

COPY OF PAPERS
ORIGINALLY FILED

SEQUENCE LISTING

<110> NUTSARI, Patricia
Paesen, Guido Christiaan

<120> Histamine and Serotonin Binding
Molecules

<130> 2369-1-002

<140> US 09/555,296

<141> 2000-09-13

<150> PCT/GB98/03530

<151> 1998-11-26

<150> GB 9725046.8

<151> 1997-11-26

<150> GB 9813917.3

<151> 1998-06-26

<160> 31

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 190

<212> PRT

<213> Rhipicephalus appendiculatus

<400> 1
Met Lys Leu Leu Leu Ser Leu Ala Phe Val Leu Ala Leu Ser Gln Val
1 5 10 15
Lys Ala Asp Lys Pro Val Trp Ala Asp Glu Ala Ala Asn Gly Glu His
20 25 30
Gln Asp Ala Trp Lys His Leu Gln Lys Leu Val Glu Glu Asn Tyr Asp
35 40 45
Leu Ile Lys Ala Thr Tyr Lys Asn Asp Pro Val Trp Gly Asn Asp Phe
50 55 60
Thr Cys Val Gly Thr Ala Ala Gln Asn Leu Asn Glu Asp Glu Lys Asn
65 70 75 80
Val Glu Ala Trp Phe Met Phe Met Asn Asn Ala Asp Thr Val Tyr Gln
85 90 95
His Thr Phe Glu Lys Ala Thr Pro Asp Lys Met Tyr Gly Tyr Asn Lys
100 105 110
Glu Asn Ala Leu Thr Tyr Gln Thr Glu Asp Gly Gln Val Leu Thr Asp
115 120 125
Val Leu Ala Phe Ser Asp Asp Asn Cys Tyr Val Ile Tyr Ala Leu Gly
130 135 140
Pro Asp Gly Ser Gly Ala Gly Tyr Glu Leu Trp Ala Thr Asp Tyr Thr
145 150 155 160
Asp Val Pro Ala Ser Cys Leu Glu Lys Phe Asn Glu Tyr Ala Ala Gly
165 170 175
Leu Pro Val Pro Asp Val Tyr Thr Ser Asp Cys Leu Pro Glu
180 185 190

RECEIVED

MAY 13 2002

TECH CENTER 1600/2900

<210> 2
<211> 190
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 2
Met Lys Leu Leu Ile Leu Ser Leu Ala Leu Val Leu Ala Leu Ser Gln
1 5 10 15
Val Lys Gly Asn Gln Pro Asp Trp Ala Asp Glu Ala Ala Asn Gly Ala
20 25 30
His Gln Asp Ala Trp Lys Ser Leu Lys Ala Asp Val Glu Asn Val Tyr
35 40 45
Tyr Met Val Lys Ala Thr Tyr Lys Asn Asp Pro Val Trp Gly Asn Asp
50 55 60
Phe Thr Cys Val Gly Val Met Ala Asn Asp Val Asn Glu Asp Glu Lys
65 70 75 80
Ser Ile Gln Ala Glu Phe Leu Phe Met Asn Asn Ala Asp Thr Asn Met
85 90 95
Gln Phe Ala Thr Glu Lys Val Thr Ala Val Lys Met Tyr Gly Tyr Asn
100 105 110
Arg Glu Asn Ala Phe Arg Tyr Glu Thr Glu Asp Gly Gln Val Phe Thr
115 120 125
Asp Val Ile Ala Tyr Ser Asp Asp Asn Cys Asp Val Ile Tyr Val Pro
130 135 140
Gly Thr Asp Gly Asn Glu Glu Cys Tyr Glu Leu Trp Thr Thr Asp Tyr
145 150 155 160
Asp Asn Ile Pro Ala Asn Cys Leu Asn Lys Phe Asn Glu Tyr Ala Val
165 170 175
Gly Arg Glu Thr Arg Asp Val Phe Thr Ser Ala Cys Leu Glu
180 185 190

<210> 3
<211> 200
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 3
Met Lys Val Leu Leu Val Leu Gly Ala Ala Leu Cys Gln Asn Ala
1 5 10 15
Asp Ala Asn Pro Thr Trp Ala Asn Glu Ala Lys Leu Gly Ser Tyr Gln
20 25 30
Asp Ala Trp Lys Ser Leu Gln Gln Asp Gln Asn Lys Arg Tyr Tyr Leu
35 40 45
Ala Gln Ala Thr Gln Thr Thr Asp Gly Val Trp Gly Glu Glu Phe Thr
50 55 60
Cys Val Ser Val Thr Ala Glu Lys Ile Gly Lys Lys Lys Leu Asn Ala
65 70 75 80
Thr Ile Leu Tyr Lys Asn Lys His Leu Thr Asp Leu Lys Glu Ser His
85 90 95
Glu Thr Ile Thr Val Trp Lys Ala Tyr Asp Tyr Thr Thr Glu Asn Gly
100 105 110
Ile Lys Tyr Glu Thr Gln Gly Thr Arg Thr Gln Thr Phe Glu Asp Val
115 120 125
Phe Val Phe Ser Asp Tyr Lys Asn Cys Asp Val Ile Phe Val Pro Lys
130 135 140
Glu Arg Gly Ser Asp Glu Gly Asp Tyr Glu Leu Trp Val Ser Glu Asp

145	150	155	160
Lys Ile Asp Lys Ile Pro Asp Cys Cys Lys Phe Thr Met Ala Tyr Phe			
165	170	175	
Ala Gln Gln Gln Glu Lys Thr Val Arg Asn Val Tyr Thr Asp Ser Ser			
180	185	190	
Cys Lys Pro Ala Pro Ala Gln Asn			
195	200		

