

Announcements

Sections start Wednesday. Times coming soon!

Review

Review, Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: If events *E* and *F* are mutually exclusive:

$$P(E \cup F) = P(E) + P(F)$$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = P(E) + P(F)$$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$

Mutually Exclusive Events

$$P(X_1 \cup X_2 \cup \dots \cup X_n) = \sum_{i=1}^n P(X_i)$$

Review, Mutually Exclusive Events

If events are *mutually* exclusive probability of OR is easy!

$$P(E^c) = 1 - P(E)?$$

$$P(E \cup E^c) = P(E) + P(E^c)$$

Axiom 3. Since E and E^c are mutually exclusive

$$P(S) = P(E) + P(E^c)$$

Since everything must either be in E or E^c

$$1 = P(E) + P(E^c)$$

Axiom 2

$$P(E^c) = 1 - P(E)$$

Rearrange

Let it find you.

SERENDIPITY

the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.

Serendipity Review

- Say the population of Stanford is people
- You are friends with f people
- Walk into a room, see s random people.

Let *E* be the event that you see at least one friend

$$P(E^C) = \frac{\binom{p-f}{s}}{\binom{p}{s}}$$

$$P(E) = 1 - \frac{\binom{p-J}{s}}{\binom{p}{s}}$$

Many times it is easier to calculate ${\cal P}({\cal E}^C)$.

End Review

Learning Goal for Today: Conditional Probability

Chain rule (Product rule)

Definition of conditional probability

P(E|F)

Law of Total Probability

Bayes'
Theorem

P(E)

P(F|E)

Conditional Probability

Roll two dice

E = In blue

$$P(E) = \frac{|E|}{|S|}$$
 Equally likely outcomes

Roll two 6-sided fair dice. What is P(sum = 7)?

$$S = \{(1,1) \ (1,2) \ (1,3) \ (1,4) \ (1,5) \ (1,6)$$

$$(2,1) \ (2,2) \ (2,3) \ (2,4) \ (2,5) \ (2,6)$$

$$(3,1) \ (3,2) \ (3,3) \ (3,4) \ (3,5) \ (3,6)$$

$$(4,1) \ (4,2) \ (4,3) \ (4,4) \ (4,5) \ (4,6)$$

$$(5,1) \ (5,2) \ (5,3) \ (5,4) \ (5,5) \ (5,6)$$

$$(6,1) \ (6,2) \ (6,3) \ (6,4) \ (6,5) \ (6,6) \}$$

Dice, our misunderstood friends

Roll two 6-sided dice, yielding values D_1 and D_2 . You want them to sum to 4.

What is the best outcome for $P(D_1)$?

Your Choices:

- A. 1 and 3 tie for best
- B. 1, 2 and 3 tie for best
- C. 2 is the best
- D. Other/none/more than one

Sum of Two Die = 4?

Roll two 6-sidex dice. What is probability the sum = 4? Let E be the event that the sum is 4

Dice, our misunderstood friends

Roll two 6-sided dice, yielding values D_1 and D_2 .

Let E be event: $D_1 + D_2 = 4$.

What is P(E)?

$$|S| = 36$$

 $E = \{(1,3), (2,2), (3,1)\}$

$$P(E) = 3/36 = 1/12$$

Let F be event:
$$D_1 = 2$$
.

What is P(E, given F already observed)?

$$S = \{(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)\}$$

 $E = \{(2,2)\}$

$$P(E) = 1/6$$

Conditional Probability

The conditional probability of *E* given *F* is the probability that *E* occurs given that F has already occurred. This is known as conditioning on F.

Written as: P(E|F)

Means: "P(E, given F already observed)"

Sample space \rightarrow all possible outcomes consistent with F (i.e. $S \cap F$)

Event \rightarrow all outcomes in E consistent with F (i.e. $E \cap F$)

The conditional probability of *E* given *F* is the probability that *E* occurs given that *F* has already occurred. This is known as conditioning on *F*.

$$P(E) = \frac{8}{50} \approx 0.16$$

$$P(E|F) =$$

The conditional probability of *E* given *F* is the probability that *E* occurs given that *F* has already occurred. This is known as conditioning on *F*.

$$P(E) = \frac{8}{50} \approx 0.16$$

$$P(E|F) = \frac{3}{14} \approx 0.21$$

The conditional probability of *E* given *F* is the probability that *E* occurs given that *F* has already occurred. This is known as conditioning on *F*.

$$P(E) = \frac{8}{50} \approx 0.16$$

$$P(E|F) = \frac{3}{14} \approx 0.21$$

The conditional probability of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F.

