Transformer-based 3D Single Object Tracker

Akshay Kumar Sureddy

Roshini Pulishetty

Goal: Transformers as Feature Fusion Networks

Motivation: 3D Object Tracking for Self-Driving Cars

Robust methods for Real-time Object Localization

Limited Depth Information

Illumination Issues

Key Challenges:

- Point Cloud sparsity
- Non-Rigid Objects
- Permutation Invariance
- Real-time tracking
- Occlusions in Point Clouds

Related Work:

- SC3D
 - pioneer work using Siamese paradigm for object tracking for the first time.
 - Deterministic
- P2B
 - Point to Box relation within Siamese architecture.
 - End-to-end trainable
- OSP2B
 - Efficient network for parallelizing voting the regions and determining target-ness scores.

Pipeline

Pipeline - RPN (P2B)

Ref: P2B

Dataset

KITTI Dataset

- Velodyne 21 TrainingSequences
- 0-16 used for training
- 17-18 for validation
- 19-20 for testing

https://www.cvlibs.net/datasets/kitti/index.php

Results

Model	Precision/Success				
	Car	Pedestrian	Van	Cyclist	Mean
P2B	72.8 / 56.2	49.6 / 28.7	48.4 / 40.8	44.7 / 32.1	60.0 / 42.4
OSP2B	82.3 / 67.5	85.1 / 53.6	66.2 / 56.3	90.5 / 65.6	82.3 / 60.5
LTTR	77.1 / 65.0	56.8 / 33.2	48.4 / 35.8	89.9 / 66.2	65.8 / 48.7
Ours	72.0 / 56.8	63.9 / 35.7	52.8 / 45.6	46.5 / 34.1	66.0 / 45.5

Success: Area Under the curve (AUC) determined by comparing the bounding box overlap threshold with the percentage of correctly tracked frames.

Precision: Percentage of frames where the tracked object's centers of the are within 2 meter from the groundtruth

Shortcomings

Car

Sparse Point Clouds

Van

Occluded Point Clouds

Ped

Сус

Sparse

Occluded

Good

Sample Predictions

Sample Predictions

Future Improvements

Point Cloud Completion for Occlusions and Sparse Point Clouds

Using Image information (2D and 3D)