Fonction	Développement en série	Premiers termes	Rayon de convergence
$\exp(z)$	$\sum_{n=0}^{\infty} \frac{z^n}{n!}$	$1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$	∞
ch(z)	$\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$	$1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots$	∞
sh(z)	$\sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$	$z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$	∞
$\cos(z)$	$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n z^{2n}}{(2n)!}$	$1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots$	∞
$\sin(z)$	$\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$	$z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$	8
tan(z)		$z + \frac{z^3}{3} + \frac{2z^5}{15} + \dots$	$\pi/2$
$\frac{1}{1-z}$	$\sum_{n=0}^{\infty} z^n$	$1+z+z^2+z^3+$	1
$\frac{1}{1+z}$	$\sum_{n=0}^{\infty} \left(-1\right)^n z^n$	$1-z+z^2-z^3+$	1
$\ln(1+x)$	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	1 $x \in]-1,1[$
$\ln(1-x)$	$-\sum_{n=1}^{\infty} \frac{x^n}{n} = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$	$-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$	1 x∈]-1,1[
$\arctan(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$	1 $x \in]-1,1[$
$(1+x)^{\alpha}$	$1 + \alpha x + \sum_{n=2}^{\infty} \frac{\alpha(\alpha - 1)(\alpha - (n-1))}{n!} x^n$	$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \dots$	$x \in]-1,1[$
$\frac{1}{\sqrt{1+x}}$	$\sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} x^n$	$1 - \frac{1}{2}x + \frac{1.3}{2.4}x^2 - \frac{1.3.5}{2.4.6}x^3 + \dots$	1 x∈]-1,1[
$\sqrt{1+x}$		$1 - \frac{1}{2}x + \frac{1}{2}\left(-\frac{1}{2}\right)\frac{x^2}{2} + \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\frac{x^3}{6} + \dots$	$x \in]-1,1[$
Arcsin(x)		$x + \frac{x^3}{6} + \dots$	$x \in]-1,1[$

Calculs sur les développements en série

	Fonction	Développement en série	Rayon de convergence
si	f(z)	$\sum_{n=0}^{\infty} a_n z^n$	R
et	g(z)	$\sum_{n=0}^{\infty} b_n z^n$	R'
alors	$f(\lambda z) $ $\left(\lambda \in \mathbb{C}^*\right)$	$\sum_{n=0}^{\infty} a_n \lambda^n z^n$	$\frac{R}{ \lambda }$
	$f\left(z^{k}\right)$ $\left(k \in \mathbb{N}^{*}\right)$	$\sum_{n=0}^{\infty} a_n z^{k n}$	$R^{\frac{1}{k}}$
	$\lambda f(z) + g(z)$	$\sum_{n=0}^{\infty} (\lambda a_n + b_n) z^n$	\geqslant inf (R,R')
	f(z)g(z)	$\sum_{n=0}^{\infty} c_n z^n \text{ avec } \forall n \in \mathbb{N} / c_n = \sum_{k=0}^{n} a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$	\geqslant inf (R,R')
	si $g(0) = 0$ $\frac{1}{1 - g(z)}$	$1 + \sum_{n=1}^{\infty} b_n z^n + \left(\sum_{n=1}^{\infty} b_n z^n\right)^2 + \left(\sum_{n=1}^{\infty} b_n z^n\right)^3 + \dots$	> 0
	$\int_0^x f(t)dt$	$\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{a_{n-1}}{n} x^n$	R $x \in \left] -R, R\right[$
	f'(x)	$\sum_{n=0}^{\infty} n \ a_n \ x^{n-1} = \sum_{n=1}^{\infty} n \ a_n \ x^{n-1} = \sum_{n=0}^{\infty} (n+1) \ a_{n+1} \ x^n$	$R \\ x \in \left] -R, R \right[$
	$f^{(k)}(x)$ $(k \in \mathbb{N}^*)$	$\sum_{n=0}^{\infty} n(n-1)(n-(k-1)) a_n x^{n-k} = \sum_{n=0}^{\infty} (n+1)(n+2)(n+k) a_{n+k} x^n$	$R \\ x \in]-R, R[$