

Random deep neural networks are biased towards simple functions

|Φ(x)|

Giacomo De Palma Bobak Toussi Kiani Seth Lloyd

The generalization problem

- Deep neural networks do not overfit despite # weights >> # training points
- Conjecture [Valle Pérez et al., ICLR 2019]: deep neural networks are biases towards simple functions, weights highly redundant
- Experiments on bit string classifiers generated by deep neural networks with randomly initialized weights: classifiers with low Lempel-Ziv complexity occur with higher probability

Deep neural networks as Gaussian processes (Google Brain)

- Random weights with normal iid Gaussian distribution
- Limit of infinite width of hidden layers
- Generated function ϕ is Gaussian process: for any x_1, \ldots, x_k in \mathbb{R}^n , $\phi(x_1)$, ..., $\phi(x_k)$ have correlated Gaussian distribution

Binary classifiers of bit strings

- Encode strings of n bits in \mathbb{R}^n as $\{-1,1\}^n$
- Input x classified as $sign(\phi(x))$
- Hamming distance h(x,y) = # of different bits
- Uniformly random classifier: for any x in $\{-1,1\}^n$ with high probability there exists y with different classification at h(x,y)=1
- Same properties for classifiers generated by random deep neural networks?

Main results

For any input string *x* of *n* bits, the average Hamming distance of the closest bit string with a different classification is

and grows linearly with $\phi(x)$ as

 For any input bit string x of n bits, the minimum number of random bit flips required to change the classification scales linearly with n

Experiments on random DNNs (2 hidden layers)

Experiments on MNIST (2 hidden layers)

Robustness correlated with generalization

Conclusions

- Binary classifiers of bit strings generated by random deep neural networks are biased towards simple functions
- Experiments: simplicity bias survives after training
- Analytical proof for trained DNNs??