АО «Медицинский университет Астана»

CPC

На тему:

Мозговые оболочки. Церебро-спинальная жидкость и ее циркуляция. Ликвор. Люмбальная пункция.

Оболочки мозга

- ➤ Мягкая оболочка, непосредственно прилегающая к поверхности мозга (pia mater)
- ➤ Арахноидальная оболочка, занимающая срединное положение (arachnoidea)
- ➤ Твердая мозговая оболочка (dura mater)

Dura mater

Имеет в своем составе два листка

- -Наружный листок прикрепляется к черепу изнутри и выстилает внутренний канал позвоночника (составляет их надкостницу)
- -Внутренний листок сращен с наружным (образуя в местах сращения мозговые синусы ложа для оттока венозной крови от мозга и головы).

Между наружным листком и костями черепа находится <u>эпидуральное</u> пространство.

Arachnoidea

Отделена от твердой мозговой оболочки капиллярным субдуральным пространством.

Паутинная оболочка головного мозга (arachnoidea mater encephali располагается кнутри от твердой оболочки головного мозга.

Тонкая, прозрачная паутинная оболочка в отличие от мягкой оболочка (сосудистой) не проникает в щели между отдельными частями мозга и в борозды полушарий. Она покрывает головной мозг, переходя с одной части мозга на другую, и ложится над бороздами.

От мягкой оболочки головного мозга паутинная отделена **подпаутинным пространством** (субарахнои-дальным (cavitas subaracnoidalis), в котором содержится цереброспинальная жидкость.

- **Pia mater3. Мягкая оболочка спинного мозга,** pia mater spinalis, покрытая с поверхности эндотелием, непосредственно облекает спинной мозг и содержит между двумя своими листками сосуды, вместе с которыми заходит в его борозды и мозговое вещество, образуя вокруг сосудов периваскулярные лимфатические пространства.
- К лимфатическим сосудам спинного мозга можно отнести периваскулярные пространства вокруг сосудов, сообщающиеся с подпаутинным пространством.

Это самая внутренняя оболочка мозга. Она плотно прилежит к наружной поверхности мозга и заходит во все щели и борозды. Мягкая оболочка состоит из рыхлой соединительной ткани, в толще которой располагаются кровеносные сосуды, направляющиеся к головному мозгу и питающие его.

• Ликворные цистерны представляют собой вместилища ЦСЖ, наиболее крупными из которых являются базальные, находящиеся на основании черепа: мозжечково-мозговая цистерна (cisterna cerebellomedullaris), цистерна перекреста(cisterna chiasmatis), межножковая цистерна (cisterna interpeduncularis) и др.

• Субарахноидальное пространство

• Расширения субарахноидалного пространства, заполненные ликвором, получили название подпаутинных цистерн.

Мостомозжечковая (большая) цистерна

Расположена между мозжечком и продолговатым мозгом

Межножковая цистерна

Расположена между ножками мозга

Хиазмальная цистерна

Располагается кпереди от межножковой

Конечная цистерна (спинного мозга)

Расположена ниже места окончания спинного мозга в спинномозговом канале позвоночника (примерно на уровне L3 позвонка). Нужно помнить, что у новорожденного спинной мозг заканчивается на уровне L3 позвонка, тогда как у ребенка 5 лет уже на уровне L1-L2 позвонков.

Желудочки головного мозга Парные боковые желудочки (первый и второй)

Расположены в полушариях мозга. В каждом из желудочков различают передний рог (в области лобной доли), задний рог (в области затылочной доли), нижний рог (в области височной доли), тело желудочка (в области теменной доли)

Третий желудочек

Расположен на средней линии между зрительными буграми. Соединен посредством отверстий Монро с боковыми желудочками и посредством водопровода мозга с четвертым желудочком

Четвертый желудочек

Сообщается через боковые отверстия Лушки с субарахноидальным пространством головного мозга, а через отверстия Мажанди с большой цистерной мозга.

Центральный спинномозговой канал

Является прямым продолжением четвертого желудочка.

- 1. Левое полушарие головного мозга.
- 2. Боковые желудочки.
- 3. Третий желудочек.
- 4. Водопровод среднего мозга.
- 5. Четвертый желудочек.
- 6. Мозжечок.
- 7. Вход в центральный канал спинного мозга.
- 8. Спинной мозг.

