# ESP32-S2-MINI-2 ESP32-S2-MINI-2U

# Datasheet Version 1.1

2.4 GHz Wi-Fi (802.11 b/g/n) module

Built around ESP32-S2 series of SoC (chip revision v1.0), Xtensa® single-core 32-bit LX7 micro-processor

4 MB flash and optional 2 MB PSRAM in chip package 37 GPIOs, rich set of peripherals

On-board PCB antenna or external antenna connector



ESP32-S2-MINI-2



ESP32-S2-MINI-2U



### 1 Module Overview

#### Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/documentation/esp32-s2-mini-2\_esp32-s2-mini-2u\_datasheet\_en. pdf



### 1.1 Features

### **CPU and On-Chip Memory**

- ESP32-S2FH4 or ESP32-S2FN4R2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz
- 128 KB ROM
- 320 KB SRAM
- 16 KB SRAM in RTC
- 4 MB flash
- 2 MB PSRAM (ESP32-S2FN4R2 only)

#### Wi-Fi

- 802.11 b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4  $\mu$ s guard interval support
- Center frequency range of operating channel:
   2412 ~ 2484 MHz

### Peripherals

 GPIO, SPI, LCD, UART, I2C, I2S, Camera interface, IR, pulse counter, LED PWM, TWAI® (compatible with ISO 11898-1, i.e. CAN Specification 2.0), full-speed USB OTG, ADC, DAC, touch sensor, temperature sensor, general-purpose timers, watchdog timers

#### Note:

\* Please refer to <u>ESP32-S2 Series Datasheet</u> for detailed information about the module peripherals.

### **Integrated Components on Module**

• 40 MHz crystal oscillator

### **Antenna Options**

- On-board PCB antenna (ESP32-S2-MINI-2)
- External antenna via a connector (ESP32-S2-MINI-2U)

### **Operating Conditions**

- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature:
  - 85 °C version: -40 ~ 85 °C
  - 105 °C version: -40 ~ 105 °C (ESP32-S2-MINI-2-H4) and ESP32-S2-MINI-2U-H4 only)

### Certification

- Green certification: RoHS/REACH
- RF certification: See certificates

#### Test

HTOL/HTSL/uHAST/TCT/ESD/Latch-up

### 1.2 Description

ESP32-S2-MINI-2 and ESP32-S2-MINI-2U are two powerful, generic Wi-Fi MCU modules that have a rich set of peripherals. They are an ideal choice for a wide variety of application scenarios related to Internet of Things (IoT), such as wearable electronics and smart home.

ESP32-S2-MINI-2 comes with a PCB antenna (ANT). ESP32-S2-MINI-2U comes with an external antenna connector (CONN). A wide selection of module variants are available for customers as shown in Table 1 and Table 2.

| Ordering Code        | Flash                        | PSRAM                        | Ambient Temp. <sup>2</sup> (°C) | Size <sup>3</sup><br>(mm) |
|----------------------|------------------------------|------------------------------|---------------------------------|---------------------------|
| ESP32-S2-MINI-2-N4   |                              | _                            | -40 ∼ 85                        |                           |
| ESP32-S2-MINI-2-H4   | 4 MB (Quad SPI) <sup>4</sup> | _                            | -40 ∼ 105                       | 15.4 × 20.5 × 2.4         |
| ESP32-S2-MINI-2-N4R2 |                              | 2 MB (Quad SPI) <sup>5</sup> | -40 ∼ 85                        |                           |

Table 1: ESP32-S2-MINI-2 (ANT) Series Comparison<sup>1</sup>

| Ordering Code          | Flash                        | PSRAM                        | Ambient Temp. <sup>2</sup> (°C) | Size <sup>3</sup> (mm) |
|------------------------|------------------------------|------------------------------|---------------------------------|------------------------|
| ESP32-S2-MINI-2U-N4    |                              | _                            | -40 ∼ 85                        |                        |
| ESP32-S2-MINI-2U-H4    | 4 MB (Quad SPI) <sup>4</sup> | _                            | -40 ∼ 105                       | 15.4 × 15.4 × 2.4      |
| ESP32-S2-MINI-2H-N/4R2 |                              | 2 MB (Quad SPI) <sup>5</sup> | -40 ~ 85                        |                        |

Table 2: ESP32-S2-MINI-2U (CONN) Series Comparison

In this datasheet unless otherwise stated, ESP32-S2-MINI-2 refers to all variants of ESP32-S2-MINI-2, whereas ESP32-S2-MINI-2U refers to all variants of ESP32-S2-MINI-2U.

At the core of the modules is ESP32-S2 series. ESP32-S2 series of chips has an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. It has a low-power co-processor that can be used instead of the CPU to save power while performing tasks that do not require much computing power, such as monitoring of peripherals.

ESP32-S2 series integrates a rich set of peripherals, ranging from SPI, I2S, UART, I2C, LED PWM, TWAI®, LCD, Camera interface, ADC, DAC, touch sensor, temperature sensor, 43 GPIOs, full-speed USB On-The-Go (OTG) interface to enable USB communication, etc.

For more information on ESP32-S2 series of SoCs, please refer to <u>ESP32-S2 Series Datasheet</u> and <u>ESP32-S2 Series Datasheet</u> a

Information about ESP-IDF release that supports a specific chip revision is provided in ESP Product Selector.

<sup>&</sup>lt;sup>1</sup> This table shares the same notes presented in Table 2 below.

