

Red & White Consulting Partners LLP

Coffee Break

10:00 - 10:15

Table of Content

Introduction to Unsupervised Learning

Unsupervised Learning: K-Means Clustering

Technical Details

Exercise

Introduction to Unsupervised Learning

What is Unsupervised Learning

- We let the model learn independently to identify information/trends not visible to the human eye
- Uses machine learning algorithm to perform task from unlabeled data WITHOUT human intervention

Unsupervised

Customer	Balance	Spend	
A	\$ 20,000	\$ 5,000 \$ 2,000	
В	\$ 3,000		
С	\$ 25,000	\$ 4,000	
D	\$ 35,000	\$ 15,000	
E	\$ 4,000	\$ 2,500	

Supervised

Application of Unsupervised Learning

Customer Segmentation

Dimensionality Reduction

Customer	Income	Balance	Age	Product	Account
Α	\$1,000	\$4,500	41	2	3
В	\$2,000	\$6,300	23	3	3
С	\$3,000	\$7,200	35	1	2
D	\$4,000	\$1,800	55	4	4
E	\$5,000	\$900	21	2	3

Customer	VAR 1	VAR 2	VAR 3
Α	\$2,750	41	2.50
В	\$4,150	23	3.00
С	\$5,100	35	1.50
D	\$2,900	55	4.00
Е	\$2,950	21	2.50

Cluster Analysis

- Cluster Analysis is a part of unsupervised learning, as no class values of data is given.
- It is a common statistical technique in many fields
- Its objective is to group(cluster) data points with similar attributes
- It groups data near (similar to) each other in one cluster, and far from (very different) each other in a different cluster

Common Clustering Algorithm

The most common clustering algorithms are the following:

- 1. K-Means Clustering
- 2. Hierarchical Clustering
- 3. Gaussian Mixture Clustering

The quality of a clustering result will closely depend on the algorithm, the distance function and its application

Unsupervised Learning: K-Means Clustering

K-Means Clustering

- K-Means clustering is an iterative partitional clustering algorithm which aims to partition the data into a pre-specified number of clusters (K Clusters)
- k is specified by the user

Given a value of k, the k-means algorithm works as follows

 Randomly choose k data points (seeds) to be the initial cluster centers (centroids)

2. Assign each data point to the closest centroid using a distance measure

3. Re-compute the centroid using the current cluster membership

4. Re-assign the data points to the different clusters by considering the new cluster centers

5. Keep iterating until no further movement of data points is possible

Distance Calculation

There are several ways to calculate distance, the examples are as follows

Spacial Data

Defining K using Elbow Curve

We can define K using Elbow Curve by choosing the first point where the slope line starts to become straight line.

Defining K using Elbow Curve

The calculation used for Elbow Curve is by averaging the distance for each data into their centroids

Technical Details

Import Package

Import Package Required for Creating K-Means Clustering

Import Package

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

In [2]: from sklearn.preprocessing import StandardScaler
   from sklearn.cluster import KMeans, AffinityPropagation
   import warnings
   warnings.filterwarnings("ignore")
```

Import Data

Import Package Required for Creating K-Means Clustering

4 Read Data

4]: EMPLOYEE_ID	VENUE_SCORE	REVENUE_Target								_rm.head()	df
1 124011007.0 RM Senior 13000000.0 337443931.0 217108672.0 0.81 371188324.0 325663008.0		٦.	REVENUE_Q1	Scorecard_Q1	INVESTMENT_Target_Q1	INVESTMENT_Q1	Salary	Grade	RM_Type	EMPLOYEE_ID	
		115822708.0	142444789.0	1.34	77215139.0	129495263.0	13000000.0	Senior	RM	124011005.0	0
2 124011010.0 RM Medium 11000000.0 450522438.0 217621391.0 1.57 495574682.0 326432087.0		325663008.0	371188324.0	0.81	217108672.0	337443931.0	13000000.0	Senior	RM	124011007.0	1
		326432087.0	495574682.0	1.57	217621391.0	450522438.0	11000000.0	Medium	RM	124011010.0	2
3 124011014.0 RM Senior 12000000.0 49306204.0 34398229.0 0.85 54236824.0 51597343.0		51597343.0	54236824.0	0.85	34398229.0	49306204.0	12000000.0	Senior	RM	124011014.0	3
4 124011015.0 RM Senior 14000000.0 347115278.0 250258456.0 1.08 381826806.0 375387684.0		375387684.0	381826806.0	1.08	250258456.0	347115278.0	14000000.0	Senior	RM	124011015.0	4

Exploratory Data Analysis (EDA)

We clean up our data first before putting the data to the cluster model

