Exercices

Exercice 1

Soit $\sum f_n$ où pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+$,

$$f_n(x) = nx^2 e^{-x\sqrt{n}}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}_+ .
- 2. Étudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}^*}$ sur \mathbb{R}_+ .
- 3. Que peut-on en déduire quant à la convergence uniforme de $\sum f_n$ sur \mathbb{R}_+ ?

Exercice 2

Soit $\sum f_n$ où pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$,

$$f_n(x) = \frac{(-1)^n x^n}{n}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur [0,1].
- 2. Étudier la convergence uniforme de $\sum f_n$ sur [0,1].

Exercice 3

1

Soit $\sum f_n$ où pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+$,

$$f_n(x) = \frac{1}{n + n^3 x^2}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}_+ .
- 2. Étudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}^*}$ sur \mathbb{R}_+^* .
- 3. Montrer que $\sum f_n$ ne converge pas uniformément sur \mathbb{R}_+^* en utilisant la minoration du reste suivante

$$R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x) \geqslant \sum_{k=n+1}^{2n} f_k(x)$$