

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-9943/15-01-02

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: + 49 681 5 98 - 9075 Fax: Internet: http://www.cetecom.com ict@cetecom.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the

Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing

procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

Jaguar Land Rover Limited

Abbey Road, Whitley

Coventry, CV3 4LF / UNITED KINGDOM

+44 (0) 1926 924 130 Phone:

Fax.

Mr. Stuart Vaughan Contact:

svaugha3@jaguarlandrover.com e-mail:

+44 (0) 1926 924 130 Phone:

Manufacturer

Jaguar Land Rover Limited

Abbey Road, Whitley

Coventry, CV3 4LF / UNITED KINGDOM

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and RSS - 247 Issue 1

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: **Infotainment Master Controller**

Model name: IMC1.0 US FCC ID: 2AE5I-IMC10US IC: 2145A-IMC10US

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: WLAN (DSSS/b-mode; ODFM/g-; n HT20- & n HT40-mode)

External PCB BT/WIFI dualband antennas (JLR NGI) Antenna: Power supply: 13.5 V DC by external power supply (vehicular use)

-/-°C to -/-°C Temperature range:

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:

Marco Bertolino Lab Manager

Radio Communications & EMC

Christoph Schneider **Testing Manager** Radio Communications & EMC

Table of contents

1	Table of contents2					
2		ral information				
	2.1	Notes and disclaimer	4			
	2.2	Application details				
3	Test :	standard/s				
	3.1	Measurement guidance				
4	_	environment				
5		item				
•	5.1	Additional information				
6	•	laboratories sub-contracted				
7		ription of the test setup				
	7.1	Shielded semi anechoic chamber				
	7.2 7.3	Shielded fully anechoic chamberRadiated measurements > 12.75 GHz				
	7.3 7.4	Conducted measurements				
8	Meas	urement uncertainty				
9		ence of testing				
	9.1	Sequence of testing 9 kHz to 30 MHz				
	9.2	Sequence of testing 30 MHz to 1 GHz				
	9.3	Sequence of testing 1 GHz to 12.75 GHz				
	9.4	Sequence of testing above 12.75 GHz	14			
10	Sui	mmary of measurement results	15			
11	Add	ditional comments	16			
12	Ме	asurement results	17			
	12.1	Antenna gain	17			
	12.2	Identify worst case data rate				
	12.3	Usability of the module				
	12.4	Band edge compliance radiated				
	12.5	Spurious emissions radiated below 30 MHz				
	12.6	Spurious emissions radiated 30 MHz to 1 GHz				
	12.7	Spurious emissions radiated above 1 GHz				
13	Ob	servations	63			
Anr	nex A	Document history	63			
Anr	nex B	Further information	63			
۸nr	ov C	Accreditation Cortificate	6/			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2015-05-23
Date of receipt of test item: 2015-05-21
Start of test: 2015-05-21
End of test: 2015-05-23
Person(s) present during the test: Mr. Knut Schrader

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

3.1 Measurement guidance

DTS: KDB 558074 D01	v03r03	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

T_{nom} +22 °C during room temperature tests

 $\label{eq:Tmax} T_{max} \quad \mbox{ No tests under extreme conditions required.}$

T_{min} No tests under extreme conditions required.

Relative humidity content: 44 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 13.5 V DC by external power supply (vehicular use)

Power supply: V_{max} No tests under extreme conditions required.

V_{min} No tests under extreme conditions required.

