Permutation Tests

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities)

Updated 04-Jan-2017

Copyright

Copyright © 2017 by Nathaniel E. Helwig

Outline of Notes

- 1) Introduction to Permutations
 - What is a permutation?
 - Permutations in R
 - Inference via permutations

- 2) One-Sample Permutations
 - Overview
 - Monte Carlo procedure
 - Examples

- 3) Two-Sample Permutations
 - Overview
 - Monte Carlo procedure
 - Examples

- 4) Correlation Permutations
 - Overview
 - Monte Carlo procedure
 - Examples

Introduction to Permutations

Permutation Defined

The word permutation refers to the arrangement of a set of objects into some specified order.

Each column is one possible permutation of the three colors:

From https://upload.wikimedia.org/wikipedia/commons/4/4c/Permutations RGB.svg

Permuting a Data Vector

Given a data vector of length n = 3, there are 6 possible permutations:

- \bullet $\mathbf{x}_{(1)} = (x_1, x_2, x_3)$
- \bullet $\mathbf{x}_{(2)} = (x_1, x_3, x_2)$
- \bullet $\mathbf{x}_{(3)} = (x_2, x_1, x_3)$
- \bullet $\mathbf{x}_{(4)} = (x_2, x_3, x_1)$
- \bullet $\mathbf{x}_{(5)} = (x_3, x_1, x_2)$
- \bullet $\mathbf{x}_{(6)} = (x_3, x_2, x_1)$

More generally, there are n! permutations for a vector of length n.

Generate All Possible Permutations

```
permutations <- function(n){
  if(n==1) {
    return (matrix (1))
  } else {
    sp <- permutations(n-1)
    p <- nrow(sp)
    A <- matrix(nrow=n*p,ncol=n)
    for(i in 1:n) {
      A[(i-1)*p+1:p,] <- cbind(i,sp+(sp>=i))
    return (A)
```

 $\textbf{From } \texttt{http://stackoverflow.com/questions/11095992/generating-all-distinct-permutations-of-a-list-in-relatio$

All Possible Permutations Examples

```
> permutations(2)
   [,1] [,2]
[1,] 1 2
[2,] 2 1
> permutations(3)
   [,1] [,2] [,3]
[1,] 1 2
[2,] 1 3 2
[3,] 2 1 3
[4,] 2 3 1
[5,] 3 1 2
[6,] 3 2
```

Generate a Random Permutation

Note that the sample.int function returns a random permutation of the integers 1 to n, where n is the user-specified input.

Why are Permutations Useful for Statistics?

Classic statistical paradigm is:

- collect some data
- form null hypothesis H₀
- design test statistic
- derive sampling distribution of test statistic under H_0

In many cases, the null hypothesis is the nil hypothesis, i.e., no effect.

Under the nil hypothesis, all possible outcomes (permutations) are equally likely, so permutations relate to sampling distributions.

Achieved Significance Level

Suppose we have some test statistic $\hat{\theta} = s(\mathbf{x})$, and suppose that larger values of $\hat{\theta}$ provide more evidence against H_0 .

Given $\hat{\theta}$, the achieved significance level (ASL) of our test is

$$ASL = P(\hat{\theta}^* \geq \hat{\theta} \mid H_0 \text{ true })$$

which is the probability of observing a test statistic as or more extreme than $\hat{\theta}$ under the assumption that H_0 is true.

• Can you think of another name for ASL?

One-Sample Permutation Tests

One-Sample (or Paired Sample) Problem

For the one-sample location problem, we have n observations

- $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ if one-sample situation
- $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} F$ with $Z_j = X_j Y_j$ if paired-sample situation

We want to make inferences about location of the data

- Let F denote the population distribution
- Let θ denote the median of F
- Null hypothesis is H_0 : $\theta = \theta_0$
- Three possible alternatives: $H_1: \theta < \theta_0, H_1: \theta > \theta_0, H_1: \theta \neq \theta_0$,

Permutation Vector and Lemma (1-Sample)

Let $\mathbf{g} = (g_1, g_2, \dots, g_n)$ denote the permutation vector denoting which observations are above θ_0 ($g_i = 1$) and which are below θ_0 ($g_i = -1$).

