Оценка второго собственного числа стационарных систем

Видяева Карина Олеговна, гр.522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н. Ермаков С.М. Рецензент: аспирантка Загрубская В.А.

Санкт-Петербург 2009

Введение

Существует множество задач, для решения которых необходима информация о собственных значениях.

Проблема:

Необходимо решать эти задачи для матриц размерности 10^3 - 10^6 .

Постановка задачи:

Разработать метод, позволяющий вычислять второе собственное число для матриц больших размерностей.

Системы массового обслуживания, задачи об изображениях

Вектор состояний системы в момент времени і

$$p(i) = (p_0(i), p_1(i), p_2(i), ...), \qquad 0 \le p_n(i) \le 1, n = 0,1,2,3, ... \sum_n p_n(i) = 1.$$

$$(E_n, E_{n'}) - p_{nn'}$$
 $p_{n'}(i+1) = \sum_n p_n(i)p_{nn'}$ — уравнение состояний системы

или в матричных обозначениях $p(i+1) = p(i)\mathcal{P}$.

Определения. Ядро $\mathcal P$ называется $\mathit{pesepcushim}$ по отношению к μ , если $\mu(x)\mathcal P(x,y)=$

 $\mu(y)\mathcal{P}(y,x)$ для всех x, y из \mathcal{X} . Матрица \mathcal{P} называется npumumuвной, если при

возведении ее в некоторую степень получается строго положительная матрица.

Стационарное распределение. Если матрица перехода является примитивной, то

$$\lim_{t o \infty} p_i(t) = p(\infty) = p$$
, где $p_n > 0$, $n = 0$,1,2, ...

Известно, что для матриц масс. обсл. погрешность в установлении стац.реж. определяетя $|\lambda_2|$

Теорема. Если примитивное марковское ядро \mathcal{P} реверсивно относительно инвариантного (стационарного) распределения μ , то $\|\nu\mathcal{P}^n - \mu\| \le c\lambda_2^n$, для всякого начального распределения ν и всех $n \ge 1$, где $c = D\mu(\rho_0)^{1/2}$, $\rho_0(x) = \nu(x)/\mu(x)$.

Вычисление первого собственного числа

 \mathcal{X} линейное нормированное пространство.

A — линейный оператор из $\mathcal{X} \to \mathcal{X}$ с дискретным спектром такой, что собственные функции А образуют базис \mathcal{X} ,

$$X = \sum_{i=1}^{m} c_i \varphi_i$$
, $A\varphi_i = \lambda_i \varphi_i$,

где λ_i —собственные числа A и $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_m|$;

$$A^n X = \sum_{i=1}^m A^n c_i \varphi_i = \sum_{i=1}^m c_i \lambda_i^n \varphi_i.$$

Обозначим $(c_i \varphi_i, Y) = a_i, i = 1...n$

Тогда
$$(A^n X, Y) = \sum_{i=1}^m a_i \lambda_i^n$$
.

$$\frac{(A^n X,Y)}{(A^{n-1} X,Y)} \xrightarrow[n \to \infty]{} \lambda_1, \quad a_1 \neq 0$$

Вычисление второго собственного числа

1 случай: λ_2 — вещественное.

$$\frac{((\mathsf{A}^n - \mathsf{A}^{n-1}) \mathsf{X}, \mathsf{Y})}{((\mathsf{A}^{n-1} - \mathsf{A}^{n-2}) \mathsf{X}, \mathsf{Y})} \xrightarrow[n \to \infty]{} \lambda_2, \quad \alpha_2 \neq 0$$

2 случай: λ_2 — комплексное.

