Correction du devoir surveillé 1.

Exercice 1

1°) (I_1) est définie en x si et seulement si $x \neq \frac{3}{2}$, donc elle est définie sur $\mathbb{R} \setminus \{\frac{3}{2}\}$. Soit alors $x \in \mathbb{R} \setminus \{\frac{3}{2}\}$.

$$(I_1) \iff \frac{x^2 - 4x + 3}{3 - 2x} + x - 1 \le 0$$

$$\iff \frac{x^2 - 4x + 3 + (x - 1)(3 - 2x)}{3 - 2x} \le 0$$

$$\iff \frac{x^2 - 4x + 3 - 2x^2 + 5x - 3}{3 - 2x} \le 0$$

$$\iff \frac{-x^2 + x}{3 - 2x} \le 0$$

$$\iff \frac{x(1 - x)}{3 - 2x} \le 0$$

Le signe du quotient $\frac{x(1-x)}{3-2x}$ est le signe du produit x(1-x)(3-2x) donc il suffit de faire un tableau de signes :

x	$-\infty$		0		1		$\frac{3}{2}$		$+\infty$
		_	0	+		+		+	
signe de $1-x$		+		+	0	_		_	
signe de $3 - 2x$		+		+		+	0	_	
$\frac{\text{signe de}}{x(1-x)}$ $\frac{x(1-x)}{3-2x}$		_	0	+	0	_		+	

Ainsi, l'ensemble des solutions de (I_1) est $]-\infty,0] \cup \left[1,\frac{3}{2}\right[$.

 $\mathbf{2}^{\circ}$) Soit $x \in \mathbb{R}$. (I_2) est bien définie en x si et seulement si $x^2 - 2x \ge 0$.

Or $x^2 - 2x = x(x-2)$, c'est un trinôme du second degré de racines 0 et 2. Le coefficient de x^2 est positif donc $x^2 - 2x \ge 0 \iff x \le 0$ ou $x \ge 2$.

Ainsi, (I_2) est définie sur $D =]-\infty, 0] \cup [2, +\infty[$.

Soit maintenant $x \in D$.

★ On suppose $x < \frac{3}{2}$ (alors $x \le 0$ car $x \in D$). Alors x est solution de (I_2) car $x - \frac{3}{2} < 0$ et $\sqrt{x^2 - 2x} > 0$.

 \bigstar On suppose $x \ge \frac{3}{2}$ (alors $x \ge 2$).

$$(I_2) \iff \left(x - \frac{3}{2}\right)^2 \le x^2 - 2x \qquad \operatorname{car} \begin{cases} x - \frac{3}{2} \ge 0\\ \sqrt{x^2 - 2x} \ge 0 \end{cases}$$

$$\iff x^2 - 3x + \frac{9}{4} \le x^2 - 2x$$

$$\iff \frac{9}{4} \le x$$

Comme $\frac{9}{4} \ge 2$, on en déduit que l'ensemble des solutions de (I_2) est $]-\infty,0] \cup \left[\frac{9}{4},+\infty\right[]$.

 3°) (I_3) est définie sur \mathbb{R}_+^* .

Soit $x \in \mathbb{R}_+^*$. Posons $X = \ln x$, alors $(I_3) \iff X^2 + 3X + 2 \ge 0$.

Le trinôme du second degré $X^2 + 3X + 2$ a pour discriminant $\Delta = 9 - 8 = 1$. $\Delta > 0$.

Donc, il a deux racines : $\frac{-3-1}{2} = -2$ et $\frac{-3+1}{2} = -1$.

Comme le coefficient de X^2 est positif,

$$(I_3) \iff X \le -2 \text{ ou } X \ge -1$$

 $\iff \ln x \le -2 \text{ ou } \ln x \ge -1$
 $\iff x \le e^{-2} \text{ ou } x \ge e^{-1}$ car exp est strictement croissante

L'ensemble des solutions de (I_3) est $]0, e^{-2}] \cup [e^{-1}, +\infty[$

Exercice 2

1°) Par composition et quotient de fonctions dérivables là où elles sont définies, f est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$,

$$f'(x) = \frac{\frac{a}{ax+1}\ln(bx+1) - \ln(ax+1)\frac{b}{bx+1}}{(\ln(bx+1))^2}$$
$$f'(x) = \frac{a(bx+1)\ln(bx+1) - b(ax+1)\ln(ax+1)}{(ax+1)(bx+1)(\ln(bx+1))^2}$$

