EECS 203: Discrete Mathematics Natural Deduction Practice Problems

Note: Each of these problems requires only the 12 basic intro/elim rules + the 4 intro/elim rules for quantifiers.

1.

$$\frac{(p \to q) \land \neg (p \land q)}{\neg p}$$

Solution:		
1	$(p \to q) \land \neg (p \land q)$	Premise
2	p o q	$\wedge - \text{elim } 1$
3	$\neg(p \land q)$	$\wedge - \text{elim } 1$
4	p	Assumption
5	q	\rightarrow -elim 2, 4
6	$p \wedge q$	$\wedge - \text{intro } 4, 5$
7	F	$\neg - \text{elim } 6, 3$
8	$\neg p$	$\neg - intro 4 - 7$

Using Natural Deduction, prove

$$\frac{(p \leftrightarrow q), \ (q \to s), \neg s}{\neg p \land \neg q}$$

$p \leftrightarrow q$ Premise	
$q \to s$ Premise	
$_3$ $\neg s$ Premise	
4 q Assumption	
$_{5}$ s \rightarrow -elim 2, 4	
$ \neg - \text{elim } 3, 5 $	
	6
8 p Assumption	
$_{9}$ q \leftrightarrow $-\text{elim } 1, 8$	
\neg - elim 7, 9	
$\neg p$ $\neg - intro 8 -$	· 10
	1

*Note that once we have $p \leftrightarrow q$ and $\neg q$, we cannot directly use a Natural Deduction rule to conclude $\neg p$, but can conclude this using a negation introduction (see steps 8-10).

$$\frac{\neg p \to j, j \to m}{\therefore m \lor p}$$

Solut	ion:	
1	$\neg p \to j$	Premise
2	j o m	Premise
3	$\neg(m\lor p)$	Assumption
4	p	Assumption
5	$m \lor p$	$\vee - intro(4)$
6	F	$\neg - \operatorname{elim}(3,5)$
7	$\neg p$	$\neg - intro(4-6)$
8	j	$\rightarrow -\text{elim}(1,7)$
9	m	$\rightarrow -\text{elim}(2,8)$
10	$m \lor p$	$\vee - intro(9)$
11	F	$\neg - \text{elim}(3, 10)$
12	$\neg\neg(m\lor p)$	$\neg - intro(3 - 11)$
13	$m \lor p$	$\neg - \text{elim}(12)$

$$\frac{\forall x (P(x) \to Q(x)) \text{ and } \forall x \neg Q(x)}{\forall x \neg P(x)}$$

Solution:	
	Premise Premise
$ \begin{array}{ccc} 3 & c \\ 4 & P(c) \to Q(c) \\ 5 & \neg Q(c) \end{array} $	$\forall - \text{elim } 1$ $\forall - \text{elim } 2$
$ \begin{array}{c cccc} 6 & P(c) \\ 7 & Q(c) \\ 8 & F \end{array} $	assumption $ \rightarrow -\text{elim } 6, 4 $ $ \neg -\text{elim } 7, 5 $
$ \begin{array}{c c} & \neg P(c) \\ & \neg P(x) \end{array} $	$\neg - intro 6 - 8$ $\forall - intro 3 - 9$

$$\frac{(P(x) \to Q(x)) \land (R(x) \to S(x))}{(P(x) \lor R(x)) \to (Q(x) \lor S(x))}$$

Solution:		
$(P(x) \to Q(x)) \land (R(x) \to S(x))$	Premise	
$_{2}$ $P(x) \rightarrow Q(x)$	$\wedge - \text{elim } 1$	
$_3$ $R(x) \to S(x)$	$\wedge - \text{elim } 1$	
$_4 P(x) \lor R(x)$	Assumption	
P(x)	Assumption	
6 Q(x)	\rightarrow -elim 2,5	
$_7 Q(x) \lor S(x)$	∨ − intro 6	
8 R(x)	Assumption	
$_{9}$ $S(x)$	\rightarrow -elim 3,8	
$Q(x) \vee S(x)$	∨ − intro 9	
$Q(x) \vee S(x)$	$\vee - \text{elim } 4, 5 - 7, 8 - 10$	
$_{12} (P(x)\vee R(x))\rightarrow (Q(x)\vee S(x))$	\rightarrow -intro 4 - 11	

$$\frac{\forall x (P(x) \to Q(x))}{\forall x [(Q(x) \to R(x)) \to (P(x) \to R(x))]}$$

Solution:		
$\forall x (P(x) \to Q(x))$	Premise	
$z = x_0$		
$_3 P(x_0) \to Q(x_0)$	$\forall - \text{elim } 1$	
$_{4} Q(x_{0}) \to R(x_{0})$	Assumption	
$P(x_0)$	Assumption	
	\rightarrow -elim 3, 5	
$R(x_0)$	\rightarrow -elim 4, 6	
$ P(x_0) \to R(x_0) $	$\rightarrow -intro 5 - 7$	
$_{9} (Q(x_{0}) \to R(x_{0})) \to (P(x_{0}) \to R(x_{0}))$	\rightarrow -intro 4 - 8	
$\forall x[(Q(x_0) \to R(x_0)) \to (P(x_0) \to R(x_0))]$	$\forall - intro 2 - 9$	

$$\frac{\forall x \exists y (P(x) \to Q(y)), \quad \exists x P(x)}{\therefore \quad \exists y Q(y)}$$

Solution:	
$ \forall x \exists y (P(x) \to Q(y)) $	Premise 1
$ \begin{array}{cccc} & \exists x P(x) \\ & 3 & a & P(a) \end{array} $	Premise 2 Assumption
$ \begin{array}{ccc} & \exists y P(a) \to Q(y) \\ & 5 & b & P(a) \to Q(b) \end{array} $	
$ \begin{array}{c c} 6 & Q(b) \\ 7 & \exists y Q(y) \end{array} $	
$ \begin{array}{c c} 8 & \exists y Q(y) \\ 9 & \exists y Q(y) \end{array} $	$\exists -\operatorname{elim}(4, 5 - 7)$ $\exists -\operatorname{elim}(2, 3 - 8)$