第七章 LR分析程序及其自动构造

7. 1	LR分析概述
7. 2	LR (0) 分析
7.3	SLR(1) 分析
7.4	使用二义文法
7. 5	LR(1)分析

7.1 L R 分析概述

LR (K)

- L 从左至右扫描输入符号串
- R 构造一个最右推导的逆过程
- K 向右顺序查看输入串的K个符号
- LR(0):在分析过程中不需向右查看输入符号。
- 四种分析器: LR(0) SLR(1) LR(1) LALR(1)
- SLR(1)和LALR(1)分别是LR(0)和LR(1)的一种改进。

分析器模型和分析算法

L R分析器模型

例:
$$G[S]: S \rightarrow a A c B e$$
 [1] $A \rightarrow b$ [2] $A \rightarrow Ab$ [3] $B \rightarrow d$ [4]

		A	CTIO	N				GOT	О	
	a	c	e	b	d	#	S	A	В	
0	S 2						1			
1						acc				
2				S 4				3		
3		S 5		S 6						
4	r2	r2	r2	r2	r2	r2				
5					S 8				7	
6	r3	r3	r3	r3	r3	r3				
7			S 9							
8	r4	r4	r4	r4	r4	r4				
9	r1	r1	r1	r1	r1	r1				

LR分析算法

置ip指向输入串w的第一个符号

- 令S为栈顶状态
- a是ip指向的符号
- 重复 <u>begin</u>
- <u>if</u> ACTION[S,a]= S_i
- <u>then</u> <u>begin</u> PUSH j,a(进栈)
- ip 前进(指向下一输入符号)
- end –
- <u>else</u> <u>if</u> ACTION[S,a]=r_j (第j条产生式为A→β)

L R 分析程序

```
» then begin
       pop |β| 项
       令当前栈顶状态为S'
       push GOTO[S',A]和A(进栈)
   » end
   » else if ACTION[s,a]=acc
       then return (成功)
       else error
- end.重复
其中,S_j=GOTO[S_i,X]表示当栈顶状态为S_i遇到当前文法符号为X时应转向状态S_i
```

L R 分析程序

例:

$$-G[S]: S \rightarrow a A c B e [1]$$

$$- A \rightarrow b$$
 [2]

$$- A \rightarrow Ab$$
 [3]

$$- B \rightarrow d [4]$$

w=abbcde#

Step	states.	Syms.	The rest of input	action goto
1	0	#	abbcde#	s2
2	02	#a	bbcde#	s4
3	024	#ab	bcde#	r2 goto(2,A)
4	023	#aA		s6
5	0236	#aAb	cde#	r3
6	023	#aA		s5
7	0235	#aAc	de#	s8
8	02358	#aAcd	e#	r4
9	02357	#aAcB		s9
10	023579	#aAcBe	#	r1
11	01	#S		acc

T	161.
文法の	71 O 1 .
711	

- (1) $S \rightarrow aAcBe$
- (2) $A \rightarrow b$
- (3) $A \rightarrow Ab$
- $(4) B \rightarrow d$

步骤	符号栈	输入符号串	动作	
1)	#	abbcde#	移进	
2)	#a	bbcde#	移进	
3)	#ab	bcde#	归约(A→b)	
4)	#aA	bcde#	移进	
5)	#aAb	cde#	归约(A→Ab)	
6)	#aA	cde#	移进	
7)	#aAc	de#	移进	
8)	# aAcd	e#	归约(B→d)	
9)	#aAcB	e#	移进	
10)	#aAcBe	#	归约	
11)	#s	#	接受	

对输入串abbcde#的移进-规约分析过程

符号串abbcde是否是G[S]的子

 $S \Rightarrow aAcBe \Rightarrow aAcde \Rightarrow aAbcde \Rightarrow abbcde$

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约(A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	S	
5)	#aAb	cde#	归约(A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	
7)	#aAc	de#	移进	0235	S ₈	
8)	# aAcd	e#	归约(B→d)	02358	r ₄	7
9)	#aAcB	e#	移进	02357	S ₉	
10)	#aAcBe	#	归约(S→aAcBe)	023579	$\mathbf{r_1}$	1
11)	#S	#	接受	01	acc	

