Project 2 - Prediction Of Diabetes Status Using A Subset Of The Pima Indian Diabetes Data Set

Samuel Coyne, Hari Sanadhya, Joseph Denney

Problem Statement

29 million Americans are affected by diabetes, and their health care costs are 2.3 times higher than those of people without diabetes (1). The development of a way to accurately predict diabetes status using readily available clinical data would lead to earlier diagnosis and lower treatment costs for diabetics. 86 million adults in the United States have prediabetes, and 90% of them are unaware of their prediabetic status (2). Being able to empower clinicians to have a predictive model of diabetes risk would be helpful in early detection and management. While we won't be attaining that goal in this document, we do find value in working on a problem that has real world implications. Our goal here is to attempt to predict the diabetes status of a patient based on 8 clinical data points. The data used is the Pima Indians Diabetes Data Set from the University of California, Irvine Machine Learning Repository (3).

Data Set Description

The data used is a subset of a larger database originally collected by researchers at the National Institute of Diabetes and Digestive and Kidney Diseases. The subset of data we worked with are for female Native Americans of the Pima Tribe 21 years of age and older. The original data set has 768 observations with 8 component variables which were chosen because they have been found to be significant risk factors for diabetes among Pimas or other populations and 1 response variable. (4)

- i. pregnancies: Number of times pregnant
- ii. gtt: Plasma glucose concentration at 2 hours in an oral glucose tolerance test
- iii. **bp**: Diastolic blood pressure (mm Hg)
- iv. skinfold: Triceps skin fold thickness (mm)
- v. **insulin**: 2-Hour serum insulin (mu U/ml)
- vi. **bmi**: Body mass index (weight in kg/(height in m)^2)
- vii. **pedigree**: Diabetes pedigree function
- viii. age: Age of the patient (years)
- ix. **diabetic**: class values 0 or 1. Patients with diabetes are indicated by '1', whereas those without diabetes are indicated by '0.'

Exploratory Data Analysis

Data Validity and Missing Values

We began our analysis by looking for missing observations for each variable. In this data set, it appears missing values were coded with the value 0. Unfortunately, 0 is a valid observation in some of the variables. Examination of the variable descriptions and application of domain knowledge shows for variables pregnancies and diabetic, 0 is a valid observation. For all other variables, 0 is a missing observation. For example, a skinfold measurement of 0 is clearly erroneous. We recoded the 0's in those fields to NA's in SAS. See lines 42-48 in the code appendix for the exact process used. Proc means (Figure 1) shows the number of missing values and the changes in variability after recoding to missing values.

Recoding 0 to NA presents us with other problems to now solve, specifically;

- a reduction in the sample size since SAS will ignore all the records having missing values and in our case almost 50% (376 out of 768) of the records have missing values and;
- a reduction in sample size causes an increase in standard error (figure 1) which may lead to these variables being less significant.

	The MEANS Procedure										
Variable	N	N Miss	Mean	Minimum	Maximum	Std Dev	Std Error				
pregnancies	768	0	3.8450521	0	17.0000000	3.3695781	0.1215892				
gtt	768	0	120.8945313	0	199.0000000	31.9726182	1.1537125				
bp	768	0	69.1054688	0	122.0000000	19.3558072	0.6984425				
skinFold	768	0	20.5364583	0	99.0000000	15.9522176	0.5756261				
insulin	768	0	79.7994792	0	846.0000000	115.2440024	4.1585097				
bmi	768	0	31.9925781	0	67.1000000	7.8841603	0.2844951				
pedigree	768	0	0.4718763	0.0780000	2.4200000	0.3313286	0.0119558				
age	768	0	33.2408854	21.0000000	81.0000000	11.7602315	0.4243608				
diabetic	768	0	0.3489583	0	1.0000000	0.4769514	0.0172105				

The MEANS Procedure									
Variable	N	N Miss	Mean	Std Dev	Std Error				
pregnancies	768	0	3.8450521	3.3695781	0.1215892				
diabetic	768	0	0.3489583	0.4769514	0.0172105				
logped	768	0	-0.9599401	0.6443216	0.0232500				
logage	768	0	3.4488023	0.3227021	0.0116445				
loginsulin	394	374	4.8080382	0.6988994	0.0352100				
loggtt	763	5	4.7703198	0.2505233	0.0090696				
logskin	541	227	3.3027825	0.3891079	0.0167291				
logbmi	757	11	3.4575070	0.2123434	0.0077178				
logbp	733	35	4.2669458	0.1788628	0.0066064				

Figure 1 – PROC MEANS output original data with miscoded 0's

Figure 2 – PROC MEANS after conversion to NA

Based on these findings, we will need to impute the missing values. This process will be discussed fully in the imputation section following.

