Lab 2 – Truss Design

2D truss code

Example

1, 2, 3, and 4 are the joints

(1), (2), (3), (4), and (5) are the members

Assume length of each member is the same for this example.

Method of Joint – FBD for each joint

F_# = magnitude of force in member #

 $\mathbf{u_5} = \mathbf{j}$

R = Reaction force at support

Equilibrium of Joint 1

Equilibrium of Joint 2

Equilibrium of Joint 3

$$\sum F_x = 0:$$

$$F_4 u_4 = 0$$

$$F_4 = 0 \quad \dots \text{(v)}$$

$$\sum F_{y} = 0:$$

$$-F_{2}u_{2} - R_{1}u_{2} = 0$$

$$F_{2} + R_{1} = 0 \quad \dots \text{(vi)}$$

Equilibrium of Joint 4

$$\sum F_{x} = 0:$$

$$-F_{4}u_{4} - F_{3}u_{3x} + R_{3}u_{4} = 0$$

$$-F_{4} - \cos 45^{\circ}F_{3} + R_{3} = 0 \quad \dots \text{(vii)}$$

$$\sum F_{y} = 0:$$

$$F_{5}u_{5} - F_{3}u_{3y} + R_{2}u_{5} = 0$$

$$F_{5} + \sin 45^{\circ}F_{3} + R_{2} = 0 \quad \dots \text{(viii)}$$

No. of equations = $2 \times no$. of joint ... since we have 2 equations at each joint

$$2 \times 4 = 8$$

$$-F_1 - F_E = 0 \quad \dots \text{ (i)}$$

$$-F_5 = 0 \quad \dots \text{ (ii)}$$

$$F_1 + \cos 45^{\circ} F_3 = 0 \quad \dots \text{ (iii)}$$

$$-F_2 - \sin 45^{\circ} F_3 = 0 \quad \dots \text{ (iv)}$$
 No. of unknowns = No. of members + No. of reactions
$$F_4 = 0 \quad \dots \text{ (v)}$$

$$F_2 + R_1 = 0 \quad \dots \text{ (vi)}$$

$$F_2 + R_1 = 0 \quad \dots \text{ (vii)}$$

$$F_5 + \sin 45^{\circ} F_3 + R_2 = 0 \quad \dots \text{ (viii)}$$

Solve using solve using matrices

Assemble the system of linearly independent equations

	F_1	F_2	F_3	F_4	F_5	R_1	R_2	R_3	External	Sum
Joint 1 x-dirn	-F ₁								<i>-F</i> _E	= 0 (i)
Joint 1 y-dirn		 			-F ₅	 	i 			= O (ii)
Joint 2 x-dirn	\overline{F}_1	 	$\cos 45^{\circ} F_3$			 	 			= O (iii)
Joint 2 y-dirn		-F ₂	-sin45° F_3				 			= 0 (iv)
Joint 3 x-dirn		 		F_4		1 1 1 1 1	 			= 0 (v)
Joint 3 y-dirn		F_2				R_1				= 0 (vi)
Joint 4 x-dirn			-cos45°F ₃	-F ₄				R_3		= 0 (vii)
Joint 4 y-dirn			sin45°F ₃		F_5		R_2			= 0 (viii)

Assemble the system of linearly independent equations

	F_1	F_2	F_3	F_4	F_5	R_1	R_2	R_3	External
Joint 1 x-dirn	-F ₁								$=F_{ m E}$ (i)
Joint 1 y-dirn		 			-F ₅	 	 		= 0 (ii)
Joint 2 x-dirn	\overline{F}_1	 	$\cos 45^{\circ} F_3$			 	 		= 0 (iii)
Joint 2 y-dirn		-F ₂	-sin45°F ₃				 		= 0 (iv)
Joint 3 x-dirn		 		F_4	 	 	 	 	= 0 (v)
Joint 3 y-dirn		F_2				R_1			= 0 (vi)
Joint 4 x-dirn		 	-cos45° <i>F</i> ₃	-F ₄			 	R_3	= 0 (vii)
Joint 4 y-dirn		1	sin45°F ₃		F_5		R_2		= 0 (viii)

