۷ جلسهی هفتم

 $|S_n(T)|= \mathsf{T}^{\aleph}$. در زبان شمارای L اگر $|S_n(T)|> \aleph$. در زبان شمارای $|S_n(T)|= \mathsf{T}^{\aleph}$

در صورت پذیرش فرضیه ی پیوستار، قضیه ی بالا بدیهی است. بنا به فرضیه ی پیوستار اگر $X^{\text{N}} = X^{\text{N}}$. $X^{\text{N}} = X^{\text{N}}$. $X^{\text{N}} = X^{\text{N}}$. فرضیه ی پیوستار از اصول $X^{\text{N}} = X^{\text{N}}$. فرضیه ی پیوستار از اصول $X^{\text{N}} = X^{\text{N}}$. فرضیه ی مجموعه مستقل است، یعنی خود و نقیضش با $X^{\text{N}} = X^{\text{N}}$ سازگارند. با وجود این، برخی زیرمجموعه های اعداد حقیقی در همان $X^{\text{N}} = X^{\text{N}}$ فرضیه ی پیوستار را برآورده می کنند. برای مثال اگر $X^{\text{N}} = X^{\text{N}}$ بورل $X^{\text{N}} = X^{\text{N}}$ بورل باشد، آنگاه X فرضیه ی پیوستار را برآورده می کند. بررسی اینگونه خوشرفتاری زیرمجموعه های باشد، آنگاه X فرضیه ی پیوستار را برآورده می کند. بررسی اینگونه خوشرفتاری زیرمجموعه های اعداد حقیقی رسالت شاخه ای از ریاضیات است به نام نظریه ی توصیفی مجموعه ها.

قضیه ۸۴ (کانتور _ بندیکسون): هر زیرمجموعه ی بسته ی A از فضای متریک تام ^{۵۳} و جدائی پذیرِ مختوان به صورت اجتماع مجزایی چون $U_1 \cup U_7$ نوشت که در آن U_1 مجموعه ی شمارا و باز (در A با توپولوژی زیرفضایی) است و U_1 یک مجموعه ی بسته ی کامل. ^{۵۴}

مجموعه ی بسته ی C را کامل می خوانیم هرگاه همه ی نقاط آن حدی باشند؛ به بیان دیگر هرگاه هیچ نقطه ی ایزوله ای نداشته باشد. (ثابت کنید که) هر زیرمجموعه ی بسته ی کامل از X دارای اندازه ی X^{\aleph} است. بنابر قضیه ی کانتور _ بندیکسون، X^{\aleph} هر زیرمجموعه ی بسته (تحت شرایط آن قضیه) یا شماراست یا دارای اندازه ی X^{\aleph} .

اثبات قضیه ی ۸۳ . می دانیم که $S_n(T)$ فشرده و جدائی پذیر، و از این رو لهستانی است. پس بنا به قضیه ی کانتور بندیکسون، $S_n(T)$ یا شمارا و یا دارای اندازه ی $S_n(T)$ است.

تمرین ۸۵: اثبات نوشته شده در کتاب دیوید مار کِرْ را برای این قضیه فرابگیرید.

^{δγ}descriptive set theory

٥٣complete

^۵*perfect

۵۵ Cantor - Bendixon

۱.۷ تئورى رابطههاى تكموضعي مستقل

تئوریِ T را در زبانِ $\{p_1(x),p_7(x),\dots,p_7(x),\dots,j_k\in\mathbb{N}\}$ مشتمِل بر اصول موضوعه ی زیر، برای عناصرِ دوبه دومتفاوتِ $i_1,\dots,i_n,j_1,\dots,j_k\in\mathbb{N}$ در نظر بگیرید:

$$\theta_{i_1,\dots,i_n,j_1,\dots,j_k}: \exists x \left(\bigwedge_{i=i_1,\dots,i_n} p_i(x) \wedge \bigwedge_{j=j_1,\dots,j_n} \neg p_j(x) \right)$$

نخست توجه کنید که T سازگار است: ساختار $\langle \mathbb{N}, p^\mathbb{N}, p^\mathbb{N}, \dots \rangle$ که در آن گرفته ایم

$$p_{\cdot}^{\mathbb{N}}=$$
 مضارب مضارب ج $p_{k}^{\mathbb{N}}=$ مضارب اُمین عدد اول

مدلی برای T است.

تمرین ۸۶:

- t نشان دهید که t دارای حذف سور است.
 - نشان دهند که

$$T \models \exists^{\infty} x \quad p_n(x).$$

هر تایپ کامل در $S_{N}(T)$ دقیقاً تعیین میکند که x در کدام p_{n} ها واقع و در کدام ناواقع است. بنابراین برای هر $I\subseteq\mathbb{N}$ مجموعهی $p_{I}(x)$ تعریفشده در زیر یک تایپ کامل مشخص میکند:

$$p_I(x) = \{p_i(x) | x \in I\} \cup \{\neg p_j(x) | j \notin I\}.$$

پس $|S_1(T)| = 1$ ؛ و در نتیجه تئوری یادشده $|S_1(T)| = 1$ جازم نیست (بنا به قضیهای که در جلسات بعد ثابت خواهیم کرد). هر $|S_1(T)| = 1$ تایپی غیرایزوله است و در جلسهی بعد نشان خواهیم داد که در نتیجه این، تئوری |T| هیچ مدل اولی ندارد.