IFT 615 – Intelligence Artificielle

Raisonnement probabiliste

Inférences avec une distribution conjointe et classifieur bayésien naïf

Professeur: Froduald Kabanza

Assistants: D'Jeff Nkashama et Léo Chartrand

Motivation

Classification de documents

Analyse des sentiments

Localisation pendant la navigation

Utility-based agents

Théorie des probabilités en IA

- Permet de modéliser des connaissances ayant de l'incertitude (vraisemblance d'événements)
 - l'information sur la vraisemblance est dérivée
 - » des croyances/certitudes d'un agent, ou
 - » d'observations empiriques de ces événements
- Donne un cadre théorique pour
 - mettre à jour les connaissances (vraisemblance d'événements) après l'acquisition d'observations
 - prendre de décisions basées sur des connaissances avec incertitude
- Facilite la modélisation en permettant de considérer l'influence de phénomènes complexes comme du « bruit »

Decision-Theoretic Agent

function DT-AGENT(percept) **returns** an action

persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's action

update belief_state based on action and percept calculate outcome probabilities for actions, given action descriptions and current belief_state select action with highest expected utility given probabilities of outcomes and utility information return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

Sujets couverts

- Inférence probabiliste avec une distribution conjointe
- Classifieur bayésien naïf

Exemple – Détection de pourriels

- On souhaite raisonner, à partir des connaissances, sur la possibilité qu'un courriel soit un pourriel tenant compte de l'incertitude associée à une telle classification
- Pour ce faire, notre modèle (« base de connaissances ») est une distribution conjointe des probabilités de variables aléatoires:
 - Inconnu : l'adresse de l'expéditeur n'est pas connue du destinataire
 - ◆ *Sensible* : le courriel contient un mot sensible
 - ◆ *Pourriel* : le courriel est un pourriel

	Inconnu = vrai		Inconnu	= faux
Sens	ible = vrai	Sensible = faux	Sensible = vrai	Sensible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

Distribution de probabilités

 Distribution de probabilités : l'énumération des probabilités pour toutes les valeurs possibles de variables aléatoires

Inconnu = vrai		Inconnu =	faux	
Sens	ible = vrai	Sensihle = faux	Sensible = vrai Se	nsihle = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

- Exemples :
 - ◆ **P**(Pourriel, Inconnu, Sensible)

- Toutes ces probabilités somment à 1
- ◆ P(Pourriel) = [P(Pourriel=faux), P(Pourriel=vrai)] = [0.8, 0.2]
- P(Pourriel, Inconnu)
 - = [[Pourriel= faux, Inconnu=faux), [Pourriel= vrai, Inconnu=faux)], [Pourriel= faux, Inconnu=vrai), [Pourriel= vrai, Inconnu=vrai)]]
- La somme est toujours égale à 1
- J'utilise le symbole P pour les distributions et P pour les probabilités
 - ◆ P(Pourriel) désignera la probabilité P(Pourriel=x) pour une valeur x non-spécifiée

Probabilité conjointe

 Probabilité conjointe : probabilité d'une assignation de valeurs à toutes les variables

- ◆ P(Inconnu=vrai, Sensible=vrai, Pourriel=vrai) = 0.108 (10.8%)
- → P(Inconnu=faux, Sensible=faux, Pourriel=vrai) = 0.008 (0.8%)

	Inconnu = vrai		Inconnu = j	faux
Sen	sible = vrai	Sensible = faux	Sensible = vrai Se	nsible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008

Probabilité marginale

- Probabilité marginale : probabilité sur un sous-ensemble des variables
 - \bullet $P(Y) = \Sigma_{x} P(Y, Z = z)$ Pour n'importe quel ensemble de variable Y et Z
 - P(Inconnu=vrai, Pourriel=vrai)
 - = P(Inconnu=vrai, Sensible=vrai, Pourriel=vrai) + P(Inconnu=vrai, Sensible=faux, Pourriel=vrai)
 - = $\Sigma_{x \in \{vrai, faux\}}$ P(Inconnu=vrai, Sensible=x, Pourriel=vrai) = 0.108 + 0.012 =**0.12**

	Inconnu = vrai		Inconnu	ı = faux
Sen	sible = vrai	Sensible = faux	Sensible = vrai	Sensible = faux
Pourriel = vrai Pourriel = faux	0.108	0.012	0.072 0.144	0.008 0.576

