일반물리학실험 보고서

전자 측정 연습

학과 :

학번 :

이름 :

공동실험자 :

담당 교수 :

담당 조교 :

실험 날짜 : 2019년 9월 9일

제출 날짜 : 2019년 9월 16일

1. 실험목적

물리실험에 필요한 기본 전자측정 장비인 멀티미터 및 오실로스코프 그리고 전원발생장치인 함수 발생기와 직류 전원공급기의 사용법을 익히고 간단한 회로를 구성하여 전압, 전류 및 전기저항을 측정한다.

2. 실험 원리

전자, 양성자가 가지는 전하량 e는 $e=1.60\times 10^{-19}$ C 이다. 그래서 1C은 6.25×10^{18} 개의 양성자의 알짜 전하이다.

1초 동안 1C의 전하가 흐를 때 1A(ampere), 1C의 전하가 1J의 일을 할 때 1V(volt)라 하며 1V의 전압이 걸려있을 때 1A의 전류가 흐르면 저항은 1 Ω 이다.

따라서 전압, 전류, 저항에는 다음과 같은 공식이 성립한다.

옴의 법칙

전압 V, 전류 I, 저항 R 사이에는 다음과 같은 관계가 있다.

V = IR

대부분 저항 R은 전류나 전압의 크기와 관계없이 일정한데 이 경우 '옴의 법칙을 만족한다'라고 한다.

교류전압이 시간에 대하여 사인 또는 코사인 함수를 따를 때 진폭 V_M 과 실효값 V_{AC} 사이의 관계는 다음과 같다.

$$V_{AC} = \frac{1}{\sqrt{2}} V_M$$

■ Ge@Gebra 그래픽 계산기

<그림1 : 시간에 따른 교류전압의 변화-GeoGebra로 작성, x축은 시간, y축은 전압이다.>

3. 실험 기구 및 재료

오실로스코프, 함수 발생기, 직류 전원 공급기, 디지털 멀티미터

4. 실험 방법

(1)직류 전압 측정

①사용장치: 멀티미터, 직류전원장치, 오실로스코프

②직류전원공급기의 출력 전압을 멀티미터와 오실로스코프로 측정 및 비교한다.

(+,- 주의하여 연결하며, 특히 멀티미터 +부분이 V부분에 꼽혀있는지 확인한다.)

(2)교류 전압 측정

①사용장치: 멀티미터, 함수발생기, 오실로스코프

②함수발생기의 진폭(AMPL)을 2단계로 나누어 조절, 멀티미터와 오실로스코프로 전압을 측정한다.

(3)진동수(주기)측정

①사용장치: 함수발생기, 오실로스코프

②함수발생기의 출력선을 오실로스코프의 프로브와 연결

③오실로스코프로 교류전압의 주기 및 진동수를 측정

(주의 : 함수발생기와 오실로스코프를 연결 후 함수발생기의 OUTPUT버튼을 눌러 출력을 해주어야함)

(4)전기 저항 측정

①사용장치: 멀티미터, 저항

②주어진 저항의 저항값을 멀티미터를 이용해 측정하고 색으로 읽은 저항값과 비교를 한다.

③참고로 저항의 색표시는 다음과 같다.(승수는 10^x에서 x만 표시)

구분	검정	갈색	빨강	주황	노랑	초록	파랑	보라	회색	흰색	금색	은색	무색
유효	0	1	2	3	4	5	6	7	8	9			
승수	0	1	2	3	4	5	6	7	8	9	-1	-2	
오차		1%	2%								5%	10%	20%

<표1 : 저항의 색표시>

(5)직류 전류 측정

①사용장치: 멀티미터, 직류전원장치, 저항

②직류전압:1V, 2V, 3V, 5V

③멀티미터, 직류전원장치, 저항을 직렬로 연결하여 전류가 흐르게 한 다음, 멀티미터에 나타난 전류를 읽어 전압, 전류, 저항 사이에 어떤 관계가 있는지 알아본다.

