Grundlagen Informations Sicherheit Übungsblatt 01

Max Kurz (3265240) Mohamed Barbouchi (3233706) Daniel Kurtz 123456

Problem 1

a)

D()	A	В	$\mid C \mid$
$\overline{k_1}$	a	b	c
k_2	С	a	b
k_3	b	С	a

b)

D()	A	В	$\mid C \mid$
k_1	a	b	c
$\overline{k_2}$	b	a	c
k_3	a	b	c

c) Klappt nicht, da $\forall x \in X, k \in K: D(E(x,k),k) = x$ gelten muss und wir hier aber $D(A,k_1) = a$ und $D(A,k_1) = c$ bekommen. Die Entschlüsslelung ist also nicht eindeutig.

Problem 2

Das Wort lautet: Hitchhiker Man wandelt die Zahlen in Binär um, und xort die beiden Strings. Das Ergebnis wird wieder in Dezimal umgewandelt.

Problem 3

a) Sei $x \in \{0,1\}^l$, dann gilt $x^l \oplus x^l \oplus x^l = x^l \oplus 0^l$ wobei 0^l hier die Identität ist. Für die Identität gilt: $x \oplus 1_m = x$.

Algorithm 1 D(Y)

- 1: $z_1.\mathtt{concat}(z_2) := Y \ \mathrm{mit} \ |z_1| = |z_2|$
- $2: l := |z_2|$
- $3: r := z_2 \oplus 1^l$
- 4: return r

Algorithm 2 Attack

- b) 1: Let $x \in \{0^l\}$ and $y \in \{1^l\}$
 - $2: \operatorname{send}(x)$
 - $3: \operatorname{send}(y)$
 - 4: receive(w)
 - 5: $if(w == 0^l) b = 1 else b = 0$
 - 6: return b

Die Wahrscheinlichkeit für den Angreifer so die richtige Nachricht zu erkennen und das passende b zurückzugeben liegt bei 1. Siehe Aufgabe a).