Ana Fernández-Guillamón

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **5** Circuitos de segundo orden

Formas de onda

- La salida de los generadores (de tensión o de corriente) son funciones que pueden variar con el tiempo
- La dependencia funcional u = u(t) o i = i(t) se denomina forma de onda
- Clasificación:
 - Signo de la magnitud
 - Unidireccionales: única polaridad (signo constante), aunque el valor puede ser constante (corriente continua) o variable
 - ▶ Bidireccionales: cambio de polaridad (signo variable con el tiempo)
 - Repetición del valor de la magnitud:
 - Periódicas: el valor de la magnitud se repite de forma regular
 - No periódicas: el valor de la magnitud varía de forma arbitraria con el tiempo

- Formas de ondaFormas de onda básicas
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **5** Circuitos de segundo orden

Función escalón

$$K = 1 \Rightarrow$$
 escalón unitario

$$f(t) = \begin{cases} 0 & t < 0 \\ K & t \ge 0 \end{cases}$$

Función pulso rectangular

$$f(t) = \begin{cases} 0 & t < 0 \\ K & 0 \le t \le W \\ 0 & t > W \end{cases}$$

Función rampa

$$f(t) = \begin{cases} 0 & t < 0 \\ m \cdot t & t \ge 0 \end{cases}$$

Función triangular

$$f(t) = \begin{cases} 0 & t < -W/2 \\ m \cdot (t + W/2) & -W/2 \le t \le 0 \\ -m \cdot (t - W/2) & 0 \le t \le W/2 \\ 0 & t > W/2 \end{cases}$$

Retraso del origen de tiempos

Desplazamiento en el eje de ordenadas una cantidad $-t_0$

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **5** Circuitos de segundo orden

Régimen transitorio

- Cambio en las condiciones de funcionamiento de un circuito: activación o apagado de fuentes, cambio en las cargas, interruptores...
- Variación de u(t) e i(t) hasta alcanzar nuevos valores \rightarrow circuito estabilizado
- **▶** Ecuaciones diferenciales

Régimen permanente o estacionario (circuito estabilizado)

Las tensiones y corrientes de un circuito son constantes (CC) o periódicas (CA)

Ecuaciones diferenciales

Al aplicar Kirchhoff a un circuito lineal, se obtienen ecuaciones diferenciales:

$$u_L(t) = L \cdot \frac{di_L(t)}{dt} \leftrightarrow i_L(t) = \frac{1}{L} \int_{-\infty}^t u_L(t') dt'$$
$$i_C(t) = C \cdot \frac{du_C(t)}{dt} \leftrightarrow u_C(t) = \frac{1}{C} \int_{-\infty}^t i_C(t') dt'$$

Importante recordar el operador D

$$Z_R(D) = \frac{u_R(t)}{i(t)} = R$$

$$Z_L(D) = \frac{u_L(t)}{i(t)} = LD$$

$$Z_C(D) = \frac{u_C(t)}{i(t)} = \frac{1}{CD}$$

Respuesta completa de una red lineal

La solución de esta ecuación diferencial para t > 0 tiene dos componentes:

$$f(t) = f_n(t) + f_{\infty}(t)$$

- ▶ Respuesta **natural** o general, $f_n(t)$:
 - Respuesta sin fuentes
 - Determinada por la energía almacenada previamente y por la configuración del circuito
 - Contiene constantes de integración
 - Resolver ecuación homogénea
- ▶ Respuesta **forzada** o particular, $f_{\infty}(t)$:
 - ightharpoonup Determinada por las fuentes existentes en t > 0
 - ightharpoonup Es la respuesta del circuito tras un tiempo suficiente, $t \to \infty$ (régimen permanente)

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **5** Circuitos de segundo orden

