mbai	,
~ /	

What is claimed:

and a second field effect transistor.

l	1. A semiconductor device comprising:
2	an insulation layer;
3	a semiconductor layer formed on the insulation layer;
4	an element isolation region formed in the semiconductor layer; and
5	a first element forming region and a second element forming region defined by the
6	element isolation region;
7	wherein the first element forming region includes both a first bi-polar transistor and a
8	first field effect transistor;
9	the first bi-polar transistor includes a first emitter region of a first conduction type, a
10	first base region of a second conduction type, and a first collector region of the first
11	conduction type,
12	the first field effect transistor includes a first gate electrode layer, a source region of
13	the first conduction type, and a drain region of the first conduction type,
14	the first field effect transistor further includes a first body region of the second
15	conduction type formed at least between the source region of the first conduction type and
16	the drain region of the first conduction type,
17	the first body region of the second conduction type is electrically connected to the
18	source region of the first conduction type,
19	the first body region of the second conduction type is electrically connected to the
20	first base region of the second conduction type,
21	the drain region of the first conduction type is electrically connected to the first
22	collector region of the first conduction type, and
23	the source region of the first conduction type is formed structurally isolated from the
24	first emitter region of the first conduction type, and
25	wherein the second element forming region includes both a second bi-polar transistor

27	the second bi-polar transistor includes a second emitter region of the first conduction
28	type, a second base region of the second conduction type, and a second collector region of
29	the first conduction type,
30	the second field effect transistor includes a second gate electrode layer, a source
31	region of the second conduction type, and a drain region of the second conduction type,
32	the second field effect transistor further including a first body region of the first
33	conduction type formed at least between the source region of the second conduction type
34	and the drain region of the second conduction type,
35	the first body region of the first conduction type is electrically connected to the
36	second collector region of the first conduction type,
37	the source region of the second conduction type is electrically connected to the
38	second collector region of the first conduction type,
39	the drain region of the second conduction type is electrically connected to the second
10	base region of the second conduction type,
11	the first collector region of the first conduction type is electrically connected to the
12	second emitter region of the first conduction type, and
13	the first gate electrode layer is electrically connected to the second gate electrode
14	layer.
1	2. A semiconductor device according to claim 1, further comprising:
2	a first electrode layer that continues to a side section of the first gate electrode layer
3	and reaches the element isolation region,
4	wherein the first gate electrode layer is formed in a manner to cross over the element

the source region of the first conduction type is formed in a first region surrounded

by the first gate electrode layer in a forming region of the first field effect transistor, the first

forming region,

electrode layer, and the element isolation region,

5

6

2000 (2.

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

the drain region of the first conduction type and the collector region of the first conduction type are formed in a second region surrounded by the first gate electrode layer and the element isolation region,

the emitter region of the first conduction type is formed in a third region surrounded by the first gate electrode layer in a forming region of the first bi-polar transistor, the first electrode layer and the element isolation region, and

the first body region of the second conduction type is formed at least below the first gate electrode layer in the forming region of the first field effect transistor, and below a part of the first electrode layer.

3. A semiconductor device according to claim 2, further comprising:

a second electrode layer having one end section that continues to a side section of the second gate electrode layer and another end section that reaches the element isolation region,

wherein the second gate electrode layer is formed in a manner to cross over the second element forming region,

the drain region of the second conduction type is formed in a fourth region surrounded by the second gate electrode layer in the forming region of the second field effect transistor, the second electrode layer, and the element isolation region,

the source region of the second conduction type and the collector region of the first conduction type are formed in a fifth region surrounded by the second gate electrode layer and the element isolation region,

the emitter region of the first conduction type is formed in a sixth region surrounded by the second gate electrode layer in the forming region of the second bi-polar transistor, the second electrode layer and the element isolation region, and

the first body region of the first conduction type is formed below the second gate electrode layer.

