- Tracking
 - > Dynamic determination of spatial properties at runtime
 - > Tracking in AR/VR is always in 3D
 - Sensing and measuring in real time
 - > Continuous measurement of position and orientation
 - For example
 - A user's head, eyes, limbs
 - In AR, an object or a marker
 - > Tracking, registration and calibration
 - Terms associated with the measurement and alignment of objects
 - Overlap in practice

- Registration
 - ➤ Alignment of spatial properties
 - ➤ In AR, registered objects aligned to each other in a coordinate system
 - **➢** Goal
 - Accurate registration of virtual information with physical objects
 - > Static registration
 - When the user/camera is not moving
 - Requires calibration of tracking system
 - Dynamic registration
 - When user/camera is moving
 - Requires tracking

- Tracking
 - > Dynamic sensing and measuring, continuous
 - ➤ Must know the relative pose
 - Position and orientation
- Calibration
 - Correlates sensor readings with a standard or a reference sensor
 - Device to be calibrated to a known scale
 - Check and adjust a sensor's accuracy
 - > Usually only performed at discrete times
 - Once for the lifetime of the device (during manufacturing)
 - Before commencing an operation
 - Autocalibration concurrently with tracking

Coordinate Systems

- Coordinate systems
 - AR relies on the standard computer graphics pipeline to produce overlays on the real world

Coordinate Systems

- Model transformation
 - Relationship of local 3D object coordinates with global coordinates
 - Determines where objects are placed
 - ➤ Virtual objects
 - Controlled by the application and do not require tracking
 - > Real objects
 - Static
 - Do not require model transformation
 - Dynamic
 - Register virtual information and track model transformation

Coordinate Systems

- View transformation
 - Relationship of 3D global coordinates with camera coordinates
 - Important if the user is allowed to move
 - Some video see-through devices may require calibration of camera and display
- Projective transformation
 - ➤ Relationship of 3D camera coordinates and 2D device coordinates
 - Content of the view frustum projected onto the screen
 - Calibrated offline for each camera and display

Frames of Reference

- In AR, virtual information
 - Fixed with respect to the global world, an object, or a person's view (AR screen)

Fixed to the display

E.g., heads-up display (HUD)

- World-stabilized
 - Fixed to the world
 - E.g., virtual signpost
- ➤ Body-stabilized
 - Move with the user
 - E.g., virtual panels

- Measurement coordinates
 - > Global vs. local measurements
 - Global
 - Larger (or unlimited) workspace
 - More freedom of movement
 - Local
 - Smaller scale, better accuracy and precision
 - > Absolute vs. relative measurements
 - Absolute
 - Coordinate system defined in advance
 - Relative
 - Reference coordinate system established dynamically
 - Incremental sensing
 - » E.g., mouse movement based on the last measurement

- Physical phenomena
 - > Electromagnetic radiation
 - Visible light
 - Infrared light
 - Laser light
 - Radio signals
 - Magnetic flux
 - > Sound
 - ➤ Physical linkage
 - ➤ Gravity
 - > Inertia

- Signal sources
 - > Passive sources
 - Natural signals
 - E.g., natural light, earth magnetic field
 - > Active sources
 - Requires electronic components to produce physical signal
 - E.g., acoustic, optical, radiowaves
 - Signal can be direct or indirect (reflected)
 - Most require open line of sight
 - No sources
 - E.g., inertia

- Measurement principle
 - ➤ Signal strength
 - ➤ Signal direction
 - > Time of flight
 - Absolute time
 - Signal phase
 - Requires synchronized clocks
 - Degrees of freedom (DOF)
 - Some sensors deliver only a subset
 - E.g.
 - » Gyroscope: 3DOF, orientation only
 - » Tracked LED: 3DOF, position only
 - » Mouse: 2DOF position only

- Measured geometric property
 - ➤ Distances or angle
 - Trilateration
 - Geometric method of determining locations of points from at least three measurements
 - Triangulation
 - Determines locations of points from two or more measured angles
 - » At least one known distance
 - Can recover position and orientation of a rigid object
 - From position of three or more points

Measurement error

- Accuracy
 - How close measurement is to true value
 - Affected by systematic errors
 - Can be improved with better calibration

> Precision

- How closely multiple measurements agree with each other
 - Varies with type of sensor and DOF
- Affected by random error and noise
 - Can be improved with filtering (more computation, more latency)

➤ Resolution

- Minimum difference that can be discriminated between two measurements
- Theoretical property often unachievable in practice due to noise

Temporal characteristics

- ➤ Update rate
 - Temporal resolution
 - Number of measurements in a given time interval
- ➤ Measurement latency
 - Time it takes from occurrence of physical event to data becoming available
- End-to-end latency
 - Time it takes from occurrence of physical event to presentation of a stimulus
 - 60Hz display requires updates within a time interval of less than
 17ms

