Approche logique de l'Intelligence Artificielle – Partie 3

INSA 4IF/4IFA Sylvie Calabretto

Plan du cours

- Logique Classique
 - Systèmes Formels
 - Calcul des Propositions/ Logique ordre 0
 - Calcul des Prédicats/ Logique ordre 1
 - Calcul des Prédicats/ Logiques ordres supérieurs
- Logiques Multivaluées
 - Logique Floue

Logiques multivaluées

- Approche logique du traitement de l'incertitude : introduction de valeurs discrètes entre le vrai et le faux
- Plusieurs interprétations :
 - Lukasiewicz L₃ (faux, possible, vrai)
 - Kleene K₃ (faux, indéterminé, vrai)
 - Bochvar (faux, absurde, vrai)

Logique trivalente de Lukasiewicz

Lukasiewicz L₃ (faux, possible, vrai) étendue à L₄, ..., L_n

_	Ī		
a b	0	1/2	1
0	0	1/2	1
1/2	1/2	1/2	1
1	1	1	1
	0	0 0	0 0 1/2

$$v(a \lor b) = max(a,b)$$
$$v(a \land b) = min(a,b)$$

Logique trivalente de Lukasiewicz

\rightarrow			ı	
	a b	0	1/2	1
	0	1	1	1
	1/2	1/2	1	1
	1	0	1/2	1

\leftrightarrow		ı	ı	ı ı
	a b	0	1/2	1
	0	1	1/2	0
	1/2	1/2	1	1/2
	1	0	1/2	1

implication : $v(a \rightarrow b) = min(1,1-a+b)$ double implication : $v(a \leftrightarrow b) = a - |a-b|$ négation : $v(\neg a) = 1 - a$

Conséquences sur *tiers exclus* ($P \lor \neg P = 1$), contradiction ($P \land \neg P = 0$), et le modus ponens

Illustration de la non vérification du Modus Ponens dans L₃

Soit
$$v(A)=1/2$$
, et $v(B)=0$
 L_3 donne : $v(A \rightarrow B)=1/2$
 $d'où$ $v(A \land (A \rightarrow B))=1/2 \neq v(B)$,

II faudrait

$$v(B) = v(A \land (A \rightarrow B))$$

 L'_3 corrige ces problèmes en durcissant \land avec :

•
$$v(x \land y) = max(v(x)+v(y)-1,0)$$

• $v(1/2 \text{ et } 1/2) = 0 \text{ au lieu de } 1/2$

L'₃ supporte le modus ponens

Logique trivalente de Kleene et Bochvar

Kleene (faux, indéterminé, vrai) K₃

Implication : $v(a \rightarrow b) = max(1-a,b)$

Négation : $v(\neg a) = 1 - a$

Principes du tiers exclus et de contradiction mis en défaut

Bochvar (faux, absurde, vrai)

Principes du tiers exclus et de contradiction mis en défaut

Logiques trivalentes de Kleene et Bochvar

a b	0	1/2	1
0	1	1/2	0
1/2	1/2	1/2	1/2
1	1	1/2	1

Kleene

Bochvar

a b	0	1/2	1
0	1	1	1
1/2	1/2	1	1
1	0	1/2	1

Rappel → Lukasiewicz

Plan du cours

- Logique Classique
 - Systèmes Formels
 - Calcul des Propositions/ Logique ordre 0
 - Calcul des Prédicats/ Logique ordre 1
 - Calcul des Prédicats/ Logiques ordres supérieurs
- Logiques Multivaluées
 - Logique Floue

Logique Floue

- Introduction
- Sous-ensembles flous
- Modélisation par Logique Floue
- Raisonnement approximatif
- Commande Floue
- Raisonnement possibiliste

Logique floue : pourquoi ?

- Règle : Si la distance est courte Alors le freinage est puissant
- Faits:
 - ▶ la distance est courte : *Logique classique OK*
 - la distance est très courte : pb
 - la distance est de 100 m : pb
 - la distance est entre 50 et 80 m : pb
- Solution 1 : Découpage en sous-intervalles
- Solution 2 : Utilisation de la logique multivaluée

Découpage en sous-intervalles

- Règle: Si la surface est à peu près comprise entre 80 m² et 85 m² alors faire visiter l'appartement
- ▶ Intervalle = [79,5;85,5]
- □ surface = 85,4 m 2 ⇒ décision = faire visiter 1 'appartement
- □ surface = 85,6 m² \Rightarrow décision contraire

