

Algorithms for Data Science

Optimization: Quadratic Programming

Quadratic Programming

Quadratic programming (QP) involves optimizing a quadratic objective function subject to linear constraints.

Standard Form:

$$ext{Minimize } rac{1}{2}x^TQx + c^Tx ext{ s.t. } Ax \leq b, x \geq 0$$

Where:

- Q: Symmetric positive semidefinite matrix, representing quadratic interactions between variables..
- *c* : Coefficients for linear terms in the objective function.

 $Ax \leq b$ Linear constraints limiting the solution space.

QP: Mathematical Formulation

Objective Function:

 \circ **Quadratic Term:** $\frac{1}{2}x^TQx$ representing contributions of individual variables

 \circ **Linear Term:** c^Tx representing interactions between variables.

Constraints:

- \circ Linear Inequalities: $Ax \leq \text{limiting the solution space.}$
- \circ Non-negativity: $x \ge 0$ ensuring realistic solutions in practical problems.

Feasible Region:

Defined by the constraints, forming a convex polyhedron for convex QP problems.

Solving QP Problems

Interior Point Method

- Utilizes feasible region's structure for efficient optimization.
- Operates by traversing the interior of the feasible region.

Active-Set Method

 Iteratively solves QP problems by focusing on a subset of active constraints.

Complexity

Convex problems can be solved in polynomial time based on their structures nature and depend on problem nize (n) and constraints (m)

Scales efficiently for high-dimensional problems.

 Scales well for problems with sparse constraints.

QP in Python

Example:

$$ext{Minimize } rac{1}{2} x_1^2 + x_2^2 - x_1 x_2 - 3 x_1 - 2 x_2$$

s.t.

$$x_1+x_2\leq 2$$

$$x_1, x_2 \geq 0$$

Mathematical Formulation:

• Quadratic Term: $\frac{1}{2}x^TQx$

$$Q = egin{bmatrix} 1 & -0.5 \ -0.5 & 2 \end{bmatrix}$$

• Linear Term: $c^T x$

$$c = egin{bmatrix} -3 \ -2 \end{bmatrix}$$

Constraints:

$$A = egin{bmatrix} 1 & 1 \ -1 & 0 \ 0 & -1 \end{bmatrix}, b = egin{bmatrix} 2 \ 0 \ 0 \end{bmatrix}$$

QP in Python (cont.)

```
from cvxopt import matrix, solvers
# Define O (scaled for CVXOPT) and c
Q = matrix([[1.0, -0.5], [-0.5, 2.0]]) # Scaled Q
matrix
c = matrix([-3.0, -2.0]) # Linear coefficients
# Inequality constraints Gx <= h
G = matrix([[1.0, 1.0], [-1.0, 0.0], [0.0, -1.0]], (3, )
2), 'd')
h = matrix([2.0, 0.0, 0.0], (3, 1),
'd')
# Solve the OP problem
sol = solvers.qp(Q, c, G, h)
# Print the optimal solution and value
print("Optimal Solution:", sol['x'])
print("Optimal Value:", sol['primal objective'])
```

Solving a quadratic program

Mathematical Formulation:

• Quadratic Term: $rac{1}{2}x^TQx$

$$Q = egin{bmatrix} 1 & -0.5 \ -0.5 & 2 \end{bmatrix}$$

• Linear Term: $c^T x$

$$c = egin{bmatrix} -3 \ -2 \end{bmatrix}$$

Constraints:

$$A = egin{bmatrix} 1 & 1 \ -1 & 0 \ 0 & -1 \end{bmatrix}, b = egin{bmatrix} 2 \ 0 \ 0 \end{bmatrix}$$

