Stepwise oxygenation of the Paleozoic atmosphere

Supplementary information

Krause et al.

Supplementary Note 1: Model validation and further sensitivity analyses

In order to check the robustness of our new model, GEOCARBSULFOR, we conducted a number of tests, to compare various model outputs to available geologic data. We also completed a further sensitivity analysis, to measure the effect different formulations of pyrite weathering have on atmospheric oxygen levels.

We generated a synthetic ocean δ^{34} S sulphate record from the model, for comparison against the geological record (Supplementary Fig. 1). Using a static sulphur isotope fractionation factor (α_s) for the entire time period, we conducted three model runs, with: $\alpha_s = 16.7\%$ – the lowest value recorded by Wu *et al.*¹; $\alpha_s = 48.1\%$ – the highest value recorded by Wu *et al.*¹; and $\alpha_s = 35.95\%$ – the average for the period 570 Ma to Present, calculated using the Wu *et al.*¹ dataset.

Our GEOCARBSULFOR model is sensitive to the fractionation factor used, but the average value generates an ocean $\delta^{34}S$ sulphate record which is in good agreement with the geologic record for almost the entire run. The highest fractionation factor provides a $\delta^{34}S$ sulphate record that closely matches the geologic record from the end-Permian onwards, and this is coincident with an actual rise to higher fractionation values during this time period. Although the $\delta^{34}S$ output using the lowest fractionation value is very low for the entire run, the actual sulphur isotope fractionation is only very low ($\leq 22.1\%$) for the period 570-540 Ma, with higher values ($\geq 27.5\%$) for the Phanerozoic itself Model runs with separate fractionation values for the periods 570-540 Ma, and 530 Ma – Present, give $\delta^{34}S$ records which are closer to the geological one. Additionally, the $\delta^{34}S$ output is sensitive to the starting $\delta^{34}S$ value of the sulphur reservoir. We use a value of 23% for 570 Ma, following Wu *et al.* 1

for consistency, however, using the original GEOCARBSULF value of 35.2‰ and the highest fractionation (48.1‰) produces a δ^{34} S record which for the last 250 Ma is near identical to the geologic record.

Supplementary Figure 1 | Ocean sulphate isotope predictions for the Phanerozoic from our GEOCARBSULFOR model. The red line is the ocean $\delta^{34}S$ output using a static average isotopic fractionation from 570 Ma to Present (35.95‰), calculated from the Wu et al. ¹ dataset. The grey envelope is the ocean $\delta^{34}S$ output using the lowest (16.7‰) and highest (48.1‰) fractionation values from Wu et al. ¹ The black line is the geologic $\delta^{34}S$ data from Wu et al. ¹

We conducted a test to ascertain whether simply substituting the sulphur isotope fractionation equation in the original GEOCARBSULF with the Wu *et al.*¹ fractionation data, would produce low pO_2 in the early Paleozoic, as Wu *et al.*¹ take into account the effects of

reoxidation and disproportionation on sulphide (though not the possibility of other sinks, such as organic sulphur) changing the isotopic signature of sedimentary pyrite. This change leads to unfeasibly high (considering geochemical redox data^{e.g.2,3}) oxygen concentrations of >35% atm in the early Paleozoic, and negative O_2 during the late-Mesozoic to Cenozoic. Therefore, a pO_2 dependent feedback embedded somewhere in the sulphur cycle is a requirement for the model to produce reasonable levels of atmospheric O_2 .

As GEOCARBSULFOR can calculate the amount of pyrite and sulphate being buried at each time-step, we examined whether the model was generating reasonable values for the fraction of total sulphur leaving the ocean as pyrite (f_{pyr}), by comparing the model outputs to other modelling approaches^{4,5}. We tried two different methods to compute f_{pyr} : one was a direct method, using the burial fluxes, following supplementary equation (57). The second method uses our synthetic ocean δ^{34} S sulphate record and static α_s values from Supplementary Fig. 1 to calculate records for the δ^{34} S sedimentary pyrite and sulphate, which, combined with a constant δ^{34} S_{in} value of 5‰⁴, can be used to calculate f_{pyr} using supplementary equation (58).

The direct method generates f_{pyr} values (Supplementary Fig. 2 [A]) which are similar to the various parameterized models by Halevy *et al.*⁵, but are not as high as those predicted by Canfield and Farquhar⁴ in the early Paleozoic. However, GEOCARBSULFOR does end with an f_{pyr} value for the present day which is in line with all the different models, and there is a noticeable transition from higher f_{pyr} values in the early Paleozoic, to lower values for the rest of the Phanerozoic. Our isotope method (Supplementary Fig. 2 [B]) generates f_{pyr} values which also decrease over the course of the Phanerozoic. Using a static α_s value of 16.7% delivers f_{pyr} values that are equal or close to those predicted by Canfield and Farquhar⁹ for the

early Paleozoic and for much of the Mesozoic and Cenozoic, but are too high for the Permian and Triassic. The static α_s value of 48.1% predicts comparable results to Canfield and Farquhar⁹ for the Permian, Triassic and modern-day, but are otherwise too low. Both static values result in f_{pyr} values which compare favourably with Halevy $et\ al.^5$. As with our synthetic ocean $\delta^{34}S$ sulphate record in Supplementary Fig. 1, these f_{pyr} results suggest a transition from lower to higher (persistently >35.9% – the average value over the last 570 Ma) sulphur isotope fractionation values in the Permian, and this can be seen in the geologic record.