文法G[S]: (1) S → aAcBe (2) A → b (3) A → Ab

 $(4) B \rightarrow d$

S_i:移进,将状态i和输入诊进栈

r_i:归约,用第i个产生式归约,同时状态栈与符号栈退出相应个符号,并把GOTO表相应状态和第i个产生式的左部非终结符入栈。

			ACT	ION			E	OTO)
	а	С	e	Ь	d	#	S	A	В
0	S ₂						1		
1						acc			
2				54				3	
3		S ₅		S ₆					
4	r ₂	r ₂	r ₂	r ₂	r ₂	r ₂			
5					5 ₈				7
6	r ₃	r ₃	r ₃	r ₃	r ₃	r ₃			
7			5,						
8	r ₄	r ₄	r ₄	r ₄	r ₄	r ₄			
9	r ₁	r ₁	r ₁	r ₁	r ₁	r ₁			

构造LR分析表的预备知识

LR文法

对于一个上下文无关文法,如果能够构造一张 LR 分析表,使得它的每一个入口均是唯一的(S_j , r_j ,acc,空白),则称该上下文无关是LR 文法.

活前缀

规范句型的前缀,若不含句柄以后的任何符号,则称它为该规范句型的活前缀。

LR(0) 分析

- LR(0)文法 能力最弱,理论上最重要
- >存在FA 识别活前缀
- >识别活前缀的DFA如何构造 (LR(0)项目集规范族的构造)
- >LR(0)分析表的构造

LR分析

活前缀

G=(Vn,Vt,P,S),若有 $S' \overset{*}{\bowtie} \alpha A \omega \overset{*}{\bowtie} \alpha \beta \omega$, $\gamma \neq \alpha \beta \in \beta$ 的前缀,则称是文法G的活前缀. 其中S'是对原文法扩充($S' \rightarrow S$)增加的非终结符.

LR分析需要构造识别活前缀的有穷自动机

- 我们可以文法的终结符和非终结符都 看成有穷自动机的输入符号,每次把 一个符号进栈看成已识别过了该符号, 同时状态进行转换,当识别到可归前 级时,相当于在栈中形成句柄,认为 达到了识别句柄的终态。

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	S ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	
7)	#aAc	de#	移进	0235	S ₈	
8)	# aAcd	e#	归约 (B→d)	02358	r_4	7
9)	#aAcB	e#	移进	02357	S ₉	
10)	#aAcBe	#	归约(S→aAcBe)	023579	r_1	1
11)	#S	#	接受	01	acc	

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂	

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	# #a	abbcde# bbcde#	移进 移进	0 02	S ₂ S ₄	

符号栈	输入符号串	动作	状态栈	ACTION	GOTO
# #a #ab	abbcde# bbcde# bcde#	移进 移进 归约 (A→b)	0 02 024	S ₂ S ₄ r ₂	3
	# #a	#a bbcde#	# abbcde# 移进 #a bbcde# 移进	# abbcde# 移进 0	# abbcde# 移进 0 S ₂ # bbcde# 移进 02 S ₄

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	5 ₆	

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约 (A→b)	024		3
4)	#aA	bcde#	移进	023	r ₂ S ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#		0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	S ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	

