27/10/2016

Def (Ordine di cufinitesimo e parte principale)

Sia 200 e sia f: (-2,1) -> R una funcione. Se esistono un munero reale a >0 ed una costante c ≠0 t-c.

\$ (x) ~ cxa per x → 0

allora si dice de fox) è cufinitesima di ordine a e che cxa

è la sua parte principale (per x → 0)

siux ~ x pontiue 1, ponte priucipale x Esempi

 $\cos x - 1$ $n - \frac{1}{2}x^2$ enoline 2, park principale $-\frac{1}{2}x^2$

 $sruR \times - \times = \times + \frac{1}{6} \times^3 + \dots - \times = \frac{1}{6} \times^3 + o(x^3)$

x log x - 0, ma non ha un ordine secondo la def

Oss. Si usa la stessa Diuguaggio auche per le successioni, sostituendo x con il

Escupi san n ~ (1) ordine 1, parte princ. = 1

 $\frac{M+3}{M^5+2}$ $\sim \frac{1}{M^4}$ ordine 4

Verifica rigorosa: lim $\frac{m+3}{m^5+2} = 0$ $\frac{1}{m^5+2} = 0$ $(m+3)m^{\frac{1}{2}} = 1$

 $m^2 + 7m + 5$ $\sim 5m$ expline 1 pante priucipale 5m 5 m3-6m+9

Def. (Ordine di « e parte principale) Se f(x) ~ cx per x > too (con a > 0 e c ≠ 0), allora si dice che f(x) è un impluits di ordine a e $c \times^q$ è la park privar. Esempi $\frac{x^5+3}{3x^2+1} \sim \frac{x^3}{3}$ per $x \rightarrow +\infty$ [Dia $\frac{x^5+3}{3x^2+1} = 1$] $\frac{\times^5 + 8iu \times}{3 \times^2 + 7}$ $\frac{1}{7} \times \text{per} \times \rightarrow 0$ Rigoroso: $\lim_{x \to 0} \frac{x^5 + \sin x}{3x^2 + 4} = \lim_{x \to 0} \frac{4x^5 + 4\sin x}{3x^3 + 4x}$ $= \lim_{x \to 0} \frac{4x + 0(x)}{4x + 0(x)} = 1$ Esemplo 1 $\alpha_1 = \frac{1}{M^2} sun \frac{1}{M} - \frac{1}{M} sun \frac{1}{M^2}$ an -> 0. Che ordine ha? Pougo $\frac{1}{m} = \times : \times^2 \text{su} \times - \times \text{su} \times \times^2 =$ $= x^{2} \left(x - \frac{1}{6} x^{3} + o(x^{4}) \right) - x \left(x^{2} + o(x^{5}) \right)$ = $x^3 - \frac{1}{6}x^5 + o(x^6) - x^3 - o(x^6)$ $= -\frac{1}{6} \times ^5 + 0 (\times ^6)$ parte principale (oroline 5) Esempio 1615 Calcolare lin an ma al vanione di x

Quandi taux = x +
$$\frac{1}{3}$$
 x³ + $\frac{2}{15}$ x⁵ + 0 (x⁶)

Essurption $\frac{3m+1}{m^2+7}$ "Sviluppo in potente of: $\frac{1}{m}$ "

 $\frac{3m+1}{m^2+7}$ = $\frac{3m}{m}$ (i+ $\frac{1}{3m}$) = $\frac{3}{m}$ (i+ $\frac{1}{3m}$) (i+ $\frac{1}{m}$) = $\frac{3}{m}$ (i+ $\frac{1}{3m}$) = $\frac{3}{m}$ + $\frac{1}{m^2}$ = $\frac{21}{m^2}$ + 0 ($\frac{1}{m^2}$)