- Sensor arrangement
 - > Rigid geometric configuration
 - Common approach using multiple sensors together
 - E.g., stereo camera rig
 - > Sparse or dense sensors
 - E.g., digital camera is dense 2D array of intensity sensor with know angles
 - > Technical issues with multiple sensors
 - Sensor synchronization
 - Ensure simultaneous acquisition of measurements
 - Sensor fusion
 - Combining multiple sensor inputs to obtain accurate measurements

- Spatial sensor arrangement
 - ➤ Outside-in tracking
 - Stationary mounted sensors
 - Good position, poor orientation
 - User mostly unaffected by sensor properties, e.g, weight, power
 - Limited workspace
 - > Inside-out tracking
 - Mobile sensor(s)
 - Good orientation, poor position
 - More independent of stationary structures
 - Disadvantage: weight, size, number of sensors

Tracking Systems

- Tracking systems
 - Choice depends on use case
 - > Need to consider tradeoffs between
 - Performance and cost
 - Size, weight, power consumption
- Stationary Tracking Systems
 - Mechanical tracking
 - Track end-effector of articulated arm
 - Joints with 2/3 DOF, known lengths
 - Rotary encoders or potentiometers
 - Fast, high precision
 - Limited freedom of operation

Fakespace BOOM

Stationary Tracking Systems

Electromagnetic tracking

- Stationary source produces three orthogonal magnetic fields
- Current induced in sensor coils
- Measurement of strength and phase of signal
 - Does not require open line of sight
 - Signal strength falls off quadratically with distance
 - Working range: half-sphere with 1-3m radius
- Problems with electromagnetic interference

Stationary Tracking Systems

Ultrasonic Tracking

- Measures time of flight of sound pulse from source to sensor
- Trilateration of at least 3 measurements
- Low update rate (10-50Hz)
 - Due to slow speed of sound
- Requires open line of sight for clear reception
- Suffers from noise or change of temperature
- Wide-area configuration
 - E.g., microphones mounted in ceiling

- Mobile sensors
 - > Can use outdoors
 - > Sensing and computation for tracking
 - Must be performed locally on the mobile device
 - Limited processing power
 - Inexpensive sensors, usually
 - ➤ Global positioning system (GPS)
 - Planet-scale outside-in
 - Measures radiowave time-of-flight
 - Requires clock synchronization
 - Must receive signals from at least 4 satellites
 - Known current positions in orbit

- Often only longitude and latitude used
 - Height significantly affected by measurement error
 - Cannot determine orientation
- Not reliable indoors
- Differential GPS
 - Higher accuracy than GPS
 - Compensate for atmospheric distortion
 - Receive correction signal from base station
 - E.g., via permanent Internet connection
 - Real-Time Kinematics (RTK) Differential GPS also uses signal phase
 - Improves accuracy to a few cm
 - Size is still too bulky for smartphones

Wireless networks

- Measure signal strength from
 - E.g., WiFi, Bluetooth, mobile phone towers
 - Every base station broadcasts a unique ID
 - » Potential trilateration/triangulation using location and ID
- Mostly only good for coarse location
- Fingerprinting
 - Carefully map the signal reception in a given area
 - » E.g., Bluetooth iBeacon in department stores
- GPS, WiFi and cellular radio capabilities usually available to mobile devices
 - Can combine information from all three to improve coverage, speed and accuracy of position measurement

- Magnetometer
 - Electronic compass
 - Measures direction of Earth's magnetic field in 3D
 - Often unreliable, very distorted measurements
 - Distortion from local magnetic fields
 - » Electric and electronic equipment

➤ Gyroscopes

- Measures rotational velocity
 - Determines orientation
- Electronic gyro
 - Measures Coriolis force of small vibrating object
 - Three orthogonal gyroscopes combined with microelectromechanical system (MEMS)
 - » 3DOF
 - High update rate (1KHz)
 - Only relative measurements
 - Susceptible to accumulated drift
- Laser gyro (fiber-optic gyro)
 - Measures angular acceleration based on light interference
 - Large, expensive, used in aviation

- > Linear accelerometer
 - MEMS device
 - Displacement of small mass
 - Measures
 - Change of electric capacity, or
 - Piezoresistive effect of bending
 - Affected by gravity
 - Position determined relative to starting point
 - Drift problems
 - Can determine 2DOF inclination based on direction of gravity
 - Combine with other sensors for 3DOF orientation

➤ Odometer

- Incrementally measure distance traveled over ground
- Mechanical or opto-electrical wheel encoder
 - E.g., inexpensive odometers in traditional ball mouse

