Locality-constrained Linear Coding for Image Classification

Jinjun Wang, Jianchao Yang, Fengjun Lv, Thomas Huang, Yihong Gong

Ken Chatfield

Introduction

- How do we classify visual object categories?
- Bag of visual words approach highly successful at the core of winning entries for PASCAL VOC 2007-2010

monkey?

Bag of Visual Words as Descriptor Coding

- 'Bag of Visual Words' using vector quantization for visual word assignment can be considered to be a type of **feature coding**
- In VQ each feat. in an image is encoded by assigning to a single visual word
- These codes are sparse and high dimensional
- Codes are pooled to form a single sparse 'bag of words' to describe the image

Descriptor codes $\gamma_i = \phi(x_i)$ where ϕ is a non-linear mapping

The Problem with Vector Quantization

The Problem with Vector Quantization

Approaches to Soft-Assignment

- Distance-based soft assignment
- Soft assignment through learning an optimal reconstruction
 - With sparsity regularization → ScSPM (CVPR '09)
 - With locality regularization → LCC (NIPS '09) / LLC (CVPR '10)

Distance-based

Reconstruction

Distance-based Soft Assignment

- Replace histogram estimator of the codewords with a gaussian mixture model
- However, if the kernel is symmetric, can place kernel on codeword instead
- Choose N nearest neighbour codewords and assign weighted by kernel
- Essentially assigning based on **distances** in feature space $\mathbb{R}^{D=128}$

Distance-based Soft Assignment

Distance-based Soft Assignment

Encoding using Sparsity Reg. (ScSPM)

• Over all features x_i for i=1...N Vector Quantization becomes a constrained least square fitting problem:

$$\arg\min_{\gamma} \sum_{i=1}^{N} \|x_i - \mathbf{N}\gamma_i\|^2 \qquad \text{Encoding for image } i$$

$$\frac{dxM}{\cot\theta} \text{ matrix}$$

$$\frac{dxM}{\cot\theta} \text{ ook}$$

s.t. only one element of γ_i is non-zero and equal to 1

(i.e. $\|\gamma_i\|_{\ell^0}=1$, $\|\gamma_i\|_{\ell^1}=1$) this non-zero element corresponds to ν_j

- But why should the feature be assigned to only one codebook entry?
- Ameliorate the quantization loss of VQ by removing the constraint $\|\gamma_i\|_{\ell^0}=1$ and instead using a sparsity regularization term to restrict the number of non-zero bases:

$$\arg\min_{\gamma} \sum_{i=1}^{N} ||x_i - N\gamma_i||^2 + \lambda ||\gamma_i||_{\ell^1}$$

Encoding using Sparsity Reg. (ScSPM)

$$\arg\min_{\gamma} \sum_{i=1}^{N} ||x_{i} - N\gamma_{i}||^{2} + \lambda ||\gamma_{i}||_{\ell^{1}}$$

- This is the sparse coding scheme ScSPM (Yang et al. CVPR '09)
- ℓ^1 regularization required as codebook N is usually overcomplete (i.e. M > d)
- By assigning to multiple bases we overcome the quantization errors introduced by VQ
- Over Caltech-101 using dense SIFT yields 10% improvement over VQ, and 5~6% improvement over soft-assignment using kernel codebooks using a linear SVM (see results later)

Coding Provides Non-linearity

Considering general case and a typical classification framework:

linear SVM

Classification

$$\mathbf{X} = [x_1, x_2, \cdots, x_N] \in \mathbb{R}^{D=128}$$

where D is # feature dimensions e.g. SIFT = 128
and N is the number of features (DxN matrix)

$$\phi(\mathbf{X}) = [\gamma_1, \gamma_2, \cdots, \gamma_N] \in \mathbb{R}^V$$

where V is the codebook size $(MxN \text{ matrix})$

$$\gamma = \sum_{i=1}^{N} \gamma_i$$

$$f_c(\gamma) = w^{\mathrm{T}} \gamma$$

linear classifier

$$f_c(\gamma) = w^{\mathrm{T}} \gamma = \sum_{i=1}^{N} w^{\mathrm{T}} \gamma_i = \sum_{i=1}^{N} w^{\mathrm{T}} \phi(x_i)$$
non-linear coding

Encoding using Distance Reg. (LCC/LLC)

- Using ScSPM soft-assignment is formulated as a least squares fitting problem using an ℓ^1 sparsity regularization
- However, the effectiveness of distance-based soft-assignment suggests that the locality of the visual words used to describe any feature is also important
- We can account for this by replacing the sparsity regularization with a locality constraint:

$$\arg\min_{\gamma} \sum_{i=1}^{N} ||x_i - N\gamma_i||^2 + \lambda ||d_i \odot \gamma_i||^2$$

$$d_i = \exp\left(\frac{\operatorname{dist}(x_i, N)}{\sigma}\right)$$

- This is not sparse in sense of ℓ^1 norm, but in practice has few significant values
 - those values below a certain threshold can be set to zero

Approximated LLC for Fast Encoding

$$\arg\min_{\gamma} \sum_{i=1}^{N} ||x_i - N\gamma_i||^2 + \lambda ||d_i \odot \gamma_i||^2$$

- The distance regularization of LLC effectively performs **feature selection**, and in practice only those bases close to x_i in feature space have non-zero coefficients
- This suggests we can develop a fast approximation of LLC by removing the regularization completely and instead using the **K nearest neighbours** of x_i (K < D < V and in the paper K = 5) as a set of local bases N_i :

$$\arg\min_{\widetilde{\gamma}} \sum_{i=1}^{N} ||x_i - N_i \widetilde{\gamma}_i||^2 \quad st. \, ||\widetilde{\gamma}_i||_{\ell^1} = 1, \forall i$$

• This reduces the computation complexity from $\mathcal{O}(V^2)$ to $\mathcal{O}(V+K^2)$ and the nearest neighbours can be found using ANN methods such as kd-trees

Locally-constrained Linear Coding

- A smooth function is fitted between visual words and assignment is optimized to minimize reconstruction error unlike purely distance-based assignment
- For LLC only the K nearest neighbours (=5) are used → equivalent of
 V-dimensional spline interpolation across intervals of K

Soft Assignment Methods Comparison

Vector Quantization

- ✓ Fast
- × Quantization a problem

Distance-based Soft-Assignment

- ✓ Assigns features to multiple visual words based on locality
- ✗ Does not minimize reconstruction error

ScSPM (sparsity regularization)

- ✓ Minimizes reconstruction error $\sum_{i=1}^{N} ||x_i N\gamma_i||^2$
- Optimization is computationally expensive
- Regularization term is not smooth

LLC (locality regularization)

- ✓ Minimizes reconstruction error $\sum_{i=1}^{N} ||x_i N\gamma_i||^2$
- ✓ Local smooth sparsity
- ✓ Fast computation through approximated LLC

Results

Algorithm	15 training	30 training
SVM-KNN (Zhang CVPR '06)	59.10	66.20
KSPM (Lazebnik CVPR '06)	56.40	64.40
NBNN (Boiman CVPR '08)	65.00	70.40
ML+CORR (Jain CVPR '08)	61.00	69.60
Hard Assignment		62.00
KC (Gemert ECCV '08)		64.14
ScSPM (Yang CVPR '09)	67.00	73.20
LLC	65.43	73.44

[↑] Results over Caltech-101 dataset

↓ Results over Caltech-256

Algorithm	15 training	30 training
Hard Assignment		25.54
KC (Gemert ECCV '08)		27.17
ScSPM (Yang CVPR '09)	27.73	34.02
LLC	34.36	41.19