20

REGULATING METABOLISM BY MODIFYING THE LEVEL OF TREHALOSE - 6 - PHOSPHATE

FIELD OF THE INVENTION

Glycolysis has been one of the first metabolic processes described in biochemical detail in the literature. Although the general flow of carbohydrates in organisms is known and although all enzymes of the glycolytic pathway(s) are elucidated, the signal which determines the induction of metabolism by stimulating glycolysis has not been unravelled. Several hypotheses, especially based on the situation in yeast have been put forward, but none has been proven beyond doubt.

Influence on the direction of the carbohydrate partitioning does not only influence directly the cellular processes of glycolysis and carbohydrate storage, but it can also be used to influence secondary or derived processes such as cell division, biomass generation and accumulation of storage compounds, thereby determining growth and productivity.

Especially in plants, often the properties of a tissue are directly influenced by the presence of carbohydrates, and the steering of carbohydrate partitioning can give substantial differences.

The growth, development and yield of plants depends on the energy which such plants can derive from CO₂-fixation during photosynthesis.

Photosynthesis primarily takes place in leaves and to a lesser extent in the stem, while other plant organs such as roots, seeds or tubers do not essentially contribute to the photoassimilation process. These tissues are completely dependent on photosynthetically active organs for their growth and nutrition. This then means that there is a flux of products derived from photosynthesis (collectively called "photosynthate") to photosynthetically inactive parts of the plants.

The photosynthetically active parts are denominated as "sources" and they are defined as net exporters of photosynthate. The photosynthetically inactive parts are denominated as "sinks" and they are defined as net importers of photosynthate.

It is assumed that both the efficiency of photosynthesis, as well as the carbohydrate partitioning in a plant are essential. Newly

developing tissues like young leaves or other parts like root and seed are completely dependent on photosynthesis in the sources. The possibility of influencing the carbohydrate partitioning would have great impact on the phenotype of a plant, e.g. its height, the internodium distance, the size and form of a leaf and the size and structure of the root system.

Furthermore, the distribution of the photoassimilation products is of great importance for the yield of plant biomass and products. An example is the development in wheat over the last century. Its 10 photosynthetic capacity has not changed considerably but the yield of wheat grain has increased substantially, i.e. the harvest index (ratio harvestable biomass/total biomass) has increased. The underlying reason is that the sink-to-source ratio was changed by conventional breeding, such that the harvestable sinks, i.e. seeds, portion 15 increased. However, the mechanism which regulates the distribution of assimilation products and consequently the formation of sinks and sources is yet unknown. The mechanism is believed to be located somewhere in the carbohydrate metabolic pathways and their regulation. In the recent research it has become apparent that hexokinases may 20 play a major role in metabolite signalling and control of metabolic flow. A number of mechanisms for the regulation of the hexokinase activity have been postulated (Graham et al. (1994), The Plant Cell 6: 761; Jang & Sheen (1994), The Plant Cell 6, 1665; Rose et al. Eur. J. Biochem. 199, 511-518, 1991; Blazquez et al. (1993), FEBS 329, 51; 25 Koch, Annu. Rev. Plant Physiol. Plant. Mol. Biol. (1996) 47, 509; Jang et al. (1997), The Plant Cell 9, 5. One of these theories of hexokinase regulation, postulated in yeast mentions trehalose and its related monosaccharides (Thevelein & Hohmann (1995), TIBS 20, 3). However, it is hard to see that this would be an universal mechanism, 30 as trehalose synthesis is believed to be restricted to certain species.

Thus, there still remains a need for the elucidation of the signal which can direct the modification of the development and/or composition of cells, tissue and organs in vivo.

30

SUMMARY OF THE INVENTION

It has now been found that modification of the development and/or composition of cells, tissue and organs in vivo is possible by 5 introducing the enzyme trehalose-6-phosphate synthase (TPS) and/or trehalose-6-phosphatase phosphate (TPP) thereby inducing a change in metabolic pathways of the saccharide trehalose-6-phosphate (T-6-P) resulting in an alteration of the intracellular availability of T-6-P. Introduction of TPS thereby inducing an increase in the intracellular 10 concentration of T-6-P causes inhibition of carbon flow in the glycolytic direction, stimulation of the photosynthesis, inhibition of growth, stimulation of sink-related activity and an increase in storage of resources. Introduction of TPP thereby introducing a decrease in the intracellular concentration of T-6-P causes 15 stimulation of carbon flow in the glycolytic direction, increase in biomass and a decrease in photosynthetic activity. The levels of T-6-P may be influenced by genetic engineering of an organism with gene constructs able to influence the level of T-6-P or by exogenously (orally, topically, parenterally etc.) supplying 20 compounds able to influence these levels. The gene constructs that can be used in this invention are constructs harbouring the gene for trehalose phosphate synthase (TPS) the enzyme that is able to catalyze the reaction from glucose-6-phosphate and UDP-glucose to T-6-P. On the other side a construct coding for the 25 enzyme trehalose-phosphate phosphatase (TPP) which catalyzes the reaction from T-6-P to trehalose will, upon expression, give a decrease of the amount of T-6-P.

Alternatively, gene constructs harbouring antisense TPS or TPP can be used to regulate the intracellular availability of T-6-P.

Furthermore, it was recently reported that an intracellular phospho-alpha-(1,1)-glucosidase, TreA, from Bacillus subtilis was able to hydrolyse T-6-P into glucose and glucose-6-phosphate (Schöck et al., Gene, <u>170</u>, 77-80, 1996). A similar enzyme has already been described for E. coli (Rimmele and Boos (1996), J. Bact. 176 (18), 35 5654-).

For overexpression heterologous or homologous gene constructs have to be used. It is believed that the endogenous T-6-P forming and/or degrading enzymes are under allosteric regulation and

30

regulation through covalent modification. This regulation may be circumvented by using heterologous genes.

Alternatively, mutation of heterologous or homologous genes may be used to abolish regulation.

The invention also gives the ability to modify source-sink relations and resource allocation in plants. The whole carbon economy of the plant, including assimilate production in source tissues and utilization in source tissues can be modified, which may lead to increased biomass yield of harvested products. Using this approach,

increased yield potential can be realized, as well as improved harvest index and product quality. These changes in source tissues can lead to changes in sink tissues by for instance increased export of photosynthase. Conversely changes in sink tissue can lead to change in source tissue.

15 Specific expression in a cell organelle, a tissue or other part of an organism enables the general effects that have been mentioned above to be directed to specific local applications. This specific expression can be established by placing the genes coding for TPS, TPP or the antisense genes for TPS or TPP under control of a specific promoter.

Specific expression also enables the simultaneous expression of both TPS and TPP enzymes in different tissues thereby increasing the level of T-6-P and decreasing the level of T-6-P locally.

By using specific promoters it is also possible to construct a

25 temporal difference. For this purpose promoters can be used that are
specifically active during a certain period of the organogenesis of
the plant parts. In this way it is possible to first influence the
amount of organs which will be developed and then enable these organs
to be filled with storage material like starch, oil or proteins.

Alternatively, inducible promoters may be used to selectively switch on or off the expression of the genes of the invention. Induction can be achieved by for instance pathogens, stress, chemicals or light/dark stimuli.

DEFINITIONS

- Hexokinase activity is the enzymatic activity found in cells which catalyzes the reaction of hexose to hexose-6-phosphate.
- 5 Hexoses include glucose, fructose, galactose or any other C₆ sugar. It is acknowledged that there are many isoenzymes which all can play a part in said biochemical reaction. By catalyzing this reaction hexokinase forms a key enzyme in hexose (glucose) signalling.
- 10 Hexose signalling is the regulatory mechanism by which a cell senses the availability of hexose (glucose).
 - Glycolysis is the sequence of reactions that converts glucose into pyruvate with the concomitant production of ATP.
- Cold sweetening is the accumulation of soluble sugars in potato
 tubers after harvest when stored at low temperatures.
- Storage of resource material is the process in which the primary product glucose is metabolized into the molecular form which is fit for storage in the cell or in a specialized tissue. These forms can be divers. In the plant kingdom storage mostly takes place in the form of carbohydrates and polycarbohydrates such as starch, fructan and cellulose, or as the more simple mono- and di-saccharides like fructose, sucrose and maltose; in the form of oils such as arachic or oleic oil and in the form of proteins such as cruciferin, napin and seed storage proteins in rapeseed.
- In animal cells also polymeric carbohydrates such as glycogen are formed, but also a large amount of energy rich carbon compounds is transferred into fat and lipids.
 - Biomass is the total mass of biological material.

DESCRIPTION OF THE FIGURES

Figure 1. Schematic representation of plasmid pVDH275 harbouring the neomycin-phosphotransferase gene (NPTII) flanked by the 35S

5 cauliflower mosaic virus promoter (P35S) and terminator (T35S) as a selectable marker; an expression cassette comprising the pea plastocyanin promoter (pPCpea) and the nopaline synthase terminator (Tnos); right (RB) and left (LB) T-DNA border sequences and a bacterial kanamycin resistance (KanR) marker gene.

10

Figure 2. Northern blot analysis of transgenic tobacco plants. Panel A depicts expression of otsA mRNA in leaves of individual pMOG799 transgenic tobacco plants. The control lane "C" contains total RNA from a non-transformed N.tabacum plant.

15

- Figure 3. Lineup of plant derived TPS encoding sequences compared with the TPS_{yeast} sequence using the Wisconsin GCG sequence analysis package (Devereux et al. (1984) A comprehensive set of sequence analysis programs of the VAX. Nucl. Acids Res., 12, 387).
- 20 TPSatal 3/56 and 142 TPSrice3 (SEQ ID NO:53) and RiceTPS code for respectively Arabidopsis and Rice TPS enzymes derived from EST database sequences.

amino-acids of all four listed sequences.

TPSsun10, TPSsel43, (SEQ ID NO:44) and TPSsel8 (SEQ ID NO:42) code for respectively sunflower and Selaginella TPS enzymes derived from sequences isolated by PCR techniques (see example 3).

Figure 4. Alignment of PCR amplified tobacco TPS cDNA fragments with the TPS encoding yeast TPS1 gene. Boxes indicate identity between

30

- Figure 5. Alignment of PCR amplified tobacco TPP cDNA fragments with the TPP encoding yeast TPS2 gene. Boxes indicate identity between amino-acids of all four listed sequences.
- Figure 6. Alignment of a fragment of the PCR amplified sunflower TPS/TPP bipartite cDNA (SEQ ID NO: 24) with the TPP encoding yeast TPS2 gene. Boxes indicate identity between amino-acids of both sequences.

PCT/EP97/02497

7

<u>Figure 7.</u> Alignment of a fragment of the *Arabidopsis* TPS1 and Rice EST clones with the TPS encoding yeast TPS1 gene. Boxes indicate identity between amino-acids of all three sequences.

5 Figure 8. Alignment of a fragment of the PCR amplified human TPS cDNA (SEQ ID NO: 10) with the TPS encoding yeast TPS1 gene. Boxes indicate identity between amino-acids of both sequences.

Figure 9. Trehalose accumulation in tubers of pMOG1027 (35S as-10 trehalase) transgenic potato plants.

Figure 10. Hexokinase activity of a wild-type potato tuber (Solanum tuberosum cv. Kardal) extract with and without the addition of trehalose-6-phosphate.

15

Figure 11. Hexokinase activity of a wild-type potato tuber (Solanum tuberosum cv. Kardal) extract with and without the addition of trehalose-6-phosphate. Fructose or glucose is used as substrate for the assay.

20

Figure 12. Hexokinase activity of a wild-type tobacco leaf extract (Nicotiana tabacum cv. SR1) with and without the addition of trehalose-6-phosphate. Fructose or glucose is used as substrate for the assay.

25

Figure 13. Plot of a tobacco hexokinase activity measurement.

Data series 1: Tobacco plant extract

Data series 2: Tobacco plant extract + 1 mM trehalose-6-phosphate

Data series 3: Commercial hexokinase extract from yeast (1/8 unit)

30

Figure 14. Hexokinase activity of a wild-type rice leaf extract (Oryza sativa) extract with and without the addition of trehalose-6-phosphate. Experiments have been performed in duplicate using different amounts of extracts. Fructose or glucose is used as substrate for the assay.

WO 97/42326 PCT/EP97/02497

۶

Figure 15. Hexokinase activity of a wild-type maize leaf extract (Zea mais) extract with and without the addition of trehalose-6-phosphate. Fructose or glucose is used as substrate for the assay.

- 5 Figure 16. Fluorescence characteristics of wild-type (triangle), PC-TPS (square) and 35S-TPP (cross) tobacco leaves. The upper two panels show the electron transport efficiency (ETE) at the indicated light intensities (PAR). Plants were measured after a dark-period (upper-left panel) and after a light-period (upper-right panel).
- The bottom panels show reduction of fluorescence due to assimilate accumulation (non-photochemical quenching). Left and right panel as above.

Figure 17. Relative sink-activity of plant-parts of PC-TPS (Famine)

15 and 35S-TPP (Feast) transgenic tobacco plants. Indicated is the nett

C-accumulation expressed as percentage of total C-content, for various

plant-parts after a period of light (D) or light + dark (D + N).

Figure 18. Actual distribution of carbon in plant-parts of PC-TPS

20 (Famine) and 35S-TPP (Feast) transgenic tobacco plants. Indicated is
the nett C-accumulation expressed as percentage of total daily
accumulated new C for various plant-parts after a period of light (D)
or light + dark (D + N).

25 <u>Figure 19.</u> Reduced and enhanced bolting in transgenic lettuce lines expressing PC-TPS or PC-TPP compared to wild-type plants. The lower panel shows leaf morphology and colour.

Figure 20. Profile of soluble sugars (Fig. 20/1) in extracts of transgenic lettuce (upper panel) and transgenic beet (lower panel) lines. In the upper panel controls are GUS-transgenic lines which are compared to lines transgenics for PC-TPS and PC-TPP. In the lower panel all transgenic are PC-TPS. Starch profiles are depicted in Fig. 20/2.

35

Figure 21. Plant and leaf morphology of transgenic sugarbeet lines expressing PC-TPS (TPS) or PC-TPP (TPP) compared to wild-type plants (Control). TPS A-type has leaves which are comparable to wild-type while TPS D-type has clearly smaller leaves. The leaves of the TPP transgenic line have a lighter green colour, a larger petiole and an increased size compared to the control.

Figure 22. Taproot diameter of transgenic sugarbeet lines (PC-TPS). In the upper panel A, B, C and D indicate decreasing leaf sizes as compared to control (A). In the lower panel individual clones of control and PC-TPS line 286-2 are shown.

Figure 23. Tuber yield of pMOG799 (35S TPS) transgenic potato lines.

15 Figure 24. Tuber yield of pMOG1010 (35S TPP) and pMOG1124 (PC-TPP) transgenic potato lines.

Figure 25. Tuber yield of 22 independent wild-type S. tuberosum clones.

20 <u>Figure 26.</u> Tuber yield of pMOG1093 (PC-TPS) transgenic potato lines in comparison to wild-type. B, C, D, E, F, G indicate decreasing leaf sizes as compared to wild-type (B/C).

Figure 27. Tuber yield of pMOG845 (Pat-TPS) transgenic potato lines

25 (Figure 27-1) in comparison to wild-type (Figure 27-2). B, C indicate leaf sizes.

Figure 28. Tuber yield of pMOG1129 (845-11/22/28) transgenic potato lines.

30

Figure 29. Cross section through leaves of TPP (lower panel) and TPS (upper panel) transgenic tobacco plants. Additional cell layers and increased cell size are visible in the TPS cross section.

Figure 30. HPLC-PED analysis of tubers transgenic for $TPS_{E.coli}$ before and after storage at 4°C. Kardal C, F, B, G and H are non-transgenic control lines.

- 5 Figure 31. Leaf morphology, colour and size of tobacco lines transgenic for 35S TPS (upper leaf), wild-type (middle leaf) and transgenic for 35S TPP (bottom leaf).
- Figure 32. Metabolic profiling of 35S TPS (pMOG799), 35S TPP

 10 (pMOG1010), wild-type (WT), PC-TPS (pMOG1177) and PC-TPP (pMOG1124)

 transgenic tobacco lines. Shown are the levels of trehalose, soluble sugars (Figure 32-1), starch and chlorophyll (Figure 32-2).
- Figure 33. Tuber yield of pMOG1027 (35S as-trehalase) and

 15 pMOG1027(845-11/22/28) (35S as-trehalase pat TPS) transgenic potato
 lines in comparison to wild-type potato lines.
- <u>Pigure 34.</u> Starch content of pMOG1027 (35S as-trehalase) and pMOG1027(845-11/22/28) (35S as-trehalase pat TPS) transgenic potato lines in comparison to wild-type potato lines. The sequence of all lines depicted is identical to Fig. 33.
- Figure 35. Yield of pMOG1028 (pat as-trehalase) and pMOG1028(845-11/22/28) (pat as-trehalase pat TPS) transgenic potato lines in comparison to wild-type potato lines.
 - Figure 36. Yield of pMOG1092 (PC as-trehalase) transgenic potato lines in comparison to wild-type potato lines as depicted in Fig. 35.
- 30 Figure 37. Yield of pMOG1130 (PC as-trehalase PC TPS) transgenic potato lines in comparison to wild-type potato lines as depicted in Fig. 35.

WO 97/42326 PCT/EP97/02497

11

DETAILED DESCRIPTION OF THE INVENTION

The invention is concerned with the finding that metabolism can be modified in vivo by the level of T-6-P. A decrease of the intracellular concentration of T-6-P stimulates glycolytic activity.

5 On the contrary, an increase of the T-6-P concentration will inhibit glycolytic activity and stimulate photosynthesis.

These modifications established by changes in T-6-P levels are most likely a result of the signalling function of hexokinase, which activity is shown to be regulated by T-6-P. An increase in the flux through hexokinase (i.e. an increase in the amount of glucose) that is reacted in glucose-6-phosphate has been shown to inhibit photosynthetic activity in plants. Furthermore, an increase in the flux through hexokinase would not only stimulate the glycolysis, but also cell division activity.

15

THEORY OF TREHALOSE-6-PHOSPHATE REGULATION OF CARBON METABOLISM

In a normal plant cell formation of carbohydrates takes place in the process of photosynthesis in which CO₂ is fixed and reduced to phosphorylated hexoses with sucrose as an end-product. Normally this sucrose is transported out of the cell to cells or tissues which through uptake of this sucrose can use the carbohydrates as building material for their metabolism or are able to store the carbohydrates as e.g. starch. In this respect, in plants, cells that are able to photosynthesize and thus to produce carbohydrates are denominated as sources, while cells which consume or store the carbohydrates are called sinks.

In animal and most microbial cells no photosynthesis takes place and the carbohydrates have to be obtained from external sources,

30 either by direct uptake from saccharides (e.g. yeasts and other microorganisms) or by digestion of carbohydrates (animals). Carbohydrate transport usually takes place in these organisms in the form of glucose, which is actively transported over the cell membrane.

After entrance into the cell, one of the first steps in the

35 metabolic pathway is the phosphorylation of glucose into glucose-6phosphate catalyzed by the enzyme hexokinase. It has been demonstrated
that in plants sugars which are phosphorylated by hexokinase (HXK) are
controlling the expression of genes involved in photosynthesis (Jang &

WO 97/42326

Sheen (1994), The Plant Cell 6, 1665). Therefor, it has been proposed that HXK may have a dual function and may act as a key sensor and signal transmitter of carbohydrate-mediated regulation of geneexpression. It is believed that this regulation normally signals the 5 cell about the availability of starting product, i.e. glucose. Similar effects are observed by the introduction of TPS or TPP which influence the level of T-6-P. Moreover, it is shown that in vitro T-6-P levels affect hexokinase activity. By increasing the level of T-6-P, the cell perceives a signal that there is a shortage of carbohydrate input. 10 Conversely, a decrease in the level of T-6-P results in a signal that there is plenty of glucose, resulting in the down-regulation of photosynthesis: it signals that substrate for glycolysis and consequently energy supply for processes as cell growth and cell division is sufficiently available. This signalling is thought to be 15 initiated by the increased flux through hexokinase (J.J. Van Oosten, public lecture at RijksUniversiteit Utrecht dated April 19, 1996).

The theory that hexokinase signalling in plants can be regulated through modulation of the level of trehalose-6-phosphate would imply that all plants require the presence of an enzyme system able to generate and break-down the signal molecule trehalose-6-phosphate. Although trehalose is commonly found in a wide variety of fungi, bacterial, yeasts and algae, as well as in some invertebrates, only a very limited range of vascular plants have been proposed to be able to synthesize this sugar (Elbein (1974), Adv. Carboh. Chem. Biochem. 30, 227). A phenomenon which was not understood until now is that despite the apparent lack of trehalose synthesizing enzymes, all plants do seem to contain trehalases, enzymes which are able to break down trehalose into two glucose molecules.

Indirect evidence for the presence of a metabolic pathway for 30 trehalose is obtained by experiments presented herein with trehalase inhibitors such as Validamycin A or transformation with anti-sense trehalase.

Production of trehalose would be hampered if its intermediate T-6-P would influence metabolic activity too much. Preferably, in order to accumulate high levels of trehalose without affecting partitioning and allocation of metabolites by the action of trehalose-6-phosphate, one should overexpress a bipartite TPS/TPP enzyme. Such an enzyme would resemble a genetic constitution as found in yeast, where the

WO 97/42326

TPS2 gene product harbours a TPS and TPP homologous region when compared with the E. coli otsA and otsB gene (Kaasen et al. (1994), Gene 145, 9). Using such an enzyme, trehalose-6-phosphate will not become freely available to other cell components. Another example of such a bipartite enzyme is given by Zentella & Iturriaga (Plant Physiol. (1996), 111 Abstract 88) who isolated a 3.2 kb cDNA from Selaginella lepidophylla encoding a putative trehalose-6-phosphate synthase/phosphatase. It is also envisaged that construction of a truncated TPS-TPP gene product, whereby only the TPS activity would be retained, would be as powerful for synthesis of T-6-P as the otsA gene of E. coli, also when used in homologous systems.

PCT/EP97/02497

On a molecular level we have data that indicate that next to Selaginella also trehalose synthesizing genes are present in Arabidopsis, tobacco, rice and sunflower. Using degenerated primers, based on conserved sequences between TPS_{E.coli} and TPS_{yeast}, we have been able to identify genes encoding putative trehalose-6-phosphate generating enzymes in sunflower and tobacco. Sequence comparison revealed significant homology between these sequences, the TPS genes from yeast and E.coli, and EST (expressed sequences tags) sequences from Arabidopsis and rice (see also Table 6b which contains the EST numbers of homologous EST's found).

Recently an Arabidopsis gene has been elucidated (disclosed in GENBANK Acc. No. Y08568, depicted in SEQ ID NO: 39) that on basis of its homology can be considered as a bipartite enzyme.

These data indicate that, in contrast to current beliefs, most plants do contain genes which encode trehalose-phosphate-synthases enabling them to synthesize T-6-P. As proven by the accumulation of trehalose in TPS expressing plants, plants also contain phosphatases, non-specific or specific, able to dephosphorylate the T-6-P into trehalose. The presence of trehalase in all plants may be to effectuate turnover of trehalose.

Furthermore, we also provide data that T-6-P is involved in regulating carbohydrate pathways in human tissue. We have elucidated a human TPS gene (depicted in SEQ ID NO: 10) which shows homology with the TPS genes of yeast, E. coli and plants. Furthermore, we show data that also the activity of hexokinase is influenced in mammalian (mouse) tissue.

WO 97/42326 PCT/EP97/02497

14

Generation of the "plenty" signal by decreasing the intracellular concentration of trehalose-6-phosphate through expression of the enzyme TPP (or inhibition of the enzyme TPS) will signal all cell systems to increase glycolytic carbon flow and inhibit photosynthesis. This is nicely shown in the experimental part, where for instance in Experiment 2 transgenic tobacco plants are described in which the enzyme TPP is expressed having increased leaf size, increased branching and a reduction of the amount of chlorophyll. However, since the "plenty" signal is generated in the absence of sufficient supply of glucose, the pool of carbohydrates in the cell is rapidly depleted.

Thus, assuming that the artificial "plenty" signal holds on, the reduction in carbohydrates will finally become limiting for growth and cell division, i.e. the cells will use up all their storage

15 carbohydrates and will be in a "hunger"-stage. Thus, leaves are formed with a low amount of stored carbohydrates. On the other hand, plants that express a construct with a gene coding for TPS, which increases the intracellular amount of T-6-P, showed a reduction of leaf size, while also the leaves were darker green, and contained an increased

20 amount of chlorophyll.

In yeast, a major role of glucose-induced signalling is to switch metabolism from a neogenetic/respirative mode to a fermentative mode. Several signalling pathways are involved in this phenomenon (Thevelein and Hohmann, (1995) TIBS 20, 3). Besides the possible role of hexokinase signalling, the RAS-cyclic-AMP (cAMP) pathway has been shown to be activated by glucose. Activation of the RAS-cAMP pathway by glucose requires glucose phosphorylation, but no further glucose metabolism. So far, this pathway has been shown to activate trehalase and 6-phosphofructo-2-kinase (thereby stimulating glycolysis), while fructose-1,6-bisphosphatase is inhibited (thereby preventing gluconeogenesis), by cAMP-dependent protein phosphorylation. This signal transduction route and the metabolic effects it can bring about can thus be envisaged as one that acts in parallels with the hexokinase signalling pathway, that is shown to be influenced by the level of trehalose-6-phosphate.

As described in our invention, transgenic plants expressing astrehalase reveal similar phenomena, like dark-green leaves, enhanced

WO 97/42326 / 5

yield, as observed when expressing a TPS gene. It also seems that expression of as-trehalase in double-constructs enhances the effects that are caused by the expression of TPS. Trehalase activity has been shown to be present in e.g. plants, insects, animals, fungi and bacteria while only in a limited number of species, trehalose is accumulated.

PCT/EP97/02497

Up to now, the role of trehalase in plants is unknown although this enzyme is present in almost all plant-species. It has been proposed to be involved in plant pathogen interactions and/or plant defense responses. We have isolated a potato trehalase gene and show that inhibition of trehalase activity in potato leaf and tuber tissues leads to an increase in tuber-yield. Fruit-specific expression of astrehalase in tomato combined with TPS expression dramatically alters fruit development.

15

According to one embodiment of the invention, accumulation of T-6-P is brought about in cells in which the capacity of producing T-6-P has been introduced by introduction of an expressible gene construct encoding trehalose-phosphate-synthase (TPS). Any trehalose phosphate 20 synthase gene under the control of regulatory elements necessary for expression of DNA in cells, either specifically or constitutively, may be used, as long as it is capable of producing a trehalose phosphate synthase capable of T-6-P production in said cells. One example of an open reading frame according to the invention is one encoding a TPS-25 enzyme as represented in SEQ ID NO: 2. Other examples are the open reading frames as represented in SEQ ID NO's: 10, 18-23, 41 and 45-53. As is illustrated by the above-mentioned sequences it is well known that more than one DNA sequence may encode an identical enzyme, which fact is caused by the degeneracy of the genetic code. If desired, the 30 open reading frame encoding the trehalose phosphate synthase activity may be adapted to codon usage in the host of choice, but this is not a requirement.

The isolated nucleic acid sequence represented by for instance SEQ ID NO: 2, may be used to identify trehalose phosphate synthase genes in other organisms and subsequently isolating and cloning them, by PCR techniques and/or by hybridizing DNA from other sources with a DNA- or RNA fragment obtainable from the E. coli gene. Preferably, such DNA sequences are screened by hybridizing under more or less

,6

stringent conditions (influenced by factors such as temperature and ionic strength of the hybridization mixture). Whether or not conditions are stringent also depends on the nature of the hybridization, i.e. DNA:DNA, DNA:RNA, RNA:RNA, as well as the length of the shortest hybridizing fragment. Those of skill in the art are readily capable of establishing a hybridization regime stringent enough to isolate TPS genes, while avoiding non-specific hybridization. As genes involved in trehalose synthesis from other sources become available these can be used in a similar way to obtain an expressible trehalose phosphate synthase gene according to the invention. More detail is given in the experimental section.

Sources for isolating trehalose phosphate synthase activities include microorganisms (e.g. bacteria, yeast, fungi), plants, animals, and the like. Isolated DNA sequences encoding trehalose phosphate

15 synthase activity from other sources may be used likewise in a method for producing T-6-P according to the invention. As an example, genes for producing T-6-P from yeast are disclosed in WO 93/17093.

The invention also encompasses nucleic acid sequences which have been obtained by modifying the nucleic acid sequence represented in SEQ ID NO: 1 by mutating one or more codons so that it results in amino acid changes in the encoded protein, as long as mutation of the amino acid sequence does not entirely abolish trehalose phosphate synthase activity.

According to another embodiment of the invention the trehalose6-phosphate in a cell can be converted into trehalose by trehalose
phosphate phosphatase encoding genes under control of regulatory
elements necessary for the expression of DNA in cells. A preferred
open reading frame according to the invention is one encoding a TPPenzyme as represented in SEQ ID NO: 4 (Kaasen et al. (1994) Gene, 145,
9). It is well known that more than one DNA sequence may encode an
identical enzyme, which fact is caused by the degeneracy of the
genetic code. If desired, the open reading frame encoding the
trehalose phosphate phosphatase activity may be adapted to codon usage
in the host of choice, but this is not a requirement.

The isolated nucleic acid sequence represented by SEQ ID NO: 3, may be used to identify trehalose phosphate phosphatase genes in other organisms and subsequently isolating and cloning them, by PCR techniques and/or by hybridizing DNA from other sources with a DNA- or

RNA fragment obtainable from the *E. coli* gene. Preferably, such DNA sequences are screened by hybridizing under more or less stringent conditions (influenced by factors such as temperature and ionic strength of the hybridization mixture). Whether or not conditions are stringent also depends on the nature of the hybridization, i.e. DNA:DNA, DNA:RNA, RNA:RNA, as well as the length of the shortest hybridizing fragment. Those of skill in the art are readily capable of establishing a hybridization regime stringent enough to isolate TPP genes, while avoiding aspecific hybridization. As genes involved in trehalose synthesis from other sources become available these can be used in a similar way to obtain an expressible trehalose phosphate phosphatase gene according to the invention. More detail is given in the experimental section.

Sources for isolating trehalose phosphate phosphatase activities

15 include microorganisms (e.g. bacteria, yeast, fungi), plants, animals,
and the like. Isolated DNA sequences encoding trehalose phosphate
phosphatase activity from other sources may be used likewise.

The invention also encompasses nucleic acid sequences which have been obtained by modifying the nucleic acid sequence represented in SEQ ID NO: 3 by mutating one or more codons so that it results in amino acid changes in the encoded protein, as long as mutation of the amino acid sequence does not entirely abolish trehalose phosphate phosphatase activity.

Other enzymes with TPS or TPP activity are represented by the so25 called bipartite enzymes. It is envisaged that the part of the
sequence which is specifically coding for one of the two activities
can be separated from the part of the bipartite enzyme coding for the
other activity. One way to separate the activities is to insert a
mutation in the sequence coding for the activity that is not selected,
30 by which mutation the expressed protein is impaired or deficient of
this activity and thus only performs the other function. This can be
done both for the TPS- and TPP-activity coding sequence. Thus, the
coding sequences obtained in such a way can be used for the formation
of novel chimaeric open reading frames capable of expression of

According to another embodiment of the invention, especially plants can be genetically altered to produce and accumulate the abovementioned enzymes in specific parts of the plant. Preferred sites of

35 enzymes having either TPS or TPP activity.

enzyme expression are leaves and storage parts of plants. In particular potato tubers are considered to be suitable plant parts. A preferred promoter to achieve selective TPS-enzyme expression in microtubers and tubers of potato is obtainable from the region upstream of the open reading frame of the patatin gene of potato.

Another suitable promoter for specific expression is the plastocyanin promoter, which is specific for photoassimilating parts of plants. Furthermore, it is envisaged that specific expression in plant parts can yield a favourable effect for plant growth and

10 reproduction or for economic use of said plants. Promoters which are useful in this respect are: the E8-promoter (EP 0 409 629) and the 2A11-promoter (van Haaren and Houck (1993), Plant Mol. Biol., 221, 625) which are fruit-specific; the cruciferin promoter, the napin promoter and the ACP promoter which are seed-specific; the PAL
15 promoter; the chalcon-isomerase promoter which is flower-specific; the SSU promoter, and ferredoxin promoter, which are leaf-specific; the TobRb7 promoter which is root-specific, the RolC promoter which is specific for phloem and the HMG2 promoter (Enjuto et al. (1995), Plant Cell 7, 517) and the rice PCNA promoter (Kosugi et al. (1995), Plant J. 7, 877) which are specific for meristematic tissue.

Another option under this invention is to use inducible promoters. Promoters are known which are inducible by pathogens, by stress, by chemical or light/dark stimuli. It is envisaged that for induction of specific phenoma, for instance sprouting, bolting, seed 25 setting, filling of storage tissues, it is beneficial to induce the activity of the genes of the invention by external stimuli. This enables normal development of the plant and the advantages of the inducibility of the desired phenomena at control. Promoters which qualify for use in such a regime are the pathogen inducible promoters 30 described in DE 4446342 (fungus and auxin inducible PRP-1), WO 96/28561 (fungus inducible PRP-1), EP 0 586 512 (nematode inducible), EP 0 712 273 (nematode inducible), WO 96/34949 (fungus inducible), PCT/EP96/02437 (nematode inducible), EP 0 330 479 (stress inducible), US 5,510,474 (stress inducible), WO 96/12814 (cold inducible), EP 0 35 494 724 (tetracycline inducible), EP 0 619 844 (ethylene inducible), EP 0 337 532 (salicylic acid inducible), WO 95/24491 (thiamine inducible) and WO 92/19724 (light inducible). Other chemical inducible promoters are described in EP 0 674 608, EP 637 339, EP 455 667 and US 5,364,780.

