

Gevorderde algoritmen

Bert De Saffel

Master in de Industriële Wetenschappen: Informatica Academiejaar 2018–2019

Gecompileerd op 24 juni 2019

Inhoudsopgave

I Gegevensstructuren II									
1	Efficiënte zoekbomen								
	1.1	Inleidi	ng	3					
	1.2	Rood-	zwarte bomen	4					
		1.2.1	Definitie en eigenschappen	4					
		1.2.2	Zoeken	5					
		1.2.3	Toevoegen en verwijderen	5					
		1.2.4	Rotaties	5					
		1.2.5	Bottom-up rood-zwarte bomen	6					
		1.2.6	Top-down rood-zwarte bomen	6					
	1.3	Splaybomen							
	1.4	Gerandomiseerde zoekbomen							
2	Toepassingen van dynamisch programmeren								
	2.1	Optimale binaire zoekbomen							
	2.2	Langst	te gemeenschappelijke deelsequentie	10					

Deel I Gegevensstructuren II

Hoofdstuk 1

Efficiënte zoekbomen

1.1 Inleiding

- Uitvoeringstijd van operaties op een binaire zoekboom met hoogte h is O(h).
- ullet De hoogte h is afhankelijk van de toevoegvolgorde:
 - o In het slechtste geval bekomt men een gelinkte lijst, zodat h = O(n).
 - o Als elke toevoegvolgorde even waarschijnlijk is, dan is de verwachtingswaarde voor de hoogte $h = O(\lg n)$ met n het aantal gegevens.
 - ! Geen realistische veronderstelling.
- Drie manieren om de efficiëntie van zoekbomen te verbeteren:
 - 1. Elke operatie steeds efficiënt maken.
 - (a) AVL-bomen.

 - o Δh wordt opgeslagen in de knoop zelf.

Figuur 1.1: Een AVL-boom. De groene cijfers stellen de hoogteverschillen voor van de twee deelbomen voor elke knoop.

- (b) 2-3-bomen.
 - Elke knoop heeft 2 of 3 kinderen.

- Elk blad heeft dezelfde diepte.
- Bij toevoegen of verwijderen wordt het ideale evenwicht behouden door het aantal kinderen van de knopen te manipuleren.
- (c) 2-3-4-bomen.
 - Eenvoudiger dan 2-3-bomen om te implementeren.
- (d) Rood-zwarte bomen (sectie 1.2.1).

2. Elke reeks operaties steeds efficiënt maken.

- (a) Splaybomen (sectie 1.3).
 - o De vorm van de boom wordt meermaals aangepast.
 - Elke reeks opeenvolgende operaties is gegarandeerd efficiënt.
 - o Een individuele operatie kan wel traag uitvallen.
 - o Geamortiseerd is de performantie per operatie goed.

3. De gemiddelde efficiëntie onafhankelijk maken van de operatievolgorde.

- (a) Gerandomiseerde zoekbomen (sectie 1.4).
 - o Gebruik van een random generator.
 - o De boom is random, onafhankelijk van de toevoeg- en verwijdervolgorde.
 - Verwachtingswaarde van de hoogte h wordt dan $O(\lg n)$.

1.2 Rood-zwarte bomen

1.2.1 Definitie en eigenschappen

Figuur 1.2: Een rood-zwarte boom. De NIL knopen stellen virtuele knopen voor.

• Definitie:

- Een binaire zoekboom.
- Elke knoop is rood of zwart gekleurd.
- Elke virtuele knoop is zwart. Een virtuele knoop is een knoop die geen waarde heeft, maar wel een kleur. Deze vervangen de nullwijzers.

- Een rode knoop heeft steeds twee zwarte kinderen
- Elke mogelijke weg vanuit een knoop naar een virtuele knoop bevat evenveel zwarte knopen. Dit aantal wordt de zwarte hoogte genoemd
- De wortel is zwart.

• Eigenschappen:

- o Een deelboom met wortel w en zwarte hoogte z heeft tenminste $2^z 1$ inwendige knopen.
- o De hoogte van een rood-zwarte boom met n knopen is steeds $O(\lg n)$.
 - \diamond Er zijn nooit twee opeenvolgende rode knopen op elke weg vanuit een knoop naar een virtuele knoop $\to z \ge h/2$.
 - ♦ Substitutie in de eerste eigenschap geeft:

$$n \ge 2^z - 1 \ge 2^{h/2} - 1$$

 $\to h \le 2\lg(n+1)$

1.2.2 Zoeken

- De kleur speelt geen rol, zodat de rood-zwarte boom een gewone binaire zoekboom wordt.
- De hoogte is wel gegerandeerd $O(\lg n)$.
- Zoeken naar een willekeurige sleutel is dus $O(\lg n)$.