Supplementary figure 2 | The fraction of total sulphur leaving the ocean as pyrite in GEOCARBSULFOR. [A] The grey line is the fraction of total sulphur leaving the ocean as pyrite, calculated by GEOCARBSULFOR's burial fluxes over time. [B] The black lines are the fraction of total sulphur leaving the ocean as pyrite, calculated by GEOCARBSULFOR using the synthetic ocean δ^{34} S sulphate record and supplementary equation (58); the solid black line uses a static α_s of 48.1% and the dashed black line uses a static α_s of 16.7%. The red squares in [A] and [B] are f_{pyr} values taken from Canfield and Farquhar⁴, the blue and green lines are taken from different input model runs in Halevy et al.⁵

In GEOCARBSULF⁶, Berner contends that erosive stripping is a more important process in the weathering of pyrite (and organic matter) than oxygen levels, and although the recent iteration of COPSE⁷ concurs, the original COPSE⁸ model and others^{9,10}, include a dependency on atmospheric oxygen levels when considering the weathering of reductants (e.g. pyrite). In Supplementary Fig. 3 we conduct a sensitivity analysis of the model to an oxidative feedback term in the equations for young and ancient pyrite weathering, as well as an analysis of the importance of linking young pyrite weathering to the weathering of silicates.

In Supplementary Fig. 3, the black line is our GEOCARBSULFOR baseline, while the grey line is almost the same, but with the oxidative feedback (O₂mr^{0.5}) removed from the pyrite weathering equations (equation (3) and supplementary equation (17)). The magenta line is a model identical to GEOCARBSULFOR but the pyrite weathering equations are those used in the original GEOCARBSULF⁶, while the green line is the same as the magenta line, but with oxidative feedback included into Berner's equations. Finally, the yellow line is as the magenta line, but with a fixed uplift rate of 1, for the entire run.

Our results show that although there is some sensitivity to the inclusion of an oxidative feedback term in pyrite weathering, it does not alter the general trend of the evolution of pO_2 as predicted by GEOCARBSULFOR. Comparison of our baseline GEOCARBSULFOR (black line) to no oxidative feedback (grey line) reveals a difference of $\sim 1-2\%$ atm in predicted oxygen levels for most of the model run, apart from the Devonian which has a difference of $\sim 2-3\%$ atm, both of which would likely lie within an error analysis of the

model. Similarly, tying the weathering of pyrite to the weathering of silicates makes little difference to oxygen predictions for much of the Phanerozoic, with the only real difference in predictions (green line compared to black) coming in the Cretaceous, where the effect of uplift (which is included in the silicate weathering equation – supplementary equation (40)) is dampened in GEOCARBSULFOR.

Supplementary figure 3 | Pyrite weathering sensitivity tests. The black line is the baseline GEOCARBSULFOR oxygen (as seen in Fig. 3 in the main text). The grey line includes no oxidative feedback in the pyrite weathering equations, while the green line decouples pyrite weathering from silicate weathering. The magenta line has no oxidative feedback and is not linked to silicate weathering. The yellow line is the same as the magenta line but uplift is fixed (to the modern-day value of 1) for the entire Phanerozoic.

Two final tests were conducted, to assess the robustness of our model outputs. These tests were to evaluate both the amount of sulphate assigned to the ocean-atmosphere reservoir by the model (Supplementary Fig. 4), and the CO₂ levels generated (Supplementary Fig. 5), against other models and geochemical proxies. In both tests, GEOCARBSULFOR outputs compare favourably with both the proxy data and other modelling efforts. CO₂ levels predicted by GEOCARBSULFOR are on the low side of the proxy bands, particularly during the Cretaceous and Paleogene. The Paleogene low is a common issue with previous work involving GEOCARBSULF $^{11-13}$, and requires the seafloor spreading rate to be $\sim 3x$ the present day value in order to reconcile the model predictions with the proxy record. The discrepancy between model predictions and proxy estimates is possibly due to underrepresentation, or absence, of all plate boundary types and their contribution to CO₂ degassing¹⁴. However, recent work on this issue has resulted in GEOCARBSULF predictions that better match the Paleogene record, but are subsequently too high for the Neogene¹⁴. Nevertheless, we believe that our model has been comprehensively checked against the available geologic data and provides a good fit to our understanding of various geochemical indices, and thus GEOCARBSULFOR gives a compelling indication of low pO_2 in the early Paleozoic.

