Caltech

Structured Perceptrons & Structural SVMs

4/6/2017

CS 159: Advanced Topics in Machine Learning

Recall: Sequence Prediction

- Input: $x = (x^1,...,x^M)$
- Predict: $y = (y^1, ..., y^M)$
 - Each yⁱ one of L labels.
- x = "Fish Sleep"
- y = (N, V)
- x = "The Dog Ate My Homework"
- y = (D, N, V, D, N)
- x = "The Fox Jumped Over The Fence"
- y = (D, N, V, P, D, N)

Recall: 1st Order HMM

- $x = (x^1, x^2, x^4, x^4, ..., x^M)$ (sequence of words)
- $y = (y^1, y^2, y^3, y^4, ..., y^M)$ (sequence of POS tags)
- $P(x^j | y^j)$ Probability of state y^j generating x^j
- $P(y^{j+1}|y^j)$ Probability of state y^j transitioning to y^{j+1}
- $P(y^1|y^0)$ y^0 is defined to be the Start state
- $P(End|y^{M})$ Prior probability of y^{M} being the final state
 - Not always used

HMM Graphical Model Representation

Most Common Prediction Problem

Given input sentence, predict POS Tag seq.

$$h(x) = \operatorname{argmax}_{y} P(y|x) = \operatorname{argmax} \log P(y|x)$$

$$\log P(y|x) = \sum_{i} \left[\log P(y^{j}|x^{j}) + \log P(x^{j}|x^{j-1})\right]$$

- Solve using Viterbi
 - Special case of max product algorithm

Simple Example

- x = "Fish Sleep"
- y = (N,V)

$$F(y,x) \equiv \log P(y|x) = \sum_{i} \left[\log P(y^{j}|x^{j}) + \log P(x^{j}|x^{j-1}) \right]$$

 $Log P(y^j|x^j)$

Log P	P(* N)	P(* V)
P(Fish *)	2	1
P(Sleep *)	1	0

 $Log P(x^{j}|x^{j-1})$

Log P	P(N *)	P(V *)
P(* N)	-2	1
P(* V)	2	-2
P(* Start)	1	-1

New Notation

$$F(y,x) \equiv \sum_{j=1}^{M} \left[w^{T} \varphi^{j}(y^{j}, y^{j-1} \mid x) \right]$$

$$w = \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \qquad \varphi^{j}(a,b \mid x) = \begin{bmatrix} \varphi_{1}^{j}(a \mid x) \\ \varphi_{2}(a,b) \end{bmatrix}$$

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{[(a=Noun)\land(x^{j}='Fish')]} \\ 1_{[(a=Verb)\land(x^{j}='Fish')]} \\ 1_{[(a=Verb)\land(x^{j}='Sleep')]} \end{bmatrix}$$

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{\left[(a=Noun)\land\left(x^{j}='Fish'\right)\right]} \\ 1_{\left[(a=Noun)\land\left(x^{j}='Sleep'\right)\right]} \\ 1_{\left[(a=Verb)\land\left(x^{j}='Fish'\right)\right]} \\ 1_{\left[(a=Verb)\land\left(x^{j}='Sleep'\right)\right]} \end{bmatrix}$$

- "Unary Features"
- "Pairwise Transition Features"

$$\varphi_{2}(a,b) = \begin{bmatrix} 1_{[(a=Noun)\land(b=Start)]} \\ 1_{[(a=Noun)\land(b=Noun)]} \\ 1_{[(a=Noun)\land(b=Verb)]} \\ 1_{[(a=Verb)\land(b=Start)]} \\ 1_{[(a=Verb)\land(b=Noun)]} \\ 1_{[(a=Verb)\land(b=Verb)]} \end{bmatrix}$$

Noun Class **Features**

New Notation

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{[(a=Noun)\land(x^{j}='Fish')]} \\ 1_{[(a=Noun)\land(x^{j}='Sleep')]} \\ 1_{[(a=Verb)\land(x^{j}='Fish')]} \\ 1_{[(a=Verb)\land(x^{j}='Sleep')]} \end{bmatrix}$$

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{[a=1]}\phi_{1}(x^{j}) \\ \vdots \\ 1_{[a=L]}\phi_{1}(x^{j}) \end{bmatrix}$$

$\varphi_2(Noun, Start) =$ 0 $\varphi_2(Verb, Start) =$ 0 $\varphi_2(Verb, Noun) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

New Notation

One feature for every transition.

