З а м е ч а н и е. Операция \vee вполне аналогична операции объединения \bigcup из алгебры множеств.

- 5. Логическая операция «и». Обозначение \wedge (&). Если имеют место одновременно свойства A и B, то это записывается в виде $A \wedge B$ или же «A и B», или же A8.
- 3 а м е ч а н и е. Операция логического «и» вполне аналогична операции пересечения ∩ в алгебре множеств.

Докажите самостоятельно следующие свойства введенных выше логических операций:

$$\overline{A \vee B} = \overline{A} \wedge \overline{B}, \, \overline{A \wedge B} = \overline{A} \vee \overline{B}$$

или

$$\overline{A \vee B} = \overline{A} \& \overline{B}, \overline{A} \& \overline{B} = \overline{A} \vee \overline{B}.$$

Будем в дальнейшем использовать знакомые по школьному курсу кванторы \exists и \forall . Квантор существования \exists означает выражение «существует» или «существуют». Квантор общности \forall заменяет слова «для любого», «для каждого».

Пусть дано множество X и свойство A(x) (где $x \in X$). Тогда символическая запись ($\forall x \in X$) (A(x)) означает: для любого элемента x, принадлежащего множеству X, имеет место A(x) (т. е. выполнено свойство A). Символическая запись ($\exists x \in X$) (A(x)) означает: существует элемент x из множества X, для которого выполнено свойство A.

Используя операцию отрицания, имеем $(\forall x \in X)(A(x)) \Leftrightarrow (\exists x \in X)(\overline{A}(x)),$

а также

$$\overline{(\exists x \in X)(A(x))} \Leftrightarrow (\forall x \in X)(\overline{A}(x)).$$

§ 2. Понятия отображения и функции

О пределение. Пусть A и B – два непустых множества. Отображением A в B или функцией, определенной на A со значениями в B, называется соответствие f, которое каждому элементу $x \in A$ соотносит (ставит в соответствие) единственный элемент $y \in B$, обозначаемый через f(x).

Обозначения для отображения (функции): $A \xrightarrow{f} B$; $f: A \to B$; $f: y = f(x), x \in A, y \in B$; $f: x \in A, f(x) \in B$; $y = f(x), x \in A, y \in B$; $x \to f(x)$. Элемент f(x) при отображении $x \to f(x)$ называется значением функции f(x), принимаемым в точке x. Множество A при отображении $f: A \to B$ называется областью определения или областью существования отображения (функции) f. Множество всех значений функции f называется ее областью значений (или множеством значений). Таким образом, если Y — множество значений функции $f: A \to B$, то $Y = \{y \in B | \exists x \in A$ такое, что $f(x) = y\}$. Следует различать отображение f и элемент f(x), соответствующий x при этом отображении.

П р и м е р ы. 1. Равенство $y=x^2$ ставит в соответствие любому $x\in \mathbf{R}$ единственное число $y\in \mathbf{R}$. Например, если x=2, то y=4, если x=-3, то y=9. Это равенство задает функцию $x\to x^2$, определенную на множестве $X=\{x\in \mathbf{R}|-\infty < x < +\infty\}$ с областью значений $Y=\{y\in \mathbf{R}|0\leq y<+\infty\}$.

Если же обозначить эту функцию символом f, то имеем f(2)=4, f(-3)=9.

- 2. Равенство N=n! ставит в соответствие любому $n\in \mathbb{N}$ единственное натуральное же число N. Например, если n=3, то N=6, если n=5, то N=120. Таким образом, это равенство задает функцию, определенную на множестве натуральных чисел \mathbb{N} с областью значений, являющейся подмножеством $\mathbb{N}: n \to n!$.
- 3. Функция $y = \sin x$, $-\infty < x < +\infty$, $y \in [-1, 1]$. Если $f(x) = \sin x$, то f(0) = 0, $f(\pi/2) = 1$; $x \to \sin x$.
- 4. Пусть A есть множество треугольников x на плоскости, а $B=\mathbf{R}$. Поставим в соответствие любому треугольнику $x\in A$ длину его периметра y, тем самым будет задана функция, определенная на множестве всех треугольников плоскости. Аргументом этой функции будет x, значениями аргумента будут различные треугольники, а значениями функции периметры треугольников.
- 5. Любому числу $n \in \mathbf{Z}$ поставим в соответствие точку (n, n). Тогда получим отображение множества всех целых чисел \mathbf{Z} в множество всех точек плоскости: $n \to (n, n)$.

