Assignment 2 – Task 2

By Andrea Ernst, 588404 and Jonas Kramer, 592764

Human KRAS sequence from: https://www.ncbi.nlm.nih.gov/nuccore/NM 021284.7?report=fasta

Length: 5306

Murine KRAS sequence from https://www.ncbi.nlm.nih.gov/nuccore/NM 004985.5?report=fasta

Length: 4674

Differences between our and Emboss alignment:

The Emboss algorithm produced a much longer alignment core, even much longer than the entire sequences, which are compared.

Core length – ours: 4675

Core length - Emboss: 5614

With defaults Emboss uses a different score matrix:

Match: +5 (+1 ours) I/D/R: -4 (-1 ours)

This could explain the much longer core length, since extending to have one more match, while having also one more mismatch, is still rewarded. It seems gaps are also favoured by the Emboss algorithm, as there are several long-running sections with just gaps in the pattern.

Total number of gaps in both cores:

Ours: 721 Emboss: 1260

Our local alignment (found just one core):

TTTTTCCTCTAAGTGCCAGTATTCCCAGAGTTTTGGTTTTTGAACTAGCAATGCCTGTGAAAAAGAAACTGAATA CCTAAGATTTCTGTCTTTGGGGCTTTTGGTGCATGCAGTTGATTACTT CTTATTTTTCTTACCAATTGTGAATGTT GGTGTGAAACAA ATTAATGAAGCTTTTGAATCATCCCTATTCTGTGTTTTTATCTAGTCA CATAAATGGATTAA TTA_CTAATTTCAGTTGA_GACCTTCTAATTGGTTTTTACTGAAACATTGAGGGAACACAAATTTATGGGCTTCC TGATGATGATT_CTTCTAGGCATCATGTCCTATAGTTTGTCATCCCTGATGAAT_GTAAAGTTACACTGTTCACA AAGG TTT TGTCTCCTTTCCACTGCTATTAGTCATGGTCACTCCCCAAAATATTATATTTTTTCTATAAAAAG AAAAAAATGGAAAAAATTACAAGGCAATGGAAACTATT ATAAGGCCATTTCCTTTTCACAT T AGATAAAT TACTATAAAGACTCCTA A TAGCTTTTCCTGTTAAGGCAGACCCAGTATGAAATGGGGATTATTATAGCAACC ATTTTGGGGCTATATTTACATGCTACTAAATTTTTATAATAATTGAAA_AGATTTTAACA_AGTATAAAAAAATTCT CATAGGAATTAAATGTAG__TCTCCC_TGTGTCAGACTGCTCTTTCATAGTATAACTTTAAA_TCTTTTCTTCAAC TTGAGTCT_TTGAA_GATAGTTTTAATTCTGCTTGTGACAT_TAAAAGATTATTTGGGCCAGTTATAGCTTATTA GGTGTTGAAGACCA AGGTTGCAAGGCCAGGCCCTGT GTGAACCTTTGA G CTTT CATAGAGAGTTT CACAGCA TGGACTGTGCCCCACGGTCATCCAGTGTTGTC ATGCATTGGTTAGTCAAAATGGGGAGGGACT AGGGCAG TTTGGATAGCTCAACA AGATACAATCTCACTC TGTGGTGGTCCTGCTGACAAATCAAGAGCAT TGCTTTTGTTTCTTAAGAA AACAAACTCTTTTTTAAAAATTACTTTTAAATATTAACT CAAAAGTTGAGATTTT GGGGT_GGTGGTGTGC__CAAGACATTAATTTTTTTTTAAA_CAATGAAGTGA_AA_AAGTTTT_ACAATCTCT AGGTTTGGCTAGTTCTCTTAACACTGGTTAAATTAACATTGCATAAACACTTTTCAAGTCTGATCCA__TATTTAA T A A TGCTTTAA AATAA AA AT AAAAACAATC CTTTTGATAAATTTTAAAATGTTACTTATTTTAAA