MAADSBML AutoML Report For FIERA CAPITAL

Generated On: 2024-04-24 18:21:35 (UTC)

Best Model(s) Report For admin_stockdata_csv

MODEL DESCRIPTION

Model Trained On: 2024/04/24 Training Start Time: 1817 Training End Time: 1821 Was Data Normalized: Yes Was Data Shuffled: Yes Deep Analysis: No **Total Training Data Set: 946** Training Data Percentage: 75% Total Test Data Set: 314 Total # of Variables: 5 Adjusted for Seasonality: N Total Algorithms Run: 3600 Removed Outliers: N
Best Distribution FOR ACTUAL Y: VONMISES
Dependent Variable: CLOSE

Independent Variables: ['Open', 'High', 'Low', 'Volume']

PREDICTION VARIABLE STATS

Mean: 84.297 STD: 8.424 Kurtosis: -0.647 Skewness: 0.611 Coef. of Variation: 0.100 Shapiro Test for Normality: 0.934 Jarque-Bera Goodness of Fit: 47.806 Anderson: 14.697 KStat: 71.074 KStatvar: 11.422 Wilcox: 0.000

ACTUAL VARIABLE STATS

Theil Slope: 0.044

Mean: 84.287 STD: 8.449 Kurtosis: -0.658 Skewness: 0.606 Coef. of Variation: 0.100 Shapiro Test for Normality: 0.934 Jarque-Bera Goodness of Fit: 47.497 Anderson: 14.514 KStat: 71.497 KStatvar: 11.462 Wilcox: 0.000

Statistics Showing Comparison Between Prediction and Actuals

Mood(actuals,predictions): 0.157 Pearson(actuals,predictions): 0.998 Kendall Tau(actuals,predictions): 0.957 Ansari(actuals,predictions): 179951.000 Jaccard_distance(actuals,predictions): 1.000 Minkowski_distance(actuals,predictions): 222.692 Euclidean distance(actuals, predictions): 11.637

IMPORTANT FILE PATHS FOR RAW AND OUTPUT DATA

Theil Slope: 0.043

NOTE: These are DOCKER CONTAINER Paths. You can view these files inside the container by using the command: docker exec -it {container id} bash If you have re-run the container, these files will be GONE but they exist on your HOST machine. The HOST MACHINE location is based on the volumes you mapped when you ran the Docker container. The Docker RUN Volume Mappings are :: (For example here is the docker run command (use multiple -v for multiple mappings):

DOCKER RUN COMMAND: docker run -d -p 5595:5595 -p 5495:5495 -p 10000:10000 -v {HOST MACHINE FOLDER}:{CONTAINER FOLDER}:z --env TRAININGPORT=5595 --env PREDICTIONPORT=5495 --env ABORTPORT=10000 --env COMPANYNAME=MYCOMPANY --env MAXRUNTIME=20 --env MAINHOST=127.0.0.1 maadsdocker/maads-batchautoml-otics

Docker Volume Mappings:

Docker Volume Mappings:

1. (HOST MACHINE FOLDER)/csvuploads:/maads/agentfilesdocker/dist/maadsweb/csvuploads:z

2. (HOST MACHINE FOLDER)/pdfreports:/maads/agentfilesdocker/dist/maadsweb/pdfreports:z

3. (HOST MACHINE FOLDER)/autofeatures:/maads/agentfilesdocker/dist/maadsweb/autofeatures:z

4. (HOST MACHINE FOLDER)/sulliers:/maads/agentfilesdocker/dist/maadsweb/outliers:z

5. (HOST MACHINE FOLDER)/sqlloads:/maads/agentfilesdocker/dist/maadsweb/sqlloads:z

6. (HOST MACHINE FOLDER)/networktemp:/maads/agentfilesdocker/dist/maadsweb/networktemp:z
7. {HOST MACHINE FOLDER}/networks:/maads/agentfilesdocker/networks:z
8. {HOST MACHINE FOLDER}/exception:/maads/agentfilesdocker/dist/maadsweb/exception:z

9. {HOST MACHINE FOLDER}/staging:/maads/agentfilesdocker/dist/staging:z

Path for Training Dataset File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/stockdata.csv