<210> 4
<211> 209
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 4			
Met Lys Met Gln Val Val Leu Leu Thr Phe Val Ser Ala Ala Leu			
1	5	10	15
Ala Thr Gln Ala Glu Thr Thr Ser Ala Lys Ala Gly Glu Asn Pro Leu			
20	25	30	
Trp Ala His Glu Glu Leu Leu Gly Lys Tyr Gln Asp Ala Trp Lys Ser			
35	40	45	
Ile Asp Gln Gly Val Ser Val Thr Tyr Val Leu Ala Lys Thr Thr Tyr			
50	55	60	
Glu Asn Asp Thr Gly Ser Trp Gly Ser Gln Phe Lys Cys Leu Gln Val			
65	70	75	80
Gln Glu Ile Glu Arg Lys Glu Glu Asp Tyr Thr Val Thr Ser Val Phe			
85	90	95	
Thr Phe Arg Asn Ala Ser Ser Pro Ile Lys Tyr Tyr Asn Val Thr Glu			
100	105	110	
Thr Val Lys Ala Val Phe Gln Tyr Gly Tyr Lys Asn Ile Arg Asn Ala			
115	120	125	
Ile Glu Tyr Gln Val Gly Gly Leu Asn Ile Thr Asp Thr Leu Ile			
130	135	140	
Phe Thr Asp Gly Glu Leu Cys Asp Val Phe Tyr Val Pro Asn Ala Asp			
145	150	155	160
Gln Gly Cys Glu Leu Trp Val Lys Ser His Tyr Lys His Val Pro			
165	170	175	
Asp Tyr Cys Thr Phe Val Phe Asn Val Phe Cys Ala Lys Asp Arg Lys			
180	185	190	
Thr Tyr Asp Ile Phe Asn Glu Glu Cys Val Tyr Asn Gly Glu Pro Trp			
195	200	205	

Leu

<210> 5
<211> 207
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 5			
Met Phe Leu Ala Gly Phe Phe Ile Phe Gly Ala Ala Val Leu Ser Val			
1	5	10	15
Leu Ala Glu Glu Thr Pro Asn Asp Arg Cys Thr Thr His Thr Pro Asn			
20	25	30	
Gly Trp Gln Phe Leu Lys Lys Gly Lys Arg Tyr Asp Met Lys Gln Arg			
35	40	45	
Thr Phe Gln Thr Pro Asn Ser Asp Asp Thr Lys Cys Leu Ser Ser Thr			
50	55	60	

Ile Asp Gly Lys Asn Glu Asn Asn His Thr Val Gln Ala Thr Ile Arg
65 70 75 80
Tyr Arg Asn Gly Tyr Glu Gly Lys Trp Asp Thr Ile Arg Gln Glu Tyr
85 90 95
Glu Phe Pro Asn Tyr Thr Ala Gly Asp Tyr Asn Ser Met Lys Thr Thr
100 105 110
Asp Lys Ser Pro Pro Pro Ala Ser Tyr Leu Phe Gly Tyr Thr Gly
115 120 125
Ser Ser Cys Ala Val Val Tyr Val Asn Ser Ile Gly Pro Val Arg Ser
130 135 140
Asn Ser Glu Asn Pro Pro Glu Arg Leu Thr Ala Ser Gln Glu Ser Ala
145 150 155 160
Gln Arg Asp Cys Val Leu Trp Val Asp His Asp Glu Lys Ala Thr Gln
165 170 175
Glu Gln Cys Cys Glu Asp Phe Phe Lys Thr His Cys Lys Glu Thr Val
180 185 190
His Val Ile Tyr Asp Val Asn Arg Cys Lys Glu Asn Gly Ser Glu
195 200 205

<210> 6
<211> 198
<212> PRT
<213> Boophilus microplus

<400> 6
Met Asn Ser Ala Leu Trp Val Leu Leu Gly Ser Ser Leu Trp Leu His
1 5 10 15
Thr Val Ala Phe Met Ile Pro Thr Trp Ala Asp Glu Gly Arg Phe Gly
20 25 30
Lys Tyr Gln Asn Ala Trp Lys Ala Leu Asn Gln Arg Ile Asn Thr Thr
35 40 45
His Val Leu Val Arg Ser Thr Tyr Ile Asp Asn Pro Tyr Leu Trp Gly
50 55 60
Lys Asn Phe Ser Cys Val Arg Ala Arg Thr Val Glu Val Phe Pro Ser
65 70 75 80
Ser Lys Thr Val Glu Leu Glu Phe Ser Phe Arg Asn Arg Thr Gly Ile
85 90 95
Leu Cys Met Arg Asn Gln Thr Val Arg Ala Gly Lys Asp Tyr Phe Tyr
100 105 110
His Gln Pro Asn Ala Phe Glu Phe Met Leu Arg Gly Asn Arg Ser Phe
115 120 125
Ser Asn Ala Val Met Phe Thr Asp Gly Met Thr Cys Asn Leu Leu Ser
130 135 140
Phe Pro Tyr Gln Arg Asn Lys Pro Gln Cys Glu Leu Trp Val Lys Asp
145 150 155 160
Thr Arg Val Asp Asn Ile Pro Pro Cys Cys Ser Phe Met Phe Asp Tyr
165 170 175
Leu Cys Pro Gln Pro Arg Pro Phe Ile Ile Tyr Asp Lys Ala Met Cys
180 185 190
Thr Val Arg Pro Pro Arg
195

