South Dakota School of Mines and Technology					Page 1	
Listings			39	Derangements		
1	Contest	9	40	Prime Sieve Mobius		
1		2	41	Row Reduce		
2	Hash codes	2	42	Solve Linear Equations MOD		
3	Test on random inputs	2	43	Matrix Inverse		
4		2	44	Euler's Totient Phi Function		
5 6	Bridges and Cuts	2	45	MAX FLOW		
6	Block Vertex Tree	3	46	Dinic		
0	Bridge Tree	3	47	Hungarian		
8	Centroid	3	48	Min Cost Max Flow		
9	Dijkstra	4	49	MISC		
10	Floyd Warshall	4	50	DSU		
11	HLD	4	51	PBDS		
12	Hopcroft Karp	5	52 52	Monotonic Stack		
13	LCA	5 6	53 = 4	Count Rectangles		
14	RANGE DATA STRUCTURES	6	54 55	LIS		
15 16		6	56	Log 2		
16	Lazy Segment Tree	6	50		. 20	
17	Segment Tree, Point Updates	7				
18	Range Hooks	0				
19	BIT	8				
20	RMQ	8				
21	Implicit Lazy Segment Tree	9				
22	Kth Smallest	9 10				
23		10				
24	Merge Sort Tree					
25 26	STRINGS	11				
$\frac{26}{27}$	Suffix Array					
	Prefix Function					
28						
29	KMP					
30	Trie					
31	Binary Trie					
32	Longest Common Prefix Query					
33	MATH					
34	BIN EXP MOD	14				
35	Fibonacci	14				
36	Matrix Mult and Pow					
37	N Choose K MOD	14				

Listing 1: Contest

Listing 2: Hash codes

```
#!/usr/bin/env bash
#Hashes a file, ignoring all:
  - whitespace
   - comments
   - asserts
   - includes
   - pragmas
#Use to verify that code was correctly typed.
#usage:
# chmod +x hash.sh
# cat <file> / ./hash.sh
#or just copy this command:
# cat <file> | sed -r '/(assert/include/pragma)/d' | cpp -fpreprocessed -P | tr -d
    \hookrightarrow '[:space:]' | md5sum | cut -c-6
sed -r '/(assert|include|pragma)/d' | cpp -fpreprocessed -P | tr -d '[:space:]' | md5sum
    \hookrightarrow | cut -c-6
```

Listing 3: Test on random inputs

```
#!/usr/bin/env bash
#runs 2 programs against each other on random inputs until they output different results
#usage:
# chmod +x test.sh
# ./test.sh
for((i = 1; ; ++i)); do
    echo $i
    ./test.out > in
    diff --ignore-all-space <(./a.out < in) <(./brute.out < in) || break
done</pre>
```

Listing 4: GRAPHS

Listing 5: Bridges and Cuts

```
//cat bridges_and_cuts.h | ./hash.sh
//34dc49
#pragma once
//with asserts checking correctness of is_bridge and is_cut
//O(n+m) time & space
//2 edge cc and bcc stuff doesn't depend on each other, so delete whatever is not needed
//handles multiple edges
//example initialization of 'adj':
//for (int i = 0; i < m; i++) {
// int u. v:
// cin >> u >> v;
// u--, v--;
// adj[u].emplace_back(v, i);
// adj[v].emplace_back(u, i);
//}
struct info {
```

```
//2 edge connected component stuff (e.g. components split by bridge edges)
         \hookrightarrow https://cp-algorithms.com/qraph/bridge-searching.html
    int num_2_edge_ccs;
    vector<bool> is_bridge;//edge id -> true iff bridge edge
    vector<int> two_edge_ccid; //node -> id of 2 edge component (which are labeled 0, 1,
         \hookrightarrow ..., 'num_2_edge_ccs'-1)
    //bi connected component stuff (e.g. components split by cut/articulation nodes)
         \hookrightarrow https://cp-algorithms.com/graph/cutpoints.html
    int num_bccs;
    vector<bool> is_cut;//node -> true iff cut node
    vector<int> bcc_id; //edge id -> id of bcc (which are labeled 0, 1, ..., 'num_bccs'-1)
info bridge_and_cut(const vector<vector<pair<int/*neighbor*/, int/*edge id*/>>>&

    → adj/*undirected graph*/, int m/*number of edges*/) {
    //stuff for both (always keep)
    int n = adj.size(), timer = 1;
    vector<int> tin(n, 0);
    //2 edge cc stuff (delete if not needed)
    int num_2_edge_ccs = 0;
    vector<bool> is_bridge(m, false);
    vector<int> two_edge_ccid(n), node_stack;
    //bcc stuff (delete if not needed)
    int num_bccs = 0;
    vector<bool> is_cut(n, false);
    vector<int> bcc_id(m), edge_stack;
    auto dfs = [&](auto self, int v, int p_id) -> int {
        int low = tin[v] = timer++, deg = 0;
        node_stack.push_back(v);
        for (auto [to, e_id] : adj[v]) {
            if (e_id == p_id) continue;
            if (!tin[to]) {
                edge_stack.push_back(e_id);
                int low_ch = self(self, to, e_id);
                if (low_ch >= tin[v]) {
                    is cut[v] = true:
                    while (true) {
                         int edge = edge_stack.back();
                         edge_stack.pop_back();
                        bcc_id[edge] = num_bccs;
                        if (edge == e_id) break;
                    num_bccs++;
                }
                low = min(low, low_ch);
                deg++;
            } else if (tin[to] < tin[v]) {</pre>
                edge_stack.push_back(e_id);
                low = min(low, tin[to]);
            }
        if (p_id == -1) is_cut[v] = (deg > 1);
        if (tin[v] == low) {
            if (p_id != -1) is_bridge[p_id] = true;
            while (true) {
                int node = node_stack.back();
                node_stack.pop_back();
                two_edge_ccid[node] = num_2_edge_ccs;
                if (node == v) break;
            num_2_edge_ccs++;
        }
```

//cat block_vertex_tree.h | ./hash.sh

```
return low:
}:
for (int i = 0; i < n; i++)</pre>
    if (!tin[i])
        dfs(dfs, i, -1);
return {num_2_edge_ccs, is_bridge, two_edge_ccid, num_bccs, is_cut, bcc_id};
```

Listing 6: Block Vertex Tree

```
//4052a5
#pragma once
#include "bridges_and_cuts.h"
//(asserts checking correctness of commented-example-usage-loops)
//returns adjacency list of block vertex tree
//usage:
// info cc = bridge_and_cut(adj, m);
// vector<vector<int>> but = block_vertex_tree(adj, cc);
//to loop over each *unique* bcc containing a node v:
// for(int bccid : bvt[v]) {
       bccid -= n:
//
// }
//to loop over each *unique* node inside a bcc:
// for(int v : bvt[bccid + n]) {
// }
vector<vector<int>> block_vertex_tree(const vector<vector<pair<int, int>>>& adj, const
    \hookrightarrow info% cc) {
    int n = adj.size();
    vector<vector<int>> bvt(n + cc.num_bccs);
    vector<bool> vis(cc.num_bccs, false);
    for (int v = 0; v < n; v++) {
        for (auto [_, e_id] : adj[v]) {
            int bccid = cc.bcc_id[e_id];
            if (!vis[bccid]) {
                vis[bccid] = true:
                bvt[v].push_back(bccid + n);//add edge between original node, and bcc
                bvt[bccid + n].push_back(v);
        }
        for (int bccid : bvt[v])
            vis[bccid - n] = false;
    }
    return bvt;
```

Listing 7: Bridge Tree

```
//cat bridge_tree.h | ./hash.sh
//85f56b
#pragma once
#include "bridges and cuts.h"
//never adds multiple edges as bridges_and_cuts.h correctly marks them as non-bridges
//usage:
// info cc = bridge_and_cut(adj, m);
// vector<vector<int>> bt = bridge_tree(adj, cc);
```

```
vector<vector<int>>> bridge_tree(const vector<vector<pair<int, int>>>& adj, const info&
    vector<vector<int>> tree(cc.num_2_edge_ccs);
    for (int i = 0; i < (int)adj.size(); i++)</pre>
        for (auto [to, e_id] : adj[i])
            if (cc.is_bridge[e_id])
                tree[cc.two_edge_ccid[i]].push_back(cc.two_edge_ccid[to]);
    return tree;
```

Listing 8: Centroid

```
//cat centroid.h / ./hash.sh
//4ba5e4
#pragma once
//with asserts checking depth of tree <= log2(n)
//returns array 'par' where 'par[i]' = parent of node 'i' in centroid tree
//'par[root]' is -1
//0-based nodes
//0(n \log n)
//example usage:
// vector<int> parent = get_centroid_tree(adj);
// vector<vector<int>> childs(n);
// int root;
// for (int i = 0; i < n; i++) {
        if (parent[i] == -1)
//
            root = i;
//
        else
//
            childs[parent[i]].push_back(i);
// }
vector<int> get_centroid_tree(const vector<vector<int>>& adj/*unrooted tree*/) {
    int n = adj.size();
    vector<int> sizes(n);
    vector<bool> vis(n, false);
    auto dfs_sz = [&](auto self, int node, int par) -> void {
        sizes[node] = 1;
        for (int to : adj[node]) {
            if (to != par && !vis[to]) {
                self(self, to, node);
                sizes[node] += sizes[to];
        }
    };
    auto find_centroid = [&](int node) -> int {
        dfs_sz(dfs_sz, node, node);
        int size_cap = sizes[node] / 2, par = -1;
        while (true) {
            bool found = false;
            for (int to : adj[node]) {
                if (to != par && !vis[to] && sizes[to] > size_cap) {
                    found = true;
                    par = node;
                    node = to;
                    break;
            if (!found) return node;
    };
    vector<int> parent(n);
```

```
auto dfs = [&](auto self, int node, int par) -> void {
    node = find centroid(node);
    parent[node] = par;
    vis[node] = true;
    for (int to : adj[node]) {
        if (!vis[to])
            self(self, to, node);
    }
};
dfs(dfs, 0, -1):
return parent;
```

