L21: Root Finding and Systems of Equations Applications

Lucas A. J. Bastien

E7 Spring 2017, University of California at Berkeley

March 10, 2017

Version: release

Announcements

Lab 08 is due on March 17 at 12 pm (noon)

Today:

- ▶ Applications of the following techniques to physical problems:
 - ▶ Root finding (Chapter 16)
 - Settling velocity of a particle
 - Black body radiation
 - Systems of linear algebraic equations (Chapter 12)
 - Electric circuit

Next week:

► Least-square regression (chapter 13)

Root finding: practice question

Assume that we are trying to find roots of a continuous real-valued function f defined over \mathbb{R} . Which of the following statements are true?

- (A) One needs to calculate f' to use the bisection method
- (B) Both bisection and Newton-Raphson are iterative methods
- (C) The Newton-Raphson method finds all the roots of f at once
- (D) The bisection method finds all the roots of f at once
- (E) Sometimes, the Newton-Raphson method does not converge
- (F) The bisection method relies on f changing sign around a root

Root finding: practice question

Assume that we are trying to find roots of a continuous real-valued function f defined over \mathbb{R} . Which of the following statements are true?

- (A) One needs to calculate f' to use the bisection method
- (B) Both bisection and Newton-Raphson are iterative methods
- (C) The Newton-Raphson method finds all the roots of f at once
- (D) The bisection method finds all the roots of f at once
- (E) Sometimes, the Newton-Raphson method does not converge
- (F) The bisection method relies on f changing sign around a root

Example of a case where the bisection method fails

This function never changes sign!

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

Initial guess: $r_0 = 1$

$$i$$
 r_i r_{i+1}

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

Initial guess: $r_0 = 1$

i	r_i	r_{i+1}
0	1	0
1	0	1

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

$$r_0 = 1$$

i	r_i	r_{i+1}
0	1	0
1	0	1
2	1	0

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

$$r_0 = 1$$

i	r _i	r_{i+1}
0	1	0
1	0	1
2	1	0
3	0	1

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

	70 —	1
i	r:	r

r_i	r_{i+1}
1	0
0	1
1	0
0	1
1	0
	1 0 1 0

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

i	r_i	r_{i+1}
0	1	0
1	0	1
2	1	0
3	0	1
4	1	0
5	0	1

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

i	r_i	r_{i+1}
0	1	0
1	0	1
2	1	0
2 3	0	1
4	1	0
5	0	1
6	1	0

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

Initial guess: $r_0 = 1$

i	r _i	r_{i+1}
0	1	0
1	0	1
2	1	0
3	0	1
4	1	0
5	0	1
6	1	0
7	0	1

In the example below, the Newton-Raphson method never finds a root

Function:

$$f: x \mapsto x^3 - 2x + 2$$

r_0	=	1

i	r _i	r_{i+1}
0	1	0
1	0	1
2	1	0
3 4	0	1
4	1	0
5	0	1
6	1	0
7	0	1

Particle gravitational settling: particle "falling" due to gravity

External forces acting on the particle:

Particle gravitational settling: particle "falling" due to gravity

External forces acting on the particle:

► **Weight:** vertical downward, magnitude:

$$F_W = \frac{\pi}{6} d^3 \rho_p g$$

Particle gravitational settling: particle "falling" due to gravity

External forces acting on the particle:

▶ **Weight:** vertical downward, magnitude:

$$F_W = \frac{\pi}{6} d^3 \rho_p g$$

▶ **Buoyancy:** vertical upward, magnitude:

$$F_B = \frac{\pi}{6} d^3 \rho_f g$$

Particle gravitational settling: particle "falling" due to gravity

External forces acting on the particle:

▶ **Weight:** vertical downward, magnitude:

$$F_W = \frac{\pi}{6} d^3 \rho_p g$$

► **Buoyancy:** vertical upward, magnitude:

$$F_B = \frac{\pi}{6} d^3 \rho_f g$$

▶ **Drag:** vertical upward, magnitude:

$$F_D = \frac{\pi}{4} d^2 (\frac{1}{2} \rho_f v^2) C_D$$

Assume steady-state (velocity v constant), so $F_W = F_B + F_D$:

$$4d(\rho_p - \rho_f)g/3 - \rho_f v^2 C_D = 0$$

Assume steady-state (velocity v constant), so $F_W = F_B + F_D$:

$$4d(\rho_p - \rho_f)g/3 - \rho_f v^2 C_D = 0$$

Drag coefficient:

$$C_D = \begin{cases} 24/R_e & \text{if } R_e \leqslant 0.3\\ (24/R_e) \times (1+0.14R_e^{0.7}) & \text{if } 0.3 < R_e < 1000\\ 0.445 & \text{if } R_e \geqslant 1000 \end{cases}$$

