Höhere Mathematik II

G. Herzog, Ch. Schmoeger

Sommersemester 2017

Karlsruher Institut für Technologie

Inhaltsverzeichnis

15 Konvergenz im \mathbb{R}^n	2
16 Grenzwerte bei Funktionen, Stetigkeit	5
17 Analysis in $\mathbb C$	9
18 Differentialrechnung im \mathbb{R}^n (reellwertige Funktionen)	14
19 Differentialrechnung im \mathbb{R}^n (vektorwertige Funktionen)	29
20 Integration im \mathbb{R}^n	38
21 Spezielle Differentialgleichungen 1. Ordnung	52
22 Lineare Systeme mit konstanten Koeffizienten	62
23 Lineare Differentialgleichung n-ter Ordnung	
mit konstanten Koeffizienten	68
24 Die Fouriertransformation	73

Kapitel 15

Konvergenz im \mathbb{R}^n

Definition: Sei $\left(a^{(k)}\right)$ eine Folge im \mathbb{R}^n , also $\left(a^{(k)}\right) = \left(a^{(1)}, a^{(2)}, a^{(3)}, \ldots\right)$ mit $a^{(k)} = \left(a_1^{(k)}, \ldots, a_n^{(k)}\right) \in \mathbb{R}^n$.

- a) $(a^{(k)})$ heißt **beschränkt**: $\iff \exists c \ge 0 \ \forall k : ||a^{(k)}|| \le c$.
- b) Der Begriff **Teilfolge** (TF) wird wie in HMI definiert.
- c) $x_0 \in \mathbb{R}^n$ heißt ein **Häufungswert** (HW) von $\left(a^{(k)}\right) : \iff \forall \epsilon > 0 : a^{(k)} \in U_{\epsilon}(x_0)$ für endlich viele k.
- d) $(a^{(k)})$ heißt **konvergent**: $\iff \exists a \in \mathbb{R}^n$:

$$||a^{(k)} - a|| \longrightarrow 0 \quad (k \to \infty)$$

In diesem Fall heißt a der **Grenzwert** (GW) oder **Limes** von $(a^{(k)})$ und man schreibt

$$a = \lim_{k \to \infty} a^{(k)}$$
 oder $a^{(k)} \longrightarrow a$ $(k \to \infty)$

Wie in HMI: der Grenzwert einer konvergenten Folge ist eindeutig bestimmt.

e) Ist $(a^{(k)})$ nicht konvergent, so heißt $(a^{(k)})$ divergent

Beachte: $a^{(k)} \longrightarrow a \iff \forall \epsilon > 0 \ \exists k_0 \in \mathbb{N} \forall k \geq k_0 : \left\| a^{(k)} - a \right\| < \epsilon$

$$\iff \forall \epsilon > 0$$
 gilt für fast alle $k \in \mathbb{N} : a^{(k)} \in U_{\epsilon}(a)$

Beispiel (n = 2): $a^{(k)} := (\frac{1}{k}, 1 + \frac{1}{k}), a := (0, 1)$

$$||a^{(k)} - a|| = ||(\frac{1}{k}, \frac{1}{k})|| = (\frac{2}{k^2})^{\frac{1}{2}} = \frac{\sqrt{2}}{k} \longrightarrow 0$$

Also: $a^{(k)} \longrightarrow (0,1)$.

Satz 15.1: $(a^{(k)})$ sei eine Folge im \mathbb{R}^n , $a^{(k)} = (a_1^{(k)}, \dots, a_n^{(k)})$.

- a) Ist $(a^{(k)})$ konvergent, so ist $(a^{(k)})$ beschränkt und jede Teilfolge von $(a^{(k)})$ konvergiert gegen $\lim a^{(k)}$.
- b) Ist $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, so gilt: $a^{(k)} \longrightarrow a \iff a_j^{(k)} \longrightarrow a_j \quad (j = 1, \ldots, n)$.
- c) Sei $(b^{(k)})$ eine weitere Folge im \mathbb{R}^n , $a, b \in \mathbb{R}^n$, (β_k) eine Folge in \mathbb{R} , $\beta \in \mathbb{R}$ und es gelte $a^{(k)} \longrightarrow a$, $b^{(k)} \longrightarrow b$ und $\beta_k \longrightarrow \beta$. Dann:
 - $(i) \ a^{(k)} + b^{(k)} \longrightarrow a + b,$
 - (ii) $\beta_k a^{(k)} \longrightarrow \beta a$,
 - (iii) $a^{(k)}b^{(k)} \longrightarrow ab \ und$
 - $(iv) \|a^{(k)}\| \longrightarrow \|a\|$
- d) Cauchykriterium: $(a^{(k)})$ ist konvergent

$$\iff \forall \epsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k, l \ge k_0 : \left\| a^{(k)} - a^{(l)} \right\| < \epsilon.$$

e) **Bolzano-Weierstraß**: Ist $(a^{(k)})$ beschränkt, so enthält $(a^{(k)})$ eine konvergente Teilfolge.

Beweis:

- a) Wie in HMI.
- b) Sei $j \in \{1, \dots, n\}$, dann

$$\left| a_j^{(k)} - a_j \right| \stackrel{14.1h}{\leq} \left\| a^{(k)} - a \right\| \stackrel{14.1h}{\leq} \sum_{i=1}^n \left| a_i^{(k)} - a_i \right|$$

- \Rightarrow Behauptung.
- c) Folgt aus b).
- d) "⇒" Wie in HMI "←" Übung (mit b) und 14.1 h)).

e) Der Übersicht wegen sei n=2. Also $a^{(k)}=(x_k,y_k), |x_k|, |y_k| \leq ||a^{(k)}||$ $\Rightarrow (x_k), (y_k)$ sind beschränkte Folgen in $\mathbb{R} \xrightarrow{\frac{HMI}{2.12}} (x_k)$ enthält eine konvergente Teilfolge $(x_{k_j}). (y_{k_j})$ ist beschränkt $\xrightarrow{\frac{HMI}{2.12}} (y_{k_j})$ enthält eine konvergente Teilfolge $(y_{k_{j_e}}).$ Dann ist auch $(x_{k_{j_e}})$ konvergent $\Rightarrow (a^{(k_{j_e})})$ ist konvergent.

Definition: Sei $A \subseteq \mathbb{R}^n$. $x_0 \in \mathbb{R}^n$ heißt ein **Häufungspunkt** (HP) von $A : \iff \exists$ Folge $(a^{(k)})$ in $A \setminus \{x_0\}: a^{(k)} \to x_0$.

Beispiele:

- a) $A := U_1(0)$. x_0 ist Häufungspunkt von $A \iff x_0 \in \overline{U_1(0)}$.
- b) 0 ist Häufungspunkt von $U_1(0) \setminus \{0\}$.
- c) Endliche Mengen haben keine Häufungspunkte.

Satz 15.2: $Sei A \subseteq \mathbb{R}^n$.

- a) Die folgenden Aussagen sind äquivalent:
 - (i) A ist abgeschlossen.
 - (ii) Für jede konvergente Folge $\left(a^{(k)}\right)$ in A gilt: $\lim a^{(k)} \in A$.
 - (iii) Jeder Häufungspunkt von A gehört zu A.
- b) A ist kompakt \iff jede Folge in A enthält eine konvergente Teilfolge deren Grenzwert zu A gehört.

Beweis: ohne Beweis. \Box

Vereinbarung: Für Elemente des \mathbb{R}^2 schreiben wir meist (x, y) statt (x_1, x_2) und im \mathbb{R}^3 meist (x, y, z) anstatt (x_1, x_2, x_3) .

Kapitel 16

Grenzwerte bei Funktionen, Stetigkeit

Stets i.d. §en: $n, m \in \mathbb{N}$, $\emptyset \neq D \subseteq \mathbb{R}^n$ und $f: D \to \mathbb{R}^m$ eine (vektorwertige) Funktion. Mit $x = (x_1, \dots, x_n) \in D$ hat f die Darstellung:

$$f(x) = f(x_1, \dots, x_m) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$$

wobei $f_j : D \to \mathbb{R} \ (j = 1, \dots, m)$. Kurz: $f = (f_1, \dots, f_m)$.

Beispiel: $n = 2, m = 3, D = \mathbb{R}^2$; $f(x, y) = (xy, x + y, xe^y)$, also

$$f = (f_1, f_2, f_3)$$

mit $f_1(x,y) = xy, f_2(x,y) = x + y, f_3(x,y) = xe^y$.

Veranschaulichung im Fall m = 1 (reellwertige Funktionen)

• n = 1 (bekannt)

• n = 2:

Definition: Sei $x_0 \in \mathbb{R}^n$ ein Häufungspunkt von D. Sei $y_0 \in \mathbb{R}^m$. $\lim_{x \to x_0} f(x) = y_0$: \iff für jede Folge $\left(x^{(k)}\right)$ in $D \setminus \{x_0\}$ mit $x^{(k)} \to x_0$ gilt: $f\left(x^{(k)}\right) \to y_0$. In diesem Fall schreiben wir auch: $f(x) \to y_0$ $(x \to x_0)$.

Beispiel: Sei $f = (f_1, f_2, f_3)$ wie in obigem Beispiel. Sei $((x_k, y_k))$ eine Folge in \mathbb{R}^2 mit $(x_k, y_k) \to (1, 1) \Longrightarrow x_k \to 1, y_k \to 1$

$$\Rightarrow f_1(x_k, y_k) = x_k y_k \to 1, \ f_2(x_k, y_k) = x_k + y_k \to 2, \ f_3(x_k, y_k) = x_k e^{y_k} \to e.$$

 $\Longrightarrow f(x_k, y_k) \to (1, 2, e)$. Also: $\lim_{(x,y)\to(1,1)} f(x,y) = (1, 2, e)$.

Beispiel 16.1:
$$(m = 1, D = \mathbb{R}^2)$$
 $f(x, y) \coloneqq \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$

$$\left(\frac{1}{k}, 0\right) \to (0, 0), \ f\left(\frac{1}{k}, 0\right) = 0 \to 0$$

$$\left(\frac{1}{k}, \frac{1}{k}\right) \to (0, 0), f\left(\frac{1}{k}, \frac{1}{k}\right) = \frac{1}{2} \to \frac{1}{2}$$

D.h. $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert nicht!

Satz 16.2: x_0 sei ein Häufungspunkt von $D \subseteq \mathbb{R}^n$, $f, g: D \to \mathbb{R}^m$ und $h: D \to \mathbb{R}$ seien Funktionen. Es seien $y_0, z_0 \in \mathbb{R}^m$ und $\alpha \in \mathbb{R}$.

a) Ist $f = (f_1, ..., f_m)$ und $y_0 = (y_1, ..., y_m)$, so gilt für j = 1, ..., m:

$$f(x) \to y_0 \ (x \to x_0) \iff f_j(x) \to y_j \ (x \to x_0)$$

b) Für alle $x \in D \setminus \{x_0\}$ mit $||x - x_0|| < \delta$:

$$\lim_{x \to x_0} f(x) = y_0 \iff \forall \epsilon > 0 \ \exists \delta > 0 : ||f(x) - y_0|| < \epsilon$$

- c) Es gelte $f(x) \to y_0$, $g(x) \to z_0$ und $h(x) \to \alpha$ $(x \to x_0)$. Dann:
 - (i) $f(x) \otimes g(x) \to y_0 \otimes z_0 \ (x \to x_0), \ wobei \otimes \in \{+, -, \cdot\}$
 - (ii) $h(x)f(x) \to \alpha y_0 \ (x \to x_0)$
 - (iii) $||f(x)|| \to ||y_0|| (x \to x_0)$
 - (iv) Ist $\forall x \in D : \alpha \neq 0$ und $h(x) \neq 0$, so gilt für $x \to x_0 : \frac{1}{h(x)} \to \frac{1}{\alpha}$

 $wobei\ ,...``ein\ Skalarprodukt\ bezeichnet.$

Beweis: a) folgt aus 15.1. Rest: wie in HMI ($\|\cdot\|$ statt $|\cdot|$).

Definition:

- a) f heißt $\mathbf{in}\ x_0 \in D$ $\mathbf{stetig}: \iff f\"{ur}\ jede\ Folge\ \left(x^{(k)}\right)\ in\ D\ mit\ x^{(k)} \to x_0\ gilt:$ $f\left(x^{(k)}\right) \to f\left(x_0\right).$
- b) f heißt auf D stetig: \iff f ist in jedem $x \in D$ stetig. In diesem Fall schreiben wir: $f \in C(D, \mathbb{R}^m)$.

Beispiel 16.3: f sei wie in 16.1.

$$f\left(\frac{1}{k}, \frac{1}{k}\right) \longrightarrow \frac{1}{2} \neq 0 = f\left(0, 0\right)$$

f ist also in (0,0) nicht stetig. Aber: ist $(x_0,y_0) \in \mathbb{R}^2 \setminus \{(0,0)\}$, so ist f in (x_0,y_0) stetig.

Satz 16.4: Sei $x_0 \in D$ und $g: D \to \mathbb{R}^m$ und $h: D \to \mathbb{R}$ seien weitere Funktionen.

a) f ist in x_0 stetig \iff alle f_j sind in x_0 stetig

$$\iff \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in D : ||x - x_0||\delta : ||f(x) - f(x_0)|| < \epsilon.$$

b) Ist x_0 Häufungspunkt von D, so gilt:

$$f$$
 ist stetig in $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$

- c) f, g und h seien stetig in x_0 . Dann sind stetig in x_0 :
 - $f \otimes g \ (wobei \otimes \in \{+, -, \cdot\})$
 - $hf, x \mapsto ||f(x)|| \ und$
 - $\frac{1}{h}$ (falls $h(x) \neq 0 \ \forall x \in D$),

 $wobei\ {\it ,,\cdot\,}"\ ein\ Skalarprodukt\ bezeichnet.$

d) $C(D, \mathbb{R}^m)$ ist ein reeller Vektorraum.

Beweis: 15.1 bzw. wie in HMI.

Definition: f heißt auf D beschränkt : $\iff \exists M \ge 0 \ \forall x \in D : \|f(x)\| \le M$.

Wie in HMI zeigt man:

Satz 16.5:

a) $f: D \to \mathbb{R}^m$ sei in $x_0 \in D$ stetig, es sei $E \subseteq \mathbb{R}^m$, $f(D) \subseteq E$ und $g: E \to \mathbb{R}^p$ sei stetig in $f(x_0)$. Dann ist

$$g \circ f \colon D \longrightarrow \mathbb{R}^p$$

stetig in x_0 .

- b) Es sei D **kompakt** und $f \in C(D, \mathbb{R}^m)$. Dann:
 - $(i) \ f(D) \ ist \ kompakt, \ insbesondere \ ist \ f \ beschränkt.$
 - (ii) Ist m = 1, so existieren $x_1, x_2 \in D \ \forall x \in D : f(x_1) \leq f(x) \leq f(x_2)$.

Satz 16.6: Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ linear. Dann:

$$f \in C\left(\mathbb{R}^n, \mathbb{R}^m\right)$$

Beweis: Es existiert eine reelle $m \times n$ -Matrix A: $f(x) = Ax \ (x \in \mathbb{R}^n)$. Sei $x_0 \in \mathbb{R}^n$:

$$||f(x) - f(x_0)|| = ||Ax - Ax_0|| = ||A(x - x_0)|| \stackrel{\$15}{\leq} ||A|| ||x - x_0||$$

Also: $f(x) \to f(x_0)$ $(x \to x_0)$.

Beispiel: $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x ist stetig auf \mathbb{R}^2 .

Kapitel 17

Analysis in \mathbb{C}

 \mathbb{C} und \mathbb{R}^2 sind Vektorräume über \mathbb{R} der Dimension 2. Sie unterscheiden sich also nur durch die Bezeichnung ihrer Elemente für $x, y \in \mathbb{R}$:

$$z = x + iy \in \mathbb{C}, \quad (x, y) \in \mathbb{R}^2$$

Beachtet man noch $|z|=|x+iy|=(x^2+y^2)^{\frac{1}{2}}=\|(x,y)\|$, so sieht man: alle aus der Addition, der Skalarmultiplikation und der Norm entwickelten Begriffe und Sätze der §en 14 - 16 gelten in \mathbb{C} . Zum Beispiel:

Konvergenz von Folgen: Sei (z_n) eine Folge in \mathbb{C} und $z_0 \in \mathbb{C}$. (z_n) konvergiert gegen $z_0 \iff |z_n - z_0| \to 0 \iff \operatorname{Re}(z_n) \to \operatorname{Re}(z_0)$ und $\operatorname{Im}(z_n) \to \operatorname{Im}(z_0)$.

Zu den Sätzen in §15 kommt hinzu:

Satz 17.1: (z_n) und (w_n) seien Folgen in \mathbb{C} mit $z_n \to z_0$ und $w_n \to w_0$. Dann:

- $a) z_n w_n \to z_0 w_0$
- b) Ist $z_0 \neq 0$, so existieren $N \in \mathbb{N} \ \forall n \geq N \colon z_n \neq 0 \ und \ \frac{1}{z_n} \longrightarrow \frac{1}{z_0}$

Beweis: wie in \mathbb{R} .

Beispiel: Sei $w \in \mathbb{C}$ und $z_n := w^n \ (n \in \mathbb{N})$. $|z_n| = |w_n|^n$.

- Ist |w| < 1, so gilt: $z_n \longrightarrow 0$.
- Ist |w| > 1, so gilt (z_n) ist divergent.
- Im Falle |w| = 1 gilt:

w = 1: (z_n) ist konvergent.

 $w \neq 1$: (z_n) ist divergent.

Unendliche Reihen: Sei (a_n) eine Folge in \mathbb{C} und $s_n := a_1 + \ldots + a_n \ (n \in \mathbb{N})$. Die Folge (s_n) heißt eine unendliche Reihe und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet.

- $\sum_{n=1}^{\infty} a_n$ heißt konvergent (divergent) : \iff (s_n) ist konvergent (divergent).
- Im Konvergenzfall heißt $\sum_{n=1}^{\infty} a_n := \lim_{n \to \infty} s_n$ der **Reihenwert**.

Die Definitionen und Sätze aus HMI, §3 gelten wörtlich auch in \mathbb{C} , bis auf diejenigen Definitionen und Sätze in denen die Anordnung auf \mathbb{R} eine Rolle spielt (z.B.: Monotonie-kriterium, Leibnitzkriterium).

Beispiele:

- a) Sei $z \in \mathbb{C}$. $\sum_{n=0}^{\infty} z^n$ heißt **geometrische Reihe**.
 - (i) Sei |z| < 1. Dann ist $\sum_{n=0}^{\infty} |z|^n$ konvergent, also ist $\sum_{n=0}^{\infty} z^n$ absolut konvergent und somit konvergent. Wie in HMI: $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ (für |z| < 1).
 - (ii) Sei $|z| \ge 1$. Dann: $|z|^n \not\to 0$, also $z^n \not\to 0$. Somit ist $\sum_{n=0}^{\infty} z^n$ divergent. Ist $z = \frac{i}{2}$, so ist |z| < 1, also $\sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n$ konvergent und

$$\sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n = \frac{1}{1 - \frac{i}{2}} = \frac{2}{2 - i} = \frac{2(2+i)}{(2-i)(2+i)} = \frac{4+2i}{5} = \frac{4}{5} + i\frac{2}{5}$$

b) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$; $a_n := \frac{z^n}{n!}$. Dann: $|a_n| = \frac{|z|^n}{n!}$

$$\xrightarrow{HMI} \sum_{n=1}^{\infty} |a_n|$$
 ist konvergent (und = $e^{|z|}$).

Also konvergiert $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ absolut in jedem $z \in \mathbb{C}$.

c) Wie in Beispiel b): die Reihen

$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \quad \text{und} \quad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)}$$

konvergieren absolut in jedem $z \in \mathbb{C}$.

Beispiel 17.2: Sei $z=x+iy\in\mathbb{C}\ (x,y\in\mathbb{R})$. HMI, §12:

$$e^z = e^x \left(\cos y + i\sin y\right)$$

Dann $|e^z| = e^x$. Es ist $|e^z| < 1 \iff x < 0 \iff \operatorname{Re}(z) < 0$. Fazit:

ist
$$\operatorname{Re}(z) < 0$$
, so konvergiert $\sum_{n=0}^{\infty} (e^z)^n = \sum_{n=0}^{\infty} e^{nz}$ absolut und $\sum_{n=0}^{\infty} (e^z)^n = \frac{1}{1-e^z}$.

Potenzreihen: Sei (a_n) eine Folge in \mathbb{C} und $z_n \in \mathbb{C}$. Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n \left(z - z_0 \right)^n, \quad (z \in \mathbb{C})$$

heißt eine **Potenzreihe** (PR). Sei $\rho := \limsup \sqrt[n]{|a_n|}$ (also $\rho = \infty$, falls $\left(\sqrt[n]{|a_n|}\right)$ unbeschränkt). Die Zahl

$$r := \begin{cases} 0, & \text{falls } \rho = 0 \\ \infty, & \text{falls } \rho = 0 \\ \frac{1}{\rho}, & \text{falls } 0 < \rho < \infty \end{cases}$$

heißt der Konvergenzradius (KR) der Potenzreihe.

Wie im Beweis von 4.1 und 7.4 aus HMI zeigt man:

Satz 17.3: $\sum_{n=0}^{\infty} a_n (z-z_n)^n$ und r seien wie oben.

- a) Ist r = 0, so konvergiert die Potenzreihe nur für $z = z_n$.
 - b) Ist $r = \infty$, so konvergiert die Potenzreihe in jedem $z \in \mathbb{C}$ absolut.
 - c) Ist $0 < r < \infty$, so konvergiert die Potenzreihe absolut in jedem $z \in \mathbb{C}$ mit $|z z_0| < r$ und sie divergiert für $z \in \mathbb{C}$ mit $|z z_0| > r$. Für $z \in \mathbb{C}$ mit $|z z_0| = r$ ist keine allgemeine Aussage möglich.
 - d) Sei r > 0 und $D := \{z \in \mathbb{C} : |z z_0| < r\}$ $(D := \mathbb{C} \text{ falls } r = \infty).$ Sei für $z \in D$:

$$f(z) := \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Dann ist f auf D stetig.

Beispiele:

- a) $\sum_{n=0}^{\infty} z^n$ hat den Konvergenzradius r=1.
- b) Die Potenzreihen

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}, \ \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \ \text{und} \ \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

haben jeweils den Konvergenzradius $r = \infty$.

Erinnerung: Für $z = x + iy \ (x, y \in \mathbb{R}) \ e^z = e^x (\cos y + i \sin y),$

$$\cos z := \frac{1}{2} \left(e^{iz} + e^{-iz} \right), \ \sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

Satz 17.4:

- a) Für alle $z \in \mathbb{C}$: $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$, $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$
- b) Die Funktionen e^z , $\cos z$, $\sin z$ sind auf \mathbb{C} stetig.
- c) $\sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n} = 1 z^2 + z^4 z^6 + \dots$ hat den Konvergenzradius r = 1. Es gilt für |z| < 1: $\sum_{n=0}^{\infty} (-z^2)^n = \frac{1}{1-(-z^2)} = \frac{1}{1+z^2}$

Beweis:

- a) ohne Beweis.
- b) folgt aus a) und 17.3 d).