Listing 9: Dijkstra

```
//cat dijkstra.h / ./hash.sh
//6b6195
#pragma once
//returns array 'len' where 'len[i]' = shortest path from node v to node i
//For\ example\ len[v]\ will\ always = 0
const long long inf = 1e18;
vector<long long> dijkstra(const vector<vector<pair<int, long long>>>& adj /*directed or
    \hookrightarrow undirected, weighted graph*/, int v) {
    vector<long long> len(adj.size(), inf);
   len[v] = 0:
    set<pair<long long/*weight*/, int/*node*/>> q;
   q.insert({OLL, v});
    while (!q.empty()) {
        auto it = q.begin();
       int node = it->second;
       q.erase(it);
       for (auto [to, weight] : adj[node])
            if (len[to] > weight + len[node]) {
                q.erase({len[to], to});
                len[to] = weight + len[node];
                q.insert({len[to], to});
   }
    return len;
```

Listing 10: Floyd Warshall

```
//cat floyd_warshall.h | ./hash.sh
//84799a
#pragma once
//status: not tested
//**for directed graphs only** if you initialize len[i][i] to infinity, then
//afterward floyds, len[i][i] = length of shortest cycle including node 'i'
//another trick: change 'len' to 2d array of *bools* where len[i][j] = true if
//there exists an edge from i -> j in initial graph. Also do:
// 'len[i][j] = len[i][j] / (len[i][k] \mathcal{E} len[k][j]) '
//Then after floyds, len[i][j] = true iff there's exists some path from node
//'i' to node 'i'
//Changing the order of for-loops to i-j-k (instead of the current k-i-j)
//results in min-plus matrix multiplication. If adjacency matrix is 'mat', then
//after\ computing\ mat^k (with binary exponentiation), mat[i][j] = min length path
```

```
//from i to j with at most k edges.
for (int k = 0: k < n: k++)
    for (int i = 0; i < n; i++)</pre>
        for (int j = 0; j < n; j++)
            len[i][j] = min(len[i][j], len[i][k] + len[k][j]);
```

Listing 11: HLD

```
//cat hld.h / ./hash.sh
//fc7355
#pragma once
//source: https://codeforces.com/blog/entry/53170
//assumes a single tree, 1-based nodes is possible by passing in 'root' in range [1, n]
//mnemonic: Heavy Light Decomposition
//NOLINTNEXTLINE(readability-identifier-naming)
struct HLD {
    int n:
    vector<int> sub_sz, par, time_in, next;
    HLD(vector<vector<int>>& adj /*single unrooted tree*/, int root) :
        n(adj.size()), sub_sz(n, 1), par(n, root), time_in(n), next(n, root) {
        dfs1(root, adj);
        int timer = 0:
        dfs2(root, adj, timer);
    void dfs1(int node, vector<vector<int>>& adj) {
        for (int& to : adj[node]) {
            if (to == par[node]) continue;
            par[to] = node;
            dfs1(to, adj);
            sub_sz[node] += sub_sz[to];
            if (sub_sz[to] > sub_sz[adj[node][0]] || adj[node][0] == par[node])
                swap(to, adj[node][0]);
    void dfs2(int node, const vector<vector<int>>& adj, int& timer) {
        time_in[node] = timer++;
        for (int to : adj[node]) {
            if (to == par[node]) continue;
            next[to] = (timer == time_in[node] + 1 ? next[node] : to);
            dfs2(to, adj, timer);
    // Returns inclusive-exclusive intervals (of time_in's) corresponding to the path
         \hookrightarrow between u and v, not necessarily in order
    // This can answer queries for "is some node 'x' on some path" by checking if the
         \hookrightarrow time_in[x] is in any of these intervals
    vector<pair<int, int>> path(int u, int v) const {
        vector<pair<int, int>> res;
        for (;; v = par[next[v]]) {
            if (time_in[v] < time_in[u]) swap(u, v);</pre>
            if (time_in[next[v]] <= time_in[u]) {</pre>
                res.emplace_back(time_in[u], time_in[v] + 1);
                return res;
            res.emplace_back(time_in[next[v]], time_in[v] + 1);
    // Returns interval (of time_in's) corresponding to the subtree of node i
    // This can answer queries for "is some node 'x' in some other node's subtree" by
         \hookrightarrow checking if time_in[x] is in this interval
```

```
pair<int, int> subtree(int i) const {
    return {time_in[i], time_in[i] + sub_sz[i]};
}

// Returns lca of nodes u and v
int lca(int u, int v) const {
    for (;; v = par[next[v]]) {
        if (time_in[v] < time_in[u]) swap(u, v);
        if (time_in[next[v]] <= time_in[u]) return u;
    }
};</pre>
```

Listing 12: Hopcroft Karp

```
//cat hopcroft_karp.h / ./hash.sh
//7d04ba
#pragma once
//with asserts checking correctness of min vertex cover
//source:
    //Worst case O(E*sqrt(V)) but faster in practice
struct match {
   //# of edges in matching (which = size of min vertex cover by öKnig's theorem)
   int size_of_matching;
   //an arbitrary max matching is found. For this matching:
   //if l_to_r[node_left] == -1:
   // node_left is not in matching
   //else:
   // the edge 'node_left' <=> l_to_r[node_left] is in the matching
   //
   //similarly for r_to_l with edge r_to_l[node_right] <=> node_right in matching if
        \hookrightarrow r_to_l[node_right] != -1
   //matchings stored in l_to_r and r_to_l are the same matching
   //provides way to check if any node/edge is in matching
   vector<int> l_to_r, r_to_l;
   //an arbitrary min vertex cover is found. For this mvc: mvc_l[node_left] is true iff
        \hookrightarrow node_left is in the min vertex cover (same for mvc_r)
   //if mvc_l[node_left] is false, then node_left is in the corresponding maximal
        \hookrightarrow independent set
   vector<bool> mvc_1, mvc_r;
//Think of the bipartite graph as having a left side (with size lsz) and a right side
    \hookrightarrow (with size rsz).
//Nodes on left side are indexed 0,1,...,lsz-1
//Nodes on right side are indexed 0,1,...,rsz-1
//'adj' is like a directed adjacency list containing edges from left side -> right side:
//To initialize 'adj': For every edge node_left <=> node_right, do:

    adj[node_left].push_back(node_right)

match hopcroft_karp(const vector<vector<int>>& adj/*bipartite graph*/, int rsz/*number
    \hookrightarrow of nodes on right side*/) {
   int size_of_matching = 0, lsz = adj.size();
   vector<int> l_to_r(lsz, -1), r_to_l(rsz, -1);
   while (true) {
       queue<int> q;
       vector<int> level(lsz, -1):
       for (int i = 0; i < lsz; i++) {
           if (l_to_r[i] == -1) level[i] = 0, q.push(i);
       bool found = false;
```

```
vector<bool> mvc_l(lsz, true), mvc_r(rsz, false);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        mvc_l[u] = false;
        for (int x : adj[u]) {
            mvc r[x] = true:
            int v = r_{to_1[x]}
            if (v == -1) found = true;
            else if (level[v] == -1) {
                level[v] = level[u] + 1;
                q.push(v);
    }
    if (!found) return {size_of_matching, l_to_r, r_to_l, mvc_l, mvc_r};
    auto dfs = [&](auto self, int u) -> bool {
        for (int x : adj[u]) {
            int v = r_{to_1[x]};
            if (v == -1 || (level[u] + 1 == level[v] && self(self, v))) {
                r_{to_1[x]} = u;
                return true;
        level[u] = 1e9; //acts as visited array
        return false;
    };
    for (int i = 0; i < lsz; i++)</pre>
        size_of_matching += (l_to_r[i] == -1 && dfs(dfs, i));
}
```

Listing 13: LCA

```
//cat lca.h / ./hash.sh
//90ab04
#pragma once
//https://codeforces.com/blog/entry/74847
//assumes a single tree, 1-based nodes is possible by passing in 'root' in range [1, n]
//mnemonic: Least/Lowest Common Ancestor
//NOLINTNEXTLINE(readability-identifier-naming)
struct LCA {
    int n;
    vector<int> jmp, jmp_edges, par, depth;
    vector<long long> dist;
    LCA(const vector<vector<pair<int, long long>>>& adj, int root) :
        n(adj.size()), jmp(n, root), jmp_edges(n, 1), par(n, root), depth(n, 0), dist(n,
             \hookrightarrow OLL) {
        dfs(root, adj);
    void dfs(int node, const vector<vector<pair<int, long long>>>& adj) {
        for (auto [ch, w] : adj[node]) {
            if (ch == par[node]) continue;
            par[ch] = node;
            depth[ch] = 1 + depth[node];
            dist[ch] = w + dist[node]:
            if (depth[node] > 0 && jmp_edges[node] == jmp_edges[jmp[node]])
                imp[ch] = imp[imp[node]], imp_edges[ch] = 2 * imp_edges[node] + 1;
            else
```

```
jmp[ch] = node;
            dfs(ch, adj);
        }
    }
    //traverse up k edges in O(log(k)). So with k=1 this returns 'node''s parent
    int kth_par(int node, int k) const {
        k = \min(k, depth[node]):
        while (k > 0) {
            if (jmp_edges[node] <= k) {</pre>
                k -= jmp_edges[node];
                node = imp[node];
            } else {
                k--;
                node = par[node];
            }
        }
        return node;
    }
    int get_lca(int x, int y) const {
        if (depth[x] < depth[y]) swap(x, y);</pre>
        x = kth_par(x, depth[x] - depth[y]);
        while (x != y) {
            if (jmp[x] != jmp[y])
                x = jmp[x], y = jmp[y];
            else
                x = par[x], y = par[y];
        }
        return x;
    }
    int dist_edges(int x, int y) const {
        return depth[x] + depth[y] - 2 * depth[get_lca(x, y)];
   }
    long long dist_weight(int x, int y) const {
        return dist[x] + dist[y] - 2 * dist[get_lca(x, y)];
    }
};
```