- There are 2^n different possible **g** vectors (each g_i can be 1 or -1)
- If $H_0: \theta = \theta_0$ is true, then $P(X < \theta_0) = 0.5$ by definition

Permutation Lemma:

Under H_0 : $\theta = \theta_0$, the vector **g** has probability $1/2^n$ of equaling each of the 2ⁿ different possible outcomes

Permutation Achieved Significance Level (1-Sample)

The permutation ASL is the permutation probability that $\hat{\theta}^*$ exceeds $\hat{\theta}$:

$$ASL_{perm} = \#\{|\hat{\theta}_b^*| \ge |\hat{\theta}|\}/2^n$$

where $\{\hat{\theta}_b^*\}_{b=1}^{2^n}$ is the set of all possible test statistics under H_0 .

Note that the above is for the two-sided alternative $H_0: \theta \neq \theta_0$

- For $H_0: \theta < \theta_0$, we have $\mathrm{ASL}_{\mathrm{perm}} = \#\{\hat{\theta}_b^* \leq \hat{\theta}\}/2^n$
- For $H_0: \theta > \theta_0$, we have $ASL_{perm} = \#\{\hat{\theta}_b^* \geq \hat{\theta}\}/2^n$

Problem: when 2^n is large, forming $\hat{\theta}_b^*$ for all 2^n possible **g** vectors is computationally expensive.

Solution: use a Monte Carlo approach!

One-Sample Permutation Test (Monte Carlo)

Procedure for approximating ASL_{perm} using Monte Carlo approach:

- Randomly sample B permutation vectors g₁*,...,g_R*
- 2 Evaluate the permutation replication $\hat{\theta}_{h}^{*} = s(\mathbf{g}_{h}^{*}, \mathbf{x})$ where $\mathbf{x} = (x_1, \dots, x_n)$ is the observed vector of data
- Approximate ASL_{perm} using

$$\widehat{\mathsf{ASL}}_{\mathsf{perm}} = \#\{|\hat{\theta}^*_{b}| \geq |\hat{\theta}|\}/B$$

This assumes that the statistic $\hat{\theta} = s(\mathbf{g}, \mathbf{x})$ is designed such that larger absolute values provide more evidence against H_0 .

Some Possible Statistics

We want to design some statistic $\hat{\theta}$ such that larger absolute values provide more evidence against H_0 .

If we assume that F is symmetric around θ_0 , then...

- θ_0 is both the median and mean of F under H_0
- Statistic 1: $\hat{\theta} = n^{-1} \sum_{i=1}^{n} |x_i \theta_0| g_i = \bar{x}$
- Statistic 2: $\hat{\theta} = \sum_{i=1}^{n} R_i \mathbf{1}_{\{a_i=1\}} \frac{n(n+1)}{4}$ where $R_i = \text{rank}(|x_i \theta_0|)$

If we drop the symmetry assumption θ_0 , then...

• Statistic 3: $\hat{\theta} = \sum_{i=1}^{n} 1_{\{a_i=1\}} - \frac{n}{2}$

One-Sample Permutation Test: R Function

An R function for performing one-sample permutation tests:

```
perm1samp <- function(x, myfun=mean, mu=0, nsamp=10000,
                       alternative=c("two.sided", "less", "greater")){
  x = x - mu
  n = length(x)
  theta.hat = myfun(x)
  gmat = replicate(nsamp, sample(x=c(1,-1), size=n, replace=TRUE))
  theta.mc = apply(gmat*abs(x),2,myfun)
  if (alternative[1] == "less") {
    aslperm = sum(theta.mc <= theta.hat) / nsamp
  } else if(alternative[1]=="greater"){
    aslperm = sum(theta.mc >= theta.hat) / nsamp
  } else{
    aslperm = sum(abs(theta.mc) >= abs(theta.hat)) / nsamp
  list(theta.hat=theta.hat,theta.mc=theta.mc,asl=aslperm)
```

