Solution

To find the vertex, we look at the coefficients in the function $r(w) = aw^2 + bw + c$ in this equation, a = 1 and b = 3

The first coordinate of the vertex has the formula: $\frac{-b}{2a}$ now, plugging into formula to get:

 $\frac{-b}{2a} = -\frac{3}{2(1)} = -\frac{3}{2}$

$$= 2(1) = 2$$

e second coordinate of the vertex is $r(-\frac{3}{2}) = 1(-\frac{3}{2})^2 + 3(-\frac{3}{2}) - 3$

The second coordinate of the vertex is $r(-\frac{3}{2}) = 1(-\frac{3}{2})^2 + 3(-\frac{3}{2}) - 3$

Therefore, the vertex of the graph of f is $(-\frac{3}{2}, -\frac{21}{4})$