```
# -*- coding: utf-8 -*-
# @Author : 陈浩骏, 2017326603075
# Python Version == 3.8.5
import os
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import pylab as plot
from \ sklearn.ensemble \ import \ Random ForestRegressor, \ Random ForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import LinearSVC
%matplotlib inline
plt.rcParams['figure.dpi'] = 150
plt.rcParams['savefig.dpi'] = 150
sns.set(rc={"figure.dpi": 150, 'savefig.dpi': 150})
from jupyterthemes import jtplot
jtplot.style(theme='monokai', context='notebook', ticks=True, grid=False)
```

首次数据是从 kaggle 上直接下载下来的.

首次作业见<u>Assignment3 Page</u>

因下列block所依赖数据为 kagg1e 上的原始数据, 而实际课程上作业拿到的数据是经过特意修改后的, 含有重复列和特殊值的.

故以下 block 专门对数据进行去重.

```
corruptedData = pd.read_csv('./CorruptedTitanic/train.csv')
corruptedData.describe()
```

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	892.000000	892.000000	892.000000	715.000000	892.000000	892.000000	892.000000
mean	445.547085	0.383408	2.308296	30.249189	0.523543	0.381166	195.705100
std	257.564835	0.486489	0.835666	20.038824	1.102240	0.805706	4887.636304
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	222.750000	0.000000	2.000000	20.750000	0.000000	0.000000	7.917700
50%	445.500000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.250000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	400.000000	8.000000	6.000000	146000.520800

很明显有些奇怪的东西混了进来

- 891名乘客, 计数是892
- 年龄有个最大值是400

corruptedData[corruptedData.duplicated()]

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ethnicity	Cabin	Eml
42	42	0	2	Turpin, Mrs. William John Robert (Dorothy Ann	female	27.0	1	0	11668	21.0	white	NaN	S

即位于 PassengerId == 42 的列是重复列.

```
corruptedData.drop_duplicates(inplace=True)
corruptedData[corruptedData.duplicated()]
```

F	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ethnicity	Cabin	Embarked
---	-------------	----------	--------	------	-----	-----	-------	-------	--------	------	-----------	-------	----------

重复的现在被去掉了.

接下来处理年龄.

corruptedData[corruptedData['Age'] > 100]

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ethnicity	Cabin
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	400.0	1	1	PP 9549	16.7	white	G6

PassengerId == 11出了一个400岁的.

拿掉, 平均数填充.

 $corrupted Data.loc[corrupted Data.Passenger Id == 11] = corrupted Data['Age'].mean \\ corrupted Data.describe()$

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ethnicity	Cab
count	891	891	891	891	891	714.0	891	891	891	891.00	891	204
unique	891	3	4	891	3	89.0	8	8	682	250.00	3	148
top	366	0	3	Gheorgheff, Mr. Stanio	male	24.0	0	0	347082	8.05	white	B96 B98
freq	1	549	490	1	577	30.0	608	678	7	43.00	888	4

异常值处理完毕

trainData = pd.read_csv('./titanic/train.csv')
print(trainData.shape)
trainData.head(5)

(891, 12)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

完成依赖引入与数据读入.

如无特殊说明,图例中绿色代表存活 Survived,红色代表不幸罹难 Perished.

trainData.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

注意到 PassengerID. count == 891, 而 Age. count == 714, 即年齡缺失177个数据. 进行中位数/随机森林预测数据补充.

```
# Median Data
# trainData['AgeM'] = trainData['Age'].fillna(trainData['Age'].median)

# Random Forest Approach
age_df = trainData[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']]
age_df_notnull = age_df.loc[(trainData['Age'].notnull())]
age_df_isnull = age_df.loc[(trainData['Age'].isnull())]
X = age_df_notnull.values[:,1:]
Y = age_df_notnull.values[:,0]
RFR = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
RFR.fit(X,Y)
predictAges = RFR.predict(age_df_isnull.values[:,1:])
trainData.loc[trainData['Age'].isnull(), ['Age']]= predictAges
```

```
trainData['Age'].count() # 为891即补充完整
```

关注性别

• 基于生存人数(计数)的性别分布

```
# 加入新列: Perished -> 逝世(Boolean)
trainData['Perished'] = 1 - trainData['Survived']
trainData.groupby('Sex').agg('sum')[['Survived', 'Perished']]
```

	Survived	Perished
Sex		
female	233	81
male	109	468

• 基于生存人数(按比例)的性别分布

```
trainData.groupby('Sex').agg('mean')[['Survived', 'Perished']]
```

	Survived	Perished
Sex		
female	0.742038	0.257962
male	0.188908	0.811092

<matplotlib.axes._subplots.AxesSubplot at 0x206291984f0>

不难看出,在数据集中, Age == Female 即女性的死亡率较低. 因此加入年龄作为参考因素, 绘制 violin graph.

