Messbericht Spannungsteiler festes Widerstandsverhältnis

Felix Schiller Sebastian Littau E1FS2

Reutlingen, am 15.12.2015

Schiller, Felix	Messbericht		
Littau, Sebastian	Spannungsteiler, festes Widerstandsverhältnis	2	

Inhaltsverzeichnis

L	Messaufgabe			2	
2	Messung				
	2.1	Spann	ungsteiler unbelastet	3	
		2.1.1	Spannungsteiler aus zwei in Reihe geschalteten Widerständen	3	
		2.1.2	Aufbau der Schaltung	3	
		2.1.3	Berechnung und Messung der Spannung an R_2	3	
		2.1.4	Merksatz zum Spannungsteiler	4	
	2.2	Spann	ungsteiler belastet	4	
		2.2.1	Schaltung mit belastetem Spannungsteiler	4	
		2.2.2	Aufbau der Schaltung	4	
		2.2.3	Berechnung und Messung der Ausgangsspannung	4	
		2.2.4	Wie ändert sich die Ausgangsspannung? Warum ändert sie sich? .	4	
	2.3	Spann	ungsteiler mit veränderbarer Belastung	5	
		2.3.1	Messschaltung	5	
		2.3.2	Durchführung der Messung	5	
		2.3.3	Belastungskennlinie	5	
		2.3.4	Auswertung der Belastungskennlinie	6	

1 Messaufgabe

An einem Spannungsteiler mit festen Widerständen sollen die Spannungen im unbelasteten und im belasteten Zustand untersucht werden.

2 Messung

2.1 Spannungsteiler unbelastet

2.1.1 Spannungsteiler aus zwei in Reihe geschalteten Widerständen

2.1.2 Aufbau der Schaltung

In der oben skizzierten Schaltung sind die Widerstände R_1 und R_2 in Reihe an die Spannungsquelle angeschlossen und bilden einen Spannungsteiler. Die Widerstandswerte betragen $R_1 = 1k\Omega$ und $R_2 = 330\Omega$. Als Speisespannung wird $U_G = 20V$ angelegt. Mit den Messgeräten, die parallel zu den Widerständen angeschlossen sind können die Spannugnen U_1 und U_2 gemessen werden. I_G ist der Gesamtstrom durch die Schaltung.

2.1.3 Berechnung und Messung der Spannung an R_2

Die Ausgangsspannung an R_2 wurde zu 4.97V gemessen. Die selbe Spannung kann über den Gesamtstrom I_G in der Schaltung berechnet werden.

$$I_G = \frac{U_G}{R_G} = \frac{U_G}{R_1 + R_2}$$

$$U_A = U_2 = R_2 \cdot \frac{U_G}{R_1 + R_2} = 330\Omega \cdot \frac{20V}{1000\Omega + 330\Omega} = 4.96V$$

Alternativ kann die Ausgangsspannung über das Teilerverhältnis des Spannungsteilers ausgerechnet werden.

$$\frac{U_G}{R_G} = \frac{U_A}{R_2} \Rightarrow U_2 = U_G \cdot \frac{R_1}{R_G} = 4.96V$$

2.1.4 Merksatz zum Spannungsteiler

Die Teilspannung U_A verhält sich zur Gesamtspannung U_G wie der Teilwiderstand R_2 zum Gesamtwiderstand R_1+R_2

$$\frac{U_A}{U_G} = \frac{R_2}{R_1 + R_2}$$

2.2 Spannungsteiler belastet

2.2.1 Schaltung mit belastetem Spannungsteiler

2.2.2 Aufbau der Schaltung

Zu den zwei in Reihe geschalteten Widerständen des Spannungsteilers kommt als Last der Widerstand R_L dazu, der parallel zu R_2 geschalten wird. Der Gesamtstrom, der durch R_1 fließt teilt sich auf R_2 und R_L auf.

2.2.3 Berechnung und Messung der Ausgangsspannung

In dieser Schaltung wurde eine Ausgangsspannung von 2,34V gemessen. Rechnerisch ergibt sich die folgende Ausgangsspannung:

$$\begin{split} U_2 &= U_G \cdot \frac{\frac{R_2 \cdot R_L}{R_2 + R_L}}{R_1 + f rac R_2 \cdot R_L R_2 + R_L} \\ &= 20 V \cdot \frac{\frac{330 \Omega \cdot 220 \Omega}{330 \Omega + 220 \Omega}}{1000 \Omega + \frac{330 \Omega \cdot 220 \Omega}{330 \Omega + 220 \Omega}} \\ &= 2.33 V \end{split}$$

2.2.4 Wie ändert sich die Ausgangsspannung? Warum ändert sie sich?

Die Ausgangsspannung U_2 sinkt, da der Ersatzwiderstand aus R_2 und R_L in Parallelschaltung kleiner ist als der ursprüngliche R_2 .

2.3 Spannungsteiler mit veränderbarer Belastung

2.3.1 Messschaltung

2.3.2 Durchführung der Messung

In der Schaltung werden laufend der Strom I_L und die Spannung U_L gemessen. Der Laststrom I_L wird über den $10k\Omega$ -Drehwiderstand eingestellt und in 1mA-Schritten von 0-15mA erhöht.

Strom I_L in mA	0	1	2	3	4	5	6	7
Spannung U_L in V	4,97	4,72	4,47	4,22	3,98	3,72	3,74	3,21
Strom I_L in mA	8	9	10	11	12	13	14	15
Spannung U_L in V	2,96	2,74	2,51	2,20	1,95	1,70	1,44	1,20

2.3.3 Belastungskennlinie

Die gemessenen Werte lassen sich in einem Diagramm darstellen.

Abbildung 1: Belastungskennlinie

2.3.4 Auswertung der Belastungskennlinie

Die Ausgleichsgerade durch alle Messwerte, die gleichzeitig die Kennlinie ist lässt sich verlängern bis sie die X-Achse schneidet. Der Schnittpunkt stellt den maximalen Laststrom I_{Lmax} dar. Grafisch kann er zu $I_{Lmax} = 20mA$ ermittelt werden. Der maximale Laststrom tritt nur auf, wenn der Lastwiderstand auf 0 geht. Der Strom wird dann nur durch den ersten Widerstand des Spannungsteilers, R_1 begrenzt.

$$I_{LmaxR} = \frac{U_G}{R_1} = \frac{20V}{1000\Omega} = 20mA$$

Die Ausgangsspannung für einen bestimmten Laststrom lässt sich aus dem Diagramm ablesen. Bei $I_L=7,2mA$ liegt eine Ausgangsspannung von $U_L=3,1V$ an.