

ANALISIS KLASTERISASI KEPADATAN PENDUDUK KABUPATEN MUARA ENIM MENGGUNAKAN ALGORITMA DBSCAN

Oleh Kelompok 4:
Anasthashya Rachman (121450013)
Balqis Dwian Fitri Zamzami (121450018)
Ghozi Alvin Karim (121450123)
Rafi Fadhlillah (121450143)
Khalda Luthfi A. (121450160)

PROGRAM STUDI SAINS DATA
FAKULTAS SAINS
INSTITUT TEKNOLOGI SUMATERA

PENDAHULUAN

 Kabupaten Muara Enim adalah salah satu wilayah di Indonesia yang mengalami pertumbuhan kepadatan penduduk yang cukup signifikan

 Tujuan penelitian ini digunakan untuk menentukan parameter optimal, menerapkan metode DBSCAN, mengidentifikasi dan memetakan area dengan kepadatan penduduk tinggi di Muara Enim Pada penelitian sebelumnya, yang dilakukan oleh Esra Kristiano, dkk mengenai Pembangunan Webgis Untuk Penderita Gizi Buruk Di Kota Medan Berdasarkan Hasil Clustering Algoritma DBSCAN menghasilkan keberhasilan dalam melakukan clustering DBSCAN berdasarkan gizi buruk dengan silhouette index 0,5414

METODE PENELITIAN

DATA Kepadatan Penduduk

ezGeocode

Professional geocode addresses in bulk to get Latitudes and Longitudes and useful geographical information.

Oleh: St3ph Z

Listingan diperbarui: 28 Februari 2023

DATA Vektor Shapefile

METODE PENELITIAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Teknik pengelompokan data berdasarkan kepadatan, menggunakan parameter epsilon (ε) dan jumlah minimum poin (minpts). Algoritma ini mengelompokkan data sesuai dengan parameter tersebut dan dapat mengidentifikasi data noise

METODE PENELITIAN

EVALUASI HASIL DBSCAN

Silhouette Score

$$s(xi) = \frac{b(xi) - a(xi)}{max\{b(xi), a(xi)\}}$$

Dunn Index

$$DU = \left\{ \frac{\min(d(Ci,Cj))}{\max(d(Cl))} \right\}$$

Davies Bouldin Index

$$DBI = \frac{1}{M} \sum_{j=1}^{M} maxR$$

DIAGRAM ALIR

Mencari Parameter Terbaik

Menggunakan teknik brute force(mencoba seluruh kombinasi yang mungkin)

```
3 # Parameters
4 eps_values = np.arange(0.1, 1.0, 0.01).tolist()
5 min_samples_values = [2, 3, 4, 5, 6, 7, 8, 9]
6
7 results = []
```

	Eps	MinPts	Silhouette Score	Davies-Bouldin Index
0	0.10	2	0.116314	1.086317
1	0.10	3	0.413913	0.457807
2	0.10	4	NaN	NaN
3	0.10	5	NaN	NaN
4	0.10	6	NaN	NaN
715	0.99	5	NaN	NaN
716	0.99	6	NaN	NaN
717	0.99	7	NaN	NaN
718	0.99	8	NaN	NaN
719	0.99	9	NaN	NaN

[720 rows x 4 columns]

	Eps	MinPts	Silhouette Score	Davies-Bouldin Index
107	0.23	5	0.475289	0.634530
115	0.24	5	0.475289	0.634530
123	0.25	5	0.475289	0.634530
114	0.24	4	0.461427	0.668571
124	0.25	6	0.461427	0.668571
0	0.10	2	0.116314	1.086317
108	0.23	6	0.069042	4.252591
174	0.31	8	0.062274	3.531670
9	0.11	3	0.030620	1.679984
165	0.30	7	0.027365	2.999255

71 rows × 4 columns

DBSCAN epsilon = 0,23 dan min_samples = 5

	Kecamatan	Cluster
0	Belida Darat	Cluster 1
1	Belimbing	Cluster 0
2	Benakat	Cluster 0
3	Empat Petulai Dangku	Cluster 0
4	Gelumbang	Cluster 1
5	Gunung Megang	Cluster 0
6	Kelekar	Cluster 1
7	Lawang Kidul	Cluster 0
8	Lembak	Cluster 1
9	Lubai	Cluster 0
10	Lubai Ulu	Cluster 0
11	Muara Belida	Cluster 1
12	Muara Enim	Cluster 0
13	Panang Enim	Noise
14	Rambang	Cluster 0
15	Rambang Niru	Cluster 0
16	Semende Darat Laut	Noise
17	Semende Darat Tengah	Noise
18	Semende Darat Ulu	Noise
19	Sungai Rotan	Cluster 1
20	Tanjung Agung	Noise
21	Ujan Mas	Cluster 0

Rataan Kepadatan Penduduk Berdasarkan Cluster

TABEL III

RATA-RATA PENDUDUK TIAP CLUSTER

Cluster	Rataan Kepadatan Penduduk
Cluster 1 (rendah)	93.18
Cluster 0 (sedang)	132.70
Noise	52.89

Noise berarti titik-titik ini tidak memiliki cukup tetangga dalam radius tertentu (parameter epsilon) untuk dianggap sebagai bagian dari cluster mana pun.

DBSCAN epsilon = 0,23 dan min_samples = 5

Evaluasi Hasil

Tabel IV hasil evaluasi

Evaluasi	Hasil
Silhouette Score	0.4752891591071915
Davies-Bouldin Index	0.6345303373989727
Dunn Index	0.9982235779455864

- Silhouette Score dan DBI menunjukkan bahwa cluster memiliki kepadatan dan pemisahan yang cukup baik
- Dunn Index menunjukkan bahwa cluster memiliki kepadatan dan pemisahan yang sangat baik.

KESIMPULAN

Metode Density-Based Spatial Clustering of Applications with Noise (DBSCAN) berhasil diterapkan pada data spasial kepadatan penduduk Kabupaten Muara Enim dengan parameter optimal yang diperoleh adalah epsilon = 0,23 dan min points = 5. Hasil clustering membagi wilayah menjadi tiga kategori kepadatan penduduk dan dievaluasi menggunakan beberapa metrik. Silhouette Score sebesar 0,475289 dan Davies-Bouldin Index sebesar 0,634530 menunjukkan cluster memiliki kepadatan dan pemisahan yang cukup baik, namun masih berpotensi untuk dioptimalisasi lebih lanjut. Sementara itu, Dunn Index sebesar 0,998224 mengindikasikan bahwa cluster-cluster tersebut memiliki kepadatan dan pemisahan yang sangat baik. Kedekatan dengan ibu kota kabupaten menjadi faktor utama yang mempengaruhi kepadatan penduduk di wilayah tersebut.

TERIMA KASIH

Analisis Klasterisasi Kepadatan Penduduk Kabupaten Muara Enim Menggunakan Algoritma DBSCAN

