OPTICAL POLYESTER FILM AND LAMINATE

Patent number:

JP2002210906

Publication date:

2002-07-31

Inventor:

FUKUDA MASAYUKI

Applicant:

TEIJIN LTD

Classification:
- international:

B32B27/36; C08J7/04; C09D5/00; C09D7/12;

C09D167/00; G02F1/1335; B32B27/36; C08J7/00; C09D5/00; C09D7/12; C09D167/00; G02F1/13; (IPC1-

7): B32B27/36; C08J7/04; C09D5/00; C09D7/12;

C09D167/00; G02F1/1335; C08L67/02

- european:

Application number: JP20010014169 20010123 Priority number(s): JP20010014169 20010123

Report a data error here

Abstract of **JP2002210906**

PROBLEM TO BE SOLVED: To provide an easily adhesive film for an antidazzle film for improving visibility by reducing a surface reflection of a display or the like and a laminate using the same. SOLUTION: An optical polyester film comprises the easily adhesive coating film containing an ionic low molecular compound of a content of 1,000 ppm or less and formed on at least one surface of the polyester film. In this case, a rear surface reflectivity of the film is 0.1% or less, a have value is 5% or less, and a frictional coefficient (&mu m) of 0.8 or less. The polyester film further comprises a hard coat layer for satisfying the relation of formula (1) of 0.6× UC<=UHF<=1.2× UC, wherein UHF is a universal hardness of the surface of the easily adhesive coating film, and UC is a universal hardness of the hard coat layer, and laminated on at least one surface of the coating film.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開 2 0 0 2 — 2 1 0 9 0 6 (P 2 0 0 2 — 2 1 0 9 0 6 A) (43)公開日 平成14年7月31日(2002.7.31)

(51) Int. C1.7 B 3 2 B	27/36	識別語	記号		F I B 3 2 B	27/36			テーマコード(参考) 2H091			
C 0 8 J	21/36 7/04	CFI	n		C 0 8 J	21/36 7/04	CFD	F	4F006			
C 0 9 D	5/00	CF	D		C 0 9 D	5/00	CFD	D				
CUSD	7/12				COSD	3/00 7/12		D	4J038			
	167/00					167/00			43030			
	審査請求	未請求	請求項の数11	OL		101700	(全 l	2頁	頁) 最終頁に続く			
(21) 出願番号	特	顏2001-14	4169 (P2001-14169)		(71) 出願人		1001 :式会社					
(22) 出願日	平	成13年1月	23日 (2001. 1. 23)		(72) 発明者	大阪府大阪市中央区南本町1丁目6番7号 用者 福田 雅之 神奈川県相模原市小山3丁目37番19号 帝 人株式会社相模原研究センター内						
					(74)代理人	100077						
									最終頁に続く			

(54) 【発明の名称】光学用ポリエステルフィルムおよび積層体

(57) 【要約】

【課題】 ディスプレイ等の表面反射を小さくし、認視性を向上させるための防眩性フィルム用易接着性フィルムおよびそれを用いた積層体を提供する。

【解決手段】 ポリエステルフィルムの少なくとも片面に、イオン性低分子化合物の含有量が1,000ppm以下である易接着性塗膜が形成されたフィルムであって、該フィルムの裏面反射率が0.1%以下、ヘーズ値が5%以下、摩擦係数(μs)が0.8以下であり、該易接着性塗膜の少なくとも1面の上にユニバーサル硬度が下記式(1)の関係を満足するハードコート層を積層して用いることを特徴とする光学用ポリエステルフィルム。

0.6×UC≤UHF≤1.2×UC・・・(1)(但し、式(1)でUHFは易接着性塗膜面のユニバーサル硬度、UCはハードコート層のユニバーサル硬度を示す。)

【特許請求の範囲】

【請求項1】 ポリエステルフィルムの少なくとも片面に、イオン性低分子化合物の含有量が1,000ppm以下である易接着性塗膜が形成されたフィルムであって、該フィルムの裏面反射率が0.1%以下、ヘーズ値が5%以下、摩擦係数(μs)が0.8以下であり、該易接着性塗膜の少なくとも1面の上にユニバーサル硬度が下記式(1)の関係を満足するハードコート層を積層して用いることを特徴とする光学用ポリエステルフィルム。

【数1】

0.6×UC≤UHF≤1.2×UC・・・(1)(但し、式(1)でUHFは易接着性塗膜面のユニバーサル硬度、UCはハードコート層のユニバーサル硬度を示す。)

【請求項2】 フィルムの裏面反射率に寄与する易接着性塗膜面の厚み方向の屈折率nzが1.50~1.60の範囲であり、該易接着性塗膜の厚みが70~100nmである請求項1に記載の光学用ポリエステルフィルム。

【請求項3】 易接着性塗膜の表面の中心線平均粗さ (Ra)が2~10nmである請求項1に記載の光学用ポリエステルフィルム。

【請求項4】 易接着性塗膜を形成する組成物が平均粒径0.15μm以下の粗面化物質を5~30重量%含有する請求項3に記載の光学用ポリエステルフィルム。

【請求項5】 易接着性塗膜を形成する組成物が、ガラス転移点が40~85℃の水性ポリエステル樹脂を含む請求項1に記載の光学用ポリエステルフィルム。

【請求項6】 易接着性塗膜を形成する組成物が、水性ポリエステル樹脂と脂肪酸ビスアミドとを主成分とする請求項1に記載の光学用ポリエステルフィルム。

【請求項7】 脂肪酸ビスアミドが、下記一般式(2)で表される請求項6に記載の光学用ポリエステルフィルム。

【化1】RCONH (CH₂) nNHOCR…… (2) (但し、式 (2) 中のRCO-は脂肪酸残基を示し、nは1又は2である。)

【請求項8】 光学用途が、ディスプレイ等表示面の防 眩用である請求項1乃至7のいずれか1項に記載の光学 用ポリエステルフィルム。

【請求項9】 ボリエステルフィルムの少なくとも片面に、イオン性低分子化合物の含有量が1,000ppm以下である易接着性塗膜が形成され、該フィルムの裏面反射率が0.1%以下、ヘーズ値が5%以下、摩擦係数(μs)が0.8以下であって、該易接着性塗膜の少なくとも1面の上に、ユニバーサル硬度が下記式(1)の関係を満足するハードコート層を設けた光学用積層体。

【数2】

0. $6 \times UC \leq UHF \leq 1$. $2 \times UC \cdot \cdot \cdot \cdot (1)$

(但し、式(1)でUHFは易接着性塗膜面のユニバーサル硬度、UCはハードコート層のユニバーサル硬度を示す。)

