MMA/MMAI 869 Machine Learning and AI

Overview of ML

Stephen Thomas

Updated: September 13, 2022

Outline

- Three Types of ML
- Supervised Machine Learning
 - Data
 - Algorithms
 - Model
 - Predictions
- Unsupervised Learning
- Reinforcement Learning

MACHINE LEARNING

Three Types of Machine Learning

	Supervised	Unsupervised	Reinforcement
What	Predict something in the future	Find relationships	Learn through trial and error
How	Algorithm builds model from past data	Algorithms finds patterns in data	Algorithm takes actions, gets rewards
Data	Labeled	Unlabeled	None
Tasks/ Algorithms	 Classification Decision Tree, SVM, Naïve Bayes Regression Linear, Polynomial, Lasso Recommenders Collaborative filtering, matrix decomposition 	 Clustering K-Means, DBSCAN, Hierarchical Association rules Apriori, Eclat, FP-Growth Dimensionality Reduction PCA, NMF, LDA, GDA, t-SNE 	Q-learningSARSADeep Q Network

Machine Learning Terminology

Features

Target or Label

(inputs, independent variables, X, columns)

(response, output, dependent variable, Y)

Instances
(rows, cases,
records)

Age	Income	Married	Citizenship	Default
55	36,765	True	Canada	True
66	87,983	True	Canada	True
21	24,354	False	USA	False
24	56,654	True	Canada	False
34	98,324	False	UK	False
36	132,229	False	Germany	True
28	35,000	True	Canada	False
49	50,334	True	Canada	False

The Analytics Process: CRISP-DM

More Detail

Outliers

Supervised Machine Learning

Algorithm **learns** a model that can make predictions

Types of Predictions

Models can be learned to predict:

Numbers

- House Price
- Energy demand
- CLV
- Foot traffic
- Stock price
- Sales
- ...

"Regression"

- Ordinary Least Squares
- Gradient Descent
- Random Forest
- ...

Categories

- Churn
- Risk
- Click
- Images
- Fraud
- Health
- ...

"Classification"

- Decision Trees
- Neural Networks
- Naïve Bayes
- SVM
- Random Forest
-

Recommendations

- Movie
- Product
- Music
- News
- Books
- Restaurants
- ..

"Recommendation"

- Collaborative Filtering
- Matrix decomposition
- Ordinary Least Squares

So Many ML Applications

Credit Risk

Churn Prediction

Maintenance

Health

Fraud

CLV

Sales

Segmentation

Outliers

Shopping

HR Churn

Cost

Traffic

Cross Selling

Self-driving

Manufacturing

AB Testing

Auto checkout

QA

Facial Recognition

Medical Imaging

Security

Banking

Delivery

Agriculture

Warehouse

Farming

Companionship

Cleaning

Age	Income	Gender	Debt	Ed Level	Purpose	Default?
34	56786	M	0	3	I want to remodel my kitchen to	Yes
54	68091	M	10000	2	Refinance credit card debt becau	Yes
71	31287	F	25000	1	My husband bought a new tracto	No
21	19807	M	325	1	TESLA BABY YAHOO!	No
44	79876	F	8976	3	My doctor says I need another pu	No

Year Built	Beds	Baths	Garage	Price
2003	3	2	Attached	208,500
1976	3	2	Attached	181,500
2001	3	2	Attached	223,500
1915	3	1	Detached	140,000
2000	4	2	Attached	250,000
1993	4	1	Attached	143,000
2004	1	2	Attached	307,000
1973	3	2	Attached	200,000

Image	Category
	Cat
	Dog
	Dog
	Cat
	Dog

Date	Time	Amount	Merchant ID	Fraud
09/01/20	01:02:54	12.73	58447	False
09/01/20	01:03:09	58.00	63544	False
09/01/20	01:03:44	1.54	11440	False
09/01/20	01:03:51	500.87	07454	False
09/01/20	01:04:17	365.23	54784	False
09/01/20	01:04:20	412.00	22254	True
09/01/20	01:04:24	78.02	98630	False
09/01/20	01:04:24	8074.19	00744	False

Data Cleaning and Prep

- "Garbage in, garbage out"
- "Quality data beats fancy algorithms"
- More than 50% of project time spent on data cleaning

ID	Name	Gender	Address	Phone	Salary
7474	Steve	m		123456789	48K
6532	Dr. Stephen Thomas	Male	451 Shallow Rd.	613-453-6969	100,214
2144	Jessica Smith	fem.	LONDON		17,856
231		FemalE		1547854587	
	Bob Doe	Female	Edmnton		35,748
6532	Dr. Stephen Thomas	Male	451 Shallow Rd.	613-453-6969	1
471	April Garcia	Female	547 Main St.	520-854-9658	41,012
7488	John Harris	Male	11 One Ave.	471-774-0000	68,745

Exercise: What's wrong here?

How to Assess Prediction Accuracy?

- Naïve way:
 - Use all the data to train the model
 - Ask model to create predictions on same data
 - Compare predictions with labels
- A horrible idea! Why?

