Università degli Studi Roma Tre Anno Accademico 2009/2010 AL2 - Algebra 2

Esercitazione 6

Lunedì 4 Gennaio 2010

http://www.mat.uniroma3.it/users/pappa/CORSI/AL2_09_10/AL2.htm domande/osservazioni: dibiagio@mat.uniroma1.it

1. (Dikranjan - Aritmetica e algebra - esercizio 11.33) Fattorizzare $f(X) = 4X^9 - 4X$ in prodotto di irriducibili in $\mathbb{Q}[X]$, $\mathbb{Z}[X]$, $\mathbb{Z}_3[X]$.

Soluzione:

$$4X^9 - 4X = 4X(X^8 - 1) = 4X(X^4 - 1)(X^4 + 1) = 4X(X - 1)(X + 1)(X^2 + 1)(X^4 + 1).$$

 $4=2^2$ in $\mathbb{Z}[X]$, mentre in $\mathbb{Z}_3[X]$ e $\mathbb{Q}[X]$ 4 è invertibile (in particolare 4=1in $\mathbb{Z}_3[X]$). X-1, X+1 sono polinomi di primo grado, quindi irriducibili in $\mathbb{Q}[X]$ e $\mathbb{Z}_3[X]$. Dato che X-1, X+1 sono polinomi primitivi in $\mathbb{Z}[X]$ ed irriducibili in $\mathbb{Q}[X]$ allora sono irriducibili anche in $\mathbb{Z}[X]$. $X^2 + 1$ è un polinomio privo di radici sia in $\mathbb{Q}[X]$ che in $\mathbb{Z}_3[X]$, quindi, essendo di secondo grado, è irriducibile in entrambi i domini. Inoltre essendo $X^2 + 1$ primitivo in $\mathbb{Z}[X]$ allora è irriducibile anche in $\mathbb{Z}[X]$. $X^4 + 1$ non ha radici né in $\mathbb{Q}[X]$ né in $\mathbb{Z}_3[X]$, quindi al più si può scrivere come prodotto di polinomi di secondo grado. Sia $f(X) = (X^2 + aX + b)(X^2 + cX + d)$. Allora necessariamente a + c = 0, d + ac + b = 0, ad + bc = 0, bd = 1. In particolare a = -c, quindi $d + b = c^2$ e c(b - d) = 0. Se c = 0 allora b=-d, ma l'equazione $-d^2=1$ non ha soluzione né in $\mathbb Q$ né in $\mathbb Z_3$. Quindi $c \neq 0$, da cui b = d, e quindi $b^2 = 1$. Si deve anche avere $2b = c^2$. In \mathbb{Q} non è possibile: $b^2 = 1$ implica $b = \pm 1$ ma ± 2 non è un quadrato in \mathbb{Q} . In \mathbb{Z}_3 b=2, c=1 verifica $b^2=1, 2b=c^2$; inoltre tale scelta è compatibile con le altre equazioni. Quindi $X^4 + 1$ è irriducibile in $\mathbb{Q}[X]$, e anche in $\mathbb{Z}[X]$ dato che è un polinomio primitivo, ma è riducibile in $\mathbb{Z}_3[X]$: $X^4 + 1 = (X^2 + 2X + 2)(X^2 + X + 2).$

2. (Dikranjan - Aritmetica e Algebra - esercizio 11.38)

Si considerino in $\mathbb{Z}[X]$ i polinomi $f(X) = X^3 + X + 1$ e $g(X) = X^4 + X^2 + 1$ e gli ideali I = (2, f(X)), J = (2, g(X)). Dire se I, J sono ideali primi o massimali. Decomporre poi $X^4 + X^2 + 1$ in $\mathbb{Z}_7[X]$ nel prodotto di fattori irriducibili .

