Numbers & Sets - Theorems & Proofs

Lectured by Prof Imre Leader

Michaelmas 2013

1 Elementary Number Theory

1.1 \mathbb{N} and \mathbb{Z}

Proposition 1. Every natural number $n \geq 2$ is expressible as a product of primes.

Proof. Induction on n: if n not prime, write n = ab for 1 < a, b < n and (by induction) have $a = p_1 p_2 \dots p_k, b = q_1 q_2 \dots q_l$, some primes p_i, q_i , thus $n = p_1 \dots p_k q_1 \dots q_l$.

Theorem 2. There are infinitely many primes.

Proof. Suppose not: let $p_1, p_2 \dots p_k$ be all the primes. Let $n = p_1 p_2 \dots p_k + 1$. Then no p_i divides n. So n has no primes factors, contradicting Prop. 1 (every n expressible as product of primes).

Proposition 3 (Division algorithm). Let $k, n \in \mathbb{N}$. Then n = qk + r, some $q, r \in \mathbb{Z}$ with $0 \le r \le k - 1$.

Proof. Induction on n: given $n \geq 1$ can write n-1 = qk+r, some $q,r \in \mathbb{Z}$ with $0 \leq r \leq k-1$.

If r < k - 1, have n = qk + (r + 1). If r = k - 1, have n = (q + 1)k + 0.

Proposition 4. The output of Euclid's algorithm on a, b is the hcf of a, b.

Proof. Let c be the output. Show that c divides a and b by following the algorithm backwards. Given $d \mid a$ and $d \mid b$, show that $d \mid c$ by following the algorithm forwards. \square

Proposition 5. $\forall a, b \in \mathbb{N} \ \exists x, y \in \mathbb{Z} \ \text{with} \ ax + by = (a, b).$

Proof 1. Having run Euclid on a, b with output $c = r_n$: have c a linear combination of r_{n-1} and r_{n-2} , so c a linear combination of r_{n-2} and r_{n-3} , ..., and c a linear combination of r_i and r_{i-1} for all i (inductively). Hence c a linear combination of a and b.

Proof 2. Let h be the least positive integer of the form xa + yb, some $x, y \in \mathbb{Z}$. Claim: h = (a, b).

If $d \mid a$ and $d \mid b$ then d divides every linear combination of a and b, hence $d \mid h$.

To show $h \mid a$: suppose not, then write a = qh + r, some $q, r \in \mathbb{Z}$ with $1 \le r \le h - 1$. Then r = a - qh = a - q(xa + yb), so r a linear combination of a and b, contradicting choice of h. So $h \mid a$ and similarly $h \mid b$.

Corollary 6 (Bezout's Theorem). Let $a, b, c \in \mathbb{N}$. Then $\exists x, y \in \mathbb{Z}$ with $ax + by = c \iff \text{hcf}(a, b) \mid c$.

Proof. Let h = hcf(a, b).

Left to right: have $h \mid a$ and $h \mid b$, so $h \mid ax + by$ i.e. $h \mid c$.

Right to left: have $h \mid c$ and have h = ax + by, some $x, y \in \mathbb{Z}$, so $c = \frac{c}{h}(ax + by)$.

Proposition 7. Let $a, b \in \mathbb{N}$ and p be prime. Then $p \mid ab \implies p \mid a$ or $p \mid b$.

Proof. Suppose $p \nmid a$, so want $p \mid b$.

Have (p, a) = 1 (since p is prime), so px + ay = 1 for some $x, y \in \mathbb{Z}$. So, bpx + bay = b, hence b is a multiple of p (since ab is a multiple of p).

Theorem 8 (Fundamental Theorem of Arithmetic). Let $n \geq 2$ be a natural number. Then n can be written as a product of primes, uniquely (up to reordering).

Proof. Existence: Prop. 1.

Uniqueness: Induction on n: True for n = 2.

Given n > 2: Suppose that $n = p_1 \dots p_k = q_1 \dots q_l$, must show that k = l and (after reordering) $p_i = q_i \, \forall i$.

