Vaja 45, Tuljava v magnetnem polju

Jure Kos

3.3.2022

$\mathbf{U}\mathbf{vod}$

Magnetni dipolni moment je lastnost mnogih teles, med drugim permanentnih magnetov, tokovnih zank pa tudi elektronov in atomov. V zunanjem magnetnem polju B na telo z magnetnim dipolnim momentom p_m deluje navor.

$$M = P_m \times B$$

Za tuljavo s presekom S in z N ovoji, skozi katero teče tok I, velja

$$P_m = NIS$$

Smer površinskega vektorja S pove gibanje desnega vijaka, ki ga sukamo v smeri toka. Navor na tuljavo v zunanjem magnetnem polju je tako enak

$$M = NIS \times B$$

Pri vaji bomo kot vir zunanjega magnetnega polja uporabili par Helmholtzovih tuljav. To je priprava, ki jo sestavljata dve enaki okrogli zaporedno vezani tuljavi (vsaka z N_H ovoji), ki sta nameščeni na isti osi in sta med seboj oddaljeni toliko, kot znaša njun radij R_H . Kadar skozi njiju teče električni tok I_H v isti smeri, kaže gostota magnetnega polja okoli centra postavitve v smeri osi in je precej homogena. Njeno velikost lahko izpeljemo iz Biot-Savartovega zakona, dobimo:

$$B = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 N_H I_H}{R_H}$$

Velikost navora je tako

$$M = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 N N_H I_H IS}{R_H} sin\varphi$$

kjer je φ kot med vektorjema S in B.

Naloga

Z uravnovešenjem navora na tuljavo v homogenem magnetnem polju Helmholtzove tuljave določiti indukcijsko konstanto.

Potrebščine

- 1. Par Helmholtzovih tuljav s polmerom $R_H\!=\!200$ mm, vsaka $N_H\!=\!154$ ovojev,
- 2. merilna tuljava (na voljo različne),
- 3. stojalo za merilno tuljavo s torzijskim merilcem navora,
- 4. tokovni usmernik za Helholtzovi tuljavi,
- 5. tokovni usmernik za merilno tuljavo.

Meritve

Dimenzije tuljav

 $\begin{array}{l} {\rm Mala:} \\ {\rm N=3} \\ 2{\rm R}{=}11,\!8{\rm cm}{\pm}0,\!5{\rm mm} \\ {\rm r}{=}10{\rm cm}{\pm}0,1cm \end{array}$

Velika: N=154 2R=40cm

Meritve sil

F[mN]	I[mA]	$I_H[A]$
0,15	500	1
0,20	750	1
0,25	1000	1
0,30	1250	1
0,35	1500	1
0,40	1750	1
0,45	2000	1
0,50	2250	1
0,55	2500	1
0,60	2750	1
0,65	500	1,5
0,20	750	1,5
0,20	1000	1,5
0,40	1250	1,5
0,50	1500	1,5
0,60	1750	1,5
0,65	2000	1,5
0,70	2250	1,5
0,80	2500	1,5
0,90	2750	1,5
0,25	500	2
0,35	750	2
0,45	1000	2
0,55	1250	2
0,65	1500	2
0,75	1750	2
0,90	2000	2
1,00	2250	2
1,10	2500	2
1,20	2750	2
0,25	500	2,5
0,40	750	2,5
0,65	1000	2,5
0,70	1250	2,5
0,85	1500	2,5
1,00	1750	2,5
1,20	2000	2,5
1,25	2250	2,5
1,35	2500	2,5
1,50	2750	2,5

Računi

Indukcijsko konstanto lahko izračunamo po enačbi

$$\mu_0 = \left(\frac{5}{4}\right)^{3/2} \frac{MR_H}{NN_H I_H ISsin\varphi}$$

Za vse meritve na koncu dobimo dobimo μ_0 kot

$$\mu_0 = 1, 0 \cdot 10^{-6} V s / Am \pm 0, 3 \cdot 10^{-6} V s / Am$$

Vprašanja

- 1. Smer magnetnega polja določimo s pravilom desnega vijaka.
- 2. Vektor navora je pravokoten na magnetno polje.