- ightharpoonup El instante del cambio se representa habitualmente con t=0:
 - $t = 0^-$: tiempo inmediatamente anterior al cambio
 - $ightharpoonup t = 0^+$: tiempo inmediatamente posterior al cambio
- ightharpoonup Dependen de las **energías almacenadas** en $t=0^-$
- Se aplican a la **topología** del circuito en $t = 0^+$
- Determinan las constantes de integración

Resistencia

No acumula energía: sigue los cambios de forma instantánea.

$$u(t) = R \cdot i(t)$$

Bobina

La corriente no puede variar de forma brusca (implica tensión infinita):

$$u_L(t) = L \cdot \frac{di_L(t)}{dt} \leftrightarrow i_L(t) = \frac{1}{L} \int_{-\infty}^t u_L(t') dt'$$
$$i_L(0^-) = i_L(0^+)$$

Continuidad en una bobina

Una bobina inicialmente cargada (IC) se puede sustituir por una fuente ideal de corriente de valor $i_g = i_L(0^+) = i_L(0^-)$ en paralelo con una bobina descargada (ID). Si la bobina está descargada ($i_L(0^-) = 0$), se comporta inicialmente como un **circuito abierto**, independientemente de la tensión en sus terminales.

Condensador

La tensión no puede variar de forma brusca (implica corriente infinita):

$$i_{C}(t) = C \cdot \frac{du_{C}(t)}{dt} \leftrightarrow u_{C}(t) = \frac{1}{C} \int_{-\infty}^{t} i_{C}(t') dt'$$

$$u_{C}(0^{-}) = u_{C}(0^{+})$$

Continuidad en un condensador bobina

Un condensador inicialmente cargado (IC) se puede sustituir por una fuente ideal de tensión de valor $u_g = u_C(0^+) = u_C(0^-)$ en serie con un condensador descargado (ID). Si el condensador está descargado ($u_C(0^-) = 0$), se comporta inicialmente como un **cortocircuito**, independientemente de la corriente que circule por el mismo.

Procedimiento general para obtener las condiciones iniciales

- 1 Sustituir los generadores de tensión del circuito $\epsilon_g(t)$ por fuentes de tensión continua de valor $\epsilon_g(0^+)$.
- 2 Sustituir todos los generadores de corriente del circuito $i_g(t)$ por fuentes de corriente continua de valor $i_g(0^+)$.
- 3 Sustituir todas las bobinas cargadas por su circuito equivalente con condiciones iniciales $i_L(0^-) = i_L(0^+)$. Si la corriente inicial en la bobina es 0 ($i_L(0^-) = 0$), se sustituye por un circuito abierto.
- **4** Sustituir todos los condensadores cargados por su circuito equivalente con condiciones iniciales $u_C(0^+) = u_C(0^-)$. Si la tensión inicial en un condensador es 0 $(u_C(0^-) = 0)$, se sustituye por un cortocircuito.
- **5** En la red resistiva resultante, calcular las corrientes y tensiones iniciales necesarias para el estudio subsiguiente de la red.

Ejemplo

En la red de la figura, la corriente del generador de intensidad es $i_g(t) = 10 \,\mathrm{e}^{-2t}$ A. El interruptor se abre en t=0, siendo los valores iniciales $i_L(0^-)=0$ A; $u_C(0^-)=-5$ V. Se pide calcular $i_R(0^+)$, $i_C(0^+)$ y $u_L(0^+)$.

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **5** Circuitos de segundo orden

Definición

- ► Circuitos que tienen un **único elemento de acumulación** (o *varios elementos que pueden ser simplificados a un elemento equivalente*) y resistencias
- **Ecuación diferencial de primer orden:**

$$a_1 y'(t) + a_0 y(t) = g(t)$$

- ► Resolución:
 - 1 Cálculo de las **condiciones iniciales**, analizando el circuito en t < 0
 - **2 Respuesta natural**: análisis de la *ecuación homogénea* (g(t) = 0, sin fuentes) en t > 0:

$$y_n(t) = K e^{-\frac{a_0 t}{a_1}}$$

3 Respuesta forzada: análisis del circuito *con fuentes* en t > 0

- formas de onda
- 2 Introducción al régimen transitorio
- Condiciones iniciales
- 4 Circuitos de primer orden
 - Circuito RC paralelo
 - Circuito RL serie
 - Procedimiento general