Fourierreihen im Komplexen

Definition: Seien $a, b \in \mathbb{R}$ mit a < b und $g: [a, b] \to \mathbb{C}$ eine Funktion mit

$$u := \operatorname{Re} g : [a, b] \to \mathbb{R}, \ v := \operatorname{Im} g : [a, b] \to \mathbb{R},$$

es ist also f(x) = u(x) + iv(x). Sind $u, v \in R([a, b])$ so schreiben wir $f \in R([a, b], \mathbb{C})$ und definieren

$$\int_{a}^{b} f(x)dx := \int_{a}^{b} u(x)dx + i \int_{a}^{b} v(x)dx$$

Bemerkung: Ist auch $h \in R([a,b],\mathbb{C})$ und $\alpha,\beta\in\mathbb{C}$, so gilt

- a) $\alpha g + \beta h \in R([a, b], \mathbb{C}), gh \in R([a, b], \mathbb{C})$ und
- b) $\int_a^b \alpha g + \beta h dx = \alpha \int_a^b g dx + \beta \int_a^b h dx$.

Definition: Sei $f \in R([a,b],\mathbb{R})$. Dann heißen für $n \in \mathbb{Z}$

$$c_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

die komplexen **Fourierkoeffizienten** von f und $\sum_{n=-\infty}^{\infty} c_n e^{inx}$ heißt die zu f gehörende komplexe Fourierreihe (Schreibweise: $f \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}$).

Sei $f \in R([-\pi, \pi])$ (reellwertig) und a_n $(n \in \mathbb{N}_0)$, b_n $(n \in \mathbb{N})$ die zugehörigen Fourierkoeffizienten (wie in §13). Dann gilt für $n \in \mathbb{N}$:

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\cos(nx) - i \sin(nx) \right) dx = \frac{1}{2} \left(a_n - i b_n \right),$$

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) 1 dx = \frac{1}{2} a_0,$$

$$c_{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{inx} dx = \frac{1}{2} \left(a_n + i b_n \right).$$

Also

$$\sum_{k=-n}^{n} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{n} \left(c_k e^{ikx} + c_{-k} e^{-ikx} \right).$$

Wegen

$$c_k e^{ikx} + e_{-k} e^{-ikx} = \cos(kx) (c_k + c_{-k}) + i \sin(kx) (c_k - c_{-k})$$
$$= a_k \cos(kx) + i(-ib_n) \sin(kx)$$
$$= a_k \cos(kx) + b_k \sin(kx)$$

folgt

$$\sum_{k=-n}^{n} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx).$$

Definition: Sei (c_n) eine Folge in \mathbb{C} und $x \in \mathbb{R}$.

$$\sum_{k=-\infty}^{\infty} c_n e^{inx} \ konvergiert \iff \lim_{n\to\infty} \sum_{k=-n}^{n} c_k e^{ikx} \ existiert \ (und \ ist \in \mathbb{C})$$

Bemerkung: Ist $f \in R([-\pi, \pi])$ (reellwertig) und $x \in \mathbb{R}$, so gilt also: Die komplexe Fourierreihe konvergiert in $x \iff$ Die reelle Fourierreihe konvergiert in x.

Kapitel 18

Differential rechnung im \mathbb{R}^n (reellwertige Funktionen)

Beispiele:

a) Für $(x,y) \in \mathbb{R}^2$ sei $f(x,y) = x^2y^2$. Fasst man (vorübergehend) y als Konstante auf, so kann man den Ausdruck x^2y^2 nach x differenzieren. Diese Ableitung wird mit $f_x(x,y)$ oder mit $\frac{\partial f}{\partial x}(x,y)$ bezeichnet. Also:

$$f_x(x,y) = 2xy^2 = \frac{\partial f}{\partial x}(x,y).$$

Zum Beispiel: $f_x(1,2) = 2 \cdot 1 \cdot 2^2 = 8$. Entsprechend fasse x als Konstante auf und differenziere nach y:

$$f_y(x,y) = 2x^2y = \frac{\partial f}{\partial y}(x,y).$$

Zum Beispiel: $f_y(1,2) = 2$.

b) $f(x, y, z) = xz + e^{xyz}$. Fasst man y und z als Konstanten auf und differenziert man nach x:

$$f_x(x, y, z) = z + yze^{xyz} = \frac{\partial f}{\partial x}(x, y, z).$$

Entsprechend:

$$f_y(x, y, z) = xze^{xyz} = \frac{\partial f}{\partial y}(x, y, z)$$
$$f_z(x, y, z) = x + xye^{xyz} = \frac{\partial f}{\partial z}(x, y, z)$$

Vereinbarung: I. d. §en sei stets: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f: D \to \mathbb{R}$ eine Funktion.

Definition: Sei $x_0 = (\xi_1, \dots, \xi_n) \in D$ und $i \in \{1, \dots, n\}$. $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (i-ter Einheitsvektor). Dann gilt

$$x_0 + te_i = (\xi_1, \dots, \xi_{i-1}, \xi_i + t, \xi_{i+1}, \dots, \xi_n).$$

f heißt in x_0 partiell differenzierbar (pdb) nach $x_i :\iff$ es existiert der Grenzwert

$$f_{x_i}(x_0 := \frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$$

und ist $\in \mathbb{R}$. I.d. Fall heißt $f_{x_i}(x_0)$ die partielle Ableitung von f in x_0 nach x_i .

Beispiele:

a)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0) \end{cases}, x_0 = (0,0), x_0 + te_1 = (t,0).$$

$$\frac{f(x_0 + te_1) - f(x_0)}{t} = \frac{f(t,0) - f(0,0)}{t} = 0 \to 0 \quad (t \to 0)$$

Das heißt f ist in (0,0) partiell differenzierbar nach x und $f_x(0,0) = 0$. Für $x_0 + te_2 = (0,t)$:

$$\frac{f(x_0 + t_1 e_2) - f(x_0)}{t} = \frac{f(0, t) - f(0, 0)}{t} = 0 \longrightarrow 0 \quad (t \to 0)$$

D.h. f ist zu (0,0) partiell differenzierbar nach y und $f_y(0,0)=0$.

b)
$$f(x,y) = \sqrt{x^2 + y^2} = ||(x,y)||$$
. Für $(x,y) \neq (0,0)$:

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \quad f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$$

Sei (x, y) = (0, 0):

$$\frac{f(t,0) - f(0,0)}{t} = \frac{\sqrt{t^2}}{t} = \frac{|t|}{t} = \begin{cases} 1, & t > 0\\ -1, & t < 0 \end{cases}$$

D.h. f ist in (0,0) nicht partiell differenzierbar nach x. Analog: f ist in (0,0) nicht partiell differenzierbar nach y.

Definition:

a) f heißt $in \ x_0 \in D$ partiell differenzierbar : \iff f ist in x_0 partiell differenzierbar nach allen Variablen x_1, \ldots, x_n . In diesem Fall heißt

$$\operatorname{grad} f(x_0) := (f_{x_1}(x_0), \dots, f_{x_n}(x_0))$$

der Gradient von f in x_0 .

- b) f heißt auf D partiell $differenzierbar : \iff f$ ist in jedem $x \in D$ partiell differenzierbar.
- c) Sei $i \in \{1, ..., n\}$. f_{x_i} ist auf D vorhanden : \iff f ist in jedem $x \in D$ partiell differenzierbar nach x_i . In diesem Fall heißt

$$f_{x_i} \colon D \to \mathbb{R}$$

die partielle Ableitung von f nach x_i .

d) f heißt auf D stetig partiell $differenzierbar : \iff f$ ist auf D partiell differenzierbar und $f_{x_1}, \ldots, f_{x_n} \in C(D, \mathbb{R})$.

Beispiele:

a) Sei f wie in obigem Beispiel a). f ist in (0,0) partiell differenzierbar und

$$\operatorname{grad} f(0,0) = (0,0).$$

b) $f(x,y) = \sqrt{x^2 + y^2}$. f ist auf $\mathbb{R}^2 \setminus \{(0,0)\}$ partiell differenzierbar und

grad
$$f(x, y) = \frac{(x, y)}{\|(x, y)\|}$$
.

Definition: Sei $i \in \{1, ..., n\}$ und f_{x_i} sei auf D vorhanden. Also haben wir die partielle Ableitung von f nach x_i :

$$f_{x_i} \colon D \to \mathbb{R}.$$

Sei $x_0 \in D$ und $j \in \{1, ..., n\}$. Ist f_{x_i} in x_0 partiell differentierbar nach x_j , so heißt

$$f_{x_i x_j}(x_0) := \frac{\partial^2 f}{\partial x_i \partial x_i}(x_0) := (f_{x_i})_{x_j}(x_0)$$

partielle Ableitung 2. Ordnung von f in x_0 nach x_i und x_j . Entsprechend definiert man Ableitungen höherer Ordnung, falls vorhanden! Schreibweisen:

$$\frac{\partial^3 f}{\partial y \partial x^2} = f_{xxy}, \quad \frac{\partial^7 f}{\partial y^4 \partial x^3} = f_{xxxyyyy}, \quad \frac{\partial^5 f}{\partial z^2 \partial y \partial x^2} = f_{xxyzz}.$$

Beispiel: $f(x, y, z) = xy^2 \sin z$

$$f_x = y^2 \sin z$$
, $f_{xy} = 2y \sin z$, $f_{xyz} = 2y \cos z$,

$$f_y = 2xy\sin z$$
, $f_{yx} = 2y\sin z$, $f_{yxz} = 2y\cos z$.

Definition: Sei $m \in \mathbb{N}$: f heißt **auf** D m-**mal** stetig partiell differenzierbar: \iff alle partiellen Ableitungen von f der Ordnung $\leq m$ sind auf D vorhanden und dort stetig. Bezeichnung in diesem Fall: $f \in C^m(D, \mathbb{R})$.

Ohne Beweis:

18.1 Satz von Schwarz: Sei $m \in \mathbb{N}$ und $f \in C^m(D, \mathbb{R})$. Dann ist jede partielle Ableitung von f der Ordnung $\leq m$ unabhängig von der Reihenfolge der Differentiation.

Ist z.B. m = 2, so gilt $\forall x \in D \ \forall i, j \in \{1, \dots n\}$:

$$f_{x_i x_j}(x) = f_{x_j x_i}(x)$$

Motivation:
$$f(x,y) \coloneqq \begin{cases} \frac{xy}{x^2+y^2}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0). \end{cases}$$

Bekannt: f ist in (0,0) partiell differenzierbar $\stackrel{16.3}{\Longrightarrow} f$ ist in (0,0) nicht stetig.

Wir suchen einen Differenzierbarkeitsbegriff, der Stetigkeit nach sich zieht.

Erinnerung: Sei $I \subseteq \mathbb{R}$ ein Intervall, $g: I \to \mathbb{R}$ eine Funktion und $x_0 \in I$.

$$g$$
 ist in x_0 differenzierbar $\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = a$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0) - ah}{h} = 0$$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0) - ah}{|h|} = 0$$

Definition: f heißt in $x_0 \in D$ differenzierbar (db)

$$:\iff \exists a\in\mathbb{R}^n:\ \lim_{h\to 0}\frac{f(x_0+h)-f(x_0)-a\cdot h}{\|h\|}=0$$

$$\left(\iff \exists a \in \mathbb{R}^n : \lim_{x \to x_0} \frac{f(x) - f(x_0) - a \cdot (x - x_0)}{\|x - x_0\|} = 0 \right)$$

wobei "·" das Skalarprodukt bezeichnet.

18.2 Satz und Definition (ohne Beweis): Sei $x_0 \in D$.

- a) Ist f in x_0 differenzierbar, so ist f in x_0 stetig und partiell differenzierbar.
- b) Ist f in x_0 differenzierbar, so ist der Vektor a in obiger Definition eindeutig bestimmt und es gilt $a = \operatorname{grad} f(x_0)$.

$$f'(x_0) := a = \operatorname{grad} f(x_0)$$

heißt **Ableitung** von f in x_0 .

c) f ist in x_0 differenzierbar $\iff f$ ist in x_0 partiell differenzierbar und

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - \operatorname{grad} f(x_0) \cdot h}{\|h\|} = 0.$$

Beispiele:

a)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Bekannt: f ist in (0,0) nicht stetig $\stackrel{18.2}{\Longrightarrow} f$ ist in (0,0) nicht differenzierbar.

b)
$$f(x,y) = \begin{cases} (x^2 + y^2) \log(x^2 + y^2), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
$$\frac{f(t,0) - f(0,0)}{t} = \frac{t^2 \log t^2}{t} = 2t \log|t| \longrightarrow 0 \ (t \to 0)$$
$$\frac{f(0,t) - f(0,0)}{t} = 2t \log|t| \longrightarrow 0 \ (t \to 0)$$

f ist also partiell differenzierbar in (0,0) und grad f(0,0) = (0,0), Sei $h = (h_1, h_2) \neq (0,0)$

$$\frac{f(h) - f(0,0) - \operatorname{grad} f(0,0) \cdot h}{\|h\|} = \frac{\|h\|^2 \log (\|h\|^2)}{\|h\|} = 2\|h\| \log (\|h\|) \longrightarrow 0 \ (h \to 0)$$

f ist also in (0,0) differenzierbar und f'(0,0) = (0,0).

c)
$$f(x,y) = \begin{cases} \frac{x \sin y}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\frac{f(t,0) - f(0,0)}{t} = \frac{f(0,t) - f(0,0)}{t} = 0 \longrightarrow 0 \ (t \to 0)$$

f ist also partiell differenzierbar in (0,0) und grad f(0,0) = (0,0). Sei $h = (h_1, h_2) \neq (0,0)$

$$Q(h) := \frac{f(h) - f(0,0) - \operatorname{grad} f(0,0) \cdot h}{\|h\|} = \frac{h_1 \sin h_2}{\|h\|^2} = \frac{h_1 \sin h_2}{h_1^2 + h_2^2}$$

Für $h_1 = h_2$:

$$Q(h) = \frac{h_1 \sin h_1}{2h_1^2} = \frac{1}{2} \cdot \frac{\sin h_1}{h_1} \longrightarrow \frac{1}{2} (h_1 \to 0)$$

D.h. $Q(h) \not\to 0$ $(h \to 0)$. f ist also in (0,0) nicht differenzierbar.

Definition: f heißt auf D differenzierbar: \iff f ist in jedem $x \in D$ differenzierbar.

Satz 18.3 (ohne Beweis): f sei auf D partiell differenzierbar und $f_{x_1}, \ldots f_{x_n}$ seien in $x_0 \in D$ stetig. Dann ist f in x_0 differenzierbar. Ist $f \in C^1(D, \mathbb{R})$, so ist f auf D differenzierbar.

Definition: Sei $I \subseteq \mathbb{R}$ ein Intervall und $g = (g_1, \ldots, g_n) \colon I \to \mathbb{R}^n$ eine Funktion, also $g_j \colon I \to \mathbb{R}$ $(j = 1, \ldots, n)$.

g heißt in $t_0 \in I$ differenzierbar: $\iff g_1, \ldots, g_n$ sind in $t_0 \in I$ differenzierbar. In diesem Fall:

$$g'(t_0) := (g'_1(t_0), \dots, g'_n(t_0))$$

Entsprechend definiert man "auf I differenzierbar" und "auf I stetig differenzierbar".

Beispiele:

- a) (n = 2): $g(t) = (\cos t, \sin t)$, $g(t) = (-\sin t, \cos t)$.
- b) Für $a, b \in \mathbb{R}^n$: $g(t) := a + t (b a) (t \in [0, 1])$. Ist $a = (a_1, \dots, a_n), b = (b_1, \dots, b_n)$, so ist

$$g_i(t) = a_i + t(b_i - a_i)$$
, also $g'(t) = b_i - a_i$.

Somit: g'(t) = b - a.

Bezeichnung: $S[a,b] := \{a + t(b-a) : t \in [0,1]\}$ Verbindungsstrecke von a und b.

Satz 18.4 (Kettenregel (ohne Beweis)): Sei $I \subseteq \mathbb{R}$ ein Intervall, $g = (g_1, \ldots, g_n) \colon I \to \mathbb{R}^n$ differenzierbar in $t_0 \in I$, $g(I) \subseteq D$ und f sei in $x_0 := g(t_0)$ differenzierbar. Dann ist

$$f \circ g \colon I \to \mathbb{R}$$
 differenzierbar in t_0

und $(f \circ g)'(t_0) = f'(g(t_0)) \cdot g'(t_0)$, wobei "·" das Skalarprodukt darstellt.

Beispiel: Sei $g: [0,1] \to \mathbb{R}^2$, $g(t) = (\cos t, \sin t)$ und $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2y$. Wir können direkt nachrechnen: $(f \circ g)(t) = \cos^2 t \sin t$,

$$(f \circ g)'(t) = 2\cos t (-\sin t)\sin t + \cos^2 t\cos t = -2\cos t\sin^2 t + \cos^3 t.$$

Mit 18.4 gilt: $f'(x, y) = (2xy, x^2)$,

$$(f \circ g)'(t) = (2\cos t \sin t, \cos^2 t) \cdot (-\sin t, \cos t) = -2\cos t \sin^2 t + \cos^3 t.$$

Definition:

a) Seien $x^{(0)}, \dots, x^{(m)} \in \mathbb{R}^n$,

$$S\left[x^{(0)}, \dots, x^{(m)}\right] = \bigcup_{j=1}^{m} S\left[x^{(j-1)}, x^{(j)}\right]$$

heißt **Streckenzug** durch $x^{(0)}, \ldots, x^{(m)}$.

b) Sei $M \subseteq \mathbb{R}^n$. M heißt ein **Gebiet**: \iff M ist offen und zu je zwei Punkten $a, b \in M$ existieren $x^{(0)}, \ldots, x^{(m)} \in M$ mit:

$$a = x^{(0)}, b = x^{(x)} \text{ und } S\left[x^{(0)}, \dots, x^{(m)}\right] \subseteq M.$$

18.5 Der Mittelwertsatz: Sei $f: D \to \mathbb{R}$ auf D differenzierbar, es seien $a, b \in D$ und $S[a, b] \subseteq D$. Dann existiert ein $\xi \in S[a, b]$:

$$f(b) - f(a) = f'(\xi) \cdot (b - a).$$

Beweis: Für $t \in [0, 1]$ sei

$$g(t) := a + t(b - a)$$

 $\phi(t) := f(g(t))$

 $\stackrel{18.4}{\Longrightarrow} \phi$ ist auf [0,1] differenzierbar und $\phi'(t) = f'(g(t)) \cdot g'(t) = f'(g(t)) \cdot (b-a)$. Es ist

$$f(b) - f(a) = f(g(1)) - f(g(0)) = \phi(1) - \phi(0)$$
$$= \frac{\phi(1) - \phi(0)}{1 - 0} \underset{HMI}{\overset{MWS}{=}} \phi'(t_0),$$

für ein
$$t_0 \in [0, 1]$$
. Also: $f(b) - f(a) = f'\left(\underbrace{g(t_0)}_{=:\xi}\right) \cdot (b - a)$.

Folgerung 18.6: Ist D ein Gebiet, $f: D \to \mathbb{R}$ differenzierbar auf D und $\forall x \in D$ gilt f'(x) = 0, so ist f auf D konstant.

Beweis: Übung, mit 18.5.
$$\Box$$

Definition:

- a) Sei $a \in \mathbb{R}^n$. Ist ||a|| = 1, so heißt a eine **Richtung** oder ein **Richtungsvektor**.
- b) Sei $x_0 \in D$ und $a \in \mathbb{R}^n$ eine Richtung. f heißt in x_0 Richtung a differenzierbar : \iff es existiert der Grenzwert

$$\frac{\partial f}{\partial a}(x_0) := \lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t}$$

und ist $\in \mathbb{R}$. In diesem Fall heißt $\frac{\partial f}{\partial a}(x_0)$ die **Richtungsableitung von** f **in** x_0 **in Richtung** a.

Bemerkung: Ist $a = e_i = i$ -ter Einheitsvektor, so ist (falls vorhanden)

$$\frac{\partial f}{\partial a}(x_0) = \frac{\partial f}{\partial x_i}(x_0) = f_{x_i}(x_0).$$

Beispiele:

a) Sei $x_0 = (0, 0)$ und

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Sei $a=(a_1,a_2)\in\mathbb{R}^2$ eine Richtung, also $a_1^2+a_2^2=1$.

$$\frac{f(ta) - f(0,0)}{t} = \frac{1}{t} \cdot \frac{t^2 a_1 a_2}{t^2} = \frac{a_1 a_2}{t}$$

D.h. $\frac{\partial f}{\partial a}(0,0)$ existiert $\iff a_1 = 0$ oder $a_2 = 0$

$$\iff a \in \{(1,0), (-1,0), (0,1), (0,-1)\}.$$

In diesem Fall: $\frac{\partial f}{\partial a}(0,0) = 0$.

b) Sei $x_0 := (0,0)$ und

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0). \end{cases}$$

Sei $a = (a_1, a_2) \in \mathbb{R}^2$ eine Richtung.

$$\frac{f(ta) - f(0,0)}{t} = \frac{1}{t} \cdot \frac{r^3 a_1 a_2^2}{t^2 a_1^2 + t^4 a_2^4} = \frac{a_1 a_2^2}{a_1^2 + t^2 a_2^4} \xrightarrow[t \to 0]{} \begin{cases} 0, & a_1 = 0 \\ \frac{a_2^2}{a_1}, & a_1 \neq 0. \end{cases}$$

D.h. $\frac{\partial f}{\partial a}(0,0)$ existiert für jede Richtung $a \in \mathbb{R}^2$.

Aber: Sei x > 0. $f(x, \sqrt{x}) = \frac{x^2}{2x^2} = \frac{1}{2} \to \frac{1}{2} \neq 0 = f(0, 0) \ (x \to 0)$. D.h. f ist in (0, 0) nicht stetig.

Satz 18.7 (ohne Beweis): Ist f in $x_0 \in D$ differenzierbar und $a \in \mathbb{R}^n$ eine Richtung, so existiert $\frac{\partial f}{\partial a}(x_0)$ und

$$\frac{\partial f}{\partial a}(x_0) = a \cdot \operatorname{grad} f(x_0)$$

Beispiele:

a) f sei wie in obigem Beispiel b). $x_0 = (0,0); a := \frac{1}{\sqrt{2}}(1,1)$. Dann:

$$\frac{\partial f}{\partial a}(0,0) = \frac{1}{\sqrt{2}}, \operatorname{grad} f(0,0) = (0,0),$$

also

$$a \cdot \operatorname{grad} f(0,0) = 0 \neq \frac{\partial f}{\partial a}(0,0) = \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2}}.$$

f ist in (0,0) nicht differenzierbar!

b)
$$f(x,y) \coloneqq \begin{cases} \frac{x|x|+y^4}{\sqrt{x^2+y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$
 Übung: f ist in $(0,0)$ stetig.

