Quantifiers

Jon Beattie

February 12, 2018

- 1 Mark each statement as True or False. Justify each answer.
 - (a) The symbol " \forall " means "for every".
 - (b) The negation of a universal statement is another universal statement.
 - (c) The symbol "∋" is read "such that".
- 2 Mark each statement True or False. Justify each answer.
 - (a) The symbol "∃" means "there exist several".
 - (b) If a variable is used in the antecedent of an implication without being quantified, then the universal quantifier is assumed to apply.
 - (c) The order in which quantifiers are used affects the truth value.
- 3 Write the negation of each statement.
 - (a) All the roads in Yellowstone are open.
 - (b) Some fish are green.
 - (c) No even integer is prime.
 - (d) $\exists x < 3 \ni x^2 \ge 10$.
 - (e) $\forall x \text{ in } A, \exists y < k \ni 0 < f(y) < f(x)$
 - (f) If n > N, then $\forall x \text{ in } S$, $|f_n(x) f(x)| < \epsilon$.

- 4 Write the negation of each statement.
 - (a) Some basketball players at Central High are short.
 - (b) All of the lights are on.
 - (c) No bounded interval contains infinitely many integers.
 - (d) $\exists x \text{ in } S \ni x \geq 5$.
 - (e) $\forall x \ni 0 < x < 1, f(x) < 2 \text{ or } f(x) > 5.$
 - (f) If x > 5, then $\exists y > 0 \ni x^2 > 25 + y$.
- 5 Determine the truth value of each statement, assuming that x,y, and z are real numbers.
 - (a) $\exists x \ni \forall y \exists z \ni x + y = z$.
 - (b) $\exists x \ni \forall y \text{ and } \forall z, x + y = z.$
 - (c) $\forall x \text{ and } \forall y, \exists z \ni y z = x.$
 - (d) $\forall x \text{ and } \forall y, \exists z \ni xz = y.$
 - (e) $\exists x \ni \forall y \text{ and } \forall z, z > y \text{ implies that } z > x + y.$
 - (f) $\forall x, \exists y \text{ and } \exists z \ni z > y \text{ implies that } z > x + y.$
- 6 Determine the truth value of each statement, assuming that x,y and z are real numbers.
 - (a) $\forall x \text{ and } \forall y, \exists z \ni x + y = z.$
 - (b) $\forall x \exists y \ni \forall z, x + y = z$.
 - (c) $\exists x \ni \forall y, \exists z \ni xz = y.$
 - (d) $\forall x \text{ and } \forall y, \exists z \ni yz = x.$
 - (e) $\forall x \exists y \ni \forall z, z > y$ implies that z > x + y.
 - (f) $\forall x \text{ and } \forall y, \exists z \ni z > y \text{ implies that } z > x + y.$

- Below are two strategies for determining the truth value of a statement involving a positive number x and another statement P(x). Find some x>0 such that P(x) is true. Let x be the name for any number greater than 0 and show P(x) is true. For each statement below, indicate which strategy is more appropriate.
 - (a) $\forall x > 0, P(x)$.
 - (b) $\exists x > 0 \ni P(x)$.
 - (c) $\exists x > 0 \ni \neg P(x)$.
 - (d) $\forall x > 0, \neg P(x)$.
- 8 Which of the following best identifies f as a constant function, where x and y are real numbers
 - (a) $\exists x \ni \forall y, f(x) = y$.
 - (b) $\forall x \exists y \ni f(x) = y$.
 - (c) $\exists y \ni \forall x, f(x) = y$.
 - (d) $\forall y \exists x \ni f(x) = y$.
- 9 Determine the truth value of each statement, assuming x is a real number.
 - (a) $\exists x \text{ in } [2,4] \ni x < 7.$
 - (b) $\forall x \text{ in } [2,4], x < 7.$
 - (c) $\exists x \ni x^2 = 5$.
 - (d) $\forall x, x^2 = 5$.
 - (e) $\exists x \ni x^2 \neq -3$.
 - (f) $\forall x, x^2 \neq -3$.
 - (g) $\exists x \ni x \div x = 1$.
 - (h) $\forall x, x \div x = 1$.
- 10 Determine the truth value of each statement, assuming x is a real number.
 - (a) $\exists x \text{ in } [3,5] \ni x \ge 4.$
 - (b) $\forall x \text{ in } [3,5], x \ge 4.$
 - (c) $\exists x \ni x^2 \neq 3$.

- (d) $\forall x, x^2 \neq 3$.
- (e) $\exists x \ni x^2 = -5$.
- $(f) \ \forall x, x^2 = -5.$
- (g) $\exists x \ni x x = 0$.
- (h) $\forall x, x x = 0$.