Población límite

(Población simple)

$$\frac{dP}{dt} = k.P , P(t_o) = P_0$$

$$k = A - B.P$$
 \Rightarrow $\frac{dP}{dt} = (A - B.P).P$ \Rightarrow $\frac{dP}{dt} = A.P - BP^2$

$$P(t) = \frac{\frac{A}{B}}{1 + \left(\frac{A}{B} - 1\right) \cdot e^{-A \cdot t}}; \qquad P_{\text{max}} = \lim_{t \to \infty} P(t) = \frac{A}{B}$$

Tomando un cambio de escala:

$$P(0) = P_0;$$
 $P(1)=P_1;$ $P(2)=P_2$

resulta:

$$e^{-A.t} = \frac{P_0 (P_2 - P_1)}{P_2 (P_1 - P_0)}$$

$$\frac{A}{B} = \frac{P_1 \left(P_0 P_1 - 2P_0 P_2 + P_1 P_2 \right)}{P_1^2 - P_0 P_2}$$

Fi	jem	nlo	de
_	CIII	ριυ	uc

Tabla de datos

t (Nva escala)	T (años)	Población (x10³)	
$t_0 = 0$	1890	62.5	P_0
	1900	70.2	
	1910	88.6	
t ₁ = 1	1920	106.8	P_1
	1930	113.1	
t ₂ = 2	1950	150.4	P ₂

$$t_1 - t_0 = t_2 - t_1$$

$$e^{-A} = \frac{62,5(150,4-106,8)}{150,4(106,8-62,5)} = \frac{2725}{6662,72} = 0,40899$$

$$-\ln(0,409) = \boxed{0,894 = A}$$

$$\frac{A}{B} = \frac{106,8(62,5.106,8-2.62,5.150,4+106,8.150,4)}{(106,8)^2 - 62,5.150,4} = \frac{420548,496}{2006,24} =$$

$$\left| \frac{A}{B} = 209,6202 \right|$$

$$P(t) = \frac{209,6202}{1 + \left(\frac{209,6202}{62,5} - 1\right) \cdot \left(0,409\right)^{t}}; \qquad e^{-A.t} = \left(e^{-A}\right)^{t}$$

$$P(T=1880) = P(-0,3\widehat{3}) = \frac{209,6202}{1 + (2,3539).(0,409)^{-0,\widehat{3}}} = 50,2558$$

$$P(T = 2010) = P(4) = \frac{209,6202}{1 + (2,3539).(0,409)^4} = 196,6658$$

$$P(T=1940) = P(1,6\widehat{6}) = \frac{209,6202}{1 + (2,3539).(0,409)^{1,6\widehat{6}}} = 136,96$$

$$P(T=1930) = P(1,3\widehat{3}) = \frac{209,6202}{1 + (2,3539).(0,409)^{1,3\widehat{3}}} = 122,25$$