Listing 14: SCC

//cat scc.h / ./hash.sh

```
//8fa337
#pragma once
//source:
    \hookrightarrow https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/SCC.h
//mnemonic: Strongly Connected Component
struct scc_info {
   int num_sccs;
    //scc's are labeled 0.1.... 'num sccs-1'
    //scc_id[i] is the id of the scc containing node 'i'
    //for each edge i \rightarrow j: scc_id[i] >= scc_id[j] (topo order of scc's)
    vector<int> scc_id;
//NOLINTNEXTLINE(readability-identifier-naming)
scc_info SCC(const vector<vector<int>>& adj /*directed, unweighted graph*/) {
    int n = adj.size(), timer = 1, num_sccs = 0;
    vector<int> tin(n, 0), scc_id(n, -1), node_stack;
    auto dfs = [&](auto self, int v) -> int {
        int low = tin[v] = timer++;
        node_stack.push_back(v);
        for (int to : adj[v]) {
```

```
if (scc id[to] < 0)</pre>
            low = min(low, tin[to] ? tin[to] : self(self, to));
    if (tin[v] == low) {
        while (true) {
            int node = node_stack.back();
            node_stack.pop_back();
            scc_id[node] = num_sccs;
            if (node == v) break;
        num_sccs++;
    }
    return low;
};
for (int i = 0; i < n; i++) {
    if (!tin[i])
        dfs(dfs, i);
return {num_sccs, scc_id};
```

Listing 15: RANGE DATA STRUCTURES

Listing 16: Lazy Segment Tree

```
//cat lazy_seq_tree.h | ./hash.sh
//aeaa56
#pragma once
//source: https://codeforces.com/blog/entry/18051
#include "range_hook.h"
const long long inf = 1e18;
struct seg_tree {
    using dt /*data type*/ = long long;//min
    struct node {
        dt val;
        long long lazy;
        int 1, r;//[l, r)
        int len() const {
            return r - 1:
        }
    };
    range_hook rh;
    vector<node> tree;
    seg_tree(const vector<long long>& arr) : rh(range_hook(arr.size())), tree(2 * rh.n) {
        for (int i = 0; i < rh.n; i++) {</pre>
            tree[rh.leaf_idx(i)] = {
                arr[i],
                Ο,
                i,
                i + 1
            };
        }
        for (int i = rh.n - 1; i >= 1; i--) {
            tree[i] = {
                pull(tree[2 * i].val, tree[2 * i + 1].val),
                tree[2 * i].1,
                tree[2 * i + 1].r
```

```
};
        }
    }
    //what happens when 'add' is applied to every index in range [tree[v].l, tree[v].r)?
    void apply(int v, long long add) {
        tree[v].val += add;
        tree[v].lazv += add:
    }
    void push(int v) {
        if (tree[v].lazv) {
            apply(2 * v, tree[v].lazy);
            apply(2 * v + 1, tree[v].lazy);
            tree[v].lazy = 0;
        }
    }
    static dt pull(const dt& 1, const dt& r) {
        return min(1, r);
    }
    //update range [l, r) with 'add'
    void update(int 1, int r, long long add) {
        rh.for_parents_down(l, r, [&](int v) -> void {
        }):
        rh.for_each(1, r, [&](int v) -> void {
             apply(v, add);
        });
        rh.for_parents_up(l, r, [&](int v) -> void {
            tree[v].val = pull(tree[2 * v].val, tree[2 * v + 1].val);
        });
    }
    void update(int v/* = 1*/, int 1, int r, long long add) {
        if (r <= tree[v].1 || tree[v].r <= 1)</pre>
        if (1 <= tree[v].1 && tree[v].r <= r)</pre>
            return apply(v, add);
        push(v):
        update(2 * v, 1, r, add);
        update(2 * v + 1, 1, r, add);
        tree[v].val = pull(tree[2 * v].val, tree[2 * v + 1].val);
    }
    //query range [l. r)
    dt query(int 1, int r) {
        rh.for_parents_down(l, r, [&](int v) -> void {
            push(v);
        });
        dt res = inf:
        //switch out with for_each_l_to_r if order matters
        rh.for_each(l, r, [&](int v) -> void {
            res = pull(res, tree[v].val);
        });
        return res;
    dt query(int v/* = 1*/, int 1, int r) {
        if (r <= tree[v].1 || tree[v].r <= 1)
            return inf;
        if (1 <= tree[v].1 && tree[v].r <= r)</pre>
            return tree[v].val:
        push(v);
        return pull(query(2 * v, 1, r), query(2 * v + 1, 1, r));
};
```

Listing 17: Segment Tree, Point Updates

```
//cat seg_tree.h | ./hash.sh
//009984
#pragma once
//source: https://codeforces.com/blog/entry/18051
#include "range_hook.h"
struct simple_seg_tree {
    using dt /*data type*/ = long long;//sum
    range_hook rh;
    vector<dt> tree;
    simple_seg_tree(const vector<dt>& arr) : rh(range_hook(arr.size())), tree(2 * rh.n) {
        for (int i = 0; i < rh.n; i++)
            tree[rh.leaf_idx(i)] = arr[i];
        for (int i = rh.n - 1; i >= 1; i--)
            tree[i] = pull(tree[2 * i], tree[2 * i + 1]);
    static dt pull(const dt& 1, const dt& r) {
        return 1 + r;
    //update index 'idx' with 'add'
    void update(int idx, dt add) {
        tree[rh.leaf_idx(idx)] += add;
        rh.for_parents_up(idx, idx + 1, [&](int v) -> void {
            tree[v] = pull(tree[2 * v], tree[2 * v + 1]);
        });
    //query range [l, r)
    dt query(int 1, int r) {
        dt res = 0:
        //switch out with for_each_l_to_r if order matters
        rh.for_each(1, r, [&](int v) -> void {
            res = pull(res, tree[v]);
        });
        return res:
    }
};
```

Listing 18: Range Hooks

```
//cat range_hook.h | ./hash.sh
//eb5ece
#pragma once
//source: https://qithub.com/ecnerwala/cp-book/blob/master/src/seq_tree.hpp
#include "../misc/log_2.h"
struct range_hook {
    const int n, lg;//lq is the smallest integer satisfying 2^lq >= n
    range_hook(int a_n) : n(a_n), lg(log_2(2 * n - 1)) {}
    int leaf_idx(int i) const {//index in array -> index of leaf in seq_tree
        assert(0 <= i && i < n);</pre>
        i += 1 << lg;
        return i < 2 * n ? i : i - n:
    int arr_idx(int i) const {//index of leaf in seq_tree -> index in array
        assert(n \le i \&\& i \le 2 * n):
        return (i < (1 << lg) ? i + n : i) - (1 << lg);
    int range_idx(int i) const {//range query bound -> index of leaf in seq_tree
```

```
assert(0 <= i && i <= n);
        i += 1 << lg:
        return i < 2 * n ? i : 2 * (i - n);
    }
    // Iterate over the range from outside-in.
    // Calls f(idx)
    template <typename F> void for_each(int 1, int r, F f) const {
        assert(1 <= r);</pre>
        if (1 == r) return;
        for (l = range_idx(l), r = range_idx(r); l < r; l >>= 1, r >>= 1) {
            if (1 & 1) f(1++);
            if (r & 1) f(--r);
        }
    }
    // Iterate over the range from left to right.
    // Calls f(idx)
    template <typename F> void for_each_l_to_r(int l, int r, F f) const {
        assert(1 <= r);</pre>
        if (1 == r) return;
        int a = range_idx(1), b = range_idx(r);
        int anc_depth = log_2((a - 1) ^ b);
        int anc_msk = (1 << anc_depth) - 1;</pre>
        for (int v = (-a) \& anc_msk; v; v \&= v - 1) {
             int i = __builtin_ctz(v);
             f(((a - 1) >> i) + 1);
        for (int v = b & anc_msk; v;) {
            int i = log_2(v);
            f((b >> i) - 1);
            v = (1 << i);
        }
    template <typename F> void for_parents_down(int 1, int r, F f) const {
        assert(1 <= r);</pre>
        if (1 == r) return;
        int x = range_idx(1), y = range_idx(r);
        if ((x ^ y) > x)
            x \ll 1, swap(x, y);
        int dx = __builtin_ctz(x);
        int dy = __builtin_ctz(y);
        int anc_depth = log_2((x - 1) ^ y);
        for (int i = log_2(x); i > dx; i--)
            f(x >> i);
        for (int i = anc_depth; i > dy; i--)
            f(v >> i);
    }
    template <typename F> void for_parents_up(int 1, int r, F f) const {
        assert(1 <= r);</pre>
        if (1 == r) return;
        int x = range_idx(1), y = range_idx(r);
        if ((x ^ y) > x)
            x \ll 1, swap(x, y);
        int dx = __builtin_ctz(x);
        int dy = __builtin_ctz(y);
        int anc_depth = log_2((x - 1) ^ y);
        for (int i = dx + 1; i \le anc_{depth}; i++)
            f(x >> i):
        for (int v = y >> (dy + 1); v; v >>= 1)
             f(v);
    }
};
```

