Computational Statistics

Lab 5

Emil K Svensson and Rasmus Holm 2017-03-09

Question 1

In this exercise we are given a data set of a random selection process for the military draft and we supposed to use non-parametric bootstrap and permutation testing to test the null hypothesis that the selection process was actually random.

```
library(ggplot2)
lottery <- read.csv2("../data/lottery.csv")
q11 <- ggplot(lottery, aes(x = Day_of_year, y = Draft_No)) + geom_point()
plot(q11)</pre>
```



```
data <- data.frame(x=lottery$Day_of_year, y=lottery$Draft_No)</pre>
```

The data looks random although there might be some sort of skewness in the right side of the graph were there are a lacking some observations and therefore having a lower probability of getting selected.

1.2

```
loessfit <- loess(y ~ x, data=data)
data$pred <- predict(loessfit, data$x)

q12 <- q11 + geom_path(data = data, aes(x=x, y=pred), col = "red")
plot(q12)</pre>
```


The fit (line) doesn't seem straight and seems to have a decreasing trend which would support previous statements of people born on a days later on in a year has a lower probability of beeing selected.

```
teststat <- function(model) {
  function(data) {
    xa <- data$x[which.min(data$y)]
    xb <- data$x[which.max(data$y)]

  fit <- model(y ~ x, data)</pre>
```

```
ya <- predict(fit, xa)</pre>
        yb <- predict(fit, xb)</pre>
         (yb - ya) / (xb - xa)
    }
}
teststat_boot <- function(data, idx, stat) {</pre>
    data <- data[idx,]</pre>
    stat(data)
}
library(boot)
B <- 2000
set.seed(123456)
npboot <- boot(data=data, statistic=teststat_boot, R=B, stat=teststat(model=loess))</pre>
pvalue <- sum(npboot$t > 0) / B
pvalue
## [1] 0.0595
hist(npboot\$t, xlim = c(-1,0.7), breaks = 50,
     main = "Histogram for bootstrap t-values", xlab ="T")
abline(v=pvalue, col = "red", lwd = 2)
abline(v=mean(npboot$t), col="blue", lwd=2)
```

Histogram for bootstrap t-values

In this task we use the 2000 calculated T-values from the bootstrap and use these as the T-distribution and thus the share of T-values over the null-hypothies will be the p-value. Since it is implied that if the fit of

the loess function has a decreasing pattern it will generate a negative T-value, since this is idicated in the previous graph. Subsequently the test was formulated as follows $H_o: \mu >= 0$ $H_a: \mu < 0$

The p-value was calculated to 0.0595 and we can't reject the nullhypothesis at a 0.05 alpha-level. We conclude Ho and that the lottery is random.

1.4

```
teststat_permutation<- function(data, B, stat) {
    n <- nrow(data)
    statistics <- rep(0, B)
    newdata <- data.frame(x=data$x, y=sample(data$y, n))

for (b in 1:B) {
    statistics[b] <- stat(newdata)
    newdata$y <- sample(data$y, n)
  }

sum(abs(statistics) >= abs(stat(data))) / B
}

set.seed(123456)
pvalue2 <- teststat_permutation(data, B, teststat(loess))
pvalue2</pre>
```

[1] 0.0925

In permutation tests we compare the original t-statistic with T-statistics where the Draft No. are shuffled on random. In this sense if these diverge much from the original T-statistic the lottory is random. If they are similar we will get a lower p-value since the quota will be smaller.

In this case we conclude Ho in this test as well, and asert that the lottery is random.

```
genranddata <- function(x, alpha) {
    data.frame(x=x, y=pmax(0, pmin(alpha * x + rnorm(length(x), mean=183, sd=10), 366)))
}

alphas <- seq(0.1, 10, by=0.1)
pvalues <- rep(0, length(alphas))

set.seed(123456)

for (i in 1:length(alphas)) {
    newdata <- genranddata(data$x, alphas[i])
    pvalues[i] <- teststat_permutation(newdata, 200, teststat(loess))
}

plot(pvalues)</pre>
```


[1] 100

Since we reject Ho in every test the power will be 1 becaus we can't have any Type-2 errors when we reject everything. This isn't strange since the test-data is obviously non-random and gives us an indication that the test-statistic is a good one.

