Isomorphism of memBers	1
Shigeo Hattori	2
bayship.org@gmail.com	
October 22, 2019	9
First version: September, 2019	4
1 Introduction	5
Definition 1.1 (memBer). Take $\forall x$ such that (there exists $\exists S$ such that $x \in S$).	6
Then x is said a memBer.	7
• • • • • • • • • • • • • • • • • • •	8
This article:(1) defines a binary relation that (x,y) as memBers are isomor-	9
phic,(2) proves that the binary relation is an equivalence relation, (3) proves	10
that all homeomorphic topological spaces are isomorphic as memBers, (4) defines that a memBer $S1$ is a minor of a memBer $S2$.	11 12
I expect that readers will realize that the newly defined isomorphisms are	13
somehow more fundamental than ,e.g., homeomorphisms of topological spaces.	14
Because "homeomorphisms" logically resolve to "isomorphisms of memBers"	15
whereas the inverse of it does not hold.	16
2 Notation	17
Definition 2.1. Consider "A and B". It is almost equivalent to "B \wedge A". But	18
some times they are different. Because the meaning of "B" may depend on "A".	19
	20
"A $_{then} \land$ B" \equiv "A holds then B holds" \equiv "A holds and B holds".	21
"A $_{else} \lor$ B" \equiv "if A fails then B holds".	22
" $\forall x :\in S$ " \equiv "for all x such that $x \in S$ ".	23
" $\forall x \text{ as an integer"} \equiv \text{"for all } x \text{ such that } x \text{ is an integer"}.$	24

3 Deep member	25
Definition 3.1 (Deep member of memBer). This definition uses a style of recursion. Take $\forall (x,y)$ such that *1 holds. Then define *2 $_{then} \land$ *3.	26 27 28
1 $x = y$ else (there exists $\exists z$ such that $x \in z \in \geq 0$ y).	29
$2 \ x$ is a deep member of y .	30
3 $x \in {}^{\geq 0} y$	31
	32
Definition 3.2 (Space of memBer). Take $\forall (x,y)$ such that *1 holds. Then define *2.	33 34
1 $y = \{d \mid d \in \geq 0 x \text{ then } d \text{ is a point } \}.$	35
$2 \ y$ is the space of x .	36
·	37
4 Notations	38
Definition 4.1 (Restriction of binary relation). Take $\forall (L,X,Y,X1,Y1)$ such that *1 holds. Then define (*2 $_{then} \land$ *3 $_{then} \land$ *4).	39 40
1 L is a binary relation on $X * Y$ _{then} $\wedge X1 \subset X$ _{then} $\wedge Y1 \subset Y$.	41
2 $L[X1] := \{ (x,y) \in L \mid x \in X1 \}.$	42
3 $L[,Y1]:=\{ (x,y) \in L \mid y \in Y1 \}.$	43
4 $L[X1,Y1]:=\{\ (x,y)\in L\ \ x\in X1\ _{then}\wedge\ y\in Y1\ \}.$	44

5 Isomorphic memBers	45
, , , ,	46 47
	48 49
	50
Take $\forall (x, y, F)$ such that *A holds. Then define (*B1 $_{then} \land$ *B2).	5 1
A (F is a binary relation $_{then} \wedge *0$) holds.	52
	53
0 If there exists $\exists v :\in \{x, y\}$ such that $space(v) = \emptyset$ Then $x = y$ Else *1.	54
1 ((/0/ 1	55 56
2 $F[space(x), space(y)]$ is a ¹ bijection from*to space(x)*space(y).	57
3 There exists $\exists f$ such that (*4 $_{then} \land$ *5 $_{then} \land$ *6).	58
4 f is a bijection from*to $x * y$.	59
5 Take $\forall (m1, m2) \in f$.	60
6 *A holds for $(m1, m2, F)$ in place of (x, y, F)).	61
B1 (x,y) are said isomorphic by F as an isomorphism.	62
	63 64

¹To weaken the definition, replace "bijection" with "function" or with "binary relation".

