# Esercitazione di Informatica A Algebra di Boole

Stefano Cherubin <nome>.<cognome>@polimi.it

Esercitazione 1 05 Ottobre 2017



### Sezione 1

Richiami di teoria

- 2 Esercizi
  - Semplificazione espressioni
  - Equivalenza di due funzioni logiche
  - Dimostrare tautologie
  - Equivalenza di 3 espressioni

## Proprietà commutativa

#### Commutativa di OR e AND

$$\begin{array}{rcl}
a+b & = & b+a \\
ab & = & ba
\end{array}$$

## Proprietà distributiva

### Distributiva di OR rispetto a AND

$$a + bc = (a+b)(a+c)$$

### Distributiva di AND rispetto a OR

$$(a+b) c = ac + bc$$

## Tautologie e contraddizioni

### Tautologia (sempre vero)

$$a + \overline{a} = 1$$
$$1 + a = 1$$

### Contraddizione (sempre falso)

$$a\overline{a} = 0$$

$$0a = 0$$

## Altre proprietà

#### Assorbimento

$$a + ab = a$$
$$a(a+b) = a$$

#### Elemento neuto

$$0 + a = a$$
$$1 \cdot a = a$$

## Leggi di De Morgan

### Teoremi di De Morgan

$$\begin{array}{rcl} \overline{a+b} & = & \overline{a} \cdot \overline{b} \\ \overline{a \cdot b} & = & \overline{a} + \overline{b} \end{array}$$

### Sezione 2

Richiami di teoria

- 2 Esercizi
  - Semplificazione espressioni
  - Equivalenza di due funzioni logiche
  - Dimostrare tautologie
  - Equivalenza di 3 espressioni

## Prova del 19/11/2003 - esercizio 1

Data la seguente espressione booleana in 3 variabili

$$\overline{a}b + \overline{b}c + ab$$

- se ne ricavi la tabella della verità
- 2 si provi a semplificare l'espressione usando le proprietà dell'algebra di boole e giustificando ogni passaggio

9 / 23

| a | b | c | $\overline{a}b$ | $\bar{b}c$ | ab | $\overline{a}b + \overline{b}c + ab$ |
|---|---|---|-----------------|------------|----|--------------------------------------|
| 0 | 0 | 0 | 0               | 0          | 0  | 0                                    |
| 0 | 0 | 1 | 0               | 1          | 0  | 1                                    |
| 0 | 1 | 0 | 1               | 0          | 0  | 1                                    |
| 0 | 1 | 1 | 1               | 0          | 0  | 1                                    |
| 1 | 0 | 0 | 0               | 0          | 0  | 0                                    |
| 1 | 0 | 1 | 0               | 1          | 0  | 1                                    |
| 1 | 1 | 0 | 0               | 0          | 1  | 1                                    |
| 1 | 1 | 1 | 0               | 0          | 1  | 1                                    |

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b}c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

$$b+c$$

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b}c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

$$b+c$$

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b}c$$

tautologia

$$b + \overline{b}c$$

distributiva di OR

$$\left(b + \overline{b}\right) \left(b + c\right)$$

$$b+c$$

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b}c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b + \overline{b}\right) \left(b + c\right)$$

$$b+c$$

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b}c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

$$b+c$$

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b}c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

$$b+c$$

Verificare l'equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + \overline{a}$$

- derivando l'una dall'altra algebricamente
  - impiegando le proprietà di AND e OR
- esaustivamente dimostrando che per tutti i valori di ingresso
  - compilando la tabella di verità

Verificare l'equivalenza delle seguenti funzioni logiche

$$\begin{array}{rcl} F & = & \overline{a}b + a\overline{b} + \overline{a + bc} \\ H & = & \overline{b} + \overline{a} \end{array}$$

Per dimostrare l'equivalenza di due funzioni logiche si può procedere in due modi:

- derivando l'una dall'altra algebricamente
  - impiegando le proprietà di AND e OR
- esaustivamente dimostrando che per tutti i valori di ingresso forniscono il medesimo output
  - compilando la tabella di verità