Testing Assumptions

Mulitvariate Normality -After completing the data validity steps, we then moved to testing the assumptions: multivariate normality and equality of covariance matrices. Our EDA process revealed the explanatory variables are not all normally distributed. Figure 3 indicates a few concerns: notice the skewness in the number of pregnancies, diabetes pedigree function, and age (years). Slight skewness does exist in several other variables such as insulin and plasma glucose concentration (gtt). Realizing our problematic variables are right-skewed and to meet the normality assumption, we applied a logarithmic transformation to our variables.

Figure 3 – Scatterplot of raw data with missing values showing normality issues

Furthermore, the number of pregnancies was deleted from the analysis due to the presence of '0' as a plausible and observed value. The age variable, however, is not aided by a logarithmic transformation. As with pregnancies, we will delete age (years).

Combining the issues of missing data and non-normality required us to decide regarding the order of operations. We compared the results of imputing the data then transforming the variables (Figure 4) to the inverse of transforming first, then imputing (Figure 5). After reviewing the results of both methods, we did the data imputation and then log

transformed the resulting data set. As figure 4 indicates, this order of operations significantly improves the distribution of the biometric variables.

Figure 4 - Data imputed then log transformed

Figure 5 – Data log transformed then imputed

We can now conclude that the normality assumption is met. Deleting age and number of pregnancies did not have much of an effect on our prediction ability, so we left those variables out of the equation.

Equality of Covariance - To investigate the equal covariance matrix assumption, a test of homogeneity of within covariance matrices was conducted (Bartlett's test for homogeneity). For this test, we set up our hypotheses as follows:

 H_0 : covariance matrices are equal

 H_a : covariance matrices are not equal for one or more pair.

We find the results to be significant at the 0.1 significance level (p-value < .0001). As such, we will reject the null hypothesis and conclude the covariance matrices are not equal. Figure 6 formalizes the results.

Figure 6 – Output of Proc Discrim showing rejection of null hypothesis

For our analysis, that finding suggests that we will implement quadratic discriminant analysis instead of linear discriminant analysis because we do not meet the equality of covariance matrices assumption.

Imputation

To solve the issues introduced by accurately coding missing values, we utilized proc mi (see code lines 65-68) to visualize any patterns in the missing data. Analyzing the variation in group means for various groups in figure 7 it appears each group has variation in group mean values for the complete variables indicating this to be a case of Missing at Random (MAR) where the missing values can be determined by using the complete variables in the study.

	The MI Procedure																				
	Missing Data Patterns																				
																Gro	oup Means				
Gro	ıp	pregnancies	gtt	bp	skinFold	insulin	bmi	pedigree	age	diabetic	Freq	Percent	pregnancies	gtt	bp	skinFold	insulin	bmi	pedigree	age	diabetic
	1	X	Х	Х	X	X	Х	X	Х	X	392	51.04	3.301020	122.627551	70.663265	29.145408	156.056122	33.086224	0.523046	30.864796	0.331633
	2	X	Х	Х	X	X		X	Х	X	1	0.13	0	118.000000	64.000000	23.000000	89.000000		1.731000	21.000000	0
	3	Х	Х	Х	X		X	х	Х	X	140	18.23	4.121429	116.557143	73.864286	29.285714		32.341429	0.446743	33.714286	0.335714
	4	Х	Х	Х	X			Х	X	X	1	0.13	0	102.000000	75.000000	23.000000			0.572000	21.000000	0
	5	X	Х	Х			X	Х	X	X	192	25.00	4.833333	124.244792	74.880208			31.294792	0.396625	38.161458	0.375000
	6	X	Х	Х				Х	X	X	2	0.26	6.500000	130.500000	89.000000				0.436000	61.500000	0.500000
	7	X	Х		Х		Х	Х	Х	X	2	0.26	7.500000	108.000000		26.500000		34.400000	0.671000	34.500000	0.500000
	8	X	Х				Х	Х	Х	X	26	3.39	3.153846	124.653846				31.957692	0.410077	32.153846	0.538462
	9	X	Х					Х	Х	X	7	0.91	4.285714	95.142857					0.227286	24.285714	0.142857
	10	X		Х	Х	X	Х	х	х	X	1	0.13	1.000000		74.000000	20.000000	23.000000	27.700000	0.299000	21.000000	0
	11	X		Х	Х		Х	х	Х	X	4	0.52	3.250000		66.000000	32.000000		34.175000	0.400500	30.500000	0.500000
					-					-											-

