Conceptos preliminares, Lenguajes y Gramáticas

18 de agosto de 2021

Definición

Dados los conjuntos A y B, se llama **relación** de A **en** B a todo subconjunto de $A \times B$.

Notación

Si R es una relación de A en B (o sea, $R \subset A \times B$) esto se denota como $R:A \to B$.

Notación

 $a \ R \ b$ denota el hecho de que el par (a,b) pertenece a la relación R, esto es: $(a,b) \in R$.

Definición

En lo anterior, si B = A se dice que R es una relación sobre A.

relación $R = \{(a, b), (a, d), (b, c)\}$ (Aho & Ullman. Vol. I)

Reflexividad

Una relación $R:A\to A$ es reflexiva cuando todo elemento de A está relacionado consigo mismo, o sea, cuando

$$\forall a \in A, \ (a, a) \in R.$$

relación reflexiva

Simetría

Una relación $R:A\to A$ es simétrica cuando el hecho de que el par (a,b) pertenece a la relación R implica que el par (b,a) también pertenece a dicha relación, o sea, cuando

$$\forall a, b \in A, \ (a, b) \in R \Rightarrow (b, a) \in R.$$

relación simétrica

Transitividad

Una relación $R:A\to A$ es transitiva cuando el hecho de que los pares (a,b) y (b,c) pertenecen a la relación R implica que el par (a,c) también pertenece a dicha relación, o sea, cuando

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R.$$

a) relación $R=\{(a,b)\,,(a,d)\,,(b,c)\}$, b) clausura reflexiva, c) clausura simétrica, d) clausura transitiva.

Relaciones: definiciones

Relación de equivalencia

Una relación es de equivalencia, cuando es reflexiva, simétrica y transitiva.

Propiedad:

Una relación de equivalencia sobre un conjunto A particiona al mismo en subconjuntos disjuntos a los cuales se los llama **clases de equivalencia**.

Ejemplo de relación de equivalencia

Relación de equivalencia en $\{a,b,c,d,e\}$. (Aho & Ullman. Vol. I)

Composición de relaciones

Composición de relaciones:

Sean A, B y C tres conjuntos, y sean R y G dos relaciones tales que $R:A\to B$ y $G:B\to C$, se define la relación de composición $G\circ R$ como

$$G\circ R=\left\{ \left(a,c\right),a\in A,c\in C:\exists b\in B\text{ tal que }aRb\wedge bGc\right\} .$$

Composición de relaciones

Relación de identidad:

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \Leftrightarrow a = b.$$

Propiedad:

la relación de identidad es el elemento neutro de la composición.

Relación de identidad

Dada una relación $R:A\to B$ es cierto que

$$R \circ id_A = R$$

Relación de identidad

Dada una relación $R:A\to B$ es cierto que

$$id_B \circ R = R$$

Relación potencia:

Dada una relación R sobre A, se define R^n como:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

con $R = R^1$.

Entonces

$$R^{0} = id_{A}$$

$$R^{1} = R \circ R^{0} = R \circ id_{A} = R$$

$$R^{n} = R \circ R^{n-1} = \underbrace{R \circ id_{A} = R}_{n}$$

Ejamplo de relación potencia

Clausura transitiva

Dada una relación R sobre A, se define clausura transitiva R^+ como:

$$\begin{array}{ll} R^+ & = & \displaystyle \bigcup_{i=1}^{\infty} R^i, \text{o sea} \\ \\ R^+ & = & R \cup R^2 \cup R^3 \dots \end{array}$$

Clausura Positiva

Propiedades:

La clausura transitiva de una relación R posee las siguientes propiedades:

- \mathbf{Q} R^+ es transitiva
- $oldsymbol{3}$ para toda relación G sobre A

 $R \subseteq G \land G transitiva \Rightarrow R^+ \subseteq G.$

Demostración: R^+ es transitiva

Queremos probar que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$.

