V1

FMI, Info, Anul I

Logică matematică și computațională

	Examen
Nume:	_
Prenume:	_
Grupa:	

Partea II. Probleme de tip grilă

(P1) [0,5 puncte; 1 răspuns corect] Fie următoarea mulțime de formule

$$\Gamma = \{ (v_i \to v_{i+1}) \land (v_{i+1} \to v_i) \mid i \ge 1 \}.$$

Care dintre următoarele afirmații este adevărată?

- \square A: Γ are exact 2 modele.
- \boxtimes B: Γ are exact 4 modele.
- \square C: $Mod(\Gamma \cup \{v_1\}) \subseteq Mod(\Gamma \cup \{v_0\})$.
- \square D: Γ are o infinitate de modele.
- \square E : $\Gamma \cup \{\neg v_1 \rightarrow v_2\}$ este nesatisfiabilă.

(P2) [0,5 puncte; 1 răspuns corect] Pentru orice mulțime de formule propoziționale $\Gamma \subseteq Form$, definim $\overline{\Gamma} = \{ \neg \varphi \mid \varphi \in \Gamma \}$. Care dintre următoarele afirmații este adevărată pentru orice $\Gamma \subseteq Form$ nevidă?

- \square A: Pentru orice evaluare e, avem că $e \in Mod(\overline{\Gamma})$ dacă și numai dacă $e \notin Mod(\Gamma)$.
- \square B: Dacă Γ este nesatisfiabilă, atunci $\overline{\Gamma}$ este satisfiabilă.
- \square C: $Mod(\Gamma) \neq Mod(\overline{\Gamma})$.
- \square D: $\Gamma \cap \overline{\Gamma}$ este nesatisfiabilă.
- \boxtimes E: $\Gamma \cup \overline{\Gamma}$ este nesatisfiabilă.
- (P3) [0,5 puncte; 2 răspunsuri corecte] Fie următoarea formulă propozițională:

$$\varphi = (v_0 \wedge v_1 \wedge v_2 \wedge v_3) \to v_4.$$

Care dintre următoarele afirmații sunt adevărate?

- \boxtimes A: $\varphi \sim v_0 \rightarrow (v_1 \rightarrow (v_2 \rightarrow (v_3 \rightarrow v_4)))$.
- \square B: $\varphi \sim (((v_0 \to v_1) \to v_2) \to v_3) \to v_4$.
- \square C: $\varphi \vDash v_1 \rightarrow v_4$.
- \square D: $\varphi \vDash (v_0 \lor v_1 \lor v_2 \lor v_3) \rightarrow v_4$.
- \boxtimes E: $\neg v_0 \lor \neg v_1 \lor \neg v_2 \lor \neg v_3 \lor v_4$ este FND şi FNC pentru φ .
- (P4) [0,5 puncte; 2 răspunsuri corecte] Fie \mathcal{L} un limbaj de ordinul întâi care conține exact un simbol de funcție de aritate 2, notat $\dot{\times}$. Considerăm următoarea formulă a lui \mathcal{L}

$$\varphi = \forall x \forall y (x = y \dot{\times} y \rightarrow \forall z (x = z \dot{\times} z \rightarrow y = z)),$$

unde x, y și z sunt variabile distincte două câte două. Care dintre următoarele afirmații sunt adevărate?

- \boxtimes A: $(\mathbb{N}, \cdot) \vDash \varphi$.
- \square B: $(\mathbb{Q}, \cdot) \vDash \varphi$.
- \boxtimes C: $\varphi \bowtie \forall x \forall y \forall z (x = y \dot{\times} y \rightarrow (x = z \dot{\times} z \rightarrow y = z)).$
- \square D: $\varphi \bowtie \forall x \forall y \exists z (x = y \dot{\times} y \rightarrow (x = z \dot{\times} z \rightarrow y = z))$.
- \square E: $\varphi \bowtie \forall x (\exists y (x = y \dot{\times} y) \rightarrow \forall z (x = z \dot{\times} z \rightarrow y = z))$.
- (P5) [0,5 puncte; 2 răspunsuri corecte] Fie \mathcal{L} un limbaj de ordinul întâi conținând un simbol de relație binară P și un simbol de relație unară Q. Fie următoarea formulă a lui \mathcal{L}

$$\varphi = \forall x \exists y \forall u \exists z (P(x, y) \to (P(u, u) \to \neg Q(z))),$$

unde x, y, u și z sunt variable distincte două câte două. Care dintre următoarele afirmații sunt adevărate?

 \boxtimes A: φ este o formă normală prenex pentru formula

$$\exists x \forall y P(x,y) \to (\neg \forall x \neg P(x,x) \to \neg \forall z Q(z)).$$

- \boxtimes B: $\forall x \forall u (P(x, g(x)) \rightarrow (P(u, u) \rightarrow \neg Q(h(x, u))))$ este o formă normală Skolem pentru φ , unde g și h sunt simboluri noi de funcție de aritate 1, respectiv 2.
- \square C: φ este o formă normală prenex pentru formula

$$\exists x \forall y P(x,y) \to (\exists x P(x,x) \to \forall z Q(z)).$$

- \square D: $\forall x \forall u (P(x, g(x, u)) \rightarrow (P(u, u) \rightarrow \neg Q(h(x, u))))$ este o formă normală Skolem pentru φ , unde g și h sunt simboluri noi de funcție de aritate 2.
- \square E: φ este atât în formă normală prenex, cât și în formă normală Skolem.
- (P6) [0,5 puncte; 1 răspuns corect] Considerăm următoarea mulțime de clauze:

$$\mathcal{S} = \{\{v_0, v_1, \neg v_2\}, \{v_0, \neg v_1, v_2\}, \{\neg v_0, v_1, v_2\}, \{\neg v_0, \neg v_2\}\}$$

Care dintre următoarele afirmații este adevărată?
\boxtimes A: \mathcal{S} este satisfiabilă.
\square B: $\mathcal S$ este nesatisfiabilă.
\square C: $\{v_1\}$ este rezolvent al două clauze din \mathcal{S} .
\square D: $\{v_0\}$ este rezolvent al două clauze din \mathcal{S} .
\square E: Rulând algoritmul Davis-Putnam pe mulţimea \mathcal{S} , vom obţine $\square \in \mathcal{S}_{N+1}$, unde N este
numărul de pași după care algoritmul se termină.