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{[(a=Noun)\land(x^{j}='Fish')]} \\ 1_{[(a=Noun)\land(x^{j}='Sleep')]} \\ 1_{[(a=Verb)\land(x^{j}='Fish')]} \\ 1_{[(a=Verb)\land(x^{j}='Sleep')]} \end{bmatrix}$$

$$\begin{bmatrix} 1_{[(a=Noun)\land(b=Start)]} \\ 1_{[(a=Noun)\land(b=Noun)]} \\ 1 \end{bmatrix}$$

$$1_{[(a=Noun)\land(b=Verb)]}$$

$$1_{[(a=Verb)\land(b=Start)]}$$

$$1_{[(a=Verb)\land(b=Noun)]}$$

$$1_{[(a=Verb)\land(b=Verb)]}$$

$$F(y,x) = \sum_{j=1}^{M} \left[w^T \varphi^j(y^j, y^{j-1} \mid x) \right] \qquad w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \qquad \varphi^j(a,b \mid x) = \begin{bmatrix} \varphi_1^j(a \mid x) \\ \varphi_2^j(a,b) \end{bmatrix}$$

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$\varphi^{j}(a,b \mid x) = \begin{vmatrix} \varphi_1^{j}(a \mid x) \\ \varphi_2^{j}(a,b) \end{vmatrix}$$

$$w_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} \quad \varphi_1^j(a \mid x) = \begin{bmatrix} 1_{\left[(a=Noun)\land\left(x^j='Fish'\right)\right]} \\ 1_{\left[(a=Noun)\land\left(x^j='Sleep'\right)\right]} \\ 1_{\left[(a=Verb)\land\left(x^j='Fish'\right)\right]} \\ 1_{\left[(a=Verb)\land\left(x^j='Sleep'\right)\right]} \end{bmatrix}$$

Old Notation:

	P(* N)	P(* V)
P(Fish *)	2	1
P(Sleep *)	1	0

Old Notation:

	P(N *)	P(V *)
P(* N)	-2	1
P(* V)	2	-2
P(* Start)	1	-1

$$w_2 = \begin{bmatrix} -2 \\ 2 \\ -1 \\ 1 \\ -2 \end{bmatrix}$$

$$w_{2} = \begin{bmatrix} 1 \\ -2 \\ 2 \\ -1 \\ 1 \\ -2 \end{bmatrix} \qquad \varphi_{2}(a,b) = \begin{bmatrix} 1_{[(a=Noun)\land(b=Start)]} \\ 1_{[(a=Noun)\land(b=Noun)]} \\ 1_{[(a=Noun)\land(b=Verb)]} \\ 1_{[(a=Verb)\land(b=Start)]} \\ 1_{[(a=Verb)\land(b=Noun)]} \\ 1_{[(a=Verb)\land(b=Noun)]} \\ 1_{[(a=Verb)\land(b=Verb)]} \end{bmatrix}$$

Recap: 1st Order Sequential Model

- Input: $x = (x^1, ..., x^M)$
- Predict: $y = (y^1, ..., y^M)$
 - Each yⁱ one of L labels.

• Linear Model w.r.t. pairwise features $\phi^{j}(a,b|x)$:

Prediction via maximizing F:

$$h(x) = \operatorname{argmax}_{y} F(y, x) = \operatorname{argmax}_{y} w^{T} \Psi(y, x)$$

$$\mathbf{x} = \text{``Fish Sleep''} \qquad \mathbf{y} = (\mathsf{N}, \mathsf{V})$$

$$w_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} \qquad \varphi_1^j(a \mid x) = \begin{bmatrix} 1_{[(a=Noun) \land (x^j='Fish')]} \\ 1_{[(a=Noun) \land (x^j='Sleep')]} \\ 1_{[(a=Verb) \land (x^j='Fish')]} \\ 1_{[(a=Verb) \land (x^j='Sleep')]} \end{bmatrix} \qquad w_2 \neq \begin{bmatrix} 1 \\ -2 \\ 2 \\ -1 \\ 1 \\ 2 \end{bmatrix} \qquad \varphi_2^j(a,b) = \begin{bmatrix} 1_{[(a=Noun) \land (b=Start)]} \\ 1_{[(a=Verb) \land (b=Start)]} \\ 1_{[(a=Verb) \land (b=Noun)]} \\ 1_{[(a=Verb) \land (b=Noun)]} \\ 1_{[(a=Verb) \land (b=Noun)]} \end{bmatrix}$$

$$F(y = (N, V), x = "Fish Sleep") = w_1^T \varphi_1^1(N, x) + w_2^T \varphi_2(N, Start) + w_1^T \varphi_1^2(V, x) + w_2^T \varphi_2(V, N)$$
$$= w_{1,1} + w_{2,1} + w_{1,4} + w_{2,5} = 2 + 1 + 0 + 1 = 4$$