<sup>&</sup>lt;sup>2</sup> Ambient temperature specifies the recommended temperature range of the environment immediately outside the Espressif module.

<sup>&</sup>lt;sup>3</sup> For details, refer to Section 7.1 *Physical Dimensions*.

<sup>&</sup>lt;sup>4</sup> The flash is integrated in the chip's package.

<sup>&</sup>lt;sup>5</sup> The PSRAM is integrated in the chip's package.

#### **Applications** 1.3

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- USB Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation
- Smart Home Control Panel

- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications
- Smart POS Machines

## **Contents**

| 1          | Module Overview                                                                      | 2        |
|------------|--------------------------------------------------------------------------------------|----------|
| 1.1        | Features                                                                             | 2        |
| 1.2        | Description                                                                          | 3        |
| 1.3        | Applications                                                                         | 4        |
| 2          | Block Diagram                                                                        | 9        |
| 3          | Pin Definitions                                                                      | 10       |
| 3.1        | Pin Layout                                                                           | 10       |
| 3.2        | Pin Description                                                                      | 10       |
| 3.3        | Strapping Pins                                                                       | 13       |
| 3.4        | Strapping Pins                                                                       | 13       |
|            | <ul><li>3.4.1 Chip Boot Mode Control</li><li>3.4.2 VDD_SPI Voltage Control</li></ul> | 14<br>14 |
|            | 3.4.3 ROM Messages Printing Control                                                  | 15       |
| 4          | Electrical Characteristics                                                           | 10       |
|            |                                                                                      | 16<br>16 |
| 4.1<br>4.2 | Absolute Maximum Ratings Recommended Operating Conditions                            | 16       |
| 4.3        | DC Characteristics (3.3 V, 25 °C)                                                    | 16       |
| 4.4        | Current Consumption Characteristics                                                  | 17       |
|            | 4.4.1 Current Consumption in Active Mode                                             | 17       |
|            | 4.4.2 Current Consumption in Other Modes                                             | 17       |
| 4.5        | Wi-Fi Radio                                                                          | 18       |
|            | 4.5.1 Wi-Fi RF Standards                                                             | 18       |
|            | 4.5.2 Wi-Fi RF Transmitter (TX) Specifications                                       | 19       |
|            | 4.5.3 Wi-Fi RF Receiver (RX) Specifications                                          | 19       |
| 5          | Module Schematics                                                                    | 22       |
| 6          | Peripheral Schematics                                                                | 24       |
| 7          | Physical Dimensions and PCB Land Pattern                                             | 25       |
| 7.1        | Physical Dimensions                                                                  | 25       |
| 7.2        | Recommended PCB Land Pattern                                                         | 27       |
| 7.3        | Dimensions of External Antenna Connector                                             | 29       |
| 8          | Product Handling                                                                     | 30       |
| 8.1        | Storage Conditions                                                                   | 30       |
| 8.2        | Electrostatic Discharge (ESD)                                                        | 30       |
| 8.3        | Soldering Profile                                                                    | 30       |
|            | 8.3.1 Reflow Profile                                                                 | 30       |
| 8.4        | Ultrasonic Vibration                                                                 | 31       |

| Related Documentation and Resources | 32 |
|-------------------------------------|----|
| Revision History                    | 33 |

# **List of Tables**

| 1  | ESP32-S2-MINI-2 (ANT) Series Comparison <sup>1</sup>         | 3  |
|----|--------------------------------------------------------------|----|
| 2  | ESP32-S2-MINI-2U (CONN) Series Comparison                    | 3  |
| 3  | Pin Definitions                                              | 11 |
| 4  | Default Configuration of Strapping Pins                      | 13 |
| 5  | Description of Timing Parameters for the Strapping Pins      | 14 |
| 6  | Chip Boot Mode Control                                       | 14 |
| 7  | VDD_SPI Voltage Control                                      | 15 |
| 8  | ROM Messages Printing Control                                | 15 |
| 9  | Absolute Maximum Ratings                                     | 16 |
| 10 | Recommended Operating Conditions                             | 16 |
| 11 | DC Characteristics (3.3 V, 25 °C)                            | 16 |
| 12 | RF Current Consumption in Active Mode                        | 17 |
| 13 | Current Consumption in Modem-sleep Mode                      | 17 |
| 14 | Current Consumption in Low-Power Modes                       | 18 |
| 15 | Wi-Fi RF Standards                                           | 18 |
| 16 | TX Power with Spectral Mask and EVM Meeting 802.11 Standards | 19 |
| 17 | TX EVM Test                                                  | 19 |
| 18 | RX Sensitivity                                               | 19 |
| 19 | Maximum RX Level                                             | 20 |
| 20 | RX Adjacent Channel Rejection                                | 21 |

# **List of Figures**

| 1  | ESP32-S2-MINI-2 Block Diagram                             | 9  |
|----|-----------------------------------------------------------|----|
| 2  | ESP32-S2-MINI-2U Block Diagram                            | g  |
| 3  | ESP32-S2-MINI-2 Pin Layout (Top View)                     | 10 |
| 4  | Visualization of Timing Parameters for the Strapping Pins | 14 |
| 5  | ESP32-S2-MINI-2 Schematics                                | 22 |
| 6  | ESP32-S2-MINI-2U Schematics                               | 23 |
| 7  | Peripheral Schematics                                     | 24 |
| 8  | ESP32-S2-MINI-2 Physical Dimensions                       | 25 |
| 9  | ESP32-S2-MINI-2U Physical Dimensions                      | 26 |
| 10 | ESP32-S2-MINI-2 Recommended PCB Land Pattern              | 27 |
| 11 | ESP32-S2-MINI-2U Recommended PCB Land Pattern             | 28 |
| 12 | Dimensions of External Antenna Connector                  | 29 |
| 13 | Reflow Profile                                            | 30 |

# 2 Block Diagram



Figure 1: ESP32-S2-MINI-2 Block Diagram



Figure 2: ESP32-S2-MINI-2U Block Diagram

### 3 Pin Definitions

### 3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 *Physical Dimensions*.

The pin layout is applicable for ESP32-S2-MINI-2 and ESP32-S2-MINI-2U, but the latter has no keepout zone.



