CSO202—Atoms, Molecules & Photons Homework – 2

1.(a) Complete the following table for electromagnetic waves in vacuum (Plank's constant, $h = 6.62 \times 10^{-34} \,\text{Js}$; velocity of light, $c = 3 \times 10^8 \,\text{m/sec}$):

λ (μm)	v (Hz)	E(eV)	Wavenumber(cm ⁻¹)	Spectral region
0.6				
	4×10 ¹²			
		13.6		
			4000	

1.(b) Now redo this table below but assume that the medium has an index of refraction n=1.5 (this is pretty close to correct for glass at visible frequencies, and for coaxial cables at radiofrequencies).

λ (μm)	v (Hz)	E(eV)	Wavenumber(cm ⁻¹)	Spectral region
0.6				
	4×10 ¹²			
		13.6		
			4000	

1.(c) Based on your answers to a & b, which are the preferred units to use & why?

- 2. Consider the vibrational motion of HI. Since Iodine is very heavy, assume it is stationary and the hydrogen atom undergoes harmonic motion. With force constant $k = 317 \text{ N.m}^{-1}$. What is the fundamental vibration frequency v_0 ? How much error has resulted because of neglecting the motion of I? What is v_0 if H is replaced by D?
- 3. The wavenumber of the $j=1 \leftarrow j=0$ rotational transitions for ${}^{1}H^{35}Cl$ and ${}^{2}H^{35}Cl$ are 20.8784 cm⁻¹ and 10.7840 cm⁻¹ respectively. Accurate atomic masses are 1.007825 and 2.0140 for ${}^{1}H$ and ${}^{2}H$ (i.e., D) respectively. The mass of ${}^{35}Cl$ is 35.96885. Based on this information alone, can you conclude that the bond lengths are the same or different in the two molecules?
- 4. Calculate the proportion of HI molecules in their ground, first, and second excited vibrational states at 298 K. On substituting H with D would you expect a larger proportion of DI in the first excited state as compared to the case of HI? (Fundamental Frequency of vibration of HI = 2230 cm⁻¹.)
- 5. Use the collision theory of gas phase reactions to calculate the theoretical value of the second-order rate constant for the reaction $H_2(g) + I_2(g) \rightarrow 2HI(g)$ at 650 K, assuming that it is elementary bimolecular. The collision cross section is 0.36 nm⁻¹, the reduced mass is 3.32×10^{-27} kg, and the activation energy is 171 kJ.mol⁻¹.