设计目录

1.5万吨每年氯苯筛板精馏塔工艺设计计算说明书

- 一、设计任务 二、设计条件
- 三、物性数据
 - (1) 简单物性
 - (2) 饱和蒸汽压
 - (3) 组分的液相密度
 - (4) 组分的表面张力

@toc

1.5万吨每年氯苯筛板精馏塔工艺设计计算说 明书

中国的氯苯行业在国际上占有重要的地位,产量及规模均为世界第一位。作为重要的有机化工基础原料,氯苯类主要用于染料、农药、有机合成工业以及氯乙烯清漆树脂等。一氯苯在国内主要用于合成对、邻硝基氯苯、2,4-二硝基氯苯、二苯醚等,并有少量用作农药合成和溶剂。一氯苯作为氯碱生产企业平衡氯气的耗氯产品之一,国内氯苯装置基本都是在氯碱企业的基础上建立的,并配套建设硝基氯苯装置。国内60%左右的氯苯产量用于供企业配套硝基氯苯装置自用,40%外销商品量及出口1。

一氯苯深度氯化可得对二氯苯和邻二氯苯,这两种产品都是重要的有机化工原料,主要用于杀虫剂、防霉剂、防臭剂及 2.5-二硝基氯苯以及工程塑料聚苯硫醚、农用化学品、染料化学品等的生产。

一氯苯的工业生产主要采用苯液相氯化法。 苯与氯气在铁催化剂作用下连续氯化生成氯化液及氯化氢, 氯化氢气体进入回收装置用水吸收得副产盐酸。 氯化液经水洗、中和、干燥,再经初馏脱苯、精馏蒸出 氯苯。塔釜中残留物为二氯苯及多氯化物。苯氯化反应式为:

$$C_6H_6 + Cl_2 \xrightarrow{Fe/FeCl_3} C_6H_5Cl + C_6H_4Cl_2 + C_6H_3Cl_3 + HCl + Q \tag{1}$$

氯苯生产工艺流程框图如图 1所示。

本设计试根据设计条件设计一座筛板塔完成苯-氯苯二元混合反应产物液的精馏分离,且暂不考虑苯氯化反应液中二氯化苯和三氯化苯的存在。

一、设计任务

- 1. 年产氯苯 15000t;
- 2. 原料液中含苯 65% (质量分数,下同),即含氯苯 35%;
- 3. 塔底氯苯产品纯度 99.8%, 塔顶馏出液中含氯苯不高于 1%。

二、设计条件

- 1. 塔顶压力: 4kpa (表压);
- 2. 进料热状态:饱和液体进料 (q=1);
- 3. 塔釜加热蒸汽压力: 506kpa;
- 4. 单板压降: 不大于0.7kpa;
- 5. 工时: 24 小时连续运行, 每年运行时间 7000h;
- 6. 回流比: 自定。

三、物性数据

根据 2 获取苯的物性数据, 3 获取氯苯的物性数据。根据 4 进行单位换算工作。以下代表物质的下标中,使用 A代表苯, B代表氯苯

(1) 简单物性

苯的分子量为78.115, 苯的沸点为80.1℃; 3 氯苯的分子量为112.559, 沸点Tb=131.7℃。

(2) 饱和蒸汽压

数据来源中,不同温度下,饱和蒸汽压的单位并不统一,,按照 1mmHg=0.1333kPa , 1atm=101.33kPa 进行换算。

组分的饱和蒸汽压随温度关系如下表所示:

温度 /° C	p_A°/kpa	p_B°/kpa
10	6.069	-
20	10.024	-
30	15.871	2.099
40	24.308	3.52
50	36.079	5.678
60	52.063	8.846
70	73.256	13.371
80	100.763	19.654
90	135.78	28.143
100	176.943	39.748
110	234.376	53.393
120	300.342	73.008
130	379.582	96.684
140	473.616	126.042

(3) 组分的液相密度

数据来源中,液相密度单位为 g/cm^3 ,统一化为 kg/m^3

组分的液相密度如下表所示:

温度/°C	$ ho_A/kpa$	$ ho_B/kpa$
10	887.3	1118
20	877.4	1107
30	867.5	1097
40	857.3	1086
50	847.0	1075
60	836.6	1064
70	825.9	1053
80	815.0	1042
90	803.9	1031
100	792.5	1019
110	780.8	1008
120	768.9	996.4
130	756.7	984.7
140	744.1	972.9

进行线性拟合可得:

$$\rho_A = 912.13 - 1.1886t
\rho_B = 1124.4 - 1.0657t$$
(2)

(4) 组分的表面张力

^{1.} 任志远,陈楠.氯苯行业生产现状及二恶英类污染物管理分析[J].中国氯碱, 2013,(12):26~29€

^{2.} 卢焕章等. 石油化工基础数据手册[M]. 化学工业出版社,1982:306€

^{3.} 卢焕章等. 石油化工基础数据手册[M]. 化学工业出版社,1982:458<u>↔</u>

^{4.} 管国锋等.化工原理(第四版)[M]. 化学工业出版社, 2015:附录 1€