Простая задача на доказательство на распределение Фишера

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Теория Вероятностей (/Subjects/Details?id=1)

Тема

Классические непрерывные распределения (/Topics/Details?id=11)

Раздел

Распределение Фишера (Снедкора) (/SubTopics/Details?id=93)

Дата публикации

23.01.2020

Дата последней правки

18.06.2020

Последний вносивший правки

sobody

Рейтинг

Условие

Рассмотрим независимые случайные величины $X \sim F(1,n)$ и V, где $n \in N$ и P(V=-1) = P(V=1) = 0.5. Найдите распределение случайной величины $\sqrt{X}V$.

Решение

Данная случайная величина будет иметь распределение Стьюдента с n степенями свободы. Действительно, положим независимые случайные величины $Z\sim \mathcal{N}(0,1)$ и $Y\sim \chi^2(n)$. Обратим внимание, что |Z|V имеет стандартное нормальное распределение, поскольку:

$$P(|Z|V \le x) = P(|Z| \le x|V=1)P(V=1) + P(-|Z| \le x|V=-1)P(V=-1) = rac{P(|Z| \le x) + (1-P(|Z| \le -x))}{2} = \left\{ rac{P(-x \le Z \le x) + 1}{2}, ext{ при } x \ge 0 \ rac{1-P(x \le Z \le -x)}{2}, ext{ при } x < 0
ight.$$

Из полученного результата очевидным образом следует, что:

$$\sqrt{X}V = \left(rac{\sqrt{Z^2}}{\sqrt{Y}} * \sqrt{rac{n}{1}}
ight)V = rac{|Z|V}{\sqrt{rac{1}{n}Y}} \sim t(n)$$

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 – 2022 Sobopedia