第六章 素性检验 2015年06月02日

信息安全数学基础

陈恭亮 教授 博士生导师

上海交通大学信息安全工程学院

chengl@sjtu.edu.cn

访问主页

标题页

目 录 页

第1页共39页

返回

全屏显示

关 闭

素性检验

问题:

如何有效生成大素数?

如何利用素数所具有的性质来生成大素数?

在本章, 我们研究如何产生以及如何快速产生大素数.

伪素数

Fermat 素性检验

访问主页

标题页

目 录 页

第 2 页 共 39 页

返回

全屏显示

关 闭

6.1.1 伪素数 Fermat 素性检验

根据Fermat 小定理, 我们知道: 如果n 是一个素数, 则对任意整数b, (b,n)=1, 有

$$b^{n-1} \equiv 1 \pmod{n}.$$

由此, 我们得到: 如果有一个整数b, (b, n) = 1 使得

$$b^{n-1} \not\equiv 1 \pmod{n},$$

则n 是一个合数.

将指数的语言用于上述的讨论, 并结合定理5.1.1 我们有: 如果n 是一个素数, 则对任意整数b, (b, n) = 1, 有

$$\operatorname{ord}_n(b) \mid n-1.$$

由此, 我们得到: 如果有一个整数b, (b, n) = 1 使得

$$\operatorname{ord}_n(b) \not\mid n-1.$$

则n是一个合数.

访问主页

标 题 页

目 录 页

第3页共39页

返回

全屏显示

关 闭

例6.1.1 因为 $2^{62} \equiv 2^{60} \cdot 2^2 \equiv (2^6)^{10} \cdot 2^2 \equiv 64^{10} \cdot 2^2 \equiv 4 \not\equiv 1 \pmod{63}$, 所以63 一个是合数. 事实上, 我们也有

$$\begin{cases} 2^3 \equiv 1 \pmod{7} \\ 2^6 \equiv 1 \pmod{9}, \end{cases}$$

以及 $\operatorname{ord}_{63}(2) = 6 \text{ } / 63 - 1.$

上述说法的否定说法不能成立.

事实上, 我们有

$$\begin{cases} 8^1 \equiv 1 \pmod{7} \\ 8^2 \equiv 1 \pmod{9}, \end{cases}$$

以及 $\operatorname{ord}_{63}(8) = 2 \mid 63 - 1$.

例6.1.2

$$8^{62} \equiv (2^6)^{31} \equiv 1 \pmod{63}$$
.

访问主页

标 题 页

目 录 页

第4页共39页

返回

全屏显示

关 闭

定义6.1.1 设n 是一个奇合数. 如果整数b, (b, n) = 1 使得同余式

$$b^{n-1} \equiv 1 \pmod{n} \tag{1}$$

成立,则n 叫做对于基b 的**伪素数**.

注 伪素数的表述也可以用周期序列来解释. 设n 是一个奇合数. 如果整数b, (b,n) = 1 使得n-1 为序列 $u = \{u_k = b^k \mod n \mid k \ge 1\}$ 的周期, 则n 叫做对于基b 的**伪素数**.

因为n 为素数时,对任意整数b, (b,n) = 1, 有n-1 为序列 $u = \{u_k = b^k \mod n \mid k \ge 1\}$ 的周期.

由此, 若存在整数b, (b, n) = 1, 使得n - 1 不是序列 $u = \{u_k = b^k \mod n \mid k \ge 1\}$ 的周期, 则n 一定是合数.

例6.1.3 整数63 都是对于基b = 8 的伪素数,

访问主页

标 题 页

目 录 页

第5页共39页

返回

全屏显示

关 闭

例6.1.4 整数 $341 = 11 \cdot 31$, $561 = 3 \cdot 11 \cdot 17$, $645 = 3 \cdot 5 \cdot 43$ 都是对于 基b=2的伪素数,因为

$$2^{340} \equiv 1 \pmod{341}, \quad 2^{560} \equiv 1 \pmod{561}, \quad 2^{644} \equiv 1 \pmod{645}.$$

事实上, 我们有

$$\begin{cases} 2^{10} \equiv 1 \pmod{11} \\ 2^5 \equiv 1 \pmod{31}, \end{cases}$$

$$\begin{cases} 2^{10} \equiv 1 \pmod{11} \\ 2^{5} \equiv 1 \pmod{31}, \end{cases} \begin{cases} 2^{2} \equiv 1 \pmod{3} \\ 2^{10} \equiv 1 \pmod{11} \\ 2^{8} \equiv 1 \pmod{17}, \end{cases} \begin{cases} 2^{2} \equiv 1 \pmod{3} & \bullet \\ 2^{4} \equiv 1 \pmod{5} & \bullet \\ 2^{14} \equiv 1 \pmod{43}, \end{cases}$$

全屏显示

关 闭

下面讨论伪素数的性质.

