SO(5₅-4₄) velocity field

$H2CO(3_{0,3}-2_{0,2})$ with CO(2-1) (MASSES) integrated intensity (blueshifted and

Agurto-Gangas et al. 2019 updated values (d=293 pc):

- i=67 deg (i=0 is face-on)
- PA=170 (from north)

In velocity_tools (Jaime Pineda) coord. system:

- i=-23 deg (i=0 is edge-on, i>0 goes behind)
- PA=80 (from west)

Because of the rotation diagram, it does not make sense to place the z axis with the red outflow

- M_disk = 0.58 Mo (Agurto-Gangas et al. 2019, adapted from Segura-Cox et al 2016 for a d=293 pc)
- M_star = 2.9 Mo (from Agurto-Gangas et al. 2019 two-phase model, this was a fixed parameter)
- M_env = 2.2 Mo (Agurto-Gangas et al. 2019, adapted from Enoch et al 2009 for a d=293 pc)
- For now, I am adding up the three
- Has to come from behind towards the front (shaded area)
- It works in the projection distance v/s v_lsr, but the rc was too small (10 AU)

Best attempt for now:

- Theta0 = 70°
- Phi0 = 20°
- r0 = 1550 AU
- Omega0 = 8e-13 s-1
- v_r0 = 0 km/s

The plot here varies theta slightly around 70°

