Stroke Prediction

Shraddha P Jain 20-PBD-002

Objective

- According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths.
- The objective of this modelling is to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status, etc.

Dataset

- 1) id: unique identifier
- 2) gender: "Male", "Female" or "Other"
- 3) age: age of the patient
- 4) hypertension: o if the patient doesn't have hypertension, 1 if the patient has hypertension
- 5) heart_disease: o if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- 6) ever_married: "No" or "Yes"
- 7) work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"

- 8) Residence_type: "Rural" or "Urban"
- 9) avg_glucose_level: average glucose level in blood
- 10) bmi: body mass index
- 11) smoking_status: "formerly smoked", "never smoked", "smokes"
- or "Unknown"*
- 12) stroke: 1 if the patient had a stroke or 0 if not

Data Preprocessing

```
> str(data)
'data.frame': 5110 obs. of 12 variables:
$ id
                  : int 9046 51676 31112 60182 1665 56669 53882 10434 27419 60491
$ gender : chr "Male" "Female" "Male" "Female" ...
 $ age
           : num 67 61 80 49 79 81 74 69 59 78 ...
 $ hypertension : int 0000101000...
 $ heart_disease : int 1010001000...
 $ ever_married : chr "Yes" "Yes" "Yes" "Yes" ...
 $ work_type : chr "Private" "Self-employed" "Private" "Private" ...
 $ Residence_type : chr "Urban" "Rural" "Rural" "Urban" ...
 $ avg_glucose_level: num 229 202 106 171 174 ...
                  : chr "36.6" "N/A" "32.5" "34.4" ...
 $ bmi
 $ smoking_status
                  : chr "formerly smoked" "never smoked" "never smoked" "smokes"
 $ stroke
                  : int 1111111111...
```

Checking for NA's and Levels

```
$gender
Γ17 0
$age
[1] 0
$hypertension
[1] 0
$heart_disease
[1] O
Sever married
[1] 0
$work_type
[1] O
$Residence_type
[1] 0
$avg_glucose_level
[1] 0
$bmi
[1] 201
$smoking_status
[1] 0
$stroke
[1] 0
```

```
pply(data, runction(x) {levels(x)})
Sgender
[1] "Female" "Male" "Other"
Sage
NULL
Shypertension
[1] "0" "1"
Sheart disease
[1] "0" "1"
Sever_married
[1] "No" "Yes"
Swork_type
[1] "children"
                                    "Never_worked" "Private"
                    "Govt_job"
                                                                     "Self-employed"
$Residence_type
[1] "Rural" "Urban"
$avg_glucose_level
NULL
Sbmi
NULL
$smoking_status
[1] "formerly smoked" "never smoked"
                                        "smokes"
                                                           "Unknown"
Sstroke
   "0" "1"
```

Dealing with NA's

```
> sum(data$stroke[is.na(data$bmi)]==1)
[1] 40
> sum(data$stroke[is.na(data$bmi)]==1)/length(data$stroke[is.na(data$bmi)])
[1] 0.199005
```

Imputation using MICE

Exploratory data Analysis

- For gender 'Other', there is only 1 patient who has not had any attack of stroke.
- For the work_type, due to not-enough samples, we have only 22 patients who have never worked, and all of them did not have an attack of stroke.

Stroke

Gender

Pearson's Chi-squared test

data: tabl[1:2,]
X-squared = 0.42127, df = 1, p-value = 0.5163

Hypertension

Pearson's Chi-squared test

data: tabl

X-squared = 83.596, df = 1, p-value < 2.2e-16

Heart Disease

Pearson's Chi-squared test

data: tabl

X-squared = 93.011, df = 1, p-value < 2.2e-16

Ever_married

Pearson's Chi-squared test

data: tabl

X-squared = 59.979, df = 1, p-value = 9.589e-15

Residence Type

Pearson's Chi-squared test

data: tabl X-squared = 1.221, df = 1, p-value = 0.2692

Work Type

Smoking Status

```
Pearson's Chi-squared test
```

data: tabl

X-squared = 29.147, df = 3, p-value = 2.085e-06

Age

Glucose levels binned

BMI binned

Conclusion

 Hypertension, heartdisease, and ever_married, worktype, age, glucose level, bmi,smoking status might be important variables for predicting

