Understanding the spectrum of a blackbody

Sudheendra B.R.

Suhas P.K.

Shahsank K.K.

March 2020

Guided by V.H. Belvadi

Dept. of Physics

Yuvaraja's College, Mysuru

Overview

Part 1

The Black Body problem

Charged oscillators

Rayleigh's intensity function

The Ultra-Violet catastropy

Plank's emphirical formula

Part 2

Intensity of a Black Body spectrum and the problem

Einstein's work on Black Bodies

Overview

Part 3

Amplitude-based descriptiom of identical particles

n-Boson systems

Probability based emission and absorption of Black Bodies

Concluding remarks

Part 1

Introduction

An idealised object that can **absorb**, and subsequently **emit**, all the radiation incident on it is called a blackbody.

1

 $\bullet\,$ Consider gaseous medium, in which we have a charged oscilator.

- Consider gaseous medium, in which we have a charged oscilator.
- Due to random motion of the gaseous atoms, it often collides with the oscillator.

- Consider gaseous medium, in which we have a charged oscilator.
- Due to random motion of the gaseous atoms, it often collides with the oscillator.
- As a result the gaseous atoms imparts some of it's kinetic energy to the oscillator.

- Mean kinetic energy acquired by the oscillator is, $\frac{1}{2}$ kT.
- And the total kinetic energy will be kT.

• Since the charge is radiating energy the system cannot attain equilibrium .

4

• How do we tackle this situation?

- How do we tackle this situation?
- We confine the system.

- Inner walls of the box is totally reflective.
- After some time the system will attains thermal equilibrium

So, the energy radiated by the oscillator per second can be given by,

$$\frac{1}{Q} = \frac{\left(\frac{dW}{dt}\right)}{\omega_0 W}$$

Q is the radiation reaction.

 ω_0 is the natural frequency of vibration.

 $\ensuremath{\mathcal{W}}$ is the total energy content of the oscillator.

Also, we have

$$\frac{1}{Q} = \frac{\gamma}{\omega_0}$$

Where γ is the dampping constant.

Remember the mean energy of the oscillator is kT? for three degrees of freedom, it is 3kT.

Average energy loss due to radiation is given by,

$$\left\langle \frac{dW}{dt} \right\rangle = \gamma kT$$

- Let, $\mathbf{I}(\boldsymbol{\omega})d\boldsymbol{\omega}$ be the incident light energy with in a frequeny range $d\boldsymbol{\omega}$.
- Assuming all the radiation which falls on a {\it cross section'} \sigma_{\text{S}}{'} is absorbed completely,
- Scattered light must be the product of $\mathbf{I}(\pmb{\omega})d\pmb{\omega}$ and $\pmb{\sigma}_{\mathtt{S}}.$

Expression for the cross section is given by,

$$\sigma_{\rm S} = \frac{8\pi r_0^2}{3} \left[\frac{\omega^4}{(\omega^2 - \omega_0^2)^2 + \gamma^2 \omega^2} \right]$$

When $\omega = \omega_0$,

$$\sigma_{\rm S} = \frac{2\pi r_0^2 3\omega_0^2}{3(\omega - \omega_0)^2 + \frac{\gamma^2}{4}}$$

$$\frac{dW_{s}}{dt} = \int_{0}^{\infty} \mathbf{I}(\boldsymbol{\omega}) \, \sigma_{s} \, d\boldsymbol{\omega} = \int_{0}^{\infty} \frac{2\pi r_{0}^{2} \boldsymbol{\omega}_{0}^{2} \, \mathbf{I}(\boldsymbol{\omega}) \, d\boldsymbol{\omega}}{3 \left[(\boldsymbol{\omega} - \boldsymbol{\omega}_{0})^{2} + \frac{\boldsymbol{\gamma}^{2}}{4} \right]}$$

since we're considering the equilibrium condition ($\omega=\omega_0$), equation reduces to,

$$\frac{dW_{\rm S}}{dt} = \frac{2}{3}\pi r_0^2 \omega_0^2 \mathbf{I}(\omega_0) \int_{-\infty}^{\infty} \frac{d\omega}{(\omega - \omega_0)^2 + \left(\frac{\gamma}{2}\right)^2}$$

Since the integral reduces to arctan function we get, $2\pi/\gamma$. and as

$$\frac{dW_s}{dt} = \frac{dW}{dt} = 3\gamma kT$$

$$\therefore \mathbf{I}(\omega) = \frac{9\gamma^2 kT}{4\pi^2 r_0^2 \omega_0^2}$$

$$\Longrightarrow \gamma = \frac{2}{3} \frac{r_0 \omega_0^2}{c}$$

$$\mathbf{I}(\boldsymbol{\omega}) = \frac{\boldsymbol{\omega}^2 \, kT}{\boldsymbol{\pi}^2 \boldsymbol{\varsigma}^2}$$

Graph

Figure 1: Example spectrum of a blackbody.

