

#5

Attorney Docket # 502-119

Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of
Michael DEGEN et al.
Serial No.: 10/043,563
Filed: January 11, 2002
For: Method of Switching on an Inductive Load

LETTER TRANSMITTING PRIORITY DOCUMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

SIR:

In order to complete the claim to priority in the above-identified application under 35 U.S.C. §119, enclosed herewith is a certified copy of each foreign application on which the claim of priority is based: Application No. 101 00 873.2, filed on January 11, 2001, in Germany.

Respectfully submitted,
COHEN, PONTANI, LIEBERMAN & PAVANE

By

Thomas C. Pontani
Reg. No. 29,763
551 Fifth Avenue, Suite 1210
New York, New York 10176
(212) 687-2770

Dated: April 9, 2002

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 101 00 873.2
Anmeldetag: 11. Januar 2001
Anmelder/Inhaber: Mannesmann VDO AG,
Frankfurt am Main/DE
Bezeichnung: Verfahren zum Einschalten einer induktiven
Last
IPC: G 05 F, H 01 F, F 02 P

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 10. Januar 2002
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Joost

Mannesmann VDO AG

Kruppstr. 105
60388 Frankfurt
VF46RS 4841
09. Januar 2001

Verfahren zum Einschalten einer induktiven Last

Die Erfindung betrifft ein Verfahren zum Einschalten einer induktiven Last, insbesondere einer Zündspule, deren Strom wiederholt zu einem jeweils vorgegebenen variablen Zeitpunkt einen vorgegebenen variablen Endwert erreichen soll.

Um nach Anlegen einer Spannung an eine induktive Last zu einem bestimmten vorgegebenen Zeitpunkt einen vorgegebenen Strom zu erreichen, ist das Einschalten der Last um eine Zeit vor dem vorgegebenen Zeitpunkt erforderlich, die von der Steigung des Stromanstiegs abhängt. Diese wiederum ist abhängig von der Induktivität, der Batteriespannung, Übergangswiderständen und von der Temperatur.

Aufgabe der vorliegenden Erfindung ist es, das Einschalten der induktiven Last derart vorzunehmen, daß der Strom zu einem vorgegebenen Zeitpunkt einen vorgegebenen Wert erreicht. Insbesondere soll dadurch bei der elektronischen Zündung von Brennkraftmaschinen eine vorgegebene Zündenergie

...

sichergestellt werden, die erforderlichenfalls in Abhängigkeit von Betriebsparametern der Brennkraftmaschine ebenso wie der Zündzeitpunkt stark variiert werden kann.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Zeitabschnitt zwischen dem Einschalten und dem Erreichen mindestens eines vorgegebenen Zwischenwertes gemessen wird, daß aus diesem Zeitabschnitt und dem mindestens einen vorgegebenen Zwischenwert die voraussichtliche Zeit vom Einschalten bis zum Erreichen des Endwertes berechnet wird und daß ein folgendes Einschalten um die berechnete Zeit vor dem jeweils vorgegebenen Zeitpunkt erfolgt.

Die Stromkurve bei Induktivitäten ist keine Gerade, sondern weist eine individuelle Krümmung auf, die von verschiedenen Einflußgrößen, wie Batteriespannung, Übergangswiderstände der Verkabelung und der Stecker, Widerstandsänderungen durch Temperatur oder Alterung, abhängig ist. Je nach Ausführung im einzelnen können mit dem erfindungsgemäßen Verfahren diese Einflußgrößen ausgeregelt werden.

Bei einer vorteilhaften Ausgestaltung ist beispielsweise vorgesehen, daß die Zeit mit Hilfe einer den Stromanstieg beim Anlegen einer im wesentlichen konstanten Spannung darstellenden Funktion berechnet wird, wobei vorzugsweise die Funktion in einem Speicher abgelegt ist. Mit dieser Ausgestaltung kann im wesentlichen eine sich bezüglich ihrer Steigung verändernde Stromkurve erfaßt werden.

Zur Berücksichtigung von Änderungen der Krümmung der Stromkurve kann das erfindungsgemäße Verfahren derart ausgebildet sein, daß die Funktion aus mehreren vorgegebenen Zwischenwerten und den diesen zugeordneten Zeiten berechnet wird.

...

Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, daß aus dem gemessenen Zeitabschnitt mindestens ein Parameter einer vorgegebenen Funktion berechnet wird und daß für das folgende Einschalten die berechnete Zeit unter Anwendung der Funktion, des mindestens einen Parameters und des Endwertes bestimmt wird.

