전기설비의 방폭

2018. 03. 00

CONTENTS

- 방폭구조의 종류, 전기설비의 방폭 및 대책, 방폭설비의 공사 및 보수
- Ⅱ 예상문제

- 방폭구조의 종류 (***)
 - 내압 방폭구조(d)
 - ❖ 아크를 발생시키는 전기설비를 전폐용기에 넣고 용기 내부에서 폭발이 일어날 경우 용기가 폭발 압력에 견뎌 외부의 폭발성 가스에 인화될 위 험이 없도록 한 구조
 - ❖ 폭발한 고열 가스가 용기의 틈을 통하여 누설되더라도 틈의 냉각 효과로 인하여 폭발의 위험이 없도록 한다.
 - 압력 방폭구조(P)
 - ❖ 아크를 발생시키는 전기설비를 용기에 넣고 용기 내부에 불연성 가스(공기 또는 질소)를 압입하여 용기 내부로 폭발성 가스가 침입하는 것을 방지하는 방폭구조
 - 유입 방폭구조(o)
 - ❖폭발성 분위기가 발화할 수 없도록 전기설비 또는 전기설비의 부품을 보호액에 함침시키는 방폭구조
 - 안전증 방폭구조(e)
 - ❖ 정상 운전 중의 내부에서 불꽃이 발생하지 않도록 전기적, 기계적, 구조적으로 온도 상승에 대해 안전도를 증가시킨 구조이다.

- 방폭구조의 종류 (***)
 - 본질안전 방폭구조(ia, ib)
 - ❖ 정상시 또는 단락, 단선, 지락 등의 사고시에 발생하는 아크, 불꽃, 고열에 의하여 폭발성 가스나 증기에 점화되지 않는 것이 확인된 구조이다.
 - 비점화 방폭구조(n)
 - ❖ 전기기기가 정상작동 및 비정상상태에서 주위의 폭발성 가스 분위기를 점화시키지 못하도록 만든 방폭구조(정상시에도 점화되지 않고 점화되는 고장이 발생하지 않도록 한 구조)
 - ❖ 2종장소에만 사용할 수 있다.
 - 몰드 방폭구조(m)
 - ❖전기기기의 스파크 또는 열로 인해 폭발성 위험 분위기에 점화되지 않도록 컴파운드를 충전해서 보호한 방폭구조
 - 충전 방폭구조(q)
 - ❖폭발성 가스 분위기를 점화시킬 수 있는 부품을 고정하여 설치하고, 그 주위를 충전재로 완전히 둘러쌈으로서 외부의 폭발성 가스 분위기를 점 화시키지 않도록 하는 방폭구조

- 방폭구조의 종류 (***)
 - 특수 방폭구조(s)
 - ❖ 내압, 유입, 압력, 안전증, 본질안전 이외의 방폭구조로서 폭발성 가스 또는 증기에 점화 또는 위험 분위기로 인화를 방지 할 수 있는 것이 시험, 기타에 의하여 확인된 구조
 - 방진 방폭구조(tD)
 - ❖ 분진층이나 분진운의 점화를 방지하기 위하여 용기로 보호하는 전기기 기에 적용되는 분진침투방지, 표면온도제한 등의 방법을 말한다.

• 방폭구조의 종류 (***)

[방폭구조의 기호] >>

가스·증기 방 폭구 조		기호
	내압 방폭구조	d
	압력 방폭구조	p
	유입 방폭구조	0
	안전증 방폭구조	e
가스·증기 방폭구조	본질안전 방폭구조	ia or ib
0 11 1	충전 방폭구조	q
	비점화 방폭구조	n
	몰드 방폭구조	m
	특수 방폭구조	s
분진 방폭구조	방진 방폭구조	tD

- 전기설비의 방폭 및 대책
 - 안전간격 (Safety gap) (**)
 - ❖용기 내 (내용적 8L, 틈의 안길이 25mm의 구형용기) 에 폭발성 가스를 채우고 점화시켰을 때 폭발 화염이 용기외부까지 전달되지 않는 한계의 틈

