Un Poco de Continuos Homogéneos

Sergio Macías

Instituto de Matemáticas, UNAM Circuito Exterior, Ciudad Universitaria 04510 México, D. F. México

correo electrónico: macias@servidor.unam.mx

Resumen. El objetivo del presente trabajo es presentar algunos ejemplos de continuos homogéneos.

Un continuo es un espacio métrico, compacto, conexo y no vacío. Como ejemplos de continuos tenemos a los siguientes:

Figura 1.

Figura 2.

Figura 3.

Un subcontinuo es un continuo contenido en un espacio. Diremos que una función continua $f: X \to Y$ entre continuos es un homeomorfismo si es biyectiva y la función inversa $f^{-1}: Y \to X$ también es continua.

Se dice que un continuo X es homogéneo si para cualquier par de puntos x_1 y x_2 de X, existe un homeomorfismo $h: X \to X$ tal que $h(x_1) = x_2$. De los ejemplos anteriores sólo la circunferencia y el toro son homogéneos.

Antes de continuar, hablaremos un poco de un espacio el cual es como "lo opuesto" a un continuo. Este espacio se llama el *Conjunto de Cantor* y se le denota como \mathcal{C} . Este conjunto se construye de la siguiente manera. Comenzamos con el intervalo $[0,1]=C_0$. Sea $C_1=\left[0,\frac{1}{3}\right]\cup\left[\frac{2}{3},1\right]$. Sea $C_2=\left[0,\frac{1}{9}\right]\cup\left[\frac{2}{9},\frac{1}{3}\right]\cup\left[\frac{2}{3},\frac{7}{9}\right]\cup\left[\frac{8}{9},1\right]$, etc. (figura 4). El conjunto de Cantor se define como $\mathcal{C}=\bigcap_{n=0}^{\infty}C_n$.

Figura 4.

 \mathcal{C} está muy lejos de ser un continuo, pues sus componentes son puntos. Pero es un conjunto compacto el cual es **homogéneo**. Uno podría pensar que los puntos "extremos" son "diferentes" de los demás puntos pero no, eso parece por la forma en que está metido \mathcal{C} en \mathbb{R} .

Ahora consideremos una construcción parecida a la construcción anterior, pero ahora en el plano. Empezamos con el cuadrado unitario $[0,1] \times [0,1]$, lo dividimos en nueve cuadrados iguales y le quitamos el interior del cuadrado de en medio. Repetimos el proceso con cada uno de los ocho cuadrados restantes y así sucesivamente (figura 5). Al espacio que se obtiene como la intersección de los espacios construidos se le llama la curva universal de Sierpiński (vea [8, 1.11]) y la denotamos como \mathcal{S} . En este caso \mathcal{S} sí es un continuo pero no es homogéneo. Se le llama universal pues cualquier subcontinuo flaco (esto es, no contiene discos) \mathcal{X} del plano puede ser "metido" en \mathcal{S} , es decir, hay una copia homeomorfa de \mathcal{X} en \mathcal{S} . Otra propiedad importante de \mathcal{S} es que es localmente conexo.

Consideremos la construcción análoga en \mathbb{R}^3 . Primero consideremos el cubo unitario $[0,1]\times[0,1]\times[0,1]$. Dividimos cada cara en nueve cuadrados iguales y hacemos una perforación utilizando el cuadrado de en medio. Repetimos el proceso anterior en cada uno de los cuarenta y ocho cuadrados restantes y así sucesivamente (figura 6). Al espacio que resulta de la intersección de los espacios construidos se llama la curva universal de Menger y se le denota como \mathcal{M} . Este espacio también es un continuo. \mathcal{M} sí es homogéneo y es universal pues hay una copia homeomorfa de cada curva, es decir, de cada continuo de dimensión uno. Claramente $\mathcal{S} \subset \mathcal{M}$. \mathcal{M} tiene muchas propiedades, algunas de ellas son:

- 1. M es localmente conexa;
- 2. \mathcal{M} es fuertemente n-homogénea, esto es, si $\{x_1, \ldots, x_n\}$ y $\{y_1, \ldots, y_n\}$ son dos familias de n puntos de \mathcal{M} entonces existe un homeomorfismo $h: \mathcal{M} \to \mathcal{M}$ tal que $h(x_\ell) = y_\ell$ para toda $\ell \in \{1, \ldots, n\}$.
- 3. Para toda $m \in \mathcal{M}$, existe un abierto U de \mathcal{M} tal que $m \in U$, U es n-homogéneo y los homeomorfismos utilizados para la n-homogeneidad pueden ser tomados de tal forma que se extienden a la identidad fuera de U (vea [1] y [6]).

Figura 5.

Un resultado importante es:

1.1 Teorema ([2]). Si X es una curva homogénea localmente conexa entonces X es homeomorfa a \mathcal{M} o a la circunferencia unitaria \mathcal{S}^1 .

