untyped λ -calculus

201410935 조현종

October 30 2019

1 Introduction of λ -term

 λ -calculus에 대해 가장 기본적인 계산을 배운다.

람다 칼큘러스 (λ -calculus)는 λ -term을 기반으로 한다. 그러므로 λ -term에 대해서 우선 알아보자. 1. 모든 상수와 변수는 그 자체로 λ -term이다.

- 2.~x 가 변수이고 M이 어떤 λ -term일때 $\lambda x.M$ 도 역시 λ -term이다. 이를 함수의 합성이라고 한다.
- 3. M과 N이 각각 λ -term일때 M N또한 λ -term이다. 이를 함수의 적용이라고 한다. M λ -term에 N λ -term을 β -Reduction 하는것이다.

 λ -term은 함수 그 자체이다. 모든 변수와 상수는 람다 텀 형태로 만들어진다.(자연수 또한 그렇다) $\lambda x.M$ 과 같은 람다텀의 기본적인 구조는 다음과 같다.

 $\lambda x.$: '.'뒤에 나오는 식이 'x' 를 종속변수로 갖는 식(함수)인것을 나타낸다. $M: \lambda x.$ ' 에 종속된 식이며, 식 내부에 'x' 변수가 있다면 이는 ' $\lambda x.$ ' 에 종속변수 이며, 후에 함수의 인풋에 의해 β -Reduction 가능하다.

예를 들어 M=x로 가정하면 $\lambda x.M$ 식은 $\lambda x.x$ 로 변하며 이는 Figure $\ref{eq:sum}$ 와 같이 인풋을 그대로 돌려주는 λ -term 이다.

2 λ -calculation

2.1 기호와 결합 강도

 λ -term의 결합강도는 Figure ??와 같다. 첫째식과 셋째식에서, 공백으로 표기되는 Juxtapositioning은 왼쪽으로 결합하며, 이는 모든 연산자 중에서 가장 우선순위가 높은 결합이다. λ 연산자의 경우 두번째식에서와 같이 최약의 결합강도로 우측결합한다. λ 연산자가 최약의 결합 강도를 지니므로 연산자의 '.'뒤는 세번째 식과같이 괄호로 묶이기 전까지 전부 결합된다.

 $L M N \\ \lambda x. \lambda y. M$

Figure 1: λ term의 예시

$$(\lambda x.x) 3 \equiv 3$$

Figure 2: λ-term의 계산 예시

$$\begin{array}{ccc} L\ M\ N & \equiv & ((L\ M)\ N) \\ \lambda x.\lambda y.M & \equiv & (\lambda x.(\lambda y.M)) \\ \lambda x.L\ M\ N & \equiv & (\lambda x.((L\ M)\ N)) \\ (\lambda x.L\ M)\ N & \equiv & ((\lambda x.(L\ M))\ N) \end{array}$$

Figure 3: λ -term의 결합강도

 λ -term을 Figure $\ref{eq:local_constraints}$ 처럼 축약형으로 쓸수도 있으나, 위의 표현은 본 문서에서는

$$\lambda x.\lambda y.M \equiv (\lambda xy.M)$$

Figure 4: λ-term의 축약형

지양하도록 하겠다.

- 2.2 변수의 종류
- 2.3 치환구문
- 2.4 α -Conversion
- 2.5 β -Reduction
- 2.6 η -Reduction
- 3 λ -term encoding