CONTROLLI AUTOMATICI

LM-31 INGEGNERIA GESTIONALE

CORSO DI LAUREA IN INGEGNERIA GESTIONALE LM31 - Indirizzo Trasformazione digitale

Controlli automatici - Giorgio Koch - cod. 0312009INGINF04I

Risposte ai test di autovalutazione delle videolezioni 1 54 [agg.19.03.2021]

VIDEOLEZIONE 1 - I sistemi di controllo automatico. I contesti del loro sviluppo. Le motivazioni. La controreazione

1 I SERVOMECCANISMI sono:

b Sistemi di controllo automatico di grandezze meccaniche

- 2 Il controllo della posizione di un timone in una nave deve essere effettuato necessariamente da un dispositivo opportunamente progettato perché:
- a È necessario disporre di un livello di potenza elevato che soltanto il pilota non può garantire
- 3 Con PROCESSO viene indicato:
- d L'impanto oggetto del controllo
- 4 Un controllo a catena aperta è scarsamente robusto a causa:
- c Dell'eventuale presenza di disturbi all'interno del sistema

5 Un TRASDUTTORE:

- c Preleva il valore attuale delle variabili controllate e lo confronta con il segnale di riferimento
- 6 Uno degli aspetti fondamentali della teoria dei sistemi è:
- b La rappresentazione astratta del comportamento dinamico di un oggetto fisico
- 7 La risposta indiciale è:
- d L'andamento temporale dell'uscita in corrispondenza di una brusca variazione in ingresso
- 8 Le tematiche e le metodologie tradizionali dei sistemi di controllo possono:
- a Essere applicate a diversi tipi di processi, come biologici, monetari e urbanistici
- 9 Nello sviluppo di un sistema, il momento dell'analisi acquista maggiore importanza rispetto alla sintesi quando:
- a Diminuisce il dettaglio con cui sono noti i legami funzionali tra le grandezze
- 10 Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è:
- b L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti
- VIDEOLEZIONE 2 Rappresentazioni astratte. Esempi. Studio e impiego delle analogie
- 1 Un sistema viene detto dinamico a tempo continuo quando:
- c I legami tra le sue variabili possono essere descritti da equazioni differenziali rispetto al tempo

2 L'equazione $v_R(t)=Ri_R(t)$ descrive:

b Il comportamento di un resistore

3 Un sistema elettrico formato da elementi di base può essere descritto da:

b Combinazioni lineari, a coefficienti costanti, di derivate di vario ordine, rispetto al tempo, delle variabili in gioco

4 Le equazioni utilizzate per scrivere il modello matematico relativo ad un sistema meccanico traslazionale fanno riferimento:

d Al principio dell'equilibrio di tutte le forze in gioco

5 Nel modello di un sistema meccanico rotazionale, la variabile di controllo è:

a La coppia torsionale z(t)

6 La condizione fondamentale di equilibrio per sistemi termici è che il flusso di calore entrante sia pari:

a Alla somma algebrica del flusso uscente e del flusso accumulato

7 La forza controelettromotrice in un motore a corrente continua è proporzionale:

d Al prodotto tra il flusso magnetico indotto dallo statore e la velocità angolare del rotore

8 Nel modello di un motore a corrente continua, la variabile $\Omega_r(t)$ indica:

c La variabile controllata

9 Sistemi analogici sono:

d Sistemi di tipo diverso che possono essere gestiti tramite lo stesso modello matematico

10 L'analogia di Firestone è utile per:

a Ricondurre la rappresentazione di sistemi meccanici a sistemi elettrici

VIDEOLEZIONE 3 - Comunicazione e controllo. La cibernetica di Wiener. Chi fa le domande?

1 Al giorno d'oggi l'informazione:

d È una delle merci più preziose in circolazione

2 Il termine greco "Kybernetiké" significa:

b Arte del pilota, del timoniere

3 Per Wiener la comunicazione intesa come raccolta, elaborazione e trasmissione di segnali serve:

d Per poter effettuare il controllo

4 La statistica consente l'afflusso di informazione al centro di controllo:

d In modo aggregato e solo nelle forme predisposte dal centro stesso

5 La "metainformazione" è:

c L'informazione contenuta nel fatto che un dato messaggio viene trasmesso

6 La scelta delle variabili da comunicare al centro decisionale di controllo è legata:

a Al tipo di controllo che si intende effettuare sul processo

7 I rilevamenti Auditel forniscono:

a Dati in percentuale sull'ascolto televisivo italiano

8 Per "big data" si intende:

b Una quantità di dati molto estesa in termini di volume e varietà

9 La richiesta di informazioni:

b Permette di influenzare e tentare di controllare l'ambiente al quale ci si rivolge

10 Comunicazione e controllo sono:

c Strettamente legate tra di loro

VIDEOLEZIONE 4 - La teoria dei sistemi. Concetto di stato. Identificazione. Tematiche associate

1 Un sistema è un insieme di relazioni:

b Ciascuna raccogliente la totalità delle coppie ingresso-uscita, per un dato istante iniziale to

2 Un sistema è astratto se:

c Può essere usato per descrivere diversi processi di natura differente

3 Il primo passo da fare nella risoluzione del problema dell'identificazione è:

c Restringere la classe alla quale si suppone che il sistema possa appartenere

4 Lo stato di un sistema ci permette di:

d Determinare univocamente l'uscita del sistema rispetto all'ingresso in un determinato istante

5 Attraverso lo stato il sistema può essere rappresentato mediante una funzione φ di transizione dello stato e:

d Una funzione η di uscita

6 Le proprietà di unicità, casualità e consistenza garantiscono che:

a Valori dell'ingresso antecedenti alla rivelazione dello stato iniziale, o posteriori allo stato corrente,non influiscono sullo stato stesso

7 Costituisce oggetto della teoria dei sistemi:

c Lo studio di specifiche proprietà dei sistemi quali, ad esempio, la stabilità, la controllabilità e l'osservabilità

8 L'acronimo ARMA sta per:

b AutoRegressive Moving Average

9 Il sistema

 $x(t) = A_c x(t) + B_c u(t)$

 $y(t) = C_c x(t) + D_c u(t)$

prende il nome di:

a Forma compagna di controllore

10 La forma compagna di controllore e quella di osservatore sono:

a Due rappresentazioni duali

VIDEOLEZIONE 5 - Operazioni su matrici. Autovalori, Autovettori. Forma diagonale

1 Nel caso di evoluzione libera, lo stato:

b Evolve a partire dal suo valore iniziale

2 Una matrice diagonale è una matrice quadrata in cui:

a Solo i valori della diagonale principale possono essere diversi da zero

3 Nella definizione di autovettore, affinchè Av= λv , è necessario che λ renda singolare la matrice A- λl , ovvero che:

a $det[A-\lambda I]=0$

4 L'equazione caratteristica $p_A(\lambda) = \lambda^n + \alpha_{n-1} \lambda^{n-1} + ... + \alpha_0$ ammetterà n radici che prendono il nome di:

c Autovalori

5 Una trasformazione di coordinate è rappresentata da:

c Una matrice non singolare T che lega in modo biunivoco il vecchio stato x con il nuovo z

6 Le matrici A di due sistemi ottenuti mediante una trasformazione di coordinate sono legate dalla relazione:

a A'=T-1AT

7 Il teorema di Cayley-Hamilton ci dice che:

d Ogni matrice quadrata soddisfa la propria equazione caratteristica

8 Un sistema in forma diagonale:

b Permette di applicare sforzi di controllo separati, ciascuno atto alla modifica di una singola dinamica

9 'L'evoluzione di una dinamica libera associata ad un autovalore λ_i è forzata a rimanere nell'autospazio generato dal corrispettivo autovettore v_i '. Questa espressione definisce:

d La proprietà di invarianza degli autospazi

10 Sia A una matrice quadrata di ordine n. Il problema della sua diagonalizzazione consiste nella determinazione di una matrice non singolare P tale che:

 $b A=P\Lambda P^{-1}$

VIDEOLEZIONE 6 - La forma canonica di Jordan. Il caso di autovalori complessi

1 La quasi-diagonalizzazione può essere utilizzata quando gli autovalori della matrice A:

b Non sono tutti reali

2 La forma canonica di Jordan risulta fondamentale quando:

a La molteplicità algebrica degli autovalori della matrice A non è pari alla molteplicità geometrica dei loro autovettori indipendenti

3 La somma del numero delle righe dei v_i blocchi di Jordan associati a un autovalore λ_i deve:

d Essere pari alla sua molteplicità algebrica

4 Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i v_i blocchi per λ_i in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a:

c 1

5 Per un dato autovalore λ_i , definiamo autovettore generalizzato di ordine k quel particolare vettore $v_{i,k}$ reale, per cui vale:

a
$$(A-\lambda_i I)^k v_{i,k} = 0$$
 e $(A-\lambda_i I)^{k-1} v_{i,k} \neq 0$

6 Gli autovettori generalizzati appartenenti alla stessa stringa sono:

c Indipendenti tra di loro sempre

7 Il polinomio caratteristico $p_A(\lambda)=\lambda(\lambda-1)^4$ ha due autovalori $\lambda_1=0$ e $\lambda_2=1$, con molteplicità algebrica $\mu_1=1$ e $\mu_2=4$. La molteplicità geometrica del primo autovalore sarà pari a:

b 1

8 La matrice di trasformazione Q in grado di portare la matrice A nella forma canonica di Jordan sarà tale per cui:

d J=Q⁻¹AQ

9 È possibile costruire blocchi di Jordan:

c Sia nel caso di autovalori reali sia in quello di autovalori complessi e coniugati

10 La componente Qi della matrice di trasformazione Q che porta il sistema complesso in forma canonica di Jordan ha la seguente struttura:

a $Q_i = [q_r + jq_i q_r - jq_i]$

VIDEOLEZIONE 7 - Controllo a catena aperta e chiusa. Il controllo statico e dinamico

1 Quando il controllore possiede informazioni soltanto sul segnale di riferimento, si dice:

c a catena aperta

2 Si usa dire che vi è una compensazione del disturbo quando:

b il disturbo è misurabile

3 Il controllo a catena chiusa risulta:

a in generale più efficiente di quello a catena aperta

4 Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a un controllo a catena aperta, di:

b $(k/(k+\alpha))$

5 Il polinomio caratteristico $\lambda^2 + \lambda(h/m) + (k/m) = 0$ ha due radici reali negative se:

 $d h^2 \ge 4km$

6 Un processo dinamico da controllare, al crescere di α , può presentare oscillazioni di ampiezza descrescente quando:

d il polinomio caratteristico ha radici complesse e coniugate con parte reale negativa

7 Un controllore a catena chiusa:

a può modificare, entro un certa misura, la dinamica del sistema di controllo

8 Quando un controllore presenta una dipendenza dai valori passati dell'errore, si dice:

c controllore dinamico

9 Mediante l'utilizzo di un controllore dinamico, si può dimostrare che, con i parametri in condizioni nominali, l'errore:

b tende a zero sempre

10 Un supervisore:

a può aggiornare i modelli matematici, con le relative parametrizzazioni

VIDEOLEZIONE 8 - La classificazione dei sistemi. Il movimento libero

1 I sistemi dotati di una sola variabile di ingresso e una sola di uscita sono detti:

b Monovariabili

2 Un sistema dinamico a tempo continuo si dirà strettamente proprio se:

a la funzione g non dipende dall'ingresso u(t)

3 I primi addendi della formula di Lagrange prendono il nome di:

b risposta libera

4 Nei sistemi lineari è possibile calcolare la risposta generata da più cause come combinazione lineare delle risposte alle singole cause. Questa affermazione descrive:

d il principio di sovapposizione degli effetti

5 Nello studio del movimento libero dello stato e dell'uscita, per il caso semplice n=1, la matrice A:

c si riduce a un reale a

6 Per n>1, quando gli autovalori di A, matrice diagonalizzabile, sono tutti reali e distinti, i modi del sistema saranno del tipo:

 $c\; e^{\lambda t}$

7 Nel caso in cui un sistema presenta gli autovalori di A tutti reali e distinti, il movimento libero dello stato e dell'uscita sarà caratterizzato dall'equazione:

b x(t)= $Ve^{\Lambda(t-t0)}V^{-1}x(t0)$

8 I modi di un sistema nel caso in cui gli autovalori di A non sono tutti reali e distinti, vengono detti:

a pseudoperiodici

9 Consideriamo il sistema di controllo elastico a catena aperta. Nel caso in cui (h²/4m)<(k/m) gli autovalori saranno:

d complessi

10 Nel caso di autovalori multipli e complessi della matrice A, i movimenti liberi dello stato e dell'uscita saranno combinazioni lineari dei termini:

a t^ke^{σt}sen(ωt+φ)

VIDEOLEZIONE 9 - Movimento forzato. Gli ingressi canonici

1 La risposta forzata del sistema si ricava imponendo nelle formule di Lagrange:

 $b x(t_0)=0$

2 La funzione w(t)=Ce^{At}B prende il nome di:

a Nucleo risolvente

3 I regimi canonici permettono di:

a Calcolare l'uscita corrispondente a una qualsiasi funzione di ingresso

4 Il limite di $\Delta \epsilon(t)$, per ϵ che tende a 0, prende il nome di:

d Impulso

5 La distribuzione di Dirac è nulla ovunque tranne che in:

b 0

6 La risposta impulsiva coincide con:

c Il nucleo risolvente

7 L'ingresso canonico a gradino è definito come:

 $c \delta_{-1}(t)=0 \text{ per } t<0$

 $\delta_{-1}(t)=1$ per $t\geq 0$

8 Il gradino, nel senso delle distribuzioni, è:

d L'integrale dell'impulso

9 L'ingresso a parabola, per t≥0, sarà pari a:

 $b \delta_{-3} = (t^2/2)$

10 Entrambe le risposte, libera e forzata, sono formate da combinazioni lineari di:

a Modi

VIDEOLEZIONE 10 - Le risposte dei sistemi del primo e del secondo ordine

1 Nel caso di autovalori complessi e coniugati, i modi avranno andamenti temporali:

a sinusoidali

2 La risposta di un qualsiasi sistema può essere ottenuta come combinazione lineare di:

c sistemi elementari del primo e del secondo ordine

3 La risposta impulsiva, per t che tende a infinito, di un sistema del primo ordine con λ <0:

d decresce in modo monotono

4 Il paramentro $\tau=-(1/\lambda)$ prende il nome di:

b costante di tempo

5 Il tempo di assestamento del sistema è il tempo necessario affinchè l'ampiezza dell'uscita rimanga entro il:

b 5% del valore limite

6 Gli autovalori si dicono dominanti quando nell'espressione del transitorio:

d il loro contributo risulta più importante rispetto agli altri autovalori

7 La risposta indiciale di un sistema del secondo ordine con autovalori complessi e coniugati e con σ =0 presenta:

c oscillazioni permanenti

8 Il tempo di ritardo t_rè il tempo che occorre:

a per raggiungere il 50% del valore di regime

9 La prima massima sovraelongazione della risposta indiciale di un sistema del secondo ordine con autovalori complessi e coniugati si ha per:

a
$$t_s = (\pi/\omega)$$

10 Nel caso di risposta indiciale, se poniamo ω =4 e facciamo variare σ , allora gli autovalori di un sistema del secondo ordine:

d si muoveranno lungo due rette parallele all'asse reale, con ordinata pari a ± 4

VIDEOLEZIONE 11 - Equilibrio. Introduzione del concetto di stabilità

1 I movimenti dello stato costanti ottenuti applicando a un sistema descritto dalle equazioni ingresso-stato-uscita un ingresso costante, sono detti:

d stati di equilibrio

2 Gli stati di equilibrio x –, se esistono, devono costituire soluzione costante nel tempo dell'equazione:

a
$$0=f(x^{-}, \bar{u})$$

3 Nel sistema (non lineare) $\dot{x}(t)=x^2(t)+x(t)+u(t)$ ci sono due punti di equilibrio se:

$$c u(t)=\bar{u}<(1/4) e u(t)=\bar{u}=(1/4)$$

4 La proprietà per cui 'piccole' variazioni delle condizioni iniziali hanno come conseguenze 'piccole' perturbazioni del movimento dello stato vene detta:

b stabilità

5 Uno stato di equilibrio x^- si dice stabile se, per ogni $\epsilon>0$, esiste un $\delta>0$ tale che per tutti gli stati iniziali x_0 che soddisfano la relazione $||x_0 - x^-|| < \delta$ risulta:

$$a \mid |x(t)-x^-|| \le \varepsilon, \forall t \ge 0$$

6 Quando esistono perturbazioni arbitrariamente piccole dello stato che provocano l'allontanamento del movimento dello stato dal punto di equilibrio si dice che questo è:

d instabile

7 Uno stato di equilibrio x⁻ si dice asintoticamente stabile se, oltre a soddisfare le condizioni di stabilità, soddisfa anche la relazione:

b $\lim |x(t)-x^-|=0$ per t che tende a infinito

8 Se i movimenti generati da uno stato iniziale, vicino o lontano allo stato di equilibrio nominale, convergono allo stato di equilibrio stesso, allora lo stato si dice:

c globalmente stabile

9 Un sistema è globalmente asintoticamente stabile se e solo se tutti gli autovalori della matrice dinamica A hanno:

a parte reale negativa

10 Un sistema può dirsi globalmente asintoticamente stabile se la sua risposta impulsiva:

b tende a 0 per t che tende a infinito

VIDEOLEZIONE 12 - Criteri per caratterizzare le radici del polinomio caratteristico

1 Condizione necessaria (ma non sufficiente) affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa, è che i coefficienti del polinomio caratteristico siano:

a tutti strettamente positivi o strettamente negativi

2 La condizione del teorema 1.1 è necessaria e sufficiente solo quando:

d n=1 e n=2

3 Per il criterio di Routh, se gli elementi della prima colonna della tabella di Routh hanno lo stesso segno, allora le radici dell'equazione caratteristica avranno:

b parte reale negativa

4 Nella tabella di Routh il numero di radici a parte reale positiva è pari:

c al numero di variazioni di segno lungo la prima colonna

5 L'ultima riga della tabella di Routh ha un solo elemento β₀, e si ha sempre:

d $\beta_0 = \alpha_0$

6 Sostituiamo λ con (1/v) nel polinomio caratteristico ottenendo un nuovo polinomio $q_A(v)$ quando:

d un elemento della prima colonna della tabella è nullo

7 La tabella di Routh del polinomio $p_A(\lambda) = \lambda^4 + \lambda^3 + 2\lambda^2 + 2\lambda + 5$ sarà pari a:

```
4 1 2 5
3 1 2
b 2 0 5
```


8 Nella tabella di Hurwitz vanno considerati nulli gli elementi con pedici:

c maggiori di n o minori di zero

9 Condizione necessaria e sufficiente affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa è che:

c tutti i determinati di Hurwitz siano positivi

10 Al crescere del grado del polinomio caratteristico, è più efficiente utilizzare:

a il criterio di Routh

VIDEOLEZIONE 13 - Polinomio caratteristico e stabilità asintotica: ulteriori risultati

1 Affinché le radici del polinomio caratteristico abbiano tutte parte reale negativa, va considerata la condizione necessaria che:

b tutti i coefficienti del polinomio abbiano lo stesso segno

2 Per il criterio di Liénard-Chipart, affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa è necessario che sia soddisfatto almeno uno dei 4 sistemi di disequazioni e che:

a $D_0=\alpha_n>0$

3 L'applicazione del criterio di Liénard-Chipart comporta la verifica del segno di un numero di determinanti pari a circa:

a la metà di quelli richiesti per il criterio di Hurwitz

4 Se un sistema dinamico è definito a meno del valore di qualche parametro e vogliamo stabilire per quali valori di quest'ultimi il sistema rimanga asintoticamente stabile, occorre determinare:

d la regione di stabilità asintotica

5 Il criterio di Kharitonov riduce la stabilità di un sistema incerto, qualunque sia l'ordine del sistema stesso, a quella di:

c 4 sistemi perfettamente noti

6 Al variare dei coefficienti del polinomio caratteristico all'interno degli intervalli stabiliti, tutte le radici del polinomio stesso hanno parte reale negativa se e solo se i polinomi $p_1(\lambda)$, $p_2(\lambda)$, $p_3(\lambda)$. $p_4(\lambda)$ hanno:

d tutte le radici con parte reale negativa

7 Il criterio di Michailov si basa su:

b una rappresentazione grafica del polinomio

8 Il polinomio $p(j\omega)$ può essere considerato come il prodotto di n vettori sul piano complesso ciascuno con la base nella sua radice e il vertice in $j\omega$, quando:

c λ percorre l'asse immaginario

9 Le radici del polinomio caratteristico hanno tutte parte reale negativa se, quando ω varia da - a + infinito, il vettore corrispondente a p(j ω) non passa con il suo vertice nell'origine e ha una variazione di fase pari a:

d nπ

10 Per il criterio di Michailov (2), le parti reale e immaginaria di $p(j\omega)$ devono annullarsi alternativamente, ma:

a mai annullarsi contemporaneamente al passaggio di p(jω) per l'origine

VIDEOLEZIONE 14 - Esercitazione n°1

La lezione non prevede test di autovalutazione

VIDEOLEZIONE 15 - Linearizzazione di sistemi nonlineari. Stabilità dell equilibrio. Esempi

1 Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando:

a
$$0=f(x^-, \bar{u}) y^-=g(x^-, \bar{u})$$

2 Quando descriviamo il comportamento di un sistema nonlineare localmente, mediante un opportuno sistema lineare che costituisce un'approssimazione del sistema originario, stiamo effettuando un procedimento di:

d linearizzazione

3 Un sistema linearizzato descrive in modo approssimato il comportamento attorno alle condizioni di equilibrio di un sistema nonlineare nel caso in cui le variazioni $\delta u(t)$, δx_{t0} , $\delta x(t)$ e $\delta y(t)$ siano:

d sufficientemente piccole in norma

4 La linearizzazione dei sistemi non lineari è valida:

a per sistemi SISO e MIMO

5 Consideriamo un pendolo che oscilla in un piano verticale. Se l'ingresso assume un valore costante u(t)=ū=Mgl, possiamo avere un equilibrio in:

b
$$x_1=\pi/2$$
, $x_2=0$, $y=0$

6 Consideriamo un pendolo che oscilla in un piano verticale. Se l'ingresso è pari a u(t)= \bar{u} =0, all'equilibrio e con n pari, il pendolo si troverà in:

b posizione verticale con la massa in basso

7 Nonostante il modello linearizzato sia approssimato, esso consente di ottenere risultati esatti poiché le proprietà di stabilità sono:

c locali

8 Uno stato di equilibrio x⁻ relativo all'ingresso costante ū di un sistema nonlineare è asintoticamente stabile se gli autovalori del sistema linearizzato corrispondente hanno:

a tutti parte reale negativa

9 Il polinomio $p(\lambda)=\lambda(\lambda+(k/Ml^2))$ del sistema linearizzato del pendolo presenta una radice nulla e una negativa. Sulla base dei teoremi 3.1 e 3.2, possiamo dire che:

c non abbiamo informazioni a sufficienza per stabilire la stabilità dello stato di equilibrio

10 Nel caso del pendolo con ingresso u(t)= \bar{u} =0, è nulla la variazione prima dell'energia totale del sistema, rispetto a perturbazioni delle altre variabili, perché:

D C=0 e D=0

VIDEOLEZIONE 16 - Scomposizione dei sistemi. Raggiungibilità. Condizioni di Kalman

1 Nell'esempio 1 del circuito elettrico si vede che l'ingresso u agisce soltanto su:

d x 1

2 Il sistema descritto per il circuito elettrico dell'esempio 1 è:

a asintoticamente stabile

3 Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo:

b $y=x_2$

4 Uno stato x^{\sim} si dice raggiungibile se esistono un tempo finito $t^{\sim} > 0$ e un ingresso u definito in $[0, t^{\sim}]$ tali che, detto $x^{\sim}_f(t)$ il movimento forzato dello stato generato da u risulti:

$$b x^{-}_{f}(t^{-})=x^{-}$$

5 Un sistema i cui stati sono tutti raggiungibili si dice:

a completamente raggiungibile

6 Un sistema descritto dalle equazioni ingresso-stato-uscita risulta completamente raggiungibile se:

 $d \rho(M_r)=n$

7 Dal teorema 2.2, per costruire la matrice T_r selezioniamo n_r colonne indipendenti da M_r e poi altre n- n_r colonne scelte in modo arbitrario, ma tali che:

b det $(T_r^{-1}) \neq 0$

8 Per i sistemi lineari stazionari, la proprietà di raggiungibilità coincide con quella di:

a Controllabilità

9 Se la matrice A è diagonalizzabile, il sistema è raggiungibile se e solo se la matrice di ingresso trasformata B~:

c non ha nessuna riga tutta nulla

10 Se la matrice A non è diagonalizzabile, il sistema è completamente raggiungibile se e solo se non sono nulle le righe di B^{*} corrispondenti alle:

c ultime righe dei blocchi di Jordan di Ã

VIDEOLEZIONE 17 - Osservabilità. Scomposizione canonica. Forma minima

1 Uno stato $x^* \neq 0$ di un sistema dinamico si dice non osservabile se per ogni t^* , $0 < t^* < (infinto)$, detto $yl^*(t)$ il movimento libero dell'uscita generato da x^* , risulta:

b $yl^{\sim}(t)=0$ con $0 \le t \le t^{\sim}$

2 La proprietà di osservabilità dipende integralmente dalla coppia di matrici:

d (A, C)

3 La coppia (A, C) è completamente osservabile se il rango della matrice di osservabilità M_0 è pari a:

d n

4 Per il teorema 1.2, l'esame di un qualsiasi transitorio di y consente di determinare:

a $\hat{x}_a(0)$

5 Per i sistemi dinamici lineari stazionari, la nozione di non osservabilità coincide con quella di:

b non ricostruibilità

6 Il sistema presentato nell'esempio, quando si assume y(t)=x₂(t), risulta:

c completamente osservabile

7 Se la matrice dinamica A è diagonalizzabile, si dimostra che il sistema è completamente osservabile se e solo se la matrice di uscita trasformata Ĉ:

a non ha alcuna colonna tutta nulla

8 Utilizzare la scomposizione canonica è vantaggioso quando un sistema dinamico risulta essere:

c non completamente raggiungibile e non completamente osservabile

9 La risposta impulsiva di un sistema dinamico lineare stazionario coincide con la risposta impulsiva della sola sua parte:

b raggiungibile e osservabile

10 Un sistema raggiungibile e osservabile, in quanto non è possibile adoperare un numero di variabili di stato inferiore al suo ordine per descrivere la sua relazione tra ingresso e uscita, viene detto:

d in forma minima

VIDEOLEZIONE 18 - Segnali a tempo continuo. Trasformata di Laplace

1 La rappresentazione polare di un numero complesso s è:

 $d \rho e^{j\varphi}$

2 Nell'integrale della trasformata di Laplace l'estremo inferiore va inteso come 0⁻, nel senso che:

c eventuali impulsi nell'origine vanno inclusi

3 Una delle condizioni sufficienti affinché una funzione del tempo ammetta trasformata di Laplace è che:

d f deve essere continua a tratti

4 Consideriamo la trasformata razionale F(s)=N(s)/D(s). Si dicono poli le radici dell'equazione:

a D(s)=0

5 La formula di trasformazione e quella di antitrasformazione stabiliscono una relazione biunivoca tra:

cfin (0, inf.) eF

6 Date due funzioni reali f, g su (0, +inf.), con a, b complessi, si haL(af(t)+bg(t))=aF(s)+bG(s). Questa proprietà viene detta:

b linearità

7 Per la proprietà di traslazione nel dominio della frequenza, per ogni α , si ha:

b L($e^{\alpha t}f(t)$)=F(s- α)

8 Moltiplicare per s nel dominio della variabile complessa equivale a:

a derivare nel dominio del tempo

9 Se una funzione reale f ha trasformata di Laplace razionale F con il grado del denominatore maggiore del grado del numeratore, allora il lim s(F(s)) con s che tende a +inf. è pari a:

c f(0)

10 La trasformata di Laplace del gradino unitario δ_{-1} è pari a:

d 1/s

VIDEOLEZIONE 19 - Funzione di trasferimento di un sistema dinamico. Interpretazioni e struttura

1 La funzione di trasferimento mette in relazione tra loro le trasformate di Laplace:

b delle variabili di ingresso e di uscita

2 La funzione di trasferimento del sistema in presenza di condizioni iniziali nulle è descritta dalla formula matriciale:

a W(s)= $C(sI-A)^{-1}B+D$

3 Se in un sistema SISO poniamo un ingresso impulsivo u(t)= δ (t), allora si ha:

dY(s)=W(s)

4 Si ha W(s)=D, costante e indipendente da s, quando:

d all'uscita manca il contributo dinamico dello stato

5 Se numeratore e denominatore in W(s) hanno uno o più fattori in comune, dopo la loro cancellazione reciproca, la funzione di trasferimento verrà detta:

c in forma minima

6 Visto il carattere dei coefficienti di W(s), poli e zeri costituiscono:

b le singolarità del sistema

7 Il polinomio caratteristico di un sistema, quando non ci sono cancellazioni tra numeratore e denominatore della funzione di trasferimento, coincide con:

b il denominatore della funzione di trasferimento

8 In alcuni casi più semplici, è possibile ottenere la funzione di trasferimento trasformando direttamente con Laplace le equazioni del sistema ipotizzando:

a u(0)=0 e y(0)=0

9 Se la funzione di trasferimento è rappresentata da una funzione razionale strettamente propria, allora si può scomporre il rapporto di polinomi in una somma di n termini del tipo:

 $d R_i/(s-\lambda_i)$

10 Il teorema di Abel-Ruffini afferma che non risulta possibile la soluzione per radicali di un'equazione algebrica di grado:

c superiore al quarto

VIDEOLEZIONE 20 - Funzione di trasferimento: stabilità, raggiungibilità, osservabilità. Scomposizioni come rapporti di polinomi

1 Nel calcolo di una funzione di trasferimento W(s) di un sistema dinamico, l'eventuale cancellazione di radici in comune tra numeratore e denominatore fa si che il numero dei poli sia:

d inferiore a quello degli autovalori

2 Gli autovalori che non coincidono con i poli di W(s) sono associati a parti 'nascoste' del sistema che:

b non influenzano il legame ingresso-uscita

3 Una condizione necessaria affinché si possa valutare se un sistema è asintoticamente stabile a partire dalla sua funzione di trasferimento è che:

b non vi siano cancellazioni tra numeratore e denominatore

4 In generale la risposta forzata di un sistema dipende soltanto dalla sua parte:

c raggiungibile e osservabile

5 Gli autovalori che non sono poli della funzione di trasferimento appartengono alla parte:

a non raggiungibile o non osservabile

6 Il coefficiente k, reale, presente nella funzione di trasferimento espressa come rapporto di prodotti di zeri e di prodotti di poli, prende il nome di:

a coefficiente di guadagno

7 La rappresentazione come somma di rapporti di residui e poli consente di ottenere facilmente l'antitrasformata della funzione di trasferimento, che sappiamo essere:

b la risposta impulsiva

8 Nel caso in cui i poli siamo distinti possiamo utilizzare la formula R_i =((s- p_i)($N_{W(s)}/D_{W(s)}$)) per calcolare:

d i residui separatamente per ciascun polo

9 Non è possibile utilizzare la notazione semplificata R_i,l=R_inel caso di:

d poli multipli

10 Data una funzione di trasferimento, la somma dei residui W_(s)/b_m è pari a 1 se:

c n=m+1

VIDEOLEZIONE 21 - Rappresentazione della funzione di trasferimento. La risposta indiciale per sistemi del primo ordine

1 La fase φ della funzione di trasferimento W(s), espressa in forma polare, può essere calcolata come:

b arctan(Im(W(s))/Re(W(s)))

2 Nella rappresentazione della funzione di trasferimento, gli scalari $\gamma=V(\alpha^2+\beta^2)$ e $\delta=V(\sigma^2+\omega^2)$ vengono detti:

d pulsazioni naturali

3 Nell'ipotesi di stabilità asintotica e con q > 0, un sistema viene detto integratore se la sua funzione di trasferimento è:

b W(s)=1/s

4 Il contributo di un polo alla risposta forzata scomparirà lentamente se la sua costante di tempo è:

d elevata

5 Nel caso di una funzione di trasferimento con poli complessi e coniugati, questi si sposteranno in un piano complesso lungo una circonferenza di raggio δ_i al variare di ξ_i da -1 a 1. In particolare se ξ_i = 0 allora i poli saranno:

a immaginari puri

6 Data una funzione di trasferimento con q=0, si ha y(0)=0 se:

a m'+2m"<n'+2n"

7 Il valore di regime è:

c il valore dell'uscita una volta esaurito il transitorio

8 Il periodo di oscillazione T_P è il tempo:

b che intercorre tra i primi due massimi dell'uscita

9 Il valore di regime della risposta indiciale di un sistema del primo ordine asintoticamente stabile (θ >0) è pari:

c al guadagno

10 Il tempo di assestamento della risposta indiciale di un sistema del primo ordine con $\theta>0$ è pari a:

 $d - \theta \ln(0,01\epsilon)$

VIDEOLEZIONE 22 - Risposta indiciale per sistemi di ordine superiore al primo

1 Nella risposta indiciale di un sistema del secondo ordine asintoticamente stabile con solo poli reali e distinti:

a non è presente alcuna sovraelongazione o sottoelongazione

2 Nella risposta indiciale di un sistema del secondo ordine asintoticamente stabile che presenta poli reali e distinti e uno zero, per $\theta_1>\theta_2>0$ e $\tau<0$ si ha:

b una sottoelongazione

3 Nel caso di sistemi del secondo ordine (o maggiore), la presenza di una sovraelongazione nella risposta indiciale è segno della presenza di:

d uno zero negativo e di modulo minore dei poli

4 Nel caso di una sistema del secondo ordine con poli reali e distinti e uno zero tale che $\theta_1>\theta_2>\tau>0$, se lo zero si allontana sempre più dall'origine del piano complesso, allora la risposta indiciale:

b tende a quella di un sistema con gli stessi poli, ma senza lo zero

5 Nel caso di un sistema del secondo ordine con due poli complessi e coniugati, la sua risposta indiciale sarà data da l'antitrasformata della sua funzione di trasferimento moltiplicata per:

c 1/s

6 In un sistema del secondo ordine con due poli complessi e coniugati, se σ <0, allora la risposta indiciale:

d diverge

7 Nel caso di un sistema del secondo ordine asintoticamente stabile (σ >0) con due poli complessi e coniugati, gli istanti di stazionarietà della risposta indiciale possono essere ricavati ponendone a zero la derivata, e risultano esprimibili come:

a $t_n=n(\pi/\omega)$

8 L'eliminazione di una coppia polo-zero con valori delle costanti di tempo prossimi tra loro, o addirittura coincidenti, può causare problemi:

c di stabilità, raggiungibilità e/o osservabilità

9 Nella funzione di trasferimento W(s) di un sistema asintoticamente stabile, una volta cancellate le coppie polo-zero vicine tra loro sul piano complesso, i poli più vicini all'asse immaginario rispetto ad altri, vengono detti:

b poli dominanti

10 Nell'approssimazione attraverso i poli dominanti, gli zeri che hanno una distanza simile dall'asse immaginario (o addirittura inferiore) ai poli stessi:

b sono da tenere in considerazione nel calcolo

VIDEOLEZIONE 23 - Risposta alla sinusoide. Risposta in frequenza. Risposta a segnali sviluppati in serie di Fourier

1 L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del suo comportamento in presenza di ingressi di tipo:

c sinusoidale

2 Un sistema SISO risponde a un ingresso sinusoidale con una sinusoide della stessa frequenza, la cui ampiezza sarà il prodotto tra:

c l'ampiezza di ingresso e il modulo della funzione di trasferimento alla stessa frequenza

3 Lo studio a regime di un sistema SISO a cui viene applicato un ingresso sinusoidale, è riconducibile allo studio di coppie di radici situate:

a sull'asse immaginario

4 La durata del transitorio di un sistema SISO, a cui viene applicato un ingresso sinusoidale, dipende dalla dinamica propria del sistema e può essere valutata mediante:

b il tempo di assestamento

5 Nell'esempio 2.1 si vede che il sistema, a causa della presenza del condensatore, tende:

a ad attenuare le sinusoidi a bassa pulsazione

6 Dato un sistema rappresentato dal modello ingresso-stato-uscita, si definisce risposta armonica, per ω reale non negativa, la funzione:

d W(ω)=C($j\omega I$ -A)⁻¹B+D

7 La risposta armonica coincide con la funzione di trasferimento W(s) ristretta:

c al semiasse immaginario non negativo

8 In un sistema lineare e stazionario, l'effetto di una singola sinusoide può essere calcolato indipendentemente dalla presenza delle altre componenti, grazie:

b al principio di sovrapposizione degli effetti

9 L'insieme dei coefficienti complessi Unpresenti nella serie di Fourier costituisce:

d lo spettro del segnale

10 Se a un sistema lineare, stazionario, asintoticamente stabile, con funzione di trasferimento W(s), viene applicato un segnale di ingresso periodico esprimibile come serie di Fourier, allora lo spettro dell'uscita sarà pari a:

a $Y_n=W(n\omega_0)U_n$

VIDEOLEZIONE 24 - La trasformata di Fourier. Risposta a ingressi dotati di trasformata di Fourier. Confronto con la trasformata di Laplace

1 Il modulo $|F(\omega)|$ della trasformata di Fourier prende il nome di:

b spettro di ampiezza

2 La parte reale di $F(\omega)$ è una funzione pari, mentre quella immaginaria è una funzione dispari se:

a f(t) è reale

3 La proprietà di linearità fa si che la trasformata della funzione a₁f₁(t)+a₂f₂(t) sia:

b $a_1F_1(\omega)+a_2F_2(\omega)$

4 La trasformata di Fourier della funzione esponenziale $f(t)=e^{\sigma t}\delta_{-1}(t)$ con $\sigma>0$:

c non esiste

5 Se si applica a un sistema lineare, stazionario, asintoticamente stabile, con risposta in frequenza $W(\omega)$, un ingresso dotato di trasformata di Fourier, una volta esaurito il transitorio, il movimento dell'uscita:

d non potrà contenere armoniche non presenti nello spettro di ingresso

6 Una volta esaurito il transitorio, la risposta in frequenza, per sistemi asintoticamente stabili, sarà pari a:

d W(ω)=Y(ω)/U(ω)

7 La trasformata di Laplace è definita mediante integrazione sull'intervallo temporale (0, +inf.), mentre quella di Fourier è definita sempre mediante integrazione, ma sull'intervallo temporale:

a (-inf., +inf.)