【請求項10】 ハードコート層が、放射線硬化性樹脂を放射線照射により硬化させて得られるハードコート層である請求項9に記載の光学用積層体。

【請求項11】 光学用途が、ディスプレイ等表示面の 防眩用である請求項8または9に記載の光学用積層体。

【発明の詳細な説明】

10 [0001]

【発明の属する技術分野】本発明は光学用易接着性フィルム及びそれを用いた光学用積層体に関し、更に詳しくはディスプレイ等の表面反射を小さくし、認視性を向上させるための防眩性フィルム用易接着性フィルムと、それを用いた積層体である表面傷が付き難い防眩フィルムに関する。

[00002]

【従来の技術】ポリエステルフィルム、特にポリエチレンテレフタレートやポリエチレンー2,6ーナフタレートの二軸延伸フィルムは、優れた機械的性質、耐熱性、耐薬品性を有するため、種々の用途に広く用いられている。

【0003】特に、近年、窓ガラス、ショーケース、メガネ、計器類、ディスプレイ、ランブなどの表面保護材としての用途が注目されており、かかる用途では表面硬度、耐摩耗性などに優れていると共に、十分な透明性、反射防止能を有していることが要求される。

【0004】このような要求を満たすために、ポリエステルフィルムにハードコート(HC)層、反射防止、即 5アンチリフレクション(AR)層を積層することが試みられているが、ポリエステルフィルムとの接着性が不十分であることから満足な結果が得られていない。

【0005】このようなポリエステルフィルムの接着性を改善する方法としては、例えば、インモールド用転写フィルムのベースフィルムにガラス転移点が40~85℃の水性ポリエステルの被膜を形成してメジューム層との接着性を向上させる方法が知られている(特開平7-156358号公報)。

【0006】しかしながら、この方法では、インモール ド用転写フィルムにおけるベースフィルムとメジューム 層との接着性は向上するものの、その他の用途における 接着性は十分満足できるレベルまで改善されないことが 多い。

【0007】一方、表面が平坦な易滑性ポリエステルフィルムを得る目的で、ポリウレタン又はアクリル系樹脂と脂肪酸アミド又はビスアミドを含む組成物からなる塗膜をポリエステルフィルムの表面に形成することも知られている(特開昭63-194948号公報)。

【0008】しかし、脂肪酸アミド又はビスアミドを用50 いることによって、接着性が向上することについては示

唆されていない。

【0009】更に、ポリエチレンテレフタレート層にポリエステル樹脂層を形成し、その上に特定組成の放射線硬化性層を形成することにより、表面硬度や耐摩耗性などの良好な積層体を得ることも知られている(特公平7-80281号公報)が、特殊な硬化性層を用いるため汎用性がなく、しかも接着性の点でも十分満足できるものではない。

【0010】近年、パーソナルコンピュータ(以下パソコンと略記)の急速な普及により、長時間見続けても認 10 視性が良く、映像の色相のコントラストが高く、作業による疲労が少なく、且つ、清拭によって傷が付き難いパソコンディスプレイ用の防眩(反射防止)透明板への希求が高まっており、上記技術の進歩が望まれている。

[0011]

【発明が解決しようとする課題】本発明は、かかる従来 技術の問題点を解消し、映像の色相のコントラストが高 く、接着性に優れ、表面硬度、特に耐クラック性等が良 好であり、しかも十分な透明性、反射防止能を備えた、 特にパソコン用CRTディスプレイの表面層に適したポ 20 リエステルフィルム積層体を提供しようとするものであ る。

[0012]

【課題を解決するための手段】本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ポリエステルフィルムのヘーズ値を低く保ちながらユニバーサル硬度を調整し、積層するハードコート層のユニバーサル硬度と適切な関係を保つことにより、ハードコート層及び反射防止層の耐クラック性を向上できることを見出し、本発明を完成するに至った。

【0013】すなわち、本発明は、ポリエステルフィルムの少なくとも片面に、イオン性低分子化合物の含有量が1,000ppm以下である易接着性塗膜が形成されたフィルムであって、該フィルムの裏面反射率が0.1%以下、ヘーズ値が5%以下、摩擦係数 (μ s)が0.8以下であり、該易接着性塗膜の少なくとも1面の上にユニバーサル硬度が下記式(1)の関係を満足するハードコート層を積層して用いることを特徴とする光学用ポリエステルフィルムである。

[0014]

【数3】

0.6×UC≦UHF≦1.2×UC・・・(1)(但し、式(1)でUHFは易接着性塗膜面のユニバーサル硬度、UCはハードコート層のユニバーサル硬度を示す。)

【0015】また、本発明は、ポリエステルフィルムの 少なくとも片面に、イオン性低分子化合物の含有量が 1,000ppm以下である易接着性塗膜が形成され、 該フィルムの裏面反射率が0.1%以下、ヘーズ値が 5 %以下、摩擦係数 (μs) が0.8 以下であって、該易 50 なども含まれる。

接着性塗膜の少なくとも1面の上に、ユニバーサル硬度 が下記式(1)の関係を満足するハードコート層を設け た光学用積層体である。

[0016]

【数4】

0.6×UC≤UHF≤1.2×UC・・・(1)(但し、式(1)でUHFは易接着性塗膜面のユニバーサル硬度、UCはハードコート層のユニバーサル硬度を示す。)

【0017】更に、本発明の好ましい態様として、フィ ルムの裏面反射率に寄与する易接着性塗膜面の厚み方向 の屈折率nzが1.50~1.60の範囲であり、該易 接着性塗膜の厚みが70~100mmである光学用ポリ エステルフィルム、易接着性塗膜の表面の中心線平均粗 さ(Ra)が2~10nmである光学用ポリエステルフ ィルム、易接着性塗膜を形成する組成物が平均粒径 0. 15μm以下の粗面化物質を5~30重量%含有する光 学用ポリエステルフィルム、易接着性塗膜を形成する組 成物が、ガラス転移点が40~85℃の水性ポリエステ ル樹脂を含む光学用ポリエステルフィルム、易接着性塗 膜を形成する組成物が、水性ポリエステル樹脂と脂肪酸 ビスアミドとを主成分とする光学用ポリエステルフィル ム、脂肪酸ビスアミドが、下記一般式(2)で表される 光学用ポリエステルフィルム及び光学用途が、ディスプ レイ等表示面の防眩用である光学用ポリエステルフィル ムを挙げることができる。

[0018]

【化2】RCONH(CH₂)_nNHOCR……(2) (但し、式(2)中のRCO-は脂肪酸残基を示し、n 30 は1又は2である。)

