Fundamentos de Redes CCNA1

Clase "11"

Capa de Transporte

El nivel de transporte o capa de transporte es el cuarto nivel del modelo OSI encargado de la transferencia libre de errores de los datos entre el emisor y el receptor, aunque no estén directamente conectados, así como de mantener el flujo de la red. Es la base de toda la jerarquía de protocolo

Capa de Transporte

Habilitación de aplicaciones en los dispositivos para la comunicación

Seguimiento de las conversaciones

La capa de transporte hace un seguimiento de cada conversación individual que fluye entre una aplicación de origen y una aplicación de destino por separado.

Identificación de la aplicación

Servicios de la capa de transporte

Confiabilidad de la capa de transporte

TCP

TCP

TCP

Los desarrolladores de aplicaciones eligen el protocolo de la capa de transporte apropiado según la naturaleza de la aplicación.

Servicios de TCP

Correo electrónico

Para: usted@ejemplo.com De: yo@ejemplo.com Asunto: Vacaciones

Mensajería instantánea

El establecimiento de una sesión garantiza que la aplicación está lista para recibir los datos.

La entrega confiable implica el reenvío de segmentos perdidos para que se reciban los datos en forma completa.

La entrega en el mismo orden garantiza que los segmentos se rearmen en el orden correcto.

El **control del flujo** administra la entrega de datos si se observa congestión en el host.

Segmento TCP

Bit (0)		Bit (15)	Bit (16)	Bit (31)
Puerto origen (16)			Puerto de	stino (16)
	Núi	mero de secuenci	a (32)	
	Númer	o de acuse de re	cibo (32)	
Longitud del encabezado (4)	Reservado (6)	Bits de control (6)	Ventan	a (16)
Checksum (16)			Urgent	e (16)
	Орс	iones (0 ó 32 si la	as hay)	
	Datos de la ca	pa de aplicación (el tamaño varía)	

Datagrama UDP

Bit (0)	Bit (15)	Bit (16) Bit (3
Р	uerto origen (16)	Puerto destino (16)
	Longitud (16)	Checksum (16)
	Datas da la sassa da d	aplicación (el tamaño varía)

Direccionamiento del puerto

Direccionamiento del puerto

Los datos de las distintas aplicaciones se dirigen a la aplicación correcta, ya que cada aplicación tiene un número de puerto único.

Direccionamiento de puertos TCP y UDP

Números de puerto

Rango de números de puerto	Grupo de puertos	
Entre 0 y 1023	Puertos bien conocidos	
de 1024 a 49151	Puertos registradescp	
de 49152 a 65535	Puertos privados y/o dinámicos	

Números de puerto

Rango de números de puerto	Grupo de puertos	
Entre 0 y 1023	Puertos bien conocidos	
de 1024 a 49151	Puertos registrados	
de 49152 a 65535	Puertos privados y/o dinámicos	

Segmentación TCP, UDP

Funciones de la capa de transporte

La capa de transporte divide los datos en partes y agrega un encabezado para la entrega a través de la red.

Respuesta de puertos de destino

Respuesta de puertos de origen

Solicitud de HTTP: Puerto de origen: 49152 Puerto de destino: 80 Solicitud de SMTP: Puerto de origen: 51152 Puerto de destino: 25

TCP

Establecimiento y finalización de la conexión TCP

- •Establece que el dispositivo de destino se presente en la red
- Verifica que el dispositivo de destino tenga un servicio activo y que acepte solicitudes en el número de puerto de destino que el cliente de origen intenta utilizar para la sesión
- •Informa al dispositivo de destino que el cliente de origen intenta establecer una sesión de comunicación en dicho número de puerto

Establecimiento de conexiones TCP

CTL = Bits de control establecidos en 1 en el encabezado TCP A envía una solicitud SYN a B.

- URG: campo indicador urgente importante
- •ACK: campo de acuse de recibo importante
- PSH: función de empuje
- RST: restablecer la conexión
- •SYN: sincronizar números de secuencia
- FIN: no hay más datos del emisor

Análisis de terminación de sesión TCP

Para cerrar una conexión, se debe establecer el indicador de control finalizar (FIN) en el encabezado del segmento. Para finalizar todas las sesiones TCP de una vía, se utiliza un enlace de dos vías, que consta de un segmento FIN y un segmento ACK.

Por lo tanto, para terminar una única conversación que admite TCP, se requieren cuatro intercambios para finalizar ambas sesiones.

Establecimiento y finalización de la conexión TCP

Establecimiento y finalización de la conexión TCP

Análisis del protocolo TCP de enlace de tres vías

Paso 1: El cliente de origen solicita una sesión de comunicación de cliente a servidor con el servidor.

Paso 2: El servidor reconoce la sesión de comunicación de cliente a servidor y solicita una sesión de comunicación de servidor a cliente.

Paso 3: El cliente de origen reconoce la sesión de comunicación de servidor a cliente.

Análisis del protocolo TCP de enlace de tres vías

Confiabilidad de TCP

Los segmentos TCP se vuelven a ordenar en el destino

Acuse de recibo de los segmentos TCP

Acuse de recibo y tamaño de la ventana del segmento TCP

El tamaño de la ventana determina la cantidad de bytes enviados antes de que se espere recibir un acuse de recibo.

El número de acuse de recibo es el número del siguiente byte previsto.

Congestión y control del flujo de TCP

Si se pierden los segmentos debido a la congestión, el receptor acusará recibo del último segmento secuencial recibido y responderá con un tamaño de ventana reducido.

UDP

Transporte de datos con baja sobrecarga de UDP

UDP no establece ninguna conexión antes de enviar datos.

UDP proporciona transporte de datos con baja sobrecarga, debido a que posee un encabezado de datagrama pequeño sin tráfico de administración de red.

APLICACIONES UDP

- Sistema de nombres de dominio (DNS)
- Protocolo simple de administración de red (SNMP, Simple Network Management Protocol)
- Protocolo de configuración dinámica de host (DHCP)
- Protocolo de información de enrutamiento (RIP)
- Protocolo de transferencia de archivos trivial (TFTP)
- Telefonía IP o voz sobre IP (VoIP)
- Juegos en línea

UDP: sin conexión y poco confiable

Servidor UDP a la escucha de solicitudes

Las solicitudes de clientes a servidores tienen números de puerto bien conocidos como puerto de destino.

Clientes envían solicitudes UDP

Solicitar puertos de destino

Solicitar puertos de origen

Aplicaciones que utilizan TCP

Aplicaciones que utilizan UDP