Figure 3: ESP32-S2-MINI-2 Pin Layout (Top View)

## 3.2 Pin Description

The module has 65 pins. See pin definitions in Table 3 Pin Definitions.

For peripheral pin configurations, please refer to <u>ESP32-S2 Series Datasheet</u> > Section Peripheral Pin Configurations.

Table 3: Pin Definitions

| Name              | No.       | Type <sup>1</sup> | Function                                                |  |
|-------------------|-----------|-------------------|---------------------------------------------------------|--|
|                   | 1, 2, 30, |                   |                                                         |  |
| GND               | 42, 43,   | Р                 | Ground                                                  |  |
|                   | 46-65     |                   |                                                         |  |
| 3V3               | 3         | Р                 | Power supply                                            |  |
| 100               | 4         | I/O/T             | RTC_GPIOO, GPIOO                                        |  |
| IO1               | 5         | I/O/T             | RTC_GPI01, GPI01, TOUCH1, ADC1_CH0                      |  |
| 102               | 6         | I/O/T             | RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1                      |  |
| 103               | 7         | I/O/T             | RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2                      |  |
| 104               | 8         | I/O/T             | RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3                      |  |
| 105               | 9         | I/O/T             | RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4                      |  |
| 106               | 10        | I/O/T             | RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5                      |  |
| 107               | 11        | I/O/T             | RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6                      |  |
| 108               | 12        | I/O/T             | RTC_GPI08, GPI08, TOUCH8, ADC1_CH7                      |  |
| 109               | 13        | I/O/T             | RTC_GPI09, GPI09, TOUCH9, ADC1_CH8, FSPIHD              |  |
| IO10              | 14        | I/O/T             | RTC_GPI010, GPI010, TOUCH10, ADC1_CH9, FSPICS0, FSPII04 |  |
| IO11              | 15        | I/O/T             | RTC_GPI011, GPI011, TOUCH11, ADC2_CHO, FSPID, FSPII05   |  |
| 1012              | 16        | I/O/T             | RTC_GPI012, GPI012, TOUCH12, ADC2_CH1, FSPICLK, FSPII06 |  |
| IO13              | 17        | I/O/T             | RTC_GPI013, GPI013, TOUCH13, ADC2_CH2, FSPIQ, FSPII07   |  |
| 1014              | 18        | I/O/T             | RTC_GPI014, GPI014, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS  |  |
| 1015              | 19        | I/O/T             | RTC_GPI015, GPI015, UORTS, ADC2_CH4, XTAL_32K_P         |  |
| 1016              | 20        | I/O/T             | RTC_GPI016, GPI016, UOCTS, ADC2_CH5, XTAL_32K_N         |  |
| IO17              | 21        | I/O/T             | RTC_GPI017, GPI017, U1TXD, ADC2_CH6, DAC_1              |  |
| 1018              | 22        | I/O/T             | RTC_GPI018, GPI018, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3    |  |
| 1019              | 23        | I/O/T             | RTC_GPI019, GPI019, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-   |  |
| 1020              | 24        | I/O/T             | RTC_GPI020, GPI020, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+   |  |
| 1021              | 25        | I/O/T             | RTC_GPIO21, GPIO21                                      |  |
| 1026 <sup>2</sup> | 26        | I/O/T             | SPICS1, GPIO26                                          |  |
| NC                | 27        | _                 | NC                                                      |  |
| 1033              | 28        | I/O/T             | SPIIO4, GPIO33, FSPIHD                                  |  |
| 1034              | 29        | I/O/T             | SPIIO5, GPIO34, FSPICSO                                 |  |
| 1035              | 31        | I/O/T             | SPIIO6, GPIO35, FSPID                                   |  |
| 1036              | 32        | I/O/T             | SPIIO7, GPIO36, FSPICLK                                 |  |
| 1037              | 33        | I/O/T             | SPIDQS, GPI037, FSPIQ                                   |  |
| 1038              | 34        | I/O/T             | GPIO38, FSPIWP                                          |  |
| 1039              | 35        | I/O/T             | MTCK, GPIO39, CLK_OUT3                                  |  |
| 1040              | 36        | I/O/T             | MTDO, GPIO40, CLK_OUT2                                  |  |
| 1041              | 37        | I/O/T             | MTDI, GPIO41, CLK_OUT1                                  |  |
| 1042              | 38        | I/O/T             | MTMS, GPI042                                            |  |
| TXDO              | 39        | I/O/T             | UOTXD, GPIO43, CLK_OUT1                                 |  |
| RXDO              | 40        | I/O/T             | UORXD, GPIO44, CLK_OUT2                                 |  |
| 1045              | 41        | I/O/T             | GPI045                                                  |  |

Cont'd on next page

Table 3 - cont'd from previous page

| Name | No. | Type <sup>1</sup> | Function                                |  |
|------|-----|-------------------|-----------------------------------------|--|
| 1046 | 44  | I                 | GPIO46                                  |  |
|      |     |                   | High: on, enables the chip.             |  |
| EN   | 45  | I                 | Low: off, the chip powers off.          |  |
|      |     |                   | Note: Do not leave the EN pin floating. |  |

<sup>&</sup>lt;sup>1</sup> P: power supply; I: input; O: output; T: high impedance.
<sup>2</sup> IO26 is used by the embedded PSRAM on the ESP32-S2-MINI-2-N4R2 and ESP32-S2-MINI-2U-N4R2 modules, and cannot be used for other purposes.

