t2_house_prac2

```
# 시험환경 세팅 (코드 변경 X)
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
def exam_data_load(df, target, id_name="", null_name=""):
    if id name == "":
        df = df.reset_index().rename(columns={"index": "id"})
        id name = 'id'
    else:
        id_name = id_name
    if null_name != "":
        df[df == null_name] = np.nan
    X_train, X_test = train_test_split(df, test_size=0.2, shuffle=True, random_state=2021)
    y_train = X_train[[id_name, target]]
    X_train = X_train.drop(columns=[id_name, target])
    y_test = X_test[[id_name, target]]
    X_test = X_test.drop(columns=[id_name, target])
    return X_train, X_test, y_train, y_test
df = pd.read_csv("data/house/train.csv")
X_train, X_test, y_train, y_test = exam_data_load(df, target='SalePrice', id_name='Id')
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

```
((1168, 79), (292, 79), (1168, 2), (292, 2))
```

데이터 분석

```
X_train.head()
```

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	
81	120	RM	32.0	4500	Pave	NaN	Reg	Lvl	AllPub	FR2	
1418	20	RL	71.0	9204	Pave	NaN	Reg	Lvl	AllPub	Inside	
1212	30	RL	50.0	9340	Pave	NaN	Reg	Lvl	AllPub	Inside	
588	20	RL	65.0	25095	Pave	NaN	IR1	Low	AllPub	Inside	
251	120	RM	44.0	4750	Pave	NaN	IR1	HLS	AllPub	Inside	

5 rows × 79 columns

```
import pandas as pd
X_train.shape, X_test.shape
```

```
((1168, 79), (292, 79))
```

```
# X_train.info()
```

```
X_train.isnull().sum().sort_values().tail(3)
```

Alley 1098
MiscFeature 1124
PoolQC 1163
dtype: int64

심각한 결측치 제거

```
X_train.drop(columns=['PoolQC','MiscFeature','Alley'],inplace=True)
X_test.drop(columns=['PoolQC','MiscFeature','Alley'],inplace=True)

X_train.shape, X_test.shape
```

```
((1168, 76), (292, 76))
```

결측치 보간

```
num_cols=X_train.select_dtypes(['float64','int64']).columns
cat_cols=X_train.select_dtypes(['object']).columns
```

```
X_train.head()
```

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	
81	120	RM	32.0	4500	Pave	Reg	Lvl	AllPub	FR2	Gtl	
1418	20	RL	71.0	9204	Pave	Reg	Lvl	AllPub	Inside	Gtl	
1212	30	RL	50.0	9340	Pave	Reg	Lvl	AllPub	Inside	Gtl	
588	20	RL	65.0	25095	Pave	IR1	Low	AllPub	Inside	Sev	
251	120	RM	44.0	4750	Pave	IR1	HLS	AllPub	Inside	Mod	

5 rows × 76 columns

```
for col in num_cols:
    X_train[col]=X_train[col].fillna(X_train[col].mean())
    X_test[col]=X_test[col].fillna(X_test[col].mean())
```

```
X_train.isnull().sum().sum(), X_test.isnull().sum().sum()
```

```
(2584, 669)
```

```
for col in cat_cols:
    X_train[col]=X_train[col].fillna(X_train[col].mode()[0])
    X_test[col]=X_test[col].fillna(X_test[col].mode()[0])
```

```
X_train.isnull().sum().sum(), X_test.isnull().sum().sum()
```

범주형 변수 원핫인코딩

```
X_train.shape, X_test.shape

((1168, 76), (292, 76))

X_train= pd.get_dummies(X_train)
X_test= pd.get_dummies(X_test)

X_train.shape, X_test.shape

((1168, 275), (292, 246))
```

train test align 작업

```
X_train, X_test = X_train.align(X_test,join='left',fill_value=0,axis=1)

X_train.shape, X_test.shape

((1168, 275), (292, 275))
```

랜덤포레스트 학습

```
from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(random_state=42, n_estimators=500)
```

y_train.head()

	Id	SalePrice				
81	82	153500				
1418	1419	124000				
1212	1213	113000				
588	589	143000				
251	252	235000				

```
# y_train.pop('Id')
```

```
rf.fit(X_train,y_train['SalePrice'])
pred= rf.predict(X_test)
```

```
from sklearn.metrics import mean_squared_error, r2_score
```

```
rmse= mean_squared_error(y_test['SalePrice'],pred,squared=False)
r2= r2_score(y_test['SalePrice'],pred)
```

C:\Users\pjjeo\anaconda3\Lib\site-packages\sklearn\metrics_regression.py:492: FutureWarning: 'squared' is
deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the
function'root_mean_squared_error'.
 warnings.warn(

```
print("RMSE:", rmse)
print("R<sup>2</sup>:", r<sup>2</sup>)
```

RMSE: 24844.269928350943 R²: 0.8942271397027238