定理6.1.1 设是一个奇合数.则

- (i) n 是对于基b 的伪素数当且仅当b 模n 的阶整除n-1.
- (ii) 若n 是对于基 b_1 和基 b_2 的伪素数,则n 是对于基 $b_1 \cdot b_2$ 的伪素数.
- (iii) 如果n 是对于基b 的伪素数,则n 是对于基 b^{-1} 的伪素数.
- (iv) 如果有一个整数b 使得同余式(1) 不成立,则模n 的简化剩余系中至少有一半的数使得同余式(1) 不成立.
- 证 (i) 如果n 是对于基b 的伪素数,则我们有 $b^{n-1} \equiv 1 \pmod{n}$.

根据定理5.1.1, 我们有 $\operatorname{ord}_n(b) \mid n-1$.

反过来, 如果 $\operatorname{ord}_n(b) \mid n-1$, 则存在整数q 使得 $n-1=q \cdot \operatorname{ord}_n(b)$.

因此, 我们有 $b^{n-1} \equiv (b^{\operatorname{ord}_n(b)})^q \equiv 1 \pmod{n}$.

(ii) 因为n 是对于基 b_1 和基 b_2 的伪素数, 所以我们有

$$b_1^{n-1} \equiv 1, \quad b_2^{n-1} \equiv 1 \pmod{n}.$$

从而, $(b_1 \cdot b_2)^{n-1} \equiv b_1^{n-1} \cdot b_2^{n-1} \equiv 1 \pmod{n}$. 故n 是对于基 $b_1 \cdot b_2$ 的伪素数.

访问主页

标 题 页

目 录 页

第7页共39页

返回

全屏显示

关 闭

(iii) 因为n 是对于基b 的伪素数, 所以我们有

$$b^{n-1} \equiv 1 \pmod{n}$$
.

从而,

$$(b^{-1})^{n-1} \equiv (b^{n-1})^{-1} \equiv 1 \pmod{n}.$$

故n 是对于基 b^{-1} 的伪素数.

(iv) 设 $b_1, ..., b_s, b_{s+1}, ..., b_{\varphi(n)}$ 是模的简化剩余系, 其中前s 个数使得同余式(1) 成立, 后 $\varphi(n) - s$ 个数使得同余式(1) 不成立. 根据假设条件, 存在一个整数b, (b, n) = 1, 使得同余式(1) 不成立, 再根据结论(ii) 和(iii), 我们有s 个模n 不同简化剩余

$$b \cdot b_1, \ldots, b \cdot b_s$$

使得同余式(1)不成立. 因此,

$$s \le \varphi(n) - s$$
, 或者 $\varphi(n) - s \ge \frac{\varphi(n)}{2}$.

这就是说, 模n 的简化剩余系中至少有一半的数使得同余式(1) 不成立. 证毕

访问主页

标题页

目 录 页

第8页共39页

返回

全屏显示

关 闭

例6.1.5 设n = 63. 求出所有整数b, $1 \le b \le n - 1$ 使得n 是对于基b 的伪素数.

a	a^{n-1}	a	a^{n-1}	a	a^{n-1}	a	a^{n-1}	a	a^{n-1}	a	a^{n-1}
1	1	12	18	23	25	34	22	45	9	56	49
2	4	13	43	24	9	35	28	46	37	57	36
3	9	14	7	25	58	36	36	47	4	58	25
4	16	15	36	26	46	37	46	48	36	59	16
5	25	16	$\mid 4 \mid$	27	36	38	58	49	7	60	9
6	36	17	37	28	28	39	9	50	43	61	4
7	49	18	9	29	22	40	25	51	18	62	1
8	1	19	46	30	18	41	43	52	58		
9	18	20	22	31	16	42	0	53	37		
10	37	21	0	32	16	43	22	54	18		
11	58	22	43	33	18	44	46	55	1		

访问主页

标题页

目 录 页

第9页共39页

返回

全屏显示

关 闭

定理6.1.1 (iv) 告知我们: 对于大奇数, 如果有一个整数b, (b,n)=1, 使得同余式(1) 不成立, 则模n 的简化剩余系中至少有一半的数使得同余式(1)不成立. 这就是说, 对于随机选取的整数b, (b,n)=1, 我们有50% 以上的机会来判断出n 是合数, 或者说n 是合数的可能性小于50%.

假设一个盒子内有N 个大小相同的球(如 $N=2^{1024}$), 球的颜色为绿色和红色两种. 如果蓝球个数小于或等于红球个数, 则从盒子中随机取到蓝球的概率小于或等于 $\frac{1}{2}$, 连续k 次取到蓝球的概率小于或等于 $\frac{1}{9k}$.