5 Test item

Kind of test item	:	Infotainment Master Controller	
Type identification	:	IMC1.0_US	
PMN	:	Infotainment System	
HMN	:	n/a	
HVIN	:	IMC1.0_US	
FVIN	:	n/a	
S/N serial number	:	0003135	
HW hardware status	:	7612053073	
SW software status	:	1.12.3.7 LSV: Vanilla	
Frequency band	:	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2412 MHz; highest channel 2462 MHz)	
Type of radio transmission :		DCCC OFFIN	
Use of frequency spectrum	:	DSSS, OFDM	
Type of modulation	:	BPSK, QPSK, 16 – QAM, 64 – QAM	
Number of channels	:	11	
Antenna	:	External PCB BT/WIFI dualband antennas (JLR NGI)	
Power supply	:	13.5 V DC by external power supply (vehicular use)	
Temperature range	:	-/-°C to -/-°C	

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-9943/15-01-12_AnnexA

1-9943/15-01-12_AnnexB 1-9943/15-01-12_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $SS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB\mu V/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	g		
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	НР	2920A04466	300000580	ne		
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $SS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C, D	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	C, D	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
3	A, B, C, D	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	A, B, C, D	Switch / Control Unit	3488A	НР	*	300000199	ne		
5	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
6	C, D	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
7	D	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev		
8	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
9	A, B, C, D	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016

7.3 Radiated measurements > 12.75 GHz

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{SS[dB\mu V/m]} = 40.0[dB\mu V/m] + (-60.1)[dB] + 36.74[dB\mu V/m] = 16.64[dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2013	22.07.2015
2	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	k	19.07.2013	19.07.2015
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
4	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
6	А	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
7	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

 $\overline{OP \text{ [dBm]}} = 6.0 \text{ [dBm]} + (11.7) \text{ [dB]} = 17.7 \text{ [dBm]} (58.88 \text{ mW})$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
2	А	Power Supply 0- 20V, 0-5A	6632B	Agilent Technologies	GB42110541	400000562	vIKI!	10.01.2013	10.01.2016
3	А	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor	Agilent Technologies	2V2403033A45 23	300004589	ne	-/-	-/-
4	А	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	2V2403033A45 23	300004590	ne	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
7	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	Batch no. 127377	400001186	ev	-/-	-/-

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Power spectral density	± 1.5 dB				
DTS bandwidth	± 100 kHz (depends on the used RBW)				
Occupied bandwidth	± 100 kHz (depends on the used RBW)				
Maximum output power	± 1.5 dB				
Detailed spurious emissions @ the band edge - conducted	± 1.5 dB				
Band edge compliance radiated	± 3 dB				
TX spurious emissions conducted	± 3 dB				
TX spurious emissions radiated below 30 MHz	± 3 dB				
TX spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.3 Sequence of testing 1 GHz to 12.75 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions

- The final measurement will be performed with minimum the six highest peaks according the requirements of the ANSI C63.4.
- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of
 the premeasurement with marked maximum final measurements and the limit will be stored.

9.4 Sequence of testing above 12.75 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 0.5 meter
- The EUT was set into operation.

Premeasurement

• The antenna is moved spherical over the EUT in different polarisations of the antenna.

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2015-07-27	Delta tests according customer demand!

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	Antenna gain	-/-	Nominal	Nominal	DSSS	\boxtimes				complies
§15.247(e) RSS - 247 / 5.2 (2)	Power spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (1)	DTS bandwidth – 6 dB bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output power	KDB 558074 DTS clause: 9.2.2.5	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	DSSS OFDM	\boxtimes				complies
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				complies
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				complies
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				complies
§15.109 RSS-Gen	RX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX / idle	\boxtimes				complies
§15.109 RSS-Gen	RX spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	RX / idle	\boxtimes				complies
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM			\boxtimes		Battery powered only!

Note: C = Complies; NC = Not complies; NA = Not applicable; NP = Not performed

Reference documents: Main report: NTS (National Technical System) – Silicon Valley

Report identification: R93647

Date: 2013-10-25

Special test descriptions: Delta tests according customer demand!

Configuration descriptions: None

Additional comments

Test mode:

No test mode available.

Iperf was used to ping another device with the largest support packet

size

Special software is used.

EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

Operating mode 1 (single antenna)

- Equipment with 1 antenna,
- Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,
- Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
- ☐ Operating mode 2 (multiple antennas, no beamforming)
 - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.

Operating mode 3 (multiple antennas, with beamforming)

 Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.
 In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the DSSS mode is used.

