Thmaz (Chain-rule)

Let X S IR" and T S IR" be open

 $f: X \to \mathbb{R}^m$  and  $g: Y \to \mathbb{R}^p$ ,  $f: x \to \mathbb{R}^p$ 

Let  $x^{\circ}$  be a point in X  $y^{\circ} = f(x^{\circ})$  and Define the composite function

F = got by F(x) = g (for). YXEX

If f is differentiable at x° and g is differentiable at y°,

then F is differentiable at ro and DF(ro) = Dg(yo). Df(ro)

(Thm43) / Mean Value Theorem>

Let  $X \subseteq \mathbb{R}^n$  be open and  $f: X \to \mathbb{R}^m$  be differentiable. Let  $X,Y \in X$  be such that the line segment between X and Y.

l(水水):= {ZEIR" | ヨメE CO,1]: Z= 入水+ (1-1)y] is contained in X

Then, for each vector  $a \in \mathbb{R}^m$ ,  $\exists$  a vector  $z \in \mathcal{L}(x,y)$  such that

a. [f(y)-f(x)] = aDf(z) (y-x)

proof) Let h = y - x. As X is open and contains L(x, y),  $-\frac{1}{3}$   $+\frac{1}{3}$   $\exists \int >0$  Such that  $\chi + \chi h \in X$  for  $\chi \in (-J, I+J)$ 

Fix an arbitrary  $a \in \mathbb{R}^m$  and define the real valued function  $\beta_a$  on the interval (-J, 1+J) by  $\beta_a(\lambda) = a \cdot f(x+\lambda h) = \sum_{i=1}^m a_i f^i(x+\lambda h)$ By construction, da is differentiable on (-J, 1+J) and  $\beta_a'(\lambda) = \sum_{i=1}^m \sum_{i=1}^n a_i f^i(x+\lambda h) \cdot h_j$ 

 $= \alpha \cdot D + (x + \lambda h) \cdot h$ 

The mean value theorem for univariate functions applied to  $\phi_a$  implies that  $\exists \lambda^o \in (0,1)$  such that  $\phi_a(1) - \phi_a(0) = \phi'(\lambda^o)$ 

Setting Z= x+10h, this is equivalent to a [f(y)-for)] = a. Df(z) (y-or). 11

Thmat

Let  $X \subseteq \mathbb{R}^n$  be open and  $f: X \to \mathbb{R}^m$  be differentiable Let  $x, y \in X$  be such  $\mathcal{L}(x, y) \subseteq X$ .

Then  $\exists$  a vector  $Z \in \mathcal{L}(x,y)$  such that  $||f(y) - f(x)|| \le ||Df(x)(y-x)|| \le ||Df(x)(x-x)|| \le ||Df(x)(x-$ 

@ f(g)-f(x) # 9

By Theorem 43,  $\forall \alpha \in \mathbb{R}^m$ ,  $\exists z \in \mathbb{R}^n$  such that  $\alpha \cdot [f(y) - f(m)] = \alpha \cdot [Df(z)(y-z)]$ By (auchy - Schwarz,  $|\alpha \cdot [f(y) - f(m)]| \le ||\alpha|| ||Df(z)(y-z)||$ Setting  $\alpha = \frac{f(y) - f(x)}{||f(y) - f(m)||}$ This is scalar.

 $\frac{\|f(y) - f(x)\|^2}{\|f(y) - f(x)\|} \le \|pf(z)(y - x)\| \le \|pf(x)\|_{L^{\infty}} \|y - x\|. \quad \blacksquare$ 

(Thm 45)

Let  $X \subseteq IR^n$  be open and  $f: X \to IR$  be differentiable if  $x^o \in X$  is a local maximizer (minimizer) of f, then  $\nabla f(x^o) = 0$  proof) Suppose  $x^o$  is local maximizer  $f(x^o) = f(x^o) = f$ 

Define  $g: \mathbb{R} \rightarrow \mathbb{R}$  by  $g(t) = f(x^0 + t \nabla f(x^0))$   $t \rightarrow 0$ ,  $g(0) = f(x^0)$ 

t=0 is a maximizer of g and the corresponding one-dimension result Gields  $0 = g'(0) = \nabla f(x^0) \cdot \nabla f(x^0) = ||\nabla f(x^0)||^2$  Hence  $\nabla f(x^0) = 0$ 

## Continuously differentiable

Ex) Derivatives needs not to be continuous.

