US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

A1

Publication Date

Inventor(s)

August 07, 2025

SHEN; Zhi et al.

COMBINER FOR RADIO-FREQUENCY CIRCUITS, DEVICES AND METHODS

Abstract

A radio-frequency architecture can include a first circuit configured to support a first frequency range, and a second circuit configured to support a second frequency range. The first circuit can be further configured to provide an impedance at or near a short circuit impedance for a signal in the second frequency range, the second circuit can be further configured to provide an impedance at or near a short circuit impedance for a signal in the first frequency range. The architecture can further include a coupling circuit having a common node and configured to couple the common node to the first circuit and to couple the common node to the second circuit. The coupling circuit can include a resonator such that the signal in the second frequency range is sufficiently excluded from the first circuit, and the signal in the first frequency range is sufficiently excluded from the second circuit.

Inventors: SHEN; Zhi (Aliso Viejo, CA), CHEN; Li (Irvine, CA), DOMINO; William J.

(Yorba Linda, CA), WLOCZYSIAK; Stephane Richard Marie (Irvine, CA),

ZHANG; Xiao (Irvine, CA)

Applicant: SKYWORKS SOLUTIONS, INC. (Irvine, CA)

Family ID: 77920938

Appl. No.: 19/012729

Filed: January 07, 2025

Related U.S. Application Data

parent US continuation 18115288 20230228 parent-grant-document US 12191894 child US 19012729

parent US continuation 17222824 20210405 parent-grant-document US 11595063 child US 18115288

us-provisional-application US 63005421 20200405

us-provisional-application US 63005424 20200405

us-provisional-application US 63005425 20200405

us-provisional-application US 63005426 20200405 us-provisional-application US 63005427 20200405

Publication Classification

Int. Cl.: H04B1/00 (20060101); H03H1/00 (20060101); H03H3/08 (20060101); H03H7/46 (20060101); H04B1/18 (20060101); H04B1/40 (20150101); H04W72/23 (20230101)

U.S. Cl.:

CPC **H04B1/006** (20130101); **H03H1/0007** (20130101); **H03H3/08** (20130101); **H03H7/46** (20130101); **H04B1/0078** (20130101); **H04B1/18** (20130101); **H04B1/40** (20130101); **H04W72/23** (20230101); H03H2001/0014 (20130101); H03H2001/0092 (20130101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATION(S) [0001] This application is a continuation of U.S. application Ser. No. 18/115,288 filed Feb. 28, 2023, entitled BRIDGE COMBINERS WITH RESONATORS FOR RADIO-FREQUENCY APPLICATIONS, which is a continuation of U.S. application Ser. No. 17/222,824 filed Apr. 5, 2021, entitled BRIDGE COMBINERS HAVING RESONATOR, which claims priority to U.S. Provisional Application Nos. 63/005,424 filed Apr. 5, 2020, entitled ARCHITECTURES HAVING BRIDGE COMBINERS AND MULTIPLEXERS, 63/005,425 filed Apr. 5, 2020, entitled BRIDGE COMBINERS, PHASE SHIFTERS AND/OR RESONATORS FOR WIRELESS APPLICATIONS, 63/005,426 filed Apr. 5, 2020, entitled SWITCHING CIRCUITS FOR BRIDGE COMBINERS, 63/005,427 filed Apr. 5, 2020, entitled CIRCUITS, DEVICES AND METHODS RELATED TO HALF-BRIDGE COMBINERS, and 63/005,421 filed Apr. 5, 2020, entitled BRIDGE COMBINERS AND FILTERS FOR RADIO-FREQUENCY APPLICATIONS, the disclosure of each of which is hereby expressly incorporated by reference herein in its entirety.

BACKGROUND

Field

[0002] The present disclosure relates to bridge combiners and related circuits for radio-frequency (RF) applications.

Description of the Related Art

[0003] In radio-frequency (RF) applications, a signal having a plurality of frequency components can be routed from a common path to separate paths. In reverse, a plurality of signals can be routed from respective paths to a common path. Either or both of such functionalities allow, for example, carrier aggregation of a plurality of RF signals.

SUMMARY

[0004] In accordance with a number of implementations, the present disclosure relates to a radio-frequency architecture that includes a first group of plurality of filters each configured to support a band such that a first frequency range covers the respective plurality of bands, and a second group of one or more filters each configured to support a band such that a second frequency range covers the respective one or more bands. Each filter of the first group is configured to provide an impedance at or near a short circuit impedance for a signal in each band of the second group, and each filter of the second group is configured to provide an impedance at or near a short circuit impedance for a signal in each band of the first group. The radio-frequency architecture further includes a coupling circuit having a common node and configured to couple the common node to

the first group through a first path and to couple the common node to the second group through a second path. The coupling circuit includes a resonator such that the impedance provided by each filter of the first group for the signal in each band of the second group results in the signal being sufficiently excluded from the first path, and such that the impedance provided by each filter of the second group for the signal in each band of the first group results in the signal being sufficiently excluded from the second path.

[0005] In some embodiments, the coupling circuit can include a first circuit and a second circuit that couple the common node to ground in a parallel manner, with the first circuit including a first inductance L1 and a capacitance in series between the common node and the ground, and the second circuit including the resonator and a second inductance L2 in series between the common node and the ground. The first path can be coupled to the common node through a node between the first inductance L1 and the capacitance, and the second path can be coupled to the common node through a node between the resonator and the second inductance L2.

[0006] In some embodiments, the resonator of the coupling circuit can be implemented as an acoustic resonator such as a bulk acoustic wave (BAW) resonator or a BAW-based resonator, or a surface acoustic wave (SAW) resonator or a SAW-based resonator. In some embodiments, the SAW or SAW-based resonator can include a temperature-compensated SAW (TC-SAW) resonator, a leaky SAW (LSAW) resonator, a longitudinal LSAW (LLSAW) resonator, or a trapped SAW resonator). In some embodiments, the acoustic resonator can include a sub-2 μ m piezoelectric layer on an interface of supporting substrate.

[0007] In some embodiments, the first path can present a first impedance Z1 to the coupling circuit, and the second path can present a second impedance Z2 to the coupling circuit, such that complex part of Z1 is a conjugate of complex part of Z1.

[0008] In some teachings, the present disclosure relates to a packaged module that includes a packaging substrate configured to receive a plurality of components, and a radio-frequency circuit implemented on the packaging substrate. The radio-frequency circuit includes a first group of plurality of filters each configured to support a band such that a first frequency range covers the respective plurality of bands, and a second group of one or more filters each configured to support a band such that a second frequency range covers the respective one or more bands. Each filter of the first group is configured to provide an impedance at or near a short circuit impedance for a signal in each band of the second group, and each filter of the second group is configured to provide an impedance at or near a short circuit impedance for a signal in each band of the first group. The radio-frequency circuit further includes a coupling circuit having a common node and configured to couple the common node to the first group through a first path and to couple the common node to the second group through a second path. The coupling circuit includes a resonator such that the impedance provided by each filter of the first group for the signal in each band of the second group results in the signal being sufficiently excluded from the first path, and such that the impedance provided by each filter of the second group for the signal in each band of the first group results in the signal being sufficiently excluded from the second path.

