

LD1117A SERIES

LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE REGULATORS

- LOW DROPOUT VOLTAGE (1.15V TYP. @ I_{OUT} = 1A, 25°C)
- VERY LOW QUIESCENT CURRENT (5 mA TYP. @ 25°C)
- OUTPUT CURRENT UP TO 1A
- FIXED OUTPUT VOLTAGE OF: 1.8V, 2.5V, 2.85V, 3.3V, 5.0V
- ADJUSTABLE VERSION AVAILABILITY (V_{rel} = 1.25V)
- INTERNAL CURRENT AND THERMAL LIMIT
- ONLY 10 µF FOR STABILITY
- AVAILABLE IN ± 2% (AT 25°C) AND 4% IN FULL TEMPERATURE RANGE
- HIGH SUPPLY VOLTAGE REJECTION: (80dB TYP. AT 25°C)
- TEMPERATURE RANGE: 0°C TO 125°C

The LD1117A is a LOW DROP Voltage Regulator able to provide up to 1A of Output Current, available even in adjustable version (Vref=1.25V). Concerning fixed versions, are offered the following Output Voltages: 1.8V, 2.5V, 2.85V, 3.3V and 5.0V. The 2.85V type is ideal for SCSI-2 lines active termination. The device is supplied in:

SOT-223, DPAK and TO-220. The surface mount packages optimize the thermal characteristics even offering a relevant space saving effect. High efficiency is assured by NPN pass transistor. Only a very common $10\mu\text{F}$ minimum capacitor is needed for stability. Only chip trimming allows the regulator to reach a very tight output voltage tolerance, within \pm 2% at 25 °C.

BLOCK DIAGRAM

January 2003 1/16

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter ²	Value	Unit
V _{IN}	DC Input Voltage	10	V
P _{tot}	Power Dissipation	12	W
T _{stg}	Storage Temperature Range	-40 to +150	°C
T _{op}	Operating Junction Temperature Range	0 to +125	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Over the above suggested Max Power Dissipation a Short Circuit could definitively damage the device.

THERMAL DATA

Symbol	Parameter	TO-220	SOT-223	DPAK	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	15	8	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50			°C/W

APPLICATION CIRCUIT (FOR OTHER FIXED OUTPUT VOLTAGES)

CONNECTION DIAGRAM (top view)

NOTE: The TAB is connected to the $V_{\mbox{\scriptsize OUT}}.$

ORDERING CODES

SOT-223	DPAK	TO-220	OUTPUT VOLTAGE
LD1117AS18TR	LD1117ADT18TR	LD1117AV18	1.8 V
LD1117AS25TR	LD1117ADT25TR	LD1117AV25	2.5 V
LD1117AS28TR	LD1117ADT28TR	LD1117AV28	2.85 V
LD1117AS33TR	LD1117ADT33TR	LD1117AV33	3.3 V
LD1117AS50TR	LD1117ADT50TR	LD1117AV50	5 V
LD1117AST-R	LD1117ADT-R	LD1117AV	ADJUSTABLE FROM 1.25 TO 15 V

ELECTRICAL CHARACTERISTICS OF LD1117A#18 (refer to the test circuits, $T_J = 0$ to 125°C, $C_O = 10~\mu F$, $C_I = 10~\mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_I = 3.8 \text{ V}$ $I_O = 10 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	1.764	1.8	1.836	V
Vo	Output Voltage	$I_O = 0 \text{ to } 1 \text{ A}$ $V_I = 3.3 \text{ to } 8 \text{ V}$	1.728		1.872	V
ΔV_{O}	Line Regulation	$V_{I} = 3.3 \text{ to } 8 \text{ V}$ $I_{O} = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load Regulation	$V_{I} = 3.3 \text{ V}$ $I_{O} = 0 \text{ to } 1 \text{ A}$		1	10	mV
ΔV_{O}	Temperature Stability			0.5		%
ΔV_{O}	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating Input Voltage	I _O = 100 mA			10	V
I _d	Quiescent Current	$V_I \le 8 \text{ V}$ $I_O = 0 \text{ mA}$		5	10	mA
I _O	Output Current	$V_{I} - V_{O} = 5 V T_{J} = 25^{\circ}C$	1000			mA
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_J = 25$ °C		100		μV
SVR	Supply Voltage Rejection	I _O = 40 mA f = 120Hz	60	80		dB
		$V_I - V_O = 3 V V_{ripple} = 1 V_{PP}$				
V_D	Dropout Voltage	I _O = 100 mA		1	1.10	V
		I _O = 500 mA		1.05	1.15	
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal Regulation	T _a = 25°C 30ms Pulse		0.08	0.2	%/W

