Estruturas de Dados II Árvore Binária de Busca

Prof. Bruno Azevedo

Instituto Federal de São Paulo

Árvore

- Na computação, uma árvore é um tipo de dado abstrato que representa uma estrutura hierárquica contendo um conjunto de nós conectados.
- Cada nó na árvore pode estar conectado a múltiplos filhos, mas deve estar conectado exatamente a um pai. Exceto pelo nó raiz, que não tem pai.

Árvore Binária

 Uma Árvore Binária é uma estrutura de dados organizada como árvore onde cada nó possui no máximo dois filhos.

- Uma Árvore Binária de Busca é uma árvore binária enraizada que organiza os elementos de modo a facilitar as operações de busca, inserção e remoção.
- Pode ser representada com uma modificação simples na estrutura de lista duplamente ligada, permitindo que cada elemento se conecte a dois elementos subsequentes, em vez de apenas um, como em uma lista ligada típica.
- Cada nó identifica um filho esquerdo, um filho direito, o pai, e uma chave.

Árvore Binária de Busca

- A organização da Árvore Binária de Busca obedece a seguinte regra: dado um nó x da árvore, se y for um nó na subárvore esquerda de x, então y->chave < x->chave. Se y for um nó na subárvore direita de x, então y->chave > x->chave.
- Na implementação, vocês podem definir em qual lado colocarão as chaves de mesmo valor ou se proibirão tais elementos.

Percurso em Ordem

 Para exibirmos os valores de todas as chaves de uma árvore, de modo ordenado, podemos utilizar o seguinte algoritmo recursivo.

```
PERCURSO_EM_ORDEM (x)
if x ≠ NULL
  PercursoEmOrdem(x->esq)
  print x->chave
  PercursoEmOrdem(x->dir)
```

Onde x é a raiz.

• Intuitivamente podem perceber que esse algoritmo executa em O(n) (mais especificamente $\Theta(n)$), já que o algoritmo é chamado duas vezes recursivamente para cada nó.

 Para buscarmos um nó com uma determinada chave podemos utilizar o seguinte algoritmo iterativo:

```
BUSCA_NA_ARVORE (x, k)
while x ≠ NULL and k ≠ x->chave
   if k < x->chave
    x = x->esq
   else
    x = x->dir
return x
```

- Onde x é a raiz da árvore e k é a chave buscada.
- Notem que estou colocando os elementos iguais na subárvore direita.

Busca

• Vamos acompanhar a execução do algoritmo na árvore da figura abaixo.

```
BUSCA_NA_ARVORE (x, k)
while x ≠ NULL and k ≠ x->chave
   if k < x->chave
      x = x->esq
   else
      x = x->dir
return x
```


Busca na Árvore

- É evidente que a busca em árvore possui complexidade de tempo O(h), onde h é a altura da árvore.
- Afinal, o máximo de comparações que efetuaremos será a altura da árvore mais um.
- Se temos uma árvore balanceada, onde a diferença de altura entre as subárvores esquerda e direita de qualquer nó é limitada a um, o tempo de execução será de O(log(n)).
- Se temos uma árvore degenerada, onde todos os seus nós internos têm uma única subárvore associada, o custo será de O(n).

Mínimo e Máximo

- É simples encontrar os valores mínimo e máximo de uma árvore binária de busca.
- Dada a organização da árvore, o valor mínimo será a folha mais à esquerda e o valor máximo será a folha mais à direita.

```
ÁRVORE_MÍNIMO (x)
while x->esq ≠ NULL
x = x->esq
return x

ÁRVORE_MAXIMO (x)
while x->dir ≠ NULL
x = x->dir
return x
```


 No pior caso teremos que percorrer a altura da árvore, portanto, as funções ÁRVORE_MÍNIMO e ÁRVORE_MAXIMO executam em tempo O(h).

Inserção

- A inserção de um novo elemento deve obedecer a propriedade da árvore binária.
 Portanto, devemos encontrar o lugar correto para que o novo item seja inserido.
- Considerando a estrutura da árvore, a inserção de um novo elemento sempre será como filho de uma das folhas.

```
INSERÇÃO_NA_ARVORE (A, i)
 x = A - > raiz
  if x == NULL // Árvore vazia
   A->raiz = i
  else
   no pai = NULL
    while x \neq NULL
      no_pai = x
      if i->chave < x->chave
        x = x -> esq
      else
        x = x->dir
    if i->chave < no_pai->chave
      no pai->esq = i
    else
      no pai->dir = i
    i->pai = no_pai
```

 Onde A representa a árvore e i é o nó sendo inserido. Considere que o nó inserido já está criado corretamente, com os ponteiros contendo valores NULL.