6 Minors of memBers	65
Definition 6.1 (Minors). Take $\forall (x,y)$ such that *A holds. Then it is said as *B.	66 67
\mathbf{A} *1 _{then} \wedge *2.	68
1 Take $\forall d$. Then $d \in \geq 0$ $x \Rightarrow d \in \geq 0$ y .	69
2 Take $\forall (d1, d2, d3)$ such that (take $\forall d \in \{d1, d2, d3\}$, then $d \in \geq 0$ x). Then (*3 \Leftarrow *4).	70 71
3 $((x, d1, d3), (x, d2, d3))$ are isomorphic.	72
4 $((y, d1, d3), (y, d2, d3))$ are isomorphic.	73
\mathbf{B} *5 $_{then} \wedge$ *6.	74
$5 \ x$ is a minor of y .	75
6 $x \leq^{minor} y$.	7 6
•	77
7 Notations	7 8
Definition 7.1 (Family). Take $\forall (x, I, X)$ as a family X , the index set I and the function x , then x is surjective. In other words, $X = \{x_i \mid i \in I\}$. And x is said a family's function.	79 80 81 82 83
Definition 7.2 (Chain). Take $\forall C$ as a chain. Then C is regarded as a family and 2 defined (I,C) such that $(*1 \ _{then} \wedge \ *2 \ _{then} \wedge \ *3)$.	84 85
1 I is the index set $_{then} \land I := [min := 1, max := C] \subset N$. ³ Footnote.	86
2 C as a family's function is a bijection from*to $I * C$.	87
3 Take $\forall (i,j) :\in I * I$. Then $i < j \equiv C_i < C_j$.	88

 $^{^{2}}$ The same name as the chain C. ^{3}N denotes the set of all natural numbers.

8 Depth of memBer	89
Definition 8.1 (Powers of set membership). Take $\forall (C, x, y)$ such that *1. Then define *2 $_{then} \land$ *3.	90 91
1 C is a chain between $C_{min} = x$ and $C_{max} = y$ by set ⁴ membership.	92
2 $power(C) := C - 1.$	93
$3 \ x \in ^{power(C)} y.$	94
For example: let $y:=\{1,\{1\}\}$. Then $1 \in {}^1y$ then $1 \in {}^2y$.	95 96 97
Definition 8.2 (Depth of deep membership). Take $\forall (C, x, y)$ such that *1. Then define *2.	98 99
1 C is a longest chain between $C_{min} = x$ and $C_{max} = y$ by set ⁵ membership.	100
$2 \ depth(x,y) := power(C).$	101
For example: let $y:=\{1,\{1\}\}$. Then $depth(1,y)=2$.	102 103 104
Definition 8.3 (Sum of depths of deep membership). Take $\forall C$ such that *1. Then define *2.	105 106
1 C is a chain by deep ⁶ membership.	107
2 $depth(C) := \sum_{i=1}^{ C -1} depth(C_i, C_{i+1}).$	108
· ·	109
Proposition 1 (Depth of deep member). Take $\forall (x, y, z)$ such that $z \in y \in \geq 0$ x . Then $depth(z, x) > depth(y, x)$.	110 111
· ·	112
Proof.	113
• Assume it is false.	114
⁴ For example, $x \in C_2$.	

For example, $x \in C_2$.

⁵For example, $x \in C_2$.

⁶For example, $C_1 \in {}^n C_2$

• There exists $\exists (x, y, z)$ such that it is a counterexample.	115
• Hence $depth(z, x) \leq depth(y, x)$.	116
• Hence $depth(z, x) \ge depth(z, y, x) > depth(y, x) \ge depth(z, x)$.	117
• The assumption is false.	118
	119
Proposition 2 (Depth of memBer). Take $\forall (x,y)$ such that $y \in x$. Then $depth(y) < depth(x)$.	120 121
Proof.	122
• Assume it is false.	123
• There exists $\exists (x, y)$ such that it is a counterexample.	124
• Hence $depth(y)(x)$.	125
• There exists $\exists v :\in y$ such that ($depth(y) = depth(v, y) \ge depth(v, y, x) \le depth(x)$).	126 127 128
• Though $depth(v, y) + 1 = depth(v, y, x)$.	129
• The assumption is false.	130
	131
9 Isomorphic memBers as equivalence relation	132
Definition 9.1. In this section, *Def refers to the definition titled as "Isomorphic memBers by binary relation". And $*1 \equiv *2$, without any explicit proof because it is trivial by *Def. And *3 holds, without any explicit proof because it is trivial by *Def.	133 134 135 136
1 (x_i, y_i) are isomorphic by F_i .	137
2 *Def.A holds for (x_i, y_i, F_i) in place of (x, y, F) .	138
3 Take $\forall (x, y, F)$ such that (*4 $_{then} \land$ (*5 $_{else} \lor$ *6)). Then *7 holds.	139
4 F is a binary relation.	140

