R functions

Joseph Elmaghraby (PID: A16788229)

Today we will get more exposure to functions in R. We call functions to do all our work and today we will learn how to write our own.

Afirst silly function

Note that arguments 2 and 3 have default values (because we set y=0 and z=0) sow ed don't have to supply then when we call our function.

```
add <- function (x,y=0,z=0) {
 x + y + z
```

Can I just use this

11 101

```
add(1,1)
[1] 2
```

```
add(1, c(10, 100))
```

add(100)

```
add (100,10,1)
```

[1] 111

[1] 100

[1]

A second more fun function

Let's start a function that generate nucleotide sequences.

We can make use of the in-built 'sample()' function R to help

```
sample(x=1:10, size=9)
        6 2 1 10 7 3 8 5
[1]
sample(x=1:10, size=11, replace= TRUE)
 [1] 4 10 10 6 9 3 2 6 9 1 3
     Q. Can you use 'sample()' to generate a nucle0tide sequence of length 5?
sample(x=c("A","G","T","C"), size=5, replace= TRUE)
[1] "A" "A" "C" "G" "G"
     Q. Write a Function 'generate_dna()' that makes a nucleotide sequence of a user
     specified length?
Every function in R has at least 3 things:
-a name (in our case "generate_DNA" )
-one or more input arguments (the "length" of the sequnce we want)
-a body ( R code that does work )
generate_DNA <- function(length=5) {</pre>
  bases<-c("A","C", "G", "T")
  sample(bases, size=length, replace=TRUE)
generate_DNA(38)
 [1] "T" "G" "C" "G" "A" "T" "G" "T" "T" "C" "T" "C" "C" "A" "G" "G" "A" "C" "G"
[20] "A" "C" "T" "C" "C" "T" "T" "G" "A" "C" "G" "A" "A" "A" "T" "A" "G" "T" "C" "G"
```

```
aa <-bio3d::aa.table$aa1[1:20]</pre>
```

Can you write a 'generate_protein()'

```
generate_protein <- function(length=5) {
   aa <-bio3d::aa.table$aa1[1:20]
   bases<-c(aa)
   result<-sample(bases, size=length, replace=TRUE)
   paste(result, collapse="")
}
generate_protein(45)</pre>
```

[1] "GWKGYYFWQPYWCPTQRSAANFFYLQDMEMYFYHEYPEIGFYNNC"

```
generate_protein(23)
```

[1] "DWSFGSFDHYTSTICQQDFVQHQ"

I want my output of this function not to be a vector with one amino acid per element but rather single string

```
bases<- c(aa)
paste(bases, collapse="")</pre>
```

- [1] "ARNDCQEGHILKMFPSTWYV"
 - Q. Generate protein sequences from length 6 to 12?

```
generate_protein(length=6)
```

[1] "MEQEWM"

```
generate_protein(length=7)
```

[1] "VHIQSQW"

```
generate_protein(length=8)
```

[1] "LSYKVWGV"

We can use the useful utility function 'sapply()' to help us "apply" our function over all the values 6 to 12.

```
ans<- sapply(6:12,generate_protein)</pre>
ans
[1] "SPGGMF"
                    "NFKSNLR"
                                    "KDMGMLIG"
                                                    "FWKMYVWRV"
                                                                    "SKVWGGYGYI"
[6] "AENPQIECSGF"
                    "YEAVSTFTCLLD"
cat (paste(">ID.", 6:12, sep="", "\n",ans, "\n"))
>ID.6
SPGGMF
 >ID.7
NFKSNLR
 >ID.8
KDMGMLIG
 >ID.9
FWKMYVWRV
 >ID.10
SKVWGGYGYI
 >ID.11
AENPQIECSGF
 >ID.12
YEAVSTFTCLLD
```

Q. Are any of these sequences unique in nature - i.e. never found in nature. We can search "refseq-Protein" and look 100% Id and 100% coverage matches with Blastp? > Nosignificant result was found.