> Shorthand notation for set intersection (aka set "and")

$$\Pr(E|F) = \frac{\text{# of outcomes in } E \text{ consistent with } F}{\text{# of outcomes in } S \text{ consistent with } F} = \frac{|EF|}{|SF|} = \frac{|EF|}{|F|}$$

$$P(E) = \frac{8}{50} \approx 0.16$$

$$P(E|F) = \frac{3}{14} \approx 0.21$$

The conditional probability of *E* given *F* is the probability that *E* occurs given that *F* has already occurred. This is known as conditioning on *F*.

Shorthand notation for set intersection (aka set "and")

$$\Pr(E|F) = \frac{\text{# of outcomes in } E \text{ consistent with } F}{\text{# of outcomes in } S \text{ consistent with } F} = \frac{|EF|}{|SF|} = \frac{|EF|}{|F|}$$

Conditional probability in general

These properties hold even when outcomes are not equally likely.

General definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
 Shorthand for E and F

The Chain Rule (aka Product rule):

$$P(EF) = P(F)P(E|F)$$

What if
$$P(F) = 0$$
?

- **P**(E | F) undefined
- •Congratulations! Observed impossible

and Learn

 $P(E|F) = \frac{P(EF)}{P(F)}$ Definition of Cond. Probability

What is the probability that a user will watch Life is Beautiful?

P(E)

S = {Watch, Not Watch}

 $E = \{Watch\}$

 $P(E) = \frac{1}{2}$?

What is the probability that a user will watch Life is Beautiful?

P(E)

What is the probability that a user will watch Life is Beautiful?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflix}}$$

$$P(E) = 10,234,231 / 50,923,123 = 0.20$$

Let E be the event that a user watches the given movie.

$$P(E) = 0.19$$

$$P(E) = 0.09$$

$$P(E) = 0.32$$
 $P(E) = 0.20$ $P(E) = 0.09$ $P(E) = 0.20$

 $P(E|F) = \frac{P(EF)}{P(F)}$ Definition of Cond. Probability

Let E = a user watches Life is Beautiful.

Let F = a user watches CODA.

What is the probability that a user watches Life is Beautiful, given they watched CODA?

$$P(E|F) = \frac{P(EF)}{P(F)} \approx \frac{\frac{\text{\# people who have watched both}}{\text{\# people on Netflix}}}{\frac{\text{\# people who have watched CODA}}{\text{\# people on Netflix}}}$$

 $\approx \frac{\text{# people who have watched both}}{\text{# people who have watched CODA}}$

 ≈ 0.42

$$P(E|F) = \frac{P(EF)}{P(F)}$$
 Definition of Cond. Probability

Let E be the event that a user watches the given movie. Let F be the event that the same user watches CODA (2021).

$$P(E) = 0.32$$

P(E) = 0.20 P(E) = 0.09 P(E) = 0.20

$$P(E) = 0.09$$

$$P(E) = 0.20$$

$$P(E|F) = 0.14$$
 $P(E|F) = 0.35$ $P(E|F) = 0.20$ $P(E|F) = 0.72$ $P(E|F) = 0.42$

$$P(E|F) = 0.20$$

$$P(E|F) = 0.72$$

$$P(E|F) = 0.42$$

Machine Learning

Machine Learning is: Probability + Data + Computers

Notation

And	Or	Given
P(E and F)	P(E or F)	P(E F)
P(E,F)	$P(E \cup F)$	P(E F,G)
P(EF)		
$P(E \cap F)$		Probability of E given F and G

Chain Rule via Baby Poop

$$P(E|F) = \frac{P(EF)}{P(F)}$$

$$P(EF) = P(F)P(E|F)$$

In the morning when she wakes up, a baby has a 50% chance of having pooped. The chance that a baby cries **given** that she has pooped is 50%. What is the probability that a baby **has pooped, and cries**.

