Complex Dynamics

The study of iterated holomorphic maps

Mohith Raju (IISc Bangalore)

Mentor: Prof Sabyasachi Mukherjee

Objects

1. A holomorphic function $f: X \to X$

e.g.
$$f(z) = \frac{p(z)}{q(z)}$$
 and $g(z) = a_1 z^1 + a_2 z^2 + a_3 z^3 + \cdots$

2. A Riemann surface X

e.g.
$$X = \mathbb{D}, \mathbb{C}$$
 and $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Questions

- 1. What happens when f is iterated, i.e., $f \circ f \circ \cdots \circ f$
- 2. Given a point $z \in X$, what does the forward orbit of z look like?

Forward orbit of z is $(z, f(z), f^{\circ 2}(z), f^{\circ 3}(z), \cdots)$

- **Periodic orbit:** $f^{\circ n}(z) = z$
- **Convergence:** \exists {*n_k*} such that $f^{\circ n_k}(z) \rightarrow \hat{z}$
- **Divergence/Escape:** for every $K \subset \subset X$, $\exists N$ such that $f^{\circ n}(z) \notin K$ for all $n \geq N$

Examples of Riemann surfaces

The open unit disc $\mathbb{D} = \{|z| < 1\}$

The Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Source: "Droites disquePoincare" by Jean-Christophe BENOIST and "RiemannKugel" by GKFX and Bjoern klipp is licensed under CC BY-SA 3.0.

Objects

1. A holomorphic function $f: X \to X$

e.g.
$$f(z) = \frac{p(z)}{q(z)}$$
 and $g(z) = a_1 z^1 + a_2 z^2 + a_3 z^3 + \cdots$

2. A Riemann surface X

e.g.
$$X = \mathbb{D}, \mathbb{C}$$
 and $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Questions

- 1. What happens when f is iterated, i.e., $f \circ f \circ \cdots \circ f$
- 2. Given a point $z \in X$, what does the forward orbit of z look like?

Forward orbit of z is $(z, f(z), f^{\circ 2}(z), f^{\circ 3}(z), \cdots)$

- **Periodic orbit:** $f^{\circ n}(z) = z$
- **Convergence:** \exists {*n_k*} such that $f^{\circ n_k}(z) \rightarrow \hat{z}$
- **Divergence/Escape:** for every $K \subset \subset X$, $\exists N$ such that $f^{\circ n}(z) \notin K$ for all $n \geq N$

Objects

- 1. A holomorphic function $f: X \to X$
- 2. A Riemann surface X e.g. $X = \mathbb{D}, \mathbb{C}$ and $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Questions

- 1. What happens when f is iterated, i.e., $f \circ f \circ \cdots \circ f$
- 2. Given a point $z \in X$, what is the forward orbit of z? (Periodic orbit, convergence, divergence/escape)
- 3. Given a small nbd N_z of z, what is the forward orbit of N_z ? Forward orbit of z is $(N_z, f(N_z), f^{\circ 2}(N_z), f^{\circ 3}(N_z), \cdots)$

Objects

- 1. A holomorphic function $f: X \to X$
- 2. A Riemann surface X e.g. $X = \mathbb{D}, \mathbb{C}$ and $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Questions

- 1. What happens when f is iterated, i.e., $f \circ f \circ \cdots \circ f$
- 2. Given a point $z \in X$, what is the forward orbit of z? (Periodic orbit, convergence, divergence/escape)
- 3. Given a small nbd N_z of z, what is the forward orbit of N_z ?
 - ▶ Invariant: $f(N_z) = N_z$
 - ▶ Contraction: diameter of $f^{\circ n}(N_z)$ shirks to 0 as $n \to \infty$
 - ▶ Convergence: $\exists \{n_k\}$ such that $f^{\circ n_k}|_{N_z}: N_z \to X$ converges
 - ▶ Divergence/Escape: for every $K \subset \subset X$, $\exists N$ such that $f^{\circ n}(N_z) \cap K = \emptyset$ for all n > N
 - Spread out: For arbitrary small N_z , the union $\bigcup_{n=1}^{\infty} f^{\circ n}(N_z) = X \setminus \{2 \text{ or fewer exceptional points}\}$