【0019】また、本発明の好ましい態様として、ハードコート層が、放射線硬化性樹脂を放射線照射により硬化させて得られるハードコート層である光学用積層体及び光学用途が、ディスプレイ等表示面の防眩用である光学用積層体を挙げることができる。

[0020]

【発明の実施の形態】以下、本発明について更に詳細に 説明する。

【0021】[ポリエステルフィルム] 本発明において ポリエステルフィルムを構成するポリエステルとは、芳香族二塩基酸又はそのエステル形成性誘導体とジオール 又はそのエステル形成性誘導体とから合成される線状飽 和ポリエステルである。かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリブロピレンテレフタレート、ポリブチレンテレフタレート、ポリ (1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレンー2,6-ナフタレンジカルボキシレート等が例示でき、これらの 共重合体又はこれと小割合の他樹脂とのブレンド組成物 なども含まれる

【0022】共重合ポリエステルの場合、エチレンテレ フタレートを主たる繰り返し単位とするポリエステル が、加工性や透明性から好ましい。共重合成分として は、ジカルボン酸成分でもジオール成分でもよい。この ジカルボン酸成分としてはイソフタル酸、フタル酸、 2,6-ナフタレンジカルボン酸等の如き芳香族ジカル ボン酸、アジピン酸、アゼライン酸、セバシン酸、デカ ンジカルボン酸等の如き脂肪族ジカルボン酸、シクロへ キサンジカルボン酸の如き脂環族ジカルボン酸等が例示 でき、またジオール成分としては1,4ーブタンジオー ル、1,6-ヘキサンジオール、ジエチレングリコール 等の如き脂肪族ジオール、1,4-シクロヘキサンジメ タノールの如き脂環族、ジオール、ビスフェノールAの 如き芳香族ジオールが例示できる。これらは単独又は二 種以上を使用することができる。これらの共重合成分の うち、加工性、透明性等から、イソフタル酸が特に好ま しく用いられる。

【0023】共重合成分の割合は、その種類にもよるが、結果としてポリマー融点が230~258℃、になる割合であることが好ましい。融点が230℃未満では耐熱性や機械的強度が劣ることがある。 共重合成分がイソフタル酸の場合は、12mol%以下であることが好ましい。

【0025】また、ポリエステルの固有粘度(オルトクロロフェノール、35℃)は0.52~1.50であることが好ましく、さらに好ましくは0.57~1.00、特に好ましくは0.60~0.80である。この固有粘度が0.52未満の場合には製膜性が不良であることがあり好ましくない。他方、固有粘度が1.50を超える場合には、成形加工性が損なわれることがある上に、押出機に過負荷がかかることが多く、また樹脂温度の過上昇により固有粘度が過度に低下することがあり、好ましくない。

【0026】本発明におけるボリエステルは、その製法によって限定されることはない。例えば、テレフタル酸、エチレングリコール、要すれば共重合成分(例えばイソフタル酸)をエステル化反応させ、ついで得られた反応生成物を目的とする重合度になるまで重縮合反応させてボリエステルとする方法、あるいはテレフタル酸ジメチルエステル、エチレングリコール、要すれば共重合成分(例えばイソフタル酸ジメチルエステル)をエステル交換反応させ、ついで得られた反応生成物を目的とする重合度になるまで重縮合反応させてポリエステルとする方法を好ましく挙げることができる。また、ポリエステルの酸成分には2,6ーナフタレンジカルボン酸を用いることができ、或いはグリコール成分に1,4ーシク

ロヘキサンジメタノールを用いることができる。上記の方法(溶融重合)により得られたポリエステルは、必要に応じて固相状態での重合方法(固相重合)により、さらに重合度の高いポリマーとすることができる。

【0027】その他に必要に応じて、酸化防止剤、熱安 定剤、粘度調整剤、可塑剤、色相改良剤、滑剤、核剤、 紫外線吸収剤などの添加剤を加えることができる。これ らのポリエステルには、必要により、適当な粗面化物質 (フィラー)を含有させることができる。このフィラー 10 としては、従来からポリエステルフィルムの滑り性付与 剤として知られているものが挙げられるが、その例を示 すと炭酸カルシウム、酸化カルシウム、酸化アルミニウ ム、カオリン、酸化珪素、酸化亜鉛、炭化珪素、酸化 錫、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒 子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等が挙 げられる。これらのフィラーの中では、透明性を保持し ながら滑り性が得られる平均粒径 1 ~ 3 μ m の多孔質シ リカが特に好ましい。多孔質シリカの添加量は透明性を 保持しながら滑り性が得られるためには、0.01~ 0.005重量%であることが好ましい。

【0028】さらにポリエステル中には、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒等も適宜添加することができる。

【0029】ポリエステルフィルムは、かかるポリエステルを常法により溶融押出して、フィルム状とし、延伸、熱処理することにより得ることができ、特に二軸配向したフィルムが機械的特性が優れるので好ましい。

【0030】 [ユニバーサル硬度] 本発明の光学用ポリエステルフィルムの易接着性塗布面から測定したユニバのサル硬度(UHF)は、ハードコート層のユニバーサル硬度(UC)との間に、下記式(1)の関係が成立することを必要とする。

[0031]

【数5】

0.6×UC≤UHF≤1.2×UC・・・(1)(但し、式(1)でUHFは易接着性塗膜面のユニバーサル硬度、UCはハードコート層のユニバーサル硬度を示す。)

【0032】ここに、ユニバーサル硬度とは、微少歪み 表面硬度計により鋼球の圧力と歪みの関係を測定し、所 定歪み量のときの圧力(gr)をユニバーサル硬度とす るものである。

【0033】フィルム易接着性塗膜面のユニバーサル硬度がハードコートのユニバーサル硬度の0.6倍より小であるときは、ハードコート層の表面に塗設した反射防止層にクラックが入り易く、光学用フィルムとして不適である。また、フィルム易接着性塗膜面のユニバーサル硬度がハードコートのユニバーサル硬度の1.2倍より大である場合はハードコート層にクラックが入り易く、50光学用フィルムとして不適である。

【0034】このような関係をフィルムのユニバーサル 硬度の調製により実現するためには、フィルムの厚み方 向の屈折率nzを変化させる。面配向度を上げるとnz は小さくなり、ユニバーサル硬度は大きくなる。逆に、面配向度を下げるとnzは大きくなり、ユニバーサル硬度は小さくなる。

【0035】[フィルムの裏面反射率]本発明においては、フィルムの易接着性塗膜面を裏面(両面に易接着性塗膜を塗布した場合は任意の片面)とするが、フィルムの裏面からの反射率は0.1%以下であることが必要である。裏面反射率が0.1%を超えると、表面反射への影響が無視できなくなる。すなわち、光学用積層体として、例えばディスプレイの防眩フィルムとして用いた場合、外来光の反射が表面反射と裏面反射の干渉で虹模様となって目障りになり、認視性を損うので好ましくない。

