Derivative Free Optimization

Topic 3: Genetic Algorithms

Warren Hare

Genetic Algorithms

Survival of the fittest

- In 1864 Charles Darwin published "On the origin of species"
- In 1869, Darwin published edition 5 and include the phrase "survival of the fittest"
- The phrase is originally attributed to Herbert Spencer, an economist

GENETIC ALGORITHM philosophy

Use *survival of the fittest* to remove poor solutions and create new better solutions

Genetic Algorithms, history

- Late 1960s, Rechenberg writes "Evolutionary Strategies for Optimization" (in German) and uses then to optimize aerofoils
- 1971, Rechenberg's PhD thesis
- 1975, John Holland write "Adaptation in Natural and Artificial Systems"
- 2020, Rechenberg's thesis has 125 citations,
 Holland's book has 67,000+ citations

Genetic Algorithms, Overview

- Points in constraint set = potential members in a population
- Collection of points = population
- Function values = quality of individual (fitness)
- Algorithms Iterations = reproduction & survival

Algorithm: Genetic Algorithms (GA)

```
Given f: \mathbb{R}^n \to \mathbb{R} and an initial population P^0 = \{x^1, x^2, \dots, x^{\bar{p}}\}
Initialize:
       \gamma \in (0,1) mutation probability k \leftarrow 0 iteration counter
```

1 Fitness:

Use f(x) to assign a fitness to each individual $x \in P^k$

2. Reproduce:

- 2a) Selection: select 2 parents from P^k and proceed to 2b) or select 1 survivor from P^k and proceed to 2d)
- 2b) Crossover: use the 2 parents to create an offspring
- 2c) Mutation: with probability γ mutate the offspring if the offspring is infeasible declare the offspring deceased and return to 2a) otherwise declare the offspring a survivor and proceed to 2d)

2d) Update next generation: place survivor into P^{k+1}

if $|P^{k+1}| \ge \bar{p}$ declare population complete and proceed to 3 otherwise declare population incomplete and go to 2a)

3. Update:

increment $k \leftarrow k+1$, stop or go to 1

Notes

- GA is more of a framework than an algorithm
- The great flexibility has resulted in a lot of custom-made GA

Fitness & Selection

Genetic Algorithm

To maintain the spirit of genetics,

- GA begins by assigning each point a fitness
- Fitness is used to select survivors and parents
- Parents create offspring
- Offspring are mutated to create more variation

Fitness

Fitness converts function value into a new number

Fitness should follow two rules

- When minimizing, if f(x) < f(y) then x is more fit than y (When maximizing, if f(x) > f(y) then x is more fit than y)
- Fitness should be strictly positive

Rank Fitness (minimization)

Definition: Given a population P^k with function values $\{f(x^i)\}$ The **rank fitness** of x^i is the number of points x^j where $f(x^i) \leq f(x^j)$

Example: Suppose $P = \{x^1, x^2, \dots, x^5\}$ and

$$f(x^1) = -3$$
, $f(x^2) = 4$, $f(x^3) = 1$, $f(x^4) = 1$, $f(x^5) = 2$

Find the rank fitness

Function Value Fitness (minimization)

Definition: Given a population P^k with function values $\{f(x^i)\}$ The **function valued fitness** is obtained by multiplying the function value by -1 and then shifting the results until the lowest value is equal to 1

$$\operatorname{Fit}(x^i) = -f(x^i) + \bar{f} + 1$$
 where $\bar{f} = \max_{i=1,2,...,\bar{p}} \{f(x^i)\}$

Example: Suppose $P = \{x^1, x^2, \dots, x^5\}$ and

$$f(x^1) = -3$$
, $f(x^2) = 4$, $f(x^3) = 1$, $f(x^4) = 1$, $f(x^5) = 2$

Find the function value fitness

Selection

Given population P^k In selection we create two subsets

- **1** Survivors $S^k \subseteq P^k$

To maintain the spirit of genetics, typically some randomness is used

Elitism Selection

Definition: Given a population P^k with fitness values $\{f^i = \text{Fit}(x^i)\}$ **Elitism selection** of size s selects the s individuals with the highest fitness level with ties broken by random selection with uniform probability

Example: Suppose $P = \{x^1, x^2, \dots, x^5\}$ and

$$Fit(x^1) = 3$$
, $Fit(x^2) = 2$, $Fit(x^3) = 1$, $Fit(x^4) = 5$, $Fit(x^5) = 3$

