Importancia de la Biotecnología Moderna

- Introducción: Desafíos de la Agricultura
- Por qué necesitamos OGM's?
- Breve introduc. a la Biotecnología Moderna
- El Mundo es Plano para la Biotecnología Moderna
- Lecciones y Conclusiones

Evolución del Tamaño durante la domesticación del Tomate

Trigo

Centeno

Triticale

"All Red" Potato

Coliflor Graffiti

Ejemplos de Variedades Comerciales Producidas por Mutación

Cultivo	Nombre de la Variedad Comercial	Método para inducir la mutación	
Arróz	Calrose 76	Rayos Gamma	
Tuigo	Above	Azida de Sodio	
Trigo	Lewis	Neutrones térmicos	
Avena	Alamo-X	Rayos X	
Tononia	Rio Red	Neutrones térmicos	
Toronja	Star Ruby	Neutrones térmicos	
	Tifeagle	Rayos Gamma	
Bermuda Grass	Tifgreen II	Rayos Gamma	
bermuda Grass	Tift 94	Rayos Gamma	
	Tifway II	Rayos Gamma	
Lechuga	Ice Cube	Methanosulphonato de Etilo	
Lechuga	Mini-Green	Methanosulphonato de Etilo	
Evijal	Seafarer, Sanilac	Rayos X (MSU)	
Frijol	Seaway, Gratiot	Rayos X (MSU)	
Lilac	Prairie Petite	Neutrones térmicos	
St Augustina Guaga	TXSA 8202	Rayos Gamma	
St. Augustine Grass	TXSA 8212	Rayos Gamma	

Hasta el momento se han "liberado" 2,252 variedades desarrolladas por "mutation breeding".

Gamma Field for radiation breeding

> 100m radius

89 TBq Co-60 source at the center Shielding dike 8m high

Institute of Radiation Breeding Ibaraki-ken, JAPAN http://www.irb.affrc.go.jp/

Ran tion a seeding

Better spaghettis, whisky 1800 new plants

Toronja Rio Red

Toronja Star Ruby

Rendimientos Promedios y Récords de algunos cultivos importantes (Bray et. al., 2000)

Cultivo	Rendimie nto récord en países desarroll ados (Kg/Há)	Rendimien to Promedio mundial (Kg/Há)	Rendimien to Promedio (% del récord)	Pérdida Promedio por factor Biótico (% del récord)	Pérdida Promedio por factor Abiótico (% del récord)
Trigo	14,500	1,880	13.0	5.0	82.1
Cebada	11,400	2,050	18.0	6.7	75.4
Soya	7,390	1,610	21.8	9.0	69.3
Maíz	19,300	4,600	23.8	10.1	65.8
Papa	94,100	28,300	30.1	18.9	54.1
Remolacha Azucarera	121,000	42,600	35.2	14.1	50.7

Uso intensivo de Tecnología en la Agricultura salvó mucha Biodiversidad

	1700	2007	Incremento (# de veces)
Población (millones)	500	6,602	13.20
Tierra Cultivada (Hás)	270 millones	1,539 (1.13 +0.407)	5.7

Si la Tecnología se hubiese congelado en el 1961 ¿cuánta Biodiversidad se habría perdido?

	1961	2007	Incremento (# de veces)
Población (millones de personas)	3,000	6,602	2.20
Tierra Cultivada (millones de Hás)	1,340	1,539 (1.13 +0.407)	1.15

En 2020 = 8,000 millones En 2025 la India tendrá 1,500 millones China con 20-25% de la población mundial sólo tiene el 7% de tierra cultivada.

140 bushel/acre equivale aprox. A 11 TM/Ha

Tierra arable disponible para la producción de alimentos

Explosión Demográfica

"... Para resolver la paradoja Biodiversidad / Aumento de la Población es necesario que nos aseguremos que las necesidades futuras de alimentos provengan únicamente de las tierras agrícolas disponibles en la actualidad . . . Abandonar o descartar el uso de la tecnología NO es la respuesta, . . . al contrario debemos mejorarla..."

