P. Maurer

ENS Rennes

Recasages: 152, 215.

Référence : Rouvière, Petit guide du calcul différentiel

Différentielle du déterminant

Dans tout ce qui suit, n désigne un entier plus grand que 1. Pour $A \in \mathcal{M}_n(\mathbb{R})$, on note A^T la transposée de A.

On se donne une norme $\|.\|$ quelconque sur $\mathcal{M}_n(\mathbb{R})$ (en dimension finie, toutes les normes sont équivalentes), par exemple la norme d'opérateur. Toutes les convergences évoquées seront pour cette norme.

Définition 1. (Rappel)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On appelle comatrice de A, et on note $\operatorname{Com}(A)$, la matrice dont les coefficients sont donnés par $(\operatorname{Com} A)_{ij} := (-1)^{i+j} \det(A_{ij})$, où $A_{ij} \in \mathcal{M}_{n-1}(\mathbb{R})$ est obtenue en supprimant la $i^{\operatorname{ème}}$ lique et la $j^{\operatorname{ème}}$ colone de A.

Proposition 2. (Rappel)

Soit $A \in \mathcal{M}_n(\mathbb{R})$, alors:

$$A \cdot \operatorname{Com}(A)^T = \det(A) \cdot I_n$$

Lemme 3. $GL_n(\mathbb{R})$ est un ouvert dense dans $\mathcal{M}_n(\mathbb{R})$.

Démonstration.

- D'une part, $GL_n(\mathbb{R})$ s'écrit $GL_n(\mathbb{R}) = \{P \in \mathcal{M}_n(\mathbb{R}) : \det(P) \neq 0\}$, et $\det: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est continue (parceque polynomiale), donc c'est bien un ouvert de $\mathcal{M}_n(\mathbb{R})$.
- Par ailleurs, soit $M \in \mathcal{M}_n(\mathbb{R})$. On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres complexes de M (éventuellement non deux à deux distinctes). On choisit une suite $(\varepsilon_n)_{n\geq 0}$ de réels tous distincts des λ_i , et qui converge vers zéro (si les λ_i sont tous non réels, $\varepsilon_n = \frac{1}{n}$ convient, et sinon, $\varepsilon_n = \frac{\min\{\lambda_i : i \in [\![1,n]\!] \text{ et } \lambda_i \in \mathbb{R}\}}{2n}$ convient).

On note alors $P_k = M - \varepsilon_k I_n$. Comme M est trigonalisable sur \mathbb{C} , il existe $Q \in GL_n(\mathbb{C})$ tel que $M = QTQ^{-1}$, où T est triangulaire supérieure, de diagonale égale à $(\lambda_1, \ldots, \lambda_n)$.

On en déduit que $P_k = QTQ^{-1} - \varepsilon_k \, Q \, I_n \, Q^{-1} = Q(T - \varepsilon_k \, I_n) \, Q^{-1}$, d'où :

$$\det(P_k) = \det(T - \varepsilon_k) = \prod_{i=1}^n (\lambda_i - \varepsilon_k) \neq 0.$$

Ainsi, $P_k \in GL_n(\mathbb{R})$, et de plus, $||P_k - M|| = ||\varepsilon_k I_n|| \le |\varepsilon_k| \cdot ||I_n||_{k \to \infty} \to 0$, donc $(P_k)_{k \ge 0}$ converge vers M.

On en déduit que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

Théorème 4. On considère la fonction det: $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$. Pour tout $X, H \in \mathcal{M}_n(\mathbb{R})$, on a la formule suivante :

$$D \det(X) \cdot H = \operatorname{Tr}(\operatorname{Com}(X)^T H)$$

où $Com(X)^T$ désigne la transposée de la comatrice de M, définie par :

Démonstration.

• Etape 1 : calcul de $D \det(I_n)$.

L'application det est de classe \mathcal{C}^1 (même \mathcal{C}^{∞}), car elle est polynomiale sur $\mathcal{M}_n(\mathbb{R})$. Pour déterminer sa différentielle en I_n , il suffit donc de calculer sa dérivée en toute direction.