Análogamente, como bR^+c entonces existe una secuencia de elementos e_1, \ldots, e_m tal que $e_1Re_2, \ldots, e_{m-1}Re_m$, donde $e_1 = b$ y $e_m = c$. Por lo tanto, $aR^{n+m}c$, lo que a su vez implica que aR^+c .

Demostración: $R \subseteq G \land G \ transitiva \Rightarrow R^+ \subseteq G$

si aR^+b , entonces existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$.

Como $R \subseteq G$ tenemos que $c_1Gc_2, \ldots, c_{n-1}Gc_n$, y como G es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Gc_n , o sea aGb.

Demostración: $R \subseteq G \land G \ transitiva \Rightarrow R^+ \subseteq G$

De lo anterior surge que R^+ es la menor relación transitiva que incluye a la relación R.

Clausura transitiva reflexiva: R^*

Definición

$$R^* = R^0 \cup R^+ = R^0 \cup R^1 \cup R^2 \dots = \bigcup_{i=0}^{\infty} R^i.$$

donde R^0 es la relación identidad.

Algunas preguntas

Pregunta:

Dada una relación $R:A\to A$, si el conjunto A es finito, la relación R puede ser infinita?

Respuesta:

No, porque $R \subseteq A \times A$ y porque como A es finito, $A \times A$ también lo es.

Pregunta:

Puede darse que $R^* = R^+$?

Respuesta:

Sí, si la relación R es reflexiva.

Alfabeto

Es un conjunto finito de elementos o caracteres.

Cadena

Es un conjunto ordenado de elementos de un alfabeto.

Ejemplo

Dado el alfabeto: $\Sigma = \{a, b, c\}$, tenemos como cadenas posibles: aaabbbccc, aaabbc, cbbbbbb, etc.

Notación

Los símbolos son notados respetando el orden. Ejemplo: la cadena (a, b, c) (que es un conjunto ordenado) es notada abc.

Concatenación o

Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto

$$\circ: \Sigma \times \{ \text{cadenas sobre } \Sigma \} \to \{ \text{cadenas sobre } \Sigma \} \,.$$

Ejemplo

Si el alfabeto es $\Sigma = \{a, b, c\}$, $\alpha = ab$ es una cadena, y entonces $a \circ ab = aab$ es también una cadena.

Cadena nula λ

Es el neutro de la concatenación:

$$\forall a \in \Sigma, \ a \circ \lambda = a$$

Clausura de Kleene de Σ : Σ^*

- $\lambda \in \Sigma^*$
- $\alpha \in \Sigma^* \Rightarrow a \circ \alpha \in \Sigma^*, a \in \Sigma$

Clausura positiva de Σ : Σ^+

Si $\alpha \in \Sigma^*$ entonces $a \circ \alpha \in \Sigma^+$, $a \in \Sigma$.

Ejemplo

Sea $\Sigma=\{a,b,c\}$, entonces $ccba\in\Sigma^*$ porque $\lambda\in\Sigma^*$, $a\circ\lambda=a\in\Sigma^*$, $b\circ a=ba\in\Sigma^*$, $c\circ ba=cba\in\Sigma^*$, y $c\circ cba=ccba\in\Sigma^*$.

Lenguaje sobre un alfabeto Σ : Conjunto de cadenas sobre un alfabeto Σ .

Ejemplo:

- $\{\lambda\}$ es un lenguaje $(\neq de \phi)$
- Dado $\Sigma = \{0,1\}$, $\{0,01,011,0111,01111,\dots\}$, es un lenguaje sobre Σ .

Concatenación de lenguajes

Sea L_1 un lenguaje definido sobre el alfabeto Σ_1 , y sea L_2 un lenguaje definido sobre el alfabeto Σ_2 , se define la concatenación de L_1 y L_2 como el lenguaje

$$L_1L_2 = \{xy : x \in L_1 \land y \in L_2\},\$$

definido sobre el alfabeto $\Sigma_1 \cup \Sigma_2$.