8 Consideriamo una f(t) nulla per t<0. L'esistenza della trasformata di Laplace implica l'esistenza di quella di Fourier, che può essere ottenuta da quella di Laplace ponendo $s=j\omega$, se l'ascissa di convergenza della prima è pari a:

 $b \sigma < 0$

9 La trasformata di Fourier consente di interpretare le funzioni di una vasta classe come costituite da:

c una somma di un'infinità non numerabile di armoniche

10 La trasformata di Fourier di f(t)=sen(ω₀t) è pari a:

c j π ($\delta(\omega+\omega_0)-\delta(\omega-\omega_0)$)

VIDEOLEZIONE 25 - Risposta esponenziale. Casi di instabilità. Identificazione sperimentale della risposta in frequenza

1 Ingressi decomponibili in spettri di armoniche sinusoidali generano, in sistemi asintoticamente stabili, uscite:

a con spettri di armoniche sinusoidali della stessa frequenza, ma con ampiezza e fase differenti

2 Se si applica a un sistema lineare, stazionario e asintoticamente stabile, con funzione di trasferimento W(s), l'ingresso u(t)= $u_0e^{\lambda t}$ con λ non coincidente con alcun autovalore del sistema stesso, dopo l'esaurimento del transitorio l'uscita sarà:

d $y(t)=W(\lambda)u_0e^{\lambda t}$

3 Se λ coincide con uno zero di W(s), la risposta di un sistema a un ingresso esponenziale tende ad annullarsi per t che tende a infinito, qualunque sia lo stato iniziale. Questa appena descritta è la proprietà:

b bloccante degli zeri

4 Il fatto che la derivata dell'esponenziale coincide con l'esponenziale stessa, fa si che tale funzione sia la soluzione:

a del problema differenziale lineare del primo ordine

5 Oltre alle funzioni esponenziali, godono della proprietà di passare invariate attraverso sistemi lineari anche:

c le funzioni sinusoidali

6 Senza introdurre l'ipotesi di asintotica stabilità, a un ingresso esponenziale corrisponde un'uscita esponenziale se si sceglie opportunamente lo stato iniziale, ovvero se e solo se λ:

d non coincide con un autovalore di A

7 L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve:

c essere di valore costante al variare di ω_0 per tutta la durata della misura

8 Per pulsazioni di valore elevato, il rumore può rendere inutilizzabile i risultati ottenuti a causa dell'attenuazione introdotta dal sistema, infatti, i sistemi fisici per cui è sempre m<n sono tutti:

a passa-basso

9 Un sistema si dice a fase minima quando i suoi zeri hanno tutti parte reale:

b minore di zero

10 Per misurare una risposta armonica in condizioni di instabilità si può formare un circuito a controreazione, che impedisce al blocco W(s) di assumere valori non limitati durante il transitorio mediante un opportuno:

b compensatore

VIDEOLEZIONE 26 - Esercitazione n°2

La lezione non prevede test di autovalutazione

VIDEOLEZIONE 27 - Diagrammi cartesiani di Bode. Diagrammi del modulo

1 Nella trattazione dei sistemi SISO, l'interesse per la risposta armonica proviene anche dal fatto che essa è:

c funzione complessa di variabile reale

2 Gli scalari $\zeta_i = -\alpha_i/\gamma_i$ e $\xi_i = -\sigma_i/\delta_i$, in modulo minori di uno, vengono detti:

d smorzamenti delle coppie complesse e coniugate di zeri o poli alle quali si riferiscono

3 Per semplificare le operazioni di sovrapposizione dei vari termini, conviene sostituire i termini nell'espressione del modulo della risposta armonica con:

c i loro logaritmi in base 10

4 Osservando che i contributi degli zeri ai diagrammi di Bode avranno soltanto il segno invertito rispetto a quelli dei poli, sarà sufficiente studiare il comportamento in modulo e fase solo dei termini:

b W₀, W₁(ω), W^d_{2,i(ω), W^d_{3,i(ω)}}

5 L'unità di misura decibel (dB) è definita come:

b $|W(\omega)|_{dB}=20\log(|W(\omega)|)$

6 Se un numero raddoppia, il suo valore in decibel aumenta di circa:

a 6 dB

7 Se il diagramma del modulo di $W_1(\omega)$ presenta una pendenza di 20 dB per decade, allora viene detto:

d retta a pendenza unitaria

8 Il diagramma del modulo di $W^d_{3,i}(\omega)$, nel caso in cui $|\xi_i| < (1/\sqrt{2}) \approx 0,707$ presenterà un massimo chiamato:

b picco di risonanza

9 Nel diagramma del modulo di $W^{d}_{3,i}(\omega)$, se $\xi_i=0$, allora $\omega_{r,i}=\delta_i$ e il picco di risonanza sarà:

a infinito

10 Semplici diagrammi che consentono di determinare l'andamento qualitativo del diagramma esatto, senza l'ausilio di mezzi di calcolo e spesso con un'accettabile livello di approssimazione, vengono detti:

a diagrammi asintotici

VIDEOLEZIONE 28 - Diagrammi della fase. Sistemi a fase minima. Esempi

1 Per pulsazioni inferiori a $(1/\tau_i)$, $(1/\theta_i)$, γ_i , δ_i , gli unici fattori che influiscono sul tracciato asintotico del diagramma del modulo sono:

bhe (jω)q

2 Per il tracciamento asintotico del diagramma del modulo, in corrispondenza a valori per ω pari alle pulsazioni naturali, la pendenza aumenta o diminuisce, a seconda che si sia incontrata la pulsazione naturale di uno zero o di un polo complesso, per un multiplo di unità pari:

a al doppio della molteplicità dello zero o del polo incontrato

3 La pendenza assunta dal diagramma asintotico del modulo per ω che tende a +inf., è sempre pari al grado relativo con il segno cambiato. Quindi la suddetta pendenza è nulla per sistemi:

a propri

4 Data una risposta armonica, la sua fase si ottiene come:

d somma, o sottrazione, delle fasi dei suoi fattori

5 Il diagramma della fase di $W_1(\omega)$ è una retta parallela all'asse delle ascisse ω con ordinata pari a -q90°. Si dice pertanto che poli nell'origine producono:

c un ritardo di fase

6 Un possibile diagramma asintotico per la fase $W^d_{2,i}(\omega)$ è costituito, per ω molto più grande di $(1/|\theta_i|)$, con $\theta_i>0$:

d dalla semiretta orizzontale con ordinata -90°

7 Nel tracciamento asintotico della fase di una risposta armonica, la parte iniziale sarà una semiretta orizzontale di ordinata:

c arg(h)-q(90°)

8 Il segno degli zeri o dei poli di una risposta armonica ha influenza:

b solo sul diagramma della fase

9 Il nome di fase minima, per sistemi con guadagno positivo, discende dal fatto che poli con parte reale negativa generano una fase:

a minore di quella di poli con parte reale positiva

10 Per sistemi a fase minima, quando il diagramma asintotico del modulo ha pendenza k, il diagramma asintotico della fase assume il valore:

d k90°

VIDEOLEZIONE 29 - Diagrammi polari. Azione filtrante dei sistemi dinamici. Filtri passa basso e passa alto

1 La risposta armonica $W(\omega)$ viene rappresentata come la traiettoria sul piano complesso di un punto al variare di ω in [0, +inf.] nei:

b diagrammi polari

2 Possiamo scrivere la risposta armonica in forma polare come:

b W(ω)=|W(ω)|e $^{j\psi(\omega)}$

3 Se si considera la risposta armonica con un solo polo $W(\omega)=k/(j\omega-p)$, per k>0, si ha:

d $\eta=0$, $D_1(0)=|p|$, $\psi_1(0)=0$

4 Consideriamo la risposta armonica con un solo polo nell'origine $W(\omega)=1/j\omega$ il suo diagramma polare sarà il semiasse immaginario inferiore che al crescere di ω (da 0 a +inf.) viene percorso:

c da -inf. a 0

5 Il diagramma polare della risposta con un solo polo nell'origine può essere visto come 'limite' di quello che si riferisce alla risposta con un solo polo $W(\omega)=k/(j\omega-p)$ con:

a p=-1/k e k che tende a +inf.

6 Nel diagramma polare della risposta armonica con due poli complessi e coniugati, con ξ =0, quando ω =δ:

c il modulo è infinito e la fase passa da 0° a -180°

7 I sistemi dinamici, nell'elaborazione e trasmissione delle varie componenti in frequenza di un segnale, si comportano come filtri che possono:

c innalzare o abbassare le singole componenti armoniche, in modulo e fase

8 Sistemi che lasciano passare sostanzialmente inalterate le armoniche con pulsazione inferiore o uguale a un dato valore di ω_b attenuando, o addirittura eliminando, quelle con pulsazione superiore, vengono detti:

a filtri passa basso

9 Nel caso di un filtro passa basso, l'intervallo di pulsazioni [0, ω_b] viene detto:

d banda passante

10 Possono avere un comportamento passa-alto, in quanto unici a permettere di avere |W(+inf.)|>0, solo i sistemi:

b strettamente propri

VIDEOLEZIONE 30 - Componenti di uno schema a blocchi. Sistemi in serie e in parallelo. Sistemi a retroazione

1 In uno schema a blocchi, un cerchio con indicazione dei segnali in entrata e in uscita, è definito come:

d nodo sommatore

2 Al fine di sostituire le operazioni di convoluzione (necessarie per rappresentare, nel dominio del tempo, le risposte dei sistemi lineari) con operazioni di prodotto, le grandezze che figurano negli schemi a blocchi sono da considerare mediante:

c la loro trasformata di Laplace

3 Nella figura 2.2, il ramo caratterizzato da H(s), la cui grandezza in uscita viene sottratta nel comparatore in ingresso, viene detto:

b ramo di controreazione

4 Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore $E_a(s)$ - $E_m(s)$, dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a:

a 1/(R+sL)

5 Tramite operazioni elementari tra blocchi, nodi sommatori e nodi di diramazione, è possibile ridurre uno schema a blocchi, comunque complicato, a uno schema elementare. Il complesso delle regole da attuare per fare ciò viene chiamato:

c algebra degli schemi a blocchi

6 L'algebra degli schemi a blocchi tiene conto:

d solo del flusso di informazione tra blocchi

7 In presenza di due o più blocchi in serie, essi possono essere sostituiti da un unico blocco con funzione di trasferimento pari:

b al prodotto di quelle dei singoli blocchi

8 Se nello schema vi sono due o più blocchi in parallelo, la regola dice che essi possono essere sostituiti da un unico blocco con funzione di trasferimento pari:

a alla somma algebrica di quelle dei singoli blocchi

9 Quando si applica una riduzione, il comportamento complessivo dipende dall'ordine con il quale vengono considerati i singoli blocchi:

a né nel caso di riduzione in serie né nel caso di riduzione in parallelo

10 Possiamo ridurre uno schema che presenta un blocco $G_1(s)$ e un anello in controreazione $G_2(s)$ ad un solo blocco con la funzione di trasferimento:

b $G_1(s)/(1+G_1(s)G_2(s))$

VIDEOLEZIONE 31 - Riduzione e cancellazioni. Stabilità, raggiungibilità e osservabilità dei sistemi interconnessi

1 Quando si connettono in uno schema a blocchi un certo numero di sottosistemi, ci si aspetta che l'ordine del sistema complessivo sia:

c uguale alla somma degli ordini dei singoli sottosistemi

2 Se una connessione in serie genera una parte nascosta corrispondente a una cancellazione di un polo con parte reale nulla o positiva, la parte nascosta non è asintoticamente stabile, quindi il sistema complessivo sarà:

d non asintoticamente stabile

3 Consideriamo $G_1(s)=1/(s-a)$ e $G_2(s)=(s-a)/(s+1)$ con $a\neq -1$, dove $G_1(s)$ è stabile per a<0, mentre $G_2(s)$ è stabile per ogni a. Eseguendo un collegamento in serie, si ha G(s)=1/(s+1), che è asintoticamente stabile:

a se e solo se a<0

4 Se nella connessione in parallelo vi è un solo sottosistema non asintoticamente stabile, allora il sistema complessivo sarà:

a non asintoticamente stabile

5 Negli schemi di connessione a controreazione, i poli della funzione di trasferimento complessiva possono dipendere:

c sia dai poli che dagli zeri dei blocchi connessi

6 La controreazione consente di raggiungere la stabilità asintotica del sistema complessivo controreazionato:

b anche se alcuni singoli blocchi nello schema sono instabili

7 La presenza di parti non raggiungibili e/o non osservabili viene denunciata dal fatto che nel sistema complessivo il grado del denominatore della funzione di trasferimento è:

d inferiore all'ordine del sistema stesso

8 Nella connessione in serie di due sottosistemi in forma minima, $G_1(s)$ e $G_2(s)$, si può dimostrare che se uno zero di $G_1(s)$ cancella un polo di $G_2(s)$, si genera nel sistema complessivo una parte:

c non raggiungibile e osservabile

9 Nella connessione in parallelo di due sottosistemi in forma minima, $G_1(s)$ e $G_2(s)$, si può dimostrare che quando $G_1(s)$ e $G_2(s)$ hanno un polo in comune, si genera nel sistema complessivo una parte:

b non raggiungibile e non osservabile

10 Nella connessione in controreazione di due sottosistemi in forma minima, $G_1(s)$ e $G_2(s)$, si può dimostrare che se un polo di $G_1(s)$ coincide con uno zero di $G_2(s)$, il sistema complessivo rimane:

a completamente raggiungibile e osservabile

VIDEOLEZIONE 32 - La fedeltà di risposta. Comportamento a regime dei sistemi a controreazione. Errore a regime e tipo del sistema

1 Dopo un tempo sufficientemente maggiore delle costanti di tempo di un sistema, la differenza tra il comportamento desiderato della sua uscita e quello effettivamente riscontrato, può essere assunta come misura:

b della fedeltà di risposta del sistema

2 Un metodo per ottenere il valore del guadagno statico h, senza necessità di conoscere zeri e poli di G(s), è:

c h=lim sqG(s) con s che tende a +inf.

3 All'inverso k_d della funzione di controreazione istantanea viene attribuito il significato di costante di proporzionalità tra:

a l'ingresso e l'uscita desiderata

4 L'errore a regime er di un sistema, per un dato ingresso, è l'errore che:

b permane una volta esaurito il transitorio

5 L'errore a regime, quando il numero q di poli nell'origine in G(s) è maggiore dell'indice i che identifica l'ingresso canonico, è pari a:

c zero

6 Per un sistema controreazionato del tipo 1 con un ingresso a rampa, l'errore a regime non è nullo, quindi l'uscita a regime dovrà essere anch'essa a rampa, ma risulterà ritardata rispetto a quella d'ingresso per un tempo pari a:

a k_d/h

7 Nel comportamento a regime di un sistema con controreazione dinamica, se G(s) è di tipo 1, l'errore a regime, per un ingresso a rampa, è pari a:

 $d((k_d)^2/h)+k_d(a_1-b_1)$

8 In un sistema di controllo, un disturbo è:

d un ingresso non desiderato e non gestibile prima della sua entrata

9 Le proprietà di stabilità di uno schema a blocchi a controreazione dipendono soltanto:

b dalla posizione, sul piano complesso, delle radici dell'equazione caratteristica della funzione di trasferimento a ciclo chiuso

10 Nello schema a blocchi visto nel par.4, considerando un gradino unitario nel disturbo D_1 e $q_1<0$, l'errore a regime in corrispondenza al disturbo è nullo se:

a vi è uno zero nell'origine in G₂(s)

VIDEOLEZIONE 33 - Sistemi a controreazione. Stabilità e prestazioni statiche e dinamiche. Diagrammi e criterio di Nyquist

1 Il requisito fondamentale e più importante richiesto a un sistema di controllo è la:

c stabilità

2 Quando le proprietà di stabilità di un sistema sono assicurate anche in condizioni perturbate, si parla di:

c stabilità robusta

3 Considerando la funzione di trasferimento a ciclo chiuso W(s)=L(s)/(1+L(s)), la sua stabilità asintotica si realizza se tutte le radici dell'equazione caratteristica del sistema 1+L(s) hanno:

a parte reale negativa

4 Nel caso in cui non fosse sufficiente valutare la stabilità di un sistema solo attraverso il segno delle radici, ma fosse necessario valutare anche la robustezza della stabilità stessa, possiamo ricorrere:

c al criterio di Nyquist

5 Data una funzione di trasferimento L(s), il suo diagramma di Nyquist è definito come la curva tracciata da L(s) sul piano complesso, al variare di s lungo un percorso chiuso costituito dall'asse immaginario, da -inf. a +inf., e da:

b una circonferenza di raggio infinito, collocata sul semipiano destro che collega il punto $(0, j\infty)$ del piano a quello $(0, -j\infty)$

6 Condizione necessaria e sufficiente per la stabilità asintotica del sistema a controreazione W(s)=L(s)/(1+L(s)) è che n_L sia ben definito e che sia:

 $b n_L = p_L$

7 Il numero di giri n_L di un diagramma di Nyquist non è ben definito se quest'ultimo passa per il punto:

d (-1, 0)

8 Quando la variabile s si sposta lungo il percorso di Nyquist, ogni zero di H(s)=1+L(s) interno al suo percorso produce una variazione di fase:

d in senso orario di -2π

9 Consideriamo la funzione di trasferimento W(s)=k/(s+(k-p)) e supponiamo k<0 e p<0; la funzione sarà asintoticamente stabile se e solo se:

d k>p

10 Nel sistema a controreazione descritto dalla funzione in catena diretta $L(s)=k/((s+1)^3)$ con k>0, poiché $p_L=0$, se $x_L>-1$ allora avremo:

c n_L=0 e il sistema sarà asintoticamente stabile

VIDEOLEZIONE 34 - Criterio di Nyquist: estensioni e condizioni perturbate. Margine di stabilità vettoriale. Margine di guadagno e di fase

1 Condizione necessaria e sufficiente per la stabilità del sistema a retroazione positiva W(s)=L(s)/(1-L(s)) è che n_L ' sia ben definito e che sia:

 $d n_L'=p_L$

2 Condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia:

a $|L(j\omega)|<1$ per ogni ω

3 Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia:

d |arg(L(jω))|<180° per ogni ω

4 I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti:

c a stabilità condizionata

5 Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ_L tra:

b il diagramma di Nyquist di L(s) e il punto (-1, 0)

6 L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto:

d margine di guadagno

7 Abbiamo visto che $L(s)=k/((s+1)^3)$, con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a:

a $k_1=4$

8 La pulsazione critica è la pulsazione corrispondente all'attraversamento da parte del diagramma di Nyquist:

c della circonferenza unitaria

9 Il margine di fase α_L è definito, sulla base della fase critica ϕ_L , come:

 $b \alpha_L = 180^{\circ} - \phi_L$

10 Nel caso di diagrammi di Nyquist più articolati, nei quali ad esempio vengono intersecati più volte il semiasse reale negativo o la circonferenza unitaria, per la valutazione dei margini di guadagno o di fase, andranno considerate:

a le intersezioni meno favorevoli alla stabilità

VIDEOLEZIONE 35 - Criterio di Bode. Diagrammi di Nichols. Passaggio grafico da ciclo aperto a ciclo chiuso e viceversa

1 Se la funzione di trasferimento L(s) di un sistema in controreazione non ha poli con parte reale positiva e il diagramma di Bode per il suo modulo attraversa solo una volta l'asse orizzontale a 0 dB, allora condizione necessaria e sufficiente affinché il sistema sia asintoticamente stabile è che:

b h>0 e α_L >0

2 Aggiungendo alle ipotesi del criterio di Bode anche che L(s) sia a fase minima, se l'andamento asintotico del diagramma del modulo all'atto dell'attraversamento dell'asse orizzontale con ordinata 0 dB ha una pendenza pari a -k, allora l'andamento asintotico del diagramma della fase, in coincidenza del suddetto attraversamento, assume il valore di:

c -k90°

3 I diagrammi di Nichols sono caratterizzati da una proprietà che permette di comporre i diagrammi di più sistemi in cascata per analizzare più agevolmente il comportamento del sistema complessivo per piccole variazioni di ω , che viene detta:

d sommabilità

4 Consideriamo una generica funzione di trasferimento G(s); analizzando i contributi al diagramma di Nichols dei singoli fattori, si ha che il diagramma del monomio $G(j\omega)=(j\omega)^q$ è:

d una retta parallela all'asse delle ordinate con ascissa pari a $-q(\pi/2)$

5 Il diagramma del binomio $G(j\omega)=(1+j\theta\omega)$, quando questo si trova a denominatore di G(s), per un polo reale positivo, è lo stesso di quello per un polo reale negativo, ma ribaltato rispetto:

c all'asse verticale in 0°

6 I margini di fase e di guadagno di un sistema a controreazione sono dati dalle intercette, rispettivamente sull'asse delle ascisse e sull'asse delle ordinate del diagramma di Nichols per la funzione di trasferimento a catena diretta, collocando l'incrocio di tali assi del piano fasemodulo nel punto:

a (-180°, 0)

7 Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e:

b L(s)=W(s)/(1-W(s))

8 Sulla carta di Nichols sono riportati luoghi a modulo e fase costanti relativi:

c alla funzione di trasferimento W(s) a ciclo chiuso

9 Per il passaggio dal ciclo aperto al ciclo chiuso utilizzando la rappresentazione implicita in coordinate naturali di Nichols, si sovrappone:

a la carta di Nichols al diagramma di Nichols della funzione di trasferimento L(s) a ciclo aperto

10 La carta di Nichols:

d consente sempre il passaggio inverso da $W(\omega)$ a $L(\omega)$

VIDEOLEZIONE 36 - *Prestazioni dei sistemi di controllo. Funzioni di sensitività*. Analisi della funzione di sensitività complementare

- 1 Funzioni di trasferimento che legano i segnali provenienti dall'esterno con quelli dipendenti dal funzionamento del sistema stesso sono dette:
- d funzioni di sensitività
- 2 Nello schema a blocchi con intervento di disturbi visto nel par. 1, il blocco H(s) rappresenta:
- a la dinamica di controreazione
- 3 La funzione di sensitività complementare è definita come:
- c F(s)=L(s)/(1+L(s))
- 4 La funzione di sensitività può rappresentare, nel caso dello schema a blocchi con intervento di disturbi visto, la funzione di trasferimento tra:
- c il disturbo D₂(s) e l'uscita Y(s)
- 5 Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo $D_1'(s)$, sarebbe opportuno avere, per il modulo $|F(j\omega)|$, valori prossimi a:
- d 1 per le pulsazioni del segnale di riferimento e a 0 per le armoniche più alte
- 6 Per annullare l'errore a regime dovuto a un ingresso a gradino in D₁(s) è necessario disporre di:
- b uno o più poli nell'origine in G₁(s)
- 7 Nell'esempio (2.1) abbiamo visto che, dopo aver applicato le approssimazioni, F(s) si comporta come:
- a filtro passa-basso
- 8 Supponendo che F(s) non presenti zeri, ma soltanto una coppia di poli complessi e coniugati con pulsazione naturale pari a ω e smorzamento pari a ξ , si ottiene per il suo modulo in ω stesso:
- $c |F(j\omega^{\circ})| = 1/(2\xi)$
- 9 La banda passante può essere definita come l'intervallo I_{bp} di pulsazioni individuato dalla relazione (nella quale si assume per F(s) un guadagno unitario):
- d $(1/\sqrt{2}) \le |F(j\omega)| \le (\sqrt{2})$ per ogni ω appartenente a I_{bp}
- 10 Affinché la pulsazione ω_b possa costituire l'estremo superiore della banda passante I_{bp} , e cioè che il diagramma polare di $L(j\omega)$ non sia prima entrato in C_2 , si vede che è necessario che per i margini di guadagno k_L e di fase α_L risulti:
- b $k_L \ge (x_Q)^{-1} e \alpha_L \ge \phi_A$
- VIDEOLEZIONE 37 Analisi della funzione di sensitività e di sensitività del controllo. Progetto del controllore

1 Abbiamo definito la funzione di sensitività come:

a
$$S(s)=1/(1+L(s))$$

2 Una situazione ideale, così da rendere nullo l'effetto del disturbo $D_2(s)$ sull'uscita Y(s), e del segnale di riferimento U'(s), come ancora del disturbo $D_2(s)$ sull'errore E(s), sarebbe quella di avere:

b S(s)=0

3 Se supponiamo L(s) in forma razionale fattorizzata (L(s)= $N_L(s)/D_L(s)$) e asintoticamente stabile, allora S(s):

a non ha zeri con parte reale positiva o nulla

4 L'andamento del diagramma di Bode di $|S(j\omega)|$, supponendo che risultino verificate su L(s) le condizioni di applicabilità del criterio di Bode, mostra l'aspetto tipico di:

b un filtro passa-alto

5 Supponiamo L(s) la funzione di trasferimento a ciclo aperto di un sistema a controreazione asintoticamente stabile; l'integrale da 0 a +inf. Di $|S(j\omega)|_{dB}$ in d ω è uguale a zero se L(s) ha un grado relativo:

d non inferiore a 2

6 Abbiamo definito la funzione di sensitività del controllo come:

 $c M(s)=G_1(S)/(1+L(s))$

7 La funzione di sensitività del controllo, a parte i cambiamenti di segno, esprime l'effetto dei vari ingressi:

c sulla variabile di controllo

8 Un buon compromesso in fase di progettazione consiste, al fine di evitare eccessive sollecitazioni alla variabile di controllo C(s), nel richiedere:

b bassi valori di |M(jω)| per ogni ω

9 La funzione di sensitività del controllo $|M(j\omega)|$ dipende solo dalla dinamica del processo da controllare quando:

d ω è minore o uguale alla pulsazione critica

10 La ricerca per $F(j\omega)$ di una pulsazione critica più alta della banda passante del processo, con lo scopo di migliori prestazioni dinamiche per il sistema di controllo complessivo, comporta:

d una forte sollecitazione sulla variabile di controllo

VIDEOLEZIONE 38 - Le reti di correzione. Procedure di sintesi per tentativi. Esempi: rete stabilizzatrice, anticipatrice, ritardatrice e a sella

1 Nello schema a blocchi visto nel par.1, il blocco G₁(s) rappresenta:

c il regolatore, o rete di correzione, che blocca l'errore e fornisce il controllo all'ingresso dell'impianto

2 Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre:

b una pulsazione critica sufficientemente elevata e un valore non troppo basso per lo smorzamento

3 Supponiamo che la funzione di trasferimento a ciclo aperto $L(s)=G_1(s)G_2(s)$ soddisfi il criterio di Bode; in tale ipotesi $G_2(s)$:

a non può avere poli con parte reale positiva

4 Il procedimento per definire la struttura del regolatore G₁(s), che parte da soluzioni semplici e successivamente le complica per soddisfare man mano ulteriori esigenze, viene detto:

b sintesi per tentativi

5 Nella prima fase della sintesi per tentativi si prendono in considerazione le caratteristiche richieste per gli aspetti statici, così da scegliere la parte statica del regolatore, definita come:

b $G_{1,s}(s)=h_s/s^q$

6 Tra i quattro regolatori visti nel par. 3, quello preferibile come prestazioni dinamiche e come risposta indiciale, ma con una riduzione della moderazione del controllo ad alte frequenza è:

c il regolatore III

7 Una rete anticipatrice, per ε =0, acquista il nome di:

d regolatore PD

8 Dai diagrammi di Bode della rete anticipatrice si vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a:

d $1/((\sqrt{\epsilon})\theta)$

9 Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete:

a ritardatrice

10 La rete a sella è la struttura di un regolatore ad azione:

a proporzionale, integrale e derivativa

VIDEOLEZIONE 39 - Luogo delle radici. Definizione e proprietà. Caratterizzazione del luogo e regole di tracciamento

1 Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione:

d dei poli del sistema a ciclo chiuso

2 Il luogo inverso è la parte del luogo delle radici per:

a k<0

3 Nel metodo del luogo delle radici, la condizione di fase $(arg(N_L(s))-arg(D_L(s)))$, per k>0 e v intero, sarà pari a:

c (2v+1)180°

4 Esplorando il piano complesso, è possibile costruire il luogo delle radici diretto come il luogo dei punti s del piano per i quali la sommatoria (da i=1 a m) di ϵ i meno la sommatoria (da i=1 a m) di η_i è:

d un multiplo dispari di 180°

5 Consideriamo una L(s) definita da L(s)=k/((s+1)(s+2)); applicando la formula di arg($D_L(s)$), abbiamo che un punto appartiene al luogo diretto delle radici di L(s), per qualche v intero, se e solo se:

a $-\eta_1-\eta_2=(2\nu+1)180^\circ$

6 Il luogo del piano complesso percorso da una delle radici dell'equazione caratteristica, quando k varia da 0 a +inf. per il luogo diretto, o da -inf. a 0 per il luogo inverso, viene detto:

b ramo del luogo delle radici

7 I rami partono, per k=0, dai poli della funzione di trasferimento a ciclo aperto L(s) e, al divergere di |k|, m per il tracciato diretto e m per il tracciato inverso convergono agli zeri, mentre i restanti (n-m) per ciascun tracciato:

b divergono verso l'infinito

8 I rami che tendono all'infinito sono asintotici all'asse reale, o a rette che tagliano l'asse reale nell'ascissa x_a , che viene detta:

d baricentro del luogo

9 Salvo eventuali singolarità di L(s), l'asse reale:

c appartiene al luogo delle radici

10 La somma dei poli a ciclo chiuso divisa per n non dipende da k ed è data dalla formula del baricentro del sistema a ciclo chiuso solo nel caso in cui:

a n>m+1

VIDEOLEZIONE 40 - Uso del luogo delle radici nell'analisi, nella sintesi e nella stabilizzazione (esercitazione n°3)

La lezione non prevede test di autovalutazione

VIDEOLEZIONE 41 - Assegnazione degli autovalori tramite retroazione statica dell'uscita, o dello stato. Sistemi in forma canonica e non

1 Le tecniche di sintesi nello spazio di stato, come ad esempio la tecnica di assegnazione degli autovalori, sono basate su modelli:

d nel dominio del tempo

2 L'obiettivo della tecnica di assegnazione degli autovalori è quello di progettare un regolatore in grado di:

c ottenere che gli autovalori del sistema controreazionato abbiano valori prestabiliti

3 La controreazione di un sistema di controllo può essere spostata dall'uscita allo stato se e solo se quest'ultimo è:

b misurabile

4 Nell'esempio 1.1 abbiamo visto come stabilizzare un sistema e collocare i suoi poli in posizioni arbitrarie su un piano complesso mediante la controreazione dello stato; in particolare per l'anello più interno dello schema abbiamo L(s)=1/(s+p) con $p=k_2-2$ che può essere reso asintoticamente stabile per:

a $k_2>2$

5 La matrice $K=(k_0 k_1 ... k_{n-1})$ viene detta:

a matrice di guadagno

6 Date le matrici A, B, e un insieme arbitrario Λ di numeri reali o complessi e coniugati a coppie, esiste una matrice K tale che gli autovalori di F=A+BK coincidono con gli elementi di Λ se e solo se la coppia (A, B) è:

d completamente raggiungibile

7 In un sistema con controreazione dello stato, sono determinabili a piacimento gli autovalori della matrice F, che possono essere resi coincidenti con gli elementi corrispondenti di Λ , scegliendo in modo opportuno gli elementi della matrice:

d K

8 In un sistema SISO completamente raggiungibile, ma non in forma canonica, al fine di poter utilizzare la tecnica di assegnazione degli autovalori, è necessario individuare la trasformazione T sullo spazio di stato tale che le matrici:

c A~=TAT-1 e B~=BT formino una coppia nella forma canonica di raggiungibilità

9 Per un sistema SISO completamente raggiungibile, ma non in forma canonica, la matrice K che assegna arbitrariamente gli autovalori a ciclo chiuso è data da $K=(K^{\sim}M^{\sim}_{r}(M_{r})^{-1})$ dove M_{r} è:

d la matrice di raggiungibilità del sistema originario

10 Nell'esempio 3.1 abbiamo visto che la matrice F=A+BK ha come autovalori -3 e -4 se la matrice K è pari a:

b K = (-2 - 3)

VIDEOLEZIONE 42 - Osservatore dello stato. Assegnazione degli autovalori con stato non misurabile. Il principio di separazione

1 Un osservatore è un sistema, statico o dinamico, che elabora:

c l'ingresso e l'uscita del sistema in esame per ottenere una stima dello stato corrente

2 Se ricostruiamo nell'osservatore una copia del sistema in esame, e supponiamo che lo stato iniziale è stimato soltanto da $x^{\circ}(0)$ e che la matrice dinamica A del sistema è asintoticamente stabile, allora l'errore del sistema:

c converge a 0 per t che tende a +inf.

