UFMG/ICEx/DCC

DCC111 – MATEMÁTICA DISCRETA

LISTA DE EXERCÍCIOS 4: SOLUÇÕES SEQUÊNCIAS E INDUÇÃO MATEMÁTICA

Ciências Exatas & Engenharias

 1° Semestre de 2018

1. O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir (associar) a cada número racional um número natural. Abaixo, os números racionais positivos estão representados na forma de um par ordenado onde o primeiro número representa o numerador e o segundo o denominador. Começando do número racional 1 — par ordenado (1,1) — é possível associar o número natural 1 e, seguindo o sentido das setas, atribuir o próximo número natural definindo assim uma sequência de enumeração. Dado o número racional positivo par qual é o número natural correspondente?

Resposta:

De acordo com o enunciado acima, a enumeração dos números racionais irá ocorrer da forma apresentada a seguir (o número natural associado a cada número racional está entre colchetes):

Pontos a observar:

- O número racional positivo $\frac{p}{q}$ é representado pelo par ordenado (p,q);

- A soma dos índices p e q dos pares ordenados ao longo de cada diagonal é a mesma. Na primeira diagonal temos apenas um par ordenado, i.e., (1,1), e a soma vale 2. A partir da segunda diagonal, as somas dos índices valem 3, 4, 5, etc;
- Na primeira diagonal temos um par ordenado, na segunda dois, na terceira três e assim sucessivamente. Isso significa que em cada diagonal temos (p+q)-1 pares ordenados;
- Quando a soma p+q é um número ímpar, a enumeração ocorre de baixo para cima e, quando é par, ocorre de cima para baixo;
- Para calcular o número natural k associado ao número racional (p,q) temos que saber quantos pares ordenados existem nas diagonais anteriores à diagonal onde se encontra o par (p,q). Essa é a soma de 1 a (p+q)-2, representada por S:

$$S \leftarrow \frac{[(p+q)-2] \times [(p+q)-1]}{2}.$$

• Finalmente, deve-se determinar o sentido da enumeração (de baixo para cima, ou vice-versa) para o par (p,q):

```
se (p+q) \mod 2 = 0 // (p+q) é um número par, i.e., a diagonal é de descida?

então k \leftarrow S + p // Sim, devemos somar a S o valor de p, que é o termo que cresce.

senão k \leftarrow S + q // Não, devemos somar a S o valor de q, que é o termo que cresce.
```

fimse

Observe que quando o sentido da enumeração é de cima para baixo ao longo da diagonal, o número p deve ser somado a S para determinar a posição correta da enumeração. Quando o sentido da enumeração for o contrário, o número q deve ser somado.

2. Prove por indução matemática que

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para $n=1,\ 1^2=1$ e $\frac{n(n+1)(2n+1)}{6}=\frac{1\cdot 2\cdot 3}{6}=1$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k \geq 1$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}, k \ge 1$$

- Deve-se mostrar que:

$$1^{2} + 2^{2} + \ldots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^{2} + k + 6k + 6]}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

3. Prove por indução matemática que

$$1+3+5+\ldots+(2n-1)=n^2, n > 1.$$

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para $n = 1, 1 = 1^2$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n = k, k \ge 1$ então deve ser verdadeira para n = k+1.
 - Hipótese indutiva:

$$1+3+5+\ldots+(2k-1)=k^2, k\geq 1$$

- Deve-se mostrar que:

$$1+3+5+\ldots+(2k-1)+(2k+1)=(k+1)^2, k \ge 1$$

Sabe-se que:

$$1+3+5+\ldots+(2k-1)+(2k+1) = k^2+(2k+1)$$

= $(k+1)^2$

4. Prove por indução matemática que

$$1^3 + 2^3 + \ldots + n^3 = (1 + 2 + \ldots + n)^2, n \ge 1.$$

Resposta:

Essa prova pode ser dividida em duas partes: (i) prova do somatório do lado direito e substituição pela fórmula fechada, e (ii) prova do somatório do lado esquerdo. Sabe-se que a soma $1+2+\ldots+n, n \geq 1$, vale $\frac{n(n+1)}{2}$ (esta prova pode ser obtida por indução matemática). Assim, temos que

$$1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}, n \ge 1.$$

Prova (por indução matemática):

- (a) <u>Passo base</u>: Para $n=1,\,1^3=\frac{1^2(1+1)^2}{4}.$ O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k\geq 1$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$1^3 + 2^3 + \ldots + k^3 = \frac{k^2(k+1)^2}{4}, k \ge 1$$

- Deve-se mostrar que:

$$1^{3} + 2^{3} + \ldots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}(k+2)^{2}}{4}, k \ge 1$$

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)(k+1)^{2}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)(k+1)^{2}}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4k + 4)}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

5. Prove por indução matemática que

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n > 1.$$

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para n = 1, $2 \cdot 1 = 2$ e $1^2 + 1 = 2$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k\geq 1$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2k = k^2 + k$$

= $k(k+1), k > 1$

- Deve-se mostrar que:

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = (k+1)^2 + (k+1)$$
$$= (k+1)[(k+1) + 1]$$
$$= (k+1)(k+2), k \ge 1$$

Sabe-se que:

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = k(k+1) + 2(k+1)$$

$$= k^2 + k + 2k + 2$$

$$= k^2 + 3k + 2$$

$$= (k+1)(k+2)$$

6. Prove por indução matemática que

$$\sum_{i=1}^{n-1} i(i+1) = \frac{n(n-1)(n+1)}{3}, \forall \text{ inteiros } n \ge 2.$$

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para n=2, $\sum_{i=1}^{n-1} i(i+1) = \sum_{i=1}^{1} i(i+1) = 1(1+1) = 2$ e $\frac{n(n-1)(n+1)}{2} = \frac{2\cdot 1\cdot 3}{3} = 2$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k \geq 2$ então deve ser verdadeira para n=k+1.

 Hipótese indutiva:

$$\sum_{i=1}^{k-1} i(i+1) = \frac{k(k-1)(k+1)}{3}$$

- Deve-se mostrar que:

$$\sum_{i=1}^{k} i(i+1) = \frac{k(k+1)(k+2)}{3}$$

$$\sum_{i=1}^{k} i(i+1) = \sum_{i=1}^{k-1} i(i+1) + k(k+1)$$
$$= \frac{k(k-1)(k+1)}{3} + k(k+1)$$

$$= \frac{k(k-1)(k+1) + 3k(k+1)}{3}$$

$$= \frac{k(k+1)[(k-1)+3]}{3}$$

$$= \frac{k(k+1)(k+2)}{3}$$

7. Ache a fórmula fechada para a soma

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n(n+1)}$$

 \forall inteiros $n \geq 1$ e prove o seu resultado por indução matemática.

Resposta:

Prova (por indução matemática):

Somando os primeiros termos e simplificando temos que:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{2}{3}$$
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{3}{4}$$
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} = \frac{4}{5}$$

o que leva a conjectura que para todos os inteiros positivos n_i

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- (a) Passo base: Para $n=1, \frac{1}{1\cdot 2}=\frac{1}{2},$ que é o valor da fórmula fechada. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k \geq 1$ então deve ser verdadeira para n=k+1.

 Hipótese indutiva:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$

- Deve-se mostrar que:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

Sabe-se que:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2) + 1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

8. Ache a fórmula fechada para o produto

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\dots\left(1 - \frac{1}{n}\right)$$

 \forall inteiros $n \geq 2$ e prove o seu resultado por indução matemática.

Resposta:

Seja a suposição que

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\dots\left(1 - \frac{1}{n}\right) = \prod_{i=2}^{n}\left(1 - \frac{1}{i}\right) = \frac{1}{n}$$

 \forall inteiros $n \geq 2$. Deve-se provar que de fato essa suposição é verdadeira.

