

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE COMPUTAÇÃO E AUTOMAÇÃO

Laboratório 5ª experiência – Pequenos Sinais TBJ para Emissor-Comum

DISCIPLINA: DCA0213 – Eletrônica (Laboratório)	PROFESSOR: Andrés Ortiz
Aluno:	Data:/

Data de publicação: 22-05-2022; data do laboratório: 27 – 05 – 2021; Entrega do relatório: 30-05-2022

Componentes:

Resistores: $2 \text{ k}\Omega$, $220 \text{ k}\Omega$, $2.7 \text{ k}\Omega$, 560Ω e $47 \text{ k}\Omega$.

Capacitores: a definir. **Transistor:** BC847B.

O circuito da Figura 1 é um pré-amplificador de áudio para amplificar a potência de um captador magnético de violão. A saída desse pré-amplificador será ligada a outro amplificador de maior potência, cuja impedância de entrada é de 2 k Ω . Utilizar uma fonte de alimentação de 12 V e o transistor BC109B, cujos parâmetros típicos são fornecidos pelo manual do fabricante para $I_{CQ} = 2$ mA, $V_{CEQ} = 5$ V e $V_{BEQ} = 0.7$ V.

Parâmetros do BC847B:

hFE = β = 320, utilice o modelo v_e do transistor

Captador magnético:

 $R_{iG} = 2 \text{ k}\Omega$, $20 \le f \le 20 \text{ kHz}$, $v_G = 25 \text{ mV}$

Parte A: Determine os capacitores de acoplamento e desacoplamento (C₁, C₂ e C₃).

- a) Com os capacitores calculados, calcule teoricamente os parâmetros básicos do amplificador: ganho de tensão (A_v) , impedância de entrada (Z_E) e impedância de saída do circuito (Z_S) .
- b) Usando o simulador calcule o ganho de tensão, impedância de entrada e impedância de saída do circuito e compare com os resultados do item a).
- c) Com o simulador, trace a curva de resposta em frequência do amplificador e verifique a largura de banda. Caso a frequência mínima de resposta não coincida com o valor de 50 Hz ajuste empiricamente C1 e C2.

Fig.1 Amplificador A

Parte B: Retire o capacitor C3 do circuito do amplificador da Figura 1, para construir o Amplificador **B** e realize os seguintes passos:

- a. Com os capacitores calculados, calcule teoricamente os parâmetros básicos do amplificador: ganho de tensão (A_v) , impedância de entrada (Z_E) e impedância de saída do circuito (Z_S) .
- b. Usando o simulador calcule o ganho de tensão, impedância de entrada e impedância de saída do circuito e compare com os resultados do item a).
- c. Com o simulador, trace a curva de resposta em frequência do amplificador e verifique a largura de banda.
 Caso a frequência mínima de resposta não coincida com o valor de 50 Hz ajuste empiricamente C1 e C2.

Parte C: Construía um amplificador formado por os amplificadores da parte **A** e **B** ligados em cascata, tal como mostra a Figura 2 e repita os passos **a**, **b** e **c** dos amplificadores anteriores.

Figura 2