	M	_	50	, ,	1-	ons	
Name:		1	701	. 0	,	RCS ID:	 @rpi.edu

Graph Theory Quiz 4 (14 June 2019) Open book, open notes, open neighbor.

1. Using the greedy coloring algorithm, how many colors will result on the graph G below with the two given vertex orderings? (6 pts)

2. Tightly bound the possible chromatic numbers of G, $\chi(G)$. Justify your response using the bounds discussed in class.

3. Is G color-critical? Justify your response.

[No] We've bounded X(G)=2 In order to have H=G-es.t. X(H)=I, Gworld need to have only a single edge 4. Recall that C_n is color-critical for n = odd. Show that any graph G is k-color-critical for $\chi(G) = k = 3$ if and only if G is an odd cycle.

If G is odd cycle = 7 G is color-critish
and X(G) = 3 - We demonstrated that all odd cycles, have chromatre number of 3 in class with a greedy coloring argument. - Odd cycles are color-critical, as renowing any edge creates a path, colorable w/2 colors Gis color-critical and X(G)=3=7 Gis odd - Color-critical implies removing some e will decrease the chromatic number - G is not a cyclic nor bipartile (X(G)=2) 50 G contains cycles, at least one of which is odd - Consider removing a hypothetical e not in an odd cycle; as the odd cycle remains, the chromatic number is still 3

- Hence, any such e must be in an odd

cycle and there can only be one odd

cycle = 7 G is an odd cycle I