# Reinforcement Learning: Value Functions

BIOE 498/598 PJ

Spring 2021

### Review

### Last time

- ▶ RL agents learn by trial and error.
- ▶ RL problems are formulated as MDPs.
- ▶ Monte Carlo methods can find policies for RL problems.

### Review

### Last time

- ► RL agents learn by trial and error.
- RL problems are formulated as MDPs.
- ▶ Monte Carlo methods can find policies for RL problems.
- ► Today: What exactly is Monte Carlo learning?

## A Monte Carlo approach for Gridworld

- Each grid square is a state.
- Actions: move up, down, left, or right, but the agent cannot leave the grid.
- ▶ Reward: -1 for each step.
- Policy: Random.

Starting from a random state, make random moves until the agent reaches the end.

Repeat may times and average the total rewards from each trajectory.

The policy is to move to squares with better Monte Carlo returns.



### Value functions

- ▶ We are using Monte Carlo to learn a value function.
- ► The value of a state is the expected reward from that state to the end of the trajectory.

$$V(s_i) = \mathbb{E}\left\{\sum_{k=i}^{T} r_k\right\} = \mathbb{E}\{R_i\}$$

where  $R_i$  is the *return* starting at state  $s_i$ , i.e. the cumulative reward for the rest of the trajectory:  $R_i = r_i + r_{i+1} + \cdots + r_{T-1} + r_T$ .

### Value functions

- ▶ We are using Monte Carlo to learn a value function.
- ► The value of a state is the expected reward from that state to the end of the trajectory.

$$V(s_i) = \mathbb{E}\left\{\sum_{k=i}^{T} r_k\right\} = \mathbb{E}\{R_i\}$$

where  $R_i$  is the *return* starting at state  $s_i$ , i.e. the cumulative reward for the rest of the trajectory:  $R_i = r_i + r_{i+1} + \cdots + r_{T-1} + r_T$ .

▶ If we know the value function we can derive a policy: Take the action that moves to the state with the highest value.

## Trajectories

▶ A trajectory in an MDP is a sequence of states, actions, and rewards:

$$s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T, r_T$$

- ► The length *T* can vary for every trajectory.
- ▶ There is no action selected in the terminal state  $s_T$ , but there can be a terminal reward  $r_T$ .
- A reward  $r_i$  can be positive (reward), negative (penalty), or zero. Some MDPs only have a nonzero terminal reward!

# From trajectories to value functions

Let's calculate V(s) for a  $3\times 3$  Gridworld board.

The MDP is deterministic, so knowing  $s_i$  and  $s_{i+1}$  tells us  $a_i$ . Also,  $r_i=-1$  for all  $0 \le i < T$ .

#### end

|   |   | _ |
|---|---|---|
| 7 | 8 | 9 |
| 4 | 5 | 6 |
| 1 | 2 | 3 |

# From trajectories to value functions

Let's calculate V(s) for a  $3 \times 3$  Gridworld board.

The MDP is deterministic, so knowing  $s_i$  and  $s_{i+1}$  tells us  $a_i$ . Also,  $r_i = -1$  for all  $0 \le i \le T$ .

| 7 | 8 | 9 |
|---|---|---|
| 4 | 5 | 6 |

end

| 1 | 8 | 9 |
|---|---|---|
| 4 | 5 | 6 |
| 1 | 2 | 3 |

$$\tau_1: 1, 2, 5, 4, 5, 6, 3, 6, 9$$
 $\tau_2: 1, 2, 3, 6, 3, 2, 5, 8, 7, 8, 5, 6, 9$ 
 $\tau_3: 1, 2, 5, 2, 3, 6, 9$ 
 $R_{\tau_2} = -12$ 
 $R_{\tau_3} = -6$ 
 $\tau_4: 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9$ 
 $R_{\tau_4} = -16$ 

# From trajectories to value functions

Let's calculate V(s) for a  $3\times 3$  Gridworld board.

The MDP is deterministic, so knowing  $s_i$  and  $s_{i+1}$  tells us  $a_i$ . Also,  $r_i=-1$  for all  $0 \le i < T$ .

#### end

| 7 | 8 | 9 |
|---|---|---|
| 4 | 5 | 6 |
| 1 | 2 | 3 |

$$\begin{array}{lll} \tau_1: & 1, 2, 5, 4, 5, 6, 3, 6, 9 & R_{\tau_1} = -8 \\ \tau_2: & 1, 2, 3, 6, 3, 2, 5, 8, 7, 8, 5, 6, 9 & R_{\tau_2} = -12 \\ \tau_3: & 1, 2, 5, 2, 3, 6, 9 & R_{\tau_3} = -6 \\ \tau_4: & 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9 & R_{\tau_4} = -16 \end{array}$$

$$V(s_1) \approx \frac{R_{\tau_1} + R_{\tau_2} + R_{\tau_3} + R_{\tau_4}}{4} = \frac{(-8) + (-12) + (-6) + (-16)}{4} = -10.5$$

# Re-using our trajectories

 $\tau_1: 1, 2, 5, 4, 5, 6, 3, 6, 9$ 

 $\tau_2: 1, 2, 3, 6, 3, 2, 5, 8, 7, 8, 5, 6, 9$ 

 $\tau_3: 1, 2, 5, 2, 3, 6, 9$ 

 $\tau_4: 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9$ 

### end

| 7 | 8 | 9 |
|---|---|---|
| 4 | 5 | 6 |
| 1 | 2 | 3 |

# Re-using our trajectories

 $\tau_1: 1, 2, 5, 4, 5, 6, 3, 6, 9$ 

 $\tau_2: 1, 2, 3, 6, 3, 2, 5, 8, 7, 8, 5, 6, 9$ 

 $\tau_3: 1, 2, 5, 2, 3, 6, 9$ 

 $\tau_4: 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9$ 

| 7 | 8 | 9 |
|---|---|---|
| 4 | 5 | 6 |
| 1 | 2 | 3 |

end

start

We can estimate  $V(s_2)$  using the same trajectories because of the Markov Property. Every visit to  $s_2$  is equivalent to new trajectory that begins at  $s_2$ .

# Re-using our trajectories

end

 $\tau_1: 1, \frac{2}{2}, 5, 4, 5, 6, 3, 6, 9$ 

 $\tau_2: 1, \frac{2}{2}, 3, 6, 3, \frac{2}{2}, 5, 8, 7, 8, 5, 6, 9$ 

 $\tau_3: 1, 2, 5, 2, 3, 6, 9$ 

 $\tau_4: 1, 2, 5, 4, 5, 2, 3, 6, 5, 8, 5, 6, 3, 2, 5, 6, 9$ 

| 7 | 8 | 9 |
|---|---|---|
| 4 | 5 | 6 |
| 1 | 2 | 3 |

start

We can estimate  $V(s_2)$  using the same trajectories because of the Markov Property. Every visit to  $s_2$  is equivalent to new trajectory that begins at  $s_2$ .

Some trajectories visit  $s_2$  more than once. For example,  $\tau_3$  has two returns R=-5 and R=-3.

### Summary

- ▶ RL agents can learn by trial and error.
- ▶ MDPs provide a mathematical structure for RL problems.
- ▶ The choice of states, actions, and rewards is critical.

### Summary

- RL agents can learn by trial and error.
- ▶ MDPs provide a mathematical structure for RL problems.
- ▶ The choice of states, actions, and rewards is critical.
- ▶ **Next time:** What are we learning from our random maze walks?