Logarithms of Products

ESSENTIALS

The Product Rule for Logarithms

For any positive numbers M, N, and a ($a \ne 1$),

$$\log_a(MN) = \log_a M + \log_a N.$$

(The logarithm of a product is the sum of the logarithms of the factors.)

Examples

• Express $\log_4(12\cdot 3)$ as an equivalent expression that is a sum of logarithms.

$$\log_4(12 \cdot 3) = \log_4 12 + \log_4 3$$

• Express $\log_a 3 + \log_a 5$ as an equivalent expression that is a single logarithm.

$$\log_a 3 + \log_a 5 = \log_a (3.5) = \log_a 15$$

GUIDED LEARNING: Textbook	k A Instructor Video
EXAMPLE 1	YOUR TURN 1
Express $\log_2(4.16)$ as an equivalent expression that is a sum of logarithms. $\log_2(4.16) = \log_2 16$	Express $\log_4(16.64)$ as an equivalent expression that is a sum of logarithms. $\log_4(16.64) = \log_4 16 + \log_4 64$
EXAMPLE 2	YOUR TURN 2
Express $\log_t (5.6)$ as an equivalent expression that is a sum of logarithms. $\log_t (5.6) = \log_t 5 + \log_{\frac{1}{2}} 6$	Express $\log_x(12.14)$ as an equivalent expression that is a sum of logarithms. $\log_x(12.14) = \log_x 12 + \log_x 14$
EXAMPLE 3	YOUR TURN 3
Express $\log_b 2 + \log_b 18$ as an equivalent expression that is a single logarithm.	Express $\log_a 25 + \log_a 16$ as an euivalent expression that is a single logarithm.
$\log_b 2 + \log_b 18 = \log_b \left(\boxed{2 \times 18} \right)$ $= \log_b 36$	loga 25 + loga 16 = loga (25×16) = loga 400

EXAMPLE 4	YOUR TURN 4
Express $\log_t A + \log_t B$ as an equivalent	Express $\log_a R + \log_a T$ as an equivalent
expression that is a single logarithm.	expression that is a single logarithm.
$\log_t A + \log_t B = \log_t \left(\boxed{AB} \right)$	$log_{\alpha}R + log_{\alpha}T = log_{\alpha}(RT)$

Logarithms of Powers

ESSENTIALS

The Power Rule for Logarithms

For any positive numbers M and a ($a \ne 1$), and any real number p,

$$\log_a M^p = p \cdot \log_a M.$$

(The logarithm of a power of M is the exponent times the logarithm of M.)

loga 2 is defined only for Positive x

Example

• Express $\log_a 10^4$ as an equivalent expression that is a product.

$$\log_a 10^4 = 4\log_a 10$$

GUIDED LEARNING: Textbook	Instructor Video		
EXAMPLE 1	YOUR TURN 1		
Express $\log_b t^{-6}$ as an equivalent expression that	Express $\log_a c^{-12}$ as an equivalent		
is a product.	expression that is a product.		
$\log_b t^{-6} = \boxed{-6} \log_b t$	$\log_{\alpha} c^{-12} = -12 \log_{\alpha} C$		
EXAMPLE 2	YOUR TURN 2		
Express $\log_4 c^{1/2}$ as an equivalent expression that	Express $\log_e M^{2/3}$ as an equivalent		
is a product.	expression that is a product.		
$\log_4 c^{1/2} = \boxed{\frac{1}{2}} \log_4 c$	$\log_a M^{2/3} = \frac{2}{3} \log_a M$		
EXAMPLE 3	YOUR TURN 3		
Express $\log_9 \sqrt[4]{x}$ as an equivalent expression that	Express $\log_5 \sqrt[6]{y}$ as an equivalent		
is a product.	expression that is a product.		
$\log_9 \sqrt[4]{x} = \log_9 x \frac{1/\mu}{V}$ Writing exponential notation $= \frac{1}{V} \log_9 x$	log_5 & y = log_5 y 6 = 7		

Logarithms of Quotients

ESSENTIALS

The Quotient Rule for Logarithms

For any positive numbers M, N, and a ($a \ne 1$),

$$\log_a \frac{M}{N} = \log_a M - \log_a N.$$

(The logarithm of a quotient is the logarithm of the dividend minus the logarithm of the divisor.)