### 3.3 Strapping Pins

#### Note:

The content below is excerpted from Section *Strapping Pins* in <u>ESP32-S2 Series Datasheet</u>. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 *Module Schematics*.

### 3.4 Strapping Pins

#### Note:

The content below is excerpted from  $\underline{\textit{ESP32-S2 Series Datasheet}}$  > Section Strapping Pins. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 Module Schematics.

At each startup or reset, a chip requires some initial configuration parameters, such as in which boot mode to load the chip, voltage of flash memory, etc. These parameters are passed over via the strapping pins. After reset, the strapping pins operate as regular IO pins.

The parameters controlled by the given strapping pins at chip reset are as follows:

- Chip boot mode GPIOO and GPIO46
- VDD\_SPI voltage GPIO45
- ROM messages printing GPIO46

GPIO0, GPIO45, and GPIO46 are connected to the chip's internal weak pull-up/pull-down resistors at chip reset. These resistors determine the default bit values of the strapping pins. Also, these resistors determine the bit values if the strapping pins are connected to an external high-impedance circuit.

Strapping PinDefault ConfigurationBit ValueGPIOOPull-up1GPIO45Pull-down0GPIO46Pull-down0

Table 4: Default Configuration of Strapping Pins

To change the bit values, the strapping pins should be connected to external pull-down/pull-up resistances. If the ESP32-S2 is used as a device by a host MCU, the strapping pin voltage levels can also be controlled by the host MCU.

All strapping pins have latches. At system reset, the latches sample the bit values of their respective strapping pins and store them until the chip is powered down or shut down. The states of latches cannot be changed in any other way. It makes the strapping pin values available during the entire chip operation, and the pins are freed up to be used as regular IO pins after reset.

Regarding the timing requirements for the strapping pins, there are such parameters as setup time and hold time. For more information, see Table 5 and Figure 4.

Table 5: Description of Timing Parameters for the Strapping Pins

| Parameter | Description                                                          | Min (ms) |
|-----------|----------------------------------------------------------------------|----------|
| +         | Setup time is the time reserved for the power rails to stabilize be- |          |
| $t_{SU}$  | fore the CHIP_PU pin is pulled high to activate the chip.            |          |
|           | Hold time is the time reserved for the chip to read the strapping    |          |
| $t_H$     | pin values after CHIP_PU is already high and before these pins       | 3        |
|           | start operating as regular IO pins.                                  |          |



Figure 4: Visualization of Timing Parameters for the Strapping Pins

### 3.4.1 Chip Boot Mode Control

GPIOO and GPIO46 control the boot mode after the reset is released. See Table 6 Chip Boot Mode Control.

Table 6: Chip Boot Mode Control

| Boot Mode             | GPI00       | GPIO46        |
|-----------------------|-------------|---------------|
| Default configuration | 1 (Pull-up) | 0 (Pull-down) |
| SPI Boot (default)    | 1           | Any value     |
| Download Boot         | 0           | 0             |
| Invalid combination 1 | 0           | 1             |

<sup>&</sup>lt;sup>1</sup> This combination triggers unexpected behavior and should be avoided.

### 3.4.2 VDD\_SPI Voltage Control

Depending on the value of EFUSE\_VDD\_SPI\_FORCE, the voltage can be controlled in two ways.

Table 7: VDD\_SPI Voltage Control

| EFUSE_VDD_SPI_FORCE | GPI045  | eFuse <sup>1</sup> | Voltage | VDD_SPI power source <sup>2</sup> |
|---------------------|---------|--------------------|---------|-----------------------------------|
|                     | 0       | Ignored            | 3.3 V   | VDD3P3_RTC_IO via $R_{SPI}$       |
| U                   | 1       |                    | 1.8 V   | Flash Voltage Regulator           |
| 1                   | Janorod | 0                  | 1.8 V   | Flash Voltage Regulator           |
| I                   | Ignored | 1                  | 3.3 V   | VDD3P3_RTC_IO via $R_{SPI}$       |

<sup>&</sup>lt;sup>1</sup> eFuse: EFUSE\_VDD\_SPI\_TIEH

### **ROM Messages Printing Control**

During boot process the messages by the ROM code can be printed to:

- (Default) UOTXD pin. For this, EFUSE\_UART\_PRINT\_CONTROL should be 0.
- DAC\_1 pin. For this, EFUSE\_UART\_PRINT\_CONTROL should be 1.

EFUSE\_UART\_PRINT\_CONTROL and GPIO46 control ROM messages printing as shown in Table 8 ROM Messages Printing Control.