4) #aA bcde# 移进 023 S ₆ 5) #aAb cde# 归约(A→Ab) 0236 r ₃	骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
2) #a bbcde# 移进 02 S ₄ 3) #ab bcde# 归约(A→b) 024 r ₂ 3 4) #aA bcde# 移进 023 S ₆ 5) #aAb cde# 归约(A→Ab) 0236 r ₃)	#	abbcde#		0	52	
3) #ab bcde# 归约(A→b) 024 r ₂ 3 4) #aA bcde# 移进 023 S ₆ 5) #aAb cde# 归约(A→Ab) 0236 r ₃)	#a	bbcde#	移进	02	-	
4) #aA bcde# 移进 023 S ₆ 5) #aAb cde# 归约(A→Ab) 0236 r ₃)	#ab	bcde#	归约 (A→b)	024	•	3
5) #aAb cde# 归约(A→Ab) 0236 r ₃ 3)	#aA	bcde#	移进	023	5 ₆	
)	#aAb	cde#	归约 (A→Ab)	0236		3
7) #a4c de# 移进 0235 Sa)	#aA	cde#	移进	023		
TY THAT GET TO SEE)	#aAc	de#	移进	0235	S ₈	
))))	# # # # # # # # # # # # # # # # # # #	# abbcde# bbcde# dbcde#	# abbcde# 移进 # bbcde# 移进 # bcde# 归约(A→b) # aA bcde#	# abbcde# 移进 0 #a bbcde# 移进 02 #ab bcde# 归约(A→b) 024 #aA bcde# 移进 023 #aAb cde# 归约(A→Ab) 0236 #aA cde# 移进 023	# abbcde# 移进

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#		0	S ₂	
2)	#a	bbcde#	移进	02	5 ₄	
3)	#ab	bcde#	归约 (A→b)	024		3
4)	#aA	bcde#	移进	023	r ₂ S ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	
7)	#aAc	de#	移进	0235	5 ₈	
8)	# aAcd	e#	归约(B→d)	02358	r ₄	7

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#		0	S ₂	
2)	#a	bbcde#	移进	02	5 ₄	
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	5 ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	
7)	#aAc	de#	移进	0235	S ₈	
8)	# aAcd	e#	归约 (B→d)	02358	r ₄	7
9)	#aAcB	e#	移进	02357	S ₉	

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#		0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	S ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	
7)	#aAc	de#	移进	0235	S ₈	
8)	# aAcd	e#	归约 (B→d)	02358	r ₄	7
9)	#aAcB	e#	移进	02357	S ₉	
10)	#aAcBe	#	归约(S→aAcBe)	023579	$\mathbf{r_1}$	1

步骤	符号栈	输入符号串	动作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂	
2)	#a	bbcde#	移进	02	S ₄	
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3
4)	#aA	bcde#	移进	023	S ₆	
5)	#aAb	cde#	归约 (A→Ab)	0236	r ₃	3
6)	#aA	cde#	移进	023	S ₅	
7)	#aAc	de#	移进	0235	S ₈	
8)	# aAcd	e#	归约 (B→d)	02358	r ₄	7
9)	#aAcB	e#	移进	02357	S ₉	
10)	#aAcBe	#	归约(S→aAcBe)	023579	r_1	1
11)	#S	#	接受	01	acc	

构造识别文法活前缀DFA的三种方法

- 一、根据形式定义求出活前缀的正规表达式,然后由此正规表达式构造NFA再确定化为DFA
- 二、求出文法的所有项目,按一定规则构造识别 活前缀的NFA再确定化为DFA
- 三、使用闭包函数 (CLOSURE) 和转向函数 (GOTO(I,X))构造文法G'的LR(0)的项目集规范族,再由转换函数建立状态之间的连接关系得到识别活前缀的DFA

构造LR(0)项目集规范族

LR(0)项目集规范族(构成识别一个文法的活前缀的DFA的状态的全体)。

LR(0)项目或配置(item or configuration).

---在右端某一位置有圆点的G的产生式

$$A \rightarrow xyz$$
 $A \rightarrow xyz$
 $A \rightarrow x.yz$
 $A \rightarrow xy.z$
 $A \rightarrow xyz.$

如: S→aAd

 $S \rightarrow .aAd S \rightarrow a .Ad S \rightarrow aA .d S \rightarrow aAd .$

活前缀与句柄的关系:

G[S]: * α A ω R α β ω R α β ω R θ 的 前缀,则

称r是G的一个活前缀

- 1.活前缀已含有句柄的全部符号,表明产生式A→β的 右部β已出现在栈顶
- 2. 活前缀只含句柄的一部分符号表明 $A \to \beta_1 \beta_2$ 的右部子串 β_1 已出现在栈顶,期待从输入串中看到 β_2 推出的符号
- 3. 活前缀不含有句柄的任何符号,此时期望A→β的 右部所推出的符号串

