```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split

df = pd.read_csv('voice.csv')
df.head()
```

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	
0	0.059781	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462	274.402906	(
1	0.066009	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285	634.613855	(
2	0.077316	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155	1024.927705	(
3	0.151228	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.177296	(
4	0.135120	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.333713	(

5 rows × 21 columns

df.info()

C> <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 3168 entries, 0 to 3167

Data columns (total 21 columns):

#	Column	Non-N	Null Count	Dtype
0	meanfreq	3168	non-null	float64
1	sd	3168	non-null	float64
2	median	3168	non-null	float64
3	Q25	3168	non-null	float64
4	Q75	3168	non-null	float64
5	IQR	3168	non-null	float64
6	skew	3168	non-null	float64
7	kurt	3168	non-null	float64
8	sp.ent	3168	non-null	float64
9	sfm	3168	non-null	float64
10	mode	3168	non-null	float64
11	centroid	3168	non-null	float64
12	meanfun	3168	non-null	float64
13	minfun	3168	non-null	float64
14	maxfun	3168	non-null	float64
15	meandom	3168	non-null	float64
16	mindom	3168	non-null	float64
17	maxdom	3168	non-null	float64
18	dfrange	3168	non-null	float64
19	modindx	3168	non-null	float64
20	label	3168	non-null	object
d+,,,,,	oc. £100+6	1/201	obioc+(1)	

dtypes: float64(20), object(1)

memory usage: 519.9+ KB

df.columns

sns.lmplot(x='meanfun',y='meanfreq',hue='label',data=df,fit_reg=False)

<seaborn.axisgrid.FacetGrid at 0x7f62dac44b50>

plt.figure(figsize=(15,10),dpi=100)
sns.heatmap(df.corr(),cmap="viridis",annot=True,linewidth=0.5)

<matplotlib.axes._subplots.AxesSubplot at 0x7f62d420e610>


```
fig = sns.FacetGrid(df, hue="label")
fig.map(sns.kdeplot, "meanfun", shade=True)
fig.add_legend()
```

<seaborn.axisgrid.FacetGrid at 0x7f62d72d6850>


```
data_train = df.sample(frac=0.7, random_state=1)
data_test = df.drop(data_train.index)

X_train = data_train.drop(['label'],axis=1)
y_train = data_train['label']
X_test = data_test.drop(['label'],axis=1)
y_test = data_test['label']
```

Logistic Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
model = LogisticRegression(max_iter=1000)
model.fit(X_train,y_train)
prediction=model.predict(X_test)
print('The accuracy of the Logistic Regression is',accuracy_score(prediction,y_test))
```

The accuracy of the Logistic Regression is 0.9084210526315789

Decision Tree Classifier

```
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier()
model.fit(X_train,y_train)
prediction=model.predict(X_test)
print('The accuracy of the Decision Tree is',accuracy_score(prediction,y_test))
The accuracy of the Decision Tree is 0.9663157894736842
```

Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
classifier_rf = RandomForestClassifier(random_state=42, n_jobs=-1, max_depth=5, n_estimato
classifier_rf.fit(X_train, y_train)
print('The accuracy of the Random Forest is',classifier_rf.oob_score_)
```

The accuracy of the Random Forest is 0.9729486023444545

×