<210> 7
<211> 203
<212> PRT
<213> Boophilus microplus

<400> 7
Met Lys Ala Leu Leu Ile Ala Val Gly Tyr Leu Ala Ala Val Thr Ala
1 5 10 15
Ala Pro Gln Ala Ser Pro Ser Ser Pro Arg Asn Glu Pro Leu Lys Asn
20 25 30
Thr Thr Trp His Ser Lys Glu Leu Lys Asn Tyr Gln Asp Ala Trp Lys
35 40 45
Ser Ile Asn Gln Asn Val Ser Thr Thr Tyr Tyr Phe Leu Arg Ser Thr
50 55 60
Tyr Asn Asn Asp Ser Val Trp Gly Lys Asn Phe Thr Cys Leu Ser Val
65 70 75 80
Thr Val Thr Ser Lys His Glu Ser Thr Phe Thr Val Glu Tyr Asn Thr
85 90 95
Thr Tyr Lys Asn Gln Ser Gln Gln Trp Val Ser Met Thr Glu Asn Val
100 105 110
Thr Ala Val Gln Glu Glu Gly Tyr Asp Val Lys Asn Ile Ile Gln Trp
115 120 125
Thr Thr Glu Asn Asn Thr Lys Phe Asn Asp Thr Val Val Phe Thr Asp
130 135 140
Gly Gln Thr Cys Asp Leu Leu Tyr Ile Pro Tyr Lys Glu Asn Gly Tyr
145 150 155 160
Glu Leu Trp Val Arg Ser Asp Tyr Leu Gln Asn Thr Pro Thr Cys Cys
165 170 175
Gln Phe Ile Phe Asp Leu Val Ala Leu Gly Arg Thr Thr Tyr Asn Ile
180 185 190
Ser Thr Pro Asp Cys Val Thr Lys Thr Ser Arg
195 200

<210> 8

<211> 203

<212> PRT

<213> Boophilus microplus

<400> 8
Met Lys Ala Leu Leu Ile Ala Val Val Tyr Leu Thr Ala Val Thr Ala
1 5 10 15
Ala Asp Gln Ala Pro Pro Ser Ser Thr Arg Asn Glu Pro Leu Glu Lys
20 25 30
Thr Thr Trp His Asn Gln Thr Leu Gly Arg Tyr Gln Asp Ala Trp Lys
35 40 45
Ser Ile Asn Gln Ser Val Gly Thr Thr Tyr Tyr Phe Leu Arg Ser Thr
50 55 60
Tyr Asn Asn Asp Ser Val Trp Gly Lys Asn Phe Thr Cys Leu Ser Val
65 70 75 80
Thr Val Thr Ser Lys Tyr Glu Ser Thr Phe Thr Val Glu Tyr Asn Thr
85 90 95
Thr Tyr Lys Asn Gln Ser Gln Gln Trp Val Ser Met Ser Glu Asn Val
100 105 110
Thr Ala Val Gln Glu Glu Gly Tyr Ser Val Lys Asn Ile Ile Gln Trp
115 120 125
Thr Thr Glu Asn Asn Thr Lys Phe Asn Asp Thr Val Val Phe Thr Asp
130 135 140
Gly Gln Thr Cys Asp Val Leu Tyr Ile Pro Tyr Lys Glu Asp Gly Tyr
145 150 155 160
Glu Leu Trp Val Arg Ser Glu Tyr Leu Gln Asn Thr Pro Thr Cys Cys
165 170 175
Gln Phe Ile Phe Asp Leu Val Ala Leu Gly Arg Thr Thr Tyr Asn Ile

180 185 190
Ser Thr Pro Asn Cys Val Ala Thr Thr Ala Gly
195 200

<210> 9
<211> 285
<212> PRT
<213> Boophilus microplus

<400> 9
Met Ala Leu Arg Phe Ala Leu Leu Ala Cys Ile Val Thr Ala Cys
1 5 10 15
Gly Trp Arg Thr Arg Ile Gln Glu Lys Gly Pro Glu Asn Asn Pro Leu
20 25 30
Met Asn Thr Gln Arg Leu Gly Lys Met Gln Asp Ala Trp Lys Ser Leu
35 40 45
Glu Lys Ala Thr Asn Gln Ser Tyr Val Leu Val Phe Arg Ser Arg Asn
50 55 60
His Glu Pro Glu Ile Ser Cys Val Tyr Val Arg Ala Ser Asn Ile Asn
65 70 75 80
Asn Asp Thr Lys Thr Ala Thr Tyr Thr Arg Thr Tyr Tyr Asn Met Thr
85 90 95
Ala Asn Ala Thr Met Thr Val Asn Tyr Thr Ala Arg Ala Leu Lys Gln
100 105 110
Val Asp Tyr Glu Ser Glu Asn Val Val Arg Val Asn Leu Thr Gly Gly
115 120 125
Val Pro Ser Asn Asp Thr Val Pro Leu Gly Ser Tyr Glu Tyr Val Glu
130 135 140
Tyr Gly Asn Tyr Ser Cys Asn Ser Ser Thr Pro Phe Leu Asp Ala
145 150 155 160
Val Gln Met Ala Ser Gln Gly Gln Ser Arg Gly Pro Asp Ile Glu Gly
165 170 175
Arg Thr Tyr Leu Asp Phe Tyr Val Val Tyr Asn Gln Pro Ser Cys Asn
180 185 190
Val Leu Lys Ser Pro Leu Leu Gly Gly Ala Cys Asp Phe Trp Val Thr
195 200 205
Glu Ser Glu Leu Gln Lys Ala Leu Asn Lys Thr Ser Glu Lys Lys Lys
210 215 220
Thr Lys Leu Glu Ala Arg Ala Arg Lys Ala Gly Gly Asp Ser Asp Asp
225 230 235 240
Gln Gly Pro Glu Leu Glu Val Val Phe Lys Asn Leu Pro Pro Pro Cys
245 250 255
Arg Ala Ala Phe Ile Thr Ser Cys Gly Tyr Pro Thr Phe Leu Met Tyr
260 265 270
Asn Lys Thr Ile Cys Asn Arg Thr Asp Ser Ala Ala Val
275 280 285

