Scientific Computing for Biologists

Lecture 10: K-mean Clustering, Mixture Models and Multi-dimensional Scaling

Instructor: Paul M. Magwene

11 November 2014

Outline of Lecture

- K-means clustering
- Mixture model based clustering
- Multi-dimensional scaling (MDS)

K-means Clustering

K-mean Clustering

General idea

Assign the n data points (or p variables) to one of K clusters to as to optimize some criterion of interest.

The most common criterion to minimize is the sum-of-squares from the group centroids.

$$V = \sum_{i=1}^{k} \sum_{j \in g_i} |x_j - \mu_i|^2$$

Simple algorithm for K-means clustering

- \blacksquare Decide on k, the number of groups
- **2** Randomly pick k of the objects to act as the initial centers
- 3 Assign each object to the group whose center it is closest to
- Recalculate the k centers as the centroids of the objects assigned to them
- Repeat from step 3 until centroids no longer move (convergence)

Illustration of K-means algorithm

Things to note re:K-means clustering

- The algorithm described above does not necessarily find the global optimum
- The algorithm is sensitive to choice of initial cluster center; k-means is often run multiple-time with different initial centers to insure inferred clusters are robust.

Mixture Modeling

Clustering with Mixture Models

Goal

Method for assigning observations to clusters and estimating parametric distributions that describe the clusters.

Assume that the data set represents observations drawn from a mixture of g sub-distributions (user specifies g), and that the probability density function of the mixture is given by:

$$p_{\mathsf{mix}} = \sum_{s=1}^{g} \pi_{s} p(\mathbf{x}; \boldsymbol{\theta}_{s})$$

Where the $p(x; \theta_s)$ represents the s-th 'component density' (sub-distributions) and the θ_s are the component parameters. The π_s represent the weighting factor of the s-th component in the mixture.

Advantages

- Well-studied statistical inference techniques available.
- Flexibility in choosing the component distributions.
- Obtain a density estimation for each cluster.
- A "soft" classification is available.

Gaussian Mixture Models

A common starting point in mixture modeling is to assume that the components are Gaussian.

If the data are univariate, then the mixture model is given by:

$$p_{\mathsf{mix}} = \sum_{s=1}^{g} \pi_s f(\mathbf{x}|\mu_i, \sigma_i^2)$$

where the μ_i and σ_i are the means and standard deviations of each component distribution and:

$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\sigma}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\mathbf{x}-\boldsymbol{\mu})^2}{2\sigma^2}}$$

Example: Waiting time between Old Faithful eruptions

Time between Old Faithful eruptions

Example: Gaussian fit, Old Faithful waiting time

Time between Old Faithful eruptions

$$\pi = (0.36, 0.64)$$
 $\mu = (54.6, 80.1)$
 $\sigma = (5.87, 5.87)$

Gaussian Mixture Models, Multivariate data

When the components are multivariate Gaussian distributions:

$$N(\mathbf{x}; \boldsymbol{\theta}) \equiv (2\pi)^{-D/2} |\Sigma|^{-1/2} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} - (\mathbf{x} - \boldsymbol{\mu}) \right]$$

each with a different mean vector, μ ($\mu \in \mathbb{R}^p$), and covariance matrix, Σ ($p \times p$).

Mixture Model Clustering, Example

Heart disease example: 297 samples (137 with heart disease). 13 quantitative varibles (e.g. cholesterol, max heart rate, etc). Data centered and normalized. Data projected onto first two PCs. Two-component Gaussian mixture fit.

How do we 'solve' the mixture model problem?

The mixture model problem involves optimization over multiple parameters.

The standard approach to estimating the parameters is called the "Expectation-Maximization" (EM) algorithm.

- Described by Dempster, Laird, and Rubin (1977)
- Provides a way to iterative compute a maximum likelihood estimation when the observed data are incomplete or there are 'latent' parameters.

Overview of the EM Algorithm

- Guess a set of starting parameters
- 2 Use these starting parameters to 'estimate' the complete data
- 3 Use the estimates of the complete data to update the parameters
- 4 Repeat steps 2 and 3 until convergence

Multidimensional Scaling

Multidimensional Scaling (MDS)

Goal

Given dissimilarities between objects, d_{ij} , estimate a k-dimensional set of points, X, such that $|x_i - x_j| \approx d_{ij}$.

Derivation of MDS

Motivation

If we know the coordinates of n points in p-dimensional space, we can easily calculate the Euclidean distances between every pair of points. Can we reverse this process, starting with the distances and getting back the coordinates points?

