Урок 6. Распределения случайных величин (часть 2)

Хакимов Р.И. + ChatGPT

Непрерывные распределения описывают случайные величины, которые могут принимать любое значение в непрерывном интервале. Рассмотрим основные непрерывные распределения: равномерное, нормальное, экспоненциальное, гамма и распределение Коши.

Равномерное распределение распределение описывает случайную величину, которая имеет равные вероятности для всех значений в интервале [a,b]. **Функция плотности вероятности:**

$$f(x) = \frac{1}{b-a}$$

для $a \le x \le b$, и f(x) = 0 в других случаях.

Пример: Если число случайно выбирается из интервала от 0 до 1, его распределение будет равномерным.

Нормальное распределение, или распределение Гаусса, описывает многие естественные явления и статистические измерения. Оно характеризуется двумя параметрами: средним μ и стандартным отклонением σ .

Функция плотности вероятности:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

где μ — среднее значение, σ — стандартное отклонение.

Пример: Рост людей в популяции часто подчиняется нормальному распределению. Если средний рост составляет 170 см, а стандартное отклонение — 10 см, можно использовать нормальное распределение для оценки вероятности того, что рост случайно выбранного человека будет в пределах определенного интервала.

Экспоненциальное распределение описывает время между событиями в процессе с постоянной средней частотой. Оно является частным случаем гамма-распределения с параметром $\alpha=1$.

Функция плотности вероятности:

$$f(x) = \lambda e^{-\lambda x}$$

где λ — параметр распределения (обратный среднему времени до события), $x \geq 0$. Пример: Время ожидания следующего автобуса в автобусной остановке с постоянным интервалом прибытия можно моделировать с помощью экспоненциального распределения.

Экспоненциальное распределение

Задача: Автобусы на остановку приезжают в среднем каждые 15 минут. Какова вероятность того, что следующий автобус придет через 10 минут или меньше? Решение:

- 1. Параметр λ это интенсивность процесса (количество автобусов в единицу времени).
- Если автобус приходит в среднем каждые 15 минут, то λ будет равен $\frac{1}{15}$ автобусов в минуту.
- 2. Экспоненциальное распределение описывает время между событиями, его функция распределения для времени t выглядит так:

$$F(t) = 1 - e^{-\lambda t}$$

 \exists то вероятность того, что событие (прибытие автобуса) произойдет в течение времени t.

Экспоненциальное распределение Решение:

3. Подставляем значения: Нам нужно найти вероятность того, что автобус придет через 10 минут или меньше. Для этого подставим $\lambda=\frac{1}{15}$ и t=10 минут в формулу:

$$F(10) = 1 - e^{-\frac{1}{15} \cdot 10} = 1 - e^{-\frac{2}{3}} \approx 1 - 0.5134 \approx 0.4866$$

4. Результат: Вероятность того, что автобус придет в течение 10 минут, составляет примерно 48.66%.

Гамма распределение обобщает экспоненциальное распределение и моделирует время до k-го события в процессе с постоянной средней частотой. Имеет два параметра: α (форма) и β (масштаб).

Функция плотности вероятности:

$$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$$

где
$$\Gamma(\alpha)$$
 — функция Гамма, α — параметр формы, β — параметр масштаба, $x \geq 0$.
$$\Gamma(z) = \int\limits_0^{+\infty} t^{z-1} e^{-t} \ dt, \quad z \in \mathbb{C}, \quad Re(z) > 0 \text{ - является обощением понятия факториала.}$$

Пример: Если время до поломки устройства можно рассматривать как сумму времени до поломки нескольких компонентов, это может быть смоделировано с помощью гамма распределения.

Распределение Коши имеет "тяжелые хвосты" и используется для моделирования явлений, где экстремальные значения более вероятны, чем в нормальном распределении. Оно характеризуется параметрами: медианой x_0 и масштабом γ .

Функция плотности вероятности:

$$f(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}$$

где x_0 — медиана, γ — параметр масштаба.

Пример: Распределение Коши может быть использовано для моделирования финансовых данных, где резкие колебания цен встречаются чаще, чем предсказывается нормальным распределением.

Свойства непрерывных распределений

Математическое ожидание и дисперсия:

Нормальное распределение: Среднее значение μ и дисперсия σ^2 .

Экспоненциальное распределение: Среднее $\frac{1}{\lambda}$ и дисперсия $\frac{1}{\lambda^2}$.

Гамма распределение: Среднее $\alpha\beta$ и дисперсия $\alpha\beta^2$.

Равномерное распределение: Среднее $\frac{a+b}{2}$ и дисперсия $\frac{(b-a)^2}{12}$.

Распределение Коши: Не имеет конечного математического ожидания и дисперсии.

Свойства непрерывных распределений

Функция распределения (CDF):

Нормальное распределение:
$$F(x) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{-t^2/2} dt$$
.

Экспоненциальное распределение: $F(x) = 1 - e^{-\lambda x}$.

Гамма распределение:
$$F(x) = \frac{\gamma(\alpha, x/\beta)}{\Gamma(\alpha)}$$
.

Равномерное распределение:
$$F(x) = \frac{x-a}{b-a}$$
 для $a \le x \le b$.

Распределение Коши:
$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}$$
.