

 KÓD TESTU

 23 1447

MATURITA 2023

EXTERNÁ ČASŤ

MATEMATIKA

NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!

- Test obsahuje **30 úloh**.
- Na vypracovanie testu budete mať **150 minút**.
- V teste sa stretnete s dvoma typmi úloh:
 - Pri úlohách s krátkou odpoveďou napíšte jednotlivé číslice výsledku do príslušných políčok odpoveďového hárka. Rešpektujte pritom predtlačenú polohu desatinnej čiarky.
 - Pri úlohách s výberom odpovede vyberte správnu odpoveď spomedzi niekoľkých ponúkaných možností, z ktorých je vždy správna iba jedna. Správnu odpoveď zaznačte krížikom do príslušného políčka odpoveďového hárka.
- Z hľadiska hodnotenia sú všetky úlohy rovnocenné.
- Pri práci smiete používať iba písacie potreby, prehľad vzťahov na poslednom liste tohto testu a kalkulačku, ktorá nie je súčasťou mobilného telefónu, nedokáže vykresľovať grafy, zjednodušovať algebrické výrazy obsahujúce premenné a počítať korene rovníc. Nesmiete používať zošity, učebnice ani inú literatúru.
- Pracujte s hodnotou π , ktorú ponúka kalkulačka.
- Počítajte presne, bez zaokrúhľovania. Ak je to potrebné, zaokrúhlite iba konečný výsledok podľa pokynov uvedených na zadnej strane testu.
- Poznámky si robte na pomocný papier. Na obsah pomocného papiera sa pri hodnotení neprihliada.
- Podrobnejšie pokyny na vyplňovanie odpoveďového hárka sú na poslednej strane

Želáme vám veľa úspechov!

Začnite pracovať, až keď dostanete pokyn!

Časť I

Vyriešte úlohy **01** až **20** a do odpoveďového hárka zapíšte vždy **iba výsledok** – nemusíte ho zdôvodňovať ani uvádzať postup, ako ste k nemu dospeli.

Obrázky slúžia len na ilustráciu, nahrádzajú vaše náčrty, dĺžky a veľkosti uhlov v nich nemusia presne zodpovedať údajom zo zadania úlohy.

- Dané sú dve čísla a a b. Vieme, že $\frac{a}{b} = 4$. Vypočítajte, čomu je rovný výraz $\frac{a^2 + b^2}{ab}$.
- Aritmetická postupnosť má šesť členov. Ich súčet je 108. Prvý člen postupnosti je 3. Vypočítajte posledný člen postupnosti.
- Zuzka jedla čokoládu. Prvý deň zjedla polovicu, druhý deň zjedla polovicu z toho, čo ostalo, tretí deň zjedla polovicu z toho, čo ostalo. A takto pokračovala ďalej. Teoreticky mohla takto jesť donekonečna, ale keďže čokoláda sa čím ďalej horšie lámala, povedala si, že ak bude kúsok ľahší ako 4 g, už lámať nebude, ale radšej čokoládu už doje. Koľkokrát Zuzka lámala čokoládu, ak vieme, že čokoláda vážila 180 g?
- Vyfarbená oblasť štvorca na obrázku má obsah 54 cm². Zvislé čiary rozdeľujú štvorec na tri rovnaké časti. Vypočítajte v centimetroch obvod štvorca.

Určte pravdepodobnosť, že štvorciferné číslo vytvorené z dvoch číslic 2 a dvoch číslic 3 je deliteľné 11. Výsledok zapíšte ako číslo z intervalu $\langle 0; 1 \rangle$.

- Pred šiestimi rokmi bola Erika trikrát staršia ako Mária. Pred štyrmi rokmi bola Erika dvakrát staršia ako Mária. Koľko rokov má Erika teraz?
- Daný je pravidelný kolmý 6-boký hranol, v ktorom platí, že |AB| = 2 cm a |AG| = 4 cm. Šesťuholník ABMJKN je rez tohto hranola rovinou ABJ. Body M a N sú stredy hrán hranola. Vypočítajte v centimetroch obvod tohto rezu.

- Daná je funkcia $f(x) = 2 \cos x$ a funkcia g(x) = 3x 11. Vypočítajte funkčnú hodnotu zloženej funkcie g(f(x)) pre x = 0.
- Na obrázku je štvorec *ABCD* a pravouhlý rovnoramenný trojuholník *DCE* so základňou DC. Dĺžka strany štvorca je 4 cm. Vypočítajte v centimetroch štvorcových obsah trojuholníka *AED*.

- Dané sú body A[3; -1], B[0; -4], C[0; 2]. Vypočítajte polomer kružnice opísanej trojuholníku ABC.
- Je daný pravidelný šesťuholník a pravidelný päťuholník so spoločnou stranou *AB*, ako vidíte na obrázku. Vypočítajte v stupňoch veľkosť uhla *IAF*.