Example using Statistic 1 (sample mean)

```
> set.seed(1)
                                                     Statistic 1: Sample Mean
> n = 50
  x = rnorm(n, mean=1)
> mean(x)
                                                         mean
[11 1.100448
                                                         median
                                               9.0
                                           permutation ASL
                                                         p=0.05
> se = (sd(x)/sqrt(n))
> cv = at(.975,df=n-1)
> c(mean(x)-cv*se, mean(x)+cv*se)
                                               0.4
[1] 0.8641687 1.3367278
> mseq = seq(0.5, 1.5, bv=0.1)
                                               0.2
  pvals = rep(0, length(mseq))
  for(k in 1:length(mseq)){
                                                   0-0-0-0
      pvals[k] = perm1samp(x, mu=mseq[k])$asl
                                                     0.6
                                                          0.8
                                                                10
                                                                          14
                                                          Median under Ho
```

Example using Statistic 2 (signed rank)

```
> set.seed(1)
                                                      Statistic 2: Signed Rank
> n = 50
 x = rnorm(n, mean=1)
> mean(x)
                                                          mean
[1] 1.100448
                                                          median
                                                0.8
                                            permutation ASL
                                                          p=0.05
> median(x)
                                                9.0
[1] 1.129104
 mvfun <- function(x) {
                                                0.4
    n = length(x)
    rx = rank(abs(x))
                                                0.2
    sum(rx[x>0]) - n*(n+1)/4
                                                                            0-0
 mseq = seq(0.5, 1.5, bv=0.1)
  pvals = rep(0, length(mseg))
                                                      0.6
                                                           0.8
                                                                 1.0
                                                                      1.2
                                                                           1.4
  for(k in 1:length(mseq)){
                                                            Median under Ho
    pvals[k] = perm1samp(x, myfun, mu=mseq[k])$as1
```

+

Example using Statistic 3 (sign)

```
> set.seed(1)
                                                           Statistic 3: Sign
> n = 50
  x = rnorm(n, mean=1)
> mean(x)
                                                          mean
                                                          median
[1] 1.100448
                                                9.0
                                            permutation ASL
                                                          p=0.05
> median(x)
                                                9.0
[1] 1.129104
  myfun <- function(x) {
                                                0.4
      n = length(x)
       sum(x>0) - n/2
                                                0.2
 mseq = seq(0.5, 1.5, bv=0.1)
  pvals = rep(0, length(mseg))
                                                                 1.0
                                                      0.6
                                                            0.8
                                                                            14
  for(k in 1:length(mseq)){
      pvals[k] = permlsamp(x,myfun,mu=mseq[k])$asl Median under H_0
```

Comparing the Statistics

Note that as our test statistic uses less information, it becomes more robust (good thing) at the cost of losing power (bad thing):

Statistic 1: Sample Mean

To you have been seen as a see

Two-Sample Permutation Tests

Two-Sample Problem

For the two-sample location problem, we have N = m + n observations

- X_1, \ldots, X_m are iid random sample from population 1
- Y_1, \ldots, Y_n are iid random sample from population 2

We want to make inferences about difference in distributions

- Let F_1 and F_2 denote distributions of populations 1 and 2
- Null hypothesis is same distribution
 - $\Leftrightarrow H_0: F_1(z) = F_2(z)$ for all z
- Alternative hypothesis is different distribution
 - $\Leftrightarrow H_1: F_1(z) \neq F_2(z)$ for some z

Permutation Vector and Lemma (2-Sample)

Let $\mathbf{g} = (g_1, g_2, \dots, g_N)$ denote the permutation vector denoting which observation belongs to which group.

- Note that g contains m X-group labels and n Y-group labels
- g_i denotes group membership of z_i , where z_i is i-th observation for combined sample of N observations
- There are $\binom{N}{n}$ different possible **g** vectors

Permutation Lemma:

Under $H_0: F_1(z) = F_2(z) \ \forall z$, the vector **g** has probability $1/\binom{N}{p} = \frac{m! \, n!}{N!}$ of equaling each of the $\binom{N}{n} = \frac{N!}{m!n!}$ different possible outcomes

Permutation Achieved Significance Level (2-Sample)

The permutation ASL is the permutation probability that $\hat{\theta}^*$ exceeds $\hat{\theta}$:

$$ASL_{perm} = \#\{|\hat{\theta}_b^*| \ge |\hat{\theta}|\} / \binom{N}{n}$$

where $\{\hat{\theta}_b^*\}_{b=1}^{\binom{n}{b}}$ is the set of all possible test statistics under H_0 .

