2017~2018学年北京朝阳区高一上学期期末化学试卷

选择题

1.	下列生活实例中,运用了过滤	原理的是 ()		
	A. 用笊 (zhao)篱捞饺子		B. 用热水沏茶	
	C. 用洗衣粉去除油渍		D. 用冷水浸泡中药	
2	除去粗食盐水中的 ${ m SO}_4^{2-}$, 应设	5.田的试划是 ()		
۷.			C N OH	D. D. Cl
	A. HCl	B. Na ₂ CO ₃	C. NaOH	D. BaCl ₂
3.	当火灾现场大量存放下列哪种	物质时,不能用水灭火()		
	A. 木材	B. 煤	C. 钠	D. 布料
4.	4	8		
		氧化剂		
	下列试剂中,标签上应标注	的是()		
	A. Na ₂ SO ₃	B. 漂白粉	C. 烧碱	D. NH ₄ Cl
5.	向烧杯中加入下列物质,闭合	K, 电流计指针无明显偏转的是	H ₂ O	
	A. NaOH	B. NaCl	C. 蔗糖	D. H ₂ SO ₄
6.	下列物质中在化学反应中只能	做还原剂的是()		
	A. 浓 H ₂ SO ₄	B. Cl ₂	C. Fe	D. HNO ₃
7.	生菜无土栽培营养液的配方要	求 KNO3、MgSO4、NH4NO3	物质的量之比为 1 : 2 : 1。配制设	亥营养液,已溶解

 $0.02 \; \mathrm{mol} \; \mathrm{KNO_3}, \; 0.02 \; \mathrm{mol} \; \mathrm{NH_4NO_3}$,还需 $\mathrm{MgSO_4}$ 的质量为()

- 8. 黑火药是硫磺粉、硝石、木炭粉按一定比例混合而成。古文献《本草经集注》记载了区分硝石(KNO_3)和朴消(Na_2SO_4)的方法: "以火烧之,紫青烟起,乃真硝石也"。下列判断不正确的是()
 - A. "紫青烟"主要是指钾元素的焰色反应
- B. "朴消"在灼烧时火焰没有颜色
- C. "硝石"在黑火药中起氧化剂的作用
- D. "朴消"不能替代"硝石"制黑火药
- 9.2017年我国研制的氢氧燃料电池有轨电车在唐山市载客运营,是全球首次商业运营。该车动力源于氢气、氧气反应产生的 电能。下列反应不会产生电能的是()

A.
$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

B.
$$PbO_2 + Pb + 2H_2SO_4 = 2PbSO_4 + 2H_2O$$

C.
$$2NaOH + H_2SO_4 = Na_2SO_4 + 2H_2O$$

$$D. 4Li + O_2 = 2Li_2O$$

10. Na₂CO₃ 能用于药物,外观上与 NaCl 相似。区分二者,实验方案不合理的是(

	选用试剂或方法	判断依据		
A	稀 HCl	观察有无气体产生		
В	酚酞溶液	观察溶液颜色是否变化		
С	C <mark>aC</mark> l ₂ 溶液	观察是否成沉淀		
D	酒精灯加热	观察有无气体产生		

A. A

В. В

C. C

D. D

11. 下列装置不能完成对应实验的是(

A. A

C. C

D. D

12. 工业上用废铜屑作原料制备硝酸铜。为节约原料和防止污染,宜采取的方法是()

A.
$$Cu + HNO_3(稀) \rightarrow Cu(NO_3)_2$$

B.
$$Cu \xrightarrow{\text{\Rightarrow} CuO} CuO \xrightarrow{\text{HNO_3} Cu(NO_3)_2}$$

C.
$$Cu \xrightarrow{\text{$\kappa \hat{m} \tilde{g}$}} CuSO_4 \xrightarrow{Ba(NO_3)_2} Cu(NO_3)_2$$

D.
$$Cu + HNO_3(浓) \rightarrow Cu(NO_3)_2$$

13. 下列解释事实的化学方程式,不正确的是()

