- 1. Suma języków $L = \{a^n b^m : n \ge m \ge 1\}$ i $L' = \{a^n b^m : 1 \le n \le m\}$
 - a. Jest językiem nieskończonym
 - b. Jest językiem regularnym
 - c. Jest językiem generowanym przez pewna gramatykę lewostronnie liniową
- 2. Wyrażenie regularne $((b^*a^*)ab(b^*a^*)ab)^*(b^*a^*)$ nad alfabetem $V = \{a, b\}$ oznacza język nad alfabetem V
 - a. Składający się dokładnie ze wszystkich słów, w których pod słowo ab występuje parzyście wiele razy
 - b. Składający się dokładnie ze wszystkich słów, o sufiksie postaci $b^n a^m$, w którym m, n ≥ 1
 - c. Który z językiem L = $\{a^k b^l a^m b^n : k, l, m, n \ge 0\}$ ma niepustą wspólną częśc
- 3. Język nad alfabetem {a, b, c} składający się dokładnie ze wszyskich słów, których długość jest liczbą podzielną przez 3 oznaczany jest wyrażeniem regularnym
 - a. $(a+b+c)^*(a+b+c)^*(a+b+c)^*$
 - b. (aaa + bbb + ccc)
 - c. $((a+b+c)(a+b+c)(a+b+c))^*$
- 4. Języki oznaczane wyrażeniami regularnymi $a(b^* + c^*)a$ oraz $a(b + c)^*a$
 - a. Sa równe
 - b. Mają dopełnienia nad {a, b, c}, w których wspólna część jest skończona
 - c. Mają niepustą wspólną część
- 5. Deterministyczny automat skończenie stanowy X, w którym q_0 jest stanem początkowym i jednocześnie jednym stanem końcowym, a którego funkcja przejścia zadana jest tabelą
 - a. Nie akceptuje żadnego słowa na alfabetem {a, b}, w którym a występuje parzyście wiele razy
 - b. Akceptuje słowo P $\neq \varepsilon$ wtedy i tylko wtedy, gdy w P po każdym wystąpieniu a następuje co najmniej jedno b
 - c. Akceptuje słowo puste ε
- 6. Niech język $L \subset V^*$ będzie oznaczany przez pewne wyrażenie regularne. Niech nadto L` oznacza dopełnie języka do V^* . Wówczas
 - a. $Jezyk (L')^*$ jest jezykiem regularnym
 - b. Istnieje deterministyczny automat skończenie stanowy akceptujący (L`\L)
 - c. Język L' musi być skończony
- 7. Lemat o pompowaniu dla języków regularnych podaje dla tych języków
 - a. Tylko warunek dostateczny
 - b. Tylko warunek konieczny
 - c. Warunek konieczny i dostateczny
- 8. Do domknięcia Kleen'ego L^* języka $L = \{a, ab, ba\}$
 - a. Nie należy słowo puste
 - b. Należy słowo abaaababa
 - c. Należą wszystkie słowa w postaci $(aba)^n$ gdzie $n \ge 1$
- 9. Niech G będzie gramatyką typu 3 w postaci normalnej oraz niech długość n pewnego sowa $P \in L(G)$ będzie liczbą parzystą. Wówczas
 - a. Długość wyprowadzenia P w G jest liczbą parzystą
 - b. Długość wyprowadzenia P w G wynosi 2(n +1)
 - c. Długość wyprowadzenia P w G wynosi n + 1
- 10. Żaden automat skończenie stanowy z $\varepsilon przejściami$ nie zaakceptuje języka
 - a. $\{a^n: 4 \le n \le 7\}$
 - b. $\{a^n b^n : 4 \le n \le 7\}$
 - c. $\{a^n: 4 \le n \le 7\}\{b^n: 4 \le n \le 7\}$
- 11. Gramatyka typu 3(regularna) o trzech regułach przepisywania $S \to aS$, $S \to bS$, $S \to \epsilon$ (S jest symbolem początkowym) generuje:
 - a. Języki, którego dopełnienie nad {a, b} jest językiem pustym
 - b. Język $\{a^nb^n: n \ge 0\}$
 - c. Język oznaczany wyrażeniem regularnym $(a + b)^*$
- 12. Do klasy języków akceptowanych przez niedeterministyczne automaty skończenie stanowe z $\varepsilon-przej$ ściami
 - a. Należą wszystkie języki nieskończone nad alfabetem {a, b, c}
 - b. Należy język {ε}
 - c. Należy co najmniej jeden język, który nie jest regularny
- 13. Niech G będzie gramatyką typu 3 w postaci normalnej. Wówczas
 - a. Każde słowo $P \in L(G)$ o długości nieparzystej ma w G wyprowadzenie o długości nieparzystej

