Homework 1 - Differentiability

MATH 230B

You can use all the results discussed in class. They are collected in the notes posted on Canvas.

Problem 1 [Master's Exam, Fall 2017, Fall 2018, Spring 2019] Let

$$f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x^2}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

How many times is f differentiable on \mathbb{R} ? For which $n \in \mathbb{N}$ do we have $f \in C^n(\mathbb{R}) \setminus C^{n+1}(\mathbb{R})$?

Problem 2 [Master's Exam, Fall 2017]

Let $f:]0,1] \to \mathbb{R}$ be differentiable with 0 < f'(x) < 1 for all $x \in]0,1]$. Prove that the sequence $\{f(1/n)\}_n$ has a limit.

Problem 3 [Master's Exam, Fall 2020]

Let $f:[0,1] \to [0,1]$ be continuous on [0,1] and differentiable on [0,1[, with $f'(x) \neq 1$ for all $x \in]0,1[$. Prove that there exists a unique fixed point for f in [0,1].

Problem 4 Let $f:[0,\infty[\to\mathbb{R}]$ be continuous on $[0,\infty[$ with f(0)=0 and differentiable on $]0,\infty[$ with f' increasing on $]0,\infty[$. Prove that the function $\frac{f(x)}{x}$ is increasing on $]0,\infty[$.

Problem 5 Let $a < b, x_0 \in]a, b[$ and $f \in C^{2n}(]a, b[)$ for some $n \in \mathbb{N}$. Suppose that $f^{(k)}(x_0) = 0$ for all $k \in \{1, 2, \dots, 2n - 1\}$ and $f^{(2n)}(x_0) > 0$. Prove that f has a local minimum at x_0 .

ADDITIONAL PROBLEMS

Problem A1 [Master's Exam, Spring 2018]

Let a < b be real numbers and $f :]a, b[\to \mathbb{R}$ be differentiable with $|f'(x)| \le M$ for all $x \in]a, b[$, where M > 0. Prove that $\lim_{x \to b^-} f(x)$ exists.

Problem A2 [Master's Exam, Spring 2021]

Let $f:]0, \infty[\to \mathbb{R}$ be differentiable. Prove that if $\lim_{x \to \infty} f(x) = M \in \mathbb{R}$, then there exists a sequence $\{x_n\}_n$ in $]0, \infty[$ such that $f'(x_n)$ converges to 0.

Problem A3 [Master's Exam, Spring 2020]

Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and assume that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, where $0 \leq M < 1$. Let $x_1 \in \mathbb{R}$ and consider the recursion

$$x_{n+1} = f(x_n)$$
 for all $n \in \mathbb{N}$.

Prove that $\{x_n\}_n$ converges to the unique fixed point of f.

Problem A4 [Master's Exam, Spring 2018]

Let

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Prove that $f \in C^{\infty}(\mathbb{R})$ and $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.

Hint: prove that for all $x \neq 0$ and $n \in \mathbb{N}$ we have:

- $\bullet \ e^{-\frac{1}{x^2}} \le n! x^{2n}$
- $f^{(n)}(x) = e^{-\frac{1}{x^2}} p_n\left(\frac{1}{x}\right)$, where $p_n(x)$ is a polynomial function.