Prova (por indução matemática):

- (a) Passo base: Para n=2, $\prod_{i=2}^{2}(1-\frac{1}{i})=(1-\frac{1}{2})=\frac{1}{2}$ e a fórmula fechada vale $\frac{1}{2}$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k\geq 2$ então deve ser verdadeira para n=k+1.

 Hipótese indutiva:

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\dots\left(1 - \frac{1}{k}\right) = \prod_{i=2}^{k}\left(1 - \frac{1}{i}\right) = \frac{1}{k}$$

- Deve-se mostrar que:

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\dots\left(1 - \frac{1}{k}\right)\left(1 - \frac{1}{k+1}\right) = \prod_{i=2}^{k+1}\left(1 - \frac{1}{i}\right) = \frac{1}{k+1}$$

Sabe-se que:

$$\begin{split} \prod_{i=2}^{k+1} \left(1 - \frac{1}{i} \right) &= \prod_{i=2}^{k} \left(1 - \frac{1}{i} \right) \cdot \left(1 - \frac{1}{k+1} \right) \\ &= \left(\frac{1}{k} \right) \cdot \left(1 - \frac{1}{k+1} \right) \\ &= \left(\frac{1}{k} \right) \cdot \left(\frac{(k+1)-1}{k+1} \right) \\ &= \frac{1}{k+1} \end{split}$$

9. Ache a fórmula fechada para a soma

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{(2n-1)\cdot (2n+1)}$$

 \forall inteiros $n \geq 1$ e prove o seu resultado por indução matemática.

Resposta:

Seja a suposição que

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}$$

 \forall inteiros n > 1.

Prova (por indução matemática):

- (a) Passo base: Para n=1, $\frac{1}{(2n-1)\cdot(2n+1)}=\frac{1}{(2\cdot 1-1)\cdot(2\cdot 1+1)}=\frac{1}{1\cdot 3}=\frac{1}{3}$ e a fórmula fechada vale $\frac{1}{2\cdot 1+1}=\frac{1}{3}$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k\geq 1$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{(2k-1)\cdot (2k+1)} = \frac{k}{2k+1}$$

- Deve-se mostrar que:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{(2(k+1)-1)\cdot (2(k+1)+1)} = \frac{k+1}{2(k+1)+1}$$

ou equivalentemente,

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{(2k+1)\cdot (2k+3)} = \frac{k+1}{2k+3}$$

Sabe-se que:

$$\frac{1}{1\cdot 3} + \ldots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2k+1)(2k+3)} = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$

$$= \frac{k(2k+3)}{(2k+1)(2k+3)} + \frac{1}{(2k+1)(2k+3)}$$

$$= \frac{2k^2 + 3k + 1}{(2k+1)(2k+3)}$$

$$= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$

$$= \frac{k+1}{2k+3}$$

10. Ache a fórmula fechada para a soma

$$\sum_{i=2}^{n} \frac{1}{(i-1)i},$$

 \forall inteiros $n \geq 2$ e prove o seu resultado por indução matemática.

Resposta:

Seja a suposição que

$$\sum_{i=2}^{n} \frac{1}{(i-1)i} = 1 - \frac{1}{n}$$

 \forall inteiros $n \geq 2$. Deve-se provar que de fato essa suposição é verdadeira.

Prova (por indução matemática):

- (a) Passo base: Para n=2, os dois lados da equação valem $\frac{1}{2}$. O passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k\geq 2$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$\sum_{i=2}^{k} \frac{1}{(i-1)i} = 1 - \frac{1}{k}, k \ge 2.$$

- Deve-se mostrar que:

$$\sum_{i=2}^{k+1} \frac{1}{(i-1)i} = 1 - \frac{1}{k+1}, k \ge 2.$$

$$\begin{split} \sum_{i=2}^{k+1} \frac{1}{(i-1)i} &= \sum_{i=2}^{k} \frac{1}{(i-1)i} + \frac{1}{k(k+1)} \\ &= 1 - \frac{1}{k} + \left(\frac{1}{k} - \frac{1}{k+1}\right) \\ &= 1 - \frac{1}{k+1} \end{split}$$

- 11. Prove o seguinte predicado P(n) usando indução matemática:
 - P(n): Qualquer número inteiro positivo $n \geq 8$ pode ser escrito como a soma de 3's e 5's.

