Sentiment Analysis on Airline Tweets Dataset

Problem Statement / Opportunity

- The airline industry is a very competitive market
- Traditional customer feedback forms are tedious and time consuming
- Tweeter data serves as a good source to gather customer feedback
- Tweeter is a gold mine of data with nearly 100 million subscribers
- More than half a billion tweets are tweeted, and keeps growing

Through machine learning and text analytics, sentiment analysis is used to determine sentiments such as positive, neutral or negative.

Benefit of Sentiment Analysis

- Sorting Data at Scale
- Real-Time Analysis

Business Impact

- Real-time sentiment analysis helps monitor social media mentions and proactively manage negative comments.
- It also offers insights into customer reactions to marketing campaigns and product launches.
- Periodic sentiment analysis helps understand customer preferences and concerns related to specific business aspects

Sentiment Analysis using Data Science

Data Pre-processing Steps

- Tokenization (e.g. convert to words or n-grams).
- Removing Stopwords (remove uninformative words).
- Lexicon Normalization: Either Stemming or Lemmatization (reduce vocabulary to essense)
- POS Tagging (parameterize information beyond words -- noun, verb, etc.).

Airline Tweets Dataset

 we worked on a dataset comprising of tweets for 6 major US Airlines and performed a multi-class sentiment analysis.

#	Column	Non-Null Count	Dtype
0	tweet_id	14640 non-null	int64
1	airline_sentiment	14640 non-null	object
2	airline_sentiment_confidence	14640 non-null	float64
3	negativereason	9178 non-null	object
4	negativereason_confidence	10522 non-null	float64
5	airline	14640 non-null	object
6	airline_sentiment_gold	40 non-null	object
7	name	14640 non-null	object
8	negativereason_gold	32 non-null	object
9	retweet_count	14640 non-null	int64
10	text	14640 non-null	object
11	tweet_coord	1019 non-null	object
12	tweet_created	14640 non-null	object
13	tweet_location	9907 non-null	object
14	user_timezone	9820 non-null	object
dtypes: float64(2), int64(2), object(11)			
memorv usage: 1.7+ MB			

- ✓ This dataset contains 14,640 observations and 15 features.
- ✓ We will focus on "Text" and "airline_sentiment"
- ✓ Some feathers "Negative Reason" and "Airline" are also useful for model building
- ✓ Other feature "tweet_id" ,"tweet_creation" are less important.

Missing values detection

tweet_id	0.000000
airline_sentiment	0.000000
airline_sentiment_confidence	0.000000
negativereason	0.373087
negativereason_confidence	0.281284
airline	0.000000
airline_sentiment_gold	0.997268
name	0.000000
negativereason_gold	0.997814
retweet_count	0.000000
text	0.000000
tweet_coord	0.930396
tweet_created	0.000000
tweet_location	0.323292
user_timezone	0.329235
dtype: float64	

Exploratory Data Analysis

Exploratory Data Analysis

Sentiment Rating by Airline

Exploratory Data Analysis

Bag of Words – Before stopwords removal

Bag of Words – After Stopwords removal

Model building -- Bag of Words

```
vect = CountVectorizer(stop_words='english',
max_features=1000,
min_df = 5,
max_df = 0.5)
```

Algorithms	Best Parameters	Test Score	
Logistic Regression	C=0.46	77.44% (Ngram=1)	76.84% (Ngram=(1,2))
Decision Tree	criterion='log_loss', max_depth=17, min_samples_leaf=7	70.71%	
Random Forest	Max_depth=60; n_estimators=100	74.8	9%
Adaboost Classifier	N-estimators from 1-100	73%	
Gradient Boosting Default setting 73%		%	

Model building -- TF-IDF

Customized tokenizer to include stemming and set min_df=5;

• Total tokens: 1970

• Logistic Regression

• Penalty: l2 C: 4.281

Accuracy: 80%

Model building -- TF-IDF

Algorithms	Best Parameters	Test Score	
Decision Tree		71%	
Adaboost Classifier	N_estimators =20	71%	
Gradient Boosting	Default setting	75%	

Model building -- Word Embedding

- Pretrained Word2Vec: LexVec
- The vector dimension reduced to 300.

Algorithms	Best Parameters	Test Score
Logistic Regression	Penalty: I2; C: 11.28	77.8%
Random Forest	Max_depth: 37	72%
Neural Network	5 Hidden layers Total params: 65667	88%

Model building -- Neural Network

	precision	recall	f1-score	support
0 1 2	0.94 0.84 0.74	0.91 0.76 0.91	0.92 0.80 0.82	6093 2115 1600
accuracy macro avg weighted avg	0.84 0.89	0.86 0.88	0.88 0.85 0.88	9808 9808 9808

Next Steps

- RNN (SimpleRNN, LSTM, RGU)
- Build models with attention, BERT
- Multiclass ROC curve and AUC
- Optimize the tokenizers
- Topic modeling investigation

Questions?