EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul scolar 2018 - 2019

Matematică BAREM DE EVALUARE ȘI DE NOTARE

Model

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	21	5p
2.	10	5 p
3.	6	5p
4.	12	5 p
5.	45	5p
6.	20	5p

SUBIECTUL al II-lea (30 de puncte)

1.	Desenează piramida patrulateră regulată	4p
	Notează piramida patrulateră regulată	1p
2.	$a = 7 + 4\sqrt{3}$	2p
	$b = 7 - 4\sqrt{3} \Rightarrow m_a = \frac{7 + 4\sqrt{3} + 7 - 4\sqrt{3}}{2} = 7$	3р
3.	3(b-4)=2(b-1)+1, unde b este numărul de bănci	3 p
	b = 11	2p
4.	a) Reprezentarea unui punct care aparține graficului funcției f	2p
	Reprezentarea altui punct care aparține graficului funcției f	2p
	Trasarea graficului funcției f	1p
	$\mathbf{b)} \ OA = \left -\frac{6}{a} \right , \ OB = 6$	2p
	$\triangle AOB$ este dreptunghic în O , deci $\frac{OB}{OA} = \operatorname{tg}(\blacktriangleleft OAB) = 2$, de unde obținem $a = -2$ sau $a = 2$	3p
5.	$E(x) = \left(\frac{x+1}{x-3} - \frac{(x+1)(x+2)}{(x+1)(x+3)} + \frac{1}{(x-3)(x+3)}\right) \cdot \frac{(x-3)(x+3)}{x+2} =$	2p
	$= \frac{(x+1)(x+3) - (x+2)(x-3) + 1}{(x-3)(x+3)} \cdot \frac{(x-3)(x+3)}{x+2} = \frac{5x+10}{x+2} = 5, \text{ pentru orice } x \text{ număr real,}$ $x \neq -3, \ x \neq -2, \ x \neq -1 \text{ și } x \neq 3$	2p
	$2m+1=5 \Rightarrow m=2$, care convine	1p

SUBIECTUL al III-lea

1.	$\mathbf{a}) \ P_{ABCD} = AB + BC + CD + AD =$	3 p	
	$=12+6+6+6=30 \mathrm{cm}$	2p	

(30 de puncte)

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

	b) $\{M\} = AB \cap DE \Rightarrow \Delta AMD$ este dreptunghic în M cu $AD = 6$ cm și, cum $ABCD$ este	
	trapez isoscel, deci $AM = \frac{AB - CD}{2} = 3 \text{ cm}$, obținem $m(\angle DAM) = 60^{\circ}$	2p
	E este simetricul lui D față de dreapta $AB \Rightarrow \not <\!\!\! DAM \equiv \not <\!\!\!\! EAM$, deci $m(\not <\!\!\!\! EAM) = 60^\circ$ și,	1n
	cum punctele E, A și F sunt coliniare, obținem $m(\angle DAF) = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$	1p
	$AB \parallel DC$ şi unghiurile $\angle ADF$ şi $\angle DAM$ sunt alterne interne, deci $m(\angle ADF) = 60^{\circ}$, de	2p
	unde obţinem că triunghiul ADF este echilateral	-F
	c) $\triangle BCD$ este isoscel și $m(\angle BCD) = 120^{\circ} \Rightarrow m(\angle CBD) = 30^{\circ}$, deci $m(\angle ABD) = 30^{\circ}$ și,	3р
	cum E este simetricul lui D față de dreapta $AB \Rightarrow m(\angle ABE) = 30^{\circ}$	Зþ
	$m(\angle AEB) = 180^{\circ} - 60^{\circ} - 30^{\circ} = 90^{\circ}$, deci $EF \perp EG$	2p
2.	$\mathbf{a}) \ \mathcal{A}_{\text{lateral}\check{\mathbf{a}}} = P_{\Delta ABC} \cdot AA' =$	2p
	$= 3 \cdot 10 \cdot 12 = 360 \mathrm{cm}^2$	3p
	b) $MA \perp (ABC)$, $MN \perp BC$, unde $N \in BC$ și $BC \subset (ABC)$, deci $AN \perp BC$	2p
	AN este înălțime în triunghiul echilateral $ABC \Rightarrow AN = 5\sqrt{3}$ cm	1p
	$d(M,BC) = MN = \sqrt{AM^2 + AN^2} = 2\sqrt{39} \text{ cm}$	2p
	c) $AP = 6 \text{cm } \text{ si } AM = 9 \text{ cm} \Rightarrow \frac{AP}{AM} = \frac{2}{3} \text{ si, cum } \frac{AO}{AN} = \frac{2}{3} \text{, obtinem } \frac{AP}{AM} = \frac{AO}{AN}$	2p
	$PO \parallel MN$ şi, cum $MN \subset (MBC)$, obţinem $PO \parallel (MBC)$	3p