Teoría de Lenguajes Segunda parte Algoritmos de Parsing de Earley

Verónica Becher

Segundo cuatrimestre 2020

Bibliografía para esta clase

A. V. Aho, J. D. Ullman, The Theory of Parsing, Translation, and Compiling, Vol. 1 , Parsing. Prentice Hall, 1972.

Algoritmo de parsing de Earley

Dada una gramática libre de contexto el algoritmo de parsing de Earley con una entrada de longituf n hace una cantidad de operaciones en el orden de n^3 y usa espacio n^2 .

En caso de que la gramática sea no-ambigua, la cantidad de operaciones es del orden n^2 .

Para la mayoría de las gramáticas que definen lenguajes de programación el algoritmo de Earley se puede modificar para obtener cantidad de operaciones y espacio lineales respecto a la longitud de la entrada.

Es un método bottom-up que encuentra la derivación más a la derecha.

Algoritmo de Parsing de Earley

Sea G = (N, T, P, S) una GLC y sea $w = a_1 a_2 \dots a_n$ una cadena de input en T^* .

Definición (Item de Earley). Decimos que $[A \to X_1 X_2 \dots X_k \cdot X_{k+1} \dots X_m, i]$ es un item para w si $A \to X_1 X_2 \dots X_m$ es una producción en P y $0 \le i \le n$.

Si la producción es $A \to \lambda$, el item es $[A \to \cdot, i]$.

Algoritmo de Parsing de Earley

Dada G = (N, T, P, S) y una cadena de entrada $a_1 \dots a_n$ en T^* construimos las listas de items $\ell_1, \ell_2, \dots, \ell_n$ tal que

$$[A \to \alpha \cdot \beta, i] \in \ell_j$$

si y solo si para algún γ y δ

$$S \stackrel{*}{\Rightarrow} \gamma A \delta, \quad \gamma \stackrel{*}{\Rightarrow} a_1 \dots a_i \quad y \quad \alpha \stackrel{*}{\Rightarrow} a_{i+1} \dots a_j,$$

Luego, $w \in L(G)$ si y solo si hay α tal que $[S \to \alpha, 0] \in \ell_n$.

Algoritmo de Earley

Algorithm 4.5 Aho Ullman vol 1

Input. Gramática GLC G = (N, T, P, S) y cadena $w = a_1 \dots a_n$ en T^* .

Output. Las listas $\ell_0, \ell_1, \dots, \ell_n$.

Paso 1 Si $S \to \alpha$ es una producción en P agregar a ℓ_0 , $[S \to \alpha, 0]$.

Paso 2 Si $[A \to \alpha \cdot B\beta, 0] \in \ell_0$ y $[B \to \gamma \cdot, 0] \in \ell_0$ (en particular γ puede ser λ) entonces agregar a ℓ_0 , $[A \to \alpha B \cdot \beta, 0]$.

Paso 3 Si $[A \to \alpha \cdot B\beta, 0] \in \ell_0$, agregar a ℓ_0 para toda $B \to \gamma$ en P, (si es que aún no está), $[B \to \gamma, 0]$.

Paso 4 Supongamos que ya hemos construido $\ell_0, \ell_1, \dots \ell_{j-1}$. Si $[B \to \alpha \cdot aB\beta, i]$ en ℓ_{j-1} tal que $a = a_j$, agregar a ℓ_j $[B \to \alpha a \cdot \beta, i]$

Paso 5 Si $[B \to \alpha \cdot A\beta, k] \in \ell_i$ y $[A \to \gamma \cdot, i] \in \ell_j$, agregar a ℓ_j $[B \to \alpha A \cdot \beta, k]$.

Paso 6 Si $[A \to \alpha \cdot B\beta, i] \in \ell_j$, agregar a ℓ_j , para todo $B \to \gamma$ en $P, [B \to \gamma, j]$.

Notemos que la consideración de un item con un terminal a la derecha del \cdot no produce nuevos items en los pasos 2, 3, 5 y 6.

Ejemplo

$$[E \to T + E, 0] \qquad [F \to (\cdot E), 0] \qquad [F \to a \cdot, 1] \qquad [T \to F \cdot T, 1] \qquad [E \to T + E, 1] \qquad [F \to (E), 0] \qquad [F \to a, 0] \qquad [F \to (E), 0] \qquad [F \to (E), 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to (E), 0] \qquad [F \to a, 1] \qquad [F \to a$$

Correctitud de algoritmo de Earley

Teorema 1 (Theorem 4.9 Aho Ullman vol 1). Dada G = (N, T, P, S) libre de contexto, $[S \to \alpha \cdot, 0] \in \ell_n$ si y solo si $S \to \alpha$ está en P y $\alpha \underset{R}{\overset{*}{\Rightarrow}} a_1 \dots a_n$.