According to another embodiment of the invention, cells are transformed with constructs which inhibit the function of the endogenously expressed TPS or TPP. Inhibition of undesired endogenous 5 enzyme activity is achieved in a number of ways, the choice of which is not critical to the invention. One method of inhibition of gene expression is achieved through the so-called 'antisense approach'. Herein a DNA sequence is expressed which produces an RNA that is at least partially complementary to the RNA which encodes the enzymatic 10 activity that is to be blocked. It is preferred to use homologous antisense genes as these are more efficient than heterologous genes. An alternative method to block the synthesis of undesired enzymatic activities is the introduction into the genome of the plant host of an additional copy of an endogenous gene present in the plant host. It is 15 often observed that such an additional copy of a gene silences the endogenous gene: this effect is referred to in the literature as the co-suppressive effect, or co-suppression. Details of the procedure of enhancing substrate availability are provided in the Examples of WO 95/01446, incorporated by reference herein.

Host cells can be any cells in which the modification of hexokinase-signalling can be achieved through alterations in the level of T-6-P. Thus, accordingly, all eukaryotic cells are subject to this invention. From an economic point of view the cells most suited for production of metabolic compounds are most suitable for the invention.

These organisms are, amongst others, plants, animals, yeast, fungi. However, also expression in specialized animal cells (like pancreatic beta-cells and fat cells) is envisaged.

Preferred plant hosts among the Spermatophytae are the
Angiospermae, notably the Dicotyledoneae, comprising inter alia the
30 Solanaceae as a representative family, and the Monocotyledoneae,
comprising inter alia the Gramineae as a representative family.
Suitable host plants, as defined in the context of the present
invention include plants (as well as parts and cells of said plants)
and their progeny which contain a modified level of T-6-P, for
35 instance by using recombinant DNA techniques to cause or enhance
production of TPS or TPP in the desired plant or plant organ. Crops
according to the invention include those which have flowers such as
cauliflower (Brassica oleracea), artichoke (Cynara scolymus), cut

flowers like carnation (Dianthus caryophyllus), rose (Rosa spp), Chrysanthemum, Petunia, Alstromeria, Gerbera, Gladiolus, lily (Lilium spp), hop (Humulus lupulus), broccoli, potted plants like Rhododendron, Azalia, Dahlia, Begonia, Fuchsia, Geranium etc.; fruits 5 such as apple (Malus, e.g. domesticus), banana (Musa, e.g. Acuminata), apricot (Prunus armeniaca), olive (Oliva sativa), pineapple (Ananas comosus), coconut (Cocos nucifera), mango (Mangifera indica), kiwi, avocado (Persea americana), berries (such as the currant, Ribes, e.g. rubrum), cherries (such as the sweet cherry, Prunus, e.g. avium), 10 cucumber (Cucumis, e.g. sativus), grape (Vitis, e.g. vinifera), lemon (Citrus limon), melon (Cucumis melo), mustard (Sinapis alba and Brassica nigra), nuts (such as the walnut, Juglans, e.g. regia; peanut, Arachis hypogeae), orange (Citrus, e.g. maxima), peach (Prunus, e.g. persica), pear (Pyra, e.g. Communis), pepper (Solanum, 15 e.g. capsicum), plum (Prunus, e.g. domestica), strawberry (Fragaria, e.g. moschata), tomato (Lycopersicon, e.g. esculentum); leaves, such as alfalfa (Medicago sativa), cabbages (such as Brassica oleracea), endive (Cichoreum, e.g. endivia), leek (Allium porrum), lettuce (Lactuca sativa), spinach (Spinacia oleraceae), tobacco (Nicotiana 20 tabacum), grasses like Festuca, Poa, rye-grass (such as Lolium perenne, Lolium multiflorum and Arrenatherum spp.), amenity grass, turf, seaweed, chicory (Cichorium intybus), tea (Thea sinensis), celery, parsley (Petroselinum crispum), chevil and other herbs; roots, such as arrowroot (Maranta arundinacea), beet (Beta vulgaris), carrot 25 (Daucus carota), cassava (Manihot esculenta), ginseng (Panax ginseng), turnip (Brassica rapa), radish (Raphanus sativus), yam (Dioscorea esculenta), sweet potato (Ipomoea batatas), taro; seeds, such as beans (Phaseolus vulgaris), pea (Pisum sativum), soybean (Glycin max), wheat (Triticum aestivum), barley (Hordeum vulgare), corn (Zea mays), rice 30 (Oryza sativa), bush beans and broad beans (Vicia faba), cotton (Gossypium spp.), coffee (Coffea arabica and C. canephora); tubers, such as kohlrabi (Brassica oleraceae), potato (Solanum tuberosum); bulbous plants as onion (Allium cepa), scallion, tulip (Tulipa spp.), daffodil (Narcissus spp.), garlic (Allium sativum); stems such as 35 cork-oak, sugarcane (Saccharum spp.), sisal (Sisal spp.), flax (Linum vulgare), jute; trees like rubber tree, oak (Quercus spp.), beech (Betula spp.), alder (Alnus spp.), ashtree (Acer spp.), elm (Ulmus

spp.), palms, ferns, ivies and the like.

Transformation of yeast and fungal or animal cells can be done through normal state-of-the art transformation techniques through commonly known vector systems like pBluescript, pUC and viral vector systems like RSV and SV40.

The method of introducing the expressible trehalose-phosphate synthase gene, the expressible trehalose-phosphate-phosphatase gene, or any other sense or antisense gene into a recipient plant cell is not crucial, as long as the gene is expressed in said plant cell.

Although some of the embodiments of the invention may not be
practicable at present, e.g. because some plant species are as yet
recalcitrant to genetic transformation, the practicing of the
invention in such plant species is merely a matter of time and not a
matter of principle, because the amenability to genetic transformation
as such is of no relevance to the underlying embodiment of the
invention.

Transformation of plant species is now routine for an impressive number of plant species, including both the Dicotyledoneae as well as the Monocotyledoneae. In principle any transformation method may be used to introduce chimeric DNA according to the invention into a 20 suitable ancestor cell. Methods may suitably be selected from the calcium/polyethylene glycol method for protoplasts (Krens et al. (1982), Nature 296, 72; Negrutiu et al. (1987), Plant Mol. Biol. 8, 363, electroporation of protoplasts (Shillito et al. (1985) Bio/Technol. 3, 1099), microinjection into plant material (Crossway et 25 al. (1986), Mol. Gen. Genet. 202), (DNA or RNA-coated) particle bombardment of various plant material (Klein et al. (1987), Nature 327, 70), infection with (non-integrative) viruses, in planta Agrobacterium tumefaciens mediated gene transfer by infiltration of adult plants or transformation of mature pollen or microspores (EP 0 30 301 316) and the like. A preferred method according to the invention comprises Agrobacterium-mediated DNA transfer. Especially preferred is the use of the so-called binary vector technology as disclosed in EP A 120 516 and U.S. Patent 4,940,838).

Although considered somewhat more recalcitrant towards genetic

35 transformation, monocotyledonous plants are amenable to transformation
and fertile transgenic plants can be regenerated from transformed
cells or embryos, or other plant material. Presently, preferred
methods for transformation of monocots are microprojectile bombardment

15 present invention to monocots.

of embryos, explants or suspension cells, and direct DNA uptake or (tissue) electroporation (Shimamoto et al. (1989), Nature 338, 274-276). Transgenic maize plants have been obtained by introducing the Streptomyces hygroscopicus bar-gene, which encodes

5 phosphinothricin acetyltransferase (an enzyme which inactivates the herbicide phosphinothricin), into embryogenic cells of a maize suspension culture by microprojectile bombardment (Gordon-Kamm (1990), Plant Cell, 2, 603). The introduction of genetic material into aleurone protoplasts of other monocot crops such as wheat and barley has been reported (Lee (1989), Plant Mol. Biol. 13, 21). Wheat plants have been regenerated from embryogenic suspension culture by selecting embryogenic callus for the establishment of the embryogenic suspension cultures (Vasil (1990) Bic/Technol. 8, 429). The combination with

Monocotyledonous plants, including commercially important crops such as rice and corn are also amenable to DNA transfer by Agrobacterium strains (vide WO 94/00977; EP 0 159 418 Bl; Gould et al. (1991) Plant. Physiol. 95, 426-434).

transformation systems for these crops enables the application of the

To obtain transgenic plants capable of constitutively expressing more than one chimeric gene, a number of alternatives are available including the following:

A. The use of DNA, e.g a T-DNA on a binary plasmid, with a number of modified genes physically coupled to a second selectable marker gene.

25 The advantage of this method is that the chimeric genes are physically coupled and therefore migrate as a single Mendelian locus.

B. Cross-pollination of transgenic plants each already capable of expressing one or more chimeric genes, preferably coupled to a selectable marker gene, with pollen from a transgenic plant which
 contains one or more chimeric genes coupled to another selectable

marker. Afterwards the seed, which is obtained by this crossing, maybe selected on the basis of the presence of the two selectable markers, or on the basis of the presence of the chimeric genes themselves. The plants obtained from the selected seeds can afterwards be used for further crossing. In principle the chimeric genes are not on a single

locus and the genes may therefore segregate as independent loci.

C. The use of a number of a plurality chimeric DNA molecules, e.g.

plasmids, each having one or more chimeric genes and a selectable

WO 97/42326

marker. If the frequency of co-transformation is high, then selection on the basis of only one marker is sufficient. In other cases, the selection on the basis of more than one marker is preferred.

- D. Consecutive transformation of transgenic plants already containing a first, second, (etc), chimeric gene with new chimeric DNA, optionally comprising a selectable marker gene. As in method B, the chimeric genes are in principle not on a single locus and the chimeric genes may therefore segregate as independent loci.
 - E. Combinations of the above mentioned strategies.

The actual strategy may depend on several considerations as maybe easily determined such as the purpose of the parental lines (direct growing, use in a breeding programme, use to produce hybrids) but is not critical with respect to the described invention.

It is known that practically all plants can be regenerated from 15 cultured cells or tissues. The means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Shoots may be induced directly, or indirectly from callus via organogenesis or embryogenesis and 20 subsequently rooted. Next to the selectable marker, the culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the 25 genotype and on the history of the culture. If these three variables are controlled regeneration is usually reproducible and repeatable. After stable incorporation of the transformed gene sequences into the transgenic plants, the traits conferred by them can be transferred to other plants by sexual crossing. Any of a number of standard breeding 30 techniques can be used, depending upon the species to be crossed.

Suitable DNA sequences for control of expression of the plant expressible genes (including marker genes), such as transcriptional initiation regions, enhancers, non-transcribed leaders and the like, may be derived from any gene that is expressed in a plant cell. Also intended are hybrid promoters combining functional portions of various promoters, or synthetic equivalents thereof. Apart from constitutive promoters, inducible promoters, or promoters otherwise regulated in their expression pattern, e.g. developmentally or cell-type specific,

PCT/EP97/02497 WO 97/42326

may be used to control expression of the expressible genes according to the invention.

To select or screen for transformed cells, it is preferred to include a marker gene linked to the plant expressible gene according 5 to the invention to be transferred to a plant cell. The choice of a suitable marker gene in plant transformation is well within the scope of the average skilled worker; some examples of routinely used marker genes are the neomycin phosphotransferase genes conferring resistance to kanamycin (EP-B 131 623), the glutathion-S-transferase gene from 10 rat liver conferring resistance to glutathione derived herbicides (EP-A 256 223), glutamine synthetase conferring upon overexpression resistance to glutamine synthetase inhibitors such as phosphinothricin (WO 87/05327), the acetyl transferase gene from Streptomyces viridochromogenes conferring resistance to the selective agent 15 phosphinothricin (EP-A 275 957), the gene encoding a 5-enolshikimate-3- phosphate synthase (EPSPS) conferring tolerance to N-phosphonomethylglycine, the bar gene conferring resistance against Bialaphos (e.g. WO 91/02071) and the like. The actual choice of the marker is not crucial as long as it is functional (i.e. selective) in 20 combination with the plant cells of choice.

The marker gene and the gene of interest do not have to be linked, since co-transformation of unlinked genes (U.S. Patent 4,399,216) is also an efficient process in plant transformation.

Preferred plant material for transformation, especially for 25 dicotyledonous crops are leaf-discs which can be readily transformed and have good regenerative capability (Horsch et al. (1985), Science 227, 1229).

Specific use of the invention is envisaged in the following ways: as can be seen from the Examples the effects of the expression 30 of TPP (which causes a decrease in the intracellular T-6-P concentration) are an increased leaf size, increased branching leading to an increase in the number of leaves, increase in total leaf biomass, bleaching of mature leaves, formation of more small flowers and sterility. These effects are specifically useful in the following 35 cases: increased leaf size (and increase in the number of leaves) is economically important for leafy vegetables such as spinach, lettuce, leek, alfalfa, silage maize; for ground coverage and weed control by grasses and garden plants; for crops in which the leaves are used as

product, such as tobacco, tea, hemp and roses (perfumes!); for the matting up of cabbage-like crops such as cauliflower.

An additional advantage of the fact that these leaves are stimulated in their metabolic activity is that they tend to burn all their intracellular resources, which means that they are low in starch-content. For plants meant for consumption a reduction in starch content is advantageous in the light of the present tendency for low-calorie foodstuffs. Such a reduction in starch content also has effects on taste and texture of the leaves. An increase in the protein/carbohydrate balance as can be produced by the expression of TPP is especially important for leafy crops as silage maize.

Increased branching, which is accompanied by a tendency to have stems with a larger diameter, can be advantageous in crops in which the stem is responsible for the generation of an economically

15 attractive product. Examples in this category are all trees for the increased production of wood, which is also a starting material for paper production; crops like hemp, sisal, flax which are used for the production of rope and linen; crops like bamboo and sugarcane; rubbertree, cork-oak; for the prevention of flattening in crops or crop parts, like grains, corn, legumes and strawberries.

A third phenomenon is increased bleaching of the leaves (caused by a decrease of photosynthetic activity). Less colourful leaves are preferred for crops such as chicory and asparagus. Also for cut flowers bleaching in the petals can be desired, for instance in Alstromeria.

An overall effect is the increase in biomass resulting from an increase in metabolic activity. This means that the biomass consists of metabolized compounds such as proteins and fats. Accordingly, there is an increased protein/carbohydrate balance in mature leaves which is an advantage for crops like silage maize, and all fodder which can be ensilaged. A similar increased protein/carbohydrate balance can be established in fruits, tubers and other edible plant parts.

Outside the plant kingdom an increased metabolism would be beneficial for protein production in microorganisms or eukaryotic cell cultures. Both production of endogenous but also of heterologous proteins will be enhanced which means that the production of heterologous proteins in cultures of yeast or other unicellular organisms can be enhanced in this way. For yeast this would give a

more efficient fermentation, which would result in an increased alcohol yield, which of course is favourable in brewery processes, alcohol production and the like.

In animals or human beings it is envisaged that diseases caused by a defect in metabolism can be overcome by stable expression of TPP or TPS in the affected cells. In human cells, the increased glucose consumption of many tumour cells depends to a large extent on the overexpression of hexokinase (Rempel et al. (1996) FEBS Lett. 385, 233). It is envisaged that the flux of glucose into the metabolism of cancer cells can be influenced by the expression of trehalose-6-phosphate synthesizing enzymes. It has also been shown that the hexokinase activation is potentiated by the cAMP/PKA (protein kinase A pathway). Therefore, inactivation of this signal transduction pathway may affect glucose uptake and the proliferation of neoplasias. Enzyme activities in mammalian cells able to synthesize trehalose-6-phosphate and trehalose and degrade trehalose have been shown in e.g. rabbit kidney cortex cells (Sacktor (1968) Proc. Natl.Acad.Sci. USA 60, 1007).

Another example can be found in defects in insulin secretion in

20 pancreatic beta-cells in which the production of glucose-6-phosphate
catalyzed by hexokinase is the predominant reaction that couples rises
in extracellular glucose levels to insulin secretion (Efrat et al.
(1994), TIBS 19, 535). An increase in hexokinase activity caused by a
decrease of intracellular T-6-P then will stimulate insulin production

25 in cells which are deficient in insulin secretion.

Also in transgenic animals an increased protein/carbohydrate balance can be advantageous. Both the properties of on increased metabolism and an enhanced production of proteins are of large

30 importance in farming in which animals should gain in flesh as soon as possible. Transformation of the enzyme TPP into meat-producing animals like chickens, cattle, sheep, turkeys, goats, fish, lobster, crab, shrimps, snails etc. will yield animals that grow faster and have a more proteinaceous meat.

In the same way this increased metabolism means an increase in the burn rate of carbohydrates and it thus prevents obesity.

35

More plant-specific effects from the decrease of intracellular T-6-P concentration are an increase in the number of flowers (although they do not seem to lead to the formation of seed). However, an increase in the number of flowers is advantageous for cutflower plants and pot flower plants and also for all plants suitable for horticulture.

A further effect of this flowering phenomenon is sterility, because the plants do not produce seed. Sterile plants are advantageous in hybrid breeding.

Another economically important aspect is the prohibiting of bolting of culture crops such as lettuce, endive and both recreational and fodder grasses. This is a beneficial property because it enables the crop to grow without having to spend metabolic efforts to flowering and seed production. Moreover, in crops like lettuce, endive and grasses the commercial product/application is non-bolted.

Specific expression of TPP in certain parts (sinks) of the plant can give additional beneficial effects. It is envisaged that expression of TPP by a promoter which is active early in e.g. seed forming enables an increased growth of the developing seed. A similar effect would be obtained by expressing TPP by a flower-specific promoter. To put it shortly: excessive growth of a certain plant part is possible if TPP is expressed by a suitable specific promoter. In fruits specific expression can lead to an increased growth of the skin in relation to the flesh. This enables improvement of the peeling of the fruit, which can be advantageous for automatic peeling industries.

Expression of TPP during the process of germination of oilstoring seeds prevents oil-degradations. In the process of
germination, the glyoxylate cycle is very active. This metabolic

30 pathway converts acetyl-CoA via malate into sucrose which can be
transported and used as energy source during growth of the seedling.
Key-enzymes in this process are malate synthase and isocitrate lyase.
Expression of both enzymes is supposed to be regulated by hexokinase
signalling. One of the indications for this regulation is that both 2
35 deoxyglucose and mannose are phosphorylated by hexokinase and able to
transduce their signal, being reduction of malate synthase and
isocitrate lyase expression, without being further metabolised.
Expression of TPP in the seed, thereby decreasing the inhibition of

PCT/EP97/02497

hexokinase, thereby inhibiting malate synthase and isocitrate lyase maintains the storage of oil into the seeds and prevents germination.

In contrast to the effects of TPP the increase in T-6-P caused 5 by the expression of TPS causes other effects as is illustrated in the Examples. From these it can be learnt that an increase in the amount of T-6-P causes dwarfing or stunted growth (especially at high expression of TPS), formation of more lancet-shaped leaves, darker colour due to an increase in chlorophyll and an increase in starch 10 content. As is already acknowledged above, the introduction of an anti-sense trehalase construct will also stimulate similar effects as the introduction of TPS. Therefore, the applications which are shown or indicated for TPS will equally be established by using astrehalase. Moreover, the use of double-constructs of TPS and as-15 trehalase enhances the effects of a single construct.

Dwarfing is a phenomenon that is desired in horticultural plants, of which the Japanese bonsai trees are a proverbial example. However, also creation of mini-flowers in plants like allseed, roses, 20 Amaryllis, Hortensia, birch and palm will have economic opportunities. Next to the plant kingdom dwarfing is also desired in animals. It is also possible to induce bolting in culture crops such as lettuce. This is beneficial because it enables a rapid production of seed. Ideally the expression of TPS for this effect should be under 25 control of an inducible promoter.

Loss of apical dominance also causes formation of multiple shoots which is of economic importance for instance in alfalfa.

A reduction in growth is furthermore desired for the industry of "veggie snacks", in which vegetables are considered to be consumed in 30 the form of snacks. Cherry-tomatoes is an example of redured size vegetables which are successful in the market. It can be envisaged that also other vegetables like cabbages, cauliflower, carrot, beet and sweet potato and fruits like apple, pear, peach, melon, and several tropical fruits like mango and banana would be marketable on 35 miniature size.

Reduced growth is desired for all cells that are detrimental to an organism, such as cells of pathogens and cancerous cells. In this last respect a role can be seen in regulation of the growth by

WO 97/42326 PCT/EP97/02497

2.9

changing the level of T-6-P. An increase in the T-6-P level would reduce growth and metabolism of cancer tissue. One way to increase the intracellular level of T-6-P is to knock-out the TPP gene of such cells by introducing a specific recombination event which causes the introduction of a mutation in the endogenous TPP-genes. One way in which this could be done is the introduction of a DNA-sequence able of introducing a mutation in the endogenous gene via a cancer cell specific internalizing antibody. Another way is targeted microparticle bombardment with said DNA. Thirdly a cancer cell specific viral vectors having said DNA can be used.

The phenomenon of a darker green colour seen with an increased concentration of T-6-P, is a property which is desirable for pot flower plants and, in general, for species in horticulture and for recreational grasses.

15

Increase in the level of T-6-P also causes an increase in the storage carbohydrates such as starch and sucrose. This then would mean that tissues in which carbohydrates are stored would be able to store more material. This can be illustrated by the Examples where it is shown that in plants increased biomass of storage organs such as tubers and thickened roots as in beets (storage of sucrose) are formed.

Crops in which this would be very advantageous are potato, sugarbeet, carrot, chicory and sugarcane.

An additional economically important effect in potatoes is that after transformation with DNA encoding for the TPS gene (generating an increase in T-6-P) it has been found that the amount of soluble sugars decreases, even after harvest and storage of the tubers under cold conditions (4°C). Normally even colder storage would be necessary to prevent early sprouting, but this results in excessive sweetening of the potatoes. Reduction of the amount of reducing sugars is of major importance for the food industry since sweetened potato tuber material is not suitable for processing because a Maillard reaction will take place between the reducing sugars and the amino-acids which results in browning.

In the same way also inhibition of activity of invertase can be obtained by transforming sugarbeets with a polynucleotide encoding for the enzyme TPS. Inhibition of invertase activity in sugarbeets after

30

harvest is economically very important.

30

Also in fruits and seeds, storage can be altered. This does not only result in an increased storage capacity but in a change in the composition of the stored compounds. Crops in which improvements in yield in seed are especially important are maize, rice, cereals, pea, oilseed rape, sunflower, soybean and legumes. Furthermore, all fruitbearing plants are important for the application of developing a change in the amount and composition of stored carbohydrates.

Especially for fruit the composition of stored products gives changes in solidity and firmness, which is especially important in soft fruits like tomato, banana, strawberry, peach, berries and grapes.

In contrast to the effects seen with the expression of TPP, the expression of TPS reduces the ratio of protein/carbohydrate in leaves. This effect is of importance in leafy crops such as fodder grasses and alfalfa. Furthermore, the leaves have a reduced biomass, which can be of importance in amenity grasses, but, more important, they have a relatively increased energy content. This property is especially beneficial for crops as onion, leek and silage maize.

Furthermore, also the viability of the seeds can be influenced 20 by the level of intracellularly available T-6-P.

Combinations of expression of TPP in one part of a plant and TPS in an other part of the plant can synergize to increase the above-described effects. It is also possible to express the genes sequential during development by using specific promoters. Lastly, it is also possible to induce expression of either of the genes involved by placing the coding the sequence under control of an inducible promoter. It is envisaged that combinations of the methods of application as described will be apparent to the person skilled in the art.

The invention is further illustrated by the following examples. It is stressed that the Examples show specific embodiments of the inventions, but that it will be clear that variations on these examples and use of other plants or expression systems are covered by the invention.

EXPERIMENTAL

DNA manipulations

All DNA procedures (DNA isolation from *E.coli*, restriction, ligation, transformation, etc.) are performed according to standard protocols (Sambrook et al. (1989) Molecular Cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, CSH, New York).

Strains

- 10 In all examples E.coli K-12 strain DH5α is used for cloning. The Agrobacterium tumefaciens strains used for plant transformation experiments are EHA 105 and MOG 101 (Hood et al. (1993) Trans. Research 2, 208).
- Construction of Agrobacterium strain MOG101
 Construction of Agrobacterium strain MOG101 is described in WO 96/21030.

Cloning of the E. coli otsA gene and construction of pMOG799

- In E.coli trehalose phosphate synthase (TPS) is encoded by the otsA gene located in the operon otsBA. The cloning and sequence determination of the otsA gene is described in detail in Example I of W095/01446, herein incorporated by reference. To effectuate its expression in plant cells, the open reading frame has been linked to the transcriptional regulatory elements of the CaMV 35S RNA promoter, the translational enhancer of the ALMV leader, and the transcriptional terminator of the nos-gene, as described in greater detail in Example I of W095/01446, resulting in pMOG799. A sample of an E.coli strain
- harbouring pMOG799 has been deposited under the Budapest Treaty at the 30 Centraal Bureau voor Schimmelcultures, Oosterstraat 1, P.O. Box 273, 3740 AG Baarn, The Netherlands, on Monday 23 August, 1993: the Accession Number given by the International Depositary Institution is CBS 430.93.

Isolation of a patatin promoter/construction of pMOG546

A patatin promoter fragment is isolated from chromosomal DNA of Solanum_tuberosum cv. Bintje using the polymerase chain reaction. A set of oligonucleotides, complementary to the sequence of the upstream region of the λpat21 patatin gene (Bevan et al. (1986) Nucl. Acids Res. 14, 5564), is synthesized consisting of the following sequences:

- 5' AAG CTT ATG TTG CCA TAT AGA GTA G 3' PatB33.2 (SEQIDNO:5)
- 5' GTA GTT GCC ATG GTG CAA ATG TTC 3' PatATG.2 (SEQIDNO:6)

10

These primers are used to PCR amplify a DNA fragment of 1123bp, using chromosomal DNA isolated from potato cv. Bintje as a template. The amplified fragment shows a high degree of similarity to the \$\lambda\$pat21 patatin sequence and is cloned using EcoRI linkers into a pUC18 vector resulting in plasmid pMOG546.

Construction of pMOG845.

Construction of pMOG845 is described in WO 96/21030.

20 Construction of pVDH318, plastocyanin-TPS

Plasmid pMOG798 (described in WO95/01446) is digested with HindIII and ligated with the oligonucleotide duplex TCV11 and TCV12 (see construction of pMOG845). The resulting vector is digested with PstI and HindIII followed by the insertion of the PotPiII terminator 25 resulting in pTCV118. Plasmid pTCV118 is digested with SmaI and HindIII yielding a DNA fragment comprising the TPS coding region and the PotPiII terminator. BglII linkers were added and the resulting fragment was inserted in the plant binary expression vector pVDH275 (Fig. 1) digested with BamHI, yielding pVDH318. pVDH275 is a 30 derivative of pMOG23 (Sijmons et al. (1990), Bio/Technol. 8. 217) harbouring the NPTII selection marker under control of the 35S CaMV promoter and an expression cassette comprising the pea plastocyanin (PC) promoter and nos terminator sequences. The plastocyanin promoter present in pVDH275 has been described by Pwee & Gray (1993) Plant J. 35 3, 437. This promoter has been transferred to the binary vector using PCR amplification and primers which contain suitable cloning sites.

Cloning of the E. coli otsB gene and construction of pMoG1010 (35S CaMV TPP)

A set of oligonucleotides, TPP I (5' CTCAGATCTGGCCACAAA 3')(SEQ ID NO: 56) and TPP II (5' GTGCTCGTCTGCAGGTGC 3')(SEQ ID NO: 57), was 5 synthesized complementary to the sequence of the E.coli TPP gene (SEQ ID NO: 3). These primers were used to PCR amplify a DNA fragment of 375bp harbouring the 3' part of the coding region of the E.coli TPP gene, introducing a PstI site 10bp down-stream of the stop codon, using pMOG748 (WO 95/01446) as a template. This PCR fragment was 10 digested with BglII and PstI and cloned into pMOG445 (EP 0 449 376 A2 example 7a) and linearized with BglII and PstI. The resulting vector was digested with PstI and HindIII and a PotPiII terminator was inserted (see construction pMOG845). The previous described vector was digested with BglII and HindIII, the resulting 1325 bp fragment was 15 isolated and cloned together with the 5'TPP PCRed fragment digested with SmaI and BglII into pUC18 linearized with SmaI and HindIII. The resulting vector was called pTCV124. This vector was linearized with EcoRI and SmaI and used to insert the 35S CaMV promoter (a 850bp EcoRI-'NcoI' (the NcoI site was made blunt by treatment with mungbean 20 nuclease) fragment isolated from pMOG18 containing the 35S CaMV double enhancer promoter). This vector was called pTCV127. From this vector a 2.8kb EcoRI-HindIII fragment was isolated containing the complete 35S TPP expression cassette and cloned in binary vector pMOG800 resulting in vector pMOG1010.

25

Construction of pVDH321, plastocyanin (PC) TPP

The BamHI site of plasmid pTCV124 was removed by BamHI digestion, filling-in and subsequent religation. Subsequent digestion with HindIII and EcoRI yields a DNA fragment comprising the TPP coding region and the PotPiII terminator. BamHI linkers were added and the resulting fragment was inserted in the plant binary expression vector pVDH275 (digested with BamHI) yielding pVDH321.

Construction of a patatin TPP expression vector

Similar to the construction of the patatin TPS expression vector (see construction of pMOG845), a patatin TPP expression vector was constructed yielding a binary vector (pMOG1128) which, after transformation, can effectuate expression of TPP in a tuber-specific manner.

Construction of other expression vectors

Similar to the construction of the above mentioned vectors, gene

constructs can be made where different promoters are used, in
combination with TPS, TPP or trehalase using binary vectors with the
NPTII gene or the Hygromycin-resistance gene as selectable marker
gene. A description of binary vector pMOG22 harbouring a HPT selection
marker is given in Goddijn et al. (1993) Plant J. 4, 863.

15

Triparental matings

The binary vectors are mobilized in triparental matings with the E.coli strain HB101 containing plasmid pRK2013 (Ditta et al. (1980) Proc. Natl. Acad. Sci. USA 77, 7347) into Agrobacterium tumefaciens strain MOG101 or EHA105 and used for transformation.

Transformation of tobacco (Nicotiana tabacum cv. SR1 or cv. Samsun NN)
Tobacco was transformed by cocultivation of plant tissue with
Agrobacterium tumefaciens strain MOG101 containing the binary vector
of interest as described. Transformation was carried out using
cocultivation of tobacco leaf disks as described by Horsch et al.
(1985) Science 227, 1229. Transgenic plants are regenerated from
shoots that grow on selection medium containing kanamycin, rooted and
transferred to soil.

30

Transformation of potato

Potato (Solanum tuberosum cv. Kardal) was transformed with the Agrobacterium strain EHA 105 containing the binary vector of interest. The basic culture medium was MS30R3 medium consisting of MS salts

(Murashige and Skoog (1962) Physiol. Plant. 14, 473), R3 vitamins (Ooms et al. (1987) Theor. Appl. Genet. 73, 744), 30 g/l sucrose, 0.5 g/l MES with final pH 5.8 (adjusted with KOH) solidified when necessary with 8 g/l Daichin agar. Tubers of Solanum tuberosum cv.

Kardal were peeled and surface sterilized by burning them in 96% ethanol for 5 seconds. The flames were extinguished in sterile water and cut slices of approximately 2 mm thickness. Disks were cut with a bore from the vascular tissue and incubated for 20 minutes in MS30R3 5 medium containing 1-5 x108 bacteria/ml of Agrobacterium EHA 105 containing the binary vector. The tuber discs were washed with MS30R3 medium and transferred to solidified postculture medium (PM). PM consisted of M30R3 medium supplemented with 3.5 mg/l zeatin riboside and 0.03 mg/l indole acetic acid (IAA). After two days, discs were 10 transferred to fresh PM medium with 200 mg/l cefotaxim and 100 mg/l vancomycin. Three days later, the tuber discs were transferred to shoot induction medium (SIM) which consisted of PM medium with 250 mg/l carbenicillin and 100 mg/l kanamycin. After 4-8 weeks, shoots emerging from the discs were excised and placed on rooting medium 15 (MS30R3-medium with 100 mg/l cefotaxim, 50 mg/l vancomycin and 50 mg/l kanamycin). The shoots were propagated axenically by meristem cuttings.

Transformation of lettuce

Transformation of lettuce, Lattuca sativa cv. Evola was performed according to Curtis et al. (1994) J. Exp. Bot. 45, 1441.

Transformation of sugarbeet

Transformation of sugarbeet, Beta vulgaris (maintainer population) was
25 performed according to Fry et al. (1991) Third International Congress
of ISPMB, Tucson USA Abstract No. 384, or according to Krens et al.
(1996), Plant Sci. 116, 97.