Describe the result if elitism selection is used to select 2 individuals

Roulette Wheel Selection

Definition: Given a population P^k with fitness values $\{f^i = \text{Fit}(x^i)\}$ Roulette wheel selection randomly selects individuals with probability

$$\operatorname{prob}\{x^i\} = f^i / \sum_{j=1}^{\bar{p}} f^j$$

Example: Suppose $P = \{x^1, x^2, \dots, x^5\}$ and

$$Fit(x^1) = 3$$
, $Fit(x^2) = 2$, $Fit(x^3) = 1$, $Fit(x^4) = 5$, $Fit(x^5) = 3$

Describe the result if roulette wheel selection is used to select 1 individual

Tournament Selection

Definition: Given a population P^k with fitness values $\{f^i = \text{Fit}(x^i)\}$ Given a **tournament size** $1 \le N \le \bar{p}$

Tournament selection first randomly chooses *N distinct* individuals with equal probability, then selects from this subset using either elitism or roulette selection

Example: Suppose $P = \{x^1, x^2, \dots, x^5\}$ and

$$Fit(x^1) = 3$$
, $Fit(x^2) = 2$, $Fit(x^3) = 1$, $Fit(x^4) = 5$, $Fit(x^5) = 3$

Describe the result if tournament selection is used to select 2 individuals when

- 1 the tournament size is 2 and elitism is used
- 2 the tournament size is 2 and roulette wheel is used
- 1 the tournament size is 3 and roulette wheel is used

Tournament Selection, size 2

Tournaments of size 2 for $P = \{x^1, x^2, \dots, x^5\}$

Tournament	Probability
$\{x^1, x^2\}$	1/10
$\{x^1, x^3\}$	1/10
$\{x^1, x^4\}$	1/10
$\left\{x^1, x^5\right\}$	1/10
$\{x^2, x^3\}$	1/10
$\{x^2, x^4\}$	1/10
$\{x^2, x^5\}$	1/10
$\{x^3, x^4\}$	1/10
$\{x^3, x^5\}$	1/10
$\{x^4, x^5\}$	1/10

Tournament Selection, Elitism size 2

Elitism winners when

$$Fit(x^1) = 3$$
, $Fit(x^2) = 2$, $Fit(x^3) = 1$, $Fit(x^4) = 5$, $Fit(x^5) = 3$

Tournament	Probability	Winner
$\{x^1, x^2\}$	1/10	x ¹
$\{x^1, x^3\}$	1/10	x^1
$\{x^1, x^4\}$	1/10	x ⁴
$\{x^1, x^5\}$	1/10	x^1 and x^5 tie
$\{x^2, x^3\}$	1/10	x ²
$\{x^2, x^4\}$	1/10	x ⁴
$\{x^2, x^5\}$	1/10	x ⁵
$\{x^3, x^4\}$	1/10	x ⁴
$\{x^3, x^5\}$	1/10	x ⁵
$\{x^4, x^5\}$	1/10	x ⁴

Tournament Selection

Tournaments of size 3 for $P = \{x^1, x^2, \dots, x^5\}$

Tournament	Probability
$\{x^1, x^2, x^3\}$	1/10
$\{x^1, x^2, x^4\}$	1/10
$\{x^1, x^2, x^5\}$	1/10
$\{x^1, x^3, x^4\}$	1/10
$\{x^1, x^3, x^5\}$	1/10
$\{x^1, x^4, x^5\}$	1/10
$\{x^2, x^3, x^4\}$	1/10
$\{x^2, x^3, x^5\}$	1/10
$\{x^2, x^4, x^5\}$	1/10
$\{x^3, x^4, x^5\}$	1/10

Encoding

What is encoding

To maintain the spirit of genetics, most GA start by encoding the points as *chromosomes*

$$x \in \mathbb{R}^n \mapsto c \in \{0,1\}^d$$

This is called **encoding**

Example:

Suppose $\Omega = [0,1]$

Encode $x \in \Omega$ by

$$x < \frac{1}{2} \quad \mapsto \quad c = 0$$

$$x \ge \frac{1}{2} \quad \mapsto \quad c = 1$$

What is encoding

To maintain the spirit of genetics, most GA start by encoding the points as *chromosomes*

$$x \in \mathbb{R}^n \mapsto c \in \{0,1\}^d$$

This is called **encoding**

Example:

Suppose $\Omega = [0, 1]$

Encode $x \in \Omega$ by

$$x < \frac{1}{2} \mapsto c = 0$$

 $x \ge \frac{1}{2} \mapsto c = 1$

Alternately

Natural encodings

Some problems have a *natural structure* that makes encoding easy **Example:**

$$\min \left\{ \textit{expected overtime}: \begin{array}{l} \textit{all shifts filled} \\ \textit{staff are 'happy'} \end{array} \right\}$$

uses the variables

$$x_{i,j} \in \{0,1\}$$

with $x_{i,j} = 1$ if staff member i works shift j

(See MATH 441 for more info on scheduling problems)