2°) Par composée et produit de fonctions dérivables là où elles sont définies, g est dérivable sur \mathbb{R}_+ et pour tout $x \in \mathbb{R}_+$,

$$g'(x) = ab\ln(bx+1) + a(bx+1)\frac{b}{bx+1} - ba\ln(ax+1) - b(ax+1)\frac{a}{ax+1}$$
$$= ab\ln(bx+1) + ab - ba\ln(ax+1) - ba$$
$$g'(x) = ab\left(\ln(bx+1) - \ln(ax+1)\right)$$

Comme ab > 0, pour tout $x \in \mathbb{R}_+$, g'(x) est du signe de $\ln(bx + 1) - \ln(ax + 1)$.

Or $b \ge a$ donc, pour tout $x \ge 0$, $bx \ge ax$, puis $bx + 1 \ge ax + 1$ et $\ln(bx + 1) \ge \ln(ax + 1)$ par croissance de ln.

Ainsi, pour tout $x \in \mathbb{R}_+$, $g'(x) \ge 0$. Comme \mathbb{R}_+ est un intervalle, on en tire que g est croissante sur \mathbb{R}_+ .

Or
$$g(0) = a \ln(1) - b \ln(1) = 0$$
, donc on a, pour tout $x \in \mathbb{R}_+$, $g(x) \ge 0$.

3°)
$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{g(x)}{(ax+1)(bx+1)(\ln(bx+1))^2}.$$

Le dénominateur est toujours strictement positif car si $x \ge 0$, ax + 1 > 0 et bx + 1 > 0, et car un carré de réel est toujours positif. Donc, comme g est aussi positive, f' est positive sur l'intervalle $]0, +\infty[$. Donc f est croissante sur \mathbb{R}_+^* .

 $\mathbf{4}^{\circ}\big)\ \frac{1}{b}\ \mathrm{et}\ \frac{1}{a}\ \mathrm{sont}\ \mathrm{des}\ \mathrm{\acute{e}l\acute{e}ments}\ \mathrm{de}\ \mathrm{l'intervalle}\]0,+\infty[,\ \mathrm{et}\ \mathrm{comme}\ 0< a\leq b,\ \mathrm{on}\ \mathrm{a}\ \frac{1}{b}\leq \frac{1}{a}.$ Par croissance de f sur cet intervalle, on a :

$$f\left(\frac{1}{b}\right) \le f\left(\frac{1}{a}\right)$$
$$\frac{\ln(\frac{a}{b}+1)}{\ln(\frac{b}{b}+1)} \le \frac{\ln(\frac{a}{a}+1)}{\ln(\frac{b}{a}+1)}$$
$$\frac{\ln(\frac{a}{b}+1)}{\ln(2)} \le \frac{\ln(2)}{\ln(\frac{b}{b}+1)}$$

Or $\ln(2) > 0$ et $\ln\left(\frac{b}{a} + 1\right) > 0$ puisque $\frac{b}{a} + 1 > 1$. On en tire donc :

$$\ln\left(\frac{a}{b}+1\right)\ln\left(\frac{b}{a}+1\right) \le (\ln 2)^2$$

Exercice 3

 $\mathbf{1}^{\circ}$) Pour tout $x \in \mathbb{R}$,

$$f(x) + f(-x) = x + \ln(4) + \frac{2}{e^x + 1} - x + \ln(4) + \frac{2}{e^{-x} + 1}$$

$$= 2\ln(4) + 2\frac{(e^{-x} + 1) + (e^x + 1)}{(e^x + 1)(e^{-x} + 1)}$$

$$= 2\ln(4) + 2\frac{2 + e^{-x} + e^x}{2 + e^{-x} + e^x} \quad \text{car } e^x e^{-x} = e^0 = 1$$

$$= 2\ln(4) + 2$$

On en tire que $\frac{f(x) + f(-x)}{2} = 1 + \ln 4$.

Ainsi, si on note M le point de coordonnées (x, f(x)) et M' le point de coordonnées (-x, f(-x)), le milieu du segment [MM'] a pour coordonnées $(0, 1 + \ln 4)$: c'est le point A.

Cela signifie que le point A est un centre de symétrie pour C.