Table 8: ROM Messages Printing Control

| eFuse <sup>1</sup> | GPIO46  | ROM Messages Printing |
|--------------------|---------|-----------------------|
| 0                  | Ignored | Always enabled        |
| 1                  | 0       | Enabled               |
| I                  | 1       | Disabled              |
| 2                  | 0       | Disabled              |
|                    | 1       | Enabled               |
| 3 Ignored          |         | Always disabled       |

<sup>&</sup>lt;sup>1</sup> eFuse: EFUSE\_UART\_PRINT\_CONTROL

<sup>&</sup>lt;sup>2</sup> See ESP32-S2 Series Datasheet > Section Power Scheme

### **Electrical Characteristics**

#### **Absolute Maximum Ratings** 4.1

Stresses above those listed in Table 9 Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Table 10 Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 9: Absolute Maximum Ratings

| Symbol      | Parameter            | Min  | Max | Unit |
|-------------|----------------------|------|-----|------|
| VDD33       | Power supply voltage | -0.3 | 3.6 | V    |
| $T_{STORE}$ | Storage temperature  | -40  | 105 | °C   |

#### **Recommended Operating Conditions** 4.2

**Table 10: Recommended Operating Conditions** 

| Symbol      | ol Parameter                                 |                                           | Min | Тур | Max | Unit |
|-------------|----------------------------------------------|-------------------------------------------|-----|-----|-----|------|
| VDD33       | Power supply voltage                         |                                           | 3.0 | 3.3 | 3.6 | V    |
| $ V_{VDD} $ | Current delivered by external power supply   |                                           | 0.5 | _   | _   | Α    |
| т.          | Operating ambient temperature                | orating ambient temperature 85 °C version |     |     | 85  | °C   |
|             | Operating ambient temperature 105 °C version |                                           | -40 | _   | 105 |      |

# 4.3 DC Characteristics (3.3 V, 25 °C)

Table 11: DC Characteristics (3.3 V, 25 °C)

| Symbol               | Parameter                                                                                | Min                     | Тур | Max                     | Unit |
|----------------------|------------------------------------------------------------------------------------------|-------------------------|-----|-------------------------|------|
| $C_{IN}$             | Pin capacitance                                                                          | _                       | 2   | _                       | pF   |
| $V_{IH}$             | High-level input voltage                                                                 | 0.75 × VDD <sup>1</sup> | _   | VDD <sup>1</sup> + 0.3  | V    |
| $V_{IL}$             | Low-level input voltage                                                                  | -0.3                    | _   | 0.25 × VDD <sup>1</sup> | V    |
| $ I_{IH} $           | High-level input current                                                                 | _                       | _   | 50                      | nA   |
| $ I_{IL} $           | Low-level input current                                                                  | _                       | _   | 50                      | nA   |
| $V_{OH}^2$           | High-level output voltage                                                                | 0.8 × VDD <sup>1</sup>  | _   | _                       | V    |
| $V_{OL}^2$           | Low-level output voltage                                                                 | _                       | _   | 0.1 × VDD <sup>1</sup>  | V    |
| $I_{OH}$             | High-level source current (VDD <sup>1</sup> = 3.3 V, $V_{OH}$ >= 2.64 V, PAD_DRIVER = 3) | _                       | 40  | _                       | mA   |
| $I_{OL}$             | Low-level sink current (VDD <sup>1</sup> = 3.3 V, $V_{OL}$ = 0.495 V, PAD_DRIVER = 3)    | _                       | 28  | _                       | mA   |
| $R_{PU}$             | Pull-up resistor                                                                         | _                       | 45  | _                       | kΩ   |
| $R_{PD}$             | Pull-down resistor                                                                       | _                       | 45  | _                       | kΩ   |
| $V_{IH\_nRST}$       | Chip reset release voltage                                                               | 0.75 × VDD <sup>1</sup> | _   | VDD <sup>1</sup> + 0.3  | V    |
| $\bigvee_{IL\_nRST}$ | Chip reset voltage                                                                       | -0.3                    | _   | 0.25 × VDD <sup>1</sup> | V    |

## 4.4 Current Consumption Characteristics

Owing to the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section *RTC and Low-Power Management* 

in ESP32-S2 Series Datasheet.

### 4.4.1 Current Consumption in Active Mode

Table 12: RF Current Consumption in Active Mode

| Work mode           | Desc | Description                         |     |
|---------------------|------|-------------------------------------|-----|
|                     |      | 802.11b, 20 MHz, 1 Mbps, @19 dBm    | 302 |
|                     | TX   | 802.11g, 20 MHz, 54 Mbps, @17.5 dBm | 264 |
| Active (RF working) | RX   | 802.11n, 20 MHz, MCS7, @16.5 dBm    | 257 |
| Active (RF WORKING) |      | 802.11n, 40 MHz, MCS7, @16.5 dBm    | 267 |
|                     |      | 802.11b/g/n, 20 MHz                 | 77  |
|                     |      | 802.11n, 40 MHz                     | 81  |

<sup>&</sup>lt;sup>1</sup> The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on 100% duty cycle.

#### Note:

The content below is excerpted from Section Power Consumption in Other Modes in ESP32-S2 Series Datasheet.

### 4.4.2 Current Consumption in Other Modes

The measurements below are applicable to ESP32-S2, ESP32-S2FH2, and ESP32-S2FH4. Since ESP32-S2FN4R2 and ESP32-S2R2 come with in-package PSRAM, their current consumption might be higher.