1.2.3 Toevoegen en verwijderen

- Element toevoegen of verwijderen, zonder rekening te houden met de kleur, is ook $O(\lg n)$.
- ! Geen garantie dat deze gewijzigde boom nog rood-zwart zal zijn.
- Twee manieren om toe te voegen:

1. Bottom-up:

- Voeg knoop toe zonder rekening te houden met de kleur.
- Herstel de rood-zwarte boom, te beginnen bij de nieuwe knoop, en desnoods tot bij de wortel.

2. Top-down:

- o Pas de boom aan langs de dalende zoekweg.
- ✓ Efficiënter dan bottom-down aangezien er geen ouderwijzers of een stapel nodig is.

1.2.4 Rotaties

Figuur 1.3: Rotaties

- Wijzigen de vorm van de boom, maar behouden de inorder volgorde van de sleutels.
- Moet enkel pointers aanpassen, en is dus O(1).
- Rechtste rotatie van een ouder p en zijn linkerkind l:
 - $\circ\,$ Het rechterkind van l wordt het linkerkind van p.
 - \circ De ouder van p wordt de ouder van l.
 - o p wordt het rechterkind van l.
- Linkse rotatie van een ouder p en zijn rechterkind r:
 - \circ Het linkerkind van r wordt het rechterkind van p.
 - o De ouder van r wordt de ouder van p.
 - o p wordt het linkerkind van l.

1.2.5 Bottom-up rood-zwarte bomen

_ToDo: vanaf hier

1.2.6 Top-down rood-zwarte bomen

1.3 Splaybomen

1.4 Gerandomiseerde zoekbomen

Hoofdstuk 2

Toepassingen van dynamisch programmeren

2.1 Optimale binaire zoekbomen

Figuur 2.1: Een optimale binaire zoekboom met bijhorende kansentabel.

i	0	1	2	3	4	5
p_i		0.15	0.10			
q_i	0.05	0.10	0.05	0.05	0.05	0.10

- Veronderstel dat de gegevens die in een binaire zoekboom moeten opgeslaan worden op voorhand gekend zijn.
- Veronderstel ook dat de waarschijnlijkheid gekend is waarmee de gegevens gezocht zullen worden.
- Tracht de boom zo te schikken zodat de verwachtingswaarde van de zoektijd minimaal wordt.

- De zoektijd wordt bepaald door de lengte van de zoekweg.
- De gerangschikte sleutels van de n gegevens zijn s_1, \ldots, s_n .
- De n+1 bladeren zijn b_0,\ldots,b_n .
 - Elk blad staat voor een afwezig gegeven die in een deelboom op die plaats had moeten zitten.
 - Het blad b_0 staat voor alle sleutels kleiner dan s_1 .
 - Het blad b_n staat voor alle sleutels groter dan s_n .
 - Het blad b_i staat voor alle sleutels gorter dan s_i en kleiner dan s_{i+1} , met $1 \le i < n$
- De waarschijnlijkheid om de i-de sleutel s_i te zoeken is p_i .
- De waarschijnlijkheid om alle afwezige sleutels, voorgesteld door een blad b_i , te zoeken is q_i .
- De som van alle waarschijnlijkheden moet 1 zijn:

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

 Als de zoektijd gelijk is aan het aantal knopen op de zoekweg (de diepte plus één), dan is de verwachtingswaarde van de zoektijd

$$\sum_{i=1}^{n} p_i(\text{diepte}(s_i) + 1) + \sum_{i=0}^{n} q_i(\text{diepte}(b_i) + 1)$$

- Deze verwachtingswaarde moet geminimaliseert worden.
 - Boom met minimale hoogte is niet voldoende.
 - o Alle mogelijke zoekbomen onderzoeken is ook geen optie, hun aantal is

$$\frac{1}{n+1} \binom{2n}{n} \sim \frac{1}{n+1} \cdot \frac{2^{2n}}{\sqrt{\pi n}}$$
$$\sim \frac{1}{n+1} \cdot \frac{4^n}{\sqrt{\pi n}}$$
$$\sim \Omega\left(\frac{4^n}{n\sqrt{n}}\right)$$