Logique multivaluée

- Manipuler des valeurs de vérité intermédiaires entre le vrai et le faux absolus
- Logique ternaire de Lukasiewicz (1920) : 3 valeurs de vérité représentées par : 0 (le faux), 1 (le vrai) et 1/2 (le doute)
- Ne suffit pas pour traiter des connaissances imprécises
- $\square \Rightarrow$ Introduction de la **Logique floue** (Zadeh)

Logique floue

- Extension de la Logique Classique
- Les propositions sont des propositions floues définies à partir de variables linguistiques et d'un ensemble de modificateurs
- La valeur de vérité de toute proposition floue appartient à [0,1] et est fournie par la fonction d'appartenance

L'imprécis

Concerne le contenu de l'information

- La vitesse est rapide
- Le freinage est puissant
- La température est froide
- Le poids est important
- Le niveau est bas

L'incertain

- □ Doute sur la validité d'un évènement, d'une proposition ou d'une implication
 - "Il est <u>possible</u> qu'il pleuve"
 - ▶ "Pierre est <u>sûrement</u> plus grand que Paul"
 - « Le diagnostic est probablement la grippe"

Historique

- XVIIe siècle : Pascal/Fermat (Probabilités)
- ▶ 1965 : L.A. Zadeh (Sous-Ensemble flou)
- 1968 : E. Sanchez (Relations Floues)
- ▶ 1973 : A. Kaufman (Théorie des ss-ens flous)
- 1975 : Mamdani (Régulateur flou)
- 1978 : L.A. Zadeh (Théorie des Possibilités)
- ▶ 1980 : Début des 1ères applications industrielles

Logique Floue: 3 applications

- Systèmes Experts/Systèmes à Base de Connaissances
- Bases de données
- Commande

Le système expert MYCIN

- ▶ Pionnier des SE : 1974 (E. Shortliffe)
- Système d'Aide au diagnostic des maladies infectieuses du sang
- Version de base : 200 règlesVersion en 1978 : 500 règles
- Incertitude dans les faits et règles
- Système explicatif

Représentation des connaissances

- Formes courantes des règles :
 - $A \land B \land C \rightarrow D \qquad (F.C)$
 - $A \land (B \lor C) \to D (F.C)$
 - $(A \lor B \lor C) \land (D \lor E) \rightarrow F (F.C)$
 - $A \land B \to C \land D (F.C)$
- Faits:
 - A (F.C)

où F.C est un facteur de certitude

Bases de données floues

▶ Entité PERSONNE

	NOM	AGE	Situation de famille	SALAIRE
	Paul	30	"inconnu"	environ-5000
	Jean	[30,35]	{1/C;0.7/D}	environ-5000
	Martine	jeune	M	[1000,3000]
	David	15	С	"inapplicable"
22	Françoise	environ-40	{1/V;1/D}	[5000,6000]

Langage de requête flou

Dans le contexte de SQLf :

« les employés ayant *environ 40 ans* , de salaire *élevé* et possédant une voiture de *luxe* »

Commande Floue

- **But**: Traiter des problèmes de commande de processus, à partir des connaissances d'experts ou d'opérateurs qualifiés, lorsque:
 - Le processus à commander est mal connu, ou difficile à décrire précisément,
 - Les variables sont caractérisées de manière imprécise,
 - Les connaissances sont exprimées en langage naturel.

Illustration: Arroseur Flou

Les règles de commande

- R1 : *Si* la température est brûlante ET le sol sec, *Alors* la durée d'arrosage est longue.
- R2 : *Si* la température est chaude ET le sol humide, *Alors* la durée d'arrosage est moyenne.
- R3 : *Si* la température est chaude ET le sol sec, *Alors* la durée d'arrosage est longue.
- R4 : *Si* la température est brûlante ET le sol humide, *Alors* la durée d'arrosage est moyenne.
- ▶ R5 : *Si* la température est froide ET le sol humide, *Alors* la durée d'arrosage est courte.