Figure 7 – Results of Proc MI to analyze for patterns in missing data

Using proc mi again, we created a new data set on the log transformed data containing 19200 observations by running 25 imputations. We chose 25 imputations based on information provided by SAS regarding confidence and number of imputations (5). Figure 8 shows that insulin has strong correlation with gtt and skinfold. Also, skinfold has strong correlation with bp, bmi, pedigree, age and insulin. Due to the presence of the correlation, we can confirm the missing values in the data to be Missing at Random (MAR) type where the missing values can be accounted for by variables where there is complete information.

				The COR	R Procedur	е			
		8 Variable	es: pr	egnancies gtt	bp skinFold	insulin bmi p	edigree age	•	
			Pearso	on Correlatio			8		
	preg	nancies	gt	Prob > r u	skinFold	insulin	bmi	pedigree	age
pregnancies		1.00000	0.1294		-0.08167 0.0236	-0.07353 0.0416	0.01768 0.6246	-0.03352 0.3535	0.54434 <.0001
gtt		0.12946 0.0003	1.0000	0.15259	0.05733 0.1124	0.33136 <.0001	0.22107 <.0001	0.13734 0.0001	0.26351
bp		0.14128 <.0001	0.1525 <.000		0.20737 <.0001	0.08893 0.0137	0.28181 <.0001	0.04126 0.2534	0.23953 <.0001
skinFold		-0.08167 0.0236	0.0573		1.00000	0.43678 <.0001	0.39257 <.0001	0.18393 <.0001	-0.11397 0.0016
insulin		-0.07353 0.0416	0.3313 <.000		0.43678 <.0001	1.00000	0.19786 <.0001	0.18507 <.0001	-0.04216 0.2432
bmi		0.01768 0.6246	0.2210 <.000		0.39257 <.0001	0.19786 <.0001	1.00000	0.14065 <.0001	0.03624 0.3158
pedigree		-0.03352 0.3535	0.1373		0.18393 <.0001	0.18507 <.0001	0.14065 <.0001	1.00000	0.03356
age		0.54434 <.0001	0.2635 <.000		-0.11397 0.0016	-0.04216 0.2432	0.03624 0.3158	0.03356 0.3530	1.00000

Figure 8- Proc Corr output showing importance of skinfold and insulin

Analysis

With the assumptions addressed, the stage is set to proceed with a discriminant analysis. The goal is to predict whether a subject is diabetic (1) or not diabetic (0) as sampled from the female Pima Indian population. Discriminant analysis seeks to separate classes. In this analysis, the desired class separation should be between diabetic and not diabetic.

To ensure we have a robust solution, we will conduct the discriminant analysis as a comparison: model results will be presented that were derived using one imputation (n=768), referred to again as Model 1 and another derived from

twenty-five imputations (n=19200), Model 2. This comparison is useful for interpretation of the model results and the plausibility of the imputed values. A basic frequency analysis reveals that we are not working with a balanced data set. In fact, the percent difference between the two classes is surprising: figures 9 and 10 tell us that 65.10% of the sample does not have diabetes and 34.90% are diabetic. This insight will be useful in model construction, as it will allow us to specify these probabilities in the discriminant analysis.

The FREQ Procedure									
diabetic	Frequency	Percent	Cumulative Frequency	Cumulative Percent					
0	500	65.10	500	65.10					
1	268	34.90	768	100.00					

The FREQ Procedure								
diabetic	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
0	12500	65.10	12500	65.10				
1	6700	34.90	19200	100.00				

Figure 9 - Proc Freq for Model 1

Figure 10 – Proc Freq for Model 2

Both models are constructed by beginning with the transformed master data set. We conducted a random sample consisting of 70% of the master data observations; the remaining 30% of observations were selected for the test/hold-out data set. While we are equally interested in the train/test model development phases, the indication of predictive strength is demonstrated by the test data performance. This hold-out data is our best metric for how the model will perform when put into a production setting.

The discriminant analysis is performed first on the train data utilizing the previously found prior probabilities (figure 11). The train data sets are comprised of n=519 and n=13354. The resulting confusion matrices can be seen in figure 12 The results are indicative of our unbalanced data set. We first notice the consistency between the data sets derived from one imputation and twenty-five imputations.

