Cutting-plane Method and the Amazing Oracles

Wai-Shing Luk

Fudan University

April 8, 2019

Introduction

Cutting-plane Method Revisited

Robust Convex Optimization

Parametric Network Potential Problem

Matrix Inequalities

Q & A

When you have eliminated the impossible, whatever remains, however improbable, must be the truth.

Sir Arthur Conan Doyle, stated by Sherlock Holmes

Introduction

Some History of Ellipsoid Method

- ▶ Introduced by Shor and Yudin and Nemirovskii in 1976
- ▶ Used to show that linear programming (LP) is polynomial-time solvable (Kachiyan 1979), settled the long-standing problem of determining the theoretically complexity of LP.
- ▶ In practice, however, the simplex method runs much faster than the method, although its worst-case complexity is exponential.

Common Perspective of Ellipsoid Method

- ▶ It is commonly believed that it is inefficient in practice for large-scale problems.
 - ▶ The convergent rate is slow, even with the use of deep cuts.
 - Cannot exploit sparsity.
- ▶ Since then, it was supplanted by interior-point methods.
- ▶ Only treated as a theoretical tool for proving the polynomial-time solvability of combinatorial optimization problems.

But...

- ▶ The ellipsoid method works very differently compared with the interior point method.
- ▶ Only require a cutting-plane oracle. Can play nicely with other techniques.
- ▶ The oracle can exploit sparsity.

Consider Ellipsoid Method When...

- ► The number of optimization variables is moderate, e.g. ECO flow, analog circuit sizing, parametric problems
- ▶ The number of constraints is large, or even infinite
- ▶ Oracle can be implemented efficiently.

Cutting-plane Method Revisited

Basic Idea

- ▶ Let $\mathcal{K} \subseteq \mathbb{R}^n$ be a convex set.
- ► Consider the feasibility problem:
 - Find a point $x^* \in \mathbb{R}^n$ in \mathcal{K} ,
 - ightharpoonup or determine that K is empty (i.e., no feasible sol'n)

Separation Oracle

- When a separation oracle Ω is queried at x_0 , it either
 - ightharpoonup asserts that $x_0 \in \mathcal{K}$, or
 - returns a separating hyperplane between x_0 and \mathcal{K} :

$$g^{\top}(x-x_0)+h \le 0, h \ge 0, g \ne 0, \ \forall x \in \mathcal{K}$$

Separation oracle (cont'd)

- ▶ (g,h) called a *cutting-plane*, or cut, since it eliminates the halfspace $\{x \mid g^{\top}(x-x_0)+h>0\}$ from our search.
- ▶ If h = 0 (x_0 is on boundary of halfspace that is cut), cutting-plane is called *neutral cut*.
- ▶ If h > 0 (x_0 lies in interior of halfspace that is cut), cutting-plane is called *deep cut*.

Subgradient

- \triangleright \mathcal{K} is usually given by a set of inequalities $f_j(x) \leq 0$ or $f_j(x) < 0$ for $j = 1 \cdots m$, where $f_j(x)$ is a convex function.
- A vector $g \equiv \partial f(x_0)$ is called a subgradient of a convex function f at x_0 if $f(z) \geq f(x_0) + g^{\mathrm{T}}(z x_0)$.
- ▶ Hence, the cut (g,h) is given by $(\partial f(x_0), f(x_0))$

Remarks:

▶ If f(x) is differentiable, we can simply take $\partial f(x_0) = \nabla f(x_0)$

Key components of Cutting-plane method

- ightharpoonup Cutting plane oracle Ω
- \triangleright A search space \mathcal{S} initially big enough to cover \mathcal{K} , e.g.
 - Polyhedron $\mathcal{P} = \{z \mid Cz \leq d\}$
 - Interval $\mathcal{I} = [l, u]$ (for one-dimensional problem)
 - ► Ellipsoid $\mathcal{E} = \{z \mid (z x_c)P^{-1}(z x_c) \le 1\}$

Generic Cutting-plane method

- ▶ Given initial S known to contain K.
- ► Repeat
 - 1. Choose a point x_0 in S
 - 2. Query the cutting-plane oracle at x_0
 - 3. If $x_0 \in \mathcal{K}$, quit
 - 4. **Else**, update S to a smaller set that covers:

$$\mathcal{S}^+ = \mathcal{S} \cap \{ z \mid g^\top(z - x_0) + h \le 0 \}$$

5. If $S^+ = \emptyset$ or it is small enough, quit.

Corresponding Python code

```
def cutting_plane_feas(evaluate, S, options=Options()):
    feasible = False
    status = 0
    for niter in range(options.max it):
        cut, feasible = evaluate(S.xc)
        if feasible: # feasible sol'n obtained
            break
        status, tau = S.update(cut)
        if status != 0:
            break
        if tau < options.tol:</pre>
            status = 2
            break
    return S.xc, niter+1, feasible, status
```


Convex Optimization Problem (I)

minimize
$$f_0(x)$$
, subject to $x \in \mathcal{K}$

- ▶ The optimization problem is treated as a feasibility problem with an additional constraint $f_0(x) < t$
- $ightharpoonup f_0(x)$ could be a convex function or a quasiconvex function.
- ▶ t is the best-so-far value of $f_0(x)$.

