# **Image Restoration**

Modelling the image degradations, inverting the model

# Acquired image is a degraded version of the original scene







# Image degradation model







## Image acquisition model



 $\mathcal{D}_{\mathcal{G}}(f)(x,y) = f(\tau(x,y))$ 

original scene

$$\mathcal{D}_{\mathcal{I}}(f)(x,y) = \int_{\Lambda} \int_{T} \int \int h(x,y,a,b,\lambda,t) f(a,b) dadb d\lambda dt$$

acquired image

# Sources, models and appearance of individual degradations

#### **Geometric deformation**

$$\mathcal{D}_{\mathcal{G}}(f)(x,y) = f(\tau(x,y))$$



Image spatial transformation/warping Invertible in most cases

### Non-ideal view, planar objects → projective geometry



$$u = \frac{a_0 + a_1 x + a_2 y}{1 + c_1 x + c_2 y}$$
$$v = \frac{b_0 + b_1 x + b_2 y}{1 + c_1 x + c_2 y}$$

### 2D projection of curved surface → nonlinear models







$$\mathcal{D}_{\mathcal{G}}(f)(x,y) = f(\tau(x,y))$$

### Lens distortion



Barrel





**Pincushion** 



### Non-standard lenses/cameras (omnivision, fish-eye)











### Dealing with geometry

Modelling and inverting D



 Comparing two images of the same scene regardless of D

# **Image Registration**

Overlaying two or more images of the same scene

# Image registration







#### **IMAGE REGISTRATION CATEGORIES**







- 1. Different viewpoints multiview
- 2. Different times multitemporal
- 3. Different modalities multimodal
- 4. Scene to model registration

#### **IMAGE REGISTRATION METHODOLOGY**



Four basic steps of image registration



1. Control point selection



### 1. Control point selection





#### **IMAGE REGISTRATION METHODOLOGY**



Four basic steps of image registration



- 1. Control point selection
- 2. Control point matching



# 2. Control point matching



#### **IMAGE REGISTRATION METHODOLOGY**



#### Four basic steps of image registration



- 1. Control point selection
- 2. Control point matching
- 3. Transform model estimation

### 3. Mapping function design

$$u = f(x,y)$$
$$v = g(x,y)$$











#### **IMAGE REGISTRATION METHODOLOGY**



#### Four basic steps of image registration



- 1. Control point selection
- 2. Control point matching
- 3. Transform model estimation
- 4. Image resampling and transformation

### 4. Image resampling and transformation



#### **CONTROL POINT SELECTION**







- distinctive points
- corners
- lines
- closed-boundary regions
- virtual invariant regions
- window centers

#### **DESIRABLE PROPERTIES OF CONTROL POINTS**



Distinctive and detectable objects



Physical interpretability





**Enough common elements in all images** 

Robust to degradations

# **Control point matching**

### Signal-based methods

Similarity measures calculated directly from the image graylevels

Examples - Image correlation, image differences, phase correlation, mutual information, ...

### Feature-based methods

Symbolic description of the features Matching in the feature space (classification)

## **Image correlation**



$$C(k,m) = \frac{\sum (I_{k,m} - mean(I_{k,m})) \cdot (W - mean(W))}{\sqrt{\sum (I_{k,m} - mean(I_{k,m}))^{2}} \cdot \sqrt{\sum (W - mean(W))^{2}}}$$

# **Image correlation**







# **Image correlation**







# Image correlation – template matching





# **Band-to-band registration**









### **Correlation-like methods**



- edge correlation, vector correlation
- correlation in F domain (phase corr)
- other similarity measures (L1 norm, Mutual information)
- extension to more complex transformations (rotation, scaling)
- extension to 3-D
- subpixel accuracy
- speed-up techniques (optimization algorithms, pyramidal representation, real-time HW implementation)

# Pyramidal representation Processing from coarse to fine level



# FEATURE MATCHING PYRAMIDAL REPRESENTATION processing from coarse to fine level





wavelet transform

## Phase correlation

Equivalent to standard correlation of "whitened" images (similar to correlation of edges).

Does not depend on actual image colors.





## Phase correlation

#### **Fourier Shift Theorem:**

If f(x) is shifted by a to f(x-a) then the FT magnitude stays constant while the phase is shifted by  $-2\pi au$ .

Shift parameter can be detected by a comparison of both spectra and by Inverse Fourier Transform.

## Phase correlation

#### **Cross-power spectrum**

$$\frac{W.F^*}{|W.F|} = e^{-2\pi i (ua + vb)}$$

F - Fourier transform of *f* 

W - Fourier transform of w

a,b - unknown shift parameters

\* - complex conjugate

**IFT** (e  $^{-2\pi i (ua + vb)}$ ) =  $\delta(x-a,y-b)$ 

Image *f* 





Window w

- · Multimodal registration experiment
- Comparison of image correlation and phase correlation











#### Channel to channel registration

#### phosse- accorned letticon R--BR





#### Multimodal registration

#### phosse- accorned letticon R--R





#### Mutual information method



Statistical measure of the dependence between two images

MI(f,g) = H(f) + H(g) - H(f,g)



