A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 5EI

Bookmark

Show all steps: ON

Problem

Recall that V_n is the multiplicative group of all the invertible elements in \mathbb{Z}_n . If V_n happens to be cyclic, say $V_n = \langle m \rangle$, then any integer $a \equiv m \pmod n$ is called a *primitive root* of n.

Suppose m has a primitive root, and let n be relatively prime to $\phi(m)$. (Suppose n > 0.) Prove that if a is relatively prime to m, then $x^n \equiv a \pmod{m}$ has a solution.

Step-by-step solution

Here, objective is to prove that $x^n = a \pmod{m}$ has a solution, if a is relatively prime to m. Comment Step 2 of 4 V_n is the multiplicative group of all the invertible elements in Z_n . If V_n happens to be cyclic $V_n = m$. Then any integer g is called a primitive root of n.

Step 3 of 4

The congruence $x^a = b \pmod{n}$ has a solution, if gcd(a, n-1) = 1.

Comment

Step 4 of 4

Consider m has a primitive root and

n is relatively prime $\phi(m)$

 $\phi(m)$ is the order m in $V_{_{n}}$

$$\phi(m) = m - 1$$

$$gcd(n, \phi(m)) = 1$$

$$\gcd(n, m-1) = 1$$

Since,

n is relatively prime $\phi(m)$.

Therefore,

$$x^n = a \pmod{m}$$
 has a solution.

Hence, proved

Comment