【0036】[ヘーズ値] 本発明の光学用ポリエステルフィルムのヘーズ値は、5%以下であることが必要であるが、3%以下、更に2%以下、特に1%以下であることが好ましい。ヘーズ値が5%より大きいと映像の色相 20が白濁し、鮮映性を欠いて認視性が低下する。本発明のヘーズ値の低いフィルムは、ポリエステル中の粗面化物質として前述のものを用いることにより得ることができる。

【0037】[摩擦係数]本発明の光学用ポリエステルフィルムは、易接着性塗膜面(裏面)と非易接着性塗膜面(表面)の摩擦係数(両面に易接着性塗膜を塗布した場合は、塗膜面同士)の摩擦係数が0.8%以下であることが必要であり、好ましくは0.6%以下である。この摩擦係数が0.8%を超えると、巻き取り性や加工作30業性が悪く、円滑な製膜と加工ができない。このような摩擦係数を得るためには前述の粗面化物質を用いるのがよい。

【0038】 [フィルムの厚み] 本発明の光学用ポリエステルフィルムの厚みは $50\sim250\mu$ mであることが好ましい。厚みが 50μ m未満であると、万一CRTが爆縮した場合、ガラスの飛散を防止できないことがある。一方、厚みが 250μ mを超えると、フィルムのヘーズ値を5%以下に保つことが困難になり、フィルムの生産性が低下する。

【0039】 [水性ポリエステル] 本発明の光学用フィルム及びそれを用いた光学用積層体においては、上記ポリエステルフィルムの少なくとも片面に、水性ポリエステルと脂肪酸のアミド及び/又は脂肪酸のビスアミドを主成分とする組成物からなる易接着性塗膜が形成されていることが好ましい。

【0040】この塗膜を形成する一成分である水性ポリエステルは、ガラス転移点(Tg)が40~85 $\mathbb C$ 、好ましくは45~80 $\mathbb C$ のものである。水性ポリエステルのガラス転移点(Tg)が40 $\mathbb C$ 未満の場合、得られた 50

フィルムは耐熱性が低くなり、また耐ブロッキング性が 劣るので不利であり、一方 8 5 ℃を超えると接着性が劣 るので望ましくない。

【0041】上記水性ポリエステルは、水に可溶性又は分散性のポリエステルである。かかる水性ポリエステルとしては、テレフタル酸、イソフタル酸、フタル酸、2,6ーナフタレンジカルポン酸、ヘキサヒドロテレフタル酸、4,4'ージフェニルジカルポン酸、フェニルインダンジカルボン酸、アジピン酸、セバシン酸、5ー10 Naスルホイソフタル酸、トリメリット酸、ジメチロールプロピオン酸等のポリカルボン酸成分とエチレングリコール、ジエチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ネオペンチルグリコール、1,4ーブタンジオール、1,6ーヘキサンジオール、1,4ーシクロヘキサンジメタノール、グリセリン、トリメチロールプロバン、ビスフェノールAのアルキレンオキシド付加物等のポリヒドロキシ化合物成分とからなるポリエステルを挙げることができる。

【0042】上記水性ポリエステルは、さらに親和性を付与することが必要な場合、ポリエステル中に SO_3N a基やCOON a基を導入してもよく、またポリエーテル成分を導入することもできる。

【0043】 [脂肪酸のアミド、脂肪酸のビスアミド] 本発明において、易接着性塗膜の成分に用いる脂肪酸のアミド、脂肪酸のビスアミドはそれぞれ R^1CONH_2 、 $R^1CONHR^3NHOCR^2$ で表されるものであり、 $R^1CO-及びR^2CO-は脂肪酸残基、<math>-NHR^3NH-はジアミン残基である。この脂肪酸としては炭素数6~22の飽和又は不飽和脂肪酸が好ましく、またこのジアミンとしては炭素数1~15のジアミン、特にアルキレンジアミンが好ましい。また、ビスアミドとしては、炭素数が13~15で分子量が200~800のN、N、一アルキレンビスアミドが好ましい。$

【0044】更に具体的には、N, N'ーメチレンビスステアリン酸アミド、N, N'ーエチレンビスパルミチン酸アミド、N, N'ーメチレンビスラウリン酸アミド、リノール酸アミド、カプリル酸アミド、ステアリン酸アミド等を例示することができる。これらのうち、特に下記式で示されるビスアミドが好ましく用いられる。【0045】

【化3】RCONH (CH₂)_nNHOCR…… (2) (但し、式 (2) 中のRCO-は脂肪酸残基を示し、n は1又は2である。)

【0046】これらの脂肪酸のアミド及び/又は脂肪酸のビスアミドは、塗膜を形成する組成物中に、3~10重量%含まれていることが好ましい。脂肪酸のアミド及び/又は脂肪酸のビスアミドの含有量が少なすぎると十分な接着力が得られず、滑り性、耐ブロッキング性が低下する傾向があり、逆に多すぎると、フィルムと塗膜との密着性が低下したり、塗膜とガラス用接着剤との接着性が低下したり、塗膜の脆化を招いたりすると共に、へ

ーズが高くなるので好ましくない。

【0047】 [易接着性塗膜] 本発明において、ポリエステルフィルム表面に形成される易接着性塗膜を構成する組成物は、さらに、平均粒径が0.15 μ m以下、特に0.01~0.1 μ mの粗面化物質を含有していることが好ましい。

【0048】この粗面化物質の具体例としては、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化亜鉛、酸化マグネシウム、酸化ケイ素、ケイ酸ソーダ、水酸化アルミニウム、酸化鉄、酸化ジルコニウム、硫酸バリウム、酸化チタン、酸化錫、三酸化アンチモン、カーボンブラック、二硫化モリブデン等の無機微粒子、アクリル系架橋重合体、スチレン系架橋重合体、架橋シリコーン樹脂、フッ素樹脂、ベンゾグアナミン樹脂、フェノール樹脂、ナイロン樹脂、ポリエチレンワックス等の有機微粒子などを例示することができる。これらのうち、水不溶性の固体物質は、水分散液中で沈降するのを避けるため、比重が3を超えない超微粒子を選ぶことが好ましい。

【0049】これら粗面化物質は、塗膜表面を粗面化すると共に、微粉末自体による塗膜の補強作用があり、さらには塗膜への耐ブロッキング性付与作用、ポリエステルフィルムへの滑り性付与作用を奏する。

