MATH 570, Homework 4

Colin Roberts
September 15, 2017

Solutions

Problem 1. Prove that if a coproduct exists in a category, then it is unique up to isomorphism. That is, prove that if $(S', (\iota'_{\alpha}))$ and $(S'', (\iota''_{\alpha}))$ are both coproducts of the family of objects $(X_{\alpha})_{\alpha \in A}$ then S' and S'' are isomorphic.

:

Proof. Let $(S', (\iota'_{\alpha}))$ and $(S'', (\iota''_{\alpha}))$ be coproducts for the family of objects $(X_{\alpha})_{\alpha \in A}$. Then we are guaranteed unique morphisms $f' : S' \to S''$ and $f'' : S'' \to S'$ which satisfy $\iota''_{\alpha} \circ f' = \iota'_{\alpha}$ and $\iota'_{\alpha} \circ f'' = \iota''_{\alpha}$. Considering the diagram on page 214 of our text, we have that we can let W = S' and S'' = S and then note that $f_{\alpha} = \iota'_{\alpha}$ and the diagram commutes with $f'' \circ f'$ or $\mathrm{Id}_{S'}$ in place of f'. So then $f'' \circ f' = \mathrm{Id}_{S'}$. An analogous argument shows that $f' \circ f'' = \mathrm{Id}_{S''}$. And so we have that S' and S'' are isomorphic by uniqueness of f' and f''.

Problem 2. Let $(X_{\alpha})_{\alpha \in A}$ be a family of topological spaces, and equip $\coprod_{\alpha \in A} X_{\alpha}$ with the disjoint union topology. Prove that $\coprod_{\alpha \in A} X_{\alpha}$ is the coproduct of $(X_{\alpha})_{\alpha \in A}$ in the category of topological spaces as follows.

- (a) Define the maps $\iota_{\alpha} : X_{\alpha} \to \coprod_{\alpha \in A} X_{\alpha}$.
- (b) Prove that $(\coprod_{\alpha \in A} X_{\alpha}, (\iota_{\alpha}))$ satisfies the necessary universal property.

: $Proof (Part (a)). \text{ We have that } \iota_{\alpha} \colon X_{\alpha} \to \coprod_{\alpha \in A} X_{\alpha} \text{ by } \iota_{\alpha}(X) = (X, \alpha).$

Proof (Part (b)). Suppose that *W* is a space with morphism $f_{\alpha}: X_{\alpha} \to W$ with $x \mapsto w$ and define $f: \coprod_{\alpha \in A} X_{\alpha} \to W$ by $(x, \alpha) \mapsto f_{\alpha}(X)$. These satisfy the universal property.

Problem 3. Let $X = (\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\}) \subseteq \mathbb{R}^2$ (equipped with the standard topology). Define an equivalence relation on X by declaring $(x,0) \sim (x,1)$ if $x \neq 0$. The quotient space X/\sim is called the *line with two origins*.

- (a) Show that X/\sim is not Hausdorff (and hence not a manifold).
- (b) Show that X/\sim is locally Euclidean.

:

Proof (Part (a)). Consider the points $p_1 = (0,0)$ and $p_2 = (0,1)$ which are distinct in the quotient space. Then consider arbitrary neighborhoods $N_{\epsilon_1}(p_1) = ((-\epsilon_1, \epsilon_1), 0)$ and $N_{\epsilon_2}(p_1) = ((-\epsilon_2, \epsilon_2), 1)$ which are indeed open sets as their preimage in X are open. But note that no matter the choice of ϵ_1 and ϵ_2 we have that $N_{\epsilon_1}(p_1) \cap N_{\epsilon_2}(p_2) \neq \emptyset$ since $(x,0) \sim (x,1)$ for $x \neq 0$.

.

Proof (*Part* (*b*)). If $p = (x,0) \sim (x,1)$ for $x \neq 0$, then a neighborhood of p is of the form $N_{\epsilon}(p) = ((x - \epsilon, x + \epsilon), 0)$ for $0 < \epsilon < |x|$. Clearly this set is open as the preimage of $N_{\epsilon}(p)$ is open in X. Thus a homeomorphism for these points $f: X/ \sim \to \mathbb{R}$ is given by f(x,0) = x. Which is clearly a homeomorphism. We then define f(0,0) = 0 and f(0,1) = 0 which again are clearly homeomorphisms. Just take $N_{\epsilon}(0,0)$ which in which we have $f(N_{\epsilon}(0,0)) = N_{\epsilon}(0) \subseteq \mathbb{R}$. A similar argument is used for (0,1). □

Problem 4. Let X and Y be topological spaces, and let $f: X \to Y$. Suppose that $X = \bigcup_{\alpha \in A} U_{\alpha}$, with U_{α} open in X for all α , and that $f|_{U_{\alpha}}: U_{\alpha} \to Y$ is continuous for all α . Prove that $f: X \to Y$ is continuous.

:

Proof. Consider an arbitrary open set $V \subseteq Y$. Then we have that $(f|_{U_\alpha})^{-1}(V) = U_\alpha \cap f^{-1}(V)$ which is open in X. So consider now $\bigcup_{\alpha \in A} (f|_{U_\alpha})^{-1}(V) = \bigcup_{\alpha \in A} (U_\alpha \cap f^{-1}(V)) = f^{-1}(V) \cap (\bigcup_{\alpha \in A} (U_\alpha)) = f^{-1}(V) \cap X = f^{-1}(V)$ which is open since the arbitrary union of open sets is open. Thus f is continuous. \square

Problem 5. Make a Möbius band out of a strip of paper, and then cut it along its central circle. Now, draw a picture to show that identifying diametrically opposite points on one of the boundary circles of a cylinder creates a Möbius band. That is, draw a picture to show that if you take a cylinder $S^1 \times [0,1] = \{(x,y,z)|x^2+y^2=1 \text{ and } 0 \le z \le 1\}$ and identify each (x,y,1) with (-x,-y,1), then you get a Möbius band.

Proof. In this picture we can see that we can glue the antipodal edges of the cylinder A shown in [2] (disregard the extra M'obius band cut out) and achieve the band shown in [3]. I remember doing this problem with you last year and drawing is hard, so hopefully this suffices. Also I think it's cool you can cut the twice twisted cylinder in half again and you get two disjoint pieces which in some sense shows that it is topologically a cylinder!