$P8106_group2recovery_secondary analysis$

Yimin Chen (yc4195), Yang Yi (yy3307), Qingyue Zhuo (qz2493)

1

Contents

Import and data manipulation

Data visualization	3
Correlation plot	3
Feature plot	3
Partition plot	4
Model training	5
Logistic regression and its cousins	5
GLM	5
Penalized logistic regression	5
GAM	6
MARS	7
test data performance for Logistic regression and its cousins	10
	11
Discriminant Analysis	11
LDA	11
QDA	11
Naive Bayes (NB)	11
test set performance for Discriminant Analysis	13
classification tree models	14
rpart	14
ctree	16
test set performance for classification tree models	17
Support Vector Machines	18
test data performance of SVM methods	21
Model comparison	22
Import and data manipulation	
# Load recovery.RData environment	
load("./recovery.Rdata")	
Toda (1/1000 vol j livatou)	
dat %>% na.omit()	
# dat1 draw a random sample of 2000 participants Uni:3307	
set.seed(3307)	

```
dat1 = dat[sample(1:10000, 2000),]
dat1 =
 dat1[, -1] %>%
 mutate(
   recovery_time = as.factor(
      case_when(recovery_time <= 30 ~ "long", recovery_time > 30 ~ "short")
   gender = as.factor(gender),
   race = as.factor(race),
   smoking = as.factor(smoking),
   hypertension = as.factor(hypertension),
   diabetes = as.factor(diabetes),
   vaccine = as.factor(vaccine),
   severity = as.factor(severity),
   study = as.factor(
      case_when(study == "A" ~ 1, study == "B" ~ 2, study == "C" ~ 3)
   )
# dat2 draw a random sample of 2000 participants Uni:2493
set.seed(2493)
dat2 = dat[sample(1:10000, 2000),]
dat2 =
 dat2[, -1] %>%
 mutate(
   recovery_time = as.factor(
     case_when(recovery_time <= 30 ~ "long", recovery_time > 30 ~ "short")
   ),
   gender = as.factor(gender),
   race = as.factor(race),
   smoking = as.factor(smoking),
   hypertension = as.factor(hypertension),
   diabetes = as.factor(diabetes),
   vaccine = as.factor(vaccine),
   severity = as.factor(severity),
   study = as.factor(
      case_when(study == "A" \sim 1, study == "B" \sim 2, study == "C" \sim 3)
      )
   )
# Merged dataset with unique observation
covid_dat = rbind(dat1, dat2) %>%
 unique()
covid_dat2 = model.matrix(recovery_time ~ ., covid_dat)[, -1]
# Partition dataset into two parts: training data (70%) and test data (30%)
rowTrain = createDataPartition(y = covid_dat$recovery_time, p = 0.7, list = FALSE)
trainData = covid_dat[rowTrain, ]
```

Data visualization

Correlation plot

```
corr_dat = covid_dat[rowTrain,] %>%
  dplyr::select('age', 'height', 'weight', 'bmi', 'SBP', 'LDL')
corrplot(cor(corr_dat), method = "circle", type = "full")
```


Feature plot

Partition plot

```
partimat(recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, n
```


Model training

Logistic regression and its cousins

GLM

Penalized logistic regression

Penalized logistic regression can be fitted using glmnet. We use the train function to select the optimal tuning parameters.

```
set.seed(2)
model.glmn <- train(x = covid_dat2[rowTrain,],</pre>
                    y = covid_dat$recovery_time[rowTrain],
                     method = "glmnet",
                     tuneGrid = glmnGrid,
                     metric = "ROC",
                     trControl = ctrl2)
model.glmn$bestTune
                     lambda
##
        alpha
## 1001
             1 0.0003354626
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
               superpose.line = list(col = myCol))
plot(model.glmn, par.settings = myPar, xTrans = function(x) log(x))
                                       Mixing Percentage
                           0.3
                                                     0.6
                                                                               0.9
  0.05
                           0.35
                                                     0.65
                                                                               0.95
  0.1
                           0.4
                                                     0.7
  0.15
                           0.45
                                                     0.75
  0.2
                           0.5
                                                     8.0
  0.25
                           0.55
                                                     0.85
ROC (Cross-Validation)
    0.70
    0.65
    0.60
    0.55
    0.50
                                  -6
              -8
                                                     -4
                                                                         -2
                                    Regularization Parameter
```

