Ferienkurs Mathematik für Physiker I Übungsblatt 1 (27.3.2017)

Aufgabe 1: Eigenschaften von Gruppen

Wir betrachten eine Gruppe (G, +).

- (a) Listen Sie die von G erfüllten Gruppenaxiome auf. Welches zusätzliche Axiom ist für abelsche Gruppen erfüllt?
- (b) Zeigen Sie unter Benutzung der Gruppenaxiome aus a) folgende allgemeine Eigenschaften von Gruppen:
 - (i) Eindeutigkeit des inversen Elements für jedes $a \in G$
 - (ii) Eindeutigkeit des neutralen Elements e
 - (iii) $\forall a, b, c \in G : a \circ b = a \circ c \Rightarrow b = c$
- (c) Warum gilt Eigenschaft (iii) nicht für die Multiplikation in $\mathbb R$ oder einem anderen Körper?

Aufgabe 2: Untergruppen und Linksnebenklassen

Sei G eine Menge und $\circ: G \times G \to G$ eine zweistellige Verknüpfung, sodass (G, \circ) eine Gruppe bildet. Im folgenden betrachten wir Tupel (H, \circ) , wobei H jeweils eine Teilmenge von G ist.

- (a) Welche Axiome müssen erfüllt sein, damit es sich bei (H, \circ) um eine Untergruppe von (G, \circ) handelt?
- (b) Zeigen Sie, dass (H, \circ) genau dann eine Untergruppe von (G, \circ) ist, wenn

$$\forall a, b \in H : a \circ b^{-1} \in H. \tag{1}$$

- (c) Sei $a \in G$ ein Element von G. Wenn H eine Untergruppe ist, so heißt die Menge $aH := \{a \circ h | h \in H\}$ "Linksnebenklasse" von a. Zeigen Sie folgende Eigenschaften von Linksnebenklassen:
 - (i) eH = H, wobei e das neutrale Element in G ist.
 - (ii) $a \in H \Leftrightarrow aH = H$
 - (iii) $aH = bH \Leftrightarrow b^{-1} \circ a \in H$
- (d) **Bonusfrage:** Zeigen Sie, dass es sich bei der Relation $a \sim b \Leftrightarrow b^{-1} \circ a \in H$ genau dann um eine Äquivalenzrelation handelt, wenn H eine Untergruppe von G ist.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Tabelle 1: Additionstabelle für Aufgabe 2

Tabelle 2: Multiplikationstabelle für Aufgabe 2

Aufgabe 3: Polynome über allgemeinen Körpern

Die Menge $G = \{0, 1, a, b\}$ bildet zusammen in der in den Tabellen 1 und 2 gezeigten Addition + und Multiplikation · einen Körper. Es lässt sich über $(G, +, \cdot)$ also insbesondere auch mit Polynomen rechnen.

- (a) Sei $x \in G$ eine Unbekannte. Finden Sie die Nullstellen der folgenden Gleichungen :
 - (i) 0 = x + b
 - (ii) $1 = x^3$
 - (iii) $0 = x^2 + bx + a$
 - (iv) $1 = x^6 + bx^4 a$
- (b) Zeigen Sie, dass für alle $x, y \in G$ die Identität $(x + y)^2 = x^2 + y^2$ gilt. Hinweis: Benutzen Sie, dass die Hauptdiagonale der Additionstabelle nur aus Nullen besteht.

Aufgabe 4: Restklassenringe

In der Vorlesung wurde die Menge der ganzen Zahlen $\mathbb Z$ zusammen mit der Standart-Addition als Beispiel für eine Gruppe genannt. Hier betrachten wir anstatt von $\mathbb Z$ die Menge $\mathbb Z_p$ der natürlichen Zahlen kleiner p für ein gegebenes $p \in \mathbb N$.

- (a) Zeigen Sie, dass \mathbb{Z}_p zusammen mit der Addition + modulo p eine Gruppe bildet. Welche Eigenschaften müssen Sie hierfür überprüfen?
- (b) Warum kann \mathbb{Z}_p zusammen mit der Multiplikation · modulo p keine Gruppe bilden? Zeigen Sie, dass · auf \mathbb{Z}_p assoziativ ist und ein neutrales Element besitzt!
- (c) Man definiert \mathbb{Z}_p^* als die Menge der *positiven* Zahlen kleiner p. Bilden die Mengen \mathbb{Z}_3^* , \mathbb{Z}_4^* , und \mathbb{Z}_6^* mit der Multiplikation modulo p jeweils eine Gruppe? Begründen Sie!
- (d) Bonusfrage: Sei p nun eine Primzahl. In diesem Fall gilt für jedes $a \in N$, dass

$$a^{p-1} \equiv 1 \bmod p. \tag{2}$$

Diese Aussage ist bekannt als der "kleine Satz des Fermat". Was implizert Gleichung 2 für (\mathbb{Z}_p^*,\cdot) ?