## Lecture 14

Greedy algorithms!

#### Announcements

• HW6 Due Friday!

#### Roadmap



#### This week

Greedy algorithms!



- Make choices one-at-a-time.
- Never look back.
- Hope for the best.

#### Today

- One example of a greedy algorithm that does not work:
  - Knapsack again
- Three examples of greedy algorithms that do work:
  - Activity Selection
  - Job Scheduling
  - Huffman Coding

You saw these on your pre-lecture exercise!

#### Non-example

• Unbounded Knapsack.



- Unbounded Knapsack:
  - Suppose I have infinite copies of all of the items.
  - What's the most valuable way to fill the knapsack?









Total weight: 10 Total value: 42

- "Greedy" algorithm for unbounded knapsack:
  - Tacos have the best Value/Weight ratio!
  - Keep grabbing tacos!







Total weight: 9
Total value: 39

#### Example where greedy works



time

#### Activity selection

#### • Input:

- Activities a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>
- Start times s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>n</sub>
- Finish times f<sub>1</sub>, f<sub>2</sub>, ..., f<sub>n</sub>



#### Output:

 A way to maximize the number of activities you can do today.

In what order should you greedily add activities?



Think-pair-share!



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.

#### At least it's fast

- Running time:
  - O(n) if the activities are already sorted by finish time.
  - Otherwise O(nlog(n)) if you have to sort them first.

#### What makes it greedy?

- At each step in the algorithm, make a choice.
  - Hey, I can increase my activity set by one,
  - And leave lots of room for future choices,
  - Let's do that and hope for the best!!!

 Hope that at the end of the day, this results in a globally optimal solution.

23

#### Three Questions

- 1. Does this greedy algorithm for activity selection work?
  - Yes. (We will see why in a moment...)
- 2. In general, when are greedy algorithms a good idea?
  - When the problem exhibits especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
  - Why are we getting to it now, in Week 9?
    - Proving that greedy algorithms work is often not so easy...

#### Back to Activity Selection



- Pick activity you can add with the smallest finish time.
- Repeat.

#### Why does it work?

Whenever we make a choice, we don't rule out an optimal solution.



#### Assuming we can prove that

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.



Lucky the Lackadaisical Lemur

 Suppose we've already chosen a<sub>i</sub>, and there is still an optimal solution T\* that extends our choices.



- Suppose we've already chosen a<sub>i</sub>, and there is still an optimal solution T\* that extends our choices.
- Now consider the next choice we make, say it's a<sub>k</sub>.
- If a<sub>k</sub> is in T\*, we're still on track.



- Suppose we've already chosen a<sub>i</sub>, and there is still an optimal solution T\* that extends our choices.
- Now consider the next choice we make, say it's a<sub>k</sub>.
- If  $a_k$  is **not** in  $T^*$ ...



- If a<sub>k</sub> is **not** in T\*...
- Let a<sub>i</sub> be the activity in T\* with the smallest end time.
- Now consider schedule T you get by swapping a<sub>i</sub> for a<sub>k</sub>



- If  $a_k$  is **not** in  $T^*$ ...
- Let a<sub>i</sub> be the activity in T\* with the smallest end time.
- Now consider schedule T you get by swapping a<sub>i</sub> for a<sub>k</sub>



- This schedule T is still allowed.
  - Since a<sub>k</sub> has the smallest ending time, it ends before a<sub>i</sub>.
  - Thus, a<sub>k</sub> doesn't conflict with anything chosen after a<sub>i</sub>.
- And, T is still optimal.
  - It has the same number of activities as T\*.



#### We've just shown:

- If there was an optimal solution that extends the choices we made so far...
- ...then there is an optimal schedule that also contains our next greedy choice  $a_k$ .



#### So the algorithm is correct

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.



Lucky the Lackadaisical Lemur

#### So the algorithm is correct



Plucky the Pedantic Penguin

- Inductive Hypothesis:
  - After adding the t'th thing, there is an optimal solution that extends the current solution.
- Base case:
  - After adding zero activities, there is an optimal solution extending that.
- Inductive step:
  - We just did that!
- Conclusion:
  - After adding the last activity, there is an optimal solution that extends the current solution.
  - The current solution is the only solution that extends the current solution.
  - So the current solution is optimal.