GAM

```
model.gam$finalModel
```

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## .outcome ~ gender1 + race3 + race4 + smoking1 + smoking2 + hypertension1 +
## diabetes1 + vaccine1 + severity1 + study2 + study3 + s(age) +
## s(SBP) + s(LDL) + s(bmi) + s(height) + s(weight)
##
## Estimated degrees of freedom:
## 1.00 1.00 1.55 2.79 1.00 2.29 total = 21.63
##
## UBRE score: 0.06815373
plot(model.gam$finalModel, select = 3)
```


MARS

coef(model.mars\$finalModel)

```
## (Intercept) study2 h(28.6-bmi) vaccine1 h(135-SBP) severity1
## -0.32524568 -1.35310824 0.51047027 -0.73109733 -0.03262848 0.80307433
## smoking1 gender1 smoking2 h(LDL-145) h(bmi-23.1)
## 0.43021337 -0.32207625 0.55022116 -0.05342548 0.41456148
```

vip(model.mars\$finalModel)


```
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, GAM, MARS
## Number of resamples: 10
##
## ROC
                                                      3rd Qu.
##
               Min.
                       1st Qu.
                                  Median
                                               Mean
          0.7027786\ 0.7100512\ 0.7240580\ 0.7243182\ 0.7396824\ 0.7482539
## GLMNET 0.7010325 0.7091541 0.7199426 0.7230782 0.7374113 0.7488612
                                                                            0
          0.7092686 0.7156054 0.7316766 0.7319728 0.7432725 0.7592621
                                                                            0
## GAM
## MARS
          0.7131036 0.7220759 0.7309513 0.7309203 0.7385390 0.7542894
##
## Sens
##
                       1st Qu.
                                  Median
                                               Mean
                                                      3rd Qu.
## GLM
          0.2162162 0.2702703 0.2789708 0.2814698 0.3074324 0.3378378
                                                                            0
## GLMNET 0.2027027 0.2466216 0.2837838 0.2693262 0.2969733 0.3243243
                                                                            0
          0.2027027 0.2627730 0.3175676 0.3017031 0.3378378 0.3648649
                                                                            0
## GAM
## MARS
          0.2297297 \ 0.2837838 \ 0.2924843 \ 0.3044428 \ 0.3344595 \ 0.3783784
                                                                            0
##
```

```
## Spec
                                                                  Max. NA's
##
               Min.
                      1st Qu.
                                 Median
                                                     3rd Qu.
                                              Mean
## GLM
          0.8531073 0.9039548 0.9154605 0.9119755 0.9324890 0.9438202
## GLMNET 0.8644068 0.9053672 0.9180791 0.9187425 0.9382022 0.9548023
                                                                           0
          0.8644068 0.8884181 0.9124294 0.9018314 0.9157303 0.9269663
                                                                           0
## MARS
          0.8644068 0.8912429 0.9098584 0.9057862 0.9196106 0.9325843
                                                                           0
bwplot(res, metric = "ROC")
   GAM
  MARS
   GLM
GLMNET
          0.70
                     0.71
                                 0.72
                                            0.73
                                                       0.74
                                                                  0.75
                                                                             0.76
                                           ROC
```

test data performance for Logistic regression and its cousins

Discriminant Analysis

LDA

\mathbf{QDA}

Naive Bayes (NB)

There is one practical issue with the NB classifier when nonparametric estimators are used. When a new data point includes a feature value that never occurs for some response class, the posterior probability can become zero. To avoid this, we increase the count of the value with a zero occurrence to a small value, so

that the overall probability doesn't become zero. In practice, a value of one or two is a common choice. This correction is called "Laplace Correction," and is implemented via the parameter fL. The parameter adjust adjusts the bandwidths of the kernel density estimates, and a larger value means a more flexible estimate.


```
res <- resamples(list(LDA = model.lda, QDA = model.qda, NB = model.nb))
summary(res)</pre>
```

```
##
## Call:
## summary.resamples(object = res)
##
## Models: LDA, QDA, NB
## Number of resamples: 10
##
## ROC
## ROC
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
```

