Geometric Properties

Characterizing the smoothness and differentiability of a random function is key when choosing a family of models that is most suited for a problem.

Since a random field is a collection of random variables, there are technical subtleties in the definition of continuity. Intuitively continuity corresponds to any realization of X(s) being continuous as a function of s.

We will consider three different criteria for the continuity of a random field. Of those three, mean square continuity is the most tractable.

CONTINUOUS SAMPLE PATHS

Definition: A random field X has **continuous sample paths** with probability one in B if, for every sequence s_n such that $||s_n - s|| \to 0$ as $n \to \infty$, then

$$Pr(\omega : |X(s_n, \omega) - X(s, \omega)| \to 0, \text{ as } n \to \infty, \forall s \in B) = 1$$

This definition implies that there are no discontinuities, with probability one, in the whole domain B.

Almost Sure Continuity

Definition: A random field X is almost surely continuous in B if for every sequence s_n such that $||s_n - s|| \to 0$ as $n \to \infty$, then

$$Pr(\omega : |X(s_n, \omega) - X(s, \omega)| \to 0, \text{ as } n \to \infty) = 1 \quad \forall s \in B$$

This definition allows discontinuities in the domain B, but the probability of finding a discontinuity at a given location s is zero. Sample path continuity is a stronger condition that almost sure continuity.

Definition: A random field X is **mean square continuous** in B if for every sequence s_n such that $||s_n - s|| \to 0$ as $n \to \infty$, then

$$E(|X(s_n) - X(s)|^2) \to 0$$
, as $n \to \infty \quad \forall s \in B$

provided the expectation exists.

Definition: A random field X is **mean square continuous** in B if for every sequence s_n such that $||s_n - s|| \to 0$ as $n \to \infty$, then

$$E(|X(s_n) - X(s)|^2) \to 0$$
, as $n \to \infty \quad \forall s \in B$

provided the expectation exists.

Mean square continuity of Gaussian processes is controlled by the smoothness of the covariance function. For a stationary random field all we need is to look at one point.

Theorem: Assume that E(X(s)) is continuous. Then, a random field X(s) is mean square continuous at t if and only if its covariance function C(s, s') is continuous at s = s' = t.

Corollary: A stationary random field X(s) is mean square continuous at $s \in S$ if and only if its correlation function $\rho(h)$ is continuous at 0.

Theorem: Assume that E(X(s)) is continuous. Then, a random field X(s) is mean square continuous at t if and only if its covariance function C(s, s') is continuous at s = s' = t.

Proof: If C is continuous, then use the identity

$$|E|X(s_n) - X(s)|^2 = C(s_n, s_n) - 2C(s_n, s) + C(s, s)$$

If X is mean square integrable, then

$$0 = \lim_{n \to \infty} E|X(s_n) - X(s)|^2 = \lim_{n \to \infty} C(s_n, s_n) - 2C(s_n, s) + C(s, s)$$

after some manipulations and the use of Cauchy-Schwartz inequality, we get that $\lim_{\infty} C(s_n, s_n) = C(s, s)$.

Corollary: A stationary random field X(s) is mean square continuous at $s \in S$ if and only if its correlation function $\rho(h)$ is continuous at 0.

SAMPLE PATH PROPERTIES

Theorem: Let X(s) be a stationary Gaussian random field with a continuous correlation function. Then, if for some finite c > 0 and some $\varepsilon > 0$,

$$1 - \rho(\tau) \le \frac{c}{|\log \tau|^{1+\varepsilon}}$$

for all $\tau < 1$, then the random field X(s) will have continuous sample paths with probability one.

UPPER BOUND

Upper boud for different values of epsilon

For different values of ε we observe that the upbound has per pretty large values, even for very small values of τ . So we can expect the bound to hold for most continuous correlation functions.

DERIVATIVES

Consider a Gaussian random field X(s). Then the associated gradient field is given by

$$\frac{\partial X(s)}{\partial s_i} = \lim_{\Delta \to 0} \frac{X(s - \Delta e_i, \omega) - X(s, \omega)}{\Delta}$$

provided the limit exists. Here e_i is a unit vector in the *i*-th direction.

DERIVATIVES

Consider a Gaussian random field X(s). Then the associated gradient field is given by

$$\frac{\partial X(s)}{\partial s_i} = \lim_{\Delta \to 0} \frac{X(s - \Delta e_i, \omega) - X(s, \omega)}{\Delta}$$

provided the limit exists. Here e_i is a unit vector in the *i*-th direction.

The resulting gradient field is a vector of Gaussian processes, as the differential operator is linear. Furthermore:

If
$$E(X(s)) = m(s)$$
, then $E\left(\frac{\partial X(s)}{\partial s_i}\right) = \frac{\partial m(s)}{\partial s_i}$

provided m(s) is differentiable.