Convex Optimization Problem (II)

▶ Problem can be reformulated as:

minimize
$$t$$
,
subject to $\Phi(x,t) < 0$
 $x \in \mathcal{K}$

where $\Phi(x, t) < 0$ is the t-sublevel set of $f_0(x)$.

- ▶ Note: $\mathcal{K}_t \subseteq \mathcal{K}_u$ if and only if $t \leq u$ (monotonicity)
- lackbox One easy way to solve the optimization problem is to apply the binary search on t.

Corresponding Python code

```
def bsearch(evaluate, I, options=Options()):
    # assume monotone
    feasible = False
    1, u = I
    t = 1 + (u - 1)/2
    for niter in range(options.max_it):
        if evaluate(t): # feasible sol'n obtained
            feasible = True
            11 = t
        else:
           1 = \pm
        tau = (u - 1)/2
        t = 1 + tau
        if tau < options.tol:
            break
    return u, niter+1, feasible
```



```
class bsearch adaptor:
    def init (self, P, E, options=Options()):
        self.P = P
        self.E = E
        self.options = options
    @property
    def x best(self):
        return self.E.xc
    def __call__(self, t):
        E = self.E.copy()
        self.P.update(t)
        x, , feasible, = cutting plane feas(
            self.P, E, self.options)
        if feasible:
            self.E. xc = x.copy()
            return True
        return False
```


Shrinking

- Another possible way is, to update the best-so-far t whenever a feasible solution x_0 is found such that $\Phi(x_0, t) = 0$.
- ▶ We assume that the oracle takes the responsibility for that.

Generic Cutting-plane method (Optim)

- ▶ Given initial S known to contain K_t .
- ► Repeat
 - 1. Choose a point x_0 in S
 - 2. Query the separation oracle at x_0
 - 3. If $x_0 \in \mathcal{K}_t$, update t such that $\Phi(x_0, t) = 0$.
 - 4. Update S to a smaller set that covers:

$$S^+ = S \cap \{ z \mid g^\top (z - x_0) + h \le 0 \}$$

5. If $S^+ = \emptyset$ or it is small enough, quit.

Corresponding Python code

```
def cutting_plane_dc(evaluate, S, t, options=Options()):
    feasible = False # no sol'n
    x best = S.xc
    for niter in range(options.max_it):
        cut, t1 = evaluate(S.xc, t)
        if t != t1: # best t obtained
            feasible = True
            t = t.1
            x best = S.xc
        status, tau = S.update(cut)
        if status == 1:
            break
        if tau < options.tol:
            status = 2
            break
    return x_best, t, niter+1, feasible, status
```


Example: Profit Maximization Problem

maximize
$$p(Ax_1^{\alpha}x_2^{\beta}) - v_1x_1 - v_2x_2$$

subject to $x_1 \leq k$.

- ▶ $p(Ax_1^{\alpha}x_2^{\beta})$: Cobb-Douglas production function
- \triangleright p: the market price per unit
- ► A: the scale of production
- \triangleright α, β : the output elasticities
- \triangleright x: input quantity
- \triangleright v: output price
- \triangleright k: a given constant that restricts the quantity of x_1

Example: Profit maximization (cont'd)

- ▶ The formulation is not in the convex form.
- ▶ Rewrite the problem in the following form:

```
 \begin{array}{ll} \text{maximize} & t \\ \text{subject to} & t + v_1 x_1 + v_2 x_2 < pA x_1^{\alpha} x_2^{\beta} \\ & x_1 \leq k. \end{array}
```


Profit maximization in Convex Form

- ▶ By taking the logarithm of each variable:
 - $y_1 = \log x_1, y_2 = \log x_2.$
- ▶ We have the problem in a convex form:

Python code (Profit oracle) I

```
class profit oracle:
    def init (self, params, a, v):
        p, A, k = params
        self.log_pA = np.log(p * A)
        self.log_k = np.log(k)
        self.v = v: self.a = a
    def call__(self, y, t):
        fj = v[0] - self.log k # constraint
        if fj > 0.:
            g = np.array([1., 0.])
           return (g, fj), t
        log Cobb = self.log pA + np.dot(self.a, y)
        x = np.exp(y)
        vx = np.dot(self.v, x)
        te = t + vx
        fi = np.log(te) - log Cobb
        if fj < 0.:
           te = np.exp(log_Cobb)
            t = te - vx; fj = 0.
        g = (self.v * x) / te - self.a
        return (g, fj), t
```


Python code (Main program) I

```
import numpy as np
from profit_oracle import *
from cutting_plane import *
from ell import *
p. A. k = 20.0, 40.0, 30.5
params = p, A, k
alpha, beta = 0.1, 0.4
v1, v2 = 10.0, 35.0
y0 = np.array([0.0, 0.0]) # initial x0
E = ell(200, y0)
P = profit oracle(params, alpha, beta, v1, v2)
yb1, fb, iter, feasible, status = \
    cutting plane dc(P, E, 0.0)
print(fb, iter, feasible, status)
```


Area of Applications

- ► Robust convex optimization
 - ▶ oracle technique: affine arithmetic
- ▶ Parametric network potential problem
 - ▶ oracle technique: negative cycle detection
- ► Semidefinite programming
 - ▶ oracle technique: Cholesky factorization

Robust Convex Optimization

Robust Optimization Formulation

Consider:

```
minimize \sup_{q\in\mathbb{Q}} f_0(x,q)
subject to f_j(x,q) \leq 0, \ \forall q \in \mathbb{Q}, \ j=1,2,\cdots,m,
```

where q represents a set of varying parameters.

► The problem can be reformulated as:

```
minimize t subject to f_0(x,q) < t f_j(x,q) \le 0, \ \forall q \in \mathbb{Q}, \ j=1,2,\cdots,m,
```


Oracle in Robust Optimization Formulation

- ▶ The oracle only needs to determine:
 - If $f_j(x_0, q) > 0$ for some j and $q = q_0$, then
 - the cut $(g,h) = (\partial f_j(x_0, q_0), f_j(x_0, q_0))$
 - ▶ If $f_0(x_0, q) \ge t$ for some $q = q_0$, then
 - the cut $(g,h) = (\partial f_0(x_0,q_0), f_0(x_0,q_0) t)$
 - ightharpoonup Otherwise, x_0 is feasible, then
 - Let $q_{\max} = \operatorname{argmax}_{q \in \mathbb{Q}} f_0(x_0, q)$.
 - $t := f_0(x_0, q_{\max}).$
 - ► The cut $(g,h) = (\partial f_0(x_0, q_{\max}), 0)$

Example: Profit Maximization Problem (convex)

- ▶ Now assume that:
 - ightharpoonup $\hat{\alpha}$ and $\hat{\beta}$ vary $\bar{\alpha} \pm e_1$ and $\bar{\beta} \pm e_2$ respectively.
 - \hat{p} , \hat{k} , \hat{v}_1 , and \hat{v}_2 all vary $\pm e_3$.

Example: Profit Maximization Problem (oracle)

By detail analysis, the worst case happens when:

- $p = \bar{p} + e_3, k = \bar{k} + e_3$
- $v_1 = \bar{v}_1 e_3, v_2 = \bar{v}_2 e_3,$
- if $y_1 > 0$, $\alpha = \bar{\alpha} e_1$, else $\alpha = \bar{\alpha} + e_1$
- if $y_2 > 0$, $\beta = \bar{\beta} e_2$, else $\beta = \bar{\beta} + e_2$ **Remark**: for more complicated problems, affine arithmetic could be used.

profit_rb_oracle

```
class profit rb oracle:
    def init__(self, params, a, v, vparams):
        ui, e1, e2, e3 = vparams
        self.uie = [ui * e1, ui * e2]
        self.a = a; p, A, k = params
        p -= ui * e3; k -= ui * e3
       v rb = v.copv()
        v rb += ui * e3
        self.P = profit_oracle((p, A, k), a, v_rb)
    def call (self, y, t):
        a rb = self.a.copy()
        for i in [0, 1]:
            a rb[i] += self.uie[i] * (+1.
                        if y[i] \le 0. else -1.)
        self.P.a = a rb
        return self.P(y, t)
```


Parametric Network Potential Problem

Parametric Network Potential Problem

Given a network represented by a directed graph G = (V, E).

Consider:

```
minimize t

subject to u_i - u_j \le h_{ij}(x,t), \ \forall (i,j) \in E,

variables x, u,
```

- $ightharpoonup h_{ij}(x,t)$ is the weight function of edge (i,j),
- ▶ Assume: network is large but the number of parameters is small.

