Session mai 2014 - Services informatiques aux organisations

Épreuve obligatoire

Exercice 1 7 points

Un lycée a été doté de postes informatiques et de logiciels.

Le proviseur envisage de transformer une salle de cours en salle informatique. Pour cela, le responsable du projet définit les tâches à réaliser avec leur durée. Le tableau suivant regroupe l'ensemble de ces données.

Tâche à réaliser	Repère	Durée en jours	Tâches précé- dentes
Vider la salle de cours et démonter le matériel inutilisé.	A	2	_
Nettoyer et repeindre la salle.	В	4	A
Installer les tables et fixer un tableau.	С	1	В
Commander et réceptionner le matériel de câblage.	D	10	_
Déballer et contrôler le matériel de câblage livré.	Е	1	D
Câbler la salle.	F	3	B, E
Installer et brancher les postes informatiques.	G	1	C, F
Installer les logiciels, configurer les postes et tester leur fonctionnement.	Н	7	G

Le but de cet exercice est d'ordonner la réalisation de ces tâches de façon à ce que la salle soit disponible le plus rapidement possible.

On considère le graphe orienté correspondant aux conditions d'antériorité données par le tableau précédent.

- 1. Déterminer le niveau de chacun des sommets du graphe.
- 2. Donner le tableau des successeurs.
- **3. a.** Construire le graphe d'ordonnancement du projet (selon la méthode P.E.R.T. ou M.P.M.)
 - Déterminer pour chaque tâche les dates au plus tôt et au plus tard.
 - **b.** En déduire le chemin critique et la durée minimale de réalisation du projet.
- **4.** En fait, la réalisation de la tâche B a nécessité 10 jours au lieu de 4 car il a fallu enduire un mur et le laisser sécher avant de le peindre.
 - Ce changement a-t-il une incidence sur la durée du projet? Expliquer pourquoi.

Exercice 2 5 points

La loi de Moore, énoncée en 1975 par Gordon Moore, co-fondateur de la société Intel, prévoit que le nombre de transistors des micro-processeurs proposés à la vente au grand public double tous les 2 ans. Les micro-processeurs fabriqués en 1975 comportaient 9 000 transistors.

Pour modéliser cette loi de Moore, on considère la suite (u_n) définie par $u_0 = 9000$ et $u_{n+1} = 2u_n$ pour tout entier naturel n.

Un terme u_n de cette suite correspond au nombre de transistors prévus par la loi de Moore pour un micro-processeur fabriqué lors de l'année 1975 + 2n.

- 1. Calculer u_1 et u_2 puis interpréter ces nombres.
- **2.** Quelle est la nature de la suite (u_n) ? Donner l'expression de u_n en fonction de n.
- **3.** Déterminer le nombre de transistors prévus par la loi de Moore pour un microprocesseur fabriqué en 2001.
- **4.** Selon ce modèle, à partir de quelle année les micro-processeurs intégrerontils plus de 100 milliards de transistors?

Exercice 3 8 points

Partie A

- 1. a. Décomposer le nombre 2014 en produit de facteurs premiers.
 - **b.** En déduire la liste des diviseurs positifs de 2014.
- **2.** Calculer le PGCD des nombres 2014 et 212. On note d ce PGCD. Déterminer l'entier p tel que : $2014 = p \times d$.

Partie B

Un jury de concours doit établir l'ordre de passage des 2014 candidats qui doivent passer une épreuve orale. Le président du jury envisage la procédure automatique décrite ci-après.

Tout d'abord, il classe les 2014 candidats par ordre alphabétique et attribue à chacun, en suivant cet ordre, un numéro allant de 1 à 2014. Ainsi, pour définir un ordre de passage à l'oral des candidats il suffit de dresser la liste des numéros des candidats qui seront appelés l'un après l'autre à passer l'épreuve orale.

Pour établir cette liste, le président du jury choisit un entier n compris entre 1 et 400, puis procède de la manière suivante :

- le premier numéro inscrit sur la liste est le nombre *n*;
- le deuxième numéro inscrit sur la liste est le nombre 2n;
- le troisième numéro inscrit est le nombre 3n;
- de façon générale, pour obtenir chaque numéro inscrit à partir du deuxième, on ajoute *n* au numéro précédent et :
 - si la somme s obtenue est inférieure ou égale à 2014, le numéro inscrit est égal à cette somme s;
 - sinon, le numéro inscrit est égal à s-2014.

Par exemple, en choisissant la valeur n = 257, les premiers numéros inscrits sur la liste sont, dans l'ordre :

257-514-771-1028-1285-1542-1799-42-299-556-...- etc.

En effet:

- le premier numéro inscrit est n = 257;
- du 2^e numéro (égal à 514) au 7^e numéro (égal à 1799), on a ajouté 257 au numéro précédent puisque la somme ne dépassait pas 2014;
- le 8^{e} numéro inscrit est le numéro 42 car 1799 + 257 = 2056 et, comme 2056 dépasse 2014, le numéro à inscrire est 2056 2014 = 42.

Ainsi le candidat 257 passera en premier l'oral; il sera suivi du candidat 514 et ainsi de suite.

Le président du jury se demande si cette procédure permet de convoquer tous les candidats, c'est-à-dire si la liste obtenue, en 2014 étapes, contient tous les nombres de 1 à 2014.

- 1. Dans cette question, le président du jury choisit n = 212.
 - a. Les 9 premiers numéros inscrits sont donc :

$$212 - 424 - 636 - 848 - 1060 - 1272 - 1484 - 1696 - 1908.$$

Donner la liste des 15 numéros suivants.

La valeur n = 212 permet-elle de convoquer tous les candidats?

- **b.** Avec cette valeur de *n*, combien de numéros différents la liste comportet-elle?
- **2.** Dans cette question, le président du jury choisit n = 38. Déterminer combien de numéros différents comporte la liste. Justifier la réponse. On pourra remarquer que 38 est un diviseur de 2014.

Partie C

D'après la partie B, il apparaît que, pour certaines valeurs de *n*, la procédure utilisée ne permet pas de convoquer tous les candidats, c'est-à-dire de constituer une liste comportant tous les nombres de 1 à 2014.

On admet le résultat suivant :

« Le nombre n choisi permet de former une liste complète comportant tous les numéros de 1 à 2014 dans le cas où le PGCD de 2014 et de n est égal à 1, et dans ce cas seulement ».

Ainsi, les nombres n permettant de convoquer tous les candidats sont les entiers n compris entre 1 et 400 qui sont premiers avec 2014.

- 1. Si n = 15, la procédure utilisée permet-elle de convoguer tous les candidats?
- 2. Dans cette question, on cherche à déterminer le nombre d'entiers n, parmi ceux compris entre 1 et 400, qui permettent par la procédure utilisée de convoquer tous les candidats.
 - a. Donner le nombre de multiples de 2 non nuls, inférieurs ou égaux à 400.
 - b. Donner la liste des multiples impairs de 19, inférieurs ou égaux à 400.
 - c. Donner la liste des multiples impairs de 53, inférieurs ou égaux à 400.
 - **d.** En déduire le nombre d'entiers n qui ne permettent pas de convoquer tous les candidats, puis le nombre d'entiers n qui le permettent.