Measurement parameters:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	3 MHz		
Video bandwidth:	3 MHz		
Trace mode:	Max hold		
Test setup:	See sub clause 7.2 - B		
Measurement uncertainty:	See sub clause 8		

Limits:

FCC	IC			
Antenna Gain				
6 dBi				

Results: (Antenna with a 2 meter antenna cable)

T _{nom}	V _{nom}	lowest channel 2412 MHz	middle channel 2437 MHz	highest channel 2462 MHz
Gain [dBi] Measured		-0.58	-1.21	-0.99

Verdict: complies

12.2 Identify worst case data rate

Results:

Modulation	Modulation scheme / bandwidth
DSSS / b – mode	1 Mbit/s*
OFDM / g – mode	6 Mbit/s*
OFDM / n HT20 – mode	MCS0*
OFDM / n HT40 – mode	MCS0*

^{*} Note: data rate added from main report page 30 & 31

12.3 Usability of the module

Measurement:

This test case is a pre-check to show the behavior of the module and compare it with the main report.

Measurement parameters:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	≥ occupied bandwidth		
Video bandwidth:	≥ RBW		
Trace mode:	Max hold		
Test setup:	See sub clause 7.4 - A		
Measurement uncertainty:	See sub clause 8		

Results:

Modulation	output power main report	output power used module	
DSSS / b – mode	15.5*	15.1	
OFDM / g – mode	17.8*	18.0	
OFDM / n HT20 – mode	20.7*	19.9	
OFDM / n HT40 – mode	20.5*	19.5	

^{*} Note: results added from main report page 42 & 43

12.4 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to channel 1 for the lower restricted band and to channel 11 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement:

Measurement parameter for peak measurements			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	1 MHz		
Span:	See plot!		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 - C		
Measurement uncertainty:	See sub clause 8		

Measurement parameter for average measurements			
According to DTS clause: 13.3.2			
Detector: RMS			
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz		
Span:	2 MHz		
Trace mode:	RMS Average over 101 sweeps		
Test setup: See sub clause 7.2 - C			
Measurement uncertainty: See sub clause 8			

Limits:

FCC	IC				
Band Edge Compliance Radiated					

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBµV/m Peak 54 dBµV/m AVG

Results:

Scenario	Band Edge Compliance Conducted [dB]		
Modulation	DSSS	OFDM / SISO	OFDM / MIMO
Lower band edge	> 20 dB (Peak)	> 20 dB (Peak)	> 20 dB (Peak)
	> 10 dB (AVG)	> 10 dB (AVG)	> 10 dB (AVG)
Upper band edge	> 20 dB (Peak)	> 20 dB (Peak)	> 20 dB (Peak)
	> 10 dB (AVG)	> 10 dB (AVG)	> 10 dB (AVG)

Verdict: complies

Plots: DSSS; peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

Plots: OFDM SISO; peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

Plots: OFDM MIMO; peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

12.5 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 6. This measurement is representative for all channels and modes. If peaks are found channel 1 and channel 11 will be measured too. The measurement is performed with the data rate producing the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

Measurement parameter								
Detector:	Peak / Quasi Peak							
Sweep time:	Auto							
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span:	9 kHz to 30 MHz							
Trace mode:	Max Hold							
Test setup:	See sub clause 7.2 - A							
Measurement uncertainty:	See sub clause 8							

Limits:

FCC			IC	
-	Z			
Frequency (MHz)	Field Strength (dBµV/m)		Measurer	ment distance
0.009 – 0.490	2400/F	F(kHz)		300
0.490 – 1.705	24000/	F(kHz)		30
1.705 – 30.0	3	0		30

Results:

TX Spurious Emissions Radiated < 30 MHz [dBμV/m]								
F [MHz] Detector Level [dBµV/m]								
All detected peaks are more than 20 dB below the limit.								

