Import Libraries

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
```

tin-1')	encoding='lat	ads\adult.csv',	ELL\Downloa	\Users\D	d_csv(r'C:\	d.read	df = po
							df
occupation	marital.status	education.num	education	fnlwgt	workclass	age	
?	Widowed	9	HS-grad	77053	?	90	0
Exec- managerial	Widowed	9	HS-grad	132870	Private	82	1
?	Widowed	10	Some- college	186061	?	66	2
Machine- op-inspct	Divorced	4	7th-8th	140359	Private	54	3
Prof- specialty	Separated	10	Some- college	264663	Private	41	4
						•••	•••
Protective- serv	Never- married	10	Some- college	310152	Private	22	32556
Tech- support	Married-civ- spouse	12	Assoc- acdm	257302	Private	27	32557
Machine- op-inspct	Married-civ- spouse	9	HS-grad	154374	Private	40	32558
Adm- clerical	Widowed	9	HS-grad	151910	Private	58	32559
Adm- clerical	Never- married	9	HS-grad	201490	Private	22	32560

Exploratory Data Analysis

Check shape of dataset

```
In [4]:
        df.shape
Out[4]: (32561, 15)
        Preview dataset
In [5]:
        df.head()
Out[5]:
                           fnlwgt education education.num marital.status occupation relati
            age workclass
                                                         9
                                                                                   ?
         0
            90
                            77053
                                     HS-grad
                                                                Widowed
                                                                               Exec-
         1
             82
                   Private 132870
                                                         9
                                                                Widowed
                                     HS-grad
                                                                           managerial
                                      Some-
         2
                        ? 186061
                                                        10
                                                                Widowed
                                                                                       Unr
                                     college
                                                                            Machine-
         3
             54
                   Private 140359
                                     7th-8th
                                                                 Divorced
                                                                                       Unr
                                                         4
                                                                            op-inspct
                                                                                Prof-
                                      Some-
            41
                   Private 264663
                                                        10
                                                                Separated
                                                                                        Ow
                                     college
                                                                             specialty
        View summary of dataframe
In [7]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 32561 entries, 0 to 32560
       Data columns (total 15 columns):
        #
            Column
                            Non-Null Count
                                            Dtype
            -----
        0
            age
                            32561 non-null
                                            int64
                            32561 non-null
        1
                                            object
            workclass
        2
           fnlwgt
                            32561 non-null int64
        3
           education
                            32561 non-null object
        4
            education.num
                            32561 non-null int64
        5
            marital.status 32561 non-null object
                            32561 non-null object
            occupation
        7
            relationship
                            32561 non-null object
        8
            race
                            32561 non-null
                                            object
        9
                            32561 non-null
            sex
                                            object
        10 capital.gain
                            32561 non-null
                                            int64
        11 capital.loss
                            32561 non-null int64
        12 hours.per.week 32561 non-null
                                            int64
        13 native.country 32561 non-null
                                            object
        14 income
                            32561 non-null
                                            object
       dtypes: int64(6), object(9)
       memory usage: 3.7+ MB
In [8]: df[df == '?'] = np.nan
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 32561 entries, 0 to 32560
       Data columns (total 15 columns):
            Column
                      Non-Null Count Dtype
        --- -----
                          -----
                           32561 non-null int64
        0
            age
                         30725 non-null object
        1
           workclass
        2 fnlwgt
                          32561 non-null int64
                         32561 non-null object
        3 education
            education.num 32561 non-null int64
        4
        5 marital.status 32561 non-null object
        6 occupation 30718 non-null object
            relationship 32561 non-null object
        7
        8
            race
                           32561 non-null object
        9
            sex
                          32561 non-null object
        10 capital.gain 32561 non-null int64
                           32561 non-null int64
        11 capital.loss
        12 hours.per.week 32561 non-null int64
        13 native.country 31978 non-null object
        14 income
                           32561 non-null object
        dtypes: int64(6), object(9)
       memory usage: 3.7+ MB
         Impute missing values with mode
        for col in ['workclass', 'occupation', 'native.country']:
In [10]:
             df[col].fillna(df[col].mode()[0], inplace=True)
         Check again for missing values
In [12]:
        df.isnull().sum()
                          0
Out[12]:
         age
         workclass
                          0
         fnlwgt
                          0
         education
         education.num
         marital.status
                          0
         occupation
                          0
         relationship
                          0
         race
                          0
         sex
         capital.gain
         capital.loss
                          0
         hours.per.week
                          0
         native.country
                          0
         income
         dtype: int64
         Setting feature vector and target variable
In [14]: X = df.drop(['income'], axis=1)
         y = df['income']
```

In [15]: X.head()

Out[

[15]:		age	workclass	fnlwgt	education	education.num	marital.status	occupation	relati
	0	90	Private	77053	HS-grad	9	Widowed	Prof- specialty	
	1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	
	2	66	Private	186061	Some- college	10	Widowed	Prof- specialty	Unr
	3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unr
	4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Ow
	4		_	_	_				•

Split data into separate training and test set

