E-COMMERCE DATA PIPELINE By: Prayoga Agusto Haradi

>>>>>

>>>>>

E-commerce Data Pipeline and Analytics Dashboard

Objectives

Analysis Overview

- Develop an automated data pipeline for processing ecommerce transaction data
- Transform raw data into a structured format suitable for analytics (star schema)
- Load processed data into a cloud-based data warehouse
- Create insightful visualizations for business intelligence

- Sales performance across different product categories
- Revenue distribution by order priority
- Customer device preferences (web vs. mobile)
- Profit trends over time

E-commerce Data Pipeline and Analytics Dashboard (Continued)

Key Results

Platforms

- Automated monthly data processing
- Enhanced data quality and consistency by data cleaning.
- Improved pipeline reliability and scalability
- Optimized data warehouse performance by creating a star schema.
- Delivered actionable business insights.

- Apache Airflow
- Python
- AWS S3
- Docker
- AWS Redshift
- Amazon QuickSight

Background

>>>>>

E-Commerce platforms often face critical challenges with data silos hindering decision-making and manual reporting causing delays

This project develops an end-to-end data pipeline for a growing e-commerce platform, transforming raw transaction data into actionable insights. By automating data processing and creating an analytics dashboard.

The project will benefit multiple stakeholders, such as: business leaders gain real-time performance data, marketing teams access customer insights, and operations optimize inventory management.

Problem Statement

01

02

03

Data Source

Data Quality

Data Storage

Local CSV files processed monthly

Inconsistent and potentially erroneous data

Lack of scalable storage solution

04

05

06

Data Processing

Manual, time-consuming ETL processes

Data Analysis

Lack of a centralized, optimized data warehouse hinders quick insights

Reporting

Limited ability to generate real-time, actionable insights

Success Metrics

Automation

Reducing the percentage of manual ETL Processes.

Data Accuracy

Increase the percentage of records accurately processed and transformed.

Query Performance

Improve the average response time for standard analytical queries.

Business Impact

Increase the number of data-driven decisions made using insights from the new system.

Data Platforms Used

.............

Data Source

- The data source used is a E-Commerce dataset stored in a local computer downloaded from the website Kaggle. It consists of the columns: Order_Date, Time, Aging, Customer_Id, Gender, Device_Type, Customer_Login_type, Product_Category, Product, Sales, Quantity, Discount, Profit, Shipping_Cost, Order_Priority, Payment_method.
- Below is a short snippet of the dataset used.

Order_Date Tir	me /	Aging	Customer_	Gender	Device_Type	Customer_Login_type	Product_Category	Product	Sales	Quantity
1/2/2018 1	10:56:33	8	37077	Female	Web	Member	Auto & Accessories	Car Media	140	1
7/24/2018 2	20:41:37	2	59173	Female	Web	Member	Auto & Accessories	Car Speak	211	1
11/8/2018	8:38:49	8	41066	Female	Web	Member	Auto & Accessories	Car Body (117	
4/18/2018 1	19:28:06	7	50741	Female	Web	Member	Auto & Accessories	Car & Bike	118	1

Data Transformation

- 1. Convert dates and numeric fields to appropriate data types
- 2. Remove null values and duplicates
- 3. Calculate profit margin and categorize it
- 4. Create dimension tables for customers, products, and dates
- 5. Build a fact table for sales with calculated metrics.

Code Snippet

```
def transform to star schema and save(input file: str, output dir: str, ti: TaskInstance):
   # Read the CSV file
   df = pd.read_csv(input_file)
   print("Original number of rows:", len(df))
   print("Columns in the input file:", df.columns.tolist())
   df['Order Date'] = pd.to datetime(df['Order Date'], errors='coerce')
   df.dropna(inplace=True)
   print("Number of rows after removing nulls:", len(df))
   numeric_columns = ['Sales', 'Quantity', 'Discount', 'Profit', 'Shipping_Cost']
   for col in numeric columns:
       df[col] = pd.to numeric(df[col], errors='coerce')
   df.drop_duplicates(inplace=True)
   print("Final number of rows:", len(df))
   df['Profit Margin'] = df['Profit'] / df['Sales']
       df['Profit_Margin'],
       bins=[-np.inf, 0, 0.1, 0.2, 0.3, np.inf],
       labels=['Loss', 'Low', 'Medium', 'High', 'Very High']
   dim customer = df[['Customer Id', 'Gender', 'Customer Login type']].drop duplicates().reset index(drop=True)
   dim_customer['customer_key'] = dim_customer.index + 1
```

Transformation Tools and Considerations

- Python with Pandas
 Chosen for its powerful data manipulation capabilities and ease of use in ETL processes, offering more flexibility than SQL-based transformations alone.
- 2. Apache Airflow Selected for workflow orchestration, offering better scheduling and monitoring compared to cron jobs, with better error handling and dependency management.
- 3. AWS S3
 Used as a data lake for its scalability and seamless integration with other AWS services. S3 offers virtually unlimited storage and easy integration with Redshift, making it superior to on-premises storage solutions.
- Amazon Redshift
 Preferred for its column-oriented storage and MPP (massively parallel processing) architecture, optimizing analytical query performance.

Architecture

•

Data Modelling

- Star Schema Design
 Optimizes for quick analysis of sales performance across multiple dimensions.
- 2. Fact Table: Sales Central table capturing key metrics like revenue, profit, and quantity sold.
- 3. Dimension Tables
 - a. Customer: Enables customer segmentation and behavior analysis Columns: Gender, Customer Login type, customer key
 - b. Product: Facilitates product category performance evaluation Columns: Product Category, Product, product key
 - c. Date: Allows for time-based trend analysis and seasonality detection Columns: date_key, full_date, year, month, day, weekday
- 4. Key Performance Indicators (KPIs)Includes calculated metrics like profit margin and total revenue for easy reporting.

End Result

DAG Running

S3 Bucket

Data loaded into Redshift

Visualization in QuickSight

- Medium priority orders generate the highest revenue at 11.3M.
- 2. Web orders dominate with **93%** of total revenue.
- Profit shows fluctuations with occasional high peaks between April-May.
- 4. Fashion category leads in revenue generation, followed by Home & Furniture.

Conclusion

- Successful Implementation
 Automated ETL pipeline from CSV to Redshift established using python and airflow.
- Improved Data Accessibility
 Star schema design enables efficient querying and analysis, comprised of 1 fact table and 3 dimension table.
- Business Impact Enhanced ability to derive insights from sales data.
- Scalable Solution
 Platform capable of handling growing data volumes.
- Foundation for Advanced Analytics
 Prepared data structure supports future ML and Al initiatives.

Main Problems in the Project

- 1. Creating a connection for Amazon S3 and Redshift.
- 2. Authentication for AWS, creating a user and credentials (secret key and access key ID) that can be accessed by the docker container.
- Security groups, VPC and Redshift networking so that the docker container can connect to AWS using the credentials.

- Potential for high costs with increasing data volumes
- Limited to structured CSV data from a single source

Recommendations

- Optimize AWS resource usage and explore reserved instances
- Integrate additional data types and sources for comprehensive analysis