Assignment 3

Donwload ziptrain.csv and ziptest.csv datasets from https://github.com/vahidpartovinia/ycbs255/)

1- Differentiate digit 2 from Digit 7

1.1- Two principal components

- Select only digit 2, and digit 7 from ziptrain data set.
- Project ziprain onto two principal components
- Make a scatterplot to confirm wheather or not only two principal components separates digit 2 from digit
 7.

1.2- Logistic regression

- Fit a logistic regression to separate digit 2 from digit 7 over the projected 2 principal components. Remember in logistic regression, classes are differentiated using 0 and 1 (and not 2 or 7).
- · Build the confusion matrix on ziptest and check how well the model works on the test data.

2 -Multiple principal components

- Project train data onto "m = 2, 3, ..." principal components.
- Choose an "m" so that the classification of digit 2 and 7 is the most precise on ziptest.

3-Differentiate all digits

- · Project ziprain onto two principal components
- Make a scatterplot to confirm wheather or not only two principal components separates all digits properly.
- Use linear discriminant on ziptrain over 256 original pixels and build the confusion matrix of this model over ziptrain
- Use linear disciminant over "m" projected principal components, with the appropriate choice of "m" (where the precision of prediction maximizes over ziptest data set).

Submission note

Please fill this jupyter notebook. Extract the pdf file as follows. On Jupyter manue go to File/Print Preview, then on Browser menu go to File/Print.

Only PDF Submissions will be graded

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
```

Get Data

```
In [2]: ziptrain = np.loadtxt(r"C:\Users\olive\Documents\GitHub\Computational-Applied-
Statistics\Assignment 3\ziptrain.csv")
ziptest = np.loadtxt(r"C:\Users\olive\Documents\GitHub\Computational-Applied-S
tatistics\Assignment 3\ziptest.csv")

In [3]: ziptrain2 = ziptrain[ziptrain[:, 0]==2]
ziptrain7 = ziptrain[ziptrain[:, 0]==7]
ziptrain27 = np.vstack([ziptrain2, ziptrain7])

In [4]: ziptest2 = ziptest[ziptest[:, 0]==2]
ziptest7 = ziptest[ziptest[:, 0]==7]
ziptest27 = np.vstack([ziptest2, ziptest7])
```

Project data into 2 principal components & scatterplot

```
In [5]: from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    pca.fit(ziptrain27[:, 1:])
    Z_train = pca.transform(ziptrain27[:, 1:])
    plt.scatter(Z_train[:, 0], Z_train[:, 1], c=ziptrain27[:, 0], alpha=0.3)
```

Out[5]: <matplotlib.collections.PathCollection at 0x1df89b808d0>

As can be seen above - the two principal components can be used to separate 2 from 7 reasonably well

Logistic Regression

Let 1.0 denote the character 7 and 0 the character 2:

Transform the test data:

```
In [8]: Z_test = pca.transform(ziptest27[:, 1:])
y_test = np.array([1.0 if x==7 else 0 for x in ziptest27[:, 0]])
```

Confusion Matrix

Logistic Regression seems to perform quite well...

Multiple principal components

Project into a number of principal components such that precision is high... Precision being the number of true positives divided by the sum of true positives and false positives

```
In [10]: num_feats = len(ziptrain27[0, 1:])
    prec = []
    for m in range(2, num_feats):

        pca = PCA(n_components=m)
        pca.fit(ziptrain27[:, 1:])
        Z_train = pca.transform(ziptrain27[:, 1:])
        Z_test = pca.transform(ziptest27[:, 1:])

        model_logreg = LogisticRegression()
        model_logreg.fit(X=Z_train, y=y_train)
        y_pred = model_logreg.predict(Z_test)
        cm = confusion_matrix(y_test, y_pred)
        prec.append(cm[1,1]/(cm[1,1]+cm[0,1]))
```

```
In [11]: plt.plot(range(2, num_feats), prec)
    plt.title("Precision vs Number of Principal Components")
    plt.ylabel("Precision")
    plt.xlabel("Number of Principal Components")
    plt.show()
```


It seems the precision flattens out a little after 50 components... Take m=75...

PCA all digits to m=2 and display scatter to see if it's seperable:

Out[12]: <matplotlib.legend.Legend at 0x1df8b4e6940>

It doesn't look like only two components separate all digits properly...

Linear Discriminant:

```
In [13]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model_lindisc = LinearDiscriminantAnalysis()
X_train = ziptrain[:, 1:]
y_train = ziptrain[:, 0]
model_lindisc.fit(X=X_train, y=y_train)
```

Out[13]: LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001)

Confusion Matrix:

```
In [14]: X test = ziptest[:, 1:]
         y_test = ziptest[:, 0]
         y_pred = model_lindisc.predict(X_test)
         cm = confusion_matrix(y_test, y_pred)
         print(cm)
         [[342
                                     5
                                                  1]
                 0
                         4
                             3
                                 1
                                         0
                                              3
                         2
                             5
                                                  2]
             0 251
                     0
                                 0
                                     3
                                         0
                                             1
             7
                 2 157
                         4
                           12
                                 2
                                     1
                                         1
                                            12
                                                  0]
             3
                 0
                     3 142
                             3
                                     0
                                         1
                                             4
                                                 1]
                                         2
             1
                 4
                     6
                         0 174
                                 0
                                     2
                                             1
                                                 10]
                             3 125
                                     0
                                                 5]
                       16
                                                  0]
             1
                 0
                     3
                         0
                             3
                                 3 157
                                         0
                                              3
                                     0 129
                 1
                     0 2
                             7
                                                 7]
             0
                                             1
                                 0
             5
                 0
                     2 11
                             7
                                 4
                                     0
                                         0 135
                                                  2]
                             4
                                     0
                                         5
                                              3 165]]
                                 0
```

Find optimal "m":

Since precision is defined for each class and we have multiple classes - I will optimize by finding the m value that optimizes the aggregated mean precision of all classes

```
In [16]: num_feats = len(ziptrain[0, 1:])
    prec = []

for m in range(2, num_feats):
        pca = PCA(n_components=m)
        pca.fit(ziptrain[:, 1:])
        Z_train = pca.transform(ziptrain[:, 1:])
        Z_test = pca.transform(ziptest[:, 1:])

        model_lindisc = LinearDiscriminantAnalysis()
        model_lindisc.fit(X=Z_train, y=y_train)
        y_pred = model_lindisc.predict(Z_test)
        cm = confusion_matrix(y_test, y_pred)
        prec.append([int(m), get_mean_precision(cm)])

        prec = np.array(prec)
```

```
In [17]: plt.plot(prec[:, 0], prec[:, 1])
    plt.title("Precision vs Number of Principal Components")
    plt.ylabel("Precision")
    plt.xlabel("Number of Principal Components")
    plt.show()
```



```
In [18]: m_maximizer = int(prec[prec[:, 1]==np.max(prec[:, 1])][0][0])
print("Use m value of {} to maximize precision".format(m_maximizer))
```

Use m value of 180 to maximize precision

Finally - perform the linear discriminant with m maximizer

```
In [19]: pca = PCA(n_components=m_maximizer)
         pca.fit(ziptrain[:, 1:])
         Z_train = pca.transform(ziptrain[:, 1:])
         Z_test = pca.transform(ziptest[:, 1:])
         model_lindisc = LinearDiscriminantAnalysis()
         model_lindisc.fit(X=Z_train, y=y_train)
         y_pred = model_lindisc.predict(Z_test)
         cm = confusion_matrix(y_test, y_pred)
         print(cm)
                                              4
         [[343
                 0
                      0
                          4
                              3
                                  0
                                      4
                                          0
                                                  1]
                          2
                              5
                                      3
                                          0
                                              1
                                                   2]
             0 251
                      0
                                  0
             8
                  2 157
                          5
                             10
                                  1
                                      1
                                          1
                                             13
                                                   0]
                      4 142
                                  9
                                      0
                                              5
             3
                 0
                              1
                                          1
                                                  1]
             1
                  4
                      7
                          0 172
                                  0
                                      2
                                          2
                                              2
                                                  10]
          [
             7
                 0
                         15
                              4 124
                                      0
                                          0
                                              5
                                                  5]
                     0
                              3
             1
                 0
                     3
                          0
                                  2 158
                                        0
                                              3
                                                  0]
             0
                              8
                                      0 129
                                              1
                                                  7]
                  1
                     0
                         1
                                  0
             5
                 0
                     2
                         11
                              6
                                  6
                                      0
                                          0 134
                                                   2]
```

2 164]]