Semaine 9 - Nombres réels, suites réelles

Valentin De Bortoli
email: valentin.debortoli@gmail.com

1 Un théorème de point fixe (1)

- 1 A sous ensemble des réels non vide et borné donc admet une borne supérieure. On note x_0 cette borne.
- 2 On élimine facilement les cas $x_0 = 0$ et $x_0 = 1$. On suppose que $x_0 \in]0,1[$, $\forall x \in [0,1], \ x > x_0 \Rightarrow x > f(x)$. Soit x_n une suite de réels qui tend vers x_0 avec $x_n > x_0$. $f(x_0) \le f(x_n) \le x_n$. Donc en passant à la limite $f(x_0) \le x_0$. Puisque x_0 est la borne supérieure de A on peut construire une suite d'éléments de A qui converge vers x_0 . $x_n \le f(x_n) \le f(x_0)$. Donc en passant à la limite $f(x_0) \ge x_0$. On conclut.

2 Un théorème de point fixe (2)

- 1 Même chose que pour le premier exercice.
- 2 On adapte la preuve du première exercice.

Tout d'abord, $\forall x \in [0,1], \ x > x_0 \to x > f(x)$. Soit x_n une suite de réels qui tend vers x_0 avec $x_n > x_0$. $f(x_n) \le x_n$. Donc en passant à la limite $f(x_0) \le x_0$ (par continuité de f en x_0).

Puisque x_0 est la borne supérieure de A on peut construire une suite d'éléments de A qui converge vers x_0 . $x_n \leq f(x_n)$. Donc en passant à la limite $f(x_0) \geq x_0$ (par continuité de f en x_0). On conclut.

3 Inégalité(s) de Shapiro

1 On note que $\forall x \in \mathbb{R}_+^*$, $x + \frac{1}{x} \ge 2$. L'inégalité s'obtient en notant que si $x = \frac{a}{b}$ alors $\frac{1}{x} = \frac{b}{a}$. Le terme de gauche s'écrit alors comme la somme de trois termes chacun supérieur à 2.

$$\frac{y_1 + y_2}{y_3} + \frac{y_2 + y_3}{y_1} + \frac{y_1 + y_3}{y_1} = \frac{2x_3 + x_1 + x_2}{x_1 + x_2} + \frac{2x_1 + x_2 + x_3}{x_2 + x_3} + \frac{2x_2 + x_1 + x_3}{x_1 + x_3}$$

$$= 3 + 2\left(\frac{x_1}{y_1} + \frac{x_2}{y_2} + \frac{x_3}{y_3}\right)$$

$$> 6$$
(1)

L'inégalité s'en déduit.

3 En développant le terme de droite et en le retranchant au terme de gauche on obtient :

$$x_1^2 - 2x_1x_3 + x_3^2 + x_2^2 - 2x_2x_4 + x_4^2 = (x_1 - x_3)^2 + (x_2 - x_4)^2$$
(2)

Cette expression est donc positive et on peut conclure.

 $\mathbf{4} \quad \left(\sum_{i=1}^{4} x_i y_i\right) \left(\sum_{i=1}^{4} \frac{x_i}{y_i}\right) \geq \left(\sum_{i=1}^{4} x_i\right)^2 \text{ via l'inégalité de Cauchy-Schwarz } (\sqrt{x_i y_i} \sqrt{\frac{x_i}{y_i}} = x_i). \text{ L'inégalité s'en déduit } \mathbf{facilement en utilisant la question 3}.$

4 Une borne inférieure

1 L'inégalité de Cauchy-Schwarz donne $\left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n \frac{1}{x_i}\right) \ge \left(\sum_{i=1}^n 1\right)^2$. Donc n^2 minorant de A. On traite en même temps la question 2 en montrant que n^2 est bien une borne inférieure car atteint par A. Il s'agit de trouver les cas d'égalité dans l'inégalité de Cauchy-Schwarz. On trouve $x_i = \lambda$ avec $\lambda \in \mathbb{R}_+^*$.