Listing 19: BIT

```
//cat bit.h / ./hash.sh
//d89ca7
#pragma once
#include "../misc/log_2.h"
//mnemonic: Binary Indexed Tree
//NOLINTNEXTLINE(readability-identifier-naming)
template < class T> struct BIT {
    const int n;
    vector<T> bit;
    BIT(int a_n) : n(a_n), bit(n + 1, 0) {}
    BIT(const vector\langle T \rangle \& a) : n(a.size()), bit(n + 1, 0) {
         for (int i = 1; i <= n; i++) {
             bit[i] += a[i - 1];
             int j = i + (i \& -i);
             if (j <= n) bit[j] += bit[i];</pre>
    }
    void update(int i, const T& d) {
         assert(0 \le i \&\& i \le n):
         for (i++; i <= n; i += i & -i) bit[i] += d;
    T sum(int r) const {//sum of range [0, r)
        assert(0 <= r && r <= n);
        T ret = 0;
        for (; r; r -= r & -r) ret += bit[r];
         return ret;
    T sum(int 1, int r) const {//sum of range [l, r)
         assert(0 <= 1 && 1 <= r && r <= n);
         return sum(r) - sum(l):
    //Returns min pos such that sum of [0, pos) >= sum
    //Returns \ n + 1 \ if \ no \ sum \ is >= sum, \ or \ 0 \ if \ empty \ sum \ is.
    //Doesn't work with negatives
    int lower_bound(T sum) const {
         if (sum <= 0) return 0:</pre>
         int pos = 0;
        for (int pw = 1 << log_2(n | 1); pw; pw >>= 1) {
             if (pos + pw <= n && bit[pos + pw] < sum)</pre>
                 pos += pw, sum -= bit[pos];
         return pos + 1;
    }
};
```

Listing 20: RMQ

```
//cat rmq.h | ./hash.sh

//23c1d3

#pragma once

#include "../misc/log_2.h"

//usage:

// vector<long long> arr;

// ...

// RMQ<long long> st(arr, [8](auto x, auto y) { return min(x,y); });
```

//cat implicit_seg_tree.h | ./hash.sh

//f09625

```
//to also get index of min element, do:
// RMQ < pair < T, int >> st(arr, [8](auto x, auto y) { <math>return min(x, y); });
//and\ initialize\ arr[i].second = i\ (0 <= i < n)
//If there are multiple indexes of min element, it'll return the smallest
//(left-most) one
//mnemonic: Range Min/Max Query
//NOLINTNEXTLINE(readability-identifier-naming)
template <class T> struct RMQ {
    vector<vector<T>> dp;
    function<T(const T&, const T&)> func:
    RMQ(const vector<T>& arr, const function<T(const T&, const T&)>& a_func) : dp(1,
         for (int pw = 1, k = 1, n = arr.size(); 2 * pw <= n; pw *= 2, k++) {
            dp.emplace_back(n - 2 * pw + 1);
            for (int j = 0; j < n - 2 * pw + 1; j++)
                dp[k][j] = func(dp[k - 1][j], dp[k - 1][j + pw]);
    }
    //inclusive-exclusive range [l, r)
    T query(int 1, int r) const {
        int lg = log_2(r - 1);
        assert(lg >= 0); //same as l < r
        return func(dp[lg][1], dp[lg][r - (1 << lg)]);</pre>
   }
};
```

Listing 21: Implicit Lazy Segment Tree

```
#pragma once
using dt = array<long long, 3>; //sum, max, min
const long long inf = 1e18;
const int sz = 2e7;
struct node {
    dt val;
    long long lazy;
    int lch, rch; // children, indexes into 'tree', -1 for null
    node(const dt& a_val) : val(a_val), lazy(0), lch(-1), rch(-1) {}
} tree[sz]:
struct implicit_seg_tree {
    int ptr, root_1, root_r;//[root_1, root_r) defines range of root node; handles
        \hookrightarrow negatives
    implicit_seg_tree(int 1, int r) : ptr(0), root_1(1), root_r(r) {
        tree[ptr++] = node(dt\{0, 0, 0\});
    //what happens when 'add' is applied to every index in range [tl, tr)?
    void apply(int v, int tl, int tr, long long add) {
        tree[v].val[0] += (tr - tl) * add;
        tree[v].val[1] += add;
        tree[v].val[2] += add;
        tree[v].lazy += add;
    void push(int v, int tl, int tr) {
        if (tr - tl > 1 && tree[v].lch == -1) {
            assert(ptr + 1 < sz):
            tree[v].lch = ptr;
            tree[ptr++] = node(dt\{0, 0, 0\});
            tree[v].rch = ptr;
```

```
tree[ptr++] = node(dt{0, 0, 0});
        if (tree[v].lazy) {
            int tm = tl + (tr - tl) / 2;
            apply(tree[v].lch, tl, tm, tree[v].lazy);
            apply(tree[v].rch, tm, tr, tree[v].lazy);
            tree[v].lazy = 0;
        }
    static dt pull(const dt& 1, const dt& r) {
        return {
            1[0] + r[0],
            \max(1[1], r[1]),
            min(1[2], r[2])
        };
    }
    //update range [l,r) with 'add'
    void update(int 1, int r, long long add) {
        update(0, root_1, root_r, 1, r, add);
    void update(int v, int tl, int tr, int l, int r, long long add) {
        if (r <= tl || tr <= 1)
            return:
        if (1 <= t1 && tr <= r)</pre>
            return apply(v, tl, tr, add);
        push(v, tl, tr);
        int tm = tl + (tr - tl) / 2;
        update(tree[v].lch, tl, tm, l, r, add);
        update(tree[v].rch, tm, tr, 1, r, add);
        tree[v].val = pull(tree[tree[v].lch].val,
                            tree[tree[v].rch].val);
    //query range [l,r)
    dt query(int 1, int r) {
        return query(0, root_1, root_r, 1, r);
    dt query(int v, int tl, int tr, int l, int r) {
        if (r <= tl || tr <= 1)
            return {0, -inf, inf};
        if (1 <= t1 && tr <= r)</pre>
            return tree[v].val:
        push(v, tl, tr);
        int tm = tl + (tr - tl) / 2;
        return pull(query(tree[v].lch, tl, tm, l, r),
                    query(tree[v].rch, tm, tr, 1, r));
};
```

Listing 22: Kth Smallest

```
int mn, mx;
    vector<int> roots:
    deque<node> tree;
    kth smallest(const vector<int>& arr) : mn(INT MAX), mx(INT MIN), roots(arr.size() +
        tree.push_back({0, 0, 0}); //acts as null
        for (int val : arr) mn = min(mn, val), mx = max(mx, val + 1);
        for (int i = 0; i < (int)arr.size(); i++)</pre>
            roots[i + 1] = update(roots[i], mn, mx, arr[i]);
    }
    int update(int v, int tl, int tr, int idx) {
        if (tr - tl == 1) {
            tree.push_back({tree[v].sum + 1, 0, 0});
            return tree.size() - 1;
        }
        int tm = tl + (tr - tl) / 2;
        int lch = tree[v].lch;
        int rch = tree[v].rch;
        if (idx < tm)</pre>
            lch = update(lch, tl, tm, idx);
            rch = update(rch, tm, tr, idx);
        tree.push_back({tree[lch].sum + tree[rch].sum, lch, rch});
        return tree.size() - 1;
    }
    /* find (k+1)th smallest number in range [l, r)
     * k is 0-based, so query(l,r,0) returns the min
    int query(int 1, int r, int k) const {
        assert(0 \le k \&\& k \le r - 1); //note this condition implies <math>l \le r
        assert(0 <= 1 && r < (int)roots.size());</pre>
        return query(roots[1], roots[r], mn, mx, k);
   }
    int query(int vl, int vr, int tl, int tr, int k) const {
        assert(tree[vr].sum > tree[vl].sum);
        if (tr - tl == 1)
            return tl;
        int tm = tl + (tr - tl) / 2:
        int left_count = tree[tree[vr].lch].sum - tree[tree[vl].lch].sum;
        if (left_count > k) return query(tree[v1].lch, tree[vr].lch, t1, tm, k);
        return query(tree[v1].rch, tree[vr].rch, tm, tr, k - left_count);
   }
};
```

