Análisis Matemático I Clase 9: Aplicaciones de la derivada: Cinemática y Tasas Relacionadas

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Abril, 2024

Objetivo de la clase: se espera que el estudiante comience a manipular la noción de derivada, comprenda condiciones para la existencia de la misma y la aplique a situaciones prácticas.

Interpretación de la derivada: introducción a tasas relacionadas

Recordar:

Definición de tasa instantánea de cambio

La tasa de cambio instantánea de una función f con respecto a x en x_0 se define por:

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}=f'(x_0),$$

siempre que el límite exista.

Así, las tasas de cambio instantáneas son límites de tasas de cambio promedio.

Supongamos que la función s = f(t) describe la posición de un objeto en función del tiempo que se desplaza en línea recta:

Luego, el desplazamiento Δs del objeto en el intervalo de tiempo de t a $t+\Delta t$ es:

$$\Delta s = s(t + \Delta t) - s(t).$$

Así, la velocidad promedio v_{prom} en dicho intervalo viene dada por:

$$v_{prom} = rac{\Delta s}{\Delta t} = rac{s(t+\Delta t)-s(t)}{\Delta t}.$$

Para determinar la velocidad en el instante t, se debe calcular la velocidad promedio en el intervalo de t a $t+\Delta t$, y hacer tender Δt a cero. Así, la **velocidad instantánea** del objeto en el instante t es:

$$v(t) = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}.$$

Es decir:

$$v(t) = s'(t).$$

IMPORTANTE: Si el objeto se desplaza hacia la derecha, entonces s'(t) > 0, Por otro lado, si se desplaza hacia la izquierda, entonces s'(t) < 0.

En el plano espacio-tiempo:

Así, el signo de la derivada indica la dirección del movimiento

La rapidez del movimiento se define como sigue:

Rapidez en el instante
$$t = |v(t)| = \left| \frac{ds}{dt}(t) \right|$$
.

La tasa instantánea de cambio de la velocidad con respecto al tiempo se denomina **aceleración**. Así:

aceleración en el instante
$$t = a(t) = \frac{dv}{dt}(t)$$
.

Movimiento Armónico Simple: es un movimiento donde el objeto oscila indefinidamente. Es un movimiento periódico, por lo que generalmente es modelado con funciones trigonométricas.

Movimiento Armónico Simple: es un movimiento donde el objeto oscila indefinidamente. Es un movimiento periódico, por lo que generalmente es modelado con funciones trigonométricas.

Si el movimiento es modelado por s(t) = 5.cos(t), entonces podemos determinar la velocidad v(t) = -5.sen(t) y su aceleración a(t) = -5.cos(t) en cada instante.

Podemos concluir varias cosas:

- La posición s(t) = 5.cos(t) nos indica que el objeto oscila entre -5 y 5, con lo que la amplitud del movimiento es 5. El periodo del movimiento es 2π .
- La velocidad v(t)=-5.sen(t) alcanza su mayor magnitud |v(t)| cuando sen(t)=1 o sen(t)=-1, es decir, cos(t)=0, que es justo cuando el objeto pasa por el origen. La rapidez del objeto |v(t)|=5|sen(t)| es cero cuando sen(t)=0, es decir, cuando cos(t)=1 0 cos(t)=-1. Esto ocurre cuando la posición s es 5 o -5 (extremos del movimiento).
- La aceleración es siempre opuesta al valor de la posición: cuando el cuerpo está arriba de la posición inicial, la gravedad tira hacia abajo del objeto y entonces la aceleración es opuesta al movimiento.

Tasa de cambio instantánea: aplicaciones en Economía

En Economía, las tasas de cambio instantáneas se denominan *marginales*. **Ejemplo:** si c = c(x) es el costo de producir una cantidad x de cierto producto, entonces el **costo marginal de producción** c' es la tasa de cambio instantánea del costo con respecto al nivel de producción, es decir:

$$c'(x) = \lim_{h \to 0} \frac{c(x+h) - c(x)}{h}.$$

Interpretación de la derivada: introducción a tasas relacionadas

Hasta ahora, hemos obtenido la tasa de cambio instantánea de una función con respecto a la variable independiente.

En Tasas Relacionadas, vamos a determinar la variación de una función cuando se conoce la variación o tasa de cambio de otra o de otras funciones que se encuentran relacionadas con ella.

Esto quedará más claro con los ejemplos siguientes.

Problema: Suponga que se está drenando un tanque cónico:

Determine la relación entre la tasa de cambio instantánea del volumen V, la tasa de cambio instantánea de la altura h y la tasa de cambio instantánea del radio r con respecto al tiempo.