5 Borne inférieure et borne supérieure

- $\mathbf{1} \quad \forall (x,y) \in \mathbb{R}^2, \ (x+y)^2 4xy = (x-y)^2 \geq 0. \ \text{Donc} \ \tfrac{mn}{(m+n)^2} \leq \tfrac{1}{4}. \ \text{La minoration par } 0 \text{ est triviale.}$
- **2** A sous ensemble de \mathbb{R} non vide et borné donc admet une borne supérieure et une borne inférieure. $\frac{1}{4}$ est un maximum (atteint lorsque m=n). 0 est bien une borne inférieure (avec n=1 et $m\in\mathbb{N}$ on a une suite dans A qui tend vers 0). Il est à noter que 0 n'est évidemment pas atteint.

6 Convergence au sens de Césaro

1 Soit $n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, \ n \ge n_0 \to |u_n - l| \le \frac{\epsilon}{2}$. Soit $n_1 \ge n_0$ tel que $\frac{\sum\limits_{l=1}^{n_0-1} |u_k - l|}{n} \le \frac{\epsilon}{2}$. Donc on a :

$$|v_n - l| = |v_n - \frac{nl}{n}|$$

$$\leq \frac{\sum_{1}^{n_0 - 1} |u_k - l|}{n} + \frac{\sum_{n_0}^{n} |u_k - l|}{n}$$

$$\leq \frac{\epsilon}{2} + \frac{n - n_0 + 1}{n} \frac{\epsilon}{2}$$

$$\leq \epsilon$$
(3)

D'où la convergence

- $(-1)^n$ tend vers 0 au sens de Césaro.
- 3 On calcule la moyenne de Césaro de $u_n = \omega_{n+1} \omega_n$. On obtient un télescope. On a alors : $\frac{\omega_{n+1} \omega_0}{n} \to l$ en vertu de la première question. On obtient alors : $\omega_n \sim ln$.
- 4 Il s'agit de considérer $\omega_n \frac{n(n+1)}{2n^2}l = \omega_n \frac{\sum\limits_{l=1}^{n}kl}{n^2}$. on procède ensuite de la même manière que pour la question 1. On a alors $\omega_n \frac{n(n+1)}{2n^2}l \to 0$. Donc $\omega_n \to \frac{l}{2}$.

7 Suite sous-additive

- 1 Cours
- 2 $u_n \le qu_m + u_r$. Or $u_n \le nu_1$ donc $u_n \le qu_m + ru_1$.
- 3 On suppose que la borne inférieure de cet ensemble est réelle. Si elle vaut $-\infty$ on raisonne de la même manière... Soit m tel que $\frac{u_m}{u_m} \leq \inf\{\frac{u_n}{n}, n \in \mathbb{N}^*\} + \frac{\epsilon}{2}$. Soit $n \in \mathbb{N}$. n = qm + r (résultat de la division euclidienne de n par m).

$$\frac{u_n}{n} \le \frac{qm}{n} \frac{u_q}{q} + \frac{r}{n} u_1 \tag{4}$$

Le deuxième terme $(\frac{r}{n}u_1)$ est inférieur à $\frac{\epsilon}{2}$ pour n assez grand. On a donc pour n assez grand :

$$\frac{u_n}{n} \le \inf\{\frac{u_n}{n}, n \in \mathbb{N}^*\} + \frac{\epsilon}{2} + \frac{\epsilon}{2} \tag{5}$$

Donc $\left|\frac{u_n}{n} - \inf\left\{\frac{u_n}{n}, n \in \mathbb{N}^*\right\}\right| \le \epsilon$ pour n assez grand. On a donc prouvé la convergence

4 $\ln(v_n)$ est sous-additive. On en déduit que $v_n^{\frac{1}{n}}$ converge.

8 Rationnels et irrationnels

1 q_n supposée bornée. On peut extraire une suite convergente (on la nomme encore q_n). Donc q_n stationnaire en $l \in \mathbb{N}$ (convergente et entière donc stationnaire). Donc $lr_n = p_n$ donc en passant à la limite, p_n converge vers lx avec $lx \in \mathbb{N}$. Donc x rationnel et c'est absurde.

Supposons que q_n ne tende pas vers $+\infty$. Il existe $A \in \mathbb{R}_+$ et une suite extraire (encore notée q_n) telle que q_n bornée. On applique la remarque précédente et on conclut par l'absurde.

