Design-Connectivity-Maher-2019

Maher Yann Alain

April 2019

1 Introduction

A faire par Maher

Definitions

Let $n \in \mathbb{N}, n \geq 2$.

Let Σ be an alphabet, $|\Sigma| \geq 2$. (We are especially interested in the case $\Sigma = \{A, U, G, C\}$).

Let \mathcal{F} be the set of forbidden motifs.

Let $\mathcal{L}_{\mathcal{F}}$ be the set of words in Σ^n that do not contain any motif in \mathcal{F} .

Let H(w, w') be the Hamming distance between two words w, w' in Σ^n .

General problem

Input: \mathcal{F} a set of forbidden motifs, $\delta: \mathcal{L}_{\mathcal{F}} \to \mathcal{L}_{\mathcal{F}}$ a neighborhood function on $\mathcal{L}_{\mathcal{F}}$ Question: The graph $G = (\mathcal{L}_{\mathcal{F}}, \delta)$ is strongly connected.

2 Results

2.1 With the k-Hamming neighborhood

Given $k \in \mathbb{N}^*$, we define δ_k the k-Hamming neighborhood as follows:

$$\forall w \in \mathcal{L}_{\mathcal{F}}, \delta_k(w) = \{ w' \in \mathcal{L}_{\mathcal{F}} \mid H(w, w') \le k \}.$$

With k = n, any $w \in \mathcal{L}_{\mathcal{F}}$ can be changed into any other $w' \in \mathcal{L}_{\mathcal{F}}$ in one step. Hence $G = (\mathcal{L}_{\mathcal{F}}, \delta_n)$ is always strongly connected.

Thus with the k-Hamming neighborhood a variant of the general problem can be considered:

Input: \mathcal{F} a set of forbidden motifs

Question: the minimal $k \in \mathbb{N}^*$ such that the graph $G = (\mathcal{L}_{\mathcal{F}}, \delta_k)$ is strongly connected.

2.1.1 One motif

Consider the case where \mathcal{F} contains a single motif: $\mathcal{F} = \{f\}$.

Then k = 1 is sufficient to guarantee strong connectivity.

Result 1. $\forall f \in \Sigma^+, G = (\mathcal{L}_{\{f\}}, \delta_1)$ is strongly connected.

Proof. Let w and w' be two words in $\mathcal{L}_{\{f\}}$ (of length n).

As $f \neq \epsilon$, f can be written letter by letter as follows: $f = f_1...f_{|f|}$.

Since $|\Sigma| \geq 2$, let $a \in \Sigma$ such that $a \neq f_1$.

We show that there is a path from w to a^n .

To do so, from left to right we replace each letter in w by a (or keep it the same if already an a).

Formally, from $w = w_1...w_n$ we define the sequence $(u_i)_{0 \le i \le n}$ of intermediate words:

$$\forall 0 < i < n, u_i = a^i w_{i+1} ... w_n.$$

Then:

- $\forall 0 \le i \le n-1, H(u_i, u_{i+1}) \le 1,$
- for every i in [1..n] we must prove that u_i is in $\mathcal{L}_{\{f\}}$. By contradiction, suppose that f appears in a u_i . Let j be the position in u_i of the leftmost letter of this occurrence of f.
 - if $j \leq i$: then the leftmost letter of f would be a, which is not by definition of a.
 - if j > i: then this occurrence of f would be a factor of w, which it cannot be since $w \in \mathcal{L}_{\{f\}}$.

Contradiction. Hence every u_i is in $\mathcal{L}_{\{f\}}$.

This proves that there is a path from w to a^n with δ_1 as the neighborhood function.

The same can be done to obtain a path from w' to a^n .

Finally, since δ_1 is symmetric this gives a path from w to w' and vice-versa.

In addition to show that $G = (\mathcal{L}_{\{f\}}, \delta_1)$ is strongly connected, this proof gives us 2n as an upper bound to the diameter of G.

We could have tried to prove Result 1 by induction on H(w, w') instead. But it is unclear to what extent such an induction would be feasible (at least for now). Consider the following example with $\Sigma = \{A, U\}$:

$$\mathcal{F} = \{AUA\}, u = AAAA, v = AUUA.$$

There is no way to replace one non-extremal A of u with U without getting an occurrence of AUA. Hence there is no path from u to v in G with decreasing Hamming distance, even though u and v are connected according to Result 1. The same idea gives counter-examples of arbitrary Hamming distance:

$$\forall i \in \mathbb{N}^*, i \geq 2, with : \mathcal{F} = \{AUA\}, u_i = A^{i+2}, v_i = AU^iA,$$

then:
$$H(u_i, v_i) = i$$
.

These examples heavily rely on the fact that $|\Sigma| = 2$. There might be a way to get around this issue when $|\Sigma| \ge 3$ and find paths with non-increasing Hamming distance, but this would have to be looked at.

2.1.2 Two or more motifs

The idea from the proof of Result 1 could be used again to treat the cases when there is an available letter to do the same trick.

Result 2. Let $F = \{f_1, ..., f_k\}$ be the set of forbidden motifs.

- If there exists $a \in \Sigma$ that is the first letter of no f_i , then $G = (\mathcal{L}_{\mathcal{F}}, \delta_1)$ is strongly connected.
- Same result if there exists $a \in \Sigma$ that is the last letter of no f_i .

This tells us that we need at least $|\Sigma|$ forbidden motifs to obtain a disconnected graph with δ_1 . Indeed if there are less than $|\Sigma|$ motifs, then we know that at least one letter is not the first letter of any forbidden motif.

Corollary 3. If $|\mathcal{F}| < |\Sigma|$, then $G = (\mathcal{L}_{\mathcal{F}}, \delta_1)$ is strongly connected.

An example with $|\Sigma|$ words that gives a disconnected graph with δ_1 is the following:

With:
$$\Sigma = \{a_1, a_2, ..., a_k\}, let: \mathcal{F} = \{a_1a_2, a_2a_1, a_3, ..., a_k\}.$$

Then the only two allowed words are a_1^n and a_2^n , and there is no way to go from one word to the other.