 3-iodo-4-4-phenoxy-1-méthyl-2(1*H*)quinolinone
 3-iodo-4-(4-methylphenoxy)-2(1*H*)quinolinone;
 3-iodo-4-(4-methoxyphenoxy)-2(1*H*)quinolinone;
 are not included and
 provided X is other than -CH₂-NH-CH₂-CH₂- or -NH-CH₂-.

2. Compounds as claimed in claim 1 wherein

10

15

25

30

C₁₋₆alkyloxy; C₁₋₆alkyloxyC₁₋₆alkyl; C₁₋₆alkylthio; Q halo; C_{1-6} alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; C_{1-6} alkylthio C_{1-6} alkyl; C_{1-6} alkyl- $S(=O)_{-}$; C_{1-6} alkyl- $S(=O)_{2-}$; hydroxy C_{1-6} alkyl; polyhaloC₁₋₆alkyl; C_{1-6} alkyloxycarbonyl C_{1-6} alkyl; C_{1-6} alkyloxy C_{1-6} alkyloxycarbonyl; C_{2-6} alkenyl optionally substituted with halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, *N*-hydroxyimino or aryl; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, C₁₋₆alkyloxycarbonyl, C_{1-6} alkyloxy, C₁₋₆alkylcarbonyl, N-hydroxy-imino or aryl; C₃₋₆cycloalkyl optionally 6alkylcarbonyloxy, substituted with C₁₋₄alkyl; cyano; carboxyl; formyl; R⁵R⁶N-C(=O)-; $R^5R^6N-C(=0)-C_{1-6}$ alkyl; N-hydroxy-imino; N-C₁₋₄alkyloxy-imino; aryloxy; arylthio; arylC₁₋₆alkyl; arylcarbonyl; arylC₁₋₆alkyloxycarbonyl; C₁₋₆alkyl substituted with both hydroxy and aryl; Het1 ; Het1 oxy; Het1 thio; Het1 C1.6 alkyl; Het carbonyl; Het C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl-P(OR¹⁵)₂=O or C₁₋₆alkyl- $P(O-C_{1-6}alkyl-O)=O;$

X is a bivalent radical of formula

wherein p is an integer of value 1 to 5;

q is an integer of value 0 to 5; r is an integer of value 0 to 5;

Z is O, S, NR⁷, C(=O), S(=O), S(=O)₂, CHOR¹³, CH=CH, CH(NR⁷R⁸) or CF₂;

CH(NR'R') or CF₂;

and wherein each hydrogen atom may be replaced by C₁₋₄alkyl or hydroxyC₁₋₄alkyl;

R¹ is C₃₋₆cycloalkyl, aryl or a monocyclic or bicyclic heterocycle selected from pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, oxazolyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, or a radical of formula

$$(CH_2)_n$$
 (b-1) or $(CH_2)_n$ (b-2)

with n being an integer of 1 or 2,

said monocyclic or bicyclic heterocycle or said radical of formula (b-1) or (b-2) optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, polyhaloC₁₋₄alkyl or phenyl;

5

10

15

20

25

30

R² and R³ each independently are selected from hydrogen; halo; formyl; cyano; azido; hydroxy; oxiranyl; amino; mono- or di(C1.4alkyl)amino; formylamino; R^{5a}R^{6a}N-C(=O)-; R⁹-N=C(R¹⁰)-; C₂₋₆alkenyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁. 6alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C₂₋₆alkynyl optionally substituted with one or two substituents each independently selected from halo, hýdroxy, cyano, formyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy, N-hydroxy-imino, aryl or Het²; C₁₋₆alkyloxy; hydroxyC₁₋₆ 6alkyloxy; aminoC₁₋₆alkyloxy; mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyloxy; C₁₋ 6alkylcarbonyl; arylcarbonyl; Het²carbonyl; C₁₋₆alkyloxycarbonyl; C₁₋₆alkylcarbonyloxy; aryl; aryloxy; arylC₁₋₆alkyloxy; arylthio; arylC₁₋ 6alkylthio; mono- or di(aryl)amino; Het²; Het²oxy; Het²thio; Het²C₁₋₆alkyloxy; Het²C₁₋₆alkylthio; mono- or di(Het²)amino; C₃₋₆cycloalkyl; C₃₋₆cycloalkyloxy; C₃₋₆cycloalkylthio; C₁₋₆alkylthio; hydroxyC₁₋₆alkylthio; aminoC₁₋₆alkylthio; mono- or di(C_{1.4}alkyl)aminoC_{1.6}alkylthio; C_{1.6}alkyl optionally substituted with one or two substituents each independently selected from halo, hydroxy, cyano, C₁₋₆alkyloxy, C₁₋₆alkylthio, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, aminocarbonyloxy, mono- or di(C₁₋₄alkyl)aminocarbonyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonylC₁₋ 6alkyloxy, C₁₋₆alkyloxycarbonylC₁₋₆alkylthio, aryl, Het², aryloxy, arylthio, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, Het²C₁₋₆alkyloxy, Het²C₁₋₆alkylthio, C₁₋₆ 6alkyl-S(=0)2-oxy, amino, mono- or di(C₁₋₆alkyl)amino, C₁₋₆alkyloxycarbonylamino, C₁₋₆alkyloxyC₁₋₆alkylcarbonylamino, mono- or di(aryl)amino, mono- or di(arylC_{1.4}alkyl)amino, mono- or di(C_{1.4}alkyloxyC_{1.4}alkyl)amino, mono- or di(C₁₋₄alkylthioC₁₋₄alkyl)amino, mono- or di(Het²C₁₋₄alkyl)amino, R^{11} -(C=O)-NH-, R^{12} -NH-(C=O)-NH-, R^{14} -S(=O)₂-NH-, R¹⁵)2=O, C₁₋₆alkyl-P(O-C₁₋₆alkyl-O)=O or a radical of formula

