

# CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

# **Expectation Maximization**

1

2024 Spring

# Intuition of EM

- Let's say I have 3 coins in my pocket,
  - Coin 0 has probability  $\lambda$  of heads
  - Coin 1 has probability  $p_1$  of heads
  - Coin 2 has probability  $p_2$  of heads

#### • For each trial:

- First, I toss Coin 0
- If coin 0 turns up **heads**, I toss coin 1 three times
- If coin 0 turns up tails, I toss coin 2 three/times
- I don't tell you the results of the coin 0 toss, or whether coin 1 or coin 2 was tossed, but I tell you how many heads/tails are seen after each trial
- You see the following sequence:

 $\langle H, H, H \rangle, \langle T, T, T \rangle, \langle H, H, H \rangle, \langle T, T, T \rangle, \langle H, H, H \rangle$ 

Quiz: Guess what are the estimated values of  $\lambda$ ,  $p_1$ ,  $p_2$ ?

# MAXIMAL LIKELIHOOD ESTIMATE

- Data points  $x_1, x_2, ..., x_n$  from (finite or countable) set  $\mathcal{X}$  ( $x_i$  is a triplet of three tosses)
- $\circ$  Parameter vector  $\theta$
- $\circ$  Parameter space  $\Omega$
- We have a distribution  $P(x \mid \theta)$  for any  $\theta \in \Omega$ , such that

$$\sum_{x \in \mathcal{X}} P(x \mid \theta) = 1$$

$$P(x \mid \theta) \ge 0, \forall x$$

• Assume data points are drawn independently and identically distributed from a distribution  $P(x \mid \theta^*)$  for some  $\theta^* \in \Omega$ 

# Log Likelihood

- Probability distribution  $P(x | \theta)$  for any  $\theta \in \Omega$
- Likelihood of  $\theta$ :

$$Likelihood(\theta) = P(x_1, x_2, ..., x_n \mid \theta) = \prod_{i=1}^{n} P(x_i \mid \theta)$$

• Log likelihood of  $\theta$ :

$$L(\theta) = \sum_{i=1}^{n} \log P(x_i | \theta)$$

# EXAMPLE 1: COIN TOSSING

o  $\mathcal{X} = \{H, T\}$ . Our data set  $x_1, x_2, ..., x_n$  is a sequence of heads and tails, e.g.,

#### HTHTHHHHTTT

- Parameter vector  $\theta$  is a single parameter, i.e. probability of coin showing heads
- Parameter space  $\Omega = [0, 1]$

• Distribution 
$$P(x | \theta) = \begin{cases} \theta & \text{if } x = H \\ 1 - \theta & \text{if } x = T \end{cases}$$

# **EXAMPLE 2: MARKOV CHAINS**

- $\mathcal{X}$  is the set of all possible state (or tag) sequences generated by an underlying generative process. Our sample is n sequences  $X_1, X_2, ..., X_n$ , where  $X_i \in \mathcal{X}$ .
- $\theta_T$  is the vector of all transition  $(s_i \to s_j)$  parameters. W.L.O.G., we assume there is a dummy start state  $\phi$  and initial transition  $\phi \to s_1$
- Let  $T(\alpha) \subset T$  be all transition of the form  $\alpha \to \beta$
- o Ω is the set of  $\theta \in [0,1]^{|S+1||S|}$  where S is the set of all states (tags), such that:

$$\forall \alpha \in S, \sum_{t \in T(\alpha)} \theta_t = 1$$

# EXAMPLE 2: MARKOV CHAINS

- Since  $\theta_T$  is the vector of all transtion parameters
- We have:

$$P(X | \theta_T) = \prod_{t \in T} \theta_t^{Count(X,t)}$$

where Count(X, t) is the number of times transition t occurs in sequence X.

• This gives:

$$\log(P(X|\theta_T)) = \sum_{t \in T} Count(X, t) \log \theta_t$$

$$L(\theta_T) = \sum_{i} \log P(X_i|\theta_T) = \sum_{i} \sum_{t \in T} Count(X, t) \log \theta_t$$

# MLE FOR MARKOV CHAINS

- We use  $\theta$  for  $\theta_T$  for simplicity
- To solve for  $\theta_{MLE} = \arg \max_{\theta \in \Omega} L(\theta)$
- We solve  $\theta$  in

$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

with appropritate probability constraints

• Therefore:

$$\theta_{t} = \frac{\sum_{i} Count(X_{i}, t)}{\sum_{i} \sum_{t' \in T(\alpha)} Count(X_{i}, t')}$$

where t is of the form  $\alpha \to \beta$  for some  $\beta$ ,  $T(\alpha)$  is all the transitions originating from  $\alpha$ .

