What Causes Industry Agglomeration? Evidence from Coagglomeration Patterns (AER, 2010)

By G. Ellison, E. L. Glaeser, and W. R. Kerr

Palermo Penano

April 12, 2017

Why do Firms Agglomerate?

Research Question

• Why do firms cluster near one another?

Research Question

- Why do firms cluster near one another?
 - Reduce shipping cost of inputs and finished goods (input-output linkage)
 - 2 Take advantage of gains from a larger labour pool
 - 3 Take advantage of gains from intellectual or technological spillovers
 - Natural advantages
- Marshall (1920)

Method

- Regression analysis to test the contribution of each of the three Marshallian theories of industrial agglomeration + natural advantages to industry coagglomeration
- Addresses reverse causality where coagglomeration patterns ⇒ industrial relationships

Main Results

- Individually, each Marshallian force are important for explaining variation in industrial coagglomeration
- Taken together, Marshallian forces explain more of the variation in coagglomeration than natural advantages

Measuring Extent of Industry Coagglomeration

Ellison-Glaeser Index (JPE, 1997)

$$\gamma_{ij}^{c} = \frac{\sum_{m=1}^{M} (s_{mi} - x_m)(s_{mj} - x_m)}{1 - \sum_{m=1}^{M} x_m^2}$$

- $s_{mi} = \text{share of industry i's employment}$
- \bullet $X_m =$ mean employment share in region m across all manufacturing industr
- Two industry version of index developed in Ellison and Glaeser, JPE 1997
- Derived from a model where local industry-specific spillovers, natural advantages, and random chance all contribute to geographic concentration
- Level: state, PMSA, county

Ellison-Glaeser Index

$$\gamma_{ij}^{c} = \frac{\sum_{m=1}^{M} (s_{mi} - x_m)(s_{mj} - x_m)}{1 - \sum_{m=1}^{M} x_m^2}$$

- + Comparable across industries
- + Accounts for region "size"
- + Localization vs industrial concentration
- - Establishments arbitrarily allocated to spatial units
 - distance between establishments not explicitly accounted for
 - different size spatial units
 - Agglomerated industries cut by an administrative border?
- Statistical significance (departure from agglomeration arising from randomness)

Duranton-Overman Index (ReStud, 2005)

$$\hat{K}_{ij}^{Emp}(d) = \frac{1}{h \sum_{r=1}^{n_i} \sum_{s=1}^{n_j} e(r)e(s)} \sum_{r=1}^{n_i} \sum_{s=1}^{n_j} e(r)e(s)f\left(\frac{d - d_{r,s}}{h}\right)$$

- e(r): employment in establishment r
- $d_{r,s}$: distance between establishments r and s
- h : bandwidth
- n_i : number of firms in industry i
- f(.): Gaussian kernel (bell curve)
- d: scale at which localization is measured
- Estimates the probability density function of the the distribution of bilateral distances between every establishment in industry i and every establishment in industry j

Duranton-Overman Index

$$\hat{K}_{ij}^{Emp}(d) = \frac{1}{h \sum_{r=1}^{n_i} \sum_{s=1}^{n_j} e(r)e(s)} \sum_{r=1}^{n_i} \sum_{s=1}^{n_j} e(r)e(s)f\left(\frac{d - d_{r,s}}{h}\right)$$

- Explicitly accounts for distance between establishment (missing in EG index)
- Index of localization:

$$\gamma_{ij}(d) \equiv max(\hat{K}^{Emp}_{ij}(d) - \bar{K}^{Emp}_{ij}(d), 0)$$

- $\bar{K}_{ij}^{Emp}(d)$ is the upper 5% confidence interval in randomly generated counterfactual distribution
- Estimate for each industry pair ij and each distance $d \in \{100mi, 250mi, 500mi, 1000mi\}$

Duranton-Overman Index

Data used to estimate indices

- US Census Bureau's Census of Manufacturing
- 300,000 establishments employing 17 million workers
- 3-digit level SIC3
- 7381 industry pairs per year (1987, 1997). 122 industries

Why do Firms Agglomerate?

$$\textit{Coagg}_{ij} = \alpha + \beta_{\textit{NA}} \textit{Coagg}_{ij}^{\textit{NA}} + \beta_{\textit{L}} \textit{LaborCorrelation}_{ij} + \beta_{\textit{IO}} \textit{InputOutput}_{ij} + \beta_{\textit{T}} \textit{Tech}_{ij} + \varepsilon_{ij}$$

