2.21 Exercícios¹

¹ Contribuição de John Oliver, da Cal Poly, San Luis Obispo, com colaborações de Nicole Kaiyan (Universidade de Adelaide) e Milos Prvulovic (Georgia Tech)

O Apêndice B descreve o simulador do MIPS, que é útil para estes exercícios. Embora o simulador aceite pseudoinstruções, tente não usá-las em qualquer exercício que pedir para produzir código do MIPS. Seu objetivo deverá ser aprender o conjunto de instruções MIPS real, e se você tiver de contar instruções, sua contagem deverá refletir as instruções reais executadas, e não as pseudoinstruções.

Existem alguns casos em que as pseudoinstruções precisam ser usadas (por exemplo, a instrução la quando um valor real não é conhecido durante a codificação em assembly).

Em muitos casos, elas são muito convenientes e resultam em código mais legível (por exemplo, as instruções li e move. Se você decidir usar pseudoinstruções por esses motivos, por favor, acrescente uma sentença ou duas à sua solução, indicando quais pseudoinstruções usou e por quê.

Exercício 2.1

Os problemas a seguir lidam com a tradução de C para MIPS. Suponha que as variáveis f, g, h e i sejam dadas e possam ser consideradas inteiros de 32 bits, conforme declarado em um programa C.

```
a. f=g-h;
b. f=g+(h-5);
```

2.1.1 [5] <2.2> Para essas instruções C, qual é o código assembly do MIPS correspondente? Use um número mínimo de instruções assembly do MIPS.

2.1.2 [5] <2.2> Para essas instruções C, quantas instruções assembly do MIPS são necessárias a fim de executar a instrução C?

Para a primeira, é necessária 1 instrução assembly do MIPS, e para a segunda, 2.

2.1.3 [5] $\langle 2.2 \rangle$ Se as variáveis f, q, h e i possuem o valor de 1,

2, 3 e 4, respectivamente, qual é o valor final de f?

a)
$$f = -1$$

b)
$$f = 0$$

Os problemas a seguir lidam com a tradução de MIPS para C. Suponha que as variáveis g, h, i e j sejam dadas e possam ser consideradas inteiros de 32 bits, conforme declarado em um programa C.

2.1.4 [5] <2.2> Para essas instruções MIPS, qual é a instrução C correspondente?

a)
$$f += 4;$$

2.1.5 [5] <2.2> Se as variáveis f, g, h e i têm valores 1, 2, 3 e 4, respectivamente, qual é o valor final de f?

a)
$$f = 5$$

b)
$$f = 9$$

Exercício 2.3

Os problemas a seguir lidam com a tradução de C para MIPS. Considere que as variáveis f e g sejam dadas e possam ser consideradas inteiros de 32 bits, conforme declarado em um programa C

a.
$$f = -g - f$$
;

b.
$$f = g + (-f - 5)$$
;

2.3.1 [5] <2.2> Para essas instruções C, qual é o código assembly do MIPS correspondente? Use um número mínimo de instruções assembly do MIPS.

2.3.2 [5] <2.2> Para as instruções C anteriores, quantas instruções assembly do MIPS são necessárias a fim de executar a instrução C?

Para a primeira, foi necessária 1 instrução assembly do MIPS, para a segunda, 2.

2.3.3 [5] <2.2> Se as variáveis f, g, h, i e j têm valores 1, 2, 3, 4 e 5, respectivamente, qual é o valor final de f?

a)
$$f = -3$$

b)
$$f = -4$$

Os problemas a seguir lidam com a tradução de MIPS para C. Suponha que as variáveis g, h, i e j sejam dadas e possam ser consideradas inteiros de 32 bits, conforme declarado em um programa C.

