Übungen zum Brückenkurs B SoSe 2024

Prof. Dr. J. Harz / S. Weber

Blatt 07 - 04. April, 2024

Die Aufgaben sind unterteilt in

 \circ Verständnisaufgaben, $\ \ \Box$ Vertiefungsaufgaben, $\ \ast$ schwierige Aufgaben

Aufgabe 1: Weitere Ableitungen

Bilden Sie die Ableitungen folgender Funktionen.

a)
$$\circ f(x) = \sin(x^2 + 3x + 4)$$

b)
$$\circ f(x) = \sin(\cos(e^{2x}))$$

c)
$$\circ f(x) = \cos(x^2)e^{-x}$$

d)
$$\Box f(x) = \cos(e^x)\sin(e^{-x})$$

e)
$$\Box f(x) = (x^2 \sin(x) + x^3 \cos(x))^{-\frac{3}{2}}$$

Aufgabe 2: Höhere Ableitungen

Bilden Sie die Ableitungen bis zur dritten Ordnung.

a)
$$\circ f(x) = e^{2x} + e^x + 1$$

b)
$$\Box f(x) = x^4 + 4x^3 + 6x^2 + 4x + 1$$

c)
$$\Box f(x) = (x+1)^4$$

Aufgabe 3: Partielle Ableitungen

Bilden Sie die partiellen Ableitungen jeweils nach den Variablen x und y.

a)
$$\circ f(x,y) = x^2 + y^3$$

b)
$$\Box f(x,y) = \sin(x+2y)$$

c)
$$\Box f(x,y) = e^x \ln(y)$$

$$d) \Box f(x,y) = \cos(x)$$

$$e) * f(x) = x^y$$

Aufgabe 4: * Beweise der Ableitungsregeln

Beweisen Sie die mit Hilfe der vollständigen Induktion und der Produktregel, dass die Ableitung von $f(x) = x^n$ für natürliche Zahlen $n \in \mathbb{N}$ gegeben ist durch $f'(x) = nx^{n-1}$.

Aufgabe 5: Regeln von l'Hospital

Bestimmen Sie die Grenzwerte folgender Funktionen mit den Regeln von l'Hospital.

- a) $\Box \lim_{x\to 0} \frac{\sin(x)}{x}$
- b) * $\lim_{x\to 0} \frac{e^x-1}{x}$
- c) * $\lim_{x \to \infty} \frac{e^x 1}{x}$
- $d) * \lim_{x \to \infty} x e^{-x}$

Aufgabe 6: * Kurvendiskussion

Untersuchen/Bestimmen Sie von der Funktion

$$f(x) = \frac{x}{\ln^2(x)}$$

den Definitions- und Wertebereich, die Schnittpunkte mit den Koordinatenachsen, das Symmetrieverhalten, das Verhalten im Unendlichen, die Ableitungen bis zur dritten Ordnung sowie die Extrem- und Wendepunkte. Zeichnen Sie die Funktion in ein Koordinatensystem.

Aufgabe 7: \square Schräger Wurf

Beim schrägen Wurf ergibt sich die Höhe des geworfenen Gegenstandes über dem Abwurfpunkt aus der Gleichung

$$y = -\frac{1}{2}g \cdot t^2 + v_0 \sin(\alpha) \cdot t + y_0$$

und der horizontale Abstand aus

$$x = v_0 \cos(\alpha) \cdot t$$
.

 v_0 ist die Wurfgeschwindigkeit, α der Wurfwinkel gegen die Horizontale, g die Fallbeschleunigung und t die Zeit nach dem Abwurf.

- a) Zeichnen Sie eine Skizze des Wurfes in der x-y-Ebene.
- b) Berechnen Sie die vertikale und horizontale Geschwindigkeit in Abhängigkeit der Zeit t.
- c) Berechnen Sie außerdem die erreichte Höhe.
- d) Ermitteln Sie durch Elimination von t aus beiden Gleichungen die Bahngleichung y = f(x).

Aufgabe 8: Folgen

Geben Sie an, ob die folgenden Folgen beschränkt und/oder monoton steigen bzw. fallend sind sowie ob sie konvergieren oder divergieren.

a)
$$\circ a_n = \frac{1}{n}$$

b)
$$\circ a_n = n^2$$

c)
$$\circ a_n = \left(\frac{1}{2}\right)^n$$

d)
$$\Box a_n = \frac{(-1)^n}{n}$$

e)
$$\Box a_n = \frac{n}{n^3 + n^2 + 1}$$

$$f) \square a_n = \frac{n+1}{n+2},$$

Aufgabe 9: Grenzwerte von Folgen Bestimmen Sie die Grenzwerte folgender Folgen.

a)
$$\circ a_n = 4(\frac{1}{2})^n$$

b)
$$\circ a_n = 1 + 3^{-n}$$

c)
$$\circ a_n = \frac{n+1}{n-2} + \frac{1}{n}$$

d)
$$\Box a_n = (2+3^{-n}) \left(\frac{n^2+1}{2n^2-2} + \frac{1}{n!} \right)$$

e)
$$\Box \sin(n\pi)$$