

GOLUB, A.M. [Halub, A.M.]; BARAN, A.A. [Baran, O.O.]; TSITURINA, T.I.

Certain properties of lead and mercury perchlorates (II). Ukr.
khim. zhur. 27 no.4:443-447 '61. (MIRA 14:7)

1. Kiyevskiy gosudarstvennyy universitet im. T.G.Shevchenko,
kafedra neorganicheskoy khimii.
(Lead perchlorate) (Mercury perchlorate)

GOLUB, A.N.; SKOPENKO, V.V.

Selenocyanate complexes of cation silver. Dokl. AN SSSR 138 no.3;
600-604 My '61. (MIRA 14:5)

1. Kiyevskiy gosudarstvennyy universitet im. T.G.Shevchenko.
Predstavлено академиком I.V.Tananyayevym,
(Selenocyanatoargentates)

GOLUB, A.M., SKOPENKO, V.V.

Selenocyanate complexes of cobalt and nickel. Dokl. AN SSSR
141 no.4:851-854 D '61. (MIRA 14:11)

1. Kiyevskiy gosudarstvennyy universitet im. T.G. Shevchenko.
Predstavлено akademikom I.I. Chernyaevym.
(Cobalt compounds) (Nickel compounds)
(Selenocyanic acid)

GOLUB, A. M.

"Pseudochlorogenido complexes of some metals in nonaqueous solution"
Report submitted but not presented at the 7th International
conference on Coordination Chemistry, Stockholm/Uppsala, Sweden, 25-29 June 62

University of Kiev

GOLUB, A.M.; AMUREYCHEMKO, O.Ye.

Cadmium selenocyanate complexes. Zhur.neorg.khim. 7 no.3:549-
554 Mr '62. (MIRA 15:3)

1. Kiyevskiy gosudarstvennyy universitet imeni T.G.Shevchenko,
kafedra neorganicheskoy khimi. (Cadmium compounds) (Selenocyanates)

GOLUB, A.M.; SHOPENKO, V.V.

Selenocyanate complexes of cobalt. Zhur.neorg.khim. 7 no.5:
1012-1020 My '62. (MIRA 15:7)

1. Kiyevskiy gosudarstvenny universitet imeni T.G.Shevchenko,
kafedra neorganicheskoy khimii.
(Cobalt compounds) (Selenocyanates)

GOLUB, A.H.; SKOPENKO, V.V.

Selenocyanate complexes of nickel. Zhur.neorg.khim. 7 no.6:
1265-1271 Je '62. (MIRA 15:6)

I. Kiyevskiy gosudarstvennyy universitet imeni Shevchenko,
kafedra neorganicheskoy khimii.
(Nickel compounds) (Selenocyanates)

GOLUB, A. M.; SAZHNIENKO, S. M.; RONANENKO, L. I.

Iodide complexes of copper. Ukr. khim. zhur. 28 no.5:561-565
'62. (MIRA 15:10)

1. Kiyevskiy gosudarstvennyy universitet im. T. G. Shevchenko.

(Copper compounds) (Iodides)

GOLUB, A.M. [Holub, A.M.]; KOSTROVA, R.A.

Thiocyanate complexes of vanadium (III) in methanol. Dop.
AN UkrSSR no.8:1061-1064 '63. (MIRA 16:10)

1. Kiyevskiy gosudarstvennyy universitet. Predstavлено академиком
АН UkrSSR A.K. Babko.
(Vanadium compounds) (Thiocyanates)

GOLUB, A.M.; KOSTROVA, R.A.

Investigation of vanadyl thiocyanates in water-methanol,
methanol, and acetone solutions. Ukr. khim. zhur. 29 no.2:
128-136 '63. (MIRA 16:6)

1. Kyivskiy gosudarstvennyy universitet im. T.O. Shevchenko.
(Vanadium compounds) (Thiocyanates)

GOLUB, A.M.; SANDYLENKO, V.M.

Thiocyanate complexes of indium. Ukr. Khim. zhur. 29 no.5:472-479
'63.

1. Kiyevskiy gosudarstvennyy universitet im. T.G.Shevchenko.

10. The following table shows the number of hours worked by each employee in a company.

02. Sustentabilidade

19. *Leucosia* *leucostoma* *leucostoma* *leucostoma* *leucostoma* *leucostoma*

19. The following table gives the number of hours worked by each of the 1000 workers in the firm.

卷之三

10. The following table shows the number of hours worked by 1000 workers in a certain industry. Calculate the mean number of hours worked per worker.

