## This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.



M.A.LLALLMAGLALQPGTALLCYSCKAQVSNEDCLQNENCTQLGEQCWTARIRAVGLLTV I SKGCSLNCVDDS
ODYYVGKKNITCCDTDLCNASGAHALQPAAAILALLPAL

FIGURE 1B

|     | 2                                                                                                                        | ATC:                                                                                                                       | A D C B | CNC   | . Tree | ماساس   | ~!~!~ #   | maa      |       |      |            |      |                 |      |          |             |      |      |                       |      |           |
|-----|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|-------|--------|---------|-----------|----------|-------|------|------------|------|-----------------|------|----------|-------------|------|------|-----------------------|------|-----------|
| :   | 1                                                                                                                        | ATGAAGACAGTTTTTTTTATCCTGCTGGCCACCTACTTAGCCCTGCATCCAGGTGCTGCT  TACTTCTGTCAAAAAAAATAGGACGACCGGTGGATGAATCGGGACGTAGGTCCACGACGA |         |       |        |         |           |          |       |      |            |      |                 |      |          |             | T    |      |                       |      |           |
| ,,  | 1                                                                                                                        | 'AC1                                                                                                                       | TCI     | GTC   | 'AAA   | AAA     | LAAT      | 'AGG     | ACC   | ACC  | GG1        | (GG) | \TG2            | ATC  | GGC      | ACC         | TAC  | GTC  | CAC                   | GACG | + 60<br>A |
|     | М                                                                                                                        |                                                                                                                            |         |       |        |         |           |          |       |      |            | . Y  |                 |      |          |             |      |      |                       |      |           |
| ,   | 1 -                                                                                                                      | TGC                                                                                                                        | AGT     | GCT   | ATT    | CAT     | GCA       | CAG      | CAC   | AGA  | TGA        | ACA  | ACA             | GAG  | ACT      | GTC         | TGA  | A TG | <b>ጥ</b> አ <i>C</i> : | AGAA | _         |
| 1   | G                                                                                                                        | ACG                                                                                                                        | TCA     | CGA   | TAA    | GTA     | CGT       | +<br>GTC | GTG   | TCT  | -+-<br>ACT | TGT  | <br>TCT         | +    | <br>TC b |             |      | +    |                       | CTTC | 120       |
|     | Ľ                                                                                                                        | 0                                                                                                                          | С       | Y     | s      | С       | т         | A        |       |      |            |      |                 |      |          | CAG         | ACT  | TAC  | ATG1                  | CTTC | 3         |
|     |                                                                                                                          | ~~.                                                                                                                        | _       | -     | _      |         | -         |          | 4     |      |            |      |                 | -    | С        | _           | •    | V    | Q                     | N,   | 1         |
| 12  | TGCAGCCTGGACCAGCACAGTTGCTTTACATCGCGCATCCGGGCCATTGGACTCGTGAC  ACGTCGGACCTGGTCGTGTCAACGAAATGTAGCGCGTAGGCCCGGTAACCTGAGCACTG |                                                                                                                            |         |       |        |         |           |          |       |      |            |      |                 |      |          | GACA        |      |      |                       |      |           |
|     | A                                                                                                                        | CGT                                                                                                                        | CGG     | ACC:  | rgg:   | rcg:    | rgto      | CAAC     | GAJ   | AAT  | GTA        | GCG  | CGT             | AGG( | CC       | GGT.        | AAC  | TGA  | <br>NGCA              | CTGT | 180       |
|     | · c                                                                                                                      | s                                                                                                                          | L       | D     | Q      | Н       | s         | С        | F     | T    | s          | R    | I               | R    | A        |             | G    | t.   | ν                     | r    | _         |
|     | `G:                                                                                                                      | rta:                                                                                                                       | CAC     | TA    | \GG(   | СТС     | CAC       | CTO      | CAC   | AGTO | GTG/       | AGG  | ATG             | ኒርፕር | CC       | 1 C N I     | · —  | -    |                       | GGGC | -         |
| 181 | C C                                                                                                                      | AAT/                                                                                                                       | AGTO    | ATI   | CCC    | GAC     | +<br>'GTC | · · · ·  |       |      | - +        |      |                 | -+-  |          |             | 4    | CTA  | TTT                   | GGGC | 240       |
|     | v                                                                                                                        |                                                                                                                            |         |       |        |         |           |          | ,101  | CAL  | -AC.       | rcc  | raci            | rgac | CC:      | CTI         | GA1  | GAT  | 'AAA                  | cccc |           |