[0009] In some implementations, the present disclosure relates to a wireless device that includes one or more antennas and a front-end module in communication with the one or more antennas. The front-end module includes a radio-frequency circuit having a first group of plurality of filters each configured to support a band such that a first frequency range covers the respective plurality of bands, and a second group of one or more filters each configured to support a band such that a second frequency range covers the respective one or more bands. Each filter of the first group is configured to provide an impedance at or near a short circuit impedance for a signal in each band of the second group, and each filter of the second group is configured to provide an impedance at or near a short circuit impedance for a signal in each band of the first group. The radio-frequency circuit further includes a coupling circuit having a common node and configured to couple the common node to the first group through a first path and to couple the common node to the second

group through a second path. The coupling circuit includes a resonator such that the impedance provided by each filter of the first group for the signal in each band of the second group results in the signal being sufficiently excluded from the first path, and such that the impedance provided by each filter of the second group for the signal in each band of the first group results in the signal being sufficiently excluded from the second path. The wireless device further includes a receiver configured to process one or more signals associated with the filters of the first and second groups. [0010] For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- [0011] FIG. **1** depicts an architecture that can be implemented utilizing a coupling circuit having one or more features as described herein.
- [0012] FIG. **2** shows a normalized Smith chart that provides a visual representation of an impedance.
- [0013] FIGS. **3**A and **3**B depict the example impedances of FIG. **1** on the normalized Smith chart of FIG. **2**.
- [0014] FIG. **4** shows an architecture that can be implemented similar to the example of FIG. **1**, where a first group of filters includes three filters for supporting three bands, and a second group of filters includes two filters for supporting two bands.
- [0015] FIG. **5** shows an architecture where a first group of filters includes two filters for supporting two bands, and a second group of filters includes one filter for supporting one band.
- [0016] FIG. **6** shows that in some embodiments, a filter in a first group of filter(s) and a filter in a second group of filter(s) can be configured such that first and second impedances provided for first and second paths of a coupling circuit have complex parts that are conjugates, or approximately conjugates, of each other.
- [0017] FIG. **7** shows an architecture that can be implemented similar to the examples of FIGS. **4** and **5**, and with one or more phase shifters.
- [0018] FIG. **8** shows an architecture that utilizes a plurality of coupling circuits with a plurality of groups of filters, where at least one group includes a plurality of filters for supporting different bands.
- [0019] FIG. **9** shows an example of an architecture where a common signal node of a coupling circuit is coupled to an antenna, and first and second paths from the coupling circuit are coupled to one or more multiplexers.
- [0020] FIG. **10** shows another example of an architecture where a common signal node of a coupling circuit is coupled to an antenna, and first and second paths from the coupling circuit are coupled to one or more multiplexers.
- [0021] FIG. **11** shows yet another example of an architecture where a common signal node of a coupling circuit is coupled to an antenna, and first and second paths from the coupling circuit are coupled to one or more multiplexers.
- [0022] FIG. **12** shows an architecture that can be a more specific example of the architecture of FIG. **9**.
- [0023] FIG. **13** shows an architecture that can be another more specific example of the architecture of FIG. **9**.

- [0024] FIG. **14** shows an architecture that can be a more specific example of the architecture of FIG. **10**.
- [0025] FIG. **15** shows an architecture that can be another more specific example of the architecture of FIG. **10**.
- [0026] FIG. **16** shows that in some embodiments, an architecture having one or more features as described herein can include a coupling circuit that includes two LC circuits that couple an input node to ground.
- [0027] FIG. **17**A shows that in some embodiments, an architecture having one or more features as described herein can include a coupling circuit having a resonator.
- [0028] FIG. **17**B shows that in some embodiments, the resonator of the coupling circuit of FIG. **17**A can include an acoustic resonator.
- [0029] FIGS. **18**A and **18**B show that in some embodiments, an architecture having one or more features as described herein can include a coupling circuit having a half bridge configuration.
- [0030] FIG. **19**A shows an example architecture that includes the half-bridge coupling circuit of FIG. **18**A.
- [0031] FIG. **19**B shows an example architecture that includes the half-bridge coupling circuit of FIG. **18**B.
- [0032] FIG. **20** shows an architecture that is a more specific example of the architecture of FIG. **4**, utilizing the coupling circuit of FIG. **16**.
- [0033] FIG. **21** shows scans of impedances for the example architecture of FIG. **20**.
- [0034] FIG. **22** shows an example of how phase shifting functionality can be utilized in an architecture that includes a coupling circuit as described herein.
- [0035] FIG. **23** shows another example of how phase shifting functionality can be utilized in an architecture that includes a coupling circuit as described herein.
- [0036] FIG. **24** shows an architecture that can be a more specific example of the architecture of FIG. **8**, where a plurality of coupling circuits can be utilized.
- [0037] FIG. **25** show an architecture that can be a more specific example of the architectures of FIGS. **9** and **12**.
- [0038] FIG. **26** show an architecture that can be a more specific example of the architectures of FIGS. **9** and **13**.
- [0039] FIG. **27** shows an architecture having switching functionalities described herein in reference to FIGS. **11**, **13** and **14**.
- [0040] FIG. **28** shows an example architecture that includes switching functionalities to allow a plurality of coupling circuits to share a common antenna, and also to share a common group of filters.
- [0041] FIG. **29** shows an architecture that can be a more specific example of the architecture of FIG. **19**A.
- [0042] FIG. **30** shows an example architecture that utilizes a number of features described herein.
- [0043] FIG. **31** shows that in some embodiments, a radio-frequency (RF) module can include one or more features as described herein.
- [0044] FIG. **32** depicts an example wireless device having one or more advantageous features described herein.

DETAILED DESCRIPTION OF SOME EMBODIMENTS

- [0045] The headings provided herein, if any, are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.
- [0046] Among others, PCT Publication No. WO2016/033427 (International Application No.
- PCT/US2015/047378 titled DOMINO CIRCUIT AND RELATED ARCHITECTURES AND
- METHODS FOR CARRIER AGGREGATION) discloses circuits, architectures and methods related to coupling circuits that can be utilized for carrier aggregation operations. For the purpose of description, such a coupling circuit can also be referred to as a bridge circuit, a Domino circuit,

or a Domino bridge circuit.

[0047] FIG. **1** depicts an architecture **700** that can be implemented utilizing a coupling circuit **100** having one or more features as described herein. In some embodiments, such a coupling circuit can include one or more of the examples disclosed in the above-mentioned PCT Publication No. WO2016/033427.

[0048] In the example architecture **700** of FIG. **1**, the coupling circuit **100** is shown to couple a common signal node **102** to a first signal processing component **701** (Band A component such as Band A filter) and a second signal processing component **702** (Band B component such as Band B filter). Configured in the foregoing manner, impedance Zin1 presented to the coupling circuit **100** can be equal to (or approximately equal to) a load impedance (e.g., 50 Ohm) of the Band A filter for a Band A signal, and be equal to (or approximately equal to) zero for a Band B signal. Similarly, impedance Zin2 presented to the coupling circuit **100** can be equal to (or approximately equal to) a load impedance (e.g., 50 Ohm) of the Band B filter for the Band B signal, and be equal to (or approximately equal to) zero for the Band A signal.

[0049] As disclosed in PCT Publication No. WO2016/033427, the coupling circuit **100** can be configured to couple the foregoing first and second signal paths associated with the Band A and Band B filters, such that the approximately zero impedance presented by the first signal path (with Band A filter) to the signal in the second frequency band (Band B signal) results in the signal in the second frequency band (Band B signal) being substantially excluded from the first signal path, and such that the approximately zero impedance presented by the second signal path (with Band B filter) to the signal in the first frequency band (Band A signal) results in the signal in the first frequency band (Band A signal) being substantially excluded from the second signal path. [0050] In the example of FIG. **1**, as well as some of the other examples described herein, impedances presented by respective filters are depicted in the context of a flow of signal(s) from a common signal node (**102** in FIG. **1**) to either or both of first and second signal paths associated with first (Band A) and second (Band B) filters. However, and as disclosed in PCT Publication No. WO2016/033427, it will be understood that one or more features of the present disclosure can also be implemented in a configuration where a flow of signal(s) is in reverse relative to the foregoing configuration.

[0051] FIG. 2 shows a normalized Smith chart **710** that provides a visual representation of an impedance Z=R+jX, where R is resistance and X is reactance. It is noted that for a pure capacitance, reactance X is equal to X.sub.C= $-1/\omega$ C where $\omega=2\pi f$, and for a pure inductance, reactance X is equal to X.sub.L= ω .sub.L. Thus for a pure resistance, Z=R; for a pure capacitance, $Z=jX.sub.C=-j/\omega C$; and for a pure inductance, $Z=jX.sub.L=j\omega L$. It is also noted that an impedance in the region above the horizontal line of the Smith chart **710** has a positive imaginary value and represents an inductive impedance, and an impedance in the region below the horizontal line of the Smith chart **710** has a negative imaginary value and represents a capacitive impedance. [0052] Referring to FIG. **2**, the foregoing horizontal line segment is shown to bisect the outermost circle, with the left end of the horizontal line segment representing a short circuit (Z=0) state, and the right end of the horizontal line segment representing an open circuit (Z=0) state. The mid-point of the horizontal line segment (and thus the center of the outermost circle) represents a matched impedance state. Such a matched impedance state has a value of Z=1 in the normalized representation. In an un-normalized representation, such a matched impedance state can have a value of, for example, Z=50 ohms.