 $\mathbf{2}^{\circ}$) Par somme et quotient, f est dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$,

$$f'(x) = 1 + \frac{-2e^x}{(e^x + 1)^2} = \frac{(e^x + 1)^2 - 2e^x}{(e^x + 1)^2} = \frac{e^{2x} + 2e^x + 1 - 2e^x}{(e^x + 1)^2} = \frac{e^{2x} + 1}{(e^x + 1)^2}.$$

Comme exp est positive, on constate que f' est strictement positive sur \mathbb{R} . Donc f est strictement croissante sur \mathbb{R} . Comme $\frac{2}{e^x+1} \underset{x \to -\infty}{\longrightarrow} 2$, $f(x) \underset{x \to -\infty}{\longrightarrow} -\infty$.

Comme
$$\frac{2}{e^x + 1} \xrightarrow[x \to +\infty]{} 0, f(x) \xrightarrow[x \to +\infty]{} +\infty.$$

x	$-\infty$ $+\infty$
f'(x)	+
f	$-\infty \longrightarrow +\infty$

3°) • Pour tout $x \in \mathbb{R}$, $f(x) - (x + \ln 4 + 2) = \frac{2}{e^x + 1} - 2$ donc $f(x) - (x + \ln 4 + 2) \xrightarrow[x \to -\infty]{} 0$.

Ainsi la droite
$$D_1$$
 d'équation $y = x + \ln 4 + 2$ est asymptote à \mathcal{C} en $-\infty$.
Pour tout $x \in \mathbb{R}$, $f(x) - (x + \ln 4 + 2) = \frac{2 - 2(e^x + 1)}{e^x + 1} = \frac{-2e^x}{e^x + 1} < 0$.

Donc C est toujours en dessous de D_1 . Pour tout $x \in \mathbb{R}$, $f(x) - (x + \ln 4) = \frac{2}{e^x + 1}$ donc $f(x) - (x + \ln 4) \underset{x \to +\infty}{\longrightarrow} 0$.

Ainsi la droite D_2 d'équation $y = x + \ln 4$ est asymptote à \mathcal{C} en $+\infty$.

Pour tout
$$x \in \mathbb{R}$$
, $f(x) - (x + \ln 4) = \frac{2}{e^x + 1} > 0$.

Donc C est toujours au dessus de D_2

 4°) On a $f'(0) = \frac{1}{2}$ ce qui permet d'avoir la pente de la tangente en A.

<u>Problème</u>

Partie 1 : Étude des fonctions c et s

 1°) \mathbb{R} est centré en 0. $\forall x \in \mathbb{R},$

$$c(-x) = \frac{e^{-x} + e^x}{2} = c(x)$$
$$s(-x) = \frac{e^{-x} - e^x}{2} = -\frac{e^{-x} + e^x}{2} = -s(x)$$

c est paire et s est impaire.

2°) Soit
$$x \in \mathbb{R}$$
, $c(x) - s(x) = \frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2} = e^{-x} > 0$ car $\exp > 0$ Ainsi, pour tout $x \in \mathbb{R}$, $c(x) > s(x)$.

3°) a) c et s sont dérivables sur \mathbb{R} comme combinaisons linéaires et composée de fonctions dé-

$$\forall x \in \mathbb{R}, \ c'(x) = \frac{e^x - e^{-x}}{2} = s(x)$$
 $s'(x) = \frac{e^x + e^{-x}}{2} = c(x).$ Ainsi, $c' = s$ et $s' = c$.

b) $\forall x \in \mathbb{R}, \ s'(x) = c(x) = \frac{e^x + e^{-x}}{2} \ \text{donc} \ s'(x) > 0.$

x	$-\infty$	0	$+\infty$
s'(x)		+	
8	$-\infty$		\rightarrow $+\infty$

$$s(x) = \frac{e^x - e^{-x}}{2} \underset{x \to +\infty}{\longrightarrow} +\infty \text{ car } e^x \underset{x \to +\infty}{\longrightarrow} +\infty \text{ et } e^{-x} \underset{x \to +\infty}{\longrightarrow} 0.$$
 Par imparité $s(x) \underset{x \to -\infty}{\longrightarrow} -\infty$.

c) $\forall x \in \mathbb{R}, c'(x) = s(x).$

On déduit le signe de s donc de c' par la question précédente puisque s(0) = 0 et s est strictement croissante sur \mathbb{R} .

