A Painless Automatic hp-Adaptive Coarsening Strategy For Indefinite Problems: A Goal-Oriented Approach

Vincent Darrigrand, Julen Alvarez-Aramberri, Felipe V. Caro, Elisabete Alberdi, David Pardo

A painless hp-adaptive strategy

Let $\mathcal{F} = \{\phi_i\}_{i=1}^{n_{\mathcal{F}}}$ be a set of basis functions ϕ_i , $\mathbb{H}_{\mathcal{F}} := \operatorname{span}\{\phi_1, \ldots, \phi_{n_{\mathcal{F}}}\}$, and $n_{\mathcal{F}} = \operatorname{span}\{\phi_1, \ldots, \phi_{n_{\mathcal{F}}}\}$ $\dim(\mathbb{H}_{\mathcal{F}})$. For a given bilinear continuous form b, we consider the abstract variational formulation and its discrete version:

Find $u \in \mathbb{H}$ and $u_{\mathcal{F}} \in \mathbb{H}_{\mathcal{F}}$ such that

 $b(u,\phi) = f(\phi), \quad \forall \phi \in \mathbb{H};$ $b(u_{\mathcal{F}}, \phi_{\mathcal{F}}) = f(\phi_{\mathcal{F}}), \quad \forall \phi_{\mathcal{F}} \in \mathbb{H}_{\mathcal{F}},$

where \mathbb{H} is a Hilbert functional space and $\mathbb{H}_{\mathcal{F}}$ is a finite element discretization \mathcal{T} of \mathbb{H} , such that $\mathbb{H}_{\mathcal{F}} \subset \mathbb{H}$.

For any element K, we denote by \mathcal{R}_K the set of removable basis functions associated to K, by $|\mathcal{R}_K|$ its cardinality, and by $\mathbb{H}_{\mathcal{R}_K}$ its associated space.

We express any $u_{\mathcal{F}} \in \mathbb{H}_{\mathcal{F}}$, as

$$u_{\mathcal{F}} = \prod_{\mathcal{F}}^{\mathcal{E}_K} u_{\mathcal{F}} + \prod_{\mathcal{F}}^{\mathcal{R}_K} u_{\mathcal{F}},$$

where $\mathcal{E}_K := \mathcal{F} \setminus \mathcal{R}_K$ is the subset of *essential* basis functions.

Since we consider a single mesh at a time, the solution $u_{\mathcal{E}_K}$ in \mathcal{E}_K is never computed. Instead, we employ the projection of $u_{\mathcal{F}}$ into \mathcal{E}_K to approximate it when necessary.

Data structures

We illustrate a 1D multi-level hp-grid with hierarchical basis functions proposed by Zander and collaborators.

Extension to goal-oriented adaptivity

We introduce the following adjoint problem and its discrete counterpart as follows: Find $v \in \mathbb{H}$ and $v_{\mathcal{F}} \in \mathbb{H}_{\mathcal{F}}$ such that

$$b(\phi, v) = l(\phi), \quad \forall \phi \in \mathbb{H};$$

$$b(\phi, v) = l(\phi), \quad \forall \phi \in \mathbb{H}; \qquad b(\phi_{\mathcal{F}}, v_{\mathcal{F}}) = l(\phi_{\mathcal{F}}), \quad \forall \phi_{\mathcal{F}} \in \mathbb{H}_{\mathcal{F}},$$

where $v_{\mathcal{F}}$ stands for the Galerkin approximation of the solution v to the adjoint problem associated with the space $\mathbb{H}_{\mathcal{F}}$.

The objective is to control

$$|l(u_{\mathcal{F}}) - l(u_{\mathcal{E}_K})|, \quad \forall K \in \mathcal{T},$$

where $l: \mathbb{H} \longrightarrow \mathbb{R}$ is a linear continuous form.

Error indicators

As a consequence of assuming that \mathcal{E}_K is (quasi) b-orthogonal to \mathcal{R}_K due to the (quasi)orthogonality assumption of the basis functions, then

$$|l(u_{\mathcal{F}}) - l(u_{\mathcal{E}_K})| \simeq |b(\Pi_{\mathcal{F}}^{\mathcal{R}_K} u_{\mathcal{F}}, \Pi_{\mathcal{F}}^{\mathcal{R}_K} v_{\mathcal{F}})| \leqslant |a(\Pi_{\mathcal{F}}^{\mathcal{R}_K} u_{\mathcal{F}}, \Pi_{\mathcal{F}}^{\mathcal{R}_K} v_{\mathcal{F}})|.$$

We define the element-wise indicators as

$$\eta_K \coloneqq \left| a(\Pi_{\mathcal{F}}^{\mathcal{R}_K} u_{\mathcal{F}}, \Pi_{\mathcal{F}}^{\mathcal{R}_K} v_{\mathcal{F}}) \right|, \quad \forall K \in \mathcal{T}.$$

Indefinite problem

Find u such that,

$$-\nabla \cdot (\sigma \nabla u) - k^2 u = \left\langle \mathbb{1}_{(0,\frac{1}{4})^d}, \cdot \right\rangle_{L^2(\Omega)} \quad \text{in } \Omega \subset \mathbb{R}^d,$$

$$u = 0 \quad \text{on } \Gamma_D,$$

$$\nabla u \cdot \vec{n} = 0 \quad \text{on } \Gamma_N.$$

$$a(\cdot, \cdot) = \sum_{n=0}^{\infty} \left| \langle \nabla \cdot , \nabla \cdot \rangle_{L^2(\Omega)} \right| + |k^2| \left| \langle \cdot , \cdot \rangle_{L^2(\Omega)} \right|$$

$$l(\cdot) = \left\langle \mathbb{1}_{\left(\frac{3}{4},1\right)^d}, \cdot \right\rangle_{L^2(\Omega)}; \qquad a(\cdot,\cdot) = \sum_K \left| \left\langle \nabla \cdot , \nabla \cdot \right\rangle_{L^2(K)} \right| + \left| k^2 \right| \left| \left\langle \cdot , \cdot \right\rangle_{L^2(K)} \right|.$$

2D $k = (8 \cdot 2\pi, 2\pi).$ Γ_N

$k = (4 \cdot 2\pi, 2\pi).$ Γ_D = faces whose intersection is (0,0,0). Γ_N = faces whose intersection is (1,1,1).

3D

2D numerical results (log scale) h (p = 1) 10^{2} 10^{1} % error in h (p = 2)Relative hp 10^{5} 10^{3} 10^{4} 10^{2} Number of DoFs Fig. 1: Evolution of the error in the QoI.

Work in progress

- Multi-adaptive goal-oriented;
- Magnetotellurics;
- Controlled Source Electromagnetics;