Быстрый градиентный метод

Родоманов А. О. Кропотов Д. А.

Факультет ВМК МГУ им. М. В. Ломоносова

15 апреля 2014 г.

Спецсеминар «Байесовские методы машинного обучения»

Обзор

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - ullet Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводы
 - Эксперименты
 - Выводы

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - ullet Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Фенерименты и выводы
 - Эксперименты
 - Выводы

Общая постановка непрерывной задачи оптимизации

Непрерывная задача оптимизации

$$\begin{aligned} & \underset{\mathbf{x}}{\text{min}} \quad f_0(\mathbf{x}) \\ & s.t. \quad g_i(\mathbf{x}) \leqslant 0, \quad i = 1, \dots, m, \\ & \quad h_j(\mathbf{x}) = 0, \quad j = 1, \dots, k, \\ & \quad \mathbf{x} \in S, \end{aligned}$$

где

- $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$;
- $S \subseteq \mathbb{R}^n$;
- $f_0(\mathbf{x}), g_1(\mathbf{x}), \dots, g_m(\mathbf{x}), h_1(\mathbf{x}), \dots, h_k(\mathbf{x})$ непрерывные вещественные функции.

Итеративная природа методов оптимизации

- Обычно метод не способен найти точное решение за конечное число шагов.
- Метод генерирует бесконечную последовательность «приблизительных» решений $\{\mathbf{x}_k\}_{k=0}^{\infty}$.
- Каждая следующая точка \mathbf{x}_{k+1} формируется по некоторым правилам на основе локальной информации, собранной на предыдущих итерациях.

Итеративная природа методов оптимизации – 2

Общая итеративная схема метода оптимизации

```
Вход: начальное приближение \mathbf{x}_0 \in \mathbb{R}^n и параметр точности \varepsilon > 0;
   Выход: решение \bar{\mathbf{x}} \in \mathbb{R}^n в пределах заданной точности;
1 \mathcal{I}_{-1} := \emptyset:
2 для k = 0, 1, 2, \dots
       {вычислить локальную информацию \mathcal{O}(\mathbf{x}_k) в точке \mathbf{x}_k};
3
       \mathcal{I}_k := \mathcal{I}_{k-1} \cup (\mathbf{x}_k, \mathcal{O}(\mathbf{x}_k)); // обновить собранную информацию
       {применить правила метода к \mathcal{I}_k для формирования \mathbf{x}_{k+1}};
       {проверить критерий остановки для заданной точности \varepsilon};
       если {критерий остановки выполняется} то
            \{сформировать итоговый ответ \bar{\mathbf{x}}\};
8
9
            выход:
```

Сходимость и сложность методов оптимизации

- Метод оптимизации должен сходиться.
- Скорость сходимости метода определяет количество итераций, необходимых и достаточных для решения оптимизационной задачи.
- **3** Арифмитическая сложность метода складывается из его скорости сходимости и *арифмитической сложности одной итерации*.

Классификация методов оптимизации

- Методы *0-го порядка* Требуют: только значения функций
- Методы 1-го порядка
 Требуют: значения функций и первые производные
- Методы 2-го порядка
 Требуют: значения функций, первые и вторые производные

Метод какого порядка использовать?

С ростом порядка метода

- скорость сходимости возрастает;
- 2 арифметическая сложность одной итерации тоже возрастает.

Пример (логистическая регрессия)

$$Q(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i)) \to \min_{\mathbf{w} \in \mathbb{R}^n}$$

Объект вычисления	Арифметическая сложность
Значение функции	O(mn)
Первые производные	$O(mn + n^2)$
Вторые производные	$O(mn+n^3)$

Вывод: при значениях $n\geqslant 500$ слишком дорого считать вторые производные на каждой итерации.

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - ullet Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводы
 - Эксперименты
 - Выводы

Предварительные замечания

В дальнейшем мы будем рассматривать:

- методы оптимизации 1-го порядка;
- оптимизационные задачи без ограничений, т. е. задачи вида

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbb{R}^n}$$

где $f(\mathbf{x})$ — некоторая непрерывная функция.

Гладкие и негладкие функции

Определение

Функция $f(\mathbf{x})$ называется *гладкой*, если все ее частные производные существуют и являются непрерывными функциями.

Пример (гладкая функция: логистическая регрессия)

$$f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i))$$

Пример (негладкая функция: L_1 -регуляризатор)

$$g(\mathbf{w}) = \tau \|\mathbf{w}\|_1 = \tau \sum_{i=1}^n |w^{(i)}|, \quad \tau \geqslant 0$$

Гладкие и негладкие функции: иллюстрация

Градиент и гессиан функции

Определение

Градиентом гладкой функции $f(\mathbf{x})$ в точке \mathbf{x} называется вектор $\nabla f(\mathbf{x})$, составленный из частных производных функции в этой точке:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x^{(j)}}\right)_{j=1}^n$$

Определение

Гессианом дважды дифференцируемой функции $f(\mathbf{x})$ в точке \mathbf{x} называется матрица $\nabla^2 f(\mathbf{x})$, составленная из вторых частных производных функции в этой точке:

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f(\mathbf{x})}{\partial x^{(j)} \partial x^{(k)}}\right)_{j, k=1}^n$$

Формула Тейлора

Градиент и гессиан позволяют локально аппроксимировать гладкую функцию.

Пусть $f(\mathbf{x})$ является гладкой функцией. Тогда $\forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ справедливы следующие формулы:

Линейная аппроксимация

$$f(\mathbf{x}) = f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + o(\|\mathbf{x} - \mathbf{y}\|)$$

Квадратичная аппроксимация

$$f(\mathbf{x}) = f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \langle \nabla^2 f(\mathbf{y})(\mathbf{x} - \mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + o(\|\mathbf{x} - \mathbf{y}\|^2)$$

Класс функций \mathcal{F}_{L}^{1}

Определение

Говорят, что гладкая функция $f(\mathbf{x})$ обладает липшицевым градиентом c константой L>0, если $\forall\,\mathbf{x},\mathbf{y}\in\mathbb{R}^n$ справедливо

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leqslant L\|\mathbf{x} - \mathbf{y}\|.$$

Определение

Функция $f(\mathbf{x})$ называется *выпуклой*, если $\forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \forall \alpha \in [0,1]$ справедливо

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leqslant \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

Определение

Говорят, что $f(\mathbf{x}) \in \mathcal{F}_L^1$, если $f(\mathbf{x})$ является выпуклой функцией и обладает липшицевым градиентом с константой L.