```
In [6]: df rm.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 335 entries, 0 to 334
        Data columns (total 31 columns):
             Column
                                     Non-Null Count Dtype
                                                     int64
             EMPLOYEE ID
                                     335 non-null
                                     335 non-null
                                                     object
             RM_Type
             Grade
                                     335 non-null
                                                     object
             Salary
                                     335 non-null
                                                     int64
                                                     float64
             Scorecard Q1
                                     335 non-null
             CASA Q1
                                     335 non-null
                                                     int64
             CASA Target Q1
                                                     int64
                                     335 non-null
             NEW CUSTOMER Q1
                                     335 non-null
                                                     int64
            NEW CUSTOMER TARGET Q1 335 non-null
                                                     int64
             NEW_CUSTOMER_SCORE_Q1
                                                     float64
                                     335 non-null
                                                     float64
             Scorecard Q2
                                     335 non-null
            CASA Q2
                                     335 non-null
                                                     int64
                                                     int64
         12 CASA Target Q2
                                     335 non-null
                                                     float64
            CASA SCORE Q2
                                     335 non-null
         14 NEW CUSTOMER Q2
                                     335 non-null
                                                     int64
            NEW CUSTOMER TARGET Q2 335 non-null
                                                     int64
            NEW CUSTOMER SCORE Q2
                                                     float64
                                     335 non-null
                                                     float64
         17 Scorecard Q3
                                     335 non-null
         18 CASA Q3
                                     335 non-null
                                                     int64
            CASA Target Q3
                                     335 non-null
                                                     int64
         20 CASA SCORE Q3
                                     335 non-null
                                                     float64
         21 NEW CUSTOMER Q3
                                     335 non-null
                                                     int64
```

Data Transformation

 To make sure that the cluster analysis result is better, we need to transform the data so that it follows normal distribution.

```
In [10]: def distributions(df):
    fig, (ax1, ax2, ax3, ax4) = plt.subplots(4,1, figsize=(8,8))
    sns.distplot(df["CASA_Q1"], ax=ax1)
    sns.distplot(df["CASA_Q2"], ax=ax2)
    sns.distplot(df["CASA_Q3"], ax=ax3)
    sns.distplot(df["CASA_Q4"], ax=ax4)
    plt.tight_layout()
In [11]: distributions(df_rm)
```


Data Transformation

 To make sure that the cluster analysis result is better, we need to transform the data so that it follows normal distribution.

One-Hot Encoder

Use One-Hot Encoder for Categorical Data

```
In [19]: cluster_onehot = pd.get_dummies(df_rm, columns = ["Grade"])
    cluster_onehot.head()
```

Out[19]:

	EMPLOYEE_ID	RM_Type	Salary	Scorecard_Q1	CASA_Q1	CASA_Target_Q1	NEW_CUSTOMER_Q1	NEW_CUSTOMER_TARGET_Q1	NEW_CUSTOMER_SCO
0	124011005	RM	13000000	1.57	460971818	256415965	2	3	
1	124011007	RM	13000000	0.32	167912817	504403168	1	4	
2	124011010	RM	11000000	1.71	421422066	217200770	4	5	
3	124011014	RM	12000000	0.55	229267934	377369157	1	3	
4	124011015	RM	14000000	1.13	298354735	299262719	5	3	

5 rows × 33 columns

Standard Scaler

Use Standard Scaler for Categorical Data

	CASA_Q1	CASA_Q2	CASA_Q3	CASA_Q4
0	0.847469	-0.431375	1.287372	-0.242068
1	-1.301909	-1.254405	1.245650	0.865305
2	0.557400	1.203510	-1.597003	-0.693226
3	-0.851913	0.567075	-0.531253	1.204633
4	-0.345211	-0.114492	-1.383600	-1.648796

Combine Numerical & Categorical Data

Combine both Numerical & Categorical Data

Combine Data

