講演番号 A-14

目的言語の文書文脈を用いたニューラル機械翻訳

17890543 山岸駿秀

指導教員: 小町守 准教授

首都大学東京主催 平成30年度情報通信システム学域 修士論文発表会 平成31年2月6日首都大学東京日野キャンパス2号館 401・402教室

本研究の概要

- ・機械翻訳: 言語Fで書かれた文を言語Eで書き換える
- 近年はニューラル機械翻訳(NMT)が研究 · 開発の主流
 - NMTは遠い単語間の関係を捉えられる
- ・文を超えた関係(文書文脈)を導入する研究が増加
 - → 文脈つきニューラル機械翻訳(文脈つきNMT)
- ・文脈つきNMTでは、原言語側の文脈が有用とされる
- 本研究: 目的言語側の文書文脈を活用する手法の提案
 - Decoder側の計算履歴を用いる

NMT(dot型 Global Attention) [Luong+, 2015]

- Encoder (青部)
 - 入力単語 x_t の列を隠れ状態ベクトル s_t の列へ変換
- Decoder (橙部)
 - Attentionの情報 c_t 、時刻 t-1 の隠れ状態ベクトル h_{t-1} 、生成単語 y_{t-1} の情報から時刻 t での単語 y_t を生成
- Attention (緑部)
 - Encoderで得られたベクトル列から適宜必要な情報を参照するベクトル c_t を作成 y_1 y_2 y_N

機械翻訳は文脈情報を扱えない

- 人間の翻訳時は文書を俯瞰で見ることができる
 - 文脈を自由に使うことができる
 - ・ 訳語・文体の一貫性の担保
- Google翻訳 (https://translate.google.co.jp, 2019/01/23現在)
 - "財布"の所有者は"彼" → "my wallet"に翻訳
 - 現在の機械翻訳システムでは、文脈を扱えない

言語を検出する 日本語 英語 韓国語 英語 日本語 韓国語 **▽**

彼のポスター発表は盛況だった。 しかし次の日財布を盗まれてしまった。 His poster presentation was a success. But the next day my wallet was stolen.

文脈つきNMTの先行研究

- 階層型Encoder [Wang+, 2017, 中英]
 - 下位のEncoderで単語ベクトルを文ベクトルへ変換
 - ・上位のEncoderで文ベクトルを文書ベクトルへ変換
 - ・複数文の情報を扱うことが可能
- キャッシュ [Tu+, 2018, 中英]
 - 生成単語とそのときの状態ベクトルをキャッシュで保存
 - キャッシュを適宜参照することで翻訳履歴を考慮
 - ・ 概ね5文以上前の情報は必要性が薄い
- → いずれの手法も、大規模なニューラルネットが必要

Separated Multi-Encoder [Bawden+, 2018]

- 現在の文脈つきNMT研究で最も多用 [Müller+, 2018, 英独等]
- ・2つのEncoderを使って2文の情報を取得
 - Encoder: 入力文を読み込む
 - ・ 文脈Encoder: 1つ前の文(文脈文)を読み込む
- それぞれに対してAttentionを計算して生成時に使用

Separated型の知見

- 共参照解析の痕跡 [Tiedemann+, 2017, 独英], [Voita+, 2018, 英露]
 - 共参照解析: 単語Aが指すものと同じものを指す単語Bを特定
 - ・ 英露翻訳: ロシア語の代名詞は指す名詞の性によって変化
 - Multi-Encoder型が文脈情報を扱えている可能性を示唆
- [Bawden+, 2018] での見解
 - ・原言語側の文脈文(1つ前の文)は有用
 - 目的言語側の文脈文(1つ前の文)は<u>有用でない</u>

目的言語側の文脈文は不要?

- [Bawden+, 2018] は英仏翻訳
 - 日英翻訳など、言語間の類似性が低い場合も同様?
- 構造的な問題があるのでは?
 - ・原言語側の文脈を使うとき
 - → 文脈文も入力文も Encoder の枠組みで扱う
 - 目的言語側の文脈を使うとき
 - → 文脈文はEncoder、出力文はDecoderの枠組みで扱う
- ・ 本研究では、以下の仮説を調査する
 - 「目的言語側の文脈情報はDecoderを用いて得るべき」 (文脈文も出力文もDecoderで扱うべき)

Shared型 (提案手法)

- 文脈文を翻訳した際の隠れ状態ベクトルを保存
- 保存したベクトル列を文脈Encoderの計算結果とする
 - 文脈Encoderの計算が不要
 - Encoderと文脈Encoderの重み行列を共有しているとみなせる
- ・ 文脈Encoder(保存したベクトル列)にAttentionを張る

Shared型の文脈文

- Shared Source型(原言語側の文脈を扱う)
 - 入力文も文脈文もEncoderで扱う(Separated型と同様)
 - 重み共有によりパラメータ数を抑えることができる
- Shared Target型(目的言語側の文脈を扱う)
 - Decoderの隠れ状態ベクトルを保存する
 - 目的言語側の文脈情報をDecoderから取得できる