- Predpis funkcie $y = \frac{4x-5}{2x-1}$ upravte na tvar $y = a + \frac{b}{2x-1}$, kde $a,b \in R$.

 Do odpoveďového hárka napíšte súčet a a b.
- Na obrázku sú dve priamky a dva kruhové výseky, ktoré vznikli z kruhov so stredom v bode M. Pomer polomerov kruhov je 2:5. Obsah kruhového výseku S_2 je $18~\rm cm^2$. Vypočítajte v centimetroch štvorcových obsah kruhového výseku S_1 .

Koľkokrát napíšeme číslicu 9, ak zapíšeme všetky prirodzené čísla od 1 do 625 vrátane, každé číslo raz?

Daná je kocka *ABCDEFGH* s dĺžkou hrany 5 cm. Bod *M* je stred hrany *EF*. Vypočítajte v centimetroch vzdialenosť bodu *M* od roviny *ABG*.

- Najmenší spoločný násobok čísla 2 190 a štvorciferného čísla x je 13 140. Vypočítajte číslo x.
- Na medzitriedny turnaj vo futbale má každá trieda nominovať 5-členné družstvo, v ktorom bude aspoň jedno dievča a aspoň dvaja chlapci. V 4.B by sa chceli na turnaji zúčastniť 7 chlapci a 3 dievčatá. Koľko rôznych družstiev môže 4.B vytvoriť?
- Daná je kocka *ABCDEFGH* s dĺžkou hrany 2 dm. Ďalej je daný bod *P*, ktorý je stredom úsečky *BF* a bod *Q* tak, že bod *H* je stredom úsečky *DQ*. Vypočítajte v decimetroch dĺžku úsečky, ktorá je prienikom priamky *PQ* s danou kockou.

Do každého voľného políčka vpíšte kladné číslo tak, aby súčin čísel v každom riadku, v každom stĺpci a oboch uhlopriečkach bol rovnaký. Do odpoveďového hárka uveďte tento súčin.

16	4	
	8	

Pyramída tvaru štvorbokého ihlana má všetky hrany dlhé 100 metrov. Archeológ ju podrobne skúmal. Začal skúmať v jednom z jej spodných vrcholov a hore išiel nasledovne. Najprv prešiel zo spodného vrcholu do štvrtiny protiľahlej hrany, odtiaľ do polovice protiľahlej hrany a potom už vyšiel na vrchol pyramídy. Vypočítajte dĺžku jeho cesty v metroch.

Pohľad zhora

Časť II

V každej z úloh **21** až **30** je správna práve jedna z ponúkaných odpovedí **(A)** až **(E)**. Svoju odpoveď zaznačte krížikom v príslušnom políčku odpoveďového hárka.

Obrázky slúžia len na ilustráciu, nahrádzajú vaše náčrty, dĺžky a veľkosti uhlov v nich nemusia presne zodpovedať údajom zo zadania úlohy.

21 Koľko z nasledujúcich rovností je pravdivých?

$$(1) (A \cap B) \cap C = A \cap (B \cap C)$$

(2)
$$(A \cap B) \cup C = A \cap (B \cup C)$$

(3)
$$(A \cup B) \cap C = A \cup (B \cap C)$$

$$(4) \ (A \cup B) \cup C = A \cup (B \cup C)$$

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **(E)** 4

Lucka dostala 22. septembra na narodeniny mobil s funkciou merania počtu prejdených krokov. Hneď na druhý deň ho začala používať. Do konca roka prešla spolu 1 000 000 krokov. Do konca októbra prešla priemerne 6 725 krokov za deň. Koľko krokov prešla Lucka priemerne za deň za obdobie novembra a decembra? Počet krokov zaokrúhlite na celé kroky.

- (A) 11984
- **(B)** 12408
- (C) 12295
- (D) 12094
- **(E)** 12204

	S	Sep	ten	nbe	r				Ok	tók	er				ı	VoV	/em	ıbe	r			ı	Dec	em	be	r	
Ро	Ut	St	Št	Pi	So	Ne	Ро	Ut	St	Št	Pi	So	Ne	Ро	Ut	St	Št	Pi	So	Ne	Ро	Ut	St	Št	Pi	So	Ne
	1	2	3	4	5	6				1	2	3	4							1		1	2	3	4	5	6
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20
21	22	23	24	25	26	27	19	20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27
28	29	30					26	27	28	29	30	31		23	24	25	26	27	28	29	28	29	30	31			
												,		30				,									

23 Ktoré z nasledujúcich funkcií sú súčasne prosté aj rastúce na celom svojom definičnom obore?

$$f_1: y = -\frac{1}{x}$$
 $f_2: y = x^2$ $f_3: y = \sqrt{x}$ $f_4: y = tg x$ $f_5: y = \ln x$

