Nuclear Fuel Performance

NE-533

Spring 2022

Last time

- Fission gas release models are used to understand fission gas experiments and to predict gas release for fuel performance codes
- Spherical grain models predict a fraction of gas release for post-irradiation annealing or for in-pile gas release
- Booth model takes Stage 1 into account; Forsberg-Massih model takes
 Stage 1 and 2 into account
- Fission gas diffusivity behavior changes with temperature and fission rate

MOOSE Project

- Three-part project
- Will upload input and output files to Moodle
- Will upload a final written report, 5-10 pages (including figures), times new roman, 12pt, 1.5 space, pdf
- Due April 26 Tuesday before Finals week
- This is an individual project, but some collaboration is encouraged

MOOSE Project Part 1

- Fuel pin dimensions listed
- This is a 1-D problem, but I want your geometry to be set up in 2-D RZ
- Assume reasonable values for thermal conductivities, can assume constant k
- Outer cladding temperature: 500 K
- Mesh: something sufficiently converged
- Solve temperature profile for:
 - Steady-state: LHR = 150 W/cm²
 - Compare against analytical solution
- Solve for centerline temperature vs time
 - Transient: LHR = 150*(1-EXP(-0.05*time))+150
 for up to t=100

FISSION PRODUCTS

There are various types of fission products that form in the fuel

Soluble oxides (Y, La and the rare earths)

Dissolved in the cation sublattice

Insoluble oxides (Zr, Ba and Sr)

• Form insoluble oxides in the fluorite lattice

Metals (Mo, Ru, Pd, and Tc)

Form metallic precipitates

Volatiles (Br, Rb, Te, I and Cs)

- Exist as gases at high temperatures of the pellet interior
- Also exist as solids at the cooler pellet exterior

Noble gases (Xe, Kr)

- Essentially insoluble in the fuel matrix
- Form either intragranular (within grain) voids or bubbles or intergranular (grain boundary) bubbles

Oxide Formation

- With burnup, the liberated oxygen will associate with U, Pu, and La but may not be in sufficient supply to combine with Pd and other less oxidizing elements
- If the Gibbs energy of formation of the given fission product lies below the fuel oxygen potential, the element will be capable of forming an oxide
- If the fission product point is above the chemical potential in the fuel, the fission product will exist as an element in the fuel (in a separate metallic phase)

Fission Products

- When a 4+ valence fission product (e.g.,Zr4+) enters the lattice, there is no change in the electrical neutrality
- If the charge of the fissionproduct cation is lower than U+4, the site occupancy of the lattice is altered to achieve electrical neutrality
- The alkaline earth cations Ba+ and Sr2+ have large ionic radii and form a separate oxide phase
- Fission products that have limited solubility in UO2 will segregate to the grain boundaries and voids

Chemical group	Physical state	Probable valence
Zr and Nb	Oxide in fuel matrix; some Zr in alkaline earth oxide phase	4+
Rare earths	Oxide in fuel matrix	3+
Ba and Sr	Alkaline earth oxide phase	2+
Mo	Oxide in fuel matrix or element in metallic inclusion	4+ or 0
Ru, Tc, Rh, and Pd	Elements in metallic inclusion	0+
Cs and Rb	Elemental vapor or separate oxide phase in cool regions of fuel	1 + or 0
I and Te	Elemental vapor; I may be combined with Cs and CsI	0 or 1 —
Xe and Kr	Elemental gas	0

Volatile Fission Products

- Xe release occurs at the central region of the pellet where the highest temperatures were achieved during irradiation
- Volatile FPs are released from the fuel matrix similar to that of the noble gases
- Volatile fission products in the gap can react among themselves, resulting in a changing chemical speciation
- The kinetics of formation/decomposition of CsI and Zr iodides are possible factors in the mechanism of SCC

Fission Product Segregation

- Fission products can be segregated because of their migration to specific locations such as intragranular segregations, grain boundaries, or pellet surfaces
- Metallic inclusions are commonly observed in ceramographs from irradiated samples
- They are formed by isotopes of Mo, Tc, Ru,
 Rh, Pd, Ag, Cd, In, Sn, Sb, and Te
- These inclusions are found at the surface of the grain boundaries and are associated, in general, with grain boundary and intragranular bubbles

- Some of the components of these precipitates can be oxidized or reduced forming other compounds of high volatility that can be released from the fuel matrix
- Cs, Ru, Te, and Ba have been consistently found at the cracks in the pellet and on the clad inner surface
- The white inclusions are metallic precipitates, which are composed of Mo, Tc, Rh, Ru, and Pd, form a quinary alloy in an hcp structure
- A "gray oxide phase" perovskite structure containing different combinations of Ba, Cs, Zr, Mo, and U can also form

