一、如下图所示,用例 2 解释图 2.8 的工作原理,特别叙述 R0、R1、R2 最初装的是什么、最后装的是什么,计数器计算了多少次,移了多少次?

[y] [一0. 1011 (用	平付 亏 表示)	
部分积	乘数y , y, +1	说明
00.0000	0. 10110	
+ 00. 1101		у _п у _{п+1} -10. л р[-х] _{зі} .
00. 1101		
00.01101	0. 1011	右移一位得 P
00.001101	0. 101	y, y, -1-11, 右移一位得 P
+ 11.0011		y ₁ y ₁₊₁ -01, 加[x] ₁
11. 011001		
11. 1011001	0.10	右移一位得 Pa
+ 00. 1101		y ₀ y ₀₊₁ -10 tp[-x] ₁₀
00. 1000001		
-00. 01000001	0.1	右移一位得 P
+ 11.0011		у ₀ у ₀₊₁ -01, лр[x] ₃₅
11, 01110001	2	最后一步不移位

工作屋理:

- ① 乘数字在器末端增设附加企 (n+1),初值为0
- ② Yn5yn+1 的形式决定 ko5 k2 hb 接给

- ③ K2根据上选条件,从相应形式到加兴器与部分叙述和
- ④ 五世稳定获取新的 yn yn+1, 以此循环n次

初值
$$R_0 = 00.0000 \qquad R_0 = ||.0|||$$

$$R_1 = 0.0000 \qquad R_1 = 0.0000$$

$$R_2 = ||.00000||$$

$$R_2 = ||.0000||$$

计算了5次,转到74次

二. 为什么要对阶?
使马数阶码相同来华正这样的正确
三. 好阶的方线?
①求为数的阶码之差得出阶码和的方
②使小的一方尾数为格,从而使阶码一致
四. 为什么要规格化!是什么时候生规、右规?如何实现?
①为了保证运算精度
②当符化和最高有效为11.1×× 及00.0 需要在电
当符号位为01成10时,需要右规
③ 左规,尾数五同符经左转一位,所码成 1 直到逐 (11.0
方规,尾数连同符号位右络一位,所码加\
例: 设浮点数的阶码为 4b (含阶符),尾数为 6b (含尾数), x y 中的指数项,小数项均为二进制真值。
(1) $x=2^{01}\times0.1101$, $y=2^{11}\times(-0.1010)$, 求 $x+y=?$
(2) x=-2-010×0.1111 , y=2-100×0.1110 , 求x-y=?
(1) X阶码: cool 尾数: O.llolo
4所码2001 尾数: 1.011cC
の計片 △E = [m] + [-n] i= coc + 110 = 1110
[€z 0 0=-2
(是数为铅2位, 所码加2=)[X]和= cc/1, c.cc/1/ (哈汉)
② 及数相和 [X] A + [Y] A = 11.10011
(A) 有号)
③规格化 [X+Y] in = oclo, 1.collo =) X+4=200x (-0.1106)

① 3阶 DE = [1] + t- [] + = ||| o + cloo = oclo = 2 - (足数右轮 2位 [--]] = ||| c , |.|| ocl

①尾数相成 [X是]和 + [Y是]和 = 110.11011

③规格化 [X-Y]ih=1|11,11.01110 CO会人) X-Y=2⁻⁰⁰¹x(-0.601c)