5 $(space(x) = \emptyset \ _{then} \land \ x = y).$	141
6 $((x,y) \text{ are points } then \land (x,y) \in F).$	142
7 (x,y) are isomorphic by F .	143
Proposition 3 (Restriction). Take $\forall (x, y, F1, F2)$ such that (*A1 $_{then} \land$ *A2 $_{then} \land$ *A3) holds. Then *B holds.	144 145
A1 $(F1, F2)$ are binary relations.	146
A2 $F1[space(x)] = F2[space(x)].$	147
A3 Def.A holds for $(x, y, F1)$.	148
B Def.A holds for $(x, y, F2)$.	149
•	150
Proof.	151
• Assume it is false.	152
• There exists $\exists (x, y, F1, F2)$ such that it is a minimum counterexample by $depth(x)$.	153 154
• Let us follow *Def.A for $(x, y, F1)$.	155
• Assume the antecedent of *0 holds.	156
• Hence $space(x) = \emptyset$ $_{then} \land x = y$.	157
• Then *0 holds for $(x, y, F2)$.	158
• The last assumption is false.	159
• Assume the antecedent of *1 holds.	160
• Hence (x, y) are points $_{then} \land (x, y) \in F1$.	161
• Then *1 holds for $(x, y, F2)$.	162
• The last assumption is false.	163
• Then (*2 $_{then} \wedge$ *3) holds.	164
• Hence *2 holds for $(x, y, F2)$.	165
• Hence *3 fails for $(x, y, F2)$.	166

• Hence there exists $\exists (m1, m2) \in f$ such that • *Def.A holds for (m1, m2, F1) _{then} \wedge *Def.A fails for (m1, m2, F2). 168 • Hence (m1, m2, F1, F2) is a counterexample smaller than (x, y, F1, F2). • The first assumption is false. **171 Proposition 4** (Members' isomorphisms as consequent). Take $\forall (x, y, F)$ such 172 that (*A1 $_{then} \land$ *A2). Then (*B1 $_{then} \land$ *B2) holds. 173 **A1** *Def.A holds for (x, y, F) in place of (x, y, F). 174 $\mathbf{A2}$ F is an injection. 175 **B1** Take $\forall m1 :\in \geq 0$ x. Then there exists $\exists m2 :\in \geq 0$ y such that *Def.A holds 176 for (m1, m2, F) in place of (x, y, F). **B2** Take $\forall m2 :\in \geq 0$ y. Then there exists $\exists m1 :\in \geq 0$ x such that *Def.A holds 178 for (m1, m2, F) in place of (x, y, F). Proof of *B1. 180 • Assume it is false. 181 • Then there exists $\exists (x, y, F, m1)$ such that it is a minimum counterexample 182 by depth(m1, x). • It is trivial that $(x \neq m1)$. 184 • Consider the proposition titled as "Depth of deep member". 185 • There exists $\exists x1$ such that $(m1 \in x1 \mid_{then} \land (x, y, F, x1))$ is not a coun- 186 terexample). 187 • Hence *B1 holds for x1 in place of m1. 188 • Hence there exists $2:\in^{\geq 0} y$ such that *Def.A holds for (x1, y2, F). • Let us follow *Def.A for (x1, y2, F). • Assume the antecedent of *0 holds. • Then $space(x1) = \emptyset$ _{then} $\land x1 = y2$.

• Hence $space(m1) = \emptyset$ $_{then} \land m1 = m1$ $_{then} \land m1 \in \ge 0$ y.