[0053] In the normalized Smith chart of FIG. **2**, solid-line circles are constant-resistance circles **712** at example normalized values. For example, the outermost circle referenced above has a constant-resistance value of 0, and the successively smaller circles have constant-resistance values of 0.2, 0.5, 1, 2, 3, 4, 5 and 10. All of such constant-resistance circles share their right-most points at the right end of the above-referenced horizontal line segment (open circuit state). [0054] In the normalized Smith chart **710** of FIG. **2**, dash-line arcs are constant-reactance arcs **714**

of an infinite-radius circle) has a constant-reactance value of 0, and the successively smaller-radiuscircle arcs have constant-reactance values of 0.2, 0.5, 1, 2, 3, 4, 5 and 10. Such constant-reactance arcs can be provided above and below the horizontal line segment. For the arcs above the horizontal line segment, the arcs share their lower-most points at the right end of the horizontal line segment (open circuit state). For the arcs below the horizontal line segment, the arcs share their upper-most points at the right end of the horizontal line segment (open circuit state). [0055] FIGS. **3**A and **3**B depict the example impedances Zin1 and Zin2 of FIG. **1**, respectively, on the normalized Smith chart of FIG. 2. More particularly, FIG. 3A shows Zn1 having an impedance region at or about the matched impedance state (Z=1+i0) that includes impedance values associated with a frequency range of the first frequency band (Band A), and an impedance region at or about the short circuit state (Z=0+i0) that includes impedance values associated with a frequency range of the second frequency band (Band B). Similarly, FIG. 3B shows Zn2 having an impedance region at or about the matched impedance state (Z=1+i0) that includes impedance values associated with the frequency range of the second frequency band (Band B), and an impedance region at or about the short circuit state (Z=0+i0) that includes impedance values associated with the frequency range of the first frequency band (Band A).

at example normalized values. For example, the above-referenced horizontal line segment (an arc

[0056] Referring to the example of FIGS. 1 and 3, it is noted that the impedance states for Zin1 and Zin2 of FIGS. 3A and 3B can be considered to be ideal impedance states. However, in some embodiments, the Band A filter of the example of FIG. 1 can be a part of a group having a plurality of filters for supporting a plurality of respective bands, with the filters of the group being connectable to the first of two paths (e.g., the upper path associated with Zin1) associated with the coupling circuit 100. Similarly, the Band B filter of the example of FIG. 1 can be a part of a group having a plurality of filters for supporting a plurality of respective bands, with the filters of the group being connectable to the second of two paths (e.g., the lower path associated with Zin2) associated with the coupling circuit 100.

[0057] For example, FIG. 4 shows an architecture **720** that can be implemented similar to the example of FIG. 1, but where a first group of filters **721** includes three filters for supporting three bands (Band 1A, Band 1B, Band 1C), and a second group of filters **722** includes two filters for supporting two bands (Band 2A, Band 2B). In such an architecture, a coupling circuit **100** is shown to couple a common signal node **102** to the first group of filters **721** and the second group of filters **722**. Configured in the foregoing manner, impedance values for Zin1 are presented to the coupling circuit **100** for a signal in the band corresponding to a selected one of the filters of the first group of filters **721** and for a signal in the band corresponding to a selected one of the filters of the second group of filters **722**. Similarly, impedance values for Zin2 are presented to the coupling circuit **100** for a signal in the band corresponding to the selected one of the filters of the second group of filters **722** and for a signal in the band corresponding to the selected one of the filters of the first group of filters **721**.

[0058] In the example of FIG. **4**, the first group of filters **721** is described as having three filters, and the second group of filters **722** is described as having two filters. It will be understood that each of the first and second groups of filters can also be implemented with different numbers of filters.

[0059] In the example of FIG. **4**, each of the first and second groups of filters **721**, **722** is described as having a plurality of filters. It will be understood that in some embodiments, one group can include a plurality of filters, and the other group can include a single filter.

[0060] For example, FIG. **5** shows an architecture **720** where a first group of filters **721** includes two filters for supporting two bands (Band **1**A, Band **1**B), and a second group of filters **722** includes one filter for supporting one band (Band **2**). In such an architecture, a coupling circuit **100** is shown to couple a common signal node **102** to the first group of filters **721** and the single filter of the second group **722**. Configured in the foregoing manner, impedance values for Zin1 are

presented to the coupling circuit **100** for a signal in the band corresponding to a selected one of the filters of the first group of filters **721** and for a signal in the band corresponding to the single filter of the second group **722**. Similarly, impedance values for Zin2 are presented to the coupling circuit **100** for a signal in the band corresponding to the single filter of the second group **722** and for a signal in the band corresponding to the selected one of the filters of the first group of filters **721**. [0061] In the examples of FIGS. **4** and **5**, a selected filter in the first group **721** and a selected filter in the second group **722** can be configured so as to provide ideal impedance states, similar to the example of FIGS. **1** and **3**. However, with such a configuration where two selected filters are optimized, performance can suffer significantly when using other (non-selected) filter(s) of the first and second groups **721**, **722**.

[0062] It is noted that in many applications, and especially when a group of filters involve a wide frequency range, it is impossible or difficult to achieve ideal impedance states (ideal matched impedance state and/or ideal short circuit state) for all of the filters in the group. However, in some embodiments, even if impedances Zin1 and Zin2 are not in ideal impedance states, desired or acceptable performance can be achieved if real parts of the complex impedances Zin1 and Zin2 are sufficiently close to the respective real parts of the ideal impedance states and imaginary parts of the complex impedances Zin1 and Zin2 are configured appropriately as described herein. [0063] In some embodiments, each filter in a first group of filter(s) and a second group of filter(s) can be configured such that first and second impedances provided for first and second paths of a coupling circuit have complex parts that are conjugates, or approximately conjugates, of each other. More particularly, the first impedance provided for the first path of the coupling circuit can be expressed as Z.sub.1=R.sub.1+jX, and the second impedance provided for the second path of the coupling circuit can be expressed as Z.sub.2=R.sub.2-jX, where -jX is a conjugate of +jX of Z.sub.1.

[0064] FIG. **6** shows the foregoing complex portion-conjugated impedances in terms of the first and second impedances Zin1 and Zin2 corresponding to the example architecture **720** of FIG. **4**. In the example of FIG. **4**, the three filters (Band **1**A, Band **1**B, Band **1**C) of the first group **721** can have frequency bands F1A<F1B<F1C, respectively, and the two filters (Band **2**A, Band **2**B) of the second group **722** can have frequency bands F2A<F2B, respectively, such that F1A<F1B<F1C<F2A<F2B.

[0065] With the foregoing configurations of the filters of the first and second groups **721**, **722**, FIG. **6** depicts Smith charts for the impedances Zin1 and Zin1 of FIG. **4**.