Note that the above is for the two-sided alternative $H_0: \theta \neq \theta_0$

- For $H_0: \theta < \theta_0$, we have $ASL_{perm} = \#\{\hat{\theta}_b^* \leq \hat{\theta}\}/\binom{N}{n}$
- For $H_0: \theta > \theta_0$, we have $ASL_{perm} = \#\{\hat{\theta}_b^* \geq \hat{\theta}\}/\binom{N}{n}$

Problem: when $\binom{N}{n}$ is large, forming $\hat{\theta}_b^*$ for all $\binom{N}{n}$ possible **g** vectors is computationally expensive.

Solution: use a Monte Carlo approach!

Two-Sample Permutation Test (Monte Carlo)

Procedure for approximating ASL_{perm} using Monte Carlo approach:

- **1** Randomly sample *B* permutation vectors $\mathbf{g}_1^*, \dots, \mathbf{g}_B^*$
- 2 Evaluate the permutation replication $\hat{\theta}_b^* = s(\mathbf{g}_b^*, \mathbf{z})$ where $\mathbf{z} = (z_1, \dots, z_N)$ is the observed vector of combined data
- Approximate ASL_{perm} using

$$\widehat{\mathsf{ASL}}_{\mathsf{perm}} = \#\{|\hat{\theta}^*_{b}| \geq |\hat{\theta}|\}/B$$

This assumes that the statistic $\hat{\theta} = s(\mathbf{g}, \mathbf{z})$ is designed such that larger absolute values provide more evidence against H_0 .

- Statistic 1: $\hat{\theta} = \bar{x} \bar{y}$
- Statistic 2: $\hat{\theta} = \sum_{i=1}^{N} R_i \mathbf{1}_{\{g_i=1\}} \frac{m(N+1)}{2}$ where $R_i = \text{rank}(|z_i \theta_0|)$
- Statistic 3: $\hat{\theta} = \log(\hat{\sigma}_{x}^{2}/\hat{\sigma}_{y}^{2})$

Two-Sample Permutation Test: R Function

An R function for performing two-sample permutation tests:

```
meandif \leftarrow function(x, y) mean(x) - mean(y)
perm2samp <- function(x,y,myfun=meandif,nsamp=10000,
                       alternative=c("two.sided","less","greater")){
  theta.hat = mvfun(x,v)
  m = length(x)
  n = length(v)
  N = m + n
  z = c(x, y)
  gmat = replicate(nsamp, sample.int(N, m))
  theta.mc = apply(gmat, 2, function(q, z) {myfun(z[q], z[-q])}, z=z)
  if (alternative[1] == "less") {
    aslperm = sum(theta.mc <= theta.hat) / nsamp
  } else if(alternative[1]=="greater"){
    aslperm = sum(theta.mc >= theta.hat) / nsamp
  } else{
    aslperm = sum(abs(theta.mc) >= abs(theta.hat)) / nsamp
  list(theta.hat=theta.hat,theta.mc=theta.mc,asl=aslperm)
```

Example using Statistic 1 (mean difference)

```
Histogram of ptest$theta.mc
> set.seed(1)
> x = rnorm(15)
> v = rnorm(20, mean=1)
> choose(35,15)
[11 3247943160
                                               500
> mvfun=function(x,v) mean(x)-mean(v)
> mvfun(x,v)
                                            requency
[11 - 0.9578472]
                                               1000
> mean(x) - mean(y)
[1] -0.9578472
                                               200
> ptest = tsperm(x, y, myfun)
> ptest$theta.hat
[1] -0.9578472
> ptest$asl
[1] 0.0042
                                                      -1.0
                                                            -0.5
                                                                 0.0
                                                                       0.5
                                                                            1.0
                                                 -1.5
                                                                                  1.5
> hist(ptest$theta.mc)
                                                               ptest$theta.mc
> lines(rep(ptest$theta.hat,2),c(0,2000),col="red",ltv=2)
```

