A4 Componentes Principales

Héctor San Román Caraza

18/10/2022

Parte 1

```
setwd("C:/Users/hsrc1/Downloads")
df <- read.csv("paises_mundo.csv")
df</pre>
```

##		CrecPobl	MortInf	PorcMujeres	PNB95	ProdElec	LinTelf	ConsAgua	PropBosq
##	1	1.0	30	41	2199	3903	12	94	53
##	2	3.0	124	46	4422	955	6	57	19
##	3	4.3	21	13	133540	91019	96	497	1
##	4	2.5	34	24	44609	19883	42	180	2
##	5	1.3	22	31	278431	65962	160	1043	22
##	6	1.4	6	43	337909	167155	510	933	19
##	7	0.6	6	41	216547	53259	465	304	47
##	8	2.0	79	42	28599	9891	2	220	6
##	9	0.3	8	40	250710	72236	457	917	20
##	10	3.0	95	48	2034	6	5	26	45
##	11	0.4	13	49	21356	31397	190	295	31
##	12	2.3	69	37	5905	2824	35	201	45
##	13	1.6	44	35	579787	260682	75	246	66
##	14	-0.6	15	48	11225	381333	335	1544	33
##	15	2.9	56	38	8615	2740	4	38	44
##	16	1.3	6	45	573695	554227	590	1602	49
##	17	1.8	26	37	70263	43354	100	174	52
##	18	3.1	90	43	1784	435	8	20	58
##	19	1.8	26	45	12870	38000	47	687	74
##	20	0.9	10	40	435137	164993	415	632	66
##	21	3.4	86	33	9248	2305	8	66	34
##	22	2.5	13	30	8884	4772	164	780	28
##	23	0.9	9	38	7150	10982	32	870	16
##	24	1.6	12	32	59151	25276	132	1626	12
##	25	1.3	34	45	744890	928083	34	461	13
	26	0.2	6	46	156027	40097	613	233	12
	27	2.0	37	29	11390	6182	79	446	22
##	28	2.3	36	26	15997	8256	61	581	43
##	29	2.2	56	29	45507	51947	46	956	0
##	30	1.8	36	34	9057	3211	53	245	6
##	31	5.8	16	13	42806	18870	283	884	0
##	32	0.3	11	48	15848	24740	208	337	38
##	33	0.2	7	36	532347	161654	385	781	51
##	34	2.6	112	41	5722	1293	2	51	13
##	35	2.3	39	37	71865	27062	21	686	26

## 36	0.4	5	48	105174	65546	550	440	77
## 37	0.5	6		1451051	476200	558	665	25
## 38	2.9	89	44	3759	933	30	57	71
## 39	3.0	73	51	6719	6115	4	35	42
## 40	0.5	8	36	85885	40623	493	523	47
## 41	2.9	44	26	14255	3161	27	139	39
## 42	2.0	72	43	1777	362	8	7	1
## 43	0.6	6	40	371039	79647	525	518	10
## 44	3.0	45	30	3566	2672	29	294	41
## 45	-0.3	11	44	42129	33486	185	661	18
## 46	1.9	68	32	319660	386500	13	612	17
## 47	1.7	51	40	190105	53414	17	96	60
## 48	2.7	108	18	24600	27060	33	4575	4
## 49	3.2	45	24	113400	79128	79	1362	11
## 50	0.1	6	33	52765	17105	365	233	6
## 51	1.1	4	44	6686	4780	555	636	1
## 52	2.7	8	40	87875	32781	418	408	6
## 53	4.7	31	21	6354	5076	73	173	1
## 54	2.9	58	46	7583	3539	9	87	2
## 55	-0.3	11	28	28941	22798	230	525	0
## 56	2.3	32	28	10673	5184	82	271	8
## 57	3.6	61	21	23400	17800	59	880	0
## 58	2.5	12	37	78321	39093	166	768	54
## 59	2.0	55	35	29545	11100	43	427	20
## 60	2.1	33	31	304596	147926	96	899	25
## 61	1.8	113	48	1353	490	3	55	22
## 62	1.8	83	43	35840	3500	3	101	44
## 63	2.5	91	40	4391	927	4	150	37
## 64	3.1	46	36	1659	1688	23	367	50
## 65	2.9	80	36	28411	15530	4	41	17
## 66	0.5	5	46	136077	113488	556	488	31
## 67	1.0	7	44	51655	35135	479	589	28
## 68	4.5	18	15	10578	6187	77	564	19
## 69	3.0	90	26	59991	58529	16	2053	2
## 70	1.9	23	34	7253	3380	114	754	42
## 71	2.7	41	29	8158	36415	31	109	32
## 72	2.1	47	29	55019	15563	47	300	53
## 73	0.4	14	46	107829	135347	148	321	28
## 74	-0.1	7	43	96829	31380	361	739	34
## 75	0.3	6	43	1094734	325383	502	205	10
## 76	0.0	8	47	39990	58705	236	266	34
## 77	0.0	23	44	33488	55136	131	1134	27
## 78	2.8	62	42	5070	1002	10	202	39
## 79	1.8	4	38		20046	478	84	7
## 80	3.1	32	26		15186	63	435	4
## 81	1.3	16	35	12616	4387	11	503	27
## 82	2.2	77	28	7510	1333	3	633	18
## 83	0.6	4	48	209720	142895	681	341	68
## 84	0.8	6	40	286014	65724	613	173	30
## 85	2.3	50	37		189316	95	359	4
## 86	1.3	35	46	159630	71177	59	602	25
## 87	3.1	82	49	3703	1913	3	40	38
## 88	2.1	39	30	16369	6714	58	381	4
## 89	1.9	48	35	169452	78322	212	585	26
			20					_,