Prediction: $\underset{y}{\operatorname{argmax}} F(y,x)$

У	F(y,x)
(N,N)	2+1+1-2 = 2
(N,V)	2+1+0+1 = 4
(V,N)	1-1+1+2 = 3
(V,V)	1-1+0-2 = -2

Why New Notation?

Easier to reason about:

- Computing predictions
- Learning (linear model!)
- Extensions (just generalize φ)

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \qquad \varphi^j(a,b \mid x) = \begin{bmatrix} \varphi_1^j(a \mid x) \\ \varphi_2(a,b) \end{bmatrix}$$

$$\varphi_{1}^{j}(a \mid x) = \begin{bmatrix} 1_{\left[(a=Noun)\land\left(x^{j}='Fish'\right)\right]} \\ 1_{\left[(a=Noun)\land\left(x^{j}='Sleep'\right)\right]} \\ 1_{\left[(a=Verb)\land\left(x^{j}='Fish'\right)\right]} \\ 1_{\left[(a=Verb)\land\left(x^{j}='Sleep'\right)\right]} \end{bmatrix}$$

$$\varphi_{2}(a,b) = \begin{bmatrix} 1_{[(a=Noun)\land(b=Start)]} \\ 1_{[(a=Noun)\land(b=Noun)]} \\ 1_{[(a=Noun)\land(b=Verb)]} \\ 1_{[(a=Verb)\land(b=Start)]} \\ 1_{[(a=Verb)\land(b=Noun)]} \\ 1_{[(a=Verb)\land(b=Verb)]} \end{bmatrix}$$

Generalizes Multiclass

Stack weight vectors for each class:

$$F(y,x) \equiv w^T \Psi(y,x)$$

$$w = \begin{bmatrix} w_1 \\ w_1 \\ \vdots \\ w_K \end{bmatrix} \qquad \Psi(y, x) = \begin{bmatrix} 1_{[y=1]}x \\ 1_{[y=2]}x \\ \vdots \\ 1_{[y=K]}x \end{bmatrix}$$

$$h(x) = \operatorname{argmax}_{y} w^{T} \Psi(y, x) = \operatorname{argmax}_{y} w_{y}^{T} x$$

Learning for Structured Prediction

Perceptron Learning Algorithm

(Linear Classification Model)

•
$$w^1 = 0$$

- For t = 1
 - Receive example (x,y)
 - $If h(x|w^t) = y$
 - $w^{t+1} = w^t$
 - Else
 - $w^{t+1} = w^t + yx$

$$h(x) = \operatorname{sign}(w^T x)$$

Training Set:

$$S = \left\{ (x_i, y_i) \right\}_{i=1}^N$$
$$y \in \left\{ +1, -1 \right\}$$

Go through training set in arbitrary order (e.g., randomly)

Structured Perceptron (Linear Classification Model)

•
$$w^1 = 0$$

$$h(x) = \operatorname{argmax}_{y'} w^T \Psi(y', x)$$

- For t = 1
 - Receive example (x,y)
 - $If h(x|w^t) = y$
 - $w^{t+1} = w^t$
 - Else
 - $w^{t+1} = w^t + \Psi(y,x)$

Only thing that changes!

Training Set:

$$S = \{(x_i, y_i)\}$$

 y_i structured

Go through training set in arbitrary order (e.g., randomly)

Structured Perceptron

Method	Error rate/%	Numits
Perc, avg, cc=0	2.93	10
Perc, noavg, cc=0	3.68	20
Perc, avg, cc=5	3.03	6
Perc, noavg, cc=5	4.04	17
ME, cc=0	3.4	100
ME, cc=5	3.28	200

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms Michael Collins, EMNLP 2002

http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf

Limitations of Perceptron

- Not all mistakes are created equal
 - One POS tag wrong as bad as five!
 - Even worse for more complicated problems

Comparison

Method	HMM	CRF	Perceptron	SVM
Error	9.36	5.17	5.94	5.08

Large Margin Methods for Structured and Interdependent Output Variables Ionnis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun Journal of Machine Learning Research, Volume 6, Pages 1453-1484

Hamming Loss

Hamming Loss:

$$\ell(y, x, F) = \sum_{j=1}^{M} 1_{\left[h(x)^{j} \neq y^{j}\right]}$$

True y = (D,N,V,D,N)

$$- y' = (D,N,V,N,N)$$

- y'' = (V,D,N,V,V)

y" has much worse hamming loss

(loss of 5 vs loss of 1)

(But not continuous!)

