4 laboratorinis darbas

Šio laboratorinio darbo tikslas yra susipažinti su RBF tinklais, skirtais funkcijų aproksimavimui ir funkcijos reikšmių prognozavimui. **Atsiskaitymas iki gruodžio 16 d. imtinai**.

Duota tolydi funkcija $f:[-1,1] \to \mathbb{R}$. Kiekvienam variantui savo funkciją rasite faile Funkcijos.pdf

http://uosis.mif.vu.lt/~valdas/DNT/Laboratoriniai_darbai/ Laboratorinis_4/

Mokymui naudojamos poros $(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$, kur x_i $(i=1,\ldots,N)$ yra N tolygiai intervale [-1,1] išsidėsčiusių argumento reikšmių ir $y_i=f(x_i)$ $\forall i=1,\ldots,N$. Taigi, norint rasti mokymo imtį, reikia intervalą [-1,1] padalinti į N-1 dalių ir imti taškus $x_i=-1+(i-1)\Delta$, kur $\Delta=2/(N-1)$. Aišku, kad $x_1=-1$ ir $x_N=1$.

Naudojame RBF tinklą su Gauso bazinėmis funkcijomis

$$\phi_j(x) = \exp\left(-\frac{|x - t_j|}{2\sigma^2}\right), \quad j = 1, \dots, m_1$$

su $m_1 \leq N$ fiksuotų centrų. Bazinių funkcijų centrai tolygiai išdėstyti intervale [-1,1]. Taigi, pažymėję $\delta = 2/(m_1-1)$, gauname $t_j = -1 + (j-1)\delta$, $j = 1, \ldots, m_1$.

Pažymėkime γ koeficientą prie atstumo $|x-t_j|$ Gauso funkcijos argumente, t.y. $\gamma=-1/(2\sigma^2)$. Teorija rekomenduoja pasirinkti $\gamma=\gamma_0=-m_1/d_{\max}^2$, kur d_{\max} yra maksimalus atstumas tarp centrų. Pagal centrų pasirinkimą jis lygus 2, taigi $\gamma_0=-m_1/4$.

Mokymo tikslas yra rasti svorių vektorių (stulpelį) w tokį, kad mokymo imtis tenkintų lygybes

$$y_i = \sum_{j=1}^{m_1} w_j \phi_j(x_i, t_j) \quad \forall i = 1, \dots, N.$$

Tarkime, kad $N \times m_1$ matrica $G = (\phi_j(x_i, t_j))$. Pažymėję $\mathbf{x} = (x_1, x_2, \dots, x_N)'$ ir $\mathbf{y} = (y_1, y_2, \dots, y_N)'$, gauname, kad ieškomas svorių vektorius \mathbf{w} tenkina vektorinę lygtį

$$\mathbf{y} = G\mathbf{w}$$
.

Jos sprendinys bus

$$\mathbf{w} = G^+ \mathbf{y},$$

kur matrica G^+ yra pseudoatvirkštinė matricai G, t.y.

$$G^+ = (G'G)^{-1}G'.$$

Matricos G^+ išmatavimai yra $m_1 \times N$.

Aproksimacijos tikslumo testavimui naudosime pastovią testinę imtį $(x_1^t, y_1^t), (x_2^t, y_2^t), \ldots, (x_{201}^t, y_{201}^t)$, kur x_i^t yra taškai $-1, -0.99, -0.98, \ldots, 0.99, 1$, ir $y_i^t = f(x_i^t) \ \forall i = 1, \ldots, 201$. Vietoje reikšmių y_i^t apmokytas tinklas iš tikrųjų skaičiuos reikšmes

$$z_i = \sum_{j=1}^{m_1} w_j \phi_j(x_i^t, t_j) \quad \forall i = 1, \dots, 201.$$

Vektoriniu pavidalu šią lygybę galima užrašyti

$$\mathbf{z} = G^t \mathbf{w},$$

kur $201 \times m_1$ matrica $G^t = (\phi_j(x_i^t, t_j))$. Aproksimacijos tikslumo matas bus suminė kvadratinė testinė klaida

$$E^{t}(N, m_{1}, \gamma) = \frac{1}{2} \sum_{i=1}^{201} (z_{i} - y_{i}^{t})^{2}.$$

Analogiškai prognozavimo tikslumo testavimui naudosime pastovią prognozės imtį $(x_1^p,y_1^p),(x_2^p,y_2^p),\dots,(x_{20}^p,y_{20}^p)$, kur x_i^p yra taškai $1.01,1.02,1.03,\dots,1.19,1.2$, ir $y_i^p=f(x_i^p)$ $\forall i=1,\dots,20$. Kitaip sakant, mes prognozuojame, kaip funkcija f(x) elgsis intervale (1,1.2] su kurio reikšmėmis tinklas nebuvo mokomas. Vietoje tikrųjų reikšmių y_i^p apmokytas tinklas iš tikrųjų skaičiuos reikšmes

$$u_i = \sum_{j=1}^{m_1} w_j \phi_j(x_i^p, t_j) \quad \forall i = 1, \dots, 20.$$

Prognozavimo tikslumo matas bus suminė kvadratinė prognozės klaida

$$E^{p}(N, m_1, \gamma) = \frac{1}{2} \sum_{i=1}^{20} (u_i - y_i^{p})^2.$$

Rasti: Naudojant mokymo imties dydžius 5, 9 ir 21, centrų skaičių 5, 9 ir 21 bei γ reikšmes γ_0 , -0.5 (ši reikšmė atitinka vienetinę dispersiją $\sigma=1$), 1, 2 ir 5, raskite sumines kvadratines testinę ir prognozės klaidas bei nustatykite, kurioms parametrų šių trijų parametrų reikšmėms tinklas geriausiai aproksimuoja ir kurioms geriausiai prognozuoja. Kitaip sakant, reikia atlikti 30 eksperimentų naudojant 6 (N, m_1) poras (5, 5), (9, 9), (21, 5), (21, 9) ir (21, 21) bei 5 aukščiau išvardintas γ reikšmes, užpildyti dvi lenteles 5×6 , kurių langeliuose stovėtų atitinkamos suminės kvadratinės klaidos, ir kiekvienai lentelei nurodyti optimalų trejetą reikšmių (N, m_1, γ) .

Atsakymo pavyzdys:

testas =

0.1150	0.0300	0.0068	0.0221	0.0020	0.0093
0.1896	0.0482	0.0119	0.0343	0.0028	0.0003
0.1423	0.0363	0.0092	0.0263	0.0021	0.0002
0.0651	0.0270	0.0055	0.0198	0.0015	0.0002
1.5253	1.0910	0.2207	0.7380	0.0817	0.0075

opt_trejetas =

21 21 1

prognoze =

1.5546	1.6050	2.3636	1.6291	2.3313	4.8059
0.9965	1.0846	0.9965	1.1423	1.0123	0.9965
0.1651	0.1975	0.1651	0.2175	0.1696	0.1651
0.0056	0.0082	0.0056	0.0141	0.0074	0.0056
4.3086	5.6339	4.3086	8.4233	5.1034	4.3087

opt_trejetas =

5 5 2