【0050】この粗面化物質は、易接着性塗膜を形成する組成物中に、 $5\sim30$ 重量%含まれていることが好ましい。特に、平均粒径が 0.1μ m以上の比較的大きな粒子を用いるときには $5\sim10$ 重量%範囲から、また平均粒径が $0.01\sim0.1\mu$ mの粒子を用いるときには $8\sim30$ 重量%の範圏内から選定するのが好ましい。これら粗面化物質の易接着性塗膜中の含有量が多くなり過ぎると、得られる積層体の0一ズ値が0.00%を超え、透明性が悪化するので注意を要する。

【0051】この粗面化物質により、易接着性塗膜面の中心線表面粗さ (Ra) は $2\sim10$ nmであることが好ましい。Raが2 nm未満であると、フィルム巻取り時に滑り性不足のため巻き姿が悪く、以下の作業に支障を来す。10 nmを超えると透明性が悪化するので好ましくない。

【0052】本発明における上記組成物は、易接着性塗膜を形成させるために、水溶液、水分散液或いは乳化液の形態で使用されることが好ましい。塗膜を形成するために、必要に応じて、前記水性ポリエステル以外の他の樹脂、帯電防止剤、着色剤、界面活性剤、紫外線吸収剤などを添加することができる。

【0053】塗布液のポリエステルフィルムへの塗布は、任意の段階で行なうことができるが、ポリエステルフィルムの製造過程で行なうのが好ましく、さらには配向結晶化が完了する前のポリエステルフィルムに塗布液を塗布するのが好ましい。

【0054】ここで、結晶配向が完了する前のポリエス 50 00ppm以下であることが必要である。イオン性低分

テルフィルムとは、未延伸フィルム、未延伸フィルムを 縦方向又は横方向の何れか一方に配向せしめた一軸配向 フィルム、さらには縦方向および横方向の二方向に低倍 率延伸配向せしめたもの(最終酌に縦方向また横方向に 再延伸せしめて配向結晶化を完了せしめる前の二軸延伸 フィルム)等を含むものである。なかでも、一方向に配 向せしめた一軸延伸フィルムに上記組成物の塗布液を塗 布し、そのまま横延伸と熱固定とを施すのが好ましい。

【0055】塗布液をフィルムに塗布する際には、塗布10 性を向上させるための予備処理としてフィルム表面にコロナ表面処理、火炎処理、ブラズマ処理等の物理処理を施すか、あるいは塗膜組成物と共にこれと化学的に不活性な界面活性剤を併用することが好ましい。この界面活性剤は、ポリエステルフィルムへの水性塗液の濡れを促進するものであり、例えば、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンー脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、脂肪酸金属石鹸、アルキル硫酸塩、アルキルスルホン酸塩、アルキルスルホコハク酸塩等のアニオン20型、ノニオン型界面活性剤を挙げることができる。

【0056】塗布液の塗布量は、易接着性塗膜の厚さが $70\sim100$ nm、好ましくは $75\sim95$ nmの範囲となるような量であるのが好ましい。塗膜の厚さが70nm未満であると、接着力が不足し、逆に厚過ぎ $\tau100$ nmを超えると、ブロッキングを起こしたり、 τ 0、本のであるの前に性がある。

【0057】易接着性塗膜面の厚み方向の屈折率nzは1.50~1.60であることが好ましい。塗膜面の厚み方向の屈折率nzがこの範囲で、かつ塗膜の厚みが上30 記の範囲であると、フィルム裏面からの反射光と該塗膜表面の反射光が干渉し、可視光領域の裏面反射が0.1%以下となり、認視性が向上するので好ましい。nzが上記範囲を逸脱すると、可視光領域の裏面反射が0.1%を超えるようになり、表面反射と干渉してディスプレイ表面に虹模様が現れ、認視性を損うので好ましくない。更に、後述の反射防止層を表層に施すに際し、裏面反射の影響が顕在化し、反射防止が困難になるという不都合が生じる。

【0058】易接着性塗膜用塗液のフィルムへの塗布方40 法としては、公知の任意の塗工法が適用できる。例えばロールコート法、グラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法、カーテンコート法などを単独又は組合せて用いることができる。なお、易接着性塗膜は、必要に応じ、フィルムの片面のみに形成してもよいし、両面に形成してもよい。

【0059】[イオン性低分子化合物] 本発明において ポリエステルフィルムの少なくとも片面に形成される易 接着性塗膜中のイオン性低分子化合物の含有量は1,0 00nnm以下であることが必要である。イオン性低分

子化合物は、塗膜成分を製造するための原料中の不純物 或いは未反応物等に由来する。このようなイオン性低分 子化合物の含有量が少ない塗膜は、例えば塗膜を構成す る成分を製造する際に、不純物の少ない原料を選択する こと、或いは成分が重合体の場合は未重合成分の残存量 を少なくする重合条件を選択すること等により得ること ができる。

【0060】本発明におけるイオン性の低分子化合物 は、下記式等で表される分子量1,000以下のイオン 性官能基を有する物質であり、イオン性の低分子化合物 が易接着性塗膜中に1,000ppmを超えて存在する と、塗液をフィルムに塗工するに際し、塗液のフィルム に対する濡れ性が低下し、一定した厚みの易接着性塗膜 が得られなくなる上に、接着剤に対する接着性が低下す るので好ましくない。

[0061]

【化4】

 $-SO_3X$, -COOX, $-PO_4X$, > NO-X(式中のXはアルカリ金属、アンモニウム基を表す)

【0062】イオン性低分子化合物量の検出はフィルム 面に易接着性塗膜を形成した後、その塗膜面をXPS (X線光電子分光) により表面分析することにより求め ることができる。

【0063】[ハードコート層]本発明においては、上 記易接着性塗膜の少なくとも一面上にハードコート層を 積層することができ、これによって光学用ポリエステル フィルムの表層の耐擦傷性を向上することができる。

【0064】このハードコート層としては、放射線硬化 系、シラン系など通常用いられるハードコート層が用い ることができる。特に放射線硬化系のハードコート層が 30 好ましく、なかでもUV(紫外線)硬化系のハードコー ト層が好ましく用いられる。

【0065】ハードコート層の形成に用いられるUV硬 化系組成物としては、ウレタンーアクリレート系、エポ キシーアクリレート系、ポリエステルーアクリレート系 などのUV硬化性組成物が挙げられる。

【0066】易接着性塗膜上にハードコート層を積層す るには、塗膜上にハードコート層を構成するための組成 物を塗布し、加熱、放射線(例えば紫外線)照射等によ りこの組成物を硬化させる。ハードコート層の厚さは、*40 した。

