# Predicting Stock Returns based on Convolutional Neural Networks with Feature Operators

Jing-zhi Huang<sup>1</sup> Peilin Liu<sup>2</sup> Jun Ni<sup>3</sup> Jingyi Zhou<sup>4</sup>

<sup>1</sup>Smeal College of Business Penn State University <sup>3</sup>School of Economics and Management Changzhou Instituate of Technology College of Engineering
 Peking University

 Haicioğlu Data Science Institute
 University of California, San Diego

CFRI & CIRF Joint Conference Shanghai July 30, 2023

### Outline

- Introduction
  - Potential of Machine Learning for Predicting Stock Returns
  - Motivation
  - What We Do
- Empirical Methodology
  - Model Specification
- 3 Data and Empirical Results
  - Data
  - Factor Mimicking Portfolio
  - Benchmark Analysis
  - Real Market Investment
- 4 Conclusion

## Evidence on ML-based Stock Return Predictability

- Applications of ML
  - Chen and He (2018): CNN can be applied to stock trading data to classify future stock trends
  - Gu et al. (2020) and Leippold et al. (2022): machine learning techniques, such as Random Forest and Neural Network, can be used to combine anomalies
  - Hou et al. (2023): Random Forest and multiple regression outperform the composite score method
- Why ML in China
  - Hou et al. (2023): trading-based signals are typically more effective in the Chinese stock market than accounting-based signals (more suitable for deep learning models)
  - Potential to extract valuable information about trading activity, market microstructure, etc.



## Main Question to Be Addressed

- Factor crowding
  - As the signals are continuously applied to trading, their effectiveness and excess return have been declining and the correlation between new signals and old ones is increasing
- Factor mining directly from raw data
  - Deep learning techniques may be directly applied to stock trading data (avoid manual signal designing)
  - Low signal-to-noise ratio, overfitting, and poor interpretability
- Combining ML with prior financial knowledge (automatic feature engineering)
  - Sharpe (1964): covariance matrix
  - Chan et al. (1996), Bremer and Sweeney (1991), Shimizu et al. (2019), and Huang and Huang (2020): momentum, reversal, low-volatility, moving average, etc.

## Focus of Our Study

- A Chinese stock returns prediction problem
  - Independent variable: daily stock trading data in past 30 trading days
  - Dependent variable: 5-day stock returns
- Introducing a CNN model with financial feature operators and constructing better trading-based signals
  - Controlled by previous studies
  - Compared with other ML methods
- Analysis of real market investment
  - Portfolio position optimization

# Model Specification

- Feature operators
  - Definition: Cov(X, Y, d), Corr(X, Y, d), MA(X, d), Std(X, d),
     Zscore(X, d), and RoC(X, d)
  - Mechanism: feature dimension is traversed by permutation approach; time dimension is traversed by time step



# Model Specification

- AlphaNet
  - Architecture



- BN layer: avoid overfitting and increase convergence speed
- Conv layer: extract higher-dimensional features

#### Data Used

- Stock trading data
  - Independent variable: open, close, high, low, vwap, volume, return, turnover, free\_turnover (9×30 matrix)
  - Dependent variable: 5-day return
- Definition

$$\begin{aligned} \text{return}_t &= \frac{\mathsf{close}_t}{\mathsf{close}_{t-1}} - 1 & \mathsf{turnover}_t &= \frac{\mathsf{close}_t \times \mathsf{volume}_t}{\mathsf{total \ share}_t} \\ \text{free\_turnover}_t &= \frac{\mathsf{close}_t \times \mathsf{volume}_t}{\mathsf{free \ float \ share}_t} & \mathsf{5\text{-day \ return}}_t &= \frac{\mathsf{close}_t}{\mathsf{close}_{t+5}} - 1 \end{aligned}$$

- Time period
  - In-sample period: from Feb. 25, 2015 to Oct. 30, 2018
  - Out-of-sample period: from Oct. 31, 2018 to Nov. 19, 2020

### Portfolio Performance

Equal-weighted portfolio (compounded interest pattern)

|            | Annualized return |               | Sharpe ratio |               |
|------------|-------------------|---------------|--------------|---------------|
|            | In-sample         | Out-of-sample | In-sample    | Out-of-sample |
| Quantile 5 | 23.30%            | 38.73%        | 0.72         | 1.69          |
| Quantile 4 | 12.50%            | 38.05%        | 0.39         | 1.64          |
| Quantile 3 | 4.03%             | 32.39%        | 0.13         | 1.35          |
| Quantile 2 | -10.32%           | 22.22%        | -0.32        | 0.88          |
| Quantile 1 | -29.23%           | -6.27%        | -0.86        | -0.23         |
| Long Short | 26.30%            | 22.34%        | 6.35         | 4.86          |

• Stock market is better during the out-of-sample period

#### Portfolio Performance

#### Net value curves



• Good monotonicity (apparent gaps), good generalization (in-sample and out-of-sample), and significant excess return