Sei $a=(a_1,a_2)\in\mathbb{R}^2$ eine Richtung.

$$\frac{f(ta) - f(0,0)}{t} = \frac{1}{t} \cdot \frac{t|t|a_1|a_1| + t^4a_2^4}{|t|} = \frac{t|t|a_1|a_1| + (t|t|)^2 a_2^4}{t|t|}$$
$$= a_1|a_1| + t|t|a_2^4 \longrightarrow a_1|a_1|$$

Also existiert $\frac{\partial f}{\partial a}(0,0)$ für jede Richtung a und $\frac{\partial f}{\partial a}(0,0)=a_1|a_1|$. Insbesondere:

$$\operatorname{grad} f(0,0) = (1,0).$$

Sei $a := \frac{1}{\sqrt{2}}(1,1)$. Dann:

$$\frac{1}{2} = \frac{\partial f}{\partial a}(0,0) \neq a \cdot \operatorname{grad} f(0,0) = \frac{1}{\sqrt{2}}.$$

f ist also in (0,0) nicht differenzierbar.

Bezeichnung: Sei A eine reelle $n \times n$ -Matrix und $x \in \mathbb{R}^n$:

$$(Ax) \cdot x \coloneqq (Ax^T) \cdot x.$$

Definition: Sei $f \in C^2(D, \mathbb{R})$ und $x_0 \in D$,

$$H_f(x_0) := \begin{pmatrix} f_{x_1x_1}(x_0) & f_{x_1x_2}(x_0) & \dots & f_{x_1x_n}(x_0) \\ \vdots & & & \vdots \\ f_{x_nx_1}(x_0) & f_{x_nx_2}(x_0) & \dots & f_{x_nx_n}(x_0) \end{pmatrix}$$

heißt **Hesse-Matrix von** f in $x_0 \stackrel{18.1}{\Longrightarrow} H_f(x_0)$ ist symmetrisch.

Beispiel:
$$f(x,y) = x^3y + xy$$
, $f_x = 3x^2y + y$, $f_y = x^3 + x$
 $f_{xx} = 6xy$, $f_{xy} = 3x^2 + 1$, $f_{yy} = 0$, $f_{yx} = 3x^2 + 1$

Damit ist

$$H_f(x,y) = \begin{pmatrix} 6xy & 3x^2 + 1 \\ 3x^2 + 1 & 0 \end{pmatrix}.$$

Satz 18.8 (Satz von Taylor (ohne Beweis)): Sei $f \in C^2(D, \mathbb{R})$, $x_0 \in D$, $h \in \mathbb{R}^n$ und $S[x_0, x_0 + h] \subseteq D$. Dann existiert ein $\xi \in S[x_0, x_0 + h]$:

$$f(x_0 + h) = f(x_0) + \text{grad } f(x_0) \cdot h + \frac{1}{2} (H_f(\xi)h) \cdot h.$$

Definition: A sei eine reelle, symmetrische $n \times n$ -Matrix. A heißt

- positiv definit (pd): $\iff \forall x \in \mathbb{R}^n \setminus \{0\}: (Ax) \cdot x > 0$
- negativ definit (nd): $\iff \forall x \in \mathbb{R}^n \setminus \{0\}: (Ax) \cdot x < 0$
- indefinit $(id):\iff \exists u,v\in\mathbb{R}^n: (Au)\cdot u>0 \ und \ (Av)\cdot v<0$

Beispiel:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 mit $x = (x_1, x_2) \in \mathbb{R}^2$:

$$Ax = (x_1, 0), (Ax) \cdot x = x_1^2 \ge 0.$$

A ist weder negativ definit, noch indefinit, noch positiv definit:

$$\forall x = (0, t) : (Ax) \cdot x = 0.$$

Satz 18.9 (ohne Beweis): A sei wie in obiger Definition.

- a) A ist positiv definit \iff alle Eigenwert von A sind > 0
 - A ist negativ definit \iff alle Eigenwert von A sind < 0
 - A ist indefinit $\iff \exists$ Eigenwerte λ, μ von A mit $\lambda > 0, \mu < 0$

b) Sei
$$n = 2$$
, $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$

- A ist positiv definit $\iff \alpha > 0$, det A > 0
- A ist negativ definit $\iff \alpha < 0$, det A > 0
- $A ist indefinit \iff \det A < 0$

Definition: f hat in $x_0 \in D$ ein

- lokales Maximum : $\iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq D \text{ und } \forall x \in U_{\delta}(x_0) : f(x) \leq f(x_0)$
- lokales Minimum : $\iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq D \text{ und } \forall x \in U_{\delta}(x_0) : f(x) \geq f(x_0)$

lokales Extremum = lokales Maximum oder lokales Minimum von $f: M \to \mathbb{R}$; analog für globale Extrema.

Satz 18.10 (ohne Beweis):

- a) Ist f in $x_0 \in D$ partiell differenzierbar und hat f in x_0 ein lokales Extremum, so ist grad $f(x_0) = 0$.
- b) Ist $f \in C^2(D, \mathbb{R})$ und grad $f(x_0) = 0$, so gilt:
 - Ist $H_f(x_0)$ positiv definit, so hat f in x_0 ein lokales Minimum.
 - Ist $H_f(x_0)$ negative definit, so hat f in x_0 ein lokales Maximum.
 - Ist $H_f(x_0)$ indefinit, so hat f in x_0 kein lokales Extremum.

Beweisideen:

a) Ist z.B. x_0 eine lokale Maximalstelle und $i \in \{1, ..., n\}$, so ist

$$\frac{f(x_0 + te_i) - f(x_0)}{t} \begin{cases} \leq 0, & t \in (0, \delta) \\ \geq 0, & t \in (-\delta, 0), \end{cases}$$

also $f_{x_i}(x_0) = 0$.

b) Ist z.B. $H_f(x_0)$ positiv definit, so ist $H_f(x)$ positiv definit in einer Umgebung $U_{\delta}(x_0) \subseteq D$ (wg. $f \in C^2(D, \mathbb{R})$). Nach 18.8 gilt für $||h|| < \delta$:

$$f(x_0 + h) = f(x_0) + \underbrace{\left(\operatorname{grad} f(x_0)\right)}_{=0} \cdot h + \underbrace{\frac{1}{2} \left(H_f(\xi) \cdot h\right) \cdot h}_{>0}$$

für ein $\xi \in S[x_0, x_0 + h] \subseteq U_{\delta}(x_0) \Rightarrow f(x_0 + h) \ge f(x_0)$.

Beispiele:

a)
$$D = \mathbb{R}^2$$
, $f(x, y) = x^4 + y^4$. Somit: $f_x = 4x^3$, $f_y = 4y^3$;

$$\operatorname{grad} f(x, y) = (0, 0) \iff (x, y) = (0, 0)$$

$$f_{xx} = 12x^2$$
, $f_{xy} = 0 = f_{yx}$, $f_{yy} = 12y^2$; also ist

$$H_f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

weder positiv definit, noch negativ definit, noch indefinit! Was nun?

$$f(x,y) \ge 0 = f(0,0) \quad \forall (x,y) \in \mathbb{R}^2.$$

Also hat f in (0,0) ein globales Minimum!

b)
$$f(x,y) = x^2 - y^2$$
 ($D = \mathbb{R}^2$). Somit: $f_x = 2x$, $f_y = -2y$;

$$\operatorname{grad} f(x, y) = (0, 0) \iff (x, y) = (0, 0)$$

$$f_{xx} = 2, f_{xy} = 0 = f_{yx}, f_{yy} = -2;$$
 also ist

$$H_f(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

und det $H_f(0,0) = -4 < 0$. $H_f(0,0)$ ist also indefinit. f hat in (0,0) kein lokales Extremum. Kann man auch so sehen:

$$f(x,0) = x^2 \ge f(0,0), \quad \forall x \in \mathbb{R}$$

$$f(0,y) = -y^2 \le f(0,0), \quad \forall y \in \mathbb{R}$$

c) $D = \mathbb{R}^2$, $f(x,y) = x^3 - 12xy + 8y^3$. Somit: $f_x = 3x^2 - 12y$, $f_y = -12x + 24y^2$; also ist

$$\operatorname{grad} f(x, y) = (0, 0) \iff x^2 = 4y \text{ und } 2y^2 = x$$

$$\Rightarrow 4y^4 = 4y \iff y^3 = 1 \text{ oder } y = 0 \iff y = 0 \text{ oder } y = 1.$$
 Ist $y = 0$, so ist $x = 0$; grad $f(0,0) = (0,0)$, Ist $y = 1$, so ist $x = 2$; grad $f(2,1) = (0,0)$.

Extremwertverdächtig: (0,0), (2,1).

$$H_f(x,y) = \begin{pmatrix} 6x & -12 \\ -12 & 48y \end{pmatrix}$$

•
$$H_f(0,0) = \begin{pmatrix} 0 & -12 \\ -12 & 0 \end{pmatrix}$$
; $\det H_f(0,0) < 0$.

f hat also in (0,0) kein Extremum.

•
$$H_f(2,1) = \begin{pmatrix} 12 & -12 \\ -12 & 48 \end{pmatrix}$$
; $12 > 0$, $\det H_f(2,1) = 12 \cdot 48 - 12 \cdot 12 > 0$.

f hat also in (2,1) ein lokales Minimum.

(2,1) ist keine globale Minimalstelle, denn z.B. $f(t,0)=t^3\longrightarrow -\infty \ (t\to -\infty)$.

d)
$$f(x,y) = -8x^3 - 12x^2 + 3xy^2 + y^3 + 3y^2$$
. Übung:

$$\operatorname{grad} f(x,y) = (0,0) \iff (x,y) \in \{(1,-4),(-1,0),(0,0)\}$$

f hat in (0,0) kein Extremum! f hat in (1,-4) ein lokales Maximum.

Es ist
$$H_f(x,y) = \begin{pmatrix} -48x - 24 & 6y \\ 6y & 6x + 6y + 6 \end{pmatrix}$$
. Damit ist

$$H_f(-1,0) = \begin{pmatrix} 24 & 0 \\ 0 & 0 \end{pmatrix}$$

weder positiv definit, noch negativ definit noch indefinit! Was nun?

$$f(-1,t) = 8 - 12 - 3t^2 + t^3 + 3t^2 = t^3 - 4; \ f(-1,0) = -4.$$

$$\left. \begin{array}{ll} \text{für } t > 0 : f(-1,t) > -4 & = f(-1,0) \\ \text{für } t < 0 : f(-1,t) < -4 & = f(-1,0) \end{array} \right\} \Rightarrow f \text{ hat in } (-1,0) \text{ kein lok. Extremum.}$$

Problem: Bestimme
$$\left\{ \begin{array}{l} \max x^2 + y^2 - x : x^2 + y^2 \le 1 \\ \min x^2 + y^2 - x : x^2 + y^2 \le 1 \end{array} \right\}$$

$$D := \left\{ (x,y) : x^2 + y^2 < 1 \right\}, \ \overline{D} = \left\{ (x,y) : x^2 + y^2 \le 1 \right\}$$

 $f \colon \overline{D} \to \mathbb{R}, f(x,y) = x^2 + y^2 - x.$ f ist stetig und \overline{D} ist kompakt $\stackrel{16.5}{\Longrightarrow}$ exist. Minimum und Maximum.

Suche lokale Extremalstelle in D:

$$\begin{cases}
f_x(x,y) = 2x - 1 = 0 \\
f_y(x,y) = 2y = 0
\end{cases} \iff (x,y) = \left(\frac{1}{2}, 0\right)$$

 $H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, H_f\left(\frac{1}{2},0\right)$ ist partiell differenzierbar.

 $\left(\frac{1}{2},0\right)$ ist eine lokale Minimalstelle

Keine weiteren lokalen Extremalstellen in D.

$$\Rightarrow \max \left\{ x^2 + y^2 - x : x^2 + y^2 \le 1 \right\} = \max \left\{ x^2 + y^2 - x : x^2 + y^2 = 1 \right\}$$
$$= \max \left\{ 1 - x : x^2 + y^2 \le 1 \right\}$$

Es gilt: $x^2 + y^2 = 1 \Rightarrow x^2 \le 1 \Rightarrow -1 \le x \le 1 \Rightarrow 1 - x \le 2$ wegen f(-1, 9) = 2 folgt:

$$\max \left\{ x^2 + y^2 - x : x^2 + y^2 \le 1 \right\} = 2.$$

Ebenso: $x^2 + y^2 = 1 \Rightarrow 1 - x \ge 0$. Wegen $f\left(\frac{1}{2}, 0\right) = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$ folgt:

$$\min\left\{x^2 + y^2 - x : x^2 + y^2 \le 1\right\} = -\frac{1}{4}.$$

Kapitel 19

Differential rechnung im \mathbb{R}^n (vektorwertige Funktionen)

Stets i.d. §en: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f = (f_1, \ldots, f_n) \colon D \to \mathbb{R}^m$ eine Funktion, also $f_j \colon D \to \mathbb{R}$ $(j = 1, \ldots, m)$.

Definition:

a) Sei $x_0 \in D$. f heißt in x_0 partiell differenzierbar: \iff alle f_j sind in x_0 partiell differenzierbar. In diesem Fall heißt

$$\frac{\partial f}{\partial x}(x_0) := \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}(x_0) := J_f(x_0) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \dots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

die Jacobi- oder Funktionalmatrix von f in x_0 .

- b) Sei $p \in \mathbb{N}$: $f \in C^p(D, \mathbb{R}^m) : \iff f_j \in C^p(D, \mathbb{R}) \ (j = 1, \dots, m)$.
- c) f heißt in $x_0 \in D$ differenzierbar: $\iff \exists m \times n\text{-Matrix}$:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{\|h\|} = 0.$$

19.1 Satz und Definition (ohne Beweis): Sei $x_0 \in D$.

- a) f ist in x_0 differenzierbar \iff alle f_j sind in x_0 differenzierbar. In diesem Fall:
 - (i) f ist in x_0 stetig
 - (ii) f ist in x_0 partiell differenzierbar
 - (iii) Die Matrix A in obiger Definition c) ist eindeutig bestimmt: $A = J_f(x_0)$

b) Ist f in x_0 differenzierbar, so heißt $f'(x_0) := J_f(x_0)$ die **Ableitung von** f in x_0 . Aus 19.1 und 18.3 folgt:

Satz 19.2: Sind alle partiellen Ableitungen $\frac{\partial f_j}{\partial x_k}$ auf D vorhanden und in x_0 stetig, so ist f in x_0 differenzierbar. Ist $f \in C^1(D, \mathbb{R}^m)$, so ist f auf D differenzierbar.

Beispiele:

a)
$$D = \mathbb{R}^2$$
, $f(x,y) = \left(\underbrace{x+y}_{f_1}, \underbrace{xy}_{f_2}, \underbrace{x^2y}_{f_3}\right) (m=3)$.

$$\frac{\partial f_1}{\partial x} = 1, \ \frac{\partial f_1}{\partial y} = 1, \ \frac{\partial f_2}{\partial x} = y, \ \frac{\partial f_2}{\partial y} = x, \ \frac{\partial f_3}{\partial x} = 2xy, \ \frac{\partial f_3}{\partial y} = x^2$$
Also: $f'(x,y) = J_f(x,y) = \begin{pmatrix} 1 & 1 \\ y & x \\ 2xy & x^2 \end{pmatrix}$.

b) Sei A eine $m \times n$ -Matrix, $b \in \mathbb{R}^n$ und $f(x) := Ax + b \ (x \in \mathbb{R}^n)$. Sei $x_0 \in \mathbb{R}^n$:

$$f(x_0 + h) - f(x_0) - Ah = A(x_0 + h) + b - (Ax_0 + b) - Ah = 0$$

f ist also in x_0 differenzierbar und $f(x_0) = A \Rightarrow x_0 \in \mathbb{R}^n$ beliebig $\Rightarrow f$ ist auf \mathbb{R}^n differenzierbar und $\forall x \in \mathbb{R}^n$: f'(x) = A.

19.3 Die Kettenregel (ohne Beweis): $f: D \to \mathbb{R}^m$ sei in $x_0 \in D$ differenzierbar. Es sei $\tilde{D} \subseteq \mathbb{R}^m$ offen, $f(D) \subseteq \tilde{D}$ und $g: \tilde{D} \to \mathbb{R}^p$ sei differenzierbar in $y_0 := f(x_0)$. Dann ist

$$\phi \coloneqq g \circ f \colon D \to \mathbb{R}^p$$

in x_0 differenzierbar und

$$\phi'(x_0) = (g \circ f)'(x_0) = \underbrace{g'(f(x_0)) \cdot f'(x_0)}_{\text{Produkt v. Matrizen!}}$$

Wichtigster Fall: p = 1, also $g = g(z_1, \dots, z_m)$ reellwertig. Dann: $\phi \colon D \to \mathbb{R}$,

$$\phi(x) = g(f(x)) = g(f_1(x), f_2(x), \dots, f_m(x)) = \phi(x_1, \dots, x_n)$$

$$\stackrel{19.3}{\Longrightarrow} \operatorname{grad} \phi(x) = \phi'(x) = g'(f(x)) \cdot f'(x) = \operatorname{grad} g(f(x)) \cdot J_f(x)$$

$$= (g_{z_1}(f(x)), g_{z_2}(f(x)), \dots, g_{z_m}(f(x))) \cdot \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \dots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \dots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}$$

Dann:

$$\phi_{x_1}(x) = g_{z_1}(f(x)) \frac{\partial f_1}{\partial x_1}(x) + g_{z_2} \frac{\partial f_2}{\partial x_1}(x) + \dots + g_{z_m} \frac{\partial f_m}{\partial x_1}(x)$$

Allgemein $\forall j \in \{1, \dots, n\}$:

$$\phi_{x_j}(x) = g_{z_1}(f(x)) \frac{\partial f_1}{\partial x_j}(x) + g_{z_2} \frac{\partial f_2}{\partial x_j}(x) + \dots + g_{z_m} \frac{\partial f_m}{\partial x_j}(x)$$

Beispiele:

a)
$$n = 2$$
, $m = 3$, $p = 1$: $\phi(x, y) = g(x^2y, xy, x\sin y)$, $(g = g(z_1, z_2, z_3))$

$$\phi_x(x, y) = g_{z_1}(x^2y, xy, x\sin y) \cdot 2xy + g_{z_2}(x^2y, xy, x\sin y) \cdot y + g_{z_3}(x^2y, xy, x\sin y) \cdot \sin y$$

$$\phi_x(x, y) = g_{z_1}(x^2y, xy, x\sin y) \cdot x^2 + g_{z_2}(x^2y, xy, x\sin y) \cdot x + g_{z_3}(x^2y, xy, x\sin y) \cdot x\cos y$$

b) Gegeben: $f \colon \mathbb{R}^2 \to \mathbb{R}$. Polarkoordinaten:

$$x = r\cos\varphi, \ y = r\sin\varphi;$$

Sei
$$u(r,\varphi) := f(r\cos\varphi, r\sin\varphi)$$

$$u_r(r,\varphi) = f_x(r\cos\varphi, r\sin\varphi)\cos\varphi + f_y(r\cos\varphi, r\sin\varphi)\sin\varphi$$

$$u_\varphi(r,\varphi) = f_x(r\cos\varphi, r\sin\varphi)(-r\sin\varphi) + f_y(r\cos\varphi, r\sin\varphi)r\cos\varphi$$

Implizit definierte Funktionen

Motivation:

a) $f(x,y) = 2x^3 + y$; $f(x,y) = 0 \iff y = -2x^3$. Setzt man $g(x) := -2x^3$, so gilt $\forall x \in \mathbb{R}$:

$$f(x, g(x)) = 0.$$

Man sagt: "Die Gleichung f(x,y) = 0 kann nach y aufgelöst werden in der Form y = g(x)" oder "durch die Gleichung f(x,y) = 0 wird eine Funktion f definiert mit f(x,g(x)) = 0".

Also $\forall x \in \mathbb{R}$: 0 = f(x, g(x)). Differenzieren nach x:

$$0 = f_x(x, g(x)) \cdot 1 + f_y(x, g(x)) \cdot g'(x).$$

$$\Rightarrow g'(x) = -\frac{f_x(x,g(x))}{f_y(x,g(x))}.$$

b) Auch in Fällen, in denen keine "formelmäßige" (also explizite) Auflösung der Gleichung f(x,y) = nach y möglich ist, kann manchmal die Existenz einer implizit definierten Funktion g gesichert werden, also die Existenz einer Funktion g mit f(x,g(x)) = 0.

Beispiel: $f(x,y) = y + xy^2 - e^{xy}$. Unten werden wir sehen: $\exists \delta > 0$ und genau eine differenzierbare Funktion $g: (-\delta, \delta) \to \mathbb{R}$ mit $\forall x \in (-\delta, \delta)$:

$$f(x, g(x)) = 0$$
 und $g(0) = 1$.

Frage: Was ist g'(0)?

$$0 = f(x, g(x)) \quad \forall x \in (-\delta, \delta).$$

Differenzieren nach $x: 0 = f_x(x, g(x)) \cdot 1 + f_y(x, g(x)) \cdot g'(x) \Longrightarrow_{x=0} 0 = f_x(0, 1) + f_y(0, 1)g'(0)$.

$$f_x = y^2 - ye^{xy} \Rightarrow f_x(0, 1) = 0,$$

 $f_y = 1 + 2xy - xe^{xy}, \ f_y(0, 1) = 1;$

also: g'(0) = 0.

19.4 Spezialfall (ohne Beweis): Sei n = 2, $f \in C^1(D, \mathbb{R})$, $(x_0, y_0) \in D$, $f(x_0, y_0) = 0$ und $f_y(x_0, y_0) \neq 0$. Dann existiert ein $\delta > 0$ und genau eine stetig differenzierbare Funktion

$$g: (x_0 - \delta, x_0 + \delta) \to \mathbb{R}$$

mit $g(x_0) = y_0$ und $\forall x \in (x_0 - \delta, x_0 + \delta)$: f(x, g(x)) = 0 ("g wird durch die Gleichung f(x, y) = 0 implizit definiert").

Zurück zu obigem Beispiel: Es ist f(0,1) = 0 und $f_y(0,1) = 1 \neq 0$. Also existiert ein $\delta > 0$ und genau eine stetig differenzierbare Funktion $g: (-\delta, \delta) \to \mathbb{R}$ mit g(0) = 1 und $\forall x \in (-\delta, \delta): f(x, g(x)) = 0$.

Noch ein Beispiel: $f(x,y) = e^{\sin(xy)} + x^2 - 2y - 1$.

Beh.: $\exists \delta > 0$ und genau eine stetig differenzierbare Funktion $g: (-\delta, \delta) \to \mathbb{R}$ mit $\forall x \in (-\delta, \delta)$:

$$f(x, g(x)) = 0$$
 und $g(0) = 0$.

Beweis: $x_0 = y_0 = 0$. f(0,0) = 0;

$$f_y = e^{\sin(xy)}\cos(xy)x - 2$$
, $f_y(0,0) = -2 \neq 0$.