Listing 23: Number Distinct Elements

```
deque<node> tree;
    distinct_query(const vector<int>& arr) : n(arr.size()), roots(n + 1, 0) {
        tree.push_back({0, 0, 0}); //acts as null
        map<int, int> last_idx;
        for (int i = 0; i < n; i++) {
            roots[i + 1] = update(roots[i], 0, n, last_idx[arr[i]]);
            last_idx[arr[i]] = i + 1;
        }
    }
    int update(int v, int tl, int tr, int idx) {
        if (tr - tl == 1) {
            tree.push_back({tree[v].sum + 1, 0, 0});
            return tree.size() - 1;
        int tm = tl + (tr - tl) / 2;
        int lch = tree[v].lch;
        int rch = tree[v].rch;
        if (idx < tm)
            lch = update(lch, tl, tm, idx);
            rch = update(rch, tm, tr, idx);
        tree.push_back({tree[lch].sum + tree[rch].sum, lch, rch});
        return tree.size() - 1;
    //returns number of distinct elements in range [l,r)
    int query(int 1, int r) const {
        assert(0 \le 1 \&\& 1 \le r \&\& r \le n);
        return query(roots[1], roots[r], 0, n, 1 + 1);
    int query(int vl, int vr, int tl, int tr, int idx) const {
        if (tree[vr].sum == 0 || idx <= tl)</pre>
            return 0:
        if (tr <= idx)</pre>
            return tree[vr].sum - tree[vl].sum;
        int tm = tl + (tr - tl) / 2:
        return query(tree[v1].lch, tree[vr].lch, tl, tm, idx) +
               query(tree[v1].rch, tree[vr].rch, tm, tr, idx);
    }
};
```

Listing 24: Merge Sort Tree

```
//cat merge_sort_tree.h | ./hash.sh
//Ocdfde
#pragma once
//For point updates: either switch to policy based BST, or use sqrt decomposition
#include "../range_hook.h"
struct merge_sort_tree {
    range_hook rh;
    vector<vector<int>> tree;
    merge_sort_tree(const vector<int>& arr) : rh(range_hook(arr.size())), tree(2 * rh.n)
        \hookrightarrow {
        for (int i = 0; i < rh.n; i++)
            tree[rh.leaf_idx(i)] = {arr[i]};
        for (int i = rh.n - 1; i >= 1; i--) {
            const auto& 1 = tree[2 * i]:
            const auto& r = tree[2 * i + 1];
            merge(1.begin(), 1.end(), r.begin(), r.end(), back_inserter(tree[i]));
       }
```

```
}
//How many values in range [l, r) are < x?
//O(log^2(n))
int query(int l, int r, int x) {
    int res = 0;
    rh.for_each(l, r, [&](int v) -> void {
        const vector<int>& val = tree[v];
        res += lower_bound(val.begin(), val.end(), x) - val.begin();
    });
    return res;
}
```

Listing 25: STRINGS

Listing 26: Suffix Array

```
//cat suffix_array.h | ./hash.sh
//46840a
#pragma once
//source: https://judge.yosupo.jp/submission/37410
//0(n)
//mnemonic: Suffix Array Induced Sorting
template<class T> vector<int> sa_is(const T& s, int upper/*max element of 's'; for
    \hookrightarrow std::string, pass in 255*/) {
    int n = (int)s.size();
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    vector<int> sa(n):
    vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--)
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i])
            sum_s[s[i]]++;
        else
            sum_l[s[i] + 1]++;
   }
   for (int i = 0; i <= upper; i++) {</pre>
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];</pre>
   }
    vector<int> buf(upper + 1);
    auto induce = [&](const vector<int>& lms) {
        fill(sa.begin(), sa.end(), -1);
        fill(buf.begin(), buf.end(), 0);
        copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
```

```
copy(sum_l.begin(), sum_l.end(), buf.begin());
    sa[buf[s[n-1]]++] = n-1;
    for (int i = 0; i < n; i++) {
        int v = sa[i];
        if (v >= 1 && !ls[v - 1])
            sa[buf[s[v - 1]] ++] = v - 1;
    copy(sum_l.begin(), sum_l.end(), buf.begin());
    for (int i = n - 1; i \ge 0; i--) {
        int v = sa[i];
        if (v >= 1 && ls[v - 1])
            sa[--buf[s[v - 1] + 1]] = v - 1;
    }
};
vector<int> lms_map(n + 1, -1);
int m = 0:
for (int i = 1; i < n; i++) {</pre>
    if (!ls[i - 1] && ls[i])
        lms_map[i] = m++;
vector<int> lms:
lms.reserve(m):
for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i])
        lms.push_back(i);
induce(lms);
if (m) {
    vector<int> sorted_lms;
    sorted_lms.reserve(m);
    for (int v : sa) {
        if (lms_map[v] != -1) sorted_lms.push_back(v);
    vector<int> rec_s(m);
    int rec_upper = 0;
    rec_s[lms_map[sorted_lms[0]]] = 0;
    for (int i = 1: i < m: i++) {
        int l = sorted_lms[i - 1], r = sorted_lms[i];
        int end_1 = (lms_map[1] + 1 < m) ? lms[lms_map[1] + 1] : n;</pre>
        int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
        bool same = true;
        if (end_l - l != end_r - r)
            same = false:
        else {
            while (1 < end 1) {
                if (s[1] != s[r])
                    break;
                1++:
                r++;
            if (1 == n || s[1] != s[r]) same = false;
        if (!same) rec_upper++;
        rec_s[lms_map[sorted_lms[i]]] = rec_upper;
    }
    auto rec sa =
        sa_is(rec_s, rec_upper);
    for (int i = 0; i < m; i++)</pre>
        sorted_lms[i] = lms[rec_sa[i]];
    induce(sorted_lms);
```

```
return sa;
}
```

Listing 27: LCP

```
//cat lcp.h / ./hash.sh
//064842
#pragma once
//source: https://judge.yosupo.jp/submission/37410
//mnemonic: Longest Common Prefix
//NOLINTNEXTLINE(readability-identifier-naming)
template<class T> vector<int> LCP(const T& s, const vector<int>& sa) {
   int n = s.size(), k = 0;
    vector<int> lcp(n, 0);
   vector<int> rank(n, 0);
   for (int i = 0; i < n; i++) rank[sa[i]] = i;</pre>
   for (int i = 0; i < n; i++, k ? k-- : 0) {
       if (rank[i] == n - 1) {
           k = 0;
            continue;
       int j = sa[rank[i] + 1];
       while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j + k]) k++;
       lcp[rank[i]] = k;
   }
   return lcp;
```

Listing 28: Prefix Function

```
//cat prefix_function.h / ./hash.sh
//aa0518
#pragma once
//source: https://cp-algorithms.com/string/prefix-function.html#implementation
template <class T> vector<int> prefix_function(const T& s) {
   int n = s.size();
   vector<int> pi(n, 0);
   for (int i = 1; i < n; i++) {
      int j = pi[i - 1];
      while (j > 0 && s[i] != s[j]) j = pi[j - 1];
      pi[i] = j + (s[i] == s[j]);
   }
   return pi;
}
```

Listing 29: KMP

```
//cat kmp.h | ./hash.sh
//9d70ad
#pragma once
//mnemonic: Knuth Morris Pratt
#include "prefix_function.h"
//usage:
// string needle;
// ...
// KMP kmp(needle);
//or
```

```
// vector<int> needle:
// ...
// KMP kmp(needle);
//kmp doubling trick: to check if 2 arrays are rotationally equivalent: run kmp
//with one array as the needle and the other array doubled (excluding the first
//8 last characters) as the haystack or just use kactl's min rotation code
//NOLINTNEXTLINE(readability-identifier-naming)
template <class T> struct KMP {
    KMP(const T& a_needle) : pi(prefix_function(a_needle)), needle(a_needle) {}
    // if haustack = "bananas"
    // needle = "ana"
    // then we find 2 matches:
    // bananas
    // ana
    // ___ana_
    // 0123456 (indexes)
    // and KMP::find returns {1,3} - the indexes in haystack where
    // each match starts.
    // You can also pass in false for "all" and KMP::find will only
    // return the first match: {1}. Useful for checking if there exists
    // some match:
    // KMP::find(<haystack>,false).size() > 0
    vector<int> find(const T& haystack, bool all = true) const {
        vector<int> matches;
        for (int i = 0, j = 0; i < (int)haystack.size(); i++) {</pre>
            while (j > 0 \&\& needle[j] != haystack[i]) j = pi[j - 1];
            if (needle[j] == haystack[i]) j++;
            if (j == (int)needle.size()) {
                matches.push_back(i - (int)needle.size() + 1);
                if (!all) return matches;
                j = pi[j - 1];
        }
        return matches;
    vector<int> pi;//prefix function
    T needle:
}:
```

Listing 30: Trie

```
//cat trie.h | ./hash.sh
//6c97ea
#pragma once
//status: not tested
//source: https://cp-algorithms.com/string/aho_corasick.html#construction-of-the-trie
//intended to be a base template and to be modified
const int k = 26;//alphabet size
struct trie {
   const char min_ch = 'a';//'A' for uppercase, '0' for digits
   struct node {
        int next[k], id, p = -1;
        char ch:
        bool leaf = 0:
        node(int a_p = -1, char a_ch = '#') : p(a_p), ch(a_ch) {
            fill(next, next + k, -1);
       }
```

```
};
    vector<node> t:
    trie() : t(1) {}
    void add_string(const string& s, int id) {
        int c = 0;
        for (char ch : s) {
            int v = ch - min ch:
            if (t[c].next[v] == -1) {
                t[c].next[v] = t.size();
                t.emplace_back(c, ch);
            c = t[c].next[v];
        t[c].leaf = 1;
        t[c].id = id;
   }
    void remove_string(const string& s) {
        int c = 0:
        for (char ch : s) {
            int v = ch - min ch:
            if (t[c].next[v] == -1)
               return:
            c = t[c].next[v]:
        t[c].leaf = 0;
   int find_string(const string& s) const {
        int c = 0:
        for (char ch : s) {
            int v = ch - min_ch;
            if (t[c].next[v] == -1)
                return -1;
            c = t[c].next[v];
        if (!t[c].leaf) return -1;
        return t[c].id;
   }
};
```