Table 13: Current Consumption in Modem-sleep Mode

|                            |               |                | Тур                    |                           |  |
|----------------------------|---------------|----------------|------------------------|---------------------------|--|
| Mode                       | CPU Frequency | Description    | All Peripherals Clocks | All Peripherals Clocks    |  |
|                            | (MHz)         |                | Disabled (mA)          | Enabled (mA) <sup>1</sup> |  |
|                            | 240           | CPU is idle    | 20.0                   | 28.0                      |  |
|                            |               | CPU is running | 23.0                   | 32.0                      |  |
| Modem-sleep <sup>2,3</sup> | 160           | CPU is idle    | 14.0                   | 21.0                      |  |
| Modelli-gleeb              | 100           |                |                        | Cantid on nort none       |  |

Cont'd on next page

<sup>&</sup>lt;sup>1</sup> VDD is the I/O voltage for pins of a particular power domain.

 $<sup>^{2}</sup>$  V<sub>OH</sub> and V<sub>OL</sub> are measured using high-impedance load.

<sup>&</sup>lt;sup>2</sup> The current consumption figures in RX mode are for cases where the peripherals are disabled and the CPU idle.

Table 13 - cont'd from previous page

|      |               |                | Тур                    |                           |  |
|------|---------------|----------------|------------------------|---------------------------|--|
| Mode | CPU Frequency | Description    | All Peripherals Clocks | All Peripherals Clocks    |  |
|      | (MHz)         |                | Disabled (mA)          | Enabled (mA) <sup>1</sup> |  |
|      |               | CPU is running | 16.0                   | 24.0                      |  |
|      | 80            | CPU is idle    | 10.5                   | 18.4                      |  |
|      | 00            | CPU is running | 12.0                   | 20.0                      |  |

<sup>&</sup>lt;sup>1</sup> In practice, the current consumption might be different depending on which peripherals are enabled.

Table 14: Current Consumption in Low-Power Modes

| Work mode                | Description                                                          |                              | <b>Typ (</b> μ <b>A)</b> |
|--------------------------|----------------------------------------------------------------------|------------------------------|--------------------------|
| Light-sleep <sup>1</sup> | VDD_SPI and Wi-Fi are powered down, and all GPIOs are high-impedance |                              | 750                      |
|                          | The ULP co-processor                                                 | ULP-FSM                      | 170                      |
|                          | is powered on <sup>2</sup>                                           | ULP-RISC-V                   | 190                      |
| Deep-sleep               | ULP sensor-monitored pattern <sup>3</sup>                            |                              |                          |
|                          | RTC timer + RTC memory                                               | У                            | 25                       |
|                          | RTC timer only                                                       |                              | 20                       |
| Power off                | CHIP_PU is set to low lev                                            | vel, the chip is powered off | 1                        |

<sup>&</sup>lt;sup>1</sup> In Light-sleep mode, with all related SPI pins pulled up, the current consumption of the embedded PSRAM is 140  $\mu$ A. Chip variants with in-package PSRAM include ESP32-S2FN4R2 and ESP32-S2R2.

### 4.5 Wi-Fi Radio

#### 4.5.1 Wi-Fi RF Standards

Table 15: Wi-Fi RF Standards

| Name                                                     |        | Description                                |  |  |
|----------------------------------------------------------|--------|--------------------------------------------|--|--|
| Center frequency range of operating channel <sup>1</sup> |        | 2412 ~ 2484 MHz                            |  |  |
| Wi-Fi wireless standard                                  |        | IEEE 802.11b/g/n                           |  |  |
|                                                          |        | 802.11b: 1, 2, 5.5 and 11 Mbps             |  |  |
| Data rate                                                | 20 MHz | 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps |  |  |
| Data fate                                                |        | 802.11n: MCS0-7, 72.2 Mbps (Max)           |  |  |
|                                                          | 40 MHz | 802.11n: MCSO-7, 150 Mbps (Max)            |  |  |
| Antenna type                                             |        | PCB antenna, external antenna connector    |  |  |

<sup>&</sup>lt;sup>2</sup> In Modem-sleep mode, Wi-Fi is clock gated.

<sup>&</sup>lt;sup>3</sup> In Modem-sleep mode, the consumption might be higher when accessing flash. For a flash rated at 80 Mbit/s, in SPI 2-line mode the consumption is 10 mA.

<sup>&</sup>lt;sup>2</sup> During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to operate.

<sup>&</sup>lt;sup>3</sup> The "ULP sensor-monitored pattern" refers to the mode where the ULP coprocessor or the sensor works periodically. When touch sensors work with a duty cycle of 1%, the typical current consumption is 22  $\mu$ A.

### 4.5.2 Wi-Fi RF Transmitter (TX) Specifications

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 16.

Table 16: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

| Rate                | Min   | Тур   | Max   |
|---------------------|-------|-------|-------|
| Rate                | (dBm) | (dBm) | (dBm) |
| 802.11b, 1 Mbps     | _     | 19.0  | _     |
| 802.11b, 11 Mbps    | _     | 19.0  | _     |
| 802.11g, 6 Mbps     | _     | 17.5  | _     |
| 802.11g, 54 Mbps    | _     | 17.5  | _     |
| 802.11n, HT20, MCS0 | _     | 17.5  | _     |
| 802.11n, HT20, MCS7 | _     | 16.5  | _     |
| 802.11n, HT40, MCS0 | _     | 17.5  | _     |
| 802.11n, HT40, MCS7 | _     | 16.5  | _     |

