Collateral Constraints and Investment Composition

Chengzi Yi

European University Institute

January 24, 2024

Capital Composition of Chinese Listed Firms

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

by industry

- Real Estate Capital (RE): Buildings, houses, and land
- Non-real Estate Capital (Non-RE): Equipment, machinery, and other facilities

Capital Composition and Capital Size

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

Motivation

Investment composition between real estate capital (RE) and non-real estate capital (Non-RE)

- Distinct capital inputs for production.
- Distinct adjustment costs.

How do collateral constraints affect firms' investment allocation between RE and Non-RE?

- Binding collateral constraints \rightarrow capital investment (Gan, 2007; Chaney et al., 2012)
- Credit constraints \rightarrow firms' precautionary investment (Perez-Orive, 2016; Aghion et al., 2010)

This Paper

- A capital adjustment model with collateral constraints and two capital inputs.
 - Cobb-Douglas aggregator in production
 - Convex and non-convex adjustment costs
 - Pledgeability
- Revenue function and idiosyncratic shock process estimated using GMM.
- Adjustment cost and pledgeability estimated using SMM.
 - ⇒ Compare the "Goodness of fit" of the model with and without collateral constraints.

Takeaways

- Introduction of collateral constraints ⇒ Better model fit.
 - ► The model generates a RE/Non-RE ratio of 0.7729 on average, close to the observed sample mean of 0.7989.
- Quantification of the effect of collateral constraints.
 - ▶ By relaxing collateral constraints, the ratio decreases by 33%.
- Identification of adjustment costs for different assets.
 - ► Higher fixed cost of adjusting non-real estate capital.
 - Higher convex cost of adjusting real estate capital.

Literature

- Financial Frictions and Investment Composition: Matsuyama (2007), Aghion et al. (2010), Perez-Orive (2016), Ottonello and Winberry (2023)
 - \Rightarrow Composition between RE and Non-RE.
- Non-convex Adjustment Cost and Investment Lumpiness: Abel and Eberly (1994), Doms and Dunne (1998), Cooper and Haltiwanger (2006), Yan (2012), Chiavari and Goraya (2021), Kermani and Ma (2023)
 - \Rightarrow Adjustment costs of RE and Non-RE.
- Real Estate and Collateral Constraints: Gan (2007), Chaney et al. (2012), Catherine et al. (2022), Wu et al. (2015), Chen et al. (2015)
 - ⇒ Endogenous decisions on real estate assets. Evidence for Chinese Economy.

Table of Contents

Capital Adjustment Model

Structural Estimation

Data

Pre-set Parameters

Model without Constraints

Model with Constraints

Counterfactual Exercise

- Idiosyncratic shock: z. $log(z_t) = \rho_z log(z_{t-1}) + \sigma_z \xi_t$, $\xi_t \sim N(0,1)$
- Non-real estate capital: k
- Real estate capital: h

Decreasing-return-to-scale Revenue Function

$$\pi(k,h,z)=z\{(a^{\frac{1}{\sigma}}k^{\frac{\sigma-1}{\sigma}}+(1-a)^{\frac{1}{\sigma}}h^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}\}^{\alpha},\ \alpha\leq 1.$$

- if $\sigma \to 0$, $min\{\frac{k}{a}, \frac{h}{1-a}\}$.
- if $\sigma \to +\infty$, k + h.
- if $\sigma \to 1$, $(\frac{k}{a})^a(\frac{h}{1-a})^{1-a}$.

Cost of adjusting k

$$C(k,k') = \begin{cases} x_k + \frac{\gamma}{2} \frac{x_k^2}{k} + F_k k & \text{if } x_k \neq 0; \\ 0 & \text{if } x_k = 0; \end{cases}$$

Cost of adjusting h

$$\tilde{C}(h,h') = \begin{cases} p_h x_h + \frac{\omega}{2} \frac{x_h^2}{h} + F_h h & \text{if } x_h \neq 0; \\ 0 & \text{if } x_h = 0; \end{cases}$$

where $x_k = k' - (1 - \delta_k)k$, and $x_h = h' - (1 - \delta_h)h$.

- γ/ω : gradual building/installing process, capacity constraints of the seller, limitation of financial capacities...
- F_k/F_h : indivisibility, worker retraining, organizational restructuring...

Cost of adjusting k

$$C(k,k') = \begin{cases} x_k + \frac{\gamma}{2} \frac{x_k^2}{k} + F_k k & \text{if } x_k \neq 0; \\ 0 & \text{if } x_k = 0; \end{cases}$$

Cost of adjusting h

$$\tilde{C}(h,h') = \begin{cases} p_h x_h + \frac{\omega}{2} \frac{x_h^2}{h} + F_h h & \text{if } x_h \neq 0; \\ 0 & \text{if } x_h = 0; \end{cases}$$

where $x_k = k' - (1 - \delta_k)k$, and $x_h = h' - (1 - \delta_h)h$.