Generalized Chain Rule

 $\Pr(E_1 \text{ and } E_2 \text{ and } E_3 \text{ and } \dots E_n)$

=
$$\Pr(E_1) \cdot \Pr(E_2|E_1) \cdot \Pr(E_3|E_1, E_2) \cdots \Pr(E_n|E_1, E_2 \dots E_{n-1})$$

Relationship Between Probabilities

P(E and F)

Chain rule (Product rule)

Definition of conditional probability

P(E|F)

Law of Total Probability

P(E)

Baby Poop Redux

In the morning when she wakes up, a baby has a 50% chance of having pooped. The chance that a baby cries given that she has pooped is 50%.

What is the probability of crying, unconditioned?

What information do you need?

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

Thm Let F be an event where P(F) > 0. For any event E, $P(E) = P(E|F)P(F) + P(E|F^C)P(F^C)$

Proof

1.
$$E = (EF) \text{ or } (EF^C)$$

$$2. P(E) = P(EF) + P(EF^C)$$

3.
$$P(E) = P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

Since F and F^C are disjoint

Probability of or for disjoint

Chain rule (product rule)

Baby Poop

In the morning when she wakes up, a baby has a 50% chance of having pooped. The chance that a baby cries given that she has pooped is 50%.

Probability of crying (T)?

What information do you need?

Probability of crying given no poop.

Recall that T is crying and E is poop

$$P(T) = P(T|E)P(E) + P(T|E^C)P(E^C)$$

Evolution of Bacteria

You have bacteria in your gut which is causing a disease. 10% have a mutation which makes them resistant to anti-biotics...

Probability a bacteria survives given it has the mutation: 20% Probability a bacteria survives given it doesn't have the mutation: 1% What is the probability that a randomly chosen bacteria survives?

Let *E* be the event that a bacterium survives. Let *M* be the event that a bacteria has the mutation. By the By <u>Law of Total Probability</u> (LOTP):

$$\Pr(E) = \Pr(E \text{ and } M) + \Pr(E \text{ and } M^C)$$
 LOTP
 $= \Pr(E|M)\Pr(M) + \Pr(E|M^C)\Pr(M^C)$ Chain Rule
 $= 0.20 \cdot 0.10 + 0.01 \cdot 0.90$ Substituting
 $= 0.029$

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

Thm For mutually exclusive events $B_1, B_2, ..., B_n$ s.t. $B_1 \cup B_2 \cup \cdots \cup B_n = S$,

$$P(E) = \sum_{i} P(B_i \cap E)$$
$$= \sum_{i} P(E|B_i)P(B_i)$$

From Google's Perspective:

There are 18 different "districts" in San Francisco.

From Google's Perspective:

There are 18 different "districts" in San Francisco.

Know:

	Mission District	Presidio		SOMA
$P(R D_i)$	0.23	0.84	• • •	0.52
$P(D_i)$	0.15	0.02		0.24

Want:

From Google's Perspective:

There are 18 different "districts" in San Francisco.

Know:

	Mission District	Presidio		SOMA
$P(R D_i)$	0.23	0.84	• • •	0.52
$P(D_i)$	0.15	0.02		0.24

Want:

$$P(R) = \sum_{\text{district } i} P(R \text{ and } D_i) = \sum_{\text{district } i} P(R|D_i) \cdot P(D_i)$$

Know: P(Cries | Poop), P(Cries), P(Poop)

Real question. What is the probability of poop given the baby cries...

P (Poop | Cries)

Relationship Between Probabilities

P(E and F)

Chain rule (Product rule)

Definition of conditional probability

P(E|F)

Law of Total Probability

P(E)

Relationship Between Probabilities

Chain rule (Product rule)

Definition of conditional probability

P(E|F)

Law of Total Probability

Bayes'
Theorem

P(E)

P(F|E)

Bayes' Theorem

Thomas Bayes

Rev. Thomas Bayes (~1701-1761): British mathematician and Presbyterian minister

He looked remarkably similar to Sean Astin (but that's not important right now)

Thomas Bayes

I want to calculate $P(\text{State of the world } F \mid \text{Observation } E)$ It seems so tricky!...

The other way around is easy P(Observation $E \mid$ State of the world F) What options to I have, chief?

Thomas Bayes

Want $P(F \mid E)$. Know $P(E \mid F)$

$$P(F|E) = \frac{P(EF)}{P(E)}$$
 Def. of Conditional Prob.

