Sens de variation et sommes

Sens de variation

Exercice 1 Sens de variation d'une suite arithmétique

Déterminer les variations des suites définies ci-dessous :

1.
$$\left\{ \begin{array}{lcl} u_0 & = & 2 \\ u_{n+1} & = & u_n+\pi-3 & \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

2.
$$\left\{ \begin{array}{ll} v_0 &=& 12 \\ v_{n+1} &=& v_n+1-\sqrt{2} \quad \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

Exercice 2 Sens de variation d'une suite géométrique

Donner les variations des suites géométriques définies ci-dessous :

1. (u_n) de premier terme 2 et de raison 0,3.

4. (z_n) de premier terme 3 et de raison $\sqrt{2}$.

2. (v_n) de premier terme 3 et de raison -5.

5. (t_n) de premier terme -5 et de raison $\sqrt{\frac{10}{\pi^2}}$.

3. (w_n) de premier terme -6 et de raison 14.

6. (r_n) de premier terme 0 et de raison 12.

Somme des premiers termes d'une suite arithmétique ou géométrique

Exercice 3

Soit u la suite définie par : pour tout $n \in \mathbf{N}$, $u_n = 3 + 4n$.

- **1.** Calculer $u_0 + u_1 + ... + u_{40}$.
- 2. Calculer $\sum_{k=0}^{20} u_k$.
- 3. Calculer de deux manières $u_{21}+u_{22}+\ldots+u_{40}.$

Exercice 4

Un étudiant loue une chambre pendant 2 ans. Le loyer initial est de 200 euros par mois mais tous les mois il augmente de 2%.

- Exprimer les loyers à l'aide d'une suite géométrique.
- 2. En déduire la somme totale que l'étudiant aura à payer sur deux ans.
- 3. Quel est le loyer moyen payé par l'étudiant sur deux ans?

Exercice 5

Le film Avatar est sorti aux États-Unis le 18 décembre 2009. La recette lors de la première semaine s'est élevée à 77 millions de dollars. Cette recette a ensuite diminué en moyenne de 15% chaque semaine. Le réalisateur James Cameron a investi 500 millions de dollars pour la réalisation du film. Pour les calculs. l'unité est le million de dollars.

- 1. Soit R_0 la recette obtenue la première semaine. Calculer R_1 et R_2 (ne pas justifier).
- 2. Pour tout $n \in \mathbb{N}$, exprimer R_{n+1} en fonction de R_n en justifiant.
- 3. Exprimer R_n en fonction de n et de R_0 .
- 4. Quel est le sens de variation de la suite (R_n) ? Justifier.
- 5. Quelle est la recette pour la vingtième semaine (arrondir au centième)?
- 6. Exprimer en fonction de n le total T_n des recettes engrangées de la première semaine à la (n+1)-ième de la manière la plus simple possible.
- 7. Quand n devient très grand, de quelle valeur limite T_n se rapproche-t-il?
- 8. On considère l'algorithme ci contre : Que fait cet algorithme?
- On l'exécute et l'algorithme affiche 22. Interpréter ce résultat.

Code Python

7.	lim 0,85m+2 = 0.									
	donc	quand	m	derient	ties	grand,	Im he	nappao	he de	77
8.	L'algo laquelle devient	rithme. Ia n new babs	don eceth	ne le dépasse	numero 500	, c'est	a semo	une à que	parti	- de film
9	À pa	ati de	6	234	semaine	, le	film	est du	renu	nental.

Pour approfondir

Exercice 6

On considère la suite (u_n) définie par $u_1=1$ et pour tout $n\in \mathbf{N}^*$, $u_{n+1}=\frac{nu_n+4}{n+1}$.

- 1. Calculer u_2 et u_3 .
- 2. Démontrer que la suite (v_n) définie sur \mathbf{N}^* par $v_n=nu_n$ est une suite arithmétique dont on précisera le premier terme et la raison.
- 3. En déduire l'expression du terme général de (v_n) .
- 4. En déduire l'expression du terme général de (u_n) .

Exercice 7

n est un entier naturel. À l'aide de suites arithmétiques :

- **1.** Calculer $0+1+\cdots+(2n-1)+2n$, somme des entiers de 0 à 2n.
- 2. Calculer $0+2+4+\dots(2n-2)+2n$, somme des entiers pairs de 0 à 2n.
- 3. En déduire 1+3+5+...+(2n-3)+(2n-1), somme des entiers impairs compris entre 0 et 2n.

Exercice 8

n est un entier naturel. Calculer $2 \times 2^2 \times 2^3 \dots \times 2^n$.

