Лабораторная работа №3(A) Определение удельной теплоты плавления и изменения энтропии при кристаллизации олова

<u>Цель работы</u>: экспериментальное определение удельной теплоты плавления и вычисление изменения энтропии в процессе кристаллизации олова.

Описание установки и вывод расчётных формул

В экспериментальной установке исследование олово помещено в стальную ампулу 2 (рис.1). Ампулу с оловом можно опустить в электрическую печь 1, либо – для охлаждения олова – поднять ампулу вверх. Положение ампулы фиксируется с помощью стопорного винта 7. Электрическое питание печи включается тумблером10. Внутри ампулы находится металлическая трубка-чехол с дифференциальной хромель-копелевой термопарой, горячий спай которой 3 расположен в ампуле, а холодный спай 4 — на воздухе. Концы термопары через гнезда и медные провода соединены с милливольтметром 5, измеряющим возникающую термоэдс. Электрическая печь находится в модуле экспериментального стенда.

Простейшей моделью квазистатического охлаждения тела является охлаждение в среде с постоянной температурой $T_{\rm cp}$. Если процесс охлаждения происходит достаточно медленно, температуру всех точек тела в каждый момент времени можно считать одинаковой. Такой процесс охлаждения состоит из непрерывно следующих друг за другом равновесных состояний и, следовательно, является квазистатическим обратимым процессом.

Применим закон сохранения энергии к квазистатическому процессу охлаждения твердого олова в ампуле после кристаллизации:

$$(C_0 m_0 + C_A m_A) dT + \alpha F(T - T_{cp}) d\tau = 0, \tag{1}$$

где: $(C_0m_0 + C_Am_A)dT$ — тепло, отданное ампулой с оловом при их охлаждении за время $d\tau$; $\alpha F(T-T_{\rm cp})d\tau$ — тепло, полученное окружающей средой через поверхность ампулы F за время $d\tau$;

$$C_{\rm o},\,C_{\rm A}$$
 — удельная теплоёмкость олова и материала ампулы $\left[\frac{{\cal J}_{\rm W}}{{\rm \kappa} {\rm r}\cdot {\rm K}}\right];$

 m_0, m_A — масса олова и ампулы, [кг];

T— температура твёрдого олова, [°C]; $T_{\rm cp}$ — температура окружающей среды, [°C]; α — коэффициент теплоотдачи с поверхности ампулы в окружающую среду, $\frac{\mathcal{J}_{\rm K}}{M^2 \cdot c}$ (эта величина считается постоянной).

Применяя закон сохранения энергии к *процессу кристаллизации олова*, можно получить уравнение

$$\lambda_{\kappa} m_{\rm o} + \alpha F(T_{\kappa} - T_{\rm cp}) \Delta \tau_{\kappa} = 0, \tag{2}$$

где: $\lambda_{\kappa}m_0$ — тепло, отданное оловом при его кристаллизации за время этого процесса $\Delta \tau_{\kappa}$; $\alpha F(T_{\kappa}-T_{\rm cp})\Delta \tau_{\kappa}$ — тепло, полученное окружающей средой через поверхность ампулы за время кристаллизации;

 T_{κ} — температура кристаллизации олова. Из формул (1) и (2) следует:

$$\lambda_{\kappa} = \left(c_{o} m_{o} + c_{A} m_{A}\right) \frac{\Delta \tau_{\kappa} \left(T_{\kappa} - T_{cp}\right)}{m_{o} \left(T - T_{cp}\right)} \cdot \left| \frac{dT}{d\tau} \right|. \tag{3}$$

Вычислим изменение энтропии олова в процессе его кристаллизации при неизменной температуре $T = T_{\kappa} = const.$:

$$\Delta S = \frac{1}{T_{\rm K}} \int_{1}^{2} dQ = \frac{\Delta Q}{T_{\rm K}} = \frac{\lambda_{\rm K} m_{\rm O}}{T_{\rm K}}.$$
 (4)