A. Proximity to Customers: Goods

- Firms cluster to reduce shipping costs
- 1987 Input-Output account as measure of extent to which industries buy and sell from one another
- $Input_{i \rightarrow j} = 0.39$: Leather Tanning and Finishing input from Meat Products
- $Output_{i\rightarrow j} = 0.82$: Public building and Related Furniture sales to Motor Vehicles and Equipment
- Most values for an industry pair is zero
- $Input_{ij} = max\{Input_{i \rightarrow j}, Input_{i \leftarrow j}\},\ Output_{ij} = max\{Output_{i \rightarrow j}, Output_{i \leftarrow j}\}$
- InputOutput_{ij} = max{Input_{ij}, Output_{ij}}

B. Labour Market Pooling: People

- Larger labour pool

 risk sharing, worker-firm matches,
 higher investment in human capital by workers (lower ex post
 appropriation in clusters)
- Need measure of extent to which industries use same type of worker
- Share_{io}: share of industry i 's employment in occupation o
- $LabourCorrelation_{ij} = corr(Share_{io}, Share_{jo})$
- Most correlated: Motor vehicles and Motorcycles, Bicycles, and Parts (0.984)
- Least correlated: Logging and Aircraft and Parts (-0.046)

C. Intellectual or Tech. Spillovers: Ideas

- Firms cluster to speed the flow of ideas
- Scherer (1984)'s measure of extent to which R&D activity from one industry flow out to benefit another
- NBER Patent data: measure extent to which tech. in industry
 i cite tech. in industry j (normalized by total citations for the
 industries)
- Techij and Patentij (construction similar to InputOutputij)

D. Natural Advantages

- Firms cluster in a region because the region has resources useful for their production
- Forests, areas with exogenously cheap electricity, coastal regions, etc.
- Coagglomeration may exist if two industries are attracted to the same natural advantage
 - even if industries would not otherwise have interacted through Marshallian forces
 - e.g. ship building and oil refining
- ullet Controls for coagglomeration between i and j due to natural advantages
 - Coagg^{NA}
 - Ellison and Glaeser (AER PP, 1999)

D. Natural Advantages: Ellison-Glaeser (AER PP, 1999)

TABLE 1-EFFECT OF "NATURAL ADVANTAGES" ON STATE-INDUSTRY EMBLOYMENT

A. State variable × industry variable	Coefficier (t statistic
(a) Electricity price × electricity use	0.170 (17.62)
(b) Natural gas price × natural gas use	0.117 (6.91)
(c) Coal price × coal use	0.119 (4.55)
(d) Percentage farmland × agricultural inputs	0.026 (2.58)
(e) Per capita cattle × livestock inputs	0.053 (5.08)
(f) Percentage timberland × lumber inputs	0.152 (11.98)
(g) Average mfg wage × wages/value added	0.059 (4.11)
(h) Average mfg wage × exports/output	-0.014 (-1.28)
(i) Average mfg wage × import competition	0.036 (3.10)
(j) Percentage without HS degree × percentage unskilled	0.157 (7.38)
(k) Unionization percentage × percentage precision products	0.100 (12.17)
(l) Percentage with B.A. or more × percentage executive/professional	0.170 (12.70)
(m) Coast dummy × heavy exports	-0.031 (-2.20)
(n) Coast dummy × heavy imports	0.017 (0.92)
(o) Population density × percentage to consumers	0.043 (3.68)
(p) (Income share - mfg share) × percentage to consumers	0.025 (4.49)

Empirical Results

OLS

$$Coagg_{ij} = \alpha + \beta_{NA}Coagg_{ij}^{NA} + \beta_{L}LaborCorrelation_{ij} + \beta_{IO}InputOutput_{ij} + \beta_{T}Tech_{ij} + \varepsilon_{ij}$$