Supplementary figure 4 | The ocean-atmosphere sulphur reservoir generated by our GEOCARBSULFOR model, compared with proxies and other model outputs. The red line is the amount of sulphate in the ocean-atmosphere reservoir throughout the Phanerozoic as generated by our GEOCARBSULFOR model. The vertical lines are estimates based on fluid-inclusion (Horita et al. 15; Brennan et al. 16; Lowenstein et al. 17) and modelling studies (Gill et al. 18). The grey envelope is the $\pm 1\sigma$ uncertainty range from Algeo et al. 19

Supplementary figure 5 | Atmospheric CO₂ levels generated by our GEOCARBSULFOR model, compared with other model outputs and CO₂ proxies. The black line is our GEOCARBSULFOR model output, the green dashed line is taken from Berner¹¹ where basalt/granite weatherability = 2, NV = 0.015, fB(0) = 5, the blue dot-dash line is the median output from Royer et al. ¹² and the light and dark grey bands are 68% and 95% confidence intervals, respectively, of CO₂ proxy data²⁰. Outputs are measured as multiplications of the present atmospheric level (PAL), which in GEOCARBSULF is taken as the mean Quaternary value of 250ppm.

Finally, to ensure completeness, we checked that the model adequately apportions the total mass of sedimentary sulphur between the gypsum and pyrite reservoirs, over time, starting with a pyrite-dominated Paleozoic⁴, and finishing with near equal reservoir values (total pyrite of 180×10^{18} moles and total gypsum of 200×10^{18} moles) in the Present²¹;

GEOCARBSULFOR achieves this (Supplementary Fig. 6), with values at the end of its run that are very close to those at Present, indicating that our model is robust.

Supplementary figure 6 | GEOCARBSULFOR predictions of total sedimentary sulphide (pyrite) and total sedimentary sulphate (gypsum) over the Phanerozoic. The red line is total pyrite (young plus ancient reservoirs), and the blue line is total gypsum (young plus ancient reservoirs).

Supplementary Note 2: Full model parameters

For the following tables, where we mention GEOCARBSULF as a source, we mean the final values as used in the 2009^{22} paper, some of which are unchanged from, for example, GEOCARB II^{23} .

Supplementary table 1: Present day parameters used in GEOCARBSULFOR

Parameter	Algebraic	Value	Source
	Representation		
Atmosphere and	A0	3.193x10 ¹⁸ mol	COPSE ⁸
ocean CO ₂			
Atmosphere and	O0	3.8x10 ¹⁹ mol	GEOCARBSULF ²²
ocean O ₂			
Atmosphere and	OA_S_0	3.8x10 ¹⁹ mol	GEOCARBSULF
ocean sulphate			
Young buried	<i>Pyr</i> _0	12.8571x10 ¹⁸ mol	COPSE /
pyrite sulphur*			GEOCARBSULF
Young buried	<i>Gyp</i> _0	100x10 ¹⁸ mol	COPSE /
gypsum sulphur*			GEOCARBSULF
Temperature	temp_0	288 K	
Silicate	F_ws_0	6.67x10 ¹⁸ mol C myr ⁻¹	GEOCARBSULF
weathering			
Young carbonate	F_wc_y0	11.35x10 ¹⁸ mol C myr ⁻¹	COPSE /
weathering*			GEOCARBSULF
Burial rate of	F_bg_0	5x10 ¹⁸ mol C myr ⁻¹	Berner and Canfield ²⁴
organic carbon			
Rate of exchange	F_bo_0	5x10 ¹⁸ mol myr ⁻¹	GEOCARBSULF
of Ca and Mg			
between basalt			
and seawater			
Fraction of total	Xvolc_0	0.35	GEOCARBSULF
Ca and Mg			

silicate		
weathering		
derived from		
volcanic rocks		

^{*} Values are taken from COPSE but then split into young and ancient values following the proportions set out in GEOCARBSULF. Only present young values are required for the model.

Supplementary table 2: Constant parameters used in GEOCARBSULFOR

Parameter	Algebraic Representation	Value	Source
Normalized activation energy for silicates	ACT_si	0.09 K ⁻¹	GEOCARBSULF
Normalized activation energy for carbonates	ACT_carb	0.087 K ⁻¹	GEOCARBSULF
Effect of solar insolation on temperature	Ws	7.4°	GEOCARBSULF
Proportion of plants fertilized by increasing CO ₂	FERT	0.4	GEOCARBSULF
Curve fitting parameter for effect of O_2 on $\delta^{13}C$ fractionation	J	4	GEOCARBSULF
Average value of ⁸⁷ Sr/ ⁸⁶ Sr of sub-aerial and submarine volcanic rocks	Rv	0.704	GEOCARBSULF
Ratio of chemical weathering in volcanic to non-volcanic silicate rocks	VNV	2	GEOCARBSULF
Arbitrary parameter used to calculate the average value for	NV	0.015	GEOCARBSULF