• Hence *B1 holds for $m1$ in place of $m1$.	194
• Hence $(x, y, F, m1)$ is not a counterexample.	195
• Hence the last assumption is false.	196
• Assume the antecedent of *1 holds.	197
• Hence $(x1 \text{ is a point})$ $_{then} \land (m1 \in x1).$	198
• Hence the last assumption is false.	199
• Hence (*2 $_{then} \wedge$ *3) must hold.	200
• Hence, (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds.	201
• Hence *B1 holds for $(x, y, F, m1)$ in place of $(x, y, F, m1)$.	202
• Hence $(x, y, F, m1)$ is not a counterexample.	203
• The first assumption is false.	204
	205
Proof of *B2.	206
• Assume it is false.	207
• Then there exists $\exists (x, y, F, m2)$ such that $(x, y, F, m2)$ is a minimum counterexample by $depth(m2, y)$.	- 208 209
• It is trivial that $(y \neq m2)$.	210
• There exists $\exists y2$ such that $(m2 \in y2 \mid_{then} \land (x, y, F, y2))$ is not a counterexample).	- 211 212
• Hence *B2 should hold for $y2$ in place of $m2$.	213
• Hence there exists $1:\in^{\geq 0} x$ such that *Def.A holds for $(x1,y2,F)$.	214
• Let us follow *Def.A for $(x1, y2, F)$.	215
• Assume the antecedent of *0 holds.	216
• Then $space(x1) = \emptyset$ $_{then} \land x1 = y2$.	217
• Hence $space(m2) = \varnothing$ $_{then} \land \ m2 = m2$ $_{then} \land \ m2 \in \ge 0$ x .	218
• Hence *B2 holds for m2 in place of m2.	219

• Hence $(x, y, F, m2)$ is not a counterexample.	220
• Hence the last assumption is false.	221
• Assume the antecedent of *1 holds.	222
• Hence $(y2 \text{ is a point})$ $_{then} \land (m2 \in y2).$	223
• Hence the last assumption is false.	224
• Hence (*2 $_{then} \wedge$ *3) must hold.	225
• Hence, (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds.	226
• Hence *B2 holds for $(x, y, F, m2)$ in place of $(x, y, F, m2)$.	227
• Hence $(x, y, F, m2)$ is not a counterexample.	228
• The first assumption is false.	229
	230
Proposition 5 (Symmetric property). Take $\forall B$ such that B is a binary relation. Then let B^{-1} denote $\{(b2,b1) \mid (b1,b2) \in B\}$. Take $\forall (x,y,F)$. Then *A1 implies *A2.	231232233
A1 Def.A holds for (x, y, F) .	234
A2 Def.A holds for (y, x, F^{-1}) .	235
	236
Proof.	237
• Assume it is false.	238
• There exists $\exists (x, y, F)$ such that it is a minimum counterexample by $depth(x)$.	239 240
• Let us follow *Def.A for (x, y, F) in terms of *A1.	241
• Assume the antecedent of *0 holds for (x, y, F) in terms of *A1.	242
• Hence $space(x) = \emptyset$ $then \land x = y$.	243
• Hence *0 holds for (x, y, F) in terms of *A2.	244
• Hence the last assumption is false.	245

• Assume the antecedent of *1 holds for (x, y, F) in terms of *A1.	246
• Hence (x, y) are points $_{then} \land (x, y) \in F$.	247
• Hence (y, x) are points $_{then} \land (y, x) \in F^{-1}$.	248
• Hence *1 holds for (x, y, F) in terms of *A2.	2 49
• Hence the last assumption is false.	25 0
• Hence (*2 $_{then} \wedge$ *3) must hold for (x, y, F) in terms of *A1.	251
• Hence $F[space(x), space(y)]$ is a bijection from*to $space(x) * space(y)$.	252
• Hence $F^{-1}[space(y), space(x)]$ is a bijection from*to $space(y) * space(x)$.	253
• Hence *2 holds for (x, y, F) in terms of *A2.	254
• Hence *3 must fail for (x, y, F) in terms of *A2.	255
• At same time, *3 hold for (x, y, F) in terms of *A1.	256
Def.A holds for $(m1, m2, F)$ then \land Def.A fails for $(m2, m1, F^{-1})$.	257 258 259 260
• Hence $(m1, m2, F)$ is a counterexample.	261
• Consider the proposition titled as "Depth of memBer".	262
• Moreover $depth(m1) < depth(x)$.	263
• It contradicts to the title of (x, y, F) as a minimum counterexample.	264
• Hence the first assumption is false.	265
	266
Proposition 6 (Reflexive property). Take $\forall (x,F)$ such that *A holds. Then *B holds.	267 268
A F is the identity function on $space(x)$.	26 9
B Def.A holds for (x, x, F) .	27 0