Transformation of Lycopersicon esculentum

30 Tomato transformation was performed according to Van Roekel et al. (1993) Plant Cell Rep. 12, 644.

Transformation of Arabidopsis

Transformation of Arabidopsis thaliana was carried out either by the method described by Clarke et al. (1992) Plant. Mol. Biol. Rep. 10, 178 or by the method described by Valvekens et al. (1988) Proc. Natl. Acad. Sci. USA, 85, 5536.

PCT/EP97/02497 WO 97/42326

36

Induction of micro-tubers

Stem segments of in vitro potato plants harbouring an auxiliary meristem were transferred to micro-tuber inducing medium. Micro-tuber inducing medium contains 1 X MS-salts supplemented with R3 vitamins. 5 0.5 g/l MES (final pH= 5.8, adjusted with KOH) and solidified with 8 g/l Daichin agar, 60 g/l sucrose and 2.5 mg/l kinetin. After 3 to 5 weeks of growth in the dark at 24°C, micro-tubers were formed.

Isolation of Validamycin A

10 Validamycin A has been found to be a highly specific inhibitor of trehalases from various sources ranging from (IC50) $10^{-6}M$ to $10^{-10}M$ (Asano et al. (1987) J. Antibiot. 40, 526; Kameda et al. (1987) J. Antibiot.40, 563). Except for trehalase, it does not significantly inhibit any α - or β -glycohydrolase activity. Validamycin A was 15 isolated from Solacol, a commercial agricultural formulation (Takeda Chem. Indust., Tokyo) as described by Kendall et al. (1990) Phytochemistry 29, 2525. The procedure involves ion-exchange chromatography (QAE-Sephadex A-25 (Pharmacia), bed vol. 10 ml, equilibration buffer 0.2 mM Na-Pi pH 7) from a 3% agricultural 20 formulation of Solacol. Loading 1 ml of Solacol on the column and eluting with water in 7 fractions, practically all Validamycin was recovered in fraction 4. Based on a 100% recovery, using this procedure, the concentration of Validamycin A was adjusted to $1.10^{-3}~{\rm M}$ in MS-medium, for use in trehalose accumulation tests. Alternatively, 25 Validamycin A and B may be purified directly from Streptomyces hygroscopicus var. limoneus, as described by Iwasa et al. (1971) J. Antibiot. 24, 119, the content of which is incorporated herein by reference.

30 Carbohydrate analysis

Carbohydrates were determined quantitatively by anion exchange chromatography with pulsed electrochemical detection. Extracts were prepared by extracting homogenized frozen material with 80% EtOH. After extraction for 15 minutes at room temperature, the soluble 35 fraction is evaporated and dissolved in distilled water. Samples (25 μ l) were analyzed on a Dionex DX-300 liquid chromatograph equipped with a 4 \times 250 mm Dionex 35391 carbopac PA-1 column and a 4 \times 50 mm Dionex 43096 carbopac PA-1 precolumn. Elution was with 100 mM NaOH at WO 97/42326 PCT/EP97/02497

1 ml/min followed by a NaAc gradient. Sugars were detected with a pulsed electrochemical detector (Dionex, PED). Commercially available carbohydrates (Sigma) were used as a standard.

5 Starch analysis

Starch analysis was performed as described in: Aman et al. (1994) Methods in Carbohydrate Chemistry, Volume X (eds. BeMiller et al.), pp 111-115.

10 Expression analysis

The expression of genes introduced in various plant species was monitored using Northern blot analysis.

Trehalose-6-phosphate phosphatase assay

- 15 TPP was assayed at 37°C by measuring the production of [14C]trehalose from [14C]trehalose-6-phosphate (Londesborough and Vuorio (1991) J. of Gen. Microbiol. 137, 323). Crude extracts were prepared in 25 mM Tris, HCl pH 7.4, containing 5.5 mM MgCl₂. Samples were diluted to a protein concentration of 1 mg/ml in extraction buffer containing 1 mg/ml BSA.
- 20 Standard assay mixtures (50 µl final volume) contained 27.5 mM Tris, HCl pH 7.4, 5.5 mM MgCl₂, 1 mg/ml BSA and 0.55 mM T-6-P (specific activity 854 cpm/nmol). Reactions were initiated by the addition of 5µl enzyme and terminated after 1 hour by heating for 5 minutes in boiling water. AG1-X8 (formate) anion-exchange resin (BioRad) was
- added and the reaction mixtures were centrifuged after 20 minutes of equilibration at room temperature. The radioactivity in the supernatant of the samples (400 μ l) was measured by liquid scintillation counting.

30 Preparation of plant extracts for hexokinase assays

Frozen plant material was grinded in liquid nitrogen and homogenized for 30 seconds with extraction buffer (EB: 100mM HEPES pH7.0 (KOH), 1% (w/v) PVP, 5mM MgCl₂, 1.5 mM EDTA, 0.1 %v/v ß-MeOH) including Proteinase Inhibitors Complete (Boehringer Mannheim). After centrifugation, proteins in the supernatant were precipitated using

80% ammoniumsulphate and dissolved in Tris-HCl pH 7.4 and the extract was dialyzed overnight against 100mM Tris-HCl pH 7.4. Part of the sample was used in the hexokinase assay.

WO 97/42326

Hexokinase assay

Hexokinase activity was measured in an assay containing 0.1 M Hepes-KOH pH 7.0, 4 mM MgCl_{2,} 5 mM ATP, 0.2 mM NADP+, 10 U/ml Creatine Phosphate Kinase (dissolved in 50% glycerol, 0.1% BSA, 50 mM Hepes pH 5 7.0), 3.5 mM Creatine Phosphate, 7 U/ml Glucose-6-Phosphate Dehydrogenase and 2 mM Glucose by measuring the increase in OD at 340 nm at 25 $^{\circ}$ C.

38

When 2 mM Fructose was used instead of glucose as substrate for the hexokinase reaction, 3.8 U/ml Phosphoglucose Isomerase was included.

10 Alternatively, a hexokinase assay as described by Gancedo et al. (1977) J. Biol. Chem. 252, 4443 was used.

EXAMPLE 1

Expression of the E. coli otsA gene (TPS) in tobacco and potato 15

Transgenic tobacco plants were generated harbouring the otsA gene driven by the de35SCaMV promoter (pMOG799) or the plastocyanin promoter (pVDH318).

Transgenic potato plants were generated harbouring the otsA gene 20 driven by the potato tuber-specific patatin promoter (pMOG845).

Tobacco leaf discs were transformed with the binary vector pMOG799 using Agrobacterium tumefaciens. Transgenic shoots were selected on kanamycin.

25 Leaves of some soil-grown plants did not fully expand in lateral direction, leading to a lancet-shaped morphology (Fig. 31). Furthermore, apical dominance was reduced resulting in stunted growth and formation of several axillary shoots. Seven out of thirty-two plants showed severe growth reduction, reaching plant heights of 4-30 30 cm at the time of flowering (Table 1).

Table 1. Trehalose accumulation in leaf samples of otsA transgenic tobacco plants and their plant length at the time of flowering.

plant-line	trehalose	height
	mg.g-1 fresh weight	C m
controls	0.00	60-70
799-1	0.04	· ND
799-3	0.02	10
799-5	0.08	4
799-15	0.055	30
799-24	0.02	12
799-26	0.05	25
799-32	0.055	30
799-40	0.11	25

ND: not determined

Control plants reached lengths of 60-70 cm at the time of flowering. Less seed was produced by transgenic lines with the stunted growth 10 phenotype. Northern blot analysis confirmed that plants having the stunted growth phenotype expressed the ots A gene from E.coli (Fig. 2). In control plants no transcript could be detected. The functionality of the introduced gene was proven by carbohydrate analyses of leaf material from 32 transgenic greenhouse-grown tobacco plants, revealing 15 the presence of 0.02 to 0.12 mg.g-1 fresh weight trehalose in plants reduced in length (table 1) indicating that the product of the TPScatalyzed reaction is dephosphorylated by plant phosphatases. Further proof for the accumulation of trehalose in tobacco was obtained by treating crude extracts with porcine trehalase. Prolonged incubation 20 of a tobacco leaf extract with trehalase resulted in complete degradation of trehalose (data not shown). Trehalose was not detected in control plants or transgenic tobacco plants without an aberrant phenotype.

Table la. Primary PC-TPS tobacco transformants

Plant-	Leaf	Leaf	No. of	Plant	Leaf	Axil-	Fw/	Dry	Dry
line	fw	area	branches	height	col-	liary	area	matter	matter
	(g)	cm ²		cm	our	shoots	g/cm²	8	/area
	(9)	La.							g/cm²
	0.30	349.37	1		wt		0.023	7.21	0.0017
ctrl. 1	8.18	418.89	1		wt		0.025	9.52	0.0024
ctrl. 2	10.5	373.87	1		wt		0.027	12.91	0.0035
ctrl. 3	9.99	362.92	1		wt		0.027	9.59	0.0026
ctrl. 4	9.82	393.84	1		wt		0.025	11.51	0.0029
ctrl. 5 average	9.02	333.01					0.0254	10.148	0.0026
average						,	0.029	12,16	0.0035
2	8.39	290	2	105	wt	 	0.029	12.21	0.0039
3	9.34	296	1	123	wt		0.032	10.05	0.0033
4	8.36	254	2	130	wt	mariy	0.022	11.40	0.0025
6	2.28	106	5	90	wt	 	0.022	7.49	0.0029
8	5.21	133	4	100	dark	marty	0.031	12.25	0.0038
10	8.08	258	2	165	dark	mariy	0.041	9.20	0.0038
11	2.61	64	12	95	dark	many	0.031	8.48	0.0026
13	2.83	92	1	150	dark	many	0.031	10.58	0.0030
16	5.86	209	3	130	dark	many	0.023	11.65	0.0027
17	5.15	224	2	155	wt	 	0.023	10.35	0.003
18	17.2	547	1	133		 	1	11.74	0.0040
19	2.13	63	4	80	1	many	0.034		0.002
20	3.44	113	4	90	1	many	0.030		0.003
21	9.88	246	1	105	dark	many	0.040		0.003
22	13.1	409	1	135			0.032		
23	2.50	73	6	55	dark	many	0.034		
24	8.76	286	2	130	wt		0.031		
27	7.91	219	11	124			0.036		
28	10.0	269	2	117		many	0.038		
29	4.17	142	1	85		many	0.029		
30	10.2	343	11	160					
32	1.95	61	3	75		many	0.03		
33	2.85	96	5 5	9:		many	0.03		
34	8.38	3 244	1	12					
35	5.59	17:	3 3	12			0.03		- i
36	3.28	3 8	4 3	10		many	0.03		
· 37	7.80	22	2 1	12	5 Wt+Da	many	0.03		
39	3.70	0 13	1 2	12			0.02		
40	2.4	0 68.	5 3	10	8 dark	many	0.03		
average					1		0.03	2 11.0	0.00.

PCT/EP97/02497

Transgenic pVDH318 transgenic tobacco plants developed stunted growth and development of small leaves which were darker green and slightly thicker than control leaves, a phenotype similar to the pMOG799 transgenic plants (table la). Further analysis of these leaves showed an increased fresh and dry weight per leaf-area compared to the controls (table la and 2). The dark green leaves indicate the presence of more chlorophyll in the transgenic leaves (table lb). Plants transgenic for pMOG799 (35STPS) and pMOG1177 (PCTPS) were analyzed on soluble carbohydrates, chlorophyll, trehalose and starch (Fig. 32).

41

Table 1b. Chlorophyll content of N. tabacum leaves (T_0) transgenic for PC-TPS

Sample	Chlorophyll		
	(mg/g leaf)		
control 1	0.59		
PC TPS 10-1	0.75		
PC TPS 10-2	0.80		
PC TPS 11	0.60		
PC TPS 13	0.81		
PC TPS 16	0.90		
PC TPS 19	0.64		
PC TPS 37	0.96		

15

Note: light conditions during growth will influence the determined levels of chlorophyll significantly. The calculated amounts of chlorophyll may thus only be compared between plants harvested and analyzed within one experiment!

PCT/EP97/02497 WO 97/42326

42

Fresh weight and dry weight data of leaf material Table 2. transgenic for plastocyanin-TPS_{E.coli}

RT	tabacum	cv.	Samsun	NN	transgenic	for	PC-TPS

MM CIAMBOUNIC 202		
Transgene	Control	
0.83	0.78	
0.072	0.079	
8.70 %	10.10 %	
39 (139%)	28 (100%)	
3.46 (121%)	2.87 (100%)	
	275	
	0.83 0.072 8.70 %	

5

Calculation of the ratio between the length and width of the developing leaves clearly indicate that leaves of plants transgenic for PC-TPS are more lancet-shaped (table 3).

10

Potato Solanum tuberosum cv. Kardal tuber discs were transformed with Agrobacterium tumefaciens EHA105 harbouring the binary vector pMOG845. Transgenics were obtained with transformation frequencies comparable to empty vector controls. All plants obtained were phenotypically 15 indistinguishable from wild type plants indicating that use of a tissue specific promoter prevents the phenotypes observed in plants where a constitutive promoter drives the TPS gene. Micro-tubers were induced on stem segments of transgenic and wild-type plants cultured on microtuber-inducing medium supplemented with $10^{-3}\,\mathrm{M}$ Validamycin A. 20 As a control, microtubers were induced on medium without Validamycin A. Microtubers induced on medium with Validamycin A showed elevated levels of trehalose in comparison with microtubers grown on medium without Validamycin A (table 4). The presence of small amounts of trehalose in wild-type plants indicates the presence of a functional 25 trehalose biosynthetic pathway.

Table 3. Tobacco plants (cv. Samsun NN) transgenic for pVDH318

Transformant	Length (cm)	Width (cm)	Ratio 1/w	
control 1	12	8	1.50	
control 2	13	8.5	1.53	
control 3	12	7.5	1.60	
control 4	15	9	1.67	
control 5	25	16	1.56	
control 6	24	16.5	1.45	
control 7	28	20	1.40	
control 8	25	16	1.56	
control 9	26	19	1.37	
control 10	21	15	1.40	
1318-28	16	8.5	1.88*	
1318-29	11	6.5	1.69	
1318-30	19	14	1,36	
1318-35	19	12	1.58	
1318-39	21	16.5	1.27	
1318-40	14	7	2.00*	
1318-34	21	13	1.62	
1318-36	13.5	77	1.93*	
1318-37	17	9	1.89*	
1318-4	20.5	12	1.71	
1318-23	14	4.5	3.78*	
1318-22	27	18	1.50	
1318-19	9	4	2.25*	
1318-2	27	19	1.42	
1318-15	11	5	2.20*	
1318-10	20	13	1.54	
1318-3	25	18	1.39	
1318-21	. 17	8.5	2.00*	
1318-16	20	10	2.00*	
1318-6	19	10.5	1.81	
1318-20	13	5	2.60*	
1318-33	12	5	2.40*	
1318-27	23	20	1.15	
1318-11	12	5	2.40*	
1318-8	18.5	6.5	2.85*	
1318-24	27	17	1.59	
1318-13	15	7	2.14*	
1318-17	24	16	1.50	
1318-18	23	16.5	1.39	

* typical TPS phenotypes Ratio 1/w average of controls is 1.50

Table 4. Trehalose (% fresh weight)

	+Validamycin A	-Validamycin A
845-2	0.016	<u>-</u>
845-4	-	-
845-8	0.051	-
845-11	0.015	T
845-13	0.011	-
845-22	0.112	-
845-25	0.002	_
845-28	0.109	•
wild-type Kardal	0.001	-

Expression of the E. coli otsB gene (TPF) in tobacco Transgenic tobacco plants were generated harbouring the otsB gene driven by the double enhanced 35SCaMV promoter (pMOG1010) and the plastocyanin promoter (pVDH321).

10 Tobacco plants (cv. Samsun NN) transformed with pMOG1010 revealed in the greenhouse the development of very large leaves (leaf area increased on average up to approximately 140%) which started to develop chlorosis when fully developed (Fig. 31). Additionally, thicker stems were formed as compared to the controls, in some 15 instances leading to bursting of the stems. In some cases, multiple stems were formed (branching) from the base of the plant (table 5). Leaf samples of plants developing large leaves revealed 5-10 times enhanced trehalose-6-phosphate phosphatase activities compared to control plants proving functionality of the gene introduced. The dry 20 and fresh weight/cm² of the abnormal large leaves was comparable to control leaves, indicating that the increase in size is due to an increase in dry matter and not to an increased water content. The inflorescence was also affected by the expression of TPP. Plants which had a stunted phenotype, probably caused by the constitutive 25 expression of the TPP gene in all plant parts, developed many small flowers which did not fully mature and fell off or necrotized. The development of flowers and seed setting seems to be less affected in plants which were less stunted.

Table 5. Tobacco plants transgenic for pMOG1010, de35S CaMV TPP

			prunts to					
Line	Height	Leaf	Bleaching	Branch	Fw/cm2	DW/cm2	Inflor-	Stem
	(cm)	area	(5-severe)	ing	(g)	(g)	escence	dia-meter
		cm²					Norm. /	(mm)
1	63	489	5	+	0.096	0.0031	A	13
2	90	472	3	+	0.076	0.0035	A	19
3	103	345	0		0.072	0.0023	N	16
4	90	612	4	+	0.096	0.0039	A	5,6,7,8,14
5	104	618	1	+	0.08	0.0035	N	17
6	110	658	3	+	0.078	0.0035	N/A	19
7	120	427	0		0.074	0.0037	N	18
8	90	472	2	+	0.076	0.0023	A	6,7,18
9	60	354	3	+	0.092	0.0031	N	9,13
10	103	342	0		0.084	0.0025	N	16
11	110	523	1	+	0.076	0.0031	A	19
12	90	533	1	+	0.098	0.0023	N	5,16
13	53	432	4	+	0.084	0.0043	Α	5,6,6.14
14	125	335	0		0.086	0.0023	N	17
15	85	251	0		0.094	0.0031	N	14
16	64	352	0	+	0.076	0.0028	Ą	9,13
17	64	267	0		0.11	0.0018	N	15
18	71	370	2		0.086	0.0032	A	5,7.8,14
19	92	672	4	+	0.076	0.0034	N	16
20	1							
21	94	517	4	+	0.07	0.0044	N	17
22	96	659	3	+	0.082	0.0031	N	17
23	110	407	0		0.082	0.0042	N	16
24	90	381	0		0.1	0.0034	A	15
25	120	535	0		0.076	0.003	N	16
26	42	511	5		0.08	0.0038	3	15
27	100	468	0		0.086	0.0018	N	17
28	83	583	3		0.072	0.0034	N/A	17
29	27	452	5	+	0.104	0.004	?	7,7,15
30	23	479	4	+_	0.076	0.0027	?	6.6.7,9,14
31	103	308	1		0.086	0.0027	N	14
32	48	286	0		0.108	0.002	N	16
33	67	539	5	+	0.102	0.0056	A	18
34	40	311	5	+	0.084	0.0051	A	7,7,12

Table 6. Primary PC-TPP tobacco transformants

Plant-	Leaf	Leaf	No. of	Plant	Leaf	Bleaching	Fw/	Dry	Dry
line	fw	area	branches	height	col-		area	matter	matter
	(g)	cm ²		CII.	our			8	/area
	.3/								
ctrl. 1	8.18	349.37					0.023	7.213	
ctrl. 2	10.5	418.89					0.025	9.524	
ctrl. 3	9.99	373.87					0.027	12.913	
ctrl. 4	9.91	362.92					0.027	9.586	
ctrl. 5	9.82	393.84					0.025	11.507	
CC11. J	3.02	333.04				average	0.0255	10.149	0.0026
11	11.5	338	3	114	wt		0.0340	6.43	0.0022
12	20.1	742			pale	bleaching	0.0272	9.82	0.0027
14	9.61	345	1	150	wt		0.0279	11.65	0.0032
16	5.99	234	5	54	pale	bleaching	0.0256	12.85	0.0033
17	9.10	314	3	105	wt		0.0290	8.79	0.0025
18	3.78	158	3	75	pale		0.0239	7.67	0.0018
19	2.98	130	1	70	pale		0.0229	10.74	0.0025
20	8.33	296	3	70	pale	bleaching	0.0281	7.56	0.0021
22	11.5	460	11	117	pale	bleaching	0.0251	3.03	0.0008
24	9.42	369	11	155	wt		0.0255	10.62	0.0027
25	15.9	565	11	170	wt		0.0282	9.54	0.0027_
26	8.07	343	2	155	wt		0.0235	15.37	0.0036
28	11.7	411	2	65	pale	bleaching	0.0286	6.90	0.0020
29	11.6	420	1	117	pale	bleaching	0.0277	3.53	0.0010
31	8.21	307	2	153	wt		0.0267	12.79	0.0034
32	4.03	175	1	70	pale		0.0230	18.86	0.0043
34	4.81	203	1	107	pale		0.0237	20.58	0.0049
35	7.86	307	3	130	pale		0.0256	11.45	0.0029
36	4.90	206	2	95	pale		0.0238	22.65	0.0054
37	13.9	475	1	135	wt		0.0293	4.82	0.0014
38	16.6	614	1	90	pale	bleaching	0.0271	3.31	0.0009
39	14.9	560	1	112	wt	bleaching	0.0267	6.08	0.0016
40	24.5	843	Ĭ			<u> </u>	0.0292	9.80	0.0029
41	8.86	343	1	115_	wt		0.0258	2.93	0.0008
42	6.93	289	1		wt		0.0240	3.32	0.0008
43	11.3	433	136	135	wt		0.0261	6.73	0.0018
. 44	10.0	341	2	135	wt		0.0294	6.49	0.0019
45	9.40	327	2	135	wt		0.0287	8.51	0.0024
46	9.18		2	115	wt		0.0323	15.69	0.0051
			1			average	0.027	9.60	0.0025

wt = wild-type

Tobacco plants (cv. Samsun NN) transformed with pVDH321 revealed in the greenhouse a pattern of development comparable to pMOG1010 transgenic plants (table 6).

5 Plants transgenic for pMOG1010 (35S-TPP) and pMOG1124 (PC-TPP) were analyzed on carbohydrates, chlorophyll, trehalose and starch (Fig. 32). For chlorophyll data see also Table 6a.

Table 6a. Chlorophyll content of N. tabacum leaves (T_0) transgenic for 10 PC-TPP

Sample	Chlorophyll	Leaf phenotype
	(mg/g leaf)	
control 1	1.56	wild-type
control 2	1.40	wild-type
control 3	1.46	wild-type
control 4	1.56	wild-type
control 5	1.96	wild-type
PC TPP 12	0.79	bleaching
PC TPP 22	0.76	bleaching
PC TPP 25	1.30	wild-type
PC TPP 37	0.86	wild-type
PC TPP 38	0.74	bleaching

Note: light conditions during growth will influence the determined levels of chlorophyll significantly. The calculated amounts of chlorophyll may thus only be compared between plants harvested and analyzed within one experiment!

Isolation of gene fragments encoding trehalose-6-phosphate synthases from Selaginella lepidophylla and Helianthus annuus

5 Comparison of the TPS protein sequences from E.coli and S.cerevisiae revealed the presence of several conserved regions. These regions were used to design degenerated primers which were tested in PCR amplification reactions using genomic DNA of E.coli and yeast as a template. A PCR program was used with a temperature ramp between the annealing and elongation step to facilitate annealing of the degenerate primers.

PCR amplification was performed using primer sets TPSdeg 1/5 and TPSdeg 2/5 using cDNA of Selaginella lepidophylla as a template.

15 Degenerated primers used (IUB code):

TPSdeg1: GAY ITI ATI TGG RTI CAY GAY TAY CA (SEQ ID NO:7)
TPSdeg2: TIG GIT KIT TYY TIC AYA YIC CIT TYC C (SEQ ID NO:8)
TPSdeg5: GYI ACI ARR TTC ATI CCR TCI C (SEQ ID NO:9)

20

PCR fragments of the expected size were cloned and sequenced. Since a large number of homologous sequences were isolated, Southern blot analysis was used to determine which clones hybridized with Selaginella genomic DNA. Two clones were isolated, clone 8 of which the sequence is given in SEQ ID NO: 42 (PCR primer combination 1/5) and clone 43 of which the sequence is given in SEQ ID NO: 44 (PCR primer combination 2/5) which on the level of amino acids revealed regions with a high percentage of identity to the TPS genes from E.coli and yeast.

One TPS gene fragment was isolated from Helianthus annuus (sunflower) using primer combination TPSdeg 2/5 in a PCR amplification with genomic DNA of H. annuus as a template. Sequence and Southern blot analysis confirmed the homology with the TPS genes from E.coli, yeast and Selaginella. Comparison of these sequences with EST sequences (expressed sequence tags) from various organisms, see Table 6b and SEQ ID NOS 45-53 and 41, indicated the presence of highly homologous genes in rice and Arabidopsis, which supports our invention that most plants contain TPS homologous genes (Fig. 3).

Table 6b.

dbEST ID.	G nbank	Organism	Function
	Accession No.		
35567	D22143	Oryza sativa	TPS
58199	D35348	Caenorhabditis elegans	TPS
60020	D36432	Caenorhabditis elegans	TPS
87366	T36750	Saccharomyces cerevisiae	TPS
35991	D22344	Oryza sativa	TPS
57576	D34725	Caenorhabditis elegans	TPS
298273	н37578	Arabidopsis thaliana	TPS
298289	н37594	Arabidopsis thaliana	TPS
315344	т76390	Arabidopsis thaliana	TPS
315675	T76758	Arabidopsis thaliana	TPS
317475	R65023	Arabidopsis thaliana	TPS
71710	D40048	Oryza sativa	TPS
401677	D67869	Caenorhabditis elegans	TPS
322639	T43451	Arabidopsis thaliana	TPS
76027	D41954	Oryza sativa	TPP
296689	н35994	Arabidopsis thaliana	TPP
297478	н36783	Arabidopsis thaliana	TPP
300237	T21695	Arabidopsis thaliana	TPP
372119	U37923	Oryza sativa	TPP
680701	AA054930	Brugia malayi	trehalase
693476	C12818	Caenorhabditis elegans	trehalase
311652	T21173	Arabidopsis thaliana	TPP
914068	AA273090	Brugia malayi	trehalase
43328	T17578	Saccharomyces cerevisiae	TPP
267495	н07615	Brassica napus	trehalase
317331	R64855	Arabidopsis thaliana	TPP
15008	T00368	Caenorhabditis elegans	trehalase
36717	D23329	Oryza sativa	TPP
71650	D39988	Oryza sativa	TPP
147057	D49134	Oryza sativa	TPP
401537	D67729	Caenorhabditis elegans	trehalase
680728	AA054884	Brugia malayi	trehalase
694414	C13756	Caenorhabditis elegans	trehalase
871371	AA231986	Brugia malayi	trehalase
894468	AA253544	Brugia malayi	trehalase
86985	Т36369	Saccharomyces cerevisiae	TPP

Fragments of plant TPS and TPP g nes from Nicotiana tabacum Fragments of plant TPS- and TPP-encoding cDNA were isolated using PCR on cDNA derived from tobacco leaf total RNA preparations. The column mested in table 7 indicates if a second round of PCR amplification was necessary with primer set 3 and 4 to obtain the corresponding DNA fragment. Primers have been included in the sequence listing (table 7). Subcloning and subsequent sequence analysis of the DNA fragments obtained with the primer sets mentioned revealed substantial homology to known TPS genes (Fig. 4 & 5).

Table 7. Amplification of plant derived TPS and TPP cDNAs

TPS-CDNA	primer 1	primer 2	nes-	primer 3	primer 4
			ted		
"825" bp	Tre-TPS-14	Deg 1	No		
SEQ ID. NO	SEQ ID NO 30	SEQ ID NO 7			
22 & 23		:			
"840" bp	Tre-TPS-14	Tre-TPS-12	Yes	Tre-TPS-13	Deg 5
SEQ ID NO	SEQ ID NO 30	SEQ ID NO 31		SEQ ID NO 32	SEQ ID NO 9
18 & 19					
"630" bp	Tre-TPS-14	Tre-TPS-12	Yes	Deg 2	Deg 5
SEQ ID NO	SEQ ID NO 30	SEQ ID NO 31		SEQ ID NO 8	SEQ ID NO 9
20 & 21					

TPP-cDNA	primer 1	primer 2	nested
723 bp	Tre-TPP-5	Tre-TPP-16	No
SEQ ID NO 16 & 17	SEQ ID NO 35	SEQ ID NO 38	
"543" bp	Tre-TPP-7	Tre-TPP-16	No
SEQ ID NO 14	SEQ ID NO 36	SEQ ID NO 38	
"447" bp	Tre-TPP-11	Tre-TPP-16	No
SEQ ID NO 12	SEQ ID NO 37	SEQ ID NO 38	

Isolation of a bipartite TPS/TPP gene from Helianthus annuus and Nicotiana tabacum

Using the sequence information of the TPS gene fragment from sunflower 5 (Helianthus annus), a full length sunflower TPS clone was obtained using RACE-PCR technology.

Sequence analysis of this full length clone and alignment with TPS2 from yeast (Fig. 6) and TPS and TPP encoding sequences indicated the isolated clone encodes a TPS/TPP bipartite enzyme (SEQ ID NO 24, 26

and 28). The bipartite clone isolated (pMOG1192) was deposited at the Central Bureau for Strain collections under the rules of the Budapest treaty with accession number CBS692.97 at April 21, 1997.

Subsequently, we investigated if other plant species also contain TPS/TPP bipartite clones. A bipartite TPS/TPP cDNA was amplified from tobacco. A DNA product of the expected size (i.e. 1.5 kb) was detected after PCR with primers TPS deg1/TRE-TPP-16 and nested with TPS deg2/TRE-TPP-15 (SEQ ID NO: 33). An identical band appeared with PCR with TPS deg1/TRE-TPP-6 (SEQ ID NO: 34) and nested with TPS deg2/TRE-TPP-15. The latter fragment was shown to hybridize to the sunflower

20 bipartite cDNA in a Southern blot experiment. Additionally, using computer database searches, an Arabidopsis bipartite clone was identified (SEQ ID NO: 39)

EXAMPLE 6

Expression of plant derived TPS genes in plants

Further proof for the function of the TPS genes from sunflower and

Selaginella lepidophylla was obtained by isolating their corresponding
full-length cDNA clones and subsequent expression of these clones in
plants under control of the 35S CaMV promoter. Accumulation of

trehalose by expression of the Seliganella enzyme has been reported by
Zentella and Iturriaga (1996) (Plant Physiol. 111, Abstract 88).

EXAMPLE 7

Genes encoding TPS and TPP from monocot species

35 A computer search in Genbank sequences revealed the presence of several rice EST-sequences homologous to TPS1 and TPS2 from yeast (Fig. 7) which are included in the sequence listing (SEQ ID NO: 41,51,52 and 53).

Isolation human TPS gene

A TPS gene was isolated from human cDNA. A PCR reaction was performed on human cDNA using the degenerated TPS primers deg2 and deg5. This led to the expected TPS fragment of 0.6 kb. Sequence analysis (SEQ ID NO.10) and comparison with the TPSyeast sequence indicated that isolated sequence encodes a homologous TPS protein (Fig. 8).

EXAMPLE 9

10 Inhibition of endogenous TPS expression by anti-sense inhibition

The expression of endogenous TPS genes can be inhibited by the antisense expression of a homologous TPS gene under control of promoter sequences which drive the expression of such an anti-sense TPS gene in 15 cells or tissue where the inhibition is desired. For this approach, it is preferred to use a fully identical sequence to the TPS gene which has to be suppressed although it is not necessary to express the entire coding region in an anti-sense expression vector. Fragments of such a coding region have also shown to be functional in the anti-20 sense inhibition of gene-expression. Alternatively, heterologous genes can be used for the anti-sense approach when these are sufficiently homologous to the endogenous gene. Binary vectors similar to pMOG845 and pMOG1010 can be used ensuring that the coding regions of the introduced genes which are to be 25 suppressed are introduced in the reverse orientation. All promoters which are suitable to drive expression of genes in target tissues are also suitable for the anti-sense expression of genes.

EXAMPLE 10

30 Inhibition of endogenous TPP expression by anti-sense inhibition

Similar to the construction of vectors which can be used to drive anti-sense expression of tps in cells and tissues (Example 9), vectors can be constructed which drive the anti-sense expression of TPP genes.

Trehalose accumulation in wild-type tobacco and potato plants grown on Validamycin A

Evidence for the presence of a trehalose biosynthesis pathway in

5 tobacco was obtained by culturing wild-type plants in the presence of
10-3M of the trehalase inhibitor Validamycin A. The treated plants
accumulated very small amounts of trehalose, up to 0.0021% (fw).
Trehalose accumulation was never detected in any control plants
cultured without inhibitor. Similar data were obtained with wild-type
10 microtubers cultured in the presence of Validamycin A. Ten out of
seventeen lines accumulated on average 0.001% trehalose (fw) (table
4). No trehalose was observed in microtubers which were induced on
medium without Validamycin A.

15 EXAMPLE 12

Trehalose accumulation in potato plants transgenic for astrehalase

Further proof for the presence of endogenous trehalose biosynthesis genes was obtained by transforming wild-type potato plants with a 35S 20 CaMV anti-sense trehalase construct (SEQ ID NO:54 and 55, pMOG1027; described in WO 96/21030). A potato shoot transgenic for pMOG1027 showed to accumulate trehalose up to 0.008% on a fresh weight basis. The identity of the trehalose peak observed was confirmed by specificly breaking down the accumulated trehalose with the enzyme 25 trehalase. Tubers of some pMOG1027 transgenic lines showed to accumulate small amounts of trehalose (Fig. 9)

EXAMPLE 13

Inhibition of plant hexokinase activity by trehalose-6-30 phosphate

To demonstrate the regulatory effect of trehalose-6-phosphate on hexokinase activity, plant extracts were prepared and tested for hexokinase activity in the absence and presence of trehalose-6-phosphate.