得到以下特征

- 青少年男性存活比例较高, 而中年(Age~=30)男性死亡率高
- 女性各年龄段存活比例相对平均

关注客舱等级(Pclass)

trainData.groupby('Pclass').agg('sum')[['Survived', 'Perished']]

	Survived	Perished
Pclass		
1	136	80
2	87	97
3	119	372

```
trainData.groupby('Pclass').agg('mean')[['Survived', 'Perished']]
```

	Survived	Perished
Pclass		
1	0.629630	0.370370
2	0.472826	0.527174
3	0.242363	0.757637

<matplotlib.axes._subplots.AxesSubplot at 0x2062929c6a0>

- 客舱等级为1的死亡率最低,仅约37%
- 客舱等级为3的死亡率最高,约为75% 此时加入船票费用(Fare)验证客舱等级1是否为高价或低价舱位

<matplotlib.axes._subplots.AxesSubplot at 0x206292a95b0>

验证上述猜想, 1号Pclass等级的客舱售价最高, 约80+美元, 而2, 3等级的客舱售价较低

结合船票费用与年龄将死亡率与分布可视化

<matplotlib.collections.PathCollection at 0x20629ecce20>

上述图的散点大小代表船票费用(Fare), x轴代表年龄(Age), y轴亦代表船票费用.

作以下说明

- 称位于上图顶端的, 30<=Age(x axis)<=40, 绿色的散点为聚类点1
- 称位于上图底端的, 20<=Age(x axis)<=40, 红色的散点为聚类点2
- 称位于上图中心的, 10<=Age(x axis)<=40, 绿色的散点的为聚类点3
- 称位于上图左下端, 0<=Age(x axis)<=10, 绿色的散点为聚类点4

聚类点1的出现,表明票价最高的存活率亦最高.

聚类点2的出现,表面票价最低的中年乘客存活率亦最低,红点极其密集.

聚类点3的出现,表面票价适中部分的中年乘客存活率相当可观.

聚类点4的出现,是最有趣的,他们属于拥有较低求生技能的一批乘客,主要为婴幼儿与儿童,但是存活率亦高.

可以判断婴幼儿与儿童相较于其他乘客, 获得更好的求生/教助资源. 该结论反射的观点也的确是明显受社会认可的(妇女儿童优先).

关注年龄

```
trainData["AgeInt"] = trainData["Age"].astype(int)
# 精确到每个年龄的成员成活率
avgAge = trainData[["AgeInt", "Survived"]].groupby(['AgeInt'], as_index=False).mean()
sns.barplot(x='AgeInt', y='Survived', data=avgAge)
```

<matplotlib.axes._subplots.AxesSubplot at 0x20629efc2b0>


```
separationPoint = [0, 6, 18, 40, 60, 100]
trainData['AgeBatch'] = pd.cut(trainData['AgeInt'], separationPoint)
batches = trainData.groupby('AgeBatch')['Survived'].mean()
# 按年龄段的存活率
batches
```

```
AgeBatch
(0, 6] 0.650000
(6, 18] 0.366972
(18, 40] 0.362522
(40, 60] 0.404255
(60, 100] 0.217391
Name: Survived, dtype: float64
```

```
batches.plot(kind='bar', color='g', figsize=(16, 12), title='Survival Rate on Age Batches')
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x2062a0f82e0>
```



```
survivedtmp = trainData[trainData['Survived']==1]['AgeBatch'].value_counts()
perishedtmp = trainData[trainData['Survived']==0]['AgeBatch'].value_counts()
dftmp = pd.DataFrame([survivedtmp, perishedtmp])
dftmp.index = ['Survived','Perished']
dftmp.plot(kind='bar', stacked=True, figsize=(16, 12))
```

<matplotlib.axes._subplots.AxesSubplot at 0x2062a144070>

上述年龄-存活率分布图更是验证了上面的说法, (0,6]的年龄段可以获得65%的存活率.