```
In [26]: cluster = pd.concat([cluster_scaled, cluster_onehot], axis=1)
    cluster.head()
```

Out[26]:

	CASA_Q1	CASA_Q2	CASA_Q3	CASA_Q4	Grade_Junior	Grade_Medium	Grade_Senior
0	0.847469	-0.431375	1.287372	-0.242068	0	0	1
1	-1.301909	-1.254405	1.245650	0.865305	0	0	1
2	0.557400	1.203510	-1.597003	-0.693226	0	1	0
3	-0.851913	0.567075	-0.531253	1.204633	0	0	1
4	-0.345211	-0.114492	-1.383600	-1.648796	0	0	1

Elbow Curve

```
In [27]:
    wcss = []
    for i in range(1, 10):
        kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
        kmeans.fit(cluster)
        wcss.append(kmeans.inertia_)
    plt.figure(1 , figsize = (15 ,6))
    plt.plot(np.arange(1 , 10) , wcss , 'o')
    plt.plot(np.arange(1 , 10) , wcss , '-' , alpha = 0.5)
    plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
    plt.show()
```


Cluster K-Means = 2

Calculate the cluster and put the tagging result to the data.

Clustering K-Means K=2

```
In [33]: kmeans = KMeans(n_clusters=2, random_state = 42)
kmeans.fit(cluster)
mapping_dict = { 0: 'Cluster 1', 1: 'Cluster 2'}
mapped_predictions = [ mapping_dict[x] for x in kmeans.labels_]
df_rm['Cluster_KM_2']=mapped_predictions
df_rm.head()
```

Out[33]:

Scorecard_Q4	CASA_Q4	CASA_Target_Q4	CASA_SCORE_Q4	NEW_CUSTOMER_Q4	NEW_CUSTOMER_TARGET_Q4	NEW_CUSTOMER_SCORE_Q4	Cluster_KM_2
0.52	299590281	546420272	0.55	2	5	0.40	Cluster 2
0.80	450707409	556917399	0.81	3	4	0.75	Cluster 1
0.54	238023137	387936763	0.61	1	4	0.25	Cluster 2
0.77	497013539	553109491	0.90	1	4	0.25	Cluster 2
0.47	107621731	324151500	0.33	4	4	1.00	Cluster 1

Cluster Evaluation

The common methods to evaluate clustering results are the following:

- 1. Descriptive Analytics for each Clustering Type
- Compare with Clustering Result with different number of cluster (K Number)
- 3. Compare with different Clustering Method Results

Descriptive for Each Cluster

We can find the descriptive analytics for each cluster to determine whether the cluster method differentiate each cluster properly.

Descriptive for Each Cluster

We can find the descriptive analytics for each cluster to determine whether the cluster method differentiate each cluster properly.

```
In [40]: def scatters(data=df_rm, h=None, pal=None):
    fig, (ax1, ax2, ax3) = plt.subplots(3,1, figsize=(8,8))
    sns.scatterplot(x="CASA_Q1",y="CASA_Q2", hue=h, palette=pal, data=data, ax=ax1)
    sns.scatterplot(x="CASA_Q2",y="CASA_Q3", hue=h, palette=pal, data=data, ax=ax2)
    sns.scatterplot(x="CASA_Q3",y="CASA_Q4", hue=h, palette=pal, data=data, ax=ax3)
    plt.tight_layout()
In [41]: scatters(h = "Cluster_KM_2")
```


Compare with Different K Number

We can compare with different number of K as well to determine the goodness of clustering results.

	CASA_Q1	CASA_Q2	CASA_Q3	CASA_Q4
Cluster_KM_4				
Cluster 1	354255152.4	202302251.3	317485971.1	364409297.9
Cluster 2	409423328.0	392750047.3	483691797.1	263192361.5
Cluster 3	305583501.4	395775486.3	200007207.4	202045881.1
Cluster 4	308864409.9	468016498.0	325975256.6	462663982.7

	CASA_Q1	CASA_Q2	CASA_Q3	CASA_Q4
Cluster_KM_2				
Cluster 1	340159101.8	250972540.6	282810022.4	310698715.3
Cluster 2	350977180.7	464171679.3	388359354.3	355759766.0

Compare with Different K Number

We can compare with different number of K as well to determine the goodness of clustering results.

Ishoma

12:00 - 13:00

