Université Badji Mokhtar - Annaba Faculté des Sciences Département de Mathematiques

CONCOURS D'ACCES EN PREMIÈRE ANNEE DOCTORAT (LMD) 2015

Epreuve 1 : Calcul Stochastiques Durée 1h30

Exercice 1.

On considère un actif à risque, de prix S_n à l'instant n, $0 \le n \le N$, et un actif sans risque de rendement certain r sur une période, tel que $S_n^0 = (1+r)^n$.

On fait les hypothèses suivantes sur l'évolution du cours de l'actif risqué : entre deux périodes consécutives, la variation des cours est soit a, soit b avec -1 < a < b:

$$S_{n+1} = \begin{cases} S_n (1+a) \\ S_n (1+b) \end{cases}.$$

Le cours initial S_0 est donné. L'espace naturel des résultats possibles est donc $\Omega = \{1+a, 1+b\}^N$, haque N-uple représentant les valeurs successives de S_{n+1}/S_n , $n=0,1,\cdots,N$. On prend naturellement : $\mathcal{F}_0 = \{\emptyset,\Omega\}$, et $\mathcal{F} = \mathcal{P}(\Omega)$. La tribu \mathcal{F}_n sera, pour $n=0,1,\cdots,N$, la tribu $\sigma(S_1,\cdots,S_n)$ engendrée par les variables aléateires S_1,\cdots,S_n . L'hypothèse définissant \mathbb{P} à une équivalence près est que tous les singletons de Ω ont une probabilité non nulle.

Posons les variables aléatoires $T_n = S_n/S_{n-1}$, pour $n = 0, 1, \dots, N$. Si (x_1, \dots, x_N) est un élément de Ω , on a $\mathbb{P}\{(x_1, \dots, x_N)\} = \mathbb{P}(T_1 = x_1, \dots, T_N = x_N)$. La connaissance de \mathbb{P} équivaut donc à celle de la loi du N-uple (T_1, T_2, \dots, T_N) . Notons aussi que, pour $n \geq 1, \mathcal{F}_n = \sigma(T_1, \dots, T_n)$.

- 1. Montrer que le prix actualisé $\tilde{S}_n = \frac{S_u}{(1+r)^n}$ est une martingale sous $\mathbb P$ si et seulement si $\mathbb E\left[T_{n+1}|\mathcal F_n\right] = 1+r, \forall n \in \{0,1,\cdots,N-1\}$.
- 2. On suppose que $r\in [a,b[$ et on pose p=(b-r)/(b-a). Montrer que (\tilde{S}_n) est une martingale sous $\mathbb P$ si et seulement si les variables aléatoires T_1,T_2,\cdots,T_N sont inépendantes et équidistribuées, leur loi commune étant donnée par : $\mathbb P(T_1=1+a)=p=1-\mathbb P(T_1=1+b)$

Exercice 2.

On considère l'équation

$$dX_t = a(t)X_tdt + b(t)dt + c(t)dB_t,$$

où a(t), b(t) et c(t) sont des processus adaptés

Résoudre cette équation par la méthode de la variation de la constante, c'est-à-dire :

- 1. Soit $\alpha(t) = \int_0^t a(s) ds$. Vérifier que $X_0 e^{\alpha(t)}$ est la solution de l'équation homogène, c'est-à-dire avec b = c = 0.
- 2. Poser $Y_t = e^{-\alpha(t)} X_t$ et calculer dY_t à l'aide de la formule d'Itô.
- $_{3}$ 3. En déduire Y_{t} puis X_{t} sous forme intégrale.
- 4. Résoudre l'équation différentiell stochastique

$$dX_{t} = \frac{-1}{1+t}X_{t}dt + \frac{1}{1+t}dB_{t}, X_{0} = 0.$$