(6)교류 전류 측정

①사용장치: 멀티미터, 함수발생기, 저항

②교류전압: 1V, 2V, 3V

③멀티미터, 함수발생기, 저항을 직렬로 연결하여 전류가 흐르게 한 다음, 멀티미터에 나타난

전류를 읽어 전압, 전류, 저항 사이에 어떤 관계가 있는지 알아본다.

5. 측정값

(1)직류 전압 측정

직류전원공급기	멀티	미터	오실로스코프			
V	측정영역	V	V/div	수직 칸 수	V	
1.0	2V	1.017	1.0V	1칸	1.0V	
2.0	20V	2.07	1.0V	2칸	1.0V	
5.0	20V	5.05	5.0V	1칸	5.0V	
10.0	20V	10.09	5.0V	2칸	10.0V	

<표2 : 직류 전압 측정>

(2)교류 전압 측정

함수 1	함수 발생기		미터	오실로스코프				
진폭	진동수	측정영역	V_{AC}	V/div	진폭의	V_{M}	V_{AC}	
건국	(Hz)	(RANGE)	* AC	v / uiv	수직 칸수	v M	V AC	
7] 豆 1	100	200mV	37.3mV	200mV	2칸	4V	2.828V	
진폭1	200	200mV	35.3mV	200mV	2칸	4V	2.828V	
オルロの	100	200mV	34.0mV	5.00V	2칸	10V	7.071V	
진폭2	200	200mV	35.0mV	5.00V	2칸	10V	7.071V	

<표3 : 교류 전압 측정>

(3)진동수(주기) 측정

함수 발생기	오실로스코프(수평축)					
진동수(Hz)	s/div	한 주기의 수평 칸 수	주기 T	진동수 f		
50	5.00ms	4칸	20ms	50Hz		
100	10.0ms	1칸	10ms	100Hz		
200	5.00ms	1칸	5ms	200Hz		
500	500µs	4칸	2ms	500Hz		

<표4 : 진동수(주기)측정>

(4)전기 저항 측정

		멀티	미터			
	색 1	색 2	색 3	색 4	측정영역	저항값
저항1	갈색	검은색	빨간색	금색	2kΩ	0.989kΩ
저항2	갈색	초록색	빨간색	금색	2kΩ	1.489kΩ

<표5 : 전기 저항 측정>

(5)직류 전류 측정

저	항	전압	멀티	멀티미터		
	저항값	신입	측정영역	전류 I		
		1V	200mA	1mA		
 저항1	0.989kΩ	2V	20mA	2.06mA		
7181		3V	20mA	3.05mA		
		5V	20mA	5.04mA		
		1V	2mA	0.632mA		
건하	 1.489kΩ	2V	2mA	1.348mA		
저항2	1.409KW	3V	2mA	1.935mA		
		5V	20mA	3.45mA		

<표6 : 직류 전류 측정>

(6)교류 전류 측정

저	저항		발생기	멀티미터		
	저항값	전압	진동수	측정영역	전류 I	
		1V	1kHz	20mA	0.62mA	
저항1	0.989kΩ	2V	1kHz	20mA	1.19mA	
		3V	1kHz	20mA	1.59mA	
	항2 1.489kΩ	1V	1kHz	20mA	0.42mA	
저항2		2V	1kHz	20mA	0.87mA	
		3V	1kHz	20mA	1.07mA	

<표7 : 교류 전류 측정>

6. 결과

(1)직류 전압 측정

직류전원공급기	멀티	오차	
V	측정영역	V	
1.0	2V	1.017	±1.700%
2.0	20V	2.07	±3.5%
5.0	20V	5.05	±1.00%
10.0	20V	10.09	±0.90%

<표8 : 직류 전압 측정 오류>

표8은 직류전원공급기에서 나온 전하의 전압을 멀티미터로 측정하여 직류전원공급기에서 공급하는 전압과의 차이를 적은 것이다.

멀티미터에서 전압(V)는 직류전원공급기와 멀티미터를 연결 후 측정값이 5초정도 변하지 않았을 때 적힌 값을 적은 것이다.

