- 7.1 The switch in the circuit in Fig. P7.1 has been closed for a long time before opening at t = 0.
 - a) Find $i_1(0^-)$ and $i_2(0^-)$.
 - b) Find $i_1(0^+)$ and $i_2(0^+)$.
 - c) Find $i_1(t)$ for $t \ge 0$.
 - d) Find $i_2(t)$ for $t \ge 0^+$.
 - e) Explain why $i_2(0^-) \neq i_2(0^+)$.

Figure P7.1

- **7.3** The switch shown in Fig. P7.3 has been open a long time before closing at t = 0.
 - a) Find $i_0(0^-)$.
 - b) Find $i_L(0^-)$.
 - c) Find $i_o(0^+)$.
 - d) Find $i_L(0^+)$.
 - e) Find $i_o(\infty)$.
 - f) Find $i_L(\infty)$.
 - g) Write the expression for $i_L(t)$ for $t \ge 0$.
 - h) Find $v_L(0^-)$.
 - i) Find $v_L(0^+)$.
 - j) Find $v_L(\infty)$.
 - k) Write the expression for $v_L(t)$ for $t \ge 0^+$.
 - 1) Write the expression for $i_o(t)$ for $t \ge 0^+$.

Figure P7.3

In the circuit in Fig. P7.4, the voltage and current expressions are

$$v = 400e^{-5t} \text{ V}, \quad t \ge 0^+;$$

 $i = 10e^{-5t} \text{ A}, \quad t \ge 0.$

Find

- a) R.
- b) τ (in milliseconds).
- c) L.
- d) the initial energy stored in the inductor.
- e) the time (in milliseconds) it takes to dissipate 80% of the initial stored energy.

Figure P7.4

- **7.8** In the circuit shown in Fig. P7.8, the switch has been in position a for a long time. At t = 0, it moves instantaneously from a to b.
 - a) Find $i_o(t)$ for $t \ge 0$.
 - b) What is the total energy delivered to the 8 Ω resistor?
 - c) How many time constants does it take to deliver 95% of the energy found in (b)?

Figure P7.8

7.13 The switch in the circuit in Fig. P7.13 has been closed for a long time before opening at t = 0. Find $v_o(t)$ for $t \ge 0^+$.

Figure P7.13

- **7.21** The switch in the circuit in Fig. P7.21 has been in position a for a long time. At t = 0, the switch is thrown to position b. Calculate
 - a) i, v_1 , and v_2 for $t \ge 0^+$.
 - b) the energy stored in the capacitor at t = 0.
 - c) the energy trapped in the circuit and the total energy dissipated in the 25 k Ω resistor if the switch remains in position b indefinitely.

Figure P7.21

7.23 In the circuit in Fig. P7.23 the voltage and current expressions are

$$v = 48e^{-25t} \text{ V}, t \ge 0;$$

 $i = 12e^{-25t} \text{ mA}, t \ge 0^+.$

Find

- a) R.
- b) C.
- c) τ (in milliseconds).
- d) the initial energy stored in the capacitor.
- e) the amount of energy that has been dissipated in the resistor 60 ms after the voltage has begun to decay.

Figure P7.23

- **7.25** In the circuit shown in Fig. P7.25, both switches operate together; that is, they either open or close at the same time. The switches are closed a long time before opening at t = 0.
 - a) How many microjoules of energy have been dissipated in the 12 k Ω resistor 12 ms after the switches open?
 - b) How long does it take to dissipate 75% of the initially stored energy?

Figure P7.25

- **7.26** The switch in the circuit seen in Fig. P7.26 has been in position x for a long time. At t = 0, the switch moves instantaneously to position y.
 - a) Find α so that the time constant for t > 0 is 40 ms.
 - b) For the α found in (a), find v_{Δ} .

Figure P7.26

The switch in the circuit in Fig. P7.28 has been in position 1 for a long time before moving to position 2 at $\dot{t} = 0$. Find $i_o(t)$ for $t \ge 0^+$.

Figure P7.28

- **7.29** At the time the switch is closed in the circuit in Fig. P7.29, the voltage across the paralleled capacitors is 50 V and the voltage on the $0.25~\mu F$ capacitor is 40 V.
 - a) What percentage of the initial energy stored in the three capacitors is dissipated in the $24 \text{ k}\Omega$ resistor?
 - b) Repeat (a) for the 400 Ω and 16 k Ω resistors.
 - c) What percentage of the initial energy is trapped in the capacitors?

Figure P7.29

7.39 The switch in the circuit in Fig. P7.39 has been open a long time before closing at t = 0. Find $i_o(t)$ for $t \ge 0$.

Figure P7.39

7.40 The switch in the circuit in Fig. P7.40 has been open a long time before closing at t = 0. Find $v_o(t)$ for $t \ge 0^+$.

Figure P7.40

7.48 D The switch in the circuit shown in Fig. P7.48 has been closed a long time before opening at t = 0. For $t \ge 0^+$, find

- a) $v_o(t)$.
- b) $i_o(t)$.
- c) $i_1(t)$.
- d) $i_2(t)$.
- e) $i_1(0^+)$.

Figure P7.48

The current and voltage at the terminals of the capacitor in the circuit in Fig. 7.21 are

$$i(t) = 3e^{-2500t} \text{ mA},$$
 $t \ge 0^+;$
 $v(t) = (40 - 24e^{-2500t}) \text{ V}, \quad t \ge 0.$

- a) Specify the numerical values of I_s , V_o , R, C, and τ .
- b) How many microseconds after the switch has been closed does the energy stored in the capacitor reach 81% of its final value?
- 7.50 P

The switch in the circuit in Fig. P7.50 has been in position x for a long time. The initial charge on the 10 nF capacitor is zero. At t = 0, the switch moves instantaneously to position y.

- a) Find $v_o(t)$ for $t \ge 0^+$.
- b) Find $v_1(t)$ for $t \ge 0$.

Figure P7.50

