Overview

- Classification
- Logistic Regression with Two Classes
- Gradient Descent
- Logistic Regression with Multiple Classes
- Probabilistic Interpretation

Classification with Two Classes

Examples:

• Email: spam or not ?

Online transactions: fraudulent or not ?

• Tumor: malignant or benign?

- As before x="input" variable/features e.g. text of email, location, nationality
- Now y="output" variable/"target" variable only takes values -1 or 1
 (with linear regression y was real valued). In classification y often
 referred to as the label¹.
- We want to build a **classifier** that predicts the label of a new object e.g whether a new email is spam or not.

¹Note could also use values 0 and 1 rather than -1 and 1, leave this as an exercise

Logistic Regression: Choice of Hypothesis

- Fitting data with a straight line $\theta^T x$ doesn't look appropriate (prone to misclassification)
- Predict output 1 when $\theta^T x \ge 0$ and output -1 when $\theta^T x < 0$ i.e.

$$h_{\theta}(x) = sign(\theta^T x)$$

Logistic Regression: Decision Boundary

We can think of logistic regression as trying to fit a plane that separates the Y=1 data from the Y=0 data.

- $\theta^T x = 0$ defines a point in one dimension e.g. $1 + 0.5x_1 = 0 \rightarrow x_1 = -2 \dots$
- ... a line in two dimensions e.g. $2 + x_1 + 2x_2 = 0 \Rightarrow x_2 = -x_1/2 1$...
- .. and a plane in higher dimensions

Logistic Regression: Decision Boundary

• Example: suppose x is vector $x = [1, x_1, x_2]^T$ e.g. x_1 might be tumour size and x_2 patient age.

- $\theta_0 = 0$, $\theta_1 = 0.5$, $\theta_2 = -0.5$.
- $h_{\theta}(x) \ge 0$ when $0.5x_1 0.5x_2 \ge 0$ i.e. when $x_1 \ge x_2$.
- When data can be separated in this way we say that it is "linearly separable".

Logistic Regression: Decision Boundary

• Not all data is linearly separable e.g.

Logistic Regression: Choice of Cost Function

• Training data: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\}$

•
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $x_0 = 1$, $y \in \{-1, 1\}$

- Hypothesis: $h_{\theta}(x) = sign(-\theta^T x)$
- How to choose parameters θ ?

Logistic Regression: Choice of Cost Function

• We might consider the **0-1 loss function**:

$$\frac{1}{m}\sum_{i=1}^m \mathbb{I}(h_{\theta}(x^{(i)}) \neq y^{(i)})$$

where indicator function $\mathbb{I}=1$ if $h_{\theta}(x^{(i)})\neq y^{(i)}$ and $\mathbb{I}=0$ otherwise. But hard to work with.

For logistic regression we use:

$$\frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \theta^{T} x^{(i)}}) / \log(2)$$

noting that y=-1 or y=1. Scaling by $\log(2)$ is optional, but makes the loss 1 when $y^{(i)}\theta^Tx^{(i)}=0$.

Logistic Regression: Choice of Cost Function

Loss function: $\log(1 + e^{-y\theta^T x})/\log(2)$

- So a small penalty when $\theta^T x \gg 0$ and y = 1, and when $\theta^T x \ll 0$ and y = -1.
- Minimising this thus gives preference to θ values that push $\theta^T x$ well away from the decision boundary $\theta^T x = 0$.

Summary

- Hypothesis: $h_{\theta}(x) = sign(\theta^T x)$
- Parameters: θ
- Cost Function: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \theta^T x^{(i)}})$
- Goal: Select θ that minimises $J(\theta)$

Gradient Descent

As before, can find θ using:

- Start with some θ
- Repeat:

Update vector heta to new value which makes J(heta) smaller

e.g using gradient descent:

- Start with some θ
- Repeat:

```
for j=0 to n { tempj := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)} for j=0 to n {\theta_i := tempj}
```

Gradient Descent

For
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \theta^{T} x^{(i)}})$$
:

•
$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m -y^{(i)} x_j^{(i)} \frac{e^{-y^{(i)} \theta^T x^{(i)}}}{1 + e^{-y^{(i)} \theta^T x^{(i)}}}$$

• (Remember $\frac{d \log(x)}{dx} = \frac{1}{x}$, $\frac{d \exp(x)}{dx} = exp(x)$ and chain rule $\frac{df(z(x))}{dx} = \frac{df}{dz} \frac{dz}{dx}$)

So gradient descent algorithm is:

- Start with some θ
- Repeat:

for
$$j = 0$$
 to n { $tempj := \theta_j + \frac{\alpha}{m} \sum_{i=1}^m y^{(i)} x_j^{(i)} \frac{e^{-y^{(i)}\theta^T x^{(i)}}}{1 + e^{-y^{(i)}\theta^T x^{(i)}}}$ } for $j = 0$ to n { $\theta_j := tempj$ }

• $J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

Probabilistic Interpretation: Logistic Regression

- Label Y only takes values -1 or 1.
- Assume

$$P(Y = y | \theta, x) = \frac{1}{1 + e^{-y\theta^T x}}$$

and recall y = 1 or y = -1 only.

• The **likelihood** $P(d|\theta)$ of the training data d is therefore:

$$P(d|\theta) = \prod_{i=1}^{m} \frac{1}{1 + e^{-y\theta^T x}}$$

Taking logs:

$$\log P(d|\theta) = \sum_{m=1}^{m} \log \frac{1}{1 + e^{-y\theta^{T}x}}$$

• And the maximum likelihood estimate of θ minimises:

$$-\sum_{i=1}^{m}\log\frac{1}{1+e^{-y\theta^{T}x}}=\sum_{i=1}^{m}\log(1+e^{-y\theta^{T}x})$$
 since $-\log(z)=\log(1/z)$.

Probabilistic Interpretation: Logistic Regression

 The probabilistic formulation of logistic regression provides us with a new insight:

$$P(Y = y | \theta, x) = \frac{1}{1 + e^{-y\theta^T x}}$$

• So in addition to prediction $h_{\theta}(x) = sign(\theta^T x)$ we also have an estmate of our confidence in the prediction, namely $\frac{1}{1+e^{-y\theta^T x}}$.

• When $\frac{1}{1+e^{-y\theta^T x}}$ is close to 1, then we are confident in our prediction but when $\frac{1}{1+e^{-y\theta^T x}}$ is small then we are less confident.

Logistic Regression With Multiple Classes

- Examples:
 - Email folder tagging: work, friends, family, hobby
 - Weather, sunny, cloudy, rain, snow
 - Given where I live in Dublin, predict which political party I'll vote for.
- Now y= "output" variable/ "target" variable takes values 0,1,2,.... E.g. y=0 if sunny, y=1 if cloudy, y=2 if rain etc.

Logistic Regression With Multiple Classes

• Train a classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i. Training data: re-label data as y=-1 when $y\neq i$ and as y=1 when y=i, so we're back to a binary classification task.