Класс функций $\mathcal{S}_{\mu,\,L}^1$

Определение

Функция $f(\mathbf{x})$ называется *строго выпуклой*, если $\exists \mu > 0 : \forall \mathbf{y} \in \mathbb{R}^n$ функция $F(\mathbf{x}) = f(\mathbf{x}) - \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^2$ является выпуклой. Число μ называется *параметром выпуклости* функции $f(\mathbf{x})$.

Замечание

При $\mu=0$ получаем обычное определение выпуклости.

Определение

Говорят, что $f(\mathbf{x}) \in \mathcal{S}^1_{\mu,\,L}$, если $f(\mathbf{x})$ является строго выпуклой функцией с параметром выпуклости μ и обладает липшицевым градиентом с константой L.

Классы функций \mathcal{F}_L^1 и $\mathcal{S}_{\mu,\,L}^1$: свойства

Утверждение

 $f(\mathbf{x}) \in \mathcal{F}_L^1$ тогда и только тогда, когда $orall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ справедливы оценки

$$f(\mathbf{x}) \leqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}$$
$$f(\mathbf{x}) \geqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$

Утверждение

 $f(\mathbf{x}) \in \mathcal{S}^1_{\mu,\,L}$ тогда и только тогда, когда $orall\, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ справедливы оценки

$$f(\mathbf{x}) \leqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2$$

$$f(\mathbf{x}) \geqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^2$$

Классы функций \mathcal{F}_L^1 и $\mathcal{S}_{\mu,\,L}^1$: иллюстрация

Классы функций \mathcal{F}_L^1 и $\mathcal{S}_{u,L}^1$: критерий принадлежности

Утверждение

Пусть $f(\mathbf{x})$ дважды непрерывно дифференцируемая функция. Тогда $f(\mathbf{x}) \in \mathcal{F}_L^1$ тогда и только тогда, когда $\forall \, \mathbf{x} \in \mathbb{R}^n$ выполнено

$$\lambda_{min}(\nabla^2 f(\mathbf{x})) \geqslant 0,$$

$$\lambda_{max}(\nabla^2 f(\mathbf{x})) \leqslant L.$$

Утверждение

Пусть $f(\mathbf{x})$ дважды непрерывно дифференцируемая функция. Тогда $f(\mathbf{x}) \in \mathcal{S}^1_{\mu,L}$ тогда и только тогда, когда $\forall \, \mathbf{x} \in \mathbb{R}^n$ выполнено

$$\lambda_{min}(\nabla^2 f(\mathbf{x})) \geqslant \mu,$$

$$\lambda_{max}(\nabla^2 f(\mathbf{x})) \leqslant L.$$

(Здесь $\lambda_{min}(A)$ и $\lambda_{max}(A)$ — наименьшее и наибольшее собственные значения матрицы $A \succeq 0$.)

Классы функций \mathcal{F}_L^1 и $\mathcal{S}_{u,L}^1$: пример

Пример (квадратичная функция)

Рассмотрим квадратичную функцию

$$f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{x} \rangle + c, \quad A = A^T \succeq 0.$$

Гессиан этой функции в каждой точке $\mathbf{x} \in \mathbb{R}^n$ одинаков и равен

$$\nabla^2 f(\mathbf{x}) = A \succeq 0.$$

Таким образом, $f(\mathbf{x}) \in \mathcal{F}_L^1$, где $L = \lambda_{max}(A)$.

Более того, если $\lambda_{min}(A)>0$, то $f(\mathbf{x})\in\mathcal{S}^1_{\mu,\,L}$, где $\mu=\lambda_{min}(A)$,

$$L=\lambda_{max}(A).$$

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводь
 - Эксперименты
 - Выводы

Метод градиентного спуска

Градиентный спуск

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k), \quad k \geqslant 0$$

Стратегии выбора длины шага:

• Наискорейший спуск:

$$\alpha_k = \min_{\alpha_k \in \mathbb{R}} f(\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k))$$

② Правило Гольдштейна: найти α_k , такое что

$$f(\mathbf{x}_{k+1}) \leqslant f(\mathbf{x}_k) - \gamma \alpha_k \|\nabla f(\mathbf{x}_k)\|^2,$$

$$f(\mathbf{x}_{k+1}) \geqslant f(\mathbf{x}_k) - (1 - \gamma)\alpha_k \|\nabla f(\mathbf{x}_k)\|^2,$$

где $0 < \gamma < 0.5$ — некоторая константа.

- Константный шаг:
 - $oldsymbol{lpha}_{k}=rac{1}{L}$ для $f(\mathbf{x})\in\mathcal{F}_{L}^{1}$;
 - $oldsymbol{lpha}_k = rac{2}{\mu + L}$ или $lpha_k = rac{1}{L}$ для $f(\mathbf{x}) \in \mathcal{S}^1_{\mu,\,L}$.

Метод градиентного спуска: иллюстрация

На самом деле, шаг градиентного метода есть минимизация простой квадратичной функции:

$$\mathbf{x}_{k+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{1}{2\alpha_k} \|\mathbf{x} - \mathbf{x}_k\|^2 \right]$$

Скорость сходимости: константный шаг

Теорема

Пусть $f(\mathbf{x}) \in \mathcal{F}_L^1$. Тогда метод градиентного спуска с константным шагом $\alpha_k \equiv \frac{1}{L}$ имеет следующую скорость сходимости $(k \geqslant 1)$:

$$f(\mathbf{x}_k) - f^* \leqslant \frac{2L}{k+4} ||\mathbf{x}_0 - \mathbf{x}^*||^2.$$

Теорема

Пусть $f(\mathbf{x}) \in \mathcal{S}^1_{\mu,L}$. Тогда метод градиентного спуска с константным шагом $\alpha_k \equiv \frac{2}{\mu+L}$ имеет следующую скорость сходимости $(k\geqslant 1)$:

$$f(\mathbf{x}_k) - f^* \leqslant \frac{L}{2} \left(1 - \frac{2}{Q+1} \right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|^2,$$

где $Q = \frac{L}{\mu} \geqslant 1$ — число обусловленности функции $f(\mathbf{x})$.

