An elastoplastic 1D Winkler model for suction caisson foundations under combined loading

Stephen Suryasentana, Harvey Burd, Byron Byrne, Avi Shonberg
University of Oxford
Ørsted Wind Power

Introduction

Efficient computations

Getting Larger → Multi-layered

Research Problem

Existing design methods do not meet these requirements

3DFE model

Not efficient

Macro-element model

Does not work well with multi-layered soil profiles

Winkler Model

Suryasentana et al. (2017)
Simplified Model For The Stiffness Of Suction
Caisson Foundations Under 6DoF loading

- Skirt soil reactions distributed along skirt
- Base soil reactions concentrated at the base of the skirt

(X) Assumes linear elastic soil

How about soil non-linearity?

Winkler Model

Pile Winkler Models

- Non-linear elastic soil reactions
 - X Cannot model hysteresis or permanent displacement
 - X Cannot account for combined loading effects on the failure state

Assumed soil reaction behaviour

True soil reaction behaviour

Proposed Solution

Couple plastic yield surfaces to Winkler soil reactions

Elemental Yield Surface

Soil Reaction Yield Surface

Global Failure Envelope (Macro-element models)

What are the formulations for the soil reaction yield surfaces?

Calibration Strategy

Derive local yield surface formulation from 3DFE simulations

Case Study:
 L/D = 1
 Von Mises Soil (Undrained Clay)
 Planar VHM loading

Calibration Results

Parameter	Skirt	Base
$\overline{v_0/s_u}$	$A^{ m skirt}$	$9.1A^{\mathrm{base}}$
h_0/s_u	$2.07A^{ m skirt}$	$1.34A^{\mathrm{base}}$
$m_0/\mathrm{s_u}$	$0.19A^{ m skirt}D$	$0.72A^{\mathrm{base}}D$
α	-1.23	-0.47

$$f = \left(\frac{v}{v_0}\right)^2 + \left(\frac{h}{h_0}\right)^2 + \left(\frac{m}{m_0}\right)^2 + \alpha \left(\frac{hm}{h_0 m_0}\right) - 1$$

 v_0 , h_0 , m_0 = uniaxial capacities

Results

Global failure envelope predictions

Results

Load-displacement predictions

Monotonic Loading

Cyclic Loading

Summary

Elastoplastic Winkler model allows quick (takes 3% of the time) reproduction of the salient features of elastoplastic 3DFE simulations:

- Non-linear load-displacement behaviour
- Hysteresis
- Combined loading effects on the failure state

Limitations

• L/D = 1

Addressed in an upcoming paper

Planar VHM loading