FP Interaction with Zr Cladding

- Fission fragments will deposit on the inner surface of the cladding
- Some of these species can diffuse into the clad, while others can attack the clad thereby initiating cracks that can later progress with the formation of through-wall cracks
- Oxygen will diffuse into the cladding and contribute to its oxidation state
- Measurements have shown deposits of Sr, Cs, Pu, and Am

- The corrosion behavior of zirconium by Te has been reported
- The chemical reaction between some corrosive fission products and the cladding can lead to PCI
- Fission products such as Cs, Cd, or I can attack the cladding inducing crack initiation, which then progress through the cladding by intragranular and transgranular cracking modes

FUEL SWELLING/DIMENSIONAL CHANGE

Fuel changes size and shape under reactor operation

Densification

- Decrease in volume
- Increase in density
- Caused by shrinking of porosity left after sintering

Swelling

- Increase in volume
- Decrease in density
- Caused by fission products

Irradiation Creep

- Change in shape
- Constant density
- Occurs under stress with $\sigma < \sigma_v$

Densification

- Densification takes place during initial 5 10 MWd/kgU
 - Small, as-built pores close due to effects of fission spikes and vacancy diffusion
 - Large pores stable (in absence of large hydrostatic stress)
- Empirical correlation for densification is a function of
 - $-\beta$ Burnup (in FIMA)
 - $\Delta \rho_0$ Total densification that can occur (a common value is 0.01)
 - β_D Burnup at which densification stops (a common value is 5 MWD/kgU)
 - C_D = 7.235 0.0086 (T(° C) 25) for T < 750° C and CD = 1 for T ≥ 750° C

$$\epsilon_D = \Delta \rho_0 \left(e^{\frac{\beta \ln 0.01}{C_D \beta_D}} - 1 \right)$$

Fission product induced swelling

- Fission product swelling results from three changes in the fuel microstructure
 - Solid swelling: Accumulation of soluble and insoluble fission products in fuel matrix
 - Gaseous swelling: Accumulation of gaseous and volatile fission products in intragranular and intergranular pores
 - High burnup swelling: Restructuring of pellet rim with the accumulation of fission gas in a large number of small pores

Solid fission product swelling

- The solid fission product swelling model is a function of:
 - B Burnup (in FIMA)
 - $\rho Initial UO_2 density (g/cm^3)$

$$\epsilon_{sfp} = 5.577 \times 10^{-2} \rho \beta$$

Gaseous fission product swelling

- Gaseous swelling varies strongly with temperature, fission rate and stress
- T < 1000K
 - Fission gas atoms remain in fuel matrix or collect in small, isolated, intragranular pores (<1 nm)
 - Intragranular pore size limited by fission spikes that drive gas back into fuel matrix
 - Gaseous swelling constrained by fission gas release
- T = 1000 to 1700 K
 - Swelling takes place at hot interior of pellet
 - Gas atoms in fuel matrix diffuse to grain boundaries and collect in pores
 - Gas pressure causes bubbles to increase in size and to coalesce into larger pores
 - Gaseous swelling opposed by applied stress
 - Gaseous swelling also constrained by fission gas release

$$\epsilon_{gfp} = 1.96 \times 10^{-28} \rho \beta (2800 - T)^{11.73} e^{-0.0162(2800 - T)} e^{-17.8\rho \beta}$$

Total change in volume

 The total change in volume is found by adding all components of dimensional change

$$- \varepsilon_{\text{tot}} = \varepsilon_{\text{th}} + \varepsilon_{\text{D}} + \varepsilon_{\text{sfp}} + \varepsilon_{\text{gfp}}$$

- Example:
 - fission rate = $2.5e13 f/(cm^3 s)$
 - T(fuel) = 1400 K
 - $T_{ref} = 300 K$
 - For densification: $\Delta \rho_0 = 0.01$ and $\beta_D = 5$ MWD/kgU
 - Total time: 2 weeks

Change in Volume Example

- First, we need to calculate the burnup, enrich 5%, $\beta = \dot{F}t/N_U$
 - $M_{UO2} = 16*2 + 238*0.95 + 235*0.05 = 269.9 g/mol$
 - $-N_U = N_a \rho_U/M_U = 6.022e23*10.97/269.9 = 2.45e22$ atoms of U/cm³
 - $-\beta = 2.5e13*3600*24*7*2/2.45e22 = 0.0012$ FIMA
- Next, we need to determine the strain from thermal expansion
 - $\epsilon_{th} = \alpha \Delta T = 11e-6*(1400 300) = 0.0121$
- Then, we consider densification, $\epsilon_D = \Delta \rho_0 \left(e^{\frac{\beta \ln 0.01}{C_D \beta_D}} 1 \right)$
 - We need to calculate C_D , but because we are higher than 750C, $C_D = 1$
 - We need to convert the burnup to FIMA, β_D = 5 MWD/kgU/950 = 0.0053 FIMA
 - $\epsilon_D = 0.01*(exp(0.0012*log(0.01)/(1*0.0053)) 1) = -0.0065$