|     | ·                                                                                                                        | I                                                                                                                          | S       | K     | G      | С       | S         | S.       | Q     | С    | E          | D    | D               | s    | Ε        | N           | •    | Y    | L                     | G    | -         |
| 241 | A.                                                                                                                       | \GAA                                                                                                                       | \GAA    | CAT   | CAC    | GTG     | CTG       | CTA      | CTC   | TGA  | ACC1       | rgtc | CAA             | TGI  | CA       | CGC         | GGC  | CCA  | CAC                   | CCTG |           |
|     | TI                                                                                                                       | CTI                                                                                                                        | CTI     | GTA   | GTG    | CAC     | GAC       | GAT      | GAG   | ACT  | GGA        | CAC  | GTI             | 'ACA | GTI      | GCC         | +    | CCT  | <br>GTC/              | GGAC | 300       |
|     | K                                                                                                                        | κ                                                                                                                          | N       | I     | т      | C.      | Ç         | Y        | s     | D    | L          | ·    | N               | v    | N        | G           |      |      |                       |      |           |
|     | AA                                                                                                                       | GCC                                                                                                                        | ACC     | CAC   | ראכ    | CCT     | GGG       | ССТ      | C C T | ~~   | -          | _    | -               |      |          | -           | Α    | Н    | T                     | L    | •         |
| 301 |                                                                                                                          | AAGCCACCCACCCTGGGGCTGCTGACCGTGCTCTGCAGCCTGTTGCTGTGGGGCTCC TTCGGTGGGTGGTGGGACCCCGACGACTGCACGACGACGACACCCCGAGG               |         |       |        |         |           |          |       |      |            |      |                 |      |          |             | 3.50 |      |                       |      |           |
|     |                                                                                                                          |                                                                                                                            |         | G I G | GTG    | GGA(    | CCC       | CGA      | CGA   | CTG  | GCA        | CGA  | GAC             | GTC  | GGA      | CAA         | CGA  | CAC  | ccc                   | AGG  | 360       |
|     | ĸ                                                                                                                        | ₽                                                                                                                          | Ъ       |       | T      | Ĺ       | G         | L        | L     | T    | V          | L    | C .             | s    | L        | L           | L    | W    | G                     | s    | -         |
| 361 | AG                                                                                                                       | CCG                                                                                                                        | TCT     | STA   | GGC:   | CTC     | GGG#      | \GA(     | GCC:  | TAC  | CAT        | AGC  | CCG             | ATTO | GTG.     | <b>A</b> AG | GGA: | rgac | СТС                   | CAC  |           |
|     | TC                                                                                                                       | GGC.                                                                                                                       | AGA     | CATO  | CCG    | \GA(    | 2001      | CTO      | GG    | ATG  | +<br>GTA'  | TCG  | <br>36 <i>C</i> | - +  | ·        | ·           |      |      |                       |      | 420       |
|     | s                                                                                                                        | R                                                                                                                          | L       |       |        |         |           |          |       |      |            |      |                 |      | -^-      | 1100        |      | ACTC | GAC                   | GTG  |           |
|     | TC                                                                                                                       | ~ h C (                                                                                                                    |         |       |        | <b></b> | - 2       |          |       |      |            |      |                 |      |          |             |      |      |                       |      |           |
| 421 | :                                                                                                                        | • • • •                                                                                                                    |         | +     |        |         | ÀGG       | 41       | 1.    |      |            |      |                 |      |          |             |      |      |                       |      | ł         |
|     | AGC                                                                                                                      | TGC                                                                                                                        | GG1     | 'GGC  | GGT    | GTG.    | TCC       | •        |       |      |            |      |                 |      |          |             | ٠    |      |                       |      |           |

hSCA-2 hPSCA mPSCA

\* B. There are hill in the 10.0 Simlare Andi. Medbilling Jacoson Hall ligenic (mary) Alpho Holices And the Contract GOR Alpha Helica. con Acto Sheets Glummill. Siles ıω sonal rejiene

> = 9/4cosylation site

, GPI signa

FIGURE 5

2°



prostate (Buth)
prostate (Buth)
prostate (Buth)
Bladder (Hurrier)
Bladder (dek)
Bladder (Ade)
Kidney (NLIOY)
Kidney (NLIOY)
Kidney (WUZI)
Tostio
Sm. Intest.

