סיכומי הרצאות - אלגברה לינארית 1

מיכאל פרבר ברודסקי

תוכן עניינים

2	, חוגים ושדות	חבורות	ונואידים,	ו מו
2			הגדרות	1
2	של פעולות	תכונות	1.1	
2		מונואיד	1.2	
2		חבורה.	1.3	
2		חוג	1.4	
3		שדה	1.5	
3			מרוכבים	II د
3		בסיסיות	הגדרות	2
3		ילארית.	הצגה פו	3
4			מטריצות	III
4		. 	הגדרות	4
4		שונות.	4.1	
5	בסיסיות	פעולות	4.2	
5	כפל מטריצה בוקטור	4.2.1		
5	כפל מטריצה במטריצה	4.2.2		
5	טענות לגבי כפל מטריצות:	4.2.3		
6	אלמנטריות על מטריצה	פעולות	4.3	
6	ני	ירוג קנוי	דירוג וד	5
6		הגדרות	5.1	
7	פתרונות	מציאת	5.2	
7	מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)	5.2.1		
7	מציאת הפתרונות עצמם לפי צורה מדורגת קנונית	5.2.2		
7		<u>_</u> _r	תת מרר	6
7		לינארייו	צירופים	7
7		. בת"ל	7.1	
8	הצירופים הלינאריים	קבוצת ו	7.2	
8		בסיס .	7.3	
9		הפיכות .	שחלוף ו	8
9	:Transpose	שחלוף -	8.1	
9		הפיכות	8.2	

חלק I

מונואידים, חבורות, חוגים ושדות

1 הגדרות

1.1 תכונות של פעולות

A imes A הוא A imes A הוא A imes A תהא A imes A

- $\forall a, b, c \in A. (a*b)*c = a*(b*c)$ אסוצייטיבית: * .1
 - $. \forall a, b.a * b = b * a$ מילופית: * .2
 - $.*: A \times A \rightarrow A :*$ סגורה לפעולה A סגורה לפעולה

1.2 מונואיד

G כך ש: G כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־ל

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- . האיבר הזה . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, לפעולה, לפעולה, לפעולה. פ e_G האיבר הזה יחיד ומסומן.

1.3 חבורה

מקרה פרטי של מונואיד שמקיימת גם:

4. קיים איבר הופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ ראיבר יחידה. איבר איבר הופכי של g מסומן -g^-1

1.4 חוג

שלשה $\langle R, +, * \rangle$ נקראת חוג אם:

- $. orall a, b \in R.a + b = b + a$ חבורה חילופית, כלומר $\langle R, +
 angle$.1
 - .* סגורה לפעולה R ו־R סגורה לפעולה * .2
 - 3. חוק הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$

 $(b+c) * a = b * a + c * a$

a*b=b*a חוג חילופית b*a* אם a*b=b*a* חוג חילופית (כלומר

תוג עם יחידה $^{ au}$ אם $\langle R,* \rangle$ מונואיד.

סיים. 0_R ניטרלי לחיבור, 1_R ניטרלי לכפל אם קיים.

מחלק $a*b=0_R$ כך ש־ $b \neq 0_R$ עם יש "מחלק "מחלק (נקרא "מחלק $b \neq a \in R$ בממשיים אין מחלק $a*b=0_R$ מחלק מחלק ...

חוג חילופי עם יחידה וללא מחלקי 0 נקרא **תחום שלמות**. הוא מקיים את חוק הצמצום (לכל a=c אז a*b=c*b, אם $a,b,c\in R$

1.5 שדה

גם: מקרה פרטי של חוג שמקיים גם: $\langle F, +, * \rangle$

.1 $\langle F \setminus \{0_F\}, * \rangle$ חבורה חילופית.

כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות <u>סופיים</u> הם כן שדות. הרבה פעמים בהגדרת שדה מוסיפים את הדרישה $0_F \neq 1_F$.