Network Potential Problem (cont'd)

Given x and t, the problem has a feasible solution if and only if G contains no negative cycle. Let C be a set of all cycles of G.

minimize
$$t$$

subject to $W_k(x,t) \ge 0, \forall C_k \in C$,
variables x

- $ightharpoonup C_k$ is a cycle of G
- $W_k(x,t) = \sum_{(i,j) \in C_k} h_{ij}(x,t).$

Oracle in Network Potential Problem

- ► The oracle only needs to determine:
 - ▶ If there exists a negative cycle C_k under x_0 , then ▶ the cut $(g,h) = (-\partial W_k(x_0), -W_k(x_0))$
 - ▶ If $f_0(x_0) \ge t$, then ▶ the cut $(g,h) = (\partial f_0(x_0), f_0(x_0) - t)$
 - \triangleright Otherwise, x_0 is feasible, then
 - $t := f_0(x_0).$
 - ▶ The cut $(g,h) = (\partial f_0(x_0), 0)$

Python Code

```
class network oracle:
   def __init__(self, G, f, p):
        self.G = G
        self.f = f
        self.p = p # partial derivative of f w.r.t x
        self.S = negCycleFinder(G)
    def __call__(self, x):
        def get_weight(G, e):
            return self.f(G, e, x)
        self.S.get_weight = get_weight
        C = self.S.find neg cycle()
        if C is None:
           return None, 1
        f = -sum(self.f(self.G, e, x) for e in C)
        g = -sum(self.p(self.G, e, x) for e in C)
        return (g, f), 0
```


Example: Optimal Matrix Scaling

- Given a sparse matrix $A = [a_{ij}] \in \mathbb{R}^{N \times N}$.
- Find another matrix $B = UAU^{-1}$ where U is a nonnegative diagonal matrix, such that the ratio of any two elements of B in absolute value is as close to 1 as possible.
- Let $U = \text{diag}([u_1, u_2, \dots, u_N])$. Under the min-max-ratio criterion, the problem can be formulated as:

```
minimize \pi/\psi

subject to \psi \leq u_i | a_{ij} | u_j^{-1} \leq \pi, \ \forall a_{ij} \neq 0,

\pi, \psi, u, positive

variables \pi, \psi, u.
```


Optimal Matrix Scaling (cont'd)

By taking the logarithms of variables, the above problem can be transformed into:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \pi' - \psi' \leq t \\ & u_i' - u_j' \leq \pi' - a_{ij}', \; \forall a_{ij} \neq 0 \,, \\ & u_j' - u_i' \leq a_{ij}' - \psi', \; \forall a_{ij} \neq 0 \,, \\ \text{variables} & \pi', \psi', u' \,. \end{array}$$

where k' denotes $\log(|k|)$ and $x = (\pi', \psi')^{\top}$.

Corresponding Python Code

```
def con(G, e, x):
    u \cdot v = e
    if index[u] < index[v]: return x[0] - G[u][v]['cost']</pre>
    else: return G[u][v]['cost'] - x[1]
def pcon(G, e, x):
    u, v = e
    if index[u] < index[v]: return np.array([1., 0.])</pre>
    else: return np.array([0., -1.])
class optscaling_oracle:
    def init (self, G):
        self.network = network_oracle(G, con, pcon)
    def call (self, x, t):
        cut. feasible = self.network(x)
        if not feasible: return cut, t
        s = x[0] - x[1]
        fi = s - t
        if fj < 0.:
            t = s
            fi = 0.
        return (np.array([1., -1.]), fj), t
```


Example: clock period & yield-driven co-optimization

```
 \begin{array}{ll} \text{minimize} & T_{CP} - w_{\beta}\beta \\ \text{subject to} & u_i - u_j \leq T_{CP} + F_{ij}^{-1}(1-\beta), \quad \forall (i,j) \in E_s\,, \\ & u_j - u_i \leq F_{ij}^{-1}(1-\beta), \qquad \forall (j,i) \in E_h\,, \\ & T_{CP} \geq 0, \, 0 \leq \beta \leq 1\,, \\ \text{variables} & T_{CP}, \beta, u. \end{array}
```

- Note that $F_{ij}^{-1}(x)$ is not concave in general in [0,1].
- ▶ Fortunately, we are most likely interested in optimizing circuits for high yield rather than the low one in practice.
- ▶ Therefore, by imposing an additional constraint to β , say $\beta \ge 0.8$, the problem becomes convex.