(.	3 4	A semiconductor device according to claim 1, further comprising:
1 Mil) 2/	a first layer and a second layer, wherein
ĮV	3	the first layer has one end section continuing to the first gate electrode layer or the
L	4	second layer, and another end section reaching the element isolation region,
	5	the second layer has one end section continuing to the first gate electrode layer or the
	6	second layer, and another end section reaching the element isolation region,
	7	the source region of the first conduction type is formed in a first region surrounded
	8	by the first gate electrode layer, the first layer and the element isolation region,
<u></u>	9	the drain region of the first conduction type and the first collector region of the first
*.2 *	10	conduction type are formed in a second region surrounded by the first gate electrode layer,
	11	the second layer and the element isolation region,
	12	the first emitter region of the first conduction type is formed in a third region
	13	surrounded by the first layer, the second layer and the element isolation region,
	14	the first base region of the second conduction type is formed below a part of the first
N. S.	15	layer, and below a part of the second layer in the semiconductor layer, and
	16	the first body region of the second conduction type is formed at least below the first
	17	gate electrode layer and below a part of the first layer in the semiconductor layer.
	1	5. A semiconductor device according to claim 4, further comprising:
	2	a third layer and a fourth layer, wherein
	3	the third layer has one end section continuing to the second gate electrode layer or
	4	the fourth layer, and another end section reaching the element isolation region,
	5	the fourth layer has one end section continuing to the second gate electrode layer or
	6	the third layer, and another end section reaching the element isolation region.

the drain region of the second conduction type is formed in a fourth region

surrounded by the second gate electrode layer, the third layer and the element isolation

7

8

9

region,

10	the source region of the second conduction type and the second collector region of
11	the first conduction type are formed in a fifth region surrounded by the second gate electrode
12	layer, the fourth layer and the element isolation region,
13	the second emitter region of the first conduction type is formed in a sixth region
14	surrounded by the third layer, the fourth layer and the element isolation region,
15	the second base region of the second conduction type is formed below a part of the

the second base region of the second conduction type is formed below a part of the third layer and below a part of the fourth layer in the semiconductor layer, and

the first body region of the first conduction type is formed at least below the second gate electrode layer and below a part of the fourth layer in the semiconductor layer, and

a second body region of the second conduction type is provided in the semiconductor layer below a part of the third layer for electrically connecting the second body region of the second conduction type and the drain region of the second conduction type.

A semiconductor device according to claim 1, further comprising, in the first element forming region, a second body region of the first conduction type, which is formed in the semiconductor layer between the first base region of the second conduction type and the first collector region of the first conduction type.

7. A semiconductor device according to claim 1, wherein an impurity diffusion layer of the second conduction type is further formed in the first element forming region,

wherein the impurity diffusion layer of the second conduction type is a semiconductor layer in the first region, and is formed in the semiconductor layer between the source region of the first conduction type and the first body region of the second conduction type, and

the source region of the first conduction type and the first body region of the second conduction type are electrically connected to one another through the impurity diffusion layer of the second conduction type.

8. A semiconductor device according to claim 7, wherein a contact layer for electrically connecting the impurity diffusion layer of the second conduction type and the source region of the first conduction type is formed, wherein the contact layer is formed in a manner to cross over the impurity diffusion layer of the second conduction type and the source region of the first conduction type.

A semiconductor device according to claim 1, wherein a third body region of the second conduction type is formed in the semiconductor layer between the first collector region of the first conduction type and the first emitter region of the first conduction type and in the semiconductor layer adjacent to the element isolation region.

3

- 1 10. A semiconductor device according to any one of claim 8, wherein a contact
 2 layer for electrically connecting the source region of the second conduction type and the
 3 second contact region of the first conduction type is formed in the second element isolation
 4 region, wherein the contact layer is formed in a manner to cross over the source region of
 5 the second conduction type and the second collector region of the first conduction type.
- 1 1. A semiconductor device according to any one of claim 9, wherein a fourth
 2 body region of the second conduction type is formed in the semiconductor layer between the
 3 second collector region of the first conduction type and the second emitter region of the first
 4 conduction type, and in the semiconductor layer adjacent to the element isolation region.
- 1 12. A semiconductor device according to claim 1, wherein the first conduction 2 type is n-type, and the second conduction type is p-type.
- 1 13. A semiconductor device according to claim 1, wherein the first conduction type is p-type, and the second conduction type is n-type.

laver is a silicon layer. A semiconductor device comprising: ¥5. 1 an insulation layer; 2 3 a semiconductor layer formed on the insulation layer; an element isolation region formed in the semiconductor layer; and 4 a first element forming region and a second element forming region defined by the 5 element isolation region, 6 wherein the first element forming region includes both a first bi-polar transistor and a 7 8 first field effect transistor, a first gate electrode layer is formed on the semiconductor layer, 9 10 the first gate electrode layer is formed in a manner to cross over the first element forming region, 11 a first electrode layer is formed on the semiconductor layer, 12 the first electrode layer has one end section continuing to a side section of the first 13 gate electrode layer, and another end section reaching the element isolation region, 14 a first impurity diffusion layer of a first conduction type is formed at least in a part of 15 a first region surrounded by the first gate electrode layer in a forming region of the first field 16 effect transistor, the first electrode layer and the element isolation region. 17 a second impurity diffusion layer of the first conduction type is formed in a second 18 region surrounded by the first gate electrode layer and the element isolation region, 19 a third impurity diffusion layer of the first conduction type is formed in a third region 20

A semiconductor device according to claim 1, wherein the semiconductor

defined by the first gate electrode layer in a forming region of the first bi-polar transistor, the

a first body region of a second conduction type is formed below the first gate

electrode layer in a forming region of the first field effect transistor and the first electrode

first electrode layer and the element isolation region.

