The second midterm covers the readings

- Water & Membranes
- Energy & Life

and the Water / Diffusion Lab.

(You have submitted this form before. The last time was 2003-02-26 18:11:29.0)

	•	•
1)	A cher	nical compound is composed of
	□ a.	A single type of atom
	ℂb.	A single type of molecule
	ℂc.	A single type of element
2)	The ch	nemical properties of an atom are determined by
	□ a.	The organization of its nucleus
	⊕b.	The organization of its electrons
	ℂ c.	By its overall electrical charge
3)	During	g alpha decay, the weight of an atom
	□a.	Increases by 2
	ℂb.	Decreases by 4
	ℂ c.	Remains unchanged
4)	When	a bond forms between atoms
	□a.	Electrons are shared
	⊕b.	Electrons are exchanged
	ℂ c.	The nuclei fuse together
5)	Inap	olar bond
	ℂa.	The electrons are shared equally
	ℂb.	One atom gives up an electron, while the other gains an electron
	C c.	The electrons are shared unequally The electrons are shared unequally
6)	If two	atoms make a bond, the electrons will spend

most of their time around the

Ca. Larger atom

	⊂b.	The more positively charged atom
	Cc.	The more electronegative atom
7)	-	try and push two atoms closely together than van der waals radii,
	Ca.	The nuclei will merge and you will produce a nuclear fusion event
	С ь.	They will attract each other very strongly
	Cc.	They will repell each other very strongly
8)	intera	
	Ca.	
	€b.	False
9)	Which	der two molecules of the same molecular weight. feature would lead to a higher boiling point.
	407704	The ability to make H-bonds
	∪ D.	The ability to make van der waals interactions The ability to make van der waals interactions
	\bigcirc c	The greater the number of electrons
	- 0.	
10)	A wat	er molecule can make how many H-bonds with
,	itc no	iahhara?
-0,		ighbors?
,	€a.	2
,	C a. C b.	2 3
,	€a.	2 3
	Ca. Cb. Cc.	2 3
	Ca. Cb. Cc. As the that nenoug	2 3 4 e temperature of water increases, the molecules nove from the liquid into the gaseous phase have
	Ca. Cb. Cc. As the that nenoug	2 3 4 e temperature of water increases, the molecules nove from the liquid into the gaseous phase have gh energy to form new bonds
	Ca. Cb. Cc. As the that nenoug Ca. Cb.	2 3 4 e temperature of water increases, the molecules nove from the liquid into the gaseous phase have gh energy to
11)	Ca. Cb. Cc. As the that in enough Ca. Cb. Cc.	2 3 4 e temperature of water increases, the molecules nove from the liquid into the gaseous phase have the energy to form new bonds break the H-bonds they make with their neighbors break van der waals interactions
11)	Ca. Cb. Cc. As the that in enough Ca. Cb. Cc. A hyd	2 3 4 e temperature of water increases, the molecules nove from the liquid into the gaseous phase have gh energy to form new bonds break the H-bonds they make with their neighbors break van der waals interactions rophobic molecule is characterized by its?
11)	Ca. Cb. Cc. As the that in enough Ca. Cb. Cc. A hyd Ca.	2 3 4 Extemperature of water increases, the molecules move from the liquid into the gaseous phase have ghenergy to form new bonds break the H-bonds they make with their neighbors break van der waals interactions rophobic molecule is characterized by its? inability to make H-bonds
11)	Ca. Cb. Cc. As the that in enough Ca. Cb. Cc. A hyd Ca. Cb.	2 3 4 e temperature of water increases, the molecules nove from the liquid into the gaseous phase have gh energy to form new bonds break the H-bonds they make with their neighbors break van der waals interactions rophobic molecule is characterized by its?

13)	_	n mix hydrophilic and hydrophobic molecules, will tend to
	□ a.	remain well mixed
	\mathbb{C} b.	separate into aqueous and non-aqueous phases
	Cc.	form micelles
14)		der a molecule that self-assembles into micelles dispered in water. Such a molecule must be
	47770	hydrophilic
		hydrophobic hydrophobic amphipathic
15)	As Na	Cl dissolves, the positive and negative ions
	ℂa.	bind even more closely with one another
	€b.	are kept separate by a shell of water molecules
	Cc.	are transformed into their neutral, unionized forms
16)		H of a solution matters (for us biologists) use it can ?
	Ca.	alter the ionization state of weak acids and bases
	,,,	alter the properties of water
	Cc.	alter the organization of lipid membranes
_		mino group (-NH2) is a
	40770	Weak acid
		Weak base
	∪ c.	Neutral, non-polar group.
18)	In a h	ydrolysis reaction
		Water is added and a larger molecule is broken into a two smaller ones.
	C b.	Water is added and two smaller molecules become a single larger one
	Cc.	Water breaks down into H+ and OH-
19)		ensity of water decreases continuously as the erature decreases.
	Ca.	
		False