Have $p_i \mid q_1q_2 \dots q_l$, so $p_1 \mid q_i$ for some i (Prop. 7). Reordering, we may assume that $p_1 = q_1$. So $p_2 \dots p_k = q_2 \dots q_l$. By induction, have k = l and (after reordering) $p_2 = q_2$, $p_3 = q_3, \dots p_k = q_k$.

1.2 Modular Arithmetic

Proposition 9. Let p be prime. Then every integer $a \not\equiv 0$ (p) is invertible mod p. (i.e. in \mathbb{Z}_p : $a \neq 0 \implies a$ invertible.

Proof 1. Have
$$(a, p) = 1$$
, so $ax + py = 1$, some $x, y \in \mathbb{Z}$. Thus $ax \equiv 1$ (p) .

Proof 2. Consider in \mathbb{Z}_p the numbers $a \cdot 0, a \cdot 1, a \cdot 2, \dots a \cdot (p-1)$. They are distinct, as: $ai \equiv aj \ (p) \implies a(i-j) \equiv 0 \ (p) \implies i-j \equiv 0 \ (p) \ (\text{since } a \not\equiv 0 \ (p))$. So i=j (since $0 \le i, j \le p-1$). Thus $a \cdot 0, a \cdot 1, a \cdot 2, \dots a \cdot (p-1)$ are $0, 1, 2, \dots p-1$ in some order. In particular, ax = 1 for some x.

Proposition 9'. Let a be an integer. Then a is invertible in \mathbb{Z}_n if and only if (a, n) = 1.

Proof. a invertible \iff $ax \equiv 1$ (n), some $x \iff ax + ny = 1$, some $x, y \iff (a, n) \mid 1$ (Bezout) \iff (a, n) = 1.

Theorem 10 (Fermat's (little) Theorem). Let p be prime. Then, in \mathbb{Z}_p , $a^{p-1} = 1 \ \forall a \neq 0$. (i.e. $a \neq 0$ $(p) \implies a^{p-1} \equiv 1$ (p))

Proof. In \mathbb{Z}_p , consider $a \cdot 1, a \cdot 2, \ldots, a(p-1)$. Then are distinct (as a is invertible) and non-zero (as $ab = 0 \implies a = 0$ or b = 0). So they are $1, 2, \ldots, p-1$ in some order. Multiplying, $a^{p-1}(p-1)! = (p-1)!$. So $a^{p-1} = 1$ as (p-1)! is invertible (a product of invertibles is invertible).

Theorem 10' (Fermet-Euler Theorem). For a invertible in \mathbb{Z}_n , have $a^{\phi(n)} = 1$ (i.e. if (a, n) = 1, then $a^{\phi(n)} \equiv 1$ (n)).

Proof. Let $x_1, x_2, \ldots x_{\phi(n)}$ be the invertibles in \mathbb{Z}_n . Then, in \mathbb{Z}_n : $ax_1, ax_2, \ldots, ax_{\phi(n)}$ are distinct (as a is invertible) and invertible (as a product of invertibles). So they are $x_1, \ldots, x_{\phi(n)}$ in some order. Thus $a^{\phi(n)}x_1x_2 \ldots x_{\phi(n)} = x_1x_2 \ldots x_{\phi(n)}$, so $a^{\phi(n)} = 1$ (cancelling each x_i in turn).

Lemma 11. Let p be prime. Then in \mathbb{Z}_p , $x^2 = 1 \implies x = 1$ or -1.

Proof. Have $x^2 = 1 \implies x^2 - 1 = 0 \implies (x+1)(x-1) = 0$. So x+1=0 or x-1=0 (as p prime). Thus $x = \pm 1$.

Theorem 12 (Wilson's Theorem). Let p be prime. Then (p-1)! = -1 in \mathbb{Z}_p (i.e. $(p-1)! \equiv -1$ (p)).

Proof. We may assume that p > 2 (it can be easily checked for p = 2).