<210> 10
<211> 284
<212> PRT
<213> Boophilus microplus

<400> 10
Met Ala Leu Arg Phe Ala Leu Leu Ala Cys Ile Val Thr Ala Cys
1 5 10 15
Gly Trp Arg Thr Arg Ile Gln Glu Lys Gly Pro Glu Asn Asn Pro Leu
20 25 30

Met Asn Thr Gln Arg Leu Gly Lys Met Gln Asp Ala Trp Lys Ser Leu
 35 40 45
 Glu Lys Ala Ala Asn Gln Thr Tyr Val Leu Val Phe Arg Ser Arg Asn
 50 55 60
 His Glu Pro Asp Ile Ser Cys Val Tyr Val Arg Ala Ser Asn Leu Asp
 65 70 75 80
 Asn Ala Thr Lys Thr Ala Asp Tyr Thr Arg Thr Tyr Tyr Asn Met Thr
 85 90 95
 Ala Lys Gln Asn Val Ser Val Asn Tyr Thr Ala Arg Ala Leu Lys Gln
 100 105 110
 Val Asp Tyr Glu Ser Glu Asn Val Val Arg Val Asn Leu Thr Gly Gly
 115 120 125
 Val Pro Ser Asn Asp Thr Val Pro Pro Gly Ser Phe Glu Tyr Val Glu
 130 135 140
 Tyr Gly Asn Tyr Ser Cys Asn Ser Ser Ser Thr Pro Phe Leu Asp Ala
 145 150 155 160
 Val Gln Met Ala Ser Gln Gly Gln Ser Trp Gly Pro Asp Val Glu Gly
 165 170 175
 Arg Thr Tyr Leu Asp Phe Tyr Val Val Tyr Asn Gln Pro Ser Cys Asn
 180 185 190
 Val Leu Lys Ser Pro Leu Leu Gly Gly Ala Cys Asp Phe Trp Val Pro
 195 200 205
 Gln Ser Glu Leu Asp Lys Val Leu Asn Lys Lys Gly Asp Lys Lys Lys
 210 215 220
 Pro Ala Lys Ser Ser Ser Gln Asn Gly Asp Glu Gly Ser Asp Ala Glu
 225 230 235 240
 Gln Pro Glu Leu Glu Ala Ile Phe Lys His Leu Pro Pro Pro Cys Arg
 245 250 255
 Ala Ala Phe Ile Thr Ser Cys Gly Tyr Pro Asn Phe Leu Met Tyr Asn
 260 265 270
 Lys Thr Ile Cys Asn Ala Ala Gly His Ala Ala Asn
 275 280

<210> 11
 <211> 321
 <212> PRT
 <213> Boophilus microplus

<400> 11
 Met Asp Ile Arg Ser Ala Val Leu Phe Ala Cys Ile Val Ser Ala Cys
 1 5 10 15
 Cys Gly Phe Trp Arg Trp Thr Thr Arg Arg Val Thr Lys Lys Pro Asp
 20 25 30
 Asn Ser Pro Leu Leu Asn Asn Gln His Leu Gly Leu Phe Gln Asp Ala
 35 40 45
 Trp Lys Thr Ile Glu Glu Thr Ser Asn Asp Thr Tyr Val Leu Met Phe
 50 55 60
 Arg Ser Lys His Tyr Asp His Glu Asn Lys Ala Lys Cys Val Phe Val
 65 70 75 80
 Thr Ala Asn Ile Thr Asp Ser Arg Asn Lys Thr Ala Asn Tyr Thr Ile
 85 90 95
 Thr Tyr Tyr Asp Thr Thr Asn Thr Ser Asn Asn Phe Thr Ile Pro
 100 105 110
 Val Arg Ala Leu Asn Gln Thr Asp Tyr Ser Leu Glu Asn Val Ile Arg
 115 120 125
 Ala Ser Phe Asn Gly Asp Thr Pro Ser Ser Thr Pro Ala Pro Pro Gly
 130 135 140

Ser Ser Val Tyr Ile Gln Tyr Asn Asn Val Thr Cys Tyr Ala Gln Tyr
 145 150 155 160
 His Pro Phe Ser Asn Asn Gly Ile Ser Ala Lys Tyr Asp Glu Met Pro
 165 170 175
 Arg Asp Gly Arg Asn Tyr Leu Phe Asp Asn Phe Ile Gly Ala Tyr Leu
 180 185 190
 Asp Phe Tyr Val Val Phe Ser Gln Pro Thr Cys Asn Val Leu Arg Val
 195 200 205
 Arg Glu Gly Cys Asp Phe Trp Leu Arg Lys Thr Glu Leu Pro Ser Leu
 210 215 220
 Leu Lys Ala Ala Glu Asn Asp Asn Asp Asn Thr Glu Ser Leu Lys
 225 230 235 240
 Asn Tyr Trp Glu Arg Arg Ile Asn Asn Thr Lys Thr Arg Phe Arg His
 245 250 255
 Asn Thr Lys Lys Cys Lys Met Tyr Val Gln Arg Tyr Ser Ile Glu Lys
 260 265 270
 Ala Glu Asp Val Phe Lys Asn Thr Ala Phe Lys His Leu Pro Ser Asp
 275 280 285
 Cys Arg Phe Ala Phe Leu Ala Ala Cys Gly Asn Pro Ala Phe Thr Ile
 290 295 300
 Tyr Asp Pro Glu Thr Cys Asn Ser Ser Leu Pro Ala Asn Met Ala Glu
 305 310 315 320
 Ser

