> library(NCStats)

> ff <- read.table("http://www.ncfaculty.net/dogle/R/Data_Master/R/FlyingFox1.txt",header=TRUE)

> str(ff)

```
'data.frame': 223 obs. of 3 variables:
$ forearm.len: num 152 154 157 157 158 ...
$ body.mass : num 779 788 839 761 763 ...
$ sex : Factor w/ 3 levels "female", "male", ..: 2 2 2 2 2 2 2 2 2 2 2 ...
```

> ff\$sex <- factor(ff\$sex,levels=c("young","male","female"))</pre>

> table(ff\$sex)

```
young male female 79 75 69
```

> lm1 <- lm(body.mass~forearm.len*sex,data=ff)

> transChooser(lm1,show.stats=TRUE)

> anova(lm1)

Response: body.mass

> compSlopes(lm1)

Multiple Slope Comparisons

	comparison	diff	lwr	upr	raw.p	adj.p
1	male-young	5.67494	0.80082	10.54905	0.02270	0.06178
2	female-young	-0.08093	-4.76632	4.60445	0.97287	0.97287
3	female-male	-5.75587	-11.27945	-0.23228	0.04119	0.06178

Slope Information

```
level slopes lwr upr raw.p adj.p
3 female 7.2419 3.4534 11.030 0.00021 0.00021
1 young 7.3229 4.5661 10.080 0.00000 0.00000
2 male 12.9978 8.9782 17.017 0.00000 0.00000
```

> compIntercepts(lm1)

Tukey HSD on adjusted means assuming parallel lines.

```
comparison diff lwr upr p.adj
1 male-young 274.22 247.00 301.44 0
2 female-young 117.43 89.61 145.25 0
3 female-male -156.79 -184.95 -128.63 0

Mean adjusted values at a covariate value of 154.9
```

```
Mean adjusted values at a covariate value of 154.9
young male female
```

490.56 764.78 607.99

body.mass ~ forearm.len * sex

471.0677 723.9145 619.1563

```
> ff$log.bm <- log(ff$body.mass)
```

> ff\$log.fl <- log(ff\$forearm.len)

> lm2 <- lm(log.bm~log.fl*sex,data=ff)

> anova(lm2)

Response: log.bm

Df Sum Sq Mean Sq F value Pr(>F)

log.fl 1 31.4080 31.4080 2588.8126 < 2e-16 ***

sex 2 1.8891 0.9445 77.8534 < 2e-16 ***

log.fl:sex 2 0.0606 0.0303 2.4973 0.08467 .

Residuals 217 2.6327 0.0121

> compSlopes(lm2)

Multiple Slope Comparisons

	comparison	alii	IWr	upr	raw.p	adj.p
1	male-young	-0.43715	-1.6134	0.73908	0.46465	0.46465
2	female-young	-1.26771	-2.3880	-0.14740	0.02675	0.08025
3	female-male	-0.83056	-2.2220	0.56091	0.24070	0.36105

Slope Information

level slopes lwr upr raw.p adj.p
3 female 1.7103 0.75957 2.6610 0.00048 0.00048
2 male 2.5409 1.52483 3.5569 0.00000 0.00000
1 young 2.9780 2.38538 3.5706 0.00000 0.00000

> compIntercepts(lm2)

Tukey HSD on adjusted means assuming parallel lines.

```
comparison diff lwr upr p.adj
1 male-young 0.43712 0.39502 0.47921 0
2 female-young 0.24246 0.19944 0.28548 0
3 female-male -0.19465 -0.23821 -0.15110 0
```

Mean adjusted values at a covariate value of 5.039 young male female

6.1314 6.5685 6.3739

> fitPlot(lm2,legend="topleft",col="gray")

log.bm ~ log.fl * sex

> predict(lm2,data.frame(log.fl=c(5.04,5.04,5.04),sex=c("young","male","female"))) $1 \qquad 2 \qquad 3$

6.172781 6.575204 6.419336

> library(NCStats)

> d <- readData("C:/aaaWork/Consulting/Kennedy (Tony) -- 50maturity/NewData.csv")</pre>

> str(d)

> d\$Maturity <- factor(d\$Maturity)</pre>

- > glm1 <- glm(Maturity~TL,data=d,family=binomial)</pre>
- > fitPlot(glm1,main="",xlab="Total Length (mm)",ylab="Maturity Code")

> summary(glm1)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) -27.619919 2.314125 -11.94 <2e-16 *** TL 0.068230 0.005738 11.89 <2e-16 *** (Dispersion parameter for binomial family taken to be 1) Null deviance: 948.93 on 734 degrees of freedom
```

Residual deviance: 355.00 on 733 degrees of freedom

AIC: 359