1.

a.

I'll show that $[SL_n(\mathbb{R}), SL_n(\mathbb{R})] = SL_n(\mathbb{R})$. that is to say $SL_n(\mathbb{R})$ is perfect. Let k be a field. SL(n,k) is the special linear group over k.

First, elementary matrices of the first kind generate the special lineasr group over a field. The group of invertible n*n matrices over k with determinant equal to 1. Then SL(n,k) is generated by elementary matrices of form $E_{i,j}$, where $\lambda \in K, 1 \leq i,j \leq n, i \neq j$. By useal Gauss-Jordan ellimination, the matrix $E_{i,j}(\lambda)$ has 1s on the diagonal, λ in the $(ij)^{th}$ position and 0 elsewhere.

Then for $n\geq 2$ number, for $i\neq j$ in the set $\{1,2,\ldots n\}$ and $\lambda\in k$, let $e_{ij}(\lambda)$ be the matrix with λ in the $(ij)^{th}$ position and 0 elsewhere, $E_{ij}(\lambda)$ be termed elementary matrices and $\in SL_nk \forall i\neq j, \lambda\in k$

1. If $n \geq 3$, every elementary matrix can be expressed as a commutator of two elementary matrices. In particular, it is the commutator of two elements of $SL_n(k)$.

Pick $l \in \{1, 2, 3, \dots, n\}$ different from i, j. Consider elements:

$$g = E_{il}(\lambda), \quad h = E_{li}(1)$$

Then, the commutator is given by:

$$ghg^{-1}h^{-1} = E_{il}(\lambda)E_{lj}(1)E_{il}(-\lambda)E_{lj}(-1)$$

Rewriting in terms of the e_{ij} s:

$$ghg^{-1}h^{-1} = \left(I + e_{il}(\lambda)\right)\left(I + e_{lj}(1)\right)\left(I - e_{il}(\lambda)\right)\right)I - e_{lj}(1)$$

Simplifying this yields:

$$ghg^{-1}h^{-1} = (I + e_{il}(\lambda) + e_{lj}(1) + e_{ij}(\lambda))\left(I - e_{il}(\lambda) - e_{lj}(1) + e_{ij}(\lambda)\right)$$

Further simplification yields:

$$ghg^{-1}h^{-1}=I+e_{ij}(\lambda)=E_{ij}(\lambda)$$

2. If n=2, and k has more than three elements, every elementary matrix can be expressed as a commutator of two elements of $SL_n(k)$.

If k has more than three elements, there exists $\mu \in k$ such that μ is invertible and $\mu^2 \neq 1$. We need to prove that for any λ , the element $E_{12}(\lambda)$ (and analogously, the element $E_{21}(\lambda)$) is expressible as a commutator. Indeed, set:

$$g=egin{pmatrix} \mu & 0 \ 0 & \mu^{-1} \end{pmatrix}, \quad h=egin{pmatrix} 1 & rac{\lambda}{\mu^2-1} \ 0 & 1 \end{pmatrix}.$$

A computation shows that the commutator of g and h is $E_{12}(\lambda)$. A similar construction gives $E_{21}(\lambda)$ as a commutator. \square

b.

If n=2, we apply the commutator relation, $[\begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix}, \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix}] = \begin{pmatrix} 1 & (\mu^2-1)\tau \\ 0 & 1 \end{pmatrix}$ but for any $\lambda \in k$, we have $\lambda = (\mu^2-1)\tau$. This can be solved for τ as long as there exists a unit $\mu \in k^x$ so that $\mu \neq \pm 1$. this only works with at least 3 elements in k^x . \square

2.

a.

For $(\mathbb{Z}/n\mathbb{Z}, \mathbf{x}, \cdot)$, if n is a composite number, then there are 1 < a, b < n such that ab = n. Hence $a + n\mathbb{Z}$ and $b + n\mathbb{Z}$

are non-zero and their product is zero. So $\mathbb{Z}/n\mathbb{Z}$ has zero-divisors.

If p is prime, then $p \mid ab$ if and only if either $p \mid a$ or $p \mid b$. Hence $\mathbb{Z}/p\mathbb{Z}$ is a unital (non-trivial) commutative ring without zero-divisors.

If n=1, then $\mathbb{Z}/n\mathbb{Z}$ is the trivial ring which is not an integral domain (by the definition).

b.

