科学可视化基础

SV01

黄天羽 www.python123.org

"可视化"概念的提出

1987年2月,美国国家科学基金会(NSF)

抽象的事务、过程 ← 图形、图像 可视化 可视化界面(图形界面)、可视化编程等

科学计算可视化的含义

科学计算可视化的分类

(Data)

科学计算可视化的主要方法

- | 二维标量数据场
 - I.I 颜色映射方法
 - I.2 等值线方法
 - I.3 立体图法和层次分割法
- 2 三维标量数据场
 - 2.1 面绘制方法(surface rendering)
 - 2.2 体绘制方法(volume rendering)
- 3 矢量数据场
 - 3.1 直接法
 - 3.2 流线法 (stream line)

颜色映射法

将颜色与数据之间建立映射关系

中国部分区域温度度分布图

某宇宙飞船周围空气密度分布图

等值线方法

F(xi,yi)=f (f为给定的值)

立体图法和层次分割法

面绘制方法

体绘制方法

矢量数据场直接法

矢量数据场流线法

应用领域

地球科学

大气科学

医学/生命科学

生物/分子科学

航空/航天/工业

化学/化工

物理/力学

人类/考古学

地质勘探等