Step-1

Given that (-A) is positive definite.

- (i).
- (-A) is positive definite.
- $\Rightarrow x^{T}(-A)x > 0$ for all $x \neq 0$.
- $\Rightarrow x^T A x < 0 \text{ for all } x \neq 0.$
- \therefore A is negative definite if $x^T Ax < 0$ for all non zero vectors x.

Step-2

- (ii).
- (-A) is positive definite.
- \Rightarrow All the Eigen values of (-A) satisfies $\lambda_i > 0$.

So all the Eigen values of A satisfies $\lambda_i < 0$.

Step-3

(iii).

We know that $\det(-A) = (-1)^n \det A$

- (-A) is positive definite.
- \Rightarrow All the upper left sub matrices of (-A)

i.e. A_1, A_2 and A_3 have positive determinants.

That is $\det A_1 > 0$, $\det A_2 > 0$ and $\det A_3 > 0$.

$$\det A_1^1 = (-1)^1 \det A_1 = -\det A_1$$

$$\Rightarrow \det A_1^1 < 0 \text{ as } \det A_1 > 0$$

 $\det A_2^1 = (-1)^2 \det A_2 = \det A_2$

 \Rightarrow det $A_2^1 > 0$ as det $A_2 > 0$

 $\det A_3^1 = (-1)^3 \det A_3 = -\det A_3$

 \Rightarrow det $A_3^1 < 0$ as det $A_3 > 0$

Thus if A is negative definite then

 $\det A_1^1 < 0, \ \det A_2^1 > 0 \ \text{and} \ \det A_3^1 < 0.$

Step-4

(iv).

(-A) is positive definite.

 \Rightarrow All the pivots (without row exchanges) satisfies $d_k > 0$.

So if A is negative definite if all the pivots (without row exchanges) satisfies $d_k < 0$.

Step-5

(v).

(-A) is positive definite.

 \Rightarrow There is a matrix R with independent columns such that $-A = R^T R$.

There is a matrix R with independent columns such that $A = -R^T R$.