# Analyse Économétrique du Modèle de Carhart à 4 Facteurs

Application aux Rendements d'Apple Inc. (AAPL)

Analyse Financière Quantitative 25 Mai 2025

# Table des matières

| 1 | Introduction                                                                                                                               |                    |  |  |  |  |  |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| 2 | Données et Méthodologie 2.1 Description des Données                                                                                        |                    |  |  |  |  |  |  |  |  |  |
| 3 | Statistiques Descriptives 3.1 Distribution des Rendements                                                                                  | <b>5</b> 5         |  |  |  |  |  |  |  |  |  |
|   | 3.2 Matrice de Corrélation                                                                                                                 | 6                  |  |  |  |  |  |  |  |  |  |
| 4 | Résultats de la Régression4.1 Estimation du Modèle de Carhart4.2 Interprétation Économique4.2.1 Alpha de Jensen4.2.2 Sensibilité au Marché | 6<br>6<br>7<br>7   |  |  |  |  |  |  |  |  |  |
|   | 4.2.3 Effet Taille                                                                                                                         | 7<br>7<br>7        |  |  |  |  |  |  |  |  |  |
| 5 | Analyse des Résidus 5.1 Tests de Validation du Modèle                                                                                      | 8                  |  |  |  |  |  |  |  |  |  |
|   | 5.1 Tests de Validation du Modèle                                                                                                          | 8<br>9             |  |  |  |  |  |  |  |  |  |
| 6 | Performance du Modèle 6.1 Pouvoir Explicatif                                                                                               | <b>9</b><br>9<br>9 |  |  |  |  |  |  |  |  |  |
| 7 | Implications pour la Gestion de Portefeuille                                                                                               | 10                 |  |  |  |  |  |  |  |  |  |
| • | 7.1 Profil de Risque                                                                                                                       | 10<br>10<br>10     |  |  |  |  |  |  |  |  |  |
| 8 | Limites et Extensions 8.1 Limites du Modèle                                                                                                | 10<br>10<br>10     |  |  |  |  |  |  |  |  |  |
| 9 | Conclusion                                                                                                                                 | 10                 |  |  |  |  |  |  |  |  |  |

### 1 Introduction

Le modèle de Carhart (1997) constitue une extension du modèle de Fama-French à trois facteurs, intégrant un quatrième facteur de momentum. Cette analyse applique ce modèle aux rendements quotidiens d'Apple Inc. (AAPL) sur la période 2020-2025, permettant d'identifier les facteurs explicatifs de la performance du titre et d'évaluer sa performance ajustée au risque.

Le modèle de Carhart s'exprime sous la forme suivante :

$$R_{it} - R_{ft} = \alpha_i + \beta_i (R_{mt} - R_{ft}) + s_i \cdot SMB_t + h_i \cdot HML_t + p_i \cdot UMD_t + \epsilon_{it}$$
 (1)

où:

- $R_{it} R_{ft}$ : rendement excédentaire du titre i
- $R_{mt} R_{ft}$ : prime de risque de marché (MKT\_RF)
- $SMB_t$ : facteur taille (Small Minus Big)
- $HML_t$ : facteur valeur (High Minus Low)
- $UMD_t$ : facteur momentum (Up Minus Down)
- $\alpha_i$ : performance excédentaire (alpha de Jensen)

## 2 Données et Méthodologie

### 2.1 Description des Données

L'analyse porte sur 1 257 observations quotidiennes d'Apple Inc. sur la période 2020-2025. Les facteurs de Fama-French-Carhart utilisés proviennent de la librairie de Kenneth French et incluent :

- MKT\_RF : Prime de risque de marché
- SMB: Différentiel de rendement entre petites et grandes capitalisations
- HML : Différentiel de rendement entre titres de valeur et de croissance
- UMD: Facteur de momentum (titres gagnants moins perdants)

## 2.2 Évolution Temporelle des Rendements



FIGURE 1 – Évolution des rendements journaliers d'AAPL et des facteurs de Carhart (2020-2025)

La Figure 1 illustre l'évolution temporelle des rendements journaliers. On observe une volatilité particulièrement élevée en mars 2020, correspondant au choc du COVID-19, avec des rendements journaliers d'AAPL atteignant  $\pm 10\%$ .