Resposta:

Prova (por indução matemática fraca):

- (a) Passo base: $P(n_0) = P(8)$: Para $n_0 = 8$, temos que 8 = 3 + 5 e o predicado P é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $\overline{P(k) \to P(k+1)}$.
 - Suponha que a fórmula seja verdadeira para n = k, i.e.,

$$P(k): k = 3a + 5b,$$

para $a \ge 0$ e $b \ge 0$. [hipótese indutiva]

– Deve-se mostrar que

$$P(k+1): k+1 = 3a' + 5b',$$

para $a' \ge 0$ e $b' \ge 0$.

Dois casos a considerar para k + 1:

(i) $b \neq 0$: É possível substituir um 5 por dois 3's quando é feita a soma de:

$$k+1 = 3a+5b+1$$

$$= 3a+5(b-1)+5+1$$

$$= 3a+2\cdot3+5(b-1)$$

$$= 3a'+5b'$$

(ii) b=0: Neste caso, deve haver pelo menos três 3's para termos valores de $n\geq 9$. Assim, temos:

$$k+1 = 3a+1$$

$$= 3(a-3) + 3\cdot 3 + 1$$

$$= 3a' + 2\cdot 5$$

$$= 3a' + 5b'$$

[Isto era o que devia ser provado.]

12. Suponha que temos selos de 4 e 7 centavos. Prove que é possível ter qualquer valor de postagem de 18 centavos ou mais usando somente esses selos.

Resposta:

Prova (por indução matemática forte):

(a) Passo base: Para os seguintes valores de postagem p é possível usar apenas selos de 4 e 7 centavos.

p	Selos
18	7 + 7 + 4
19	7 + 4 + 4 + 4
20	4+4+4+4+4
21	7 + 7 + 7

Assim, o passo base é verdadeiro.

(b) Passo indutivo: Vamos supor que para todos inteiros p, $18 \le p < k$, p seja um valor de postagem que pode ser obtido apenas com selos de 4 e 7 centavos. Vamos provar que a proposição também é verdadeira para k.

Ao dividirmos k por 4 temos um quociente q e um resto entre 0 e 3. Ao dividirmos os valores de postagem $p \in [18,21]$ temos também como resto os valores entre 0 e 3. Ou seja, k pode ser expresso como um valor de postagem p entre 18 e 21 somando de um fator múltiplo de 4. Formalmente temos que $k \equiv p \mod 4$ para um valor de $p \in [18,21]$. Isto é lido como: k é congruente com p módulo 4, o que significa que existe um valor de $p \in [18,21]$ que quando dividido por 4 deixa o mesmo resto que k quando dividido por 4.

13. Prove por indução matemática que $n^2 < 2^n$, para todos inteiros $n \ge 5$.

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para n=5, a desigualdade $5^2<2^5$ é verdadeira. Assim, o passo base é verdadeiro.
- (b) Passo indutivo: se a afirmação é verdadeira para $n=k, k \geq 5$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$k^2 < 2^k$$

para todos inteiros $k \geq 5$.

- Deve-se mostrar que:

$$(k+1)^2 < 2^{k+1}$$

para todos inteiros $k \geq 5$.

Sabe-se que:

$$(k+1)^2 = k^2 + 2k + 1 < 2^k + 2k + 1$$

pela hipótese indutiva. Sabe-se também que

$$2k + 1 < 2^k$$

para k > 3. Colocando estas desigualdades juntas, temos;

$$(k+1)^2 < 2^k + 2k + 1 < 2^k + 2^k$$

14. Seja a seqüência a_1, a_2, a_3, \ldots definida como

$$a_1 = 3$$

$$a_k = 7a_{k-1}, \forall \text{ inteiros } k \geq 2$$

Prove por indução matemática que $a_n = 3 \cdot 7^{n-1}$ para todos os inteiros $n \ge 1$.

