Practice FRQs

Answer the following of	questions about	the element	selenium, S	Se (atomic number 3	4). 200	007
	Tarabata trade and			(

a) Samples of natural selenium contain six stable isotopes. In terms of atomic structure, explain what these isotopes have in common, and how they differ. (2pts)

common - all have 34 protons differ - each has a different to of neutrons = different mass

b) Write the complete electron configuration (e.g., $1s^2 2s^2$... etc.) for a selenium atom in the ground state. Indicate the number of unpaired electrons in the ground-state atom, and explain your reasoning. (2pts)

c) In terms of atomic structure, explain why the first ionization energy of selenium is

i) less than that of bromine (atomic number 35), and (1pt) Se has a larger radius than Br. There is less coulombic ii) greater than that of tellurium (atomic number 52). (1pt)

Se has a smaller radius than Te. There is more coulombic affraction between the p' on e, so it requires more to to

Answer the following questions regarding light and its interactions with molecules, atoms, and ions.

a) The longest wavelength of light with enough energy to break the Cl-Cl bond in Cl₂(g) is 495 nm.

i) Calculate the frequency, in s⁻¹, of the light. (1pt)

2.998 ×108 = (4.95 ×10"m)) = [6.06 ×10"4 5"

495 m

ii) Calculate the energy, in J, of a photon of the light. (1pt)

F=LV E=(6.62640-34 J.s)(6.06410'45-1)=[4.01410-19]

iii) Calculate the minimum energy, in kJ mol⁻¹, of the Cl–Cl bond. (1pt)

4.01+10-195 6.022+1023 photons 11 K5 = 242 K5

- b) A certain line in the spectrum of atomic hydrogen is associated with the electronic transition in the H atom from the sixth energy level (n = 6) to the second energy level (n = 2).
 - i) Indicate whether the H atom emits energy or whether it absorbs energy during the transition. Justify your answer.

E is emitted since n=2 is love than

ii) Calculate the wavelength, in nm, of the radiation associated with the spectral line. (3pts)

Answer the following questions related to sulfur and one of its compounds. 2009 6

- a) Consider the two chemical species S and S²-.
 - i) Write the complete electron configuration of each species. (2pts)

- ii) Explain why the radius of the S^{2-} ion is larger than the radius of the S atom. (1pt) S^{-2} : 16 protons < 18 e = less coulombic extraction S^{-1} : 16 protons = 16 e = more coulombic extraction
- iii) Which of the two species would be attracted into a magnetic field? Explain. (1pt)

b) The S^{2-} ion is isoelectronic with the Ar atom. From which species, S^{2-} or Ar, is it easier to remove an electron? Explain. (1pt)

Using principles of atomic and molecular structure and the information in the table, answer the following questions about atomic fluorine, oxygen, and xenon, as well as some of their compounds. 2008 5

a) Write the equation for the ionization of atomic fluorine that requires 1,681.0 kJ mol ⁻¹	
(1pt)	

F(B) -> F'(B) + e

	First Ionization
Atom	Energy
	(kJ mol ⁻¹)
F	1,681.0
O	1,313.9
Xe	?

b) Account for the fact that the first ionization energy of atomic fluorine is greater than that of atomic oxygen. (You must discuss both atoms in your response.) (1pt)

F has a greater effective nuclear charge in the 2p orbital. O has I less proton and I less electron so it has less coulombic attraction. Less energy is required to remove an electron.

c) Predict whether the first ionization energy of atomic xenon is greater than, less than, or equal to the first ionization energy of atomic fluorine. Justify your prediction. (1pt)

Less than.

The e of the mid be removed from the 5 p orbital us the 2p orbital for F. 5p is further from the nucleus so those e have less coulombic attraction.

The table above shows the first three ionization energies for atoms of for elements from the third period of the periodic table. The elements are numbered randomly. Use the information in the table to answer the following questions. 2007B 6	ır		1 st Ionization Energy (kJ mol ⁻¹)	2 nd Ionization Energy (kJ mol ⁻¹)	3 rd Ionization Energy (kJ mol ⁻¹)
a) Which element is most metallic in character? Explain your reasoning. (2pts) Element 2 - One 5 + I = 5	Elem	ent 1	1,251	2,300	3,820
	Na Elem		496	4,560	6,910
	Elem		738	1,450	7,730
metals have 1000 to	_	ent 4	1,000	2,250	3,360
The same of the sa					
b) Identify element 3. Explain your reasoning. (2pts) Mg - relatively low 1st and 2nd This indicates 2 value e.	It	S	Confere	d to	the Bro
c) Write the <u>complete</u> electron configuration for an atom of element 3.	1522	د ک	6,325	((1pt)
d) What is the expected oxidation state for the most common ion of ele	ment 2?	+/	_ (1pt)		
e) What is the chemical symbol for element 2? (1pt)					
f) A neutral atom of which of the four elements has the smallest radius? Element	and/or que evel, sons to	ele actionatur bo	theory. 20 Theory	2006B7 2 10 Cole 2 greate 3 cole 2 ture. (2pts)	r This retree
B has 3 valence e which with X. The 3 bonds orient minimize repulsions. This forms	then Trig	cel.	form les 12 lene	3 bond 10° apa 3 eu me d	7. 10
c) The first ionization energy of K is less than that of Na. (2pts)	a`S !	5	35	- P P	25 1.0
The 4s' et is further and from to remove.	the	~	ullus	and t	~ > 1 · C
d) Each element displays a unique gas-phase emission spectrum. (2pts)					
transition from excited state to different for each adoms electro	21	00,0	rrangen 8 Stot	e wil	\ be

Answer the following problems about gases. 2007B 2

- a) The average atomic mass of naturally occurring neon is 20.18 amu. There are two common isotopes of naturally occurring neon as indicated in the table.
 - i) Using the information in the table, calculate the percent abundance of each isotope.

Isotope	Mass (amu)
Ne-20	19.99
Ne-22	21.99

$$Ne-20 = 90.590$$

 $Ne-22 = 9.590$

ii) Calculate the number of Ne-22 atoms in a 12.55 g sample of naturally occurring neon. (3pts

b) A major line in the emission spectrum of neon corresponds to a frequency of 4.34 x 10¹⁴ s⁻¹. Calculate the wavelength, in nanometers, of light that corresponds to this line. (2pts)

c) In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes from the Sun.

$$O_3(g)$$
 -UV \rightarrow $O_2(g)$ + $O(g)$

A molecule of $O_3(g)$ absorbs a photon with a frequency of $1.00 \times 10^{15} \, \text{s}^{-1}$.

i) How much energy, in joules, does the $O_3(g)$ molecule absorb per photon? (1pt)

FELL =(6.626 +10-34 J.S)(1.00 +10'5 5-1) = 6.63 +10-19

ii) The minimum energy needed to break an oxygen-oxygen bond in ozone is 387 kJ mol⁻¹. Does a photon with a frequency of 1.00 x 10¹⁵ s⁻¹ have enough energy to break this bond? Support your answer with a calculation.

6.6340 5 6.022410 photons 1 K5 = 399 KT