Exemples d'applications

- Contrôle d'ascenceurs (HITACHI)
- Conduite de métro de Sendaï (HITACHI)
- Stabilisation de la vitesse (NISSAN MOTOR)
- Robot mobile (HIROTA)
- Creusement des tunnels (TOKIO ELECTRIC)
- Reconnaissance vocale (HITACHI)
- Applications "grand public": caméra, appareil photo, four, lave-linge, véhicule sans pilote (TESLA)

Conduite automobile sans pilote

- La voiture a pour consigne de suivre un chemin, par exemple matérialisé par des marqueurs de couleur.
- Exemple de règle :
 - Si la voiture s'écarte un peu du chemin, mais que la direction suivie est à peu près bonne, alors il faut braquer légèrement pour se rapprocher du chemin.
- L'ensemble des règles fait intervenir des descripteurs linguistiques (« s'écarte un peu », « à peu près bonne »).
- Pour les exploiter, on détermine les variables impliquées :
 - Variables d'entrée : déviation de position, déviation d'angle par rapport au chemin
 - Variable de sortie : angle de braquage
- On recherche ensuite toutes les caractéristiques des variables
- Puis les règles sont transcrites

Règles de conduite automobile

Exemple de règle floue

Règles de conduite automobile à l'approche d'un carrefour contrôlé par des feux tricolores.

si le feu est rouge	si ma vitesse est élevée	et si le feu est proche	alors je freine fort.
si le feu est rouge	si ma vitesse est faible	et si le feu est loin	alors je maintiens ma vitesse.
si le feu est orange	si ma vitesse est moyenne	et si le feu est loin	alors je freine doucement.
si le feu est vert	si ma vitesse est faible	et si le feu est proche	alors j'accélère.

V.S.

Si le feu est rouge, si ma vitesse dépasse 85.6 km/h et si le feu est à moins de 62.3m, alors j'appuie sur le frein avec une force de 33.2 Newtons

Domaines d'application

- L'automatisme (freins ABS),
- la robotique (reconnaissance de formes),
- la gestion de la circulation routière (feux rouges),
- le contrôle aérien,
- l'environnement (météorologie, climatologie, sismologie),
- La médecine (aide au diagnostic),
- L'assurance (sélection et prévention des risques)
- et bien d'autres

Eléments fondamentaux de l'approche floue

Sous-ensembles flous

Sous-ensembles Flous

• **Objectif** : Permettre des graduations dans l'appartenance d'un élément à une classe

Exemple:

- Classe des grandsClasse des moyensClasse des petitsP
- ► X mesure 1m $50 \Rightarrow X \notin G$ X mesure 1m $80 \Rightarrow X \in G$ Entre les deux : notion d'appartenance

Sous-ensembles flous : Définitions

Sous-ensemble classique A de X définie par une fonction caractéristique $\chi_A : X \to \{0, I\}$ $\forall x \in X$, $\chi_A(x) = 0$ si $x \notin A$ $\chi_A(x) = I$ si $x \in A$

Sous-ensemble flou A de X définie par une fonction d'appartenance $f_A: X \to [0, I]$ $\forall x \in X, \quad 0 \le f_A(x) \le 1$

f_A (x): degré d'appartenance de x au sous-ens A

Exemple

Sous-ensemble classique

Sous-ensemble flou

Exemple

Sous-ensemble flou pour la taille d'un individu :

Caractéristiques des sous-ensembles flous

- Support d'un sous-ensemble flou : Supp(A) $Supp(A) = \{ x \in X / f_A(x) \neq 0 \}$
- Hauteur d'un sous-ensemble flou : h(A)
 h(A) = sup _{x∈X} f_A (x)
 Rq : A est un sous-ensemble flou normalisé ⇔ h(A) = 1
- Noyau d'un sous-ensemble flou A : **Noy(A)** $Noy(A) = \{ x \in X / f_A(x) = I \}$

Exercice

 Trouvez le support, la hauteur et le noyau des sousensembles flous suivants

$$A = "la trentaine" X = {ages}$$

Opérations sur les sous-ensembles flous

- □ Soient A, B sous-ensembles flous de X
- Egalité :

$$A = B \Leftrightarrow \forall x \in X, f_A(x) = f_B(x)$$

Inclusion:

$$A \subset B \Leftrightarrow \forall x \in X, f_A(x) \leq f_B(x)$$

Intersection:

$$C = A \cap B \Leftrightarrow \forall x \in X, f_C(x) = \min(f_A(x), f_B(x))$$

Union:

$$D = A \cup B \Leftrightarrow \forall x \in X, f_D(x) = \max(f_A(x), f_B(x))$$

Complément :

$$A^{C}$$
 complément de $A \Leftrightarrow \forall x \in X$, $f_{A}^{C}(x) = 1 - f_{A}(x)$

