Week 7 SVM

SVM – Basic Concepts

training set:

N input vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

N target value: t_1, t_2, \ldots, t_N and $t_n \in \{-1, 1\}, n = 1, 2, \ldots N$

Define $y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$

Now we assume data is linearly separable, then we got:

- $y(\mathbf{x}_n) > 0$ for $t_n = +1$
- $y(\mathbf{x}_n) < 0$ for $t_n = -1$

Notice: $t_n y(\mathbf{x}_n) > 0$ holds for all training data points.

- SVM - Basic Concepts

margin:

Margin is the smallest distance between decision boundary and any of the samples and our object is to maximise this margin.

 $y(\mathbf{x}_A) = y(\mathbf{x}_B) = 0$ (because they are both in the decision boundary)

so we got: $\mathbf{w}^T(\mathbf{x}_A - \mathbf{x}_B) = 0$

The vector \mathbf{w} is orthgonal to every vetor within decision surface.

Assuming $\phi(\mathbf{x}) = \mathbf{x}$, so $y(x) = \mathbf{w}^T \mathbf{x} + w_0$

For points in the boundary:

$$y(\mathbf{x}) = 0$$

$$\mathbf{w}^T\mathbf{x} + w_0 = 0$$

$$\frac{\mathbf{w}^T\mathbf{x}}{||\mathbf{w}||} = -\frac{w_0}{||\mathbf{w}||}$$

For arbitrary \mathbf{x}

 $\frac{\mathbf{w}}{||\mathbf{w}||}$ provides the unit vector, so how to calculate r (the distance from the decision boundary whose normal vector is \mathbf{w} ?

substract $\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{||\mathbf{w}||}$ into $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$

$$f(x) = \mathbf{w}^T\mathbf{x} + w_0 = (\mathbf{w}^T\mathbf{x}_\perp + w_0) + r rac{\mathbf{w}^T\mathbf{w}}{||\mathbf{w}||}$$

$$\therefore y(\mathbf{x}_{\perp}) = \mathbf{w}^T x_{\perp} + w_0 = 0$$

$$\therefore y(\mathbf{x}) = r rac{\mathbf{w} \mathbf{w}^T}{||\mathbf{w}||}$$

$$\therefore r = rac{y(\mathbf{x})}{||\mathbf{w}||}$$

Notice: ${f w}$ determines the orientation of the decision surface w_0 dertermines the location of the decision surface

Now, we would like to make this distance $r = \frac{y(\mathbf{x})}{||\mathbf{w}||}$ as large as possible.

In addition, we want to ensure each point is on the correct side of the boundary. For all points correctly classified:

$$t_n y(\mathbf{x}_n) > 0$$

The distance of a point x_n to the decision surface is defined by:

$$\frac{t_n y(\mathbf{x}_n)}{||\mathbf{w}||} = \frac{t_n (\mathbf{w}^T \phi(\mathbf{x}_n) + w_0)}{||\mathbf{w}||}$$

So, maximise margin is found by:

$$\operatorname*{argmax}_{\mathbf{w},w_0}\{\tfrac{1}{||\mathbf{w}||}\min_n[\mathbf{t}_n(\mathbf{w}^T\phi(\mathbf{x}_n)+w_0)]\}$$

We notice that,

if ${f w} o k{f w},w_0 o kw_0$, $rac{{f t}_ny({f x}_n)}{||{f w}||}$ is unchanged. Since the k factor cancels out when we divide by $||{f w}||$

So now we can choose a factor k such that $\mathbf{t}_n(\mathbf{w}^T\phi(\mathbf{x}_n)+w_0)=1$ for support vectors, then all data points will satisfy:

$$\mathbf{t}_n(\mathbf{w}^T\phi(\mathbf{x}_n) + w_0) \ge 1, n = 1, \dots, N$$

The problem now is:

maximise $\frac{1}{||\mathbf{w}||}$, and this is equivalent to minimise $||\mathbf{w}||^2$

SO,

$$rgmax_{\mathbf{w},w_0} \{rac{1}{||\mathbf{w}||} \min_n [\mathbf{t}_n(\mathbf{w}^T \phi(\mathbf{x}_n) + w_0)]\} \Rightarrow rgmin_n rac{1}{2} ||\mathbf{w}||^2$$

s.t. $\mathbf{t}_n(\mathbf{w}^T\phi(\mathbf{x}_n)+w_0)\geq 1$

In order to solve this, we use Lagrange multipliers: $a_n \geq 0$

$$\mathcal{L}(\mathbf{w}, w_0, a) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} a_n \{ t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + w_0) - 1 \}$$

Why "-" sign? \Rightarrow Because we want to minimise with respect to ${\bf w}$ and b, and maximise with respect to a .