20)	Lipids	are
	□a.	Hydrophilic
	С ь.	Hydrophobic
	Cc.	Amphipathic Amphipathic
21)		e hydrocarbon chains of a fatty acid become r and longer, the molecule becomes more and
	□ a.	Hydrophilic Hydrophilic
	□ b.	Hydrophobic ,
	Cc.	Amphipathic
22)		a lipid assembles into a micelle or a bilayer, the py of the system
	□a.	Increases
	С ь.	Decreases
	Cc.	Remains unchanged
23)	The pl	lasma membrane acts to
	□ a.	control diffusion into the cell
	□ b.	control diffusion out of the cell
	€ c.	both
24)	The co	oncentration of molecules in the cytoplasm sents
	_	Stored energy
		Increased entropy
		A spontaneous event
25)	The gl	lycocalyx is located
	□a.	Outside the plasma membrane
	С ь.	Immediately inside the plasma membrane
	Cc.	On the inner surface of the nucleus
26)	A maj	or function of the cell wall in prokaryotes is
	\mathbb{C} a.	To resist dispersal of the cytoplasm
	Cb.	Stabilize the plasma membrane against osmotic forces
	ℂc.	Increase the hydrophilicity of the plasma membrane surface

As the soil, however rich it may be, cannot be productive without cultivation, so the mind without culture can never produce good fruit.-- Seneca (B.C. 3-65 A.D.)

(You have submitted this form before. The last time was 2003-05-04 20:36:45.0)

1)	of the	rol-based lipids are a major structural component plasma membrane. The glycerol moeities of molecules are located
	□a.	In the hydrophobic core of the membrane
	⊕b.	At the hydrophilic surface of the membrane
	C c.	In the central hydrophobic region of membrane proteins.
2)	unbra	the lipids of bacteria are composed of nched hydrocarbons, the lipids of archaea are osed of
	ℂa.	Cholesterol
	ℂb.	Proteins
	ℂ c.	Branched isoprene polymers
3)	intera	temperature increases, the van waals ctions between hydrocarbon chains
	ATT-04	Become stronger
	⊂b.	Are insufficient to keep the chains closely packed together
	Cc.	Lead to bond polarization
4)	The pi	resence of double bond in a hydrocarbon chain to
	ℂa.	A kink
	Cb.	A branch
	Cc.	A hydrophilic bubble
5)	the va	se they cannot pack as closely to one another, in der waals interactions between unsaturated carbon chains are
		Stronger
		Weaker
	€c.	Compensated by increased H-bonding

6)	The hy	drophilic group on cholesterol is a
	□ a.	single hydroxyl group
	⊕b.	a glycerol group
	ℂ c.	an isoprene group
7)	Overto	on's law relates membrane permeability to
	ℂa.	A molecule?s size
	Сь.	A molecule?s hydrophobicity
	ℂ c.	A molecules?s net charge
8)	might	on the self-assembly characteristics of lipids, we reasonably expect that the membranes of early organisms were
		Composed of long chain hydrocarbons and very leaky
	Cb.	Composed of short chain hydrocarbons and very leaky
	ℂ c.	Composed of a cholesterol and were very stiff
9)	explai hydro	rmeability of a membrane cannot be completely ned by Overton?s law. In addition to a phobic layer, there was also a evidence for Hydrophilic pores
	□ b.	Hydrophobic centers
	Cc.	Ion pairs
10)		sion is driven by the fact that
		Molecules are bonded together
		Molecules are moving
	Cc.	Molecules have electrons
11)		mperature increases, the rate of diffusion
		Increases
		Decreases
	€c.	Remains unchanged
12)	You fi	nd out how long it takes a molecule to diffuse

12) You find out how long it takes a molecule to diffuse 0.001 mm. You are asked to predict how long it would take to diffuse 0.1 mm. Your prediction would be that it would take

	\mathbb{C} a.	10 times as long
	\mathbb{C} b.	100 times as long
	Cc.	much more than 100 times as long
13)	Why o	does water diffuse into a cell.
	\mathbb{C} a.	Because there is more water inside than outside
	ℂb.	Because the concentration of water is lower inside
	0.	the cell Resource water is actively numbed into the cell
	∵ €.	Because water is actively pumped into the cell.
14)		sis can do work.
	Ca.	
	◯ b.	False
15)		Is without a cell wall, the water that enters the nust be
		used up in hydrolysis reactions
		pumped back out of the cell
	□ c.	pumped out of the periplasmic space
		h. h h. h
16)		in the difference between carriers, channels and
16)	Expla	in the difference between carriers, channels and
16)	Expla	in the difference between carriers, channels and
16)	Expla	in the difference between carriers, channels and
	Expla pump	in the difference between carriers, channels and
	Expla pump	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such
	Expla pump	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such s?
	We copump	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such s?
	We copump Ca.	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such s? ATP
17)	We copump Ca. Cb.	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such s? ATP Concentrations gradients across the membrane
17)	We copump Ca. Cb.	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such s? ATP Concentrations gradients across the membrane Protein structure can't a uniporter act as a pump?
17)	We copump Ca. Cb. Cc.	in the difference between carriers, channels and s ould consider an antiporter or a symporter a . What is the immediate source of energy for such s? ATP Concentrations gradients across the membrane Protein structure can't a uniporter act as a pump? Because they run on multiple concentrations

down', thats the law.

