Problem 1

Prove that the sequence $\left\{\frac{n(-1)^n+2}{2n+4}\right\}$ is a bounded sequence

Proof. Lets start with the expression $|n(-1)^n+2|$ where n is an arbitrary element of N, then by the triangle inequality

$$|n(-n)^n + 2| < |n(-1)^n| + |2|.$$

On the right hand side we see that absolute value of 2 is just 2, and $|n(-1)^n| = |n||(-1)^n|$, then we know that $|(-1)^n| = |-1|^n = 1^n = 1$. Thus the inequality evaluates to

$$|n(-n)^n + 2| < |n \cdot 1| + 2.$$

Then $|n \cdot 1| = |n| = n$, so the inequality is equivalent to

$$|n(-n)^n + 2| < n + 2.$$

Then let us divide both sides of the inequality by |2n+4|, giving us equivalent to

$$\frac{|n(-n)^n + 2|}{|2n + 4|} < \frac{n + 2}{|2n + 4|}.$$

Then on the right hand side, the denominator can be evaluated by |2n+4| = 2n+4 = 2(n+2), and on the left hand side we can combine the absolute value of the fraction to get

$$\left| \frac{n(-n)^n + 2}{2n+4} \right| < \frac{n+2}{2(n+2)}.$$

Then on the right hand side we can divide the denominator and the numerator by n+2 to get

$$\left|\frac{n(-n)^n + 2}{2n+4}\right| < \frac{1}{2}$$

Then since we know that $|x| < y \iff -y < x < y$, we can use this on our inequality above to get us,

$$-\frac{1}{2} < \frac{n(-n)^n + 2}{2n + 4} < \frac{1}{2} \qquad \forall n \in \mathbb{N}.$$

Thus, $\frac{1}{2}$ is a upper bound of sequence $\left\{\frac{n(-1)^n+2}{2n+4}\right\}$, and $-\frac{1}{2}$ is a lower bound of the sequence. Therefore, $\left\{\frac{n(-1)^n+2}{2n+4}\right\}$ is bounded since an upper and lower bound exist.

Problem 2

Prove that the sequence $\{n+(-1)^n(n-1)\}$ is unbounded (and thus divergent).

Proof. Suppose the sequence is bounded, then an upper bound exists so there exists a $u \in \mathbb{R}$ such that

$$x_n \le u. \quad \forall n \in \mathbb{N}$$

Let n = 2k for arbitrary $k \in \mathbb{N}$. Then $x_{2k} = 2k + (-1)^{2k}(2k-1)$, then we know 2k is an even number by the definition of even, so $(-1)^{2k} = 1$, giving us

$$x_{2k} = 2k + (1)(2k - 1) = 2k + 2k - 1 = 4k - 1$$

$$x_{2k} = 4k - 1$$

We can substitute x_{2k} for x_n into the inequality since $2k \in \mathbb{N}$ and an element of the sequence, giving us

$$x_{2k} \le u$$

$$4k - 1 \le u$$

Now, we can add 1 to both sides of the equality then divide by 4:

$$4k \le u + 1$$

$$k \le \frac{u+1}{4} \qquad \forall k \in \mathbb{N}$$

We know that $\frac{u+1}{4} \in \mathbb{R}$ since \mathbb{R} is closed under addition and multiplication. Thus, there is a contradiction with the Archimedean Property and the inequality above that there exists a $\frac{u+1}{4}in\mathbb{R}$ greater than or equal to all elements of \mathbb{N} . Therefore, the sequence $\{n+(-1)^n(n-1)\}$ is unbounded and thus divergent.

Problem 3

Use the definition of limit to prove that

$$\lim_{x \to \infty} \frac{n}{n+3} = 1.$$

Proof. Let n be an arbitrary element of \mathbb{N} , then n > 0. We also know that 3 > 0, let us add n to both sides of 3 > 0 to get

$$n < n + 3$$

We can multiply both sides by 3 to get

$$3n < 3(n+3)$$
.

Then multiply both sides by $\frac{1}{n(n+3)}$, n(n+3) > 0, to get

$$\frac{1}{n(n+3)} \cdot 3n < \frac{1}{n(n+3)} \cdot 3(n+3) \implies \frac{3}{n+3} < \frac{3}{n}.$$

$$\frac{3}{n+3} < \frac{3}{n}$$
 Inequality (1)

Then, let us use simplify the expression $\left|\frac{n}{n+3}-1\right|$ with arbitrary $n \in \mathbb{N}$. We see that one is equivalent to $\frac{n+3}{n+3}$, so

$$\left| \frac{n}{n+3} - 1 \right| = \left| \frac{n}{n+3} - \frac{n+3}{n+3} \right|$$

$$=\left|\frac{-3}{n+3}\right|$$
 by subtracting

$$=\frac{3}{n+3}$$
 by definition of absolute value

Thus we have shown that $\left|\frac{n}{n+3}-1\right|=\frac{3}{n+3}$. Now we can substitute in $\left|\frac{n}{n+3}-1\right|$ for $\frac{3}{n+3}$ on the left hand side of Inequality (1). Giving us

$$\left| \frac{n}{n+3} - 1 \right| < \frac{3}{n}$$
 Inequality (2)

