HOMEWORK 3 MATH A4900/44900

DUE: 9/25/2020

1. Group actions

(a) For some fixed $g \in G$, prove that conjugation by g (i.e. the map $G \to G$ defined by $a \mapsto gag^{-1}$) is an automorphism of G. Deduce that a and gag^{-1} have the same order (by last week's work), and for any non-empty $S \subseteq G$, the map

$$S \to gSg^{-1}$$
 defined by $s \mapsto gsg^{-1}$

is also a bijection, so that $|gSg^{-1}| = |S|$.

[Recall, even if A and/or B is infinite, we say |A| = |B| exactly when there is a bijection $A \leftrightarrow B$]

(b) Let A be a non-empty set and let $0 < k \le |A|$. Check that the action of the symmetric group S_A on the set of size k subsets of A by

$$\sigma \cdot \{a_1, \dots, a_k\} = \{\sigma(a_1), \dots, \sigma(a_k)\}\$$

satisfies the axioms of group actions.

[Similar to the action of D_{2n} on sets from lecture.]

(c) Let G act on a set A. Prove that the relation \sim on A defined by

$$a \sim b$$
 if and only if $a = g \cdot b$ for some $g \in G$

is an equivalence relation.

Note: the equivalence classes with respect to this relation are called **orbits**.

(d) Describe the orbits of the action of S_4 on 2-element subsets of $\{1, 2, 3, 4\}$ (as in problem ??).

2. Cyclic groups

- (a) If x is an element of a finite group G and |x| = |G|, prove that $G = \langle x \rangle$. Give an explicit example to show |x| = |G| does not imply $G = \langle x \rangle$ if G is an infinite group.
- (b) Write $Z_{63} = \langle x \rangle$. For which integers a does the map ψ_a defined by

$$\psi_a: \bar{1} \to x^a$$

extend to a well defined homomorphism from $\mathbb{Z}/147\mathbb{Z}$ to Z_{63} ? Can ψ_a ever be a surjective homomorphism? [Take care to remember that the binary operation on the left is + and the binary operation on the right is \times : if the image of $\bar{1}$ is x^a , then the image of $\bar{1} + \bar{1} + \cdots + \bar{1} = \ell \bar{1}$ is $(x^a)^{\ell}$.]

(c) For $a \in \mathbb{Z}$, define

$$\sigma_a: Z_n \to Z_n$$
 by $\sigma_a(x) = x^a$ for all $x \in Z_n$.

Show that σ_a is an automorphism of Z_n if and only if (a, n) = 1.

- (d) Under what circumstances does there exist a non-trivial homomorphism $\varphi: Z_n \to G$? [Note: φ need not be injective or surjective; just well-defined, and not the map $g \mapsto 1$ for all g.]
- (e) For which $n \in \mathbb{Z}_{\geq 1}$ is $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ cyclic? [Hint: Try to find more than one subgroup of order 2. Why would this prove $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ is *not* cyclic? Start by doing some examples.]
- (f) Prove that $\mathbb{Q} \times \mathbb{Q}$ is not cyclic.