- γ/ω : gradual building/installing process, capacity constraints of the seller, limitation of financial capacities...
- F_k/F_h : indivisibility, worker retraining, organizational restructuring...

Cost of adjusting k

$$C(k,k') = \begin{cases} x_k + \frac{\gamma}{2} \frac{x_k^2}{k} + F_k k & \text{if } x_k \neq 0; \\ 0 & \text{if } x_k = 0; \end{cases}$$

Cost of adjusting h

$$\tilde{C}(h,h') = \begin{cases} p_h x_h + \frac{\omega}{2} \frac{x_h^2}{h} + F_h h & \text{if } x_h \neq 0; \\ 0 & \text{if } x_h = 0; \end{cases}$$

where $x_k = k' - (1 - \delta_k)k$, and $x_h = h' - (1 - \delta_h)h$.

- γ/ω : gradual building/installing process, capacity constraints of the seller, limitation of financial capacities...
- F_k/F_h : indivisibility, worker retraining, organizational restructuring...

Extensive Margin

$$V(k, h, z) = \max\{V^{1}(k, h, z), V^{2}(k, h, z), V^{3}(k, h, z), V^{4}(k, h, z)\}$$

- $V^1(k, h, z)$ is the value if adjusting k and h.
- $V^2(k, h, z)$ is the value if only adjusting k.
- $V^3(k, h, z)$ is the value if only adjusting h.
- $V^4(k, h, z)$ is the value of inaction.

Intensive Margin

$$V^{1}(k,h,z) = \max_{k',h'>0} \pi(k,h,z) - C(k,k') - \tilde{C}(h,h') + \beta \mathbb{E}V(k',h',z')$$
s.t. $C(k,k') + \tilde{C}(h,h') \leq \underbrace{\pi(k,h,z)}_{internal funding} + \underbrace{\phi_{k}k(1-\delta_{k}) + \phi_{h}p_{h}h(1-\delta_{h})}_{external funding}$

Intensive Margin

$$V^{1}(k, h, z) = \max_{\substack{k', h' > 0 \\ s.t.}} \pi(k, h, z) - C(k, k') - \tilde{C}(h, h') + \beta \mathbb{E}V(k', h', z')$$

$$s.t. C(k, k') + \tilde{C}(h, h') \leq \underbrace{\pi(k, h, z)}_{\substack{internal funding}} + \underbrace{\phi_{k}k(1 - \delta_{k}) + \phi_{h}p_{h}h(1 - \delta_{h})}_{\substack{external funding}}$$

$$V^{2}(k, h, z) = \max_{\substack{k' > 0 \\ s.t.}} \pi(k, h, z) - C(k, k') + \beta \mathbb{E}V(k', h(1 - \delta_{h}), z')$$

$$s.t. C(k, k') \leq \pi(k, h, z) + \phi_{k}k(1 - \delta_{k}) + \phi_{h}p_{h}h(1 - \delta_{h})$$

$$\vdots$$

$$V^{4}(k,h,z) = \pi(k,h,z) + \beta \mathbb{E} V(k(1-\delta_{k}),h(1-\delta_{h}),z')$$

Table of Contents

Capital Adjustment Model

Structural Estimation

Data

Pre-set Parameters

Model without Constraints

Model with Constraints

Counterfactual Exercise

Data

- Financial Reports of Chinese Listed Firms (CSMAR). Unbalanced panel with 2,137 firms and 21,783 firm-year observations from 2003 to 2019.
 - classification of Non-RE and RE from Financial Statement Appendix.
 - \triangleright stock values of Non-RE (k) and RE(h) by perpetual inventory method:

$$k_{t+1} = k_t(1 - \delta_k) + i_t^k; h_{t+1} = h_t(1 - \delta_h) + i_t^h.$$

where $\delta_k = 0.145$ and $\delta_h = 0.058$.

- investment rate: $\frac{i_t^k}{k_t}$; $\frac{i_t^k}{h_t}$. Distribution
- variables adjusted for year-fixed effects. Trend

Revenue Function Estimation

$$\pi(k,h,z)=z\{(\frac{k}{a})^a(\frac{h}{1-a})^{1-a}\}^{\alpha}$$

$$log \pi_{it} = \rho_z log \pi_{it-1} + \alpha \cdot a \cdot (log k_{it} - \rho_z log k_{it-1}) + \alpha \cdot (1 - a) \cdot (log h_{it} - \rho_z log h_{it-1}) + \xi_{it}$$

Moment condition: ξ_t orthogonal to k_s , h_s , and π_{s-1} , $\forall s \leq t$.