Suppose an arbitrary $\varepsilon>0\in\mathbb{R}$, then $\frac{3}{\varepsilon}\in\mathbb{R}$ and $\frac{3}{\varepsilon}>0$. Then by the Archimedean Property there exists a $K\in\mathbb{R}$ such that $K>\frac{3}{\varepsilon}$. When $n\geq K$, we have $n\geq K>\frac{3}{\varepsilon}>0$. Then by inversing both sides and flipping the direction of the inequality $n>\frac{3}{\varepsilon}$ we get

$$\frac{1}{n} < \frac{1}{3/\epsilon} \qquad \forall n \ge K.$$

Then we can multiply both sides of the inequality by 3 to get

$$3(\frac{1}{n}) < 3(\frac{1}{3/\epsilon}) \implies \frac{3}{n} < \frac{1}{1/\epsilon}$$

Then on the right hand side, we can multiply by 1 in the form of $\frac{\epsilon}{\epsilon}$ to get

$$\frac{3}{n} < \frac{1}{1/\epsilon} \cdot \frac{\epsilon}{\epsilon} \implies \frac{3}{n} < \epsilon$$

Then we can combine Inequality (2) with $\frac{3}{n} < \epsilon$ to get

$$\left| \frac{n}{n+3} - 1 \right| < \epsilon \qquad \forall n \ge K$$

Therefore, by the definition of convergence and limit, the sequence $\left\{\frac{n}{n+3}\right\}$ converges to 1, and thus $\lim_{x\to\infty}\frac{n}{n+3}=1$.

Problem 4

Proof. Use the definition of limit to prove that

$$\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$$

Let n be an arbitrary element of N. Then n > 0 and 2 > 0, thus $n^2 > 0$ and $2n^2 > 0$. So, let us now add $2n^2$ to both sides of 0 < 2 to get

$$2n^2 < 2n^2 + 2$$

Then, let us distribute out a n from the left hand side and a 2 from the right hand side to get

$$n \cdot 2n < 2(n^2 + 1)$$

Now, we can multiply both sides by $\frac{1}{n(n^2+1)}$, $n(n^2+1)>0$, to get

$$\frac{1}{n(n^2+1)} \cdot n \cdot 2n < \frac{1}{n(n^2+1)} \cdot 2(n^2+1) \implies \frac{2n}{n^2+1} < \frac{2}{n}$$

$$\frac{2n}{n^2+1} < \frac{2}{n}$$
 Inequality (a)

Now, looking at the expression $\left| \frac{2n}{n^2+1} - 0 \right|$, we can simplify it to

$$\left|\frac{2n}{n^2+1} - 0\right| = \left|\frac{2n}{n^2+1}\right|$$

Then by the definition of absolute value, since $\left|\frac{2n}{n^2+1}\right| > 0$, we get

$$\left|\frac{2n}{n^2+1}\right| = \frac{2n}{n^2+1}$$

Thus,

$$\left| \frac{2n}{n^2 + 1} - 0 \right| = \frac{2n}{n^2 + 1}$$

So now we can substitute $\left|\frac{2n}{n^2+1}-0\right|$ on the left hand side of Inequality (a) to get

$$\left| \frac{2n}{n^2 + 1} - 0 \right| < \frac{2}{n}$$
 Inequality (b)

Now, suppose an arbitrary $\epsilon > 0$, then $2/\epsilon \in \mathbb{R}$ and $2/\epsilon > 0$. Then by the Archimedean Property, there exists $K \in \mathbb{N}$ such that $2/\epsilon < K$. When $n \geq K$ we get that $n \geq K > 2/\epsilon > 0$. Then we can invert both sides of the inequality $n > 2/\epsilon$ and swap the direction of the inequality to get

$$\frac{1}{n} < \frac{1}{2/\epsilon}$$

Multiplying both sides of 2 gets

$$\frac{2}{n} < \frac{1}{1/\epsilon}$$

Then by multiplying the right hand side by 1 in the form of $\frac{\epsilon}{\epsilon}$ to get

$$\frac{2}{n} < \frac{\epsilon}{\epsilon} \cdot \frac{1}{1/\epsilon} \implies \frac{2}{n} < \epsilon$$

Now, we can combine $\frac{2}{n} < \epsilon$ with Inequality (b) to get

$$\left| \frac{2n}{n^2 + 1} - 0 \right| < \epsilon \qquad \forall n \ge K$$

Therefore by the definition of convergence and limit, the sequence $\{\frac{2n}{n^2+1}\}$ converges to 0, thus

 $\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$

Problem 5

We proved in class that $2^n > n^2$ holds for $n \ge 5$. Use this inequality to prove that

$$\lim_{n \to \infty} \frac{n}{2^n} = 0.$$

Proof. Using $n^2 < 2^n$, we can divide both sides of the inequality by n, since $n \ge 5 > 0$, to get

$$\frac{n^2}{n} < \frac{2^n}{n} \implies n < \frac{2^n}{n}.$$

Then we can divide both sides of the inequality by 2^n to get

$$\frac{n}{2^n} < \frac{\frac{2^n}{n}}{2^n} \implies \frac{n}{2^n} < \frac{1}{n}.$$