Пусть
$$\lambda_2 = a + ib$$
, $a = \text{Re } \lambda_2$, $b = \text{Im } \lambda_2$;

АХ =
$$\varphi_1$$
 + $\rho(\cos\psi\alpha$ - $\sin\psi\beta)$ + ···, где ρ = $\sqrt{a^2+b^2}$; $\cos\psi$ = $\frac{a}{\sqrt{a^2+b^2}}$.

$$A^2$$
X = φ_1 + $C \rho^2 (\cos(2\psi + \tau))$ + ···, где $\cos \tau = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}}$.

$$A^n X = \varphi_1 + C \rho^n (\cos(n\psi + \tau)) + \cdots$$

$$\frac{\left(\left(\mathsf{A}^{n}-\mathsf{A}^{n-1}\right)\mathsf{X},\mathsf{Y}\right)}{\left(\left(\mathsf{A}^{n-1}-\mathsf{A}^{n-2}\right)\mathsf{X},\mathsf{Y}\right)} = \frac{\rho^{n-1}(\rho\cos(n\psi+\tau)-\cos((n-1)\psi+\tau))}{\rho^{n-2}(\rho\cos((n-1)\psi+\tau)-\cos((n-2)\psi+\tau))} = \frac{\xi_{n}-\xi_{n-1}}{\xi_{n-1}-\xi_{n-2}},\;\left(*\right)$$

$$\xi_n = (\widehat{A^n X, Y})$$

Оценка погрешности вычисления первого и второго собственных чисел

Оценка погрешности вычисления первого собственного числа:

$$\xi_n = (\widehat{A^n X, Y}) = \frac{1}{N} \sum_i \zeta_i, \ \mathbf{E} \zeta_i = a;$$

$$\eta_n = (A^{n-1}X, Y) = \frac{1}{N} \sum_i \tau_i, \mathbf{E}\tau_i = b;$$

$$\mathbf{D}\frac{\xi_n}{\eta_n} = \frac{1}{b^2} \frac{\mathbf{D}\zeta_i}{N} + \frac{a^2}{b^4} \frac{\mathbf{D}\tau_i}{N} - \frac{2a}{b^3} \operatorname{cov}(\zeta_i, \tau_j) + o\left(\frac{1}{N}\right).$$

Для нахождения оценки погрешности второго собственного числа в вещественном случае

необходимо вычислять
$$\xi_n = ((A^n - \overline{A^{n-1}}) X, Y); \eta_n = ((A^{n-1} - \overline{A^{n-2}}) X, Y).$$

Известно, что функция от средних $f(\frac{1}{N}\sum x_i, \frac{1}{N}\sum y_i)$ при больших N имеет нормальное распределение

со средним
$$f(\mathbf{E}x_i, \mathbf{E}y_i)$$
 и смещением $O\left(\frac{1}{N}\right)$.

Аналитические выражения для дисперсии оценок нужны при теоретических исследованиях, направленных на уменьшение дисперсии.

Вычисление спектра линейного оператора

$$F = (\xi_1, \xi_2, ..., \xi_k, ...)$$

Выберем l – длину окна и образуем $(\xi_i, ..., \xi_{i+l-1})$, $1 \le i \le p$, с коэффициентами $c_0, c_1, ... c_{l-1}$.

$$\sum_{t=k}^{k+m} (c_0 \xi_t + c_1 \xi_{t+1} + c_2 \xi_{t+2} \dots + c_{l-1} \xi_{t+l-1})^2 \to \min_{c_0, c_1, \dots c_{l-1}}$$

Утверждение

 $c_0, c_1, \dots c_{l-1}$ — коэффициенты полинома, корни которого являются собственными числами оператора А

Дифференцирование по c_p , p=0.. l-1 дает нам систему линейных уравнений

$$\sum_{t=k}^{k+m} \xi_{t+p} \sum_{j=0}^{l-1} c_j \, \xi_{t+j} = 0, \qquad p = 0..l - 1.$$

Подставляя в эту систему выражение для

$$\xi_t = (A^t X, Y) = \sum_{i=1}^m a_i \, \lambda_i^n$$
, $a_i \neq 0$, $i = 1..n$, получаем

