再帰的余代数いろいろ

原 将己

2017年10月15日

1 代数と余代数

以下、 \mathbf{C} は圏とし、 $F: \mathbf{C} \to \mathbf{C}$ は自己関手とする。

定義 **1.1** (代数、余代数)**.** C の対象と射の組 (A,α) であって $\alpha: FA \to A$ となるものを F-代数 (F-algebra) と呼ぶ。

C の対象と射の組 (A,α) であって $\alpha:A\to FA$ となるものを F-余代数 (F-coalgebra) と呼ぶ。

F-代数 (A,α) から (B,β) への準同型とは、 $h\colon A\to B$ であって $\beta\circ Fh=h\circ\alpha$ となるもののことである。 F-代数とその準同型のなす圏を $\mathrm{Alg}(F)$ と書く。

F-余代数 (A,α) から (B,β) への準同型とは、 $h:A\to B$ であって $\beta\circ h=Fh\circ\alpha$ となるもののことである。 F-余代数とその準同型のなす圏を Coalg(F) と書く。

定義 **1.2** (余代数-代数準同型)**.** F-余代数 (A,α) から F-代数 (B,β) への余代数-代数準同型 (coalgebra-to-algebra homomorphism) とは、 $h:A\to B$ であって、 $\beta\circ Fh\circ\alpha=h$ となるもののことである。

定義 1.3 (始代数と終余代数). Alg(F) の始対象を始代数 (initial algera) という。Coalg(F) の終対象を終余代数

(terminal coalgebra, final coalgebra) という。

定義より、始代数と終余代数は(存在するならば)同型を除いて一意である。

定義 1.4 (再帰的余代数と余再帰的代数). 余代数であって、任意の代数への準同型が一意に存在するものを再帰的 F-余代数 ($recursive\ F$ -coalgebra) という。本資料では再帰的余代数からなる Coalg(F) の充満部分圏をRCA(F) と表記する。

代数であって、任意の余代数からの準同型が一意に存在するものを**余再帰的** F-代数 (corecursive F-algebra) という。本資料では余再帰的代数からなる Alg(F) の充満部分圏を CRA(F) と表記する。

注意 1.5. 再帰的余代数と始代数の普遍性は良く似ている。実際、 α が可逆のとき、この 2 つの定義は (α の向きを互いに逆にすることで) 同値になる。

同様に、余再帰的代数と終余代数の定義も、 α が可逆のときに同値になる。

2 Lambek の定理

定理 **2.1** (Lambek). 始代数 (A,α) の α は常に可逆である。双対的に、終余代数も可逆である。

Proof. 始代数について示す。 (A,α) を始代数とする。このとき $(FA,F\alpha)$ も代数だから、代数の準同型 $(h:A \to FA$ であって $F\alpha \circ Fh = h \circ \alpha$ となるもの) が存在する。

h も α も代数の準同型だから、 $\alpha \circ h$ は (A,α) の自己準同型である。一方、 id_A も (A,α) の自己準同型である。始代数からの準同型は一意だから、 $\alpha \circ h = \mathrm{id}_A$ である。

 $\alpha \circ h = \mathrm{id}_A$ と h の準同型性により、 $h \circ \alpha = F\alpha \circ Fh = F \mathrm{id}_A = \mathrm{id}_{FA}$ である。 したがって、 h は α の逆射である。

系 2.2. 始代数 (の逆射) は再帰的余代数である。双対的に、終余代数 (の逆射) は余再帰的代数である。

定理 **2.3.** 始代数 (の逆射) は RCA(F) の終対象である。双対的に、終余代数 (の逆射) は CRA(F) の始対象である。

Proof. (A,α) を始代数とする。このとき (A,α^{-1}) が RCA(F) の終対象であることを示す。

 $(B,\beta) \in RCA(F)$ とする。 (B,β) から (A,α^{-1}) への代数準同型は、 (B,β) から (A,α) への余代数-代数準同型 に他ならない。したがって B の再帰性から、代数準同型は一意である。

3 逆 Lambek の定理

(逆 Lambek という名前は本資料に固有である。)

補題 **3.1.** (A,α) が再帰的余代数であるとき、 $(FA,F\alpha)$ も再帰的余代数である。双対的に、 (A,α) が余再帰的代数であるとき、 $(FA,F\alpha)$ も余再帰的代数である。

Proof. (A, α) を再帰的余代数とし、 (B, β) を代数とする。

A の再帰性より、 A から B への余代数-代数準同型 $(h: A \to B$ であって $\beta \circ Fh \circ \alpha = h$ となるもの) が一意 に存在する。これを用いて $f = \beta \circ Fh$ と定義する。

この f は $\beta \circ Ff \circ F\alpha = \beta \circ F(\beta \circ Fh \circ \alpha) = \beta \circ Fh = f$ を満たす。したがって f は FA から B への余代数-代数準同型である。