Clausura de Kleene L^*

Se define por:

- $L^0 = \{\lambda\}$
- $L^n = LL^{n-1}$ para $n \ge 1$
- $L^* = \bigcup_{n>0} L^n.$

Clausura positiva L^+

Se define por:

$$L^+ = \bigcup_{n \ge 1} L^n.$$

De lo anterior se ve que $L^+ = LL^* = L^*L$, y que $L^* = L^+ \cup \{\lambda\}$. También se ve que, si L es un lenguaje definido sobre Σ , entonces, $L \subseteq \Sigma^*$.

Gramáticas

Definición

Una gramática es una 4-upla $G = \langle V_N, V_T, P, S \rangle$ donde

- V_N es un conjunto de símbolos llamados no-terminales (o también, variables o categorías sintácticas)
- V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- P es el conjunto de "producciones", el cual es un subconjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*,$$

estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.

• $S \in V_N$ es el símbolo distinguido de V_N .

Forma sentencial de una gramática $G = \langle V_N, \overline{V_T, P, S} \rangle$

- S es una forma sentencial de G.
- Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G

Si $\alpha\beta\gamma\in (V_N\cup V_T)^*$ y $(\beta\to\delta)\in P$, se dice que $\alpha\delta\gamma$ se deriva directamente en G de $\alpha\beta\gamma$ y se denota como

$$\alpha\beta\gamma \xrightarrow{G} \alpha\delta\gamma$$

Definición

Denotaremos con $\overset{+}{\underset{G}{\longrightarrow}}$ y con $\overset{*}{\underset{G}{\longrightarrow}}$ a las clausura transitiva y a la clausura transitiva y reflexiva de $\overset{+}{\underset{G}{\longrightarrow}}$ respectivamente.

Definición

Denotaremos con $\stackrel{k}{\underset{G}{\longrightarrow}}$ a la potencia k de la relación $\stackrel{\rightarrow}{\underset{G}{\longrightarrow}}$.

Definición

Lenguaje generado por una gramática $G = \langle V_N, V_T, P, S \rangle$, el cual se denotará como $\mathcal{L}(G)$,

$$\mathcal{L}\left(G\right) = \left\{\alpha \in V_{T}^{*}: S \xrightarrow{+}_{G} \alpha\right\}$$

Clasificación de gramáticas (Chomsky)

Gramáticas regulares (tipo 3)

- Si todas las producciones son de la forma $A \to xB$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a derecha".
- Si todas las producciones son de la forma $A \to Bx$ o $A \to x$, donde $A, B \in V_N$ y $x \in V_T^*$, entonces la gramática es llamada "lineal a izquierda".

ambos tipos de gramática son llamados regulares.

Clasificación de gramáticas (Chomsky)

Gramáticas regulares (tipo 3)

Una forma alternativa de escribir las gramáticas regulares es el siguiente:

- Todas las producciones son de la forma $A \to aB$ o $A \to a$ o $A \to \lambda$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a derecha".
- Todas las producciones son de la forma $A \to Ba$ o $A \to a$ o $A \to \lambda$, donde $A, B \in V_N$ y $a \in V_T$, para el caso de gramáticas "lineales a izquierda".

ambos tipos de gramática son llamados regulares.

Ejemplo de gramática tipo 3 (regular):

Gramática

Gramática para generar $\left\{a^nb^mc^k:m,n,k\geq 1\right\}$, $G=\left\langle\left\{S,A,B,C\right\},\left\{a,b,c\right\},S,P\right\rangle$, donde P está dado por

$$S \to aA$$
 $B \to bB$ $C \to cC$
 $A \to aA$ $B \to bC$ $C \to c$
 $A \to bB$

Ejemplo: derivación de la cadena aabbbbccc

$$\begin{array}{cccc} S & \rightarrow aA & \rightarrow aaA & \rightarrow aabB \\ & \rightarrow aabbB & \rightarrow aabbbB & \rightarrow aabbbbC \\ & \rightarrow aabbbbcC & \rightarrow aabbbbccC & \rightarrow aabbbbccC \end{array}$$

