Attenuation of γ Radiation by Matter

Vivek Sagar, Prashansa Gupta and Atul Singh Arora

November 3, 2014

1 Introduction

In order to understand the nature of absorption of gamma radiation by matter, we perform the following experiment to calculate the linear and mass attenuation coefficient.

2 Theory

When gamma radiation passes through matter, it undergoes absorption primarily by compton scattering, photoelectric effect and air production interactions. It is well known that intensity of radiation transmitted decreases exponentially with material thickness.

So we consider an exponential function defined as

$$i = i_0 \exp(-\mu d)$$

where i_o is the incident intensity of the beam,

i(x) is the intensity received after being transmitted through thickness of x.

 μ is the linear attenuation constant

if we take log on both sides, the equation becomes

$$\log i = -\mu d + \log i_0$$

$$\log r = -\mu d + c$$

The values of μ and c are calculated by fitting the graph of log r versus d.

The mass attenuation coefficient $\mu_m=\mu
ho$, where ho is the density of material.

The experiment uses three different absorbers, aluminium lead and copper, each of whose attenuation coefficients can be determined by fitting the graph.

3 Procedure

Set the voltage at the previously determined operating voltage of 485 V, and the preset time of counting to 60 seconds.

Placed the gamma source in the detector stand, to a appropriately near position and took background counts. Then, for each of the absorber set, took three sets of counts at each available thickness and tabulated the value.

4 Observations and Calculations

The graphs plot log r versus d for each of the absorbers.

Listing 1: Aluminium

Thickness, d [in mm]	Count	Count	Count [in 60 sec]
0.0	563	622	584
0.05	459	462	488
0.1	381	409	429
0.15	324	328	343
0.2	286	290	270
0.25	273	290	251
0.3	252	277	262
0.35	274	246	259
0.4	228	237	246
0.45	261	238	225

aluminium

```
\begin{split} \log r &= md + c \\ m &= -1.91441 \pm 0.2667mm^{-1} \\ c &= 6.19839 \pm 0.07119mm^{-1} \\ \mu &= -m \approx 1.92mm^{-1} \\ \mu_m &\approx (19.2cm^{-1})/(2.7g/cm^3) = 7.1cm^2/g \end{split} The quoted values are \mu = 115.5cm^{-1} and \mu_m = 42.7cm^2/g
```

Listing 2: Copper

Thickness, d [in mm]	Count	Count	Count [in 60 sec]
0.0	563	622	584
0.07	271	282	295
0.14	226	231	207

Figure 1: $\log r$ vs d where d is average count rate (\sec^{-1}) and r has been defined earlier for Aluminium

Figure 2: r vs d for Aluminium

Figure 3: log r vs d for Copper

0.21	212	217	220
0.28	213	204	258

copper

$$\begin{split} \log r &= md + c \\ m &= -3.1348 \pm 1.284 mm^{-1} \\ c &= 6.08216 \pm 0.2202 mm^{-1} \\ \mu &= -m \approx 3.14 mm^{-1} \\ \mu_m &\approx (31.4 cm^{-1})/(8.93 g/cm^3) = 3.5 cm^2/g \end{split}$$
 The quoted values are $\mu = 161.16 cm^{-1}$ and $\mu_m = 18.04 cm^2/g$

Listing 3: Lead

Thickness, d [in mm]	Count	Count	Count [in 60 sec]
0	563	622	584
0.3	276	260	269
0.6	258	283	274
0.9	266	264	266
1.2	257	261	218

lead

 $\log r = md + c$

Figure 4: r vs d for Copper

Figure 5: log r vs d for Lead

```
\begin{split} m &= -0.588374 \pm 0.2848 mm^{-1} \\ c &= 6.08502 \pm 0.2093 mm^{-1} \\ \mu &= -m \approx 0.59 mm^{-1} \\ \mu_m &\approx (5.9 cm^{-1})/(11.34 g/cm^3) = 0.52 cm^2/g \end{split} The quoted values are \mu = 11.55 cm^{-1} and \mu_m = 5.55 cm^2/g
```