¿Serán S^1 y \mathcal{M} las únicas curvas homogéneas? La respuesta es **no**. Tomemos un toro sólido T_0 , dentro de T_0 consideremos otro toro sólido T_1 de tal forma que dé dos vueltas con respecto a T_0 . Dentro de T_1 consideremos otro toro sólido T_2 de tal forma que dé dos vueltas con respecto a T_1 y cuatro con respecto a T_0 y así sucesivamente (figura 7).

Sea $\Sigma_2 = \bigcap_{n=0}^{\infty} T_n$. A Σ_2 se le llama el solenoide diádico. Observemos que si hacemos un corte transversal al toro sólido T_0 de la construcción anterior lo que obtenemos un conjunto homeomorfo al conjunto de Cantor (figura 8). De hecho se tiene que, "localmente", Σ_2 es homeomorfa al conjunto de Cantor por un intervalo abierto, $\mathcal{C} \times (a,b)$.

El número dos no tiene ningún privilegio. Podemos construir muchos solenoides, por ejemplo dando tres vueltas siempre; cinco vueltas siempre; dando $2, 3, 5, 7, 11, 13, \ldots$ vueltas; etc. De hecho hay una cantidad no numerable de solenoides "diferentes". En particular \mathcal{S}^1 es un solenoide. Todos los solenoides son curvas homgéneas y ninguna, salvo \mathcal{S}^1 , es "aplanable". Por tanto, cualquier solenoide Σ "vive" dentro de \mathcal{M} .

Figura 6.

Diremos que un continuo X es descomponible si se puede poner de la forma $X = A \cup B$, donde A y B son subcontinuos propios de X. X es indescomponible si no es descomponible.

Todos los solenoides, salvo S^1 son indescomponibles y todos sus subcontinuos propios con más de un punto son arcos. De hecho se tiene el siguiente:

1.2 Teorema [3]. Un continuo homogéneo X es un solenoide si y sólo si todos sus subcontinuos propios con más de un punto son arcos.

Figura 7.

Figura 8.

Otra manera de construir los solenoides es el "torcer" la circunferencia S^1 cada vez más y más hasta que en el límite se obtiene el solenoide (figura 9).

Figura 9.

¿Serán \mathcal{M} y \mathcal{S}^1 las únicas curvas homogéneas descomponibles? o, poniéndolo de otra manera, ¿existe una curva homogénea y descomponible que no sea localmente conexa? J. H. Case construyó una curva descomponible que no es localmente conexa \mathcal{C} "torciendo" una de las circunferencias de \mathcal{M} . Posteriormente J. T. Rogers Jr. demostró que \mathcal{C} es homogénea y colocalmente conexa, esto es, cada punto tiene una base de abiertos cuyo complemento es conexo (vea [9]).

Posteriormente P. Minc y J. T. Rogers Jr. construyeron una cantidad no numerable de curvas homogéneas "torciendo" un número finito de las circunferencias de \mathcal{M} y preguntaron si se obtendría una curva homogénea al "torcer" una cantidad infinita de las circunferencias de \mathcal{M} (vea [7]). Karen Villarreal contestó a esta preguna dando una respueta negativa (vea [10]).

Para terminar, mencionaremos que existe un continuo llamado el pseudoarco el cual es indescomponible y es homeomorfo a todos sus subcontinuos con más de un punto y, por tanto, todos sus subcontinuos con más de un punto son indescomponibles, fue construido en \mathbb{R}^2 y es homogéneo. El pseudoarco ha resultado ser un espacio bastante importante dentro de la Teoría de los Continuos, a tal grado que W. Lewis está escribiendo un libro sobre este espacio. Para tener más información del pseudoarco véase el artículo expositiorio [5].

Bibliografía

1. Anderson, R. D., A Characterization of the Universal Curve and a Proof of its Homogeneity, Ann. of Math. 67, (1958), 313-324.

- 2. Anderson, R. D., One-Dimensional Continuous Curves and a Homogeneity Theorem, Ann. of Math. 68, (1958), 1-16.
- 3. Hagopian, C.L., A Characterization of Solenoids, Pacific Math. J. 68, (1977), 425-435.
- 4. Kuratowski, K., Topology II, Academic Press (1968).
- 5. Lewis, W., The Pseudo-arc, Contemporary Mathematics 117, (1997), 103-123.
- 6. Mayer, J.C., L.G. Oversteegen, and E.D. Tymchatyn, The Menger Curve, Dissertationes Math. 252, (1986), 1-45.
- 7. Minc, P. and J. T. Rogers Jr., Some New Examples of Homogeneous Curves, Top. Proc. 10, (1985), 347-356.
- 8. Nadler, S.B. Jr., Continuum Theory, Marcel Dekker (1992).
- 9. Rogers, J.T.Jr., An Aposyndetic Homogeneous Curve That is not Locally Connected, Houston J. Math. 9, (1983), 433-440.
- 10. Villareal, K., The Space obtained by Spinning the Menger Curve About Infinitely Many of its Holes is not Homogeneous, Top. Proc. 16, (1991), 233-238.