

MONASH BUSINESS SCHOOL

Forecasting: principles and practice

Rob J Hyndman

1.2 The forecaster's toolbox

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- **3** Forecasting residuals
- 4 Lab session 3
- 5 Evaluating forecast accuracy
- 6 Lab session 4

The statistical forecasting perspective

The statistical forecasting perspective

Total international visitors to Australia

Forecasting is estimating how the sequence of observations will continue into the future.

Sample futures

Forecast intervals

Statistical forecasting

- Thing to be forecast: a random variable, y_t .
- Forecast distribution: If \mathcal{I} is all observations, then $y_t | \mathcal{I}$ means "the random variable y_t given what we know in \mathcal{I} ".
- The "point forecast" is the mean (or median) of $y_t | \mathcal{I}$
- The "forecast variance" is $var[y_t|\mathcal{I}]$
- A prediction interval or "interval forecast" is a range of values of y_t with high probability.
- With time series, $y_{t|t-1} = y_t | \{y_1, y_2, \dots, y_{t-1}\}$.
- $\hat{y}_{T+h|T} = E[y_{T+h}|y_1, \dots, y_T]$ (an *h*-step forecast taking account of all observations up to time *T*).

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Lab session 3
- 5 Evaluating forecast accuracy
- 6 Lab session 4

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

■ Equivalent to extrapolating a line drawn between first and last observations.

- Mean: meanf(y, h=20)
- Naïve: naive(y, h=20)
- Seasonal naïve: snaive(y, h=20)
- Drift: rwf(y, drift=TRUE, h=20)

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- **3** Forecasting residuals
- 4 Lab session 3
- 5 Evaluating forecast accuracy
- 6 Lab session 4

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_t .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

For example:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

Naïve forecast:

$$\hat{\mathsf{y}}_{t|t-1} = \mathsf{y}_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

ACF of residuals

- We assume that the residuals are white noise (uncorrelated, mean zero, constant variance). If they aren't, then there is information left in the residuals that should be used in computing forecasts.
- So a standard residual diagnostic is to check the ACF of the residuals of a forecasting method.
- We expect these to look like white noise.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Box-Pierce test

$$Q = T \sum_{k=1}^{h} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- My preferences: h = 10 for non-seasonal data, h = 2m for seasonal data.
- If each r_k close to zero, Q will be **small**.
- If some r_k values large (positive or negative), Q will be large.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Box-Pierce test

$$Q = T \sum_{k=1}^{h} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- My preferences: h = 10 for non-seasonal data, h = 2m for seasonal data.
- If each r_k close to zero, Q will be **small**.
- If some r_k values large (positive or negative), Q will be large.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Ljung-Box test

$$Q^* = T(T+2) \sum_{k=1}^{h} (T-k)^{-1} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- My preferences: h = 10 for non-seasonal data, h = 2m for seasonal data.
- Better performance, especially in small samples.

lag=h and fitdf=K

- If data are WN, Q^* has χ^2 distribution with (h K) degrees of freedom where K = no. parameters in model.
- When applied to raw data, set K = 0.
- For the Dow-Jones example,

```
##
## Box-Pierce test
##
## data: res
## X-squared = 10.655, df = 10, p-value = 0.385
```

- If data are WN, Q^* has χ^2 distribution with (h K) degrees of freedom where K = no. parameters in model.
- When applied to raw data, set K = 0.
- For the Dow-Jones example,

```
# lag=h and fitdf=K
Box.test(res, lag=10, fitdf=0, type="Lj")

##
## Box-Ljung test
##
## data: res
## X-squared = 11.088, df = 10, p-value = 0.3507
```

checkresiduals function

checkresiduals(naive(dj2))

checkresiduals function

```
##
## Ljung-Box test
##
## data: Residuals from Naive method
## Q* = 11.088, df = 10, p-value = 0.3507
## Model df: 0. Total lags used: 10
```

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- **3** Forecasting residuals
- 4 Lab session 3
- 5 Evaluating forecast accuracy
- 6 Lab session 4

Lab Session 3

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- **3** Forecasting residuals
- 4 Lab session 3
- 5 Evaluating forecast accuracy
- 6 Lab session 4

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t = 1, \dots, T$. Then the following measures are useful.

MAE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|$$

MSE = $T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$ RMSE = $\sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2}$
MAPE = $100T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t|$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

Let y_t denote the tth observation and $\hat{y}_{t|t-1}$ denote its forecast based on all previous data, where $t = 1, \dots, T$. Then the following measures are useful.

MAE =
$$T^{-1} \sum_{t=1}^{I} |y_t - \hat{y}_{t|t-1}|$$

MSE = $T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$ RMSE = $\sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2}$
MAPE = $100T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/|y_t|$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

Q =
$$(T - m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.


```
beer3 <- window(ausbeer, start=2006)
accuracy(beerfit1, beer3)
accuracy(beerfit2, beer3)
accuracy(beerfit3, beer3)</pre>
```

	RMSE	MAE	MAPE	MASE
Mean method	38.95	34.46	8.33	2.35
Naïve method	70.80	63.10	15.71	4.29
Seasonal naïve method	13.59	12.20	2.95	0.83

Training and test sets

Available data

Training set Test set (e.g., 80%) (e.g., 20%)

- The test set must not be used for any aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

Training and test sets

```
beer3 <- window(ausbeer, start=1992, end=c(2005,4))
beer4 <- window(ausbeer, start=2006)
fit1 <- meanf(beer3,h=20)
fit2 <- naive(beer3,h=20)
accuracy(fit1,beer4)
accuracy(fit2,beer4)
```

Training and test sets

```
beer3 <- window(ausbeer, start=1992, end=c(2005,4))
beer4 <- window(ausbeer, start=2006)
fit1 <- meanf(beer3,h=20)
fit2 <- naive(beer3,h=20)
accuracy(fit1,beer4)
accuracy(fit2,beer4)
In-sample accuracy (one-step forecasts)
accuracy(fit1)
accuracy(fit2)
```

Beware of over-fitting

- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Over-fitting a model to data is as bad as failing to identify the systematic pattern in the data.
- Problems can be overcome by measuring true out-of-sample forecast accuracy. That is, total data divided into "training" set and "test" set. Training set used to estimate parameters. Forecasts are made for test set.
- Accuracy measures computed for errors in test set only.

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Lab session 3
- 5 Evaluating forecast accuracy
- 6 Lab session 4

Lab Session 4