Introduction to Machine Learning

Problems: Logistic Regression

2. Suppose that a logistic regression model for a binary class label y = 0, 1 is given by

$$P(y=1|\mathbf{x}) = \frac{1}{1+e^{-z}}, \quad z = \beta_0 + \beta_1 x_1 + \beta_2 x_2,$$

where $\beta = [1, 2, 3]^{\mathsf{T}}$. Describe the following sets:

- (a) The set of \mathbf{x} such that $P(y=1|\mathbf{x}) > P(y=0|\mathbf{x})$.
- (b) The set of \mathbf{x} such that $P(y=1|\mathbf{x}) > 0.8$.
- (c) The set of x_1 such that $P(y=1|\mathbf{x}) > 0.8$ and $x_2 = 0.5$.

Solution:

(a). From the question, we know:
$$p(y=1|x) = \frac{1}{1+e^{-\frac{1}{2}}} \quad \text{and it's a binary class}$$

$$\therefore p(y=0|x) = 1 - \frac{1}{1+e^{-\frac{1}{2}}}$$
According to $p(y=1|x) > p(y=0|x)$,

$$\frac{1}{|+e^{-\frac{1}{2}}|} > 1 - \frac{1}{|+e^{-\frac{1}{2}}|}$$

$$\vdots \qquad e^{-\frac{1}{2}} < 1$$

$$\vdots \qquad \frac{1}{|+e^{-\frac{1}{2}}|} > 1 - \frac{1}{|+e^{-\frac{1}{2}}|}$$

cb). p(y=1 | x) > 0.8

(c). According to the result in (b), we have: $\beta_0 + \beta_1 \times_1^+ \beta_7 \times_7 > \ln 4$ and $\times 1 = 0.5$

- 3. A data scientist is hired by a political candidate to predict who will donate money. The data scientist decides to use two predictors for each possible donor:
 - x_1 = the income of the person(in thousands of dollars), and
 - x₂ = the number of websites with similar political views as the candidate the person follow on Facebook.

To train the model, the scientist tries to solicit donations from a randomly selected subset of people and records who donates or not. She obtains the following data:

Income (thousands $\$$), x_{i1}	30	50	70	80	100
Num websites, x_{i2}	0	1	1	2	1
Donate (1=yes or 0=no), y_i	0	1	0	1	1

(a)

Solution

```
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
#matplotlib inline
%config InlineBackend.figure_format = 'svg'

x1 = np.array([30, 50, 70, 80, 100])
x2 = np.array([0, 1, 1, 2, 1])
y = np.array([0, 1, 0, 1, 1])
n = len(y)

for i in range(n):
    if y[i] == 0:
        plt.scatter(x1[i], x2[i], c='g')
    if y[i] == 1:
        plt.scatter(x1[i], x2[i], c='b')
```


Solution:

(b) A simple classifier is to use
$$x_1 = 0.5$$
.

So $\frac{1}{2}i = x_1 - 0.5 = \omega^T x + b$
 $\therefore W = 1, b = -0.5$.

(c) From quertion, we have:

$$p(\frac{1}{3}i = |x_0|) = \frac{1}{(1+e^{-\frac{1}{3}i})} = \frac{1}{e^{\frac{1}{3}i+1}}$$

$$\therefore p(\frac{1}{3}i |x_0|) = \sqrt{\frac{1}{1+e^{-\frac{1}{3}i}}} = \frac{1}{e^{\frac{1}{3}i+1}}$$

$$\therefore p(\frac{1}{3}i |x_0|) = \sqrt{\frac{1}{1+e^{-\frac{1}{3}i}}} = \frac{1}{e^{\frac{1}{3}i+1}}$$

$$\frac{1}{1+e^{\frac{1}{3}i}}, \quad y = 0.$$

So $x_{i1} = x_1 - 0.5$

So $x_{i1} = x_0 - 0.5$

So $x_{i1} = x_0 - 0.5$

$$x_{i2} = x_1 - 0.5$$

The smallest sample is $x_i = x_i$

The smallest sample is $x_i = x_i$

(d).

Since
$$x>0$$
, \hat{y} will not charge. But the likelihood will charge under the demand of whether $2i>0$ or $2i<0$, because:

 $2i=\alpha\omega$
 $2i'=\alpha\omega$
 $2i'=\alpha\omega$
 $2i'=\alpha\omega$
 $2i'=\alpha\omega$

- 4. Suppose we collect data for a group of students in a machine learning class with variables $X_1 =$ hours studied, $X_2 =$ undergrad GPA, and Y = receive an A. We fit a logistic regression and produce estimated coefficient, $\beta_0 = -6$, $\beta_1 = 0.05$, $\beta_2 = 1$.
 - (a) Estimate the probability that a student who studies for 40 h and has an undergrad GPA of 3.5 gets an A in the class.
 - (b) How many hours would the student in part (a) need to study to have a 50 % chance of getting an A in the class?

(a) From the prestion, we know:

$$3 = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
, $\beta = [-6, 0.05, 1]$
 $\therefore 2 = -6 + 0.05 x_1 + x_2$

when $x_1 = 40$, $x_2 = 3.5$
 $2 = -6 + 0.05 \times 40 + 3.5 = -0.5$
 $2 = -6 + 0.05 \times 40 + 3.5 = -0.5$
 $3 = -6 + 0.05 \times 40 + 3.5 = -0.5$
 $3 = -6 + 0.05 \times 40 + 3.5 = -0.5$

(b). From the question, we have:

$$p(y_i|x_i) = \frac{1}{1+e^{-t}} = \frac{1}{t}$$

$$2 = -6 + 0.05 \times 1 + 1 \times 2 = 0$$

The student in part (a) needs to study to hours to have a to % chance of jettif an A in the class.