CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- NP-Completeness Via Reductions
 - Examples: SAT

NP-Completeness Via Reductions

o Claim:

- If π_1 is NP-hard and $\pi_1 \preceq \pi_2$
- then π_2 is NP-hard.

o Proof:

- Since π_1 is NP-hard ofor all π in NP $\pi \preceq \pi_1$
- By transitivity $\text{o for all } \pi \text{ in } \mathbb{NP} \ \pi \precsim \pi_2$
- i.e. π_2 is NP-hard

NP-COMPLETENESS VIA REDUCTIONS

- o Claim: SAT is NP-Complete.
- Proof:
 - SAT is in NP
 - o Given a formula F of length n in Boolean logic, a certificate for satisfiability would be:
 - a Boolean assignment to its variables for which F will evaluate to true.
 - oThe length of this certificate is the number of variables (i.e. \leq n).
 - The time taken for verifying this certificate is

NP-Completeness Via Reductions

- o Claim: CIRCUIT-SAT ≾ SAT
- Proof Attempt:
 - The classic technique of constructing an equivalent formula given a circuit does not work:
 - o The time for constructing the table is 2ⁿ (why?), given n inputs to the circuit.
 - The size of the circuit need not be exponential in n
 i.e. the size of the table may be exponential in the
 size of the circuit.
 - Exercise:
 - Construct an example circuit for which this is true.
 - o Can one walk the graph and extract the formula?
 - When <u>fan-out</u> is unlimited, the <u>number of paths</u> walked may be <u>exponential</u>.

CIRCUIT-SAT ≾ SAT

- We need to map each circuit C to a formula F such that
 C is satisfiable iff F is satisfiable
- Given a circuit C:
 - assume each input line is marked with a variable a_j
 - mark each output line of a gate with a variable b_i, i>0
 - mark the final output line as b₀
- Construct a formula F:
 - (AND_i g_i) AND b₀ where each g_i is a formula for gate i:
 - o b_{i1} op b_{i2} <--> b_{i3} if the gate is binary (i.e. AND or OR)
 - o $b_{i1} < --> b_{i3}$ if the gate is unary (i.e. NOT) where
 - $\mathbf{o} \mathbf{b}_{i1}$ and \mathbf{b}_{i2} are variables corresponding to input lines
 - b_{i3} corresponds to the output line of the gate, and
 - op is the operator of the gate.

[2]

- o Proof [contd.]: CIRCUIT-SAT ≾ SAT
 - (see previous slide)
 - we have a mapping of every combinational Boolean circuit C to some Boolean formula F.
 - Claims:
 - o F is satisfiable iff C is satisfiable [Why?]
 - oi.e. our *mapping is a reduction*.
 - o Length of F is linearly proportional to that of C.
 - i.e. our *mapping is a polynomial time reduction*.

CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- NP-Completeness Via Reductions
 - Examples: CNF-SAT

7

PROBLEM: CNF-SAT

O CNF-SAT:

- Given a Boolean expression F in CNF (i.e. Conjunctive Normal Form)
 - o find whether there is an input assignment such that the F is satisfied.

• Question:

- Can you design an algorithm to solve CNF-SAT ?
 - o Can you design a polynomial time algorithm to solve CNF-SAT?
 - Points to ponder:
 - Verifying <u>validity of a formula in CNF</u> can be done in polynomial time.
 - (Dual): Verifying <u>satisfiability of a formula in DNF</u> can be done in polynomial time.
- But we argued that SAT is NP-complete:
 - o Is there an implication on converting a SAT instance to equivalent CNF (or DNF)?

NP-COMPLETENESS VIA REDUCTIONS: CNF-SAT

- O CNF-SAT:
 - Given a Boolean expression F in CNF
 - o find whether there is an input assignment such that the F is satisfied.
- o CNF-SAT is №P-complete
 - 1. CNF-SAT is in \mathbb{NP} .

Proof:

Given an assignment of values (as a certificate) verification can be done in linear time.

2. CNF-SAT is NP-hard

i.e. SAT ≾ CNF-SAT

(see following slides for a reduction).

NP-Completeness Via Reductions: CNF-SAT [2]

- o SAT ≾ CNF-SAT
 - Is there an algorithm to convert a Boolean expression
 F to its equivalent CNF?
 - o What is the time complexity of the algorithm?
 - We want a mapping

g: I(SAT) --> I(CNF-SAT)

that ONLY needs to preserve satisfiability!

