ÖVEGES JÓZSEF Fizikaverseny

2024. március 12. *Megyei szakasz*

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VII. osztály

1. feladat (9 pont)

Az alábbi táblázat oszlopaiban fizikai mennyiségek vannak beírva. Írd be a mennyiségek jelét, mértékegységét és a jellegét (skalár, vektor)! Minden helyes válasz 1 pontot ér.

Fizikai mennyiség	Jelölése	Mértékegysége SI-ben	Skalár	Vektor
idő				
tömeg				
hosszúság				
terület				
térfogat				
sebesség				
sűrűség				
erő				
hőmérséklet				

2. feladat (9 pont)

Egy munkás korong alakú utcai kanálisfedőt próbál az úttestről az aknára ráhelyezni egyenletesen mozgatva többféleképpen és különböző helyen (lásd a rajzot!) Az öntöttvas

kanálisfedő m=20 kg tömegű, az úttest és a fedő közötti súrlódási együttható $\mu=0.5$. (Dolgozzunk a g=10 N/kg értékkel! Ismert: $\cos 30^\circ=0.86$, $\sin 30^\circ=0.5$)

Mekkora erővel tudja ezt megtenni:

- a) vízszintes úton húzva;
- b) vízszintes úton tolva;
- c) lejtős úton felfele tolva.

A munkás az úthoz viszonyítva 30° fokos szög alatt húzza, illetve tolja a fedőt, a lejtő szöge is 30° fokos.

3. feladat (9 pont)

Egy m = 0.5 kg tömegű testet felfüggesztünk egy olyan rugóra, amelynek eredeti hossza $l_0 = 0.1$ m és rugalmassági állandója k = 10 N/m. A testet egy vízszintes deszkára helyezzük úgy, hogy a rugó függőleges helyzetben maradjon, és ne legyen megnyúlva. Ezután a deszkát addig húzzuk vízszintes irányba, állandó

v sebességgel, amíg a rugó a vízszintes iránnyal 30°-os szögre áll be.

(Dolgozzunk a g = 10 N/kg 'ert'ekkel! Ismert: $\cos 30^{\circ} = \frac{\sqrt{3}}{2} = 0.86$, $\sin 30^{\circ} = 1/2 = 0.5$)

- a) Rajzold fel a rendszerben ható erőket az elmozdulás után, és határozd meg:
- b) a megnyúlt rugó *l* hosszát;
- c) a rugó (Δl) megnyúlását;
- d) a megnyúlt rugóban fellépő (F_r) rugalmas erő nagyságát;
- e) az (F_s) súrlódási erő nagyságát;
- f) a deszka részéről visszaható (N) erő nagyságát;
- g) a (μ) súrlódási együtthatót, ha tudjuk, hogy képlete: $\mu = F_s/N$.

Hivatalból: 3 pont

Munkaidő: 2 óra