Need to define continuous surrogate of Hinge Loss!

Original Hinge Loss

(Support Vector Machine)

Property of Hinge Loss

$$\underset{w,b,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_i$$

$$\forall i: y_i (w^T x_i - b) \ge 1 - \xi_i$$

$$\forall i: \xi_i \ge 0$$

$$h(x) = \underset{y \in \{-1,+1\}}{\operatorname{argmax}} yf(x) = sign(f(x))$$
 \Rightarrow $\xi_i \ge 1_{[h(x_i) \ne y_i]}$

$$\xi_i \ge 1_{\left[h(x_i) \neq y_i\right]}$$

$$\ell(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i)) = \xi_i$$

Hinge loss = continuous upper bound on 0/1 loss

Hamming Hinge Loss

(Structural SVM)

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_i \xi_i \qquad \text{Sometimes normalize by M}$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \sum_i 1_{\left[y^{ij} \ne y_i^j\right]} - \xi_i \qquad \forall i : \xi_i \ge 0$$

$$h(x) = \operatorname*{argmax} F(y, x) \quad \Longrightarrow \quad F(y_i, x_i) - F(h(x_i), x_i) \leq 0$$

$$\text{Learned Predictor} \quad \Longrightarrow \quad \xi_i \geq \sum_j 1_{\left[h(x_i)^j \neq y_i^j\right]}$$

$$\ell(y_i, x_i, F) = \max_{y'} \left\{ \sum_{j} 1_{\left[y'^{j} \neq y_i^{j}\right]} - \left(F(y_i, x_i) - F(y', x_i)\right) \right\} = \xi_i$$

Continuous upper bound on Hamming Loss!

Hamming Hinge Loss

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \frac{1}{M_i} \sum_{j} 1_{\left[y'^j \ne y_i^j\right]} - \xi_i \qquad \forall i : \xi_i \ge 0$$

$$\mathsf{Score}(y_i) \quad \mathsf{Score}(y') \quad \mathsf{Loss}(y') \quad \mathsf{Slack}$$

Suppose for incorrect $y'=h(x_i)$:

Then:

$$\xi_i = 0.6 \ge 0.5 = \frac{1}{M_i} \sum_{j} 1_{[h(x_i)^j \ne y_i^j]}$$

Slack variable upper bounds Hamming Loss!

Structural SVM

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i} \qquad \underset{\text{normalize by M}}{\operatorname{Sometimes}}$$

$$\forall i, y' : F(y_{i}, x_{i}) - F(y', x_{i}) \geq \sum_{j} 1_{\left[y^{\setminus j} \neq y_{i}^{j}\right]} - \xi_{i} \qquad \forall i : \xi_{i} \geq 0$$

Consider:
$$y' = \underset{y}{\operatorname{argmax}} F(y, x) \longrightarrow F(y_i, x_i) - F(y', x_i) \le 0$$

$$F(y_i, x_i) - F(y', x_i) \le 0$$

Prediction of Learned Model

Slack is continuous upper bound on **Hamming Loss!**

$$y' \neq y_i$$

$$y' \neq y_i \qquad \Longrightarrow \qquad \xi_i \ge \sum_{i} 1_{\left[y^{ij} \neq y_i^j\right]}$$

$$y' = y_i \qquad \Longrightarrow \qquad \xi_i \ge 0$$

$$\xi_i \ge 0$$

Reduction to Independent Multiclass

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_i$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \sum_{j} 1_{[y'^j \ne y_i^j]} - \xi_i \qquad \forall i : \xi_i \ge 0$$

$$\forall i: \xi_i \geq 0$$

Suppose:
$$F(y,x) = \sum_{j=1}^{M} \left[w^{T} \varphi^{j}(y^{j} \mid x) \right]$$
 $\varphi^{j}(y^{j} \mid x) = \begin{bmatrix} 1_{[y^{j}=1]} \phi_{1}(x^{j}) \\ \vdots \\ 1_{[y^{j}=L]} \phi_{1}(x^{j}) \end{bmatrix}$