3 La matrice H, presente nel sistema che definisce l'osservatore asintotico, prende il nome di:

d matrice di guadagno dell'osservatore

4 Occorre scegliere la matrice di guadagno H in modo da avere il valore desiderato degli autovalori della matrice:

b N=A+HC

5 Nell'osservatore asintotico dello stato notiamo che la coppia (A,C) è completamente osservabile se e solo se la coppia:

a (C^T, A^T) è completamente raggiungibile

6 Date le matrici A, C, e un insieme arbitrario Λ di numeri reali o complessi e coniugati a coppie, esiste una matrice H tale che gli autovalori di N = A+HC coincidano con gli elementi di Λ se e solo se la coppia (A,C) è:

b completamente osservabile

7 Nel caso di osservatore asintotico con stato non misurabile, gli autovalori del sistema complessivo possono essere assegnati in modo arbitrario se il sistema originario è:

b completamente raggiungibile e completamente osservabile

8 Il principio per cui il progetto della matrice di guadagno K della legge di controllo, e il progetto della matrice di guadagno dell'osservatore H possono essere condotti in modo indipendente l'uno dall'altro viene detto:

a principio di separazione

9 Nel caso di un sistema che faccia uso di controreazione dello stato anche quando lo stato stesso non è direttamente accessibile, per risolvere il problema dell'assegnazione arbitraria degli autovalori è conveniente scegliere gli autovalori associati alla dinamica dell'osservatore in modo che le loro costanti di tempo siano:

a minori di quelle associate agli autovalori del sistema a ciclo chiuso

10 Spostandoci nel dominio della variabile complessa ci rendiamo conto che controllare la dinamica del regolatore e dell'osservatore:

c non è sufficiente a garantire la stabilità del sistema complessivo del controllo del processo

VIDEOLEZIONE 43 - I regolatori P, PI, PD, PID. Realizzazione dell'azione derivatrice e integrale. Saturazione e desaturazione

1 I regolatori lineari più usati in ambito industriale sono i regolatori PID, cioè ad azione:

d proporzionale, integrale e derivativa

2 La struttura di un regolatore PID risponde a un'esigenza empirica, secondo la quale è opportuno che la variabile di controllo sia costituita dalla somma di tre contributi, uno dei quali proporzionale all'integrale dell'errore e, che ha lo scopo di:

b annullare asintoticamente l'errore dovuto a segnali di riferimento, o di disturbo, costanti nel tempo

3 La legge di controllo è il legame tra:

b l'errore e e la variabile di controllo c all'ingresso del processo

4 I regolatori PID sono da considerarsi sistemi lineari:

b SISO, stazionari, impropri

5 Un regolatore PID ideale ha:

d un polo nell'origine e due zeri a parte reale negativa

6 Una brusca variazione dell'ingresso u(t), e quindi dell'errore e(t), provoca una variazione di tipo impulsivo, con possibili conseguenze di saturazione, a valle dell'azione:

a derivatrice

7 L'organo posto a valle del regolatore, con il compito di tradurre il segnale e(t) in uscita al regolatore stesso in uno, detto o(t), di caratteristiche fisiche e potenza adeguate al controllo del blocco successivo costituito dal processo, viene detto:

c attuatore

8 Detta o_{max} la soglia di saturazione dell'attuatore, e supponendo unitario il guadagno dello stesso, avremo che o(t) = c(t) per:

 $c |c(t)| \le o_{max}$

9 Il fenomeno per cui, al raggiungimento del limite del segnale di ingresso al processo sotto controllo, anche se e(t) cambia di segno si deve comunque attendere che lo stato c(t) del regolatore torni sotto un certo livello prima che l'attuatore possa riprendere il suo funzionamento in zona non di saturazione, viene detto:

a carica integrale

10 Consideriamo un regolatore descritto dalla funzione di trasferimento $R(s)=N_R(s)/D_R(s)$ con $D_R(0)=0$ per via dell'azione integrale; nello schema a blocchi di desaturazione visto nel par. 3, il polinomio $\Gamma(s)$ deve essere scelto in modo che sia:

 $c(N_R(s)/\Gamma(s)) > 0$

VIDEOLEZIONE 44 - La sintesi dei regolatori P, PI, PID con i criteri di Ziegler e Nichols. La sintesi con specifiche sul margine di guadagno e di fase

1 Si adottano metodi automatici di taratura, e quindi di sintesi del regolatore, a partire da specifiche prove effettuate sul processo, quando quest'ultimo:

a non è noto, o non se ne conoscono dettagli importanti ai fini della predisposizione della regolazione

2 Il metodo di Ziegler e Nichols prevede di porre il processo in un ciclo chiuso, con un regolatore proporzionale P, e di aumentare il guadagno k_p di quest'ultimo fino a quando il sistema risponde ad una variazione a gradino del segnale di riferimento u(t) con:

a un'oscillazione permanente

3 L'impiego di un regolatore puramente proporzionale nel metodo di Ziegler e Nichols non annulla l'errore a regime, ma lo riduce soltanto in funzione di:

 $b 1/k_p$

4 Nella tabella 2.1 vista nel par. 2, il suggerimento per il regolatore PID fa si che $T_i = 0.5 T^-$ e quindi i due zeri del regolatore:

a coincidono in $z_1 = z_2 = -4/T^-$

5 Il margine di guadagno k_G, dove G(s) è il processo da controllare e k_G<+inf., coincide con:

d il guadagno critico

6 Un regolatore PID modifica le prestazioni dinamiche del sistema a ciclo chiuso; più precisamente l'azione integrale:

d comporta un ritardo di fase di -90°

7 Nella progettazione di un regolatore attraverso l'assegnazione del margine di guadagno viene stabilita una relazione tra ω_G ' e il prodotto T_iT_d e di norma si sceglie:

 $c T_i = 4T_d$

8 Nella progettazione di un regolatore attraverso l'assegnazione del margine di guadagno, avendo scelto T_i =4 T_d , la pulsazione ω_G ' si può ricavare dalla relazione:

b Ti= $2/(\omega_G')$

9 Per assegnare il margine di fase α_L , così da spostare il punto A, identificato con la procedura di Ziegler e Nichols in anello chiuso, nel punto A_2 , deve risultare:

b arg(R_{PID}(j ω_G ')G(j ω_G '))=((α_L /180°)-1) π

10 Le formule che definiscono i parametri del regolatore PID, che assicura le specifiche desiderate sul margine di fase, sono $\omega_G'T_d$ - $(1/(\omega_G'T_i))$ =tan (α_L) , T_i =4 T_d e:

 $d k_P = k_P^- \cos(\alpha_L)$

VIDEOLEZIONE 45 - Regolatori in anello aperto. Compensazione del segnale di riferimento, del processo e del disturbo

1 Dove fosse necessario trasferire il segnale di riferimento u(t) dal suo supporto fisico in un altro supporto, compatibile per essere confrontato con il segnale proveniente dall'uscita y(t), il blocco T(s), visto nella schema del par. 1, può assumere il ruolo di:

d trasduttore

2 Il blocco T(s) consente di modificare la funzione di trasferimento tra u(t) e c(t) per:

a ridurre la sollecitazione sulla variabile di controllo

3 Se la catena diretta R(s)G(s) non ha alcun polo nell'origine, il ruolo di T(s) potrebbe essere quello di un compensatore statico, che provvede con il suo guadagno a compensare quello di F(s), ovvero:

a
$$T(0) = F(0)^{-1}$$

4 A fronte di un ingresso u(t) a gradino, si potrebbe desiderare di trasmettere all'entrata del nodo sommatore un segnale $uk_f(t)$ con una dinamica meno veloce, così da ridurre le sollecitazioni sulla variabile di controllo c(t); questo può essere ottenuto assegnando a $T(k_s)$:

c un polo reale negativo

5 Possiamo assegnare a T(s) un comportamento da filtro passa-basso, che faciliti la moderazione della variabile di controllo e riduca eventuali saturazioni e conseguenti nonlinearità nel processo sottoposto a controllo, facendo attenzione, per non introdurre un rallentamento nella risposta dell'uscita y(t) al segnale di riferimento u(t), al fatto che:

b l'estremo superiore della banda passante di T(s) sia superiore alla pulsazione critica di R(s)G(s)

6 Idealmente, nello schema a blocchi visto nel par. 2, al fine di avere Y(s)=U(s), dovremmo effettuare la scelta:

$$c T^{(s)} = G(s)^{-1}$$

7 Uno dei motivi per cui la relazione $T^{(s)} = G(s)^{-1}$ non è realizzabile realmente, è che $T^{(s)}$ risulterebbe non asintoticamente stabile se:

b G(s) avesse zeri con parte reale nulla o positiva

8 Utilizzando le tecniche di compensazione per 'cancellazione' del processo viste nel par. 2, notiamo che:

d solo il compensatore reale dipende dal regolatore R(s)

9 Consideriamo uno schema a blocchi come quello visto nel par. 3, con un disturbo, accessibile alle misure, che vi entra a valle del processo da controllare; per annullare l'effetto del disturbo dovremmo avere:

 $d M(s) = -H(s)G(s)^{-1}$

10 La formula M(s)=-H(s)G(s)⁻¹ per essere realizzabile richiederebbe che:

c H(s)G(s)-1 fosse propria e che G(s) avesse zeri a parte reale positiva o nulla

VIDEOLEZIONE 46 - Controllo di sistemi instabili

1 Nello schema di controllo per il sistema instabile visto nel par.1, il regolatore R1(s) ha il compito di:

c stabilizzare l'anello interno

2 Un sistema viene detto triangolare se la sua matrice di trasferimento G(s) risulta triangolare, ovvero se è:

d una matrice quadrata in cui tutti gli elementi sotto o sopra la diagonale principale sono nulli

3 Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende:

d solo dalla variabile di controllo c1(t)

4 Nello schema di controllo del sistema triangolare 2x2 visto nel par.2, sull'uscita y2(t) agiscono le variabili di controllo c2(t) e c1(t), la quale viene considerata come un disturbo per y2(t); possiamo quindi progettare R2'(s) come regolatore per la funzione di trasferimento G22(s) e M(s) come compensatore del disturbo c1(t), ovvero pari a:

b M(s) = -G21(s)(G22(s))-1

5 Nello schema di controllo con disaccoppiamento rappresentato in forma matriciale, il blocco $\Delta(s)$ prende il nome di disaccoppiatore e fa si che la matrice di trasferimento $Gd(s)=G(s)\Delta(s)$ sia:

b diagonale

6 Il procedimento di disaccoppiamento viene detto 'in avanti' se:

c procede dalla conoscenza della matrice di trasferimento G(s) all'individuazione del disaccoppiatore $\Delta(s)$

7 Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = -(G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a:

a \triangle 11(s)= \triangle 22(s)=1

8 Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice $\Gamma(s)=(Gd(s))-1(Gd(s)-G(s))$ e indicando con I la matrice identità, si impone al disaccoppiatore la struttura:

a
$$\Delta(s) = (I-\Gamma(s))-1$$

9 Quando ogni elemento del vettore E(s) di ingresso al regolatore influenza ciascuno degli elementi del vettore C(s) di uscita dallo stesso, il sistema di controllo si dice:

c centralizzato

10 Per il controllo decentralizzato di un sistema MIMO, al fine di avere C(s)=R'(s)E(s) in modo che ogni elemento di E(s) influenzi solo il corrispondente elemento di C(s) attraverso il regolatore Ri'(s), si sceglie il disaccoppiatore $\Delta(s)$ pari a:

d Δ(s)=I con I matrice d'identità

VIDEOLEZIONE 47 - Stabilizzazione di sistemi nonlineari. Stabilità assoluta. Criterio del cerchio

1 Nello schema a blocchi nonlineare canonico indichiamo con N:

b il blocco nonlineare supposto privo di dinamica

2 Un blocco nonlineare viene descritto dalla relazione istantanea $c=\phi(\epsilon(t))$; un esempio di funzione ϕ di interesse applicativo è il relè senza isteresi, che rappresenta sostanzialmente la funzione:

a segno

3 In generale, per i sistemi canonici nonlineari, si potrebbero avere blocchi dove l'uscita assume soltanto un numero finito di valori, commutando dall'uno all'altro al passaggio dell'entrata attraverso determinate soglie; questi elementi vengono detti:

c elementi nonlineari da caratteristica

4 Tenendo conto della rappresentazione ingresso-stato-uscita, l'equazione di stato di uno schema a blocchi nonlineare canonico sarà:

```
a x(t)=Ax(t)+\phi(-Cx(t))
```

5 I criteri relativi alla funzione nonlineare ϕ suppongono che questa non sia necessariamente nota in dettaglio, ma che sia:

d limitata superiormente e inferiormente da due rette passanti per l'origine

6 Un sistema canonico nonlineare si dice assolutamente stabile nell'intervallo $[k_1, k_{2</sub}]$ se lo stato di equilibrio x=0 è::

d globalmente stabile per qualsiasi elemento ϕ in $\Phi[k_1 k_2]$

7 L'insieme $[k_1 k_2]-1=(h \in R:(1/h) \in [k_1 k_2]-(0))$ è costituito da una semiretta se:

 $c k_1 = 0 o k_2 = 0$

8 Dato un intervallo $[k_1 \ k_2]$, condizione necessaria per la stabilità assoluta nello stesso intervallo del sistema, con la funzione ϕ ristretta all'insieme $\Phi[k_1 \ k_2]$, è che il numero di giri che il

diagramma di Nyquist di L(j ω) compie in senso antiorario attorno all'insieme [k_1 k_2]-1 sia ben definito e pari:

c al numero di poli con parte reale positiva di L(s)

9 Dalla definizione di 'cerchio' vista nel par. 2, si ha che se $[k_1 \ k_2]$ -1 è un'intervallo finito, allora la porzione del piano complesso $\sigma[k_1 \ k_2]$ delimitata dalla circonferenza con centro sull'asse reale e passante per i punti $(-1/k_1, 0)$, $(-1/k_2, 0)$, e che contiene l'insieme $[k_1 \ k_2]$ -1, è:

b un cerchio con diametro coincidente con [k₁ k₂]-1

10 Considerando nell'insieme i Teor. 2.1 e 2.2, si deduce che i casi sui quali non si può decidere nulla riguardo all'assoluta stabilità di un sistema canonico nonlineare, con riferimento ad un dato intervallo $[k_1 \ k_2]$, sono quelli nei quali:

d c'è un'intersezione tra il diagramma polare di $L(j\omega)$ e il 'cerchio' $\sigma[k_1 k_2]$

VIDEOLEZIONE 48 - Oscillazioni permanenti e cicli limite. Il metodo della funzione descrittiva nell'analisi armonica. Stabilità delle oscillazioni

1 Per un sistema nonlineare canonico, l'esistenza di cicli limite stabili implica, per il sistema stesso, la proprietà di:

a instabilità globale

2 In un sistema puramente lineare le oscillazioni permanenti si realizzano soltanto se il sistema stesso ha:

a poli con parte reale nulla

3 Dato uno spazio di stato bidimensionale nonlineare, si definisce suo ciclo limite asintoticamente stabile una curva chiusa C sullo spazio di stato che rispetta la proprietà:

c tutte le traiettorie con stato iniziale arbitrariamente prossimo a C convergono a C per t che tende a infinito

4 Nello studio di un sistema attraverso la funzione descrittiva della sua nonlinearità, l'aspetto nonlineare è concentrato nel legame tra l'ampiezza E dell'ingresso del blocco N e:

b modulo e fase della prima armonica in uscita dal blocco N stesso

5 Una rappresentazione equivalente della prima armonica dell'uscita di un elemento nonlineare N, stimolato con un ingresso sinusoidale, è costituita dalla funzione descrittiva D(E), definita come:

d D(E)=(|C1(E)|/E)ejarg(C1(E))

6 L'ipotesi alla base del metodo della funzione descrittiva per accertare esistenza e parametri delle oscillazioni permanenti nel sistema canonico in esame è detta:

d ipotesi dell'azione filtrante

7 Per l'ipotesi dell'azione filtrante vista nel par. 2, dette $Y(jn\omega)$ le corrispondenti armoniche di ordine n nell'uscita y(t), vale la relazione:

c Y(jnω)

8 Affinché il sistema canonico sia compatibile con l'esistenza di oscillazioni permanenti, deve essere soddisfatta l'equazione di congruenza che, tenendo conto della compensazione delle fasi lungo il ciclo, equivale a:

a $1+L(j\omega)D(E)=0$

9 La soluzione dell'equazione $L(j\omega)=\Lambda(E)$ si trova nell'intersezione, sul piano complesso, del diagramma polare di $L(j\omega)$, al variare di ω , con il tracciato di $\Lambda(E)=-1/D(E)$, al variare di E, detto:

a luogo dei punti critici

10 Il verificarsi di un punto sul piano complesso che soddisfa l'equazione pseudocaratteristica corrisponde, per il relativo sistema canonico, a un'oscillazione permanente asintoticamente stabile se il prodotto scalare (t, n), con n normale alla tangente del diagramma polare di $L(j\omega)$ e t tangente al tracciato di $\Lambda(E)$, è:

d negativo

VIDEOLEZIONE 49 - Esercitazione n°4

La lezione non prevede test di autovalutazione

VIDEOLEZIONE 50 - Stabilità per sistemi nonlineari. Congetture di Aizerman e Kalman. Primo e secondo metodo di Ljapunov. Conclusioni

1 Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione di stabilità non definita quando il suo corrispondente sistema linearizzato ha:

c autovalori con parte reale nulla e altri con parte reale negativa

2 Linearizzando il sistema unidimensionale $x(t)=kx^m$, con m=2, 3, ..., attorno a un qualsiasi punto dell'asse reale si ottiene $\delta x(t)=0$, così che esso risulta un punto di equilibrio; si vede che il sistema è asintoticamente stabile per:

b m dispari e k<0

3 Se un sistema nonlineare canonico risulta (lineare e) asintoticamente stabile per ogni $\Phi(\xi)$ che appartiene allo spazio $\Phi(k_1, k_2)$, allora risulta anche globalmente asintoticamente stabile per ogni $\Phi(\xi)$ che appartiene allo spazio funzionale $\Phi(k_1, k_2)$; questa affermazione è detta:

b congettura di Aizerman

4 Il contributo di Ljapunov alla teoria della stabilità per sistemi nonlineari parte dall'osservazione che in un sistema fisico il suo stato convergerà verso un qualche punto di equilibrio se l'energia totale:

a diminuisce monotonicamente

5 Dato un insieme aperto $K \subseteq Rk^n$, con zero appartenente all'insieme K, una funzione $V:K \rightarrow R$ si dice definita positiva se:

a V(0)=0 e V(x)>0, per ogni x appartenente a $K\Box$

6 Sia V(x) una forma quadratica in x, cioè del tipo $V(x)=x^T$ Qx con Q matrice quadrata nxn; V(x) è definita positiva se e solo se tutti i determinanti principali di Q sono:

d maggiori di zero

7 Sia V(x) una forma omogenea di grado k in x, cioè tale che V(ax)=a< sup>k</ sup>V(x); allora se k è dispari, V(x) è:

c indefinita

8 Se per il sistema x'(t)=f(x(t)) con $x(t_0)=x_0$ esiste una funzione di Ljapunov, allora l'origine è stabile; questo appena annunciato è:

b il primo teorema di stabilità di Ljapunov

9 Se per il sistema x'(t)=f(x(t)) con $x(t_0)=x_0$ esiste una funzione di Ljapunov tale che V(x) sia definita negativa, allora l'origine è:

d asintoticamente stabile

10 L'origine del sistema x'(t)=f(x(t)) con x(t0)=x0 è globalmente asintoticamente stabile se esiste una funzione di Ljapunov V(x) definita in \mathbb{R}^n tale che:

d V(x) sia definita negativa e $V(x) \rightarrow +inf$. se $|x| \rightarrow +inf$.

VIDEOLEZIONE 51 - Criterio di instabilità. Teorema di Chetaev. Forme quadratiche e stabilità globale. Il problema di Lur'e

1 Dato un sistema del tipo x(t)=f(x(t)) con $f:R^n\to R^n$, se esiste una funzione V(x) con V(0)=0, con derivate parziali prime continue in un intorno dell'origine, nel quale la stessa funzione è indefinita negativa, e con la sua derivata lungo il moto definita positiva, allora il sistema è:

b instabile

2 Sia K un intorno dell'origine, e K' un insieme \subset K e contenente l'origine nella sua frontiera. Sia V(x) una funzione definita su K, con V(x)=0 nell'origine e in tutta la frontiera di K' contenuta nell'interno di K, e con derivate parziali prime continue su K', nell'interno del quale la stessa funzione e la sua derivata lungo le traiettorie del sistema in esame sono entrambe definite positive. Allora l'origine è instabile per il sistema stesso. Quello appena enunciato è:

a il teorema di Chetaev

3 Per la dimostrazione del teorema di Chetaev si osserva che le ipotesi impongono ad una traiettoria che inizia in K' di uscire da K' stesso:

d solo attraverso la frontiera in comune con la frontiera di K

4 Consideriamo il sistema $\dot{x_1}(t)=ax_1^2(t)+bx_2^3(t)$ e $\dot{x_2}(t)=-cx_2(t)+dx_1^3(t)$ con a, b, c, d>0 e la funzione di Ljapunov $V(x)=x_1-(1/2)x_2^2$; la funzione V(x) sarà positiva:

a solo all'interno della parabola descritta da $x_1=(1/2)x_2^2$

5 Per il sistema x'(t)=Ax(t), considerando una matrice Q simmetrica e definita positiva, una funzione di Ljapunov V(x) espressa in forma quadratica è:

$$d V(x)=x^TQx$$

6 Consideriamo il sistema x'(t)=Ax(t) e una funzione di Ljapunov $V(x)=x^TQx$ con Q simmetrica e definita positiva; posto $A^TQ+QA=-C$ si ha che se anche C è definita positiva, allora, per il teorema di Barbashin-Krasowskii, il sistema risulta:

c globalmente asintoticamente stabile

7 Consideriamo un sistema canonico nonlineare indiretto. Supponiamo di voler determinare la matrice Q partendo dalla matrice C e supponiamo inoltre che la matrice A sia stabile e C definita positiva; in questo caso si ha che Q è:

c definita positiva

8 Attraverso il metodo di Krasowskii abbiamo visto che, per un sistema x'(t)=f(x(t)) con x appartenente a Rn, una valida funzione di Ljapunov, per cui l'origine del sistema è globalmente asintoticamente stabile è:

b
$$V(x)=f^{T}(x)f(x)$$

9 In uno schema canonico nonlineare 'indiretto', a differenza di uno 'diretto', la nonlinearità viene inclusa in uno schema a controreazione che può svolgere anche funzioni di:

b attuatore

10 Data una C^1 definita positiva, la condizione che Lefschetz ha introdotto affinché la funzione $V(x,\varepsilon)$ vista nel par. 3 sia una funzione di Ljapunov per il sistema nonlineare indiretto è:

a h >
$$(1/\beta)g^{T}C^{-1}g$$

VIDEOLEZIONE 52 - Asintoticità assoluta nel controllo e nell'uscita. Il teorema di Popov e le sue implicazioni nella teoria della stabilità assoluta

1 In uno schema a blocchi nonlineare canonico si parla di isteresi passiva se, per $\varepsilon(t)$ (che rappresenta il blocco lineare) che si allontana dall'origine, la nonlinearità $n(\varepsilon,t)$ è:

a non superiore al valore assunto quando $\varepsilon(t)$ si avvicina all'origine

2 Un blocco lineare è stabile di grado α nell'uscita se le trasformate di Laplace della risposta libera $\epsilon_0(t)$ e della risposta impulsiva g(t) sono funzioni razionali di s con:

b poli a parte reale $< -\alpha$

3 Il sistema nonlineare a controreazione visto nel par. 1 si dice asintotico di grado α nel controllo se per ogni condizione iniziale si ha:

$$c e^{\alpha t} c(t) \in L_2(0, inf.)$$

4 Un sistema nonlineare a controreazione, come visto nel par. 1, se per ogni condizione iniziale si ha $e^{\alpha t} \epsilon(t) \in L_2(0, inf.)$, viene detto:

b asintotico di grado α nell'uscita

5 Consideriamo un sistema nonlineare a controreazione con il blocco lineare stabile nell'uscita; se esiste un $q \in R$ tale che, per ogni $\omega \in R$ + sia $R[(1+j\omega q)G(j\omega)] + (1/k) \ge \delta > 0$ per δ arbitrariamente piccolo, allora il sistema sarà:

d assolutamente asintotico, nel controllo e nell'uscita, nell'intervallo [0, k]

6 Una restrizione al teorema di Popov, nel caso di n(ε) con isteresi passiva invariante nel tempo, è che deve essere:

d k<inf. e q□

7 Se scegliamo q=0, la condizione di Popov diventa $R[G(j\omega)] > -(1/k)$ e il diagramma polare di $G(j\omega)$, per garantire la validità del teorema di Popov, deve giacere:

d a destra della retta verticale R(s) = -(1/k)

8 La congettura di Aizerman, riformulata con riferimento all'assoluta asintoticità nel controllo e nell'uscita, e a funzioni n a un solo valore e invarianti nel tempo, implica che il settore di Hurwitz:

c coincida con il settore di Popov

9 La retta di Popov è definita dalla relazione:

```
b R(I(\omega)) = -(1/k)+\omegaqI(I(\omega))
```

10 Consideriamo un sistema lineare G(s) descritto come nel teorema 3.1 del par. 3 e che presenta tre poli p_1 =0, p_2 =-1, p_3 =-2; una volta collocato un tale G(s), dall'assoluta asintoticità nel controllo e nell'uscita dello schema:

a non possiamo dedurre la stabilità asintotica dell'origine

VIDEOLEZIONE 53 - Dalla stabilità asintotica alla stabilità assoluta. Spostamento di poli e zeri. Un più ampio criterio del cerchio

1 La condizione necessaria e sufficiente del lemma di Kalman visto nel par. 1, scegliendo $\delta = (1/2)\beta A^T c$ e $\gamma = (1/k) + \beta c^T b$ e considerando solo la diseguaglianza stretta, equivale:

d alla condizione di Popov

2 La tecnica dello spostamento dei poli equivale all'attuazione di una controreazione locale, con guadagno a, al blocco lineare G(s) e consiste nel sostituire l'elemento nonlineare G(s) con:

b
$$n_a(\varepsilon(t))=c(t)-a\varepsilon(t)$$

3 Dopo aver applicato la tecnica dello spostamento dei poli nel sistema canonico nonlineare, mantenendo lo stesso andamento per l'errore $\varepsilon(t)$, la variabile di ingresso u(t) 'vede' il sistema attraverso la funzione di trasferimento:

4 Applicando la tecnica dello spostamento dei poli alla funzione G(s)=1/((s-1)(s+3)(s+4)) si ottiene:

$$c G_a(s)=1/(s(s^2+6s+5)+a-12)$$

5 Lo spostamento degli zeri per un sistema nonlineare canonico è definito da $\varepsilon b(t)=\varepsilon(t)+bc(t)$, e la nuova funzione di trasferimento $G_b(s)$ del blocco lineare risulta:

$$d G_b(s)=G(s)-b$$

6 Applicando la tecnica dello spostamento degli zeri alla funzione G(s)=(s-4)/(s+2), con b=1, otteniamo:

a Gb(s) =
$$-6/(s+2)$$

7 Il criterio del cerchio visto nel teorema 4.1 ritrova come caso particolare il teorema di Popov se:

8 Nel teorema 4.1 abbiamo visto che il cerchio critico varia con ω nel caso in cui q=0 si ha che il centro del cerchio:

d rimane fisso

9 Affinché $G(j\omega)$ rimanga fuori dal cerchio critico occorre che $G(j\omega)$ rimanga sulla destra, per $\omega=1$, della tangente al cerchio critico nel punto:

10 Consideriamo il blocco lineare G(s)=1/(s(s ² +6s+5)) controreazionato da un guadagno statico con a=12 e applichiamo il teorema 4.1; la tangente al suo diagramma in (-1/30, 0) e con q=1,2 garantisce:

b l'asintotica stabilità del sistema per una nonlinearità invariante nel tempo e a un solo valore nel settore (0, 30)

VIDEOLEZIONE 54 - Conclusioni

La lezione non prevede test di autovalutazione

DOMANDA	RISPOSTA
A fronte di un ingresso u(t) a gradino, si potrebbe	un polo reale negativo
desiderare di trasmettere all'entrata del nodo	
sommatore un segnale ukf(t) con una dinamica	
meno veloce, così da ridurre le sollecitazioni sulla	
variabile di controllo c(t); questo può essere	
ottenuto assegnando a T(ks):	
Abbiamo definito la funzione di sensitività come:	S(s)=1/(1+L(s))
Abbiamo definito la funzione di sensitività del	M(s)=G1(S)/(1+L(s))
controllo come:	(5) 62(5)) (2.2(5))
Abbiamo visto che L(s)=k/((s+1)3), con k>0, è	kL=4
asintoticamente stabile per k<8; se allora poniamo	
k=2, il margine di guadagno risulta pari a:	
Affinché G(jω) rimanga fuori dal cerchio critico	(-1/b, 0)
occorre che $G(j\omega)$ rimanga sulla destra, per $\omega=1$,	
della tangente al cerchio critico nel punto:	
Affinché il sistema canonico sia compatibile con	1+L(jω)D(E)=0
l'esistenza di oscillazioni permanenti, deve essere	
soddisfatta l'equazione di congruenza che, tenendo	
conto della compensazione delle fasi lungo il ciclo,	
equivale a:	
Affinché la pulsazione ωb possa costituire l'estremo	$kL \ge (xQ)-1 e \alpha L \ge \phi A$
superiore della banda passante Ibp, e cioè che il	
diagramma polare di $L(j\omega)$ non sia prima entrato in	
C2, si vede che è necessario che per i margini di	
guadagno kL e di fase αL risulti:	
Affinché le radici del polinomio caratteristico	tutti i coefficienti del polinomio abbiano lo
abbiano tutte parte reale negativa, va considerata	stesso segno
la condizione necessaria che:	1000
Aggiungendo alle ipotesi del criterio di Bode anche	-k90°
che L(s) sia a fase minima, se l'andamento	
asintotico del diagramma del modulo all'atto	
dell'attraversamento dell'asse orizzontale con	
ordinata 0 dB ha una pendenza pari a -k, allora	
l'andamento asintotico del diagramma della fase, in	
coincidenza del suddetto attraversamento, assume il valore di:	
Al crescere del grado del polinomio caratteristico, è	il criterio di Routh
più efficiente utilizzare:	in criterio di Nodtii
<u>'</u>	la loro trasformata di Lanlaca
Al fine di sostituire le operazioni di convoluzione	la loro trasformata di Laplace
(necessarie per rappresentare, nel dominio del tempo, le risposte dei sistemi lineari) con	
operazioni di prodotto, le grandezze che figurano	
negli schemi a blocchi sono da considerare	
mediante:	
Al giorno d'oggi l'informazione:	È una delle merci più preziose in
6.5 % 566	circolazione
	UI COTULIOTIC

Al variare dei coefficienti del polinomio caratteristico all'interno degli intervalli stabiliti, tutte le radici del polinomio stesso hanno parte reale negativa se e solo se i polinomi p1(λ), p2(λ), p3(λ). p4(λ) hanno:	tutte le radici con parte reale negativa
All'inverso kd della funzione di controreazione istantanea viene attribuito il significato di costante di proporzionalità tra:	l'ingresso e l'uscita desiderata
Applicando la tecnica dello spostamento degli zeri alla funzione G(s)=(s-4)/(s+2), con b=1, otteniamo:	Gb(s) = -6/(s+2)
Applicando la tecnica dello spostamento dei poli alla funzione G(s)=1/((s-1)(s+3)(s+4)) si ottiene:	Ga(s)=1/(s(s2+6s+5)+a-12)
Attraverso il metodo di Krasowskii abbiamo visto che, per un sistema $x(t)=f(x(t))$ con x appartenente a Rn, una valida funzione di Ljapunov, per cui l'origine del sistema è globalmente asintoticamente stabile è:	V(x)=fT(x)f(x)
Attraverso lo stato il sistema può essere rappresentato mediante una funzione φ di transizione dello stato e:	Una funzione η di uscita
Comunicazione e controllo sono:	Strettamente legate tra di loro
Con PROCESSO viene indicato:	L'impanto oggetto del controllo
Condizione necessaria (ma non sufficiente) affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa, è che i coefficienti del polinomio caratteristico siano:	tutti strettamente positivi o strettamente negativi
Condizione necessaria e sufficiente affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa è che:	tutti i determinati di Hurwitz siano positivi
Condizione necessaria e sufficiente per la stabilità asintotica del sistema a controreazione W(s)=L(s)/(1+L(s)) è che nL sia ben definito e che sia:	nL=pL
Condizione necessaria e sufficiente per la stabilità del sistema a retroazione positiva W(s)=L(s)/(1-L(s)) è che nL' sia ben definito e che sia:	nL'=pL
Condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia:	L(jω) <1 per ogni ω
Considerando la funzione di trasferimento a ciclo chiuso W(s)=L(s)/(1+L(s)), la sua stabilità asintotica si realizza se tutte le radici dell'equazione caratteristica del sistema 1+L(s) hanno:	parte reale negativa

Considerando nell'insieme i Teor. 2.1 e 2.2, si deduce che i casi sui quali non si può decidere nulla riguardo all'assoluta stabilità di un sistema	c'è un'intersezione tra il diagramma polare di $L(j\omega)$ e il 'cerchio' $\sigma[k1\ k2]$
canonico nonlineare, con riferimento ad un dato intervallo [k1 k2], sono quelli nei quali:	
Consideriamo G1(s)=1/(s-a) e G2(s)=(s-a)/(s+1) con	se e solo se a<0
a≠-1, dove G1(s) è stabile per a<0, mentre G2(s) è stabile per ogni a. Eseguendo un collegamento in	
serie, si ha G(s)=1/(s+1), che è asintoticamente	
stabile:	
Consideriamo il blocco lineare G(s)=1/(s(s 2 +6s+5))	l'asintotica stabilità del sistema per una
controreazionato da un guadagno statico con a=12	nonlinearità invariante nel tempo e a un
e applichiamo il teorema 4.1; la tangente al suo diagramma in (-1/30, 0) e con q=1,2 garantisce:	solo valore nel settore (0, 30)
Consideriamo il sistema di controllo elastico a	complessi
catena aperta. Nel caso in cui (h2/4m)<(k/m) gli	
autovalori saranno:	
Consideriamo il sistema x(t)=Ax(t) e una funzione di	globalmente asintoticamente stabile
Ljapunov V(x)=xTQx con Q simmetrica e definita positiva; posto ATQ+QA= -C si ha che se anche C è	
definita positiva, allora, per il teorema di	
Barbashin-Krasowskii, il sistema risulta:	
Consideriamo il sistema x1(t)=ax12(t)+bx23(t) e	solo all'interno della parabola descritta da
x2(t) = -cx2(t) + dx13(t) con a, b, c, d>0 e la funzione	x1=(1/2)x22
di Ljapunov $V(x)=x1-(1/2)x22$; la funzione $V(x)$ sarà positiva:	
Consideriamo la funzione di trasferimento	k>p
W(s)=k/(s+(k-p)) e supponiamo k<0 e p<0; la	
funzione sarà asintoticamente stabile se e solo se:	
Consideriamo la risposta armonica con un solo polo	da -inf. a 0
nell'origine $W(\omega)=1/j\omega$ il suo diagramma polare	
sarà il semiasse immaginario inferiore che al crescere di ω (da 0 a +inf.) viene percorso:	
Consideriamo la trasformata razionale	D(s)=0
F(s)=N(s)/D(s). Si dicono poli le radici	
dell'equazione:	
Consideriamo un pendolo che oscilla in un piano	x1=π/2, x2=0, y=0
verticale. Se l'ingresso assume un valore costante	
u(t)=ū=Mgl, possiamo avere un equilibrio in: Consideriamo un pendolo che oscilla in un piano	posizione verticale con la massa in basso
verticale. Se l'ingresso è pari a u(t)=ū=0,	posizione verticale con la massa in passo
all'equilibrio e con n pari, il pendolo si troverà in:	
Consideriamo un regolatore descritto dalla	$(NR(s)/\Gamma(s)) > 0$
funzione di trasferimento R(s)=NR(s)/DR(s) con	
DR(0)=0 per via dell'azione integrale; nello schema	
a blocchi di desaturazione visto nel par. 3, il	
polinomio Γ(s) deve essere scelto in modo che sia:	

Consideriamo un sistema canonico nonlineare	definita positiva
indiretto. Supponiamo di voler determinare la	
matrice Q partendo dalla matrice C e supponiamo	
inoltre che la matrice A sia stabile e C definita	
positiva; in questo caso si ha che Q è:	
Consideriamo un sistema lineare G(s) descritto	non possiamo dedurre la stabilità
come nel teorema 3.1 del par. 3 e che presenta tre	asintotica dell'origine
poli p1=0, p2=-1, p3=-2; una volta collocato un tale	
G(s), dall'assoluta asintoticità nel controllo e	
nell'uscita dello schema:	
Consideriamo un sistema nonlineare a	assolutamente asintotico, nel controllo e
controreazione con il blocco lineare stabile	nell'uscita, nell'intervallo [0, k]
nell'uscita; se esiste un q∈ R tale che, per ogni ω∈	, , , ,
R+ sia R[$(1+j\omega q)G(j\omega)$] + $(1/k)\geq \delta>0$ per δ	
arbitrariamente piccolo, allora il sistema sarà:	
Consideriamo una f(t) nulla per t<0. L'esistenza	σ<0
della trasformata di Laplace implica l'esistenza di	
quella di Fourier, che può essere ottenuta da quella	
di Laplace ponendo s=jω, se l'ascissa di	
convergenza della prima è pari a:	
Consideriamo una generica funzione di	una retta parallela all'asse delle ordinate
trasferimento G(s); analizzando i contributi al	con ascissa pari a $-q(\pi/2)$
diagramma di Nichols dei singoli fattori, si ha che il	4(1/1/2)
diagramma del monomio $G(j\omega)=(j\omega)q$ è:	
Consideriamo una L(s) definita da	-ŋ1-ŋ2=(2v+1)180°
L(s)=k/((s+1)(s+2)); applicando la formula di	111 112-(2011)100
arg(DL(s)), abbiamo che un punto appartiene al	
luogo diretto delle radici di L(s), per qualche v	
intero, se e solo se:	
Consideriamo uno schema a blocchi come quello	M(s) = -H(s)G(s)-1
visto nel par. 3, con un disturbo, accessibile alle	11(3) = 11(3) 0(3) 1
misure, che vi entra a valle del processo da	
controllare; per annullare l'effetto del disturbo	
dovremmo avere:	
	Lo studio di specifiche proprietà dei
Costituisce oggetto della teoria dei sistemi:	
	sistemi quali, ad esempio, la stabilità, la controllabilità e l'osservabilità
Dai diagrammi di Rodo della roto anticipatrica ci	
Dai diagrammi di Bode della rete anticipatrice si	1/((√ε)θ)
vede che questa provoca un anticipo di fase, che	
raggiunge il massimo quando ω è pari a:	do+(Tr 1) + 0
Dal teorema 2.2, per costruire la matrice Tr	det(Tr-1) ≠ 0
selezioniamo nr colonne indipendenti da Mr e poi	
altre n-nr colonne scelte in modo arbitrario, ma tali	
che:	

Dalla definizione di 'cerchio' vista nel par. 2, si ha	un cerchio con diametro coincidente con
che se [k1 k2]-1 è un'intervallo finito, allora la	[k1 k2]-1
porzione del piano complesso σ[k1 k2] delimitata	
dalla circonferenza con centro sull'asse reale e	
passante per i punti (-1/k1, 0), (-1/k2, 0), e che	
contiene l'insieme [k1 k2]-1, è:	
Data una C-1 definita positiva, la condizione che	h > (1/β)gTC-1g
Lefschetz ha introdotto affinché la funzione V(x,ε)	
vista nel par. 3 sia una funzione di Ljapunov per il	
sistema nonlineare indiretto è:	
Data una funzione di trasferimento con q=0, si ha	m'+2m'' <n'+2n''< td=""></n'+2n''<>
y(0)=0 se:	
Data una funzione di trasferimento L(s), il suo	una circonferenza di raggio infinito,
diagramma di Nyquist è definito come la curva	collocata sul semipiano destro che collega
tracciata da L(s) sul piano complesso, al variare di s	il punto (0, j∞) del piano a quello (0, -j∞)
lungo un percorso chiuso costituito dall'asse	in pante (e), y act plant a quelle (e), y
immaginario, da -inf. a +inf., e da:	
Data una funzione di trasferimento, la somma dei	n=m+1
residui W(s)/bm è pari a 1 se:	
Data una risposta armonica, la sua fase si ottiene	somma, o sottrazione, delle fasi dei suoi
come:	fattori
Date due funzioni reali f, g su (0, +inf.), con a, b	linearità
complessi, si $haL(af(t)+bg(t))=aF(s)+bG(s)$. Questa	
proprietà viene detta:	
Date le matrici A, B, e un insieme arbitrario Λ di	completamente raggiungibile
numeri reali o complessi e coniugati a coppie,	
esiste una matrice K tale che gli autovalori di	
F=A+BK coincidono con gli elementi di Λ se e solo	
se la coppia (A, B) è:	
Date le matrici A, C, e un insieme arbitrario Λ di	completamente osservabile
numeri reali o complessi e coniugati a coppie,	
esiste una matrice H tale che gli autovalori di N =	
A+HC coincidano con gli elementi di Λ se e solo se	
la coppia (A,C) è:	
Dato un insieme aperto K ⊆ Rkn, con zero	V(0)=0 e $V(x)>0$, per ogni x appartenente a
appartenente all'insieme K, una funzione V:K→R si	K□
dice definita positiva se:	
Dato un intervallo [k1 k2], condizione necessaria	al numero di poli con parte reale positiva
per la stabilità assoluta nello stesso intervallo del	di L(s)
sistema, con la funzione φ ristretta all'insieme	
Φl[k1 k2], è che il numero di giri che il diagramma	
di Nyquist di L(jω) compie in senso antiorario	
attorno all'insieme [k1 k2]-1 sia ben definito e pari:	
Dato un sistema del tipo $x(t)=f(x(t))$ con f:Rn \rightarrow Rn,	instabile
se esiste una funzione $V(x)$ con $V(0)=0$, con derivate	
parziali prime continue in un intorno dell'origine,	
nel quale la stessa funzione è indefinita negativa, e	
,	

con la sua derivata lungo il moto definita positiva,	
allora il sistema è:	
Dato un sistema rappresentato dal modello	W(ω)=C(jωI-A)-1B+D
ingresso-stato-uscita, si definisce risposta	W(w)=e(jwi A) 1515
armonica, per ω reale non negativa, la funzione:	
Dato uno spazio di stato bidimensionale	tutte le traiettorie con stato iniziale
nonlineare, si definisce suo ciclo limite	arbitrariamente prossimo a C convergono
asintoticamente stabile una curva chiusa C sullo	a C per t che tende a infinito
spazio di stato che rispetta la proprietà:	'
Detta omax la soglia di saturazione dell'attuatore, e	c(t) ≤ omax
supponendo unitario il guadagno dello stesso,	
avremo che o(t) = c(t) per:	
Dopo aver applicato la tecnica dello spostamento	1/(1+aG(s))
dei poli nel sistema canonico nonlineare,	
mantenendo lo stesso andamento per l'errore $\epsilon(t)$,	
la variabile di ingresso u(t) 'vede' il sistema	
attraverso la funzione di trasferimento:	
Dopo un tempo sufficientemente maggiore delle	della fedeltà di risposta del sistema
costanti di tempo di un sistema, la differenza tra il	
comportamento desiderato della sua uscita e	
quello effettivamente riscontrato, può essere	
assunta come misura:	
Dove fosse necessario trasferire il segnale di	trasduttore
riferimento u(t) dal suo supporto fisico in un altro	
supporto, compatibile per essere confrontato con il	
segnale proveniente dall'uscita y(t), il blocco T(s),	
visto nella schema del par. 1, può assumere il ruolo di:	
È possibile costruire blocchi di Jordan:	Sia nel caso di autovalori reali sia in quello
L possibile costituire biocciii di Jordan.	di autovalori complessi e coniugati
Future makes to vice parts. His one of formats, come formats	
Entrambe le risposte, libera e forzata, sono formate da combinazioni lineari di:	Modi
	li: 1 l: !: 4000
Esplorando il piano complesso, è possibile costruire	un multiplo dispari di 180°
il luogo delle radici diretto come il luogo dei punti s	
del piano per i quali la sommatoria (da i=1 a m) di εi meno la sommatoria (da i=1 a m) di ηi è:	
Funzioni di trasferimento che legano i segnali	funzioni di sensitività
provenienti dall'esterno con quelli dipendenti dal	ומוזבוטווו מו זכווזונוזונמ
funzionamento del sistema stesso sono dette:	
Gli autovalori che non coincidono con i poli di W(s)	non influenzano il legame ingresso-uscita
sono associati a parti 'nascoste' del sistema che:	non mindenzano in legame ingresso disetta
Gli autovalori che non sono poli della funzione di	non raggiungibile o non osservabile
trasferimento appartengono alla parte:	Horridge and Horridge Value
trasieriniento appartengono ana parte.	

