Lecture 7

Discrete logarithm problems, handbook RSA

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

23.11.16 version 1.0

Plan

- 1. Discrete logarithm problem
 - 1. over \mathbb{Z}_p^* and its subgroups
 - 2. over elliptic curves

2. RSA

- 1. RSA as an operation over \mathbb{Z}_{N}^{*}
- 2. algebraic properties of RSA
- 3. algorithmic question about quadratic residues over \mathbb{Z}_{N}^{*}
- 4. group Z_N vs Z_N^*

From the last exercises:

 $f: \{0, ..., p-1\} \rightarrow Z_p^*$ defined as $f(x) = g^x$ is believed to be a **one-way function** (informally speaking),

This is an **informal statement** since the function f depends on p.

To make it formal we would need to define a notion of a **one-way function family parametrized by a parameter** *p* (chosen according to some distribution).

We will do it later.

A problem

 $f: \{0, ..., p-1\} \rightarrow Z_p^*$ defined as $f(x) = g^x$ is believed to be a **one-way function** (informally speaking),

but

from f(x) one can compute the parity of x.

We now show how to do it.

Quadratic Residues

Definition

a is a quadratic residue modulo p if there exists b such that

$$a = b^2 \mod p$$

 QR_p – a set of quadratic residues modulo p

 \mathbf{QR}_{p} is a subgroup of \mathbf{Z}_{p}^{*}

$$\mathsf{QNR}_p := \pmb{Z}_p^* \setminus \mathsf{QR}_p$$

Why?

because:

- $1 \in QR$
- if $a, a' \in QR$ then $a \cdot a' \in QR$

What is the size of QR_p ?

Example: **QR**₁₁

A proof that $|\mathbf{QR}_p| = (p-1)/2$

Observation

Let g be a generator of Z_p^* .

Then
$$QR_p = \{g^2, g^4, ..., g^{p-1}\}$$
.

Proof

Every element $x \in \mathbb{Z}_p^*$ is equal to g^i for some i.

Hence $x^2 = g^{2i \mod (p-1)} = g^j$, where j is even.

7

Example: $QR_{11} = \{1, 4, 5, 9, 3\}$

Is it easy to test if $a \in QR_p$ Yes!

Observation

$$a \in QR_p \text{ iff } a^{(p-1)/2} = 1 \pmod{p}$$

Proof

If $a \in QR_p$ then $a = g^{2i}$ (for $i \in N$).

Hence:

$$a^{(p-1)/2} = (g^{2i})^{(p-1)/2}$$

$$= g^{i \cdot (p-1)}$$

$$= 1.$$

$$a \in QR_p \text{ iff } a^{(p-1)/2} = 1 \pmod{p}$$

Suppose *a* is **not** a **quadratic** residue.

Then $a = g^{2i+1}$ (for $i \in \mathbb{N}$). Hence

$$a^{(p-1)/2} = (g^{2i+1})^{(p-1)/2}$$

$$= g^{i \cdot (p-1)} \cdot g^{(p-1)/2}$$

$$= g^{(p-1)/2}$$

which cannot be equal to $\mathbf{1}$ since \mathbf{g} is a generator.

Example Z_{11}^*

$$\frac{11-1}{2}=5$$

another way to look at it:

Not a coincidence:

$$x^{(p-1)/2} \in \{-1, 1\}$$

Consequence

```
g – a generator of Z_p^*
f: \{0, ..., p-1\} \rightarrow Z_p^* defined as f(x) = g^x is a
 one-way function, but
     from f(x) one can compute the parity of x
             (by checking if f(x) \in \mathbb{QR})...
For some applications this is not good.
                    (but sometimes people don't care)
```

How to compute square roots modulo a prime *p*?

Yes!

We show it only for $p = 3 \pmod{4}$ (for $p = 1 \pmod{4}$) this fact also holds, but the algorithm and the proof are more complicated).

How to compute a square root of x?

