

> ZWEI-GELENK-ROBOTER

Vorabgabe 09.11.2022

INHALTSVERZEICHNIS

- 1. Aufgabenstellung
- Modellannahmen
- 3. Eingangs-, Zustands-, Ausgangssignale, Parameter und Anfangsbedingungen
- 4. Modellbildung
 - 4.1 Physikalisches Ersatzschaltbild
 - 4.2 Freischnitt
 - 4.3 Energetische Gleichungen
 - 4.4 Lagrange Gleichungen → Bewegungsgleichung
 - 4.5 Zustandsraummodell
- 5. Aufgabe zur Vorabgabe
 - 5.1 Stationärer Zustand
 - 5.2 Beweis der Invertierbarkeit der Massenmatrix M

1. AUFGABENSTELLUNG UND PROJEKTZIELE

> Modellbildung und Simulation eines Zwei-Gelenk-Roboters

2. MODELLANNAHMEN

- > Die Roboterarme sind masselos.
- > Die Massen konzentrieren sich in den Antriebsmotoren und am Greifer.
- > Die Robotergelenke sind reibungslos.
- > Der Roboter wird angetrieben durch zwei Elektromotoren jeweils in der Schulter und im Ellenbogen, die die Drehmomente u_1 und u_2 erzeugen.

3. EINGANGS-, ZUSTANDS-, AUSGANGSSIGNALE, PARAMETER UND ANFANGSBEDINGUNGEN

Eingangssignal	Symbol	Simulink	Einheit		
Drehmoment durch Schulter-Antrieb	$u_{_{_{1}}}$	u1	Nm		
Drehmoment durch Ellbogen-Antrieb	$u_{_2}$	u2	Nm		
Zustandsvariable	Symbol	Simulink	Einheit	Anfangswert	
Winkel des Oberarms	$x_{_{1}} = \varphi_{_{1}}$	x(1)	rad	π	
Winkel des Unterarms	$x_{2} = \varphi_{2}$	x(2)	rad	$\frac{\pi}{2}$	
Winkelgeschwindigkeit des Oberarms	$x_{_{3}}=\dot{\varphi}_{_{1}}$	x(3)	$\frac{rad}{s}$	$0\frac{rad}{s}$	
Winkelgeschwindigkeit des Unterarms	$x_{_4} = \dot{\varphi}_{_2}$	x(4)	$\frac{rad}{s}$	$0\frac{rad}{s}$	

3. EINGANGS-, ZUSTANDS-, AUSGANGSSIGNALE, PARAMETER UND ANFANGSBEDINGUNGEN

Parameter	Symbol	Simulink	Einheit	Anfangswert
Masse des Ellenbogengelenks	m_1	P_m1	kg	10
Masse des Greifers	m_2	P_m2	kg	10
Länge des Oberarms	l_1	P_l1	m	8,0
Länge des Unterarms	l_2	P_l2	m	0,7
Schwerkraft	g	P_g	$\frac{m}{s^2}$	9,81

4.1 PHYSIKALISCHES ERSATZSCHALTBILD

Definition der verallgemeinerten Koordinaten:

$$q = \begin{bmatrix} \varphi_1 \\ \varphi_2 \end{bmatrix}$$

$$\dot{\boldsymbol{q}} = \begin{bmatrix} \dot{\varphi}_1 \\ \dot{\varphi}_2 \end{bmatrix}$$

Definition der Kinematischen Größen:

Position Punkt 1:

Position Punkt 2:

$$r_1 = l_1 \begin{bmatrix} \sin(\varphi_1) \\ -\cos(\varphi_1) \end{bmatrix}$$
 (4.2.1)

$$\boldsymbol{r_1} = l_1 \begin{bmatrix} \sin(\varphi_1) \\ -\cos(\varphi_1) \end{bmatrix} \quad (4.2.1) \quad \boldsymbol{r_2} = l_1 \begin{bmatrix} \sin(\varphi_1) \\ -\cos(\varphi_1) \end{bmatrix} + l_2 \begin{bmatrix} \sin(\varphi_2) \\ -\cos(\varphi_2) \end{bmatrix}$$

Geschwindigkeit Punkt 1:

Geschwindigkeit Punkt 2:

$$v_1 = l_1 \dot{\varphi}_1 \begin{bmatrix} \cos(\varphi_1) \\ \sin(\varphi_1) \end{bmatrix}$$
 (4.2.2)

$$\boldsymbol{v_1} = l_1 \dot{\varphi_1} \begin{bmatrix} \cos(\varphi_1) \\ \sin(\varphi_1) \end{bmatrix} \quad (4.2.2) \quad \boldsymbol{v_2} = l_1 \dot{\varphi_1} \begin{bmatrix} \cos(\varphi_1) \\ \sin(\varphi_1) \end{bmatrix} + l_2 \dot{\varphi_2} \begin{bmatrix} \cos(\varphi_2) \\ \sin(\varphi_2) \end{bmatrix} \quad (4.2.4)$$