О пределение. Пусть дано отображение $f:A\to B$. Тогда множество $\Gamma=\{(x,y)\in A\times B|x\in A,\,y=f(x)\in B\}$ называется графиком отображения f.

6. Пусть A есть отрезок [-1,1] оси абсцисс OX, а B есть ось ординат OY координатной плоскости XOY, причем Γ есть дуга полуокружности единичного радиуса с центром в начале координат. Тогда Γ есть график отображения

$$A \xrightarrow{f} B$$
, rge $f: y = \sqrt{1-x^2}$, $-1 \le x \le 1$, $y \in B$; $x \to \sqrt{1-x^2}$.

- 7. Функция, ставящая любому элементу x своей области определения A одно и то же число c, называется постоянной функцией. Графиком постоянной функции $x \to c$ является множество $\Gamma = \{A\} \times \{c\}$. Постоянная функция $x \to c$ иногда обозначается этой же буквой c.
- О пределение. Отображение $f:A\to A$, определенное равенством $f(x)=x\ \forall x\in A$, называется тождественным.

3 а м е ч а н и е. Если $A\subset B$, то отображение $A\xrightarrow{f}B$, определенное равенством f(x)=x, называется канонической инъекцией A в B.

Определение. Если $A \times B$ – декартово произведение множеств A и B, то отображение $\operatorname{pr}_A: A \times B \to A$ (или $(x,y) \to x$), ставящее в соответствие любой паре $(x,y) \in A \times B$ элемент $x \in A$

A, называется проекцией на A. Аналогично определяется проекция (x,y) o y на B.

Определение. Пусть $f:A\to B$ – отображение множества A в множество B. Если $X\subset A$, то множество тех элементов $y\in B$, которые в силу отображения f поставлены в соответствие хотя бы одному элементу $x\in X$, называют образом множества X при отображении f и обозначают через f(X). Итак, $f(X)=\{y\in B|\exists x\in X$ такое, что $f(x)=y\}$.

Замечание. Очевидно, f(A) – это область значений отображения $f:A \to B$.

Пример. Пусть $f: y = x^2, x \in [-4, 4], y \in [0, 16]$ и X = [-1, 1]. Тогда $f(X) = [0, 1] \subset B = [0, 16]$.

О п р е д е л е н и е. Пусть дано отображение $f:A \to B$. Пусть y есть любой элемент множества B. Полным прообразом элемента y при отображении f называется множество всех $x \in A$ таких, что f(x) = y. Полный прообраз элемента $y \in B$ обозначают через $f^{-1}(y)$. Тогда $f^{-1}(y) = \{x \in A | f(x) = y\}$. Аналогично, если $Y \subset B$, то полным прообразом множества Y при отображении $f:A \to B$ называется множество всех $x \in A$ таких, что $f(x) \in Y$, т. е. $f^{-1}(Y) = \{x \in A | \exists y \in Y$ такое, что $f(x) = y\}$.

