THE DOZENAL SOCIETY OF AMERICA http://www.dozenal.org

I can promise the ones who wish to stretch their minds a bit further that they will not go unrewarded... Modern mathematicians generally admit that 'the duodecimal system' would be better than our present decimal system... [Dozenal] promises to be mathematics' next great step forward—the adoption of an efficient number system.

F. EMERSON ANDREWS



# DECEMBER 1188

| SATURDAY  |                                                                                              | $\infty$ | 13  | 21 | 25 |
|-----------|----------------------------------------------------------------------------------------------|----------|-----|----|----|
| FRIDAY    |                                                                                              | 7        | 12  | 19 | 24 |
| THURSDAY  | JANUARY  1 2 3 4 5 6 7 8 9 7 8 10 11 12 13 14 15 16 17 18 19 17 18 20 21 22 23 24 25 26 27   | 9        | 111 | 18 | 23 |
| Wednesday | 1                                                                                            | 70       | 10  | 17 | 22 |
| TUESDAY   | ER<br>2 3<br>9 6<br>1415<br>120<br>26                                                        | 4        | ω   | 16 | 21 |
| Monday    | NOVEMBER  1 2 3  4 5 6 7 8 9 6  E 10 11 12 13 14 15  16 17 18 19 16 12 20  21 22 23 24 25 26 | 8        | 2   | 15 | 20 |
| SUNDAY    |                                                                                              | 2        | 6   | 14 | 18 |



ENOUGH FACTORS....[N]o change should be forced, and we urge no mandated change...But people of understanding should learn to use duodecimals to facilitate their thinking, their computations and their measurings... In any operation, the most advantageous sively earn their way into general base should be used...If this were Literally, the decimal base is undone, duodecimals would progressatisfactory because it has not popularity.

RALPH BEARD

## JANUARY 1189

| SATURDAY  | $\mathcal{D}$                                                     | 10        | 17 | 22 | UARY 1 2 7 8 9 12 13 14 12 13 14 12 12 15 15                                                                                                                                                                                                                                |
|-----------|-------------------------------------------------------------------|-----------|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRIDAY    | 4                                                                 | ω         | 16 | 21 | A       FEBRUARY         1       2         3       4       5       6       7       8       9         6       8       10       11       12       13       14         15       16       17       18       19       15       16         20       21       22       23       24 |
| THURSDAY  | co                                                                | 2         | 15 | 20 | 27                                                                                                                                                                                                                                                                          |
| Wednesday | 2                                                                 | 6         | 14 | 31 | 26                                                                                                                                                                                                                                                                          |
| TUESDAY   |                                                                   | ∞         | 13 | 21 | 25                                                                                                                                                                                                                                                                          |
| Monday    | ECEMBER.  1 4 5 6 7 8 E 10 11 12 13 16 17 18 19 17 21 22 23 24 25 | <b>!-</b> | 12 | 19 | 24                                                                                                                                                                                                                                                                          |
| SUNDAY    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$             | 9         | 11 | 18 | 23                                                                                                                                                                                                                                                                          |



The offspring of the dozen serve us well. Five of the six possible figures are convex polygons and four of these are essential to engineering and mathematics...Need we search any further for a rational, serviceable number-base? Can there possibly be a better?

TROY, DSGB

# FEBRUARY 1189

| SATURDAY  | 2                                                                                                                                                                                                                                                                     | 6         | 14  | 18 | MARCH 1 2 5 6 7 8 9 10 11121314 17 18191618 22 23 24 25 26 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|----|------------------------------------------------------------|
| FRIDAY    | 1                                                                                                                                                                                                                                                                     | 8         | 13  | 21 |                                                            |
| THURSDAY  |                                                                                                                                                                                                                                                                       | <b>[-</b> | 12  | 19 | 24                                                         |
| WEDNESDAY | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                 | 9         | 111 | 18 | 23                                                         |
| TUESDAY   |                                                                                                                                                                                                                                                                       | rĊ        | 10  | 17 | 22                                                         |
| Monday    | JANUARY       1     2     3     4     5       6     7     8     9     6     10       11     12     13     14     15     16     17       11     12     13     14     15     16     17       18     19     17     12     22     22       23     24     25     26     27 | 4         | ω   | 16 | 21                                                         |
| SUNDAY    |                                                                                                                                                                                                                                                                       | co        | 2   | 15 | 20                                                         |



[T]welve is a highly divisible yet compact number; it has more divisors than ten. This facilitates learning and using arithmetic, and simplifies the natural fractions.