חלק II

מרוכבים

2 הגדרות בסיסיות

נסמן הוא המספר המספר היא: $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא . $i=\sqrt{-1}$ נסמן החלק הממשי (שמסומן ($Re\left(c\right)$) והמספר השני הוא החלק הדמיוני (שמסומן , $z\in\mathbb{C}$) עובדות: עבור

- . בירים. z של z מראשית הצירים. $||z||=\sqrt{Re\left(z\right)^{2}+Im\left(z\right)^{2}}$. מראשית הצירים. 1
 - $z=||z||\,e^{i\cdot\arg(z)}$ לכן, $e^{i heta}=\cos\left(heta
 ight)+i\sin\left(heta
 ight)$.2
 - 3. **חיבור:** מחברים את החלק הממשי והדמיוני בנפרד.
 - $.i^2 = -1$ משתמשים בזה ש־ $.(a+ib)\cdot(c+id) = (ac-bd)+i\,(bc+da)$.4.
 - 5. כל שורש של פולינום מרוכב הוא מרוכב.
 - .6. נגדיר \overline{z} להיות $\overline{z} = a ib$. כלומר להפוך את החלק

$$\overline{\overline{z}} = z$$
 (x)

$$z\cdot \overline{z} = \left|\left|z\right|\right|^2$$
 (1)

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$
 (1)

$$\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$$
 (7)

$$Re\left(z
ight)=rac{z+\overline{z}}{2},Im\left(z
ight)=rac{z-\overline{z}}{2i},$$
 (ה)

- .(כלומר כל שורש של כל פולינום מרוכב הוא מרוכב). שדה סגור אלגברית (כלומר כל שורש של כל פולינום מרוכב הוא מרוכב).
 - .8 איבר הופכי מקבלים (אם מכפילים בהופכי מקבלים 1). $w=rac{a-ib}{a^2+b^2}$

3 הצגה פולארית

נגדיר מרוכב בתור אוג $\langle r, \theta \rangle$ כאשר r המרחק מראשית הצירים ו־ θ הארגומנט.

$$z = r\cos\theta + ir\sin\theta = r \cdot e^{i\theta}$$

עובדות:

1. הארגומנט של z: נסמן $\arg(z)$ להיות הזווית שהמספר יוצר עם ציר הממשיים (לרוב נסמן .1 $\arg(z) = \arctan\left(\frac{b}{a}\right)$ בעזרת לחשב אותו בעזרת $\gcd(z) = \arctan\left(\frac{b}{a}\right)$

$$\overline{z}=r\cdot e^{-i\theta}, z^{-1}=rac{1}{r}e^{-i\theta}$$
 .2

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
.3

4. להכפיל מספרים מרוכבים על הגרף נראה כמו להכפיל את האורכים זה בזה ולחבר את הזוויות.

 $e^{i\theta}=e^{i(\theta+2\pi k)}$ - פתרון משוואה $z^n=re^{i\theta}$. נמצא הצגה פולארית $z^n=a+ib$ נשתמש בעובדה שי $z^n=a+ib$ אזי:

$$z = \sqrt[n]{r}e^{i\left(\frac{\theta}{n} + 2\pi\frac{k}{n}\right)}$$

עבור שונים. $k \in \{0, \dots, n-1\}$ ולכל . $k \in \mathbb{Z}$

חלק III

מטריצות

4 הגדרות

וקטור הוא mיה של איברים ב־ \mathbb{F} . מטריצה היא mיה של וקטורים. מטריצה מסדר \mathbb{F} 1 מטריצה של איברים ב־ \mathbb{F} 2 מטריצה עם \mathbb{F} 3 שורות ו־ \mathbb{F} 4 עמודות (קודם \mathbb{F} 5 ואז \mathbb{F} 7).