Consider a data matrix X ($n \times p$). Let Q = XX' be a $n \times n$ matrix, where

$$q_{rs} = \sum_{j=1}^{p} x_{rj} x_{sj}$$

If d_{rs}^2 is the squared Euclidean distance between points r and s then we can write this as:

$$d_{rs}^{2} = \sum_{j=1}^{p} (x_{rj} - x_{sj})^{2}$$
$$= q_{rr} + q_{ss} - 2q_{rs}$$

Derivation of MDS, cont.

With a little bit of simple algebra we can show that:

$$q_{rs} = -\frac{1}{2}(d_{rs}^2 - d_{r.}^2 - d_{.s}^2 - d_{..}^2)$$

where a dot represent the average of values over the corresponding suffix: $d_{r.}^2$ is the average over the rth row of matrix $\mathbf{D} = (d_{ij}^2)$, $d_{.s}^2$ is the average over the sth column of \mathbf{D} , and $d_{..}^2$ is the average of all elements of \mathbf{D} .So, given \mathbf{D} , the squared interpoint distances, we can regenerate \mathbf{Q} .

Since Q is symmetric, we can use eigendecomposition to write $Q=T\Lambda T'$ where Λ is a diagonal matrix of eigenvalues of Q and T is the matrix of eigenvectors. Furthermore we can write $Q=T\Lambda T'=T\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}T'=XX'$ where $X=T\Lambda^{\frac{1}{2}}$.

Thus we've found how to get *X* from the squared distances.

See Krzanowski, W. J. (2000) Principles of multivariate analysis, for full details.

Algorithm for MDS

Given an $n \times n$ matrix of dissimilarities, D, with elements d_{ij} :

- 1 Form matrix, E, where $e_{ij} = -\frac{1}{2}d_{ij}^2$
- Subtract from each element of E the means of the row and column in which it is located and the mean of all elements of E; call the resulting matrix F
- **3** Calculate the eigenvalues (λ_i) and eigenvectors v_i of F, sorted in decreasing order. Eigenvectors should be normalized (i.e. $v_i \cdot v_i = 1$).
- The coordinates of the n point on the j-th axis are given $\sqrt{\lambda_j} v_j$

MDS Example: Road Distances between U.S. Cities

	BOS	CHI	DC	DEN	LA	MIA	NY	SEA	SF
BOS	0	963	429	1949	2979	1504	206	2976	3095
CHI	963	0	671	996	2054	1329	802	2013	2142
DC	429	671	0	1616	2631	1075	233	2684	2799
DEN	1949	996	1616	0	1059	2037	1771	1307	1235
LA	2979	2054	2631	1059	0	2687	2786	1131	379
MIA	1504	1329	1075	2037	2687	0	1308	3273	3053
NY	206	802	233	1771	2786	1308	0	2815	2934
SEA	2976	2013	2684	1307	1131	3273	2815	0	808
SF	3095	2142	2799	1235	379	3053	2934	808	0

MDS Example: Road Distances

Input D: road distances between U.S. cities

Multidimensional Scaling: Keep in mind...

The configuration produced by any MDS method is indeterminate with respect to translation, rotation, and reflection.

Potential MDS Complications

If the d_{ij} are metric (i.e. $d_{ij} \le d_{ik} + d_{kj}$) than F is always positive semidefinite (psd; i.e. eigenvalues ≥ 0).

If F is not psd than how do you handle negative eigenvalues?

- Most common approach is only to consider positive eigenvalues
- This is OK if negative eigenvalues have small magnitude
- If negative eigenvalues are large than approximation tends to be poor

Relationship between metric MDS and PCA

If the d_{ij} are Euclidean distances from a data matrix, X, then metric MDS of D yields the PC scores obtained by PCA of X.

Interpretation

PCA and MDS are dual methods:

- One operates on variable space (PCA)
- The other operates on subject space (MDS)

Other Metric MDS Approaches

Classical MDS minimizes:

$$\sum_{i} \sum_{j} (\delta_{ij}^2 - d_{ij}^2)$$

where δ_{ij} is the distance between observations i and j in the MDS approximation.

Alternates approaches try to minimize other measures of discrepancy. For example, "Sammon MDS" minimizes:

$$\sum_{i}\sum_{j}(\delta_{ij}-d_{ij})^{2}$$

Non-Metric MDS

Non-metric MDS approaches try to preserve only the rank order of the distances.

lf

$$d_{i1,j1} < d_{i2,j2} < \cdots < d_{im,jm}$$

then

$$\delta_{i1,j1} < \delta_{i2,j2} < \cdots < \delta_{im,jm}$$

Shepard-Kruskal solution:

Find \hat{d}_{ij} that minimizes:

$$\mathsf{STRESS} = \sqrt{\{\frac{\sum \sum_{i < j} (d_{ij} - \hat{d}_{ij})^2}{\sum \sum d_{ij}^2}\}}$$