⁸⁷ Sr/ ⁸⁶ Sr of non-volcanic			
silicate rocks			
Young pyrite weathering rate	new_kwp	4.6x10 ¹⁷ my ⁻¹	For steady state
constant*			
Young gypsum weathering rate	new_kwgyp	1.2x10 ¹⁸ my ⁻¹	For steady state
constant*			
Young organic carbon	k_wg	0.018 my ⁻¹	GEOCARBSULF
weathering rate constant			
Young carbonate weathering	k_wc	0.018 my ⁻¹	GEOCARBSULF
rate constant			
Ancient pyrite weathering rate	kwpa	0.000893 my ⁻¹	For steady state
constant			
Ancient gypsum weathering	kwgypa	0.0033 my ⁻¹	For steady state
rate constant			
Ancient organic carbon	kwga	0.0005 my ⁻¹	For steady state
weathering rate constant			
Ancient carbonate weathering	kwca	0.00125 my ⁻¹	For steady state
rate constant			
Ancient pyrite degassing rate	kmpa	0.000893 my ⁻¹	For steady state
constant			
Ancient gypsum degassing rate	kmgypa	0.0033 my ⁻¹	For steady state
constant			
Ancient organic carbon	kmga	0.0005 my ⁻¹	For steady state
degassing rate constant			
Ancient carbonate degassing	kmca	0.001668 my ⁻¹	For steady state
rate constant			
Pyrite burial rate constant*	<i>k</i> _bp	1.15x10 ¹⁸ my ⁻¹	For steady state
Gypsum burial rate constant*	<i>k</i> _bgyp	1.6x10 ¹⁸ my ⁻¹	For steady state
Pyrite young to ancient flux	k_p_ya	0.01 my ⁻¹	For steady state
rate constant			
Gypsum young to ancient flux	k_gyp_ya	0.01 my ⁻¹	For steady state
rate constant			

Organic carbon young to	k_g_ya	0.018 my ⁻¹	For steady state
ancient flux rate constant			
Carbonate young to ancient	k_c_ya	0.018 my ⁻¹	For steady state
flux rate constant			

^{*} The values for these parameters are so much larger as they are multiplied by normalized reservoirs, instead of a reservoir at time (t).

Supplementary table 3: Time dependent parameters used in GEOCARBSULFOR

Parameter	Algebraic Representation	Source	Notes
Total land area	f_A	Royer et al. 12	Time array
Fraction of land area	f_AW	Royer et al.	Time array
experiencing chemical			
weathering			
Global river runoff	<i>f</i> _D	Royer et al.	Time array
Effect of change in	GEOG	Royer et al.	Time array
paleogeography on			
temperature			
Proportion of land area	<i>f_</i> L	Royer et al.	Time array
underlain by carbonates			
Degassing rate due to	f_G or f_SR	GEOCARBSULF	Time array - the same
tectonics / seafloor			values for this parameter
spreading rate*			are used by Royer et al.
Ocean δ^{13} C carbonate	delta_OA_C	Saltzman and	Time array
record		Thomas ²⁵	
Normalized calcium	Calc	Horita et al.	Time array – generated
reservoir		$(2002)^{15}$	from Ca fluid inclusion
			data
Dependence of	<i>f</i> _E	GEOCARBSULF	$0-80 \text{ Ma } f_\text{E} = 1$
weathering rate on soil			130-350 Ma $f_{\rm E}$ = 0.875

biological activity due			$380-550 \text{ Ma } f_{\text{L}} = 0.25$
to land plants			Linear interpolation
			between 80-130 Ma and
			350-380 Ma
Mean land elevation	<i>f_</i> R	GEOCARBSULF	Cubic fit – See
Wican land cic vation	<i>J_</i> IX	GLOCIARDSCLI	supplementary equations
D 1 C	<i>C. C.</i>	CEOCA PROLITE	(2) and (3)
Dependence of	<i>f</i> _C	GEOCARBSULF	$150-550 \text{ Ma} f_C = 0.75$
degassing rate on			0-150 Ma is a time
relative proportions of			dependent equation, see
carbonates on shallow			supplementary equation
platforms or deep ocean			(1)
Ocean ⁸⁷ Sr record for	R_ocm	Royer et al.	Time array
use in calculating			
silicate weathering			
Response of global	gamma	Royer et al.	For 0-40 Ma and 260-
mean temperature to			330 Ma: <i>gamma</i> =
atmospheric CO ₂			8.6562
greenhouse effect			All other time: <i>gamma</i> =
			4.3281
Temperature controlled	RUN	GEOCARBSULF	0-40 Ma and 260-340
runoff factor			Ma: $RUN = 0.045$
			All other time: <i>RUN</i> =
			0.025
Effect of changes to	f_CO2	GEOCARBSULF	0-350 Ma: f_CO2 = <i>VAS</i>
CO ₂ on carbonate and			380-550 Ma: f_CO2 =
silicate weathering			NOVAS
			Linear interpolation
			between 350-380 Ma -
			see supplementary
			equations (7 – 12)
			<u>-</u>

^{*} Both of these terms are used throughout the literature, but in GEOCARBSULF they are treated as the same thing.