```
## LDA 0.6982994 0.7092113 0.7204289 0.7236334 0.7385363 0.7509869
## QDA 0.6825470 0.6870515 0.7021897 0.7067165 0.7212097 0.7436988
                                                                       0
## NB 0.6882730 0.7120171 0.7177622 0.7186405 0.7223240 0.7519739
                                                                       0
##
## Sens
##
                    1st Qu.
                                                     3rd Qu.
                                                                   Max. NA's
            Min.
                                Median
                                             Mean
## LDA 0.1891892 0.26013514 0.27702703 0.26525361 0.29489078 0.31081081
## QDA 0.5270270 0.55743243 0.60135135 0.59546464 0.63175676 0.67567568
## NB 0.0000000 0.01351351 0.01351351 0.01488338 0.02369493 0.02702703
##
## Spec
                              Median
##
            Min.
                   1st Qu.
                                          Mean
                                                 3rd Qu.
## LDA 0.8587571 0.8997175 0.9239351 0.9170507 0.9324890 0.9606742
## QDA 0.6440678 0.7090395 0.7211325 0.7185298 0.7299562 0.7683616
                                                                       0
## NB 0.9887006 0.9957627 1.0000000 0.9977401 1.0000000 1.0000000
                                                                       0
```

test set performance for Discriminant Analysis

classification tree models

rpart

rpart.plot(model.rpart\$finalModel)


```
registerDoSEQ()
```

ctree

plot(model.ctree\$finalModel)

test set performance for classification tree models

```
resamp_tree <- resamples(list(rpart = model.rpart,</pre>
                          ctree = model.ctree))
summary(resamp_tree)
##
  summary.resamples(object = resamp_tree)
##
## Models: rpart, ctree
## Number of resamples: 10
##
## ROC
##
              Min.
                     1st Qu.
                                 Median
                                              Mean
                                                     3rd Qu.
## rpart 0.6570851 0.6730605 0.6885818 0.6892499 0.6958410 0.7433196
## ctree 0.6718201 0.6806484 0.6832281 0.6925873 0.7081043 0.7224385
##
## Sens
##
              Min.
                     1st Qu.
                                 Median
                                             Mean
                                                     3rd Qu.
                                                                  Max. NA's
## rpart 0.2027027 0.2432432 0.2500000 0.2476490 0.2593947 0.2837838
## ctree 0.1621622 0.1790541 0.1959459 0.2288227 0.2837838 0.3287671
##
## Spec
##
              Min.
                     1st Qu.
                                 Median
                                             Mean
                                                     3rd Qu.
                                                                  Max. NA's
```

Support Vector Machines

```
num_cores <- detectCores()</pre>
cl <- makePSOCKcluster(num_cores)</pre>
registerDoParallel(cl)
set.seed(2)
# kernal linear
#model.suml <- train(recovery_time ~ .,</pre>
                   #data = covid_dat[rowTrain, ],
                   #method = "svmLinear",
                   \#tuneGrid = data.frame(C = exp(seq(-2,5,len=5))),
                   \#trControl = ctrl2)
model.svml <- train(recovery_time ~ .,</pre>
                   data = covid_dat[rowTrain, ],
                   method = "svmLinear2",
                   preProcess = c("center", "scale"),
                   tuneGrid = data.frame(cost = exp(seq(-3,2,len = 50))),
                   trControl = ctrl2)
plot(model.svml, highlight = TRUE)
```


model.svml\$bestTune

cost

```
## 23 0.4699627
model.svml$finalModel
## Call:
## svm.default(x = as.matrix(x), y = y, kernel = "linear", cost = param$cost,
##
       probability = classProbs)
##
##
## Parameters:
##
     SVM-Type: C-classification
## SVM-Kernel: linear
##
          cost: 0.4699627
##
## Number of Support Vectors: 1706
#test error
linear_test_preds = predict(model.svml, newdata = covid_dat[-rowTrain, ])
confusionMatrix(data = linear_test_preds,
                reference = covid_dat$recovery_time[-rowTrain])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction long short
       long
               0
##
        short 316
##
                    759
##
##
                  Accuracy: 0.706
                    95% CI: (0.6778, 0.7331)
##
##
       No Information Rate: 0.706
       P-Value [Acc > NIR] : 0.5152
##
##
##
                     Kappa: 0
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.000
##
               Specificity: 1.000
            Pos Pred Value :
##
                               {\tt NaN}
##
            Neg Pred Value: 0.706
                Prevalence: 0.294
##
##
            Detection Rate: 0.000
##
      Detection Prevalence: 0.000
##
         Balanced Accuracy: 0.500
##
##
          'Positive' Class : long
##
stopCluster(cl)
registerDoSEQ()
num_cores <- detectCores()</pre>
cl <- makePSOCKcluster(num_cores)</pre>
registerDoParallel(cl)
```

