CS101 Introduction to computing

Floating Point Numbers

A. Sahu and S. V.Rao

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- Need to floating point number
- Number representation : IEEE 754
- Floating point range
- Floating point density
 - –Accuracy
- Arithmetic and Logical Operation on FP
- Conversions and type casting in C

Need to go beyond integers

- integer 7
- rational 5/8
- real $\sqrt{3}$
- complex 2-3i

Extremely large and small values:

- distance pluto sun = $5.9 \ 10^{12} \ \text{m}$
- mass of electron = 9.1×10^{-28} gm

Representing fractions

Integer pairs (for rational numbers)

5 = 5/8

Strings with explicit decimal point

 2
 4
 7
 .
 0
 9

Implicit point at a fixed position

010011010110001011

Floating point

fraction x base power

Numbers with binary point

$$101.11 = 1x2^{2} + 0x2^{1} + 1x2^{0} + . +1x2^{-1} + 1x2^{-2}$$
$$= 4 + 1 + . + 0.5 + 0.25 = 5.75_{10}$$

$$0.6 = 0.1001100110011001...$$

$$.6 \times 2 = 1 + .2$$

$$.2 \times 2 = 0 + .4$$

$$.4 \times 2 = 0 + .8$$

$$.8 \times 2 = 1 + .6$$

Numeric Data Type

char, short, int, long int

- char: 8 bit number (1 byte=1B)
- short: 16 bit number (2 byte)
- int: 32 bit number (4B)
- long int : 64 bit number (8B)

float, double, long double

- float : 32 bit number (4B)
- double: 64 bit number (8B)
- long double: 128 bit number (16B)

Numeric Data Type

Unsigned int

int

Numeric Data Type

char, short, int, long int

- We have : Signed and unsigned version
- char (8 bit)
 - char: -128 to 127, we have +0 and -0 ☺ ☺ Fun
 - unsigned char: 0 to 255
- int: -2^{31} to 2^{31} -1
- unsigned int: 0 to 2^{32} -1

float, double, long double

- For fractional, real number data
- All these numbered are signed and get stored in different format

FP numbers with base = 10

$$(-1)^{S} \times F \times 10^{E}$$

S = Sign

F = Fraction (fixed point number) usually called **Mantissa** or **Significand**

E = Exponent (positive or negative integer)

- **Example** 5.9×10^{12} , -2.6×10^3 9.1×10^{-28}
- Only one non-zero digit left to the point

FP numbers with base = 2 $(-1)^S \times F \times 2^E$

S = Sign

F = Fraction (fixed point number) usually called **Mantissa** or **Significand**

E = Exponent (positive or negative integer)

- How to divide a word into S, F and E?
- How to represent S, F and E?
- **Example 1.0101x2**¹², -1.11012x10³ 1.101 x 2^{-18}
- Only one non-zero digit left to the point: default it will be 1 incase of binary
 - So no need to store this

IEEE 754 standard

Single precision numbers

Double precision numbers

Representing F in IEEE 754

Single precision numbers

23
1. 110101101011000101101101
F

Double precision numbers

20+32
1. 101101011000101101101
F

101100010110110010110101110101101

Only one non-zero digit left to the point: default it will be 1 incase of binary. So no need to store this bit

Value Range for F

Single precision numbers

$$1 < F < 2 - 2^{-23}$$

or
$$1 \le F < 2$$

Double precision numbers

$$1 < F < 2 - 2^{-52}$$

or

$$1 \leq F < 2$$

These are "normalized".

