Watermark Detection

BY MARTINO FERRARI

1 Watermark Embedding and Channel modelling

After loading a gray scale image x we were asked to embed a watermarm w composed by $\{-1, +1\}$ niformly distributed with a density of $\theta_N = 0.5$, y = x + w. The image is then *attacked* by an AWGN z = N(0, 1), the resulting image z = y + z.

Figure 1. Signals in the spatial domain

The process is shown in the previous figure, to the human eyes is very difficult to see any diffrence between the 3 images x, y and v as both the watermark and the noise have low intensity. I tried so to see if in the frequency domain the difference is more evident.

 $\textbf{Figure 2.} \ \ \textbf{Fourier transformation of the signals}$

The diffrence is small as well in the frequency domain, however is possible to see the effects of the gaussian noise in the last sub plot.

2 Non-blind watermark detection

In this simple detection case we suppose that the reciver has access to the original image x and of course the key to generate the watermark w. The first step is so to extract the $\hat{w} = v - x$, and then compute the corelation of it with the original watermark $\rho = \frac{1}{N} \sum_{i=0}^{N-1} \hat{w}[i] \cdot w[i]$:

Figure 3. w and \hat{w}

The correlation between the two signali is:

$$\rho_{non-blind} = 1.01$$

3 Blind watermark detection

However in general the reciver doesn't have access to the original image, in this case the extraction of the watermark \hat{w} is done using an extimation of the original image \bar{v} , $\hat{w} = v - \bar{v}$. As both z and w can be represented as noise the extimation \bar{v} can be computed using a low pass filter $\bar{v} = h_{lp} * v$ or in the frequency domain as $\bar{V} = H_{lp} \cdot V$.

Figure 4. Different steps of the blind watermark detection

Using a very weak low pass filter $H_{lp}=10^{-\frac{u^{-}}{2.80^{2}}}$ is possible to obtain very good results. Using a stronger low pass filter will give worst results as the \hat{w} will be dominate by the high-frequency of the original image x, instead that on the watermark w (and noise z). Is possible now to compute

again the correlation ρ as before:

$$\rho_{blind} = 0.88$$

The difference between $\rho_{non-blind} = 1.01$ and $\rho_{blind} = 0.88$ is very small and that confirms the graphical evidence as well as the filter choice. However with stronger noise z or more sofisticate attack (e.g.: the attacker could use the same filter to compute \hat{w} and then substracting it to the image y) could affect more the watermark detection.

4 Statistical analysis

To understand better how the simple blind detector implemented perform I chose to do some statistical analysis confronting 200 watermarked images with 200 not watermarked and looking at the value of the correlation between w and \hat{w} :

Figure 5. ρ distribution of watermarked vs non-watermarked image, blind detector

With a watermark intensity of only 1 is very hard distinguish from the noisy images and the watermarked one, however increasing the inteinsity up to 5 will give already very good performance with close to no overlap between the two distribution:

Figure 6. ρ distribution of watermarked (intenisty 5) vs non-watermarked image, blind detector

For the non-blind watermark detector I'm exepecting much better performances:

Figure 7. ρ distribution of watermarked vs non-watermarked image, non-blind detector

The difference of performance between the **blind** and **non-blind** detectors are remarkables, to stress the system I then tied to increase the noise:

Figure 8. ρ distribution of watermarked (intenisty 0.05) vs non-watermarked image, blind detector

It results that the **blind** and **non-blind** detector have similar performance with a difference of watermark intensity of a factor 100 (intensity 0.05 is equivalent to 5).

As final test I wanted to see how the detectors performs with image watermarked with a different watermark that the one tested:

Figure 9. ρ distribution of watermarked (intensity 5) vs wrong-watermarked (intensity 5) image, blind detector

As I was expecting there is no much difference between noise and a false watermark for the detector as the two watermarks are indipendent, $w_0 \perp w_1$.