华中农业大学本科课程考试参考答案与评分标准

考试课程: 概率论与数理统计

试卷类型: A 07-08-1

一、**单项选择题**(每小题 3 分, 共 15 分):1.(A) 2.(B) 3.(A) 4.(A 或 D) 5.(B)

二、**填空题**(每小题 3 分, 共 15 分):

$$1.1 - \Phi(\frac{2 - \overline{X}}{S})$$

2.25; 3.1/12; 4.短(或小);

$$5.[(\overline{X}-\mu_0)/(S/\sqrt{n})]>t_\alpha(n-1)$$

三、(解答题(每小题 10 分, 共 20 分)

1. (10 分) EX= μ + θ

 $D(X) = \theta^2$

μ的矩估计为 \bar{x} -S, θ的矩估计为 S.

2. (10分)

$$\theta$$
的极大似然估计量为 $-1-(n/\sum_{i=1}^{n}\ln X_{i})$.

四、(20分)

(1)(10分)检验
$$H_0^{'}: \sigma_1^2 = \sigma_2^2; H_0^{'}: \sigma_1^2 \neq \sigma_2^2$$
 在 $H_0^{'}$ 为真时, $f = \frac{s_x^{*2}}{s_y^{*2}} \sim F(n-1, m-1),$

$$\{f \le F_{0.5\alpha}(n-1,m-1)\} \bigcup \{f \ge F_{1-0.5\alpha}(n-1,m-1)\},\$$

根据样本观测值得 $s_x^{*2} = 26.7^2, s_y^{*2} = 12.1^2, f = 4.8691,$

た 微信搜一搜

0.1529 < f = 4.8

Q华中农大课程资料共享

即f没有落入拒绝域,故接受原假设 $\sigma_1^2 = \sigma_2^2$

五、(15分)

(10分)

方差来源	平方和	自由度	均方	F	显著性
因素	615.6	2	307.8	17.07	**
误差	216.4	12	18.03		
总和	832	14			

 $(F_{0.95}(2,12)=3.89, F_{0.95}(2,12)=6.93)$

当 α =0.01时, $F_{0.995}(9,9)$ =6.54, $F_{0.005}(9,9)$ =1/ $F_{0.995}(9,9)$ =1/6.54=0.1529,

因此该检验问题的拒绝域为:

(2) (10分)检验 H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$

当 H_0 为真时, Δ = $t_{0.975}(12)*(18.03*(1/5+1/5))=15.71$

 $μ_A$ - $μ_B$ 的置信度为 95%的置信区间为(6.7483,18.4517)

μ_B-μ_C 的置信度为 95%的置信区间为(-20.2517,-8.5482),

 μ_A - μ_C 的置信度为 95%的置信区间为(-7.6517,4.0517)

六、

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2),$$

因此该检验问题的拒绝域为:

$$|t| \ge t_{1-0.5\alpha},$$

根据样本观测值得 $s_w^2 = 429.65, |t| = 0.99 < 2.8785 = t_{0.995}(18),$

即|t|没有落入拒绝域,故接受原假设 $H_0: \mu_1 = \mu_2$,

- (1)(10分)y对于x的线性回归方程;y=24.605+0.0589x
 - (2) (5分) 检验假设 H₀:b=0; H₁:b≠0;

$$|t| = |\hat{b}\sqrt{\frac{l_{xx}}{SSE/(n-2)}}| = \frac{0.0589}{\sqrt{3.3325}}\sqrt{175000} = 13.498 > 2.776 = t_{0.975}(4),$$

故回归方程显著。