Желудочки головного мозга

- А. Боковой желудочек
 - 1. Передний рог
 - 2. Задний рог
 - 3. Нижний рог
- В. Межжелудочковое (монроево) отверстие
- С. Третий желудочек

- **D.Водопровод мозга**
- Е. Латеральная апертура (отверстие Лушки)
 - IV желудочка
- **F. IV желудочек**
- G Срединная апертура (отверстие Мажанди) IV желудочка

- 1. Левое полушарие головного мозга.
- 2. Боковые желудочки.
- 3. Третий желудочек.
- 4. Водопровод среднего мозга.
- 5. Четвертый желудочек.
- 6. Мозжечок.
- 7. Вход в центральный канал спинного мозга.
- 8. Спинной мозг.

- Цереброспинальная жидкость(син:спинномозговая жидкость, ликвор) жидкая биологическая среда организма, циркулирующая в желудочках головного мозга, субарахноидальном пространстве головного и спинного мозга.
- Цереброспинальная жидкость выполняет в центральной нервной системе защитно-питательные функции:
 - •она предохраняет головной и спинной мозг от механических воздействий
 - •обеспечивает поддержание постоянного внутричерепного давления и водно-электролитного баланса
 - •играет определенную роль как посредник между кровью и тканью в отношении питания и обмена веществ мозга (некоторые отработанные мозговой тканью продукты обмена выводятся с цереброспинальной жидкости в венозное русло)

Основной объем цереброспинальной жидкости образуется путем:

- •активной секреции железистыми клетками сосудистых сплетений желудочков головного мозга
- •диализ крови через стенки кровеносных сосудов и эпендиму желудочков головного мозга

Циркуляция цереброспинальной жидкости обусловлена:

- •перепадами гидростатического давления в ликвороносных путях
- •пульсацией внутричерепных артерий
- •изменениями венозного давления
- •положением тела и др.

Схема циркуляции ЦСЖ

БОКОВЫЕ ЖЕЛУДОЧКИ МОЗГА МЕЖЖЕЛУДОЧКОВЫЕ ОТВЕРСТИЯ (МОНРО) ЖЕЛУДОЧЕК МОЗГА ВОДОПРОВОД МОЗГА (СИЛЬВИЕВ) IV ЖЕЛУДОЧЕК МОЗГА ОТВЕРСТИЯ ЛЮШКИ (латеральная апертура I V желудочка) и МАЖАНДИ (срединная апертура I V желудочка) Большая цистерна и наружное субарахноидальное пространство головного мозга Центральный канал и субарахноидальное пространство спинного мозга

КОНЕЧНАЯ ЦИСТЕРНА СПИННОГО МОЗГА

Цереброспинальная жидкость (ликвор)

- Ликвор вырабатывается ворсинчатыми сплетениями, в основном сплетениями боковых желудочков. Он имеет секреторное происхождение. Он прозрачен как вода и содержит очень мало клеток (около 2 на 50—53 мм) и мало белка (25—40 мг/100 мл)
- поступает в субарахноидальное пространство через отверстия Люшка и Мажанди.
- В субарахноидальном пространстве ликвор циркулирует вверх и вокруг головного мозга и вниз вокруг спинного мозга

- Общий объем ликвора в желудочках и субарахноидальном пространстве мозга взрослого 130 150 мл.
- Ежесуточно вырабатывается 400—500 мл ликвора.
- Ликворное давление в положении в норме составляет
- лежа 70 120 мм водн. ст.
- стоя (сидя) 140 -180 мм водн. ст.

Ликворообращение

- единый физиологический процесс,
- три основных звена:
- 1 ликворопродукция в сосудистых сплетениях желудочков,
- 2 ликвороциркуляция, последовательно осуществляющуюся в желудочках мозга (желудочковая), в субарахноидальном пространстве (цистернах, ликвороносных каналах, субарахноидальных ячеях)
- 3 отток (резорбция) ликвора

• Люмбальная пункция

При попадании иглы в субарахноидальное пространство (у взрослых ее для этого обычно надо ввести на 4-5 см) возникает ощущение ее "проваливания". Иногда, по мере продвижения иглы вглубь, периодически извлекают мандрен. Появление спинномозговой жидкости означает, что игла проникла в субарахноидальное пространство. Если игла упирается в кость, или появляется боль, иррадиирующая в ногу, или СМЖ из иглы не поступает, то иглу полностью извлекают и повторяют пункцию. Как только игла попала в субарахноидальное пространство, к ней присоединяют манометр и измеряют давление спинномозговой жидкости. В норме оно колеблется синхронно с пульсом и дыханием.

