Quantum error correction and cut-elimination

Daniel Murfet, William Troiani

$$\mathcal{H}_{\pi'} \xrightarrow{\hat{\gamma}} \mathcal{H}_{\pi}^{C_{\pi}}$$

$$\downarrow^{g'} \qquad \qquad g \downarrow$$

$$\mathcal{H}_{\pi'} \xrightarrow{\hat{\gamma}} \mathcal{H}_{\pi}^{C_{\pi}}$$

"But as artificers do not work with perfect accuracy, it comes to pass that mechanics is so distinguished from geometry that what is perfectly accurate is called geometrical; what is less so, is called mechanical. However, the errors are not in the art, but in the artificers." I. Newton, *Principia*

Geometry of Interaction

Proofs as codes, reduction as renormalisation.

Qubits

Dirac notation: $|0\rangle : \mathbb{C} \longrightarrow \mathcal{H}$ denotes the linear map $1 \longmapsto (1,0)$, and $|1\rangle$ denotes the linear map $1 \longmapsto (0,1)$.

- A **qubit** is a copy of the \mathbb{C} -Hilbert space \mathbb{C}^2 .
- ▶ The **state** of a qubit \mathbb{C}^2 is a vector $|\psi\rangle \in \mathbb{C}^2$ of norm 1.
- ▶ A measurement on a state space \mathcal{H} is a finite family of linear operators $\{M_m : \mathcal{H} \longrightarrow \mathcal{H}\}_{m \in \mathcal{M}}$ satisfying the **completeness** condition.

$$\sum_{m \in \mathcal{M}} M_m^{\dagger} M_m = I \tag{1}$$

- ▶ An element $m \in \mathcal{M}$ is an **outcome** (simply a set of labels).
- Associated to every measurement and state vector $|\psi\rangle$ there is a value, the **probability of outcome** m

$$p(m) \coloneqq \langle \psi | M_m^{\dagger} M_m | \psi \rangle = \| M_m | \psi \rangle \|^2$$

▶ The **resulting state** after measurement $\{M_m\}_{m \in \mathcal{M}}$ and outcome m is:

$$\frac{M_m |\psi\rangle}{\sqrt{p(m)}} \tag{2}$$

Quantum Error Correction

$$Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, |\psi\rangle \in (\mathbb{C}^2)^{\otimes 3}$$

1. perform the following measurements:

$$\langle \psi | Z_1 Z_2 | \psi \rangle$$
 with resulting state $| \psi' \rangle$,

followed by

$$\langle \psi' | Z_2 Z_3 | \psi' \rangle$$

let (r_1, r_2) be the values given by these measurements.

- 2. Now retrieve $|\varphi\rangle$ based on the values of r_1, r_2 :
 - if $(r_1, r_2) = (1, 1)$, return $|\psi\rangle$,
 - if $(r_1, r_2) = (-1, 1)$, return $X_1 | \psi \rangle$,
 - if $(r_1, r_2) = (1, -1)$, return $X_3 | \psi \rangle$,
 - if $(r_1, r_2) = (-1, -1)$, return $X_2 | \psi \rangle$

$$Z_1 Z_2 |000\rangle = |000\rangle$$
 $Z_1 Z_2 |001\rangle = |001\rangle$
 $Z_1 Z_2 |010\rangle = -|010\rangle$ $Z_1 Z_2 |011\rangle = -|011\rangle$
 $Z_1 Z_2 |100\rangle = -|100\rangle$ $Z_1 Z_2 |101\rangle = -|101\rangle$
 $Z_1 Z_2 |110\rangle = |110\rangle$ $Z_1 Z_2 |111\rangle = |111\rangle$

Let $|\psi\rangle \coloneqq a\,|010\rangle + b\,|101\rangle$ be a state, ie, an element of $\mathbb{H}^{\otimes 3}$. We perform the measurement Z_1Z_2 followed by Z_2Z_3 :

$$\langle \psi | Z_1 Z_2 | \psi \rangle = (a \langle 010 | + b \langle 101 |) Z_1 Z_2 (a | 010 \rangle + b | 101 \rangle)$$

= $(a \langle 010 | + b \langle 101 |) (-a | 010 \rangle - b | 101 \rangle)$
= $-a^2 - b^2 = -1$

and

$$\langle \psi | Z_2 Z_3 | \psi \rangle = (a \langle 010| + b \langle 101|) Z_1 Z_2 (a | 010) + b | 101 \rangle)$$

= $(a \langle 010| + b \langle 101|) (-a | 010) - b | 101 \rangle)$
= $-a^2 - b^2 = -1$

We can infer from the fact that both of these came out as -1 that it was the second bit which was flipped, and so we can correct this. However, what is the impact of this measurement on the state? Again we calculate:

$$Z_1 Z_2(a|010\rangle + b|101\rangle) = Z_1(-a|010\rangle + b|101\rangle)$$

= $-a|010\rangle - b|101\rangle$

and

$$Z_2 Z_3(-a|010\rangle - b|101\rangle) = Z_2(-a|010\rangle + b|101\rangle)$$

= $a|010\rangle + b|101\rangle$

and so the measurements (in the end) did not impact our state.