2. *On the other hand, the author's statement that the* *“new* *and* *improved* *method* *is* *not* *the* *best* *method* *for* *the* *present* *stage* *of* *development*

19. The following table gives the number of deaths from smallpox in the United States during the year 1800.

Digitized by srujanika@gmail.com

Formation of thiohydantoins

1985, 90-100

$\tau = \ln(1/\alpha) / \ln(2)$, $\ln(1/\alpha) = \ln(0.001)$

containing 5% CO₂

100% Satisfaction or your money **REFUNDED**!

卷之三

1000 feet above the Missouri River at the mouth of the La Joie, Missouri.

10. The following table gives the number of cases of smallpox reported in each State during the year 1802.

卷之三

Digitized by srujanika@gmail.com

APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3"

GOLUB, A.M.; KOSTROVA, R.A.

Thiocyanate complexes of chromdum (III) in nonaqueous
solutions. Ukr. khim. zhur. 29 no.8:784-789 '63.

(MIRA 16: 11)

I. Kiyevskiy gosudarstvennyy universitet im. T.G. Shevchenko.

GOLUB, A.M.; SAMOTIENKO, V.M.

Effect of the nature of the solvent on the formation of
thiocyanate complexes of tin (II). Ukr. khim. zhur. 29
no. 8:789-797 '63. (MIRA 16:11)

J. Kiyevskiy gosudarstvennyy universitet im. T.G. Shevchenko.

GOLUB, A.H.; SAMOTLENSKO, V.M.

Thiocyanato complexes of cadmium. Zhur.neorg.khim. 9 no.1:70-79 Ja
'64.
(MIRA 17:2)

GOLUB, A.M.; SYCE, A.M.

Information obtained through
intelligence activities

Thiocyanato complexes of niobium. Zhur. neorg. khim. 9
no. 5:1085-1093 My '64. (MIRA 17:9)

1. Kafedra neorganicheskoy khimii Kiyevskogo gosudarstvennogo
universiteta imeni T.G. Shevchenko.

GOLUB, A.M., POMERANTS, G.E.

Thiocyanate and iodothiocyanate complexes of palladium.
Zhur. neorg. khim. 9 no. 7:1624-1629 Jl '64. (MIRA 17:9)

1. Kiyevskiy gosudarstvennyy universitet.

GOLUB, A.M.; SERGUN'KIN, V.N.; KALIBADCHUK, V.A.

Zirconium and hafnium thiocyanates. Ukr.khim.zhur. 30 no.5:441-
443 '64. (MIRA 18:4)

1. Kiyevskiy gosudarstvennyy universitet im. T.G.Shevchenko i
Donetskij filial Vsesoyuznogo nauchno-issledovatel'skogo
instituta khimicheskikh reaktivov i osobu chistiykh khimicheskikh
veschchestv.

"APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3

APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3"

L 2289-65 - 677(a)/007/1166/1170
ACQUISITION NR: AF5022270 49/10
REF ID: A6/0363/65/001/007/1166/1170 /5
346.634.173 + 346.39'624 /4
2
AUTHOR: Golob, A. N.; Novikova, M. F.
TITLE: Interaction between lanthanum nitrate and ammonium carbonate in solution
SOURCE: AM ERER. Izvestiya. Neorganicheskkiye materialy, v. 1, no. 7, 1965,
1166-1170
TOPIC TAGS: lanthanum compound, ammonium compound, carbonate
ABSTRACT: The system $\text{La}(\text{NO}_3)_3 - (\text{NH}_4)_2\text{CO}_3 - \text{H}_2\text{O}$ was studied by adding a solution of $(\text{NH}_4)_2\text{CO}_3$ to a solution of $\text{La}(\text{NO}_3)_3$ so that the ratio $(\text{NH}_4)_2\text{CO}_3:\text{La}(\text{NO}_3)_3$ changed from 0.25 to 4. The interaction between the components was determined by measuring the solubility, pH, electrical conductivity, and apparent volumes of the precipitates. The latter were examined by chemical, thermal, and microscopic methods. All the data indicated that only one compound, lanthanum carbonate ($\text{La}(\text{CO}_3)_3 \cdot 8\text{H}_2\text{O}$) is formed in this system. Crystals of this compound range in size from 5 to 30 micrometers and exhibit moderate birefringence, $n_g = 1.570$ and $n_e = 1.573$. Optical art. base: 6 microns and 2 tables.

"APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3

APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3"

GOLUB, A.M., ARMYNAUDOV, R.