[0066] Referring to FIG. 6, impedances Zin1 for signals in the three bands (Band 1A, Band 1B, Band **1**C) of the first group **721** are shown to be in regions at or close to the matched impedance value (e.g., Z=1 in normalized Smith chart), and impedances Zin1 for signals in the two bands (Band 2A, Band 2B) of the second group 722 are shown to be in regions at or close to the short circuit value (e.g., Z=0 in normalized Smith chart). Similarly, impedances Zin2 for signals in the two bands (Band 2A, Band 2B) of the second group 722 are shown to be in regions at or close to the matched impedance value, and impedances Zin2 for signals in the three bands (Band 1A, Band **1**B, Band **1**C) of the first group **721** are shown to be in regions at or close to the short circuit value. [0067] In the example of FIG. **6**, each filter is shown to provide Zin1 and Zin2 values having respective ones of real parts associated with matched impedance state ($Z\approx1$) and short circuit state $(\mathbb{Z}\approx 0)$, and complex parts that are conjugates of each other. More particularly, for Band **1**A, Zin1=R.sub.1+jX.sub.1 (with R.sub.1 \approx 1 and X.sub.1 \neq 0), and Zin2=R'.sub.1-jX.sub.1 (with R'.sub.1≈0 and X.sub.1≈0), with +jX.sub.1 and −jX.sub.1 of Zin1 and Zin2 being conjugates of each other, as depicted by arrow **724***a*. For Band **1**B, Zin1=R.sub.2+jX.sub.2 (with R.sub.2≈1 and X.sub.2=0), and Zin2=R'.sub.2-jX.sub.2 (with R'.sub.2 \approx 0 and X.sub.2 \approx 0), with +jX.sub.2 and -jX.sub.2 of Zin1 and Zin2 being conjugates of each other, as depicted by arrow **724***b*. For Band **1**C, Zin1=R.sub.3−jX.sub.3 (with R.sub.3 \approx 1 and X.sub.3 \neq 0), and Zin2=R'.sub.3+jX.sub.3 (with R'.sub.3≈0 and X.sub.3≠0), with −jX.sub.3 and +jX.sub.3 of Zin1 and Zin2 being conjugates of

each other, as depicted by arrow **724***c*.

[0068] Similarly, for Band **2**A, Zin2=R.sub.4+jX.sub.4 (with R.sub.4 \approx 1 and X.sub.4 \neq 0), and Zin1=R'.sub.4-jX.sub.4 (with R'.sub.4 \approx 0 and X.sub.4 \neq 0), with +jX.sub.4 and -jX.sub.4 of Zin2 and Zin1 being conjugates of each other, as depicted by arrow **724***d*. For Band **2**A, Zin2=R.sub.5-jX.sub.5 (with R.sub.5 \approx 1 and X.sub.5 \neq 0), and Zin1=R'.sub.5+jX.sub.5 (with R'.sub.5 \approx 0 and X.sub.5 \neq 0), with -jX.sub.5 and +jX.sub.5 of Zin2 and Zin1 being conjugates of each other, as depicted by arrow **724***e*.

[0069] It is noted that in the foregoing examples of Zin1 and Zin2 for the five bands of FIG. **6**, if Zin1 for a given band is capacitive (i.e., impedance is in a region below the horizontal line of the Smith chart), then Zin2 for the same band is inductive (i.e., impedance is in a region above the horizontal line of the Smith chart). Similarly, if Zin1 for a given band is inductive, then Zin2 for the same band is capacitive.

[0070] In the example of FIGS. **4** and **6**, suppose that each filter of a given group (e.g., the first group **721**) is configured to provide the foregoing Zin1 and Zin2 impedances for the first and second paths of the coupling circuit **100**. In some embodiments, the architecture **720** can be configured such that some or all of capacitive and inductive impedances of Zin1 and Zin2 are rotated toward desirable location(s) on a Smith chart. For example, a capacitive or inductive impedance close to a short circuit state can be rotated towards such a short circuit state so as to provide an impedance equal to, or approximately equal to, the short circuit impedance. In another example, a capacitive or inductive impedance close to a matched impedance state can be rotated towards such a matched impedance state so as to provide an impedance equal to, or approximately equal to, the matched impedance.

[0071] In some embodiments, the foregoing rotation of Zin1 and Zin2 impedances for the given group of filters can be implemented by, for example, configuring of another group (e.g., the second group 722), introduction of one or more phase shifting components, or some combination thereof. Examples of such phase shifting components are described herein in greater detail.

[0072] FIGS. **7-15** show examples of architectures that can be implemented utilizing one or more features described in reference to the examples of FIGS. **4-6**.

[0073] For example, FIG. 7 shows an architecture 730 that can be implemented similar to the examples of FIGS. 4 and 6, where a first group of filters 721 includes a plurality of filters, and a second group of filters 722 includes a plurality of filters. FIG. 7 shows that in some embodiments, the architecture 730 can further include a first phase shifter 103 implemented between the coupling circuit 100 and the first group of filters 721, and a second phase shifter 105 implemented between the coupling circuit 100 and the second group of filters 722. Additional examples related to the architecture 730 of FIG. 7 are described herein in greater detail.

[0074] In another example, FIG. **8** shows an architecture **732** that utilizes a plurality of coupling circuits **100***a*, **100***b* with a plurality of groups of filters, where at least one group includes a plurality of filters for supporting different bands. In the example of FIG. **8**, a first coupling circuit **100***a* is shown to couple a common signal node **102** to first and second paths, with the first path including a group of one or more filters **723**, and the second path including a common signal node for a second coupling circuit **100***b*. The second coupling circuit **100***b* is shown to couple its common signal node to its first and second paths, with the first path including a group of one or more filters **722**, and the second path including a group of one or more filters **721**.

[0075] In the example of FIG. **8**, phase shifters **103***a*, **103***b* are shown to be provided along the first and second paths associated with the first coupling circuit **100***a*. Similarly, phase shifters **103***c*.

and second paths associated with the first coupling circuit **100***a*. Similarly, phase shifters **103***c*, **103***d* are shown to be provided along the first and second paths associated with the second coupling circuit **100***b*. It will be understood that in some embodiments, some or all of such paths associated with the coupling circuits **100***a*, **100***b* can be implemented without phase shifter(s). Additional examples related to the architecture **732** of FIG. **8** are described herein in greater detail. [0076] In yet more examples, FIGS. **9-11** show architectures where a common signal node **102** of a

coupling circuit **100** is coupled to an antenna, and first and second paths from the coupling circuit **100** are coupled to one or more multiplexers **701**. For the purpose of description, such one or more multiplexers (701) can include one or more groups of filters, where at least one of such group(s) includes a plurality of different band filters. It will be understood that while each path from a respective coupling circuit is shown to include a phase shifter, such a path may or may not include a phase shifter.

[0077] In the example of FIG. **9**, an architecture **734** can include a switching circuit **107** implemented along a path between the coupling circuit **100** and the multiplexer(s) **701**. FIGS. **12** and **13** show more specific examples of such an architecture.

[0078] In the example of FIG. 10, an architecture 736 can include a switching circuit 109 implemented between the coupling circuit **100** and one or more antennas. FIGS. **14** and **15** show more specific examples of such an architecture.

[0079] In the example of FIG. **11**, an architecture **738** can include a switching circuit **107** implemented along a path between the coupling circuit **100** and the multiplexer(s) **701**, as well as a switching circuit **109** implemented between the coupling circuit **100** and one or more antennas. Additional examples of such an architecture are described herein.

[0080] FIG. 12 shows an architecture 734 that can be a more specific example of the architecture **734** of FIG. **9**. In the example of FIG. **12**, a switch **107** can be implemented between a coupling circuit 100 and a group of filters 722, so as to allow selection of a filter among the filters within the same group **722**. For example, suppose that the group of filters **722** includes Band **2**A and Band **2**B filters. The switch **107** can be configured to allow the coupling circuit **100** to be coupled to either of such two filters.

[0081] FIG. 13 shows an architecture 734 that can be another more specific example of the architecture **734** of FIG. **9**. In the example of FIG. **13**, a switch **107** can be implemented between a coupling circuit **100** and a plurality of groups of filters **722**, so as to allow selection of a group among the groups. For example, suppose that the architecture 734 includes three groups of filters 721, 722, 723. The switch 107 can be configured to, for example, allow the coupling circuit 100 to be coupled to the group **721** or the group **722**. It will be understood that the group **723** can also be switchably coupled to the coupling circuit **100** in a similar manner.

[0082] In some embodiments, the architecture **734** of FIG. **13** can include one or more switching function blocks to allow switchable selection of a filter within a given group. Similarly, in some embodiments, the architecture **734** of FIG. **12** can include one or more switching function blocks to allow switchable selection of a group among a plurality of groups. It will be understood that in some embodiments, such filter-group selection and filter-selection (within a given group) functionalities can be achieved by an appropriately configured switching network. Examples related to such a switching network are described herein in greater detail.