Can write in matrix form! A x = b

Assemble the system of linearly independent equations

	_				A			_	X	=	b	
Joint 1 x-dirn	-1	0	0	0	0	0	0	0	F_1		$oxed{F_{ m E}}$	
Joint 1 y-dirn	0	0	0	0	-1	0	0	0	F_2		0	
Joint 2 x-dirn	1	0	cos45°	0	0	0	0	0	F_3		0	
Joint 2 y-dirn	0	-1	-sin45°	0	0	0	0	0	F_4	=	0	
Joint 3 x-dirn	0	0	0	1	0	0	0	0	F_5		0	
Joint 3 y-dirn	0	1	0	0	0	1	0	0	R_1		0	
Joint 4 x-dirn	0	0	-cos45°	-1	0	0	0	1	R_2		0	
Joint 4 y-dirn	0	0	sin45°		1		1	0	R_3		0	

A systematic approach

Things we need to know: (i.e. the things in the input file)

- 1. Location of the joint
- 2. Which members are connected to which joint connectivity
- 3. Where are the reaction and what are there components
- 4. Where are the external forces and what are there components

Location of joints

Joint #	x-coordinate	y-coordinate
1	$X_I = L$	$Y_I = L$
2	$X_2 = 0$	$Y_2 = L$
3	$X_3 = 0$	$Y_3 = 0$
4	$X_4 = L$	$Y_4 = 0$

Connectivity

Member #	From joint	To joint
1	1	2
2	2	3
3	2	4
4	3	4
5	4	1

Reactions

Joint #	x-component direction	y-component direction
3	0	1
4	0	1
4	1	0

External Forces

Joint #	x-component	y-component
1	-F _E = 1000 N	0

Dealing with force directions – 'From' joints and 'To' joints

'From' joint

Unit vector for 'From' joint

$$\mathbf{u}_{\mathsf{From}} = \frac{(X_T - X_F) \mathbf{i} + (Y_T - Y_F) \mathbf{j}}{\sqrt{(X_T - X_F)^2 + (Y_T - Y_F)^2}}$$

Unit vector for 'To' joint

$$\mathbf{u_{To}} = \frac{(X_F - X_T) \mathbf{i} + (Y_F - Y_T) \mathbf{j}}{\sqrt{(X_F - X_T)^2 + (Y_F - Y_T)^2}}$$

Assuming that the input information in the tables have been read and stored Enter coefficients of unknown member force first.

Start at joint 1: Means we are dealing with the 1st and 2nd rows of the A-matrix

Get the members that are connected to joint 1.

Members 1 and 5 are connected at joint 1.

Note whether joint is a 'From' or 'To' joint for each member

Joint 1 is a 'From' joint for member 1

Joint 1 is a 'To' joint for member 5

Note the joint that connects to the other end of each member

Member 1 is connected to joint 2

Member 5 is connected to joint 4

Form the unit vector for each member force at the joint

Connectivity

Member #	From joint	To joint	
1	1	2	
2	2	3	
3	2	4	
4	3	4	
5	4	1	

Form the unit vector for each member force at the joint

If join is a 'From' joint use:

Unit vector for 'From' joint

$$\mathbf{u}_{\text{From}} = \frac{(X_T - X_F) \mathbf{i} + (Y_T - Y_F) \mathbf{j}}{\sqrt{(X_T - X_F)^2 + (Y_T - Y_F)^2}}$$

Otherwise it is a 'To' joint, so use:

Unit vector for 'To' joint

$$\mathbf{u_{To}} = \frac{(X_F - X_T) \mathbf{i} + (Y_F - Y_T) \mathbf{j}}{\sqrt{(X_F - X_T)^2 + (Y_F - Y_T)^2}}$$

Location of joints

Joint #	x-coordinate			y-coordinate		
1	X_{1}	= L		$Y_1 = L$		
2	X_2	= 0		$Y_2 = L$		
3	X_3	= 0	•	$Y_3 = 0$		
4	X_4	= <i>L</i>		$Y_4 = 0$		

Joint 1 is a 'From' joint for member 1

$$\mathbf{u_{1,1}} = \frac{(X_2 - X_1) \mathbf{i} + (Y_2 - Y_1) \mathbf{j}}{\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}}$$
Member
$$\mathbf{u_{1,1}} = \frac{(0 - L) \mathbf{i} + (L - L) \mathbf{j}}{\sqrt{(0 - L)^2 + (L - L)^2}}$$

$$\mathbf{u_{1,1}} = (-1)\mathbf{i} + (0)\mathbf{j}$$

Thus we can fill in the 1^{st} and 2^{nd} row entries in the A-matrix for the F_1 column

