ECE124: Discussion

Discussion #7

Yeonsik Noh, PhD

Minimization via K-Maps

To obtain minimized SOP expression for a Boolean function F...

- •Step1: Translate truth table to K-map
- •Step2: Cover all 1's in the smallest number of largest blocks
- •Step3: Extract one product term for each block
- •Step4: Sum of extracted product terms=minimized SOP expression!

(a)
$$F(x, y, z) = \sum (0, 2, 4, 5)$$

(b) F (x, y, z) =
$$\sum (0, 2, 4, 5, 6)$$

(c)
$$F(x, y, z) = \sum (0, 1, 2, 3, 5)$$

(d)
$$F(x, y, z) = \sum (1, 2, 3, 7)$$

• 1(b). Boolean expression for F.

• 1(c). Draw a logic diagram for F.

- 1) Consider the Boolean function: F (A, B, C, D) = AB + B'C + ACD + ABD' + ACD'
- 2) Extract a minimized Boolean expression for F using the Karnaugh map of 1).
- 3) Simplify the Boolean expression F and Compare it with the minimized Boolean expression of 2)

• 2(a). Consider the Karnaugh map for F together with the don't care conditions, d. Show the Karnaugh map for G.

 $F(u, x, y, z) = \sum (0, 2, 5, 7, 10, 15)$

$$d(u, x, y, z) = \sum (1, 3, 4, 6, 11, 13)$$

3.15 Simplify the following Boolean function F, together with the don't care conditions d, and then express the simplified function in sum-of-minterms form:

(d)
$$F(A, B, C, D) = \Sigma(4, 12, 7, 2, 10)$$

$$d(A, B, C, D) = \Sigma(0, 6, 8)$$

• Draw a logic diagram for F=A+B using only NAND gates.

$$F' = (A + B)'$$

$$F = (A' \cdot B')'$$

A		F = 12/
---	--	---------

ス	yx	NOR	HAHS
O	7	1	
0	1	0	1
1	7	0	1
		0	0

$$\frac{A' \cdot B'}{(|i|)} = (A + B)'$$

$$F' = (AB) = A' + B'$$

$$F = (A' + B')'$$