2. Opérations abstraites sur des intervalles

Une fois implémentées les classes Bound et Interval, vous êtes en mesure d'implémenter les opérations dont a besoin l'analyseur. Le but des séances suivantes de TP est d'implémenter ces opérations sur les intervalles. Le seul fichier à modifier est IntervalLattice. java.

Classes fournies

On fournit une classe IntervalPair qui représente un couple d'intervalles.

On fournit aussi la classe IntervalVector qui représente un vecteur d'intervalles. Cette classe est utilisée par l'analyseur : un vecteur d'intervalles est attaché à chaque point de contrôle. Un élément du vecteur représente l'intervalle abstrait d'une variable donnée.

Si n est la taille du vecteur, le vecteur peut prendre une valeur quelconque dans le produit cartésien du treillis des intervalles \mathbb{I}^n , privé de certaines valeurs. En effet, dès qu'une valeur porte l'intervalle BOT (l'état correspondant est inaccessible) toutes les autres valeurs du vecteur sont aussi à BOT.

Opérations sur les intervalles

La classe IntervalLattice est une classe outil, elle ne contient que des méthodes static. Ces méthodes représentent toutes les opérations abstraites dont peut avoir besoin l'analyseur.

▶ Question 1 : Compléter les méthodes de la classe IntervalLattice. Testez-les abondamment!

Pour chaque méthode, réfléchir sur des exemples, puis raisonner en écrivant les inéquations.

Exemple pour la méthode plus : on calcule le résultat d'une transition du graphe de contrôle correspondant à l'instruction z := x + y; Si $a \le x \le b$ et si $c \le y \le d$, alors $a + c \le x + y \le b + d$. En d'autres termes, $\text{Post}_{z:=x+y}(...,x \mapsto [a,b],y \mapsto [c,d],...) = (...,z \mapsto [a+c,b+d],...)$. Ceci est vrai si a,b,c,d sont des entiers, qu'en est-il si certains d'entre eux valent $+\infty$ ou $-\infty$?

Focaliser vos efforts sur les méthodes qui permettront d'analyser le programme suivant :

```
program boucle
  x, y : integer;
begin
  x := 0; y := 4;
  while (x < y) loop
    x := x + 1;
  endloop;
end</pre>
```

- ▶ Question 2 : Pour vérifier vos calculs pas à pas, mettez en place des traces qui affichent, à chaque fois qu'une méthode d'IntervalLattice est appelée, son nom, ses paramètres et le résultat calculé.
- > Question 3 : Compléter les autres méthodes, en testant à chaque fois sur un petit programme.

2017-2018 page: 1/1