Introduction to Data Science Project Instructions

You are required to complete the following project as part of the **Introduction to Data Science** course. Please read the instructions carefully and make sure to incorporate the tools and skills learned during the course.

Objective

- 1. Select a **unique dataset** (no two students can work on the same dataset).
- 2. Perform Exploratory Data Analysis (EDA) with at least 10 to 15 different analyses.
- 3. **Preprocess** the dataset to prepare it for machine learning.
- 4. Apply any **machine learning model** of your choice to the preprocessed dataset.
- 5. Build an **interactive web application** using **Streamlit** to present your work.

Step-by-Step Guide

1. Dataset Selection

- Choose an interesting dataset with **enough features and records** to perform meaningful analysis.
- Add your dataset name and link in the provided Excel sheet.
- Verify that your dataset is unique (first-come, first-served basis).

2. Exploratory Data Analysis (EDA)

Perform the following analyses:

- Summary statistics (mean, median, mode, etc.)
- Visualizations (e.g., histograms, scatter plots, box plots)
- Correlation analysis
- Missing value analysis
- Outlier detection
- Feature distribution analysis
- Data types and unique value counts
- Trend analysis (if applicable)
- Grouped aggregations (e.g., by category or time)
- Pairwise feature relationships
- Any other relevant analysis based on your dataset

3. Data Preprocessing

Prepare the data for modeling:

- Handle missing values (e.g., imputation or removal)
- Encode categorical variables
- Normalize or scale numerical features
- Split into training and testing sets
- Apply any additional necessary transformations

4. Machine Learning Model

- Select an appropriate model (supervised or unsupervised) based on your dataset (e.g., regression, classification, clustering).
- Train the model and evaluate it using appropriate metrics (accuracy, RMSE, F1-score, etc.).
- Important: Your model must be able to make predictions at runtime within the Streamlit application based on user input. If this feature is missing, it may result in loss of marks.

5. Streamlit Application

Use **Streamlit** to present your project interactively. Include the following sections:

- **Introduction**: Brief overview of your dataset and project goals
- **EDA Section**: Visualizations, tables, and insights
- **Model Section**: Description of the model used, runtime predictions, and performance results
- Conclusion: Key takeaways from your project

Make sure your app is interactive, informative, and user-friendly.

Additional Notes

- Use skills learned during the course such as:
 - Data preprocessing
 - o EDA and visualization
 - o Model training and evaluation
 - Building Streamlit apps
- The final deadline will be announced soon, and it will be before the summer vacation.
- This is an **individual project**.

 \(\) \(\) \(\) Start working on your project from today. No excuses about having le will be entertained later. 	ss time
If you have any questions at any stage, feel free to reach out. Good luck!	