Representing E in IEEE 754

■ Single precision numbers

```
8
10110101
E bias 127
```

■ Double precision numbers

```
11
10110101110
E bias 1023
```

Floating point values

- E=E'-127, $V=(-1)^s \times 1$. M $\times 2^{E'-127}$
- $V = 1.1101... \times 2^{(40-127)} = 1.1101... \times 2^{-87}$
- Single precision numbers

Floating point values

- E=E'-127, $V=(-1)^s \times 1$. M $\times 2^{E'-127}$
- V= -1.1 x 2 $^{(126-127)}$ =-1.1 x 2⁻¹ =-0.11x2⁰ = -0.11 = -11/2²₁₀=-3/4₁₀=-0.75₁₀
 - Single precision numbers

Value Range for E

- Single precision numbers
 - $-126 \le E \le 127$

(all 0's and all 1's have special meanings)

- Double precision numbers
 - $-1022 \le E \le 1023$

(all 0's and all 1's have special meanings)

Floating point demo applet on the web

 https://www.hschmidt.net/FloatConverter/IEEE754.html

Google "Float applet" to get the above link

Overflow and underflow

```
largest positive/negative number (SP) = \pm (2 - 2^{-23}) \times 2^{127} \cong \pm 2 \times 10^{38}
smallest positive/negative number (SP) = \pm 1 \times 2^{-126} \cong \pm 2 \times 10^{-38}
```

Largest positive/negative number (DP) =
$$\pm (2 - 2^{-52}) \times 2^{1023} \cong \pm 2 \times 10^{308}$$

Smallest positive/negative number (DP) = $\pm 1 \times 2^{-1022} \cong \pm 2 \times 10^{-308}$

Density of int vs float

Float: 32 bit

- Number of number can be represented
 - Both the cases (float, int): 2³²
- Range
 - int (-2³¹ to 2³¹-1)
 - float Large $\pm (2 2^{-23}) \times 2^{127}$ Small $\pm 1 \times 2^{-126}$
- 50% of float numbers are **Small** (less then ± 1)

Density of Floating Points

- 256 Persons in Room of Capacity 256 (Range)
 8 bit integer: 256/256 = 1
- 256 person in Room of Capacity 200000 (Range)
 - 1st Row should be filled with 128 person
 - -50% number with negative power are -1 < N > +1
- Density of Floating point number is
 - Dense towards 0

Expressible Numbers(int and float)

Distribution of Values

- 6-bit IEEE-like format
 - -e = 3 exponent bits
 - -f = 2 fraction bits
 - Bias is 3

<u>Distribution of Values</u> (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Density of 32 bit float SP

- Fraction/mantissa is 23 bit
- Number of different number can be stored for particular value of exponent
 - Assume for exp=1, 2^{23} =8x1024x1024 \approx 8x10⁶
 - Between 1-2 we can store 8x10⁶ numbers

Similarly

- for exp=2, between 2-4, 8x10⁶ number of number can be stored
- for exp=3, between 4-8, 8x10⁶ number of number can be stored
- for exp=4, between 8-16, 8x10⁶ number of number can be stored

Density of 32 bit float SP

- Similarly
 - for exp=23, between 2²²-2²³, 8x10⁶ number of number can be stored
 - for exp=24, between 2²³-2²⁴, 8x10⁶ number of number can be stored
 - for exp=25, between 2²⁴-2²⁵, 8x10⁶ number of number can be stored
 - 2^{24} - 2^{25} >8 x10⁶
 - **—** ...
 - for exp=127, between 2¹²⁶-2¹²⁷, 8x10⁶ number of number can be stored

BAD

Density of 32 bit float SP

• $2^{23}=8\times1024\times1024\approx8\times10^{6}$

Numbers in float format

largest positive/negative number (SP) =

$$\pm (2 - 2^{-23}) \times 2^{127} \cong \pm 2 \times 10^{38}$$

Second largest number :

$$\pm (2 - 2^{-22}) \times 2^{127}$$

Difference Largest FP - 2nd largest FP

$$= (2^{-23}-2^{-22})x2^{127}=2x2^{105}=2x10^{32}$$

Smallest positive/negative number (SP) = $\pm 1 \times 2^{-126} \cong \pm 2 \times 10^{-38}$