 Max Planck came up with an ide 	•	Max I	Planck	came	up	with	an	idea
--	---	-------	--------	------	----	------	----	------

- We had the experimental result, and what we needed was a theoretical explanation for the curve.
- Planck studied the curve and came up with a mathematical formula.

- He made an assumption that the energy level of the harmonic oscillator is quantized.
- The harmonic oscillator can take up energies only in the multiples of $\hbar\omega$.
- The probability of occupying an energy level ${f E}$ is ${f P}({f E})=\pmb{lpha}e^{-\hbar\pmb{\omega}/kT}$.

Part 2

• The intensity of radiation for frequency ω is given by

$$I(\boldsymbol{\omega})d\boldsymbol{\omega} = \frac{\hbar \boldsymbol{\omega}^3 d\boldsymbol{\omega}}{\boldsymbol{\pi}^2 C^2 \left(e^{\frac{\hbar \boldsymbol{\omega}}{kT}} - 1\right)}$$

- · Planck considered that the matter was quantized and not light.
- Einstein came up with an alternate idea to solve Black body problem.

• Einstein considered that even the light was quantized, by taking that light is actually photons with energy $\hbar\omega$

· a pic is needed.

- Einstein assumed that Planck's formula was right.
- Consider two energy levels , say , the n^{th} level and m^{th} level.
- A light of certain frequency is incident on atom and by absorbing a photon, transition from state n to state m occurs.

- The probability of the transition is proportional to intensity of the light.
- The proportionality constant is B_{nm} and mathematically can be written as,

$$R_{n\to m} = N_n B_{nm} I(\omega) \tag{1}$$

- · Spontaneous emission.
- Stimulated emission.

· The combined mathematical expression is,

$$R_{m\to n} = N_m [A_{mn} + B_{mn} I(\boldsymbol{\omega})]$$
 (2)

- At thermal equilibrium, the number of atoms going to higher energy level must be equal
 to the number of atoms coming to lower energy state.
- The ratio of N_m to N_n is given by $e^{\frac{-\hbar\omega}{kT}}$

• At thermal equilibrium both $R_{n\to m}$ and $R_{m\to n}$ are equal.

•
$$N_n B_{nm} I(\boldsymbol{\omega}) = N_m [A_{mn} + B_{mn} I(\boldsymbol{\omega})]$$

• On dividing the previous equation by N_m we get,

•
$$B_{nm}I(\boldsymbol{\omega})e^{\frac{\hbar\boldsymbol{\omega}}{RT}}=A_{mn}+B_{mn}I(\boldsymbol{\omega})$$

• So the equation that Einstein got for intensity of radiation for frequency is

$$I(\omega) = \frac{A_{mn}}{B_{nm}e^{(\hbar\omega/kT)} - B_{mn}}$$
(3)

• Since Einstein considered that the formula given by Planck was correct, we should get ,

• $B_{nm} = B_{mn}$ and also

$$\frac{A_{mn}}{B_{nm}} = \frac{\hbar \omega^3 d\omega}{\pi^2 c^2}$$

This is how Einstein rederived Planck's formula from a quantum mechanical viewpoint.

Part 3

•
$$\phi$$
 = Probability amplitude

•
$$\mathbf{P} = \left| \boldsymbol{\phi} \right|^2$$

•
$$\phi = \phi_1 + \phi_2$$

• P =
$$\left| \phi_1 + \phi_2 \right|^2$$

Case A

- Detector 1 is set to detect only α particles and Dectector 2 is set to detect only oxygen atoms.
- Probability amplitude of the scattering is given as $f(\theta)$ when they are at an angle θ .
- The probability of this event = $|f(\theta)|^2$

Case B

- Set up the dectectors such that the detectors would dectect either lpha particle or oxygen atom.
- We will not distinguish which particle is which entering the detector.
- This means that if oxygen atom in position θ , then α particle on the opposite side is at an angle $\pi-\theta$.

- Probability amplitude of oxygen atom = $f(\pi \theta)$
- Probability amplitude of α particle = $f(\theta)$
- The probability of a particle being detected at detector 1 = $|f(\theta)|^2$ + $|f(\pi \theta)|^2$

- Consider if both are α particles,
- Then we would not know which particle entered the detector, so the total probability changes to,
- The probability of a lpha particle being detected at detector 1 = $\left|f(heta) + f(\pi heta)\right|^2$

• If
$$\theta=\frac{\pi}{2}$$
, then applying this to the expression $\left|f(\theta)+f(\pi-\theta)\right|^2$ we get,

• Probability = $4\left|f\left(\frac{\pi}{2}\right)\right|^2$, if the particles are indistinguishible.