Inverse CDF

Figure 1: img

Matrix Inequalities

Problems With Matrix Inequalities

Consider the following problem:

```
minimize t, subject to F(x,t) \succeq 0,
```

- ightharpoonup F(x,t): a matrix-valued function
- ▶ $A \succeq 0$ denotes A is positive semidefinite.

Problems With Matrix Inequalities

- ▶ Recall that a matrix A is positive semidefinite if and only if $v^{\top}Av > 0$ for all $v \in \mathbb{R}^{N}$.
- ▶ The problem can be transformed into:

minimize
$$t$$
, subject to $v^{\top}F(x,t)v \geq 0, \ \forall v \in \mathbb{R}^{N}$

- ▶ Consider $v^{\top}F(x,t)v$ is concave for all $v \in \mathbb{R}^N$ w. r. t. x, then the above problem is a convex programming.
- ▶ Reduce to semidefinite programming if F(x,t) is linear w.r.t. x, i.e., $F(x) = F_0 + x_1F_1 + \cdots + x_nF_n$

Oracle in Matrix Inequalities

The oracle only needs to:

- ▶ Perform a row-based Cholesky factorization such that $F(x_0, t) = R^{\top}R$.
- ▶ Let $A_{:p,:p}$ denotes a submatrix $A(1:p,1:p) \in \mathbb{R}^{p \times p}$.
- \triangleright If Cholesky factorization fails at row p,
 - ▶ there exists a vector $e_p = (0, 0, \dots, 0, 1)^{\top} \in \mathbb{R}^p$, such that
 - $v = R_{:p,:p}^{-1} e_p$, and
 - $v^{\top}F_{:p,:p}(x_0)v < 0.$
 - ► The cut $(g,h) = (-v^{\top} \partial F_{:p,:p}(x_0)v, -v^{\top} F_{:p,:p}(x_0)v)$

Corresponding Python Code

```
class lmi_oracle:
    ''' Oracle for LMI constraint F*x <= B '''
    def __init__(self, F, B):
        self.F = F
        self.F0 = B
        self.A = np.zeros(B.shape)
    def __call__(self, x):
        n = len(x)
        def getA(i, j):
            self.A[i, j] = self.F0[i, j]
            self.A[i, j] -= sum(self.F[k][i, j] * x[k]
                                 for k in range(n))
            return self.A[i, j]
        Q = chol_ext(getA, len(self.A))
        if Q.is spd(): return None, 1
        v = Q.witness()
        p = len(v)
        g = np.array([v.dot(self.F[i][:p, :p].dot(v))
                      for i in range(n)])
        return (g, 1.), 0
```


Example: Matrix Norm Minimization

- Let $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$
- ▶ Problem $\min_x ||A(x)||$ can be reformulated as

minimize
$$t$$
,
subject to $\begin{pmatrix} tI & A(x) \\ A^{\top}(x) & tI \end{pmatrix} \succeq 0$,

ightharpoonup Binary search on t can be used for this problem.

Python Code

```
class qmi_oracle:
    def init (self. F. F0):
        self.F = F; self.F0 = F0
        self.Fx = np.zeros(F0.shape)
        self.A = np.zeros(F0.shape)
        self.t = None; self.count = -1
    def update(self, t): self.t = t
    def __call__(self, x):
        self.count = -1; nx = len(x)
        def getA(i, i):
            if self.count < i:
                self.count = i; self.Fx[i] = self.F0[i]
                self.Fx[i] -= sum(self.F[k][i] * x[k]
                                  for k in range(nx))
            self.A[i, j] = -self.Fx[i].dot(self.Fx[j])
            if i == j: self.A[i, j] += self.t
            return self.A[i, j]
        Q = chol ext(getA, len(self.A))
        if Q.is_spd(): return None, 1
        v = Q.witness(); p = len(v)
        Av = v.dot(self.Fx[:p])
        g = -2.*np.array([v.dot(self.F[k][:p]).dot(Av)
                          for k in range(nx)])
        return (g, 1.), 0
```


Example: Estimation of Correlation Function

$$\min_{\kappa,p} \quad \|\Omega(p) + \kappa I - Y\|
s. t. \quad \Omega(p) \geq 0, \kappa \geq 0.$$

- ▶ Let $\rho(h) = \sum_{i=1}^{n} p_i \Psi_i(h)$, where
 - \triangleright p_i 's are the unknown coefficients to be fitted
 - \blacktriangleright Ψ_i 's are a family of basis functions.
- ▶ The covariance matrix $\Omega(p)$ can be recast as:

$$\Omega(p) = p_1 F_1 + \dots + p_n F_n$$

where
$$\{F_k\}_{i,j} = \Psi_k(\|s_j - s_i\|_2)$$

Experimental Result

Q & A