Assume steady-state (velocity v constant), so $F_W = F_B + F_D$:

$$4d(\rho_p - \rho_f)g/3 - \rho_f v^2 C_D = 0$$

Drag coefficient:

$$C_D = \begin{cases} 24/R_e & \text{if } R_e \leqslant 0.3 \\ (24/R_e) \times (1 + 0.14R_e^{0.7}) & \text{if } 0.3 < R_e < 1000 \\ 0.445 & \text{if } R_e \geqslant 1000 \end{cases}$$

 R_e : Reynolds number \rightarrow measures importance of inertia versus viscosity

$$R_e = \frac{\rho_f dv}{\mu}$$
 (μ : viscosity of fluid)

Assume steady-state (velocity v constant), so $F_W = F_B + F_D$:

$$4d(\rho_p - \rho_f)g/3 - \rho_f v^2 C_D = 0$$

Drag coefficient:

$$C_D = \begin{cases} 24/R_e & \text{if } R_e \leqslant 0.3 \\ (24/R_e) \times (1 + 0.14R_e^{0.7}) & \text{if } 0.3 < R_e < 1000 \\ 0.445 & \text{if } R_e \geqslant 1000 \end{cases}$$

 R_e : Reynolds number \rightarrow measures importance of inertia versus viscosity

$$R_e = \frac{\rho_f dv}{\mu}$$
 (μ : viscosity of fluid)

Objective: write a function that calculates the settling velocity v

Solution: see function my_settling_velocity.m

Black body: a physical body that absorbs all incoming radiation (it is an idealization)

- A black body emits radiation at different wavelengths
- ▶ The emission spectrum (radiated energy as a function of wavelength λ) depends on the body's temperature T according to Planck's law:

Black body: a physical body that absorbs all incoming radiation (it is an idealization)

- A black body emits radiation at different wavelengths
- ▶ The emission spectrum (radiated energy as a function of wavelength λ) depends on the body's temperature T according to Planck's law:

$$E(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp[hc/(\lambda k_B T)] - 1}$$

Black body: a physical body that absorbs all incoming radiation (it is an idealization)

- ► A black body emits radiation at different wavelengths
- ▶ The emission spectrum (radiated energy as a function of wavelength λ) depends on the body's temperature T according to Planck's law:

$$E(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp[hc/(\lambda k_B T)] - 1}$$

The sun is almost a black body at $T \approx 6000$ K; it emits mostly in the visible

Temperature of Earth: \approx 273 K, it emits in the infrared that we cannot see

Objective: for a given temperature T, find the wavelength λ such that the energy emitted by a black body at that temperature is maximum

Objective: for a given temperature T, find the wavelength λ such that the energy emitted by a black body at that temperature is maximum

Method:

1. Determine the derivative $E'(\lambda)$ of $E(\lambda)$

Objective: for a given temperature T, find the wavelength λ such that the energy emitted by a black body at that temperature is maximum

Method:

- 1. Determine the derivative $E'(\lambda)$ of $E(\lambda)$
- 2. Find λ_{\max} such that $E'(\lambda_{\max}) = 0$ If E has a maximum at $\lambda = \lambda_{\max}$, then $E'(\lambda_{\max}) = 0$

Important: $E'(\lambda_{\max}) = 0$ does not imply that E has a maximum at $\lambda = \lambda_{\max}!$

Objective: for a given temperature T, find the wavelength λ such that the energy emitted by a black body at that temperature is maximum

Method:

- 1. Determine the derivative $E'(\lambda)$ of $E(\lambda)$
- 2. Find λ_{\max} such that $E'(\lambda_{\max}) = 0$ If E has a maximum at $\lambda = \lambda_{\max}$, then $E'(\lambda_{\max}) = 0$

Important:
$$E'(\lambda_{\max}) = 0$$
 does not imply that E has a maximum at $\lambda = \lambda_{\max}!$

3. Use the bisection or Newton-Raphson method to solve $E'(\lambda_{\rm max})=0$ for $\lambda_{\rm max}$

Objective: for a given temperature T, find the wavelength λ such that the energy emitted by a black body at that temperature is maximum

Method:

- 1. Determine the derivative $E'(\lambda)$ of $E(\lambda)$
- 2. Find λ_{\max} such that $E'(\lambda_{\max})=0$ If E has a maximum at $\lambda=\lambda_{\max}$, then $E'(\lambda_{\max})=0$

Important:
$$E'(\lambda_{\max}) = 0$$
 does not imply that E has a maximum at $\lambda = \lambda_{\max}!$

- 3. Use the bisection or Newton-Raphson method to solve $E'(\lambda_{\rm max})=0$ for $\lambda_{\rm max}$
- 4. Ideally (not done here), verify that E has indeed a maximum at $\lambda = \lambda_{\max}$

$$E(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp[hc/(\lambda k_B T)] - 1}$$

$$E'(\lambda) = -\frac{10hc^2}{\lambda^6} \frac{1}{\exp[hc/(\lambda k_B T)] - 1} + \frac{2hc^3}{\lambda^7 k_B T} \left(\frac{\exp[hc/(\lambda k_B T)]}{(\exp[hc/(\lambda k_B T)^2] - 1)^2} \right)$$

