ROYAUME DU MAROC

Ministère de l'Éducation Nationale, de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique

Présidence du Concours National Commun 2008 École Nationale de l'Industrie Minérale ENIM

Concours National Commun d'Admission aux Grandes Écoles d'Ingénieurs ou Assimilées Session 2008

ÉPREUVE DE MATHÉMATIQUES II

Durée 4 heures

Filière MP

Cette épreuve comporte 4 pages au format A4, en plus de cette page de garde L'usage de la calculatrice est *interdit*

L'énoncé de cette épreuve, particulière aux candidats de la filière MP, comporte 4 pages. L'usage de la calculatrice est interdit.

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements constitueront des éléments importants pour l'appréciation des copies. Il convient en particulier de rappeler avec précision les références des questions abordées.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Sur les classes de similitude de matrices carrées d'ordre 2

L'objectif de ce problème est d'étudier quelques propriétés topologiques des classes de similitudes de matrices carrées à coefficients réels ou complexes en liaison avec la diagonalisabilité.

Notations et rappels

Dans ce problème, \mathbb{K} désigne le corps des réels ou celui des complexes ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et $\mathcal{M}_2(\mathbb{K})$ l'algèbre des matrices carrées d'ordre 2 à coefficients dans \mathbb{K} ; la matrice identité se notera I_2 . $\mathrm{GL}_2(\mathbb{K})$ désigne le groupe des matrices inversibles de $\mathcal{M}_2(\mathbb{K})$.

Pour toute matrice A de $\mathcal{M}_2(\mathbb{K})$, tA désigne la matrice transposée de A, $\operatorname{tr}(A)$ sa trace, $\det A$ son déterminant et $\operatorname{Sp}_{\mathbb{K}}(A)$ l'ensemble des valeurs propres de A appartenant à \mathbb{K} .

Si $A \in \mathcal{M}_2(\mathbb{C})$, on appelle matrice conjuguée de A et on note \overline{A} , la matrice de $\mathcal{M}_2(\mathbb{C})$ dont les coefficients sont les conjugués de ceux de A; la matrice transposée de la matrice \overline{A} se notera A^* .

On rappelle que deux matrices A et B de $\mathcal{M}_2(\mathbb{K})$ sont dites semblables dans $\mathcal{M}_2(\mathbb{K})$ s'il existe une matrice $P \in \mathrm{GL}_2(\mathbb{K})$ telle que $A = PBP^{-1}$. Il s'agit d'une relation d'équivalence sur $\mathcal{M}_2(\mathbb{K})$; les classes d'équivalence de cette relation sont dites les classes de similitude de $\mathcal{M}_2(\mathbb{K})$.

I. Résultats préliminaires

- 1. (a) Vérifier que si $A \in \mathcal{M}_2(\mathbb{K})$, la classe de similitude de la matrice A dans $\mathcal{M}_2(\mathbb{K})$, notée $\mathscr{S}_{\mathbb{K}}(A)$, est égale à $\{PAP^{-1}; P \in \mathrm{GL}_2(\mathbb{K})\}$.
 - (b) Donner la classe de similitude d'une matrice scalaire, c'est à dire une matrice de la forme xI_2 avec $x \in \mathbb{K}$.
- 2. Pour tout $\lambda \in \mathbb{K}$, on pose $E_{\lambda} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$ et $F_{\lambda} = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$.
 - (a) Justifier que, pour tout $\lambda \in \mathbb{K}$, E_{λ} et F_{λ} sont inversibles et exprimer leur inverses.
 - (b) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$; calculer les produits $E_{\lambda}AE_{\lambda}^{-1}$ et $F_{\lambda}AF_{\lambda}^{-1}$ où $\lambda \in \mathbb{K}$.
 - (c) On suppose que la classe de similitude $\mathscr{S}_{\mathbb{K}}(A)$ de $A \in \mathcal{M}_2(\mathbb{K})$ est réduite à un singleton. Montrer que A est une matrice scalaire.
- 3. Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$, on pose $||A||_S = (|a|^2 + |b|^2 + |c|^2 + |d|^2)^{1/2}$.
 - (a) Montrer que $A \mapsto ||A||_S$ est une norme sur $\mathcal{M}_2(\mathbb{K})$.
 - (b) Vérifier que, pour tout $A \in \mathcal{M}_2(\mathbb{K})$, $\|A\|_S = \sqrt{\operatorname{tr}(AA^*)}$ et que si $U \in \mathcal{M}_2(\mathbb{K})$ est une matrice vérifiant $UU^* = I_2$ alors $\|A\|_S = \|UAU^*\|_S = \|U^*AU\|_S$.

