# School of Electronics and Communication Engineering

B. Tech. ECE and Elect. Engineering 2nd Year- Midterm Examination (Odd) 2021-22 (October-2021)

| Entry No: | 20 | be | C | 0 | 8 | 5 |
|-----------|----|----|---|---|---|---|
| Date:     |    |    |   |   |   |   |

Total Number of Pages:[02]

Total Number of Questions: [14]

Course Title: Digital Electronics Course Code: ECL 2070

Time Allowed1: 1:30 Hours

Max Marks: [30]

| Α          | all questions are compulsory                                               | [01] |
|------------|----------------------------------------------------------------------------|------|
| Q1.        | How many entries will be in the truth table of a 4-input NAND gate?        | lor  |
| Q2.        | How many bits are needed to store one BCD digit?                           | [01  |
| Q3.        | Convert (312)₅ into decimal                                                | [01  |
| Q4.        | Which of these sets of logic gates are known as universal gates?           | [01  |
|            | a. XOR, NAND, OR                                                           |      |
|            | b. OR, NOT, XOR                                                            |      |
|            | c. NOR, NAND, XNOR                                                         |      |
|            | d. NOR, NAND                                                               |      |
| Q5.        | What is the addition of the binary number 101001+ 010011=?                 | [0]  |
| Q5.<br>Q6. | 1's complement of 101101 is                                                | [0]  |
| Q7.        | In Digital electronics (Boolean algebra), the OR operation is performed by | [0   |
| 4          | which of the given properties                                              |      |
|            | a. Distributive properties                                                 |      |
|            | b. Commutative properties                                                  |      |
|            | c. Associative properties                                                  |      |
|            | d. All of these                                                            | 10   |
| Q8.        | DeMorgan's Law states that                                                 | 10   |
|            | $a. \qquad (A+B)' = A'*B$                                                  |      |
|            | (AB)' = A' + B'                                                            |      |

|      | d. $(AB)' = A + B$                                                     |       |       |
|------|------------------------------------------------------------------------|-------|-------|
| Q9.  | The logical sum of two or more than two logical products is termed as  |       | 4     |
|      | a. OR operation                                                        | [01]  |       |
|      | b. POS                                                                 |       |       |
|      | c. SOP                                                                 |       |       |
|      | d. NAND operation                                                      |       |       |
| O10. | The Minterms for four variable                                         |       | 1     |
|      | of four variable                                                       | [01]  |       |
|      | (a) 4 (b) 8 (3) 12 (4) 16                                              |       |       |
| Q11. | Show how to connect NAME                                               |       |       |
| Q12. | Show how to connect NAND gates to get an AND gate and OR gate?         | [05]  | 1     |
| Q12. | osing K map, minimize the expression                                   | [05]  | D 12  |
| Q13  | $F(A,B,C,D) = \sum m(1,2,3,8,14,15)$ Realize the Roolean arms.         | []    | P / 9 |
| 10   | Realize the Boolean expression Z=ABC + AD + CD' using NAND gates only. | [05]  | 1/200 |
| Q14. | What is two's - complement method of representing integer numbers.     | 50.55 |       |
|      | Is it better than one's complement method of representation?           | [05]  | M.    |

### **Course Outcomes**

- 1. To provide the skills to efficiently acquire knowledge on digital electronic circuit analysis and design,
- 2. To acquire Knowledge of various number systems and codes from historic point of View and to understand the logic families in digital circuits.
- 3. To obtain the ability to analyze various aspects of combinational circuit design.
- 4.