	T
Gli autovalori si dicono dominanti quando	il loro contributo risulta più importante
nell'espressione del transitorio:	rispetto agli altri autovalori
Gli autovettori generalizzati appartenenti alla stessa	Indipendenti tra di loro sempre
stringa sono:	
Gli scalari ζi=-αi/γi e ξi=-σi/δi, in modulo minori di	smorzamenti delle coppie complesse e
uno, vengono detti:	coniugate di zeri o poli alle quali si
	riferiscono
Gli stati di equilibrio x̄, se esistono, devono	$0=f(\bar{x},\bar{u})$
costituire soluzione costante nel tempo	
dell'equazione:	
I criteri relativi alla funzione nonlineare φ	limitata superiormente e inferiormente da
suppongono che questa non sia necessariamente	due rette passanti per l'origine
nota in dettaglio, ma che sia:	and reste passaria, per verigine
I diagrammi di Nichols sono caratterizzati da una	sommabilità
proprietà che permette di comporre i diagrammi di	
più sistemi in cascata per analizzare più	
agevolmente il comportamento del sistema	
complessivo per piccole variazioni di ω , che viene	
detta:	
I margini di fase e di guadagno di un sistema a	(-180°, 0)
controreazione sono dati dalle intercette,	(150,0)
rispettivamente sull'asse delle ascisse e sull'asse	
delle ordinate del diagramma di Nichols per la	
funzione di trasferimento a catena diretta,	
collocando l'incrocio di tali assi del piano fase-	
modulo nel punto:	
I modi di un sistema nel caso in cui gli autovalori di	pseudoperiodici
A non sono tutti reali e distinti, vengono detti:	pseudoperiodici
· · · ·	
I movimenti dello stato costanti ottenuti applicando	stati di equilibrio
a un sistema descritto dalle equazioni ingresso-	
stato-uscita un ingresso costante, sono detti:	
I primi addendi della formula di Lagrange prendono	risposta libera
il nome di:	
I rami che tendono all'infinito sono asintotici	baricentro del luogo
all'asse reale, o a rette che tagliano l'asse reale	
nell'ascissa xa, che viene detta:	
I rami partono, per k=0, dai poli della funzione di	divergono verso l'infinito
trasferimento a ciclo aperto L(s) e, al divergere di	_
k , m per il tracciato diretto e m per il tracciato	
inverso convergono agli zeri, mentre i restanti (n-m)	
per ciascun tracciato:	
I regimi canonici permettono di:	Calcolare l'uscita corrispondente a una
· ·	qualsiasi funzione di ingresso
I regolatori lineari più usati in ambito industriale	proporzionale, integrale e derivativa
sono i regolatori PID, cioè ad azione:	
5	SISO, stazionari, impropri
I regolatori PID sono da considerarsi sistemi lineari:	Siso, stazionan, impropri

I rilevamenti Auditel forniscono:	Dati in percentuale sull'ascolto televisivo italiano
I SERVOMECCANISMI sono:	Sistemi di controllo automatico di grandezze meccaniche
I sistemi dinamici, nell'elaborazione e trasmissione	innalzare o abbassare le singole
delle varie componenti in frequenza di un segnale,	componenti armoniche, in modulo e fase
si comportano come filtri che possono:	
I sistemi dotati di una sola variabile di ingresso e	Monovariabili
una sola di uscita sono detti:	
I sistemi in cui diminuendo il guadagno a catena	a stabilità condizionata
aperta c'è il rischio di cadere in una situazione di	
instabilità vengono detti:	
Idealmente, nello schema a blocchi visto nel par. 2,	$T^{\sim}(s) = G(s)-1$
al fine di avere Y(s)=U(s), dovremmo effettuare la	
scelta:	
Il blocco T(s) consente di modificare la funzione di	ridurre la sollecitazione sulla variabile di
trasferimento tra u(t) e c(t) per:	controllo
Il coefficiente k, reale, presente nella funzione di	coefficiente di guadagno
trasferimento espressa come rapporto di prodotti	
di zeri e di prodotti di poli, prende il nome di:	
Il contributo di Ljapunov alla teoria della stabilità	diminuisce monotonicamente
per sistemi nonlineari parte dall'osservazione che	
in un sistema fisico il suo stato convergerà verso un	
qualche punto di equilibrio se l'energia totale:	
Il contributo di un polo alla risposta forzata	elevata
scomparirà lentamente se la sua costante di tempo	
è:	
Il controllo a catena chiusa risulta:	in generale più efficiente di quello a
	catena aperta
Il controllo della posizione di un timone in una nave	È necessario disporre di un livello di
deve essere effettuato necessariamente da un	potenza elevato che soltanto il pilota non
dispositivo opportunamente progettato perché:	può garantire
Il criterio del cerchio visto nel teorema 4.1 ritrova	a=0 e b=k
come caso particolare il teorema di Popov se:	
Il criterio di Kharitonov riduce la stabilità di un	4 sistemi perfettamente noti
sistema incerto, qualunque sia l'ordine del sistema	
stesso, a quella di:	
Il criterio di Michailov si basa su:	una rappresentazione grafica del
	polinomio
Il diagramma del binomio G(j ω)=(1+j $\theta\omega$), quando	all'asse verticale in 0°
questo si trova a denominatore di G(s), per un polo	
reale positivo, è lo stesso di quello per un polo	
reale negativo, ma ribaltato rispetto:	
Il diagramma del modulo di Wd3,i(ω), nel caso in	picco di risonanza
cui ξi <(1/√2)≈0,707 presenterà un massimo	
chiamato:	

Il diagramma della fase di W1(ω) è una retta parallela all'asse delle ascisse ω con ordinata pari a -q90°. Si dice pertanto che poli nell'origine producono:	un ritardo di fase
Il diagramma polare della risposta con un solo polo nell'origine può essere visto come 'limite' di quello che si riferisce alla risposta con un solo polo $W(\omega)=k/(j\omega-p)$ con:	p=-1/k e k che tende a +inf.
Il fatto che la derivata dell'esponenziale coincide con l'esponenziale stessa, fa si che tale funzione sia la soluzione:	del problema differenziale lineare del primo ordine
Il fenomeno per cui, al raggiungimento del limite del segnale di ingresso al processo sotto controllo, anche se e(t) cambia di segno si deve comunque attendere che lo stato c(t) del regolatore torni sotto un certo livello prima che l'attuatore possa riprendere il suo funzionamento in zona non di saturazione, viene detto:	carica integrale
Il gradino, nel senso delle distribuzioni, è:	L'integrale dell'impulso
Il limite di $\Delta\epsilon(t)$, per ϵ che tende a 0, prende il nome di:	Impulso
Il luogo del piano complesso percorso da una delle radici dell'equazione caratteristica, quando k varia da 0 a +inf. per il luogo diretto, o da -inf. a 0 per il luogo inverso, viene detto:	ramo del luogo delle radici
Il luogo inverso è la parte del luogo delle radici per:	k<0
Il margine di fase αL è definito, sulla base della fase critica φL, come:	αL=180°-φL
Il margine di guadagno kG, dove G(s) è il processo da controllare e kG<+inf., coincide con:	il guadagno critico
Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza ΔL tra:	il diagramma di Nyquist di L(s) e il punto (- 1, 0)
Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione:	dei poli del sistema a ciclo chiuso
Il metodo di Ziegler e Nichols prevede di porre il processo in un ciclo chiuso, con un regolatore proporzionale P, e di aumentare il guadagno kp di quest'ultimo fino a quando il sistema risponde ad una variazione a gradino del segnale di riferimento u(t) con:	un'oscillazione permanente
Il modulo F(ω) della trasformata di Fourier prende il nome di:	spettro di ampiezza
Il nome di fase minima, per sistemi con guadagno positivo, discende dal fatto che poli con parte reale negativa generano una fase:	minore di quella di poli con parte reale positiva

Il numero di giri nL di un diagramma di Nyquist non	(-1, 0)
è ben definito se quest'ultimo passa per il punto:	
Il paramentro τ =-(1/ λ) prende il nome di:	costante di tempo
Il periodo di oscillazione TP è il tempo:	che intercorre tra i primi due massimi
	dell'uscita
Il polinomio caratteristico di un sistema, quando	il denominatore della funzione di
non ci sono cancellazioni tra numeratore e	trasferimento
denominatore della funzione di trasferimento,	
coincide con:	
Il polinomio caratteristico pA(λ)= $\lambda(\lambda-1)4$ ha due	1
autovalori λ1=0 e λ2=1, con molteplicità algebrica	
μ1=1 e μ2=4. La molteplicità geometrica del primo	
autovalore sarà pari a:	
Il polinomio caratteristico λ2+λ(h/m)+(k/m)=0 ha	h2 ≥ 4km
due radici reali negative se:	
Il polinomio p(jω) può essere considerato come il	λ percorre l'asse immaginario
prodotto di n vettori sul piano complesso ciascuno	
con la base nella sua radice e il vertice in jω,	
quando:	
Il polinomio $p(\lambda)=\lambda(\lambda+(k/MI2))$ del sistema	non abbiamo informazioni a sufficienza
linearizzato del pendolo presenta una radice nulla e	per stabilire la stabilità dello stato di
una negativa. Sulla base dei teoremi 3.1 e 3.2,	equilibrio
possiamo dire che:	
Il primo passo da fare nella risoluzione del	Restringere la classe alla quale si suppone
problema dell'identificazione è:	che il sistema possa appartenere
Il principio per cui il progetto della matrice di	principio di separazione
guadagno K della legge di controllo, e il progetto	
della matrice di guadagno dell'osservatore H	
possono essere condotti in modo indipendente	
l'uno dall'altro viene detto:	
Il procedimento di disaccoppiamento viene detto	procede dalla conoscenza della matrice di
'in avanti' se:	trasferimento G(s) all'individuazione del
	disaccoppiatore Δ(s)
Il procedimento per definire la struttura del	sintesi per tentativi
regolatore G1(s), che parte da soluzioni semplici e	
successivamente le complica per soddisfare man	
mano ulteriori esigenze, viene detto:	
Il requisito fondamentale e più importante richiesto	stabilità
a un sistema di controllo è la:	
Il segno degli zeri o dei poli di una risposta	solo sul diagramma della fase
armonica ha influenza:	
Il sistema descritto per il circuito elettrico	asintoticamente stabile
dell'esempio 1 è:	
Il sistema nonlineare a controreazione visto nel par.	$e\alpha tc(t) \in L2(0, inf.)$
1 si dice asintotico di grado α nel controllo se per	
ogni condizione iniziale si ha:	

Il sistema presentato poll'osompio, guando si	completamente osservabile
Il sistema presentato nell'esempio, quando si assume y(t)=x2(t), risulta:	completamente osservabile
Il sistema $x(t) = Acx(t) + Bcu(t) y(t) = Ccx(t) + Dcu(t)$	Forma compagna di controllore
prende il nome di:	- Sima compagna ai controllore
Il tempo di assestamento del sistema è il tempo	5% del valore limite
necessario affinchè l'ampiezza dell'uscita rimanga	370 del valore infine
entro il:	
Il tempo di assestamento della risposta indiciale di	-θln(0,01ε)
un sistema del primo ordine con $\theta>0$ è pari a:	(-,,
Il tempo di ritardo trè il tempo che occorre:	per raggiungere il 50% del valore di
in tempo di ritardo de li tempo die occorre.	regime
Il teorema di Abel-Ruffini afferma che non risulta	superiore al quarto
possibile la soluzione per radicali di un'equazione	Superiore at quarto
algebrica di grado:	
Il teorema di Cayley-Hamilton ci dice che:	Ogni matrice quadrata soddisfa la propria
and the second s	equazione caratteristica
Il termine greco "Kybernetiké" significa:	Arte del pilota, del timoniere
Il valore di regime della risposta indiciale di un	al guadagno
sistema del primo ordine asintoticamente stabile	O20000
$(\theta>0)$ è pari:	
Il valore di regime è:	il valore dell'uscita una volta esaurito il
	transitorio
Il verificarsi di un punto sul piano complesso che	negativo
soddisfa l'equazione pseudocaratteristica	
corrisponde, per il relativo sistema canonico, a	
un'oscillazione permanente asintoticamente stabile	
se il prodotto scalare (t, n), con n normale alla	
tangente del diagramma polare di L(jω) e t	
tangente al tracciato di Λ(E), è:	
In alcuni casi più semplici, è possibile ottenere la	u(0)=0 e y(0)=0
funzione di trasferimento trasformando	
direttamente con Laplace le equazioni del sistema	
ipotizzando:	
In generale la risposta forzata di un sistema	raggiungibile e osservabile
dipende soltanto dalla sua parte:	
In generale, per i sistemi canonici nonlineari, si	elementi nonlineari da caratteristica
potrebbero avere blocchi dove l'uscita assume	
soltanto un numero finito di valori, commutando	
dall'uno all'altro al passaggio dell'entrata attraverso	
determinate soglie; questi elementi vengono detti:	
In presenza di due o più blocchi in serie, essi	al prodotto di quelle dei singoli blocchi
possono essere sostituiti da un unico blocco con	
funzione di trasferimento pari:	
In un sistema con controreazione dello stato, sono	K
determinabili a piacimento gli autovalori della	
matrice F, che possono essere resi coincidenti con	

gli elementi corrispondenti di Λ, scegliendo in	
modo opportuno gli elementi della matrice:	
In un sistema del secondo ordine con due poli	diverge
complessi e coniugati, se σ <0, allora la risposta	diverge
indiciale:	
	un ingresse non desiderate e non gestibile
In un sistema di controllo, un disturbo è:	un ingresso non desiderato e non gestibile prima della sua entrata
In un sistema lineara e stazionaria l'affotta di una	
In un sistema lineare e stazionario, l'effetto di una	al principio di sovrapposizione degli effetti
singola sinusoide può essere calcolato	
indipendentemente dalla presenza delle altre	
componenti, grazie:	
In un sistema puramente lineare le oscillazioni	poli con parte reale nulla
permanenti si realizzano soltanto se il sistema	
stesso ha:	As TATA By BT (
In un sistema SISO completamente raggiungibile,	A~=TAT-1 e B~=BT formino una coppia
ma non in forma canonica, al fine di poter utilizzare	nella forma canonica di raggiungibilità
la tecnica di assegnazione degli autovalori, è	
necessario individuare la trasformazione T sullo	
spazio di stato tale che le matrici:	
In uno schema a blocchi nonlineare canonico si	non superiore al valore assunto quando
parla di isteresi passiva se, per ε(t) (che	ε(t) si avvicina all'origine
rappresenta il blocco lineare) che si allontana	
dall'origine, la nonlinearità n(ε,t) è:	
In uno schema a blocchi, un cerchio con indicazione	nodo sommatore
dei segnali in entrata e in uscita, è definito come:	
In uno schema canonico nonlineare 'indiretto', a	attuatore
differenza di uno 'diretto', la nonlinearità viene	
inclusa in uno schema a controreazione che può	
svolgere anche funzioni di:	
Ingressi decomponibili in spettri di armoniche	con spettri di armoniche sinusoidali della
sinusoidali generano, in sistemi asintoticamente	stessa frequenza, ma con ampiezza e fase
stabili, uscite:	differenti
La "metainformazione" è:	L'informazione contenuta nel fatto che un
	dato messaggio viene trasmesso
La banda passante può essere definita come	$(1/\sqrt{2}) \le F(j\omega) \le (\sqrt{2})$ per ogni ω
l'intervallo Ibp di pulsazioni individuato dalla	appartenente a lbp
relazione (nella quale si assume per F(s) un	
guadagno unitario):	
La carta di Nichols:	consente sempre il passaggio inverso da
La carta di Nicriois.	$W(\omega)$ a $L(\omega)$
La componente Qi della matrice di trasformazione	Qi=[qr+jqi qr-jqi]
	Qi=[qi+]qi qi-]qi]
Q che porta il sistema complesso in forma canonica	
di Jordan ha la seguente struttura:	n=1 e n=2
La condizione del teorema 1.1 è necessaria e	
sufficiente solo quando:	

	<u> </u>
La condizione fondamentale di equilibrio per	Alla somma algebrica del flusso uscente e
sistemi termici è che il flusso di calore entrante sia	del flusso accumulato
pari:	
La condizione necessaria e sufficiente del lemma di	alla condizione di Popov
Kalman visto nel par. 1, scegliendo δ=(1/2)βATc e	
$\gamma=(1/k)+\beta cTb$ e considerando solo la diseguaglianza	
stretta, equivale:	
La congettura di Aizerman, riformulata con	coincida con il settore di Popov
riferimento all'assoluta asintoticità nel controllo e	·
nell'uscita, e a funzioni n a un solo valore e	
invarianti nel tempo, implica che il settore di	
Hurwitz:	
La controreazione consente di raggiungere la	anche se alcuni singoli blocchi nello
stabilità asintotica del sistema complessivo	schema sono instabili
controreazionato:	Seriema serie matasm
La controreazione di un sistema di controllo può	misurabile
essere spostata dall'uscita allo stato se e solo se	misardone
quest'ultimo è:	
La coppia (A, C) è completamente osservabile se il	n
rango della matrice di osservabilità M0 è pari a:	"
La distribuzione di Dirac è nulla ovunque tranne	0
che in:	
La durata del transitorio di un sistema SISO, a cui	il tempo di assestamento
viene applicato un ingresso sinusoidale, dipende	
dalla dinamica propria del sistema e può essere	
valutata mediante:	
La fase φ della funzione di trasferimento W(s),	arctan(Im(W(s))/Re(W(s)))
espressa in forma polare, può essere calcolata	
come:	
La forma canonica di Jordan risulta fondamentale	La molteplicità algebrica degli autovalori
quando:	della matrice A non è pari alla molteplicità
	geometrica dei loro autovettori
	indipendenti
La forma compagna di controllore e quella di	Due rappresentazioni duali
osservatore sono:	
La formula di trasformazione e quella di	f in (0, inf.) e F
antitrasformazione stabiliscono una relazione	
biunivoca tra:	
La formula M(s)=-H(s)G(s)-1 per essere realizzabile	H(s)G(s)-1 fosse propria e che G(s) avesse
richiederebbe che:	zeri a parte reale positiva o nulla
La forza controelettromotrice in un motore a	Al prodotto tra il flusso magnetico indotto
corrente continua è proporzionale:	dallo statore e la velocità angolare del
F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rotore
La funzione di sensitività complementare è definita	F(s)=L(s)/(1+L(s))
come:	(-, -(-,, ((-,))
La funzione di sensitività del controllo, a parte i	sulla variabile di controllo
cambiamenti di segno, esprime l'effetto dei vari	
ingressi:	
111/21 (2331)	

La funzione di sensitività del controllo M(jω) dipende solo dalla dinamica del processo da	ω è minore o uguale alla pulsazione critica
controllare quando: La funzione di sensitività può rappresentare, nel caso dello schema a blocchi con intervento di disturbi visto, la funzione di trasferimento tra:	il disturbo D2(s) e l'uscita Y(s)
La funzione di trasferimento del sistema in presenza di condizioni iniziali nulle è descritta dalla formula matriciale:	W(s)=C(sI-A)-1B+D
La funzione di trasferimento mette in relazione tra loro le trasformate di Laplace:	delle variabili di ingresso e di uscita
La funzione w(t)=CeAtB prende il nome di:	Nucleo risolvente
La legge di controllo è il legame tra:	l'errore e e la variabile di controllo c all'ingresso del processo
La linearizzazione dei sistemi non lineari è valida:	per sistemi SISO e MIMO
La matrice di trasformazione Q in grado di portare la matrice A nella forma canonica di Jordan sarà tale per cui:	J=Q-1AQ
La matrice H, presente nel sistema che definisce l'osservatore asintotico, prende il nome di:	matrice di guadagno dell'osservatore
La matrice K=(k0 k1 kn-1) viene detta:	matrice di guadagno
La parte reale di $F(\omega)$ è una funzione pari, mentre quella immaginaria è una funzione dispari se:	f(t) è reale
La pendenza assunta dal diagramma asintotico del modulo per ω che tende a +inf., è sempre pari al grado relativo con il segno cambiato. Quindi la suddetta pendenza è nulla per sistemi:	propri
La presenza di parti non raggiungibili e/o non osservabili viene denunciata dal fatto che nel sistema complessivo il grado del denominatore della funzione di trasferimento è:	inferiore all'ordine del sistema stesso
La prima massima sovraelongazione della risposta indiciale di un sistema del secondo ordine con autovalori complessi e coniugati si ha per:	ts=(π/ω)
La proprietà di linearità fa si che la trasformata della funzione a1f1(t)+a2f2(t) sia:	a1F1(ω)+a2F2(ω)
La proprietà di osservabilità dipende integralmente dalla coppia di matrici:	(A, C)
La proprietà per cui 'piccole' variazioni delle condizioni iniziali hanno come conseguenze 'piccole' perturbazioni del movimento dello stato vene detta:	stabilità
La pulsazione critica è la pulsazione corrispondente all'attraversamento da parte del diagramma di Nyquist:	della circonferenza unitaria

	T
La quasi-diagonalizzazione può essere utilizzata quando gli autovalori della matrice A:	Non sono tutti reali
La rappresentazione come somma di rapporti di residui e poli consente di ottenere facilmente l'antitrasformata della funzione di trasferimento, che sappiamo essere:	la risposta impulsiva
La rappresentazione polare di un numero complesso s è:	рејф
La rete a sella è la struttura di un regolatore ad azione:	proporzionale, integrale e derivativa
La retta di Popov è definita dalla relazione:	$R(I(\omega)) = -(1/k) + \omega qI(I(\omega))$
La ricerca per F(jω) di una pulsazione critica più alta della banda passante del processo, con lo scopo di migliori prestazioni dinamiche per il sistema di controllo complessivo, comporta:	una forte sollecitazione sulla variabile di controllo
La richiesta di informazioni:	Permette di influenzare e tentare di controllare l'ambiente al quale ci si rivolge
La risposta armonica coincide con la funzione di trasferimento W(s) ristretta:	al semiasse immaginario non negativo
La risposta armonica $W(\omega)$ viene rappresentata come la traiettoria sul piano complesso di un punto al variare di ω in $[0, +inf.]$ nei:	diagrammi polari
La risposta di un qualsiasi sistema può essere ottenuta come combinazione lineare di:	sistemi elementari del primo e del secondo ordine
La risposta forzata del sistema si ricava imponendo nelle formule di Lagrange:	x(t0)=0
La risposta impulsiva coincide con:	Il nucleo risolvente
La risposta impulsiva di un sistema dinamico lineare stazionario coincide con la risposta impulsiva della sola sua parte:	raggiungibile e osservabile
La risposta impulsiva, per t che tende a infinito, di un sistema del primo ordine con λ<0:	decresce in modo monotono
La risposta indiciale di un sistema del secondo ordine con autovalori complessi e coniugati e con σ=0 presenta:	oscillazioni permanenti
La risposta indiciale è:	L'andamento temporale dell'uscita in corrispondenza di una brusca variazione in ingresso
La scelta delle variabili da comunicare al centro	Al tipo di controllo che si intende
decisionale di controllo è legata:	effettuare sul processo
La soluzione dell'equazione $L(j\omega)=\Lambda(E)$ si trova nell'intersezione, sul piano complesso, del diagramma polare di $L(j\omega)$, al variare di ω , con il tracciato di $\Lambda(E)=-1/D(E)$, al variare di E , detto:	luogo dei punti critici

	T
La somma dei poli a ciclo chiuso divisa per n non	n>m+1
dipende da k ed è data dalla formula del baricentro	
del sistema a ciclo chiuso solo nel caso in cui:	
La somma del numero delle righe dei vi blocchi di	Essere pari alla sua molteplicità algebrica
Jordan associati a un autovalore λi deve:	
La statistica consente l'afflusso di informazione al	In modo aggregato e solo nelle forme
centro di controllo:	predisposte dal centro stesso
La struttura di un regolatore PID risponde a	annullare asintoticamente l'errore dovuto
un'esigenza empirica, secondo la quale è	a segnali di riferimento, o di disturbo,
opportuno che la variabile di controllo sia costituita	costanti nel tempo
dalla somma di tre contributi, uno dei quali	·
proporzionale all'integrale dell'errore e, che ha lo	
scopo di:	
La tabella di Routh del polinomio	4 1 2 5
pA(λ)= λ 4+ λ 3+2 λ 2+2 λ +5 sarà pari a:	3 1 2
	2 0 5
La tecnica dello spostamento dei poli equivale	$na(\varepsilon(t))=c(t)-a\varepsilon(t)$
all'attuazione di una controreazione locale, con	
guadagno a, al blocco lineare G(s) e consiste nel	
sostituire l'elemento nonlineare $n(\varepsilon(t))$ con:	
La trasformata di Fourier consente di interpretare	una somma di un'infinità non numerabile
le funzioni di una vasta classe come costituite da:	di armoniche
La trasformata di Fourier della funzione	non esiste
esponenziale $f(t)=e\sigma t\delta-1(t)$ con $\sigma>0$:	Horresiste
	:=/\$/
La trasformata di Fourier di $f(t)$ =sen(ω 0t) è pari a:	$j\pi(\delta(\omega+\omega 0)-\delta(\omega-\omega 0))$
La trasformata di Laplace del gradino unitario δ -1 è	1/s
pari a:	(
La trasformata di Laplace è definita mediante	(-inf., +inf.)
integrazione sull'intervallo temporale (0, +inf.),	
mentre quella di Fourier è definita sempre	
mediante integrazione, ma sull'intervallo	
temporale:	
temporale: L'acronimo ARMA sta per:	AutoRegressive Moving Average
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto:	solo del flusso di informazione tra blocchi
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che	solo del flusso di informazione tra blocchi essere di valore costante al variare di ω0
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto:	solo del flusso di informazione tra blocchi
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve:	solo del flusso di informazione tra blocchi essere di valore costante al variare di $\omega 0$ per tutta la durata della misura
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e	solo del flusso di informazione tra blocchi essere di valore costante al variare di ω0
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve:	solo del flusso di informazione tra blocchi essere di valore costante al variare di $\omega 0$ per tutta la durata della misura
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e	solo del flusso di informazione tra blocchi essere di valore costante al variare di $\omega 0$ per tutta la durata della misura
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del	solo del flusso di informazione tra blocchi essere di valore costante al variare di $\omega 0$ per tutta la durata della misura
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del suo comportamento in presenza di ingressi di tipo:	solo del flusso di informazione tra blocchi essere di valore costante al variare di $\omega 0$ per tutta la durata della misura sinusoidale
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del suo comportamento in presenza di ingressi di tipo:	solo del flusso di informazione tra blocchi essere di valore costante al variare di ω0 per tutta la durata della misura sinusoidale
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del suo comportamento in presenza di ingressi di tipo: L'analogia di Firestone è utile per:	solo del flusso di informazione tra blocchi essere di valore costante al variare di ω0 per tutta la durata della misura sinusoidale Ricondurre la rappresentazione di sistemi meccanici a sistemi elettrici
temporale: L'acronimo ARMA sta per: L'algebra degli schemi a blocchi tiene conto: L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve: L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del suo comportamento in presenza di ingressi di tipo: L'analogia di Firestone è utile per:	solo del flusso di informazione tra blocchi essere di valore costante al variare di ω0 per tutta la durata della misura sinusoidale Ricondurre la rappresentazione di sistemi meccanici a sistemi elettrici

condizioni di applicabilità del criterio di Bode, mostra l'aspetto tipico di:	
L'applicazione del criterio di Liénard-Chipart comporta la verifica del segno di un numero di determinanti pari a circa:	la metà di quelli richiesti per il criterio di Hurwitz
Le equazioni utilizzate per scrivere il modello matematico relativo ad un sistema meccanico traslazionale fanno riferimento:	Al principio dell'equilibrio di tutte le forze in gioco
Le formule che definiscono i parametri del regolatore PID, che assicura le specifiche desiderate sul margine di fase, sono $\omega G'Td-(1/(\omega G'Ti))=\tan(\alpha L)$, $Ti=4Td$ e:	kP=k ⁻ Pcos(αL)
Le matrici A di due sistemi ottenuti mediante una trasformazione di coordinate sono legate dalla relazione:	A'=T-1AT
Le proprietà di stabilità di uno schema a blocchi a controreazione dipendono soltanto:	dalla posizione, sul piano complesso, delle radici dell'equazione caratteristica della funzione di trasferimento a ciclo chiuso
Le proprietà di unicità, casualità e consistenza garantiscono che:	Valori dell'ingresso antecedenti alla rivelazione dello stato iniziale, o posteriori allo stato corrente,non influiscono sullo stato stesso
Le radici del polinomio caratteristico hanno tutte parte reale negativa se, quando ω varia da - a + infinito, il vettore corrispondente a p(j ω) non passa con il suo vertice nell'origine e ha una variazione di fase pari a:	ηπ
Le tecniche di sintesi nello spazio di stato, come ad esempio la tecnica di assegnazione degli autovalori, sono basate su modelli:	nel dominio del tempo
Le tematiche e le metodologie tradizionali dei sistemi di controllo possono:	Essere applicate a diversi tipi di processi, come biologici, monetari e urbanistici
L'eliminazione di una coppia polo-zero con valori delle costanti di tempo prossimi tra loro, o addirittura coincidenti, può causare problemi:	di stabilità, raggiungibilità e/o osservabilità
L'equazione caratteristica pA(λ)= λ n+ α n-1 λ n-1++ α 0 ammetterà n radici che prendono il nome di:	Autovalori
L'equazione vR(t)=RiR(t) descrive:	Il comportamento di un resistore
L'errore a regime er di un sistema, per un dato ingresso, è l'errore che:	permane una volta esaurito il transitorio
L'errore a regime, quando il numero q di poli nell'origine in G(s) è maggiore dell'indice i che identifica l'ingresso canonico, è pari a:	zero

L'estremo superiore dei coefficienti con i quali	margine di guadagno
moltiplicare il guadagno di L(s) senza perdere	
l'asintotica stabilità per il modello	
W(s)=L(s)/(1+L(s)) a controreazione viene detto:	
'L'evoluzione di una dinamica libera associata ad un	La proprietà di invarianza degli autospazi
autovalore λi è forzata a rimanere nell'autospazio	
generato dal corrispettivo autovettore vi'. Questa	
espressione definisce:	
L'impiego di un regolatore puramente	1/kp
proporzionale nel metodo di Ziegler e Nichols non	
annulla l'errore a regime, ma lo riduce soltanto in	
funzione di:	
Linearizzando il sistema unidimensionale x'(t)=kxm,	m dispari e k<0
con m=2, 3,, attorno a un qualsiasi punto	
dell'asse reale si ottiene $\delta x(t)=0$, così che esso	
risulta un punto di equilibrio; si vede che il sistema	
è asintoticamente stabile per:	
L'ingresso a parabola, per t≥0, sarà pari a:	δ-3=(t2/2)
L'ingresso canonico a gradino è definito come:	δ -1(t)=0 per t<0 δ -1(t)=1 per t≥0
L'insieme [k1 k2]-1=(h \in R:(1/h) \in [k1 k2] -(0)) è	k1=0 o k2=0
costituito da una semiretta se:	
L'insieme dei coefficienti complessi Unpresenti	lo spettro del segnale
nella serie di Fourier costituisce:	
L'ipotesi alla base del metodo della funzione	ipotesi dell'azione filtrante
descrittiva per accertare esistenza e parametri delle	·
oscillazioni permanenti nel sistema canonico in	
esame è detta:	
Lo spostamento degli zeri per un sistema	Gb(s)=G(s)-b
nonlineare canonico è definito da $\varepsilon b(t)=\varepsilon(t)+bc(t)$, e	
la nuova funzione di trasferimento Gb(s) del blocco	
lineare risulta:	
Lo stato di un sistema ci permette di:	Determinare univocamente l'uscita del
	sistema rispetto all'ingresso in un
	determinato istante
Lo studio a regime di un sistema SISO a cui viene	sull'asse immaginario
applicato un ingresso sinusoidale, è riconducibile	
allo studio di coppie di radici situate:	
L'obiettivo della tecnica di assegnazione degli	ottenere che gli autovalori del sistema
autovalori è quello di progettare un regolatore in	controreazionato abbiano valori
grado di:	prestabiliti
L'organo posto a valle del regolatore, con il compito	attuatore
di tradurre il segnale e(t) in uscita al regolatore	
stesso in uno, detto o(t), di caratteristiche fisiche e	
potenza adeguate al controllo del blocco successivo	
costituito dal processo, viene detto:	
costituito dai processo, viene detto.	

L'origine del sistema $x(t)=f(x(t))$ con $x(t0)=x0$ è	V(x) sia definita negativa e V(x)→+inf. se
globalmente asintoticamente stabile se esiste una	$ x \rightarrow +inf.$
funzione di Ljapunov V(x) definita in Rn tale che:	
L'ultima riga della tabella di Routh ha un solo	β0= α0
elemento β0, e si ha sempre:	
L'unità di misura decibel (dB) è definita come:	$ W(\omega) dB=20log(W(\omega))$
Mediante l'utilizzo di un controllore dinamico, si	tende a zero sempre
può dimostrare che, con i parametri in condizioni	tende a zero sempre
nominali, l'errore:	
Moltiplicare per s nel dominio della variabile	derivare nel dominio del tempo
complessa equivale a:	
Negli schemi di connessione a controreazione, i poli	sia dai poli che dagli zeri dei blocchi
della funzione di trasferimento complessiva	connessi
possono dipendere:	
Nei sistemi lineari è possibile calcolare la risposta	il principio di sovapposizione degli effetti
generata da più cause come combinazione lineare	in printing an obtapposizione degit enem
delle risposte alle singole cause. Questa	
affermazione descrive:	
Nel calcolo di una funzione di trasferimento W(s) di	inferiore a quello degli autovalori
un sistema dinamico, l'eventuale cancellazione di	
radici in comune tra numeratore e denominatore fa	
si che il numero dei poli sia:	
Nel caso del pendolo con ingresso u(t)=ū=0, è nulla	C=0 e D=0
la variazione prima dell'energia totale del sistema,	
rispetto a perturbazioni delle altre variabili, perché:	
Nel caso di autovalori complessi e coniugati, i modi	sinusoidali
avranno andamenti temporali:	Siliusoluali
·	the stoom () the so
Nel caso di autovalori multipli e complessi della	tkeσtsen(ωt+φ)
matrice A, i movimenti liberi dello stato e dell'uscita saranno combinazioni lineari dei termini:	
	le intersezioni meno favorevoli alla
Nel caso di diagrammi di Nyquist più articolati, nei	stabilità
quali ad esempio vengono intersecati più volte il semiasse reale negativo o la circonferenza unitaria,	Stabilita
per la valutazione dei margini di guadagno o di	
fase, andranno considerate:	
Nel caso di evoluzione libera, lo stato:	Evolve a partire dal suo valore iniziale
Nel caso di evoluzione libera, lo stato. Nel caso di osservatore asintotico con stato non	•
misurabile, gli autovalori del sistema complessivo	completamente raggiungibile e completamente osservabile
possono essere assegnati in modo arbitrario se il	Completamente osservabile
sistema originario è:	
Nel caso di risposta indiciale, se poniamo ω=4 e	si muoveranno lungo due rette parallele
facciamo variare σ,allora gli autovalori di un	all'asse reale, con ordinata pari a ± 4
sistema del secondo ordine:	a assercare, con oraniata pari a ± 4
Nel caso di sistemi del secondo ordine (o	uno zero negativo e di modulo minore dei
maggiore), la presenza di una sovraelongazione	poli
nella risposta indiciale è segno della presenza di:	, po
mena risposta maiciaie e segno della presenza di.	

