

# BisonEx

Un pipeline bioinformatique de ré-interprétation d'analyses constitutionnelles d'exome

Laboratoire de Génétique, CHU Minjoz, Besançon





### Contexte

- Consultations de maladies rares (Centre de Génétique Humaine)
- Exome souvent prescrit après un premier bilan
  - 1% de l'ADN
  - rendement diagnostic 30-50% (selon indication)
  - sous-traité à un laboratoire privé accrédité

## Contexte

Patients en errance diagnostique

- ré-interprétation à la demande
- données brutes depuis 2022
- pipeline maison (v0.1 par Dr. A. Overs)



# Pipeline



# Objectifs de cette thèse

- 1. Pipeline reproductible, portable, performant
- 2. Validation (patients de réference, in silico)
- 3. Ré-analyse des exomes négatifs

## 1. Reproductibilité

Comment assurer au COFRAC des résultats reproductibles ?

#### Nix

- 1. bloque la version de tous les logiciels
- quelque soit l'ordinateur (Linux +/-OSX)
- 3. environnement logiciel de "production" identique à celui validation



# 1. Reproductibilité

#### Incorporation dans Nix:

- 6 logiciels + 3 dépendences
- 3/6 déjà utilisables par la communauté (nixpkgs)



## 1. Portabilité

#### **Nextflow**

- Maîtrise des risques liés au matériel
- Exécution sur de multiples architectures (super-calculateur...)

#### Schedulers











#### **Cloud platforms**





## 1. Performances

- Mésocentre de Franche-Comté
- Parallélisation de l'alignement
- 1 patient = 5h de calcul
- 20 patients/jour



## 2. Validation

- "Gold standard" sur patients de référence (Genome In A Bottle Consortium)
- In silico

# 2. Validation: séquencage et pipeline

#### Patient NA12878

- ADN commandé à Coriell
- séquencé à Centogène
- analysé par notre pipeline

| Туре  | Sensibilité | Valeur Prédictive Positive |
|-------|-------------|----------------------------|
| Indel | 0.954       | 0.775                      |
| SNV   | 0.983       | 0.965                      |

# 2. Validation : pipeline

- 7 Patients GIAB
- Google (Baid et al. 2022)
  - 3 kits de capture
  - 2 séquenceurs (HiSeq4000, Novaseq)
  - alignement et appel de variant identiques



## 2. Validation : in silico

- Patient de synthèse avec varben
- 126 variants confirmés en Sanger
  - 1 non inséré
  - 1 filtré sur la profondeur (21 < 30)
  - 124 retrouvés



## 2. Validation : in silico

#### Données simulées avec **simuscop**

- 126 même variants
  - 1 non appelé (3 read sur 34)
  - 3 non insérés
  - 122 retrouvés

# 3. Réinterprétation: non-infériorité



- 2 variants filtrés sur la profondeur (CHD3, RRAS2)
- 1 variant filtré sur le nombre de reads porteurs (PITX3)

# 3. Réinterprétation: nouveaux diagnostics

1 probable diagnostic sur ADNP



- très peu fréquent gnomAD
- tronquant sur gène perte de fonction
- clinvar pathologique
- syndrome Helsmoortel-Van der Aa

#### Predictive scores





# 3. Réinterprétation: nouveaux diagnostics

- 2 variants intéressants KCNQ2, MED13
- 1 signification indéterminée (SPEN)

## Conclusion

- Pipeline reproductible, portable, performant
- Validation : résultats encourageants
- 3 variants prometteurs
- Nombreux axes d'amélioration (T2T, oligénisme...)

#### Merci de votre attention!

