Ընկալունակ դաշտ

Հայկ Կարապետյան

Ունենք d հատ շերտից կազմված փաթույթային ցանց։ Դիտարկենք k-րդ շերտի ընկալունակ դաշտր (receptive field) m-րդի նկատմամբ (m < k)։ Ընկալունակ դաշտր հավասար կլինի, m-րդ շերտի feature map-ի այն ամենամեծ տիրույթին, որից ստացվել է k-րդ շերտի feature map-ի մի պիքսելո։ Ցանցի ընկալունակ դաշտ ասելով հասկանում ենք ցանցի վերջին փաթույթային շերտի ընկալունակ դաշտը մուտքային տվյայի (նկարի) նկատմամբ։ Օրինակ` մուտքային շերտ (F_0) և ունենք երկու շերտից բաղկացած փաթույթային ցանց (F_1,F_2) ։ Շերտերում kernel size= 3×3 , stride=1, padding=0: Դիտարկենք F_1 շերտի receptive field-ր F_0 -ի նկատմամբ։ F_1 շերտից դուրս եկող feature map-ի մի պիքսելը բաղկացած է մուտքային նկարի 9 պիքսելից։ Առաջին պիքսելը ստացվել է նկարի վրա 3×3 չափանի kernel-ը ձախ վերևի անկլուն ընելուց և փաթույթի գործըղությունը կիրառելուց հետո։ Այս դեպքում ասում ենք, որ F_1 շերտի receptive field-ը F_0 -ի նկատմամբ 3×3 է կամ 9: <իմա դիտարկենք F_2 շերտի receptive field-ը F_1 -ի նկատմամբ։ F_2 -ի առաջին պիքսելը ստացվել է F_1 շերտից դուրս եղած feature map-ի վրա 3×3 չափանի kernel-ը ձախ վերևի անկյուն դնելուց և փաթույթի գործողությունը կիրառելուց հետո։ F_2 շերտի receptive field-ը F_1 -ի նկատմամբ կստացվի 9։ Ամբողջ ցանցի receptive field-ը հաշվելու համար մեզ պետք է հաշվել F_2 շերտի receptive field-ր F_0 -ի նկատմամբ։ F_2 շերտի առաջին պիքսելը ստացվել է F_1 շերտի 3imes3 պիքսելներից։ F_1 շերտի 3imes3 պիքսելները ստացվել են F_0 շերտի 5imes5 պիքսելներից (Նկար 1)։ Արդյունքում կստացվի F_2 շերտի receptive field-ը F_0 -ի նկատմամբ հավասար է 25-ի։

Նկար 1։ Վերը նկարագրված ցանցի կիրառումը մուտքային նկարի վրա և receptive field-ի պատկերումը

Ինչքան մեծ է ցանցի receptive field-ը այնքան ավելի լավ, քանի որ դա նշանակում է, որ վերջին շերտի մի պիքսելը ավելի շատ ինֆորմացիա է պարունակում սկզբնական նկարի մասին և ավելի ճիշտ որոշում կարող է կայացնել (օրինակ` շուն կամ կատու դասակարգում)։

1 Իսկ ինչպե՞ս մեծացնել receptive field-ը

Տարբերակներից մեկը, դա kernel-ի չափը մեծացնելն է։ Օրինակ կիրառելով 7×7 convolution 3×3 -ի փոխարեն կմեծացնենք receptive field-ը, բայց նաև կշատանա կշիռների քանակը։ Միշտ հնարավոր է մեծացնել receptive field-ը կշիռների քանակը ավելացնելով։ Բայց նաև հնարավոր է մեծացնել receptive field-ը առանց կշիռների քանակը փոփոխելու կամ կշիռների քանակը

քչացնելով։ Կարող ենք մեկ շերտ 5×5 միջուկ ունեցող convolution-ը փոխարինել երկու շերտով, ամեն մեկը 3×3 միջուկով (Նկար 2)։

Նկար 2։ 5×5 convolution-ը փոխարինենք երկու անգամ 3×3 convolution-ներով

Արդյունքում receptive field-ը կմնա նույնը, իսկ կշիռների քանակը 25-ից կդառնա 18։ Երկրորդ տարբերակը $n \times n$ միջուկ ունեցող շերտը $1 \times n$ և $n \times 1$ միջուկներով երկու շերտով փոխարինելն է (Նկար 3)։

Նկար 3։ $n \times n$ convolution-ը փոխարինենք $n \times 1$ և $1 \times n$ convolution-ներով Արդյունքում կշիռների քանակը n^2 -ուց կդառնա 2n, իսկ receptive field-ը կմնա նույնը։