Objects

- 1. A holomorphic function $f: X \to X$
- 2. A Riemann surface X e.g. $X = \mathbb{D}, \mathbb{C}$ and $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Questions

- 1. What happens when f is iterated, i.e., $f \circ f \circ \cdots \circ f$
- 2. Given a point $z \in X$, what is the forward orbit of z? (Periodic orbit, convergence, divergence/escape)
- 3. Given a small nbd N_z of z, what is the forward orbit of N_z ? (invariant, contraction, convergence, divergence, spread out)

Julia and Fatou sets

Fatou set = $\{z \in X : N_z \text{ shows convergence or divergence}\}$ Julia set = $\{z \in X : N_z \text{ spreads out}\}$

Fact. $X = \text{Fatou set} \mid \text{Julia set}$

- $f(z) = z^2$
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (fixed point)
- ▶ $f(\infty) = \infty$ (fixed point)

Question 1. What is the forward orbit of neighbourhoods of 0 and ∞ ?

Hint. $f^{\circ n}(z) = z^{2^n}$

- $f(z) = z^2$
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (attracting fixed point)
- ▶ $f(\infty) = \infty$ (attracting fixed point)

Question 1. What is the forward orbit of neighbourhoods of 0 and ∞ ?

Hint.
$$f^{\circ n}(z) = z^{2^n}$$

Ans. Let $N_0 := \{|z| < 1/2\}$ and $N_\infty := \{|z| > 2\}$. Note the sets $f^{\circ n}(N_0)$ and $f^{\circ n}(N_\infty)$ shrink to a singleton as $n \to \infty$.

- $f(z) = z^2$
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (attracting fixed point)
- ▶ $f(\infty) = \infty$ (attracting fixed point)

Question 1. What is the forward orbit of neighbourhoods of 0 and ∞ ?

Hint.
$$f^{\circ n}(z) = z^{2^n}$$

Ans. Let $N_0 := \{|z| < 1 - \epsilon\}$ and $N_\infty := \{|z| > 1 + \epsilon\}$. Note the sets $f^{\circ n}(N_0)$ and $f^{\circ n}(N_\infty)$ shrink to a singleton as $n \to \infty$.

- $f(z) = z^2$
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (attracting fixed point)
- ▶ $f(\infty) = \infty$ (attracting fixed point)

Question 2. What happens to points on the circle $S^1 = \{|z| = 1\}$?

First step. Consider the point $z = e^{i\theta}$ where $\theta \in \mathbb{Q}^c$.

- $f(z) = z^2$
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (attracting fixed point)
- ▶ $f(\infty) = \infty$ (attracting fixed point)

Question 2. What happens to points on the circle $S^1 = \{|z| = 1\}$?

First step. Consider the point $z = e^{i\theta}$ where $\theta \in \mathbb{Q}^c$.

Ans/HW. For any point $z \in S^1$ and any neighbourhood N_z of z, we have $\bigcup_{n=1}^{\infty} f^{\circ n}(N_z) = \hat{\mathbb{C}} \setminus \{0, \infty\}$.

Conclusion.

Fatou set
$$=\{|z|<1\}\cup\{|z|>1\}$$

Julia set $=S^1$

- $f(z) = z^2$
- ▶ f(0) = 0 (attracting fixed point)
- ▶ $f(\infty) = \infty$ (attracting fixed point)
- f'(0) = 0
- $f'(\infty) = 0$ (∞ is a double "root" of $f(z) = \infty$)

- ightharpoonup f(z) = 2z
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (fixed point)
- ▶ $f(\infty) = \infty$ (fixed point)
- $f^{\circ n}(z) = 2^n z$
- ▶ Let $N_{\infty} = \hat{\mathbb{C}} \setminus 0$ be a nbd of ∞
- ▶ $f^{\circ n}(N_{\infty})$ shrinks to a singleton set $\{\infty\}$