ATAAATGAAGTGAGATGGCATGGTGAAGGTGAAAGTATCACTGGACTAGGAAGAAGGTGACTTAGGTTCTAGA TAGGTGTCTTTTAGGACTCTGATTTTGAGGACATCACT TACTATCCATTTTCTTCATGTTAAAAGAAGTCATCTC AAACTCTTAGTTTTTTTTTTTACAACTATGTAATTTATATTCCATTTACATAAG GATACACTTATTTGTCAAGC TCAGCACAATCTGTAAAT_TTTTAACCTATG__TTACACCATCTTCAGTGCCAGTCTTGGGCAAAATTGTGCAAG AGGTGAAGTTTATATTTGAATATCCATTCTCGT_TTT_AGGACTCTTCTCCAT_ATTA_G_TGTCATCTT__GCCT CCCTACCTTCCACATGCCCCATGACTT GATGCAGTTTTAATACTTGTAATTCCCCTAAC CATAAGATTTACTG CTGCTGTGGATATCTCCATGAAGTTTTCCCACT G AG TCACATCAGAAA TGCCCTACAT CTTAT TTCC TCAGGG CTCAAGAGAATCTGACAGATACCATAAAGGGATTTGACCTAATCACTAATTTTCAGGTGGTGGCTG ATGCTTTGAACATCTCTTTGCTGCCCAATCCATTAGCGACAGTAGGATTTTTCAAACCTGGTATGAATAGACAG AACCCTATCCAGTGGAAGGAGAATTTAATAAAGATAGTGCTGAAAGAATTCCTTAGGTAATCTATAACTAGGA CTACTCCTGGTAACAGTAATACATTCCATTGTTTTAGTAACCAGAAATCTTCATGCAATGAAAAATACTTTAATT CATGAAGCTTACTTTTTTTTTTGGTGTCAGAGTCTCGCTCTTGTCACCCAGGCTGGAATGCAGTGGCGCCATCT CAGCTCACTGCAACCTCCATCTCCCAGGTTCAAGCGATTCTCGTGCCTCGGCCTCCTGAGTAGCTGGGATTACA GGCGTGTGCCACTACACTCAACTAATTTTTGTATTTTTAGGAGAGACGGGGTTTCACCCTGTTGGCCAGGCTGG TCTCGAACTCCTGACCTC_AAGTGATTCACCCACCTTGGCCTCATAAACCTGT_TTTGCAGAACTCATTTATTCAG _CAAATATTTATTGAGTGCCTACCAGATGCCAGTCACCACACAGGCACT__GGGTATATGGTATCCCCAAACA AGAGACATAATCCCGGTCCT_TAGGTAGTGCTAGTGTGGTCTGTAATATCT_TAC_TAAGGCCTTTGGTATACG ACCCAGAGATAAC_ACGATGCGT_ATTTTAGTTTTGCAAAGAAGGGGTTTGG_TCTCTGTGCCAGCTCTATAAT TGTTTTGCTACGATTCCACTGAAACTCTTCGATCAAGCTACTTTATGTAAATCACTTCATTGTTTTAAAGGAATAA ACTTGATTATATTGTTTTTTTTTTTGGCATAACTGTGATTCTTTTAGGACAATTACTGTACACATTAAGGTGTATG TCAGATATTCATATTGACCCAAATGTGTAATATTCCAGTTTTCTCTGCATAAGTAATTAAAA_TATACTTAAAAAT TAATAGTTTTATCTGGGTACAAATAAACAGGTGCCTGAACTAGTTCACAGACAAGGAAACTTCTATGTAAAAAT CACTATGATTTCTGAATTGCTATGTGAAACT ACAGATCTTTGGAACACTGTTTAGGTAGGGTGTTAAGACTTA CACAGTACCTCGTTTCTACACAGAGAA_AGAAATGGCCATACTTCAGGAA_CTGCAGTGCTTATGAGGGGATA TTTAGGCCTCTTGAATTTTTGATGTAGATGGGCATTTTTTTAAGGTAGTGGTTAATTACCTTTATGTGAACTTTG AATGGT TTAACAAAAGATTTGTTTTTGTAGAGATTTTAAAGGGGGGA GAATTCTAGAAATAAAT GTTACCT AATTATTACAGCCTTAAAGACAAAATCCTTGTTGAAGTTTTTTTAAAAA AA GCTAAATTACATAGACTTAG GCATTAACATGTTTGTGG_AAGAATATAGCAGACGTATATTGTATCA_TTTGAGTGAATGTTCCCAAGTAGGCA TTCTAGGCTCTATTTAACTGAGTCACACTGCATAGGAATTTAGAACCTAACTTTTATAGGTTATCAAAACTGTT GTCACCATTGCACAATTTTGTCCTAATATATACATAGAAACTT_TGTGGGGCATGTTAA__GTTACAGTTTGCAC AAGTTCATCTCATTT_GTATTCCATTGATTTTTT_TTTTCTTCTAAACATTTTTTC_T___T_CA_A_A_CAGTATAT