<210> 12
 <211> 770
 <212> DNA
 <213> Rhipicephalus appendiculatus

<400> 12
 agaaaagccaa catgaagctt ctgctctc ttgccttcgt ctttagctctc agccaagttta 60
 aagccgataa gcccagggttgg gcggatgaag cggcaaacgg gaaacaccaa gacgcctgga 120
 agcatctcca aaaactcggtt gaagagaatt acgacttgat aaaagccacc tacaagaacg 180
 acccagtttgg gggtaacgac ttcaacttgcg tgggtactgc agcgcagaat ttgaacgagg 240
 acgagaagaa cgttgaagca tggtttatgt ttatgaataa tgctgatacc gtataccaac 300
 atactttga aaaggcgact cctgataaaaaa tgtacggtta caataaggaa aacgccatca 360
 catatcaaac agaggatggg caacttctca cagacgtcct tgcatctct gacgacaatt 420
 gctatgtcat ctacgcttt ggcccagatg gaagtggagc aggttacgaa ctctgggcta 480
 ccgattacac ggatgttcca gccagttgtc tagagaagtt caatgagttat gctgcaggc 540
 tgccggtagc ggacgtatac acaagtgtt ggcctccaga ataacttggg catatcgtaa 600
 ttcaacttc aaagtgtgtt attgtcagca tatgtctcga gtgtttgtatg tagtgcgttc 660
 gatgatgcca ttcatcttagg tttcggtgt tcggtaactt atgctcaactg ccgacggcca 720
 gcacgagtagc tcgaaaataa agtattctga aatcgaaaaaaa aaaaaaaaaaaa 770

<210> 13
 <211> 793
 <212> DNA
 <213> Rhipicephalus appendiculatus

<400> 13
 gcccgcacgg aacttcgaag gaagttagca tgaagcttct catactctct cttgcctcg 60
 tcctcgccct cagccagggtt aaggaaatc agccagatttgg ggcgcgtt gcccggaaatg 120
 gtgcacacca agacgcctgg aagagtctga aagcggacgt tgaaaacgtt tactacatgg 180
 tgaaggccac ctataagaat gacccagtgtt ggggcaatga cttcaacttgc gtgggtgtta 240
 tggcaaatga tgtcaacgag gatgagaaga gcattcaagc agagtttttg tttatgaata 300
 atgctgacac aaacatgcaa ttgcactg aaaaggtgac tgctgttaaa atgtatggtt 360

acaataggga aaacgccttc agatacgaga cggaggatgg ccaagtttc acagacgtca	420
ttgcatactc tgatgacaac tgcgtatgtca tctacgttcc tggcacagac ggaaatgagg	480
aaggttacga actatggact acggattacg acaacatcc agccaattct ttaaataagt	540
ttaatgagta cgctgttaggt agggagacaa gggatgtatt cacaactgtc tgccttagagt	600
aataacttca gaatgtcgtt ctttcaaagc gaaaaaccaa caatgtgaac atcggcttgc	660
tgtgtcgac gttagccagcg ataatgttgt tttcctgggt ttctgggtt ggatactttt	720
agccactgcc gaagagctgt aaaggtaatg aaaaataaaa tgttcaagag tgtgaaaaaaaaa	780
aaaaaaaaaaa aaa	793

<210> 14
<211> 753
<212> DNA
<213> Rhipicephalus appendiculatus

<400> 14	
aaagcactca acatgaaggt tctttgttg gttcttggag ctgcttttgc ccagaatgca	60
gatgcaacc caacatgggc gaacgaagct aaattgggat cctaccaaga cgcctgaaag	120
agccttcagc aagaccaaaa caagagatac tatttggcac aagcgacaca aacgactgac	180
ggcgtatggg gtgaagagtt tacttgtgt agtgttacgg ctgagaagat tggaaagaaa	240
aaacttaacg ctacgatcct ctataaaaat aagcacctt ctgacctgaa agagagtcat	300
gaaacaatca ctgtctggaa agcatacgac tacacaacgg agaatggcat caagtacgag	360
acgcaaggga caaggacgca gactttcgaa gatgtcttg tattctctga ttacaagaac	420
tgcgtatgtaa tttcgttcc caaagagaga ggaagcgacg agggcgacta tgaattgtgg	480
gttagtgaag acaagattga caagattccc gattgctgca agtttacgat ggcgtacttt	540
gcccaacagc aggagaagac gggtcgtaat gtatacactg actcatcatg caaaccagca	600
ccagctcaga actgatattc tggtaatgct tgaaccgtaa tgggtcgacc tgcagtctag	660
aaacatttac caccatcagc gtgattatct taccgttagtt tcttaggtct tggtcttga	720
ataaaaatagt tccctgcatt gacaaaaaaaaaaa aaa	753

