eigenfunction corresponding to 0 is the scalar multiple of a strictly positive function. If $Ah=i\alpha h$, $h\neq 0$, $\alpha\neq 0$ we consider $\tilde{h}(x):=h(x)/\big|h(x)\big|$. Assuming that $\tilde{h}(X)$ is not not dense in Γ , there exists a sequence of polynomials $\left(p_n\right)_{n\in\mathbb{N}}$ such that

(3.8)
$$p_n(z) \rightarrow 1/z$$
 uniformly in $z \in \tilde{h}(X)$.

It follows that $h(x) \cdot p_n(\tilde{h}(x)) \rightarrow |h|(x)$ uniformly in $x \in X$. Obviously, $h \cdot p_n(h)$ is a linear combination of $h^{[1]}$, $h^{[2]}$, $h^{[3]}$, ..., that is, it is an element of $\operatorname{span}\{\cup_{k=1}\ker(ik\alpha-A)\}$ (cf. Thm.2.4). By (3.7) the linear form Ψ vanishes on $\ker(\lambda-A)$ whenever $\lambda \neq 0$. Therefore $\langle h \cdot p_n(h), \Psi \rangle = 0$ and we have $0 < \langle |h|, \Psi \rangle = \lim_{n \to \infty} \langle h \cdot p_n(h), \Psi \rangle = 0$ which is a contradiction.

The group $P\sigma(A) \cap i\mathbb{R}$ need not be discrete. For example, the semigroup described in Ex.2.6(d) satisfies the assumptions of Thm.3.6 if α/β is irrational. In this case $P\sigma(A) = i\alpha\mathbb{Z} + i\beta\mathbb{Z}$ is a dense subgroup of $i\mathbb{R}$. Actually one can show that for every subgroup H of $i\mathbb{R}$ there is an irreducible semigroup on C(G), $G:=(H_d)^{\wedge}$, such that $P\sigma(A)=H$. Here $(H_d)^{\wedge}$ denotes the dual of the abelian group H equipped with the discrete topology. For details see [Greiner (1982), p.62].

An immediate consequence of assertion (d) of Theorem 3.6 is the following corollary.

Corollary 3.7. Suppose T satisfies the hypotheses of Thm.3.6 and let A be its generator. If k is a bounded continuous real-valued function, M_k the corresponding multiplication operator, then for $B:=A+M_k$ we have $\sigma(B)+P\sigma(A)\cap i\mathbb{R}=\sigma(B)$. In particular, $s(B)+P\sigma(A)\cap i\mathbb{R}=\sigma(B)$.

The next two corollaries are essentially consequences of assertion (c) of Theorem 3.6. The statement of the first one can be summarized as follows: In case there are non-real eigenvalues in the boundary spectrum then the semigroup 'contains' the semigroup of rotations on Γ .

Corollary 3.8. Suppose that the hypotheses of Thm.3.6 are satisfied and that there is an eigenvalue i α of A with $\alpha>0$. Let $\tau:=2\pi/\alpha$.

Then there exists a continuous injective lattice homomorphism j : $C(\Gamma)$ + $C_O(X)$ such that the diagram