Intro to Database Systems (15-445/645)

26 Final Review

ADMINISTRIVIA

Project #4 is due Sunday Dec 11th @ 11:59pm

- → Extra Office Hours: **Saturday Dec 10**th @ **3:00-5:00pm**
- → Location: GHC 5209, GHC 5211

Final Exam is Friday Dec 16th @ 1:00pm.

- → Study guide will be posted next week.
- → Location: GHC 4401

SPRING 2023

Charlie (aka "Cutty") is recruiting impressionable TAs for 15-445/645 in Spring 2023.

→ All BusTub projects will remain in C++.

https://forms.gle/AvjfUtSaWtrNiJMXA

COURSE EVALS

Your feedback is strongly needed:

- → https://cmu.smartevals.com
- → https://www.ugrad.cs.cmu.edu/ta/F22/feedback/

Things that we want feedback on:

- → Homework Assignments
- → Projects
- → Reading Materials
- → Lectures

OFFICE HOURS

Andy's hours:

- → Tuesday Dec 13th @ 12:30-1:30pm (GHC 9019)
- \rightarrow Thursday Dec 15th @ 8:00-9:00pm ($\overline{\text{Zoom}}$)
- → https://savvycal.com/pavlo/f22-445
- → Or by appointment

All TAs will have their regular office hours up to and including Saturday Dec 10th

FINAL EXAM

Who: You

What: Final Exam

Where: GHC 4401

When: Thursday Dec 16th @ 1:00pm

Why: https://youtu.be/8tuoIO4CxOw

Email Andy if you need special accommodations.

https://15445.courses.cs.cmu.edu/fall2022/final-guide.html

FINAL EXAM

What to bring:

- → CMU ID
- \rightarrow Pencil + Eraser (!!!)
- → Calculator (cellphone is okay)
- → One 8.5x11" page of handwritten notes (double-sided)

What not to bring:

→ NFT-themed Clothing

STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Hash Tables

B+Trees

Storage Models

Inter-Query Parallelism

QUERY OPTIMIZATION

Heuristics

- → Predicate Pushdown
- → Projection Pushdown
- → Nested Sub-Queries: Rewrite and Decompose

Statistics

- → Cardinality Estimation
- → Histograms

Cost-based search

TRANSACTIONS

ACID

Conflict Serializability:

- \rightarrow How to check?
- \rightarrow How to ensure?

View Serializability

Recoverable Schedules

Isolation Levels / Anomalies

TRANSACTIONS

Two-Phase Locking

- → Rigorous vs. Non-Rigorous
- → Deadlock Detection & Prevention

Multiple Granularity Locking

→ Intention Locks

TRANSACTIONS

Timestamp Ordering Concurrency Control

→ Thomas Write Rule

Optimistic Concurrency Control

- → Read Phase
- → Validation Phase
- → Write Phase

Multi-Version Concurrency Control

- → Version Storage / Ordering
- → Garbage Collection

CRASH RECOVERY

Buffer Pool Policies:

- → STEAL vs. NO-STEAL
- → FORCE vs. NO-FORCE

Write-Ahead Logging

Logging Schemes

Checkpoints

ARIES Recovery

- → Log Sequence Numbers
- \rightarrow CLRs

DISTRIBUTED DATABASES

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit

TOPICS NOT ON EXAM!

Snowflake

Embedded Logic (Lecture #24)

Details of specific database systems (e.g., Postgres)