[0083] FIG. **14** shows an architecture **736** that can be a more specific example of the architecture **736** of FIG. **10**. In the example of FIG. **14**, a switch **109** can be implemented between a coupling circuit **100** and a plurality of antennas (e.g., ANT1, ANT2), so as to allow selection of an antenna to be coupled to a common signal node of the coupling circuit **100**. In the example of FIG. **14**, first and second paths from the coupling circuit **100** can be coupled to one or more multiplexers **701** as described herein.

[0084] FIG. **15** shows an architecture **736** that can be another more specific example of the architecture **736** of FIG. **10**. In the example of FIG. **15**, a switch **109** can be implemented between a common antenna (ANT) and a plurality of coupling circuits (e.g., **100***a*, **100***b*). Such a configuration can allow the common antenna (ANT) to be coupled to the common signal node of either of the coupling circuits **100***a*, **100***b*. In the example of FIG. **15**, each of first and second paths from each coupling circuit (100a or 100b) can be coupled to a filter, a multiplexer, another coupling circuit, a switch, etc., including the various examples described herein.

[0085] FIGS. **16-18** show various examples of coupling circuits **100** that can be utilized in the

various architectures as described herein. FIG. **16** shows that in some embodiments, an architecture having one or more features as described herein can include a coupling circuit **100** disclosed in PCT Publication No. WO2016/033427. More particularly, the coupling circuit **100** can include two LC circuits that couple an input node **102** to ground. The first LC circuit can include a first inductance L1 (on the input side) in series with a first capacitance C1 (on the ground side). The second LC circuit can include a second capacitance C2 (on the input side) in series with a second inductance L2 (on the ground side). A node between L1 and C1 is shown to be coupled to a first path, and a node between C2 and L2 is shown to be coupled to a second path. [0086] FIG. **17**A shows that in some embodiments, an architecture having one or more features as described herein can include a coupling circuit **100** having a resonator **111**. In some embodiments, such a resonator can replace a capacitance or an inductance in the coupling circuit **100** of FIG. **16**. For example, the coupling circuit **100** of FIG. **17**A is shown to include a resonator **111** that replaces the capacitance C2 of the coupling circuit **100** of FIG. **16**. It will be understood that each of the other elements L1, C1, L2 of the coupling circuit **100** of FIG. **17**A may or may not have the same value as the corresponding counterpart element (L1, C1 or L2) of the coupling circuit **100** of FIG.

[0087] FIG. 17B shows that in some embodiments, the resonator 111 of the coupling circuit 100 of FIG. 17A can include an acoustic resonator such as a bulk acoustic wave (BAW) resonator, any other BAW-based resonator, a surface acoustic wave (SAW) resonator (e.g., a temperature-compensated SAW (TC-SAW) resonator, a leaky SAW (LSAW) resonator, a longitudinal LSAW (LLSAW) resonator, a trapped SAW resonator), any acoustic resonator with sub-2 µm piezoelectric layer on interface of supporting substrate, or some combination thereof. An example of an architecture having such a resonator in a coupling circuit is described herein in greater detail. [0088] FIGS. 18A and 18B show that in some embodiments, an architecture having one or more features as described herein can include a coupling circuit 100 having a half bridge configuration. As disclosed in PCT Publication No. WO2016/033427, the coupling circuit 100 of FIG. 18A can be configured to provide a 3-pole low-pass filter functionality for the path coupled to the node between L1 and C1. Examples related to an architecture having such a half-bridge coupling circuit are described herein in greater detail.

16.

[0089] Similarly, the coupling circuit **100** of FIG. **18**B can be configured to provide a 3-pole high-pass filter functionality for the path coupled to the node between C2 and L2. Examples related to an architecture having such a half-bridge coupling circuit are described herein in greater detail. [0090] FIG. **19**A shows an example architecture **740** that includes the half-bridge coupling circuit **100** of FIG. **18**A. In the example of FIG. **19**A, the coupling circuit **100** couples a common signal node **102** to a first group of filters **701** through a node between L1 and C1. The common signal node **102** is also shown to be directly coupled to a second group of filters **702**.

[0091] In the example of FIG. **19**A, a phase shifter **103** is shown to be provided between the coupling circuit **100** and the first group of filters **701**. In some embodiments, such a phase shifter can be configured to accommodate or compensate for a phase shift associated with a filter within the first group **701**.

[0092] FIG. **19**B shows an example architecture **742** that includes the half-bridge coupling circuit **100** of FIG. **18**B. In the example of FIG. **19**B, the coupling circuit **100** couples a common signal node **102** to a second group of filters **702** through a node between C2 and L2. The common signal node **102** is also shown to be directly coupled to a first group of filters **701**.

[0093] In the example of FIG. **19**A, a phase shifter **103** is shown to be provided between the coupling circuit **100** and the second group of filters **702**. In some embodiments, such a phase shifter can be configured to accommodate or compensate for a phase shift associated with a filter within the second group **702**.

[0094] FIG. **20** shows an architecture **720** that is a more specific example of the architecture **720** of FIG. **4**, utilizing the coupling circuit **100** of FIG. **16**. In the example of FIG. **20**, a first group of

```
filters 721 is shown to include three low frequency band duplexers, each having respective transmit
(Tx) and receive (Rx) filters, for three bands F1, F2, F3. Thus, the first group of filters 721 includes
three Rx filters for F1 Rx, F2 Rx, F3 Rx bands, and three Tx filters for F1 Tx, F2 Tx, F3 Tx
bands. Similarly, a second group of filters 722 is shown to include two high frequency band
duplexers, each having respective transmit (Tx) and receive (Rx) filters, for two bands F4, F5.
Thus, the second group of filters 722 includes two Rx filters for F4_Rx, F5_Rx bands, and two Tx
filters for F4_Tx, F5_Tx bands. For the purpose of description of the example of FIG. 20, it will be
assumed that the frequency bands F1, F2, F3, F4, F5 have successively higher frequency values
(e.g., middle-frequency value in a given band), such that F1<F2<F3<F4<F5.
[0095] In the example of FIG. 20, the coupling circuit 100 is shown to include a common signal
node 102 that is between an inductance L1 and a capacitance C2. The common signal node 102 is
shown to be coupled to an antenna 760. A first node between the inductance L1 and a capacitance
C1 is shown to be coupled to the first group of filters 721, so as to be presented with a first
impedance Zin1. A second node between the capacitance C2 and an inductance L2 is shown to be
coupled to the second group of filters 722, so as to be presented with a second impedance Zin2. A
node between the capacitance C1 and the inductance L2 is shown to be coupled to a ground.
[0096] Referring to the example of FIG. 20, suppose that a receive operation involves a signal
being received through the antenna 760, and a selected Rx filter in each of the first and second
groups 721, 722 is coupled to the coupling circuit 100 for carrier aggregation. In such an example
context, each of such selected filters can be configured such that impedances Zin1 and Zin2
associated with the coupling circuit 100 are as described herein in reference to FIGS. 4 and 6.
Accordingly, FIG. 21 shows scans of Zin1 and Zin2 impedances for the example architecture 720
of FIG. 20, showing various complex part-conjugate nature of Zin1 and Zin2 for each band.
[0097] FIGS. 22 and 23 show examples of how phase shifting functionality can be utilized in
architectures that include a coupling circuit as described herein. For example, FIG. 22 shows an
architecture 730 that is similar to the architecture 720 of FIG. 20, but in which one or more phase
shifters can be utilized to better isolate a group of bands from one or more other groups of bands.
[0098] In the example of FIG. 22, a first group of filters 721 is shown to include three low
frequency band duplexers, and a second group of filters 722 is shown to include two high
frequency band duplexers, similar to the example of FIG. 20. For such groups of filters (e.g., low
frequency band filters for bands F1, F2, F3, and high frequency band filter for bands F4, F5),
impedances Zin1 and Zin2 can be similar to the example of FIGS. 20 and 21.
[0099] In the example of FIG. 22, a first phase shifter 103 can be implemented between the
coupling circuit 100 and the first group of filters 721, and a second phase shifter 105 can be
implemented between the coupling circuit 100 and the second group of filters 722. Such first and
second phase shifters can be configured to provide improved isolation between a third group of
filters (e.g., mid frequency bands) and each of the first and second groups 721, 722. For example,
the phase shifter 103 can provide a shift in phase, such that an impedance Zin3 after the phase
shifter 103 is approximately an open circuit impedance for a mid frequency band signal, and a
capacitive impedance for a high frequency band signal. The phase shifter 105 can provide a shift in
phase, such that an impedance Zin4 after the phase shifter 105 is approximately an open circuit
impedance for the mid frequency band signal, and an inductive impedance for a low frequency
band signal. It is noted that the foregoing phase shifting configuration minimizes or reduces mutual
loading between the mid frequency band and the high frequency band.
[0100] In another example, FIG. 23 shows an architecture 730 that is similar to the architecture 730
of FIG. 22, but in which phase shifting functionality can be implemented to be band-specific for at
least some of the bands supported by first and second groups of filters 721, 722. In some
embodiments, phase shifting elements 770 such as transmission lines, L/C components and/or
resonators can be configured for band-specific implementations. In some embodiments, such band-
specific phase shifting functionality can result in improved performance of the coupling circuit 100.
```