访问主页

标 题 页

目 录 页

第 10 页 共 39 页

返回

全屏显示

关 闭

现在, 我们给出判断一个大奇整数 // 为素数的方法:

- 1. 随机选取整数 b_1 , $0 < b_1 < n$, 计算 b_1 和n 的最大公因数 $d_1 = (b_1, n)$.
- 2. 如果 $d_1 > 1$, 则n 不是素数.
- 3. 如果 $d_1 = 1$, 则计算 $b_1^{n-1} \pmod{n}$, 看看同余式(1) 是否成立.
 - 如果不成立, 则n 不是素数.
 - 如果成立, 则n 是合数的可能性小于 $\frac{1}{2}$ 或者说n是素数可能性大于 $1-\frac{1}{2}$.

重复上述步骤.

- 1. 再随机选取整数 b_2 , $0 < b_2 < n$, 计算 b_2 和n 的最大公因数 $d_2 = (b_2, n)$.
- 2. 如果 $d_2 > 1$, 则n 不是素数.
- 3. 如果 $d_2 = 1$, 则计算 $b_2^{n-1} \pmod{n}$, 看看同余式(1) 是否成立.
 - 如果不成立,则n 不是素数.
 - 如果成立, 则n 是合数的可能性小于 $\frac{1}{2^2}$ 或者说n是素数可能性大于 $1 \frac{1}{3^2}$.

访问主页

标 题 页

目 录 页

第 11 页 共 39 页

返回

全屏显示

关 闭

继续重复上述步骤,...,直至第t 步.

- 1. 随机选取整数 b_t , $0 < b_t < n$, 计算 b_t 和n 的最大公因数 $d_t = (b_t, n)$.
- 2. 如果 $d_t > 1$, 则n 不是素数.
- 3. 如果 $d_t = 1$, 则计算 $b_t^{n-1} \pmod{n}$, 看看同余式(1) 是否成立.
 - 如果不成立,则n 不是素数.
 - 如果成立, 则n 是合数的可能性小于 $\frac{1}{2^t}$ 或者说n是素数可能性大于 $1-\frac{1}{2^t}$.

上述过程也可简单归纳为:

Fermat 素性检验

给定奇整数 $n \geq 3$ 和安全参数t.

- 1. 随即选取整数b, (b, n) = 1, $2 \le b \le n 2$;
- 2. 计算 $r = b^{n-1} \pmod{n}$;
- 3. 如果 $r \neq 1$, 则n 是合数.
- 4. 上述过程重复t 次.

访问主页

标 题 页

目 录 页

第 12 页 共 39 页

返回

全屏显示

关 闭

6.1.2 无穷多伪素数

本节讨论伪素数的存在性.

引理6.1.1 设d, n 都是正整数. 如果d 能整除n, 则 2^d-1 能整除 2^n-1 . 证 因为 $d \mid n$, 所以存在一个整数q 使得 $n = q \cdot d$. 因此, 我们有

$$2^{n} - 1 = (2^{d})^{q} - 1 = ((2^{d})^{q-1} + (2^{d})^{q-2} + \dots + 2^{d} + 1)(2^{d} - 1).$$

故 $2^d - 1 \mid 2^n - 1$.

证毕

定理6.1.2 存在无穷多个对于基2 的伪素数.

证 (I) 我们证明: 如果n 是对于基2 的伪素数, 则 $m = 2^n - 1$ 也是对于基2 的伪素数. 事实上, 因为n 是对于基2 的伪素数, 所以n 是奇合数, 并且 $2^{n-1} \equiv 1 \pmod{n}$. 由于n 是奇合数, 所以我们有因数分解式 $n = q \cdot d$, 1 < d < n, 1 < q < n. 根据引理, 我们得到 $2^d - 1 \mid 2^n - 1$. 因此 $m = 2^n - 1$ 是合数.

访问主页

标 题 页

目 录 页

第 13 页 共 39 页

饭 回

全屏显示

关 闭

现在验证:

$$2^{m-1} \equiv 1 \pmod{m}.$$

因为 $2^{n-1} \equiv 1 \pmod{n}$,所以我们可以将 $m-1 = 2(2^{n-1}-1)$ 写成m-1 = kn. 根据引理, 我们得到 $2^n-1 \mid 2^{m-1}-1$. 因此, 同余式

$$2^{m-1} \equiv 1 \pmod{m}$$

成立. 故 $m=2^n-1$ 是对于基2 的伪素数.

(II) 取 n_0 为对于基2 的一个伪素数, 例如 $n_0 = 341$ 是一个对于基2 的伪素数. 再令

$$n_1 = 2^{n_0} - 1$$
, $n_2 = 2^{n_1} - 1$, $n_3 = 2^{n_2} - 1$,

根据结论(I), 这些整数都是对于基2的伪素数. 证毕

访问主页

标 题 页

目 录 页

第 14 页 共 39 页

返回

全屏显示

关 闭

5.1.3 平方因子的判别

因为判断n 是否有平方因子是产生大素数或作因数分解的重要步骤之一, 所以我们给出相关的结论:

定理6.1.3 设n 是一个有平方因子的整数. 则存在整数b, (b, n) = 1 使得同 余式(1) 不成立, 即 $b^{n-1} \not\equiv 1 \pmod{n}$

证 (i) 反证法. 设对所有的正整数b, (b, n) = 1, 都有同余式

$$b^{n-1} \equiv 1 \pmod{n}$$

成立. 根据定理假设, 存在一个素数幂 p^{α} , $\alpha \geq 2$, 使得 $n = p^{\alpha} \cdot n'$, (n', p) = 1. 根据定理5.2.4, 存在g 使得g 是模 p^{α} 原根, 即 $\operatorname{ord}_{p^{\alpha}}(g) = p^{\alpha-1}(p-1)$.