- A. 水蒸气通过灼热铁粉,生成黑色固体: $3\mathrm{H}_2\mathrm{O(g)} + 2\mathrm{Fe} \stackrel{\Delta}{=} \mathrm{Fe}_2\mathrm{O}_3 + 3\mathrm{H}_2$
- B. Al 与 NaOH 溶液反应产生可燃性气体: $2Al + 2NaOH + 2H_2O = 2NaAlO_2 + 3H_2 \uparrow$
- C. 石灰乳吸收泄漏的液氯: $2Cl_2 + 2Ca(OH)_2 = CaCl_2 + Ca(ClO)_2 + 2H_2O$
- D. 过氧化钠用于潜水艇中氧气来源: $2Na_2O_2 + 2CO_2 = 2Na_2CO_3 + O_2$
- 14. Science 杂志在 2017 年春节发表了南京理工大学的论文,报道了世界上首个成功合成的五氮阴离子盐(

 $(N_5)_6(H_3O)_3(NH_4)_4Cl$ 白色固体),这是全氮含能材料中里程碑式的突破。该盐可简略表示如下,下列分析不合理的是()

A. 五氮阴离子的化学式为 N_5

B. 该盐中氮元素的化合价均为 -3 价

C. 该盐遇盐碱能释放出 NH3

- D. 该盐中五氮阴离子具有还原性
- 15. M 与 N 反应时,不能实现图示电子转移的是()

选项	M	N	电子转移
A	铁粉	Cl_2	e ⁻
В	铜片	HNO_3	
С	Cl_2	H ₂ O	M N
D	Na ₂ SO ₃	O_2	141
A. A	B . B	C . C	D.

16. 常用加热铵盐和碱的混合物的方法制取、收集氨,下列实验不合理的是(

- A. ②处用湿润的棉花堵住试管口控制 NH3 外逸
- B. ②处用湿润的红色石蕊试纸检验 NH3 是否集满
- C. 不时移开酒精灯控制①处产生 NH3 的量
- D. 向③中加入酸化的 AgNO3 溶液, 检验是否含氯离子
- 17. 下列"实验方法"不宜用于完成"实验目的"的是()

	实验目的	实验方法		
A	确认 Fe(OH)3 胶体是否制备成功	用可见光束照射		
В	确认铜与浓硫酸反应生成 CuSO ₄	向反应后混合液中加水		
С	确认钠与水反应生成 NaOH	向反应后混合液中滴加酚酞		
D	确认 Cl ₂ 无漂白作用	将有色纸条放入干燥 Cl ₂ 中		

A. A B. B C. C D. D

18. 某小组用打磨过的铝片进行如下实验,下列分析不合理的是()

- A. ①中铝片发生了钝化
- B. ②中产生的气泡可能是氮氧化合物
- C. ③中沉淀溶解的离子方程式是 $Al(OH)_3 + OH^- = AlO_2^- + 2H_2O$
- D. ②中加水稀释过程中,仅发生了氧化还原反应

19. 合理使用仪器、恰当存放药品是化学实验安全、顺利进行的保障。下列"使用方法"与对应的"应用举例"不相符的是(

应用举例

 A
 验纯后加热
 CO 还原 Fe₂O₃

 B
 振荡分液漏斗后放气
 CCl₄ 萃取碘水中的 I₂

 C
 先撤导管后撤酒精灯
 Cu、浓 H₂SO₄ 制 SO₂

 D
 剩余药品不能放回原瓶
 Na 块

A. A B. B C. C D. D

20. 验证 Fe^{3+} 与 Fe^{2+} 能够相互转化。

按下列顺序实验	对应现象		
①向 FeCl3 溶液加入铁粉	i . 溶液由黄色变为浅绿色		
②滴加 KSCN 溶液	ii . 溶液无明显变化		
③再滴加几滴氯水	iii . 溶液变红		

下列分析不合理的是()