נגדיר מערכת משוואות כמטריצה באופן הבא:

$$\begin{cases} \alpha_{1,1}x_1 + \dots + \alpha_{1,n}x_n &= b_1 \\ \vdots &= \vdots \\ \alpha_{m,1}x_1 + \dots + \alpha_{m,n}x_n &= b_m \end{cases} \equiv \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ \alpha_{m,1} & \dots & \alpha_{m,n} & b_m \end{pmatrix}$$

4.1 שונות

מטריצה ריבועית: מטריצה שכמות העמודות בה שווה לכמות השורות.

מטריצת היחידה: מסומנת $i\neq j$ ואם $i\neq j$ אם $a_{i,j}=1$ אם מטריצה ריבועית מטריצה . I_n ואם מטריצה: מסומנת $a_{i,j}=0$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:e_i$ וקטור

$$(e_i)_i = \begin{cases} 0 & x \neq i \\ 1 & x = i \end{cases}$$

iה בעצם 0 בכל מקום חוץ מהמקום i

מטריצת הסיבוב:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

אם מכפילים וקטור במטריצת הסיבוב, זה מסובב את הוקטור heta מעלות.

4.2 פעולות בסיסיות

חיבור וקטורים:

$$\begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_0 + \beta_0 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

4.2.1 כפל מטריצה בוקטור

כמו להציב את הוקטור בעמודות המטריצה.

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \beta_1 a_{1,1} + \dots + \beta_n a_{1,n} \\ \dots + \dots + \beta_n a_{m,n} \end{pmatrix}$$

 $A\overline{x} = \overline{b}$ שקולים ל־ $\overline{x} \in \mathrm{Sols}\left(A \mid b
ight)$ בנוסף, הפתרונות של

את פתרונות המטריצה נסמן ב־Sols. מטריצות נקראות שקולות אם הפתרונות שלהן זהים. משפטים לגבי כפל מטריצה בוקטור:

- $A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y} \bullet$
- $A(\alpha \cdot \overline{x}) = \alpha \cdot (A \cdot \overline{x}) \bullet$
- $0\cdot b=0$, מרטיצת ה־0, עבור 0 מטריצת ה־1, עבור $ar{b}=ar{b}$ מרטיצת היחידה, I_n

4.2.2 כפל מטריצה במטריצה

הגדרה 1.4 יהא R חוג ויהיו (R חוג ויהיו R מטריצות. נגדיר כפל מטריצות הגדרה 1.4 יהא $A\in M_{n\times m}\left(R\right), B\in M_{m\times p}\left(R\right)$ בצורה הבאה:

$$(A \cdot B)_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

$$A\cdot B=\left(egin{array}{cccc}A\cdot C_1(B)‐&A\cdot C_n(B)\\dash‐‐\end{array}
ight)$$
 2.4 משפט

$$A\cdot B=\left(egin{array}{cccc} -&R_1(A)\cdot B&-\ &dots\ -&R_n(A)\cdot B&- \end{array}
ight)$$
 3.4 משפט

A כלומר כפל מטריצות הוא כפל וקטורים של העמודות של B ב־A, או כפל של השורות של ב־B.

:טענות לגבי כפל מטריצות

- $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes t}(\mathbb{F}), C\in \mathcal{A}$ עבור עבור $A\cdot B\cdot C=A\cdot (B\cdot C)$.1 . $M_{t imes n}(\mathbb{F})$
 - 2. חוק הפילוג:

$$A_1,A_2\in M_{m imes k}(\mathbb{F}),B\in M_{k imes n}(\mathbb{F})$$
 עבור $(A_1+A_2)\cdot B=A_1\cdot B+A_2\cdot B$ (ב)

$$A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(\mathbb{F}), \alpha \in \mathbb{F}$$
 עבור $A \cdot (\alpha \cdot B) = \alpha \cdot (A \cdot B)$.3

$$A\cdot I_n=A$$
 נוסף לכך . $A\cdot 0=0\cdot A=0$, $A\in M_{m imes n}(\mathbb{F})$ לכל מטריצה . $I_m\cdot A=A$

$$.igg(egin{array}{ccc} 1 & 1 \ 1 & 1 \end{array}igg) \cdot igg(egin{array}{ccc} 1 & 1 \ -1 & -1 \end{array}igg) = igg(egin{array}{ccc} 0 & 0 \ 0 & 0 \end{array}$$
 אפס, לדוגמה לדוגמה הערה: יש מחלקי אפס, לדוגמה

