Calculus I

Type 3: Exponent equation that reduces to quadratic

Todor Miley

2019

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Solve the equation

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set u = ?.

Solve the equation

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set $u = 2^x$.

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
.

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = ?$,

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = 4u^2$,

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = 4u^2$, $2^{x+2} = ?$.

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.

$$4u^2 - 4u - 3 = 0$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.

$$4u^2 - 4u - 3 = 0$$

$$(?)$$
 $(?)$ $=$ 0

$$4^{x+1} - 2^{x+2} - 3 = 0$$

Set
$$u = 2^x$$
. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.

$$4u^2 - 4u - 3 = 0$$

$$(2u-3)(2u+1) = 0$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = 0$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = 0$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$2^x = \frac{3}{2} \text{ or } 2^x = -\frac{1}{2}$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$2^x = \frac{3}{2} \text{ or } 2^x = -\frac{1}{2}$$

$$x = \log_2\left(\frac{3}{2}\right)$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$2^x = \frac{3}{2} \text{ or } 2^x = -\frac{1}{2}$$
or no real solution

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$2^x = \frac{3}{2} \text{ or } 2^x = -\frac{1}{2}$$

$$x = \log_2\left(\frac{3}{2}\right) = \frac{\ln(?)}{\ln?}$$
or no real solution

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$2^x = \frac{3}{2} \text{ or } 2^x = -\frac{1}{2}$$

$$x = \log_2\left(\frac{3}{2}\right) = \frac{\ln\left(\frac{3}{2}\right)}{\ln 2} \text{ or no real solution}$$

$$4^{x+1} - 2^{x+2} - 3 = 0$$
Set $u = 2^x$. Then $4^{x+1} = 4u^2$, $2^{x+2} = 4u$.
$$4u^2 - 4u - 3 = 0$$

$$(2u - 3)(2u + 1) = 0$$

$$2u - 3 = 0 \text{ or } 2u + 1 = 0$$

$$u = \frac{3}{2} \text{ or } u = -\frac{1}{2}$$

$$2^x = \frac{3}{2} \text{ or } 2^x = -\frac{1}{2}$$

$$x = \log_2\left(\frac{3}{2}\right) = \frac{\ln\left(\frac{3}{2}\right)}{\ln 2} \approx 0.58496 \text{ or no real solution}$$