Listing 31: Binary Trie

```
//cat binary_trie.h | ./hash.sh
//33d76f
#pragma once
struct binary_trie {
   const int mx_bit = 62;
   struct node {
       long long val = -1;
       int sub_sz = 0;//number of inserted values in subtree
       array<int, 2> next = {-1, -1};
   };
   vector<node> t;
   binary_trie() : t(1) {}
   //delta = 1 to insert val, -1 to remove val, 0 to get the # of val's in this data
   int update(long long val, int delta) {
       int c = 0:
       t[0].sub_sz += delta;
       for (int bit = mx_bit; bit >= 0; bit--) {
           bool v = (val >> bit) & 1;
```

```
if (t[c].next[v] == -1) {
                t[c].next[v] = t.size();
                t.emplace_back();
            c = t[c].next[v];
            t[c].sub_sz += delta;
        t[c].val = val;
        return t[c].sub_sz;
    int size() const {
        return t[0].sub_sz;
    //returns x such that:
    // x is in this data structure
    // value of (x ^val) is minimum
    long long min_xor(long long val) const {
        assert(size() > 0);
        int c = 0;
        for (int bit = mx_bit; bit >= 0; bit--) {
            bool v = (val >> bit) & 1;
            int ch = t[c].next[v];
            if (ch != -1 && t[ch].sub sz > 0)
                c = ch;
            else
                c = t[c].next[!v];
        return t[c].val;
};
```

Listing 32: Longest Common Prefix Query

```
//cat lcp_queries.h / ./hash.sh
//ed1840
#pragma once
#include "suffix_array.h"
#include "lcp.h"
#include "../range_data_structures/rmq.h"
//computes suffix array, lcp array, and then sparse table over lcp array
//0(n \log n)
struct lcp_queries {
    lcp_queries(const string& s) : sa(sa_is(s, 255)), inv_sa(s.size()), lcp(LCP(s, sa)),
         \hookrightarrow st(lcp, [](int x, int y) {
        return min(x, y);
    }) {
        for (int i = 0; i < (int)s.size(); i++)</pre>
            inv sa[sa[i]] = i:
    //length of longest common prefix of suffixes s[idx1 ... n), s[idx2 ... n), 0-based
         \hookrightarrow indexina
    //You can check if two substrings s[l1..r1), s[l2..r2) are equal in O(1) by:
    //r1-l1 == r2-l2 \& U longest_common_prefix(l1, l2) >= r1-l1
    int longest_common_prefix(int idx1, int idx2) const {
        if (idx1 == idx2) return (int)sa.size() - idx1;
        idx1 = inv sa[idx1]:
        idx2 = inv_sa[idx2];
        if (idx1 > idx2) swap(idx1, idx2);
        return st.query(idx1, idx2);
```

//cat exp_mod.h / ./hash.sh

```
}
//returns true if suffix s[idx1 ... n) < s[idx2 ... n)
//(so false if idx1 == idx2)
bool less(int idx1, int idx2) const {
    return inv_sa[idx1] < inv_sa[idx2];
}
vector<int> sa, inv_sa, lcp;
RMQ<int> st;
```

Listing 33: MATH

Listing 34: BIN EXP MOD

```
//3be256
#pragma once
//returns (base^pw)%mod in O(log(pw)), but returns 1 for 0^0
//What if base doesn't fit in long long?
//Since (base^pw) // mod == ((base/mod)^pw) // mod we can calculate base under mod of 'mod'
//What if pw doesn't fit in long long?
//case 1: mod is prime
//(base^pw)%mod == (base^(pw%(mod-1)))%mod (from Fermat's little theorem)
//so calculate pw under mod of 'mod-1'
//note 'mod-1' is not prime, so you need to be able to calculate 'pw%(mod-1)' without
    \hookrightarrow division
//case 2: non-prime mod
//let t = totient(mod)
//if pw >= log2(mod) then (base^pw)%mod == (base^(t+(pw%t)))%mod (proof)

→ https://cp-algorithms.com/algebra/phi-function.html#generalization)

//so calculate pw under mod of 't'
//incidentally, totient(p) = p - 1 for every prime p, making this a more generalized
    \hookrightarrow version of case 1
int pow(long long base, long long pw, int mod) {
   assert(0 <= pw && 0 <= base && 1 <= mod);
   int res = 1:
   base %= mod;
   while (pw > 0) {
       if (pw & 1) res = res * base % mod;
       base = base * base % mod;
       pw >>= 1;
   }
   return res;
```

Listing 35: Fibonacci

```
//cat fib.h / ./hash.sh
//9ac293
#pragma once
//https://codeforces.com/blog/entry/14516
//0(log(n))
unordered_map<long long, int> table;
int fib(long long n, int mod) {
```

Listing 36: Matrix Mult and Pow

```
//cat matrix_expo.h / ./hash.sh
//2edd34
#pragma once
//empty matrix -> RTE
vector<vector<int>> mult(const vector<vector<int>>& a, const vector<vector<int>>& b, int
     \hookrightarrow mod) {
    assert(a[0].size() == b.size());
    int n = a.size(), m = b[0].size(), inner = b.size();
    vector<vector<int>> prod(n, vector<int>(m, 0));
    for (int i = 0; i < n; i++) {</pre>
        for (int k = 0; k < inner; k++) {</pre>
            for (int j = 0; j < m; j++)
                prod[i][j] = (prod[i][j] + 1LL * a[i][k] * b[k][j]) % mod;
    return prod;
vector<vector<int>> power(vector<int>> mat/*intentional pass by value*/, long
    \hookrightarrow long pw, int mod) {
    int n = mat.size();
    vector<vector<int>> prod(n, vector<int>(n, 0));
    for (int i = 0; i < n; i++)</pre>
        prod[i][i] = 1;
    while (pw > 0) {
        if (pw % 2 == 1) prod = mult(prod, mat, mod);
        mat = mult(mat, mat, mod);
        pw /= 2;
    return prod;
```

Listing 37: N Choose K MOD

```
//cat n\_choose\_k\_mod.h / ./hash.sh
//f3a1a9
#pragma once
//only the tests with prime mod
//for mod inverse
#include "exp_mod.h"
// usage:
//
       n_choose_k nk(n, 1e9+7) to use 'choose', 'inv' with inputs < n
// or:
       n_choose_k nk(mod, mod) to use 'choose_with_lucas_theorem' with arbitrarily large
     \hookrightarrow inputs
struct n_choose_k {
    n_choose_k(int n, int a_mod) : mod(a_mod), fact(n, 1), inv_fact(n, 1) {
        //this implementation doesn't work if n > mod because n! % mod = 0 when n > =
             \hookrightarrow mod. So 'inv_fact' array will be all 0's
        assert(max(n, 2) \le mod):
        //assert mod is prime. mod is intended to fit inside an int so that
```

```
//multiplications fit in a longlong before being modded down. So this
    //will take sart(2^31) time
    for (int i = 2; i * i <= mod; i++) assert(mod % i);</pre>
    for (int i = 2; i < n; i++)
        fact[i] = 1LL * fact[i - 1] * i % mod;
    inv_fact.back() = pow(fact.back(), mod - 2, mod);
    for (int i = n - 2; i \ge 2; i - -)
         inv_fact[i] = inv_fact[i + 1] * (i + 1LL) % mod;
}
//classic n choose k
//fails when n \ge mod
int choose(int n, int k) const {
    if (k < 0 \mid | k > n) return 0;
    //now we know 0 <= k <= n so 0 <= n
    return 1LL * fact[n] * inv_fact[k] % mod * inv_fact[n - k] % mod;
}
//lucas theorem to calculate n choose k in O(log(k))
//need to calculate all factorials in range [0,mod), so O(mod) timeUspace, so need

→ smallish prime mod (< 1e6 maybe)</p>
//handles n >= mod correctly
int choose_with_lucas_theorem(long long n, long long k) const {
    if (k < 0 \mid \mid k > n) return 0;
    if (k == 0 || k == n) return 1;
    return 1LL * choose_with_lucas_theorem(n / mod, k / mod) * choose(n % mod, k %
         \hookrightarrow mod) % mod;
}
//returns inverse of n in O(1)
int inv(int n) const {
    assert(1 <= n); //don't divide by 0 :)</pre>
    return 1LL * fact[n - 1] * inv_fact[n] % mod;
}
int mod;
vector<int> fact, inv_fact;
```

Listing 38: Partitions

```
//cat partitions.h / ./hash.sh
//3356f6
#pragma once
//https://oeis.org/A000041
//0(n \text{ sqrt } n) time, but small-ish constant factor (there does exist a 0(n \log n)
    \hookrightarrow solution too)
vector<int> partitions(int n/*size of dp array*/, int mod) {
   vector<int> dp(n, 1);
   for (int i = 1; i < n; i++) {
        long long sum = 0;
        for (int j = 1, pent = 1, sign = 1; pent <= i; j++, pent += 3 * j - 2, sign =
            if (pent + j \le i) sum += dp[i - pent - j] * sign + mod;
            sum += dp[i - pent] * sign + mod;
        dp[i] = sum % mod;
   }
   return dp;
```