Method over reals: compute $x^{\frac{1}{2}}$

Problem: $\frac{1}{2}$ doesn't make sense in \mathbb{Z}_n^* ...

Write: p = 4m + 3 (where $m \in \mathbb{N}$).

Hence: $|\mathbf{QR}_p|$ is equal to:

$$\frac{p-1}{2} = \frac{4m+2}{2} = 2m+1$$

Fact: $\sqrt{x} = x^{m+1}, -x^{m+1}$

Proof:

$$(x^{m+1})^{2} = x^{2 \cdot (m+1)}$$

$$= x^{2m+2}$$

$$= x^{2m+1} \cdot x$$

$$= x$$

Of course also: $(-x^{m+1})^2 = (x^{m+1})^2 = x$

 $x^{2m+1} = 1$ because of this

What to do?

Instead of working in \mathbb{Z}_p^* work in its subgroup: \mathbb{QR}_p

How to find a generator of QR_p ?

A practical method: Choose **p** that is a **strong prime**, which means that:

 $p = 2 \cdot q + 1$, with q prime.

Hence: QR_p has a prime order (q).

Every element (except of 1) of a group of a prime order is its **generator**!

Therefore: every element of QR_p is a generator.

Example

11 is a strong prime (because 5 is a prime)

Plan

- 1. over \mathbb{Z}_p^* and its subgroups
- 2. over elliptic curves

2. RSA

- 1. RSA as an operation over \mathbb{Z}_{N}^{*}
- 2. algebraic properties of RSA
- 3. algorithmic question about quadratic residues over \mathbb{Z}_{N}^{*}
- 4. group Z_N vs Z_N^*

Elliptic curves over the reals

Let $a, b \in R$ be two numbers such that

$$4a^3 + 27b^2 \neq 0$$

A non-singular elliptic curve is a set E of solutions $(x, y) \in \mathbb{R}^2$ to the equation

$$y^2 = x^3 + ax + b$$

together with a special point O called the **point in infinity**.

Example $y^2 = 4x^3 - 4x + 4$

Abelian group over an elliptic curve

E – elliptic curve

$$(E, +)$$
 – a group

neutral element: O

inverse of P = (x, y):

$$-P = (x, -y)$$

"Addition"

Suppose that $P, Q \in E \setminus \{\mathcal{O}\}$ where $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.

Consider the following cases:

- 1. $x_1 \neq x_2$
- 2. $x_1 = x_2$ and $y_1 = -y_2$
- 3. $x_1 = x_2$ and $y_1 = y_2$.

Case 1:
$$x_1 \neq x_2$$

$$P = (x_1, y_1)$$
 and $Q = (x_2, y_2)$

L – line through **P** and **Q**

Fact

L intersects *E* in exactly one point $R = (x_3, y_3)$.

Where:

$$x_3 = \lambda^2 - x_1 - x_2$$

 $y_3 = \lambda(x_1 - x_3) - y_1$

and

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$

Case 2:

$$x_1 = x_2$$
 and $y_1 = -y_2$

$$P = (x_1, y_1)$$
 and $Q = (x_2, y_2)$

$$P + Q = \mathcal{O}$$

Case 3:

$$x_1 = x_2$$
 and $y_1 = y_2$

$$P = (x_1, y_1)$$
 and $Q = (x_2, y_2)$

L – line tangent to **E** at point **R**

Fact

L intersects *E* in exactly one point

$$R = (x_3, y_3).$$

Where:

$$x_3 = \lambda^2 - x_1 - x_2$$

 $y_3 = \lambda(x_1 - x_3) - y_1$

and

$$\lambda = \frac{3x_1^2 \cdot y_2 + a}{2y_1}$$

How to prove that this is a group?

Easy to see:

- set *E* is closed under addition
- addition is commutative
- O is an identity
- every point has an inverse

What remains is associativity (exercise).

How to use these groups in cryptography?

Instead of the reals use some finite field.

For example: Z_p where p is prime.

All the formulas remain the same!