П р и м е р. $f:y=\sin x,\ x\in[0,2\pi],\ y\in[-1,1]$ (график функции изображен на рис. 1). Тогда

$$f^{-1}(0) = \{0\} \cup \{\pi\} \cup \{2\pi\}, f^{-1}([-1/2, 1/2]) =$$

= $[0, \pi/6] \cup [5\pi/6, 7\pi/6] \cup [11\pi/6, 2\pi].$

Рис. 1

О предепение. Отображение $f:A \to B$ называется взаимнооднозначным, или инъективным, если полный прообраз $f^{-1}(y)$ каждого элемента $y \in B$ состоит не более чем из одного элемента множества A. Другими словами: отображение f множества Aв B называется взаимнооднозначным, или инъективным, если ника-

кие два различных элемента из A не имеют одинаковых образов в B; или отображение $f:A\to B$ есть инъекция, если $\forall x_1,\ x_2\in A$ имеем $(x_1\neq x_2)\Leftrightarrow (f(x_1)\neq f(x_2));$ или если $x_1,x_2\in A$, то $(x_1=x_2)\Leftrightarrow (f(x_1)=f(x_2)).$

Замечание. Каноническая инъекция $x \to x, A \to B \ (A \subset B)$ является взаимнооднозначным отображением.

О пределение. Если область значений отображения $f: A \to B$ совпадает с множеством B, то говорят, что f отображает A на B. Отображение $x \to f(x)$ называется при этом сюръективным.

Замечание. Отображение $f:A\to B$ есть отображение A на f(A), причем $f(A)\subset B$.

. О пределение. Отображение $f:A \to B$ называется биективным, если отображение f является взаимнооднозначным отображением А на В (т. е. биекция является одновременно инъективным и сюръективным отображением).

 Π р и м е р ы. 1. Пусть отображение f:A o B задано своим графиком $\Gamma = \{(x,y) \in A imes B | x \in A, \ y = f(x) \in B\},$ изображенным на рис. 2, тогда имеем $f(A) \subset B$, но $f(A) \neq B$.

Заметим, что если отображение f сюръективно, т. е. отображает A на B, то f(A) = B, поэтому наше отображение не сюръективно.

2. Пусть отображение f:A o B задано графиком, изображенным на рис. 3. Тогда f(A) = B, т. е. отображение f сюръективно, т. е. отображает A на B.

Рис. 2

Рис. 3

Рис. 4

Рис. 5

3. Отображение $f:A\to B$ с графиком, изображенным на рис. 4, есть инъекция A в B, так как любая прямая, параллельная оси Ox и проходящая через точку (0,y), где y=f(x), пересекает график Γ отображения f только в одной точке (x,y) и поэтому любой $y\in f(A)$ имеет полный прообраз $f^{-1}(y)$, состоящий из единственной точки $x\in A$. Отметим, что отображение $f:A\to B$ не сюръективно и поэтому $f^{-1}(y)=\varnothing \ \forall y\in B\setminus f(A)$.

4. Отображение $f:A\to B$ с графиком, изображенным на рис. 5, есть биекция, поскольку f(A)=B (т. е. f сюръективно) и $\forall y\in B$ существует единственный прообраз $x=f^{-1}(y)\in A$ (т. е. f инъектив-

но).

5. Отображение $f: y = x^2, x \in [-1,1] = A, y \in [0,1] = B$ не является инъективным, поскольку, например, f(-1) = f(1) = 1, однако отображение $g: y = x^2, x \in [0,1], y \in [0,1]$ уже инъективно и даже биективно, так как g([0,1]) = [0,1] = B и $\forall x_1, x_2 \in [0,1]$ имеем $(x_1 \neq x_2) \Leftrightarrow (x_1^2 \neq x_2^2)$.

Определение. Пусть отображение $f:A\to B$ есть биекция $u\ y\in B=f(A)$. Тогда полный прообраз $f^{-1}(y)$ состоит из единственной точки $x\in A$ такой, что f(x)=y. Введем отображение $f^{-1}:y\to x=f^{-1}(y)$ множества B на A. Отображение f^{-1} вновь является биекцией и называется обратным отображением (обратной функцией) или биекцией к f.

Замечание. Итак, если отображение $f:A\to B$ есть биекция, то обратная биекция $f^{-1}:B\to A$ ставит в соответствие любому $y\in B$ его единственный прообраз $x\in A$.