Listing 39: Derangements

Listing 40: Prime Sieve Mobius

```
//cat prime sieve mobius.h / ./hash.sh
//4986da
#pragma once
//mobius[i] = 0 iff there exists a prime p s.t. i\%(p^2)=0
//mobius[i] = -1 iff i has an odd number of distinct prime factors
//mobius[i] = 1 iff i has an even number of distinct prime factors
const int sz = 2e6 + 10;
int mobius[sz];
void calc_mobius() {
    mobius[1] = 1;
    for (int i = 1; i < sz; i++)
        for (int j = i + i; j < sz; j += i)
            mobius[j] -= mobius[i];
//a_prime[val] = some random prime factor of 'val'
//to check if 'val' is prime:
// if (a_prime[val] == val)
//to get all prime factors of a number 'val' in O(log(val)):
// while(val > 1) {
//
       int p = a_prime[val];
//
       //p is some prime factor of val
//
        val /= p;
// }
int a_prime[sz];
void calc_seive() {
    iota(a_prime, a_prime + sz, 0);
    for (int i = 2; i * i < sz; i++)
        if (a_prime[i] == i)
            for (int j = i * i; j < sz; j += i)
                a_prime[j] = i;
```

Listing 41: Row Reduce

```
//cat row_reduce.h | ./hash.sh
//137c3e
```

```
#pragma once
//for mod inverse
#include "exp_mod.h"
//First 'cols' columns of mat represents a matrix to be left in reduced row echelon form
//Row operations will be performed to all later columns
//example usage:
// row_reduce(mat, mat[0].size(), mod) //row reduce matrix with no extra columns
pair<int/*rank*/, int/*determinant*/> row_reduce(vector<vector<int>>& mat, int cols, int
    int n = \text{mat.size}(), m = \text{mat}[0].\text{size}(), \text{rank} = 0, \text{det} = 1;
    assert(cols <= m);</pre>
    for (int col = 0; col < cols && rank < n; col++) {</pre>
        //find arbitrary pivot and swap pivot to current row
        for (int i = rank; i < n; i++)</pre>
            if (mat[i][col] != 0) {
                 if (rank != i) det = det == 0 ? 0 : mod - det;
                 swap(mat[i], mat[rank]);
                 break;
        if (mat[rank][col] == 0) {
            det = 0:
            continue;
        }
        det = (1LL * det * mat[rank][col]) % mod;
        //make pivot 1 by dividing row by inverse of pivot
        int a_inv = pow(mat[rank][col], mod - 2, mod);
        for (int j = 0; j < m; j++)
            mat[rank][j] = (1LL * mat[rank][j] * a_inv) % mod;
        //zero-out all numbers above & below pivot
        for (int i = 0; i < n; i++)
            if (i != rank && mat[i][col] != 0) {
                int val = mat[i][col];
                 for (int j = 0; j < m; j++) {
                     mat[i][j] -= 1LL * mat[rank][j] * val % mod;
                     if (mat[i][j] < 0) mat[i][j] += mod;</pre>
        rank++;
    assert(rank <= min(n, cols));</pre>
    return {rank, det};
```

Listing 42: Solve Linear Equations MOD

//cat solve_linear_mod.h | ./hash.sh

```
\hookrightarrow one is returned.
//Leaves mat in reduced row echelon form (unlike kactl) with b appended.
//0(n * m * min(n.m))
matrix_info solve_linear_mod(vector<vector<int>& mat, const vector<int>& b, int mod) {
    assert(mat.size() == b.size());
    int n = mat.size(), m = mat[0].size();
    for (int i = 0: i < n: i++)
        mat[i].push_back(b[i]);
    auto [rank, det] = row_reduce(mat, m, mod); //row reduce not including the last column
    //check if solution exists
    for (int i = rank; i < n; i++) {
        if (mat[i].back() != 0) return {rank, det, {} }; //no solution exists
    //initialize solution vector ('x') from row-reduced matrix
    vector<int> x(m, 0);
    for (int i = 0, j = 0; i < rank; i++) {
        while (mat[i][j] == 0) j++; //find pivot column
        x[j] = mat[i].back();
    return {rank, det, x};
```

Listing 43: Matrix Inverse

```
//cat matrix inverse.h | ./hash.sh
//3056ad
#pragma once
#include "row_reduce.h"
//returns inverse of square matrix mat, empty if no inverse
vector<vector<int>> matrix_inverse(vector<int>> mat/*intentional pass by value*/,
    \hookrightarrow int mod) {
    int n = mat.size();
    assert(n == (int)mat[0].size());
    //append identity matrix
    for (int i = 0; i < n; i++) {
        mat[i].resize(2 * n, 0);
        mat[i][i + n] = 1;
    auto [rank, det] = row_reduce(mat, n, mod);//row reduce first n columns, leaving
         \hookrightarrow inverse in last n columns
    if (rank < n) return {}; //no inverse</pre>
    for (int i = 0; i < n; i++)
        mat[i].erase(mat[i].begin(), mat[i].begin() + n);
    return mat;
```

Listing 44: Euler's Totient Phi Function

```
//cat totient.h / ./hash.sh
//36bd41
#pragma once
//Euler's totient function counts the positive integers
//up to a given integer n that are relatively prime to n.
//
//To improve, use Pollard-rho to find prime factors
int totient(int n) {
   int res = n;
   for (int i = 2; i * i <= n; i++) {
      if (n % i == 0) {</pre>
```

```
while (n % i == 0) n /= i;
    res -= res / i;
}
if (n > 1) res -= res / n;
return res;
}
```

Listing 45: MAX FLOW

Listing 46: Dinic

```
//cat dinic.h / ./hash.sh
//23e871
#pragma once
//status: not tested
struct max_flow {
    typedef long long 11;
    11 n, s, t;
    max_flow(int a_n, int a_s, int a_t) : n(a_n), s(a_s), t(a_t), d(n), ptr(n), q(n),
    void add_edge(ll a, ll b, ll cap) {
        edge_map[a * n + b] = e.size();
        edge e1 = { a, b, cap, 0 };
        edge e2 = \{ b, a, 0, 0 \};
        g[a].push_back((ll) e.size());
        e.push_back(e1);
        g[b].push_back((ll) e.size());
        e.push_back(e2);
   }
   11 get_flow() {
        11 \text{ flow} = 0;
        for (;;) {
            if (!bfs()) break;
            ptr.assign(ptr.size(), 0);
            while (ll pushed = dfs(s, inf))
                flow += pushed;
        }
        return flow;
   }
    ll get_flow_for_edge(ll a, ll b) {
        return e[edge_map[a * n + b]].flow;
    const ll inf = 1e18;
    struct edge {
        ll a, b, cap, flow;
    unordered_map<int, 11> edge_map;
    vector<ll> d, ptr, q;
    vector<edge> e;
    vector<vector<ll>> g;
    bool bfs() {
        11 qh = 0, qt = 0;
        q[qt++] = s;
        d.assign(d.size(), -1);
        d[s] = 0;
        while (qh < qt && d[t] == -1) {
            11 v = q[qh++];
```

```
for (size_t i = 0; i < g[v].size(); i++) {</pre>
                 11 id = g[v][i].
                    to = e[id].b;
                 if (d[to] == -1 && e[id].flow < e[id].cap) {</pre>
                     q[qt++] = to;
                     d[to] = d[v] + 1;
             }
        }
        return d[t] != -1:
    11 dfs(11 v, 11 flow) {
        if (!flow) return 0;
        if (v == t) return flow;
        for (; ptr[v] < (11) g[v].size(); ptr[v]++) {</pre>
             11 id = g[v][ptr[v]];
            11 to = e[id].b;
             if (d[to] != d[v] + 1) continue;
             ll pushed = dfs(to, min(flow, e[id].cap - e[id].flow));
             if (pushed) {
                 e[id].flow += pushed;
                 e[id ^ 1].flow -= pushed;
                 return pushed;
        }
        return 0;
    }
};
```

Listing 47: Hungarian

```
//cat hungarian.h / ./hash.sh
//c1ba31
#pragma once
//source: https://e-maxx.ru/algo/assignment_hungary
//input: cost[1...n][1...m] with 1 <= n <= m
//n workers. indexed 1. 2. .... n
//m jobs, indexed 1, 2, ..., m
//it costs 'cost[i][j]' to assign worker i to job j (1<=i<=n, 1<=j<=m)
//this returns *min* total cost to assign each worker to some distinct job
//0(n^2 * m)
//
//trick 1: set 'cost[i][j]' to inf to say: "worker 'i' cannot be assigned job 'j'"
//trick\ 2: 'cost[i][j]' can be negative, so to instead find max total cost over all
     \hookrightarrow matchings: set all 'cost[i][j]' to '-cost[i][j]'.
//Now max total cost = - hungarian(cost).min_cost
const long long inf = 1e18;
struct match {
    long long min_cost;
    vector<int> matching; //worker 'i' (1<=i<=n) is assigned to job 'matching[i]'
         \hookrightarrow (1<=matching[i]<=m)
};
match hungarian(const vector<vector<long long>>& cost) {
    int n = cost.size() - 1, m = cost[0].size() - 1;
    assert(n <= m);</pre>
    vector<int> p(m + 1), way(m + 1);
    vector<long long> u(n + 1), v(m + 1);
    for (int i = 1; i <= n; i++) {
        p[0] = i;
```

```
int j0 = 0;
    vector<long long> minv(m + 1, inf);
    vector<bool> used(m + 1, false);
        used[j0] = true;
        int i0 = p[j0], j1 = 0;
        long long delta = inf;
        for (int j = 1; j \le m; j++)
            if (!used[j]) {
                long long cur = cost[i0][j] - u[i0] - v[j];
                if (cur < minv[j])</pre>
                    minv[j] = cur, way[j] = j0;
                if (minv[j] < delta)</pre>
                    delta = minv[j], j1 = j;
            }
        for (int j = 0; j \le m; j++)
            if (used[j])
                u[p[j]] += delta, v[j] -= delta;
                minv[j] -= delta;
        j0 = j1;
    } while (p[j0] != 0);
    do {
        int j1 = way[j0];
        p[j0] = p[j1];
        j0 = j1;
    } while (j0);
vector<int> ans(n + 1);
for (int j = 1; j <= m; j++)
    ans[p[j]] = j;
return {-v[0], ans};
```