Examples

• Express $\log_3 \frac{6}{7}$ as an equivalent expression that is the difference of logarithms.

$$\log_3 \frac{6}{7} = \log_3 6 - \log_3 7$$

• Express $\log_a 12 - \log_a 13$ as an equivalent expression that is a single logarithm.

$$\log_a 12 - \log_a 13 = \log_a \frac{12}{13}$$

GUIDED LEARNING: Textbook	k lnstructor Video
EXAMPLE 1	YOUR TURN 1
Express $\log_a \frac{b}{c}$ as an equivalent expression	Express $\log_t \frac{R}{S}$ as an equivalent expression
that is the difference of logarithms.	that is the difference of logarithms.
$\log_a \frac{b}{c} = \log_a b - \log_a \boxed{\mathbf{C}}$	$\log_{t} \frac{R}{S} = \log_{t} R - \log_{t} S$
EXAMPLE 2	YOUR TURN 2
Express $\log_a x - \log_a y$ as an equivalent expression that is a single logarithm.	Express $\log_t Q - \log_t R$ as an equivalent expression that is a single logarithm.
$\log_a x - \log_a y = \log_a \boxed{\frac{\chi}{\forall}}$	log Q - log R = log L Q

Using the Properties Together

ESSENTIALS

The Logarithm of the Base to an Exponent

For any base a, $\log_a a^k = k$.

Examples

• Express $\log_b \frac{x^2}{y^3 z}$ as an equivalent expression, using the individual logarithms of x, y, and z.

$$\log_b \frac{x^2}{y^3 z} = \log_b x^2 - \log_b y^3 z$$
 Quotient rule

$$= 2\log_b x - \log_b y^3 z$$
 Power rule

$$= 2\log_b x - (\log_b y^3 + \log_b z)$$
 Product rule

$$= 2\log_b x - (3\log_b y + \log_b z)$$
 Power rule

$$= 2\log_b x - 3\log_b y - \log_b z$$

• Express $\frac{1}{2}\log_b x - 3\log_b y + \log_b z$ as an equivalent expression that is a single logarithm.

$$\frac{1}{2}\log_b x - 3\log_b y + \log_b z = \log_b x^{1/2} - \log_b y^3 + \log_b z \qquad \text{Power rule}$$

$$= \left(\log_b \sqrt{x} - \log_b y^3\right) + \log_b z \qquad x^{1/2} = \sqrt{x}$$

$$= \log_b \frac{\sqrt{x}}{y^3} + \log_b z \qquad \text{Quotient rule}$$

$$= \log_b \frac{z\sqrt{x}}{y^3} \qquad \text{Product rule}$$

GUIDED LEARNING: Textbook	Instructor Video	
EXAMPLE 1	YOUR TURN 1	
Express $3\log_a x + \frac{1}{2}\log_a y$ as an equivalent expression that	Express $\frac{1}{3}\log_a x - \frac{2}{3}\log_a y$ as	
is a single logarithm.	an equivalent expression that is a single logarithm.	
$3\log_a x + \frac{1}{2}\log_a y = \log_a x^3 + \log_a y$ Power rule		
$= \log_a x^3 + \log_a \sqrt{y}$	loga x - loga y 2/3	
$= \log_a \left(\boxed{\chi^3} \sqrt{y} \right) \qquad \text{Product rule}$	= loga 2	
logay = loga y'à logam + legan = logamn		
Copyright © 2018 Pearson Education,	Λ	

EXAMPLE 2		YOUR TURN 2
Express $\log_a \sqrt[5]{\frac{x^4 y^2}{z}}$ as an equivalent expression, using the		Express $\log_a \sqrt[3]{\frac{b}{c^6 d^7}}$ as an
individual logarithms x , y , and z .		equivalent expression,
(x^4v^2) $(x^4v^2)^{1/5}$	Exponential	using the individual
$\log_a \sqrt[5]{\frac{x^4 y^2}{z}} = \log_a \left(\frac{x^4 y^2}{z}\right)^{1/5}$	notation	logarithms b , c , and d .
$= \frac{1}{5} \cdot \log_a \frac{x^4 y^2}{7}$	Power rule	$\log_a \left(\frac{b}{c^6 d^7} \right)^3 = \frac{1}{3} \log_a \frac{b}{c^6 d^7}$
$= \frac{1}{5} \left(\log_a \left(x^4 y^2 \right) - \left[\log_a \left(x^2 y^2 \right) \right] \right)$	Quotient rule	$=\frac{1}{3}\left[\log_a b - \log_a c^6 d^7\right]$
$= \frac{1}{5} \left(\log_a x^4 + \left[\log_a y^2 - \log_a z \right) \right)$	Product rule	$= \frac{1}{3} \left[\log_a b - \left(\log_a c^6 + \log_a d^7 \right) \right]$
$= \frac{1}{5} \left(4 \left[\log_a Y \right] + 2 \left[\log_a Y \right] - \log_a z \right)$	Power rule	$= \frac{1}{3} \left[\log_{ab} - \log_{a} c^{6} - \log_{a} n \right]$ $= \frac{1}{3} \left[\log_{ab} - 6 \log_{a} c - 7 \log_{a} d \right]$
EXAMPLE 3		YOUR TURN 3 = 1 log b
Given $\log_a 4 = 0.602$ and $\log_a 3 = 0.477$, find $\log_a 12$.		Given $\log_a 2 = 0.301$ and $-2 \log_a C$
$\log_a 12 = \log_a (4 \cdot 3)$		log 5 = 0.600 find
$= \log_a (4.3)$ $= \log_a (4.3)$ $= \log_a 3$		$\log_a \frac{2}{5} = \log_a 2 - \log_a 5$
=0.602+0.477		= 0.301-0.699
= [1.079]		=-0.398
EXAMPLE 4		YOUR TURN 4
Simplify: $\log_4 4^{-6} = -6 \log_4 4$ $\log_4 4^{-6} = -6 \log_4 4$		Simplify: $\log_6 6^{1.5}$.
$\log_4 4^{-6} = \boxed{-6}$	M=1	log 6 = 1.5 log 6 = 1.5