- 4. On suppose que la classe de similitude $\mathscr{S}_{\mathbb{K}}(A)$ de la matrice $A \in \mathcal{M}_2(\mathbb{K})$ est bornée.
 - (a) Justifier que les parties $\{E_{\lambda}AE_{\lambda}^{-1}; \lambda \in \mathbb{K}\}$ et $\{F_{\lambda}AF_{\lambda}^{-1}; \lambda \in \mathbb{K}\}$ de $\mathcal{M}_{2}(\mathbb{K})$ sont bornées.
 - (b) En déduire que A est une matrice scalaire.
- 5. Que peut-on dire d'une matrice $B \in \mathcal{M}_2(\mathbb{K})$ dont la classe de similitude est compacte?
- 6. Montrer que les applications $A \longmapsto \operatorname{tr}(A)$ et $A \longmapsto \det A$ sont continues sur $\mathcal{M}_2(\mathbb{K})$.
- 7. Montrer que si A et B sont deux matrices semblables de $\mathcal{M}_2(\mathbb{K})$, elles ont le même déterminant, la même trace et le même polynôme caractéristique.

II. Condition pour qu'une classe de similitude de $\mathcal{M}_2(\mathbb{K})$ soit fermée

- 1. Soit $A \in \mathcal{M}_2(\mathbb{K})$.
 - (a) Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda, \mu\}$, justifier que A est semblable dans $\mathcal{M}_2(\mathbb{K})$ à la matrice $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$.
 - (b) Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda\}$, montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{K})$ si et seulement si $A = \lambda I_2$.
 - (c) Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda\}$ et A n'est pas une matrice scalaire, montrer que A est semblable dans $\mathcal{M}_2(\mathbb{K})$ à la matrice $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.
- 2. Soit $A \in \mathcal{M}_2(\mathbb{K})$.
 - (a) Si A est une matrice scalaire, justifier que la classe de similitude $\mathscr{S}_{\mathbb{K}}(A)$ de A dans $\mathcal{M}_2(\mathbb{K})$ est fermée.
 - (b) Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda\}$ et A non diagonalisable, on pose $A_k = \begin{pmatrix} 2^{-k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix}$, $k \in \mathbb{N}$. Étudier la suite $(A_k)_{k \in \mathbb{N}}$ et en déduire que la classe de similitude $\mathscr{S}_{\mathbb{K}}(A)$ n'est pas fermée.
 - (c) Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda, \mu\}$, soit $(P_k A P_k^{-1})_{k \in \mathbb{N}}$ une suite d'éléments de $\mathscr{S}_{\mathbb{K}}(A)$ qui converge vers une matrice $B \in \mathcal{M}_2(\mathbb{K})$. Soit $\alpha \in \{\lambda, \mu\}$.
 - i. Étudier la suite $(P_k(A-\alpha I_2)P_k^{-1})_{k\in\mathbb{N}}$ et en déduire que $\det(B-\alpha I_2)=0$.
 - ii. Montrer alors que $B\in\mathscr{S}_{\mathbb{K}}(A)$ et conclure que $\mathscr{S}_{\mathbb{K}}(A)$ est fermée.
- 3. Montrer que si $A \in \mathcal{M}_2(\mathbb{C})$ alors $\mathscr{S}_{\mathbb{C}}(A)$ est fermée si et seulement si A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.
- 4. Soit $A \in \mathcal{M}_2(\mathbb{R})$ une matrice telle que $\mathrm{Sp}_{\mathbb{R}}(A) = \emptyset$.
 - (a) Justifier que $4\det A (\operatorname{tr}(A))^2 > 0$. Dans la suite, on pose

$$A' = \frac{2}{\delta} \left(A - \frac{\operatorname{tr}(A)}{2} I_2 \right) \operatorname{et} A'' = \frac{1}{2} \begin{pmatrix} \operatorname{tr}(A) & -\delta \\ \delta & \operatorname{tr}(A) \end{pmatrix} \operatorname{avec} \delta := \sqrt{4 \operatorname{det} A - (\operatorname{tr}(A))^2}.$$

- (b) Montrer que $A'^2 = -I_2$.
- (c) On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A' et on considère un vecteur non nul e de \mathbb{R}^2 . Montrer que la famille (e, f(e)) est une base de \mathbb{R}^2 et écrire la matrice A_1 de f dans cette base.
- (d) Exprimer A' en fonction de A_1 et en déduire que les matrices A et A'' sont semblables dans $\mathcal{M}_2(\mathbb{R})$.

