Proof of the main theorem

Theorem

Let C be a Clifford circuit measuring computing Pauli operators S_1, \ldots, S_r . Then, for any subset of qubits L, we have

$$depth(C) \geq \frac{n_{cut}}{64|\partial L|}.$$

Corollary

For families of local-expander quantum LDPC codes of length n, a syndrome extraction circuit C implemented as a local Clifford circuit on a $\sqrt{N} \times \sqrt{N}$ grid of qubits satisfies

$$depth(C) \geq \Omega\left(\frac{n}{\sqrt{N}}\right)$$
.

Partition the circuit's qubits into two subsets *L* and *R*.

- Partition the circuit's qubits into two subsets *L* and *R*.
- Lower bound the amount of correlation required between *L* and *R* to measure the Pauli operators.

- Partition the circuit's qubits into two subsets L and R.
- Lower bound the amount of correlation required between L and R to measure the Pauli operators.
- Upper bound the amount of correlation introduced per operation.

- Partition the circuit's qubits into two subsets L and R.
- Lower bound the amount of correlation required between L and R to measure the Pauli operators.
- Upper bound the amount of correlation introduced per operation.
- Combine both arguments to derive a lower bound for the depth of the circuit.

Mutual information

$$I(b_1;b_2)=0$$

Mutual information

$$I(b_1;b_2)=0$$

$$I(b_1';b_2')=1$$

Mutual information

$$I(b_1', b_2', E_1; E_2) = 1$$

Classical operations can artificially boost mutual information.

▶ Build a circuit C' with the same action and similar depth as C by pushing all measurements and classical operations at the end.

- ▶ Build a circuit C' with the same action and similar depth as C by pushing all measurements and classical operations at the end.
- **Consider the circuit** $C' \circ E \circ C'$.

- ▶ Build a circuit C' with the same action and similar depth as C by pushing all measurements and classical operations at the end.
- Consider the circuit $C' \circ E \circ C'$.
- Compute the mutual information

$$I(O_L^{(2)}, E_L; O_R^{(2)}, E_R | O^{(1)}).$$

$$depth(C') \le 4 \cdot depth(C) + 2$$

Both ancillas are the same node in the connectivity graph and in the same partition.

 $depth(U) \le 4 \cdot depth(C)$

$$depth(U) \le 4 \cdot depth(C)$$

$$|\partial L| = |\partial L'|$$

The double measurement circuit

Bounds on the mutual information

Lower bound

For the double measurement circuit, we have

$$I(O_{\bar{L}}^{(2)}, E_{\bar{L}}; O_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)}) \geq \frac{n_{\mathsf{cut}}}{2}.$$

Bounds on the mutual information

Lower bound

For the double measurement circuit, we have

$$I(O_{\bar{L}}^{(2)}, E_{\bar{L}}; O_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)}) \geq \frac{n_{\mathsf{cut}}}{2}.$$

Upper bound

For the double measurement circuit, we have

$$I(O_{\bar{L}}^{(2)}, E_{\bar{L}}; O_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)}) \leq 32|\partial L|\mathsf{depth}(C).$$

Note $m_i^{(t)} = \bigoplus_{o \in O_i^{(t)}} o$, the outcome for the measurement of S_i in circuit t.

Note $m_i^{(t)} = \bigoplus_{o \in O_i^{(t)}} o$, the outcome for the measurement of S_i in circuit t.

Note
$$M_{ar{L}}^{(t)}=\{m_{i,ar{L}}^{(t)}=igoplus_{o\in\mathcal{O}_i^{(t)}\capar{L}}o\}$$
 and similarly for $M_{ar{R}}^{(t)}$.

Note $m_i^{(t)} = \bigoplus_{o \in O_i^{(t)}} o$, the outcome for the measurement of S_i in circuit t.

Note
$$\mathit{M}_{ar{L}}^{(t)} = \{\mathit{m}_{i,ar{L}}^{(t)} = igoplus_{o \in O_i^{(t)} \cap ar{L}} o\}$$
 and similarly for $\mathit{M}_{ar{R}}^{(t)}$.

$$\textit{I}(\textit{O}_{\bar{\textit{L}}}^{(2)},\textit{E}_{\bar{\textit{L}}};\textit{O}_{\bar{\textit{R}}}^{(2)},\textit{E}_{\bar{\textit{R}}}|\textit{O}^{(1)}) \geq \textit{I}(\textit{M}_{\bar{\textit{L}}}^{(2)},\textit{E}_{\bar{\textit{L}}};\textit{M}_{\bar{\textit{R}}}^{(2)},\textit{E}_{\bar{\textit{R}}}|\textit{O}^{(1)})$$

Note $m_i^{(t)} = \bigoplus_{o \in O_i^{(t)}} o$, the outcome for the measurement of S_i in circuit t.