◎:ヘーズ値≤1.0%

○:1.0%<ヘーズ値≤5.0% ……ヘーズ値良好

×:5.0%<ヘーズ値

【0073】(3) 裏面反射率

フィルムの易接剤塗布面を裏面(両面塗布の場合は任意 の片面)とするとき、フィルム表面から45°の角度で 点光源からの光を照射し、入射光量に対する反射光量の 割合(%)を反射光率(RX)とする。また、フィルム の裏面に黒色粘着テープを貼付し、フィルム表面から4 5°の角度で点光源からの光を照射し、入射光量に対す 50

*特に限定されないが通常、1~15 μm程度が適当であ

【0067】 [反射防止層 (アンチリフレクション (A R) 層)] このように形成したハードコート層の上に、 更に反射防止層を形成させる。反射防止層は、屈折率の 異なる複数の層を交互に積層したもので、その構成は一 般によく知られている。例えば、低屈折率層(Si O₂、30nm)-髙屈折率層(TiO₂、30nm)-低屈折率層(SiOz、30nm)-高屈折率層(Ti O₂、100nm)-低屈折率層(SiO₂、100n 10 m)の層構成を有するもの、高屈折率層(ITO、20 nm)-低屈折率層(AISiO、20nm)-高屈折 率層(ITO、88nm)-低屈折率層(AlSiO、 88nm)の層構成を有するもの、高屈折率導電層(1 TO、20nm)-低屈折率層(SiO₂、20nm) 一高屈折率導電層(ITO、93nm)-低屈折率層 (SiO₂、93nm)の層構成を有するものなどが知 られている。

【0068】本発明においては、任意の反射防止層を適 20 用することができ、通常、スパッタリングによってハー ドコート層上に積層される。この反射防止層により、デ ィスプレイの認視性を妨げる外来光の反射を抑制するこ とができる。

【0069】反射防止層には、上記以外にも、単層膜で 主として黄色光を中心に反射防止するものがあるが、黄 色の補色である紫色が見えるので、光学レンズの反射防 止に適しており、ディスプレイの反射防止には、多層反 射防止膜の方が適している。

[0070]

【実施例】以下、実施例を挙げて本発明を更に詳細に説 明する。なお、以下の実施例、比較例において、各特性 値は下記の方法により評価した。

【0071】(1)ユニバーサル硬度

島津製作所製微少歪み硬度計(MCTM-201)を用 い、半径0.06mmの鋼球でフィルム表面を圧迫し、 歪みが100%のときの圧力をgェで表す。

【0072】(2)へーズ値

日本電色工業社製のヘーズ測定器(NDH-20)を使 用してヘーズ値を測定した。ヘーズ値は次の基準で評価

……ヘーズ値極めて良好

……ヘーズ値不良

る反射光量の割合(%)を裏面反射光率(RY)とす る。このときの、反射光率(RX)と裏面反射光率(R Y) との差(RX-RY)を裏面反射率とする。裏面反 射率の測定結果を次の基準で評価した。

〇:裏面反射率が0.1%以下 (裏面反射率良好)

×: 裏面反射率が 0. 1%を超える(裏面反射率不良)

【0074】(4)接着力

a. 対接着剤

易接着性ポリエステルフィルムの塗膜形成面に厚さ10 µmのアクリル系の粘着剤を塗設する。60℃、80% RHの恒温恒湿槽中に24時間経時後、エポキシ樹脂系 の接着剤で貼り合せ、引き剥がし試験により、次の基準 で評価する。

◎:基材フィルムが破断する程度に接着力が強い

〇:剥離するが、実用性はある

5:剥離面積が10%未満

4:剥離面積が10%以上20%未満

3:剥離面積が20%以上30%未満

2:剥離面積が30%以上40%未満

1:剥離面積が40%を超えるもの

【0076】(5)イオン性低分子化合物の検出

フィルム表面に塗設された易接着層をXPS(X線光電 子分光)により表面分析する。その結果により、次のよ うに表示した。

〇:イオン性低分子化合物の含有量が1,000ppm 以下(良好)

を超える(不良)

【0077】(6)フィルム/フィルム摩擦係数

表面と裏面を重ね合せた2枚のフィルムの下側に固定し たガラスを置き、重ね合せたフィルムの下側(ガラス板 と接しているフィルム)のフィルムを定速ロールにて引 取り(約10 c m/分)、上側のフィルムの一端(下側 フィルムの引取り方向と逆端) に検出機を固定してフィ ルム/フィルム間の引張力(F)を検出する。なお、そ の時に用いる上側のフィルムの上に載せてあるスレッド は下側面積が50cm²(80mm×62.5mm)で あり、フィルムに接する面は80°のネオプレンゴムで あり、その重さ(W)は1.2kgとする。

【0078】静摩擦係数µSは下記式で算出される。 [0079]

【数6】μS=F(g)/W(g)

【0080】(7)易接着層の厚み方向の屈折率 アッベ屈折率計を用い、ナトリウムD線を光源として測 定した。なお、マウント液にはヨウ化メチレンを用い、 測定雰囲気は25℃、65%RHとした。

【0081】(8)認視性改良フィルムとして表面反射 40 の評価

試験用CRTに7001 x の外光を照射し、反射光1を 測定する。次に、供試フィルムをCRTに粘着剤で貼付 し、再度反射光2を測定した。(反射光2/反射光1) ×100%の値を次の区分で評価した。

◎: (反射光 2 / 反射光 1) × 100%が0.07%未 満(極めて良好)

〇: (反射光 2 / 反射光 1) × 100%が0.07%以 上0.1%未満(良好)

△: (反射光 2 / 反射光 1) × 1 0 0 %が 0. 1 %以上 50

*×:たやすく剥離し、実用性無し

【0075】b. 対ハードコート

易接着性ポリエステルフィルムの塗膜形成面に厚さ 5 μ mのハードコート層を形成して碁盤目のクロスカツト (1mmのマス目を100個)を施し、その上に24m m幅のセロハンテープ(ニチバン社製)を貼り付け、1 80度の剥離角度で急激に剥がした後、剥離面を観察 し、下記の基準で評価した。

……接着力極めて良好

……接着力良好

……接着力やや良好

……接着力不良

……接着力極めて不良

0.2%未満(やや不良)

×: (反射光 2 / 反射光 1) × 100%が0.2%以上 (不良)

【0082】(9)耐摩耗性

スチールウール#0000でハードコートの表面を摩擦 し、傷がつくかどうかを調べ、傷がつかないものを耐摩 ×:イオン性低分子化合物の含有量が1,000ppm 20 耗性良好(○)、傷がつくものを耐摩耗性不良(×)と した。