- (e) Soit $(P_kAP_k^{-1})_{k\in\mathbb{N}}$ une suite d'éléments de $\mathscr{S}_{\mathbb{R}}(A)$ qui converge vers une matrice \tilde{A} élément de $\mathcal{M}_2(\mathbb{R})$.
 - i. Montrer que $\operatorname{tr}(\tilde{A}) = \operatorname{tr}(A)$ et $\det \tilde{A} = \det A$.
 - ii. Justifier alors que les matrices A et \tilde{A} sont semblables dans $\mathcal{M}_2(\mathbb{R})$.
- 5. Montrer que si $A \in \mathcal{M}_2(\mathbb{R})$ alors $\mathscr{S}_{\mathbb{R}}(A)$ est fermée dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ ou bien $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$.

III. Une caractérisation des matrices diagonalisables de $\mathcal{M}_2(\mathbb{K})$

1. Un résultat de réduction

On muni le \mathbb{K} -espace vectoriel \mathbb{K}^2 de son produit scalaire canonique noté (.|.); la norme associée est notée $\|.\|$. Ainsi $(\mathbb{K}^2,(.|.))$ est un espace euclidien si $\mathbb{K}=\mathbb{R}$ et hermitien si $\mathbb{K}=\mathbb{C}$. Soit $G\in\mathcal{M}_2(\mathbb{K})$; on note g l'endomorphisme de \mathbb{K}^2 canoniquement associé à G. On suppose de plus que $\mathrm{Sp}_{\mathbb{K}}(G)\neq\emptyset$ si $\mathbb{K}=\mathbb{R}$.

(a) Justifier que les racines du polynôme caractéristique χ_G de G sont toutes dans \mathbb{K} .

Dans la suite, on désigne par λ et μ les racines de χ_G (éventuellement confondues); ce sont les valeurs propres de g. On choisi un vecteur propre u_1' de g, associé à la valeur propre λ , qu'on complète en une base (u_1', u_2') de \mathbb{K}^2 et on note (u_1, u_2) la base orthonormée de $(\mathbb{K}^2, (.|.))$ obtenue en appliquant le procédé de Schmidt à (u_1', u_2') .

- (b) Rappeler les expressions des vecteurs u_1 et u_2 en fonction des vecteurs u'_1 et u'_2 .
- (c) On note U la matrice de passage de la base canonique (e_1, e_2) de \mathbb{K}^2 à la base (u_1, u_2) . Montrer que $UU^* = I_2$. (on pourra exprimer les coefficients de U à l'aide du produit scalaire).
- (d) On note T la matrice de g dans la base (u_1, u_2) . Justifier que T est de la forme $\begin{pmatrix} \lambda & \alpha \\ 0 & \mu \end{pmatrix}$ et que $G = UTU^*$. Que vaut $\|G\|_S$?

2. Calcul d'une borne inférieure

On considère une matrice $A \in \mathcal{M}_2(\mathbb{K})$ avec $\operatorname{Sp}_{\mathbb{K}}(A) \neq \emptyset$ si $\mathbb{K} = \mathbb{R}$, et on désigne par λ et μ les valeurs propres de A (éventuellement confondues).

- (a) Justifier que l'ensemble $\{\|PAP^{-1}\|_S; P \in GL_2(\mathbb{K})\}$ possède une borne inférieure.
- (b) Montrer que, pour toute matrice $B \in \mathscr{S}_{\mathbb{K}}(A)$, $||B||_{S} \geqslant \sqrt{|\lambda|^2 + |\mu|^2}$.
- (c) Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que, pour tout réel non nul t, la matrice $\begin{pmatrix} \lambda & t\alpha \\ 0 & \mu \end{pmatrix} \in \mathscr{S}_{\mathbb{K}}(A)$.
- (d) Déduire de ce qui précède que $\inf_{B\in \mathscr{S}_{\mathbb{K}}(A)} \lVert B \rVert_S = \sqrt{|\lambda|^2 + |\mu|^2}.$
- (e) Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{K})$ si et seulement si la borne inférieure de l'ensemble $\{\|PAP^{-1}\|_S \; ; \; P \in \operatorname{GL}_2(\mathbb{K})\}$ est atteinte. (pour montrer que la condition est suffisante, on pourra utiliser le résultat de la question 1.)

3. Application

On considère une matrice $A \in \mathcal{M}_2(\mathbb{K})$ avec $\operatorname{Sp}_{\mathbb{K}}(A) \neq \emptyset$ si $\mathbb{K} = \mathbb{R}$, et on désigne par λ et μ les valeurs propres de A (éventuellement confondues).

On suppose que la classe de similitude $\mathscr{S}_{\mathbb{K}}(A)$ de A est fermée.

