Unsupervised Learning with Clustering Paul Rodriguez

Clustering Idea

Given a set of data can we find a natural grouping?

Why Clustering

- A good grouping implies some structure
- In other words, given a good grouping, we can then:
 - Interpret and label clusters
 - Identify important features
 - Characterize new points by the closest cluster (or nearest neighbors)
 - Use the cluster assignments as a compression or summary of the data

Clustering Objective

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
 - Euclidean distance
 - Manhattan distance

Clustering Objective

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
 - Euclidean distance = $sqrt[(a1 b1)^2 + (a2 b2)^2 + ...)]$
 - Manhattan distance

$$[|a1 - b1| + |a2 - b2| + ...)]$$

Kmeans Clustering

A simple, effective, and standard method

Start with K initial cluster centers

Loop:

Assign each data point to nearest cluster center Calculate mean of cluster for new center

Stop when assignments don't change

Issues:

How to choose K?

How to choose initial centers?

Will it always stop?

 For K=1, using Euclidean distance, where will the cluster center be?

 For K=1, the overall mean minimizes Sum Squared Error (SSE), aka Euclidean distance

Essential R commands: Kresult = kmeans(X,1,10,1)

#choose 1 data point as initial K centers #10 is max loop iterations #1 is number of initial sets to try

#Kresult is an R object with subfields Kresult\$cluster #cluster assignments Kresults\$tot.withinss # tot within SSE

Essential R commands: inds=which(Kresult\$cluster==K)

plot(X[inds,],col2use="red");

. . .

plot(X[inds,],col2use="red");

. . .

As K increases individual points get a cluster

Choosing K for Kmeans

Not much improvement after K=2 ("elbow")

Kmeans Example – more points

How many clusters should there be?

Choosing K for Kmeans

- Smooth decrease at K ≥ 2, harder to choose
- In general, smoother decrease => less structure

Kmeans Guidelines

Choosing K:

- "Elbow" in total-within-cluster SSE as K=1...N
- Cross-validation: hold out points, compare fit as K=1...N

Choosing initial starting points:

 take K random data points, do several Kmeans, take best fit

Stopping:

- may converge to sub-optimal clusters
- may get stuck or have slow convergence (point assignments bounce around), 10 iterations is often good

Kmeans Example: uniform dist.

Choosing K - uniform

- Smooth decrease across K => less structure

Kmeans Clustering Issues

Scale:

 Dimensions with large numbers may dominate distance metrics (so can be good to normalize or scale data)

Outliers:

 Outliers can pull cluster mean (K-mediods uses median instead of mean)

Soft Clustering Methods

Fuzzy Clustering

- Kmeans with weighted assignments to all clusters
- Weights depend on relative distance
- Find min weighted SSE

Expectation-Maximization:

- Initialize a mixture of multivariate Gaussian distributions
- Find means, variances, and mixture weights that maximize probability of data

Kmeans with unequal cluster variance and/or size

Can you guess K?

Kmeans – unequal cluster variance

Choosing K – unequal distributions

- Smooth decrease across K => less structure

EM clustering

Classification

Selects K=2

 (either by Information Criterion=
 min of SSE+ K*logN,

Or by cross-validation)

 Handles unequal variance and/or size

> R: library('mclust') em_fit=Mclust(x); plot(em_fit);

Kmeans computations

- Distance of each point to each cluster center
 - For N points, D dimensions: each loop requires N*D*K operations
- Update Cluster centers
 - only track points that change, get change in cluster center
- But for EM errors to each cluster center update a probability function

Kmeans vs EM performance

1 Gordon compute node, normal random matrices R: system.time(Mclust())

Number of Dimensions (i.e. columns in data matrix)

Other distance measures

Cosine: take angle difference (good for sparse vectors)

- Mahalanobis: dimensions rescaled by variance
- Jaccard (over sets A,B):
 1- (|A∩B| / |AUB|)

Other distance measures

 Hamming distance: count 1 if values different e.g. appropriate for binary strings

Kmeans big data example

45,000 NYTimes articles, 102,000 unique words

(UCI Machine Learning repository)

Full Data Matrix: 45Kx102K ~ 40Gb

article 1
article 2
article 3
...