ELECTRICAL CHARACTERISTICS OF LD1117A#25 (refer to the test circuits, T_J = 0 to 125°C, C_O = 10 μ F, C_I = 10 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{I} = 4.5 \text{ V}$ $I_{O} = 10 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$	2.45	2.5	2.55	V
Vo	Output Voltage	$I_O = 0 \text{ to } 1 \text{ A}$ $V_I = 3.9 \text{ to } 8 \text{ V}$	2.4		2.6	V
ΔV_{O}	Line Regulation	$V_{I} = 3.9 \text{ to } 8 \text{ V}$ $I_{O} = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load Regulation	$V_{I} = 3.9 \text{ V}$ $I_{O} = 0 \text{ to } 1 \text{ A}$		1	10	mV
ΔV_{O}	Temperature Stability			0.5		%
ΔV_{O}	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating Input Voltage	I _O = 100 mA			10	V
I _d	Quiescent Current	$V_I \le 10 \text{ V}$ $I_O = 0 \text{ mA}$		5	10	mA
Ιο	Output Current	$V_{I} - V_{O} = 5 V T_{J} = 25^{\circ}C$	1000	1200		mA
eN	Output Noise Voltage	B =10Hz to 10KHz $T_J = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_O = 40 \text{ mA}$ $f = 120 \text{Hz}$ $V_I - V_O = 3 \text{ V } V_{ripple} = 1 \text{ V}_{PP}$	60	80		dB
V _D	Dropout Voltage	I _O = 100 mA		1	1.10	V
		I _O = 500 mA		1.05	1.15	
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal Regulation	T _a = 25°C 30ms Pulse		0.08	0.2	%/W

ELECTRICAL CHARACTERISTICS OF LD1117A#28 (refer to the test circuits, $T_J = 0$ to 125°C, $C_O = 10~\mu F$, $C_I = 10~\mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_I = 4.85 \text{ V}$ $I_O = 10 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	2.793	2.85	2.907	V
Vo	Output Voltage	$I_O = 0 \text{ to } 1 \text{ A}$ $V_I = 4.25 \text{ to } 10 \text{ V}$	2.736		2.964	V
ΔV_{O}	Line Regulation	$V_1 = 4.25 \text{ to } 8 \text{ V}$ $I_0 = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load Regulation	$V_I = 4.25 \text{ V}$ $I_O = 0 \text{ to } 1 \text{ A}$		1	10	mV
ΔV_{O}	Temperature Stability			0.5		%
ΔV_{O}	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
V _I	Operating Input Voltage	I _O = 100 mA			10	V
I _d	Quiescent Current	$V_I \le 10 \text{ V}$ $I_O = 0 \text{ mA}$		4.5	10	mA
I _O	Output Current	$V_{I} - V_{O} = 5 V T_{J} = 25^{\circ}C$	1000	1200		mA
eN	Output Noise Voltage	B =10Hz to 10KHz $T_J = 25$ °C		100		μV
SVR	Supply Voltage Rejection	I _O = 40 mA f = 120Hz	60	75		dB
		$V_I - V_O = 3 V V_{ripple} = 1 V_{PP}$				
V_D	Dropout Voltage	I _O = 100 mA		1	1.10	V
		I _O = 500 mA		1.05	1.15	
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal Regulation	T _a = 25°C 30ms Pulse		0.08	0.2	%/W