Table 17: TX EVM Test

| Rate                           | Min  | Тур   | SL <sup>1</sup> |
|--------------------------------|------|-------|-----------------|
| Rate                           | (dB) | (dB)  | (dB)            |
| 802.11b, 1 Mbps, @19 dBm       | _    | -25.0 | -10             |
| 802.11b, 11 Mbps, @19 dBm      |      | -25.0 | -10             |
| 802.11g, 6 Mbps, @17.5 dBm     |      | -25.0 | -5              |
| 802.11g, 54 Mbps, @17.5 dBm    |      | -28.5 | -25             |
| 802.11n, HT20, MCS0, @17.5 dBm |      | -27.0 | -5              |
| 802.11n, HT20, MCS7, @16.5 dBm |      | -30.0 | -27             |
| 802.11n, HT40, MCS0, @17.5 dBm | _    | -27.0 | -5              |
| 802.11n, HT40, MCS7, @16.5 dBm | _    | -30.0 | -27             |

<sup>&</sup>lt;sup>1</sup> SL stands for standard limit value.

### 4.5.3 Wi-Fi RF Receiver (RX) Specifications

Table 18: RX Sensitivity

| Rate            | Min   | Typ   | Max   |
|-----------------|-------|-------|-------|
|                 | (dBm) | (dBm) | (dBm) |
| 802.11b, 1 Mbps | _     | -96.5 |       |

Cont'd on next page

<sup>&</sup>lt;sup>1</sup> Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

<sup>&</sup>lt;sup>2</sup> For the modules that use external antenna connectors, the output impedance is 50  $\Omega$ . For other modules without external antenna connectors, the output impedance is irrelevant.

Table 18 – cont'd from previous page

| Rate                | Min   | Typ   | Max   |
|---------------------|-------|-------|-------|
|                     | (dBm) | (dBm) | (dBm) |
| 802.11b, 2 Mbps     | _     | -94.0 |       |
| 802.11b, 5.5 Mbps   | _     | -91.5 | _     |
| 802.11b, 11 Mbps    | _     | -88.0 | _     |
| 802.11g, 6 Mbps     | _     | -92.0 | _     |
| 802.11g, 9 Mbps     | _     | -90.5 | _     |
| 802.11g, 12 Mbps    | _     | -89.0 | _     |
| 802.11g, 18 Mbps    | _     | -87.0 | _     |
| 802.11g, 24 Mbps    | _     | -84.0 | _     |
| 802.11g, 36 Mbps    | _     | -80.0 | _     |
| 802.11g, 48 Mbps    | _     | -76.0 | _     |
| 802.11g, 54 Mbps    | _     | -74.5 |       |
| 802.11n, HT20, MCS0 | _     | -91.5 | _     |
| 802.11n, HT20, MCS1 | _     | -88.5 |       |
| 802.11n, HT20, MCS2 | _     | -86.0 | _     |
| 802.11n, HT20, MCS3 | _     | -83.0 |       |
| 802.11n, HT20, MCS4 | _     | -79.0 |       |
| 802.11n, HT20, MCS5 | _     | -75.0 |       |
| 802.11n, HT20, MCS6 | _     | -73.5 | -     |
| 802.11n, HT20, MCS7 | _     | -72.0 | 1     |
| 802.11n, HT40, MCS0 | _     | -89.0 |       |
| 802.11n, HT40, MCS1 | _     | -86.0 |       |
| 802.11n, HT40, MCS2 | _     | -83.5 | _     |
| 802.11n, HT40, MCS3 | _     | -79.5 | _     |
| 802.11n, HT40, MCS4 | _     | -76.0 | _     |
| 802.11n, HT40, MCS5 |       | -72.0 |       |
| 802.11n, HT40, MCS6 | _     | -70.5 |       |
| 802.11n, HT40, MCS7 | _     | -69.5 | _     |

Table 19: Maximum RX Level

| Rate                | Min   | Тур   | Max   |
|---------------------|-------|-------|-------|
| Rate                | (dBm) | (dBm) | (dBm) |
| 802.11b, 1 Mbps     |       | 5     |       |
| 802.11b, 11 Mbps    |       | 5     | _     |
| 802.11g, 6 Mbps     |       | 5     | _     |
| 802.11g, 54 Mbps    | _     | 5     | _     |
| 802.11n, HT20, MCS0 |       | 5     | _     |
| 802.11n, HT20, MCS7 | _     | 5     | _     |
| 802.11n, HT40, MCS0 | _     | 5     | _     |
| 802.11n, HT40, MCS7 | _     | 5     |       |

Table 20: RX Adjacent Channel Rejection

| Rate                | Min<br>(dB) | Typ<br>(dB) | Max<br>(dB) |
|---------------------|-------------|-------------|-------------|
| 802.11b, 1 Mbps     | _           | 35          | _           |
| 802.11b, 11 Mbps    | _           | 35          | _           |
| 802.11g, 6 Mbps     | _           | 31          | _           |
| 802.11g, 54 Mbps    | _           | 14          | _           |
| 802.11n, HT20, MCS0 | _           | 31          | _           |
| 802.11n, HT20, MCS7 | _           | 13          | _           |
| 802.11n, HT40, MCS0 | _           | 19          | _           |
| 802.11n, HT40, MCS7 | _           | 8           | _           |

## 5 Module Schematics

This is the reference design of the module.



