Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З лабораторної роботи №1 по курсу "Основи теорії кіл"

Виконав:

Ст. гр. ДК-81

Шунь Павло

Перевірив:

ас. Короткий \in В.

1 варіант досліджуваної схеми:

За допомогою LTspice IV була просимульована амплітуда напруги на резисторі послідовного коливального контуру:

2 схема лабораторної роботи

За допомогою LTspice IV була просимульована амплітуда напруги на котушці послідовного коливального контуру:

3 варіант досліджуваної схеми

За допомогою LTspice IV була просимульована амплітуда напруги на конденсаторі послідовного коливального контуру:

Параметри вхідного сигналу:

$$f_{
m pes.} = rac{1}{2\pi\sqrt{L*C}} = rac{1}{2\pi\sqrt{0.9*10^{-3}*147*10^{-9}}} = 13837$$
Гц

Вхідний сигнал повинен мати частоту близьку до резонансної, тому я взяв 13кГц і амплітудою 1В.

Таблиці з результатами вимірюваннь:

Таблиця №1

Uвх,В	Δφ,°	U _R ,B	Δφ,°	U _L ,B	Δφ,°	U _C ,B	Δφ,°	I _{BX} ., MA
1	0	0,99	77,22	0,072	-91,12	0,081	0	1

Таблиця №2

R,OM	Z _C ,OM	Z _L ,OM	Х _{вх} ,Ом	Z _{BX} .,OM	Үвх,См
1000	105*e(-91,12°)	78*e(77,22°)	(-124,36)+77i	1000	0,001

Таблиця №3

	S,BA	Р,Вт			Q,BAP			
R	L	С	R	L	С	R	L	С
0,485*10^	0,0391*10^	0,0525*10^	0,485*10^-	8,6*10^-	10^			
-3	-3	-3	3	6	-6	0	3,8*10^-5	(-5.4)*10^-5

Розрахунки схеми:

$$\begin{split} &U_{BX}=1\ V.\ U_{R}=0.99\ V.\ U_{C}=0.081\ V.\ U_{L}=0.072.\\ &p_{n}=0^{\circ};\\ &\phi=\Delta t\ ^{*}2^{*}\ \pi^{*}f\\ &\phi_{c}=-19.34^{*}10^{\wedge}-6^{*}\ 2^{*}\pi^{*}13000=-90.51^{\circ}\\ &\phi_{L}=19.4^{*}10^{\wedge}-6^{*}\ 2^{*}\pi^{*}13000=90.79^{\circ}\\ &\mathring{U}_{m}=U_{m}^{*}exp(\Delta\phi^{*}j)\\ &\mathring{U}_{R}=0.97;\ \mathring{U}_{C}=0.081\ ^{*}\ exp(j^{*}(-90.51^{\circ}));\ \mathring{U}_{L}=0.072^{*}\ exp(j^{*}(90.79^{\circ})) \end{split}$$

Так як маємо послідовне з'єднання:

$$\hat{I}_{BX} = \hat{I}_{C} = \hat{I}_{R} = \hat{I}_{L}$$

$$\hat{I}_{R} = \frac{\hat{U}r}{R} = 1/1000 = 10^{-3} \text{ A} = \hat{I}_{BX}$$

Опори:

$$Z_L = \mathring{U}_L / \mathring{I}_L = 0.072* \exp(j*(90.79°)) / 10^-3 = 72* \exp(j*(90.79°))$$
 Ohm.

$$Z_C = \dot{U}_C / \dot{I}_C = 0.081 * \exp(j*(-90.51^\circ)) / 10^-3 = 81* \exp(j*(-90.51^\circ))$$
 Ohm.

$$Z_{BX} = \mathring{U}_{BX} / \mathring{I}_{BX} = 1 / 10^{-3} = 1000 \text{ Ohm.}$$

Реактивний опір:

$$X_{peak.} = Z_C + Z_L = 72 * exp(j*(90.79°)) + 81* exp(j*(-90.51°)) = 72 * (cos(90.79°) + j*sin(90.79°)) + 81*(cos(-90.51°) + j*sin(-90.51°)) = -1.713 - 9.003*j$$

$$|X_{\text{peak.}}| = \sqrt{-1.713^2 + 9.003^2} = 8.83 \text{ Ohm.}$$

$$Y_{BX} = 1 / Z_{BX} = 1/1000 = 10^{-3} Cm.$$

Потужності:

$$S_R = (U_R * I_R) / 2 = 0.495 * 10^{-3} BA$$

$$S_C = (U_C * I_C) / 2 = 0.0405 * 10^-3 BA$$

$$S_L = (U_L * I_L) / 2 = 0.036 * 10^-3 BA$$

$$P_R = S_R * cos(\phi_R) = 0.485 * 10^-3 BT.$$

$$P_C = S_C * cos(\phi_C) = 0.0405 * 10^{-3} * (-0.0089) = -3.6*10^{-7} BT.$$

$$P_L = S_L * \cos(\phi_L) = 0.036 * 10^{-3} * (-0.0137) = -4.932 \times 10^{-7} \text{ Bt.}$$

$$Q_R = S_R * \sin(\phi_R) = 0$$

$$Q_C = S_C * \sin(\phi_C) = 0.0405 * 10^{-3} * (-0.99) = -4 * 10^{-5}$$

$$Q_L = S_L * \sin(\phi_L) = 0.036 * 10^{-3} * 0.99 = 3.56 * 10^{-5}$$

Векторні діаграми:

Векторна діаграма струмів (розмірність 10^-3)

Векторна діаграма опорів

Векторна діаграма потужності на резисторі (розмірність 10^(-3))

Векторна діаграма потужності на конденсаторі (розмірність 10^(-7))

Векторна діаграма потужності на котушці (розмірність 10^(-5))

Векторна діаграма всіх потужностей (розмірність 10^(-6))

 $\begin{aligned} &P_{sum} = P_c + P_L + P_R + Q_C + Q_L = (-0.36 - 0.49 + 485 - 40 + 35)*10^{\circ} - 6 = 0.00047915 \text{ BA} \\ &P_{sum.theory} = \sqrt{484.5^{\circ}2 + 0.269^{\circ}2} = 0.0004845 \text{ BA} \end{aligned}$

Висновок: на цій лабораторній роботі я провів розрахунки послідовного коливального контуру методом комплексних амплітуд, а також розрахував потужності, які виділяються на окремих компонентах кола. Відносно невелика похибка у розрахунку сумарної потужності є свідком того, що усі розрахунки були проведені коректно.