4.3 פעולות אלמנטריות על מטריצה

הפעולות האלה הן:

- $R_i \leftrightarrow R_i$. להחליף סדר בין משוואות.
- $R_i \rightarrow \alpha \cdot R_i$.2. להכפיל משוואה בקבוע.
 - $R_i \rightarrow R_i + R_i$. לחבר משוואות.

כולן משמרות את הפתרונות של המטריצה.

מטריצות ששקולות באמצעות סדרת פעולות אלמנטריות נקראות <u>שקולות שורה</u>.

(אזי: A. מטריצות כך ש־A מוגדר, ותהא φ פעולה אלמנטרית. אזי: A מטריצות משפט

$$\varphi(A \cdot B) = \varphi(A) \cdot B$$

הגדרה 5.4 המטריצה האלמנטרית: לכל פעולה אלמנטרית עם m שורות, נגדיר הגדרה בעולה האלמנטרית: לכל פעולה אלמנטרית על ידי האלמנטרית על ידי וווער בער אלמנטרית אלמנטרית של אלמנטרית בער ידי וווער בער האלמנטרית של אלמנטרית בער ידי וווער בער האלמנטרית של אלמנטרית בער האלמנטרית בער האלמנטרית ווווער בער האלמנטרית בער ה

 $.arphi\,(A)=E_arphi\cdot A$ לכל מטריצה φ , מתקיים אלמנטרית ופעולה אלמנטרית אלמנטריות הפיכות, ופעולה המטריצה של $arphi\,(E_arphi)^{-1}$ היא אלמנטריות הפיכות, והמטריצה של הפעולה ההופכית של אלמנטריות הפיכות, והמטריצה אלמנטרית הפיכות, והמטריצה הפיכות הפיכו

5 דירוג ודירוג קנוני

5.1 הגדרות

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b (מהצורה למטה.
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

משתנה חופשי הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 1 המקדם של כל משתנה פותח הוא
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית יחידה ששקולה לה.

5.2 מציאת פתרונות

(לא בהכרח קנונית) מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)

יעבור מדורגת ($A\mid b$) מטריצה

- .1 אין פתרון. אין ($b \neq 0$ כאשר ($b \neq 0$ כאשר שורת סתירה ($a \mid b$) אין פתרון.
 - . אחרת, יש $\left\|\mathbb{F}\right|^k$ פתרונות כאשר א מספר מספר פתרונות פחופשיים.

5.2.2 מציאת הפתרונות עצמם לפי צורה מדורגת קנונית

אז: $(A\mid b)$ מטריצה מדורגת קנונית מסדר $m\times n$ ששקולה ל־

- . $\operatorname{Sols}\left((A'\mid b')\right)=\emptyset$ אם ב־ $(A'\mid b')$ יש שורת סתירה אז
- 2. אחרת: נעשה החלפה על המשתנים החופשיים (אלה שאינם מקדם פותח של אף שורה). כל משתנה שאינו חופשי יוגדר לפי משוואה מסוימת. דוגמה:

$$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 & 3 \end{array}\right)$$

המקדמים החופשיים הם 1,4,6. הפתרון הוא:

$$\left\{ \begin{pmatrix} x_1 \\ 1 \\ 2 - 4x_4 \\ x_4 \\ 3 - 3x_6 \\ x_6 \end{pmatrix} \mid x_1, x_4, x_6 \in \mathbb{R} \right\}$$

6 תת מרחב

טענה (בוחן תת מרחב): $U\subseteq F^n$ מרחב אמ"מ:

- .1 סגורה לחיבור. U
- .2 סגירה לכפל בסקלר. U
- $.U
 eq \emptyset$ ניתן החליף את התנאי ב $.\overline{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