Multicollinearity and VIF

 Checked for multicollinearity of bmi on age, worktype, residence type, heart disease, hypertension, and glucose level. No severe multicollinearity was found

```
> vif(md)
                     GVIF Df GVIF^{(1/(2*Df))}
                                    1.471841
                 2.166315
age
work_type
                 1.906632
                                    1.084010
Residence_type
                 1.001376
                                    1.000688
heart_disease
                 1.098335 1
                                    1.048015
hypertension
                 1.102373 1
                                    1.049939
avg_glucose_level 1.089470
                                    1.043777
```

- Similarly, checking for multicollinearity between glucose and other variables, no severe multicollinearity was found
- Same can be said for hypertension, and age

Modelling - Preprocessing

- Encoding the dummy variables of worktype, smoking status, and gender
- There are some outliers in bmi, and average glucose status. Not removing any datapoint as of now
- Doing a train-test split

Logistic Regression

- After encoding the variables, had 15 variables. On performing a logistic regression, although the model was significant overall, most of the variables used were insignificant.
- So, I did a stepwise logistic regression.

```
Step: AIC=1160.78
stroke ~ age + hypertension + avg_glucose_level

Df Deviance AIC
<none> 1152.8 1160.8
- avg_glucose_level 1 1158.2 1164.2
- hypertension 1 1160.2 1166.2
- age 1 1344.9 1350.9
```

```
> with(stroke_step,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail = F))
[1] 3.878703e-59
```

```
Call:
glm(formula = stroke \sim age + hypertension + avg_glucose_level,
   family = "binomial", data = training)
Deviance Residuals:
            10 Median
   Min
                             30
                                    Max
-0.9990 -0.3320 -0.1832 -0.0889
                                 3.7232
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
                -7.249933 0.404410 -17.927 < 2e-16 ***
(Intercept)
                age
hypertension1
             0.524649 0.187848 2.793 0.00522 **
avg_glucose_level 0.003274 0.001385 2.364 0.01810 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1426.9 on 3576 degrees of freedom
Residual deviance: 1152.8 on 3573 degrees of freedom
AIC: 1160.8
Number of Fisher Scoring iterations: 7
```

```
> sumtab_train
actual
pred 0 1 sum
0 3397 180 3577
sum 3397 180 3577
```

> sumtab_test actual pred_test 0 1 sum 0 1464 69 1533 sum 1464 69 1533

	<pre>\$sumtab_test</pre>
\$sumtab_test	actual
actual	pred_test 0 1 su
pred_test 0 1 sum	0 1219 22 124
0 1195 20 1215	1 245 47 29
1 269 49 318	sum 1464 69 153
sum 1464 69 1533	33 2.00
	\$TPR
\$TPR	[1] 0.6811594
[1] 0.7101449	[1] 0.0011331
	\$FPR
\$FPR	[1] 0.1673497
[1] 0.1837432	[1] 0.10/349/
	\$TNR
\$TNR	
[1] 0.8162568	[1] 0.8326503
	<u></u>
\$accuracy	\$accuracy
[1] 0.8114808	[1] 0.8258317
2-3	
\$precision	<pre>\$precision</pre>
[1] 0.1540881	[1] 0.1609589
[1] 0.13/0001	
\$specificity	\$specificity
[1] 0.8162568	[1] 0.8326503
[1] 0:0102300	
\$f_score	<pre>\$f_score</pre>
[1] 0.25323	[1] 0.2603878
[1] 0.23323	
\$cut off	<pre>\$cut_off</pre>
\$cut_off	[1] 0.09
[1] 0.08	

```
$sumtab_test
        actual
pred_test 0 1 sum
     0 1244
                26 1270
          220 43 263
     sum 1464 69 1533
$TPR
[1] 0.6231884
$FPR
[1] 0.1502732
$TNR
[1] 0.8497268
$accuracy
[1] 0.8395303
$precision
[1] 0.1634981
$specificity
[1] 0.8497268
$f_score
[1] 0.2590361
$cut_off
[1] 0.1
```

