www.luxfomel.info

S.I. - BASISGRÖSSEN

<u>Basisgrößen</u>

<u>Dasisgropen</u>				
Basisgröße		Basiseinheit		
Name	Symbol	Name	Symbol	Definition
Zeit	t	Sekunde	S	Die Sekunde ist definiert durch den festen Zahlenwert für die Strahlungsfrequenz des Caesium-Atoms. $1s=\frac{9192631770}{\Delta v_{Cs}}$
Länge	l	Meter	m	Das Meter ist die Länge der Strecke, die Licht im Vakuum während der Dauer von $1m = \frac{9192631770}{299792458}\frac{c}{\Delta v_{Cs}}$ Sekunden durchläuft.
Masse	m	Kilogramm	kg	Das Kilogramm ist definiert durch den festen Zahlenwert für die Planck-Konstante, wobei der Meter und die Sekunde durch die Konstanten der Lichtgeschwindigkeit und der Strahlungsfrequenz des Caesium-Atoms definiert sind. Man erhält also: $1kg = \frac{h}{6,626\ 070\ 15\cdot 10^{-34}}\ \frac{s}{m^2}$
elektrische Stromstärke	I	Ampere	A	Das Ampere ist definiert durch den festen Zahlenwert für die Elementarladung e , wobei die Sekunde schon definiert wurde: $1A \ = \ \frac{1}{9192631770\cdot 1,602176634\cdot 10^{-19}} \cdot e \cdot \Delta v_{Cs}$
Temperatur	T	Kelvin	K	Das Kelvin ist definiert durch den festen Zahlenwert für die Boltzmann-Konstante k_B , wobei das Kilogramm und Meter schon definiert sind daraus ergibt sich: $1K = \frac{1,380\ 649\cdot 10^{-23}}{6,626\ 070\ 15\cdot 10^{-34}\cdot 9\ 192\ 631\ 770}\ \frac{\Delta v_{Cs}\cdot h}{k_B}$
Stoffmenge	n	Mol	mol	Die Stoffmenge enthält genau $6,022\ 140\ 76\cdot 10^{23}$ spezifizierte elementare Einzelteile somit ergibt sich: $1\ mol = \frac{6,022\ 140\ 76\cdot 10^{23}}{N_A}$
$Lichtst\"{a}rke$	l	Candela	cd	Das Candela ist definiert durch den festen Zahlenwert für das photometrische Strahlungsäquivalent K von $683\ cd$, wobei das Kilogramm, der Meter schon definiert sind mit dieser Definition ergibt sich: $K=683\ \frac{cd\ sr\ s^3}{kg\ m^2}$