S

Module Schematics

Figure 5: ESP32-S2-MINI-2 Schematics

S



Figure 6: ESP32-S2-MINI-2U Schematics

# 6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).



Figure 7: Peripheral Schematics

- Soldering the EPAD to the ground of the base board is not a must, however, it can optimize thermal performance. If you choose to solder it, please apply the correct amount of soldering paste. Too much soldering paste may increase the gap between the module and the baseboard. As a result, the adhesion between other pins and the baseboard may be poor.
- To ensure that the power supply to the ESP32-S2 chip is stable during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 k $\Omega$  and C = 1  $\mu$ F. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32-S2's power-up and reset sequence timing diagram, please refer to ESP32-S2 Series Datasheet > Section Power Scheme.

# 7 Physical Dimensions and PCB Land Pattern

# 7.1 Physical Dimensions



Figure 8: ESP32-S2-MINI-2 Physical Dimensions

Figure 9: ESP32-S2-MINI-2U Physical Dimensions

### Note:

For information about tape, reel, and product marking, please refer to *Espressif Module Packaging Information*.

### 7.2 Recommended PCB Land Pattern

This section provides the following resources for your reference:

- Figures for recommended PCB land patterns with all the dimensions needed for PCB design. See Figure 10 ESP32-S2-MINI-2 Recommended PCB Land Pattern and Figure 11 ESP32-S2-MINI-2U Recommended PCB Land Pattern.
- Source files of recommended PCB land patterns to measure dimensions not covered in Figure 10. You can view the source files for ESP32-S2-MINI-2 and ESP32-S2-MINI-2U with Autodesk Viewer.



Figure 10: ESP32-S2-MINI-2 Recommended PCB Land Pattern



Figure 11: ESP32-S2-MINI-2U Recommended PCB Land Pattern

ESP32-S2-MINI-2U uses the third generation external antenna connector as shown in Figure 12 *Dimensions of External Antenna Connector*. This connector is compatible with the following connectors:

- W.FL Series connector from Hirose
- MHF III connector from I-PEX
- AMMC connector from Amphenol



Figure 12: Dimensions of External Antenna Connector

# 8 Product Handling

### 8.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and 90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25±5 °C and 60%RH. If the above conditions are not met, the module needs to be baked.

### 8.2 Electrostatic Discharge (ESD)

Human body model (HBM): ±2000 V
Charged-device model (CDM): ±500 V

### 8.3 Soldering Profile

### 8.3.1 Reflow Profile

Solder the module in a single reflow.



Figure 13: Reflow Profile

#### **Ultrasonic Vibration** 8.4

Avoid exposing Espressif modules to vibration from ultrasonic equipment, such as ultrasonic welders or ultrasonic cleaners. This vibration may induce resonance in the in-module crystal and lead to its malfunction or even failure. As a consequence, the module may stop working or its performance may deteriorate.

### **Related Documentation and Resources**

### **Related Documentation**

- ESP32-S2 Series Datasheet Specifications of the ESP32-S2 hardware.
- ESP32-S2 Technical Reference Manual Detailed information on how to use the ESP32-S2 memory and peripherals.
- ESP32-S2 Hardware Design Guidelines Guidelines on how to integrate the ESP32-S2 into your hardware product.
- ESP32-S2 Series SoC Errata Descriptions of known errors in ESP32-S2 series of SoCs.
- Certificates

https://espressif.com/en/support/documents/certificates

• ESP32-S2 Product/Process Change Notifications (PCN)

https://espressif.com/en/support/documents/pcns?keys=ESP32-S2

• ESP32-S2 Advisories - Information on security, bugs, compatibility, component reliability.

https://espressif.com/en/support/documents/advisories?keys=ESP32-S2

 Documentation Updates and Update Notification Subscription https://espressif.com/en/support/download/documents

### **Developer Zone**

- ESP-IDF Programming Guide for ESP32-S2 Extensive documentation for the ESP-IDF development framework.
- ESP-IDF and other development frameworks on GitHub.

https://github.com/espressif

• ESP32 BBS Forum – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

https://esp32.com/

• The ESP Journal - Best Practices, Articles, and Notes from Espressif folks.

https://blog.espressif.com/

• See the tabs SDKs and Demos, Apps, Tools, AT Firmware.

https://espressif.com/en/support/download/sdks-demos

### **Products**

• ESP32-S2 Series SoCs – Browse through all ESP32-S2 SoCs.

https://espressif.com/en/products/socs?id=ESP32-S2

• ESP32-S2 Series Modules - Browse through all ESP32-S2-based modules.

https://espressif.com/en/products/modules?id=ESP32-S2

• ESP32-S2 Series DevKits – Browse through all ESP32-S2-based devkits.

https://espressif.com/en/products/devkits?id=ESP32-S2

• ESP Product Selector – Find an Espressif hardware product suitable for your needs by comparing or applying filters. https://products.espressif.com/#/product-selector?language=en

#### Contact Us

 See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.

https://espressif.com/en/contact-us/sales-questions

# **Revision History**

| Date       | Version | Release notes                                                                                                                                                                              |
|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2024-09-05 | V1.6    | Updated the module images on the cover page                                                                                                                                                |
| 2024-05-10 | V1.0    | Added information about certification and test in Section 1.1 Features                                                                                                                     |
| 2024-04-16 | v0.6    | <ul> <li>Updated EPAD descriptions in Section 6 Peripheral Schematics</li> <li>Added descriptions in Section 7.2 Recommended PCB Land Pattern</li> <li>Other formatting updates</li> </ul> |
| 2022-09-19 | v0.5    | Preliminary release                                                                                                                                                                        |



### **Disclaimer and Copyright Notice**

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2024 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

www.espressif.com