2122

23

24

25

layer.

26	a first impurity diffusion layer of the second conduction type is formed below the
27	first gate electrode layer in the forming region of the first bi-polar transistor and the first
28	electrode layer and along a periphery of the third impurity diffusion layer of the first
29	conduction type,
30	the first body region of the second conduction type is electrically connected to the
31	first impurity diffusion layer of the first conduction type, and
32	the first body region of the second conduction type is electrically connected to the
33	first impurity diffusion layer of the second conduction type,
34	wherein the second element forming region includes both a second bi-polar transistor
35	and a second field effect transistor,
36	a second gate electrode layer is formed on the semiconductor layer,
37	the second gate electrode layer is formed in a manner to cross over the second
38	element forming region,
39	a second electrode layer is formed on the semiconductor layer,
40	the second electrode layer has one end section continuing to a side section of the
41	second gate electrode layer, and another end section reaching the element isolation region,
42	a second impurity diffusion layer of the second conduction type is formed in a fourth
43	region surrounded by the second gate electrode layer in a forming region of the second field
44	effect transistor, the first electrode layer and the element isolation region,
45	a third impurity diffusion layer of the second conduction type is formed in a fifth
46	region surrounded by the second gate electrode layer and the element isolation region and in
47	the forming region of the second field effect transistor,
48	a fourth impurity diffusion layer of the first conduction type is formed in a fifth
49	region in a forming region of the second bi-polar transistor,
50	a fifth impurity diffusion layer of the first conduction type is formed in a sixth region
51	surrounded by the second gate electrode layer in the forming region of the second bi-polar
52	transistor and the element isolation region,
53	a body region of the first conduction type is formed below the second gate electrode
54	layer,

a fourth impurity diffusion layer of the second conduction type is formed below the
second gate electrode layer in the forming region of the second bi-polar transistor and the
second electrode layer and along a periphery of the fifth impurity diffusion layer of the first
conduction type,
the body region of the first conduction type is electrically connected to the fourth
impurity diffusion layer of the first conduction type,
the third impurity diffusion layer of the second conduction type is electrically
connected to the fourth impurity diffusion layer of the first conduction type,
the second impurity diffusion layer of the second conduction type is electrically
connected to the fourth impurity diffusion layer of the second conduction type,
the second impurity diffusion layer of the first conduction type is electrically
connected to the fifth impurity diffusion layer of the first conduction type, and
the first gate electrode layer is electrically connected to the second gate electrode
layer.
16. A method for manufacturing a semiconductor device including an insulation layer and a semiconductor layer formed on the insulation layer, the method comprising the
layer and a semiconductor layer formed on the insulation layer, the method comprising the
steps of:
(A) forming an element isolation region in the semiconductor layer to define a first
element forming region and a second element forming region; and
(B) forming a first field effect transistor and a first bi-polar transistor in the first
element forming region,
wherein the step (B) comprises the steps of:
(B-1) forming a first body region of a second conduction type in the semiconductor
layer at least in a forming region where a first gate electrode layer is to be formed,
(B-2) forming a first gate electrode layer and a first electrode layer on the
semiconductor layer in the first element forming region, wherein the first electrode layer
continues to the first gate electrode layer and reaches the element isolation region,

	(
14	(B-3) forming a first impurity diffusion layer of the second conduction type in the
15	semiconductor layer in a third region surrounded by the first gate electrode layer in a
16	forming region of the bi-polar transistor, the first electrode layer and the element isolation
17	region,
18	(B-4) conducting a thermal treatment to thermally diffuse the first impurity
19	diffusion layer of the second conduction type to form a first base region of the second
20	conduction type of the first bi-polar transistor below a part of the first gate electrode layer
21	and in the semiconductor layer below the first electrode layer, and to electrically connect the
22	first base region of the second conduction type and the first body region of the second
23	conduction type,
24	(B-5) forming a source region of a first conduction type of the first field effect
25	transistor at least in a part of a first region surrounded by a first gate electrode layer in a
26	forming region of the first field effect transistor, the first electrode layer and the element
27	isolation region,
28	(B-6) forming a drain region of the first conduction type of the first field effect
29	transistor in a part of a second region surrounded by the first gate electrode layer and the
30	element isolation region,
31	(B-7) forming a first collector region of the first conduction type of the first bi-
32	polar transistor in a part of the second region,
33	(B-8) forming a first emitter region of the first conduction type of the first bi-polar
34	transistor in the third region, and
35	(B-9) electrically connecting the first body region of the second conduction type
36	and the source region of the first conduction type;
37	the step (C) of forming a second field effect transistor and a second bi-polar
38	transistor in the second element forming region,
39	wherein the step (C) comprises the steps of:
40	(C-1) forming a first body region of the first conduction type in the semiconductor
41	layer at least in a forming region where a second gate electrode layer is to be formed,

