Wednesday warm-up: unit analysis and vectors

Prof. Jordan C. Hanson

August 28, 2024

1 Chapter 1 - Unit analysis, Estimation

- 1. What is 25 m s^{-1} in km hr^{-1} ?
 - \bullet A: 15 km hr^{-1}
 - B: 25 km hr^{-1}
 - C: 60 km hr^{-1}
 - D: 90 km hr^{-1}
- 2. Suppose a ship accelerates from 0 km hr^{-1} to 10 km hr^{-1} in 60 seconds. If acceleration is the change in velocity divided by the change in time, what is the acceleration of the ship?
- 3. Estimate the area of the North Quad of Whittier College (the open space outside the SLC):
 - A: 5000 m²
 - B: 5000 cm^2
 - C: 500 m²
 - D: 500 cm^2
- 4. A coffee bean is about 0.5 cm³ in volume. How many could fit in a 2 liter bottle?
 - A: 4×10^1
 - B: 4×10^2
 - C: 4×10^3
 - D: 4×10^4

2 Chapter 2 - Vectors

Recently, we have represented 2D vectors like this: \$\vec{v} = (v_x, v_y)\$. The \$v_x\$ is the x-component, and the \$v_y\$ is the y-component. Let us exchange this notation for a different one. Let \$\vec{v} = v_x \hat{i} + v_y \hat{j}\$. The \$\hat{i}\$ and the \$\hat{j}\$ are unit vectors, each with length 1. The \$\hat{i}\$ points in the x-direction, and the \$\hat{j}\$ points in the y-direction. (a) Let \$\vec{v} = -2\hat{i} + 2\hat{j}\$, and \$\vec{w} = 2\hat{i} - 2\hat{j}\$. Draw each in a 2D coordinate system below. (b) What is \$\vec{v} + \vec{w}\$? (c) What is \$\vec{v} - \vec{w}\$?