LAPCI

The state of the s



Control of the State of the Sta



Anomal Rose



FIG. 9B



PERIPHERAL LEUKOCYTES

COLON

SMALL INTESTINE

OVARY

TESTIS

PROSTATE

THYMUS

SPLEEN













COLO 205

A431

HELA

DU145

PC3

LNCAP

LAPC4 C.L.

LAPC3 AI

LAPC9

LAPC4 IT

LAPC4 AD

BPH

KCL22







FIG. 10-3

## FIG. 11A





FIG. 11B



FIG. 11C



O GLYCOSIDASE

N GLYCOSIDASE F

CONTROL



FIGURE 12C

# PSCA Maps to Chromosome 8q24.2



Fluorescent in Situ Hybridization Analysis of PSCA







FIGURE 14

| C (85-123) 0.000 0.021 0.005 0.370 0.014 0.003                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M (46-109) 0.628 0.032 0.016 0.000 0.000                                                                                                                         |
| N (2-50)<br>0.007<br>0.863<br>1.965<br>0.024<br>1.315<br>0.733                                                                                                   |
| EL (18-98) 2.039 1.318 2.893 0.328 2.039 1.366 2.805                                                                                                             |
| Isotype         IgG1       k         IgG2a       k         IgG2a       k         IgG2a       k         IgG2a       k         IgG2a       k         IgG2a       k |
| mAb<br>1G8<br>2H9<br>3C5<br>3E6<br>4A10<br>2A2<br>3G3                                                                                                            |

3C5 2H9 U ∑ Z **2A2** 168



FIGURE 15

# Prostate Stem Cell Antigen (PSCA) is a GPI-anchored Protein



# FISH Analysis of PSCA and c-myc in Prostate Cancer

Gain Chromosome 8 Amplification

#34 c-myc #75 c-myc

#34 PSCA #75 PSCA

R. Jenkins



FIGURE 18



FIGURE 19



FIGURE 20

## **PSCA Immunostaining of Primary Tumors**



•

FIGURE 21



FIGURE 22



FIGURE 23



FIGURE 24



This 1950

FIGURE 25



FIGURE 26





FIGURE 27

## PSCA Immunostaining of Bony Metastases



Patient 5: H and E and mAb 1G8

Patient 4: H and E and mAb 3E6



FIGURE 29



FIGURE 30



FIGURE 31



FIGURE 32



FIGURE 33



FIGURE 34

### Immunofluorescent Staining of LNCaP-PSCA Cells



FIGURE 35



FIGURE 36



Immunoprecipitation: 293T-PSCA

FIGURE 37

### Immunohistochemical Staining of Normal Prostate

Normal: Isotype Control



Normal: PSCA mAb 3E6



Normal: PSCA mAb 1G8 Atrophy: PSCA mAb 2H9









Bladder: 1G8



Colon: 1G8



Kidney: 3E6



Placenta: 3E6

B.



## Targeting of Mouse PSCA Gene



\* ex1, 2, and 3 are the exons of PSCA gene.

\* Black boxes of ex2 and ex3 encode PSCA mature protein sequences.

\* ES genomic DNA's were digested with EcoRI, followed by Southern hybridization using 3' probe

B. Genomic Southern Analysis of ES Cells
+/+ +/10 kb→

FIGURE 40

4 Kb ≯

# Transgenic Mouse Models of Prostate Cancer

promoter prostate specific











Mouse bearing

of transgenes into male pronucleus Microinjection

Offspring expressing oncogene in prostate Embryo

prostate cancer

Transgene

SV40 large+small<sub>1</sub> \\ Maroulakou et al. C3(1) (-3 kb)/

1994 PNAS

prostate (secretory cells)

Target tissues

urethral, mammary and

sweat gland

prostate (secretory cells)

SV40 large+small, I Greenberg et al.