```
svmr.grid \leftarrow expand.grid(C = exp(seq(-4,4,len=20)),
                          sigma = exp(seq(-4,0,len=10)))
#radial kernel
set.seed(2)
model.svmr <- train(recovery_time ~ .,</pre>
                   data = covid_dat[rowTrain, ],
                   method = "svmRadialSigma",
                   preProcess = c("center", "scale"),
                   tuneGrid = svmr.grid,
                   trControl = ctrl2)
myCol<- rainbow(20)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
              superpose.line = list(col = myCol))
ggplot(model.svmr, highlight = TRUE, par.settings = myPar)
  0.68
ROC (Cross-Validation)
          0
                                      20
                                                                   40
                                                Cost
                    0.01831564 - 0.04455143 - 0.10836802 -
                                                                - 0.26359714 -- 0.64118039
        Sigma
                    0.02856550 + 0.06948345 + 0.16901332 - 0.41111229 - 1.00000000
# test error
radial_test_preds = predict(model.svmr, newdata = covid_dat[-rowTrain, ])
confusionMatrix(data = radial_test_preds ,
                 reference = covid_dat$recovery_time[-rowTrain])
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction long short
##
                       67
        long
                 77
                      692
##
        short 239
```

```
##
##
                  Accuracy : 0.7153
                    95% CI: (0.6873, 0.7422)
##
##
       No Information Rate: 0.706
       P-Value [Acc > NIR] : 0.2633
##
##
##
                     Kappa: 0.1847
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.24367
##
               Specificity: 0.91173
##
            Pos Pred Value : 0.53472
            Neg Pred Value: 0.74329
##
##
                Prevalence: 0.29395
            Detection Rate: 0.07163
##
##
      Detection Prevalence : 0.13395
         Balanced Accuracy: 0.57770
##
##
##
          'Positive' Class : long
##
stopCluster(cl)
registerDoSEQ()
```

test data performance of SVM methods

Model comparison

```
res <- resamples(list(GLM = model.glm, GLMNET = model.glmn, GAM = model.gam, MARS = model.mars, CTREE =
trainROC <- bwplot(res, metric = "ROC")</pre>
summary(res)
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, GAM, MARS, CTREE, RPART, LDA, QDA, NB, SVML, SVMR
## Number of resamples: 10
##
## ROC
##
               Min.
                      1st Qu.
                                  Median
                                              Mean
                                                      3rd Qu.
          0.7027786 0.7100512 0.7240580 0.7243182 0.7396824 0.7482539
## GLMNET 0.7010325 0.7091541 0.7199426 0.7230782 0.7374113 0.7488612
                                                                           0
          0.7092686 0.7156054 0.7316766 0.7319728 0.7432725 0.7592621
                                                                           0
## GAM
          0.7131036 0.7220759 0.7309513 0.7309203 0.7385390 0.7542894
## MARS
                                                                           0
## CTREE 0.6718201 0.6806484 0.6832281 0.6925873 0.7081043 0.7224385
                                                                           0
## RPART 0.6570851 0.6730605 0.6885818 0.6892499 0.6958410 0.7433196
                                                                           0
## LDA
          0.6982994 0.7092113 0.7204289 0.7236334 0.7385363 0.7509869
          0.6825470 0.6870515 0.7021897 0.7067165 0.7212097 0.7436988
## QDA
                                                                           0
          0.6882730 0.7120171 0.7177622 0.7186405 0.7223240 0.7519739
                                                                           0
## NB
## SVML
          0.6968239 0.6982173 0.7103583 0.7159424 0.7324267 0.7462041
                                                                           0
          0.6404795 \ 0.6755612 \ 0.7070927 \ 0.6985938 \ 0.7242925 \ 0.7435469
## SVMR
                                                                           0
##
## Sens
##
               Min.
                        1st Qu.
                                    Median
                                                 Mean
                                                          3rd Qu.
                                                                        Max. NA's
```