Les limites aux bornes se calculent par opérations.

x	$-\infty$		0		$+\infty$
c'(x)		_	0	+	
c	$+\infty$		1		\rightarrow ∞

Remarque: $\forall x \in \mathbb{R}, c(x) \geq 1$.

4°) On pose, pour tout $x \in \mathbb{R}_+$, u(x) = s(x) - x.

u est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}_+$, u'(x) = c(x) - 1.

Or $c(x) \geq 1$ par la question précédente donc u est croissante sur \mathbb{R}_+ .

Comme u(0) = 0, on en déduit que, pour tout $x \in \mathbb{R}_+$, $u(x) \geq 0$.

Ainsi, pour tout $x \in \mathbb{R}_+$, $s(x) \ge x$

5°) On sait : $\forall x \in \mathbb{R}, c(x) > s(x)$.

On peut aussi remarquer que $c(x) - s(x) \longrightarrow 0$.

On précise les tangentes à l'origine et on respecte la parité de c et l'imparité de s.

5

6°) Soit $x \in \mathbb{R}$.

$$c(x) = 2 \iff \frac{e^x + e^{-x}}{2} = 2$$

$$\iff e^x + e^{-x} = 4$$

$$\iff e^x + \frac{1}{e^x} = 4$$

$$\iff \frac{e^{2x} + 1 - 4e^x}{e^x} = 0$$

$$\iff e^{2x} - 4e^x + 1 = 0$$

$$\iff X^2 - 4X + 1 = 0 \text{ en posant } X = e^x$$

Le discriminant du trinôme en X est $\Delta = 4^2 - 4 = 12 = (2\sqrt{3})^2$.

Les solutions en X sont : $\frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}$ et $2-\sqrt{3}$. Ainsi,

$$c(x) = 2 \iff X = 2 + \sqrt{3} \text{ ou } X = 2 - \sqrt{3}$$

$$\iff e^x = 2 + \sqrt{3} \text{ ou } e^x = 2 - \sqrt{3}$$

 $2 + \sqrt{3} > 0$ et aussi $2 - \sqrt{3} > 0$ car 4 > 3 donc $2 > \sqrt{3}$.

Ainsi, par bijectivité de exp, $c(x) = 2 \iff x = \ln(2 + \sqrt{3})$ ou $x = \ln(2 - \sqrt{3})$.

L'ensemble des solutions de l'équation c(x) = 2 est : $\{\ln(2-\sqrt{3}), \ln(2+\sqrt{3})\}$

Remarque : Par parité de c, ces solutions sont opposées.

- 7°) \mathbb{R} est un intervalle, s est continue et strictement croissante sur \mathbb{R} . Ainsi, s réalise une bijection de \mathbb{R} dans l'intervalle $\lim_{x\to -\infty} s(x), \lim_{x\to +\infty} s(x)$ i.e. de \mathbb{R} dans \mathbb{R} . Ainsi, s est bijective de \mathbb{R} dans \mathbb{R} .
- 8°) Quelques formule algébriques

a) Soit $x \in \mathbb{R}$.

$$s(x)^{2} + 1 = \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} + 1$$

$$= \frac{e^{2x} + e^{-2x} - 2e^{x}e^{-x}}{4} + 1$$

$$= \frac{e^{2x} + e^{-2x} - 2 + 4}{4}$$

$$= \frac{e^{2x} + e^{-2x} + 2}{4}$$

$$= \left(\frac{e^{x} + e^{-x}}{2}\right)^{2}$$

$$s(x)^{2} + 1 = c(x)^{2}$$

b) Soit $x \in \mathbb{R}$.

$$2c(x)s(x) = 2\frac{e^x + e^{-x}}{2} \frac{e^x - e^{-x}}{2}$$

$$= \frac{(e^x + e^{-x})(e^x - e^{-x})}{2}$$

$$= \frac{e^{2x} - e^{-2x}}{2}$$

$$2c(x)s(x) = s(2x)$$

c) Soit $x \in \mathbb{R}, n \in \mathbb{N}$.