#### Three Questions

- 1. Does this greedy algorithm for activity selection work?
  - Yes.
- 2. In general, when are greedy algorithms a good idea?
  - When the problem exhibits especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
  - Why are we getting to it now, in Week 9?
    - Proving that greedy algorithms work is often not so easy...

# Common strategy for greedy algorithms

- Make a series of choices.
- Show that, at each step, our choice won't rule out an optimal solution at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.



# Common strategy (formally) for greedy algorithms



• Inductive Hypothesis:

"Success" here means "finding an optimal solution."

- After greedy choice t, you haven't ruled out success.
- Base case:
  - Success is possible before you make any choices.
- Inductive step:
  - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
  - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

#### Common strategy

for showing we don't rule out success

- Suppose that you're on track to make an optimal solution T\*.
  - Eg, after you've picked activity i, you're still on track.
- Suppose that T\* disagrees with your next greedy choice.
  - Eg, it *doesn't* involve activity k.
- Manipulate T\* in order to make a solution T that's not worse but that agrees with your greedy choice.
  - Eg, swap whatever activity T\* did pick next with activity k.

#### Three Questions

- 1. Does this greedy algorithm for activity selection work?
  - Yes.
- 2. In general, when are greedy algorithms a good idea?
  - When the problem exhibits especially nice optimal substructure.



- 3. The "greedy" approach is often the first you'd think of...
  - Why are we getting to it now, in Week 9?
    - Proving that greedy algorithms work is often not so easy...

## Optimal sub-structure

in greedy algorithms

 Our greedy activity selection algorithm exploited a natural sub-problem structure:

A[i] = number of activities you can do after the end of activity i

time

• Divide-and-conquer:



• Dynamic Programming:



Greedy algorithms:



Greedy algorithms:



- Not only is there optimal sub-structure:
  - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

Write a DP version of activity selection (where you fill in a table)! [See hidden slides in the .pptx file for one way]



#### Three Questions

- 1. Does this greedy algorithm for activity selection work?
  - Yes.
- 2. In general, when are greedy algorithms a good idea?
  - When they exhibit especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
  - Why are we getting to it now, in Week 9?
    - Proving that greedy algorithms work is often not so easy.

Let's see a few more examples

# Another example: Scheduling

**CS161 HW** 

Personal Hygiene

Math HW

Administrative stuff for student club

**Econ HW** 

Do laundry

Meditate

Practice musical instrument

**Read CLRS** 

Have a social life

Sleep



### Scheduling

- n tasks
- Task i takes t<sub>i</sub> hours
- For every hour that passes until task i is done, pay c<sub>i</sub>



- CS161 HW, then Sleep: costs  $10 \cdot 2 + (10 + 8) \cdot 3 = 74$  units
- Sleep, then CS161 HW: costs  $8 \cdot 3 + (10 + 8) \cdot 2 = 60$  units

### Optimal substructure

This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:



### Optimal substructure

Seems amenable to a greedy algorithm:



# What does "best" mean?

AB is better than BA when:  

$$xz + (x + y)w \le yw + (x + y)z$$

$$xz + xw + yw \le yw + xz + yz$$

$$wx \le yz$$

$$\frac{w}{y} \le \frac{z}{x}$$

Of these two jobs, which should we do first?



Cost: w units per

hour until it's done.

hour until it's done.

Cost: z units per

What matters is the ratio:

cost of delay time it takes

"Best" means biggest ratio.77

- Cost( A then B ) =  $x \cdot z + (x + y) \cdot w$
- Cost(B then A) =  $y \cdot w + (x + y) \cdot z$

# Idea for greedy algorithm

• Choose the job with the biggest  $\frac{\text{cost of delay}}{\text{time it takes}}$  ratio.

#### Lemma

#### This greedy choice doesn't rule out success

Already chosen E

Job E

Job C

Job A

Job B

Job D

Say greedy chooses job B

- Then if you choose the next job to be the one left that maximizes the ratio **cost/time**, you still won't rule out success.
- Proof sketch:
  - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.

How can we manipulate the optimal solution above to make an optimal solution where B is the next job we choose?



#### Lemma

#### This greedy choice doesn't rule out success

• Suppose you have already chosen some jobs, and haven't yet ruled out success:

There's some way to order A, B,C, D that's optimal...

