Quantum Sensing: Magnetic Flux Detection

Yasir Mohamed, Munzir Abdelgadir, Adrian Joseph

Overview

- Magnetoencephalography (MEG)
 - Neuroimaging technique
 - used to measure magnetic fields produced by neuronal activity in the brain
- Neurons in the brain generate electrical currents when they communicate, resulting in tiny magnetic fields being produced

SQUIDs

- Superconducting Quantum Interference
 Device (SQUIDs) is a magnetometer that detects magnetic fields from neural activity within the brain
 - Extremely sensitive to small magnetic fields

Quantum Sensors

- Φm: general flux to be measured
- Ishield: Current representing Φm
- Φext: magnetic flux representing Φm
 - They are exposed to the Φext
 - This results in a phase shift depending on exposure time
 - Exposure time is determined by the superconducting switch
 - Phase shift is dependent on the strength of the flux and the time of exposure

Ramsey Fringes Interferometry

 Technique used to measure phase evolution of qubits as it interacts with external fields

Sensor Output Interpretation

Pm is an outcome from sensing procedure

т is the delay time

Amount of time the sensor has been

Influenced by the magnetic flux

Φ is the external flux we are measuring

Issues

- Selecting the optimal delay time for unknown flux value.
 - Topt as large as possible
 - Larger delay times are more sensitive to flux

Issues

- For longer delay times, it is not possible to unambiguously determine the measured flux based on a single outcome
 - Φ1, Φ2, Φ3, Φ4?
 - Coherence time
 - Time qubit can maintain its state
 - Decoherence occur after
 - Energy relaxation
 - Dephasing
 - Depends on qubit

Coherence only if asked.

how long a qubit can maintain its quantum state before it is disrupted by decoherence mechanisms, such as energy relaxation and dephasing.

Solution

 For this we use PEA(Phase Estimation Algorithms) to find the optimal delay time

One common approach is using Kitaev algorithm

 Using Kitaev's algorithm provides both a higher accuracy and a faster runtime as will be shown next

Kitaev's Algorithm

Simulation

Create n ancilla qubits

Apply the Hadamard gate to ancilla qubits

Apply the U gate to the qubit being controlled

```
home > tai > Desktop > 💠 qiskit2.py >
     from qiskit import QuantumCircuit
 2 from qiskit aer import AerSimulator
    from qiskit.circuit.library import QFT
     from qiskit.visualization import plot_histogram
     from giskit.utils import QuantumInstance
 6 import numpy as np
     theta = 0.5
    U = OuantumCircuit(1)
     U.rz(2 * np.pi * theta, 0) # U = Rz(2*pi*theta)
 12 U = U.to gate()
 13 U.name = "U"
     def kitaev phase estimation(U, n bits):
         qc = QuantumCircuit(n bits + 1, n bits)
         for i in range(n bits):
             qc.h(i)
         for i in range(n bits):
             gc.append(U.control(), [i, n bits])
         qc.append(QFT(num qubits=n bits, inverse=True).to gate(), range(n bits))
         gc.measure(range(n bits), range(n bits))
     qc = kitaev phase estimation(U, n bits)
 41 simulator = AerSimulator()
     # Run the simulation using the QuantumInstance
     quantum instance = QuantumInstance(backend=simulator, shots=1024)
     result = quantum instance.execute(qc)
     counts = result.get counts(qc)
     plot histogram(counts)
53 max count = max(counts, key=counts.get)
     estimated phase = int(max count, 2) / 2**n bits
     print(f"Estimated Phase: {estimated phase}")
```

References

[1] Matthew J. Brookes (2022)

Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging (https://www.sciencedirect.com/science/article/pii/S0166223622001023)

[2] Tim M. Tierney (2019)

Optically pumped magnetometers: From quantum origins to multi-channel magne-toencephalography (https://www.sciencedirect.com/science/article/pii/S1053811919304550)

[3] Tengyue Long (2023)

Suppression of Amplitude and Phase Errors in Optically Pumped Magnetometers using Dual-PI Closed-Loop Control (https://ieeexplore.ieee.org/document/10352347)

[4] Sergey Danilin (2024)
Quantum Sensing with tunable superconducting qubits: optimization and speed-up (https://arxiv.org/abs/2211.08344)