STM32F10x - Cortex M3

Software

STM32F10x Standard Peripherals Library

STM32 - Softwarová hierarchie

STM32 - Struktura knihovních souborů

Knihovna STM32F10x Standard Peripherals Library

CMSIS

Cortex Microcontroller Software Interface Standard

- Knihovna CMSIS dodávána přímo společností ARM Ltd.
- Nezávislá na konkrétním čipu výrobce
- Určena pro práci s přímými registry jádra Cortex-Mx
- Obsahuje definici registrů a funkcí pro interní periférie jádra Cortex-Mx
- Definice výjimek a přerušení a funkcí pro práci s přerušením

S řadou STM32F10x (STM32F103xx, 107xx, ...) aktuálně dodávána knihovna periférií

STM32F10x_StdPeriph_Lib_V3.5.0

Tato knihovna zahrnuje CMSIS V1.30 - říjen 2009

Aktuální stabilní verze CMSIS je CMSIS V4.5.0- říjen 2015 (M0, M3, M4, M7)

Beta verze: CMSIS V5.0.0 -Beta4

Používané verze CMSIS

S řadou STM32F10x (STM32F103xx, 107xx, ...) aktuálně dodávána knihovna periférií STM32F10x_StdPeriph_Lib_V3.5.0, obsahující CMSIS V1.30 - říjen 2009

ALE !!!

Aktuální firmware STM32_Nucleo_FW_V1.2.1 dodávaný pro kit Nucleo103RB obsahuje knihovnu periférií STM32F10x_StdPeriph_Lib_V3.6.x, s verzí CMSIS V3.20 - únor 2013 (podpora jader M0, M3, M4)

Keil MDK V5.xy obsahuje ve svých implicitních knihovnách knihovnu periférií STM32F10x_StdPeriph_Lib_V3.5.0 a CMSIS Vi.jk – závislé na konkrétní instalaci verze balíku CMSIS (podpora jader M0, M3, M4, M7).

!!! Soubor stm32f10x.h je proprietárním souborem prostředí Keil MDK V5.xx - obsahuje podporu konfiguračního souboru RTE_Components.h generovanou proprietárním wizardem Keil a liší se od standardně dodávaných knihoven STMicroelectronics. Veškeré definice #define v tomto souboru jsou "natvrdo" a nelze je modifikovat.

Stejně tak nelze zasahovat do implicitních nastavení cest k hlavičkovým souborům knihoven *.h a modifikovat jejich umístění.

Jedinou možností "ruční" konfigurace je přímá modifikace odpovídajícího *.pdsc souboru

CMSIS - Core Peripheral Access Layer

core_cm3.h

- definice adres, struktur, symbolických jmen a bitových polí registrů periferií integrovaných v jádře Cortex-M3:

NVIC, SCB, SYSTIC, MPU, ITM, Core Debug

- implementace knihovních funkcí pro NVIC, SYSTIC, ITM
- definice maker a funkcí pro povolení maskovatelných přerušení a wrap funkcí vybraných instrukcí (NOP, WFI, WFE, SEV, ISB, DSB, DMB, CLREX)
- deklarace (případně už i in-line definice závislé na kompilátoru) funkcí pro přístup k PSP, MSP, CONTROL, PRIMASK, FAULTMASK, BASEPRI a užití instrukcí typu REV, RBIT, LDREX, STREX

core_cm3.c

- definice funkcí pro přístup k PSP, MSP, CONTROL, PRIMASK FAULTMASK, BASEPRI a užití instrukcí typu, REV, RBIT, LDREX, STREX

CMSIS - Device Support (STM32F10x) I

system_stm32f10x.c

- definice funkce void SystemInit(void) kompletní nastavení zdrojových hodin mikrokontroléru a všech PLL závěsů. Funkce volána z assemblerového modulu startup před voláním funkce main.
- definice globální proměnné unsigned int SystemCoreClock frekvence hodin [Hz] systémové AHB sběrnice (72 MHz pro Connectivity Line) - možno libovolně použít v aplikaci.
- nutno explicitně definovat (odkomentovat) požadovanou frekvenci systémových hodin SYSCLK_FREQ_xxxxx, jinak bude defaultně použit HSI s frekvencí 8 MHz:
 - #define SYSCLK_FREQ_72MHz 72000000 (pro Connectivity Line)
- definice funkce void SystemCoreClockUpdate(void) nutno volat vždy, když jsou měněny za běhu programu hodiny jádra update SystemCoreClock