<210> 15
<211> 719
<212> DNA
<213> Rhipicephalus appendiculatus

<400> 15	
atgaagatgc aggttagtgc cttaacttacc tttgttagcg ccgcctcgc cactcaagcg	60
gagactacat ctgcgaaagc aggagaaaac ccgctctggg cgcatgagga actacttgg	120
aaatatcaag atgcctgaa aagcatcgat cagggcgtgt cggtgactta tgccttgca	180
aagacaacat atgagaatga cacaggatca tggggatccc agttaagtg cctccaggt	240
caagaaatag aaagaaagga agaagactat acagttacat ctgtttcac cttagaaat	300
gcgttcttc caatcaagta ttacaacgtg acagaaacag tgaaggccgt tttcaatat	360
ggatacaaaa acataagaa tgcattgaa tccaagtgg ggggtggact taacataacc	420
gacacgctca ttttcaactga tggagaatta tgcgtatgtt tctatgttcc caatgcagat	480
caaggttgc agctctgggt caaaaagagt cactacaac acgtaccaga ctactgcacg	540
ttcggttca atgtttctg tgcggaaagac aggaaaacct acgatatatt taatgaagaa	600
tgtgtttata acggcgaaacc ctggctttaa aggcaaaaaa tctataaaaat acggttctg	660
tagtaagtac taatagcaag tagttgaata ataaaaaagat tgcgtatgtca aaaaaaaaaa	719

<210> 16
<211> 832
<212> DNA
<213> Rhipicephalus appendiculatus

<400> 16	
caactgatca ctaaaatgtt ctttgcgggt ttcttcattt tcggcgctgc cgtcctctca	60
gttttggctg aggagacacc taatgataga tgcgtatgtt acactcctaa tggatggcag	120
tttctcaaga aaggcaagag atacgatatg aaacagagaa cttccaaac acctaactca	180

gacgacacta	aatgcctgtc	cagtactata	gacggaaaga	atgaaaataa	ccatacagta	240
caagcaacga	taagatatacg	aatggttat	gaaggaaaat	gggacaccat	ccgccaggag	300
tacgagtcc	ccaactacac	tgcaggagac	tacaactcca	tgaagacaac	agacaaaatcc	360
ccgcctccgc	cgcatcata	cctgttttgg	tatactggaa	gctcttgtc	cggtgtgtac	420
gtgaattcca	ttggacctgt	tcgttagcaat	tctgaaaacc	caccagaaaag	actcacagca	480
agtcaggaaa	gtgcacaacg	cgattgcgtc	cttgggtcg	atcacatga	aaaagctacc	540
caagaacaat	gctgtgaaga	tttcttcaag	acccactgca	aagagactgt	ccatgtcata	600
tacgacgtga	atagatgcaa	ggagaatggc	agtgaataac	acgatgccgg	aatggcatg	660
gcgacttcat	ttatgaagga	agacttccac	agatgtgaaa	cttgccttca	ttttgcttgt	720
tacttagac	caacataattc	ttccctttcc	gacttcaatg	atatgatcta	gggtgtaaaaa	780
agagcgtttt	aataaagaaaa	gtattagcat	cgatgtggaa	aatataaaaa	aa	832

<210> 17

<211> 1488

<212> DNA

<213> *Ambyomma variegatum*

<400> 17

gcgaccgcgc	ccagccgtac	agaacaaaata	gccttcgttg	caaacgtgca	gcgttagtcgy	120
atgcctagtt	aaacaccaca	cacacgtaaa	aagttagacga	aactggcttc	gcttccagca	180
ccaaggcagg	catcgctgg	tccactgacg	atgaactctg	ccttgtgggt	tttacttagga	240
tcatccttat	ggctgcatac	ggtagcggtc	atgattccca	catgggcaga	tgaaggcagg	300
tttggcaagt	accagaacgc	ctggaaggcc	ctgaatcagc	ggattaacac	aacacatgtc	360
cttgtgaggt	caacgtatata	cgacaatcca	tatttatggg	gcaagaacctt	ctcatgcgt	420
cgcgctcgaa	ctgtcgaagt	cttcccagc	agaagactg	tggaaactgga	gttttagttt	480
agaaaacagga	ctggtatatt	gtgcataaaaa	aatcaaacgg	ttcgagctgg	aaaggattac	540
ttttatcatc	agcctaacgc	cttcgaattc	atgctgagag	gtaacaggc	gttttctaa	600
gctgtcatgt	ttaccgacgg	aatgacatgt	aatctgctca	gctttccata	ccagcgcac	660
aaaccacaat	gctaactatg	ggtgaaggac	acgcgcgtcg	acaacattcc	cccttgttgc	720
tcgttcatgt	tcgactattt	gtgcccacag	cctcgatccat	tcatcattta	cgacaaaagca	780
atgtcacgg	tgaggccacc	ccgctagaaa	aaaaaggat	aaaaaggcta	ctcgaagaag	840
caacaaccaa	tcagtgcaca	caagagaacc	gttccagtcc	tgcgaaagtt	gcccctccca	900
aaacacatac	atttcactgc	aaagatgacc	gatgcagtcg	caaattcg	tcctagaact	960
caagtgcgt	ttggaaaact	cgaaaaggag	acagtagaa	ctaactgctg	tgatacctag	1020
gccaggcatt	tccgtcgccc	actgttttt	atgaataggg	tagggtaaaa	gtatTTggc	1080
tttgctgtgg	cccaataaaat	agcgtatatt	agcggactag	catcgaaagt	ccagatgcta	1140
taaagcagct	aaaactcaact	tctgcgttgc	acttcgatag	gtattgaata	gatcatgcgc	1200
gcacagaaaa	aaaaagtatc	aatcaaaaaca	aaaaaggcat	tcttcgcata	tgccaaagc	1260
attccctaag	tccacgctaa	aaataggtgt	catttcata	agcatcgagt	tctatacgtt	1320
cttaagatgc	taccggcata	tcatttcattt	ctcgatcgat	cctcatggat	ctgaaccaag	1380
ttcttctatt	gcctccattt	tttccggtag	ctacagagg	cagcagcacc	attgtactgt	1440
catattttat	cttcgtgt	tgtttgtcgc	agtatattt	tctgccttatt	cacgatattt	1488
gcacaatgt	ataaaaacatt	tgcctgcata	aaaaaaaaaa	aaaaaaaaaa		