活前缀,与句柄,与LR(0)项目

为刻划这种分析过程中的文法G的每一个产生式的右部符号已有多大一部分被识别(出现在栈顶)的情况,分别用标有圆点的产生式来指示位置。

 $A \rightarrow \beta$. 刻划产生式 $A \rightarrow \beta$ 的 右部 β 已出现在栈顶

 $A \rightarrow \beta_1$. β_2 刻划 $A \rightarrow \beta_1 \beta_2$ 的右部子串 β_1 已出现在栈顶,期待从输入串中看到 β_2 推出的符号

 $A \rightarrow .$ β 刻划没有句柄的任何符号在栈顶,此时期望 $A \rightarrow \beta$ 的右部所推出的符号串

对于 $A \rightarrow \epsilon$ 的LR(0)项目只有 $A \rightarrow$.

LR(0)项目

根据<mark>圆点所在的位置和圆点后是终结符还是非终结符或为空</mark>把项目分为以 下几种:

移进项目,形如 $A \rightarrow \alpha \cdot \alpha \beta$ α 是终结符, $\alpha, \beta \in V^*$ 以下同

待约项目,形如 $A \rightarrow \alpha \cdot Bβ$

归约项目,形如 $A \rightarrow \alpha$ •

接受项目, 形如 S' →S •

 $A \rightarrow \epsilon$ 的LR(0)项目只有 $A \rightarrow \bullet$ 是归约项目

作用?

LR(0)项目集规范族

定义1: 如果存在一个规范推导 $S \Rightarrow \alpha AW \Rightarrow \alpha \beta_1 \beta_2 W$,我们说项目 $A \rightarrow \beta_1 \bullet \beta_2$

对活前缀 $\gamma = \alpha \beta_1$ 是有效的。

定义2: 若项目 $A \to \alpha \bullet B\beta_1$ 对活前缀 $\gamma = \delta \alpha$ 是有效的,且 $B \to \eta$ 是一个产生式,则项目 $B \to \bullet \eta$ 对 $\gamma = \delta \alpha$ 也是有效的。

定义3: 文法G的某个活前缀r的所有有效项目组成的集合成为r的有效项目集,文法G的所有有效项目集组成的集合称为G的LR(0)项目集规范族。

LR(0) 项目集的闭包CLOSURE

若当前处于A -> X•YZ刻划的情况,期望移进 First(Y)中的某些符号,假如有产生式

Y -> u | w . 那么Y -> •u和Y -> •w这两个项目便是刻划期望移进 First(Y)中的某些符号的情况.

 $A \rightarrow X \cdot YZ$

Y -> •u

Y -> •W

这三个项目对应移进归约分析的同一个状态,这 三个项目构成一个项目集,对应每个项目集, 分析表将有一个状态.

构造识别活前缀的DFA

用闭包函数CLOSURE求DFA一个状态的项目集

- 若文法G已拓广为G',而S为文法G的开始符号,拓广后增加产生式S'→S。如果I是G'的一个项目集,定义和构造I的闭包CLOSURE(I)如下:
- 1、I的项目均在CLOSURE(I)中。
- 2、若 $A \rightarrow \alpha \bullet B\beta$ 属于CLOSURE(I)。则每一形如 $B \rightarrow \bullet \eta$ 的项目也属于CLOSURE(I)。
- 3、重复2直到不出现新的项目为止。即CLOSURE(I)不再扩大。

转换函数 GO (I,x)= CLOSURE(J);

其中, I:项目集, x: 文法符号,

J={任何形如A \rightarrow α x. β 的项目|A \rightarrow α .x β \in I}

LR(0)项目集规范族

```
计算LR(0)项目集规范族
C = \{I_0, I_1, ..., I_n\}
Procedure itemsets(G');
 Begin C := \{ CLOSURE (\{S' \rightarrow .S\}) \}
     Repeat
     For C 中每一项目集I和每一文法符号x
     Do if GO(I,x) 非空且不属于C
        Then 把 GO(I,x) 放入C中
     Until C 不再增大
End;
```

