ECON-613 HW #4

Peter Kim 2019-04-03

Exercise 1 Data

```
#Set Seed
set.seed(1)
#Read Data
data = read_csv("~/ECON-613/Assignment #4/HW #4/Koop-Tobias.csv")
## Parsed with column specification:
## cols(
    PERSONID = col_double(),
##
    EDUC = col_double(),
##
    LOGWAGE = col_double(),
    POTEXPER = col_double(),
##
    TIMETRND = col_double(),
    ABILITY = col_double(),
##
    MOTHERED = col_double(),
##
    FATHERED = col_double(),
    BRKNHOME = col_double(),
##
##
    SIBLINGS = col_double()
## )
#Identifying Unique Person ID
uniq_ID = unique(data$PERSONID) %>% length()
#Generating 5 Random Indices
ind = sample(x = 1:uniq_ID, size = 5, replace = FALSE)
#Representing the Panel Dimension of Wages for 5 Randomly Selected Individuals
rand5 = data %>%
  filter(PERSONID == ind[1] | PERSONID == ind[2] | PERSONID == ind[3] |
         PERSONID == ind[4] | PERSONID == ind[5]) %>%
  select(PERSONID, TIMETRND, LOGWAGE)
rand5.1 = rand5 %>% filter(PERSONID == unique(rand5$PERSONID)[1])
rand5.2 = rand5 %>% filter(PERSONID == unique(rand5$PERSONID)[2])
rand5.3 = rand5 % filter(PERSONID == unique(rand5$PERSONID)[3])
rand5.4 = rand5 %>% filter(PERSONID == unique(rand5$PERSONID)[4])
rand5.5 = rand5 %>% filter(PERSONID == unique(rand5$PERSONID)[5])
ggplot() +
  geom_line(data = rand5.1,
            mapping = aes(x = TIMETRND, y = LOGWAGE, color = "439")) +
  geom_line(data = rand5.2,
            mapping = aes(x = TIMETRND, y = LOGWAGE, color = "579")) +
  geom_line(data = rand5.3,
```

```
mapping = aes(x = TIMETRND, y = LOGWAGE, color = "811")) +
geom_line(data = rand5.4,
          mapping = aes(x = TIMETRND, y = LOGWAGE, color = "1247")) +
geom_line(data = rand5.5,
          mapping = aes(x = TIMETRND, y = LOGWAGE, color = "1976")) +
scale_color_manual(
  name = "Person ID",
  values = c("439" = "red",
             "579" = "blue",
             "811" = "green",
             "1247" = "black",
             "1976" = "orange")
) +
labs(
  x = "Time Trend",
  y = "Wage (in log units)",
  title = "5 Randomly Selected Individuals' Wages in Time"
theme_bw()
```

5 Randomly Selected Individuals' Wages in Time

Exercise 2 Random Effects

```
#Implementing Linear Regresson
randlm = lm(LOGWAGE ~ EDUC + POTEXPER, data = data)
```

Table 1: Table of OLS Coefficients for Random Effects Model

	OLS Coefficients
(Intercept)	0.7942
EDUC	0.0939
POTEXPER	0.0374

Comment

 $\hat{\beta}_{intercept} = 0.7942$: When education and potential experience are 0, log wage will be 0.7942. This quantity, however, is meaningless since no individuals are legally permitted to have 0 units of education.

 $\hat{\beta}_{EDUC} = 0.0939$: Ceteris paribus, a one unit increase in education will increase log wage by 0.0939 on average.

 $\hat{\beta}_{POTEXPER} = 0.0374$: Ceteris paribus, a one unit increase in potential experience will increase log wage by 0.0374 on average.

Exercise 3

Between Estimator

Within Estimator

```
#Creating Initial Within Data
within_data = left_join(data, between_data, by = "PERSONID")
#Updating Within Data - Adding Columns of Y - Y_bar and X - X_bar
within_data2 = within_data %>%
```

First Time Difference Estimator

Here, we create a table of $\hat{\beta}_{EDUC}$ and $\hat{\beta}_{POTEXPER}$

Table 2: Coefficients Under Different Models

	Between	Within	First
Intercept	0.8456	NA	NA
Education	0.0931	0.1237	0.0479
POTEXPER	0.0260	0.0386	0.0329

Comparison of $\hat{\beta}_{education}$'s:

We observe that $\hat{\beta}_{between}$, $\hat{\beta}_{within}$, and $\hat{\beta}_{first}$ are all positive. Each model believes that a unit increase in education will increase wage (or log wage). The "within" model has the largest magnitude, while the "first-difference" model has the smallest magnitude.

Comparison of $\hat{\beta}_{POTEXPER}$'s:

Similar to education, we observe that $\hat{\beta}_{between}$, $\hat{\beta}_{within}$, and $\hat{\beta}_{first}$ are all positive. Each model believes that a unit increase in potential experience will increase wage (or log wage).. The "within" model has the largest magnitude, while the "between" model has the smallest magnitude.

Exercise 4