现在中国剩余定理, 可求得 $x \equiv b \pmod{n}$ 满足: $\begin{cases} x \equiv g \pmod{p^{\alpha}}, \\ x \equiv 1 \pmod{n'}. \end{cases}$

这时, 我们有(b,n)=1以及

$$\operatorname{ord}_{p^{\alpha}}(b) = \operatorname{ord}_{p^{\alpha}}(g) = p^{\alpha - 1}(p - 1).$$

因为 $b^{n-1} \equiv 1 \pmod{n}$, 所以 $b^{n-1} \equiv 1 \pmod{p^{\alpha}}$. 根据定理5.1.1, 得到

$$\operatorname{ord}_{p^{\alpha}}(b) \mid n-1$$
 或 $p^{\alpha-1}(p-1) \mid n-1$.

因此, $p \mid n-1$. 这不可能.

证毕

访问主页

标题页

目录页

第 15 页 共 39 页

返 回

全屏显示

关 闭

5.1.4 Carmicheal 数

本节讨论使得Fermat 素性检验算法无效的整数.

定义6.1.2 合数n 称为Carmichael 数, 如果对所有的正整数b, (b, n) = 1, 都有同余式

$$b^{n-1} \equiv 1 \pmod{n}$$

成立.

注 Carmichael 数n 也可解释为这样一个正合数n, 它使得: 对所有的正整数b, (b,n)=1, n-1 都是序列 $u=\{u_k=b^k \mod n \mid k \geq 1\}$ 的周期.

例6.1.6 整数 $561 = 3 \cdot 11 \cdot 17$ 是一个Carmichael 数.

证 如果(b,561) = 1, 则(b,3) = (b,11) = (b,17) = 1. 根据Fermat 小定理, 有

$$b^2 \equiv 1 \pmod{3}, \quad b^{10} \equiv 1 \pmod{11}, \quad b^{16} \equiv 1 \pmod{17}.$$

从而,
$$\begin{cases} b^{560} \equiv (b^2)^{280} \equiv 1 \pmod{3}, \\ b^{560} \equiv (b^{10})^{56} \equiv 1 \pmod{11}, \\ b^{560} \equiv (b^{16})^{35} \equiv 1 \pmod{17}. \end{cases}$$

因此, 我们有 $b^{560} \equiv 1 \pmod{561}$.

访问主页

标 题 页

目 录 页

第 16 页 共 39 页

返回

全屏显示

关 闭

定理6.1.4 n 是一个奇合数.

- (i) 如果n 被一个大于1 平方数整除, 则n 不是Carmichael 数.
- (ii) 如果 $n = p_1 \cdots p_k$ 是一个无平方数, 则n 是Carmichael 数的充要条件是

$$p_i - 1 \mid n - 1, \quad 1 \le i \le k.$$

证 (i) 由定理6.1.3 得到. (ii) 设 $n = p_1 \cdots p_k$ 是一个无平方数. 充分性. 设有正整数b, (b, n) = 1, 则 $(b, p_i) = 1$, $1 \le i \le k$. 我们有

$$b^{p_i-1} \equiv 1 \pmod{p_i}, \quad 1 \le i \le k.$$

进而 $b^{n-1} \equiv \left(b^{p_i-1}\right)^{\frac{n-1}{p_i-1}} \equiv 1 \pmod{p_i}, \ 1 \leq i \leq k$. 这说明n 是Carmichael 数. 必要性. 设n 是Carmichael 数. 则对所有的正整数 $b, \ (b, n) = 1$, 都有同余式

$$b^{n-1} \equiv 1 \pmod{n}.$$

固定 $i, 1 \leq i \leq k,$ 并设 g_i 是模 p_i 原根,则存在 b_i 满足 $\begin{cases} x \equiv g_i \pmod{p_i}, \\ x \equiv 1 \pmod{\frac{n}{p_i}}. \end{cases}$ 这时, $(b_i, n) = 1$,且 $b_i^{n-1} \equiv 1 \pmod{n}$. 进而, $b_i^{n-1} \equiv 1 \pmod{p_i}$. 这意味着 $\operatorname{ord}_{p_i}(b_i) \mid n-1$ 或 $p_i-1 \mid n-1$. 证毕

访问主页

标 题 页

目 录 页

第 17 页 共 39 页

返回

全屏显示

关 闭

定理6.1.5 每个Carmichael 数是至少三个不同素数的乘积.