19)	used	ing together symporters and antiporters could be to establish concentration gradients across oranes
	\mathbb{C} a.	True
	ℂb.	False
20)	When	ATP is hydrolysed by a pumping protein,
	□a.	The energy is stored transiently in the protein
	Cb.	The energy is directly stored in the concentration gradient
	C c.	The energy is stored in the molecule that is transported
21)		of the energy stored in ATP is lost upon lysis. This energy is released as
	ℂa.	phosphate
	€ b.	
	€ c.	Heat
22)	As an reflec	abstract quantity, the equilibrium constant
	\mathbb{C} a.	The extent to which a reaction proceeds
	ℂb.	The rate at which a reaction proceeds
	ℂ c.	The complexity of a reaction
23)	At eq	uilibrium,
	C a.	The concentrations of reactants and products are equal
	ℂ ь.	The reactants will be completely used up
	Cc.	The forward and backward reaction rates are equal
24)	At equincrea	uilibirum, if we increase a product, we will ase
	€a.	Increase a reactant
	⊕b.	Decrease a reactant
	ℂc.	Leave the reactant concentrations unchanged

25) We can couple reactions because at equilibrium, products combine to form reactants.

	□a.	True
	ℂ b.	False
26)		ite of a reaction is determined by the step in the on with the
	ℂa.	Smaller difference in free energy
	ℂb.	Largest difference in free energy
	Cc.	Biggest conformational change
27)	Increa becau	asing the temperature increases reaction rates se
	C a.	A larger proportion of the molecules in the system have enough energy to pass through the ?activation? state
	€ ь.	The energy of the ?activation? state is reduced
	ℂc.	The concentration of the reactants in increased
28)	A cata	lyst can increase the reaction rate because it
	□ a.	Changes the free energy of the products
	□ b.	Changes the free energy of the reactants
	Cc.	Changes the energy of the activation state
		Submit >

It's not that I'm so smart it's just that I stay with problems longer. -- Albert Einstein

(You have submitted this form before. The last time was 2003-02-26 18:39:57.0)

1)	A phot	totroph eats
	ℂa.	Light
	€ь.	Photos
	Cc.	The chemicals used to develop photographs
2)		two molecules interact and electrons are erred, the electrons will move from the
	Ca.	Less energetic molecule to the more energetic molecule
	Cb.	More energetic molecule to the less energetic molecule
	ℂ c.	Depends upon the specific molecules involved
3)		a molecule is oxidized, electrons are removed e energy it contains increases
	Ca.	
	\mathbb{C} b.	False
4)	As an	electron passes down an ETC, it becomes
		More energetic
		Less energetic
	C c.	Its energy does not change, just its position in the cell
5)		energy (electrons) flows through the ETC of a rial cell, H+ are pumped
	Ca.	Into the cell
		Out of the cell
	Cc.	Into NAD+
6)		acterial cell, H+ move (into or out of) the cell ATP is generated by the ATP synthase
	ℂa.	Into
	⊕h	Out of

/)	Extrac	cting & Storing Energy page. What is the formula
		olecular oxygen?
	○ a.	
	ℂ b.	02
	€ c.	03
	€d.	ОН
8)	Extraction as electrical extractions are selectrical extractions.	naterial: Go to the complete course content site / cting & Storing Energy page. Inside cells, O2 acts ctron acceptor. What molecule is formed during eaction?
		glucose
	ℂ b.	
	C c.	H2O
9)	In bac	cteriorhodopsin, light is absorbed by?
	ℂa.	The entire protein
	ℂb.	The retinal group
	Cc.	The membrane
	€d.	the H+ gradient
10)	Photo	sisomerization occurs when
	ℂa.	Light is absorbed and a molecule changes shape
	Cb.	Light is generated spontaneously by H+ moving through the ATP synthase
	C c.	Electrons are passed along a electron transport chain
11)	-	otoisomerization, the energy of the absorbed in is stored transiently in
	C a.	The altered structure of the pigment and the protein to which it is attached
	ℂ b.	An H+ gradient
	○ c.	ATP
	ℂd.	NADPH and glucose
12)		der Halobium! What happens to the H+ gradient s the membrane when the sun goes down.
	ℂa.	It remains stable, and ATP product ions increaes
	ℂb.	It dissipates

	Cc.	It increases
13)		g the dark reaction of photosynthesis, the energy in NADPH and ATP is used to
	□a.	generate a H+ gradient
	□ b.	generate more ATP
	C c.	combind H2O and CO2 to form carbohydrate
14)	exited	clic photophosphorylation, where do the photon- d electrons eventually end up? Water
	47770	a membrane gradient
	∪ C.	back in the chlorophyll they originated in
15)		is the role of NADPH during phosphorylation?
16)	Supple Ca. Cb. Cc.	CO2
17)	□ a.□ b.□ c.	H+ move through the ATP synthase, it moves within the plane of the plasma membrane moves out of the plasma membrane rotates contracts
18)	the ce	ave a bacterial cell. Normally, the pH is 6 outside ell and 7.5 within the cell. You change the pH in the cell is growing to pH 8.0. What happens to TP concentration within the cell?