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + \overline{a}$$

| $\underline{a}$ | b | c | $\overline{a}b$ | $a\bar{b}$ | a + bc | $\overline{a+bc}$ | F | $\mid H \mid$ |
|-----------------|---|---|-----------------|------------|--------|-------------------|---|---------------|
| 0               | 0 | 0 | 0               | 0          | 0      | 1                 | 1 | 1             |
| 0               | 0 | 1 | 0               | 0          | 0      | 1                 | 1 | 1             |
| 0               | 1 | 0 | 1               | 0          | 0      | 1                 | 1 | 1             |
| 0               | 1 | 1 | 1               | 0          | 1      | 0                 | 1 | 1             |
| 1               | 0 | 0 | 0               | 1          | 1      | 0                 | 1 | 1             |
| 1               | 0 | 1 | 0               | 1          | 1      | 0                 | 1 | 1             |
| 1               | 1 | 0 | 0               | 0          | 1      | 0                 | 0 | 0             |
| 1               | 1 | 1 | 0               | 0          | 1      | 0                 | 0 | 0             |

$$F = \overline{a} \cdot b + a \cdot \overline{b} + \overline{a + b \cdot c} = \text{De Morgan (2 volte)}$$

$$= \overline{a} \cdot b + a \cdot \overline{b} + \overline{a} \cdot \left(\overline{b} + \overline{c}\right) = \text{Distributiva di AND}$$

$$= \overline{a} \cdot b + a \cdot \overline{b} + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} = \text{Commutativa di OR}$$

$$= a \cdot \overline{b} + \overline{a} \cdot b + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} = \text{Distributiva di AND}$$

$$= a \cdot \overline{b} + \overline{a} \cdot \left(\underline{b + b} + \overline{c}\right) = \text{Tautologia}$$

$$= a \cdot \overline{b} + \overline{a} \cdot \left(\underline{1 + \overline{c}}\right) = \text{Tautologia}$$

$$= a \cdot \overline{b} + \overline{a} = \text{Distributiva di OR}$$

$$= (a + \overline{a}) \cdot (\overline{b} + \overline{a}) = \text{Tautologia}$$

$$= \overline{b} + \overline{a}$$

Verificare la non equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + a$$

- Per dimostrare la non equivalenza di due funzioni logiche è sufficiente fornire un controesempio
  - Si procede quindi con la tebella di verità

Verificare la non equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + a$$

- Per dimostrare la non equivalenza di due funzioni logiche è sufficiente fornire un controesempio
  - Si procede quindi con la tebella di verità

### Esercizio 2 - variante - tabella di verità

$$\begin{array}{rcl} F & = & \overline{a}b + a\overline{b} + \overline{a + bc} \\ H & = & \overline{b} + a \end{array}$$

| a | b | c | $\overline{a}b$ | $a\bar{b}$ | a+bc | $\overline{a+bc}$ | F | $\mid H \mid$ |
|---|---|---|-----------------|------------|------|-------------------|---|---------------|
| 0 | 0 | 0 | 0               | 0          | 0    | 1                 | 1 | 1             |
| 0 | 0 | 1 | 0               | 1          | 0    | 1                 | 1 | 1             |
| 0 | 1 | 0 | 1               | 0          | 0    | 1                 | 1 | 0             |
| 0 | 1 | 1 | 1               | 0          | 1    | 0                 | 1 | 0             |
| 1 | 0 | 0 | 0               | 1          | 1    | 0                 | 1 | 1             |
| 1 | 0 | 1 | 0               | 1          | 1    | 0                 | 1 | 1             |
| 1 | 1 | 0 | 0               | 0          | 1    | 0                 | 0 | 1             |
| 1 | 1 | 1 | 0               | 0          | 1    | 0                 | 0 | 1             |

## Esercizio 3 - Prova del 22/11/2002

Data l'espressione booleana seguente stabilire se è una tautologia, motivando la risposta

$$\left(\overline{a}\cdot\overline{b}\right)+a+b$$

Dimostrare che un'espressione è una tautologia (o una contraddizione) equivale a dimostrare l'equivalenza dell'espressione data con 1 - sempre vero (0 - sempre falso per le contraddizioni)