TABLE 3—OLS UNIVARIATE SPECIFICATIONS FOR PAIRWISE COAGGLOMERATION

	EG coagglomeration index, 1987				DO co	DO coagglomeration index, 1997			
Each entry reports separate estimation	State total	PMSA total	total er empl. er	State entry		ateral firm employments with localization threshold			
with single regressor	empl.	empl.		empl.	1,000 mi.	500 mi. 250 m			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Natural advantages	0.210	0.188	0.222	0.120	0.442	0.406	0.253	0.531	
[DV Specific]	(0.020)	(0.017)	(0.014)	(0.016)	(0.013)	(0.012)	(0.013)	(0.019)	
R^2	0.044	0.036	0.049	0.014	0.200	0.165	0.064	0.282	
Labor correlation	0.180	0.106	0.082	0.077	-0.155	0.008	0.127	0.103	
	(0.014)	(0.016)	(0.013)	(0.015)	(0.012)	(0.012)	(0.015)	(0.013	
R^2	0.032	0.011	0.007	0.006	0.024	0.000	0.016	0.011	
Input-output	0.205	0.167	0.130	0.112	0.100	0.162	0.188	0.112	
	(0.037)	(0.028)	(0.022)	(0.022)	(0.019)	(0.029)	(0.036)	(0.029	
R^2	0.042	0.028	0.017	0.012	0.010	0.026	0.035	0.013	
Technology flows	0.180	0.148	0.107	0.089	0.046	0.107	0.136	0.094	
Scherer R&D	(0.037)	(0.031)	(0.019)	(0.024)	(0.019)	(0.029)	(0.038)	(0.029	
R^2	0.032	0.022	0.012	0.008	0.002	0.011	0.019	0.009	
Technology flows	0.081	0.100	0.085	0.068	-0.001	0.056	0.103	0.092	
patent citations	(0.012)	(0.016)	(0.013)	(0.013)	(0.012)	(0.012)	(0.012)	(0.013	
R^2	0.007	0.010	0.007	0.005	0.000	0.031	0.011	0.008	

OLS-Multivariate

TABLE 4—OLS MULTIVARIATE SPECIFICATIONS FOR PAIRWISE COAGGLOMERATION

	EG coaggl. index with state total emp.				Ι	DO coaggl. index, 250 mi.			
	Base estimation	Exclude natural advantages	Separate input & output	Exclude pairs in same SIC2	Base estimation	Exclude natural advantages	Separate input & output	Exclude pairs in same SIC	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Natural advantages [DV specific]	0.163 (0.017)		0.162 (0.017)	0.172 (0.016)	0.251 (0.012)		0.252 (0.012)	0.253 (0.013)	
Labor correlation	0.118 (0.011)	0.146 (0.012)	0.114 (0.011)	0.085 (0.012)	0.069 (0.012)	0.098 (0.013)	0.066 (0.012)	0.029 (0.012)	
Input-output	0.146 (0.032)	0.149 (0.032)		0.110 (0.022)	0.162 (0.035)	0.150 (0.035)		0.177 (0.032)	
Input			0.106 (0.029)				0.097 (0.029)		
Output			0.093 (0.039)				0.107 (0.038)		
Technology flows Scherer R&D	0.096 (0.035)	0.112 (0.035)	0.079 (0.035)	0.046 (0.019)	0.076 (0.033)	0.075 (0.034)	0.065 (0.032)	0.033 (0.020)	
\mathbb{R}^2	0.103	0.077	0.110	0.059	0.113	0.051	0.117	0.102 7,000	
R ² Observations	0.103 7,381	0.077 7,381	0.110 7,381	0.059 7,000	0.11 7,38	_			

- Industries may be collocated not because of Marshallian factors.
- Reverse causality: collocation could be driving input-output linkages or hiring patterns
 - Industries may be collocated due to some random event, but their flexible production technologies allow them to adjust to nearby labour and material inputs
- Unmodeled natural advantages may bias estimates

UK IV

 Measures of input-out linkage, labour market, and technology for U.K. industries (two industries randomly coagglomerated in U.S. will not be coagglomerated in the U.K.)

US Spatial IV

- Measures input-output and labour patterns in one industry in places where the other industry is quite rare
- Addresses issue where input / labour choices is affected by proximity of plants in the other industry (biasing measures of the Marshallian forces variables)

TABLE 5—IV MULTIVARIATE SPECIFICATIONS FOR PAIRWISE COAGGLOMERATION

	EG coaggl.	index with sta	te total emp.	DO coaggl. index, 250 mi.			
	Base	UK	US spatial	Base	UK	US spatial	
	OLS	IV	IV	OLS	IV	IV	
	(1)	(2)	(3)	(4)	(5)	(6)	
Natural advantages	0.173	0.173	0.171	0.254	0.210	0.233	
[DV specific]	(0.016)	(0.019)	(0.016)	(0.013)	(0.016)	(0.012)	
Labor correlation	0.083	0.079	0.091	0.027	0.501	0.248	
	(0.012)	(0.060)	(0.023)	(0.012)	(0.060)	(0.023)	
Input-output	0.122	0.191	0.185	0.186	0.164	0.213	
	(0.023)	(0.048)	(0.036)	(0.031)	(0.054)	(0.049)	
Observations	7,000	7,000	7,000	7,000	7,000	7,000	

Empirical Results
○○○○○○●