2.3.4 [5] <2.2> Para essas instruções MIPS, qual é a instrução C correspondente?

a)
$$f = f - 4;$$

2.3.5 [5] $\langle 2.2 \rangle$ Se as variáveis f, g, h e i têm valores 1, 2, 3 e 4, respectivamente, qual é o valor final de f?

a)
$$f = -3$$

b)
$$f = 6$$

Exercício 2.5

Nos problemas a seguir estaremos investigando as operações da memória no contexto de um processador MIPS. A tabela a seguir mostra os valores de um array armazenado na memória. Considere que o endereço de base do array está armazenado no registrador \$s6 e faça o offset considerando o endereço de base do array.

a.	Endereço	Dados
	20	4
	24	5
	28	3
	32	2
	34	1
b.	Endereço	Dados
	24	2
	38	4
	32	3
	36	6
	40	1

2.5.1 [10] <2.2, 2.3> Para os locais de memória na tabela anterior, escreva o código C de modo a classificar os dados do mais baixo ao mais alto, colocando o menor valor no menor local de memória mostrado na figura. Suponha que os dados mostrados representem a variável C chamada Array, que é um array do tipo int. Suponha que essa máquina em particular seja uma máquina endereçável por byte e uma word consista em 4 bytes.

```
temp = c[0];
c[0] = c[4];
c[4] = temp;
temp = c[1];
c[1] = c[4];
c[4] = temp;
temp = c[3];
c[3] = c[1];
c[1] = temp;
```

a)

b)

```
temp = c[0];
c[0] = c[4];
c[4] = temp;

temp = c[1];
c[1] = c[4];
c[4] = temp;

temp = c[3];
c[3] = c[4];
c[4] = temp;
```

a.	Endereço	Dados	organizado
[0]	20	4	1
[1]	24	5	2
[2]	28	3	3
[3]	32	2	4
[4]	36	1	5
b.	Endereço	Dados	
	24	2	1
	28	4	2
	32	3	3
	36	6	4
	40	1	6

2.5.2 [10] <2.2, 2.3> Para os locais de memória na tabela anterior, escreva o código MIPS que classifique os dados do mais baixo ao mais alto, colocando o menor valor no menor local de memória. Use um número mínimo de instruções MIPS. Suponha que o endereço de base de Array esteja armazenado no registrador \$s6.

```
a)
lw
       $t0, 20($s6)
lw
       $t1, 36($s6)
       $t1, 20($s6)
SW
SW
       $t0, 36($s6)
       $t0, 24($s6)
lw
lw
       $t1, 36($s6)
       $t1, 24($s6)
SW
       $t0, 36($s6)
SW
lw
       $t0, 32($s6)
       $t1, 24($s6)
lw
       $t1, 32($s6)
SW
       $t0, 24($s6)
SW
```

```
b)
lw
       $t0, 24($s6)
       $t1, 40($s6)
lw
       $t1, 24($s6)
sw
       $t0, 40($s6)
SW
       $t0, 28($s6)
lw
       $t1, 40($s6)
lw
       $t1, 28($s6)
sw
       $t0, 40($s6)
SW
lw
       $t0, 36($s6)
       $t1, 40($s6)
lw
       $t1, 36($s6)
SW
       $t0, 40($s6)
sw
```

a.	Endereço	Dados	
	20	4	
	24	5	
	28	3	
	32	2	
	36	1	
b.	Endereço	Dados	
	24	2	
	28	4	
	32	3	
	36	6	
	40	1	

2.5.3 [5] <2.2, 2.3> A fim de classificar o array anterior, quantas instruções são necessárias para o código MIPS? Se você não tiver permissão para usar o campo imediato nas instruções lw e sw, de quantas instruções MIPS você precisa?

Foram necessárias 12 instruções para cada código MIPS.

a.	Endereço	Dados	
	20	4	
	24	5	
	28	3	
	32	2	

	36	1		
b.	Endereço	Dados		
	24	2		
	28	4		
	32	3		
	36	6		
	40	1		

Exercício 2.10

Nos problemas a seguir, a tabela de dados contém bits que representam o opcode de uma instrução. Você deverá traduzir as entradas para o código assembly e determinar que formato da instrução MIPS os bits representam.