First, 1 plays the same role in multiplication as o does in addition: $1 \times a = a, 0 + a = a$. They are called

the identity. (o is the additive identity in $\mathbb{Z}_{30},1$ is the multiplicative identity in \mathbb{Z}_{31}^{\times}).

Then look into $(\mathbb{Z}_{31})^*$ in detail. For [1], it's clearly the multiplicative idnetity. For [2], $[2]^5 \equiv 1 \pmod{31}$, so order is 5. For [3], $[3]^30 = [1]$

So 3 generates the whole group \mathbb{Z}_{31}^{\times} .

C.

No integer solution.

It's a well known and pretty useful fact that the only possible remainders when a perfect cube is divided by 9 are -1,0 and 1 (we can easily prove it using Euclid's division lemma and then checking remainders of the first nine cubes).

That is, for an integer n we have,

 $n^3 \equiv \pm 1 (mod \ 9)$ when n is not divisible by 3 and, $n^3 \equiv 0 (mod \ 9)$ when n is divisible by 3.

Since, each of the cubes can only take any one of the values of -1,0 and 1, so the all possible values of $x^3+y^3-z^3 \pmod 9$ are -3,-2,-1,0,1,2 and 3, but $x^3+y^3-z^3\equiv 4$, which is contradiction.

3.

a.

Denote $N=\bigcap_{g\in G}gHg^{-1}$ be the family of all normal subgroups of G contained in H. The family is non-empty, since $1\subseteq H$ is a normal subgroup of G. We claim $N=\Sigma_{\lambda\in\Lambda}N_\lambda$, the group generated by all the N_λ 's, satisfied the conditions given. First, since $N_\lambda\subseteq H$ for each $\lambda\in\Lambda$, clearly we also have $N\subseteq H$. Every normal subgroup of G contained in G is one of the G which is by definition contained in G. Thus, since an element of G is of the form G0, where G1, we have G2, we have G3, we have G4, we have G4, where G5, we have G6, where G6 is a normal subgroup of G8.

b.

If N is a normal subgroup of group G and $n \in N$ then $gng^{-1} \in N$ for every $g \in G$ or equivalently $[n] \subseteq N$ where $[n] := \{gng^{-1} \mid g \in G\}$ is the conjugacy class of n. This tells us that:

N is normal $\Leftrightarrow \forall q \in G, N = qNq^{-1}$

$$\Leftrightarrow orall n \in N orall g \in G \exists m_{n,g} \in N, n = g m_{n,g} g^{-1} \ \Leftrightarrow N = igcup_{n \in N} \underbrace{igcup_{g \in G} \left\{g m_{n,g} g^{-1}
ight\}}_{ ext{conjugacy class of } n} \ \Leftrightarrow N = igcup_{n \in N} [n],$$

If conversely N is a subgroup of group G that satisfies $N=\bigcup_{n\in N}[n]$ then it is immediate that $gng^{-1}\in N$ for every $n\in N$ and $g\in G.$

4.

ightharpoonup: For G, we have $\forall w \in G, w^3 = 1$, thus $aca^{-1}c^{-1} = a^2ba^2b^2a^2bab^2a^2 = \left(a^2b\right)^2ba(ab)^2ba^2 = b(ba)^2b\left(ba^2\right)^2 = ba^2b^2bab^2 = 1$ so ac = ca, and similarly bc = cb. Also, we have cba = ab, so $ba = c^{-1}ab = abc^2$.

By the way, any word in G can be written in the form $a^ib^jc^k$ with $i,j,k\in\{0,1,2\}$, which means that G is finite with $|G|\leq 27$. To get equality, note that the Heisenberg group H on \mathbb{F}_3 is generated by two elements and every non-identity element has order 3 . This means that H is some quotient of G, hence $|G|\geq |H|=27$.

$$\leftarrow$$
: Write $(z_1,z_3;z_2)=egin{pmatrix}1&z_1&z_2\ &1&z_3\ &&1\end{pmatrix}$

it suffices to check that $(z_1,z_3;z_2)(x,z;y)^{-1}\in G$. But $(x,z;y)^{-1}=(-x,-z;xz-y)$ and $(z_1,z_3;z_2)(-x,-z;xz-y)=(z_1-x,z_3-z;z_2-cz+xz-y)\in G.\square$