A. 解释现象i的反应 $2Fe^{3+} + Fe = 3Fe^{2+}$

B. 实验②与③可以调换顺序

C. 溶液变红涉及到反应 $Cl_2 + 2Fe^{2+} = 2Cl^- + 2Fe^{3+}$

D. 比较氧化性: $Cl_2 > Fe^{3+} > Fe^{2+}$

21. 将 X 滴到 Y 中 , a 中导管水柱会下降的是 ()

填空题

22. 某学习小组以 $Ba(OH)_2$ 、水、 H_2SO_4 为实验对象探究离子反应发生的条件。

- (1) Ba(OH)₂ 与 H₂SO₄ 在溶液中能发生 _____ 反应。
 - a. 复分解反应 b. 氧化还原反应 c. 置换反应
- (2) 加 H₂O 后, 灯泡变亮的原因是 Ba(OH)₂ 发生了 _____。
- (3) 用离子方程式解释过程 I 中灯泡变暗的原因 ______。
- (4) 查阅有关物质溶解度数据如下表:

物质	$Ba(OH)_2$	${ m BaSO_4}$		
溶解度/g	5.6	0.00025		

比较溶液 1、溶液 2 中 $c(SO_4^{2-})$ 的大小: _____ > _____。

- (5) 实验 2:用 Na_2SO_4 溶液替代稀 H_2SO_4 , 重复实验进行对照。
 - ① Na₂SO₄ 溶液的浓度是 _____。
 - ② 加入 Na₂SO₄ 溶液过程中灯泡不熄灭,原因是 _____。
- **23.** 《我在故宫修文物》展示了专家精湛的技艺和对传统文化的热爱与坚守,也令人体会到化学方法在文物保护中的巨大作用。 某博物馆修复出土铁器的过程如下。
 - (1) 检测锈蚀产物

	主要成分的化学式					
${ m Fe_3O_4}$ ${ m Fe_2O_3 \cdot H_2O}$ ${ m FeO(OH)}$ ${ m FeOC}$						

铁器在具有 O2、 _____ 等环境中容易被腐蚀。

(2)分析腐蚀原理:一般认为,铁经过了如下腐蚀循环。 I . Fe 转化为 Fe²⁺。 oxdots . Fe $^{2+}$ 在自然环境中形成 FeO(OH),该物质中铁元素的化合价为 _____。 \coprod . FeO(OH) 和 Fe²⁺ 二者反应形成致密的 Fe₃O₄ 保护层 , Fe²⁺ 的作用是 ______。 a.氧化剂 b.还原剂 c.既不是氧化剂也不是还原剂 IV. Fe₃O₄ 保护层被氧化为 FeO(OH), 如此往复腐蚀。 _____ Fe₃O₄+ _____ O₂+ ____ H₂O = ____ FeO(OH)(将反应补充完整) (3) 研究发现, CI^- 对铁的腐蚀会造成严重影响。化学修复:脱氯、还原,形成 Fe_3O_4 ,保护层,方法如下: 取出器物,用 NaOH 溶液洗涤至无 Cl-。 ① 检测洗涤液中 Cl⁻ 的方法是 ______ ② 脱氯反应: $FeOCl + OH^- = FeO(OH) + Cl^-$ 。离子反应的本质:离子浓度的减小,比较 FeOCl 与 FeO(OH) 溶解度的大小: _____。 ③ Na₂SO₃ 还原 FeO(OH) 形成 Fe₃O₄ 的离子方程式是 ______ **24.** N₂ 经一系列过程可以得到 HNO₃ 和 NH₄HCO₃ , 如下图所示。 NH₄HCO₃ (1) 过程 _____ 属于 "氮的固定"。 (2) 过程 Π , NH_3 和 O_2 在催化剂作用下反应, 其化学方程式是 $_$ (3) 过程IV,为使 NO_2 尽可能多地被水吸收,需不断的向反应器中通入 $__$ (4) $\mathrm{NH_{4}HCO_{3}}$ 常用作铵态氮肥,但不宜在碱性较强的土壤中施用,原因是 ___ **25.** 铁是人体必需的微量元素,在肺部,血红蛋白中血红素的 Fe^{2+} 与 O_2 结合,把 O_2 送到各个组织器官。铁摄入不足可能引 起缺铁性贫血。黑木耳中含有比较丰富的铁元素,某研究小组测定其含量。 (1) 【铁元素的分离】称量黑木耳,将之洗净切碎,用蒸馏水浸泡,但浸泡液中未能检测到铁元素。在坩埚中高温 灼烧黑木耳,使之完全灰化。用酸充分溶解,过滤,滤液备用。 ① 浸泡液检测不出铁元素的原因是 ______ ② 滤液中铁元素的存在形式是 Fe^{2+} 、 ______ (2)【配制溶液】将滤液配制成 100 mL 溶液。选择合适的仪器完成"铁元素的分离"、"配制溶液"2 个实验, 下列仪器不必使用的是 _____。