Verdict: complies

Plots: DSSS

Plot 1: 9 kHz to 30 MHz, low channel

Plot 2: 9 kHz to 30 MHz, mid channel

Plot 3: 9 kHz to 30 MHz, high channel

Plots: OFDM SISO

Plot 1: 9 kHz to 30 MHz, low channel

Plot 2: 9 kHz to 30 MHz, mid channel

Plot 3: 9 kHz to 30 MHz, high channel

Plots: OFDM MIMO

Plot 1: 9 kHz to 30 MHz, low channel

Plot 2: 9 kHz to 30 MHz, mid channel

Plot 3: 9 kHz to 30 MHz, high channel

12.6 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measureme	Measurement parameter							
Detector:	Peak / Quasi Peak							
Sweep time:	Auto							
Resolution bandwidth:	120 kHz							
Video bandwidth:	3 x RBW							
Span:	30 MHz to 1 GHz							
Trace mode:	Max Hold							
	☐ DSSS b – mode							
	☐ OFDM g – mode							
Measured modulation	○ OFDM n HT20 – mode							
	☐ OFDM n HT40 – mode							
	□ RX / Idle – mode							
Test setup:	See sub clause 7.1 - A							
Measurement uncertainty:	See sub clause 8							

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC	IC
TX Spurious Em	nissions Radiated

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

Verdict: complies

Plot: DSSS

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	POI	(deg)	(dB)
34.024500	14.95	30.00	15.05	1000.0	120.000	170.0	٧	286	13.7
40.575600	11.81	30.00	18.19	1000.0	120.000	170.0	V	345	14.0
56.490150	12.58	30.00	17.42	1000.0	120.000	101.0	V	65	11.5
82.831350	17.93	30.00	12.07	1000.0	120.000	170.0	V	135	8.8
122.144850	13.75	33.50	19.75	1000.0	120.000	170.0	V	223	10.0
196.458150	16.63	33.50	16.87	1000.0	120.000	101.0	V	174	11.5

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.808000	11.00	30.00	19.00	1000.0	120.000	170.0	V	289	14.0
56.632950	19.26	30.00	10.74	1000.0	120.000	98.0	V	289	11.4
82.357950	18.78	30.00	11.22	1000.0	120.000	170.0	٧	130	8.7
123.227250	11.83	33.50	21.67	1000.0	120.000	170.0	٧	247	9.9
177.715800	18.19	33.50	15.31	1000.0	120.000	98.0	٧	354	10.2
597.229200	25.81	36.00	10.19	1000.0	120.000	98.0	٧	180	20.6

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.021950	16.63	30.00	13.37	1000.0	120.000	101.0	V	128	13.7
55.732500	18.61	30.00	11.39	1000.0	120.000	170.0	V	277	11.7
81.687000	17.48	30.00	12.52	1000.0	120.000	101.0	V	88	8.5
177.549150	19.34	33.50	14.16	1000.0	120.000	98.0	V	355	10.2
514.596150	15.36	36.00	20.64	1000.0	120.000	101.0	V	128	18.9
595.999500	26.25	36.00	9.75	1000.0	120.000	101.0	V	177	20.6

Plot: OFDM SISO

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.053300	15.49	30.00	14.51	1000.0	120.000	101.0	V	355	13.7
58.958850	14.17	30.00	15.83	1000.0	120.000	98.0	٧	234	10.8
81.636150	17.26	30.00	12.74	1000.0	120.000	101.0	٧	135	8.5
122.567850	12.21	33.50	21.29	1000.0	120.000	98.0	٧	192	10.0
178.018350	19.97	33.50	13.53	1000.0	120.000	98.0	٧	349	10.3
689.154300	19.13	36.00	16.87	1000.0	120.000	170.0	Н	146	21.4

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
55.388400	13.97	30.00	16.03	1000.0	120.000	101.0	V	346	11.7
81.669750	17.87	30.00	12.13	1000.0	120.000	170.0	V	72	8.5
122.152950	12.13	33.50	21.37	1000.0	120.000	101.0	V	212	10.0
175.643550	16.17	33.50	17.33	1000.0	120.000	98.0	V	352	10.1
217.922400	10.97	36.00	25.03	1000.0	120.000	98.0	V	27	12.3
597.207300	25.19	36.00	10.81	1000.0	120.000	170.0	V	170	20.6

