Lecture 14: Ping-pong lemma

Monday, November 12, 2018

11.10 PM

In the previous lecture we defined free group and proved its universal

property. How can we prove if a given group is free or not?

Ping-pong lemma. Suppose G X, G, G2 SG, IG1 22,

 $|G_3| \ge 3$; let $X_1, X_2 \subseteq X$, $X_1 \nsubseteq X_2$ and $X_2 \not \sqsubseteq X_1$. Suppose

 $(G_1 \setminus \{1\}) \cdot X \subseteq X$ and $(G_2 \setminus \{1\}) \cdot X \subseteq X$. Then

<G, U G₂> ~ G, *G₂.

Pf. Let +: G, C, CG, VG, > and +: G, CG, VG, >. Then

by the universal property of free prod. $\exists \Phi: G_1*G_2 \rightarrow \langle G_1 \cup G_2 \rangle$

st. \$1 = \$; in particular \$ is onto.

Suppose $\omega \in \ker \phi \subseteq G_1 * G_2$. We consider the unique reduced

form of w:

Cose 1. W= a1 b1 a2 b2 an bna, a; ∈ G11, b; ∈ G2 1.

Suppose $x_2 \in X_2 \setminus X_1$. Then $\begin{aligned}
& (x_2 = + (x_2) \cdot x_2 = a_1 \cdot (b_1 \cdot \dots \cdot (a_n \cdot (b_n \cdot (a_n \cdot x_2))) + \epsilon \times 1
\end{aligned}$

which is a contradiction.

Lecture 14: Ping-pong lemma

Monday, November 12, 2018

 $\underline{Cax 2} \cdot \omega = b_1 a_1 b_2 a_2 \cdot \dots b_n a_n b_{n+1}, \quad a_i \in G_1 \setminus 1, \quad b_i \in G_2 \setminus 1.$

Suppose $x_1 \in X_1 \setminus X_2$. Then

 $x_1 = \phi(\omega) \cdot x_1 = b_1 \cdot a_1 \cdot b_2 \cdot \cdots \cdot a_n \cdot b_{n+1} \cdot x_1 \in X_2$

 $\frac{\ln X_2}{\ln X_1}$ in X_2

which is a contradiction.

 $\underline{Case 3}$. $\omega = a_1b_1a_2b_2...a_nb_n$, $a_i \in G_1 \setminus 1$, $b_i \in G_2 \setminus 1$.

Since |G1 ≥ 3, 3 be G2 \ 21, b, 1; then

 $b\omega b^{-1} = ba_1 b_1 a_2 b_2 ... a_n (b_n b^{-1})$ is reduced and $b\omega b^{-1} \in \ker \phi$. are get a contrad. by case 2.

Case 4. $\omega = b_1 a_1 b_2 a_2 \cdots b_n a_n$, $b_i \in G_2 \setminus 1$, $a_i \in G_1 \setminus 1$.

=> b, ab = a, b ... and b, ab is reduced and in ker &

we get a contradiction by asse 3.

 $\underline{\text{Ex.}}$ $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ freely generate a subgroup of $\text{SL}_2(\mathbb{Z})$.

 $\frac{Pf.}{P}. \text{ Let } G_{1} := \langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \rangle = \left\{ \begin{bmatrix} 1 & 2n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Z} \right\} \quad \text{and} \quad G_{2} := \langle \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \rangle = \left\{ \begin{bmatrix} 1 & 0 \\ 2n & 1 \end{bmatrix} \mid n \in \mathbb{Z} \right\}.$

Lecture 14: Applications of ping-pong lemma

Tuesday, November 13, 2018 12:0

$$SL_2(Z) \cap \mathbb{P}(\mathbb{R}^2)$$
 projective space

$$X_{\pm} = \{ Ix: yJ \mid |y| \leq |x| \},$$

$$\underline{Claim}$$
. $(G_1 \setminus 1)$. $X_2 \subseteq X_1$.

$$\frac{\text{Tf of Claim}}{\text{In }} \cdot \begin{bmatrix} 1 & 2n \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 2ny \\ y \end{bmatrix}$$

$$|x+2ny| \ge |2n||y|-|x| \ge |y|+(|y|-|x|)$$

Similarly (G21). X1 = X2. So, by Ping-pong lemma,

$$\langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \rangle \simeq G_1 * G_2 \simeq \mathbb{Z} * \mathbb{Z} = \overline{f_2}.$$

$$E_{X} < \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right], \left[\begin{array}{c} 0 & 1 \\ -1 & 0 \end{array} \right] > \simeq \mathbb{Z} * \mathbb{Z}_{2}$$
 where $\overline{g} \in PSL_{2}(\mathbb{R}) = SL_{2}(\mathbb{R})$

$$\frac{PP}{2}$$
. $SL_2(\mathbb{R}) \cap H$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{\alpha z + b}{c z + d}$ as you have seen in one

of your HW assignments. Notice that this action factors through

$$PSL_2(\mathbb{R})$$
. Let $G_1:=\langle \begin{bmatrix} 1 \\ -1 \end{bmatrix} \rangle$ and

$$G_2 := \left\langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\rangle \cdot$$

