Exercise Guide for $Statistical\ Inference\ (2nd\ Ed.)$ by Casella and Berger

Muthu Chidambaram

Last Updated: July 14, 2019

Contents

1	Prol	bability	The	eo	ry	7														3
	1.1	Exercise	1 .																	3
	1.2	Exercise	4 .																	3
	1.3	Exercise	6 .																	3
	1.4	Exercise	12																	3
	1.5	Exercise	13																	3
	1.6	Exercise	18																	3
	1.7	Exercise	21																	4
	1.8	Exercise	23																	4
	1.9	Exercise	25																	4
	1.10	Exercise	26																	4
	1.11	Exercise	35																	4
	1.12	Exercise	36																	4
	TT.	c ,				,														_
2		nsformat						_												5
2	2.1	Exercise	1 .																	5
2	2.1 2.2	Exercise Exercise	$\begin{array}{cc} 1 & . \\ 2 & . \end{array}$																	5 5
2	2.1 2.2 2.3	Exercise Exercise	$\begin{array}{ccc} 1 & . \\ 2 & . \\ 3 & . \end{array}$						 											5 5 5
2	2.1 2.2 2.3 2.4	Exercise Exercise Exercise	$egin{array}{cccc} 1 & . \\ 2 & . \\ 3 & . \\ 4 & . \end{array}$				 		 	 	 	 	•							5 5 5 5
2	2.1 2.2 2.3 2.4 2.5	Exercise Exercise	$egin{array}{cccc} 1 & . \\ 2 & . \\ 3 & . \\ 4 & . \end{array}$				 		 	 	 	 	•							5 5 5 5 6
2	2.1 2.2 2.3 2.4	Exercise Exercise Exercise	$egin{array}{cccccccccccccccccccccccccccccccccccc$				 		 	 	 				 	 	 	 	 	5 5 5 5 6 6
2	2.1 2.2 2.3 2.4 2.5	Exercise Exercise Exercise Exercise	$egin{array}{cccccccccccccccccccccccccccccccccccc$				 		 	 	 	 		 	 	 	 	 	 	5 5 5 6 6 6
2	2.1 2.2 2.3 2.4 2.5 2.6	Exercise Exercise Exercise Exercise Exercise	$egin{array}{cccccccccccccccccccccccccccccccccccc$				 		 	 	 	 		 	 	 	 	 	 	5 5 5 5 6 6
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Exercise Exercise Exercise Exercise Exercise Exercise	$egin{array}{cccccccccccccccccccccccccccccccccccc$				 	· · · · · · · · · · · · · · · · · · ·	 	 	 	 		 	 		 	 	 	5 5 5 6 6 6
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Exercise Exercise Exercise Exercise Exercise Exercise Exercise	$egin{array}{cccccccccccccccccccccccccccccccccccc$				 	· · · · · · · · · ·	 	 	 	 		 	 		 	 	 	5 5 5 5 6 6 6 7
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Exercise Exercise Exercise Exercise Exercise Exercise Exercise Exercise	$egin{array}{cccccccccccccccccccccccccccccccccccc$				 		 	 	 	 		 			 	 	 · · · · · · · · · · · · · · · · · · ·	5 5 5 6 6 6 7 7

About

"If you torture the data enough, nature will always confess." - Ronald Coase

There are actual solutions available here. What follows are notes I took as I worked through some of the exercises in the book on my own.

1 Probability Theory

1.1 Exercise 1

- (a) Four character strings consisting of H and T (16 total).
- (b) N
- (c) \mathbb{R}^+
- (d) $\mathbb{R}^{+}/0$
- (e) $\frac{i}{n}$ for i = 0, ..., n.

1.2 Exercise 4

- (a) $P(A) + P(B) P(A \cap B)$
- (b) $P(A) + P(B) 2P(A \cap B)$
- (c) Same as (a).
- (d) $1 P(A \cap B)$

1.3 Exercise 6

We have $u+w=1 \implies u^2+2uw+w^2=1$. However, it is not possible for $u^2, 2uw, w^2$ to all equal $\frac{1}{3}$; thus, there are no such u, w.

1.4 Exercise 12

- (a) Just a case of countable additivity.
- (b) Split $\bigcup_{i=1}^{\infty} A_i$ into $\bigcup_{i=1}^{n} A_i$ and $\bigcup_{i=n+1}^{\infty} A_i$. Taking $n \to \infty$ sends the probability of the latter union to 0, leaving the desired result.