CGGCGGCGGCTCGGCCCGGAGTCCCG CTCCCGCGCCATTTCGGACCCGGAGCGAGCGCGCGGGGC CTG AAGGCGGCGGGGAGCCTGAGGCGCGGCGCTCCGC GGCGCGG AGAGAGGCCTGCTGAAAATGACTGA GTATAAACTTGTGGTGGTTGGAGCTGGTGGCGTAGGCAAGAGCGCCTTGACGATACAGCTAATTCAGAATCAC TTTGTGGATGAGTATGACCCTACGATAGAGGACTCCTACAGGAAACAAGTAGTAATTGATGGAGAAACCTGTC TCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGAACTGGGG AGGGCTTTCTTTGTGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTA AAAGAGTAAAGGACTCTGAAGATGTGCCTATGGTCCTGGTAGGGAATAAGTGTGATTTGCCTTCTAGAACAGT AGACACGAAACAGGCTCAGGAGTTAGCAAGGAGTTACGGGATTCCGTTCATTGAGACCTCAGCAAAGACAAG ACAGGGTGTTGACGATGCCTTCTATACATTAGTCCGAGAAATTCGAAAACATAAAGAAAAGATGAGCAAAGAT GGGAAGAAGAAGAAGAAGTCAAGGACAA_G_GTGTACAGTTATGTGAATAC__TTTGTACTCTTT_CTTA AGGCACACTTAAGTAAAAGTG TGATTTTTGTACATTACACTAAATTATTAGCATTTGTTTTAGCATTACCTAAT CTTTTTTTTCTTCTGTTCG TGCAAACTGTCAGCTTTTATCTCAAATGCTTATTTTAAAA GAACAGTGGAAACC TTCTTTTT TCTAAGTGCCAGTATTCCCTGGGTTTTGGACTTA AACTAGCAATGCCTGTGGAAGAGA CTAA AGACCTGAGACT CTGTCTTGGGA TTT GGTGCATGCAGTTGATTCCTTGCT AGTTCTCTTACCAACTGTGAA CACTGATGGGAAGCAGGAT AATGAAGCTTCCGGACCATCCCTGCTCTGTGTCC ATCTACTCATCC AA TGG AGTCATTAGC_AGT__CAATCGCCG_C_TTC_ACT_GG_____AC__A__C_T_GAGGGGTCACAGACTTA_GG_ CTCCCTT TGA G TCGCGTCCAG CGT GTCCTAGACTTTATCATCTTTCA GAGGCGTAG GC AGACTGT TCACAAAGGCTTTCTGTAGC TTTCCACTGCAATTAATCTTGGTCACTC CCTCAAA TAGTATATTTTTTCTAGA AAAGGGGAAAAATGGAAAAAAA__A_A_GGCAATGGAAAATGTTGA_AAT_CCATT_CAGTTTC_CATGTTAG CTAAATTACTGTAA GATTCCTATAATAGCTTTTCCTGGTAAGGCAGACCCAGTATGAAATAG T A ATA A CCATTT GGG CTATATTTACATGCTACTAAATTTTTGTAATAATTCAAACA ACTTTAGCATA TATAAAAA GTTCTCATAAGAATTAA__GTACAAT_TCCCCTTTGTCAGATTGTTCTT__ATCCTA_A_CTTTCAAGTCTTTT_TT GAATTTCTGT TGTTGAAAG TAGTTTTAATG G TTGTGA AGCTGAA GATGATCTGAGACAGTTATAGCTT GGCAGGTGTTGAGGAGACCAGAG_TTGCAGGGTTGGGCC_T_TACGTGAACCTGTGACGAACGCTAC_T_G_ G GTTTTGCAGCACTG CTG C AT TCA A TGTTGGCGACGCATTGTTTGGTCAACATAGGG G _A_TAAGG_AGACTTTG_ATGGCTTAGTATA_ATGCATTCTCAC_CATGTAACAGTCCTACTGACAAATCAAGAA _ATT__T__GTTTAT_AATAATAAAAA_T_TTTT__AAAAATTTCG___A__TGTTCGCTTCAAG_GTTGAGATT TTGGGGTAGGAGGC_TACAACAAGAG_TAAATCTT_____AAAGCAA_G__GTTTTAAGAAGGTTTGAAAATG _C_AGGTTTGACTAGT_CTCTCAACTCTAGCTAAACAAACATTCCC_AAGTACTTCCCAAATCTGAT__AGGTATT TAAAATTATCTAATGCTTTAAGAATAGTTAACAGGAAAAA AATCTCCTCAG TGCACTTAAA GCAACCC TT C ACA TCATT TGAAATG A GATG G AAA TATCACTGGACTATGA G G ACT GG A _T_G_T__CT___G__TCTGATTTTAAGCAAATCACTGT_CTG_C__TTGGTT__T_T____GAA_TCATCTCAA AGAC_A_TTAACCTCC___CAGCCGTGTAAC_ATAGT__TT_ACAT__GTTGACACACCTAGTTATCAAGCT CAGCACAATCTGTAACTGTTTTA_C__ATGGATTA_AC_ATCTTCACTGCCAGTCTTGGGCAAA_TTGTGCAAGA

