In [1]:	<pre>import pandas as pd from matplotlib import pyplot as plt from sklearn.metrics import classification_report from matplotlib import pyplot as plt import numpy as np from sklearn.decomposition import PCA</pre>								
In [2]:	dataset=pd.read_dataset.shape	_csv('breast-c	ancer-wisconsin	n.data')					
Out[2]:	(698, 11)								
In [3]:	dataset.head()								
Out[3]:	 1002945 5 4 1015425 3 1 1016277 6 8 1017023 4 1 	1.1 1.2 2 1.3 4 5 7 10 1 1 2 2 8 1 3 4 1 3 2 1	3 2 1 2 3 1 1 2 3 7 1 2 3 1 1 2						
In [4]:	4 1017122 8 10			III.	ainal Irrai	£	ah an a L. L	Managina I., adhara	
In [5]:	dataset.columns dataset.head(10)		mp_tnickness',	oniformity_cell	_size','Uni	.rormity_cell	_snape','	marginai_adnes	sion',
Out[5]:			ity_Cell_size Unifor	mity_cell_shape Ma	rginal_adhesion	Single_e_cell_s	ixe Bare_nu	ıclei Bland_chrom	atin No
	0 10029451 1015425	5 3	4 1	4	5		7	10	3
	2 10162773 1017023	6	8 1	8	1		3	4 1	3
	4 1017122 5 1018099	8	10 1	10 1	8		7	10 10	9
	6 10185617 1033078	2	1	2	1		2	1	3
	8 10330789 1035283	4 1	2 1	1 1	1		2	1	2
In [54]:	<pre>from sklearn.model_selection import train_test_split X = np.array(dataset.iloc[:,2:5]) y = np.array(dataset['Class']) # split into train and test X_train, \ X_test, \ y_train, \ y_test = train_test_split(X, y, test_size=0.33, random_state=42)</pre> X test_shape								
In [55]: Out[55]:	X_test.shape (231, 3)								
In [56]:	from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score								
	<pre>from sklearn.preprocessing import StandardScaler knn = KNeighborsClassifier(n_neighbors=15) knn.fit(X_train,y_train.ravel()) pred = knn.predict(X_test) print("accuracy: {}".format(accuracy_score(y_test,pred)))</pre>								
	accuracy: 0.9523		()	, pred)))					
In [57]:	classifier = KNe classifier.fit()			rs=5)					
Out[57]:	<pre>KNeighborsClassifier()</pre>								
111 [00].	<pre>from sklearn.model_selection import cross_val_score neighbors = list(range(1, 20, 2)) # empty list that will hold cv scores cv_scores = [] # perform 10-fold cross validation for k in neighbors: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X_train, y_train.ravel(), cv=2, scoring='accuracy') cv_scores.append(scores.mean()) print(cv_scores) [0.9207567587395914, 0.9228751696562856, 0.9421884743773156, 0.9378966288837534, 0.9379057994937823, 0.93789662 88837534, 0.9357507061369722, 0.9357598767470012, 0.9357507061369722, 0.9357507061369722]</pre>								
In [59]:									
In [60]:	<pre>from sklearn.ensemble import RandomForestClassifier</pre>								
In [61]:	<pre>mse = [1-x for x in cv_scores] optimal_k = neighbors[mse.index(min(mse))] print("The optimal number of neighbors is {}".format(optimal_k)) plt.plot(neighbors, mse) plt.xlabel("Number of Neighbors K") plt.ylabel("Misclassification Error") plt.show()</pre> The optimal number of neighbors is 5								
	0.080 0.075 0.075								
	Misclassification Error 0.070 -								
	0.060 -			7.5					
In [62]:	Number of Neighbors K								
	<pre>print(classification) print(confusion_</pre>	ation_report(y _matrix(y_test	<pre>r_test,y_pred)) ,,y_pred))</pre>		_				
	2 4	0.98	f1-score 0.95 0.97 0.96 0.94	support 149 82					
	accuracy macro avg weighted avg		0.96 0.96 0.95 0.96 0.96	231 231 231					
	[[142 7] [3 79]]								
In [63]:	#Normalizing sc = StandardSca X_normalized = s #Apply PCA pca = PCA(n_comp pca_X = pca.tran	sc.fit_transfo	it(X_normalized	d)					
In [64]:	pca_X.shape (569, 2)								
Out[64]:	<pre>import matplotli</pre>		lt						
	<pre>import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(10,9)) plt.title("Principal Components", fontsize=17) plt.scatter(X[:,0], X[:,1], c=y, cmap='Paired')</pre>								
Out[65]:	<matplotlib.colle< td=""><td></td><td>ncipal Compo</td><td></td><td></td><td></td><td></td><td></td><td></td></matplotlib.colle<>		ncipal Compo						
	10 -	•	• •	• •	•	•			
	8 -			•	•				
		•			•	•			
	6 -	• •				•			
		• •	• •	•		•			
	4 -	• •	• •	• •	•	•			
		• •	• •	•		•			
	2 -	•				•			
	Ż	4	6	8		10			
In [66]:	<pre>X_train, X_test, clf = RandomFore clf.fit(X_train, print("Accuracy y_pred = clf.pre print("Accuracy</pre>	estClassifier(y_train.rave on training s edict(X_test)	<pre>n_estimators=1(1()) et {}".format(c)</pre>	00, max_depth=4)	n, y_train)))			
	Accuracy on train								
In []:									