Behauptung folgt aus 19.4. Berechne g'(0): $\forall x \in (-\delta, \delta)$

$$0 = f(x, g(x))$$

Differenzieren nach x: $0 = f_x(x, g(x)) \cdot 1 + f_y(x, g(x)) \cdot g'(x)$

$$\stackrel{x=0}{\Longrightarrow} 0 = f_x(0,0) + f_y(0,0)g'(0) = f_x(0,0) - 2g'(0).$$

$$f_x = e^{\sin(xy)}\cos(xy) \cdot y + 2x, f_x(0,0) = 0 \Rightarrow g'(0) = 0.$$

Definition: Sei $x_0 \in \mathbb{R}^n$ und $U \subseteq \mathbb{R}^n$. U heißt **Umgebung von** x_0

$$:\iff \exists \delta > 0: \ U_{\delta}(x_0) \subseteq U.$$

Im Folgenden seien $n, p \in \mathbb{N}, \emptyset \neq D \subseteq \mathbb{R}^{n+p}, D$ offen und $f = (f_1, \dots, f_p) \in C^1(D, \mathbb{R}^p)$.

Die Punkte in D schreiben wir in der Form (x, y), wobei $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ und $y = (y_1, \dots, y_p) \in \mathbb{R}^p$, also $(x, y) = (x_1, \dots, x_n, y_1, \dots, y_p)$

$$\frac{\partial f}{\partial x} = \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial x_1} & \dots & \frac{\partial f_p}{\partial x_n} \end{pmatrix}}_{p \times n\text{-Matrix}}, \qquad \frac{\partial f}{\partial y} = \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \dots & \frac{\partial f_1}{\partial y_p} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial y_1} & \dots & \frac{\partial f_p}{\partial y_p} \end{pmatrix}}_{p \times p\text{-Matrix}}$$

Dann: $f'(x,y) = J_f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) (p \times (n+p)\text{-Matrix})$

19.5 Satz über implizit definierte Funktionen (ohne Beweis): Sei $(x_0, y_0) \in D$, $f(x_0, y_0) = 0$ und det $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Dann existiert eine offene Umgebung $U \subseteq \mathbb{R}^n$ von x_0 und genau eine Funktion $g: U \to \mathbb{R}^p$ mit:

- $\bullet \ g(x_0) = y_0$
- $\forall x \in U: (x, g(x)) \in D$
- $\forall x \in U$: f(x, g(x)) = 0
- $\forall x \in U$: $\det \frac{\partial f}{\partial y}(x, g(x)) \neq 0$
- $g \in C^1(U, \mathbb{R}^p)$ und $\forall x \in U : g'(x) = -\left(\frac{\partial f}{\partial y}(x, g(x))\right)^{-1} \cdot \frac{\partial f}{\partial x}(x, g(x)).$

Zusatz: ist $f \in C^l(D, \mathbb{R}^p)$, so ist $g \in C^l(U, \mathbb{R}^p)$.

Beispiele:

a)
$$D = \mathbb{R}^3 \ (n = 2, p = 1)$$

$$f(x, y, z) = x^4 + 2x\cos y + \sin z$$

Zeige: es existiert eine offene Umgebung $U \subseteq \mathbb{R}^2$ von (0,0) und genau eine Funktion $g \colon U \to \mathbb{R}$ mit $\forall (x,y) \in U$:

$$g(0,0) = 0$$
 und $f(x, y, g(x, y)) = 0$.

Berechne g'(0,0). Lösung: $(x_0, y_0, z_0) = (0,0,0)$

$$f(0,0,0) = 0 \checkmark$$
, $f_z = \cos z$, $f_z(0,0,0) = 1 \neq 0 \checkmark$

Behauptung folgt aus 19.5. Also $\forall (x,y) \in U$:

$$0 = f(x, y, g(x, y)) = 0 \tag{*}$$

Differenzieren von (*) nach x:

$$0 = f_x(x, y, g(x, y)) \cdot 1 + f_y(x, y, g(x, y)) \cdot 0 + f_z(x, y, g(x, y)) \cdot g_x(x, y)$$

 $\Rightarrow 0 = f_x(0,0,0) + f_z(0,0,0)f_x(0,0)$. Differenzieren von (*) nach y:

$$0 = f_x(x, y, g(x, y)) \cdot 0 + f_y(x, y, g(x, y)) \cdot 1 + f_z(x, y, g(x, y)) \cdot g_y(x, y)$$

$$\Rightarrow 0 = f_y(0,0,0) + f_z(0,0,0)f_y(0,0).$$

$$\implies g_x(0,0) = -f_x(0,0,0), \ g_y(0,0) = -f_y(0,0,0),$$

$$f_x = 4x^3 + 2\cos y, f_y = -2x\sin y$$

Daraus folgt: $f_x(0,0,0) = 2$, $f_y(0,0,0) = 0 \Rightarrow g'(0,0) = (-2,0)$.

b) Zeige: es existiert eine Umgebung $U \subseteq \mathbb{R}^2$ von (0,0) und eine stetig differenzierbare Funktion $g \colon \to \mathbb{R}$ mit $\forall (x,y) \in U \colon$

$$g(0,e) = 2$$
 und $y^2 + xg(x,y) + (g(x,y))^2 - e^{g(x,y)} = 4$

Berechne $g_x(0,e)$. Lösung: $f(x,y,z) := y^2 + xz + z^2 - e^z - 4$, $(x_0,y_0,z_0) = (0,e,2)$.

$$f(x_0, y_0, z_0) = e^2 + 0 + 4 - e^2 - 4 = 0$$

$$f_z = x + 2z - e^z$$
, $f_z(0, e, 2) = 0 + 4 - e^2 \neq 0$ \checkmark

Behauptung folgt aus 19.5. Es ist $\forall (x, y) \in U$:

$$4 = y^{2} + xg(x,y) + g(x,y)^{2} - e^{g(x,y)}$$

Differenzieren nach x:

$$0 = g(x,y) + xg_x(x,y) + 2g(x,y)g_x(x,y) - e^{g(x,y)}g_x(x,y)$$

$$\Rightarrow 0 = 2 + 4g_x(0, e) - e^2g_x(0, e) = 2 + (4 - e^2)g_x(0, e) \Rightarrow g_x(0, e) = \frac{2}{e^2 - 4}$$

19.6 Der Umkehrsatz (ohne Beweis): Sei $D \subseteq \mathbb{R}^n$ offen und $f \in C^1(D, \mathbb{R}^n)$. Ist $x_0 \in D$ und det $f'(x_0) \neq 0$, so existiert eine offene Umgebung $U \subseteq D$ von x_0 :

- a) f(U) ist offen;
- b) f ist auf U injektiv,
- c) $f^{-1}: f(U) \to U$ ist in $C^1(f(U), \mathbb{R}^n)$, mit $\det f'(x) \neq 0 \ \forall x \in U$ und

$$(f^{-1})'(y) = (f'(x))^{-1} \quad \forall y = f(x) \ (x \in U).$$

d.h.
$$(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1} (y \in f(U)).$$

Beispiele:

a) $D = \mathbb{R}^2$, $f(x,y) = (x\cos y, x\sin y)$

$$f'(x,y) = \begin{pmatrix} \cos y & -x\sin y \\ \sin y & x\cos y \end{pmatrix}$$

 $\det f'(x,y) = x\cos^2 y + x\sin^2 y = x \neq 0 \iff x \neq 0.$

 $\tilde{D} := \{(x,y) \in \mathbb{R}^2 : x \neq 0\}$. Sei $(x_0,y_0) \in \tilde{D} \stackrel{19.6}{\Longrightarrow} \exists$ offene Umgebung U von (x_0,y_0) : f ist auf U injektiv, f ist aber auf \tilde{D} nicht injektiv:

$$f(x,y) = f(x,y + 2k\pi) \quad \forall k \in \mathbb{Z}$$

$$(x_0, y_0) := (1, \frac{\pi}{2}). \ f(1, \frac{\pi}{2}) = (0, 1), \text{ also } f^{-1}(0, 1) = (1, \frac{\pi}{2})$$

$$(f^{-1})'(0,1) = (f'(1,\frac{\pi}{2}))^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

b)
$$D = \mathbb{R}^3$$
, $f(x, y, z) = (yz, xz, xy)$, $f'(x, y, Z) = \begin{pmatrix} 0 & z & y \\ z & 0 & x \\ y & x & 0 \end{pmatrix}$

$$(x_0, y_0, t_0) := (1, 1, 1), \quad \det f'(1, 1, 1) = \det \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = 2.$$

Nach 19.6 existiert eine offene Umgebung U von (1,1,1), so dass f auf U injektiv ist. Es ist f(1,1,1)=(1,1,1), also

$$(f^{-1})'(1,1,1) = (f'(1,1,1))^{-1} = \dots = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

Kapitel 20

Integration im \mathbb{R}^n

Alle Sätze i.d. §en geben wir ohne Beweis an!

Sind $[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n]$ kompakte Intervalle in \mathbb{R} (also $a_j \leq b_j$ $(j = 1, \ldots, n)$), so heißt

$$I := [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

ein kompaktes Intervall im \mathbb{R}^n .

 $|I| := (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$ Inhalt von I (Volumen von I). ($|I| = 0 \iff \exists j \in \{1, \ldots, n\} : a_j = b_j$).

Zu jedem $[a_j,b_j]$ sei eine Zerlegung Z_j von $[a_j,b_j]$ gegeben. Dann heißt

$$Z := Z_1 \times Z_2 \times \dots Z_n$$

eine **Zerlegung von** I.

Ein Teilintervall \tilde{I} von I bezüglich Z hat die Form

$$T_1 \times T_2 \times \ldots \times T_m$$

wobei T_j ein Teilintervall bezüglich Z_j ist.

Seien I_1, \ldots, I_m die Teilintervalle bzgl. Z. Dann:

$$I = I_1 \cup I_2 \cup \ldots \cup I_m, \quad |I| = |I_1| + \ldots + |I_m|$$

Definition: Sei I wie oben und $f: I \to \mathbb{R}$ sei beschränkt. Sei Z eine Zerlegung von I mit den Teilintervallen I_1, \ldots, I_m .

 $m_j := \inf f(I_j), M_j := \sup f(I_j) \ (j = 1, \dots, n).$

$$s_f(Z) \coloneqq \sum_{j=1}^m m_j |I_j|$$
 Untersumme von f bzgl. Z .

$$S_f(Z) \coloneqq \sum_{j=1}^m M_j |I_j|$$
 Obersumme von f bzgl. Z .

Satz 20.1: I und f seien wie oben und Z und \tilde{Z} seien Zerlegungen von I.

a) Ist
$$Z \subseteq \tilde{Z} \Rightarrow s_f(Z) \le s_f(\tilde{Z}), S_f(Z) \ge S_f(\tilde{Z})$$

b)
$$\left(\inf f(I)\right)|I| \le s_f(Z) \le S_f(\tilde{Z}) \le \left(\sup f(I)\right)|I|$$

Definition: I und f seien wie oben.

$$\int_{I} f dx := \int_{I} f(x) dx := \sup \{ s_{f}(Z) : Z \text{ Zerlegung von } I \}$$

$$\int_{I} f dx := \int_{I} f(x) dx := \sup \{ s_{f}(Z) : Z \text{ Zerlegung von } I \}$$

Aus 20.1: $\int_I f dx \le f_I f dx$. f heißt **integrierbar über** I (ib) $\iff \int_I f dx = f_I f dx$. In diesem Fall heißt

$$\int_I f dx \coloneqq \int_I f(x) dx \coloneqq \int_I f dx$$

das Integral von f über I man schreibt:

$$f \in R(I)$$
.

Satz 20.2: I sei ein kompaktes Intervall im \mathbb{R}^m , $f, g: I \to \mathbb{R}$ seien beschränkt und es seien $\alpha, \beta \in \mathbb{R}$.

a) Sind $f, g \in R(I)$, so auch $\alpha f + \beta g$, fg und |f|. Weiter:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

und

$$\left| \int_{I} f(x) dx \right| \le \int_{I} |f(x)| dx.$$

b) Gilt $f, g \in R(I)$ und $f \leq g$ auf I, so ist $\int_I f dx \leq \int_I g dx$.

- c) Sind $f, g \in R(I)$ und gilt für ein $\alpha > 0$ dass $|g(x)| \ge \alpha$ $(x \in I)$, so ist $\frac{f}{g} \in R(I)$.
- d) $C(I,\mathbb{R}) \subseteq R(I)$

20.3 Satz von Fubini: Seien $p, q \in \mathbb{N}$, n = p + q (also $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$). I_1 sei ein kompaktes Intervall im \mathbb{R}^q , es sei $I := I_1 \times I_2 \subseteq \mathbb{R}^n$ und $f \in R(I)$.

Punkte in I bezeichnen wir mit (x, y), wobei $x \in I_1$ und $y \in I_2$.

• Für jedes feste y I_2 sei die Funktion $x \mapsto f(x,y)$ integrierbar über I_1 und es sei $g(y) := \int_{I_1} f(x,y) dx$. Dann: $g \in R(I_2)$ und

$$\int_{I} f(x,y)d(x,y) = \int_{I_{2}} g(y)dy = \int_{I_{2}} \left(\int_{I_{1}} f(x,y)dx \right) dy$$

• Für jedes feste x I_1 sei die Funktion $y \mapsto f(x,y)$ integrierbar über I_2 und es sei $g(x) := \int_{I_2} f(x,y) dy$. Dann: $g \in R(I_1)$ und

$$\int_{I} f(x,y)d(x,y) = \int_{I_{1}} g(x)dx = \int_{I_{1}} \left(\int_{I_{2}} f(x,y)dy \right) dx$$

Folgerung 20.4: Sei $I = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$ und $f \in C(I)$. Dann:

$$\int_{I} f(x)dx = \int_{I} f(x_{1}, \dots, x_{n})d(x_{1}, \dots, x_{n})$$

$$= \int_{a_{1}}^{b_{1}} \left(\dots \int_{a_{n-1}}^{b_{n-1}} \left(\int_{a_{n}}^{b_{n}} f(x_{1}, \dots, x_{n}) dx_{n} \right) dx_{n-1} \dots \right) dx_{1}$$

wobei die Reihenfolge der Integrationen beliebig vertauscht werden darf.

Beispiele:

a)
$$I = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$$

$$\int_{I} \sin(x+y)d(x,y) = \int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\frac{\pi}{2}} \sin(x+y)dy\right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left[-\cos(x+y)\right]_{y=0}^{y=\frac{\pi}{2}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left(-\cos\left(x+\frac{\pi}{2}\right) + \cos(x)\right) dx$$

$$= \left[-\sin\left(x+\frac{\pi}{2}\right) + \sin x\right]_{0}^{\frac{\pi}{2}}$$

$$= -\sin(\pi) + \sin\left(\frac{\pi}{2}\right) - \left(-\sin\left(\frac{\pi}{2}\right) + \sin 0\right) = 1 + 1 = 2$$

b)
$$I = [0, 2] \times [0, 1] \times [0, 1]$$

$$\int_{I} (x^{2}z + yxz) d(x, y, z) = \int_{0}^{1} \left(\int_{0}^{2} \left(\int_{0}^{1} \left(x^{2}z + yxz \right) dz \right) dx \right) dy$$

$$= \int_{0}^{1} \left(\int_{0}^{2} \left[\frac{1}{2}x^{2}z^{2} + \frac{1}{2}yxz^{2} \right]_{z=0}^{z=1} dx \right) dy$$

$$= \int_{0}^{1} \left(\int_{0}^{2} \left(\frac{1}{2}x^{2} + \frac{1}{2}yx \right) dy \right) dx$$

$$= \int_{0}^{1} \left[\frac{1}{2}x^{2}y + \frac{1}{4}y^{2}x \right]_{y=0}^{y=2} dx$$

$$= \int_{0}^{1} \left(x^{2} + x \right) dx$$

$$= \frac{1}{3}x^{3} + \frac{1}{2}x^{2} \Big|_{0}^{1} = \frac{1}{3} + \frac{1}{2} = \frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

c) Sei $I = [a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2$, $f \in C[a_1, b_1]$ und $g \in C[a_2, b_2]$.

$$\begin{split} \int_{I} f(x)g(y)d(x,y) &= \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x)g(y)dy \right) \\ &= \int_{a_{1}}^{b_{1}} f(x) \left(\int_{a_{2}}^{b_{2}} g(y)dy \right) dx \\ &= \left(\int_{a_{1}}^{b_{1}} f(x)dx \right) \left(\int_{a_{2}}^{b_{2}} g(y)dy \right) \end{split}$$

Sei $B \subseteq \mathbb{R}^n$ beschränkt. Wie kann man B einen Inhalt zuordnen?

$$c_B(x) := \begin{cases} 1, & x \in B \\ 0, & x \notin B \end{cases}$$
 charakteristische Funktion von B

Wähle ein kompaktes Intervall I mit $B \subseteq I$.

Sei Z eine Zerlegung von I mit den Teilintervallen I_1, \dots, I_m

$$\inf c_B(I_j) = \begin{cases} 1, & \text{falls } I_j \subseteq B \\ 0, & \text{falls } I_j \not\subseteq B \end{cases}$$

Damit folgt:

•
$$s_{c_B}(Z) = \sum_{j:I_i \subseteq B} |I_j|$$

$$\sup c_B(I_j) = \begin{cases} 1, & \text{falls } I_j \cap B \neq \emptyset \\ 0, & \text{falls } I_j \cap B = \emptyset \end{cases}$$

•
$$S_{c_B}(Z) = \sum_{j:I_j \cap B \neq 0} |I_j|$$

$$\underline{v}(B) \coloneqq \int_I c_B(x) dx \quad \text{innerer Inhalt von } B$$

$$\overline{v}(B) \coloneqq \int_I c_B(x) dx \quad \text{\"außerer Inhalt von } B$$

• B heißt messbar (mb) : $\iff \underline{b}(B) = \overline{b}(B) \iff c_B \in R(I)$. In diesem Fall: $|B| \coloneqq \int_I c_B(x) dx \text{ Inhalt von } B.$

Diese Definitionen sind unabhängig von der Wahl von I!

Beispiel: Sei I ein beliebiges kompaktes Intervall im \mathbb{R}^n .

- a) $B = \emptyset$. Dann $c_B(x) = 0 \ \forall x \in I$. Also ist $s_{c_B}(Z) = S_{c_B}(Z) = 0$ für jede Zerlegung Z. Somit ist \emptyset messbar und $|\emptyset| = 0$.
- b) Sei $B \subseteq \mathbb{R}^n$ ein kompaktes Intervall. Wähle I = B. Mit obigen Bezeichnungen:

$$s_{c_B}(Z) = \underbrace{\sum_{j=1}^m |I_j|}_{=|I|} = S_{c_B}(Z)$$
 für jede Zerlegung Z .

Also ist B messbar und |B| = |I| (= frühere Definition des Inhalts von I).

c)
$$(n=1)$$
 $B\coloneqq [0,1]\cap \mathbb{Q}$ $(I=[0,1])$

$$c_B(x) = \begin{cases} 1, & x \in [0, 1] \cap \mathbb{Q} \\ 0, & \text{sonst.} \end{cases}$$

 $\xrightarrow{HMI} c_B \notin R(I)$. B ist also nicht messbar.

Definition: Sei $B \subseteq \mathbb{R}^n$ messbar und $f: B \to \mathbb{R}$ beschränkt.

$$f_B(x) := \begin{cases} f(x), & x \in B \\ 0, & x \notin B \end{cases}$$

Wähle ein kompaktes Intervall I mit $B \subseteq I$, also $f_B = f \cdot c_B$ auf I.

f heißt **über** B **integrierbar**: \iff $f_B \in R(I)$. In diesem Fall schreiben wir: $f \in R(B)$ und

$$\int_{B} f dx := \int_{B} f(x) dx :=_{I} f_{B}(x) dx$$

heißt Integral von f über B.

Diese Definitionen sind unabhängig von der Wahl von I. Es gilt also für eine beschränkte Menge $B \subseteq \mathbb{R}^n$:

$$B \text{ ist messbar } \iff c_B \in R(B)$$

In diesem Fall: $|B| = \int_B 1 dx =: \int_B dx$.

Satz 20.5: Seien $A, B \subseteq \mathbb{R}^n$ messbar und $\alpha, \beta \in \mathbb{R}$.

- a) Ist $f \in C(B, \mathbb{R})$ beschränkt, so ist $g \in R(B)$.
- b) Seien $f, g \in R(B)$. Dann:
 - (i) $\alpha f + \beta g \in R(B)$, $fg, |f| \in R(B)$ $\int_{B} (\alpha f + \beta g) dx = \alpha \int_{B} f dx + \beta \int_{B} g dx,$ $|\int_{B} f dx| \leq \int_{B} |f| dx$
 - (ii) Ist $f \subseteq g$ auf B, so ist $\int_B f dx \leq \int_B g dx$.
 - (iii) Existiert ein $\gamma > 0$ mit $|g(x)| \ge \gamma$ $(x \in B)$, so ist $\frac{f}{g} \in R(B)$.
- c) (i) $A \cup B$, $A \neg B$ und $A \setminus B$ sind messbar
 - (ii) aus $A \subseteq B$ folgt $|A| \le |B|$
 - (iii) $f \in R(A \cup B) \iff f \in R(A) \cap R(B)$. In diesem Fall:

$$\int_{A \cup B} f dx = \int_A f dx + \int_B f dx - \int_{A \cap B} f dx$$

Insbesondere: $|A \cup B| = |A| + |B| - |A \cap B|$

(iv) Seien $f, g \in R(B)$ und $g \leq f$ auf B.

$$M_{f,g} := \left\{ (x,y) \in \mathbb{R}^{n+1} : x \in B, g(x) \le y \le f(x) \right\}.$$

Dann ist $M_{f,g}$ messbar (im \mathbb{R}^{n+1}) und $|M_{f,g}| = \int_B (f-g) dx$. Ist g = 0, so ist

$$|M_{f,0}| = \int_B f(x)dx.$$

Beispiele:

a) $K:=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq r^2\}\ (r>0);\ B:=[-r,r]\subseteq\mathbb{R},\ B$ ist messbar; Für $x\in B$ sei

$$f(x) \coloneqq \sqrt{r^2 - x}, \quad g(x) \coloneqq -\sqrt{r^2 - x^2}$$

Damit: $K = M_{f,q}, f, g \in R(B)$.

$$g(x) \le \gamma \le f(x) \iff -\sqrt{r^2 - x^2} \le \gamma \le \sqrt{r^2 - x^2}$$
$$\iff |\gamma| \le \sqrt{r^2 - x^2} \iff \gamma^2 \le r^2 - x^2$$

Also ist K messbar und

$$|K| = \int_{B} (f - g) dx = \int_{-r}^{r} 2\sqrt{r^2 - x^2} dx \stackrel{HMI}{=} \pi r^2$$

b) $K \coloneqq \{(x,y,z)\colon 0 \le x \le 1, 0 \le y \le 1, z \le 1-y^2, z \ge 0\}.$ $B \coloneqq [0,1] \times [0,1]$ ist messbar. Für $(x,y) \in B$ sei

$$f(x,y) \coloneqq 1 - y^2$$
.