Exercice

- Donner l'intersection et l'union des sous-ensembles flous suivants :
- □ A = "la trentaine", B = "la quarantaine"

Généralisation des opérateurs d'intersection et d'union

Norme triangulaire ou T-norme : T

```
T:[0,1]\times[0,1]\to[0,1] \text{ v\'erifie}: T(x,y)=T(y,x) \qquad \text{commutativit\'e} T(x,T(y,z))=T(T(x,y),z) \qquad \text{associativit\'e} T(x,y)\leq T(z,t) \text{ si } x\leq z \text{ et } y\leq t \qquad \text{monotonie} T(x,1)=x \qquad 1:\text{\'el\'ement neutre}
```

▶ Conorme triangulaire ou T-conorme : ⊥

```
\bot: [0,1] \times [0,1] \to [0,1] vérifie :  \bot(x,y) = \bot(y,x) \qquad \text{commutativité}   \bot(x,\bot(y,z)) = \bot(\bot(x,y),z) \qquad \text{associativité}   \bot(x,y) \le \bot(z,t) \text{ si } x \le z \text{ et } y \le t \qquad \text{monotonie}   \bot(x,0) = x \qquad 0 : \text{élément neutre}
```

Logique Floue

Modélisation par Logique Floue

Variables linguistiques

 Une <u>variable linguistique</u> est représentée par un triplet (V,X,Tv) où :

V: une variable

X : un ensemble de référence

 $Tv = \{A_1, A_2, ...\}$ ensemble de sous-ensembles flous de X

A_i : terme décrivant V ; caractérisation floue de V

Exemple

Variable linguistique décrivant la <u>taille</u> d'un individu

$$V = taille$$
 $X = R^+$

Tv = {Minuscule, Petit, Moyen, Grand, Immense}

Modificateur linguistique

Traduit l'effet d'un quantificateur linguistique tel que :

```
"très", "très peu", "plus ou moins", "relativement", "pas", ...
```

- Cet opérateur :
 - modifie le degré d'appartenance dans le sens convenable
 - agit sur la zône de transition (partie floue)

Modificateur linguistique

- Un modificateur linguistique est un opérateur m qui permet, à partir de toute caractérisation floue A de V, de produire une nouvelle caractérisation floue m(A).
 - A : caractérisation de V de fonction d'appartenance f_A
 - m: modificateur linguistique associé à la transcription t_m
 - $f_{m(A)}$: fonction d'appartenance de m(A)

Remarque

Si Tv = {petit, moyen, grand} et M = {plutôt, non}

Alors:

M(Tv) = {plutôt petit, plutôt moyen, plutôt grand, non petit, ...} = nouvel ensemble de caractérisations floues engendré par M à partir de Tv

Les variables linguistiques permettent de représenter les connaissances imprécises ou vagues sur une variable

Modificateurs linguistiques: Classification

- > 3 classes de modificateurs :
 - Modificateur de renforcement
 - Modificateur d'affaiblissement
 - Modificateur de négation

Modificateur de renforcement

Modificateurs de renforcement (...)
tels que : "très", "fortement", ...
Associés à la transformation : $t_m(f_A(x)) = f_A(x)^2$

Modificateur d'affaiblissement

Modificateurs d'affaiblissement (...)
tels que : "plus ou moins", "plutôt", ...
Associés à la transformation : $t_m(f_A(x)) = f_A(x)^{1/2}$

Modificateur de négation

Modificateur "non"

Associé à la transformation :

$$t_{m}(f_{A}(x)) = 1 - f_{A}(x)$$

Modificateur: exemple

- Ensemble flou A de fonction d'appartenance f_A, traduisant "proche" pour la variable "distance"
- Modificateurs linguistiques : "très" ou "relativement"

Propositions floues élémentaires

- Soit L un ensemble de variables linguistiques et M un ensemble de modificateurs
- ▶ Une **proposition floue élémentaire** est définie à partir d'une variable linguistique (V,X,Tv) de L par la qualification "**V est A**" pour une caractérisation floue A (normalisée), appartenant à Tv ou à M(Tv).

