Análise Combinatória - Uma breve introdução

Nicholas Farrel

1 Princípios Aditivo e Multiplicativo

Princípio Aditivo: Dados k eventos distions E_1, E_2, \ldots, E_k . Assuma que temos:

```
n_1 maneiras para o evento E_1 acontecer,

n_2 maneiras para o evento E_2 acontecer,

\vdots

n_k maneiras para o evento E_k acontecer,
```

Se as maneiras para esses eventos ocorrerem são distintas dois a dois, então o número de maneiras para que ao menos um dos eventos E_1, E_2, \ldots , ou E_k acontecer é $n_1 + n_2 + \cdots + n_k$.

Exercício 1. Numa cidade, temos 5 saídas ao norte, e 7 saídas ao sul. De quantas maneiras podemos sair desta cidade?

Exercício 2. Quantos são os inteiros de 1 a 20 que são múltiplos de 3 ou de 7?

Exercício 3. Quantos são os inteiros de 1 a 100 que são múltiplos de 5 ou de 7?

Princípio Multiplicativo: Assuma que um evento E pode ser decomposto em k eventos ordenados E_1, E_2, \ldots, E_k e que temos:

```
n_1 maneiras para o evento E_1 acontecer,

n_2 maneiras para o evento E_2 acontecer,

\vdots

n_k maneiras para o evento E_k acontecer,
```

Então, o número total de maneiras para que o evento E aconteça é $n_1 \cdot n_2 \cdot \ldots \cdot n_k$

Exercício 4. Existem cinco tipos diferentes de xícaras de chá e três tipos diferentes de pires na loja "A Festa do Chá". De quantas maneiras você pode formar um conjunto de xícara com pires?

Exercício 5. No País das Maravilhas existem três cidades A, B e C. Existem seis estradas ligando A e B, e quatro estradas ligando B a C.

- a) De quantas maneiras é possível dirigir de A a C?
- b) Uma nova cidade D foi construída, com três estradas ligando A e D, e duas estradas ligando D e C. Agora, de quantas maneiras podemos viajar de A até C?

Exercício 6. Vamos chamar um número natural de "todo-ímpar"se todos os seus algarismos forem ímpares. Quantos números todo-ímpares de quatro algarismos existem?

Fatorial e Permutações 2

Definição 1: Dado um número natural n definimos n! (lê-se n fatorial) como o produto:

$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$$

Definição 2: Uma permutação de elementos de um conjunto é um arranjo dos elementos deste conjunto em uma lista ordenada.

Exercício 1. Simplifique as expressões:

- **a)** $10! \cdot 11$
- **b**) $n! \cdot (n+1)$
- $\mathbf{c})\frac{100!}{98!}$
- d) $\frac{n!}{(n-1)!}$ e) $\frac{12!}{9!}$

Exercício 2. Quantos números de quatro algarismos podem ser escritos utilizando os algarismos 1, 2, 3 e 4 sem repetições?

Exercício 3. Encontre o número de permutações distintas das seguintes palavras:

- a) "MUNDIAL"
- b) "CAMAS"
- c) "PALMEIRAS"
- d) "ABACATADA"

Exercício 4. Seja S o conjunto dos números naturais cujos dígitos são escolhidos do conjunto $\{1, 3, 5, 7\}$. Encontre o número de elementos de S.

3 Problemas Propostos

Problema 1. Quantos são os números de 5 algarismos maiores que 21300 e cujos algarismos são inteiros distintos do conjunto $\{1, 2, 3, 4, 5\}$

Problema 2. Um quadrado de lado 10 é dividido em 10 quadradinhos iguais de lado 1. Qual é o número total de quadrados nesta figura?

Problema 3. São dados um tabuleiro 4x4 e uma peça do tipo L com 3 quadradinhos unitários. De quantas maneiras diferentes podemos colocar a peça no tabuleiro, de modo que cubra completamente 3 casas?

Problema 4. De quantas maneiras possíveis podemos colocar uma torre branca e outra preta em um tabuleiro de xadrex de modo que elas não possam se atacar mutuamente?

Problema 5. De quantas maneiras possíveis podemos colocar um rei branco e outro preto em um tabuleiro de xadrez de modo que eles não possam se atacar mutuamente?

Problema 6. Qual a soma de todos os números naturais que podemos formar utilizando os algarismos 1, 2, 3, 4, 5, sem repetições?

Problema 7. Seja n um inteiro positivo. De quantas maneiras podemos distribuir n+1 brinquedos distintos para n crianças de modo que toda criança receba pelo menos um brinquedo.

Problema 8. Quantos números de quatro dígitos possuem a soma dos dois primeiros igual a soma dos dois últimos dígitos?