84.
$$\int_{-\pi}^{\pi} \left[\sin \left(3x + \frac{\pi}{4} \right) + \cos 2x \right] dx =$$

1.
$$\frac{1}{16}$$
 2. 0 3. $\frac{2}{3}(2\sqrt{2}-1)$ 4. $1-\frac{\sqrt{3}}{3}-\frac{5\pi}{12}$ 5. $-\frac{\sqrt{2}}{3}$ (B.-96)

85. Déterminer a et b de façon que : $F(x) = (ax + b)e^{x}$ soit une primitive de

 $f(x) = (3x + 2)e^x$ 3. a = 3 et b = -11. a = 1 et b = -1(M.-96)4. a = -1 et b = 2

2. a = 2 et b = -486. Soit la fonction $y = (\cos x)^{\sin x}$. La différentielle de y vaut : (\in)

1. $dy = \left(\cos x \ln x + \frac{\sin x}{x}\right) (\cos x)^{\sin x} dx$ 2. $dy = \left(\frac{\ln x}{\tan x} + \ln x \tan x + \frac{\ln \tan x}{x}\right) (\cos x)^{\sin x} dx$

3. $dy = \left(-\sin x \ln x + \frac{\cos x}{x}\right) (\cos x)^{\sin x} dx$

4. $dy = \left(-\frac{\sin^2 x}{\cos x} + \cos x \ln x \cos x\right) (\cos x)^{\sin x} dx$

5. $dy = \left(\sin x \ln x + \frac{\cos x}{x}\right) (\cos x)^{\sin x} dx$

87. $\int_0^{\pi/2} \frac{\sin x \, dx}{\sqrt{1 - \cos x}} =$

1. 0 2. 1 - 3. 2 4. $2\sqrt{2}$ 5. $\sqrt{3}$

88. $\int \cos^2 x \cos 2x \, dx =$

3. $\frac{1}{4}$ (x + sin 2x + $\frac{1}{4}$ sin 4x) + C

1. $\frac{1}{4}(x - \cos x + \cos 4x) + C$

2. $\frac{1}{4}(x + \sin 2x + \frac{1}{4}\cos 4x) + C = 5$. $\frac{1}{4}(x + \sin 3x + \frac{1}{4}\cos 4x) + C$

 $_{-}(M.96)$

4. $\frac{1}{4}(x + \sin x + \frac{1}{4}\cos 4x) + C$

(M. 96)

(M.96)