Lecture2: Circuit theory

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

A simple problem

- Solve the problem.
 - What is the loop current?

It is an easy problem.

Elements

- Resistors, capacitors, etc
 - They can have multiple terminals.
 - A resistor has two terminals.
 - A diode has two terminals.
 - A MOSFET has three (or four) terminals.

Convention for current

Terminal current

 When the current flows into the element, the terminal current is positive.

Nodes

- A point to which multiple terminals are tied.
 - Usually, a dot is used to represent a node.
 - There is a special node, GND.

How to describe a circuit

- Of course, we can draw a circuit schematic. What else?
- A netlist for this circuit looks like:

Format for two-terminal devices

elementlabel node1 node2 value

From netlist to schematic

Assume that we have only a netlist.

```
va out 0 1.0
rl out 0 1000
```

- Let's draw the schematic.
 - The first line gives us a voltage source.
 - The second a resistor.

RC filter

A netlist for this circuit looks like:

```
c1 in out 5e-12
r1 out 0 2e6
vin in 0 1.5
```


Two-terminal elements

- Consider a two-terminal element.
 - Then, we want to know I_1 , I_2 , V_1 , and V_2 .
 - We have four unknowns, therefore, we need four equations.
 - Three equations are obvious:
 - (Current for the terminal 1) + (Current for the terminal 2) = 0 $I_1 + I_2 = 0$
 - (Voltage for the terminal 1) (Connected node voltage) = 0
 - (Voltage for the terminal 2) (Connected node voltage) = 0
- One remaining equation is element-specific.

V, I, R, C, and L

Voltage source

$$V_1 - V_2 = V_{source}$$

Current source

$$I_1 = I_{source}$$

Resistor

$$I_1 = \frac{V_1 - V_2}{R}$$

Capacitor

$$I_1 = C \frac{d(V_1 - V_2)}{dt}$$

Inductor

$$V_1 - V_2 = L \frac{dI_1}{dt}$$

Remaining task

- Four unknowns, four equations
 - The numbers are matched.
 - However, we must know the node voltages.

```
V_1 – (Connected node voltage) = 0
```

$$V_2$$
 – (Connected node voltage) = 0

 Therefore, we need more equations, whose number is the number of nodes.

KCL

- The basic principle of circuit analysis is...
 - Kirchhoff's current law (KCL)!
 - At any node in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node.

Total current density

- Why do we have the KCL?
 - The total current density is a sum of the particle current density and the displacement current density:

$$\mathbf{J}_{tot} = \mathbf{J}_{particle} + \frac{\partial}{\partial t} \mathbf{D}$$

According to the Maxwell equations,

$$\nabla \cdot \mathbf{J}_{tot} = 0$$

Integration of $\nabla \cdot \mathbf{J}_{tot} = \mathbf{0}$

Volume integral

- Integration over a certain volume, Ω , yields

$$\int_{\Omega} (\nabla \cdot \mathbf{J}_{tot}) d\mathbf{r} = \oint_{S} \mathbf{J}_{tot} \cdot d\mathbf{a} = 0$$

– Here, S is the surface of Ω .

Branch current

- By integrating J_{tot} over a certain surface, we can calculate the current through that surface.

$$\int_{A_i} \mathbf{J}_{tot} \cdot d\mathbf{a} = I_i$$

- Here, A_i is the surface of a certain branch and I_i is a branch current.

Finally,

- By combining the previous relations,
 - We have the KCL.

$$\sum_{i} I_i = 0$$

Its derivation is quite general.

Voltage source + resistor

- Our simple problem
 - Following equations are identified.

$$I_{va} + I_{r1} = 0$$

KCL

$$V(out) - 0.0 = 1.0$$

Voltage source

$$I_{r1} = \frac{V(out)}{1000}$$

Resistor

Current source + resistors

A typical example in this course

$$I_{iin} + I_{r0} + I_{rd} = 0$$
 KCL

Source degeneration