Dann: $K = M_{f,0}, f, 0 \in R(B)$. Also ist K messbar und

$$|K| = \int_{B} f(x, y)d(x, y) = \int_{0}^{1} \left(\int_{0}^{1} \left(1 - y^{2} \right) dy \right) dx$$
$$= \int_{0}^{1} \left[y - \frac{1}{3} y^{3} \right]_{y=0}^{y=1} dx$$
$$= \int_{0}^{1} \left(1 - \frac{1}{3} \right) dx = \frac{2}{3}$$

20.6 Prinzip von Cavalieri: Es sei $B \subseteq \mathbb{R}^{n+1}$ messbar. Für Punkte im \mathbb{R}^{n+1} schreiben wir (x, z) mit $x \in \mathbb{R}^n$ und $z \in \mathbb{R}$. Es seien $a, b \in \mathbb{R}$ so dass $a \le z \le b \ \forall (x, z) \in B$.

Für $Z \in [a, b]$ sei

$$Q(z) := \{ x \in \mathbb{R}^n \colon (x, z) \in B \}.$$

Es sei für alle $z \in [a, b]$ Q(z) messbar. Dann ist $z \mapsto |Q(z)|$ integrierbar über [a, b] und

$$|B| = \int_a^b |Q(z)| dz.$$

Beispiele:

a) $B := \{(x, y, z) \in \mathbb{R}^3 := x^2 + y^2 + z^2 \le r^2\}$ (r > 0) Kugel um (0, 0, 0) mit Radius r. Hier: a = -r, b = r. Für $z \in [-r, r]$ ist

$$Q(z) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2 - z^2\}$$

die Kreisscheibe um (0,0) mit Radius $\sqrt{r^2-z^2}$. $|Q(z)|=\pi\,(r^2-z^2)$. Dann:

$$|B| = \int_{-r}^{r} \pi \left(r^2 - z^2\right) dz = \frac{4}{3}\pi r^3.$$

b) $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^1 \le 4 - z, z \in [b, 4]\}$ Rotationsparaboloid. a = 0, b = 4; Für $z \in [0, 4]$:

$$Q(z) \coloneqq \left\{ (x,y) \in \mathbb{R}^2 \colon x^2 + y^2 \le 4 - z \right\}$$

 $|Q(z)| = \pi (4-z) \Rightarrow |B| = \int_0^3 \pi (4-z) dz = 8\pi$ Rotationskörper.

Definition: Seien $a, b \in \mathbb{R}$, a < b, $f, g \in C[a, b]$ und $f \leq g$ auf [a, b].

$$B \coloneqq \left\{ (x,y) \in \mathbb{R}^2 \colon x \in [a,b], f(x) \le y \le g(x) \right\}$$

Normalbereich bzgl. der x-Achse. B ist messbar (20.5 c)(iv))! Sei $h \in C(B, \mathbb{R})$. Wir berechnen $\int_B h(x,y)d(x,y)$.

$$m\coloneqq \min f\left([a,b]\right),\ M\coloneqq \max f\left([a,b]\right),\ I\coloneqq [a,b]\times [m,M].$$

Dann:

$$\begin{split} \int_B h(x,y)d(x,y) &= \int_I h_B(x,y)d(x,y) \\ &\stackrel{Fubini}{=} \int_a^b \left(\int_m^M h_B(x,y)dy \right) dx \\ &= \int_a^b \left(\int_{f(x)}^{g(x)} h(x,y)dy \right) dx \end{split}$$

Rotationskörper: Sei a < b und $f \in R[a, b]$ und $f \ge 0$ auf [a, b].

Der Graph von f rotiert um die x-Achse \to Rotationskörper.

$$B = \left\{ (x,y,z) \in \mathbb{R}^3 : y^2 + z^2 \le f(x)^2 \right\}$$

Also: $|Q(x)| = \pi f(x)^2$. Somit: $|B| = \pi \int_a^b f(x)^2 dx$.

Beispiel: $a = 0, b = 4; f(x) = \sqrt{3 - x}$ (s. Bsp. b)

$$|B| = \pi \int_0^4 (4-x)dx = 8\pi$$

Definition: a, b, f und g seien wie oben.

$$B := \left\{ (x, y) \in \mathbb{R}^2 \colon y \in [a, b], f(x) \le x \le g(y) \right\}$$

Normalbereich bzgl. der y-**Achse**. Wie oben: für $h \in C(B, \mathbb{R})$:

$$\int_{B} h(x,y)d(x,y) = \int_{a}^{b} \left(\int_{f(y)}^{g(y)} h(x,y)dx \right) dy$$

Beispiele:

a) $B = \{(x,y) \in \mathbb{R}^2 \colon x \in [0,1], \sqrt{x} \le y \le 2-x\}$ Normalbereich bzgl. der x-Achse

$$\int_{B} (x+y)d(x,y) = \int_{0}^{1} \left(\int_{\sqrt{x}}^{2-x} (x+y)dy \right) dx$$

$$= \int_{0}^{1} \left[xy + \frac{1}{2}y^{2} \right]_{\sqrt{x}}^{2-x} dx$$

$$= \int_{0}^{1} \left(x(2-x) + \frac{1}{2}(2-x)^{2} - x\sqrt{x} - \frac{1}{2}x \right) dx$$

$$= \dots = \frac{71}{60}.$$

b) $B = \{(x,y) \in \mathbb{R}^2 : y \in [0,1], 0 \le x \le y^2\}$ Normalbereich bzgl. der y-Achse. $f(y) = 0, g(y) = y^2$.

$$\int_{B} xyd(x,y) = \int_{0}^{1} \left(\int_{0}^{y^{2}} xydx \right) dy = \int_{0}^{1} \left[\frac{1}{2}x^{2}y \right]_{0}^{y^{2}} dy = \int_{0}^{1} \frac{1}{2}y^{5}dy = \frac{1}{12}$$

B ist auch Normalbereich bzgl. der x-Achse!

$$\int_{B} xyd(x,y) = \int_{0}^{1} \left(\int_{\sqrt{x}}^{1} xydy \right) dx = \int_{0}^{1} \left[\frac{1}{2} xy^{2} \right]_{y=\sqrt{x}}^{y=1} dx = \int_{0}^{1} \left(\frac{1}{2} x - \frac{1}{2} x^{2} \right) dx = \frac{1}{12}.$$

Sei $A\subseteq \mathbb{R}^2$ kompakt und messbar; $f,g\colon A\to \mathbb{R}$ seien stetig und es sei $f\le g$ auf A.

$$B := \left\{ (x, y, z) \in \mathbb{R}^3 \colon (x, y) \in A, f(x, y) \le z \le g(x, y) \right\}$$

Dann ist B messbar. Sei $h \in C(B, \mathbb{R})$:

$$\int_B h(x,y,z) d(x,y,z) \stackrel{Fubini}{=} \int_A \left(\int_{f(x,y)}^{g(x,y)} h(x,y,z) dz \right) d(x,y)$$

Beispiel: Sei f(x,y) = 0, g(x,y) = 1 - (x + y). Sei

$$A = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x + y \le 1\},$$

$$B = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \ge 0, x + y + z \le 1\}.$$

$$\int_{B} 2xyzd(x,y,z) = \int_{A} \left(\int_{0}^{1-(x+y)} 2xyzdz \right) d(x,y)$$

$$= \int_{A} \left[xyz^{2} \right]_{z=0}^{z=1-(x+y)} d(x,y)$$

$$= \int_{A} xy (1-(x+y))^{2} d(x,y) = \int_{0}^{1} \left(\int_{0}^{1-x} xy (1-(x+y))^{2} dy \right) dx$$

$$= \dots$$

Bemerkung: Sind $f \in R[a, b]$ und $g \in R[c, d]$, so gilt mit $I := [a, b] \times [c, d]$:

$$\int_{I} f(x)g(y)d(x,y) = \int_{a}^{b} \left(\int_{c}^{d} f(x)g(y)dy \right) dx$$
$$= \int_{a}^{b} f(x) \left(\int_{c}^{d} g(y)dy \right) dx$$
$$= \left(\int_{a}^{b} f(x)dx \right) \left(\int_{c}^{d} g(y)dy \right)$$

Beispiel: Sei c = a und d = b und $I = [a, b] \times [a, b]$.

$$\int_{I} e^{-(x^{2}+y^{2})} d(x,y) = \int_{I} e^{-x^{2}} e^{-y^{2}} d(x,y) = \left(\int_{a}^{b} e^{-x^{2}} dx \right)^{2}.$$

20.7 Substitutionsregel: Sei $G \subseteq \mathbb{R}^n$ offen, $g: G \to \mathbb{R}^n$ injektiv und stetig differenzierbar. Es sei $\forall z \in G$: det $g'(z) \neq 0$. Es sei $B \subseteq G$ kompakt und messbar, A := g(B) und $f \in C(A, \mathbb{R})$.

Dann ist A kompakt und messbar und

$$\int_{A} f(x)dx = \int_{B} f(g(x)) |\det g'(z)| dz$$

20.8 Polarkoordinaten (n=2): $x = r \cos \varphi$, $y = r \sin \varphi$ $(r = ||(x, y)|| = (x^2 + y^2)^{\frac{1}{2}})$

$$g(r,\varphi) := (r\cos\varphi, r\sin\varphi), \det g'(r,\varphi) = r$$

Ist $f \in C(A, \mathbb{R})$, so gilt:

$$\int_{A} f(x,y)d(x,y) = \int_{B} f(r\cos\varphi, r\sin\varphi) \cdot \underbrace{r}_{!} d(r,\varphi)$$

$$\stackrel{Fubini}{=} \int_{\varphi_{1}}^{\varphi_{2}} \left(\int_{R_{1}}^{R_{2}} f(r\cos\varphi, r\sin\varphi) rdr \right) d\varphi$$

Beispiele:

a)
$$A = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}$$
. Hier: $R_1 = 1, R_2 = 2, \varphi_1 = 0, \varphi_2 = 2\pi$. Also:

$$B=[1,2]\times[0,2\pi]$$

Bemerkung: g ist nicht injektiv auf B.

$$\int_{A} x \sqrt{x^{2} + y^{2}} d(x, y) = \int_{B} r \cos \varphi r \cdot r d(r, \varphi)$$

$$= \int_{0}^{2\pi} \left(\int_{1}^{2} r^{3} \cos \varphi dr \right) d\varphi$$

$$= \int_{0}^{2\pi} \left[\frac{1}{4} r^{4} \cos \varphi \right]_{r=1}^{r=2} d\varphi$$

$$= \int_{0}^{2\pi} \left(4 \cos \varphi - \frac{1}{4} \cos \varphi \right) d\varphi$$

$$= \frac{15}{4} \int_{0}^{2\pi} \cos \varphi d\varphi = 0$$

b) Für R > 0: $A_R := \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x^2 + y^2 \le R^2\}$. Hier; $R_1 = 0, R_2 = R$, $\varphi_1 = 0, \varphi_2 = \frac{\pi}{2}$. Also $B = [0, R] \times \left[0, \frac{\pi}{2}\right]$, Bem.: $\det g'(0, \varphi) = 0$.

$$\begin{split} \int_{A_R} e^{-(x^2+y^2)} d(x,y) &= \int_B e^{-r^2} r dr \\ &= \int_0^{\frac{\pi}{2}} \left(\int_0^R e^{-r^2} r dr \right) d\varphi \\ &= \frac{\pi}{2} \left[-\frac{1}{2} e^{-r^2} \right]_0^R \\ &= \frac{\pi}{2} \left(-\frac{1}{2} e^{-R^2} + \frac{1}{2} \right) = \underbrace{\frac{\pi}{4} \left(1 - e^{-R^2} \right)}_{=:\alpha(R)} \end{split}$$

Sei

$$Q(R) := [0, R] \times [0, R], \ \beta(R) := \int_{Q_R} e^{-(x^2 + y^2)} d(x, y).$$

Es ist $A_R \subseteq Q_R$ und $e^{-(x^2+y^2)} \ge 0$, also $\alpha(R) \le \beta(R)$. Es ist

$$\beta(R) = \int_0^R \left(\int_0^R e^{-x^2} e^{-y^2} dy \right) dx = \left(\int_0^R e^{-x^2} dx \right)^2.$$

 $\rho := \sqrt{2}R$. Dann: $\mathbb{Q}_R \subseteq A_\rho$. Somit: $\beta(R) \leq \alpha(\rho) = \alpha(\sqrt{2}R)$. Fazit $\forall R > 0$:

$$\alpha(R) \le \beta(R) \le \alpha(\sqrt{2}R)$$
.

 $\xrightarrow{R\to\infty} \frac{\pi}{4} = \lim_{R\to\infty} \beta(R)$. Fazit:

$$\int_0^\infty e^{-x^2} dx \text{ ist konvergent und } \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

20.9 Zylinderkoordinaten (n = 3):

$$y = r \cos \varphi$$

$$y = r \sin \varphi$$

$$z = z$$

$$g(r, \varphi, z) := (r \cos \varphi, r \sin \varphi, z), \det g'(r, \varphi, z)r.$$

 $A, B \subseteq \mathbb{R}$ seien wie in 20.7 und $f \in C(A, \mathbb{R})$:

$$\int_A f(x, y, z) d(x, y, z) = \int_B f(r \cos \varphi, r \sin \varphi, z) \cdot r d(r, \varphi, z)$$

Beispiele:

a) Seien R, h > 0; $A := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le R^2, 0 \le z \le h\}$. $B = [0, R] \times [0, 2\pi] \times [0, h]$

$$\begin{split} |A| &= \int_A 1 d(x,y,z) = \int_B r d(r,\varphi,z) \\ &= \int_0^h \left(\int_0^{2\pi} \left(\int_0^R r dr \right) d\varphi \right) dz = 2\pi h \left[\frac{1}{2} r^2 \right]_0^R = \pi R^2 h. \end{split}$$

b) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, 0 \le y \le x, z \in [0, 1]\}, B = [0, 1] \times [0, \frac{\pi}{4}] \times [0, 1].$

$$\begin{split} \int_{A} \left(x^2 + y^2 + z\right) d(x, y, z) &= \int_{B} \left(r^2 + z\right) r d(r, \varphi, z) \\ &= \int_{0}^{\frac{\pi}{4}} \left(\int_{0}^{1} \left(\int_{0}^{1} \left(r^3 + zr\right) dr\right) dz\right) d\varphi \\ &= \frac{\pi}{4} \int_{0}^{1} \left[\frac{1}{4} r^4 + \frac{1}{2} z r^2\right]_{0}^{1} dz \\ &= \frac{\pi}{4} \int_{0}^{1} \left(\frac{1}{4} + \frac{1}{2} z\right) dz = \frac{\pi}{8} \end{split}$$

c) $A := \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1, x^2 + y^2 \le \sqrt{z}\}.$

$$\int_{A} \left(4x^2z + 4y^2z\right) d(x,y,z) = \int_{B} 4r^2z r d(r,\varphi,z),$$

wobei $B = \{(r, \varphi, z) \colon 0 \le z \le 1, 0 \le r^2 \le \sqrt[4]{z}, 0 \le \varphi \le 2\pi\}$. Also:

$$\int_{A} (4x^{2}z + 4y^{2}z) d(x, y, z) = \int_{0}^{1} \left(\int_{0}^{\sqrt[4]{z}} \left(\int_{0}^{2\pi} 4r^{2}z d\varphi \right) dr \right) dz$$

$$= 2\pi \int_{0}^{1} \left[r^{4}z \right]_{r=0}^{r=\sqrt[4]{z}} dz$$

$$= 2\pi \int_{0}^{1} z^{2} dz = \frac{2\pi}{3}$$

Bemerkung: $B = \left\{ (r, \varphi, z) \colon (z, \varphi) \in [0, 1] \times [0, 2\pi], \underbrace{0}_{f(z, \varphi)} \leq r \leq \underbrace{\sqrt[4]{z}}_{g(z, \varphi)} \right\}.$

20.10 Kugelkoordinaten (n=3): Für $\varphi = [0, 2\pi], \vartheta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$r = \|(x,y,z)\| = \sqrt{x^2 + y^2 + z^2}, \ x = r\cos\varphi\cos\vartheta, \ y = r\sin\varphi\cos\vartheta, \ z = r\sin\vartheta$$

 $g(r, \varphi, \vartheta) := (r, \cos \varphi \cos \vartheta, r \sin \varphi \cos \vartheta, r \sin \vartheta), |\det g'(r, \varphi, \vartheta)| = r^2 \cos \vartheta. \text{ Sind } A, B \subseteq \mathbb{R}^3 \text{ wie in } 20.6 \text{ (also } A = g(B)), \text{ so gilt für } f \in C(A, \mathbb{R})$:

$$\int_A f(x, y, z) d(x, y, z) = \int_B f(g(r, \varphi, \vartheta)) \cdot r^2 \cos \vartheta d(r, \varphi, \vartheta).$$

Beispiel: Sei
$$B = \underbrace{\left[0,1\right]}_r \times \underbrace{\left[0,\frac{\pi}{2}\right]}_{\varphi} \times \underbrace{\left[0,\frac{\pi}{2}\right]}_{\vartheta}$$
 und

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 \colon x, y, z \ge 0, x^2 + y^2 + z^2 \le 1 \right\}.$$

Dann:

$$\begin{split} \int_A x \sqrt{x^2 + y^2 + z^2} d(x, y, z) &= \int_B r \cos \varphi \cos \vartheta r r^2 \cos \vartheta d(r, \varphi, \vartheta) \\ &= \int_B r^4 \cos^2 \vartheta \cos \varphi d(r, \varphi, \vartheta) \\ &= \int_0^1 \left(\int_0^{\frac{\pi}{2}} \left(\int_0^{\frac{\pi}{2}} r^4 \cos^2 \vartheta \cos \varphi d\varphi \right) d\vartheta \right) dr \\ &= \int_0^1 \left(\int_0^{\frac{\pi}{2}} r^4 \cos^2 \vartheta d\vartheta \right) dr \\ &= \frac{1}{5} \int_0^{\frac{\pi}{3}} \cos^2 \vartheta d\vartheta = \frac{\pi}{20}. \end{split}$$

Kapitel 21

Spezielle Differentialgleichungen 1. Ordnung

Definition: Es sei $\emptyset \neq D \subseteq \mathbb{R}^3$ und $f: D \to \mathbb{R}$ eine Funktion. Die Gleichung

$$f(x, y, y') = 0 \tag{*}$$

heißt eine **Differentialgleichung** (**Dgl.**) 1. Ordnung. Sind $x_0, y_0 \in \mathbb{R}$, so heißt

(A)
$$\begin{cases} f(x, y, y') = 0\\ y(x_0) = y_0 \end{cases}$$

ein Anfangswertproblem (AWP).

Ist $I \subseteq \mathbb{R}$ ein Intervall und $y \colon I \to \mathbb{R}$ eine Funktion, so heißt y eine **Lösung von** (*) auf $I : \iff y$ ist auf I differenzierbar, $(xy(x), y'(x)) \in D$ und $\forall x \in I \colon f(x, y(x), y'(x)) = 0$.

Ist y eine Lösung von (*) auf I, ist $x_0 \in I$ und $y(x_0) = y_0$, so heißt y eine **Lösung des** Anfangswertproblems (A).

Beispiel:

a)
$$D = \mathbb{R}^3$$
, $f(x, y, z)xy - z$; also $f(x, y(x), y'(x)) = 0 \iff y'(x) = xy(x)$. Dann ist
$$y(x)e^{\frac{1}{2}x^2}$$

eine Lösung der Differentialgleichung y'(x) = xy(x) auf \mathbb{R} .

b) $D = \mathbb{R}^3$, $f(x, y, z) :=^2 +1 - z$; also:

$$f(x, y, y') = 0 \iff y' = 1 + y^2.$$

Dann ist $y(x) = \tan x$ eine Lösung der Differentialgleichung $y' = 1 + y^2$ auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. $y(x) = \tan x$ ist Lösung des Anfangswertproblems

$$\begin{cases} y' = 1 + y^2 \\ y(0) = 0 \end{cases}$$

Differentialgleichungen mit getrennten Variablen

Satz 21.1 (ohne Beweis): $I_1, U_2 \subseteq \mathbb{R}$ seien Intervalle, es seien $f \in C(I_1)$ und $g \in C(I_2)$ und es gelte $\forall y \in I_2 : g(y) \neq 0$. Die Differentialgleichung

$$y' = f(x)g(y) \tag{*}$$

heißt **Differentialgleichung mit getrennten Veränderlichen**. Die Lösungen von (*) erhält man, indem man die Gleichung

$$\int \frac{dy}{g(y)} = \int f(x)dx + c$$

nach y auflöst (Stammfunktionen H bzw. F von $\frac{1}{g}$ bzw. $f: y(x) = H^{-1}(F(x))$ $(x \in I);$ $y'(x) = \frac{1}{H'(H^{-1}(F(x)))} f(x) = g(y(x)) f(x)$.

Formal: $y' = f(x)g(y) \longrightarrow \frac{dy}{dx} = f(x)g(y) \longrightarrow \frac{dy}{g(y)} = f(x)dx$ (Trennung der Veränderlichen) $\longrightarrow \int \frac{dy}{g(y)} = \int f(x)dx + c$.

