Linear Algebra II

陳信睿

2023 年 2 月

Contents

1	Quotient and dual spaces	2
	1.1 Quotient spaces	2
	1.2 Dual spaces	4
2	Inner product spaces	7
	2.1 Orthogonal projection	9

1 Quotient and dual spaces

1.1 Quotient spaces

Definition 1 (Quotient spaces). Let V be a vector space and let W be its subspace. Define an equivalence relation on V such that

$$v_1 \sim v_2 \text{ if } v_1 - v_2 \in W.$$

It is easy to verify that \sim is indeed an equivalence relationship on V. For each $v_0 \in V$, define $[v_0] = \{v \in V : v \sim v_0\}$ the equivalence class of v_0 . Then, $\{[v] : v \in V\}$ is called the quotient space V/W.

Remark. The quotient space V/W is equipped with a natural vector (linear) structure, namely,

$$\begin{cases} [v_1] + [v_2] = [v_1 + v_2] & \text{, for all } v_1, v_2 \in V \\ c[v_1] = [cv_1] & \text{, for all } v_1 \in V \text{ and } c \in \mathbb{F} \end{cases}.$$

Although it is crucial that we shall check these natural addition and scalar multiplication are "well-defined", we omitted here.

Definition 2 (Quotient maps). There is a natural surjective map

$$\pi: V \to V/W, \\ v \mapsto [v],$$

which is called the quotient map. Moreover, it is a linear transformation.

Remark.

$$\ker \pi = \{ v \in V : \pi(v) = [0] \}$$

$$= \{ v \in V : [v] = [0] \}$$

$$= \{ v \in V : v - 0 \in W \}$$

$$= W .$$

Corollary. It follows from the dimension formula that $\dim_{\mathbb{F}} V/W = \dim_{\mathbb{F}} V - \dim_{\mathbb{F}} W$ whenever V is finite dimensional.

Here we give an alternative proof without using dimensional formula. Since V has finite dimension, let $\mathcal{B} = \{w_1, w_2, \ldots, w_s\}$ be a basis of W and extend \mathcal{B} to $\mathcal{A} = \{w_1, w_2, \ldots, w_r\}$ a basis of V. We claim that $\{[w_{s+1}], \ldots, [w_s]\}$ is a basis of V/W. To see this, we shall show that:

1. $\{[w_{s+1}], \dots, [w_r]\}$ generate V/W. Suppose $[v] \in V/W$. Let $v = \sum_{i=1}^r \alpha_i w_i$, then

$$[v] = \left[\sum_{i=s+1}^{r} \alpha_i w_i\right] = \sum_{i=s+1}^{r} \alpha_i [w_i] .$$

2. $\{[w_{s+1}], \ldots, [w_r]\}$ are linear independent over \mathbb{F} . Suppose $\sum_{i=s+1}^r \alpha_i \cdot [w_i] = [0]$, for some $\alpha_i \in \mathbb{F}$. Then,

$$\begin{split} \left[\sum_{i=s+1}^{r} \alpha_i w_i\right] &= [0] \\ \iff \sum_{i=s+1}^{r} \alpha_i w_i \in W \\ \iff \sum_{i=s+1}^{r} \alpha_i w_i &= \sum_{j=1}^{s} \beta_j w_j, \text{ for some } \beta_j \in \mathbb{F}. \end{split}$$

We conclude that α_i are all zeros, since \mathcal{A} is a basis of V.

Discussions above show that $\dim_{\mathbb{F}} V/W = r - s = \dim_{\mathbb{F}} V - \dim_{\mathbb{F}} W$. Now, we shall study some property about the quotient space V/W. The next theorem characterize the quotient space V/W by the following universal property.

Theorem 3. Let T be a linear transformation from V to U, such that ker T contain W, namely $W \subset \ker T$. Then, T factors through π uniquely. That is, there exists a unique linear transformation $S: V/W \to U$ such that

$$T = S \circ \pi$$
.

Proof. Define $S: V/W \to U$ by

$$S([v]) = T(v).$$

We first show that S is a well-defined map, namely, if [v] = [v'], then T(v) = T(v'). Note that $[v] = [v'] \implies v - v' \in W \subset \ker T$, we conclude T(v) = T(v'). By definition, S is a linear transformation and $S \circ \pi = T$. The uniqueness of such S follows from the surjectivity of π .

Remark. The quotient space V/W with the quotient map π is the unique vector space satisfying the theorem. That is, if we are given $\pi': V \to V'$ satisfying the property: for every linear transformation $T: V \to U$ with $W \subset \ker T$, there exists a unique $S': V' \to U$ such that $S' \circ \pi' = T$. Then, $V' \simeq V/W$ uniquely.