Number of Observations and Percent Classified into diabetic								
From	.	1	Total					
0	285 82.85	59 17.15	344 100.00					
1	76 43.43	99 56.57	175 100.00					
Total	361 69.56	158 30.44	519 100.00					
Priors	0.651	0.349						
Error Count Estimates for diabetic								
	0	1	Total					
Rate	0.1715	0.4343	0.2632					
Priors	0.6510	0.3490						

Percent Classified into diabetic From diabetic 0 1 Total 7343 1318 8661 84.78 15.22 100.00 1 1752 2941 4693 37.33 62.67 100.00 9095 4259 Total 13354 68.11 31.89 100.00 0.651 0.349 Priors **Error Count Estimates for** diabetic 0 Total 0.2294 Rate 0.1522 0.3733 **Priors** 0.6510 0.3490

Number of Observations and

Figure 11 – Training Data Model 1

Figure 12- Training Data Model 2

We see that 82.85% (285 patients) of subjects are classified correctly as not diabetic (0) in Model 1 and 84.78% (7343 patients) of subjects are likewise correctly classified as not diabetic (0) in Model 2. On the other hand, 56.57% (99 patients) of observations are correctly classified as diabetic (1) in Model 1 and 62.67% (2941 patients) of observations are correctly classified as diabetic (1) in Model 2. While the diabetic classification may not be an overwhelming percent correct, these results are promising. The overall correct classification is also seen in figures 11 and 12. We conclude that 73.68% (100% - 26.32%) of our observations are correctly classified in Model 1 and 77.06% (100% - 22.94%) of the

observations are correctly classified in Model 2. An analysis of the misclassified observations reveals that many of the missed classifications are associated with what one could potentially classify as 'borderline,' meaning the probabilities for classification into either category is close to equal probabilities. A table analysis of the test data classifications revealed that at approximately 400 observations are considered 'borderline' predictions, meaning the percent likelihood classification difference between not diabetic (0) and diabetic (1) fell into a predetermined category of minor (<5% difference) or moderate (<20% difference. The model coefficients of the quadratic function are seen in figure 13. Using these determined coefficients, and the promising results of the train data, the test data is presented next.

112	0	QUAD	logped	-1.241	-0.011	0.063	-0.036	0.538	-0.157
113	0	QUAD	loginsulin	-0.011	-1.095	1.819	-0.193	0.518	0.179
114	0	QUAD	loggtt	0.063	1.819	-13.243	0.522	-0.385	1.712
115	0	QUAD	logskin	-0.036	-0.193	0.522	-4.696	5.930	0.894
116	0	QUAD	logbmi	0.538	0.518	-0.385	5.930	-19.092	1.723
117	0	QUAD	logbp	-0.157	0.179	1.712	0.894	1.723	-15.843
118	0	QUAD	_LINEAR_	-5.124	-10.629	91.983	-20.876	77.165	99.114
119	0	QUAD	_CONST_	-495.691	-495.691	-495.691	-495.691	-495.691	-495.691
120	1	QUAD	logped	-1.319	-0.195	0.182	-0.072	1.051	-0.778
121	1	QUAD	loginsulin	-0.195	-1.305	1.279	-0.156	0.366	-0.747
122	1	QUAD	loggtt	0.182	1.279	-11.860	1.150	-0.866	1.413
123	1	QUAD	logskin	-0.072	-0.156	1.150	-6.614	7.581	0.455
124	1	QUAD	logbmi	1.051	0.366	-0.866	7.581	-27.102	5.284
125	1	QUAD	logbp	-0.778	-0.747	1.413	0.455	5.284	-19.319
126	1	QUAD	_LINEAR_	-2.291	5.493	90.144	-22.021	101.015	118.147
127	1	QUAD	_CONST_	-626.622	-626.622	-626.622	-626.622	-626.622	-626.622

Figure 13 - Model coefficients

Number of Observations and Percent Classified into diabetic								
From diabetic	.	1	Total					
0	285 82.85	59 17.15	344 100.00					
1	76 43.43	99 56.57	175 100.00					
Total	361 69.56	158 30.44	519 100.00					
Priors	0.651	0.349						
Erro	r Count E	stimate	s for					
	diab	etic						
	0	1	Total					
Rate	0.1715	0.4343	0.2632					
Priors	0.6510	0.3490						

Figure 14 – Results for Cross Validation Set Model 1

	er of Obs Classifi							
From diabetic	0	1	Total					
0	7343 84.78		8661 100.00					
1	1752 37.33		4693 100.00					
Total	9095 68.11	4259 31.89	13354 100.00					
Priors	0.651	0.349						
Error Count Estimates for								
	diabetic 0 1 Tota							
Rate	0.1522	0.3733	0.2294					
Priors	0.6510	0.3490						

Figure 15- Results for Cross Validation Set Model 2

Before assessing the test data performance, we completed a cross validation of the training data. Cross validation was employed as a check against our training data. We sought to overcome the overfitting trap of model development. We achieved that goal first by utilizing cross validation, and then separately applying the discriminant functions to the independent test data set. The results of the cross validation can be seen in figure 14 for Model 1 and figure 15 for model 2.