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para $n=1, a_n=a_1=3\cdot 7^{1-1}=3\cdot 1=3$. O passo base é verdadeiro.
- (b) Passo indutivo: se a afirmação é verdadeira para $n=k, k\geq 1$ então deve ser verdadeira para $n=k, k\geq 1$ en
 - Hipótese indutiva:

$$a_k = 3 \cdot 7^{k-1}$$

para todos inteiros $k \geq 1$.

- Deve-se mostrar que:

$$a_{k+1} = 3 \cdot 7^{(k+1)-1} = 3 \cdot 7^k$$

para todos inteiros $k \geq 1$.

Sabe-se que:

$$a_{k+1} = 7a_k,$$
 \forall inteiros $k \ge 2$
= $7 \cdot (3 \cdot 7^{k-1})$ Hipótese indutiva
= $3 \cdot 7^k$

15. Seja a seqüência a_1, a_2, a_3, \ldots definida como

$$a_1 =$$

$$a_2 = 3$$

$$a_k = a_{k-2} + 2a_{k-1}, \forall \text{ inteiros } k \geq 3$$

Prove por indução matemática que a_n é impar para todos os inteiros $n \ge 1$.

Resposta:

Prova (por indução matemática forte):

- (a) Passo base: A propriedade é verdadeira para n=1 e n=2, já que $a_1=1$ e $a_2=3$, que são ímpares.
- (b) Passo indutivo: Se k > 2 e a propriedade é verdadeira para todos $i, 1 \le i < k$, então deve ser verdadeira para n = k.
 - Hipótese indutiva: Seja k > 2 um inteiro e suponha que a_i é ímpar para todos os inteiros $i, 1 \le i < k$.
 - Deve-se mostrar que a_k é impar. Sabe-se pela definição de

$$a_1, a_2, a_3, \dots, a_n = a_{k-2} + 2a_{k-1}$$

Sabe-se também que a_{k-2} é impar pela hipótese indutiva, já que $1 \le k-2 < k$ e k > 2, e $2a_{k-1}$ é par, pela definição de número par. Assim,

$$a_{k-2} + 2a_{k-1}$$

é a soma de um número ímpar e um número par, que dá como resultado sempre um número ímpar.

16. Seja a seqüência g_0, g_1, g_2, \ldots definida como

$$g_0 = 12$$

 $g_1 = 29$
 $g_k = 5g_{k-1} - 6g_{k-2}, \forall \text{ inteiros } k \ge 2$

Prove por indução matemática que $g_n = 5 \cdot 3^n + 7 \cdot 2^n$ para todos os inteiros $n \ge 0$.

Resposta

Prova (por indução matemática forte):

- (a) Passo base: Para n=0, temos que $g_0=5\cdot 3^0+7\cdot 2^0=5\cdot 1+7\cdot 1=12$ e para n=1, temos que $g_1=5\cdot 3^1+7\cdot 2^1=5\cdot 3+7\cdot 2=29$. Logo, o passo base é verdadeiro.
- (b) Passo indutivo: Se k > 1 e a propriedade é verdadeira para todos $i, 1 \le i < k$, então deve ser verdadeira para n = k.
 - Hipótese indutiva: Seja k > 1 um inteiro e suponha que $g_k = 5 \cdot 3^k + 7 \cdot 2^k$ para todos os inteiros i, $1 \le i \le k$.
 - Deve-se mostrar que $g_k = 5 \cdot 3^k + 7 \cdot 2^k$ para n = k. Sabe-se que:

$$g_k = 5g_{k-1} - 6g_{k-2}$$

$$= 5(5 \cdot 3^{k-1} + 7 \cdot 2^{k-1}) - 6(5 \cdot 3^{k-2} + 7 \cdot 2^{k-2})$$