Вычисление спектра линейного оператора

Обозначим
$$Q(\lambda_i) = \sum_{j=0}^{l-1} c_j \lambda_i^j$$
 , $i = 1..n$

Приводя систему к более наглядному виду,

$$\begin{split} &a_1 \left(\sum_{j=0}^{l-1} c_j \lambda_1^j \right) \sum_{t=k}^{k+m} \lambda_1^t \left(\ a_1 \lambda_1^{t+p} + a_2 \lambda_2^{t+p} + \dots + a_n \lambda_n^{t+p} \right) + \\ &+ a_2 \left(\sum_{j=0}^{l-1} c_j \lambda_2^j \right) \sum_{t=k}^{k+m} \lambda_2^t \left(\ a_1 \lambda_1^{t+p} + a_2 \lambda_2^{t+p} + \dots + a_n \lambda_n^{t+p} \right) + \dots \\ &+ a_n \left(\sum_{j=0}^{l-1} c_j \lambda_n^j \right) \sum_{t=k}^{k+m} \lambda_n^t \left(\ a_1 \lambda_1^{t+p} + a_2 \lambda_2^{t+p} + \dots + a_n \lambda_n^{t+p} \right) = 0 \ , p = 0 ... l - 1 \end{split}$$

l=n, однородная система уравнений с n неизвестными $Q(\lambda_i)$, i=1...n

l < n, то $Q(\lambda_i)$ не обязательно обращается в 0, более того, при $t \to \infty$

$$\sum_{t=k}^{k+m} \lambda_i^t \Big(\ a_1 \lambda_1^{t+p} + a_2 \lambda_2^{t+p} + \dots + a_n \lambda_n^{t+p} \Big) \to 0,$$
 возникает погрешность порядка $O\left(\left| \frac{\lambda_i}{\lambda_1} \right|^t \right)$

Вычисление спектра линейного оператора. Алгоритм

- 1. Вычисляем $\xi_t = ((A^{t+1} A^t) X, Y)$ с помощью метода Монте-Карло.
- 2. Выбираем l, образуем (ξ_i ,..., ξ_{i+l-1}), с коэффициентами c_0 , c_1 , ... c_{l-1} ,

$$\sum_{t=k}^{k+m} (c_0 \xi_t + c_1 \xi_{t+1} + c_2 \xi_{t+2} \dots + c_{l-1} \xi_{t+l-1})^2 \to \min_{c_0, c_1, \dots c_{l-1}}$$

Решаем систему из l уравнений:

$$\begin{cases} c_0 \sum_{t=k}^{k+m} \xi_t^2 + c_1 \sum_{t=k}^{k+m} \xi_t \xi_{t+1} + c_2 \sum_{t=k}^{k+m} \xi_t \xi_{t+2} + \dots + c_{l-1} \sum_{t=k}^{k+m} \xi_t \xi_{t+l-1} = 0 \\ c_0 \sum_{t=k}^{k+m} \xi_t \xi_{t+1} + c_1 \sum_{t=k}^{k+m} \xi_{t+1}^2 + c_2 \sum_{t=k}^{k+m} \xi_{t+1} \xi_{t+2} + \dots + c_{l-1} \sum_{t=k}^{k+m} \xi_{t+1} \xi_{t+l-1} = 0 \\ c_0 \sum_{t=k}^{k+m} \xi_t \xi_{t+1} + c_1 \sum_{t=k}^{k+m} \xi_{t+1}^2 + c_2 \sum_{t=k}^{k+m} \xi_{t+1}^2 \xi_{t+2} + \dots + c_{l-1} \sum_{t=k}^{k+m} \xi_{t+1}^2 \xi_{t+l-1} = 0 \\ c_0 \sum_{t=k}^{k+m} \xi_t \xi_{t+l-1} + c_1 \sum_{t=k}^{k+m} \xi_{t+1}^2 \xi_{t+l-1} + c_2 \sum_{t=k}^{k+m} \xi_{t+1}^2 \xi_{t+l-1} + \dots + c_{l-1} \sum_{t=k}^{k+m} \xi_{t+l-1}^2 = 0 \end{cases}$$

Обозначим найденные коэффициенты \hat{c}_0 , \hat{c}_1 ... \hat{c}_{l-1} .