Already chosen E

Job E

Job C

Job A

Job B

Job D

Say greedy chooses job B

- Then if you choose the next job to be the one left that maximizes the ratio cost/time, you still won't rule out success.
- Proof sketch:
  - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.
  - Switch A and B! Nothing else will change, and we just showed that the cost of the solution won't increase.

Job E

Job C

Job B

Job A

Job D

Repeat until B is first.

Job E

Job B

Job C

Job A

Job D

Now this is an optimal schedule where B is first.

# Back to our framework for proving correctness of greedy algorithms

#### Inductive Hypothesis:

After greedy choice t, you haven't ruled out success.

#### Base case:

Success is possible before you make any choices.

#### Inductive step:

 If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.

#### Conclusion:

 If you reach the end of the algorithm and haven't ruled out success then you must have succeeded. Just did the inductive step!





### Greedy Scheduling Solution

- scheduleJobs( JOBS ):
  - Sort JOBS in decreasing order by the ratio:
    - $r_i = \frac{c_i}{t_i} = \frac{\text{cost of delaying job i}}{\text{time job i takes to complete}}$
  - Return JOBS

Running time: O(nlog(n))



Now you can go about your schedule peacefully, in the optimal way.

#### What have we learned?

A greedy algorithm works for scheduling

- This followed the same outline as the previous example:
  - Identify optimal substructure:



- Find a way to make choices that won't rule out an optimal solution.
  - largest cost/time ratios first.

# One more example Huffman coding

- everyday english sentence

- qwertyui\_opasdfg+hjklzxcv

# One more example Huffman coding

ASCII is pretty wasteful for English sentences. If **e** shows up so often, we should have a more parsimonious way of representing it!

- everyday english sentence

- qwertyui\_opasdfg+hjklzxcv

# Suppose we have some distribution on characters



# Suppose we have some distribution on characters

For simplicity, let's go with this made-up example



# Try 0 (like ASCII)

 Every letter is assigned a binary string of three bits.

#### Wasteful!

110 and 111 are never used.



## Try 1



01

00

0

of one or two bits.

Every letter is assigned a binary string









### A prefix-free code is a tree



#### How good is a tree?

- Imagine choosing a letter at random from the language.
  - Not uniform, but according to our histogram!
- The cost of a tree is the expected length of the encoding of that letter.



Expected cost of encoding a letter with this tree:

$$2(0.45 + 0.16) + 3(0.05 + 0.13 + 0.12 + 0.09) = 2.39$$

#### Question

 Given a distribution P on letters, find the lowestcost tree, where

cost(tree) = 
$$\sum_{\text{leaves } x} P(x) \cdot \text{depth}(x)$$

$$\sum_{\text{leaves } x} P(x) \cdot \text{depth}(x)$$
The depth in the tree is the length of letter x of the encoding

## Greedy algorithm

- Greedily build sub-trees from the bottom up.
- Greedy goal: less frequent letters should be further down the tree.

#### Solution

greedily build subtrees, starting with the infrequent letters



#### Solution

greedily build subtrees, starting with the infrequent letters



#### Solution

greedily build subtrees, starting with the infrequent letters



#### Solution

greedily build subtrees, starting with the infrequent letters





#### Solution

greedily build subtrees, starting with the infrequent letters



## What exactly was the algorithm?

- Create a node like D: 16 for each letter/frequency
  - The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1:
  - X and Y ← the nodes in CURRENT with the smallest keys.
  - Create a new node Z with Z.key = X.key + Y.key
  - Set Z.left = X, Z.right = Y
  - Add Z to CURRENT and remove X and Y
- return **CURRENT**[0]



A: 45 B:13

C:12

D: 16

#### This is called Huffman Coding:

- Create a node like D: 16 for each letter/frequency
  - The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1:
  - X and Y ← the nodes in CURRENT with the smallest keys.
  - Create a new node Z with Z.key = X.key + Y.key
  - Set Z.left = X, Z.right = Y
  - Add Z to CURRENT and remove X and Y
- return **CURRENT**[0]



A: 45

B:13

C:12

D: 16

#### Does it work?

- Yes.
- We will **sketch** a proof here.
- Same strategy:
  - Show that at each step, the choices we are making won't rule out an optimal solution.
  - Lemma:

• Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.



## Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

Say that an optimal tree looks like this:



Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
  - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
  - The cost never increased so this tree is still optimal.

## Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

Say that an optimal tree looks like this:



Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
  - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
  - The cost never increased so this tree is still optimal.

## Proof strategy just like before

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
  - Suppose that x and y are the two least-frequent letters.
     Then there is an optimal tree where x and y are siblings.

That's enough to show that we don't rule out optimality after the first step.



A: 45

B:13

C:12

D: 16

## Proof strategy just like before

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
  - Suppose that x and y are the two least-frequent letters.
     Then there is an optimal tree where x and y are siblings.



# Lemma 2 this distinction doesn't really matter



# Lemma 2 this distinction doesn't really matter

- For a proof:
  - See CLRS, Lemma 16.3
    - Rigorous although presented in a slightly different way
  - See the (optional) Lecture Notes
    - A bit sketchier, but presented in the same way as here
  - Prove it yourself!
    - This is the best!

Getting all the details isn't that important, but you should convince yourself that this is true.

## Together

- Lemma 1:
  - Suppose that x and y are the two least-frequent letters.
     Then there is an optimal tree where x and y are siblings.
- Lemma 2:
  - We may as well imagine that CURRENT contains only leaves.
- These imply:
  - At each step, our choice doesn't rule out an optimal tree.

Write this out formally as a proof by induction! (See skipped slides for a starting point).





## The whole argument

After the t'th step, we've got a bunch of current sub-trees:

- Inductive hypothesis:
  - after the t'th step,
    - there is an optimal tree containing the current subtrees as "leaves"
- Base case:
  - after the 0'th step,
    - there is an optimal tree containing all the characters.
- Inductive step:
  - TO DO
- Conclusion:
  - after the last step,
    - there is an optimal tree containing this whole tree as a subtree.
  - aka,
    - after the last step the tree we've constructed is optimal.





Inductive hyp. asserts that our subtrees can be



say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."
- Want to show:
  - After t steps, there is an optimal tree containing all the current sub-trees as leaves.



say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."



• By Lemma 2, may as well treat





say that x and y are the two smallest.

108

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."



• By Lemma 2, may as well treat



In particular, optimal trees on this new alphabet
 correspond to optimal trees on the original alphabet.



say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."



Our algorithm would do this at level t:





say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."



Lemma 1 implies that there's an optimal sub-tree that looks like this; aka, what our algorithm did okay.

Our algorithm would do this at level t:





say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."



Lemma 2 again says that there's an optimal tree that looks like this

Our algorithm would do this at level t:





say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
  - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."



Lemma 2 again says that there's an optimal tree that looks like this

• Our algorithm would do this at level t:



aka, there is an optimal tree containing all the level-t sub-trees as "leaves"

This is what we wanted to show for the inductive step.

#### Inductive outline:

After the t'th step, we've got a bunch of current sub-trees:

- Inductive hypothesis:
  - after the t'th step,
    - there is an optimal tree containing the current subtrees as "leaves"
- Base case:
  - after the 0'th step,
    - there is an optimal tree containing all the vertices.
- Inductive step:
  - TO DO
- Conclusion:
  - after the last step,
    - there is an optimal tree containing this whole tree as a subtree.
  - aka,
    - after the last step the tree we've constructed is optimal.







#### What have we learned?

- ASCII isn't an optimal way\* to encode English, since the distribution on letters isn't uniform.
- Huffman Coding is an optimal way!
- To come up with an optimal scheme for any language efficiently, we can use a greedy algorithm.

- To come up with a greedy algorithm:
  - Identify optimal substructure
  - Find a way to make choices that won't rule out an optimal solution.
    - Create subtrees out of the smallest two current subtrees.

### Recap I

- Greedy algorithms!
- Three examples:
  - Activity Selection
  - Scheduling Jobs
  - Huffman Coding



#### Recap II

- Greedy algorithms!
- Often easy to write down
  - But may be hard to come up with and hard to justify
- The natural greedy algorithm may not always be correct.
- A problem is a good candidate for a greedy algorithm if:
  - it has optimal substructure
  - that optimal substructure is REALLY NICE
    - solutions depend on just one other sub-problem.



#### Next time

Greedy algorithms for Minimum Spanning Tree!

#### Before next time

Pre-lecture exercise: thinking about MSTs