On constate que, pour tout
$$X\in\mathbb{R}, c(X)+s(X)=\frac{e^X+e^{-X}}{2}+\frac{e^X-e^{-X}}{2}=e^X$$
. Donc,
$$c(nx)+s(nx)=e^{nx}\\ =(e^x)^n\\ \hline c(nx)+s(nx)=(c(x)+s(x))^n$$

Partie 2: Étude d'une autre fonction

- 9°) Justifions que, pour tout $x \in \mathbb{R}$, $\sqrt{x^2 + 1} + x > 0$. Soit $x \in \mathbb{R}$. $x^2 + 1 > x^2$ donc $\sqrt{x^2 + 1} > \sqrt{x^2}$. Or, $\sqrt{x^2} = |x|$ et $|x| \ge -x$ donc $\sqrt{x^2 + 1} > -x$ i.e. $\sqrt{x^2 + 1} + x > 0$.

 If est bien définie sur \mathbb{R} .
- 10°) Quelques résultats sur la fonction f:
 - a) Soit $x \in \mathbb{R}$. Montrons que f(-x) = -f(x). Cela revient à : f(-x) + f(x) = 0.

$$f(-x) + f(x) = \ln(\sqrt{x^2 + 1} - x) + \ln(\sqrt{x^2 + 1} + x)$$

$$= \ln\left((\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)\right)$$

$$= \ln(x^2 + 1 - x^2)$$

$$= \ln 1 = 0$$

Ainsi, f est impaire

b) La fonction $x \mapsto x^2 + 1$ est dérivable sur \mathbb{R} , et à valeurs dans \mathbb{R}_+^* sur cet intervalle; et $X \mapsto \sqrt{X}$ est dérivable sur \mathbb{R}_+^* , donc par composition de fonctions dérivables, $x \mapsto \sqrt{x^2 + 1}$ est dérivable sur \mathbb{R}

Par somme avec $x \mapsto x$ et composition avec ln, fonctions qui sont dérivables sur leurs domaines de définition respectifs, f est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$.

$$f'(x) = \frac{\frac{2x}{2\sqrt{x^2 + 1}} + 1}{\sqrt{x^2 + 1} + x}$$
$$= \frac{\frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1} + x}$$
$$f'(x) = \frac{1}{\sqrt{x^2 + 1}}$$

11°) Soit $x \in \mathbb{R}$.

$$f \circ s(x) = f(s(x))$$

$$= \ln(\sqrt{s(x)^2 + 1} + s(x))$$

$$= \ln(\sqrt{c(x)^2} + s(x)) \quad \text{par } 8a$$

$$= \ln(|c(x)| + s(x))$$

$$= \ln(c(x) + s(x)) \quad \text{car } c(x) \ge 0$$

$$= \ln(e^x)$$

$$\boxed{f \circ s(x) = x}$$

- 12°) Une équation
 - a) s est bijective de \mathbb{R} dans \mathbb{R} par 7. $\sqrt{3} \in \mathbb{R}$ donc $\sqrt{3}$ admet un unique antécédent x_0 dans \mathbb{R} . Cela revient à :

L'équation $s(x) = \sqrt{3}$ admet une unique solution réelle x_0 .

b)
$$s(x_0) = \sqrt{3} \text{ donc } f(s(x_0)) = f(\sqrt{3}).$$

Or $f \circ s(x_0) = x_0 \text{ par } 11 \text{ donc } x_0 = f(\sqrt{3}).$
Ainsi, $x_0 = \ln(\sqrt{3+1} + \sqrt{3})$ i.e. $x_0 = \ln(2+\sqrt{3})$

c) Soit $x \in \mathbb{R}$.

$$c(x) = 2 \iff c(x)^2 = 4$$
 $car \ c(x) \ge 0$
 $\iff s(x)^2 + 1 = 4$ $par \ 8a$
 $\iff s(x)^2 = 3$
 $\iff s(x) = -\sqrt{3} \text{ ou } s(x) = \sqrt{3}$
 $\iff s(-x) = \sqrt{3} \text{ ou } s(x) = \sqrt{3}$ $par \text{ imparit\'e de } s$
 $\iff -x = x_0 \text{ ou } x = x_0$ $par \ 12a$
 $\iff x = -\ln(2 + \sqrt{3}) \text{ ou } x = \ln(2 + \sqrt{3})$

Ainsi, l'ensemble des solutions de l'équation c(x)=2 est : $\{-\ln(2+\sqrt{3}), \ln(2+\sqrt{3})\}$