Table: Revenue Function Parameters

$\widehat{ ho_{z}}$	$\widehat{lpha \cdot a}$	$\widehat{\alpha \cdot (1-a)}$
0.7768	0.4601	0.1925
(0.013)	(0.023)	(0.024)

Pre-defined Parameters

	Value	Description	Source		
β	0.9479	discount factor	$\frac{1}{1+r}$, $r=0.055$		
σ	1	CES elasticity of substitution	Cobb-Douglas aggregator		
p	1.76	relative price of h	sample mean		
$\delta_{\pmb{k}}$	0.145	depreciation rate of k	in-use depreciation rate		
δ_{h}	0.058	depreciation rate of h	in-use depreciation rate		
α	0.6525	curvature of revenue function	GMM estimation		
a	0.7051	CD share of k	GMM estimation		
$ ho_{\sf z}$	0.7768	idiosync. prof.: persistency	GMM estimation		
σ_{z}	0.5625	idiosync. prof.: stand. dev.	GMM estimation		

[•] $a = 0.7051 \Rightarrow \frac{1-a}{a} \approx 0.42$.

Pre-defined Parameters

	Value	Description	Source		
β	0.9479	discount factor	$\frac{1}{1+r}$, $r=0.055$		
σ	1	CES elasticity of substitution	Cobb-Douglas aggregator		
p	1.76	relative price of h	sample mean		
$\delta_{\pmb{k}}$	0.145	depreciation rate of k	in-use depreciation rate		
δ_{h}	0.058	depreciation rate of h	in-use depreciation rate		
α	0.6525	curvature of revenue function	GMM estimation		
a	0.7051	CD share of k	GMM estimation		
$ ho_{\sf z}$	0.7768	idiosync. prof.: persistency	GMM estimation		
σ_{z}	0.5625	idiosync. prof.: stand. dev.	GMM estimation		

•
$$a = 0.7051 \Rightarrow \frac{1-a}{a} \approx 0.42$$
.

Structural Estimation I

- $\phi_k = \phi_h = +\infty$.
- Just-identified estimator and over-identified estimator.
 - Parameters: γ, ω, F_k, F_h .
 - Moments: $corr(i'_k, i_k), corr(i'_h, i_h), spike^+_k, spike^+_h, \overline{h/k}, med(h/k)$.
- Identity weighting matrix.

Model without Constraints

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	$\phi_{ extsf{h}}$
benchmark-JID	0.1192	0.2513	0.0000	0.0358	$+\infty$	$+\infty$
benchmark-OID	0.3000	0.2988	0.2124	0.2973	$+\infty$	$+\infty$

Table: Moments

	$corr(i'_k, i_k)$	$corr(i'_h, i_h)$	$spike_k^+$	$spike_h^+$	$\overline{h/k}$	med(h/k)	Distance
benchmark-JID	0.0785	0.0161	0.1197	0.1524	0.4281	0.4125	5.48E-05
benchmark-OID		0.0939	0.1423		0.6984		
data	0.0777	0.0182	0.1268	0.1526	0.7989	0.6470	-

Model without Constraints

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	ϕ_{h}
benchmark-JID	0.1192	0.2513	0.0000	0.0358	$+\infty$	$+\infty$
benchmark-OID	0.3000	0.2988	0.2124	0.2973	$+\infty$	$+\infty$

Table: Moments

	$corr(i'_k, i_k)$	$corr(i_h', i_h)$	$spike_k^+$	$spike_h^+$	$\overline{h/k}$	med(h/k)	Distance
benchmark-JID	0.0785	0.0161	0.1197	0.1524	0.4281	0.4125	5.48E-05
benchmark-OID	0.0950	0.0939	0.1423	0.0597	0.6984	0.5899	0.0282
data	0.0777	0.0182	0.1268	0.1526	0.7989	0.6470	-

Model without Constraints

Just-identified Estimator:

- Higher fixed cost of adjusting k.
- Good fit of serial correlations and investment spikes.
- Little variation in asset composition.
- Share of h too low.

Over-identified Estimator:

• (Overly) high convex and non-convex costs for both k and h.

Structual Estimation II

- Just-identified estimator
 - Parameters: $\gamma, \omega, F_k, F_h, \phi_k, \phi_h$.
 - ▶ Moments: $corr(i'_k, i_k), corr(i'_h, i_h), spike^+_k, spike^+_h, \overline{h/k}, med(h/k)$.
- Compared to **benchmark-OID**.

