$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad P = A (A^T A)^{-1} A^T.$$

$$A^{T}A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 so $(A^{T}A)^{-1} = I$

Then
$$P\begin{bmatrix}1\\2\\3\\4\end{bmatrix} = \begin{bmatrix}1\\2\\3\\0\end{bmatrix}$$

(b) Project
$$\vec{b}$$
 onto colA, where $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$

In this case
$$\vec{b} \in colA$$
, so $\vec{pb} = \vec{b}$.

$$\vec{b} = \frac{1}{2}(1,2,-1) + \frac{3}{2}(1,0,1)$$

(7) Suppose
$$p^2 = p$$

(onsider $(I-P)^2 = (I-P)(I-P)$
 $= I^2 - 4IP - PI + P^2$

Note IP = PI = P and $I^2 = I$. So our expression becomes

$$(I-P)^2 = I-P-P+P$$

= $I-P$. (i.e $I-P$ is also a projection matrix!)

If p projects onto colA, then I-p projects onto
the left nullspace of A. Why?

vecall col A and nul A^T are orthogonal complements. Suppose \vec{b} is a vector, project \vec{b} into col(A) and nul(A^T). Inul(A^T)

b' in L hollspace is the projection of b under (I-P).

PF: consider
$$p^T = (A(A^TA)^{-1}A^T)^T$$

hote $A^{T}A$ is a symmetric matrix, so $(A^{T}A)^{-1}$ is also symmetric $((A^{T}A)^{-1})^{T} = (A^{T}A)^{-1}$.

Then $P^{T} = \left(A (A^{T}A)^{-1} A^{T}\right)^{T}$ $= \left(A^{T}\right)^{T} \left(A^{T}A\right)^{-1} T (A)^{T} \quad (order \ venerses!)$ $= A (A^{T}A)^{-1} A^{T}, \quad as \quad desired.$ = P.

$$\begin{array}{cccc}
4.3 \\
\hline
1 & A =
\end{array} \begin{array}{ccccc}
1 & 0 \\
1 & 1 \\
1 & 3 \\
1 & 4
\end{array} \begin{array}{cccccc}
5 & =
\end{array} \begin{array}{cccccc}
0 \\
8 \\
8 \\
20
\end{array}$$

$$A^{T}A = \begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix} \qquad A^{T}\vec{b} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$$

$$A^{\mathsf{T}} \overrightarrow{b} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$$

Solve
$$A^TA\hat{X} = A^T\hat{b}$$
 for \hat{X}

Find
$$\hat{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Then
$$A\hat{x} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix} = \hat{p}$$
, the projection of \vec{b} onto col A .

$$\vec{e} = \vec{b} - A\hat{x} = \vec{b} - \vec{b} = \begin{bmatrix} -1 \\ 3 \\ -5 \end{bmatrix}$$

Since the method of least squares minimizes the error, this is the minimal error: $||\vec{e}|| = \sqrt{1+9+25+9} = \sqrt{44}$

with same points the system is

$$C = 0$$

 $C + 0 = 8$
 $C + 30 = 8$

$$C = 0$$
 $C + 0 = 8$
 $C + 30 = 8$
 $C + 30 = 8$

our RHS is p= (1,5,13,17) we have:

and the sol- is the line

ie
$$\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

(3) dot prod of
$$e = (-1, 3, -5, 3)$$
 with both columns of A. is zero.

Shortest distance from \vec{b} to col(A) is $||e|| = \sqrt{44}$.

9) We want to find the parabola
$$b = C + Dt + Et^{2}.$$

equations:

$$C + D \cdot 0 + E \circ^{2} = 0$$
 $C + D \cdot 1 + E \mid^{2} = 8$
 $C + D \cdot 3 + E \mid^{2} = 8$
 $C + D \cdot 4 + E \mid^{2} = 20$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \qquad \overrightarrow{k} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 2^{\circ} \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & 1 & 9 & 16 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338 \end{bmatrix}$$

$$A^{T} \overrightarrow{B} = \begin{bmatrix} 36 \\ 112 \\ 400 \end{bmatrix}$$

so we want to solve $A^TA\hat{X} = A^T\hat{b}$

For the figures, we are now projecting b onto the 3D space spanned by the cols of A. In the picture in the text, we are projecting (from R4) down to a (2D) plane.

