Polynomial Reduction — Solving Homogeneous Equation — Example — 3

Example 3: Solve the following recurrence equation using the polynomial reduction method:

$$t_n - 5t_{n-1} + 8t_{n-2} - 4t_{n-3} = 0 \ for \ n > 0$$
 $t_0 = 0$
 $t_1 = 1$
 $t_2 = 2$

Solution:

Let $t_n = r^n$ be a solution of this second – order recurrence equation.

Then we have $: r^n - 5r^{n-1} + 8r^{n-2} - 4^{n-3} = 0$

If so, let us divide the entire equation by r^{n-3} seeing we have t_{n-3} .

$$\Rightarrow \frac{r^n}{r^{n-3}} - 5 \times \frac{r^{n-1}}{r^{n-3}} + 8 \times \frac{r^{n-2}}{r^{n-3}} - 4 \times \frac{r^{n-3}}{r^{n-3}} = 0$$

$$\Rightarrow r^{n-(n-3)} - 5 \times r^{n-1-(n-3)} + 8 \times r^{n-2-(n-3)} - 4 \times r^{n-3-(n-3)}$$
= 0

$$\Rightarrow r^3 - 5r^2 + 8r - 4 = 0$$

Now using the rational root theorem on polynomials:

factor of 4 is 1, 2, and 4 and factor of coefficient of r^3 is 1 only , hence:

$$\pm\frac{1,2,4}{1}$$

 $\therefore \frac{1}{1}$ is the root of the expression, so factor out (r-1):

$$\Rightarrow (r-1) \times \frac{r^3 - 5r^2 + 8r - 4}{(r-1)}$$

Now,
$$\frac{r^3}{r} = r^2$$
 and $r^2 \times (r-1) = r^3 - r^2$

Next,

$$r^3 - 5r^2 + 8r - 4$$
 $r^3 - r^2$
 $(-) (+)$

Hence we can write:

$$\Rightarrow (r-1) \times \left[r^2 + \frac{-4r^2 + 8r - 4}{r - 1}\right]$$

Again,

Now,
$$\frac{-4r^2}{r} = -4r$$
 and $-4r \times (r-1) = -4r^2 + 4r$

$$-4r^{2} + 8r - 4$$
 $-4r^{2} + 4r$
 $(+) (-)$

$$4r - 4$$

Hence,

$$\Rightarrow (r-1) \times \left[r^2 - 4r + \frac{4r-4}{r-1}\right]$$

$$\Rightarrow (r-1) \times \left[r^2 - 4r + \frac{4(r-1)}{r-1} \right]$$

$$\Rightarrow$$
 $(r-1) \times [r^2 - 4r + 4]$

$$\Rightarrow$$
 $(r-1) \times [r^2 - 2r - 2r + 4]$

$$\Rightarrow$$
 $(r-1) \times [r(r-2)-2(r-2)]$

$$\Rightarrow$$
 $(r-1) \times (r-2) \times (r-2)$

Hence the roots are (r-1)(r-2)(r-2), where

$$r - 1 = 0 \text{ or } r = 1$$

$$r-2=0 \ or \ r=2,$$

$$r-2=0$$
 or $r=2$,

$$i.e.r = 1, 2, 2.$$

It can be observed that the roots are distinct. The root 2 has a multiplicity of 2; thus, Case 2 of Theorem is applicable.

$$t_n=r^n$$
 , $t_n=nr^n$, $t_n=n^2r^n$, ... , $t_n=n^{m-1}r^n$

Applying the theorem, one gets the following relation:

$$t_n = c_n 1^n + c_2 2^n + c_3 n 2^n$$

i.e., if we consider the equation like this:

$$t_n = 1 + r^n + nr^n + n^2r^n + \dots + n^{m-1}r^n$$

Therefore we will have:

$$t_n = c_n 1^n + c_2 2^n + c_3 n 2^n$$

For n = 0:

$$t_0 = c_1 1^0 + c_2 2^0 + c_3(0) 2^0$$

$$0 = c_1 + c_2$$

For n = 1 :

$$t_1 = c_1 1^1 + c_2 2^1 + c_3 (1) 2^1$$

$$1 = c_1 + 2c_2 + 2c_3$$

For n = 2 :

$$t_2 = c_1 1^2 + c_2 2^2 + c_3(2) 2^2$$

$$2 = c_1 + 4c_2 + 8c_3$$

 \therefore The equations are as follows:

$$c_1 + c_2 = 0 - - - (i)$$

 $c_1 + 2c_2 + 2c_3 = 1 - - - (ii)$
 $c_1 + 4c_2 + 8c_3 = 2 - - - (iii)$

Substracting(ii) from(i) we get:

$$c_1 + 2c_2 + 2c_3 = 1$$

 $c_1 + c_2 = 0$
 $(-) (-)$

$$c_2 + 2c_3 = 1$$

Now we get : $c_2 = 1 - 2c_3 - - - (iv)$

Applying (iv) in (iii)we get:

$$c_1 + 4(1 - 2c_3) + 8c_3 = 2$$

$$\Rightarrow c_1 + 4 - 8c_3 + 8c_3 = 2$$

$$\Rightarrow c_1 = 2 - 4$$

$$\Rightarrow c_1 = -2 - - - (v)$$

Applying (v) in (i) we get:

$$-2 + c_2 = 0$$

$$\Rightarrow c_2 = 2 - - - (iv)$$

Now $c_1 = -2$ and $c_2 = 2$ in (iii) we get:

$$c_1 + 4c_2 + 8c_3 = 2$$

$$\Rightarrow$$
 -2 + 4 × 2 + 8 c_3 = 2

$$\Rightarrow -2 + 8 + 8c_3 = 2$$

$$\Rightarrow$$
 6 + 8 c_3 = 2

$$\Rightarrow$$
 8 $c_3 = 2 - 6$

$$\Rightarrow$$
 8 $c_3 = -4$

$$\Rightarrow c_3 = -\frac{4}{8}$$

$$\implies c_3 = -\frac{1}{2}$$

Hence we get solutions: $c_1 = -2$, $c_2 = 2$ and $c_3 = -\frac{1}{2}$.

Therefore, the specific solution of the recurrence equation with respect to the initial conditions is as follows:

$$t_n = c_n 1^n + c_2 2^n + c_3 n 2^n$$

 $\Rightarrow (-2) \times 1^n + (2) \times 2^n + \left(-\frac{1}{2}(n)(2^n)\right)$