- [0101] For example, for the first group of filters **721** in the architecture **730** of FIG. **23**, an inductance element and a transmission line can be configured and implemented for the Tx and Rx filters of the first band (F1), transmission lines can be configured and implemented for both of the Tx and Rx filters of the second band (F1), and a transmission line and an inductance element can be configured and implemented for the Tx and Rx filters of the third band (F3).
- [0102] For the second group of filters **722** in the architecture **730** of FIG. **23**, an inductance element and a transmission line can be configured and implemented for the Tx and Rx filters of the first band (F4), and a transmission line and a resonator can be configured and implemented for the Tx and Rx filters of the second band (F5).
- [0103] FIG. **23** also shows that in some embodiments, a phase shifting element, such as a resonator, can be implemented as a part of a coupling circuit. For example, the coupling circuit **100** is shown to include a resonator **111** implemented to replace a capacitance (e.g., C1 in FIG. **22**). In some embodiments, the resonator **111** of the coupling circuit **100** and the resonator associated with the band-specific phase shifting elements **770** can be configured to function operatively to provide improved functionality of the coupling circuit.
- [0104] In some embodiments, each of the foregoing resonators can be implemented as, for example, an acoustic resonator such as a bulk acoustic wave (BAW) resonator or a surface acoustic wave (SAW) resonator (e.g., a temperature-compensated (TC) SAW resonator).
- [0105] FIG. **24** shows an architecture **732** that can be a more specific example of the architecture **732** of FIG. **8**, where a plurality of coupling circuits can be utilized. In the example of FIG. **24**, a first group of filters **721** is shown to include one low frequency band duplexer, a second group of filters **722** is shown to include two mid frequency band duplexers, and a third group of filters **723** is shown to include two high frequency band duplexers.
- [0106] Referring to FIG. **24**, the architecture **732** is shown to include a first coupling circuit **100***a* having a common signal node **102** coupled to an antenna **760**, a first path coupled to a common signal node (between L3 and C4) of a second coupling circuit **100***b* (from a node between L1 and C1), and a second path coupled to the third group of filters **723** (from a node between C2 and L2). The second coupling circuit **100***b* is shown to have its first path coupled to the first group of filters **721** (from a node between L3 and C3) and its second path coupled to the second group of filters **722** (from a node between C4 and L4).
- [0107] Configured in the foregoing manner, an impedance of Zin3 is presented in the first path of the first coupling circuit **100***a*, and an impedance of Zin4 is presented in the second path of the first coupling circuit **100***a*. Similarly, an impedance of Zin1 is presented in the first path of the second coupling circuit **100***b*, and an impedance of Zin2 is presented in the second path of the second coupling circuit **100***b*.
- [0108] In the example of FIG. **24**, a group of filters associated with the first path of the first coupling circuit **100***a* can be considered to include the filters of the low frequency bands (**721**) and the filters of the mid frequency bands (**722**). Accordingly, the impedance Zin3 can have a value that is at or close to a load-matched impedance for low and mid frequency bands, and a value that is at or close to a short circuit state for high frequency bands. The impedance Zin4 can have a value that is at or close to a load-matched impedance for high frequency bands, and a value that is at or close to a short circuit state for low and mid frequency bands.
- [0109] Also in the example of FIG. **24**, the second coupling circuit **100***b* is shown to support the low frequency band filters **721** and the mid frequency band filters **722** through its first and second paths. Accordingly, the impedance Zin1 can have a value that is at or close to a load-matched impedance for low frequency bands, and a value that is at or close to a short circuit state for mid frequency bands. The impedance Zin2 can have a value that is at or close to a load-matched impedance for mid frequency bands, and a value that is at or close to a short circuit state for low frequency bands.
- [0110] In the example of FIG. 24, a phase shifter is shown to be provided for each path of each

coupling circuit. More particularly, phase shifters **103***b*, **103***a* are shown to be provided for the first and second paths of the first coupling circuit **100***a*, and phase shifters **103***d*, **103***c* are shown to be provided for the first and second paths of the second coupling circuit **100***b*. In some embodiments, such phase shifters can be selected to provide one or more desirable functionalities as described herein. It will be understood that in some embodiments, an architecture similar to the example of FIG. **24** may include none of such phase shifters, some of such phase shifters, or all of such phase shifters.

[0111] FIGS. **25-28** show examples of architectures having one or more switching functionalities described herein in reference to FIGS. **9-15**. For example, FIG. **25** show an architecture **734** that can be a more specific example of the architectures **734** of FIGS. **9** and **12**. In the example of FIG. **25**, a coupling circuit **100** is shown to couple a common signal node **102** to a first group of filters **721** having three low frequency band duplexers (F1, F2, F3) through a first path, and to a second group of filters **722** having two high frequency band duplexers (F4, F5) through a second path. Such a second path is shown to include a switch **780** configured to allow selection of a high frequency band (F4 or F5) among the bands of the second group **722**.

[0112] In another example, FIG. **26** show an architecture **734** that can be a more specific example of the architectures **734** of FIGS. **9** and **13**. In the example of FIG. **26**, a coupling circuit **100** is shown to couple a common signal node **102** to a first group of filters **721** (having two low frequency band duplexers) or a second group of filters **722** (having two low frequency band duplexers), through a first path, and to a third group of filters **723** (having a high frequency band duplexer) through a second path. The first path is shown to include a switch **782** configured to allow selection of the first group of filters **721** or the second group of filters **722**.

[0113] In yet another example, FIG. **27** shows an architecture **738** having switching functionalities described herein in reference to FIGS. **11**, **13** and **14**. In the example of FIG. **27**, a first group of low frequency band filters **721***a* is shown to include two low frequency band duplexers, and a second group of low frequency band filters **721***b* is shown to include two low frequency band duplexers. A first group of high frequency band filters **722***a* is shown to include a high frequency band duplexer, and a second group of high frequency band filters **722***b* is shown to include a high frequency band duplexer. Accordingly, such groups of filters can be grouped into a first group having low frequency band duplexers (**721***a* and **721***b*) coupled to a coupling circuit **100** through a first path, and a second group having high frequency band duplexers (**722***a* and **722***b*) coupled to the coupling circuit **100** through a second path.

[0114] In the example of FIG. **27**, a switching network **786** is shown to be implemented to provide switching functionalities between the coupling circuit **100** and the foregoing first and second groups of filters. More particularly, switches S**1** and S**2** of the switching network **786** can be operated to provide coupling of the first group of low frequency band filters **721***a* or the second group of low frequency band filters **721***b* to the coupling circuit **100** (through the first path). Similarly, switches S**3** and S**4** of the switching network **786** can be operated to provide coupling of the first group of high frequency band filters **722***a* or the second group of high frequency band filters **722***b* to the coupling circuit **100** (through the second path).