5 Circuitos de segundo orden

Circuito RC paralelo

ightharpoonup En t = 0 se cierra el interruptor

Circuito RC paralelo

Por 1LK:

$$\underbrace{i_{\mathcal{C}(t)}}_{u_{\mathcal{C}(t)}} + \underbrace{i_{\mathcal{C}(t)}}_{C} = I_0 \Rightarrow \frac{u_{\mathcal{C}(t)}}{R} + C u_{\mathcal{C}}'(t) = \frac{u_{\mathcal{C}(t)}}{RC} + u_{\mathcal{C}}'(t) = \frac{I_0}{C} \Rightarrow \boxed{\frac{I_0}{C} = u_{\mathcal{C}}'(t) + \frac{1}{RC} u_{\mathcal{C}(t)}}$$

Respuesta natural: $u_{C,n}(t) = K e^{-\frac{t}{RC}}$ Respuesta forzada: $u_{C,\infty}(t) = R \cdot I_0$

Respuesta completa: $u_C(t) = K e^{-\frac{t}{RC}} + R \cdot I_0$

▶ Usar condiciones iniciales para *K*

Circuito RC paralelo — Constante de tiempo

- $\tau = R \cdot C$ [s]
- ➤ Tiempo necesario para que el condensador se cargue al 63% (1 – 1/e) de su capacidad
- ightharpoonup C completamente cargado si $t > 5\tau$
- **▶** Enlace

Circuito RC paralelo — Expresión general de la respuesta completa

$$u_C(t) = [u_C(0^+) - u_{C,\infty}(0^+)] e^{-t/\tau} + u_{C,\infty(t)}$$

- $u_C(0^+)$: tensión en el condensador, condiciones iniciales, $u(0^-) = u(0^+)$
- $ightharpoonup u_{C,\infty(t)}$: tensión en el condensador en régimen permanente para t>0
- $lackbox{ } u_{C,\infty(0^+)}$: tensión en el condensador en régimen permanente particularizada en t=0

- formas de onda
- 2 Introducción al régimen transitorio
- Condiciones iniciales
- 4 Circuitos de primer orden
 - Circuito RC paralelo
 - Circuito RL serie
 - Procedimiento general

5 Circuitos de segundo orden

Circuito RL serie

▶ En t = 0 se cierra el interruptor $\Rightarrow i_R(t) = i_L(t)$

Circuito RL serie

Por 2LK:

$$\underbrace{u_R(t)}_{R i_L(t)} + \underbrace{u_L(t)}_{L \frac{di_L(t)}{dt}} = U_0 \Rightarrow R i_L(t) + L i'_L(t) = \frac{R}{L} i_L + i'_L(t) = \frac{U_0}{L} \Rightarrow \left[\frac{U_0}{L} = i'_L(t) + \frac{R}{L} i_L(t) \right]$$

Respuesta natural:
$$i_{L,n}(t) = K e^{-\frac{Rt}{L}}$$

Respuesta forzada: $i_{L,\infty}(t) = \frac{U_0}{R}$

Respuesta completa: $i_L(t) = K e^{-\frac{Rt}{L}} + \frac{U_0}{R}$

▶ Usar condiciones iniciales para *K*

Circuito RL serie — Constante de tiempo

- ▶ Tiempo necesario para que por la bobina circule el 63% de la máxima corriente
- L a máxima corriente si $t > 5\tau$
- ► Enlace