Скорость сходимости для класса $\mathcal{S}_{\mu,\,L}$: иллюстрация

Скорость сходимости: другие стратегии выбора шага

Для других стратегий выбора шага ситуация сильно не меняется.

Пример (наискорейший спуск для квадратичной задачи)

$$f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle, \quad A = A^T \succeq 0.$$

Стратегия наискорейшего спуска:

$$\alpha_k = \min_{\alpha \in \mathbb{R}^n} f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)).$$

Указанный минимум можно найти аналитически:

$$\alpha_k = \frac{\langle A^2 \mathbf{x}_k, \mathbf{x}_k \rangle}{\langle A^3 \mathbf{x}_k, \mathbf{x}_k \rangle}.$$

Можно показать, что

$$f(\mathbf{x}_k) - f^* \leqslant \left(1 - \frac{2}{Q+1}\right)^{2k} [f(\mathbf{x}_0) - f^*].$$

Скорость сходимости принципиально не изменилась!

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - ullet Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводы
 - Эксперименты
 - Выводы

Составные функции

Определение

Составными функциями будем называть функции вида

$$F(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x}),$$

где $f(\mathbf{x}) \in \mathcal{F}^1_L$, а $h(\mathbf{x})$ — некоторая простая (негладкая) выпуклая функция.

(Что значит «простая» станет понятно позже.)

Пример (логистическая регрессия с L_1 -регуляризатором)

$$F(\mathbf{w}) = \underbrace{\frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i)) + \tau \|\mathbf{w}\|_1, \quad \tau > 0}_{f(\mathbf{w})}$$

Как минимизировать составные функции?

- Составные функции уже не являются гладкими.
- Стандартный метод градиентного спуска уже не применим.
- **③** Можно использовать субградиентный спуск, однако в этом случае получаем скорость сходимости $O\left(\frac{1}{\sqrt{k}}\right)$, что существенно хуже, чем в гладком случае.
- Мы увидим, что если правильно учесть структуру задачи и слегка модифицировать метод градиентного спуска, то получится метод со скоростью сходимости $O\left(\frac{1}{k}\right)$.

Градиентное отображение

Напомним, что в случае гладкой функции $f(\mathbf{x})$ метод градиентного спуска (с $\alpha_k \equiv 1/L$) делал итерации вида

$$\mathbf{x}_{k+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[f(\mathbf{y}) + \langle
abla f(\mathbf{y}), \mathbf{x} - \mathbf{y}
angle + rac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2
ight],$$

т. е. на каждой итерации минимизировал верхнюю квадратичную оценку на $f(\mathbf{x})$.

Построим аналог такой итерации для составных функций.

Определение

arGammaрадиентным отображением $arGamma_L(\mathbf{y})$ точки $\mathbf{y} \in \mathbb{R}^n$ называется точка

$$T_L(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 + h(\mathbf{x}) \right].$$

Градиентное отображение: пример

Пример (L_1 -регуляризатор)

Пусть $g(\mathbf{x}) = \tau \|\mathbf{x}\|_1, \ \tau > 0.$ Тогда

$$T_L(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \tau \|\mathbf{x}\|_1 \right].$$

Данный минимум можно найти аналитически:

$$\mathcal{T}_L(\mathbf{y}) = \mathcal{V}_{ au/L}\left(\mathbf{y} - rac{1}{L}
abla f(\mathbf{y})
ight),$$

где $\mathcal{V}_{\alpha}^{(j)}=\max\left(|x^{(j)}|-\alpha,\,0\right)\operatorname{sgn}\left(x^{(j)}\right),\,j=1,\ldots,n$ — сжимающий оператор.

Градиентный спуск для составных функций

Схема метода

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, L_f > 0;

1 для k = 0, 1, 2, ...

2 | {вычислить f(\mathbf{x}_k), \nabla f(\mathbf{x}_k)};

3 | \mathbf{x}_{k+1} := T_{L_f}(\mathbf{x}_k); // вместо \mathbf{x}_{k+1} := \mathbf{x}_k - \frac{1}{T}\nabla f(\mathbf{x}_k)
```

Обсуждение

- **9** Что если константа Липшица L_f для функции $f(\mathbf{x})$ нам неизвестна?
- ② Более того, что если функция в разных областях имеет сильно разные константы Липшица? В этом случае глобальная константа L_f локально будет плохо аппроксимировать изгиб функции. В результате шаги будут существенно меньше, чем они могли бы быть.
- Какому основному условию должна удовлетворять локальная константа Липшица L_k , чтобы метод по-прежнему хорошо работал? Оказывается, достаточно потребовать всего лишь знакомой верхней оценки:

$$f(\mathbf{x}_{k+1}) \leqslant f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L_k}{2} ||\mathbf{x}_{k+1} - \mathbf{x}_k||^2$$

Градиентный спуск с автоматическим подбором L_k

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, L_0 > 0, \gamma_u > 1, \gamma_d \geqslant 1;
 1 для k = 0, 1, 2, \dots
             {вычислить f(\mathbf{x}_k), \nabla f(\mathbf{x}_k)};
            L := L_{\nu}:
 3
 4
             повторять
 5
                    T := T_L(\mathbf{x}_k);
                   \{вычислить f(\mathbf{T})\};
 6
                   если f(\mathbf{T}) > f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{T} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{T} - \mathbf{x}_k\|^2 то
 7
                    L := \gamma_{\mu} L:
 8
 9
             пока неверно, что
             f(\mathbf{T}) \leqslant f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{T} - \mathbf{x}_k \rangle + \frac{L}{2} ||\mathbf{T} - \mathbf{x}_k||^2;
             x_{k+1} := T;
10
            L_{k+1} := \max \left( L_0, \frac{L}{\gamma_d} \right);
11
```

Количество вычислений функции

Теорема

Пусть N_k — количество вычислений функции $f(\mathbf{x})$ за первые k итераций градиентного спуска. Тогда

$$N_k \leqslant \left(1 + rac{\ln \gamma_d}{\ln \gamma_u}
ight)(k+1) + rac{1}{\ln \gamma_u} \max\left(\ln rac{\gamma_u L_f}{\gamma_d L_0}, 0
ight)$$

Например, если $\gamma_d=1, \gamma_u=2$, то

$$N_k \leqslant (k+1) + \log_2 \frac{2L_f}{L_0},$$

т. е. среднее число вычислений функции за одну итерацию равно 1.