Example

X	x ³ + x + 6 mod 11	quadratic residue?	y
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

Hasse's Theorem

Let E be an elliptic curve defined over Z_p where p > 3 is prime.

Then:

$$p+1-2\cdot\sqrt{p}\leq |E|\leq p+1+2\cdot\sqrt{p}$$

How to use the elliptic curves in cryptography?

(E, +) - elliptic curve

Sometimes (E, +) is cyclic or it contains a large cyclic group (E', +).

There exist examples of such (E, +) or (E', +) where the **discrete-log problem** is believed to be **computationally hard**!

Plan

- 1. Discrete logarithm problem
 - 1. over \mathbb{Z}_p^* and its subgroups
 - 2. over elliptic curves

2. RSA

- 1. RSA as an operation over \mathbb{Z}_{N}^{*}
- 2. algebraic properties of RSA
- 3. algorithmic question about quadratic residues over \mathbb{Z}_{N}^{*}
- 4. group Z_N vs Z_N^*

A "problem" with the discrete log

In order to perform operations in a group G (where $G = Z_p$, or QR_p , or is an elliptic curve):

one needs to **know the full description of this group** (e.g.: **p**)

So "everybody can perform the same operations".

Main idea of the **RSA**: work in a group where

- everybody can multiply
- but the order of a group is hidden, and some operations are hard without knowing it.

RSA group: \mathbf{Z}_{N}^{*} , where $\mathbf{N} = \mathbf{p} \cdot \mathbf{q}$ and \mathbf{p} , \mathbf{q} are distinct odd primes

On the last exercises we presented the following picture

Example: p = 5, q = 7

$x \mod 7$

 $x \mod 5$

Which problems are easy and which are hard in \mathbb{Z}_{N}^{*} (N = pq)?

multiplying elements?

easy!

finding inverse?

easy! (Euclidean algorithm)

• computing $\varphi(N)$?

hard! - as hard as factoring N

raising an element to power e
 (for a large e)?

easy!

computing eth root (for a large e)?

Computing eth roots modulo N

We want to invert a function:

$$f: Z_N^* \to Z_N^*$$
defined as
 $f(x) = x^e \mod N$.

This is possible only if f is a permutation.

<u>Lemma</u>

f is a permutation if and only if $e \perp \varphi(N)$.

In other words: $e \in \mathbb{Z}_{\varphi(N)}^*$ (note: a "new" group!)

" $f(x) = x^e \mod N$ is a permutation

"
$$f(x) = x^e \mod N$$
 is a permutation if and only if $e \perp \varphi(N)$."

1.
$$e \perp \varphi(N)$$

$$f(x) = x^e \mod N$$
 is a permutation

Let **d** be an inverse of **e** in $Z_{\varphi(N)}^*$. That is: **d** is such that $d \cdot e = 1 \mod \varphi(N)$.

Then:
$$(f(x))^d = (x^e)^d = x^{ed} = x^{ed \mod \varphi(N)} = x^1$$

$$e \perp \varphi(N)$$

 $f(x) = x^e \mod N$ is a permutation

[exercise]

Computing eth root – easy, or hard?

Suppose $e \perp \varphi(N)$.

We have shown that the function

$$f(x) = x^e$$
 (defined over Z_N^*)

has an inverse

$$f^{-1}(x) = x^d$$
, where **d** is an inverse of **e** in $Z_{\varphi(N)}^*$

Moral:

If we know $\varphi(N)$ we can compute the roots efficiently.

What if we don't know $\varphi(N)$?

Can we compute the eth root if we do not know $\varphi(N)$?

It is conjectured to be hard.

This conjecture is called an **RSA assumption**:

cannot compute y such that $y^e = x$

More formally

RSA assumption

For any randomized polynomial time algorithm *A* we have:

$$P(y^e = x \mod N: \ y := A(x, N, e))$$

is negligible in $|N|$

where N = pq where p and q are random primes such that

|p| = |q|, and x is a random element of Z_N^* , and e is a random element of $Z_{\varphi(N)}^*$.

