1. Solution:

<u>Claim:</u> Let P(k) denote the statement 'for $2^k \le n < 2^{k+1}$, we have $T(n) = 2^k$ '. Then, $\forall k \in \mathbb{N} \cup \{0\}$, P(k) is true.

Proof: Proof: We perform induction on k.

Base case: k=0. In this case, $1 \le n < 2$, so n=1, and since $T(1)=1=2^0=2^k$, we are done. Inductive hypothesis: P(i) is true for some $i \in \mathbb{N} \cup \{0\}$.

Inductive step: Suppose $2^{i+1} \le n < 2^{i+2}$.

- 1. n is even. In this case, T(n) = 2T(n/2). Since $2^i \le n/2 < 2^{i+1}$, invoking the inductive hypothesis, we have $T(n/2) = 2^i$, so $T(n) = 2^{i+1}$.
- 2. n is odd. Here $n > 2^{i+1}$, so $T(n) = T(n-1) = 2T(\frac{n-1}{2})$. Note that $2^i \le \frac{n-1}{2} < 2^{i+1}$, so $T(\frac{n-1}{2}) = 2^i$, so $T(n) = 2^{i+1}$.

Since in either case, T(n) = i + 1, $P(i) \implies P(i + 1)$.

Thus by the principle of mathematical induction we are done.

2. **Solution:** I claim that the answer is false.

I'll show that for any constant c>0, there exists a positive integer n_0 such that g(n)>cf(n) for all $n>n_0$. Note that if n>2c, we have $\frac{n}{2}\cdot 3^n>c\cdot 3^n$, and for $n>\log_{\frac{3}{2}}(20c)$, we have $\frac{n}{2}3^n>10c\cdot n\cdot 2^n$. Thus for $n>\max(2c,\log_{\frac{3}{2}}(20c))$, we have, by adding the above inequalities, $n\cdot 3^n>c\cdot (10n2^n+3^n)$, as needed.