• Potato tuber extracts were assayed using fructose (Fig. 10, Fig. 11) and glucose (Fig. 11) as substrate. The potato tuber assay using 1 mM T-6-P and fructose as substrate was performed according to Gancedo et al. (1997) J. Biol. Chem. 252, 4443. The following assays on tobacco, rice and maize were performed according to the assay described in the

section experimental.

- Tobacco leaf extracts were assayed using fructose (Fig. 12) and glucose (Fig. 12, Fig 13) as substrate.
- Rice leaf extracts were assayed using fructose and glucose (Fig. 14)
- 5 as substrate.
 - Maize leaf extracts were assayed using fructose and glucose (Fig.
 15) as substrate.

EXAMPLE 14

10 Inhibition of hexokinase activity in animal cell cultures by trehalose-6-phosphate

To demonstrate the regulation of hexokinase activity in animal cells, total cell extracts were prepared from mouse hybridoma cell cultures. A hexokinase assay was performed using glucose or fructose as substrate under conditions as described by Gancedo et al. (see above). Mouse hybridoma cells were subjected to osmotic shock by exposing a cell pellet to 20% sucrose, followed by distilled water. This crude protein extract was used in the hexokinase assay (50 µl extract corresponding to ca.200 µg protein).

20

Table 8. Inhibition of animal hexokinase activity by T-6-P

Substrate	Concentra-	T6P (mM)	Vo (ODU/min)	V ₂ (ODU/min)	Inhibi- tion (%)
	(mM)				
Glucose	2	0.83	0.0204	0.0133	35
Glucose	20	0.83	0.0214	0.0141	35
Glucose	100	0.83	0.0188	0.0125	34
Fructose	20	0.23	0.0207	0.0205	1
Fructose	20	0.43	0.0267	0.0197	26
· Fructose	20	0.83	0.0234	0.0151	35
Fructose	20	1.67	0.0246	0.0133	46

The data obtained clearly showed that hexokinase activity in mouse cell extracts is inhibited by trehalose-6-phosphate. The T-6-P concentration range in which this effect is noted is comparable to what has been observed in crude plant extracts. No difference is noted in the efficiency of hexokinase inhibition by trehalose-6-phosphate using glucose or fructose as substrate for the enzyme.

EXAMPLE 15

Photosynthesis and respiration of TPS and TPP expressing tobacco plants

Using tobacco plants transgenic for 35S-TPP (1010-5), PC-TPS (1318-10 and 1318-37) and wild-type Samsun NN plants, effects of expression of these genes on photosynthesis and respiration were determined in leaves.

15

10

Measurements were performed in a gas exchange-experimental set-up.

Velocities of gas-exchange were calculated on the basis of differences in concentration between ingoing and outgoing air using infra-red gas-analytical equipment. Photosynthesis and respiration were measured

from identical leaves. From each transgenic plant, the youngest, fully matured leaf was used (upper-leaf) and a leaf that was 3-4 leaf-"stores" lower (lower-leaf).

Photosynthesis was measured as a function of the photosynthetic active 25 light intensity (PAR) from 0-975 μ mol.m⁻².s⁻¹ (200 Watt m⁻²), in fourfold at CO₂-concentrations of 350 vpm and 950 vpm.

Respiration was measured using two different time-scales. Measurements performed during a short dark-period after the photosynthesis

30 experiments are coded RD in table 9. These values reflect instantaneous activity since respiration varies substantially during the dark-period. Therefor, the values for the entire night-period were also summed as shown in table 10 (only measured at 350 vpm CO₂).

Table 9. Rate of photosynthesis and respiration, STD is standard deviation

Upper leaf		350 ppm 950 ppm			
	ŀ	micromol/m ² /s	STD	micromol/m²/s	STD
Wild-type	RD	0.0826	0.048	1.016	0.142
	EFF	0.060	0.004	0.087	0.004
	XAMA	11.596	0.588	19.215	0.942
1010-5	RD	0.873	0.060	1.014	0.134
	EFF	0.059	0.002	0.090	0.007
	AMAX	12.083	1.546	18.651	1.941
1318-10	RD	0.974	0.076	1.078	0.108
	EFF	0.064	0.003	0.088	0.008
	AMAX	16.261	2.538	24.154	1.854
1318-37	RD	1.067	0.140	1.204	0.116
	EFF	0.061	0.002	0.084	0.011
	AMAX	16.818	2.368	25.174	2.093
Lower leaf		<u> </u>			
Wild-type	RD	0.0438	0.079	0.526	0.112
	EFF	0.068	0.002	0.085	0.004
	AMAX	6.529	1.271	11.489	1.841
1010-5	RD	0.455	0.068	0.562	0.118
	EFF	0.064	0.002	0.085	0.006
	AMAX	8.527	0.770	13.181	1.038
1318-10	RD	0.690	0.057	0.828	0.086
	EFF	0.064	0.008	0.085	0.005
	AMAX	11.562	1.778	20.031	1.826
1318-37	RD	0.767	0.033	0.918	0.099
	EFF	0.073	0.006	0.103	0.004
	AMAX	13.467	1.818	19.587	1.68

Table 10. Respiration during 12 hour dark period (mmol CO_2) STD is standard deviation

	Upper leaf	STD	Lower leaf	STD
Wild-type	25.17	0.82	13.19	1.98
1010-5	30.29	5.09	13.08	1.52
1318-10	28.37	4.50	20.47	0.87
1318-37	32.53	2.01	17.7	1.03

5

In contrast to the respiration in the upper-leaves, in lower leaves the respiration of TPS transgenic plants is significantly higher than for wild-type and TPP plants (table 10) indicating a higher metabolic activity. The decline in respiration during aging of the leaves is significantly less for TPS transgenic plants.

Also, the photosynthetic characteristics differed significantly between on the one hand TPS transgenic plants and on the other hand TPP transgenic and wild-type control plants. The AMAX values (maximum of photosynthesis at light saturation), efficiency of photosynthesis (EFF) and the respiration velocity during a short dark-period after the photosynthetic measurements (RD) are shown in table 9. On average, the upper TPS leaves had a 35% higher AMAX value compared to the TPP and wild-type leaves. The lower leaves show even a higher increased rate of photosynthesis (88%).

To exclude that differences in light-absorption were causing the different photosynthetic rates, absorption values were measured with a SPAD-502 (Minolta). No significant differences in absorption were measured (table 11).

5

Table 11. Absorbtion values of transgenic lines

Absorbtion (%)	Upper-leaf	Lower-leaf
Wild-type Samson NN	84	83
1010-5	84	82
1318-10	85	86
1318-37	86	86

EXAMPLE 16

Chlorophyll-fluorescence of TPS and TPP expressing tobacco plants

Using tobacco plants transgenic for 35S-TPP (1010-5), PC-TPS (1318-10 and 1318-37) and wild-type Samsun NN plants, effects of expressing

10 these genes were determined on chlorophyll fluorescence of leaf material. Two characteristics of fluorescence were measured:

1) ETE (electron transport efficiency), as a measure for the electron transport velocity and the generation of reducing power, and

Non-photochemical quenching, a measure for energy-dissipation
 caused by the accumulation of assimilates.

Plants were grown in a greenhouse with additional light of 100 μmol.

m⁻².s⁻¹ (04:00 - 20:00 hours). Day/night T=21°C/18°C; R.H. ± 75%.During
a night-period preceding the measurements (duration 16 hours), two

plants of each genotype were transferred to the dark and two plants to
the light (±430 μmol m⁻².s⁻¹, 20°C, R.H. 70%). The youngest fully
matured leaf was measured. The photochemical efficiency of PSII
(photosystem II) and the "non-photochemical quenching" parameters were
determined as a function of increasing, light intensity. At each light
intensity, a 300 sec. stabilisation time was taken. Measurements were
performed at 5, 38, 236, 422 and 784,μmol m⁻².s⁻¹ PAR with a frequency
of 3 light-flashes min⁻¹, 350 ppm CO₂ and 20% O₂. Experiments were
replicated using identical plants, reversing the pretreatment from
dark to light and vice versa. The fluorescence characteristics are
depicted in Fig. 16.

The decrease in electron-transport efficiency (ETE) was comparable between TPP and wild-type plants. TPS plants clearly responded less to a increase of light intensity. This difference was most clear in the light pretreatment. These observations are in agreement with the "non-photochemical " quenching data. TPS plants clearly responded less to the additional supply of assimilates by light compared to TPP and wild-type plants. In the case of TPS plants, the negative regulation of accumulating assimilates on photosynthesis was significantly reduced.

10

EXAMPLE 17

Export and allocation of assimilates in TPS and RPP expressing tobacco plants

Using tobacco plants transgenic for 35S-TPP (1010-5) and PC-TPS (1318-15 37),

- 1) the export of carbon-assimilates from a fully grown leaf (indicating "relative source activity", Koch (1996) Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47, 509 and
- 2) the net accumulation of photo-assimilates in sinks ("relative sink 20 activity"), during a light and a dark-period, were determined.

Developmental stage of the plants: flowerbuds just visible. Labelling technique used: Steady-state high abundance 13C-labelling of photosynthetic products (De Visser et al. (1997) Plant Cell Environ 25 20, 37). Of both genotypes, 8 plants, using a fully grown leaf, were labelled with 5.1 atom% 13CO2 during a light-period (10 hours), when appropriate followed by a dark-period (14 hours). After labelling, plants were split in: 1) shoot-tip, 2) young growing leaf, 3) young fully developed leaf (above the leaf being labelled), 4) young stem 30 (above the leaf being labelled), 5) labelled leaf, 6) petiole and base of labelled leaf, 7) old, senescing leaf, 8) other and oldest leaves lower than the labelled leaf, 9) stem lower than the labelled leaf, 10) root-tips. Number, fresh and dry weight and 13C percentage (atom % 13C) of carbon were determined. Next to general parameters as biomass, 35 dry matter and number of leaves, calculated were: 1) Export of C out of the labelled leaf; 2) the relative contribution of imported C in plant parts; 3) the absolute amount of imported C in plant parts; 4) the relative distribution of imported C during a light period and a complete light and dark-period.

WO 97/42326

The biomass above soil of the TPP transgenics was 27% larger compared to the TPS transgenics (P<0.001); also the root-system of the TPP transgenics were better developed. The TPP plants revealed a significant altered dry matter distribution, +39% leaf and +10% stem biomass compared to TPS plants. TPS plants had a larger number of leaves, but a smaller leaf-area per leaf. Total leaf area per TPS plant was comparable with wild-type (0.4 m² plant-1)

- Relative source activity of a fully developed leaf

The net export rate of photosynthates out of the labelled leaf is determined by the relative decrease of the % "new C" during the night (for TPP 39% and for TPS 56%) and by the total fixated amount present in the plant using the amount of "new C" in the plant (without the labelled leaf) as a measure. After a light period, TPP leaves exported 37% compared to 51% for TPS leaves (table 11). In a following dark-period, this percentage increased to respectively 52% and 81%. Both methods support the conclusion that TPS transgenic plants have a significantly enhanced export rate of photosynthetic products compared to the TPP transgenic plants.

20

- Absolute amount of "new C" in plant parts

Export by TPS transgenics was significantly higher compared to TPP transgenics. Young growing TPS leaves import C stronger compared to young growing TPP leaves.

25

- Relative increase of "new C" in plant parts: sink-strength

The relative contribution of "new C" to the concerning plant part is
depicted in Fig. 17. This percentage is a measure for the sinkstrength. A significant higher sink-strength was present in the TPS

transgenics, especially in the shoot-top, the stem above and beneath
the labelled leaf and the petiole of the labelled leaf.

20

Table 11. Source activity of a full grown labelled leaf: C accumulation and -export. Nett daily accumulation and export of C-assimilates in labelled leaf and the whole plant (above soil) after steady-state 13C-labelling during a light period (day). N=4: LSD values indicated the smallest significant differences for P<0.05

Time	Transgene	Source activity grown leaf			
(end of)		new C in	nett C export during night	new C in	nett C export to plant
		(% of total C in leaf)	% of "Day"	(% of new C	(% of total new C)
Day	TPS	17.8	-	48.7	51
	TPP	22.6	-	63.0	37
Day +	TPS	7.8	56	16.6	81
Night	TPP	13.8	39	48.4	52
LSD 0.0	5	2.4		6.1	

10 - Relative distribution, within the plant, of "new C" between the plant parts: relative sink strength

The distribution of fixed carbon between plant organs (Fig. 18) confirmed the above mentioned conclusions. TPS transgenic plants revealed a relative large export of assimilates to the shoot-top, the young growing leaf (day) and even the oldest leaf (without axillary meristems), and to the young and old stem.

EXAMPLE 18: Lettuce

Performance of lettuce plants transgenic for PC-TPS and PC-TPP

Constructs used in lettuce transformation experiments: PC-TPS and PC-TPP. PC-TPS transgenics were rescued during regeneration by culturing explants on 60 g/l sucrose. The phenotypes of both TPS and TPP transgenic plants are clearly distinguishable from wild-type controls;
TPS transgenic plants have thick, dark-green leaves and TPP transgenic plants have light-green leaves with a smoother leaf-edge when compared to wild-type plants.

10

25

The morphology of the leaves, and most prominent the leaf-edges, was clearly affected by the expression of TPS and TPP. Leaves transgenic for PC-TPS were far more "notched" than the PC-TPP transgenic leaves that had a more smooth and round morphology (Fig. 19). Leaf extracts of transgenic lettuce lines were analyzed for sugars and starch (Fig. 20).

EXAMPLE 19: Sugarbeet

Performance of sugarbeet plants transgenic for PC-TPS and PC-TPP

Constructs used in sugarbeet transformation experiments: PC-TPS and PC-TPP. Transformation frequencies obtained with both the TPS and the TPP construct were comparable to controls. The phenotypes of both TPS and TPP transgenic plants were clearly distinguishable from wild-type controls; TPS transgenic plants had thick, dark-green leaves and TPP transgenic plants had light-green coloured leaves with slightly taller petioles when compared to wild-type plants (Fig. 21). Taproot diameter was determined for all plants after ca. 8 weeks of growth in the greenhouse. Some PC-TPS transgenic lines having a leaf size similar to the control plants showed a significant larger diameter of the taproot (Fig. 22). PC-TPP transgenic lines formed a smaller taproot compared to the non-transgenic controls. Leaf extracts of transgenic sugarbeet lines were analyzed for sugars and starch (Fig. 20).

EXAMPLE 20: Arabidopsis

Performance of Arabidopsis plants transgenic for PC-TPS and

Constructs used in Arabidopsis transformation experiments: PC-TPS and PC-TPP. The phenotypes of both TPS and TPP transgenic plants were clearly distinguishable from wild-type controls; TPS transgenic plants had thick, dark-green leaves and TPP transgenic plants had larger, bleaching leaves when compared to wild-type plants. Plants with high levels of TPP expression did not set seed.

EXAMPLE 21: Potato

Performance of Solanum tuberosum plants transgenic for TPS and TPP constructs

5 Construct: 35S-TPS pMOG799

Plants transgenic for pMOG799 were grown in the greenhouse and tuberyield was determined (Fig. 23). The majority of the transgenic plants
showed smaller leaf sizes when compared to wild-type controls. Plants
with smaller leaf-sizes yielded less tuber-mass compared to control

10 lines (Fig. 25).

Construct: 35S-TPP pMOG1010 and PC-TPP pMOG1124

Plants transgenic for pMOG 1010 and pMOG1124 were grown in the greenhouse and tuber-yield was determined. Tuber-yield (Fig. 24) was

comparable or less than the wild-type control lines (Fig. 25).

Construct: PC-TPS pMOG1093

Plants transgenic for pMOG1093 were grown in the greenhouse and tuber-yield was determined. A number of transgenic lines having leaves with a size comparable to wild-type (B-C) and that were slightly darker green in colour yielded more tuber-mass compared to control plants (Fig. 26). Plants with leaf sizes smaller (D-G) than control plants yielded less tuber-mass.

- 25 Construct: Pat-TPP pMOG1128 Microtubers were induced in vitro on explants of pat-TPP transgenic plants. The average fresh weight biomass of the microtubers formed was substantially lower compared to the control lines
- Onstruct: Pat-TPS pMOG845

 Plants transgenic for pMOG 845 were grown in the greenhouse and tuberyield was determined. Three Pat-TPS lines produced more tuber-mass
 compared to control lines (Fig. 27)
- Onstruct: PC TPS Pat TPS; pMOG1129(845-11/22/28)

 Plants expressing PC TPS and Pat-TPS simultaneously were generated by retransforming Pat-TPS lines (resistant against kanamycin) with construct pMOG1129, harbouring a PC TPS construct and a hygromycin resistance marker gene, resulting in genotypes pMOG1129(845-11),

WO 97/42326 PCT/EP97/02497

64

pMOG1129(845-22) and pMOG1129(845-28). Tuber-mass yield varied between almost no yield up to yield comparable or higher then control plants (Fig. 28).

5 EXAMPLE 22: Tobacco

Performance of N. tabacum plants transgenic for TPS and TPP constructs

Root system

Tobacco plants transgenic for 35S TPP (pMOG1010) or 35S TPS (pMOG799)

10 were grown in the greenhouse. Root size was determined just before flowering. Lines transgenic for pMOG1010 revealed a significantly smaller/larger root size compared to pMOG799 and non-transgenic wild-type tobacco plants.

- 15 Influence of expressing TPS and/or TPP on flowering
 Tobacco plants transgenic for 35S-TPS, PC-TRS, 35S-TPP or PC-TPP were
 cultured in the greenhouse. Plants expressing high levels of the TPS
 gene revealed significantly slower growth rates compared to wild-type
 plants. Flowering and senescence of the lower leaves was delayed in
 20 these plants resulting in a stay-green phenotype of the normally
 senescing leaves. Plants expressing high levels of the TPP gene did
 not make any flowers or made aberrant, not fully developing flower
 buds resulting in sterility.
- 25 Influence of expressing TPS and/or TPP on seed setting
 Tobacco plants transgenic for 35S-TPS, PC-TPS, 35S-TPP or PC-TPP were
 cultured in the greenhouse. Plants expressing high levels of the TPP
 gene revealed poor or no development of flowers and absence of seedsetting.

30

Influence of expressing TPS and/or TPP on seed germination

Tobacco plants transgenic for 35s TPP (pMOGIO10) or PC TPP were grown
in the greenhouse. Some of the transgenic lines, having low expression
levels of the transgene, did flower and set seed. Upon germination of
35 S1 seed, a significantly reduced germination frequency was observed
(or germination was absent) compared to S1 seed derived from wild-type
plants (table 12).

Table 12. Germination of transgenic 35S-TPP seeds

Seedlot	Bleaching	Rel. [TPPmRNA]	Germination
1010-2	+	15.8	delayed
1010-3	-	5.3	delayed
1010-4	+	4.2	delayed
1010-5	+	5.2	delayed
1010-6	+	3.9	delayed
1010-7	-	2.8	delayed
1010-8	+	6.5	delayed
1010-9	+	4.6	delayed
1010-10	-	1.9	normal
1010-11	-	5.7	normal
1010-12	+	1.4	normal
1010-14	-	0.1	normal
1010-15	-	0.3	normal
1010-18	+	5.6	delayed
1010-20	+	6.4	delayed
1010-21	+	9.5	delayed
1010-22	+	8.8	not
1010-23	-	4.5	normal
1010-24	-	10.2	delayed
1010-25	-	4.7	delayed(less)
1010-27	-	4.8	normal
1010-28	+	22.1	delayed
1010-31	+	9.4	delayed(less)
1010-32	-	0.3	delayed(less)
1010-33	+	14.7	delayed

Influence of expressing TPS and/or TPP on seed yield

Seed-yield was determined for S1 plants transgenic for pMOG1010-5. On

average, pMOG1010-5 yielded 4.9 g seed/ plant (n=8) compared to 7.8 g

seed/ plant (n=8) for wild-type plants. The "1000-grain" weight is

5 0.06 g for line pMOG1010-5 compared to 0.08 g for wild-type Samsun NN.

These data can be explained by a reduced export of carbohydrates from
the source leaves, leading to poor development of seed "sink" tissue.

Influence of TPS and TPP expression on leaf morphology

10 Segments of greenhouse grown PC-TPS transgenic, PC-TPP transgenic and non-transgenic control tobacco leaves were fixed, embedded in plastic and coupes were prepared to study cell structures using light-microscopy. Cell structures and morphology of cross-sections of the PC-TPP transgenic plants were comparable to those observed in control plants. Cross-sections of PC-TPS transgenics revealed that the spongy parenchyme cell-layer constituted of 7 layers of cells compared to 3 layers in wild-type and TPP transgenic plants (Fig. 29). This finding agrees with our observation that TPS transgenic plant lines form thicker and more rigid leaves compared to TPP and control plants.

20

EXAMPLE 23

Inhibition of cold-sweetening by the expression of trehalose phosphate synthase

Transgenic potato plants (Solanum tuberosum ev. Kardal) were generated harbouring the TPS gene under control of the potato tuber-specific patatin promoter (pMOG845; Example 1). Transgenic plants and wild-type control plants were grown in the greenhouse and tubers were harvested. Samples of tuber material were taken for sugar analysis directly after harvesting and after 6 months of storage at 4°C. Data resulting from the HPLC-PED analysis are depicted in Fig. 30.

What is clearly shown is that potato plants transgenic for TPS_{E.coli}

have a lower amount of total sugar (glucose, fructose and sucrose) accumulating in tubers directly after harvesting. After a storage period of 6 months at 4°C, the increase in soluble sugars is significantly less in the transgenic lines compared to the wild-type control lines.

6

EXAMPLE 24

Improved performance of 35s TPS 35s TPP (pMOG851) transgenic tobacco plants under drought stress

Transgenic tobacco plants were engineered harbouring both the TPS and

TPP gene from E. coli under control of the 35S CaMV promoter. The
expression of the TPS and TPP genes was verified in the lines obtained
using Northern blot and enzyme activity measurements. pMOG851-2 was
shown to accumulate 0.008 mg trehalose.g-1 fw and pMOG851-5
accumulated 0.09 mg trehalose.g-1 fw. Expression of both genes had a
pronounced effect on plant morphology and growth performance under
drought stress. When grown under drought stress imposed by limiting
water supply, the two transgenic tobacco lines tested, pMOG851-2 and
pMOG851-5, yielded total dry weights that were 28% (P<0.01) and 39%
(P<0.001) higher than those of wild-type tobacco. These increases in
dry weight were due mainly to increased leaf production: leaf dry
weights were up to 85% higher for pMOG851-5 transgenic plants. No
significant differences were observed under well-watered conditions.

Drought stress experiments

20 F1 seeds obtained from self-fertilization of primary transformants pMOG851-2 and pMOG851-5 (Goddijn et al. (1997) Plant Physiol. 113, 181) were used in this study. Seeds were sterilized for 10 minutes in 20% household bleach, rinsed five times in sterile water, and sown on half-strength Murashige and Skoog medium containing 10 g.L $^{-1}$ sucrose 25 and 100 mg.L $^{-1}$ kanamycin. Wildtype SR1 seeds were sown on plates without kanamycin. After two weeks seedlings from all lines were transferred to soil (sandy loam), and grown in a growth chamber at 22 °C at approximately 100 $\mu\text{E.m-2}$ light intensity, 14h.d-1. All plants were grown in equal amounts of soil, in 3.8 liter pots. The plants 30 were watered daily with half-strength Hoagland's nutrient solution. The seedlings of pMOG851-2 and pMOG851-5 grew somewhat slower than the wildtype seedlings. Since we considered it most important to start the experiments at equal developmental stage, we initiated the drought stress treatments of each line when the seedlings were at equal height 35 (10 cm), at an equal developmental stage (4-leaves), and at equal dry weight (as measured from two additional plants of each line). This meant that the onset of pMOG851-2 treatment was two days later than wildtype, and that of pMOG851-5 seven days later than wildtype. From each line, six plants were subjected to drought stress, while four

were kept under well-watered conditions as controls. The wildtype tobacco plants were droughted by maintaining them around the wilting point: when the lower half of the leaves were wilted, the plants were given so much nutrient solution that the plants temporarily regained 5 turgor. In practice, this meant supplying 50 ml of nutrient solution every three days; the control plants were watered daily to keep them at field capacity. The pMOG851-2 and pMOG851-5 plants were then watered in the exact same way as wildtype, i.e., they were supplied with equal amounts of nutrient solution and after equal time intervals 10 as wildtype. The stem height was measured regularly during the entire study period. All plants were harvested on the same day (32 d after the onset of treatment for the wildtype plants), as harvesting the transgenic plants at a later stage would complicate the comparison of the plant lines. At the time of harvest the total leaf area was 15 measured using a Delta-T Devices leaf area meter (Santa Clara, CA). In addition, the fresh weight and dry weight of the leaves, stems and roots was determined.

A second experiment was done essentially in the same way, to analyze the osmotic potential of the plants. After 35 days of drought stress, samples from the youngest mature leaves were taken at the beginning of the light period (n=3).

Air-drying of detached leaves

The water loss from air-dried detached leaves was measured from

25 well-watered, four-week old pMOG851-2, pMOG851-5 and wildtype plants.

Per plant line, five plants were used, and from each plant the two
youngest mature leaves were detached and airdried at 25% relative
humidity. The fresh weight of each leaf was measured over 32 hours. At
the time of the experiment samples were taken from comparable,

30 well-watered leaves, for osmotic potential measurements and
determination of soluble sugar contents.

Osmotic potential measurements

Leaf samples for osmotic potential analysis were immediately stored in capped 1 ml syringes and frozen on dry ice. Just before analysis the leaf sap was squeezed into a small vial, mixed, and used to saturate a paper disc. The osmotic potential was then determined in Wescor C52 chambers, using a Wescor HR-33T dew point microvolt meter.

Chlorophyll fluorescence

Chlorophyll fluorescence of the wildtype, pMOG851-2 and pMOG851-5 plants was measured for each plant line after 20 days of drought treatment, using a pulse modulation (PAM) fluorometer (Walz, 5 Effeltrich, Germany). Before the measurements, the plants were kept in the dark for two hours, followed by a one-hour light period. Subsequently, the youngest mature leaf was dark-adapted for 20 minutes. At the beginning of each measurement, a small (0.05 μmol m⁻² s^{-1} modulated at 1.6 KHz) measuring light beam was turned on, and the 10 minimal fluorescence level (F_0) was measured. The maximal fluorescence level (F_m) was then measured by applying a saturation light pulse of 4000 μ mol m⁻² s⁻¹, 800 ms in duration. After another 20 s, when the signal was relaxed to near Fo, brief saturating pulses of actinic light (800 ms in length, 4000 μ mol m⁻² s⁻¹), were given repetitively for 15 30 s with 2 s dark intervals. The photochemical (q_Q) and nonphotochemical $(q_{\underline{E}})$ quenching components were determined from the fluorescence/time curve according to Bolhar-Nordenkampf and Oquist (1993). At the moment of measurement, the leaves in question were not visibly wilted. Statistical data were obtained by one-way analysis of 20 variance using the program Number Cruncher Statistical System (Dr. J.L. Hintze, 865 East 400 North, Kaysville, UT 84037, USA).

Chlorophyll fluorescence analysis of drought-stressed plants showed a higher photochemical quenching (qQ) and a higher ratio of variable fluorescence over maximal fluorescence (F_V/F_m) in pMOG851-5, indicating a more efficiently working photosynthetic machinery (table 13).

Table 13. Chlorophyll fluorescence parameters of wild-type (wt) and trehalose-accumulating (pMOG851-2, pMOG851-5) transgenic tobacco plants. P (probability) values were obtained from ANOVA tests analyzing differences per plant line between plants grown under well-watered (control) or dry conditions, as well as differences between each of the transgenic lines and WT, grown under well-watered or dry conditions. Fm: maximal fluorescence; Fv: variable fluorescence (Fm-F0): qQ: photochemical quenching: qE: non-photochemical quenching. Fm, Fv are expressed in arbitrary units (chart mm).

815-5 8-51-2/WT PMOG851-5 PMOG851-1 WT ns 175.6 174.4 180.4 control $\mathbf{F}_{\mathbf{m}}$ 0.0068 ns 167.8 155.7 151.5 0.0000 P (ctrl.dry) 0.0004 142.8 ns 143.3 134.6 $\mathbf{F}_{\mathbf{v}}$ control 0.0011 135.6 122.1 118.4 đгу ns 0.006 0.0000 P (ctrl.dry) 0.0052 0.059 0.813 0.794 0.771 control Fv 0.0016 0.809 0.782 0.784 dry $\mathbf{F}_{\mathbf{m}}$ ns P (ctrl.dry) ns 0.0085 0.259 29.9 23.8 control 15.2 $q_{\mathbf{z}}$ ns 23.5 21.6 25.4 gry ns 0.048 P (ctrl.dry) ns 90.4 ns 92.4 91.3 control q_Q 0.0005 92.75 78.5 73.69 dry 0.006 P (ctrl.dry) 0.005

Carbohydrate analysis

At the time of harvest, pMOG851-5 plants contained 0.2 mg.g-1 dry weight trehalose, whereas in pMOG851-2 and wildtype the trehalose levels were below the detection limit, under both stressed and

5 unstressed conditions. The trehalose content in pMOG851-5 plants was comparable in stressed and unstressed plants (0.19 and 0.20 mg. g-1 dry weight, respectively). Under well-watered conditions, the levels of glucose and fructose were twofold higher in pMOG851-5 plants than in wildtype. Leaves of stressed pMOG851-5 plants contained about threefold higher levels of each of the four nonstructural carbohydrates starch, sucrose, glucose and fructose, than leaves of stressed wildtype plants. In pMOG851-2 leaves, carbohydrate levels, like chlorophyll fluorescence values, did not differ significantly from those in wildtype. Stressed plants of all lines contained increased levels of glucose and fructose compared to unstressed plants.

Osmotic potential of drought stressed and control plants

During a second, similar experiment under greenhouse conditions, the transgenic plants showed the same phenotypes as described above, and again the pMOG851-5 plants showed much less reduction in growth under drought stress than pMOG851-2 and wildtype plants. The osmotic potential in leaves of droughted pMOG851-5 plants (-1.77 ± 0.39 Mpa) was significantly lower (P=0.017) than in wildtype leaves (-1.00 ± 0.08 Mpa); pMOG851-2 showed intermediate values (-1.12 ± 0.05 Mpa). Similarly, under well-watered conditions the osmotic potential of pMOG851-5 plants (-0.79 ± 0.05 Mpa) was significantly lower (P=0.038) than that of wildtype leaves (-0.62 ± 0.03 Mpa), with pMOG851-2 having intermediate values (-0.70 ± 0.01 Mpa).

30

Airdrying of detached leaves

Leaves of pMOG851-2, pMOG851-5 and wildtype were detached and their fresh weight was measured over 32 hours of airdrying. Leaves of pMOG851-2 and pMOG851-5 plants lost significantly less water (P<0.05)

35 than wildtype leaves: after 32 h leaves of pMOG851-5 and pMOG851-2 had 44% and 41% of their fresh weight left, respectively, compared to 30% for wildtype. At the time of the experiment samples were taken from comparable, well-watered leaves for osmotic potential determination and analysis of trehalose, sucrose, glucose and fructose. The two

transgenic lines had lower osmotic potentials than wildtype (P<.0.05), with pMOG851-5 having the lowest water potential (-0.63 ± 0.03 Mpa), wildtype the highest (-0.51 ± 0.02 Mpa) and pMOG851-2 intermediate (-0.57 ± 0.04 Mpa). The levels of all sugars tested were significantly higher in leaves of pMOG851-5 plants than for wildtype leaves resulting in a threefold higher level of the four sugars combined (P = 0.002). pMOG851-2 plants contained twofold higher levels of the four sugars combined (P = 0.09). The trehalose levels were 0.24 ± 0.02 mg.g-1 DW in pMOG851-5 plants, and below detection in pMOG851-2 and wildtype.

EXAMPLE 25

Performance of TPS and TPP transgenic lettuce plant lines under drought stress

Primary TPS and TPP transformants and wild-type control plants were subjected to drought-stress. Lines transgenic for TPP reached their wilting point first, then control plants, followed by TPS transgenic plants indicating that TPS transgenic lines, as observed in other plant species, have a clear advantage over the TPP and wild-type plants during drought stress.

EXAMPLE 26

Bolting of lettuce plants is affected in plants transgenic for PC-TPS or PC-TPP

Bolting of lettuce is reduced in plants transgenic for PC-TPP (table 14). Plant lines transgenic for PC-TPS show enhanced bolting compared to wild-type lettuce plants.

