Analysis A - Lebesgue Measure Theory

Sample Exam Problems

- **1.** Let S_1, S_2, \ldots be closed sets such that $\cup_j S_j = \mathbb{R}$. Prove that at least one of the sets S_j has nonempty interior.
- **2.** Let A be any countable subset of the real numbers. Construct a monotonically increasing function whose set of points of discontinuity is precisely the set A.
- **3.** Let E and F be disjoint closed subsets of \mathbb{R}^n . Prove that there is a continuous function f in \mathbb{R}^n such that $\{x: f(x)=0\}=E$ and $\{x: f(x)=1\}=F$.
- **4.** Let $\{p_j(x)\}$ be a sequence of polynomial functions on \mathbb{R} , each of degree not exceeding a number $k \geq 1$. Assume that this sequence converges pointwise to a limit function f. Prove that f is a polynomial of degree not exceeding k.
- **5.** Consider the functions

$$f_n(x) = \sin nx$$
, $n = 1, 2, 3, \dots, -\pi \le x \le \pi$

as points of L^2 . Prove that the set of these points is closed and bounded, but is not compact.

- **6.** Let X be an uncountable set and \mathcal{A} the collection of all sets $E \subset X$ such that either E or its compliment E^c is at most countable, and define $\mu(E) = 1$ in the second. Prove that \mathcal{A} is a σ -algebra in X and that μ is a measure on \mathcal{A} . Describe the corresponding measurable functions and their integrals.
- 7. Suppose $f_n: X \to [0, \infty]$ is a sequence of measurable functions for $n = 1, 2, 3, \ldots$ satisfying $f_1 \geq f_2 \geq f_3 \geq \cdots \geq 0$, $f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in X$ and $f_1 \in L^1(\mu)$. Prove that

$$\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$$

and show that this conclusion does not follow if the condition " $f_1 \in L^1(\mu)$ " is omitted.

8. If $0 < \varepsilon < 1$, construct an open set $E \subset [0,1]$, which is dense in [0,1] and such that $m(E) = \varepsilon$ where m is the Lebesgue measure.

9. Construct a sequence of continuous function f_n on [0,1] such that $0 \le f_n(x) \le 1$ and

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0,$$

but, for every $x \in [0,1]$, the sequence of pointwise values $\{f_n(x)\}$ does not converge.

10. Use Fubini's theorem and the relation

$$\frac{1}{x} = \int_0^x e^{-xt} dt, \quad x > 0$$

to prove that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

11. Using a fixed point argument, show that the equation

$$u(x) = x + \frac{1}{2} \int_0^1 \sin(x+y) \, u(y) \, dy$$
 $\forall x \in [0,1]$

has a unique solution $u \in \mathcal{C}([0,1])$.

12. Let $(f_n)_{n\geq 1}$ be a sequence of functions in $\mathbf{L}^p(\mathbb{R})$, $1 , such that <math>f_n(x) \to f(x)$ for a.e. $x \in \mathbb{R}$. Assume that $||f_n||_{\mathbf{L}^p} \leq M$, for some constant M and all $n \geq 1$.

Prove that

$$\int fg \, dx = \lim_{n \to \infty} \int f_n \, g \, dx$$

for every $g \in \mathbf{L}^q(I\!\! R)$, with $\frac{1}{p} + \frac{1}{q} = 1$.

- **13.** Let $f: \mathbb{R} \to \mathbb{R}$ be an absolutely continuous function, with bounded variation. Consider the sequence of divided differences $g_n(x) = n \left[f\left(x + \frac{1}{n}\right) f\left(x \frac{1}{n}\right) \right]$. Prove that there exists a function $g \in \mathbf{L}^1(\mathbb{R}^n)$ such that $g_n(x) \to g(x)$ for a.e. $x \in \mathbb{R}$, and moreover $\|g_n g\|_{\mathbf{L}^1} \to 0$. Identify the function g.
- **14.** Consider a sequence of functions $f_n \in \mathbf{L}^1(\mathbb{R})$ with $||f_n||_{\mathbf{L}^1} \leq C$ for every $n \geq 1$. Define

$$f(x) \doteq \begin{cases} \lim_{n \to \infty} f_n(x) & \text{if the limit exists,} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is Lebesgue measurable and $||f||_{\mathbf{L}^1} \leq C$.

15. If g(x) = f(x+c), show that the Fourier transforms of f and g are related as $\hat{g}(y) = \hat{f}(y)e^{icy}$.

- **16.** If the Fourier transform of f is identically zero, show that f=0 almost everywhere.
- 17. Construct a continuous and monotonic function f on [0,1] for which f(0)=0, f(1)=1 and f'(x)=0 for almost every $x\in[0,1]$.