Natural encoding for bounded variables

Definition: If $x \in \mathcal{Z}^n$ with $\ell \le x \le u$, then the **natural encoding for bounded integer variables** replaces each x_i with the binary string $c^i \in \{0,1\}^{d_i}$ where d_i is the number of bits required The final chromosome is defined by $c = [c^1, c^2, \dots, c^n]^\top$

Example: Let $S = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 8, -2 \le x_2 \le 1, x_i \in \mathcal{Z}\}$ Develop the natural encoding for S

Discretization encoding

Definition: Suppose $x \in \mathbb{R}^1$ with $\ell \le x \le u$ Select d and set $\Delta = (u - \ell)/(2^d)$ Separate [I, u] into 2^d equal sized subintervals

$$[\ell,\ell+\Delta)$$
 $[\ell+\Delta,\ell+2\Delta)$... $[\ell+(2^d-1)\Delta,\ell+(2^d)\Delta]$

The discretization encoding is created by enumerating the interval list and encoding the integer enumeration If $x \in \mathbb{R}^n$, the encode each $x_i \mapsto c^i$, then set $c = [c^1, c^2, ...c^n]^\top$

Example: Let $S = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 8, -2 \le x_2 \le 1\}$ Develop a discretization encoding using $2^2 = 4$ equally spaced subintervals in each coordinate

Notes

- Using 2^d subintervals in a discretization encoding avoids waste
- Another option is to not encode (leave $x \in \mathbb{R}^n$)

Reproduction

Reproduction

Survivors of iteration k are placed into P^{k+1}

Parents are combined to create offspring

 $\mathsf{parent1} \oplus \mathsf{parent2} \to \mathsf{child}$

To maintain the spirit of genetics...

Crossover

Definition: Given parents $p = [p_1, p_2, \dots, p_d]^{\top}$ and $q = [q_1, q_2, \dots, q_d]^{\top}$ Single-point crossover selects a random number $X \in \{1, 2, \dots, d-1\}$, and creates the child

$$[p_1, p_2, \ldots, p_X, q_{X+1}, q_{X+2}, \ldots, q_d]^{\top}$$

Example: Let $p = [5, 2, -3, 5, 9, 1]^{\top}$ and $q = [3, 0, 0, 5, 2, 1]^{\top}$ Describe the result of a single-point crossover

Crossover

Definition: Given parents $p = [p_1, p_2, \dots, p_d]^{\top}$ and $q = [q_1, q_2, \dots, q_d]^{\top}$ **2-point crossover**, selects 2 random numbers $X_1 \in \{1, 2, \dots, d-2\}$ and $X_2 \in \{X_1 + 1, X_1 + 2, \dots, d-1\}$ and creates the child

$$[p_1, p_2, \ldots, p_{X_1}, q_{X_1+1}, q_{X_1+2}, \ldots, q_{X_2}, p_{X_2+1}, p_{X_2+2}, \ldots, p_d]^{\top}$$

Example: Let $p = [5, 2, -3, 5, 9, 1]^{\top}$ and $q = [3, 0, 0, 5, 2, 1]^{\top}$ Describe the result of a 2-point crossover

Crossover

Definition: Given parents $p = [p_1, p_2, \dots, p_d]^{\top}$ and $q = [q_1, q_2, \dots, q_d]^{\top}$ *n*-point crossover, selects *n* random numbers ...

Probabilistic gene selection

Definition: Given parents $p = [p_1, p_2, \dots, p_d]^{\top}$ and $q = [q_1, q_2, \dots, q_d]^{\top}$ Select a probability parameter $\theta \in (0, 1)$

Probabilistic gene selection produces child c such that

$$\operatorname{prob}(c_i = p_i) = \theta$$
 and $\operatorname{prob}(c_i = q_i) = (1 - \theta)$

Example: Let $p = [5, 2, -3, 5, 9, 1]^{\top}$ and $q = [3, 0, 0, 5, 2, 1]^{\top}$ Describe the result of a probabilistic gene selection for $\theta = 0.25$

Weighted Average

Definition: Given parents $p \in \mathbb{R}^d$ and $q \in \mathbb{R}^d$ Select a weight parameter $\theta \in (0,1)$ **Weighted average** produces the child

$$c = \theta p + (1 - \theta)q$$

Example: Let $p = [5, 2, -3, 5, 9, 1]^{\top}$ and $q = [3, 0, 0, 5, 2, 1]^{\top}$ Suppose Fit(p) = 6 and Fit(q) = 4 Describe the result of a weighted average where $\theta = \frac{Fit(p)}{Fit(p) + Fit(a)}$