Table 14. Bolting of lettuce plants

PC-TPP	Total	1.	2.	3.	4.	5.
lines	# of	Normal	Reduced	Visible	Possible	Completely
	plants	bolting	bolting	inflorescence	fasciation	vegetative
1A	4					4
2A	3				1	2
3A	2	2			_	
4A	5	1	1	1	2	
5A	5		1	1		3
7A	1		1			
8 A	5	4	1			
9A	5	5				
10A	3		1			2
11A	5			2		3
12A	4					4
Control	5	5				

5 EXAMPLE 27

Performance of tomato plants transgenic for TPS and TPP
Constructs used in tomato transformation experiments: 35S TPP, PC-TPS,
PC-TPS as-trehalase, PC-TPP, E8-TPS, E8-TPP, E8 TPS E8 as-trehalase.
Plants transgenic for the TPP gene driven by the plastocyanin promoter
and 35S promoter revealed phenotypes similar to those observed in
other plants: bleaching of leaves, reduced formation of flowers or
absent flower formation leading to small fruits or absence of fruits.
A small number of 35S-TPP transgenic lines generated extreme large
fruits. Those fruits revealed enhanced outgrow of the pericarp. Plants
transgenic for the TPS gene driven by the plastocyanin promoter and
35S promoter did not form small lancet shaped leaves. Some severely
stunted plants did form small dark-green leaves. Plants transgenic for
PC-TPS and PC-as-trehalase did form smaller and darker green leaves as
compared to control plants.

The colour and leaf-edge of the 35S or PC driven TPS and TPP transgenic plants were clearly distinguishable similar to what is observed in other crops.
Plants harbouring the TPS and TPP gene under control of the fruit-

PCT/EP97/02497

specific E8 promoter did not show any phenotypical differences compared to wild-type fruits. Plants transgenic for E8 TPS E8 astrehalase produced aberrant fruits with a yellow skin and incomplete ripening.

5

EXAMPLE 28

Performance of potato plants transgenic for as-trehalase and/or TPS

10 Constructs: 35S as-trehalase (pMOG1027) and 35S as-trehalase Pat TPS (pMOG1027(845-11/22/28). Plants expressing 35S as-trehalase and pat-TPS simultaneously were generated by retransforming pat-TPS lines (resistant against kanamycin) with construct pMOG1027, harbouring the 35S as-trehalase 15 construct and a hygromycin resistance marker gene, resulting in genotypes pMOG1027(845-11), pMOG1027(845-22) and pMOG1027(845-28). Microtubers were induced in vitro and fresh weight of the microtubers was determined. The average fresh weight yield was increased for transgenic lines harbouring pMOG1027 (pMOG845-11/22/28). The fresh 20 weight biomass of microtubers obtained from lines transgenic for pMOG1027 only was slightly higher then wild-type control plants. Resulting plants were grown in the greenhouse and tuber yield was determined (Fig. 33). Lines transgenic for 35S as-trehalase or a combination of 35S as-trehalase and pat-TPS yielded significantly more 25 tuber-mass compared to control lines. Starch determination revealed no difference in starch content of tubers produced by plant lines having a higher yield (Fig. 34). A large number of the 1027(845-11/22/28) lines produced tubers above the soil out of the axillary buds of the leaves indicating a profound influence of the constructs used on plant 30 development. Plant lines transgenic for 35S as-trehalase only did not

Constructs: Pat as-trehalase (pMOG1028) and Pat as-trehalase Pat TPS (pMOG1028(845-11/22/28))

Plants expressing Pat as-trehalase and Pat-TPS simultaneously were generated by retransforming Pat-TPS lines (resistant against kanamycin) with construct pMOG1028, harbouring the Pat as-trehalase construct and a hygromycin resistance marker gene, resulting in genotypes pMOG1028(845-11), pMOG1028(845-22) and pMOG1028(845-28).

form tubers above the soil.

PCT/EP97/02497

Plants were grown in the greenhouse and tuber yield was determined (Fig. 35). A number of pMOG1028 transgenic lines yielded significantly more tuber-mass compared to control lines. Individual plants transgenic for both Pat TPS and Pat as-trehalase revealed a varying tuber-yield from almost no yield up to a yield comparable to or higher

Construct: PC as-trehalase (pMOG1092)

then the control-lines (Fig. 35).

Plants transgenic for pMOG1092 were grown in the greenhouse and tuber10 yield was determined. Several lines formed darker-green leaves
compared to controls. Tuber-yield was significantly enhanced compared
to non-transgenic plants (Fig. 36).

Construct: PC as-trehalase PC-TPS (pMOG 1130)

15 Plants transgenic for pMOG 1130 were grown in the greenhouse and tuber-yield was determined. Several transgenic lines developed small dark-green leaves and severely stunted growth indicating that the phenotypic effects observed when plants are transformed with TPS is more severe when the as-trehalase gene is expressed simultaneously (see Example 21). Tuber-mass yield varied between almost no yield up to significantly more yield compared to control plants (Fig. 37).

EXAMPLE 29

Overexpression of a potato trehalase cDNA in N. tabacum

25 Construct: de35S CaMV trehalase (pMOG1078)

Primary tobacco transformants transgenic for pMOG1078 revealed a phenotype different from wild-type tobacco, some transgenics have a dark-green leaf colour and a thicker leaf (the morphology of the leaf is not lancet-shaped) indicating an influence of trehalase gene30 expression on plant metabolism. Seeds of selfed primary transformants were sown and selected on kanamycin. The phenotype showed to segregate in a mendelian fashion in the S1 generation.

DEPOSITS

The following deposits were made under the Budapest Treaty.

The clones were deposited at the Centraal Bureau voor

Schimmelcultures, Oosterstraat 1, P.O. Box 273, 3740 AG Baarn, The

Netherlands on April 21, 1997 and received the following numbers:

	Escherichia coli	DH5alpha/pMOG1192	CBS 692.97
		DH5alpha/pMOG1240	CBS 693.97
		DH5alpha/pMOG1241	CBS 694.97
10		DH5alpha/pMOG1242	CBS 695.97
		DH5alpha/pMOG1243	CBS 696.97
		DH5alpha/pMOG1244	CBS 697.97
		DH5alpha/pMOG1245	CBS 698.97

15 Deposited clones:

	pMOG1192	harbors the Helianthus annuus TPS/TPP bipartite cDNA
		inserted in the multi-copy vector pGEM-T (Promega).
	pMOG1240	harbors the tobacco TPS "825" bp cDNA fragment inserted in
		pCRscript (Stratagene).
20	pMOG1241	harbors the tobacco TPS "840" bp cDNA fragment inserted in
		pGEM-T (Promega).
	pMOG1242	harbors the tobacco TPS "630" bp cDNA fragment inserted in
		pGEM-T (Promega).
	pM0G1243	harbors the tobacco TPP "543" bp cDNA fragment inserted in
25		pGEM-T (Promega).
	pMOG1244	harbors the tobacco TPP "723" bp cDNA fragment inserted in
		a pUC18 plasmid.
	pMOG1245	harbors the tobacco TPP "447" bp fragment inserted in

List of relevant pMOG### and pVDH### clones

pGEM-T (Promega).

1. Binary vectors

	pMOG23	Binary vector (ca. 10 Kb) harboring the NPTII selection
35		marker
	pMOG22	Derivative of pMOG23, the NPTII-gene has been replaced by
		the HPT-gene which confers resistance to hygromycine
	pVDH 275	Binary vector derived from pMOG23, harbors a plastocyanin
		promoter- nos terminator expression cassette.

pMOG402 Derivative of pMOG23, a point-mutation in the NPTII-gene has been restored, no KpnI restriction site present in the polylinker

pMOG800 Derivative of pMOG402 with restored KpnI site in polylinker

2. TPS / TPP expression constructs

pMOG 799 35S-TPS-3'nos1

pMOG 810 idem with Hyg marker

10 pMOG 845 Pat-TPS-3'PotPiII

pMOG 925 idem with Hyg marker

pMOG 851 35S-TPS-3'nos 35S-TPP(atg)2

pMOG 1010 de35S CaMV amv leader TPP(gtg) PotPiII

pMOG 1142 idem with Hyg marker

15 pMOG 1093 Plastocyanin- TPS-3'nos

pMOG 1129 idem with Hyg marker

pMOG 1177 Plastocyanin- TPS-3'PotPiII 3'nos

pVDH 318 Identical to pMOG1177

Functionally identical to pMOG1093

20 pMOG 1124 Plastocyanin- TPP(gtg) 3'PotPiII 3'nos

pVDH 321 Identical to pMOG1124

pMOG 1128 Patatin TPP(gtg) 3'PotPiII

pMOG 1140 E8-TPS-3'nos

pMOG 1141 E8-TPP(gtg)-3'PotPiII

25

3. Trehalase constructs

pMOG 1028 Patatin as-trehalase 3'PotPiII, Hygromycin resistance marker

pMOG 1078 de35S CaMV amv leader trehalase 3 nos

30 pMOG 1090 de35S CaMV amv leader as-trehalase 3 nos

pMOG 1027 idem with Hyg marker

pMOG 1092 Plastocyanin- as trehalase-3'nos

pMOG 1130 Plastocyanin- as trehalase-3 nos Plastocyanin-TPS-3 nos

pMOG 1153 E8-TPS-3'nos E8-as trehalase-3'PotPiII

- All constructs harbour the NPTII selection marker unless noted otherwise
- Two types of TPP constructs have been used as described in Goddijn et al. (1997) Plant Physiol.113, 181.

SEQUENCE LISTING

5	(1) GENE	RAL INFORMATION:
	(i)	APPLICANT: (A) NAME: MOGEN International nv (B) STREET: Einsteinweg 97
10		(C) CITY: Leiden (E) COUNTRY: The Netherlands (F) POSTAL CODE (ZIP): 2333 CB (G) TELEPHONE: (0)71-5258282 (H) TELEFAX: (0)71-5221471
15	(ii) level of	TITLE OF INVENTION: Regulating metabolism by modifying the trehalose-6-phosphate $% \left(1\right) =\left(1\right) +\left(1\right) +\left$
	(iii)	NUMBER OF SEQUENCES: 57
20	(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
25	(vi)	PRIOR APPLICATION DATA:
		(A) APPLICATION NUMBER: EP 96.201.225.8 (B) FILING DATE: 03-MAY-1996
30		PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: EP 96.202.128.3 (B) FILING DATE: 26-JUL-1996
35	(vi)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: EP 96.202.395.8 (B) FILING DATE: 29-AUG-1996
40	(2) INFO	RMATION FOR SEQ ID NO: 1:
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1450 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	. (ii)	MOLECULE TYPE: DNA (genomic)
50	(iii)	HYPOTHETICAL: NO
30	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 211450
55	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	AT	AAAA	CTCT	CCC	CGGG	ACC I	ATG . Met '	ACT Thr	ATG . Met	AGT (CGT Arg 5	TTA Leu	GTC Val	GTA Val	GTA Val	TCT Ser 10	50
5	AA(Ası	C CG	G AT	r GCA ⊇ Ala	A CCA a Pro 19) Pro	A GA	C GA	G CA	C GCC s Ala 20	a Ala	C AG	T GC	C GG a Gl	T GG y Gl	C CTT y Leu 5	98
10	GC0 Ala	C GT	r GG(2 ATA / Ile 30	e Leι	G GGC	GC Ala	A CTO	G AAI 1 Lys 35	s Ala	C GCA	A GGG	GG Gly	A CTO	ı Trı	G TTT Phe	146
15	GG(TGC Tr	G AGT P Ser 45	Gly	r GAP 7 Glu	ACA Thr	. G17	AA? Asr 50	ı Glı	GAT 1 Asp	CAC Clr	CCC Pro	G CTA Lev	ı Lys	A AAC	G GTG S Val	194
20	AAA Lys	AAA Lys	GI3	AAC Asn	ATT	ACG Thr	TGC Trp 65	Ala	C TCT a Ser	TTT Phe	AAC Asr	CTC Leu 70	Ser	GAA Glu	CAC Glr	GAC Asp	242
	CTT Leu 75	Asp	GAA Glu	TAC Tyr	TAC Tyr	AAC Asn 80	Gln	TTC Phe	TCC Ser	AAT Asn	GCC Ala 85	Val	CTC Leu	TGG Trp	CCC Pro	GCT Ala 90	290
25	TTT Phe	CAT His	TAT Tyr	CGG Arg	CTC Leu 95	Asp	CTG	GTG Val	CAA Gln	TTT Phe 100	CAG Gln	CGT Arg	CCT Pro	GCC Ala	TGG Trp	GAC Asp	338
30	GGC	TAT Tyr	CTA Leu	CGC Arg 110	Val	AAT Asn	GCG Ala	TTG Leu	CTG Leu 115	GCA Ala	GAT Asp	AAA Lys	TTA Leu	CTG Leu 120	CCG Pro	CTG Leu	386
35	TTG Leu	CAA Gln	GAC Asp 125	GAT Asp	GAC Asp	ATT Ile	ATC Ile	TGG Trp 130	ATC Ile	CAC His	GAT Asp	TAT Tyr	CAC His 135	CTG Leu	TTG Leu	CCA Pro	434
40	TTT Phe	GCG Ala 140	CAT His	GAA Glu	TTA Leu	CGC Arg	AAA Lys 145	CGG Arg	GGA Gly	GTG Val	AAT Asn	AAT Asn 150	CGC Arg	ATT Ile	GGT Gly	TTC Phe	482
	TTT Phe 155	CTG Leu	CAT His	ATT Ile	CCT Pro	TTC Phe 160	CCG Pro	ACA Thr	CCG Pro	GAA Glu	ATC Ile 165	TTC Phe	AAC Asn	GCG Ala	CTG Leu	CCG Pro 170	530
45	ACA Thr	TAT Tyr	GAC Asp	ACC Thr	TTG Leu 175	CTT Leu	GAA Glu	CAG Gln	CTT Leu	TGT Cys 180	GAT Asp	TAT Tyr	GAT Asp	TTG Leu	CTG Leu 185	GGT Gly	578
50	TTC Phe	CAG Gln	ACA Thr	GAA Glu 190	AAC Asn	GAT Asp	CGT Arg	CTG Leu	GCG Ala 195	TTC Phe	CTG Leu	GAT Asp	TGT Cys	CTT Leu 200	TCT Ser	AAC Asn	626
55	CTG Leu	ACC Thr	CGC Arg 205	GTC Val	ACG Thr	ACA Thr	CGT Arg	AGC Ser 210	GCA Ala	AAA Lys	AGC Ser	CAT His	ACA Thr 215	GCC Ala	TGG Trp	GGC Gly	674

													GAA Glu				722
5	_	_											CTG Leu				770
10													GTC Val				818
15													TAT Tyr				866
20													TAT Tyr 295				914
	_											_	GAT Asp	_			962
25	_												TAC Tyr	_	_		1010
30													GAC Asp				1058
35													GTG Val				1106
40													GCT Ala 375				1154
													GCG Ala				1202
45	AAC Asn 395	Glu	TTA Leu	Thr	Ser	GCG Ala 400	Leu	Ile	Val	Asn	Pro	Tyr	GAT Asp	CGT Arg	GAC Asp	GAA Glu 410	1250
50	GTT Val	GCA Ala	GCT Ala	GCG Ala	CTG Leu 415	GAT Asp	CGT Arg	GCA Ala	TTG Leu	ACT Thr 420	ATG Met	TCG Ser	CTG Leu	GCG Ala	GAA Glu 425	Arg	1298
55	ATT Ile	TCC Ser	CGT Arg	CAT His 430	GCA Ala	GAA Glu	ATG Met	CTG Leu	GAC Asp 435	GTT Val	ATC Ile	GTG Val	AAA Lys	AAC Asn 440	GAT Asp	ATT Ile	1346

01 AAC CAC TGG CAG GAG TGC TTC ATT AGC GAC CTA AAG CAG ATA GTT CCG 1394 Asn His Trp Gln Glu Cys Phe Ile Ser Asp Leu Lys Gln Ile Val Pro 450 455 5 CGA AGC GCG GAA AGC CAG CAG CGC GAT AAA GTT GCT ACC TTT CCA AAG Arg Ser Ala Glu Ser Gln Gln Arg Asp Lys Val Ala Thr Phe Pro Lys 470 CTC TGC AG 1450 10 Leu Cys 475 (2) INFORMATION FOR SEQ ID NO: 2: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 476 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: 25 Met Thr Met Ser Arg Leu Val Val Val Ser Asn Arg Ile Ala Pro Pro 10 Asp Glu His Ala Ala Ser Ala Gly Gly Leu Ala Val Gly Ile Leu Gly Ala Leu Lys Ala Ala Gly Gly Leu Trp Phe Gly Trp Ser Gly Glu Thr Gly Asn Glu Asp Gln Pro Leu Lys Lys Val Lys Lys Gly Asn Ile Thr Trp Ala Ser Phe Asn Leu Ser Glu Gln Asp Leu Asp Glu Tyr Tyr Asn 40 Gln Phe Ser Asn Ala Val Leu Trp Pro Ala Phe His Tyr Arg Leu Asp 85 Leu Val Gln Phe Gln Arg Pro Ala Trp Asp Gly Tyr Leu Arg Val Asn 105 Ala Leu Leu Ala Asp Lys Leu Leu Pro Leu Leu Gln Asp Asp Ile Ile Trp Ile His Asp Tyr His Leu Leu Pro Phe Ala His Glu Leu Arg 135 Lys Arg Gly Val Asn Asn Arg Ile Gly Phe Phe Leu His Ile Pro Phe

155

170

150

55 Pro Thr Pro Glu Ile Phe Asn Ala Leu Pro Thr Tyr Asp Thr Leu Leu

	Glu	Gln	Leu	Cys 180	Asp	Tyr	Asp		Leu 185	Gly	Phe	Gln	Thr	Glu 190	Asn	Asp
5	Arg	Leu	Ala 195	Phe	Leu	Asp	Cys	Leu 200	Ser	Asn	Leu	Thr	Arg 205	Val	Thr	Thr
	Arg	Ser 210	Ala	Lys	Ser	His	Thr 215	Ala	Trp	Gly	Lys	Ala 220	Phe	Arg	Thr	Glu
10	Val 225	Туr	Pro	Ile	Gly	11e 230	Glu	Pro	Lys	Glu	11e 235	Ala	Lys	Gln	Ala	Ala 240
15	Gly	Pro	Leu	Pro	Pro 245	Lys	Leu	Ala	Gln	Leu 250	Lys	Ala	Glu	Leu	Lys 255	Asn
				260		Ser			265					270		
20			275			Ala		280					285			
		290				Arg	295					300				
25	305					Gln 310					315					320
30					325	Lys				330					335	
				340		Phe			345					350		
35			355			Leu		360					365			
		370				Val	375					380				
40	385					Phe 390					395					400
45					405					410					415	
				420		Ser			425					430		
50			435			· Val		440					445	,		
		450	•			Lys	455	1				460)	GIU	Jer	91
55	Glr 465		As <u>r</u>	Lys	: Val	. Ala 470		Phe	Pro	р гуда	475	. Cys	•			

	{2) IN	FORM	ATIC	N FO	R SE	Q ID	NO:	3:								
5		((A) (B) (C)	INCE LENG TYPE STRA TOPO	TH: : nu NDED	835 clei NESS	base c ac : do	pai id uble	rs							
10			i) M i) H					A (g	enom	ic)							
15				(A) i (B) i	NAME.	rion	: 18	81									
20	ATI		i) SI			ATG		GAA	CCG	TTA	ACC	GAA	ACC Thr	CCT Pro	GAA Glu 10	CTA Leu	. 50
25	TC(GCC Ala	AAA Lys	TA: Ty:	: Ala	TG(TTT	TTT	r GAT ≥ Asp 20	Leu	GAT Asp	r GGA o Gly	ACC Thi	CTC Lev	ı Ala	G GAA a Glu	98
30	ATC Ile	AAA Lys	CCG Pro	His	CCC Pro	GAT Asr	CAG Gln	GTO Val	. Val	GTG Val	CCT Pro	GAC Asp	AAT Asn 40	Ile	CTC Let	G CAA 1 Gln	146
	GGA Gly	CTA Leu 45	Gin	CTA Leu	CTG Leu	GCA Ala	ACC Thr	Ala	AGT Ser	GAT Asp	GGT	GCA Ala 55	Leu	GCA Ala	TTG Leu	ATA Ile	194
35	TCA Ser 60	GTA	CGC Arg	TCA Ser	Met	GTG Val 65	Glu	C T T Leu	GAC Asp	GCA Ala	CTG Leu 70	Ala	AAA Lys	CCT Pro	тат туг	CGC Arg 75	242
40	TTC Phe	CCG Pro	TTA Leu	GCG Ala	GGC Gly 80	GTG Val	CAT His	GGG Gly	GCG Ala	GAG Glu 85	CGC Arg	CGT Arg	GAC Asp	ATC Ile	AAT Asn 90	GGT	290
45	AAA Lys	ACA Thr	CAT His	ATC Ile 95	GTT Val	CAT His	CTG Leu	CCG Pro	GAT Asp 100	GCG Ala	ATT	GCG Ala	CGT Arg	GAT Asp 105	ATT Ile	AGC Ser	338
50	GTĢ Val	CAA Gln	CTG Leu 110	CAT His	ACA Thr	GTC Val	ATC Ile	GCT Ala 115	CAG Gln	TAT Tyr	CCC Pro	GGC Gly	GCG Ala 120	GAG Glu	CTG Leu	GAG Glu	386
	GCG Ala	AAA Lys 125	Gly GGG	ATG Met	GCT Ala	TTT Phe	GCG Ala 130	CTG Leu	CAT His	TAT Tyr	CGT Arg	CAG Gln 135	GCT Ala	CCG Pro	CAG Gln	CAT His	434

84

		~ ~ ~	201		.		mm.						~~~	3 ma	maa	00)	400
		GAC Asp															482
	140	ASD	AIG	neu	Mec	145	Leu	Ala	GIII	Arg	150	1111	GIII	116	irp	155	
5	CAA	ATG	GCG	TTA	CAG	CAG	GGA	AAG	TGT	GTT	GTC	GAG	ATC	AAA	CCG	AGA	530
	Gln	Met	Ala	Leu	Gln	Gln	Gly	Lys	Cys	Val	Val	Glu	Ile	Lys	Pro	Arg	
					160					165					170		
		ACC															578
10	Gly	Thr	Ser	-	Gly	Glu	Ala	Ile		Ala	Phe	Met	Gln		Ala	Pro	
				175					180					185			
	יוטייוטי	ATC	ccc	CCA	ACG.	CCC	CTA	distrib	ርጥር	GGC	CAT	CAT	ጥጥል	ACC	GAT	GAA	626
		Ile					_										
15			190					195		,			200		•		
	$\mathbf{T}\mathbf{C}\mathbf{T}$	GGC	TTC	GCA	GTC	GTT	AAC	CGA	CTG	GGC	GGA	ATG	TCA	GTA	AAA	ATT	674
	Ser	Gly	Phe	Ala	Val	Val	Asn	Arg	Leu	Gly	Gly		Ser	Val	Lys	Ile	
		205					210					215					
20														ama	000	a m	722
		ACA Thr															122
	220	1111	GIY	Ala	TIIL	225	Ala	ser	пр	Ary	230	AIG	Gry	Vai	110	235	
	220																
25	GTC	TGG	AGC	TGG	CTT	GAA	ATG	ATA	ACC	ACC	GCA	TTA	CAA	CAA	AAA	AGA	770
	Val	Trp	Ser	Trp	Leu	Glu	Met	Ile	Thr	Thr	Ala	Leu	Gln	Gln		Arg	
					240					245					250		
		ААТ				~ » m	C) C	// A P	CAC	mcc.	mmm	א כיניי	CCM	አርመ	እጥC	ממיד	818
30		AAT														*	010
30	GIU	ASII	ASII	255	Ser	vsh	ASP	ıyı	260	361	2 116	561	*****	265			
				233	•												
	CCG	GATT	GCA (CTG	CAG												
	835																

835

270

(2) INFORMATION FOR SEQ ID NO: 4:

40

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

45

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
- 50 Met Thr Glu Pro Leu Thr Glu Thr Pro Glu Leu Ser Ala Lys Tyr Ala
 - Trp Phe Phe Asp Leu Asp Gly Thr Leu Ala Glu Ile Lys Pro His Pro 20 25 30

Asp Gln Val	Val Val	Pro Asp) Asn	Ile	Leu	Gln	Gly	Leu	Gln	Leu	Leu
35			40					45			

- Ala Thr Ala Ser Asp Gly Ala Leu Ala Leu Ile Ser Gly Arg Ser Met $5 \hspace{1.5cm} 50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$
 - Val Glu Leu Asp Ala Leu Ala Lys Pro Tyr Arg Phe Pro Leu Ala Gly 65 70 75 80
- 10 Val His Gly Ala Glu Arg Arg Asp Ile Asn Gly Lys Thr His Ile Val 85 90 95
 - His Leu Pro Asp Ala Ile Ala Arg Asp Ile Ser Val Gln Leu His Thr 100 105 110
- Val Ile Ala Gln Tyr Pro Gly Ala Glu Leu Glu Ala Lys Gly Met Ala
 115 120 125
- Phe Ala Leu His Tyr Arg Gln Ala Pro Gln His Glu Asp Ala Leu Met 130
 - Thr Leu Ala Gln Arg Ile Thr Gln Ile Trp Pro Gln Met Ala Leu Gln 145 150 155 160
- 25 Gln Gly Lys Cys Val Val Glu Ile Lys Pro Arg Gly Thr Ser Lys Gly 165 170 175
 - Glu Ala Ile Ala Ala Phe Met Gln Glu Ala Pro Phe Ile Gly Arg Thr 180 185 190
- Pro Val Phe Leu Gly Asp Asp Leu Thr Asp Glu Ser Gly Phe Ala Val 195 200 205
- Val Asn Arg Leu Gly Gly Met Ser Val Lys Ile Gly Thr Gly Ala Thr 35 210 215 220
 - Gln Ala Ser Trp Arg Leu Ala Gly Val Pro Asp Val Trp Ser Trp Leu 225 230 235 240
- 40 Glu Met Ile Thr Thr Ala Leu Gln Gln Lys Arg Glu Asn Asn Arg Ser 245 250 250
 - Asp Asp Tyr Glu Ser Phe Ser Arg Ser Ile * 260 265

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 55 (ii) MOLECULE TYPE: cDNA

	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
5	AAGCTTATGT TGCCATATAG AGTAGAT	27
	(2) INFORMATION FOR SEQ ID NO: 6:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
20	GTAGTTGCCA TGGTGCAAAT GTTCATATG	29
	(2) INFORMATION FOR SEQ ID NO: 7:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
35	(iii) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
40	GAYITIATIT GGRTICAYGA YTAYCA	26
	(2) INFORMATION FOR SEQ ID NO: 8:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA	
30	(iii) HYPOTHETICAL: NO	

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

WO 97/42326

	/								
	TIGGITKITT YYTICAYAYI CCITTYCC	28							
	(2) INFORMATION FOR SEQ ID NO: 9:								
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 								
10	(ii) MOLECULE TYPE: cDNA								
	(iii) HYPOTHETICAL: NO								
15	(iii) ANTI-SENSE: NO								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:								
20	GYIACIARRT TCATICCRTC IC	22							
	(2) INFORMATION FOR SEQ ID NO: 10:								
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 743 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear								
30	(ii) MOLECULE TYPE: cDNA to mRNA								
	(iii) HYPOTHETICAL: NO								
	(iii) ANTI-SENSE: NO								
35	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>								
40	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1743 (D) OTHER INFORMATION: /partial</pre>								
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: GAC GTG ATG TGG ATG CAC GAC TAC CAT TTG ATG GTG TTG CCT ACG TTC	48							
	Asp Val Met Trp Met His Asp Tyr His Leu Met Val Leu Pro Thr Phe 1 5 10 15								
50	TTG AGG AGG CGG TTC AAT CGT TTG AGA ATG GGG TTT TTC CTT CAC AGT	96							
	Leu Arg Arg Phe Asn Arg Leu Arg Met Gly Phe Phe Leu His Ser 20 25 30								
55	CCA TTT CCC TCA TCT GAG ATT TAC AGG ACA CTT CCT GTT AGA GAG GAA Pro Phe Pro Ser Ser Glu Ile Tyr Arg Thr Leu Pro Val Arg Glu Glu	144							
	35 40 45								

	ATA Ile	CTC Leu 50	Lys	GCT Ala	TTG Leu	CTC Leu	тст Суз 55	Ala	GAC Asp	ATT	GTT Val	GGA Gly 60	Phe	CAC His	ACT Thr	TTT Phe	192
5	GAC Asp 65	Tyr	GCG Ala	AGA Arg	CAC	TTC Phe 70	CTC Leu	TCT Ser	TGT Cys	TGC Cys	AGT Ser 75	Arg	ATG Met	TTG Leu	GGT Gly	TTA Leu 80	240
10	Glu	Tyr	Gln	Ser	Lys 85	AGA Arg	Gly	Tyr	Ile	Gly 90	Leu	Glu	Tyr	Туr	Gly 95	Arg	288
15	Thr	Val	Gly	Ile 100	Lys	ATT Ile	Met	Pro	Val 105	Gly	Ile	His	Met	Gly 110	His	Ile	336
20	Glu	Ser	Met 115	Lys	Lys	CTT Leu	Ala	Ala 120	Lys	Glu	Leu	Met	Leu 125	ГУS	Ala	Leu	384
	ГХS	Gln 130	Gln	Phe	Glu	GGG Gly	Lys 135	Thr	Val	Leu	Leu	Gly 140	Ala	Asp	Asp	Leu	432
25	GAT Asp 145	ATT Ile	TTC Phe	AAA Lys	GGT Gly	ATA Ile 150	AAC Asn	TTA Leu	AAG Lys	CTT Leu	CTA Leu 155	GCT Ala	ATG Met	GAA Glu	CAG Gln	ATG Met 160	480
30	CTC Leu	AAA Lys	CAG Gln	CAC His	CCC Pro 165	AAG Lys	TGG Trp	CAA Gln	GGG Gly	CAG Gln 170	GCT Ala	GTG Val	TTG Leu	GTC Val	CAG Gln 175	ATT Ile	528
35	GCA Ala	AAT Asn	CCT Pro	ACG Thr 180	AGG Arg	GGT Gly	AAA Lys	GGA Gly	GTA Val 185	GAT Asp	TTT Phe	GAG Glu	GAA Glu	ATA Ile 190	CAG Gln	GCT Ala	576
40	GAG Glu	ATA Ile	TCG Ser 195	GAA Glu	AGC Ser	TGT Cys	AAG Lys	AGA Arg 200	ATC Ile	AAT Asn	AAG Lys	CAA Gln	TTC Phe 205	GGC Gly	AAG Lys	CCT Pro	624
	GGA Gly	TAT Tyr 210	GAG Glu	CCT Pro	ATA Ile	GTT Val	TAT Tyr 215	ATT Ile	GAT Asp	AGG Arg	CCC Pro	GTG Val 220	TCA Ser	AGC Ser	AGT Ser	GAA Glu	672
45	CGC Arg 225	ATG Met	GCA Ala	TAT Tyr	TAC Tyr	AGT Ser 230	ATT Ile	GCA Ala	GAA Glu	Суз	GTT Val 235	GTT Val	GTC Val	ACG Thr	GCT Ala	GTG Val 240	720
50						TTC Phe		TC									743

(2)	INFORMATION	FOR	SEO	ID	NO:	11:
-----	-------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 247 amino acids
- (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
 - Asp Val Met Trp Met His Asp Tyr His Leu Met Val Leu Pro Thr Phe 1 5 10 15
- 15 Leu Arg Arg Arg Phe Asn Arg Leu Arg Met Gly Phe Phe Leu His Ser 20 25 30
- Pro Phe Pro Ser Ser Glu Ile Tyr Arg Thr Leu Pro Val Arg Glu Glu 35 40 45
- Ile Leu Lys Ala Leu Leu Cys Ala Asp Ile Val Gly Phe His Thr Phe
 50 55 60
- Asp Tyr Ala Arg His Phe Leu Ser Cys Cys Ser Arg Met Leu Gly Leu 25 65 70 75 80
 - Glu Tyr Gln Ser Lys Arg Gly Tyr Ile Gly Leu Glu Tyr Tyr Gly Arg 85 90 95
- 30 Thr Val Gly Ile Lys Ile Met Pro Val Gly Ile His Met Gly His Ile 100 105 110
- Glu Ser Met Lys Lys Leu Ala Ala Lys Glu Leu Met Leu Lys Ala Leu 115 120 125
 - Lys Gln Gln Phe Glu Gly Lys Thr Val Leu Leu Gly Ala Asp Asp Leu 130 135 140
- Asp Ile Phe Lys Gly Ile Asn Leu Lys Leu Leu Ala Met Glu Gln Met 40 145 150 155 160
 - Leu Lys Gln His Pro Lys Trp Gln Gly Gln Ala Val Leu Val Gln Ile 165 170 175
- 45 Ala Asn Pro Thr Arg Gly Lys Gly Val Asp Phe Glu Glu Ile Gln Ala 180 185 185
- Glu Ile Ser Glu Ser Cys Lys Arg Ile Asn Lys Gln Phe Gly Lys Pro 195 200 205
 - Gly Tyr Glu Pro Ile Val Tyr Ile Asp Arg Pro Val Ser Ser Ser Glu 210 215 220
- Arg Met Ala Tyr Tyr Ser Ile Ala Glu Cys Val Val Val Thr Ala Val
 55 225 230 235 240

