

Margarella Grazia Santorsa Nicola Pio

INDICE

PROBLEMA

Introduzione al problema e allo stato dell'arte

METODOLOGIA PROPOSTA

Descrizione delle tecniche selezionate

£(3)}

RISULTATI

Descrizione ed analisi dei risultati ottenuti

CONCLUSIONI

Discussione dei risultati e dei possibili sviluppi

INTRODUZIONE AL PROBLEMA

EMOTION RECOGNITION

Riconoscere gli stati emotivi dei soggetti tramite ML e DL

SEGNALI EEG

Segnali cerebrali acquisiti tramite elettrodi sul cuoio capelluto

PREPROCESSING SEGNALI

Attività che rende analizzabili i segnali grezzi catturati dai sensori

DATASET SEED-IV

4 EMOZIONI

Felice, neutro, triste, paura

24 VIDEO X 3 SESSIONI

I 15 soggetti dello studio hanno visualizzato i video ed assegnato una label per ogni video.

DATI OCULARI

Ottenuti tramite eye tracker, processati con PCA

DATI RAW E PROCESSATI

Contenuti in file .mat, campionati a 1000Hz, con DE e PSD

STATO DELL'ARTE

PREPROCESSING

Artifact filtering e Noise Reduction tramite filtri passabanda e split delle frequenze

FEATURE EXTRACTION

Calcolo di statistiche descrittive del segnale

CHANNEL SELECTION

Selezione di canali rilevanti al problema, nel caso delle emozioni sono 6

CLASSIFICAZIONE

Analisi delle feature per classificare i segnali in base all'emozione associata

METODOLOGIA PROPOSTA

PREPROCESSING

Filtro passa-banda 0.3 e 50Hz Downsampling a 200Hz

FEATURE EXTRACTION

PSD DE ASM DASM

MODELLI UTILIZZATI

Vari tra cui RandomForest e LSTM, ma i più performanti sono: Hist Gradient Boost e Bi-GRU

PROTOCOLLI DI VALIDAZIONE

Subject Dependent Subject Independent Subject Biased

FEATURE EXTRACTION

scipy.stats.differential_entropy

Power Spectral Density con il metodo di Welch, scipy.signal.welch

 $\frac{psd_left_hemisphere - psd_right_hemisphere}{psd_left_hemisphere + psd_right_hemisphere}$

 $\frac{|psd_left_hemisphere - psd_right_hemisphere|}{psd_left_hemisphere + psd_right_hemisphere}$

Tengono conto della simmetria nel posizionamento dei sensori

HIST GRADIENT BOOSTING CLASSIFIER

BI-GRU

Recurrent Neural Network

Apprende su flussi di dati temporali

Gated Recurrent Units

Utilizza Reset Gate e Update Gate

Bidirectional

Utilizzo di 2 GRU, una in forward e una in backward

Implementazione

tf.keras.layers.GRU

PROTOCOLLI DI VALIDAZIONE

SUBJECT DEPENDENT

Implementato selezionando per ogni sessione 8 video di test e 16 di train, effettuando la media di tutte le sessioni.

SUBJECT INDEPENDENT

Leave-One-Subject-Out tramite cross validation

SUBJECT BIASED

Split casuale secondo la proporzione 80%-20%

ACCURACY

Per tutte e tre i protocolli di validazione

CONFRONTO

Con RODAN, architettura che si occupa dello stesso problema

RISULTATI SUBJECT DEPENDENT

TABLE I ACCURACY SUBJECT DEPENDENT

	PrePro. Dataset	PrePro. DE	DE SEEDIV
HistGradientBoost	36%	32%	52%
Bi-Gru	*	$20\% \pm 5$	35%
RODAN	14	-	70% ±9.7

RISULTATI SUBJECT INDEPENDENT

TABLE II ACCURACY SUBJECT INDIPENDENT

	PrePro. Dataset	PrePro. DE	DE SEEDIV
HistGradientBoost	$88\% \pm 4$	87% ±4	94%
Bi-Gru	*	*	$75\% \pm 15$
RODAN	-	1=1	$60.75\% \pm 10$

RISULTATI SUBJECT BIASED

TABLE III ACCURACY SUBJECT BIASED

	PrePro. Dataset	PrePro. DE	DE SEEDIV
HistGradientBoost	71%	65%	97%
Bi-Gru	*	33%	40%
RODAN	-	-	98.15% ± 0.2

CONCLUSIONI

MODELLI

Buoni risultati per il ML, meno per il DL

SVILUPPI

Provare altri tipi di preprocessing, anche su altri dati

DATI

Preprocessing proposto

non migliora le

performance rispetto a

GRAZIE A TUTTI
PER L'ATTENZIONE!