article 45K

Cell i,j is count of ith-word in jth-article

Kmeans results

7 viable clusters found

Kmeans for image segmentation

R snippet

get packages read 1024X718X3 RGB image convert to matrix 1024*718 X 3 Choose K by trial and error run Kmeans and display

install.packages('ripa')
library('ripa')

source("http://bioconductor.org/biocLite.R")
biocLite()
biocLite("EBImage")

library('EBImage') im=readImage('1a34086v.jpg')

library('ripa')
img=rgb2grey(im, coefs=c(0.30, 0.59, 0.11))

imgx1 =as.vector(img)
numk=8
km_imx1=kmeans(imgx1,numk,50,1);
img_km_mat =matrix(km_imx1\$cluster,dim(im)[1],dim(im)[2])

display(img_km_mat/numk)

Other Clustering Methods

Hierarchical Clustering

hclust with "Ward" distance gives spherical clusters

Cluster Dendrogram

Hierarchical Clustering

Where height change looks big, cut off tree

groups <- cutree(fit, k=7) rect.hclust(fit, k=7, border="red")

Cluster Dendrogram

Other Clustering

Density based clustering

build neighborhoods around seed points

link neighborhoods

Results in arbitrary cluster shapes, good for image and

spatial clustering

Other Clustering

Neural Network Based (e.g.)

initialize weights to coordinate values for a seed point set input nodes to coordinate values for data points get best match to seed for each data point and adjust weights toward the data point

Target node(s), starts as a seed point and ends up as a cluster mean

Pause

Imagine these 2 dimensional input spaces: Which of these is easy or hard to cluster? (no class labels)

Now imaging there are two classes

Potential clusters

easy, 4 clusters match 2 classes

Which are easy or hard to classify? (ie separate red or blue with lines)

Upshot:
No easy
relationship
between
clusters
and
classification

Pause


```
SI2016_clustering3.R
W_table = read.table('weather.csv', header=TRUE,sep=",",
            stringsAsFactors = TRUE)
W_table=subset(W_table, select=-c(RISK_MM))
#2 Get numeric columns only
col_classes = sapply(W_table,class)
num_inds = c(which(col_classes=='numeric'), which(col_classes=='integer'))
W_num = W_table[,num_inds]
#Remomve rows that are missing data
rem ind = complete.cases(W num)
print(paste('Number of incomplete cases:',length(which(rem_ind==FALSE)) ))
W num = W num[rem ind,]
```

```
SI2016_clustering3.R

W_mncntr=scale(W_num,center=TRUE,scale=TRUE)

#4 Run kmeans for 20 values of K
kg=matrix(0,20,2)
for (i in 1:20){
   ktest=kmeans(W_mncntr,i,20,5);
   kg[i,1]=i;
   kg[i,2]=ktest$tot.withinss;
}
plot(kg[,1],kg[,2],main='kmeans within cluster SS, weatherdata numerics
```


kmeans within cluster SS, weatherdata numerics


```
> str(ktest)
List of 9
$ cluster : Named int [1:354] 14 14 12 6 9 9 9 9 9 7 ...
 ..- attr(*, "names")= chr [1:354] "1" "2" "3" "4" ...
$ centers : num [1:20, 1:16] -0.532 -1.436 -0.738 1.1 1.452 ...
 ..- attr(*, "dimnames")=List of 2
 ....$: chr [1:20] "1" "2" "3" "4" ...
 ....$: chr [1:16] "MinTemp" "MaxTemp" "Rainfall" "Evaporation" ...
$ totss : num 5648
$ withinss : num [1:20] 96.5 81.5 102.4 48.4 61.7 ...
$ tot.withinss: num 1731
$ betweenss : num 3917
$ size : int [1:20] 17 20 16 13 13 5 18 25 21 32 ...
$ iter : int 4
$ ifault : int 0
- attr(*, "class")= chr "kmeans"
```


PCA on 2012 Olympic Althetes' Height by Weight scatter plot

SVD: factors and 'singular' scale values

Wsvd=svd(W_num)

#Step 5 plot the singular values plot(1:length(Wsvd\$d), Wsvd\$d, main='SVD singular values')

#or
plot(1:length(Wsvd\$d),cumsum(Wsvd\$d)
m(Wsvd\$d)),
main='SVD cumulative variance ')

SVD singular values

W3 = as.matrix(W_num) %*% Wsvd\$v[,1:3] #notice that W_num is still a dataframe

#get Kmeans for 4 clusters k4 = kmeans(W_num,4,20,5)

#get color scheme
col2use = c('red','blue','black','yellow')

cluster pts project to 1,2 SVD components

Principle Components vs Clustering

- PCA reduces dimensions, Clustering reduces to categorical groups
- In some cases, $k PCs \Leftrightarrow k$ clusters
- It is also useful to visualize clusters in PC space

Summary

 Having no label doesn't stop you from finding structure in data

Unsupervised methods are somewhat related