No pairwise features.

$$\varphi^{j}(y^{j} \mid x) = \begin{vmatrix} 1_{[y^{j}=1]} \phi_{1}(x^{j}) \\ \vdots \\ 1_{[y^{j}=L]} \phi_{1}(x^{j}) \end{vmatrix}$$

Stack features $\phi_1(x^j)$ L times

$$\forall i, j, a : w_{y_i^j}^T \phi_1(x^j) - w_a^T \phi_1(x^j) \ge 1 - \xi_{ij}$$

Decompose constraints to multiclass hinge loss per token!

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \sum_{i} 1_{[y'^i \ne y_i^j]} - \xi_i \qquad \forall i : \xi_i \ge 0$$

$$\forall i: \xi_i \geq 0$$

$$y_i = (N,V)$$

$$\xi_i = 0$$

y'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss
(N,N)	2	2	1
(N,V)	4	0	0
(V,N)	1	3	2
(V,V)	1	3	1

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_{i}, x_{i}) - F(y', x_{i}) \ge \sum_{j} 1_{\left[y'^{j} \ne y_{i}^{j}\right]} - \xi_{i} \qquad \forall i : \xi_{i} \ge 0$$

$$x_i$$
 = "Fish Sleep"
 y_i = (N,V)
 ξ_i = 2

y'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss
(N,N)	4	-1	1
(N,V)	3	0	0
(V,N)	0	3	2
(V,V)	1	2	1

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_i$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \sum_{i} 1_{\left[y'^{i} \ne y_i^{i}\right]} - \xi_i \qquad \forall i : \xi_i \ge 0$$

$$\forall i: \xi_i \geq 0$$

$$x_i =$$
"Fish Sleep"

$$y_i = (N,V)$$

$$\xi_i = 1$$

у'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss
(N,N)	2	2	1
(N,V)	4	0	0
(V,N)	3	1	2
(V,V)	1	3	1

When is Slack Positive?

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_{i}, x_{i}) - F(y', x_{i}) \ge \sum_{i} 1_{\left[y'^{i} \ne y_{i}^{j}\right]} - \xi_{i} \qquad \forall i : \xi_{i} \ge 0$$

Whenever margin not big enough!

$$\xi_{i} > 0 \iff \exists y' : F(y_{i}, x_{i}) - F(y', x_{i}) < \sum_{j} 1_{\left[y'^{j} \neq y_{i}^{j}\right]}$$

$$\xi_{i} = \max_{y'} \left\{ \sum_{j} 1_{\left[y'^{j} \neq y_{i}^{j}\right]} - \left(F(y_{i}, x_{i}) - F(y', x_{i})\right) \right\} = \ell(y_{i}, x_{i}, F)$$

Verify that above definition ≥0

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_i$$

Structural SVM

Geometric Interpretation

Structural SVM Training

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \sum_{j} 1_{\left[y'^{j} \ne y_i^{j}\right]} - \xi_{i} \qquad \forall i : \xi_i \ge 0$$
Often Exponentially Many!

- Strictly convex optimization problem
 - Same form as standard SVM optimization
 - Easy right?
- Intractable # of constraints!

Structural SVM Training

$$\forall y': F(y_i, x_i) \ge F(y', x_i) + \sum_{j} 1_{[y'^j \ne y_i^j]} - \xi_i$$

- The trick is to not enumerate all constraints.
- Only solve the SVM objective over a small subset of constraints (working set).
 - Efficient!
- But some constraints might be violated.

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_i, x_i) - F(y', x_i) \ge \sum_{i} 1_{\left[y'^{i} \ne y_i^{i}\right]} - \xi_i \qquad \forall i : \xi_i \ge 0$$

$$\forall i: \xi_i \geq 0$$

$$x_i = "Fish Sleep"$$

 $y_i = (N,V)$

$$\xi_i = 0$$

у'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss
(N,N)	2	2	1
(N,V)	4	0	0
(V,N)	3	1	2
(V,V)	1	3	1

Approximate Hinge Loss

Choose tolerate ε >0:

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_{i}, x_{i}) - F(y', x_{i}) \geq \sum_{i} 1_{\left[y'^{i} \neq y_{i}^{j}\right]} - \xi_{i} - \varepsilon \qquad \forall i : \xi_{i} \geq 0$$