For all time arrays we apply interpolation between data points.

Supplementary table 4: Starting reservoir sizes of GEOCARBSULFOR

Parameter	Algebraic Representation	Value	Source
Ocean and atmosphere sulphur	OA_S	38x10 ¹⁸ mol	GEOCARBSULF
Ocean and atmosphere carbon	OA_C	35.5x10 ¹⁸ mol	For attaining PAL
Young pyrite	Pyr_y	$20x10^{18} \text{mol}$	This study
Ancient pyrite	Pyr_a	260x10 ¹⁸ mol	This study
Young gypsum	Gyp_y	50x10 ¹⁸ mol	This study
Ancient gypsum	Gyp_a	50x10 ¹⁸ mol	This study
Young organic carbon	<i>G</i> _y	250x10 ¹⁸ mol	GEOCARBSULF
Ancient organic carbon	<i>G</i> _a	1000x10 ¹⁸ mol	GEOCARBSULF
Young carbonate	<i>C</i> _y	$1000 x 10^{18} mol$	GEOCARBSULF
Ancient carbonate	<i>C</i> _a	4000x10 ¹⁸ mol	GEOCARBSULF
Young organic carbon isotope mass balance	delta_g_y · G_y	-23.5 · 250x10 ¹⁸	GEOCARBSULF
Ancient organic carbon isotope mass balance	delta_g_a · G_a	-23.5 · 1000x10 ¹⁸	GEOCARBSULF
Young carbonate isotope mass balance	delta_c_y · C_y	3 · 1000x10 ¹⁸	GEOCARBSULF
Ancient carbonate isotope mass balance	delta_c_a · C_a	-1.5774 · 4000x10 ¹⁸	GEOCARBSULF

Supplementary Note 3: Full model equations

The full set of equations for the model are documented below, except the new burial equations for pyrite and gypsum, and weathering equations for young pyrite and young gypsum (equations 3-6), which can be found in the Methods section of the main paper. These are taken from the COPSE⁸ model. All other equations have been taken from GEOCARBSULF, but we note where alterations to the original equations have been made.

Supplementary table 5: Flux and parameter equations

<i>f</i> _C for <i>t</i> < 150 Ma:	$f_{\text{C}} = 0.75 + \left[\left(\frac{0.25}{150} \right) \cdot (150 + t) \right]$	[1]
Mean land elevation:	$f_{R} = \left(\frac{f_{RT}}{1.063}\right)^{0.67}$	[2]
Where:	$f_{\text{RT}} = \left(25.269 \cdot \left(\frac{t}{1000}\right)^3\right) + \left(26.561 \cdot \left(\frac{t}{1000}\right)^2\right)$	[3]
	$+\left(6.894 \cdot \left(\frac{t}{1000}\right)\right) + 1.063$	
Ratio of CO ₂ relative to present day:	$RCO_2 = \frac{CO_2(t)}{A0}$	[4]
Ratio of O ₂ relative to present day:	$O_2 mr = \frac{O_2(t)}{00}$	[5]
Conversion of relative O2 to atmospheric %:	$O_2 \text{atm} = \left(\frac{O_2 \text{mr}}{O_2 \text{mr} + 3.762}\right) \cdot 100$	[6]

	$VAS = \left(\frac{2 \cdot RCO2}{1 + RCO2}\right)^{FERT}$	[7]
on carbonate and silicate		
weathering:	$NOVAS = RCO2^{0.5}$	
Global average	$temp = (gamma - \ln RCO2) - \left(Ws \cdot \frac{t}{-570}\right) + GEOG$	[8]
temperature:	+ temp_0	
	•	
Effect of changes in	$f_{\text{Tsi}} = e^{(ACT_{\text{si}} \cdot [temp-temp_0])}$	[9]
temperature on silicate	$\cdot \ \{1 + [RUN \cdot (temp - temp_0)]\}^{0.65}$	
weathering:		
Combined effect of	$fBsi = f_Tsi \cdot f_CO2$	[10]
changes to temperature		
and CO ₂ on silicate		
weathering:		
Effect of changes in	f_{T} Carb = 1 + [$ACT_{\text{carb}} \cdot (temp - temp_{\text{0}})$]	[11]
temperature on carbonate		
weathering:		
Combined effect of	$f_{BBcarb} = f_{Tcarb} \cdot f_{CO2}$	[12]
changes to temperature		
and CO ₂ on carbonate		
weathering:		
*Weathering of young	$F_{\text{wg}} = f_{\text{R}} \cdot f_{\text{A}} \cdot k_{\text{wg}} \cdot G_{\text{y}}(t) \cdot O_{2} \text{mr}^{0.5}$	[13]
organic carbon:		
*Weathering of ancient	$F_{\text{wg}} = f_{\text{R}} \cdot kwga \cdot G_{\text{a}}(t) \cdot O_{2} \text{mr}^{0.5}$	[14]
organic carbon:		

