

ANÁLISIS DE DATOS DE SECUENCIACIÓN

Jorge Duitama, PhD

Dpto Ingeniería de Sistemas Universidad de los Andes

TECNOLOGÍAS DE SECUENCIACIÓN

- Illumina puede producir hasta 1Tbp por corrida
- PacBio y Nanopore producen lecturas de más de 10Kbp

TECNOLOGÍAS DE SECUENCIACIÓN

BIOINFORMÁTICA PARA HTS

EJEMPLO CON TEXTO NATURAL

<nemo> <oy t> <mos > <nemo> <en b>
< cla> <orma> <enem> <emos> <tene>
<enem> <se d> <ritm> <atic> <orma>
<itmo> <ioin> < bio> <algo> <mos >
<info> <orit> <mos > < alg> <y te>
< de > <algo> <de a> <ioin> <n bi>
<n bi> <orma> < de > <e de> <lgor>
<en b> <enem> < alg> <clas> <oy t>
< alg> <mos > <alg> <algo> <al

Tamaño estimado de secuencia: 50

Tamaño de lectura: 4

Número de lecturas: 50

Cubrimiento promedio: 4x

Texto: ?

What do you want to do with these long reads?

Type	Reference	Application
Aligners/Alignme	nt-based classifiers	
BLAST,	[58,59]	Targeted;
MEGABLAST		Shotgun
minimap2	[33]	Targeted;
-		Shotgun
Alignment-free c	lassifiers	
Kraken, Kraken2	[35,64]	Targeted;
	A CONTRACTOR	Shotgun
KrakenUniq	[65]	Shotgun
Bracken	[66]	Targeted;
		Shotgun
Metamaps	[69]	Shotgun
Centrifuge	[34]	Targeted;
		Shotgun
Mash	[72]	Targeted;
		Shotgun
Long-read assem	blers	
Canu	[90]	Shotgun
miniasm	[73]	Shotgun
wtdbg2	[91]	Shotgun
OPERA-MS	[95]	Shotgun
MetaFlye	[96]	Shotgun
MetaSPAdes	[74]	Shotgun

jts/nanopolish https://	Shotgun
https://	
1111	Targeted
github.com/nanoporetech/ medaka	Shotgun
lysis pipelines	
[60]	Shotgun
[25]	Targeted
https://github.com/	Shotgun
SamStudio8/reticulatus	
[70]	Shotgun
[71]	Shotgun
https://ccb-microbe.cs.uni- saarland.de/busybee/	Shotgun
	medaka lysis pipelines [60] [25] https://github.com/ SamStudio8/reticulatus [70] [71] https://ccb-microbe.cs.uni-

https://doi.org/10.1016/j.csbj.2021.02.020

Reads Correction or not?

Reads Correction process

Correction strategies (hybrid)

- External reads : Illumina
- Internal reads : Only long reads or long reads
- corrected by short ones
- Correction pipeline (non-hybrid)
- Read alignment
- Consensus calling

Assembly without reads correction

- Miniasm, Smartdenovo, Flye are members of this "new" family
- Improves speed
- Can work with less read depth.
- Can also assemble corrected reads

Canu module, Racon can also be used as a read error-correction tool.

What assembler to use over my favorite organism?

Long reads simplify genome assembly, with the ability to span repeat-rich sequences (characteristic of antimicrobial resistance genes) and structural variants. Nanopore sequencing also shows a lack of bias in GC-rich regions, in contrast to other sequencing platforms. To perform microbial genome assembly, we suggest using the third-party de novo assembly tool Flye. We also recommend one round of polishing with Medaka. https://nanoporetech.com/sites/default/files/s3/literature/microbial-genome-assembly-workflow.pdf

For assembly, ONT recommend sequencing a <u>human genome</u> to a minimum depth of <u>30x of 25–35 kb</u> reads. However, sequencing to a depth of 60x is advisable to obtain the best assembly metrics. We also recommend basecalling in high accuracy mode. <u>Greatest contig N50</u> is usually obtained with Shasta and Flye. Polishing/Correction is also recommended (Racon and Medaka).

https://nanoporetech.com/sites/default/files/s3/literature/human-genome-assembly-workflow.pdf

Overlap-layout-consensus genome assembly algorithm (OLC)