逆に f': $FA \to B$ が $\beta \circ Ff' \circ F\alpha = f'$ を満たすとする。 $h' = f' \circ \alpha$ とおくと、 $\beta \circ Fh' \circ \alpha = \beta \circ Ff' \circ F\alpha \circ \alpha = f' \circ \alpha = h'$ となるから、 h' は A から B への余代数-代数準同型である。

A の再帰性から h'=h となる。したがって、 $f'=\beta\circ Ff'\circ F\alpha=\beta\circ Fh'=\beta\circ Fh=f$ となる。 以上より FA から B への余代数-代数準同型は一意に存在する。したがって、 $(FA,F\alpha)$ は再帰的余代数であ 定理 3.2 (逆 Lambek). RCA(F) の終対象は可逆である。双対的に、 CRA(F) の始対象は可逆である。

Proof. (A,α) を RCA(F) の終対象とする。 $(FA,F\alpha)$ も再帰的余代数だから、 (A,α) の終性より、FA から A への余代数準同型 $(h\colon FA\to A$ であって $\alpha\circ h=Fh\circ F\alpha$ となるもの) が存在する。

h も α も余代数の準同型だから、 $h\circ \alpha$ は (A,α) の自己準同型である。一方、 id_A も (A,α) の自己準同型である。終再帰的余代数への準同型は一意だから、 $h\circ \alpha=\mathrm{id}_A$ である。

 $h \circ \alpha = \mathrm{id}_A$ と h の準同型性により、 $\alpha \circ h = Fh \circ F\alpha = F \mathrm{id}_A = \mathrm{id}_{FA}$ である。 したがって、 h は α の逆射である。

系 3.3. RCA(F) の終対象 (の逆射) は始代数である。双対的に、CRA(F) の始対象 (の逆射) は終余代数である。

4 完備束

定義 **4.1** (完備束と完備半束). (A, ≤) を半順序集合とする。

- $X \subseteq A$ について、 $y \in A$ が X の交わり (meet) であるとは、以下を満たすことである。
 - 任意の $x \in X$ に対して、 $y \le x$ である。
 - 任意の $z \in A$ について、これが任意の $x \in X$ に対して $z \le x$ を満たすなら、 $z \le y$ である。 交わりは存在すれば一意であり、これを $\bigwedge X$ と書く。
- 双対的に、 $X \subseteq A$ について、 $y \in A$ が X の結び (join) であるとは、以下を満たすことである。
 - 任意の $x \in X$ に対して、 $x \le y$ である。
 - 任意の $z \in A$ について、これが任意の $x \in X$ に対して $x \le z$ を満たすなら、 $y \le z$ である。 結びは存在すれば一意であり、これを $\bigvee X$ と書く。
- *A* が完備交わり半束 (*complete meet-semilattice*) であるとは、*A* が任意の部分集合の交わりを持つことである。
- A が完備結び半束 (complete join-semilattice) であるとは、A が任意の部分集合の結びを持つことである。

• A が完備束 (complete lattice) であるとは、 A が完備交わり半束かつ完備結び半束であることである。

定理 4.2. 以下は同値:

- A は完備交わり半束である。
- A は完備結び半束である。
- A は完備束である。

Proof. A が完備交わり半束ならば完備結び半束であることを示す。逆は双対的に示される。残りの含意は自明である。

A を完備交わり半束とする。 $X \subseteq A$ とする。 X の上界を集めた集合を $\uparrow X$ とおく。 $\wedge \uparrow X$ が X の結びであることを示す。

 $x \in X$ とする。 $\uparrow X$ の定義から、任意の $y \in \uparrow X$ に対し、 $x \le y$ である。 \land の定義から、 $x \in \land \uparrow X$ である。 $z \in A$ を x の上界とする。このとき $z \in \uparrow X$ である。 \land の定義から、 $\land \uparrow X \le z$ である。

以上により、 $\wedge \uparrow X$ は X の結びである。

定義 4.3 (不動点). 順序集合における代数を前不動点 (pre-fixed point) という。

順序集合における余代数を後不動点 (post-fixed point) という。

代数または余代数で、可逆なものを不動点 (fixed point) という。

始代数を最小不動点 (least fixed point) という。(Lambek の定理より、これは不動点である。)

終余代数を最大不動点 (greatest fixed point) という。(Lambek の定理より、これは不動点である。)

定理 **4.4** (Knaster-Tarski). (A, \leq) を完備束とし、 $f: A \to A$ を単調写像 (順序集合間の関手) とする。このとき、このとき、f は最小不動点と最大不動点を持つ。

(より一般に、不動点の集合が再び完備束となることが知られているが、ここでは上の事実のみ使う。)

Proof. 全ての前不動点の交わりを μf とおく。 μf もまた前不動点である。したがって μf の定義より、これは始代数 (最小不動点) である。

5 部分対象

定義 **5.1** (部分対象の擬順序集合). $A \in \mathbb{C}$ とする。 A の部分対象 (subobject) とは、 \mathbb{C} の対象と射の組 (I,i) であって、 $i:I \hookrightarrow A$ となるものである。(\hookrightarrow は mono 射であることを意味する。)