Proof. From the assumptions, we have

$$\begin{cases} \exists ! \ S: V/W \to V', \text{ such that } \pi' = S \circ \pi \\ \exists ! \ S': V' \to V/W, \text{ such that } \pi = S' \circ \pi' \end{cases}.$$

This shows $S \circ S' = \operatorname{Id}_{V'}$; $S' \circ S = \operatorname{Id}_{V/W}$ (using Theorem 3 again.) We conclude $V' \simeq V/W$ uniquely.

Corollary. Let $T: V \to W$ be a linear transformation. Then,

$$V/\ker T \simeq \operatorname{Im} T$$
.

Hence, $\dim_{\mathbb{F}} V / \ker T = \dim_{\mathbb{F}} \operatorname{Im} T$.

Proof. From Theorem 3, we have: there exists a unique $S:V/\ker T\to W$, such that $T=S\circ\pi$. It follows from the surjectivity of π that $\mathrm{Im} S=\mathrm{Im} T$. We claim that S is injective. Note that

$$\ker S = \{ [v] \in V / \ker T : S([v]) = 0 \}$$

$$= \{ [v] \in V / \ker T : T(v) = 0 \}$$

$$= \{ [v] \in V / \ker T : v \in \ker T \}$$

$$= \{ [0] \}.$$

Thus, S is a bijection. This completes the proof.

Now, let $T:V\to V$ be a linear transformation and let $W\subset V$ be a T-invariant subspace. Then, T induce a linear transformation \widetilde{T} on V/W define by:

$$\widetilde{T}: V/W \to V/W \\ [v] \mapsto [T(v)] \ .$$

This is a well-defined map since

$$[v] = [v'] \implies v - v' \in W$$

$$\implies T(v) - T(v') = T(v - v') \in W$$

$$\implies [T(v)] = [T(v')].$$

Now, let $\mathcal{B} = \{v_1, v_2, \dots, v_s\}$ be a basis of W, and extend it to $\mathcal{A} = \mathcal{B} \sqcup \mathcal{B}'$, a basis of V. We have shown that $[\mathcal{B}'] = \{[v] : v \in \mathcal{B}'\}$ is a basis of V/W. Then, we have

$$[T]_{\mathcal{A}} = \begin{pmatrix} [T|_{W}]_{\mathcal{B}} & * \\ & & \\ & & \\ 0 & [\widetilde{T}]_{[\mathcal{B}']} \end{pmatrix}.$$

We thus have

$$\begin{cases} \operatorname{ch}_{T}(x) = \operatorname{ch}_{T|_{W}}(x) \cdot \operatorname{ch}_{\widetilde{T}}(x) \\ \operatorname{m}_{T}(x) \text{ is divisible by } \operatorname{m}_{T|_{W}}(x) \end{cases}.$$

Corollary. If T is diagonalizable, then so is \widetilde{T} .

The corollary follows from the fact that $m_T(x)$ is divisible by $m_{\widetilde{T}}(x)$. We next shall discuss the concept of dual spaces.

1.2 Dual spaces

Definition 4 (dual space). Let V be a vector space over \mathbb{F} . It is well-known that $L(V, \mathbb{F})$ is a vector space over \mathbb{F} . It is called the dual space of V, and its elements are called linear functionals of V. We often write V^{\vee} to denote the dual space of V.

Recall that:

Given two vector spaces V, W over \mathbb{F} . Then we have L(V, W) is a vector space over \mathbb{F} and

$$\dim_{\mathbb{F}} L(V, W) = \dim_{\mathbb{F}} V \cdot \dim_{\mathbb{F}} W.$$

Thus, we conclude that $\dim_{\mathbb{F}} V^{\vee} = \dim_{\mathbb{F}} V$ if $\dim_{\mathbb{F}} V < \infty$. Here we give an alternative proof.

Theorem 5. Suppose V is a finite dimensional vector space over \mathbb{F} . Then, $\dim_{\mathbb{F}} V^{\vee} = \dim_{\mathbb{F}} V$.

Proof. Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be a basis of V. Let us consider the following linear functional:

$$v_i^{\vee}: V \to \mathbb{F}$$

$$\sum_{i=1}^n \alpha_i \cdot v_i \mapsto \alpha_i$$

We claim that $\mathcal{B}^{\vee} = \{v_1^{\vee}, v_2^{\vee}, \dots, v_n^{\vee}\}$ is a basis of V^{\vee} , the dual space of V. We first show that \mathcal{B}^{\vee} is linear independent. Suppose there exist $\beta_i \in \mathbb{F}$ such that

$$\sum_{i=1}^{n} \beta_i v_i^{\vee} = 0,$$

then

$$\sum_{i=1}^{n} \beta_i v_i^{\vee}(v_j) = 0.$$

This shows

$$\beta_i = 0$$
, for all $i = 1, 2, ..., n$.