На практике хорошие значения $\gamma_u = 2, \, \gamma_d = 1.1.$

Скорость сходимости

Теорема

Градиентный спуск для составных функций имеет следующую скорость сходимости:

$$F(\mathbf{x}_k) - F^* \leqslant \frac{2\gamma_u L_f}{k+2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

Более того, если $F(\mathbf{x})$ является строго выпуклой с параметром выпуклости μ_F , то гарантируется следующая скорость:

$$F(\mathbf{x}_k) - F^* \leqslant \left(1 - \frac{\mu_F}{4\gamma_u L_f}\right)^k \left[F(\mathbf{x}_0) - F^*\right].$$

Замечание: Интересной особенностью является то, что методу не нужно заранее знать константу μ_F , чтобы гарантировать последнее неравенство.

План

- Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - ullet Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводь
 - Эксперименты
 - Выводы

Постановка задачи

В дальнейшем мы будем рассматривать задачи вида

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x}),$$

где $F(\mathbf{x})$ — составная функция, т. е.

$$F(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x}),$$

где $f(\mathbf{x}) \in \mathcal{F}^1_{L_f}$ и $h(\mathbf{x})$ — некоторая простая (негладкая) выпуклая функция.

Под «простотой» функции $h(\mathbf{x})$ подразумевается, что мы легко можем вычислить градиентное отображение

$$T_L(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[f(\mathbf{y}) + \langle
abla f(\mathbf{y}), \mathbf{x} - \mathbf{y}
angle + rac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 + h(\mathbf{x})
ight].$$

Оценочная последовательность

Определение

Oценочной последовательностью для функции $F(\mathbf{x})$ называется тройка, состоящая из

- ullet минимизирующей последовательности $\{\mathbf x_k\}_{k=0}^\infty,$
- ullet последовательности масштабирующих коэффициентов $\{A_k\}_{k=0}^\infty,$
- ullet последовательности *оценочных функций* $\{\psi_k(\mathbf{x})\}_{k=0}^\infty,$

обеспечивающих выполнение следующих двух отношений $\forall \, k \geqslant 0$:

$$\mathcal{R}_k^1: A_k F(\mathbf{x}_k) \leqslant \psi_k^* \equiv \min_{\mathbf{x} \in \mathbb{R}^n} \psi_k(\mathbf{x}),$$

$$\mathcal{R}_k^2$$
: $\psi_k(\mathbf{x}) \leqslant A_k F(\mathbf{x}) + \psi_0(\mathbf{x}), \quad \forall \, \mathbf{x} \in \mathbb{R}^n.$

(Подразумевается, что $A_k > 0$ для $k \geqslant 1$.)

Функция $\psi_0(\mathbf{x})$ называется *проксимальной* функцией.

Оценочная последовательность: скорость сходимости

Если отношения \mathcal{R}^1_k и \mathcal{R}^2_k выполняются $\forall\, k\geqslant 0$, то получаем оценку скорости сходимости:

$$F(\mathbf{x}_k) - F^* \leqslant \frac{1}{A_k} \psi_0(\mathbf{x}^*), \quad k \geqslant 1.$$

Например, если выбрать $\psi_0(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$, то

$$F(\mathbf{x}_k) - F^* \leqslant \frac{1}{2A_k} ||\mathbf{x}^* - \mathbf{x}_0||^2, \quad k \geqslant 1.$$

Таким образом, скорость сходимости определяется тем, насколько быстро растут масштабирующие коэффициенты A_k .

Далее мы построим такую оценочную последовательность, что масштабирующие коэффициенты A_k будут расти как $O(k^2)$.

Будем искать оценочные функции $\psi_k(\mathbf{x})$ и масштабирующие коэффициенты A_k в виде $(k\geqslant 1)$

$$\psi_k(\mathbf{x}) = \psi_{k-1}(\mathbf{x}) + a_k \underbrace{\left[f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + h(\mathbf{x})\right]}_{ ext{нижняя оценка на функцию } F(\mathbf{x})},$$
 $A_k = A_{k-1} + a_k,$

где $A_0=0$; коэффициенты $a_k>0,\ \forall\ k\geqslant 1$ контролируют скорость роста масштабирующих коэффициентов.

Такой выбор сразу же обеспечивает выполнение отношения \mathcal{R}_k^2 (доказывается по индукции).

- **3** Зафиксировав конкретный вид оценочных функций $\psi_k(\mathbf{x})$, мы обеспечили выполнение отношения $\mathcal{R}^2_k, \ \forall \ k \geqslant 0$.
- 2 Свободные параметры оценочной последовательности:
 - минимизирующая последовательность $\{\mathbf{x}_k\}_{k=0}^{\infty}$;
 - коэффициенты роста масштабирующих коэффициентов $\{a_k\}_{k=1}^\infty;$
 - проксимальная функция $\psi_0({\bf x})$.
- ullet Далее мы обеспечим выполнение оставшегося отношения \mathcal{R}^1_k , задействовав все свободные на текущий момент параметры, и получим конкретную схему быстрого градиентного метода.