7 צירופים לינאריים

7.1 בת"ל

נקראת
$$\dfrac{(lpha_1)}{(a_k)}\in\mathbb{F}^k$$
 נקראת מקדמים ($\overline{v_1},\ldots,\overline{v_k}$) $\in(\mathbb{F}^n)^k$ נקראת $lpha_k$ הגדרה 1.7 יהיו $lpha_k$

$$LD\left(\left(v_{1},\ldots,v_{k}\right)\right) = \left\{ \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in \mathbb{F}^{n} \mid \alpha_{1}v_{1} + \cdots + \alpha_{k}v_{k} = 0 \right\}$$

 $LD((v_1, ..., v_k)) = Sols((v_1, ..., v_k \mid 0))$

 $LD(v_1,\ldots,v_k)=\{0\}\iff v_1,\ldots,v_k$ מסקנה 2.7 בת"ל

 $ar b\in\mathbb F^m$ סדרת mיות mיות $(\overline v_1,\dots,\overline v_k)\in(\overline v_1,\dots,\overline v_k)\in(\mathbb F^m)^k$ סדרת סדרת אם לכל היותר $\sum_{i=1}^k x_i\overline v_i=ar b$ משוואה לכל היותר פתרון אחד למשוואה

- . תהי לינארית. $S\subseteq \mathbb{F}^n$ אז א $\overline{0}\in S$ אם אם .
- .2 עד ש־ $S\subseteq \mathbb{F}^n$ ברופורציונים S=(x,y) אז א ברופורציונים אוז מהי מהי $S\subseteq \mathbb{F}^n$ כך מ
- לינארי אינו צירוף איבר אינו לינארית לינארית קטורים ($v_1,\dots,v_m)\subseteq\mathbb{F}^n$ כל איבר אינו לינארי 3.4 של קודמיו.

7.2 קבוצת הצירופים הלינאריים

 $(v_1,\ldots,v_k)\in \left(\mathbb{F}^n
ight)^k$,איות, סדרת עבור עבור סדרת **4.7**

$$\operatorname{sp}(v_1, \dots, v_k) = \left\{ \sum_{i=1}^k \alpha_i v_i \mid \alpha_1, \dots, \alpha_k \in \mathbb{F} \right\}$$

יא: $K\subseteq \mathbb{F}^n$ היא: המרחב הנפרש על ידי v_1,\ldots,v_k היא:

$$\operatorname{sp}(k) = \left\{ b \in \mathbb{F}^n \mid \exists k \in \mathbb{N}. \exists \alpha_1, \dots, \alpha_k \in \mathbb{F}. \exists t_1, \dots, t_k \in K. b = \sum_{i=1}^k \alpha_i t_i \right\}$$

 $\operatorname{span}(A) = b$ אם B את פורשת A

7.3 בסיס

הגדרה 5.7 יהי $\mathbb F$ שדה, B תת קבוצה של $\mathbb F^n$. אז B נקראת בסיס של $\mathbb F^n$ אם שניים מהתנאים מתקיימים:

- .1. B בת"ל.
- \mathbb{F}^n את פורשת B .2
 - .m = n .3

כל שניים מוכיחים גם את השלישי.

:התנאים הבאים שקולים לכך שB בסיס

- .1 בת"ל מקסימלית B הינה תלויה לינארית. B בת"ל וכל קבוצה המכילה ממש את בת"ל וכל הינארית.
 - . פורשת מינימלית ב־B פורשת וכל קבוצה שמוכלת ממש ב־B אינה פורשת.
 - Bיש הצגה יחידה כצירוף של וקטורים מ־ $v\in\mathbb{F}^n$ לכל.