### MICHAEL DEVLIEGER

## **MARCH** 1189

| SATURDAY  | 2                                                                                                           | 6  | 14 | 18  | 26 |
|-----------|-------------------------------------------------------------------------------------------------------------|----|----|-----|----|
| FRIDAY    | 1                                                                                                           | ∞  | 13 | 21  | 25 |
| THURSDAY  |                                                                                                             | 1- | 12 | 19  | 24 |
| Wednesday | APRIL 7 8 9 6 10 11 12 13 14 15 16 17 18 12 13 14 15 16 17 18 19 17 18 20 21 22 23 24 25 26                 | 9  | 11 | 18  | 23 |
| TUESDAY   |                                                                                                             | ro | 10 | 17  | 22 |
| Monday    | FEBRUARY         1 2         3 4 5 6 7 8 9         6 2 1011121314         15161718191718         2021222324 | 4  | ω  | 16  | 21 |
| SUNDAY    |                                                                                                             | es | 2  | TC. | 20 |



One dozen is the initial abundant number... The dozen is hypercomposite... The dozen represents the first number which is neither a Converse Lagrange Theorem group (CLT) nor supersolvable... One dozen is the first natural number having a perfect number of divisors (six).

PROF. JAY SCHIFFMAN

## **APRIL** 1189

| DAY       | 9                                                     | 11       | 18 | 23 |                                                                                           |
|-----------|-------------------------------------------------------|----------|----|----|-------------------------------------------------------------------------------------------|
| SATURDAY  |                                                       |          |    |    | 3 4<br>6 8<br>15 16<br>20 21<br>27                                                        |
| FRIDAY    | rO                                                    | 10       | 17 | 22 | MAY  1 2 3 4  5 6 7 8 9 6 8  1011 12 13 14 15 16  17 18 19 17 18 20 21  22 23 24 25 26 27 |
| THURSDAY  | 4                                                     | ω        | 16 | 21 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                    |
| Wednesday | 8                                                     | 2        | 15 | 20 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                    |
| TUESDAY   | 2                                                     | 6        | 14 | 18 | 26                                                                                        |
| Monday    |                                                       | $\infty$ | 13 | 21 | 25                                                                                        |
| SUNDAY    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |          | 12 | 19 | 24                                                                                        |

| (3)       | 3   | (3) | 3   | 3         | 3   | (3)      | (3) | (3) | 3   | (3)(        |    |
|-----------|-----|-----|-----|-----------|-----|----------|-----|-----|-----|-------------|----|
| wi        | 1,0 | 29  | 200 | 4         | 56  | 65       | 7   | 8   | 61  | ₹ (§        | 3) |
| ≫         | 18  | 26  | 毒   | <u>C)</u> | (3) | 贫        | 38  | 18  | 荔   | 8k (§       | 3) |
| 6.        | 16  | 8   | 8   | 8         | *   | (3)      | (8) | 8   | 8   | <b>₩</b> (8 | 3) |
| 00        | 2   | (2) | 23  | 毒         | (8) | 容        | Ž,  | (8) | 38  | P. (5       | 3) |
| <u>t~</u> | 23  | 6   | 杏   | 썱         | 18  | Ŧ        | \$  | 33  | 35  | 3 (         | 3) |
| 0         | (2) | 29  | (8) | 36        | (3) | 100      | (3) | 9   | (B) | 3 (3        | 3) |
| w         | ×   | 60  | 90  | 22        | 26  | 64<br>64 | 34  | 33  | 5   | ÷ (3        | 5  |
| - 10      | 00  | (2) | 4   | 18        | (R) | Š.       | 120 | (名) | 燕   | 23 (3       | 3  |
| nt).      | 9   | Φ.  | (2) | rr)       | 16  | 19       | (2) | 8   | 26  | 8 (3        | 3  |
| -C-)      |     | 9   | 00  | $\approx$ | (3) | e)       | 4   | 16  | 18  | ¥ (8        | 3  |
| -         | c)  | nh. | 中   | W)        | 90  | t~       | 00  | o.  | ×   | VI (S       | 3) |