Nel caso di un filtro passa basso, l'intervallo di	banda passante
pulsazioni [0, ωb] viene detto:	
Nel caso di un sistema che faccia uso di	minori di quelle associate agli autovalori
controreazione dello stato anche quando lo stato	del sistema a ciclo chiuso
stesso non è direttamente accessibile, per risolvere	
il problema dell'assegnazione arbitraria degli	
autovalori è conveniente scegliere gli autovalori	
associati alla dinamica dell'osservatore in modo che	
le loro costanti di tempo siano:	
Nel caso di un sistema del secondo ordine	$tn=n(\pi/\omega)$
asintoticamente stabile (σ>0) con due poli	
complessi e coniugati, gli istanti di stazionarietà	
della risposta indiciale possono essere ricavati	
ponendone a zero la derivata, e risultano	
esprimibili come:	
Nel caso di un sistema del secondo ordine con due	1/s
poli complessi e coniugati, la sua risposta indiciale	
sarà data da l'antitrasformata della sua funzione di	
trasferimento moltiplicata per:	
Nel caso di una funzione di trasferimento con poli	immaginari puri
complessi e coniugati, questi si sposteranno in un	
piano complesso lungo una circonferenza di raggio	
δial variare di ξi da -1 a 1. In particolare se ξi = 0	
allora i poli saranno:	
Nel caso di una sistema del secondo ordine con poli	tende a quella di un sistema con gli stessi
reali e distinti e uno zero tale che θ 1> θ 2> τ >0, se lo	poli, ma senza lo zero
zero si allontana sempre più dall'origine del piano	
complesso, allora la risposta indiciale:	
Nel caso in cui i poli siamo distinti possiamo	i residui separatamente per ciascun polo
utilizzare la formula Ri=((s-pi)(NW(s)/DW(s))) per	
calcolare:	
Nel caso in cui non fosse sufficiente valutare la	al criterio di Nyquist
stabilità di un sistema solo attraverso il segno delle	
radici, ma fosse necessario valutare anche la	
robustezza della stabilità stessa, possiamo	
ricorrere:	
Nel caso in cui un sistema presenta gli autovalori di	$x(t)=Ve\Lambda(t-t0)V-1x(t0)$
A tutti reali e distinti, il movimento libero dello	
stato e dell'uscita sarà caratterizzato	
dall'equazione:	
Nel comportamento a regime di un sistema con	((kd)2/h)+kd(a1-b1)
controreazione dinamica, se G(s) è di tipo 1,	
l'errore a regime, per un ingresso a rampa, è pari a:	
Nel diagramma del modulo di Wd3,i(ω), se ξi=0,	infinito
allora ωr,i=δi e il picco di risonanza sarà:	
, , , , , , , , , , , , , , , , , , , ,	

Nel diagramma polare della risposta armonica con due poli complessi e coniugati, con ξ=0, quando ω=6: Nel metodo del luogo delle radici, la condizione di fase (arg(NL(s))-arg(DL(s))), per k>0 e v intero, sarà pari a: Nel modello di un motore a corrente continua, la variabile Ωr(t) indica: Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto (LS) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento "in avanti" in un sistema x2x, al fine di avere Δ 12(s) = -(G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice f(s)=Cd(s)-1(Cd(s)-C(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo [F([ω)], valori prossimi a: Nel sistema (non lineare) X(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema a dell'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema riangolare 2x2 descritto nel par.2, l'uscita y 1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a un controllo a catena aperta, di:		
ω=δ: (2v+1)180° Nel metodo del luogo delle radici, la condizione di fase (arg(NL(s))-arg(DL(s))), per k>0 e v intero, sarà parl a: (2v+1)180° Nel modello di un motore a corrente continua, la variabile Ωr(t) indica: La variabile controllata Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: La coppia torsionale z(t) Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: L(s)=W(s)/(1-W(s)) Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Δ(s) = (I-Γ(s))-1 Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice f(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Δ(s) = (I-Γ(s))-1 Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: 1 per le pulsazioni del segnale di riferimento e a 0 per le armoniche più alte stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: u(t)=ū<(1/4) e u(t)=ū=(1/4)	Nel diagramma polare della risposta armonica con	il modulo è infinito e la fase passa da 0° a -
Nel metodo del luogo delle radici, la condizione di fase (arg(NL(s))-arg(DL(s))), per k>0 e v intero, sarà pari a: Nel modello di un motore a corrente continua, la variabile Ω r(t) indica: Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto $L(s)$ a quella a ciclo chiuso $W(s)$, per via nalitica si ha $W(s)=L(s)/(1+L(s))$ e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema $2x2$, al fine di avere Δ $12(s) = -(G1(s)/G1(s)) = 0.21(s) = -(G21(s)/G2(2s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice \Gamma(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(j\omega) , valori prossimi a: Nel sistema (non lineare) \dot{X}(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pl=0, se xb-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema triangolare 2x2 descritto nel par.2, ruscita Y(t) dipende: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita Y(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a$	due poli complessi e coniugati, con ξ=0, quando	180°
fase (arg(NL(s))-arg(DL(s))), per k>0 e v intero, sarà pari a: Nel modello di un motore a corrente continua, la variabile Ωr(t) indica: Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = - (G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(ω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché p1–0, se xL>-1 allora avremo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	ω=δ:	
pari a: Nel modello di un motore a corrente continua, la variabile Ω r(t) indica: Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto $L(s)$ a quella a ciclo chiuso $W(s)$, per via analitica si ha $W(s)=L(s)/(1+L(s))$ e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema $2x2$, al fine di avere Δ $1(s) = (G12(s)/G11(s))$ e Δ $21(s) = -(G21(s)/G22(s))$, le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice $\Gamma(s)=(Gd(s))-1(Gd(s)-G(s))$ e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra $U'(s)$ e $V(s)$ e allo stesso tempo attenuare il disturbo $D1'(s)$, sarebbe opportuno avere, per il modulo $ F(j\omega) $, valori prossimi a: Nel sistema (non lineare) $\dot{x}(t) = x2(t) + x(t) + u(t)$ ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta $L(s) = k/((s+1)3)$ con $k > 0$, poiché $p = 1$ 0, se $k > 1$ 2 allora averemo: Nel sistema descritto dall'escempio 2 , è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente $l(s)$ è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a c	Nel metodo del luogo delle radici, la condizione di	(2v+1)180°
pari a: Nel modello di un motore a corrente continua, la variabile Ω r(t) indica: Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto $L(s)$ a quella a ciclo chiuso $W(s)$, per via analitica si ha $W(s)=L(s)/(1+L(s))$ e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema $2x2$, al fine di avere Δ $1(s) = (G12(s)/G11(s))$ e Δ $21(s) = -(G21(s)/G22(s))$, le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice $\Gamma(s)=(Gd(s))-1(Gd(s)-G(s))$ e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra $U'(s)$ e $V(s)$ e allo stesso tempo attenuare il disturbo $D1'(s)$, sarebbe opportuno avere, per il modulo $ F(j\omega) $, valori prossimi a: Nel sistema (non lineare) $\dot{x}(t) = x2(t) + x(t) + u(t)$ ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta $L(s) = k/((s+1)3)$ con $k > 0$, poiché $p = 1$ 0, se $k > 1$ 2 allora averemo: Nel sistema descritto dall'escempio 2 , è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente $l(s)$ è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a c	fase (arg(NL(s))-arg(DL(s))), per k>0 e v intero, sarà	
Nel modello di un motore a corrente continua, la variabile Ωr(t) indica: Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2×2, al fine di avere Δ 12(s) = - (G12(s)/G13(s)) e Δ 21(s) = - (G21(s)/G2(s), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'essempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
variabile Ωr(t) indica: La coppia torsionale z(t) Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: La coppia torsionale z(t) Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: L(s)=W(s)/(1+W(s)) Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Δ 11(s)=Δ 22(s)=1 Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice I(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Δ(s) = (I-Γ(s))-1 Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: una pulsazione critica sufficientemente elevata e un valore non troppo basso per lo smorzamento Nel progetto di un sistema di controllo complessivo, al fine di mantenere ii legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: 1 per le pulsazioni del segnale di riferimento e a 0 per le armoniche più alte Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: u(t)=ū<(1/4) e u(t)=ū=(1/4)	•	La variabile controllata
Nel modello di un sistema meccanico rotazionale, la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2xx, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = - (G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) X(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
la variabile di controllo è: Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G12(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e V(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pt=0, se xt>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente l(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		La connia tersionale z(t)
Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ (s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo $ F(j\omega) $, valori prossimi a: Nel sistema (non lineare) $\dot{x}(t) = x2(t) + x(t) + u(t)$ ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)= $k/((s+1)3)$ con $k>0$, poiché p1=0, se xL>-1 allora avremo: Nel sistema a descritto dall'escempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e: Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché p1=0, se x1> -1 allora avremo: Nel sistema a descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
analitica si ha W(s)=L(s)/(1+L(s)) e: A 11(s)=Δ 22(s)=1 Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Δ 11(s)=Δ 22(s)=1 Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)= (Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Δ(s) = (I-Γ(s))-1 Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: una pulsazione critica sufficientemente elevata e un valore non troppo basso per lo smorzamento Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: 1 per le pulsazioni del segnale di riferimento e a 0 per le armoniche più alte Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: u(t)=ū<(1/4) e u(t)=ū=(1/4)		L(s)=W(s)/(1-W(s))
Nel procedimento di disaccoppiamento 'in avanti' in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = - (G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con l la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo [F(jω)], valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	ciclo aperto L(s) a quella a ciclo chiuso W(s), per via	
in un sistema 2x2, al fine di avere Δ 12(s) = - (G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo [F(jω)], valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema delettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	analitica si ha W(s)=L(s)/(1+L(s)) e:	
(G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le altre due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) ẋ(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	Nel procedimento di disaccoppiamento 'in avanti'	Δ 11(s)=Δ 22(s)=1
due incognite vengono fissate pari a: Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice $\Gamma(s)=(Gd(s))-1(Gd(s)-G(s))$ e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di $GI(s)$, al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra $U'(s)$ e $Y(s)$ e allo stesso tempo attenuare il disturbo $DI'(s)$, sarebbe opportuno avere, per il modulo $ F(j\omega) $, valori prossimi a: Nel sistema (non lineare) $\dot{x}(t)=x2(t)+x(t)+u(t)$ ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta $L(s)=k/((s+1)3)$ con $k>0$, poiché $pL=0$, se $xl>-1$ allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente $I(s)$ è generata dall'errore $Ea(s)$ -Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare $2x2$ descritto nel par.2, l'uscita $y1(t)$ dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	in un sistema 2x2, al fine di avere Δ 12(s) = -	
Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché p1=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	$(G12(s)/G11(s)) e \Delta 21(s) = -(G21(s)/G22(s))$, le altre	
Nel processo di disaccoppiamento 'all'indietro', per un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché p1=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	due incognite vengono fissate pari a:	
un'opportuna matrice Γ(s)=(Gd(s))-1(Gd(s)-G(s)) e indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		$\Delta(s) = (I - \Gamma(s)) - 1$
indicando con I la matrice identità, si impone al disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché p1=0, se xl> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
disaccoppiatore la struttura: Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(j\omega) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente (s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
Nel progetto di G1(s), al fine di avere una buona precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) ẋ(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	•	
precisione dinamica occorre: Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		una nulsazione critica sufficientemente
Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL>-1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	1 1	1 ·
Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	precisione dinamica occorre.	
al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	Nol progetto di un sistema di controllo complessivo	
stesso tempo attenuare il disturbo D1'(s), sarebbe opportuno avere, per il modulo F(j\omega) , valori prossimi a: Nel sistema (non lineare) \(\frac{x}{t}\)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema rirangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
opportuno avere, per il modulo F(jω) , valori prossimi a: Nel sistema (non lineare) ẋ(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		Therimento e a o per le armoniche più alte
Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
Nel sistema (non lineare) x(t)=x2(t)+x(t)+u(t) ci sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente l(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
Sono due punti di equilibrio se: Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		(1) = (1) (1) = (1)
Nel sistema a controreazione descritto dalla funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		u(t)=u<(1/4) e u(t)=u=(1/4)
funzione in catena diretta L(s)=k/((s+1)3) con k>0, poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	sono due punti di equilibrio se:	
poiché pL=0, se xL> -1 allora avremo: Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	Nel sistema a controreazione descritto dalla	nL=0 e il sistema sarà asintoticamente
Nel sistema descritto dall'esempio 2, è possibile determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	funzione in catena diretta L(s)=k/((s+1)3) con k>0,	stabile
determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	poiché pL=0, se xL> -1 allora avremo:	
determinare lo stato iniziale dall'uscita se assumiamo: Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		y=x2
assumiamo:1/(R+sL)Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente l(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a:1/(R+sL)Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende:solo dalla variabile di controllo c1(t)Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a(k/(k+α))	• • •	'
Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		1/(R+sL)
generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a	• •	
comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a: Nel sistema triangolare $2x2$ descritto nel par. 2 , l'uscita $y1(t)$ dipende: Nel sistema visto nel Par. 2 , tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
un blocco che applica una trasformata pari a: Nel sistema triangolare $2x2$ descritto nel par. 2 , l'uscita $y1(t)$ dipende: Nel sistema visto nel Par. 2 , tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a		
Nel sistema triangolare 2x2 descritto nel par.2, l'uscita y1(t) dipende: solo dalla variabile di controllo c1(t) Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a solo dalla variabile di controllo c1(t) $(k/(k+\alpha))$		
l'uscita y1(t) dipende: Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a $(k/(k+\alpha))$		pala dalla variabila di santa II - 14/0
Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è possibile ridurre l'errore, rispetto a $(k/(k+\alpha))$		SOIO dalla variabile di controllo C1(t)
catena chiusa, è possibile ridurre l'errore, rispetto a		0.40
		(κ/(κ+α))
un controllo a catena aperta, di:	-	
	un controllo a catena aperta, di:	

Nel teorema 4.1 abbiamo visto che il cerchio critico	rimane fisso
varia con ω nel caso in cui q=0 si ha che il centro	
del cerchio:	(1) (000)
Nel tracciamento asintotico della fase di una	arg(h)-q(90°)
risposta armonica, la parte iniziale sarà una	
semiretta orizzontale di ordinata:	
Nella connessione in controreazione di due	completamente raggiungibile e
sottosistemi in forma minima, G1(s) e G2(s), si può	osservabile
dimostrare che se un polo di G1(s) coincide con uno	
zero di G2(s), il sistema complessivo rimane:	
Nella connessione in parallelo di due sottosistemi in	non raggiungibile e non osservabile
forma minima, G1(s) e G2(s), si può dimostrare che	
quando G1(s) e G2(s) hanno un polo in comune, si	
genera nel sistema complessivo una parte:	
Nella connessione in serie di due sottosistemi in	non raggiungibile e osservabile
forma minima, G1(s) e G2(s), si può dimostrare che	
se uno zero di G1(s) cancella un polo di G2(s), si	
genera nel sistema complessivo una parte:	
Nella definizione di autovettore, affinchè Av=λν, è	det[A-λI]=0
necessario che λ renda singolare la matrice A-λI,	
ovvero che:	
Nella figura 2.2, il ramo caratterizzato da H(s), la cui	ramo di controreazione
grandezza in uscita viene sottratta nel comparatore	
in ingresso, viene detto:	
Nella funzione di trasferimento W(s) di un sistema	poli dominanti
asintoticamente stabile, una volta cancellate le	
coppie polo-zero vicine tra loro sul piano	
complesso, i poli più vicini all'asse immaginario	
rispetto ad altri, vengono detti:	
Nella prima fase della sintesi per tentativi si	G1,s(s)=hs/sq
prendono in considerazione le caratteristiche	
richieste per gli aspetti statici, così da scegliere la	
parte statica del regolatore, definita come:	
Nella progettazione di un regolatore attraverso	Ti=4Td
l'assegnazione del margine di guadagno viene	
stabilita una relazione tra ωG' e il prodotto TiTd e di	
norma si sceglie:	
Nella progettazione di un regolatore attraverso	Ti=2/(ωG')
l'assegnazione del margine di guadagno, avendo	
scelto Ti=4Td, la pulsazione ωG' si può ricavare	
dalla relazione:	
Nella rappresentazione della funzione di	pulsazioni naturali
trasferimento, gli scalari $\gamma=V(\alpha 2+\beta 2)$ e $\delta=V(\sigma 2+\omega 2)$	
vengono detti:	
Nella risposta indiciale di un sistema del secondo	una sottoelongazione
ordine asintoticamente stabile che presenta poli	
reali e distinti e uno zero, per θ 1> θ 2>0 e τ <0 si ha:	
· •	<u> </u>

Nella risposta indiciale di un sistema del secondo ordine asintoticamente stabile con solo poli reali e distinti:	non è presente alcuna sovraelongazione o sottoelongazione
Nella tabella 2.1 vista nel par. 2, il suggerimento per il regolatore PID fa si che Ti = 0,5 T e quindi i due zeri del regolatore:	coincidono in z1 = z2 =-4/T
Nella tabella di Hurwitz vanno considerati nulli gli elementi con pedici:	maggiori di n o minori di zero
Nella tabella di Routh il numero di radici a parte reale positiva è pari:	al numero di variazioni di segno lungo la prima colonna
Nella trattazione dei sistemi SISO, l'interesse per la risposta armonica proviene anche dal fatto che essa è:	funzione complessa di variabile reale
Nell'approssimazione attraverso i poli dominanti, gli zeri che hanno una distanza simile dall'asse immaginario (o addirittura inferiore) ai poli stessi:	sono da tenere in considerazione nel calcolo
Nell'esempio (2.1) abbiamo visto che, dopo aver applicato le approssimazioni, F(s) si comporta come:	filtro passa-basso
Nell'esempio 1 del circuito elettrico si vede che l'ingresso u agisce soltanto su:	x̂ 1
Nell'esempio 1.1 abbiamo visto come stabilizzare un sistema e collocare i suoi poli in posizioni arbitrarie su un piano complesso mediante la controreazione dello stato; in particolare per l'anello più interno dello schema abbiamo L(s)=1/(s+p) con p=k2-2 che può essere reso asintoticamente stabile per:	k2>2
Nell'esempio 2.1 si vede che il sistema, a causa della presenza del condensatore, tende:	ad attenuare le sinusoidi a bassa pulsazione
Nell'esempio 3.1 abbiamo visto che la matrice F=A+BK ha come autovalori -3 e -4 se la matrice K è pari a:	K=(-2 -3)
Nell'integrale della trasformata di Laplace l'estremo inferiore va inteso come 0-, nel senso che:	eventuali impulsi nell'origine vanno inclusi
Nell'ipotesi di stabilità asintotica e con q > 0, un sistema viene detto integratore se la sua funzione di trasferimento è:	W(s)=1/s
Nello schema a blocchi con intervento di disturbi visto nel par. 1, il blocco H(s) rappresenta:	la dinamica di controreazione
Nello schema a blocchi nonlineare canonico indichiamo con N:	il blocco nonlineare supposto privo di dinamica
Nello schema a blocchi visto nel par.1, il blocco G1(s) rappresenta:	il regolatore, o rete di correzione, che blocca l'errore e fornisce il controllo all'ingresso dell'impianto

Nello schema a blocchi visto nel par.4,	vi è uno zero nell'origine in G2(s)
considerando un gradino unitario nel disturbo D1 e	
q1<0, l'errore a regime in corrispondenza al	
disturbo è nullo se:	
Nello schema di controllo con disaccoppiamento	diagonale
rappresentato in forma matriciale, il blocco $\Delta(s)$	
prende il nome di disaccoppiatore e fa si che la	
matrice di trasferimento $Gd(s)=G(s)\Delta(s)$ sia:	
Nello schema di controllo del sistema triangolare	M(s) = -G21(s)(G22(s))-1
2x2 visto nel par.2, sull'uscita y2(t) agiscono le	
variabili di controllo c2(t) e c1(t), la quale viene	
considerata come un disturbo per y2(t); possiamo	
quindi progettare R2'(s) come regolatore per la	
funzione di trasferimento G22(s) e M(s) come	
compensatore del disturbo c1(t), ovvero pari a:	
Nello schema di controllo per il sistema instabile	stabilizzare l'anello interno
visto nel par.1, il regolatore R1(s) ha il compito di:	Stabilizare Farieno Interno
Nello studio del movimento libero dello stato e	si riduce a un reale a
dell'uscita, per il caso semplice n=1, la matrice A:	
Nello studio di un sistema attraverso la funzione	modulo e fase della prima armonica in
descrittiva della sua nonlinearità, l'aspetto	uscita dal blocco N stesso
nonlineare è concentrato nel legame tra l'ampiezza	
E dell'ingresso del blocco N e:	
Nello sviluppo di un sistema, il momento dell'analisi	Diminuisce il dettaglio con cui sono noti i
acquista maggiore importanza rispetto alla sintesi	legami funzionali tra le grandezze
quando:	
Nell'osservatore asintotico dello stato notiamo che	(CT, AT) è completamente raggiungibile
la coppia (A,C) è completamente osservabile se e	
solo se la coppia:	
Non è possibile utilizzare la notazione semplificata	poli multipli
Ri,l=Rinel caso di:	
Nonostante il modello linearizzato sia	locali
approssimato, esso consente di ottenere risultati	
esatti poiché le proprietà di stabilità sono:	
Occorre scegliere la matrice di guadagno H in modo	N=A+HC
da avere il valore desiderato degli autovalori della	
matrice:	
Oltre alle funzioni esponenziali, godono della	le funzioni sinusoidali
proprietà di passare invariate attraverso sistemi	
lineari anche:	
Osservando che i contributi degli zeri ai diagrammi	W0, W1(ω), Wd2,i(ω), Wd3,i(ω)
di Bode avranno soltanto il segno invertito rispetto	,,
a quelli dei poli, sarà sufficiente studiare il	
comportamento in modulo e fase solo dei termini:	
Per "big data" si intende:	Una quantità di dati molto estesa in
. c. 2.5 data 3. meeriae.	termini di volume e varietà
	termini di volume e varieta

Per annullare l'errore a regime dovuto a un	uno o più poli nell'origine in G1(s)
ingresso a gradino in D1(s) è necessario disporre di:	
Per assegnare il margine di fase αL , così da spostare il punto A, identificato con la procedura di Ziegler e	arg(RPID(jωG')G(jωG'))=((αL/180°)-1)π
Nichols in anello chiuso, nel punto A2, deve	
risultare:	
Per i sistemi dinamici lineari stazionari, la nozione di non osservabilità coincide con quella di:	non ricostruibilità
Per i sistemi lineari stazionari, la proprietà di	Controllabilità
raggiungibilità coincide con quella di:	Controllabilita
Per il controllo decentralizzato di un sistema MIMO,	Δ(s)=I con I matrice d'identità
al fine di avere C(s)=R'(s)E(s) in modo che ogni	_(0, 1 00 11 11 11 11 11 11 11 11 11 11 11 1
elemento di E(s) influenzi solo il corrispondente	
elemento di C(s) attraverso il regolatore Ri'(s), si	
sceglie il disaccoppiatore Δ(s) pari a:	
Per il criterio di Liénard-Chipart, affinché tutte le	D0=αn>0
radici dell'equazione caratteristica abbiano parte	
reale negativa è necessario che sia soddisfatto	
almeno uno dei 4 sistemi di disequazioni e che:	
Per il criterio di Michailov (2), le parti reale e	mai annullarsi contemporaneamente al
immaginaria di p(jω) devono annullarsi	passaggio di p(jω) per l'origine
alternativamente, ma:	parta raala pagativa
Per il criterio di Routh, se gli elementi della prima colonna della tabella di Routh hanno lo stesso	parte reale negativa
segno, allora le radici dell'equazione caratteristica	
avranno:	
Per il passaggio dal ciclo aperto al ciclo chiuso	la carta di Nichols al diagramma di Nichols
utilizzando la rappresentazione implicita in	della funzione di trasferimento L(s) a ciclo
coordinate naturali di Nichols, si sovrappone:	aperto
Per il sistema x(t)=Ax(t), considerando una matrice	V(x)=xTQx
Q simmetrica e definita positiva, una funzione di	
Ljapunov V(x) espressa in forma quadratica è:	
Per il teorema 1.2, l'esame di un qualsiasi	x̂ a(0)
transitorio di y consente di determinare:	
Per il tracciamento asintotico del diagramma del	al doppio della molteplicità dello zero o
modulo, in corrispondenza a valori per ω pari alle	del polo incontrato
pulsazioni naturali, la pendenza aumenta o	
diminuisce, a seconda che si sia incontrata la	
pulsazione naturale di uno zero o di un polo	
complesso, per un multiplo di unità pari:	
Per la dimostrazione del teorema di Chetaev si	solo attraverso la frontiera in comune con
osserva che le ipotesi impongono ad una traiettoria	la frontiera di K
che inizia in K' di uscire da K' stesso:	1/octf(t))_[/octf
Per la proprietà di traslazione nel dominio della	$L(e\alpha tf(t))=F(s-\alpha)$
frequenza, per ogni α, si ha:	

Per l'ipotesi dell'azione filtrante vista nel par. 2,	Y(jnω)
dette Y(jnω) le corrispondenti armoniche di ordine	
n nell'uscita y(t), vale la relazione:	
Per misurare una risposta armonica in condizioni di	compensatore
instabilità si può formare un circuito a	
controreazione, che impedisce al blocco W(s) di	
assumere valori non limitati durante il transitorio	
mediante un opportuno:	
Per n>1, quando gli autovalori di A, matrice	eλt
diagonalizzabile, sono tutti reali e distinti, i modi	C.A.C
del sistema saranno del tipo:	
Per pulsazioni di valore elevato, il rumore può	nacca hacco
·	passa-basso
rendere inutilizzabile i risultati ottenuti a causa	
dell'attenuazione introdotta dal sistema, infatti, i	
sistemi fisici per cui è sempre m <n sono="" td="" tutti:<=""><td></td></n>	
Per pulsazioni inferiori a $(1/\tau i)$, $(1/\theta i)$, γi , δi , gli unici	h e (jω)q
fattori che influiscono sul tracciato asintotico del	
diagramma del modulo sono:	
Per semplificare le operazioni di sovrapposizione	i loro logaritmi in base 10
dei vari termini, conviene sostituire i termini	
nell'espressione del modulo della risposta	
armonica con:	
Per sistemi a fase minima, quando il diagramma	k90°
asintotico del modulo ha pendenza k, il diagramma	
asintotico della fase assume il valore:	
Per un dato autovalore λi, definiamo autovettore	(A-λiI)kvi,k=0 e (A-λiI)k-1vi,k ≠ 0
generalizzato di ordine k quel particolare vettore	
vi,k reale, per cui vale:	
Per un sistema controreazionato del tipo 1 con un	kd/h
ingresso a rampa, l'errore a regime non è nullo,	,
quindi l'uscita a regime dovrà essere anch'essa a	
rampa, ma risulterà ritardata rispetto a quella	
d'ingresso per un tempo pari a:	
Per un sistema nonlineare canonico, l'esistenza di	instabilità globale
,	ilistabilita giobale
cicli limite stabili implica, per il sistema stesso, la	
proprietà di:	To conduction all control of the POINT AT A 1 A 1
Per un sistema SISO completamente raggiungibile,	la matrice di raggiungibilità del sistema
ma non in forma canonica, la matrice K che assegna	originario
arbitrariamente gli autovalori a ciclo chiuso è data	
da K=(K~M~r(Mr)-1) dove Mr è:	
Per Wiener la comunicazione intesa come raccolta,	Per poter effettuare il controllo
elaborazione e trasmissione di segnali serve:	
Possiamo assegnare a T(s) un comportamento da	l'estremo superiore della banda passante
filtro passa-basso, che faciliti la moderazione della	di T(s) sia superiore alla pulsazione critica
variabile di controllo e riduca eventuali saturazioni	di R(s)G(s)
e conseguenti nonlinearità nel processo sottoposto	· · · · · ·
a controllo, facendo attenzione, per non introdurre	
a solutiono, lacellao atterizione, per non introdurre	

un rallentamento nella risposta dell'uscita y(t) al	
segnale di riferimento u(t), al fatto che:	
Possiamo ridurre uno schema che presenta un	G1(s)/(1+G1(s)G2(s))
blocco G1(s) e un anello in controreazione G2(s) ad	
un solo blocco con la funzione di trasferimento:	
Possiamo scrivere la risposta armonica in forma	$W(\omega)= W(\omega) ej\psi(\omega)$
polare come:	
Possono avere un comportamento passa-alto, in	strettamente propri
quanto unici a permettere di avere W(+inf.) >0,	
solo i sistemi:	linggriing
Quando descriviamo il comportamento di un sistema nonlineare localmente, mediante un	linearizzazione
opportuno sistema lineare che costituisce	
un'approssimazione del sistema originario, stiamo	
effettuando un procedimento di:	
Quando esistono perturbazioni arbitrariamente	instabile
piccole dello stato che provocano l'allontanamento	
del movimento dello stato dal punto di equilibrio si	
dice che questo è:	
Quando il controllore possiede informazioni	a catena aperta
soltanto sul segnale di riferimento, si dice:	
Quando la variabile s si sposta lungo il percorso di	in senso orario di -2π
Nyquist, ogni zero di H(s)=1+L(s) interno al suo	
percorso produce una variazione di fase:	
Quando le proprietà di stabilità di un sistema sono	stabilità robusta
assicurate anche in condizioni perturbate, si parla di:	
Quando ogni elemento del vettore E(s) di ingresso	centralizzato
al regolatore influenza ciascuno degli elementi del	Centralizzato
vettore C(s) di uscita dallo stesso, il sistema di	
controllo si dice:	
Quando si applica una riduzione, il comportamento	né nel caso di riduzione in serie né nel
complessivo dipende dall'ordine con il quale	caso di riduzione in parallelo
vengono considerati i singoli blocchi:	
Quando si connettono in uno schema a blocchi un	uguale alla somma degli ordini dei singoli
certo numero di sottosistemi, ci si aspetta che	sottosistemi
l'ordine del sistema complessivo sia:	and a Harris d'annels
Quando un controllore presenta una dipendenza	controllore dinamico
dai valori passati dell'errore, si dice:	de de de
Quando vogliamo attenuare l'effetto di disturbi	ritardatrice
anche a bassa pulsazione e migliorare la precisione	
statica, è consigliato usare una rete:	annartiene al luogo dollo radici
Salvo eventuali singolarità di L(s), l'asse reale:	appartiene al luogo delle radici

Se a un sistema lineare, stazionario,	Yn=W(nω0)Un
asintoticamente stabile, con funzione di	
trasferimento W(s), viene applicato un segnale di	
ingresso periodico esprimibile come serie di	
Fourier, allora lo spettro dell'uscita sarà pari a:	
Se i movimenti generati da uno stato iniziale, vicino	globalmente stabile
o lontano allo stato di equilibrio nominale,	
convergono allo stato di equilibrio stesso, allora lo	
stato si dice:	
Se il diagramma del modulo di W1(ω) presenta una	retta a pendenza unitaria
pendenza di 20 dB per decade, allora viene detto:	,
	\(\s\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Se in un sistema SISO poniamo un ingresso	Y(s)=W(s)
impulsivo u(t)=δ(t), allora si ha:	
Se la catena diretta R(s)G(s) non ha alcun polo	T(0) = F(0)-1
nell'origine, il ruolo di T(s) potrebbe essere quello	
di un compensatore statico, che provvede con il suo	
guadagno a compensare quello di F(s), ovvero:	
Se la funzione di trasferimento è rappresentata da	Ri/(s-λi)
una funzione razionale strettamente propria, allora	
si può scomporre il rapporto di polinomi in una	
somma di n termini del tipo:	
Se la funzione di trasferimento L(s) di un sistema in	h>0 e αL>0
controreazione non ha poli con parte reale positiva	11 0 c az 0
e il diagramma di Bode per il suo modulo attraversa	
solo una volta l'asse orizzontale a 0 dB, allora	
condizione necessaria e sufficiente affinché il	
sistema sia asintoticamente stabile è che:	
	non ha nossuna riga tutta nulla
Se la matrice A è diagonalizzabile, il sistema è	non ha nessuna riga tutta nulla
raggiungibile se e solo se la matrice di ingresso	
trasformata B':	
Se la matrice A non è diagonalizzabile, il sistema è	ultime righe dei blocchi di Jordan di Ã
completamente raggiungibile se e solo se non sono	
nulle le righe di B´ corrispondenti alle:	
Se la matrice dinamica A è diagonalizzabile, si	non ha alcuna colonna tutta nulla
dimostra che il sistema è completamente	
osservabile se e solo se la matrice di uscita	
trasformata Ĉ:	
Se nella connessione in parallelo vi è un solo	non asintoticamente stabile
sottosistema non asintoticamente stabile, allora il	
sistema complessivo sarà:	
Se nello schema vi sono due o più blocchi in	alla somma algebrica di quelle dei singoli
parallelo, la regola dice che essi possono essere	blocchi
sostituiti da un unico blocco con funzione di	
trasferimento pari:	
Se numeratore e denominatore in W(s) hanno uno	in forma minima
o più fattori in comune, dopo la loro cancellazione	
reciproca, la funzione di trasferimento verrà detta:	

Se per il sistema $x(t)=f(x(t))$ con $x(t0)=x0$ esiste una	asintoticamente stabile
funzione di Ljapunov tale che V(x) sia definita	
negativa, allora l'origine è:	
Se per il sistema $x(t)=f(x(t))$ con $x(t0)=x0$ esiste una	il primo teorema di stabilità di Ljapunov
funzione di Ljapunov, allora l'origine è stabile;	
questo appena annunciato è:	
Se ricostruiamo nell'osservatore una copia del	converge a 0 per t che tende a +inf.
sistema in esame, e supponiamo che lo stato	
iniziale è stimato soltanto da x^(0) e che la matrice	
dinamica A del sistema è asintoticamente stabile,	
allora l'errore del sistema:	
	a doctra dolla rotta varticala P(s) = (1/k)
Se scegliamo q=0, la condizione di Popov diventa	a destra della retta verticale R(s) = -(1/k)
$R[G(j\omega)] > -(1/k)$ e il diagramma polare di $G(j\omega)$, per	
garantire la validità del teorema di Popov, deve	
giacere:	()(2)
Se si applica a un sistema lineare, stazionario e	y(t)=W(λ)u0eλt
asintoticamente stabile, con funzione di	
trasferimento W(s), l'ingresso u(t)=u0eλt con λ non	
coincidente con alcun autovalore del sistema	
stesso, dopo l'esaurimento del transitorio l'uscita	
sarà:	
Se si applica a un sistema lineare, stazionario,	non potrà contenere armoniche non
asintoticamente stabile, con risposta in frequenza	presenti nello spettro di ingresso
W(ω), un ingresso dotato di trasformata di Fourier,	
una volta esaurito il transitorio, il movimento	
dell'uscita:	
Se si considera la risposta armonica con un solo	η=0, D1(0)= p , ψ1(0)=0
polo W(ω)= $k/(jω-p)$, per $k>0$, si ha:	
Se supponiamo L(s) in forma razionale fattorizzata	non ha zeri con parte reale positiva o nulla
(L(s)=NL(s)/DL(s)) e asintoticamente stabile, allora	Thom the zero comparte reale positiva o mana
S(s):	
Se un numero raddoppia, il suo valore in decibel	6 dB
aumenta di circa:	0 0 0
Se un sistema dinamico è definito a meno del	la regione di stabilità asintotica
	la regione di stabilità asintotica
valore di qualche parametro e vogliamo stabilire	
per quali valori di quest'ultimi il sistema rimanga	
asintoticamente stabile, occorre determinare:	
Se un sistema nonlineare canonico risulta (lineare	congettura di Aizerman
e) asintoticamente stabile per ogni $\Phi(\xi)$ che	
appartiene allo spazio Φl [k1, k2], allora risulta	
anche globalmente asintoticamente stabile per	
ogni $\Phi(\xi)$ che appartiene allo spazio funzionale	
Φ[k1, k2]; questa affermazione è detta:	
Se una connessione in serie genera una parte	non asintoticamente stabile
nascosta corrispondente a una cancellazione di un	
polo con parte reale nulla o positiva, la parte	
nascosta non è asintoticamente stabile, quindi il	
sistema complessivo sarà:	

Se una funzione reale f ha trasformata di Laplace	f(0)
razionale F con il grado del denominatore maggiore	
del grado del numeratore, allora il lim s(F(s)) con s	
che tende a +inf. è pari a:	
Se λ coincide con uno zero di W(s), la risposta di un	bloccante degli zeri
sistema a un ingresso esponenziale tende ad	, and the second
annullarsi per t che tende a infinito, qualunque sia	
lo stato iniziale. Questa appena descritta è la	
proprietà:	
	dia ang manai animbabini
Semplici diagrammi che consentono di determinare	diagrammi asintotici
l'andamento qualitativo del diagramma esatto,	
senza l'ausilio di mezzi di calcolo e spesso con	
un'accettabile livello di approssimazione, vengono	
detti:	
Senza introdurre l'ipotesi di asintotica stabilità, a un	non coincide con un autovalore di A
ingresso esponenziale corrisponde un'uscita	
esponenziale se si sceglie opportunamente lo stato	
iniziale, ovvero se e solo se λ:	
Si adottano metodi automatici di taratura, e quindi	non è noto, o non se ne conoscono
di sintesi del regolatore, a partire da specifiche	dettagli importanti ai fini della
prove effettuate sul processo, quando quest'ultimo:	predisposizione della regolazione
	all'uscita manca il contributo dinamico
Si ha W(s)=D, costante e indipendente da s,	dello stato
quando:	
Si usa dire che vi è una compensazione del disturbo	il disturbo è misurabile
quando:	
Sia A una matrice quadrata di ordine n. Il problema	Α=ΡΛΡ-1
della sua diagonalizzazione consiste nella	
determinazione di una matrice non singolare P tale	
che:	
	indefinita
tale che V(ax)=a ^k V(x); allora se k è	
dispari, V(x) è:	
Sia V(x) una forma quadratica in x, cioè del tipo	maggiori di zero
V(x)=xT Qx con Q matrice quadrata nxn; V(x) è	
definita positiva se e solo se tutti i determinanti	
principali di Q sono:	
Sia K un intorno dell'origine, e K' un insieme ⊂ K e	il teorema di Chetaev
contenente l'origine nella sua frontiera. Sia V(x) una	
funzione definita su K, con V(x)=0 nell'origine e in	
tutta la frontiera di K' contenuta nell'interno di K, e	
con derivate parziali prime continue su K',	
nell'interno del quale la stessa funzione e la sua	
derivata lungo le traiettorie del sistema in esame	
sono entrambe definite positive. Allora l'origine è	
instabile per il sistema stesso. Quello appena	
enunciato è:	
enunciato e.	