## Control of Risk Model

• Liu et al., 2019: China Four-Factor Model

$$E(R)-R_f = \beta_{MKT}MKT + \beta_{SMB}SMB + \beta_{VMG}VMG + \beta_{PMO}PMO$$
  
 $R = \alpha + \beta_{MKT}MKT + \beta_{SMB}SMB + \beta_{VMG}VMG + \beta_{PMO}PMO + \varepsilon$ 

OLS regression

|           | P-value   |               |  |
|-----------|-----------|---------------|--|
|           | In-sample | Out-of-sample |  |
| Intercept | 0.000     | 0.000         |  |
| MKT       | 0.355     | 0.284         |  |
| SMB       | 0.002     | 0.059         |  |
| VMG       | 0.003     | 0.308         |  |
| PMO       | 0.582     | 0.860         |  |
|           |           |               |  |

## Control of China Anomalies

- Hou et al., 2023: 22 trading-based anomaly signals
  - Constructed based only on AlphaNet data to ensure comparability
- Correlation analysis: 11 anomaly signals remained to avoid multicollinearity and inaccurate t-statistics estimation
  - Cross-sectional correlation
  - Time-series correlation

## Control of China Anomalies

OLS regression

|                    | P-        | P-value       |  |  |
|--------------------|-----------|---------------|--|--|
|                    | In-sample | Out-of-sample |  |  |
| Intercept          | 0.000     | 0.000         |  |  |
| size1              | 0.787     | 0.134         |  |  |
| turn1              | 0.671     | 0.529         |  |  |
| cvturn1            | 0.003     | 0.406         |  |  |
| dtv1               | 0.016     | 0.014         |  |  |
| isc1               | 0.478     | 0.020         |  |  |
| isch3 <sub>1</sub> | 0.460     | 0.072         |  |  |
| ts1                | 0.079     | 0.427         |  |  |
| cs1                | 0.395     | 0.311         |  |  |
| betaDM1            | 0.000     | 0.009         |  |  |
| R1                 | 0.616     | 0.877         |  |  |
| pps1               | 0.544     | 0.040         |  |  |
|                    |           |               |  |  |

• Significant terms: intercept, dtv1 (liquidity), betaDM1

## Models Comparison

## Long-short performance

|               | Annualized return |               | Sharpe ratio |               |
|---------------|-------------------|---------------|--------------|---------------|
|               | In-sample         | Out-of-sample | In-sample    | Out-of-sample |
| OLS           | 1.34%             | 0.95%         | 0.35         | 0.31          |
| Random Forest | 12.63%            | -0.28%        | 7.79         | -0.20         |
| ANN           | 23.46%            | 7.66%         | 2.92         | 1.46          |
| AlphaNet      | 26.30%            | 22.34%        | 6.35         | 4.86          |

## Long-only performance

|               | Annualized return |               | Sharpe ratio |               |
|---------------|-------------------|---------------|--------------|---------------|
|               | In-sample         | Out-of-sample | In-sample    | Out-of-sample |
| OLS           | -5.59%            | 17.62%        | -0.17        | 0.69          |
| Random Forest | 16.70%            | 26.15%        | 0.66         | 1.13          |
| ANN           | 22.30%            | 26.50%        | 0.81         | 1.15          |
| AlphaNet      | 23.30%            | 38.73%        | 0.72         | 1.69          |

• Importance of deep learning and AlphaNet's unique design

## Models Comparison

#### Net value curves



• Better predictor for stock returns and better generalization

## Portfolio Position Optimization

Gaivoronski et al., 2005: Exponential-decay tracking error

$$\mathsf{TE}(w_t) = \sum_{i=t-\textit{window}}^t (\sum_{j=1}^N w_{t,j} \cdot \textit{ret}_{t-1,j} - \textit{idx}_{-} \textit{ret}_{t-1})^2 \cdot e^{-\lambda(t-i)}$$

Optimization task

Minimize 
$$\mathsf{TE}(w_t)$$
 subject to  $\sum_{i=1}^N w_{t,i} = 1$   $w_{t,i} = 0$  if  $alpha_{t,i} < \mathsf{desending}(alpha_t)[300]$   $0 \le w_{t,i} \le 0.05$   $\frac{\mathsf{sum}(\mathsf{abs}(w_t - w_{t-1}))}{2} \le 0.1$ 

# Portfolio Position Optimization

# Optimization results

|                   | Annualized return | Annualized volatility | Sharpe ratio |
|-------------------|-------------------|-----------------------|--------------|
| Optimal portfolio | 51.57%            | 23.64%                | 1.88         |
| CSI 500 Index     | 23.58%            | 24.75%                | 0.98         |
| Excess part       | 22.88%            | 6.44%                 | 3.24         |

### Net value curves



#### Conclusion

- We combine deep learning techniques with prior financial knowledge to achieve prediction for Chinese stock returns
- We test our model under risk models and previous anomalies
- We find our model outperforms other common machine learning methods through its unique design
- We find our model holds the potential to be applied in real market investment to acquire stable excess returns
- These results indicate that our model shows promise as a skillful method to predict stock returns in the cross-section