A little while later...

$$= \frac{P(E|F)P(F)}{P(E)} \quad \text{Chain Rule}$$

A little while later...

$$= \frac{P(E|F)P(F)P(F)}{P(E|F)P(F)P(F) + P(E|F)P(F^C)P(F^C)}$$

Thm For any events E and F where P(E) > 0 and P(F) > 0,

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

<u>Proof</u>

2 steps! See board

Expanded form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^C)P(F^C)}$$

Proof

1 more step! See board

Detecting spam email

Spam volume as percentage of total email traffic worldwide

We can easily calculate how many spam emails contain "Dear":

$$P(E|F) = P\left(\text{"Dear"} \mid \text{Spam}\right)$$

But what is the probability that an email containing "Dear" is spam?

$$P(F|E) = P\left(\begin{array}{c} \text{Spam} \\ \text{email} \end{array} \right| \text{"Dear"}$$

(silent drumroll)

Detecting spam email

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$$
Bayes' Theorem

- 60% of all email in 2016 is spam.
- 20% of spam has the word "Dear"
- 1% of non-spam (aka ham) has the word "Dear"

You get an email with the word "Dear" in it.

What is the probability that the email is spam?

Define events
 & state goal

2. Identify <u>known</u> probabilities

3. Solve

Let: E: "Dear", F: spam Want: P(spam|"Dear") = P(F|E)

Bayes' Theorem terminology

• 60% of all email in 2016 is spam.

P(F)

• 20% of spam has the word "Dear"

P(E|F)

• 1% of non-spam (aka ham) has the word "Dear"

 $P(E|F^C)$

You get an email with the word "Dear" in it.

What is the probability that the email is spam?

Want: P(F|E)

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

normalization constant

SARS Virus Testing

A test is 98% effective at detecting SARS

- However, test has a "false positive" rate of 1%
- 0.5% of US population has SARS
- Let E = you test positive for SARS with this test
- Let F = you actually have SARS
- What is $P(F \mid E)$?

Solution:

$$P(F | E) = \frac{P(E | F) P(F)}{P(E | F) P(F) + P(E | F^{c}) P(F^{c})}$$

$$P(F | E) = \frac{(0.98)(0.005)}{(0.98)(0.005) + (0.01)(1 - 0.005)} \approx 0.330$$

Intuition Time

People who test positive

All People

People who test positive

People with SARS

All People

Conditioning on a positive result changes the sample space to this:

Conditioning on a positive result changes the sample space to this:

People with positive

test

People with SARS

All People

Say we have 1000 people:

5 have SARS and test positive, 985 **do not** have SARS and test negative. 10 **do not** have SARS and test positive. ≈ 0.333

Conditioned on just those that test positive:

Why it is still good to get tested

	SARS +	SARS-
Test +	0.98 = P(E F)	$0.01 = P(E F^c)$
Test –	$0.02 = P(E^c F)$	$0.99 = P(E^c F^c)$

- Let E^c = you test <u>negative</u> for SARS with this test
- Let F = you actually have SARS
- What is P(F | E^c)?

$$P(F \mid E^{c}) = \frac{P(E^{c} \mid F) P(F)}{P(E^{c} \mid F) P(F) + P(E^{c} \mid F^{c}) P(F^{c})}$$

$$P(F \mid E^{c}) = \frac{(0.02)(0.005)}{(0.02)(0.005) + (0.99)(1 - 0.005)} \approx 0.0001$$

Pedagogic Pause

Multiple Choice Theory

Let's consider the relationship between **knowing** the concepts used in a multiple choice midterm question, and getting the question correct, taking into account guessing and making silly mistakes.

Let 3/4 be the probability that a learner knows the concepts to a midterm question.

Let 1/4 be the probability that a learner gets the answer **correct** if they **don't** know the concepts.

Let 9/10 be the probability that a learner gets the question **correct** given they **do** know the concepts.

What is the probability they know the concept, given they answered correct?

Advanced

Before Observation

Know: $P(O|L_i)$

Before Observation

After Observation

Know: $P(O|L_i)$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{P(O)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Let's Gamble

Telling in Cards

Your opponent gets excited if they are winning...

Probability of a tell given they have a winning hand: 0.5

Probability of a tell given they don't have a winning hand: **0.1**

The Tell Game

```
You are playing a game. Your opponent has two unseen cards. If either is an ace you lose... The following cards are seen by you (ie are not in opponent hand):

3H
2S
```

5S 9D

3D

KD

AC

Opponent does *not* have an excited tell...

Do you choose to play? yes

Probability of a tell given they have a winning hand: 0.5

Probability of a tell given they don't have a winning hand: **0.1**

End Review