

1/23

09/856766

Fig. 1A

09 / 856766

2/23

Fig. 1B

Fig. 1C

09/856766

4/23

Fig. 2A

5/23

Fig. 2B

09 / 856766

6/23

Fig. 2C

WO 92/28099 29.2.95.860

WO 00/32801

PCT/US99/28331

09 / 856766

7/23

Fig. 3A

09 / 856766

8/23

Fig. 3B

Fig. 3C

09 / 856766

9/23

Fig. 3D

Fig. 3E

WO 00/32801

WO 00/32801

PCT/US99/28331

10/23

09 / 856766

Fig. 4A

09 / 856766

11/23

Fig. 4B

Fig. 4C

09 / 856766

12/23

Fig. 4D

09/856766

13/23

Fig. 4E

09 / 856766

14/23

		4231
RAT	4190	GGGGCATCTAGTGGAGAAGTGTGGTATTCTAGGATAAGTTGTGTAAGTGGCCCAACCAAGAG
HUM	2577	GAGGCATCTAGTGGAAAATGCCAGTATTCAAGCCTGATTTGTGTTGAAGTAAATGATTAAAGAG
RAT	4251	AAGGAATTACCAACATTCTGGAAATTACTTGCAATAAGCAAATCACATAATCGTGAATAACGGGAAGGAGACTC
HUM	2657	GAGGAAGTTACCAACATTCTGGAAAGATTTACTTGAGACAGACGAACCTTGAATTACGGAAAAGCCCCG
		4348
RAT	4325	TGATTAGGAATGACAGATTGGGAGGGCTGTGGTAATACTGAGTAGGGAAAAGCCCAGTTGGAAATTCG
HUM	2711	TGATTAGGAATAACAAATTGGGAAACATGTAATGGGGAGAGACTGGGAATAACCCAGTTGTGAAGTA
		4374
RAT	4397	TTCCCTCTAAGGTGACATCTGACAACCTTCCCTCTTAATGTTGTAAAAACATGGT
HUM	2783	CTTCCTGTAAGGCAACATCTGACACCCAGGAACCTTCTCTTCAGTTTTAAAA
		4491
RAT	4451	GATTCAACCCTCCGGAGACAGAGCTGTATTGTTAGTGAATGCTG
HUM	2837	ACAACTTAATTCAAGTCCTTACTTGTGGAATCAGGCCCTACTTATGTAA

Fig. 5

Fig. 6A

16/23

Fig. 6B

Fig. 6C

17/23

Fig. 7

09 / 856766

18/23

Fig. 8A

Fig. 8B

Fig. 8C

09/856766

20/23

Fig. 9A

Fig. 9B

Fig. 10

09 / 856766

22/23

Fig. 11

23/23

Cellular and Stimulus-Specific Responses of the MnSOD Gene

CELL TYPES	LPS	IL-1 β	TNF- α	IL-6	PHORBO LESTER	IFN- γ	GLUCOCORTICOI	ENHANCER RESPONSE TO LPS IL-1 AND TNF
Pulmonary Epithelial				-		-	-	X
Pulmonary Microvascular Endothelial				-		-	-	X
Pulmonary Fibroblasts				ND	ND	ND	ND	X
Pulmonary Artery Endothelial				-	ND	-	-	X
Small Intestinal Epithelial				-	ND	-	-	X
Small Intestinal Smooth Muscle				-	ND	-	-	ND
Myenteric Neurons				ND	ND	ND	ND	ND
Hepatocytes	-	-	-		ND	ND		ND
Hepatoma	-	-	-		ND	ND		ND
Glomerular Epithelial				ND		-		ND
Mesangial				-	ND	-		ND
Primary Neuronal				-	ND	ND		ND
Primary Glial				ND	ND	ND		X

||||| 15-20 Fold Induction ||| 5-10 Fold Induction |||| 75-80% Inhibition ND No Data

Fig. 12