香港考益局

HONG KONG EXAMINATIONS AUTHORITY

一九八二年香港中學會為

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1982

MATHEMATICS (SYLL 1)

MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1982

<u>!</u>	SOLUTION STEPS	MARKS	NOTES
(5 marks) $\frac{2 + i}{1 - 3i}$ $= \frac{(2 + i)(1 + i)}{(1 - 3i)(1 + i)}$ $= \frac{-1 + 7i}{10}$ $= -\frac{1}{10} + \frac{7}{10}i$		2M 1A 1A	ALTERNATIVELY, Let $a + bi = \frac{2 + 1}{1 - 3i}$ $(a+bi)(1-3i) = 2+i$ $(a+3b)+(b-3a) = 2+i$ $a+3b = 2$ $b-3a = i$ $a = -\frac{1}{10}$ $a = -\frac{1}{10}$ $a = -\frac{7}{10}$ 1A
(5 marks)			ALTERNATIVELY,
$4^{x-y} = 4$ $4^{x+y} = 16$		Bo Traci	$\frac{4^{x+y}}{4^{x-y}} = 4 \qquad 1M$
x - y = 1 $x + y = 2$	aur. de	ÎA 1A	$4^{2y} = 4 \qquad 1A$ $2y = 1 \qquad 1A$
Solving,		1M	$y = \frac{1}{2} \qquad 1A$
•	2	1A 1A	$x = 1\frac{1}{2} 1A$
(5 marks) 2x² - x < 2x² - x -		1A 2A	For factorization
	4 1 2 31 32 31 32 31	2A	Accept $\begin{cases} -4 < x \\ x < 4\frac{1}{2} \end{cases}$ "-4 < x and x < 4\frac{1}{2}"
O A	$\angle C = 90^{\circ}$ $\tan \angle BOC = \frac{2\sqrt{3}}{6} \therefore \frac{2}{6}$ $= \frac{1}{\sqrt{3}}$	<u>c</u> 2M	
4	$\angle BOC = 30^{\circ} \text{ or } \frac{\pi}{6}$	1A	1
B 253 C Area of sector	= $\pi (6)^2 \times \frac{30}{360}$ or $\frac{1}{2} (6)^2 \frac{\pi}{6}$ = 3π	1M+1A - 1A	· 流音/连篇 "
	·- ·-	-	

