Verification of fully connected binarized neural networks

Amza Rareș, Dienes Oliviu, Militaru Oana

Universitatea de Vest din Timișoara Facultatea de Matematică și Informatică, Inginerie Software

25 ianuarie 2024

Motivation+Problem Specification

- Joaca un rol crucial in sistemele de evitare a coliziunilor integrate si de detectare si evitare in cadrul dronelor si altor vehicule aeriene autonome.
- Scopul principal al acestui proiect consta in evaluarea si verificare formala a modelului ACAS XU, utilizand instrumentele de verificare $\alpha\beta$ -CROWN-CROWN si Marabou

Dataset Description

- Datasetul ACAS XU este conceput pentru a evalua performanta sistemului de evitare a coliziunilor integrate
- Modelul ACAS XU folosește o arhitectură de rețea complet conectată (Fully Connected - FC) în care fiecare neuron dintr-un strat este conectat la fiecare neuron din stratul următor

Dataset Description

- Acest tip de arhitectură, comun în rețelele neuronale, permite modelului să învețe relații complexe între datele de intrare. Funcția de activare utilizată în model este Rectified Linear Unit (ReLU), o alegere frecventă în rețelele neuronale pentru adăugarea non-linearității și pentru a captura detaliile intricate ale datelor.
- Modelul ACAS XU are 13.000 de parametri şi o dimensiune de intrare de 5, ceea ce înseamnă că primeşte un vector de 5 elemente ca intrare pentru fiecare exemplu de date.

Tools and Challenges

Tools

- AB-CROWN (alpha-beta-crown)
 - Verificator de retele neuronale care a castigat competitia VNN-COMP 2021, 2022 si 2023.
 - Utilizează un framework de propagare a limitelor liniare și tehnica branch and bound (BaB).
 - Optimizat pentru GPU-uri, suporta rețele cu milioane de parametri.
- Marabou
 - Traduce întrebările despre comportamentul unei rețele în probleme de satisfacție a constrângerilor.
 - Suportă procesare paralelă imbunatateste scalabilitatea și viteza pentru rețele complexe.
 - Tehnici avansate de raționament pentru a naviga și a reduce eficient spațiul de căutare imbunatateste performanța.

Tools and Challenges

Challenges

- Resurse
 - Necesitatea procesarii intense cu CPU si GPU
 - Compatibilitate exclusiva GPU: Nvidia CUDA
- Dependinte
 - Numar mare de pachete si compatibilitatea intre ele. Unele lipsind din fisierul de configurare au necesitat instalare manuala
 - Licenta Gurobi, a necesitat modificarea scriptului
 - Necesitatea pentru unele submodule a dus la durata de build crescuta
- Mediu de lucru
 - Sistemul de operare si versiunea suportata
 - Disponibilitate pachetelor CUDA pentru versiunea sistemului de operare suportat
 - Dockerizare eficienta

Experimental Results

Tabela: Benchmark 2023-acasxu

#	Tool	Verified	Falsif.	Fastest	Penalty	Score	%
1	Marabou	188	76	0	1	-	60.6%
2	α - β -CROWN	186	47	-	1	-	74.18%

Output Marabou

Experimental Results

▶ Output $\alpha\beta$ -Crown

Discussion/Conclusions

▶ În concluzie, această lucrare a analizat verificarea formală a modelului ACAS XU, focalizându-se pe rețelele neuronale în contextul aviației cu asistență la distanță