密里根油滴实验报告

陈依皓 202211140007 实验时间: 3月16日

● 【实验原理】

(1) 用平衡法与非平衡法测量元电荷的值

实验装置—油滴仪,结构如图所示

用喷雾器将油喷入如图所示的两块相距为 d 的水平放置的平行极板之间,对带电油滴

$$\frac{U_0}{d}q = \frac{4}{3}\pi a^3 \rho g$$

式中, U_0 为油滴平衡时的极板电压, ρ 为油滴密度,a为油滴半径

我们只需测量平衡电压 U_0 与油滴半径a,即可求得油滴带电量q

1. 平衡电压 U_0 的测量

平衡法:设置油滴仪为 balance 档,喷入油滴后,由小到大调节电压,直到屏幕中剩余较少油滴,确定目标测量油滴并调节电压使其保持静止。等待一段时间确定油滴没有定向漂移,此时设置的油滴仪电压即为平衡电压。

非平衡法:

油滴运动速度为 ν 时,受到空气阻力 f_r

$$f_r = 6\pi \eta v$$

式中, η是空气的黏性系数

当极板电压为零,油滴以速度 v_g 匀速下落时,油滴的受力平衡可表示为

$$mg = 6\pi a\eta v_a$$

当上下极板的电压为 U. 油滴以速度 V_0 匀速上升时、油滴的受力平衡可表示为

$$mg = \frac{qU}{d} - 6\pi a \eta v_e$$

消去η得

$$q = \frac{mgd(v_e + v_d)}{Uv_a}$$

此时,平衡电压 U3为

$$U_0 = \frac{t_e}{t_e + t_g} U$$

2. 油滴半径 a 的测量

由

$$mg = 6\pi a \eta v_g$$
$$m = \frac{4}{3}\pi a^3 \rho g$$

可得

$$a = \sqrt{\frac{9\eta v_{\rm g}}{2\rho \rm g}}$$

实验中油滴的半径会在微米数量级,与空气分子的平均自由程相差不大,此时对空气的粘滞系数 η 需要进行如下的修正

$$\eta' = \frac{\eta}{1 + b/Pa}$$

式中,b为修正常数,P为大气压强

则油滴半径修正为

$$a = \frac{a_0}{\sqrt{1 + 2\frac{a^*}{a_0}}}$$

式中, a_0 为未修正的油滴半径; a*=b/2p

(2) 验证电荷的分立性

为了验证电荷的分立性,即所有电荷都是某个基本电荷的整数倍,我们需要测出多个非常接近的电荷值,测量一系列油滴的带电量

考虑将结果用直线上的散点图表示。考虑到误差,如果这些点应该聚集成一系列等间距分布的"岛屿",则可以认为证明了电荷的分立性,而属于同一"岛屿"的油滴有相同的电荷数 n

● 【实验数据】

(1) 用平衡法与非平衡法测量元电荷的值

平衡法测量数据如下表

t _g /s	U ₀ /V	q/10 ⁻¹⁹ C	n
12.78	152	6.269	3.913
7.16	189	12.480	7.789
16.69	211	2.962	1.849
16.16	208	3.163	1.974

表中, t_s 为极板电压为 0V时油滴下落 1mm 所需时间; U_0 为平衡电压;q 为油滴所带电荷量;n 为油滴所带电荷数的计算值 非平衡法测量数据如下表

U/V	te /s	tg/s	UO /V	q/10-19C	n
372	3.06	19.88	49.62	9.540	5.955
487	25.68	11.72	334.39	3.265	2.038
532	9.81	17.78	189.16	2.989	1.865
432	6.28	18.91	107.70	4.760	2.971
480	9.09	13.19	195.83	4.629	2.889
293	34.90	17.8	193.96	2.904	1.813
218	18.91	19.16	108.28	4.636	2.894
192	37.35	24.15	116.60	2.975	1.857
318	3.96	14.66	67.63	11.347	7.082
300	7.56	14.44	103.09	7.624	4.758
246	6.81	15.37	75.53	9.428	5.885
205	8.40	58.56	25.72	3.190	1.991
318	6.97	14.22	104.60	7.698	4.805
213	7.82	15.54	71.30	9.815	6.126

表中, t_e 为油滴匀速上升 1mm 所需时i间;U 为油滴上升时极板电压

实验数据拟合如图

本次实验测量得到的元电荷量为

$$\delta_{\text{M}} = 1.575 \times 10^{-19} \text{ C}$$

取

$$\delta_{\cancel{\#}\cancel{\mathcal{U}}} = 1.602 \times 10^{-19} \, \mathit{C}$$

相对误差为

$$\eta = \left| rac{\delta_{ extit{ ilde{I}} ilde{\mathcal{U}}} - \delta_{ extit{ ilde{M}} ilde{ ilde{I}}}}{\delta_{ extit{ ilde{I}} ilde{\mathcal{U}}}}
ight| = 1.68\%$$

(2) 验证电荷的分立性

将油滴的电荷数量如图表示

× B

显然,这些点聚集成一系列等间距分布的"岛屿",可以认为证明了电荷的分立性

● 【实验反思】

- 1. 本次实验测量的较多油滴的带电荷数量为 2, 而带电荷数为其他值的油滴明显较少, 说明在测量油滴的选择上有一定主观因素的影响, 测量更多的油滴可以得到更多其他电荷数的油滴以减少误差。
- 2. 本次实验物理量的测量比较简单,但由测量出的量得到电荷量需要一定的计算,利用计算机的算法程序可以代替人工计算,大大提高了实验效率,也方便了数据处理。这种思路可以推广到更多实验。