9 Une équation et des parties entières

- 1 Pour x=8 on a $\frac{x}{2}-\sqrt{x}=2(2-\sqrt{2})>1$. Donc à partir de x=8 les parties entières de $\frac{x}{2}$ et \sqrt{x} sont différentes. Il s'agit maintenant de trouver les solutions pour x<8 (une autre solution aurait de résoudre une équation du second degré $-\sqrt{x}^2+(\frac{x}{2}-1)^2=0$. On aurait trouvé une borne similaire) :
 - $\lfloor \frac{x}{2} \rfloor = 0$ si et seulement si $x \in [0, 2[$. $\lfloor \sqrt{x} \rfloor = 0$ si et seulement si $x \in [0, 1[$. Donc [0, 1[dans l'ensemble des solutions.
 - $\lfloor \frac{x}{2} \rfloor = 1$ si et seulement si $x \in [2, 4[$. $\lfloor \sqrt{x} \rfloor = 1$ si et seulement si $x \in [1, 4[$. Donc [2, 4[dans l'ensemble des solutions.
 - $\lfloor \frac{x}{2} \rfloor = 2$ si et seulement si $x \in [4, 6[$. $\lfloor \sqrt{x} \rfloor = 2$ si et seulement si $x \in [4, 9[$. Donc [4, 6[dans l'ensemble des solutions.

On s'arrête là car on sait que les prochaines solutions se trouvent après x = 9. On sait donc qu'il n'y en aura plus. On a l'ensemble de solutions suivant :

$$S = [0, 1] \cup [4, 6] \tag{6}$$

10 Une propriété de la partie entière

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+$.

1 On a:

$$x \in [\lfloor x \rfloor, \lfloor x \rfloor + 1[$$

$$nx \in [n \lfloor x \rfloor, n \lfloor x \rfloor + n[$$

$$\lfloor nx \rfloor \in [n \lfloor x \rfloor, \lfloor x \rfloor + n[, \text{ car } n \lfloor x \rfloor \text{ entier}$$

$$\frac{\lfloor nx \rfloor}{n} \in [\lfloor x \rfloor, \lfloor x \rfloor + 1[$$

$$(7)$$

On conclut.

11 Somme et partie entière

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+$.

- 1 Il s'agit simplement d'écrire $x = \lfloor x \rfloor + \{x\}$ et $nx = \lfloor nx \rfloor + \{nx\}$. On multiplie par n la première équation et on égalise.
- 2 On peut comprendre la démarche en posant $\{x\} < \frac{1}{n}$. On a alors $\forall k \in [\![0,n-1]\!]$, $\lfloor x+\frac{k}{n}\rfloor = \lfloor x\rfloor$. De plus on a $n\{x\} \in [\![0,1[\!]$ donc $n\{x\} \{nx\} \in [\!] 1,1[\!]$ donc $n\lfloor x\rfloor = \lfloor nx\rfloor$. On peut donc conclure. Pour les autres cas, $\exists k_0 \in [\![1,n-1]\!]$ tel que $\{x\} + \frac{k_0}{n} \ge 1$ et $\{x\} + \frac{k_0-1}{n} < 1$. donc si $k \le k_0$, $\lfloor x+\frac{k}{n}\rfloor = \lfloor x\rfloor$. Sinon, $\lfloor x+\frac{k}{n}\rfloor = \lfloor x\rfloor + 1$. Si on considère la somme étudiée (notée S) on a :

$$S = n \lfloor x \rfloor + (n - k_0 + 1) \tag{8}$$

Mais $n - k_0 \le n\{x\} < n - k_0 + 1$. Donc $n - k_0 - \{nx\} \le n\{x\} - \{nx\} < n - k_0 + 1$. Mais le nombre encadré est entier et est compris dans un intervalle qui ne contient qu'un entier. Donc $n\{x\} - \{nx\} = n - k_0$. Donc en remplaçant dans l'expression trouvée pour S on peut conclure.

12 Nombre de zéros et factorielle

1 2 zéros

 ${\bf 2}-6$ et pas 5 attention ! Si on fait la liste des termes qui rajoutent un zéro on a : $5\times 2=10,\,10,\,15\times 4,\,20$ et 25×8

3 La formule est la suivante :

nombre de zéros =
$$\sum_{k=1}^{\lfloor \log_5(n) \rfloor} \lfloor \frac{n}{5^k} \rfloor$$
 (9)