CMSIS - Device Support (STM32F10x) II

stm32f10x.h

- jediný hlavičkový soubor, který je třeba includovat do uživatelské aplikace
- definice struktur, bázových adres, registrů jejich bitových polí pro každou periférii
- definice enumeračních typů (TRUE, FALSE, ENABLE, DISABLE, ERROR, SUCCESS)

Nezbytná uživatelská konfigurace:

#define STM32F10X_CL

Nutno vybrat !!! Defaultně není definováno nic a překladač hlásí chybu

#define USE_STDPERIPH_DRIVER

Definuje, zda budou použity ST knihovny, či přímý přístup do registrů

#define HSE_VALUE xxxx

Předefinovat v případě, že je použit jiný kmitočet HSE oscilátoru než default (25 MHz pro CL, 8 MHz pro ostatní)

CMSIS - Device Support (STM32F10x) III

startup_stm32f10x_cl.s

- inicializace přerušovacích vektorů koresponduje se jmény obslužných funkcí v stm32f10_it.c
- volá funkci system_init() z modulu system_stm32f10x.c pro nastavení hodin
- inicializuje ukazatele zásobníků
- předává řízení uživatelské aplikaci funkci main()

STM32F10x_StdPeriph_Driver

stm32f10x_ppp.h

stm32f10x_ppp.c

Každá integrovaná periférie mikrokontroléru je podporována unifikovanou sadou funkcí.

Konkrétní periférii je nutné povolit v konfiguračním souboru stm32f10x_conf.h

Konfigurace periférií

Konfigurační soubor stm32f10x_conf.h není součástí knihovny, ale projektové šablony, dodávané s balíkem knihovny.

stm32f10x_conf.h

```
/* Includes ------
/* Uncomment/Comment the line below to enable/disable peripheral header file inclusion */
/* #include "stm32f10x adc.h" */
/* #include "stm32f10x bkp.h" */
/* #include "stm32f10x can.h" */
/* #include "stm32f10x cec.h" */
/* #include "stm32f10x crc.h" */
/* #include "stm32f10x dac.h" */
/* #include "stm32f10x dbqmcu.h" */
/* #include "stm32f10x dma.h" */
/* #include "stm32f10x exti.h" */
/* #include "stm32f10x flash.h" */
/* #include "stm32f10x fsmc.h" */
#include "stm32f10x gpio.h" /**/
/* #include "stm32f10x i2c.h" */
/* #include "stm32f10x iwdg.h" */
/* #include "stm32f10x pwr.h" */
#include "stm32f10x rcc.h" /**/
/* #include "stm32f10x rtc.h" */
/* #include "stm32f10x sdio.h" */
/* #include "stm32f10x spi.h" */
/* #include "stm32f10x tim.h" */
```

Fragment konfiguračního souboru, povolující použití GPIO portů.

Inicializace RCC - Reset Clock Control je nezbytná pro inicializaci - povolení hodin periférie a reset periférie.

Obsluha výjimek a přerušení I.

Hlavičkový stm32fl0x_it.h a implementační soubor stm32fl0x_it.c pro obsluhu výjimek a přerušení nejsou součástí knihovny, ale projektové šablony, dodávané s balíkem knihovny.

stm32f10x_it.c obsahuje prázdné předdefinované funkce pro obsluhu výjimek a interruptů jádra a univerzální předpis pro obecná externí přerušení periférií: void PPP_IRQHandler(void)

Nahradit konkrétním názvem zdroje, shodně s definicí startup kódu

Každý používaný interrupt musí být v tomto souboru doimplementován!!!