Note
$$M_{ar{L}}^{(t)}=\{m_{i,ar{L}}^{(t)}=igoplus_{o\in\mathcal{O}_i^{(t)}\capar{L}}o\}$$
 and similarly for $M_{ar{R}}^{(t)}$.

$$I(O_{\bar{L}}^{(2)}, E_{\bar{L}}; O_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)}) \ge I(M_{\bar{L}}^{(2)}, E_{\bar{L}}; M_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)})$$

$$= H(M_{\bar{L}}^{(2)}, E_{\bar{L}}|O^{(1)}) - H(M_{\bar{L}}^{(2)}, E_{\bar{L}}|M_{\bar{R}}^{(2)}, E_{\bar{R}}, O^{(1)})$$

Note $m_i^{(t)} = \bigoplus_{o \in O_i^{(t)}} o$, the outcome for the measurement of S_i in circuit t.

Note
$$M_{ar{L}}^{(t)}=\{m_{i,ar{L}}^{(t)}=igoplus_{o\in\mathcal{O}_i^{(t)}\capar{L}}o\}$$
 and similarly for $M_{ar{R}}^{(t)}$.

$$I(O_{\bar{L}}^{(2)}, E_{\bar{L}}; O_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)}) \ge I(M_{\bar{L}}^{(2)}, E_{\bar{L}}; M_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)})$$

$$= H(M_{\bar{L}}^{(2)}, E_{\bar{L}}|O^{(1)}) - H(M_{\bar{L}}^{(2)}, E_{\bar{L}}|M_{\bar{R}}^{(2)}, E_{\bar{R}}, O^{(1)})$$

$$= H(M_{\bar{L}}^{(2)}, E_{\bar{L}}, O^{(1)}) - H(O^{(1)}) - H(E_{\bar{L}})$$

Note $m_i^{(t)} = \bigoplus_{o \in O_i^{(t)}} o$, the outcome for the measurement of S_i in circuit t.

Note
$$M_{ar{L}}^{(t)}=\{m_{i,ar{L}}^{(t)}=igoplus_{o\in\mathcal{O}_i^{(t)}\capar{L}}o\}$$
 and similarly for $M_{ar{R}}^{(t)}$.

$$\begin{split} I(O_{\bar{L}}^{(2)},E_{\bar{L}};O_{\bar{R}}^{(2)},E_{\bar{R}}|O^{(1)}) &\geq I(M_{\bar{L}}^{(2)},E_{\bar{L}};M_{\bar{R}}^{(2)},E_{\bar{R}}|O^{(1)}) \\ &= H(M_{\bar{L}}^{(2)},E_{\bar{L}}|O^{(1)}) - H(M_{\bar{L}}^{(2)},E_{\bar{L}}|M_{\bar{R}}^{(2)},E_{\bar{R}},O^{(1)}) \\ &= H(M_{\bar{L}}^{(2)},E_{\bar{L}},O^{(1)}) - H(O^{(1)}) - H(E_{\bar{L}}) \\ &= H(M_{\bar{L}}^{(2)}|E_{\bar{L}},O^{(1)}). \end{split}$$

Note S_{cut} the operators with support on both L and R.

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note $M_{\bar{L},\text{cut}}^{(t)}$ the outcome of $M_{\bar{L}}^{(t)}$ corresponding to $S_{\text{cut},\bar{L}}$.

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note $M_{\bar{L}, \text{cut}}^{(t)}$ the outcome of $M_{\bar{L}}^{(t)}$ corresponding to $S_{\text{cut}, \bar{L}}$.

$$H(M_{\bar{L}}^{(2)}|E_{\bar{L}},O^{(1)}) \ge H(M_{\bar{L},\mathsf{cut}}^{(2)}|E_{\bar{L}},O^{(1)})$$

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note $M_{\bar{L}, \text{cut}}^{(t)}$ the outcome of $M_{\bar{L}}^{(t)}$ corresponding to $S_{\text{cut}, \bar{L}}$.

$$H(M_{\bar{L}}^{(2)}|E_{\bar{L}},O^{(1)}) \ge H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)})$$

$$\ge H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)})$$

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note $M_{\bar{L}, \text{cut}}^{(t)}$ the outcome of $M_{\bar{L}}^{(t)}$ corresponding to $S_{\text{cut}, \bar{L}}$.

$$H(M_{\bar{L}}^{(2)}|E_{\bar{L}},O^{(1)}) \geq H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)})$$

$$\geq H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)})$$

$$= H(m_{i}(E_{\bar{R}}) : S_{i} \in S_{\text{cut},\bar{L}}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)})$$

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note $M_{\bar{L}, \text{cut}}^{(t)}$ the outcome of $M_{\bar{L}}^{(t)}$ corresponding to $S_{\text{cut}, \bar{L}}$.

$$H(M_{\bar{L}}^{(2)}|E_{\bar{L}},O^{(1)}) \geq H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)})$$

$$\geq H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)})$$

$$= H(m_{i}(E_{\bar{R}}) : S_{i} \in S_{\text{cut},\bar{L}}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)})$$

$$= H(m_{i}(E_{\bar{R}}) : S_{i} \in S_{\text{cut},\bar{L}})$$

Note S_{cut} the operators with support on both L and R.