## School of Electronics and Communication Engineering

B. Tech. (E&CE and EE and Backlog) Major Examination (Odd Sem) 2023-24

**Entry No:** 

|   | - | _  | _ | and the Personal Property lies |   | _ |   |  |
|---|---|----|---|--------------------------------|---|---|---|--|
| 2 | 2 | 1) | e | C                              | 0 | 8 | 8 |  |

Total Number of Pages: [02]

Date:

Total Number of Questions: [07]

Course Title: Digital Electronics

Course Code: ECL 2070

Time Allowed: 3 Hours

Max Marks: [50]

### Instructions / NOTE

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- iii. Assume any missing data to suit the case/derivation/answer.

|           | i.                                                                                                                                       | Consider the number D is given by the decimal expression:<br>$D = 16^3 \times 9 + 16^2 \times 7 + 16 \times 5 + 3$ .<br>Determine the number of 1's in the unsigned binary representation of D. | [2] | CO1 |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
|           | ii.                                                                                                                                      | In canonical SOP form, the no. of min terms representing the logical expression $A + \overline{BC}$ is                                                                                          | [2] | CO1 |  |
|           | iii.                                                                                                                                     | How many corrections are required in the BCD addition of $(45)_{10} + (23)_{10}$ ?                                                                                                              | [2] | CO1 |  |
|           | iv.                                                                                                                                      | By which factor the output of last flip-flop of a ripple counter divides the i/p clock frequency?                                                                                               | [2] | CO2 |  |
| Q. No.1.  | A 5-bit DAC converter produces $V_{OUT} = 0.2 \text{ V}$ for a digital input of 0001. Find the value of $V_{OUT}$ for an input of 11111. |                                                                                                                                                                                                 |     |     |  |
|           | vi.                                                                                                                                      | For a 3-bit ripple counter using D flip flops, the propagation delay of each flip flop is 50 nsec. Determine the maximum clock frequency that can be used in the counter.                       | [2] | СОЗ |  |
|           | vii.                                                                                                                                     | Which gates in Digital Circuits are required to convert a NOR-based SR latch to an SR flip-flop?                                                                                                | [2] | CO2 |  |
|           | i.                                                                                                                                       | What is the output of the digital circuit consisting of a cascade of 20 EX-OR gates as shown here?                                                                                              | [4] | CO2 |  |
| Q. No.2.  | ii.                                                                                                                                      | Consider the propagation delay of each NOT Gate equal to t <sub>pd</sub> . Draw the output of the circuit in the form of a timing diagram.                                                      | [4] | CO2 |  |
| Q. No.3   | i.                                                                                                                                       | What are the different types of hazards and their sources in the design of digital circuits?                                                                                                    | [4] | CO3 |  |
| Q. 140.5  | ii.                                                                                                                                      | Show the design of a static hazard-free 1-bit full adder using NOR gates only.                                                                                                                  | [4] | CO3 |  |
| Q. No.4   | Assi                                                                                                                                     | ume input to a 7-segment common cathode LED is a four-bit BCD numeral from 0. Show the design of a Decoder for the segment 'b' of the LED.                                                      | [5] | CO3 |  |
| Q. No.5   | 10 9                                                                                                                                     | Show the design of a Decoder for the segment the logical expression $f(A,B,C) = \sum_{m} (1,2,3,5,6,7)$ using a 4:1 multiplexer.                                                                | [5] | CO3 |  |
| Q. No.6.  | Doo                                                                                                                                      | right a synchronous counter to count the sequence 0-1-2-3-4-5-0. The counter should represent state (0) if any unwanted state is encountered.                                                   | [5] | соз |  |
| Q. No.7.  |                                                                                                                                          | ow the design process and the logic diagram to convert a D to J-K flip flop.                                                                                                                    | [5] | CO3 |  |
| Q. 140.7. | 1                                                                                                                                        |                                                                                                                                                                                                 |     |     |  |

# School of Electronics and Communication Engineering

B. Tech. (EE/ECE)-2<sup>nd</sup> Year- Minor-2 Examination (ODD) 2022-23 (November-22)

| Entry No:<br>Date: |                                                      | Total Number of Pages: [01] Total Number of Questions: [5] |
|--------------------|------------------------------------------------------|------------------------------------------------------------|
|                    | Course Title: Digital Electron Course Code: ECL 2070 | ic                                                         |

6 4 2 1

Max Marks: [20] Time Allowed1: 1:30Hours

### Instructions / NOTE

Attempt All Questions. i.