Obsluha výjimek a přerušení II.

```
Vectors
                                                   ; Top of Stack
              DCD
                        initial sp
                       Reset Handler
               DCD
                                                   : Reset Handler
               DCD
                       NMI Handler
                                                   : NMI Handler
               DCD
                       HardFault Handler
                                                   : Hard Fault Handler
              DCD
                       MemManage Handler
                                                   ; MPU Fault Handler
                       BusFault Handler
              DCD
                                                   : Bus Fault Handles
              DCD
                       UsageFault Handler
                                                   : Usage Fault Handler
               DCD
                                                   : Reserved
                                                     Peserved
               DCD
                       0
              DCD
                                                     Reserved
              DCD
                                                   : Reserved
                       SVC Handler
                                                   : SVCall Handler
               DCD
                       DebugMon Handler
                                                   ; Debug Monitor Handler
               DCD
                                                   : Reserved
                       PendSV Handler
                                                   : PendSV Handler
                       SysTick Handler
                                                   ; SysTick Handler
              ; External Interrupts
              DCD
                       WWDG IRQHandler
                                                   ; Window Watchdog
              DCD
                       PVD IRQHandler
                                                   ; PVD through EXTI Line detect
               DCD
                       TAMPER IRQHandler
                                                   : Tamper
              DCD
                       RTC IRQHandler
                                                   ; RTC
                       FLASH IRQHandler
                                                   ; Flash
              DCD
                       RCC IROHandler
                      EXTIO IRQHandler
                                                   : EXTI Line 0
                       EXIII IRQHandier
              DCD
                                                   ; EXTI Line 1
              DCD
                       EXTI2 IRQHandler
                                                   ; EXTI Line 2
              DCD
                       EXTI3 IRQHandler
                                                   : EXTI Line 3
                       EXTI4 IRQHandler
              DCD
                                                   : EXTI Line 4
              DCD
                       DMA1 Channell IRQHandler
                                                   ; DMA1 Channel 1
              DCD
                       DMA1 Channel2 IRQHandler
                                                  ; DMA1 Channel 2
              DCD
                       DMA1 Channel3 IRQHandler
                                                  : DMA1 Channel 3
                       DMA1 Channel4 IRQHandler
                                                  : DMA1 Channel 4
              DCD
                       DMA1 Channel5 IRQHandler
                                                  ; DMA1 Channel 5
                       DMA1 Channel6 IRQHandler
              DCD
                                                   ; DMA1 Channel 6
              DCD
                       DMA1 Channel7 IRQHandler
                                                   ; DMA1 Channel 7
                       ADC1 2 IRQHandler
                                                   : ADC1 and ADC2
              DCD
```

Výjimky a přerušení jádra Cortex-M3 jsou v souboru stm32fl0x_it.c defaulně obsloženy prázdnými funkcemi

Příklad obsluhy externího interruptu:

void EXTI0_IRQHandler(void)

STM32F10x Exceptions-Interrupts

Exception number ⁽¹⁾	IRQ number ⁽¹⁾	Exception type	Priority	Vector address or offset ⁽²⁾		
1	-	Reset	-3, the highest	0x00000004		
2	-14	NMI	-2	0x00000008		
3	-13	Hard fault	-1	0x0000000C		
4	-12	Memory management fault	Configurable (3)	0x00000010		
5	-11	Bus fault	Configurable (3)	0x00000014		
6	-10	Usage fault	Configurable (3)	0x00000018		
7-10	-	-	-	Reserved		
11	-5	SVCall	Configurable (3)	0x0000002C		
12-13	-	-	-	Reserved		
14	-2	PendSV	Configurable (3)	0x00000038		
15	-1	SysTick	Configurable (3)	0x0000003C		
16-83	0-67	Interrupt (IRQ)	Configurable (4)	0x00000040 and above ⁽⁵⁾		

CMSIS knihovny

3	1 3	0 :	29	28	27	26 25	24	23	16	15	10	9	8			0
N	ız	2	С	٧	Q	ICI/IT	Т	Rese	erved	ICI/I	г	ISR_N			MBER	
	Reserved															

Exception number	IRQ number	Offset	Vector
83	67	0x014C	IRQ67
	2 1 0 -1 -2	0x004C 0x0048 0x0044 0x0040 0x003C 0x0038	IRQ2 IRQ1 IRQ0 Systick PendSV Reserved Reserved for Debug SVCall
9 8 7			Reserved
6 5 4	-10 -11 -12	0x0018 0x0014	Usage fault Bus fault Memory management fault
3 2 1	-13 -14	0x000C 0x0008	Hard fault NMI Reset
		0x0004 0x0000	Initial SP value