Sistemi analogici sono:	Sistemi di tipo diverso che possono essere
	gestiti tramite lo stesso modello
Sistemi she lassiane nassare sestanaialmente	matematico
Sistemi che lasciano passare sostanzialmente inalterate le armoniche con pulsazione inferiore o	filtri passa basso
·	
uguale a un dato valore di ωb attenuando, o	
addirittura eliminando, quelle con pulsazione	
superiore, vengono detti: Sostituiamo λ con (1/v) nel polinomio caratteristico	un elemento della prima colonna della
ottenendo un nuovo polinomio qA(v) quando:	tabella è nullo
Spostandoci nel dominio della variabile complessa ci rendiamo conto che controllare la dinamica del	non è sufficiente a garantire la stabilità del
	sistema complessivo del controllo del
regolatore e dell'osservatore:	processo
Sulla carta di Nichols sono riportati luoghi a modulo e fase costanti relativi:	alla funzione di trasferimento W(s) a ciclo
	chiuso
Supponendo che F(s) non presenti zeri, ma soltanto	$ F(j\omega^{}) =1/(2\xi)$
una coppia di poli complessi e coniugati con	
pulsazione naturale pari a w e smorzamento pari a	
ξ, si ottiene per il suo modulo in ω stesso:	
Supponiamo che la funzione di trasferimento a	non può avere poli con parte reale
ciclo aperto L(s)=G1(s)G2(s) soddisfi il criterio di	positiva
Bode; in tale ipotesi G2(s):	non informação
Supponiamo L(s) la funzione di trasferimento a ciclo	non inferiore a 2
aperto di un sistema a controreazione	
asintoticamente stabile; l'integrale da 0 a +inf. Di $ S(j\omega) dB$ in $d\omega$ è uguale a zero se L(s) ha un grado	
relativo:	
Tenendo conto della rappresentazione ingresso-	$x(t)=Ax(t)+\phi(-Cx(t))$
stato-uscita, l'equazione di stato di uno schema a	$\lambda(t) = \lambda(t) \cdot \varphi(t)$
blocchi nonlineare canonico sarà: a x(t)=Ax(t)+\(\phi(-	
Cx(t)) 5 I criteri relativi alla funzione nonlineare φ	
suppongono che questa non sia necessariamente	
nota in dettaglio, ma che sia:	
Tra i quattro regolatori visti nel par. 3, quello	il regolatore III
preferibile come prestazioni dinamiche e come	
risposta indiciale, ma con una riduzione della	
moderazione del controllo ad alte frequenza è:	
Tramite operazioni elementari tra blocchi, nodi	algebra degli schemi a blocchi
sommatori e nodi di diramazione, è possibile	
ridurre uno schema a blocchi, comunque	
complicato, a uno schema elementare. Il complesso	
delle regole da attuare per fare ciò viene chiamato:	
Un blocco lineare è stabile di grado α nell'uscita se	poli a parte reale < -α
le trasformate di Laplace della risposta libera ε0(t) e	
della risposta impulsiva g(t) sono funzioni razionali	
di s con:	

	I
Un blocco nonlineare viene descritto dalla relazione	segno
istantanea c= $\phi(\epsilon(t))$; un esempio di funzione ϕ di	
interesse applicativo è il relè senza isteresi, che	
rappresenta sostanzialmente la funzione:	
Un buon compromesso in fase di progettazione	bassi valori di M(jω) per ogni ω
consiste, al fine di evitare eccessive sollecitazioni	
alla variabile di controllo C(s), nel richiedere:	
Un controllo a catena aperta è scarsamente	Dell'eventuale presenza di disturbi
robusto a causa:	all'interno del sistema
Un controllore a catena chiusa:	può modificare, entro un certa misura, la
on controllere a cateria cinasa.	dinamica del sistema di controllo
Un metodo per ottenere il valore del guadagno	h=lim sqG(s) con s che tende a +inf.
statico h, senza necessità di conoscere zeri e poli di	
G(s), è:	
Un osservatore è un sistema, statico o dinamico,	l'ingresso e l'uscita del sistema in esame
che elabora:	per ottenere una stima dello stato
	corrente
Un possibile diagramma asintotico per la fase	dalla semiretta orizzontale con ordinata -
Wd2,i(ω) è costituito, per ω molto più grande di	90°
$(1/ \theta i)$, con $\theta i > 0$:	
Un processo dinamico da controllare, al crescere di	il polinomio caratteristico ha radici
α, può presentare oscillazioni di ampiezza	complesse e coniugate con parte reale
1	
descrescente quando:	negativa
Un regolatore PID ideale ha:	un polo nell'origine e due zeri a parte
	reale negativa
Un regolatore PID modifica le prestazioni	comporta un ritardo di fase di -90°
dinamiche del sistema a ciclo chiuso; più	
precisamente l'azione integrale:	
Un sistema canonico nonlineare si dice	globalmente stabile per qualsiasi
assolutamente stabile nell'intervallo [k1, k2 <td>elemento φ in Φ[k1 k2]</td>	elemento φ in Φ[k1 k2]
se lo stato di equilibrio x=0 è:: d globalmente	
stabile per qualsiasi elemento φ in Φ[k1 k2]:	
Un sistema descritto dalle equazioni ingresso-stato-	ρ(Mr)=n
uscita risulta completamente raggiungibile se:	
Un sistema dinamico a tempo continuo si dirà	la funzione g non dipende dall'ingresso
strettamente proprio se:	u(t)
Un sistema è astratto se:	
OII SISTEILIA E ASTLATIO SE:	Può essere usato per descrivere diversi
	processi di natura differente
Un sistema è globalmente asintoticamente stabile	parte reale negativa
se e solo se tutti gli autovalori della matrice	
dinamica A hanno:	
Un sistema è un insieme di relazioni:	Ciascuna raccogliente la totalità delle
	coppie ingresso-uscita, per un dato istante
	iniziale t0
Un sistema elettrico formato da elementi di base	Combinazioni lineari, a coefficienti
può essere descritto da:	costanti, di derivate di vario ordine,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	rispetto al tempo, delle variabili in gioco
	inspecto di tempo, delle variabili ili gioco

Un sistema i cui stati sono tutti raggiungibili si dice:	completamente raggiungibile
Un sistema in forma diagonale:	Permette di applicare sforzi di controllo separati,ciascuno atto alla modifica di una singola dinamica
Un sistema linearizzato descrive in modo approssimato il comportamento attorno alle condizioni di equilibrio di un sistema nonlineare nel caso in cui le variazioni $\delta u(t)$, $\delta xt0$, $\delta x(t)$ e $\delta y(t)$ siano:	sufficientemente piccole in norma
Un sistema nonlineare a controreazione, come visto nel par. 1, se per ogni condizione iniziale si ha eαtε(t) ∈ L2(0, inf.), viene detto:	asintotico di grado α nell'uscita
Un sistema può dirsi globalmente asintoticamente stabile se la sua risposta impulsiva:	tende a 0 per t che tende a infinito
Un sistema raggiungibile e osservabile, in quanto non è possibile adoperare un numero di variabili di stato inferiore al suo ordine per descrivere la sua relazione tra ingresso e uscita, viene detto:	in forma minima
Un sistema si dice a fase minima quando i suoi zeri hanno tutti parte reale:	minore di zero
Un sistema SISO risponde a un ingresso sinusoidale con una sinusoide della stessa frequenza, la cui ampiezza sarà il prodotto tra:	l'ampiezza di ingresso e il modulo della funzione di trasferimento alla stessa frequenza
Un sistema viene detto dinamico a tempo continuo quando:	I legami tra le sue variabili possono essere descritti da equazioni differenziali rispetto al tempo
Un sistema viene detto triangolare se la sua matrice di trasferimento G(s) risulta triangolare, ovvero se è:	una matrice quadrata in cui tutti gli elementi sotto o sopra la diagonale principale sono nulli
Un supervisore:	può aggiornare i modelli matematici, con le relative parametrizzazioni
Un TRASDUTTORE:	Preleva il valore attuale delle variabili controllate e lo confronta con il segnale di riferimento
Una brusca variazione dell'ingresso u(t), e quindi dell'errore e(t), provoca una variazione di tipo impulsivo, con possibili conseguenze di saturazione, a valle dell'azione:	derivatrice
Una condizione necessaria affinché si possa valutare se un sistema è asintoticamente stabile a partire dalla sua funzione di trasferimento è che:	non vi siano cancellazioni tra numeratore e denominatore
Una delle condizioni sufficienti affinché una funzione del tempo ammetta trasformata di Laplace è che:	f deve essere continua a tratti
Una matrice diagonale è una matrice quadrata in cui:	Solo i valori della diagonale principale possono essere diversi da zero

Una rappresentazione equivalente della prima armonica dell'uscita di un elemento nonlineare N,	D(E)=(C1(E) /E)ejarg(C1(E))
stimolato con un ingresso sinusoidale, è costituita	
dalla funzione descrittiva D(E), definita come:	
Una restrizione al teorema di Popov, nel caso di	k <inf. e="" q□<="" td=""></inf.>
n(ε) con isteresi passiva invariante nel tempo, è che	k≺iiii. e q⊔
deve essere:	
	regulatore DD
Una rete anticipatrice, per ε=0, acquista il nome di:	regolatore PD
Una situazione ideale, così da rendere nullo	S(s)=0
l'effetto del disturbo D2(s) sull'uscita Y(s), e del	
segnale di riferimento U'(s), come ancora del	
disturbo D2(s) sull'errore E(s), sarebbe quella di	
avere:	Line metrice non singulars Table less in
Una trasformazione di coordinate è rappresentata	Una matrice non singolare T che lega in
da:	modo biunivoco il vecchio stato x con il
Una valta associata il transitaria la riamanta in	nuovo z
Una volta esaurito il transitorio, la risposta in	$W(\omega)=Y(\omega)/U(\omega)$
frequenza, per sistemi asintoticamente stabili, sarà	
pari a:	
Un'altra condizione sufficiente affinché un sistema	arg(L(jω)) <180° per ogni ω
a controreazione unitaria, con funzione di	
trasferimento a catena diretta L(s) asintoticamente	
stabile, risulti asintoticamente stabile è che sia:	
	La rapprocentazione astratta del
Uno degli aspetti fondamentali della teoria dei	La rappresentazione astratta del
	comportamento dinamico di un oggetto
Uno degli aspetti fondamentali della teoria dei sistemi è:	comportamento dinamico di un oggetto fisico
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è:	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s)	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se:	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a:	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando:	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 $0=f(\bar{x},\bar{u})\ \bar{y}=g(\bar{x},\bar{u})$
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 0=f(x̄, ū) ȳ=g(x̄, ū) autovalori con parte reale nulla e altri con
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 $0=f(\bar{x},\bar{u})\ \bar{y}=g(\bar{x},\bar{u})$
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione di stabilità non definita quando il suo	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 0=f(x̄, ū) ȳ=g(x̄, ū) autovalori con parte reale nulla e altri con
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione di stabilità non definita quando il suo corrispondente sistema linearizzato ha:	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 0=f(x̄, ū) ȳ=g(x̄, ū) autovalori con parte reale nulla e altri con parte reale negativa
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione di stabilità non definita quando il suo corrispondente sistema linearizzato ha: Uno stato di equilibrio x relativo all'ingresso	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 0=f(x̄, ū) ȳ=g(x̄, ū) autovalori con parte reale nulla e altri con
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione di stabilità non definita quando il suo corrispondente sistema linearizzato ha: Uno stato di equilibrio x̄ relativo all'ingresso costante ū di un sistema nonlineare è	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti G(s) avesse zeri con parte reale nulla o positiva 1 0=f(x̄, ū) ȳ=g(x̄, ū) autovalori con parte reale nulla e altri con parte reale negativa
Uno degli aspetti fondamentali della teoria dei sistemi è: Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è: Uno dei motivi per cui la relazione T~(s) = G(s)-1 non è realizzabile realmente, è che T~(s) risulterebbe non asintoticamente stabile se: Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a: Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando: Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione di stabilità non definita quando il suo corrispondente sistema linearizzato ha: Uno stato di equilibrio x relativo all'ingresso	comportamento dinamico di un oggetto fisico L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti $G(s)$ avesse zeri con parte reale nulla o positiva 1 $0=f(\overline{x}, \overline{u}) \ \overline{y}=g(\overline{x}, \overline{u})$ autovalori con parte reale nulla e altri con parte reale negativa

Uno stato di equilibrio x si dice asintoticamente stabile se, oltre a soddisfare le condizioni di stabilità, soddisfa anche la relazione:	$\lim x(t)-\bar{x} =0$ per t che tende a infinito
Uno stato di equilibrio \overline{x} si dice stabile se, per ogni $\varepsilon>0$, esiste un $\delta>0$ tale che per tutti gli stati iniziali $x0$ che soddisfano la relazione $ x0 - \overline{x} < \delta$ risulta:	$ x(t)-\overline{x} \le \varepsilon, \forall t \ge 0$
Uno stato $\tilde{x} \neq 0$ di un sistema dinamico si dice non osservabile se per ogni \tilde{t} , $0 < \tilde{t} < (\text{infinto})$, detto $y\tilde{t}(t)$ il movimento libero dell'uscita generato da \tilde{x} , risulta:	yſ(t)=0 con 0≤t≤f
Uno stato \tilde{x} si dice raggiungibile se esistono un tempo finito $\tilde{t} > 0$ e un ingresso \tilde{u} definito in $[0, \tilde{t}]$ tali che, detto \tilde{x} f(t) il movimento forzato dello stato generato da \tilde{u} risulti:	$x \tilde{f}(f) = x$
Utilizzando le tecniche di compensazione per 'cancellazione' del processo viste nel par. 2, notiamo che:	solo il compensatore reale dipende dal regolatore R(s)
Utilizzare la scomposizione canonica è vantaggioso quando un sistema dinamico risulta essere:	non completamente raggiungibile e non completamente osservabile
Visto il carattere dei coefficienti di W(s), poli e zeri costituiscono:	le singolarità del sistema

CONTROLLI AUTOMATICI	
Modulo 1	
I SERVOMECCANISMI sono:	Sistemi di controllo automatico di grandezze meccaniche
Il controllo della posizione di un timone in una nave deve essere effettuato necessariamente da un dispositivo opportunamente progettato perché:	È necessario disporre di un livello di potenza elevato che soltanto il pilota non può garantire
Con PROCESSO viene indicato:	L'impanto oggetto del controllo
Un controllo a catena aperta è scarsamente robusto a causa:	Dell'eventuale presenza di disturbi all'interno del sistema
Un TRASDUTTORE:	Preleva il valore attuale delle variabili controllate e lo confronta con il segnale di riferimento
Uno degli aspetti fondamentali della teoria dei sistemi è:	La rappresentazione astratta del comportamento dinamico di un oggetto fisico
La risposta indiciale è:	L'andamento temporale dell'uscita in corrispondenza di una brusca variazione in ingresso
Le tematiche e le metodologie tradizionali dei sistemi di controllo possono:	Essere applicate a diversi tipi di processi, come biologici, monetari e urbanistici
Nello sviluppo di un sistema, il momento dell'analisi acquista maggiore importanza rispetto alla sintesi quando:	Diminuisce il dettaglio con cui sono noti i legami funzionali tra le grandezze
Uno dei motivi che ha portato allo sviluppo della teoria dei sistemi è:	L'esigenza di studiare processi complessi costituiti da vari sottoprocessi interagenti
Modulo 2	
Un sistema viene detto dinamico a tempo continuo quando:	I legami tra le sue variabili possono essere descritti da equazioni differenziali rispetto al tempo
L'equazione vR(t)=RiR(t) descrive:	Il comportamento di un resistore
Un sistema elettrico formato da elementi di base può essere descritto da:	Combinazioni lineari, a coefficienti costanti, di derivate di vario ordine, rispetto al tempo, delle variabili in gioco
Le equazioni utilizzate per scrivere il modello matematico relativo ad un sistema meccanico traslazionale fanno riferimento:	Al principio dell'equilibrio di tutte le forze in gioco
Nel modello di un sistema meccanico rotazionale, la variabile di controllo è:	La coppia torsionale z(t)
La condizione fondamentale di equilibrio per sistemi termici è che il flusso di calore entrante sia pari:	Alla somma algebrica del flusso uscente e del flusso accumulato
La forza controelettromotrice in un motore a corrente continua è proporzionale:	Al prodotto tra il flusso magnetico indotto dallo statore e la velocità angolare del rotore
Nel modello di un motore a corrente continua, la variabile $\Omega r(t)$ indica: Sistemi analogici sono:	La variabile controllata Sistemi di tipo diverso che possono essere gestiti tramite lo stesso modello matematico

L'analogia di Firestone è utile per:	Ricondurre la rappresentazione di sistemi meccanici a sistemi elettrici
Modulo 3	Cictifei
Al giorno d'oggi l'informazione:	È una delle merci più preziose in circolazione
Il termine greco "Kybernetiké" significa:	Arte del pilota, del timoniere
Per Wiener la comunicazione intesa come raccolta, elaborazione e trasmissione di segnali serve:	Per poter effettuare il controllo
La statistica consente l'afflusso di informazione al centro di controllo:	In modo aggregato e solo nelle forme predisposte dal centro stesso
La "metainformazione" è:	L'informazione contenuta nel fatto che un dato messaggio viene trasmesso
La scelta delle variabili da comunicare al centro decisionale di controllo è legata:	Al tipo di controllo che si intende effettuare sul processo
I rilevamenti Auditel forniscono:	Dati in percentuale sull'ascolto televisivo italiano
Per "big data" si intende:	Una quantità di dati molto estesa in termini di volume e varietà
La richiesta di informazioni:	Permette di influenzare e tentare di controllare l'ambiente al quale ci si rivolge
Comunicazione e controllo sono:	Strettamente legate tra di loro
Modulo 4	
Un sistema è un insieme di relazioni:	Ciascuna raccogliente la totalità delle coppie ingresso-uscita, per un dato istante iniziale t0
Un sistema è astratto se:	Può essere usato per descrivere diversi processi di natura differente
Il primo passo da fare nella risoluzione del problema dell'identificazione è:	Restringere la classe alla quale si suppone che il sistema possa appartenere
Lo stato di un sistema ci permette di:	Determinare univocamente l'uscita del sistema rispetto all'ingresso in un determinato istante
Attraverso lo stato il sistema può essere rappresentato mediante una funzione φ di transizione dello stato e:	Una funzione η di uscita
Le proprietà di unicità, casualità e consistenza garantiscono che:	Valori dell'ingresso antecedenti alla rivelazione dello stato iniziale, o posteriori allo stato corrente,non influiscono sullo stato stesso
Costituisce oggetto della teoria dei sistemi:	Lo studio di specifiche proprietà dei sistemi quali, ad esempio, la stabilità, la controllabilità e l'osservabilità
L'acronimo ARMA sta per:	AutoRegressive Moving Average
Il sistema $x(t) = Acx(t) + Bcu(t)$	Forma compagna di controllore

y(t) = Ccx(t) + Dcu(t)	
prende il nome di:	
La forma compagna di controllore e quella di osservatore sono:	Due rappresentazioni duali
Modulo 5	, <u> </u>
Nel caso di evoluzione libera, lo stato:	Evolve a partire dal suo valore iniziale
Una matrice diagonale è una matrice quadrata in cui:	Solo i valori della diagonale principale possono essere diversi da zero
Nella definizione di autovettore, affinchè $Av=\lambda v$, è necessario che λ renda singolare la matrice $A-\lambda I$, ovvero che:	$\det[A-\lambda I]=0$
L'equazione caratteristica pA(λ)= λ n+ α n- 1λ n- $1++\alpha$ 0 ammetterà n radici che prendono il nome di:	Autovalori
Una trasformazione di coordinate è rappresentata da:	Una matrice non singolare T che lega in modo biunivoco il vecchio stato x con il nuovo z
Le matrici A di due sistemi ottenuti mediante una trasformazione di coordinate sono legate dalla relazione:	A'=T-1AT
Il teorema di Cayley-Hamilton ci dice che:	Ogni matrice quadrata soddisfa la propria equazione caratteristica
Un sistema in forma diagonale:	Permette di applicare sforzi di controllo separati,ciascuno atto alla modifica di una singola dinamica
'L'evoluzione di una dinamica libera associata ad un autovalore λi è forzata a rimanere nell'autospazio generato dal corrispettivo autovettore vi'. Questa espressione definisce:	La proprietà di invarianza degli autospazi
Sia A una matrice quadrata di ordine n. Il problema della sua diagonalizzazione consiste nella determinazione di una matrice non singolare P tale che:	Α=ΡΛΡ-1
Modulo 6	
La quasi-diagonalizzazione può essere utilizzata quando gli autovalori della matrice A:	Non sono tutti reali
La forma canonica di Jordan risulta fondamentale quando:	La molteplicità algebrica degli autovalori della matrice A non è pari alla molteplicità geometrica dei loro autovettori indipendenti
La somma del numero delle righe dei vi blocchi di Jordan associati a un autovalore λi deve:	Essere pari alla sua molteplicità algebrica
Uno dei passaggi per calcolare la dimensione dei vari blocchi di Jordan prevede di ordinare i vi blocchi per λi in modo arbitrario e assegnare a ognuno di essi una dimensione provvisoria iniziale pari a:	1
Per un dato autovalore λi, definiamo autovettore generalizzato di ordine k quel particolare vettore vi,k reale, per cui vale:	(A-λiI)kvi,k=0 e (A-λiI)k-1vi,k ≠ 0
Gli autovettori generalizzati appartenenti alla stessa stringa sono:	Indipendenti tra di loro sempre
Il polinomio caratteristico pA(λ)= $\lambda(\lambda-1)$ 4 ha due autovalori λ 1=0 e λ 2=1, con molteplicità algebrica μ 1=1 e μ 2=4. La molteplicità geometrica del primo autovalore sarà pari a:	1
La matrice di trasformazione Q in grado di portare la matrice A nella forma canonica di Jordan sarà tale per cui:	J=Q-1AQ
È possibile costruire blocchi di Jordan:	Sia nel caso di autovalori reali sia in quello di autovalori complessi e coniugati

La componente Qi della matrice di trasformazione Q che porta il sistema complesso in forma canonica di Jordan ha la seguente struttura:	Qi=[qr+jqi qr-jqi]
Modulo 7	<u> </u>
Quando il controllore possiede informazioni soltanto sul segnale di	a catena aperta
riferimento, si dice:	a catena aperta
Si usa dire che vi è una compensazione del disturbo quando:	il disturbo è misurabile
Il controllo a catena chiusa risulta:	
ii controllo a catena chiusa fisulta.	in generale più efficiente di
Nal gigtama vigta nal Dar 2 tramita un controlla a catana chiusa à	quello a catena aperta
Nel sistema visto nel Par.2, tramite un controllo a catena chiusa, è	$(k/(k+\alpha))$
possibile ridurre l'errore, rispetto a un controllo a catena aperta, di:	1-0 > Al
Il polinomio caratteristico $\lambda 2 + \lambda (h/m) + (k/m) = 0$ ha due radici reali	h2 ≥ 4km
negative se:	il malimamia agnettamistica ka
Un processo dinamico da controllare, al crescere di α , può presentare	il polinomio caratteristico ha
oscillazioni di ampiezza descrescente quando:	radici complesse e coniugate con
Un controllore a catena chiusa:	parte reale negativa
On controllore a catena chiusa:	può modificare, entro un certa
	misura, la dinamica del sistema di controllo
Ovende un controllere procente une dinendence dei este i este i	
Quando un controllore presenta una dipendenza dai valori passati dell'errore, si dice:	controllore dinamico
Mediante l'utilizzo di un controllore dinamico, si può dimostrare che,	tende a zero sempre
con i parametri in condizioni nominali, l'errore:	_
Un supervisore:	può aggiornare i modelli
	matematici, con le relative
	parametrizzazioni
Modulo 8	
I sistemi dotati di una sola variabile di ingresso e una sola di uscita sono detti:	Monovariabili
Un sistema dinamico a tempo continuo si dirà strettamente proprio se:	la funzione g non dipende
on sistema anamico a tempo continuo si ana sactamente proprio se.	dall'ingresso u(t)
I primi addendi della formula di Lagrange prendono il nome di:	risposta libera
Nei sistemi lineari è possibile calcolare la risposta generata da più cause	il principio di sovapposizione
come combinazione lineare delle risposte alle singole cause. Questa	degli effetti
affermazione descrive:	degii elletti
Nello studio del movimento libero dello stato e dell'uscita, per il caso	si riduce a un reale a
semplice n=1, la matrice A:	Si fiduce a un feare a
Per n>1, quando gli autovalori di A, matrice diagonalizzabile, sono tutti	eλt
reali e distinti, i modi del sistema saranno del tipo:	
Nel caso in cui un sistema presenta gli autovalori di A tutti reali e	$x(t)=Ve\Lambda(t-t0)V-1x(t0)$
distinti, il movimento libero dello stato e dell'uscita sarà caratterizzato	
dall'equazione:	
I modi di un sistema nel caso in cui gli autovalori di A non sono tutti	pseudoperiodici
reali e distinti, vengono detti:	
Consideriamo il sistema di controllo elastico a catena aperta. Nel caso in	complessi
cui (h2/4m)<(k/m) gli autovalori saranno:	
Nel caso di autovalori multipli e complessi della matrice A, i movimenti	tkeσtsen(ωt+φ)
liberi dello stato e dell'uscita saranno combinazioni lineari dei termini:	
Modulo 9	
La risposta forzata del sistema si ricava imponendo nelle formule di	x(t0)=0
Lagrange:	
La funzione w(t)=CeAtB prende il nome di:	Nucleo risolvente
I regimi canonici permettono di:	Calcolare l'uscita corrispondente
	a una qualsiasi funzione di
	ingresso
	<u> </u>

TI 1:: (4. d: A.(A)	T1
Il limite di $\Delta \varepsilon(t)$, per ε che tende a 0, prende il nome di:	Impulso
La distribuzione di Dirac è nulla ovunque tranne che in:	Il nucleo risolvente
La risposta impulsiva coincide con:	
L'ingresso canonico a gradino è definito come:	δ -1(t)=0 per t < 0
	δ -1(t)=1 per t ≥ 0
Il gradino, nel senso delle distribuzioni, è:	L'integrale dell'impulso
L'ingresso a parabola, per t ≥ 0, sarà pari a:	δ -3=(t2/2)
Entrambe le risposte, libera e forzata, sono formate da combinazioni lineari di:	Modi
Modulo 10	
Nel caso di autovalori complessi e coniugati, i modi avranno andamenti temporali:	sinusoidali
La risposta di un qualsiasi sistema può essere ottenuta come combinazione lineare di:	sistemi elementari del primo e del secondo ordine
La risposta impulsiva, per t che tende a infinito, di un sistema del primo ordine con λ <0:	decresce in modo monotono
Il paramentro τ =-(1/ λ) prende il nome di:	costante di tempo
Il tempo di assestamento del sistema è il tempo necessario affinchè	5% del valore limite
l'ampiezza dell'uscita rimanga entro il:	
Gli autovalori si dicono dominanti quando nell'espressione del transitorio:	il loro contributo risulta più importante rispetto agli altri autovalori
La risposta indiciale di un sistema del secondo ordine con autovalori complessi e coniugati e con σ=0 presenta:	oscillazioni permanenti
Il tempo di ritardo trè il tempo che occorre:	per raggiungere il 50% del valore di regime
La prima massima sovraelongazione della risposta indiciale di un sistema del secondo ordine con autovalori complessi e coniugati si ha per:	$ts=(\pi/\omega)$
Nel caso di risposta indiciale, se poniamo ω =4 e facciamo variare σ , allora gli autovalori di un sistema del secondo ordine:	si muoveranno lungo due rette parallele all'asse reale, con ordinata pari a ± 4
Modulo 11	
I movimenti dello stato costanti ottenuti applicando a un sistema descritto dalle equazioni ingresso-stato-uscita un ingresso costante, sono detti:	stati di equilibrio
Gli stati di equilibrio x , se esistono, devono costituire soluzione costante nel tempo dell'equazione:	$0=f(x, \bar{u})$
Nel sistema (non lineare) $\dot{x}(t)=x2(t)+x(t)+u(t)$ ci sono due punti di equilibrio se:	$u(t)=\bar{u}<(1/4) e u(t)=\bar{u}=(1/4)$
La proprietà per cui 'piccole' variazioni delle condizioni iniziali hanno come conseguenze 'piccole' perturbazioni del movimento dello stato vene detta:	stabilità
Uno stato di equilibrio x¯si dice stabile se, per ogni ε >0, esiste un δ >0 tale che per tutti gli stati iniziali x0 che soddisfano la relazione x0 - x¯ < δ risulta:	$\ \mathbf{x}(t) - \mathbf{x}^{\top}\ \le \varepsilon, \ \forall t \ge 0$
Quando esistono perturbazioni arbitrariamente piccole dello stato che provocano l'allontanamento del movimento dello stato dal punto di equilibrio si dice che questo è:	instabile
Uno stato di equilibrio x¯si dice asintoticamente stabile se, oltre a soddisfare le condizioni di stabilità, soddisfa anche la relazione:	lim x(t)-x ⁻ =0 per t che tende a infinito

Se i movimenti generati da uno stato iniziale, vicino o lontano allo stato di equilibrio nominale, convergono allo stato di equilibrio stesso, allora lo stato si dice:	globalmente stabile
Un sistema è globalmente asintoticamente stabile se e solo se tutti gli autovalori della matrice dinamica A hanno:	parte reale negativa
Un sistema può dirsi globalmente asintoticamente stabile se la sua risposta impulsiva:	tende a 0 per t che tende a infinito
Modulo 12	
Condizione necessaria (ma non sufficiente) affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa, è che i coefficienti del polinomio caratteristico siano:	tutti strettamente positivi o strettamente negativi
La condizione del teorema 1.1 è necessaria e sufficiente solo quando:	n=1 e n=2
Per il criterio di Routh, se gli elementi della prima colonna della tabella di Routh hanno lo stesso segno, allora le radici dell'equazione caratteristica avranno:	parte reale negativa
Nella tabella di Routh il numero di radici a parte reale positiva è pari:	al numero di variazioni di segno lungo la prima colonna
L'ultima riga della tabella di Routh ha un solo elemento β0, e si ha sempre:	β0= α0
Sostituiamo λ con (1/v) nel polinomio caratteristico ottenendo un nuovo polinomio qA(v) quando:	un elemento della prima colonna della tabella è nullo
La tabella di Routh del polinomio pA(λ)= λ 4+ λ 3+2 λ 2+2 λ +5 sarà pari a:	4 1 2 5 3 1 2 2 0 5
Nella tabella di Hurwitz vanno considerati nulli gli elementi con pedici:	maggiori di n o minori di zero
Condizione necessaria e sufficiente affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa è che:	tutti i determinati di Hurwitz siano positivi
Al crescere del grado del polinomio caratteristico, è più efficiente utilizzare:	il criterio di Routh
Modulo 13	
Affinché le radici del polinomio caratteristico abbiano tutte parte reale negativa, va considerata la condizione necessaria che:	tutti i coefficienti del polinomio abbiano lo stesso segno
Per il criterio di Liénard-Chipart, affinché tutte le radici dell'equazione caratteristica abbiano parte reale negativa è necessario che sia soddisfatto almeno uno dei 4 sistemi di disequazioni e che:	D0=αn>0
L'applicazione del criterio di Liénard-Chipart comporta la verifica del segno di un numero di determinanti pari a circa:	la metà di quelli richiesti per il criterio di Hurwitz
Se un sistema dinamico è definito a meno del valore di qualche parametro e vogliamo stabilire per quali valori di quest'ultimi il sistema rimanga asintoticamente stabile, occorre determinare:	la regione di stabilità asintotica
Il criterio di Kharitonov riduce la stabilità di un sistema incerto, qualunque sia l'ordine del sistema stesso, a quella di:	4 sistemi perfettamente noti
Al variare dei coefficienti del polinomio caratteristico all'interno degli intervalli stabiliti, tutte le radici del polinomio stesso hanno parte reale negativa se e solo se i polinomi $p1(\lambda)$, $p2(\lambda)$, $p3(\lambda)$. $p4(\lambda)$ hanno:	tutte le radici con parte reale negativa
Il criterio di Michailov si basa su:	una rappresentazione grafica del polinomio
Il polinomio $p(j\omega)$ può essere considerato come il prodotto di n vettori sul piano complesso ciascuno con la base nella sua radice e il vertice in $j\omega$, quando:	λ percorre l'asse immaginario
Le radici del polinomio caratteristico hanno tutte parte reale negativa se, quando ω varia da - a + infinito, il vettore corrispondente a p(j ω) non passa con il suo vertice nell'origine e ha una variazione di fase pari a:	ηπ

Per il criterio di Michailov (2), le parti reale e immaginaria di p(jω)	mai annullarsi
devono annullarsi alternativamente, ma:	contemporaneamente al
,	passaggio di p(jω) per l'origine
Modulo 14	
NON PREVISTE	
Modulo 15	
Uno stato di equilibrio e la corrispondente uscita di equilibrio vengono detti nominali quando:	$0=f(x^-,\bar{u})\;y=g(x^-,\bar{u})$
Quando descriviamo il comportamento di un sistema nonlineare	linearizzazione
localmente, mediante un opportuno sistema lineare che costituisce	
un'approssimazione del sistema originario, stiamo effettuando un	
procedimento di:	CC: -: t t 1 - :
Un sistema linearizzato descrive in modo approssimato il	sufficientemente piccole in
comportamento attorno alle condizioni di equilibrio di un sistema nonlineare nel caso in cui le variazioni $\delta u(t)$, $\delta x t 0$, $\delta x (t)$ e $\delta y (t)$ siano:	norma
La linearizzazione dei sistemi non lineari è valida:	per sistemi SISO e MIMO
Consideriamo un pendolo che oscilla in un piano verticale. Se l'ingresso	$x1=\pi/2, x2=0, y=0$
assume un valore costante u(t)=ū=Mgl, possiamo avere un equilibrio in:	11-10/2, 12-0, y-0
Consideriamo un pendolo che oscilla in un piano verticale. Se l'ingresso	posizione verticale con la massa
è pari a u(t)=ū=0, all'equilibrio e con n pari, il pendolo si troverà in:	in basso
Nonostante il modello linearizzato sia approssimato, esso consente di	locali
ottenere risultati esatti poiché le proprietà di stabilità sono:	
Uno stato di equilibrio x relativo all'ingresso costante ū di un sistema	tutti parte reale negativa
nonlineare è asintoticamente stabile se gli autovalori del sistema	
linearizzato corrispondente hanno:	
Il polinomio $p(\lambda)=\lambda(\lambda+(k/Ml2))$ del sistema linearizzato del pendolo	non abbiamo informazioni a
presenta una radice nulla e una negativa. Sulla base dei teoremi 3.1 e 3.2,	sufficienza per stabilire la
possiamo dire che:	stabilità dello stato di equilibrio
Nel caso del pendolo con ingresso u(t)=ū=0, è nulla la variazione prima	C=0 e D=0
dell'energia totale del sistema, rispetto a perturbazioni delle altre variabili, perché:	
Modulo 16	<u> </u>
Nell'esempio 1 del circuito elettrico si vede che l'ingresso u agisce	x^1
soltanto su:	A 1
Il sistema descritto per il circuito elettrico dell'esempio 1 è:	asintoticamente stabile
Nel sistema descritto dall'esempio 2, è possibile determinare lo stato	y=x2
iniziale dall'uscita se assumiamo:	~ ~ ~ ~
Uno stato \tilde{x} si dice raggiungibile se esistono un tempo finito $\tilde{t} > 0$ e un	$\tilde{x} f(\tilde{t}) = \tilde{x}$
ingresso \tilde{u} definito in $[0, \tilde{t}]$ tali che, detto \tilde{x} $f(t)$ il movimento forzato	
dello stato generato da u risulti:	a annulatan anta na a airm aibila
Un sistema i cui stati sono tutti raggiungibili si dice:	completamente raggiungibile p(Mr)=n
Un sistema descritto dalle equazioni ingresso-stato-uscita risulta completamente raggiungibile se:	ρ(1 ν Π)—Π
Dal teorema 2.2, per costruire la matrice T_r selezioniamo n_r colonne	$\det(T_r^{-1}) \neq 0$
indipendenti da M_r e poi altre n-n _r colonne scelte in modo arbitrario, ma	
tali che:	
Per i sistemi lineari stazionari, la proprietà di raggiungibilità coincide	Controllabilità
con quella di:	
Se la matrice A è diagonalizzabile, il sistema è raggiungibile se e solo se	non ha nessuna riga tutta nulla
la matrice di ingresso trasformata B :	
Se la matrice A non è diagonalizzabile, il sistema è completamente	ultime righe dei blocchi di Jordan
raggiungibile se e solo se non sono nulle le righe di B corrispondenti	di Ã
alle:	
Modulo 17	