Definition

A quantum error correcting code (QECC) is a pair $\mathcal{Q} = (\mathcal{H}, S)$ consisting of a state space \mathcal{H} along with a set of operators S on \mathcal{H} . The elements of S are the **stabilisers**. The **codespace** \mathcal{H}^S of \mathcal{Q} is the maximal subspace of \mathcal{H} invariant under all the operators in S.

In the previous example, $S = \{Z_1Z_2, Z_2Z_3\}$ and $\mathcal{H}^S = \operatorname{Span}\{|000\rangle, |111\rangle\}.$

Proof nets

Definition

There is an infinite set of **unoriented atoms** X,Y,Z,... and an **oriented atom** (or **atomic proposition**) is a pair (X,+) or (X,-) where X is an unoriented atom. The set of **pre-formulas** is defined as follows.

- Any atomic proposition is a pre-formula.
- ▶ If A, B are pre-formulas then so are $A \otimes B$, $A \circ B$.
- If A is a pre-formula then so is ¬A.

The set of **formulas** is the quotient of the set of pre-formulas by the equivalence relation \sim generated by, for arbitrary formulas A,B and unoriented atom X, the following.

$$\neg (A \otimes B) \sim \neg A \ \Im \ \neg B, \qquad \neg (A \ \Im \ B) \sim \neg A \otimes \neg B$$
$$\neg (X, +) \sim (X, -), \qquad \neg (X, -) \sim (X, +)$$

Proof structures

A **proof structure** is a directed multigraph. Edges: formulas. Nodes: $\{(ax), (cut), \otimes, \Im, c\}$. Incoming edges: **premises**, outgoing edges: **conclusions**.

- ▶ Each node labelled (ax) has exactly two conclusions $\neg A, A$ and no premise.
- ▶ Each node labelled (cut) has exactly two premises $A, \neg A$ and no conclusion.
- ▶ Each node labelled \otimes has exactly two premises A, B and one conclusion $A \otimes B$. These two premises are ordered. Smallest one: *left* premise A. Biggest one: *right* premise B.
- ▶ Each node labelled ℜ has exactly two ordered premises and one conclusion.
- Each node labelled c has exactly one premise and no conclusion. Conclusions of the proof structure.

Links

Let π be a proof structure. A **conclusion link** consists of a node labelled c along with its premise. An **axiom link** of π is a subgraph consisting of a node labelled (ax) along with its conclusions. A (cut) link consists of a node labelled (cut) along with its premises. A **tensor link** of π consists of a node labelled \otimes along with its premises and conclusion. A **par link** consists of a node labelled \Re along with its premises and conclusion.

Unoriented atoms of a *link*

Let π be a proof structure. To each link l in π we associate a set of unoriented atoms, denoted [l]. This definition depends on what type of link l is.

Conclusion link
$$l$$
:
$$\begin{matrix} \vdots \\ A \\ \downarrow \\ c \end{matrix}$$

We define [l] to be the empty set.

$$[l] \coloneqq \emptyset$$
 (3)

Axiom/Cut links

For Axiom/Cut links:

If A has set of unoriented axioms given by $\{X_1,...,X_n\}$ then so does $\neg A$, and we define:

$$[l] \coloneqq \{X_1, ..., X_n\} \tag{4}$$

Tensor/Par links

If A,B respectively have sets of unoriented atoms $\{X_1,...,X_n\},\{Y_1,...,Y_m\}$ then the set of unoriented atoms of $A\otimes B$ and of $A\otimes B$ is $\{X_1,...,X_n,Y_1,...,Y_m\}$, we define [l] to be this set:

$$[l] := \{X_1, ..., X_n, Y_1, ..., Y_m\}$$
 (5)

Total space

Let π be a proof structure with associated set of links \mathcal{L} . The exterior algebra of the complex Hilbert space freely generated by the set [l] of unoriented atoms of l. ψ_X^l is the basis element corresponding to $X \in [l]$.

$$\mathcal{H}_l \coloneqq \bigwedge \bigoplus_{X \in [l]} \mathbb{C} \psi_X^l$$

$$\mathcal{H}_{\pi} \coloneqq \bigwedge \bigoplus_{l \in \mathcal{L}} \bigoplus_{X \in [l]} \mathbb{C} \psi_X^l \stackrel{*}{\cong} \otimes_{l \in \mathcal{L}, X \in [l]} \mathbb{C} \psi_X^l$$

The set of qubits $[\pi]$ of π is the following disjoint union, where \mathcal{L} is the set of links of π .

$$[\pi] \coloneqq \coprod_{l \in \mathcal{L}} [l] \tag{6}$$

Notice that there are two copies of the atomic axioms coming from premises to cut links in $[\pi]$.

