Boyang Ti

Email: tiboyang@outlook.com

Address: Harbin Institute of Technology, State Key Lab Robot

& System, Heilongjiang, Harbin, China, 150001

Tel: +86-18646209028

Website: tiboy.top

EDUCATION

Dalian University of Technology (2013.7-2017.6)

Liaoning, China

Bachelor of Mechanical Design manufacture and Automation

• GPA: Major 90.7/100.0

• Rank: 2/64

• Top Grade Scholarship (5%), twice, 2013-2014 & 2014-2015

Harbin Institute of Technology (2017.9-Present)

Heilongjiang, China

Ph.D. candidate, Mechanical Engineering

• Research Topic: Imitation Learning; Robot Skill Learning; Optimal Control; Riemannian Manifold

Idiap Research Institute (2021.2-2022.9)

Martigny,

Switzerland
Research Intern

• Research Topic: Optimal Control; Riemannian Manifold

RESEARCH EXPERIENCE

Research on human-robot collaboration technology and application for aerospace manufacturing

Project Participant

Sep. 2022-Present

- Solving the algorithm problem about robot skill learning part.
- Solving the representation problem on the assembly angle
- Propose a method based on Dynamic Movement Primitives to solve the generalization problem of assembly motion.
- Verify the effectiveness of the proposed algorithm in Simulation and UR10 robot platform
 Funded by Major Research Plan, National Nature Science Foundation of China (Grant No. 92048301)

--PhD project and main research.

Efficient Human-Machine Collaboration and Intelligent Planning Technology Based on Multiple Operational Modes Project Participant Nov. 2022-Present

• Collaborative Task Planning and Mutual Adaptation in Robot-Doctor Cooperation

• Researching theoretical methods for task allocation, motion planning, and mutual adaptability in various operational modes (collaborative, partially autonomous) when a robot performs vertebral plate excision surgery alongside a doctor.

Funded by National Key Research and Development Program of China (Grant No. 2022YFB4700701)

Learning by Switching Roles in Physical Human-Robot Collaboration

Project Participant

Feb. 2022-Sep. 2022

- Solving the algorithm problem about robot skill learning part
- Propose a method based on geometry and optimal control framework for online planning and robustness to human disturbances.
- Verify the effectiveness of the proposed algorithm in Simulation and Franka Panda robot platform Funded by the Swiss National Science Foundation SWITCH project (https://switch-project.github.io/)
- --Visiting PhD project

Memory of Motion

Project Participant

Feb. 2021-Feb. 2022

- Solving the algorithm problem about robot skill learning part.
- Propose a method based on geometry and optimal control framework to generalize the robot learned skill.
- Verify the effectiveness of the proposed algorithm in Simulation and Franka Panda robot platform.
 Funded by European Commission's Horizon 2020 Programme Memory of Motion, https://www.memmo-project.eu/, Grant Agreement 780684
- --Visiting PhD project

Fundamental Researches on Cooperative Dual-Arm Mobile Robot

Project Participant

Sep. 2017-Sep. 2022

- Solving the algorithm problem about robot skill learning
- Propose a strategy to extract the feature of demonstration trajectory encoded by Dynamic Movement Primitives (DMPs)
- Verify the effectiveness of the proposed algorithm in Simulation and UR10 robot platform
- Considering to apply neural network to construct the model between task parameters and trajectory parameters Funded by Major Research Plan, National Nature Science Foundation of China (Grant No. 91648201)

--PhD project and main research

Automatic Grinding Platform Based on Laser Cleaning

Project Participant May. 2019-Sep. 2021

- Build the communication links PC between SIMENS PLC, MiYi range sensor and KUKA KR6
- Design the upper computer software to control the automatic grinding platform Funded by Shanghai space research institute

Fundamental Researches on Cooperative Dual-Arm Mobile Robot

Project Participant Dec. 2017-Nov. 2020

• Research on motion planning algorithm of robot cutting key parts of knee Funded by National Key Research and Development Program of China (Grant No. 2017YFB1303001)

Ant Colony Algorithm in the Mobile Robot Path Planning Simulation Research

Project Leader Dec. 2016-Jun. 2017

- Propose an optimization algorithm of ant colony algorithm to speed up the stochastic search for the optimal path
- Propose an adaptive parameter optimization and correction strategy to improve the planning path
- Built the simulation platform using MATLAB/GUI for planning the optimal path and export the planning file

2019 JCAR Cup Inclusive Robot Industrial Application College Invitational Tournament

Team Leader May. 2019-Aug. 2019

- Build the simulation grasping platform in Gazebo and complete the grasping task
- · Complete the task of the physical platform to grasp the specified fruit from the stacked objects

PUBLICATIONS

Journal Article:

- Ti B, Gao Y, Zhao, J and Calinon, S. An Optimal Control Formulation of Tool Affordance Applied to Impact Tasks[J], IEEE Transactions on Robotics, 2024.
- Ti B, Razmjoo A, Gao Y, Zhao, J and Calinon, S. A Geometric Optimal Control Approach for Imitation and Generalization of Manipulation Skills[J], Robotics and Autonomous Systems, 2023.
- **Ti B**, Gao Y, Shi M and Zhao, J. Generalization of Orientation Trajectories and Force—Torque Profiles for Learning Human Assembly Skill[J]. Robotics and Computer-Integrated Manufacturing, 2022.
- Ti B, Gao Y, Shi M, Fu L and Zhao, J. Movement Generalization of Variable Initial Task State Based on Euclidean Transformation Dynamical Movement Primitives[J]. International Journal of Advanced Robotic Systems, 2021.
- **Ti B**, Gao Y, Li Q and Zhao J. Human Intention Understanding from Multiple Demonstrations and Behavior Generalization in Dynamic Movement Primitives Framework[J]. IEEE Access, 2019.

Conference Article:

- Ti B, Gao Y, Zhao J and Calinon, S. Imitation of Manipulation Skills Using Multiple Geometries[C] 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.
- Ti B, Gao Y, Li Q and Zhao J. Dynamic Movement Primitives for Movement Generation Using GMM-GMR Analytical Method[C] 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). IEEE, 2019.
- Shi M, Gao Y, **Ti B** and Zhao J. Obstacle Avoidance Methods Based on Geometric Information under the DMPs Framework[C] Intelligent Robotics and Applications: 14th International Conference, (ICIRA). Springer. 2021.
- Li Q, Gao Y, **Ti B** and Zhao J. Model-Error-Observer-Based Control of Robotic Manipulator with Uncertain Dynamics[C] 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). IEEE, 2019.

AWARDS and SCHOLORSHIPS

HIWIN Scholarship	(Twice) 2013-2015
Learning Excellence Award (First Prize)	(Twice) 2013-2015
Three-Good Students of Dalian University of Technology	(Twice) 2013-2015
Technology Innovation Award of Dalian University of Technology	2013-2014
Excellent Graduate of Dalian University of Technology	2016-2017
National Scholarship	2017

SKILLS

- Computer Skills:
 - Python, MATLAB, C, C#.
 - ROS, Gazebo, MATLAB, PyCharm, Visual Studio, AutoCAD, SolidWorks.
 - Latex, Word, PowerPoint, Excel, Visio.
- Language Skills:
 - Chinese (Native), English (Fluent), Japanese (Some knowledge of) and French (Learning)

LANGUAGE PROFICIENCY

- College English Test Band 6 (CET6): 499/710 (Listening: 170, Reading: 191, Writing and Translating: 138)
- Japanese Language Proficiency Test (N2): 104/180 (Reading: 38, Listening: 32, Language Knowledge: 34)