

UCLA Breakdown & HG Research Updates

Gerard Lawler¹, Fabio Bosco², Atsushi Fukusawa¹, Zenghai Li³, Nathan Majernik¹, Andrea Mostacci⁴, Brian Naranjo¹, Jake Parsons¹, Bruno Spataro⁴, Arathi Suraj¹, Sami Tantawi³, Yusuke Sakai¹, Oliver Williams¹, and James Rosenzweig¹

¹ UCLA, Los Angeles, CA, USA 90095

² Sapienza University of Rome, Rome, Italy

³ SLAC, Menlo Park, CA, USA 94025

⁴ LNF-INFN, Frascati, Italy

Outline of presentation

- 1. Background
- 2. Facilities overview
- 3. Experiment & Simulation
 - a) LLRF
 - b) High power C-band
 - c) CYBORG Beamline
 - d) UCXFEL photoinjector development
- 4. Conclusions

1) Background

- Significant focus photoinjector; wakefield; fundamental high field physics
- Based on normal conducting cryogenic gradient improvements which consider high gradient photoinjector
- TopGun previous development in Sband

$$B_{e,b} \approx \frac{2ec\varepsilon_0}{k_B T_c} \left(E_0 \sin \varphi_0 \right)^2$$

Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources JB Rosenzweig, et al. - Physical Review Accelerators and Beams, 2019

1) Motivational Cases

- Ultra-compact xray free electron laser (UCXFEL) concept, 40 m
- Multiple sections dependent on cryogenic operation
- Photoinjector and associated cryostat most relevant for now
- Cool Copper Collider (C³) linac section (below)

2) MOTHRA Lab

 Multi-Option Testing of High-field Radiofrequency Accelerators (MOTHRA)

 Suitable for cryogenics testing; C-band infrastructure development; low energy (single MeV) beamline for cathode studies

2) MOTHRA Lab

 C-band modulator construction (right)

- Cryogenic cooling system development setup (cryostat v1, left)
- Conduction cooling setup for cost effectiveness and future miniaturization concerns

2) MOTHRA Lab

 Clean room for UV production using legacy SLAC GTF setup

- Cryogenic cathode diagnostic test bed
- Using load lock-enabled ½ cell high gradient photogun (CYBORG, left)

2) SAMURAI Lab

Samurai lab & bunker space

Operational with S-band hybrid photoinjector

 Suitable for high energy high gradient linac development (10s-100s MeV); UCXFEL demonstrators; C-band high gradient photoinjector research

3a) Cryostat v1

- Small test cryostat initial cryocooler commissioning; material property studies; and LLRF tests
- Small envelope, vacuum good enough for multi layer insulation

$$Q_0 = \frac{\Gamma}{R_s}$$

3a) LLRF Measurements

Copper pillbox cavities used for Cband low level LLRF

	Coupling	Q0
COMEB machining + brazing	0.58	12200
GZero machining + Scarrot brazing	0.55	7300
Simulation	0.5	12322

3b) Cband RF Power

- Resurrected Thales C-band klystron to single MW power sufficient for 1st cryogenic beamline (right)
- Mini-modulator for C-band under construction (below)
- C-band SLED development in collaboration with Tantawi group at SLAC

3b) High Power Structure Collaboration

- Cryostat for hosting multiple different experiments into various structures and material alloys
 - Brazeless joint testing, copper-silver and more exotic alloys perhaps w/ Mo etc.
- Logic of cryogenics, assembly, and general diagnostics for actual experiments
- Example here using 2 cell distributed-coupling in C-band (near right)
- LANL bunker space (far right)

Maximum (Plane) 13414.7 V/m

13414.7 V/m

3c) CYBORG Beamline

- Low energy beamline using CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG)
- Under construction in MOTHRA bunker
- Collaboration with NSF Center for Bright Beams
- Multi-phase setup + commissioning

3c) CYBORG Functions

- 1. Cavity structure test
- 2. Infrastructure development
- 3. Low temperature emission/photocathode test bed

J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, J. Appl. Phys. 124, 244903 (2018).

3c) Phase 1 Config 1

• Config 1 goals:

- -SHI vibration isolation
- -Waveguide setup
- -UHV
- –CYBORG cooldown & temperature stability
- -LL and high power RF tests

-Optimize RF pulse heating +

cooling

3c) Phase 1 Config 2

Config 2 goals:

- -Cryogenic copper photoemission
- -Cryogenic QE
- Low precision MTE measurement

N. Majernik, A. Fukasawa, J. B. Rosenzweig, and A. Suraj, "Multi-start foil wound solenoids for multipole suppression", presented at the 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas, Brazil, May 2021, paper TUPAB094

3c) Phase 2

- load lock and phase 2 diagnostics
- Test of back plane plug into reentrant small C-band cavity
- Cooling test with large additional heat leaks
- Completion condition: load lock plug QE measurement down to cryo temps

3c) Projected Timeline

3d) UCXFEL Photoinjector Concept

- 1.6 cell cavity w/ reentrant design
- 240 MV/m peak cathode field
- Cryogenic solenoid in cryostat
- Consideration of beam dynamics based on high spatial harmonic content
- introduction of strong second order focusing effects

- repetition rate of 100 Hz
- nominal 300 nsec RF pulses
- operating temperature of 27 K
- RF dissipation of 11 W, requiring over 0.5 kW cooling power

RR Robles et al.

Physical Review

Accelerators and

Beams 24 (6),

063401

4): Conclusions

- Sample of multifaceted high gradient and breakdown research at UCLA
- 2. Multiple operational facilities
- 3. Focus on cryogenics surface physics and Cband RF development
- 4. Highly collaborative including with bright beams research