GGTAAAATTTATATTTCAGTATCCATTCCCCATTTCAGGACTCCCCT_CCAACATTATGCTGGC_T_TTCAGCCT
GTCT_C_T_C_ACCTGCCC_ATCACTTAG_TGTAGTTTTAATAATT_TCCCCC_A_CTTCA_AAC_TTTGTTTCC
ACTATGGACAACTTCATGAACTTTGCCCACTAAGGTAGGT
C_GGGACTGAA_A_A_TAACAGACACCATAGTGGGATTT_AAA_CTAATAGATGGTTT
TCAGG_GCC_A_C_T_A_CAACA_A_TTCAATC_TC_A_A_TCC_T_T_
TGGACTTCA_TTCCTGCTGCCC_AGGCC_ACT_GGTGC_
C_T_C_AGTAGGAA_T_TTT_CAAAATTAGTGTGAA_CA
GACAGAG_CACAGTC_C_AGTGGAA_GGTGA_GCT_TAATCTTC_ATC
TAGCC_AT_CAT_CAT_GGTA_AG_TGAT_AGA_TTCTA_T
TGT_TTTA_AT_A_A_ATA_CAGTCTAA_CAA_TGAAAAACACTTCGAAGTTTCA_
ATCATAAAGCTGTCTTTTTAAAAATTTTATTTACTCAAC_ATTTATTCAGTGCTTGTCATATTCTG
GGAATTACACTAGGCACTCAGGGTGCGGTGTCCTCAATCC_TTGG_CCAGT_GGTA_TG_TA
GCATGATCTGTAATACCACTAAATAAGGCATATAGCATATGACTTAGACATAATGAA_ATACATGATTTGAGTT
TTGCAGAGA_GGAGTTTGGGT_T_TGTA_CATTCC_CTTCC_CC_CC_CA_G
_TTT_A_GCAAGAATTGTTTGCT_G_TGA_ATCCAATG_CA_A_CT_TTT
AA_A_TCAA_AC_T_ACT_TT_ATAT_AAT_TA_T_TTC_A_TTTT_T
CTA_AAGGAAC_AGAAGTACCCT_AAAC_T_A_TTTTT_T_TGA_AA_TGTT_C_TAAACT_GT_
_ACATATTC_ATAGAACA_T_TC_TTTGGGTGAATTTTA_AG_TCTTAAA_A_
TGCA_AT_TAGTAATACTT_CTCATTTC_TAT_T_CAGAG_GAACAGGTGTACTTCAA_AAGC
TGCAGTG_T_AT_AATCAGATA_TTTTTAATGGACAATGTGTTAAAGAAGTGGT_AA
TTACCACTATGTAAA_TTTGAATTGTGTTA_CACTTTGGTTA_ACAAAAGGGGAAAGAATCCTA
GAAACAAATATGTTATCTAGTTACTGCAGCCTTAAAGTCCTTGTTGAAGTTAAAAAGCAATGC
TAAGTTACAGTCATAGGCATTAACATGTTTATGGGAAGGATATAGTAGGCA_A_ATA_CAATTTGAGTA
AATATTTTCA_GTAGGGAATTTTAGGCTCTACTGA_CTGAGTCACACTGCATAGGAATTTAGATCTTAACTTTTA
TAGGTTATCGAC_CT_TTGCCACCATTGCACAATTTTGTCCTAACATA_A_ATACAAG_TTCTGTGAGGCATGTC
AAAAGTTACAGTTTGCATAAATTCATCTCATTTTGTATTCCACTGATTTTACATTTTCCTC_AAACATACATACAT
ACATACATACAACAC_ACACACACACACATGAAGGGTTTTTTTTTT
TTCCATTTGTTAAAAAGTAGTGATTTATTGAGAATTATGCAGTCAT_TTTTT_A_AACCCAAAAGTTAT_TTAAAG
GTGAATTTATACTCAATAACTTCTGTGT_AATACTGGGTAGCATGAATTCTGCATTGAAAAATTGAACAGATAA
TACCAATAGCTGTAAATTCTGTCAAAACATGAAAATTATTTCTAAAGAA_G_TACAT_T_AGTT_TTCAAAGA
ACAGTTATTAGAATCAGATCTGTGGTTTAGTTCAATAATTTGAAGTGCCTGTTTGGGATGGTGGTAGGCAT
TTTAGATGAATTT_GGG_AAAAATAAAGTTCTGCAGAAATGCC_AGT_T_TCAGACCCCGCTA_AC
CCGCTGAG_TGGGCTGTGTG_CTGTGTTAGCTCC_AGTGCCCCAAT_CC_C_GT_TTCATGTCTTCATGT
TGAAAC_ACTTCTGCATTTTTA_TTTGAGTGCCAATTTCTTACTAGTGCTATTTCTTAGTGTAACATGTTTACCTG
GGATGTATTTTAACTATTTTTGTATAGTGTAAACTGAAACATGCACATTTTGTACATTGTGCTTTCCTTCTTTCCA
TTCCTTTTCTTTTGTTTGTTTGTTTGTTTGTTTGTTTTGTTTATGGGACATATGCAGTGTGATCCAGTTGTTT
TCCATCCTTTGGTTGCGCTGACCTAGGGAATGTTGGTCATATCAAACATTAAATTTAAAAGTGACCACTCTTA
ATTAAAATTAACTTTTAAATGTTTATAGGAGTACGTGCTGTGAAGTGATCTGAAATTTGTAATATTTTTGTCATG
AACCGTACTGCTCCTAATCATTGTAATGAAAAAATAGTTATGGTGAC**

