

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

Disciplina: Teoria dos Grafos (Período 2014.2)

Professor: Dario José Aloise

Lista de Exercícios para Avaliação do Aprendizado

1ª. Questão: Encontre uma árvore geradora mínima para o grafo representado pela tabela abaixo.

	a	b	\mathbf{c}	d	e	f	g
a		5	7	8	10	3	11
b	5		2	4	1	12	7
\mathbf{c}	7	2		6	7	5	4
d	8	4	6		2	10	12
e	. 5 7 8 10 3 11	1	7	2		6	9
f	3	12	5	10	6		15
g	11	7	4	12	9	15	

2ª. Questão. No grafo abaixo, exiba:

- (a) Um maching maximal que não seja máximo.
- (b) Um maching máximo.

<u>3ª. Questão</u>. Determine no grafo abaixo o menor caminho entre <u>a</u> e todos os outros vértices, usando o algoritmo de Dijkstra. Mostre (desenhe) no grafo os menores caminhos entre <u>a</u> e todos os outros vértices, ou seja, a Árvore de Menores Caminhos.

	a	b	c	d	e	f	g	h	i	j
Inicialização	0	∞								
Iteração	0									
1	0									
Iteração	0									
2	0									
Iteração	0									
3	0									
Iteração	0									
4	0									
Iteração	0									
5	0									
Iteração	0									
6	0									
Iteração	0									
7	0									
Iteração	0									
8	0									
Iteração _	0									
9	0									

<u>4ª Questão</u>. Aplique o algoritmo de Floyd-Warshall para determinar os caminhos mais curtos entre todos os pares de vértices do grafo a seguir:

		1	2	3	4	
C=	1	0	3	8	8	
	2	80	0	12	5	
	3	4	∞	0	4	
	4	2	- 4	∞	0	

		1	2	3	4
D ⁽⁰⁾ =	1	0	3	8	8
	2	8	0	12	5
	3	4	8	0	4
	4	2	-4	8	0

$$D^{(3)} = \begin{array}{c|cccc} & 1 & 2 & 3 & 4 \\ & 0 & & & \\ 2 & & 0 & & \\ & 3 & & & 0 \\ & 4 & & & & 0 \end{array}$$

 $\underline{\mathbf{5^a. Questão}}$. Uma coloração de G é uma atribuição de cores a vértices de V, de modo que vértices vizinhos sejam coloridos por cores distintas. O **número cromático** χ (**G**) é o menor número de cores usadas para colorir um grafo G. Use o algoritmo gulosos de Welsh-Powell (coloração pelo grau dos vértices) para determinar uma coloração aproximada (eventualmente ótima) para o grafo abaixo.

Vértices								
Grau								
Vértices ordenados							•	Ì