证 (i) 反证法. 假设有一个Carmichael 数n, 其可以表示为两个素数的乘积. 不妨设 $n=p\cdot q,\ p< q$. 根据定理6.1.4 (ii), 我们有 $n-1\equiv 0\ (\mathrm{mod}\ q-1)$. 从而,

$$p-1 = n-1 - p(q-1) \equiv 0 \pmod{q-1}$$
.

这不可能. 因此, 每个Carmichael 数是至少三个不同素数的乘积. 证毕

注: 1. 存在无穷多个Carmichael 数.

2. 当n 充分大时, 区间[2, n] 内的Carmichael 数的个数 $\geq n^{2/7}$.

访问主页

标 题 页

目 录 页

第 18 页 共 39 页

返回

全屏显示

关 闭

6.2 Euler 伪素数

6.2.1 Euler 伪素数 Solovay-Stassen 素性检

验

设n 是奇素数. 根据定理4.3.1, 对任意整数b 成立, 有同余式

$$b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n}\right) \pmod{n}$$

因此, 如果存在整数b, (b, n) = 1, 使得

$$b^{\frac{n-1}{2}} \not\equiv \left(\frac{b}{n}\right) \pmod{n},$$

则n 不是一个素数.

例6.2.1 设n = 341, b = 2. 我们分别计算得到:

$$2^{\frac{341-1}{2}} \equiv 1 \pmod{341}$$
 以及 $\left(\frac{2}{341}\right) = (-1)^{\frac{341^2-1}{8}} = -1,$

因为 $2^{\frac{341-1}{2}} \not\equiv \left(\frac{2}{341}\right) \pmod{341}$. 所以341 不是一个素数.

访问主页

标题页

目 录 页

第 19 页 共 39 页

全屏显示

关 闭

定义6.2.1 设n 是一个正奇合数. 设整数b 与n 互素. 如果整数n 和b 满足条件:

$$b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n}\right) \pmod{n},\tag{2}$$

则n 叫做对于基b 的Euler 伪素数.

例6.2.2 设n = 1105, b = 2. 我们分别计算得到:

$$2^{\frac{1105-1}{2}} \equiv 1 \pmod{1105}$$
 以及 $\left(\frac{2}{1105}\right) = (-1)^{\frac{1105^2-1}{8}} = 1.$

因为

$$2^{\frac{1105-1}{2}} \equiv \left(\frac{2}{1105}\right) \pmod{1105},$$

所以1105 是一个对于基2 的Euler 伪素数.

访问主页

标 题 页

目 录 页

第 20 页 共 39 页

返回

全屏显示

关 闭

例6.2.3 设 $n = 11 \cdot 31 = 341$. 求出所有整数 $b, 1 \le b \le n - 1$ 使得n 是对于基b 的Euler-伪素数.

解 $\varphi(n) = 300$. 使得n 是对于基b 的伪素数的b 有97 个. 概率为 $\frac{97}{300}$. 这些b 为

$$b = 1, \quad 2*, \quad 4, \quad 8*, \quad 15*, \quad 16, \quad 23*, \quad 27*, \quad 29, \quad 30, \\ 32*, \quad 35*, \quad 39*, \quad 46, \quad 47, \quad 54, \quad 58*, \quad 60*, \quad 61, \quad 63*, \\ 64, \quad 70, \quad 78, \quad 85, \quad 89*, \quad 91*, \quad 92*, \quad 94*, \quad 95*, \quad 97, \\ 101*, \quad 108*, \quad 109*, \quad 116, \quad 120, \quad 122*, \quad 123, \quad 125, \quad 126, \quad 128*, \\ 139, \quad 140*, \quad 147*, \quad 151, \quad 153, \quad 156*, \quad 157, \quad 159, \quad 163, \quad 170*, \\ 171*, \quad 178, \quad 182, \quad 184, \quad 185*, \quad 188, \quad 190, \quad 194*, \quad 201*, \quad 202, \\ 213*, \quad 215, \quad 216, \quad 218, \quad 219*, \quad 221, \quad 225, \quad 232*, \quad 233*, \quad 240*, \\ 244, \quad 246*, \quad 247*, \quad 249*, \quad 250*, \quad 252*, \quad 256, \quad 263, \quad 271, \quad 277, \\ 278*, \quad 280, \quad 281*, \quad 283*, \quad 287, \quad 294, \quad 295, \quad 302*, \quad 306*, \quad 309*, \\ 311, \quad 312, \quad 314*, \quad 318*, \quad 325, \quad 326*, \quad 333*, \quad 337, \quad 339*, \quad 340$$

其中未标注* 号的数b 使得n 是对于基b 的Euler 伪素数. 共有50 个. 概率为 $\frac{50}{300}$.