Nitrate complexes of lead in methanol. Izv.vys.ucheb.zav.; khim. i
khim.tehn. 8 no.2:186-191 '65. (MIRA 18:8)

1. Kiyevskiy gosudarstvennyy universitet imeni Shevchenko, kafedra
neorganicheskoy khimii.

GOLUB, A.M.; STOCH, A.M.

Electrolytic properties of $TaCl_5$ in nonaqueous solvents. Zhur.
neorg.khim. 10 no.4:849-893 Ap '65. (MIRA 18:6)

Kievskiy gosudarstvennyy universitet imeni Shevchenko, kafedra
neorganicheskoy khimii.

GOLUB, A.M.; POMERANTS, G.V.

Extraction of thiocyanate and halide complexes of palladium and
its use for separating palladium from silver. Ukr. khim. zhur.
31 no.1:104-112 '65. (MIRA 18:5)

1. Kiyevskiy gosudarstvennyy universitet imeni Shevchenko.

GOLUB, A.M.; ALIMRADOV, R.

Nitrate-nitrite complexes of lead. Ukr.khim.znau. 31 no.2:136-141
1965. (MIRA 18:4)

1. Kiyevskiy gosudarstvennyy universitet im. Shevchenko i
Turkmeniskiy gosudarstvennyy pedagogicheskiy institut im. V.I.
Lenina.

GOLUB, A.M.; AKMYRAEV, A.

Thermal properties of potassium nitritoplumbites. Izv. AN
Turk. SSR. Ser. fiz.-tekhn. khim. i geol. nauk no.3:44-48 '65.
(MIRA 18:12)

I. Kiyevskiy gosudarstvennyy universitet imeni Shevchenko i
Turkmeneskiy pedagogicheskiy institut imeni Lenina. Submitted
July 29, 1964.

GOLUB, A.M.; SAMOYLENKO, V.M.

Potentiometric study of the composition and stability of ion
solvates. Zhur. neorg. khim. 10 no.2:328-321 F '65.

(MIRA 18:11)

1. Kiyevskiy ordena Lenina gosudarstvennyy universitet
imeni Shevchenko, kafedra organicheskoy khimii. Submitted
Aug. 26, 1963.

RECORDED, VIDEOTAPED, AND MONTAGED.

Mixed complexion, balding, shaved head/balding, black, George Khim,
10 weeks 36Lx34B F 161.
(INTERVIEW)

To: Myron L. Goldsmith, Kennedy School of Government, Harvard University
Date dictated: May 21, 1964.

I 39473-66 ENT(m)/ETC(f)/ENG(m)/EHP(j) RDN/JD/BU-4/ru

ACC NR: APG013484 (N) SOURCE CODE: UR/0074/65/034/012/2098/2110

AUTHOR: Golub, A. M.; Skopenko, V. V.

ORG: Kiev Order of Lenin State University im. T. G. Shevchenko (Kiyevskiy ordena Lenina gosudarstvennyy universitet)

TITLE: Metal selenocyanates and their properties

SOURCE: Uspekhi khimii, v. 34, no. 12, 1965, 2098-2110

TOPIC TAGS: selenium compound, cyanate, complex molecule

ABSTRACT: The literature on metal selenocyanates is surveyed; the survey embraces the following areas: (1) Selenocyanogen and its properties; (2) Chemical analytical properties of the SeCN^- ion; (3) Simple selenocyanates and their properties; (4) Heavy metal selenocyanates; (5) Complex compounds based on metal selenocyanates; (6) Complex forming with the participation of the selenocyanate ion as the ligand and central ion; (7) Selenocyanate complexes in nonaqueous solutions; (8) Characteristics of the complexing power of the SeCn^- ion; (9) Structure of selenocyanates. It is concluded that the growth of the number of selenocyanates will permit a more complete characterization of this class of compounds.

SUB CODE: 07/ SUBM DATE: 00/ ORIG REF: 038/ OTH REF: 057

selenium

UDC: 546.231.1

Card 1/1

L 41728-66 EWT(n)/EWP(j)/EWP(t)/ETI IJP(c) JD/WW/JG/RM

ACC NR: AP6020372

(N)

SOURCE CODE: UR/0078/66/011/003/0590/0599

AUTHOR: Gelub, A. M.; Kalibabchuk, V. A.

