JEOD Training

Reference Frame Tree Mass Tree

Tree Concept

- See Chapters D and E in course_text.pdf
- Main concepts:
 - One Root per tree

Reference Frame Tree

- One reference frame tree per sim
- Reference Frames have states
 - States are known relative to parent
 - position, velocity
 - ang_vel_this, T_parent_this, Q_parent_this
 - Quaternions are always left-handed transformation quaternions
 - States can be obtained relative to any other frame by traversing the tree (automatic tools available)
- Reference Frames may be picked up and moved
- Ephemerides auto-added
- User-added

Ephemerides

- Uses DE405, DE421 or SPICE.
 - No DE430 (yet)
- Inertial frames may be used as integration frames
 - "<planet>.inertial"

Extending the Tree

- Vehicles are assigned an "integration frame"
 - Vehicle frames have states relative to this frame
 - Vehicle frames are added as children of this frame

- Additional frames added as needed.
 - More on this later

Mass Tree

- One mass tree per contiguous group of bodies
 - Hierarchy, what is attached to what
 - Attachments abstract; not necessarily physical

- Each body has:
 - Structure point (MassBasicPoint),
 - Core properties (MassProperties),
 - Composite properties (*MassProperties*),
 - Mass Points (*MassPoint*, optional)

Adding Points of Interest

- Points of interest (*MassPoint*) can be added to a *MassBody* with the *MassBodyInit* body-action.
- Inheritance Hierarchy:
 - MassPoint is a MassBasicPoint with:
 - Name
 - MassBasicPoint (e.g. structure_point) is a MassPointState
 - MassPointState has:
 - Position
 - Orientation
 - MassProperties (e.g. core_properties, composite_properties) is a MassBasicPoint with:
 - Mass
 - Inertia tensor

Manipulating the Mass Tree

Attachments

- C3c to B3:

- B3 to A or C3* to A:

(visual - abstract nature)

Reference Frame Tree and Mass Tree

Concepts:

- composite_body, composite_properties
- core body, core properties
- structure, structure point
- DynBody, MassBody
- DynBody is a MassBody.
 - sub-frames associated with mass-points
 - composite_body frame:
 - Has same position as composite_properties
 - composite_body is known relative to inertial frame
 - composite_properties is known relative to structural
 - Has same orientation as composite_properties
 - Likewise
 - Thus inertial position and orientation of structural is defined
 - Etc.

Adding Reference Frames (and Mass Points)

- Simplest method to add a reference frame is to add a masspoint to a *DynBody* via the Body-action *MassBodyInit*
 - Creates a new *BodyRefFrame*
 - Adds new frame as a child of DynBody's integration frame
 - Adds the new frame to the Dynamics Manager for maintenance

Alternative:

- Create a frame
- Add it to the tree (add_frame_to_tree)
- Add it to the Dynamics Manager (add_frame)
- Subscribe to it
- Recover a MassPoint with find_mass_point
- Recover a BodyRefFrame with find_vehicle_point

Response of Reference Frame Tree to Manipulation of Mass Tree

Mass Tree

Reference Frame Tree

- Attach the bodies:
- Frames of attached bodies are siblings

Traversing the Reference Frame Tree

- frame.compute_position_from(source-frame, 3-array)
- frame.compute_relative_state(source-frame, RefFrameState)

• e.g.

 Note – RefFrameState output on compute_relative_state is the class used to describe the state of a RefFrame; it is not a RefFrame.