Una mappa di Karnaugh è una rappresentazione alternativa delle tabelle di verità

Per una funzione a n variabili, una mappa ha 2ⁿ celle

CONFIGURAZIONI LOGICAMENTE ADIACENTI

Due configurazioni sono logicamente adiacenti se differiscono per il valore di una e una sola variabile

PROPRIETÀ

In una mappa di Karnaugh l'adiacenza fisica corrisponde all'adiacenza logica

PROPRIETÀ

Esiste una corrispondenza biunivoca tra mintermini e celle con valore 1 della mappa di Karnaugh

SOTTO CUBO

Rettangolo di 2^k celle adiacenti

PROPRIETÀ

Esiste una corrispondenza biunivoca tra sottocubi di 2^k celle di 1 e funzioni prodotto di n - k variabili. Il prodotto è formato dalle variabili che non cambiano valore all'interno del sotto cubo, prese dirette se valgono 1 e negate se valgono 0.

IMPLICANTE

Data una funzione f, una funzione prodotto p si dice implicante di f e si indica

se f = 1 in almeno tutte le configurazioni per cui p vale 1

ossia

se f = 1 in almeno tutte le celle del sotto cubo relativo a p

PROPRIETÀ

Data una funzione f ed un insieme $p_1, p_2,..., p_k$ se f = 1 in tutte e solo le celle coperte dagli implicanti dell'insieme allora f si può esprimere come

$$f = p_1 + p_2, ... + p_k$$

IMPLICANTE PRIMO

Data una funzione f, un implicante p di f si dice primo se non esiste un implicante p' tale che $p' \rightarrow f e p \rightarrow p'$

ossia

se il sotto cubo relativo a p non è contenuto in un sotto cubo più grande

PROPRIETÀ

Per ogni funzione f esiste un insieme di implicanti primi $p_1, p_2, ..., p_k$ tale che

$$f = p_1 + p_2 + ... + p_k$$

INSIEME IRRIDONDANTE DI IMPLICANTI PRIMI

Un insieme $p_1, p_2, ..., p_k$ di implicanti primi si dice irridondante se

$$f = p_1 + p_2 + ... + p_k$$

per ogni
$$p_i$$
, $f \neq p_1 + p_2 + ... + p_{i-1} + p_{i+1} + ... + p_k$

PROPRIETÀ

Per ogni funzione f esiste un insieme irridondante di implicanti primi $p_1, p_2, ..., p_k$ tale che

$$f = p_1 + p_2 + ... + p_k$$

IMPLICANTE PRIMO ESSENZIALE

Un implicante p di una funzione f è un implicante essenziale se esiste almeno una cella del sotto cubo relativo a p che non appartiene a nessun altro sotto cubo relativo ad implicanti di f

PROPRIETÀ

Ogni insieme irridondante di implicanti primi contiene gli implicanti primi essenziali