EJEMPLO CON TEXTO NATURAL

<mat> <nfor> <gori> <mos > <y te> <enem> <lase> <ritm> <se d> <n bi> < en > <algo> <y te> < alg> <nfor> <y te> <oy t> <bioi> <tene> <clas> <atic> < ten> <s en> <hoy > <bioi> <tene> <mos > <ase > <emos> <atic> <lgor> <orma> <oinf> <nemo> < ten> <itmo> <lase> <emos> <orma> <nfor> <lgor> <n bi> <info> <itmo> < cla> < cla> <itmo> <os e> <en b> <s en> <atic> <info> <ritm> <form> < en > <mati> <y te> <nfor> <tene> < en > <nemo> <itmo> <nemo> <mos > <mos > <enem> <nfor> <e de> <mati> < ten> <y te> <clas> < ten> < en > <ase > <nfor> <lgor> <se d> < bio> <oinf> <ritm> <nemo> <orit> <s cl> <algo> <hoy > <s en> <os e> <e de> <form> <n bi> <mati> <clas> <se d> <mat> <emos> <oinf> <mati> < alg>

Tamaño estimado de secuencia: 50 Tamaño de lectura: 4

Número de lecturas: 100

Cubrimiento promedio: 8x

Texto: ?

EJEMPLO CON TEXTO NATURAL

<oritmos > < tenemos> <ritmos e> <emos cla> <y tenemo> < clase d> <nformati> <os clase> < en bioi> <e algori> < clase d> <lgoritmo> <itmos en> <os en bi> <informat> <s en bio> <y tenemo> <os clase> <ase de a> < algorit> <de algor> < tenemos> <en bioin> <bioinfor> <algoritm> <n bioinf> <nemos cl> <clase de> <lase de > <lgoritmo> <nformati> < de algo> <nformati> <e de alg> <oritmos > < clase d> <lase de > <s clase > < de algo> <emos cla> <tmos en > <ioinform> <nemos cl> <nformati> <oritmos > <se de al> <e de alg> <oy tenem> <mos en b> <algoritm>

Tamaño estimado de secuencia: 50

Tamaño de lectura: 8 Número de lecturas: 50

Cubrimiento promedio: 8x

Texto: ?

EJEMPLO CON ADN

```
<TAGCTAAT> <GCTAGCTA> <AGCGTACT> <ACAGCGTA> <CAGCGTCG> <ACGTACGT> <TACTTGCG> <TACCGCTA>
<TACGTACC> <GTACGTAC> <GTACTTGC> <ACGTACCG> <CTAATAAC> <GCTAGCTA> <AACAGCGT> <AGCGTACT>
<TACGTACG> <GGCAGCGT> <GGCAGCGT> <ACGTACCG> <ACAGCGTA> <AGGCAGCG> <CGTACGTA> <ATAACAGC>
<TAATAACA> <TACTTGCG> <TACCGCTA> <TAACAGCG> <AACAGCGT> <CGTACTTG> <GCTAATAA> <TACGTACG>
<CGTCGTAC> <CGTACGTA> <ACGTACCG> <AGGCAGCG> <GTACGTAC> <TCGTACGT> <GCTAGCTA>
<TACTTGCG> <AACAGCGT> <CAGCGTCG> <AGCTACTAC> <ACCGTACCTA> <AGCTAATA> <ACGTACGT> <AGCTAATA> <ACGTACGT> <AGCTAATA> <ACGTACGT> <ACGTACGT> <ACCGTACTA</pre>
```

Tamaño estimado de secuencia: 50

Tamaño de lectura: 8

Número de lecturas: 50

Cubrimiento promedio: 8x

GRAFO DE ENSAMBLAJE

- Grafo dirigido
- Los vértices son las lecturas
- · Hay un eje entre cada par de vértices si las lecturas se sobrelapan
- El número de bases en las que se sobrelapan es el peso del eje

EJERCICIO CON TEXTO

< hoy par> < hoy par> < ayer pa> < ayer pa> <ara hoy >
<er para > <y para m> <para hoy> <er para > <para mañ>
<ra hoy p> <a hoy pa> <ara hoy > <para mañ> <ra ayer >
<r para h> <hoy para> <ra mañan> < hoy par> < ayer pa>
< para ma> <para mañ> <para aye> < hoy par> < ayer pa>

PROCESO DE ENSAMBLAJE

- 1.Overlap: Construir el grafo de sobrelapes (Overlap graph)
- 2.Layout: Encontrar el o los caminos en el grafo de sobrelapes que explican las lecturas
- 3.Consensus: Construir la secuencia de consenso a partir de las lecturas alineadas

Polishing / Correction

Racon correct raw contigs generated by rapid assembly methods which do not include a consensus step. It can polish with either Illumina data or data produced by third generation of sequencing. (recursive use)

Medaka and Nanopolish create a consensus sequence of nanopore sequencing data. (mapping + consensus)

- Medaka uses neural networks where Nanopolish uses HMMs.
- Medaka uses basecalled reads, not the raw signal.
- + Medaka propose the ability to train one's own basecalling model

Pilon correct assemblies using illumina reads. (recursive use)

Autres: NeuralPolish, ntEdit

GRACIAS