■ 폭발등급 (**)

폭발 등급	안전간격(mm)	해당가스
1등급	0.6mm 초과	메탄, 에탄, 프로판, 부탄
2등급	0.4mm 초과 0.6mm 이하	에틸렌, 석탄가스
3등급	0.4mm 이하	수소, 아세틸렌

- 전기설비의 방폭 및 대책
 - 최고표면온도 등급 및 발화도 등급 (**)

최고표면 온도등급	전기기기의 최고표면온도(℃)	발화도 등급	증기 또는 가스의 발화도(℃)
T1	450 이하(또는 300 초과 450 이하)	G1	450 초과
T2	300 이하(또는 200 초과 300 이하)	G2	300 초과 450 이하
Т3	200 이하(또는 135 초과 200 이하)	G3	200 초과 300 이하
T4	135 이하(또는 100 초과 135 이하)	G4	135 초과 200 이하
T5	100 이하(또는 85 초과 100 이하)	G5	100 초과 135 이하
T6	85 이하	G6	85 초과 100 이하

- 전기설비의 방폭 및 대책
 - 발화도 등급

발화도 폭발 등급	G ₁ 450℃ 초과	G ₂ 300초과 450℃ 이하	G₃ 200초과 300℃이하	G₄ 135초과 200℃이하	G ₅ 100초과 135℃이하	G ₆ 85초과 100℃이하
1	아세톤 암모니아 일산화탄소 에탄 초산 호산에틸 톨루엔 프로판 벤젠 메탄올 메탄	에탄올 초산인펜틸 1-부타놀 부탄 무수초산	가솔린 핵산	아세트알데히드 에틸에테르		아질산에틸
2	석탄가스	에틸렌 에틸렌옥시드				
3	수성가스 수소	아세틸렌	7-		이황화탄소	질산에틸

- 전기설비의 방폭 및 대책
 - 위험장소의 분류 (***)

[가스폭발 위험장소]

0종 장소	가. 설비의 내부 나. 인화성 또는 가연성 액체 피트(PIT) 등의 내부 다. 인화성 또는 가연성의 가스나 증기가 지속적으로 또는 장기간 체류하는 곳
1종 장소	가. 통상의 상태에서 위험분위기가 쉽게 생성되는 곳 나. 운전, 유지 보수 또는 누설에 의하여 자주 위험분위기가 생성되는 곳 다. 설비 일부의 고장 시 가연성물질의 방출과 전기계통의 고장이 동시에 발생되기 쉬운 곳 라. 환기가 불충분한 장소에 설치된 배관 계통으로 배관이 쉽게 누설 되는 구조의 곳 마. 주변 지역보다 낮아 가스나 증기가 체류할 수 있는 곳 바. 상용의 상태에서 위험분위기가 주기적 또는 간헐적으로 존재하는 곳

- 전기설비의 방폭 및 대책
 - 위험장소의 분류 (***)

2종 장소	가. 환기가 불충분한 장소에 설치된 배관계통으로 배관이 쉽게 누설 되지 않는 구조의 곳 나. 가스켓(GASKET), 팩킹(PACKING) 등의 고장과 같이 이상상태 에서만 누출될 수 있는 공정설비 또는 배관이 환기가 충분한 곳에
	설치될 경우 다. 1종 장소와 직접 접하며 개방되어 있는 곳 또는 1종 장소와 닥트, 트랜치, 파이프 등으로 연결되어 이들을 통해 가스나 증기의 유입 이 가능한 곳
	라. 강제 환기방식이 채용되는 곳으로 환기설비의 고장이나 이상 시 에 위험분위기가 생성될 수 있는 곳

- 전기설비의 방폭 및 대책
 - 위험장소의 분류 (***)

[분진폭발 위험장소]