(*) A *qubit ordering* of π is a bijection between $[\pi]$ and $\{1,...,r\}$ where r is the number of elements of $[\pi]$.

Annihilation and creation operators

Given a generator ψ_i :

$$\psi_i: \bigwedge^d \mathbb{C}\underline{\psi} \longrightarrow \bigwedge^{d+1} \mathbb{C}\underline{\psi}$$

which behaves as follows on the basis vectors:

$$\psi_{i_1} \wedge \cdots \wedge \psi_{i_d} \longmapsto \psi_i \wedge \psi_{i_1} \wedge \cdots \wedge \psi_{i_d}$$

Associated to any element η of the vector space $(\bigoplus_{i=1}^n \mathbb{C}\psi_i)^*$ dual to the vector space $\bigoplus_{i=1}^n \mathbb{C}\psi_i$ there is a linear map:

$$\eta_{\lrcorner}: \bigwedge^d \mathbb{C}\underline{\psi} \longrightarrow \bigwedge^{d-1} \mathbb{C}\underline{\psi}$$

behaving as follows on the basis vectors:

$$\psi_{i_1} \wedge \dots \wedge \psi_{i_d} \longrightarrow \sum_{j=1}^d (-1)^{j-1} \eta(\psi_{i_j}) \psi_{i_1} \wedge \dots \wedge \hat{\psi}_{i_j} \wedge \dots \wedge \psi_{i_d}$$

Bit operators

Lemma

Let $B_i: \{0,1\}^n \longrightarrow \{0,1\}^n$ send $a_1 \dots a_n$ to $a_1 \dots \overline{a_i} \dots a_n$ where $\overline{0} = 1, \overline{1} = 0$. Then

$$(\psi_i + \psi_i^*)\psi^{\underline{a}} = (-1)^{a_1 + \dots + a_{i-1}} \psi^{B_i(\underline{a})}$$
$$(\psi_i - \psi_i^*)\psi^{\underline{a}} = (-1)^{a_1 + \dots + a_i} \psi^{B_i(\underline{a})}$$

we define the following linear functions on $\bigwedge \mathbb{C} \psi_{U_1} \otimes \cdots \otimes \bigwedge \mathbb{C} \psi_{U_r}$, for i=1,...,r, determined by linearity along with the following equations.

$$X_i(\psi^{\underline{a}}) = \psi^{B_i(\underline{a})} \qquad Z_i(\psi^{\underline{a}}) = \begin{cases} \psi^{\underline{a}}, & a_i = 0\\ -\psi^{\underline{a}}, & a_i = 1 \end{cases}$$

Edges

Let π be a proof structure and v,v' vertices respectively corresponding to links l,l' which are not conclusion links. Let $e:v\longrightarrow v'$ be an edge and let A be the formula labelling e. For every oriented atom (U,y_u) of A we have a corresponding generator $\psi_U\in\mathcal{H}_l$ and $\psi_U'\in\mathcal{H}_{l'}$. The edge operator associated to e and U is:

$$\Theta_U^{l \longrightarrow l'} := y_u(\psi_U' - y_u \psi_U'^*)(\psi_U + y_u \psi_U^*) : \mathcal{H}_\pi \longrightarrow \mathcal{H}_\pi$$

Ranging over all edges $e:v\longrightarrow v'\in E$ of π , where the vertices v,v' respectively correspond to links l,l' and every unoriented atom $U\in [A]$ of the formula A labelling e, we obtain the *stabilisers* of π .

$$S_{\pi} \coloneqq \{\Theta_{U}^{l \longrightarrow l'}\}_{e \in E, U \in [A]}$$

Lemma

Choose a qubit ordering $U_1 < \cdots < U_r$ of π . Choose an edge $e: v \longrightarrow v'$, where v, v' respectively correspond to links l, l' connecting non-conclusion links. Let (U, y_u) be an oriented atom of the formula A labelling e and suppose the corresponding unoriented atoms of the links are $U_i \in [l], U_j \in [l']$ as in the diagram below.

$$\stackrel{l}{\bullet} \xrightarrow{U_i} A \xrightarrow{U_j} \stackrel{l'}{\longrightarrow} \stackrel{l'}{\bullet}$$

Let Θ_U be the corresponding edge operator on \mathcal{H}_{π} .

1. If $y_u = +$ and j < i the following diagram commutes, in what follows the morphism Q.

The QECC corresponding to a proof net

The Quantum Error Correcting Code $[\![\pi]\!]$ associated to a proof structure π is the pair consisting of the Hilbert space \mathcal{H}_{π} and the stabiliser code S_{π} .

$$\llbracket \pi \rrbracket \coloneqq (\mathcal{H}_{\pi}, S_{\pi})$$

The *codespace* of π is the invariant subspace

$$\mathcal{H}_{\pi}^{S_{\pi}} = \{ |\varphi\rangle \in \mathcal{H}_{\pi} \mid \forall X \in S_{\pi}, X |\psi\rangle = |\psi\rangle \}$$

Dynamics

Theorem (The Reduction Theorem)

For each reduction $\gamma: \pi \longrightarrow \pi'$ there exists a subset $C_{\pi} \subseteq S_{\pi}$ and an isomorphism:

$$\hat{\gamma}: \mathcal{H}_{\pi'} \longrightarrow \mathcal{H}_{\pi}^{C_{\pi}} \tag{7}$$

such that for every $g \in S_{\pi} \setminus C_{\pi}$ there is a unique $g' \in S_{\pi'}$ making the following diagram commute:

$$\mathcal{H}_{\pi'} \xrightarrow{\hat{\gamma}} \mathcal{H}_{\pi}^{C_{\pi}} \\
\downarrow^{g'} \qquad \qquad g \downarrow \\
\mathcal{H}_{\pi'} \xrightarrow{\hat{\gamma}} \mathcal{H}_{\pi}^{C_{\pi}} \tag{8}$$

and this map $g \longmapsto g'$ is a bijection $S_{\pi} \setminus C_{\pi} \longrightarrow S_{\pi'}$.

We label the relevant links of π, π' according to the following diagram.

For each oriented atom (U, y) of A we define a \mathbb{Z}_2 -degree zero map for y = + by:

$$\gamma_U: \bigwedge \mathbb{C}\psi_U^l \longrightarrow \bigwedge \mathbb{C}\psi_U^l \otimes \bigwedge \mathbb{C}\psi_U^{l_{(\text{cut})}} \otimes \bigwedge \mathbb{C}\psi_U^{l_{(\text{ax})}}$$
 (10)

$$|j\rangle \longmapsto \frac{1}{\sqrt{2}}(|+++\rangle + (-1)^j |---\rangle)$$
 (11)

If y = - then γ_U has the same domain and formula, but its codomain is:

Making the dynamics of the model precise...

The remaining question:

$$\mathcal{H} \longmapsto \mathcal{H}^{C_{\pi}}$$

In fact, Quantum Error Correction can be recast in the framework of *normalisation*, which is a deep idea coming from physics, which allows us to talk about the same quantum system but at different *scales*. It is more natural to think of the process of transforming \mathcal{H}_{π} to $\mathcal{H}_{\pi}^{C_{\pi}}$ in the language of renormalisation, and indeed that is what we are currently making precise.

- G. Boole, An Investigation into the Laws of Thought (1854).
- D. Cox, J. Little, D. O'Shea, *Ideals, Varieties, and Algorithms* Fourth Edition, Springer (2015).
- J.-Y. Girard, *Linear Logic*, Theoretical Computer Science 50 (1), 1–102 (1987).
- J.-Y. Girard, *Multiplicatives*, Logic and Computer Science: New Trends and Applications. Rosenberg & Sellier. pp. 11–34 (1987).
- J.-Y. Girard, *Towards a geometry of interaction*, In J. W. Gray and A. Scedrov, editors, Categories in Computer Science and Logic, volume 92 of Contemporary Mathematics, 69–108, AMS (1989).
- J.-Y. Girard, *The Blind Spot: lectures on logic*, European Mathematical Society, (2011).

- J.-Y. Girard, Y. Lafont, and P. Taylor, *Proofs and Types*, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press (1989).
- W. A. Howard, The formulae-as-types notion of construction, in Seldin and Hindley To H.B.Curry: essays on Combinatory logic, Lambda calculus and Formalism, Academic press (1980).
- O. Laurent, An Introduction to Proof Nets, http://perso.ens-lyon.fr/olivier.laurent/pn.pdf (2013).
- D. Murfet, Logic and Linear Algebra: An Introduction, preprint https://arxiv.org/abs/1407.2650v3 (2017).
- D. Murfet and W. Troiani, *Gentzen-Mints-Zucker duality*, preprint https://arxiv.org/abs/2008.10131 (2020).
- W. Troiani, *Linear logic*, lecture notes https://williamtroiani.github.io/MathNotes/LinearLogic.pdf (2020).