Listing 4: Fit Result

```
After 5 iterations the fit converged.

final sum of squares of residuals: 0.117364

rel. change during last iteration: -2.12843e-015
```

 ${\tt degrees \ of \ freedom} \qquad ({\tt FIT_NDF}) \qquad \qquad : \ 8$

rms of residuals $(FIT_STDFIT) = sqrt(WSSR/ndf)$: 0.121122 variance of residuals (reduced chisquare) = WSSR/ndf : 0.0146705

Figure 6: r vs d for lead

```
= 6.19839 + / - 0.07119 (1.149\%)
correlation matrix of the fit parameters:
              1.000
С
              -0.843 1.000
gnuplot > plot f(x), 'exp4al' using ($1): (\log((\$2+\$3+\$4)/3.0))
After 4 iterations the fit converged.
final sum of squares of residuals: 0.24254
rel. change during last iteration : -2.52445e-009
degrees of freedom (FIT NDF)
                                                   : 3
rms of residuals (FIT\_STDFIT) = sqrt(WSSR/ndf) : 0.284336
variance of residuals (reduced chisquare) = WSSR/ndf : 0.0808467
Final set of parameters Asymptotic Standard Error
                               +/- 1.284
                                                (40.98%)
              = -3.1348
m
```

= 6.08216 + - 0.2202 (3.621%)

|| c

correlation matrix of the fit parameters:

m 1.000

c -0.816 1.000

gnuplot > plot f(x), 'exp4copper' using (\$1): (log((\$2+\$3+\$4)/3.0))

After 4 iterations the fit converged.

final sum of squares of residuals: 0.218959

rel. change during last iteration : -7.97395e-012

degrees of freedom (FIT_NDF) : 3

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.27016 variance of residuals (reduced chisquare) = WSSR/ndf : 0.0729862

Final set of parameters Asymptotic Standard Error

m = -0.588374 + -0.2848 (48.4%)

c = 6.08502 + /- 0.2093 (3.439%)

The detailed observations have been listed below:

Operating voltage	48		Source: C	esium		Distance of source:	4 slots	
		Al absorber						
Background	Cs only	thickness(mm)	counts	without back		without back	without back	
	12 57	-			637		599 584	
;	15 63	7 0.05	474	459	477	462	503 488	484.6667
:	12 59	9 0.1	396	381	424	409	444 429	421.3333
;	21 604.666	7 0.15	339	324	343	328	358 343	346.6667
:	15	0.2	301	286	305	290	285 270	297
:	15	0.25	288	273	305	290	266 251	286.3333
		0.3	267	252	292	277	277 262	278.6667
		0.35	289	274	261	246	274 259	274.6667
		0.4	243	228	252	237	261 246	252
		0.45	276	261	253	238	240 225	256.3333
		lead absorber						
		thickness(mm)	counts	without back		without back	without back	
		0	578	563	637	622	599 584	604.6667
		0.3	291	276	275	260	284 269	283.3333
		0.6	273	258	298	283	289 274	286.6667
		0.9	281	266	279	264	281 266	280.3333
		1.2	272	257	276	261	233 218	260.3333
		copper absorber						
		thickness(mm)	counts	without back		without back	without back	
		` ,	578	563	637	622	599 584	604.6667
		0.07			297		310 295	297.6667
		0.14			246	_	222 207	236.3333
		0.21			232		235 220	231.3333
		0.28			219		273 258	240

5 Results and Conclusions

The graph of log r versus d was plotted, and values of linear and mass coefficient were calculated.

The linear fits in the log graph are not appropriate, which might contribute in highly erroneous results for attenuation coefficients obtained as:

```
aluminium - 14 % error in \mu copper - 41 % error in \mu lead - 48 % error in \mu
```