Anthony Trewavas, 2001

Importancia de la Biotecnología Moderna

- Introducción: Desafíos de la Agricultura
- ¿Por qué necesitamos OGM's?
- Breve introduc. a la Biotecnología Moderna
- El Mundo es Plano para la Biotecnología Moderna
- Lecciones y Conclusiones

article

Martine 303, 200 - 213 (19 May 1983); doi:10.1038/303209e0

Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector

LU 3 HERRERA-ESTRELLA", ANN DEPICKER" MARC VAN MONTAGU" & JEFF SCHELL".

Laborationum voor Genetica (figiannyerater) Central Gent, (felgrum

Foreign genes introduced into plant cells with Ti plasmid vectors are not expressed. We have constructed an expression vector derived from the promoter sequence of nopaline synthase, and have inserted the coding sequences of the octopine synthase gene and a chloramphenical acetyltransferase gene into this vector. These chimaeric genes are functionally expressed in plant cells after their transfer via a Ti-plasmid of Agrobacterium tumefaciens.

Max-Pland-Ins. J. für Züchtungsforschung, 0-5000 Köln 30, FRS.

letters to nature

National 304, 1511 137 (11 July 1983), res 15 1535 304184 at

A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation

MICHAEL W. CEVANT, RICHARD BIFLAVELL'S MARY-DELLIC HETON!

"Plo it Breeding institute Maris Long Transpington, Contriege 392 21.3 LM.

The T-DNA region of Aprobacterium transfaciens tumour-inducing plasmids of the nopaline type¹ contains a gene coding for the enzyme nopaline synthase. This gene is expressed constitutively in host plant cells to which it is transferred during tumour induction². We have exploited the regulatory elements of this gene to construct a chimaeric gene that confers antihiotic resistance on transformed plant cells. The chimaeric gene encodes the expected chimaeric transcripts in plant cells, and confers on transformed cells the ability to grow in the presence of normally lethal levels of the antibiotic G418 (ref. 3). Experiments using in vitro transformation techniques on single plant cells indicate that this antibiotic resistance can be used as a selectable marker, and can therefore be used in selecting cells transformed by T DNA vectors that have had the genes for hormone autotrophy deleted⁴. Plant cells transformed by such 'disarmed' T-DNA vectors can be regenerated into entire plants, whose sexual progeny contain unaltered copies of the inciting T-DNA⁵. The availability of this dominant selectable marker should allow a wider range of experiments to be under taken using different bost plants.

[&]quot;Department of Diology, Washington University, 2; Louis, Missouri 63138, USA

Proc. Natl. Acad. Sci. USA Vol. 80, pp. 4803-4807, August 1983 Genetics

Expression of bacterial genes in plant cells

(plant protoplasts/transformation/foreign DNA/antibiotic resistance/selectable markers)

ROBERT T. FRALEY, STEPHEN G. ROGERS, ROBERT B. HORSCH, PATRICIA R. SANDERS, JEFFERY S. FLICK, STEVEN P. ADAMS, MICHAEL L. BITTNER, LESLIE A. BRAND, CYNTHIA L. FINK, JOYCE S. FRY, CERALD R. CALLUPPI, SARAH B. GOLDBERG, NANCY L. HOFFMANN, AND SHERRY C. WOO

Monsanto Company, 500 North Lindbergh Boulevard, 5t. Louis, Missouri 63167

Communicated by Howard A. Schneiderman, April 25, 1983

Patricia Zambryski

Stanton Gelvin

Roger Beachy

Charles Arntzen

Una jornada de 3 mil años...

Essay 13.1

Engineering Fruit Aromas

Gepaten Shinor, Department of Biology, Fedimen, Estael Institute of Technology Hallo, Fendt, Lewinsolm Findin, News Yafar Research Center, Agricultural Research torganization, server visites, 19024.