Clasificación de gramáticas (Chomsky)

Gramáticas independientes del contexto (libres de contexto, tipo 2)

Cada producción es de la forma $A \to \alpha$, donde $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

De la definición anterior puede inferirse que toda gramática regular es independiente de (o libre del) contexto

Ejemplo de gramática tipo 2 (independiente del contexto)

Gramática

$$\begin{split} G &= \\ \left< \left\{ E, T, F \right\}, \left\{ a, +, *, (,) \right\}, E, P \right>, \\ \text{donde } P \text{ est\'a dado por} \end{split}$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to a$$

derivación de a * (a + a)

$$E \to T \to T * F$$

$$\to T * (E) \to F * (E)$$

$$\to a * (E) \to a * (E + T)$$

$$\to a * (T + T) \to a * (F + T)$$

$$\to a * (a + T) \to a * (a + F)$$

$$\to a * (a + a)$$

Arbol de derivación

Dependientes del contexto (Sensitivas al contexto, tipo 1)

Cada producción es de la forma $\alpha \to \beta$, donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. (Notar que esto impide la generación de la cadena nula λ)

De la definición anterior puede inferirse que:toda gramática independiente del (o libre del) contexto, que no posea reglas borradoras (o sea, reglas del tipo $A \to \lambda$, es también una gramática dependiente del (o sensitiva al) contexto

Ejemplo de gramática tipo 1 (dependiente del contexto):

Gramática

$$G=\langle \{S,B,C\}\,, \{a,b,c\}\,, S,P
angle$$
, donde P está dado por
$$S o aSBC \quad CB o BC \quad bB o bb \quad cC o cc$$

$$S o abC \qquad \qquad bC o bc$$

derivación de aaabbbccc:

```
\begin{array}{lll} S \rightarrow \\ \rightarrow aSBC & \rightarrow aaSBCBC & \rightarrow aaabCBCBCBC \\ \rightarrow aaabBCCBC & \rightarrow aaabBCBCCC & \rightarrow aaabBBCCCC \\ \rightarrow aaabbBCCC & \rightarrow aaabbbCCC & \rightarrow aaabbbcCC \\ \rightarrow aaabbbccC & \rightarrow aaabbbccC & \rightarrow aaabbbccC \end{array}
```

Sin restricciones (tipo 0)

No poseen ninguna restricción como las anteriores.

Un lenguaje generado por una gramática tipo t es llamado "lenguaje t", p.ej.: un lenguaje generado por una gramática independiente del contexto es llamado también: "lenguaje independiente del contexto".

Alternativamente estos lenguajes son llamados tipo 3, 2, 1 y 0, respectivamente, p.ej.: un lenguaje generado por una gramática regular es llamado también: "lenguaje tipo 3".

El conjunto de las gramáticas tipo 0 incluye a todas las gramáticas.

Ejemplo de gramática tipo 0 (sin restricciones):

Gramática

Gramática para generar $\{ww: w \in \{a,b\}^*\}$ $G = (\{S,A,B,C,D\}, \{a,b\},S,P)$, donde P está dado por $S \rightarrow CD \quad AD \rightarrow aD \quad Aa \rightarrow aA \quad Ba \rightarrow aB \quad C \rightarrow \lambda \\ C \rightarrow aCA \quad BD \rightarrow bD \quad Ab \rightarrow bA \quad Bb \rightarrow bB \quad D \rightarrow \lambda \\ C \rightarrow bCB$

derivación de abaaabaa

Jerarquía de Chomsky


```
GSR = Gram d tias sin

Restrictiones - Tipo O

GDC = Gramaticas Dependientes

dul Contexto - Tipo 1

GIC = Gramaticas Independientes

del Contexto - Tipo 2

GR = Gramaticas Regulares -

Tipo 3
```