Then we compute the partial derivative with respect to \mathbf{w} and b respectively and set them to 0:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial \mathbf{w}} &= 0 & rac{\partial \mathcal{L}}{\partial w_0} &= 0 \ \mathbf{w} &= \sum_{m=1}^N a_n t_n \phi(\mathbf{x}_n) & \sum_{m=1}^N a_n t_n &= 0 \end{aligned}$$

$$ilde{\mathcal{L}}(a) = \sum_{n=1}^{N} a_n - rac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

s.t.
$$a_n \geq 0, \sum_{n=1}^N a_n t_n = 0$$

Then we eliminate **w** and *b* from $\mathcal{L}(\mathbf{w}, w_0, a)$:

SVM – Soft margin

In the previous section, we assume the data is linearly separable, what if the data is not linearly separable?

 \Rightarrow we can use kernel trick

But what if the data is still not linearly separable after using kernel trick?

 \Rightarrow We introduce slack variables $\xi_n \geq 0$.

 $\begin{cases} \xi_n = 0 \text{ if the point is on or inside the correct margin boundary} \\ \xi_n = |t_n - y(\mathbf{x}_n)| \text{ othereise} \end{cases}$

- SVM - Soft margin

e.g.

If $0<\xi_n\leq 1$, the point lies inside the margin, but on the correct side of the decision boundary.

If $\xi_n > 1$, the point lies on the wrong side of the decision boundary.

We now replace the hard constraints that $t_n y(\mathbf{x}_n) \geq 0$ with the **soft margin constraints** that $t_n y(\mathbf{x}_n) \geq 1 - \xi_n$

The new objective becomes:

$$\min_{\mathbf{w},w_0,\xi} rac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^N \xi_n$$

s.t. $\xi_n \geq 0$ and $t_n(\mathbf{x}_n^T\mathbf{w} + w_0) \geq 1 - \xi_n$

C is a regularisation parameter to control the number of erros we can tolerate.

< we usually define $C=\frac{1}{\nu N}$, ν is used to contro the fraction of misclassified points, and $0<\nu\leq 1$. This is called ν -SVM. >

Probabilistic output

Notice, the ouput of SVM is a hard-labeling (sign($y(\mathbf{x})$), unlike logistic regression, which produces probabilistic output. So how can we convert the hard-labeling into probabilistic output?

$$\Rightarrow p(t=1|\mathbf{x},\theta) = \sigma(ay(\mathbf{x})+b)$$

where a, b can be estimated by maximum likelihood on a separate validation set.

Multi-class classification

- \Rightarrow One-versus-all (OVA)
- ⇒ One-versus-one (OVO)

SVM – example

Given a training set consisting of four points ([1,2],+1),([3,4],+1),([2,1],-1) and ([4,3],-1), find the corrdinates of $\mathbf{w}=[u,v]$ and b that minimise $||\mathbf{w}||$ subject to:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$$
 for all $i = 1, \dots, 4$

Given a training set consisting of four points ([1,2],+1),([3,4],+1),([2,1],-1) and ([4,3],-1), find the corrdinates of $\mathbf{w}=[u,v]$ and b that minimise $||\mathbf{w}||$ subject to:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$$
 for all $i = 1, \dots, 4$

x1	x2	у
1	2	+1
3	4	+1
2	1	-1
4	3	-1

$$y(x) = \mathbf{w}^T \mathbf{x} + b$$

we find y(x)=0 intersects (0,0), so $x_1=x_2$

$$y(x) = w_1 x_1 + w_2 x_2 + b$$

$$cx_1 - cx_2 = 0$$

 $cx_1 = cx_2$

$$\left[\left. c - c
ight]^T \left[egin{matrix} x_1 \ x_2 \end{matrix}
ight] + 0 = 0$$

$$\therefore \mathbf{w} = \begin{bmatrix} c \\ -c \end{bmatrix}, b = 0$$

substract \mathbf{w} and \emph{b} into the equation with four points:

$$\begin{cases} c-2c \ge 1\\ 3c-4c \ge 1\\ 2x-c \le -1\\ 4c-3c \le -1 \end{cases} \Rightarrow c \le -1$$

$$\min_{\mathbf{w}} ||\mathbf{w}|| = \min_{c} |c|$$

and this is subject to $c \leq -1$

$$\therefore c = -1$$
, $\mathbf{w} = egin{bmatrix} -1 \ 1 \end{bmatrix}$ and $b = 0$