最小多项式

定义

• 定义1.11 方阵的最小多项式

设 $A \in C^{nxm}$,在A的零化多项式中,次数最低的首一多项式称为 A的最小多项式,记为 $m_a(\lambda)$

性质

定理1.14 设 $A \in C^{nxn}$, $\forall f(\lambda)$ 且 $f(A) = \mathbf{0}$,则 $m_A(\lambda)|f(\lambda)$ 成 立,且 $m_A(\lambda)$ 是唯一的

定理1.15 设 $A \in C^{nm}$, $\varphi(\lambda) = \det(\lambda I - A)$, 又设 D_{n-1} 是 $\lambda I - A$ 的n-1阶行列式因子,则有

$$m_{_{\!A}}(\lambda) \,=\, \frac{\det\left(\lambda I \,-\, A\right)}{D_{_{\!N-1}}(\lambda)} \,=\, \frac{\varphi(\lambda)}{D_{_{\!N-1}}(\lambda)}$$

 $m_A(\lambda) = rac{D_n(\lambda)}{D_{n-1}(\lambda)} = d_n$

3. 相似矩阵有相同的最小多项式。 矩阵相似

4. 矩阵A的特征根必定是矩阵A的最小多项式的根,A的最小多项式的根也必定是A的特征根。

设 $A \in C^{nxn}$ 的所有不同的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_r \in C$,则其特征 多项式可写为:

$$\det(\lambda I - A) = (\lambda - \lambda_i)^{n_i} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_i)^{n_i}$$
那么A的最小多项式应该具有如下形式:

$$m_A(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_i)^{m_i} \qquad m_i \le n_i \qquad i = 1, \cdots, t$$

设 $A \in C^{nxn}$, $\lambda_1, \lambda_2, \cdots, \lambda_t \in C$ 是A的所有互不相同的特征值,则 $m_4(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_t)^{m_t}$

$$m_A(\lambda) = (\lambda - \lambda_1) \quad (\lambda - \lambda_2) \quad \cdots (\lambda - \lambda_t)$$

5. 其中 m_i 是A的Jordan标准形中含 λ_i 的Jordan块的最高阶数

这一定理表明:矩阵A的最小多项式应是A的特征多项式的因式。又因为最小多项式也是零化多项式,由定理1.2知,它应包含矩阵A的所有互不相同的特征值。因此,求A的最小多项式可采用试探法,即先求出A的特征多项式,然后再找出特征多项式中包含A的所有互不相同特征值的因式,最后验证这些因式是否是A的零化多项式。