- ightharpoonup f(z) = 2z
- $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$
- ightharpoonup f(0) = 0 (repelling fixed point)
- ▶ $f(\infty) = \infty$ (attracting fixed point)
- $f^{\circ n}(z) = 2^n z$
- ▶ Let $N_{\infty} = \hat{\mathbb{C}} \setminus 0$ be a nbd of ∞
- $f^{\circ n}(N_{\infty})$ shrinks to a singleton set $\{\infty\}$
- Fatou set = $\hat{\mathbb{C}} \setminus 0$
- ► Julia set = {0}
- f'(0) = 2
- $f'(\infty) = 1/2$

Fixed points

- The fixed points of f: X → X contains a lot of information about the dynamics
- ▶ If f(p) = p and |f'(p)| < 1, then p is an attracting fixed point and a small nbd $N_p \subseteq \mathsf{Fatou}$ set
- ▶ If f(p) = p and |f'(p)| > 1, then p is a repelling fixed point

Fixed points

- The fixed points of f: X → X contains a lot of information about the dynamics
- ▶ If f(p) = p and |f'(p)| < 1, then p is an attracting fixed point and a small nbd $N_p \subseteq \text{Fatou set}$
- ▶ If f(p) = p and |f'(p)| > 1, then p is a repelling fixed point and $p \in Julia\ set$

Theorem.

If f(p) = p and |f'(p)| > 1, then any nbd N_p of p spreads out under f, that is, $\bigcup_{n=1}^{\infty} f^{\circ n}(N_p) = \hat{\mathbb{C}} \setminus \{2 \text{ or lesser points}\}.$

Remark. The proof uses "uniformization theorem" which is difficult to prove.

(Involves solving a difficult PDE $\Delta u = \rho$ on a Riemann surface.)

A question: do higher order terms matter?

- \triangleright Consider two maps f, g
- ► f(z) = z/2
- $g(z) = z/2 + a_2 z^2$
- ▶ Both f and g have an attracting fixed point at 0
- Are the dynamics of f and g same near 0?

Question 3. Does adding higher order terms affect the dynamics?

Question 4. When are two dynamics considered to be the same?

An interesting phenomenon (called X/f)

An interesting phenomenon (called X/f)

Consider f(z) = z/2

Question 5. Given $g(z) = z/2 + a_2 z^2$ can we **locally** find a system of closed curves and annuli $\{A_n\}$ such that g maps A_n homeomorphically onto A_{n+1} ?

When are two dynamics the same?

One version of equivalence of dynamics.

Given $f: X \to X$ and $g: Y \to Y$, we say (f, X) and (g, Y) are holomorphically equivalent if \exists a bijective holomorphic map $\varphi: X \to Y$ such that $g = \varphi^{-1} f \varphi$ or the following diagram commutes.

Want. Let f(z) = z/2 and $g(z) = z/2 + a_2z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

When are two dynamics the same?

One version of equivalence of dynamics.

Given $f: X \to X$ and $g: Y \to Y$, we say (f, X) and (g, Y) are holomorphically equivalent if \exists a bijective holomorphic map $\varphi: X \to Y$ such that $g = \varphi^{-1} f \varphi$ or the following diagram commutes.

Want. Let f(z) = z/2 and $g(z) = z/2 + a_2 z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

Theorem.

Suppose f(z) = z/2 and $g(z) = z/2 + a_2 z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

Key idea. Work backwards and "bootstrap".

$$egin{array}{ccc} U & \stackrel{g(z)}{\longrightarrow} U & & & & \downarrow \ & & & & & \downarrow \ V & \stackrel{}{\longrightarrow} V & & & V \end{array}$$

Theorem.

Suppose f(z) = z/2 and $g(z) = z/2 + a_2 z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

Key idea. Work backwards and "bootstrap".

Theorem.

Suppose f(z) = z/2 and $g(z) = z/2 + a_2 z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

Key idea. Work backwards and "bootstrap".

Theorem.

Suppose f(z) = z/2 and $g(z) = z/2 + a_2 z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

Key idea. Work backwards and "bootstrap".

Theorem.

Suppose f(z) = z/2 and $g(z) = z/2 + a_2 z^2$. Then \exists nbds U, V of 0 such that (f, U) and (g, V) are holomorphically equivalent.

Key idea. Work backwards and "bootstrap".

Define
$$\varphi(z) := \lim_{n} (2^n g^{\circ n}(z)) \quad \Box$$