Propositions floues élémentaires

- Exemples :
 - "la taille est grande"
 - "la vitesse est plutôt rapide"
 - "la consommation est élevée"
- Valeur de vérité d'une proposition floue élémentaire
 f_A

Propositions floues générales

- Composition de propositions floues élémentaires (V,X,Tv) et A ∈ Tv (W,Y,Tw) et B ∈ Tw
- Conjonction floue :"V est A et W est B"
- Disjonction floue :"V est A ou W est B"
- Implication floue:
 "SI V est A ALORS W est B"

Valeurs de vérité

- Conjonction : "V est A et W est B" Valeur de vérité : $min(f_A(x), f_B(y))$ en tout point (x,y) de XxY
- Disjonction: "V est A ou W est B" Valeur de vérité: $max(f_A(x),f_B(y))$ en tout point (x,y) de XxY

Règle floue

• Une **règle floue** est une implication entre 2 propositions floues quelconques:

"Si V est A et W est B prémisse Alors U est C" conclusion

Valeur de vérité : $f_R(x,y) = F(f_A(x), f_B(y))$

Logique Floue

Raisonnement approximatif

Règles Floues

- Rappel : Si V est A Alors W est B Prémisse Conclusion
- Exemple : règle floue concernant un diamant "Si le poids est important alors le prix est élevé«
- Valeur de vérité : $f_R(x,y) = F(f_A(x), f_B(y))$

Principales implications floues

- Reisenbach (R): $f_R(x,y) = 1-f_A(x)+f_A(x).f_B(y)$
- Willmot (W): $f_R(x,y) = \max(1-f_A(x),\min(f_A(x),f_B(y)))$
- Rescher-Gaines (RG): $f_R(x,y) = 1 \text{ si } f_A(x) \le f_B(y)$ = 0 sinon
- Kleene-Dienes (KD): $f_R(x,y) = max(1-f_A(x),f_B(y))$

Principales implications floues

Brouwer-Gödel (BG) : $f_R(x,y) = 1$ si $f_A(x) \pounds f_B(y)$ $= f_B(y)$ sinon

• Goguen (G): $f_R(x,y) = \min(f_B(y)/f_A(x)), 1)$ si $f_B(y)^{-1} 0$ = 1 sinon

Lukasiewicz (L): $f_R(x,y) = min(1-f_A(x)+f_B(y),1)$

Principales implications floues

Implications pour la commande floue

```
Mamdani (M) :

f_R(x,y) = min(f_A(x), f_B(y))
```

Larsen (P): $f_R(x,y) = f_A(x).f_B(y)$

Modus Ponens Généralisé

- **Règle floue** : "Si V est A alors W est B" $Fct \ d'ap$. f_A f_B
- Fait observé : V est A' $Fct \ d'ap$. $f_{A'}$
- Conclusion : W est B' $Fct \ d'ap$. $f_{B'}$

$$f_{B'}(y) = \sup_{x \in X} T(f_{A'}(x), f_{R}(x,y))$$

T : T-norme appelée opérateur de MPG

Intérêt du MPG

- Règle floue : Si le poids d'un diamant est important Alors le prix est élevé
- Faits permettant d'appliquer la règle :
 - ▶ le poids est important : *Logique classique OK*
 - le poids est très important
 - le poids est relativement important
 - le poids est de 1,4 carat

Cas particulier : le fait observé est précis

- $\begin{array}{ll} \hbox{$\triangleright$ R\`egle floue R:} \\ \hbox{$"Si V est A alors W est B"} \\ \hline f_A & f_B \end{array}$
- Fait observé : $V = a_0$
- Conclusion : W est B' $f_{B'}$

 $où: \mathbf{f_{B'}(y)} = \mathbf{f_{R}(a_{0},y)}$

Preuve

$$A'$$
 a_0

- Comme V = a_0 , $f_{A'}(a_0)=1$
- ► Alors : $f_{B'}(y) = T(f_{A'}(a_0), f_R(a_0, y)) = T(1, f_R(a_0, y))$
- ightharpoonup Comme T est une T-norme, T(x,1) = x
- D'où : $f_{B'}(y) = f_{R}(a_{0}, y)$
- Si on utilise Mamdani, $f_{B'}(y) = min(f_A(a_0), f_B(y))$

Exemple

- Règle : Si la Distance est courte Alors le Freinage est puissant
- Or la Distance est de 70 m
- Donc le Freinage est ?