of

42	(C+2) forming a second body region of the second conduction type at least in a part
43	of the semiconductor layer in a forming region where a second electrode layer is to be
14	formed,
45	(C - 3) forming a second gate electrode layer and a second electrode layer on the
16	semiconductor layer in the second element forming region, wherein the second electrode
4 7	layer has one end section continuing to a side section of the gate electrode layer and another
48	end section reaching the element isolation region,
49	(C-4) forming a second impurity diffusion layer of the second conduction type in
50	the semiconductor layer in a sixth region surrounded by the second gate electrode layer in a
51	forming region of the second bi-polar transistor, the second electrode layer and the element
52	isolation region,
53	(C-5) conducting a thermal treatment to thermally diffuse the second impurity
54	diffusion layer of the second conduction type to form a second base region of the second
55	conduction type of the second bi-polar transistor below a part of the second gate electrode
56	layer and in the semiconductor layer below the second electrode layer, and to electrically
57	connect the second base region of the second conduction type and the second body region of
58	the second conduction type,
59	(C-6) forming a drain region of the second conduction type of the second field
60	effect transistor in a fourth region surrounded by a second gate electrode layer in a forming
61	region of the second field effect transistor, the second electrode layer and the element
62	isolation region, and electrically connecting the drain region of the second conduction type
63	to the second base region of the second conduction type through the second body region of
64	the second conduction type,
65	(C-7) forming a source region of the second conduction type of the second field
66	effect transistor in a part of a fifth region surrounded by the second gate electrode layer and
67	the element isolation region,

bi-polar transistor in a part of the fifth region, and electrically connecting the second

(C-8) forming a second collector region of the first conduction type of the second

68

70	collector region of the first conduction type to the first body region of the first conduction
71	type,
72	(C-9) forming a second emitter region of the first conduction type of the second bi-
73	polar transistor in the sixth region, and
74	(C-10) electrically connecting the source region of the second conduction type and
75	the second collector region of the first conduction type;
76	the step (D) of electrically connecting the first collector region of the first conduction
77	type and the second emitter region of the first conduction type; and
78	the step (E) of electrically connecting the first gate electrode layer and the second
79	gate electrode layer.
1	17. A method for manufacturing a semiconductor device including an insulation
2	layer and a semiconductor layer formed on the insulation layer, the method comprising the
3	steps of:
4	(A) forming an element isolation region in the semiconductor layer to define a first
5	element forming region and a second element forming region; and
6	(B) forming a first field effect transistor and a first bi-polar transistor in the first
7	element forming region,
8	wherein the step (B) comprises the steps of:
9	(B-1) forming a first body region of a second conduction type in the semiconductor
10	layer at least in a forming region where a first gate electrode layer is to be formed and in a
11	forming region where a first layer is to be formed,
12	(B-2) forming a first gate electrode layer on the semiconductor layer in the first
13	element forming region,
14	(B-3) forming a first layer on the semiconductor layer in the first element forming
15	region, the first layer having one end section continuing to the first gate electrode layer or a
16	second layer, and another end section reaching the element isolation region,

