LX331: Assignment 3

Duy Nguyen

17 February 2017

1 The syntax and semantics of Propositional Logic

A. B.

(1) $\sim s\&r$: Stuart is not in the kitchen and Fred left. r s | $\sim s\&\sim s\&r$

r	\mathbf{S}	$\sim s \& \sim s \& r$	
\overline{T}	Τ	F	F
\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{T}
\mathbf{F}	\mathbf{T}	F	\mathbf{F}
\mathbf{F}	F	m T	\mathbf{F}

 $(2) \sim (p \lor q)$: It is not true that Mary or Sue is at home. $p \quad q \mid p \lor q \& \sim (p \lor q)$

p	\mathbf{q}	$p \lor q \& \sim (p \lor q)$	
Т	Τ	T	F
${\rm T}$	\mathbf{F}	T	\mathbf{F}
\mathbf{F}	\mathbf{T}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	Τ

 $(3) \sim (p\&s) \rightarrow q$: If it is not true that Marry is at home and Stuart is in the kitchen, then Sue is at home.

p	\mathbf{q}	\mathbf{S}	p&s	$\sim (p\&s)$	$\sim (p\&s) \to q$
Τ	Τ	Τ	Т	F	T
\mathbf{T}	\mathbf{T}	\mathbf{F}	F	${ m T}$	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{T}	Т	\mathbf{F}	${ m T}$
${\rm T}$	\mathbf{F}	F	F	${ m T}$	\mathbf{F}
\mathbf{F}	T	T	F	${ m T}$	${ m T}$
\mathbf{F}	${\rm T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	T	F	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	$_{ m F}$	${ m T}$	\mathbf{F}

 $(4) \sim q \& ((s \lor \sim r) \to \sim s)$: Sue isn't at home and if Stuart is in the kitchen or Fred didn't left then Stuart is not in the kitchen.

p	r	\mathbf{s}	$s \lor \sim r$	$(s \vee \sim r) \to \sim s$	$\sim q \& ((s \lor \sim r) \to \sim s)$
\overline{T}	Т	Τ	Т	F	F
${ m T}$	\mathbf{T}	F	F	${ m T}$	\mathbf{F}
${\rm T}$	\mathbf{F}	${\rm T}$	Т	\mathbf{F}	\mathbf{F}
Τ	\mathbf{F}	\mathbf{F}	Т	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	${\rm T}$	\mathbf{F}	F	${ m T}$	${f T}$
\mathbf{F}	F	\mathbf{T}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	T	${ m T}$	T

C. D.

(5) Stuart is not in the kitchen and Fred didn't leave.

 $\sim s \& \sim r$

We can rewrite this logic formula as $\sim (s \vee r)$ due to DeMorgan's law.

\mathbf{S}	\mathbf{r}	$\sim s\& \sim r \equiv \sim (s \lor r)$
Τ	Τ	F
T	\mathbf{F}	F
F	\mathbf{T}	F
F	\mathbf{F}	m T

(6) If Sue is at home or Fred didn't leave, then Stuart is not in the kitchen.

 $(q \lor \sim r) \to \sim s$

p	\mathbf{r}	\mathbf{S}	$(q \lor \sim r)$	$(q \lor \sim r) \to \sim s$
Т	Т	Τ	T	F
\mathbf{T}	\mathbf{T}	\mathbf{F}	F	${ m T}$
\mathbf{T}	\mathbf{F}	${\rm T}$	Γ	\mathbf{F}
\mathbf{T}	F	F	F	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	F	${ m T}$
\mathbf{F}	${\rm T}$	\mathbf{F}	F	${f T}$
\mathbf{F}	\mathbf{F}	${\rm T}$	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	${f T}$

(7) It's not the case that Mary and Sue are both at home.

 $\sim (p\&q)$

$$\begin{array}{c|cc} p & q & \sim (p\&q) \\ \hline T & T & F \\ T & F & T \\ F & T & T \\ F & F & T \end{array}$$

(8) Neither Mary nor Sue is at home.

 $\sim (p \vee q)$

$$\begin{array}{c|cc}
\sim (p \lor q) \\
\hline
p & q & \sim (p \lor q) \\
\hline
T & T & F \\
T & F & F \\
F & T & F \\
F & F & T
\end{array}$$

2 Representing semantic ambiguity in Propositional Logic

(9) I didn't talk to Fred and Barney

We can interpret two understanding from (9).

- (a) I did not talk to Fred and Barney at the same time.
- $\sim (p\&q)$
- (b) I did not talk to Fred, and I did not talked to Barney
- $\sim p\& \sim q$

If we look into the truth table, we can see that the two interpretations of the English sentence is not equivalent.

p	\mathbf{q}	$\sim (p\&q)$	$\sim p\& \sim q$
\overline{T}	Τ	F	F
Τ	\mathbf{F}	T	\mathbf{F}
\mathbf{F}	\mathbf{T}	T	\mathbf{F}
\mathbf{F}	\mathbf{F}	Γ	${ m T}$

3 A new logical connective

I can't type the connective arrow so -> is a substitution.

Α	В	A -> B	Comment
T	Τ	F	It's the last week so there can't be homework
${\rm T}$	\mathbf{F}	${ m T}$	It's not the last week so there have to be homework
\mathbf{F}	\mathbf{T}	${ m T}$	It's the last week, so it is true that there isn't homework
\mathbf{F}	\mathbf{F}	\mathbf{F}	It's not the last week, so if there is no homework it is false.

4 Logical relations between sentences

A.

So we have that $p \to q \equiv \sim p \lor q \equiv \sim (p\& \sim q)$. So $p \to q$ and $\sim (p\& \sim q)$ should be equivalent. Let's check with the truth table.

p	\mathbf{q}	$p \rightarrow q$	$\sim (p\& \sim q)$
T	Τ	Т	${ m T}$
${ m T}$	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	\mathbf{T}	Т	${ m T}$
\mathbf{F}	F	T	${f T}$

В.

Logical compatible means that there are rows in that both formulae is both true or both false.

\mathbf{r}	\mathbf{s}	$\sim r\&\sim s$	$\sim (r \vee \sim s)$
$\overline{\mathbf{T}}$	\mathbf{T}	F	F
${f T}$	\mathbf{F}	${f F}$	${f F}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}

As we can see, the first two row are show that these two formulae are compatible.

$\mathbf{C}.$

One formula entails the other when the truth of the first "forces" the truth of the second. The table for two formulae is as follow:

p	\mathbf{S}	$\sim (p\&s)$	$\sim (p \lor s)$
Т	Τ	F	F
Τ	\mathbf{F}	T	F
\mathbf{F}	\mathbf{T}	Γ	\mathbf{F}
${f F}$	${f F}$	\mathbf{T}	${f T}$

From the truth table, we can see that $\sim (p\&s)$ does not entails $\sim (p \lor s)$. However, the last line show us that $\sim (p \lor s)$ entails $\sim (p\&s)$.