Exemple

Distance:

Freinage:

Soit
$$D = 70 \text{ m}$$

$$f_{Puissant'}(y) = f_{R}(70,y) = min(f_{Courte}(70), f_{Puissant}(y))$$

= $min(0.8, f_{Puissant}(y))$

Logique Floue

Commande Floue

Commande de procédés

Intérêts de la commande floue

- Manipulation de connaissances imprécises et qualitatives
- Il n'est pas nécessaire de disposer d'un modèle mathématique du système à contrôler
- Travail à base de règles expertes
- Facilité de mise en oeuvre et de maintenance

Principe d'un contrôleur flou

Les étapes du contrôle

- Fuzzification
 - passage du non-flou au flou
- Pour chaque règle :
 - Evaluation de la prémisse
 - Implication floue
 - Inférence floue
- Agrégation des règles
- Défuzzification
 - passage du flou au non-flou

Fuzzification

Passage du domaine numérique au domaine symbolique

Principe :

- L'espace de variation d'une variable est partagé en qualificatifs linguistiques, traduisant les différents états possibles de la variable
- Pour chaque qualificatif, on définit une fonction d'appartenance.

Fuzzification: exemple

Pour une observation T₀ de la variable
 Température, on définit la représentation floue de T₀ par :

$$F_{\text{froide}}(T_0)=0.75$$

 $F_{\text{tiède}}(T_0)=0.25$
 $F_{\text{chaude}}(T_0)=0$

Evaluation des règles

R: Si V est A alors W est B

Selon Mamdani:

Conjonction: min

Disjonction: max

• Implication floue : $min(f_A(x), f_B(y))$

Evaluation de règles

R: Si V est A alors W est B

Selon Larsen :

Conjonction: min

Disjonction: max

• Implication floue : $f_A(x).f_B(y)$

Agrégation

- Chacune des règles donnent une caractérisation de la variable de commande W : B'₁, B'₂
- ⇒ Agrégation = déterminer une caractérisation floue B à partir des résultats intermédiaires B'₁, B'₂.....
- $\Rightarrow \forall y \in Y, f_B(y) = \max_{i=1,2,...} f_{B'_i}(y)$

Défuzzification

- Plusieurs méthodes :
 - Le centre de gravité
 - le centre des maximum pondérés
 - le maximum

Centre de gravité

• Exemples :

Centre des maximums pondérés

• Exemples :

Le maximum

Mise en place d'un contrôleur flou

Etude:

- Identification des variables
- Définition des variables linguistiques
- Définition des règles
- Choix des méthodes d'inférence et de défuzzification

Contrôle :

- Fuzzification
- Evaluation des règles
- Agrégation
- Défuzzification

Identification des variables

- Entrées
- Sorties
- ⇒ Unité
- ⇒ Plage de variations
- ⇒ Capteurs ou actionneurs associés

Définition des variables linguistiques

- Allure des fonctions d'appartenance
- Nombre de termes finesse
- Recouvrement

Définition des règles

Expertise

- Savoir-faire d'opérateurs humains
 - observation
 - questionnaire
- Savoir d'experts dans le domaine
- Apprentissage de règles à partir d'expériences

Ecriture des règles

Règles de production

- Si la température est chaude ET le sol sec, Alors la durée d'arrosage est longue.
- ightharpoonup Si X_1 est A_1 et X_2 est A_2 alors Y est B

Tableau

	Froide	Douce	Normale	Chaude	Caniculaire
Sec	Courte	Moyenne	Moyenne	Longue	Longue
Humide	_	Courte	Moyenne	Moyenne	Longue
Trempé	_	_	_	_	Courte

Choix des méthodes d'inférence et de défuzzification

- Opérateurs flous
- Implication floue
- Agrégation
- Défuzzification

Application 1 : Arroseur Flou

Contrôleur flou

- 2 entrées :
 - Température
 - Degré d'humidité du sol
- ▶ 1 sortie:
 - Durée d'arrosage

Définition des variables floues

La gamme des températures traitées est 0° à 45° et les termes linguistiques caractérisant la température sont : Froide, Douce, Normale, Chaude, Caniculaire. Chacun de ces termes correspond à un ensemble flou dont le noyau et le support sont définis par :

Noyau(Froide): [0, 5]°

Noyau(Douce): 13°

Noyau(Normale): [18, 22]°

Noyau(*Chaude*) : [26, 30]°

Noyau(Caniculaire): [38, 45]°

Support(Froide): [0, 13]°

Support(Douce): [5,18]°

Support(Normale):[13, 26]°

Support(Chaude): [22, 38]°

Support(Caniculaire): [30, 45]°

Le degré d'humidité du sol s'étend de 0% à 100%. Les termes linguistiques associés Sec, Humide, Trempé sont caractérisés par :

