

Intent Classifier with Facebook fastText

Facebook Developer Circle, Malang 22 February 2017 Bayu Aldi Yansyah Data Scientist at Sale Stock

OUR GOALS

- 1. Understand how Machine Learning is applied in Messenger bot development.
- 2. Understand what is fastText and why it is important.
- 3. Able to create intent classifier model with fastText.

Ada yang bisa Aska bantu?

Aku mau pesan tiket surabaya-jakarta buat minggu pagi ya

Untuk 2 org

Aska is our Messenger bot

HUMAN

Understand the context and extract the available information easily.

Intent : Book Flight Ticket

Departure Location : Surabaya

Departure Time : Minggu pagi

Arrival Location : Jakarta

Quantity : 2

Aku pesan tiket

surabaya-jakarta

buat minggu pagi ya

Untuk 2 org

He need to know the intent of the chat first and extract the available information.

Aku pesan tiket surabaya-jakarta buat minggu pagi ya

Untuk 2 org

Book Flight Ticket

Book Hotel

Ask a Question

Buy a Product

1. What is the intent? **2.** Extract information

: Surabaya DepLoc

DepTime : Minggu pagi

: Jakarta ArrLoc

Quantity : 2

INTENT CLASSIFIER

Example of user's intent: Book a flight ticket, book a hotel, buy a product and asking a specific questions.

INTENT CLASSIFIER

- Intent Classifier can be seen as Document Classification/Text
 Classification task
- Text categorization (a.k.a. text classification) is the task of assigning predefined categories to free-text documents.
- We can use Machine Learning approach to solve this task.
- Popular method is Supervised learning.

SUPERVISED LEARNING

- Example data: chat message as an input and the label of intent as the output.
- Popular algorithms for text classification:
 - Linear classifiers: Support Vector Machine (Joachims, 1998)
 - Convolutional Neural Networks based: Kim 2014 & Zhang and LeCun 2015
- Example of the metrics to evaluate: Precision & Recall

SUPERVISED LEARNING

- Neural Network based models achieve very good performance in practice, but it is time consuming to train and test. It need large resources for large datasets.
- Linear classifiers are simple and often obtain state-of-the-art performance if the right features is used. It doesn't need large resources resource. However, linear classifiers do not share parameters among features and classes.
- fastText is trying to solve these problems.

- fastText is a C++ library for efficient learning of word representations and sentence classification.
- Word Representation learning:
 - Continuous Bag-Of-Words (CBOW)
 - Continuous Skip-gram
- Text Classification: A simple linear model where using averaged word representation as text representation.

WORD REPRESENTATION LEARNING

- Word representation learning or word embedding is a technique to represent a word as a vector.
- The result of word embedding frequently referred as "word vector" or "distributed representation of words".
- There are 3 main approaches to word embedding:
 - Neural Networks model based
 - 2. Dimensionality reduction based
 - 3. Probabilistic model based
- The idea of these approaches are to learn vector representations of words in an unsupervised manner.

CONTINOUS BAG-OF-WORDS

- A simple neural networks model.
- The training data is a sequence of words $w_1, w_2, ..., w_T$ for $w_t \in V$
- The model is trying predict the word w_t based on the surrounding context (n words from left: w_{t-1}, w_{t-2} and n words from the right: w_{t-1}, w_{t-2}).
- There are no hidden layer in this model.
- Projection layer is averaged across input words.

CONTINOUS BAG-OF-WORDS

Visualization of CBOW model

CONTINOUS SKIP-GRAM

- The training data is a sequence of words $w_1, w_2, ..., w_T$ for $w_t \in V$
- The model is trying predict the surrounding context (n words from left: w_{t-1}, w_{t-2} and n words from the right: w_{t-1}, w_{t-2}) based on the word w_t .

CONTINOUS SKIP-GRAM

Visualization of Skip-gram model

WORD REPRESENTATION LEARNING

More detailed information about word embedding available at "Clustering semantically similar words"

https://github.com/pyk/talks

LINEAR CLASSIFIER

- The architecture is similar with Continuous Bag-of-Words model, where the middle of words is replaced by the label.
- The word representations are averaged into text representation,
 which is in turn fed to a linear classifier.

Step by step to create intent classifier model with fastText.

It's super easy.

Install the fasttext(1) first

https://github.com/facebookresearch/fasttext

(Only support Linux and OSX)

Prepare the training data:

- Convert the intent as numeric.
 For example: Booking flight = 0, Buy product = 1
- 2. Preprocess the data: Tokenization, remove symbols etc
- 3. Create the training data with the following format: prefix_labelnum token1 token2 token3 ...

Create the model:

1. Run:

- train.dat is the training data
- output model: intent_classifier.bin

DEPLOY

If you are Python programmer, you can use fastText.py https://github.com/salestock/fastText.py to deploy the model.

- Create a API service with Flask
- Load & serve the model
- Create new endpoint for the inference step

REFERENCES

- Enriching Word Vectors with Subword Information by Bojanowski et al (2016)
 https://arxiv.org/abs/1607.04606
- Bag of Tricks for Efficient Text Classification by Joulin et al (2016)
 https://arxiv.org/abs/1607.01759

THANKS

Questions? bay@artificialintelligence.id

Slide: https://github.com/pyk/talks

Sale Stock: https://careers.salestock.io