Because twelve has six divisors,

with the smallest four consecu-tive, it presents a multiplication table featuring brief patterns in the product lines of many num-bers...[U]sers of duodecimal enjoy two other divisor product lines in the multiplication table. MICHAEL DEVLIEGER

## Base 12 (Duodecimal)

#### MAY 1189

| SATURDAY  | 4                                                                                        | 3  | 16 | 21 | $     \begin{array}{c cccccccccccccccccccccccccccccccc$ |
|-----------|------------------------------------------------------------------------------------------|----|----|----|---------------------------------------------------------|
| FRIDAY    | 8                                                                                        | 2  | 15 | 20 | 27                                                      |
| THURSDAY  | 2                                                                                        | 6  | 14 | 31 | 26                                                      |
| WEDNESDAY | 1                                                                                        | ∞  | 13 | 21 | 25                                                      |
| TUESDAY   | JUNE  2 3 4 5 6 7 8  9 6 8 10 1112 13  14 15 16 17 18 19 17  18 20 21 22 23 24 25        |    | 12 | 19 | 24                                                      |
| Monday    |                                                                                          | 9  | 11 | 18 | 23                                                      |
| SUNDAY    | APRIL 7 8 9 6 10 11 12 13 14 15 16 17 12 13 14 15 16 17 18 19 17 18 20 21 22 23 24 25 26 | ιΩ | 10 | 17 | 22                                                      |



There are twelve equal notes in an octave... [They are] logarithms to base two. Expressed in dozenal numeration they form a unique system for handling ratios, with simplicities not found in any other system. The music keyboard was caused to have twelve semitones to the octave by this.

TOM PENDLEBURY

### JUNE 1189

| SATURDAY  | 1                                                                                  | $\infty$ | 13 | 21 | 25 |
|-----------|------------------------------------------------------------------------------------|----------|----|----|----|
| FRIDAY    |                                                                                    | 7        | 12 | 19 | 24 |
| THURSDAY  | JULY 7 8 9 6 10 11 12 13 14 15 16 17 18 19 17 18 20 21 22 23 24 25 26 27           | 9        | 11 | 18 | 23 |
| WEDNESDAY | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                             | υ        | 10 | 17 | 22 |
| TUESDAY   | 3 4<br>5 8<br>15 16<br>20 21<br>27                                                 | 4        | ω  | 16 | 21 |
| Monday    | MAY  1 2 3 4  1 2 3 4  5 6 7 8 9 6 8  10111213141516  17181917182021  222324252627 | <u>හ</u> | 2  | 15 | 20 |
| SUNDAY    |                                                                                    | 2        | 6  | 14 | 16 |



[Five] is not a multiple of two or three, so [it] does not normally crop up in calculations unless deliberately or unwittingly put there by us... Every third number in counting is a multiple of three, yet this vast category skips every power of ten! All over the world every day by rounding off to hundreds, thousands, etc[.] people are rejecting multiples of three for multiples of three curring decimals or a rash of fives, and simple ratios become \$31/3%[.] 121/2%, etc. Unnecessarily awkward expressions all caused by counting in tens.

#### TOM PENDLEBURY

### JULY 1189

|           | 9                                                                         | 11 | 18 | 23 |                                                                                                   |
|-----------|---------------------------------------------------------------------------|----|----|----|---------------------------------------------------------------------------------------------------|
| SATURDAY  |                                                                           |    |    |    | AUGUST 1 2 3 4 5 6 7 8 9 6 6 10 11 12 13 14 15 16 17 18 19 17 18 19 17 18 20 21 22 23 24 25 26 27 |
| FRIDAY    | $\sigma$                                                                  | 10 | 17 | 22 |                                                                                                   |
| THURSDAY  | 4                                                                         | 3  | 16 | 21 | $     \begin{array}{c cccccccccccccccccccccccccccccccc$                                           |
| Wednesday | ಣ                                                                         | 2  | 15 | 20 | 27                                                                                                |
| TUESDAY   | 2                                                                         | 6  | 14 | 18 | 26                                                                                                |
| Monday    |                                                                           | 8  | 13 | 21 | 25                                                                                                |
| SUNDAY    | JUNE  2 3 4 5 6 7 8  9 7 8 10111213  14151617181917  18 20 21 22 23 24 25 | 2  | 12 | 19 | 24                                                                                                |



