Différences entre Machine Learning et Deep Learning

Comprendre les deux piliers de l'IA moderne

LAYIBE YAYIBE Narcisse

04 juin 2024

Introduction

Intelligence Artificielle (IA)

Simulation des processus d'intelligence humaine par des machines, en particulier des systèmes informatiques.

Machine Learning et Deep Learning

Sous-domaines essentiels de l'IA, jouant des rôles critiques dans l'innovation technologique actuelle.

Machine Learning vs Deep Learning

Définition, fonctionnement et exemple

Machine Learning

- Définition: Technique de l'IA où les algorithmes permettent aux machines d'apprendre à partir des données.
- Fonctionnement: Les algorithmes identifient des patterns dans les données, formulent des modèles et effectuent des prédictions.
- Exemple: Prédiction des prix immobiliers basée sur des caractéristiques comme la localisation, la taille, etc.

- Définition: Branche du machine learning utilisant des réseaux de neurones artificiels profonds.
- Fonctionnement :
 Capacité à extraire des caractéristiques complexes des données de manière hiérarchique.
- Exemple: Reconnaissance faciale qui identifie des visages humains dans des images.

Types de modèles

Machine Learning

Apprentissage supervisé :

- Régression Linéaire
- SVM (Support Vector Machines)
- Forêts Aléatoires
- k-NN (k-Nearest Neighbors)
- Régression Logistique
- Arbres de Décision
- Boosting (comme AdaBoost)
- Naive Bayes
- Réseaux de Neurones Simples, etc

Apprentissage non supervisé :

k-means, etc

Apprentissage par renforcement :

- Q-Learning
- Deep Q-Networks (DQN), etc

Deep Learning

Apprentissage supervisé :

- CNN (Convolutional Neural Networks)
- RNN (Recurrent Neural Networks)
- LSTM (Long Short-Term Memory networks)
- Réseaux de Neurones Profonds (DNN)
- Transformers
- GRU (Gated Recurrent Unit)
- Réseaux à Capsule (Capsule Networks), etc

Apprentissage non supervisé :

- Autoencodeurs
- Réseaux de Boltzmann Restreints (RBM)
- GAN (Generative Adversarial Networks), etc

Apprentissage par renforcement :

 DDPG (Deep Deterministic Policy Gradient), etc

Quantité de données nécessaire

Machine Learning

- Fonctionne bien avec des ensembles de données de petite à moyenne taille.
- Exemple : Analyse de données financières sur une petite entreprise.

- Nécessite de grandes quantités de données pour un apprentissage efficace.
- Exemple : Entraînement d'un modèle de reconnaissance vocale sur des millions d'heures de données audio.

Puissance de calcul

Machine Learning

- Moins gourmand en ressources.
- Peut être exécuté sur des ordinateurs personnels ou des serveurs standards.
- Exemple : Exécution d'un algorithme de régression linéaire sur un ordinateur portable.

- Très gourmand en ressources.
- Nécessite souvent des GPU (unités de traitement graphique) ou des TPU (unités de traitement de tenseurs).
- Exemple: Entraînement d'un réseau de neurones profond pour la vision par ordinateur sur un cluster de GPU.

Ingénierie des caractéristiques

Machine Learning

- Besoin d'une ingénierie des caractéristiques manuelle.
- Les données doivent être soigneusement sélectionnées et transformées par des experts.
- Exemple : Sélection des attributs pertinents pour prédire les ventes futures d'un produit.

- Apprend automatiquement les représentations des données.
- Réduit la nécessité de l'ingénierie des caractéristiques manuelle.
- Exemple: Un CNN apprend automatiquement à détecter des bords, des textures, et des objets dans une image.

Interprétabilité

Machine Learning

- Modèles souvent plus faciles à interpréter.
- Exemple: La régression linéaire permet de comprendre l'impact de chaque caractéristique sur la prédiction.

- Modèles souvent considérés comme des "boîtes noires".
- Difficile de comprendre comment les réseaux de neurones arrivent à leurs conclusions.
- **Exemple** : Réseau de neurones multi-niveau (ou multi-couche)

Applications

Machine Learning

- Prédiction de tendances :
 Analyse prédictive des ventes.
- Détection de fraudes : Identification des transactions suspectes.
- Filtrage de spam : Classification des emails.
- Analyse de sentiments : Analyse des avis des clients.
- Recommandation de produits : Systèmes de recommandation pour les e-commerces.

- Reconnaissance d'image : Identification des objets dans les images.
- Reconnaissance vocale : Conversion de la parole en texte.
- Traduction automatique : Traduction instantanée entre langues.
- Jeux vidéo : IA pour des personnages non joueurs intelligents.
- Voitures autonomes : Navigation et prise de décisions en temps réel.

Bonus

Différences entre apprentissage supervisé, non supervisé et par renforcement

Apprentissage supervisé :

- Les données d'entraînement sont étiquetées.
- Le modèle apprend à partir de paires d'entrées et de sorties.
- Exemple: Classification d'images avec des étiquettes prédéfinies (chats, chiens, voitures, etc.).

• Apprentissage non supervisé :

- Les données d'entraînement ne sont pas étiquetées.
- Le modèle trouve des structures intrinsèques dans les données (Régroupement en cluster).
- Exemple: Regroupement de clients en fonction de leurs comportements d'achat similaires.

• Apprentissage par renforcement :

- Le modèle apprend par essais et erreurs.
- L'agent prend des actions dans un environnement pour maximiser une récompense cumulative.
- Exemple : Entraînement d'un agent à jouer à des jeux vidéo pour maximiser le score

04 juin 2024

Conclusion

Résumé des principales différences

- Complexité des modèles
- Quantité de données nécessaire
- Puissance de calcul requise
- Niveau d'ingénierie des caractéristiques
- Interprétabilité

Importance du choix

- Dépend du problème à résoudre et des ressources disponibles.
- Machine learning pour des problèmes plus simples et deep learning pour des problèmes complexes nécessitant des volumes de données importants.

Merci de votre attention!

Restons en contact

Connectons-nous pour continuer la conversation

- LinkedIn: https: //www.linkedin.com/in/layibÃl-yayibÃl-narcisse-ba2a34281
- **Github**: github.com/layibe-02/
- Email: narcisse.layibe@facsciences-uy1.cm