Data Management

Table of contents

```
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr
                              2.1.5
v lubridate 1.9.4
                             1.3.1
                  v tidyr
         1.0.4
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(descr)
library(knitr)
library(dplyr)
library(haven)
library(labelled)
file_path <- file.path("..","data","data_clean.sav")</pre>
df <- read_sav(file_path)</pre>
head(df)
```

```
# A tibble: 6 x 167
                      knowAI4_1 knowAI5 knowAI7_1 gattAI1_1 gattAI1_2 gattAI1_3
 knowAI1
           knowAI2
  <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>
                                                                           dbl>
1 1 [Yes]
            1 [Yes]
                      2 [Slight~ 1 [Yes] 3 [Moder~ 4 [Somew~ 4 [Somew~
                                                                               3
2 1 [Yes]
           2 [No]
                      3 [Modera~ 1 [Yes] 3 [Moder~ 1 [Stron~ 1 [Stron~
                                                                               5
3 1 [Yes]
           2 [No]
                      2 [Slight~ 1 [Yes] 3 [Moder~ 3 [Neith~ 4 [Somew~
                                                                               3
4 1 [Yes]
           1 [Yes]
                      3 [Modera~ 1 [Yes] 4 [Very ~ 4 [Somew~ 4 [Somew~
                                                                               4
5 1 [Yes]
           1 [Yes]
                      2 [Slight~ 1 [Yes] 4 [Very ~ 1 [Stron~ 4 [Somew~
                                                                               2
6 1 [Yes]
           2 [No]
                      3 [Modera~ 1 [Yes] 3 [Moder~ 4 [Somew~ 5 [Stron~
                                                                               3
# i 159 more variables: gattAI1_4 <dbl+lbl>, gattAI1_5 <dbl+lbl>,
   gattAI1_6 <dbl>, gattAI1_7 <dbl+lbl>, gattAI1_8 <dbl>, gattAI1_9 <dbl>,
   gattAI1_10 <dbl>, gattAI1_11 <dbl+lbl>, gattAI2_1 <dbl+lbl>,
   gattAI2_2 <dbl+lbl>, gattAI2_3 <dbl+lbl>, gattAI2_4 <dbl+lbl>,
   gattAI2_5 <dbl>, gattAI2_6 <dbl+lbl>, gattAI2_7 <dbl+lbl>,
   gattAI2_8 <dbl+lbl>, gattAI2_9 <dbl>, gattAI2_10 <dbl>,
   cog_read_1 <dbl+lbl>, cog_read_2 <dbl+lbl>, cog_read_3 <dbl+lbl>, ...
```

library(descr)

freq(as.ordered(df\$gattAI2_8))

as.ordered(df\$gattAI2_8)

	Frequency	Percent	Valid	Percent	Cum	Percent
1	44	15.385		22.798		22.80
2	42	14.685		21.762		44.56
3	47	16.434		24.352		68.91
4	48	16.783		24.870		93.78
5	12	4.196		6.218		100.00
NA's	93	32.517				
${\tt Total}$	286	100.000		100.000		

freq(as.ordered(df\$job_anx_2))

as.ordered(df\$job_anx_2)

	_					
	Frequency	${\tt Percent}$	Valid	${\tt Percent}$	Cum	Percent
1	13	4.545		7.471		7.471
2	24	8.392		13.793		21.264
3	22	7.692		12.644		33.908
4	20	6.993		11.494		45.402
5	54	18.881		31.034		76.437
6	29	10.140		16.667		93.103
7	12	4.196		6.897		100.000
NA's	112	39.161				
Total	286	100.000		100.000		

freq(as.ordered(df\$attitude2_1))

as.ordered(df\$attitude2_1)

	Frequency	Percent	Valid	Percent	Cum	Percent
1	33	11.538		26.190		26.19
2	33	11.538		26.190		52.38
3	31	10.839		24.603		76.98
4	25	8.741		19.841		96.83
5	4	1.399		3.175		100.00
NA's	160	55.944				
Total	286	100.000		100.000		

```
sum(is.na(df$gattAI2_8))
```

[1] 93

```
sum(is.na(df$job_anx_2))
```

[1] 112

```
sum(is.na(df$attitude2_1))
```

[1] 160

The frequency tables above display the data regarding psychotherapists' desire to use AI in their job, their fear about becoming dependent on the technology and losing reasoning skills, and their belief as to whether or not AI incorporation is a good idea. I chose to represent those three variables because together they offer a general summary about mental health professionals' preconceived beliefs, attitudes, and willingness to incorporate AI technology into their practice. The data rates the psychotherapists' responses from a scale of 1, meaning strongly disagree, to 5 or 7, meaning strongly agree.