- b. Każde niepuste słowo $P \in L(G)$ o długości parzystej ma w G wyprowadzenie o długości parzystej
- c. Żadna tak gramatyka G nie generuje słowa pustego arepsilon
- 14. Do klasy języków akceptowalnych przez niedeterministyczny automat skończenie stanowy z $\varepsilon-przejściami$
 - a. Należy co najmniej jeden język bezkontekstowy
 - b. Należą wszystkie języki nieskończone nad alfabetem {a, b, c}
 - c. Należy język $\{\varepsilon\}$
- 15. Niech L = $\{\varepsilon, a, ab, ba\}$. Wówczas
 - a. Język L jest akceptowany przez pewien deterministyczny automat skończenie stanowy
 - b. Język L jest językiem bezkontekstowym
 - c. $L \cap L^2 = \emptyset$
- 16. To, że problem języka pustego jest rozstrzygalny dla języków regularnych oznacza, że
 - a. Istnieje algorytm, który dla każdego języka regularnego L zatrzymuje się i stwierdza czy zachodzi $\epsilon \in L$ czy też zachodzi $\epsilon \notin L$
 - b. Istnieje algorytm, który dla każdego języka regularnego L zatrzymuje się i stwierdza czy zachodzi $L=\emptyset$ czy też zachodzi $L\neq\emptyset$
 - c. Istnieje algorytm, który dla każdego języka regularnego L stwierdza czy zachodzi $L=\{\epsilon\}$ czy też zachodzi $L\neq\{\epsilon\}$
- 17. Gramatyka bezkontekstowa o czterech regułach przepisywania: $S \to aaSb, S \to C, C \to Cc, C \to c$ (S jest symbolem początkowym gramatyki) generuje język
 - a. $\{a^{2n}c^mb^n: n \ge 0, m \ge 1\}$
 - b. Do którego należy słowo puste
 - c. Do którego należy słowo c^2
- 18. W oparciu o lemat o pompowaniu dla języków regularnych możemy stwierdzić, że
 - a. Język $\{a^n b^m : n, m \ge 1\}$ jest regularny
 - b. Dla każdego języka regularnego L także języki L^n jest regularny dla wszystkich n > 0
 - c. Język $\{a^nb^n: n \ge 1\}$
- 19. Niech język L $\subset V^*$ będzie oznaczany przez pewne wyrażenie regularne. Niech nadto \bar{L} to dopełnienie języka L do V^* . Wówczas
 - a. Język \overline{L} musi być nieskończony
 - b. Język $(\overline{L})^*$ jest językiem regularnym
 - c. Istnieje deterministyczny automat skończenie stanowy akceptujący $\overline{L} \setminus L$
- 20. Suma mnogościowa języka $L = \{a^n b^m : n, m \ge 1 \text{ i } n \ge m\}$ oraz języka $L' = \{a^k b^i : k, l \ge 1\}$
 - a. Jest zbiorem wszystkich słów nad alfabetem {a, b}
 - b. Jest **właściwym** podzbiorem języka $\{a^m b^n : m, n \ge 1\}$
 - c. Jest językiem regularnym
- 21. Wyrażenie regularne $(a + b + c)^*(aa + bb + cc)(a + b + c)^*$ nad alfabetem $V = \{a, b, c\}$ oraz nad V
 - a. Do którego należy nieskończenie wiele słów zawierających tylko symbol a
 - b. Którego wszystkie słowa mają długości będące liczbami parzystymi
 - c. Do którego należy słowo aaabbbccc
- 22. Niech język L składa się dokładnie ze wszsytkich słow nad alfabetem {a, b, c}, które ma będące liczbami nieparzystymi i które **nie kończą się** symbolem c. Język L jest oznacza wyrażenie regularne
 - a. $((a+b+c)(a+b+c))^*(a^*b^*)$
 - b. $((a+b+c)(a+b+c))^*(a+b)$
 - c. $((a+b+c)(a+b+c))^*(aa^*bb^*)$
- 23. Wyrażenie regularne $v_1 = a^*(ba + ca)^*c$ oraz $v_2 = a((b+c)a)^*c^*$ oznacza języki $L(v_1)$ [..] takie że:
 - a. $L(v_1) = L(v_2)$
 - b. $L(v_1) \cap L(v_2) \neq \emptyset$
 - c. $L(v_1) \cap L(v_2) = \emptyset$
- 24. Niech A bądź deterministycznym automatem skończenie stanowym, w którym q [..] początkowym zbiorem stanów końcowych jest $\{q_0q_2\}$, a funkcja przejścia zadana tabelą
 - a. $\{a, c\}^* \subset (A)$
 - b. $\varepsilon \in L(A)$
 - c. Każde słowo nad alfabetem {a, b, c} w którym