Uno stato x ≠ 0 di un sistema dinamico si dice non osservabile se per	yľ (t)=0 con 0≤t≤ť
ogni f , 0< f <(infinto), detto y f (t) il movimento libero dell'uscita	
generato da x̄, risulta:	
La proprietà di osservabilità dipende integralmente dalla coppia di	(A, C)
matrici:	
La coppia (A, C) è completamente osservabile se il rango della matrice	n
di osservabilità M0 è pari a: Per il teorema 1.2, l'esame di un qualsiasi transitorio di y consente di	x a(0)
determinare:	x a(0)
Per i sistemi dinamici lineari stazionari, la nozione di non osservabilità	non ricostruibilità
coincide con quella di:	
Il sistema presentato nell'esempio, quando si assume y(t)=x2(t), risulta:	completamente osservabile
Se la matrice dinamica A è diagonalizzabile, si dimostra che il sistema è	non ha alcuna colonna tutta nulla
completamente osservabile se e solo se la matrice di uscita trasformata	
Ĉ:	
Utilizzare la scomposizione canonica è vantaggioso quando un sistema dinamico risulta essere:	non completamente raggiungibile
La risposta impulsiva di un sistema dinamico lineare stazionario	e non completamente osservabile raggiungibile e osservabile
coincide con la risposta impulsiva della sola sua parte:	raggiungione e osservaone
Un sistema raggiungibile e osservabile, in quanto non è possibile	in forma minima
adoperare un numero di variabili di stato inferiore al suo ordine per	
descrivere la sua relazione tra ingresso e uscita, viene detto:	
Modulo 18	
La rappresentazione polare di un numero complesso s è:	ρe^jφ
Nell'integrale della trasformata di Laplace l'estremo inferiore va inteso	eventuali impulsi nell'origine vanno inclusi
come 0-, nel senso che: Una delle condizioni sufficienti affinché una funzione del tempo	f deve essere continua a tratti
ammetta trasformata di Laplace è che:	i deve essere continua a tratti
Consideriamo la trasformata razionale F(s)=N(s)/D(s). Si dicono poli le	D(s)=0
radici dell'equazione:	
La formula di trasformazione e quella di antitrasformazione stabiliscono	f in (0, inf.) e F
una relazione biunivoca tra:	
Date due funzioni reali f, g su $(0, +inf.)$, con a, b complessi, si	linearità
haL(af(t)+bg(t))=aF(s)+bG(s). Questa proprietà viene detta: Per la proprietà di traslazione nel dominio della frequenza, per ogni α, si	$L(e^{\alpha}t f(t))=F(s-\alpha)$
ha:	$L(\mathcal{C} \text{ at } I(t)) - I'(s-a)$
Moltiplicare per s nel dominio della variabile complessa equivale a:	derivare nel dominio del tempo
Se una funzione reale f ha trasformata di Laplace razionale F con il	f(0)
grado del denominatore maggiore del grado del numeratore, allora il lim	
s(F(s)) con s che tende a +inf. è pari a:	
La trasformata di Laplace del gradino unitario δ-1 è pari a:	1/s
Modulo 19	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
La funzione di trasferimento mette in relazione tra loro le trasformate di	delle variabili di ingresso e di uscita
Laplace: La funzione di trasferimento del sistema in presenza di condizioni	W(s)=C(sI-A)^-1 B+D
iniziali nulle è descritta dalla formula matriciale:	(a) (a) 1 (b) 1 (b) 1 (b) 1 (c) 1 (c
Se in un sistema SISO poniamo un ingresso impulsivo $u(t)=\delta(t)$, allora si	Y(s)=W(s)
ha:	
Si ha W(s)=D, costante e indipendente da s, quando:	all'uscita manca il contributo dinamico dello stato
Se numeratore e denominatore in W(s) hanno uno o più fattori in	in forma minima
comune, dopo la loro cancellazione reciproca, la funzione di	
trasferimento verrà detta:	In aire alorida III i d
Visto il carattere dei coefficienti di W(s), poli e zeri costituiscono:	le singolarità del sistema

Il polinomio caratteristico di un sistema, quando non ci sono cancellazioni tra numeratore e denominatore della funzione di trasferimento, coincide con:	il denominatore della funzione di trasferimento
In alcuni casi più semplici, è possibile ottenere la funzione di trasferimento trasformando direttamente con Laplace le equazioni del sistema ipotizzando:	u(0)=0 e y(0)=0
Se la funzione di trasferimento è rappresentata da una funzione razionale strettamente propria, allora si può scomporre il rapporto di polinomi in una somma di n termini del tipo:	Ri/(s-λi)
Il teorema di Abel-Ruffini afferma che non risulta possibile la soluzione per radicali di un'equazione algebrica di grado:	superiore al quarto
Modulo 20	
Nel calcolo di una funzione di trasferimento W(s) di un sistema dinamico, l'eventuale cancellazione di radici in comune tra numeratore e denominatore fa si che il numero dei poli sia:	inferiore a quello degli autovalori
Gli autovalori che non coincidono con i poli di W(s) sono associati a parti 'nascoste' del sistema che:	non influenzano il legame ingresso-uscita
Una condizione necessaria affinché si possa valutare se un sistema è asintoticamente stabile a partire dalla sua funzione di trasferimento è che:	non vi siano cancellazioni tra numeratore e denominatore
In generale la risposta forzata di un sistema dipende soltanto dalla sua parte:	raggiungibile e osservabile
Gli autovalori che non sono poli della funzione di trasferimento appartengono alla parte:	non raggiungibile o non osservabile
Il coefficiente k, reale, presente nella funzione di trasferimento espressa come rapporto di prodotti di zeri e di prodotti di poli, prende il nome di:	coefficiente di guadagno
La rappresentazione come somma di rapporti di residui e poli consente di ottenere facilmente l'antitrasformata della funzione di trasferimento, che sappiamo essere:	la risposta impulsiva
Nel caso in cui i poli siamo distinti possiamo utilizzare la formula Ri=((s-pi)(NW(s)/DW(s))) per calcolare:	i residui separatamente per ciascun polo
Non è possibile utilizzare la notazione semplificata Ri,l=Rinel caso di:	poli multipli
Data una funzione di trasferimento, la somma dei residui W(s)/bm è pari a 1 se:	n=m+1
Modulo 21	
La fase φ della funzione di trasferimento W(s), espressa in forma polare, può essere calcolata come:	arctan(Im(W(s))/Re(W(s)))
Nella rappresentazione della funzione di trasferimento, gli scalari $\gamma = \sqrt{(\alpha 2 + \beta 2)}$ e $\delta = \sqrt{(\sigma 2 + \omega 2)}$ vengono detti:	pulsazioni naturali
Nell'ipotesi di stabilità asintotica e con $q > 0$, un sistema viene detto integratore se la sua funzione di trasferimento è:	W(s)=1/s
Il contributo di un polo alla risposta forzata scomparirà lentamente se la sua costante di tempo è:	elevata
Nel caso di una funzione di trasferimento con poli complessi e coniugati, questi si sposteranno in un piano complesso lungo una circonferenza di raggio δ ial variare di ξ i da -1 a 1. In particolare se ξ i = 0 allora i poli saranno:	immaginari puri
Data una funzione di trasferimento con q=0, si ha y(0)=0 se:	m'+2m" <n'+2n"< td=""></n'+2n"<>
Il valore di regime è:	il valore dell'uscita una volta esaurito il transitorio
Il periodo di oscillazione TP è il tempo:	che intercorre tra i primi due massimi dell'uscita
Il valore di regime della risposta indiciale di un sistema del primo ordine asintoticamente stabile $(\theta > 0)$ è pari:	al guadagno

Il tempo di assestamento della risposta indiciale di un sistema del primo ordine con θ >0 è pari a:	$-\theta \ln(0.01\epsilon)$
Modulo 22	
Nella risposta indiciale di un sistema del secondo ordine asintoticamente stabile con solo poli reali e distinti:	non è presente alcuna sovraelongazione o sottoelongazione
Nella risposta indiciale di un sistema del secondo ordine asintoticamente stabile che presenta poli reali e distinti e uno zero, per θ 1> θ 2>0 e τ <0 si ha:	una sottoelongazione
Nel caso di sistemi del secondo ordine (o maggiore), la presenza di una sovraelongazione nella risposta indiciale è segno della presenza di:	uno zero negativo e di modulo minore dei poli
Nel caso di una sistema del secondo ordine con poli reali e distinti e uno zero tale che θ 1> θ 2> τ >0, se lo zero si allontana sempre più dall'origine del piano complesso, allora la risposta indiciale:	tende a quella di un sistema con gli stessi poli, ma senza lo zero
Nel caso di un sistema del secondo ordine con due poli complessi e coniugati, la sua risposta indiciale sarà data da l'antitrasformata della sua funzione di trasferimento moltiplicata per:	1/s
In un sistema del secondo ordine con due poli complessi e coniugati, se σ <0, allora la risposta indiciale:	diverge
Nel caso di un sistema del secondo ordine asintoticamente stabile (σ>0) con due poli complessi e coniugati, gli istanti di stazionarietà della risposta indiciale possono essere ricavati ponendone a zero la derivata, e risultano esprimibili come:	$tn=n(\pi/\omega)$
L'eliminazione di una coppia polo-zero con valori delle costanti di tempo prossimi tra loro, o addirittura coincidenti, può causare problemi:	di stabilità, raggiungibilità e/o osservabilità
Nella funzione di trasferimento W(s) di un sistema asintoticamente stabile, una volta cancellate le coppie polo-zero vicine tra loro sul piano complesso, i poli più vicini all'asse immaginario rispetto ad altri, vengono detti:	poli dominanti
Nell'approssimazione attraverso i poli dominanti, gli zeri che hanno una distanza simile dall'asse immaginario (o addirittura inferiore) ai poli stessi:	sono da tenere in considerazione nel calcolo
Modulo 23	
L'analisi in frequenza dei modelli matematici e interpretativi di un sistema, consiste nell'esame del suo comportamento in presenza di ingressi di tipo:	sinusoidale
Un sistema SISO risponde a un ingresso sinusoidale con una sinusoide della stessa frequenza, la cui ampiezza sarà il prodotto tra:	l'ampiezza di ingresso e il modulo della funzione di trasferimento alla stessa frequenza
Lo studio a regime di un sistema SISO a cui viene applicato un ingresso sinusoidale, è riconducibile allo studio di coppie di radici situate:	sull'asse immaginario
La durata del transitorio di un sistema SISO, a cui viene applicato un ingresso sinusoidale, dipende dalla dinamica propria del sistema e può essere valutata mediante:	il tempo di assestamento
Nell'esempio 2.1 si vede che il sistema, a causa della presenza del condensatore, tende:	ad attenuare le sinusoidi a bassa pulsazione
Dato un sistema rappresentato dal modello ingresso-stato-uscita, si definisce risposta armonica, per ω reale non negativa, la funzione:	W(ω)=C(jωI-A)-1B+D
La risposta armonica coincide con la funzione di trasferimento W(s) ristretta:	al semiasse immaginario non negativo
In un sistema lineare e stazionario, l'effetto di una singola sinusoide può essere calcolato indipendentemente dalla presenza delle altre componenti, grazie:	al principio di sovrapposizione degli effetti

L'insieme dei coefficienti complessi Unpresenti nella serie di Fourier	lo spettro del segnale
costituisce:	
Se a un sistema lineare, stazionario, asintoticamente stabile, con funzione di trasferimento W(s), viene applicato un segnale di ingresso periodico esprimibile come serie di Fourier, allora lo spettro dell'uscita sarà pari a:	Yn=W(nω0)Un
Modulo 24	
Il modulo $ F(\omega) $ della trasformata di Fourier prende il nome di:	spettro di ampiezza
La parte reale di $F(\omega)$ è una funzione pari, mentre quella immaginaria è una funzione dispari se:	f(t) è reale
La proprietà di linearità fa si che la trasformata della funzione a1f1(t)+a2f2(t) sia:	a1F1(ω)+a2F2(ω)
'La trasformata di Fourier della funzione esponenziale $f(t)=e\sigma t\delta-1(t)$ con $\sigma >0$:'	non esiste
Se si applica a un sistema lineare, stazionario, asintoticamente stabile, con risposta in frequenza $W(\omega)$, un ingresso dotato di trasformata di Fourier, una volta esaurito il transitorio, il movimento dell'uscita:	non potrà contenere armoniche non presenti nello spettro di ingresso
Una volta esaurito il transitorio, la risposta in frequenza, per sistemi asintoticamente stabili, sarà pari a:	$W(\omega)=Y(\omega)/U(\omega)$
La trasformata di Laplace è definita mediante integrazione sull'intervallo temporale (0, +inf.), mentre quella di Fourier è definita sempre mediante integrazione, ma sull'intervallo temporale:	(-inf., +inf.)
Consideriamo una f(t) nulla per t<0. L'esistenza della trasformata di Laplace implica l'esistenza di quella di Fourier, che può essere ottenuta da quella di Laplace ponendo s=jω, se l'ascissa di convergenza della prima è pari a:	σ<0
La trasformata di Fourier consente di interpretare le funzioni di una vasta classe come costituite da:	una somma di un'infinità non numerabile di armoniche
La trasformata di Fourier di f(t)=sen(ω0t) è pari a:	$j\pi(\delta(\omega+\omega 0)-\delta(\omega-\omega 0))$
Modulo 25	
Ingressi decomponibili in spettri di armoniche sinusoidali generano, in sistemi asintoticamente stabili, uscite:	con spettri di armoniche sinusoidali della stessa frequenza, ma con ampiezza e fase differenti
Se si applica a un sistema lineare, stazionario e asintoticamente stabile, con funzione di trasferimento W(s), l'ingresso u(t)=u0e λ t con λ non coincidente con alcun autovalore del sistema stesso, dopo l'esaurimento del transitorio l'uscita sarà:	y(t)=W(λ)uθe^λt
Se λ coincide con uno zero di W(s), la risposta di un sistema a un ingresso esponenziale tende ad annullarsi per t che tende a infinito, qualunque sia lo stato iniziale. Questa appena descritta è la proprietà:	bloccante degli zeri
Il fatto che la derivata dell'esponenziale coincide con l'esponenziale stessa, fa si che tale funzione sia la soluzione:	del problema differenziale lineare del primo ordine
Oltre alle funzioni esponenziali, godono della proprietà di passare invariate attraverso sistemi lineari anche:	le funzioni sinusoidali
Senza introdurre l'ipotesi di asintotica stabilità, a un ingresso esponenziale corrisponde un'uscita esponenziale se si sceglie opportunamente lo stato iniziale, ovvero se e solo se λ:	non coincide con un autovalore di A
L'ampiezza di ingresso, in un sistema fisico che desideriamo identificare nella risposta armonica, deve:	essere di valore costante al variare di ω0 per tutta la durata della misura
Per pulsazioni di valore elevato, il rumore può rendere inutilizzabile i risultati ottenuti a causa dell'attenuazione introdotta dal sistema, infatti, i sistemi fisici per cui è sempre m <n sono="" td="" tutti:<=""><td>passa-basso</td></n>	passa-basso
Un sistema si dice a fase minima quando i suoi zeri hanno tutti parte reale:	minore di zero

Per misurare una risposta armonica in condizioni di instabilità si può formare un circuito a controreazione, che impedisce al blocco W(s) di assumere valori non limitati durante il transitorio mediante un opportuno:	compensatore
Modulo 26	
NON PREVISTE	
Modulo 27	
Nella trattazione dei sistemi SISO, l'interesse per la risposta armonica proviene anche dal fatto che essa è:	funzione complessa di variabile reale
Gli scalari ζi=-αi/γi e ξi=-σi/δi, in modulo minori di uno, vengono detti:	smorzamenti delle coppie complesse e coniugate di zeri o poli alle quali si riferiscono
Per semplificare le operazioni di sovrapposizione dei vari termini, conviene sostituire i termini nell'espressione del modulo della risposta armonica con:	i loro logaritmi in base 10
Osservando che i contributi degli zeri ai diagrammi di Bode avranno soltanto il segno invertito rispetto a quelli dei poli, sarà sufficiente studiare il comportamento in modulo e fase solo dei termini:	$W_0, W_1(\omega), W_{2,i(\omega), W_{3,i(\omega)}}^d$
L'unità di misura decibel (dB) è definita come:	$ W(\omega) _{dB}$ =20log($ W(\omega) $)
Se un numero raddoppia, il suo valore in decibel aumenta di circa:	6 dB
Se il diagramma del modulo di W1(ω) presenta una pendenza di 20 dB per decade, allora viene detto:	retta a pendenza unitaria
Il diagramma del modulo di $W^d_{3,i}(\omega)$, nel caso in cui $ \xi_i < (1/\sqrt{2}) \approx 0,707$,	picco di risonanza
presenterà un massimo chiamato:	
Nel diagramma del modulo di $W^d_{3,i}(\omega)$, se ξ_i =0, allora $\omega_{r,i}$ = δ_i e il picco di risonanza sarà:	infinito
Semplici diagrammi che consentono di determinare l'andamento qualitativo del diagramma esatto, senza l'ausilio di mezzi di calcolo e spesso con un'accettabile livello di approssimazione, vengono detti:	diagrammi asintotici

Modu	ulo 28
Per pulsazioni inferiori a $(1/\tau i)$, $(1/\theta i)$, γi , δi , gli unici	h e (jω) ^q
fattori che influiscono sul tracciato asintotico del	
diagramma del modulo sono:	
Per il tracciamento asintotico del diagramma del	al doppio della molteplicità dello zero o del polo
modulo, in corrispondenza a valori per ω pari alle	incontrato
pulsazioni naturali, la pendenza aumenta o	
diminuisce, a seconda che si sia incontrata la	
pulsazione naturale di uno zero o di un polo	
complesso, per un multiplo di unità pari:	
La pendenza assunta dal diagramma asintotico del	propri
modulo per ω che tende a +inf., è sempre pari al	
grado relativo con il segno cambiato. Quindi la	
suddetta pendenza è nulla per sistemi:	
Data una risposta armonica, la sua fase si ottiene	somma, o sottrazione, delle fasi dei suoi fattori
come:	
Il diagramma della fase di W1(ω) è una retta	un ritardo di fase
parallela all'asse delle ascisse ω con ordinata pari a	
-q90°. Si dice pertanto che poli nell'origine	
producono:	

Un possibile diagramma asintotico per la fase	dalla semiretta orizzontale con ordinata -90°
$W_{2,i}^{d}(\omega)$ è costituito, per ω molto più grande di	
$(1/ \theta_i)$, con $\theta_i > 0$:	(1) (000)
el tracciamento asintotico della fase di una risposta	arg(h)-q(90°)
armonica, la parte iniziale sarà una semiretta orizzontale di ordinata:	
Il segno degli zeri o dei poli di una risposta armonica	solo sul diagramma della fase
ha influenza:	solo sui diagramma dena fase
Il nome di fase minima, per sistemi con guadagno	minore di quella di poli con parte reale positiva
positivo, discende dal fatto che poli con parte reale	to the first temperature of the
negativa generano una fase:	
Per sistemi a fase minima, quando il diagramma	k90°
asintotico del modulo ha pendenza k, il diagramma	
asintotico della fase assume il valore:	
	u <mark>lo 29</mark>
La risposta armonica W(ω) viene rappresentata	diagrammi polari
come la traiettoria sul piano complesso di un punto al variare di ω in [0, +inf.] nei:	
Possiamo scrivere la risposta armonica in forma	$W(\omega)= W(\omega) e^{j\psi(\omega)}$
polare come:	νν(ω)= νν(ω) e
Se si considera la risposta armonica con un solo polo	n=0, D ₁ (0)= p , Ψ ₁ (0)=0
$W(\omega)=k/(j\omega-p)$, per k>0, si ha:	1 -7 - 1(-7) 11-17 + 1(-7) -
Consideriamo la risposta armonica con un solo polo	da -inf. a 0
nell'origine $W(\omega)=1/j\omega$ il suo diagramma polare sarà	
il semiasse immaginario inferiore che al crescere di	
ω (da 0 a +inf.) viene percorso:	1/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Il diagramma polare della risposta con un solo polo	p=-1/k e k che tende a +inf.
nell'origine può essere visto come 'limite' di quello che si riferisce alla risposta con un solo polo	
$W(\omega)=k/(j\omega-p)$ con:	
Nel diagramma polare della risposta armonica con	il modulo è infinito e la fase passa da 0° a -180°
due poli complessi e coniugati, con ξ=0, quando	
ω=δ:	
I sistemi dinamici, nell'elaborazione e trasmissione	innalzare o abbassare le singole componenti
delle varie componenti in frequenza di un segnale, si	armoniche, in modulo e fase
comportano come filtri che possono:	
Sistemi che lasciano passare sostanzialmente	filtri passa basso
inalterate le armoniche con pulsazione inferiore o	
uguale a un dato valore di ωb attenuando, o addirittura eliminando, quelle con pulsazione	
superiore, vengono detti:	
Nel caso di un filtro passa basso, l'intervallo di	banda passante
pulsazioni [0, ωb] viene detto:	1
Possono avere un comportamento passa-alto, in	strettamente propri
quanto unici a permettere di avere W(+inf.) >0, solo	
i sistemi:	
	ulo 30
n uno schema a blocchi, un cerchio con indicazione	nodo sommatore
dei segnali in entrata e in uscita, è definito come: Al fine di sostituire le operazioni di convoluzione	la lara trasformata di Lanlaca
(necessarie per rappresentare, nel dominio del	la loro trasformata di Laplace
tempo, le risposte dei sistemi lineari) con operazioni	
di prodotto, le grandezze che figurano negli schemi a	
blocchi sono da considerare mediante:	

Nella figura 2.2, il ramo caratterizzato da H(s), la cui grandezza in uscita viene sottratta nel comparatore in ingresso, viene detto:	ramo di controreazione
Nel sistema elettromeccanico visto nel par.3, assumendo come ingresso Ea(s), la corrente I(s) è generata dall'errore Ea(s)-Em(s), dato dal comparatore a valle dell'ingresso, moltiplicato per un blocco che applica una trasformata pari a:	1/(R+sL)
Tramite operazioni elementari tra blocchi, nodi sommatori e nodi di diramazione, è possibile ridurre uno schema a blocchi, comunque complicato, a uno schema elementare. Il complesso delle regole da attuare per fare ciò viene chiamato:	algebra degli schemi a blocchi
L'algebra degli schemi a blocchi tiene conto:	solo del flusso di informazione tra blocchi
In presenza di due o più blocchi in serie, essi possono essere sostituiti da un unico blocco con funzione di trasferimento pari:	al prodotto di quelle dei singoli blocchi
Se nello schema vi sono due o più blocchi in parallelo, la regola dice che essi possono essere sostituiti da un unico blocco con funzione di trasferimento pari:	alla somma algebrica di quelle dei singoli blocchi
Quando si applica una riduzione, il comportamento complessivo dipende dall'ordine con il quale vengono considerati i singoli blocchi:	né nel caso di riduzione in serie né nel caso di riduzione in parallelo
Possiamo ridurre uno schema che presenta un blocco $G_1(s)$ e un anello in controreazione $G_2(s)$ ad un solo blocco con la funzione di trasferimento:	$G_1(s)/(1+G_1(s)G_2(s))$
Mod	ulo 31
Quando si connettono in uno schema a blocchi un certo numero di sottosistemi, ci si aspetta che l'ordine del sistema complessivo sia:	Uguale alla somma degli ordini dei singoli sottosistemi
Se una connessione in serie genera una parte nascosta corrispondente a una cancellazione di un polo con parte reale nulla o positiva, la parte nascosta non è asintoticamente stabile, quindi il sistema complessivo sarà:	non asintoticamente stabile
Consideriamo $G_1(s)=1/(s-a)$ e $G_2(s)=(s-a)/(s+1)$ con $a\neq -1$, dove $G_1(s)$ è stabile per a<0, mentre $G_2(s)$ è stabile per ogni a. Eseguendo un collegamento in serie, si ha $G(s)=1/(s+1)$, che è asintoticamente stabile:	se e solo se a<0
Se nella connessione in parallelo vi è un solo sottosistema non asintoticamente stabile, allora il sistema complessivo sarà:	non asintoticamente stabile
Negli schemi di connessione a controreazione, i poli della funzione di trasferimento complessiva possono dipendere:	sia dai poli che dagli zeri dei blocchi connessi
La controreazione consente di raggiungere la stabilità asintotica del sistema complessivo controreazionato:	anche se alcuni singoli blocchi nello schema sono instabili
La presenza di parti non raggiungibili e/o non osservabili viene denunciata dal fatto che nel sistema complessivo il grado del denominatore della funzione di trasferimento è:	inferiore all'ordine del sistema stesso

Nella connessione in serie di due sottosistemi in	non raggiungibile e osservabile
forma minima, $G_1(s)$ e $G_2(s)$, si può dimostrare che	
se uno zero di $G_1(s)$ cancella un polo di $G_2(s)$, si	
genera nel sistema complessivo una parte:	
Nella connessione in parallelo di due sottosistemi in	non raggiungibile e non osservabile
forma minima, $G_1(s)$ e $G_2(s)$, si può dimostrare che	
quando $G_1(s)$ e $G_2(s)$ hanno un polo in comune, si	
genera nel sistema complessivo una parte:	
Nella connessione in controreazione di due	completamente raggiungibile e osservabile
	completamente raggiungione e osservaone
sottosistemi in forma minima, $G_1(s)$ e $G_2(s)$, si può	
dimostrare che se un polo di $G_1(s)$ coincide con uno	
zero di G ₂ (s), il sistema complessivo rimane:	
	ulo 32
Dopo un tempo sufficientemente maggiore delle	della fedeltà di risposta del sistema
costanti di tempo di un sistema, la differenza tra il	
comportamento desiderato della sua uscita e quello	
effettivamente riscontrato, può essere assunta come	
misura:	
Un metodo per ottenere il valore del guadagno	h=lim $s^qG(s)$ con s che tende a +inf.
statico h, senza necessità di conoscere zeri e poli di	
G(s), è:	
All'inverso k _d della funzione di controreazione	l'ingresso e l'uscita desiderata
istantanea viene attribuito il significato di costante di	
proporzionalità tra:	
L'errore a regime er di un sistema, per un dato	permane una volta esaurito il transitorio
ingresso, è l'errore che:	permane una volta esaurito ii transitorio
L'errore a regime, quando il numero q di poli	zero
nell'origine in G(s) è maggiore dell'indice i che	
identifica l'ingresso canonico, è pari a:	1.0
Per un sistema controreazionato del tipo 1 con un	k_d/h
ingresso a rampa, l'errore a regime non è nullo,	
quindi l'uscita a regime dovrà essere anch'essa a	
rampa, ma risulterà ritardata rispetto a quella	
d'ingresso per un tempo pari a:	
Nel comportamento a regime di un sistema con	$((k_d)^2/h)+k_d(a_1-b_1)$
controreazione dinamica, se G(s) è di tipo 1, l'errore	
a regime, per un ingresso a rampa, è pari a:	
In un sistema di controllo, un disturbo è:	un ingresso non desiderato e non gestibile prima
,	della sua entrata
Le proprietà di stabilità di uno schema a blocchi a	dalla posizione, sul piano complesso, delle radici
controreazione dipendono soltanto:	dell'equazione caratteristica della funzione di
Control Carpolidono Solumo.	trasferimento a ciclo chiuso
Nello schema a blocchi visto nel par.4, considerando	
	vi è uno zero nell'origine in $G_2(s)$
un gradino unitario nel disturbo D_1 e $q_1 < 0$, l'errore a	
regime in corrispondenza al disturbo è nullo se:	1 22
	ulo 33
Il requisito fondamentale e più importante richiesto a	stabilità
un sistema di controllo è la:	
Quando le proprietà di stabilità di un sistema sono	stabilità robusta
assicurate anche in condizioni perturbate, si parla di:	
Considerando la funzione di trasferimento a ciclo	parte reale negativa
chiuso $W(s)=L(s)/(1+L(s))$, la sua stabilità asintotica	
si realizza se tutte le radici dell'equazione	
caratteristica del sistema 1+L(s) hanno:	
THE THE PART OF TH	

Nel caso in cui non fosse sufficiente valutare la	al criterio di Nyquist
stabilità di un sistema solo attraverso il segno delle	
radici, ma fosse necessario valutare anche la	
robustezza della stabilità stessa, possiamo ricorrere:	
Data una funzione di trasferimento L(s), il suo	una circonferenza di raggio infinito,
diagramma di Nyquist è definito come la curva	collocata sul semipiano destro che
tracciata da L(s) sul piano complesso, al variare di s	collega il punto (0, j∞) del piano a
lungo un percorso chiuso costituito dall'asse	quello (0, -j∞)
immaginario, da -inf. a +inf., e da:	_
Condizione necessaria e sufficiente per la stabilità	$n_L = p_L$
asintotica del sistema a controreazione	
$W(s)=L(s)/(1+L(s))$ è che n_L sia ben definito e che	
sia:	(1.0)
Il numero di giri nL di un diagramma di Nyquist non	(-1,0)
è ben definito se quest'ultimo passa per il punto:	
Quando la variabile s si sposta lungo il percorso di	in senso orario di -2π
Nyquist, ogni zero di H(s)=1+L(s) interno al suo	
percorso produce una variazione di fase:	
Consideriamo la funzione di trasferimento	k>p
W(s)=k/(s+(k-p)) e supponiamo $k<0$ e $p<0$; la	
funzione sarà asintoticamente stabile se e solo se:	
Nel sistema a controreazione descritto dalla funzione	nL=0 e il sistema sarà asintoticamente stabile
in catena diretta $L(s)=k/((s+1)^3)$ con $k>0$, poiché	
$p_L=0$, se $x_L>-1$ allora avremo:	
	ulo 34
Condizione necessaria e sufficiente per la stabilità	$n_L = p_L$
del sistema a retroazione positiva $W(s)=L(s)/(1-L(s))$	
è che n _L ' sia ben definito e che sia:	
Condizione sufficiente affinché un sistema a	$ L(j\omega) $ <1 per ogni ω
controreazione unitaria, con funzione di	
trasferimento a catena diretta L(s) asintoticamente	
stabile, risulti asintoticamente stabile è che sia:	
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a	arg(L(jω)) <180° per ogni ω
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di	arg(L(jω)) <180° per ogni ω
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente	arg(L(jω)) <180° per ogni ω
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia:	1 6 6 7/1
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena	arg(L(jω)) <180° per ogni ω a stabilità condizionata
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di	1 6 6 7/1
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti:	a stabilità condizionata
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si	
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un	a stabilità condizionata
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _I tra:	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0)
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _I tra: L'estremo superiore dei coefficienti con i quali	a stabilità condizionata
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta $L(s)$ asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ_L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di $L(s)$ senza perdere	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0)
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0)
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto:	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0) margine di guadagno
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0)
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0) margine di guadagno
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a:	a stabilità condizionata $ \begin{tabular}{ll} il diagramma di Nyquist di L(s) e il punto (-1, 0) \\ \\ margine di guadagno \\ \\ \hline k_L=4 \\ \end{tabular} $
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a: La pulsazione critica è la pulsazione corrispondente	a stabilità condizionata il diagramma di Nyquist di L(s) e il punto (-1, 0) margine di guadagno
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a: La pulsazione critica è la pulsazione corrispondente all'attraversamento da parte del diagramma di	a stabilità condizionata $ \begin{tabular}{ll} il diagramma di Nyquist di L(s) e il punto (-1, 0) \\ \\ margine di guadagno \\ \\ \hline k_L=4 \\ \end{tabular} $
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a: La pulsazione critica è la pulsazione corrispondente all'attraversamento da parte del diagramma di Nyquist:	a stabilità condizionata $il\ diagramma\ di\ Nyquist\ di\ L(s)\ e\ il\ punto\ (-1,\ 0)$ $margine\ di\ guadagno$ $k_L=4$ $della\ circonferenza\ unitaria$
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a: La pulsazione critica è la pulsazione corrispondente all'attraversamento da parte del diagramma di Nyquist: Il margine di fase α _L è definito, sulla base della fase	a stabilità condizionata $ \begin{tabular}{ll} il diagramma di Nyquist di L(s) e il punto (-1, 0) \\ \\ margine di guadagno \\ \\ \hline k_L=4 \\ \end{tabular} $
stabile, risulti asintoticamente stabile è che sia: Un'altra condizione sufficiente affinché un sistema a controreazione unitaria, con funzione di trasferimento a catena diretta L(s) asintoticamente stabile, risulti asintoticamente stabile è che sia: I sistemi in cui diminuendo il guadagno a catena aperta c'è il rischio di cadere in una situazione di instabilità vengono detti: Il margine di stabilità vettoriale, mediante il quale si può valutare la robustezza della stabilità di un sistema, rappresenta la distanza Δ _L tra: L'estremo superiore dei coefficienti con i quali moltiplicare il guadagno di L(s) senza perdere l'asintotica stabilità per il modello W(s)=L(s)/(1+L(s)) a controreazione viene detto: Abbiamo visto che L(s)=k/((s+1)³), con k>0, è asintoticamente stabile per k<8; se allora poniamo k=2, il margine di guadagno risulta pari a: La pulsazione critica è la pulsazione corrispondente all'attraversamento da parte del diagramma di Nyquist:	a stabilità condizionata $il\ diagramma\ di\ Nyquist\ di\ L(s)\ e\ il\ punto\ (-1,\ 0)$ $margine\ di\ guadagno$ $k_L=4$ $della\ circonferenza\ unitaria$

Nel caso di diagrammi di Nyquist più articolati, nei quali ad esempio vengono intersecati più volte il semiasse reale negativo o la circonferenza unitaria, per la valutazione dei margini di guadagno o di fase, andranno considerate:	le intersezioni meno favorevoli alla stabilità
	ulo 35
Se la funzione di trasferimento L(s) di un sistema in controreazione non ha poli con parte reale positiva e	h>0 e α _L >0
il diagramma di Bode per il suo modulo attraversa solo una volta l'asse orizzontale a 0 dB, allora condizione necessaria e sufficiente affinché il	
sistema sia asintoticamente stabile è che:	
Aggiungendo alle ipotesi del criterio di Bode anche che L(s) sia a fase minima, se l'andamento asintotico del diagramma del modulo all'atto dell'attraversamento dell'asse orizzontale con ordinata 0 dB ha una pendenza pari a -k, allora l'andamento asintotico del diagramma della fase, in coincidenza del suddetto attraversamento, assume il valore di:	-k90°
I diagrammi di Nichols sono caratterizzati da una proprietà che permette di comporre i diagrammi di più sistemi in cascata per analizzare più agevolmente il comportamento del sistema complessivo per piccole variazioni di ω, che viene detta:	sommabilità
Consideriamo una generica funzione di trasferimento $G(s)$; analizzando i contributi al diagramma di Nichols dei singoli fattori, si ha che il diagramma del monomio $G(j\omega)=(j\omega)^q$ è:	una retta parallela all'asse delle ordinate con ascissa pari a $-q(\pi/2)$
Il diagramma del binomio $G(j\omega)=(1+j\theta\omega)$, quando questo si trova a denominatore di $G(s)$, per un polo reale positivo, è lo stesso di quello per un polo reale negativo, ma ribaltato rispetto:	all'asse verticale in 0°
I margini di fase e di guadagno di un sistema a controreazione sono dati dalle intercette, rispettivamente sull'asse delle ascisse e sull'asse delle ordinate del diagramma di Nichols per la funzione di trasferimento a catena diretta, collocando l'incrocio di tali assi del piano fase-modulo nel punto:	(-180°, 0)
Nel passaggio dalla funzione di trasferimento a ciclo aperto L(s) a quella a ciclo chiuso W(s), per via analitica si ha W(s)=L(s)/(1+L(s)) e:	L(s)=W(s)/(1-W(s))
Sulla carta di Nichols sono riportati luoghi a modulo e fase costanti relativi:	alla funzione di trasferimento W(s) a ciclo chiuso
Per il passaggio dal ciclo aperto al ciclo chiuso utilizzando la rappresentazione implicita in coordinate naturali di Nichols, si sovrappone:	la carta di Nichols al diagramma di Nichols della funzione di trasferimento L(s) a ciclo aperto
La carta di Nichols:	consente sempre il passaggio inverso da $W(\omega)$ a $L(\omega)$
	ulo 36
Funzioni di trasferimento che legano i segnali provenienti dall'esterno con quelli dipendenti dal	funzioni di sensitività
funzionamento del sistema stesso sono dette:	

Nello schema a blocchi con intervento di disturbi visto nel par. 1, il blocco H(s) rappresenta:	la dinamica di controreazione
La funzione di sensitività complementare è definita come:	F(s)=L(s)/(1+L(s))
La funzione di sensitività può rappresentare, nel caso dello schema a blocchi con intervento di disturbi visto, la funzione di trasferimento tra:	il disturbo D ₂ (s) e l'uscita Y(s)
Nel progetto di un sistema di controllo complessivo, al fine di mantenere il legame tra U'(s) e Y(s) e allo stesso tempo attenuare il disturbo D_1 '(s), sarebbe opportuno avere, per il modulo $ F(j\omega) $, valori prossimi a:	1 per le pulsazioni del segnale di riferimento e a 0 per le armoniche più alte
Per annullare l'errore a regime dovuto a un ingresso a gradino in D ₁ (s) è necessario disporre di:	uno o più poli nell'origine in G ₁ (s)
Nell'esempio (2.1) abbiamo visto che, dopo aver applicato le approssimazioni, F(s) si comporta come:	filtro passa-basso
Supponendo che $F(s)$ non presenti zeri, ma soltanto una coppia di poli complessi e coniugati con pulsazione naturale pari a ω e smorzamento pari a ξ , si ottiene per il suo modulo in ω stesso:	$ F(j\omega) =1/(2\xi)$
La banda passante può essere definita come l'intervallo I _{bp} di pulsazioni individuato dalla relazione (nella quale si assume per F(s) un guadagno unitario):	$(1/\sqrt{(2)}) \le F(j\omega) \le (\sqrt{(2)})$ per ogni ω appartenente a I_{bp}
Affinché la pulsazione ω_b possa costituire l'estremo superiore della banda passante I_{bp} , e cioè che il diagramma polare di $L(j\omega)$ non sia prima entrato in C_2 , si vede che è necessario che per i margini di guadagno k_L e di fase α_L risulti:	$k_L \ge (\mathbf{x}_Q)^{-1} e \alpha_L \ge \Phi_A$
	ulo 37
Abbiamo definito la funzione di sensitività come:	S(s)=1/(1+L(s))
Una situazione ideale, così da rendere nullo l'effetto del disturbo D ₂ (s) sull'uscita Y(s), e del segnale di riferimento U'(s), come ancora del disturbo D ₂ (s) sull'errore E(s), sarebbe quella di avere:	S(s)=0
Se supponiamo $L(s)$ in forma razionale fattorizzata $(L(s)=N_L(s)/D_L(s))$ e asintoticamente stabile, allora $S(s)$:	non ha zeri con parte reale positiva o nulla
L'andamento del diagramma di Bode di $ S(j\omega) $, supponendo che risultino verificate su $L(s)$ le condizioni di applicabilità del criterio di Bode, mostra l'aspetto tipico di:	un filtro passa-alto
Supponiamo L(s) la funzione di trasferimento a ciclo aperto di un sistema a controreazione asintoticamente stabile; l'integrale da 0 a +inf. Di $ S(j\omega) _{dB}$ in d ω è uguale a zero se L(s) ha un grado relativo:	non inferiore a 2
Abbiamo definito la funzione di sensitività del controllo come:	$M(s)=G_1(S)/(1+L(s))$
La funzione di sensitività del controllo, a parte i cambiamenti di segno, esprime l'effetto dei vari ingressi:	sulla variabile di controllo
Un buon compromesso in fase di progettazione	bassi valori di M(jω) per ogni ω

