Similarity of Triangles

Srihari S

Question

Construction

Codesandfigures

Construction methods

Construction

methods

methods

Solution

a h

Similarity of Triangles

Srihari S

College of Engineering - Guindy

May 25, 2020

Question

Similarity of Triangles

Question

Exercise 8.1(Q no.51)

O is a point in the interior of $\triangle ABC$. D is a point on OA. If DE || OB and DF || OC. Show that EF || BC.

Codes and Figures

Similarity of Triangles

Srihari :

Question

Construction Codesandfigures

Construction methods

Constructio

Construction methods

Solution

The python code for the figure is

 $./\mathsf{codes/similartriangle.py}$

The latex- tikz code is

 $./\mathsf{figs}/\mathsf{constructionpic}.\mathsf{tex}$

The above latex code can be compiled as standalone document

 $./ figs/construction pic_standalone.tex$

Similarity of Triangles

Codesandfigures

(a) By Python

Similarity of Triangles

Srihari S

Question

Construction Codesandfigures

Construction methods

Construction

Construction

Solution

a .

Figure: By Latex-tikz

Construction method

Similarity of Triangles

Srihari S

Questior

Construction Codesandfigures

Construction methods

Constructior methods

methods

Solution

The values used for constructing the triangles in both Python and LaTEX-Tikz is given below:

Initial Input Values	
Parameter	Value
а	5
b	6
С	4

Table: To construct $\triangle ABC$

Finding the coordinates of various points of $\triangle ABC$:

From the information provided, let

$$B = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad A = \begin{pmatrix} p \\ q \end{pmatrix}$$

Given a point O, we need to determine whether it lies inside $\triangle ABC$.

A point O is said to lie inside $\triangle ABC$ if and only if all of the cross products AB \times AO, BC \times BP and CA \times CP are $\geqslant 0$.

Let the arbitrary interior point O be represented as $\begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$.

Construction method

Similarity of Triangles

Srihari

Question

Construction
Codesandfigures

Construction methods

Construction methods

Construction

methods

Solutio

D is a point on line AO such that DE \parallel OB and DF \parallel OC. Determination of points D,E and F:

As DE \parallel OB, by basic proportionality theorem the points E and D, divide the lines AB and AO respectively in the same ratio.

Hence we choose points E and D such that

$$\frac{AE}{EB} = \frac{AD}{DO} \tag{1}$$

Similarly point F is chosen such that the points F and D, divide the lines AC and AO respectively in the same ratio such that

$$\frac{AF}{FC} = \frac{AD}{DO} \tag{2}$$

Derived Values	
Parameter	Value
р	0.5
q	3.96

Table: To construct $\triangle ABC$

Construction methods

Construction

Construction methods

Solution

If the point D divides the line AO in the ratio x:y, the coordinates of D is given by section formula as:

$$D = \frac{yA + xO}{x + y} \tag{3}$$

Similarly the coordinates of points E and F is given by

$$\mathsf{E} = \frac{y\mathsf{A} + x\mathsf{B}}{x + y} \tag{4}$$

$$F = \frac{yA + xC}{x + y} \tag{5}$$

Let us assume the points divide the respective lines in the ratio 1:1. Then the coordinates of points D, E and F is

$$D = \begin{pmatrix} 1.25 \\ 2.73 \end{pmatrix}$$

$$\mathsf{E} = \begin{pmatrix} 0.25 \\ 1.98 \end{pmatrix}$$

$$\mathsf{F} = \begin{pmatrix} 2.75 \\ 1.98 \end{pmatrix}$$

Solution

Similarity of Triangles

Solution

 $\triangle EAD \sim \triangle BAO$ by AAA Similarity: Since DE || OB,

1
$$\angle DEA = \angle OBA$$
 {Alternate Interior Angles}

2
$$\angle ADE = \angle AOB$$
 {Alternate Interior Angles}

Therefore

$$\frac{AE}{AB} = \frac{AD}{AO} \tag{6}$$

Solution

Similarity of Triangles

Similarly $\triangle FDA \sim \triangle COA$ by AAA Similarity: Since DF || OC,

1
$$\angle DFA = \angle OCA$$
 {Alternate Interior Angles}

$$\bigcirc$$
 $\angle ADF = \angle AOC$ {Alternate Interior Angles}

③
$$\angle FAD = \angle CAO$$
 {Common angle}

Therefore

$$\frac{AF}{AC} = \frac{AD}{AO} \tag{7}$$

Hence from the above we conclude.

$$\frac{AF}{AC} = \frac{AE}{AB} = \frac{AD}{AO}$$
 (8)

As the ratio of the sides is the same, \triangle ABC \sim \triangle AEF, which means $\angle AFE = \angle ACB$ and $\angle AEF = \angle ABC$ as similar triangles have same angles. i.e.

$$\mathsf{EF} \parallel \mathsf{QR} \tag{9}$$

Hence Proved.