Circuito RL serie — Expresión general de la respuesta completa

$$i_L(t) = [i_L(0^+) - i_{L,\infty}(0^+)] e^{-t/\tau} + i_{L,\infty(t)}$$

- $ightharpoonup i_L(0^+)$: corriente en la bobina, condiciones iniciales, $i_L(0^-)=i_L(0^+)$
- $ightharpoonup i_{L,\infty}(t)$: corriente en la bobina en régimen permanente para t>0
- $ightharpoonup i_{L,\infty}(0^+)$: corriente en la bobina en régimen permanente particularizada en t=0

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- Condiciones iniciales
- 4 Circuitos de primer orden
 - Circuito RC paralelo
 - Circuito RL serie
 - Procedimiento general

5 Circuitos de segundo orden

Procedimiento general

 R_{th} es la resistencia vista desde los bornes del condensador o de la bobina, cuando se anulan todas las fuentes independientes

Procedimiento general

- 1 Dibujar el circuito para t < 0:
 - ▶ Obtener el valor de $i_L(0^-)$ o $u_C(0^-)$
 - Aplicar el principio de continuidad para determinar $i_L(0^+)$ o $u_C(0^+)$
- 2 Dibujar el circuito para t > 0:
 - Calcular el equivalente de Thévenin/Norton visto por el condensador/bobina
 - ▶ Determinar la constante de tiempo del circuito:

$$\tau = \frac{L}{R_{th}} \qquad \qquad \tau = R_{th} C$$

- Calcular la respuesta en régimen permanente $(i_{\infty}(t) \text{ o } u_{\infty}(t))$:
 - 1 Corriente continua: sustituir la bobina por un cortocircuito y el condensador por un circuito abierto
 - 2 *Corriente alterna senoidal*: resolver el circuito por el método fasorial
 - 3 Otro tipo de forma de onda: determinar la solución particular de la ecuación diferencial
- **3** Escribir la solución completa para t > 0:

$$i_{L}(t) = (i_{L}(0^{+}) - i_{\infty}(0^{+})) e^{-\frac{t}{\tau}} + i_{\infty}(t)$$

$$u_{C}(t) = (u_{C}(0^{+}) - u_{\infty}(0^{+})) e^{-\frac{t}{\tau}} + u_{\infty}(t)$$

Ejemplo 1

En el circuito de la figura, calcular la corriente i(t) al cerrar el interruptor en t=0 s.

Circuitos de primer orden

Ejemplo 2

El conmutador del circuito de la figura pasa de la posición a 1 a la 2 en t=0 s. Calcular la tensión en bornes de la bobina t>0 s.

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- 6 Circuitos de segundo orden

- Circuitos que tienen dos elementos de acumulación (o más no asociados en serie/paralelo)
- Ecuación diferencial de segundo orden:

$$a_2 y''(t) + a_1 y'(t) + a_0 y(t) = g(t)$$

- El método de resolución analiza el circuito en dos etapas:
 - ▶ Respuesta natural (ecuación diferencial homogénea, sin fuentes)
 - Respuesta forzada (ecuación completa, con fuentes)

- Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- 6 Circuitos de segundo orden
 - Solución natural
 - Solución forzada
 - Constantes de integración
 - Procedimiento genera

Solución natural

$$a_2 y''(t) + a_1 y'(t) + a_0 y(t) = 0 \Rightarrow \left| y''(t) + \frac{a_1}{a_2} y'(t) + \frac{a_0}{a_2} y(t) \right| = 0$$

► Cambios de variable:

$$\frac{a_1}{a_0} = 2 \,\xi \,\omega_n \qquad \qquad \frac{a_0}{a_2} = \omega_n^2$$

 ω_n pulsación natural no amortiguada ξ coeficiente de amortiguamiento

Resolver el polinomio característico:

$$\lambda^{2} + 2 \xi \omega_{n} \lambda + \omega_{n}^{2} = 0 \Rightarrow \begin{cases} \lambda_{1} = -\omega_{n} \left(\xi + \sqrt{\xi^{2} - 1} \right) \\ \lambda_{2} = -\omega_{n} \left(\xi - \sqrt{\xi^{2} - 1} \right) \end{cases}$$