XX .1		F1 63
Weathering of young	$F_{\text{wc}_y} = f_{\text{BBcarb}} \cdot f_{\text{L}} \cdot f_{\text{A}} \cdot f_{\text{D}} \cdot f_{\text{E}} \cdot k_{\text{wc}} \cdot C_{\text{y}}(t)$	[15]
carbonate:		
Weathering of ancient	$F_{\text{wc}} = f_{\text{BBcarb}} \cdot f_{\text{L}} \cdot f_{\text{A}} \cdot f_{\text{D}} \cdot f_{\text{E}} \cdot kwca \cdot C_{\text{a}}(t)$	[16]
carbonate:		
*Weathering of ancient	$F_{\text{wp}} = f_{\text{R}} \cdot kwpa \cdot Pyr_{\text{a}}(t) \cdot O_{\text{2}} \text{mr}^{0.5}$	[17]
pyrite:		
*Weathering of ancient	$F_{\text{wgyp}}a = f_{A} \cdot f_{D} \cdot kwgypa \cdot Gyp_{a}(t)$	[18]
gypsum:		
*Metamorphism /	$Fmp = f_SR \cdot kmpa \cdot Pyr_a(t)$	[19]
degassing of ancient		
pyrite:		
*Metamorphism /	$Fms = f_SR \cdot kmgypa \cdot Gyp_a(t)$	[20]
degassing of ancient		
gypsum:		
*Metamorphism /	$Fmg = f_SR \cdot kmga \cdot G_a(t)$	[21]
degassing of ancient		
organic carbon:		
*Metamorphism /	$Fmc = f_SR \cdot f_C \cdot kmca \cdot C_a(t)$	[22]
degassing of ancient		
carbonate:		
Fractionation of δ^{13} C:	$alpha_{C} = 27 + [J \cdot (O_2 mr - 1)]$	[23]
Young organic carbon	$delta_g_y = \frac{delta_g_y(t) \cdot G_y(t)}{G_y(t)}$	[24]
isotopes:	$G_{\mathbf{y}}(t)$	
Ancient organic carbon	$delta_g_a = \frac{delta_g_a(t) \cdot G_a(t)}{G_a(t)}$	[25]
isotopes:	$G_{\mathbf{a}}(t)$	

Young carbonate	$delta_c_y = \frac{delta_c_y(t) \cdot C_y(t)}{C_y(t)}$	[26]
isotopes:	0_y(v)	
Ancient carbonate	$delta_c_a = \frac{delta_c_a(t) \cdot C_a(t)}{C_a(t)}$	[27]
isotopes:	$c_a(t)$	
Burial of organic carbon:	$F_{\rm bg} = \frac{1}{alpha_{\rm C}}$	[28]
	$\cdot \ \{ [(delta_OA_C - delta_C_y) \cdot F_wc_y]$	
	$+ \ \left[(delta_OA_C - delta_C_a) \cdot F_wc_a \right]$	
	$+ \ \left[(delta_OA_C - delta_G_y) \cdot F_wg_y \right]$	
	$+ \ \left[(delta_OA_C - delta_G_a) \cdot F_wg_a \right]$	
	$+ \ [(delta_OA_C - delta_C_a) \cdot Fmc]$	
	$+ \ [(delta_OA_C - delta_G_a) \cdot Fmg]\}$	
*Burial of carbonate:	$F_bc = F_ws + F_wc_y + F_wc_a$	[29]
*Young to ancient pyrite	$F_ya_p = k_p_ya \cdot Pyr_y(t)$	[30]
flux:		
*Young to ancient	$F_ya_gyp = k_gyp_ya \cdot Gyp_y(t)$	[31]
gypsum flux:		
*Young to ancient	$F_{ya}g = k_gya \cdot G_y(t)$	[32]
organic carbon flux:		
*Young to ancient	$F_{ya}c = k_cya \cdot C_y(t)$	[33]
carbonate flux:		
Convert strontium	$Roc = \frac{R_ocm}{10000} + 0.7$	[34]
isotopes to ⁸⁷ Sr/ ⁸⁶ Sr:	10000	
Average value of	$R_{\text{cy}} = R_{\text{cy}}(t) + \left[(\text{Roc} - R_{\text{cy}}(t)) \cdot \frac{F_{\text{bc}}}{C_{\text{cy}}(t)} \right]$	[35]
⁸⁷ Sr/ ⁸⁶ Sr for young	ι ι ι ι ι	