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

## Esercizio 3 - Prova del 22/11/2002

Data l'espressione booleana seguente stabilire se è una tautologia, motivando la risposta

$$\left(\overline{a}\cdot\overline{b}\right)+a+b$$

Dimostrare che un'espressione è una tautologia (o una contraddizione) equivale a dimostrare l'equivalenza dell'espressione data con 1 - sempre vero (0 - sempre falso per le contraddizioni)

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

$$\underbrace{\left(\overline{a} \cdot \overline{b}\right) + a + b} = \\
= \underbrace{\left(\overline{a} + a\right) \cdot \left(\overline{b} + a\right) + b} = \\
= \underbrace{\overline{b} + a + b} = \\
= \underbrace{\overline{b} + a + b} = \\
= \underbrace{1 + a} =$$

#### Distributiva di OR

Tautologia

Elemento neutro di AND

Commutativa di OR **Tautologia** 

$$\underbrace{\left(\overline{a} \cdot \overline{b}\right) + a + b} = \\
= \underbrace{\left(\overline{a} + a\right) \cdot \left(\overline{b} + a\right) + b} = \\
= \underbrace{\overline{b} + a + b} = \\
= \underbrace{\overline{b} + a + b} = \\
= \underbrace{1 + a} =$$

Distributiva di OR

Tautologia

Elemento neutro di AND

Commutativa di OR Tautologia

$$\underbrace{\left(\overline{a} \cdot \overline{b}\right) + a + b} =$$

$$= \underbrace{\left(\overline{a} + a\right) \cdot \left(\overline{b} + a\right) + b} =$$

$$= \underbrace{\overline{b} + a + b} =$$

$$= \underbrace{\overline{b} + a + b} =$$

Distributiva di OR

Tautologia

Elemento neutro di AND

Commutativa di OR **Tautologia** 

$$\underbrace{\left(\overline{a} \cdot \overline{b}\right) + a + b} = \\
= \underbrace{\left(\overline{a} + a\right)} \cdot \left(\overline{b} + a\right) + b = \\
= \underbrace{1} \cdot \left(\overline{b} + a\right) + b = \\
= \underbrace{\overline{b} + a + b} = \\
= \underbrace{1} + a =$$

Distributiva di OR

Tautologia

Elemento neutro di AND

Commutativa di OR

Tautologia

$$\underbrace{\left(\overline{a} \cdot \overline{b}\right) + a + b} =$$

$$= \underbrace{\left(\overline{a} + a\right) \cdot \left(\overline{b} + a\right) + b} =$$

$$= \underbrace{\overline{b} + a + b} =$$

$$= \underbrace{\overline{b} + a + b} =$$

$$= \underbrace{1 + a} =$$

Distributiva di OR

Tautologia

Elemento neutro di AND

05 Ottobre 2017

Commutativa di OR

Tautologia

18 / 23

### Esercizio 3 - tabella di verità

| $\underline{a}$ | b | $\overline{a} \cdot \overline{b}$ | a+b | $\left(\overline{a}\cdot\overline{b}\right) + a + b$ |
|-----------------|---|-----------------------------------|-----|------------------------------------------------------|
| 0               | 0 | 1                                 | 0   | 1                                                    |
| 0               | 1 | 0                                 | 1   | 1                                                    |
| 1               | 0 | 0                                 | 1   | 1                                                    |
| 1               | 1 | 0                                 | 1   | 1                                                    |

Data le seguenti espressioni booleane, verificare che sono equivalenti

$$\begin{array}{rcl} R & = & \underline{a\cdot \overline{b} + \overline{a}\cdot b} \\ S & = & \overline{\overline{a\cdot \overline{b}} + a\cdot b} \\ T & = & (a+b)\cdot \left(\overline{a} + \overline{b}\right) \end{array}$$

L'equivalenza tra espressioni booleane è una relazione di equivalenza e, in quanto relazione di equivalenza, gode della proprietà transitiva. È sufficiente dimostrare che R=S e che S=T e sarà garantito anche che R=T.

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

Data le seguenti espressioni booleane, verificare che sono equivalenti

$$\begin{array}{rcl} R & = & \underline{a\cdot \overline{b} + \overline{a}\cdot b} \\ S & = & \overline{\overline{a}\cdot \overline{b} + a\cdot b} \\ T & = & (a+b)\cdot \left(\overline{a} + \overline{b}\right) \end{array}$$

L'equivalenza tra espressioni booleane è una relazione di equivalenza e, in quanto relazione di equivalenza, gode della proprietà transitiva. È sufficiente dimostrare che R=S e che S=T e sarà garantito anche che R=T.