##	90	0.1	15	49	84084	202995	157	673	16
##	91	0.6	18	40	16458	7617	196	241	4
##	92	2.4	23	33	65382	73116	111	382	52
##	93	2.2	41	49	17634	12270	11	414	26
##	94	4.2	100	29	4044	2159	12	335	8
##	95	2.6	109	45	3605	7785	8	186	43
##	96	2.8	55	44	5933	7334	14	136	23
##		PropDefor	${\tt ConsEner}$	EmisCO2					
##	1	0.0	341	1.2					
##	2	0.7	89	0.5					
##	3	0.0	4566	13.1					
##	4	0.8	906	3.0					
##	5	0.1	1504	3.5					
##	6	0.0	5341	15.3					
##	7	-0.4	3301	7.2					
##	8	4.1	64	0.2					
##	9	-0.3	5120	10.1					
##	10	1.3	20	0.1					
##	11	-0.4	2392	9.9					
##	12	1.2	373	1.0					
##	13	0.6	718	1.4					
##	14	-0.2	2438	6.4					
##	15	0.6	103	0.2					
	16	-1.1	7854	14.4					
	17	0.7	622	1.8					
	18	0.2	331	1.6					
	19	0.0	1129	11.2					
	20	0.1	2982	6.6					
	21	1.0	103	0.5					
	22	3.0	558	1.2					
	23	1.0	923	2.6					
	24	-0.1	1012	2.6					
	25	0.7	664	2.3					
	26	0.0	3977	10.4					
	27	2.9	337	1.4					
	28	1.8	565	1.8					
	29	0.0	600	1.5					
	30	2.3	370	0.7					
	31 32	0.0	10531 3243	33.9 7.0					
	33	0.0	2458	5.7					
	34	0.3	2430	0.1					
	35	3.4	316	0.1					
	36	0.0	5997	8.2					
	37	-0.1	4042	6.3					
	38	0.6	652	5.5					
	39	1.4	93	0.2					
	40	0.0	2260	7.2					
	41	1.8	210	0.6					
	42	5.1	29	0.1					
	43	-0.3	4580	9.2					
	44	2.2	204	0.6					
##	45	-0.5	2383	5.8					
##	46	0.6	248	0.9					

