### Logistic Regression

UTKARSH GAIKWAD

CLASS STARTING SHARP AT 12:35 PM

#### Logistic Regression explained

- Logistic regression is a statistical method used to predict the probability of an event happening. It is commonly used when the outcome we want to predict is binary,multiclass, binary means it can have only two possible outcomes, like "yes" or "no," "admitted" or "not admitted," or "success" or "failure."
- In everyday life, we use probability to make predictions and assess risks. For example, weather forecasts often provide the probability of rain. If the forecast says there is a 30% chance of rain, it means there is a 30% probability that it will rain. So, out of ten similar days, we would expect it to rain on around three of them.

#### Logistic regression example





Predictions are in Probabilities (0-1)

### Example dataset for Logistic regressoin

| Exam Score (X) | Admitted (Y) |
|----------------|--------------|
| 65             | 1            |
| 80             | 1            |
| 55             | 0            |
| 75             | 1            |
| 60             | 0            |
| 90             | 1            |
| 85             | 1            |
| 50             | 0            |
| 70             | 1            |
| 45             | 0            |

$$Prob = \frac{1}{1 + e^{-(B0 + B1 * x)}}$$



#### Log Loss or Binary Cross Entropy

| В0 | 9.0396  |
|----|---------|
| B1 | 24.0996 |

$$logloss_{(\mathcal{N}=1)} = y \log(p) + (1-y) \log(1-p)$$

|            | am<br>re (X) | Admitted (Y) | X Scaled | Yprob | Log Loss    |  |
|------------|--------------|--------------|----------|-------|-------------|--|
| $\epsilon$ | 55           | 1            | -0.1651  | 0.99  | 0.002748105 |  |
| 8          | 30           | 1            | 0.8257   | 1     | 1.17359E-13 |  |
| 5          | 55           | 0            | -0.8257  | 0     | 8.34328E-06 |  |
| 7          | <b>'</b> 5   | 1            | 0.4954   | 1     | 3.36193E-10 |  |
| $\epsilon$ | 50           | 0            | -0.4954  | 0.05  | 0.023257867 |  |
| Ç          | 90           | 1            | 1.4863   | 1     | 0           |  |
| 8          | 35           | 1            | 1.1560   | 1     | 0           |  |
| 5          | 0            | 0            | -1.1560  | 0     | 2.91361E-09 |  |
| 7          | <b>7</b> 0   | 1            | 0.1651   | 1     | 9.62715E-07 |  |
| 4          | ļ5           | 0            | -1.4863  | 0     | 1.01746E-12 |  |

| 67.5    | Mean  |
|---------|-------|
| 15.1383 | Stdev |

Loss 0.0026015



# Predicting new students probability of admission

| В0 | 9.0396  |
|----|---------|
| B1 | 24.0996 |



```
Eg. student scored 62 marks X = 62
```

$$X_{scaled} = (62-67.5)/15.1383$$

$$X_{scaled} = -0.3633$$

$$Yprob = 1/(1+exp(-(B0+B1*x\_scaled))$$

Yprob = 
$$1/(1+exp(-9.0936-24.0996*-0.3633)$$

Yprob = 
$$0.5705$$

Prediction = 1 : Student is admitted

#### Confusion Matrix Model Evaluation



$$F_1 = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

## Thank you

PING ME ON SKYPE FOR ANY QUERIES