Lycée	LA	Martinière	Monplaisir
PSI*			

Année 2025/2026 Mathématiques

Feuille d'exercice n° 13 : Variables aléatoires discrètes

I. Variables aléatoires et lois usuelles

Exercice 1 Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires discrètes à valeurs dans un ensemble E et N une variable aléatoire à valeurs naturelles toutes définies sur un même espace probabilisable (Ω, \mathscr{A}) . On définit une fonction Y par

$$\forall \omega \in \Omega, \ Y(\omega) = X_{N(\omega)}(\omega).$$

Justifier que Y est une variable aléatoire discrète.

Exercice 2 Soit T une variable aléatoire à valeurs dans \mathbb{N} . On suppose que $P(T \ge n) > 0$ pour tout $n \in \mathbb{N}$ et l'on pose

$$\theta_n = P_{(T \geqslant n)}(T = n)$$

- 1) Justifier que $\forall n \in \mathbb{N}, \theta_n \in [0, 1[$.
- 2) Exprimer la probabilité $P(T \ge n)$ en fonction des termes de la suite $(\theta_n)_{n \in \mathbb{N}}$.

En déduire la divergence de la série $\sum \theta_n$.

3) Inversement, soit $(\theta_n)_{n\in\mathbb{N}}$ une suite vérifiant

$$\forall n \in \mathbb{N}, \ \theta_n \in [0,1[$$
 et $\sum \theta_n$ diverge.

Montrer qu'il existe une variable aléatoire T à valeurs dans \mathbb{N} telle $P(T \ge n) > 0$ et $P_{(T \ge n)}(T = n) = \theta_n$ pour tout $n \in \mathbb{N}$.

Exercice 3 Soient (Ω, \mathcal{A}, P) un espace probabilisé et X une variable aléatoire définie sur Ω et à valeurs dans \mathbb{N}^* vérifiant

$$\forall n \in \mathbb{N}^*, \ P(X \geqslant n) > 0$$

On définit le taux de panne de X par la suite $(x_n)_{n\geq 1}$ avec

$$x_n = P_{(X \geqslant n)}(X = n).$$

- 1) Montrer que si l'on pose $P(Y = n) = \frac{1}{n(n+1)}$ pour tout $n \in \mathbb{N}^*$, on définit une loi de probabilité. Déterminer le taux de panne de Y.
- 2) Dans le cas général, établir

$$\forall n \ge 2, \ P(X \ge n) = \prod_{k=1}^{n-1} (1 - x_k)$$

- 3) En déduire une expression de P(X = n) en fonction des x_k valable pour tout $n \ge 1$.
- 4) Déterminer les variables aléatoires discrètes à taux de panne constant.

Exercice 4 Une urne contient $n \ge 2$ boules numérotées de 1 à n. Avec remise, on tire les boules de cette urne une à une et l'on note X la variable aléatoire égale au nombre de tirages nécessaires pour tirer une boule différente de la première.

Calculer la loi de X puis identifier la loi de Y = X - 1.

Exercice 5

Soient $\lambda > 0$ et $p \in]0,1[$. On modélise le nombre d'œufs pondus par un poisson par une loi de Poisson $\mathscr{P}(\lambda)$. On modélise l'éclosion d'un œuf indépendamment des autres par une loi de Bernoulli $\mathscr{B}(p)$. Déterminer la loi du nombre d'œufs éclos.

Exercice 6 Soit X une variable aléatoire de Poisson de paramètre $\lambda > 0$.

- 1) Pour quelle valeur de $n \in \mathbb{N}$, la probabilité de l'évènement (X = n) est-elle maximale?
- 2) Inversement, n étant fixé, pour quelle valeur du paramètre λ , la probabilité de (X=n) est-elle maximale?

II. Lois conjointes et marginales

Exercice 7 — Les urnes de Pólya

On considère une urne contenant une boule noire et une boule blanche. On effectue des tirages successifs d'une boule dans l'urne. A chaque tirage, on replace la boule obtenue accompagnée d'une boule de même couleur. Soit X_n le nombre de boules noires obtenues au cours des n premiers tirages.