Ser Asp Gly Met Asn Phe Val 245

-	(2) IN	FORMA	TION	FOR	SEQ	ID N	10: 1	.2:								
5	(:	i) SE	QUENC A) LI						i							
			B) T													
10			C) Si D) T()Ie								
	(i:	L) MO	LECUI	LE TY	PE:	cDN#	k to	mRNA								
1.5	(ii:	i) HY	РОТНІ	ETICA	L: N	10										
15	(ii	i) AN	TI-SI	ENSE:	NO											
	(v:	i) OR	IGINA A) OI						hacu							
20		(B) S: F) T:	TRAIN	1: Sa	msur	n NN	ia ce	Daci	ziti						
	(i:	c) FE	ATURI	E:												
25			A) NA B) Lo				195									
23			D) 01					/pa	artia	1						
	(x.	i) SE	QUEN	CE DE	SCR	PTIC	ON: S	SEQ I	D NC): 12	2:					
30	GCG AA	A CCG	GTG	ATG	AAA	СТТ	TAC	AGG	GAA	GCA	ACT	GAC	GGA	TCA	TAT	48
	Ala Ly	s Pro	Val	Met 5	Lys	Leu	Tyr	Arg	Glu 10	Ala	Thr	Asp	Gly	Ser 15	Tyr	
				_		~~-					63.m	0.N.M.	C N M		CNC	96
35	ATA GA	a ACT u Thr	AAA Lys	GAG	AGT Ser	GCA Ala	Leu	Val	Trp	His	His	His	Asp	Ala	Asp	36
			20					25					30			
	CCT GA	C TTT	GGC	TCC	TGC	CAG	GCA	AAG	GAA	TTG	TTG	GAT	CAT	TTG	GAA	144
40	Pro As	P Pne 35		ser	cys	GIN	40	Lys	GIU	neu	beu	45	nis	Deu	GIU	
	AGC GT	A CTT	GCA	AAT	GAA	ССТ	GÇA	GTT	GTT	AAG	AGG	GGC	CAA	CAT	ATT	192
	Ser Va		Ala	Asn	Glu	Pro 55	Ala	Val	Val	Lys	Arg 60	Gly	Gln	His	Ile	
45						000				CCA	mm v	C-mm	mc a	GNG	מממ	240
	GTT GA Val Gl	a Gre u Val	AAG Lys	Pro	Gln	Gly	Val	Thr	Lys	Gly	Leu	Val	Ser	Glu	Lys	240
	65				70					75					80	
50	GTT CT Val Le	C TCG	ATG	ATG	GTT	GAT	AGT	GGG	AAA	CCG	CCC	GAT	TTT	GTT Val	ATG Met	288
	var ne	a Set	wet	85	Val	лэр	261	GLY	90					95		
	TGC AT	T GGA	GAT	GAT	AGG	TCA	GAC	GAA	GAC	ATG	TTT	GAG	AGC	ATA	TTA	336
55	Cys Il	e Gly	Asp 100		Arg	Ser	Asp	Glu 105	Asp	Met	Phe	Glu	Ser 110	Ile	Leu	

91

AGC ACC GTA TCC AGT CTG TCA GTC ACT GCT GCC CCT GAT GTC TTT GCC

Ser Thr Val Ser Ser Leu Ser Val Thr Ala Ala Pro Asp Val Phe Ala

115 120 125

5 TGC ACC GTC GG
Cys Thr Val
130

- 10 (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 amino acids
 - (B) TYPE: amino acid
- 15 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Ala Lys Pro Val Met Lys Leu Tyr Arg Glu Ala Thr Asp Gly Ser Tyr

Ile Glu Thr Lys Glu Ser Ala Leu Val Trp His His His Asp Ala Asp
25 20 25 30

Pro Asp Phe Gly Ser Cys Gln Ala Lys Glu Leu Leu Asp His Leu Glu 35 40 45

30 Ser Val Leu Ala Asn Glu Pro Ala Val Val Lys Arg Gly Gln His Ile 50 55 60

Val Glu Val Lys Pro Gln Gly Val Thr Lys Gly Leu Val Ser Glu Lys
65 70 75 80

Val Leu Ser Met Met Val Asp Ser Gly Lys Pro Pro Asp Phe Val Met 85 90 95

Cys Ile Gly Asp Asp Arg Ser Asp Glu Asp Met Phe Glu Ser Ile Leu 40 100 105 110

Ser Thr Val Ser Ser Leu Ser Val Thr Ala Ala Pro Asp Val Phe Ala 115 120 125

45 Cys Thr Val

35

- (2) INFORMATION FOR SEQ ID NO: 14:
- 50 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 491 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA

	(ii	i) HY	РОТН	ETIC	AL: 1	ON								
	(ii	i) AN	TI-S	ENSE	: NO									
5	(v	(IGIN A) O B) S F) T	RGAN: TRAII	ISM: N: Sa	Nico amsur	n NN	na ta	abacı	um				
10	(i:	(ATUR A) NA B) Lo D) O'	AME/I	ION:	14		: /pa	artia	al				
15	(xi) SEQ	UENC	E DES	SCRI	PTIO	1: SI	EQ II	ОИО	: 14	:			
20	GGG CTG Gly Le													48
20	GAA TG													96
25	GCT GAG													144
30	ATT GA	qeA u												192
35	CCT GAPPRO Asp													240
40	AGT GT. Ser Va													288
4 .0	GTG GA													336
45	CTG CT Leu Le		Ala		Gln		Lys	Gly	Met	Ser	Pro	Asp		384
50	TGC AT.	e Gly												432
55	AGC TC Ser Se 145													480

30

50

TGC ACC GTC GG Cys Thr Val

491

5 (2) INFORMATION FOR SEO ID	NO.	15.
------------------------------	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
- 10 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Gly Leu Ser Ala Glu His Gly Tyr Phe Leu Arg Thr Ser Gln Asp Glu 1 5 10 15

Glu Trp Glu Thr Cys Val Pro Pro Val Glu Cys Cys Trp Lys Glu Ile 20 25 30

Ala Glu Pro Val Met Gln Leu Tyr Thr Glu Thr Thr Asp Gly Ser Val 35 40

25 Ile Glu Asp Lys Glu Thr Ser Met Val Trp Ser Tyr Glu Asp Ala Asp 50 55 60

Pro Asp Phe Gly Ser Cys Gln Ala Lys Glu Leu Leu Asp His Leu Glu 65 70 75 80

Ser Val Leu Ala Asn Glu Pro Val Thr Val Arg Ser Gly Gln Asn Ile 85 90 95

Val Glu Val Lys Pro Gln Gly Val Ser Lys Gly Leu Val Ala Lys Arg
100 105 110

40 Cys Ile Gly Asp Asp Arg Ser Asp Glu Asp Met Phe Glu Val Ile Met 130 140

Ser Ser Met Ser Gly Pro Ser Met Ala Pro Thr Ala Glu Val Phe Ala 145 150 155 160

Cys Thr Val

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 361 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 55 (D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
5	(iii) ANTI-SENSE: NO	
10	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nicotiana tabacum (B) STRAIN: Samsun NN (F) TISSUE TYPE: Leaf</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
15	TTTGATTATG ATGGGACGCT GCTGTCGGAG GAGAGTGTGG ACAAAACCCC GAGTGAAGAT	60
13	GACATCTCAA TTCTGAATGG TTTATGCAGT GATCCAAAGA ACGTAGTCTT TATCGTGAGT	120
	GGCAGAGGAA AGGATACACT TAGCAAGTGG TTCTCTCCGT GTCCGAGACT CGGCCTATCA	180
20	GCAGAACATG GATATTTCAC TAGGTGGAGT AAGGATTCCG AGTGGGAATC TCGTCCATAG	240
	CTGCAGACCT TGACTGGAAA AAAATAGTGT TGCCTATTAT GGAGCGCTAC ACAGAGCACA	300
25	GATGGTTCGT CGATAGAACA GAAGGAAACC TCGTGTTGGC TCATCAAATG CTGGCCCCGA	360
45	A	361
	(2) INFORMATION FOR SEQ ID NO: 17:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 118 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
40	(iii) ANTI-SENSE: NO	
4.5	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nicotiana tabacum (B) STRAIN: Samsun NN</pre>	
45	(F) TISSUE TYPE: Leaf	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
50	GGAAACCCAC AGGATGTAAG CAAAGTTTTA GTTTTTGAGA TCTCTTGGCA TCAAGCAAAG	60
	TAGAGGGAAG TCACCCGATT CGTGCTGTGC GTAGGGATGA CAGATCGGAC GACTTAGA	118

	(2) INFORMATION FOR SEQ ID NO: 18:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 417 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE:(A) ORGANISM: Nicotiana tabacum(B) STRAIN: Samsun NN(F) TISSUE TYPE: Leaf	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	TTGTGGCCGA TGTTCCACTA CATGTTGCCG TTCTCACCTG ACCATGGAGG CCGCTTTGAT	6
25	CGCTCTATGT GGGAAGCATA TGTTTCTGCC AACAAGTTGT TTTCACAAAA AGTAGTTGAG	12
	GTTCTTAATC CTGAGGATGA CTTTGTCTGG ATTCATGATT ATCATTTGAT GGTGTTGCCA	18
	ACGTTCTTGA GGAGGCGGTT CAATCGTTTG AGAATGGGGT TTTTCCTTCA CAGTCCATTC	240
30	CTTCATCTGA GATTTACAGG ACACTTCCTG TTAGAGAGGA AATACTCAAG GCTTTGCTCT	300
	GTGCTGACAT TGTTGGATTC CACACTTTTG ACTACGCGAG ACACTTCCTC TCTTGTTGCA	360
35	GTCGATTTTG GGTAGAGTAC AGTCTAAAAA AAGTTATATT GGGTTAAAAT ACTATGG	417
	(2) INFORMATION FOR SEQ ID NO: 19:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
50	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nicotiana tabacum (B) STRAIN: Samsun NN (F) TISSUE TYPE: Leaf</pre>	

_	/
ر	_

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	GGGTCATATT GATCCATGAA GAAATTGCAG CGAAAGAGTG ATGCTTTAAT GCGTAAAGCA	60
5	GCAATTTGAA GGGAAAACTG TGTTGTTAGG TGCCGATGAC CTGGATATTT TCAAAGGTAT	120
	GAACTTAAAG CTTCTAGCTA TGGAACAGAT GCTCAAACAT CACCCCAAGT GGCAAGGGCA	180
	GGCTGTGTTG GTCCAAGATT GCAAATCCTA CGAGGGGTAA AGGAGTAGAT TTTGACGAAA	240
10	TACGGCTGAG ACATCGGAAA GCTGTAAGAG AATCAATAAG CAATTCGGCA AGCCTGGATA	300
	TGAGCCTATA GTTTATATTG ATAGGCCCGT GTCAAGCAGT GAACGCATGG CATATTACAG	360
15	TATTGCAGGA TGTGTTGTGG TCACGCTGTG AGCGATGGCA TGAATCTGTT C	411
	(2) INFORMATION FOR SEQ ID NO: 20:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 405 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
30	(iii) ANTI-SENSE: NO	
,,,	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nicotiana tabacum (B) STRAIN: Samsun NN</pre>	
35	(F) TISSUE TYPE: Leaf	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	TGGGGTGGTT CCTGCATACG CCGTTTCCTT CTTCTGAGAT ATATAAAACT TTGCCTATTC	60
40	GCGAAAGATC TTACAGCTCT CTTGAATTCA ATTTGATTGG GTTCCACACT TTTGACTATG	120
	CAGGCACTTC CTCTCGTGTT GCAGTCGGAT GTTAGGTATT TCTTATGATC AAAAAGGGGT	180
45	TACATAGGCC TCGATATTAT GGCAGGACTG TAATATAAAA ATTCTGCCAG CGGGTATTCA	240
• •	TATGGGGCAG CTTCAGCAAG TCTTGAGTCT TCCTGAAACG GAGGCAAAAT CTCGGAACTC	300
	GTGCAGCATT TAATCATCAG GGGGAGGACA TTGTTGCTGG GATTGATGAC TGGACATATT	360

405

50 TAAAGGCTCA TTTGAATTTA TTACCATGGA ACAACTCTAT TGCAC

	(2) INFORMATION FOR SEQ ID NO: 21:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 427 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE:(A) ORGANISM: Nicotiana tabacum(B) STRAIN: Samsun NN(F) TISSUE TYPE: Leaf	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	ATCATATGGG GCAGCTTCAG CAATCTTGAT CTTCCTGAAA CGGAGGCAAA AGTCTTCGGA	6(
25	ACTCGGCAGC AGTTTAATCA TCAGGGGAGG ACATTGTTGC TGGGAGTTGA TGACATGGAC	120
	ATATTTAAAG GCATCAGTTT GAAGTTATTA GCAATGGAAC AACTTCTATT GCAGCACCCG	180
	GAGAAGCAGG GGAAGGTTGT TTTGGTGCAG ATAGCCAATC CTGCTAGAGG CAAAGGAAAA	240
30	GATGTCAAAG AAGTGCAGGA AGAAACTCAT TGACGGTGAA GCGAATTAAT GAAGCATTTG	300
	GAAGACCTGG GTACGAACCA GTTATCTTGA TTGATAAGCC ACTAAAGTTT TATGAAAGGA	360
35	TTGCTTATTA TGTTGTTGCA GAGTGTTGCC TAGTCACTGC TGTCAGCGAT GGCATGAACC	420
	TCGTCTC	427
	(2) INFORMATION FOR SEQ ID NO: 22:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 315 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA to mRNA . (iii) HYPOTHETICAL: NO	
50	(iii) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Nicotiana tabacum (B) STRAIN: Samsun NN</pre>	
55	(F) TISSUE TYPE: Leaf	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	GATGTGGATG CATGACTACC AATCCAAGAG GGGGTATATT GGTCTTGACT ATTATGGTAA	60
5	ACTGTGACCA TTAAAATCCT TCCAGTTGGT ATTCACATGG GACAACTCCA AAATGTTATG	120
	TCACTACAGA CACGGGAAAG AAAGCAAAGG AGTTGAAAGA AAAATATGAG GGGAAAATTG	180
10	TGATGTTAGG TATTGATGAT ATGGACATGT TTAAAGGAAT TGGTCTAAAG TTTCTGGCAA	240
10	TGGGGAGGCT TCTAGATGAA AACCCTGTCT TGAGGGGTAA AGTGGTATTG GTTCAATCAC	300
	CAGGCCTGGA AATTA	315
15	(2) INFORMATION FOR SEQ ID NO: 23:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 352 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA	
25	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: Nicotiana tabacum (B) STRAIN: Samsun NN (F) TISSUE TYPE: Leaf	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
,,	AGAAGTAAAG GGAGTGAGTC CCCGAGGTTC AAAAAGAGGT CAACAGAATT GCAGTGAAAT	60
	TAATAAAAA TATGGCAAAC CGGGGTACAA GCCGATTGTT TGTATCAATG GTCCAGTTTC	120
40	GACACAAGAC AAGATTGCAC ATTATGCGGT CTTGAGTGTG TTGTTGTTAA TGCTGTTAGA	180
	GATGGGATGA ACTTGGTGCC TTATGAGTAT ACGGTCTTTA GGCAGGGCAG	240
45	GATAAGGCCT TGCAGCTAGA TGGTCCTACT GCTTCCAGAA AGAGTGTGAT TATTGTCTTG	300
	AATTCGTTGG GTGCTCGCCA TCTTTAGTGG CGCCATCCGC GTCAACCCCT GG	352
	(2) INFORMATION FOR SEQ ID NO: 24:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2640 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55		

(ii) MOLECULE TYPE: cDNA to mRNA

	(111) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
5	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Helianthus annuus (F) TISSUE TYPE: Leaf</pre>	
10	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1712508	
15	<pre>(ix) FEATURE: (A) NAME/KEY: unsure (B) LOCATION: replace(21412151, "ccatnnntta")</pre>	
20	<pre>(ix) FEATURE: (A) NAME/KEY: unsure (B) LOCATION: replace(22372243, "actnaaa")</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	GGATCCTGCG GTTTCATCAC ACAATATGAT ACTGTTACAT CTGATGCCCC TTCAGATGTC	6
25	CCAAATAGGT TGATTGTCGT ATCGAATCAG TTACCCATAA TCGCTAGGCT AAGACTAACG	12
30	ACAATGGAGG GTCCTTTTGG GATTTCACTT GGGACGAGAG TTCGATTTAC ATG CAC Met His	176
30	ATC AAA GAT GCA TTA CCC GCA GCC GTT GAG GTT TTC TAT GTT GGC GCA Ile Lys Asp Ala Leu Pro Ala Ala Val Glu Val Phe Tyr Val Gly Ala 5 10 15	224
35	CTA AGG GCT GAC GTT GGC CCT ACC GAA CAA GAT GAC GTG TCA AAG ACA Leu Arg Ala Asp Val Gly Pro Thr Glu Gln Asp Asp Val Ser Lys Thr 20 25 30	272
40	TTG CTC GAT AGG TTT AAT TGC GTT GCG GTT TTT GTC CCT ACT TCA AAA Leu Leu Asp Arg Phe Asn Cys Val Ala Val Phe Val Pro Thr Ser Lys 35 40 45 50	320
45	TGG GAC CAA TAT TAT CAC TGC TTT TGT AAG CAG TAT TTG TGG CCG ATA TTP ASP Gln Tyr Tyr His Cys Phe Cys Lys Gln Tyr Leu Trp Pro Ile 55 60 65	368
50	TTT CAT TAC AAG GTT CCC GCT TCT GAC GTC AAG AGT GTC CCG AAT AGT Phe His Tyr Lys Val Pro Ala Ser Asp Val Lys Ser Val Pro Asn Ser 70 75 80	416
	CGG GAT TCA TGG AAC GCT TAT GTT CAC GTG AAC AAA GAG TTT TCC CAG Arg Asp Ser Trp Asn Ala Tyr Val His Val Asn Lys Glu Phe Ser Gln 85 90 95	464

		GTG Val 100															512
5		TAC Tyr															560
10		TTT Phe															608
15		TAC Tyr															656
20		GCT Ala															704
		ACG Thr 180															752
25		TAC Tyr												_			800
30		GCG Ala															848
35		GAT Asp															896
40		ATC Ile															944
		TTC Phe 260															992
45	TGG Trp 275	CAA Gln	GGG Gly	CGT Arg	Val	GTT Val 280	Leu	GTG Val	CAA Gln	ATC Ile	TTG Leu 285	AAT Asn	CCC	GCT Ala	CGC Arg	GCG Ala 290	1040
50	CGT Arg	TGC Cys	CAA Gln	GAC Asp	GTC Val 295	Asp	GAG Glu	ATC Ile	AAT Asn	GCC Ala 300	GAG Glu	ATA Ile	AGA Arg	ACA Thr	GTC Val 305	TGT Cys	1088
55	GAA Glu	AGA Arg	ATC Ile	AAT Asn 310	AAC Asn	GAA Glu	CTG Leu	GGA Gly	AGC Ser 315	CCG Pro	GGA Gly	TAC Tyr	CAG Gln	CCC Pro 320	GTT Val	GTG Val	1136

	TT Le	A AT u Il	T GA e As 32	D GT	G CC y Pr	C GTT o Val	TC(TT. Lei 33	u Se	T GA.	A AA u Lys	A GC	r GC: a Ala 335	Ty:	г та	T GCT r Ala	1184
5	11,	34	a As	p me	C Ala	a lle	345	L Thi	r Pro) Le	u Arg	350	o Gly)	Met	Ası	r CTT	1232
10	116 35	e FI	G TA	C GAO	G TAC	C GTC Val 360	Val	TCC Sei	C CGA	A CAI	A AGT n Ser 365	· Val	TAA T . Asn	' GAC	CC	A AAT Asn 370	1280
15	PIC) ASI	ı Tnı	rPro	375	Lys ;	Ser	Met	: Leu	380	. Val	. Ser	Glu	Phe	385		1328
20	Cys	, se.	. Let	390) Leu	l Thr	Gly	Ala	395	Arg	Val	Asn	Pro	Trp 400	Asp	GAG Glu	1376
25	Dec	GIC	405	Ala	i GIU	Ala	Leu	Tyr 410	Asp	Ala	Leu	Met	Ala 415	Pro	Asp	GAC Asp	1424
25	1112	420	GIU	Thr	Ala	His	Met 425	Lys	Gln	Tyr	Gln	Tyr 430	Ile	Ile	Ser		1472
30	435	VAI	Ala	ASN	Trp	GCT Ala 440	Arg	Ser	Phe	Phe	Gln 445	Asp	Leu	G1u	Gln	Ala 450	1520
35	cys	TIE	ASP	нış	455	Arg	Lys	Arg	Cys	Met 460	Asn	Leu	Gly	Phe	Gly 465		1568
40	nsp	THE	Arg	470	Val	CTT Leu	Phe	Asp	Glu 475	Lys	Phe	Ser	Lys	Leu 480	Asp	Ile	1616
45	ഹാവ	vai	485	GIU	Asn	GCT Ala	Tyr	Ser 490	Met	Ala	Gln	Asn	Arg . 495	Ala	Ile	Leu	1664
4.5		500	ıyı	Asp	GIĀ		Val 505	Thr	Pro	Ser	Ile	Ser 510	Lys :	Ser	Pro	Thr	1712
50	515	AIG	Val	116	ser	ATG A Met : 520	Ile .	Asn	Lys	Leu	Cys . 525	Asn .	Asp 1	Pro	Lys	Asn 530	1760
55	ATG Met	GTG Val	TTC Phe	TTG	GTT . Val 535	AGT (Ser (SGA (CGC Arg	Ser 2	AGA Arg 540	GAA A	AAT (Asn)	CTT (Leu (ly:	AGT Ser 545	TGG Trp	1808

			GCG Ala														1856
5	ATA Ile	AGG Arg	TGG Trp 565	GCG Ala	GGT Gly	GAT Asp	CAA Gln	GAA Glu 570	TGG Trp	GAA Glu	ACG Thr	TGC Cys	GCA Ala 575	CGT Arg	GAG Glu	AAT Asn	1904
10	AAT Asn	GTC Val 580	GGG Gly	TGG Trp	ATG Met	GAA Glu	ATG Met 585	GCT Ala	GAG Glu	CCG Pro	GTT Val	ATG Met 590	AAT Asn	CTT Leu	TAT Tyr	ACA Thr	1952
15	Glu 595	Thr	ACT Thr	Asp	Gly	Ser 600	Tyr	Ile	Glu	Lys	Lys 605	Glu	Thr	Ala	Met	Val 610	2000
20	TGG Trp	CAC His	TAT Tyr	GAA Glu	GAT Asp 615	GCT Ala	GAT Asp	AAA Lys	GAT Asp	CTT Leu 620	GGG Gly	TTG Leu	GAG Glu	CAG Gln	GCT Ala 625	AAG Lys	2048
	GAA Glu	CTG Leu	TTG Leu	GAC Asp 630	CAT His	CTT Leu	GAA Glu	AAC Asn	GTG Val 635	CTC	GCT Ala	AAT Asn	GAG Glu	CCC Pro 640	GTT Val	GAA Glu	2096
25		Lys	Arg 645	Gly	Gln	Tyr	Ile	Val 650	Glu	Val	Lys	Pro	Gln 655	Val	Pro	His	2144
30	Gly	Leu 660	CCT Pro	Ser	Суѕ	Туг	Asp 665	Ile	His	Arg	His	Arg 670	Phe	Val	Glu	Ser	2192
35	Phe 675	Asn	TTA Leu	Asn	Phe	Phe 680	Lys	Tyr	Glu	Cys	Asn 685	Tyr	Arg	Gly	Ser	Leu 690	2240
40	Lys	Gly	ATA Ile	Val	Ala 695	Glu	Lys	Ile	Phe	Ala 700	Phe	Met	Ala	Glu	Lys 705	Gly	2288
	AAA Lys	CAG Gln	GCT Ala	GAT Asp 710	Phe	GTG Val	TTG Leu	AGC Ser	GTT Val 715	Gly	GAT Asp	GAT Asp	AGA Arg	AGT Ser 720	GAT Asp	GAA Glu	2336
45	GAC Asp	ATG Met	TTT Phe 725	Val	GCC	ATT	GGG Gly	GAT Asp 730	Gly	ATA Ile	AAA Lys	AAG Lys	GGT Gly 735	Arg	ATA Ile	ACT Thr	2384
50	AAC Asn	AAC Asn 740	Asn	TCA Ser	GTG Val	TTT Phe	ACA Thr 745	Cys	GTA Val	GTG Val	GGA Gly	GAG Glu 750	. Lys	CCG Pro	AGT Ser	GCA Ala	2432
. 55	Ala	Glu	TAC Tyr	TTT	TTA Leu	GAC Asp 760	Glu	ACG Thr	AAA Lys	GAT Asp	765	. Ser	ATC Met	ATG Met	CTC Leu	GAG Glu 770	2480

103 AAG CTC GGG TGT CTC AGC AAC CAA GGA T GATGATCCGG AAGCTTCTCG 2528 Lys Leu Gly Cys Leu Ser Asn Gln Gly 775 5 TGATCTTTAT GAGTTAAAAG TTTTCGACTT TTTCTTCATC AAGATTCATG GGAAAGTTGT 2588 TCAATATGAA CTTGTGTTTC TTGGTTCTGG ATTTTAGGGA GTCTATGGAT CC 2640 10 (2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 779 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25: Met His Ile Lys Asp Ala Leu Pro Ala Ala Val Glu Val Phe Tyr Val Gly Ala Leu Arg Ala Asp Val Gly Pro Thr Glu Gln Asp Asp Val Ser Lys Thr Leu Leu Asp Arg Phe Asn Cys Val Ala Val Phe Val Pro Thr

30 Ser Lys Trp Asp Gln Tyr Tyr His Cys Phe Cys Lys Gln Tyr Leu Trp
50 55 60

Pro Ile Phe His Tyr Lys Val Pro Ala Ser Asp Val Lys Ser Val Pro 65 70 75 80

Asn Ser Arg Asp Ser Trp Asn Ala Tyr Val His Val Asn Lys Glu Phe 85 90

Ser Gln Lys Val Met Glu Ala Val Thr Asn Ala Ser Asn Tyr Val Trp 40 100 105 110

Ile His Asp Tyr His Leu Met Thr Leu Pro Thr Phe Leu Arg Arg Asp 115 120 125

45 Phe Cys Arg Phe Lys Ile Gly Phe Phe Leu His Ser Pro Phe Pro Ser 130 135 140

50

Ser Glu Val Tyr Lys Thr Leu Pro Met Arg Asn Glu Leu Leu Lys Gly 145 150 155 160

Leu Leu Asn Ala Asp Leu Ile Gly Phe His Thr Tyr Asp Tyr Ala Arg 165 170 175

His Phe Leu Thr Cys Cys Ser Arg Met Phe Gly Leu Asp His Gln Leu 55 180 180 185 195

PCT/EP97/02497

	Lys	Arg	Gly 195	Tyr	Ile	Phe		G1u 200	Tyr	Asn	Gly	Arg	Ser 205	Ile	Glu	Ile
5	Lys	11e 210	Lys	Ala	Ser		11e 215	His	Val	Gly	Arg	Met 220	Gl u	Ser	Tyr	Leu
	Ser 225	Gln	Pro	Asp	Thr	Arg 230	Leu	Gln	Val	Gln	Glu 235	Leu	Lys	Lys	Arg	Phe 240
.0	Glu	Gly	Lys	Ile	Val 245	Leu	Leu	Gly	Va1	Asp 250	Asp	Leu	Asp	Ile	Phe 255	Lys
	Gly	Val	Asn	Phe 260	Lys	Val	Leu	Ala	Leu 265	Glu	Lys	Leu	Leu	Lys 270	Ser	His
15	Pro	Ser	Trp 275	Gln	Gly	Arg	Val	Val 280	Leu	Val	Gln	Ile	Leu 285	Asn	Pro	Ala
20	Arg	Ala 290	Arg	Сув	Gln	Asp	Val 295	qzA	Glu	Ile	Asn	Ala 300	Glu	Ile	Arg	Thr
	Val 305	Cys	Glu	Arg	Ile	Asn 310	Asn	Glu	Leu	Gly	Ser 315	Pro	Gly	Tyr	Gln	Pro 320
25	Val	Val	Leu	Ile	Asp 325	Gly	Pro	Val	Ser	Leu 330	Ser	Glu	Lys	Ala	Ala 335	Туr
20	Tyr	Ala	Ile	Ala 340		Met	Ala	Ile	Val 345	Thr	Pro	Leu	Arg	Asp 350	Gly	Met
30	Asn	Leu	11e 355	Pro	туг	Glu	Tyr	Val 360	Val	Ser	Arg	Gln	Ser 365	Val	Asn	Asp
35	Pro	370		Asn	Thr	Pro	Lys 375	Lys	Ser	Met	Leu	Val 380	Val	Ser	Glu	Phe
	11e 385		Cys	s Ser	Leu	Ser 390		Thr	Gly	Ala	11e 395	Arg	Val	Asn	Pro	Trp 400
40	Asp	Gli	ı Lev	ı Glu	Thr 405		Glu	Ala	Lev	410	Asp	Ala	Leu	. Met	Ala 415	Pro
	Asp	Asp	His	420		Thr	Ala	His	Met 425	Lys	s Glr	Туг	Glr	430	· Ile	Ile
45	Se:	r Hi:	43!		l Ala	Asn	Trp	Ala 440	Arg	g Sei	r Phe	Phe	Glr 445	n Asp	Leu	Glu
50		n Ala		s Ile	e Asp	His	Ser 455	Arq	g Ly:	s Arg	g Cys	460	: Ası	n Let	ı Gly	r Phe
	G1;		u As	p Th:	r Arg	y Val 470	Val	l Le	u Ph	e As	p Gl: 47	ı Ly:	s Phe	e Se	r Lys	480
55	As	p Il	e As	p Va	l Le	ı Glu	ı Ası	n Al	а Ту	r Se	r Me	t Al	a Gl	n Ası	n Arg	a Ala 5

Ile Leu Leu Asp Tyr Asp Gly Thr Val Thr Pro Ser Ile Ser Lys Ser 505 Pro Thr Glu Ala Val Ile Ser Met Ile Asn Lys Leu Cys Asn Asp Pro 520 Lys Asn Met Val Phe Ile Val Ser Gly Arg Ser Arg Glu Asn Leu Gly Ser Trp Phe Gly Ala Cys Glu Lys Pro Ala Ile Ala Ala Glu His Gly Tyr Phe Ile Arg Trp Ala Gly Asp Gln Glu Trp Glu Thr Cys Ala Arg 565 15 Glu Asn Asn Val Gly Trp Met Glu Met Ala Glu Pro Val Met Asn Leu Tyr Thr Glu Thr Thr Asp Gly Ser Tyr Ile Glu Lys Lys Glu Thr Ala 20 600 Met Val Trp His Tyr Glu Asp Ala Asp Lys Asp Leu Gly Leu Glu Gln 615 Ala Lys Glu Leu Leu Asp His Leu Glu Asn Val Leu Ala Asn Glu Pro Val Glu Val Lys Arg Gly Gln Tyr Ile Val Glu Val Lys Pro Gln Val 30 Pro His Gly Leu Pro Ser Cys Tyr Asp Ile His Arg His Arg Phe Val 665 660 Glu Ser Phe Asn Leu Asn Phe Phe Lys Tyr Glu Cys Asn Tyr Arg Gly 35 680 Ser Leu Lys Gly Ile Val Ala Glu Lys Ile Phe Ala Phe Met Ala Glu 695 40 Lys Gly Lys Gln Ala Asp Phe Val Leu Ser Val Gly Asp Asp Arg Ser 705 Asp Glu Asp Met Phe Val Ala Ile Gly Asp Gly Ile Lys Lys Gly Arg 45 Ile Thr Asn Asn Asn Ser Val Phe Thr Cys Val Val Gly Glu Lys Pro Ser Ala Ala Glu Tyr Phe Leu Asp Glu Thr Lys Asp Val Ser Met Met 50 760 Leu Glu Lys Leu Gly Cys Leu Ser Asn Gln Gly

		(2)	INF	JKMA.	LION	FOR	SEQ	ו ענו	NO:	26:								
	5		(i	(1	QUENCA) LI B) T' C) S' D) T(engt: YPE : Iran:	H: 2: nuc: DEDNI	130 : leic ESS:	base acidoul	pai: d	rs							
	10		(ii)	MOI	LECUI	LE T	YPE:	CDN	A to	mRN	Α.							
	10		(iii	HY!	POTH	ETIC	AL: 1	NO										
			(iii)	AN'	ri-si	ENSE	: NO											
	15		(vi) OR:	IGINA A) O				iant	nus a	annuı	15						
	20		(ix	(1	ATURI A) NA B) L(O) Of	AME/I	ION:	171			artia	a l.						
			(xi)	SE(QUEN	CE DI	ESCR	PTIC	ои: :	SEQ :	ID NO): 20	5:					
	25	GGAT	rccto	GCG (GTTT(CATC	AC AC	CAAT	ATGA!	r AC	rgtti	ACAT	CTG	ATGC	ccc r	TTCA	GATGTC	60
		CCA	ATA	GT 7	rgat:	rgrco	GT A	rcga.	ATCAG	3 TT/	ACCC	AATA	TCG	CTAGO	GCT I	AAGA	CTAACG	120
	30	ACA	ATGG?	AGG (GTCC:	PTTT(GG GJ	ATTT(CACT!	r GG(GACG/	AGAG	TTC	GATT!		ATG (Met I 1		176
	35			GAT Asp 5													GCA Ala	224
				GCT Ala														272
	40	TTG	СТС	GAT	AGG	TTT	ААТ	TGC	GTT	GCG	GTT	ттт	GTC	CCT	ACT	TCA	AAA	320
		Leu 35	Leu	Asp	Arg	Phe	Asn 40	Сув	Val	Ala	Val	Phe 45	Val	Pro	Thr	Ser	Lys 50	
	45	TGG		CAA Gln														368
			,	0111	-,-	55	0	C , C		cyc	60	0111	-,-			65		
	50	TTT Phe		TAC Tyr														416
																	CAG	464
-	55	Arg	Asp	Ser 85		Asn	Ala	Tyr	Val 90	His	val	Asn	гÀЗ	95	hue	ser	Gln	