Soit $t \in \mathbb{R}$ et $H \in \mathcal{M}_n(\mathbb{R})$. En modifiant légèrement le calcul fait plus haut, si on note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de M, alors les valeurs propres de $I_n + tH$ sont $1 + t\lambda_1, \ldots, 1 + t\lambda_n$.

On calcule alors :

$$\det(I_n + tH) = \prod_{i=1}^n (1 + t\lambda_i)$$
$$= 1 + \sum_{i=1}^n t\lambda_i + o_{t\to 0}(t)$$
$$= 1 + t\operatorname{Tr}(H) + o_{t\to 0}(t)$$

On en déduit que $D_H \det(I_n) = \lim_{t \to 0} \frac{\det(I_n + tH) - 1}{t} = \operatorname{Tr}(H)$. Puisque la différentielle de det en I_n vérifie $D_H \det(I_n) = D \det(I_n) \cdot H$, on en déduit que $D \det(I_n) \cdot H = \operatorname{Tr}(H)$.

• Etape 2 : calcul de $D \det(P)$ lorsque P est inversible.

Soit $P \in GL_n(\mathbb{R})$, et $H \in \mathcal{M}_n(\mathbb{R})$. On calcule :

$$det(P+H) = det(P(I_n + P^{-1}H))
= det(P) det(I_n + P^{-1}H)
= det(P) (1 + Tr(P^{-1}H) + o(||H||))
= det(P) + Tr(det(P)P^{-1}H) + o(||H||)
= det(P) + Tr(Com(P)^TH) + o(||H||)$$

La définition de la différentielle nous permet d'en déduire que $D \det(P) \cdot H = \text{Tr}(\text{Com}(P)^T H)$.

• Etape 3 : cas général.

L'application $M \mapsto \operatorname{Com}(M)^T$ est continue sur $\mathcal{M}_n(\mathbb{R})$, donc $f: M \mapsto \operatorname{Tr}(\operatorname{Com}(M)^T)$ l'est également. Par ailleurs, $g: M \mapsto D \det(M)$ est continue sur $\mathcal{M}_n(\mathbb{R})$.

Comme f et g coïncident sur l'ouvert dense $GL_n(\mathbb{R})$ de $\mathcal{M}_n(\mathbb{R})$, elles sont égales sur $\mathcal{M}_n(\mathbb{R})$. On en déduit la formule souhaitée pour toute matrice réelle.

Application 5. Soit y_1, \ldots, y_n des solutions à valeur dans \mathbb{R}^n du système différentiel $y'(t) = A(t) \ y(t)$, où $A(t) \in \mathcal{M}_n(\mathbb{R})$ est une fonction continue et soit $w(t) := \det(y_1(t), \ldots, y_n(t))$ leur déterminant wronskien. Alors $w'(t) = \operatorname{Tr}(A(t)) w(t)$.

De plus, si A est indépendante de t, on a $\det(e^{tA}) = e^{t\operatorname{Tr}(A)}$.

Démonstration. Notons Y(t) la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les vecteurs colones sont $y_1(t), \dots y_n(t)$. Alors le déterminant wronskien w(t) vérifie :

$$w'(t) = D \det(Y(t)) \cdot Y'(t)$$

$$= \operatorname{Tr}(\operatorname{Com}(Y(t))^T Y'(t))$$

$$= \operatorname{Tr}(\operatorname{Com}(Y(t))^T A(t) Y(t))$$

$$= \operatorname{Tr}(A(t) \det(Y(t)))$$

$$= w(t) \operatorname{Tr}(A(t)).$$

On a donc w'(t) = Tr(A(t)) w(t). Par conséquent :

$$w(t) = w(0) \exp\left(\int_0^t \text{Tr}(A(s)) ds\right). \quad (\star)$$

Si de plus A(t) est constante par rapport à t, alors le système initial s'écrit :

$$Y'(t) = AY(t)$$
.

Ceci donne $Y(t) = Y(0) e^{tA}$, et en prenant le déterminant, il vient $w(t) = w(0) \det(e^{tA})$.

Par ailleurs, la formule (\star) s'écrit elle-même :

$$w(t) = w(0) \exp(t \operatorname{Tr}(A))$$

On en déduit l'égalité souhaitée lorsque $w(0) \neq 0$, ce qui a lieu dès que $(y_1(t), ..., y_n(t))$ est libre. \square