Beispiele: In den folgenden Beispielen bestimme man zunächst die allgemeine Lösung der Differentialgleichung und dann die Lösung des Anfangswertproblems.

a)
$$AWP$$

$$\begin{cases} y' = 1 + y^3 \\ y(0) = 1, \end{cases} \qquad \frac{dy}{dx} = 1 + y^2 \Rightarrow \frac{dy}{1 + y^2} = dx$$
$$\Longrightarrow \int \frac{1}{1 + y^2} dy = \int dx + c \Longrightarrow \arctan(y) = x + c$$

 $\Rightarrow y = \tan(x + c)$. "Allgemeine Lösung":

$$y(x) = \tan(x+c).$$

Wir betrachten die Lösungen für $(x+c) < \frac{\pi}{2}$. Lösungen des Anfangswertproblems: $c = \frac{\pi}{4} \Rightarrow 1 = y(0) = \tan c$. Also ist für $\left| x + \frac{\pi}{4} \right| < \frac{\pi}{2}$

$$y(x) = \tan\left(x + \frac{\pi}{4}\right),\,$$

also für $x \in \left(-\frac{3}{4}\pi, \frac{\pi}{4}\right)$.

b)
$$AWP \begin{cases} y' = -\frac{x}{y} \\ y(0) = 2, \end{cases} \xrightarrow{\frac{dy}{dx}} = \frac{x}{y} \Rightarrow ydy = -xdx \end{cases}$$

$$\implies \int ydy = -\int xdx + \tilde{c} \Longrightarrow \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \tilde{c} \Longrightarrow \underbrace{y^2 = -x^2 + c}_{\Rightarrow c>0}, \quad (c = 2\tilde{c})$$

 $\Rightarrow y = \pm \sqrt{c - x^2}$. Allgemeine Lösung:

$$y(x) = \pm \sqrt{c - x^2} \text{ für } x \in (-\sqrt{c}, \sqrt{c}).$$

Lösung des Anfangswertproblems: $2 = y(0) = \pm \sqrt{c} \Rightarrow 2 = \sqrt{c} \Rightarrow c = 4$. Lösung des Anfangswertproblems für $x \in (-2, 2)$:

$$y(x) = \sqrt{4 - x^2}.$$

c)
$$AWP$$

$$\begin{cases} y' = e^y \sin x \\ y(0) = 0, \end{cases} \frac{dy}{dx} = e^y \sin x \Rightarrow \frac{dy}{e^y} = \sin x dx$$

$$\implies \int \frac{dy}{e^y} = \int \sin x dx + c \implies -e^{-y} = -\cos x + c \implies e^{-y} = \cos x - c$$

 $\Rightarrow -y = \log(\cos x - c)$. Allgemeine Lösung für x mit $\cos > c$:

$$y(x) = -\log(\cos x - c).$$

Allgemeine Lösung des Anfangswertproblems: $0 = y(0) = -\log(1-c) \iff 1-c = 1 \iff c = 0$ für $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$y(x) = -\log(\cos x).$$

d)
$$AWP$$

$$\begin{cases} y' = \frac{1}{xy} \\ y(1) = -1, \end{cases} \quad \frac{dy}{dx} = \frac{1}{xy} \Rightarrow ydy = \frac{1}{x}dx$$

$$\implies \int y dy = \int \frac{1}{x} dx + \tilde{c} \Longrightarrow \frac{1}{2} y^2 = \ln|x| + \tilde{c}$$

 $\Rightarrow y^2 = \ln x^2 + c \ (c = 2\tilde{c}).$ Allgemeine Lösung:

$$y(x) = \pm \sqrt{\ln x^2 + c}.$$

Lösung des Anfangswertproblems: $-1 = y(1) = \pm \sqrt{c} \Rightarrow -1 = -\sqrt{c} \Rightarrow c = 1$:

$$y(x) = -\sqrt{\ln x^2 + 1}$$

 $(\ln x^2 + 1 > 0 \iff \ln x^2 > -1 \iff x^2 > \frac{1}{e} \iff x > \frac{1}{\sqrt{e}} \text{ oder } x < \frac{1}{\sqrt{e}})$. Lösung des Anfangswertproblems für $x \in \left(\frac{1}{\sqrt{e}}, \infty\right)$

$$y(x) = -\sqrt{\ln x^2 + 1}.$$

Bei Anfangswertproblemen mit getrennten Veränderlichen kann auch mit bestimmten Integralen gerechnet werden. Nochmals Beispiel b):

$$\begin{cases} y'(x) = -\frac{x}{y(x)} \\ y(0) = 2 \end{cases}$$

Mit y(0) = 2 gilt:

$$\int_0^x y'(t)y(t)dt = \int_0^x -tdt \iff \int_0^x \frac{d}{dt} \left[\frac{1}{2} \left(y(t) \right)^2 \right] dt = -\frac{1}{2}x^2$$

$$\iff \frac{1}{2} \left(y(x) \right)^2 - \frac{1}{2} \left(\underbrace{y(0)}_{=2} \right)^2 = -\frac{1}{2}x^2$$

$$\iff \frac{1}{2} \left(y(x) \right)^2 = 2 - \frac{1}{2}x^2$$

$$\iff \left(y(x) \right)^2 = 4 - x^2 \iff y(x) = \sqrt{4 - x^2} \quad (x \in (-2, 2)).$$

Lineare Differentialgleichungen

Sei $I \subseteq \mathbb{R}$ ein Intervall, $\alpha, s \colon I \to \mathbb{R}$ stetig. Die Differentialgleichung

$$y' = \alpha(x)y + s(x) \tag{2}$$

heißt eine lineare Differentialgleichung. s heißt Störfunktion. Die Differentialgleichung

$$y' = \alpha(x)y\tag{3}$$

heißt die zu (2) gehörige **homogene Gleichung** (Ist $s \neq 0$, so heißt die Gleichung (2) inhomogen).

Satz 21.2: Sei β eine Stammfunktion von α auf I.

- a) Sei y: $I \to \mathbb{R}$ differenzierbar. Dann gilt:
 - (i) y ist eine Lösung von (3) auf $I \iff \exists c \in \mathbb{R} : y(x) = ce^{\beta(x)}$.
 - (ii) Sei y_p eine spezielle Lösung von (2) auf I. Dann: y ist eine Lösung von (2) auf I $\iff \exists c \in \mathbb{R} : y(x) = y_p(x) + ce^{\beta(x)}$.
- b) Variation der Konstanten: Der Ansatz

$$y_n(x) = c(x)e^{\beta(x)}$$

mit einer noch unbekannten Funktion c führt auf eine spezielle Lösung von (2) auf I (siehe Beweis!).

c) Sei $x_0 \in I$. Dann hat das Anfangswertproblem

$$\begin{cases} y' = \alpha(x)y + s(x) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Beweis:

a) (i) a Ist $c \in \mathbb{R}$ und $y(x) = ce^{\beta(x)}$, so gilt für $x \in I$:

$$y'(x) = c\beta'(x)e^{\beta(x)} = \alpha(x)ce^{\beta(x)} = \alpha(x)y(x).$$

Ist umgekehrt $y: I \to \mathbb{R}$ eine Lösung von (3), so gilt für $\phi(x) := e^{-\beta(x)}y(x)$ und $x \in I$:

$$\phi'(x) = -\beta'(x)e^{-\beta(x)}y(x) + e^{-\beta(x)}y'(x)$$

= $-\alpha(x)e^{-\beta(x)}y(x) + e^{-\beta(x)}\alpha(x)y(x) = 0.$

 $\Rightarrow \exists c \in \mathbb{R} \forall x \in I : \phi(x) = c$, also $x \in I$:

$$y(x) = ce^{\beta(x)}$$
.

(ii) Ist $y(x) = y_p(x9 + \underbrace{ce^{\beta(x)}}_{=:y_h(x)} (x \in I)$, so gilt:

$$y'(x) = y'_{p}(x) + y'_{h}(x)$$

$$= \alpha(x)y_{p}(x) + s(x) + \alpha(x)y_{h}(x)$$

$$= \alpha(x)(y_{p}(x) + y_{h}(x)) + s(x) = \alpha(x)y(x) + s(x).$$

Ist umgekehrt y eine Lösung von (2) auf I so gilt für $y_h(x) := y(x) - y_p(x)$:

$$y'_h(x) = y'(x) - y'_p(x)$$

= $(\alpha(x)y(x) + s(x)) - (\alpha(x)y_p(x) + s(x))$
= $\alpha(x) (y(x) - y_p(x)) = \alpha(x)y_h(x).$

Also ist $y_h(x)$ eine Lösung von (3), also von der Form $y_h(x) = ce^{\beta(x)}$. Damit ist

$$y(x) = y_p(x) + y_h(x) = y_p + ce^{\beta(x)}$$
.

b) $y_p'(x) = c'(x)e^{\beta(x)} + c(x)\beta'(x)e^{\beta(x)} = (c'(x) + c(x)\alpha(x))e^{\beta(x)}$. y_p ist Lösung von (2) auf I

$$\iff (c'(x) + c(x)\alpha(x)) e^{\beta(x)} = \alpha(x)c(x)e^{\beta(x)} + s(x)$$

$$\iff c'(x)e^{\beta(x)} = s(x) \iff c'(x) = s(x)e^{-\beta(x)}.$$

Wähle eine Stammfunktion von c'. Hieraus ergibt sich y_p .

c) Allgemeine Lösung von (2): $y(x) = y_p(x) + ce^{\beta(x)}$.

$$y_0 = y(x_0) = ce^{\beta(x_0)} + y_p(x_0) \iff c = (y_0 - y_p(x_0)) e^{-\beta(x_0)}.$$

Beispiele:

a) (*) $y' = (\sin x)y + \sin x$. Hier: $\alpha(x) = \sin x, s(x) = \sin x, \beta(x) = -\cos x, I = \mathbb{R}$.

1. Allgemeine Lösung der homogenen Gleichung für $c \in \mathbb{R}$: $y(x) = ce^{-\cos x}$

2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = c(x)e^{-\cos x}$

$$y_p'(x) = c'(x)e^{-\cos x} + c(x)\sin xe^{-\cos x}$$

$$\stackrel{!}{=} (\sin x) y_p(x) + \sin x$$

$$= (\sin x) c(x)e^{-\cos x} + \sin x.$$

$$\Rightarrow c'(x)e^{-\cos x} = \sin x \Rightarrow c'(x) = \sin x e^{\cos x} \Rightarrow c(x) = -e^{\cos x} \Rightarrow y_p(x) = -1.$$

3. Allgemeine Lösung von (*) für $c \in \mathbb{R}$: $y(x) = ce^{-\cos x} - 1$.

b) Löse das Anfangswertproblem
$$\left\{ \begin{array}{l} y' = (\sin x)\,y + \sin x \\ y(0) = 3 \end{array} \right.$$

Allgemeine Lösung der Differentialgleichung:

$$y(x) = ce^{-\cos x} - 1.$$

 $3=y(0)=ce^{-1}-1\Rightarrow ce^{-1}=4\Rightarrow c=4e.$ Lösung des Anfangswertproblems für $x\in\mathbb{R}$:

$$y(x) = 4e^{1-\cos x} - 1.$$

c) (*) y' = 2xy + x. Hier: $\alpha(x)2x$, s(x) = x, $I = \mathbb{R}$, $\beta(x) = x^2$.

1. Allgemeine Lösung der homogenen Gleichung für $c \in \mathbb{R}$: $y(x) = ce^{x^2}$.

2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = c(x)e^{x^2}$.

$$y_p'(x) = c'(x)e^{x^2} + c(x)2xe^{x^2} \stackrel{!}{=} 2xy_p(x) + x = 2xc(x)e^{x^2} + x$$

$$\Rightarrow c'(x)e^{x^2} = x \Rightarrow c'(x) = xe^{-x^2} \Rightarrow c(x) = -\frac{1}{2}e^{-x^2} \Rightarrow y_p(x) = -\frac{1}{2}.$$

- 3. Allgemeine Lösung von (*) für $c \in \mathbb{R}$: $y(x) = ce^{x^2} \frac{1}{2}$.
- d) Lösung des Anfangswertproblems: $\begin{cases} y' = 2xy + x \\ y(1) = 0. \end{cases}$

Allgemeine Lösung der Differentialgleichung: $y(x) = ce^{x^2} - \frac{1}{2}$.

$$0 = y(1) = ce - \frac{1}{2} \Rightarrow c = \frac{1}{2}e^{-1} \Rightarrow y(x) = \frac{1}{2}e^{x^2 - 1} - \frac{1}{2}e^{x^2 - 1} = \frac{1}{2}e^{x^2 - 1$$

- e) (*) $y' = 3y + e^x$. Hier: $\alpha(x) = 3$, $s(x) = e^x$, $I = \mathbb{R}$, $\beta(x) = 3x$.
 - 1. Allgemeine Lösung der homogenen Gleichung für $c \in \mathbb{R}$: $y(x) = ce^{3x}$.
 - 2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = c(x)e^{3x}$.

$$y_p'(x) = c'(x)e^{3x} + c(x)3e^{3x} \stackrel{!}{=} 3y_p(x) + e^x = 3c(x)e^{3x} + e^3$$

$$\Rightarrow c'(x)e^{3x} = e^x \Rightarrow c'(x) = e^{-2x} \Rightarrow c(x) = -\frac{1}{2}e^{-2x} \Rightarrow y_p(x) = -\frac{1}{2}e^x$$
.

- 3. Allgemeine Lösung von (*): $y(x) = ce^{3x} \frac{1}{2}e^x$.
- f) Löse das Anfangswertproblem $\left\{ \begin{array}{l} y'=3y+e^x\\ y(\ln z)=0 \end{array} \right.$

Allgemeine Lösung der Differentialgleichung: $y(x) = ce^{3x} - \frac{1}{2}e^x$.

$$0 = y(\ln z) = ce^{3\ln 2} = ce^{\ln 8} - \frac{1}{2}e^{\ln 2} = c8 - \frac{1}{2}2 = 8c - 1$$

 $\Rightarrow c = \frac{1}{8}.$ Lösung des Anfangswertproblems. $y(x) = \frac{1}{8}e^{3x} - \frac{1}{2}e^x.$

g) (*)
$$y' = -\frac{1}{x}y + x$$
; Hier: $\alpha(x) = -\frac{1}{x}$, $s(x) = x$, $I = (0, \infty)$, $\beta(x) = -\ln x$.

- 1. Allgemeine Lösung der homogenen Gleichung für $c \in \mathbb{R}$: $y(x) = ce^{-\ln x} = \frac{c}{x}$.
- 2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = \frac{c(x)}{x}$.

$$y'_p(x) = c'(x)\frac{1}{x} - c(x)\frac{1}{x^2} \stackrel{!}{=} -\frac{1}{x}y_p(x) + x = -\frac{1}{x^2}c(x) + x$$

$$\Rightarrow c'(x)\frac{1}{x} = x \Rightarrow c'(x) = x^2 \Rightarrow c(x) = \frac{1}{3}x^3 \Rightarrow y_p(x) = \frac{1}{3}x^2.$$

3. Allgemeine Lösung von (*): $y(x) = \frac{c}{x} + \frac{1}{3}x^2$.

h) Löse das Anfangswertproblem
$$\begin{cases} y'=-\frac{1}{x}y+x\\ y(1)=-1 \end{cases}$$

$$-1=y(1)=\frac{c}{1}+\frac{1}{3}\Longrightarrow c=-\frac{4}{3}$$
 Lösung des Anfangswertproblems für $x\in(0,\infty)$: $y(x)=-\frac{4}{3x}+\frac{1}{3}x^2$.

Bernoulli- und Riccali-Differentialgleichungen

Es sei $I \subseteq \mathbb{R}$ ein Intervall, $g, h \in C(I, \mathbb{R})$ und $\alpha \in \mathbb{R}$. Die Differentialgleichung

$$y'(x) + g(x)y(x) + h(x)(y(x))^{\alpha} = 0$$
 (*)

heißt Bernoullische Differentialgleichung. Im Fall $\alpha = 0$ erhält man eine lineare Differentialgleichung (inhomogen, falls $h \not\equiv 0$). Im Fall $\alpha = 1$ erhält man eine homogene lineare Differentialgleichung.

Nun sei $\alpha \in \mathbb{R} \setminus \{0,1\}$. Wir betrachten die Transformation $z(x) = (y(x))^{1-\alpha}$:

$$z'(x) = (1 - \alpha) (y(x))^{-\alpha} \cdot y'(x)$$

$$= (1 - \alpha) (y(x))^{-\alpha} (-g(x)y(x) - h(x) (y(x))^{\alpha})$$

$$= -(1 - \alpha)g(x) (y(x))^{1-\alpha} - (1 - \alpha)h(x)$$

$$= -(1 - \alpha)g(x)z(x) - (1 - \alpha)h(x).$$

Dies ist eine lineare Differentialgleichung für z. Sei z eine Lösung dieser Gleichung auf I. Setze $y(x) := z(x)^{\frac{1}{1-\alpha}}$ für x aus einem Intervall $I_1 \subseteq I$, für das $(z(x))^{\frac{1}{1-\alpha}}$ eine differenzierbare Funktion liefert. Dann ist y eine Lösung von (*) auf I_1 .

Beispiel: Betrachte auf
$$I = (-1, \infty)$$
: $y'(x) + \frac{y(x)}{1+x} + (1+x)y^4(x) = 0$ $z(x) := (y(x))^{1-4} = \frac{1}{(y(x))^3}$.

$$z'(x) = -\frac{3}{(y(x))^4} \cdot y'(x) = \frac{3}{(y(x))^4} \left(\frac{y(x)}{1+x} + (1+x)(y(x))^4 \right) = \frac{3}{1+x} z(x) + 3(1+x).$$

Eine Lösung dieser linearen Differentialgleichung auf I ist z.B. für $x \in (-1, \infty)$:

$$z(x) = (1+x)^2(2x-1).$$

Damit ist

$$y(x) = (z(x))^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{(1+x)^2(2x-1)}}$$

eine Lösung der Bernoulli-Differentialgleichung auf $\left(-1,\frac{1}{2}\right)$.

Nun seien $g, h, k \in C(I, \mathbb{R})$. Die Differentialgleichung

$$y'(x) + g(x)y(x) + h(x)(y(x))^{2} = k(x)$$
 (**)

heißt Riccalische Differentialgleichung. Sind y_1, y_2 Lösungen von (**) auf $I_1 \subseteq I$, so gilt für $u := y_1 - y_2$:

$$u'(x) = \left[-g(x)y_1(x) - h(x) (y_1(x))^2 + k(x) \right] - \left[-g(x)y_2(x) - h(x) (y_2(x))^2 + k(x) \right]$$

$$= -g(x)u(x) - h(x) \left((y_1(x))^2 - (y_2(x))^2 \right)$$

$$= -g(x)u(x) - h(x)u(x) (y_1(x) + y_2(x))$$

$$= -g(x)u(x) - h(x)u(x) (u(x) + 2y_2(x))$$

$$= -(g(x) + 2h(x)y_2(x)) u(x) - h(x) (u(x))^2.$$

Fazit: Ist eine Lösung y_2 von (**) bekannt (z.B. durch "erraten"), so liefern Lösungen $u \not\equiv 0$ obiger Bernoulli Differentialgleichung für u weitere Lösungen von (**) der Form $y(x) = y_2(x) + u(x)$.

Kapitel 22

Lineare Systeme mit konstanten Koeffizienten

I.d. §en sei $I \subseteq \mathbb{R}$ ein Intervall und $n \in \mathbb{N}$.

Erinnerung: $y = (y_1, \dots, y_n)^T : I \to \mathbb{R}^n$ ist auf I differenzierbar $\iff y_1, \dots, y_n$ sind auf I differenzierbar. In diesem Fall:

$$y' = (y_1', \dots, y_n')^T.$$

Definition: Sei $g = (g_1, \ldots, g_n) \colon [a, b] \to \mathbb{R}$ eine Funktion mit $g_j \in R[a, b]$ $(j = 1, \ldots, n)$.

$$\int_{a}^{b} g(t)dt := \left(\int_{a}^{b} g_{1}(t), \dots, \int_{a}^{b} g_{n}(t)dt\right)^{T} \ (\in \mathbb{R}^{n})$$

Im Folgenden sei $A = (a_{jk})$ eine reelle $n \times n$ -Matrix und $b_j : I \to \mathbb{R}$ stetig (j = 1, ..., n). Wir betrachten das **lineare Differentialgleichungssystem**.

$$y'_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n} \neq b_{1}(x)$$

$$y'_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n} \neq b_{2}(x)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y'_{1} = a_{n1}y_{1} + a_{n2}y_{2} + \dots + a_{nn}y_{n} \neq b_{n}(x)$$

Mit $y \coloneqq (y_1, \dots, y_n)^T$ und $b \coloneqq (b_1, \dots, b_n)^T$ schreibt sich dieses System in der Form:

$$y' = Ay + b(x) \tag{1}$$

Das System

$$y' = Ay \tag{2}$$

heißt das zu (1) gehörende **homogene System** ((1) heißt inhomogen, falls $b \neq 0$). Gesucht sind jetzt also vektorwertige Funktionen die (1) bzw. (2) erfüllen.

Satz 22.1 (ohne Beweis):

a) Die Lösungen von (2) sind auf ganz \mathbb{R} definiert. Sei

$$V := \{y \colon \mathbb{R} \to \mathbb{R}^n : y \text{ ist eine L\"osung von (2)} \}.$$

Dann ist C ein reeller Vektorraum und dim V = n. Jede Basis von V heißt eine **Fundamentalsystem** (FS) von (2).

b) Ist y_p eine spezielle Lösung von (1) auf I, so gilt y:

y ist eine Lösung von (1) auf
$$I \iff \exists y_h \in V : y(x) = y_p + y_h(x) \ (x \in I)$$

c) Ist $x_0 \in I$ und $y_0 \in \mathbb{R}^n$, so hat das Anfangswertproblem

$$\begin{cases} y' = Ay + b(x) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Sei $\lambda \in \mathbb{R}$ eine Eigenwert von A und $v \in \mathbb{R}^n$ der zugehörige Eigenvektor, also $Av = \lambda v$. Dann gilt mit $y(x) \coloneqq e^{\lambda x}v$:

$$y'(x) = \lambda e^{\lambda x} v = e^{\lambda x} A v = A\left(e^{\lambda x} v\right) = A\left(y(x)\right).$$

Wir betrachten zunächst (2): Sei $p(\lambda) := \det(A - \lambda I)$. A reell $\Rightarrow p$ hat reelle Koeffizienten. Übung: ist $\lambda_0 \in \mathbb{C}$ und $p(\lambda_0) = 0$, so ist auch $p(\overline{\lambda_0}) = 0$.

Beachte: für $\lambda_0 \in \mathbb{C}$: kern $(A - \lambda_0 I) \subseteq \text{kern} (A - \lambda_0 I) \subseteq \dots$

Lösungsmethode für (2): (ohne Beweis)

1. Bestimme die verschiedenen Eigenwerte $\lambda_1, \ldots \lambda_r$ von A $(r \leq n)$ und deren Vielfachheit k_1, \ldots, k_r , also

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_r)^{k_r}.$$

Ordne diese wie folgt an:

$$\lambda_1, \ldots, \lambda_m \in \mathbb{R}, \ \lambda_{m+1}, \ldots, \lambda_r \in \mathbb{C} \setminus \mathbb{R}$$

mit $\lambda_{m+1} = \mu_1, \dots, \lambda_{m+s} = \mu_s$ und $\lambda_{m+s+1} = \overline{\mu_1}, \dots, \lambda_r = \overline{\mu_s}$.

$$M := \{\lambda_1, \dots, \lambda_m, \lambda_{m+1}, \dots, \lambda_{m+s}\}$$

 $(\lambda_{m+s+1}, \ldots, \lambda_r)$ bleiben unberücksichtigt!)

2. Für jedes $\lambda_j \in M$ bestimme man eine Basis von $V_j := \ker(A - \lambda_j I)^{k_j}$ wie folgt: Bestimme eine Basis von $\ker(A - \lambda_j I)$, ergänze diese zu einer Basis von

$$\operatorname{kern}\left(A-\lambda_{j}I\right)^{2},\ldots$$

3. Sei $\lambda_j \in M$ und v ein Basisvektor von V_j .

$$y(x) := e^{\lambda_j x} \left(v + \frac{x}{1!} \left(A - \lambda_j I \right) v + \ldots + \frac{x}{(k_j - 1)!} \left(A - \lambda_j I \right)^{k_j - 1} v \right)$$

Fall 1: $\lambda_j \in \mathbb{R}$. Dann ist $y(x) \in \mathbb{R}^n$ und y eine Lösung von (2) auf \mathbb{R} .

Fall 2: $\lambda_j \in \mathbb{C} \setminus \mathbb{R}$, Dann ist $y(x) \in \mathbb{C}^n$. Zerlege y(x) komponentenweise in Realund Imaginärteil:

$$y(x) = \underbrace{y^{(1)}(x)}_{\in \mathbb{R}^n} + i \underbrace{y^{(2)}(x)}_{\in \mathbb{R}^n}$$

Dann sind $y^{(y)}, y^{(2)}$ linear unabhängige Lösungen von (2) auf \mathbb{R} .

4. Führt man 3. für jedes $\lambda_j \in M$ und jeden Basisvektor von V_j durch, so erhält man ein Fundamentalsystem von (2) [...] bez. die lineare Hülle.