## 47	1.1	366	1.0
## 48	0.1	1213	3.4
## 49	0.0	1505	4.0
## 50	-1.2	3137	8.7
## 51	0.0	7932	6.8
## 52	-0.3	2717	8.1
## 53	-1.0	1067	3.0
## 54	0.6	110	0.2
## 55	0.0	8622	11.2
## 56	0.6	964	2.9
## 57	-1.4	2499	8.1
## 58	2.1	1699	3.8
## 59	-1.4	327	1.1
## 60	1.3	1561	3.8
## 61	0.8	40	0.1
## 62	1.3	49	0.1
## 63	1.0	28	0.1
## 64	1.9	300	0.6
## 65	0.7	162	0.9
## 66	-1.4	5318	14.1
## 67	0.0	4245	7.6
## 68	0.0	2392	5.3
## 69	3.5	254	0.6
## 70	1.9	618	1.7
## 71	2.8	299	0.6
## 72	0.4	367	1.0
## 73	-0.1	2401	8.9
## 74	-0.5	1827	4.8
## 75	-1.1	3732	9.8
## 76	0.0	3868	13.1
## 77	0.0	1733	5.4
## 78	0.7	97	0.4
## 79	2.3	8103	17.7
## 80	-4.3	997	3.3
## 81	1.4	97	0.3
## 82	1.1	66	0.3
## 83	0.0	5723	6.6
## 84	-0.6	3629	6.4
## 85	-0.8	2146	7.5
## 86	3.5	769	2.0
## 87	1.2	34	0.1
## 88	-1.9	595	1.6
## 89	0.0	957	2.5
## 90	-0.3	3180	11.7
## 90	-0.6	629	1.6
		2186	
## 92 ## 93	1.2		5.7
## 93	1.5	101	0.3
## 94 ## 05	0.0	206	0.7
## 95	1.1	149	0.3
## 96	0.7	438	1.8

Matriz Correlación

```
cormat = round(cor(df),4)
library(reshape2)
melted_cormat <- melt(cormat)

library(ggplot2)
ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile(color="cyan")</pre>
```


round(cor(df),2)

##		CrecPobl	MortInf	PorcMujeres	PNR95	ProdElec	LinTelf	ConsAgua
	Conne Dahl			•			-0.56	•
##	CrecPobl	1.00	0.55		-0.32	-0.30	-0.56	-0.07
##	MortInf	0.55	1.00	-0.03	-0.32	-0.24	-0.70	-0.07
##	${\tt PorcMujeres}$	-0.56	-0.03	1.00	0.14	0.19	0.26	-0.31
##	PNB95	-0.32	-0.32	0.14	1.00	0.74	0.47	0.09
##	ProdElec	-0.30	-0.24	0.19	0.74	1.00	0.29	0.18
##	LinTelf	-0.56	-0.70	0.26	0.47	0.29	1.00	0.11
##	ConsAgua	-0.07	-0.07	-0.31	0.09	0.18	0.11	1.00
##	PropBosq	-0.16	-0.02	0.37	0.06	0.03	0.06	-0.19
##	PropDefor	0.20	0.29	0.02	-0.19	-0.17	-0.38	-0.09
##	ConsEner	-0.30	-0.62	0.01	0.28	0.23	0.78	0.16
##	EmisCO2	-0.18	-0.57	-0.05	0.21	0.20	0.62	0.16
##		PropBosq	PropDefo	r ConsEner H	EmisCO2	2		
##	CrecPobl	-0.16	0.2	0 -0.30	-0.18	3		
##	MortInf	-0.02	0.2	9 -0.62	-0.57	7		

```
## PorcMujeres
                  0.37
                           0.02
                                    0.01
                                          -0.05
## PNB95
                  0.06
                          -0.19
                                    0.28
                                           0.21
                  0.03
## ProdElec
                          -0.17
                                    0.23
                                           0.20
## LinTelf
                  0.06
                          -0.38
                                    0.78
                                           0.62
## ConsAgua
                 -0.19
                          -0.09
                                    0.16
                                           0.16
## PropBosq
                 1.00
                          0.10
                                   -0.11
                                         -0.12
## PropDefor
                  0.10
                          1.00
                                   -0.35
                                          -0.37
## ConsEner
                          -0.35
                                   1.00
                                           0.88
                 -0.11
## EmisCO2
                 -0.12
                          -0.37
                                    0.88
                                           1.00
```

Matriz covarianzas

```
covmat = round(cov(df),4)
library(reshape2)
melted_covmat <- melt(covmat)

library(ggplot2)
ggplot(data = melted_covmat, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile(color="cyan")</pre>
```


round(cov(df),2)

