Bruno

Materia escura ultraleve

Francisco Parracho

Ultralight Dark Matter

Bruno Francisco Parracho Materia escura ultraleve

Ultralight Dark Matter

"Life is about the little things"

Bruno Francisco Parracho Materia escura ultraleve

Ultralight Dark Matter

Projeto apresentado à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Licenciado em Fisica, realizada sob a orientação científica do Doutor António de Aguiar e Pestana de Morais, Investigador do Departamento de Física da Universidade de Aveiro, e do Doutor Filipe Ferreira de Freitas, Investigador do Departamento de Física da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Manuel António dos Santos Barroso

Professor auxiliar

vogais / examiners committee Prof. Doutor António de Aguiar e Pestana de Morais

Investigador

Prof. Doutor João Pedro Trancoso Gomes Rosa

Arguente

agradecimentos / acknowledgements

Agradecimentos

Palavras Chave

Fenomenologia, Matéria escura, Bosão pseudo-Nambu-Golstone, Mecanismo de desalinhamento, Taxa de interação

Resumo

Neste trabalho, foi estudado uma extensão do Modelo Padrão que permite o surgimento de um Bosão pseudo-Nambu-Golstone (pNGB) com uma massa na ordem dos $\mathcal{O}(10^{-20}) \mathrm{eV}$, a partir de uma quebra de simetria espontânea e explicita. Além disso, foi mostrado como o pNGB se comporta termo-dinamicamente com o banho térmico do universo primordial e foi concluído que é um bom candidato a Matéria escura quando o ângulo de mistura, $\alpha \lesssim 10^{-7}$, e com o mecanismo de desalinhamento, foi possível obter uma densidade de relíquia coincidente com a ME

Keywords

Phenomenology, Dark Matter, pseudo-Goldstone Boson, Misalignment mechanism, Interaction rate

Abstract

In this work we studied an extension of the standard model that permitted the appearance of a pseudo-Nambu-Goldstone Boson (pNGB) with mass in the order of $\mathcal{O}(10^{-20})\mathrm{eV}$, from an explicit and spontaneous symmetry breaking. Furthermore, we show how pNGB would behave thermodynamically with the thermal bath of the primordial universe and concluded it's a viable candidate for Dark Matter when the mixing angle, $\alpha \lesssim 10^{-7}$, and with the misalignment mechanism, we were able to obtain a relic density matching that of the DM.