(2)교류 전압 측정

						오실로스코프
함수 발생기		멀티미터		오실로	대비 멀티미터	
					오차	
진폭	진동수	측정영역	V_{AC}	V/div	V_{AC}	
건크	(Hz)	(RANGE)	' AC	v/uiv	, AC	
 진 폭 1	100	200mV	37.3mV	200mV	2.828V	±98.7%
①亏1 	200	200mV	35.3mV	200mV	2.828V	±98.8%
71 並り	100	200mV	34.0mV	5.00V	7.071V	±99.5%
진폭2	200	200mV	35.0mV	5.00V	7.071V	±99.5%

<표9 : 오실로스코프 대비 멀티미터 오차>

표9는 함수 발생기에서 나온 전하의 전압이 오실로스코프 대비 멀티미터에서 얼마나 큰 차이가 나타나는지 보여주는 것으로, 원인은 결과에 대한 논의에서 다룬다.

				100hz 대비	진폭1 대비
함수 발생기		오실로	<u> </u>	200hz에서	진폭2에서
			전압변화	전압변화	
진폭	진동수	V/div	V_{AC}		
'보기	(Hz)	v/ div	' AC		
カ	100	200mV	2.828V		
진폭1 	200	200mV	2.828V	±0%	
オリエり	100	5.00V	7.071V		+150.04%
진폭2	200	5.00V	7.071V	±0%	+150.04%

<표10 : 진동수와 진폭의 변화에 따른 전압변화>

표10은 같은 진폭에서 진동수의 변화에 따른 전압변화, 같은 진동수에서 진폭의 변화에 따른 전압변화를 보여준다.

(3)진동수(주기) 측정

함수 발생기	오실로스코프(수평축)	오실로스코프(수평축)		
진동수(Hz)	주기 T	진동수 f		
50	20ms	50Hz	f=1/T	
100	10ms	100Hz	f=1/T	
200	5ms	200Hz	f=1/T	
500	2ms	500Hz	f=1/T	

<표11 : 주기와 진동수와의 관계>

<그림2 : (주기, 진동수)점이 y=1/x 그래프의 한 점이다.-GeoGebra> 표11은 함수발생기에서 나온 진동수와 오실로스코프에서 측정한 주기의 관계를 나타낸 것으로 대체로 f=1/T의 관계를 보여준다. 그림2에서 알 수 있듯이, y=1/x 그래프가 (주기, 진동수) : $(20\times10^{-3},50),(10\times10^{-3},100),(5\times10^{-3},200),(2\times10^{-3},500)$ 점을 지난다.

<그림3 : 측정을 통해 얻은 네 개의 점을 이용하여 거듭제곱 추세선을 그린 것> 그림3에서 알 수 있듯이, 측정을 통해 얻은 (주기, 진동수) 점을 이용해 거듭제곱 추세선(점선)을 그리면 $y=x^{-1}$ 그래프가 나온다.

(4)전기 저항 측정

		저항	색깔에 의한 저항값			
	색 1	색 2	색 3	색 4	저항값	저항값 범위
저항1	갈색	검은색	빨간색	금색	1kΩ	0.95kΩ~1.05kΩ
저항2	갈색	초록색	빨간색	금색	1.5kΩ	1.425kΩ~1.575kΩ

<표12 : 저항에 표시된 색깔에 의한 저항값>

표1과 표12를 참고하여 저항1과 저항2의 저항값을 계산해보면 먼저 저항1은

 $10(갈색, 검은색) \times 10^{3}(빨간색) \pm 5\%(금색) \Omega$

저항2는 $15(갈색, 초록색) \times 10^{3}(빨간색) \pm 5\%(금색) \Omega$ 이다.

따라서, 저항1의 색1~색3까지 고려하여 계산한 저항값은 $1k\Omega$, 색4까지 고려하여 범위를 계산하면 $0.95k\Omega\sim1.05k\Omega$ 이다. 마찬가지로 저항2도 색1~색3까지는 $1.5k\Omega$, 색4까지 고려하면 $1.425k\Omega\sim1.575k\Omega$ 의 범위가 나온다.