The results are mostly consistent with the model development train data set. The important takeaway from the cross-validation figures are twofold: first the highly consistent performance leads us to believe that the imputed values are plausible. Second, the results are like the train data set, indicating this model will likely not fall into the overfitting trap.

The confusion matrix for the test data (n=249) of Model 1 is seen in figure 16 and in figure 17 for Model 2. The model has overcome the overfitting trap; the independent sample of the test data holds promise for future studies.

We see that of the 93 subjects with diabetes, 58 were correctly classified. Likewise, of the 156 subjects without diabetes, 133 were classified correctly in Model 1. Model 2 displays a very similar pattern in classification with 84% correct classification for not diabetic and 60.93% correct classification for diabetic status. Overall, the test data results are like what we saw in the train results: 77.27 (100-22.73) % correct classification for Model 1 and 75.95 (100-24.05) % for Model 2.

	Number of Observations and Percent Classified into diabetic								
From diabetic	.	1	Total						
0	133 85.26	23 14.74	156 100.00						
1	35 37.63	58 62.37	93 100.00						
Total	168 67.47	81 32.53	249 100.00						
Priors	0.651	0.349							
Error Count Estimates for diabetic									
	0	1	Total						
Rate	0.1474	0.3763	0.2273						
Priors	0.6510	0.3490							

Figure 16- Model 1 Confusion Matrix

Number of Observations and Percent Classified into diabetic From diabetic 0 1 Total 3208 3819 0 611 84.00 16.00 100.00 783 1221 2004 1 39.07 60.93 100.00 3991 Total 1832 5823 68.54 31.46 100.00 **Priors** 0.651 0.349 **Error Count Estimates for** diabetic 0 1 Total 0.3907 Rate 0.1600 0.2405 0.6510 0.3490 Priors

Figure 17 Model 2 Confusion Matrix

Other Analysis Methods

While we sought to maximize our classification prediction power, we did seek alternatives to pure discriminant analysis. While it is not our intention to complete a deep-dive into principal component analysis, we feel a brief explanation of the high-level steps taken merits a discussion. Beginning after our imputation step on untransformed values, we applied PCA to this data set to investigate. We see from the scree/variance plot in Figure 18 that 5 principal components explain approximately 85% of the variation.

Figure 18 – PCA Scree and Variance Plots

We hypothesized those five principal components could thus be inputs to a discriminant analysis. We determined our hypothesis was false: this approach, while meeting the assumptions of discriminant analysis, did not gain us any predictive power. As such, for ease of interpretation, we chose the discriminant analysis path as our final solution.

Conclusion / Interpretability

While there are significant limitations to this data set, we found it promising we could achieve approximately 77% classification rate with this population. Given that treatment of diabetes is best begun early, any sub-segment of the population that can be identified and given interventions early on can reduce the impact and the cost of treatment of diabetes. Classifying patients using tools like this as described holds great promise for better use of limited treatment and education resources. Correctly targeting 3 out of 4 diabetics before there are clinical symptoms of the disease that are diagnosable will lead to better outcomes and lower costs. Lifestyle changes, closer monitoring, and educational offerings to patients who are classified as being at a high risk for developing diabetes can be very impactful. There are some significant limitations to our research here, however. The results we achieved should not be generalized to a larger population as there are some unique features of the Pima Indian subjects that don't apply to a larger, more ethnically diverse population. Pima Indians have some of the highest rates of diabetes in North America(6). The predictor variables used here may have less or more predictive value on other populations with less incidence of diabetes. Since this was an observational study, we make no claims of causation here, but rather point to some interesting correlations in the data. We would also note that our Model 2, with 19200 observations may slightly overstate the predictive ability of the model, due to an artificially low variance in the imputed data. This is a trade-off we chose to make rather than to reduce the size of the data set by removing those subjects who had missing observations of one or more of the components.