例: 文法G:

(0) $S \rightarrow E$ (1) $E \rightarrow aA$ (2) $E \rightarrow bB$

(3) $A \rightarrow cA$ (4) $A \rightarrow d$ (5) $B \rightarrow cB$

 $(7) B \rightarrow d$

LR(0) 项目集规范族(识别G的活前缀的DFA):

 $I_0: S \rightarrow E$ $I_1: S \rightarrow E$ $I_2: E \rightarrow a$. A

 $E \rightarrow .$ aA

 $A \rightarrow . cA$

 $E \rightarrow . bB$

 $A \rightarrow . d$

 I_3 : E \rightarrow b. B I_4 : A \rightarrow c. A

I₅: B→c. B

B→. cB

A→. cA

 $B \rightarrow . cB$

B→. d

 $A \rightarrow d$

 $B \rightarrow . d$

 $I_6: E \rightarrow aA$.

 $I_7: E \rightarrow bB$.

 I_8 : $A \rightarrow cA$.

 $I_9: B \rightarrow cB.$ $I_{10}: A \rightarrow d.$ $I_{11}: B \rightarrow cB.$

DFA

LR(0)分析表的构造

假定 $C=\{I_0, I_1, ..., I_n\}$,令每个项目集 I_k 的下标k为分析器的一个状态,因此,G 的LR(0)分析表含有状态0,1,.....,n。令那个含有项目S → . S的 I_k 的下标k为初态。ACTION和GOTO可按如下方法构造:

- » 若项目 $A \rightarrow \alpha$. a β 属于 I_k 且GO (I_k , a)= I_j , a为终结符,则置ACTION[k, a]为"把状态j和符号a移进栈",简记为"sj";
- » 若项目 $A \rightarrow \alpha$. 属于 I_k , 那么,对任何终结符a, 置 ACTION[k, a]为 "用产生式 $A \rightarrow \alpha$ 进行规约",简记为 "rj";其中,假定 $A \rightarrow \alpha$ 为文法G`的第j个产生式;
- » 若项目S`→S. 属于 I_k , 则置ACTION[k, #]为"接受",简记为"acc";
- » 若GO (I_k , A)= I_j , A为非终结符,则置GOTO(k, A)=j;
- » 分析表中凡不能用规则1至4填入信息的空白格均置上"出错标志"。

按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个入口不含多重定义,则称它为文法G的一张LR(0)表。具有LR(0)表的文法G称为一个LR(0)文法。

LR(0)文法是无二义的。

	ACTION						GOTO		
	a	c	b	d	#		E	A	В
0	S 2		S 3				1		
1					acc				
2		S 4		S 10				6	
3		S 5		S 11					7
4		S 4		S 10				8	
5		S5		S 11					9
6	r1	r1	r1	r1	r1				
7	r2	r2	r2	r2	r2				
8	r3	r3	r3	r3	r3				
9	r5	r5	r5	r5	r5				
10	r4	r4	r4	r4	r4				
11	r6	r6	r6	r6	r6				

例: (0) S`→S (1) S→rD

(2) $D \rightarrow D$, i (3) $D \rightarrow i$

LR (0) 项目

1. $S \rightarrow . S$ 2. $S \rightarrow S$. 3. $S \rightarrow . rD$

4. $S \rightarrow r$. D 5. $S \rightarrow r$ D. 6. $D \rightarrow .$ D, i

7. $D \rightarrow D$, i 8. $D \rightarrow D$, i 9. $D \rightarrow D$, i.

10. $D \rightarrow .$ i 11. $D \rightarrow i$.

$$(1)$$
 $S \rightarrow rD$

(2)
$$D \rightarrow D$$
, i (3) $D \rightarrow i$

LR(0)项目集规范族

$$I_0: S \rightarrow . S$$

$$I_3$$
: $S \rightarrow r D$.

$$I_1: S \rightarrow S.$$

$$I_4$$
: $D \rightarrow i$.

$$I_2$$
: S \rightarrow r. D

$$I_5$$
: $D \rightarrow D$, i

$$I_6$$
: D \rightarrow D, i.

