Работа 3.2.1 сдвиг фаз в цепи переменного тока

Гаврилин Илья Дмитриевич Б01-101

14 сентября 2022 г.

1 Аннотация

В ходе работы производятся измерения зависимости сдвига фаз в RC, RL-цепи от сопротивления, проверяется справедливость теоретических соображений для расчета сдвига фаз. Проверяется справедливость теоретической формулы для расчета добротности колебаний RLC-цепи, рассчитывается и сравнивается с экспериментом значение резонансного сопротивления для фазовращателя.

2 Теоритические сведения

2.1 Рассчет сдвига фаз

Оценку сдвига фаз проводим визуальным методом, высчитывая расстояния по разметке на экране осциллографа.

- 1) подобрать частоту развертки, при которой на экране осциллографа укладывается чуть больше половины периода синусоиды;
- 2) отцентрировать горизонтальную ось;
- 3) измерить расстояние x0 между нулевыми значениями одного из сигналов, что соответствует разности фаз π ;
- 4) измерить расстояние х между нулевыми значениями двух синусоид и пересчитать в сдвиг по фазе: $\psi = \pi \frac{x}{x_0}$.

2.2 Экспериментальная установка

Схема для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на рис. 1. Эталонная катушка L, магазин емкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление г подключены к источнику синусоидального напряжения звуковому генератору. По мере измерений будем отключать от схемы магазин емкостей или катушку индуктивности, тем самым рассматривая RL или RC цепочку.

Рис. 1: Экспериментальная установка

3 Ход работы

3.1 RC-цепь

Параметры установки следующие: ёмкость конденсатора C=0.5 мк Φ , сопротивление r=12.4 Ом, частота источника $\nu=1000$ Гц. Модуль реактивного сопротивления равен: $X_1=\frac{1}{\omega C}=318.5$ Ом. Измерим зависимость сдвига фаз от R в диапазоне R от 0 Ом до 3200 Ом. Для этого будем измерять сдвиг x одной синусоиды относительно другой в делениях экрана осцилографа и половину периода одной из синусоид x0. Для повышения точности, будем увеличивать синусоиду, дабы лучше разрешить сдвиг. Для R=800-1600 Ом увеличим ширину вдвое, Для R=800-1600 Ом увеличим еще вдвое. Для упрощения визуальной оценки приведем x к близким значениям.

R, Ом	x_0 , дел	x, дел	Δx , дел	ψ , рад	$\Delta \psi$, рад
0	2.5	1.20	0.10	1.51	0.13
400	2.0	0.50	0.10	0.79	0.16
800	2.5	0.30	0.05	0.38	0.06
1200	2.5	0.20	0.05	0.25	0.06
1600	2.5	0.20	0.05	0.25	0.06
2000	2.5	0.15	0.02	0.19	0.03
2400	2.5	0.10	0.02	0.13	0.03
2800	2.5	0.05	0.02	0.06	0.03
3200	2.5	0.05	0.02	0.06	0.03

Таблица 1: Зависимость сдвига фаз от сопротивления RC-цепи

Согласно теории мы должны получить зависимость:

$$tan(\psi) = \frac{1}{\omega C R_{cum}}, f(x) : k = 1$$

$tan(\psi)$	15.89	1.00	0.40	0.26	0.26	0.19	0.13	0.06	0.06
$\Delta tan(\psi)$	1.32	0.20	0.07	0.06	0.06	0.03	0.03	0.03	0.03
$1/\omega CR_{sum}$	25.67	0.77	0.39	0.26	0.20	0.16	0.13	0.11	0.10

Таблица 2: Данные для построения графика $tan(\psi) = f(1/\omega CR_{sum})$

На Рис.2 не будем отображать точку соответствующую R=0 Ом, так как расстояние до нее много больше ширины графика если исключить эту точку, поэтому это мешает проводить оценку графика.

