

آزمایشگاه سیستم عامل دکتر بیگی آزمایش ۹

الینا هژبری – ۴۰۱۱۷۰۶۶۱ ملیکا علیزاده – ۴۰۱۱۰۶۲۵۵

آزمایش ۹

۹-۱- آزمایش ۱

برای آنکه به اطلاعات وقفه در سیستم عامل دست پیدا کنیم، دو فایل proc/interrupt/ و fistream/ را باید از طریق دستور ifstream خوانده و نوشتههای آن را چاپ کنیم. همچنین خروجی را در دو فایل interrupts و sirq_output نگه می داریم. فایل interrupts اطلاعات مربوط به وقفههای سخت افزاری را نمایش می دهد. ستونهای آن نشان دهنده ی نام وقفه، تعداد دفعات پردازش شدن هر وقفه، نوع وقفه و پردازهای که softirq آن را ایجاد و مقدار دهی کرده، است. فایل softsirqs نیز softsirq هایی که ایجاد و فراخوانی شده اند را نشان می دهد که شامل وقفه های نرم افزاری و اجرای فوری وقفه های سخت افزاری است.

```
elina@elina-vm:~/Desktop$ nano interrupts.cpp
elina@elina-vm:~/Desktop$ cat interrupts.cpp
#include <iostream>
#include <fstream>
#include <string>
int main(){
        std::string str;
        std::ifstream int_file("/proc/interrupts");
        std::ofstream int_txt("interrupt_output.txt");
        printf("Interrupt:\n");
       while (std::getline(int_file,str)){
                int txt << str << std::endl;
                std::cout << str <<std::endl;
        int file.close();
        int txt.close();
        std::ifstream sirq_file("/proc/softriqs");
        std::ofstream sirq_txt("softirqs_output.txt");
        printf("Softirqs:\n");
        while (std::getline(sirq_file,str)){
                sirq_txt << str << std::endl;
                std::cout << str << std::endl;
        sirg file.close();
        sirg txt.close();
        return 0:
```

خروجی interrupts:

Interrupt:					41:		0 F	PCI-MSI-0000:00:17.1	0-edge	PCIe PME, pciehp
	CPU0	CPU1			42:		0 F	PCI-MSI-0000:00:17.2	0-edge	PCIe PME, pciehp
0:	32	0 IO-APIC 2-edge	timer		43:		0 F	PCI-MSI-0000:00:17.3	0-edge	PCIe PME, pciehp
1:	Θ	3138 IO-APIC 1-edge	i8042		44:		0 F	PCI-MSI-0000:00:17.4	0-edge	PCIe PME, pciehp
		2 IO-APIC 6-edge	floppy		45:		0 F	PCI-MSI-0000:00:17.5	0-edge	PCIe PME, pciehp
8:		0 IO-APIC 8-edge	rtc0		46:		0 F	PCI-MSI-0000:00:17.6	0-edge	PCIe PME, pciehp
9:	Θ	0 IO-APIC 9-fasteoi	acpi		47:		0 F	PCI-MSI-0000:00:17.7	0-edge	PCIe PME, pciehp
12:	15	0 IO-APIC 12-edge	i8042		48:		0 F	PCI-MSI-0000:00:18.0	0-edge	PCIe PME, pciehp
14:		0 IO-APIC 14-edge	ata_piix		49:		0 F	PCI-MSI-0000:00:18.1	0-edge	PCIe PME, pciehp
15:	Θ	0 IO-APIC 15-edge	ata_piix		50:		0 F	PCI-MSI-0000:00:18.2	0-edge	PCIe PME, pciehp
16:	3800	0 IO-APIC 16-fasteoi	vmwgfx, sr	id_ens1371	51:		0 F	PCI-MSI-0000:00:18.3	0-edge	PCIe PME, pciehp
17:		23475 IO-APIC 17-fasteoi	ehci_hcd:	ısb2, ioc0	52:		0 F	PCI-MSI-0000:00:18.4	0-edge	PCIe PME, pciehp
18:	1993	0 IO-APIC 18-fasteoi	uhci_hcd:	ısb1	53:		0 F	PCI-MSI-0000:00:18.5	0-edge	PCIe PME, pciehp
19:	Θ	9998 IO-APIC 19-fasteoi	ens33		54:			PCI-MSI-0000:00:18.6	0-edge	PCIe PME, pciehp
24:		0 PCI-MSI-0000:00:15.0	0-edge	PCIe PME, pciehp	55:			PCI-MSI-0000:00:18.7	0-edge	PCIe PME, pciehp
25:	Θ	0 PCI-MSI-0000:00:15.1	0-edge	PCIe PME, pciehp	56:	1553		PCI-MSI-0000:02:04.0	0-edge	ahci[0000:02:04.0
26:	Θ	0 PCI-MSI-0000:00:15.2	0-edge	PCIe PME, pciehp	57:	Θ		PCI-MSIX-0000:00:07.7	0-edge	vmw_vmci
27:	Θ	0 PCI-MSI-0000:00:15.3	0-edge	PCIe PME, pciehp	58:			PCI-MSIX-0000:00:07.7	1-edge	vmw_vmci
28:		0 PCI-MSI-0000:00:15.4	0-edge	PCIe PME, pciehp	59:	Θ	0 F	PCI-MSIX-0000:00:07.7	2-edge	vmw_vmci
29:		0 PCI-MSI-0000:00:15.5	0-edge	PCIe PME, pciehp	NMI:		Θ	Non-maskable interrup		
30:		0 PCI-MSI-0000:00:15.6	0-edge	PCIe PME, pciehp	LOC:	103444	97367	Local timer interrupt		
31:		0 PCI-MSI-0000:00:15.7	0-edge	PCIe PME, pciehp	SPU:	Θ	Θ	Spurious interrupts		
32:	Θ	0 PCI-MSI-0000:00:16.0	0-edge	PCIe PME, pciehp	PMI:	Θ	0	Performance monitoring	g interrupts	
33:	Θ	0 PCI-MSI-0000:00:16.1	0-edge	PCIe PME, pciehp		Θ	1	IRQ work interrupts		
34:	Θ	0 PCI-MSI-0000:00:16.2	0-edge	PCIe PME, pciehp	RTR:	0	0	APIC ICR read retries		
35:	Θ	0 PCI-MSI-0000:00:16.3	0-edge	PCIe PME, pciehp	RES:	2059	1758	Rescheduling interrup		
36:		0 PCI-MSI-0000:00:16.4	0-edge	PCIe PME, pciehp	CAL:	62832	49480	Function call interru	pts	
37:		0 PCI-MSI-0000:00:16.5	0-edge	PCIe PME, pciehp	TLB:	1684	1673	TLB shootdowns		
38:		0 PCI-MSI-0000:00:16.6	0-edge	PCIe PME, pciehp	TRM:	0	0	Thermal event interru		
39:	Θ	0 PCI-MSI-0000:00:16.7	0-edge	PCIe PME, pciehp	THR:	Θ	0	Threshold APIC interr		
40:	0	0 PCI-MSI-0000:00:17.0	0-edge	PCIe PME, pciehp	DFR:	0	0	Deferred Error APIC i		
					MCE:	Θ	0	Machine check excepti	ons	

خروجی softsirqs:

۹-۲- آزمایش ۲

برای اینکه یک softirq جدید بسازیم ابتدا کد oslab_interrupt.c را داریم:

برای این کار از proc و tasklet استفاده کردیم. ابتدا یک tasklet می سازیم و در تابعی که به آن می دهیم پیام OSLAB SoftIRQ executed را در لاگ کرنل می نویسیم. سپس تابع proc_write را می نویسیم که برای آن است که هر وقت در فایل proc/oslab_interrupt چیزی نوشته شد tasklet_schedule صدا زده شود و tasklet_schedule ما وارد صف اجرا شود. سپس توابع init و exit و اداریم که برای load و unload و proc_entry است.

```
elina@elina-vm:~/Desktop/part2$ nano oslab_interrupt.c
 elina@elina-vm:-/Desktop/part2$ cat oslab_interrupt.c
 #include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Elina Hozhabri and Melika Alizadeh");
MODULE_DESCRIPTION("add new software interrupt");
static struct proc_dir_entry *proc_entry;
static void oslab_func(struct tasklet_struct *t) {
     printk(KERN_INFO "OSLAB SoftIRQ executed!\n");
DECLARE_TASKLET(oslab_tasklet, oslab_func);
static ssize_t proc_write(struct file *file, const char __user *buffer,
size_t count, loff_t *pos) {
printk(KERN_INFO "trigger OSLAB softirq\n");
     tasklet_schedule(&oslab_tasklet);
     return count:
 static const struct proc_ops proc_fops = {
     .proc_write = proc_write,
static int __init oslab_interrupt_init(void) {
proc_entry = proc_create("oslab_interrupt", 0666, NULL, &proc_fops);
    if (!proc_entry) {
    printk(KERN_ALERT "failed to create OSLAB init\n");
         return - ENOMEM;
    printk(KERN_INFO "OSLAB interrupt loaded\n");
    return 0;
static void __exit oslab_interrupt_exit(void) {
    proc_remove(proc_entry);
tasklet_kill(&oslab_tasklet);
    printk(KERN_INFO "OSLAB interrupt unloaded\n");
module_init(oslab_interrupt_init);
module_exit(oslab_interrupt_exit);
```

حال باید فایل Makefile را درست کنیم که برای آن طبق آموختههایمان از آزمایش ۲ داریم:

سپس با دستور make، ماژول را کامپایل کرده و فایل oslab_interrupt.ko را میسازیم:

```
elina@elina-vm:-/Desktop/part2$ make
make -C /lib/modules/6.14.0-27-generic/build M=/home/elina/Desktop/part2 modules
make[1]: Entering directory '/usr/src/linux-headers-6.14.0-27-generic'
make[2]: Entering directory '/home/elina/Desktop/part2'
make[2]: Entering directory '/home/elina/Desktop/part2'
make[2]: Entering directory '/home/elina/Desktop/part2'
make[1]: Leaving directory '/usr/src/linux-headers-6.14.0-27-generic'
make[2]: Entering directory '/usr/src/linux-headers-6.14.0-27-generic'
```

مرحله بعد باید ماژول را با دستور load ،insmod کنیم که باعث ساخت فایل oslab_interrupt در پوشه softirq ،echo 1 | sudo tee /proc/oslab_interrupt می شود، سپس با استفاده از دستور trigger می کنیم و در آخر با استفاده از دستور rmmod، از ماژول خارج شده و آن را عروجی این بخشها را می توانیم با استفاده از دستور dmesg در لاگ کرنل مشاهده کنیم.

```
elina@elina-vm:~/Desktop/part2$ sudo insmod oslab_interrupt.ko
[sudo] password for elina:
elina@elina-vm:~/Desktop/part2$ ls -l /proc/oslab_interrupt
-rw-rw-rw- 1 root root 0 Aug 24 10:46 /proc/oslab_interrupt
elina@elina-vm:~/Desktop/part2$ echo 1 | sudo tee /proc/oslab_interrupt
1
elina@elina-vm:~/Desktop/part2$ sudo rmmod oslab_interrupt
elina@elina-vm:~/Desktop/part2$ sudo dmesg | tail -n 5
[ 3968.468085] OSLAB interrupt unloaded
[ 5403.797756] OSLAB interrupt loaded
[ 5423.542383] trigger OSLAB softirq
[ 5423.542407] OSLAB SoftIRQ executed!
[ 5432.756133] OSLAB interrupt unloaded
```

*Unload ای که در خط اول وجود دارد به دلیل اجرای قبلی است.