1.5 Exercise 13

No, since
$$P(B^c) = 1 - P(B) \implies P(B) = \frac{3}{4}$$
 and $\frac{3}{4} + \frac{1}{3} > 1$.

1.6 Exercise 18

This exercise (based on the provided answer) seems to assume that the balls are distinguishable. There are n^n different arrangements of balls in cells (each ball has n options). If exactly one cell must remain empty, then exactly one other cell must have two balls. There are n choices for the empty cell and n-1 choices for the double cell. The two balls to go into the double cell can be chosen in $\binom{n}{2}$ ways, and the remaining balls can be ordered in (n-2)! ways (since they are distinguishable), hence giving the provided result.

1.7 Exercise 21

There are $\binom{2n}{2r}$ ways to choose 2r shoes from the collection. If we want to ensure that no pairs of shoes are drawn, we should only draw one shoe from each of the n pairs, which we can do in $\binom{n}{2r}$ ways. For each of the 2r shoes we can either choose the right or left shoe from the pair (assuming distinguishability).

1.8 Exercise 23

We use Vandermonde's identity with m = n = r to get

$$\sum_{k=0}^{n} \left(\frac{1}{2^n} \binom{n}{k} \right)^2 = \frac{1}{4^n} \binom{2n}{n}$$

1.9 Exercise 25

Depends on how you define the sample space, see Wikipedia for a lengthy discussion.

1.10 Exercise 26

We take the complement of the probability that we roll a 6 in the first 5 rolls: $1 - \sum_{k=0}^4 \frac{5^k}{6^{k+1}}$.

1.11 Exercise 35

From the definition of conditional probability and the fact that P(B) > 0, we have that $P(\cdot|B) > 0$ and $P(S|B) = \frac{P(B)}{P(B)} = 1$. Countable additivity follows from $A \cap B$ and $A' \cap B$ being disjoint if A and A' are.

1.12 Exercise 36

To solve the first part, we take the complement of the probability that the target was hit fewer than two times, which is

$$1 - \left(\frac{4}{5}\right)^{10} - 10\left(\frac{4}{5}\right)^9 \frac{1}{5} \approx 0.624$$

If we let A be the event that the target was hit at least once, and B be the event that the target was hit at least twice, then we see that $A \cap B = B$. The conditional probability is thus

$$\frac{1 - \left(\frac{4}{5}\right)^{10} - 10\left(\frac{4}{5}\right)^{9} \frac{1}{5}}{1 - \left(\frac{4}{5}\right)^{10}} \approx 0.699$$

2 Transformations and Expectations

2.1 Exercise 1

(a) $F_Y(y)=P(X^3\leq y)=F_X(y^{\frac{1}{3}})$. Differentiating, we get that $f_Y(y)=14y(1-y^{\frac{1}{3}})$ which integrates to 1 over (0,1).

(b) $f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_X(\frac{y-3}{4}) = \frac{7}{4} \exp\left(\frac{-7(y-3)}{4}\right)$, which again integrates to 1 over $(3,\infty)$. The sample space of Y consists of $(3,\infty)$ because 4X+3 is monotonically increasing and 4(0)+3=3.

(c) We need only consider positive square roots, since $x \in (0,1)$. Thus, $f_Y(y) = \frac{1}{2\sqrt{y}}30y(1-\sqrt{y})^2$, which integrates to 1 over (0,1).

2.2 Exercise 2

(a)
$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) = \frac{1}{2\sqrt{y}}$$

(b) Plug $x = e^{-y}$ into $f_X(x)$ and multiply by e^{-y} (the negative of the derivative, since $-\log X$ is decreasing).

(c) Plug in $x = \log y$ and multiply by $\frac{1}{y}$.

2.3 Exercise 3

From the definition of Y, we can see that the sample space is $\mathcal{Y} = \left(\frac{n}{n+1}\right)_{\mathbb{N}}$. Solving $y = \frac{x}{x+1}$ for y, we find that $f_Y(y) = f_X(\frac{y}{1-y})$.

2.4 Exercise 4

- (a) Integrating from $-\infty$ to 0 gives $\frac{1}{2}$ and likewise for 0 to ∞ , so f is a pdf.
- (b) If $t \leq 0$, then we have that $P(X < t) = \frac{1}{2}e^{\lambda t}$. Otherwise,

$$P(X < t) = \int_{-\infty}^{t} f(x) = \int_{-\infty}^{0} f(x) + \int_{0}^{t} f(x)$$
$$= \frac{1}{2} + \frac{1}{2} - \frac{1}{2}e^{-\lambda t}$$
$$= 1 - \frac{1}{2}e^{-\lambda t}$$

(c) If $t \leq 0$, P(|X| < t) is clearly 0. Otherwise,

$$P(|X| < t) = P(-t < X < t) = P(X < t) - P(X < -t)$$
$$= 1 - e^{-\lambda t}$$

from the CDFs computed in part (b).