Noyau(Sec) : [0, 40] %

Noyau(*Humide*) : [60, 70] %

Noyau(Trempé): [80, 100] %

Support(Sec) : [0, 60] %

Support(*Humide*): [40, 80] %

Support(*Trempé*) : [70, 100] %

Définition des variables floues

La durée d'arrosage va de 0 à 30 minutes et les termes linguistiques caractérisant la durée d'arrosage sont : Courte, Moyenne et Longue. Chacun de ces termes correspond à un ensemble flou dont le noyau est défini par :

```
Noyau(Courte): [0, 5] min Support(Courte): [0, 10] min Noyau(Moyenne): 10 min Support(Moyenne): [5, 30] min Noyau(Longue): 30 min Support(Longue): [10, 30]min
```


Représentation trapézoïdale

• On utilisera la représentation trapézoïdale « quadruplet de valeurs » (a_k, b_k, c_k, d_k) pour les sous-ensembles flous F_k

Froide: [0,0,5,13] Douce: [5,13,13,18]

Définition des règles

	Froide	Douce	Normale	Chaude	Caniculaire
Sec	Courte	Moyenne	Moyenne	Longue	Longue
Humide	-	Courte	Moyenne	Moyenne	Longue
Trempé	_	-	_	_	Courte

Fuzzification: méthode manuelle

$$\begin{split} &\text{Si } T_0 < a_k \text{ alors } d^\circ appartenance = 0 \\ &\text{Si } a_k < T_0 < b_k \text{ alors } d^\circ appartenance = (T_0 - a_k)/(b_k - a_k) \\ &\text{Si } b_k < T_0 < c_k \text{ alors } d^\circ appartenance = 1 \\ &\text{Si } c_k < T_0 < d_k \text{ alors } d^\circ appartenance = (d_k - T_0)/(d_k - c_k) \\ &\text{Si } T_0 > d_k \text{ alors } d^\circ appartenance = 0 \end{split}$$

Fuzzification pour la température

- ▶ Soit $T_0 = 6^\circ$ pour la variable Température
- $F_{\text{Froide}}(T_0) = 0.875$

$$F_{Douce}(T_0) = 0.125$$

$$F_{Normale}(T_0)=0$$

$$F_{\text{Chaude}}(T_0)=0$$

$$F_{\text{Caniculaire}}T_0)=0$$

Fuzzification pour l'humidité

- Soit $d_0 = 50\%$ pour la variable Humidité
- $F_{Sec}(d_0)=0.5$ $F_{Humide}(d_0)=0.5$ $F_{Tremp\acute{e}}(d_0)=0$

Evaluation des règles : Modus Ponens Généralisé

- Règle floue : Si V est A Alors W est B
- ▶ Fait précis : A'=a₀
- Conclusion :W est B' où $f_{B'}(y) = f_{R}(a_{0},y)$
- ► Selon Mamdani, $f_R(a_0,y) = min(f_A(a_0), f_B(y))$
- Si la condition de la règle contient une conjonction de 2 propositions (U est C et V est D) et si on a 2 faits précis (C'= c_0 et D'= d_0), $f_A(a_0)=\min(f_C(c_0),f_D(d_0))$

Application des règles

 R : Si la Température est Froide et l'Humidité Sec Alors la Durée d'arrosage est Courte

Selon Mamdani:

- ▶ Conjonction : min
- Implication floue : Courte = min(Froide,Sec)
- ► Soit : $f_{Courte'(y)} = min(min(Froide,Sec), f_{Courte}(y))$

Application des règles

	Froide 0.875	Douce 0.125	Normale	Chaude	Canniculaire
Sec 0.5	Courte 0.5	Moyenne 0.125	Moyenne	Longue	Longue
Humide 0.5	Nul	Courte 0.125	Moyenne	Moyenne	Longue
Trempé	Nul	Nul	Nul	Nul	Courte

Application des règles et agrégation

- Inférence (Mamdani)
 - \rightarrow min(Froide,Sec) = min(0.875,0.5)=0.5 (Courte)
 - \rightarrow min(Douce,Sec) = min(0.125,0.5)=0.125 (Moyenne)
 - \rightarrow min(Douce, Humide) = min(0.125, 0.5) = 0.125 (Courte)
- Agrégation
 - $\max(0.5, 0.125) = 0.5$ (Courte)
- Sortie Floue pour la durée d'arrosage Courte : 0.5 ; Moyenne : 0.125 ; Longue : 0