Solución: supongamos que:

- El volumen es una función del tiempo: V = V(t).
- La altura es función del tiempo: h = h(t).
- El radio es una función del tiempo: r = r(t).

Solución: supongamos que:

- El volumen es una función del tiempo: V = V(t).
- La altura es función del tiempo: h = h(t).
- El radio es una función del tiempo: r = r(t).

Buscamos una relación entre: V'(t), r'(t) y h'(t).

Solución: supongamos que:

- El volumen es una función del tiempo: V = V(t).
- La altura es función del tiempo: h = h(t).
- El radio es una función del tiempo: r = r(t).

Buscamos una relación entre: V'(t), r'(t) y h'(t).

Para establecer la relación entre las tasas instantáneas, primero establecemos la relación entre las variables V, h y r:

$$V=\frac{\pi}{3}r^2h.$$

Derivamos ambos miembros de esta ecuación con respecto a t:

$$\frac{dV}{dt}(t) = \frac{\pi}{3} \frac{d}{dt} (r^2 h)(t) = \frac{\pi}{3} (2r(t)r'(t)h(t) + r^2(t)h'(t))$$

Así, la relación entre las tasas instantáneas es:

$$V'(t) = \frac{\pi}{3} (2r(t)r'(t)h(t) + r^2(t)h'(t)).$$

Estatregia para resolver problemas de tasas relacionadas

En los próximos ejemplos aplicaremos la siguiente estrategia:

- Elabore un dibujo y dé nombre a las variables y constantes de interés. Generalmente, las variables dependen de t (tiempo).
- ② Determine la relación entre las variables de interés (utilice información geométrica, física, etc.) y escriba la fórmula correspondiente que vincule a las variables.
- Oerive la expresión anterior con respecto a t, utilizando regla de la cadena.
- Despeje la tasa de cambio que desea encontrar en términos de las demás cantidades.
- Utilice la información suministrada para calcular la tasa de cambio pedida.

Problema: Supongamos que el nivel del líquido en el tanque cónico del problema anterior disminuye a una tasa de -0.2cm/min y que el radio está cambiando a una tasa de -0.1cm/min. Determine la tasa instantánea de cambio del volumen del líquido cuando h=0.5cm y r=0.1cm.

Problema: Supongamos que se vierte agua en un depósito cónico a una tasa de $9cm^3/min$. Supongamos que la altura del depósito es 90cm y que el radio es de 40cm. Determine la tasa de cambio instantánea del nivel del líquido cuando el nivel es de 10cm.

Problema: dos aviones viajan a la misma altitud y se dirigen al mismo aeropuerto. Cuando una de ellas se encuentra a 300 millas, viaja a una rapidez de 600 millas por hora, mientras que la otra, cuando se encuentra a 225 millas, viaja a una rapidez de 450 millas por hora. Determine cuál es la tasa instantánea de cambio de la distancia entre los aviones en el momento descripto.

Aproximación de funciones mediante polinomios de grado 1

Si realizamos un acercamiento al punto P, obtenemos la imagen:

Así, cerca del punto de tangencia, las gráficas de la función y de la recta tangente se vuelven indistinguibles. Esto implica que es posible utilizar la ecuación de la recta tangente para obtener buenas aproximaciones de la función f.

Definción de Linealización

Sea f una función derivable en x=a. Definimos la linealización de f en a como la función:

$$L(x) = f'(a)(x - a) + f(a).$$

En general, cerca del punto a, la linealización es una buena aproximación de la función f.

Ejemplo: determine la linealización de:

$$f(x) = \sqrt{1+x}$$

en el punto x = 0.

Solución:

$$f'(x) = \frac{1}{2}(1+x)^{-1/2}.$$

Además, f(0) = 1 y f'(0) = 1/2. Luego la linealización de f en x = 0 es:

$$L(x) = f'(0)(x - 0) + f(0) = \frac{1}{2}x + 1.$$

La linealización de una función en un punto x=a se puede utilizar para aproximar los valores de la función cerca del punto a:

Aproximación	Valor verdadero	Valor verdadero – aproximación
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	<10 ⁻²
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	<10 ⁻³
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	<10 ⁻⁵

En las próximas diapositivas vamos a estudiar más profundamente la aproximación que brinda la linealización a la función.

Ejercicio: Utilice la linealización en un punto adecuado para obtener una aproximación del valor de

$$f(x) = \frac{x}{x+1}$$

en el punto x = 1.3.