ORG: Kiev State University im T. G. Shevchenko (Kievskiy gosudarstvenny universitet)

TITLE: Behavior of ThCl₄ and formation of thiocyanate complexes of thorium in non-aqueous solutions

SOURCE: Zhurnal neorganicheskoy khimii, v. 11, no. 3, 1966, 590-599

TOPIC TAGS: thorium compound, thiocyanate

ABSTRACT: The properties of ThCl₄ and its interaction with KCNS were studied in acetone, methanol, and dimethylformamide (which have similar dielectric constants). It was shown conductometrically and pH-potentiometrically that ThCl₄ undergoes solvolysis in methanol, forming ThCl₂(OCH₃)₂, if its concentration is within the range of 1.95×10^{-2} - 1.52×10^{-4} mole/l. The solvolysis constants were calculated. Conductometric and spectrophotometric studies of the interaction of ThCl₄ and KCNS showed the existence of thiocyanate complexes of thorium containing from 1 to 6 thiocyanate ligands. Thorium complexes richest in thiocyanate ligands are found in dimethylformamide. The calculated equilibrium constants for the reaction of complex formation indicate an increase in the stability of the complexes in the series dimethylformamide - methanol - acetone. IR spectroscopy established that the

Card 1/2

UDC: 546.841.4'268.5

36
B

L41728-66

ACC NR: AP6020372

coordination of thiocyanate groups around thorium is accomplished via nitrogen atoms (isothiocyanate structure) and that the bonding between dimethylformamide and the thorium atom is accomplished via oxygen atoms. In the reaction of complex formation in nonaqueous solutions, the composition and stability of the complex depend strongly on the chemical nature of the solvent. Orig. art. has: 7 figures, 2 tables, and 2 formulas.

SUB CODE: 07/ SUBM DATE: 13May65/ ORIG REF: 011/ OTH REF: 011

Cont 2/2 af

L 06117-67 DWP(s)/EMT(m)/EMP(t)/ETI
ACC NM: AP6030770

IJP(c) JD/JG/NH

SOURCE CODE: UR/0363/66/002/009/1608/1611

AUTHOR: Golub, A. N.; Maydukova, T. N.; Limar', T. F.

29

B

ORG: Institute of Reagents and Extra High Purity Chemicals, Donetsk (Institut reakti-
vov i osobochistikh khimicheskikh veshchestv)

TITLE: Production of lanthanum aluminate by the coprecipitation method

SOURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy, v. 2, no. 9, 1966, 1608-1611

TOPIC TAGS: lanthanum compound, aluminum compound, ^{chemical}precipitation

ABSTRACT: At present, the production of lanthanum aluminate of the requisite uniformity for the production of high quality ceramics and piezoelectric materials is attended by numerous difficulties. The purpose of this investigation was to develop a more efficient method for the production of LaAlO_3 , to select the optimum conditions for the coprecipitation of lanthanum and aluminum, and to investigate the solid phase processes which occur during the thermal decomposition of coprecipitated compounds. The $\text{La}(\text{NO}_3)_3\text{-Al}(\text{NO}_3)_3\text{-}(\text{NH}_4)_2\text{CO}_3\text{-H}_2\text{O}$ system was investigated. The methods include potentiometry, conductometry, differential thermal analysis, thermogravimetric analysis, x-ray structural analysis and microscopic analysis. Potentiometric titration of $\text{La}(\text{NO}_3)_3$ and $\text{Al}(\text{NO}_3)_3$ mixture with ammonium carbonate showed that the formation of lanthanum and aluminum precipitates proceeds in one stage. It is shown that the complete coprecipi-

UDC: 546.623'654 : 542.65

Card 1/2

L 06117-67

ACC NR: AP6030770

tation of components occurs at pH 7-8 where

$$n = \frac{[(\text{NH}_4)_2\text{CO}_3]}{[\text{La}^{3+}] + [\text{Al}^{3+}]} = 1.5-2$$

Thermal decomposition of coprecipitated lanthanum and aluminum compounds begins at 900°C and ends at 1300°C. Analysis shows that the composition of LaClO_3 , produced by the developed method, is close to the theoretical composition. Microscopic analysis shows that the grain size of the product obtained is 1-2. Orig. art. has: 4 figures, 3 tables.

SUB CODE: 07/ SUBM DATE: 07Oct65/ ORIG REF: 004

Card 2/2 *pls*

ACC NR: APT003138

SOURCE CODE: UR/0080/66/039/012/2658/2662

AUTHOR: Golub, I. M.; Sych, A. N.

