

esófago utilizando perceptrón

Clasificación de

imagenes de cáncer de

Detección y diagnóstico de cáncer de esófago en vivo a partir de imágenes microscópicas

9,446 Imágenes png, 8 bits, de 44 pacientes

- 1,469 Epitelio escamoso
- 3,177 Metaplasia Intestinal
- 3,594 Displasia / Cáncer
- 1,206 Metaplasia Gástrica

Cada imagen png-8 del reto, genera una matriz (519, 521, 3)

Cuando los valores de los tres canales del color RGB son idénticos, se obtiene un tono de gris entre 0 equivalente a negro y 255 equivalente a banco.

Matriz de confusión

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy Σ True positive + Σ Total po	(ACC) = Σ True negative opulation
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma}{\Sigma}$ True positive Condition positive	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\sum False\ negative}{\sum Condition\ positive}$	$\label{eq:specificity} \begin{aligned} \text{Specificity (SPC), Selectivity, True negative} \\ \text{rate (TNR)} &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}} \end{aligned}$	Negative likelihood ratio (LR-) = FNR TNR	= <u>LR+</u> LR-	Recall + 1 Precision

Fuente: K. Akepanidtaworn (Kyle), «Breaking Down Classification Evaluation Metrics», Medium, sep. 21, 2019. https://medium.com/@kyleake/classification-evaluation-scheme-the-breakdown-of-confusion-matrix-7b8066e978aa (accedido jun. 01, 2020).n

Métricas clasificación binaria

Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Precision	$\frac{\text{TP}}{\text{TP} + \text{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\text{TN}}{\text{TN} + \text{FP}}$	Coverage of actual negative sample
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Hybrid metric useful for unbalanced classes

Type I error (false positive)

Type II error (false negative)

Referencias

- Countz, Thomas. «19-Line Line-by-Line Python Perceptron». Medium, 6 de abril de 2018. https://medium.com/@thomascountz/19-line-line-by-line-python-perceptron-b6f113b161f3
- Pratap, Ashish. alphrho/single_layer_perceptron. Jupyter Notebook, 2019.
 https://github.com/alphrho/single_layer_perceptron.
- «How to Train a Basic Perceptron Neural Network Technical Articles». Accedido 21 de mayo de 2020. https://www.allaboutcircuits.com/technical-articles/how-to-train-a-basic-perceptron-neural-network/.