Второй коллоквиум по МА-2

Денис Козлов Telegram

Версия от 17.12.2020 16:21

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

 $0.29 \\ 0.30$

0.31 Сформулируйте свойство непрерывности интеграла (о предельном переходе под знаком интеграла).

Теорема. Пусть все функции f_n ограничены и интегрируемы на D, а также $f_n \rightrightarrows f$ на D. Тогда функция f будет интегрируема на D и

$$\lim_{n \to \infty} \int_D f_n(x) dx = \int_D f(x) dx.$$

0.32 Сформулируйте свойство аддитивности интеграла.

Теорема. Пусть D — жорданово множество, а функция f — ограничена и интегрируема на D. Пусть A и B это дизъюнктные (непересекающиеся) жордановы подмножества D. Тогда:

$$\int_{A \sqcup B} f(x)dx = \int_{A} f(x)dx + \int_{B} f(x)dx.$$

0.33 Как вводится понятие заряда на кольце множеств? Покажите, что для заряда справедлива формула включения-исключения.

Определение. Функция ν , определенная на некотором кольце множеств, называется зарядом, если

a)
$$\nu(\varnothing) = 0;$$

b)
$$\nu(A \sqcup B) = \nu(A) + \nu(B)$$
 (аддитивность).

Таким образом, мера — это неотрицательный заряд.

 $\Pi pumep$. Пусть f это ограниченная интегрируемая функция на множестве D. В силу свойства аддитивности интеграла имеем

$$\nu(A) = \int_{A} f(x)dx.$$

Теорема. Для заряда справедлива формула включений-исключений:

$$\nu(A \cup B) = \nu(A) + \nu(B) - \nu(A \cap B).$$

Доказательство. Заметим, что $A \cup B = A \sqcup (B \setminus A)$ и $B = (B \setminus A) \sqcup (A \cap B)$.

• С одной стороны имеем

$$\nu(A \cup B) = \nu(A \sqcup (B \setminus A)) = \nu(A) + \nu(B \setminus A).$$

• С другой стороны имеем

$$\nu(A) + \nu(B) - \nu(A \cap B) = \nu(A) + \nu((B \setminus A) \sqcup (A \cap B)) - \nu(A \cap B) = \nu(A) + \nu(B \setminus A) + \nu(A \cap B) - \nu(A \cap B) = \nu(A) + \nu(B \setminus A).$$

То есть оба выражения равны $\nu(A) + \nu(B \setminus A)$, из чего делаем вывод:

$$\nu(A \cup B) = \nu(A) + \nu(B \setminus A) = \nu(A) + \nu(B) - \nu(A \cap B).$$

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45 Дайте определение цилиндрических координат (формулы, область задания, координатные линии, матрица Якоби перехода, якобиан)

Цилиндрические координаты (r, φ, z) в пространстве (x, y, z) вводятся формулами

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$
$$z = z$$

При этом $U = (0; +\infty) \times [0; 2\pi) \times \mathbb{R}$ и $X = \mathbb{R}^3 \setminus \{(0, 0, z) | z \in \mathbb{R}\}$ Выколотая ось z при этом называется полярной осью. Угол φ называется азимутом или азимутальным углом.

Координатные линии r – лучи, выходящие из точки на полярной оси перпендикулярно полярной оси. Координатные линии φ – окружности с центром на полярной оси, расположенные в плоскостях, перпендикулярных полярной оси. Координатные линии z – прямые, параллельные полярной оси.

Матрица Якоби перехода имеет вид:

$$\begin{pmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Якобиан равен r .

0.46 Дайте определение сферических координат (формулы, область задания, координатные линии, матрица Якоби перехода, якобиан)

Сферические координаты (r, θ, φ) в пространстве (x, y, z) вводятся формулами

```
x = r \sin \theta \cos \varphiy = r \sin \theta \sin \varphiz = r \cos \theta
```

При этом $U = (0; +\infty) \times (0; \pi) \times [0; 2\pi)$ и $X = \mathbb{R}^3 \setminus \{(0, 0, z) | z \in \mathbb{R}\}$ Выколотая ось z при этом называется полярной осью. Угол θ называется полярным углом, а угол φ называется азимутальным углом.

Координатные линии r — лучи, выходящие из начала координат. Координатные линии θ — полуокружности с центром в начале координат, и концами, расположенными на полярной оси. Координатные линии φ — окружности с центром на полярной оси, расположенные в плоскостях, перпендикулярных полярной оси.

Матрица Якоби перехода имеет вид:

```
 \begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \\ \cos\theta & -r\sin\theta & 0 \end{pmatrix}  Якобиан равен r^2\sin\theta.
```

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.00

0.61

0.62

0.63

0.64 Выведите формулу для площади гладкой поверхности в \mathbb{R}^3 , заданной уравнением $z=f(x,y),\ f$ – непрерывно дифференцируемая функция.

Простейший способ задать поверхность D – это задать её как график функции f(x,y). Параметризацией такой поверхности будет

$$z = f(x, y), (x, y) \in G$$

Получим формулу для её площади. Вычислислим матрицу Якоби:

$$\frac{\partial(x,y,z)}{\partial(x,y)} = \begin{pmatrix} 1 & 0\\ 0 & 1\\ f'_x & f'_y \end{pmatrix}$$

Найдём матрицу Грама:

$$\left(\frac{\partial(x,y,z)}{\partial(x,y)}\right)^T \cdot \left(\frac{\partial(x,y,z)}{\partial(x,y)}\right) = \begin{pmatrix} (f_x')^2 + 1 & f_x'f_y' \\ f_x'f_y' & (f_y')^2 + 1 \end{pmatrix}$$

и её определитель:

$$((f_x')^2 + 1)((f_y')^2 + 1) - (f_x'f_y')^2 = (f_x')^2 + (f_y')^2 + 1$$

Получаем площадь графика функции z=f(x,y)

$$\mu(D) = \iint_G \sqrt{(f'_x)^2 + (f'_y)^2 + 1} dx dy$$

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75