SAT ≾ CNF-SAT

- Mapping: g(F) = F' where F' is in CNF.
 - Construct the parse tree of the given expression F.
 - Label each edge with a variable (including the one incoming edge to the root)
 - Label each leaf with the input variable
 - Construct formula F' as r₀ AND (AND_i v_i)
 - owhere each $\mathbf{v_i}$ corresponds to a vertex of the tree and is of the form:
 - $oe_o <--> e_{i1} op e_{i2}$ if op is binary
 - $oe_o <--> ope_i$ if op is unary
 - for output edge $\mathbf{e_o}$ and input edges $\mathbf{e_{i1}}$ and $\mathbf{e_{i2}}$

• Claims (A and B):

- A. The mapping **g** can be computed in polynomial time:
 - Time taken for constructing a parse tree, given a formula of length n
 - Time taken for parsing: O(n³)
 refer to CYK algorithm (Dynamic Programming)
 - Time taken for construction of tree: O(n)
 - Time taken for constructing the formula from the tree:
 - Time taken for traversing the tree: O(n)
 - Time taken for writing the formula: O(k*n) where k is the (constant) length of each clause
- B. g(F) is satisfiable iff F is satisfiable.

CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- NP-Completeness Via Reductions
 - Examples: kSAT

- o kSAT
 - Satisifiability problem, where input instances are in CNF with exactly k distinct literals in clause.
- 2SAT is kSAT for k=2
- 2SAT can be solved in polynomial time.

2SAT IS IN ₽

- Exercise: Reduce 2SAT to a problem on directed graphs that is efficiently solvable:
 - 1. Note that L1 | L2 is equivalent to !L1 --> L2.
 - 2. Given a formula F in 2CNF, construct a directed graph G:
 - add vertices labeled x and !x for each variable x occurring in the formula.
 - 2. add an edge from L1 to L2 if L1 --> L2 is a clause in F
 - 3. Argue that:

there is a path in G from x to !x for some variable x iff

F is not satisfiable.

PROBLEMS: 2SAT vs. HORN-SAT

- 2SAT can be solved in polynomial time.
- Exercise:
 - 1. Can you reduce 2SAT to HORN-SAT?
 - HORN-SAT is satisfiability of Horn formulas.
 - A Horn formula is a conjunction of Horn clauses and
 - a Horn clause is of the form x --> y (i.e. !x | y)

[Note that HORN-SAT is solvable in polynomial time.

Refer to *Huth & Ryan: Logic in CS* for an algorithm for HORN-SAT.]

PROBLEM: 3SAT

- 3CNF-SAT (which is commonly referred to as 3SAT):
 - Given a Boolean expression in CNF with *exactly 3* distinct literals in each clause,
 - find whether there is an input assignment such that the expression is satisfied.
- Solving 3SAT:
 - There is no known polynomial time algorithm to solve 3SAT.

4/13/2016 Sur

3SAT IS N₽-COMPLETE

- o 3SAT is №-complete
 - 3SAT is in NP
 - o Proof: Trivial
 - 3SAT is NP-hard
 - o Proof: CNF-SAT ≾ 3SAT
 - o Reduction:
 - Map each clause in the CNF expression to one or more 3-literal clauses.
 - (see next slide for the mapping)

CNF-SAT ≾ 3SAT

Mapping M: Let the input formula F be the conjunction AND_i C_i

Then for each i:

- case C_i is L: Replace C_i with
 (L | p | q) & (L | !p | q) & (L | p | !q) & (L | ! | !q)
- 2. case C_i is $L_1 \mid L_2$: Replace C_i with $(L_1 \mid L_2 \mid p) & (L_1 \mid L_2 \mid !p)$
- p and q are new case C_i is $L_1 \mid L_2 \mid L_3$: Replace C_i with C_i variables introduced.
- 4. case C_i is $L_1 | L_2 | L_3 | L_4$: Replace C_i with $(p | L_3 | L_4) & (!p | L_1 | L_2) & (p | !L_1) & (p | !L_2)$ and recursively handle the last two clauses.
- 1. case C_i is $L_1 \mid ... \mid L_k$ (k>4): Replace C_i with (p | $L_3 \mid L_4 \mid ... \mid L_k$) & (!p | $L_1 \mid L_2$) & (p | ! L_1) & (p| ! L_2) and recursively handle the first clause and the last two clauses.

o Note:

• The last three clauses in the replaced expression for the fourth case correspond to $(p < --> (L_1 \mid L_2))$.

- Claim (about the mapping M described in the previous slide):
 - M is a polynomial time algorithm that
 - o given an input F outputs F' in 3CNF such that
 - oF' is satisfiable iff F is satisfiable and
 - othe size of F' is a polynomial function of the size of F.

• Exercises:

- Implement the algorithm M.
- Derive the time complexity of M.
- Estimate the size of the output of M as a function of the size of its input.

KSAT IS №P-COMPLETE

- Exercise:
 - Prove that kSAT is NP-complete