Note $S_{\text{cut},\bar{L}}$ the operators $S_i \in S_{\text{cut}}$ for which m_i depends on at least one outcome in O_L .

Note $M_{\bar{L}, \text{cut}}^{(t)}$ the outcome of $M_{\bar{L}}^{(t)}$ corresponding to $S_{\text{cut}, \bar{L}}$.

$$\begin{split} H(M_{\bar{L}}^{(2)}|E_{\bar{L}},O^{(1)}) &\geq H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)}) \\ &\geq H(M_{\bar{L},\text{cut}}^{(2)}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)}) \\ &= H(m_{i}(E_{\bar{R}}) : S_{i} \in S_{\text{cut},\bar{L}}|E_{\bar{L}},O^{(1)},M_{\bar{R}}^{(2)}) \\ &= H(m_{i}(E_{\bar{R}}) : S_{i} \in S_{\text{cut},\bar{L}}) \\ &= |S_{\text{cut},\bar{L}}|. \end{split}$$

By symmetry

$$I(O_{\bar{L}}^{(2)}, E_{\bar{L}}; O_{\bar{R}}^{(2)}, E_{\bar{R}}|O^{(1)}) \geq \max\{|S_{\mathsf{cut},\bar{L}}|, |S_{\mathsf{cut},\bar{R}}|\} \geq \frac{n_{\mathsf{cut}}}{2}.$$

$$S_{A'_{2},A_{\bar{E}}}(\rho_{\bar{L}}(t_{5});\rho_{\bar{R}}(t_{5})) = I(O_{\bar{L}}^{(2)},E_{\bar{L}};O_{\bar{R}}^{(2)},E_{\bar{R}}) \geq I(O_{\bar{L}}^{(2)},E_{\bar{L}};O_{\bar{R}}^{(2)},E_{\bar{R}}|O^{(1)})$$

Proof Given a set of qubits and a partition into subsets *A*, *B*. Let ρ be a density matrix on *A* ∪ *B* and *G* be a two-qubit unitary gate acting qubit of *A* and a qubit of *B*. Note $\rho' = G\rho G^{\dagger}$, then

$$S(\rho_A'; \rho_B') \leq S(\rho_A, \rho_B) + 4.$$

Single qubit gates and measurements are CPTP maps. Thus, they can't increase the mutual entropy.

Proof Given a set of qubits and a partition into subsets *A*, *B*. Let ρ be a density matrix on *A* ∪ *B* and *G* be a two-qubit unitary gate acting qubit of *A* and a qubit of *B*. Note $\rho' = G\rho G^{\dagger}$, then

$$S(\rho_A'; \rho_B') \leq S(\rho_A, \rho_B) + 4.$$

- Single qubit gates and measurements are CPTP maps. Thus, they can't increase the mutual entropy.
- Discarding a subsystem can't increase the mutual entropy.

$$S(\rho_{\bar{L}}(t_0);\rho_{\bar{R}}(t_0))=0$$

$$S(\rho_{\bar{L}}(t_1); \rho_{\bar{R}}(t_1)) \le 4 \operatorname{depth}(U) |\partial L|$$

$$S(\rho_{\bar{L}}(t_2); \rho_{\bar{R}}(t_2)) \le 4 \operatorname{depth}(U)|\partial L|$$

$$S(\rho_{\bar{L}}(t_3); \rho_{\bar{R}}(t_3)) \leq 8 \operatorname{depth}(U) |\partial L|$$

$$S(\rho_{\bar{L}}(t_4); \rho_{\bar{R}}(t_4)) \le 8 \operatorname{depth}(U) |\partial L|$$

$$S_{A_2',A_E}(
ho_{\bar{L}}(t_4);
ho_{\bar{R}}(t_4)) \leq 8 \mathsf{depth}(U)|\partial L|$$

$$S_{A_2',A_{\bar{E}}}(
ho_{\bar{L}}(t_5);
ho_{\bar{R}}(t_5)) \leq 8\mathsf{depth}(U)|\partial L|$$