- Optical tracking
 - One of the most important physical tracking principles used today
 - Optical sensors
 - Digital cameras are cheap and powerful
 - CCD (charge coupled devices)
 - » Professional photography
 - CMOS (complementary metal oxide semiconductor)
 - » Fast, cheap, low power consumption
 - Inexpensive cameras can provide rich measurements
 - Analysed with sophisticated computer vision techniques
 - Lenses are becoming the most limiting part

- ➤ Model-based versus model-free tracking
 - Using images from a camera requires comparing with some reference model
 - Model-based
 - A tracking model is available
 - » Reference model obtained before tracking
 - Compare the model to observations in the images
 - Model-free
 - At start-up, no tracking model is available
 - » More flexible
 - Most build a temporary tracking model while tracking
 - Measurements only relative to starting point

> Illumination

- Passive illumination
 - Natural light sources
 - » Not part of the tracking system
 - Can use conventional digital camera
 - Requires sufficient contrast
 - » Cannot track when it is too dark (mostly indoors)
- Active illumination
 - Overcomes dependence on natural light sources
 - Often infrared spectrum
 - » Outside human visible spectrum
 - LED beacons
 - Camera with infrared filter delivers high contrast
 - Not suitable with sunlight
 - » Infrared frequencies

- Structured light
 - Project a known pattern into the scene
 - Projector with regular light or laser
 - Laser ranging
 - » Measure time of flight taken by laser pulse
 - » LIDAR (light radar): long range laser used in surveying

- UNC HiBall tracker
 - > User mounted optical sensor
 - > Infrared LEDs installed in special ceiling panels

- Leap Motion Controller
 - Optical hand tracking
 - ➤ 2 cameras, 3 infrared LEDs
 - > Short-distance reflection of hands

- Valve Index/HTC Vive
 - "Lighthouses" two scanning infrared lasers
 - > Photodiodes on headset and controllers pick up lasers

Room image and character by stryjekk, subarashii21 © <u>123RF.com</u>—Derivative work—S. Auksakalnis

➤ Markers vs natural features

- Optical tracking problems
 - Insufficient identifiable features
 - » E.g., white wall
 - High specularity
 - » Unstable when moved relative to camera
 - Repetitive textures
 - » E.g., table cloth
- Markers
 - Known patterns
 - Designed to make detecting their appearance in images to be easy and reliable
 - Specific shape, optimal contrast

➤ Markers vs natural features

- Fiducial markers
 - Artificial tracking targets
 - Square shapes yield 4 points (track pose)
 - Circular shapes yield only 1 point
 - Digital marker model exists first, marker manufactured second (e.g., printing)
- Natural feature tracking
 - Existing visual features in the environment
 - Physical features exist first, tracking model reconstructed second

Image: Daniel Wagner

Image: Andrei State, UNC Chapel Hill

Flat marker designs

SCR marker

Visual Code

from ETHZ

USC's multi-ring marker

IS-1200 marker

QR Codes

- Flat markers
 - > Problem: flat surface
 - > Spheres
 - Always project to a disc shape in images
- Retro-reflective ball markers
 - > Light reflected towards light-source
 - > Illuminate with infrared LED flash
 - > Infrared camera observes bright blobs
 - → 4 or more spheres in known configuration to recover 6DOF pose
 - Multiple targets distinguished by their geometric configuration

- Reflective markers
 - > Full body tracking

Optical tracking of a person with reflective markers (the markers appear to be illuminated by the flashlight used) and several infrared cameras (infrared LEDs appear red).

> Natural features

- Requires better image quality and more computational resources
- Interest points/keypoints
 - Detect salient interest points in image
 - » Must be easily found
 - » Location in image should remain stable when viewpoint changes
 - » Requires textured surfaces
 - Edge features
 - » Less discriminative to texture
 - » Multiple edges must be jointly interpreted for reliable target detection

Image: Martin Hirzer Image: Gerhard Reitmayr

- Match interest points to tracking model database
 - Database filled with results of 3D reconstruction
 - Matching entire (sub-)images is too costly
 - Typically interest points are compiled into "descriptors"

➤ Marker target identification

- More targets or features
 - Easily confused
- Must be as unique as possible
- Spherical targets
 - 5 spheres in different geometric configurations
 - » Can distinguish 10-20 targets
- Pulsed LEDs

Tracking Systems

Touch sensitive surfaces

3D model of a hand controlled by a VR controller with touch sensors.

References

- Among others, material sourced from
 - ➤ S. Aukstakalnis, Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR, Addison-Wesley
 - ➤ D. Schmalstieg and T. Hollerer, Augmented Reality: Principles and Practice, Addison-Wesley
 - www.augmentedrealitybook.org
 - R. Doerner, W. Broll, P. Grimm, B. Jung, Virtual and Augmented Reality: Foundations and Methods of Extended Realities, Springer
 - http://en.wikipedia.org/wiki/