2.5 Exercise 5

The sample space \mathcal{Y} is [0,1]. Thus, we need to consider $P(Y \leq y) = P(X \leq \sin^{-1} \sqrt{y})$ for $y \in [0,1]$. By symmetry, we can just consider the case where \sin^{-1} is restricted to $[0,\frac{\pi}{2}]$, as the other three quadrants have the same area. Therefore,

$$f_Y(y) = 4 \frac{\mathrm{d}}{\mathrm{d}y} F_X(\sin^{-1} \sqrt{y})$$
$$= 4 \frac{\mathrm{d}}{\mathrm{d}y} \frac{\sin^{-1} \sqrt{y}}{2\pi}$$
$$= \frac{1}{\pi \sqrt{y(1-y)}}$$

At y=0 and y=1, the density is infinite/undefined - I'm not really sure how to interpret this.

2.6 Exercise 11

(a) We have that

$$E[X^{2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{2} e^{-\frac{x^{2}}{2}} = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^{2} e^{-\frac{x^{2}}{2}}$$
$$= \frac{2}{\sqrt{2\pi}} \left(\lim_{x \to \infty} -x e^{-\frac{x^{2}}{2}} + \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} \right)$$
$$= 1$$

Where we integrated by parts using $dv = xe^{-\frac{x^2}{2}}$ and u = x, applied L'Hôpital's rule, and then compared to the CDF of the normal distribution.

(b) The pdf $f_Y(y)$ is just $f_X(y) + f_X(-y)$, so $f_Y(y) = \frac{2}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$. We can then compute E[Y] as

$$E[Y] = \frac{2}{\sqrt{2\pi}} \int_0^\infty y e^{-\frac{y^2}{2}} = \frac{2}{\sqrt{2\pi}}$$

To compute the variance we need to compute $E[Y^2]$, which is identical to $E[X^2]$. Thus, $Var[Y] = E[Y^2] - E[Y]^2 = 1 - \frac{2}{\pi}$.

2.7 Exercise 12

We see that $y = d \tan(x)$. Since $\tan(x)$ is increasing on $(0, \frac{\pi}{2})$, we get that

$$f_Y(y) = F_X \left(\tan^{-1} \frac{y}{d} \right) \frac{\mathrm{d}}{\mathrm{d}y} \tan^{-1} \frac{y}{d}$$
$$= \frac{2 \tan^{-1} \frac{y}{d}}{\pi d \left(1 + \frac{y^2}{d^2} \right)}$$

for $y \in (0, \infty)$. We can compute E[Y] directly from $f_X(x)$ as

$$E[Y] = \frac{2d}{\pi} \int_0^{\frac{\pi}{2}} \tan(x) dx$$
$$= \infty$$

So E[Y] does not exist.

2.8 Exercise 13

A sequence of flips has length l if there are either l heads in a row or l tails in a row, so $P(X=l)=p^l(1-p)+(1-p)^lp=p\mathrm{Geom}(1-p)+(1-p)\mathrm{Geom}(p)$. Therefore, by linearity of expected value, $\mathrm{E}[X]=\frac{p}{1-p}+\frac{1-p}{p}$.

2.9 Exercise 14

(a) We have that

$$\int_0^\infty 1 - F_X(x)dx = \int_{x=0}^\infty \int_{y=x}^\infty f_X(y)dydx$$

Since $0 \le x \le \infty$ and $x \le y \le \infty$, we can change the order of integration by having $0 \le y \le \infty$ on the outside and $0 \le x \le y$ on the inside

$$\int_{x=0}^{\infty} \int_{y=x}^{\infty} f_X(y) dy dx = \int_{y=0}^{\infty} \int_{x=0}^{y} dx f_X(y) dy$$
$$= \int_{0}^{\infty} y f_X(y) dy$$
$$= E[X]$$

(b) We can rewrite the expected value as a sum of infinite sums to see that

$$E[X] = \sum_{k=1}^{\infty} k f(k) = \sum_{k=1}^{\infty} f(k) + \sum_{k=2}^{\infty} f(k) + \dots$$
$$= \sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} f(k) = \sum_{k=0}^{\infty} (1 - F_X(k))$$

- 2.10 Exercise 17
- 2.11 Exercise 18
- 2.12 Exercise 25