- 1) Déterminer la loi de X_1 et X_2 .
- **2)** Montrer que X_n suit une loi uniforme sur [0, n].
- 3) On note B_n l'événement « tirer une boule blanche au n-ème tirage ». Calculer la probabilité de B_{n+1} à l'aide de la loi de X_n . Que remarqueton?

On suppose désormais que l'urne contient initialement a boules noires et b boules blanches.

4) Soit $k \in [0, n]$. Montrer que, pour tout k dans [0, n],

$$P(X_n = k) = \frac{\binom{a+k-1}{k} \binom{b+n-k-1}{n-k}}{\binom{a+b+n-1}{n}}$$

5) On note N_n l'événement « tirer une boule noire au n-ème tirage ». Montrer que

$$P\left(N_{n}\right) = \frac{a}{a+b}.$$

Exercice 8 Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} et $p \in]0,1[$. On suppose que la loi conjointe de X et Y vérifie

$$P(X = k, Y = n) = \begin{cases} \binom{n}{k} a^n p (1 - p)^n & \text{si } k \leq n \\ 0 & \text{sinon} \end{cases} \text{ avec } a \in \mathbb{R}.$$

- 1) Déterminer la valeur de a.
- 2) Déterminer la loi marginale de Y.
- 3) Sachant

$$\forall x \in]-1,1[, \sum_{n=k}^{+\infty} \binom{n}{k} x^{n-k} = \frac{1}{(1-x)^{k+1}}.$$

Reconnaître la loi de X

4) Les variables X et Y sont elle indépendantes ?

III. Indépendance

Exercice 9 Déterminer la loi d'une somme de deux variables aléatoires indépendantes, suivant chacune une loi géométrique de même paramètre $p \in]0,1[$.

Exercice 10 Déterminer la loi d'une somme de deux variables aléatoires indépendantes, suivant chacune une loi géométrique sur \mathbb{N} de paramètres différents.

Exercice 11 Soient X une variable aléatoire discrète définie sur (Ω, \mathcal{A}, P) et f une application définie sur $X(\Omega)$. À quelle condition les variables aléatoires X et Y = f(X) sont-elles indépendantes ?

Exercice 12 Soient X, Y, Z des variables aléatoires indépendantes définies sur un même espace probabilisé (Ω, \mathcal{A}, P) et suivant la même loi géométrique de paramètre $p \in]0, 1[$.

- 1) Calculer P(X = Y). En déduire $P(X \leq Y)$.
- **2)** Calculer la loi de X + Y.
- 3) Soit $n \in \mathbb{N}$ tel que $P(X + Y = n) \neq 0$. Identifier la loi de X sachant (X + Y = n).
- 4) Pour $n \in \mathbb{N}$, calculer P(X > n) et en déduire P(Z > X + Y).

Exercice 13 – Loi de Pascal

Soient $(X_k)_{k\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant chacune une même loi géométrique de paramètre p>0. Pour $r\in\mathbb{N}^*$, on étudie la variable aléatoire $S_r=X_1+\cdots+X_r$.

- 1) En terme de temps d'attente, comment interpréter la loi de S_r ?
- **2)** Vérifier $\forall n \ge r$, $\sum_{k=r}^{n} \binom{k-1}{r-1} = \binom{n}{r}$.
- 3) Établir $\forall n \ge r, P(S_r = n) = \binom{n-1}{r-1} (1-p)^{r-n} p^r.$

Exercice 14

Soit (Ω, \mathscr{A}, P) un espace probabilisé. Soient X, Y deux variables aléatoires de (Ω, \mathscr{A}, P) à valeurs dans $(\mathbb{N}^*, \mathscr{P}(\mathbb{N}^*))$, indépendantes, et telles que, pour tout $i \in \mathbb{N}^*$, $P(X = i) = P(Y = i) = \frac{1}{2^i}$.

- 1) Calculer P(X = Y).
- 2) Calculer P(X > Y).
- 3) Soit $N \in \mathbb{N}^*$. Calculer $P(\min(X, Y) \leq N)$.

Exercice 15 Soit X et Y deux v.a. indépendantes suivant des lois géométriques de paramètres respectifs p et q. Quelle est la probabilité que la matrice $A = \begin{pmatrix} X & 1 \\ 0 & Y \end{pmatrix}$ soit diagonalisable ?