Shared Mix型(提案手法その2)

- ・両方の文脈文を使ったときの結果についても調査
- Shared Mix型
 - 文脈文の翻訳時の隠れ状態ベクトルを両側で保存しておく
 - それぞれに対してAttentionを計算し、和をAttentionとして使用
 - パラメータ数は他のShared型と同等

実験

コーパス

- TEDコーパス(Ted Talksにあるプレゼン動画の字幕)
 - 独英 英独: 同じ語族
 - ・中英・英中: 違う語族、同じ語順(SVO)
 - 日英・英日: 違う語族、違う語順(SOVとSVO)、省略の有無
- Recipeコーパス(ユーザがCookpadに投稿したレシピ)
 - 日英・英日のみ

コーパス	単語分割器	学習データ	検証データ	評価データ
TED 独英	Moses Tokenizer	203,998	888	1,305
TED 中英	Jieba / Moses Tokenizer	226,196	879	1,297
TED 日英	MeCab / Moses Tokenizer	194,170	871	1,285
Recipe 日英	MeCab / Moses Tokenizer	108,990	3,303	2,804

実験設定(共通)

- Baseline: dot Global Attention型 NMT [Luong+, 2015]
 - ・ハイパーパラメータは下表のとおり(提案手法も同様)
- 評価尺度: BLEU

ハイパーパラメータ	設定した値
単語分散表現の次元数	512
隠れ状態ベクトルの次元数	512
語彙空間のサイズ	TED: 32,000, Recipe: 8,000(BPE適用)
ミニバッチのサイズ	128文書
Encoder / Decoder	2層 双方向 / 単方向 LSTM
ビーム探索の探索幅	5
最適化	AdaGrad(初期学習率: 0.01)
学習のEpoch	30

実験設定(提案手法)

- Baselineの学習で得られた重み行列を初期値に使用
- 文書の1文目の翻訳時は 文脈Attention = 0
- Separated型
 - 文脈Encoderはランダム値で初期化
 - Separated Target型の学習時は文脈文として正解文を入力
- Shared型
 - ・ 学習時・検証/評価時のどちらでも保存したベクトル列を使用
- ・ 乱数シードを変えて各3回実験
 - 平均と標準偏差
 - Bootstrap Resamplingによる統計的有意差(Baseline比)

実験結果:目的言語側の文脈

- Shared Target型がほぼ全ての言語対で最高性能
 - 英日翻訳でも最高性能の手法と同程度の結果
- Separated Target型の一部ではBaselineより悪化
- 目的言語側の文脈文はDecoder側から得るべき

実験 Baseline	Baseline	Separated 型		Shared 型		
		Source	Target	Source	Target	Mix
TED 独英	26.55	$26.29\pm.37$	$26.52\pm.12$	$^*27.20\pm.11$	* ${f 27.34}\pm .11$	$27.18\pm.21$
TED 英独	21.26	$21.04\pm.64$	$20.77\pm.10$	$21.63\pm.27$	$21.83 \pm .30$	$21.50\pm.29$
TED 中英	12.54	$12.52\pm.33$	$12.63\pm.24$	$^*13.36\pm.41$	*13.52 \pm .10	$^*13.23 \pm .09$
TED 英中	8.97	$8.94\pm.11$	$8.71\pm.06$	$9.45\pm.22$	*9.58 \pm .13	$9.42\pm.19$
TED 日英	5.84	$^*6.64\pm.26$	$^*6.37\pm.12$	$^*6.95\pm.07$	*6.96 \pm .18	$^*6.81\pm.16$
TED 英日	8.40	$8.58\pm.12$	$8.26\pm.00$	$8.51\pm.31$	$8.59 \pm .08$	$8.66\pm.14$
Recipe 日英	25.34	$^*26.51 \pm .09$	$^*26.69\pm.15$	$^*26.90\pm.17$	* 26.92 \pm .10	$^*26.78\pm.11$
Recipe 英日	20.81	$^*21.87\pm.12$	$^*21.45 \pm .14$	* 22.02 \pm .20	$^*21.97 \pm .09$	$^*21.81 \pm .15$

実験結果: 原言語側の文脈

- 原言語側でもSeparated型よりShared型の方が高性能
- 重み共有自体に意味があるのでは?
 - 層ごとの重みを共有しても性能が悪化しない [Dabre+, 2019]
 - マルチタスク学習の枠組みで考えられる可能性もある

Shared 型		
Mix		
$18 \pm .21$		
$50 \pm .29$		
$23 \pm .09$		
$42 \pm .19$		
$81 \pm .16$		
$66 \pm .14$		
$78 \pm .11$		
$81 \pm .15$		

言語対に関する考察

- 独・英・中のどれかを使用 → 目的言語側の方が有用
 - 語族の違いは関係なく、語順(SVO)が同じならば似た傾向?
- ・日本語を使用 → どちらも同程度の有用性
 - 日本語の省略の多さが関係している?
 - 語順がSOVであるから?

