Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Departamento de Informática Ciência da Computação Laboratório de Circuitos Digitais Prof. Braga

1. IDENTIFICAÇÃO

Relatório - 3

Título - Alarme de Carro e Chave Seletora Nome do Aluno - Eduardo Silva Vieira

2. RESUMO SOBRE O TEMA DA AULA PRÁTICA

Este projeto tem como objetivo a utilização de funções e portas lógicas, tabela verdade e construção de circuitos combinacionais. Por meio deste estudo, pode-se compreender o funcionamento de um circuito que simula o alarme de uma carro e uma chave seletora.

3. INTRODUÇÃO

Circuitos combinacionais são conhecidos como aqueles cuja a saída depende diretamente das variáveis de entrada. Para solucionar os presentes problemas para a qual uma determinada saída é esperada, torna-se necessário conhecer sua expressão característica. Para isso, tem-se que construir tabelas verdade para cada situação, a fim de alcançar a expressão acima referida.

4. DESCRIÇÃO DO EXPERIMENTO (PARTE EXPERIMENTAL) Circuito 1

Projete um circuito que indique a um motorista, através de um alarme, uma determinada condição indesejada. Nesse circuito, três chaves são usadas para indicar, respectivamente, o estado da porta do motorista, o estado da ignição e o estado dos faróis. Este deverá ser projetado de tal forma que o alarme seja ativado sempre que ocorrer uma das seguintes condições:

- a) Os faróis estão acesos e a ignição está desligada;
- b) A porta está aberta e a ignição está ligada;

Circuito 2

Projete um circuito com uma entrada E, uma chave seletora S e duas saídas A e B. Quando S estiver desligado, E deverá ser conectado a A e quando S estiver ligado E deverá ser conectado em B.

5. RESULTADOS OBTIDOS

Alarme de Carro

No primeiro circuito, temos que construir a tabela verdade para o circuito baseada nas condições impostas na descrição. Assim, tem-se a tabela verdade a seguir, onde foi montada três entradas (Farol (f), Ignição (i) e Portas (p)) para o circuito terá uma saída (s) 1 com base nas condições: Os faróis estão acesos e a ignição está desligada e a porta está aberta e a ignição está ligada.

Abaixo podemos ver a tabela verdade e o circuito combinacional correspondente.

f	i	р	s
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Tabela 1 - Alarme de Carro

Figura 1 - Alarme de Carro

Chave Seletora

Neste circuito construímos a saída depende de uma chave seletora S e duas saídas A e B. Quando S estiver desligado, E deverá ser conectado a A e quando S estiver ligado E deverá ser conectado em B.

Abaixo podemos ver a tabela verdade e o circuito combinacional correspondente.

0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Tabela 2 - Chave Seletora

Figura 2 - Chave Seletora

6. CONCLUSÃO

Desta forma, através dos experimentos, foi possível montar um circuito combinacional de simulação de um alarme de um carro e de uma chave seletora, através da construção e análise de suas respectivas tabelas verdade.