```
0.2162162 0.27027027 0.27897075 0.28146983 0.30743243 0.33783784
## GLM
## GLMNET 0.2027027 0.24662162 0.28378378 0.26932618 0.29697334 0.32432432
                                                                               0
## GAM
          0.2027027 0.26277305 0.31756757 0.30170307 0.33783784 0.36486486
          0.2297297 0.28378378 0.29248427 0.30444280 0.33445946 0.37837838
## MARS
                                                                               0
## CTREE 0.1621622 0.17905405 0.19594595 0.22882266 0.28378378 0.32876712
## RPART 0.2027027 0.24324324 0.25000000 0.24764902 0.25939467 0.28378378
                                                                               0
## LDA
          0.1891892 0.26013514 0.27702703 0.26525361 0.29489078 0.31081081
## QDA
          0.5270270 0.55743243 0.60135135 0.59546464 0.63175676 0.67567568
                                                                               0
## NB
          0.0000000 0.01351351 0.01351351 0.01488338 0.02369493 0.02702703
          0
## SVML
## SVMR
          0.1756757 0.19451129 0.20945946 0.21917808 0.24324324 0.27027027
##
## Spec
                                 Median
##
               Min.
                      1st Qu.
                                             Mean
                                                    3rd Qu.
## GLM
          0.8531073 0.9039548 0.9154605 0.9119755 0.9324890 0.9438202
## GLMNET 0.8644068 0.9053672 0.9180791 0.9187425 0.9382022 0.9548023
                                                                          0
          0.8644068 0.8884181 0.9124294 0.9018314 0.9157303 0.9269663
                                                                          0
## GAM
## MARS
          0.8644068 0.8912429 0.9098584 0.9057862 0.9196106 0.9325843
## CTREE 0.8474576 0.8997175 0.9152542 0.9103314 0.9255618 0.9604520
                                                                          0
## RPART 0.8644068 0.8956151 0.9180791 0.9125627 0.9268631 0.9548023
                                                                          0
## LDA
          0.8587571 0.8997175 0.9239351 0.9170507 0.9324890 0.9606742
                                                                          0
## QDA
          0.6440678 0.7090395 0.7211325 0.7185298 0.7299562 0.7683616
          0.9887006 0.9957627 1.0000000 0.9977401 1.0000000 1.0000000
## NB
                                                                          0
## SVML
          1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                          0
          0.8870056 0.9124294 0.9378531 0.9288929 0.9423284 0.9606742
## SVMR
                                                                          0
# Prediction on test set
glm.pred <- predict(model.glm, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
glmn.pred <- predict(model.glmn, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
gam.pred <- predict(model.gam, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
mars.pred <- predict(model.mars, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
ctree.pred <- predict(model.ctree, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
rpart.pred <- predict(model.rpart, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
lda.pred <- predict(model.lda, newdata =covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
qda.pred <- predict(model.qda, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
nb.pred <- predict(model.nb, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
svml.pred <- predict(model.svml, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
svmr.pred <- predict(model.svmr, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
# Test error rate for all models
test_glm_error = mean(glm.pred != covid_dat$recovery_time[-rowTrain])
test_glmn_error = mean(glmn.pred != covid_dat$recovery_time[-rowTrain])
test_gam_error = mean(gam.pred != covid_dat$recovery_time[-rowTrain])
test_mars_error = mean(mars.pred != covid_dat$recovery_time[-rowTrain])
test_ctree_error = mean(ctree.pred != covid_dat$recovery_time[-rowTrain])
test_rpart_error = mean(rpart.pred != covid_dat$recovery_time[-rowTrain])
test_lda_error = mean(lda.pred != covid_dat$recovery_time[-rowTrain])
test_qda_error = mean(qda.pred != covid_dat$recovery_time[-rowTrain])
test_nb_error = mean(nb.pred != covid_dat$recovery_time[-rowTrain])
test_svml_error = mean(svml.pred != covid_dat$recovery_time[-rowTrain])
test_svmr_error = mean(svmr.pred != covid_dat$recovery_time[-rowTrain])
#roc
```