Soluzione:

 $\mathbb{Z}[X]$ è un anello commutativo unitario, quindi per studiare la primalità/massimalità di I è sufficiente studiare l'anello quoziente $\mathbb{Z}[X]/I$: se è un campo allora I è massimale, se è un dominio allora I è primo, altrimenti non è né primo né massimale. Per quanto visto durante l'esercitazione, per il terzo teorema di omomorfismo tra anelli $\mathbb{Z}[X]/I \cong \mathbb{Z}_2[X]/(f(X))$. Dato che \mathbb{Z}_2 è un campo, allora $\mathbb{Z}_2[X]$ è un dominio euclideo e in particolare un PID, perciò $\mathbb{Z}_2[X]/(f(X))$ o non è un dominio di integrità oppure è un campo, ed è un campo se e solo se f(X) è irriducibile in $\mathbb{Z}_2[X]$.

Dato che f(X) è un polinomio di terzo grado privo di radici in \mathbb{Z}_2 allora f(X) è irriducibile, quindi $\mathbb{Z}_2[X]/(f(X))$ è un campo e allora I è un ideale massimale.

Vale analogo discorso per l'ideale J, solo che in questo caso $g(X) = (X^2 + X + 1)^2$ in $\mathbb{Z}_2[X]$, quindi g(X) è riducibile in $\mathbb{Z}_2[X]$, perciò J non è né massimale né primo.

2 è una radice di $X^4 + X^2 + 1 \in \mathbb{Z}_7[X]$. Con Ruffini possiamo scrivere $f(X) = (X-2)(X^3+2X^2+5X+3)$. -2 è una radice di X^3+2X^2+5X+3 , quindi $X^3+2X^2+5X+3=(X+2)(X^2+5)$. $X^2+5=X^2-9=(X-3)(X+3)$. Concludendo: $X^4+X^2+1=(X-2)(X+2)(X-3)(X+3)$.

3. (Dikranjan - Aritmetica e Algebra - esercizio 11.25) Dimostrare che un ideale principale in $\mathbb{Z}[X]$ non è mai massimale.

Soluzione:

Supponiamo per assurdo che esista $f(X) \in \mathbb{Z}[X]$ tale che (f(X)) sia massimale. $\deg(f(X)) > 0$ altrimenti f(X) = p con p primo in \mathbb{Z} , ma in questo caso (p,X) sarebbe un ideale proprio che contiene (p). Sia q un primo in \mathbb{Z} che non divide il coeff. direttore di f(X). $q \notin (f(X))$, quindi $(q, f(X)) = \mathbb{Z}[X]$. In particolare esistono $h(X), g(X) \in \mathbb{Z}[X]$ tali che qh(X) + f(X)g(X) = 1. Passando modulo q si ha $\overline{f}(X)\overline{g}(X) = 1$, ma ciò è assurdo, dato che $\deg(\overline{f}(X)) > 0$.

- 4. Dire se i seguenti quozienti $R := \frac{D[X]}{(f(X))}$ sono domini di integrità o campi:
 - (a) $D = \mathbb{Z}, \mathbb{Q}, f(X) = 6 + 30X + 36X^2 + 18X^3 + 51X^4;$
 - (b) $D = \mathbb{Q}$, $f(X) = 1 + X + 2X^2 + 3X^3$;
 - (c) $D = \mathbb{Z}$, $f(X) = 11 + 21X + 15X^2$;
 - (d) $D = \mathbb{Z}$, $f(X) = X^4 + 120X^3 + 730X^2 + 17X + 71$.

Soluzione:

- (a) $f(X) = 3(2+10X+12X^2+6X^3+17X^4)$ con $2+10X+12X^2+6X^3+17X^4$ irriducibile in $\mathbb{Z}[X]$ per il criterio di Eisenstein e quindi anche in $\mathbb{Q}[X]$, dato che è primitivo in $\mathbb{Z}[X]$. Siccome f(X) non è primo (perché riducibile) in $\mathbb{Z}[X]$ allora R non è un dominio di integrità. Siccome f(X) è irriducibile in $\mathbb{Q}[X]$ allora, essendo $\mathbb{Q}[X]$ un ED, (f(X)) è un ideale massimale, quindi R è un campo;
- (b) essendo \mathbb{Q} un campo e f(X) di terzo grado allora f(X) è irriducibile se e solo se non ha radici in \mathbb{Q} . Un'eventuale radice $\frac{r}{s}$, con $r, s \in \mathbb{Z}$, MCD(r, s) = 1 deve essere tale che r|1 e s|3. Quindi basta controllare $\pm \frac{1}{3}$. $f(\frac{1}{3}) > 0$, $f(-\frac{1}{3}) = \frac{7}{9} \neq 0$. f(X) è irriducibile, quindi essendo $\mathbb{Q}[X]$ un ED, R è un campo;
- (c) per il criterio di Eisenstein f(X) è irriducibile. Allora, essendo $\mathbb{Z}[X]$ un UFD, (f(X)) è un ideale primo, quindi R è un dominio di integrità. Per l'esercizio precedente (f(X)) non è massimale, quindi R non è un campo;

- (d) dato che f(X) è monico possiamo ridurci modulo ogni primo p. Scegliamo p=2. $\overline{f}(X)=X^4+X+1$ è irriducibile in $\mathbb{Z}_2[X]$, dato che $\overline{f}(X)$ non ha radici e $\overline{f}(X)\neq (X^2+X+1)^2=X^4+X^2+1$, dove X^2+X+1 è l'unico polinomio irriducibile di secondo grado in $\mathbb{Z}_2[X]$. Possiamo quindi concludere che f(X) è irriducibile anche in $\mathbb{Z}[X]$. Come nell'esempio precedente, quindi, R non è un campo ma è un dominio di integrità.
- 5. Determinare gli ideali primi e massimali dell'anello $\mathbb{R}[X]/(X^4+1)$.

Soluzione:

Per il teorema di corrispondenza, considerando la proiezione canonica (suriettiva) $\pi: \mathbb{R}[X] \to \mathbb{R}[X]/(X^4+1)$, per determinare gli ideali primi/massimali di $\mathbb{R}[X]/(X^4+1)$ è sufficiente determinare gli ideali primi/massimali di $\mathbb{R}[X]$ che contengono il nucleo (X^4+1) . Dato che $\mathbb{R}[X]$ è un ED e quindi in particolare un PID, allora gli ideali primi non nulli sono massimali e gli ideali massimali che contengono X^4+1 sono tutti e soli gli ideali generati dai fattori irriducibili di X^4+1 . In $\mathbb{R}[X]$ $X^4+1=(X^2-\sqrt{2}X+1)(X^2+\sqrt{2}X+1)$, con $X^2-\sqrt{2}X+1$ e $X^2+\sqrt{2}X+1$ irriducibili, poiché con discriminante negativo, e distinti. Quindi se $I=(X^2-\sqrt{2}X+1)\subset\mathbb{R}[X]$ e $J=(X^2+\sqrt{2}X+1)\subset\mathbb{R}[X]$ allora gli ideali massimali di $\mathbb{R}[X]/(X^4+1)$ sono $\pi(I)$ e $\pi(J)$.

6. Si consideri l'anello degli interi di Gauss $\mathbb{Z}[i]$ e l'ideale I = (3+2i). Dire se (2+i)+I è invertibile in $\mathbb{Z}[i]/I$ ed eventualmente determinarne l'inverso.

Soluzione:

La norma di 3+2i è 13, un numero primo. Quindi 3+2i è irriducibile in $\mathbb{Z}[i]$; siccome $\mathbb{Z}[i]$ è un ED, e in particolare un PID, allora I è un ideale massimale. Quindi $\mathbb{Z}[i]/I$ è un campo. Siccome $(2+i)+I\neq I$, cioè (2+i)+I non è l'elemento nullo di $\mathbb{Z}[i]/I$, allora (2+i)+I è senz'altro invertibile in $\mathbb{Z}[i]/I$. Troviamone l'inverso, utilizzando l'algoritmo euclideo per il calcolo del MCD tra 3+2i e 2+i e la relativa identità di Bézout. 3+2i=2(2+i)-1, quindi 1=2(2+i)-(3+2i), quindi 1+I=(2(2+i))+I-(3+2i)+I=(2+I)((2+i)+I), perciò 2+I è l'inverso di (2+i)+I in $\mathbb{Z}[i]/I$.