- i.e. Row 1 Joint 1 x-direction Column 1 - force F_1 column Coefficient = -1
- i.e. Row 2 Joint 1 y-direction Column 1 - force F_1 column Coefficient = 0

Joint 1 is a 'To' joint for member 5

$$\mathbf{u_{1,5}} = \frac{(X_4 - X_1) \mathbf{i} + (Y_4 - Y_1) \mathbf{j}}{\sqrt{(X_4 - X_1)^2 + (Y_4 - Y_1)^2}}$$

$$\mathbf{u_{1,5}} = \frac{(L-L)\mathbf{i} + (0-L)\mathbf{j}}{\sqrt{(L-L)^2 + (0-L)^2}}$$

$$\mathbf{u_{1.5}} = (0) \mathbf{i} + (-1) \mathbf{j}$$

Thus we can fill in the 1st and 2nd row entries in the A-matrix for the F_5 column

- i.e. Row 1 Joint 1 x-direction Column 5 - force F_5 column Coefficient = 0
- i.e. Row 2 Joint 1 y-direction Column 5 - force F_5 column Coefficient = 1

Joint #	x-coordinat	e y-coordinate
1	$X_1 = L$	$Y_1 = L$
2	$X_2 = 0$	$Y_2 = L$
3	$X_3 = 0$	$Y_3 = 0$
4	$X_4 = L$	$Y_4 = 0$

Next, move to joint 2

At joint 2: Means we are dealing with the 3rd and 4th rows of the A-matrix

Get the members that are connected to joint 2.

Members 1, 2, and 3 are connected at joint 2.

Note whether joint is a 'From' or 'To' joint for each member

Joint 2 is a 'To' joint for member 1

Joint 2 is a 'From' joint for member 2

Joint 2 is a 'From' joint for member 3

Note the joint that connects to the other end of each member

Member 1 is connected to joint 1

Member 2 is connected to joint 3

Member 3 is connected to joint 4

Form the unit vector for each member force at the joint

Connectivity Member # From joint To joint 1 1 2 2 3 3 4 4 4 3 4

1

5

Form the unit vector for each member force at the joint

If join is a 'From' joint use:

Unit vector for 'From' joint

$$\mathbf{u}_{\text{From}} = \frac{(X_T - X_F) \mathbf{i} + (Y_T - Y_F) \mathbf{j}}{\sqrt{(X_T - X_F)^2 + (Y_T - Y_F)^2}}$$

Otherwise it is a 'To' joint, so use:

Unit vector for 'To' joint

$$\mathbf{u_{To}} = \frac{(X_F - X_T) \mathbf{i} + (Y_F - Y_T) \mathbf{j}}{\sqrt{(X_F - X_T)^2 + (Y_F - Y_T)^2}}$$

Location of joints

Joint #	x-coordinate			у-	-coordina	te
1		$X_1 = L$			$Y_1 = L$	
2		$X_2 = 0$			$Y_2 = L$	
3		$X_3 = 0$			$Y_3 = 0$	
4		$X_4 = L$			$Y_4 = 0$	

Joint 2 is a 'To' joint for member 1

$$\mathbf{u_{2,1}} = \frac{(X_1 - X_2) \mathbf{i} + (Y_1 - Y_2) \mathbf{j}}{\sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}}$$

$$\mathbf{u_{2,1}} = \frac{(L-0)\mathbf{i} + (L-L)\mathbf{j}}{\sqrt{(L-0)^2 + (L-L)^2}}$$

$$\mathbf{u_{2.1}} = (1) \mathbf{i} + (0) \mathbf{j}$$

Thus we can fill in the 3^{rd} and 4^{th} row entries in the A-matrix for the F_1 column

- i.e. Row 3 Joint 2 x-direction Column 1 - force F_1 column Coefficient = 1
- i.e. Row 4 Joint 2 y-direction Column 1 - force F_1 column Coefficient = 0