Next we show that \mathcal{B}^{\vee} generate V^{\vee} . Given $l \in V^{\vee}$. Then, from the linearity of l, we have

$$l = \sum_{i=1}^{n} l(v_i) \cdot v_i^{\vee}.$$

We conclude that \mathcal{B}^{\vee} is a basis of V^{\vee} .

Remark. The basis \mathcal{B}^{\vee} is called the dual basis of \mathcal{B} .

Given a linear transformation $T:V\to W$, it induces a linear transformation $T^\vee:W^\vee\to V^\vee$ between dual spaces defined by:

$$T^{\vee}(l)(v) := l(T(v)), \text{ for } l \in W^{\vee} \text{ and } v \in V.$$

It is easy to verify that T^{\vee} is a linear transformation.

Theorem 6. Let V, W be two finite dimensional vector spaces over \mathbb{F} . Let $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ and $\mathcal{B} = \{w_1, w_2, \dots, w_m\}$ be bases of V and W, respectively. Given $T: V \to W$. Then,

$$[T]_{\mathcal{A},\mathcal{B}}^{\mathbf{t}} = [T^{\vee}]_{\mathcal{B}^{\vee},\mathcal{A}^{\vee}}.$$

Proof. Let $A := [T]_{\mathcal{A},\mathcal{B}} = (a_{ij})_{n \times n}$ and $B := [T^{\vee}]_{\mathcal{B}^{\vee},\mathcal{A}^{\vee}} = (b_{ij})_{n \times n}$. From the definition, we have

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i$$
$$T^{\vee}(w_i^{\vee}) = \sum_{j=1}^n b_{ji} v_j^{\vee}$$

Then,

$$b_{ji} = T^{\vee}(w_i^{\vee})(v_j) = w_i^{\vee}(T(v_j)) = w_i^{\vee}\left(\sum_{i=1}^m a_{ij}w_i\right) = a_{ij}.$$

This proves the theorem.

Theorem 7. Let V be a vector space and let $W \subset V$ be a subspace. Then,

$$(V/W)^{\vee} \simeq \{l \in V^{\vee} : W \subset \ker l\}$$
.

Proof. We have known that there is a natural map $\pi: V \twoheadrightarrow V/W$. We claim that π^{\vee} is the isomorphism that bijects $(V/W)^{\vee}$ and $\{l \in V^{\vee}: W \subset \ker l\}$. We first show that π^{\vee} is injective. Suppose $\pi^{\vee}(l) = 0$, for some $l \in (V/W)^{\vee}$. Then,

$$l(\pi(v)) = 0$$
, for all $v \in V$
 $\implies l([v]) = 0$, for all $v \in V$.

This shows the injectivity of π^{\vee} . Hence, $(V/W)^{\vee} \simeq \operatorname{Im} \pi^{\vee}$. It suffices to show that $\operatorname{Im} \pi^{\vee} = \{l \in V^{\vee} : W \subset \ker l\}$.

1. $\operatorname{Im} \pi^{\vee} \subset \{l \in V^{\vee} : W \subset \ker l\}$. For each $S \in (V/W)^{\vee}$ and $w \in W$, we have

$$\pi^{\vee}(S)(w) = S(\pi(w)) = S([w]) = S([0]) = 0.$$

2. $\{l \in V^{\vee} : W \subset \ker l\} \subset \operatorname{Im} \pi^{\vee}$. Let $l \in V^{\vee}$ such that $W \subset \ker l$. Theorem 3 asserts that there exists a unique $S : V/W \to \mathbb{F}$ such that $l = S \circ \pi$. This implies $\pi^{\vee}(S) = l$.

Discussions above complete the proof.

Corollary. Given $A \in M_{m \times n}(\mathbb{F})$. Then, rank $A = \operatorname{rank} A^{\operatorname{t}}$.

Proof.

2 Inner product spaces

Definition 8 (inner product). Let V be a vector space over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is called an inner product if the following conditions are satisfied:

- 1. $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$, for all $x,y,z\in V$.
- 2. $\langle cx, y \rangle = c \cdot \langle x, y \rangle$, for all $x, y \in V$ and $c \in \mathbb{F}$.
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$, for all $x, y \in V$.
- 4. $\langle x, x \rangle \geq 0$, for all $x \in V$ and $\langle x, x \rangle = 0$ if and only if x = 0.

