

Minería de datos y Patrones

Version 2024-I

PCA Principal Component Analysis

[Capítulo 3]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Repaso

Valores Propios: λ_l

 \mathbf{C} : Matriz de $L \times L$

$$|\mathbf{C} - \lambda_l \mathbf{I}| = 0$$
 λ_l : valores propios de \mathbf{C} $l = 1, 2, \cdots L$

$$\{\lambda_l\} = e_{val}(\mathbf{C})$$

Ejemplo:

calcular valores propios de ${f C}=\left[egin{array}{cc} 4 & 3 \\ 1 & 2 \end{array} \right]$

$$|\mathbf{C} - \lambda_l \mathbf{I}| = 0$$

$$|\mathbf{C} - \lambda \mathbf{I}| = \begin{vmatrix} 4 - \lambda & 3 \\ 1 & 2 - \lambda \end{vmatrix} = (4 - \lambda)(2 - \lambda) - 3$$

$$\lambda^2 - 6\lambda + 5 = 0$$
 $\lambda_1 = 5, \lambda_2 = 1.$

Vectores Propios: \mathbf{v}_l

$$\mathbf{C}\mathbf{v}_l = \lambda_l \mathbf{v}_l$$
 \mathbf{V}_l : vectores propios de $L \times 1$

Como hay infinitas soluciones: s.t. $||\mathbf{v}_l||=1$

 $\{\mathbf v_l\}$ son vectores ortonormales:

$$\mathbf{v}_l^\mathsf{T} \mathbf{v}_k = \begin{cases} 1 & \text{si } l = k \\ 0 & \text{en caso contrario} \end{cases}$$

$$\{\mathbf{v}_l\} = e_{vec}(\mathbf{C})$$

Matriz de Vectores Propios: A

$$\mathbf{A} = [\mathbf{v}_1 \; \mathbf{v}_2 \; \cdots \; \mathbf{v}_L]$$
 : Matriz de $L \times L$

$$\mathbf{A} = e_{mat}(\mathbf{C})$$

Propiedades:

$$\mathbf{A}\mathbf{A}^\mathsf{T} = \mathbf{I}$$
 $\mathbf{v}_l^\mathsf{T}\mathbf{v}_k = \left\{ \begin{array}{l} 1 & \mathrm{si}\ l = k \\ 0 & \mathrm{en\ caso\ contrario} \end{array} \right.$

$$\mathbf{C}\mathbf{A} = \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_L \mathbf{v}_L \end{bmatrix} - \mathbf{C}\mathbf{v}_l = \lambda_l \mathbf{v}_l$$

Transformaciones Lineales

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N$$

 $y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N$
:
 $y_N = a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N$
 $\mathbf{y} = \mathbf{A}\mathbf{x}$

- Ángulo entre y_1 e y_2 no necesariamente es 90°
- En esta transformación el origen coincide
- Si se necesita desplazar origen es necesario agregar $+a_{i0}$ a la fila $\it i$

Promedio y Varianza:

$$\mathbf{x} = [x_1 \ x_2 \ \cdots x_N]^\mathsf{T} \quad \text{de } N \times 1$$

$$(\text{promedio}) \quad \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^N (\bar{x} - x_i)^2$$

Covarianza:

$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_L]$$
 de $N imes L$ $\mathbf{M}_x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} [\bar{x}_1 \ \bar{x}_2 \ \cdots \ \bar{x}_L]$ $\bar{\mathbf{x}}$ promedio de cada columna de \mathbf{x}

Matriz de $N \times L$: cada columna tiene el promedio de la columna correspondiente de ${\bf X}$.

Covarianza:

$$\mathbf{X} = \left[\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_L
ight]$$
 de $N imes L$

$$\mathbf{M}_x = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} \bar{x}_1 \ \bar{x}_2 \ \cdots \ \bar{x}_L \end{bmatrix}$$

$$\mathbf{X}_0 = \mathbf{X} - \mathbf{M}_x$$
 cada columna de $\mathbf{X}_{\!\scriptscriptstyle 0}$ tiene media cero

$$\mathbf{C}_x = \frac{1}{N-1} \mathbf{X}_0^\mathsf{T} \mathbf{X}_0 = \text{cov}(\mathbf{X})$$

Covarianza:

$$C_x(l,l) = \sigma_{x_l}^2$$

$$C_x(l,k) = ext{Covarianza de } \mathbf{X}_l ext{ con } \mathbf{X}_k = ext{cov}(\mathbf{x}_k,\mathbf{x}_l)$$

- > 0 correlación positiva
- = 0 no hay correlación
- $< 0\,$ correlación negativa

$$\mathbf{C}_x = \frac{1}{N-1} \mathbf{X}_0^\mathsf{T} \mathbf{X}_0 = \text{cov}(\mathbf{X})$$

Ejemplo: Matrices de Covarianza

c =

0.9735 0.0041
0.0041 1.0105

c =

1.1465 1.0891 1.0891 1.1604

c =

0.60130.92900.92901.6678

TRANSFORMACIÓN KARHUNEN-LOEVE (PCA) (1947)

La Transformada de Karhunen-Loeve (KL) es conocida como PCA (Principal Component Analysys). La idea es transformar los datos originales \mathbf{X} en datos nuevos \mathbf{Y} que no tengan correlación entre ellos.

