Eigenfunction Expansions for Mercer Kernels

BY STEPHEN CROWLEY
December 25, 2024

Consider an integral operator with kernel R(s,t) acting on functions in $L^2[0,\infty)$.

Definition 1

The eigenfunctions satisfy the equation:

$$\int_0^\infty R(s,t) \,\psi(s) \,ds = \lambda \,\psi(t) \tag{1}$$

where $\{\psi_n\}_{n=1}^{\infty}$ are the eigenfunctions with corresponding eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$

Definition 2

Let $\{\phi_j\}_{j=1}^{\infty}$ be a complete orthonormal basis of $L^2[0,\infty)$ and define the kernel matrix elements:

$$K_{kj} = \int_0^\infty \int_0^\infty R(s,t) \,\phi_k(t) \,\phi_j(s) \,dt \,ds \tag{2}$$

Theorem 3

If $\psi_n(t) = \sum_{j=1}^{\infty} c_{n,j} \phi_j(t)$ is an eigenfunction expansion, then:

$$c_{n,k} = \frac{\int_0^\infty \phi_k(t) \,\psi_n(t) \,dt}{\lambda_n} \tag{3}$$

Proof. 1. Begin with the eigenfunction equation for ψ_n :

$$\int_0^\infty R(s,t) \,\psi_n(s) \, ds = \lambda_n \,\psi_n(t) \tag{4}$$

2. Multiply both sides by $\phi_k(t)$ and integrate over t:

$$\int_0^\infty \phi_k(t) \int_0^\infty R(s,t) \,\psi_n(s) \,ds \,dt = \lambda_n \int_0^\infty \phi_k(t) \,\psi_n(t) \,dt \tag{5}$$

3. Apply Fubini's theorem to swap integration order on the left side:

$$\int_0^\infty \int_0^\infty R(s,t) \,\phi_k(t) \,dt \,\psi_n(s) \,ds = \lambda_n \int_0^\infty \phi_k(t) \,\psi_n(t) \,dt \tag{6}$$

4. Substitute the eigenfunction expansion $\psi_n(s) = \sum_{j=1}^{\infty} c_{n,j} \phi_j(s)$:

$$\int_{0}^{\infty} \int_{0}^{\infty} R(s,t) \,\phi_{k}(t) \,dt \, \sum_{j=1}^{\infty} c_{n,j} \,\phi_{j}(s) \,ds = \lambda_{n} \int_{0}^{\infty} \phi_{k}(t) \,\psi_{n}(t) \,dt \tag{7}$$

5. Exchange summation and integration (justified by L^2 convergence):

$$\sum_{j=1}^{\infty} c_{n,j} \int_{0}^{\infty} \int_{0}^{\infty} R(s,t) \,\phi_{k}(t) \,\phi_{j}(s) \,dt \,ds = \lambda_{n} \int_{0}^{\infty} \phi_{k}(t) \,\psi_{n}(t) \,dt \tag{8}$$

6. Recognize the kernel matrix elements:

$$\sum_{j=1}^{\infty} c_{n,j} K_{kj} = \lambda_n \int_0^{\infty} \phi_k(t) \, \psi_n(t) \, dt \tag{9}$$

7. Note that $\sum_{j=1}^{\infty} c_{n,j} K_{kj}$ is the k-th component of $K\mathbf{c}_n$. Since ψ_n is an eigenfunction, \mathbf{c}_n must satisfy $K\mathbf{c}_n = \lambda_n \mathbf{c}_n$, thus:

$$\lambda_n c_{n,k} = \lambda_n \int_0^\infty \phi_k(t) \, \psi_n(t) \, dt \tag{10}$$

8. Divide both sides by λ_n (noting $\lambda_n \neq 0$ for non-trivial eigenfunctions):

$$c_{n,k} = \frac{\int_0^\infty \phi_k(t) \,\psi_n(t) \,dt}{\lambda_n} \tag{11}$$

This establishes that the coefficient $c_{n,k}$ in the eigenfunction expansion equals the normalized inner product of the basis function ϕ_k with the eigenfunction ψ_n .