Рис. 2: Зависимость $tan(\psi) = f(1/\omega CR_{sum})$

3.2 RL-цепь

Аналогично RC-цепи проведем замеры и запишем полученные данные в Таблицу 3. Реактивное сопротивление: $X_2=\omega L=314~{
m Om}$

R, Ом	x_0 , дел	х, дел	Δx , дел	ψ , рад	$\Delta \psi$, рад
0	2.5	1.20	0.10	1.51	0.13
400	2.5	0.50	0.10	0.63	0.13
800	2.5	0.30	0.05	0.38	0.06
1200	2.5	0.20	0.05	0.25	0.06
1600	2.5	0.20	0.05	0.25	0.06
2000	2.5	0.15	0.02	0.19	0.03
2400	2.5	0.10	0.02	0.13	0.03
2800	2.5	0.05	0.02	0.06	0.03
3200	2.5	0.05	0.02	0.06	0.03

Таблица 3: Зависимость сдвига фаз от сопротивления RL-цепи

Аналогично п. 3.1 не наносим на график точку соответствующую ${\rm R}=0$ Ом.

$tan(\psi)$	15.89	0.73	0.40	0.26	0.26	0.19	0.13	0.06	0.06
$\Delta tan(\psi)$	1.32	0.15	0.07	0.06	0.06	0.03	0.03	0.03	0.03
$\omega L/R_{sum}$	6.94	0.71	0.37	0.25	0.19	0.15	0.13	0.11	0.10

Таблица 4: Данные для построения графика $tan(\psi) = f(\omega L/R_{sum})$

Рис. 3: Зависимость $tan(\psi) = f(\omega L/R_{sum})$

3.3 RLC-цепь

Для RLC-цепи определим частоту резонанса (C = 0.5 мк Φ , r = 12.4 Ом, L = 50.002 мГн):

$$\nu_0 = \frac{1}{2\pi\sqrt{LC}} = 1007~\Gamma \mathrm{II}$$

	R =	0 Ом		R = 100 Ом					
ν, Γц	x_0	x	$ \psi $	ν, Гц	x_0	x	$ \psi $		
870	2.9	1	1.08	800	3.1	0.8	0.81		
900	2.8	0.9	1.01	850	3	0.6	0.63		
930	2.7	0.6	0.70	900	2.8	0.4	0.45		
960	2.6	0.4	0.48	950	2.5	0.2	0.25		
1000	2.5	0.05	0.06	1000	2.5	0	0.00		
1030	2.4	0.4	0.52	1050	2.4	0.2	0.26		
1060	2.4	0.6	0.79	1100	2.4	0.4	0.52		
1090	2.3	0.7	0.96	1150	2.2	0.6	0.86		

Таблица 5: Сдвиг фаз в RLC-цепи

R=0 Om										
$ \psi /\pi$	0.34	0.32	0.22	0.15	0.02	0.17	0.25	0.30		
ν/ν_0	0.86	0.89	0.92	0.95	0.99	1.02	1.05	1.08		
	m R=100~Om									
$ \psi /\pi$	0.26	0.20	0.14	0.08	0.00	0.08	0.17	0.27		
ν/ν_0	0.79	0.84	0.89	0.94	0.99	1.04	1.09	1.14		

Таблица 6: Данные для построения графика $|\psi|/\pi = f(\nu/\nu_0)$

Построим на одном графике сдвиг фаз в единицах π для R=0 Ом и R=100 Ом. Использовали большую развертку, значит $\Delta \psi=0.02$.

Рис. 4: Зависимость $|\psi|/\pi = f(\nu/\nu_0)$

Рассчитаем добротность экспериментально:

$$Q = \frac{\nu_0}{2\Delta\nu}$$
; $Q_0 = 6.9 \pm 1.8$; $Q_{100} = 3.0 \pm 0.4$

Рассчитаем добротность теоретически:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}; \ Q_0 = 6.8; Q_{100} = 2.2$$

3.4 Фазовращатель

Нарисуем векторную диаграмму для случая $\psi=\pi/2$:

Рис. 5: Векторная диаграмма для $\psi=\pi/2$

По расчетам получим: R = 318.5 Ом, на практике получили значение: $R = 330 \pm 10$ Ом. Погрешность при практическом измерении оценена как шаг дискретизации (поворот какой-либо из ручек магазина), при котором отсутствуют заметные глазу изменения на осциллографе.

4 Выводы

- 1)В работе проверили справедливость теоретических соображений о зависимости сдвига фаз от параметров системы. Для RC-цепи $k=1.34\pm0.07,$ RL-цепи $k=1.05\pm0.07,$ эталонный к равен единице.
- 2)Для RLC-цепи проверили рассчитали добротность колебаний (см. п. 3.3), практические результаты совпали с теорией, с учетом погрешности.
- 3)Рассчитали значение резонансного сопротивления, получили данные значения на практике.