# Models with Hidden Variables

- Suppose we have two sets  $\mathcal{X}$  and  $\mathcal{Y}$ , and a joint distribution  $P(x,y \mid \theta)$
- If we have **fully-observable data**,  $(x_i, y_i)$  pairs, then

$$L(\theta) = \sum_{i} \log P(x_i, y_i \mid \theta)$$

• If we have **partially-observable data**,  $x_i$  examples only, then

$$L(\theta) = \sum_{i} \log P(x_i \mid \theta)$$
$$= \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

- This is unsupervised learning, very similar to clustering.
- We will use an interative algorithm to infer  $\theta$  like k-means

# EXPECTATION-MAXIMILATION

• If we have **partially-observable data**,  $x_i$  examples only, then

$$L(\theta) = \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

• The EM (Expectation Maximization) algorithm is a method for finding

$$\theta_{MLE} = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

- In the three-coin example:
  - $\mathcal{Y} = \{H, T\}$  (possible outcomes of coin 0)
  - $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$
  - $\theta = \{\lambda, p_1, p_2\}$
- And  $P(x, y \mid \theta) = P(y \mid \theta) P(x \mid y, \theta)$

where

$$P(y | \theta) = \begin{cases} \lambda & \text{if } y = H \\ 1 - \lambda & \text{if } y = T \end{cases}$$

h is num of heads in x t is num of tails in x

and

$$P(x | y, \theta) = \begin{cases} p_1^h (1 - p_1)^t & \text{if } y = H \\ p_2^h (1 - p_2)^t & \text{if } y = T \end{cases}$$

Calculate various probabilities:

one H and two T from THT

$$P(x = THT, y = H | \theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = THT, y = T | \theta) = (1 - \lambda)p_2 (1 - p_2)^2$$

$$P(x = THT | \theta) = P(x = THT, y = H | \theta) + P(x = THT, y = T | \theta)$$

$$= \lambda p_1 (1 - p_1)^2 + (1 - \lambda)p_2 (1 - p_2)^2$$

$$P(x = THT, y = H | \theta)$$

$$P(y = H | x = THT, \theta) = \frac{P(x = THT, y = H | \theta)}{P(x = THT | \theta)}$$
(Bayes rule)
$$= \frac{\lambda p_1 (1 - p_1)^2}{\lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2}$$

• Suppose fully observed data looks like:

$$(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$$

• In this case, the maximum likelihood estimates of the parameters are:

$$\lambda = \frac{3}{5} \\ p_1 = \frac{9}{9} = 1 \\ p_2 = \frac{0}{6} = 0$$

• Partial observed data might look like:  $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$ 

• How do you estimate the MLE parameters?

• Partial observed data might look like:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

• If the current parameters are  $\lambda$ ,  $p_1$ ,  $p_2$ 

$$P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$

$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$$

$$P(y = H | x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$$

$$= \frac{\lambda (1 - p_1)^3}{2(1 - p_1)^3 + (1 - \lambda)(1 - p_1)^3}$$

• If the current parameters are  $\lambda$ ,  $p_1$ ,  $p_2$ 

$$P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$

$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$$

$$P(y = H | x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$$

$$= \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If 
$$\lambda = 0.3$$
,  $p_1 = 0.3$ ,  $p_2 = 0.6$   
 $P(y = H \mid x = \langle HHH \rangle) = 0.0508$   
 $P(y = H \mid x = \langle TTT \rangle) = 0.6967$ 

• After filling in hidden variables for each example, the partially observed data looks like this:

$$\begin{array}{llll} (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, T) & P(y = \text{T} \mid \text{HHH}) = 0.9492 \end{array} \\ \text{sum to 1} \\ (\langle \text{TTT} \rangle, H) & P(y = \text{H} \mid \text{TTT}) = 0.6967 \\ (\langle \text{TTT} \rangle, T) & P(y = \text{T} \mid \text{TTT}) = 0.3033 \end{array} \\ \text{sum to 1} \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, T) & P(y = \text{T} \mid \text{HHH}) = 0.9492 \end{array} \\ \text{sum to 1} \\ (\langle \text{TTT} \rangle, H) & P(y = \text{H} \mid \text{TTT}) = 0.6967 \\ (\langle \text{TTT} \rangle, T) & P(y = \text{T} \mid \text{TTT}) = 0.3033 \end{array} \\ \text{sum to 1} \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \\ (\langle \text{HHH} \rangle, H) & P(y = \text{H} \mid \text{HHH}) = 0.0508 \end{array} \\ \text{sum to 1} \\ \end{array}$$