by combining others, so we need only one of each size. [But] [t]here is more. It will not have gone unobserved that [0;]3[], [0;]6[] and [1]] can be made from combinations of lower values; in fact, if we needed to go only as far as a dozen[], the 1[] weight would be superfluous. Including the 1[], therefore, allows further weighing up to and including 2...without the need for a 2[] piece. If the 2[] is included, the range extends to 4[] inclusive...while the binary misses by 1/2...The decimal Just as with pure binary, all in-termediate weights can be achieved set...involves nine weights rather than seven...

TROY, DSGB

## AUGUST 1189

| RDAY      | က                                                                                                     | 2             | 15       | 20 | 27 |
|-----------|-------------------------------------------------------------------------------------------------------|---------------|----------|----|----|
| SATURDAY  |                                                                                                       |               |          |    |    |
| FRIDAY    | 2                                                                                                     | 6             | 14       | 18 | 26 |
| THURSDAY  | 1                                                                                                     | $\infty$      | 13       | 21 | 25 |
| Wednesday | ER<br>6 7<br>11112<br>1819<br>2324                                                                    | 2             | 12       | 19 | 24 |
| TUESDAY   | SEPTEMBER  1 2 3 4 5 6 7  8 9 6 8 10 11112  13 14 15 16 17 18 19  16 18 20 21 22 23 24  25 26         | 9             | 11       | 18 | 23 |
| Monday    | JULY<br>7 8 9 6 1011<br>12 13 14 15 16<br>12 13 14 15 16 17 18<br>19 17 18 20 21 22 23<br>24 25 26 27 | $\mathcal{D}$ | 10       | 17 | 22 |
| SUNDAY    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                | 4             | $\omega$ | 16 | 21 |



and  $\mathcal{E}$ , I shows the set to be of the form:  $(6n \pm 1) \dots$  The fact [is] that prime-number positions are completely controlled by 6 (itself the product of 2 and 3, and the comterminating with 1, 5, 7 or 8 must bers divisible by 3. It follows that this is the minimum set to contain ranging the terminal digits as 5, 7 Hence, the set of natural numbers contain all prime numbers greater than 3, and excludes all odd numall primes greater than 3. Rearpanion of our dozenal base).

#### Don Hammond

# SEPTEMBER 1189

| SATURDAY  |    | 12 | 19 | 24 |                                                                                    |
|-----------|----|----|----|----|------------------------------------------------------------------------------------|
| FRIDAY    | 9  | 11 | 18 | 23 | OCTOBER  1 2 3 4 5 6 7 8 9 6 8 10 111213 1415 1617 181917 1820 2122 23 24 25 26 27 |
| THURSDAY  | ro | 10 | 17 | 22 |                                                                                    |
| Wednesday | 4  | w  | 16 | 21 | AUGUST 1 2 3 4 5 6 7 8 9 6 6 101112131415 16171819171820 21222324252627            |
| TUESDAY   | 8  | 2  | 15 | 20 |                                                                                    |
| Monday    | 2  | 6  | 14 | 18 | 26                                                                                 |
| SUNDAY    |    | ∞  | 13 | 21 | 25                                                                                 |



Packing in dozens shows an immediate advantage...[t]he cost per can (or other object) of cardboard increases by more than & per gross (over 7 per cent in decimal terms) by changing from dozens to decimal packing... The really decisive example is the two-layer form (allowed by the factorability of the dozen) in which the total enclosure area is less than the requirement for ten...[S]uch cans are so much more cheaply packed by the dozen than in tens that a twelve-pack with two empty spaces actually costs less than a ten-pack completely filled!