Proof.	272
• Assume it is false.	273
$\bullet \;$ There exists $\exists (x,F)$ such that it is a minimum counterexample by $depth(x)$. 274
• Let us follow *Def.A for (x, x, F) .	275
• Assume the antecedent of *0 holds.	276
• Then *0 holds.	277
• The last assumption is false.	278
• Assume the antecedent of *1 holds.	27 9
• Then *1 holds.	280
• The last assumption is false.	281
• It is trivial that *2 holds. Hence *3 must fail.	282
• Let $f1$ be the identity function on x .	283
• Then *3 must fail for $f1$ in place of f .	284
• Though *4 holds.	285
• Hence (*5 $_{then} \wedge$ *6) must fail.	286
• Hence there exists $\exists (m1, m1) :\in f1$ such that *Def.A fails for $(m1, m1, F)$.	287
• Meanwhile *Def.A holds for $(m1, m1, F[space(m1)])$ because otherwise $(m1, F[space(m1)])$ would be a counterexample smaller than a minimum counterexample, (x, F) .	288 289 290
• Though consider the proposition titled as "Restriction".	291
• Then *Def.A holds for $(m1, m1, F)$.	292
• The first assumption is false.	293
	294
Proposition 7 (Transitive property). Take $\forall (B1, B2)$ such that $(B1, B2)$ are binary relations. Then let $B2 \circ B1$ denote $\{(b1, b3) \mid \exists b2 \text{ such that } (b1, b2) \in B1 \}$ then $\land (b2, b3) \in B2$. Take $\forall (x, y, z, F1, F2)$ such that $(*A1, y, A, A2)$ holds. Then *B holds.	
Take $\forall (x, y, z, F1, F2)$ such that (*A1 $_{then} \land *$ A2) holds. Then *B holds.	490

A1 Def.A holds for $(x, y, F1)$.	299
A2 Def.A holds for $(y, z, F2)$.	300
B Def.A holds for $(x, z, F2 \circ F1)$.	301
•	302
Proof.	303
• Assume it is false.	304
• There exists $\exists (x, y, z, F1, F2)$ such that it is a minimum counterexample by $depth(x)$.	305 306
• Let us follow *Def.A for $(x, y, F1)$ and for $(y, z, F2)$.	307
• Assume the antecedent of *0 holds for $(x, y, F1)$.	308
• Hence $space(x) = \emptyset$ $then \land x = y$.	309
• Hence the antecedent of *0 holds for $(y, z, F2)$.	310
• Hence $x = y = z$.	311
• Hence *0 holds for $(x, z, F2 \circ F1)$.	312
• The last assumption is false.	313
• Assume the antecedent of *0 holds for $(y, z, F2)$.	314
• Hence $space(y) = \emptyset$ then $y = z$.	315
• Hence the antecedent of *0 holds for $(x, y, F1)$.	316
• The last assumption is false.	317
• Assume the antecedent of *1 holds $(x, y, F1)$.	318
• Hence (x, y) are points $_{then} \land (x, y) \in F1$).	319
• Hence *1 also hold for $(y, z, F2)$ because otherwise *G.A cannot hold for $(y, z, F2)$.	320 321
• Hence (y, z) are points $_{then} \land (y, z) \in F2$).	322
• Hence (x, z) are points $_{then} \land (x, z) \in F2 \circ F1$.	323
• Hence *1 holds for $(x, z, F2 \circ F1)$.	324