#### • New estimates:

$$\begin{array}{ll} (\langle \mathrm{HHH} \rangle, H) & P(y = \mathrm{H} \mid \mathrm{HHH}) = 0.0508 \\ (\langle \mathrm{HHH} \rangle, T) & P(y = \mathrm{T} \mid \mathrm{HHH}) = 0.9492 \\ (\langle \mathrm{TTT} \rangle, H) & P(y = \mathrm{H} \mid \mathrm{TTT}) = 0.6967 \\ (\langle \mathrm{TTT} \rangle, T) & P(y = \mathrm{T} \mid \mathrm{TTT}) = 0.3033 \end{array}$$

how many heads in  $X_i$ ?

$$\lambda = \frac{3 \times 0.0508 + 2 \times 0.6967}{5} = 0.3092$$

out of 5 coin 0 tosses how may are heads?

$$p_1 = \frac{3 \times 3 \times 0.0508 + 0 \times 2 \times 0.6967}{3 \times 3 \times 0.0508 + 3 \times 2 \times 0.6967} = 0.0987$$
$$p_2 = \frac{3 \times 3 \times 0.9492 + 0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492 + 3 \times 2 \times 0.3033} = 0.8244$$

# SUMMARY OF THREE COINS EXAMPLE

• Begins with  $\lambda$ =0.3,  $p_1$  = 0.3,  $p_2$  = 0.6

• Fill in hidden variables using:

$$P(y = H | x = \langle HHH \rangle) = 0.0508$$

$$P(y = H \mid x = \langle TTT \rangle) = 0.6967$$

• Re-estimate parameters to be

$$\lambda$$
=0.3092,  $p_1$  = 0.0987,  $p_2$  = 0.8244

# **EM INTERATIONS**

|           |        |        |        | $P(y-\Pi \mid A_i)$ |               |               |               |               |  |
|-----------|--------|--------|--------|---------------------|---------------|---------------|---------------|---------------|--|
|           |        |        |        |                     |               |               |               |               |  |
| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$       | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ | $\tilde{p}_5$ |  |
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.0508              | 0.6967        | 0.0508        | 0.6967        | 0.0508        |  |
| 1         | 0.3092 | 0.0987 | 0.8244 | 0.0008              | 0.9837        | 0.0008        | 0.9837        | 0.0008        |  |
| 2         | 0.3940 | 0.0012 | 0.9893 | 0.0000              | 1.0000        | 0.0000        | 1.0000        | 0.0000        |  |
| 3         | 0.4000 | 0.0000 | 1.0000 | 0.0000              | 1.0000        | 0.0000        | 1.0000        | 0.0000        |  |

 $D(y - H \mid V)$ 

 $\circ$  Coin example for  $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$ 

- $\circ$   $\lambda$  is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tail-biased coin (coin 1)
- $\circ$   $\theta$  (parameters) are like the cluster centers in k-means

# **EM INTERATIONS**

| Iteration | λ      | $p_1$  | $p_2$  | $	ilde{p}_1$ | $	ilde{P}_2$ | $	ilde{p}_3$ | $	ilde{P}_4$ |
|-----------|--------|--------|--------|--------------|--------------|--------------|--------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.0508       | 0.6967       | 0.0508       | 0.6967       |
| 1         | 0.3738 | 0.0680 | 0.7578 | 0.0004       | 0.9714       | 0.0004       | 0.9714       |
| 2         | 0.4859 | 0.0004 | 0.9722 | 0.0000       | 1.0000       | 0.0000       | 1.0000       |
| 3         | 0.5000 | 0.0000 | 1.0000 | 0.0000       | 1.0000       | 0.0000       | 1.0000       |

- Coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$ .
- This solution of  $\lambda = 0.5$ ,  $p_1 = 0$ , and  $p_2 = 1$  is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal probability.
- Posterior probabilities  $\overline{p_i}$  show that we are certain that coin 1 (tail-biased) generate  $x_2$  and  $x_4$ , whereas coin 2 generated  $x_1$  and  $x_3$ .

# INITIALIZATION MATTERS

| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $	ilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|--------------|
| 0         | 0.3000 | 0.7000 | 0.7000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |
| 1         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |
| 2         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |
| 3         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |
| 4         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |
| 5         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |
| 6         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000       |

- Coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$ .
- In this case, EM is stuck in a "saddle point", or local optimal.