Bei dieser Ausgestaltung ist vorzugsweise vorgesehen, daß die Funktion $i = i(1 - e^{-t \cdot R/L})$ ist, wobei i der Strom zum Zeitpunkt t , i der im Unendlichen erreichte Strom, R der Widerstand und L die Induktivität ist, und daß als Parameter R/L berechnet wird. Beispielsweise kann bei bekanntem i nach Erreichen eines Zwischenwertes dieser als i und die Dauer zwischen dem Einschalten und dem Erreichen des Zwischenwertes als t in die obengenannte Gleichung eingesetzt werden, worauf R/L berechnet wird. Mit dem berechneten R/L und dem gewünschten Endwert als i kann dann t als Zeitdauer zwischen dem Einschalten und dem Erreichen des Endwertes berechnet werden.

Das erfindungsgemäße Verfahren wird vorzugsweise im Prozessor eines Steuergerätes durchgeführt. Dabei kann zur Vermeidung von aufwendigen Rechnungen vorgesehen sein, daß die Funktion als Tabelle abgelegt ist, wobei jeweils eine Zeit bis zum Erreichen des vorgegebenen Zwischenwertes der dazugehörigen Zeit zwischen dem Einschalten und dem Erreichen des vorgegebenen Wertes zugeordnet ist.

Eine andere vorteilhafte Ausgestaltung der Erfindung besteht darin, daß die Zeit zwischen dem Einschalten und dem voraussichtlichen Erreichen des Endwertes nach dem Dreisatz unter Anwendung eines Korrekturwertes, der die Krümmung der Funktion darstellt, berechnet wird.

...

Sollte bei einem Anwendungsfall eine Änderung der Krümmung der Kurve vernachlässigbar sein, ist es ferner im Rahmen des erfindungsgemäßen Verfahrens möglich, daß die Zeit zwischen dem Einschalten und dem voraussichtlichen Erreichen des Endwertes nach dem Dreisatz berechnet wird.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Eine davon ist schematisch in der Zeichnung anhand mehrerer Figuren dargestellt und nachfolgend beschrieben. Es zeigt:

Fig. 1 ein Strom-Zeitdiagramm zur Erläuterung des erfindungsgemäßen Verfahrens und

Fig. 2 ein Schaltbild einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens.

Fig. 1 zeigt den Stromverlauf beim Einschalten einer Zündspule, die zu einem vorgegebenen Abschaltzeitpunkt t_a den Strom I_a (Endwert) erreicht haben soll. Unter verschiedenen Einflußgrößen folgt der Stromanstieg verschiedenen Kurven, von denen in Fig. 1 die Kurven i_1 und i_2 dargestellt sind, wobei die Einschaltzeitpunkte mit t_{e1} und t_{e2} bezeichnet sind.

Die Stromkurve i_1 erreicht bei t_{11} den ersten vorgegebenen Zwischenwert I_1 und bei t_{12} den zweiten vorgegebenen Zwischenwert I_2 . Die Stromkurve i_2 erreicht die Zwischenwerte I_1 und I_2 entsprechend später, nämlich zu den Zeitpunkten t_{21} und t_{22} .

Die Schaltungsanordnung gemäß Fig. 2 zeigt schematisch ein Steuergerät 1 und die Primärwicklung 3 einer Zündspule, die zwischen einem Schalttransistor 4 der Endstufe 2 und einem Betriebsspannungsanschluß 5 geschaltet ist. Die Endstufe ist einschließlich der Strommeßschaltung als Bauelement erhältlich. Die innere Beschaltung ist nur dargestellt,

...

soweit es zum Verständnis der Erfindung erforderlich ist. Das Steuergerät 1 erhält verschiedene Größen, beispielsweise ein Inkrementssignal n , das die Drehzahl und den Kurbelwellenwinkel beinhaltet, und die Luftmenge L . Daraus wird der jeweils günstigste Zündzeitpunkt t_a errechnet. Um die Zeitspanne $t_a - t_e$ vor diesem Zeitpunkt t_a wird der Transistor 4 in den leitenden Zustand geschaltet.