(16)
$$b = C + Dt + Et^{2} + Ft^{3}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 69 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \\ F \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$$
 we can solve this!

we get
$$b = \frac{1}{3} \left(47t - 28t^2 + 5t^3 \right)$$

So
$$\vec{p} = \vec{b}$$
 and $\vec{e} = \vec{0}$.

4.4

(5) let
$$\vec{q}_1 = \frac{1}{3} \begin{bmatrix} 1 \\ -z \end{bmatrix}$$
 (just the first column, made into a onit vect.)

$$\vec{q}_{i}$$
 let $\vec{w} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} - \langle \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, \vec{q}_{i} \rangle \vec{q}_{i}$.

Then
$$\frac{1}{2} = \frac{1}{11} \frac{1}{11} \frac{1}{11}$$

So
$$\vec{w} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} - \frac{1}{3} \begin{pmatrix} -q \\ -2 \end{pmatrix}$$

$$= \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

and
$$\vec{q}_2 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$
.

For
$$q_3$$
 use G-S on $u_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$\vec{q}_3 = \frac{\vec{\omega}}{\|\vec{\omega}\|} \text{ where } \vec{\omega} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{q}_1 \right) \vec{q}_1 - \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{q}_2 \right) \vec{q}_2$$

b)
$$\vec{q}_3$$
 is \perp to the columns of $A \Rightarrow$ it is in the left nollspace of A .

(7) To solve
$$A \overrightarrow{x} = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$$
 use least squares.
Solve $A^T A \hat{x} = A^T \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$.

we get
$$\hat{x} = (1,2)$$
.

b) TRUE Let
$$Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix}$$
. Then $Q\vec{x} = \vec{q}_1 x_1 + \vec{q}_2 x_2$, if $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

$$|| \overrightarrow{Q} \overrightarrow{X} ||^{2} = \langle \overrightarrow{q}_{1} \times_{1} + \overrightarrow{q}_{2} \times_{2} \times_{7} \overrightarrow{q}_{1} \times_{1} + \overrightarrow{q}_{2} \times_{2} \rangle$$

$$= \langle \overrightarrow{q}_{1}, \overrightarrow{q}_{2} \times_{1}^{2} + \chi_{1}^{2} \times_{1} \times_{2} + \langle \overrightarrow{q}_{2}, \overrightarrow{q}_{2} \times_{2} \times_{2}$$

$$= \chi_1^2 + \chi_2^2$$
$$= \|\vec{\chi}\|^2.$$

(21)
$$A = \begin{bmatrix} \vec{a}_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$(et \vec{u}_1 = \frac{\vec{a}_1}{\|\vec{a}_1\|} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Let $\vec{u}_1 = \frac{\vec{q}_1}{\|\vec{a}\|} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ this is the first extuenormal vect.

how
$$\frac{1}{u_1} = \frac{1}{w}$$
, where $\frac{1}{w} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

$$= \begin{bmatrix} -2 \\ 0 \\ 1 \\ 3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5/2 \\ -1/2 \\ 1/2 \\ 5/2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -5 \\ -1 \\ 1 \\ 5 \end{bmatrix}$$

and
$$\|\vec{w}\| = \sqrt{\langle \vec{w}, \vec{w} \rangle}$$

$$= \frac{1}{2} \sqrt{52}$$

$$= \frac{1}{\sqrt{52}} \sqrt{\frac{-5}{1}}$$

Now
$$Q = \begin{bmatrix} \vec{u_1} & u_2 \end{bmatrix}$$
 and projection onto $(ol(A))$ is projection onto $(ol(A))$

Projection matrix is
$$Q(q^TQ)^{-1}Q^T$$

$$Q Q^{T} = \begin{bmatrix} 1/2 & -5/52 \\ 1/2 & -5/52 \\ 1/2 & -5/52 \\ 1/2 & 1/552 \\ 1/2 & 5/552 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & 1/52 \\ 1/52 & 1/552 \end{bmatrix} = \begin{bmatrix} 1/4 + 25/52 \\ -5/52 & 1/552 \\ 1/52 & 1/552 \end{bmatrix}$$

and the projection of
$$\frac{1}{1}$$
 is $QQ^{T}b^{T}$

$$Q^{T}b^{T} = Q^{T}\begin{bmatrix} -4 \\ -3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} -4/2 - 3/2 + 3/2 \\ +20/\sqrt{152} + 3/\sqrt{152} \end{bmatrix} = \begin{bmatrix} -2 \\ 26/\sqrt{52} \end{bmatrix} = \begin{bmatrix} -2 \\ \sqrt{52}/2 \end{bmatrix}$$

