Identificación de edificios y monumentos a partir de fotografías tomadas con dispositivos móviles

Esteban C. Fornal Christian N. Pfarher Mauro J. Torrez

24 de junio de 2010

Objetivo

Identificar edificios y monumentos a partir de fotos sacadas con el móvil.

Herramientas

Transformada de Hough

Herramientas

- Transformada de Hough
- Histograma

Técnica 1: Transformada de Hough

Umbralizado:

$$f(I) = \begin{cases} 0, & I \le U \\ 255, & I > U \end{cases}$$

Salida: vector de 60 características

Técnica 2: Estadísticas del histograma

Técnica 2: Estadísticas del histograma

Salida: vector de 45 características

Entrenamiento

- Entrada: base de datos de imágenes etiquetadas
- Se generan "prototipos" que promedian las características de las imágenes con igual etiqueta

Clasificación

- Entrada: imagen a clasificar
- Se calculan las características de la imagen a clasificar
- Se etiqueta según el prototipo que minimice el MSE entre sus características y las de la imagen:

$$p_{\text{ganador}} = \arg\min_{i} \left\{ \frac{1}{\sum N_{j}} \sum_{j=1}^{K} \sum_{n=1}^{N_{j}} (t_{j}[n] - p_{ij}[n])^{2} \right\}$$
(1)

- Donde p_i será el prototipo ganador
- Con la etiqueta del prototipo, se encuentra la clase

Armado de la base de datos

- Imágenes de 640x480
- Obtenidas con celular
- Diferentes condiciones de iluminación: día, noche, interiores

Base de datos

Imágenes de prueba (validación)

Obtención de parámetros óptimos para Hough

Determinación de umbral y cantidad de máximos a utilizar

Prueba del método

- Utilizando la técnica de Hough sola
- Utilizando la técnica de histogramas
- Utilizando Hough e histogramas con igual ponderación

Hough+Histogramas

• Igual ponderación

Procedimiento

imagen
$$1 \longrightarrow \{1,2..10\} \longrightarrow \text{prototipo } 1 \longrightarrow \{\text{prueba } 1\} \longleftarrow \text{imagen } 1$$

imagen $2 \longrightarrow \{1,2..10\} \longrightarrow \text{prototipo } 2$
... $\{\text{prueba } 2\} \longleftarrow \text{imagen } 2$
imagen $3\} \longleftarrow \dots$
imagen $5 \longrightarrow \{1,2..10\} \longrightarrow \text{prototipo } 5$
imagen $5 \longrightarrow \{1,2..10\} \longrightarrow \text{prototipo } 5$

Resultados

Se considera la tasa de error según:

$$E_{\%} = 100 \cdot \frac{\text{n\'umero de errores}}{\text{n\'umero de pruebas}},$$

Tasas de error para las técnicas de extracción de características

Técnica	5 etiquetas	15 etiquetas
Histogramas	0%	0%
Hough	35.5%	60.43%
Ambas	2.22%	4.17%

Conclusiones

- Satisfactorio coinciderando restricciones
- Optimización para dispositivos móviles
- Preprocesamiento de la imágen

Trabajos futuros

- Preprocesamiento
- Filtrado homomórfico
- Warping
- Optimización de la implementación
- Hough local

• ¿Preguntas?

• ¡Muchas gracias!