访问主页

标 题 页

目 录 页

第21页共39页

返回

全屏显示

关 闭

b	$b^{rac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{rac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$
1	1	1	11	242	0	21	56	1	31	155	0	41	56	-1
2*	1	-1	12	67	-1	22	242	0	32*	1	-1	42	56	-1
3	67	-1	13	56	1	23*	1	-1	33	187	0	43	67	1
4	1	1	14	67	1	24	67	1	34	67	-1	44	242	0
5	56	1	15*	1	-1	25	67	1	35*	1	-1	45	67	1
6	67	1	16	1	1	26	56	-1	36	56	1	46	1	1
7	67	-1	17	67	1	27*	1	-1	37	67	-1	47	1	1
8*	1	-1	18	56	-1	28	67	-1	38	67	1	48	67	-1
9	56	1	19	67	-1	29	1	1	39*	1	-1	49	56	1
10	56	-1	20	56	1	30	1	1	40	56	-1	50	67	-1

访问主页

标 题 页

目 录 页

第 22 页 共 39 页

返回

全屏显示

关 闭

b	$b^{rac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$
51	56	-1	61	1	1	71	56	1	81	67	1	91*	1	-1
52	56	1	62	155	$\mid 0 \mid$	72	56	-1	82	56	1	92*	1	-1
53	56	-1	63*	1	-1	73	56	1	83	56	1	93	155	0
54	1	1	64	1	1	74	67	1	84	56	1	94*	1	-1
55	253	0	65	67	1	75	56	-1	85	1	1	95*	1	-1
56	67	1	66	187	0	76	67	-1	86	67	-1	96	67	1
57	56	1	67	56	1	77	187	0	87	67	-1	97	1	1
58*	1	-1	68	67	1	78	1	1	88	242	0	98	56	-1
59	67	1	69	67	1	79	67	1	89*	1	-1	99	253	0
60*	1	-1	70	1	1	80	56	1	90	67	-1	100	67	1

访问主页

标 题 页

目 录 页

第 23 页 共 39 页

返回

全屏显示

关 闭

														or much
b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left \left(\frac{b}{n} \right) \right $	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{rac{n-1}{2}}$	
101*	1	-1	111	56	1	121	253	0	131	67	-1	141	67	— TONGUNUM
102	56	1	112	67	-1	122*	1	-1	132	187	0	142	56	-1
103	56	1	113	56	1	123	1	1	133	56	1	143	253	0
104	56	-1	114	56	-1	124	155	0	134	56	-1	144	56	访问主页
105	67	1	115	56	-1	125	1	1	135	56	-1	145	56	林 题 页
106	56	1	116	1	1	126	1	1	136	67	-1	146	56	-1 -1 -1
107	67	-1	117	67	1	127	67	1	137	56	-1	147*	1	-1,
108*	1	-1	118	67	-1	128*	1	-1	138	67	-1	148	67	第24 页共39页
109*	1	-1	119	56	-1	129	56	-1	139	1	1	149	67	<u>-1 & o</u>
110	253	0	120	1	1	130	67	-1	140*	1	-1	150	56	1 全屏显示

															a much
b	1	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$										
15	1	1	1	161	67	1	171*	1	-1	181	56	-1	191	56	MAO TONG UNIT
15	2	67	1	162	67	$\left -1 \right $	172	67	1	182	1	1	192	67	-1
15	3	1	1	163	1	1	173	56	-1	183	67	$\left -1 \right $	193	67	-1
15	4	187	0	164	56	-1	174	67	1	184	1	1	194*	1	游问主页 ——1 标题页
15	5	155	0	165	242	0	175	56	-1	185*	1	$\left -1 \right $	195	56	—————————————————————————————————————
156	5*	1	-1	166	56	-1	176	242	0	186	155	0	196	56	1 >>
15	7	1	1	167	67	1	177	56	-1	187	187	0	197	56	1 .
15	8	67	-1	168	56	-1	178	1	1	188	1	1	198	253	第05页共39页
15	9	1	1	169	67	1	179	67	-1	189	67	1	199	56	<u>— 1</u> 5 0
16	0	56	-1	170*	1	-1	180	67	1	190	1	1	200	67	

															م مستند
l	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{rac{n-1}{2}}$	
20)1*	1	-1	211	67	$\left -1 \right $	221	1	1	231	253	$\mid 0 \mid$	241	67	1 To TONG UNITED
20	02	1	1	212	56	$\left -1 \right $	222	56	-1	232*	1	$\left -1 \right $	242	253	0
20	03	67	-1	213*	1	$\left -1 \right $	223	67	-1	233*	1	$\left -1 \right $	243	56	-1
20	04	56	-1	214	67	1	224	67	1	234	67	$\left -1 \right $	244	1	坊 问主页 1
20	05	67	-1	215	1	1	225	1	1	235	56	1	245	67	1
20	06	56	-1	216	1	1	226	56	-1	236	67	1	246*	1	<u>-1</u>
20	07	56	-1	217	155	$\mid 0 \mid$	227	56	-1	237	56	$\left -1 \right $	247*	1	-1,
20	08	56	1	218	1	1	228	56	1	238	56	1	248	155	第 26 页 共 39 页
20	09	187	0	219*	1	$\left -1 \right $	229	67	-1	239	56	1	249*	1	<u>-1 & 0</u>
2	10	67	-1	220	253	0	230	56	1	240*	1	-1	250*	1	