[0115] In the example of FIG. **27**, a switching network **788** is shown to be implemented to allow a common signal node **102** of the coupling circuit **100** to be coupled to a first antenna **760***a* or to a second antenna **760***b*. For example, a switch S**11** can be closed and a switch S**12** can be opened to couple the common signal node **102** to the first antenna **760***a*. Similarly, the switch S**11** can be opened and the switch S**12** can be closed to couple the common signal node **102** to the second antenna **760***b*.

[0116] Referring to the example of FIG. **27**, it will be understood that the foregoing switching networks **786** and **788** can be implemented in a number of ways. In some embodiments, the switching networks **786** and **788** can be part of a switching circuit indicated as **784**, and such a switching circuit can be implemented on, for example, a die or a module.

[0117] FIG. **28** shows an example architecture **738** that includes switching functionalities to allow a plurality of coupling circuits **100***a*, **100***b* to share a common antenna **760**, and also to share a common group of filters **722**. Suppose that an architecture design includes carrier aggregation capability between low frequency bands and high frequency bands. If such low frequency bands span sufficiently wide range in frequency, it may be desirable to split the low frequency bands into two sub-groups of low frequency bands, and pair each sub-group with a group of the high frequency bands utilizing a respective coupling circuit.

[0118] Accordingly, in the example of FIG. 28, the common group of filters 722 can include one or more high frequency bands. The first sub-group of low frequency filters can be **721***a*, and the second sub-group of low frequency filters can be 721b. Configured in the foregoing manner, the first sub-group of filters **721***a* and the common group of filters **722** can be coupled to a common signal node **102***a* of the first coupling circuit **100***a* having appropriate values of L1, C1, C2, L2 selected to accommodate such groups of filters. Similarly, the second sub-group of filters **721***b* and the common group of filters **722** can be coupled to a common signal node **102***b* of the second coupling circuit **100***b* having appropriate values of L3, C3, C4, L4 selected to accommodate such groups of filters. In some embodiments, phase shifters **103***a*, **105***a*, **105***b* can be provides as shown and configured to provide desirable shifts in phases for improved performance. [0119] Referring to the example of FIG. 28, a low-band/high-band carrier aggregation can involve the first sub-group **721***a* or the second sub-group **721***b*. Accordingly, if the first sub-group **721***a* is being utilized, a switch **790** can allow the second path of the first coupling circuit **100***a* to be connected to the common group of filters 722, and the second path of the second coupling circuit **100***b* to be disconnected from the common group of filters **722**. Similarly, if the second sub-group **721***b* is being utilized, the switch **790** can allow the second path of the first coupling circuit **100***a* to be disconnected from the common group of filters 722, and the second path of the second coupling

[0120] In the example of FIG. **28**, the architecture **738** is shown to utilize a common antenna **760**. Accordingly, if the first coupling circuit **100***a* is being utilized, its common signal node **102***a* can be coupled to the antenna **760** by a switch **792**, and a common signal node **102***b* of the second coupling circuit **100***b* can be uncoupled from the antenna **760** by the switch **792**. Similarly, if the second coupling circuit **100***b* is being utilized, its common signal node **102***b* can be coupled to the antenna **760** by the switch **792**, and a common signal node **102***a* of the first coupling circuit **100***a* can be uncoupled from the antenna **760** by the switch **792**.

circuit **100***b* to be connected to the common group of filters **722**.

[0121] FIG. **29** shows an architecture **740** that can be a more specific example of the architecture **740** of FIG. **19**A. In the example of FIG. **29**, the architecture **740** is shown to include a first group of filters **721** having three mid frequency band duplexers and a second group of filters **722** having two high frequency band duplexers. A half-bridge coupling circuit **100** is shown to have its common signal node **102** coupled to an antenna **760**. A node between L1 and C1 of the coupling circuit **100** is shown to be coupled to the first group of filters **721** through a phase shifter **103**. The second group of filters **722** is shown to be coupled to the common signal node **102**.

[0122] Configured in the foregoing manner, impedance Zin1 is presented by the first path to the first group of filters **721**, impedance Zin2 is presented by the second path to the second group of filters **722**, and impedance Zin3 is presented to the common signal node **102** by the inductance L1. Accordingly, at a mid band frequency (for one of the mid frequency bands of the group **721**), each of Zin1 and Zn3 has a value at or close to a matched load impedance, and Zin2 has an open circuit value. At a high band frequency (for one of the high frequency bands of the group **722**), Zin2 has a value at or close to a matched load impedance, Zin1 has a short circuit value, and Zn3 has an open circuit value.

[0123] FIG. **30** shows an example architecture **800** that utilizes a number of features described herein. In the example of FIG. **30**, two coupling circuits **100***a*, **100***b* are shown to provide couplings between a common antenna **760** and respective groups of filters. More particularly, the first

coupling circuit **100***a* is shown to provide coupling between the antenna **760** and groups of filters **721***a*, **722**; and the second coupling circuit **100***b* is shown to provide coupling between the antenna **760** and groups of filters **721***b*, **722**.

[0124] Referring to FIG. **30**, the group of filters **721***a* is shown to include a number of mid frequency band filters including duplexers for B3Tx/B3Rx and B1Tx/B1Rx bands, and a B32Rx band filter. The group of filters **721***b* is shown to include a number of mid frequency band filters including duplexers for B66Tx/B66Rx and B25Tx/B25Rx bands. The group of filters **722** is shown to include a number of high frequency band filters including a duplexers for B7Tx/B7Rx and B30Tx/B30Rx bands, and filters B40TRx and B41TRx configured to support Tx and Rx operations in respective bands. Accordingly, the foregoing grouping of filters utilizes at least some of the features of the example of FIG. **28**, where a plurality of coupling circuits can be utilized to accommodate splitting of a group of filters (low frequency band filters in FIG. **28**, and mid frequency band filters in FIG. **30**) into sub-groups of filters.

[0125] Accordingly, in the example of FIG. **30**, the first coupling circuit **100***a* can include inductances LMB, LHB and capacitances CMB, CHB as shown to support the foregoing mid frequency band and high frequency band filters. Similarly, the second coupling circuit **100***b* can include inductances LMB, LHB and capacitances CMB, CHB as shown to support the foregoing mid frequency band and high frequency band filters. It will be understood that each of LMB, LHB, CMB, CHB of the first coupling circuit **100***a* may or may not have the same value as respective one of LMB, LHB, CMB, CHB of the second coupling circuit **100***b*.

[0126] In the example of FIG. **30**, the architecture **800** is configured to allow at least some of the filters of the group **722** to be shared between the first and second coupling circuits **100***a*, **100***b*. More particularly, a switch **802** can allow the B7Tx/B7Rx duplexer and the B41TRx filter to be coupled to the second path of the first coupling circuit **100***a*, or to the second path of the second coupling circuit **100***b*.

[0127] In the example of FIG. **30**, a switching circuit **804** (e.g., implemented as an antenna switching module (ASM)) can be configured to allow coupling of the antenna **760** to the first coupling circuit **100***a* or to the second coupling circuit **100***b*. More particularly, the common signal node **102***a* of the first coupling circuit **100***a* can be coupled to the antenna **760** by an appropriate operation of the switching circuit **804**. Similarly, the common signal node **102***b* of the second coupling circuit **100***b* can be coupled to the antenna **760** by an appropriate operation of the switching circuit **804**.

[0128] In the example of FIG. **30**, the architecture **800** can include one or more circuits that do not utilize a coupling circuit. For example, a group of filters **806** can include time-domain duplexing (TDD) filters such as mid frequency bands B34 and B39. Such a group of filters is shown to be coupled to the antenna **760** through the switching circuit **804** without a coupling circuit. In some embodiments, some or all of such TDD bands can be individually, together with each other, with another FDD (frequency-domain duplexing) band (such as one or more filters of the group **722**), or some combination thereof, utilizing the antenna **760**.

[0129] In some embodiments, the architecture **800** of FIG. **30** can include phase shifting elements such as transmission lines, L/C components and/or resonators configured to provide desirable functionalities, including functionalities associated with either or both of the first and second coupling circuits **100***a*, **100***b*.