What can be shown?

Does the **RSA assumption** follow from the assumption that factoring is hard?

We don't know...

What can be shown is that

computing d from e is not easier than factoring N.

How is it proven?

One needs to show that from d and e one can compute the factors of N.

Note: $de = 1 \mod \varphi(N)$.

One can show that the knowledge of a multiple of $\varphi(N)$ suffices to factor N.

Functions like this are called **trap-door one-way permutations**. f is called an **RSA function** and is extremely important. We will denote it **RSA**_{e,N}.

Outlook

N – a product of two large primes

Plan

- 1. Discrete logarithm problem
 - 1. over \mathbb{Z}_p^* and its subgroups
 - 2. over elliptic curves

2. RSA

- 1. RSA as an operation over \mathbb{Z}_{N}^{*}
- 2. algebraic properties of RSA
- 3. algorithmic question about quadratic residues over \mathbb{Z}_{N}^{*}
- 4. group Z_N vs Z_N^*

Handbook RSA – an algebraic view

Take \mathbb{Z}_{N}^{*} (where $\mathbb{N} = pq$ and p, q are two distinct odd primes), defined as follows:

- $e \leftarrow Z_{\varphi(N)}^*$
- $d = e^{-1} \mod \varphi(N)$

 $\mathbf{RSA}_{e,N}$ is a **permutation of** \mathbf{Z}_{N}^{*} defined as follows:

- $RSA_{e,N}(m) = m^e$
- $RSA_{e,N}^{-1}(c) = c^d$

equal to $RSA_{d,N}(m)$

We have:

$$RSA_{e,N}^{-1}(RSA_{e,N}(m)) = (m^e)^d = m^{ed} = m^1 = m$$

Algebraic properties of RSA

1. RSA is homomorphic:

$$RSA_{e,N}(m_0 \cdot m_1) = (m_0 \cdot m_1)^e$$

$$= m_0^e \cdot m_1^e$$

$$= RSA_{e,N}(m_1) \cdot RSA_{e,N}(m_2)$$

why is it bad?

By checking if $c = c_0 \cdot c_1$ the adversary can check if the messages m, m_0, m_1 corresponding to c, c_0, c_1 satisfy:

$$m = m_0 \cdot m_1$$

2. The **Jacobi symbol** leaks.

to explain it we will first talk about \mathbf{QRs} in \mathbf{Z}_{N}^{*}

Square roots modulo N = pq

So, far we discussed a problem of computing the eth root modulo N.

What about the case when e = 2?

Clearly $gcd(2, \varphi(N)) \neq 1$, so $f(x) = x^2$ is **not** a bijection.

Question

Which elements have a square root modulo N?

Quadratic Residues modulo pq

Observation: every quadratic residue modulo **15** has **exactly 4** square roots, and hence $|\mathbf{QR_{15}}| = \frac{|\mathbf{Z_{15}^*}|}{4}$.

A lemma about QRs modulo pq

Fact: For N = pq we have $|\mathbf{QR}_N| = |\mathbf{Z}_N^*| / 4$.

Proof:

```
x \in \mathbf{QR}_{N}
iff
x = a^{2} \bmod N, \text{ for some } a
iff (by CRT)
x = a^{2} \bmod p \text{ and } x = a^{2} \bmod q
iff
x \bmod p \in \mathbf{QR}_{p} \text{ and } x \bmod q \in \mathbf{QR}_{q}
```


\mathbf{QR}_{pq} – an example

Every $x \in \mathbb{QR}_N$ has exactly 4 square roots

More precisely, every $z = x^2$ has square roots $x_{+}^{+}, x_{-}^{+}, x_{+}^{-}$, and x_{-}^{-} such that:

- $x_{+}^{+} = x \pmod{p}$ and $x_{+}^{+} = x \pmod{q}$ equals to x
- $x_{-}^{+} = x \pmod{p}$ and $x_{-}^{+} = -x \pmod{q}$
- $x_{+}^{-} = -x \pmod{p}$ and $x_{+}^{-} = x \pmod{q}$
- $x = -x \pmod{p}$ and $x = -x \pmod{q}$