$$= 25 \cdot 3^{k-1} + 35 \cdot 2^{k-1} - 30 \cdot 3^{k-2} - 42 \cdot 2^{k-2}$$

$$= 3^{k-2}(25 \cdot 3 - 30) + 2^{k-2}(35 \cdot 2 - 42)$$

$$= 3^{k-2} \cdot 45 + 2^{k-2} \cdot 28$$

$$= 3^{k-2}(9 \cdot 5) + 2^{k-2}(4 \cdot 7)$$

$$= 5 \cdot 3^k + 7 \cdot 2^k$$

17. Seja a seqüência h_0, h_1, h_2, \ldots definida como

$$\begin{array}{rcl} h_0 & = & 1 \\ h_1 & = & 2 \\ h_2 & = & 3 \\ h_k & = & h_{k-1} + h_{k-2} + h_{k-3}, \forall \text{ inteiros } k \geq 3 \end{array}$$

Prove por indução matemática que $h_n \leq 3^n$ para todos os inteiros $n \geq 0$.

Resposta:

Prova (por indução matemática forte):

(a) Passo base: A propriedade é verdadeira para

$$\begin{array}{c|ccc} n & h_n & 3^n \\ \hline 0 & h_0 = 1 & 3^0 = 1 \\ 1 & h_1 = 2 & 3^1 = 3 \\ 2 & h_2 = 3 & 3^2 = 9 \end{array}$$

- (b) Passo indutivo: Se k > 2 e a propriedade é verdadeira para todos $i, 1 \le i < k$, então deve ser verdadeira para n = k.
 - Hipótese indutiva: Seja k > 2 um inteiro e suponha que $h_i \leq 3^i$ para todos os inteiros $i, 1 \leq i < k$.
 - Deve-se mostrar que $h_k \leq 3^k$. Sabe-se pela definição de

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$

Sabe-se também que

$$h_{k-1} \le 3^{k-1}$$

$$h_{k-2} \le 3^{k-2}$$

$$h_{k-3} \le 3^{k-3}$$

Logo,

$$h_k = h_{k-1} + h_{k-2} + h_{k-3}$$

$$\leq 3^{k-1} + 3^{k-2} + 3^{k-3}$$

$$\leq 3^{k-3}(3^2 + 3^1 + 1)$$

$$\leq 3^{k-3}(3 \cdot 4)$$

$$< 4 \cdot 3^{k-2} < 3^k$$

já que $4 < 3^2$.

18. Seja a seqüência x_0, x_1, x_2, \ldots definida como

$$x_0 = 0$$

 $x_1 = 1$
 $x_k = 5x_{k-1}^3 + 7x_{k-2}, \forall \text{ inteiros } k \ge 2$

Prove por indução matemática que se k é múltiplo de 3 então x_k é par.

Resposta:

Prova (por indução matemática forte):

(a) Passo base:

Ao observarmos essa sequência temos:

i	x_i	Número
0	0	par
1	1	ímpar
2	$5 \cdot 1^3 + 7 \cdot 1 = 5$	ímpar
3	$5 \cdot 5^3 + 7 \cdot 0 = 632$	par
:	:	:

Para os índices 0 e 3, múltiplos de 3, a proposição está correta e, assim, o passo base é verdadeiro. (Se continuarmos a calcular os próximos valores de x_i veremos que ambos x_4 e x_5 sáo números ímpares e x_6 é par.

(b) Passo indutivo: Se $k \ge 2$ e a propriedade é verdadeira para todos $i, 1 \le i < k$, então deve ser verdadeira para n = k.

- Hipótese indutiva: seja k=3k', ou seja, k é um múltiplo de 3. Os números $x_{3k'-1}$ e $x_{3k'-2}$ são ímpares.
- Deve-se mostrar que $x_{3k'}$ é par. Sabe-se que

$$x_{3k'} = 5x_{3k'-1}^3 + 7x_{3k'-2}.$$

O primeiro termo terá como resultado um número ímpar já que $x_{3k'-1}$ é ímpar que quando elevado a uma potência cúbica multiplicado por um fator ímpar, fornece um número ímpar. O segundo termo terá como resultado um número ímpar já que $x_{3k'-2}$ é ímpar que quando multiplicado por um fator ímpar, fornece um número ímpar. Assim, como $x_{3k'}$ é o resultado da soma de dois números ímpares, temos que $x_{3k'}$ é par.