Joint 2 is a 'From' joint for member 2

$$\mathbf{u_{2,2}} = \frac{(X_3 - X_2) \mathbf{i} + (Y_3 - Y_2) \mathbf{j}}{\sqrt{(X_3 - X_2)^2 + (Y_3 - Y_2)^2}}$$

$$\mathbf{u_{2,2}} = \frac{(0-0)\mathbf{i} + (0-L)\mathbf{j}}{\sqrt{(0-0)^2 + (0-L)^2}}$$

$$\mathbf{u_{2,2}} = (0) \mathbf{i} + (-1) \mathbf{j}$$

Thus we can fill in the 3^{rd} and 4^{th} row entries in the A-matrix for the F_2 column

- i.e. Row 3 Joint 2 x-direction Column 2 - force F_2 column Coefficient = 0
- i.e. Row 4 Joint 2 y-direction Column 2 - force F_2 column Coefficient = -1

Joint #	x-coordinate	y-coordinate
1	$X_1 = L$	$Y_I = L$
2	$X_2 = 0$	$Y_2 = L$
3	$X_3 = 0$	$Y_3 = 0$
4	$X_4 = L$	$Y_4 = 0$

Joint 2 is a 'From' joint for member 3

$$\mathbf{u_{2,3}} = \frac{(X_4 - X_2) \mathbf{i} + (Y_4 - Y_2) \mathbf{j}}{\sqrt{(X_4 - X_2)^2 + (Y_4 - Y_2)^2}}$$

$$\mathbf{u_{2,3}} = \frac{(L-0)\mathbf{i} + (0-L)\mathbf{j}}{\sqrt{(L-0)^2 + (0-L)^2}}$$

$$\mathbf{u_{2,3}} = (1/\sqrt{2}) \mathbf{i} + (-1/\sqrt{2}) \mathbf{j}$$

Thus we can fill in the 3^{rd} and 4^{th} row entries in the A-matrix for the F_3 column

- i.e. Row 3 Joint 2 x-direction Column 3 - force F_3 column Coefficient = $1/\sqrt{2}$
- i.e. Row 4 Joint 2 y-direction Column 3 - force F_3 column Coefficient = -1/V2

Joint #	x-coordinate	y-coordinate
1	$X_1 = L$	$Y_1 = L$
2	$X_2 = 0$	$Y_2 = L$
3	$X_3 = 0$	$Y_3 = 0$
4	$X_4 = L$	$Y_4 = 0$

Next, move to joint 3

At joint 3: Means we are dealing with the 5th and 6th rows of the A-matrix

Get the members that are connected to joint 3.

Members 2, and 4 are connected at joint 3.

Note whether joint is a 'From' or 'To' joint for each member

Joint 3 is a 'To' joint for member 2

Joint 3 is a 'From' joint for member 4

Note the joint that connects to the other end of each member

Member 2 is connected to joint 2

Member 4 is connected to joint 4

Form the unit vector for each member force at the joint

Form the unit vector for each member force at the joint

If join is a 'From' joint use:

Unit vector for 'From' joint

$$\mathbf{u}_{\text{From}} = \frac{(X_T - X_F) \mathbf{i} + (Y_T - Y_F) \mathbf{j}}{\sqrt{(X_T - X_F)^2 + (Y_T - Y_F)^2}}$$

Otherwise it is a 'To' joint, so use:

Unit vector for 'To' joint

$$\mathbf{u_{To}} = \frac{(X_F - X_T) \mathbf{i} + (Y_F - Y_T) \mathbf{j}}{\sqrt{(X_F - X_T)^2 + (Y_F - Y_T)^2}}$$

Location of joints

Joint #	x-coordinate y-coordinate			
1	$X_I = L$	$Y_1 = L$		
2	$X_2 = 0$	$Y_2 = L$		
3	$X_3 = 0$	$Y_3 = 0$		
4	$X_4 = L$	$Y_4 = 0$		

Joint 3 is a 'To' joint for member 2

$$\mathbf{u_{3,2}} = \frac{(X_2 - X_3) \mathbf{i} + (Y_2 - Y_3) \mathbf{j}}{\sqrt{(X_2 - X_3)^2 + (Y_2 - Y_3)^2}}$$

$$\mathbf{u_{3,2}} = \frac{(0-0)\mathbf{i} + (L-0)\mathbf{j}}{\sqrt{(0-0)^2 + (L-0)^2}}$$

$$\mathbf{u_{3,2}} = (0) \mathbf{i} + (1) \mathbf{j}$$

Thus we can fill in the 5^{th} and 6^{th} row entries in the A-matrix for the F_2 column

