Example 1

Prove that the sum of any two sides of a triangle is greater than twice the length of median drawn to the third side.

Proof: As shown in the figure, in $\triangle ABC, AD$ is the median. We want to prove that $AD < \frac{1}{2}(AB + AC)$.

Extend AD to E such that AD = DE. Connect BE. Since DE = AD, $\angle BDE = \angle CDA$.BD = DC. Thus $\triangle BDE \cong \triangle CDA$, BE = AC, In $\triangle ABE$, AB + BE > AE = 2AD. So $AD < \frac{1}{2}(AB + BE)$.

Since BE = AC, we have $AD < \frac{1}{2}(AB + AC)$.