

Universidad Peruana Cayetano Heredia Facultad de Ciencias e Ingeniería Departamento de Ciencias Exactas

Programación Avanzada 2025

Lab. 4.2. Matrices con NumPy. Parte II.

Septiembre 12, 2025

Cree una carpeta (folder) en el disco D, nómbrela con su apellido paterno seguido de su código. Ejemplo: LOPEZ12345

Para los siguientes ejercicios, elabore un programa en Python. Verifique los programas ejecutando y probando con distintas entradas. Use la librería NumPy.

- 1. Generar una matriz A de números enteros de N*M.
 - a) Solicite el ingreso de N y M.
 - b) Inicialice la matriz A de N*M con ceros. Use la función zeros () de NumPy.
 - c) Los datos deben de ser ingresados del teclado uno a uno, indicando la posición de la celda que lo recibe (fila, columna). Use la notación A[i,j] o B[i][j]. Recorra la matriz por fila.
 - d) Genere un vector que contenga la suma de cada fila de la matriz
 - e) Convertir la matriz B en una lista anidada de Python.
 - f) Genere un vector con los elementos máximos de cada columna
- 2. Escriba un programa Python que lea en forma de una matriz numpy, el conjunto de datos (dataset) iris de la siguiente dirección.

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

Considere que cada columna tiene los siguientes nombres respectivamente: names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')

Realizar lo siguiente:

- a) Extraer la quinta columna (especies) de la matriz.
- b) Determinar la media, mediana y la desviación estándar de la primera columna (sepallength) de la matriz
- c) Realice una copia de la matriz. Inserte 30 valores perdidos (NaN) en posiciones aleatorias de la matriz copia.
- d) Determine la cantidad de valores NaN y sus posiciones en la segunda columna (sepalwidth) de la matriz copia.
- e) Extraer las filas que no tengan ningún valor NaN de la matriz copia.
- f) Extraiga las filas de la matriz inicial donde la 3ra columna (petalllength) sea > 1.5 y la 1ra columna (sepallength) sea <5.0.
- g) Determinar la correlación entre la 1ra columna (sepalLength) y la 3ra columna (petalLength) de la matriz inicial.

- 3. Generar una matriz B de N*M con valores aleatorios entre -10 y 10 ambos inclusive.
 - a) Determinar la cantidad de dimensiones de B (1- vector, 2- matriz), la cantidad total de elementos, y la cantidad de filas y columnas de B.
 - b) Guarde la matriz B en un archivo .txt y luego léalo. Use las funciones numpy.savetxt() y numpy.loadtxt(). Compare la matriz inicial y la leída desde el archivo.
 - c) Guarde la matriz B en un archivo .dat y luego léalo. Use las funciones numpy.tofile() y numpy.fromfile(). Compare la matriz inicial y la leída desde el archivo.
 - d) Guarde la matriz B en un archivo .npy y luego léalo. Use las funciones numpy.save() y numpy.load().
 - e) Guarde la matriz B en un archivo .csv y luego léalo. Compare la matriz inicial y la leída desde el archivo.
 - f) Guarde la matriz B en un archivo .npz y luego léalo. Compare la matriz inicial y la leída desde el archivo.
 - g) Lea la matriz B que se encuentra en un archivo .txt usando la función numpy.genfromtxt(). Compare la matriz inicial y la leída desde el archivo.
- 4. Encontrar la solución del siguiente sistema de ecuaciones lineales:

$$2\mathbf{x}_1 - 6\mathbf{x}_2 + 12\mathbf{x}_3 + 16\mathbf{x}_4 = 70$$

 $\mathbf{x}_1 - 2\mathbf{x}_2 + 6\mathbf{x}_3 + 6\mathbf{x}_4 = 64$
 $-1\mathbf{x}_1 - 3\mathbf{x}_2 + 3\mathbf{x}_3 - 7\mathbf{x}_4 = -30$
 $3\mathbf{x}_2 + 4\mathbf{x}_3 - 6\mathbf{x}_4 = -26$

- a) Usando las funciones linalg.inv() y linalg.dot()
- b) Usando la función linalg.solve()

Guarde todos vuestros programas en una carpeta con el nombre su **Apellido** paterno seguido de vuestro **DNI**, luego comprima esta carpeta. Envíe este archivo a Katherine Navarro <u>katherine.navarro@upch.pe</u> especificando como asunto **La4.2**.