

A new resistive high temperature oven for metallic beams production

O. Bajeat, C. Barué, M. Dubois, F. Lemagnen, M. Michel, M. Morisset *GANIL*, bd H. Becquerel BP55027, F-14076 Caen cedex 05, France

Specification

- ✓ For the Super Separator Spectrometer (S³) on Spiral 2 in *Phoenix V3** ECR IS:
 - \rightarrow ⁵⁸Ni, ⁵⁰Cr, ⁵⁰Ti or ⁵⁰V... ~ **1.2 10**¹³ pps
- ✓ For Ganil-Cyclotrons in ECR4 source:
 - → increasing refractory metallic beams intensities included Uranium beams.
- Lifetime: 2-3 weeks.
- Removable head

Technical challenges

- \circ Integration in sources (ϕ < 20mm)
- High temperatures (1500°C to 2000°C)
- Presence of a magnetic field (~1 Tesla)
- Crucible design and material for liquid metals

*developed by **LPSC** (Grenoble)

The oven design

ECRIS 2020, 28 September 2020 - O. Bajeat

The head design

- ➤ The resistor is a tube → no Laplace force by the magnetic field
- Rhenium. Thickness 0.05 / φ 9 / L 35 mm
- Laser-welded

Tantalum tube and rings are embedded

Off-line test

First test in heating test bench

- A thermocouple type C (W/W-Re) is inserted in the place of the crucible
- The temperature of the resistor is measured by pyrometer
- During 8 days T > 1900°C in crucible and ~2100°C on the resistor P ~ 400 W (107 A / 3.4 V)
 - → No degradation was observed.

Validation of the oven in ECR4

Oven integrated in ECR4M on Ganil cyclotrons injector

- ✓ Oven at 1800°C (~90 A) with magnetic field but without plasma \rightarrow oven OK.
- ✓ Oven OFF and source optimized in Ar^{9+} to check source performances with the oven \rightarrow OK
- ✓ Titanium beam produced from 173 to **214 W** (1550°C in crucible according off-line calibration) but melting point (**1660°C**) has been reached due to plasma contribution.

✓ O_2 as support gas → Nitrogen due to Boron Nitride isolators. Will be replaced by Al_2O_3

The crucibles

Volume: 175 mm³

- For Ni, Cr, Ti, V... \rightarrow crucible in WL20 (W alloy 2% La₂O₃)
- \circ For liquid Uranium \rightarrow crucible in Y_2O_3

Flux and angular distribution measurement

Goal: reduction of angular dispersion to increase efficiency

Angular distribution narrower if $\frac{d}{l}$ lower.

Tests with different caps geometries (hole diameter and length)

Limitation: risk of plugging the exit hole.

Conclusion

- ✓ Operation of the oven off-line satisfactory
- ✓ ECR4 + oven on-line : OK but boron nitride to be replaced
- ➤ New test on-line in ECR4 planned this year
- Crucible geometries to be optimized by off-line flux measurement
- ➤ Integration in Phoenix V3 underway

Thank you for your attention.