Let  $f: \mathbb{R} \to \mathbb{R}$  defined as  $f(x) = (x^2 \sin(\frac{1}{x}))$  if  $x \neq 0$ 

f is differentiable  $\forall x \neq 0$ ,  $f'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$ However,  $f'(0) = \lim_{n \to 0} \frac{h^2 \sin(\frac{1}{n})}{h} = 0$ 

=> f' is not continuous since  $\limsup_{n\to\infty} f(n) = \limsup_{n\to\infty} \cos(\frac{1}{n}) = 1$ 

Def Let X S IR"

The function  $f: X \to \mathbb{R}^m$  is <u>continuously differentiable on X</u> if it is differentiable on X and the derivative Df is a continuous function from X to  $L(\mathbb{R}^n, \mathbb{R}^m)$ 

The function  $f: X \to \mathbb{R}^m$  is of class  $e^k$  or  $f \in e^k(X)$ , if the first k partial derivatives exist and are antinuous on X

Note The function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is antinuously differentiable if and only if it is of class e'

(Thin46) < Inverse function theorem>

Let  $X \subseteq \mathbb{R}^n$  be open and  $f: X \to \mathbb{R}^n$  be continuously differentiable. Suppose Df(x°) is invertible for some x° e X.

Then there is om open set V containing xo and an open set W antaining fire, such that the invelope relation  $f^{-1}: W \rightarrow V$  is a well-defined function Moreover. ft is continuously differentiable and tyew, its derivative is given by

 $Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}$ 

proof)

Fix x° & X and let A = Df(x°)

By assumption, A is invertible and we define  $\lambda := \frac{1}{2 \|A^{-1}\|_{L}}$ 

Since X is open and f is continuously differentiable, closure of U

we can choose a \$ >0 s.t. setting U := Bj(x0), UEX and

II Dfox) - All\_ ≤ X, Yxe U. (1)

We can conclude by thm 30 that Dfox is invertible tax = U.

Claim 1: + is one-to-one on U

We define  $\forall y \in \mathbb{R}^n$ ,  $\mathcal{O}_{y}(x) := x + A^{-1}(y - f(x))$  (2)

This yields

Day(x) = I - A-Dfox) = A-1. [A - Dfox)]

Honce, for all ME U. || Defanoll\_ = ||A'||\_ - ||A - Dfon||\_ = 1 Bu thman

Together with theorem 44, this implies

∀x', x" ∈ U. || \$\psi\_y(x') - \psi\_y(x'')|| \leq \frac{1}{2} || x' - x"||

Just imagie whether 3 ft

Suppose IX'. X" E U such that fox') = fox" = y for some yell?" Then,  $\|\phi_{y}(x') - \phi_{y}(x'')\| = \|\alpha' - \alpha''\| \le \frac{1}{2} \|\alpha' - \alpha''\|$  and hence  $\alpha' = \alpha''$ Therefore, f is one-to-one on U.

Note that 2U is closed and bounded => therefore, compact (Heine Borel) Since f and 11.11 are continuous, the Extreme Value theorem (Weierstrass) implies that d:= min 11 for - foxoill is well-defined.