【0083】(10)落球衝撃試験

鉄板上に水平に置いた試料に、1mの高さから0.5k gの鋼球を3回落とし、反射防止層とハードコートのい ずれにもクラックが認められないものを良好(○)、い ずれかに又はいずれもにクラックが認められるものを不 良(×)とする。

【0084】(11)中心線平均粗さ(Ra)

JIS B0601に準じて、(株)小坂研究所製の高 精度表面粗さ計SE-3FATを使用して、針の半径2 μm、荷重30mgで拡大倍率5万倍、カットオフ0. 08mmの条件下に、チャートを描かせ表面粗さ曲線か らその中心線方向に測定長さしの部分を抜きとり、この 抜きとり部分の中心線をX軸、縦倍率の方向をY軸とし て、粗さ曲線をY = f(x)で表した時、次式で与えら れた値をnm単位で表わした。この測定は基準長を1. 25mmとして、4個測定し、平均値で表わした。

【数7】

[0085]

$$Ra = \frac{1}{L} \int_0^L |f(x)| dx$$

【0086】(12) ガラス転移点(Tg)

示差熱量計(DuPont Instruments 910DSC)を用い、アルミニウム製のパンに封入し たサンプル量20mgを室温から昇温速度20℃/分で 300℃まで昇温させ、300℃で1分間保持した後室 温以下の温度に急冷し、再度室温から昇温速度20℃/ 分で昇温させて測定する。

【0087】(13)フィルムの厚み

16

塗膜を積層したフィルム(塗膜を積層しないサンプルの 場合はそのフィルム)の厚みをマイクロメータで10点 測定し、平均値を求めてフィルムの厚みとした。

【0088】(14)塗膜の厚み

塗布液の l m² 当りの塗布量と固形分濃度より算出す

【0089】 [実施例1] 平均粒径1.7μmの多孔質*

[易接着性塗膜用組成物]

*シリカを0.007重量%含有した溶融ポリエチレンテ レフタレート($[\eta] = 0.65$)をダイより押出し、 常法により冷却ドラムで冷却して未延伸フィルムとし、 次いで縦方向に3.4倍に延伸した後、その両面に下記 **塗膜用組成物の濃度8%の水性液をロールコーターで均** 一に塗布した。

[0090]

酸成分がテレフタル酸(90モル%)、イソフタル酸(6モル%)および5-スルホイソフタル酸カリウム(4モル%)、グリコール成分がエチレングリコー ル(95モル%) およびネオペンチルグリコール(5モル%) の共重合ポリエス

テル (Tg=68℃):

80重量%

N, N'-エチレンピスカプリル酸アミド:

5 重量%

アクリル系樹脂微粒子(平均粒径 0.03μm): 10重量%

ポリオキシエチレンノニルフェニルエーテル:

5 重量%

【0091】その後、引き続いて95℃で乾燥しながら 横方向に120℃で3.6倍に延伸し、230℃で熱固 定して、厚さ125μmの光学用易接着性フィルムを得 た。なお、塗膜の厚さは90nm、塗膜表面の中心線表 面粗さ(Ra)は8nmであった。得られたフィルムの 20 ータを用いて、硬化後の膜厚が5μmとなるように均一 塗膜面のユニバーサル硬度(UHF)、塗膜中のイオン 性低分子化合物の含有量、裏面反射率、ヘーズ値、摩擦※

[UV硬化組成物]

ペンタエリスリトールアクリレート:

N-メチロールアクリルアミド:

N-ピニルピロリドン:

1-ヒドロキシシクロヘキシルフェニルケトン:

※係数、塗膜面の屈折率、対接着剤接着力および対ハード コート接着力を評価した結果を表2に示す。

【0092】次いで、このフィルムの易接着性塗膜の片 面の上に下記組成からなるUV硬化系組成物をロールコ に塗布した。

[0093]

4 5 重量%

4 0 重量%

10重量%

5 重量%

【0094】その後、80W/cmの強度を有する高圧 水銀灯で30秒間紫外線を照射して硬化させ、ハードコ 球衝撃試験、ハードコート層のユニバーサル硬度(U C) および前記式(1) との適合性評価結果を表2に示 す。

【0095】このハードコート層の上に、低屈折率層 (SiO₂、30nm)、高屈折率層(TiO₂、30n m)、低屈折率層(SiOz、30nm)、高屈折率層 (TiO₂、100nm)、低屈折率層(SiO₂、10 0 nm)を、この順にスパッタリングによって形成し、 光学用積層体を得ることができた。

【0096】[実施例2~5、比較例1~4] 実施例1 に準じ、表1に示すポリエステル、滑剤を用い、表1に 示す条件で製膜して厚み125 μmの両面に易接着性塗 膜を塗設したポリエステルフィルムを得た。これらのフ ィルムの塗膜面のユニバーサル硬度(UHF)、塗膜中 のイオン性低分子化合物の含有量、裏面反射率、ヘーズ 値、摩擦係数、塗膜面の屈折率、対接着剤接着力および 対ハードコート接着力を評価した結果を表2に示す。

【0097】次いで、これらのフィルムのの易接着性塗 膜の片面の上に実施例1と同様のUV硬化系組成物をロ ールコータを用いて、硬化後の膜厚が5μmとなるよう 50

に均一に塗布した。その後、実施例1と同様の紫外線を 照射して硬化させ、ハードコート層を形成した。このハ ート層を形成した。このハードコート層の耐磨耗性、落 30 ードコート層の耐磨耗性、落球衝撃試験、ハードコート 層のユニバーサル硬度(UC)および前記式(1)との 適合性評価結果を表2に示す。尚、比較例4はヘーズ値 が大きいため評価を除外した。

[0098]

【表1】

	ーホリエステル	粗面化 物質	物質		延有	延伸倍略	熱固定温度		易接着性強膜用組成物	類成物 (無量光	36
		鐵麵	平均粒径	撥包包	解方向	解方向 機方向		水性ボ JIX73	間的配方。	1 35	界面符件如
			mπ	重量光			ų		脂肪酸ビスアミド		
実施例1	PET	多孔質シリカ	1. 7	1. 7 0. 007 3. 1	3. 1	1 3. 6	210	P (80)	C (5)	G (1 0)	V (5)
実施例2	PEN	多孔質シリカ		1. 7 0. 007 3.	3.	1 3.6	210	P (80)	A (5)	(0 1)	(2)
実施例3	実施例3 PET/IA6 多孔質シリカ	多孔質シリカ	1. 7	1. 7 0. 007 3.		3.6	210	0 (80)	A (5)	(3.0)	(2) 4
実施例4	PET	多孔質シリカ	1. 7	1. 7 0. 007 3.	3.1	1 3. 6	210	R (80)	A (5)	(1.0)	(2) >
実施例5	PET	多孔質シリカ	1. 7	1. 7 0. 007 3.		1 3. 6	210	R (80)	B (5)	6 5	2
比較例1	PET	多孔質シリカ	1. 7	1. 7 0. 007 3.	١0	3.0	200	R (80)	D (5)	0 (1 0)	(5)
比較例2	PET	多孔質シリカ	1.7	1. 7 0. 007 3.	3.6	3. 7	230	R (80)	C (5)	(01)	(5) Y
比較例3	PET	多孔質シリカ	1. 7	1. 7 0. 007 3.	1	1 3. 6	210	S (8 5)	1	(0 L) H	2 (5)
比較例4	PET	カオリンクレイ 0.9 0.2503.	0.9	0.25	3. 1	1 3. 6	210	T (80)		H (15)	(2)
										``·	3