1995 PNAS

Probasin (-426 bp)/

Invasive carcicinoma 28 wks High-grade PIN 8-12 wks Low-grade PIN 8-12 wks Characteristics

No metastases

Invasive carcicinoma 12 wks Metastases in lymph node, High-grade PIN 8-12 wks Low-grade PIN 5-8 wks lung, liver and bone

Low-grade PIN 8-12 wks

small intestine

(neuroendocrine cells)

prostate

Cryptdin2 (-6.5 kb)/

SV40 large+small Garabedian et al

1998.PNAS

Invasive carcicinoma 16 wks Metastases in lymph node, High-grade PIN 8-12 wks lung, liver and bone

# Reporter Gene Constructs for Transfection Assay



Unromoter Luciferase pGL3-CMV

Luciferase pGL3-PSCA (1 kb)

Luciferase pGL3-basic

CMV promoter



FIGURE 43

### Identification of Prostate-Specific Elements Within PSCA Promoter Sequences



FIGURE 44

## Update of Transgenic Mouse Projects

(DNA positive) Number ot Founders Genomic Structure of PSCA exon 1 exon 2 exon 3 3'hGH PSCA promoter (6kb) CERE intron PSCA promoter (6kb) CERP DE ATG PSCA promoter (6kb) PSCA promoter (9kb) PSCA promoter (9kb) PSCA promoter (9kb) PSCA promoter PSCA(9 kb)-GFP-3'hGH PSCA(6 kb)-GFP-3'hGH PSCA(9 kb)-SV40TAG PSCA(6 kb)-SV40TAG PSCA(9 kb)-GFP PSCA(6 kb)-GFP

FIGURE 45

Negative tissues Seminal Vesicle Small intestine Stomach Urethra Colon **Testis** 

Kidney Liver

Lung Brain

Heart

Skeletal muscle Ovary

Prostate

(A25-106-2)

(A25-104)Bladder

(A25-106-2)Skin

Whole-mount green fluorescence image Non-transgenic Transgenic





THEURE 47





### O+ .

|                               | •                                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| nm)                           | C (85-123)<br>0.003<br>0.010<br>0.001<br>0.002<br>2.118<br>0.000                                                             |
| oltope recognized (OD 450 nm) | M (46-109) 1.273 0.023 0.002 0.006 1.133 0.004                                                                               |
| Epitope recog                 | N (2-50)<br>0.004<br><b>0.631</b><br>1.026<br>1.709<br>0.036<br>1.731                                                        |
|                               | F (18-98)<br>1.485<br>0.973<br>1.069<br>1.609<br>2.805<br>1.053                                                              |
| •                             |                                                                                                                              |
|                               | 8l<br>ㅈㅈㅈㅈㅈㅈㅈ                                                                                                                |
|                               | Sotype   1961   K   1962a   K   1962a   K   1962a   K   1963   K   1962a   K   1963a   K   1962a   K   1962a   K   1962a   K |
|                               | mab<br>168<br>2A2<br>2H9<br>3C5<br>3E6<br>3G3<br>4A10                                                                        |



Ø



Engineered mammalian secreted form



B



Anti-IgG2a HRP

Anti-PSCA mAbs 3C5+4A10+2A2 (IgG2a)

PSCA

Affinity purified anti-peptide polyclonal + mAb 1G8 (IgG1)



B

| <u>Sample</u>    | OD+range (n=2) | <u>ng/ml</u> |
|------------------|----------------|--------------|
| vector           | 0.005+0.001    | ND           |
| vector+hu serum  | 0.004+0.001    | ND'          |
| secPSCA          | 2.695+0.031    | 32.92        |
| secPSCA+hu serum | 2.187+0.029    | 26.55        |

