

Stereopsis: Rectification (New book: 7.2.1, old book: 11.1)

Guido Gerig CS 6320 Fall 2013

Prof. Mubarak Shah Course notes modified from: CAP5415 - Computer Vision

http://www.cs.ucf.edu/courses/cap6411/cap5415/, Lecture 25

Material I

- http://vision.middlebury.edu/stereo/
- (online stereo pairs and truth (depth maps)
- Stereo correspondence software: e.g. <u>http://vision.middlebury.edu/stereo/dat</u> <u>a/scenes2001/data/imagehtml/tsukuba.</u> <u>html</u>
- CVonline compendium: <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/</u>

Material II

- Epipolar Geometry, Rectification:
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_ COPIES/FUSIELLO2/rectif_cvol.html
- and: <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL</u> COPIES/OWENS/LECT11/node11.html
- Stereo:
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_ COPIES/OWENS/LECT11/lect11.html
- 3D Reconstruction:
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_ COPIES/OWENS/LECT11/node8.html

Example: converging cameras

courtesy of Andrew Zisserman

Finding Correspondences

Andrea Fusiello, CVonline

Image Rectification

•Search Correspondences on scan line

$$Z = \frac{fB}{d}$$

Rectification

All epipolar lines are parallel in the rectified image plane.

Image Rectification

Figure 7.15: Standard stereo setup

Image pair rectification

simplify stereo matching by warping the images

Apply projective transformation so that epipolar lines correspond to horizontal scanlines

problem when epipole in (or close to) the image

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = He$$

Planar rectification

(moves epipole to ∞)
(not possible when in/c

(not possible when in/close to image)

Stereo image rectification

Stereo image rectification

reproject image planes onto common plane parallel to line between optical centers

 a homography (3x3 transform) applied to both input images

pixel motion is horizontal after this transformation

C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Rectification ctd.

before

after

Algorithm Rectification

Following Trucco & Verri book pp. 159

- known T and R between cameras
- Rotate left camera so that epipole e_I goes to infinity along horizontal axis
- Apply same rotation to right camera to recover geometry
- Rotate right camera by R⁻¹
- Adjust scale

Stereo matching with general camera configuration

Image pair rectification

Left image

Rectified left image

Right image

Rectified right image

Other Material /Code

- Epipolar Geometry, Rectification:
- Trucco & Verri:
- http://profs.sci.univr.it/~fusiello/demo/rect/