Transformación KL:

$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_L] \ ext{de } N imes L$$
 $\mathbf{X}_0 = \mathbf{X} - \mathbf{M}_x$ $\mathbf{C}_x = rac{1}{N-1} \mathbf{X}_0^\mathsf{T} \mathbf{X}_0 = \mathrm{cov}(\mathbf{X})$ $\mathbf{A} = e_{mat}(\mathbf{C}_x)$ $\mathbf{Y} = \mathbf{X}_0 \mathbf{A}$ — Transformación KL de \mathbf{X}

$$\mathbf{X} = \mathbf{Y}\mathbf{A}^\mathsf{T} + \mathbf{M}_x$$
 — Transformación KL inversa de Y (A es ortonormal)

Covarianza de Y:

 $\mathbf{Y}_0 = \mathbf{Y}$

$$egin{align*} \mathbf{C}_y &= rac{1}{N-1} \mathbf{Y}_0^\mathsf{T} \mathbf{Y}_0 = \mathrm{cov}(\mathbf{Y}) \ \mathbf{Y}_0 &= \mathbf{Y} - \mathbf{M}_y & ext{Como} & \mathbf{Y} = \mathbf{X}_0 \mathbf{A} & ext{y la media de las columnas de \mathbf{X}_0 es cero, entonces $\mathbf{M}_y = \mathbf{0}$ \end{aligned}$$

$$\mathbf{C}_y = \frac{1}{N-1} \mathbf{Y}^\mathsf{T} \mathbf{Y} = \text{cov}(\mathbf{Y})$$

$$= \frac{1}{N-1} (\mathbf{X}_0 \mathbf{A})^\mathsf{T} \mathbf{X}_0 \mathbf{A}$$

$$= \frac{1}{N-1} \mathbf{A}^\mathsf{T} \mathbf{X}_0^\mathsf{T} \mathbf{X}_0 \mathbf{A}$$

$$\mathbf{C}_y \equiv \frac{\mathbf{A}^\mathsf{T} \mathbf{C}_x}{N-1} \mathbf{Y}^\mathsf{T} \mathbf{Y} = \text{cov}(\mathbf{Y})$$

como
$$\mathbf{A}=e_{mat}(\mathbf{C}_x)$$
 entonces

$$\mathbf{A} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_L]$$

$$\mathbf{C}_x \mathbf{A} = [\lambda_1 \mathbf{v}_1 \ \lambda_2 \mathbf{v}_2 \ \cdots \ \lambda_L \mathbf{v}_L]$$

$$\mathbf{C}_{y}\mathbf{C}_{y} = \mathbf{v}_{1}\mathbf{A}\mathbf{v}_{2}\mathbf{C}_{x}\mathbf{A}\mathbf{v}_{L}^{\mathsf{T}}[\lambda_{1}\mathbf{v}_{1} \lambda_{2}\mathbf{v}_{2} \cdots \lambda_{L}\mathbf{v}_{L}]$$

$$\mathbf{C}_{y} = \begin{bmatrix} \lambda_{1} \mathbf{v}_{1}^{\mathsf{T}} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{1}^{\mathsf{T}} \mathbf{v}_{2} & \dots & \lambda_{L} \mathbf{v}_{1}^{\mathsf{T}} \mathbf{v}_{L} \\ \lambda_{1} \mathbf{v}_{2}^{\mathsf{T}} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2}^{\mathsf{T}} \mathbf{v}_{2} & \dots & \lambda_{L} \mathbf{v}_{2}^{\mathsf{T}} \mathbf{v}_{L} \\ & \vdots & & & \\ \lambda_{1} \mathbf{v}_{L}^{\mathsf{T}} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{L}^{\mathsf{T}} \mathbf{v}_{2} & \dots & \lambda_{L} \mathbf{v}_{L}^{\mathsf{T}} \mathbf{v}_{L} \end{bmatrix}$$

$$\mathbf{C}_{y} = \begin{bmatrix} \mathbf{v}_{1} \ \mathbf{v}_{2} & \cdots & \mathbf{v}_{L} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \lambda_{1} \mathbf{v}_{1} \ \lambda_{2} \mathbf{v}_{2} & \cdots & \lambda_{L} \mathbf{v}_{L} \end{bmatrix}$$

$$\mathbf{C}_y = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_L]^\mathsf{T} [\lambda_1 \mathbf{v}_1 \ \lambda_2 \mathbf{v}_2 \ \cdots \ \lambda_L \mathbf{v}_L]$$

$$\mathbf{C}_{y} = \begin{bmatrix} \lambda_{1} \mathbf{v}_{1}^{\mathsf{T}} \mathbf{v}_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} \mathbf{v}_{2}^{\mathsf{T}} \mathbf{v}_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{L} \mathbf{v}_{L}^{\mathsf{T}} \mathbf{v}_{L} \end{bmatrix}^{1}$$