FIG. 52



FIG. 53





















### FIG. 58

| TGC  | CTTC  | TTC:         | CTC      | SATO     | 3GC!     | AGT    | GT.       | rat.     | AGG!     | AGT          | CAA        | rtc <i>i</i> | AGAC    | GT: | rcac     | CTC      | CAC         | CAG        | TCT       | 60  |
|------|-------|--------------|----------|----------|----------|--------|-----------|----------|----------|--------------|------------|--------------|---------|-----|----------|----------|-------------|------------|-----------|-----|
| С    | F     | F.           | L        | М        | Α        | V      | V         | I        | G        | Ý            | N          | S            | E       | V   | Q        | L        | Q           | Q          | S         | 20  |
| GGG  | יכרא  | GλΆ          | ر برارا  | ירישיר   | בא כיכ   | יחיריז |           | 7000     | ישר      | Vama         | 1226       | amm c        |         |     |          |          |             |            |           |     |
| 000  | NGCA  | .GAA         | ·C 1 1   | . 610    | JOA.     | 41 CF  | )<br>2001 | 3GC(     | . I C.   | iGT(         | AAC        | - T.I.C      | TCC     | TGC |          |          |             | 'GGC       | TTC       | 120 |
| . હ  | A     | E            | ι        | . V      | R        | S      | نی        | A        | S        | V            | K          | . L          | S       | С   | T        | Α        | S           | <u>G</u> _ | <u>F</u>  | 40  |
|      |       | 7.7.7        | - ÇE     | R1 ·     |          |        |           |          |          |              |            |              |         | •   |          |          |             |            |           |     |
| AAC  | AII   | AAA          | GAC      | TAC      | TAT      | ATA    | CAC       | TGG      | GTC      | AA'I         |            |              |         |     |          |          |             | GAG        | TGG       | 180 |
|      |       | _K_          | D.       | <u>Y</u> | Y        |        | _н        | .W       | V        | N            | Q          | R            | P       | D   | Q        | G        | L           | E          | W         | 60  |
|      |       |              |          |          |          |        |           |          |          | CDR          | 2          | ,            |         |     |          |          |             |            |           |     |
| ΑΤΤ  | GGA   | <b>†</b> GG  | חית ע    | יב איז   | יככיז    | CAC    | ית גי     | יככיז    |          | תי<br>מים מי | . Z —      | mma          |         |     |          |          |             |            | AAG       |     |
| т    | C     | w            | AII<br>T | GAI      | ם.       | GAC    | NT<br>NT  | .661     | GAC      | AC I         | GAA        | .1111        | GTC     | CCC | AAG      | TTC      | CAG         | GGC.       |           | 240 |
| Ť.   | G     | и            |          |          | <u>F</u> |        |           | G        | <u> </u> |              | <u> </u>   | <u>F</u>     |         | Р_  | _K_      | <u> </u> | _0_         | _G         | K         | 80  |
|      |       |              |          |          |          |        |           |          | ,        |              |            |              |         |     |          |          |             |            |           |     |
| GCC. | ACT.  | ATG.         | ACT      | GCA      | GAC      | 'ATT   | TTC       | TCC      | AAC      | ACA          | GCC        | TAC          | 'CTG    | CAC | ירידר    | י<br>אמר | <b>a</b> cc | ርጥር።       | ACA       | 300 |
| Α    | Т     | М            | T        | Α        | D        | I      | F         | S        | N        | Т            | A          |              |         | Н   |          | s        |             | L          |           | 100 |
|      |       |              |          |          |          |        |           | _        |          | _            |            | -            |         |     | <b>₽</b> |          | 5           | ш.         | 1 .       | 100 |
|      |       |              |          |          |          |        |           |          |          |              | <b>–</b> C | DR3          |         |     |          |          |             |            |           |     |
| TCT  | GAA   | GAC.         | ACT      | GCC      | GTC      | TAT    | TAC       | TGT      | ΑΑΑ      | ACG          | GGG        | ದಿದ್ದಾ       | ب<br>ا  | тċс | CCC      | ሮአ አ     | 000         | 7 (7m)     | CTG       |     |
| Ś    | Ε     | D            | Т        | A        | v        | Y      | Y         | C        | K        |              |            |              | F.      |     | G        | CAA      | G           | ACT<br>T   | CTG<br>Ti |     |
|      |       | -            | _        |          | ·        | _      | -         | Ŭ        | •        | •            | <u> </u>   |              |         | **  | G        | Q        | G           | T          | יו        | 120 |
|      |       |              |          | 5        |          |        |           |          |          |              |            |              |         |     |          |          |             |            |           |     |
| GTC  | A CTO | <b>3</b> ምር' | ኮሮጥ      | GCA      | GCC      | מממ    | A CG      | ልሮኦ      | פפפ      | רליאי        | ጥረጣ        | CTC          | עט אינט |     | CTG      |          |             |            |           |     |
| V    | T     | V            | S.       |          | A        |        |           | иси<br>Т | P        | P<br>P       | S          | U V          |         |     | CTG      |          |             |            |           |     |
| •    | •     | ٧            | ٠.       | A        | . ^      | 1      | 1         | 1        | P        | P            | 5          | V            | Y       | P   | L        |          |             |            |           |     |