Probabilité marginale

- Probabilité marginale : probabilité sur un sous-ensemble des variables
 - P(Pourriel=vrai)
 - = $\sum_{x \in \{vrai, faux\}} \sum_{y \in \{vrai, faux\}} P(Inconnu=x, Sensible=y, Pourriel=vrai)$
 - = 0.108 + 0.012 + 0.072 + 0.008 =**0.2**

Probabilité d'un événement arbitraire

- Probabilité de disjonction (« ou ») d'événements :
 - → P(Pourriel=vrai ou Inconnu=faux) Six états (mondes) possibles = 0.108 + 0.012 +0.072 + 0.008 + 0.144 + 0.576 = 0.92
 - ◆ P(Pourriel=vrai ou Inconnu=faux) Une autre façon de le calculer = P(Pourriel=vrai) + P(Inconnu=faux) - P(Pourriel=vrai, Inconnu=faux) = 1 - P(Pourriel=faux, Inconnu=vrai) = 1 - 0.016 - 0.064 = 0.92

```
Inconnu = vrai & Inconnu = faux \\ Sensible = vrai & Sensible = faux & Sensible = vrai & Sensible = faux \\ Pourriel = vrai & 0.108 & 0.012 & 0.072 & 0.008 \\ Pourriel = faux & 0.016 & 0.064 & 0.144 & 0.576 \\ \hline
```

Probabilité d'un événement arbitraire

- On peut calculer la probabilité d'événements arbitrairement complexes
 - il suffit d'additionner les probabilités des événements élémentaires associés
 - → P((Pourriel=vrai, Inconnu=faux) ou (Sensible=faux, Pourriel=faux)) = 0.072 + 0.008 + 0.064 + 0.576 = 0.72

	Inconnu = vrai		Inconnu =	faux
Sens	ible = vrai	Sensible = faux	Sensible = vrai Se	nsible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012	0.072 0.144	0.008

Probabilité conditionnelle

Probabilité conditionnelle :

- P(Pourriel=faux | Inconnu=vrai)
 = P(Pourriel=faux, Inconnu=vrai) / P(Inconnu=vrai)
 = (0.016 + 0.064) / (0.016 + 0.064 + 0.108 + 0.012) = 0.4

	Inconnu = vrai		Inconnu = faux	
Sen	sible = vrai	Sensible = faux	Sensible = vrai Se	nsible = faux
Pourriel = vrai Pourriel = faux	0.108	0.012 0.064	0.072 0.144	0.008 0.576

Distribution conditionnelle

- On a vu que
 - $P(Y) = \Sigma_z P(Y, Z = z)$
 - \rightarrow P(X|Y) = P(X,Y) / P(Y) si P(Y) ≠ 0
- On en déduit: $P(Y) = \sum_{z} P(Y|Z)P(Z=z)$

Distribution conditionnelle

	Inconnu = vrai		Inconnu =	faux
Sens	ible = vrai	Sensible = faux	Sensible = vrai S	ensible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

Exemple :

- ◆ P(Pourriel | Inconnu=faux) = [P(Pourriel=faux | Inconnu=faux), P(Pourriel=vrai | Inconnu=faux)] = [0.9, 0.1]
- ◆ P(Pourriel | Inconnu)

 - = [0.9, 0.1], somme à 1 [0.4, 0.6] somme à 1
- Chaque sous-ensemble de probabilités associé aux mêmes valeurs des variables sur lesquelles on conditionne somme à 1
- P(Pourriel | Inconnu) contient deux distributions de probabilités sur la variable Pourriel : une dans le cas où Inconnu=faux, l'autre lorsque Inconnu=vrai

Distribution conditionnelle

- Une distribution conditionnelle peut être vue comme une distribution renormalisée afin de satisfaire les conditions de sommation à 1
- $P(X|e) = \alpha \Sigma_y P(X,e,y)$
- Exemple :
 - P(Pourriel | Inconnu=vrai)
 = α P(Pourriel, Inconnu=vrai)
 = α [0.08, 0.12]
 = (1/ (0.08 + 0.12)) [0.08, 0.12]
 = [0.4, 0.6]

	Inconnu = vrai		Inconnu = faux	
Sens	ible = vrai	Sensible = faux	Sensible = vrai Se	nsible = faux
Pourriel = vrai Pourriel = faux	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576

P(Pourriel | Inconnu)
 = [α_{faux} P(Pourriel, Inconnu=faux), α_{vrai} P(Pourriel, Inconnu=vrai)]
 = [[0.72, 0.08] / (0.72 + 0.08), [0.08, 0.12] / (0.08 + 0.12)]
 = [[0.9, 0.1], [0.4, 0.6]]