Abb. 1: Lageplan des Roboters

4.2 FREISCHNITT

Allgemeine Lagrange Gleichung:

$$L = T - V \tag{4.3}$$

Allgemeine Lagrange Gleichung zweiter Art mit konservativen Kräften und nichtkonservativen verallgemeinerten Kräften:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\boldsymbol{q}}^T} \right) - \frac{\partial L}{\partial \boldsymbol{q}^T} = \boldsymbol{k}^n \tag{4.4}$$

Zusätzliche nichtkonservativen Kräfte k^n :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial \dot{q}_1} = u_1 - u_2 \tag{4.5.1}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) - \frac{\partial L}{\partial q_2} = u_2 \tag{4.5.2}$$

Abb. 2: Freischnitt des Roboters

4.3 ENERGETISCHE GLEICHUNGEN

Kinetische Energie der Massepunkte:

$$E_{kin1} = \frac{1}{2} m_1 |\mathbf{v}_1|^2 = \frac{1}{2} m_1 (l_1^2 \dot{\varphi}_1^2 \cos^2(\varphi_1) + l_1^2 \dot{\varphi}_1^2 \sin^2(\varphi_1)) = \frac{1}{2} m_1 l_1^2 \dot{\varphi}_1^2 = T_1$$

$$E_{kin2} = \frac{1}{2} m_2 |\mathbf{v}_2|^2 = \frac{1}{2} m_2 \left(l_1^2 \dot{\varphi}_1^2 (\cos^2(\varphi_1) + \sin^2(\varphi_1)) + l_2^2 \dot{\varphi}_2^2 (\cos^2(\varphi_2) + \sin^2(\varphi_2)) + l_1 \dot{\varphi}_1 l_2 \dot{\varphi}_2 (\cos(\varphi_1) \cos(\varphi_2) + \sin(\varphi_1) \sin(\varphi_2)) \right)$$

$$= \frac{1}{2} m_2 (l_1^2 \dot{\varphi}_1^2 + l_2^2 \dot{\varphi}_2^2 + 2 l_1 \dot{\varphi}_1 l_2 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2)) = T_2$$

$$(4.6.1)$$

Potenzielle Energie der Massepunkte:

$$E_{pot1} = m_1 g r_{1y} = -m_1 g l_1 \cos(\varphi_1) = V_1 \tag{4.6.3}$$

$$E_{pot2} = m_2 g r_{2y} = -m_2 g (l_1 \cos(\varphi_1) + l_2 \cos(\varphi_2)) = V_2$$
 (4.6.4)

4.4 LAGRANGE GLEICHUNGEN

Einsetzen der energetischen Gleichungen (4.6) in die Lagrange-Gleichung (4.3):

$$L = T - V = T_1 + T_2 - V_1 - V_2$$

$$L = \frac{1}{2}(m_1 + m_2)l_1^2 \dot{\varphi}_1^2 + \frac{1}{2}m_2 l_2^2 \dot{\varphi}_2^2 + m_2 l_1 \dot{\varphi}_1 l_2 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) + (m_1 + m_2)g l_1 \cos(\varphi_1) + m_2 g l_2 \cos(\varphi_2) \quad (4.7.1)$$

Linke Seite der Lagrange-Gleichung 2. Art (4.4) komponentenweise:

$$\frac{\partial L}{\partial q_1} = -m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) - (m_1 + m_2) g l_1 \sin(\varphi_1)$$
(4.7.2)

$$\frac{\partial L}{\partial q_2} = m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) - m_2 g l_2 \sin(\varphi_2) \tag{4.7.3}$$

$$\frac{\partial L}{\partial q_1} = (m_1 + m_2)l_1^2 \dot{\varphi}_1 + m_2 l_1 l_2 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) \tag{4.7.4}$$

$$\frac{\partial L}{\partial \dot{q}_2} = m_2 l_2^2 \dot{\varphi}_2 + m_2 l_1 l_2 \dot{\varphi}_1 \cos(\varphi_1 - \varphi_2) \tag{4.7.5}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial q_1} \right) = (m_1 + m_2) l_1^2 \ddot{\varphi}_1 + m_2 l_1 l_2 (-\sin(\varphi_1 - \varphi_2) (\dot{\varphi}_1 - \dot{\varphi}_2) \dot{\varphi}_2 + \cos(\varphi_1 - \varphi_2) \ddot{\varphi}_2)$$
(4.7.6)