	##		CrecPobl	${ t MortInf}$	PorcMujeres	PNB95	ProdElec
:	##	CrecPobl	1.54	21.95	-6.08	-8.933379e+04	-4.973964e+04
:	##	MortInf	21.95	1032.86	-9.25	-2.269332e+06	-1.043435e+06
:	##	PorcMujeres	-6.08	-9.25	76.98	2.813114e+05	2.260248e+05
	##	PNB95	-89333.79	-2269332.29	281311.42	4.999786e+10	2.247791e+10

```
226024.81 2.247791e+10 1.821909e+10
## ProdElec
              -49739.64 -1043435.44
                                        449.98 2.039550e+07 7.583050e+06
## LinTelf
               -136.91
                          -4381.37
## ConsAgua
                -48.27
                          -1288.21
                                      -1568.31 1.097481e+07 1.399817e+07
## PropBosq
                 -3.89
                            -14.66
                                         65.18 2.474311e+05 7.035979e+04
## PropDefor
                  0.34
                             12.76
                                         0.27 -5.806203e+04 -3.180340e+04
## ConsEner
                -838.42 -44425.68
                                        285.52 1.415628e+08 6.801296e+07
## EmisCO2
                            -94.86
                                        -2.15 2.501673e+05 1.392779e+05
                 -1.14
                            ConsAgua PropBosq PropDefor
##
                 LinTelf
                                                            ConsEner
                                                                      EmisC02
## CrecPobl
                 -136.91
                              -48.27
                                         -3.89
                                                   0.34
                                                            -838.42
                                                                        -1.14
                                        -14.66
                                                           -44425.68
## MortInf
                 -4381.37
                            -1288.21
                                                  12.76
                                                                        -94.86
## PorcMujeres
                   449.98
                            -1568.31
                                         65.18
                                                   0.27
                                                              285.52
                                                                        -2.15
              20395504.89 10974812.99 247431.12 -58062.03 141562781.13 250167.32
## PNB95
## ProdElec
               7583050.03 13998171.50 70359.79 -31803.40 68012960.42 139277.89
## LinTelf
                 38412.47
                           11931.10
                                                                       638.57
                                        248.72
                                               -99.40
                                                           342626.21
## ConsAgua
                           330198.07 -2220.76
                                                 -67.44
                                                           209224.16
                 11931.10
                                                                       486.93
## PropBosq
                   248.72
                            -2220.76
                                        401.00
                                                   2.63
                                                            -5153.44
                                                                       -12.90
## PropDefor
                                          2.63
                                                   1.82
                   -99.40
                              -67.44
                                                            -1051.52
                                                                        -2.63
## ConsEner
                342626.21
                           209224.16 -5153.44 -1051.52
                                                          5014395.13 10286.16
## EmisCO2
                   638.57
                              486.93
                                       -12.90
                                                  -2.63
                                                            10286.16
                                                                        27.27
```

Eigen valores y vectores

```
# Covarianza

EVal_Cov <- eigen(covmat)$values
EVec_Cov <- eigen(covmat)$vectors

# Correlación

EVal_Cor <- eigen(cormat)$values
EVec_Cor <- eigen(cormat)$vectors</pre>
```

Varianza por cada componente

```
var_t <- sum(diag(covmat))</pre>
var_t
## [1] 68222335253
listaV <- list()</pre>
for (i in 1:length(EVal_Cov)) {
  Variacion <- EVal_Cov[i] / var_t</pre>
  cat("Variación total explicada por variable " , i, " : ", Variacion, "\n")
  listaV <- append(listaV, Variacion)</pre>
}
## Variación total explicada por variable 1 : 0.9034543
## Variación total explicada por variable 2 : 0.09647298
## Variación total explicada por variable 3 : 6.795804e-05
## Variación total explicada por variable 4 : 4.554567e-06
## Variación total explicada por variable 5 : 1.782429e-07
## Variación total explicada por variable 6 : 7.530917e-09
## Variación total explicada por variable 7 : 5.317738e-09
## Variación total explicada por variable 8 : 6.65776e-10
```

```
## Variación total explicada por variable 9 : 8.50287e-11
## Variación total explicada por variable 10 : 2.107903e-11
## Variación total explicada por variable 11 : 6.989131e-12
```

Acumule los resultados anteriores

```
cumsum(listaV)

## [1] 0.9034543 0.9999273 0.99999953 0.9999998 1.00000000 1.00000000 1.00000000
## [8] 1.0000000 1.0000000 1.0000000
```

5. Según los resultados anteriores, ¿qué componentes son los más importantes? ¿qué variables son las que más contribuyen a la primera y segunda componentes principales? ¿por qué lo dice? ¿influyen las unidades de las variables?

