Curso de Modulação Digital de Sinais (parte 1)

Márcio Antônio Mathias Augusto Carlos Pavão

IMT - Instituto Mauá de Tecnologia

1. O que é modulação

O processo de modulação pode ser definido como a transformação de um sinal que contém uma informação útil em seu formato original (banda-base) num sinal modulado adequado ao meio de transmissão que se pretende utilizar. Isto é feito por meio de um sinal senoidal denominado portadora c(t), cuja freqüência é bem maior que a maior freqüência contida no sinal original.

Figura 1 – (a) Sinal modulador (b) Portadora (c) Sinal Modulado

Através da modulação, o sinal de banda-base é transladado no espectro de freqüências. Com isso, podem ser obtidos estes benefícios:

 a) o compartilhamento do espectro com outros sinais do mesmo tipo. Por exemplo: na faixa de 88 MHz a 108 MHz, estão distribuídas diversas estações transmissoras de FM, cada uma ocupando uma faixa de aproximadamente 200 kHz; b) redução do tamanho dos dispositivos transmissores e receptores. Por exemplo: uma antena bastante simples é o dipolo de meio comprimento de onda, cujo comprimento total é dado por:

Figura 2 – Dipolo de meia onda

onde c/f é o comprimento de onda no ar, na freqüência f, e $c = 3 \times 10^8$ m/s, é a velocidade da luz.

O sinal de áudio transmitido por uma emissora de FM varia de 100 Hz a 15 kHz. Uma antena adequada para transmitir diretamente um sinal nessa faixa (considerando um valor médio de freqüência de 7,5 kHz) apresentaria um comprimento L de 20 km! É lógico que essa dimensão é impraticável. Com a modulação em 100 MHz, por exemplo, a antena apresentará um comprimento L de apenas 1,5 m.

Observe que os telefones celulares são rádios transceptores com antenas diminutas, pois operam em freqüências ainda mais altas.

2. Modulação analógica X Modulação digital

Os sistemas puramente analógicos, com modulação AM e/ou FM têm sido substituídos gradativamente por sistemas digitais, que apresentam como vantagem maior capacidade de transmissão e confiabilidade, podendo ser produzidos a um menor custo.

Atualmente, a informação útil pode já estar disponível na forma digital (dados) ou na forma analógica (áudio, vídeo) que devem ser então convertidos (conversão A/D) antes do processo de modulação digital.

Em qualquer modulação existem três parâmetros do sinal da portadora que podem ser alterados pelo sinal modulador (informação): amplitude, fase e freqüência. Um ou mais desses parâmetros podem ser alterados simultaneamente, transportando, assim, a informação. É possível perceber similaridades entre alguns tipos de modulações analógicas e digitais, o que se mostra na Tabela I.

Tabela I – Comparativo entre modulações.

Parâmetro alterado na Portadora	Modulação Analógica	Modulação Digital
Amplitude	AM (Amplitude modulation)	ASK (Amplitude Shift Keying)
Freqüência	FM (Frequency modulation)	FSK (Frequency Shift Keying)
Fase	PM (Phase modulation)	PSK (Phase Shift Keying)
Amplitude e Fase	***	QAM (Quadrature amplitude modulation)

3. Modulações Digitais Básicas

3.1 ASK - Amplitude Shift Keying

Esta é a forma mais simples de modulação digital, também conhecida como *onoff*, e consiste em representar os símbolos zeros e uns de um sinal digital pela ausência ou pela presença do sinal de portadora. Na figura 3 apresenta-se o sinal modulado y(t) e o sinal modulador m(t). A fase e a freqüência da portadora não se alteram.

Figura 3 – Modulação ASK

3.2 FSK - Frequency Shift Keying

Na modulação FSK os símbolos zeros e uns são associados a diferentes valores de freqüência, ou seja, para transmitir o símbolo um, a portadora assume a freqüência f_1 , e, para transmitir o símbolo zero, a portadora assume a freqüência f_2 . Um exemplo é mostrado na figura 4, onde f_1 é maior que f_2 . A amplitude permanece constante.

Figura 4 – Modulação FSK

3.3 PSK - Phase Shift Keying

Na modulação PSK os símbolos zeros e uns são associados a mudanças na fase da portadora, e a freqüência permanece constante. Um exemplo mostra-se na figura 5, onde se nota a inversão de 180º a cada mudança de símbolo. A amplitude e a freqüência permanecem constantes.

Figura 5 – Modulação PSK

4. Conclusão

Nesta primeira parte de nosso curso, foi discutido o conceito de modulação e foram apresentadas 3 formas básicas de modulações digitais. Percebe-se nessas modulações que apenas uma característica da portadora é alterada pelo sinal que contém a informação. Na continuação deste artigo essas modulações digitais serão abordadas em maior profundidade, incluindo propostas de circuitos moduladores para implementação.