```
In [16]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, randometric randome
```

Feature Engineering

Encode categorical variables

```
In [17]: from sklearn import preprocessing

categorical = ['workclass', 'education', 'marital.status', 'occupation', 'relati
for feature in categorical:
    le = preprocessing.LabelEncoder()
    X_train[feature] = le.fit_transform(X_train[feature])
    X_test[feature] = le.transform(X_test[feature])
```

Feature Scaling

```
In [18]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X.columns)
    X_test = pd.DataFrame(scaler.transform(X_test), columns = X.columns)
In [19]: X_train.head()
```

Out[19]:		age	workclass	fnlwgt	education	education.num	marital.status	occupatio
	0	0.101484	2.600478	-1.494279	-0.332263	1.133894	-0.402341	-0.78223
	1	0.028248	-1.884720	0.438778	0.184396	-0.423425	-0.402341	-0.02669
	2	0.247956	-0.090641	0.045292	1.217715	-0.034095	0.926666	-0.78223
	3	-0.850587	-1.884720	0.793152	0.184396	-0.423425	0.926666	-0.53038
	4	-0.044989	-2.781760	-0.853275	0.442726	1.523223	-0.402341	-0.78223
	4		_	_				>

Logistic Regression model with all features

```
In [20]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score

logreg = LogisticRegression()
    logreg.fit(X_train, y_train)
    y_pred = logreg.predict(X_test)

print('Logistic Regression accuracy score with all the features: {0:0.4f}'. form
```

Logistic Regression accuracy score with all the features: 0.8218

Logistic Regression with PCA

```
In [21]: from sklearn.decomposition import PCA
    pca = PCA()
    X_train = pca.fit_transform(X_train)
    pca.explained_variance_ratio_
```

```
Out[21]: array([0.14757168, 0.10182915, 0.08147199, 0.07880174, 0.07463545, 0.07274281, 0.07009602, 0.06750902, 0.0647268, 0.06131155, 0.06084207, 0.04839584, 0.04265038, 0.02741548])
```

Logistic Regression with first 13 features

```
In [22]: X = df.drop(['income', 'native.country'], axis=1)
y = df['income']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, randound categorical = ['workclass', 'education', 'marital.status', 'occupation', 'relatifor feature in categorical:
    le = preprocessing.LabelEncoder()
    X_train[feature] = le.fit_transform(X_train[feature])
    X_test[feature] = le.transform(X_test[feature])

X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X.columns)

X_test = pd.DataFrame(scaler.transform(X_test), columns = X.columns)

logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

```
y_pred = logreg.predict(X_test)
print('Logistic Regression accuracy score with the first 13 features: {0:0.4f}'
```

Logistic Regression accuracy score with the first 13 features: 0.8213

Logistic Regression with first 12 features

Logistic Regression accuracy score with the first 12 features: 0.8227

Logistic Regression with first 11 features

Logistic Regression accuracy score with the first 11 features: 0.8186

Select right number of dimensions

The number of dimensions required to preserve 90% of variance is 12

Plot explained variance ratio with number of dimensions

```
In [28]: plt.figure(figsize=(8,6))
    plt.plot(np.cumsum(pca.explained_variance_ratio_))
    plt.xlim(0,14)
    plt.xticks(range(0, 15, 1))
    plt.xlabel('Number of components')
    plt.ylabel('Cumulative explained variance')

Out[28]: Text(0, 0.5, 'Cumulative explained variance')

In [29]: plt.show()
```


Tn []: