Introduction to Mathematical Programming

Ming Zhong

Lecture 19

October 11, 2018

Table of Contents

Linear Programming

Definition

We will discuss an important (special case) example of constrained optimization: Linear Programming.

Consider the following problem,

Minimize:
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to: $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$
 $x_1 > 0, x_2 > 0, \cdots, x_n > 0$

It is a constrained optimization problem with linear objective function and linear constrains.

Linear Programming, Matrix Form

It can be re-written as,

Minimize: $\vec{c}^{\top}\vec{x}$

subject to : $\mathbf{A}\vec{x} = \vec{b}$ and $\vec{x} \geq \vec{\mathbf{0}}$

where $\vec{x} \ge \vec{0}$ is defined component wise, i.e., $x_i \ge 0$.

Goal

Thus given \vec{A} , \vec{b} and \vec{c} , the problem is asking to find a \vec{x} such that the objective function is at its minimal

Before we discuss the fundamental theorem regarding Linear Programming, we have to establish a few terms and lemmas.

Hyperplanes and Half-Spaces

Definition

A hyperplane H in \mathbb{R}^n is a collection of points of the form, $\{\vec{x} \in \mathbb{R}^n : \vec{p}^\top \vec{x} = \alpha\}$, where \vec{p} is a non-zero vector in \mathbb{R}^n and α is a scalar.

Moreover,

- \vec{p} is called the normal vector of the hyperplane H.
- A hyperplane defines two closed half-spaces $H^+ = \{ \vec{x} \in \mathbb{R}^n : \vec{p}^\top \vec{x} \ge \alpha \}$ and $H^- = \{ \vec{x} \in \mathbb{R}^n : \vec{p}^\top \vec{x} \le \alpha \}.$
- And two open half-spaces $\{\vec{x} \in \mathbb{R}^n : \vec{p}^\top \vec{x} > \alpha\}$ and $\{\vec{x} \in \mathbb{R}^n : \vec{p}^\top \vec{x} < \alpha\}.$
- Any point in \mathbb{R}^n lies in H^+ , or in H^- , or in both.
- Let $\bar{\vec{x}} \in H$, then $H = \{\vec{x} \in \mathbb{R}^n : \vec{p}^\top (\vec{x} \bar{\vec{x}}) = 0\}$.
- Example: $H = \{(x_1, x_2) : x_1 + x_2 = 4\}$, then $\vec{p} = (1, 1)^{\top}$.

Separating Hyperplanes

Definition

Let S_1 and S_2 be two non-empty sets in \mathbb{R}^n . A hyperplane $H = \{ \vec{x} \in \mathbb{R}^n : \vec{p}^\top \vec{x} = \alpha \}$ is said to separate S_1 and S_2 if $\vec{p}^\top \vec{x} \ge \alpha$ for each $\vec{x} \in S_1$ and $\vec{p}^\top \vec{x} \le \alpha$ for each $\vec{x} \in S_2$.

In addition,

- If $S_1 \cup S_2 \not\subset H$, H is said to properly separate S_1 and S_2 .
- Strictly separate if $\vec{p}^{\top}\vec{x} > \alpha$ for each $\vec{x} \in S_1$ and $\vec{p}^{\top}\vec{x} < \alpha$ for each $\vec{x} \in S_2$.
- Strongly separate if $\vec{p}^{\top}\vec{x} \geq \alpha + \epsilon$ for each $\vec{x} \in S_1$ and $\epsilon > 0$, and $\vec{p}^{\top}\vec{x} \leq \alpha$ for each $\vec{x} \in S_2$.

Example

Separation Theorem

Theorem

Let S be a non-empty close convex set in \mathbb{R}^n and $\vec{y} \notin S$. Then there exists a non-zero vector \vec{p} and a scalar α such that $\vec{p}^\top \vec{y} > \alpha$ and $\vec{p}^\top \vec{x} \leq \alpha$ for each $\vec{x} \in S$.

We will not prove that theorem, however we will discuss some important consequences induced from the theorem,

- S is a closed convex set in \mathbb{R}^n , then S is the intersection of all half-spaces containing S.
- If \vec{y} is not in the closure of the convex hull of S, then there is an H strongly separating S and \vec{y} .

Polyhedral Sets

Polyhedral sets are important special cases of convex sets,

- Any closed convex set is the intersection all closed half-spaces containing it.
- In the case of polyhedral sets, only a finite number of half-spaces are needed.

Definition

A set S in \mathbb{R}^n is called a polyhedral set if it is the intersection of a finite number of closed half-spaces; that is,

 $S = \{\vec{x} \in \mathbb{R}^n : \vec{p}_i^{\top} \vec{x} = \alpha_i, \text{ for } i = 1, \dots, m\}, \text{ where } \vec{p}_i \text{ is a non-zero vector}$ and α_i is a scalar for $i = 1, \dots, m$.

Note that polyhedral sets are closed and convex.

Some Examples

The following are some typical examples of polyhedral sets,

$$S = \{ \vec{x} \in \mathbb{R}^n : \mathbf{A}\vec{x} \leq \vec{b} \}$$

$$S = \{ \vec{x} \in \mathbb{R}^n : \mathbf{A}\vec{x} = \vec{b}, \vec{x} \ge \vec{\mathbf{0}} \}$$

$$S = \{ \vec{x} \in \mathbb{R}^n : \mathbf{A}\vec{x} \ge \vec{b}, \vec{x} \ge \vec{\mathbf{0}} \}$$

$$S = \{(x_1, x_2): -x_1 + x_2 \leq 2, x_2 \leq 4, x_1 \geq 0, x_2 \geq 0\}$$

Extreme Points

Definition

Let S be a non-empty convex set in \mathbb{R}^n . A vector $\vec{x} \in S$ is called an extreme point of S if $\vec{x} = \lambda \vec{x}_1 + (1 - \lambda)\vec{x}_2$ with $\vec{x}_1, \vec{x}_2 \in S$, and $\lambda \in (0,1)$ implies that $\vec{x} = \vec{x}_1 = \vec{x}_2$.

Examples,

- $S = \{(x_1, x_2) : x_1^2 + x_2^2 \le 1\}$ and $E = \{(x_1, x_2) : x_1^2 + x_2^2 = 1\}.$
- $S = \{(x_1, x_2) : x_1 + x_2 \le 2, -x_1 + 2x_2 \le 2, x_1 \ge 0, x_2 \ge 0\}$ and $E = \{(0, 0), (0, 1), (2/3, 4/3), (2, 0)\}.$
- S is the polytope generated by (0,0),(1,1),(1,3),(-2,4),(0,2) and $E = \{(0,0),(1,1),(1,3),(-2,4)\}.$
- Note that for these S's, any point of S can be represented as a convex combination of the extreme points; not true for unbounded sets.

Example

Extreme Directions

Let S be a non-empty, closed convex set in $real^n$,

- A non-zero vector $\vec{d} \in \mathbb{R}^n$ is called a direction, or a recession direction, of S if for each $\vec{x} \in S$, $\vec{x} + \lambda \vec{d} \in S$ for all $\lambda > 0$.
- Two directions $\vec{d_1}$ and $\vec{d_2}$ are called distinct if $\vec{d_1} \neq \alpha \vec{d_2}$ for any $\alpha > 0$.
- A direction \vec{d} of S is called an extreme direction if it cannot be written as a positive linear combination of two distinct directions, i.e., if $\vec{d} = \lambda_1 \vec{d_1} + \lambda_2 \vec{d_2}$ for $\lambda_1, \lambda_2 > 0$, then $\vec{d_1} = \alpha \vec{d_2}$ for some $\alpha > 0$.

Extreme Points and Extreme Directions of Polyhedral Sets

Consider the polyhedral set: $S = \{\vec{x} \in \mathbb{R}^n : \mathbf{A}\vec{x} = \vec{b}, \vec{x} \ge 0\}$,

- **A** is an $m \times n$ matrix and \vec{b} is a m-vector.
- Assume **A** is of rank m, if not assuming $\mathbf{A}\vec{x} = \vec{b}$ is consistent.
- The number of extreme points of *S* is finite; *S* has at least one extreme point.
- The number of extreme directions of *S* is finite.
- Any point in S can be represented as a convex combination of its extreme points plus a non-negative linear combination of its extreme directions, that is, $\vec{x} \in S$ if and only if \vec{x} can be written as

$$\vec{x} = \sum_{j=1}^{k} \lambda_j \vec{x}_j + \sum_{j=1}^{\ell} \mu_j \vec{d}_j,$$

where $\sum_{j=1}^{k} \lambda_j = 1$ and $\lambda_j \geq 0$ for $j = 1, \dots, k$; and $\mu_j \geq 0$ for $j = 1, \dots, \ell$.

Existence of Extreme Directions

Theorem

Let S be a non-empty polyhedral set of the form, $\{\vec{x} \in \mathbb{R}^n : \mathbf{A}\vec{x} = \vec{b}, \vec{x} \geq 0\}$ where \mathbf{A} is an $m \times n$ matrix with rank m. Then S has at least one extreme direction if and only if it is unbounded.

Proof.

If S has an extreme direction, it is obviously unbounded. Now Suppose S is unbounded and by contradiction, supposed that S has no extreme directions. For then for $\vec{x} \in S$,

$$||\vec{x}|| = ||\sum_{j=1}^{k} \lambda_j \vec{x}_j|| \le \sum_{j=1}^{k} \lambda_j ||\vec{x}_j|| \le \sum_{j=1}^{k} ||\vec{x}_j||$$

Contradiction.

(JHU) AMS Fall 2018 15 / 15