Listing 48: Min Cost Max Flow

```
//cat min_cost_max_flow.h / ./hash.sh
//805596
#pragma once
//status: not tested
const long long inf = 1e18;
struct min_cost_max_flow {
   typedef long long 11;
   struct edge {
       ll a, b, cap, cost, flow;
       size_t back;
   };
   vector<edge> e;
   vector<vector<ll>> g;
   ll n, s, t;
   11 k = inf; // max amount of flow allowed
   min_cost_max_flow(int a_n, int a_s, int a_t) : n(a_n), s(a_s), t(a_t) {
       g.resize(n);
   }
   void add_edge(ll a, ll b, ll cap, ll cost) {
       edge e1 = {a, b, cap, cost, 0, g[b].size() };
       edge e2 = {b, a, 0, -cost, 0, g[a].size() };
       g[a].push_back((ll) e.size());
       e.push_back(e1);
       g[b].push_back((11) e.size());
```

```
e.push_back(e2);
    }
    // returns {flow, cost}
    pair<11, 11> get_flow() {
        11 flow = 0, cost = 0;
        while (flow < k) {</pre>
             vector<ll> id(n, 0), d(n, inf), q(n), p(n);
             vector<size_t> p_edge(n);
             11 qh = 0, qt = 0;
             q[qt++] = s;
             d[s] = 0;
             while (qh != qt) {
                 ll v = q[qh++];
                id[v] = 2;
                 if (qh == n) qh = 0;
                 for (size_t i = 0; i < g[v].size(); i++) {</pre>
                     edge& r = e[g[v][i]];
                     if (r.flow < r.cap && d[v] + r.cost < d[r.b]) {</pre>
                         d[r.b] = d[v] + r.cost;
                         if (id[r.b] == 0) {
                             q[qt++] = r.b;
                             if (qt == n) qt = 0;
                         } else if (id[r.b] == 2) {
                             if (--qh == -1) qh = n - 1;
                             q[qh] = r.b;
                         id[r.b] = 1;
                         p[r.b] = v;
                         p_{edge}[r.b] = i;
                     }
                }
             if (d[t] == inf) break;
             11 addflow = k - flow;
             for (11 v = t; v != s; v = p[v]) {
                 11 pv = p[v];
                size_t pr = p_edge[v];
                 addflow = min(addflow, e[g[pv][pr]].cap - e[g[pv][pr]].flow);
            for (11 v = t; v != s; v = p[v]) {
                 11 pv = p[v]:
                 size_t pr = p_edge[v], r = e[g[pv][pr]].back;
                 e[g[pv][pr]].flow += addflow;
                 e[g[v][r]].flow -= addflow;
                 cost += e[g[pv][pr]].cost * addflow;
             flow += addflow;
        return {flow, cost};
    }
};
```

Listing 49: MISC

Listing 50: DSU

```
//cat dsu.h | ./hash.sh
//9b3c97
```

```
#pragma once
//mnemonic: Disjoint Set Union
//NOLINTNEXTLINE(readability-identifier-naming)
struct DSU {
    int num_sets;
    vector<int> par;
    DSU(int n) : num_sets(n), par(n, -1) {}
    DSU(const DSU& rhs) : num_sets(rhs.num_sets), par(rhs.par) {}
    int find(int x) {
        return par[x] < 0 ? x : par[x] = find(par[x]);</pre>
    }
    int size_of_set(int x) {
        return -par[find(x)];
   }
    bool join(int x, int y) {
        if ((x = find(x)) == (y = find(y))) return false;
        if (par[y] < par[x]) swap(x, y);</pre>
        par[x] += par[y];
        par[y] = x;
        num_sets--;
        return true;
   }
};
```

Listing 51: PBDS

```
//cat policy_based_data_structures.h | ./hash.sh
//807de9
#pragma once
//status: not tested
//place these includes *before* the '#define int long long' else compile error
//not using <bits/extc++.h> as it compile errors on codeforces c++20 compiler
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
//BST with extra functions https://codeforces.com/blog/entry/11080
//order_of_key - # of elements *strictly* less than given element
//find_by_order - find kth largest element, k is 0 based so find_by_order(0) returns min
template<class T> using indexed_set = tree<T, null_type, less<T>, rb_tree_tag,

    tree_order_statistics_node_update>;

//example initialization:
indexed_set<pair<long long, int>> is;
//hash table (apparently faster than unordered_map):

→ https://codeforces.com/blog/entry/60737

//example initialization:
gp_hash_table<string, long long> ht;
```

Listing 52: Monotonic Stack

```
//
//0(n)
template<class T> vector<int> monotonic_stack(const vector<T>& arr) {
    int n = arr.size();
    vector<int> left(n);
    for (int i = 0; i < n; i++) {
        int& j = left[i] = i - 1;
        while (j >= 0 && arr[j] > arr[i]) j = left[j];
    }
    return left;
}
```

Listing 53: Count Rectangles

```
//cat count_rectangles.h | ./hash.sh
//9873d2
#pragma once
#include "monotonic_stack.h"
//given a 2D boolean matrix, calculate cnt[i][j]
//cnt[i][j] = the number of times an i-by-j rectangle appears in the matrix such that
    \hookrightarrow all i*j cells in the rectangle are true
//Note cnt[0][j] and cnt[i][0] will contain garbage values
vector<vector<int>> count_rectangles(const vector<vector<bool>>& grid) {
    int n = grid.size(), m = grid[0].size();
    vector<vector<int>> cnt(n + 1, vector<int>(m + 1, 0));
    vector<int> arr(m, 0);
    auto rv = [&](int j) -> int {//reverse
        return m - 1 - j;
    };
    for (int i = 0; i < n; i++) {</pre>
        vector<pair<int, int>> arr_rev(m);
        for (int j = 0; j < m; j++) {
            arr[j] = grid[i][j] * (arr[j] + 1);
            arr_rev[rv(j)] = {arr[j], j};
        }
        vector<int> left = monotonic stack(arr):
        vector<int> right = monotonic_stack(arr_rev);
        for (int j = 0; j < m; j++) {
            int l = j - left[j] - 1, r = rv(right[rv(j)]) - j - 1;
            cnt[arr[j]][1 + r + 1]++;
            cnt[arr[i]][1]--;
            cnt[arr[j]][r]--;
    }
    for (int i = 1; i <= n; i++)
        for (int k = 0; k < 2; k++)
            for (int j = m; j > 1; j--)
                cnt[i][j - 1] += cnt[i][j];
    for (int j = 1; j \le m; j++)
        for (int i = n; i > 1; i--)
            cnt[i - 1][j] += cnt[i][j];
    return cnt:
```

Listing 54: LIS

```
//cat lis.h | ./hash.sh
//a243e1
```

```
#pragma once
//returns array of indexes representing the longest *strictly* increasing subsequence
//for\ non-decreasing:\ pass\ in\ a\ vector<pair<T,\ int>>\ with\ arr[i].second=i\ (0<=i<n)
//alternatively, there's this https://codeforces.com/blog/entry/13225
//mnemonic: Longest Increasing Subsequence
//NOLINTNEXTLINE(readability-identifier-naming)
template<class T> vector<int> LIS(const vector<T>& arr) {
    if (arr.empty()) return {};
    vector<int> dp{0}/*array of indexes into 'arr'*/, prev(arr.size(), -1);
    for (int i = 1; i < (int)arr.size(); i++) {</pre>
        auto it = lower_bound(dp.begin(), dp.end(), i, [&](int x, int y) -> bool {
            return arr[x] < arr[y];</pre>
        });
        if (it == dp.end()) {
            prev[i] = dp.back();
            dp.push_back(i);
        } else {
            prev[i] = it == dp.begin() ? -1 : *(it - 1);
        //here, dp.size() = length of LIS of prefix of arr ending at index i
    }
    vector<int> res(dp.size());
    for (int i = dp.back(), j = dp.size(); i != -1; i = prev[i])
        res[--j] = i;
    return res;
```

Listing 55: Safe Hash

```
//cat safe_hash.h | ./hash.sh
//e837ee
#pragma once
//status: not tested
//source: https://codeforces.com/blog/entry/62393
struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^(x >> 31);
   }
    size_t operator()(uint64_t x) const {
        static const uint64_t fixed_random =

    chrono::steady_clock::now().time_since_epoch().count();

        return splitmix64(x + fixed_random);
   }
};
//usage:
unordered_map<long long, int, custom_hash> safe_map;
#include "policy_based_data_structures.h"
gp_hash_table<long long, int, custom_hash> safe_hash_table;
```

Listing 56: Log 2

```
//cat log_2.h | ./hash.sh
//a7473a
#pragma once
```

```
//floor of log_2(a); index of highest 1-bit
int log_2(int n) {
    return n > 0 ? 31 - __builtin_clz(n) : -1;
}
```