Inverse functions

Inverse functions

Let A and B be sets and let $f \subset A \times B$ be a function $(f : A \to B)$ in the alternative notation). Since f is a relation, one can consider the inverse relation f^{-1} .

Sometimes the inverse relation f^{-1} is a function, and sometimes it is not a function.

Examples

Let R be the relation $\{(x, x^2) : x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$.

- R is a function because for every $x \in \mathbb{R}$ there is a unique $y = x^2$ in \mathbb{R} so that $(x,y) \in R$.

• R^{-1} is not a function because both (1,-1) and (1,1) are in R^{-1} .

Example

Let R be the relation $\{(x, \frac{1}{1+x^2}) : x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$.

 \bullet R is a function.

• R^{-1} is not a function because $0 < \frac{1}{1+x^2} \le 1$ for all x, and therefore there is no pair $(x,y) \in R^{-1}$ with x=2.

Examples

Let R be the relation $\{(x, x^3) : x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$.

• R is a function because for every $x \in \mathbb{R}$ there is a unique $y = x^3$ in \mathbb{R} so that $(x,y) \in R$.

• R^{-1} is also a function because for every $x \in \mathbb{R}$ there is a unique $y = x^{1/3}$ for every $x \in \mathbb{R}$ so that $(x,y) \in R^{-1}$.

Examples (p. 239)

The Inverse Function Theorem

Theorem: Let $F \subset A \times B$ be a function. The inverse relation $F^{-1} \subset B \times A$ is also a function if and only if F is bijective.

Inverse functions (definition)

Definition: If $f:A\to B$ is bijective, then its **inverse** is the function

$$f^{-1}: B \to A$$
.

We have

$$f^{-1} \circ f : A \to A = i_A.$$

and

$$f \circ f^{-1} : B \to B = i_B$$