```
roc.glm <- roc(covid_dat$recovery_time[-rowTrain], glm.pred)</pre>
roc.glmn <- roc(covid_dat$recovery_time[-rowTrain], glmn.pred)</pre>
roc.gam <- roc(covid_dat$recovery_time[-rowTrain], gam.pred)</pre>
roc.mars <- roc(covid_dat$recovery_time[-rowTrain], mars.pred)</pre>
roc.ctree <- roc(covid_dat$recovery_time[-rowTrain], ctree.pred)</pre>
roc.rpart <- roc(covid_dat$recovery_time[-rowTrain], rpart.pred)</pre>
roc.lda <- roc(covid_dat$recovery_time[-rowTrain], lda.pred)</pre>
roc.qda <- roc(covid_dat$recovery_time[-rowTrain], qda.pred)</pre>
roc.nb <- roc(covid_dat$recovery_time[-rowTrain], nb.pred)</pre>
roc.svml <- roc(covid_dat$recovery_time[-rowTrain], svml.pred)</pre>
roc.svmr <- roc(covid_dat$recovery_time[-rowTrain], svmr.pred)</pre>
auc <- c(roc.glm$auc[1], roc.glmn$auc[1],</pre>
         roc.gam$auc[1], roc.mars$auc[1],
         roc.lda$auc[1],roc.qda$auc[1], roc.nb$auc[1],
         roc.ctree$auc[1], roc.rpart$auc[1],
         roc.svml$auc[1], roc.svmr$auc[1]
plot(roc.glm, legacy.axes = TRUE)
plot(roc.glmn, col = 2, add = TRUE)
plot(roc.gam, col = 3, add = TRUE)
plot(roc.mars, col = 4, add = TRUE)
plot(roc.lda, col = 5, add = TRUE)
plot(roc.qda, col = 6, add = TRUE)
plot(roc.nb, col = 7, add = TRUE)
plot(roc.ctree, col = 8, add = TRUE)
plot(roc.rpart, col = 9, add = TRUE)
plot(roc.svml, col = 10, add = TRUE)
plot(roc.svmr, col = 11, add = TRUE)
modelNames <- c("glm", "glmn", "gam", "mars", "lda", "qda", "nb", "ctree", "rpart", "svm (linear kernel)", "s</pre>
legend("bottomright", legend = pasteO(modelNames, ": ", round(auc,3)),
       col = 1:11, lwd = 2)
```



```
# Create a df with the test error rates for each model
model_names <- c("glm", "glmm", "gam", "mars", "ctree", "rpart", "lda", "qda", "nb", "svml", "svmr")
test_errors <- c(test_glm_error, test_glmn_error, test_gam_error, test_mars_error, test_ctree_error, te
test_errors_df <- data.frame(model_names, test_errors)

# Create the plot
plot <- ggplot(test_errors_df, aes(x = test_errors, y = model_names)) +
    geom_bar(stat = "identity", fill = "#0C4C8A") +
    ggtitle("Test Error Rates for 11 Models") +
    labs(x = "Error Rate", y = "Model") +
    theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5),
        axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)))

# Print the plot
print(plot)</pre>
```

Test Error Rates for 11 Models

interpretation for final mars model

GLM (family binomial, link logit):

dev

df

df

```
model.mars$finalModel
```

nulldev

```
##
   3043.84 2511
                   2649.02 2501
                                      0.13
                                              2671
                                                        5
## Earth selected 11 of 17 terms, and 9 of 18 predictors (nprune=11)
## Termination condition: RSq changed by less than 0.001 at 17 terms
## Importance: study2, bmi, vaccine1, SBP, severity1, smoking1, gender1, ...
## Number of terms at each degree of interaction: 1 10 (additive model)
## Earth GCV 0.1815234
                          RSS 448.3946
                                          GRSq 0.1264802
                                                             RSq 0.1403399
summary(model.mars$finalModel)
## Call: earth(x=matrix[2512,18], y=factor.object, keepxy=TRUE,
##
               glm=list(family=function.object, maxit=100), degree=1, nprune=11)
##
## GLM coefficients
##
                     short
## (Intercept) -0.32524568
## gender1
               -0.32207625
## smoking1
               0.43021337
## smoking2
                0.55022116
## vaccine1
               -0.73109733
## severity1
               0.80307433
## study2
               -1.35310824
## h(bmi-23.1) 0.41456148
```

devratio

AIC iters converged

```
## h(28.6-bmi) 0.51047027
## h(135-SBP) -0.03262848
## h(LDL-145) -0.05342548
##
## GLM (family binomial, link logit):
   nulldev
            df
                       dev
                             df
                                  devratio
                                               AIC iters converged
   3043.84 2511
                   2649.02 2501
                                      0.13
##
## Earth selected 11 of 17 terms, and 9 of 18 predictors (nprune=11)
## Termination condition: RSq changed by less than 0.001 at 17 terms
## Importance: study2, bmi, vaccine1, SBP, severity1, smoking1, gender1, ...
## Number of terms at each degree of interaction: 1 10 (additive model)
## Earth GCV 0.1815234
                         RSS 448.3946
                                         GRSq 0.1264802
                                                            RSq 0.1403399
model.mars$bestTune
##
      nprune degree
          11
```

10

plot(model.mars)

coef(model.mars\$finalModel)

study2 h(28.6-bmi) vaccine1 h(135-SBP) ## (Intercept) severity1 0.80307433 gender1 smoking2 h(LDL-145) h(bmi-23.1) 0.43021337 -0.32207625 0.55022116 -0.05342548 0.41456148

Gradient Boosting