Выберем проксимальную функцию $\psi_0(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$. Тогда

$$\psi_k(\mathbf{x}) = \underbrace{\frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2}_{\text{строго выпуклая}} + \sum_{i=1}^k a_i \underbrace{[f(\mathbf{x}_i) + \langle \nabla f(\mathbf{x}_i), \mathbf{x} - \mathbf{x}_i \rangle + h(\mathbf{x})]}_{\text{выпуклая}},$$

т. е. $\psi_k(\mathbf{x})$ является строго выпуклой функцией с параметром выпуклости 1.

Тогда

$$\psi_k(\mathbf{x}) \geqslant \psi_k^* + \frac{1}{2} \|\mathbf{x} - \mathbf{v}_k\|^2,$$

где $\mathbf{v}_k = \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \psi_k(\mathbf{x}).$

Оценочная функция:

$$\psi_{k+1}(\mathbf{x}) = \psi_k(\mathbf{x}) + a_{k+1} \left[f(\mathbf{x}_{k+1}) + \langle \nabla f(\mathbf{x}_{k+1}), \mathbf{x} - \mathbf{x}_{k+1} \rangle + h(\mathbf{x}) \right].$$

Пусть выполняется отношение \mathcal{R}^1_k . Можно показать, что в этом случае

$$\underbrace{\psi_{k+1}^* \geqslant A_{k+1} F(\mathbf{x}_{k+1})}_{\text{отношение } \mathcal{R}_{k+1}^1} +$$

+
$$A_{k+1} \left[\langle F'(\mathbf{x}_{k+1}), \mathbf{y}_k - \mathbf{x}_{k+1} \rangle - \frac{a_{k+1}^2}{2A_{k+1}} ||F'(\mathbf{x}_{k+1})||^2 \right],$$

где

$$\mathbf{y}_k = \frac{A_k \mathbf{x}_k + a_{k+1} \mathbf{v}_k}{A_k + a_{k+1}},$$

а $F'(\mathbf{x}_{k+1})$ — любой субградиент функции $F(\mathbf{x})$ в точке \mathbf{x}_{k+1} .

Осталось выбором a_{k+1} и \mathbf{x}_{k+1} добиться выполнения неравенства

$$\langle F'(\mathbf{x}_{k+1}), \mathbf{y}_k - \mathbf{x}_{k+1} \rangle \geqslant \frac{a_{k+1}^2}{2A_{k+1}} ||F'(\mathbf{x}_{k+1})||^2.$$

Это можно сделать с помощью градиентного шага.

Лемма

 $\forall L \geqslant L_f$ и $\mathbf{T} = T_L(\mathbf{y})$ верно следующее неравенство:

$$\langle F'(\mathsf{T}), \mathsf{y} - \mathsf{T} \rangle \geqslant \frac{1}{L} \|F'(\mathsf{T})\|^2,$$

где $F'(\mathbf{T}) = L(\mathbf{y} - \mathbf{T}) - [\nabla f(\mathbf{y}) - \nabla f(\mathbf{T})]$ — конкретный субградиент в точке $\mathbf{T} = T_L(\mathbf{y})$.

Напомним, что

$$T_L(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2 + h(\mathbf{x}) \right].$$

Быстрый градиентный метод для составных функций

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, 0 < L_0 \leqslant L_f, \gamma_u > 1, \gamma_d \geqslant 1;
 1 A_0 := 0:
 2 для k = 0, 1, 2, \dots
           L := L_{\nu}:
 4
             повторять
                    {найти a из уравнения \frac{a^2}{2(A_{\nu}+a)} = \frac{1}{I}};
 5
                    {вычислить \mathbf{v}_k = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \psi_k(\mathbf{x})};
 6
                    \mathbf{y} := \frac{A_k \mathbf{x}_k + a \mathbf{v}_k}{A_k + a}; {вычислить \nabla f(\mathbf{y})};
                    \mathbf{T} := T_I(\mathbf{y}); \{вычислить \nabla f(\mathbf{T})\};
 8
                    s := L(\mathbf{v} - \mathbf{T}) - [\nabla f(\mathbf{v}) - \nabla f(\mathbf{T})]:
 9
                    если \langle s, \mathbf{y} - \mathbf{T} \rangle < \frac{1}{L} \|s\|^2 то L := \gamma_{\mu} L;
10
             пока неверно, что \langle s, \mathbf{y} - \mathbf{T} \rangle \geqslant \frac{1}{L} \|s\|^2;
11
             \mathbf{x}_{k+1} := \mathbf{T}; \ A_{k+1} := A_k + a; \ L_{k+1} := \max \left( L_0, \frac{L}{\gamma_d} \right);
12
```

Быстрый градиентный метод: простая схема

Если оптимизируемая функция $F(\mathbf{x})$ гладкая (т. е. $F(\mathbf{x}) \equiv f(\mathbf{x})$) с известной константой Липшица для градиента L_f , то схема упрощается.

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n;

1 \mathbf{v}_0 := \mathbf{x}_0; A_0 := 0;

2 для k = 0, 1, 2, \dots

3 {найти а из уравнения \frac{a^2}{2(A_k + a)} = \frac{1}{L_f}};

4 \mathbf{y} := \frac{A_k \mathbf{x}_k + a \mathbf{v}_k}{A_k + a}; {вычислить \nabla f(\mathbf{y})};

5 \mathbf{x}_{k+1} := \mathbf{y}_k - \frac{1}{L_f} \nabla f(\mathbf{y}_k); {вычислить \nabla f(\mathbf{x}_{k+1})};

6 \mathbf{v}_{k+1} := \mathbf{v}_k - a \nabla f(\mathbf{x}_{k+1});

7 A_{k+1} := A_k + a;
```

Одна итерация метода: иллюстрация

Траектория метода

Скорость сходимости – 1

Напомним, что параметры роста a_k масштабирующих коэффициентов A_k находятся из уравнения

$$\frac{a_k^2}{2(A_k+a_k)}=\frac{1}{L}.$$

Из этого уравнения и того, что $L \leqslant \gamma_u L_f$ получаем следующую оценку на скорость роста масштабирующих коэффициентов.