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

$$\begin{split} R &= a \cdot \overline{b} + \overline{a} \cdot b = \text{De Morgan} \\ &= \underbrace{\left( \overline{a} \cdot \overline{b} \right) \cdot \left( \overline{a} \cdot \overline{b} \right)}_{} = \text{De Morgan} \\ &= \underbrace{\overline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underbrace{b \cdot \overline{b}}_{} = \text{Contraddizione}}_{} \\ &= \overline{a} \cdot \underline{\overline{b} + a \cdot b} = S \\ S &= \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan} \\ &= \left( \overline{a} \cdot \overline{b} \right) \cdot \left( \overline{a \cdot b} \right) = \text{De Morgan} \\ &= \left( \overline{a} \cdot \overline{b} \right) \cdot \left( \overline{a} \cdot \overline{b} \right) = T \end{split}$$

$$R = \underline{a \cdot \overline{b} + \overline{a} \cdot b} = \text{De Morgan}$$

$$= \overline{\left(\overline{a \cdot \overline{b}}\right) \cdot \left(\overline{\overline{a} \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{a \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + b \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a \cdot \overline{b} + a \cdot b} = S$$

$$S = \overline{a \cdot \overline{b} + a \cdot b} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right) \cdot \left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right) \cdot \left(\overline{a} \cdot \overline{b}\right)} = T$$

$$R = a \cdot \overline{b} + \overline{a} \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a \cdot \overline{b}}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b} = \text{Contraddizione}$$

$$= \overline{a} \cdot \overline{b} + a \cdot \overline{b} = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = \underline{a \cdot \overline{b}} + \overline{a} \cdot \underline{b} = \text{De Morgan}$$

$$= \overline{\left(\underline{a \cdot \overline{b}}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\underline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a \cdot \overline{b} + a \cdot b} = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = \underline{a \cdot \overline{b} + \overline{a} \cdot b} = \text{De Morgan}$$

$$= \overline{\left(\overline{a \cdot \overline{b}}\right) \cdot \left(\overline{\overline{a} \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\underline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a} \cdot \overline{b} + a \cdot b = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= \overline{\left(a + b\right)} \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = a \cdot \overline{b} + \overline{a} \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a \cdot \overline{b}}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= \overline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b} = \text{Contraddizione}$$

$$= \overline{a} \cdot \overline{b} + a \cdot b = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = a \cdot \overline{b} + \overline{a} \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a \cdot \overline{b}}\right)} \cdot \left(\overline{\overline{a} \cdot b}\right) = \text{De Morgan}$$

$$= \overline{a \cdot a} + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b} = \text{Contraddizione}$$

$$= \overline{a \cdot \overline{b} + a \cdot b} = S$$

$$S = \overline{a \cdot \overline{b}} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$\begin{array}{rcl} R & = & \underline{a\cdot \overline{b} + \overline{a}\cdot b} \\ S & = & \overline{\overline{a}\cdot \overline{b} + a\cdot b} \\ T & = & (a+b)\cdot \left(\overline{a} + \overline{b}\right) \end{array}$$

|   |   |   |   |   |   |   | $\overline{a} + \overline{b}$ |   |   |   |
|---|---|---|---|---|---|---|-------------------------------|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1                             | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1                             | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1                             | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1<br>1<br>1<br>0              | 0 | 0 | 0 |

#### Fine

Queste slides contengono elementi tratti da materiale di Gerardo Pelosi redatto per il corso di Fondamenti di Informatica per Ingegneria dell'Automazione a.a. 2014/15.

# Grazie per l'attenzione!

#### Licenza Beerware<sup>1</sup>

Queste slides sono opera di Stefano Cherubin. Mantenendo questa nota, puoi fare quello che vuoi con quest'opera. Se ci dovessimo incontrare e tu ritenessi che quest'opera lo valga, in cambio puoi offrirmi una birra.

<sup>&</sup>lt;sup>1</sup>http://people.freebsd.org/~phk/