ORG: Kiev State University (Kievskiy gosudarstvennyy universitet)

TITLE: Extraction of niobium and tantalum from tributyl phosphate

SOURCE: Zhurnal prikladnoy khimii, v. 39, no. 12, 1966, 2658-2662

TOPIC TAGS: niobium, tantalum, phosphate, solvent extraction

ABSTRACT: A study of the distribution of niobium and tantalum in the $\text{MeCl}_3\text{-TBP-H}_2\text{O-KCNS-H}_2\text{SO}_4$ system as a function of the thiocyanate ion, H_2SO_4 and metal concentrations showed that at a high acidity of the aqueous phase in the range of low thiocyanate ion concentrations, niobium concentrates in the nonaqueous phase, while tantalum passes into the aqueous phase. In the $\text{MeCl}_3\text{-TBP-H}_2\text{O-H}_2\text{SO}_4$ system, the distribution of niobium and tantalum is affected by both the H_2SO_4 and the metal concentration. At higher concentrations of the latter, chiefly niobium is washed out of tributyl phosphate by sulfuric acid solutions. It is shown that tantalum and niobium in tributyl phosphate in the presence of a large excess of CNS^- ions are present in the form of the complexes $\text{Ta}(\text{CNS})_6^{2-}$ and $\text{Nb}(\text{CNS})_6^{2-}$. The stability of the niobium and tantalum complexes in tributyl phosphate increases in the order $\text{SO}_4^{2-} < \text{Cl}^- < \text{CNS}^-$. Orig. art. has: 5 figures.

SUB CODE: 07/ SUBM DATE: 21Dec64/ ORIG REF: 004/ OTH REF: 004

Card 1/1

UDC: 542.61'546.882/883

GOLUB', Andrey Matveyevich; MARTIN, A.I., rec.

{Metals for the atomic age: Metalnyi stol'nyi vek. M.: skva, Izd-vo "Znaniye," 1964. 76 p. (Narodnyi universitet kultury: tekhniko-ekonomicheskii fakultet, no.11) (MIRA 17:1)}

GOLUB', Andrey Matveyevich [Holub, A.M.]; TEMCHENKO, M.O., red.

[Rare-earth elements] Ridkisnozemel'ni elementy. Kyiv,
Vyd-vo Kyiv's'koho univ., 1965. 219 p. (MIR 18:9)

VLASENKO, A.I. (Cherkassy); OGURIB, A.M. (Sumy).

Collected articles "Experience in teaching mathematics" edited by
P.V. Stratilatov. Mat. v shkole no.6r70-76 N-D '56. (MIRA 10:1)
(Mathematics--Study and teaching)

Goto B, A. et.

BARYBIN, K.S. (Moskva); GOLUB, I.M. (Smy); CHEREKOV, I.Ya. (Smy);
BARKER, H.B. (Prestige)

"Trigonometry Textbook" by S.I.Novoselov. Reviewed by K.S.Barybin
and others. Matematicheskoe obrazovaniye no.5: 55-87 s-0 '57. (MLRA 10:9)
(Trigonometry--Textbooks) (Novoselov, S.I.)

Golub, A.M.

GOLUB, A.M. (Semy); KOSTLAN, E.V. (Semy).

Algebra textbook for the grade 11 of Czechoslovakian secondary schools. Mat.v shkole no.6:77-79 N-D '57. (MIRA 10:11)
(Czechoslovakia--Algebra--Textbooks)

Geometrie 11. roč.

OOGUB, A.H.; KOSTLAK, N.V. (Sunny).

Geometry textbook for grade 11 of Czechoslovakian secondary schools.
Mat. v školce no. 2:66-71 Mr-Ap '58. (MIRA 11:2)
(Czechoslovakia--Geometry--Textbooks)

CHERTKOV, I.Ya; GOLUB, A.M. (Sumsy)

"Teaching methods of mathematics" edited by S.E. Liapin. Part 2.
Reviewed by I.IA. Chertkov and A.M. Golub. Mat. v shkole no.5:79-83
S-O 158.

(MIRA 11:10)

(Mathematics--Study and teaching)
(Liapin, S.E.)

GOLUB, A.M.; MOSTLAK, N.V.

Trigonometry textbook for grades 10 and 11 of Czechoslovakian
secondary schools. Mat. v shkole no.6:83-87 M-D '58.
(MIRA 11:12)
(Czechoslovakia--Trigonometry--Textbooks)

GOLUB, A.M. (Bryansk)

Investigation of some equations. Mat. v shkole no.6:64 N-D '59.
(Equations) (MIRA 13:3)

End

#

158

"APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3

APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3"

"APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3

APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3"

"APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3

APPROVED FOR RELEASE: 09/24/2001

CIA-RDP86-00513R000515830006-3"