Complex Analysis Reference Sheet

Stuyvesant Class of 2022

Nathaniel J. Strout, Joshua L. Yagupsky, Francis Zweifler

Created February 15th, 2022

Complex Calculus, Mr. Stern

Contents

1	THE COMPLEX NUMBER SYSTEM					
	1.1	The Algebra of Complex Numbers	3			
	1.2	The Geometry of Complex Numbers	5			
		1.2.1 Möbius Transformations and the Riemann Sphere	5			
2	COMPLEX FUNCTIONS					
	2.1	The Complex Exponential	5			
	2.2	Complex Trigonometry	5			
	2.3	The Argument Functions and Complex Logarithm	5			
3	TOPOLOGY OF $\mathbb C$					
	3.1	Neighborhoods, Open and Closed Sets	5			
		3.1.1 Accumulation Points and the Closure of a Set	5			
	3.2	Connectedness and Compactness	5			
	3.3	Sequences in \mathbb{C} , Limits of Sequences	5			
	3.4	Limits of Functions, Continuity	5			
		3.4.1 Continuous Images of Connected and Compact Sets	5			
4	COMPLEX DIFFERENTIATION					
	4.1	Differentiability and Analyticity	5			
		4.1.1 The Cauchy-Riemann Equations	5			
	4.2	Rules for Derivatives	5			
	4.3	Conformal Maps	5			
5	COMPLEX INTEGRATION					
	5.1	Real Integrals of Complex Functions	5			
	5.2	Contours and Contour Integration	5			
		5.2.1 Contour Parameterization	5			
	5.3	Introduction to Cauchy's Theorem	5			
		5.3.1 Tile-Centered Regions and the "Not-Too-Bad" Condition	5			
	5.4	Cauchy's Integral Formula	5			
6	PROPERTIES OF ANALYTIC FUNCTIONS 5					
	6.1	Taylor Series	5			

6.2	Meron	norphic Functions, Classification of Singularities	5
	6.2.1	Properties of Essential Singularities	5

1 THE COMPLEX NUMBER SYSTEM

1.1 The Algebra of Complex Numbers

 $\bf Definition~1.1$ (Complex Numbers). The complex~numbers are the set

$$\mathbb{C} := \{ [(a,b)] \mid a,b \in \mathbb{R} \}$$

where

$$[(a,b)] := \begin{cases} a & b=0\\ (a,b) & b \neq 0 \end{cases}$$

Definition 1.2 (Adding Complex Numbers).

- 1.2 The Geometry of Complex Numbers
- 1.2.1 Möbius Transformations and the Riemann Sphere

2 COMPLEX FUNCTIONS

- 2.1 The Complex Exponential
- 2.2 Complex Trigonometry
- 2.3 The Argument Functions and Complex Logarithm

3 TOPOLOGY OF $\mathbb C$

- 3.1 Neighborhoods, Open and Closed Sets
- 3.1.1 Accumulation Points and the Closure of a Set
- 3.2 Connectedness and Compactness
- 3.3 Sequences in \mathbb{C} , Limits of Sequences
- 3.4 Limits of Functions, Continuity
- 3.4.1 Continuous Images of Connected and Compact Sets

4 COMPLEX DIFFERENTIATION

- 4.1 Differentiability and Analyticity
- 4.1.1 The Cauchy-Riemann Equations
- 4.2 Rules for Derivatives
- 4.3 Conformal Maps

5 COMPLEX INTEGRATION

- 5.1 Real Integrals of Complex Functions
- 5.2 Contours and Contour Integration
- 5.2.1 Contour Parameterization
- 5.3 Introduction to Cauchy's Theorem
- 5.3.1 Tile-Centered Regions and the "Not-Too-Bad" Condition
- 5.4 Cauchy's Integral Formula