TROY, DSGB

## OCTOBER 1189

| SATURDAY  | $\mathcal{D}$                                                                                 | 10        | 17 | 22 | $\sqrt{4BER}$ 1       2         7       8       9         12       13       14         19       17       18         24       25       26 |
|-----------|-----------------------------------------------------------------------------------------------|-----------|----|----|------------------------------------------------------------------------------------------------------------------------------------------|
| FRIDAY    | 4                                                                                             | ω         | 16 | 21 | NOVEMBER  1 2 3 4 5 6 7 8 9 6 2 10 11121314 15 1617 18 1917 18 20 21 22 23 24 25 26                                                      |
| THURSDAY  | co                                                                                            | 2         | 15 | 20 | 27                                                                                                                                       |
| Wednesday | 2                                                                                             | 6         | 14 | 18 | 26                                                                                                                                       |
| TUESDAY   |                                                                                               | ∞         | 13 | 21 | 25                                                                                                                                       |
| Monday    | EMBER<br>4 5 6 7<br>E 10 11 12<br>16 17 18 19<br>21 22 23 24                                  | <b>[-</b> | 12 | 19 | 24                                                                                                                                       |
| SUNDAY    | SEPTEMBER  1 2 3 4 5 6 7  8 9 6 8 10 11 12  13 14 15 16 17 18 19  15 18 20 21 22 23 24  25 26 | 9         | 11 | 18 | 23                                                                                                                                       |



[We can] count[] on the segments (phalanges) of the fingers. If one uses the thumb as a pointer, one can easily count to twelve on one hand.

PROF. GENE ZIRKEL

# NOVEMBER 1189

| SATURDAY  | 7                                                                                          | 6        | 14 | 18 | 26 |
|-----------|--------------------------------------------------------------------------------------------|----------|----|----|----|
| FRIDAY    | 1                                                                                          | $\infty$ | 13 | 21 | 25 |
| THURSDAY  |                                                                                            | 1-       | 12 | 19 | 24 |
| WEDNESDAY | DECEMBER  1 2 3 4 5 6 7  8 9 6 8 101112  13141516171819  1718 2021222324  252627           | 9        | 11 | 18 | 23 |
| TUESDAY   |                                                                                            | rĊ       | 10 | 17 | 22 |
| Monday    | OCTOBER  1 2 3 4 5 6 7 8 9 6 8 10 11 12 13 14 15 16 17 18 19 17 12 20 21 22 23 24 25 26 27 | 4        | ω  | 16 | 21 |
| SUNDAY    |                                                                                            | n        | 2  | 15 | 20 |



DODECAHEDRON

SMALL STELLATED DODECAHEDRON



GREAT DODECAHEDRON

GREAT STELLATED DODECAHEDRON

IMAGES COPYRIGHT CC-BY, ROBERT WEBB; CREATED BY ROBERT WEBB'S STELLA SOFTWARE, HTTP: //www.software3d.com/Stella php

Of the nine regular polyhedra, fully four of them are built upon the number twelve: the dodecahedron, the small stellated dodecahedron, and the great stellated dodecahedron. Two more, the tetrahedron and the cube, are built upon the factors of twelve. Five only becomes important when it is paired with twelve in the dodecahedron; ten is never important. We must get to the icosahedron, at twenty, before ten plays into the question at all.

# DECEMBER 1189

| SATURDAY  | 7  | 12       | 19 | 24 | $\begin{array}{c} X \\ 3 \ 4 \\ \hline 6 \ 6 \\ \hline 1516 \\ \hline 2021 \\ \hline 27 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|----|----------|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRIDAY    | 9  | 11       | 18 | 23 | JANUARY         1       2       3       4         5       6       7       8       9       6       6         1011       1213       14       1516       16       1718       19       17       18       19       16       12       22       23       24       25       26       27       27       22       23       24       25       26       27       27       27       28       26       27       27       28       28       28       27       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28       28 |
| THURSDAY  | ಗು | 10       | 17 | 22 | NOVEMBER  1 2  3 4 5 6 7 8 9  5 2 1011121314  15161718191718  20 21 22 23 24 25 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WEDNESDAY | 4  | ω        | 16 | 21 | Nov<br>3 4 5<br>6 2 10<br>15 16 17<br>20 21 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TUESDAY   | e  | 2        | 15 | 20 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Monday    | 2  | 6        | 14 | 18 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SUNDAY    | 1  | $\infty$ | 13 | 21 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Let  $\sigma_0(n)$  and  $\sigma_1(n)$  denote the number and sum of the divisors of n, respectively (i.e., the zeroth- and first-order divisor functions). A number n is called sublime if  $\sigma_0(n)$  and  $\sigma_1(n)$  are both perfect numbers. The only two known sublime numbers are [decimal] 12 and [a decimal number with decimal 76 digits] It is not known if any odd sublime number exists.