# INTIALIZATION MATTERS

| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.7001 | 0.7000 | 0.3001        | 0.2998        | 0.3001        | 0.2998        |
| 1         | 0.2999 | 0.5003 | 0.4999 | 0.3004        | 0.2995        | 0.3004        | 0.2995        |
| 2         | 0.2999 | 0.5008 | 0.4997 | 0.3013        | 0.2986        | 0.3013        | 0.2986        |
| 3         | 0.2999 | 0.5023 | 0.4990 | 0.3040        | 0.2959        | 0.3040        | 0.2959        |
| 4         | 0.3000 | 0.5068 | 0.4971 | 0.3122        | 0.2879        | 0.3122        | 0.2879        |
| 5         | 0.3000 | 0.5202 | 0.4913 | 0.3373        | 0.2645        | 0.3373        | 0.2645        |
| 6         | 0.3009 | 0.5605 | 0.4740 | 0.4157        | 0.2007        | 0.4157        | 0.2007        |
| 7         | 0.3082 | 0.6744 | 0.4223 | 0.6447        | 0.0739        | 0.6447        | 0.0739        |
| 8         | 0.3593 | 0.8972 | 0.2773 | 0.9500        | 0.0016        | 0.9500        | 0.0016        |
| 9         | 0.4758 | 0.9983 | 0.0477 | 0.9999        | 0.0000        | 0.9999        | 0.0000        |
| 10        | 0.4999 | 1.0000 | 0.0001 | 1.0000        | 0.0000        | 1.0000        | 0.0000        |
| 11        | 0.5000 | 1.0000 | 0.0000 | 1.0000        | 0.0000        | 1.0000        | 0.0000        |

Coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}.$ 

• Just modify p1 a bit, EM is able to skip the saddle point and reach global optimum.

# THE EM ALGORTHM

- $\circ$   $\theta^t$  is the parameter vector at the  $t^{\text{th}}$  iteration.
- Choose  $\theta^0$  at random (or using some smart heuristics)
- Iterative procedure defined as:

$$\theta^t = \arg\max_{\theta} Q(\theta, \theta^{t-1})$$

where

$$Q(\theta, \theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y \mid x_i, \theta^{t-1}) \log P(x_i, y \mid \theta)$$

# THE EM ALGORITHM

• (E-step): Compute expected counts.

$$\overline{Count}(r) = \sum_{i=1}^{n} \sum_{y} P(y | x_i, \theta^{t-1}) Count(x_i, y, r)$$

for every paramter  $\theta_r$ , e.g.,

$$\overline{Count}(DT \to NN) = \sum_{i} \sum_{y} P(S \mid O_i, \theta^{t-1}) \ Count(O_i, S, \theta_{DT \to NN})$$

o (M-step): Re-estimate parameters using expected counts to *maximize* likelihood.

e.g., 
$$\theta_{DT \to NN} = \frac{\overline{Count}(DT \to NN)}{\sum_{\beta} \overline{Count}(DT \to \beta)}$$

# THE EM ALGORITHM

- Intuition: Fill in hidden variables according to  $P(y \mid x_i, \theta)$
- EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function
- In general, if

$$\arg\max_{\theta} \sum_{i} \log P(x_i, y_i \mid \theta)$$

has a simple analytic solution, then

$$\arg \max_{\theta} \sum_{i} \sum_{y} P(y \mid x_{i}, \theta) \log P(x_{i}, y \mid \theta)$$

also has a simple solution.

# EXAMPLE: EM FOR HMM

- We observe only word sequences  $X_1, X_2, ..., X_n$  (no tags)
- $\circ$   $\theta$  is the vector of all transition parameters (include initial state distribution as a special case,  $\phi \rightarrow s$
- $\circ$   $\phi$  is the vector of all emission parameters
- Initialize parameters  $\theta^0$  and  $\phi^0$

# EXAMPLE: EM FOR HMM

- Initialize parameters  $\theta^0$  and  $\phi^0$
- o E-step:

$$\overline{Count}(\theta_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(X_i, Y, \theta_k)$$

$$= \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(Y, \theta_k)$$

$$\overline{Count}(\phi_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) \ Count(X_i, Y, \phi_k)$$

# EXAMPLE: EM FOR HMM

o M-step:

$$\theta_k^t = \frac{\overline{Count}(\theta_k)}{\sum_{\theta' \in M(\theta_k)} \overline{Count}(\theta')}$$

where  $M(\theta_k)$  is the set of all transitions  $(a \to b)$ , for all b) that share the same previous state as the  $k^{\text{th}}$  transition  $(a \to c)$ , for some c)

$$\phi_k^t = \frac{\overline{Count}(\phi_k)}{\sum_{\phi' \in M'(\phi_k)} \overline{Count}(\phi')}$$

where  $M'(\phi_k)$  is the set of all emissions  $(a \to x)$ , for all x) that share the same previous state as the  $k^{\text{th}}$  emission  $(a \to x')$ , for some x'.