Digital Systems Design and Laboratory [9. Multiplexers, Decoders, and Programmable Logic Devices]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Spring 2019

Outline

- **☐** Multiplexers
- ☐ Three-State Buffers
- Decoders and Encoders
- ☐ Read-Only Memories
- ☐ Programmable Logic Devices
- ☐ Complex Programmable Logic Devices
- ☐ Field-Programmable Gate Arrays

Multiplexers (1/3)

- ☐ A multiplexer (data selector, MUX)
 - \triangleright Use the control inputs (A and/or B) to select one of the data inputs (I_x)
 - One combination of control inputs corresponds to one data input
 - Connects it to the output
- ☐ Symbol, truth table, and switch

Α	В	Z	
0	0	I ₀	I_1
0	1	I ₁	
1	0	l ₂	13
1	1	l ₃	

Multiplexers (2/3)

☐ Logic equation of 4-to-1 MUX

$$\geq$$
 Z = A'B'I₀ + A'BI₁ + AB'I₂ + ABI₃ = m₀I₀ + m₁I₁ + m₂I₂ + m₃I₃

Α	В	Z
0	0	I ₀
0	1	l ₁
1	0	l ₂
1	1	l ₃

Multiplexers (3/3)

☐ The general equation for n control inputs

$$\geq Z = m_0 I_0 + m_1 I_1 + ... + m_i I_i + ... + m_{2^{n-1}} I_{2^{n-1}} = \sum_{k=0...2^{n-1}} m_k I_k$$

Application: Quad Multiplexer

☐ Select one of two 4-bit data words

Application: Combinational Logic

☐ Realize a 3-variable function by a 4-to-1 MUX

$$\triangleright$$
 F(A,B,C) = A'B' + AC = 1 \bullet A'B' + 0 \bullet A'B + C \bullet AB' + C \bullet AB

Outline

- Multiplexers
- ☐ Three-State Buffers
- Decoders and Encoders
- ☐ Read-Only Memories
- ☐ Programmable Logic Devices
- ☐ Complex Programmable Logic Devices
- ☐ Field-Programmable Gate Arrays

Buffers

- ☐ Buffers: increase the **driving capability** of a gate output
- Symbol

Three-State Buffers

- ☐ Three-state buffers: permits gate outputs to be connected together
- ☐ 4 variants (Z = high-impedance)

В	С
0	Z
1	Α

В	С
0	Z
1	A'

В	С
0	Α
1	Z

В	С
0	A'
1	Z

Applications (1/2)

■ Data selection

☐ Circuit with 2 three-state buffers (X = unknown)

F	X	0	1	Z
X	Х	X	X	X
0	X	0	X	0
1	Х	X	1	1
Z	X	0	1	Z

Applications (2/2)

☐ Bi-directional I/O pin

> The same pin can be used as an input pin and as an output pin, but not both at the same time

Outline

- Multiplexers
- ☐ Three-State Buffers
- Decoders and Encoders
- ☐ Read-Only Memories
- ☐ Programmable Logic Devices
- ☐ Complex Programmable Logic Devices
- ☐ Field-Programmable Gate Arrays

Decoders

- ☐ Decoder: generates all of the minterms of input variables
 - > Exactly one output line corresponds to one input combination

- ☐ n-to-2ⁿ decoder
 - Non-inverted outputs

•
$$y_i = m_i$$
, $i = 0$ to 2^n-1

- > Inverted outputs
 - $y_i = m_i' = M_i$, i = 0 to 2^n-1

	Α	В	С	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇
m ₀	0	0	0	1	0	0	0	0	0	0	0
m_1	0	0	1	0	1	0	0	0	0	0	0
m_2	0	1	0	0	0	1	0	0	0	0	0
m ₃	0	1	1	0	0	0	1	0	0	0	0
m ₄	1	0	0	0	0	0	0	1	0	0	0
m ₅	1	0	1	0	0	0	0	0	1	0	0
m ₆	1	1	0	0	0	0	0	0	0	1	0
m ₇	1	1	1	0	0	0	0	0	0	0	1