- **a.** 0000 0010 0001 0000 1000 0000 0010 0000 $_{dois}$
- **b.** 0000 0001 0100 1011 0100 1000 0010 0010 $_{dois}$

Utilizar MIPS Reference Data Card.pdf								
R Op (6 bits)	Rs (5 bits)	Rt (5 bits)	Rd (5 bits)	Shamt (5 bits)	Funct (6 bits)			
I Op Rs		Rt	Endereço (16 bits)					
J Op	Endereço (26 b	oits)						
a. 0000 0010	a. 0000 0010 0001 0000 1000 0000 0010 0000 _{dois}							
add \$s0, \$s0, \$s0	add \$s0, \$s0, \$s0							
opcode	rs rt		rd	shamt	funct			
0 0 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0 0	1 0 0 0 0 0			
b. 0000 0001 0100 1011 0100 1000 0010 0010 _{dois}								
sub \$t1, \$t2, \$t3								
opcode	rs rt		rd	shamt	funct			
0 0 0 0 0 0	0 1 0 1 0	0 1 0 1 1	0 1 0 0 1	0 0 0 0 0	1 0 0 0 1 0			

2.10.1 [5] <2.5> Para essas entradas binárias, que instrução elas representam?

No a, add, e no b, sub.

2.10.2 [5] <2.5> Que tipo de instrução (tipo I, tipo R) as mesmas entradas binárias representam?

Tipo R.

2.10.3 [5] <2.4, 2.5> Se as entradas binárias anteriores fossem bits de dados, que número elas representariam em hexadecimal?

Nos problemas a seguir, a tabela de dados contém instruções MIPS. Você deverá traduzir as entradas para os bits do opcode e determinar qual é o formato da instrução MIPS.

a. addi \$t0 ,\$t0 ,0 b. sw \$t1, 32(\$t2)

R Op (6 bits)	Rs (5 bits)	Rt (5 bits)	Rd (5 bits) Shamt (5 bits) Funct (6 bits)	
I Op	Rs	Rt	Endereço (16 bits)	
J Op	Endereço (26 b	oits)		
a. addi \$t0 ,\$t0 ,0)			
ор	rs	rt	immediate	
0 0 1 0 0 0	0 1 0 0 0	0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
b. sw \$t1, 32(\$t2)				
ор	rs	rt	endereço	
1 0 1 0 1 1	0 1 0 1 1	0 1 0 1 0	0 0 0 0 0 0 0 0 0 1 0 0 0 0	· ·

2.10.4 [5] <2.4, 2.5 Mostre a representação hexadecimal dessas instruções.

a) 8880

b) 2bba20

2.10.5 [5] <2.5> Que tipo (tipo I, tipo R) essas instruções representam?

Tipo I

2.10.6 [5] <2.5> Qual é a representação hexadecimal dos campos opcode, Rs e Rt nessa instrução? Para as instruções de tipo R, qual é a representação hexadecimal dos campos Rd e funct? Para as instruções de tipo I, qual é a representação hexadecimal do campo imediato?

Cada instrução tem uma tradução diferente, como visto no exercicio 2.10.4. rd de acordo com o registrador em questão, e funct de acordo com a função (add, sub, etc). Basta traduzir a constante em para hexadecimal (exemplo: 26 torna-se 1a).

Exercício 2.16

Para estes problemas, a tabela mantém diversos valores binários para o registrador \$t0.

Dado o valor de \$t0, você deverá avaliar o resultado de diferentes desvios.

a. $$t0 = 0010\ 0100\ 1001\ 0010\ 0100\ 1001\ 0010\ 0100_{dois}$$ b. $$t0 = 0101\ 1111\ 1011\ 1110\ 0100\ 0000\ 0000\ 0000_{dois}$

2.16.1 [5] <2.7> Suponha que o registrador \$t0 contenha um desses valor e \$t1 tenha o valor

 $$t1 = 0011 \ 1111 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000_{dois}$

Note o resultado da execução de tais instruções em certos registradores. Qual é o valor de \$t2 depois das seguintes instruções?

slt \$t2, \$t0, \$t1
beq \$t2, \$ZERO, ELSE
j DONE

ELSE: addi \$t2, \$0, 2

DONE:

a) \$t2 = 1 b) \$t2 = 2

2.16.4 [5] <2.7> Suponha que o registrador \$t0 contenha um valor da tabela anterior.

Qual é o valor de \$t2 após as instruções a seguir?

slt \$t2, \$0, \$t0
bne \$t2, \$ZERO, ELSE
j DONE

ELSE: addi \$t2, \$t2, 2

DONE:

\$t2 = 3