- i.e. Row 5 Joint 3 x-direction Column 2 - force F_2 column Coefficient = 0
- i.e. Row 6 Joint 3 y-direction Column 2 - force F_2 column Coefficient = 1

Joint 3 is a 'From' joint for member 4

$$\mathbf{u_{3,4}} = \frac{(X_4 - X_3) \mathbf{i} + (Y_4 - Y_3) \mathbf{j}}{\sqrt{(X_4 - X_3)^2 + (Y_4 - Y_3)^2}}$$

$$\mathbf{u_{3,4}} = \frac{(L-0)\mathbf{i} + (0-0)\mathbf{j}}{\sqrt{(L-0)^2 + (0-0)^2}}$$

$$\mathbf{u_{3.4}} = (1)\mathbf{i} + (0)\mathbf{j}$$

Thus we can fill in the 5^{th} and 6^{th} row entries in the A-matrix for the F_4 column

- i.e. Row 5 Joint 3 x-direction Column 4 - force F_4 column Coefficient = 1
- i.e. Row 6 Joint 3 y-direction Column 4 - force F_4 column Coefficient = 0

Joint #	x-coordinate	y-coordinate		
1	$X_I = L$	$Y_1 = L$		
2	$X_2 = 0$	$Y_2 = L$		
3	$X_3 = 0$	$Y_3 = 0$		
4	$X_4 = L$	$Y_4 = 0$		

Next, move to joint 4

At joint 4: Means we are dealing with the 7th and 8th rows of the A-matrix

Get the members that are connected to joint 4.

Members 3, 4, and 5 are connected at joint 4.

Note whether joint is a 'From' or 'To' joint for each member

Joint 4 is a 'To' joint for member 3

Joint 4 is a 'To' joint for member 4

Joint 4 is a 'From' joint for member 5

Note the joint that connects to the other end of each member

Member 3 is connected to joint 2

Member 4 is connected to joint 3

Member 5 is connected to joint 1

Form the unit vector for each member force at the joint

Connectivity

Member #	From joint	To joint
1	1	2
2	2	3
3	2	4
4	3	4
5	4	1

Form the unit vector for each member force at the joint

If join is a 'From' joint use:

Unit vector for 'From' joint

$$\mathbf{u}_{\text{From}} = \frac{(X_T - X_F) \mathbf{i} + (Y_T - Y_F) \mathbf{j}}{\sqrt{(X_T - X_F)^2 + (Y_T - Y_F)^2}}$$

Otherwise it is a 'To' joint, so use:

Unit vector for 'To' joint

$$\mathbf{u_{To}} = \frac{(X_F - X_T) \mathbf{i} + (Y_F - Y_T) \mathbf{j}}{\sqrt{(X_F - X_T)^2 + (Y_F - Y_T)^2}}$$

Location of joints

Joint #	x-coordinate	y-coordinate
1	$X_1 = L$	$Y_1 = L$
2	$X_2 = 0$	$Y_2 = L$
3	$X_3 = 0$	$Y_3 = 0$
4	$X_4 = L$	$Y_4 = 0$

Joint 4 is a 'To' joint for member 3

$$\mathbf{u_{4,3}} = \frac{(X_2 - X_4) \mathbf{i} + (Y_2 - Y_4) \mathbf{j}}{\sqrt{(X_2 - X_4)^2 + (Y_2 - Y_4)^2}}$$

$$\mathbf{u_{4,3}} = \frac{(0-L)\mathbf{i} + (L-0)\mathbf{j}}{\sqrt{(L-0)^2 + (L-L)^2}}$$

$$\mathbf{u_{4,3}} = (-1/\sqrt{2}) \mathbf{i} + (1/\sqrt{2}) \mathbf{j}$$

Thus we can fill in the 7^{th} and 8^{th} row entries in the A-matrix for the F_3 column

- i.e. Row 7 Joint 4 x-direction Column 3 - force F_3 column Coefficient = -1/ $\sqrt{2}$
- i.e. Row 8 Joint 4 y-direction Column 3 - force F_3 column Coefficient = $1/\sqrt{2}$