La funzione di sensitività del controllo M(jω)	
dipende solo dalla dinamica del processo da controllare quando:	ω è minore o uguale alla pulsazione critica
La ricerca per $F(j\omega)$ di una pulsazione critica più alta della banda passante del processo, con lo scopo di migliori prestazioni dinamiche per il sistema di controllo complessivo, comporta:	una forte sollecitazione sulla variabile di controllo
Mod	ılo 38
Nello schema a blocchi visto nel par.1, il blocco	il regolatore, o rete di correzione, che blocca l'errore
$G_1(s)$ rappresenta:	e fornisce il controllo all'ingresso dell'impianto
Nel progetto di G1(s), al fine di avere una buona	una pulsazione critica sufficientemente elevata e un
precisione dinamica occorre:	valore non troppo basso per lo smorzamento
Supponiamo che la funzione di trasferimento a ciclo aperto $L(s)=G_1(s)G_2(s)$ soddisfi il criterio di Bode; in tale ipotesi $G_2(s)$:	non può avere poli con parte reale positiva
Il procedimento per definire la struttura del	sintesi per tentativi
regolatore G ₁ (s), che parte da soluzioni semplici e	
successivamente le complica per soddisfare man	
mano ulteriori esigenze, viene detto:	
Nella prima fase della sintesi per tentativi si	$G_{1,s}(s)=h_s/s^q$
prendono in considerazione le caratteristiche richieste per gli aspetti statici, così da scegliere la	
parte statica del regolatore, definita come:	
Tra i quattro regolatori visti nel par. 3, quello	il regolatore III
preferibile come prestazioni dinamiche e come	in regolatore in
risposta indiciale, ma con una riduzione della	
moderazione del controllo ad alte frequenza è:	
Una rete anticipatrice, per ε =0, acquista il nome di:	regolatore PD
Dai diagrammi di Bode della rete anticipatrice si	1/((√ε)θ)
	1,((\0,0)
vede che questa provoca un anticipo di fase, che	27((10)0)
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a:	
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi	ritardatrice
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione	
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete:	ritardatrice
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione	
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione: Il luogo inverso è la parte del luogo delle radici per:	ritardatrice proporzionale, integrale e derivativa llo 39 dei poli del sistema a ciclo chiuso k<0
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione: Il luogo inverso è la parte del luogo delle radici per: Nel metodo del luogo delle radici, la condizione di	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa llo 39 dei poli del sistema a ciclo chiuso k<0
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione: Il luogo inverso è la parte del luogo delle radici per: Nel metodo del luogo delle radici, la condizione di fase (arg($N_L(s)$)-arg($D_L(s)$)), per $k>0$ e v intero, sarà pari a:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione: Il luogo inverso è la parte del luogo delle radici per: Nel metodo del luogo delle radici, la condizione di fase (arg($N_L(s)$)-arg($D_L(s)$)), per k>0 e v intero, sarà pari a: Esplorando il piano complesso, è possibile costruire	ritardatrice proporzionale, integrale e derivativa llo 39 dei poli del sistema a ciclo chiuso k<0
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione: Il luogo inverso è la parte del luogo delle radici per: Nel metodo del luogo delle radici, la condizione di fase (arg($N_L(s)$)-arg($D_L(s)$)), per k>0 e v intero, sarà pari a: Esplorando il piano complesso, è possibile costruire il luogo delle radici diretto come il luogo dei punti s	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180° un multiplo dispari di 180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione: Mod Il metodo del luogo delle radici ha come obiettivo quello di individuare la posizione: Il luogo inverso è la parte del luogo delle radici per: Nel metodo del luogo delle radici, la condizione di fase (arg(N _L (s))-arg(D _L (s))), per k>0 e v intero, sarà pari a: Esplorando il piano complesso, è possibile costruire il luogo delle radici diretto come il luogo dei punti s del piano per i quali la sommatoria (da i=1 a m) di ϵ i meno la sommatoria (da i=1 a m) di ϵ i consideriamo una L(s) definita da	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180° un multiplo dispari di 180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180° un multiplo dispari di 180°
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso $k<0$ $(2\nu+1)180^{\circ}$ un multiplo dispari di 180° $-\eta_1-\eta_2=(2\nu+1)180^{\circ}$
vede che questa provoca un anticipo di fase, che raggiunge il massimo quando ω è pari a: Quando vogliamo attenuare l'effetto di disturbi anche a bassa pulsazione e migliorare la precisione statica, è consigliato usare una rete: La rete a sella è la struttura di un regolatore ad azione:	ritardatrice proporzionale, integrale e derivativa nlo 39 dei poli del sistema a ciclo chiuso k<0 (2v+1)180° un multiplo dispari di 180°

0 a +inf. per il luogo diretto, o da -inf. a 0 per il luogo inverso, viene detto:	
I rami partono, per k=0, dai poli della funzione di	divergono verso l'infinito
trasferimento a ciclo aperto L(s) e, al divergere di k ,	divergence verse i infinite
m per il tracciato diretto e m per il tracciato inverso	
convergono agli zeri, mentre i restanti (n-m) per	
ciascun tracciato:	
I rami che tendono all'infinito sono asintotici all'asse	baricentro del luogo
reale, o a rette che tagliano l'asse reale nell'ascissa	ourreend der ruege
x _a , che viene detta:	
Salvo eventuali singolarità di L(s), l'asse reale:	appartiene al luogo delle radici
La somma dei poli a ciclo chiuso divisa per n non	n>m+1
dipende da k ed è data dalla formula del baricentro	
del sistema a ciclo chiuso solo nel caso in cui:	
	ılo 40
	EVISTE
Mode	
Le tecniche di sintesi nello spazio di stato, come ad	nel dominio del tempo
esempio la tecnica di assegnazione degli autovalori,	
sono basate su modelli:	
L'obiettivo della tecnica di assegnazione degli	ottenere che gli autovalori del sistema
autovalori è quello di progettare un regolatore in	controreazionato abbiano valori prestabiliti
grado di:	
La controreazione di un sistema di controllo può	misurabile
essere spostata dall'uscita allo stato se e solo se	
quest'ultimo è:	
Nell'esempio 1.1 abbiamo visto come stabilizzare un	k ₂ >2
sistema e collocare i suoi poli in posizioni arbitrarie	-
su un piano complesso mediante la controreazione	
dello stato; in particolare per l'anello più interno	
dello schema abbiamo $L(s)=1/(s+p)$ con $p=k_2-2$ che	
può essere reso asintoticamente stabile per:	
La matrice $K=(k_0 k_1 k_{n-1})$ viene detta:	matrice di guadagno
Date le matrici A, B, e un insieme arbitrario Λ di	completamente raggiungibile
numeri reali o complessi e coniugati a coppie, esiste	
una matrice K tale che gli autovalori di F=A+BK	
coincidono con gli elementi di Λ se e solo se la	
coppia (A, B) è:	
In un sistema con controreazione dello stato, sono	K
determinabili a piacimento gli autovalori della	
matrice F, che possono essere resi coincidenti con gli	
elementi corrispondenti di Λ, scegliendo in modo	
opportuno gli elementi della matrice:	i mimi a ama i
In un sistema SISO completamente raggiungibile,	A~=TAT-1 e B~=BT formino una coppia nella forma
ma non in forma canonica, al fine di poter utilizzare	canonica di raggiungibilità
la tecnica di assegnazione degli autovalori, è	
necessario individuare la trasformazione T sullo	
spazio di stato tale che le matrici:	1 (* 1* * 1975)
Per un sistema SISO completamente raggiungibile,	la matrice di raggiungibilità del sistema originario
ma non in forma canonica, la matrice K che assegna	
arbitrariamente gli autovalori a ciclo chiuso è data da	
K=(K~M~r(Mr)-1) dove Mr è:	V=(2, 2)
Nell'esempio 3.1 abbiamo visto che la matrice	K=(-2 -3)
F=A+BK ha come autovalori -3 e -4 se la matrice K	
è pari a:	

Modu	ılo 42
Un osservatore è un sistema, statico o dinamico, che	l'ingresso e l'uscita del sistema in esame per ottenere
elabora:	una stima dello stato corrente
Se ricostruiamo nell'osservatore una copia del	converge a 0 per t che tende a +inf.
sistema in esame, e supponiamo che lo stato iniziale	
è stimato soltanto da $x^{}(0)$ e che la matrice dinamica	
A del sistema è asintoticamente stabile, allora	
l'errore del sistema:	4 ' 1' 1 1 110 4
La matrice H, presente nel sistema che definisce	matrice di guadagno dell'osservatore
l'osservatore asintotico, prende il nome di:	N. A. H.C.
Occorre scegliere la matrice di guadagno H in modo	N=A+HC
da avere il valore desiderato degli autovalori della	
matrice:	
Nell'osservatore asintotico dello stato notiamo che la	(C^T, A^T) è completamente raggiungibile
coppia (A,C) è completamente osservabile se e solo	
se la coppia:	1
Date le matrici A, C, e un insieme arbitrario Λ di	completamente osservabile
numeri reali o complessi e coniugati a coppie, esiste	
una matrice H tale che gli autovalori di N = A+HC	
coincidano con gli elementi di Λ se e solo se la	
coppia (A,C) è:	
Nel caso di osservatore asintotico con stato non	completamente raggiungibile e completamente
misurabile, gli autovalori del sistema complessivo	osservabile
possono essere assegnati in modo arbitrario se il	
sistema originario è:	
Il principio per cui il progetto della matrice di	principio di separazione
guadagno K della legge di controllo, e il progetto	
della matrice di guadagno dell'osservatore H	
possono essere condotti in modo indipendente l'uno	
dall'altro viene detto:	
Nel caso di un sistema che faccia uso di	minori di quelle associate agli autovalori del sistema
controreazione dello stato anche quando lo stato	a ciclo chiuso
stesso non è direttamente accessibile, per risolvere il	
problema dell'assegnazione arbitraria degli	
autovalori è conveniente scegliere gli autovalori	
associati alla dinamica dell'osservatore in modo che	
le loro costanti di tempo siano:	
Spostandoci nel dominio della variabile complessa ci	non è sufficiente a garantire la stabilità del sistema
rendiamo conto che controllare la dinamica del	complessivo del controllo del processo
regolatore e dell'osservatore:	1. 42
Modu	
I regolatori lineari più usati in ambito industriale	proporzionale, integrale e derivativa
sono i regolatori PID, cioè ad azione:	11 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
La struttura di un regolatore PID risponde a	annullare asintoticamente l'errore dovuto a segnali di
un'esigenza empirica, secondo la quale è opportuno	riferimento, o di disturbo, costanti nel tempo
che la variabile di controllo sia costituita dalla	
somma di tre contributi, uno dei quali proporzionale	
all'integrale dell'errore e, che ha lo scopo di:	
La legge di controllo è il legame tra:	l'errore e e la variabile di controllo c all'ingresso del processo
I regolatori PID sono da considerarsi sistemi lineari:	SISO, stazionari, impropri
Un regolatore PID ideale ha:	un polo nell'origine e due zeri a parte reale negativa
Una brusca variazione dell'ingresso u(t), e quindi	derivatrice
dell'errore e(t), provoca una variazione di tipo	

impulsivo, con possibili conseguenze di saturazione, a valle dell'azione:	
L'organo posto a valle del regolatore, con il compito di tradurre il segnale e(t) in uscita al regolatore stesso in uno, detto o(t), di caratteristiche fisiche e potenza adeguate al controllo del blocco successivo costituito dal processo, viene detto:	attuatore
Detta o_{max} la soglia di saturazione dell'attuatore, e supponendo unitario il guadagno dello stesso, avremo che $o(t) = c(t)$ per:	c(t) ≤ o _{max}
Il fenomeno per cui, al raggiungimento del limite del segnale di ingresso al processo sotto controllo, anche se e(t) cambia di segno si deve comunque attendere che lo stato c(t) del regolatore torni sotto un certo livello prima che l'attuatore possa riprendere il suo funzionamento in zona non di saturazione, viene detto:	carica integrale
Consideriamo un regolatore descritto dalla funzione di trasferimento $R(s)=N_R(s)/D_R(s)$ con $D_R(0)=0$ per via dell'azione integrale; nello schema a blocchi di desaturazione visto nel par. 3, il polinomio $\Gamma(s)$ deve essere scelto in modo che sia:	$(N_R(s)/\Gamma(s)) > 0$
Mod	ulo 44
Si adottano metodi automatici di taratura, e quindi di	non è noto, o non se ne conoscono dettagli
sintesi del regolatore, a partire da specifiche prove effettuate sul processo, quando quest'ultimo:	importanti ai fini della predisposizione della regolazione
Il metodo di Ziegler e Nichols prevede di porre il processo in un ciclo chiuso, con un regolatore proporzionale P, e di aumentare il guadagno k _p di quest'ultimo fino a quando il sistema risponde ad una variazione a gradino del segnale di riferimento u(t) con:	un'oscillazione permanente
L'impiego di un regolatore puramente proporzionale nel metodo di Ziegler e Nichols non annulla l'errore a regime, ma lo riduce soltanto in funzione di:	1/k _p
Nella tabella 2.1 vista nel par. 2, il suggerimento per il regolatore PID fa si che T _i = 0,5 T e quindi i due zeri del regolatore:	coincidono in $z_1 = z_2 = -4/T^-$
Il margine di guadagno k _G , dove G(s) è il processo da controllare e k _G <+inf., coincide con:	il guadagno critico
Un regolatore PID modifica le prestazioni dinamiche del sistema a ciclo chiuso; più precisamente l'azione integrale:	comporta un ritardo di fase di -90°
Nella progettazione di un regolatore attraverso l'assegnazione del margine di guadagno viene stabilita una relazione tra ω_G ' e il prodotto T_iT_d e di norma si sceglie:	$T_i=4T_d$
Nella progettazione di un regolatore attraverso l'assegnazione del margine di guadagno, avendo scelto T_i =4 T_d , la pulsazione ω_G ' si può ricavare dalla relazione:	$Ti=2/(\omega_G')$
Per assegnare il margine di fase α_L , così da spostare il punto A, identificato con la procedura di Ziegler e Nichols in anello chiuso, nel punto A_2 , deve risultare:	$arg(R_{PID}(j\omega_{G}')G(j\omega_{G}'))=((\alpha_{L}/180^{\circ})-1)\pi$

T 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1- ()
Le formule che definiscono i parametri del	$k_{\rm p} = k_{\rm p}^{\rm cos}(\alpha_{\rm L})$
regolatore PID, che assicura le specifiche desiderate	
sul margine di fase, sono $\omega_G'T_d$ - $(1/(\omega_G'T_i))$ = $\tan(\alpha_L)$, T_i = $4T_d$ e:	
	ulo 45
Dove fosse necessario trasferire il segnale di	trasduttore
riferimento u(t) dal suo supporto fisico in un altro	
supporto, compatibile per essere confrontato con il	
segnale proveniente dall'uscita y(t), il blocco T(s),	
visto nella schema del par. 1, può assumere il ruolo	
di:	
Il blocco T(s) consente di modificare la funzione di trasferimento tra u(t) e c(t) per:	ridurre la sollecitazione sulla variabile di controllo
Se la catena diretta R(s)G(s) non ha alcun polo	T(0) = F(0)-1
nell'origine, il ruolo di T(s) potrebbe essere quello di	
un compensatore statico, che provvede con il suo	
guadagno a compensare quello di F(s), ovvero:	
A fronte di un ingresso u(t) a gradino, si potrebbe	un polo reale negativo
desiderare di trasmettere all'entrata del nodo sommatore un segnale uf(t) con una dinamica meno	
veloce, così da ridurre le sollecitazioni sulla	
variabile di controllo c(t); questo può essere ottenuto	
assegnando a T(s):	
Possiamo assegnare a T(s) un comportamento da	l'estremo superiore della banda passante di T(s) sia
filtro passa-basso, che faciliti la moderazione della variabile di controllo e riduca eventuali saturazioni e	superiore alla pulsazione critica di R(s)G(s)
conseguenti nonlinearità nel processo sottoposto a	
controllo, facendo attenzione, per non introdurre un	
rallentamento nella risposta dell'uscita y(t) al segnale	
di riferimento u(t), al fatto che:	
	T () C() 1
Idealmente, nello schema a blocchi visto nel par. 2, al fine di avere Y(s)=U(s), dovremmo effettuare la	$T \sim (s) = G(s) - 1$
scelta:	
Uno dei motivi per cui la relazione $T_{\sim}(s) = G(s)-1$	G(s) avesse zeri con parte reale nulla o positiva
non è realizzabile realmente, è che T~(s) risulterebbe	1
non asintoticamente stabile se:	
Utilizzando le tecniche di compensazione per	solo il compensatore reale dipende dal regolatore
"cancellazione" del processo viste nel par. 2,	R(s)
notiamo che:	
Consideriamo uno schema a blocchi come quello	M(s) = -H(s)G(s)-1
visto nel par. 3, con un disturbo, accessibile alle	(-)(-) - (-) -
misure, che vi entra a valle del processo da	
controllare; per annullare l'effetto del disturbo	
dovremmo avere:	
La formula $M(s)=-H(s)G(s)-1$ per essere realizzabile	H(s)G(s)-1 fosse propria e che G(s) avesse zeri a
richiederebbe che:	parte reale positiva o nulla
	ulo 46
Nello schema di controllo per il sistema instabile	stabilizzare l'anello interno
visto nel par.1, il regolatore R1(s) ha il compito di:	

Un sistema viene detto triangolare se la sua matrice	una matrice quadrata in cui tutti gli elementi sotto o
di trasferimento G(s) risulta triangolare, ovvero se è: Nel sistema triangolare 2x2 descritto nel par.2,	sopra la diagonale principale sono nulli solo dalla variabile di controllo c1(t)
l'uscita y1(t) dipende:	solo dalla variabile di controllo c1(t)
ruseita y r(t) diperide.	
Nello schema di controllo del sistema triangolare	M(s) = -G21(s)(G22(s))-1
2x2 visto nel par.2, sull'uscita y2(t) agiscono le	
variabili di controllo c2(t) e c1(t), la quale viene	
considerata come un disturbo per y2(t); possiamo	
quindi progettare R2'(s) come regolatore per la	
funzione di trasferimento G22(s) e M(s) come	
compensatore del disturbo c1(t), ovvero pari a:	Historials
Nello schema di controllo con disaccoppiamento rappresentato in forma matriciale, il blocco $\Delta(s)$	diagonale
prende il nome di disaccoppiatore e fa si che la	
matrice di trasferimento $Gd(s)=G(s)\Delta(s)$ sia:	
Il procedimento di disaccoppiamento viene detto "in	procede dalla conoscenza della matrice di
avanti" se:	trasferimento G(s) all'individuazione del
	disaccoppiatore $\Delta(s)$
Nel procedimento di disaccoppiamento 'in avanti' in	$\Delta 11(s) = \Delta 22(s) = 1$
un sistema 2x2, al fine di avere Δ 12(s) = -(G12(s)/G11(s)) e Δ 21(s) = -(G21(s)/G22(s)), le	
altre due incognite vengono fissate pari a:	
mane and an egation to get a control part in	
Nel processo di disaccoppiamento "all'indietro", per	$\Delta(s) = (I - \Gamma(s)) - 1$
un'opportuna matrice $\Gamma(s)=(Gd(s))-1(Gd(s)-G(s))$ e	\(\frac{1}{3}\) \(\frac{1}{1}\) \(\frac{1}{3}\) \(\frac{1}{3}\
indicando con I la matrice identità, si impone al	
disaccoppiatore la struttura:	
Quando ogni elemento del vettore E(s) di ingresso al	centralizzato
regolatore influenza ciascuno degli elementi del	
vettore C(s) di uscita dallo stesso, il sistema di controllo si dice:	
controllo si dice:	
D 11	
Per il controllo decentralizzato di un sistema MIMO,	$\Delta(s)$ =I con I matrice d'identità
al fine di avere C(s)=R'(s)E(s) in modo che ogni elemento di E(s) influenzi solo il corrispondente	
elemento di E(s) infruenzi solo il corrispondente elemento di C(s) attraverso il regolatore Ri'(s), si	
sceglie il disaccoppiatore $\Delta(s)$ pari a:	
Mod	ulo 47
Nello schema a blocchi nonlineare canonico	il blocco nonlineare supposto privo di dinamica
indichiamo con N:	
Un blocco nonlineare viene descritto dalla relazione	segno
istantanea $c=\phi(\varepsilon(t))$; un esempio di funzione ϕ di interesse applicativo à il relà senza isteresi, che	
interesse applicativo è il relè senza isteresi, che rappresenta sostanzialmente la funzione:	
In generale, per i sistemi canonici nonlineari, si	elementi nonlineari da caratteristica
potrebbero avere blocchi dove l'uscita assume	
soltanto un numero finito di valori, commutando	
soltanto un numero finito di valori, commutando	

dall'uno all'altro al passaggio dell'entrata attraverso determinate soglie; questi elementi vengono detti:	
Tenendo conto della rappresentazione ingresso-stato-uscita, l'equazione di stato di uno schema a blocchi nonlineare canonico sarà:	$x(t)=Ax(t)+\varphi(-Cx(t))$
I criteri relativi alla funzione nonlineare φ suppongono che questa non sia necessariamente nota in dettaglio, ma che sia:	limitata superiormente e inferiormente da due rette passanti per l'origine
Un sistema canonico nonlineare si dice assolutamente stabile nell'intervallo [k1, k2] se lo stato di equilibrio x=0 è:	globalmente stabile per qualsiasi elemento ϕ in $\Phi[k1, k2]$
L'insieme [k1, k2]-1=(h \in R:(1/h) \in [k1, k2] -(0)) è costituito da una semiretta se:	k1=0 o k2=0
Dato un intervallo [k1, k2], condizione necessaria per la stabilità assoluta nello stesso intervallo del sistema, con la funzione φ ristretta all'insieme Φl[k1, k2], è che il numero di giri che il diagramma di Nyquist di L(jω) compie in senso antiorario attorno all'insieme [k1, k2]-1 sia ben definito e pari:	al numero di poli con parte reale positiva di L(s)
Dalla definizione di "cerchio" vista nel par. 2, si ha che se [k1, k2]-1 è un'intervallo finito, allora la porzione del piano complesso σ [k1, k2] delimitata dalla circonferenza con centro sull'asse reale e passante per i punti (-1/k1, 0), (-1/k2, 0), e che contiene l'insieme [k1, k2]-1, è:	un cerchio con diametro coincidente con [k1, k2]-1
Considerando nell'insieme i Teor. 2.1 e 2.2, si deduce che i casi sui quali non si può decidere nulla riguardo all'assoluta stabilità di un sistema canonico nonlineare, con riferimento ad un dato intervallo [k1, k2], sono quelli nei quali:	c'è un'intersezione tra il diagramma polare di $L(j\omega)$ e il "cerchio" $\sigma[k1, k2]$
	ulo 48
Per un sistema nonlineare canonico, l'esistenza di cicli limite stabili implica, per il sistema stesso, la proprietà di:	instabilità globale
In un sistema puramente lineare le oscillazioni permanenti si realizzano soltanto se il sistema stesso ha:	poli con parte reale nulla
Dato uno spazio di stato bidimensionale nonlineare, si definisce suo ciclo limite asintoticamente stabile una curva chiusa C sullo spazio di stato che rispetta la proprietà:	tutte le traiettorie con stato iniziale arbitrariamente prossimo a C convergono a C per t che tende a infinito
Nello studio di un sistema attraverso la funzione descrittiva della sua nonlinearità, l'aspetto nonlineare è concentrato nel legame tra l'ampiezza E dell'ingresso del blocco N e:	modulo e fase della prima armonica in uscita dal blocco N stesso
Una rappresentazione equivalente della prima armonica dell'uscita di un elemento nonlineare N, stimolato con un ingresso sinusoidale, è costituita dalla funzione descrittiva D(E), definita come:	D(E)=(C1(E) /E)ejarg(C1(E))
L'ipotesi alla base del metodo della funzione descrittiva per accertare esistenza e parametri delle oscillazioni permanenti nel sistema canonico in esame è detta:	ipotesi dell'azione filtrante

Per l'ipotesi dell'azione filtrante vista nel par. 2, dette Y(jnω) le corrispondenti armoniche di ordine n	Y(jn\omega)	
nell'uscita y(t), vale la relazione:		
Affinché il sistema canonico sia compatibile con	$1+L(j\omega)D(E)=0$	
l'esistenza di oscillazioni permanenti, deve essere	1 · E((w)E(E) · V	
soddisfatta l'equazione di congruenza che, tenendo		
conto della compensazione delle fasi lungo il ciclo,		
equivale a:		
La soluzione dell'equazione $L(j\omega)=\Lambda(E)$ si trova	luogo dei punti critici	
nell'intersezione, sul piano complesso, del		
diagramma polare di $L(j\omega)$, al variare di ω , con il		
tracciato di Λ(E)=-1/D(E), al variare di E, detto:	nogotivo	
Il verificarsi di un punto sul piano complesso che soddisfa l'equazione pseudocaratteristica	negativo	
corrisponde, per il relativo sistema canonico, a		
un'oscillazione permanente asintoticamente stabile		
se il prodotto scalare (t, n), con n normale alla		
tangente del diagramma polare di L(jω) e t tangente		
al tracciato di Λ(E), è:		
	ulo 49	
NON PREVISTE		
	ulo 50	
Uno stato di equilibrio relativo ad un sistema nonlineare, come visto nel par. 1, è in una situazione	autovalori con parte reale nulla e altri con parte reale negativa	
di stabilità non definita quando il suo corrispondente	negativa	
sistema linearizzato ha:		
Linearizzando il sistema unidimensionale x(t)=kxm,	m dispari e k<0	
con m=2, 3,, attorno a un qualsiasi punto dell'asse		
reale si ottiene $\delta x(t)=0$, così che esso risulta un		
punto di equilibrio; si vede che il sistema è		
asintoticamente stabile per:		
Se un sistema nonlineare canonico risulta (lineare e)	congettura di Aizerman	
asintoticamente stabile per ogni $\phi(\xi)$ che appartiene allo spazio $\Phi[k1, k2]$, allora risulta anche		
globalmente asintoticamente stabile per ogni $\phi(\xi)$		
che appartiene allo spazio funzionale $\Phi[k1, k2]$;		
questa affermazione è detta:		
Il contributo di Ljapunov alla teoria della stabilità	diminuisce monotonicamente	
per sistemi nonlineari parte dall'osservazione che in		
un sistema físico il suo stato convergerà verso un		
qualche punto di equilibrio se l'energia totale:	1/(0) 0 1/() 0	
Dato un insieme aperto $K \subseteq Rkn$, con zero	$V(0)=0$ e $V(x)>0$, per ogni x appartenente a $K\square$	
appartenente all'insieme K, una funzione V: $K \rightarrow R$ si dice definita positiva se:		
Sia V(x) una forma quadratica in x, cioè del tipo	maggiori di zero	
V(x)=xT Qx con Q matrice quadrata nxn; $V(x)$ è	maggiori di zero	
definita positiva se e solo se tutti i determinanti		
principali di Q sono:		
Sia V(x) una forma omogenea di grado k in x, cioè	indefinita	
tale che $V(ax)=a < sup > k < / sup > V(x)$; allora se k è		
dispari, V(x) è:		
Se per il sistema $x(t)=f(x(t))$ con $x(t0)=x0$ esiste una	il primo teorema di stabilità di Ljapunov	
funzione di Ljapunov, allora l'origine è stabile;		
questo appena annunciato è:		

$G = \cdots = i1 = i + \cdots = -i + \cdots = -i + i + \cdots = -i + \cdots = -i + i + \cdots = -i + -i + \cdots = -i + i + \cdots = -i + -i + \cdots = -i + i + \cdots = -i + -i + \cdots = -i$:-4-4:4-4-1:1-
Se per il sistema $x(t)=f(x(t))$ con $x(t0)=x0$ esiste una	asintoticamente stabile
funzione di Ljapunov tale che V(x) sia definita negativa, allora l'origine è:	
L'origine del sistema $x(t)=f(x(t)) con x(t0)=x0 è$	$V(x)$ sia definita negativa e $V(x) \rightarrow +inf$. se $ x \rightarrow +inf$.
globalmente asintoticamente stabile se esiste una	$V(x)$ sia definita negativa e $V(x) \rightarrow + \min$. se $ x \rightarrow + \min$.
funzione di Ljapunov $V(x)$ definita in Rn tale che:	
	ulo 51
Dato un sistema del tipo $x(t)=f(x(t))$ con f:Rn \rightarrow Rn,	instabile
se esiste una funzione $V(x)$ con $V(0)=0$, con derivate	instabile
parziali prime continue in un intorno dell'origine, nel	
quale la stessa funzione è indefinita negativa, e con	
la sua derivata lungo il moto definita positiva, allora	
il sistema è:	
Sia K un intorno dell'origine, e K' un insieme ⊂ K e	il teorema di Chetaev
contenente l'origine nella sua frontiera. Sia V(x) una	
funzione definita su K, con $V(x)=0$ nell'origine e in	
tutta la frontiera di K' contenuta nell'interno di K, e	
con derivate parziali prime continue su K',	
nell'interno del quale la stessa funzione e la sua	
derivata lungo le traiettorie del sistema in esame	
sono entrambe definite positive. Allora l'origine è	
instabile per il sistema stesso. Quello appena	
enunciato è:	
Per la dimostrazione del teorema di Chetaev si	solo attraverso la frontiera in comune con la
osserva che le ipotesi impongono ad una traiettoria	frontiera di K
che inizia in K' di uscire da K' stesso:	1 100 1 1 1 1 1 1 1 1 1
Consideriamo il sistema $x1(t)=ax12(t)+bx23(t)$ e	solo all'interno della parabola descritta da
x2(t) = -cx2(t) + dx13(t) con a, b, c, d>0 e la funzione	$x1=(1/2)x2^2$
di Ljapunov V(x)=x1- $(1/2)$ x22; la funzione V(x) sarà positiva:	
Per il sistema $x(t)=Ax(t)$, considerando una matrice	$V(x)=x^TQx$
Q simmetrica e definita positiva, una funzione di	V(A) A TQA
Ljapunov V(x) espressa in forma quadratica è:	
Consideriamo il sistema $x(t)=Ax(t)$ e una funzione di	globalmente asintoticamente stabile
Ljapunov $V(x)=xTQx$ con Q simmetrica e definita	
positiva; posto ATQ+QA= -C si ha che se anche C è	
definita positiva, allora, per il teorema di	
Barbashin-Krasowskii, il sistema risulta:	
Consideriamo un sistema canonico nonlineare	definita positiva
indiretto. Supponiamo di voler determinare la	
matrice Q partendo dalla matrice C e supponiamo	
inoltre che la matrice A sia stabile e C definita	
positiva; in questo caso si ha che Q è:	
Attraverso il metodo di Krasowskii abbiamo visto	$V(x)=f^{T}(x)f(x)$
che, per un sistema $x(t)=f(x(t))$ con x appartenente a	
Rn, una valida funzione di Ljapunov, per cui	
l'origine del sistema è globalmente asintoticamente	
stabile è:	attivations
In uno schema canonico nonlineare 'indiretto', a	attuatore
differenza di uno 'diretto', la nonlinearità viene inclusa in uno schema a controreazione che può	
svolgere anche funzioni di:	
STOISOIC ANOIC TAILLIOIN AL.	

Data una C-1 definita positiva, la condizione che Lefschetz ha introdotto affinché la funzione $V(x,\varepsilon)$ vista nel par. 3 sia una funzione di Ljapunov per il sistema nonlineare indiretto è:	$h > (1/\beta)g^TC^-1g$
Mod	ulo 52
In uno schema a blocchi nonlineare canonico si parla di isteresi passiva se, per $\varepsilon(t)$ (che rappresenta il blocco lineare) che si allontana dall'origine, la nonlinearità $n(\varepsilon,t)$ è:	non superiore al valore assunto quando $\epsilon(t)$ si avvicina all'origine
Un blocco lineare è stabile di grado α nell'uscita se le trasformate di Laplace della risposta libera $\epsilon 0(t)$ e della risposta impulsiva $g(t)$ sono funzioni razionali di s con:	poli a parte reale < -α
Il sistema nonlineare a controreazione visto nel par. 1 si dice asintotico di grado α nel controllo se per ogni condizione iniziale si ha:	$eatc(t) \in L2(0, inf.)$
Un sistema nonlineare a controreazione, come visto nel par. 1, se per ogni condizione iniziale si ha $e\alpha t\epsilon(t) \subseteq L2(0, inf.)$, viene detto:	asintotico di grado α nell'uscita
Consideriamo un sistema nonlineare a controreazione con il blocco lineare stabile nell'uscita; se esiste un $q \in R$ tale che, per ogni $\omega \in R$ + sia $R[(1+j\omega q)G(j\omega)] + (1/k) \ge \delta > 0$ per δ arbitrariamente piccolo, allora il sistema sarà:	assolutamente asintotico, nel controllo e nell'uscita, nell'intervallo [0, k]
Una restrizione al teorema di Popov, nel caso di $n(\varepsilon)$ con isteresi passiva invariante nel tempo, è che deve essere:	k <inf. e="" q□<="" td=""></inf.>
Se scegliamo q=0, la condizione di Popov diventa $R[G(j\omega)] > -(1/k)$ e il diagramma polare di $G(j\omega)$, per garantire la validità del teorema di Popov, deve giacere:	a destra della retta verticale $R(s) = -(1/k)$
La congettura di Aizerman, riformulata con riferimento all'assoluta asintoticità nel controllo e nell'uscita, e a funzioni n a un solo valore e invarianti nel tempo, implica che il settore di Hurwitz:	coincida con il settore di Popov
La retta di Popov è definita dalla relazione:	$R(l(\omega)) = -(1/k) + \omega q I(l(\omega))$
Consideriamo un sistema lineare G(s) descritto come nel teorema 3.1 del par. 3 e che presenta tre poli p1=0, p2=-1, p3=-2; una volta collocato un tale G(s), dall'assoluta asintoticità nel controllo e nell'uscita dello schema:	non possiamo dedurre la stabilità asintotica dell'origine
	ulo 53
La condizione necessaria e sufficiente del lemma di Kalman visto nel par. 1, scegliendo δ =(1/2) β ATc e γ =(1/k)+ β cTb e considerando solo la diseguaglianza stretta, equivale:	alla condizione di Popov
La tecnica dello spostamento dei poli equivale all'attuazione di una controreazione locale, con guadagno a, al blocco lineare $G(s)$ e consiste nel sostituire l'elemento nonlineare $n(\varepsilon(t))$ con:	$na(\varepsilon(t))=c(t)-a\varepsilon(t)$
Dopo aver applicato la tecnica dello spostamento dei poli nel sistema canonico nonlineare, mantenendo lo stesso andamento per l'errore $\epsilon(t)$, la variabile di	1/(1+aG(s))

ingresso u(t) 'vede' il sistema attraverso la funzione		
di trasferimento:		
Applicando la tecnica dello spostamento dei poli alla	Ga(s)=1/(s(s2+6s+5)+a-12)	
funzione $G(s)=1/((s-1)(s+3)(s+4))$ si ottiene:	, , , ,	
Lo spostamento degli zeri per un sistema nonlineare	Gb(s)=G(s)-b	
canonico è definito da $\varepsilon b(t) = \varepsilon(t) + bc(t)$, e la nuova		
funzione di trasferimento Gb(s) del blocco lineare		
risulta:		
Applicando la tecnica dello spostamento degli zeri	Gb(s) = -6/(s+2)	
alla funzione $G(s)=(s-4)/(s+2)$, con b=1, otteniamo:	, , ,	
Il criterio del cerchio visto nel teorema 4.1 ritrova	a=0 e b=k	
come caso particolare il teorema di Popov se:		
Nel teorema 4.1 abbiamo visto che il cerchio critico	rimane fisso	
varia con ω nel caso in cui q=0 si ha che il centro del		
cerchio:		
Affinché G(jω) rimanga fuori dal cerchio critico	(-1/b, 0)	
occorre che $G'(j\omega)$ rimanga sulla destra, per $\omega=1$,		
della tangente al cerchio critico nel punto:		
Consideriamo il blocco lineare G(s)=1/(s(s 2	l'asintotica stabilità del sistema per una nonlinearità	
+6s+5)) controreazionato da un guadagno statico con	invariante nel tempo e a un solo valore nel settore (0,	
a=12 e applichiamo il teorema 4.1; la tangente al suo	30)	
diagramma in (-1/30, 0) e con q=1,2 garantisce:	,	
	ulo 54	
NON PREVISTE		