2020 CATHOLIC HIGH SCHOOL CALCULUS A INDIVIDUAL

1. Find
$$\lim_{x\to 2} \left(\frac{x-2}{x^3-8}\right) = \frac{1}{3\times 2}$$

Find a for which
$$f(x) = \begin{cases} ax + 1 & if & x \le -3 \\ ax^2 - 1 & if & x > -3 \end{cases}$$
 is continuous
$$\begin{cases} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{cases}$$
Find and simplify the derivative of $e^{\ln x} + x^{\ln e} + \ln(e^x)$

Find and simplify the derivative of
$$e^{\ln x} + x^{\ln e} + \ln(e^x)$$

17+2-69

4. If
$$f(x)$$
 has values given in the table below, and $g(x) = \frac{3}{f(x)}$, find $g'(5)$

f(5)	f'(5)'	-MOM - 3 F/N	-3 (6) -	-12	= 52
		[f(x)]2	9	-1	1

5. Find the slope of the tangent line to
$$y = \csc x$$
 when $x = \frac{\pi}{6}$

7. If
$$f(x) = \frac{x}{2x+1}$$
, find $f''(x)$

$$f''(x) = \frac{1}{(2x+1)^{2x}} = \frac{1}{(2x+1)^{2x}}$$

8. Find
$$\frac{dy}{dx}$$
 if $(\sin x)(\cos y) = y$
 $\sin x(-\sin y)(y') + \cos y \cos x = y'$

$$-\frac{\sin x \sin yy' - y = -\cos x \cos y}{-(\sin x \sin y + 1)} = \frac{-\cos x \cos y}{-\sin x \sin y - 1}$$

$$f''(x) = \frac{(2x+1)^{4}}{(2x+1)^{4}} - \frac{(1)2(2x+1)}{(2x+1)^{4}}$$

$$=\frac{-8\times -4}{(3\times +1)^{4}}=\frac{-4(3\times +1)}{(3\times +1)^{43}}$$

2. Find the instantaneous rate of change of
$$f(\theta) = \tan \theta$$
 when $\theta = \frac{2\pi}{3}$

13. Find the coordinates of the absolute maximum point of $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (7) and $f(x) = x^{2\delta}$ (8) and $f(x) = x^{2\delta}$ (9) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (2) and $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (2) and $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (2) and $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (2) and $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (7) and $f(x) = x^{2\delta}$ (8) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (2) and $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (1) and $f(x) = x^{2\delta}$ (2) and $f(x) = x^{2\delta}$ (3) and $f(x) = x^{2\delta}$ (4) and $f(x) = x^{2\delta}$ (5) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (6) and $f(x) = x^{2\delta}$ (7) and $f(x) = x^{2\delta}$ (8) and $f(x) = x^{2\delta$