Следовательно, для определения удельной теплоты кристаллизации $\lambda_{\rm k}$ олова и изменения его энтропии ΔS в этом процессе необходимо измерить $T_{\rm k}$, $\Delta \tau_{\rm k}$ и вычислить производную $\frac{dT}{d\tau}$ функции $T=f(\tau)$ в произвольной точке, соответствующей температуре T твердого олова в процессе его охлаждения. Производная $\frac{dT}{d\tau}$ находится из графика (рис. 2), построенного по результатам эксперимента (кривая охлаждения – область III).

Порядок выполнения работы

- 1. Отвернуть винт 7 ползуна 8 и аккуратно опустить ампулу 2 в печь 1 (рис.1).
- 2. Включить электропитание стенда.
- 3. Включить милливольтметр 5 и нагреватель печи (тумблером 10).

- 4. Проследить в течение 10 15 минут за тем, чтобы олово, находящееся в ампуле, расплавилось. Процесс плавления олова происходит при постоянной температуре температуре плавления. При этом показания милливольтметра практически не изменяются. Окончание процесса плавления можно определить как момент времени, после которого показания милливольтметра начинают возрастать.
- 5. Через 1 2 минуты после завершения процесса плавления олова, отключить электрический нагреватель печи (тумблером 10). Отвернуть винт 7 ползуна 8 и поднять ампулу с оловом 2 из печи 1. Зафиксировать положение ампулы тем же винтом.
- 6. Включить секундомер и через каждые 15 20 секунд снимать показания милливольтметра, фиксирующего термоэдс, пропорциональную разности температур олова и окружающей среды $Q = T - T_{cp}$. Измерения продолжать до тех пор, пока не будут пройдены три области процесса охлаждения (рис. 2):
 - область I — область полного расплава олова;
 - область II — область кристаллизации;
 - область III — область охлаждения твердого олова.
- 30 40 7. Получив экспериментальных точек, выключить питание стенда и милливольтметр.

Данные установки и таблица результатов измерений

Macca олова $m_0 = (50 \pm 1)$ грамм

Macca стальной ампулы $m_A = (52 \pm 1)$ грамм

Удельная теплоемкость олова
$$C_{\rm o} = 0.23 \cdot 10^3 \left[\frac{\text{Дж}}{\text{кг} \cdot \text{K}} \right]$$

Удельная теплоемкость олова
$$C_{\rm o} = 0.23 \cdot 10^3 \left[\frac{\mbox{Дж}}{\mbox{кг} \cdot \mbox{K}} \right]$$

Удельная теплоемкость стали $C_{\rm A} = 0.46 \cdot 10^3 \left[\frac{\mbox{Дж}}{\mbox{кг} \cdot \mbox{K}} \right]$

№ п/п	τ, c	$\Delta \varepsilon_i$, mB	$\varepsilon_i = \varepsilon_0 + \Delta \varepsilon_i, MB$	T, °C
1				
2				

Обработка результатов измерений

Метод І

- 1. Определить по лабораторному термометру температуру окружающей среды. По градуировочному графику хромель-копелевой термопары определить соответствующее этой температуре значение термоэдс ϵ_0 .
- 2. Прибавляя к каждому измеренному значению термоэдс $\Delta \varepsilon_i$ значение ε_0 , определить по градуировочному графику температуру олова T_i в процессе охлаждения соответствующие моменты времени.
- 3. По данным измерения построить график зависимости температуры олова T от времени т. Определить температуру и время кристаллизации олова — $T_{\rm K}$ и $\Delta \tau_{\rm K}$.
- 4. В области охлаждения твердого олова III выбрать произвольную точку (T, τ) на графике $T = f(\tau)$ и провести в этой точке касательную к графику.
- 5. В выбранной точке определить $\frac{dT}{d\tau}$. Подставив значение $\frac{dT}{d\tau}$ и соответствующую температуру T в формулу (3), вычислить удельную теплоту кристаллизации олова λ_{κ} .
- 6. Воспользовавшись формулой (4), рассчитать изменение энтропии при кристаллизации олова.

