

기상기후 빅데이터 분석 플랫폼

[분석교육] 머신러닝(Machine Learning)
[분석교육] 랜덤포레스트(Random Forest)
[분석교육] 그래디언트부스팅(Gradient Boosting)
[분석교육] 딥러닝(Deep Learning)

- 1. 랜덤포레스트 분석 수행 함수
- 2. 그래디언트부스팅 분석 수행 함수
- 3. 딥러닝 분석 수행 함수
- 4. 이 외 분석 수행 함수

[분석 교육] 머신러닝(Machine Learning)(1/2)

머신러닝(Machine Learning) 또는 기계학습은 인공지능의 한 분야로, 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야를 의미한다.

● 머신러닝의 개념

- 머신러닝(Machine Learning) 또는 기계학습은 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야를 의미한다.
- 기계 학습과 데이터 마이닝은 종종 같은 방법을 사용하며 상당히 중첩되지만 다른 개념을 가진다.
 - 기계 학습은 훈련 데이터(Training Data)를 통해 학습된 알려진 속성을 기반으로 예측에 초점을 두고 있다.
 - 데이터 마이닝은 데이터의 미처 몰랐던 속성을 발견하는 것에 집중한다. 이는 데이터베이스의 지식 발견 부분의 분석 절차에 해당한다.

● 머신러닝의 활용 분야

- 사기 적발
- 설비고장 예측
- 텍스트 기반의 감성 분석
- 패턴 및 이미지 인식
- 이메일 스팸 필터링

[분석 교육] 머신러닝(Machine Learning) (2/2)

● 머신러닝 알고리즘의 종류

• 머신러닝 알고리즘은 크게 목표치를 가지고 훈련데이터로부터 하나의 함수를 유추하는 **지도 학습** (Supervised Learning), 목표치 없이 데이터가 어떻게 구성되었는지를 알아내는 **자율 학습** (Unsupervised Learning), 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화 하는 행동 혹은 행동 순서를 선택하는 보강 학습(Reinforcement Learning)으로 구분된다.

지도 학습	 Artificial neural network Bayesian statistics Gaussian process regression Logistic Model Tree Random Forests Ensembles of classifiers Ordinal classification ANOVA Linear classifiers k-nearest neighbor Decision trees Bayesian networks Hidden Markov models
자율 학습	 Expectation-maximization algorithm Vector Quantization Generative topographic map Information bottleneck method Artificial neural network Association rule learning Hierarchical clustering Cluster analysis Outlier Detection
보강 학습	 Temporal difference learning Q-learning Learning Automata SARSA

4

참고 자료 : 위키백과

[분석 교육] 랜덤포레스트(Random Forest)

랜덤포레스트(Random Forest)는 분류, 회귀 분석 등에 사용되는 앙상블 학습 방법의 일종으로, 훈련 과정에서 구성한 다수의 결정 트리로부터 분류 또는 평균 예측치를 출력하는 머신러닝 기법이다.

랜덤포레스트(Random Forest : RF)의 개념

• 랜덤포레스트(Random Forest : RF)는 주어진 데이터에 대해서 복원 샘플링을 통해 다수의 샘플데이터를 생성하고 각 샘플 데이터를 모델링 한 후 결합하여 최종의 예측 모형을 산출하는 머신러닝기법이다.

● 랜덤포레스트의 특징

- 높은 예측력
- 변수 중요도 정보 제공
- 다수의 모형 결합을 통해 과대적합 방지
- 변수 수거 없이 수천 개의 독립 변수 적합 가능
- 종속 변수가 연속형일 때는 평균(Average), 범주형일 때는 다중 투표(Majority Vote)를 사용하는 것이 일반적

참고 자료 : 위키백과

[분석 교육] 그래디언트부스팅(Gradient Boosting)

그래디언트부스팅(Gradient Boosting)은 분류, 회귀 분석 등에 사용되는 앙상블 학습 방법의 일종으로, 훈련 과정에서 결정 트리를 연속적으로 학습하여 보다 강력한 학습기(learner)로 만드는 머신러닝 기법이다.

• 그래디언트부스팅(Gradient Boosting: GBM)의 개념

• 그래디언트부스팅(Gradient Boosting : GBM)은 의사 결정 트리의 연속적 학습을 통해 예측 모형을 생성하며, 연속되는 트리는 이전 트리의 예측 오류를 수정해 나가면서 모형의 예측력을 높이는 머신러닝 기법이다.

• 그래디언트부스팅의 특징

- 강한 예측력
- 변수 중요도 정보 제공
- 다수의 모형 결합을 통해 과대적합 방지
- 경사하강법(Gradient Descent)을 이용해 오류를 최소화하는 최적의 파라미터를 찾음

6

• 부스팅(Boosting) 알고리즘으로 모형의 정확도를 향상시킴

참고 자료 : 위키백과

[분석 교육] 딥러닝(Deep Learning)

딥러닝(Deep Learning)은 군집, 분류에 사용되는 머신러닝 기법의 일종으로, 여러 비선형 변환기법의 조합을 통해 높은 수준의 추상화를 시도하며, 큰 틀에서는 사람의 사고방식을 컴퓨터에게 가르치는 방법이다.

딥러닝(Deep Learning : DL)의 개념

• 딥러닝(Deep Learning: DL)은 인공 신경망을 층층이 쌓은 것으로, 입력층과 출력층 사이에 여러 개의 은닉층으로 이루어져 있으며, 비선형 변환 기법의 조합을 통해 예측모형을 산출하는 머신러닝 기법이다.