By triangle inequality, tyew and treau



|| y-f(x°) || < \frac{d}{2} ≤ ||y-f(x)|| (3) f(x) \frac{d}{2} \fr We set V := Un f'(w) and note that V is open and non-empty, since it contains xo

## Claim 2 : + is onto.

Fix arbitrary y= w, we are going to show that y=f(v) Trick Define h: U → IR by h(x) = ||y-fon ||= (y-fon) (y-fox))

By the extreme value theorem. In Ottoins its minimum on U The minimum is not attained on 2U, because by (3) already x° attains a lower value than any xedu

Hence, the minimum is attained for some  $\overline{x} \in U$ .

By thm 45, we get Thix) = 0 or Df(x). (y-f(x)) = 0

As observed above DF( $\overline{x}$ ) is invertible, hence  $\ker(Df(\overline{x})) = \{2\}$  (By this,  $y = f(\overline{x}) = b/c$ )
Hence  $y = f(\overline{x})$ . Clearly,  $\overline{x} \in f^{-1}(W)$  and hence  $\overline{x} \in V$ 

Claim 3:  $f^{-1}$  is continuously differentiable and  $Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}$ We are going to show that  $\lim_{k \to 2} \frac{\|f^{-1}(g+k) - f^{-1}(g) - [Df(f^{-1}(y))]^{-1}k\|\|}{\|k\|}$ 

Take arbitrary y,  $y+k \in W$ . Then  $\exists \tilde{\chi}$ ,  $\tilde{\chi}+k \in V$  such that  $f(\tilde{\chi}) = y$  and  $f(\tilde{\chi}+k) = y+k$ .

Fixing om arbitrary Z e W, we get from (2) that

\$ = h - A-K

(Since  $\Re +h-\widehat{\alpha}=h$ )

Moreover.  $||\mathbf{h}|| - ||\mathbf{A}^{-1}\mathbf{k}|| \leq ||\mathbf{h} - \mathbf{A}^{-1}\mathbf{k}|| = ||\mathbf{A}_{2}(\mathcal{K}+\mathbf{h}) - \mathbf{A}_{2}(\mathcal{K})|| \leq \frac{1}{2}||\mathbf{h}||$ This implies  $||\mathbf{h}|| \leq 2 ||\mathbf{A}^{-1}\mathbf{k}|| \leq 2 ||\mathbf{A}^{-1}\mathbf{k}|| \leq \frac{1}{2}||\mathbf{k}|| \leq \frac{1}{2}||\mathbf{k}||$ This implies that if  $\mathbf{y}$  and  $\mathbf{y}+\mathbf{k}$  are close that  $\mathcal{K}$  and  $\mathcal{K}+\mathbf{h}$  are close and hence  $\mathbf{f}^{-1}$  is continuous.

Set  $T = [Df(x)]^{-1}$ . Then  $f'(y+k) - f'(y) - Tk = TT^{-1}h - Tk$   $= Ih - Tk = T[Df(x) \cdot h - (y+k-y)] = -T[f(x+h) - f(x) - Df(x) \cdot h]$   $f'(x+h) - f(x) \qquad k \ge \lambda ||h||$ 

By (4), this implies  $0 \le \frac{\|f'(g+k) - f'(g) - Tk\|}{\|k\|} \le \|T\|_{L} \frac{\|f(x+h) - f(x) - Df(x) - h\|}{\lambda \|h\|}$ 

Inequality (4) also implies that  $h \to 2$  as  $k \to 2$  Since f is differentiable and IITIL is a constant, the right-hand-side of (5) goes to 0 as  $k \to 2$ 

We conclude that  $\lim_{k\to 2} \frac{\|f'(y+k)-f'(y)-Tk\|}{\|k\|} = 0$ 

and hence  $f^{-1}$  is differentiable on W and  $Df^{-1}(y) = (Df(f^{-1}(y)))^{-1}$   $(Df(f^{-1}(y)))^{-1}$  is therefore the composition of three differentiable functions  $f^{-1}$  is differentiable and hence continuous. Df(x) is continuous by assumption and  $(\cdot)^{-1}$  is continuous by thm 31.  $\square$ The function that maps each invertible linear operator into its inverse.