Additional limitations include the age of the data set, a lack of new technological testing (Hga1c) available to patients today and the high number of missing values. While our imputation was methodologically rigorous, it's preferable to have actual observations as frequently as possible.

Appendix – References and Code

References:

- 1. The American Diabetes Association The Cost of Diabetes Retrieved 07/09/2017 from http://www.diabetes.org/advocacy/news-events/cost-of-diabetes.html
- 2. The Centers for Disease Control Diabetes Latest Retrieved 07/09/2017 from https://www.cdc.gov/features/diabetesfactsheet/
- 3. The University of California, Irvine Pima Indians Data Set Retrieved 07/01/2017 from https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes
- 4. Ibid
- 5. SAS MI procedure document https://support.sas.com/documentation/onlinedoc/stat/141/mi.pdf
- 6. Trends in Diabetes Prevalence Among American Indian and Alaska Native Children, Adolescents, and Young Adults, Acton, Burrows, et al. Am J Public Health, 2002 September, 92(9):1485-1490 Retrieved on 07/05/2017 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1447266/

Code:

42 modify raw_missing;

1	%web_drop_table(WORK.raw);	43	array vars{*} bp skinfold insulin bmi	85	* Begin with raw data stats;
2	%web_drop_table(WORK.train);	44	gtt;	86	proc glm data = raw;
3	%web_drop_table(WORK.test);	45	do i = 1 to dim(vars);	87	model diabetic=pregnancies age
4	%web_drop_table(WORK.logs_train);	46	if vars{i}=0 then call missing(vars{i});	88	pedigree bmi insulin skinfold bp gtt;
5	%web drop table(WORK.logs test);	47	end;	89	run;
6	%web_drop_table(WORK.std_log_test)	48	run;	90	•
7	;	49	,	91	*log transform data;
8	%web_drop_table(WORK.std_log_train	50	/* Raw data with zero replaced by . :	92	*Skewness in data-log transform to fix
9);	51	measurement of statistical parameters	93	right skewness;
10	%web drop table(WORK.Counts);	52	*/	94	data raw_missing (drop=pedigree age
11		53	proc means data = raw_missing N	95	insulin gtt skinFold bmi bp);
12	*read in raw data;	54	nmiss mean std stderr;	96	set raw missing;
13	data raw;	55	var numeric ;	97	logped = log(pedigree);
14	infile	56	run;	98	logage = log(age);
15	'/home/harisanadhya0/sasuser.v94/M	57	quit;	99	loginsulin = log(insulin);
16	SDS 6372/Project 2/Pima.csv' DLM=','	58	•	100	loggtt = log(gtt);
17	FIRSTOBS=2;	59	/* Retain a copy of the raw data set	101	logskin = log(skinFold);
18	input pregnancies gtt bp skinFold	60	having NA instead of zero */	102	logbmi = log(bmi);
19	insulin bmi pedigree age diabetic;	61	data raw_missing_copy;	103	logbp = log(bp);
20	run;	62	set raw_missing;	104	run;
21		63	run;	105	
22	/* Raw Data Analysis : measurement of	64		106	*EDA Post log xform;
23	statistical parameters */	65	/* Missing Raw Data Analysis */	107	/* Scatterplot matrix for logged Raw
24	proc means data=raw n nmiss mean	66	proc mi data=raw_missing nimpute=0;	108	Data with zero changed to missing
25	min max stddev stderr;	67	ods select misspattern;	109	values */
26	run;	68	run;	110	<pre>proc sgscatter data = raw_missing;</pre>
27		69		111	matrix logped logage loginsulin loggtt
28	*Create new dataset to change 0 to	70	/* Determine Correlation between	112	logskin logbmi
29	NA, keep the raw dataset untouched;	71	Raw Data Variables */	113	logbp/diagonal=(histogram);
30	data raw_missing;	72	proc corr data=raw nosimple;	114	run;
31	set raw;	73	var pregnancies gtt bp skinFold insulin	115	
32	run;	74	bmi pedigree age;	116	* Begin with raw data stats;
33		75	run;	117	<pre>proc glm data = raw_missing plots=all;</pre>
34	*Change 0 to missing values, required	76		118	model diabetic=logped loginsulin
35	for imputation only for vars where it	77	/* Generate Scatterplot matrix to view	119	loggtt logskin logbmi logbp;
36	makes sense;	78	distribution of the Raw Data*/	120	run;
37	*from	79	proc sgscatter data=raw;	121	
38	https://stackoverflow.com/questions/	80	matrix pregnancies gtt bp skinFold	122	TITLE " LISTWISE REGRESSION";
39	24012797/how-do-i-change-0s-to-	81	insulin bmi pedigree	123	<pre>proc glm data = raw_missing;</pre>
40	missing-value?rq=1;	82	age/diagonal=(histogram);	124	model diabetic = logped logage
41	data raw_missing;	83	run;	125	loginsulin loggtt logskin logbmi