WEISSTEIN, ERIC W. "SUBLIME NUMBER." FROM Math World—A Wolfram Web Resource. http://mathworld.wolfram.com/SublimeNumber.html.

## JANUARY 1187

| SATURDAY  | 4                                                                                               | ω         | 16 | 21 | FEBRUARY    1 |
|-----------|-------------------------------------------------------------------------------------------------|-----------|----|----|---------------|
| FRIDAY    | ಣ                                                                                               | 2         | 15 | 20 | 27            |
| THURSDAY  | 2                                                                                               | 6         | 14 | 31 | 26            |
| WEDNESDAY |                                                                                                 | $\infty$  | 13 | 21 | 25            |
| TUESDAY   | FEBRUARY  2 3 4 5 6 7 8 9 6 8 10 11 12 13 14 15 16 17 18 19 16 18 20 21 22 23 24                | <b>!-</b> | 12 | 19 | 24            |
| Monday    |                                                                                                 | 9         | 11 | 18 | 23            |
| SUNDAY    | DECEMBER  1 2 3 4 5 6 7  8 9 6 8 10 11 12  13 14 15 16 17 18 19  16 18 20 21 22 23 24  25 26 27 | N         | 10 | 17 | 22            |

## BASIC TGM (TIM, GRAFUT, MAZ)

GM is a system of measure named for its three primary units: the Tim (the unit of time), the Grafut (the unit of length), and the Maz (the unit of mass). The system is consistently dozenal and covers all fields of human endeavor. Designed to be easy and convenient both for the layman and for the scientist, TGM unites in itself the unique virtues of traditional systems, like the foot-pound system of the English-speaking world, and of SI and other French metric derivatives.

scientist, TGM unites in itself the unique virtues of traditional systems, like the foot-pound system of the English-speaking world, and of SI and other French metric derivatives.

Part of TGM's appeal is its concomitant way of writing very large and very small quantities. While modern systems utilize "scientific notation," this is typically lengthy and bulky, and cannot be read at a glance (e.g., 4.567×10<sup>15</sup>). TGM encourages users instead to simply prefix the power of the dozen, either superscripted if it is a positive power, or subscripted if a negative. So the above dozenized becomes <sup>12</sup>3;683; a very tiny quantity might be <sub>12</sub>3;683. This is at once more compact and more readable than the current practice.

Below, the basic units of the TGM system, along with many others of practical size, are displayed with their traditional and decimal metric counterparts. The full, detailed system can be obtained from the dozenal societies, or from many different places on the Internet.

