

Objectives of this assignment:

• To verify empirically Theorem 12.3 (Chapter 12, Textbook) that states: "The expected height of a randomly built binary search tree on n distinct keys is O(lg n)."

What you need to do:

- **1.** Implement the Tree-Insert(T,z) operation on a binary search tree.
- 2. Repeatedly Insert *n* randomly picked numbers in a binary search tree and collect the height *h*.
- 3. Plot on the same plot the quantity h/lg(n) versus n.
- 4. Discuss the results.

Objective:

The objective of this programming assignment is to verify empirically Theorem 12.3 that states that "the expected height of a randomly built binary search tree on n distincts keys is O(lg n)."

In order to conduct this experiment, you must implement in Java the Tree-Insert(T,z) operation. Below, I explain in pseudocode the program you must write to collect data and verify Theorem 12.3.

Program to implement

Data Analysis

Use any plotting software (e.g., Excel) to plot the quantity Height(n)/lg n in File F as a function of n. File F is the file produced by the program you implemented. Discuss your results based on the plots.

Report

- Write a report that will contain, explain, and discuss the plot. The report should not exceed one page.
- In addition, your report must contain the following information:
 - o whether the program works or not (this must be just ONE sentence)
 - o the directions to compile and execute your program
- Good writing is expected.
- Recall that answers must be well written, documented, justified, and presented to get full credit.

What you need to turn in:

- Electronic copy of your source program (standalone)
- Electronic copy of the report (including your answers) (standalone). Submit the file as a Microsoft Word or PDF file.

Grading

- Program is worth 30% if it works and provides data to analyze
- Quality of the report is worth 70% distributed as follows: good plot (25%), explanations of plot (10%), discussion and conclusion (35%).