19. Seja a seqüência a_0, a_1, a_2, \ldots definida como

$$\begin{array}{rcl} a_0 & = & 0 \\ a_1 & = & 0 \\ \\ a_k & = & a_{k-1} + 3^k(k-1), \forall \text{ inteiros } k \geq 2 \end{array}$$

Ache a fórmula fechada para o k-ésimo termo e prove por indução matemática.

Resposta:

Ao observarmos essa sequência temos:

ou seja, o termo

$$a_k = \sum_{i=2}^k (i-1)3^i = \sum_{i=2}^k i3^i - \sum_{i=2}^k 3^i.$$

Calcule essa soma sabendo que:

$$\sum_{i=0}^{n-1} ix^i = \frac{x - nx^n + (n-1)x^{n+1}}{(1-x)^2}.$$

Dica: transforme a soma $\sum_{i=0}^{n-1} ix^i$ em uma soma $\sum_{i=2}^n ix^i$, ou seja, acrescente o termo para i=n e remova os termos para i=0 e i=1.

20. Seja a seqüência a_0, a_1, a_2, \ldots definida como

$$a_0 = 0$$

$$a_1 = 1$$

$$a_k = k - a_{k-1}, \forall \text{ inteiros } k \ge 1$$

12

Ache a fórmula fechada para o k-ésimo termo e prove por indução matemática.

Resposta:

Ao observarmos essa sequência temos:

i	a.
	a_i
0	0
1	1
2	2 - 1 = 1
3	3 - 1 = 2
4	4 - 2 = 2
5	5 - 2 = 3
6	6 - 3 = 3
7	7 - 3 = 4
8	8 - 4 = 4
:	:

ou seja, o termo

$$a_k = \left\lceil \frac{k}{2} \right\rceil.$$

Se k é par então $a_k = \frac{k}{2}$; se k é impar então $a_k = \frac{k+1}{2}$.

Prova (por indução matemática forte):

- (a) Passo base: A propriedade é verdadeira para i = 0..8.
- (b) Passo indutivo: Se k > 2 e a propriedade é verdadeira para todos $i, 0 \le i < k$, então deve ser verdadeira para n = k.
 - Hipótese indutiva: Se i é par então $a_i = \frac{i}{2}$; se i é impar então $a_i = \frac{i+1}{2}$, para $0 \le i < k$.
 - Deve-se mostrar que essa proposição é verdadeira para k.

Sabe-se que $a_k = k - a_{k-1}$. Temos dois casos:

- (i) k é par: $a_k = k a_{k-1} = k \frac{k}{2} = \frac{k}{2}$, já que k-1 é impar e $a_{k-1} = \frac{k-1+1}{2}$. (ii) k é impar: $a_k = k a_{k-1} = k \frac{k-1}{2} = \frac{k+1}{2}$, já que k-1 é par e $a_{k-1} = \frac{k-1}{2}$.
- 21. Prove por indução matemática que $\forall n \geq 1, 3^n 2$ é ímpar.

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para n = 1, $3^1 2 = 1$ é impar. O passo base é verdadeiro.
- (b) Passo indutivo: se a afirmação é verdadeira para $n=k, k\geq 1$ então deve ser verdadeira para $n=k, k\geq 1$ k+1.
 - Hipótese indutiva: $\forall k \geq 1, 3^k 2$ é ímpar.
 - Deve-se mostrar que: $3^{k+1} 2$ é impar.

Sabe-se que: $3^{k+1} - 2 = 3 \cdot 3^k - 2 = 3 \cdot 3^k - 6 + 4 = 3(3^k - 2) + 4$.

Pela hipótese indutiva 3^k-2 é um número ímpar que quando multiplicado por 3 e somado com 4 continua sendo um número ímpar.