Path for PDF Report (i.e. this file): /maads/agentfilesdocker/dist/maadsweb/pdfreports/admin_stockdata_csv_no_seasons.pdf
Path for AutoFeature File: /maads/agentfilesdocker/dist/maadsweb/autofeatures/admin_stockdata_csv_.csv

Path for Outliers File: /maads/agentfilesdocker/dist/maadsweb/outliers/admin_stockdata_csv.csv

Path for Algo JSON File: /maads/agentilesdocker/dist/maadsweb/outners/admin_stockdata_csv.csv
Path for Algo JSON File: /maads/agentfilesdocker/dist/maadsweb/scqlloads/
Path for MySQL Scripts: /maads/agentfilesdocker/dist/maadsweb/scqlloads/
Path for Detailed Prediction File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/admin_stockdata_csv_prediction_details.csv
Path for Algorithm Zlp File (i.e pickle files): /maads/agentfilesdocker/dist/maadsweb/networktemp/admin_stockdata_csv.zip

Path for Algorithm Pickle Files:
1. /maads/agentfilesdocker/networks/Alberta-Electric-System-Operator_AESO)_ADMIN_STOCKDATA_CSVALLSEASON_AG1_4_RidgeRegression_normal_1.00000000_946_.pkl
2. /maads/agentfilesdocker/networks/Alberta-Electric-System-

2. /madaus/agentifilesdocker/networks/netra-Electric-system-Operator_AESO)_ADMIN_STOCKDATA_CSVALLSEASON_AG1_4_RidgeRegression_normal_1.00000000_946_scalerx_pkl 3. /maads/agentifilesdocker/networks/Alberta-Electric-System-Operator_AESO)_ADMIN_STOCKDATA_CSVALLSEASON_AG1_4_RidgeRegression_normal_1.00000000_946_scalery_pkl

	DESCRIPTIVE STATISTICS										
Variables	T-Statistic	Count	Mean	STD	MIN	25%	50%	75%	MAX		
Open	1221.412	946.0	94.354	70.58	15.464	80.4	93.29	107.905	125.25		
High	1233.139	946.0	95.083	70.75	15.58	80.892	93.925	109.128	125.72		
Low	1.521615424968217e+16	946.0	93.697	69.0	15.379	79.803	92.285	107.398	123.68		
Volume	-9.308	946.0	2723209.302	686200.0	1440702.602	1984825.0	2433550.0	3089250.0	28284300.0		
CLOSE	NA	946.0	94.437	70.28	15.504	80.43	93.295	108.152	125.4		

(Note: This trained model will be used to predict CLOSE) Algorithm Description Model Results MAPE Accuracy Months											
Algorithm	Description	Model Results	Accuracy	Months	Season						
RidgeRegression	Ridge Regression: Linear least squares with 12 regularization.	Ridge(alpha=0.14549464103297374, random_state=48, solver='saga') Coefficient: [0.0776637186596356, 0.4807798231629039, 0.4366212011905196, 0.008674525867625061] R-square: 0.997 Mean Squared Error (MSE): 0.226 Skewness: -0.355 Kurtosis: 3.979 Mean Square Model (MSM): 42573.293 F-Statistic (F): 188641.861 Jarque-Bera (JB): 36.558 Explained Variance (EV): 0.997 Multicolinearity Test (Avg. VIF): inf Heteroscedasticity Test (Avg. VIF): 1.000 (Based on White Test, there seems to be heteroscedasticity in the model) Autocorrelation (Durbin-Watson) Test: 1.973 (Based on DW Test - there seems to be autocorrelation in your model)	0.996	1 - 12	allseason						