126 logbp/solution ss3;

84

127	run;	191		255	run;
128	quit;	192	*Check out the priors and see how	256	
129		193	balanced data is;	257	/* Scatterplot matrix for Data with 25
130	*Imputation Phase - single imputation;	194	proc freq	258	imputations on the log transformed
131	*From the UCLA Paper;	195	data=mi_mvn_imputation_then_log;	259	data */
132	*Trace plots here show good	196	tables diabetic;	260	<pre>proc sgscatter data = mi_mvn_logged;</pre>
133	convergence;	197	run;	261	matrix logped loginsulin loggtt logskin
134	* Imputation Phase - single imputation	198		262	logbmi logbp/diagonal=(histogram);
135	of the raw missing data (Model 1);	199	*Trying to split dataset;	263	run;
136	proc mi data= Raw_missing_copy	200	DATA train test;	264	
137	nimpute=1	201	SET mi_mvn_imputation_then_log;	265	* Imputation Phase - 25 imputation of
138	out=mi_mvn_imputation_then_log	202	Random1 = RANUNI(14380132);	266	the raw missing data (Model 2);
139	seed=54321 round=1 minimum=0;	203	IF Random1 < 0.7 THEN output train;	267	proc mi data= Raw_missing_copy
140	var diabetic pedigree age insulin gtt	204	ELSE output test;	268	nimpute=25 out=mi_mvn seed=54321
141	skinfold bmi bp;	205	Run;	269	round=1 minimum=0;
142	run;	206		270	var diabetic pedigree age insulin gtt
143		207	/* Print the Train dataset */	271	skinfold bmi bp;
144	* log conversion of the imputed data	208	proc print data=train;run;	272	run;
145	set;	209		273	
146	data mi mvn imputation then log	210	* View the number of diabetic and	274	/* Log transformation of the imputed
147	(drop=pedigree age insulin gtt skinFold	211	non-diabetic records;	275	data set */
148	bmi bp);	212	proc freq	276	data mi mvn(drop=pedigree age
149	set mi_mvn_imputation_then_log;	213	data=mi_mvn_imputation_then_log;	277	insulin gtt skinFold bmi bp);
150	logped = log(pedigree);	214	tables diabetic;	278	set mi_mvn;
151	logage = log(age);	215	run;	279	logped = log(pedigree);
152	loginsulin = log(insulin);	216	,	280	loginsulin = log(insulin);
153	loggtt = log(gtt);		/* Prediction of diabetic patients in the	281	loggtt = log(gtt);
154	logskin = log(skinFold);	218		282	logskin = log(skinFold);
155	logbmi = log(bmi);	219	using normal data */	283	logbmi = log(bmi);
156	logbp = log(bp);	220		284	logbp = log(bp);
157	run;		testdata=test crossvalidate	285	logage = log(age);
158		222	method=normal anova manova wcov	286	run;
159	/* Scatterplot matrix for Data logged	223	pcov listerr crosslist	287	•
160	after imputation */	224	testout=diabetic_out	288	/* Scatterplot matrix for Data imputed
161	proc sgscatter data =	225	outstat=diabetic_stat;	289	before log transformation - 25
162	mi_mvn_imputation_then_log;	226	class diabetic;	290	Imputations */
163	matrix logped loginsulin loggtt logskin	227	var logped loginsulin loggtt logskin	291	proc sgscatter data = mi_mvn;
164	logbmi logbp/diagonal=(histogram);	228	logbmi logbp;	292	matrix logped loginsulin loggtt logskin
165	run;	229	priors "0"=.6510 "1"=.3490;	293	logbmi logbp/diagonal=(histogram);
166	• ,	230	run;	294	run;
167	*Analysis Phase - estimate model for	231	•	295	• ,
168	each data set		* imputation of logged raw data;	296	*Analysis Phase - estimate model for
169	* Data set used is the one with 25	233	proc mi data= Raw_missing nimpute=1	297	each data set
170	imputations on raw missing data	234	out=mi_mvn_logged_raw seed=54321	298	* Data set used is the one with 25
171	logged after the imputation step;	235	round=1 minimum=0;	299	imputations on raw missing data
172	TITLE " MULTIPLE IMPUTATION	236	var diabetic logped logage loginsulin	300	logged after the imputation step;
173	REGRESSION - MVN";	237	loggtt logskin logbmi logbp;	301	TITLE " MULTIPLE IMPUTATION
174	proc glm data =	238	run;	302	REGRESSION - MVN";
175	mi_mvn_imputation_then_log;	239	•	303	proc glm data = mi_mvn ;
176	model diabetic = logped loginsulin	240	/* Scatterplot matrix for Data imputed	304	model diabetic = logped loginsulin
177	loggtt logskin logbmi logbp;	241	after log transformation */	305	loggtt logskin logbmi logbp;
178	ods output	242	proc sgscatter data =	306	ods output
179	ParameterEstimates=a_mvn;	243	mi_mvn_logged_raw;	307	ParameterEstimates=a_mvn;
180	run;	244	matrix logped loginsulin loggtt logskin	308	run;
181	quit;	245	logbmi logbp/diagonal=(histogram);	309	quit;
182	1- 7	246	run;	310	4- 9
183	*Pooling Phase - combining parameter	247	•	311	*Pooling Phase - combining parameter
184	estimates across datasets;	248	*Imputation Phase - 25 imputation of	312	estimates across datasets;
185	TITLE " MULTIPLE IMPUTATION	249	the logged data;	313	TITLE " MULTIPLE IMPUTATION
186	REGRESSION - MVN";	250	proc mi data= Raw_missing	314	REGRESSION - MVN";
187	proc mianalyze parms=a_mvn;	251	nimpute=25 out=mi_mvn_logged	315	proc mianalyze parms=a_mvn;
188	modeleffects intercept bmi insulin	252	seed=54321 round=1 minimum=0;	316	modeleffects intercept bmi insulin
189	skinfold bp gtt;	253	var diabetic logped logage loginsulin	317	skinfold bp gtt;
190	run;	254	loggtt logskin logbmi logbp;		