Each $1 \le a \le p-1$ can be paired with a^{-1} (in \mathbb{Z}_p). We have $a^{-1} \ne a \ \forall a \ne \pm 1$ (Lemma 11). So, in $1 \cdot 2 \cdot 3 \cdot \ldots (p-1)$, terms cancel in pairs a, a^{-1} except for ± 1 . Thus $(p-1)! = 1 \cdot 1 \cdot 1 \cdot \ldots \cdot 1 \cdot -1 = -1$.

Theorem 13. Let p > 2 be prime. Then -1 is a square mod p if and only if $p \equiv 1$ (4).

Proof. For p=4k+3: suppose $x^2=-1$ in \mathbb{Z}_p . Have $x^{4k+2}=1$ (by Fermat). But $x^{4k+2}=(x^2)^{2k+1}=(-1)^{2k+1}=-1$, which is a contradiction.

For p = 4k + 1: have $1 \cdot 2 \cdot 3 \dots (2k)(2k - 1) \dots (4k - 1)(4k) = -1$.

But 4k = -1, 4k - 1 = -2, ..., 2k - 1 = -(2k). So, $-1 = (4k)! = (2k)!^2(-1)^{2k} = (2k)!^2$. Thus x = (2k)! has $x^2 = -1$.

Theorem 14 (Chinese Remainder Theorem). Let m, n be coprime. Then $\forall a, b \in \mathbb{Z} \exists x \in \mathbb{Z}$ with $x \equiv a$ (m) and $x \equiv b$ (n). Moreover, x is unique mod mn.

Proof. Existence: Have ms + nt = 1, some $s, t \in \mathbb{Z}$. So $ms \equiv 0$ (m) and $ms \equiv 1$ (n), while $nt \equiv 1$ (m) and $nt \equiv 0$ (n). Hence $a(nt) + b(ms) \equiv a$ (m) and b (n).

Uniqueness: Having found one solution x, any $x' \equiv x \ (mn)$ is also a solution. Conversely, if x' is a solution, then $m \mid x' - x$ (as $x \equiv x' \ (m)$) and $n \mid x' - x$ (as $x \equiv x' \ (n)$). So $mn \mid x' - x$ (as m, n coprime).

2 The Reals

Proposition 1. No rational x has $x^2 = 2$.

Proof 1. Suppose $x \in \mathbb{Q}$ has $x^2 = 2$, say $x = \frac{m}{n}$, where $m, n \in \mathbb{N}$ (may assume x > 0 as $(-x)^2 = x^2$ and $x \neq 0$ since $0^2 = 0 \neq 2$). So $\left(\frac{m}{n}\right)^2 = 2$ i.e. $m^2 = 2n^2$. But exponent of 2 in prime factorisation of LHS is even and exponent of 2 in prime factorisation of RHS is odd, which is a contradiction.

Proof 2. Suppose $x = \frac{m}{n}$ has $x^2 = 2$. Then any a + bx $(a, b \in \mathbb{Z})$ is of form $\frac{c}{n}$, some $c \in \mathbb{Z}$, so $a + bx > 0 \implies a + bx \ge \frac{1}{n}$. But 0 < x - 1 < 1 (as 1 < x < 2), so $(x - 1)^N < \frac{1}{n}$ for N large. But $(x - 1)^N$ is of form ax + b (using $x^2 = 2$). This is a contradiction.

Proposition 2 (Axiom of Archimedes). \mathbb{N} is not bounded above in \mathbb{R} .

Proof. Suppose not: let $c = \sup \mathbb{N}$. Then c-1 is not an upper bound for \mathbb{N} , so $\exists n \in \mathbb{N}$ with n > c-1. Then n+1 > c, which is a contradiction.

Corollary 3. Let $t \in \mathbb{R}$ with t > 0. Then $\exists n \in \mathbb{N}$ with $\frac{1}{n} < t$.

Proof. Choose $n \in \mathbb{N}$ with $n > \frac{1}{t}$ (Prop. 2). Then $\frac{1}{n} < t$.

Theorem 4. $\exists x \in \mathbb{R} \text{ with } x^2 = 2.$

Proof. Let $S = \{x \in \mathbb{R} : x^2 \leq 2\}$. Then S is non-empty (e.g. $1 \in S$), and bounded above $(x \le 2 \ \forall x \in S)$. So let $c = \sup S$.