Num	Algorithm	Model Accuracy	Details	Season	Description
1	RidgeRegression	0.9960	R-square: 0.997 MAPE: 0.996 Explained Variance (EV): 0.997 MSE: 0.226 MSM: 42573.293 Skewness: -0.355 Kurtosis: 3.979 F: 188641.861 DW: 1.973 [B: 36.558	allseason	RIDGE REGRESSION: Linear least squares with l2 regularization.
2	GradientBoostingRegressor	0.9957	R-square: 0.999 MAPE: 0.998 Explained Variance (EV): 0.999 MSE: 0.081 MSM: 42498.172 Skewness: -2.203 Kurtosis: 10.673 F: 522015.718 DW: 1.723 JB: 1957.217	allseason	GRADIENT BOOSTING FOR REGRESSION.: GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.
3	VotingRegressor	0.9956	R-square: 0.998 MAPE: 0.996 Explained Variance (EV): 0.998 MSE: 0.177 MSM: 42201.548 Skewness: -0.028 Kurtosis: 3.649 F: 237926.228 DW: 1.881 JB: 10.62	allseason	VOTINGREGRESSOR:
4	LassoCV	0.9955	R-square: 0.995 MAPE: 0.995 Explained Variance (EV): 0.996 MSE: 0.362 MSM: 40451.365 Skewness: -1.673 Kurtosis: 4.421 F: 111849.886 DW: 1.128 JB: 330.376	allseason	LASSO CROSS VALIDATION: Lasso linear model with iterative fitting along a regularization path
5	HuberRegressor	0.9950	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.138 MSM: 42535.281 Skewness: -0.021 Kurtosis: 4.145 F: 308842.817 DW: 2.064 JB: 32.817	allseason	HUBER REGRESSOR: Linear regression model that is robust to outliers.
			R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.138		

6	simpleregression_reg	0.9950	MSM: 42521.698 Skewness: 0.092 Kurtosis: 4.302 F: 308608.598 DW: 2.07 JB: 43.237	allseason	LINEAR REGRESSION: Simple multivariate linear regression
7	ARDRegression	0.9949	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.138 MSM: 42525.09 Skewness: 0.044 Kurtosis: 4.211 F: 308290.472 DW: 2.068 JB: 36.864	allseason	BAYESIAN ARD: Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)
8	BayesianRidge	0.9949	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.138 MSM: 42524.375 Skewness: 0.048 Kurtosis: 4.218 F: 308418.724 DW: 2.069 JB: 37.305	allseason	BAYESIAN RIDGE REGRESSION: Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise).
9	RANSACRegressor	0.9948	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.138 MSM: 42521.698 Skewness: 0.092 Kurtosis: 4.302 F: 308608.598 DW: 2.07 JB: 43.237	allseason	RANSAC (RANDOM SAMPLE CONSENSUS) ALGORITHM.: RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models.
10	LassoLarsIC	0.9948	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.138 MSM: 42521.698 Skewness: 0.092 Kurtosis: 4.302 F: 308608.598 DW: 2.07 JB: 43.237	allseason	LASSO MODEL FIT WITH LARS USING BIC OR AIC FOR MODEL SELECTION: Lasso model fit with Lars using BIC or AIC for model selection