## 3 Statistiques Descriptives

## 3.1 Distribution des Rendements



FIGURE 2 – Distribution des rendements journaliers d'AAPL et des facteurs

Le Tableau 1 présente les statistiques descriptives des variables :

Table 1 – Statistiques descriptives des rendements (%)

| Variable | Moyenne | Médiane | Écart-type | Skewness | Kurtosis | Min/Max    |
|----------|---------|---------|------------|----------|----------|------------|
| AAPL     | 0.118   | 0.096   | 2.84       | 0.57     | 7.85     | -12.9/13.2 |
| $MKT_RF$ | 0.056   | 0.099   | 1.23       | -0.89    | 8.12     | -12.8/9.0  |
| SMB      | -0.016  | -0.025  | 0.85       | 0.24     | 4.18     | -4.2/4.8   |
| HML      | -0.038  | -0.026  | 0.92       | 0.19     | 3.98     | -3.5/4.4   |
| UMD      | 0.056   | 0.037   | 1.18       | 0.31     | 5.24     | -8.7/7.1   |

Les distributions révèlent des asymétries et un excès de kurtosis, caractéristiques des séries financières, avec notamment une asymétrie positive pour AAPL (0.57) et un kurtosis élevé (7.85).

### 3.2 Matrice de Corrélation

#### Matrice de Corrélation des Rendements



FIGURE 3 – Matrice de corrélation des rendements

La matrice de corrélation (Figure 3) montre :

- Une forte corrélation positive entre AAPL et MKT\_RF (0.79)
- Une corrélation négative modérée avec HML (-0.39)
- Des corrélations faibles avec SMB (-0.12) et UMD (0.72)

## 4 Résultats de la Régression

### 4.1 Estimation du Modèle de Carhart

Le Tableau 2 présente les résultats de l'estimation par MCO :

| Variable               | Coefficient | Erreur Std. | t-stat    | p-value | IC 95%           |  |  |  |  |
|------------------------|-------------|-------------|-----------|---------|------------------|--|--|--|--|
| Constante $(\alpha)$   | 0.0313      | 0.030       | 1.026     | 0.305   | [-0.029; 0.091]  |  |  |  |  |
| $MKT_RF(\beta)$        | 1.2861***   | 0.052       | 24.900    | 0.000   | [1.185; 1.387]   |  |  |  |  |
| SMB(s)                 | -0.0438     | 0.042       | -1.030    | 0.303   | [-0.127; 0.040]  |  |  |  |  |
| HML(h)                 | -0.6160***  | 0.044       | -13.941   | 0.000   | [-0.703; -0.529] |  |  |  |  |
| $\mathrm{UMD}\ (p)$    | -0.1698***  | 0.047       | -3.617    | 0.000   | [-0.262; -0.078] |  |  |  |  |
| Statistiques du modèle |             |             |           |         |                  |  |  |  |  |
| $R^2$                  | 0.709       |             | R² ajusté |         | 0.708            |  |  |  |  |
| F-statistique          |             | 6***        | DW        |         | 2.028            |  |  |  |  |
| Observations 1.2       |             | 257         | AIC       |         | 3 763            |  |  |  |  |

Table 2 – Résultats de la régression du modèle de Carhart

## 4.2 Interprétation Économique

### 4.2.1 Alpha de Jensen

L'alpha estimé de 0.0313 (3.13 points de base quotidiens) n'est pas statistiquement significatif (p = 0.305). Cela suggère qu'Apple ne génère pas de performance excédentaire significative après ajustement pour les quatre facteurs de risque.

#### 4.2.2 Sensibilité au Marché

Le bêta de 1.2861 indique qu'Apple est 28.61% plus volatil que le marché. Pour une hausse de 1% du marché, Apple tend à augmenter de 1.29%, révélant un profil de croissance avec un risque systématique élevé.

#### 4.2.3 Effet Taille

Le coefficient SMB de -0.0438 (non significatif) suggère qu'Apple se comporte davantage comme une grande capitalisation, ce qui est cohérent avec son statut de méga-cap.

#### 4.2.4 Effet Valeur

Le coefficient HML négatif et significatif (-0.6160) confirme qu'Apple présente les caractéristiques d'un titre de croissance plutôt que de valeur.

#### 4.2.5 Effet Momentum

Le coefficient UMD négatif (-0.1698) suggère paradoxalement une sensibilité inverse au momentum, pouvant refléter des prises de bénéfices sur les périodes de forte performance du marché.

