Ve270 Introduction to Logic Design

Homework 1

Assigno	ed:	Mav	14.	2020
			,	

Due: May 21, 2020, 2:00pm.

A pop quiz will be given on the due date.

1.	Fill out the blank spaces, assuming unsigned numbers. Show steps to earn partial credits. (8
	points)

2. Fill out the blank spaces, assuming 2's complement numbers. (16 points)

3. Perform the following arithmetic operations step by step, assuming 2's complement

- 4. Problem 2.14 (Boolean equation = logic equation) (4 points)
- 2.14 Evaluate the Boolean equation F = a AND (b OR (c AND d)) for the given values of variables a, b, c, and d:

a.
$$a=1, b=1, c=0, d=1$$

c.
$$a=1, b=0, c=0, d=0$$

- 5. Problem 2.16 (10 points)
- 2.16 Show the conduction paths and output value of the AND gate transistor circuit in Figure 2.14 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.

Figure 2.14 AND gate conduction paths: (a) when all inputs are 1, and (b) when any input is 0.

- 6. Problem 2.19 (10 points)
- 2.19 Convert each of the following equations directly to gate-level circuits:

a.F = abc + a'bc
b.F = a + bcd' + ae + f'
c.F =
$$(a + b) + (c' * (d + e + fg))$$

- 7. Problem 2.20 (10 points)
- 2.20 Design a system that sounds a buzzer inside a home whenever motion outside is detected at night. Assume a motion sensor has an output M that indicates whether motion is detected (M=1 means motion detected) and a light sensor with output L that indicates if light is detected (L=1 means light is detected). The buzzer inside the home has a single input B that when 1 sounds the buzzer. Capture the desired system behavior using an equation, and then convert the equation to a circuit using AND, OR, and NOT gates.
- 8. Problem 2.35 (10 points)
- 2.35 Convert each of the following Boolean equations to a truth table:

```
a. F(a,b,c) = a' + bc'
b. F(a,b,c) = (ab)' + ac' + bc
c. F(a,b,c) = ab + ac + ab'c' + c'
d.F(a,b,c,d) = a'bc + d'
```

9. Build a truth table for the following circuit. (10 points)

10. Given a logic equation F = a'bc' + b'c + abc, draw an output waveform for F based on the given input waveforms. (10 points)