Question 2

2.1

```
price <- read.csv("../data/prices1.csv", sep=";")
mean(price$Price)

## [1] 1080.473
hist(price$Price)</pre>
```

Histogram of price\$Price

Looks like a Gamma distribution.

```
bootmean <- function(data,ind){
  data <- data[ind]
  mean(data)
}

B <- 2000
estmean <- boot(data = price$Price,bootmean, R = B)

2 * estmean$t0 - mean(estmean$t)

## [1] 1080.828</pre>
```

```
mean(estmean$t- estmean$t0)
## [1] -0.355
sum((estmean\$t - mean(estmean\$t))^2) / (B - 1)
## [1] 1264.299
cibo <- boot.ci(estmean)</pre>
## Warning in boot.ci(estmean): bootstrap variances needed for studentized
## intervals
print(cibo)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = estmean)
## Intervals :
## Level
             Normal
       (1011, 1151) (1013, 1150)
## 95%
             Percentile
## Level
                                   BCa
         (1011, 1148)
                        (1014, 1152)
## 95%
## Calculations and Intervals on Original Scale
hist(estmean$t, xlim = c(950,1300), main = "Bootstrap estimation of mean", xlab = "")
abline(v=cibo$normal[2:3], col = "blue", lwd = 2)
abline(v=cibo$basic[4:5], col = "red", lwd = 2)
abline(v=cibo$percent[4:5], col = "orange", lwd = 2)
abline(v=cibo$bca[4:5], col = "purple", lwd = 2)
legend(y=400, x=1200, c("normal","basic","percent","bca"), lty = c(1,1),
       col=c("blue", "red", "orange", "purple"))
```

Bootstrap estimation of mean

2.3

jackknife <- function(data,B,tstat){</pre>

```
stopifnot(B >= 0 && B <= length(data))</pre>
  est \leftarrow rep(1, times = B)
  for(i in 1:B){
    est[i] <- tstat(data[-i])</pre>
  }
  return(est)
jackest <- jackknife(price$Price, B = length(price$Price), tstat = mean)</pre>
mean(jackest)
## [1] 1080.473
n <- length(price$Price)</pre>
tstar <- n*mean(price$Price)-(n-1)*jackest
JT <- mean(tstar)</pre>
jackvar \leftarrow (1 / (n * (n - 1))) * sum((tstar - JT)^2)
lowerci <- JT - 1.96 * sqrt(jackvar)</pre>
upperci <- JT + 1.96 * sqrt(jackvar)</pre>
hist(jackest,breaks = 10, xlim = c(1000,1180), xlab = "" ,main = "Jackknife estimate")
abline(v=lowerci, col ="blue", lwd = 3)
abline(v=upperci, col ="blue", lwd = 3)
```

Jackknife estimate

2.4

```
library(knitr)
options(digits=2)

cimatrix <- rbind(
   c("Normal", cibo$normal[2], mean(estmean$t), cibo$normal[3]),
   c("Percent", cibo$percent[4], mean(estmean$t), cibo$percent[5]),
   c("Basic", cibo$basic[4], mean(estmean$t), cibo$basic[5]),
   c("Bca", cibo$bca[4], mean(estmean$t), cibo$bca[5]),
   c("Jackknife", lowerci, mean(jackest), upperci)
)
colnames(cimatrix) <- c("Name", "Lower", "Mean", "Upper")

cimatrix[, 2:4] <- round(as.numeric(cimatrix[, 2:4]))</pre>
```

Name	Lower	Mean	Upper
Normal	1011	1080	1151
Percent	1011	1080	1148
Basic	1013	1080	1150
Bca	1014	1080	1152
Jackknife	1009	1080	1152

The normal, percent and the basic along with the Jackknife confidence intervals are moving in a similar range with only small differences inbetween them. The only one sticking out is the bca CI with overall higher estimations than the rest.