- Suppose the particles were distinguishible, then the probability for $\theta=\frac{\pi}{2}$ when applied for $\left|f(\theta)\right|^2+\left|f(\pi-\theta)\right|^2$ is given by,
- Probability = $2\left|f\left(\frac{\pi}{2}\right)\right|^2$
- This shows that the probability gets doubled for indistinguishible particles.

- Can we apply the same logicto the electron-electron scattering?
- OBSERVATION: "When we have situation in which the identity of the electron which is arriving at a point is echanged with anothe one, the new amplitude interfere with old one with an opposite phase."
- In electrons case , the interfering amplitude for exchange interfere with a negative sign. Probability for electron = $\left|f(\theta) f(\pi \theta)\right|^2$

SPIN PROBABILITY TABLE

Identical Particles

Identical particles, also called **indistinguishable particle**, are particles that cannot be distinguished from one another.

Identical - Indistinguishable Particles

- · Consider particle 'a' and particle 'b'.
- Let the two particle collide and get sactttered in two different directions say '1' and '2' over a surface element ds_1 and ds_2 of the detector respectively.
- If the particles are indistinguishable then the amplitudes of these process will add up.
- Probability that the two particles arrive at ds_1 and ds_2 is $|<1|a><2|b>+<2|a><1|b>|^2ds_1ds_2$

• Integrating over the area of the detector, if we let ds_1 and ds_2 range over the whole area $(\triangle S)$, we could count each part of the area twice since the expression $|<1|a><2|b>+<2|a><1|b>|^2ds_1ds_2$ contains everything that can happen with any pair of surface elements ds_1 and ds_2 .

• Probability_{BOSE} =
$$\frac{\left(4\left|a\right|^{2}\left|b\right|^{2}\right)}{2} (\triangle S)$$

This is just twice what we got the probability for distinguished particles.

State with n Bosons

- Consider n particles say a, b, c... scattered in n direction say 1, 2, 3 \dots
- Probability that each particle acting alone would go into an element of the surface ds of the detector is $\left| <> \right|^2 ds$.

- Assumption :All particles are distinguishable.
- Probability that n particles will be counted together in n different surface elements = $\left|a_1b_2c_3...\right|^2ds_1ds_2...$
- If the amplitude does not depend on where ds is located in the detector, then the $Probability = \left(\left|a\right|^2\left|b\right|^2...\right)(ds_1ds_2...)$

- Integrating each dS over the surface $\triangle\ S$ of the dectector

$$(P_n)_{different} = \left(\left| a \right|^2 \left| b \right|^2 ... \right) (\Delta S)^n$$

- Now suppose that all the particle are Bose particles.
- For n particles, there are n! different, but indistinguishable possibilities for which we must add the amplitudes.

- Probability that n particles will be counted on the n surface elements is given by $Probability = \left(\left|a_1b_2c_3...+a_1b_3c_2...\right|^2\right)(ds_1ds_2...)$
- Probability = $\left(\left|n!abc...\right|^2\right) (ds_1ds_2...)$
- Integrate each ds over the area \triangle S of the detector

$$(P_n)_{BOSE} = n! \left(\left| abc... \right|^2 \right) (\Delta S)^n$$

• Compareing the probability when the particles are distinguishable and indistinguishable

$$(P_n)_{BOSE} = n! \left(\left| abc... \right|^2 \right) (\Delta S)^n$$

$$(P_n)_{different} = \left(\left| a \right|^2 \left| b \right|^2 ... \right) (\Delta S)^n$$

•
$$(P_n)_{BOSE} = n!(P_n)_{different}$$

Emission and Absorption of photons

- When the light is emitted, a photon is "created".
- Consider that there are some atom emitting n photons.
- OBSERVATION: The probability that an atom will wmit a photon into a particular final state is increased by the factor (n+1) if there are already n photons in that state.

The Blackbody Spectrum

The Blackbody Spectrum

- For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.
- Let N_e and N_g be the average numbers of atoms that are in excited state and ground state.
- In thermal equilibrium at temperature T, from statistical mechanics

$$\frac{N_e}{N_g} = e^{(-\Delta E/\hbar\omega)}$$

• NOTE: Each atom in the ground state can absorb a photon and go into the excited state and each atom in the excited state can emit a photon and go to the ground state.

- At equilibrium, the rate of these two process must be equal.
- Rate is proportional to the probability of the event and the number of atoms present.
- \overline{n} is the average number of photons present in a given state with the frequency ω

- The absorption rate from the state is $N_g \overline{n} |a|^2$, and the emission rate into that state is $N_e(\overline{n}+1) |a|^2$.
- At equilibrium $N_g\overline{n}\,\Big|\,a\,\Big|^{\,2}=N_e(\overline{n}+1)\,\Big|\,a\,\Big|^{\,2}$

You need a frame here or TOC omits it.