• The last assumption is false.	325
• Assume the antecedent of *1 holds $(y, z, F2)$.	326
• Hence (y, z) are points $_{then} \land (y, z) \in F2$).	327
• Hence the antecedent of *1 also hold for $(x, y, F1)$ because otherwise *G.A cannot hold for $(x, y, F1)$.	328 329
• The last assumption is false.	330
• Hence (*2 $_{then} \wedge$ *3) holds for $(x, y, F1)$ and for $(y, z, F2)$.	331
• Hence $F1[space(x), space(Y)]$ is a bijection from*to $space(x) * space(y)$.	332
• And $F2[space(y), space(z)]$ is a bijection from*to $space(y) * space(z)$.	333
)334
• Hence *2 holds for $(x, z, F2 \circ F1)$.	335
• Hence *3 fails for $(x, z, F2 \circ F1)$.	336
• By the way,there exists $(f1, f2)$ such that (3 holds for $(x, y, F1, f1)$ in place of (x, y, F, f) then \land 3 holds for $(y, z, F2, f2)$ in place of (x, y, F, f)).	337 338 339 340
• Then *3 fails for $(x, z, F2 \circ F1, f2 \circ f1)$ in place of (x, y, F, f) .	341
• Hence, there exists $\exists (m1, m2, m3)$ such that ($(m1, m2) \in f1$ $_{then} \land$ $(m2, m3) \in f2$ $_{then} \land$ (the antecedent of this proposition accepts $(m1, m2, m3, F1, F2)$ as $(x, y, z, F1, F2)$) $_{then} \land$ $(m1, m2, m3, F1, F2)$ is a counterexample).	342 343 344 345 346 347 348 349
• Though $(m1, m2, m3, F1, F2)$ is smaller than a minimum counterexample.	350
• The first assumption is false.	351

10 Homeomorphism as Isomorphism	353
Proposition 8 (Members' isomorphisms as antecedent). Take $\forall (x, y, F, f)$ such that (*A1 $_{then} \land$ *A2 $_{then} \land$ *A3). Then *B holds.	354 355
A1 F is an injection.	356
A2 f is a bijection from*to x*y.	357
A3 Take $\forall (m1, m2) :\in f$. Then *Def.A holds for $(m1, m2, F)$.	358
B *Def.A holds for (x, y, F) in place of (x, y, F) .	359
Proof.	360
• Assume B fails.	361
• Hence there exists $\exists (x, y, F)$ such that *Def.A fails for (x, y, F) .	362
• Let us follow *Def.A for (x, y, F) .	363
• (the antecedent of *0 fails $_{then}\wedge$ the antecedent of *1 fails $_{then}\wedge$ (*2 fails $_{else}\vee$ *3 fails)).	364 365
• Hence $(space(x) \neq \emptyset \neq space(y))$ then \land both of (x,y) are not points.	366
• Assume *2 fails.	367
• Hence $F[space(x), space(y)]$ is not a bijection from *to $space(x) * space(y)$.	368
\bullet Consider *A1 which says F is an injection.	369
	370 371
\bullet Consider *A2,*A3 and the proposition titled as "Members' isomorphisms as the consequent".	372 373
• There exists $\exists y2 \in \geq 0$ y such that *Def.A holds for $(p_x, y2, F)$.	374
• There exists $\exists x 1 \in \geq 0$ x such that *Def.A holds for $(x1, p_y, F)$.	375
(*Def.A holds only by the if-then condition of *1) because	376 377 378
• Hence $p_x \in domain(F)$ then $p_y \in image(F)$.	379