Oversampling

- Used ROSE package to oversample the data because of class imbalance
- After oversampling, the proportion of people who had stoke increased to around 19%
- Did stepwise regression on this oversampled data.

```
Step:
      AIC=3099.69
stroke ~ age + hypertension + heart_disease + Residence_type +
    avg_glucose_level + children + govtjob + private
                     Df Deviance
                                     AIC
                          3081.7 3099.7
<none>
- heart_disease
                          3084.3 3100.3

    Residence_type

                          3084.3 3100.3
- children
  govtjob
  private
  avg_glucose_level
                          3097.0 3113.0
  hypertension
                          3102.3 3118.3
                          3645.1 3661.1
```

```
data = training)
Deviance Residuals:
                  Median
    Min
             10
                               30
                                      Max
-1.7408 -0.6040 -0.2928 -0.1506 3.0586
Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                   -6.3563238  0.2679325  -23.724  < 2e-16 ***
                    0.0715852  0.0034804  20.568  < 2e-16 ***
age
hypertension1
                    0.5137113  0.1122318  4.577  4.71e-06 ***
heart_disease1
                    0.2270057 0.1395285 1.627 0.103748
Residence_typeUrban 0.1471563 0.0905662 1.625 0.104195
avg_glucose_level
                   0.0031809 0.0008078
                                          3.938 8.22e-05 ***
children
                   1.2225949 0.4449915 2.747 0.006006 **
govtjob
                    0.3898778 0.1473532
                                          2.646 0.008148 **
private
                    0.3824912 0.1144235
                                          3.343 0.000829 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 4101.6 on 4199 degrees of freedom
Residual deviance: 3081.7 on 4191 degrees of freedom
AIC: 3099.7
Number of Fisher Scoring iterations: 6
```

```
$sumtab_test
        actual
pred_test 0 1 sum
      0 1368 219 1587
           97 116 213
      sum 1465 335 1800
$TPR
[1] 0.3462687
$FPR
[1] 0.0662116
$TNR
[1] 0.9337884
$FNR
[1] 0.6537313
$accuracy
[1] 0.8244444
$precision
[1] 0.5446009
$specificity
[1] 0.9337884
$f_score
[1] 0.4233577
$cut_off
[1] 0.5
```

```
$sumtab_test
        actual
pred_test 0 1 sum
         1066 61 1127
     0
         399 274 673
     1
      sum 1465 335 1800
$TPR
[1] 0.8179104
$FPR
[1] 0.2723549
$TNR
[1] 0.7276451
$FNR
[1] 0.1820896
$accuracy
[1] 0.7444444
$precision
[1] 0.4071322
$specificity
[1] 0.7276451
$f_score
[1] 0.5436508
$cut_off
[1] 0.2
```

Roc curve, and AUC

> auc [1] 0.8357762

Logisitic Regression with binned numerical variables

> with(stroke_step.pchisq(null.deviance-deviance.df.null-df.residual.lower.tail = F))
[1] 7.591348e-184

```
Step: AIC=2693.08
stroke ~ hypertension + heart_disease + children + private +
    neversm + smokes + a30_40 + a50_60 + a40_50 + a60_70 + a70_80 +
    a80_90 + b20_30 + b40_50 + b50_60 + b60_70 + g150_200
                Df Deviance
                     2657.1 2693.1
<none>
- b40_50
                     2659.2 2693.2
- b20_30
                     2659.9 2693.9
- private
                     2660.5 2694.5
- heart_disease
                     2660.6 2694.6
- smokes
                     2661.2 2695.2
- b60_70
                     2661.4 2695.4
                     2661.4 2695.4
- neversm
- children
                     2664.4 2698.4
- b50_60
                     2672.2 2706.2
- q150_200
                     2681.5 2715.5
- hypertension
                     2690.8 2724.8
- a30_40
                     2703.4 2737.4
- a40_50
                     2722.3 2756.3
- a50_60
                     2800.7 2834.7
- a60_70
                     2850.3 2884.3
- a80_90
                     2850.7 2884.7
- a70_80
                     2972.8 3006.8
```

```
$sumtab_test
        actual
pred_test 0 1 sum
     0 1389 237 1626
     1 76 98 174
      sum 1465 335 1800
$TPR
[1] 0.2925373
$FPR
[1] 0.05187713
$TNR
[1] 0.9481229
$FNR
[1] 0.7074627
$accuracy
[1] 0.8261111
$miss_classification_error
[1] 0.0704501
$precision
[1] 0.5632184
$specificity
[1] 0.9481229
$f_score
[1] 0.3850688
```