其中I₃中含有移进/归约冲突

文法不是LR(0)的,如何解决?

SLR(1)技术

若 LR(0) 项目集规范族中有项目集 I_K 含 移进/归约、归约/归约冲突:

 $I_{K} : \{ \dots A \rightarrow \alpha \cdot b \beta \quad , P \rightarrow \alpha \cdot , Q \rightarrow \alpha \cdot , \dots \}$

存在"移进-归约"和"归约-归约"冲突。

解决冲突的方法是分析含P和Q的句型即考察FOLLOW(P)和FOLLOW(Q)

则解决冲突的SLR(1)技术:

当状态K面临当前输入符号a时:

若a=b,则移进

对a ∈ FOLLOW (P) 则 action [K,a] = 用 $P \rightarrow \alpha$ 归约 对a ∈ FOLLOW (Q) 则 action [K,a] = 用 $Q \rightarrow \alpha$ 归约 能用SLR(1)技术解决冲突的文法称为SLR(1)文法。

SLR(1)文法是无二义的。

SLR表

- 若项目A→α. aβ属于 I_k 且GO (I_k , a)= I_j , a为终结符,则置 ACTION[k, a]为"把状态j和符号a移进栈",简记为"sj";
- 若项目A→α. 属于 I_k , 那么,对任何输入符号a, a∈F0LL0W(A),置ACTION[k, a]为"用产生式A→α进行规约",简记为"rj";其中,假定A→α为文法G`的第j个产生式;
- 若项目S`→S. 属于 I_k ,则置ACTION[k, #]为"接受",简记为"acc";
- 若GO (I_k, A)= I_j, A为非终结符,则置GOTO(k, A)=j;
- 分析表中凡不能用规则1至4填入信息的空白格均置上"出错标志"。

按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个入口不含多重定义,则称它为文法G的一张SLR表。具有SLR表的文法G称为一个SLR(1)文法。数字1的意思是,在分析过程中顶多只要向前看一个符号。

实例说明文法的SLR(1)分析表 状态 **ACTION GOTO** # D. r S_2 acc S_4 3 S_5 \mathbf{r}_1 $\mathbf{r_3}$ $\mathbf{r_3}$ S_6 \mathbf{r}_{2} $\mathbf{r_2}$

二义文法在LR分析中的应用

例:

$$E \rightarrow E + E | E * E | (E) | id$$

S →iSeS|iS|a

文法G: (0) S' \rightarrow S (1) S \rightarrow aAd (2) S \rightarrow bAc (3) S \rightarrow aec (4) S \rightarrow bed (5) A \rightarrow e

7.4 LR(1)分析 S-ae. c

文法G:

- $(0) S' \rightarrow S (1) S \rightarrow aAd (2) S \rightarrow bAc$
- (3) S \rightarrow aec (4) S \rightarrow bed (5) A \rightarrow e

 I_5 、 I_7 存在移进-归约冲突,不能用SLR(1)方法解决 $FOLLOW(A)=\{c,d\}$

- 在5状态,遇见c,移进(S9)、归约(r5)
- 在7状态,遇见d,移进(S11)、归约(r5)

分析:

$$S'=>S=>aAd=>aed$$
 $S'=>S=>bAc=>bec$

$$S'=>S=>aec$$
 $S'=>S=>bed$

状态5, 遇见d归约, 遇见c移进; 状态7, 遇见c归约, 遇见d移进;

7.4 LR(1)分析

FOLLOW(A)包含了在任何句型中跟在 A 后的符号,但没有严格地指出在一个特定的推导里哪些符号跟在A后.

FOLLOW集合提供的信息太泛!

