Características gerais dos métodos espectroscópicos

Belarmino Matsinhe

August 16, 2023

Conteúdo da aula

- Mecanismos de interacção radiação-matéria;
- Quantificação de energia;
- Transições energéticas;
- Sinais espectrais;
- Análise espectral.

Interação da radiação electromagnética com a matéria

Simulação da interação da radiação não ionizante

Acesse aqui

https://phet.colorado.edu/pt_BR/simulations/

molecules-and-light

Interacção da radiação electromagnética com a matéria

Figure: Mecanismos de interacção da radiação com a matéria

Interacção da radiação electromagnética com a matéria

O que realmente, interage com a matéria?

Interacção da radiação electromagnética com a matéria

As propriedades ondulatórias correspondem às variações dos campos eléctricos e magnéticos. São estes campos eléctricos e magnéticos, responsáveis pela interaçção com a matéria, resultando num espectro. Este espectro, nos revela a estrutura da matéria irradiada.

Quantificação de energia

Aproximação de Born-Openheimer

$$E = E_{rot} + E_{vib} + E_{ele} + \tag{1}$$

Condição de ressonância: Equação de Planck

$$\Delta E = h\nu \tag{2}$$

Condição de absorção: lei de Beer-Lambert

$$A = \varepsilon Cd \tag{3}$$

Onde; "d" [cm], "C" [mol/litro] ou [M], e " ε " [litros/(mol.cm)].

Secção de Física Médica

Regras de seleção

São previsões da Mecânica quântica que determinam quais níveis de energia de um sistema atómico ou molecular irão participar de uma transição espectral (de um nível para o outro).

Transições energéticas

Probabilidade de transição

$$P(\alpha) = g(\alpha)e^{-(\frac{E_{\alpha}}{kT})}$$
 (4)

$$P(\beta) = g(\beta)e^{-(\frac{E_{\beta}}{kT})}$$
 (5)

Lei de distribuição de partículas de Boltzmann

$$\frac{N_{\beta}}{N_{\alpha}} = g(\alpha + 1)e^{-(\frac{\Delta E}{kT})}$$
 (6)

Secção de Física Médica

Figure: Sinal-Ruído

O que causa o ruído espectral?

Figure: Diagrama dos componentes de um espectrômetro

Poder de resolução

Em espectroscopia é definido pelo número de linhas espectrais e pela amplitude do intervalo de frequências ou comprimento de onda de cada banda.

Sinal espectral: Poder de resolução

Secção de Física Médica

Poder de resolução

$$R = \frac{FwHM}{x} \tag{7}$$

Poder de resolução: Largura espectral

$$\Delta v = \frac{32\pi^3 v^3}{(4\pi\varepsilon_0)3hc^3} |R_{\alpha,\beta}|^2 \tag{8}$$

Factores que influenciam o Poder de resolução

- Efeito Doppler;
- Interação entre moléculas;
- Intensidade dos campos electromagnéticos (Efeito Zeeman ou Stark).

Intensidade do sinal espectral

- A probabilidade de transição;
- A população atómica dos estados energéticos;
- A concentração da amostra.

Como um sinal espectal é Processado?

Como podemos saber em que intervalos de frequência se concentra a energia do sinal eléctrico transduzido pelo fototransdutor?

Processamento do sinal

- Medição (obtensão do sinal);
- Identificação;
- Descrição;
- Análise espectral.

Processamento do sinal

Figure: Formação de um sinal

Transformada Rápida de Fourier (FFT- Fast Fourier Transform)

$$h(t) = \int_{-\infty}^{+\infty} H(w)e^{i\omega t}dw = F[H(w)]$$
 (9)

A sua inversa será:

$$H(\omega) = \int_{-\infty}^{+\infty} h(t)e^{-i\omega t}dt = F^{-1}[h(t)]$$
 (10)

Manipulação espectral

Figure: efeitos da filtragem de frequências

Processamento do sinal

- Convolução de sinais;
- Correlação de sinal.

Processamento do sinal Convolução de sinais Input Time Samples **Output Time** Samples Convolution Sampled Filter Discrete Time Impulse Response Figure: Filtragem de frequências

29 / 35

Processamento do sinal

Convolução de sinais

A convolução de dois sinais, g(t) e x(t) é definido como:

$$g(t)\cdot x(t) = \int_{-\infty}^{+\infty} g(\tau)x(t-\tau)d\tau \tag{11}$$

Processamento do sinal

Convolução de sinais
 Calcular a função convolução, y(t), de dois sinais
 descritos por:

$$x(t) = u(t) - u(t-1)$$

$$h(t) = (t-1)[u(t-1) - u(t-3)]$$

Processamento do sinal

• Correlação de sinal

A correlação cruzada de dois sinais, g(t) e h(t) é definido como:

$$g(t) \times h(t) = \int_{-\infty}^{+\infty} g^{*}(\tau) x(t+\tau) d\tau \qquad (12)$$

$$g(t) \times h(t) = \int_{-\infty}^{+\infty} g^*(\tau - t) x(\tau) d\tau \qquad (13)$$

As imagens foram retiradas em:

Imagens sobre transformadas de Fourier

```
https://www.brainlatam.com/blog/
analise-espectral-e-transformada-de-fourier-\
em-processamento-de-sinal-de-eeg-4248
```

Outras imagens: Carecem de fontes e n\u00e3o pertencem ao autor desta aula

FIM da Aula

Secção de Física Médica