Thm: Let A be an mxn matrix. If A can be transitioned to echelon form without interchanging rows, then there exist an mxm lower triangular matrix L and an mxn echelon matrix U meh that A= LU

$$(E_{\kappa}...E_{l})A = U$$

where E,,..., Ex are type III elementary montrices.

$$\stackrel{\text{Ex:}}{=} A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$R_z \rightarrow R_z + (-3) R_1$$

$$E_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

$$\exists \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$z \longrightarrow \{z + (-3)\}$$

$$= \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 03 \end{bmatrix}$$

$$A = \underbrace{\xi_{1}^{-1}}_{L} U$$

$$A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$E_{X}: A = \begin{bmatrix} 2 & 8 & 0 \\ 4 & 18 & -4 \\ -2 & -13 \end{bmatrix}$$

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{1} A = \begin{bmatrix} 2 & 8 & 0 & 4 \\ 0 & 2 & 2 & -13 \\ 0 & -2 & 2 & -13 \end{bmatrix}$$

$$E_{2} \Rightarrow R_{3} + R_{1}$$

$$E_{3} \Rightarrow R_{3} + R_{1}$$

$$E_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \xrightarrow{1} \underbrace{E_{1}^{-1}}_{0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$E_{2} E_{1} A = \begin{bmatrix} 2 & 8 & 0 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -13 \end{bmatrix}$$

$$R_{3} \Rightarrow R_{3} - R_{3} - R_{3} - R_{2}$$

$$E_{3} = \begin{cases} 1 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0$$

24 factorization is not unique.

If A is symmetric

$$A^{T} = A$$

$$\underline{u}^{\mathsf{T}} D \underline{L}^{\mathsf{T}} = \underline{L} D \underline{u}$$

By Wigueness,
$$L = U^T$$
 $D = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$
 $A = U^T D U = L D L^T$

If D has positive entires on diagonal, $\mathfrak{h}^{1/2} = \int_{\mathbb{R}^2} \sqrt{d_1} \sqrt{d_2} \sqrt{d_2}$

$$= L(D^{(1)})^{T}D^{(1)}L^{T}$$

$$= \left(L(D^{(1)})^{T}\right)\left(L(D^{(1)})^{T}\right)$$

$$A = RR^{T}$$
Cholesky
factorization