Consider:
$$y' = \underset{y}{\operatorname{argmax}} F(y, x) \longrightarrow F(y_i, x_i) - F(y', x_i) \le 0$$

$$F(y_i, x_i) - F(y', x_i) \le 0$$

Prediction of Learned Model

Slack is continuous upper bound on Hamming Loss - ε!

$$y' \neq y_i$$

$$y' \neq y_i$$
 $\Longrightarrow \sum_{j} 1_{\left[y^{j} \neq y_i^j\right]} - \varepsilon$

$$y' = y_i \qquad \Longrightarrow \qquad \xi_i \ge 0$$

$$\xi_i \ge 0$$

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_{i}, x_{i}) - F(y', x_{i}) \ge \sum_{j} 1_{\left[y'^{j} \ne y_{i}^{j}\right]} - \xi_{i} - \varepsilon \qquad \forall i : \xi_{i} \ge 0$$

$$\forall i: \xi_i \ge 0$$

$$x_i =$$
"Fish Sleep"
 $y_i = (N,V)$

 $\varepsilon = 1$

y'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss
(N,N)	2	2	1
(N,V)	4	0	0
(V,N)	3	1	2
(V,V)	1	3	1

Structural SVM Training

- **STEP 0:** Specify tolerance ε
- **STEP 1:** Solve SVM objective function using only working set of constraints **W** (initially empty). The trained model is w.
- **STEP 2:** Using w, find the y' whose constraint is most violated.
- STEP 3: If constraint is violated by more than ε , add it to W.

Constraint Violation Formula:
$$\left(\frac{1}{M_i}\sum_{j}1_{\left[y^{,j}\neq y_i^j\right]}+\xi_i\right)-\left(F(y_i,x_i)-F(y',x_i)\right)\geq\varepsilon$$

Repeat STEP 1-3 until no additional constraints are added.
 Return most recent model w trained in STEP 1.

^{*}This is known as a "cutting plane" method.

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_i$$

Choose ε =0.1

$$\forall i, y' \in W_i : F(y_i, x_i) - F(y', x_i) \ge \sum_j 1_{\left[y'^j \ne y_i^j\right]} - \xi_i - \varepsilon$$

 $\forall i: \xi_i \ge 0$

Init:
$$W_i = \emptyset$$

Solve:
$$\xi_i = 0$$

$$x_i =$$
"Fish Sleep"
 $y_i = (N,V)$

у'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss	Viol.	
(N,N)	0	0	1	1	×
(N,V)	0	0	0	0	~
(V,N)	0	0	2	2	X
(V,V)	0	0	1	1	×

Loss – Slack – (
$$F(y,x)-F(y',x)$$
) = Viol

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^T w + \frac{C}{N} \sum_{i} \xi_i$$

Choose ε =0.1

$$\forall i, y' \in W_i : F(y_i, x_i) - F(y', x_i) \ge \sum_j 1_{\left[y'^j \ne y_i^j\right]} - \xi_i - \varepsilon$$

$$\forall i: \xi_i \ge 0$$

Update:
$$W_i = \{(V, N)\}$$

Solve:
$$\xi_i = 0$$

$$x_i = "Fish Sleep"$$

 $y_i = (N,V)$

у'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss	Viol.	
(N,N)	0	0	1	1	X
(N,V)	0	0	0	0	~
(V,N)	0	0	2	2	X
(V,V)	0	0	1	1	×

Loss – Slack – (
$$F(y,x)-F(y',x)$$
) = Viol

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

Choose ε =0.1

$$\forall i, y' \in W_i : F(y_i, x_i) - F(y', x_i) \ge \sum_j 1_{\left[y'^j \ne y_i^j\right]} - \xi_i - \varepsilon \qquad \forall i : \xi_i \ge 0$$

Update:
$$W_i = \{(V, N)\}$$

Solve:
$$\xi_i = 0.5$$

$$x_i = "Fish Sleep"$$

 $y_i = (N,V)$

у'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss	Viol.	
(N,N)	0.7	0.2	1	0.2	×
(N,V)	0.9	0	0	0	~
(V,N)	-0.6	1.5	2	0	~
(V,V)	0	0.9	1	0.4	X

Loss – Slack – (
$$F(y,x)-F(y',x)$$
) = Viol

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

Choose ε =0.1

$$\forall i, y' \in W_i : F(y_i, x_i) - F(y', x_i) \ge \sum_j 1_{\left[y'^j \ne y_i^j\right]} - \xi_i - \varepsilon \qquad \forall i : \xi_i \ge 0$$