Covarianza de Y:

$$\mathbf{C}_{y} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & & \\ 0 & 0 & \dots & \lambda_{L} \end{bmatrix}$$

Generalmente, se ordena de tal forma que: $\lambda_1>\lambda_2>\cdots>\lambda_L$

SIGNIFICADO

Ejemplo en 2D

Ejemplo en 5D

Ejemplo en 5D

SIGNIFICADO EN LA TRANSFORMACIÓN DE CARACTERÍSTICAS

SELECCION DE CARACTERISTICAS

p principal components

Significado de PCA:

- 1. Y es una nueva representación de X (es una transformación lineal de X)
- 2. Las columnas de Y no tienen correlación: $C_y(k, l) = 0$ para $k \neq l$
- 3. Ordenado de mayor a menor las columnas de Y están ordenadas por importancia

APLICACIÓN A RECONOCIMIENTO DE PATRONES

Estrategia con PCA:

Nuevas características $N \times L$ (N muestras y L nuevas características) Se escogen las p primeras (las componentes principales)

Training

Training / Testing

Training / Testing

Ventajas de PCA:

- 1. La representación de muchas características es mucho más sencilla ya que se reduce la dimensionalidad
- 2. La clasificación usando las primeras componentes es más simple y más rápida para el clasificador
- 3. Es posible reconstruir X a partir de las principales columnas de Y. $X = YA^T + M_x$

Reconstrucción con PCA:

 $\mathbf{A}_t \leftarrow \text{primeras } t \text{ columnas de } \mathbf{A}$

 $\mathbf{Y} = \mathbf{X}_0 \mathbf{A}_t \leftarrow \text{primeras } t \text{ components principales de } \mathbf{X}$

 $\hat{\mathbf{X}} = \mathbf{Y} \mathbf{A}_t^\mathsf{T} + \mathbf{M}_x \leftarrow \text{reconstrucción de } \mathbf{X}$

Reconstrucción con PCA:

Error
0.00%
0.08
0.94%
2.05%
2.93%
3.67%
5.36%
6.98%
9.10%

Desventajas de PCA:

- 1. Las características de PCA dependen de todas las características extraídas (es necesario extraer todas las características X para obtener Y, no hay ahorro de cómputo en la extracción)
- 2. PCA al no incluir información de los *labels* no asegura que las características transformadas tengan una buena separabilidad.

ALTERNATIVAS

Estrategia con PCA (original):

principales)

Se escogen las *p* primeras (las componentes

Estrategia con PCA y SFS (1/3):

Estrategia con PCA y SFS (2/3):

Estrategia con PCA y SFS (3/3):

OTRAS TRASNFORMACIONES

ICA (Independent Component Analysis)

Diferencia de ICA con PCA:

- PCA elimina correlaciones pero no otro tipo de dependencia.
- ICA elimina correlaciones y dependencias de mayor orden.
- En PCA se persigue que la covarianza entre las variables transformadas sea 0

$$cov(y_k, y_l) = 0$$

En ICA se persigue que la variables sean independientes:

$$p(y_1, y_2, \cdots, y_L) = p(y_1)p(y_2)\cdots p(y_L)$$

Diferencia de ICA con PCA:

- En PCA los vectores son ortogonales.
- En ICA los vectores no son ortogonales.

PLSR (Partial Least Squares Regression)

Descomposición PLSR:

$$\mathbf{X} = \mathbf{T}\mathbf{P}^\mathsf{T} + \mathbf{E}$$

X: Matriz de características

$$\mathbf{Y} = \mathbf{U}\mathbf{Q}^\mathsf{T} + \mathbf{F}$$

 \mathbf{Y} : Matriz de labels $^{(*)}$

Las descomposiciones de \mathbf{X} e \mathbf{Y} se hacen con el fin de maximizar la covarianza entre \mathbf{T} y \mathbf{U} .

Las matrices **P** y **Q** son ortogonales. Las matrices **E** y **F** corresponden al error.

La idea es buscar T, que es la transformada de X.

(*) Matriz binaria de $N \times K$, Y(i,k) = 1 if y(i) = k, con K número de clases