Memo: Brusselator Memo: 001

: ??? To

From : Jan Mooiman **Subject** : Brusselator

Date : 2025-01-13 08:56:23

1 **Brusselator**

The Brusselator is taken as example to see the behaviour or the fully implicit Δ -formulation for reaction terms only. This particularly of interest for the water quality computations with lots of processes. Example taken from Ault and Holmgreen (2003).

The ODE system reads:

$$\frac{\partial u_1}{\partial t} = 1 - (k_2 + 1)u_1 + k_1 u_1^2 u_2,
\frac{\partial u_2}{\partial t} = k_2 u_1 - k_1 u_1^2 u_2$$
(1)

$$\frac{\partial u_2}{\partial t} = k_2 u_1 - k_1 u_1^2 u_2 \tag{2}$$

with $k_1 = 1$ and $k_2 = 2.5$ and initial values $u_1(0) = 0$ and $u_2(0) = 0$. Some results are:

(a) Runge-Kutta 4: $\Delta t = 0.001$, $k_1 = 1$, $k_2 = 2.5$

Memo: Brusselator Memo: 001

- **(b)** Runge-Kutta 4: $\Delta t = 0.1$, $k_1 = 1$, $k_2 = 2.5$
- (c) Runge-Kutta 4: $\Delta t = 0.5$, $k_1 = 1$, $k_2 = 2.5$

- (d) Fully Implicit: $\Delta t = 0.1$, $k_1 = 1$, $k_2 = 2.5$
- (e) Fully Implicit: $\Delta t = 0.5, k_1 = 1, k_2 = 2.5$

Figure 1: Result plots for constant value of $k_1 = 1$ and $k_2 = 2.5$, computed with a Runge-Kutta 4 and fully implicit (Δ -formulation) time integration method for different time steps $\Delta t = 0.1, 0.5$.

Extra attention needed for the Fully Implicit time integration with larger time step:

- (a) Fully Implicit: $\Delta t = 1.0$, $k_1 = 1$, $k_2 = 2.5$
- **(b)** Fully Implicit: $\Delta t = 5.0$, $k_1 = 1$, $k_2 = 2.5$

Figure 2: Result plots for constant value of $k_1 = 1$ and $k_2 = 2.5$, computed with a fully implicit (Δ -formulation) time integration method for different time steps $\Delta t = 1.0, 5.0$.

Figure 2a converge to the equilibrium state $(u_1, u_2) = (1.0, 2.5)$ and Figure 2b looks to converge to the equilibrium state $(u_1, u_2) = (1.0, 2.5)$ but is still wiggling after 5 min of simulation time (even after one day — not presented).

2 Numerical experiment

Memo: Brusselator Memo: 001

Table 1: Stability of different time integrators for the Brusselator.

	Time step	Runge-Kutta 4	Fully Implicit
	[s]		Δ -formulation
1	0.1	✓	✓
2	0.2	✓	✓
3	0.5	✓	✓
4	1.0	Unstable	✓
5	2.0		✓
6	5.0		✓

References

Ault, Shaun and Erik Holmgreen (2003). *Dynamics of the Brusselator*. URL: https://mate.unipv.it/~boffi/teaching/download/Brusselator.pdf.