CTGGCC L A

### FIG. 59

| TTC  | GTA      | AGC            | AAC      | AGC        | CTC      | AGA: | rgro         | CAC | CTC       | CCAC | GT(      | CCA  | ACTO         | CAC        | GCA!     | ACCI | GGC  | TCI      | GAA    | 60  |
|------|----------|----------------|----------|------------|----------|------|--------------|-----|-----------|------|----------|------|--------------|------------|----------|------|------|----------|--------|-----|
| L    | V        | <b>A</b><br>;. | Т        | Α          | S        | D    | V            | Н   | S         | Q    | <b>v</b> | Q    | L            | Q          | Q        | P    | G    | S        | E      | 20  |
| CTC  | GTG      | AGG            | GCT      | GGA        | ACI      | TC   | AGTO         | AAC | CTO       | TCC  | CTGO     | CAAC | GCI          | TCI        | rgg(     | TAT  | 'ACA | TTC      | TCC    | 120 |
| L    | V        | R              | P        | G          | Т        | S    | V            | K   | L         | S    | С        | K    | Α            | S          | _        | Y    |      | F<br>.CD | S      | 40  |
| AGC  | TAC      | TGO            | ATG      | CAC        | TGG      | GTG  | AAG          | CAG | AGG       | CCI  | GGA      | CAA  | .GGC         | CTI        | GAG      | TGG  | ATT  | GGA      | ААТ    | 180 |
| _S_  |          | W              |          |            | W        | V    | K            | Q   | R         |      | G        |      | G            | L          | E        | W    | I    | ·G       | N_     | 60  |
| » ma |          |                |          | ~-         |          |      |              |     | :         |      |          |      |              |            |          |      |      |          |        |     |
| AT"1 | GAC      | CC1            |          |            |          |      | ACT          |     |           |      |          |      |              |            |          | AAG  | GCC  | ACA      | .CTG   | 240 |
|      | <u> </u> | <u> </u>       | <u> </u> | S          | G<br>CDR |      | <del>T</del> | _N_ | <u> Y</u> | _A_  | _E_      | N    | _ <u>L</u> . | <u>K</u> . | <u>T</u> | K    | A    | T        | L      | 80  |
|      |          |                |          |            | CDI      | .2   | •            |     |           |      |          |      |              |            |          |      |      |          |        |     |
| ACT  | 'GTA     | GAC            | ACA      |            |          | AGC  | ACA          | GCC | TAC       | ATG  | CAG      | CTC  | AGC          | AGC        | CTG      | ACA  | TCT  | GAG      | GAC    | 300 |
| T    | V        | D              | T        | S.         | S        | S    | T            | Α   | Y         | M    | Q        | L    | S            | S          | Ł        | T    | S    | E        | D      | 100 |
|      |          | -              |          |            |          |      |              |     |           |      |          |      |              |            |          |      |      |          |        |     |
| TCT  | 'GCA     | GTC            | TAT      | TAC        | TGT      | ACA  | AGC          | CGA | TCT       | ACT  | 'ATG     | ATT  | ACG          | ACG        | GGA      | TTT  | GCT  | TAC      | TGG    | 360 |
| S    | A        |                | Y        | Y          | С        | T    | S            |     | S         | T    | M        | I    |              | · Т        |          | F    |      |          | W      | 120 |
|      |          |                |          |            | :        |      | ,            |     |           |      |          |      | CD           | R3         |          |      |      |          |        |     |
| GGC  | CAA      | GGG            | ACT      | CTG        | GTC      | ACT  | GTC'         | TCT | GCA       | GCT  | ACA      | ACA  | ACA          | GCC        | CCA      | тст  | Gጥር' | ጥልጥ      | רָרַאַ | 420 |
| G    | Q        | G              | T        | , <b>T</b> | V        | T    | V            | S   | Α         | A,   |          |      | Т            | A          | ,P       | s    | v    | Y        | P      | 160 |
|      |          |                |          | •          |          |      |              |     |           |      |          |      |              |            |          |      |      |          | •      |     |