* [0099] 【表 2】

10

20

30

	ユニバーサル 硬度		イオン性	奥面反射率	ヘーズ値	摩擦係数	易接層	接着力		ハードコート層		
	UHF	υc	式(1)	低分子				厚み方向	接着剤	ハード	耐摩耗性	落球衝擊
	gr	gr	適合性	ppm	%			屈折率		コート		
実施例1	20	20	0	30	0.06	0	0.76	1.56	0	0	0	0
実施例2	23	20	0	20	0.05	0	0.75	1.56	0	0	0	0
実施例3	18	20	0	3 0	0.06	0	0.74	1.55	0	0	0	0
実施例4	20	20	0	4 0	0.05	0	0.74	1.57	0	0	0	0
実施例5	20	20	0	200	0.05	0	0.73	1.55	0	0	0	0
比較例1	10	2 0	×	400	0.05	0	0.75	1.54	0	0	0	×
比較例2	26	20	×	3 0	0.05	0	0.76	1.54	0	0	0	×
比較例3	20	20	0	1,500	0.05	0	測定不可	1.55	×	0	×	0
比較例4	20	20	0	40	0.06	×	0.76	1.55	0	0	_	

【0100】尚、表1において塗膜用組成物の記号

(P、Q、R、S、T、A、B、C、D、E、G、H、 【0101】 [水性ポリエステル]

ることを示す。

YおよびZ)は、それぞれ下記の重合体又は化合物であ 50 P:酸成分がテレフタル酸(90モル%)、イソフタル

酸(6 モル%)および 5 ースルホイソフタル酸カリウム(4 モル%)、グリコール成分がエチレングリコール

(95モル%)およびネオペンチルグリコール(5モル%)の共重合ポリエステル(Tg=68℃)

Q:酸成分が2,6ーナフタレンジカルボン酸(50モル%)、テレフタル酸(46モル%)および5ースルホイソフタル酸ナトリウム(4モル%)、グリコール成分がエチレングリコール(70モル%)およびビスフェノールAのエチレンオキシド2モル付加物(30モル%)の共重合ポリエステル(Tg=80C)

R:酸成分がテレフタル酸(85モル%)およびイソフタル酸(15モル%)、グリコール成分がエチレングリコール(57モル%)、1,4ープタンジオール(40モル%)、ジエチレングリコール(2モル%)およびポリエチレングリコール(分子量600)(1モル%)の共重合ポリエステル(Tg=47°C)

S:酸成分がテレフタル酸(70 モル%)、イソフタル酸(28 モル%)および5 ースルホイソフタル酸ナトリウム(2 モル%)、グリコール成分がエチレングリコール(70 モル%)およびビスフェノールAのエチレンオ 20 キサイド 4 モル付加物(30 モル%)の共重合ポリエステル(Tg=30 C)

T: 酸成分が2, 6-ナフタレンジカルボン酸(81モル%)、イソフタル酸(15モル%)および<math>5-スルホイソフタル酸ナトリウム(4モル%)、グリコール成分がエチレングリコール(70モル%)およびビスフェノールAのエチレンオキサイド2モル付加物(30モル%)の共重合ポリエステル(Tg=90℃)

【0 1 0 2】 [脂肪酸のアミド、脂肪酸のビスアミド] A:N,N'ーメチレンビススアテリン酸アミド *B:N, N'-エチレンピスパルミチン酸アミド

C:N, N'-エチレンピスカプリル酸アミド

D:カプリル酸アミド

E:ステアリン酸アミド

【0103】 [粗面化物質]

G:アクリル系樹脂微粒子(平均粒径0.03μm)

H:シリカ(平均粒径0.12μm)

【0104】 [界面活性剤]

Y:ポリオキシエチレンノニルフェニルエーテル

10 Z:ポリオキシエチレン・ポリオキシプロピレン共重合 体

【0105】表1および表2に示した結果から明らかなように、本発明の光学用フィルムは透明性、ハードコート接着性にすぐれ、これにハードコート層を塗設した光学用積層体はハードコート層の耐クラック性に優れ、耐摩耗性、反射防止能のいずれも良好であったが、本発明の要件のいずれかを満たしていない場合比較例1~4に示したフィルムは、欠点のため実用に供し得ないものである。

0 [0106]

【発明の効果】本発明によれば、ハードコート層との適合性が高く、接着力に優れ、裏面反射率の小さいポリエステルフィルムを提供することができるので、表面硬度、耐クラック性、耐摩耗性等が良好であり、しかも十分な透明性、防眩性、防爆性を備えたポリエステルフィルム積層体を提供することができ、特にパソコンディスプレイの表面保護板として有用である。また、窓ガラス、ショーケース、眼鏡、計器類、写真、絵画、イラスト、看板等の表面保護シートとして適用範囲が広く、工*30業的価値の高いものである。

フロントページの続き

(51) Int. Cl. 7

識別記号

テーマコード(参考)

G 0 2 F · 1/1335 // C 0 8 L 67:02 G 0 2 F 1/1335

C 0 8 L 67:02

FΙ

F ターム(参考) 2H091 FA37X FB02 FC23 GA16 LA03

4F006 AA35 AB35 AB65 BA01 CA05 DA04

4F100 AH03B AK01C AK41 AK41A

AK41B AL01 AR00C BA03

BA07 BA10A BA10C CC00B

DEO1B GB41 JA05B JB09B

JB14C JK12C JK14B JL11B

JN18B YY00B

4J038 CC002 CD092 CG002 DA062

DA172 DD001 DD041 DD061

DD081 DH002 DL032 HA026

HA176 HA186 HA216 HA286

HA356 HA446 HA456 JB13

KA06 NA12 NA19 PB03 PB04

PB08 PC08