LABORATORIO DI FISICA COMPUTAZIONALE

GRAFICI E DATI SIGNIFICATIVI GENERATI DAI CODICI SCRITTO DA:

NICOLA PAGANO

Indice

1	Algoritmi di integrazione implementati	2
	1.1 Eulero	3
	1.2 Eulero-Cromer	6
	1.3 Verlet sulle velocità	9
	1.4 Rounge Kutta 4	11
2	Pendolo smorzato e caotico (solo traiettorie)	13
3	Sezioni di Poincaré e spazio delle fasi	14
4	Traiettorie del pendolo caotico	15
5	Bacini di attrazione	16
6	Diagrammi di Biforcazione	19
7	Problema di Keplero con due pianeti	20

1 Algoritmi di integrazione implementati

Nei prossimi sottocapitoli sono presentate i grafici relativi ai diversi algoritmi.

1.1 Eulero

Figura 1: Posizione vs tempo con relativa integrazione corretta per Eulero;

Figura 2: Velocità vs tempo Eulero

Figura 3: Spazio delle fasi per Eulero

Figura 4: Grafico dell'andamento dell'energia secondo Eulero

Figura 5: Fit andamento dE vs dt secondo Eulero; risultato: y = 1.68x

1.2 Eulero-Cromer

Figura 6: Posizione vs Tempo secondo Eulero Cromer

Figura 7: Velocità vs Tempo secondo Eulero Cromer

Figura 8: Spazio delle fasi secondo Eulero-Comer

Figura 9: Energia nel tempo secondo Eulero Cromer, questo grafico rappresenta la grande differenza tra il precedente algoritmo e Eulero Cromer.

Figura 10: Fit andamento dE vs dt secondo Eulero Comer; risultato: y = 0.98x

1.3 Verlet sulle velocità

Figura 11: Posizione vs Tempo secondo Verlet autosufficiente

Non verranno riportati più grafici su spazio delle fasi e velocità in quanto tutti uguali

Figura 12: Energia vs tempo secondo Verlet autosufficiente

Figura 13: Fit dE vs dt secondo Verlet autosufficiente; risultato: y =1.95x

1.4 Rounge Kutta 4

Figura 14: Posizione vs tempo secondo Rounge Kutta di ordine 4

Figura 15: Energia vs Tempo secondo Rounge Kutta ordine 4

Figura 16: Fit dE vs dt secondo Rounge kutta 4: risultato: y = 3.34x (si nota la fascia di instabilità iniziale dell'algoritmo, caratteristica intrinseca dell'algoritmo)

2 Pendolo smorzato e caotico (solo traiettorie)

Tutti i grafici successivi sono stati ottenuti tramite l'algoritmo di Rounge Kutta di ordine $\bf 4$

Figura 17: Traiettoria pendolo smorzato con gamma = 0.5.

Figura 18: Traiettoria pendolo caotico con beta = 0.5 e forzante f0=1, wf=0.4

3 Sezioni di Poincaré e spazio delle fasi

Figura 19: Il grafico rappresenta lo spazio delle fasi assieme alla sezione di Poincaré al periodo del forzante di pulsazione 2/3 e f0 = 1.15.

4 Traiettorie del pendolo caotico

Figura 20: Il grafico fa vedere le traiettorie del pendolo caotico secondo i dati della traccia $\,$

5 Bacini di attrazione

Figura 21: Bacini di attrazione a f = 1.50

Figura 22: bacini di attrazione ad f = 1.47

Figura 23: Bacini di attrazione ad f = 1.15

6 Diagrammi di Biforcazione

Il seguente diagramma è stato ottenuto iterando su 10 diverse velocità angolari iniziali

Figura 24: Diagramma di Biforcazione per pendolo caotico sulle velocità

7 Problema di Keplero con due pianeti

Figura 25: Il grafico mostra due corpi che orbitano attorno al sole e tra di loro in un'orbita quasi completa.

Figura 26: Traiettoria di un corpo solitario orbitante attorno al sole.