

STUDENT ID NO			
-			

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2016/17

ENT3036 – SEMICONDUCTOR DEVICES

(All sections / Groups)

27 FEBRUARY 2017 9:00 P.M- 11:00 A.M. (2 Hours)

INSTRUCTION TO STUDENTS

- 1. This Question paper consists of 6 pages with 4 Questions only.
- 2. Answer all the questions and all the questions carry equal marks of 25. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

- (a) (i)Sketch the energy-band diagram of a pn junction under reverse bias, and obtain the total potential barrier. [2+2 marks]
 - (ii) The space-charge width of n-region in a reverse-bias pn junction is given as

$$x_n = \left\lceil \frac{2\varepsilon_S (V_{bi} + V_R)}{e} \left(\frac{N_a}{N_d} \right) \left(\frac{1}{N_a + N_d} \right) \right\rceil^{\frac{1}{2}}$$

where V_{bi} and V_R are the built-in potential and reverse bias voltage, N_a and N_d are doping concentrations of p- and n- regions, \in_s (11.7×8.85×10⁻¹⁴F/cm) is the permittivity of semiconductor, and e (1.6×10⁻¹⁹ C) is the electronic charge.

Derive the junction capacitance and obtain the junction width. Given $V_R = 5$ V and $V_{bi} = 0.635$ V, calculate the junction capacitance at T = 300 K, $N_a = 10^{16}$ cm⁻³, $N_d = 10^{15}$ cm⁻³. [6 marks]

- (iii)Briefly explain why the pn-junction breakdown field is always higher for GaAs than silicon, irrespective of the doping concentration. [2 marks]
- (b) The emitter current (I_E) for an npn bipolar junction transistor (BJT) is measured and is found to be 1.2 mA, the collector is given by

$$I_C = \frac{eD_n A_{BE}}{x_B} \times n_{B0} \exp\left(\frac{V_{BE}}{V_t}\right)$$
 and $I_S = \frac{eD_n A_{BE}}{x_B} \times n_{B0}$

Calculate the base-emitter voltage, $V_{BE} = V_{t} \ln \left(\frac{I_{C}}{I_{S}} \right)$ with the following parameters.

Common-emitter current gain, β	150
Cross-sectional area of the base emitter junction, A_{BE}	$1.4 \times 10^{-3} \text{cm}^2$
Neutral base width, x_B	0.70 μm
Thermal-equilibrium electron concentration in the base, n_{B0}	$2.3 \times 10^3 \text{cm}^{-3}$
Minority carrier electron diffusion coefficients in base, D_n	19 cm ² s ⁻¹

[7 marks]

- (c) With aid of diagrams, briefly describe the following:
 - (i) Effect of the base-width modulation, and (3 marks)
 - (ii) Difference between cutoff and beta cutoff frequency in a BJT. (3 marks)

Continued...

2/6

- (a) (i) By means of simple diagrams for gate-to-channel space charge regions and corresponding I-V characteristic, explain the pinchoff effect. [2+2 marks]
 - (ii) Name and briefly explain TWO (2) nonideal effects that could occur in JFET. [2x1 marks]
- (b) For a p⁺n junction of a uniformly doped silicon n-channel JFET with $N_a = 10^{18}$ cm⁻³, $N_d = 10^{16}$ cm⁻³ and T = 300K. The internal pinchoff voltage (V_{po}) is given as

$$V_{po} = \frac{ea^2N_d}{2\epsilon_s}$$

where a is the metallurgical channel thickness between the p+ gate region and the substrate, $e (1.6 \times 10^{-19} \text{C})$ the electronic charge and $\epsilon_s (11.7 \times 8.85 \times 10^{-14} \text{ F/cm})$ is the permittivity of the semiconductor.

(i) Given that $V_{po} = 4.35V$, calculate a.

[3 marks]

(ii) Given that $n_i = 1.5 \times 10^{10}$ cm⁻³, calculate the built-in potential.

[3 marks]

(iii) What would be the pinchoff voltage?