20종 장소	분진운 형태의 가연성 분진이 폭발농도를 형성할 정도로 충분한 양이 정상작동 중에 연속적으로 또는 자주 존재하거나, 제어할 수 없을 정도의 양 및 두께의 분진층이 형성될 수 있는 장소
21종 장소	20종 장소외의 장소로서, 분진운 형태의 가연성 분진이 폭발농도를 형성할 정도의 충분한 양이 정상작동 중에 존재할 수 있는 장소
22종 장소	21종 장소외의 장소로서, 가연성 분진운 형태가 드물게 발생 또는 단기간 존재할 우려가 있거나, 이상 작동상태 하에서 가연성 분진운 이 형성될 수 있는 장소

- 전기설비의 방폭 및 대책
 - 위험장소별 방폭구조 (***)

분	류	적 요		
가	0종 장소	본질안전 방폭구조(ia) 그 밖에 관련 공인 인증 기관이 0종 장소에서 사용이 가능한 방폭 구조로 인증한 방폭구조		
스 폭 발 위 험 장	1종 장소	내압 방폭구조(d) 압력 방폭구조(p) 충전 방폭구조(q) 유입 방폭구조(o) 안전증 방폭구조(e) 본질안전 방폭구조(ia, ib) 몰드 방폭구조(m) 그 밖에 관련 공인 인증 기관이 1종 장소에서 사용이 가능한 방폭구조로 인증한 방폭구조		
소	2종 장소	0종 장소 및 1종 장소에 사용 가능한 방폭구조 비점화 방폭구조(n) 그 밖에 2종 장소에서 사용하도록 특별히 고안된 비방폭형 구조		

- 전기설비의 방폭 및 대책
 - 위험장소별 방폭구조 (***)

분	류	적 요
분	20종 장소	밀폐방진 방폭구조(DIP A20 또는 DIP B20) 그 밖에 관련 공인 인증 기관이 20종 장소에서 사용이 가능한 방폭구조로 인증한 방폭구조
진 폭 발 위 험	21종 장소	밀폐방진 방폭구조(DIP A20 또는, DIP B20 또는 B21) 특수방진 방폭구조(SDP) 그 밖에 관련 공인 인증 기관이 21종 장소에서 사용이 가능한 방폭구조로 인증한 방폭구조
장소	22종 장소	20종 장소 및 21종 장소에서 사용 가능한 방폭구조 일반방진 방폭구조(DIP A22 또는 DIP B22) 보통방진 방폭구조(DIP) 그 밖에 22종 장소에서 사용하도록 특별히 고안된 비방폭형 구조

- 전기설비의 방폭 및 대책
 - 방폭기기의 표시 (**)

- 전기설비의 방폭 및 대책
 - 방폭기기의 표시 (**)
 - ❖ 방폭구조-폭발등급-발화도 순으로 다음과 같이 표시한다.
 - > d 2 G4
 - ▶ d : 내압 방폭구조
 - ▶ 2 : 폭발등급 2등급
 - ▶ G4 : 발화도 등급 G4 에 해당하는 가연성가스

- 방폭설비의 공사 및 보수
 - 방폭구조의 구비조건
 - ❖시건장치 할 것
 - ❖ 도선의 인입방식을 정확히 채택할 것
 - ❖ 접지할 것
 - ❖ 퓨즈 사용
 - 전기설비의 방폭화 방법 (**)
 - ❖ 점화원의 방폭적 격리 (전폐형 방폭구조.) : 내압, 압력, 유입 방폭구조
 - ❖ 전기설비의 안전도 증강 : 안전증 방폭구조
 - ❖점화능력의 본질적 억제 : 본질안전 방폭구조
 - 방폭구조 전기설비 설치의 표준환경 조건

주변온도	20℃~40℃
표 고	1,000m 이하
상대습도	45~85%
공해, 부식성가스, 진동	전기설비에 특별한 고려를 필요로 하는 정도의 공해, 부식성가스, 진동 등이 존재하지 않는 환경