[0130] FIG. **31** shows that in some embodiments, one or more features as described herein can be implemented in a radio-frequency (RF) module **300** (e.g., a front-end module or an LNA module). The module **300** can include a packaging substrate **302** such as a laminate substrate. Such a module can include one or more LNAs **308**. At least one of such LNAs can be configured to operate in a CA mode as described herein.

[0131] The module **300** can further include a carrier aggregation (CA) circuit **100** having one or more features as described herein. Such a CA circuit can be configured to provide CA functionality

for the LNA **308** through a diplexer/filter assembly **306**. Transmission lines **304** can be configured to, for example, provide desired phase shifts in various signal paths, including those associated with inputs and output(s) of the diplexer/filter assembly **306**. Although not shown, the module **300** can further include grounding switches for the CA circuit **100** to facilitate CA and non-CA operations as described herein.

[0132] In some implementations, an architecture, device and/or circuit having one or more features described herein can be included in an RF device such as a wireless device. Such an architecture, device and/or circuit can be implemented directly in the wireless device, in one or more modular forms as described herein, or in some combination thereof. In some embodiments, such a wireless device can include, for example, a cellular phone, a smart-phone, a hand-held wireless device with or without phone functionality, a wireless tablet, a wireless router, a wireless access point, a wireless base station, etc. Although described in the context of wireless devices, it will be understood that one or more features of the present disclosure can also be implemented in other RF systems such as base stations.

[0133] FIG. **32** depicts an example wireless device **500** having one or more advantageous features described herein. In some embodiments, such advantageous features can be implemented in a frontend (FE) or LNA module **300** as described herein. Such a module can include a CA circuit **100** having one or more features as described herein. In some embodiments, such module can include more or less components than as indicated by the dashed box.

[0134] PAs in a PA module **512** can receive their respective RF signals from a transceiver **510** that can be configured and operated to generate RF signals to be amplified and transmitted, and to process received signals. The transceiver **510** is shown to interact with a baseband sub-system **508** that is configured to provide conversion between data and/or voice signals suitable for a user and RF signals suitable for the transceiver **510**. The transceiver **510** is also shown to be connected to a power management component **506** that is configured to manage power for the operation of the wireless device **500**. Such power management can also control operations of the baseband subsystem **508** and other components of the wireless device **500**.

[0135] The baseband sub-system **508** is shown to be connected to a user interface **502** to facilitate various input and output of voice and/or data provided to and received from the user. The baseband sub-system **508** can also be connected to a memory **504** that is configured to store data and/or instructions to facilitate the operation of the wireless device, and/or to provide storage of information for the user.

[0136] In the example wireless device **500**, the module **300** can include one or more carrier aggregation-capable signal paths configured to provide one or more functionalities as described herein. In some embodiments, at least some of the signals received through a diversity antenna **530** can be routed to one or more low-noise amplifiers (LNAs) **308** through such carrier aggregation-capable signal path(s). Amplified signals from the LNAs **308** are shown to be routed to the transceiver **510**.

[0137] A number of other wireless device configurations can utilize one or more features described herein. For example, a wireless device does not need to be a multi-band device. In another example, a wireless device can include additional antennas such as diversity antenna, and additional connectivity features such as Wi-Fi, Bluetooth, and GPS.

[0138] One or more features of the present disclosure can be implemented with various cellular frequency bands as described herein. Examples of such bands are listed in Table 1. It will be understood that at least some of the bands can be divided into sub-bands. It will also be understood that one or more features of the present disclosure can be implemented with frequency ranges that do not have designations such as the examples of Table 1.

TABLE-US-00001 TABLE 1 Tx Frequency Rx Frequency Band Mode Range (MHz) Range (MHz) B1 FDD 1,920-1,980 2,110-2,170 B2 FDD 1,850-1,910 1,930-1,990 B3 FDD 1,710-1,785 1,805-1,880 B4 FDD 1,710-1,755 2,110-2,155 B5 FDD 824-849 869-894 B6 FDD 830-840 875-885 B7

```
B10 FDD 1,710-1,770 2,110-2,170 B11 FDD 1,427.9-1,447.9 1,475.9-1,495.9 B12 FDD 699-716
729-746 B13 FDD 777-787 746-756 B14 FDD 788-798 758-768 B15 FDD 1,900-1,920 2,600-
2,620 B16 FDD 2,010-2,025 2,585-2,600 B17 FDD 704-716 734-746 B18 FDD 815-830 860-875
B19 FDD 830-845 875-890 B20 FDD 832-862 791-821 B21 FDD 1,447.9-1,462.9 1,495.9-1,510.9
B22 FDD 3,410-3,490 3,510-3,590 B23 FDD 2,000-2,020 2,180-2,200 B24 FDD 1,626.5-1,660.5
1,525-1,559 B25 FDD 1,850-1,915 1,930-1,995 B26 FDD 814-849 859-894 B27 FDD 807-824
852-869 B28 FDD 703-748 758-803 B29 FDD N/A 716-728 B30 FDD 2,305-2,315 2,350-2,360
B31 FDD 452.5-457.5 462.5-467.5 B33 TDD 1,900-1,920 1,900-1,920 B34 TDD 2,010-2,025
2,010-2,025 B35 TDD 1,850-1,910 1,850-1,910 B36 TDD 1,930-1,990 1,930-1,990 B37 TDD
1,910-1,930 1,910-1,930 B38 TDD 2,570-2,620 2,570-2,620 B39 TDD 1,880-1,920 1,880-1,920
B40 TDD 2,300-2,400 2,300-2,400 B41 TDD 2,496-2,690 2,496-2,690 B42 TDD 3,400-3,600
3,400-3,600 B43 TDD 3,600-3,800 3,600-3,800 B44 TDD 703-803 703-803
[0139] It is noted that while various examples are described herein in the context of carrier
aggregation of two or three bands, one or more features of the present disclosure can also be
implemented in configurations involving carrier aggregation of different numbers of bands.
[0140] Unless the context clearly requires otherwise, throughout the description and the claims, the
words "comprise," "comprising," and the like are to be construed in an inclusive sense, as opposed
to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to."
The word "coupled", as generally used herein, refers to two or more elements that may be either
directly connected, or connected by way of one or more intermediate elements. Additionally, the
words "herein," "above," "below," and words of similar import, when used in this application, shall
refer to this application as a whole and not to any particular portions of this application. Where the
context permits, words in the above Detailed Description using the singular or plural number may
also include the plural or singular number respectively. The word "or" in reference to a list of two
or more items, that word covers all of the following interpretations of the word: any of the items in
the list, all of the items in the list, and any combination of the items in the list.
[0141] The above detailed description of embodiments of the invention is not intended to be
exhaustive or to limit the invention to the precise form disclosed above. While specific
embodiments of, and examples for, the invention are described above for illustrative purposes,
various equivalent modifications are possible within the scope of the invention, as those skilled in
the relevant art will recognize. For example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines having steps, or employ systems having
blocks, in a different order, and some processes or blocks may be deleted, moved, added,
subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in
a variety of different ways. Also, while processes or blocks are at times shown as being performed
in series, these processes or blocks may instead be performed in parallel, or may be performed at
different times.
[0142] The teachings of the invention provided herein can be applied to other systems, not
```

FDD 2,500-2,570 2,620-2,690 B8 FDD 880-915 925-960 B9 FDD 1,749.9-1,784.9 1,844.9-1,879.9

necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.

[0143] While some embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims

1. A radio-frequency architecture comprising: a first circuit configured to support a first frequency range, and a second circuit configured to support a second frequency range, the first circuit further configured to provide an impedance at or near a short circuit impedance for a signal in the second frequency range, the second circuit further configured to provide an impedance at or near a short circuit impedance for a signal in the first frequency range; and a coupling circuit including a common node and configured to couple the common node to the first circuit and to couple the common node to the second circuit, the coupling circuit including a resonator such that the signal in the second frequency range is sufficiently excluded from the first circuit, and such that the signal in the first frequency range is sufficiently excluded from the second circuit.