Application: 4-to-10 Line Decoder

ABCD	0123456789
0000	0111111111
0001	101111111
0010	1101111111
0011	1110111111
0100	1111011111
0101	1111101111
0110	1111110111
0111	1111111011
1000	1111111101
1001	111111110
1010	1111111111
1011	111111111
1100	1111111111
1101	1111111111
1110	1111111111
1111	111111111

Application: n-Variable Function

- ☐ Exactly one output line corresponds to one minterm
 - Realize n-variable functions by ORing selected minterm outputs from a decoder
 - \triangleright Examples: $F_1 = \sum m(1,2,4), F_2 = \sum m(4,7,9)$

Encoders

- ☐ Encoder: performs the inverse function of a decoder
 - \triangleright If $Y_i = 1$, ABC outputs represent a binary number equal to i
 - > If more than one input can be 1 at a time, use a priority scheme

X: Don't Care

	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇	А	В	С	D
	0	0	0	0	0	0	0	0	0	0	0	0
m_0	1	0	0	0	0	0	0	0	0	0	0	1
m_1	X	1	0	0	0	0	0	0	0	0	1	1
m_2	X	X	1	0	0	0	0	0	0	1	0	1
m_3	X	X	X	1	0	0	0	0	0	1	1	1
m ₄	X	X	X	X	1	0	0	0	1	0	0	1
m_5	Х	X	X	X	X	1	0	0	1	0	1	1
m_6	X	X	X	X	X	X	1	0	1	1	0	1
m ₇	Х	X	X	X	X	X	X	1	1	1	1	1

Outline

- Multiplexers
- ☐ Three-State Buffers
- Decoders and Encoders
- **☐** Read-Only Memories
- ☐ Programmable Logic Devices
- ☐ Complex Programmable Logic Devices
- ☐ Field-Programmable Gate Arrays

Read-Only Memories (1/3)

- ☐ Read-Only Memory (ROM): stores an array of binary data
 - Stored data cannot be changed
 - > e.g., 8-word × 4-bit ROM: each word is 4-bit, total 8 words
 - Input (ABC): 3-bit lines index 2³ values (0--7 addresses)
 - Output (F₀F₁F₂F₃): each one is called a word

Size = 4×8 bits

Α	В	С	F _o	F ₁	F ₂	F ₃
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	1	1
0	1			1		1
1	0	0	1	1	0	0
1	0		0			1
1	1	0	1	1	1	1
1	1	1	0	1	0	1

Read-Only Memories (2/3)

 \square Generalized form: 2ⁿ-word × m-bit ROM (n inputs / m outputs)

☐ Basic ROM structure: a decoder + memory array

Read-Only Memories (3/3)

Application: Code Converter

☐ Hexadecimal-to-ASCII code converter

Hex	$A_6A_5A_4A_3A_2A_1A_0$
0	0110000
1	0110001
2	0110010
3	0110011
4	0110100
5	0110101
6	0110110
7	0110111
8	0111000
9	0111001
Α	100001
В	100010
С	1000011
D	1000100
Е	1000101
F	1000110

Common Types of ROMs

- ☐ Mask-programmable ROMs
 - Use mask to program
 - Include/omit switching elements
- ☐ Programmable ROMs (PROMs)
 - Program once
- ☐ Erasable programmable read-only memory (EPROM)
- ☐ Electrically erasable programmable ROMs (EEPROMs)
 - (Can reprogram 100 to 1000 times)
 - ➤ Flash memory → solid-state drive

Outline

- Multiplexers
- ☐ Three-State Buffers
- ☐ Decoders and Encoders
- ☐ Read-Only Memories
- Programmable Logic Devices
- ☐ Complex Programmable Logic Devices
- ☐ Field-Programmable Gate Arrays

Programmable Logic Arrays (1/4)