ELECTRICAL CHARACTERISTICS OF LD1117A#33 (refer to the test circuits, T_J = 0 to 125°C, C_O = 10 μ F, C_I = 10 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_I = 5.3 \text{ V}$ $I_O = 10 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	3.234	3.3	3.366	V
Vo	Output Voltage	$I_O = 0 \text{ to } 1 \text{ A}$ $V_I = 4.75 \text{ to } 10 \text{ V}$	3.168		3.432	V
ΔV_{O}	Line Regulation	$V_1 = 4.75 \text{ to } 8 \text{ V}$ $I_0 = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load Regulation	V _I = 4.75 V I _O = 0 to 1 A		1	10	mV
ΔV_{O}	Temperature Stability			0.5		%
ΔV_{O}	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating Input Voltage	I _O = 100 mA			10	V
I _d	Quiescent Current	$V_I \le 10 \text{ V}$ $I_O = 0 \text{ mA}$		5	10	mA
I _O	Output Current	$V_I - V_O = 5 V T_J = 25^{\circ}C$	1000	1200		mA
eN	Output Noise Voltage	B =10Hz to 10KHz $T_J = 25$ °C		100		μV
SVR	Supply Voltage Rejection	I _O = 40 mA f = 120Hz	60	75		dB
		$V_I - V_O = 3 V V_{ripple} = 1 V_{PP}$				
V_D	Dropout Voltage	I _O = 100 mA		1	1.10	V
		I _O = 500 mA	·	1.05	1.15	
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal Regulation	T _a = 25°C 30ms Pulse		0.08	0.2	%/W

ELECTRICAL CHARACTERISTICS OF LD1117A#50 (refer to the test circuits, T_J = 0 to 125°C, C_O = 10 μ F, C_I = 10 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{I} = 7 \text{ V}$ $I_{O} = 10 \text{ mA}$ $T_{J} = 25 ^{\circ}\text{C}$	4.9	5	5.1	V
Vo	Output Voltage	$I_O = 0 \text{ to } 1 \text{ A}$ $V_I = 6.4 \text{ to } 10 \text{ V}$	4.8		5.2	V
ΔV_{O}	Line Regulation	$V_I = 6.4 \text{ to } 8 \text{ V}$ $I_O = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load Regulation	$V_I = 6.4 \text{ V}$ $I_O = 0 \text{ to } 1 \text{ A}$		1	10	mV
ΔV_{O}	Temperature Stability			0.5		%
ΔV_{O}	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
V _I	Operating Input Voltage	I _O = 100 mA			10	V
I _d	Quiescent Current	$V_I \le 10 \text{ V}$ $I_O = 0 \text{ mA}$		5	10	mA
Io	Output Current	$V_{I} - V_{O} = 5 V T_{J} = 25^{\circ}C$	1000	1200		mA
eN	Output Noise Voltage	B =10Hz to 10KHz $T_J = 25$ °C		100		μV
SVR	Supply Voltage Rejection	I _O = 40 mA f = 120Hz	60	80		dB
		$V_I - V_O = 3 V V_{ripple} = 1 V_{PP}$				
V_{D}	Dropout Voltage	I _O = 100 mA		1	1.10	V
		I _O = 500 mA	_	1.05	1.15	
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal Regulation	T _a = 25°C 30ms Pulse		0.08	0.2	%/W