Mutation

Mutation

Offspring in natural are never exact copies of their parents

To maintain the spirit of genetics, mutation is applied

Bit Inversion

Definition: Given offspring $c = [c_1, c_2, \dots, c_d]^{\top}$ where $c_i \in \{0, 1\}$ Fix a mutation probability $\delta \in (0, 1)$

The bit inversion mutation creates mutated offspring m such that

$$\operatorname{prob}(m_i = c_i) = (1 - \delta)$$
 and $\operatorname{prob}(m_i \neq c_i) = \delta$.

Example: Suppose $c = [1, 0, 0]^{\top}$ and let $\delta = 1/3$ Describe the mutated offspring of a bit inversion mutation

Coordinate perturbation

Given offspring $c = [c_1, c_2, \dots, c_d]^{\top}$ where $c_i \in \mathbb{R}$

Fix a mutation probability $\delta \in (0,1)$

Fix a mutation probability distribution function F

Coordinate perturbation creates mutated offspring m such that

$$\operatorname{prob}(m_i = c_i) = (1 - \delta)$$
 and $\operatorname{prob}(m_i \neq c_i) = \delta$

and

if
$$m_i \neq c_i$$
, then $m_i = c_i + \xi$ where ξ follows the distribution F

Example: Suppose $c = [0.5, 0, 0.3]^{\top}$ and let $\delta = 1/3$ Let F be uniform in [-0.1, 0.1]

Describe the mutated offspring of a coordinate perturbation

Convergence

Stochastic

GA are stochastic

• i.e., the algorithm contains random subroutines, so running it twice on the same problem can get different results

So, we aim for probabilistic convergence

ullet i.e., we try to prove $\operatorname{prob}(\lim_{k o \infty} f_{\mathtt{best}}^k = f^*) = 1$

Required assumptions

Definition: (Monotonicity)

The **monotonicity** assumption for GA is that the best function value for population k+1 is at least as good as the best function value for population k

$$\min\{f(x^i) : x^i \in P^{k+1}\} \le \min\{f(x^i) : x^i \in P^k\}$$

Definition: (Positive probabilities - binary encoded)

Suppose points are binary encoded

The **positive probabilities** assumption states that the set of encoded points is finite and there exists $\varepsilon > 0$ such that

 $\operatorname{prob}(c \in P^k) \ge \varepsilon$ for any encoded point c and iteration k

* Positive probabilities can be rephrased for unencoded or other encodings

Monotonicity

Theorem: Suppose a GA is used such that

each generation has at least 1 survivor picked by elitism

Then the monotonicity assumption holds

Positive probabilities

Theorem: Suppose a GA with binary encoding is used such that

- at least one offspring is generated per iteration
- bit inversion mutation is used

Then the positive probabilities assumption holds

* Similar results hold for unencoded or other encodings

Convergence

Theorem: Suppose a GA is used such that

- the points are binary encoded
- the monotonicity and positive probability assumptions hold

Let

$$\begin{split} f^* &= \min_{\boldsymbol{x}} \{ f(\boldsymbol{x}) \ : \ \boldsymbol{x} \in \Omega \}, \\ f^k_{\text{best}} &= \min \{ f(\boldsymbol{x}^i) \ : \ \boldsymbol{x}^i \in P^k \} \text{ and } \quad x^k_{\text{best}} \in \operatorname{argmin}_{\boldsymbol{x}} \{ f(\boldsymbol{x}) \ : \ \boldsymbol{x} \in \Omega \}, \end{split}$$

Then

$$\operatorname{prob}\left(\lim_{k\to\infty}f_{\mathtt{best}}^k=f^*\right)=1\quad\text{ and }\quad \lim_{k\to\infty}\operatorname{prob}(P^k\cap X^*\neq\emptyset)=1.$$

* Similar results hold for unencoded or other encodings

Final Remarks

Genetic Algorithms

Pros:

- Very popular
- Very flexible
- Theoretical proof that GA probably converges

Cons:

- Requires infinite time
- No way to know when you can stop
 - Popular stopping methods are fixed budget and improvement stagnation

Conclusion

- Not really a DFO method
- Can be useful for BBO

Assignment 3

Assignment 3

MATH 462

Textbook # 4.1, 4.4, 4.5, 4.8, 4.9

COSC 419K

Textbook # 4.2, 4.3, 4.4, 4.5, 4.8

MATH 562

- All MATH 462 and COSC 419K questions
- Textbook # 4.6b, 4.11