Homework set 7

Recall that if X is an inner product space and $Y \subset X$ is a complete subspace then for any $x \in X$ there exists a unique $y \in Y$ such that |x-y| = d(x,Y).

Problem 1. Let X be a Hilbert space and let $Y \subset X$ be a closed subspace. Define $P: X \to X$ by $x \mapsto y$, where $y \in Y$ is the unique element such that |x - y| = d(x, Y).

- 1. Show that *P* is linear.
- 2. Show that *P* is bounded.
- 3. Show that $P^2 = P$.
- 4. Show that $\ker P = Y^{\perp}$ and $\operatorname{im} P = Y$.
- 5. Conclude that $X = Y \oplus Y^{\perp}$.

Solution. 1. We know that if y = P(x) then x - y is orthogonal to Y. The converse is also true: If $y \in Y$ is such that $x - y \perp Y$ then y = P(x). This holds because for such a y and any $z \in Y$ we have

$$|x - z| = |(x - y) + (y - z)| = |x - y| + |y - z| \ge |x - y|.$$

Suppose now that $x_1, x_2 \in X$ and let $y_i = P(x_i)$. For $\lambda, \mu \in \mathbb{C}$ we then have

$$\langle \lambda x_1 + \mu x_2 - (\lambda y_1 + \mu y_2), \bar{y} \rangle = \lambda \langle x_1 - y_1, \bar{y} \rangle + \mu \langle x_2 - y_2, \bar{y} \rangle = 0$$

for any $y \in Y$. Therefore $\lambda P(x_1) + \mu P(x_2) = P(\lambda x_1 + \mu x_2)$.

2. Note that $d(x,Y) \leq |x|$ for any $x \in X$. Then

$$|P(x)| = |P(x) - x + x| \le |P(x) - x| + |x| \le 2|x|.$$

- 3. It is enough to show that P(y) = y for any $y \in Y$. But d(y,Y) = 0 for $y \in Y$, so P(y) = y.
- 4. If $y \in Y$ then P(y) = y, so im P = y. Let $x \in Y^{\perp}$. Then $0 \in Y$ is such that $x 0 = x \perp Y$, so P(x) = 0. Now let $x \in \ker P$. Then x P(x) = x is orthogonal to Y, so $x \in Y^{\perp}$.
- 5. For any $P:X\to X$ with $P^2=P$ we have $X=\ker P\oplus \operatorname{im} P=Y\oplus Y^\perp.$

Problem 2. Let *X* be a Hilbert space and $M \subset X$ a subset.

- 1. Show that M^{\perp} is a closed subspace of X.
- 2. Show that $M \subset (M^{\perp})^{\perp}$.
- 3. Show that $M = (M^{\perp})^{\perp}$ if M is a closed subspace.

Solution. 1. M^{\perp} is a subspace by linearity of the inner product. It is closed because $M^{\perp} = \bigcap_{u \in M} \ker(x \mapsto \langle x, \bar{y} \rangle)$.

- 2. Let $x \in M$ and $y \in M^{\perp}$. Then $\langle y, \bar{x} \rangle = \overline{\langle x, \bar{y} \rangle} = 0$ so $x \in (M^{\perp})^{\perp}$.
- 3. By Problem 1 we have $X=M\oplus M^{\perp}=M^{\perp}\oplus (M^{\perp})^{\perp}$ and $M\subset (M^{\perp})^{\perp}$. We get exact sequences

where the second and third downward arrows are isomorphisms, so the first one is as well by general theory. $\hfill\Box$

Problem 3. Let X be a Hilbert space and $Y \subset X$ a subspace (not necessarily closed). Show that Y is dense in X if and only if $Y^{\perp} = \{0\}$.

Solution. Suppose Y is dense. If $x \in Y^{\perp}$ then there are y_n in Y such that $y_n \to x$. But then $|x|^2 = 0$ by continuity. Now suppose that $Y^{\perp} = \{0\}$. It's clear that if $Y \subset Z$ then $Z^{\perp} \subset Y^{\perp}$, so

Now suppose that $Y^{\perp} = \{0\}$. It's clear that if $Y \subset Z$ then $Z^{\perp} \subset Y^{\perp}$, so $\overline{Y}^{\perp} \subset Y^{\perp} = \{0\}$. As \overline{Y} is a closed subspace we then get

$$\overline{Y} = (\overline{Y}^{\perp})^{\perp} = \{0\}^{\perp} = X.$$

Problem 4. Let X be an inner product space and fix $y \in X$. Show that $f(x) = \langle x, \overline{y} \rangle$ is a bounded linear functional on X and that |f| = |y|.

Solution. This is a linear functional because the inner product is linear in its first variable, and Cauchy–Schwarz gives

$$|f(x)| = |\langle x, \bar{y} \rangle| \le |x||y|,$$

so f is bounded and $|f| \le |y|$. By taking a multiple of y we get equality, so |f| = |y|. \Box

Problem 5. Let X be a Hilbert space and let $f \in X^{\vee}$ be a bounded linear functional.

- 1. Show that $X = \ker f \oplus \ker f^{\perp}$.
- 2. Show that dim ker $f^{\perp} = 1$.
- 3. Prove the Riesz representation theorem: There exists a unique $y \in X$ such that $f(x) = \langle x, \overline{y} \rangle$ for all x.

Solution. 1. As f is bounded then $\ker f$ is a closed subspace, so by Problem 1 we have $X = \ker f \oplus \ker f^{\perp}$.

2. We do have to assume that $f \neq 0$. Let $y,z \in \ker f^{\perp}$ and suppose that both are nonzero. By scaling we may assume that f(y) = f(z) = 1. Then $y-z \in \ker f$, so $0 = \langle y, \overline{y-z} \rangle = |y|^2 - \langle y, \overline{z} \rangle$ and $\langle y, \overline{z} \rangle = |y|^2$. Similarly we find that $\langle z, \overline{y} \rangle = |z|^2$. Multiplying together we get

$$|\langle y, \bar{z} \rangle|^2 = |y|^2 |z|^2,$$

which only holds when $z=\lambda y$ by Cauchy–Schwarz. Therefore (y) is a basis of $\ker f^{\perp}.$

3. We first show that there exists a nonzero $y \in \ker f^{\perp}$ such that $f(y) = |y|^2$. Pick any nonzero $y \in \ker f^{\perp}$. Multiplying it by $e^{i\theta}$ we may assume that f(y) > 0. Then multiplying by a real t > 0 we want to solve $tf(y) = t^2|y|^2$ for t, which we can.

Now every $x \in X$ can be written as $x = z + \lambda y$, where $z \in \ker f$. Then

$$f(x) = \lambda f(y) = \lambda |y|^2 = \langle x, \bar{y} \rangle.$$

If z is another such element, then we get $\langle x, \overline{y} \rangle = f(x) = \langle x, \overline{z} \rangle$ for all x, so $\langle x, \overline{y-z} \rangle = 0$ for all x. Then $|y-z|^2 = 0$, so z = y.