Beispiele:

a) (*)
$$y' = \underbrace{\begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}}_{=A} y$$
, $(n = 2)$. $\det(A - \lambda I) = \underbrace{(\lambda - (1+2i))(\lambda - (1.2i))}_{=(1-\lambda)^2+4}$

$$\lambda_{1} = 1 + 2i, \ k_{1} = 1, \ \lambda_{2} = \overline{\lambda_{1}}, \ k_{2} = 1. \ M = \{1 + 2i\}, \ \ker(A - \lambda_{1}I) = \begin{bmatrix} 2i \\ i \end{bmatrix}$$

$$y(x) := e^{(1+2i)x} \begin{pmatrix} 2i \\ 1 \end{pmatrix} = e^{x} \left(\cos 2x + i\sin 2x\right) \begin{pmatrix} 2i \\ i \end{pmatrix}$$

$$= e^{x} \begin{pmatrix} -2\sin 2x \\ \cos 2x \end{pmatrix} + ie^{x} e^{x} \begin{pmatrix} 2\cos 2x \\ \sin 2x \end{pmatrix}$$

$$= :y^{(1)}(x)$$

$$= :y^{(2)}(x)$$

Fundamentalsystem für (*): $y^{(1)}, y^{(2)}$

Allgemeine Lösung von (*): $y(x) = c_1 y^{(1)}(x) + c_2 y^{(2)}(x)$ $(c_1, c_2 \in \mathbb{R})$.

b) (*)
$$y' = \underbrace{\begin{pmatrix} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}}_{-A} y$$
. det $(A - \lambda I) = (\lambda - 2) (\lambda - 1)^2$. Also

$$\lambda_1 = 2, k_1 = 1, \lambda_2 = 1, k_2 = 2,$$

$$\lambda_1 = 2$$
: $\operatorname{kern}(A - 2I) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

$$y^{(1)}(x) := e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 ist eine Lösung von $(*)$

$$\lambda_2 = 1$$
: $\operatorname{kern}(A - I) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \subseteq \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \operatorname{kern}(A - I)^2$

$$y^{(2)}(x) := e^x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 ist eine Lösung von $(*)$

$$y^{(3)}(x) := e^x \left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + x(A - I) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) = e^x \left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + x \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right) = e^x \begin{pmatrix} -x \\ -x \\ 1 \end{pmatrix}$$

Fundamental system von (*): $y^{(1)}, y^{(2)}, y^{(3)}$.

c) Sei A wie in Beispiel b). Löse das Anfangswertproblem

$$\begin{cases} y' = Ay \\ y(0) = (1, 0, 1)^T \end{cases}$$

Allgemeine Lösung von y' = Ay:

$$y(x) = c_1 e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_2 e^x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_3 e^x \begin{pmatrix} -x \\ -x \\ 1 \end{pmatrix}$$

$$(1,0,1)^T = y(0) = c_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\stackrel{\text{(LGS)}}{\iff} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \iff (c_1, c_2, c_3)^T = (-1, 1, 2)^T$$

Lösung des Anfangswertproblems:
$$y(x) = -e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + e^x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 2e^x \begin{pmatrix} -x \\ -x \\ 1 \end{pmatrix}$$
.

Wir betrachten das inhomogene System.

$$y' = Ay + b(x) \tag{1}$$

Sei $y^{(1)}, y^{(2)}, \dots, y^{(n)}$ ein Fundamentalsystem von (2) y' = Ay. Setze

$$Y(x) := \left(y^{(1)}(x), \dots, y^{(n)}(x)\right).$$

Y(x) ist eine $n \times n$ -Matrix (**Fundamentalmatrix** (FS)) mit j-ter Spalte $y^{(j)}(x)$.

Satz 22.2 (ohne Beweis): Für alle $x \in \mathbb{R}$ gilt: det $Y(x) \neq 0$

Für eine spezielle Lösung y_p von (1) gehe wie folgt vor:

- Ansatz: $y_p(x) = Y(x)c(x)$ mit einer noch unbekannten Funktion c. Dann gilt (ohne Beweis):
 - y_p ist eine Lösung von (1) $\iff c'(x) = Y^{-1}(x)b(x)$. Wähle eine Stammfunktion $c = \int Y^{-1}(x)b(x)dx$

und dann y_p .

Beispiel: (*)
$$y' = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{=:A} y + \underbrace{\begin{pmatrix} e^x \\ e^{-x} \end{pmatrix}}_{=:b(x)}.$$

1. Allgemeine Lösung von y' = Ay: $det(A - \lambda I) = (1 - \lambda)(1 - \lambda)$

$$A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}, \ A\begin{pmatrix}0\\1\end{pmatrix} = -\begin{pmatrix}0\\1\end{pmatrix}$$

Fundamentalsystem der homogenen Gleichung:

$$y^{(1)}(x) = e^x \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ y^{(2)}(x) = e^{-x} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Also:
$$Y(x) = \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix}$$
.

2. Spezielle Lösung von (*): $Y^{-1}(x) = \begin{pmatrix} e^{-x} & 0 \\ 0 & e^x \end{pmatrix}$

$$Y^{-1}(x)b(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = c'(x) \Longrightarrow c(x) = \begin{pmatrix} x \\ x \end{pmatrix}$$

$$\Rightarrow y_p(x) = \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} = \begin{pmatrix} xe^x \\ xe^{-x} \end{pmatrix}$$

3. Allgemeine Lösung von (*) für $c_1, c_2 \in \mathbb{R}$:

$$y(x) = c_1 \begin{pmatrix} e^x \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ e^{-x} \end{pmatrix} + \begin{pmatrix} xe^x \\ xe^{-x} \end{pmatrix}$$
$$= \begin{pmatrix} c_1e^x + xe^x \\ c_2e^{-x} + xe^{-x} \end{pmatrix}$$

Kapitel 23

Lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten

I.d. §en sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein Intervall, $b: I \to \mathbb{R}$ stetig und $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$.

Ist $y: I \to \mathbb{R}$ n-mal differenzierbar auf I, so setze

$$Ly := y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y$$

Die Differentialgleichung

$$(Ly)(x) = b(x) \tag{1}$$

heißt lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten. Die Gleichung

$$Ly = 0 (*)$$

heißt die zu (1) gehörige homogene Gleichung ((1) heißt inhomogen, falls $b \not\equiv 0$).

Satz 23.1 (ohne Beweis):

- a) Die Lösungen von (1) existieren auf \mathbb{R} .
- b) $V := \{y : \mathbb{R} \to \mathbb{R} : y \text{ ist } n\text{-mal differenzierbar und } y \text{ ist eine Lösung von } (2) \}$.

 Dann ist $v \text{ ein reeller Vektorraum und } \dim V = n$. Jede Basis von $V \text{ hei}\beta t \text{ ein}$ Fundamentalsystem von (2).
- c) Ist y_p eine spezielle Lösung von (1) auf I, so gilt:

$$y$$
 ist eine Lösung von (1) auf $I \iff \exists y_h \in V \ \forall x \in I : y(x) = y_p(x) + y_h(x)$

d) Sei $x_0 \in I$ und seien $\eta_0, \dots, \eta_{n-1} \in \mathbb{R}$. Dann hat das Anfangswertproblem

$$\begin{cases} Ly = b(x) \\ y(x_0) = \eta_0, y'(x_0) = \eta_1, \dots, y^{(n-1)}(x_0) = \eta_{n-1} \end{cases}$$

auf I genau eine Lösung.

Lösungsmethode für (2): $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0$.

$$p(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

heißt charakteristisches Polynom für (2).

Wie in §22 sei $p(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdot \ldots \cdot (\lambda - \lambda_r)^{k_r}, (\lambda_i \neq \lambda_j \text{ für } i \neq j).$

- 1. Mit $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ und $\lambda_{m+1} = \mu_1, \ldots, \lambda_{m+s} = \mu_s \in \mathbb{C} \setminus \mathbb{R}$ und $\lambda_{m+s+1} = \overline{\mu_1}, \ldots, \lambda_r = \overline{\mu_s}$. Sei $M \coloneqq \{\lambda_1, \ldots, \lambda_m, \lambda_{m+1}, \ldots, \lambda_{m+s}\}$.
- 2. Sei $\overline{\lambda_j} \in M$.

Fall 1: $\lambda_i \in \mathbb{R}$. Dann sind

$$e^{\lambda_j x}$$
, $x e^{\lambda_j x}$, ..., $x^{k_j - 1} e^{\lambda_j x}$

 k_j linear unabhängige Lösungen von (2).

Fall 2: $\lambda_j \in \mathbb{C} \setminus \mathbb{R}$. $\lambda_j = \alpha + i\beta \ (\alpha, \beta \in \mathbb{R}, \beta \neq 0)$. Dann sind

$$e^{\alpha x}\cos\beta x$$
, $xe^{\alpha x}\cos\beta x$,..., $x^{k_j-1}e^{\alpha x}\cos\beta x$,
 $e^{\alpha x}\sin\beta x$, $xe^{\alpha x}\sin\beta x$,..., $x^{k_j-1}e^{\alpha x}\sin\beta x$

 $2k_j$ linear unabhängige Lösungen von (2).

3. Führet man 2. für jedes $\lambda_j \in M$ durch, so erhält man ein Fundamentalsystem von (2).

Beispiele:

a) (*)
$$y^{(5)} + 4y^{(4)} + 2y''' - 4y'' + 8y' + 16y = 0$$

$$p(\lambda) = \lambda^5 + 4\lambda^4 + 2\lambda^3 - 4\lambda^2 + 8\lambda + 16$$

$$= (\lambda + 2)^3 (\lambda - (1+i)) (\lambda - (1-i))$$

Also:
$$\lambda_1 = -2$$
, $k_1 = 3$, $\lambda_2 = 1 + i$, $k_2 = 1$ ($\lambda_3 = \overline{\lambda_2}$), also $M = \{-2, 1 + i\}$.

Fundamentalsystem von (*): e^{-2x} , xe^{-2x} , x^2e^{-2x} , $e^x \cos x$, $e^x \sin x$. Allgemeine Lösung von (*) für $c_1, \ldots, c_5 \in \mathbb{R}$:

$$y(x) = c_1 e^{-2x} + c_2 x e^{-2x} + c_3 x^2 e^{-2x} + c_3 e^x \cos x + c_5 e^x \sin x$$

= $e^{-2x} (c_1 + c_2 x + c_3 x^2) + e^x (c_4 \cos x + c_5 \sin x)$.

b) (*) y'' + 3y' + 2y = 0

$$p(\lambda) = \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2).$$

$$\lambda_1 = -1, k_1 = 1, \lambda_2 = -2, k_2 = 1. M = \{1, 2\}.$$

Fundamentalsystem von (*): e^{-x} , e^{-2x} . Allgemeine Lösung von (*) für $c_1, c_2 \in \mathbb{R}$:

$$y(x) = c_1 e^{-x} + c_2 e^{-2x}$$

c) Löse das Anfangswertproblem

$$\begin{cases} y'' + 3y' + 2y = 0 \\ y(0) = 1, y'(0) = 1 \end{cases}$$

Allgemeine Lösung der Differentialgleichung: $y(x) = c_1 e^{-x} + c_2 e^{-2x}$.

$$1 = c_1 + c_2 = y(0) \Rightarrow c_2 = 1 - c_1$$

$$y'(x) = -c_1 e^{-x} - 2c_2 e^{-2x}.$$

$$1 = y'(0) = -c_1 - 2c_2 = -c_1 - 2(1 - c_1) = -c_1 - 2 + 2c_1 = c_1 - 2$$

 $\Rightarrow c_1 = 3 \Rightarrow c_2 = -2$. Lösung des Anfangswertproblems:

$$y(x) = 3e^{-x} - 2e^{-2x}.$$

d) (*) y''' - 3y'' = 0. Charakteristische Polynom:

$$p(\lambda) = \lambda^3 - 3\lambda^2 = \lambda^2 (\lambda - 3)$$
.

$$\lambda_1 = 0, k_1 = 2, \lambda_2 = 3, k_2 = 1.$$

Fundamentalsystem von (*): e^{0x} , xe^{0x} , e^{3x} , also $1, x, e^{3x}$. Allgemeine Lösung von (*) für $c_1, c_2, c_3 \in \mathbb{R}$:

$$y(x) = c_1 + c_2 x + c_3 e^{3x}.$$

Zur inhomogenen Gleichung

$$Ly = b(x) \tag{1}$$

Seien $\gamma,\delta\in\mathbb{R},\,m\in\mathbb{N}_0$ und qein Polynom vom Gradm. bhabe die Gestalt

$$b(x) = q(x)e^{\gamma x}\cos(\delta x)$$
 oder $b(x) = q(x)e^{\gamma x}\sin(\delta x)$

Sei p das charakteristische Polynom von

$$Ly = 0 (2)$$

Fall 1: $p(\gamma + i\delta) \neq 0$, wähle Ansatz:

$$y_p(x) := (\hat{q}(x)\cos(\delta x) + \tilde{q}(x)\sin(\delta x))e^{\gamma x}.$$

Fall 2: $\gamma + i\delta$ ist eine ν -fache Nullstelle von p. Wähle Ansatz

$$y_p(x) := x^{\nu} (\hat{q}(x) \cos(\delta x) + \tilde{q}(x) \sin(\delta x)) e^{\gamma x}.$$

In beiden Fällen sind \hat{q} und \tilde{q} Polynome vom Grade m. In beiden Fällen führt y_p zu einer speziellen Lösung von (1).

Beispiele:

a)
$$(*)$$
 $y''' - y' = x - 1$, $(b(x) = x - 1)$.

1. Allgemeine Lösung von y''' - y' = 0

$$p(\lambda) = \lambda^3 - \lambda = \lambda (\lambda^2 - 1) = \lambda(\lambda - 1)(\lambda + 1)$$

Fundamental system: $1, e^x, e^{-x}$.

2. b(x) = x - 1. Also: $\gamma = \delta = 0$, q(x) = x - 1, m = 1. $p(\gamma + i\delta) = p(0) = 0$, $\nu = 1$. Ansatz:

$$y_p(x) = x(ax + b) = ax^2 + b^x.$$

 $y'_p(x) = 2ax + b; y'''_p = 0.$ Dann:

$$x - 1 \stackrel{!}{=} y_p''' - y_p' = -2ax - b \iff -2a = 1, b = 1$$

$$\Rightarrow y_p(x) = -\frac{1}{2}x^2 + 1.$$

- 3. Allgemeine Lösung von (*): $y(x) = c_1 + c_2 e^x + c_3 e^{-x} \frac{1}{2}x^2 + 1$.
- b) $(*) y'' + 4y') \cos 2x$
 - 1. Allgemeine Lösung von y'' + 4y' = 0.

$$p(\lambda) = \lambda^2 + 4\lambda = \lambda(\lambda + 4),$$

Fundamentalsystem: 1, e^{-4x} .

2. $b(x)=\cos 2x$, also $\gamma=0,\ \delta=2,\ q(x)=1,\ m=0.\ p(\gamma+i\delta)=p(2i)\neq 0.$ Ansatz:

$$y_p(x) = a\cos(2x) + b(\sin 2x).$$

Damit:

$$y_p'(x) = -2a\sin(2x) + 2b\cos(2x),$$

$$y_p''(x) = -4a\cos(2x) - 4b\sin(2x).$$

Einsetzen in die Differentialgleichung liefert:

$$\cos(2x) \stackrel{!}{=} y_p''(x) + 4y_p'(x) = (8b - 4a)\cos(2x) - (4b + 8a)\sin(2x)$$

 \iff $8b-4a=1,\; 4b+8a=0\; \iff a=-\frac{1}{20}, b=\frac{1}{10}.$ Daraus folgt:

$$y_p(x) = \frac{1}{10}\sin(2x) - \frac{1}{20}\cos(2x).$$

Allgemeine Lösung von (*):

$$y(x) = c_1 + c_2 e^{-4x} + \frac{1}{10} \left(\sin(2x - \frac{1}{2}\cos(2x)) \right).$$

Kapitel 24

Die Fouriertransformation

Definition:

a) $g:[a,b] \to \mathbb{R}$ heißt **auf** [a, b] stückweise stetig: $\iff \exists t_0, t_1, \dots, t_m \in [a,b]:$

$$a = t_0 < t_1 < \dots < t_m = b, \ g \in C((t_{j-1}, t_j)) \quad (j = 1, \dots, m)$$

und es existiert die folgenden einseitigen Grenzwerte:

$$g(a+), g(b-), g(t_j+), g(t_j-) \quad (j=1,\ldots,m-1)$$

b) $g: [a,b] \to \mathbb{R}$ heißt **auf** [a,b] **stückweise glatt** : $\iff \exists t_0, \ldots, t_m \in [a,b]$:

$$t_0 = a < t_1 < \dots < t_m = b, \ g \in C^1((t_{j-1}, t_j)) \quad (j = 1, \dots, m)$$

und es existieren die folgenden einseitigen Grenzwerte:

$$g(t_j+), g(t_j-), g'(t_j+), g'(t_j-) \quad (j=1,\ldots,m-1)$$

$$g(a+), g'(a+), g'(b-), g(b-)$$

- c) $g: \mathbb{R} \to \mathbb{R}$ heißt **auf** \mathbb{R} **stückweise stetig** bzw. **glatt** : \iff g ist auf jedem Intervall [a, b] stückweise stetig bzw. glatt.
- d) Sei $g: \mathbb{R} \to \mathbb{R}$ stückweise glatt und $x_0 \in \mathbb{R}$. Dann existieren $g'(x_0+)$ und $g'(x_0-)$. Setze

$$g'(x_0) := \frac{1}{2} \left(g'(x_0 +) + g'(x_0 -) \right) \tag{*}$$

Beachte: Ist g in x_0 differenzierbar, so stimmt (*) mit der üblichen Ableitung über ein.

Beispiel: g(x) = |x|; g'(0+) = 1, g'(0-) = -1, also g'(0) = 0.

Definition: Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{C}$ eine Funktion, $u(x) := \operatorname{Re} f(x)$ und $v(x) := \operatorname{Im} f(x)$ $(x \in I, also f = u + iv)$.

- a) f heißt auf I differenzierbar: \iff u und v sind auf I differenzierbar. In diesem Fall: f' := u' + iv'.
- b) Ist I = [a, b] und gilt $u, v \in R[a, b]$, so setze

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} u(x)dx + i \int_{a}^{b}$$

c) Ist $I = \mathbb{R}$, so heißt f auf I stückweise stetig bzw. $glatt : \iff u, v$ sind auf I stückweise stetig bzw. glatt.

Sei I = [a, b] und $u, v \in R[a, b]$. Übung:

$$\left| \int_{a}^{b} f(t)dt \right| \le \int_{a}^{b} |f(t)| dt$$

Besitzen u und v auf [a, b] die Stammfunktionen U bzw. V, so setze F := U + iV. Dann:

$$F' = U' + iV' = u + iv = f$$

auf [a, b] und $\int_a^b f(x)dx = F(b) - F(a)$.

Weitere Regeln wie Substitution, partielle Integration, etc. gelten wörtlich für $f : [a, b] \to \mathbb{C}$.

Beispiel: Sei $z_0 \in \mathbb{C}$, $z_0 \neq 0$ und $f(t) := e^{z_0 t}$. $F(t) := \frac{1}{z_0} e^{z_0 t}$. Dann: F' = f auf \mathbb{R} . Für a < b:

$$\int_{a}^{b} e^{z_0 t} dt = F(b) - F(a) = \frac{1}{z_0} \left(e^{z_0 b} - e^{z_0 a} \right).$$

Definition: $f: \mathbb{R} \to \mathbb{C}$ sei eine Funktion, $u: \operatorname{Re} f$, $v := \operatorname{Im} f$ und es gelte: $u, v \in R[a, b]$ für jedes Intervall $[a, b] \subseteq \mathbb{R}$. $\int_{-\infty}^{\infty} f(t) dt$ heißt (absolut) konvergent

$$:\iff \int_{-\infty}^{\infty} u(t)dt \ und \ \int_{-\infty}^{\infty} v(t)dt \ sind \ (absolut) \ konvergent$$

Im Konvergenzfall:

$$\int_{-\infty}^{\infty} f(t) = \int_{-\infty}^{\infty} u(t)dt + i \int_{-\infty}^{\infty} v(t)dt.$$

Ist $\int_{-\infty}^{\infty} f(x)dx$ absolut konvergent, so heißt f absolut integrierbar (aib).

Satz 24.1 (ohne Beweis): $f: \mathbb{R} \to \mathbb{C}$ sei stückweise stetig.

- a) f ist absolut integrierbar $\iff \int_{-\infty}^{\infty} |f(x)| dx$ ist konvergent.
- b) Ist $g: \mathbb{R} \to \mathbb{C}$ absolut integrierbar und $|f| \leq |g|$ auf \mathbb{R} , so ist f absolut integrierbar.

Satz 24.2 (ohne Beweis): $f: \mathbb{R} \to \mathbb{C}$ sei stückweise glatt, f und f' seien absolut integrierbar und f habe höchstens endlich viele Unstetigkeitsstellen. Dann ist f auf \mathbb{R} beschränkt und

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$$

24.3 Satz und Definition: $f: \mathbb{R} \to \mathbb{C}$ sei stückweise stetig und absolut integrierbar. Für $s \in \mathbb{R}$ sei $g_s(t) \coloneqq f(t)e^{-ist}$ $(t \in \mathbb{R})$. Dann:

- a) g_s ist stückweise stetig
- b) g_s ist absolut integrierbar
- c) Ist $\hat{f} \colon \mathbb{R} \to \mathbb{C}$ definiert durch $\hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-ist} dt$, so gilt:
 - (i) \hat{f} ist auf \mathbb{R} beschränkt
 - (ii) \hat{f} ist auf \mathbb{R} stetig.

 \hat{f} heißt die Fouriertransformierte von f. Die Zuordnung $f \mapsto \hat{f}$ heißt Fouriertransformation.

Beweis:

- a) Klar.
- b) $|g_s(t)| = |f(t)| \underbrace{\left|e^{-ist}\right|}_{=1} = f(t) \ \forall t \in \mathbb{R} \xrightarrow{24.1} \text{Beh.}$
- c) (i) $|\hat{f}(s)| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)| \underbrace{|e^{ist}|}_{=1} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)| dt \ \forall s \in \mathbb{R}$
 - (ii) ohne Beweis.