Example using Statistic 2 (rank sum)

```
Histogram of ptest$theta.mc
> set.seed(1)
> x = rnorm(15)
> v = rnorm(20, mean=1)
> choose(35,15)
[11 3247943160
> myfun = function(x,y){
      m = length(x)
 n = length(v)
     rx = rank(c(x,y))
      sum(rx[seq(along=x)]) - m*(m+n+1)/2
                                           200
> mvfun(x,v)
[11 - 85]
> ptest = perm2samp(x,y,myfun)
> ptest$theta.hat
                                                -100
                                                                        100
[1] -85
                                                          ptest$theta.mc
> ptest$asl
> hist(ptest$theta.mc)
> lines(rep(ptest$theta.hat,2),c(0,2000),col="red",lty=2)
```

Example using Statistic 3 (log variance ratio)

```
Histogram of ptest$theta.mc
> set.seed(1)
> x = rnorm(15)
                                             2500
> v = rnorm(20, sd=3)
> choose(35,15)
                                             2000
[11 3247943160
> myfun=function(x,v) log(var(x)/var(v)
> myfun(x,y)
[1] -1.867756
                                             000
> log(var(x)/var(y))
[1] -1.867756
> ptest = tsperm(x, y, myfun)
                                             200
> ptest$theta.hat
[1] -1.867756
> ptest$asl
[1] 0.01
> hist(ptest$theta.mc)
                                                           ptest$theta.mc
> lines(rep(ptest$theta.hat,2),c(0,2000),col="red",lty=2)
```

Correlation Permutation Tests

Association/Correlation Problem

Suppose we have paired data $(X_i, Y_i) \stackrel{\text{iid}}{\sim} F$ for i = 1, ..., n, where F is some bivariate distribution.

Question: are X and Y statistically associated with one another?

- X and Y are independent if and only if $F_{XY}(x, y) = F_X(x)F_Y(y)$
- If X and Y are correlated/associated, they are dependent
- Null hypothesis is $H_0: \rho = 0$ where $\rho = \operatorname{cor}(X, Y)$
- Different definitions of ρ measure different types of association

How can we use a permutation test to answer this question?

Permutation Vector and Lemma (Correlation)

Let $\mathbf{g} = (g_1, g_2, \dots, g_n)$ denote the permutation vector which contains the integers $\{1, \ldots, n\}$ in some order.

- There are n! different possible **g** vectors (orderings of y_i)
- If $H_0: \rho = 0$ is true, then reordering of y_i doesn't affect correlation

Permutation Lemma:

Under $H_0: \rho = 0$, the vector **g** has probability 1/n! of equaling each of the n! different possible outcomes

Permutation Achieved Significance Level (Correlation)

The permutation ASL is the permutation probability that $\hat{\rho}^*$ exceeds $\hat{\rho}$:

$$ASL_{perm} = \#\{|\hat{\rho}_b^*| \ge |\hat{\rho}|\}/n!$$

where $\{\hat{\rho}_{h}^{*}\}_{h=1}^{n!}$ is the set of all possible test statistics under H_{0} .

Note that the above is for the two-sided alternative $H_0: \rho \neq 0$

- For H_0 : $\rho < 0$, we have $ASL_{perm} = \#\{\hat{\rho}_h^* \leq \hat{\rho}\}/n!$
- For H_0 : $\rho > 0$, we have $\mathrm{ASL}_{\mathrm{perm}} = \#\{\hat{\rho}_h^* \geq \hat{\rho}\}/n!$

Problem: when n! is large, forming $\hat{\theta}_h^*$ for all n! possible **g** vectors is computationally expensive.

Solution: use a Monte Carlo approach!

Correlation Permutation Test (Monte Carlo)

Procedure for approximating ASL_{nerm} using Monte Carlo approach:

- Randomly sample B permutation vectors $\mathbf{g}_1^*, \dots, \mathbf{g}_B^*$
- 2 Evaluate the permutation replication $\hat{\rho}_b^* = \text{cor}(\mathbf{x}, \mathbf{y}_b)$ where \mathbf{x} is the observed vector and \mathbf{y}_b is b-th permuted copy of \mathbf{y}
- Approximate ASL_{perm} using

$$\widehat{ASL}_{perm} = \#\{|\hat{\rho}_b^*| \ge |\hat{\rho}|\}/B$$

This assumes that the correlation statistic $\hat{\rho} = \text{cor}(\mathbf{x}, \mathbf{y})$ is designed such that larger absolute values provide more evidence against H_0 .