Замечание. Если отображение $f:A\to B$ не является биекцией (т. е. не является взаимнооднозначным отображением A на B), то обратного отображения не существует.

$$\begin{array}{c|c} x = f^{-1}(y) & \xrightarrow{f} & y = f(x) \\ A = f^{-1}(B) & \xleftarrow{f} & B = f(A) \end{array}$$

3 а м е ч а н и е. Если $f:A \to B$ — биекция и $f^{-1}:B \to A$ — обратная биекция, то имеем

 $f^{-1}(f(x)) = x \, \forall x \in A = f^{-1}(B),$ $f(f^{-1}(y)) = y \, \forall y \in B = f(A).$

 Π р и м е р. $f: y = x^2, x \in [0,1], y \in [0,1], (x \to x^2)$, тогда $f^{-1}: x = \sqrt{y}, y \in [0,1], x \in [0,1], (y \to \sqrt{y})$.

Пусть $f:A\to B$ и $X\subset A,\,Y\subset B.$ Отметим некоторые важные соотношения для образов и полных прообразов при отображении f.

1. $f(\emptyset) = \emptyset$.

2. $(X_1 \subset X_2 \subset A) \Rightarrow (f(X_1) \subset f(X_2) \subset B)$. (Доказательства провести самостоятельно).

3. $f(X_1 \cup X_2) = f(X_1) \cup f(X_2) \, \forall X_1, X_2 \subset A$.

Д о к а з а т е л ь с т в о. Пусть сначала $y \in f(X_1 \cup X_2)$. Тогда существует $x \in X_1 \cup X_2$ такое, что f(x) = y. Но $x \in X_1 \cup X_2$ означает, что или $x \in X_1$, или $x \in X_2$. В случае $x \in X_1$ имеем $y = f(x) \in f(X_1)$; в случае $x \in X_2$ имеем $y = f(x) \in f(X_2)$, т. е. в обоих случаях имеем включение $y \in f(X_1) \cup f(X_2)$, откуда а) $f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$.

Пусть теперь $y \in f(X_1) \cup f(X_2)$. Тогда или $y \in f(X_1)$, или $y \in f(X_2)$. В случае $y \in f(X_1)$ $\exists x \in X_1$ такое, что f(x) = y, и поскольку $X_1 \subset X_1 \cup X_2$, то $(x \in X_1 \cup X_2) \Rightarrow (y = f(x) \in f(X_1 \cup X_2))$.

В случае $y \in f(X_2)$ $\exists x \in X_2 \subset X_1 \cup X_2$ такое, что f(x) = y, т. е. $y \in f(X_1 \cup X_2)$. Итак, в обоих случаях имеем $y \in f(X_1 \cup X_2)$, т. е. имеет место включение б) $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$.

Из а) и б) вытекает утверждение 3.

4. $f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2) \, \forall X_1, X_2 \subset A$. (Доказать самостоятельно.)

3 а м е ч а н и е. Равенства $f(X_1\cap X_2)=f(X_1)\cap f(X_2)$ может и не быть, например, если $f:A\to B$ есть постоянное отображение, т. е. $f(x)=b\ \forall x\in A$ и $X_1,\,X_2\subset A$, но $X_1\cap X_2=\varnothing$. Тогда $f(X_1\cap X_2)=f(\varnothing)=\varnothing$, однако $f(X_1)\cap f(X_2)=\{b\}\neq\varnothing$, т. е. $f(X_1)\cap f(X_2)\neq f(X_1\cap X_2)$.

5. $f^{-1}(\varnothing) = \varnothing$.

 \exists а м е ч а н и е. Может оказаться, что $\exists Y \subset B$ такое, что $f^{-1}(Y) = \varnothing$, хотя $Y \neq \varnothing$.