(a) Justifier qu'il existe une suite $(P_k)_{k\in\mathbb{N}}$ d'éléments de $\mathrm{GL}_2(\mathbb{K})$ telle que, pour tout entier naturel k, $\|P_kAP_k^{-1}\|_S\leqslant \sqrt{|\lambda|^2+|\mu|^2}+\frac{1}{k+1}$.

(b) En considérant une sous-suite convergente de la suite $(P_kAP_k^{-1})_{k\in\mathbb{N}'}$ dont on justifiera préalablement l'existence, montrer que la matrice A est diagonalisable dans $\mathcal{M}_2(\mathbb{K})$.

IV. Cas d'une matrice réelle n'ayant aucune valeur propre réelle

On considère une matrice $M \in \mathcal{M}_2(\mathbb{R})$ n'ayant aucune valeur propre réelle, ce qui signifie que $\operatorname{Sp}_{\mathbb{R}}(M) = \emptyset$. On a déjà vu que $\operatorname{4det} M - (\operatorname{tr}(M))^2 > 0$; on pose alors $\delta := \sqrt{\operatorname{4det} M - (\operatorname{tr}(M))^2}$ et

$$M' = \frac{2}{\delta} \left(M - \frac{\operatorname{tr}(M)}{2} I_2 \right), \quad M'' = \frac{1}{2} \begin{pmatrix} \operatorname{tr}(M) & -\delta \\ \delta & \operatorname{tr}(M) \end{pmatrix}.$$

On rappelle que $M'^2 = -I_2$ et on note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à M'.

- 1. On note $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; justifier que la matrice M' est de la forme $M' = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$, où α , β et γ sont des réels à préciser en fonction de a, b, c et d, puis vérifier que $\alpha^2 + \beta \gamma = -1$.
- 2. Pour tout vecteur v=(x,y) de l'espace euclidien $(\mathbb{R}^2,(.|.))$, exprimer le produit scalaire (v|f(v)) et montrer qu'il existe un vecteur non nul $e\in\mathbb{R}^2$ tel que la famille (e,f(e)) soit orthogonale. Justifier que $f(e)\neq 0$.
- 3. Un tel vecteur e étant choisi, on pose $u_1 = \frac{1}{\|e\|} \cdot e$ et $u_2 = \frac{1}{\|f(e)\|} \cdot f(e)$; Vérifier que (u_1, u_2) est une base orthonormée de l'espace euclidien $(\mathbb{R}^2, (\cdot|\cdot|))$ et écrire la matrice M_1 de f dans cette base.
- 4. On note U la matrice de passage de la base canonique (e_1,e_2) de \mathbb{R}^2 à la base (u_1,u_2) ; justifier que U est une matrice orthogonale et exprimer M' en fonction de M_1 puis en déduire que $M = UM_2$ U où $M_2 = \frac{1}{2} \begin{pmatrix} \operatorname{tr}(M) & -\delta \ell \\ \frac{\delta}{\ell} & \operatorname{tr}(M) \end{pmatrix}$, ℓ étant un réel > 0 à préciser.
- 5. On sait, d'après les parties précédentes, que l'ensemble $\{\|PMP^{-1}\|_S \; ; \; P \in GL_2(\mathbb{R})\}$ possède une borne inférieure et que les matrices M et M'' sont semblables dans $\mathcal{M}_2(\mathbb{R})$.
 - (a) Justifier que $\inf_{B \in \mathscr{S}_p(M)} ||B||_S \le ||M''||_S = \sqrt{2 \det M}$.
 - (b) Montrer que $\|M_2\|_S \ge \|M''\|_S$ et que, plus généralement, $\|B\|_S \ge \sqrt{2 \text{det} M}$ pour toute matrice $B \in \mathscr{S}_{\mathbb{R}}(M)$. Que vaut alors la borne inférieure $\inf_{B \in \mathscr{S}_{\mathbb{R}}(M)} \|B\|_S$?
- 6. Conclure que la borne inférieure de l'ensemble $\{\|PMP^{-1}\|_S \; ; \; P \in \mathrm{GL}_2(\mathbb{R})\}$ est atteinte et caractériser toutes les matrices de $\mathscr{S}_{\mathbb{R}}(M)$ en lesquelles cette borne est atteinte.
- 7. **Conclusion**: Soit A une matrice réelle d'ordre 2; montrer que la borne inférieure de l'ensemble $\{\|PAP^{-1}\|_S; P \in \operatorname{GL}_2(\mathbb{R})\}$ est atteinte si et seulement si la classe de similitude $\mathscr{S}_{\mathbb{R}}(A)$ est fermée (dans $\mathcal{M}_2(\mathbb{R})$).

FIN DE L'ÉPREUVE