### FIG. 60

| AA       | TGA          | CTT  | CGG             | GTT       | GAG              | CTG  | GGT' | $	ext{TTT}$ | TAT    | TAT          | TGT  | ጥርጥ           | ጥጥጥ         | ממבֿ   | እሮር            | יככיי      | 000     | 3026      | STGA     |            |
|----------|--------------|------|-----------------|-----------|------------------|------|------|-------------|--------|--------------|------|---------------|-------------|--------|----------------|------------|---------|-----------|----------|------------|
| N        | D            | F    | , G             | L         | S                | W    | V    | F           | ·I     | I            | V    | L             | L           | K      | AGC<br>C       | יטטי<br>ז  |         | JAĐE<br>S |          | A 60<br>20 |
|          | •            |      |                 |           |                  |      |      |             |        | •            |      |               |             |        |                |            | •       |           | ים כ     | 20         |
| GT       | GAG          | GCTT | ΓGA             | GGA       | יטידד            | TGG  | AGG  | AGG(        | ىتىلىن | ر ترس        | CCA  | א ממי         | maa:        | . ~~   |                |            |         |           | CTC      |            |
| V        | R            | Ţ,   | E               | E         | 2                | · G  | G    |             | - 1 G( | 11 DE        | GCA  | ACC           | 1662        |        |                |            |         | ACI       | CTC      | 120        |
|          |              | 1.   |                 |           | J                | 9    | G    | G           | . W    | V            | Q    | Ъ             | G           | G      | S              | M          | i k     | I         | S        | 40         |
| TG       | rgt <i>i</i> | AGCC | TCT             | ,<br>[GG] | \TT              | rac: | rttc | CAG         | מבי    | TTAC         | CTG  | ገ <b>ል</b> ጥረ | <br>3ልርጣ    | ኮጥርረ   | ىلىتكت         |            | <b></b> | OTT C     | TCCA     |            |
| С        | V            | A    | S               | G         | F                | T    | F    | S           | N      | Y            | w    | М             | ог <b>т</b> | W      |                |            |         |           |          |            |
| ٠        |              |      |                 |           |                  |      |      |             | OR1    |              |      |               | <b>→</b>    | **     | V              | R          | . Q     | S         | P        | 60         |
| GAG      | GAAC         | GGG  | CTI             | rgac      | TGC              | GTI  | rgci | GAZ         | ATT    | rcg <i>i</i> | TT   | GAG!          | ATCI        | GAZ    | <b>4 A A</b> A | ,<br>בידים | ምርረ     | א א רי    | ACAT     |            |
| Ε        | K            | G    | L               | E         | W                | V    | Α    | E           | Ι      | R            | L    | R             | S           | E      | N              | v          | 700     | AAC<br>T  | H<br>H   | 240        |
|          |              |      |                 |           |                  |      | •    |             |        |              |      |               |             |        | CDI            |            | A       |           | <u></u>  | 80         |
| TAT      | GCG          | GAG  | TCI             | GTG       | AAA              | .GGG | AAA  | TTC         | ACC    | ATC          | TCA  | AGA           | GAT         | 'GA'I  | TC             | CAG        | AAG     | ፐርር፡      | TCTC     | 300        |
| <u> </u> | _A_          | _E_  | _S <sub>:</sub> | V_        | _K_              | _G   | K    | F           | T      | I            | S    | R             | D           |        |                | R          |         | R         |          | 100        |
| TAC      | CTG          | CAA  | ATG             | AAC       | AAC              | TTA  | AGA  | CCT         | GAA    | GAC          | 'АСТ | 'GGA          | <u>አ</u> ጥጥ | ጥለጥ    | ነጠ አ ፖ         | יחסיי      | n » «·  | . ~       | rggŤ     |            |
| Y        | L            | Q    | M               | N         | N                | L    | R    | Þ           | E      | ח            | s    | G             | I           | Y      |                |            |         |           |          |            |
|          |              |      |                 | د         | . <del>4</del> 1 | . :  |      | -           | _      |              |      | G             | 1           |        | Y              | C          | T       | D         | <u>Ģ</u> | 120        |
| CTG      | GGA          | CGA  | CCT.            | AAC'      | TGG              | GGC  | CAA  | GGG         | ACT    | СТС          | ርጥር  | ∆ כיׁתי       | СтС         | יייטיי | ~~~            | 000        |         |           | BACA     |            |
| <u> </u> | G            | R    | P               | N         | W                | G    | 0    | G           | T      | T.           | V    | m<br>T        | V           | 101    | GCA<br>N       |            |         |           |          |            |
|          | CI           | DR3  |                 |           | •                |      | ~    |             | -      | _            |      |               | •           | ٦      | Α              | A          | K       | T         | Т        | 140        |
| CCC      | CCA:         | rctc | TC:             | TAT       | CCA              | CTG  | GCC( | CCT         | rgto   | GTA          |      |               |             |        |                |            |         |           |          |            |
|          |              | S    |                 |           |                  |      |      |             |        |              |      |               |             |        |                |            |         |           |          |            |