<210> 18

<211> 760

<212> DNA

<213> Boophilus microplus

<400> 18

ctccagctct	gttcgacga	tgaaggctct	ccgtatcgct	gtcggttacc	cgccggc	1
cacagcggca	ccccaaagctt	cgcccttcctc	tccgaggaac	gaaccactca	agaataactac	1
gtggcacagc	aaggaactga	aaaattatca	agatgcgtgg	aagtccatca	atcaaaaacgt	2
cagcacatcc	tactacttcc	tcagatcaac	ctacaacaac	gacagtgtct	ggggtaaaaa	3
ttcacctgt	cttagcgtca	cggtgacatc	gaaacatgaa	tcaacgttca	ccgtcgaata	3
taacaccacg	tacaaaaatc	agagccaaca	atgggtcagc	atgacggaaa	acgtcacggc	4
cgtgcaggag	gagggctacg	acgttaaaaa	tatcattcag	tggacaacag	agaataaacac	

aaagttcaat gatactgttg ttttacgga cggccagact tgcgtatctgt	tgtacatccc	480
gtacaaaagaa aacggtaacg agctgtgggt gcgttcggat tacctgcaga	acactccaac	540
gtgctgccag ttcatcttg acctcgtcgc attgggacgt accacgtaca	atatctccac	600
tcctgactgc gtgaccaaaa cctctcgta gaccgtgaaa gccggcgtt atgctactcg		660
actgctcagg ttgaaagagt agggagcccc gacgcgcact actactaaaa	atgattccaa	720
ataaaagtatt caaacatttc aaaaaaaaaa aaaaaaaaaa		760

<210> 19
<211> 765
<212> DNA
<213> Boophilus microplus

<400> 19		
agtgactcct gctctgcttc gacgatgaag gctctcctga tcgcgtcgt ctacactgact		60
gccgtcacag cggcagacca agctccgcct tcctctacga ggaatgaacc actcgagaaa		120
actacctggc acaaccagac actgggacgt tatcaagatg cgtggaaagtc catcaatcaa		180
agcgtcggca ctacctaacta cttcctcaga tcaacactaca acaacgacag cgtgtgggt		240
aaaaatttca cctgtcttag cgtcacggtg acatcgaaat atgaatcaac gttcaccgtc		300
aatatataaca ccacgtacaa aaatcagacg caacaatggg tcagcatgtc ggaaaacgtc		360
acggccgtgc aggagggcgg ctacagtgtt aaaaacatca ttcaagtggac aacggagaat		420
aacacaaaatg tcaatgatac tggtgtttt acggacggcc agacttgta tggttatac		480
atcccgta aagaagacgg ttacgagctg tgggtgcgtt cgaaataacct gcagaacact		540
ccaaacgtgtc gccagttcat ctttgacctc gtcgcattgg gacgtaccac gtacaatatc		600
tccactccta actgcgtggc caccaccgtc ggtagaccaa tgcaagccgc ggcttaattt		660
actcgaccgc tcaggttga agtgcggga gcctcgacgg gcactactac ttaaaatgat		720
ttcaataaaa gtattcaagc atttctggaa aaaaaaaaaa aaaaa		765

<210> 20
<211> 1046
<212> DNA
<213> Boophilus microplus

<220>		
<221> misc_feature		
<222> (1)...(1046)		
<223> n = A,T,C or G		
<400> 20		
gatggcgctc agatttgcac ttctgctggc gtgcacatgtc acggcatgtg gctggagaac		60
acggattcaa gagaaagggtc ccgagaacaa ccctctcatg aacacccaac gtttggaaa		120
aatgcaagac gcatggaaaga gtctggaaaa ggcaacaaat cagtcgtatg tcttgggttt		180
ccgctcaaga aatcacgaac cagagatatac ctgcgtgtac gtgagggcta gtaatataaa		240
taatgacact aaaactgcaa cttataccag aacatattac aatatgacgg caaacgcaac		300
catgacggtg aattataactg caagagctct gaagcaagtg gactatgagt cgaaaaatgt		360
cgtacgagta aacctgacag gtggggtccc cagcaacgt acagttcctc ttggaaagcta		420
cgaatacgtc gagtacggta attactcctg caatagctca tcgacaccct ttttggatgc		480
tgtcaaatg gcatcgcaag ggcaatccag agggccggat atcgaagggc gcacatatct		540
agacttctac gtcgtctaca atcaaccatc gtcaatgtc ctgaagtccc cgctcctggg		600
aggtgcttgt gacttttggg tgacagaatc cgagttgcaa aaagcactaa ataagacatc		660
agagaagaaa aaaacaaagc tagaagcgag agcaaggaaa gctggaggag attccgatga		720
ccagggacct gaactggagg tcgtctcaa aaatctgccc cttccctgcc ggcgcgcgtt		780
cataaattcc tgcggctatc caactttct tatgtacaac aagaccatct gtaatcgaac		840
ggattctgtct gcggtgtgaa cgtccctgc gagcaagtag aacgtccgtg aagacagcag		900
gaagatagtt gactgttttgg tggcgaaat gtgactacta gtctgaatca ttaaaaagat		960
tcngctgacg ggtgtggcgg gaactttttt aaatgaaatt ggtcataactt gttgaaagac		1020
aaaaataaaaa caatatgtta ctcctc		1046