7. Оценить погрешность измерения удельной теплоты кристаллизации олова. Результат измерения представить в стандартном виде.

$$\lambda = \lambda \pm \Delta \lambda$$
, [Дж/кг].

Метод II

В этом методе при расчете удельной теплоты кристаллизации олова λ_{κ} также используется выражение (3). Но в этом случае не придется графически определять темп охлаждения твердого олова – $\frac{dT}{d\tau}$.

Как следует из уравнения (1)

$$\frac{dT}{d\tau \left(T - T_{cp}\right)} = -\frac{B}{A}.\tag{5}$$

здесь $A = (c_{\rm o} m_{\rm o} + c_{\rm A} m_{\rm A})$ — известная константа, а B = 2F — неизвестная «постоянная установки».

Теперь формулу (3) можно представить так:

$$\lambda_{\kappa} = \left(c_{o}m_{o} + c_{A}m_{A}\right) \frac{\Delta \tau_{\kappa} (T_{\kappa} - T_{cp})}{m_{o}} \frac{B}{A}.$$
 (6)

Для отыскания отношения (B/A), проинтегрируем уравнение (5), разделив предварительно переменные:

$$\int_{T_{v}}^{T} \frac{dT}{T - T_{cp}} = -\frac{B}{A} \int_{0}^{\tau_{ox}} d\tau$$

$$\ln \frac{T - T_{cp}}{T_{\kappa} - T_{cp}} = -\frac{B}{A} \tau_{oxn}.$$
(7)

Согласно этому результату, температура твердого олова T в процессе его охлаждения падает от температуры кристаллизации T_{κ} до температуры окружающей среды T_{cp} по экспоненциальному закону:

$$T = T_{cp} + \left(T_{\kappa} - T_{cp}\right) e^{-\frac{B}{A}\tau_{oxn}}.$$

Линейный график функции (7) в полулогарифмических координатах приведен на рис. 3:

Рис. 3

Теперь искомое соотношение констант (B/A) легко отыскать как угловой коэффициент прямой рис. 3.

$$\frac{B}{A} = tg\alpha$$
.

Обрабатывая экспериментальные данные по методу II, нужно вначале руководствоваться пунктами 1-3 метода I. Далее:

4. Заполнить таблицу 2

Таблица 2

$ au_{ox\pi}, c$	$T-T_{cp},\ ^{\circ}C$	$ \ln \frac{T_{\kappa} - T_{cp}}{T - T_{cp}} $	Примечание
			Отсчет времени охлаждения $(\tau_{oxn} = 0)$ начать с момента
			завершения процесса кристаллизации олова

5. Построить на миллиметровке график зависимости

$$\ln \frac{T_{\kappa} - T_{cp}}{T - T_{cp}} = \frac{B}{A} \tau_{oxn}$$

6. Определить тангенс угла наклона графика к оси времени

$$tg\alpha = \frac{B}{A} = \frac{\ln \frac{T_{\kappa} - T_{cp}}{T - T_{cp}}}{\tau_{oxn}} = \left| \frac{dT}{d\tau} \right| \frac{1}{\left(T - T_{cp}\right)}.$$

7. Вычислить удельную теплоту кристаллизации олова (6):

$$\lambda_{\kappa} = \left(c_{\text{o}}m_{\text{o}} + c_{\text{A}}m_{\text{A}}\right) \frac{\Delta \tau_{\kappa} (T_{\kappa} - T_{cp})}{m} \cdot \frac{B}{A}.$$

8. Рассчитать изменение энтропии олова в процессе кристаллизации и оценить погрешность измерений λ_{κ} , руководствуясь п.п. 6 и 7 метода I.