Claim: $c^2 = 2$.

Proof of claim:

If $c^2 < 2$: Consider $(c+t)^2$, where t > 0. Have $(c+t)^2 = c^2 + 2ct + t^2 \le c^2 + 5t$ (for $t \leq 1$ as $c \leq 2$), which is less than 2 for small t ($t < \frac{2-c^2}{5}$). Hence $c+t \in S$, contradicting c being an upper bound for S.

If $c^2 > 2$: Consider $(c-t)^2$, where t > 0. Have $(c-t)^2 = c^2 - 2ct + t^2 \ge c^2 - 4t$ (as $c \le 2$), which is greater than 2 for small t ($t < \frac{c^2-2}{4}$). Hence $(c-t)^2 > 2$, contradicting cbeing the *least* upper bound of S.

Therefore, $c^2 = 2$.

2.1 Convergence

Proposition 5. If $x_n \to c$ and $y_n \to d$ then $x_n + y_n \to c + d$.

Proof. Given $\epsilon > 0$:

 $\exists N \text{ with } |x_n - c| < \frac{\epsilon}{2} \ \forall n \geq N \text{ and } \exists M \text{ with } |y_n - d| < \frac{\epsilon}{2} \ \forall n \geq M. \text{ So, } \forall n \geq \max(N, M), \text{ we have: } |x_n - c| < \frac{\epsilon}{2} \text{ and } |y_n - d| < \frac{\epsilon}{2}, \text{ so } |(x_n + y_n) - (c + d)| < \frac{\epsilon}{2} + \frac{\epsilon}{2}.$

Theorem 6. Let x_2, x_2, \ldots be an increasing sequence bounded above. Then $(x_n)_{n=1}^{\infty}$ is convergent.

Proof. Let $c = \sup \{x_2, x_2, \ldots\}$. Claim: $x_n \to c$.

Proof of claim: Given $\epsilon > 0$:

There exists N with $x_N > c - \epsilon$ (since $c - \epsilon$ is not an upper bound), so $\forall n \geq N$: $x_n \ge x_{n-1} \ge \ldots \ge x_N$ (inductively). So $c - \epsilon < x_n \le c < c + \epsilon$.

Proposition 7. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Proof. Have $\frac{1}{3} + \frac{1}{4} \ge \frac{1}{4} + \frac{1}{4} = 2$ and $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \ge 4 \cdot \frac{1}{8} = \frac{1}{2}$. And in general, $\frac{1}{2^{n}+1} + \frac{1}{2^{n}+2} + \ldots + \frac{1}{2^{n+1}} \ge \frac{2^{n}}{2^{n+1}} = \frac{1}{2}$. So the partial sums of $\sum_{n=1}^{\infty} \frac{1}{n}$ are unbounded, so it diverges.

Have $\frac{1}{2^2} + \frac{1}{3^2} \le \frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2}$ and $\frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} \le 4 \cdot \frac{1}{4^2} = \frac{1}{4}$. And in general, $\frac{1}{(2^n)^2} + \frac{1}{(2^n+1)^2} + \ldots + \frac{1}{(2^{n+1}-1)^2} \le \frac{2^n}{(2^n)^2} = \frac{1}{2^n}$. Hence the partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ are bounded above (by $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 2$). So it converges (by Thm.

Proposition 8. *e* is irrational.

Proof. Suppose $e = \frac{p}{q}$, some $p, q \in \mathbb{N}, q \neq 1$ (noting that 2 < e < 3).

Have $\frac{p}{q} = \sum_{n=0}^{\infty} \frac{1}{n!}$, so $\sum_{n=0}^{\infty} \frac{q!}{n!} \in \mathbb{Z}$. But $\sum_{n=0}^{q} \frac{q!}{n!} \in \mathbb{Z}$. Also, $\frac{q!}{(q+1)!} = \frac{1}{q+1}$, $\frac{q!}{(q+2)!} \le \frac{1}{(q+1)^2}$, $\frac{q!}{(q+3)!} \le \frac{1}{(q+1)^3}$, So, $\sum_{n=q+1}^{\infty} \frac{q!}{n!} \le \frac{1}{q+1} + \frac{1}{(q+1)^2} + \dots = \frac{1}{q} < 1$. Contradicting $\sum_{n=0}^{\infty} \frac{q!}{n!}$ being an integer.

braic.