														or simular
b	$b^{rac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	
25	1 67	$\left -1 \right $	261	56	1	271	1	1	281*	1	-1	291	67	-1
252	* 1	$\left -1 \right $	262	67	1	272	67	1	282	67	1	292	56	1
253	3 242	0	263	1	1	273	67	1	283*	1	-1	293	67	-1
254	4 67	$\left -1 \right $	264	187	0	274	56	1	284	56	1	294	1	1 标题页
25	5 67	$\left -1 \right $	265	67	-1	275	187	0	285	67	1	295	1	1 目录页
250	$3 \mid 1$	1	266	56	-1	276	67	1	286	253	0	296	67	1
25'	7 56	1	267	67	1	277	1	1	287	1	1	297	242	0
258	8 56	1	268	56	1	278*	1	-1	288	56	-1	298	67	1 第 27 页 共 39 页
259	9 56	1	269	56	-1	279	155	0	289	56	1	299	56	— <u>1</u> 返回
260	67	1	270	56	1	280	1	1	290	56	-1	300	56	<u>1</u> 全屏显示

b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$	b	$b^{\frac{n-1}{2}}$	$\left \left(\frac{b}{n} \right) \right $	b	$b^{\frac{n-1}{2}}$	$\left(\frac{b}{n}\right)$
301	56	-1	311	1	1	321	56	1	331	56	-1
302*	1	-1	312	1	1	322	67	-1	332	56	1
303	67	1	313	67	-1	323	56	-1	333*	1	-1
304	67	-1	314*	1	-1	324	67	1	334	67	-1
305	56	1	315	56	-1	325	1	1	335	67	1
306*	1	-1	316	67	1	326*	1	-1	336	56	1
307	67	-1	317	67	1	327	67	1	337	1	1
308	187	0	318*	1	-1	328	56	1	338	67	-1
309*	1	-1	319	242	0	329	67	-1	339*	1	-1
310	155	0	320	56	1	330	242	0	340	1	1

访问主页

标 题 页

目 录 页

第 28 页 共 39 页

返回

全屏显示

关 闭

Solovay-Stassen 素性检验

给定奇整数 $n \geq 3$ 和安全参数t.

- 1. 随即选取整数 $b, 2 \le b \le n-2;$
- 2. 计算 $r = b^{\frac{n-1}{2}} \pmod{n}$;
- 3. 如果 $r \neq 1$ 以及 $r \neq n-1$, 则n 是合数.
- 4. 计算Jacobi 符号 $s = \left(\frac{b}{n}\right)$;
- 5. 如果 $r \neq s$,则n是合数.
- 6. 上述过程重复 t 次.

访问主页

标 题 页

目 录 页

第 29 页 共 39 页

返回

全屏显示

关 闭

6.2.2 无穷多 Euler 伪素数

定理**6.2.1** 如果n 是对于基b 的Euler 伪素数, 则n 是对于基b 的伪素数.

证 设n 是对于基2 的Euler 伪素数, 则我们有

$$b^{\frac{n-1}{2}} \equiv \left(\frac{b}{n}\right) \pmod{n}.$$

上式两端平方, 并注意到 $\left(\frac{b}{n}\right)=\pm 1\ (\mathrm{mod}\ n),$ 我们有

$$b^{n-1} \equiv (b^{\frac{n-1}{2}})^2 \equiv \left(\frac{b}{n}\right)^2 \equiv 1 \pmod{n},$$

因此, n 是对于基b 的伪素数.

证毕

定理6.2.1 的逆不成立,即不是每个伪素数都是Euler 伪素数. 例如: 341 是对于基2 的伪素数,但不是对于基2 的Euler 伪素数.

访问主页

标 题 页

目 录 页

第 30 页 共 39 页

返回

全屏显示

关 闭

6.3 强伪素数

6.3.1 强伪素数 Miller-Rabin 素性检验

设n 是奇素数,并且有 $n-1=2^st$,则我们有如下因数分解式:

$$b^{n-1} - 1 = (b^{2^{s-1}t} + 1)(b^{2^{s-2}t} + 1) \cdots (b^t + 1)(b^t - 1).$$

因此,如果有同余式

$$b^{n-1} \equiv 1 \pmod{n},$$

则如下同余式至少有一个成立:

$$b^{t} \equiv 1 \pmod{n},$$

$$b^{t} \equiv -1 \pmod{n},$$

$$b^{2t} \equiv -1 \pmod{n},$$

$$\vdots$$

$$b^{2^{s-1}t} \equiv -1 \pmod{n}.$$

访问主页

标 题 页

目 录 页

第31页共39页

返 回

全屏显示

关 闭

由此得到: 如果有整数b 使得

$$\begin{cases} b^t \not\equiv 1 \pmod{n}, \\ b^t \not\equiv -1 \pmod{n}, \\ b^{2t} \not\equiv -1 \pmod{n}, \\ \vdots \\ b^{2^{s-1}t} \not\equiv -1 \pmod{n}, \end{cases}$$

则n 是合数.

