Introduction to Machine Learning for Social Science

Class 3: Multivariate Regression

Rochelle Terman

Postdoctoral Fellow Center for International Security Cooperation Stanford University

January 16th, 2018

Loose Threads

- 1) Reducible vs. Irreducible error.
 - \blacksquare Even if you estimate f perfectly, don't expect perfect predictions.
- 2) Least squared versus absolute errors.
 - Some cases do apply least absolute deviations (L1 regression), which is robust to outliers.
 - Mathematical convenience: Easier to compute the derivative of a polynomial than absolute value.
 - By Gauss Markov, OLS is BLUE

Questions?

Predicting Election Results

Goal: Predict Incumbent Vote Share (create prediction function)

- Use relationship in prior elections to predict future election
- Training data (In sample) → Testing data (Out of sample)

Method: Linear Regression (Least squares) Evaluation (Focus of next lectures):

- 1) In sample fit (training data)
- 2) Out of sample fit (test data)

Time for Change Model (Abramowitz, Linzer)

Predict Incumbent Vote Share with political and economic fundamentals

- 1) GDP Growth
- 2) Incumbent Presidential Popularity
- 3) Incumbent Party

$$Vote_i = \widehat{\beta}_0 + \widehat{\beta}_1 Approval_i + \epsilon_i$$

$$Vote_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1}Approval_{i} + \epsilon_{i}$$

$$Vote_{i} = \underbrace{50.76 + 0.16 \times Approval_{i}}_{\widehat{Vote_{i}}} + \epsilon_{i}$$

$$\begin{aligned} \mathsf{Vote}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 \mathsf{Approval}_i + \epsilon_i \\ \mathsf{Vote}_i &= \underbrace{50.76 + 0.16 \times \mathsf{Approval}_i}_{\widehat{\mathsf{Vote}}_i} + \epsilon_i \end{aligned}$$

R Code!

What is Linear Regression?

Multiple linear regression:

- Assumes a linear relationship between quantitative response Y and **multiple** variables $X_1, X_2, ... X_p$.
- Also called multivariate regression because there are > 2 variables.

Function f such that

$$Vote_i = f(Approval_i, Q1 GDP_i, Q2 GDP_i, Inc 2nd Term_i) + \epsilon_i$$

Function f such that

Vote_i =
$$f(\mathsf{Approval}_i, \mathsf{Q1} \; \mathsf{GDP}_i, \mathsf{Q2} \; \mathsf{GDP}_i, \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i) + \epsilon_i$$

= $\beta_0 + \beta_1 \mathsf{Approval}_i + \beta_2 \mathsf{Q1} \; \mathsf{GDP}_i$
 $+\beta_3 \mathsf{Q2} \; \mathsf{GDP}_i + \beta_4 \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i + \epsilon_i$

Function f such that

$$\begin{aligned} \text{Vote}_i &= f(\mathsf{Approval}_i, \mathsf{Q1} \; \mathsf{GDP}_i, \mathsf{Q2} \; \mathsf{GDP}_i, \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i) + \epsilon_i \\ &= \beta_0 + \beta_1 \mathsf{Approval}_i + \beta_2 \mathsf{Q1} \; \mathsf{GDP}_i \\ &+ \beta_3 \mathsf{Q2} \; \mathsf{GDP}_i + \beta_4 \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i + \epsilon_i \end{aligned}$$

$$\widehat{\mathsf{Vote}}_i &= \beta_0 + \beta_1 \mathsf{Approval}_i + \beta_2 \mathsf{Q1} \; \mathsf{GDP}_i \\ &+ \beta_3 \mathsf{Q2} \; \mathsf{GDP}_i + \beta_4 \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i \end{aligned}$$

Function f such that

Vote_i =
$$f(\mathsf{Approval}_i, \mathsf{Q1}\;\mathsf{GDP}_i, \mathsf{Q2}\;\mathsf{GDP}_i, \mathsf{Inc}\;\mathsf{2nd}\;\mathsf{Term}_i) + \epsilon_i$$

= $\beta_0 + \beta_1 \mathsf{Approval}_i + \beta_2 \mathsf{Q1}\;\mathsf{GDP}_i$
 $+\beta_3 \mathsf{Q2}\;\mathsf{GDP}_i + \beta_4 \mathsf{Inc}\;\mathsf{2nd}\;\mathsf{Term}_i + \epsilon_i$
 $\widehat{\mathsf{Vote}}_i = \beta_0 + \beta_1 \mathsf{Approval}_i + \beta_2 \mathsf{Q1}\;\mathsf{GDP}_i$
 $+\beta_3 \mathsf{Q2}\;\mathsf{GDP}_i + \beta_4 \mathsf{Inc}\;\mathsf{2nd}\;\mathsf{Term}_i$

We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed.