Addition/Sub of Floating Point

Step I: Align Exponents

Step 2: Add Mantissas

Step 3: Normalize

Floating point operations: ADD

• Add/subtract $A = A1 \pm A2$ [(-1)^{S1} x F1 x 2^{E1}] \pm [(-1)^{S2} x F2 x 2^{E2}]

suppose E1 > E2, then we can write it as

 $[(-1)^{S1} \times F1 \times 2^{E1}] \pm [(-1)^{S2} \times F2' \times 2^{E1}]$

where $F2' = F2 / 2^{E1-E2}$,

The result is

$$(-1)^{S1} \times (F1 \pm F2') \times 2^{E1}$$

It may need to be normalized

 $3.2 \times 10^{8} \pm 2.8 \times 10^{6}$

 $320 \times 10^{6} \pm 2.8 \times 10^{6}$

322.8 x 10⁶

 3.228×10^8

Testing Associatively with FP

```
• X= -1.5x10<sup>38</sup>, Y=1.5x10<sup>38</sup>, z=1000.0

• X+(Y+Z) = -1.5x10<sup>38</sup> + (1.5x10<sup>38</sup> + 1000.0)

= -1.5x10<sup>38</sup> + 1.5x10<sup>38</sup>

=0

• (X+Y)+Z = (-1.5x10<sup>38</sup> + 1.5x10<sup>38</sup>) + 1000.0

= 0.0 + 1000.0

=1000
```

Multiply Floating Point

For 32 bit SP Float: one 23 bit multiplication and 8 bit addition

For 32 bit int: one 32 bit multiplication

Above example: 3.2x5.8 is simpler, also 6+8 is also simpler as compared to 32 bit multiplication³³

Floating point operations

Multiply

$$[(-1)^{S1} \times F1 \times 2^{E1}] \times [(-1)^{S2} \times F2 \times 2^{E2}]$$

= $(-1)^{S1 \oplus S2} \times (F1 \times F2) \times 2^{E1 + E2}$
Since $1 \le (F1 \times F2) < 4$,
the result may need to be normalized

Floating point operations

Divide

$$[(-1)^{S1} \times F1 \times 2^{E1}] \div [(-1)^{S2} \times F2 \times 2^{E2}]$$

= $(-1)^{S1 \oplus S2} \times (\mathbf{F1} \div \mathbf{F2}) \times 2^{E1-E2}$
Since .5 < $(F1 \div F2)$ < 2,
the result may need to be normalized

(assume $F2 \neq 0$)

Float and double

- Float : single precision floating point
- Double : Double precision floating point
- Floating points operation are slower
 - − But not in newer PC © ©
- Double operation are even slower

Floating point Comparison

- Three phases
- Phase I: Compare sign (give result)
- Phase II: If (sign of both numbers are same)
 - Compare exponents and give result
 - 90% of case it fall in this categories
 - Faster as compare to integer comparison:
 Require only 8 bit comparison for float and 11 bit for double (Example: sorting of float numbers)
- Phase III: If (both sign and exponents are same)
 - compare fraction/mantissa

Storing and Printing Floating Point

```
float x=145.0,y;
y=sqrt(sqrt((x)));
x=(y*y)*(y*y);
printf("\nx=%f",x);
```

```
float x=1.0/3.0;
if ( x==1.0/3.0)
  printf("YES");
else
  printf("NO");
```

Many Round off cause loss of accuracy

x=145.000015

Value stored in x is not exactly same as 1.0/3.0

One is before round of and other (stored x) is after round of

Storing and Printing Floating Point

```
float a=34359243.5366233;
float b=3.5366233;
float c=0.00000212363;
printf("\na=%8.6f, b=%8.6f
    c=%8.12f\n", a, b, c);
```

a=34359243.000000

b=3.5366233 c=0.000002123630 Big number with small fraction can not combined

Storing and Printing Floating Point

```
//15 S digits to store
float a=34359243.5366233;
//8 S digits to store
float b=3.5366233;
//6 S digits to store
float c=0.00000212363;
```

Thumb rule: 8 to 9 significant digits of a number can be stored in a 32 bit number

Thanks