Update:
$$W_i = \{(V, N), (N, N)\}$$

Solve: $\xi_{i} = 0.5$

$$x_i = "Fish Sleep"$$

 $y_i = (N,V)$

y'	F(y',x _i)	$F(y_i,x_i) - F(y',x_i)$	Loss	Viol.	
(N,N)	0.7	0.2	1	0.2	×
(N,V)	0.9	0	0	0	~
(V,N)	-0.6	1.5	2	0	~
(V,V)	0	0.9	1	0.4	X

Loss – Slack – (
$$F(y,x)-F(y',x)$$
) = Viol

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$
 Choose $\epsilon = 0.1$
$$\forall i, y' \in W_{i} : F(y_{i}, x_{i}) - F(y', x_{i}) \geq \sum_{j} 1_{\left[y'^{j} \neq y_{i}^{j}\right]} - \xi_{i} - \varepsilon$$

$$\forall i : \xi_{i} \geq 0$$

No constraint is violated by more than ε

(V,V) -0.05 0.95

Solve: $\xi_i = 0.55$

Loss	Viol.	
1	0	
0	0	•
2	0	•
1	0.05	•
	1 0 2	1 0 0 0 2 0

Constraint Violation: Loss – Slack – (F(y,x)-F(y',x)) = Viol

Naïve SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.

Naïve SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.

Naïve SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.

Naïve SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.

Linear Convergence Rate

• Guarantee for any ε >0:

$$\underset{w,\xi}{\operatorname{argmin}} \frac{1}{2} w^{T} w + \frac{C}{N} \sum_{i} \xi_{i}$$

$$\forall i, y' : F(y_{i}, x_{i}) - F(y', x_{i}) \geq \sum_{j} 1_{\left[y'^{j} \neq y_{i}^{j}\right]} - \xi_{i} - \varepsilon$$

$$\forall i : \xi_{i} \geq 0$$

• Terminates after #iterations: $O\left(\frac{1}{\varepsilon}\right)$

Proof found in:

Finding Most Violated Constraint

A constraint is violated when:

$$F(y', x_i) - F(y_i, x_i) + \sum_{j} 1_{\left[y'^{j} \neq y_i^{j}\right]} - \xi_i > 0$$

Finding most violated constraint reduces to

$$\underset{y'}{\operatorname{argmax}} F(y', x_i) + \sum_{j} 1_{\left[y'^{j} \neq y_i^{j}\right]}$$

"Loss augmented inference"

Highly related to prediction:

$$\underset{y}{\operatorname{argmax}} F(y, x_i)$$

"Augmented" Scoring Function

$$F(y,x_i) = \sum_{j=1}^{M} \left[w^T \varphi^j(y^j, y^{j-1} \mid x_i) \right]$$

Goal:

$$\underset{y'}{\operatorname{argmax}} F(y', x_i) + \sum_{j} 1_{\left[y'^{j} \neq y_i^{j}\right]}$$

Solve Using Viterbi!

$$F(y,x_i) \equiv \sum_{j=1}^{M} \left[w^T \varphi^j(y^j, y^{j-1} \mid x_i) \right]$$

$$Goal: \\ \underset{y'}{\operatorname{argmax}} F(y',x_i) + \sum_{j} 1_{\left[y'^j \neq y_i^j\right]}$$

$$F(y,x_i,y_i) \equiv \sum_{j=1}^{M} \left[\tilde{w}^T \tilde{\varphi}^j(y^j, y^{j-1} \mid x_i, y_i) \right]$$

$$\tilde{\varphi}^j(a,b \mid x_i, y_i) = \begin{bmatrix} \varphi^j(a,b \mid x_i) \\ 1_{\left[a \neq y_i^j\right]} \end{bmatrix}$$

$$Additional \\ Unary Feature! \qquad \tilde{w} = \begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$Goal: \operatorname{argmax} \tilde{F}(y',x_i,y_i)$$

Structural SVM Recipe

• Feature map: $\Psi(y,x)$

• Inference: $h(x) = \operatorname{argmax}_{y} F(y, x) \equiv w^{T} \Psi(y, x)$

• Loss function: $\Delta_i(y)$

• Loss-augmented: $\operatorname{argmax}_y w^T \Psi(y, x) + \Delta_i(y)$ (most violated constraint)