CryptoCommands Test

Roy Stracovsky

June 3, 2024

 \mathcal{A} , \mathcal{F} , \mathcal{Q} . I like the group \mathbb{G} and R, \mathbb{F} . \perp vs \perp \mathcal{G} . and a bunch of random text to make the line longer and stuff. If I were to add more text would this work even more let me check.

Enc and Dec and Vrfy of PKE.Enc(pk, msg). ct $\stackrel{\$}{\leftarrow}$ PKE.Enc(pk, msg) and a bunch of random text to make the line longer and stuff.

$$\begin{split} \mathbf{Adv}_{\mathsf{SE},\mathcal{A}}^{\mathsf{OW-Pass}}(\lambda) &= \Pr[\mathcal{G}_{\mathsf{SE},\mathcal{A}}^{\mathsf{Ind}\$-\mathsf{CCA}}(\lambda) \Rightarrow 1]. \\ \mathbf{Adv}_{\mathsf{SE},\mathcal{A}}^{\mathsf{2PreR}}(\lambda) &= \Pr[\mathcal{G}_{\mathsf{SE},\mathcal{A}}^{\mathsf{EUf-CMA}}(\lambda) \Rightarrow 1]. \end{split}$$

We like random oracles O and also some linear algebra $\mathbf{As} + \mathbf{e}$. The $\mathbb{Z}_{\geq 0}$ is less ambiguous than using naturals. We work with \mathbb{Z}_p^* quite a lot and rarely $\mathbb{Z}_{<0}$. Also $\mathbb{R} \setminus \mathbb{Q}$ and $i\mathbb{R}$ haha.

I think I realized something. $2^{\{0,1\}}$ no longer fails right. Sample an $i \stackrel{\$}{\leftarrow} \{1,\ldots,q_H\}$. $f = \gcd(\lambda)$. It is $O(n^2)$. Let $\mathcal{A} = (\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2)$.