SOOD: Towards Semi-Supervised Oriented Object Detection

Wei Hua*1, Dingkang Liang*1, Jingyu Li¹, Xiaolong Liu¹, Zhikang Zou², Xiaoqing Ye², Xiang Bai†1

¹Huazhong University of Science and Technology, {whua_hust, dkliang, xbai}@hust.edu.cn ² Baidu Inc., China

(1) 研究场景:俯瞰图; 物体小、密集、边界框存在方向性

(a) Arbitrary rotating objects

(b) Small and dense objects

(2) Oriented Object Detection

与传统目标检测器不同,方向目标检测器使用带有方向性的边界框进行物体预测

(3) 半监督目标检测框架: 教师-学生模型

(4) Optimal transport 最优传输

当给定<u>两个沙盘</u>时(每盘沙子可以<u>代表一个概率分布</u>),可以通过很多方式将一个沙盘传输到另一个沙盘。

基于**传输单个沙粒的局部花费**,每一种传输方法均对应一个全局花费。 最优传输的目的就是**寻找总体花费最少的传输方案。**

- Proposes the <u>first</u> Semi-supervised Oriented Object Detection method
- Two simple yet effective losses that enforce the instance-level and set-level consistency between the students and the teacher's predictions.

2.2 Rotation-aware Adaptive Weighting Loss

The orientation difference can be used to dynamically adjust the unsupervised loss.

$$\mathcal{L}_{RAW} = \sum_{i}^{N_p} \omega_i^{rot} \mathcal{L}_u^i$$

Np: pseudo label number

$$\omega_i^{rot} = 1 + \sigma_i,$$

α: show the importance of adjusting orientation.

$$\sigma_i = \alpha \frac{|r_i^t - r_i^s|}{\pi}, r_i^t, r_i^s \in [-\frac{\pi}{2}, \frac{\pi}{2})$$

Global Consistency Loss

使用最优传输方法

$$\mathbf{d}_i^s = e^{\mathbf{s}_{i,c(i)}^s}$$

(1) 概率分布: $\mathbf{d}_i^t = e^{\mathbf{s}_{i,c(i)}^t}$ **s**:classification scores $\mathbf{d}_i^s = e^{\mathbf{s}_{i,c(i)}^s}$ **c(i)**:index of category

$$\underline{C_{i,j}} = C_{i,j}^{dist} + C_{i,j}^{score},$$

(2) 局部花费:

$$C_{i,j}^{dist} = \frac{\|\mathbf{z}_i^t - \mathbf{z}_j^s\|_2^2}{\max_{1 < =a,b < =N_p} \|\mathbf{z}_a^t - \mathbf{z}_b^s\|_2^2},$$

$$C_{i,j}^{score} = \frac{\|\mathbf{s}_{i,c(i)}^t - \mathbf{s}_{j,c(j)}^s\|_1}{\max_{1 < =a,b < =N_p} \|\mathbf{s}_{a,c(a)}^t - \mathbf{s}_{b,c(b)}^s\|_1}$$

z:2D coordinates of the sample

(3) 全局花费:

$$\mathcal{L}_{GC}(\mathbf{d}^t, \mathbf{d}^s) = \left\langle oldsymbol{\lambda}^*, rac{\mathbf{d}^t}{\|\mathbf{d}^t\|_1}
ight
angle + \left\langle oldsymbol{\mu}^*, rac{\mathbf{d}^s}{\|\mathbf{d}^s\|_1}
ight
angle$$

3.1 Experiment

1. 数据集: DOTA-v1.5, which contains 2806 large aerial images and 402,089 annotated oriented objects。

2. detector: FCOS

3. backbone: ResNet-50 with FPN

Setting	Method	Publication	10%	20%	30%
Supervised	Faster R-CNN* [31] FCOS† [38]	NeurIPS 2016 ICCV 2019	43.43 42.78	51.32 50.11	53.14 54.79
	Unbiased Teacher* [25] Soft Teacher* [45]	ICLR 2021 ICCV 2021	44.51 48.46	52.80 54.89	53.33 57.83
Semi-supervised	Dense Teacher† [51]	ECCV 2022	46.90	53.93	57.86
	SOOD† (ours)	-	48.63	55.58	59.23

Method	Publication	mAP
Unbiased Teacher* [25]	ICLR 2021	$66.12 \xrightarrow{-1.27} 64.85$
Soft Teacher* [45]	ICCV 2021	$66.12 \xrightarrow{+0.28} 66.40$
Dense Teacher† [51]	ECCV 2022	$65.46 \xrightarrow{+0.92} 66.38$
SOOD† (ours)	-	$65.46 \xrightarrow{+2.24} $ 67.70

3.1 Experiment

Cattina	DAW	CC		mAP	
Setting	RAW	GC	10%	20%	30%
I	-		47.24	54.07	57.74
П	\checkmark	_	47.82	55.21	58.93
III	-	\checkmark	47.71	54.72	58.70
IV	\checkmark	√	48.63	55.58	59.23

(1)

Setting	α	mAP
I	1	47.77
II	10	47.87
III	50	48.63
IV	100	47.95

(3)

Setting	Distance	Score	mAP
I	-	= 0	47.82
II	-1	\checkmark	48.10
III	✓	-	47.94
IV	\checkmark	✓	48.63

(2)

$$\underline{C_{i,j}} = C_{i,j}^{dist} + C_{i,j}^{score},$$

$$C_{i,j}^{dist} = \frac{\|\mathbf{z}_{i}^{t} - \mathbf{z}_{j}^{s}\|_{2}^{2}}{\max_{1 < =a,b < =N_{p}} \|\mathbf{z}_{a}^{t} - \mathbf{z}_{b}^{s}\|_{2}^{2}},$$

$$C_{i,j}^{score} = \frac{\|\mathbf{s}_{i,c(i)}^{t} - \mathbf{s}_{j,c(j)}^{s}\|_{1}}{\max_{1 < =a,b < =N_{p}} \|\mathbf{s}_{a,c(a)}^{t} - \mathbf{s}_{b,c(b)}^{s}\|_{1}}.$$

$$\sigma_i = \alpha \frac{|r_i^t - r_i^s|}{\pi}, r_i^t, r_i^s \in [-\frac{\pi}{2}, \frac{\pi}{2})$$

真实框 supervised Dense Teacher SOOD