DERIVATIVES

If C(s, s') = cov(X(s), X(s')), then, if C(s, s') is differentiable in s and s',

$$\operatorname{cov}\left(X(s), \frac{\partial X(s')}{\partial s'_i}\right) = \frac{\partial C(s, s')}{\partial s'_i}$$

and

$$\operatorname{cov}\left(\frac{\partial X(s)}{\partial s_i}, \frac{\partial X(s')}{\partial s'_j}\right) = \frac{\partial^2 C(s, s')}{\partial s_i \partial s'_j}$$

STOCHASTIC INTEGRATION

We can obtain a new "average" random field by integrating an existing random field as

$$Y(t) = \int_{B} X(s)w(t,s)ds$$

where $B \subset S$ and w(t,s) is a weight function. When $\dim(S) = 1$, this integral is defined as the following limit in the mean square sense.

$$\lim_{\max|s_k - s_{k-1}| \to 0} \sum_{k=1}^n X(s'_k) w(t, s'_k) (s_k - s_{k-1})$$

where $B = [a, b], s_i$ defines a partition of size n of B, $s_{k-1} \le s'_k \le s_k$, and $s_0 = a$, $s_n = b$.

STOCHASTIC INTEGRATION

The expectation of Y is

$$E(Y(t)) = \int_{B} m(s)w(t,s)ds$$

The covariance is

$$cov(Y(t), Y(s)) = \int_{B} \int_{B} C(v, u)w(t, u)w(s, v)dvdu$$

Also

$$\frac{\partial Y(t)}{\partial t_i} = \int_B X(s) \frac{\partial w(t,s)}{\partial t_i} ds$$

So that the smoothness of the integrated process can be controlled by the weight function w.

Mean Square Differentiability

Additional smoothness of the random field depends on the differentiability of the covariance function. $C(\cdot, \cdot)$ needs to be twice differentiable for X(s) to be differentiable.

Theorem: Let $\nu = \sum_{i} \nu_{i}$, then, if the derivative

$$\frac{\partial^{2\nu}C(s,t)}{\partial s_1^{\nu_1}\cdots\partial s_n^{\nu_n}\partial t_1^{\nu_1}\cdots\partial t_n^{\nu_n}}\tag{1}$$

exists and is finite for all i = 1, ... n at (s, s), X(s) is ν times differentiable at s. Moreover, the covariance function of

$$\frac{\partial^{\nu} X(s)}{\partial s_1^{\nu_1} \cdots \partial s_n^{\nu_n}}$$

is given by (1).

Consider a Gaussian correlation function $\rho(\tau) = \exp\{-(\tau/\phi)^2\}$. This is an analytic function at $\tau = 0$, so the corresponding random field is infinitely smooth. This is an unrealistic assumption for many natural phenomena.

Consider a Gaussian correlation function $\rho(\tau) = \exp\{-(\tau/\phi)^2\}$. This is an analytic function at $\tau = 0$, so the corresponding random field is infinitely smooth. This is an unrealistic assumption for many natural phenomena.

Consider the power exponential correlation $\rho(\tau) = \exp\{-\tau^{\nu}\}$, with $0 < \nu \le 2$. Then $\rho'(\tau) = -\nu \tau^{\nu-1} \exp\{-\tau^{\nu}\}$. So that

$$\rho'(0) = \begin{cases} -\infty & 0 < \nu < 1 \\ -1 & \nu = 1 \\ 0 & 1 < \nu \le 2 \end{cases}$$

So there is no differentiability for $0 < \nu < 1$.

The second derivative is $\rho''(\tau) = \nu \tau^{\nu-2} (1 - \nu + \nu \tau^{\nu}) \exp\{-\tau^{\nu}\}$ and we have that

$$\lim_{\tau \to 0} \rho''(0) = \begin{cases} -\infty & 1 < \nu < 2 \\ -2 & \nu = 2 \end{cases}$$

which implies that the only case where the resulting process is differentiable is $\nu=2$. In such case the process is infinitely smooth. This lack of continuity in the smoothness of the family of power exponential correlation is undesirable.

The Matérn family is indexed by a parameter that provides a gradual transition from non-differentiability $\nu \leq 1$ to increasingly smooth sample paths $\nu > 1$. This flexibility makes it very desirable as modeling choice.

The Matérn family is indexed by a parameter that provides a gradual transition from non-differentiability $\nu \leq 1$ to increasingly smooth sample paths $\nu > 1$. This flexibility makes it very desirable as modeling choice.

For small values of τ we have that $K_{\nu}(\tau) \approx \Gamma(\nu) 2^{\nu-1} \tau^{-\nu}$. Thus

$$\lim_{\tau \to 0} \frac{1}{\Gamma(\nu) 2^{\nu - 1}} \tau^{\nu} K_{\nu}(\tau) = 1, \quad \nu > 0$$

so that continuity holds. For the derivatives we have that

$$\frac{d}{d\tau}(\tau^{\nu}K_{\nu}(\tau)) = -\tau^{\nu}K_{\nu-1}(\tau)$$

Using the results on the previous slide we have that:

- for $0 < \nu < 1/2$, $\rho'(0) = -\infty$. So these cases correspond to extremely erratic processes.
- for $1/2 \le \nu < 1$ $\rho'(0) \in (-\infty, 0)$. Which produces a range of erratic processes.
- for $\nu \geq d$ we have that $\rho^{(2d-1)}(0) = 0$ and $\rho^{(2d)}(0) \in (-\infty, 0)$. This implies that the process is d times mean square differentiable.