Règle du produit

- Règle du produit :
 - \rightarrow P(X,Y)=P(X|Y)P(Y)
 - P(Pourriel=faux, Inconnu=vrai)
 - = P(Pourriel=faux | Inconnu=vrai) P(Inconnu=vrai)
 - = P(Inconnu=vrai | Pourriel=faux) P(Pourriel=faux)
 - ◆ En général :
 P(Pourriel, Inconnu) = P(Pourriel | Inconnu) P(Inconnu)
 = P(Inconnu | Pourriel) P(Pourriel)

Règle de chaînage

Règle du produit :

• Règle de chaînage (chain rule) pour n variables $X_1 \dots X_n$:

$$P(X_1, ..., X_n) = P(X_1, ..., X_{n-1}, X_n)$$

$$= P(X_1, ..., X_{n-1}) P(X_n \mid X_1, ..., X_{n-1})$$

$$= P(X_1, ..., X_{n-2}) P(X_{n-1} \mid X_1, ..., X_{n-2}) P(X_n \mid X_1, ..., X_{n-1})$$

$$= ...$$

$$= \prod_{i=1..n} P(X_i \mid X_1, ..., X_{i-1})$$

Règle de chaînage

- La règle du chaînage est vraie, quelle que soit la distribution de $X_1 \dots X_n$
- Plutôt que de spécifier toutes les probabilités jointes $P(X_1, ..., X_n)$, on pourrait plutôt spécifier $P(X_1)$, $P(X_2|X_1)$, $P(X_3|X_1, X_2)$, ..., $P(X_n|X_1,...,X_{n-1})$
- Exemple, on aurait pu spécifier :

Γ	Comoi		nnu = vrai	Inconnu = j	
L	Sensi	ble = vrai	Sensible = faux	Sensible = vrai Sei	isible = Jaux
	Pourriel = vrai	0.108	0.012	0.072	0.008
ı	Pourriel = faux	0.016	0.064	0.144	0.576

- ◆ P(Pourriel=faux) = 0.8, P(Pourriel=vrai) = 0.2
- ◆ P(Inconnu=faux | Pourriel=faux) = 0.9 , P(Inconnu=vrai | Pourriel=faux) = 0.1 P(Inconnu=faux | Pourriel=vrai) = 0.4, P(Inconnu=vrai | Pourriel=vrai) = 0.6
- On aurait tous les ingrédients pour calculer les P(Pourriel, Inconnu) :
 - ◆ P(Pourriel=faux, Inconnu=vrai) = P(Inconnu=vrai | Pourriel=faux) P(Pourriel=faux) = 0.1 * 0.8 = 0.08
 - ♦ P(Pourriel=vrai, Inconnu=vrai) = P(Inconnu=vrai | Pourriel=vrai) P(Pourriel=vrai) = 0.6 * 0.2 = 0.12

Règle de Bayes

- P(X|Y) = P(Y|X)P(X)/P(Y)
- Donne une probabilité diagnostique à partir d'une probabilité causale :
 - ◆ P(Cause | Effect) = P(Effect | Cause) P(Cause) / P(Effect)

Règle de Bayes

- P(X|Y) = P(Y|X)P(X)/P(Y)
- Donne une probabilité diagnostique à partir d'une probabilité causale :
 - ◆ P(Cause | Effet) = P(Effet | Cause) P(Cause) / P(Effet)
- On pourrait calculer P(Pourriel=faux | Inconnu=vrai) :
 - P(¬pourriel | inconnu)
 = P(¬pourriel, inconnu) / P(inconnu)
 = P(¬pourriel, inconnu) / (P(inconnu, ¬pourriel) + P(inconnu, pourriel))
 = α P(inconnu | ¬pourriel) P(¬pourriel)
 - = 0.08 / (0.08 + 0.12) = 0.4

 $Pourriel = faux \Leftrightarrow \neg pourriel$ $Pourriel = vrai \Leftrightarrow pourriel$

- On appelle P(Pourriel) une probabilité a priori
 - c'est notre croyance p/r à la présence d'une Pourriel avant toute observation
- On appelle P(Pourriel | Inconnu) une probabilité a posteriori
 - c'est notre croyance mise à jour après avoir observé Inconnu
- La règle de Bayes lie ces deux probabilités ensemble
 - ♦ $P(\neg pourriel \mid inconnu) = \alpha P(inconnu \mid \neg pourriel) P(\neg pourriel)$

