

В ОСНОВЕ АНАЛИЗА ЛЕЖАТ ДАННЫЕ ЗА ПРЕДЫДУЩИЕ ГОДЫ В **ПЕРИОД** С **ПЕРВОЙ ДЕКАДЫ** ФЕВРАЛЯ ПО **ПЕРВУЮ ДЕКАДУ** МАЯ КАЖДОГО ГОДА

Для получения этой сводки исходная таблица была отсортирована по нужным нам параметрам при помощи следующих библиотек:

- pandas
- Openpyxl

В результате сортировки значений и извлечения нужных данных были получены следующие таблицы для последующего анализа:

- Температура-по-декадам.xlsx
- Температура-февраль-2025.xlsx

Значения температур были использованы для 12:00 дня

исходная-таблица.xlsx

	Α	В	С	D	E
1	год	месяц	декада	номер дека	температу
2	2010	2	1	1	-8,24
3	2010	2	2	2	-10,2
4	2010	2	3	3	-3,9
5	2010	3	1	4	-2,52
6	2010	3	2	5	-1,85
7	2010	3	3	6	5,6
8	2010	4	1	7	11,53
9	2010	4	2	8	12,33
10	2010	4	3	9	9,95
11	2010	5	1	10	20,09
12	2011	2	1	1	-2,46
					120,000

Температура-по-декадам.xlsx

Температура-февраль-2025.xlsx

СЛЕДУЮЩИМ ШАГОВ ЯВЛЯЕТСЯ ПРЕОБРАЗОВАНИЕ ИМЕЮЩИХСЯ ДАННЫХ К ВИДУ, С КОТОРЫМ УДОБНО РАБОТАТЬ

Общая таблица данных о температуре: по вертикали — годы, по горизонтали — декады в соответствующем году, в ячейках соответствующая средняя температура

_										
	-8.2400	-10.2000	-3.9000	-2.5200	-1.8500	5.6000	11.5300	12.3300	9.9500	20.0900]
П	-2.4600	-15.2900	-13.2375	-1.9900	0.9800	0.6182	5.9000	5.9900	15.5700	16.4600
П	-16.1300	-12.7100	-2.1778	-5.4300	-0.7300	-0.0364	2.6000	10.3400	19.2000	16.0500
П	-0.5500	-4.4200	-1.9250	-5.6100	-4.0100	-3.6364	4.1300	12.7000	9.4100	16.5000
П	-4.8300	1.1500	0.8250	2.8300	2.7200	7.6909	3.0700	10.8000	15.6500	13.2900
П	-3.4400	-1.6700	2.2250	2.8800	7.9300	1.5818	4.7000	7.3300	11.3200	14.6700
П	0.7000	-1.2900	0.6778	2.4200	0.8200	3.5909	7.2100	11.1300	12.2800	19.3800
П	-9.4700	-1.4100	-0.1125	3.1700	4.7900	3.6636	6.6900	3.9000	10.2000	12.2700
П	-7.4800	-4.9600	-12.4750	-7.5700	-3.2300	0.5727	9.1000	11.4100	11.6200	18.7800
П	-1.3800	0.6400	-2.3125	-0.2900	1.7300	4.2545	8.5300	8.7100	16.4800	16.9700
П	-2.3500	2.2900	2.5222	5.2900	5.1700	5.1455	6.7100	5.5300	8.3900	15.8200
П	-8.8500	-12.8100	-6.0125	-3.1700	-1.0800	5.4818	6.6500	15.1600	7.5900	11.0900
П	-2.6000	1.4700	1.2500	-1.1000	1.1500	3.8091	3.9800	7.3000	10.0800	11.8900
	-1.6300	-4.0400	-5.6125	-1.6300	2.5800	6.3727	10.6700	12.8200	14.8100	10.1600
	-4.4400	-6.0100	-0.3444	0.0800	3.4200	7.3455	12.9300	11.5600	15.5500	8.4700
										_

Минимальное значение температуры: -16.13 °C Максимальное значение температуры: 20.09 °C

Дискретизируем этот промежуток на 10 диапазонов.