- **(A)** f_{1} a f_{4}
- **(B)** f_3 a f_5
- (C) f_1 a f_5
- **(D)** f_{2} a f_{4}
- **(E)** f_2 a f_3
- Tenisový hráč si zapisuje štatistiku svojich hier. Priemerne z každých 50 hier 34 vyhrá. Určte pravdepodobnosť, že z nasledujúcich ôsmich hier vyhrá práve tri.
 - (A) $\left(\frac{34}{50}\right)^3 \left(\frac{16}{50}\right)^5 \left(\frac{8}{3}\right)^5$
 - **(B)** $\left(\frac{34}{50}\right)^3 \left(\frac{16}{50}\right)^5$
 - (C) $\left(\frac{34}{50}\right)^5 \left(\frac{16}{50}\right)^3 \frac{8!}{5!}$
 - **(D)** $\left(\frac{34}{50}\right)^3 \left(\frac{16}{50}\right)^5 \frac{8!}{3!}$
 - **(E)** $\left(\frac{34}{50}\right)^5 \left(\frac{16}{50}\right)^3 \binom{8}{5}$
- Daná je postupnosť $\left\{\frac{3n+8}{n+2}\right\}_{n=1}^{\infty}$. Pre danú postupnosť platí:
 - (A) Je rastúca a ohraničená.
 - (B) Je rastúca a ohraničená zdola.
 - (C) Je klesajúca a ohraničená.
 - (D) Je rastúca a ohraničená zhora.
 - (E) Je klesajúca a neohraničená.

Funkcie f a g sa rovnajú, ak majú rovnaký definičný obor D a pre všetky x patriace D26 platí f(x) = g(x). Rozhodnite, ktoré z nasledujúcich dvojíc funkcií sa rovnajú.

(1)
$$f_1: y = 1$$

$$f_2: y = \frac{x}{x}$$

(2)
$$f_3: y = x^2$$
 $f_4: y = \sqrt{x^4}$

$$f_A: y = \sqrt{x^4}$$

(3)
$$f_5: y = \frac{1}{x}$$
 $f_6: y = \frac{x}{x^2}$

$$f_6: y = \frac{x}{x^2}$$

- (A) žiadna
- **(B)** (1), (2) a (3)
- **(C)** (1) a (2)
- **(D)** (1) a (3)
- **(E)** (2) a (3)

Daná je množina $M = \{(x, y) \in R \times R; x - 2y \le 4 \land 2x - y - 5 \ge 0\}$. Jej grafické 27 znázornenie je:

(A)

(B)

(C)

(D)

(E)

- 28 Dané sú množiny celých kladných čísel A, B a C.
 - A = {čísla deliteľné 5},
 - B = {čísla menšie ako 200},
 - C = {čísla dávajúce zvyšok 3 po delení 7}.
 - Koľko prvkov má množina $(A \cap B) C$?
 - **(A)** 33
- **(B)** 34
- **(C)** 35
- **(D)** 36
- **(E)** 37
- Daný je kváder so štvorcovou podstavou, v ktorom |AB| = 2 cm a |AE| = 9 cm. Bod K je stred hrany BC. Vypočítajte tangens uhla α , ktorý zviera rovina AKH s rovinou podstavy ABC.

- **(A)** $tg \ \alpha = \frac{27\sqrt{5}}{5}$
- **(B)** $tg \ \alpha = \frac{4\sqrt{5}}{45}$
- (C) $tg \ \alpha = \frac{27\sqrt{5}}{10}$
- **(D)** $tg \ \alpha = \frac{10\sqrt{5}}{135}$
- **(E)** $tg \ \alpha = \frac{9\sqrt{5}}{4}$
- Pre ktoré hodnoty reálneho čísla t je funkcia $y = 2 \left[x(x+2) 3 \right] + t$ vždy kladná?
 - **(A)** ⟨8; ∞)
 - (B) $\left(-\infty; 8\right)$
 - (C) $\langle -8; \infty \rangle$
 - **(D)** (8; ∞)
 - (E) $\left(-\infty; 8\right)$

PREHĽAD VZŤAHOV

Mocniny:

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad \left(a^{x}\right)^{y} = a^{x} \cdot y \qquad \left(a \cdot b\right)^{x} = a^{x} \cdot b^{x} \qquad \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}} \qquad a^{-x} = \frac{1}{a^{x}} \qquad a^{\frac{x}{y}} = \sqrt[y]{a^{x}}$$

Goniometrické funkcie:

$$\sin^2 x + \cos^2 x = 1 tg x = \frac{\sin x}{\cos x}$$

$$\sin 2x = 2 \cdot \sin x \cos x \qquad \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	0°	30°	45°	60°	90°
sin x	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Trigonometria: Sínusová veta:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$$
 Kosínusová veta: $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$