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	ϕ_{h}
benchmark-OID	0.3000	0.2988	0.2124	0.2973	$+\infty$	$+\infty$
benchmark-JID	0.1192				$+\infty$	$+\infty$
constrained	0.0874	0.2651	0.2768	0.0654	0.1115	0.1606

Table: Moments

	$corr(i'_k, i_k)$	$corr(i'_h, i_h)$	$spike_k^+$	$spike_h^+$	$\overline{h/k}$	med(h/k)	Distance
benchmark-OID	0.0950	0.0939	0.1423	0.0597	0.6984	0.5899	0.0282
constrained	0.0487	0.0124	0.1651	0.1395	0.7729	0.6737	0.0039
data	0.0777	0.0182	0.1268	0.1526	0.7989	0.6470	

Table: Parameter Estimates

	γ	F_k	ω	F_h	$\phi_{\pmb{k}}$	ϕ_{h}
benchmark-OID	0.3000	0.2988	0.2124	0.2973	$+\infty$	$+\infty$
benchmark-JID	0.1192	0.2513	0.0000	0.0358	$+\infty$	$+\infty$
constrained	0.0874	0.2651	0.2768	0.0654	0.1115	0.1606

Table: Moments

	$corr(i'_k, i_k)$	$corr(i_h', i_h)$	$spike_k^+$	$spike_h^+$	$\overline{h/k}$	med(h/k)	Distance
benchmark-OID	0.0950	0.0939	0.1423	0.0597	0.6984	0.5899	0.0282
constrained	0.0487	0.0124	0.1651	0.1395	0.7729	0.6737	0.0039
data	0.0777	0.0182	0.1268	0.1526	0.7989	0.6470	-

Asset Composition

Figure: h/k ratio and capital size

Note: Total capital stock is defined as k + h. The observations are grouped into five bins according to the quintiles of total capital stock. The graph plots the average h/k ratio for each group.

- Better goodness of fit.
 - Bigger share of real estate as in the data. (targeted)
 - ► Higher share of real estate for smaller firms. (untargeted)
- ullet $\phi_{m{k}}=0.1115$ and $\phi_{m{h}}=0.1606$. Collateral Constraints and Data Moments
 - One unit of k (h) allows for external funding equivalent to 0.1115 (0.1606) unit of k (h).
 - ► Close to 15% in Catherine et al. (2022)
- Higher fixed cost of adjusting k.
- Higher quadratic cost of adjusting h.

Table of Contents

Capital Adjustment Mode

Structural Estimation

Data

Pre-set Parameters

Model without Constraints

Model with Constraints

Counterfactual Exercise

Decomposition of the Effects of Frictions

	baseline	no fin.	no fin. & no fixed.
$\overline{h/k}$	0.77	0.52	0.49
$\overline{h/k}$, %	100%	-33%	-37%
$p_{25}(h/k)$	0.46	0.38	0.40
$p_{50}(h/k)$	0.68	0.48	0.44
$p_{75}(h/k)$	0.98	0.63	0.54
$sd(\pi/K)$	0.19	0.18	0.14

Conclusion

- A characterization of firm capital adjustment dynamics in RE and non-RE assets of Chinese firms.
- Collateral constraints help to explain the high proportion of real estate in the capital stock and the larger share of real estate in the asset composition for smaller firms.
- If no financial frictions, the RE/Non-RE ratio decreases by 33% (0.52 vesus 0.77).
- Higher fixed cost in adjusting non-RE. Higher quadratic cost in adjusting RE.

Limitations and Next Steps

- Strong assumption of Cobb-Douglas aggregation technology.
 - \Rightarrow other forms of aggregation function.
- Effect of overall collateral tightness and relative pledgeability.
 - \Rightarrow better formation of the collateral constraints.
- No dynamic debt/cash decision.
 - \Rightarrow add debt as an endogenous state variable.

Thank you!

Capital Composition of Chinese Listed Firms, by industry (back)

Distribution of Investment Rates

Figure: Distribution of Investment Rates

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

Trend of Investment Rates

Figure: Trend of Investment Rates

Source: Financial Reports of Listed Companies in China. Based on asset types classified by the author.

Collateral Constraints and Data Moments: Illustrative Example

• Other parameters symmetric between k and h:

δ_k	δ_h	p_h	а	γ	F_k	ω	F_h
0.1	0.1	1	0.5	0.2	0.17	0.2	0.17

- Constraint slackness ($\phi_k + \phi_h$): [0.5, 1, 1.5].
- Relative pledgeability $(\frac{\phi_h}{\phi_k})$: $[\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3, 4, 5]$.

Collateral Constraints and Data Moments

Collateral Constraints and Data Moments