Wie bereits im Zusammenhang mit Fig. 1 erläutert, ist diese Zeitspanne jedoch nicht konstant, weshalb mit Hilfe der Zwischenwerte und der dazugehörigen Zeiten t_{11} bis t_{22} der jeweils richtige Einschaltzeitpunkt t_1 bzw. t_2 berechnet wird. Dazu wird der Strom mit Hilfe eines Widerstandes 6, der in Reihe mit einem weiteren Emitter (Sensoremitter) des Transistors 4 geschaltet ist, gemessen. Die dem Strom entsprechende Spannung wird zwei Komparatoren 7, 8 zugeführt, denen über Spannungsteiler 9, 10 Spannungen zugeleitet werden, welche die Zwischenwerte darstellen. Durch Verknüpfung der Ausgangssignale der Komparatoren bei 11 entsteht ein Signal R , das bei Erreichen des ersten Zwischenwertes I_1 auf einen positiven Pegel steigt und bei Erreichen des zweiten Zwischenwertes I_2 wieder fällt. Da die Zwischenwerte gegeben und in einem Speicher 12 des Steuergerätes abgelegt sind, kann aus den Flanken des Signals R der jeweilige Stromverlauf berechnet und der Strom zum richtigen Zeitpunkt t_e eingeschaltet werden.

...

Mannesmann VDO AG

Kruppstr. 105
60388 Frankfurt
VF46RS 4841
09. Januar 2001

Ansprüche

1. Verfahren zum Einschalten einer induktiven Last, insbesondere einer Zündspule, deren Strom wiederholt zu einem jeweils vorgegebenen variablen Zeitpunkt einen vorgegebenen variablen Endwert erreichen soll, dadurch gekennzeichnet, daß der Zeitabschnitt zwischen dem Einschalten und dem Erreichen mindestens eines vorgegebenen Zwischenwertes gemessen wird, daß aus diesem Zeitabschnitt und dem mindestens einen vorgegebenen Zwischenwert die voraussichtliche Zeit vom Einschalten bis zum Erreichen des Endwertes berechnet wird und daß ein folgendes Einschalten um die berechnete Zeit vor dem jeweils vorgegebenen Zeitpunkt erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeit mit Hilfe einer den Stromanstieg beim Anlegen einer im wesentlichen konstanten Spannung darstellenden Funktion berechnet wird.

...

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Funktion in einem Speicher abgelegt ist.

4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Funktion aus mehreren vorgegebenen Zwischenwerten und den diesen zugeordneten Zeiten berechnet wird.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus dem gemessenen Zeitabschnitt mindestens ein Parameter einer vorgegebenen Funktion berechnet wird und daß für das folgende Einschalten die berechnete Zeit unter Anwendung der Funktion, des mindestens einen Parameters und des Endwertes bestimmt wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Funktion

$$i = \hat{i}(1-e^{-t \cdot R/L}) \text{ ist,}$$

wobei i der Strom zum Zeitpunkt t , \hat{i} der im Unendlichen erreichte Strom, R der Widerstand und L die Induktivität ist, und daß als Parameter R/L berechnet wird.

7. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Funktion als Tabelle abgelegt ist, wobei jeweils eine Zeit bis zum Erreichen des vorgegebenen Zwischenwertes der dazugehörigen Zeit zwischen dem Einschalten und dem Erreichen des Endwertes zugeordnet ist.

8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeit zwischen dem Einschalten und dem voraussichtlichen Erreichen des Endwertes nach dem Dreisatz unter Anwendung eines Korrekturwertes, der die Krümmung der Funktion darstellt, berechnet wird.

...

9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeit zwischen dem Einschalten und dem voraussichtlichen Erreichen des Endwertes nach dem Dreisatz berechnet wird.

Mannesmann VDO AG

Kruppstr. 105
60388 Frankfurt
VF46RS 4841
09. Januar 2001

Zusammenfassung

Bei einem Verfahren zum Einschalten einer induktiven Last, insbesondere einer Zündspule, deren Strom wiederholt zu einem jeweils vorgegebenen variablen Zeitpunkt einen vorgegebenen variablen Endwert erreichen soll, wird der Zeitabschnitt zwischen dem Einschalten und dem Erreichen mindestens eines vorgegebenen Zwischenwertes gemessen. Aus diesem Zeitabschnitt und dem mindestens einen vorgegebenen Zwischenwert wird die voraussichtliche Zeit vom Einschalten bis zum Erreichen des Endwertes berechnet. Ein folgendes Einschalten um die berechnete Zeit erfolgt vor dem jeweils vorgegebenen Zeitpunkt.

1/1

Fig.1

Fig.2