 Π р и м е р. Рассмотри отображение $f: \mathbf{R} \to \mathbf{R}$, где $f: x \to x^2$, тогда $f^{-1}(-1) = \varnothing$.

- 6. $f^{-1}(Y_1) \subset f^{-1}(Y_2) \, \forall Y_1 \subset Y_2 \subset B$. (Доказать самостоятельно.)
- 7. $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2) \, \forall Y_1, Y_2 \subset B$. (Доказать самостоятельно.)
 - 8. $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2) \, \forall Y_1, Y_2 \subset B$.

Доказательство. Пусть сначала $x \in f^{-1}(Y_1 \cap Y_2)$. Тогда $y = f(x) \in Y_1 \cap Y_2$, но $(y \in Y_1) \Rightarrow (x \in f^{-1}(Y_1))$, а $(y \in Y_2) \Rightarrow (x \in f^{-1}(Y_2))$, т. е. $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$, откуда в) $f^{-1}(Y_1 \cap Y_2) \subset f^{-1}(Y_1) \cap f^{-1}(Y_2)$.

Пусть теперь $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2) \neq \varnothing$. Тогда $(x \in f^{-1}(Y_1)) \Rightarrow (y = f(x) \in Y_1)$, а $(x \in f^{-1}(Y_2)) \Rightarrow (y = f(x) \in Y_2)$, т. е. $y = f(x) \in Y_1 \cap Y_2$, откуда имеем $x \in f^{-1}(Y_1 \cap Y_2)$, так что г) $f^{-1}(Y_1) \cap f^{-1}(Y_2) \subset f^{-1}(Y_1 \cap Y_2)$. Из в) и г) вытекает справедливость 8.

 $9. f^{-1}(\mathbf{C}Y) = \mathbf{C}f^{-1}(Y)\forall Y \subset B.$

Доказательство. Имеем $B = Y \cup CY$, $A = f^{-1}(B) = f^{-1}(Y \cup CY)$. В силу свойства 7 имеем равенство $f^{-1}(Y \cup CY) = f^{-1}(Y) \cup f^{-1}(CY)$. Заметим, что $f^{-1}(Y) \cap f^{-1}(CY) = \emptyset$, так как в противном случае $\exists x \in A$ такое, что $f(x) \in Y \cap CY = \emptyset$. Это невозможно. Итак, имеем $A = f^{-1}(Y) \cup f^{-1}(CY)$, причем $f^{-1}(Y) \cap f^{-1}(CY) = \emptyset$, но тогда $f^{-1}(CY) = A \setminus f^{-1}(Y) = Cf^{-1}(Y)$.

10. $f^{-1}(f(X)) \supset X \ \forall X \subset A$.

Доказательство. Пусть $x \in X$, тогда $f(x) \in f(X) = Y$ и в силу определения полного прообраза $x \in f^{-1}(Y) = f^{-1}(f(X))$, т. е. $X \subset f^{-1}(f(X))$.

11. $f(f^{-1}(Y)) \subset Y \ \forall Y \subset B$.

Доказательство. Пусть $y \in f(f^{-1}(Y))$, тогда существует $x_0 \in f^{-1}(Y)$ такое, что $f(x_0) = y$. Поскольку $x_0 \in f^{-1}(Y)$, то в силу определения полного прообраза $f(x_0) = y \in Y \Rightarrow f(f^{-1}(Y)) \subset Y$.

Определения A и $X \subset A$ — подмножество A, то сужением функции f на X называется функция $f_X: X \to B$, область определения которой есть X, и такая, что $f_X(x) = f(x) \ \forall x \in X$. Для сужения f_X используется также обозначение f|X.

3 а м е ч а н и е. Если f_X является сужением функции $f:A\to B$ на $X\subset A$, то функцию f называют продолжением функции $f_X:X\to B$ на множество A.