:Transpose **- שחלוף 8.1**

את (A^t מטריצה מסומן (לפעמים לא הגדרה את נגדיר לאת) את נגדיר את נגדיר מטריצה את מטריצה את נגדיר את נגדיר את נגדיר את ואת את בהינתן מטריצה את לאת לאת האחלוף של את בהינתן מטריצה את לאת האחלוף את האחלוף של האחלוף של האחלוף של את האחלוף של האחלו

$$. \left(A^T\right)_{i,j} = (A)_{j,i}$$

 $\begin{pmatrix} 1 & 2 \\ 4 & 8 \\ 16 & 32 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 & 16 \\ 2 & 8 & 32 \end{pmatrix}$:באופן אינטואטיבי, הפעולה מחליפה בין השורות לעמודות. לדוגמה:

משפט 2.8 חוקי Transpose:

- . (אם הסדר) (A+B) מאותו הסדר) (A+B) אם החיבור (אם הסדר) (A+B) איבור:
 - $.lpha\in\mathbb{F}$ עבור $\left(lpha A
 ight)^{T}=lpha\left(A^{T}
 ight)$: כפל בסקלר:
 - $A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(F)$ עבור $(A \cdot B)^T = B^T \cdot A^T$
 - $.(A^T)^T = A \bullet$

8.2 הפיכות מטריצה

:תיקרא $A\in M_{m imes n}(\mathbb{F})$ מטריצה 3.8 מטריצה

- $B\cdot A=I_n$ כך ש $B\in M_{n imes m}(\mathbb{F})$ בימת מטריצה קיימת משמאל: אם קיימת 1.
 - $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ ביימת מטריצה קיימת מימין: אם קיימת 2.
- $B\cdot A=I_n$ כך ש $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ גם קיימת מטריצה . . $(A^{-1})^{-1}=A$ ומסיימת המטריצה B היא יחידה ומסומנת A^{-1} , ומקיימת

 $A\in M_{m imes n}(\mathbb{F})$ משפט 4.8 משפט

- A של העמודות סדרת יחיד (כלומר יחיד ' $A\cdot \overline{x}=0$ למערכת למערכת העמודות הפיכה A .1 בת"ל, ולכן $(m\geq n$ לכן ולכן בת"ל,
- העמודות סדרת מימין לכל $\bar{b}\in\mathbb{F}^m$ יש פתרון לכל איש למערכת למערכת למערכת להעמודות איש פתרון לכל להערכת להעמין להערכת להעמודות להערכת להער
- עם העמודות סדרת לכל הפיכה לכל יחיד לכל יש פתרון איש א $A\cdot \overline{x}=\overline{b}$ למערכת למערכת הפיכה בסיס, ולכן הפיס, ולכן הש $A\cdot \overline{x}=\overline{b}$ (כלומר סדרת העמודות של בסיס, ולכן A

בפרט מטריצה הפיכה היא ריבועית.

הערה: המטריצה 0 אינה הפיכה, מימין או משמאל.

:טענות

- . עש הפיכה אז A לא אפסים שורת אפסים אז $A\in M_{m imes n}(\mathbb{F})$. 1. אם במטריצה
 - A^T הפיכה A הפיכה.
 - $(A^T)^{-1} = (A^{-1})^T$.3
- $A\cdot B$ הפיכות, אז $A\cdot B$ הפיכות, אז $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes n}(\mathbb{F})$.4

(מטריצה ריבועית) $A \in M_n\left(\mathbb{F}
ight)$ מטריצה עבור מטריצה באים אקולים עבור

- .הפיכה A .1
- $.I_n$ שקולת שורות ל- A .2
- . יש פתרון יחיד. $\overline{b}\in\mathbb{F}^n$ למערכת $\overline{b}\in\mathbb{F}^n$
 - . יש פתרון יחיד. $A\overline{x}=\overline{0}$ יש פתרון
- .5 קיים $b\in\mathbb{F}^n$ יש פתרון יחיד. 5
 - .6 הפיכה מימין.
 - A הפיכה משמאל.
 - .8 שורות A בסיס.
 - 9. שורות A בת"ל.
 - .10 שורות A

הפיכה. $A \cdot B \iff A \cdot B$ הפיכה. ובנוסף A, B