Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística Matemática Discreta 2 Curso 2012

4 de Julio de 2012.

SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA 2

	Г] [
Nombre		C.I		No. de prueba

Duración: 4 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios y el procedimiento para llegar a la respuesta. Presentar únicamente la respuesta final carece de valor.

Ejercicio 1. (18 puntos) Sea
$$H = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a = \pm 1, b \in \mathbb{Z} \right\}.$$

- A. Probar que H es un subgrupo abeliano de $GL_2(\mathbb{R})$ (las matrices 2×2 invertibles con entradas reales). Aclaración: no es necesario probar que $GL_2(\mathbb{R})$ es un grupo.
- B. Hallar el orden de $g=\left(\begin{array}{cc} a & b \\ 0 & a \end{array}\right)\in H,$ discutiendo según a y b.
- C. Sean (G_1,\cdot) y $(G_2,*)$ dos grupos con neutros e_1 y e_2 respectivamente. Probar que un homomorfismo $\varphi:G_1\to G_2$ es inyectivo si y sólo si ker $(\varphi)=\{e_1\}$.
- D. Sea $\varphi: H \to Z_2 \times \mathbb{Z}$ tal que

$$\varphi\left(\left(\begin{array}{cc}a&b\\0&a\end{array}\right)\right)=\begin{cases}(\overline{0},\,b)&\text{si }a=1\\(\overline{1},-b)&\text{si }a=-1\end{cases}.$$

Probar que φ es un homomorfismo. (La operación en $\mathbb{Z}_2 \times \mathbb{Z}$ es coordenada a coordenada). ¿Es φ un isomorfismo?

Ejercicio 2. (10 puntos)

- A. Enunciar el Teorema de órdenes para homomorfismos de grupos.
- B. Sea G un grupo con 35 elementos. Dar todos los homomorfismos posibles $\varphi: \mathbb{Z}_{33} \to G$.
- C. Sea G un grupo tal que |G|=34. Probar que si un homomorfismo $\varphi:G\to\mathbb{Z}_{17}$ no es trivial, entonces su núcleo (ker φ) tiene dos elementos.

Ejercicio 3. (15 puntos) Sea (G, *) un grupo y $x, y \in G$ tales que x * y = y * x.

Para cada una de las siguientes afirmaciones, decidir si es verdadera o falsa y justificar la respuesta. En caso de ser verdadera dar una prueba, y en caso de ser falsa dar un contraejemplo (decidir si la afirmación es verdadera o falsa sin ninguna justificación carece de valor).

- A. Si o(x) y o(y) son finites, entonces o(x * y) es finites.
- B. Si o(x) y o(y) son finites, entonces o(x * y) = mcm(o(x), o(y)).
- C. Si mcd(o(x), o(y)) = 1 entonces o(x * y) = o(x)o(y).

Ejercicio 4. (17 puntos)

- A. Probar que en U(71) el orden de $\overline{2}$ es 35.
- B. Hallar una raíz primitiva módulo 71.
- C. Alicia y Bruno utilizan el método de Diffie-Helmann de intercambio de clave, utilizando el primo p=71 y una raíz primitiva módulo 71. Alicia elige m=5 y Bruno elige n=10. Si Alicia le manda a Bruno x=3, ¿cuál es la clave común?
- D. ¿Es posible que con los datos de la parte C. Alicia y Bruno hayan elegido la raíz primitiva obtenida en la parte B?