Пример. $f:y=x^2,\ x\in[-1,1]=A,\ y\in[0,1]=B.$ Пусть $X=[0,1]\subset A,$ тогда имеем $f|X:y=x^2,\ x\in[0,1],\ y\in[0,1].$

О п р е д е л е н и е. Пусть E, F и G – непустые множества и $f:E\to F; g:F\to G$. Тогда композицией (суперпозицией) $g\circ f$ называется отображение E в G, определенное формулой $(g\circ f)(x)=g(f(x))\ \forall x\in E$. Заметим, что запись $g\circ f$ производится в порядке, обратном тому, в котором производятся операции g и f. При исследовании композиций полезны диаграммы

$$\stackrel{E}{\xrightarrow{f}} \stackrel{F}{\xrightarrow{g}} \stackrel{g}{\xrightarrow{f}}$$

Таким образом, в математическом анализе принято правило, согласно которому в композиции операций $g \circ f$ нужно начинать с операции f, расположенной справа.

3 амечание. Если $A\subset E$, то $(g\circ f)(A)=g(f(A)),$ если $B\subset G,$ то $(g\circ f)^{-1}(B)=f^{-1}(g^{-1}(B))\subset E.$

Замечание. Композиция отображений ассоциативна, т. е. если $f: E \to F; g: F \to G; h: G \to H$, то $(h \circ g) \circ f = h \circ (g \circ f)$, что проще записывается в виде $h \circ g \circ f$.

На диаграмме это выглядит так:

Замечание. Если f^{-1} является биекцией, обратной к $f: E \to F$, то $f^{-1} \circ f = I_E$, где I_E — тождественное отображение E (на E) и $f \circ f^{-1} = I_F$, где I_F — тождественное отображение F (на F).

Пример. Пусть $g:y=u^2,\;u\in (-\infty,+\infty),\;f:u=x+1,\;x\in (-\infty,+\infty),\;u\in (-\infty,+\infty),\;$ тогда $g\circ f:y=(x+1)^2,\;x\in (-\infty,+\infty),\;y\in [0,+\infty).$

При рассмотрении числовых функций $f:A\to B$, где $B\subset \mathbf{R}$ выделяют класс числовых (или действительных) функций одного действительного переменного, т. е. функции f(x) вида $f:A\to B$, где A и B являются подмножествами множества действительных чисел \mathbf{R} $(A\subset \mathbf{R},B\subset \mathbf{R})$.

З а м е ч а н и е. Функция $n \to f(n)$, определенная на множестве N всех натуральных чисел, называется (числовой при $f(n) \in \mathbf{R}$) последовательностью. Ее значение, или член последовательности, для данного $n \in \mathbf{N}$ обычно обозначают через a_n , а сама последовательность обозначается символами (a_n) или $a_1, a_2, ..., a_n, ...$. Таким: образом, (a_n) есть отображение $n \to a_n, n \in \mathbf{N}$.

Определение. Скажем, что числовые функции f:y=f(x), $x\in X_f,\ y\in Y_f=f(X_f)$ и $g:y=g(x),\ x\in X_g,\ y\in Y_g=g(X_g)$ совпадают, если: 1) совпадают их области определения $X_f=X_g$ и 2) $f(x)=g(x)\ \forall x\in X=X_f=X_g$.

Простейшими элементарными функциями одного действительного переменного будем называть следующие функции:

$$f(x)=\sum_{k=0}^n a_k x^k$$
 и $Q_m(x)=\sum_{k=0}^m b_k x^k$ – многочлены и x_l – действи-

k=0 k=0 Тельное число, такое, что $Q_m(x_l)=0$;

 $x < +\infty, \ \alpha \in (-\infty, +\infty); \ 0 < x < +\infty, \ \alpha \in (-\infty, +\infty); \ 0 < x < +\infty, \ \alpha \in (-\infty, +\infty); \ 0 < x < +\infty, \ \alpha \in (0, +\infty);$

