Serial No.: 09/816,755 Filed: March 23, 2001

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently amended) A computer implemented method for predicting the structure of a membrane-bound protein having a plurality of $[[\alpha-]]$ helical regions, comprising: providing an amino acid sequence for the membrane-bound protein;

using the amino acid sequence to identifying one two or more ranges of amino acids in the amino acid sequence as transmembrane regions of the membrane-bound protein;

constructing <u>each of two or more helices in</u> a set of helices for the transmembrane regions;

and optimizing a helix bundle configuration for the set of helices using a first molecular dynamics simulation;

after optimizing the helix bundle configuration, constructing one or more a plurality of inter-helical loops to generate a full-atom model of the membrane-bound protein;

optimizing the full-atom model using a second molecular dynamics simulation; and outputting a predicted structure for the transmembrane-bound protein based on the second optimization.

- 2. (Withdrawn)
- 3. (Currently amended) The method of claim 1, wherein:

constructing <u>each of two or more helices in</u> the set of helices for the transmembrane regions includes constructing <u>each of two or more a set of</u> canonical helices corresponding to the transmembrane regions, calculating a minimum-energy configuration for each of the canonical helices, <u>and optimizing each of the canonical helices</u>, <u>assembling a helix bundle including each</u>

Serial No.: 09/816,755 Filed: March 23, 2001

Page : 4 of 14

of the set of helices, and calculating a minimum-energy configuration for the helix bundle in a lipid bilayer.

4 - 34. (Withdrawn)

35. (New) The method of claim 3, wherein:

optimizing a helix bundle configuration includes calculating a minimum-energy configuration for the helix bundle in a lipid bilayer.

36. (New) The method of claim 1, wherein:

the membrane-bound protein is a G-protein coupled receptor.

37. (New) The method of claim 1, wherein:

identifying two or more ranges of amino acids in the amino acid sequence as transmembrane regions includes aligning the amino acid sequence with an experimental or theoretical helical template.

38. (New) The method of claim 1, wherein:

identifying two or more ranges of amino acids in the amino acid sequence as transmembrane regions includes determining the periodicity of hydrophobic residues in the amino acid sequence; and

optimizing a helix bundle configuration includes identifying a plurality of lipid-accessible residues based at least in part on the determined periodicity.

39. (New) The method of claim 1, wherein:

constructing each of two or more helices in a set of helices for the transmembrane regions includes optimizing each of the two or more helices in the set of helices using a torsional molecular dynamics method.

Serial No. : 09/816,755 Filed : March 23, 2001

Page : 5 of 14

40. (New) The method of claim 39, wherein:

the torsional molecular dynamics method uses the Newton-Euler Inverse Mass Operator.

41. (New) The method of claim 1, wherein:

constructing each of two or more helices in a set of helices for the transmembrane regions includes determining 3-D coordinates that define the structure of each helix in the set of helices.

42. (New) The method of claim 1, wherein:

optimizing a helix bundle configuration includes determining a rotation and tilt of each helix in the set of helices.

43. (New) The method of claim 1, wherein:

optimizing a helix bundle configuration includes orienting the helix axes according to the 7.5 Å electron density map for rhodopsin.

44. (New) The method of claim 38, wherein:

optimizing a helix bundle configuration includes orienting the identified lipid-accessible residues to face the outside of the helix bundle.

45. (New) The method of claim 1, wherein:

the first molecular dynamics simulation is a rigid body molecular dynamics simulation.

46. (New) The method of claim 1, wherein:

optimizing a helix bundle configuration for the set of helices includes modeling the effect of the environment of the membrane-bound protein.

47. (New) The method of claim 45, wherein:

Serial No.: 09/816,755 Filed: March 23, 2001

Page : 6 of 14

the first molecular dynamics simulation uses the DREIDING force field, charges simulating the membrane, and charges for the transmembrane protein.

48. (New) The method of claim 1, wherein:

the second molecular dynamics simulation is a mixed mode molecular dynamics simulation.

49. (New) The method of claim 48, wherein:

the second molecular dynamics simulation uses a torsional molecular dynamics method to model the helices and inter-helical loops and a rigid body molecular dynamics method to model the membrane of the transmembrane protein.

50. (New) The method of claim 1, wherein:

the second molecular dynamics simulation includes dynamic optimization of the structure using cell multipole methods or fast torsional dynamic methods.

- 51. (New) The method of claim 1, wherein:
- at least the second molecular dynamics simulation includes a solvent approximation.
- 52. (New) The method of claim 51, wherein:

the solvent approximation is a continuum solvation model.

53. (New) The method of claim 52, wherein:

the solvent approximation includes the Surface Generalized Born model or the Poisson-Boltzmann description.

54. (New) The method of claim 53, wherein:

Serial No. : 09/816,755 Filed : March 23, 2001

Page : 7 of 14

the solvent approximation is an empirical approximation comprising estimating solvation free energy as a function of solvent accessible protein surface area.

55. (New) The method of claim 1, wherein:

the predicted structure is generated by performing the second molecular dynamics simulation for a time in the range from about 100ps to about 1 ns.

- 56. (New) The method of claim 1, wherein:
- the set of helices includes four or more helices.
- 57. (New) The method of claim 1, wherein: the set of helices includes seven or more helices.