• Hence the last assumption is false.	380
• Hence *3 must fail.	381
• Hence *3 fails for f in place of f .	382
\bullet Though by (*A2 $_{then}\wedge$ *A3), (*4 $_{then}\wedge$ *5 $_{then}\wedge$ *6) holds.	383
• Hence the first assumption is false.	384
	□ 385
Definition 10.1 (Pair). Take $\forall \{x, y\}$. ⁷ Then $(x, y) := \{\{x\}, \{x, y\}\}$.	386 387
Proposition 9 (Topological space). Take $\forall ((X1,T1),(X2,T2))$ such that holds. Then *B1 \Rightarrow *B2.	*A 388 389
A Take $i \in \{1, 2\}$. Then (X_i, T_i) is a topological space.	390
B1 $((X1,T1),(X2,T2))$ are homeomorphic.	391
B2 There exists $\exists F$ such that $((X1,T1),(X2,T2))$ are isomorphic by F .	392
	3 93
Proof. B1 implies *C.	394 395
C There exists $\exists (G, g)$ such that (*C1 $_{then} \land \dots $ $_{then} \land $ *C4).	396 397 398
C1 G is a bijection from $X1$ to $X2$.	399
C2 G is a homeormorphism for *B1.	400
C3 g is a bijection from $T1$ to $T2$.	401
C4 Take $\forall (t1, t2) :\in g$. Then $(G \text{ takes } t1 \text{ to } t2)$.	402
	403
Consider the previous proposition titled as Members' isomorphisms as anteced and refer it as *P.	lent 404 405
Then *P accepts arguments as (*D1 $_{then} \land{then} \land *D6$).	406

 $^7{\rm By}$ Kazimierz Kuratowski.

```
407
D1 *P accepts (X1, X2, G, G) in place of (x, y, F, f).
                                                                                     408
D2 *P accepts (\{X1\}, \{X2\}, G, \{(X1, X2)\}) in place of (x, y, F, f).
                                                                                     409
D3 Take \forall (t1, t2) :\in g. Then *P accepts (t1, t2, G, G) in place of (x, y, F, f).
                                                                                     410
D4 *P accepts (T1, T2, G, g) in place of (x, y, F, f).
                                                                                     411
D5 *P accepts (
                                                                                     412
      {X1, T1},
                                                                                     413
      {X2, T2},
                                                                                     414
      G,
                                                                                     415
      \{(X1, X2), (T1, T2)\}
                                                                                     416
     ) in place of (x, y, F, f).
                                                                                     417
D6 *P accepts (
                                                                                     418
      \{\{X1\}, \{X1, T1\}\},\
                                                                                     419
      \{\{X2\}, \{X2, T2\}\},\
      \{(\{X1\}, \{X2\}), (\{X1, T1\}, \{X2, T2\})\}
                                                                                     422
      ) in place of (x, y, F, f).
                                                                                     424
Hence *P implies (*E1 to *E6) combined by _{then}\wedge.
Finally, *E6 implies this proposition.
                                                                                     427
E1 (X1, X2) are isomorphic by G.
                                                                                     428
E2 (\{X1\}, \{X2\}) are isomorphic by G.
E3 Take \forall (t1, t2) :\in g. Then (t1, t2) are isomorphic by G.
E4 (T1, T2) are isomorphic by G.
E5 \{X1, T1\}, \{X2, T2\}) are isomorphic by G.
E6 (\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\}) are isomorphic by G.
                                                                                     433
```

11 Restriction of memBer by space	436
Definition 11.1. This definition uses a style of recursion. Take $\forall (S, X, N_{null})$ such that (*A1 $_{then} \land$ *A2 $_{then} \land$ *A3) 8 holds. Then define *B.	437 438 439
A1 X is a 9 space.	440
A2 N_{null} is not a set.	441
A3 $N_{null} \not\in^{\geq 0} (S, X)$.	442
В	443
1 If $space(S) \subset X$ Then $S[X] := S$ Else *2.	444
2 If S is not a set Then $S[X] := N_{null}$ Else *3.	445
3 $S[X] := \{s[X] \mid s \in S \mid_{then} \land s[X] \neq N_{null}\}.$	446
•	447
12 Deep space	448
Definition 12.1. Take $\forall (S1, S2)$ such that (*1 $_{then} \land \dots _{then} \land \ *5$). Then define *6.	449 450
1 $S2 \subset \{m \mid m \in \geq 0 \ S1\}.$	451
2 Take $\forall (p,C)$ such that $(p:\in space(S1) \mid_{then} \land C \text{ is a chain from } S1 \text{ down to } p \text{ by set member ship}).$	452 453 454
3 Then $C \cap S2 \neq \emptyset$	455
4 $S2$ is a deep space of $S1$.	456

⁸*A2 says that $\neg (N_{null} \in \geq^0 S)$.

⁹That is, x is a set of points.

References 457