carbonates undergoing		
weathering:		
Average value of	$R_{ca} = R_{ca}(t) + \left[(R_{cy} - R_{ca}(t)) \cdot \frac{F_{yac}}{C_{a}(t)} \right]$	[36]
⁸⁷ Sr/ ⁸⁶ Sr for ancient	$C_a(t)$	
carbonates undergoing		
weathering:		
Strontium fractionation	$Rnv = 0.722 - \left[NV \cdot \left(\frac{1 - f_RT}{1.063} \right) \right]$	[37]
of non-volcanic silicates:	[(1.005 /1	
Fraction of total Ca and	$Xvolc = \{ [f_SR \cdot F_bo_0 \cdot (Rv - Roc)] + (F_wc_y \cdot R_cy) $	[38]
Mg silicate weathering	$+ (F_wc_a \cdot R_ca) - (Roc \cdot F_bc)$	
derived from volcanic	$+ (Rnv \cdot F_ws)$	
rocks:	$F_{\text{ws}} \cdot (\text{Rnv} - Rv)$	
Volcanic weathering	$f_{\text{volc}} = \frac{(VNV \cdot \text{Xvolc}) + (1 - \text{Xvolc})}{(VNV \cdot \text{Xvolc}_{0}) + (1 - \text{Xvolc}_{0})}$	[39]
effect:	$(V/VV \cdot XVOIC_U) + (1 - XVOIC_U)$	
*Silicate weathering:	$F_{\text{ws}} = f_{\text{volc}} \cdot fBsi \cdot (f_{\text{AW}} \cdot f_{\text{A}} \cdot f_{\text{D}})^{0.65} \cdot f_{\text{R}} \cdot f_{\text{E}}$	[40]
	· F_ws_0	

N.B. In our model code we run from -570 to 0 Ma at 10 Myr time-steps instead of +570 to 0 Ma, so some of the equations have a slightly different formulation with regard to the positive or negative sign of t or '570', compared to the original versions in GEOCARBSULF. The period -570 to -550 Ma uses the same values and formulations at -560 Ma and -570 Ma, as those used for -550 Ma, and allows for model spin-up.

^{*} These equations have been altered from those in the original GEOCARBSULF model.

Supplementary table 6: Reservoir equations

Ocean and atmosphere	$\frac{d(OA_S)}{dt} = F_wp_y + F_wgyp_y + F_wp_a + F_wgyp_a + Fmp$	[41]
sulphur:	+ Fms – F _bp – F _bgyp	
Ocean and atmosphere	$\frac{d(CO_2)}{dt} = F_wg_y + F_wc_y + F_wg_a + F_wc_a + Fmg$	[42]
carbon (CO ₂):	$+ Fmca - F_bg - F_bc$	
Young pyrite:	$\frac{d(Pyr_y)}{dt} = F_bp - F_wp_y - F_ya_p$	[43]
Ancient pyrite:	$\frac{d(Pyr_a)}{dt} = F_ya_p - F_wp_a - Fmp$	[44]
Young gypsum:	$\frac{d(Gyp_y)}{dt} = F_bgyp - F_wgyp_y - F_ya_gyp$	[45]
Ancient gypsum:	$\frac{d(Gyp_a)}{dt} = F_ya_gyp - F_wgyp_a - Fms$	[46]
Young organic carbon:	$\frac{\mathrm{d}(G_{\underline{y}})}{\mathrm{d}t} = F_{\underline{b}g} - F_{\underline{w}g} - F_{\underline{y}a}g$	[47]
Ancient organic carbon:	$\frac{d(G_a)}{dt} = F_ya_g - F_wg_a - Fmg$	[48]
Young carbonate:	$\frac{d(C_y)}{dt} = F_bc - F_wc_y - F_ya_c$	[49]
Ancient carbonate:	$\frac{\mathrm{d}(C_{a})}{\mathrm{d}t} = F_{ya}c - F_{wc}a - Fmc$	[50]
Young organic carbon	$d(delta_g_y \cdot G_y)$	[51]
isotope mass balance:	dt $= [(delta_OA_C - alpha_C) \cdot F_bg]$	
	$- (delta_g_y \cdot F_wg_y) - (delta_g_y \cdot F_ya_g)$	

Ancient organic carbon isotope mass balance:	$\frac{d(delta_g_a \cdot G_a)}{dt}$ $= (delta_g_y \cdot F_ya_g) - (delta_g_a \cdot F_wg_a)$ $- (delta_g_a \cdot Fmg)$	[52]
Young carbonate isotope mass balance:	$\frac{d(delta_c_y \cdot C_y)}{dt}$ $= [(delta_OA_C - alpha_C) \cdot F_bc]$ $- (delta_c_y \cdot F_wc_y) - (delta_c_y \cdot F_ya_c)$	[53]
Ancient carbonate isotope mass balance:	$\frac{d(delta_c_a \cdot C_a)}{dt}$ $= (delta_c_y \cdot F_ya_c) - (delta_c_a \cdot F_wc_a)$ $- (delta_c_a \cdot Fmc)$	[54]
Atmospheric oxygen:	$\frac{d(O_2)}{dt} = \left[F_bg + \left(\frac{15}{8} \cdot F_bp \right) \right] - \left(F_wg_y + F_wg_a + Fmg \right)$ $- \left[\frac{15}{8} \cdot \left(F_wp_y + F_wp_a + Fmp \right) \right]$	[55]