Tree based models

- Normalized the numerical variables
- CART model on original data (data not oversampled)

```
> cartfit
n= 3577

node), split, n, loss, yval, (yprob)
    * denotes terminal node

1) root 3577 180 0 (0.9496785 0.0503215) *
```

CART on the oversampled data

Classification Tree


```
$sumtab_test
        actual
pred_test 0 1 sum
     0 1362 186 1548
     1 103 149 252
     sum 1465 335 1800
$TPR
[1] 0.4447761
$FPR
[1] 0.07030717
$TNR
[1] 0.9296928
$FNR
[1] 0.5552239
$accuracy
[1] 0.8394444
$miss_classification_error
[1] 0.1605556
$precision
[1] 0.5912698
$specificity
[1] 0.9296928
$f_score
[1] 0.5076661
```

C5 tree on data not oversampled

```
> tree_mod

Call:
    C5.0.default(x = x_training, y = y_training)

Classification Tree
    Number of samples: 3577
    Number of predictors: 10

Tree size: 1

Non-standard options: attempt to group attributes
```

C5 tree on oversampled data

• The tree was big. The attributes used were

```
Attribute usage:

100.00% age.z
49.62% glucose.z
42.24% ever_married
37.14% gender
33.86% smoking_status
33.26% hypertension
31.88% heart_disease
27.07% work_type
9.02% Residence_type
```

```
$sumtab_test
        actual
pred_test 0 1 sum
     0 1292 57 1349
     1 173 278 451
     sum 1465 335 1800
$TPR
[1] 0.8298507
$FPR
[1] 0.1180887
$TNR
[1] 0.8819113
$FNR
[1] 0.1701493
$accuracy
[1] 0.8722222
$miss_classification_error
[1] 0.1277778
$precision
[1] 0.616408
$specificity
[1] 0.8819113
$f_score
[1] 0.7073791
```

RF on data not oversampled

```
$sumtab_train
actual
pred 0 1 sum
0 3403 8 3411
1 0 166 166
sum 3403 174 3577
$sumtab_test
actual
pred_test 0 1 sum
0 1458 75 1533
1 0 0 0
sum 1458 75 1533
```

Random Forest on oversampled

data

> importance(Ranfo	r)
MeanDecreaseGini	
gender	28.87149
hypertension	33.87203
heart_disease	22.67534
ever_married	25.43178
work_type	50.22641
Residence_type	28.58884
smoking_status	74.49072
age.z	312.05284
glucose.z	223.03574

\$sumtab_test actual pred_test 0 1 sum 20 1942 0 1922 36 445 481 sum 1958 465 2423 \$TPR [1] 0.9569892 \$FPR [1] 0.01838611 \$TNR [1] 0.9816139 \$FNR [1] 0.04301075 \$accuracy [1] 0.9768882 \$miss_classification_error [1] 0.02311184 **Sprecision** [1] 0.9251559 \$specificity [1] 0.9816139 \$f_score [1] 0.9408034

All variables used

\$sumtab_test actual pred_test 0 1 sum 1918 20 1938 40 445 485 sum 1958 465 2423 \$TPR [1] 0.9569892 \$FPR [1] 0.02042901 \$TNR [1] 0.979571 \$FNR [1] 0.04301075 \$accuracy [1] 0.9752373 \$miss_classification_error [1] 0.02476269 \$precision [1] 0.9175258 \$specificity [1] 0.979571 \$f_score [1] 0.9368421

Removing Gender \$sumtab_test actual pred_test 1 sum 1889 25 1914 69 440 509 sum 1958 465 2423 \$TPR [1] 0.9462366 \$FPR [1] 0.03524004 \$TNR [1] 0.96476 \$FNR [1] 0.05376344 \$accuracy [1] 0.9612051 \$miss_classification_error [1] 0.03879488 \$precision [1] 0.8644401 \$specificity [1] 0.96476 \$f_score [1] 0.9034908

Glucose, age, smoking status, and work type

Thank You