B1

Andrew Lee

March 7, 2017

If
$$f(n) = O(g(n))$$
, and $g(n) = O(f(n))$ then $f(n) = \theta(g(n))$

If f(n) = O(g(n)),, then by the definition of Big-O, $f(n) \leq c * g(n) \forall c > 0$

Furthermore, if g(n) = O(f(n)), then by the definition of Big-O, $g(n) \le c * f(n) \forall c > 0$

Then \exists constants c_1, c_2 , such that $c_1 * f(n) = c_2 * g(n)$

Hence,
$$f(n) = \frac{c_2 * g(n)}{c_1}$$
, and $g(n) = \frac{c_1 * f(n)}{c_2}$

Hence, $f(n) \ge c_3 * g(n)$ and $g(n) \ge c_4 * f(n)$ for some constants c_3 and c_4 Therefore, by the definition of Big- Ω , $f(n) = \Omega(g(n))$ and $g(n) = \Omega(f(n))$.

$$Because f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n)), f(n) = \theta(g(n))$ and because $g(n) = O(f(n))$ and $g(n) = \Omega(f(n)), g(n) = \theta(f(n))$.