Con lo que podemos observar de los resultados, la mayor variación de los componentes se puede ver explicada en el primero, con el 90% de la variabilidad. El segundo componente contiene tan solo el 9% de la varianza. Después de eso la varianza ya no está representada en gran proporción. Las unidades de las variables sí influyen dentro de la relación por lo que es importante hacer un reescalamiento de datos para no sesgar el resultado.

6. Hacer los mismos pasos anteriores, pero con la matriz de correlaciones (se obtiene con cor(x) si x está compuesto por variables numéricas)

Varianza por cada componente

```
var_t <- sum(diag(cormat))</pre>
var_t
## [1] 11
listaV <- list()</pre>
for (i in 1:length(EVal Cor)) {
 Variacion <- EVal_Cor[i] / var_t</pre>
  cat("Variación total explicada por variable " , i, " : ", Variacion, "\n")
  listaV <- append(listaV, Variacion)</pre>
## Variación total explicada por variable 1 : 0.3663526
## Variación total explicada por variable 2 : 0.1754581
## Variación total explicada por variable 3 : 0.124587
## Variación total explicada por variable 4 : 0.07858922
## Variación total explicada por variable 5 : 0.07219864
## Variación total explicada por variable 6 : 0.06628812
## Variación total explicada por variable 7 : 0.05193783
## Variación total explicada por variable 8 : 0.02970794
## Variación total explicada por variable 9 : 0.01528042
## Variación total explicada por variable 10 : 0.01330355
## Variación total explicada por variable 11 : 0.006296621
```

Acumule los resultados anteriores

```
cumsum(listaV)
```

```
# [1] 0.3663526 0.5418107 0.6663977 0.7449869 0.8171855 0.8834736 0.9354115
```

7. Compare los resultados de los incisos 6 y 7. ¿qué concluye?

Vemos que la variabilidad de los componentes ya es más dispersa. En el acummulado necesitamos 7 componentes para representar el 90% de la variabilidad. La matriz de correlación se comporta de forma diferente, distribuyendo la variabilidad de los componentes.

Parte II

```
library(stats)
library(factoextra)

## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggplot2)
datos= df
cpS=princomp(datos,cor=FALSE)
cpaS=as.matrix(datos)%*%cpS$loadings
plot(cpaS[,1:2],type="p", main = "Título")
text(cpaS[,1],cpaS[,2],1:nrow(cpaS))
```

Título


```
biplot(cpS)
```

```
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length = ## arrow.len): zero-length arrow is of indeterminate angle and so skipped
```

```
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped

## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
```


Aquí tenemos una representación gráfica de como las variables afectan a lso componentes principales. La mayor parte dde las variables se encuentran en el (0,0) redondeando. Vemos que existen algunas variables que destacan en variabilidad hacia distintos componentes, haciendonos ver cuales se compoortan de forma similar.

Parte III

```
library(FactoMineR)

## Warning: package 'FactoMineR' was built under R version 4.1.3

library(factoextra)
library(ggplot2)
library(dplyr)

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union

datos=df

cp3 = PCA(datos)
```


0

2

Dim 1 (36.64%)

-2

fviz_pca_ind(cp3, col.ind = "blue", addEllipses = TRUE, repel = TRUE)

Warning: ggrepel: 27 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

fviz_contrib(cp3, choice = c('var'))

En la primera grafica vemos como las variables afectan a los componentes o las dimensiones. Aquí podemos ver como interactuan las variables entre sí. La segunda gráfica es una representación similar solo que es una representación en circulo, normalizada, ayudandonos a interpretar en igualdad las variables. La tercera grafica es una mezcla entre la primera y segunda gráfica, dandonos la representación no normalizada, pero con una ayuda que nos hace el mismo trabajo. Los últimos histogramas nos ayudan a verlo de una forma de barras.