LPOB60 : Exemples de phénomènes quantiques

Niveau: L3

Prérequis:

- Base de la mécanique quantique : équation de Schrödinger, formalisme de Dirac, états stationnaires
- Espace de Hilbert du spin ½, moment magnétique

Approximation de la barrière épaisse

• Si
$$a \gg \delta = \frac{1}{q}$$
: $T = \frac{16E(V_0 - E)}{{V_0}^2} e^{-\frac{2a}{\delta}}$

• Analyse numérique : pour $E = \frac{V_0}{2}$

On obtient :
$$\delta = \frac{h}{2\pi\sqrt{mV_0}}$$
 et $T = 4e^{-\frac{2a}{\delta}}$

Particule	Masse (kg)	V_0 (eV)	A (nm)	δ (nm)	т
électron	10^{-30}	4	0,3	0,1	10^{-2}
électron	10^{-30}	40	0,3	0,04	10^{-6}
électron	10^{-30}	4	3	0,1	10^{-20}
proton	10^{-27}	4	0,3	0,004	10^{-63}

Microscope à effet tunnel

Mise au point en 1984 par G. Binnig et H. Rohrer Prix Nobel de Physique en 1986

Microscope à effet tunnel

Barrière de potentiel

Schéma du principe du microscope à effet tunnel

Précession de Larmor

Oscillations de Rabi

Schéma de principe de la RMN

Exemple de spectre RMN: éthanol

Conclusion