Scalenties, With

Havers and Aromas

and the contract of the contra

Why Genetic Engineering is Appropriate

Compressing a constructive and the second of the second productive and the segment of the cold beautiful.

Global Area of Biotech Crops, 1996 to 2009: Industrial and Developing Countries (M Has, M Acres) ISAAA

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Source: Clive James, 2010

GM crops: global socio-economic and environmental impacts 1996-2009

Graham Brookes & Peter Barfoot

PG Economics Ltd, UK

Beneficios en el ingreso 2009

Table 3: GM crop farm income benefits 2009: developing versus developed countries: million US S

	Developed	Developing
GM III soybeans	477.2	1,590.9
GM IR maize	3,485.0	426.5
GM HT maize	289.4	102.7
GM IR cotton	330.5	3,581.9
GM HT cotton	23.7	14.4
GM HT canola	362.5	0
GM virus resistant papaya and squash and GM HT sugar beet	84.7	0
Total	5,053.1	5,716.4

Developing countries = all countries in South America, Mexico, Honduras, Burkino l'aso, India, China, the Philippines and South Africa

Cont...

Table 4: Cost of accessing GM technology (million \$) relative to the total farm income benefits 2009

	Cost of technology : all farmers	Farm income gain: all farmers	Total benefit of technology to farmers and seed supply chain	Cost of technology : developin g countries	Farm income gain: developing countries	Total benefit of technology to farmers and seed supply chain: developing countries
GM HT soybeans	1,541.4	2,068.1	3,609.5	436.6	1,590,9	2,027.5
GM IR maize	1,479.9	3,911.5	5,409.4	422.3	426.5	848.8
GM HT maize	669.5	392.1	1,061.6	64.0	102.7	166.7
GM IR cotton	460.5	3,912.4	4,372.9	363.5	3,581.9	3,945.4
GM HT cotton	213.1	38.1	251.2	8.9	14.4	23.3
GM HT canola	111.7	362.6	474.3	N/a	N/a	N/a
Others Total	70.4 4,564.5	84.7 10,769.5	155.1 15,334.0	N/a 1,295.3	N/a 5,716.4	N/a 7,011.7

N/a not applicable. Cost of accessing technology based on the seed premia paid by farmers for using GM technology relative to its conventional equivalents

- +Other atticles in this volume.
- · Top cited articles
- Top downloaded articles
- Dur comprehensive search

The Economics of Genetically Modified Crops

Matin Qaim

Department of Agricultural Economics and Roral Development, Georg-August-University of Goettingen, 37073 Goettingen, Germany, email: mgaim@uni-poettingen.de

Arma. Rev. Reusur. Econ. 2009, 1:665-93

First published online as a Review in Advance on June 26, 2009

The Annual Review of Resource Economics is

Key Words

agricultural biotechnology, consumer acceptance, impacts, regulation, technology adoption

Table 1 Average farm-level agronomic and economic effects of Bt crops

V 0				
Country	Insecticide reduction (%)	Increase in effective yield (%)	Iocrease in gross margin (USS/ha)	Reference(s)
			Bt cotton	
Argentina	47	33	23	Qaim & de Janvry 2003, 2005
Australia	48	0	66	Firt 2003
China	65	24	470	Pray et al. 2002
India	41	37	135	Qaim et al. 2006, Sadashivappa & Qaim 2009
Mexico	77	9	295	Traxler et al. 2003
South Africa	33	22	91	Thirtle et al. 2003, Gouse et al. 2004
United States	36	10	58	Falck-Zepeda et al. 2000b, Carpenter et al. 2002
			Bt maize	
Argentina	0	9	20	Brookes & Barfoot 2005
Philippines	5	34	53	Brookes & Barfoot 2005, Yorobe & Quicoy 2006
South Africa	10	11	42	Brookes & Barfoot 2005, Gouse et al. 2006
Spain	63	6	70	Gómez-Barbero et al. 2008
United States	8	.5	12	Naseem & Pray 2004, Fernandez- Cornejo & Li 2005

Reducción en el Uso de Insecticidas

