Authorship Attribution for Small Documents

BY ROBERT SMITH, MILES BAER, WILLIAM COPE, NATHANIEL BOYER, CHARLES JOHNSON

Text Processing for Small Documents

- Neural Networks are generally good at Classification Problems
- There is a rise of text that is Limited in size
 - Twitter
 - Email
 - Facebook
 - Online Reviews
- Inspiration for Project
 - Convolutional Neural Networks for Authorship Attribution of Short Texts (Shrestha et. Al)

Encoding Methods & Preprocessing

ENCODINGS

- Word2Vec
 - Efficient Estimation of Word Representations in Vector Space
 - Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean
- Doc2Vec
 - Distributed Representations of Sentences and Documents
 - Le, Quoc and Mikolov, T.
- Our Custom Method
 - Simple Sum of Word2Vec representations generated with spaCy and genism

PREPROCESSING

- Reversed the Input Text
- Non-reversed Input Text
- Removing Punctuation

Neural Networks used in the Project

- CNN
 - L1,L2 Regularizers
 - MaxPooling1D
 - Flatten
- Dense
 - Flatten

Layer (type)	Output S		 Param #
conv1d_1 (Conv1D)	(None, 29	298, 300)	1200
max_pooling1d_1 (MaxPooling1	(None, 1	49, 300)	0
flatten_1 (Flatten)	(None, 4		0
dense_1 (Dense)	(None, 3	300)	13410300
dense_2 (Dense)	(None, 3	 3) 	903
Total params: 13,412,403 Trainable params: 13,412,403 Non-trainable params: 0			

Dataset and Sampling

- 53,000+ Reviews for Office Supplies
- Author Training Size
 - 3
 - 35
 - 500
 - 5000
- Normal Sampling vs Oversampling
 - Using 3 times the training data

Results

Custom Encoding				
	3 No Sample	35 No Sample	3 Over Sample	35 Over Sample
CNN_DENSE	12.5%	1.2%	18.7%	0.83%
CNN_DENSE_R	68.7%	2.5%	12.5%	1.6%
SMALL_DENSE	68.7%	0.83%	68.7%	4.1%

Regular Doc2Vec Encoding				
	3 No Sample	35 No Sample	3 Over Sample	35 Over Sample
CNN_DENSE	62.5%	7.5%	75.0%	8.3%
CNN_DENSE_R	43.7%	5.0%	75.0%	7.5%
SMALL_DENSE	62.5%	13.3%	43.7%	9.2%

Regular Doc2Vec Encoding				
	3 No Sample	35 No Sample	3 Over Sample	35 Over Sample
CNN_DENSE	68.7%	6.2%	50.0%	7.1%
CNN_DENSE_R	43.7%	1.6%	62.5%	1.6%
			02.070	
SMALL_DENSE	56.2%	8.3%	43.7%	43.7%

Results Cont...

- Regular Doc2Vec Encoding
 - Using duplicate data helped network learn authors better
- Reversed Doc2Vec Encoding
 - Each sentence was reversed before encoding
 - Poor performance when oversampling was used
- Custom Encoding
 - Best results when only 3 authors and normal sample size

Conclusion

- Mostly Unsuccessful
 - Doc2Vec
 - Performed the Best (3 Authors, normal encoding)
 - Custom Encoding
 - Performed the Worst
- Overfitting was Prevalent
 - Small Number of Epochs Needed

Future Works

- Explore the Method used in the previously Mention Paper
 - Embedding Layer
 - Concatenated CNNs (filters = [3,4,5])
 - Filters are window/kernel sizes (it will form a numerical representation over n number of words, characters, etc.)
 - Softmax Layer
- Change Activation Methods
- Change Loss Metric
- Adjust Learning Rate
- Mess Around with Punctuation
 - Use punctuation as individual "words"
- More Even Data Distribution
- More Reviews per Author

References

- Le, Q. and Mikolov, T., 2014, January. Distributed representations of sentences and documents. In *International Conference on Machine Learning* (pp. 1188-1196).
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- Shrestha, P., Sierra, S., Gonzalez, F., Montes, M., Rosso, P. and Solorio, T., 2017. Convolutional neural networks for authorship attribution of short texts. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers* (Vol. 2, pp. 669-674).