Длина одного диапазона 3.6221 °C

Среднее значение температуры в первой декаде февраля 2025 года в 12:00 = -1.27 °C

Вектор $\pi[1]$, обозначающий попадание температуры в определенный температурный диапазон в первой декаде расчетного периода

 $\begin{bmatrix} 1 \text{ промежуток: от } -inf \text{ до } -9.5909 \\ 2 \text{ промежуток: от } -9.5909 \text{ до } -6.3718 \\ 3 \text{ промежуток: от } -6.3718 \text{ до } -3.1527 \\ 4 \text{ промежуток: от } -3.1527 \text{ до } 0.0664 \\ 5 \text{ промежуток: от } 0.0664 \text{ до } 3.2855 \\ 6 \text{ промежуток: от } 3.2855 \text{ до } 6.5046 \\ 7 \text{ промежуток: от } 3.2855 \text{ до } 6.5046 \\ 7 \text{ промежуток: от } 6.5046 \text{ до } 9.7237 \\ 8 \text{ промежуток: от } 9.7237 \text{ до } 12.9428 \\ 9 \text{ промежуток: от } 12.9428 \text{ до } 16.1619 \\ 10 \text{ промежуток: от } 16.1619 \text{ до } inf \\ \end{bmatrix}$

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ВАРИАНТ 1. ИСПОЛЬЗОВАНИЕ СТАТИСТИКИ ПЕРЕХОДОВ ИЗ ТЕМПЕРАТУРНЫХ ДИАПАЗОНОВ ИЗ ПЕРВОЙ ДЕКАДЫ В ДЕСЯТУЮ, НЕ ИСПОЛЬЗУЯ ПЕРЕХОДЫ В ПРОМЕЖУТОЧНЫЕ ДЕКАДЫ

 $\pi[10] = P^T \cdot \pi[1]$ — формула расчета для первого варианта

На основе данных о переходе из температурного промежутка в феврале в соответствующий промежуток в мае составляется стохастическая матрица переходов

matrix_transition = np.zeros((T_range_count, T_range_count))

```
0.0000
                                                          0.0000
                                                                            0.0000
0.0000
                0.0000
                                          0.0000
                                                   0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                                  0.0000
                                                          1.0000
                                                                   0.0000
                                                                            0.0000
|0.0000|
                                          0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                          0.3333
                                                                   0.0000
                                                                            0.6667
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                           0.1667
                                                                   0.6667
                                                                            0.0000
                                                   0.1667
0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                           0.2500
                                                                   0.0000
                                                                            0.7500
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
0.0000
                                          0.0000
        0.0000
                0.0000
                         0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
                                          0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
                                                                   0.0000
                                                                            0.0000
                 0.0000
                                                                   0.0000
```

pi_10 = np.dot(matrix_transition.T, pi_1)

Вычисление распределения вероятностей для десятой декады

Полученный вектор

 0.0000

 0.0000

 0.0000

 0.0000

 0.0000

 0.0000

 0.2500

 0.0000

 0.7500

ВАРИАНТ 1. НАХОЖДЕНИЕ СТОХАСТИЧЕСКОЙ МАТРИЦЫ ПЕРЕХОДОВ

```
matrix transition = np.zeros((T range count, T range count))
dict transition = {}
for i in range(len(matrix_temp_year)):
    T_{range} = T_{min} + T_{range} len
    index feb = 0
    while matrix_temp_year[i][0] >= T_range:
        T_range += T_range_len
        index feb += 1
    T_range = T_min + T_range_len
    index may = 0
    while matrix temp year[i][9] >= T range:
        T_range += T_range len
        index may += 1
    if index feb not in dict transition:
    dict_transition[index_feb] = {'count': 0, 'indexes': []}
dict_transition[index_feb]['count'] += 1
    dict transition[index feb]['indexes'].append(index may)
for i in range(T_range_count):
    if i in dict transition:
        for j in dict_transition[i]['indexes']:
            matrix_transition[i][j] += 1/dict_transition[i]['count']
```

ВАРИАНТ 1. РЕЗУЛЬТАТ ПРОГНОЗА

В мае будет температура

в промежутке: от -∞	до -12.5079	с вероятностью 0.0000
в промежутке: от -12.5079	до -8.8858	с вероятностью 0.0000
в промежутке: от -8.8858	до -5.2637	с вероятностью 0.0000
в промежутке: от -5.2637	до -1.6416	с вероятностью 0.0000
в промежутке: от -1.6416	до 1.9805	с вероятностью 0.0000
в промежутке: от 1.9805	до 5.6026	с вероятностью 0.0000
в промежутке: от 5.6026	до 9.2247	с вероятностью 0.0000
в промежутке: от 9.2247	до 12.8468	с вероятностью 0.2500
в промежутке: от 12.8468	до 16.4689	с вероятностью 0.0000
в промежутке: от 16.4689	до +∞	с вероятностью 0.7500

