NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1947 is a silicon NPN epitaxial planar type transistor designed for industrial use RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 10.7dB$ $@V_{CC} = 13.5V$, $P_0 = 3.5W$, f = 175MHz
- TO-39 metal seeled package for high reliability.
- Emitter electrode is connected electrically to the case.

APPLICATION

1 to 3 watt power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1 _C	Collector current		1	А
Pc	Collector dissipation	Ta = 25°C	1	W
		T _C = 25°C	10	w
Τį	Junction temperature		175	°C
Tstg	Storage temperature		-65 to 175	°C
Rth-a	Thermal resistance	Junction to ambient	150	°C/W
Rth-c	Thermal resistance	Junction to case	15	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Test acadis's	Limits			11. 11
		rest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E = 5 mA, I _C = 0	4			V
V(BR)CBO	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C =50 mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} = 25V, I _E = 0			500	μA
I _{EBO}	Emitter cutoff current	V _{EB} = 3V. I _C = 0			500	μA
hfE	DC forward current gain *	V _{CE} = 10 V . I _C = 0 . 1A	10	50	180	_
Po	Output power **	V _{CC} = 13.5 V , P _{IN} = 0.3 W , f = 175 MHz	3.5	4		w
η _C	Collector efficiency		50	60		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

** In case of the case grounded.

Above parameters, ratings, limits and conditions are subject to change

NPN EPITAXIAL PLANAR TYPE

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)