RESIRICIED 内部文件 SOLUTION STEPS MARKS NOTES		Maths. I (Syll 1)			
SOLUTION STEPS	MARKS	NOTES	RESTRICTED 内部 SOLUTION STEPS	CIT.	NOTES
5. (6 marks) $2\sin^2\theta + 5\sin\theta - 3 = 0$	1	•	8. (a) (10 marks)		NOTES
$(2\sin\theta - 1)(\sin\theta + 3) = 0$	lM+lA	lM for attempting to		,,,	
$\sin\theta = \frac{1}{2}$ or $\sin\theta = -3$	1A	factorize For $\sin \theta = \frac{1}{2}$	$AC^2 = x^2 + x^2$ = $2x^2$	1M	For Pythagoras' Theorem
Rejecting sinθ ≈ -3,	1A	If a cand. writes $\sin\theta = -\frac{1}{2}$ only, award 2 marks.	$AB^2 = AC^2 + BC^2$ = $2x^2 + y^2$	lM	For Pythagoras' Theorem
θ = 30° or 150°	1A+1A	Accept 0 = 30°, 150°. or 0 = 30° and 150°.	$2x^2 + y^2 = 9^2$	1A	
		General solution, no mark	8x + 4y + 9 = 69	1A	7,50
If more than 2 answers given, deduct 1 mark for each obtained in the answer only.	wrong	answer from the marks	Sub. $y = 15 - 2x$ in $2x^2 + y^2 = 9^2$	1M	
Constitution of Carry,			Sub. $y = 15 - 2x$ in $2x^2 + y^2 = 9^2$, $2x^2 + (15 - 2x)^2 = 81$ $6x^2 - 60x + 144 = 0$	1A	For Estern Sem Eys. The
6. (6 marks)			$x^{2} - 10x + 24 = 0$ $(x - 4)(x - 6) = 0$	1A -	
(a) (1, 3), (3, 1), (2, 2)			x = 4 or 6		74 = 7 17 3 and 12 20 20
Probability = $\frac{3}{36}$ = $\frac{1}{12}$ = $\frac{3}{36}$ = $\frac{1}{12}$	1A 1A	For numerator For denominator	x = 4, } y = 7. }	1A	For both values
			y = 7. j	12	FOI BOLK VAINES
(b) (1, 1), (1, 2), (2, 1)	- 1A-	For numerator	$ \begin{cases} x = 6, \\ y = 3. \end{cases} $	1A	For both values
Probability = $\frac{3}{36}$.	- - 1A	For denominator	ALTERNATIVELY,		
(c) Probability = $1 - \frac{1}{12} - \frac{1}{12}$	- 1м		Sub. $x = \frac{15 - y}{2}$ in $2x^2 + y^2 = 9^2$,	1M	
₹ 5/6	- 1A		$2\left[\frac{15-y}{2}\right]^2 + y^2 = 9^2$	1.4	-
ALTERNATIVELY, (1, 4), (1, 5), (1, 6),, (6, 6)			$y^2 - 10y + 21 = 0$		
Probability = $\frac{30}{36}$	- 1A	For numerator	·	1A	
36 <u>5</u>	1A	For denominator	(y - 3)(y - 7) = 0 y = 3 or 7	1A	
If answer not simplified, deduct 1 mark for the whole que	stion.				
•	1 -	x=60 2 10 6	$\begin{array}{c} y = 7, \\ x = 4. \end{array}$	1A	For both values
7. (6 marks) (a) $x = 360 \times \frac{2}{12}$	- 1M	ALTERNATIVELY, put x = 2k	y = 3,}	١. ١	
$\frac{1}{12}$		y = 7k, z = 3k,	x = 6. }	IA.	For both values
y = 210	1A 1A	2k + 7k + 3k = 360 - 1	(b) (2 marks)		
z = 90	1A '	•	$\cos\theta = \frac{BC}{AB}$ or $\tan\theta = \frac{AC}{BC}$ or $\sin\theta = \frac{AC}{AB}$		
(b) Total number = $240 \times \frac{12}{2}$	- lm	ALTERNATIVELY, No. in Kowloon = 840 — 1.		lM	, . —
= 1440	- 1A	No. in N.T. = 360	$\cos\theta = \frac{7}{9}$ or $\tan\theta = \frac{\sqrt{32}}{7}$ or $\sin\theta = \frac{\sqrt{32}}{9}$		coddeline? . 100
		Total no.	θ = 39°		
		= 840 + 360 + 240 = 1440	V = 37	1 A	Marine Pp
.					
	1	\hat{j}	š i		
	`	10°		•	

RESTRICTED 内部又	MARKS NOTES	Haths. I (Syll 1) RESIKICIED 内音	ト MARKS	NOTES P.7
1 (a) (4 marks) Let	-	12. (a) (7 marks)		
Let α , β be the roots of $x^2 - 10x + k = 0$ (i) $\alpha + \beta = 10$		$Y = k_1 x$ or $Z = k_2 x^2$	— ім	
OA + OB = 10	1A or sum of roots = 10	$P = Y + Z$ $= k_1 x + k_2 x^2$	1M	
(ii) $\beta = k$ OA x OB = k	1A or product of roots :	$= k 80 000 = 20k_1 + 20^2k_2$		
OA X OB - X	TA	$87\ 500 = 35k_1 + 35^2k_2$	1A	(for either equation)
(b) (4 marks)		Solving,	— 1M	
(1) OM + ON = $\frac{1}{2}$ (OA + OB)	1M	k ₁ = 6000	1A	,
(ii) OM × ON = $\frac{1}{2}$ OA × $\frac{1}{2}$ OB	1A .	k ₂ = -100	_ 1A	
<u>k</u>	1A	$P = 6000x - 100x^2$		
4		When x = 15,		
(c) (4 marks)		$P = 6000(15) - 100(15)^{2}$ = 67 500	_ 1A	
(i) From (b), -p = 0M + 0N p = -5	1M			
r = OM x ON		(b) (3 marks)		
· <u>k</u>	1M	$P = 6000x - 100x^2$	((0x))	•
		$P = 6000x - 100x^{2}$ $= -100(x^{2} - 60x)$ $= -100[x^{2} - 60x + 30^{2} - 30^{2}]$ $= -100[(x - 30)^{2} - 900]$	2M	For the method of
(ii) OM = 2, ON = 3		$ = -100[(x - 30)^2 - 900] $ $ = 90 000 - 100(x - 30)^2 $		completing square
$\frac{k}{4} = (2)(3)$	1M	a = 90 000]		•
k = 24	1A	b = 100 c = 30	1A	All three answers must be correct.
ALTERNATIVELY,				
OM = 2		(c) (2 marks)		
м = (2, 0)		When x = 30, P is a maximum.	1M+1A	
Sub. in $y = x^2 - 5x + \frac{k}{4}$	1M	•		
$0 = 4 - 10 + \frac{k}{4}$	•			
k = 24	1A .		·	٠
	•			,
				• •
_				•
· ·	1	·	1 ' 1	