Logaritmus:
$$\log_z (x \cdot y) = \log_z x + \log_z y$$
 $\log_z \frac{x}{y} = \log_z x - \log_z y$

$$\log_z x^k = k \cdot \log_z x \qquad \qquad \log_y x = \frac{\log_z x}{\log_z y}$$

Aritmetická postupnosť:
$$a_n = a_1 + (n-1) \cdot d$$
 $s_n = \frac{n}{2} (a_1 + a_n)$

Geometrická postupnosť:
$$a_n = a_1 \cdot q^{n-1}$$
 $s_n = a_1 \frac{q^n - 1}{q - 1}, \ q \ne 1$

Kombinatorika:
$$P(n) = n!$$
 $V(k,n) = \frac{n!}{(n-k)!}$ $C(k,n) = \binom{n}{k} = \frac{n!}{(n-k)! \ k!}$

$$P'(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$
 $V'(k, n) = n^k$ $C'(k, n) = \binom{n+k-1}{k}$

Analytická Parametrické vyjadrenie priamky: $X = A + t\vec{u}$, $t \in R$ geometria:

Všeobecná rovnica priamky: ax + by + c = 0; $[a; b] \neq [0; 0]$

Uhol vektorov:
$$\cos \varphi = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Vzdialenosť bodu $M[m_1; m_2]$ od priamky $p: ax + by + c = 0: |Mp| = \frac{|am_1 + bm_2 + c|}{\sqrt{a^2 + b^2}}$

Stredový tvar rovnice kružnice: $(x-m)^2 + (y-n)^2 = r^2$

Objemy a povrchy telies:

	kváder	valec	ihlan	kužeľ	guľa
objem	abc	$\pi r^2 v$	$\frac{1}{3}S_{\rho}V$	$\frac{1}{3}\pi r^2 v$	$\frac{4}{3}\pi r^3$
povrch	2(ab+ac+bc)	$2\pi r^2 + 2\pi r v$	$S_p + S_{pl}$	$\pi r^2 + \pi rs$	$4\pi r^2$

Pokyny na vyplňovanie odpoveďového hárka

Odpoveďové hárky budú skenované, nesmú sa kopírovať, krčiť ani prehýbať. Dodržte nasledujúce pokyny, aby skener vedel prečítať vaše odpovede.

- Píšte perom s čiernou alebo modrou náplňou. Nepoužívajte tradičné plniace perá, veľmi tenko píšuce perá, obyčajné ceruzky ani pentelky.
- Výsledok úlohy s krátkou odpoveďou vyjadrite pomocou celého čísla alebo desatinného čísla. Ak je výsledok celé číslo alebo desatinné číslo s najviac dvoma desatinnými miestami, zapíšte ho presný. Ak je výsledok desatinné číslo s viac ako dvoma desatinnými miestami, zapíšte ho zaokrúhlený na dve desatinné miesta.
- Jednotlivé číslice výsledku zapíšte do príslušných políčok. Do políčka napíšte najviac jednu číslicu alebo znamienko "–" (mínus).
- Pri zápise rešpektujte predtlačenú polohu desatinnej čiarky. Znamienko "–" (mínus) napíšte do samostatného políčka pred prvú číslicu.
- Ak je váš výsledok celé číslo, nevypĺňajte políčka za desatinnou čiarkou.
- Označenie jednotiek (stupne, metre, minúty,...) nezapisujte.

Napríklad:

výsledok 4 633 zapíšte:
výsledok 81,424 61 m zapíšte:
výsledok (pomer) 1:8 = 0,125 zapíšte:
výsledok (zlomok) $\frac{5}{3}$ = 1, $\overline{6}$ zapíšte:

•	V prípade chybného zápisu výsledku
	nepožadujte nový odpoveďový hárok.
	Políčko s chybným údajom úplne zaplňte
	a správny údaj napíšte pred alebo za
	zaplnené políčko.

•	Správne zapísaný výsledok – 3,1:
•	Nesprávne zapísaný výsledok – 3,1:
•	Oprava predchádzajúceho zápisu:
	1

- Odpoveď na úlohu s výberom odpovede zaznačte krížikom X do príslušného políčka.
- Správne zaznačenie odpovede (C):

Α	В	С	D	Ε
		\times		

• Nesprávne zaznačenie odpovede (C):

Α	В	С	D	Е
\boxtimes		X		
Α	В	С	D	Ε
		\square		

 Keď sa pomýlite alebo neskôr zmeníte názor, úplne zaplňte políčko s nesprávnym krížikom a urobte nový krížik:

Α	В	С	D	Ε
X				

 Ak náhodou znovu zmeníte názor a chcete zaznačiť pôvodnú odpoveď, urobte krížiky do všetkých políčok a zaplnené políčko dajte do krúžku:

Α	В	C	D	Ε
X	X		X	X