INFO 1998: Introduction to Machine Learning

Lecture 4: Fundamentals of Machine Learning Pt. 1

INFO 1998: Introduction to Machine Learning

Introduction to Machine Learning and Tools

Project

- Start thinking about what datasets and questions you want to explore
- If you still need a partner, post on Ed or stay after class
- Rubric can be found on our website under "Final Project"

Project Check-in

- We'll have a check-in in about 2-3 weeks.
 - Expecting hypothesis/question/problem to solve
 - Chosen dataset
 - Some progress on data cleaning/data visualization
- Come to OH if you need help or if there's a problem

What We'll Cover

Today's Goal: be able to write code to do some kind of ML (to some extent)

- Define Machine Learning: or like, 5 definitions
- Start learning the language of ML: There's a lot of terminology:
- Try Linear Regression (via ScikitLearn): Our first ML algorithm!
- Introduce our Workflow: An outline for developing an ML model
- Discuss Some Important Considerations: What should we be thinking about as we're MLing?

Agenda

- 1. What does a Machine Learning Engineer do?
- 2. On a high level, how do you define "Machine Learning"?
- 3. What's a Machine Learning Model?
- 4. What's a good Machine Learning Model?

What's Machine Learning? Part 1: what does an ML engineer do

Machine Learning can involve:

- Preprocessing data
- Splitting and selecting pieces of data
- Doing mathematical analysis on the data
- Deciding what data structures are needed to efficiently implement algorithms
- Implementing accuracy metrics
- ...and a lot more

How do we do machine learning?

What we're gonna do:

Write as little code as possible!

- Use pandas to deal with data
- Use numpy to do math
- Use scikit-learn ("sklearn") to make ML models (and other useful stuff)

What we're gonna do:

Our main tasks:

- Choose an algorithm
- Choose how to use different parts of the data
- Find which pandas, numpy, and scikit-learn functions do what we want
- Interpret the results and fine-tune our model

Quick analogy: studying

- Setup
 - Goal: Be able to solve the test problems
 - Resources: Practice problems + answers
- Method
 - You study those practice problems and answers. Given a problem, how do you get the answer?
- Result:
 - On the real test, the problems aren't the exact same as the practice problems. But they're similar!
 - Since you learned generally how to solve the practice problems, you can solve the similar test problems too :)

What's Machine Learning? Part 2: like seriously what is it

Some Definitions of ML

- Give computers the ability to learn without being explicitly programmed
 (^ that one's a pretty sucky definition)
- Build a useful mathematical model, based on sample data, to make inferences
- Take in data and make predictions or decisions
- Help your computer learn patterns

Traditional Computer Science

Machine Learning

Using Machine Learning

Traditional CS Machine Learning New **Data Data Output** Program Known **Output** Computer Computer

What's Machine Learning? Part 3: what's a model?

What's a model?

- The output of a machine learning algorithm
- A procedure to produce some outputs when given some inputs
- A relationship between inputs and outputs
- A guess at how inputs and outputs are related
- A set of assumptions we're imposing on the dataset
- A configurable thing (hyperparameters)

ML Algorithm produces a Model

Review: Dataset Structure

- rows are data points
 - o aka samples
- columns are features
 - a sample is made of lots of features, including the goal

	Name	Age	Major
0	Ann	19	Computer Science
1	Chris	20	Sociology
2	Dylan	19	Computer Science
3	Camilo	NaN	NaN
4	Tanmay	NaN	NaN

Linear Regression

$$y = B_0 + B_I x_I + \dots + B_p x_p + \varepsilon$$

- x is an input; $x_1, x_2, ..., x_p$ are the features of x
- y is an output (usually a single value)
- B's are "weights"
 - A linear regression equation is defined by its B's
 - This linear regression equation is the "program" produced by ML
- Given a set of x's and y's, the program finds a set of B's that (almost) satisfy the equation above for all x's and y's
 - Then, you can plug in the feature values of a new x and to predict its y

Linear Regression: Ordinary Least Squares

- There are different types of linear regression algorithms
- We are using ordinary least squares
- This calculates the weight vector B by minimizing the mean-squared error of the predicted y-values
- There are other types of linear regression such as ridge regression, which use different loss functions to calculate the weights

Linear Regression

Function

Weighted Sum

$$y = B_0 + B_1 x_1 + ...$$
 is a model

- A relationship between inputs and outputs $y = B_0 + B_1 x_1 + ...$ relates inputs to outputs
- A guess at how inputs and outputs are related but $y = B_0 + B_I x_I + ...$ is just a guess/estimate; it's not exactly true
- A set of assumptions we're imposing on the dataset
 We're assuming output is linear with input features and input features are ordered
- A configurable thing (hyperparameters)
 Sorry, we don't cover very much linear regression configuration here:

$$y = B_0 + B_I x_I + ...$$
 is a model

- A relationship between inputs and outputs $y = B_0 + B_1 x_1 + ...$ relates inputs to outputs
- A guess at how inputs and outputs are related but $y = B_0 + B_I x_I + ...$ is just a guess/estimate; it's not exactly true
- A set of assumptions we're imposing on the dataset
 We're assuming output is linear with input features and input features are ordered
- A configurable thing (hyperparameters)
 Sorry, we don't cover very much linear regression configuration here :(

Use algorithm to "learn" parameters that give us this line of best fit

What's Machine Learning? Part 4: What makes a good model?

Pitfall of training: Overfitting

Just right! Overfitting

Model is accurate for **train** data

Model can accurately predict **new** data

- We didn't learn the data's general patterns :(
- We learned the specific mapping from train input to train outputs :((()

Solution: train on part of data, and check accuracy on a separate part of data (validation set)

Terminology: Training and Validating

- Split data into two sets
- Train model on one, validate on the other
- "Model training" = learn a relationship/program
 - \circ e.g. give the linear regression data so it can define the B's
- "Model validation" = see if the learned relationship is accurate on other data

Machine Learning

Machine Learning New Data Computer Computer

Our ML Workflow

- 1. Select data
- 2. Assess model accuracy
- 3. Adjust Model

Pitfall of validation: Overfitting

Predicting well on validation set

Predicting well on new data

 We used the validation set to make our adjustments. This means our model is biased to the validation set :

Solution: keep a separate, rarely-used test set

Demo

Model Goals

When training a model we want our models to:

- Capture the trends of the training data
- Generalize well to other samples of the population
- Be moderately interpretable

The first two are especially difficult to do simultaneously!
The more sensitive the model, the less generalizable and vice versa.

Putting things into perspective

- Linear Regression alone is weak, but it can be very strong when combined with feature selection and feature engineering
- Linear Regression is just one algorithm we'll cover many more
- The "model" produced by an algorithm is not always a simple equation like in linear regression
- Validation is really important
 - Overfitting is a huge problem!
 - We'll delve deeper in the next few lectures

Coming Up

Assignment 4: Due at 11:59pm EST on October 12, 2022

Next Lecture: Assessing Model Accuracy + Fundamentals of ML

(a.k.a. What's Machine Learning? Part ∞)

