История создания параллельных вычислительных систем

История вычислительных систем

IBM 701 (1953), IBM 704 (1955): разрядно-параллельная память, разрядно-параллельная арифметика.

Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал IBM 701, а наибольшую популярность получила модель IBM 704 (продано 150 экз.), в которой, помимо сказанного, была впервые применена память на ферритовых сердечниках и аппаратное АУ с плавающей точкой.

IBM 709 (1958): *независимые процессоры ввода/вывода*. К компьютеру IBM 704 присоединили 6 независимых процессоров ввода/вывода, которые после получения команд могли работать параллельно с основным процессором, а сам компьютер переименовали в IBM 709.

История вычислительных систем

- **IBM STRETCH** (1961): опережающий просмотр вперед, расслоение памяти. STRETCH, имеет две принципиально важные особенности: опережающий просмотр вперед для выборки команд и расслоение памяти на два банка.
- ATLAS (1963): конвейер команд.
 Выполнение команд разбито на 4 стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции.

- **CDC 6600** (1964): *независимые функциональные устройства*.
 - Машина имела громадный успех на научном рынке, активно вытесняя машины фирмы IBM.
- **CDC 7600** (1969): конвейерные независимые функциональные устройства.
 - CDC выпускает компьютер CDC-7600 с 8 независимыми конвейерами.
- ILLIAC IV (1974): матричные процессоры. Данная модель получилась удивительно удачной по производительности. Вместе с модификациями было продано около 400 экземпляров.
- **Cray 1** (1976): *векторно-конвейерные процессоры*. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных.

Первые параллельные системы

Система ILLIAC-IV

Illiac-IV Array Illiac-IV I/O Subsystem Illiac-IV Control Unit Secondary Memory Drum Illiac-IV Central System Central System Shared Memory ARPNET Megabit B6700 Link Laser Peripherals Memory MP Management Processor

Система ILLIAC-IV

Система Стау-1

Vector Registers ((A0)+(Ak) 45 Vector Functional Units 51 Sj Functional Henory RTC Scalar Registers Functional Units Vector Control Address Registers Multiply B77 ((Ah) + Address Functional Units 1/0 control CIP Execution LIP Instruction Buffers

Figure 3-1. Computation section

Система Стау-1

Характеристики шести классов вычислительных систем

Класс	Типичный	Год	Примерная	Длина	Объем памяти	Центральный процессор
	представитель	ввода	относит.	спова	(спова), время	
			производит.		доступа	
I	IBM 700	1954	1	36	Ферритовая, 32К,	Поспедовательный
					1.2 мжс	
II	IBM 7000	1959	5	36	Ферритовая, 32К,	Последовательный на
					218 мжс	транвисторах
III	CDC 6600	1965	25	60	Ферритовая,	Поспедовательный, с
					128К, 100 нс	функциональными
						устройствами и на
						транзисторах
ΙV	CDC 7600	1969	100	60	Ферритовая,	Тоже
					64512К, 27,5 нс	
V	STAR-100	1972	200	64	Ферритовая,	Векторный
					1024К, 40 нс	
	ILLIACIV]			На интегральных	Матричный, из 64 элементов
					схемах, 64х2К,	на интегральных схемах
					60нс	-
VΙ	Cray-1	1976	2000	64	На интегральных	Векторный, на СБИС
					схемах, 2	
					млн., 20нс	
	Cyber-205				32 млн.	Ha СБИС

Отечественные высокопроизводительные системы

ЭВМ БЭСМ-6

Отечественные высокопроизводительные системы

В БЭСМ-6 были предусмотрены:

- ✓ развитая система прерываний;
- ✓ страничная организация памяти с аппаратным преобразованием математических (виртуальных) адресов в физические адреса (механизм "приписки");
- ✓ аппаратные механизмы защиты памяти, что обеспечивало возможность организации мультипрограммного режима работы;
- ✓ динамическое распределение памяти в процессе вычислений средствами операционной системы.

Основные технические характеристики БЭСМ-6

- ✓ Быстродействие около 1 млн. операций/сек.;
- ✓ объем ОЗУ от 32 до 128 тысяч машинных слов;
- ✓ время выполнения сложения с плавающей запятой 1,1 мксек;
- ✓ время умножения 1,9 мксек;
- ✓ время деления 4,9 мксек;
- ✓ время выполнения логических поразрядных операций 0,5 мксек.
- ✓ Работа арифметического устройства совмещена с выборкой операндов из памяти.
- ✓ Разрядность машинного слова 48 двоичных разрядов.
- ✓ Объем промежуточной памяти на магнитных барабанах 512 тысяч слов.

ПС 2000 и ПС 3000 (1979)

Начало серийного выпуска высокопроизводительных многопроцессорных универсальных вычислительных комплексов (УВК) с перестраиваемой структурой ПС 2000 и ПС 3000, реализующих распараллеливание на уровне задач, ветвей, векторных и скалярных операций в задачах геофизики, научных экспериментов и др. областей. Разработчики: ИПУ (Москва), НИИУВМ (Северодонецк).

Эльбрус-1 (1979)

Вычислительный комплекс со средствами аппаратной поддержки развитой структуризации программ и данных (В.С.Бурцев, б.А.Бабаян).

Эльбрус-2 (1984)

Начало выпуска многопроцессорного вычислительного комплекса Эльбрус-2 производительностью при 10 процессорах до 125 млн. оп/сек (MIPS). Разработчики: В.С. Бурцев и др..

Эльбрус 3.1 (1990)

Выпуск и ввод в эксплуатацию векторноконвейерной суперЭВМ Эльбрус 3.1 на базе модульных конвейерных процессоров разработки ИТМ и ВТ имени С.А. Лебедева. Разработчики: Г.Г. Рябов, А.А. Соколов, А.Ю. Бяков. Производительность в однопроцессорном варианте – 400 MFLOPS