Общее описание решения

- 1. Предобработка изображений
 - 1.1. Данные очищены от образцов с неверными лейблами
 - 1.2. Данные вручную были размечены на классы, описывающие направление движения торса игрока: 1 влево, 2 лицом, 3 вправо, 5 спиной
 - 1.3. Данные разделены на training, validation и test в соотношении 80:10:10
 - 1.4. Training сет был сбалансирован согласно классам, отвечающим за направление, посредством аугментации изображений. Так, например, «влево» переходит в «вправо» посредством отражения вокруг вертикальной оси и добавления случайного поворота в пределах от -10 до 10 градусов. Количество изображений, на которых игрок движется в направлении какого-либо из классов сбалансировано, чтобы быть не меньше 65.
- 2. Архитектура предложенной модели изображена ниже.
 - 2.1. Разрешение входного изображения повышается в 4 раза посредством пред обученной FSRCNN_x4 (реализовано в OpenCV).
 - 2.2. Полученное изображение используется 4 раза:
 - 2.2.1. Полное изображение используется в качестве входного для сети ResNet50, которая была пред обучена на дата сетах, используемых для задач реидентификации людей, таких как MSMT17, Market1501и DukeMTMC-reID
 - 2.2.2. Верхняя треть изображения, содержащая голову, используется в качестве входного для двухслойной CNN. Подобным образом обрабатывается и средняя треть и нижняя с торсом и ногами соответственно.
 - 2.3. Выходные данные с 4 сетей соединяются в один вектор длиной 1768 и посредством трех линейных слоёв обрабатываются до вектора длиной 25. Функция активации между слоями ReLU.
- 3. Обучение сети производилось с помощью фреймворка Pytorch-Lightning. Использованная функция ошибки Cross Entropy Loss. Использованный оптимизатор Adam

Начальный learning rate 0.001 в ходе обучения был понижен до 10⁻⁵ с использованием ReduceLROnPlateau(patience = 10) Обучение было остановлено посредством EarlyStopping(monitor='val_loss_epoch', patience = 15)

Минимальный validation loss был достигнут на 37 эпохе и составил 0.16.

Проверка на тестовом разбиении показала, что balanced ассигасу классификации составляет 0.94. График с ROC curves представлен ниже.

- 4. Inference сети осуществлен посредством FastAPI. Запуск API описан в Readme.
- 5. Проблемные места решения. Уже на конечном этапе я обнаружил, что задача решена неверно в том контексте, что прежде необходимо было бы определить команду, а затем игрока. То есть всего необходимо было обучить 3 модели. Первая определяет команду. А две остальные определяют соответственно конкретного игрока. Я же создал систему, способную работать только для одного матча между двумя конкретными командами. Осознание этого пришло уже в самом конце при написании отчета, из условий, к сожалению, я это сразу не понял. Другой недостаток тяжелая модель.
- 6. TODO: переделать решение заново обучить три классификатора: классификатор команды, классификатор игроков в команде 1 и классификатор игроков в команде 2. Проверить как на результат влияет удаление одного из потоков данных в сети. Так, интересно было бы проверить, какой результат будет при отсутствии какого-либо из «потоков» данных в тело-голова-торс-ноги.

0.4

False Positive Rate

ROC curve of class 24 (area = 1.00)

1.0

SoccerNet 3

0.2

7. UPDATE

Были обучены три модели. Две из них, а именно те, что предсказывают ID игрока в белой или синей команде, аналогичны той, что была прежде обучена на предсказание всех 25-ти классов. Полученная система сначала предсказывает один из пяти классов: 0-синяя команда, 1 — белая, 2 — главный судья, 3 — боковой судья, 4 — остальные. Делает она это посредством обученной простой двух блоковой сверточной сети, идентичной тем, что используются для обработки головы-торса-ног.

Удаление одного из потоков несущественно ухудшает конечную точность. Так цельная сеть без дополнительных потоков имеет точность 0.92, а с использованием их -0.94. Использование ResNet без пред обученных весов на данных для реидентификации требует в два раза больше времени на обучение.

Сравнение метрик для «цельной сети» и двухступенчатой:

Soccer-3										
Accuracy:	0.9456800	325593397			Soccer0+Soc	Soccer0+Soccer1_or_Soccer2				
	precis	ion recal	l f1-score	support	Accuracy:	Accuracy: 0.936877482166956				
						precision	recall	f1-score	support	
	0 1	.00 1.0	0 1.00	15						
	1 1	.00 0.9	4 0.97	16		0 1.00		0.97	16	
	2 0	.93 1.0	0 0.97	14		1 0.9		0.97	14	
	3 1	.00 1.0	0 1.00	15		2 1.00		0.97	16	
	4 0	.93 0.7	4 0.82	19		3 1.00		0.97	16	
	5 1	.00 1.0	0 1.00	15		4 0.9		0.97	14	
	6 1	.00 0.7	9 0.88	19		5 0.80		0.86	13	
	7 0	.73 1.0	0 0.85	11		6 0.87		0.84	16	
	8 0	.93 0.8	8 0.90	16		7 0.83 8 0.93		0.84	16 15	
	9 1	.00 0.9	4 0.97	16		9 1.00		0.93 0.88	19	
	10 0	.93 1.0	0 0.97	14	,	1.00		1.00	15	
	11 0	.87 0.8	7 0.87	15		1.00		0.83	14	
	12 0	.87 1.0	0 0.93	13		12 0.87		0.93	13	
	13 1	.00 1.0	0 1.00	15		1.00		0.97	16	
	14 0	.87 0.8	1 0.84	16		14 0.9		0.97	14	
	15 1	.00 0.8	8 0.94	17		15 0.9		0.90	16	
		.00 1.0			:	1.00		1.00	15	
	17 0	.87 1.0			:	17 0.87	1.00	0.93	13	
	18 1	.00 1.0	0 1.00	15	:	1.00	1.00	1.00	15	
		.87 0.8			:	19 0.9	0.88	0.90	16	
		.00 0.9	4 0.97	16		20 0.93	0.93	0.93	15	
		.80 1.0		12		0.80	0.92	0.86	13	
		.87 1.0		13	:	0.93	1.00	0.97	14	
		.00 1.0			:	23 1.00	1.00	1.00	15	
		.00 1.0			:	24 1.00	0.94	0.97	16	
	_	2.0								
accura	cv		0.94	375	accura			0.93	375	
macro a	-	.94 0.9			macro a	_		0.93	375	
weighted a	_	.94 0.9			weighted a	/g 0.94	0.93	0.93	375	
werBucen a	*8 U		- 0.54	5/5						