Jacobi Symbol

for any prime
$$p$$
 define $J_p(x) := \begin{cases} +1 & \text{if } x \in \mathbb{QR}_p \\ -1 & \text{otherwise} \end{cases}$

for
$$N = pq$$
 define $J_N(x) := J_p(x) \cdot J_q(x)$

$$J_N(x) :=$$

+1	-1
-1	+1

It is a subgroup of \mathbb{Z}_{N}^{*}

$$Z_N^+$$
: = { $x \in Z_N^*$: $J_N(x) = +1$ }

Jacobi symbol can be computed efficiently!

(even in **p** and **q** are unknown)

Fact: the **RSA** function "preserves" the **Jacobi symbol**

$$N = pq$$
 - RSA modulus

e is such that $\mathbf{e} \perp \boldsymbol{\varphi}(\mathbf{N})$

$$J_N(x) = J_N(x^e \mod N)$$

Actually, something even stronger holds:

 $\mathbf{RSA}_{N,e}$ is a permutation on each "quarter" of \mathbf{Z}_{N}^{*}

In other words:

- $m \mod p \in \operatorname{QR}_p \operatorname{iff} m^e \mod p$ QR_p
- $m \mod q \in \operatorname{QR}_q^-$ iff $m^e \mod q \in \operatorname{QR}_q^-$

Example Z_{35}^*

We calculate $RSA_{23,35}(m) = m^{23} \mod 35$

How to prove it?

By the **CRT** and by the fact that **p** and **q** are symmetric it is enough to show that

```
m is a QR_p
iff
m^e is a QR_p
```

Fact

For an odd e:

 $m^e \mod p$ is a QR_p iff $m \mod p$ is a QR_p

Proof:

Let g be the generator of \mathbb{Z}_p^* . Let y be such that $m = g^y$.

Recall that x is a QR_p iff x is an even power of gObserve that

 $(g^y)^e \mod p$ is an **even** power of g iff $g^y \mod p$ is an **even** power of g.

Because $g^{ye} = g^{ye \mod (p-1)}$ (remember that p and e are odd)

QED

Conclusion

```
The Jacobi symbol "leaks", i.e.:
```

from c

one can compute $J_N(\mathbf{Dec}_{N,d}(c))$

(without knowing the factorization of N)

Is it a big problem?

Depends on the application...

Note: The fact that the Jacobi symbol leaks **does not contradict** the **RSA assumption**.

 $J_N\left(\mathrm{RSA}_{e,N}^{-1}(x)\right)$

Plan

- 1. Discrete logarithm problem
 - 1. over \mathbb{Z}_p^* and its subgroups
 - 2. over elliptic curves

2. RSA

- 1. RSA as an operation over \mathbb{Z}_{N}^{*}
- 2. algebraic properties of RSA
- 3. algorithmic question about quadratic residues over \mathbb{Z}_{N}^{*}
- 4. group Z_N vs Z_N^*

Algorithmic questions about QRs

Suppose N = pq.

Question: Is it easy to test membership in QR_N ?

Answer: if one knows p and q – then yes!

Because:

- 1. testing membership modulo a prime is easy
- 2. the "CRT function"

```
f(x) := (x \bmod p, x \bmod q)
```

can be efficiently computed in both directions

What if one does **not** know p and q?

Quadratic Residuosity Assumption

Quadratic Residuosity Assumption (QRA):

For a random $a \leftarrow Z_N^+$ it is computationally hard

to determine if $a \in QR_N$.

Formally: for every **polynomial-time** probabilistic algorithm **D** the value:

$$\left| P(D(N,a) = Q_N(a)) - \frac{1}{2} \right|$$

(where $a \leftarrow Z_N^+$) is negligible.

