STSCI 4780 Lab09 Bayesian calibration and frequentist performance of Bayesian procedures

Tom Loredo, CCAPS & DSS, Cornell University

© 2018-03-30

Bayesian Inference and the Joint Distribution

Recall that Bayes's theorem comes from the *joint distribution for data and hypotheses* (parameters/models):

$$p(\theta, D|M) = p(\theta|M) p(D|\theta, M)$$

= $p(D|M) p(\theta|D, M)$

Bayesian inference takes $D=D_{\rm obs}$ and solves RHS for the posterior:

$$ho
ho(heta|D_{ ext{obs}},M) = rac{p(heta|M)p(D_{ ext{obs}}| heta,M)}{p(D_{ ext{obs}}|M)}$$

MCMC is nontrivial technology for building RNGs to sample θ values from the *intractable posterior*, $p(\theta|D_{\text{obs}}, M)$

Posterior sampling is hard, but sampling from the other distributions is often easy:

- Often easy to draw θ^* from $\pi(\theta)$
- Typically easy to draw D_{sim} from $p(D|\theta, M)$
- Thus we can sample the joint for (θ, D) by sequencing:

$$egin{aligned} heta^* &\sim \pi(heta) \ D_{ ext{sim}} &\sim p(D| heta^*,M) \end{aligned}$$

• $\{D_{sim}\}$ from above are samples from prior predictive,

$$p(D|M) = \int d\theta \ \pi(\theta) p(D|\theta, M)$$

Now note that $\{D_{\text{sim}}, \theta\}$ with $\theta \sim p(\theta|D_{\text{sim}}, M)$ (via MCMC) are also samples from the joint distribution

Joint distribution methods check the consistency of these two joint samplers to validate a posterior sampler implementation

Example: "Calibration" of credible regions

How often may we expect an HPD region with probability P to include the true value if we analyze many datasets? I.e., what's the frequentist coverage of an interval rule $\Delta(D)$ defined by calculating the Bayesian HPD region each time?

Suppose we generate datasets by picking a parameter value from $\pi(\theta)$ and simulating data from $p(D|\theta)$

The fraction of time θ will be in the HPD region is:

$$Q = \int d\theta \ \pi(\theta) \int dD \ p(D|\theta) \ \llbracket \theta \in \Delta(D) \rrbracket$$

Note
$$\pi(\theta)p(D|\theta) = p(\theta,D) = p(D)p(\theta|D)$$
, so

$$Q = \int dD \int d\theta \ p(\theta|D) \ p(D) \ \llbracket \theta \in \Delta(D) \rrbracket$$

$$Q = \int dD \int d\theta \ p(\theta|D) \ p(D) \ [\theta \in \Delta(D)]$$

$$= \int dD \ p(D) \int d\theta \ p(\theta|D) \ [\theta \in \Delta(D)]$$

$$= \int dD \ p(D) \int_{\Delta(D)} d\theta \ p(\theta|D)$$

$$= \int dD \ p(D)P$$

$$= P$$

The HPD region includes the true parameters 100P% of the time

This is exactly true for any problem, even for small datasets

Keep in mind it involves drawing θ from the prior; credible regions are "calibrated with respect to the prior"

A Tangent: Average Coverage

Recall the original Q integral:

$$Q = \int d\theta \ \pi(\theta) \int dD \ p(D|\theta) \ \llbracket \theta \in \Delta(D) \rrbracket$$
$$= \int d\theta \ \pi(\theta) C(\theta)$$

where $C(\theta)$ is the (frequentist) coverage of the HPD region when the data are generated using θ

This indicates Bayesian regions have accurate average coverage

The prior can be interpreted as quantifying how much we care about coverage in different parts of the parameter space

Basic Bayesian Calibration Diagnostics

Encapsulate your sampler: Create an MCMC posterior sampling algorithm for model M that takes data D as input and produces posterior samples $\{\theta_i\}$, and a $100\,P\%$ credible region $\Delta_P(D)$

Initialize counter Q = 0Repeat $N \gg 1$ times:

- 1. Sample a "true" parameter value θ^* from $\pi(\theta)$
- 2. Sample a dataset D_{sim} from $p(D|\theta^*)$
- 3. Use the encapsulated posterior sampler to get $\Delta_P(D_{\text{sim}})$ from $p(\theta|D_{\text{sim}},M)$
- 4. If $\theta^* \in \Delta_P(D)$, increment Q

Check that $Q/N \approx P$

Easily extend the idea to check all credible region sizes:

Initialize a list that will store N probabilities, P Repeat $N \gg 1$ times:

- 1. Sample a "true" parameter value θ^* from $\pi(\theta)$
- 2. Sample a dataset D_{sim} from $p(D|\theta^*)$
- 3. Use the encapsulated posterior sampler to get $\{\theta_i\}$ from $p(\theta|D_{\text{sim}},M)$
- 4. Find P so that θ^* is on the boundary of $\Delta_P(D)$; append to list $[P = \text{fraction of } \{\theta_i\} \text{ with } q(\theta_i) > q(\theta^*)]$

Check that the Ps follow a uniform distribution on [0,1]

Other Joint Distribution Tests

- Geweke 2004: Calculate means of scalar functions of (θ, D) two ways; compare with z statistics
- Cook, Gelman, Rubin 2006: Posterior quantile test, expect $p[g(\theta) > g(\theta^*)] \sim \text{Uniform (HPD test is special case)}$

What Joint Distribution Tests Accomplish

Suppose the prior and sampling distribution samplers are well-validated

- Convergence verification: If your posterior sampler is bug-free but was not run long enough → unlikely that inferences will be calibrated
- Bug detection: An incorrect posterior sampler implementation will not converge to the correct posterior distribution → unlikely that inferences will be calibrated, even if the chain converges

Cost: Prior and data sampling is often cheap, but posterior sampling is often expensive, and joint distribution tests require you run your MCMC code *hundreds* of times

Compromise: If MCMC cost grows with dataset size, running the test with small datasets provides a good bug test, and *some* insight on convergence; could also test a simplified model

Frequentist Performance of Bayesian Procedures

Many results known for parametric Bayes performance:

- Estimates are consistent if the prior doesn't exclude the true value.
- Credible regions found with flat priors are typically confidence regions to $O(n^{-1/2})$ (Bernstein-von Mises Theorem); "reference" priors can improve their performance to $O(n^{-1})$.
- Marginal distributions have better frequentist performance than conventional methods like profile likelihood. (Bartlett correction, ancillaries are competitive but hard.)
- Bayesian model comparison is asymptotically consistent (not true of significance/NP tests, AIC).
- Misspecification: Bayes converges to the model with sampling dist'n closest to truth via Kullback-Leibler

- Frequentist behavior in nonparametric & semiparametric contexts is more complex and a topic of ongoing research; you must be more careful with priors here
- Wald's complete class theorem: *Optimal* frequentist methods are *Bayes rules* (equivalent to Bayes for some prior)

• . . .

Parametric Bayesian methods are typically good frequentist methods.

Some references:

- "The Interplay of Bayesian and Frequentist Analysis" (Bayarri & Berger 2004) Statistical Science, 19, 58–80
- "Calibrated Bayes: A Bayes/Frequentist Roadmap" (Little 2006; 2005 ASA President's Invited Address) The American Statistician, 60, 213–223