Practice Questions – DFAs and NFAs

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.²
- 1. Construct a DFA which accept strings that contain odd number of zeros. ($\Sigma = \{0,1\}$)
- 2. Construct a DFA which accept strings not containing the substring 'aac'. ($\Sigma = \{a,b,c\}$)

Regular Languages

DEFINITION 1.23

Let *A* and *B* be languages. We define the regular operations *union*, *concatenation*, and *star* as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

EXAMPLE 1.24

Let the alphabet Σ be the standard 26 letters $\{a, b, ..., z\}$. If $A = \{good, bad\}$ and $B = \{boy, girl\}$, then

$$A \cup B = \{ \text{good}, \text{bad}, \text{boy}, \text{girl} \},$$

$$A \circ B = \{ \text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl} \}, \text{ and }$$

 $A^* = \{ \varepsilon, \, \text{good, bad, goodgood, goodbad, badgood, badbad,} \\ \text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,} \dots \}.$

Nondeterministic Finite Automaton

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.
- 1. Construct a NFA which accepts strings which have a in their second last place. ($\Sigma = \{a,b\}$)
- 2. Construct a NFA which accepts strings that have a prefix of 01. ($\Sigma = \{0,1\}$)
- 3. Construct an NFA which accepts strings of length 2. $(\Sigma = \{H,T\})$
- 4. Construct a NFA which accepts strings that contain odd number of zeros. ($\Sigma = \{0,1,2\}$)
- 5. Prove that
 - a) Union of two regular languages is a regular language.
 - b) Concatenation of two regular languages is a regular language.
 - c) Kleene Star of a regular language is a regular language.

NFA to DFA (not covered in R1)

1. Create a DFA from the following NFA diagram and description.

Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA N_2 recognizes A.

2. Describe the language that this NFA recognizes and list example strings. Convert it into a DFA.

 $3.\ {\rm Create}$ a DFA from the NFA below. Be careful about the epsilon transitions.

,