Indépendance

- Soit les variables A et B, elles sont **indépendantes** si et seulement si
 - ightharpoonup P(A | B) = P(A) ou
 - ightharpoonup P(B|A) = P(B) ou
 - ightharpoonup P(A, B) = P(A) P(B)

Indépendance

- Soit les variables A et B, elles sont indépendantes si et seulement si
 - ightharpoonup P(A | B) = P(A) ou
 - ightharpoonup P(B|A) = P(B) ou
 - ightharpoonup P(A, B) = P(A) P(B)
- Exemple : P(Pluie, Pourriel) = P(Pluie) P(Pourriel)

<i>P(Pluie = vrai) =</i> 0.3	
P(Pourriel = vrai) = 011	

	Pluie	Pourriel	Probabilité
	vrai	vrai	0.03
•	vrai	faux	0.27
	faux	vrai	0.07
	faux	faux	0.63

=
$$P(pluie) P(Pourriel) = 0.3 * 0.1$$

= $P(pluie) P(\neg Pourriel) = 0.3 * 0.9$

=
$$P(\neg pluie) P(Pourriel) = 0.7 * 0.1$$

=
$$P(\neg pluie) P(\neg Pourriel) = 0.7 * 0.9$$

Indépendance

- L'indépendance totale est puissante mais rare
- L'indépendance entre les variables permet de réduire la taille de la distribution de probabilités et rendre les inférences plus efficaces
 - dans l'exemple précédent, on n'a qu'à stocker en mémoire
 P(Pluie = vrai) = 0.3 et P(Pourriel = vrai) = 0.1, plutôt que la table au complet
- Mais il est rare d'être dans une situation où toutes les variables sont réellement indépendantes

Pluie	Pourriel	Probabilité
vrai	vrai	0.03
vrai	faux	0.27
faux	vrai	0.07
faux	faux	0.63

Indépendance conditionnelle

- Si je sais déjà que le courriel est un pourriel, ma croyance (probabilité) qu'il contienne un mot sensible ne dépend plus du fait que l'expéditeur me soit inconnu ou non :
 - → P(Sensible | Inconnu, Pourriel=vrai) = P(Sensible | Pourriel=vrai)
- On dit que Sensible est conditionnellement indépendante de Inconnu étant donné Pourriel, puisque :
 - → P(Sensible | Inconnu, Pourriel) = P(Sensible | Pourriel)
- Formulations équivalentes :
 - → P(Inconnu | Sensible , Pourriel) = P(Inconnu | Pourriel)
 - ◆ P(Inconnu, Sensible | Pourriel) = P(Inconnu | Pourriel) P(Sensible | Pourriel)

Indépendance conditionnelle

Réécrivons la distribution conjointe en utilisant la règle de chaînage (chain rule):

```
P(Inconnu, Sensible, Pourriel)
= P(Inconnu | Sensible, Pourriel) P(Sensible, Pourriel)
= P(Inconnu | Sensible, Pourriel) P(Sensible | Pourriel) P(Pourriel)
= P(Inconnu | Pourriel) P(Sensible | Pourriel) P(Pourriel)
```

- C-à-d., 2 + 2 + 1 = 5 paramètres individuels/distincts
- Dans des cas idéals, l'exploitation de l'indépendance conditionnelle réduit la complexité de représentation de la distribution conjointe de exponentielle (O(2ⁿ)) en linéaire (O(n))

En bref

- Probabilité jointe : P(X₁, ...,X_n)
- Probabilité marginale : $P(X_i)$, $P(X_i, X_i)$, etc.
- Probabilité conditionnelle : $P(X_1, ..., X_k | X_{k+1}, ..., X_n) = P(X_1, ..., X_k, X_{k+1}, ..., X_n)$ $P(X_{k+1}, ..., X_n)$
- Régle de chaînage : $P(X_1, ..., X_n) = \prod_{i=1...n} P(X_i \mid X_1, ..., X_{i-1})$
- Indépendance : X_i et X_j sont indépendantes si $P(X_i, X_j) = P(X_i) P(X_j)$, ou $P(X_i | X_j) = P(X_i)$ ou $P(X_j | X_i) = P(X_j)$
- Indépendance conditionnelle : X_i et X_j sont indépendante sachant X_k si $P(X_i, X_j | X_k) = P(X_i | X_k) P(X_j | X_k) \text{ ou } P(X_i | X_j, X_k) = P(X_i | X_k) \text{ ou } P(X_j | X_i, X_k) = P(X_j | X_k)$
- Règle de Bayes : $P(X_1, ..., X_k \mid X_{k+1}, ..., X_n) = P(X_{k+1}, ..., X_n \mid X_1, ..., X_k) P(X_1, ..., X_k)$ $P(X_{k+1}, ..., X_n)$