7. Sia $K := \frac{\mathbb{Z}_3[X]}{I}$, con $I := (X^2 + X - 1)$. Dimostrare che K è un campo, determinarne il numero degli elementi e calcolare l'inverso di X + I.

Soluzione:

 X^2+X-1 è un polinomio di secondo grado privo di radici in \mathbb{Z}_3 . Quindi è irriducibile. Dato che $\mathbb{Z}_3[X]$ è un ED, allora I è un ideale massimale e K è un campo. K ha 9 elementi, dato che X^2+X-1 è di secondo grado. Per calcolare l'inverso di X+I utilizziamo l'algoritmo euclideo per il calcolo del MCD, in $\mathbb{Z}_3[X]$, tra X e X^2+X-1 . $X^2+X-1=X(X+1)-1$, quindi $1=-(X^2+X-1)+X(X+1)$. Allora l'inverso di X+I è (X+1)+I.

8. Si consideri il polinomio $f(X) = X^3 + X + 1 \in \mathbb{Q}[X]$ e l'ideale I da esso generato.

- (a) Verificare che f(X) è irriducibile in $\mathbb{Q}[X]$.
- (b) Si consideri $K := \mathbb{Q}[X]/I$. Dimostrare che K è un campo. Calcolare $[K:\mathbb{Q}]$.
- (c) Sia $\theta := X + I \in K$. Esprimere ciascuno dei seguenti elementi nella base $\{1, \theta, \theta^2\}$: θ^4 , θ^5 , $3\theta^5 \theta^4 + 2$, $(\theta^2 + 2\theta + 2)^{-1}$.

Soluzione:

- (a) f(X) è un polinomio privo di radici e di terzo grado in $\mathbb{Q}[X]$, dove \mathbb{Q} è un campo. Quindi f(X) è irriducibile.
- (b) Siccome $\mathbb{Q}[X]$ è un ED e f(X) è irriducibile allora I è un ideale massimale e di conseguenza K è un campo. Per il teorema di Kronecker $[K:\mathbb{Q}]=3$.
- (c) Per il teorema di Kronecker $K = \{a_0 + a_1\theta + a_2\theta^2 | a_0, a_1, a_2 \in \mathbb{Q}\}$, con $\{1, \theta, \theta^2\}$ base di K su \mathbb{Q} . In base al teorema di divisione con resto nel dominio euclideo $\mathbb{Q}[X]$ possiamo scrivere: $X^4 = X(X^3 + X + 1) (X^2 + X)$, quindi $\theta^4 = -\theta^2 \theta$, oppure dato che in $K \theta^3 + \theta + 1 = 0$ allora $\theta^3 = -\theta 1 \Rightarrow \theta^4 = -\theta^2 \theta$; $X^5 = (X^2 1)(X^3 + X + 1) X^2 + X + 1$, quindi $\theta^5 = -\theta^2 + \theta + 1$, oppure $\theta^5 = \theta\theta^4 = \theta(-\theta^2 \theta) = -\theta^3 \theta^2 = \theta + 1 \theta^2$. Allora $3\theta^5 \theta^4 + 2 = -2\theta^2 + 4\theta + 5$. Per calcolare l'inverso di $\theta^2 + 2\theta + 2$ utilizziamo l'algoritmo euclideo per il calcolo del MCD tra $X^3 + X + 1$ e $X^2 + 2X + 2$ in $\mathbb{Q}[X]$: $13/9 = (X^3 + X + 1)(-X/3 1/9) + (1 + (X 2)(X/3 + 1/9))(X^2 + 2X + 2)$, quindi $13/9 + I = ((X^2 + 2X + 2) + I)((X^2/3 5/9X + 7/9) + I)$, quindi $(\theta^2 + 2\theta + 2)^{-1} = 9/39\theta^2 5/13\theta + 7/13$.