```
import numpy as np
import pandas as pd

csv_url="https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

iris = pd.read_csv(csv_url,header=None)

col_names=['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width','Species']

iris = pd.read_csv(csv_url,names = col_names)
print(iris)
```

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
• •	• • •	• • •	• • •	• • •	• • •
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

iris.head()

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

iris.info()

```
Sepal Width
                      150 non-null
                                        float64
      2
         Petal_Length 150 non-null
                                        float64
         Petal Width 150 non-null
                                        float64
      3
                        150 non-null
      4
          Species
                                        object
    dtypes: float64(4), object(1)
    memory usage: 6.0+ KB
np.unique(iris['Species'])
    array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
fig, axes = plt.subplots(2,2, figsize=(16,8))
axes[0,0].set_title("Distribution of First Column")
axes[0,0].hist(iris["Sepal_Length"])
axes[0,1].set_title("Distribution of Second Column")
axes[0,1].hist(iris["Sepal_Width"])
axes[1,0].set title("Distribution of Third Column")
axes[1,0].hist(iris["Petal_Length"])
axes[1,1].set_title("Distribution of Fourth Column")
axes[1,1].hist(iris["Petal_Width"])
```

```
(array([41., 8., 1., 7., 8., 33., 6., 23., 9., 14.]),
array([0.1 , 0.34, 0.58, 0.82, 1.06, 1.3 , 1.54, 1.78, 2.02, 2.26, 2.5 ]),
<a list of 10 Patch objects>)
```


sns.set_style(style=None,rc=None)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 2.0 2.5 3.0 3.5 4.0 4.5

data_to_plot = [iris["Sepal_Length"],iris["Sepal_Width"],iris["Petal_Length"],iris["Petal_Wid

sns.set_style("whitegrid")

fig = plt.figure(1, figsize=(12,8))

ax = fig.add_subplot(111)

bp = ax.boxplot(data_to_plot)

✓ 0s completed at 7:00 PM

×