Guarding Against Deepfake Audio with One-Class Softmax

Chih-Yi Lin

Motivation

- Current anti-spoofing detection methods face **generalization** issues: Binary classification assumes similar distributions between training and evaluation (test) data for both "real" and "fake" audios
- Not true for the fake audios: The techniques used in the training data may never catch
 up with the ones in the real world
- One-Class Softmax (Zhang et al., 2021): Compacting the real audios and pushing away the fake audios in embedding space through **angular margin injection**

Research Questions:

- 1. Can OC-Softmax outperform Softmax across diverse systems?
- 2. Does OC-Softmax exhibit superior generalization capabilities on **real-world** samples (In-The-Wild dataset) compared to Softmax?

Method

Figure 1: Softmax vs. OC-Softmax in 2D space^a

$$L_{OCS} = \frac{1}{N} \sum_{i=1}^{N} log(1 + e^{\alpha(m_{y_i} - \hat{w_0}\hat{x_i})(-1)^{y_i}})$$
 (1)

- m: margin for cosine similarity to bound the angle between w_0 and x_i (θ_i), where
- $-m_0$: margin for the class "real", m_1 : margin for the class "fake"
- $-m_0, m_1 \in [-1, 1], m_0 > m_1$
- E.g., $y_i = 0$, m_0 force θ_i to be smaller than $\arccos m_0$
- w_0 : optimization direction of the target class embeddings

Datasets

Datasets	Descr.	#Train (Real/Fake)	#Dev (Real/Fake)	#Eval
ASVspoof 2019-LA	Artifacts from TTS or VC	25,380 (2,580/22,800)	24,844 (2,548/22,296)	
ASVspoof 2021-DF ^a	Compressed audios	100,000	25,000	
In-The-Wild	Samples collected from the internet	_	_	31,779

Table 1: Summary of Train, Dev, Eval Datasets

Features and Experimental Details

Feature	Model	Train/Dev Set	Window Len.(ms)	Hop Len.(ms)	# Filters ^a	Time Frame	Embed Dim.b
LFCC	ResNet18	ASV19-LA	20	10	20 dim * 3	7.5s	256
LFCC	ResNet18	ASV21-DF					256
MFCC	ResNet18	ASV21-DF	400	160	128 dim * 3	15s	256
MFCC + Whisper ^c	MesoNet	ASV21-DF					1024

Table 2: Features

- ^aLFCC/MFCC, delta, double delta
- ^bInput for OC-Softmax
 ^cWhisper: A Transformer-based encode
- ^cWhisper: A Transformer-based encoder-decoder ASR system. Utilizing its encoder as feature extractor
- Hyper-param. of OC-Softmax: α =20, m_0 =0.9 and m_1 =0.2
- Models were trained for 20 epochs, selected with the lowest EER on Dev
- Whisper: Trained with the first 5 epochs frozen, followed by 15 epochs unfrozen

Results

Feature	Model	Train/Dev Set	Loss	Dev EER	Eval-In-The-Wild
LFCC	ResNet18	ASV19-LA	Softmax OC-Softmax	0.354% 0.279%	34.39% 39.397%
LFCC	ResNet18 (100 epochs)	ASV19-LA	Softmax OC-Softmax	0.274% 0.201%	34.30% 28.166%
LFCC	ResNet18	ASV21-DF	Softmax OC-Softmax	1.843% 2.196%	60.176% 47.157%
MFCC	ResNet18	ASV21-DF	Softmax OC-Softmax	1.464% 1.956%	47.655% 42.909 %
MFCC + Whisper	MesoNet	ASV21-DF	Softmax OC-Softmax	0.444% 0.71%	37.00% 29.86%

Table 3: Experiment results

- MFCC-Whisper-MesoNet-ASV21-OC-Softmax achieves superior performance with equivalent training epochs
- OC-Softmax outperforms Softmax after 100 epochs in the first configuration, suggesting potential performance gains with **more training epochs** across all configurations
- Models trained on ASV21-DF do **not** consistently outperform those trained on ASV19-LA: Higher Dev EER, may need more training epochs
- Significant EER disparity observed between the Dev and Eval sets

Visualization of Learned Embeddings

Figure 2: Distributions of the embeddings learned by LFCC-ResNet18-ASV19-100ep based on gold labels

- Dev vs. Eval: Different distributions for both classes
- Softmax vs. OC-Softmax: While OC-Softmax produces a more compact cluster for real audios in both Dev and Eval sets, it presents entanglement in the latter, posing a greater challenge for models

Conclusions

- OC-Softmax **outperforms** Softmax for all settings on real-world samples, except LFCC-ResNet-ASV19-20ep
- Utilizing Whisper's encoder as a feature extractor alongside conventional features demonstrates significant potential
- Future works: One-class classification methods, Continuous learning

References

[1] Y. Zhang, F. Jiang, and Z. Duan, "One-class learning towards synthetic voice spoofing detection," *IEEE Signal Processing Letters*, vol. 28, pp. 937–941, 2021. [2] P. Kawa, M. Plata, M. Czuba, P. Szymański, and P. Syga, "Improved deepfake detection using whisper features," 2023.

^aFigure from Zhang et al., 2021

^aThe class "real" is **oversampled** to balance two classes