- \checkmark Dynamisch programmeren biedt een uitkomst.
- Een optimalisatieprobleem komt in aanmerkingen voor een efficiënte oplossing via dynamisch programmeren als het:
 - 1. het een optimale deelstructuur heeft;
 - 2. de deelproblemen onafhankelijk maar overlappend zijn.
- Is dit hier van toepassing?
 - Is er een optimale deelstructuur?
 - ♦ Als een zoekboom optimaal is, moeten zijn deelbomen ook optimaal zijn.
 - ♦ Een optimale oplossing bestaat uit optimale oplossingen voor deelproblemen.
 - Zijn de deelproblemen onafhankelijk?
 - ♦ Ja want deelbomen hebben geen gemeenschappelijke knopen.

- Zijn de deelproblemen overlappend?
 - \diamond Elke deelboom bevat een reeks opeenvolgende sleutels $s_i, \ldots s_j$ met bijhorende bladeren b_{i-1}, \ldots, b_j .
 - \diamond Deze deelboom heeft een wortel s_w waarbij $(i \leq w \leq j)$.
 - \diamond De linkse deelboom bevat de sleutels s_i, \ldots, s_{w-1} en bladeren b_{i-1}, \ldots, b_{w-1} .
 - \diamond De rechtse deelboom bevat de sleutels $w+1,\ldots,s_j$ en bladeren b_w,\ldots,b_j .
 - \diamond Voor een optimale deelboom met wortel s_w moeten deze beide deelbomen ook optimaal zijn.
 - Deze wordt gevonden door:
 - 1. achtereenvolgens elk van zijn sleutels s_i, \ldots, s_j als wortel te kiezen;
 - 2. de zoektijd voor de boom te berekenen door gebruikte maken van de zoektijden van de optimale deelbomen;
 - 3. de wortel te kiezen die de kleinste zoektijd oplevert.
- We willen dus de kleinste verwachte zoektijd z(i, j).
- Dit moet gebeuren voor alle i en j waarbij:
 - \circ $1 \le i \le n+1$
 - $0 \le j \le n$
 - \circ $j \geq i-1$
- De optimale boom heeft dus de kleinste verwachte zoektijd z(1,n).
- Hoe $z_w(i,j)$ bepalen voor een deelboom met wortel s_w ?
 - o Gebruik de kans om in de wortel te komen.
 - o Gebruik de optimale zoektijden van zijn deelbomen, z(i, w-1) en z(w+1, j).
 - o Gebruik ook de diepte van elke knoop, maar elke knoop staat nu op een niveau lager.
 - ⋄ De bijdrage tot de zoektijd neemt toe met de som van de zoekwaarschijnlijkheden.

$$g(i,j) = \sum_{k=i}^{j} p_k + \sum_{k=i-1}^{j} q_k$$

• Hieruit volgt:

$$z_w(i,j) = p_w + (z(i,w-1) + g(i,w-1)) + (z(w+1,j) + g(w+1,j))$$

= $z(i,w-1) + z(w+1,j) + g(i,j)$

- ullet Dit moet minimaal zijn ullet achtereenvolgens elke sleutel van de deelboom tot wortel maken.
 - \circ De index w doorloopt alle waarden tussen i en j.

$$z(i,j) = \min_{i \le w \le j} \{z_w(i,j)\}$$

= $\min_{i \le w \le j} \{z(i, w - 1) + z(w + 1, j) + g(i, j)\}$

- Hoe wordt de optimale boom bijgehouden?
 - $\circ\,$ Hou enkel de index w bij van de wortel van elke optimale deelboom.
 - Voor de deelboom met sleutels s_i, \ldots, s_j is de index w = r(i, j).
- Implementatie:

- Een recursieve implementatie zou veel deeloplossingen opnieuw berekenen.
- o Daarom **bottom-up** implementeren. Maakt gebruik van drie tabellen:
 - 1. Tweedimensionale tabel z[1..n + 1, 0..n] voor de waarden z(i, j).
 - 2. Tweedimensionale tabel g[1..n+1,0..n] voor de waarden g(i,j).
 - 3. Tweedimensionale tabel r[1..n, 1..n] voor de indices r(i, j).
- Algoritme:
 - 1. Initialiseer de waarden z(i, i-1) en g(i, i-1) op q[i-1].
 - 2. Bepaal achtereenvolgens elementen op elke evenwijdige diagonaal, in de richting van de tabelhoek linksboven.
 - \diamond Voor z(i,j) zijn de waarden $z(i,i-1),z(i,i),\ldots,z(i,j-1)$ van de linkse deelboom nodig en de waarden $z(i+1,j),\ldots,z(j,j),z(j+1,j)$ van de rechtse deelboom nodig.
 - \diamond Deze waarden staan op diagonalen onder deze van z(i,j).
- Efficiëntie:
 - Bovengrens: drie verneste lussen $\to O(n^3)$.
 - Ondergrens:
 - Meeste werk bevindt zich in de binneste lus.
 - $\diamond\,$ Een deelboom met sleutels $s_i, \dots s_j$ heeft j-i+1mogelijke wortels.
 - \diamond Elke test is O(1).
 - ♦ Dit werk is evenredig met

$$\sum_{i=1}^{n} \sum_{j=i}^{n} (j - i + 1)$$

$$\Rightarrow \qquad \sum_{i=1}^{n} i^{2}$$

$$\Rightarrow \qquad \frac{n(n+1)(2n+1)}{6}$$

$$\Rightarrow \qquad \Omega(n^{3})$$

- Algemeen: $\Theta(n^3)$.
- o Kan met een bijkomende eigenschap (zien we niet in de cursus) gereduceerd worden tot $\Theta(n^2)$.

2.2 Langste gemeenschappelijke deelsequentie

- Een deelsequentie van een string wordt bekomen door nul of meer stringelementen weg te laten.
- Elke deelstring is een deelsequentie, maar niet omgekeerd.
- Een langste gemeenschappelijke deelsequentie (LGD) van twee strings kan nagaan hoe goed deze twee strings op elkaar lijken.
- Geven twee strings:

$$\circ X = \langle x_0, x_1, \dots, x_{n-1} \rangle$$

$$\circ Y = \langle y_0, y_1, \dots, y_{m-1} \rangle$$

• Hoe LGD bepalen?

- Is er een optimale deelstructuur?
 - ♦ Een optimale oplossing maakt gebruik van optimale oplossingen voor deelproblemen.
 - ♦ De deelproblemen zijn paren prefixen van de twee strings.
 - \diamond Het prefix van X met lengte i is X_i .
 - \diamond Het prefix van Y met lengte j is Y_i .
 - \diamond De ledige prefix is X_0 en Y_0 .
- o Zijn de deelproblemen onafhankelijk?
 - \diamond Stel $Z = \langle z_0, z_1, \dots, z_{k-1} \rangle$ de LGD van X en Y. Er zijn drie mogelijkheden:
 - 1. Als n = 0 of m = 0 dan is k = 0.
 - 2. Als $x_{n-1} = y_{m-1}$ dan is $z_{k-1} = x_{n-1} = y_{m-1}$ en is Z een LGD van X_{n-1} en Y_{m-1} .
 - 3. Als $x_{n-1} \neq y_{m-1}$ dan is Z een LGD van X_{n-1} en Y of een LGD van X en Y_{m-1} .
- Zijn de deelproblemen overlappend?
 - \diamond Om de LGD van X en Y te vinden is het nodig om de LGD van X en Y_{m-1} als van X_{m-1} en Y te vinden.
- LGD kan bepaald worden door recursieve vergelijking:

$$c[i,j] = \begin{cases} 0 & \text{als } i = 0 \text{ of } j = 0\\ c[i-1,j-1] + 1 & \text{als } i > 0 \text{ en } j > 0 \text{ en } x_i = y_j\\ \max(c[i,j-1],c[i-1,j]) & \text{als } i > 0 \text{ en } j > 0 \text{ en } x_i \neq y_j \end{cases}$$

- De lengte van de LGD komt overeen met c[n, m].
- ullet De waarden c[i,j] kunnen eenvoudig per rij van links naar rechts bepaald worden door de recursierelatie.
- Efficiëntie:
 - We beginnen de tabel in te vullen vanaf c[1,1] (als i=0 of j=0 zijn de waarden 0).
 - De tabel c wordt rij per rij, kolom per kolom ingevuld.
 - o De vereiste plaats en totale performantie is beiden $\Theta(nm)$.