Complejidad de algoritmo de Earley

Teorema 2 (Theorem 4.10 en Aho Ullman vol 1). Si la gramática es no-ambigua, para una entrada de longitud n el algoritmo de Earley construye las listas ℓ_1, \ldots, ℓ_n en una cantidad de operaciones del orden n^2

Si la gramática es ambigua esta cantidad es del orden n^3 .

Cada lista ℓ_j tiene a lo sumo (j+1)k items, donde k es una constante. Mantenemos una lista encadenada entre todos ellos y una table indicando si una producción ya está o no.

Mantenemos además otra lista encadenada entre los items que tiene el mismo símbolo a la derecha del \cdot . Esto sirve para los pasos donde se requiere buscar los items que tienen un determinado símbolo a derecha del \cdot .

Cuando la gramática es no ambigua cada item se considera una sola vez. Y hay una cantidad constante c de operaciones a realizar para cada item. Los puntos 4,5 y 6 del algoritmo aseguran que la cantidad de operaciones es a lo sumo

$$c\sum_{j=0}^{n} (j+1)k = ck(n+1)(n+2)/2 = c'n^{2}$$

Los pasos 1,2,3 construyen ℓ_0 y la cantidad de operaciones está acotada por la cantidad de producciones Concluimos que algoritmo realiza en el orden de n^2 operaciones. En caso de que la gramática sea ambigua son n^3 .

Derivacion a derecha de Earley

Derivación a derecha del Algoritmo de Earley, Algorithm 4.6 Aho Ullman vol 1

Input. Una GLC G=(N,T,P,S) sin ciclos, con las producciones numeradas $1,\ldots,p$, una cadena de input $w=a_1\ldots a_n$ y las listas $\ell_0,\ldots \ell_n$

Output. Derivación a derecha de w, o "error".

Método. Si $[S \to \alpha \cdot, 0]$ en ℓ_n entonces w está en L(G). Fijar variable global $\pi = \lambda$. Ejecutar $R([S \to \alpha \cdot, 0], n)$ Emitir secuencia de producciones π .

```
Rutina R([A \to X_1 \dots X_m, i], j)
\pi = h\pi, donde h es el número de producción A \to X_1 \dots X_m k = m j' = j
Mientras (k > 0)
Si X_k \in T entonces
k = k - 1
j' = j' - 1
Sino (es decir, X_k \in N)
Encontrar un item [X_k \to \gamma \cdot, i'] en \ell_{j'} para algún i' tal que [A \to X_1 X_2 \dots X_{k-1} \cdot X_k \dots X_m, i] \in \ell_{i'}.
Ejecuta R([X_k \to \gamma \cdot, i'], j').
k = k - 1
j' = i'.
```

Ejemplo

Complejidad de algoritmo de Earley

Teorema 3 (Theorem 4.12 en Aho Ullman vol 1). Si existe una derivación más a la derecha de $a_1 \dots a_n$ el algoritmo de Earley la encuentra en c n^2 operaciones, para una constante c.

Complejidad de algoritmo de Earley

Demostración. Recordemos que $[A \to \alpha \cdot \beta, i] \in \ell_j$ si y solo si $\alpha \underset{R}{\overset{*}{\Rightarrow}} a_{i+1} \dots a_j$ y existen γ y δ tales que $S \underset{R}{\overset{*}{\Rightarrow}} \gamma A \delta \ \gamma \underset{R}{\overset{*}{\Rightarrow}} a_1 \dots a_i$.

En ℓ_i unimos todos los items con la misma segunda componente.

Acceso y consulta en esta lista son operaciones elementales.

Este preprocesamiento se puede hacer en tiempo constante n^2 .

Veamos que la ejecución de $R([A \to \beta \cdot, i], j)$ lleva del orden de $(j - i)^2$ operaciones. El ciclo realiza $|\beta|$ iteraciones. En cada iteración lo costoso es buscar un valor i' examinando j - i + 1 listas (cada exámen es elemental) y realizar una llamada recursiva R([--, i'], j'), donde j' - i' < j - i.

La ejecución de $R([A \to \beta \cdot, i], j)$ invoca a R([--, i'], j') a lo sumo $|P| \times M$ veces (cada vez con un valor distinto de --) donde M es la máxima cantidad d esímbolso de una producción.

El total de invocaciones a R (una por cada iteración más las invociaciones recursivas anidadas) es a lo sumo $(j-i) \times |P| \times M$. \square