## 2. Modèle de Bohr. Cas de l'atome H.

#### 2.1. Objectif.

Répartition des électrons autour du noyau - Détermination de l'énergie.

#### 2.2. Energie dans un état stationnaire donné.

- L'électron décrit une orbite circulaire centrée sur le noyau immobile.
- L'électron est soumis à la force d'attraction coulombienne



$$\varepsilon_0 = 8.85 \ 10^{-12} \ C^2 \ N^{-1} \ m^{-2}$$
 (permittivité du vide) ; r = rayon de l'orbite

- L'électron est aussi soumis à la force centrifuge  $F_2 \Longrightarrow F_2 = m \; a = m v^2 / r$
- A l'équilibre :  $F_1 = F_2 \longrightarrow \left[ \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2} = \frac{mv^2}{r} \right] \longrightarrow \left[ r = \frac{1}{4\pi\epsilon_0} \frac{e^2}{mv^2} \right]$  (1)

Energie totale = Energie potentielle + Energie cinétique



Energie potentielle : 
$$E_p = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r}$$

Energie cinétique : 
$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}\left(\frac{1}{4\pi\epsilon_o} \frac{e^2}{r}\right)$$

Energie totale: 
$$E = -\frac{1}{2} \left( \frac{1}{4\pi\epsilon_0} \frac{e^2}{r} \right)$$

### 2.3. Hypothèses de Bohr.

- 1) L'électron ne peut se situer que sur certaines orbites bien précises ou permises,
- 2) Lorsque l'électron absorbe ou émet de l'énergie, il change d'orbite ou de niveau d'énergie.
  - Orbites permises <=> <u>orbites stationnaires</u> <=>  $2 \pi r = n \lambda$  ( n = 1, 2, 3...)
  - Louis de Broglie : A toute particule en mouvement (de masse m et de vitesse v) on associe une radiation de longueur d'onde :  $\lambda = \frac{h}{mv}$  (3) (dualité onde-corpuscule)

On a alors: 
$$2 \pi r = \frac{\text{nh}}{\text{mv}}$$
; soit  $v = \frac{\text{nh}}{2\pi \text{mr}}$ 

En remplaçant v par sa valeur dans l'équation (1), on détermine :

- le rayon des orbites :  $r_n = n^2 \, \frac{\epsilon_o \, h^2}{\pi \, m \, e^2} \implies r_1 = 5,3.10^{-11} \, m = 0,53 \, \text{Å}$
- l'énergie correspondante (2) :  $E_n = -\frac{1}{n^2} \frac{me^4}{8 \epsilon_0^2 h^2} = -\frac{1}{n^2} . K = -\frac{1}{n^2} . 13,6 \text{ (eV)}$

$$K = 2,18.10^{-18} \text{ J}$$
, soit en eV :  $K = 13,6 \text{ eV}$  (1 eV = 1,6.10<sup>-19</sup> J)

# 2.4. Transitions entre niveaux électroniques.

D'après la seconde hypothèse de Bohr, le passage d'un  $e^-$  d'une orbite définie par  $n_i$  à une orbite définie par  $n_f$ , se fait par <u>un échange d'un quantum d'énergie</u>:

$$\Delta E = hV = h\frac{c}{\lambda}$$

V : fréquence de la radiation;  $\lambda$  : longueur d'onde; c : vitesse de la lumière : c =  $3.10^8$  m.s<sup>-1</sup>; h : constante de Planck : h =  $6,626.10^{-34}$  J.s