EMBOSS Alignment (beginning):

```
# Commandline: water
   -auto
    -asequence emboss_water-I20220527-203641-0057-37591492-p1m.asequence
#
   -bsequence emboss_water-I20220527-203641-0057-37591492-p1m.bsequence
   -datafile EDNAFULL
   -gapopen 10.0
   -gapextend 0.5
   -aformat3 pair
   -snucleotide1
   -snucleotide2
#
# Align_format: pair
# Report file: stdout
************************************
#-----
# Aligned_sequences: 2
# 1: EMBOSS_001
# 2: EMBOSS 001
# Matrix: EDNAFULL
# Gap_penalty: 10.0
# Extend_penalty: 0.5
# Length: 5614
# Identity:
           3681/5614 (65.6%)
 Similarity: 3681/5614 (65.6%)
           1260/5614 (22.4%)
# Gaps:
 Score: 13069.0
#-----
EMBOSS_001
              3 AGGCGGCGGCGGCGGCGGAGGCAGCAGC----GGCGGCGGCAGTGG
                                                          47
                EMBOSS 001
              9 AGGCGGCGGCGGCGGCTGAGGCGGCAGCGCTGTGGCGGCGGCTGAGA
                                                          58
EMBOSS_001
             48 CGGC-GGCGAAGGTGGCGGCGGCTCGGCCAGTACTCCCG-GCCCCCGCCA
                                                          95
                EMBOSS 001
             59 CGGCAGGGGAAGGCGGCGGCGGCCCGGAGTCCCGCTCCCGCGCCA
                                                         108
EMBOSS_001
             96 TTTCGGACTGGGAGCGAGCGCGCGCGCAGGCACTGAAGGCGGCGGCGGG-G
                                                         144
                EMBOSS 001
             157
             145 CCAGAGGCTCAGCGGCTCCCAGGTGCGGGAGAGAGGCCTGCTGAAAATGA
EMBOSS_001
                EMBOSS 001
             158 CCTGAGGCGCGGCGCTCCGCGGCGC-GGAGAGAGGCCTGCTGAAAATGA
                                                         206
EMBOSS_001
             195 CTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCC
                                                         244
                EMBOSS_001
             207 CTGAGTATAAACTTGTGGTGGTTGGAGCTGGTGGCGTAGGCAAGAGCGCC
                                                         256
EMBOSS_001
             245 TTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGATCCAAC
                                                         294
                257 TTGACGATACAGCTAATTCAGAATCACTTTGTGGATGAGTATGACCCTAC
EMBOSS 001
                                                         306
             295 AATAGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTC
EMBOSS_001
                                                         344
                EMBOSS_001
             307 GATAGAGGACTCCTACAGGAAACAAGTAGTAATTGATGGAGAAACCTGTC
                                                         356
EMBOSS 001
             345 TCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGG
                                                         394
                EMBOSS_001
             357 TCTTGGATATTCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGG
                                                         406
EMBOSS_001
             395 GACCAGTACATGAGGACTGGGGAGGGCTTTCTTTGTGTATTTGCCATAAA
                                                         444
                407 GACCAGTACATGAGAACTGGGGAGGGCTTTCTTTGTGTATTTGCCATAAA
EMBOSS_001
                                                         456
             445 TAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAA
EMBOSS_001
                                                         494
                EMBOSS 001
             457 TAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAA
                                                         506
```