婴幼儿/儿童对应的某些年龄段, 获得了甚至接近100%的存活率.

老人对应的年龄段,考虑到他们的身体条件,该存活率表现也足以表明社会救助的确有偏向性.

考虑有无子女上船 SibSp

Text(0, 0.5, 'Survival Rate')

考虑有无父母上船 Parch

```
# 根据有无父母上船, 划分数据
# OB-> On board, NOB-> NOT on board
parentOB = trainData[trainData['Parch'] != 0]
parentNOB = trainData[trainData['Parch'] == 0]
plt.figure(figsize=(24, 12))
# plt.title('Survival Rate Based on Parents Onboard/Not Onboard')
plt.subplot(121)
sibloB['Survived'].value_counts()\
       .plot(kind='pie', labels=['Perished', 'Survived'], autopct='%.3f%%', colors=['r', 'g'])
plt.xlabel('Parent(s) onboard')
plt.ylabel('Survival Rate')
plt.subplot(122)
siblNOB['Survived'].value_counts()\
        .plot(kind='pie', labels=['Perished', 'Survived'], autopct='%.3f%%', colors=['r', 'g'])
plt.xlabel('Parent NOT onboard')
plt.ylabel('Survival Rate')
```

```
Text(0, 0.5, 'Survival Rate')
```


sns.pairplot(trainData, hue='Sex')

<seaborn.axisgrid.PairGrid at 0x2062a2bd1c0>

明显可以看出: 有父母或子女上船的乘客, 存活率都较 比较组(父母或儿女未在船上) 高.

热力图

将 trainData 中数据复制一份至 heatMapData, 并去除相关系数较低的和上面新增的无用的字段, 如 PassengerId 类, 并将需要列化的数据进行 ONE-HOT 或 BINARY 编码.

对某些数据做Scaling, 以增大其敏感度.

并且将子女数量 SibSp , 与父母数量 Parch 归为一个字段 F(amily)M(embers)Count ->"家庭成员数"

家庭成员数 = 子女数+父母数+自己

```
heatMapData = trainData.copy(deep=True)
heatMapData['FMCount'] = heatMapData['Parch'] + heatMapData['SibSp'] + 1
heatMapData.drop(['Name','Ticket','Cabin','PassengerId','AgeBatch', 'AgeInt', 'Perished', 'SibSp', 'Parch'],
1, inplace =True)
heatMapData.Sex.replace(('male','female'), (0,1), inplace = True)
heatMapData.Embarked.replace(('S','C','Q'), (1,2,3), inplace = True)
# 有两行上船地点数据丢失,用1Replace,影响不大
heatMapData.Embarked.fillna(1, inplace=True)
heatMapData.head()
```

	Survived	Pclass	Sex	Age	Fare	Embarked	FMCount
0	0	3	0	22.0	7.2500	1.0	2
1	1	1	1	38.0	71.2833	2.0	2
2	1	3	1	26.0	7.9250	1.0	1
3	1	1	1	35.0	53.1000	1.0	2
4	0	3	0	35.0	8.0500	1.0	1

<matplotlib.axes._subplots.AxesSubplot at 0x206384bcaf0>

尝试进行训练拟合

```
xTrain = heatMapData.drop('Survived', axis=1)
yTrain = heatMapData['Survived']
testData = pd.read_csv('./titanic/test.csv')
xTrain.info()
testData.info()
testData.head(5)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 6 columns):
# Column
             Non-Null Count Dtype
O Pclass 891 non-null
                            int64
1 Sex
              891 non-null
                            int64
2 Age
              891 non-null
                           float64
3
              891 non-null
                            float64
    Fare
4 Embarked 891 non-null
                            float64
5 FMCount 891 non-null
                            int64
dtypes: float64(3), int64(3)
memory usage: 41.9 KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
# Column
               Non-Null Count Dtype
0
    PassengerId 418 non-null
    Pclass
                418 non-null
1
                               int64
2
                418 non-null
                               object
    Name
3
    Sex
                418 non-null
                               object
    Age
                332 non-null
                               float64
5
    sibsp
                418 non-null
                                int64
6
                418 non-null
                               int64
    Parch
    Ticket
                418 non-null
                                object
    Fare
                417 non-null
                                float64
    Cabin
                91 non-null
                               object
10 Embarked
                418 non-null
                               object
dtypes: float64(2), int64(4), object(5)
```

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

可以观察到,测试数据并不是训练数据的子集,测试数据来源有别于训练数据中的891位乘客,而是另外418位乘客

因为训练数据与测试数据有明显的字段差异(因在上文中,对年龄的空缺值做了随机森林回归,以及去除了无用字段).