- 방폭설비의 공사 및 보수
 - 방폭전기기기의 선정 시 고려사항
 - ❖ 방폭전기기기가 설치될 지역의 방폭지역 등급 구분
 - ❖ 가스등의 발화온도
 - ❖ 내압 방폭구조의 경우 최대 안전틈새
 - ❖본질안전 방폭구조의 경우 최소점화 전류
 - ❖ 압력 방폭구조, 유입 방폭구조, 안전증 방폭구조의 경우 최고표면 온도
 - ❖ 방폭전기기기가 설치될 장소의 주변온도, 표고 또는 상대습도, 먼지, 부식성 가스 또는 습기 등의 환경조건
 - 방폭전기설비 계획 수립시의 기본방침
 - ❖ 가연성가스 및 가연성액체의 위험특성 확인
 - ❖시설장소의 재조건 검토
 - ❖위험장소 종별 및 범위의 결정

- 방폭설비의 공사 및 보수
 - 환기가 충분한 장소
 - ❖대기 중의 가스 또는 증기의 밀도가 폭발하한계의 25%를 초과하여 축적되는 것을 방지하기 위한 충분한 환기량이 보장되는 장소를 말하며 다음각 호의 장소는 환기가 충분한 장소로 볼 수 있다.
 - ① 옥외
 - ② 수직 또는 수명의 외부공기 흐름을 방해하지 않는 구조의 건축물 또는 실내로서 지붕과 한 면의 벽만 있는 건축물
 - ③ 밀폐 또는 부분적으로 밀폐된 장소로써 옥외의 동등한 정도의 환기가 자연환기방식 또는 고장시 경보발생 등의 조치가 되어 있는 강제 환기 방식으로 보장되는 장소
 - ④ 기타 적합한 방법으로 환기량을 계산하여 폭발 하한계의 15% 농도를 초과하지 않음이 보장되는 장소

- 1. 전기설비의 안전도 증강에 의거 제작된 전기기기의 방폭구 조는? (05.05.29)
 - ① 안전증 방폭구조 전기기기
 - ② 내압 방폭구조 전기기기
 - ③ 본질안전 방폭구조 전기기기
 - ④ 압력 방폭구조 전기기기

- 2. 다음 중 점화원이 될 우려가 있는 부분을 용기 내에 넣고 신선한 공기 또는 불연성 기체 등의 보호기체를 용기의 내 부에 압입함으로써 내부의 압력을 유지하여 폭발성가스가 침입하지 않도록 한 방폭 구조는? (05.08.07)
 - ① Flameproof Enclosures
 - ② Pressurized Apparatus
 - ③ Increased Safety
 - (4) Oil Immersion

- 3. 전기 설비의 방폭구조를 나타내는 기호로서 틀린 것은? (06.05.14)
 - ① 내압방폭구조: d
 - ② 안전증방폭구조: e
 - ③ 본질안전방폭구조: s
 - ④ 압력방폭구조: f

- 4. 다음 방폭구조 중 전폐형 구조로 된 것이 아닌 것은? (06.08.06)
 - ① 내압 방폭구조
 - ② 유입 방폭구조
 - ③ 압력 방폭구조
 - ④ 안전증 방폭구조

- 5. 방폭지역으로 구분하는 것에 대한 내용으로 틀린 것은? (06.08.06)
 - ① 인화성 액체의 증기 또는 가연성 가스가 쉽게 존재할 가능성이 있는 지역
 - ② 인화점이 40°C 이하의 액체가 저장·취급되고 있는 지역
 - ③ 인화점이 40℃를 넘는 액체가 인화점 이상으로 저장·취급되고 있는 지역
 - ④ 인화점 150℃를 초과하는 액체가 인화점 이상으로 사용되고 있는 설비의 외부 지역

- 6. 다음의 위험 장소 중 1종으로 구분할 수 없는 것은? (06.08.06)
 - ① 통상의 상태에서 위험 분위기가 쉽게 생성되는 곳
 - ② 유지, 보수 또는 누설에 의하여 자주 위험 분위기가 생성되는 곳
 - ③ 정상 가동 상태에서 폭발성 가스가 가끔 누출되는 곳
 - ④ 조작상의 실수, 오동작에 의하여 폭발성 가스가 누출 되거나 체류 할 수 있는 곳