	KESIKICIED 内市以 SOLUTION STEPS	MARKS	NOTES	TESITION STEPS ED MED	MARKS	NOTES
3. (a)	(3 marks)			14. (a) (4 marks)	-	<u> </u>
•	Centre = (0, 7) Radius = 3	1A 23A \ 1	+1A +=9++3-C 1M	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $= (3 \overrightarrow{i} + 4 \overrightarrow{j}) - (\overrightarrow{i} - \overrightarrow{j})$	1M	Accept column or row vector notation
,	•		$\frac{1}{4}(1-\frac{1}{2})^{2}$	= 2 i + 5 j	1A	Missing of "→" for 3 tim
	Slope of L = $\frac{4}{3}$ slope of L' = $-\frac{3}{4}$	1A	· .	$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC}$	lm	or more, deduct 1 mark for poor presentation
	Equation of L': $\frac{y-7}{x-0} = -\frac{3}{4}$	1M		$= (9\overrightarrow{1} + 5\overrightarrow{j}) - (-3\overrightarrow{1} - 4\overrightarrow{j})$		
	x - 0 4 3x + 4y - 28 = 0 —————	1A	Kanada Para Para Para Para Para Para Para P	= 12 1 + 9 1	1A	
	(3 marks)		K 16 15 - (value 1)	(b) (4 marks)		
	Solving L and L',————————————————————————————————————	lm (lA+lA	lA for each component	$ \overrightarrow{CD} = \sqrt{12^2 + 9^2}$ $= 15$	1A	
(d)	(3 marks) منابد			$\vec{\mathbf{u}} = \frac{12 + 9^{2}}{ \vec{\mathbf{c}}\vec{\mathbf{p}} }$	2M	
	Distance between (0, 7) and (4, 4) = \[\int \frac{16+9}{16+9} \]	1A ~	•	$= \frac{1}{15} (12 \overrightarrow{1} + 9 \overrightarrow{j})$ or $\frac{4}{5} \overrightarrow{1} + \frac{3}{5} \overrightarrow{j}$	1A	
	Shortest distance between C and L					·
	= 2	lM lA		(c) (4 marks) (1) $\overrightarrow{AB} \cdot \overrightarrow{u} = (2 \overrightarrow{1} + 5 \overrightarrow{j}) \cdot (\cancel{4} \overrightarrow{1} + \cancel{3} \overrightarrow{j})$		
	ALTERNATIVELY,			$= 2 \times \frac{4}{5} + 5 \times \frac{3}{5}$	1M	For evaluation of
	Distance from (0, 7) to $L = \left \frac{4(0) - 3(7) - 4}{\sqrt{3^2 + 4^2}} \right $	1A		- 4 3 5	1A	dot product
	Shortest distance between C and L	-1M		(11) $ \overrightarrow{AE} = \overrightarrow{AB} \cos \angle BAE$	1M	May be omitted
	2	1A	•	$= \overrightarrow{AB} \cdot \overrightarrow{U}$ $= 4\frac{3}{5}$	1A	· ·
	ALTERNATIVELY,	!				
	Solving L' and C,	1M	•	ALTERNATIVELY,	.	1
	Points of intersection are $\left(\frac{12}{5}, \frac{26}{5}\right)$ and $\left(-\frac{12}{5}, \frac{44}{5}\right)$	1A '	• • •	Equation of CD: $3x - 4y - 7 = 0$ Equation of BE: $4x + 3y - 24 = 0$	1A	
	` '			Solving, $E = \left(\frac{117}{25}, \frac{44}{25}\right)$		
	Distance between $\left(\frac{12}{5}, \frac{26}{5}\right)$ and $(4, 4)$	1A		$AE = 4\frac{3}{5}$	1A	•
	÷ .		<i>*</i>			
	• 1	,	() i		.	