Proof. *Non-examinable.

3 Sets and Functions

Proposition 1. Let A be a set of size n. Then A has exactly 2^n subsets.

Proof. May as well have $A = \{1, \ldots, n\}$. To specify a subset B, we must specify:

Is $1 \in B$ or not?

Given that, is $2 \in B$ or not?

:

Given that, is $n \in B$ or not?

So, in total, have $2 \times 2 \times \ldots \times 2 = 2^n$ subsets.

(Alternatively, do induction on n, in which there are 2 ways to 'extend' a subset of $\{1, \ldots, n-1\}$, by including n or not.)

Theorem 2 (Binomial Theorem). Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$. Then $(a+b)^n = \binom{n}{n}a^n + \binom{n}{n-1}a^{n-1}b + \ldots + \binom{n}{1}ab^{n-1} + \binom{n}{0}b^n$.

Proof. Expanding $(a+b)^n = (a+b)(a+b)\dots(a+b)$, we get terms of the form a^kb^{n-k} . The number of terms a^kb^{n-k} is $\binom{n}{k}$ since we select k of the brackets for the 'a' terms. \square

Proposition 3. $\binom{n}{k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!}$.

Proof. The number of ways to specify a k-set is $n \times (n-1) \times \ldots \times (n-k+1)$ since you specify an element, then a different element, all the way up to the kth element.

The number of times a given k-set is specified is $k \times (k-1) \times ... \times 1$ since you name an element from the k-set, then another one and so on.

Thus, the actual number of k-sets is the quotient of the two.

Theorem 4 (Inclusion-Exclusion Theorem). Let $S_1, \ldots S_n$ be finite sets.

Then $|\bigcup_{i=1}^{n} S_i| = \sum_{|A|=1} |S_A| + \sum_{|A|=2} |S_A| + \sum_{|A|=3} |S_A| - \ldots + (-1)^{n+1} \sum_{|A|=n} |S_A|$ where $S_{\{x_1,\ldots,x_k\}} = S_{x_1} \cap \ldots \cap S_{x_K}$ and the sums are over all $A \subset \{1,\ldots,n\}$ of given size.

Proof. Take $x \in LHS$, and let us show that x is counted exactly once on RHS. Let x belong to k of the S_i .

The number of S_A , |A| = 1 that x belongs to is k.

The number of S_A , |A| = 2 that x belongs to is $\binom{k}{2}$.

In general, x belongs to $\binom{k}{r}$ of the S_A , |A| = r (for $1 \le r \le k$), and none of the S_A , |A| > k.

So the number of times x is counted on RHS is $k - {k \choose 2} + {k \choose 3} - \ldots + (-1)^{k+1} {k \choose k}$. But $(1-1)^k = 1 - k + {k \choose 2} - {k \choose 3} + \ldots + (-1)^k {k \choose k}$. So the number of times x is counted is $1 - (1-1)^k = 1$ (for $k \ge 1$).

Proposition 5. Let R be an equivalence relation on X. Then the equivalence classes of R partition X.

Proof. Certainly, the equivalence classes have union X, since for any $x \in X$, we have $x \in [x]$. So, we need to check that they are non-empty and disjoint (when not equal).

Non-empty: For any $x \in X$, have $[x] \neq \emptyset$ as $x \in [x]$.

Disjoint: Given $[x] \cap [y] \neq \emptyset$, need [x] = [y]. Choose $z \in [x] \cap [y]$. Then zRx and zRy, so xRy (transitivity). So, for any w, $wRx \implies wRy$ and $wRy \implies wRx$. Thus [x] = [y].

4 Countability

Proposition 1. X is countable $\iff \exists$ injection $f: X \to N$.

Proof. If X is finite, it's trivial, so may assume X is infinite.