- 7. 산업안전보건법에서 정하는 폭발위험장소의 분류중 1종 장소에 해당하는 것은? (07.03.04)
 - ① 용기,장치,배관 등의 내부
 - ② 맨홀,벤트,피트 등의 주위
 - ③ 개스킷,패킹 등의 주위
 - ④ 호퍼.분진저장소 등의 내부

- 8. 용기 내부에 아크 또는 고열이 발생하여 폭발이 일어날 경우에 용기가 폭발압력에 견디고, 외부의 폭발성 가스에 인화될 위험이 없도록 하는 방폭구조는? (07.03.04)
 - ① 내압 방폭구조
 - ② 비점화 방폭구조
 - ③ 안전증 방폭구조
 - ④ 특수 방진 방폭구조

- 9. 방폭구조 전기기계·기구의 선정기준에서 1종 위험장소에 선정할 수 없는 방폭구조는 무엇인가? (07.05.13)
 - ① 분질안전 방폭구조
 - ② 충전 방폭구조
 - ③ 안전증 방폭구조
 - ④ 비점화 방폭구조

- 9. 방폭구조 전기기계·기구의 선정기준에서 1종 위험장소에 선정할 수 없는 방폭구조는 무엇인가? (07.05.13)
 - ① 분질안전 방폭구조
 - ② 충전 방폭구조
 - ③ 안전증 방폭구조
 - ④ 비점화 방폭구조

10. 다음 중 폭발위험장소의 분류가 0종인 장소에서 사용할 수 있는 방폭구조는? (08.07.27)

- ① 안전증방폭구조
- ② 내압방폭구조
- ③ 유입방폭구조
- ④ 본질안전방폭구조

11. 산업안전보건법상 폭발위험장소의 분류에 있어 다음 내용에 해당하는 장소는? (09.05.10)

- ① 0종 장소
- ② 1종 장소
- ③ 20종 장소
- ④ 21종 장소

"분진운 형태의 가연성 분진이 폭발농도 를 형성할 정도의 충분한 양이 정상작동 중에 존재할 수 있는 장소"

- 12. 방폭구조 전기기계·기구의 선정기준에 있어 가스폭발 위험 장소의 제1종 장소에 사용할 수 없는 방폭구조는? (09.07.26)
 - ① 내압방폭구조
 - ② 안전증방폭구조
 - ③ 본질안전방폭구조
 - ④ 비점화방폭구조

- 13. 위험분위기가 존재하는 장소의 전기기기에 방폭 성능을 갖추기 위한 일반적 방법으로 적절하지 않은 것은? (10.03.07)
 - ① 점화원의 격리
 - ② 전기기기 안전도 증강
 - ③ 점화능력의 본질적 억제
 - ④ 점화원으로 되는 확률을 0 으로 낮춤

14. 다음 정의에 해당하는 방폭구조는? (10.03.07)

- ① 내압방폭구조
- ② 안전증방폭구조
- ③ 본질안전방폭구조
- ④ 유입방폭구조

"전기기기의 과도한 온도 상승, 아크 또는 스파크 발생의 위험을 방지하기 위해 추가적인 안전조치를 통한 안전도를 증가시킨 방폭구조"

15. 다음 중 인화성 액체의 증기 또는 가연성 가스에 의한 가스폭발 위험장소의 분류에 해당되지 않는 것은? (10.05.09)

- ① 0종 장소
- ② 1종 장소
- ③ 2종 장소
- ④ 3종 장소

- ① 0종 장소
- ② 20종 장소
- ③ 1종 장소
- ④ 21종 장소

"분진운 형태의 가연성 분진이 폭발농도를 형성할 정도로 충분한 양이 정상작동 중에 연속적으로 또는 자주 존재하거나 제어할 수 없을 정도의 양 및 두께의 분 진 층이 형성될 수 있는 장소"

Thank you