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
60.663150	13.52	30.00	16.48	1000.0	120.000	170.0	V	20	10.4
82.344150	16.06	30.00	13.94	1000.0	120.000	101.0	٧	107	8.7
178.275450	8.12	33.50	25.38	1000.0	120.000	170.0	V	195	10.3
203.218050	12.69	33.50	20.81	1000.0	120.000	101.0	V	84	11.8
707.898150	19.04	36.00	16.96	1000.0	120.000	170.0	Н	84	21.7
920.035350	20.82	36.00	15.18	1000.0	120.000	98.0	Н	249	24.2

Plot: OFDM MIMO

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.006200	17.31	30.00	12.69	1000.0	120.000	170.0	V	42	13.7
40.328850	12.01	30.00	17.99	1000.0	120.000	101.0	٧	187	14.0
55.804050	19.29	30.00	10.71	1000.0	120.000	170.0	٧	329	11.6
82.808100	16.89	30.00	13.11	1000.0	120.000	101.0	٧	203	8.8
165.456450	17.21	33.50	16.29	1000.0	120.000	98.0	٧	97	9.4
595.981200	25.11	36.00	10.89	1000.0	120.000	98.0	٧	160	20.6

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.837650	9.77	30.00	20.23	1000.0	120.000	101.0	٧	31	13.9
82.794450	18.74	30.00	11.26	1000.0	120.000	101.0	٧	152	8.8
166.328100	11.39	33.50	22.11	1000.0	120.000	101.0	٧	90	9.5
177.823650	17.34	33.50	16.16	1000.0	120.000	98.0	٧	342	10.2
595.966050	24.56	36.00	11.44	1000.0	120.000	170.0	V	152	20.6
901.047600	20.86	36.00	15.14	1000.0	120.000	170.0	Н	359	24.1

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
58.443600	9.94	30.00	20.06	1000.0	120.000	101.0	٧	0	11.0
62.866950	11.75	30.00	18.25	1000.0	120.000	170.0	٧	254	9.9
82.782750	18.04	30.00	11.96	1000.0	120.000	101.0	٧	141	8.8
175.292700	16.80	33.50	16.70	1000.0	120.000	98.0	٧	334	10.1
197.026200	14.91	33.50	18.59	1000.0	120.000	170.0	V	151	11.5
597.230100	25.48	36.00	10.52	1000.0	120.000	101.0	V	185	20.6

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.029750	17.92	30.00	12.08	1000.0	120.000	101.0	٧	277	13.7
48.206400	10.40	30.00	19.60	1000.0	120.000	104.0	٧	292	13.1
58.427400	10.84	30.00	19.16	1000.0	120.000	170.0	٧	54	11.0
82.827300	18.73	30.00	11.27	1000.0	120.000	170.0	٧	152	8.8
174.058650	16.72	33.50	16.78	1000.0	120.000	98.0	٧	350	10.0
580.754100	17.09	36.00	18.91	1000.0	120.000	101.0	V	269	20.2

12.7 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measureme	nt parameter
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 x RBW
Span:	1 GHz to 26 GHz
Trace mode:	Max Hold
	☑ DSSS b – mode
	☐ OFDM g – mode
Measured modulation	☑ OFDM n HT20 – mode
	☑ OFDM n HT40 – mode
	□ RX / Idle – mode
Test setup:	See sub clause 7.2 - D
	See sub clause 7.3 - A
Measurement uncertainty:	See sub clause 8

Limits:

FCC	IC
TX Spurious Em	nissions Radiated
radiator is operating, the radio frequency power that is produtat in the 100 kHz bandwidth within the band that contains to conducted or a radiated measurement. Attenuation below the	which the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 30 dB below the highest level of the desired power, based on either an RF e general limits specified in Section 15.209(a) is not required. Deands, as defined in §15.205(a), must also comply with the of(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
Above 960	54.0	3