(Since $26 = \frac{52}{2}$)

Then
$$QQ^Tb = Q \begin{bmatrix} -2 \\ 34 \\ 152 \end{bmatrix} = \begin{bmatrix} -1 - 14 \\ -1 - 1/2 \\ -1 + 1/2 \\ -1 + 5/2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ -1 \\ 3 \end{bmatrix}$$
 is the projection of \overline{b} onto col A

(29) note
$$x_4 = x_1 + x_2 + x_3$$
 so we could find a basis:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_1 + x_2 + x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Those three vectors are independent, so they form a basis. for S.

b) The vector (2004 (1,1,1,-1) is I to all three.

c) We may write
$$(1,1,1,1) = \vec{b}_1 + \vec{b}_2$$
 where $\vec{b}_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$ and $\vec{b}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$

ADDITIONAL PROBLEMS

ADDITIONAL PROBLEMS

(1) a) if
$$A\vec{x} = \vec{0}$$
, then $A^TAx = A^T(A\vec{x}) = A^T(\vec{0}) = \vec{0}$.

(b) Suppose $A^TA\vec{x} = \vec{0}$, and consider $\vec{x}^TA^TA\vec{x} = \vec{x}^T(A^TA\vec{x}) = \vec{0}$.

But
$$\vec{x}^T A^T A \vec{x} = (A\vec{x})^T A \vec{x}$$
 the
so $\vec{0} = \vec{x}^T A^T A \vec{x} = (A\vec{x})^T A \vec{x} = \langle A\vec{x}, A\vec{x} \rangle$
and the inner product is zero \iff $A\vec{x}$ is the
Zero vector.

Suppose A is mxn, and ATA is invertible. Thus the columns of ATA are linearly independent, and hence the only sol to $A^{7}A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$. By ① the only sol to is also $\vec{X} = 0$, hence the columns of A are A = 0 linearly independent.

(3) a) claim: ATA is invertible when the columns of mxn matrix A are lin indep.

PROOF: State (1) showed that $A\vec{x} = \vec{0} \iff A^T A \vec{x} = 0$

But since the columns of A are linearly independent, there is only one vector that satisfying $A\vec{x}=\vec{0}$, namely $\vec{x}=\vec{0}$. Hence the columns of A^TA are linearly independent too. Since A^TA is square it is therefore invertible.

- b) Since A lin indep. there are n pivot cols. There must be at least n rows to hold these pivots, thus m > n.
- c) rank A = n.

Take $\vec{v} \in W$, $\vec{v} \neq \hat{y}$ so $\hat{y} - \vec{v} \in W$. We know $\vec{y} - \hat{y}$ is \vec{L} to \vec{V} , and so $\vec{V} - \hat{y}$ is \vec{L} to $\hat{y} - \vec{V}$.

write $\vec{y} - \vec{v} = (y - \hat{y}) + (\hat{y} - \vec{v})$ and use pythagoras:

$$\|\vec{y} - \vec{v}\|^2 = \|y - \hat{y}\|^2 + \|\hat{y} - \vec{v}\|^2$$

 $||\hat{y}-\vec{v}|| > 0$ since $|\hat{y}-\vec{v}+\vec{o}|$, which gives the desired result.

(5) We know
$$||\vec{u} - \vec{v}|| \ge 0$$

 $\langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle \ge 0$
 $\langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{v} \rangle - \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle \ge 0$ (bilinearity of $\langle \vec{u}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle \ge 0$
 $\langle \vec{u}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle - 2\langle \vec{u}, \vec{v} \rangle \ge 0$

Similarly, since
$$\langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle \ge 0$$
, we obtain $-\langle \vec{u}, \vec{v} \rangle \ge 1$ (or $\langle \vec{u}, \vec{v} \rangle \ge -1$)

(ombining, we get
$$|\langle \bar{u}, \bar{v} \rangle| \leq 1$$
.