Change in Volume Example

- For solid fission product swelling, $\epsilon_{sfp} = 5.577 \times 10^{-2}
 ho eta$
 - For the density of UO_2 , $\rho = 10.97$ g/cm³
 - $-\varepsilon_{\rm sfp} = 5.577e-2*10.97*0.0012 = 7.34e-4$
- Finally, gaseous fission product swelling

$$\epsilon_{gfp} = 1.96 \times 10^{-28} \rho \beta (2800 - T)^{11.73} e^{-0.0162(2800 - T)} e^{-17.8\rho \beta}$$

- $\varepsilon_{gfp} = 1.96e-28*10.97*0.0012*(2800 1400)^11.73*$ $\exp(-0.0162*(2800 1400))*\exp(-17.8*10.97*0.0012) = 0.0023$
- Total:

$$- \varepsilon_{tot} = \varepsilon_{th} + \varepsilon_{D} + \varepsilon_{sfp} + \varepsilon_{gfp} = 0.0121 - 0.0065 + 7.34e-4 + 0.0023 = 0.0086$$

The overall swelling behavior depends on temperature

Creep

Creep is a general mechanism for plastic deformation that occurs over time when σ
 < σ_ν

Consider a heated metal beam so it expands some distance dx

- We then fix it between two walls and let it cool down
- Because $\sigma < \sigma_y$, that stress remains constant

 In creep, defect diffusion is induced by the stress to cause permanent deformation and reduce the stress

- Therefore, creep
 - Occurs over time
 - Increases with increasing number of diffusing defects
 - High temperature (thermal creep)
 - Irradiation (irradiation creep)

x+dx —

 $\sigma = E \epsilon$

Creep

General creep equation:

$$\dot{\epsilon} = \frac{C\sigma^m}{D_{qr}^b} e^{\frac{-Q}{k_b T}}$$

- Creep can be caused by various microstructural mechanisms
- Bulk Diffusion (Nabarro-Herring creep)
 - Atoms diffuse (high T), causing grains to elongate along the stress axis
 - Q = Q(self diffusion), m = 1, and b = 2
- Grain boundary diffusion (Coble creep)
 - Atoms diffuse along grain boundaries to elongate the grains along the stress axis
 - Q = Q(grain boundary diffusion), m = 1, and b = 3
- Dislocation creep
 - Dislocations glide under a high stress
 - Dislocations climb due to defects to avoid obstacles
 - Q = Q(self diffusion), m = 4-6, and b = 0

Different creep mechanisms are active for different combinations of stress and temperature

The behavior of creep changes in irradiated materials

Irradiation and Creep

- Irradiation accelerates creep, causing it to be significant at lower temperatures
- Irradiation has little effect on diffusional creep, but it accelerates dislocation creep in cubic materials
- The dislocation creep rate can be written as $\dot{\varepsilon} = \rho_d^m b v_d$
 - $-\rho_d^m$ is the density of mobile dislocations
 - b is the burgers vector
 - v_d is the dislocation velocity
- Gliding dislocations quickly get pinned by obstacles
- As the dislocations absorb defects created by irradiation, they climb to different slip planes to avoid the obstacles
- More interstitials are absorbed than vacancies due to the higher sink strength for interstitials

Fuel Creep

- Like other materials, the fuel also undergoes creep
- The fuel creep (In UO2) is a combination of diffusion creep and irradiation creep
- It is expected that fuel creep plays a major role in dimensional change in metallic fuels, largely via N-H and Coble creep, but still unproven experimentally and no good creep models exist for metallic fuels

Fracture

- UO₂ pellets fracture during changes in temperature due to large thermal stresses
- Fracture results in:
 - Increased gap reduction
 - Reduced thermal conductivity
 - Increased avenues for fission gas release
- Fracture has been typically modeled in two ways:
 - Empirical relocation model that is a function of burnup
 - Semi-empirical smeared cracking model
- Modern methods provide means of modeling discrete cracks

- Radial cracks partially penetrate the pellet during temperature increase
- Full cracking occurs when the temperature decreases

Fracture

- The fracture behavior of the fuel is fairly complicated
- Fracture strength varies with grain size (G)
 - $-\sigma_{frac} = G^{-m}\sigma_{frac, ref}$, m = 0.04 0.05 (vs. m ~ 0.5 for metal)
 - Increasing grain size from 10 μm to 100 μm reduces σ_{frac} by ~10%
- Ductility transition temperature is lower inreactor than in thermal tests
- Fracture strength is ~10 × higher in compression than in tension
- Load-deformation behavior strongly affected by creep under in-reactor conditions

Summary

- Many materials models for fuel are empirical and correlated to burnup
- Fuel pellets change shape due to
 - Thermal expansion (increase in volume)
 - Densification (decrease in volume)
 - Swelling (increase in volume)
 - Creep (volume stays the same)
- Fracture also decreases the gap, as fractures pieces shift outward