ВАРИАНТ 2. ИСПОЛЬЗОВАНИЕ СТАТИСТИКИ ПЕРЕХОДОВ ТЕМПЕРАТУРНЫХ ДИАПАЗОНОВ В СОСЕДНИХ ДЕКАДАХ КАЖДОГО ГОДА В ЕДИНОЙ МАТРИЦЕ ПЕРЕХОДОВ

 $\pi[10] = (P^T)^9 \cdot \pi[1]$ – формула расчета для второго варианта

На основе статистики переходов температурных промежутков соседних декад каждого года составляется единая стохастическая матрица переходов. Нужно отметить, что особенность матрицы заключается в ее диагональном преобладании

matrix_transition = np.zeros((T_range_count, T_range_count))

```
[0.4000]
                                                                   0.0000
                                                                           0.0000
                0.2000
                                          0.0000
                                                  0.0000
0.0000
                0.3333
                         0.3333
                                          0.0000
                                                  0.0000
                                                          0.0000
                                                                   0.0000
                                                                           0.0000
0.1111
        0.1111
                 0.0000
                         0.4444
                                 0.3333
                                          0.0000
                                                  0.0000
                                                          0.0000
                                                                   0.0000
                                                                           0.0000
                                                           0.0000
                                                                   0.0000
0.0476
        0.0476
                0.1905
                         0.2381
                                 0.2857
                                          0.1905
                                                  0.0000
                                                                           0.0000
0.0000
        0.0000
                 0.0000
                         0.1071
                                 0.4286
                                          0.3929
                                                  0.0714
                                                           0.0000
                                                                   0.0000
                                                                           0.0000
0.0000
        0.0000
                 0.0000
                         0.0000
                                 0.0370
                                          0.3333
                                                  0.4444
                                                           0.1852
                                                                   0.0000
                                                                           0.0000
0.0000
        0.0000
                 0.0000
                         0.0000
                                 0.0588
                                          0.1765
                                                  0.1176
                                                          0.3529
                                                                   0.2353
                                                                           0.0588
0.0000
        0.0000
                 0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                  0.0000
                                                           0.4706
                                                                   0.2353
                                                                           0.2941
0.0000
                 0.0000
                         0.0000
                                          0.0000
                                                  0.3333
                                                                   0.3333
                                                                            0.0000
                                                                   0.5000
                                                                           0.5000
```

Вычисление распределения вероятностей для десятой декады

Полученный вектор

 $\begin{bmatrix} 0.0027\\ 0.0013\\ 0.0042\\ 0.0126\\ 0.0367\\ 0.0725\\ 0.1426\\ 0.2833\\ 0.2697\\ 0.1743 \end{bmatrix}$

ВАРИАНТ 2. НАХОЖДЕНИЕ СТОХАСТИЧЕСКОЙ МАТРИЦЫ ПЕРЕХОДОВ

```
matrix transition = np.zeros((T range count, T range count))
dict transition = {}
for trans in range(9):
    for i in range(len(matrix_temp_year)):
        T_range = T_min + T_range_len
        index cur = 0
       while matrix_temp_year[i][trans] >= T_range:
            T_range += T_range_len
            index cur += 1
        T_range = T_min + T_range_len
        index next = 0
       while matrix_temp_year[i][trans+1] >= T_range:
            T range += T range len
            index next += 1
        if index cur not in dict transition:
            dict_transition[index_cur] = {'count': 0, 'indexes': []}
        dict transition[index cur]['count'] += 1
        dict transition[index cur]['indexes'].append(index next)
for i in range(T range count):
    if i in dict_transition:
        for j in dict_transition[i]['indexes']:
            matrix transition[i][j] += 1/dict transition[i]['count']
```

ВАРИАНТ 2. РЕЗУЛЬТАТ ПРОГНОЗА

В мае будет температура

в промежутке: от -∞	до -12.5079	с вероятностью 0.0027
в промежутке: от -12.5079	до -8.8858	с вероятностью 0.0013
в промежутке: от -8.8858	до -5.2637	с вероятностью 0.0042
в промежутке: от -5.2637	до -1.6416	с вероятностью 0.0126
в промежутке: от -1.6416	до 1.9805	с вероятностью 0.0367
в промежутке: от 1.9805	до 5.6026	с вероятностью 0.0725
в промежутке: от 5.6026	до 9.2247	с вероятностью 0.1426
в промежутке: от 9.2247	до 12.8468	с вероятностью 0.2833
в промежутке: от 12.8468	до 16.4689	с вероятностью 0.2697
в промежутке: от 16.4689	до +∞	с вероятностью 0.1743