Circuitos de segundo orden Solución natural

Sistema sobreamortiguado ($\xi > 1$)

- $\lambda_1 \neq \lambda_2$
- Respuesta natural:

$$y_g(t) = K_1 e^{\lambda_1 t} + K_2 e^{\lambda_2 t}$$

- Sistema críticamente amortiguado ($\xi = 1$)
- $\lambda_1 = \lambda_2 = -\xi \omega_n = -\omega_n$
- Respuesta natural:

$$y_{\mathfrak{g}}(t) = \mathrm{e}^{-\omega_n t} (K_1 + K_2 t)$$

Sistema subamortiguado (0 $< \xi < 1$)

$\lambda = a \pm b i = -\omega_n \xi \pm \omega_n \sqrt{1 - \xi^2} i$

Respuesta natural:

$$y_g(t) = e^{-\omega_n \xi t} [K_1 \cos(\omega_n \sqrt{1 - \xi^2} t) + K_2 \sin(\omega_n \sqrt{1 - \xi^2} t)]$$

que puede escribirse como:

$$(t) = M e^{-\omega_n \xi t} \sin \left(\omega \right)$$

$$y_g(t) = M e^{-\omega_n \xi t} \sin \left(\omega_n \sqrt{1 - \xi^2} t + \theta \right)$$

donde $M = \sqrt{K_1^2 + K_2^2} \text{ y } \tan(\theta) = \frac{K_2}{K_1}$

- Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **6** Circuitos de segundo orden
 - Solución natural
 - Solución forzada
 - Constantes de integración
 - Procedimiento genera

Solución forzada

 $y_{\infty}(t)$, depende del tipo de alimentación del circuito:

- ► *Corriente continua*: sustituir las bobinas por cortocircuitos y los condensadores por circuitos abiertos
- ► Corriente alterna senoidal: resolver el circuito por el método fasorial
- Otro tipo de forma de onda: determinar la solución particular de la ecuación diferencial

- Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **6** Circuitos de segundo orden
 - Solución natural
 - Solución forzada
 - Constantes de integración
 - Procedimiento genera

Constantes de integración

- 1 Dibujar el circuito en el instante $t = 0^+$, sustituyendo las bobinas y condensadores por fuentes de intensidad y tensión, respectivamente, de valor $i_L(0^+)$ y $u_C(0^+)$
- 2 Con este nuevo circuito, puramente resistivo, cualquier variable se puede obtener por superposición \rightarrow se obtiene la primera condición de contorno
- $oldsymbol{3}$ Derivar la expresión de la variable en estudio, particularizada para $t=0^+ o$ se obtiene la segunda condición de contorno
- 4 Resolver el sistema de 2 ecuaciones con 2 incógnitas

- 1 Formas de onda
- 2 Introducción al régimen transitorio
- 3 Condiciones iniciales
- 4 Circuitos de primer orden
- **5** Circuitos de segundo orden
 - Solución natural
 - Solución forzada
 - Constantes de integración
 - Procedimiento general

Procedimiento general

- 1 Dibujar el circuito para t < 0:
 - ▶ Obtener los valores de $i_L(0^-)$ y $u_C(0^-)$
 - Aplicar el principio de continuidad para determinar $i_L(0^+)$ y $u_C(0^+)$
- 2 Dibujar el circuito para t > 0, caracterizando los elementos pasivos por su impedancia operacional:
 - Obtener la ecuación diferencial del sistema aplicando métodos de análisis generales
 - Determinar la solución natural de la ecuación diferencial, especificando también el tipo de sistema
 - Calcular la respuesta forzada, según el tipo de alimentación del circuito
- 3 Determinar las constantes de la ecuación
- **4** Escribir la solución completa para t > 0

Ejemplo

El circuito de la figura lleva en la situación indicada un tiempo suficientemente grande, de forma que se encuentra en régimen permanente. En el instante t=0, se cierra el interruptor. Determinar la intensidad i(t) para t>0.