Practice Exercises

Readiness Check

Match each expression with an equivalent expression from the column on the right.

1. $\log_3 7^4$

A. log₃ 28

2. $\log_3 \frac{5}{7}$

B. 7

C. $\log_3 5 + \log_3 7$

3. $\log_3 7 + \log_3 4$

D. 4log₃ 7

4. log₃ 35

E. $\log_3 5 - \log_3 7$

- 5. $\log_3 3^7$

Logarithms of Products

Express as an equivalent expression that is a sum of logarithms.

6. $\log_{2}(4.8)$

7. $\log_a(xyz)$

8. $\log_b(5ac)$

Express as an equivalent expression that is a single logarithm.

- 9. $\log_a 2 + \log_a 15$
- **10.** $\log_t R + \log_t M$ **11.** $\log_a 4 + \log_a c$

Logarithms of Powers

Express as an equivalent expression that is a product.

12. $\log_a x^6$

- 13. $\log_b M^{-3}$
- 14. $\log_{12} x^{1/3}$

Logarithms of Quotients

Express as an equivalent expression that is a difference of two logarithms.

15. $\log_3 \frac{13}{15}$

- 16. $\log_5 \frac{3}{4}$
- 17. $\log_a \frac{t}{s}$

Express as an equivalent expression that is a single logarithm.

18.
$$\log_b 17 - \log_b 21$$

19.
$$\log_a 25 - \log_a 8$$

20.
$$\log_b R - \log_b T$$

Using the Properties Together

Express as an equivalent expression, using the individual logarithms of w, x, y, and z.

21.
$$\log_{a}(x^{2}z^{-4})$$
 22. $\log_{a}\frac{w^{2}}{y^{4}z^{3}}$ 23. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 23. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 25. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 26. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 27. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 28. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 29. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 29. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 21. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 22. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 23. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 24. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 25. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 26. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 27. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 28. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}$ 29. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}}$ 29. $\log_{a}\sqrt[3]{\frac{x^{6}y^{3}}{w^{4}z^{5}}}}$ 29. $\log_{$

Express as an equivalent expression that is a single logarithm and, if possible, simplify.

24.
$$3\log_a x + \frac{1}{3}\log_a y$$

26.
$$\log_a(4x-16) - \log_a(x^2-16)$$

25.
$$3\log_{a} x - 3\log_{a} \sqrt[3]{x}$$

$$= \log_{a} x^{3} - \log_{a} (2\sqrt{x})^{3}$$

$$= \log_{a} \frac{x^{3}}{(2\sqrt{x})^{3}} = \log_{a} \frac{x^{3}}{(2\sqrt{x})^{3}}$$

24.
$$3\log_a x + \frac{1}{3}\log_a y$$

25. $3\log_a x - 3\log_a \sqrt[3]{x}$

$$= \log_a \sqrt{3} - \log_a (\sqrt[3]{x})^3$$

$$= \log_a (4x - 16) - \log_a (x^2 - 16)$$

$$= \log_a \frac{\sqrt[3]{x}}{\sqrt[3]{x}} = \log_a \frac{\sqrt[3]{x}}{\sqrt[3]{x}}$$

$$= \log_a \frac{\sqrt[3]{x}}{\sqrt[3]{x}} = \log_a \frac{\sqrt[3]{x}}{\sqrt[3]{x}}$$

$$= \log_a (4x - 16) - \log_a (x^2 - 16)$$

$$= \log_a \frac{\sqrt[3]{x}}{\sqrt[3]{x}} = \log_a \frac{\sqrt[3]{x}}{\sqrt[3]{x}}$$

Given $\log_a 2 = 0.301$ and $\log_a 7 = 0.845$, if possible, use the properties of logarithms to

Given $\log_a 2 = 0.301$ and $\log_a 7 = 0.845$, if possible, use the properties of logarithms to calculate values for each of the following.

27.
$$\log_a 14$$

28.
$$\log_a 8$$

29.
$$\log_a 9$$

Simplify.

30.
$$\log_a a^5$$

31.
$$\log_t t^{-2}$$

32.
$$\log_m m^c$$

(3)
$$\log_{t} t^{-2} = -2 \log_{t} t = -2$$