Feng-Doolittle Unit Tests

Hint: Many test values are taken from project Algorithms for Bioninformatics of Alexander Mattheis or the lectures.

Test 1 (Hint: Notation from original paper! Formula was wrong! Mismatches were not considered!)

Input

Sequence a: ACGT Sequence b: AT Sequence c: GCC

Gap opening: 0 (can use Needleman-Wunsch instead of Gotoh)

Enlargement: -2

Match: 1 (and 0 for placeholder #)

Mismatch: -1

Output (Pairwise Alignment)

	Alignment- Length	Gaps	Gap- starts	Score
(a,b)	4	2	1	-2
(a,c)	4	1	1	-3
(b,c)	3	1	1	-4

Seq1 ACGT

* *

Seq2 A__T

Seq1 ACGT

| * |

Seq2 GC C

Seq1 _AT

Seq2 GCC

Hint: More alignments exists, but only one is computed!

Output (Distances)

 $S_{a,b}^{rand}$

$$= \frac{1}{4} \begin{pmatrix} s(A_a, A_b) \cdot N_A(a) \cdot N_A(b) + s(A_a, T_a) \cdot N_A(a) \cdot N_T(b) \\ + s(C_a, A_b) \cdot N_C(a) \cdot N_A(b) + s(C_a, T_a) \cdot N_C(a) \cdot N_T(b) \\ + s(G_a, A_b) \cdot N_G(a) \cdot N_A(b) + s(G_a, T_b) \cdot N_G(a) \cdot N_T(b) \\ + s(T_a, A_b) \cdot N_T(a) \cdot N_A(b) + s(T_a, T_b) \cdot N_T(a) \cdot N_T(b) \end{pmatrix}$$

 $+ 2 \cdot enlarge$

$$= \frac{1}{4} \binom{1 + (-1) + (-1) + (-1)}{+} + 2 \cdot (-2) = \frac{-4}{4} - 4 = -5$$

1

$$S_{a,b}^{max} = \frac{4+2}{2} = 3$$

$$S_{a,b}^{eff} = \frac{S(a,b) - S_{a,b}^{rand}}{S_{a,b}^{max} - S_{a,b}^{rand}} = \frac{-2 - (-5)}{3 - (-5)} = \frac{3}{8}$$

$$D(a,b) = -\ln S_{a,b}^{eff} \approx 0.98 \approx 1$$

$$S_{a,c}^{rand} = \frac{1}{4} \begin{pmatrix} s(A_a, G_b) \cdot N_A(a) \cdot N_G(b) + s(A_a, C_b) \cdot N_A(a) \cdot N_C(b) \\ + s(C_a, G_b) \cdot N_C(a) \cdot N_G(b) + s(C_a, C_b) \cdot N_C(a) \cdot N_C(b) \\ + s(G_a, G_b) \cdot N_G(a) \cdot N_G(b) + s(G_a, C_b) \cdot N_G(a) \cdot N_C(b) \end{pmatrix} + 1 \cdot enlarge$$

$$= \frac{1}{4} \begin{pmatrix} -1 + (-2) + (-1) + 2 \\ + \\ 1 + (-2) + (-1) + (-2) \end{pmatrix} + 1 \cdot (-2) = \frac{-6}{4} - 2 = -3.5$$

$$S_{a,c}^{max} = \frac{4+3}{2} = 3.5$$

$$S_{a,c}^{eff} = \frac{S(a,c) - S_{a,c}^{rand}}{S_{a,c}^{max} - S_{a,c}^{rand}} = \frac{-3 - (-3.5)}{3.5 - (-3.5)} = \frac{0.5}{7}$$

$$D(a,c) = -\ln(S_{a,c}^{eff}) \approx 2.639 \approx 3$$

$$\begin{split} S_{b,c}^{rand} &= \frac{1}{3} \cdot \binom{s(A_a,G_b) \cdot N_A(a) \cdot N_G(b) + s(A_a,C_b) \cdot N_A(a) \cdot N_C(b)}{+s(T_a,G_b) \cdot N_T(a) \cdot N_G(b) + s(T_a,C_b) \cdot N_T(a) \cdot N_C(b)} + 1 \cdot enlarge \\ &= \frac{1}{3} \cdot \left(-1 + (-2) + (-1) + (-2)\right) - 2 = \frac{-6}{3} - 2 = -4 \end{split}$$

$$S_{b,c}^{max} = \frac{2+3}{2} = 2.5$$

$$S_{b,c}^{eff} = \frac{S(b,c) - S_{b,c}^{rand}}{S_{b,c}^{max} - S_{b,c}^{rand}} = \frac{-4 - (-4)}{2.5 - (-4)} = \frac{0}{6.5} \le 0 \rightarrow S_{a,c}^{eff} = \frac{0.001}{6.5} = \frac{1}{6500}$$

$$D(b,c) = -\ln(S_{b,c}^{eff}) \approx 8.78 \approx 9$$

Output (Phylogenetic Tree)

1.

d_{min}	= 1		
	a	b	С
a	0	1	3
b		0	9
			_

$$\mathcal{C} = \big((\mathcal{C} - \{a\}) - \{b\}\big) \cup \{d\}$$

	1	l)	С	d	
_				2		
a	′		-	J		
				_		
D		'	,	9		
С				0	6	
d					0	

3.

$$dist(d, a) = dist(d, b) = \frac{1}{2} = 0.5$$

$$dist(c, d = \{a, b\}) = \frac{|a| \cdot dist(c, a) + |b| \cdot dist(c, b)}{|a| + |b|} = \frac{1 \cdot 3 + 1 \cdot 9}{1 + 1} = 6$$

1)
$$d_{min} = 6$$

1)
$$d_{min} = 6$$

2) $\mathcal{C} = ((\mathcal{C} - \{c\}) - \{d\}) \cup \{e\}$

3)
$$dist(e,c) = dist(e,d) = \frac{d_{min}}{2} = 3$$

Tree is rounded, because of easiefied calculation!

Output (Joinment)

1.

ACGT

A##T

2.

ACGT GCC

A##T and

 Seq1
 ACGT

 |*|
 |*|

 Seq2
 GC_C

 Score
 -3

 Seq1
 ACGT

 |*|
 |*|

 Score
 -3

Hint: The following matrices are mirrored!

		Α	#	#	Т
	0	-2	-2	-2	-4
G	-2	-1	-1	-1	-3
С	-4	-3	-1	-1	-2
С	-6	-5	-3	-1	-2

Score -2
A # :

		Α	#	#	T
	0	-2	-2	-2	-4
G	-2	-1	-1	-1	-3
С	-4	-3	-1	-1	-2
С	-6	-5	-3	-1	-2

but: third alignment chosen, because highest score

Output (Final)

ACGT

A___T

G_CC

SoP-Score -11

Test 2 (Hint: Simulation with Gotoh)

Input

Sequence a: GCC Sequence b: A##T

Gap opening: -1 Enlargement: -2

Match: 1 (and 0 for placeholder #)

Mismatch: -1

		Α	#	#	Т
		-∞	-∞	-∞	-∞
G	-	-6	-6	-6	-8
С	-	-4	-4	-4	-6
С	-	-6	-4	-4	-5

		Α	#	#	Т
	0	-3	-3	-3	-5
G	-3	-1	-1	-1	-3
С	-5	-4	-1	-1	-2
С	-7	-6	-4 Ţ	-1	-2
		Α	#	#	Т
	0	-	-	-	-
G	-∞	-5	-1	-1	-3
С		-8	-4	1 ₋₁	-3
C	-∞	-0	-4	-T	-3

(the neutral symbol # have only an effect on the two lower tables)