Solution: see my_black_body_wavelength.m

Note that, according to Wien's wavelength displacement law:

$$\lambda_{\max} = \frac{b}{T}$$
 with $b = 0.0028977729 \text{ m K}^*$

```
>>  temp = 300;
>> low = 1e-9;
>> high = 1e-5;
>> tol = 1e-3:
>> lambda max = my black body wavelength(temp, low, high, tol)
lambda max =
   9.6592e-06
>> % Compare our result to the result given by Wien's law
>> 0.0028977729 / temp
ans =
   9.6592e-06
```


Objective: Knowing the value of V (constant voltage) and the values of the resistances R_1 through R_7 , what are the values of the currents I_1 through I_6 ?

Method:

- 1. Write a system of 6 equations and six unknowns
- 2. Write the system in matrix form
- 3. Use Matlab to solve this system

$$I_1=I_2+I_3$$

$$I_1 = I_2 + I_3$$

 $I_1 = I_4 + I_5 + I_6$

$$I_1 = I_2 + I_3$$

$$I_1 = I_4 + I_5 + I_6$$

$$R_4 I_3 = (R_2 + R_3)I_2$$

$$I_1 = I_2 + I_3$$

$$I_1 = I_4 + I_5 + I_6$$

$$R_4 I_3 = (R_2 + R_3)I_2$$

$$R_5 I_4 + R_1 I_1 + (R_2 + R_3)I_2 = V$$

$$I_1 = I_2 + I_3$$

$$I_1 = I_4 + I_5 + I_6$$

$$R_4 I_3 = (R_2 + R_3)I_2$$

$$R_5 I_4 + R_1 I_1 + (R_2 + R_3)I_2 = V$$

$$R_6 I_5 = R_5 I_4$$

$$I_1 = I_2 + I_3$$

$$I_1 = I_4 + I_5 + I_6$$

$$R_4 I_3 = (R_2 + R_3)I_2$$

$$R_5 I_4 + R_1 I_1 + (R_2 + R_3)I_2 = V$$

$$R_6 I_5 = R_5 I_4$$

$$R_7 I_6 = R_6 I_5$$

$$I_{1} = I_{2} + I_{3}$$

$$I_{1} = I_{4} + I_{5} + I_{6}$$

$$R_{4}I_{3} = (R_{2} + R_{3})I_{2}$$

$$R_{5}I_{4} + R_{1}I_{1} + (R_{2} + R_{3})I_{2} = V$$

$$R_{6}I_{5} = R_{5}I_{4}$$

$$R_{7}I_{6} = R_{6}I_{5}$$

Step 2: Write the system in matrix form

Step 1: Write a system of 6 equations and six unknowns

$$I_{1} = I_{2} + I_{3}$$

$$I_{1} = I_{4} + I_{5} + I_{6}$$

$$R_{4}I_{3} = (R_{2} + R_{3})I_{2}$$

$$R_{5}I_{4} + R_{1}I_{1} + (R_{2} + R_{3})I_{2} = V$$

$$R_{6}I_{5} = R_{5}I_{4}$$

$$R_{7}I_{6} = R_{6}I_{5}$$

Step 2: Write the system in matrix form (tip: write unknowns first)

\[\begin{align*} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{align*} \]

$$I_{1} = I_{2} + I_{3}$$

$$I_{1} = I_{4} + I_{5} + I_{6}$$

$$R_{4}I_{3} = (R_{2} + R_{3})I_{2}$$

$$R_{5}I_{4} + R_{1}I_{1} + (R_{2} + R_{3})I_{2} = V$$

$$R_{6}I_{5} = R_{5}I_{4}$$

$$R_{7}I_{6} = R_{6}I_{5}$$

Step 2: Write the system in matrix form (tip: write unknowns first)

$$\begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 & -1 \\ 0 & -(R_2 + R_3) & R_4 & 0 & 0 & 0 \\ R_1 & (R_2 + R_3) & 0 & R_5 & 0 & 0 \\ 0 & 0 & 0 & -R_5 & R_6 & 0 \\ 0 & 0 & 0 & 0 & -R_6 & R_7 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ V \\ 0 \\ 0 \end{bmatrix}$$

Step 1: Write a system of 6 equations and six unknowns

Step 2: Write the system in matrix form (tip: write unknowns first)

$$\begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 & -1 \\ 0 & -(R_2 + R_3) & R_4 & 0 & 0 & 0 \\ R_1 & (R_2 + R_3) & 0 & R_5 & 0 & 0 \\ 0 & 0 & 0 & -R_5 & R_6 & 0 \\ 0 & 0 & 0 & 0 & -R_6 & R_7 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ V \\ 0 \\ 0 \end{bmatrix}$$

Step 3: Solve the system using Matlab (see my_circuit.m)