#### **MUTUAL INFORMATION**

**Entropy** 

$$H(X) = -\sum_{x} p(x) \log p(x)$$

Joint entropy

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$$

**Mutual infomation** 

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

### Feature-based methods

- Combinatorial matching (no feature description). Graph matching, parameter clustering. Global information only is used.
- · Matching in the feature space (pattern classification). Local information only is used.
- Hybrid matching (combination of both to get higher robustness)

### **Combinatorial matching**





#### PARAMETER CLUSTERING





### Matching in the feature space





min distance(
$$(v1_k, v2_k, v3_k, ...), \overline{(v1_m, v2_m, v3_m, ...)}$$
)

### Features for CP description



- calculated over a circular neighborhood of each CPC
- invariant to all assumed image degradations



- discriminative
- robust to noise

### **Matching result**



#### **ROBUST MATCHING IN THE FEATURE SPACE**





### **Hybrid matching**

Step 1: Matching few CP's by invariant features

Step 2: Matching the rest of the CP's in the image space

### **Hybrid matching**





Landsat Spot

# Segmentation by Mumford - Shah method





### **Selected regions**





### **Matching pairs**





### Mapping function design

Global functions
 Similarity, affine, projective transform
 Low-order polynomials

### Mapping function design

Global functions
 Similarity, affine, projective transform
 Low-order polynomials

Local functions
 Piecewise affine, piecewise cubic
 Thin-plate splines
 Radial basis functions

### **Global mapping functions**

#### Affine transform

$$x' = a_0 + a_1 x + a_2 y$$
  
 $y' = b_0 + b_1 x + b_2 y$ 



### Similarity transform – Least square fit

translation  $[\Delta x, \Delta y]$ , rotation  $\varphi$ , uniform scaling s

$$x' = s(x * \cos \varphi - y * \sin \varphi) + \Delta x$$

$$y' = s(x * \sin \varphi + y * \cos \varphi) + \Delta y$$

$$s \cos \varphi = a, \quad s \sin \varphi = b$$

$$\min (\Sigma_{i=1} \{ [x_i' - (ax_i - by_i) - \Delta x]^2 + [y_i' - (bx_i + ay_i) - \Delta y]^2 \})$$

$$\begin{bmatrix} \Sigma(x_i^2 + y_i^2) & 0 & \Sigma x_i & \Sigma y_i \\ 0 & \Sigma(x_i^2 + y_i^2) & -\Sigma y_i & \Sigma x_i \\ \Sigma x_i & -\Sigma y_i & N & 0 \\ \Sigma y_i & \Sigma x_i & 0 & N \end{bmatrix} \bullet \begin{bmatrix} a \\ b \\ \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \Sigma(x_i^2 x_i - y_i^2 y_i) \\ \Sigma(y_i^2 x_i - x_i^2 y_i) \\ \Sigma x_i^2 \\ \Sigma y_i^2 \end{bmatrix}$$

### Global mapping functions

#### Affine transform

$$x' = a_0 + a_1 x + a_2 y$$
  
 $y' = b_0 + b_1 x + b_2 y$ 



#### Projective transform

$$x' = (a_0 + a_1 x + a_2 y) / (1 + c_1 x + c_2 y)$$
  
 $y' = (b_0 + b_1 x + b_2 y) / (1 + c_1 x + c_2 y)$ 



### **Local mapping functions**

Piecewise affine or cubic



### **Local mapping functions**

Piecewise affine or cubic



Thin-Plate Splines (TPS)

$$|lpha_1 + lpha_2 x + lpha_3 y + \sum_{i=1}^N a_i g_i (||x - x_i, y - y_i||),$$

$$g_i(t) = t^2 \log t.$$

#### Reference



From D. N. Fogel et al., UCSB

#### Sensed (simulation)



#### Reference

### **Affine mapping**





#### Reference

#### **Cubic mapping**





#### Reference

#### Piecewise affine



#### Reference



#### Piecewise affine



#### Reference



### Thin-plate splines



### Image resampling



### Image resampling

#### Forward x backward methods



#### IMAGE RESAMPLING AND TRANSFORMATION

Interpolation nearest neighbor

bilinear

bicubic

Implementation 1-D convolution

$$f(x_0,k) = \sum d(I,k).c(i-x_0)$$

$$f(x_0, y_0) = \sum f(x_0, j).c(j-y_0)$$

ideal c(x) = k.sinc(kx)

#### **IMAGE RESAMPLING AND TRANSFORMATION**



### Interpolation methods







Nearest neighbor

**Bilinear** 





**Bicubic** 

## Registered images



### **Applications**

- Remote sensing
- Medicine
- Art history
- Robot vision
- Image warping
- Image fusion

### **Image Fusion**

Combining several images of the same scene into a single image of a higher quality



### Two stages of image fusion

1. Image-to-image registration



#### 2. The fusion itself

### **Fusion levels**

- Pixel level
- Feature level
- Decision level

# Pixel-level fusion Α weighted $\mathsf{CT}$ averaging В **PET**

#### Pixel-level fusion



### Digital subtraction angiography





#### IMAGE REGISTRATION: ACCURACY EVALUATION

- Localization error displacement of features
  - due to detection method
- Matching error -
  - false matches
  - ensured by robust matching (hybrid)
  - consistency check, cross-validation
- Alignment error
- difference between model and reality
  - test point error

### Thank you!

Any questions?