Then we can see that

$$\left|\frac{n}{2^n} - 0\right| = \left|\frac{n}{2^n}\right| = \frac{n}{2^n}.$$

So now we can substitute the right hand side of $\frac{n}{2^n} < \frac{1}{n}$ with $\left| \frac{n}{2^n} - 0 \right|$, giving us

$$\left|\frac{n}{2^n} - 0\right| < \frac{1}{n} \quad \forall n \ge 5$$
 Inequality (i)

Now, suppose arbitrary $\epsilon > 0$, $1/\epsilon \in \mathbb{R}$ and $1/\epsilon > 0$. Then by the Archimedean Property, there exists a $K_0 \in \mathbb{N}$ such that $1/\epsilon < K_0$. Then let $K = max\{K_0, 5\}$, then $K \geq K_0 > 1/\epsilon > 0$ and $K \geq 5$. Then when $n \geq K$ we have $n \geq K \geq K_0 > 1/\epsilon > 0$. Then by taking the inverse of both sides of the inequality $n > 1/\epsilon$ and switching the direction of the inequality we get

$$\frac{1}{n} < \frac{1}{1/\epsilon} \implies \frac{1}{n} < \epsilon.$$

Then by combining Inequality (i) with $\frac{1}{n} < \epsilon$ we get

$$\left| \frac{n}{2^n} - 0 \right| < \epsilon \qquad \forall n \ge K \ge 5$$

Therefore by the definition of convergence and limit, the sequence $\{2^n > n^2\}$ converges to the limit 0, thus $\lim_{n\to\infty} \frac{n}{2^n} = 0$ for $n \ge 5$.

Problem 6

Let $\{a_n\}$ be a sequence in \mathbb{R} and $\alpha \in \mathbb{R}$. Suppose that $\{a_n\}$ converges to α . Prove that $\{|a_n|\}$ converges to $|\alpha|$.

Proof. Since $\{a_n\}$ converges to α , there exists a $K \in \mathbb{N}$ for arbitrary $\epsilon > 0$ such that

$$|a_n - \alpha| < \epsilon \quad \forall n \ge K$$
 inequality (1)

Now let us use a corollary of the triangle inequality on the expression $|a_n| - |\alpha|$ to get

$$||a_n| - |\alpha|| \le |a_n - \alpha| \quad \forall n \in \mathbb{N}$$

When n > K, we can combine $||a_n| - |\alpha|| \le |a_n - \alpha|$ and $|a_n - \alpha| < \epsilon$ to get

$$||a_n| - |\alpha|| < \epsilon \qquad \forall n \ge K$$

Thus by the definition of convergence, the sequence $\{|a_n|\}$ converges to $|\alpha|$.

Problem 7

Let $t \in \mathbb{R}$. Prove that there exists a sequence r_n such that $r_n \in \mathbb{Q}$ for every $n \in \mathbb{N}$ and

$$\lim_{n \to \infty} r_n = t$$

Proof. For an arbitrary $n \in \mathbb{N}$, since n > 0, 1/n > 0 and $1/n \in \mathbb{R}$. Then -1/n < 0 and we can combine -1/n < 0 and 1/n > 0 to get

$$-\frac{1}{n} < 0 < \frac{1}{n}.$$

$$-\frac{1}{n} < \frac{1}{n}$$

Then we can add t to both sides of the inequality to get

$$t - \frac{1}{n} < t + \frac{1}{n}$$
 $\forall n \in \mathbb{N}.$

We know that $t - \frac{1}{n} \in \mathbb{R}$ and $t + \frac{1}{n} \in \mathbb{R}$ by the closure of the real numbers, thus by the density of the rationals we say that there exists a $r_n \in \mathbb{Q}$ such that

$$t - \frac{1}{n} < r_n < t + \frac{1}{n} \qquad \forall n \in \mathbb{N}$$

By subtracting t from all sides we get

$$-\frac{1}{n} < r_n - t < \frac{1}{n}$$

Then by using " $|x| < y \iff -y < x < y$ " with our inequality we get

$$|r_n - t| < \frac{1}{n}$$

Then for arbitrary $\epsilon > 0$, $1/\epsilon > 0$ and $1/\epsilon \in \mathbb{R}$. Thus by the Archimedean Property there exists a $K \in \mathbb{N}$ such that $K > 1/\epsilon$. Thus when $n \geq K$, $n \geq K > 1/\epsilon > 0$. Then we can take the inverse of both sides of $n > 1/\epsilon$ and switch the direction of the inequality to get

$$\frac{1}{n} < \frac{1}{1/\epsilon} \implies \frac{1}{n} < \epsilon$$

Then by combining $|r_n - t| < \frac{1}{n}$ and $\frac{1}{n} < \epsilon$ we get

$$|r_n - t| < \epsilon \qquad \forall n \ge K$$

Thus by the definition of convergence and limit, the sequence $\{r_n\}$ converges to t and thus $\lim_{n\to\infty}r_n=t\quad\forall n\in\mathbb{N}.$