Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

AYUDANTÍA 4

4 de Septiembre, 2021

PROBLEMAS

 $[\mathbf{P1}]$ Sea (X_i, Y_i) una colección de vectores aleatorios IID con distribución de probabilidad normal bivariada con vector de medias μ desconocido y matriz de covarianza $\Sigma > 0$ desconocida. Encuentre entonces el estimador de momentos para cada uno de los 5 parámetros desconocidos.

 $[\mathbf{P2}]$ Una distribución de probabilidad utilizada en Física es la llamada Distribución de Maxwell-Boltzmann, esta distribución modela la velocidad de una molécula al interior de un gas ideal a una determinada temperatura T, la función de densidad asociada a esta distribución viene dada por

$$f(x;T) = \sqrt{(\frac{m}{2\pi kT})^3} 4\pi x^2 e^{-\frac{mx^2}{2kT}} \quad x > 0$$

Donde T es la temperatura, m es la masa de la molécula de gas (asumida conocida) y k es la constante de Boltzmann. Una forma más compacta de esta distribución puede obtenerse desde la reparametrización

$$a^2 = \frac{kT}{m}$$

y así la función de densidad toma la forma

$$f(x;a) = \sqrt{\frac{1}{2\pi a^6}} 4\pi x^2 e^{-\frac{x^2}{2a^2}} = \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-\frac{x^2}{2a^2}}}{a^3}$$

Encuentre entonces el estimador de momentos de a para una muestra aleatoria X_1, \ldots, X_n proveniente de una variable aleatoria X con distribución Maxwell-Boltzmann

 $\boxed{\mathbf{P3}}$ Sea $\{X_i\}_{i=1}^n$ una colección de variables aleatorias IID, con distribución de probabildad Laplace, es decir tienen una función de densidad dada por

$$f(x; \mu, \sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \mu|}{\sigma}\right), \quad \sigma > 0$$

Encuentre el estimador de momentos de μ y σ . ¿Que puede decir en comparación al estimador de máxima verosimilitud?

 $\boxed{\mathbf{P4}}$ Se dice que una variable aleatoria X tiene una distribución de probabilidad de Poisson-Compuesta si es que

$$X = \sum_{i=1}^{N} Y_i$$

donde N es una variable aleatoria Poisson es decir $N \sim \text{Poiss}(\lambda)$ y $\{Y_i\}_{i=1}^{\infty}$ es una colección de variables aleatorias IID.

La distribución Polya-Aeppli ó Poisson Geométrica es un caso particular de la familia de distribuciones Poisson-Compuesta donde $\{Y_i\}_{i=1}^{\infty}$ es una colección de variables aleatorias **geométricas** independientes $(Y_i \sim \text{Geom}(p))$, en este caso se dirá que X sigue una distribución Polya-Aeppli con parámetros λ y p $(X \sim \mathcal{PA}(\lambda, p))$

Encuentre entonces el estimador de momentos de los parámetros λ y p para una muestra aleatoria $X_1, \dots X_n$ proveniente de una variable aleatoria $X \sim \mathcal{PA}(\lambda, p)$