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) = m_2 l_2^2 \ddot{\varphi}_2 + m_2 l_1 l_2 \left(-\sin(\varphi_1 - \varphi_2) \left(\dot{\varphi}_1 - \dot{\varphi}_2 \right) \dot{\varphi}_1 + \cos(\varphi_1 - \varphi_2) \ddot{\varphi}_1 \right)$$
(4.7.7)

4.4 LAGRANGE GLEICHUNGEN → BEWEGUNGSGLEICHUNG

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial q_1} = (m_1 + m_2) l_1^2 \ddot{\varphi}_1 + m_2 l_1 l_2 \sin(\varphi_1 - \varphi_2) \dot{\varphi}_2^2 + m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) \ddot{\varphi}_2 + (m_1 + m_2) g l_1 \sin(\varphi_1)$$
(4.7.8)

$$\frac{d}{dt} \left(\frac{\partial L}{\partial g_2} \right) - \frac{\partial L}{\partial g_2} = m_2 l_2^2 \ddot{\varphi}_2 - m_2 l_1 l_2 \sin(\varphi_1 - \varphi_2) \dot{\varphi}_1^2 + m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) \ddot{\varphi}_1 + m_2 g l_2 \sin(\varphi_2)$$
(4.7.9)

Bewegungsgleichung unter Berücksichtigung von (4.5.1) und (4.5.2) in Matrizenschreibweise:

$$\underbrace{\begin{bmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2\cos(\varphi_1 - \varphi_2) \\ m_2l_1l_2\cos(\varphi_1 - \varphi_2) & m_2l_2^2 \end{bmatrix}}_{(q_1)} \begin{bmatrix} \ddot{\varphi}_1 \\ \ddot{\varphi}_2 \end{bmatrix} + \begin{bmatrix} m_2l_1l_2\sin(\varphi_1 - \varphi_2)\dot{\varphi}_2^2 \\ -m_2l_1l_2\sin(\varphi_1 - \varphi_2)\dot{\varphi}_1^2 \end{bmatrix} + \begin{bmatrix} (m_1 + m_2)gl_1\sin(\varphi_1) \\ m_2gl_2\sin(\varphi_2) \end{bmatrix} = \begin{bmatrix} u_1 - u_2 \\ u_2 \end{bmatrix}$$
(4.8)

M

4.5 ZUSTANDSRAUMMODELL

Zustandsvektor x in Bewegungsgleichung (4.8) einsetzen und nach $\begin{bmatrix} \dot{x}_3 \\ \dot{x}_4 \end{bmatrix}$ umstellen (M^{-1} siehe (5.9)):

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \dot{\varphi}_1 \\ \dot{\varphi}_2 \end{bmatrix}; \qquad \begin{bmatrix} \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \mathbf{M}^{-1} \underbrace{\left(- \begin{bmatrix} m_2 l_1 l_2 \sin(x_1 - x_2) x_4^2 \\ -m_2 l_1 l_2 \sin(x_1 - x_2) x_3^2 \end{bmatrix} - \begin{bmatrix} (m_1 + m_2) g l_1 \sin(x_1) \\ m_2 g l_2 \sin(x_2) \end{bmatrix} + \begin{bmatrix} u_1 - u_2 \\ u_2 \end{bmatrix} \right)}_{\mathbf{f}^*(\mathbf{x}, \mathbf{u})}$$
(4.9)

$$\dot{x}_1 = x_3$$
; $\dot{x}_2 = x_4$

Zustandsraum:

$$\dot{x} = \begin{bmatrix} x_3 \\ x_4 \\ \mathbf{M}^{-1} \cdot \mathbf{f}^*(\mathbf{x}, \mathbf{u}) \end{bmatrix} ; t > 0 \quad (4.10.1) \qquad \mathbf{y} = \mathbf{x} \; ; \mathbf{t} \geq 0 \quad (4.10.2) \qquad \mathbf{x}_0 = \begin{bmatrix} \frac{\pi}{2} \\ 0 \\ 0 \end{bmatrix}$$
 (4.10.3)

5. AUFGABE ZUR VORABGABE

- > Für eine erfolgreiche Modellierung in Simulink muss die Massenmatrix invertierbar sein. Zeigen Sie, dass die Massenmatrix unabhängig von den Zustandsgrößen oder der Parameter Festlegung invertierbar ist.
- > Bestimmen Sie allgemein die stationären Gleichungen des Systems.
- > Zur späteren Regelung und Bahnplanung des Roboterarms wird folgende stationäre Gleichung $\bar{\varphi}_1 = f_s(\bar{\varphi}_2)$ mit der Vorgabe $\bar{u}_2 = \beta \bar{u}_1$ benötigt. Bestimmen Sie diese aus den stationären Gleichungen.

