Definition 51.18. Let f be a proper convex function on \mathbb{R}^n . We denote by $\inf f$ the quantity

$$\inf f = \inf_{x \in \text{dom}(f)} f(x).$$

This is the minimum of the function f over \mathbb{R}^n (it may be equal to $-\infty$).

For every $\alpha \in \mathbb{R}$, we have the sublevel set

sublev_{\alpha}
$$(f) = \{x \in \mathbb{R}^n \mid f(x) \le \alpha\}.$$

By Proposition 51.2, we know that the sublevel sets sublev_{α}(f) are convex and that

$$dom(f) = \bigcup_{\alpha \in \mathbb{R}} sublev_{\alpha}(f).$$

Observe that $\operatorname{sublev}_{\alpha}(f) = \emptyset$ if $\alpha < \inf f$. If $\inf f > -\infty$, then for $\alpha = \inf f$, the sublevel set $\operatorname{sublev}_{\alpha}(f)$ consists of the set of vectors where f achieves it minimum.

Definition 51.19. Let f be a proper convex function on \mathbb{R}^n . If $\inf f > -\infty$, then the sublevel set sublev_{inf f}(f) is called the *minimum set* of f (this set may be empty). See Figure 51.24.

Figure 51.24: Let f be the proper convex function whose graph is the surface of the upward facing pink trough. The minimum set of f is the light pink square of \mathbb{R}^2 which maps to the bottom surface of the trough in \mathbb{R}^3 . For any x in the minimum set, $f'(x;y) \geq 0$, a fact substantiated by Proposition 51.34.

It is important to determine whether the minimum set is empty or nonempty, or whether it contains a single point. As we noted in Theorem 40.13(2), if f is strictly convex then the minimum set contains at most one point.