Lecture 14: Applications of ping-pong lemma

Tuesday, November 13, 2018

Notice that
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 $z = \frac{-1}{z}$ and $\begin{bmatrix} 1 & 2n \\ 1 & 1 \end{bmatrix}$ $z = z + 2n$;

and so $(G_1 \setminus 1) \cdot X_2 \subseteq X_1$ and $(G_2 \setminus 1) \cdot X_1 \subseteq X_2$. Therefore

by ping-pong lemma,
$$\langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \rangle \simeq \mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$$
.

$$\underline{Ex}$$
. (Schottky group) Let $a = \begin{bmatrix} \lambda \\ \lambda^{-1} \end{bmatrix}$, $\lambda > 1$, and $b \in SL(\mathbb{R})$

s.t.
$$b \cdot \S 0, \infty \S \cap \S 0, \infty \S = \emptyset$$
. Then, for large enough n,

Pf. SL_(R) A Ruzas by Möbius transformation. Let's

Slos to o. So I a nobed U so and a nobed Utso

s.t.
$$a^n.(S\setminus U^{-})\subseteq U^{+}$$
 for $n\geq n_0$ and

$$a^{-n}(S\setminus U^{+})\subseteq U^{-}$$
 for $n\geq n_{o}$.

. b.
$$U^{\pm} \cap U^{\pm} = \emptyset$$
; (Since b. $\{0,\infty\} \cap \{0,\infty\} = \emptyset$, there are U^{\pm} .)

Let
$$G_1:=\langle \alpha^0 \rangle$$
, $G_2:=\langle b \alpha^0 b^{-1} \rangle$, $X_1:=\bar{U} \cup \bar{U}^{\dagger}$, $X_2=b \cdot X_1 \cdot C_1$

Lecture 14: Schottky groups

Tuesday, November 13, 2018

12:50 AM

Then
$$a^{n \cdot k} \cdot (b \cdot \nabla^{t} \cup b \cdot \nabla^{t}) \subseteq a^{n \cdot k} \cdot (S \setminus (\nabla^{t} \nabla^{t}))$$

 $\subseteq U^{\dagger} \cup U^{-}$

$$(ba^{n_{o}k}b^{-1})(\overline{U}^{\dagger}U\overline{U}) \subseteq ba^{n_{o}k}(b^{-1}U^{\dagger}Ub^{-1}U\overline{U})$$

 $\subseteq ba^{n,k}(S(U^{t}U\bar{U}))$

⊆ b(U¹UU⁻); and so by

ping-pong lemma $\langle a^n, ba^nb^{-1} \rangle \simeq \mathbb{Z} * \mathbb{Z} = \mathbb{F}_2$.

Theorem. Let $\alpha = \begin{bmatrix} \lambda \\ \lambda^{-1} \end{bmatrix}$, $\lambda > 1$, be $SL_{\underline{\alpha}}(\mathbb{R})$ $\left\{ \begin{bmatrix} * & * \\ * \end{bmatrix} \right\} \cup \left\{ \begin{bmatrix} * & * \\ * \end{bmatrix} \right\}$

Then <a, b> has a non-commutative free subgp.

J. Tits proved the generalization of the above theorem based on

action on projective space.

Theorem Suppose $T \leq GL_n(\mathbb{C})$ is a finitely generated linear

group, which is not virtually solvable; that means no subgp

of finite index of Γ is solvable. Then Γ has a (non-commut.)

free subgp.

(In your HW assignment you will show its inverse.)

Lecture 14: Presentation

Tuesday, November 13, 2018

<u>Def.</u> Suppose $R \subseteq F(X)$. Then $\langle X | R \rangle$ means F(X)/N

where $N = \langle U g R g^{-1} \rangle$ (is the smallest normal subgpof F(X) that contains R).

In general it is not easy to understand the group structure of a group with a given presentation; to be more precise for a given presentation $\langle X|R\rangle$ and a given word $\omega\in F(X)$ one can ask if $\omega=e$ in $\langle X|R\rangle$. Is there an algorithm to check whether $\omega=e$? This is called the word problem, and Novikov showed that in general answer to this question is No. In certain cases we can understand group structure of $\langle X|R\rangle$. Next we describe a general strategy, and start with the

 $Ex. \langle a | a^n \rangle \simeq \mathbb{Z}/n\mathbb{Z}$

following easy example:

(We 'll continue in the next lecture.)