	AA Ly	G GT s Va 10	1 we	G GA t Gl	G GC	A GT a Va	A AC	r Ası	r GC:	r AG a Se	C AA r As	Т ТА n Ту 11	r Va	A TO	G AT	A CAT e His	512
5	GA As 11	D IA	C CA' r Hi:	T TT.	A ATO	G ACC	r Le	A CCC	G ACT	r TT	C TT e Le 12	u Ar	G CG g Ar	G GA g As	T TT P Ph	T TGT e Cys 130	560
10	CG Ar	T TT	r AA/ ∍ Lys	A ATO	GG(Gly 135	Phe	r TTT	CTC Leu	CAT His	AG0 Se1	Pro	G TT o Ph	T CC	r TC Se	C TC r Se 14	G GAG r Glu 5	608
15	GT'	Г ТА(l Туз	AAC Lys	3 ACC 3 Thr 150	Let	CCA Pro	A ATO	AGA Arg	AAC Asn 155	Glu	CTO	TTO Let	J AAG	G GG' G G1;	y Le	G TTA u Leu	656
20	ASI	1 ALC	165	Leu	. Il€	e Gly	' Phe	His 170	Thr	Tyr	Asp	Ty	175	Arq	y His	r TTT s Phe	704
	CTA Leu	Thr 180	Cys	TGT Cys	AGT Ser	CGA Arg	ATG Met 185	TTT Phe	GGT Gly	TTG Leu	GAT Asp	CAT His	Gln	TTC Lev	AAA Lys	A AGG B Arg	752
25	GGG Gly 195	TYL	ATT	TTC Phe	TTG Leu	GAA Glu 200	TAT	AAT Asn	GGA Gly	AGG Arg	AGC Ser 205	Ile	GAG Glu	ATC Ile	AAC Lys	ATA Ile 210	800
30	AAG Lys	GCG Ala	AGC Ser	GGG Gly	ATT Ile 215	CAT His	GTT Val	GGT Gly	CGA Arg	ATG Met 220	GAG Glu	TCG Ser	TAC Tyr	TTG Leu	AGT Ser 225	CAG Gln	848
35	CCC Pro	GAT Asp	ACA Thr	AGA Arg 230	TTA Leu	CAA Gln	GTT Val	CAA Gln	GAA Glu 235	CTA Leu	AAA Lys	AAA Lys	CGT Arg	TTC Phe 240	GAA Glu	GGG Gly	896
40	AAA Lys	ATC Ile	GTG Val 245	CTA Leu	CTT Leu	GGA Gly	GTT Val	GAT Asp 250	GAT Asp	TTG Leu	GAT Asp	ATA Ile	TTC Phe 255	AAA Lys	GGT Gly	GTG Val	944
	AAC Asn	TTC Phe 260	AAG Lys	GTT Val	TTA Leu	GCG Ala	TTG Leu 265	GAG Glu	AAG Lys	TTA Leu	CTT Leu	AAA Lys 270	TCA Ser	CAC His	CCG Pro	AGT Ser	992
45	TGG Trp 275	CAA Gln	GGG Gly	CGT Arg	vai	GTT Val 280	TTG Leu	GTG (CAA . Gln :	Ile	TTG Leu 285	AAT Asn	CCC Pro	GCT Ala	CGC Arg	GCG Ala 290	1040
50	CGT Arg	TGC Cys	CAA Gln	Asp	GTC Val 295	GAT Asp	GAG . Glu :	ATC A	Asn A	GCC (Ala (300	GAG Glu	ATA Ile	AGA Arg	ACA Thr	GTC Val 305	TGT Cys	1088
55	GAA Glu	AGA . Arg	TTE .	AAT A Asn 2	AAC (GAA (Glu :	CTG (Leu (Gly S	AGC C Ser I	ccg (GGA '	TAC Tyr	Gln	CCC Pro 320	GTT Val	GTG Val	1136

	TTA Leu	ATT	GAT Asp 325	GGG Gly	CCC Pro	GTT Val	TCG Ser	TTA Leu 330	AGT Ser	GAA Glu	AAA Lys	GCT Ala	GCT Ala 335	TAT Tyr	TAT Tyr	GCT Ala	1184
5	ATC Ile	GCC Ala 340	GAT Asp	ATG Met	GCA Ala	ATT Ile	GTT Val 345	ACA Thr	CCG Pro	TTA Leu	CGT Arg	GAC Asp 350	GGC Gly	ATG Met	AAT Asn	CTT Leu	1232
10		CCG Pro															1280
15		AAT Asn															1328
20	TGT Cys	TCA Ser	CTA Leu	TCT Ser 390	TTA Leu	ACC Thr	GGG Gly	GCC Ala	ATA Ile 395	CGG Arg	GTC Val	AAC Asn	CCA Pro	TGG Trp 400	GAT Asp	GAG Glu	1376
		GAG Glu															1424
25		AAA Lys 420															1472
30		GTA Val															1520
35		ATC Ile															1568
40		ACT Thr				•											1616
		GTC Val															1664
45		GAC Asp 500															1712
50		GCT Ala															1760
55		GTG Val															1808

										7							
	TTC Phe	GGC Gly	GCG Ala	TGT Cys 550	Glu	AAA Lys	Pro	GCC Ala	ATT Ile 555	Ala	GCT Ala	GAG Glu	CAC	GGA Gly 560	Tyr	TTT Phe	1856
5	ATA Ile	AGG Arg	TGG Trp 565	Ala	GGT Gly	GAT Asp	CAA Gln	GAA Glu 570	Trp	GAA Glu	ACG Thr	TGC Cys	GCA Ala 575	Arg	GAG Glu	AAT Asn	1904
10	AAT Asn	GTC Val 580	GGG	TGG Trp	ATG Met	GAA Glu	ATG Met 585	Ala	GAG Glu	CCG Pro	GTT Val	ATG Met 590	AAT Asn	CTT Leu	TAT Tyr	ACA Thr	1952
15	GAA Glu 595	ACT Thr	ACT Thr	GAC Asp	GGT Gly	TCG Ser 600	ТАТ Туг	ATT	GAA Glu	AAG Lys	AAA Lys 605	GAA Glu	ACT Thr	GCA Ala	ATG Met	GTT Val 610	2000
20	TGG Trp	CAC His	TAT Tyr	GAA Glu	GAT Asp 615	GCT Ala	GAT Asp	AAA Lys	GAT Asp	CTT Leu 620	GGG Gly	TTG Leu	GAG Glu	CAG Gln	GCT Ala 625	AAG Lys	2048
-	GAA Glu	CTG Leu	TTG Leu	GAC Asp 630	CAT His	CTT Leu	GAA Glu	AAC Asn	GTG Val 635	CTC	GCT Ala	AAT Asn	ĢAG Glu	CCC Pro 640	GTT Val	GAA Glu	2096
25	GTG Val	AAA Lys	CGA Arg 645	GGT Gly	CAA Gln	TAC Tyr	ATT Ile	GTA Val 650	GAA Glu	GTT Val	AAA Lys	С					2130
30	(2)	INFO	(i) S (A) (B)	EQUE	NCE NGTH	CHAR : 65	ACTE	ERIST	27: TICS: acid	ls							
35			MOL	ECUL		PE:	prot	ein	EQ I	D NO	. 27	•					
40	1	His	Ile	Lys	Asp 5	Ala	Leu	Pro	Ala .	Ala 10	Val	Glu			15		
45		Ala Thr		20					25					30			
50	Ser		35				lyr 1	40				Lys (45				
20	Pro 65		Phe I	dis '	Tyr I	Lys (70	55 /al :	Pro i	Ala S	Ser A	Asp 1	60 Val 1	ys S	Ser (/al E	Pro 80	
55	Asn :	Ser i	Arg A	Asp S	Ser 1	rp A	lsn i	Ala '	Tyr (/al	lis \	Jal A	sn I	ys C	Slu F 95	he	

	Ser	Gln	Lys	Val 100	Met	Glu	Ala	Val	Thr 105	Asn	Ala	Ser	Asn	Туг 110	Val	Trp
5	Ile	His	Asp 115	Tyr	His	Leu	Met	Thr 120	Leu	Pro	Thr	Phe	Leu 125	Arg	Arg	Asp
	Phe	Cys 130	Arg	Phe	Lys	Ile	Gly 135	Phe	Phe	Leu	His	Ser 140	Pro	Phe	Pro	Ser
10	Ser 145	Glu	Val	Tyr	Lys	Thr 150	Leu	Pro	Met	Arg	Asn 155	Glu	Leu	Leu	Lys	Gly 160
1.5	Leu	Leu	Asn	Ala	Asp 165	Leu	Ile	Gly	Phe	His 170	Thr	Tyr	Asp	Tyr	Ala 175	Arg
15	His	Phe	Leu	Thr 180	Cys	Cys	Ser	Arg	Met 185	Phe	Gly	Leu	Asp	His 190	Gln	Leu
20	Lys	Arg	Gly 195	Tyr	Ile	Phe	Leu	Glu 200	Tyr	Asn	Gly	Arg	Ser 205	Ile	Glu	Ile
	Lys	Ile 210	Lys	Ala	Ser	Gly	Ile 215	His	Val	Gly	Arg	Met 220	Glu	Ser	Tyr	Leu
25	Ser 225	Gln	Pro	Asp	Thr	Arg 230	Leu	Gln	Val	Gln	Glu 235	Leu	Lys	Lys	Arg	Phe 240
30	Glu	Gly	Lys	Ile	Val 245	Leu	Leu	Gly	Val	Asp 250	Asp	Leu	Asp	Ile	Phe 255	Lys
30	Gly	Val	Asn	Phe 260	Lys	Val	Leu	Ala	Leu 265	Glu	Lys	Leu	Leu	Lys 270	Ser	His
35	Pro	Ser	Trp 275	Gln	Gly	Arg	Val	Val 280	Leu	Val	Gln	Ile	Leu 285	Asn	Pro	Ala
	Arg	Ala 290	Arg	Cys	Gln	Asp	Val 295	Asp	Glu	Ile	Asn	Ala 300	Glu	Ile	Arg	Thr
40	Val 305		Glu	Arg	Ile	Asn 310	Asn	Glu	Leu	Gly	Ser 315	Pro	Gly	Tyr	Gln	Pro 320
45	Val	Val	Leu	Ile	Asp 325		Pro	Val	Ser	Leu 330		Glu	Lys	Ala	Ala 335	Tyr
40	Tyr ·	Ala	Ile	Ala 340		Met	Ala	Ile	Val 345		Pro	Leu	Arg	350	Gly	Met
50	Asn	Leu	11e 355		Туг	Glu	Tyr	Val 360		Ser	Arg	Gln	Ser 365	Val	Asn	Asp
	Pro	Asn 370		Asn	Thr	Pro	Lys 375		Ser	Met	Leu	Val 380	Val	. Ser	Glu	Phe
55	11e		Cys	Ser	Leu	Ser 390		Thr	Gly	/ Ala	11e 395	Arg	(Va)	. Asn	Pro	Trp 400

111

	Asp	Glu	Leu	Glu	Thr 405		Glu	Ala	Leu	Tyr 410		Ala	Leu	Met	Ala 415	Pro
5	Asp	Asp	His	Lys 420	Glu	Thr	Ala	His	Met 425		Gln	Tyr	Gln	Tyr 430		Ile
	Ser	His	Asp 435	Val	Ala	Asn	Trp	Ala 440		Ser	Phe	Phe	Gln 445		Leu	Glu
10	Gln	Ala 450	Суз	Ile	Asp	His	Ser 455	Arg	Lys	Arg	Cys	Met 460		Leu	Gly	Phe
15	Gly 465	Leu	Asp	Thr	Arg	Val 470	Val	Leu	Phe	Asp	Glu 475	Lys	Phe	Ser	Lys	Leu 480
	Asp	Ile	Asp	Val	Leu 485	Glu	Asn	Ala	Tyr	Ser 490	Met	Ala	Gln	Asn	Arg 495	Ala
20	Ile	Leu	Leu	Asp 500	Tyr	qzA	Gly	Thr	Val 505	Thr	Pro	Ser	Ile	Ser 510	Lys	Ser
	Pro	Thr	Glu 515	Ala	Val	Ile	Ser	Met 520	Ile	Asn	Lys	Leu	Cys 525	Asn	Asp	Pro
25	Lys	Asn 530	Met	Val	Phe	Ile	Val 535	Ser	Gly	Arg	Ser	Arg 540	Glu	Asn	Leu	Gly
30	Ser 545	Trp	Phe	Gly	Ala	Суs 550	Glu	Lys	Pro	Ala	Ile 555	Ala	Ala	Glu	His	Gly 560
	Tyr	Phe	Ile	Arg	Trp 565	Ala	Gly	Asp	Gln	Glu 570	Trp	Glu	Thr	Cys	λ la 575	Arg
35	Glu	Asn	Asn	Val 580	Gly	Trp	Met	Glu	Met 585	Ala	Glu	Pro	Val	Met 590	Asn	Leu
	Tyr	Thr	Glu 595	Thr	Thr	Asp	Gly	Ser 600	Tyr	Ile	Glu	Lys	Lys 605	Glu	Thr	Ala
40	Met	Val 610	Trp	His	Tyr	Glu	Asp 615	Ala	Asp	Lys	Asp	Leu 620	Gly	Leu	Glu	Gln
45	Ala 625	Lys	Glu	Leu	Leu	Asp 630	His	Leu	Glu	Asn	Val 635	Leu	Ala	Asn	Glu	Pro 640
	Val	Glu	Val	Lys	Arg 645	Gly	Gln	Tyr	Ile	Val 650	Glu	Val	Lys			
r 0	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	10: 2	8:							

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 390 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

- 55

		(ii)	MOI	LECUI	LE T	YPE:	CDN	A to	mRNA								
	(iii)	НУІ	отні	ETICA	AL: 1	10										
5	(iii)	ANT	rı-s ı	ENSE	NO :											
		(vi)				OURCE		iantl	nus a	เกกนเ	ıs						
10		(ix)	(Z	A) NA 3) LO	ME/I	KEY: ION: INFO	3	258 FION	: /pā	artia	al						
15	(xi)	SEQU	JENCE	E DES	SCRI	TIO	N: SI	EQ II	NO:	28:	:					
															CAG (Gln <i>l</i>		47
20															ATG Met 30		95
25	GTG Val														AAC Asn		143
30															GAG Glu		191
35								Val							CTC Leu		239
						GGA Gly 85	T G	ATGA'	TCCG	S AA	GCTT(CTCG	TGA'	PCTT'	TAT		288
40	GAGT	LAATT	AAG 1	r TT T	CGAC'	TT T	rrcr	TCAT	C AA	GATT	CATG	GGA	aagt'	TGT '	TCAA'	TATGAA	348
	CTTC	GTGT	rtc '	r t gg'	TTCT	GG A	PTTT	AGGG.	A GT	CTAT	GGAT	cc					390
45	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:	29:								
50	٠		() ()	A) Li B) T	ENGT YPE:		5 am no a										
30		(غ غ						tein									
							_	ON:		ID N	0: 2	9:					
55		,															

113

Ala Glu Lys Ile Phe Ala Phe Met Ala Glu Lys Gly Lys Gln Ala Asp Phe Val Leu Ser Val Gly Asp Asp Arg Ser Asp Glu Asp Met Phe Val Ala Ile Gly Asp Gly Ile Lys Lys Gly Arg Ile Thr Asn Asn Asn Ser 10 Val Phe Thr Cys Val Val Gly Glu Lys Pro Ser Ala Ala Glu Tyr Phe Leu Asp Glu Thr Lys Asp Val Ser Met Met Leu Glu Lys Leu Gly Cys 70 15 Leu Ser Asn Gln Gly (2) INFORMATION FOR SEQ ID NO: 30: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO 30 (iii) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30: 35 CCAIGGRTTI ACICKDATIG CICC 24 (2) INFORMATION FOR SEQ ID NO: 31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 45 (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31: ATHGTIGTIW SIAAYMRIYT ICC 23

	(2) INFORMATION FOR SEQ ID NO: 32:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
10	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	YTITGGCCIA TITTYCAYTA	20
20	(2) INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
30	(iii) HYPOTHETICAL: NO	
30	(iii) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
35	TGRTCIARIA RYTCYTTIGC	20
	(2) INFORMATION FOR SEQ ID NO: 34:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
50	(iii) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	TCRTCIGTRA ARTCRTCICC	20

ATIGCIAARC CIGTIATGAA

	(2) INFORMATION FOR SEQ ID NO: 35:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	TTYGAYTAYG AYGGIACIYT	20
20	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
7.0	(iii) HYPOTHETICAL: NO	
30	(iii) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
3 5	GGIYTIWBNG CIGARCAYGG	20
	(2) INFORMATION FOR SEQ ID NO: 37:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA	
	. (iii) HYPOTHETICAL: NO	
50	(iii) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO. 37:	

	(2) INFORMATION FOR SEQ ID NO: 38:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	CCIACIGTRC AIGCRAAIAC	20
20	(2) INFORMATION FOR SEQ ID NO: 39:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2982 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA to mRNA	
30	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
35	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana</pre>	
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 642982	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	ATAAACTTCC TCGCGGCCGC CAGTGTGAGT AATTTAGTTT TGGTTCTGTT TTGGTGTGAG	6
	CGT ATG CCT GGA AAT AAG TAC AAC TGC AGT TCT TCT CAT ATC CCA CTC Met Pro Gly Asn Lys Tyr Asn Cys Ser Ser His Ile Pro Leu	10
45	1 5 10 15	
	ICI CON NON COC CIC IIC IICII CIII IIII I	156
50	Ser Arg Thr Glu Arg Leu Leu Arg Asp Arg Glu Leu Arg Glu Lys Arg 20 25 30	
	ANG AGE ANE CON GET COT ANT CET ANT GRE OFF	204
	Lys Ser Asn Arg Ala Arg Asn Pro Asn Asp Val Ala Gly Ser Ser Glu 35 40 45	
55		

	AAC Asn	TCT Ser	GAG Glu 50		GAC Asp	TTG Leu	CG'	T TT.	u Gi	A GGʻ u Glʻ	T GAG Y Ası	C AGI p Ser	TCA Ser 60	Arg	CAC Glr	TAT Tyr	252
	5 GTT Val	GAA Glu 65	CAG Gln	TAC Tyr	TTG Leu	GAA Glu	GGC G1y 70	AT	r GC:	T GCT a Ala	r GCA a Ala	A ATG Met 75	Ala	CAC His	GAT Asp	GAT Asp	300
10	GCG Ala 80	TGT Cys	GAG Glu	AGG Arg	CAA Gln	GAA Glu 85	GTT Val	'AGG	F CCI	TAT Tyr	AAT Asn 90	AGG Arg	CAA Gln	CGA Arg	CTA Leu	CTT Leu 95	348
15	GTA Val	GTG Val	GCT Ala	AAC Asn	AGG Arg 100	CTC Leu	CCA Pro	GTT Val	TCT Ser	Pro 105	GTG Val	AGA Arg	AGA Arg	GGT Gly	GAA Glu 110	GAT Asp	396
20		TGG Trp	TCT Ser	CTT Leu 115	GAG Glu	ATC Ile	AGT Ser	GCT Ala	GGT Gly 120	GIA	CTA Leu	GTC Val	Ser	GCT Ala 125	CTC Leu	TTA Leu	444
			130	GIU	rne	GIU	AIG	Arg 135	Trp	Ile	Gly		Ala 140	Gly	Val	Asn	492
25	Val	145	p	314	val (gty (150	ьуѕ	Ala	Leu	Ser	Lys 155	Ala :	Leu .	Ala	Glu	540
30	AAG 1 Lys 1 160				1	165	rne	ren	Asp	Glu	Glu 170	Ile '	Val 9	dis (3ln	Tyr 1 7 5	588
35	TAT A			1	180	ani r	ren.	116	Leu	185	Pro .	Leu I	Phe F	lis 1	yr 1 .90	Leu	636
40	GGA C	_	1	.95	, Lu A	A de	rg 1	Leu :	A1a 200	Thr !	Thr A	Arg S	Ser P 2	he 0 05	ln S	Ser	684
	CAA T Gln P		CT G la A 10	CA T	AC A	AG A ys L	ys F	CA A Ala A 215	AAC (Asn (CAA / Gln N	ATG T	Phe A	CT G la A 20	AT G sp V	TT G	TA al	732
45		25		yr G	iu G.	2:	19 A	sp (/al \	/al T	rp C	уз Н 35	is A	sp T	yr H	is	780
50	CTT A' Leu Me 240	TG T	rc c	PT Co eu Pi	CT AZ ro Ly 24	12 C	GC C	TT A	'AG G	Lu T	AC A Yr A 50	AC AG	GT AJ er Ly	AG A'	et L	AA ys 55	828
55	GTT GO	GA TO	GG TT	TT CT ie Le 26	su Hi	AT AC	A C	CA T	he P	ro Se	CG T(er S	CT GA er Gl	AG A1 lu I1	'A C# .e Hi 27	s A	GG rg	876

		CTT Leu															924
5		GTT Val															972
10		ACT Thr 305															1020
15		Gly															1068
20		CGG Arg															1116
		GAA Glu													_	_	1164
25	Asp	CGT Arg	Leu 370	Asp	Met	Ile	Lys	Gly 375	Ile	Pro	Gln	Lys	Ile 380	Leu	Ala	Phe	1212
30		AAA Lys 385															1260
35	Leu 400	AAA Lys	Ile	Ala	Val	Pro 405	Thr	Arg	Pro	Asp	Val 410	Pro	Glu	Tyr	Gln	Thr 415	1308
40	Leu	ACA Thr	Ser	Gln	Val 420	His	Glu	lle	Val	Gly 425	Arg	Ile	Ile	Gly	Arg 430	Leu	1356
	Gly	ACA Thr	Leu	Thr 435	Ala	Val	Pro	Ile	His 440	His	Leu	Asp	Arg	Ser 445	Leu	Asp	1404
45	Phe		Ala 450	Leu	Суѕ	Ala	Leu	Туг 455	Ala	Val	Thr	Asp	Val 460	Ala	Leu	Val	1452
50	Thr	TCT Ser 465	Leu	Arg	Asp	Gly	Met 470	Asn	Leu	Val	Ser	Tyr 475	Glu	Phe	Val	Ala	1500
55	TGC Cys 480	CAA Gln	GAG Glu	GCC Ala	AAA Lys	AAG Lys 485	GGC Gly	GTC Val	CTC Leu	ATT	CTC Leu 490	Ser	GAA Glu	TTT Phe	GCA Ala	GGT Gly 495	1548

	GC'	r GCA	A CAC	TCT Ser	CTC Leu 500	Gly	GCT Ala	r GG/ a Gl ₃	A GCT / Ala	T AT:	e Le	T GTC	G AA' L Ası	r CC	r TGG Tri 510	G AAC D Asn	1596
5	ATC Ile	C ACA	A GAA c Glu	GT7 Val 515	l Ala	GCC Ala	TCC Ser	ATT	r GG# ∋ Gly 520	Glr Glr	A GCG	CTA a Leu	A AA(1 Asi	ATO Met 525	Thi	A GCT	1644
10	GAA Glu	A GAA	A AGA Arg 530	Glu	AAA Lys	AGA Arg	CAT His	CGC Arg 535	/ His	AA1	r TT	CAT His	CA1 His 540	Va)	Lys	ACT Thr	1692
15	CAC	ACT Thr 545	Ala	CAA Gln	GAA Glu	TGG Trp	GCT Ala 550	Glu	ACT Thr	TTT Phe	GTC Val	Ser 555	Glu	CTA Lev	AAT Asn	GAC Asp	1740
20	560	val	lle	Glu	Ala	Gln 565	Leu	Arg	Ile	Ser	Lys 570	Val	Pro	Pro	Glu	575	1788
	Pro	GIn	His	Asp	GCA Ala 580	Ile	Gln	Arg	Tyr	Ser 585	Lys	Ser	Asn	Asn	Arg 590	Leu	1836
25	reu	TIE	Leu	595	TTC Phe	Asn	Ala	Thr	Leu 600	Thr	Glu	Pro	Val	Asp 605	Asn	Gln	1884
30	GGG	AGA Arg	AGA Arg 610	GGT Gly	GAT Asp	CAA Gln	ATA Ile	AAG Lys 615	GAG Glu	ATG Met	GAT Asp	CTT Leu	AAT Asn 620	CTA Leu	CAC His	CCT Pro	1932
35	GAG Glu	CTT Leu 625	AAA Lys	GGG Gly	CCC Pro	TTA Leu	AAG Lys 630	GCA Ala	TTA Leu	TGC Cys	AGT Ser	GAT Asp 635	CCA Pro	AGT Ser	ACA Thr	ACC Thr	1980
40	ATA Ile 640	GTT Val	GTT Val	CTG Leu	AGC Ser	GGA Gly 645	AGC Ser	AGC Ser	AGA Arg	AGT Ser	GTT Val 650	TTG Leu	GAC Asp	AAA Lys	AAC Asn	TTT Phe 655	2028
	GGA Gly	GAG Glu	TAT Tyr	GAC Asp	ATG Met 660	TGG Trp	CTG Leu	GCA Ala	GCA Ala	GAA Glu 665	AAT Asn	GGG Gly	ATG Met	TTC Phe	CTA Leu 670	AGG Arg	2076
45	CTT Leu	ACG Thr	TAA neA	GGA Gly 675	GAG Glu	TGG Trp	Met	ACT Thr	Thr	ATG Met	CCA Pro	GAA Glu	CAC His	TTG Leu 685	AAC Asn	ATG Met	2124
50	GAA Glu	TGG Trp	GTT Val 690	GAT Asp	AGC (Ser '	GTA . Val	Lys	CAT His 695	GTT Val	TTC Phe	AAG Lys	Tyr	TTC Phe 700	ACT Thr	GAG Glu	AGA Arg	2172
55	Thr	CCC Pro 705	AGG Arg	TCA Ser	CAC !	Phe (GAA . Glu '	ACT Thr	CGC (GAT Asp	ACT Thr	TCG Ser 715	CTT Leu	ATT Ile	TGG Trp	AAC Asn	2220

		TAT Tyr									2268
5		CAC His									2316
10		GGA Gly									2364
15		GCA Ala 770									2412
20		ACA Thr									2460
		GAA Glu									2508
25		GCC Ala									2556
30	_	TCA Ser	_								2604
35		AGT Ser 850									2652
40		TCC Ser									2700
		AGC Ser			 	-					2748
45		GTG Val									2796
50		ACT Thr									2844
55		TGC Cys 930								TAA *	2892

2982

									121						
	TAT CO Tyr Pi 94	CC GA co Gl 15	G AC u Th	A GT r Va	G TC l Se	A AG r Se	er Gl	G TT	C Al	rg TA	A CC Pr 95	O As	AT AA sn Ly	NA AA 'S As	C TAT
5	TGT TT Cys Pi 960	TT GT ne Va	A AC 1 Th	A AA r Ly	A AG s Se 96	r Se	C CA	т та ѕ ту	C CA	G AC n Th	r Le	T TA			
10	(2) IN	IFORM.	ATIO	N FO	R SE	Q ID	NO:	40:							
15	15		(A) 1 (B) 5 (D) 5	LENG' PYPE POPOI	TH: S : am: LOGY:	973 ino d : lid		o aç	S: ids						
		i) MC							ו מז	NO ·	10.				
20	Met Pr 1				туг					r Sei		s Iļ	e Pro	Let	
25	Arg Th	r Glu	Arg 20	Leu	Leu	Arg	y Asp	Arç 25	g Glu	ı Let	ı Arç	g Gli	Lys 30		J Lys
	Ser Ası	n Arg 35	Ala	Arg	Asn	Pro	Asn 40	Asp	Val	. Ala	Gl7	Ser 45		Glu	ı Asn
30	Ser Glv 50	Asn	Asp	Leu	Arg	Leu 55	Glu	Gly	Asp	Ser	Ser 60		Gln	Tyr	Val
35	Glu Glr 65	ı Tyr	Leu	Glu	Gly 70	Ala	Ala	Ala	Ala	Met 75	Ala	His	qaA	Asp	Ala 80
	Cys Glu	Arg	Gln	Glu 85	Val	Arg	Pro	Tyr	Asn 90	Arg	Gln	Arg	Leu	Leu 95	
40	Val Ala	Asn	Arg 100	Leu	Pro	Val	Ser	Pro 105	Val	Arg	Arg	Gly	Glu 110	Asp	Ser
	Trp Ser	Leu 115	Glu	Ile	Ser	Ala	Gly 120	Gly	Leu	Val	Ser	Ala 125	Leu	Leu	Gly
45	Val Lys 130	Glu	Phe	Glu	Ala	Arg 135	Trp	Ile	Gly	Trp	Ala 140	Gly	Val	Asn	Val
50	Pro Asp 145	Glu	Val	Gly	Gln 150	Lys	Ala	Leu	Ser	Lys 155	Ala	Leu	Ala	Glu	Lys 160
	Arg Cys	Ile	Pro	Val 165	Phe	Leu	Asp	Glu	Glu 170	Ile	Val	His	Gln	Tyr 175	Tyr
55	Asn Gly	Tyr	Суs 180	Asn .	Asn	Ile	Leu	Trp 185	Pro	Leu	Phe	His	Туг 190	Leu	Gly

	Leu	Pro	Gln 195	Glu	Asp	Arg	Leu	Ala 200	Thr	Thr	Arg	Ser	Phe 205	Gln	Ser	Gln
5	Phe	Ala 210	Ala	Tyr	Lys	Lys	Ala 215	Asn	Gln	Met	Phe	Ala 220	Asp	Val	Val	Asn
	Glu 225	His	Tyr	Glu	Glu	Gly 230	Asp	Val	Val	Trp	Cys 235	His	Asp	Tyr	His	Leu 240
10	Met	Phe	Leu	Pro	Lys 245	Суз	Leu	Lys	Glu	Туг 250	Asn	Ser	Lys	Met	Lys 255	Val
15	Gly	Trp	Phe	Leu 260	His	Thr	Pro	Phe	Pro 265	Ser	Ser	Glu	Ile	His 270	Arg	Thr
	Leu	Pro	Ser 275	Arg	Ser	Glu	Leu	Leu 280	Arg	Ser	Val	Leu	Ala 285	Ala	Asp	Leu
20	Val	Gly 290	Phe	His	Thr	Туr	Asp 295	Tyr	Ala	Arg	His	Phe 300	Val	Ser	Ala	Cys
	Thr 305	Arg	Ile.	Leu	Gly	Leu 310	Glu	Gly	Thr	Pro	Glu 315	Gly	Val	Glu	Asp	Gln 320
25				Thr	325					330		_		Ī	335	-
30				Arg 340					345					350		
			355	Glu				360					365			
35		370		Met			375					380				
	385			Glu		390					395					400
40				Val	405					410					415	
45				Val 420					425					430		
	-		435	Ala				440					445			
50		450		Cys			455					460				
	465			Asp		470					475					480
55	Gln	Glu	Ala	Lys	Lys 485	Gly	Val	Leu	Ile	Leu 490	Ser	Glu	Phe	Ala	Gly 495	Ala

- Ala Gln Ser Leu Gly Ala Gly Ala Ile Leu Val Asn Pro Trp Asn Ile 500 505 510
- Thr Glu Val Ala Ala Ser Ile Gly Gln Ala Leu Asn Met Thr Ala Glu 5 515 520 525
 - Glu Arg Glu Lys Arg His Arg His Asn Phe His His Val Lys Thr His 530 540
- 10 Thr Ala Gln Glu Trp Ala Glu Thr Phe Val Ser Glu Leu Asn Asp Thr 545 550 550 560
 - Val Ile Glu Ala Gln Leu Arg Ile Ser Lys Val Pro Pro Glu Leu Pro 565 570 575
- Gln His Asp Ala Ile Gln Arg Tyr Ser Lys Ser Asn Asn Arg Leu Leu
 580 585 590
- Ile Leu Gly Phe Asn Ala Thr Leu Thr Glu Pro Val Asp Asn Gln Gly 595 600 605
 - Arg Arg Gly Asp Gln Ile Lys Glu Met Asp Leu Asn Leu His Pro Glu 610 615 620
- 25 Leu Lys Gly Pro Leu Lys Ala Leu Cys Ser Asp Pro Ser Thr Thr Ile 625 630 635 640
- Val Val Leu Ser Gly Ser Ser Arg Ser Val Leu Asp Lys Asn Phe Gly 645 650 655
- Glu Tyr Asp Met Trp Leu Ala Ala Glu Asn Gly Met Phe Leu Arg Leu 660 665 670
- Thr Asn Gly Glu Trp Met Thr Thr Met Pro Glu His Leu Asn Met Glu 35
 - Trp Val Asp Ser Val Lys His Val Phe Lys Tyr Phe Thr Glu Arg Thr 690 695 700
- 40 Pro Arg Ser His Phe Glu Thr Arg Asp Thr Ser Leu Ile Trp Asn Tyr 705 710 720
 - Lys Tyr Ala Asp Ile Glu Phe Gly Arg Leu Gln Ala Arg Asp Leu Leu 735
- Gln His Leu Trp Thr Gly Pro Ile Ser Asn Ala Ser Val Asp Val Val
 740 745 750
- Gln Gly Ser Arg Ser Val Glu Val Arg Ala Val Gly Val Thr Lys Gly
 765 760 765
 - Ala Ala Ile Asp Arg Ile Leu Gly Glu Ile Val His Ser Lys Ser Met 770 785 780
- 55 Thr Thr Pro Ile Asp Tyr Val Leu Cys Ile Gly His Phe Leu Gly Lys 785 790 795 800