ВАРИАНТ 3. ИСПОЛЬЗОВАНИЕ СТАТИСТИКИ ПЕРЕХОДОВ ТЕМПЕРАТУРНЫХ ДИАПАЗОНОВ В СОСЕДНИХ ДЕКАДАХ КАЖДОГО ГОДА В ЕДИНОЙ МАТРИЦЕ ПЕРЕХОДОВ

 $\pi[10] = P^T(9,10) \cdot P^T(8,9) \cdot ... \cdot P^T(1,2) \cdot \pi[1]$ – формула расчета для второго варианта

На основе статистики переходов температурных промежутков соседних декад каждого года составляются матрицы переходов для каждой пары соседних декад.

```
matrix_transition = []
for i in range(9):
    matrix_transition.append(np.zeros((T_range_count, T_range_count)))
```

```
\lceil 1.0000 \rceil
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                  0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
                                 1.0000
                                          0.0000
                                                  0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
0.0000
        0.0000
                 0.0000
                         0.0000
        0.3333
                                                                   0.0000
                                                                            0.0000
0.3333
                0.0000
                         0.3333
                                 0.0000
                                          0.0000
                                                   0.0000
                                                           0.0000
                                                                   0.0000
0.1667
        0.0000
                0.1667
                         0.1667
                                 0.3333
                                          0.1667
                                                  0.0000
                                                           0.0000
                                                                            0.0000
0.0000
        0.0000
                0.0000
                         0.5000
                                 0.5000
                                          0.0000
                                                  0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                  0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                  0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                  0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
0.0000
0.0000
        0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                   0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
                0.0000
                         0.0000
                                 0.0000
                                          0.0000
                                                   0.0000
                                                           0.0000
                                                                   0.0000
                                                                            0.0000
0.0000
```

```
for i in range(8):
        tmp_dot = np.dot(tmp_dot, matrix_transition[7-i].T)
pi_10 = np.dot(tmp_dot, pi_1)
```

tmp_dot = matrix_transition[8].T

Вычисление распределения вероятностей для десятой декады

Полученный вектор

```
0.0000
0.0000
0.0000
0.0000
0.0671
0.2660
0.3331
0.3338
```

[0.0000]

P(1,2)

ВАРИАНТ 3. НАХОЖДЕНИЕ СТОХАСТИЧЕСКИХ МАТРИЦ ПЕРЕХОДОВ

```
matrix transition = []
for i in range(9):
     matrix transition.append(np.zeros((T_range_count, T_range_count)))
display(HTML("<h3>Maтрица вероятностей переходов из любой температуры в любую</h3>"))
for trans in range(9):
     dict transition = {}
     for i in range(len(matrix temp year)):
           T_range = T_min + T_range_len
           index cur = 0
           while matrix temp year[i][trans] >= T_range:
                 T_range += T_range_len
                 index cur += 1
           T_range = T_min + T_range len
           index next = 0
           while matrix_temp_year[i][trans+1] >= T_range:
                 T_range += T_range_len
                 index next += 1
           if index_cur not in dict_transition:
                 dict_transition[index_cur] = {'count': 0, 'indexes': []}
           dict_transition[index_cur]['count'] += 1
           dict_transition[index_cur]['indexes'].append(index_next)
     for i in range(T_range_count):
           if i in dict transition:
                 for j in dict_transition[i]['indexes']:
                      matrix transition[trans][i][j] += 1/dict transition[i]['count']
```

ВАРИАНТ 3. РЕЗУЛЬТАТ ПРОГНОЗА

В мае будет температура

в промежутке: от -∞	до -12.5079	с вероятностью 0.0000
в промежутке: от -12.5079	до -8.8858	с вероятностью 0.0000
в промежутке: от -8.8858	до -5.2637	с вероятностью 0.0000
в промежутке: от -5.2637	до -1.6416	с вероятностью 0.0000
в промежутке: от -1.6416	до 1.9805	с вероятностью 0.0000
в промежутке: от 1.9805	до 5.6026	с вероятностью 0.0000
в промежутке: от 5.6026	до 9.2247	с вероятностью 0.0671
в промежутке: от 9.2247	до 12.8468	с вероятностью 0.2660
в промежутке: от 12.8468	до 16.4689	с вероятностью 0.3331
в промежутке: от 16.4689	до +∞	с вероятностью 0.3338