スライス圏 \mathbb{C}/A を A の部分対象に制限した充満部分圏を $\mathrm{Mono}(A)$ と書く。

定理 5.2. Mono(A) は擬順序クラスである。

Proof. どの並行射も等しいことは、mono 射の性質から導かれる。

定義 5.3 (部分対象の順序集合). Mono(A) を同値類で割って順序集合としたものを Sub(A) と書く。

定義 5.5 (初等トポス). C の部分対象分類子 (subobject classifier) とは、 C の対象と射の組 (Ω, true) であって、

以下の条件を満たすものである。

- true: $1 \to \Omega$ である。ただし、 $1 \in \mathbb{C}$ は \mathbb{C} の終対象とする。
- 任意の $I, A \in \mathbb{C}, i: I \hookrightarrow A$ に対し、以下の図式

を引き戻しとして成立させるような χ_i がただ 1 つ存在する。ただし、 $!:I \to 1$ は終対象に対する唯一の射のこととする。

 ${\bf C}$ が初等トポス (elementary topos)、あるいは単にトポス (topos) であるとは、 ${\bf C}$ が有限極限と指数対象と部分対象分類子を持つことである。

例 5.6. Set はトポスである。より一般に、[I,Set] もトポスである。 Set を有限集合に限定したものもトポスである。

定理 5.7. C がトポスであるとき、これが局所小であることと整冪であることは同値である。

Proof. 略

定理 5.8. C が完備で局所小なトポスであるとき、任意の $A \in C$ に対し、 Sub(A) は完備束である。

Proof. C が完備だから、 C/A も小極限を持つ。忠実充満関手は極限を反映するから、 Sub(A) も小極限を持つ。 C が整冪である、すなわち Sub(A) が小さいことから、 Sub(A) は順序集合の意味で完備 (交わり完備半束) であることがわかる。したがって、 Sub(A) は完備束である。

定義 5.9 (逆像). $f: B \rightarrow A, i: I \hookrightarrow A$ とするとき、以下の引き戻し

を I の f による逆像 (inverse image) と呼ぶ。

6 整礎余代数

整礎余代数について議論するときは、以下を仮定する。

- C は圏である。
- $F: \mathbb{C} \to \mathbb{C}$ は自己関手である。
- C は逆像を持つ。

- F は mono 射を mono 射に写す。
- F は逆像を逆像に写す。

定義 6.1 (整礎余代数). (A,α) を F-余代数とし、(I,i) を A の部分対象とする。以下の引き戻し図式

において、 $\alpha^{-1}(Fi)$ がiを経由する、すなわち

となるとき、(I,i) は帰納的 (inductive) であるという。

帰納的な部分対象が (A, id_A) と同型なものに限られる (すなわち、(I,i) が帰納的ならi が可逆である) とき、 (A,α) は整礎 (well-founded) であるという。

定義 **6.2** (反礎代数). 双対的に、F-代数 (A, α) が \mathbb{C}^{op} で整礎余代数であるとき、 (A, α) を反礎代数 (anti-founded algebra) という。

定理 6.3. C が完備で局所小なトポスであるとき、 C の再帰的余代数は整礎余代数である。

Proof. (A, α) を 再帰的 F-余代数とする。

関数 \triangleright : Sub(A) \rightarrow Sub(A) を、 \triangleright (I) = $\alpha^{-1}(FI)$ と定義すると、これは単調写像になっている。 Sub(A) は完備束だから、 \triangleright の最小不動点が存在する。これを (I,i) とおく。

(I,i) が \triangleright の不動点であるというのは、すなわち

という引き戻し図式が存在することに他ならない。

さらに、 C はトポスであるから、以下の引き戻し図式

が存在する。 F は逆像図式を保存すると仮定しているから、上の図式を

と持ち上げても、引き戻し図式となる。これらを連結し、さらに $\chi_{F \, true}$ を定義する図式を繋げると

全体が一つの引き戻しになっている。つまり、

である。

ところで、これは χ_i を定義する図式である

に他ならない。したがって、 χ_i の唯一性から、 $\chi_{F \, true} \circ F \chi_i \circ \alpha = \chi_i$

がわかる。これは χ_i が余代数-代数準同型であることを意味している。

一方、以下の図式

も可換となるため、true o! もまた余代数-代数準同型である。

 (A, α) は再帰的余代数だから、 true $\circ! = \chi_i$ である。

つまり、 χ_i の引き戻し図式は、以下の図式

のように縮退する。Aが錐をなすことを使えば、iが可逆であることがすぐにわかる。

i が可逆であることから、(I,i) は Sub(A) の最大元であることがわかった。

ここで、 (A,α) が整礎であることを示すために、(I',i') を帰納的な部分対象とする。(I',i') が帰納的であるというのは、言い換えると、これが Sub(A) 内で \triangleright の前不動点になっていることに他ならない。

ところで、(I,i) は最小不動点だったから、 $(I,i) \leq (I',i')$ である。したがって (I',i') もまた $\operatorname{Sub}(A)$ の最大元である。言い換えれば、i' は可逆である。

以上により、 (A, α) が整礎であることが示された。

参考文献