3.
$$Q(\lambda) = \hat{c}_0 + \hat{c}_1 \lambda + \hat{c}_2 \lambda^2 + \dots + \hat{c}_{l-1} \lambda^{l-1}$$
.

Корни многочлена $Q(\lambda) - 2$, 3 ... (l-1) с. ч. А.

Трудоемкость: $O(l^3)$ умножений и $O(ml^2)$ сложений.

Результаты. Поведение ошибки

Матрица пятого порядка k = 5, n = k+10.

$$\widehat{\xi_t} = ((\mathbf{A}^{t+1} - \mathbf{A}^t) \mathbf{X}, \mathbf{Y}) + \mathbf{N}(\mathbf{0}, \sigma^2)$$

	σ^2	$ \widehat{\lambda_2} - \lambda_2 $
1	0.00001	.306e-4
2	0.000025	.514e-4
3	0.00005	.147e-3
4	0.000075	.231e-3
5	0.0001	.269e-3
6	0.00025	.460e-3
7	0.0005	.153e-2
8	0.00075	.225e-2
9	0.001	.152e-2
10	0.0025	.156e-0
11	0.005	.464e-0
12	0.0075	.325e-0
13	0.01	.536e-0

Результаты. Массовое обслуживание.

Система обслуживания с одним прибором, интенсивность поступающего потока λ , интенсивность обслуживания μ .

 λdt — вероятность поступления требования в интервале dt, а μdt — вероятность поступления требования в этом интервале, n —число состояний системы.

Матрица перехода:

	n = 0	n=1	n = 2	n = 3	
n = 0	$1 - \lambda dt$	λdt	0	0	
n = 1	μdt	$1-(\lambda+\mu)dt$	λdt	0	
n = 2	0	μdt	$1-(\lambda+\mu)dt$	λdt	
n = 3	0	0	μdt	$1-(\lambda+\mu)dt$	

Результаты. Поведение ошибки

1)
$$n = 8, \lambda = 0.34, \mu = 0.23$$

Длина окна (l)	$ \lambda_2 - \widehat{\lambda_2} $
3	.109e-1
4	.232e-3
5	.410e-3
6	.999e-3
7	.202e-3

2) n = 10,
$$\lambda$$
 = 0.34, μ = 0.23

Длина окна (l)	$ \lambda_2 - \widehat{\lambda_2} $
3	.691e-2
4	.172e-2
5	.442e-3
6	.127e-2
7	.134e-4

Результаты. Поведение ошибки

 $N(0,0.001),\,l=5,\,\,\lambda=0.34,\,\,\mu=0.23,\,\,n-$ число состояний системы (размерность матрицы)

n	$ \lambda_2 - \widehat{\lambda_2} $
8	.122e-2
10	.106e-2
12	.157e-2
14	.688e-2
16	.141e-1
18	.148e-1
20	.314e-1
22	.472e-1
24	.432e-1
26	.377e-1
28	.358e-1
30	.470e-1

Выводы

- Предложен метод вычисления второго собственного числа для стохастической матрицы, при этом рассмотрен как вещественный, так и комплексный случай.
- Приведены оценки погрешности вычислений первого собственного числа и второго собственного числа для стохастической матрицы, вещественный случай.
- Рассмотрен и исследован метод, позволяющий вычислять весь спектр линейного оператора.
- Построен алгоритм, вычисляющий второе собственное число для стохастических матриц. Исследованы зависимости полученных результатов от различных начальных данных и параметров на примере системы массового обслуживания.