## Session 3 - Workshop

# Li XueQing (A0186108A ) Jiang Xue (A0186734u) 1b)



1c)

Result show that model with differenced variables is better. DW statistics show that the original model (with value 0.0143) has autocorrelation, while the second model (with value 2.124) the autocorrelation is fixed and with a larger R square value. The original value can't reject the assumption that  $\gamma$  =0. This can also be observed from the correlogram below.

## **Estimation output:**



# **Representations:**



#### **Residuals:**

SGD D(SGD)



# Correlogram

SGD D(SGD)



## 2.

# Graph:



#### Model as follow:



# Estimation output : DW = 1.838714, autocorrelation is fixed

| iew Proc Object Print                                             | Name Freeze | Estimate Foreca       | st Stats Resi | ids       |
|-------------------------------------------------------------------|-------------|-----------------------|---------------|-----------|
| Dependent Variable: DI<br>Method: Least Squares<br>Date: 01/30/19 | 20:47<br>4  | ments                 |               |           |
| Variable                                                          | Coefficient | Std. Error            | t-Statistic   | Prob.     |
| С                                                                 | 0.021229    | 0.036785              | 0.577124      | 0.5719    |
| D(ADV)                                                            | 0.004333    | 0.001733              | 2.499905      | 0.0237    |
| D(PROM)                                                           | 0.012215    | 0.002296              | 5.320346      | 0.0001    |
| D(ADV(-1))                                                        | 0.007714    | 0.002177              | 3.543632      | 0.0027    |
| D(PROM(-1))                                                       | -0.007415   | 0.002177              | -3.406474     | 0.0036    |
| D(INDEX)                                                          | -0.030589   | 0.018263              | -1.674970     | 0.1134    |
| -squared                                                          | 0.845132    | Mean dependent var    |               | -0.007756 |
| djusted R-squared                                                 | 0.796736    | S.D. dependent var    |               | 0.368993  |
| .E. of regression                                                 | 0.166360    | Akaike info criterion |               | -0.522327 |
| um squared resid                                                  | 0.442809    | Schwarz criterion     |               | -0.224770 |
| og likelihood                                                     | 11.74560    | Hannan-Quinn criter.  |               | -0.452232 |
| -statistic                                                        | 17.46276    | Durbin-Watson stat    |               | 1.838714  |
| rob(F-statistic)                                                  | 0.000006    |                       |               |           |

# **Residuals:**



# Correlogram

| ew Proc Object Pr                                         | int Name Freeze Esti | mate Fore | ast [Stats] | Resids |       |  |  |  |  |  |
|-----------------------------------------------------------|----------------------|-----------|-------------|--------|-------|--|--|--|--|--|
| Correlogram of Residuals Squared                          |                      |           |             |        |       |  |  |  |  |  |
| Date: 01/30/19 Tim<br>Sample: 1 24<br>noluded observation | e: 20:50<br>ns: 22   |           |             |        |       |  |  |  |  |  |
| Autocorrelation                                           | Partial Correlation  | AC        | PAC         | Q-Stat | Prob  |  |  |  |  |  |
| 1 🔲 1                                                     |                      | 1 -0.30   | 9 -0.309    | 2.3939 | 0.122 |  |  |  |  |  |
| ı 🖢 ı                                                     | 1 1 1 1              | 2 0.18    | 0.072       | 3.0707 | 0.215 |  |  |  |  |  |
| 1 🗖 1                                                     |                      | 3 -0.14   | 8 -0.089    | 3.6831 | 0.298 |  |  |  |  |  |
| ·                                                         | 1                    | 4 0.12    | 2 0.051     | 4.1230 | 0.390 |  |  |  |  |  |
| 1 🗖 1                                                     |                      | 5 -0.20   | 9 -0.158    | 5.4792 | 0.360 |  |  |  |  |  |
| . ( .                                                     |                      | 6 -0.02   | 7 -0.169    | 5.5028 | 0.481 |  |  |  |  |  |
| 1 ( 1                                                     | 1 1                  | 7 -0.05   | 6 -0.077    | 5.6127 | 0.586 |  |  |  |  |  |
| - I 🗖 I                                                   |                      | 8 -0.11   | 4 -0.204    | 6.1042 | 0.636 |  |  |  |  |  |
| , <b>j</b> j ,                                            | '   '                | 9 0.05    | 7 -0.030    | 6.2376 | 0.716 |  |  |  |  |  |
| 1 <u> </u>                                                |                      | 10 -0.23  | 2 -0.300    | 8.6110 | 0.569 |  |  |  |  |  |
| ı <u> </u>                                                |                      | 11 0.33   | 4 0.148     | 13.971 | 0.235 |  |  |  |  |  |
| . ( .                                                     |                      | 12 -0.03  | 1 0.132     | 14.021 | 0.299 |  |  |  |  |  |
| 1 ( 1                                                     |                      | 13 -0.04  | 7 -0.231    | 14.150 | 0.363 |  |  |  |  |  |
| 1 1 1                                                     | 1 1 1                | 14 -0.01  | 0 -0.047    | 14.157 | 0.438 |  |  |  |  |  |
| , <b>j</b> a ,                                            | 1 ( 1 )              | 15 0.10   | 5 -0.039    | 14.983 | 0.453 |  |  |  |  |  |
|                                                           |                      | 16 -0.03  | 8 -0.004    | 15.108 | 0.517 |  |  |  |  |  |
| 1 1                                                       |                      | 17 -0.01  | 2 0.014     | 15.123 | 0.587 |  |  |  |  |  |
| 1 1 1                                                     | 1 1                  | 18 0.01   | 8 -0.073    | 15.164 | 0.651 |  |  |  |  |  |
| 1 ( 1                                                     |                      | 19 -0.03  | 2 0.033     | 15.347 | 0.700 |  |  |  |  |  |
| 1 1                                                       | 1 1                  | 20 0.00   | 2 -0.059    | 15.349 | 0.756 |  |  |  |  |  |
| 1 ( 1                                                     | 1 1                  | 21 -0.03  | 4 0.050     | 15.949 |       |  |  |  |  |  |

## Q1:

The coefficient of D(prom) is 0.0122 and the coefficient of D(adv) is 0.0043. This means that \$ 1K promotion expenditure will increase the sales by 0.0122% whereas \$ 1K advertisement expenditure will only increase the sales by 0.0043%. The \$1K should be spend on promotion if Franklin is focusing on current quarter sale.

However, the coefficient of D(prom(-1)) is -0.0074 and the coefficient of D(adv(-1)) is 0.0077. This means that \$ 1K promotion expenditure will decrease the next sales by 0.0074% whereas \$ 1K advertisement expenditure will increase the next sales by 0.0077%.

- Q2: Yes agree. Because the coefficient of index is negative means, the better the economic, the less the sales. However, this effect is not significant
- Q3: This policy has not been follows. Some quarters there are both promotion and advertisement expense. For examples, quarter 1,2

## **Q4**:

From the original data graph there's seasonal effects . Summer times sales is higher. However, the Correlogram shows that the effect is not significant .