저항	멀티	미터	표시된 저항값과의 차이
	측정영역	저항값	
저항1(1kΩ)	$2k\Omega$	0.989kΩ	-1.1%
저항2(1.5kΩ)	2kΩ	1.489kΩ	-0.733%

<표13 : 표시된 저항값대비 멀티미터로 측정한 저항값의 차이>

표13은 표시된 저항값대비 멀티미터로 측정한 저항값의 차이를 보여주며 저항1은 표시된 저항값보다 1.1% 낮은 저항을, 저항2는 표시된 저항값보다 0.733% 낮은 저항이 나타났다.

(5)직류전류측정

저항		전압	멀티미터	전압/전류	멀티미터로 측정한 저항값대비 전압/전류 차이		
	저항값		전류 <i>I</i>				
저항1	0.989kΩ	1V	1mA	1.000kΩ	1.112%		
		2V	2.06mA	0.971kΩ	-1.820%		
		3V	3.05mA	0.984kΩ	-0.506%		
		5V	5.04mA	0.992kΩ	0.303%		
저항2	1.489kΩ	1V	0.632mA	1.582kΩ	6.246%		
		2V	1.348mA	1.484kΩ	-0.336%		
		3V	1.935mA	1.550kΩ	4.097%		
		5V	3.45mA	1.449kΩ	-2.686%		

<표14 : 멀티미터로 측정한 저항값대비 전압/전류 차이>

표14는 저항1에서, 멀티미터로 측정한 저항값($0.989k\Omega$)대비 전압/전류 차이는 $-1.82\%\sim1.112\%$, 저항2에서 멀티미터로 측정한 저항값($1.489k\Omega$)대비 전압/전류 차이는 $-2.686\%\sim6.246\%$ 로 다양하게 나타났다.

<그림4: 저항1에서 전류에 따른 전압>

그림4는 저항1을 연결하여 측정한 전압과 전류의 데이터를 최소평균제곱법을 이용해 선형 추세선 그래프를 그리면 y=0.9933x-0.0188로, 최소평균제곱법에 의해 전압/전류는 $0.9933k\Omega$, 즉 멀티미터로 측정한 저항값 $(0.989k\Omega)$ 대비 0.435% 차이 난다.

<그림5 : 저항2에서 전류에 따른 전압>

그림4는 저항1을 연결하여 측정한 전압과 전류의 데이터를 최소평균제곱법을 이용해 선형 추세선 그래프를 그리면 y=1.4246x+0.127로, 최소평균제곱법에 의해 전압/전류는 1.4246k Ω , 즉 멀티미터로 측정한 저항값(1.489k $\Omega)$ 대비 4.325% 차이 난다.

(6)교류 전류 측정

저항		함수발생기	전압 실효값	멀티미터	전류*저항	V_{AC} 대비 오차	저항1대비 저항2에서 오차
	저항값	전압	V_{AC}	전류 <i>I</i>			
저항1	0.989kΩ	1V	0.7071V	0.62mA	0.61V	-13.73%	
		2V	1.4142V	1.19mA	1.18V	-16.56%	
		3V	2.1213V	1.59mA	1.57V	-25.99%	
저항2	1.489kΩ	1V	0.7071V	0.42mA	0.63V	-10.90%	3.28%
		2V	1.4142V	0.87mA	1.3V	-8.08%	10.17%
		3V	2.1213V	1.07mA	1.6V	-24.57%	1.91%

<표15 : 교류전류의 전압실효값과 전류*저항값의 오차>

<그림6: 저항1에서 전압실효값과 전류*저항 그래프. 저항1에서 전류*저항은 전압실효값의 0.6788배 정도 된다.>

<그림7 : 저항2에서 전압실효값과 전류*저항 그래프. 저항2에서, 전류*저항은 전압 실효값의 0.6859배 정도 된다.>