FIG. 61

### CDR1 Comparisons

|      |   | 1gG <sub>1k</sub> | Middle  | G | F | N | I | K | D | Y | Y | I | Н |
|------|---|-------------------|---------|---|---|---|---|---|---|---|---|---|---|
| 2H9  |   | 1gG <sub>1k</sub> | N-Term. | G | F | T | F | S | N | Y | W | M | Т |
| 4A10 | 1 | $1gG_{2ak}$       | N-Term. | G | Ÿ | Т | F | s | S | Y | W | M | Н |

### CDR2 Comparisons



### CDR3 Comparisons

| 1G8  | $_{1}$ 1gG <sub>1k</sub> | G | G | F |   |   |   |   |   |   |   | ٠,         |
|------|--------------------------|---|---|---|---|---|---|---|---|---|---|------------|
| 2H9  | 1gG <sub>1k</sub>        | L | G | R | P | N |   |   |   |   |   |            |
| 4A10 | $1gG_{2ak}$              | R | S | T | М | I | T | Т | G | F | Α | . <b>Y</b> |

FIG. 62



FIG. 63



1. Prostate 6. PANC-1 2. LAPC-4 AD 7. BxPC-3 3. LAPC-4 AI 8. HPAC 4. LAPC-9 AD 9. Capan-1 5. LAPC-9 AI

FIG. 64



- 1. LAPC-4 AD
- 2. LAPC-9 AI
- 3. LNCaP
- 4. LNCaP-PSCA
- 5. HPAC
- 6. Capan-1 7. ASPC-1





FIGURE 65

B)

A)





Figure 66





B)





Figure 68

Figure 69

THERETE ELEMENT



Figure 70

### PSCA 3C5 MAb Localizes within LAPC9AD Xenograft Tissue



3C5 Treated





Figure 71

### 3C5 Anti-PSCA MAb is Localized to Established **LAPC-9 Tumors**



Western blot developed with  $\alpha\text{-mlgG/k}$ 

### SPECIFIC TARGETING OF THE 1G8 ANTI-PSCA MAB **TO ESTABLISHED LAPC-9 TUMORS**



- α-MigG Western

Method: Mice bearing established LAPC-9 tumors (>100 mm³) were injected with either mlgG or the anti-PSCA MAb 1G8. Tumors were harvested a week later and made into protein lysates for Western analysis.