Image Processing Lab

Sem 1

Lab 7: Image Enhancement, Degradation and Restoration 20/09/2018

- 1. Try to complete the lab questions during the lab time (in lab submission)
- 2. Please do not copy programs.
- 3. Please find the cameraman, Book images in the Resources folder

1. Image Enhancement

- (a) Implement global unsharp masking algorithm (Refer Maria Petrou Page No. 357)
- (b) Implement single scale retinex algorithm (Refer Maria Petrou Page No. 360)

2. Image Degradation

Perform image degradation using motion blur (use Book.tif) Steps:

- (a) Compute Fourier transform of image
- (b) Multiply the transform by H(u, v) given by:

$$H(u,v) = \frac{T}{\pi(ua+vb)} \sin(\pi(ua+vb)) e^{-j\pi(ua+vb)}$$
(1)

where a = b = 0.1 and T = 1

(c) Take the inverse transform of resultant image to get the motion blurred image (Refer Gonzalez Page 350, Example 5.10)

3. Image Degradation

Perform image degradation using atmospheric turbulence (use Book.tif) Steps:

- (a) Compute Fourier transform of image
- (b) Multiply the transform by H(u, v) given by:

$$H(u,v) = e^{-k(u^2 + v^2)^{5/6}}$$
(2)

where k = 0.0025 (severe turbulence), k = 0.001 (mild turbulence) and k = 0.00025 (low turbulence)

(c) Take the inverse transform of resultant image to get the degraded image

4. Image Restoration

Perform image restoration on the motion blurred image obtained from Qn.2, using inverse filtering.

Steps:

$$Fourier - Transform - of - restored - image = \frac{G(u, v)}{H(u, v)}$$
(3)

where H(u,v) is degradation function from Qn.2 and G(u,v) is the fourier transform of degraded(input) image

(Refer Gonzalez Page 351)