We write $(V, \langle \cdot, \cdot \rangle)$ for a vector space V together with an inner product structure $\langle \cdot, \cdot \rangle$.

We could also define the concept of norm or length of a vector $v \in V$.

Definition 9 (norm). For each $v \in V$, define the norm of v as $||v|| = \langle v, v \rangle^{1/2}$.

Theorem 10 (Riesz representation Theorem on a finite dimensional space). Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then,

$$\Phi: V \to V^{\vee}$$
$$v \mapsto \Phi(v)(x) = \langle x, v \rangle$$

is an isomorphism.

Proof. We first prove that Φ is injective. Note that

$$\ker \Phi = \{v \in V : \langle x, v \rangle = 0, \text{ for all } x \in V\} = \{0\}.$$

Since V is finite dimensional, we have $\dim_{\mathbb{F}} V = \dim_{\mathbb{F}} V^{\vee}$, thus Φ is an isomorphism. \square

In other words, inner product $\langle \cdot, \cdot \rangle$ identifies V with its dual space V^{\vee} when V is finite dimensional. We now start study how to represent an inner product structure with a matrix. Suppose V is a finite dimensional vector space, and let $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ be a basis of V. For any $x, y \in V$, there exist α_i, β_i such that

$$x = \sum_{i=1}^{n} \alpha_i \cdot v_i; \quad y = \sum_{j=1}^{n} \beta_j \cdot v_j.$$

Then,

$$\langle x, y \rangle = \left\langle \sum_{i=1}^{n} \alpha_i \cdot v_i, \sum_{j=1}^{n} \beta_j \cdot v_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \overline{\beta_j} \left\langle v_i, v_j \right\rangle.$$

Hence, if we let

$$\Omega = (\langle v_i, v_j \rangle) \in M_n(\mathbb{F}),$$

we have

$$\langle x, y \rangle = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \cdot \Omega \cdot \begin{pmatrix} \frac{\overline{\beta_1}}{\beta_2} \\ \vdots \\ \overline{\beta_n} \end{pmatrix}.$$

The matrix Ω is called the matrix of \langle , \rangle associated with \mathcal{A} .

Theorem 11 (change of basis). Let $\mathcal{B} = \{w_1, \dots, w_n\}$ be another basis of V. Assume that

$$w_j = \sum_{i=1}^n a_{ij} v_i$$
, for all $1 \le j \le n$.

Then,

$$\Omega' = A^{t} \cdot \Omega \cdot \overline{A},$$

where Ω' is the matrix of \langle , \rangle associated with \mathcal{B} and $A = (a_{ij})$.

Proof. Note that

$$\langle w_i, w_j \rangle = \left\langle \sum_{k=1}^n a_{ki} v_k, \sum_{l=1}^n a_{lj} v_l \right\rangle$$
$$= \sum_{k=1}^n \sum_{l=1}^n a_{ki} \left\langle v_k, v_l \right\rangle \overline{a_{lj}}$$
$$= \sum_{k=1}^n \sum_{l=1}^n a_{ik}^{\,\mathrm{t}} \left\langle v_k, v_l \right\rangle \overline{a_{lj}},$$

This proves the theorem.

Next, we shall ask whether we can define an inner product structure on V if we are given a matrix $\Omega \in M_n(\mathbb{F})$ and a basis \mathcal{A} of V. The answer is no. In fact, the matrix can define an inner product structure on finite dimensional V if and only if it is positive definite. However,

Theorem 12. If $\Omega = B \cdot B^*$ for some $B \in M_n(F)$ with $\det B \neq 0$, then $\langle , \rangle_{\Omega, \mathcal{A}}$ is an inner product for any choice of \mathcal{A} .

Proof. Let $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ be an arbitrary basis of V. It suffices to show the inner product defined by Ω satisfies the fourth axiom of Definition 8. If $x \in V$, then

$$x = \sum_{i=1}^{n} \alpha_i \cdot v_i$$
, for some $\alpha_i \in \mathbb{F}$.