A Better Way

- Holdout Method: Randomly divide training data into two subsets
 - Training set: Used to train the model
 - Test set: used to evaluate model's predictions
 - Pretend that the test data is "future data"

Performance Metrics

How good are a model's predictions?

Numbers

- Mean Squared Error
- Mean Absolute Error
- Root MSE

Categories

- Accuracy and Error
- Precision, Recall
- F1 score
- Sensitivity/Specificity
- ROC Curve and AUC
- Log Loss

Recommendations

- Mean Average Precision @ K
- Coverage
- Personalization
- Intra-list similarity

UNSUPERVISED LEARNING

Clustering

Clustering, Cluster analysis

noun

- Putting instances in clusters/groups so that:
 - Instances in the same group are "similar" to each other
 - Instances in different groups are "not similar" to each other

Clustering Applications

Customer Segmentation (Marketing, Behavior analysis)

Anomaly Detection (Insurance Fraud, etc.)

Document Clustering (Survey analysis, EDA)

Feature Engineering

Educational Data Mining

Science/Biology

Association Rule Learning

Association Rule Learning

noun

• Discovering interesting relationships ("rules") in data.

Business Applications

Price Bundling

Consumer Profiles

Cross Selling

Shopping Patterns

Web Analytics

Graph Analytics

graph analytics

noun

Analyzing relationships and interactions amongst entities in a graph

- Find most important nodes
- Find shortest paths
- Find bridges/hubs
- Find communities
- ...

REINFORCEMENT LEARNING

Reinforcement Learning

Through trial and error, algorithm finds actions that lead to reward

https://www.youtube.com/watch?v=gn4nRCC9TwQ

Hide and Seek

https://www.youtube.com/watch?v=Lu56xVIZ40M

RL Learns to Park

https://www.youtube.com/watch?v=VMp6pq6 Qjl

RL Use Cases

Self-driving Cars

Inventory Robots

SUMMARY

Summary

Three types of Machine Learning

Supervised

- Training data is labeled
- Learn/Build model to make predictions about future

Unsupervised

- Training data is unlabeled
- Find groupings, patterns

- Reinforcement

- No training data, but you can easily inform the algorithm when it is "right" or "wrong"
- Through trial and error, algorithm finds actions that lead to "right" answer

APPENDIX

Success Story: Yorkdale Mall

- Built rules from 1.8M customer journeys
- Looking for rules that showed a long customer journey
- Red: Rules containing HB on LHS is greater than 200 meters away
- Results: were able to identify a store that should be moved

Success Story: Fraud Detection

- Transaction history per customer
- Look-alike customers
- Fraudulent transaction histories

- 15% increase in fraud detection
- 50% reduction of false alarms
- 60% in total savings

- Fraud costs \$80B/year
- Traditional detection techniques are costly and prone to false positives

Built supervised ML model to predict, in real-time, whether a transaction is fraudulent

Success Story: Singapore Healthcare

- Flu in NICU is devastating
- By the time flu is detected, it's often too late

model to predict flu

Success Story: Steward Health Care

- Historical patient volume
- School vacation schedules
- New England sports
- Moon phases!

- Models are > 95% accurate
- More accurate in some units (like ICU)

 60% of hospital operations expenses come from staffing

 Current staffing model uses averages; not efficient Built supervised ML model to predict patient volume

 Achieved 1% reduction in nurse hours → \$2M savings per year

Success Story: Avis

- Auto rental business is very competitive
- Need a way to increase customer loyalty

Built regression model to predict customer lifetime value

Success Story: Kroger

 Years of purchase history per customer (97% of customers use loyalty card)

- Created personalized direct mailers
- Coupon return rate of 70%
- \$10B+ additional revenue

- Kroger wants to maintain customer loyalty and broaden shopping
- Coupons work, but only have an industry average return rate of 4%
 - Coupons based on averages, or demographics

Built an association rules model to learn what products are often purchased together

Success Story: Amazon

- Amazon has 600M+ products
- Hard for customers to discover

Built a recommender system to find products that are often purchased together

Success Story: McDonald's

- Customer purchase history
- Customer response to offer history
- Location, time of day
- Netherlands, Sweden, and Japan make up 60% of McDonald's locations worldwide
- Want to increase customer engagement with personalization

- 700% increase in redemption
- Customers using app spent 47% more than non-app users

Built a recommender system to push personalized offers on mobile app

Success Story: Hyatt

- Guest demographics
- Guest transactions
- Hyatt wanted to increase cross sell and upsell success to guests
- Increase incremental room revenue

- At check-in, desk agents see cross and upsell opportunities for that customer's segment
- Increased incremental room revenue by 60%
- Built a segmentation model
- Determined each segment's spending habits and preferences

Success Story: Fanuc

- No training data available
- However, you can easily tell robot if it is "right" or "wrong"

After 8 hours of training, robot gets
 90%+ accuracy on the task

- Traditional robots need to be programmed very carefully for every task, such as picking up an object in a box
- Difficult and time consuming

- Use reinforcement learning to train robot's algorithm
- Robot tries to pick up object, and it will learn what leads to "right" or "wrong"