Problem 1.

The diagram shows the region R, which is bounded by the axes and the part of the curve $y^2 = 4a(a-x)$ lying in the first quadrant.

Find, in terms of a, the volume, V_x , of the solid formed when R is rotated completely about the x-axis.

The volume of the solid formed when R is rotated completely about the y-axis is V_y . Show that $V_y = \frac{8}{15}V_x$.

The region S, lying in the first quadrant, is bounded by the curve $y^2 = 4a(a-x)$ and the lines x = a and y = 2a. Find, in terms of a, the volume of the solid formed when S is rotated completely about the y-axis.

Assignment B8 Applications of Integration I

Problem 2.

The region bounded by the axes and the curve $y = \cos x$ from x = 0 to $x = \frac{1}{2}\pi$ is divided into two parts, of areas A_1 and A_2 , by the curve $y = \sin x$.

- (a) Prove that $A_2 = \sqrt{2}A_1$.
- (b) Prove Find the volume of the solid obtained when the region with area A_2 is rotated about the y-axis through 2π radians. Give your answer in exact form.

- Part (a)
- Part (b)

Problem 3.

A curve has parametric equations

$$x = \cos^2 t$$
, $y = \sin^3 t$, $0 \le t \le \frac{1}{2}\pi$

- (a) Sketch the curve.
- (b) Show that the area under the curve for $0 \le t \le \frac{1}{2}\pi$ is $2\int_0^{\pi/2} \cos t \sin^4 t \, dt$, and find the exact value of the area.
- (c) Find the volume of the solid obtained when the region in (b) is rotated about the y-axis through 2π radians.

- Part (a)
- Part (b)
- Part (c)

Problem 4.

(a) Given that f is a continuous function, explain, with the aid of a sketch, why the value of

$$\lim_{n \to \infty} \frac{1}{n} \left[f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \ldots + f\left(\frac{n}{n}\right) \right]$$

is
$$\int_0^1 f(x) dx$$
.

(b) Hence, evaluate $\lim_{n\to\infty} \frac{1}{n} \left(\frac{\sqrt[3]{1} + \sqrt[3]{2} + \ldots + \sqrt[3]{n}}{\sqrt[3]{n}} \right)$.

- Part (a)
- Part (b)

Problem 5.

The function f satisfies f'(x) > 0 for $a \le x \le b$, and g is the inverse of f. By making a suitable change of variable, prove that

$$\int_{a}^{b} f(x) dx = b\beta - a\alpha - \int_{\alpha}^{\beta} g(y) dy$$

where $\alpha = f(a)$ and $\beta = f(b)$. Interpret this formula geometrically by means of a sketch where α and a are positive. Verify this result for the case where $f(x) = e^{2x}$, a = 0, b = 1.

Prove similarly and interpret geometrically the formula

$$2\pi \int_{a}^{b} x f(x) dx = \pi (b^{2}\beta - a^{2}\alpha) - \pi \int_{\alpha}^{\beta} [g(y)]^{2} dy$$