25

30

$$N$$
— (c-1) or A_2 — A_1 — (c-2),

with A₁ being CH₂ or N, and A₂ being CH₂, NR¹³, S or O, provided that when A₁ is CH₂ then A₂ is other than CH₂, said radical (c-1) and (c-2) being optionally substituted with one or two substituents each independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkyloxy, hydroxy C₁₋₄alkyl, C₁₋₆ alkyloxycarbonyl, C₁ alkyloxycarbonylC₁₋₄alkyl, aminoC₁₋₆alkyl, carbonyl, hydroxy, cyano, CONR¹⁶R¹⁷ with R¹⁶ and R¹⁷ being independently H or alkyl, mono or di(C₁₋₄alkyl)aminoalkyl, 4-hydroxy-4-phenyl or 4-cyano-4-phenyl;

or R² and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_t$$
-CH₂-A₃-CH₂- (d-1) or -CH=CH-CH=CH- (d-2)

with t being an integer of 0, 1 or 2 and A₃ being CH₂, O, S, NR^{7a} or N[C(=O)R^{8a}] and wherein each hydrogen in said formula (d-1) or (d-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁴ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, C₁₋₆alkylcarbonyloxyC₁₋₆alkyl, C₂₋₆alkenyl, amino, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₆alkyl or aryl;

or R⁴ and R³ may be taken together to form a bivalent radical of formula

$$-(CH_2)_t$$
-CH₂-A₄-CH₂- (e-1) or CH=CH-CH=CH- (e-2)

with t being an integer of 0, 1 or 2 and A₄ being CH₂, O, S, NR^{7b} or N[C(=O)R^{8b}] and wherein each hydrogen in said formula (e-1) or (e-2) may be substituted with halo, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, haloC₁₋₄alkylcarbonyl or arylcarbonyl;

R⁵ and R⁶ each independently are hydrogen, C₁₋₄alkyl or C₁₋₄alkyloxy;

15

20

25

30

35

R^{5a} and R^{6a} each independently are hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkylthio, amino, mono-or di(C₁₋₄alkyl)amino or a radical of formula

$$A_6$$
 A_5 (f-1)

with A₅ and A₆ each independently being CH₂, NR¹³ or O;

 R^7 , R^{7a} and R^{7b} each independently are hydrogen, formyl or $C_{1\text{--}4}$ alkyl;

R⁸, R^{8a} and R^{8b} each independently are hydrogen or C₁₋₄alkyl;

R⁹ is hydrogen, hydroxy, C₁₋₄alkyloxy, carboxylC₁₋₄alkyloxy, C₁₋₄alkyloxy, C₁₋₄alkyloxy, C₂₋₄alkynyloxy or arylC₁₋₄alkyloxy;

R¹⁰ is hydrogen, carboxyl or C₁₋₄alkyl;

R¹¹ is hydrogen; C₁₋₄alkyl optionally substituted with cyano, C₁₋₄alkyloxy, C₁₋₄alkyl-S(=O)₂-, aryl or Het³; C₁₋₄alkyloxy; C₂₋₄alkenyl; arylC₂₋₄alkenyl; Het³C₂₋₄alkynyl; Het³C₂₋₄alkynyl, arylC₂₋₄alkynyl; C₃₋₆cycloalkyl; aryl; naphthyl or Het³;

R¹² is C₁₋₄alkyl, arylC₁₋₄alkyl, aryl, arylcarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl or C₁₋₄alkyloxycarbonylC₁₋₄alkyl;

R¹³ is hydrogen, C₁₋₄alkyl or C₁₋₄alkylcarbonyl;

R¹⁴ is C₁₋₄alkyl optionally substituted with aryl or Het⁴; polyhaloC₁₋₄alkyl or C₂₋₄alkenyl optionally substituted with aryl or Het⁴;