Detailed Histograms of Training and Test Data Sets TRAINING VARIABLES TEST VARIABLES $\begin{bmatrix} 7.03\text{e}{+}01, & [7.97\text{e}{+}01] \\ 7.97\text{e}{+}01] & 8.92\text{e}{+}01 \end{bmatrix} \begin{bmatrix} 8.92\text{e}{+}01, & [9.86\text{e}{+}01] \\ 9.86\text{e}{+}01] \end{bmatrix} \begin{bmatrix} 1.08\text{e}{+}02, & [1.18\text{e}{+}02] \\ 1.08\text{e}{+}02] \end{bmatrix} \begin{bmatrix} 1.18\text{e}{+}02, & [1.18\text{e}{+}02] \\ 1.27\text{e}{+}02] \end{bmatrix}$ [1.15e+02, [1.20e+02, [1.25e+02, [1.30e+02, [1.35e+02, [1.40e+02, Bins Bins 1.20e+02] | 1.25e+02] | 1.30e+02] | 1.35e+02] | 1.40e+02] | 1.45e+02] Count 210 219 143 136 Count Share 11.0% 12.0% Share Total Total 314 1260 1260 1260 1260 1260 1260 314 314 314 314 314 Rows Rows 7.00e+01 7.00e+01 7.00e+01 7.00e+01 7.00e+01 1.14e+02 Min 7.00e+01 Min 1.14e+02 1.14e+02 | 1.14e+02 | 1.14e+02 | 1.14e+02 Max 1.64e+02 | 1.64e+02 | 1.64e+02 | 1.64e+02 | 1.64e+02 | Max 1.64e+02 1.64e+02 1.64e+02 1.64e+02 1.64e+02 1.64e+02 Number of Bins Number of Bins $\begin{bmatrix} 7.08\text{e}{+}01, & [8.02\text{e}{+}01] \\ 8.02\text{e}{+}01 \end{bmatrix} \begin{bmatrix} 8.97\text{e}{+}01, & [9.92\text{e}{+}01] \\ 9.92\text{e}{+}01 \end{bmatrix} \begin{bmatrix} 1.09\text{e}{+}02, & [1.18\text{e}{+}02] \\ 1.28\text{e}{+}02 \end{bmatrix} \begin{bmatrix} 1.18\text{e}{+}02, & [1.28\text{e}{+}02] \\ 1.28\text{e}{+}02 \end{bmatrix}$ $\begin{bmatrix} 1.16e+02 & \begin{bmatrix} 1.21e+02 & \begin{bmatrix} 1.26e+02 & \begin{bmatrix} 1.31e+02 & \end{bmatrix} & \begin{bmatrix} 1.31e+02 & \begin{bmatrix} 1.36e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.21e+02 & \begin{bmatrix} 1.26e+02 & \end{bmatrix} & \begin{bmatrix} 1.31e+02 & \begin{bmatrix} 1.36e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 &$ Bins Count 210 218 139 140 174 164 Count 19 30 64 51 16 Share 17.0% 17.0% 11.0% 11.0% 14.0% 13.0% Share 6.0% 20.0% 16.0% 10.09 5.0% Total Total 1260 1260 1260 1260 314 314 314 314 314 1260 314 Rows Rows 7.00e+01 7.00e+01 7.00e+01 7.00e+01 7.00e+01 7.00e+01 1.15e+02 | 1.15e+02 | 1.15e+02 | 1.15e+02 | 1.15e+02 | 1.15e+02 Min Min Max 1.65e+02 | 1.65e+02 | 1.65e+02 | 1.65e+02 | 1.65e+02 | 1.65e+02 Max 1.65e+02 1.65e+02 1.65e+02 1.65e+02 1.65e+02 1.65e+02 Number of Bins Number of Bins INDEPENDENT VARIABLE: LOW INDEPENDENT VARIABLE: LOW

Bins		[7.84e+01, 8.78e+01]				
Count	_	249	_	_	_	170
Share	13.0%	20.0%	12.0%	10.0%	14.0%	13.0%
Total Rows	1260	1260	1260	1260	1260	1260
Min	6.90e+01	6.90e+01	6.90e+01	6.90e+01	6.90e+01	6.90e+01
Max	1.62e+02	1.62e+02	1.62e+02	1.62e+02	1.62e+02	1.62e+02
Number of Bins	6	6	6	6	6	6

Bins	[1.15e+02, 1.20e+02]		[1.24e+02, 1.29e+02]			
Count	23		48	_	27	15
Share	7.0%	19.0%	15.0%	4.0%	9.0%	5.0%
Total Rows	314	314	314	314	314	314
Min	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02
		1.62e+02	1.62e+02	1.62e+02	1.62e+02	1.62e+02
Number of Bins	6	6	6	6	6	6

	1	10	F . 00	120		130	- 1.02	140 Bins		150	. 02 [1.40e+0	170
20			•						•				
30													
Frequency 8													
50					•								

		[8.00e+01, 8.94e+01]				
	221					151
Share	18.0%	17.0%	11.0%	11.0%	14.0%	12.0%
Total Rows	1260	1260	1260	1260	1260	1260
Min	7.00e+01	7.00e+01	7.00e+01	7.00e+01	7.00e+01	7.00e+01
Max	1.64e+02	1.64e+02	1.64e+02	1.64e+02	1.64e+02	1.64e+02
Number of Bins	6	6	6	6	6	6

				Ullia		
Bins		[1.20e+02, 1.25e+02]				
Count	19	60	52		28	15
	6.0%	19.0%	17.0%		-	5.0%
Total Rows	314	314	314	314	314	314
Min	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02
Max		1.64e+02	1.64e+02	1.64e+02	1.64e+02	1.64e+02
Number of Bins	6	6	6	6	6	6