- 3) показательная функция $y = a^x, -\infty < x < +\infty, \ a > 0, \ a \neq 1;$
- 4) логарифмическая функция $y = \log_a x$, $0 < x < +\infty$, a > 0, $a \neq 1$;
- 5) тригонометрические функции:

$$y = \sin x, -\infty < x < +\infty, -1 \le y \le 1;$$

$$y = \cos x, -\infty < x < +\infty, -1 \le y \le 1;$$

$$y = \operatorname{tg} x$$
, $(2k-1)\frac{\pi}{2} < x < (2k+1)\frac{\pi}{2}$ $(k = 0, \pm 1, \pm 2, \pm 3, ...)$;

$$y = \operatorname{ctg} x, \ k\pi < x < (k+1)\pi \ (k = 0, \pm 1, \pm 2, \pm 3, \ldots);$$

6) обратные тригонометрические функции:

$$y = \arcsin x, -1 \le x \le 1, -\frac{\pi}{2} \le y \le \frac{\pi}{2};$$

$$y = \arccos x, -1 \le x \le 1, 0 \le y \le \pi;$$

$$y = \operatorname{arctg} x, \, -\infty < x < +\infty, \, -\frac{\pi}{2} < y < \frac{\pi}{2};$$

 $y = \operatorname{arcctg} x, -\infty < x < +\infty, 0 < y < \pi.$

Определение. Элементарными функциями называются функции, получающиеся из простейших элементарных функций посредством конечного числа арифметических действий или композиций этих функций.

 Π р и м е р. Функция $y=|x|,\ x\in (-\infty;+\infty)$ элементарная $(|x|=\sqrt{x^2}).$

 Π р и м е р. Функция $f(x) = \frac{x}{|x|} = \left\{ \begin{array}{l} 1, x > 0, \\ -1, x < 0 \end{array} \right.$ элементарная.

 Π р и м е р. Функция $\operatorname{sgn} x$ не элементарная

§ 3. Счетные и несчетные множества

О пределение. Пусть A и B — непустые множества. Если существует биекция (т. е. взаимнооднозначное отображение на) $f:A\to B$ множества A на B, то множества A и B называются равномощными. Запись: $A\sim B$.

Отношение ~ обладает следующими свойствами эквивалентности:

- 1) $A \sim A$ (рефлексивность); 2) $(A \sim B) \Rightarrow (B \sim A)$ (симметричность);
- 3) $(A \sim B) \land (B \sim C) \Rightarrow (A \sim C)$ (транзитивность).

Определение. Если $\exists n \in \mathbb{N}$ такое, что $A \sim J_n = \{1, 2, \dots, n\}$, то непустое множество A называется конечным, в противном случае непустое множество A называется бесконечным.

П р и м е р. Множество $A=\{2,4,6,\dots,2n\}$ конечно, так как отображение $k\to 2k$ $(k=1,2,\dots,n)$ множества J_n на A есть биекция и поэтому $A\sim J_n$.

Определение. Непустое множество A называется счетным, если $A \sim N$ (где N – множество натуральных чисел).

Примеры:

- а) Пусть $A=\{2,4,6,\ldots,2n,\ldots\}$ множество всех четных натуральных чисел. Тогда отображение $n\to 2n$ множества N на A есть биекция, и поэтому $A\sim N$, т. е. A счетно;
- б) рассмотрим множество всех целых чисел ${f Z}$. Тогда отображение $n o a_n, \, n \in {f N}$, где

$$a_n = \left\{ egin{array}{ll} n/2 & ext{при } n ext{ четном}, \ (1-n)/2 & ext{при } n ext{ нечетном}. \end{array}
ight.$$

есть биекция N на Z, поэтому $Z \sim N$, т. е. множество Z счетно;

в) пусть Δ_1 и Δ_2 – любые два отрезка. Построим прямоугольник со сторонами Δ_1 и Δ_2 . Тогда диагональ $\Gamma \subset \Delta_1 \times \Delta_2$ этого прямо-