

Understanding the alignment of LHCb's SciFi Tracker

Nils Breer*, Sophie Hollitt, Johannes Albrecht
13.03.2023

TU Dortmund, Fakultät Physik

Overview and Motivation

Motivation

- Studying permormance of different alignments on run 256145 data
- → unexpected different results!
- → analysis of individual quarters

Overview

- The SciFi Detector Upgrade
- Alignment how to
- Analysis of SciFi quarters in different alignment versions

N.Breer | 13.03.2023 2 / 22

The LHCb detector upgrade

- Higher luminosity
 - detector must operate well with expected radiation damage
- detector readout electronics need to operate at 40 MHz, 25ns usable time per collision
- tracking efficiency and hit detection improvements aim for about 98% hit detection rate

N.Breer | 13.03.2023 3 / 22

The Scintillating Fibre Tracker

Abbildung: Visualization of the SciFi tracking

- single detector type vs. IT + OT
- less timing information needed for readout
- less detector material
 - less multiple scattering and material interactions
- SiPM technology improvements yield better resolution and speed

What is Alignment?

- top: ideal detector, bottom: physical detector
- Surveys are used to find the rotation and position of each detector component
- Are used as starting positions for software alignment (this talk!)

N.Breer | 13.03.2023 5/22

Alignment: track fits with the Kalman Filter

- Minimise χ^2 with respect to the track parameters for the track fit
- Minimise χ^2 with respect to the alignment parameters α during the alignment
- \bullet Update the alignment constants α and repeat until convergence criterium for χ^2 is reached

N.Breer | 13.03.2023 6 / 22

Alignment versions in use

V1:

- use full length modules
- alignable degrees of freedom: Tx Rz (x translation, rotation around z →beam pipe axis)

low μ :

- uses half modules
- uses VELO alignment on run 256145 data
- Tx Rz

V2:

- newest alignment version
- half modules (top half and bottom half)
- uses newest time alignment
- utilizes VELO alignment from run 256145
- used for HLT2 reprocessing
- $\mu \approx 2.26$ (run database)

Why analyse the quarters separately?

- perfomance in each quarter might be very different from one another
- \bullet $\to \chi^2$ per quarter can provide more insights about the performance in each detector part
- v2 alignment shows improvements from v1 alignment but not across the whole SciFi
- find and resolve possible issues is easier

N.Breer | 13.03.2023 8 / 22

Hit distribution per quarter in V1 and V2 alignment

- V1(left)- and V2(right) alignment on 20000 events with run 256145 data
- C-side: negative x direction, A-side: positive x
- plotted is x-coordinate against number of hits in each quarter coded by colour.
- 9 minimum hits per quarter (solid lines), minimum hits (dashed lines)

This hints that something is not right in Q0

Abbildung: track χ^2 per dof comparing each alignment for Quarter 0.

Abbildung: Residual in each module for each alignment in Quarter 0.

N.Breer | 13.03.2023 10 / 22

Abbildung: track χ^2 per dof comparing each alignment for Quarter 1.

Abbildung: Residual in each module for each alignment in Quarter 1.

N.Breer | 13.03.2023

Abbildung: track χ^2 per dof comparing each alignment for Quarter 2.

Abbildung: Residual in each module for each alignment in Quarter 2.

N.Breer | 13.03.2023 12 / 22

Abbildung: track χ^2 per dof comparing each alignment for Quarter 3.

Abbildung: Residual in each module for each alignment in Quarter 3.

N.Breer | 13.03.2023 13/22

X^2 against ϕ angle distribution in V2 alignment

Abbildung: X^2 against ϕ distribution for each quarter for V2 alignment.

- X^2 against ϕ distribution for each quarter in V2
- information of layers are combined for each quarter
 - → information of problematic layer in given quarter hidden
- aim: flat distribution across all angles
- A-side quarters (Q1: blue, Q3: black) quite flat
- C-side quarters (Q0: green, Q2: red) have small X^2 around 0

N.Breer | 13.03.2023 14/22

Track residuals in bottom half SciFi quarters

- V1: Q0 quite bad residual in T2X2 as seen in previous plots
- V1: T2X1 and T2U overshooting because of photogrammetry
- V2: nice in Q1, Q0 still some differences in T2

Track residuals in top half SciFi quarters

- Q2: quite bad performance overall; V2 not as bad
- Q3: V2 performs quite well; oder alignments far worse

(a) Quarter 2

(b) Quarter 3

N.Breer | 13.03.2023 16 / 22

Weighted residuals for V2 alignment

Abbildung: mean Residual per layer weighted with quarter hits.

mean residual per quarter weighted:

 $Res_Q = \sum_{layer,quarter} \frac{hits quarter of layer}{hits layer}$ goal: residual around 0 per layer

V2: quite good except second C-frame in T2

V1: everywhere worse than V2 low μ : quite ok except for back T2

 \rightarrow V2 best performing alignment version for now, but still uses half modules \rightarrow long modules as in the physical SciFi preferred in the long run

N.Breer | 13.03.2023 17 / 22

Track hits comparison of alignment versions

- V1: left, V2, right
- Hits on tracks as XY distribution resembling SciFi Layers
- C-side: negative x, A-side: positive x
- information of all layers are combined for each quarter → hard to see whats going on

Track hits in V2 alignment

- T2X2 showed worst performance on C-side
- SciFi clusters and seed tracks are nicely distributed →the issue at the long tracks in the alignment
- hypothesis: some parts are out of alignment using the current survey
- → reduction in GoodLongTracks and hits for that part
- → Difference in Q0: some parts blocking tracks from going through a module and pushing them into a different ones.

New Q0 positions in T2X2 layer

- changes based on V2 alignment positions
- manually scan rotations/positions of T2X2Q0 and register alignment tracks
- Upcoming:
 - Test these starting condition in alignment + compare to current survey
 - More investigation for T2X2Q2 as well

Summary

- Analysis of alignment versions discovered poor performing C-side; especially Q0
- Source of complications: parts of the SciFi being too far out of alignment
- A-side showed an improvement from V1 to V2
- An improvement of the alignment track hits in T2X2Q0 was achieved but further investigation is needed for top half

N.Breer | 13.03.2023 21/22

Sources

• SciFi Conference Talk:

https://twiki.cern.ch/twiki/pub/LHCb/SciFiConference/fee_2018.pdf

• LHCb SciFi: From performance requirements to an operational detector:

https://indico.cern.ch/event/1163878/

N.Breer | 13.03.2023 22 / 22