We have

$$\langle x, x \rangle_{\Omega, \mathcal{A}} := \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \cdot \Omega \cdot \begin{pmatrix} \overline{\alpha_1} \\ \overline{\alpha_2} \\ \vdots \\ \overline{\alpha_n} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \cdot B \cdot B^* \cdot \begin{pmatrix} \overline{\alpha_1} \\ \overline{\alpha_2} \\ \vdots \\ \overline{\alpha_n} \end{pmatrix}$$

$$= (yB) \cdot (yB)^*,$$

where $y = (\alpha_1 \ \alpha_2 \ \dots \ \alpha_n)$ is a row vector. Write $yB = (\beta_1 \ \beta_2 \ \dots \ \beta_n)$. We get

$$\langle x, x \rangle_{\Omega, \mathcal{A}} = \begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_n \end{pmatrix} \cdot \begin{pmatrix} \frac{\overline{\beta_1}}{\overline{\beta_2}} \\ \vdots \\ \overline{\beta_n} \end{pmatrix} = \sum_{i=1}^n |\beta_i|^2 \ge 0,$$

and $\langle x, x \rangle_{\Omega, \mathcal{A}} = 0$ if and only if y = 0. From the assumption that $\det B \neq 0$, it follows x = 0 if $\langle x, x \rangle = 0$.

2.1 Orthogonal projection

Definition 13 (perpendicular). Let (V, \langle , \rangle) be an inner product space. Then, we say a vector v is perpendicular to w if

$$\langle v, w \rangle = 0.$$

We often write $v \perp w$ to indicate two vectors are perpendicular to each other.

Note that the Pythagorean theorem holds under this definition:

If
$$\langle v, w \rangle = 0$$
, then $||v + w||^2 = ||v||^2 + ||w||^2$.

Now, we can define orthogonal projection of x to y.

Definition 14 (Orthogonal projection). Given two vectors $x, y \in (V, \langle , \rangle)$ $(y \neq 0)$. Proj_y(x) is the vector satisfying the following two conditions:

- 1. $\operatorname{Proj}_{y}(x)$ is parallel to y.
- 2. $x \operatorname{Proj}_{y}(x) \perp y$.

From this definition, we can assume that $\operatorname{Proj}_y(x) = \alpha \cdot y$, for some $\alpha \in \mathbb{F}$. Since $x - \operatorname{Proj}_y(x) \perp y$, we have

$$\langle x - \alpha \cdot y, y \rangle = 0 \iff \alpha = \frac{\langle x, y \rangle}{\langle y, y \rangle}.$$

We conclude that

$$\operatorname{Proj}_{y}(x) = \frac{\langle x, y \rangle}{\|y\|^{2}} \cdot y.$$

Lemma 1. Let $x, y \in (V, \langle , \rangle)$ $(y \neq 0)$. Then,

$$\left\|\operatorname{Proj}_{y}(x)\right\| \leq \|x\|.$$

Moreover, the equality holds if and only if x is parallel to y.

Proof. It follows from the Pythagorean theorem.

Corollary. $|\langle x, y \rangle| \leq ||x|| \, ||y||$, holds for all $x, y \in V$.

It immediate follows from Lemma 1. This inequality is known as "Cauchy's inequality".

Corollary. $||x+y|| \le ||x|| + ||y||$, holds for all $x, y \in V$.

Proof. It is equivalent to prove $||x + y||^2 \le (||x|| + ||y||)^2$.

$$||x + y||^{2} \le (||x|| + ||y||)^{2}$$

$$\iff ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2}$$

$$\iff ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2} \le ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2}$$

$$\iff \Re\langle x, y \rangle \le ||x|| \cdot ||y||.$$

Note that $\Re\langle x,y\rangle \leq |\langle x,y\rangle| \leq ||x|| \cdot ||y||$. This proves the corollary.

In general, if we were given a subspace $W \subset V$, we can discuss about $\operatorname{Proj}_W(x)$, the orthogonal projection of x to W.

Definition 15 (Generalization of orthogonal projection). Let W be a subspace of V and let x be a vector in V. Then, $\text{Proj}_W(x)$ is the vector satisfying the following two conditions:

- 1. $\operatorname{Proj}_W(x) \in W$.
- 2. $x \operatorname{Proj}_W(x) \perp W$. That is, $x \operatorname{Proj}_W(x)$ is perpendicular to any vectors in W.

The existence of $Proj_W(x)$ follows from the following theorem.

Theorem 16. Let V be a finite dimensional inner product space and let W be a subspace of V. Define W^{\perp} as

$$W^{\perp} := \{ v \in V : \langle v, w \rangle = 0, \text{ for all } w \in W \}.$$

Then, W^{\perp} is a subspace. Moreover, $V = W \oplus W^{\perp}$.

Proof. It is easy to see that W^{\perp} is a subspace of V. Recall Theorem 10, we have an isomorphism:

$$V \simeq V^{\vee}$$

 $v \mapsto l_v(x) = \langle x, v \rangle$.

Note that the image of W^{\perp} under this map is

$$\{l \in V^{\vee} : W \subset \ker l\} .$$