为保证训练能正常进行, xTrain 要与 testData 即-> xTest 进行同样的处理

```
# 重复上文处理
testData.Fare.fillna(testData['Fare'].mean(), inplace=True)
age_df = testData[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']]
age_df_notnull = age_df.loc[(testData['Age'].notnull())]
age_df_isnull = age_df.loc[(testData['Age'].isnull())]
X = age_df_notnull.values[:,1:]
Y = age_df_notnull.values[:,0]
\label{eq:rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_
RFR.fit(X,Y)
predictAges = RFR.predict(age_df_isnull.values[:,1:])
testData.loc[testData['Age'].isnull(), ['Age']]= predictAges
testData['FMCount'] = testData['Parch'] + testData['SibSp'] + 1
testData.drop(['Name','Ticket','Cabin','PassengerId', 'SibSp', 'Parch'], 1, inplace=True)
testData.Sex.replace(('male','female'), (0,1), inplace = True)
testData.Embarked.replace(('S','C','Q'), (1,2,3), inplace = True)
testData.Embarked.fillna(1, inplace=True)
xTest = testData.copy()
xTrain.info()
xTest.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 6 columns):
# Column Non-Null Count Dtype
0 Pclass 891 non-null int64
1 Sex 891 non-null int64
1 Sex
             891 non-null float64
891 non-null float64
2 Age
3 Fare
 4 Embarked 891 non-null float64
5 FMCount 891 non-null
                                int64
dtypes: float64(3), int64(3)
memory usage: 41.9 KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 6 columns):
# Column Non-Null Count Dtype
---
1 Sex 418 non-null int64
1 Sex 418 non-null int64
2 Age 418 non-null float64
3 Fare 418 non-null float64
 4 Embarked 418 non-null int64
```

5 FMCount 418 non-null int64 dtypes: float64(2), int64(4) memory usage: 19.7 KB

可以看到训练数据与测试数据字段已经一致,并且无空值.

引入 RandomForestClassifier 进行数据拟合.

即根据前891名乘客的存活情况来预测余下418位乘客的存活情况

```
# 训练数据头
print('Training Data Head 5')
xTrain.head(5)
```

Training Data Head 5

	Pclass	Sex	Age	Fare	Embarked	FMCount
0	3	0	22.0	7.2500	1.0	2
1	1	1	38.0	71.2833	2.0	2
2	3	1	26.0	7.9250	1.0	1
3	1	1	35.0	53.1000	1.0	2
4	3	0	35.0	8.0500	1.0	1

```
# 測试数据头
print('Testing Data Head 5')
xTest.head(5)
```

Testing Data Head 5

	Pclass	Sex	Age	Fare	Embarked	FMCount
0	3	0	34.5	7.8292	3	1
1	3	1	47.0	7.0000	1	2
2	2	0	62.0	9.6875	3	1
3	3	0	27.0	8.6625	1	1
4	3	1	22.0	12.2875	1	3

Linear Support Vector Classification

支持向量机分类

```
SVC = LinearSVC()
SVC.fit(xTrain, yTrain)
yPredict = SVC.predict(xTest)
predPercentage = SVC.score(xTrain, yTrain)
print('Linear SVC Score')
print(round(predPercentage*100, 4))
```

Linear SVC Score 68.9113

```
c:\dev\env\py38venv\lib\site-packages\sklearn\svm\_base.py:976: ConvergenceWarning: Liblinear failed to
converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "
```

Random Forest

随机森林预测

```
randomForest = RandomForestClassifier(n_estimators=300)
randomForest.fit(xTrain, yTrain)
yPredict = randomForest.predict(xTest)
predPercentage = randomForest.score(xTrain, yTrain)
print('Random Forest Score')
print(round(predPercentage*100, 4))
```

```
Random Forest Score
98.2043
```

Decision Tree

决策树预测

```
decisionTree = DecisionTreeClassifier()
decisionTree.fit(xTrain, yTrain)
yPredict = decisionTree.predict(xTest)
predPercentage = decisionTree.score(xTrain, yTrain)
print('Decision Tree Score')
print(round(predPercentage*100, 4))
```

Decision Tree Score 98.2043