Choose β 's to minimize:

Choose β 's to minimize:

$$\sum_{i=1948}^{2012} \epsilon_i^2 = \sum_{i=1948}^{2012} \left(\mathsf{Vote}_i - \widehat{\mathsf{Vote}}_i \right)^2$$

Choose β 's to minimize:

$$\begin{split} \sum_{i=1948}^{2012} \epsilon_i^2 &= \sum_{i=1948}^{2012} \left(\mathsf{Vote}_i - \widehat{\mathsf{Vote}_i} \right)^2 \\ &= \sum_{i=1948}^{2012} \left(\mathsf{Vote}_i - \beta_2 \mathsf{Q1} \; \mathsf{GDP}_i - \beta_3 \mathsf{Q2} \; \mathsf{GDP}_i - \beta_4 \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i \right)^2 \end{split}$$

Choose β 's to minimize:

$$\begin{split} \sum_{i=1948}^{2012} \epsilon_i^2 &= \sum_{i=1948}^{2012} \left(\mathsf{Vote}_i - \widehat{\mathsf{Vote}_i} \right)^2 \\ &= \sum_{i=1948}^{2012} \left(\mathsf{Vote}_i - \beta_2 \mathsf{Q1} \; \mathsf{GDP}_i - \beta_3 \mathsf{Q2} \; \mathsf{GDP}_i - \beta_4 \mathsf{Inc} \; \mathsf{2nd} \; \mathsf{Term}_i \right)^2 \end{split}$$

to the R code! (Sections 1 and 2)

Multivariate Regression: Our Estimated Prediction Function

$$\begin{aligned} \mathsf{Vote}_i \ = \ \underbrace{\underbrace{51.01 + 0.10 \times \mathsf{Q1} \ \mathsf{GDP} + 0.57 \times \mathsf{Q2} \ \mathsf{GDP}}_{+0.10 \times \mathsf{Approval} - 4.35 \times \mathsf{Inc} \ \mathsf{2nd} \ \mathsf{Term}}_{\mathsf{Vote}_i} + \epsilon_i \end{aligned}$$

Multivariate Regression: Our Estimated Prediction Function

$$\mathsf{Vote}_i \ = \ \underbrace{51.01 + 0.10 \times \mathsf{Q1} \ \mathsf{GDP} + 0.57 \times \mathsf{Q2} \ \mathsf{GDP}}_{+0.10 \times \mathsf{Approval} - 4.35 \times \mathsf{Inc} \ \mathsf{2nd} \ \mathsf{Term}}_{\mathsf{Vote}_i} + \epsilon_i$$

Bonus: Why does Approval have a smaller effect in the multivariate regression (.10) compared to the bivariate regression (.16)? (Hint: Sharks and Ice-cream)

Multivariate Regression: Our Estimated Prediction Function

$$\mathsf{Vote}_i \ = \ \underbrace{\underbrace{51.01 + 0.10 \times \mathsf{Q1} \ \mathsf{GDP} + 0.57 \times \mathsf{Q2} \ \mathsf{GDP}}_{+0.10 \times \mathsf{Approval} - 4.35 \times \mathsf{Inc} \ \mathsf{2nd} \ \mathsf{Term}}_{\mathsf{Vote}_i} + \epsilon_i$$

Bonus: Why does Approval have a smaller effect in the multivariate regression (.10) compared to the bivariate regression (.16)? (Hint: Sharks and Ice-cream)

R Code (Section 3)!

Linear Algebra

Vectors

Vector: ordered list of n numbers

- 1
- $-\pi$
- e
- -(1,2)
- -(0,0)
- $-(\pi,e)$
- -(3.1, 4.5, 6.11132)
- $(\beta_0, \beta_1, \beta_2, \beta_3)$
- Incumbent vote share across elections, Net Approval across election

We will write vectors with bold (β)

Inner Product

Consider two vectors \boldsymbol{u} and \boldsymbol{v} and they are the same length. The define their inner product, $\boldsymbol{u} \cdot \boldsymbol{v}$, as

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

Inner Product

Consider two vectors \boldsymbol{u} and \boldsymbol{v} and they are the same length. The define their inner product, $\boldsymbol{u} \cdot \boldsymbol{v}$, as

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

$$= \sum_{i=1}^{N} u_i v_i$$

Rewriting our Prediction

Define:

$$\widehat{\beta}$$
 = $(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\beta}_3)$)
 = $(51.01, 0.10, 0.57, 0.10, -4.35)$

Rewriting our Prediction

Define:

$$\widehat{\beta} = (\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\beta}_3))$$

= (51.01, 0.10, 0.57, 0.10, -4.35)
 $\mathbf{x}_i = (1, Q1 \text{ GDP}_i, Q2 \text{ GDP}_i, \text{Approval}_i, \text{Inc 2nd Term}_i)$

Rewriting our Prediction

Define:

$$\widehat{\beta} = (\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\beta}_3))$$

= $(51.01, 0.10, 0.57, 0.10, -4.35)$
 $\mathbf{x}_i = (1, Q1 GDP_i, Q2 GDP_i, Approval_i, Inc 2nd Term_i)$

Then, we can write our prediction as:

$$\widehat{\mathsf{Vote}}_i = \widehat{\boldsymbol{\beta}} \cdot \boldsymbol{x}_i$$

R Code (Sections 4 5)

Potential Problems

See Introduction to Statistical Learning 3.3.3 (p. 92–102)

- Non-linearity of response-predictor relationships: true relationship is not linear.
- **2 Correlation of error terms:** ϵ_i provides information about ϵ_{i+1} , as in time-series.
- Non-constant variance of error terms (heteroscedasticity): variances of error terms change with value of response, making a funnel shape.
- **Outliers and high-leverage points**: unusual values for Y or X.
- **Collinearity**: two or more predator variables are closely related to one another.

Key Terms:

- Linear Regression, Simple Regression, Multiple Regression
- Cost function
- Sum of Squared Residuals
- In sample, Out of Sample

Key Techniques and R Functions

- Linear algebra operations and terms
 - Inner product
 - Matrix
- lm, plot , %*%

Up next:

Classification and Logistic Regression