University of Victoria

ELEC 250

LINEAR CIRCUITS I

Lab 4 - Resonance and Power

Instructor:

Dr. Nikitas DIMOPOULOS

Teaching Assistant:

Zhen LIU

Clayton KIHN V00794569 Yves SENECHAL V00213837 Tyler STEPHEN V00812021 A01 - B01

November 24, 2014

1 Object

This lab will study series resonance as well as the measurement of power in a circuit using a wattmeter.

2 Series Resonance

2.1 Procedure

Figure 1: Circuit diagram of resonant RLC circuit L=1.00 mH, C=22 nF, R=43.50 Ω

2.2 Results

Table 2 is located at the end of this report.

find f_0 , f_1 , f_2 , B by interpolating the graph. (hint, using the data table will be the best way to find f_1 and f_2 since we know they occur at $\theta = \pm 45^{\circ}$)

2.3 Discussion

How do f_0 , f_1 , f_2 , B compare with expected values?

3 Power Measurement

3.1 Procedure

The power factor pf is the ratio of true versus apparent power. A leading pf is achieved in an RC circuit, while a lagging pf is the result of a RL circuit. In this section, two experiments

Figure 2: Current through RLC circuit as frequency passes through resonance

were performed where a leading and lagging pf were obtained separately. The block diagram in Figure 3 represents the physical setup of the experiment that includes:

- high-wattage component board that carries a 200Ω resistor, a $300m{\rm H}$ inductor, and a $10\mu{\rm F}$ capacitor
- \bullet variac with an isolation transformer used to reduce the voltage to $50 V_{rms}$
- a wattmeter between the isolation transformer and the component board to measure real power (shown in Figure 4).

Figure 4 represents the wiring diagram for the RC circuit; the RL circuit is similar with the substitution of and inductor L in place of the capacitor C.

3.2 Results

Table 1 is a summary of the values obtained in this section.

First, power consumption was measured in an RC circuit. With a 200Ω resistor, a 10μ F capacitor, and the voltage set to $49.94V_{rms}$, the wattmeter measured a current of 151.0mA

Figure 3: Block diagram of circuit components $R=200~\Omega,\,L=300~m{\rm H},\,C=10~\mu{\rm F}$

Figure 4: RC pf measurement circuit setup

with real power consumption of 4.55W. Next, a digital multimeter (DMM) placed across the resistor indicated $V_R = 30.06V_{rms}$. Using the equation

$$P = \frac{V_R^2}{R} \tag{1}$$

the true power P can be calculated to be 4.52W. Similarly, the apparent power S can be calculated using the equation,

$$S = V_{rms}I_{rms} \tag{2}$$

which results in S = 7.54VA. The pf can be estimated using

$$pf = \frac{P}{S} \tag{3}$$

which yeilds a result of 0.6034. The pf was then be measured to be 0.6019 by the following relationship.

$$pf = \frac{P}{V_{rms}I_{rms}} \tag{4}$$

The relationship of the reactive power Q, true power P, and apparent power S is represented by the following equation, which results in Q = 6.014VAR.

$$Q = \sqrt{S^2 - P^2} \tag{5}$$

This equation can be visualized by a right-angle triangle where S is the hypothenuse.

Second, an RL circuit was constructed with a 200Ω resistor, a $300~m{\rm H}$ inductor, and the voltage set to $50.09{\rm V}_{rms}$. A digital multimeter (DMM) placed across the resistor indicated ${\rm V}_R = 36.10{\rm V}_{rms}$. The wattmeter in turn measured a current of $181.5m{\rm A}$ with true power consumption of $7.16{\rm W}$; however, using equation 1, the true power P was expected to be $6.52{\rm W}$.

With the relationship of equation 2, the apparent power results in S = 9.09VA.

A pf of 0.7876 is estimated and expected using equation 3; nevertheless, the value of the pf measured to be 0.7207 using the relationship of equation 4.

Using equation 5, there appears to be 5.602VAR of reactive power Q in the circuit.

					P(W)		pf	
Circuit	V_{rms} (V)	I_{rms} (mA)	V_R (V)	Q (VAR)	measured	$\frac{V_R^2}{R}$	$\frac{P}{S}$	$rac{V_R}{Vrms}$
RC	49.94	151.0	30.06	6.014	4.55	4.54	0.6034	0.6019
RL	50.09	181.5	36.10	5.602	7.16	6.55	0.7876	0.7207

Table 1: Power measurements in RC and RL circuits

3.3 Discussion

The RC circuit yielded similar results to those expected. In this circuit the difference between measured and calculated real power P and power factor pf was 0.664% and 0.249% respectively, which is negligible and expected when using non-ideal components.

The RL circuit, however, showed bigger discrepancies. The difference between measured and calculated P and pf was 8.94% and 8.49% respectively. From past experiments, these results can be expected due to the nature of inductors. Heat, a by-product of current and resistance, will increase internal resistance of the inductor which ultimately skews the results.

4 Conclusion

In the power measurement experiment, the wattmeter was confirmed to indicate the true power consumed by the circuit. Excess current may enter and circulate the circuit due to capacitors and inductors, but it is not consumed or transformed; it simply is the result of a current that leads or lags the voltage.

Relating this experiment to the big picture, we can justify power companies and big industries that strive for near unity power factors where all, or at least most, of the current required for circuits is consumed. An increase in current requires an inflated infrastructure.

Frequency	Resistor Voltage	Current	Phase Shift	
f (kHz)	V_r (V)	I (mA)	θ (°)	
10.000	0.345	7.931	-85.0	
15.000	0.523	12.023	-82.0	
20.000	0.910	20.920	-76.0	
25.000	1.500	34.483	-69.0	
28.000	2.130	48.966	-61.0	
30.000	2.700	62.069	-51.5	
30.500	3.020	69.425	-47.0	
31.000	3.280	75.402	-43.5	
31.500	3.500	80.460	-38.0	
32.000	3.700	85.057	-34.5	
32.500	3.920	90.115	-28.0	
33.000	4.180	96.092	-22.0	
33.500	4.400	101.149	-15.0	
34.000	4.500	103.448	-8.0	
34.200	4.650	106.897	-5.0	
34.400	4.700	108.046	-2.3	
34.576	5.100	117.241	-0.1	
34.600	4.650	106.897	0.8	
34.800	4.600	105.747	3.8	
35.000	4.550	104.598	6.8	
35.500	4.500	103.448	13.5	
36.000	4.300	98.851	20.0	
36.500	4.200	96.552	25.8	
37.000	4.000	91.954	31.5	
37.500	3.800	87.356	35.7	
38.000	3.600	82.759	40.0	
38.500	3.450	79.310	43.5	
39.000	3.200	73.563	47.2	
39.500	3.100	71.264	50.0	
40.000	2.950	67.816	53.0	
42.000	2.400	55.172	61.0	
44.000	2.100	48.276	66.0	
46.000	1.710	39.310	69.5	
48.000	1.510	34.713	72.0	
50.000	1.390	31.954	74.7	

Table 2: Change in current through resistor in RLC circuit as source frequency passes through resonance $\frac{1}{2}$