PSR (IPSR) registr

Nižší IRQ číslo - vyšší HW priorita

Cortex-M3 Exceptions-Interrupts: Registry jádra

CPSID i, CPSIE i

__disable_irq(), __enable_irq()

CMSIS - core_cm3.h, core_cm3.c

PRIMASK = 1 Blokuje aktivaci všech výjimek (přerušení) s nastavitelnou prioritou

CPSID f, CPSIE f

__disable_fault_irq(), ___enable_fault_irq()

CMSIS - core_cm3.h, core_cm3.c

FAULTMASK = 1 Blokuje aktivaci všech výjimek (přerušení) kromě NMI

BASEPRI (bity 7654) - nenulová hodnota blokuje aktivaci všech výjimek (přerušení) se stejnou nebo nižší prioritní úrovní (stejným nebo vyšším číslem), než je hodnota BASEPRI

STM32F10x Exceptions-Interrupts Priority

Handler	Field
Memory management fault	PRI_4
Bus fault	PRI_5
Usage fault	PRI_6
SVCall	PRI_11
PendSV	PRI_14
SysTick	PRI_15

SCB_SHPR1 registr

SCB_SHPR2 registr

SCB_SHPR3 registr

Nastavení priority:

4-bitové pole [7..4] prioritních registrů

Rozmezí: 0 - 15

0 nejvyšší

15 nejnižší

NVIC_IPRx registry x = 0 ... 16

CSMIS: **NVIC_IP[i] i** = 0 .. 67

Nekonfiguruje-li SW priority, mají všechny konfigurovatelné priority hodnotu 0

STM32F10x Exceptions - Interrupts Priority Preemptivní priorita

U nekonfigurovaných priorit mají všechny konfigurovatelné priority hodnotu 0. Při současném požadavku dvou IRQx a IRQy má přednost požadavek s nižším indexem - HW priorita - IRQ0 je obsloužen před IRQ1.

Má-li IRQ0 přiřazenu nižší prioritu (vyšší číselnou hodnotu) než IRQ1, má v případě současného požadavku přednost IRQ1.

Je-li procesor v přerušení, může být stávající exception handler přerušen požadavkem s vyšší nastavenou prioritou - nižším číslem v prioritním registru.

Přijde-li v obsluze přerušení požadavek na další přerušení se stejnou prioritou, stávající obsluha není přerušena a nový požadavek je akceptován až po návratu ze stávající obsluhy.

Nastavení rozložení priority

SCB_AIRCR Application Interrupt and Reset Control Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	VECTKEYSTAT[15:0](read)/ VECTKEY[15:0](write)														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ENDIA NESS										Reserved		SYS RESET REQ	VECT CLR ACTIVE	VECT RESET	
r					rw	rw	rw				w	w	w		

PRIGROUP [2:0]	Interrupt	priority level value,	Number of				
	Binary point ⁽¹⁾	Group priority bits	Subpriority bits	Group priorities	Sub priorities		
0b011	0bxxxx	[7:4]	None	16	None		
0b100	0bxxx.y	[7:5]	[4]	8	2		
0b101	0bxx.yy	[7:6]	[5:4]	4	4		
0b110	0bx.yyy	[7]	[6:4]	2	8		
0b111	0b.yyyy	None	[7:4]	None	16		

Group priority - pouze tyto bity řídí preemptivní prioritu na základě výše popsané filozofie

Subpriority - při současném požadavku několika IRQ určuje pořadí jejich zpracování (nižší číslo - vyšší subpriorita)

V případě současného požadavku několika IRQx se stejnou Group a Subpriority rozhoduje HW priorita - nižší číslo x má přednost

NVIC - ostatní registry

Interrupts	CMSIS array elements ⁽¹⁾											
	Set-enable	Clear-enable	Set-pending	Clear-pending	Active Bit							
0-31	ISER[0]	ICER[0]	ISPR[0]	ICPR[0]	IABR[0]							
32-63	ISER[1]	ICER[1]	ISPR[1]	ICPR[1]	IABR[1]							
64-67	ISER[2]	ICER[2]	ISPR[2]	ICPR[2]	IABR[2]							

NVIC_ISERx Interrupt Set Enable Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SETENA[31:16]														
rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SETE	NA[15:0]							
rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs	rs

NVIC_ISERx Interrupt Clear Enable Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	CLRENA[31:16]														
rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CLRENA[15:0]														
rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1

CMSIS funkce pro práci s interrupty

void NVIC_EnableIRQ(IRQn_Type IRQn)

void NVIC_DisableIRQ(IRQn_Type IRQn)

NVIC_ICERx