319		383	* print the principle components;
320	*Chack out the priors and see how	384	
	*Check out the priors and see how		proc print data=pca;
321	balanced data is;	385	run;
322	proc freq data=mi_mvn;	386	
323	tables diabetic;	387	* Remove the fields that are not
324	run;	388	required;
325		389	data pca_2;
326	*Trying to split dataset;	390	set pca (drop=pedigree age insulin
327	DATA train test;	391	pregnancies gtt skinFold bmi bp);
328	SET mi mvn;	392	run;
329	-	393	run,
	Random1 = RANUNI(14380132);		*154
330	IF Random1 < 0.7 THEN output train;	394	*LDA trial run on master data using
331	ELSE output test;	395	principle components;
332	Run;	396	proc discrim data=pca_2 pool=test
333		397	crossvalidate;
334	/* Print the Train dataset */	398	class diabetic;
335	proc print data=train;run;	399	var Prin1 Prin2 Prin3 Prin4 Prin5;
336	, ,	400	run;
337	* View the number of diabetic and	401	,
338	non-diabetic records;	401	
339	•		
	proc freq data=mi_mvn;		
340	tables diabetic;		
341	run;		
342			
343	/* Prediction of diabetic patients in the		
344	test data based on the model built		
345	using the normal data */		
346	proc discrim data=train pool=no		
347	testdata=test crossvalidate		
348	method=normal anova manova wcov		
349			
	pcov listerr crosslist		
350	testout=diabetic_out		
351	outstat=diabetic_stat;		
352	class diabetic;		
353	var logped loginsulin loggtt logskin		
354	logbmi logbp;		
355	priors "0"=.6510 "1"=.3490;		
356	run;		
357	,		
358	*Try PCA as an alternative;		
359	proc mi data= Raw_missing_copy		
360	nimpute=25 out=mi_mvn seed=54321		
361			
	round=1 minimum=0;		
362	var diabetic pedigree age insulin gtt		
363	skinfold bmi bp;		
364	run;		
365			
366	* Split the dataset as train and test (70-		
367	30 ratio);		
368	DATA train test;		
369	SET mi mvn;		
370	Random1 = RANUNI(14380132);		
371	IF Random1 < 0.7 THEN output train;		
372			
	ELSE output test;		
373	Run;		
374			
375	* Use proc princomp to generate the		
376	principle components;		
377	proc princomp plots=all data=mi_mvn		
378	out=pca;		
379	var pregnancies gtt bp skinFold insulin		
380	bmi pedigree age;		
381	run;		
382			
JU2			