実験	Baseline	Separated 型		Shared 型		
关款	Daseillie	Source	Target	Source	Target	Mix
TED 独英	26.55	$26.29\pm.37$	$26.52\pm.12$	$*27.20 \pm .11$	*27.34 \pm .11	$27.18\pm.21$
TED 英独	21.26	$21.04\pm.64$	$20.77\pm.10$	$21.63\pm.27$	$21.83 \pm .30$	$21.50\pm.29$
TED 中英	12.54	$12.52\pm.33$	$12.63\pm.24$	$^*13.36\pm.41$	* 13.52 \pm .10	$^*13.23 \pm .09$
TED 英中	8.97	$8.94\pm.11$	$8.71\pm.06$	$9.45\pm.22$	$\mathbf{^*9.58} \pm .13$	$9.42\pm.19$
TED 日英	5.84	$^*6.64\pm.26$	$^*6.37\pm.12$	$^*6.95\pm.07$	* ${f 6.96}\pm.18$	$^*6.81\pm.16$
TED 英日	8.40	$8.58\pm.12$	$8.26\pm.00$	$8.51\pm.31$	$8.59\pm.08$	$8.66\pm.14$
Recipe 日英	25.34	$^*26.51 \pm .09$	$^*26.69\pm.15$	$^*26.90 \pm .17$	* ${f 26.92}\pm.10$	$^*26.78\pm.11$
Recipe 英日	20.81	$^*21.87\pm.12$	$^*21.45\pm.14$	$22.02 \pm .20$	$^*21.97 \pm .09$	$^*21.81\pm.15$

学習の安定性

- グラフ: 各EpochごとのBLEU変化(左: 中英 右:英中)
- Separated Target型のみ不安定(英中がより顕著)
 - 文脈文の質と文脈Encoderの質が学習過程でともに変化
 - Shared型はDecoderの質と文脈Encoderの質が同じ
 - → 安定性が高い?

実験	文(後処理済み、それぞれ上下が1文目と2文目に対応)
入力文	わかめはよく洗って塩を落とし、10分ほど水に浸けておいてからざく切りにする。 長ねぎは小口切りにする。
	熱した鍋にごま油をひき、わかめと長ねぎを入れて30秒ほど軽く炒める。
参照訳	Wash the wakame well to remove the salt, put into a bowl of water for 10 minutes and drain. Cut into large pieces. Slice the Japanese leek .
	Heat a pan and pour the sesame oil. Stir fry the wakame and leek for 30 seconds.
Baseline	Wash the wakame seaweed well and remove the salt. Soak in water for 10 minutes, then roughly chop. Cut the Japanese leek into small pieces.
	Heat sesame oil in a heated pot, add the wakame and leek, and lightly sauté for about 30 seconds.
Separated Target	Wash the wakame well, soak in water for about 10 minutes. Cut into small pieces. Cut the Japanese leek into small pieces.
	Heat the sesame oil in a frying pan, add the wakame and leek, and stir-fry for about 30 seconds.

実験	文(後処理済み、それぞれ上下が1文目と2文目に対応)
入力文	わかめはよく洗って塩を落とし、10分ほど水に浸けておいてからざく切りにする。 長ねぎは小口切りにする。
	熱した鍋にごま油をひき、わかめと長ねぎを入れて30秒ほど軽く炒める。
参照訳	Wash the wakame well to remove the salt, put into a bowl of water for 10 minutes and drain. Cut into large pieces. Slice the Japanese leek .
	Heat a pan and pour the sesame oil. Stir fry the wakame and leek for 30 seconds.
Baseline	Wash the wakame seaweed well and remove the salt. Soak in water for 10 minutes, then roughly chop. Cut the Japanese leek into small pieces.
	Heat sesame oil in a heated pot, add the wakame and leek, and lightly sauté for about 30 seconds.
Shared Target	Wash the wakame well, remove the salt, soak in water for about 10 minutes, then roughly chop. Chop the Japanese leek into small pieces.
	Heat sesame oil in a heated pan, add the wakame and Japanese leek, and lightly stir-fry for about 30 seconds.

まとめ

- 既存のNMTに文脈情報を取り入れた
 - ・ 重み共有を用いて、目的言語側の文脈文をDecoder側から 取り込む手法を提案
 - 原言語側でも重み共有の性能を調査
- ・6言語対の実験結果から、提案手法の有用性を確認
 - どちら側の文脈が必要かは言語対に依存
 - 重み共有自体に意味がある可能性が高い
 - 学習は先行研究より安定している
 - 出力例から訳語の統一ができている可能性を確認
 - 文脈つきNMTをよりコンパクトに実現可能