<sup>\*\*\*</sup> p;0.01, \*\* p;0.05, \* p;0.1

## 5 Analyse des Résidus

### 5.1 Tests de Validation du Modèle



Figure 4 – Analyse des résidus du modèle de Carhart

L'analyse des résidus (Figure 4) révèle :

- **Homoscédasticité** : Les résidus semblent relativement homoscédastiques avec quelques valeurs aberrantes
- Autocorrélation : La statistique de Durbin-Watson (2.028) suggère l'absence d'autocorrélation significative
- Normalité : Les résidus standardisés restent globalement dans l'intervalle  $\pm 2\sigma$

#### 5.2 Test de Normalité



Figure 5 – Q-Q Plot des résidus (Test de normalité)

Le Q-Q plot (Figure 5) montre des déviations dans les queues de distribution, confirmées par :

- Test d'Omnibus :  $\chi^2 = 202.189$  (p ; 0.001)
- Test de Jarque-Bera : JB = 1297.932 (p ; 0.001)
- Skewness: 0.570, Kurtosis: 7.846

Ces résultats rejettent l'hypothèse de normalité des résidus, typique des données financières haute fréquence.

### 6 Performance du Modèle

### 6.1 Pouvoir Explicatif

Le  $R^2$  de 0.709 indique que le modèle de Carhart explique 70.9% de la variance des rendements excédentaires d'Apple, démontrant un excellent ajustement.

### 6.2 Significativité Globale

La F-statistique de 761.6 (p ; 0.001) confirme la significativité globale du modèle.

### 6.3 Comparaison avec le CAPM

Le modèle de Carhart apporte une amélioration substantielle par rapport au CAPM traditionnel en intégrant les effets taille, valeur et momentum, expliquant une part signi-

ficativement plus importante de la variance.

## 7 Implications pour la Gestion de Portefeuille

### 7.1 Profil de Risque

Apple présente les caractéristiques suivantes :

- Risque systématique élevé :  $\beta = 1.29$
- **Titre de croissance** : sensibilité négative au facteur HML
- Grande capitalisation : insensibilité au facteur SMB
- Comportement contra-momentum : coefficient UMD négatif

### 7.2 Alpha et Création de Valeur

L'absence d'alpha significatif suggère qu'Apple est correctement valorisé par le marché selon les facteurs de risque considérés, ne présentant ni sur-performance ni sous-performance ajustée au risque.

#### 7.3 Diversification

La forte corrélation avec le marché (0.79) limite les bénéfices de diversification d'Apple dans un portefeuille orienté croissance.

### 8 Limites et Extensions

#### 8.1 Limites du Modèle

- **Non-normalité des résidus** : suggère la présence d'événements extrêmes non capturés
- Stabilité temporelle : les paramètres peuvent varier selon les cycles économiques
- Facteurs sectoriels : le modèle ne capture pas les spécificités du secteur technologique

#### 8.2 Extensions Possibles

- Intégration de facteurs ESG ou de qualité
- Modèles à paramètres variables dans le temps
- Prise en compte des effets de volatilité (modèles GARCH)
- Facteurs spécifiques au secteur technologique

### 9 Conclusion

L'application du modèle de Carhart aux rendements d'Apple révèle un titre présentant un risque systématique élevé ( $\beta=1.29$ ) et les caractéristiques typiques d'une valeur de croissance de grande capitalisation. L'absence d'alpha significatif suggère une valorisation efficiente par le marché.

Le modèle explique 70.9% de la variance des rendements, démontrant sa pertinence pour l'analyse des déterminants de performance d'Apple. Les résultats confirment l'importance des facteurs de Fama-French-Carhart dans l'explication des rendements d'actions, particulièrement pour les titres de croissance technologique.

Pour les gestionnaires de portefeuille, ces résultats impliquent qu'Apple doit être considéré comme un titre à risque élevé, approprié pour des stratégies de croissance mais nécessitant une diversification appropriée pour atténuer le risque systématique concentré.

## Références

- Carhart, M. M. (1997). On persistence in mutual fund performance. *The Journal of Finance*, 52(1), 57-82.
- Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. *Journal of Financial Economics*, 33(1), 3-56.
- Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. *Journal of Financial Economics*, 116(1), 1-22.
- Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. *The Journal of Finance*, 48(1), 65-91.