[2 marks]

- (c) (i) Sketch a small-signal equivalent circuit of JFET and label the terminals and components in the circuit clearly. [4 marks]
 - (ii) Name two frequency limitation factors.

[2 marks]

(iii) If the capacitance charging time is the limiting factor, derive the flowing cutoff frequency:

$$f_T = \frac{e\mu_n N_d a^2}{2\pi\epsilon_s L^2}$$

where L is the channel length, and maximum possible transconductance is given by

$$g_{ms} = \frac{e\mu_n N_d Wa}{I}.$$
 [5 marks]

Continued...

- (a) With aid of simple sketches, briefly describe the two modes for both n-channel and p-channel MOSFET operations. [6 marks]
- (b) An ideal MOS capacitor with a p-type semiconductor has impurity concentration of 8.5×10^{16} cm⁻³ and gate oxide capacitance (t_{ox}) of 7.8×10^{-8} F/cm². The intrinsic concentration is given by $n_i = 1.5 \times 10^{10}$ cm⁻³, relative permittivity of semiconductor $\varepsilon_s = 11.7$, relative permittivity of insulator $\varepsilon_i = 3.9$ and temperature (T) = 300 K. The permittivity of air is given by $\varepsilon = 8.85 \times 10^{-14}$ F/cm.

Determine

(i) the thickness of oxide layer, t_{ox}

[2 marks]

(ii) the minimum capacitance achieved, C_{min}

[3 marks]

(iii) and the threshold voltage, V_T .

[2 marks]

(c) (i) Indicate three regions of operation for Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) in the output current versus the output voltage characteristics. Briefly explain these regions of operation for MOSFET.

[3+3 marks]

(ii) An ideal n-channel MOSFET is operated with the following parameters: channel length $L = 1.5 \mu m$, electron mobility $\mu_n = 650 \text{ cm}^2/\text{V-s}$, and oxide thickness $C_{\text{ox}} = 7 \times 10^{-8} \text{ F/cm}^2$, and threshold voltage $V_T = 0.65 \text{V}$. What should be the channel width such that I_D (sat) = 5mA for $V_{GS} = 5 \text{V}$?

[6 marks]

Continued...

- (a) (i) By using a simplified band diagram of gallium arsenide (GaAs), explain briefly the occurrence of negative differential resistance in Gunn diode. [3 marks]
 - (ii) Name THREE (3) common applications using Gunn Diode. [3 marks] What are the advantages and disadvantages of Gunn Diode? [4 marks]
- (b) (i) Draw the voltage—time (*v-t*) graph of the three domain modes for a Gunn oscillator and clearly indicate their differences. [3 marks]
 - (ii) With aid a diagram, design mm-wave co-axial cavity Gunn oscillator. Show that the oscillator frequency is given by

$$f_n = \frac{cn}{2l}$$

where l is the cavity length, c the speed of light and n is the number of half of the cavity. [8 marks]

(iii) Show also that the above Gunn oscillator can only operate with frequency within:

$$1 \le n \le \frac{l}{ct_d}$$

where t_d is the diode response time.

[4 marks]

Continued...

PHYSICAL CONSTANT:

Thermal voltage:

Intrinsic concentration of Silicon at 300K:

Intrinsic concentration of Silicon at 373K:

Intrinsic concentration of Gallium Arsenide at 300K:

Boltzmann's constant:

Electronic charge:

Permittivity of free space:

Dielectric constant of Silicon at 300K:

Dielectric constant of Silicon oxide at 300K:

Dielectric constant of Gallium Arsenide at 300K:

 $V_t = 0.0259 \text{ V}$ $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ $n_i = 2.5 \times 10^{12} \text{ cm}^{-3}$ $n_i = 1.8 \times 10^6 \text{ cm}^{-3}$ $k = 1.3806 \times 10^{-23} \text{ J/K}$ $e = 1.6 \times 10^{-19} \text{ C}$ $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$

 $\varepsilon_{\rm r} = 11.7$ $\varepsilon_{\rm i} = 3.9$

 $\varepsilon_{\text{GaAs}} = 13.1$

End of paper.