Supplementary table 7: GEOCARBSULF sulphur isotope fractionation

Formulation used for $\delta^{34}S$ fractionation in	$alpha_S = 35 \cdot (O_2 \text{mr})^{1.5}$	[56]
the original GEOCARBSULF		

Supplementary table 8: Equations for model tests

Fraction of the total	$f_{\rm pyr} = \frac{F_{\rm bp}}{F_{\rm bp} + F_{\rm bgyp}}$	[57]
sulphur leaving the ocean	$F_{\rm pyr} = \frac{1}{F_{\rm p}} + F_{\rm p} + F_{\rm p}$	
as pyrite (burial flux		
approach):		

Fraction of the total	$\delta^{34}S_{in} - \delta^{34}S_{sulphate}$	[58]
sulphur leaving the ocean	$J_{\rm pyr} = \frac{1}{\delta^{34} S_{\rm sulphide}} - \delta^{34} S_{\rm sulphate}$	
as pyrite (isotope		
approach) ⁴ :		

Supplementary references

- 1. Wu, N., Farquhar, J., Strauss, H., Kim, S. T. & Canfield, D. E. Evaluating the Sisotope fractionation associated with Phanerozoic pyrite burial. *Geochim. Cosmochim.*Acta 74, 2053–2071 (2010).
- 2. Sperling, E. A. *et al.* Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. *Nature* **523**, 451–454 (2015).
- 3. Wallace, M. W. *et al.* Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. *Earth Planet. Sci. Lett.* **466**, 12–19 (2017).
- 4. Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. *Proc. Natl. Acad. Sci.* **106,** 8123–8127 (2009).
- 5. Halevy, I., Peters, S. E. & Fischer, W. W. Sulfate burial constraints on the phanerozoic sulfur cycle. *Science* **337**, 331–334 (2012).
- 6. Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O₂ and CO₂. *Geochim. Cosmochim. Acta* **70**, 5653–5664 (2006).
- 7. Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. *Earth-Science Rev.* **178**, 1–28 (2018).

- 8. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: A new model of biogeochemical cycling over phanerozoic time. *Am. J. Sci.* **304**, 397–437 (2004).
- 9. Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle:dynamics and stability. *Geochemica Cosmochim. Acta* **66,** 361–381 (2002).
- Kanzaki, Y. & Kump, L. R. Biotic effects on oxygen consumption during weathering:
 Implications for the second rise of oxygen. *Geology* 45, 611–614 (2017).
- 11. Berner, R. A. Addendum to 'Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model': (R. A. Berner, 2006, V. 306, p. 295-302). *Am. J. Sci.* **308,** 100–103 (2008).
- 12. Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO₂ and O₂ estimates from the long-term geochemical model GEOCARBSULF. *Am. J. Sci.* **314**, 1259–1283 (2014).
- 13. Van Der Meer, D. G. *et al.* Plate tectonic controls on atmospheric CO₂ levels since the Triassic. *Proc. Natl. Acad. Sci.* **111,** 4380–4385 (2014).
- Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting,
 CO₂ degassing and climate change through time. *Nat. Geosci.* 10, (2017).
- 15. Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic. *Geochim. Cosmochim. Acta* **66**, 3733–3756 (2002).
- 16. Brennan, S. T., Lowenstein, T. K. & Horita, J. Seawater chemistry and the advent of biocalcification. *Geology* **32**, 473–476 (2004).
- 17. Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M. & Horita, J. The major-ion composition of Permian seawater. *Geochim. Cosmochim. Acta* **69**, 1701–1719 (2005).

- 18. Gill, B. C., Lyons, T. W. & Saltzman, M. R. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **256**, 156–173 (2007).
- 19. Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W. & Canfield, D. E. Reconstruction of secular variation in seawater sulfate concentrations. *Biogeosciences* **12**, 2131–2151 (2015).
- 20. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. *Nat. Commun.* **8,** 1–8 (2017).
- 21. Kump, L. R. & Garrels, R. M. Modeling atmospheric O₂ in the global sedimentary redox cycle. *Am. J. Sci.* **286**, 337–360 (1986).
- 22. Berner, R. A. Phanerozoic atmospheric oxygen: new results using the geocarbsulf model. *Am. J. Sci.* **309**, 603–606 (2009).
- 23. Berner, R. A. 3GEOCARBII: A Revised Model of Atmospheric CO₂ over Phanerozoic Time. *Am. J. Sci.* **294,** 56–91 (1994).
- 24. Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. *Am. J. Sci.* **289**, 333–361 (1989).
- Saltzman, M. R. & Thomas, E. Carbon Isotope Stratigraphy. *Geol. Time Scale 2012* 1–
 2, 207–232 (2012).