根据项目集的构造原则有:

7.4.1 LR(1)项目集族的构造

- LR (1) 项目的一般形式: $[A \rightarrow \alpha . \beta, a]$
 - 意味着处在栈顶是α的相应状态,期望相应β在栈顶 的状态,然后只有当跟在β后的符号是终结符a时进 行归约
- a 称作该项目的向前搜索符
- 向前搜索符只对归约项目起作用,对于任何移进或待约项目不起作用
- [$A \rightarrow \alpha$ β •, a]:意味着处在栈中是 α β的相应状态,但只有当下一个输入符是a时才能进行归约.
- a 要么是一个终结符, 要么是输入结束标记#
- → 有多个向前搜索符,比如a,b,c时,可写作 A -> u•, a/b/c

7.4.1 LR(1)项目集族的构造

为构造有效的LR(1)项目集族我们需要两个函数CLOSURE(闭包)和GO(转换)。

初始时:

C={ closure($\{[S' \rightarrow . S, \#]\}$)};

LR(1)项目集的构造:

(1) 构造LR(1)项目集的闭包 函数

- ① I的任何项目属closure(I);
- ②若[A \rightarrow β_1 . B β_2 , a] \in closure(I),
 - B→ δ 是一产生式,那么对于FIRST(β_2 a)
 - 中的每个终结符b,如果[B→. δ ,b]不
 - 在closure(I)中,则把它加进去;
- ③重复①②,直至closure(I)不再增大。

(2) 构造转换函数

若I是一个项目集,X是一个文法符号 GO(I, X) = closure(J)其中 $J={$ 任何形如[A→α X. β,a]的项目 $[A \rightarrow \alpha . X \beta, a] \in I$ 文法的LR(1)项目集:反复利用(1) (2),直到项目集不在扩大

7.4.2 LR(1)分析表的构造

假定LR(1)项目集规范族 $\mathbb{C}=\{I_0,I_1,\ldots,I_n\}$,令每个项目集 I_k 的下标k为分析器的一个状态,G'的LR(1)分析表含有状态0,1,……,n。

- 1.令含有项目[S'→. S ,#]的 I_k 的下标k为状态0(初态)。ACTION表和GOTO表可按如下方法构造:
- 2.若项目 $[A\rightarrow\alpha.,b]$ 属于 I_k ,那么置ACTION[k],b]为 " r_i ";其中,假定 $A\rightarrow\alpha$ 为文法G'的第i个产生式

- 3. 若项目[A→α. aβ,b]属于 I_k 且GO (I_k , a)= I_j ,则置ACTION[k, a]为" s_j ";
- 4.若项目[S'→S.,#]属于I_k,则置ACTION[k,#]为 "acc";
- 5.若GO (I_k, A)= I_j, A为非终结符,则置 GOTO(k, A)=j
- 6.分析表分析中凡不能用规则1至5填入信息的空白格均置上"出错标志"。

按上述算法构造的含有ACTION和GOTO两部分的分析表,如果每个入口不含多重定义,则称该文法G为一个LR(1)文法。

每个SLR(1)文法都是LR(1)文法。

LR(1)比SLR(1)能力强

一般情况下,一个LR(1)文法的项目集的个数比其SLR(1)的状态要多。

G(S): (0) S' \rightarrow S (1)S \rightarrow BB (2) B \rightarrow aB (3) B \rightarrow b $I_{n}:S' \rightarrow \bullet S,\#$ $S \rightarrow \bullet BB, \#$ $+I_1:S' \rightarrow S \bullet ,\#$ $B \rightarrow \bullet aB, a/b$ $\begin{array}{c}
B \rightarrow b, a/b \\
b
\end{array}$ $I_2: S \rightarrow B \bullet B, \#$ $B = 1_5:S \rightarrow BB \bullet , \#$ $B \rightarrow \bullet aB,\#$ $I_{A}:B \rightarrow b \bullet, a/b$ $B \rightarrow b, \#$ a $B \rightarrow \bullet aB, \#$ |b| $\rightarrow a \bullet B, a/b$ $\mathrm{B} \to \mathrm{b}.\#$ $\rightarrow \bullet aB,a/b$ B $I_7:B \rightarrow b \bullet ,\#$ $\rightarrow \bullet b, a/b$ $I_o: B \rightarrow aB \bullet , \#$ $I_{g}:B \rightarrow aB \bullet ,a/b$

LR(1)项目集和转换函数