R¹⁵ is C₁₋₄ alkyl;

Het¹ and Het² each independently are a heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl,

benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl or 2-oxo-1,2-dihydro-quinolinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C_{1-4} alkyl, C_{1-4} alkyloxy, C_{1-4} alkylcarbonyl or polyhalo C_{1-4} alkyl;

5

10

Het³ is a monocyclic or bicyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyrrolyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, 2-oxo-1,2-dihydro-quinolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, imidazolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, hexahydropyrimidinyl, piperazinyl, hexahydropyridazinyl or a radical of formula

$$A_{g}$$
 (g-1),

15

with A₇ or A₈ each independently being selected from CH₂ or O; each of said monocyclic or bicyclic heterocycles may optionally be substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

20

Het⁴ is a monocyclic heterocycle selected from pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, said heterocycle optionally being substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl or polyhaloC₁₋₄alkyl;

25 ·

Het⁵ is pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl or oxazolyl;

30

aryl is phenyl optionally substituted with one, two or three substituents each independently selected from halo; hydroxy; carboxyl; cyano; formyl; nitro; amino; mono- or di(C₁₋₄alkyl)amino; C₁₋₄alkylcarbonylamino; mono- or di(C₁₋₄alkyl)aminocarbonylamino; C₁₋₄alkyl-S(=O)₂-NH-; C₁₋₆alkyloxy; C₁₋₆alkyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxycarbonyl, or c₁₋₆alkyloxycarbonyl, N-hydroxy-imino, phenyl or

Het⁵; C₂₋₆alkenyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, *N*-hydroxy-imino, phenyl or Het⁵; C₂₋₆alkynyl optionally substituted with halo, hydroxy, cyano, formyl, amino, mono- or di(C₁₋₄alkyl)amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, C₁₋₆alkylcarbonyloxy, *N*-hydroxy-imino, phenyl or Het⁵; phenyl or phenyloxy;

3. Compounds as claimed in claim 1 wherein

10 Q is halo, C₁₋₆alkyl or C₂₋₆alkenyl;

X is (a-2) with q and r being 0 and Z being O, S or SO;

 R_1 is aryl;

R₂ is selected from formyl; C₁₋₆alkyloxycarbonylalkyl; Het²; Het²C₁₋₆alkyl; C₁₋₆alkylthio; C₁₋₆alkyl optionally substituted with one or two substituents each independently selected from hydroxy or halo;

 R_3 is selected from formyl; C_{1-6} alkyl optionally substituted with one or two C_{1-6} alkyloxy;

R₄ is hydrogen.

- 20 4. Compounds as claimed in any one of claims 1 and 3 wherein Q is iodo.
 - 5. Compounds as claimed in any one of claims 1 to 4 wherein Q is iodo, X-R₁ is a 3,5-dimethylphenylthio or a 3,5-dimethylphenyloxy and R₂ is a hydroxymethyl or a N-morpholinomethyl, or a 3-phenylproyl or a furan-2-yl-methylthiomethyl.

25

- 6. Compounds as claimed in any one of claims 1 to 5 wherein Q is iodo, X-R₁ is a 3-(2-cyano-vinyl)-5-iodophenyloxy or 5-bromo-3-(2-cyano-vinyl) and R₂ is ethyl.
- 7. Compounds as claimed in any one of claims 1 to 4 wherein the compounds are 242, 255, 43, 264, 124, 249, 298, 326, 133, 241, 253, 306, 328, 46, 105,234, 254, 256, 272, 284, 296, 319, 83, 88, 108, 109, 115, 277, 286, 299, 45, 85, 86, 231, 244, 297, 250, 257, 307, 324, 81, 92, 140, 143, 217, 221, 230, 232, 245, 309, 321, 322, 31,

218, 222, 314, 8, 99, 121, 219, 233, 280, 551, 470, 375, 483, 547, 606,618, 662, 694, 700, 709, 713 of table 1.

- 8. The use of a compound as claimed in anyone of claims 1 to 7 for the manufacture of a medicine for the treatment of subjects suffering from Human Immuno Deficiency Virus infection.
- A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as defined in anyone of claims 1 to 7.
- 10. A process for preparing a pharmaceutical composition as defined in claim 9, characterized in that a therapeutically effective amount of a compound as defined in anyone of claims 1 to 5 is intimately mixed with a pharmaceutically acceptable carrier.
 - 11. The combination of a compound of formula (I) as defined in claim 1 and other antiretroviral compounds.
- 12. A product containing (a) a compound of formula (I) as defined in claim 1 and(b) another antiretroviral compound as a combined preparation for simultaneous,separate or sequential use in anti-HIV treatment.
- 13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound of formula (I) as defined in claim 1 and (b) another antiretroviral compound.