Inserção

```
INSERÇÃO_NA_ARVORE (A, i)
  x = A \rightarrow raiz
  if x == NULL // Árvore vazia
    A \rightarrow raiz = i
  else
    no_pai = NULL
    while x \neq NULL
      no_pai = x
      if i->chave < x->chave
        x = x -> esq
      else
         x = x->dir
    if i->chave < no_pai->chave
      no_pai->esq = i
    else
      no_pai->dir = i
    i->pai = no_pai
```


Inserção

- Como no caso da busca, o tempo de execução da função de inserção é O(h).
- Afinal, no pior caso teremos que percorrer, efetuando comparações, por toda a altura da árvore até inserir o novo nó.

- A operação de deleção de um nó na árvore é um pouco mais complicada do que as operações anteriores.
- Precisamos garantir que a propriedade de Árvore Binária de Busca seja mantida após a remoção do nó, o que exigirá alguma manipulação dos elementos da árvore.
- Vamos considerar alguns casos básicos e tratar cada um deles separadamente.

- Caso 1: Se o nó não possuir filhos, basta deletar o nó.
- Caso 2: Se o nó possuir apenas um filho, este tomará o lugar do nó deletado.

- Caso 3: Se o nó possuir dois filhos, encontraremos o sucessor do nó a ser deletado, que chamaremos de d.
- ullet Encontraremos o sucessor de d, que chamaremos de S_d , que está na subárvore direita de d. Este não possuirá filho à esquerda (por quê? Resolva o exercício 5).
- \bullet Remova o nó S_d de sua posição atual e substitua d por S_d na árvore.
- Como fazer isso dependerá se S_d for o filho direito de d ou não.

 Caso 3.1: Se S_d for o filho direito de d, então, como na ilustrado figura abaixo, substitua d por S_d, deixando o filho direito de S_d inalterado.

 Caso 3.2: Caso contrário, S_d está na subárvore direita de d, mas não é o filho direito de d. Nesse caso, como ilustrado na figura abaixo, primeiro substitua S_d por seu próprio filho direito, e então substitua d por S_d.

- Para implementarmos essas operações, precisaremos de uma função que mova subárvores.
- A função SUBSTITUI_SUBÁRVORE é uma função muito simples que substitui a subárvore enraizada no nó u pela subárvore enraizada no nó v.

Delecão

 Segue a função completa para efetuar a deleção de um nó em uma Árvore Binária de Busca.

```
DELEÇÃO_NA_ARVORE (A, d)
if d->esq == NULL
    SUBSTITUI_SUBÁRVORE(A, d, d->dir) // Substituir por seu filho à direita
else
  if d->dir == NULL
    SUBSTITUI_SUBÁRVORE(A, d, d->esq) // Substituir por seu filho à esquerda
  else
    s = ÁRVORE MÍNIMO(d->dir)
                                         // s é o sucessor
    if s \neq d->dir
                                          // s não é o filho direito DIRETO de d
      SUBSTITUI_SUBÁRVORE(A, s, s->dir) // Substituir s por seu filho à direita
      s->dir = d->dir
                                          // O filho à direita de d se torna
      s->dir->pai = s
                                          // o filho à direita de s
    SUBSTITUI SUBÁRVORE(A, d, s)
                                          // Substituir por seu sucessor s
    s \rightarrow esq = d \rightarrow esq
                                          // e dê o filho à esquerda de d para s
    s\rightarrow esq\rightarrow pai = s
```

- Cada linha de código da função DELEÇÃO_NA_ARVORE executa em tempo constante, excetuando pela chamada da função ÁRVORE_MÍNIMO, que excecuta em tempo O(h).
- Portanto, todas as funções básicas que apresentamos para Árvores Binárias de Busca executam em tempo O(h).

Exercícios

- 1. Implemente a Árvore Binária de Busca e suas operações básicas em ${\sf C}/{\sf C}++.$
- 2. Implemente uma função para encontrar o nó sucessor dada uma chave k. O sucessor, dada uma chave k é o nó com a menor chave maior que k. Também implemente uma função para encontrar o nó predecessor, este sendo o nó com a maior chave menor que k.
- 3. Implemente a função de Busca recursivamente.
- 4. Implemente as funções de encontrar mínimo e máximo recursivamente.
- 5. Implemente a função de Inserção recursivamente.
- 6. Está correto afirmar que se um nó em uma Árvore Binária de Busca tem dois filhos, então seu sucessor não possui filho à esquerda e seu predecessor não possui filho à direita. Por quê?
- 7. Podemos criar um algoritmo de ordenação utilizando a Árvore Binária de Busca. Basta inserir cada elemento na árvore usando a função de Inserção e então executar a função de Percurso em Ordem para imprimir os valores de maneira ordenada. Qual o pior caso deste algoritmo? Qual o melhor caso? Demonstre os resultados.