Model of machine Learning to predict wine quality

Project Overview

 With a wine quality dataset based in wine chemical characteristics, try and choose a machine learning model to predict wine quality based on this characteristics.

The characteristics used were: fixed acidity, volatile acidity, citric acid,
 residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH,
 sulphates and alcohol.

Data Selection and Cleaning

Kaggle "Wine Quality Dataset" with informations about red and white portuguese wines.

- Leading with null values
- Leading with duplicate values

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

Feature engineering

- Normalization of the different values of the dataset
- Create a new column were bins were created to reshape the target
- Drop the columns with low correlation with the target

Model Building and Evaluation

1	KNN	 RMSE 0.4129534723729141 R2 score 0.9709193245778611 train score 0.9643276226237972
2	Linear Regression	 RMSE 0.16739002551896615 R2 score 0.023461531529833213 train score 0.04659232127157886
3	Logistic Regression	 RMSE 0.4129534723729141 R2 score 0.9709193245778611 train score 0.9640929359305327
4	Decision Tree	 RMSE 0.40958214162080514 R2 score 0.9718574108818011 train score 0.9652663693968552
5	Random Forest	 RMSE 0.4129534723729141 R2 score 0.9709193245778611 train score 1
6	Gradient Boosting	 RMSE 0.4699606921325369 R2 score 0.95121951219 train score 1

Hyperparameter Tuning and Model Optimization

For the model Optimization

- Decision Tree with:
- AdaBoost
- AdaBoost with bagging made the model perform better
- AdaBoost combined with grid or random search provided worts results

Streamlit

Bacalhoa

Álcohol: 14,5 Fixed Acidity: 6,5 Volatile acidity: 0.34 Citric acid: 0.32 Residual sugar: 1.3 Chlorides: 0.056 Density: 0.99 SO2: 0.53