Во время люмбальной пункции необходимо первые 5 капель удалить, затем собрать 3 порции асептически в стерильные пробирки, плотно их закрыть и оформить соответствующее направление в клиникодиагностическую лабораторию

показатель	ликвор	ВЕНТРИКУЛЯРНАЯ ЖИДКОСТЬ
	Нормальные значения	
ЦВЕТ	Бесцветная .	Бесцветная
ПРОЗРАЧНОСТЬ	Прозрачная	Прозрачная
плотность	1,006-1,007 г/мл	1,002-1,004 г/мл
цитоз	7-10 клеток/Змкл	0-3 клеток/Змкл
БЕЛОК	0,20 - 0,30 г/л	0,10 - 0,22 г/л
ГЛЮКОЗА	2,8 - 3,9 ммоль/л	2,8 - 3,9 ммоль/л
ХЛОРИДЫ	120-130 ммоль/л	120-130 ммоль/л
МОЧЕВИНА	1,0-3,3 ммоль/л	1,0-3,3 ммоль/л

ЦИТОЗ (ПЛЕОЦИТОЗ)

- - увеличение количества клеток в ликворе.
- Незначительный плеоцитоз возможен при прогрессивном парапиче, сифилисе, специфическом менингите, арахноидите, энцефалите, рассеянном склерозе, эпилепсии, опухоли, травме позвоночника и головного мозга
- Массивный плеоцитоз наблюдается при острых гнойных менингитах, абсцессе.
- Лимфоцитарный плеоцитоз отмечается в послеоперационном периоде при нейро-хирургических операциях, хроническом воспалении оболочек мозга (туберкулезный менингит, цистицеркозный арахноидит).

- **ЖЭозинофилы** встречаются при субарахноидальных кровоизлияниях, токсических, реактивных, туберкулезных, сифилитических, эпидемических менингитах, опухолях, цистицеркозе головного мозга.
- **ХПлазматические клетки** в ликворе при энцефалите, туберкулезном менингите, вялотекущем заживлении раны после операции.
- **≭**Гистиоциты обнаруживаются при тех же процессах и при цистицеркозе.

- * Макрофаги могут быть при нормальном цитозе после кровотечения и при воспалительном процессе. Большое количество макрофагов наблюдается при санации в послеоперационном периоде. Отсутствие их при плеоцитозе плохой прогностический признак.
- * Макрофаги с каплями жира в цитоплазме (зернистые шары) присутствуют в жидкости из мозговых кист и при некоторых опухолях (краниофарингиомы, эпендимомы).
- * Эпителиальные клетки определяются при новообразованиях оболочек, иногда при воспалительном процессе.

ГЛЮКОЗА

- Увеличивается при энцефалитах, опухолях, сахарном диабете, иногда при тетании и столбняке.
- Резко уменьшается при туберкулезном, стрептококковом и менингококковом менингитах.

ХЛОРИДЫ

- •* Увеличиваются при опухолях мозга, абсцессах, эхинококке, рассеянном склерозе, уремии, нефрите, при прогрессивном параличе.
- •* Уменьшение при туберкулезном менингите.

МОЧЕВИНА

•*

• Повышается при заболеваниях почек, атеросклерозе. При уремии уровень мочевины доходит до 9- 16 ммоль/л. У детей мочевина повышается при острых инфекциях.

Ликвородинамические пробы

- При подозрении на блок на спинальном уровне проводятся ликвородинамические пробы:
- Изменение положения головы
- Изменение ритма дыхания
- Натуживание
- Проба Стукея (В. Stookey) для определения частичной или полной блокады циркуляции ликвора на спинальном уровне.
- Проба выполняется следующим образом: больной лежит на боку, выполняется люмбальная пункция с измерением ликворного давления.
- Если столбик ликвора поднимается и опускается синхронно с пульсом и дыханием, субарахноидальное пространство проходимо.
- После этого сдавливается живот больного или больной давит на него сам.
- Давление вызывает набухание спинальных вен, что приводит к повышению ликворного давления.
- Когда сдавление живота прекращается, ликворное давление быстро возвращается к исходным величинам.