Лемма

Для масштабирующих коэффициентов A_k справедлива оценка

$$A_k \geqslant \frac{k^2}{2\gamma_\mu L_f}, \quad k \geqslant 0.$$

Скорость сходимости – 2

Теорема

Быстрый градиентный метод для составных функций имеет следующую скорость сходимости:

$$F(\mathbf{x}_k) - F^* \leqslant \frac{\gamma_u L_f}{k^2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

Напомним, что скорость сходимости обычного градиентного спуска на порядок хуже:

$$F(\mathbf{x}_k) - F^* \leqslant \frac{2\gamma_u L_f}{k+2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводы
 - Эксперименты
 - Выводы

Что насчет строго выпуклых функций?

① Для строго выпуклой функции $F(\mathbf{x})$ с параметром выпуклости μ_F обычный градиентный спуск имеет следующую скорость сходимости:

$$F(\mathbf{x}_k) - F^* \leqslant \left(1 - \frac{\mu_F}{4\gamma_\mu L_f}\right)^k \left[F(\mathbf{x}_0) - F^*\right].$$

При этом методу совсем не требуется знание константы μ_F .

- Можно ли гарантировать подобный результат для быстрого градиентного метода? Оказывается, что можно. Но для этого необходима модификация метода.
- **③** Далее мы рассмотрим технику т. н. *рестарта*, которая потребует знания константы μ_F . Затем мы откажемся от этого требования благодаря стратегии *адаптивного рестарта*.

Рестарт

Пусть функция $F(\mathbf{x})$ является строго выпуклой с параметром выпуклости μ_F .

Вспомним, что для быстрого градиентного метода справедлива следующая оценка скорости сходимости ($k\geqslant 0$):

$$F(\mathbf{x}_k) - F^* \leqslant \frac{\gamma_u L_f}{k^2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Из данной оценки и строгой выпуклости $F(\mathbf{x})$ вытекает, что $orall k\geqslant 0$

$$F(\mathbf{x}_k) - F^* \leqslant \frac{2\gamma_u L_f}{\mu_F k^2} \left[F(\mathbf{x}_0) - F^* \right].$$

Если положить
$$k=\left[2\sqrt{rac{\gamma_u L_f}{\mu_F}}\,
ight]\equiv N$$
, то получим

$$F(\mathbf{x}_N) - F^* \leqslant \frac{1}{2} \left[F(\mathbf{x}_0) - F^* \right].$$

Рестарт – 2

Мы получили, что для $N = \left[2\sqrt{rac{\gamma_u L_f}{\mu_F}}
ight]$ справедлива оценка

$$F(\mathbf{x}_N) - F^* \leqslant \frac{1}{2} \left[F(\mathbf{x}_0) - F^* \right],$$

т. е. за N итераций быстрый градиентный метод уменьшает невязку по значению функции как минимум вдвое.

Если после N итераций метода положить $\mathbf{x}_0 = \mathbf{x}_N$, т. е. *перезапустить* метод из новой начальной точки \mathbf{x}_N , то получим что

$$F(\mathbf{x}_{2N}) - F^* \leqslant \frac{1}{2} [F(\mathbf{x}_N) - F^*] \leqslant \frac{1}{4} [F(\mathbf{\bar{x}}_0) - F^*],$$

где $\bar{\mathbf{x}}_0$ — исходная начальная точка.

Невязка уменьшилась уже в четыре раза!

Получаем геометрическую прогрессию:

$$F(\mathbf{x}_{KN}) - F^* \leqslant \frac{1}{2^K} [F(\overline{\mathbf{x}}_0) - F^*].$$

Рестарт: алгоритм

Будем обозначать $\mathcal{A}_N(\mathbf{u})$ точку, полученную быстрым градиентным методом за N итераций из начального приближения \mathbf{u} .

Для реализации рестарта можно использовать следующую двухуровневую схему.

Процедура рестарта

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, N — частота рестартов; 
1 \mathbf{u}_0 = \mathbf{x}_0; 
2 для k = 0, 1, 2, \dots 
3 \mid \mathbf{u}_{k+1} := \mathcal{A}_N(\mathbf{u}_k);
```

Вместо двухуровневой схемы можно интегрировать рестарт внутрь метода (следующий слайд).

Быстрый градиентный метод с рестартом

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, 0 < L_0 \le L_f, \gamma_u > 1, \gamma_d \ge 1, N — частота рестартов;
 1 A_0 := 0;
 2 для k = 0, 1, 2, \dots
          L := L_{\nu}:
 4
           повторять
                   \{найти a из уравнения rac{a^2}{2(A_k+a)}=rac{1}{L}\};
 5
                   {вычислить \mathbf{v}_k = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \psi_k(\mathbf{x})};
 6
                  \mathbf{y} := \frac{A_k \mathbf{x}_k + a \mathbf{v}_k}{\Delta_k + a}; {вычислить \nabla f(\mathbf{y})};
 7
                  \mathbf{T} := T_I(\mathbf{y}); \{вычислить \nabla f(\mathbf{T})\};
 8
                  s := L(\mathbf{y} - \mathbf{T}) - [\nabla f(\mathbf{y}) - \nabla f(\mathbf{T})];
 9
                   если \langle s, \mathbf{y} - \mathbf{T} \rangle < \frac{1}{L} \|s\|^2 то L := \gamma_{\mu} L;
10
            пока неверно, что \langle s, \mathbf{y} - \mathbf{T} \rangle \geqslant \frac{1}{L} \|s\|^2;
11
            \mathbf{x}_{k+1} := \mathbf{T}; A_{k+1} := A_k + a; L_{k+1} := \max \left( L_0, \frac{L}{\gamma_d} \right);
12
            если N \mid k то \mathbf{x}_{k+1} := \mathbf{x}_k; A_{k+1} := 0;
13
```

Рестарт: скорость сходимости

Утверждение

Для генерации ε -решения по значению функции быстрому градиентному методу с рестартом достаточно $O\left(\sqrt{\frac{L_f}{\mu_F}}\ln{\frac{1}{\varepsilon}}\right)$ итераций.