| Γ                           | ENGTH,              | LENGTH, AREA, VOLUME | IME                  | TIME,                  | Moti               | TIME, MOTION, AND FREQUENCY | SQUENCY                |
|-----------------------------|---------------------|----------------------|----------------------|------------------------|--------------------|-----------------------------|------------------------|
| Grafut                      |                     | 0;E783 ft            | $0.3668 \mathrm{m}$  | Tim                    |                    |                             | 0;21 s                 |
| Gravinch $_1\mathrm{Gf}$    | $_1\mathrm{Gf}$     | 0;8783 in            | $2.5695 \mathrm{cm}$ | Tick                   | $T_{\rm m}$        |                             | 0;21 s                 |
| Gravyard 3 Gf               | 3 Gf                | 0;8783 yd            | ${ m m}~6822;0$      | Unctic                 | $^{1}\mathrm{Tm}$  |                             | 2;1 s                  |
| Gravmile 3 <sup>3</sup> Gf  | $3^{3}$ Gf          | 0;8512  mi           | 1;6488  km           | Bictic                 | $^2\mathrm{Tm}$    |                             | 21 s                   |
| Gravklick 2 <sup>3</sup> Gf | $2^{3}$ Gf          | 0;7752  mi           |                      | $\operatorname{Block}$ | $^3\mathrm{Tm}$    | 5 min                       | 210 s                  |
| Surf                        |                     | $0.8362~{\rm ft}^2$  | $0;1070 \text{ m}^2$ | Hour                   | $^4\mathrm{Tm}$    | 1 hr                        | 50 min                 |
|                             | $^4\mathrm{Sf}$     | 0.5461  acres        | 0;2213  ha           |                        | $^{3}\mathrm{Tm}$  |                             | 0;1257  ms             |
| Volm                        |                     | 69847  gal           | 21;2254 L            | Vlos                   |                    | 3.9874  mph                 | 6;1678  kph            |
| Pintvol                     | $3 \mathrm{~ ^2Vm}$ | 1;1779 pt            | $0.6567~\mathrm{L}$  | Sp. Lim.               | 15 VI              | 54;9248  mph                | 88;2946  kph           |
| Cupvol                      | $1;6~_2\mathrm{Vm}$ |                      | $0;3293 \; L$        | St. Grav.              | 1 Gee              | $28;2280 \text{ ft/s}^2$    | $9;9879 \text{ m/s}^2$ |
|                             | $_3\mathrm{Vm}$     | 1;0182  tbs          | 12;8624  mL          | Freq                   | $^{1/\mathrm{Tm}}$ |                             | $5;9153~\mathrm{Hz}$   |
| Sipvol                      | $4  { m 4Vm}$       | 1;0182  tsp          | 4;8209  mL           |                        | $5  { m _3Fq}$     |                             | $1~\mathrm{RPM}$       |

|                       | Mass,             | Mass, Force, and Density   | ENSITY                    | TEMP.,           | TEMP., ELEC., AND CHEMISTRY | IEMISTRY            |
|-----------------------|-------------------|----------------------------|---------------------------|------------------|-----------------------------|---------------------|
| Maz                   |                   | 48;8772 lb                 | 21;7254  kg               | Calg             | $0;0021$ $^{\circ}$ F       | $0;0012~\mathrm{K}$ |
|                       | $^2{ m Mz}$       | 4;1308  ton                | 3;8804 t                  | Decigree $^2$ Cg | g 0;21 °F                   | $0.1 \mathrm{ K}$   |
| Oumz                  | $2~{\rm ^3Mz}$    | 1;0788 oz                  | 25;8048 g                 | Tregree $^3$ C   | g 2;1 °F                    | 1;2497  K           |
| Poundz 3 2Mz          | $_{2}\mathrm{Mz}$ | 16;8864  oz                | $0.6567~\mathrm{kg}$      | Kur              | Current                     | 0.5847 A            |
| Denz                  |                   | $52;5146 \text{ lb/ft}^3$  | $683;8787 \text{ kg/m}^3$ |                  | $6~{ m 6Kr}$                | $0.8853 \mu$ A      |
| Mag                   |                   | 1087;2862  pdl             | 191;7151 N                | Pel              | Elec. Pot.                  | 607;3167  V         |
|                       |                   | 49;0154 lbf                | 21;5387  kgf              |                  | $_3$ PI                     | 0.6073  V           |
| Werg                  |                   | 47;3777 lbf·ft             | $62;8968N \cdot m$        |                  | $2  ^{2}$ Pl                | 10;1263  V          |
| $\operatorname{Prem}$ |                   | $0;5068 \text{ lbf/in}^2$  | 1818;6880  Pa             | Og               | Resistance                  | $1025;6860 \Omega$  |
| Atmoz                 | $28~\mathrm{Pm}$  | $12;8836 \text{ lbf/in}^2$ | 45900;4916 Pa             | Quel             | Elec. Quant.                | 0;1048 C            |
|                       |                   | 25;889 inHg                | 535;568 mmHg              |                  | $^{1}$ Q $^{1}$             | 1;0487 C            |
| Pov                   |                   | $0.6845~\mathrm{hp}$       | M 8022;332                | Molz             |                             | 21;7254  kmol       |

