Übung 7

Alexander Mattick Kennung: qi69dube

Kapitel 1

16. Juli 2020

ZV X und Y sind unabhängige, gleichverteilte ZV aus $\mathcal{U}(a,b)$

also ist

$$f^{Y}(y) = \frac{1}{b-a} 1_{(a,b)}$$

$$f^X(x) = \frac{1}{b-a} 1_{(a,b)}$$

Dazu die Faltung Z=X+Y wobei $z=x+y\in (a,2b)$:

$$f^{(X+Y)}(z) = \int_{-\infty}^{\infty} f^{Y}(y) f^{X}(z-y) dy$$

$$f^{(X+Y)}(z) = \int_{-\infty}^{\infty} \frac{1}{b-a} 1_{(a,b)}(y) \frac{1}{b-a} 1_{(a,b)}(z-y) dy$$

$$f^{(X+Y)}(z) = \frac{1}{(b-a)^2} \int_{-\infty}^{\infty} 1_{(a,b)}(y) 1_{(a,b)}(z-y) dy$$

Die letzte Indikatorfunktion liefert $1_{(a,b)}(z-y) \iff z-y \in (a,b) \iff y \in (z-b,z-a) \iff 1_{(z-b,z-a)}(y)$ (weil $z-y=x \in (a,b) \iff y=z-x$, grenzen drehen sich um, weil ich das element der Menge minus nehme).

$$\frac{1}{(b-a)^2} \int_{-\infty}^{\infty} 1_{(a,b)}(y) 1_{(z-b,z-a)}(y) dy \iff \frac{1}{(b-a)^2} \int_{-\infty}^{\infty} 1_{(a,b)\cap(z-b,z-a)}(y) dy$$

bzw $a < y < b \wedge z - b < y < z - a$

daraus folgt, dass y mindestens max(a, z - b) groß sein muss und höchstens min(b, z - a).

Der erste Randfall liefert $a < z - b \implies a + b < z$ für das untere Intervall, $z - a < b \implies z < a + b$ für das obere.

Explizit muss noch der fall von a+b=z betrachtet werden.

Da sowohl f^X als auch f^Y stetig in (a+b) sind, muss auch deren Produkt stetig sein.

Somit können wir a + b zu einem der Fälle hinzunehmen. (hier dem ersten)

Es gilt $y \in (a, z - a)$ weil y mindestens a sein muss:

daraus folgt $z \le a + b \land y < z - a \implies z \le a + b \land a < z - a \implies z \in (2a, a + b]$

Dieser Teilintegral:

$$\int_{a}^{z-a} \frac{1}{(b-a)^2} dy = \frac{z-a}{(b-a)^2} - \frac{a}{(b-a)^2} = \frac{z-2a}{(b-a)^2}$$

1

Wenn $z \in (a + b, 2b)$ dann $y \in (z - b, b)$ da y höchstens b werden kann.

(herleitung analog)

$$\int_{z-b}^{b} \frac{1}{(b-a)^2} dy = \frac{b}{(b-a)^2} - \frac{z-b}{(b-a)^2}$$

somit erhalten wir insgesamt:

$$f_Z(z) = \begin{cases} \frac{z - 2a}{(b - a)^2} & z \in (2a, a + b] \\ \frac{2b - z}{(b - a)^2} & z \in (a + b, 2b) \\ 0 & sonst \end{cases}$$

1

Der Träger ist $t_1^2 + t_2^2 \le 1$ dies ist ein Kreis, somit kann die Verteilungsfunktion nicht stochastisch unabhängig sein

Umformung nach t_1^2 liefert $t_1^2 \leq 1 - t_2^2$, da $t_1 \in \mathbb{R}$

$$f^{X}(t_{2}) = \int_{-\sqrt{1-t_{2}^{2}}}^{\sqrt{1-t_{2}^{2}}} f(t_{1}, t_{2}) dt_{1}$$

$$f^{X}(t_{2}) = \int_{-\sqrt{1-t_{2}^{2}}}^{\sqrt{1-t_{2}^{2}}} \frac{1}{\pi} dt_{1}$$

$$f^{X}(t_{2}) = \left[\frac{1}{\pi} t_{1}\right]_{-\sqrt{1-t_{2}^{2}}}^{\sqrt{1-t_{2}^{2}}}$$

$$f^{X}(t_{2}) = \frac{1}{\pi} (\sqrt{1-t_{2}^{2}}) - (-\frac{1}{\pi} (\sqrt{1-t_{2}^{2}}))$$

$$f^{X}(t_{2}) = \frac{2}{\pi} (\sqrt{1-t_{2}^{2}})$$

analog für y

$$f^{Y}(t_1) = \int_{-\sqrt{1-t_1^2}}^{\sqrt{1-t_1^2}} f(t_1, t_2) dt_2$$

$$f^{Y}(t_{1}) = \int_{-\sqrt{1-t_{1}^{2}}}^{\sqrt{1-t_{1}^{2}}} \frac{1}{\pi} dt_{2}$$

$$f^{Y}(t_{1}) = \frac{1}{\pi} (\sqrt{1-t_{1}^{2}}) - (-\frac{1}{\pi} (\sqrt{1-t_{1}^{2}}))$$

$$f^{Y}(t_{1}) = \frac{2}{\pi} (\sqrt{1-t_{1}^{2}})$$

bei beiden gilt $t_{1/2} \in [0,1]$

Das produkt von $f^X(0)f^Y(0)=\frac{4}{\pi^2}\neq f^{(X,Y)}(0,0)=\frac{1}{\pi}$