Заметим, что гарантия обычного градиентного спуска составляет $O\left(\frac{L_f}{\mu_F}\ln\frac{1}{\varepsilon}\right)$ итераций, что значительно хуже.

Константы L_f и μ_F неизвестны

- **①** Рестарт гарантирует хорошую скорость сходимости для строго выпуклых функций, однако он требует знания констант L_f и μ_F , которые на практике редко известны.
- $oldsymbol{oldsymbol{arOmega}}$ Как отказаться от требования знания констант L_f и μ_F ?
- Можно перезапускать метод, например, каждые N = 100, N = 200 или N = 500 итераций. Главный недостаток такой стратегии состоит в том, что нет никаких правил для выбора N.
- Обязательно ли делать рестарт с одинаковым периодом N? Почему бы не заменить условие рестарта « $N \mid k$ » на какое-нибудь другое?
- **⑤** Далее мы увидим, что можно делать т. н. адаптивный рестарт, который не требует знания констант L_f и μ_F .

Адаптивный рестарт

Предлагается в качестве условия рестарта использовать следующее.

Градиентное условие рестарта

$$\langle g_L(\mathbf{y}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle > 0,$$

где $g_L(\mathbf{y}) = L(\mathbf{y} - T_L(\mathbf{y}))$ — аналог градиента для составных функций.

Таким образом, если переход от точки \mathbf{x}_k к точке \mathbf{x}_{k+1} произошел по направлению убывания в точке \mathbf{y}_k , то все хорошо. Иначе рестарт.

Замечание: Данное условие является скорее эвристикой, чем фундаментальной научной идеей. Возможны и другие (похожие) условия рестарта.

Адаптивный рестарт: иллюстрация

Алгоритм

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, 0 < L_0 \leqslant L_f, \gamma_u > 1, \gamma_d \geqslant 1;
  1 A_0 := 0:
  2 для k = 0, 1, 2, \dots
            L := L_{\nu}:
  4
             повторять
                     \{найти a из уравнения rac{a^2}{2(A_k+a)}=rac{1}{L}\};
  5
                     {вычислить \mathbf{v}_k = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \psi_k(\mathbf{x})};
  6
                    \mathbf{y} := \frac{A_k \mathbf{x}_k + \mathsf{av}_k}{A_k + 2}; {вычислить \nabla f(\mathbf{y})};
  7
                    \mathbf{T} := T_L(\mathbf{y}); \{вычислить \nabla f(\mathbf{T})\};
  8
                    s := L(\mathbf{y} - \mathbf{T}) - [\nabla f(\mathbf{y}) - \nabla f(\mathbf{T})]:
  9
                     если \langle s, \mathbf{y} - \mathbf{T} \rangle < \frac{1}{L} \|s\|^2 то L := \gamma_{\mu} L;
10
             пока неверно, что \langle s, \mathbf{y} - \mathbf{T} \rangle \geqslant \frac{1}{r} \|s\|^2;
11
             \mathbf{x}_{k+1} := \mathbf{T}; \ A_{k+1} := A_k + a; \ L_{k+1} := \max \left( L_0, \frac{L}{\gamma_d} \right);
12
             если \langle \mathbf{y} - \mathbf{x}_{k+1}, \mathbf{x}_{k+1} - \mathbf{x}_k \rangle > 0 то \mathbf{x}_{k+1} := \mathbf{x}_k; A_{k+1} := 0;
13
```

Траектория метода без рестарта

Траектория метода с рестартом

Траектория метода с рестартом (k = 20)

Траектория метода с рестартом (k = 21)

Траектория метода с рестартом (k = 22): рестарт

Траектория метода без рестарта (k=22)

Траектория метода без рестарта (k=23): мимо

Траектория метода без рестарта (k = 24)

Траектория метода без рестарта (k = 25)

Траектория метода без рестарта (k = 30): разворот

Траектория метода без рестарта (k = 31): обратно

Траектория метода без рестарта (k = 32): обратно

Траектория метода без рестарта (k = 33): обратно

Траектория метода без рестарта (k = 34): обратно

Траектория метода без рестарта (k = 35): обратно

Замечания

- Корректность данной схемы доказана лишь в случае квадратичной функции. Корректность для неквадратичных функций является открытым вопросом.
- На практике схема адаптивного рестарта почти всегда дает ускорение в сходимости и работает гораздо лучше схемы рестарта с фиксированным периодом.

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - Метод для составных функций и автоматический подбор L
- Быстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- 4) Эксперименты и выводы
 - Эксперименты
 - Выводы

Схема автоматического подбора L: модификация

Текущая схема подбора L:

```
1 L := L_k;
2 повторять
3 \left\{ Вычислить точки \mathbf{y} и \mathbf{T} = T_L(\mathbf{y}) \right\};
4 s := L(\mathbf{y} - \mathbf{T}) - [\nabla f(\mathbf{y}) - \nabla f(\mathbf{T})];
5 \left\{ \text{если } \langle s, \mathbf{y} - \mathbf{T} \rangle < \frac{1}{L} \|s\|^2 \text{ то } L := \gamma_u L \right\};
6 пока неверно, что \langle s, \mathbf{y} - \mathbf{T} \rangle \geqslant \frac{1}{L} \|s\|^2;
7 L_{k+1} := \max \left( L_0, \frac{L}{\gamma_d} \right);
```

Предлагается вместо условия выхода из цикла $\langle s, \mathbf{y} - \mathbf{T} \rangle \geqslant \frac{1}{L} \|s\|^2$ использовать следующее стандартное условие для L:

$$f(\mathbf{T}) \leqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{T} - \mathbf{y} \rangle + \frac{L}{2} ||\mathbf{T} - \mathbf{y}||^2.$$

(Как в обычном градиентом спуске.)

Модифицированная схема автоматического подбора L