				NDEPENDENT VAR	IABLE: VOLUME			
175								
150								
125								
Frequency 100								
75								
50	1							
25								
0	1	2	3	4 Bins	5	6	7	1e6

Bins	[6.02e+05,	[3.37e+06,	[6.14e+06,	[8.91e+06,	[1.17e+07,	[1.44e+07,
DIIIS	3.37e+06]	6.14e+06]	8.91e+06]	1.17e+07]	1.44e+07]	1.72e+07]
Count	1054	181	21	2	0	1
Share	84.0%	14.0%	2.0%	0.0%	0.0%	0.0%
Total Rows	1260	1260	1260	1260	1260	1260
Min	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05
Max	2.83e+07	2.83e+07	2.83e+07	2.83e+07	2.83e+07	2.83e+07
Number of Bins	6	6	6	6	6	6

Bins	[6.02e+05,	[1.41e+06,	[2.22e+06,	[3.03e+06,	[3.84e+06,	[[4.65e+06,
DIIIS	1.41e+06]	2.22e+06]	3.03e+06]	3.84e+06]	4.65e+06]	5.46e+06]
Count	46	173	57	23	11	0
Share	15.0%	55.0%	18.0%	7.0%	4.0%	0.0%
Total Rows	314	314	314	314	314	314
Min	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05
		8.69e+06	8.69e+06	8.69e+06	8.69e+06	8.69e+06
Number of Bins	6	6	6	6	6	6

MODEL EXPLANATION

- The x-axis represents the model's output values of CLOSE
 The plot is centered on the x-axis at explainer.expected_value.
 All values are relative to the model's expected value like a linear model's effects are relative to the intercept.
 The y-axis lists the model's features. By default, the features are ordered by descending importance.
 The importance is calculated over the observations plotted. This is usually different than the importance ordering for the entire dataset.
 In addition to feature importance ordering, the decision plot also supports hierarchical cluster feature ordering and user-defined feature ordering.
- Each observation's prediction is represented by a colored line.
 At the top of the plot, each line strikes the x-axis at its corresponding observation's predicted value. This value determines the color of the line on a
- Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model's base value.
 This shows how each feature contributes to the overall prediction.
 At the bottom of the plot, the observations converge at explainer.expected_value.
 The points in the graph are the values of the feature in the training dataset.

FEATURE SELECTION					
RFE Variable (Most important to Least Important)	Value				
Close	0.414				
High	0.206				
Low	0.192				
Open	0.128				
Volume	0.059				
Best Variable(s) From Genetic Algorithm					
Close					
Volume					
Volume					
Excluded Variable(s)					
High					
Low					
Open					
PCA for Best Variable(s)	Value				
Close_pca_1	-0.707				
Close_pca_2	0.707				
Close_pca_3	-0.708				
High_pca_1	-0.673				
High_pca_2	0.218				
High_pca_3	0.706				
Volume_pca_1	0.707				
Volume_pca_2	0.707				
Volume_pca_3	-0.006				
PCA Explained Variance	Value				
PCA1	0.627				
PCA2	0.373				
PCA3	0.000				

- Feature selection shows which variables were more influential than other variables

 It uses two core algorithms: Recursive Feature Elimination (RFE) and Genetic Algorithm to determine influence

 It also performs PCA (principal component analysis) analysis to determine the influence of the best variables in the model

 These results should be used in conjunction with other information as well as theory to establish relevance and confidence in the chosen model formulation

CORRELATED FEATURES							
		Feature(s)	Feature(s)	Correlation >= 0.100			
	0	High	Low	0.999			
	1	Open	Open	NaN			

SUGGESTED CORRELATED FEATURES TO DELETE						
1 Feature(s) to Delete Correlation						
0 High 0.999						

END OF REPORT

MAADSBML Python Library: https://pypi.org/project/maadsbml/
MAADSBML Docker Container For Windows: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics
MAADSBML Docker Container For MAC: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics-arm64
MAADSBML Sample Code and Setup: https://github.com/smaurice101/raspberrypi/tree/main/maadsbml

MAADSBML
Developed and Maintained by: Otics Advanced Analytics, Inc.
Toronto, Ontario, Canada
https://www.otics.ca
Email: support@otics.ca