

Lista 4 Geometria Analítica

Posições relativas, Interseções, Ângulos, Distancias

obtenha o ponto de interseção.

a:
$$r: \begin{cases} x - 2y = 1 \\ -3y + z = 1 \end{cases}$$
 $s: \begin{cases} x = -1 + 4\lambda \\ y = -1 + 2\lambda \\ z = -2 + 6\lambda \end{cases}$
b: $r: \frac{x - 2}{3} = \frac{y + 2}{4} = z$ $s: \frac{x}{4} = \frac{y}{2} = \frac{z - 3}{2}$

II. Obtenha a interseção da reta r com o plano π .

a:
$$r: X = (-1, -1, 0) + \lambda(1, -1, 0)$$

 $\pi: 2x + 2y + z + 1 = 0$
b:
$$\begin{cases} x = 2\lambda \\ y = \lambda \\ z = 1 - 3\lambda \end{cases}$$
 $\pi: \begin{cases} x = 1 + \lambda \\ y = -3 + \mu \\ z = 1 + \lambda + \mu \end{cases}$

III. Obtenha uma equação vetorial da interseção dos planos π_1 e π_2 , se esta não for vazia

a:
$$\pi_1 : X = (1,0,0) + \lambda(0,1,1) + \mu(1,2,1)$$

 $\pi_2 : X = (0,0,0) + \lambda(0,3,0) + \mu(-2,-1,-1)$
b: $\pi_1 : X = (1,0,0) + \lambda(-1,1,0) + \mu(1,0,1)$
 $\pi_2 : 3x - 4y + 2z = 4$

IV. Determine o ponto P na reta $r: X = (0,2,0) + \lambda(0,1,0)$ e o ponto *Q* na reta $s: X = (1, 2, 0) + \lambda(0, 0, 1)$, tais que a reta PQ forme ângulos de $\pi/4$ com r e de $\pi/3$ com s.

V. Obtenha um vetor diretor da reta que é paralela ao plano π_1 : x + y + z = 0 e forma ângulo de $\pi/4$ com o plano $\pi_2: x-y=0.$

I. Verifique se as retas r e s são concorrentes e, so forem, VI. Seja ABCD é tetraedro com vértices A = (1,2,-1), B = (1,-1,-2), C = (-1,1,-3), D = (1,0,2).

> a: Determine ângulos entre arestas 1) AD e BC, 2) AD e *AB*.

> **b:** Determine ângulos entre 1) aresta AD e face ABC, 2) aresta AD e face DBC

> c: Determine ângulos entre faces 1) DAB e ABC, 2) DAC e DAB

> VII. Obtenha os pontos da reta r que equidistam das retas *s* e *t*:

$$r: x = y = z$$

$$s: X = (1,0,0) + \lambda(1,1,0)$$

$$t: X = (0,0,1) + \lambda(1,0,-1)$$

VIII. Obtenha os pontos da reta r: x = 2 - y = y + z que distam $\sqrt{6}$ do plano $\pi: x - 2t - z = 1$.

IX. Calcule a distância entre as retas r e s: r : $\frac{1-x}{2} = 2y = z$, $s: X = (0,0,2) + \lambda(-2,\frac{1}{2},1).$

X. Obtenha uma equação vetorial da reta que contém A =(0,0,3), está contida em $\pi: x+z=3$ e dista 3 de Oy.

XI. Dados os planos $\pi_1 : x+y+z-1 = 0, \pi_2 : 3x+y-z = 0$ e π_3 : x + y + z = 0, seja π o plano que contém $\pi_1 \cap \pi_2$ e é perpendicular a π_3 . Calcule a distância de π a r: X = $(1,2,3) + \lambda(1,1,1)$.

XII. Calcule a distância entre os planos π_1 : x+y+z=5/2e $X = (2,0,0) + \lambda(-1,0,1) + \mu(-1,1,0)$.