ELECTRICAL CHARACTERISTICS OF LD1117A (ADJUSTABLE) (refer to the test circuits, T_J = 0 to 125°C, C_O = 10 μ F, C_I = 10 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_I = 5.3 \text{ V}$ $I_O = 10 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	1.225	1.25	1.275	V
Vo	Output Voltage	$I_O = 0 \text{ to } 1 \text{ A}$ $V_I = 2.75 \text{ to } 10 \text{ V}$	1.2		1.3	V
ΔV _O	Line Regulation	$V_{I} = 2.75 \text{ to } 8 \text{ V}$ $I_{O} = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load Regulation	$V_{I} = 2.75 \text{ V}$ $I_{O} = 0 \text{ to } 1 \text{ A}$		1	10	mV
ΔV_{O}	Temperature Stability			0.5		%
ΔV_{O}	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
VI	Operating Input Voltage	I _O = 100 mA			10	V
I _d	Quiescent Current	$V_1 \le 8 \text{ V}$ $I_O = 0 \text{ mA}$		5	10	mA
Io	Output Current	V _I - V _O = 5 V T _J = 25°C	1000	1200		mA
eN	Output Noise Voltage	B =10Hz to 10KHz T _J = 25°C		100		μV
SVR	Supply Voltage Rejection	$I_O = 40 \text{ mA}$ $f = 120 \text{Hz}$ $V_I - V_O = 3 \text{ V } V_{ripple} = 1 \text{ V}_{PP}$	60	80		dB
V _D	Dropout Voltage	I _O = 100 mA		1	1.10	V
		I _O = 500 mA		1.05	1.15	
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal Regulation	T _a = 25°C 30ms Pulse		0.08	0.2	%/W

TYPICAL APPLICATIONS

Figure 1: Negative Supply

Figure 2: Active Terminator for SCSI-2 BUS

Figure 3 : Circuit for Increasing Output Voltage

Figure 4: Voltage Regulator With Reference

Figure 5: Battery Backed-up Regulated Supply

Figure 6: Post-Regulated Dual Supply

LD1117A ADJUSTABLE: APPLICATION NOTE

The LD1117A ADJUSTABLE has a thermal stabilized 1.25 \pm 0.012V reference voltage between the OUT and ADJ pins. I_{ADJ} is 60 μ A typ. (120 μ A max.) and Δ I_{ADJ} is 1 μ A typ. (5 μ A max.).

R1 is normally fixed to 120Ω . From figure 7 we obtain:

 $V_{OUT} = V_{REF} + R2 (I_{ADJ} + I_{R1}) = V_{REF} + R2 (I_{ADJ} + V_{REF}/R1) = V_{REF} (1 + R2 / R1) + R2 x I_{ADJ}$. In normal application R2 value is in the range of few Kohm, so the R2 x I_{DJ} product could not be considered in the V_{OUT} calculation; then the above expression becomes:

 $V_{OUT} = V_{REF} (1 + R2 / R1).$

In order to have the better load regulation it is important to realize a good Kelvin connection of R1 and R2 resistors. In particular R1 connection must be realized very close to OUT and ADJ pin, while R2 ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a 10µF electrolytic capacitor placed in parallel to the R2 resistor (see Fig.8).

Figure 7: Adjustable Output Voltage Application

Figure 8: Adjustable Output Voltage Application with improved Ripple Rejection

SOT-223 MECHANICAL DATA

DIM.		mm.			mils	
DIWI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			1.8			70.9
A1	0.02		0.1	0.8		3.9
В	0.6	0.7	0.85	23.6	27.6	33.5
B1	2.9	3	3.15	114.2	118.1	124.0
С	0.24	0.26	0.35	9.4	10.2	13.8
D	6.3	6.5	6.7	248.0	255.9	263.8
е		2.3			90.6	
e1		4.6			181.1	
E	3.3	3.5	3.7	129.9	137.8	145.7
Н	6.7	7	7.3	129.9	137.8	145.7
V			10°			10°

DPAK MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023		0.039

TO-220 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Tape & Reel SOT223 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	6.73	6.83	6.93	0.265	0.269	0.273
Во	7.32	7.42	7.52	0.288	0.292	0.296
Ko	1.78		2	0.070		0.078
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Tape & Reel DPAK-PPAK MECHANICAL DA	ATA
-------------------------------------	------------

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com