- ☐ Programmable Logic Array (PLA): 2-level SOP implementation
 - > AND plane generates product terms
 - > OR plane sums the product terms

Example

$$F_1 = A'B' + AC'$$

$$F_2 = AC' + B$$

$$F_3 = A'B' + BC'$$

$$F_4 = B + AC$$

	Α	В	С	F ₁	F ₂	F ₃	F ₄
A'B'	0	0	_	1	0	1	0
AC'	1	-	0	1	1	0	0
В	_	1	_	0	1	0	1
BC'	_	1	0	0	0	1	0
AC	1	_	1	0	0	0	1

Programmable Logic Arrays (2/4)

■ Example

- $F_1 = A'B' + AC'$
- $F_2 = AC' + B$
- $F_3 = A'B' + BC'$
- $F_4 = B + AC$

Programmable Logic Arrays (3/4)

Example

$$F_1 = A'B' + AC'$$

$$F_2 = AC' + B$$

$$F_3 = A'B' + BC'$$

Programmable Logic Arrays (4/4)

Example

- $F_1(A,B,C,D) = \sum m(2,3,5,7,8,9,10,11,13,15)$
- $F_2(A,B,C,D) = \sum m(2,3,5,6,7,10,11,14,15)$
- $F_3(A,B,C,D) = \sum m(6,7,8,9,13,14,15)$

☐ Minimize using K-map

- \triangleright F₁ = A'BD + ABD + AB'C' +B'C
- $F_2 = C + A'BD$
- $F_3 = BC + AB'C' + ABD$

	Α	В	С	D	F_1	F_2	F_3
A'BD	0	1	_	1	1	1	0
ABD	1	1	_	1	1	0	1
AB'C'	1	0	0	_	1	0	1
B'C	_	0	1	_	1	0	0
С	_	_	1	_	0	1	1
ВС	_	1	1	_	0	0	1

Programmable Array Logic (1/2)

- ☐ Programmable Array Logic (PAL): a special case of PLA
 - > AND array: programmable
 - OR array: fixed
- Symbol

Programmable Array Logic (2/2)

Application Full Adder

$$\square$$
 S = X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}

$$\Box$$
 $C_{out} = XY + XC_{in} + YC_{in}$

X	Υ	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Outline

- Multiplexers
- ☐ Three-State Buffers
- Decoders and Encoders
- ☐ Read-Only Memories
- ☐ Programmable Logic Devices
- **☐** Complex Programmable Logic Devices
- ☐ Field-Programmable Gate Arrays

Complex Programmable Logic Devices

- ☐ Complex Programmable Logic Device (CPLD): integrates and interconnects many PALs and PLAs on a single chip
 - > Tools will program for you
 - Example: Xilinx XCR3064XL

Outline

- Multiplexers
- ☐ Three-State Buffers
- Decoders and Encoders
- ☐ Read-Only Memories
- ☐ Programmable Logic Devices
- ☐ Complex Programmable Logic Devices
- **☐** Field-Programmable Gate Arrays

Field Programmable Gate Arrays

☐ Field Programmable Gate Arrays (FPGA): an array of identical logic cells + programmable interconnections

Simplified Configurable Logic Block

Implementation of a Lookup Table (LUT)

Shannon's Expansion

☐ Shannon's expansion theorem

$$f(x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$$

$$= x'_i \bullet f(x_1, x_2, ..., x_{i-1}, 0, x_{i+1}, ..., x_n) + x_i \bullet f(x_1, x_2, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$$

Realization with Function Generators

- ☐ Realize a 5-variable function with 4-variable FGs
 - \triangleright F(A,B,C,D,E) = A' \bullet F(0,B,C,D,E) + A \bullet F(1,B,C,D,E) = A' \bullet F₀ + A \bullet F₁
 - > Two 4-variable function generators + one 2-to-1 MUX (controlled by A)
- ☐ How about 6-variable function?

Q&A