● 딥러닝의 특징

- 복잡한 비선형 관계를 모델링하는데 탁월함
- 비지도 학습이 수행되는 여러 개의 층을 가짐
- 자동 특징 추출(feature extraction)로 데이터간의 유사성 파악이 쉬움
- 데이터의 잠재적인 구조를 파악
- 데이터의 양이 많으면 많을 수록 성능이 좋아짐

참고 자료 : 위키백과

1. 랜덤포레스트 분석 수행 함수

h2o::h2o.randomForest

- 랜덤포레스트 분석을 수행

```
Usage
- training_frame : 학습 데이터 셋
- validation_frame : 검증 데이터 셋, 기본값은 NULL
- x : 독립변수
- y : 종속변수
- ntrees: 트리의 개수, 기본값은 50
- max_depth : 트리의 깊이, 기본값은 20
- sample_rate : 각 트리의 샘플 비율, 기본값은 0.632
- mtries : 트리를 나눌때 고려되는 변수의 수, 기본값은 -1
- seed : 랜덤 데이터 생성 시, 고정 시드
Examples
Fit < h2o.randomForest(y = y,
                      x = varList
                      training_frame = data.hex,
                      ntrees = 512,
                      max_depth = 20,
                      sample_rate = 0.3,
                      mtries = -1,
                      seed=1)
```


2. 그래디언트부스팅 분석 수행 함수

• h2o∷h2o.gbm

- 그래디언트부스팅 분석을 수행

```
Usage
- training_frame : 학습 데이터 셋
- validation_frame : 검증 데이터 셋, 기본값은 NULL
- x : 독립변수
- y : 종속변수
- ntrees : 트리의 개수, 기본값은 50
- max_depth : 트리의 깊이, 기본값은 5
- sample_rate : 각 트리의 샘플 비율, 기본값은 1
- seed : 랜덤 데이터 생성 시, 고정 시드
Examples
Fit \leftarrow h2o.gbm(y = y,
              x = varList
               training_frame = data.hex,
               ntrees = 50,
               max_depth = 5,
               sample_rate = 0.3,
              seed=1)
```


3. 딥러닝 분석 수행 함수

h2o::h2o.deeplearning

- 딥러닝 분석을 수행

4. 이 외 분석 수행 함수(1/2)

• h2o::h2o.grid

- 하이퍼 파라미터(Hyper-parameter) 리스트 조합별로 모형 구축

```
Usage
- algorithm : 분석을 수행할 분석 알고리즘
- grid_id : 생성되는 grid의 id
- training frame : 학습 데이터 셋
- x : 독립변수
- y : 종속변수
- hyper params : 적용할 하이퍼 파라미터 리스트
Examples
hyper_params \leftarrow list(sample_rate = c(0.3,0.4), max_depth=c(18,20,25,30),
                 ntrees = c(256,512), mtries=c(-1,1))
m <- h2o.grid(algorithm="randomForest",
              grid_id="rf_grid",
              training_frame = data.hex,
              x = varList,
              y = y,
              hyper_params=hyper_params)
```

11

4. 이 외 분석 수행 함수(2/2)

h2o::h2o.getGrid

- h2o.grid로 구축한 모형의 하이퍼 파라미터와 요약된 결과를 조회

Usage

- grid_id : 조회할 그리드 객체
- sort_by : 그리드의 모형들을 조회할 때 정렬 기준
 - : logloss, residual_deviance, mse, auc, accuracy, precision, recall, f1 등
- decreasing : 내림차순 정렬
- Examples

h2o.getGrid(grid_id = "rf_grid", sort_by = "mse")

```
> #mse가 낮은 순으로 정렬하기
> sorted_grid <- h2o.getGrid(grid_id = "rf_grid", sort_by = "mse") #rf_grid
> sorted_grid.df <- as.data.frame(sorted_grid@ summary_table)
> head(sorted grid.df)
 max_depth mtries ntrees sample_rate
                                          model_ids
                               0.3 rf_grid_model_9
        20
              -1 512
                                                    2.05149248076784
                               0.3 rf_grid_model_8 2.051863098744141
2
        18
              -1
                    512
3
              -1
                    512
                               0.4 rf_grid_model_24  2.052102997863395
                               0.4 rf grid model 16 2.052935567987779
                    256
              -1
                             0.3 rf grid model 0 2.0549482994574446
```

h2o::h2o.getModel

- 구축한 모형을 호출함

Usage

- model_id : 조회할 구축 모형의 id

Examples

h2o.getModel(sorted_grid@model_ids[[1]])

```
> h2o.getModel(sorted_grid@model_ids[[1]])
Model Details:
H2ORearessionModel: drf
Model ID: rf_grid_model_8
Model Summary:
 number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth
1
                                                                      18
             512
                                       512
                                                       59033566
 mean_depth min_leaves max_leaves mean_leaves
1 18.00000
                   5862
                             10844 9173.54100
H2ORegressionMetrics: drf
** Reported on training data. **
** Metrics reported on Out-Of-Bag training samples **
MSE: 2.050249
RMSE: 1.431869
MAE: 1.076704
RMSLE: 0.3754732
Mean Residual Deviance : 2.050249
```


본 문서의 내용은 기상청의 날씨마루(http://big.kma.go.kr) 내R 프로그래밍 교육 자료입니다.