	· ·
17	(B-4) forming a second layer on the semiconductor layer in the first element
18	forming region, the second layer having one end section continuing to the first gate electrode
19	layer or the first layer, and another end section reaching the element isolation region,
20	(B-5) forming a first impurity diffusion layer of the second conduction type in the
21	semiconductor layer in a third region surrounded by the first layer, the second layer and the
22	element isolation region,
23	(B-6) conducting a thermal treatment to thermally diffuse the first impurity
24	diffusion layer of the second conduction type to form a first base region of the second
25	conduction type of the first bi-polar transistor below a part of the first layer and in the
26	semiconductor layer below a part of the second layer, and to electrically connect the first
27	base region of the second conduction type and the first body region of the second conduction
28	type,
29	(B-7) forming a source region of a first conduction type of the first field effect
30	transistor at least in a part of a first region surrounded by the gate electrode layer, the first
31	layer and the element isolation region,
32	(B-8) forming a drain region of the first conduction type of the first field effect
33	transistor in a part of a second region surrounded by the gate electrode layer, the second
34	layer and the element isolation region,
35	(B-9) forming a first collector region of the first conduction type of the first bi-
36	polar transistor in a part of a second region surrounded by the first gate electrode layer, the
37	second layer and the element isolation region,
38	(B-10) forming a first emitter region of the first conduction type of the first bi-polar
39	transistor in a third region surrounded by the first layer, the second layer and the element
10	isolation region, and
11	(B-11) electrically connecting the first body region of the second conduction type
12	and the source region of the first conduction type;
13	the step (C) of forming a second field effect transistor and a second bi-polar
14	transistor in the second element forming region,

wherein the step (C) comprises the steps of:

46	(C-1) forming a first body region of the first conduction type in the semiconductor
47	layer at least in a forming region where a second gate electrode layer is to be formed and a
48	forming region where a fourth layer is to be formed,
49	(C-2) forming a second body region of the second conduction type at least in a part
50	of the semiconductor layer in a forming region where a third layer is to be formed,
51	(C-3) forming a second gate electrode layer on the semiconductor layer in the
52	second element forming region,
53	(C-4) forming a third layer on the semiconductor layer in the second element
54	forming region, wherein the third layer has one end section continuing to the second gate
55	electrode layer or the fourth layer, and another end section reaching the element isolation
56	region,
57	(C-5) forming a fourth layer on the semiconductor layer in the second element
58	forming region, wherein the fourth layer has one end section continuing to the second gate
59	electrode layer or the third layer, and another end section reaching the element isolation
60	region,
61	(C-6) forming a second impurity diffusion layer of the second conduction type in
62	the semiconductor layer in a sixth region surrounded by the third layer, the fourth layer and
63	the element isolation region,
64	(C-7) conducting a thermal treatment to thermally diffuse the second impurity
65	diffusion layer of the second conduction type to form a second base region of the second
66	conduction type of the second bi-polar transistor below a part of the third layer and in the
67	semiconductor layer below a part of the fourth layer, and to electrically connect the second
68	base region of the second conduction type and the second body region of the second
69	conduction type.
70	(C-8) forming a drain region of the second conduction type of the second field
71	effect transistor in a fourth region surrounded by the second gate electrode layer, the third

layer and the element isolation region,

73	and electrically connecting the drain region of the second conduction type to the
74	second base region of the second conduction type through the second body region of the
75	second conduction type,
76	(C-9) forming a source region of the second conduction type of the second field
77	effect transistor in a part of a fifth region surrounded by the second gate electrode layer, the
78	fourth layer and the element isolation region,
79	(C-10) forming a second collector region of the first conduction type of the second
80	bi-polar transistor in a part of a fifth region surrounded by the second gate electrode layer,
81	the fourth layer and the element isolation region,
82	and electrically connecting the second collector region of the first conduction type to
83	the first body region of the first conduction type,
84	(C-11) forming a second emitter region of the first conduction type of the second
85	bi-polar transistor in a sixth region surrounded by the third layer, the fourth layer and the
86	element isolation region, and
87	(C-12) electrically connecting the source region of the second conduction type and
88	the second collector region of the first conduction type;
89	the step (D) of electrically connecting the first collector region of the first conduction
90	type and the second emitter region of the first conduction type; and
91	the step (E) of electrically connecting the first gate electrode layer and the second
92	gate electrode layer.

- 1 18. A method for manufacturing a semiconductor device according to claim 17, 2 further comprising the step of forming a third body region of the second conduction type in 3 the semiconductor layer below the second layer in the first element forming region and in
- 4 the semiconductor layer adjacent to the element isolation region.

- 1 19. A method for manufacturing a semiconductor device according to claim 18,
- 2 further comprising the step of forming a fourth body region of the second conduction type in
- 3 the semiconductor layer below the fourth layer in the second element forming region and in
- 4 the semiconductor layer adjacent to the element isolation region.
- 1 20. A method for manufacturing a semiconductor device according to claim 17,
- wherein the first conduction type is n-type, and the second conduction type is p-type.
- A method for manufacturing a semiconductor device according to claim 17,
- wherein the first conduction type is p-type, and the second conduction type is n-type.
- 1 22. A method for manufacturing a semiconductor device according to claim 17.
- 2 wherein the semiconductor layer is a silicon layer.