Joint 4 is a 'To' joint for member 4

$$\mathbf{u_{4,4}} = \frac{(X_3 - X_4) \mathbf{i} + (Y_3 - Y_4) \mathbf{j}}{\sqrt{(X_3 - X_4)^2 + (Y_3 - Y_4)^2}}$$

$$\mathbf{u_{4,4}} = \frac{(0-L)\mathbf{i} + (0-0)\mathbf{j}}{\sqrt{(0-L)^2 + (0-0)^2}}$$

$$\mathbf{u_{4.4}} = (-1)\mathbf{i} + (0)\mathbf{j}$$

Thus we can fill in the 7^{th} and 8^{th} row entries in the A-matrix for the F_4 column

- i.e. Row 7 Joint 4 x-direction Column 4 - force F_4 column Coefficient = -1
- i.e. Row 8 Joint 4 y-direction Column 4 - force F_4 column Coefficient = 0

Joint #	x-coordinate y-coordinate			
1	$X_I = L$	$Y_1 = L$		
2	$X_2 = 0$	$Y_2 = L$		
3	$X_3 = 0$	$Y_3 = 0$		
4	$X_4 = L$	$Y_4 = 0$		

Joint 4 is a 'From' joint for member 5

$$\mathbf{u_{4,5}} = \frac{(X_1 - X_4) \mathbf{i} + (Y_1 - Y_4) \mathbf{j}}{\sqrt{(X_1 - X_4)^2 + (Y_1 - Y_4)^2}}$$

$$\mathbf{u_{4,5}} = \frac{(L-L)\mathbf{i} + (L-0)\mathbf{j}}{\sqrt{(L-L)^2 + (L-0)^2}}$$

$$\mathbf{u_{4,5}} = (0) \mathbf{i} + (1) \mathbf{j}$$

Thus we can fill in the 7^{th} and 8^{th} row entries in the A-matrix for the F_5 column

- i.e. Row 7 Joint 4 x-direction Column 5 - force F_5 column Coefficient = 0
- i.e. Row 4 Joint 2 y-direction Column 5 - force F_5 column Coefficient = 1

Joint #	x-coordinate		y-coordinate			
1		$X_1 = L$			$Y_1 = L$	
2	$X_2 = 0$		$Y_2 = L$			
3		$X_3 = 0$			$Y_3 = 0$	
4		$X_4 = L$			$Y_4 = 0$	

Next, enter coefficients for the reactions

Reaction 1 is at joint 3: Means we are dealing with the 5th and 6th rows of the A-matrix

We are dealing with the R_1 column, i.e. column 6 We can fill in the 5th and 6th row entries in the A-matrix for the R_1 column

- i.e. Row 5 Joint 3 x-direction Column 6 – force R_1 column Coefficient = 0
- i.e. Row 6 Joint 3 y-direction Column 6 – force R_1 column Coefficient = 1

Reactions

Joint #	x-component direction		ompone direction		
3		0		1	
4		0		1	
4		1		0	

Reaction 2 is at joint 4: Means we are dealing with the 7th and 8th rows of the A-matrix

We are dealing with the R_2 column, i.e. column 7 We can fill in the 7th and 8th row entries in the A-matrix for the R_2 column

- i.e. Row 7 Joint 4 x-direction Column 7 – force R_1 column Coefficient = 0
- i.e. Row 8 Joint 4 y-direction Column 7 – force R_1 column Coefficient = 1

Reactions

Joint #	x-component direction	y-component direction
3	0	1
4	0	1
4	1	0

Reaction 3 is at joint 4: Means we are dealing with the 7th and 8th rows of the A-matrix

We are dealing with the R_3 column, i.e. column 8 We can fill in the 7th and 8th row entries in the A-matrix for the R_2 column

- i.e. Row 7 Joint 4 x-direction Column 8 – force R_3 column Coefficient = 1
- i.e. Row 8 Joint 4 y-direction Column 8 – force R_3 column Coefficient = 0

Reactions

Joint #	x-component direction	y-component direction
3	0	1
4	0	1
4	1	0

Enter the know external forces

External Force is at joint 1: Means we are dealing with the 1st and 2nd rows of the b-matrix

We can fill in the 1st and 2nd row entries in the b-matrix:

i.e. Row 1 – Joint 1 x-direction

Value = -1000

i.e. Row 2 – Joint 1 y-direction Value = 0

External Forces

Joint #	x-component	y-component			
1	-F _E = -1000 N		0		
1	-L ^E 1000 M		U		