在计算 $b^{n-1} \pmod{n}$ 时, 通常要运用模重复平方法, 这时, 计算次序为:

$$b^t \pmod{n} \to b^t \pmod{n} \to (b^t)^2 \pmod{n} \to \ldots \to (b^t)^{2^{s-1}} \pmod{n}$$
.

这意味着如下的素性检验方法比费马素性检验的效果要好些.

访问主页

标 题 页

目 录 页

第 32 页 共 39 页

返 回

全屏显示

关 闭

定义6.3.1 设n 是一个奇合数, 且有表示式 $n-1=2^st$, 其中t为奇数. 设整数b 与n 互素. 如果整数n 和b 满足条件:

$$b^t \equiv 1 \pmod{n}$$
,

或者存在一个整数r, $0 \le r < s$ 使得

$$b^{2^r t} \equiv -1 \pmod{n},$$

则n 叫做对于基b 的强伪素数.

例6.3.1 整数 $n = 2047 = 23 \cdot 89$ 是对于基b = 2 的强伪素数. 解 因为

$$2^{2046/2} \equiv (2^{11})^{93} \equiv (2048)^{93} \equiv 1 \pmod{2047},$$

所以整数2047 是对于基b=2 的强伪素数.

访问主页

标 题 页

目 录 页

第33页共39页

返回

全屏显示

关 闭

Miller-Rabin 素性检验

给定奇整数n > 3 和安全参数k.

写 $n-1=2^{s}t$, 其中t 为奇整数.

- 1. 随机选取整数 $b, 2 \le b \le n-2;$
- 2. 计算 $r_0 \equiv b^t \pmod{n}$;
- 3. a) 如果 $r_0 = 1$ 或 $r_0 = n 1$, 则通过检验, 可能为素数. 回到1. 继续选取另一个随机整数b, $2 \le b \le n 2$;
- b) 否则, 有 $r_0 \neq 1$ 以及 $r_0 \neq n-1$, 我们计算 $r_1 \equiv r_0^2 \pmod{n}$;
- 4. a) 如果 $r_1 = n 1$, 则通过检验, 可能为素数. 回到1. 继续选取另一个随机整数b, $2 \le b \le n 2$;
- b) 否则, 有 $r_1 \neq n 1$, 我们计算 $r_2 \equiv r_1^2 \pmod{n}$; 如此继续下去,
- s+2. a) 如果 $r_{s-1} = n-1$, 则通过检验, 可能为素数. 回到1. 继续选取另一个随机整数b, $2 \le b \le n-2$;
- b) 否则, 有 $r_{s-1} \neq n-1$, n 为合数.

访问主页

标 题 页

目 录 页

第 34 页 共 39 页

返回

全屏显示

关 闭

6.3.2 无穷多强伪素数

定理6.3.2 存在无穷多个对于基2 的强伪素数.

证 i) 我们证明: 如果n 是对于基2 的伪素数, 则 $m = 2^n - 1$ 是对于基2 的强伪素数. 事实上, 因为n 是对于基2 的伪素数, 所以n 是奇合数, 并且 $2^{n-1} \equiv 1 \pmod{n}$. 由此得到 $2^{n-1} - 1 = nk$ 对某整数k, 进一步, k 是奇数. 我们有

$$m-1 = 2^n - 2 = 2(2^{n-1} - 1) = 2^1 nk,$$

这是m-1分解为2 的幂和奇数乘积的表达式.

注意到 $2^n = (2^n - 1) + 1 = m + 1 \equiv 1 \pmod{m}$, 我们有

$$2^{(m-1)/2} \equiv 2^{nk} \equiv (2^n)^k \equiv 1 \pmod{m}$$
.

此外, 在定理6.3.1 的证明中, 我们知道: n 是合数时, m 也是合数. 故m 是对于2 的强伪素数.

ii) 因为对于基2 的伪素数n 产生一个对于基的强伪素数 $2^n - 1$, 而且存在无穷多个对于基2 的伪素数, 所以存在无穷多个对于基2 的伪素数. 证毕

访问主页

标 题 页

目 录 页

第 35 页 共 39 页

返回

全屏显示

关 闭

定理6.3.2 如果n 是对于基b 的强伪素数, n 是对于基b 的Euler 伪素数.

定理6.3.3 设是一个奇合数. 则n 是对于基b, $1 \le b \le n - 1$, 的强伪素数的可能性至多为25%.

例6.3.2 设n = 63. 求出所有整数b, $1 \le b \le n - 1$ 使得n 是对于基b的强伪素数.

访问主页

标 题 页

目 录 页

第36页共39页

返回

全屏显示

关 闭