<210> 21
<211> 1025
<212> DNA
<213> Boophilus microplus

<400> 21

ggaaaccagg atggcgctca gattgcact tctgctggcg tgcacatgtca cggcatgtgg	60
ctggagaaca cggttcaag agaaaaggcc cgagaacaac cctctcatga acacccaacg	120
tttggggaaaa atgcaagacg catggaagag tctggaaaag gcagcaaatac agacgtatgt	180
cttgggttcc cgctcaagaa atcacgaacc agatataatcc tgcgtctacg tgagagctag	240
taatttagat aatgcaacta aaactgcaga ttataccaga acatattaca atatgacggc	300
aaaacaaaac gtgtcggtaa attatactgc aagagctctg aagcaagtgg actatgagtc	360
ggaaaaatgtc gtacgagtaa acctgacagg tggggtcccc agtaacgata cagttctcc	420
tggaaagcttc gaatacgtcg agtacggtaa ttactcctgc aatagctcat cgacaccctt	480
tttggatgct gtgcaaatgg catcgcaagg gcaatcctgg gggccggatg tcgaaggcg	540
cacatatcta gatttctacg tcgtctacaa tcaaccgtcg tgcaatgtcc tgaagtcccc	600
gctctggga ggtgcttggt acttctgggt gccacaatca gagttggaca aggtactaaa	660
caaaaaagga gataagaaaa agccagctaa gtcaaggcgt caaaatggag acgaaggttc	720
tgatgccgag caacctgaac tggaggccat ctttaaacat ctaccccctc cctgcccgc	780
agcgttcata acttcctgtcg gctatccaaa ttttctcatg tacaacaaga cgatctgtaa	840
tgcagcgggt catgctgcga actgaacgtc ctctgcgaac gagtagagcg tgcgtaaaaa	900
caactggctc gaatcttta agaaattcgg caaatgtcgg gtggcgcgaa cttttatcaa	960
actggtcata catgtgaaag aaaaaataaa aacaaaatgt gcataaaaaaa aaaaaaaaaa	1020
aaaaaa	1025

<210> 22
<211> 1156
<212> DNA
<213> Boophilus microplus

<220>
<221> misc_feature
<222> (1)...(1156)
<223> n = A,T,C or G

<400> 22

cgaagagcag gtacgattcg aatcttgca atggacattc gcagcgctgt tttgttcgc	60
tgcacatgtct cggcggtttg tggctttgg cgctggacaa cacggagggt aactaaaaag	120
cctgataaca gcccctgttt gaacaaccaa catcttggtc tttccagga cgcatggaag	180
actatagaag agacgtccaa tgatacgtat gtcctgtatgt tccgctcaaa acattacgac	240
cacgagaaca aggctaaatg tgtcttcgtt acggcaaaata ttactgactc ccgaaacaaa	300
actgcaatt acacaataac gtattacgt actacaacaa atacatccaa caattttaca	360
atcccaatgtt gagctctgaa ccaaactgac tactcaactg aaaaatgtat tcgagcaagc	420
ttcaacggcg acactccaaatg ctctactcca gcccctcccg gaagcagcgt gtacattcg	480
tataataatgtt tacctgttta cggccaaat caccatttt caaataatgg aatcagtgtca	540
aaatatgtat aatgtccccg ggatggccga aattacttgt tcgacaattt tattgggtct	600
tactggact tctacgttgtt gttcagccag ccgacatgca acgttctcag agtccgagaa	660
ggatgtgact tctggctaaag gaaaactgtag tggccaaagcc tactgaaagc agcagaaaaat	720
gatgacaacg ataacacgga atcgctgaag aactattggg aaagaagaat aaataataact	780
aaaacaagat ttgcacataa tactaagaaa tgtaagatgt acgtacaacg ttattcaatt	840
gagaaggctg aagatgtttt taaaaaacact gctttaaac acctccccc cgcactgccc	900
tttgccttcc tggccgcttgc tggaaatcca gcattcacaa tatacgaccc agaaacatgt	960
aatagctccc tgccagctaa tatggcagaa agttaaatgt gctatttac ttcatgttgc	1020
accgtatgcc tggtatgcaa gaaggtgagg ttggacagga tacttccgaa ttatTTTC	1080
agtctgcctt gtacgcacga aataacaaaa tatctgttga agccnncaac nnnnnnaana	1140
anaaaaana aaaaaaa	1156

<210> 23
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<221> misc_feature
<222> (1)...(26)
<223> n = A,T,C or G

<400> 23
aayggngarc aycargaygc ntggaa

26

<210> 24
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<221> misc_feature
<222> (1)...(26)
<223> n = A,T,C or G

<400> 24
ktrtmrtcng tnryccanar ytcrtta

26

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> tagging sequence

<400> 25
tatatgatca gaaaacccgc tctggg

26

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> tagging sequence

<400> 26
tataactcgag ccagggttcg ccgt

24

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> amplifying oligonucleotide

<400> 27
tatgaagatg caggttagtgc

20

<210> 28
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> amplifying oligonucleotide

<400> 28
atatgatcag ccagggttcg ccgt

24

<210> 29
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 29
tatgagctca tgaactctgc cttgtgg

27

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 30
tatggatccg gggtggcctc accg

24

<210> 31
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> octapeptide

<400> 31
Ala Glu Ala Phe Ala Glu Ala Trp
1 5