- Could use any reasonable correlation measure
- Popular choices include Pearson, Spearman, and Kendall

Correlation Permutation Test: R Function

An R function for performing correlation permutation tests:

```
permcor <- function(x,y,method="pearson",nsamp=10000,</pre>
                     alternative=c("two.sided", "less", "greater")) {
 n = length(x)
  if (n!=length(y)) stop("lengths of x and y must match")
  theta.hat = cor(x, y, method=method)
  gmat = replicate(nsamp, sample.int(n))
  theta.mc = apply(gmat, 2, function(g)cor(x, y[g], method=method))
  if (alternative[1] == "less") {
    aslperm = sum(theta.mc <= theta.hat) / nsamp
  } else if(alternative[1]=="greater"){
    aslperm = sum(theta.mc >= theta.hat) / nsamp
  } else{
    aslperm = sum(abs(theta.mc) >= abs(theta.hat)) / nsamp
  list(theta.hat=theta.hat,theta.mc=theta.mc,asl=aslperm)
```

Example using Statistic 1 (Pearson)

```
Histogram of ptest$theta.mc
> set.seed(1)
> n = 50
> x = rnorm(n)
> v = rnorm(n)
> \text{ rho} = -0.2
                                              1000
> Amat = matrix(c(1,rho,rho,1),2,2)
                                              800
> Aeig = eigen(Amat, symmetric=TRUE)
> evec = Aeig$vec
                                              9
> evalsgrt = diag(Aeig$val^0.5)
> Asqrt = evec %*% evalsqrt %*% t(evec) 8
> z = cbind(x, y) % * %Asgrt
                                              8
> x = z[,1]
> v = z[,2]
> ptest = permcor(x,v)
                                                                          0.4
> ptest$asl
                                                               0.0
                                                             ptest$theta.mc
> hist(ptest$theta.mc)
```

> lines(rep(ptest\$theta.hat,2),c(0,2000),col="red",ltv=2)

Example using Statistic 2 (Spearman)

```
Histogram of ptest$theta.mc
> set.seed(1)
> n = 50
> x = rnorm(n)
> v = rnorm(n)
> \text{ rho} = -0.2
> Amat = matrix(c(1,rho,rho,1),2,2)
                                             1500
> Aeig = eigen(Amat, symmetric=TRUE)
> evec = Aeig$vec
> evalsgrt = diag(Aeig$val^0.5)
> Asgrt = evec %*% evalsgrt %*% t(evec)
> z = cbind(x, y) % * %Asgrt
                                              200
> x = z[,1]
> y = z[,2]
> ptest = permcor(x,y,method="spearman")°
                                                        -0.2
                                                              0.0
                                                                   0.2
                                                                         0.4
> ptest$asl
                                                   -0.4
                                                                              0.6
                                                            ptest$theta.mc
> hist(ptest$theta.mc)
> lines(rep(ptest$theta.hat,2),c(0,2000),col="red",lty=2)
```

Example using Statistic 3 (Kendall)

```
Histogram of ptest$theta.mc
> set.seed(1)
> n = 50
> x = rnorm(n)
> v = rnorm(n)
> \text{ rho} = -0.2
> Amat = matrix(c(1,rho,rho,1),2,2)
> Aeig = eigen(Amat, symmetric=TRUE)
                                             000
> evec = Aeig$vec
> evalsgrt = diag(Aeig$val^0.5)
> Asqrt = evec %*% evalsqrt %*% t(evec)
> z = cbind(x, y) % * %Asgrt
> x = z[,1]
> y = z[,2]
> ptest = permcor(x,y,method="kendall")
                                                     _n 2
                                                             0.0
                                                                     0.2
> ptest$asl
                                                                            0.4
[1] 0.0247
                                                           ptest$theta.mc
> hist(ptest$theta.mc)
> lines(rep(ptest$theta.hat,2),c(0,2000),col="red",lty=2)
```