- Support your answer with neat freehand sketches/diagrams, wherever appropriate. ii.
- No marks will be awarded for just attempting a question/writing the formula/drawing iii. merely the figure without proper explanation.
- Step marking is not proposed. iv.
- Assume any missing data to suit the case / derivation / answer. Symbols have their usual V. meaning

| Q1.        | Implement 16:1 mux using 8:1 multiplexers.                                                                             | [04] |
|------------|------------------------------------------------------------------------------------------------------------------------|------|
| Q2/        | Implement the expression using a multiplexer.                                                                          | [04] |
| <b>V</b>   | $f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14)$                                                                     |      |
| 23.        | D : 2 to 9 hinary decoder                                                                                              | [04] |
| 1          | Design 3 to 8 binary decoder.  Write truth table for a basic half adder and implement its designing using basic gates. | [04] |
| )4!<br>\5/ | Four messages are encoded in the following code words:                                                                 | [04] |
| Q5/.       | $Message & Code \\ M_1 & 01101 \\ M_2 & 10011 \\ M_3 & 00110 \\ M_4 & 11000$                                           | ,    |

School of Electronics and Communication Lugineering

B. Tech. (EE/ECE)-2<sup>nd</sup> Year- Minor-1 Examination (ODD) 2022-23 (September-22)

Total Number of Pages:[01] Total Number of Questions: [5]

Date: 28 09 22

Course little: Digital Electronic

Course Code: ECL 2070

Time Allowed1: 1:30Hours

Max Marks: [20]

## Instructions / NOTE

Attempt All Questions. i.

- Support your answer with neat freehand sketches/diagrams, wherever appropriate. ii.
- No marks will be awarded for just attempting a question/writing the formula/drawing iii. merely the figure without proper explanation.
- Step marking is not proposed. iv.
- Assume any missing data to suit the case / derivation / answer. Symbols have their usual v. meaning.