Where a predicate

$$Q_N: Z_N^+ \to \{0, 1\}$$
 is defined as follows:

$$Q_N(a) = 1$$
 if $a \in QR_N$

$$Q_N(a) = 0$$
 otherwise

How to compute a square root of $x \in \mathbb{QR}_N$?

Fact

Let N be a random RSA modulus.

The problem of computing square roots (modulo N) of random elements in QR_N is poly-time equivalent to the problem of factoring N.

<u>Proof</u>

We need to show that:

This follows from the fact that computing square roots modulo a prime p is easy.

$$f(x) = (x \mod p, x \mod q)$$
 - the "CRT function"

Suppose we have an algorithm **B** that computes the square roots.

We construct an algorithm A that factors N.

To complete the proof we show that:

1. the probability that y = x or y = -x is equal to $\frac{1}{2}$ (so the probability that it happens k times is 2^{-k})

and

2. If $y \neq x$ and $y \neq -x$ then

$$\gcd(N, x - y) \in \{p, q\}$$

"the probability π that y = x or y = -x is equal to 1/2"

Recall that every $z = x^2$ has square roots $x_+^+, x_-^+, x_-^$ and x such that:

- $x_+^+ = x \pmod{p}$ and $x_+^+ = x \pmod{q}$ equals to x
- $x_{-}^{+} = x \pmod{p}$ and $x_{-}^{+} = -x \pmod{q}$
- $x_{+}^{-} = -x \pmod{p}$ and $x_{+}^{-} = x \pmod{q}$
- $x = -x \pmod{p}$ and $x = -x \pmod{q}$

If we are unlucky it happens that:

Or:

Observation

Since x is **chosen** randomly, thus each $x_{+}^{+}, x_{-}^{+}, x_{+}^{-}$, and x_{-}^{-} is chosen with the same probability.

Therefore the choice of the "strategy of B" doesn't matter!

"If
$$y \neq x$$
 and $y \neq -x$ then $gcd(N, x - y) \in \{p, q\}$."

Suppose *y* is such that

$$y = x \pmod{p}$$
 and $y = -x \pmod{q}$
(the other case is symmetric).

We have: $y - x = 0 \mod p$

Therefore: $p|\gcd(y-x,N)$.

But 0 < |y - x| < N because

- $x, y \in Z_N^*$
- and $x \neq y$

So it has to be the case that gcd(y - x, N) = p

Plan

- 1. Discrete logarithm problem
 - 1. over \mathbb{Z}_p^* and its subgroups
 - 2. over elliptic curves

2. RSA

- 1. RSA as an operation over \mathbb{Z}_{N}^{*}
- 2. algebraic properties of RSA
- 3. algorithmic question about quadratic residues over \mathbb{Z}_{N}^{*}

4. group Z_N vs Z_N^*

The \mathbb{Z}_{N}^{*} group is a bit strange

Some elements of

$$\boldsymbol{Z}_N = \{\boldsymbol{0}, \dots, \boldsymbol{n-1}\}$$

are not there but **you don't know which** if you don't know **p** and **q**.

Is it a problem?

No, for **two** reasons:

- it is hard to find an element in $Z_N^* \setminus Z_N$ (other than 0),
- **RSA** works also over \mathbb{Z}_N ("by accident").

It is **hard to find** an element in $Z_N \setminus Z_N^*$ (other than **0**)

Why?

Example

RSA works also over \mathbb{Z}_N

Suppose *x* is such that

$$x \mod q = 0$$
 and $x \mod p \neq 0$

We show that

$$RSA_{N,d}\left(RSA_{N,e}(x)\right) = x \bmod N$$

By **CRT** it is enough to show that:

this holds because both sides are divisible by *q*

- $x^{ed} = x \mod q$, and
- $x^{ed} = x \mod p$.

Recall that: (p-1)(q-1)|ed-1

Hence: (p-1) | ed - 1

Therefore: $x^{ed-1} = 1 \mod p$

This implies that: $x^{ed} = x \mod p$.