#### Systematic Dozenal Nomenclature At a Glance

CYSTEMATIC DOZENAL NOMENCLATURE (SDN) is a system of referring to numbers, similar to what we Sdo in decimal with words like "hundred," "thousand," "million," and so forth. When we count in twelves, we can't use these decimal terms; SDN provides a analogous, but superior, set of terms for dozenal. Using the internationally recognized and accepted number-word roots employed by the International Union of Pure and Applied Chemistry (IUPAC), and augmenting them with roots for "ten" and "eleven," SDN is a perfectly rational, coherent, and easy-to-learn system, requiring only twelve roots, two suffixes, and two particles.

|                              | ower       | ia.    | ia.   | я     | ia.    | cia     | cia     | ia           | ia      | ia     | ia     | ia     | ia     |
|------------------------------|------------|--------|-------|-------|--------|---------|---------|--------------|---------|--------|--------|--------|--------|
| es                           | Neg. P     | nilci  | uncia | bici  | trici  | quadcia | pent    | pexc         | septo   | octc   | enncia | qecc   | levcia |
| f SDN Prefix                 | Pos. Power | nilqua | undna | biqua | triqua | quadqua | pentqua | hexqua       | septqua | octdna | enndna | decqua | levqua |
| Complete Set of SDN Prefixes | Multiplier | nili   | iun   | bina  | trina  | quadra  | penta   | hexa         | septa   | octa   | ennea  | deca   | leva   |
| Col                          | Root       | liu    | un    | þi    | tri    | dnad    | pent    | $_{\rm hex}$ | sept    | oct    | enn    | qec    | lev    |
|                              | Value      | 0      | _     | 2     | က      | 4       | വ       | 9            | _       | ∞      | 6      | 2      | ω      |

The twelve roots are listed in the "Root" column; the multiplier forms are essentially the same as the roots with a vowel inserted, with only "quadra" varying even slightly beyond that. The suffixes are "-qua," for positive powers of the dozen, and "-cia," for negative powers of the dozen. The particles are "dit," for the so-called "decimal" point, separating the whole numbers from the fractional parts (usually written; but sometimes); and "per," which is used to create fractional words.

SDN leaves most of our daily language about numbers substantially unchanged. A quadruped is still a quadruped, a pentagon is still a pentagon, and so forth. These words, and many others, are perfectly regular and orthodox SDN. SDN also, however, greatly expands the reach our number words can have.

The multipliers simply multiply what they are attached to by the number they indicate; for example, a "tricycle" is a "cycle" (wheel) multiplied by three, and a "hexacycle" is a "cycle" multiplied by six. These roots can be combined, without their multiplier prefixes, to form number words they same way that we combine digits to form numbers. In other words, use these in order according to place notation, the same way that you use digits. For example, for a hypothetical insect with 357 legs:

Three Five Seven

Yielding "tripentseptaped." What we often call an "eighteen-wheeler" (dozenal 16) is a "dechexacycle" ("dec" + "hexa" + "cycle" = "1" + "6" + "wheeler"). Note that the multiplier forms mean multiplication, so only use it on the last part; "decahexacycle" would mean ten *times* six, or five dozen, rather than twelve plus six, or one dozen six.

The particles can be used the same way. Suppose you want a word for something that occurs twice a year; that is, every half year. One possibility is "nildithexennial," remembering that 0.6 ("zero dit six") is dozenal for one half. "Per" is used for fractions which don't fit well into uncials. E.g.,  $V_7$ , which in uncials is 0.186735 repeating, can be simply "unpersepta." In other words, the "dit" stands in for ";" and the "per" for "/"

Finally, the power prefixes indicate powers of the dozen. We are all familiar with terms like "bi-centennial," and some of us with more difficult terms like "sesquicentennial." These are decimal terms; but their dozenal analogues are easy. "100" is 10<sup>2</sup>; so we use the *power prefix* with the root for "two": "bi!" plus "qua". This gives us "biquennial." This can be combined with multiplier forms; for example, "quadrubiquennial" means "quad" times "biqua," for four biqua years. Similarly for the negative prefixes: a cell 0;00008 Grafut in diameter is 8 hexciaCrafut in diameter.

And this is SDN, a much more robust number nomenclature than our current one.