Autres types de variables aléatoires

- On s'est concentré sur des variables aléatoires Booléennes ou binaires
 - le domaine, c.-à-d. l'ensemble des valeurs possibles de la variable, était toujours {vrai, faux}
- On pourrait avoir d'autres types de variables, avec des domaines différents:
 - Discrètes : le domaine est énumérable
 - » Météo ∈ {soleil, pluie, nuageux, neige}
 - » lorsqu'on marginalise, on doit sommer sur toutes les valeurs : $P(Temp\'erature) = \Sigma_{x \in \{soleil, pluie, nuageux, neige\}} P(Temp\'erature, M\'et\'eo=x)$
 - Continues : le domaine est continu (par exemple, l'ensemble des réels)
 - » exemple : PositionX = 4.2
 - » le calcul des probabilités marginales nécessite des intégrales

Classifieur bayésien naïf

Le classifieur (modèle) bayésien naïf est défini comme suit

$$P(Cause, Effet_1, ..., Effet_n) = P(Cause) = \prod_{i=1..n} P(Effet_i \mid Cause)$$

- Naïf parce qu'on suppose l'indépendance conditionnelle. Mais cela fonctionne dans certaines applications
- Pour l'appliquer, en général, on observe des effets (e) et on veut diagnostiquer la cause.
- Noton **E=e** les effets observés. On a vu que $P(Cause | e) = \alpha \Sigma_y P(Cause, e, y)$
- On a donc:

$$P(\text{Cause} \mid e) = \alpha \Sigma_y P(\text{Cause}) P(y \mid \text{Cause}) \prod_{j=1..n} P(e_i \mid \text{Cause})$$

= $\alpha P(\text{Cause}) \prod_{j=1..n} P(e_i \mid \text{Cause}) \Sigma_y P(y \mid \text{Cause})$
= $\alpha P(\text{Cause}) \prod_{j=1..n} P(e_i \mid \text{Cause})$

Classification de documents

Classifieur bayésien naïf

$$P(Cause | e) = \alpha P(Cause) \prod_{j=1..n} P(e_i | Cause)$$

- Étant donné un document texte (e), déterminer dans laquelle des catégories (Cause) prédéfinies il appartient
 - ◆ Exemple de catégories dans la classification de documents: sport, économie, mode
 - Exemple de catégories dans l'analyse de sentiments: positif négatif neutre

- Exemples de textes (documents):
 - ◆ Apple a fait état jeudi d'un chiffre d'affaires et d'un bénéfice net supérieur aux attentes pour le trimestre allant d'octobre à décembre l'année dernière, la forte hausse des ventes d'iPhone, notamment en Chine, ayant plus que compensé les difficultés des chaînes d'approvisionnement ... (*Tiré de Radio Canada / Économie 2022-01-08*)
 - Un trésor caché, avec des produits du terroir et une carte de vin diversifiée
- Nous verrons un exemple concret en python plus tard (15 février)

Conclusion

- La distribution conjointe permet de faire des inférences probabilistes, mais elle n'est pas efficace.
- Un classifieur bayésien naïf utilise la règle de Bayes tout en supposant l'indépendance conditionnelle pour être efficace.
- Les prochaines leçons décrivent d'autres modèles probabilistes qui exploitent l'indépendance conditionnelle pour être efficaces:
 - Réseau bayésien
 - Réseau bayésien dynamique
 - » Modèle de Markov caché
 - » Filtre de particule

Sujets couverts par le cours

Concepts et algorithmes

Applications

Vous devriez être capable de...

- À partir d'une distribution conjointe ou des distributions conditionnelles et a priori nécessaires :
 - calculer une probabilité conjointe
 - calculer une probabilité marginale
 - déterminer si deux variables sont indépendantes
 - déterminer si deux variables sont conditionnellement indépendantes sachant une troisième
 - Appliquer la règle du chainage
 - Appliquer la règle de Bayes
- Expliquer le classifieur bayésien naïf et son application à la classification de documents