

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00130

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
Energía y Medio Ambiente			

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Décimo	172105	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el estudiante analice los efectos que los sistemas de generación de energía ejercen sobre el medio ambiente

TEMAS Y SUBTEMAS

1. Uso de la energía en un contexto global.

- 1.1. Uso de la energía como indicador social.
- 1.2. Estadísticas históricas en el uso de la energía.
- 1.3. Introducción a las energías renovables y no renovables.
- 1.4. Contrastes mundiales en el uso de la energía.

2. Los combustibles fósiles.

- 2.1. Introducción.
- 2.2. Petróleo.
- 2.3. Producción mundial de petróleo.
- 2.4. Proceso de refinación del petróleo.
- 2.5. Gas natural.
- 2.6. La historia del uso del gas natural.
- 2.7. Fuentes de gas a nivel mundial.
- 2.8. La formación del carbón.

3. Máquinas de calor.

- 3.1. Cantidad de energía útil de los combustibles.
- 3.2. Generación de electricidad.
- 3.3. Máquinas de vapor.
- 3.4. Máquinas de gasolina.
- 3.5. Máquinas de diésel.
- 3.6. Turbinas de gas.
- 3.7. Bombeadores de calor.

4. Fuentes de energía renovables.

- 4.1. Introducción.
- 4.2. Energía solar.
- 4.3. Enfriamiento empleando la energía solar.
- 4.4. Energía hidroeléctrica.
- 4.5. Energía geotérmica.
- 4.6. Energía eólica.
- 4.7. Energía maremotérmica y mareomotriz.
- 4.8. Energía de olas marítimas.
- 4.9. Biomasa.

Universidad Tecnológica de la Mixteca

00131

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

5. Energía nuclear.

- 5.1. Introducción histórica.
- 5.2. Radioactividad.
- 5.3. Fisión nuclear y reactores nucleares.
- 5.4. Ciclo de combustible nuclear.
- 5.5. Fuentes de uranio.
- 5.6. Desperdicios nucleares.
- 5.7. Aspectos ambientales y de seguridad.
- 5.8. El accidente nuclear de Chernobyl de 1986.
- 5.9. Fusión nuclear como fuente de energía.

6. Transporte y problemas climáticos.

- 6.1. Vehículos eléctricos e híbridos.
- 6.2. Celdas de combustible, hidrógeno y alcohol.
- 6.3. La atmósfera terrestre.
- 6.4. Inversiones térmicas.
- 6.5. Emisiones de hidrocarburos.
- 6.6. La capa de ozono.
- 6.7. Efecto invernadero y cambio climático.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00132

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Energy and the Environment, Ristinen R. A. and KraushaarJ.P., Wiley, 2005.
- 2. Energy Use and the Environment, Winteringham F.P.W., Lewis Publishers, 1992.
- 3. Medio Ambiente y Desarrollo Alternativo, Jiménez L. M., IEPALA, 1992.
- 4. Tecnología Energética y Medio Ambiente, Calventus Y., UPC, 2006.

Standard Handbook of Environmental Engineering, Corbitt R.A., McGraw-Hill, 1998.

The Energy Sourcebook: A Guide to Technology, Resources and Policy, Howes R., AIP Press, 1991.

3. Wind Energy Handbook, Burton T., John Wiley & Sons, 2001.

PERFIL PROFESIONAL DEL DOCENTE

Licenciatura en Física, en Química, en Ingeniería Física o afín; de preferencia con posgrado en energía ambiental y con experiencia de trabajo.

JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

SALOMÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA

SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

ACADÉMICA