```
1 L := L_k;
2 повторять
3 | {вычислить точки \mathbf{y} и \mathbf{T} = T_L(\mathbf{y})};
4 | если f(\mathbf{T}) > f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{T} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{T} - \mathbf{y}\|^2 то
5 | L := \gamma_u L;
6 пока неверно, что f(\mathbf{T}) \leqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{T} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{T} - \mathbf{y}\|^2;
7 L_{k+1} := \max\left(L_0, \frac{L}{\gamma_d}\right);
```

На практике эта схема работает лучше, чем предыдущая.

Начальное приближение L_0

- lacktriangle Как выбирать начальное приближение L_0 ?
- ② Текущая схема требует только одно условие: $L_0 < L_f$.
- **9** Чем сильнее L_0 недооценивает L в области, в которой находится x_0 , тем больше схема «разогревается» и «простраивает» вначале.

Пример

Пусть $L_0=1$, а L в области, в которой находится x_0 , равно 100; $\gamma_u=2$. Тогда процедура подбора L на первом шаге метода совершит 7 итераций внутреннего цикла (14 вызовов функции) прежде, чем будет получена точка x_1 .

1 На практике имеет смысл выбрать L_0 , которое будет переоценивать локальное L, чтобы метод сразу же начал «шагать». Чтобы это было возможно, потребуется небольшая модификация схемы.

Модификация, позволяющая выбрать большое L_0

```
1 L := L_k;

2 повторять

3 | {вычислить точки y и T = T_L(\mathbf{y})};

4 | если f(\mathbf{T}) > f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{T} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{T} - \mathbf{y}\|^2 то

5 | L := \gamma_u L;

6 пока неверно, что f(\mathbf{T}) \leqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{T} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{T} - \mathbf{y}\|^2;

7 L_{k+1} := \frac{L}{2};
```

На практике

- lacktriangle $L_0=L_f$, если глобальная константа Липшица L_f известна;
- ② $L_0 = 500$, если L_f неизвестно.

Итоговый алгоритм быстрого градиентного метода

```
Вход: \mathbf{x}_0 \in \mathbb{R}^n, L_0 > 0, \gamma_u > 1, \gamma_d \ge 1;
 1 A_0 := 0;
 2 для k = 0, 1, 2, \dots
          L := L_{\nu}:
 4
             повторять
                    {найти a из уравнения \frac{a^2}{2(A_I + a)} = \frac{1}{I}};
 5
                   \{вычислить \mathbf{v}_k = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \psi_k(\mathbf{x}) \};
 6
                   \mathbf{y} := \frac{A_k \mathbf{x}_k + a \mathbf{v}_k}{A_k + a}; {вычислить \nabla f(\mathbf{y})};
 7
                   \mathbf{T} := T_I(\mathbf{y}); \{вычислить \nabla f(\mathbf{T})\};
 8
                    если f(\mathbf{T}) > f(\mathbf{v}) + \langle \nabla f(\mathbf{v}), \mathbf{T} - \mathbf{v} \rangle + \frac{L}{2} ||\mathbf{T} - \mathbf{v}||^2 то
 9
                           L := \gamma_{\mu} L;
10
             пока неверно, что f(\mathbf{T}) \leqslant f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{T} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{T} - \mathbf{y}\|^2;
11
             \mathbf{x}_{k+1} := \mathbf{T}; A_{k+1} := A_k + a; L_{k+1} := \frac{L}{2};
12
             если \langle \mathbf{v} - \mathbf{x}_{k+1}, \mathbf{x}_{k+1} - \mathbf{x}_k \rangle > 0 то \mathbf{x}_{k+1} := \mathbf{x}_k; A_{k+1} := 0;
13
 Рекомендуемые параметры: L_0 = 500 (или L_f), \gamma_u = 2, \gamma_d = 1.1.
```

План

- 🕕 Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- 4 Эксперименты и выводы
 - Эксперименты
 - Выводы

Схемы автоматического подбора L

Логистическая регрессия с L_1 -регуляризатором, $\tau = 0.0001$, 500 объектов, 4 933 признаков.

Градиентный спуск и быстрый градиентный метод

Логистическая регрессия с L_2 -регуляризатором, $\tau = 0.001$, 100 объектов, 4 933 признаков.

Градиентный спуск и быстрый градиентный метод – 2

Квадратичная функция,

$$n = 200$$
, $\mu = 0.01$, $L = 10$.

Стратегии рестарта

Квадратичная функция,

n=200, $\mu=0.01$, L=10.

Быстрый градиентный метод и L-BFGS

Логистическая регрессия с L_2 -регуляризатором, $\tau = 0.001, 1000$ объектов, 4 933 признаков.

Быстрый градиентный метод и другие методы

Логистическая регрессия с L_1 -регуляризатором, $au=0.0001,\,5\,000$ объектов, 4 933 признаков.

Быстрый градиентный метод и PSSas

Логистическая регрессия с L_1 -регуляризатором, au=0.0001, 5 000 объектов, 4 933 признаков.

План

- Введение
 - Задачи и методы оптимизации
 - Основные теоретические сведения
- Метод градиентного спуска
 - Стандартный метод для гладких функций
 - ullet Метод для составных функций и автоматический подбор L
- Выстрый градиентный метод
 - Метод для составных функций
 - Рестарт
 - ullet Модификация подбора L и выбор L_0
- Эксперименты и выводы
 - Эксперименты
 - Выводы

Заключение

- Быстрый градиентный метод работает на порядок быстрее обычного градиентного метода.
- Как и обычный градиентный спуск, быстрый градиентный метод легко обобщается на случай составных функций, что позволяет решать гладкие задачи с простой негладкой добавкой.
- Метод можно обобщить на случай выпуклых задач с гладкими ограничениями. Однако итоговая схема получится существенно сложнее и уже будет иметь некоторую другую скорость сходимости.
- Несмотря на то, что методы типа L-BFGS не имеют хороших гарантий сходимости, в отличие от быстрого градиентного метода, на практике они работают существенно быстрее последнего.

Открытые вопросы

- Ускорение текущей версии метода за счет
 - модификации градиентного шага: более хорошая схема подбора L, шаг типа L-BFGS и т. п.;
 - модификации оценочных функций: например, оценка с помощью пучка (англ. bundle).
- Обобщение метода для невыпуклых функций.
- Обобщение метода на стохастический случай.