Results: DSSS

	TX Spurious Emissions Radiated [dBμV/m]											
	2412 MHz			2437 MHz			2462 MHz					
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	Level [dBµV/m]						
1500	Peak	45.33	1500	Peak	45.33	1500	45.33					
3000	Peak	49.63	3000	Peak	49.63	3000	Peak	49.63				
All detected peak emissions are below the average limit.				peak emissior e average lim			d peak emission he average lin					

Verdict: complies

Results: OFDM SISO

	TX Spurious Emissions Radiated [dBμV/m]											
	2412 MHz			2437 MHz			2462 MHz					
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]				
	All detected peak emissions are below the average limit.			peak emissior e average limi			peak emissior ne average limi					

Verdict: complies

Results: OFDM MIMO

	TX Spurious Emissions Radiated [dBμV/m]											
	2422 MHz			2437 MHz			2452 MHz					
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Level [dBµV/m]					
II.	All detected peak emissions are below the average limit.			peak emissior e average limi			peak emissior ne average limi					

Verdict: complies

Results: RX / idle - mode

TX Spurious Emissions Radiated [dBμV/m]			
F [MHz]	Detector	Level [dВµV/m]	
All detected peak emissions are below the average limit.			

Verdict: complies

Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 11:58:22

Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:35:27

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: Middle channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:00:11

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:36:38

Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: Highest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:01:43

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:37:27

Plots: OFDM SISO

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:06:46

Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:40:37

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: Middle channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:39:41

Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: Highest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:04:05

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 12:38:32

Plots: OFDM MIMO

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:32:55

Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:22:29

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: Middle channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:32:11

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:23:53

Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: Highest channel, 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:31:23

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:29:51

Plots: RX / idle mode

Plot 1: 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 12.75 GHz to 18 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:33:29

Plot 3: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 21.MAY.2015 14:21:33

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-07-27

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN Product marketing name HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Annex C **Accreditation Certificate**

Front side of certificate

Back side of certificate

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, II.AC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Darhtzebunden: Kommunikation einschileßlich xDSL
Vol P und DECT
Akustik
Funk einschileßlich WLAN
Short Range Devices (SRD)
RFID
WIMAX und Richtfunk
Mobiltunk (SSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschiließlich Automotive
Produktsicherheit
SAR und Hearing Aid Compatibility (HAC)
Umweltsimulation
Smart Card Terminals

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07.03.2014 mit der Akkreditierungsnummen 0-Pt-17076-01 und ist gillig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblat. Is und der fulgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurlaunds benanf der verhanigen schriftlichen Zusämmung der Deutsche Akkrediterungsstelle Grabh (DAMS), Ausgemenmen diesen ist die sepanate Weiter verzeitung des Deckbartes durch die umseitig genennie Konformitälisbewertungssielle in ungedichter Folgen.

Es darf nicht der Anscheln erweckt werden, dass sich die Akkreditierung auch auf Bereichs erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditioning erfolgte gemöß des Gesetzes über din Akkredition angsatella (AMStelleC) vom 31 Juli 2009 (RGB). I. S. 2055) sowie der Verontrung (FG) Nr. 7657/2008 des Europäischen Prähenerts und des Reits vom 9. Juli 2008 (Breit der Versarheiten der Akkreditioning und Marktübervachung im Zusammenhang mit der Vermanklung von Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAMS ist Utterer dinersi der Auffäldersalen Akkaremenn ung agenet Bigen Anselsenung der European ers operation for Ausreditätion (EA), des International Acceptation for mit (AV) und der international Labescher Ausresdition of Goognation (LIAC). Die Unterneichner elleser Abkommen orkomen ihre Akkreditionungung gegensteitig an.

Der aktue in Stund der Viligliedschaft kann folgenden Webseiten ertnommen werden: FAL: www.european.accred tation.org IAAC: www.eicheur: IAAC: www.eicheur

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html