csci-5454-hw6

Jake Krol

October 2024

1 Question 1

1.1 Question 1a

A fixed random vector, \mathbf{x} , was generated by taking 1000 samples of a standard normal distribution, then the vector was divided by its L2 norm to set $||\mathbf{x}||_2 = 1$.

$$\sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_i^2 + \ldots + x_d^2} = ||\mathbf{x}||_2$$

N=10000 Johnson-Lindenstrauss (JL) matrices were generated and multiplied by \mathbf{x} to produce N JL-transformed vectors $\mathbf{w}_i+\ldots\mathbf{w}_N$. The squared L2 norm $||\mathbf{w}_i||_2^2$, was calculated for N transformations.

$$\mathbf{w}_i = G_i \mathbf{x}$$
$$||\mathbf{w}_i||_2^2 = \mathbf{w}_i \cdot \mathbf{w}_i$$

1.2 Question 1b

Each element of a JL-transformed vector is a sum of i.i.d. scaled Gaussian random variables $w_i = \sum_{j=1}^d x_j \cdot g_j$ (where w_i is an element of JL-transformed vector, \mathbf{w}), and the squared L2 norm involves summing squared Gaussians which results in a Chi-squared random variable.

Since $E[g_j]=0$ and $VAR[g_j]=1$ the expected value is $E[w_i]=\sum_{j=1}^d x_j E[g_j]=0$ and, given independence, the variance is $VAR[w_i]=E[w_i^2]-E[w_i]^2=E[w_i^2]-0=\sum_{j=1}^d VAR[x_j\cdot g_j]=\sum_{j=1}^d x_j^2\cdot VAR[g_j]=\sum_{j=1}^d x_j^2\cdot 1=x_1^2+\ldots+x_d^2=||x||_2^2.$ By linearity of expectation, the expected value of the sum of squared Gaussians is also $||x||_2^2$.

$$||\frac{1}{\sqrt{k}}Gx||_2^2 = \frac{1}{k}\sum_{i=1}^k w_i^2$$

$$E\left[\frac{1}{k}\sum_{i=1}^{k}w_{i}^{2}\right] = E\left[\frac{1}{k}\sum_{i=1}^{k}||x||_{2}^{2}\right] = ||x||_{2}^{2}$$

1.2.1 Question 1c

The number of distortions from the empirical simulation and the upper bound $2e^{\frac{-k\epsilon^2}{4}}$ for various k shows the empirical count of distortions is much less than the upper bound. The fraction of distortions represents the probability of $||\mathbf{w}||_2^2$ deviating greater than $\epsilon=0.05$ from the original norm $||\mathbf{x}||_2^2$, and the results demonstrate well that this probability will not exceed the upper bound.

1.2.2 Question 1d

1.3 Question 2

1.3.1 Question 2a

The algorithm returns HEADS with $\frac{1}{2^k}$ Pr by leveraging k independent Bernoulli random variables. By using k independent Bernoulli random variables $X_i \dots X_k$ each with $p = \frac{1}{2}$ the intersection of all outcomes being HEADS is $p^k = \frac{1}{2^k}$. In contrast, the complementary event is handled by returning TAILS immediately if any of the k tosses are not HEADS.

Algorithm 1 BIASED-COIN(k)

```
i=0

while i < k do

c = FLIP(p = \frac{1}{2}) 
ightharpoonup 	ext{flip fair coin}

if c == \text{HEADS then}

i = i + 1

else

return TAILS

end if

end while

return HEADS
```

1.3.2 Question 2b

	Theory	$h = 10^4$ simulations
Expected (Avg) Estimated Count	5000	≈ 5032
Standard Deviation	$\sqrt{\frac{n(n-1)}{2}} \approx 3535$	≈ 3583

Table 1: Morris counter empirical results and theory

1.3.3 Question 2c

	Theory	h = 10(corrected), k = 5
Expected (Avg) Estimated Count	5000	≈ 4883
Standard Deviation	- do not bother-	≈ 552

Table 2: Morris counter median of means

The variance of the median of means Morris counter (part 2c) is less than the variance for the 10^4 individual Morris counters (part 2b). Particularly, using samples means, k=5 super counters, results in lower variance for each trial. Taking the median super-counter from each trial also aids in centering the final outcome since medians are rank-based which can mitigate the undesired weight toward high magnitude outliers.