Défuzzification pour la durée théorique

Défuzzification pour la durée théorique

Durée d'arrosage =
$$\sum y_i f_{B'}(y_i) / \sum f_{B'}(y_i)$$

Durée d'arrosage = Numérateur / Dénominateur

Numérateur =
$$(0+1+2+...+7)\times0.5 + 8\times0.4 + 9\times0.2 + (10+...+27)\times0.125 + 28\times0.1 + 29\times0.05 + 30\times0$$

= 64.875

Dénominateur = $8 \times 0.5 + 0.4 + 0.2 + 18 \times 0.125 + 0.1 + 0.05 + 0 = 7$

D'où:

Durée d'arrosage = 64.875 / 7 = 9,26 minutes

Logique Floue

Raisonnement possibiliste

Raisonnement possibiliste

- Concerne des <u>connaissances précises et</u> <u>incertaines</u>
- Représentation des connaissances à l'aide de propositions logiques classiques

Possibilité et nécessité de propositions logiques (Zadeh)

- □ ∀p,q propositions logiques
- $\triangleright \Pi(p)$: coefficient que l'on attribue au fait que p soit susceptible d'être vraie
- $\Pi(p \vee q) = \max(P(p), \Pi(q))$
- N(p): mesure le degré de certitude que l'on possède sur cette vérité
- $N(p \land q) = min(N(p),N(q))$

Propriétés

- $\Pi(p \vee q) \geq P(p)$
- $N(p \land q) \le N(p)$
- $\min(N(p), N(\neg p)) = 1$
- $\Pi(p) = 1 N(\neg p)$

Propriétés

- ▶ Si $\Pi(p)=N(p)=1$ Alors p est vraie
- ▶ Si $\Pi(p)=N(p)=0$ Alors p est fausse
- ▶ Si $\Pi(p)=1$ et N(p)=0 (donc $\Pi(\neg p)=1$) Alors incertitude complète sur p

Modus ponens possibiliste

• $a,b \in [0,1]$

Si
$$N(p \rightarrow q) \ge a$$

Et $N(p) \ge b$

Alors $N(q) \ge min(a,b)$

Exemple

- Règle : «Si la hauteur de l'arbre dépasse 9m, alors l'élaguer» (0.8)
- ▶ Fait : Un arbre particulier caractérisé par «la hauteur dépasse 9m» (0.7)
- Conclusion : Décision d'élaguer avec une certitude au moins égale à min(0.8;0.7) = 0.7

Modus tollens possibiliste

Si $N(p \rightarrow q) \ge a$ Et $\Pi(q) \le b$

Alors $\Pi(p) \leq \max(1-a,b)$

Si $N(p \rightarrow q) = 1$ Et $N(q) \le b'$

Alors $N(p) \leq b'$

Exemple

- Règle : «Si la hauteur de l'arbre dépasse 9m, alors l'élaguer» (0.8)
- Fait : « Il est possible que l'arbre ait été élagué » avec un degré de possibilité au plus égal à 0.1.
- Conclusion : « il est possible que sa hauteur dépasse 9m » avec un coefficient au plus égal à max(0.2,0.1)=0.2.

Connaissances incertaines et imprécises

- Exemples :
 - Si le poids est important alors le prix est élevé
 - Il est probable (0.5) que la vitesse soit élevée.
- → Utilisation de la logique floue (raisonnement approximatif ou raisonnement possibiliste)

Systèmes Experts Flous: 2 cas possibles

- Connaissances imprécises ou vagues dans règles et faits
 - ⇒ Représentation des K. par des Règles Floues : Le moteur d'inférence utilise un Raisonnement Approximatif
- Connaissances précises, mais règles et faits incertains
 - ⇒ Utilisation de coefficients de certitude : Le moteur d'inférence utilise un Raisonnement Possibiliste

Bibliographie

- D. Kayser, La représentation des connaissances, Hermès (Paris), 1997.
- J.L. Laurière, Intelligence Artificielle (résolution de problèmes par l'homme et la machine), Eyrolles, Paris, 1987.
- M. Stefik, Introduction to Knowledge Systems, Morgan Kaufmann Publishers, San Francisco (CA), 1995.
- A. Thayse et al., Approche logique de l'Intelligence Artificielle (5 tomes), Dunod Informatique (Paris), 1988.
- ▶ B. Bouchon-Meunier : « La logique floue ». PUF « Que Sais-Je ? »
- L. Gacogne: « Éléments de logique floue ». Hermès, 1997.