124

Asp Glu Asp Val Tyr Thr Phe Phe Glu Pro Glu Leu Pro Ser Asp Met 805 810 Pro Ala Ile Ala Arg Ser Arg Pro Ser Ser Asp Ser Gly Ala Lys Ser 825 Ser Ser Gly Asp Arg Arg Pro Pro Ser Lys Ser Thr His Asn Asn Asn 840 10 Lys Ser Gly Ser Lys Ser Ser Ser Ser Ser Asn Ser Asn Asn Asn Asn Lys Ser Ser Gln Arg Ser Leu Gln Ser Glu Arg Lys Ser Gly Ser Asn 865 15 His Ser Leu Gly Asn Ser Arg Arg Pro Ser Pro Glu Lys Ile Ser Trp 890 Asn Val Leu Asp Leu Lys Gly Glu Asn Tyr Phe Ser Cys Ala Val Gly 20 905 Arg Thr Arg Thr Asn Ala Arg Tyr Leu Leu Gly Ser Pro Asp Asp Val 915 920 Val Cys Phe Leu Glu Lys Leu Ala Asp Thr Thr Ser Ser Pro * Tyr 935 Pro Glu Thr Val Ser Ser Glu Phe Met * Pro Asn Lys Asn Tyr Cys 950 30 Phe Val Thr Lys Ser Ser His Tyr Gln Thr Leu * Trp 965 970 (2) INFORMATION FOR SEQ ID NO: 41: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: cDNA to mRNA (iii) HYPOTHETICAL: NO 45 (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Oryza sativa 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41: ATAAACTTCC TCGGACCAAA GAAGAGCATG TTGGTTGTGT CGGAGTTTAT TGGTTGCTCA 55 CCTTCACTGA GTGGAGCCAT TCGTGTTAAC CCGTGGAATA TCGAGGCAAC TGCAGAGGCA 120

CTGAATGAGG CCATCTCAAT GTCAGAGCGT AAAAGCAGCT GAGGCACGAA AAACATTACC 180 GTTATGTCAG CACCCATGAT GTTGCATATT GGTCTAAGAG CTTTGTACAG GACCTGGAGA 240

(2) INFORMATION FOR SEQ ID NO: 42:

- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 627 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (iii) HYPOTHETICAL: NO
- 20 (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Selaginella lepidophylla
- 25 (ix) FEATURE:

15

- (A) NAME/KEY: CDS
- (B) LOCATION: 4..627
- (D) OTHER INFORMATION: /partial
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:
 - ATT ATG TGG GTG CAT GAT TAC CAC CTC TGT CTG GTC CCT CAG ATG ATC 48 Met Trp Val His Asp Tyr His Leu Cys Leu Val Pro Gln Met Ile

- CGC CAA AAG CTG CCA GAT GTG CAG ATT GGC TTC TTC CTC CAC ACC GCT Arg Gln Lys Leu Pro Asp Val Gln Ile Gly Phe Phe Leu His Thr Ala 20
- 40 TTT CCC TCG TCA GAG GTC TTC CGC TGC TTG GCC GCA CGA AAG GAG CTG 144 Phe Pro Ser Ser Glu Val Phe Arg Cys Leu Ala Ala Arg Lys Glu Leu 35 40
- CTG GAC GGC ATG CTT GGT GCC AAC TTG GTT GCT TTC CAG ACG CCA GAG 192 45 Leu Asp Gly Met Leu Gly Ala Asn Leu Val Ala Phe Gln Thr Pro Glu 50 55
- TAT GCA CAC CAC TTC CTC CAG ACG TGC AGT CGC ATT TCT CTG CTG AAG Tyr Ala His His Phe Leu Gln Thr Cys Ser Arg Ile Ser Leu Leu Lys 65
 - CAA CCG AGG AAG GCG TTC AGC TCG TTT CGT CAA TGT CTG GTC ATA ATG Gln Pro Arg Lys Ala Phe Ser Ser Phe Arg Gln Cys Leu Val Ile Met 85 90

	126																
		GAA Glu															336
5	TGA *	CAA Gln					GCG Ala										384
10	TGA *	ACA Thr					GGA Gly										432
15		CCT Pro 145															480
20		TTA Leu															528
		CTT Leu															576
25		GAT Asp															624
30	GTC Val																627
	(2)	INFO	RMAT	пои	FOR	SEQ	ID 1	NO: 4	13:								
35		((2 (1	4) LI 3) TY	ENGTH (PE:	H: 20 amir	RACTI 08 am no ac line	nino									
40		(ii)	мої	PECAI	E T	PE:	prot	ein									
							PTIC		_				01 .	.	73.	•	
45	Met 1	Trp	Val	His	Asp 5	Tyr	His	Leu	Cys	Leu 10	Val	Pro	Gln	Met	11e 15	Arg	
	Gļn	Lys	Leu	Pro 20	Asp	Val	Gln	Ile	Gly 25	Phe	Phe	Leu	His	Thr 30	Ala	Phe	
50	Pro	Ser	Ser 35	Glu	Val	Phe	Arg	Cys 40	Leu	Ala	Ala	Arg	Lys 45	Glu	Leu	Leu	
55	Asp	Gly 50	Met	Leп	Gly	Ala	Asn 55	Leu	Val	Ala	Phe	Gln 60	Thr	Pro	Glu	Tyr	

										,							
	Ala 65	His	His	Phe	Leu	Gln 70	Thr	Cys	Ser	Arg	Ile 75	Ser	Leu	Leu	Lys	Gln 80	
5	Pro	Arg	Lys	Ala	Phe 85	Ser	Ser	Phe	Arg	Gln 90	Cys	Leu	Val	Ile	Met 95	Gln	
	Glu	Ala	Leu	Arg 100	Gly	Ser	Arg	Arg	Ser 105	Ser	Leu	Arg	Val	Thr 110	Ser	*	
10	Gln	His	Arg 115	Val	Tyr	Ala	Arg	Ser 120	Phe	Cys	Arg	Thr	Ser 125	Cys	Ser	•	
	Thr	Arg 130	Thr	His	Ser	Gly	Gly 135	Thr	Arg	Ser	Phe	Ser 140	Phe	Arg	Leu	Arg	
15	Pro 145	Pro	Arg	Leu	Arg	Ile 150	Leu	Ser	Leu	Leu	Arg 155	Pro	Tyr	Pro	Lys	Leu 160	
20	Leu	His	Val	Leu	Thr 165	Leu	Cys	Thr	Arg	Arg 170	Ser	His	Thr	Pro	Thr 175	Arg	
	Leu	Pro	Gln	Ala 180	Arg	His	Cys	Val	Leu 185	Ala	Val	Pro	Arg	Thr 190	Ser	Leu	
25	Asp	Arg	Arg 195	Cys	Ser	Cys	Asn	Gln 200	Leu	Phe	qaA	Gly	Met 205		Leu	Val	
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10: 4	14:								
30		(i)	SEÇ							i							
35	(A) LENGTH: 645 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear																
		(ii)	MOL	ECUL	E TY	PE:	cDNA	to	mRNA								
40	(iii)	НҮР	отне	TICA	L: N	ro										
	. (ANT														
45	,) OR	GANI.	SM:	Sela					ylla					
			SEQU CT T									ልሮልሮ	ልልሮር	ርጥ G	cccc	TGCGG	60
50																ACTAT	
																agggt	
55	GTCG	AGGA	TC A	AGGG.	A AGA'	T CA	CGCG	agtg	GCT	GCCT"	TCC	CCGT	GGAT	CG A	TTCG	GAGCG	240
	ATTT	ATCG	AC G	CGTA	GAGA	C CG	ATGC	GGTC	AAG	AAAC	ACA '	TGCA.	AGAG	CT G	AGCC.	AGGTT	300

	TTGCTGTCGT AAGGTTATGT TGGGGTGGAT AGGCTTGACA TGATTAAAGG AATTCCACAG	360
	AAGCTGCTAG CCTTTGAAAA ATTCCTCGAG GAGAACTCCG AGTGGCGTGA TAAGGTCGTC	420
5	CTGGTGCAAA TCGCGGTGCC GACTAGAACG GACGTCCTCG AGTACCAAAA GCTTACGAGC	480
	CAGGTTCACG AGATTGTTGG TCGCATAAAT GGACGTTTCG GCTCCTTGAC GGCTGTTCCT	540
10	ATCCATCACC TCGATCGGTC CATGAAATTT CCGGAGCTTT GTGCGTTATA TGCAATCACT	600
10	GATGTCCTGC TCGTGACATC CCTGCGCGAC GGCATGAACT TCGTC	645
	(2) INFORMATION FOR SEQ ID NO: 45:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 498 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
25	(iii) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GCCGTTGTGG ATTCATCGCC TCGCACAAGC ACTCTTGTCG TGTCTGAGTT TATTGGATGC	60
35	TCACCTTCTT TGAGTGGTGC CATTAGGGTG AATCCATGGG ATGTGGATGC TGTTGCTGAA	120
,,	GCGGTAAACT CGGCTCTTAA AATAGTGAGA CTGAGAAGCA ACTACGGCAT GAGAAACATT	180
	ATCATTATAT TAGCACTCAT GATGTTGGTT ATTGGGCAAA GAGCTTTATG CAGGATCTTG	240
40	AGAGAGCGTG CCGAGATCAT TATAGTAAAC GTTGTTGGGG GATTGGTTTT GGCTTGGGGT	300
	TCAGAGTTTT GTCACTCTCT CCAAGTTTTA GGAAGCTATC TGTGGACACA TTTGTTCCAG	360
45	TTTATAGGAA AACCACAGAG AGGGCTAATA TTCTTTTATA ATGGTACTCT TTGTTCCGAA	420
	AGCTCATTGT TCAAGATCCA GCAACGGGTT CCTTGTCCTA AGCCCCTTAA GGCCCCATAA	480
	CCGGTGTTTT TTAGTGAG	498
50	(2) INFORMATION FOR SEQ ID NO: 46:	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 463 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
5	(iii) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
	GCCGTTGTGG ATTCATCGCC TCGCACAAGC ACTCTTGTCG TGTCTGAGTT TATTGGATGC	60
15	TCACCTTCTT TGAGTGGTGC CATTGGGTGA ATCCATGGGA TGTGGATGCT GTTGCTGAAG	120
13	CGGTAAACTC GGCTCTTAAA ATGAGTGAGA CTGAGAAGCA ACTACGGCAT GAGAAACATT	180
	ATCATTATAT TAGCACTCAT GATGTTGGTT ATTGGGCAAA GAGCTTTATG CAGGATCTTG	240
20	AGAGAGCGTG CCGAGATCAT TATAGTAAAC GTTGTTGGGG GATTGGTTTT GGTTTGGGGT	300
	TCAGAGTTTT TGTCACTCTC TCCAAGTTTA GGAAGCTATC TTGGGACAAT TGTTCCAGTT	360
25	TTTAGGGAAA ACACAGGGAA GGTTATTTCC TTGATTATAA TGGACCTTGT CCAAGCCCCA	420
	TTTTTAAGGC CCAGGAACCG GGTTTTTTTT TCTTAAAGCC CCT	463
	(2) INFORMATION FOR SEQ ID NO: 47:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 394 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
40	(iii) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Arabidopsis thaliana	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
	GGTATTGATG TAGAGGAAAT ACGTGGTGAA ATCGAAGAAA GCTGCAGGAG GATCAATGGA	60
50	GAGTTTGGGA AACCGGATAT CAACCTATCA TATATATTGA TACCCGGTTT CGATTAATGA	120
	AATAAATGCT TATACCATAT TGCTGAGTGC GTGGTCGTTA CAGCTGTTAG AGATGGTATG	180
	AACCTTACTC CCTACGAATA TATCGTTTGT AGACAAGGTT TACTTGGGTC TGAATCAGAC	240
. 55	TTTAGTGGCC CAAAGAAGAG CATGTTGGTT GCATCAAGTT TATTTGGATG TCCCCTTTCG	300

	CTTAGTGGGG CTATACGCGT AAACCCATGG AACCGTTGAA GCTACTTGAG GAGCCTTAAT	360
	TAGGCCCCTC AAATATGCTG GAACACTACG GATG	394
5	(2) INFORMATION FOR SEQ ID NO: 48:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 428 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA to mRNA	
15	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
25	AAGTCCGTTG TGGATTCACG CCTCGCACAA GCACTCTTGT CGTGTCTAGT TTATTGGATG	60
25	CTCACCTTCT TTAGTGGTGC CATTAGGGTG AATCCATGGA TGTGGATGCT GTTGCTGAAG	120
	CGGTAAACTC GGCTCTTAAA ATAGTGAGAC TGAGAAGCAA CTACGGCATG AGAAACATTA	180
30	TCATTATATT AGCACTCATG ATGTTGGTTA TTGGGCAAAG AGCTTTATGC AGGACTTAGA	240
	GAGCGTGCCG AGATCATTAT AGTAAACGTT GTTGGGGGAT TGGTTTTGGT TTGGGGTTCA	300
35	AGTTTTGTCA CTCTCCCAA GTTTTAGGAA GCTATCTTGT GGACACATTG TTCCAGTTTA	360
,,	TAGAAACACA GGGAAGGGGC TATATTCTTG TTTAAATGGG ACCCCTTGTC CCTAAAAGTC	420
	CCATTGT	428
40	(2) INFORMATION FOR SEQ ID NO: 49:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 481 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA to mRNA	
50	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
55	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:													
	CAAACGAAGA GCTTCGTGGG AAAGTGGTTC TCGTGCAGAT TACTAATCCT GCTCGTAGTT	60											
5	CAGGTAAGGA TGTTCAAGAT GTAGAGAAAC AGATAAATTT ATTGCTGATG AGATCAATTC	120											
	TAAATTTGGG AGACCTGGTG GTTATAAGCC TATTGTTTTG TAATGGACCT GTTAGTACTT	180											
10	TGGATAAAGT TGCTTATTAC GCGATCTCGG AGTGTGTTGT CGTGAATCTG TGAGAGATGG	240											
	GATGAATTTG GTGCCTTATA AGTACACAGT GACTCGGCAA GGGAGCCCTG CTTTGGATGC	300											
	AGCTTTGGTT TTGGGGAGGA TGATGTTAGG AAGAGTGTGA TTATTGTTTC TGAGGTTCAA	360											
15	CCGGTTGTCC TCCATCTCTA GTGGTGCGAT CCCTTTTAAT CCGTGGACAT CGATCAGCAC	420											
	TTACGCCATG AGCTTCAAAT CCGGTTTCCG CAAAGGGAAA ATTGCCCCGA GCTTAAGGCC	480											
20	A	481											
	(2) INFORMATION FOR SEQ ID NO: 50:												
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 395 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 												
30	(ii) MOLECULE TYPE: cDNA to mRNA												
30	(iii) HYPOTHETICAL: NO												
	(iii) ANTI-SENSE: NO												
35	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana</pre>												
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:												
40	AGACCTGGTG GTTATAAGCC TATTGTGTTT GTCAATGGAC CTGTTAGTAC TTTGGATAAA	60											
	TTGCTTATTA CGCGATCTCG GAGTGTGTTG TCGTGAATCT GTGAGAGATG GGATGAATTT	120											
45	GGTGCCTTAT AAGTACACAG TGACTCGGCA AGGGAGCCCT GCTTTGGATG CAGCTTTAGG	180											
	TTTTGGGGAG GATGATGTTA GGAAGAGTGT GATTATTGTT TCTAGTTCAT CGGTTGTCTC	240											
	CATCTCTGAG TGGTGCGATC CGTTAATCCG TGGAACATCG TGCAGTCACT AAACGCCATG	300											
50	AGCCTGCAAT ACGATGTCGC AAAGGGAAAA TCTTTGCCAC CAGAAGCATC ATAAGTACAT	360											
	AAAGCCTCAC AATTGCCTAT TTGGGCCGGG GTTTT	395											

	(2) INFORMATION FOR SEQ ID NO: 51:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 431 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE: (A) ORGANISM: Oryza sativa	
20	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 1 (D) OTHER INFORMATION: /standard_name= "GENBANK ID:</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
23	GGGAATGGAG GGTCTCCGAG CTGCAGCAGC AATTTGAGGG GAAGACTGTG TTGCTCGGTG	60
	TGGATGACAT GGATATCTTC AAGGGTATCA ACTTGAAGCT TCTTGCCTTC GAGAATATGT	120
30	TGAGGACACA TCCCAAGTGG CAGGGGGGGG CAGTGTTGGT GCAAATTGCT AATCCGGCCC	180
	GTGGAAAGGG TAAGGATCTT GAAGCCATCC AGGCTGAGAT TCATGAGAGC TGCAAGAGGA	240
35	TTAATGGAGA GTTTGGCCAG TCAGGATACA GCCCTGTTGT CTTCATTGAC CGTGATGTGT	300
	CAAGTGTGGA GGAAGATTGC CTACTACACA ATAGCAGAAT GTGTGGTGGT GACTGCTGTT	360
	AGGGATGGGA TTGACTTGAC ACCATATGGA TATATTGTCT CTAGGGCAGG GGTCTTACTC	420
40	ACATCAGAGG T	431
	(2) INFORMATION FOR SEQ ID NO: 52:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 496 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	

(iii) ANTI-SENSE: NO

	(vi) ORIGINAL SOURCE: (A) ORGANISM: Oryza sativa	
5	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 1 (D) OTHER INFORMATION: /standard_name= "GENBANK ID: D400"</pre>	048*
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	CTACCGTTCC CTCCCTGTTC GCGACGAGAT CCTCAAATCA CTGCTAAACT GCGATCTGAT	60
	TGGGTTCCAC ACCTTTGATT ACGCGCGGCA TTTCCTGTCC TGCTGCAGCC GGATGCTGGG	120
15	GATCGAGTAC CAGTCGAAGA GGGGATATAT CGGTCTCGAT TACTTTGGCC GCACTGTTGG	180
	GATAAAGATC ATGCCTGTTG GGATTAACAT GACGCAGCTG CAGACGCAGA TCCGGCTGCC	240
20	TGATCTTGAG TGGCGTGTCG CGAACTCCGG AAGCAGTTTG ATGGGAAGAC TGTCATGCTC	300
	GGTGTGGATG ATATGGACAT ATTTAAGGGG ATTAATCTGA AAGTTCTTGC GTTTTGAGCA	360
	GATGCTGAGG ACACACCCAA AATGGCAGCC AAGGCAGTTT TGGTGCAGAT TCAAACCAAG	420
25	GGTGGTTGTT GGGAGGACTT AGGTACAGCT AGATATGAGT TCAGGGGTAA TGACATTTCA	480
	GGCGGTATTT CCTTGG	496
30	(2) INFORMATION FOR SEQ ID NO: 53:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 288 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA to mRNA	
40	(iii) HYPOTHETICAL: NO	
40	(iii) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE: (A) ORGANISM: Oryza sativa	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
	GGACCAAAGA AGAGCATGTT GGTTGTCG GAGTTTATTG GTTGCTCACC TTCACTGAGT	60
50	GGAGCCATTC GTGTTAACCC GTGGAATATC GAGGCAACTG CAGAGGCACT GAATGAGGCC	120
	ATCTCAATGT CAGAGCGTAA AAGCAGCTGA GGCACGAAAA ACATTACCGT TATGTCAGCA	180
55	CCCATGATGT TGCATATTGG TCTAAGAGCT TTGTACAGGA CCTGGAGAGG GCTTGCAAGG	240
	ATCACTTTAG GAAACCATGC TGGGGCATTG GATTGGATTT CGCTCAGG	288

	(2) INFORMATION FOR SEQ ID NO: 54:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2207 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA to mRNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE:(A) ORGANISM: Solanum tuberosum(B) STRAIN: Kardal	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1611906	
25	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 842850 (D) OTHER INFORMATION: /function= "putative glycosylationsite"</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	r 60
	CCCATTGCCG GCATTCTCTG TTCTTACAAA AAAAAACATT TTTTTGTTCA CATAAATTAG	120
35	TTATGGCATC AGTATTGAAC CCTTTAACTT GTTATACAAT ATG GGT AAA GCT ATA Met Gly Lys Ala Ile 1 5	175
10	ATT TTT ATG ATT TTT ACT ATG TCT ATG AAT ATG ATT AAA GCT GAA ACT Ile Phe Met Ile Phe Thr Met Ser Met Asn Met Ile Lys Ala Glu Thr 10 15 20	223
15	TGC AAA TCC ATT GAT AAG GGT CCT GTA ATC CCA ACA ACC CCT TTA GTG Cys Lys Ser Ile Asp Lys Gly Pro Val Ile Pro Thr Thr Pro Leu Val 25 30 35	271
50	ATT TTT CTT GAA AAA GTT CAA GAA GCT GCT CTT CAA ACT TAT GGC CAT Ile Phe Leu Glu Lys Val Gln Glu Ala Ala Leu Gln Thr Tyr Gly His 40 45 50	319
- •	AAA GGG TTT GAT GCT AAA CTG TTT GTT GAT ATG TCA CTG AGA GAG AGT Lys Gly Phe Asp Ala Lys Leu Phe Val Asp Met Ser Leu Arg Glu Ser	367

	CTT Leu 70	Ser	GAA Glu	ACA Thr	GTT Val	GAA Glu 75	GCT Ala	TTT	AAT Asn	AAG Lys	CTT Leu 80	Pro	AGA Arg	GTT Val	GTG Val	AAT Asn 85	415
5			ATA Ile								Phe					Leu	463
10			CCT Pro														511
15			CCT Pro 120														559
20	GCA Ala	TGG Trp 135	GCA Ala	TTG Leu	GAG Glu	GTG Val	CAT His 140	TCA Ser	CTT Leu	TGG Trp	AAG Lys	AAT Asn 145	TTA Leu	AGT Ser	AGG Arg	AAA Lys	607
	GTG Val 150	GCT Ala	GAT Asp	CAT His	GTA Val	TTG Leu 155	GAA Glu	AAA Lys	CCA Pro	GAG Glu	TTG Leu 160	ТАТ Туг	ACT Thr	TTG Leu	CTT Leu	CCA Pro 165	655
25	TTG Leu	AAA Lys	AAT Asn	CCA Pro	GTT Val 170	ATT Ile	ATA Ile	CCG Pro	GGA Gly	TCG Ser 175	CGT Arg	TTT Phe	AAG Lys	GAG Glu	GTT Val 180	TAT Tyr	703
30			GAT Asp														751
35	TAT Tyr	GAA Glu	ACT Thr 200	GCA Ala	AAA Lys	GGG Gly	ATT Ile	GTG Val 205	ACT Thr	AAT Asn	CTG Leu	GTT Val	TCT Ser 210	CTG Leu	ATA Ile	GAT Asp	799
40	CAA Gln	TTT Phe 215	GGT Gly	TAT Tyr	GTT Val	CTT Leu	AAC Asn 220	GGT Gly	GCA Ala	AGA Arg	GCA Ala	TAC Tyr 225	TAC Tyr	AGT Ser	AAC Asn	AGA Arg	847
	AGT Ser 230	CAG Gln	CCT Pro	CCT Pro	GTC Val	CTG Leu 235	GCC Ala	ACG Thr	ATG Met	ATT Ile	GTT Val 240	GAC Asp	ATA Ile	TTC Phe	AAT Asn	CAG Gln 245	895
45	ACA Thr	GGT Gly	GAT Asp	TTA Leu	AAT Asn 250	TTG Leu	GTT Val	AGA Arg	AGA Arg	TCC Ser 255	CTT Leu	CCT Pro	GCT Ala	TTG Leu	CTC Leu 260	AAG Lys	943
50	GAG Glu	AAT Asn	CAT His	TTT Phe 265	TGG Trp	AAT Asn	TCA Ser	GGA Gly	ATA Ile 270	CAT His	AAG Lys	GTG Val	ACT Thr	ATT Ile 275	CAA Gln	GAT Asp	991
55	GCT Ala	CAG Gln	GGA Gly 280	TCA Ser	AAC Asn	CAC His	Ser	TTG Leu 285	AGT Ser	CGG Arg	TAC Tyr	TAT Tyr	GCT Ala 290	ATG Met	TGG Trp	AAT Asn	1039

wo 9	7/42326							136							PCT/EP97/02497			
								130	5									
A L	AG CCC ys Pro 295	Arg	CCA Pro	GAA Glu	TCG Ser	TCA Ser 300	ACT Thr	ATA Ile	GAC Asp	AGT Ser	GAA Glu 305	ACA Thr	GCT Ala	TCC Ser	GTA Val	1087		
L	rc cca eu Pro LO	AAT Asn	ATA Ile	CAa LCL	GAA Glu 315	AAA Lys	AGA Arg	GAA Glu	TTA Leu	TAC Tyr 320	CGT Arg	GAA Glu	CTG Leu	GCA Ala	TCA Ser 325	1135		
10 A.	CT GCT la Ala	GAA Glu	AGT Ser	GGA Gly 330	TGG Trp	GAT Asp	TTC Phe	AGT Ser	TCA Ser 335	AGA Arg	TGG Trp	ATG Met	AGC Ser	AAC Asn 340	GGA Gly	1183		
T0 S6 15	CT GAT er Asp	CTG Leu	ACA Thr 345	ACA Thr	ACT Thr	AGT Ser	ACA Thr	ACA Thr 350	TCA Ser	ATT Ile	CTA Leu	CCA Pro	GTT Val 355	GAT Asp	TTG Leu	1231		
A: A: 20	AT GCA sn Ala	TTC Phe 360	CTT Leu	CTG Leu	AAG Lys	ATG Met	GAA Glu 365	CTT Leu	GAC Asp	ATT	GCC Ala	TTT Phe 370	CTA Leu	GCA Ala	AAT Asn	1279		
C.	TT GTT eu Val 375	Gly														1327		
	AT AGA on Arg															1375		
30 G	A TGG n Trp															1423		
	T AAA T Lys	Trp														1471		
	T GTT e Val															1519		
A	T CAG r Gln 455	Lys		Val		Ser	Leu	Met	Ser		Gly					1567		
	A GGG a Gly															1615		
	G AAT o Asn		Trp													1663		
	G TCT g Ser	Gly														1711		

	- GILLY HOL	477
	137	
	CGC TGG TTA AGA ACT AAC TAT GTG ACT TAG AND AND AND	1759
_	Arg Trp Leu Arg Thr Asn Tyr Val Thr Tyr Lys Lys Thr Gly Ala Met 520 525 530	
5	TAT GAA AAA TAT GAT GTC ACA AAA TGT GGA GCA TAT GGA GGT GGT Tyr Glu Lys Tyr Asp Val Thr Lys Cys Gly Ala Tyr Gly Gly Gly 535 540 545	1807
10	GAA TAT ATG TCC CAA ACG GGT TTC GGA TGG TCA AAT GGC GTT GTA CTG Glu Tyr Met Ser Gln Thr Gly Phe Gly Trp Ser Asn Gly Val Val Leu 550 565	1855
15	GCA CTT CTA GAG GAA TTT GGA TGG CCT GAA GAT TTG AAG ATT GAT TGC Ala Leu Leu Glu Phe Gly Trp Pro Glu Asp Leu Lys Ile Asp Cys 570 575 580	1903
	TAATGAGCAA GTAGAAAAGC CAAATGAAAC ATCATTGAGT TTTATTTTCT TCTTTTGTTA	1062
20	AAATAAGCTG CAATGGTTTG CTGATAGTTT ATGTTTTGTA TTACTATTTC ATAAGGTTTT :	
	TGTACCATAT CAAGTGATAT TACCATGAAC TATGTCGTTC GGACTCTTCA AATCGGATTT	2083
	TGCAAAAATA ATGCAGTTTT GGAGAATCCG ATAACATAGA CCATGTATGG ATCTAAATTG	2143
25	TAAACAGCTT ACTATATTAA GTAAAAGAAA GATGATTCCT CTGCTTTAAA AAAAAAAAA	203
	AAAA	207
30	(2) INFORMATION FOR SEQ ID NO: 55:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 581 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	Met Gly Lys Ala Ile Ile Phe Met Ile Phe Thr Met Ser Met Asn Met 1 5 10 15	
45	Ile Lys Ala Glu Thr Cys Lys Ser Ile Asp Lys Gly Pro Val Ile Pro 20 25 30	
	Thr Thr Pro Leu Val Ile Phe Leu Glu Lys Val Gln Glu Ala Ala Leu 35 40 45	

50 Gln Thr Tyr Gly His Lys Gly Phe Asp Ala Lys Leu Phe Val Asp Met 50 55 60

70

55

Ser Leu Arg Glu Ser Leu Ser Glu Thr Val Glu Ala Phe Asn Lys Leu

138

Pro Arg Val Val Asn Gly Ser Ile Ser Lys Ser Asp Leu Asp Gly Phe

- Ile Gly Ser Tyr Leu Ser Ser Pro Asp Lys Asp Leu Val Tyr Val Glu
 - Pro Met Asp Phe Val Ala Glu Pro Glu Gly Phe Leu Pro Lys Val Lys
- 10 Asn Ser Glu Val Arg Ala Trp Ala Leu Glu Val His Ser Leu Trp Lys 135
- Asn Leu Ser Arg Lys Val Ala Asp His Val Leu Glu Lys Pro Glu Leu 155 15
 - Tyr Thr Leu Leu Pro Leu Lys Asn Pro Val Ile Ile Pro Gly Ser Arg 170
- Phe Lys Glu Val Tyr Tyr Trp Asp Ser Tyr Trp Val Ile Arg Gly Leu
 - Leu Ala Ser Lys Met Tyr Glu Thr Ala Lys Gly Ile Val Thr Asn Leu
- 25 Val Ser Leu Ile Asp Gln Phe Gly Tyr Val Leu Asn Gly Ala Arg Ala 215
- Tyr Tyr Ser Asn Arg Ser Gln Pro Pro Val Leu Ala Thr Met Ile Val 235
 - Asp Ile Phe Asn Gln Thr Gly Asp Leu Asn Leu Val Arg Arg Ser Leu
- Pro Ala Leu Leu Lys Glu Asn His Phe Trp Asn Ser Gly Ile His Lys 35 260
 - Val Thr Ile Gln Asp Ala Gln Gly Ser Asn His Ser Leu Ser Arg Tyr 280
- Tyr Ala Met Trp Asn Lys Pro Arg Pro Glu Ser Ser Thr Ile Asp Ser 295
- Glu Thr Ala Ser Val Leu Pro Asn Ile Cys Glu Lys Arg Glu Leu Tyr 45
 - Arg Glu Leu Ala Ser Ala Ala Glu Ser Gly Trp Asp Phe Ser Ser Arg
- Trp Met Ser Asn Gly Ser Asp Leu Thr Thr Thr Ser Thr Thr Ser Ile 340 345
 - Leu Pro Val Asp Leu Asn Ala Phe Leu Leu Lys Met Glu Leu Asp Ile 360
- 55 Ala Phe Leu Ala Asn Leu Val Gly Glu Ser Ser Thr Ala Ser His Phe 375 380

130

Thr Glu Ala Ala Gln Asn Arg Gln Lys Ala Ile Asn Cys Ile Phe Trp 385 390 395 400

Asn Ala Glu Met Gly Gln Trp Leu Asp Tyr Trp Leu Thr Asn Ser Asp 405 410 415

Thr Ser Glu Asp Ile Tyr Lys Trp Glu Asp Leu His Gln Asn Lys Lys 420 425 430

- 10 Ser Phe Ala Ser Asn Phe Val Pro Leu Trp Thr Glu Ile Ser Cys Ser 435 440 445
- Asp Asn Asn Ile Thr Thr Gln Lys Val Val Gln Ser Leu Met Ser Ser 450 455 460
- Gly Leu Leu Gln Pro Ala Gly Ile Ala Met Thr Leu Ser Asn Thr Gly
 465 470 475 480
- Gln Gln Trp Asp Phe Pro Asn Gly Trp Pro Pro Leu Gln His Ile Ile
 20 485 490 495
 - Ile Glu Gly Leu Leu Arg Ser Gly Leu Glu Glu Ala Arg Thr Leu Ala 500 505 510
- 25 Lys Asp Ile Ala Ile Arg Trp Leu Arg Thr Asn Tyr Val Thr Tyr Lys 515 520 525
 - Lys Thr Gly Ala Met Tyr Glu Lys Tyr Asp Val Thr Lys Cys Gly Ala 530 540
 - Tyr Gly Gly Gly Glu Tyr Met Ser Gln Thr Gly Phe Gly Trp Ser 545 550 555 560
- Asn Gly Val Val Leu Ala Leu Leu Glu Glu Phe Gly Trp Pro Glu Asp 565 570 575

Leu Lys Ile Asp Cys 580

30

- 40 (2) INFORMATION FOR SEQ ID NO: 56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
- 45 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
- 50 (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

CTCAGATCTG GCCACAAA

WO 97/42326

140

(2) INFORMATION FOR SEQ ID NO: 57

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

10

5

- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
- 15 GTGCTCGTCT GCAGGTGC