- (3) 【铁元素含量测定】研学小组提出如下测定方案:
 - ① 沉淀法:向溶液中加入足量 NaOH 溶液,过滤、洗涤沉淀、加热烘干、称量。请评价该测定方案是 否可行 ______。
 - ② 比色法:流程示意如下:

- ①用离子方程式表示加入 H₂O₂ 的目的 _____。
- ②溶液 a 的颜色是 _____。
- ③溶液颜色越深,光的透过能力越差,即透光率越小。若不加 $\mathrm{H}_2\mathrm{O}_2$,测出黑木耳中铁元素的含量 ______(填 "偏大"或 "偏小")。
- (4) 亚铁盐易被氧化,但在体内 ${\rm Fe}^{2+}$ 参与 ${\rm O}_2$ 的运输却不被氧化。蛋白质是一种既有亲水部分、又有疏水部分的大分子,为血红素提供了疏水环境。

可见,氧化还原反应能否发生与_____有关。

- **26.** 某中学学习小组模拟工业烟气脱硫(SO_2)。
 - (1) 甲组采用如下装置脱硫(部分装置略)。

- ① CaO 脱硫后的产物是 _____。
- ② b 中品红很快褪色,说明脱硫效果不好。下列措施能提高脱硫效果的是 _____。
 - i . 加快 SO₂ 气体流速
 - ii . 将堆集在一起的 CaO 平铺在整个玻璃管
 - iii.加热 a,脱硫效果可能会更好
- ③ 小组拟通过 CaO 的增重评价其脱硫能力。需要测量的数据是 _______。
- (2) 乙组选用 AgNO3 溶液脱除 SO2。

现象:通入SO₂,立即生成大量白色沉淀 A。

对白色沉淀 A 的成分进行探究,提出假设:

假设 1: 发生了氧化还原反应,依据是 $AgNO_3$ 溶液中含有 O_2 、 NO_3^- 等具有氧化性的粒子,沉淀 A 主要是 Ag_2SO_4 (溶液) 。

假设 2: 发生了复分解反应,依据是 SO_2 与水生成酸,能与 $AgNO_3$ 溶液发生复分解反应。

实验探究:

①取沉淀 A	,加入蒸馏	邵水,静置。	, 取上层清液滴加 E	$a(NO_3)$)2 溶液	, 无明显变化。
--------	-------	--------	-------------	-----------	-------	----------

②取 _____ ,加入蒸馏水 ,静置。取上层清液滴加 Ba(NO₃)₂ 溶液 ,产生沉淀。

实验证明"假设1"不成立。

③为进一步确认"假设 2",向 A 中加入浓 HNO_3 ,立即产生红棕色气体。

实验证明"假设2"成立。

④产生沉淀 A 的化学方程式是 _____。

AgNO3 溶液具有良好的脱硫能力,但因其价格高,未能大规模使用。

(3) 丙组用 NaClO 脱除 SO2 , 用 1 L 0.1 mol/L 的 NaClO 溶液最多可以吸收标准状况下的 SO2 _____ L。