Permutări

Definiție

O definiție riguroasă a permutărilor poate fi aceasta:

" Fie $A = \{1, 2, ..., n\}$, $n \in \mathbb{N}^*$. Se numește permutare de gradul n orice funcție bijectivă $f: A \rightarrow A$."

În limbaj uzual, o permutare de gradul n este o rearanjare a numerelor naturale de la 1 la n, și se notează sub forma unui tablou cu două linii. Prima linie conține domeniul de definiție, elementele scriindu-se în ordine crescătoare, iar a doua linie conține mulțimea de valori ale funcției.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}$$

Aceasta este o permutare de gradul 5. Se poate observa că poziției 1 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 3 & 2 & 4 & 1 & 5 \end{pmatrix}$ îi corespunde valoarea 3, poziției 2 îi corespunde valoarea 2 etc. O observație importantă este cea că valorile de pe fiecare rând sunt unice între ele!

Se pune întrebarea: care dintre următoarele tablouri sunt permutări?:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 4 & 3 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 6 & 5 & 4 \end{pmatrix}$$

$$(1) \qquad (2) \qquad (3) \qquad (4)$$

- (1) valorea 5 apare de două ori în al doilea rând al tabloului, ceea ce înseamnă că această funcție nu este injectivă (f(2) = f(5)); Nu este permutare.
- (2) chiar dacă fiecărei poziții îi corespunde valoarea echivalentă, funcția este si injectivă, şi surjectivă. Această permutare există, se numeşte permutare identică şi se notează cu e.
- (3) valorile din primul rând al tabloului nu sunt în ordine crescătoare. Valorile domeniului de definiție ale unei permutări sunt obligatoriu scrise în ordine crescătoare. Nu este permutare.
- (4) se observă că poziției 3 îi aparține valoarea 6. Domeniul de definiție al acestei funcții conține doar 5 elemente, ceea ce înseamnă ca domeniul de definiție și imaginea funcției diferă. Nu este permutare.

Multimea tuturor permutărilor de grad n se notează cu S_n . În particular, permutările se notează cu litere mici ale alfabetului grec, în special cu σ, ϕ, τ .

Forma generală a unei matrice σ de gradul 5 este aceasta:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) & \sigma(5) \end{pmatrix}$$

Puncte importante

Două permutări $\sigma, \tau \in S_n$ sunt egale ($\sigma = \tau$) dacă și numai dacă pentru ambele tablouri, al doilea rând este identic. (Matematic, $\sigma(i) = \tau(i), \forall i = \overline{1..n}$)

Numărul de permutări de grad n este egal cu $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$, adică cu n factorial. Deci, cardinalul mulțimii $S_n = n!$.

Înmulțirea permutărilor

Aşa-numita înmulțire a permutărilor este, de fapt, compunerea a două permutări.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(4) & \sigma(3) & \sigma(2) & \sigma(1) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$\nabla L = \begin{pmatrix} 0 & 2 & 3 & 5 \\ 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

Pentru orice permutare σ , există şi este unică o permutare notată σ^{-1} astfel încât $\sigma\sigma^{-1}=\sigma^{-1}\sigma=e$. Această permutare poate fi determinată prin inversarea celor două rânduri ale permutării σ , având grijă ca rândul de sus să aibă elementele dispuse în ordine crescătoare.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 1 & 5 & 2 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \Rightarrow \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$$
$$\sigma \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix} = e$$

Puterile unei permutări

Pentru o permutare $\,\sigma\,$ de gradul n, se poate defini ridicarea la putere a acesteia.

Astfel, $\sigma^2 = \sigma \sigma$, $\sigma^3 = \sigma^2 \sigma$ şi aşa mai departe. Ca excepţie, $\sigma^0 = e$.

Deoarece mulţimea permutărilor de grad n este finită, va exista întotdeauna $p < k; p, k \in \mathbb{N}^*$ astfel încât $\sigma^p = \sigma^k$.

Din această proprietate reiese că există putere l pentru σ astfel încât $\sigma^l = e$.

$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(2) & \sigma(3) & \sigma(4) & \sigma(1) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

Transpoziții

În mulțimea permutărilor, se remarcă un tip particular de permutare, cele care au doar două valori transpuse față de permutarea identică. Acestea se numesc transpoziții şi se notează (ij), i şi j fiind indicii valorilor transpuse între ele.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 3 & 6 \end{pmatrix} = (3\ 5) = (5\ 3)$$
 În general, o transpoziție se poate defini astfel:
$$\sigma = (i\ j) \Rightarrow \sigma(k) = \begin{cases} i,\ k=j\\ j,\ k=i\\ k\ altfel \end{cases}$$

O proprietate importantă a transpozițiilor este că orice transpoziție $(ij)^2=e$. Numărul transpozițiilor de grad n este egal cu $\frac{n(n-1)}{2}$.

Inversiuni. Semnul unei permutări

Într-o permutare σ , fie doi indici i < j cu proprietatea că $\sigma(i) \ge \sigma(j)$. Această pereche (i, j) se numește inversiune în permutarea σ .

Numărul tuturor inversiunilor permutării σ este $m(\sigma)$.

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix} \text{ Pentru a determina numărul inversiunilor unei permutări, se aleg pe rând valorile lui } i \text{ de la 1 la n } \S i \text{ se verifică fiecare } j \text{ mai mare decât } i \text{ .}$

Astfel, pentru i = 1 determinăm inversiunile (1, 2), (1, 3), (1, 4), (1, 5)

pentru i = 2 determinăm inversiunile (2, 3), (2, 5)

pentru i = 3 nu există inversiuni

pentru i = 4 determinăm inversiunea (4, 5). În total, 7 inversiuni, deci $m(\sigma) = 7$.

Într-o permutare σ , se numește semnul acesteia numărul $\varepsilon(\sigma)=(-1)^{m(\sigma)}$. Dacă $\varepsilon(\sigma)$ este 1, atunci permutarea σ este pară. Dacă $\varepsilon(\sigma)$ este -1, atunci permutarea este impară.

Formule și puncte utile

 Semnul produsului este egal cu produsul semnelor. (Produsul a două permutări de aceeaşi paritate va fi par, produsul a două permutări de parităţi diferite va fi impar)

$$\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau)$$

• O permutare şi inversa ei au acelaşi semn.

$$\varepsilon(\sigma) = \varepsilon(\sigma^{-1})$$

•
$$\varepsilon(\sigma) = \prod_{1 \le i \le j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Probleme rezolvate

1. Să se determine cel mai mic număr $p \in \mathbb{N}^*$ astfel încât $\sigma^p = e$. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$

Se calculează succesiv puterile lui σ

$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = e \Rightarrow p = 2$$

2. Pentru următoarele permutări, să se calculeze permutarea x astfel încât $\sigma x = \tau$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix}$$

În ecuația $\sigma x = \tau$, se înmulțește la stânga cu σ^{-1} . De aici rezultă că $x = \sigma^{-1}\tau$. Pentru a rezolva această ecuație, avem nevoie de valoarea lui σ^{-1} .

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix} \Rightarrow \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$

Astfel

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$