Left to right: bijective, so injective.

Right to left: have X bijects with f(X), so enough to show that f(X) is countable. Let $a_1 = \min f(X)$, $a_2 = \min (f(X) \setminus \{a_1\})$ and in general $a_n = \min (f(X) \setminus \{a_1, \dots, a_{n-1}\})$. Then $f(X) = \{a_1, a_2, a_3, \dots\}$. Each $k \in f(X)$ is hit, indeed $k = a_n$, some $1 \le n \le k$. \square

Theorem 2. $\mathbb{N} \times \mathbb{N}$ is countable.

Proof 1. Define $a_1, a_2, ...$ by $a_1 = (1, 1)$, and if $a_n = (p, q)$ then $a_{n+1} = (p-1, q+1)$ if p > 1 or (q+1, 1) if p = 1. Then $\mathbb{N} \times \mathbb{N} = \{a_1, a_2, ...\}$ - each point is hit (induction on x and y).

Proof 2. The function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} : (x,y) \mapsto 2^x 3^y$ is an injection.

Theorem 2'. Let A_1, A_2, \ldots be countable, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable. i.e. 'a countable union of countable sets is countable'.

Proof. Each A_n is countable, so can be listed as $a_{1n}, a_{2n}, a_{3n}, \ldots$ (it might terminate). Then define $f: \bigcup_{n\in\mathbb{N}} A_n \to \mathbb{N}: a_{ij} \mapsto 2^i 3^j$ (use the least such j if a_{ij} is repeated, as the A_j might not be disjoint). Then f is injective.

Theorem 3. \mathbb{R} is uncountable.

Proof. Will show that (0,1) is uncountable. Suppose not: have (0,1) listed as r_1, r_2, r_3, \ldots where: $r_1 = 0.r_{11}r_{12}r_{13}\ldots$

```
r_2 = 0.r_{21}r_{22}r_{23}\dots

r_3 = 0.r_{31}r_{32}r_{33}\dots

:
```

Construct $s = 0.s_1s_2...$ such that $s_n = 5$ if $r_{nn} \neq 5$ and 6 if $r_{nn} = 5$. Then $\forall n : s \neq r_n$ (they differ in the *n*th place. This is a contradiction (s is not on the list).

Theorem 4. $\mathcal{P}(\mathbb{N})$ is uncountable.

Proof. Suppose $\mathcal{P}(\mathbb{N})$ is listed as S_1, S_2, S_3, \ldots Let $S = \{n \in \mathbb{N} : n \notin S_n\}$. Then $\forall n : S \neq S_n$.

Theorem 5 (Schröder-Bernstein). Let A, B be sets. If there exists an injection $f: A \to B$ and there exists an injection $g: B \to A$, then there exists a bijection from $A \to B$.

Proof. For $x \in A$, write $g^{-1}(x)$ for the unique $y \in B$ with g(y) = x (if it exists). Similarly, have $f^{-1}(y)$ for $y \in B$.

For $x \in A$, the ancestor sequence of x is $g^{-1}(x), f^{-1}(g^{-1}(x)), g^{-1}(f^{-1}(g^{-1}(x))), \dots$ (might terminate). Similarly for $y \in B$.

Now let $A_0 = \{x \in A : \text{ancestor sequence has even length}\}$

 $A_1 = \{x \in A : \text{ancestor sequence has odd length}\}$

 $A_{\infty} = \{x \in A : \text{ancestor sequence is infinite}\}$

Similarly, have B_0, B_1, B_{∞} . Note that f bijects A_0 with B_1 . Indeed, $x \in A_0 \implies f(x) \in B_1$, and also if $y \in B_1$, then y = f(x), some $x \in A$, so $x \in A_0$. Similarly, g bijects

 B_0 with A_1 . And f (for example) bijects A_{∞} with B_{∞} . So, we have a bijection h defined such that:

$$h: A \to B: x \mapsto \begin{cases} f(x) & \text{if } x \in A_0 \\ g^{-1}(x) & \text{if } x \in A_1 \\ f(x) & \text{if } x \in A_\infty \end{cases}$$