Beispiele:

a) $f(t) := \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0. \end{cases}$ Klar: f ist auf \mathbb{R} stückweise stetig. Sei $\beta > 0$:

$$\int_{0}^{\beta} f(t)dt = \int_{0}^{\beta} e^{-t}dt = e^{-t} \Big|_{0}^{\beta} = -e^{-\beta} + 1 \longrightarrow 1, \quad (\beta \to \infty)$$

Damit ist $\int_0^\infty f(t)dt$ konvergent, somit auch $\int_{-\infty}^\infty f(t)dt = \infty_0^\infty f(t)dt$. $f \ge 0$ auf $\mathbb{R} \Rightarrow f$ ist absolut integrierbar.

$$\hat{f}(s) = \frac{1}{2\pi} \int_0^\infty e^{-t} e^{-ist} dt = \frac{1}{2\pi} \int_0^\infty e^{-(1+is)t} dt.$$

Sei $\beta > 0$:

$$\int_{0}^{\beta} e^{-(1+is)t} dt = -\frac{1}{1+is} e^{-(1+is)t} \Big|_{0}^{\beta}$$
$$= -\frac{1}{1+is} \left(e^{-(1+is)\beta} - 1 \right)$$
$$= \frac{1}{1+is} \left(1 - e^{-\beta} e^{-is\beta} \right)$$

$$\left| e^{-\beta} e^{-is\beta} \right| = e^{-\beta} \underbrace{\left| e^{-is\beta} \right|}_{=1} = e^{-\beta} \longrightarrow 0 \quad (\beta \to \infty) \Rightarrow \int_0^\infty e^{-(1+is)t} dt = \frac{1}{1+is}$$

$$\implies \hat{f}(s) = \frac{1}{2\pi} \frac{1}{1+is} \quad (s \in \mathbb{R})$$

Analog: $\int_{-\infty}^{0} e^{t} e^{-ist} dt = \frac{1}{1-is}$.

b)
$$f(t) = e^{-|t|} = \begin{cases} e^{-t} & t \ge 0 \\ e^t, & t < 0. \end{cases}$$
 Es ist $\int_{-\infty}^{\infty} f(t)dt = 2 \int_{0}^{\infty} e^{-t}dt$

Beispiel a) $\Rightarrow f$ ist auf $\mathbb R$ absolut integrierbar. Klar: f ist auf $\mathbb R$ stückweise stetig.

$$\stackrel{a)}{\Rightarrow} \int_0^\infty e^{-t} e^{-ist} dt = \frac{1}{1+is} \Rightarrow \hat{f}(s) = \frac{1}{\pi} \frac{1}{1+s^2}$$

Analog sieht man:

$$\int_{-\infty}^{0} e^t e^{-ist} dt = \frac{1}{1 - is}.$$

Also:

$$\hat{f}(s) = \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{t} e^{-ist} dt + \int_{0}^{\infty} e^{-t} e^{-ist} dt \right)$$

$$= \frac{1}{2\pi} \left(\frac{1}{1 - is} + \frac{1}{1 + is} \right)$$

$$= \frac{1}{2\pi} \left(\frac{1 + is + 1 - is}{1 + s^{2}} \right)$$

$$= \frac{1}{\pi} \frac{1}{1 + s^{2}}$$

c) $f(t) := \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1. \end{cases}$ Klar: f ist stückweise stetig und absolut integrierbar.

$$\hat{f}(s) = \frac{1}{2\pi} \int_{-1}^{1} e^{-ist} dt$$

Es gilt:

•
$$s = 0$$
: $\hat{f}(s) = \frac{1}{2\pi} \int_{-1}^{1} 1 dt = \frac{1}{\pi}$

•
$$s \neq 0$$
: $\hat{f}(s) = \frac{1}{2\pi} \left[-\frac{1}{is} e^{-ist} \right]_{-1}^{1}$

$$= \frac{1}{2\pi} \left(-\frac{1}{is} \left(e^{-is} - e^{is} \right) \right) = \frac{1}{s} \frac{1}{\pi} \underbrace{\frac{1}{2i} \left(e^{is} - e^{-is} \right)}_{=\sin(s)} = \frac{1}{\pi} \frac{\sin(s)}{s}$$

Frage: Kann man f aus \hat{f} rekonstruieren?

Der Cauchysche Hauptwert

Das Integral $\int_{-\infty}^{\infty} f(x)dx$ war definiert als

$$\lim_{\beta \to \infty} \int_{\beta}^{0} f(x)dx + \lim_{\alpha \to \infty} \int_{0}^{\infty} f(x)dx$$

und nicht als $\lim_{\alpha\to\infty}\int_{-\alpha}^{\alpha}f(x)dx$.

Beispiel: $\int_{-\alpha}^{\alpha} x dx = 0 \ \forall \alpha \in 0. \ \int_{-\infty}^{\infty} x dx$ ist divergent.

Definition: Sei $f = u + iv : \mathbb{R} \to \mathbb{C}$ eine Funktion mit $u, v \in R[a, b] \forall [a, b] \subseteq \mathbb{R}$.

Existiert der Grenzwert $\lim_{\alpha\to\infty}\int_{-\alpha}^{\alpha}f(x)dx$, so heißt dieser Grenzwert Cauchyscher Hauptwert (CH) und man schreibt

$$CH - \int_{-\infty}^{\infty} f(x)dx := \lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} f(x)dx.$$

Übung: Ist $\int_{-\infty}^{\infty} f(x)dx$ konvergent, so existiert $CH - \int_{-\infty}^{\infty} f(x)dx$ und

$$\int_{-\infty}^{\infty} f(x)dx = CH - \int_{-\infty}^{\infty} f(x)dx.$$

Beispiel: $\int_{-\infty}^{\infty} x dx$ divergent, CH- $\int_{-\infty}^{\infty} x dx = 0$.

Satz 24.4 (ohne Beweis): $f: \mathbb{R} \to \mathbb{C}$ sei stückweise glatt und absolut integrierbar. Dann:

$$CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{ist}ds = \frac{1}{2}\left(f(t+) + f(t-)\right) \quad \forall t \in \mathbb{R}$$

Ist also f stetig auf \mathbb{R} , so gilt:

$$f(t) = CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{ist}ds \quad \forall t \in \mathbb{R}$$

Beispiel: Behauptung: $\int_0^\infty \frac{\sin x}{x} dx$ ist konvergent und $= \frac{\pi}{2}$.

Beweis:
$$f(t) \coloneqq \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1. \end{cases}$$
 Bekannt: $\hat{f}(s) = \frac{1}{\pi} \begin{cases} 1, & s = 0 \\ \frac{\sin s}{s}, & s \ne 0 \end{cases}$

$$\stackrel{24.4}{\Longrightarrow} CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{is}ds = \frac{1}{2} \left(f(1+) + f(1-) \right) = \frac{1}{2}$$
 (*)

Für $s \neq 0$:

$$\hat{f}(s)e^{is} = \frac{1}{\pi} \frac{\sin(s)}{s} (\cos(s) + i\sin(s))$$
$$= \frac{1}{\pi} \left(\frac{\sin(s)\cos(s)}{s} + i\frac{|\sin^2(s)|}{s} \right)$$

Sei $\alpha > 0$.

•
$$s \mapsto \frac{\sin^2(s)}{s}$$
 ist ungerade $\Rightarrow \int_{-\alpha}^{\alpha} \frac{\sin^2(s)}{s} ds = 0$

• $s \mapsto \frac{\sin(s)\cos(s)}{s}$ ist gerade

$$\Rightarrow \int_{-\alpha}^{\alpha} \frac{\sin(s)\cos(s)}{s} ds = 2 \int_{0}^{s} \underbrace{\frac{\sin(s)\cos(s)}{s}}_{\frac{1}{2}\frac{\sin(2s)}{s}} ds = \int_{0}^{\alpha} \frac{\sin(2s)}{s} ds$$

Substituiert man t = 2s gilt damit dt = 2ds und daraus folgt:

$$\int_0^\alpha \frac{\sin(2s)}{s} ds = 2 \int_0^{2\alpha} \frac{\sin(t)}{t} \frac{1}{2} dt = \int_0^{2\alpha} \frac{\sin(t)}{t} dt$$

$$\implies \frac{1}{2} \stackrel{(*)}{=} \lim_{\alpha \to \infty} \int_{-\alpha}^\alpha \hat{f}(s) e^{is} ds = \frac{1}{\pi} \lim_{\alpha \to \infty} \int_0^{2\alpha} \frac{\sin t}{t} dt = \frac{1}{\pi} \int_0^\infty \frac{\sin t}{t} dt$$

 \Rightarrow Behauptung.

Sei $V \coloneqq \{f \colon \mathbb{R} \to \mathbb{C} \colon f \text{ ist stückweise stetig und absolut integrierbar} \}$ Für $f \in V$ und $s \in \mathbb{R}$:

 $\hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-ist}dt.$

Satz 24.5:

a) V ist ein komplexer Vektorraum und es gilt für $f, g \in V$ und $\alpha, \beta \in \mathbb{C}$:

$$\widehat{\alpha f + \beta} g = \alpha \hat{f} + \beta \hat{g}.$$

b) Sei $f \in V$, $h \in \mathbb{R}$ und $f_h : \mathbb{R} \to \mathbb{C}$ sei definiert durch

$$f_h(x) \coloneqq f(x+h).$$

Dann: $f_h \in V$ und für $s \in \mathbb{R}$: $\hat{f}_h(s) = e^{ish}\hat{f}(s)$.

Beweis: a) Klar.

b) $\hat{f}_h(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t+h)e^{-ist}dt$. Sei c > 0, substituiert man $\tau := t+h$ gilt damit $d\tau = dt$ und daraus folgt:

$$\int_{0}^{c} f(t+h)e^{-ist}dt = \int_{h}^{h+c} f(\tau)e^{-is(\tau-h)}d\tau$$

$$= e^{ish} \int_{h}^{h+c} f(\tau)e^{-is\tau}d\tau$$

$$\xrightarrow[c\to\infty]{} e^{ish} \int_{h}^{\infty} f(\tau)e^{is\tau}d\tau$$

Also:

$$\int_{0} \infty f_{h}(t) e^{-ist} dt = e^{ish} \int_{h}^{\infty} f(\tau) e^{-is\tau} d\tau.$$

Analog: $\int_{-\infty}^{0} f_h(t)e^{-ist}dt = e^{ish} \int_{-\infty}^{h} f(\tau)e^{-is\tau}d\tau$.

Definition: $f_1, f_2 \colon \mathbb{R} \to \mathbb{C}$ seien Funktionen mit $\forall t \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} f_1(t-x) f_2(x) dx$$

konvergiert. Dann heißt für $t \in \mathbb{R}$

$$(f_1 * f_2)(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f_1(t-x) f_2(x) dx$$

Faltung von f_1 und f_2

Beispiel:
$$f_1(t) = \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$
, $f_2(t) = \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$

Für $t \in \mathbb{R}$:

$$2\pi \left(f_1 * f_2\right)(t)_{=:g(t)} = \int_{-\infty}^{\infty} f_1(t-x)f_2(x)dx = \int_{-1}^{1} f_1(t-x)f_2(x)dt = \int_{-1}^{1} f_1(t-x)dx$$

- Fall 1: t < -1. Für $x \in [-1, 1]$: $t x < 1 \Rightarrow f_1(t x) = 0 \Rightarrow g(t) = 0$.
- Fall 2: $t \ge 1$. Für $x \in [-1, 1]$: $t x \ge 0 \Rightarrow f_1(t x) = be^{-(t x)} = e^x e^{-t}$

$$\Rightarrow g(t) = \int_{-1}^{1} e^{x} e^{-t} dx = e^{-t} \left(e - \frac{1}{e} \right).$$

• Fall 3: $-1 \le t <$. Nachrechnen: $g(t) = 1 - e^{-t-1}$.

Satz 24.6 (ohne Beweis): Es seien $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ stetig und absolut integrierbar und f_1 sei beschränkt. Dann:

- a) $\forall t \in \mathbb{R}: \int_{-\infty}^{\infty} f_1(t-x) f_2(x) dx$ konvergiert absolut.
- b) $f_1 * f_2$ ist stetig und absolut integrierbar, also $f_1 * f_2 \in V$ und

$$\left(\widehat{f_1 * f_2}\right)(s) = \widehat{f_1}(s)\widehat{f_2}(s).$$

c) Für $t \in \mathbb{R}$:

$$|(f_1 * f_2)(t)| \le \frac{1}{2\pi} \sup_{x \in \mathbb{R}} |f_1(x)| \int_{-\infty}^{\infty} |f_2(x)| dx.$$

Satz 24.7: $f: \mathbb{R} \to \mathbb{C}$ sei stückweise glatt, f sei stetig und f sei absolut integrierbar. Weiter sei f' überall definiert und absolut integrierbar. Dann:

$$f' \in V \quad und \quad \hat{f}'(s) = is\hat{f}(s) \quad \forall s \in \mathbb{R}$$

Beweis: Klar: $f' \in V$.

• Fall 1: s = 0: $\hat{f}'(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f'(t) dt$. Mit $\beta > 0$:

$$\int_0^\beta f'(t)dt = f(\beta) - f(0) \xrightarrow{24.2} -f(0) \quad (\beta \to 0)$$

D.h.: $\int_0^\infty f'(t)dt = -f(0)$. Damit: $\hat{f}'(0) = 0 = i0\hat{f}(0)$.

• Fall 2: $s \neq 0$: $\hat{f}'(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f'(t) e^{-ist} dt$. Mit $\beta > 0$:

$$\begin{split} \int_0^\beta \underbrace{f(t)}_u \underbrace{e^{-ist}}_{v'} dt &= -\frac{1}{is} e^{-ist} f(t) \bigg|_0^\beta - \int_0^\beta f'(t) \left(-\frac{1}{is} e^{-ist} \right) dt \\ &= -\frac{1}{is} e^{-is\beta} f(\beta) + \frac{1}{is} f(0) + \frac{1}{is} \int_0^\beta f'(t) e^{-ist} dt \end{split}$$

$$f(\beta) \to 0 \ (\beta \to \infty) \ (\text{wg. 24.2}), \ \left| e^{is\beta} \right| = 1$$

$$\stackrel{\beta \to \infty}{\Longrightarrow} \int_0^\infty f(t) e^{-ist} dt = \frac{1}{is} f(0) + \frac{1}{is} \int_0^\infty f'(t) e^{-ist} dt$$

Analog: $\int_{-\infty}^{0} f(t)e^{-ist}dt = -\frac{1}{is}f(0) + \frac{1}{is}\int_{-\infty}^{0} f'(t)e^{-ist}dt$.

Anwendung: $f: \mathbb{R} \to \mathbb{C}$ sei zweimal stetig differenzierbar und f, f', f'' seien absolut integrierbar.

Gesucht: $u: \mathbb{R} \to \mathbb{C}$ stetig und absolut integrierbar mit $\forall t \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} e^{-|t-\tau|} u(\tau) d\tau = f(t) \tag{*}$$

 $g(t) := e^{-|t|}$. Bekannt: $\hat{g}(s) = \frac{1}{\pi} \frac{1}{1+s^2}$. Sei u eine Lösung von (*), also: $f(t) = 2\pi (g * u) (t)$. $\Rightarrow \hat{f}(s) = 2\pi \left(\widehat{g * u}\right)(s) \stackrel{24.6}{=} 2\pi \hat{g}(s) \hat{u}(s) = \frac{2\pi}{\pi} \frac{1}{1+s^2} \hat{u}(s)$

$$\Rightarrow \hat{u}(s) = \frac{1}{2} \left(1 + s^2 \right) \hat{f}(s)$$

$$= \frac{1}{2} \hat{f}(s) + \frac{1}{2} s^2 \hat{f}(s)$$

$$= \frac{1}{2} \hat{f}(s) - \frac{1}{2} \underbrace{(is)}_{\stackrel{=}{2} \underbrace{f'(s)}}_{\stackrel{=}{2} \underbrace{4.7}}$$

$$= \frac{1}{2} \hat{f}(s) - \frac{1}{2} \underbrace{is}_{\stackrel{=}{2} \underbrace{f''(s)}}_{\stackrel{=}{2} \underbrace{4.7}}$$

$$= \frac{1}{2} \left(\hat{f}(s) - \widehat{f''}(s) \right) = \left(\underbrace{\widehat{f-f''}}_{2} \right) (s)$$

u, f, f'' stetig $\stackrel{24.4}{\Longrightarrow} u(t) = \frac{1}{2} (f(t) - f''(t)).$

Satz 24.8 (ohne Beweis): $f: \mathbb{R} \to \mathbb{C}$ sei stückweise glatt, f und f' seien absolut integrierbar. Weiter habe f genau die Unstetigkeitsstellen $x_1, \ldots, x_m \in \mathbb{R}$. Dann ist für $s \in \mathbb{R}$:

$$\hat{f}'(s) = is\hat{f}(s) - \frac{1}{2\pi} \sum_{k=1}^{m} (f(x_k+) - f(x_k-)) e^{-isx_k}.$$

Definition: Sei nun $f: \mathbb{R} \to \mathbb{C}$ stetig und absolut integrierbar. Wenn die Fouriertransformierte $\hat{f}: \mathbb{R} \to \mathbb{C}$ außerhalb eines beschränkten Intervalls 0 ist, so heißt f bandbeschränkt (technisch: Die Frequenzdichte des Signals verschwindet außerhalb eines beschränkten Intervalls).

In diesem Fall ist es möglich f aus den Werten auf einem hinreichend feinen Raster $\{kt : k \in \mathbb{Z}\}\$ zu reproduzieren.

Satz 24.9 (Abtasttheorem von Shannon (ohne Beweis)): $f: \mathbb{R} \to \mathbb{C}$ sei stetig und absolut integrierbar, und $\exists b > 0$: $\hat{f}(s) = 0$ $(s \in \mathbb{R} \setminus (-b, b))$. Dann gilt für jedes $T < \frac{\pi}{b}$:

$$f(x) = \sum_{k=-\infty}^{\infty} f(kT) \operatorname{sinc}\left(\frac{\pi}{T}(x - kT)\right) \quad (x \in \mathbb{R}),$$

wobei
$$\operatorname{sinc}(x) := \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 (Sinuscardinalis).

Die Fouriertransformation im Raum der schnell fallenden Funktionen

Ist $f \in V$, so ist \hat{f} stetig und beschränkt, aber im allgemeinen nicht mehr absolut integrierbar (deswegen CH in Umkehrformel). Im Raum der sogenannten schnell fallenden Funktionen herrscht diesbezüglich Symmetrie:

Definition: Eine Funktion $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$ heißt **schnell fallend**: $\iff \forall n, m \in \mathbb{N}_0$: $t \mapsto t^m f^{(n)}(t)$ ist beschränkt auf \mathbb{R} .

$$S := \{ f : \mathbb{R} \to \mathbb{C} : f \text{ ist schnell fallend} \}$$

heißt Schwartz-Raum.

Beispiel: $f(t) = p(t)e^{-t^2}$ ist für jedes Polynom p eine schnell fallende Funktion.

Satz 24.10: Seien $f, g \in S$. Dann gilt:

- a) $\forall \alpha, \beta \in \mathbb{C}$: $\alpha f + \beta g \in S$ (S ist also ein Vektorraum).
- b) $f \cdot g \in S$.
- c) $f^{(n)} \in S \ (n \in \mathbb{N}).$
- d) $t \mapsto t^m f(t)$ ist in S.
- e) f ist absolut integrierbar.
- f) $\hat{f} \in S$.
- g) $f_h \in S$ $(h \in \mathbb{R}).$
- $h) f * g \in S.$

Beweis: a) - d), f) ohne Beweis

e) $t \mapsto t^2 f$ ist beschränkt, $t \mapsto (1+t^2) f$ ist beschränkt

$$\Rightarrow |f(t)| \le \frac{M}{1+t^2} \le \frac{M}{t^2}, \quad (t \ne 0).$$

Da $\int_1^\infty \frac{1}{t^2} dt$ konvergiert, folgt die Behauptung mit Satz 24.1.

Satz 24.11: Die Fouriertransformation $f \mapsto \hat{f}$ ist ein Isomorphismus von S nach S (also linear und bijektiv).

Beweis: Sei $\mathcal{F}: S \to S$ definiert durch $\mathcal{F}f = \hat{f}$. \mathcal{F} ist linear (klar). Betrachte $\mathcal{G}: S \to S$ definiert durch

$$\left(\mathcal{G}g\right)(t) = \int_{-\infty}^{\infty} g(s)e^{ist}ds$$

(beachte g ist absolut integrierbar). Nach Satz 24.4 gilt: $\mathcal{G}\left(\mathcal{F}f\right)=f.$ Wegen

$$(\mathcal{G}g)(-t) = \int_{-\infty}^{\infty} g(s)e^{-ist}ds = 2\pi \hat{g}(t) \quad (t \in \mathbb{R})$$

ist für $s \in \mathbb{R}$

$$\mathcal{F}(\mathcal{G}g)(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \hat{g}(-t)e^{-its}dt$$
$$= \int_{-\infty}^{\infty} \hat{g}(-t)e^{-its}dt$$
$$= \int_{-\infty}^{\infty} \hat{g}(t)e^{-its}dt = g(s),$$

also gilt $\mathcal{G} = \mathcal{F}^{-1}$.

Stichwortverzeichnis

C, 7	differenzierbar, 18, 19, 29, 73
,	
$C^p, 29$	in Richtung, 21
Ableitung, 18, 29	partiell, 14, 15
absolut integrierbar, 74	stetig partiell, 17
Abtasttheorem von Shannon, 82	vektorwertige Funktionen, 29
Anfangswertproblem, 52	divergent, 10
Lösung, 52	Faltung, 80
	Folge
bandbeschränkt, 82	beschränkte, 2
Bernoullische Differentialgleichung, 60	divergente, 2
Beschränktheit, 8	konvergente, 2
Bolzano-Weierstraß, 3	Teil-, 2
Cauchykriterium, 3	Fourierkoeffizienten, 12
Cauchysche Hauptwert, 77	Fouriertransformation, 75
Cauchyscher Hauptwert, 77	Fundamentalmatrix, 66
charakteristisches Polynom, 69	Fundamentalsystem, 63, 68
•	Funktionalmatrix, 29
definit, 24	
negativ, 24	geometrische Reihe, 10
positiv, 24	Gradient, 15
Differentialgleichung, 52	Grenzwert, 2
1. Ordnung, 52	Häufungspunkt, 4
getrennte Variablen, 53	Häufungswert, 2
homogen, 68	Hesse-Matrix, 23
homogene, 55	homogen, 55, 62, 68
inhomogen, 68	nomogen, 55, 62, 68
inhomogene, 55	indefinit, 24
Lösung, 52	Inhalt, 41
lineare, 55, 68	äußerer, 41
n-ter Ordnung, 68	innerer, 41

inhomogen, 55, 62, 68	Richtungsableitung, 21
Integral, 39, 42	Richtungsvektor, 21
integrierbar, 39, 42	Rotationskörper, 45, 46
Jacobimatrix, 29	schnell fallend, 83
	Schwartz-Raum, 83
Kettenregel, 20	Sinuscardinalis, 82
kompaktes Intervall, 38	Störfunktion, 55
konvergent, 10, 74	stückweise, 73
absolut, 74	glatt, 73
Konvergenzradius, 11	stetig, 73
Limes, 2	Stetigkeit, 7
lineare Differentialgleichungssystem, 62	Streckenzug, 20
homogen, 62	Substitutionsregel, 47
inhomogen, 62	Teilintervall, 38
Maximum	
lokales, 25	Umgebung, 33
messbar, 41	Untersumme, 38
Minimum	Verbindungsstrecke, 20
lokales, 25	
	Zerlegung, 38
Normalbereich, 45	Zylinderkoordinaten, 49
Normalbereich bzgl. der y-Achse, 46	
Obersumme, 38	
Partielle Ableitung, 14	
2. Ordnung, 16	
höherer Ordnung, 16	
Polarkoordinaten, 48	
Potenzreihe, 11	
Reihenwert, 10	
Riccalische Differentialgleichung, 60	
Richtung, 21	