|     |                                                                                                                                                                       | 50.47 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | What is canonical form of representation of logic functions? Explain with suitable                                                                                    | [04]  |
| Q1. | What is canonical form of representation of the                                                                                                                       |       |
|     | examples $(A, B)$                                                                                                                                                     |       |
|     | examples  (CA, BC, D) = f(A, B)                                                                                                                                       |       |
|     |                                                                                                                                                                       | [04]  |
| Q2. | Minimise the four-variable logic function using K-man:                                                                                                                |       |
|     | $f(A,B,C,D) = \sum m(0,1,2,3,5,7,8,9,11,14)$                                                                                                                          |       |
|     | D (C) D C (D) DEIN (C) TO A B S B G                                                                                                                                   |       |
|     | PABOOD = ENGO (01/2/3/5/7/8/5/07) 18400,0239 2000                                                                                                                     |       |
|     | i was lowest the same with basic gates.                                                                                                                               | [04]  |
| Q3. | Minimise the following function and implement the same with basic gates.                                                                                              |       |
| •   | Minimise the following function and implement the state $f(A, B, C, D) = \prod M(4, 5, 6, 7, 8, 12)$ . $d(1, 2, 3, 9, 11, 14)$                                        |       |
|     |                                                                                                                                                                       | [04]  |
| Q4. | a et                                                                                                                                                                  |       |
| Q4. | Minimise the four variable logic function                                                                                                                             |       |
| Ų4. | $C(A,B,C,D) = (A+B+\overline{C}+\overline{D}) \cdot (\overline{A}+C+\overline{D}) \cdot (A+B+C+D)$                                                                    |       |
| Q4. | $C(A,B,C,D) = (A+B+\overline{C}+\overline{D}) \cdot (\overline{A}+C+\overline{D}) \cdot (A+B+C+D)$                                                                    |       |
| Ų4. | $f(A,B,C,D) = (\underline{A+B+C+D}) \cdot (\overline{A+C+D}) \cdot (A+B+C+D)$ $(\overline{B+C}) \cdot (\overline{B+C}) \cdot (A+\overline{B}) \cdot (\overline{B+D})$ | [04]  |
|     | $f(A,B,C,D) = (\underline{A+B+C+D}) \cdot (\overline{A+C+D}) \cdot (A+B+C+D)$ $(\overline{B+C}) \cdot (\overline{B+C}) \cdot (A+\overline{B}) \cdot (\overline{B+D})$ | [04]  |
|     | $C(A,B,C,D) = (A+B+\overline{C}+\overline{D}) \cdot (\overline{A}+C+\overline{D}) \cdot (A+B+C+D)$                                                                    | [04]  |
| Q4. | $f(A,B,C,D) = (\underline{A+B+C+D}) \cdot (\overline{A+C+D}) \cdot (A+B+C+D)$ $(\overline{B+C}) \cdot (\overline{B+C}) \cdot (A+\overline{B}) \cdot (\overline{B+D})$ | [04]  |
|     | $f(A,B,C,D) = (\underline{A+B+C+D}) \cdot (\overline{A+C+D}) \cdot (A+B+C+D)$ $(\overline{B+C}) \cdot (\overline{B+C}) \cdot (A+\overline{B}) \cdot (\overline{B+D})$ | [04]  |
|     | $f(A,B,C,D) = (\underline{A+B+C+D}) \cdot (\overline{A+C+D}) \cdot (A+B+C+D)$ $(\overline{B+C}) \cdot (\overline{B+C}) \cdot (A+\overline{B}) \cdot (\overline{B+D})$ | [04]  |
|     | $f(A,B,C,D) = (A+B+C+D) \cdot (A+C+D) \cdot (A+B+C+D)$ $(B+C) \cdot (B+C) \cdot (A+B) \cdot (B+D)$ Draw the NAND gate output for the following input signal.          | [04]  |
|     | $f(A,B,C,D) = (\underline{A+B+C+D}) \cdot (\overline{A+C+D}) \cdot (A+B+C+D)$ $(\overline{B+C}) \cdot (\overline{B+C}) \cdot (A+\overline{B}) \cdot (\overline{B+D})$ | [04]  |

Dogo TT

#### SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics and Communication Engineering

B. Tech. (Electrical/Electronic Engineering)-2nd Year- Major Examination (Odd) 2022-23 (December-2022)

| Entry No: | 2 | 1 | В | E | C | 1 |  |
|-----------|---|---|---|---|---|---|--|
| Date:     |   |   |   |   |   |   |  |

Total Number of Pages:[01]

Total Number of Questions: [8]

Course Title: Digital Electronic Course Code: ECL 2070

#### Time Allowed1: 3 Hours

Max Marks: [50]

#### Instructions / NOTE

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- iii. No marks will be awarded for just attempting a question/writing the formula/drawing merely the figure without proper explanation.
- iv. Step marking is not proposed.
- v. Assume any missing data to suit the case / derivation / answer. Symbols have their usual meaning

| M           | Description of the state of the | 50.63 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <i>y</i> 1. | Draw general block diagram of a sequential circuit and differentiate it with a combinational circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [06]  |
| Q2.         | Design D-FF from a general JK FF. Write its characteristic table. Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [06]  |
| <i>y</i>    | two applications of DFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [oo]  |
| 93.         | Draw parallel – comparator ADC and explain its working principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [06]  |
| Q4.         | Using SR FF as Toggle FF find the output of the sequence "1001101"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [06]  |
| Q5.         | Draw block diagram of a successive approximation ADC. Explain its operating principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [06]  |
| 96.         | Write short notes on any two: (1) Register (2) Dual slope ADC (3) Ring counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [08]  |
| 9%.         | Design basic memory cell element using NAND gates and explain its operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [06]  |
| 987         | Differentiate between DRAM and SRAM and draw their conceptual circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [06]  |