

Nuclear Data Measurements at LANL and LBNL

Andrew S. Voyles

13 June 2018

Measurements @ LANL - Nb(p,x)

- Dosimetry was the top cross-cutting need in the NDNCA whitepaper
 - Vital for robust determination of fluence, energy for charged-particle measurements
 - Current data is deficient above ~30 MeV/A

Nuclear Data Needs and Capabilities for Applications

May 27-29, 2015 Lawrence Berkeley National Laboratory, Berkeley, CA USA

nds.iaea.org/medical/monitor_reactions.html

Measurements @ LANL - Nb(p,x)

Measurement performed in Jan-Feb 2017 at LANSCE-IPF (100 MeV proton beam)

Measurements @ LANL - Nb(p,x)

• nat Nb(p,4n) 90 Mo is a high-priority objective as a new proton beam dosimetry standard for $E_p \approx 40-200$ MeV

Desired for use at facilities such as LANSCE-IPF, BLIP (BNL), iTHEMBA, etc.

Produced additional emerging radionuclides: ^{82m}Rb, ⁸⁶Y, ⁸⁹Zr, ⁹⁰Nb

M. Nortier

Measurements @ LANL – Nb(p,x)

Measurements of 38 cross-sections for ⁹³Nb(p,x) and ^{nat}Cu(p,x)

β-

⁶⁵Zn

⁵¹Cr

⁶²Zn

⁶¹Cu

⁶⁰Co

⁵⁹Fe

Measurements @ LANL – Nb(p,x)

A.S. Voyles et al., "Excitation functions for (p,x) reactions of niobium in the energy range of $E_p = 40-90$ MeV", NIM B, 429 (2018) 53-74. http://dx.doi.org/10.1016/j.nimb.2018.05.028

Results have been published, and are currently being compiled into EXFOR!

Next step: extend to 200 MeV

Stacked-target Charged Particle Excitation Functions

¹⁴⁰La(p,6n)¹³⁴Ce - a PET analogue for ²²⁵Ac

²³²Th(p,x)²²⁵Ac

 $E_p = 140 \rightarrow 60 \text{ MeV}$ ²²⁵Ac yield:
4 MBq/ μ Ah

²²⁶Ra(p,2n)²²⁵Ac

 $E_p = 22 \rightarrow 10 \text{ MeV}$ $^{225}\text{Ac yield:}$ $^{7}\text{ MBq/}\mu\text{Ah}$ (radioactive target)

The La/Ce project is a joint venture between LBNL/UCB (Abergel, Bernstein), LANL (Kozimor) and U. of Wisconsin (Engle)

¹⁴⁰La(p,6n)¹³⁴Ce - a PET analogue for ²²⁵Ac

²³⁸U(p,xn)^{236,237}Np and ²³⁵U(d,x)²³⁶Np Production*

Vital mass-spec "spike" for nonproliferation

13 June 2018

Provide radiochemical expertise to UCB, for potential skills transfer to IPF!

U (VI), fission products

fission products

⁷Li(p,n) "Quasi-Monoenergetic" Neutron Source

Vault-based irradiation

Inconel-clad Li targets(LANL LDRD)

- Neutrons from 0-60 MeV
- Y, Co, Al, In, Zr, Au samples irradiated in the vault
- Flux from 10^{6-4} /MeV/sr/s (decreases w/ E_n)

First experiments took place in April 2018