5. AUFGABE ZUR VORABGABE

5.1 STATIONÄRER ZUSTAND

Stationären Zustand
$$\overline{\dot{\varphi}}_1=\overline{\dot{\varphi}}_2=0\frac{rad}{s}$$
; $\overline{\ddot{\varphi}}_1=\overline{\ddot{\varphi}}_2=0\frac{rad}{s^2}$ in (4.7) einsetzen

Allgemeine stationäre Gleichung:

$$\begin{bmatrix}
(m_1 + m_2)l_1^2 & m_2l_1l_2\cos(\varphi_1 - \varphi_2) \\
m_2l_1l_2\cos(\varphi_1 - \varphi_2) & m_2l_2^2
\end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} (m_1 + m_2)gl_1\sin(\overline{\varphi}_1) \\
m_2gl_2\sin(\overline{\varphi}_2) \end{bmatrix} = \begin{bmatrix} \overline{u}_1 - \overline{u}_2 \\
\overline{u}_2 \end{bmatrix}$$

$$\begin{bmatrix}
(m_1 + m_2)gl_1\sin(\overline{\varphi}_1) \\
m_2gl_2\sin(\overline{\varphi}_2)
\end{bmatrix} = \begin{bmatrix} \overline{u}_1 - \overline{u}_2 \\
\overline{u}_2
\end{bmatrix}$$
(5.1.1)

$$\overline{u}_2 = \beta \overline{u}_1$$
 umgestellt nach \overline{u}_1 :

$$\overline{u}_1 = \frac{1}{\beta} \overline{u}_2 \tag{5.2}$$

5. AUFGABE ZUR VORABGABE5.1 STATIONÄRER ZUSTAND

(5.2) in (5.1.2) einsetzen:

$$\begin{bmatrix}
(m_1 + m_2)gl_1\sin(\overline{\varphi}_1) \\
m_2gl_2\sin(\overline{\varphi}_2)
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\beta}\overline{u}_2 - \overline{u}_2 \\
\overline{u}_2
\end{bmatrix}$$
(5.3)

Dies ergibt sich zeilenweise zu:

$$(m_1 + m_2)gl_1\sin(\overline{\varphi}_1) = \overline{u}_2\left(\frac{1}{\beta} - 1\right)$$
 (5.4)

$$m_2 g l_2 \sin(\overline{\varphi}_2) = \overline{u}_2 \tag{5.5}$$

(5.5) in (5.4) einsetzten und nach $\overline{\varphi}_1$ auflösen:

$$\overline{\varphi}_1 = \arcsin\left(\frac{m_2 l_2}{(m_1 + m_2)l_1} \sin(\overline{\varphi}_2) \left(\frac{1}{\beta} - 1\right)\right)$$
 (5.6)

5. AUFGABE ZUR VORABGABE

5.2 BEWEIS DER INVERTIERBARKEIT DER MASSENMATRIX M

$$\mathbf{M}(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) = \begin{pmatrix} (m_1 + m_2)l_1^2 & m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) \\ m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) & m_2 l_2^2 \end{pmatrix}$$
(5.7)

Zu zeigen: $det(\mathbf{M}) \neq 0$

$$\det(\mathbf{M}) = (m_1 + m_2)l_1^2 m_2 l_2^2 - (m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2))^2$$

$$= l_1^2 l_2^2 (m_1 m_2 + m_2^2 (1 - \cos^2(\varphi_1 - \varphi_2)))$$
(5.8)

 $\text{Da } 0 \leq \cos^2(\varphi_1 - \varphi_2) \leq 1 \text{ für alle } \varphi_1, \varphi_2 \in \mathbb{R} \text{ gilt } 1 - \cos^2(\varphi_1 - \varphi_2) \geq 0$

Weiterhin gilt für alle Parameter l_1 , l_2 , m_1 , $m_2>0$

Damit ist auch $\det(\mathbf{M}) > 0$ für alle $\varphi_1, \varphi_2 \in \mathbb{R}$

→ Matrix **M** ist nicht singulär und somit invertierbar!

$$\mathbf{M}^{-1} = \frac{1}{\det(\mathbf{M})} \cdot \begin{pmatrix} m_2 l_2^2 & -m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) \\ -m_2 l_1 l_2 \cos(\varphi_1 - \varphi_2) & (m_1 + m_2) l_1^2 \end{pmatrix}$$
 (5.9)

DANKE!

Rückfragen bitte an:

Moritz Höhnel
Fakultät T1 | ASE
mhoehnel@stud.hs-heilbronn.de

Marc Grosse
Fakultät T1 | ASE
mgrosse@stud.hs-heilbronn.de

Mattis Ritter
Fakultät T1 | ASE
mritter@stud.hs-heilbronn.de