topologia 22.05

22 maja 2020

5/3

Produkt strzałek ma bazę składającą się z prostokątów postaci $(a, b] \times (c, d]$. Niech $D = \{(x, -x) : x \in \mathbb{R}\}, C_0 = D \cap \mathbb{Q}^2, C_1 = D \setminus C_0$.

Dla każdego $x\in D$ istnieje prostokąt z bazy, który ma x w prawym górnym rogu, a więc jest jego otwartym otoczeniem przecinającym się z D tylko w x. Łatwo teraz pokazać, że każdy podzbiór D jest domknięty.

Weźmy otwarte otoczenia $U_0 \supseteq C_0, U_1 \supseteq C_1$.

Niech $f: \mathbb{R} \to (0, \infty)$ przypisuje każdemu $x \in \mathbb{R}$ liczbę ϵ taką, że $(x - \epsilon, x] \times (-x - \epsilon, -x]$ jest zawarty w U_0 dla $x \in \mathbb{Q}$ lub w U_1 dla $x \in \mathbb{R} \setminus \mathbb{Q}$. Załóżmy nie wprost, że U_0 i U_1 są rozłączne. Wynika stąd, że dla każdych $q \in \mathbb{Q}, r \in \mathbb{R} \setminus \mathbb{Q}$ mamy $\min(f(q), f(r)) \leq |q - r|$.

Skonstruujmy ciąg $x_0 = 0, x_{n-1} < x_n < x_{n-1} + \frac{1}{2} f(x_{n-1})$ dla $n > 0, (x_n, -x_n) \in C_{n \bmod 2}$. Wtedy $f(x_n) < \frac{1}{2} f(x_{n-1}), x_n + f(x_n) < x_{n-1} + f(x_{n-1}), x_n$ rosnący i ograniczony.

Niech x to granica x_n . Niech i=1 jeśli $x\in\mathbb{Q}$ i i=0 w przeciwnym wypadku. Istnieje N takie, że $f(x_{2N+i})< f(x)$. Stąd mamy $\min(f(x_{2N+i}),f(x))=f(x_{2N+i})\leqslant x-x_{2N+i}$. Ale wtedy $x\geqslant x_{2N+i}+f(x_{2N+i})$, a to jest wyraz ciągu dążącego z góry do x, sprzeczność.