Numerical Algorithms for HPC

Solution of Boundary Value Problems

1

Overview of Lecture

- Overview of linear solving methods
- Relaxation methods
 - Jacobi algorithm
 - testing for convergence
 - Gauss Seidel
 - over-relaxation
- Notes
 - parallelisation
 - non-linear equations
- Pollution problem
 - solution using relaxation methods
 - 2D equations including wind

2

Many methods for solving Au = b

- Direct methods
 - give the solution after a fixed number of operations
 - · Gaussian elimination
 - LU factorisation
- Relaxation methods (this lecture)
 - gradually improve solution, starting from an initial guess
 - stop when the answer is sufficiently accurate
 - simple to implement but may be slow to converge on solution
 - · or may fail completely!
- Krylov subspace methods (following lectures)
 - iterative (like relaxation methods) but more sophisticated
 - harder to implement but more efficient and reliable

3

3

Why not use Direct Methods?

- Direct methods explicitly operate on the matrix A
 - e.g. decompose it into L and U factors
- For PDEs, A is very sparse indeed
 - may contain 99% zeros so clearly we use compressed storage
 - we want to take advantage of this when we solve equations
- Difficult to exploit sparsity for direct methods
 - e.g. L and U may be dense even though A is sparse
 - for large systems of equations, we may run out of memory!
- Relaxation and Krylov methods (see later) exploit sparsity
 - relaxation methods operate on the equations not the matrix
 - Krylov methods comprise mostly matrix-vector multiplications
 - can write efficient routines to do y = A x when A is sparse
 - start to show the solution earlier during process of solving

4

Relaxation vs Matrix Methods

- · Operate directly on the difference equations
 - can forget (almost!) all about the matrix representation Au=b for this lecture
 - it turns out that relaxation methods can usefully be understood in terms of matrix-vector operations (not immediately obvious)
 - · See lecture on "Matrix Splitting Techniques" later
- · For illustrative purposes, look at 1D problem
 - for simplicity with no wind
 - exercise will involve extending this to the 2D problem
 - · quite straightforward in practice

5

J

Relaxation Methods

1D diffusion equations are

$$-u_{i-1} + 2u_i - u_{i+1} = 0$$
 $i = 1, 2, ..., N$

- Equivalently: $u_i = \frac{1}{2}(u_{i-1} + u_{i+1})$
 - why not make an initial guess at the solution
 - then loop over each lattice point i and set $u_i = \frac{1}{2}(u_{i-1} + u_{i+1})$
 - i.e. we solve the equation exactly at each point in turn
- Updating u_i spoils the solution we just got for u_{i-1}
 - so simply iterate the whole process again and again ...
 - ... and hope we eventually get the right answer!
- This is called the Jacobi Algorithm
 - the simplest possible relaxation method

Jacobi Algorithm

- Use superscript n to indicate iteration number
 - n counts the number of times we update the whole solution
 - equivalent to computer time
- Jacobi algorithm for diffusion equation is:

$$u_i^{(n+1)} = \frac{1}{2} \left(u_{i-1}^{(n)} + u_{i+1}^{(n)} \right)$$

- ${f \cdot}$ Each iteration, calculate $u^{(n+1)}$ in terms of $u^{(n)}$
 - don't need to keep copies of all the previous solutions
 - only need to remember two solutions at any time: u and u_{new}
 - corresponding to iterations n and n+1

7

7

Jacobi Pseudo-Code

Q

Implementation Notes

Array declarations

```
- Fortran: real, dimension(0:M+1) :: u
- Java: float[] u = new float[M+2];
- C: float u[M+2];
```

- ullet Arrays explicitly contain boundaries u_0 and u_{M+1}
 - we set them according to boundary conditions
 - but we NEVER update them!
 - e.g. when we copy u_{new} back to u, only copy internal values
 - in pseudo-code, boundary values for u_{new} are never set
 - complete solution is therefore only ever present in \boldsymbol{u}
 - might be more elegant to set boundaries in $u_{\mbox{new}}$ as well
- What to choose for initial guess $u_i^{(0)}$?
 - for a simple implementation just set interior values to zero

9

9

When to Stop the Iterative Loop

- The solution appears to be getting better
 - must quantify this!
- For dense systems we used the residual
 - we tried to solve Ax = b, so r = b Ax should be a zero vector
 - in practice, there is a numerical error in solution of each equation
 - error in equation i is the value of r_i
 - Norm of residual is computed from the sum of the squares of $\emph{r}_\emph{i}$
 - Can calculate residue as before: $\frac{||r||_2}{||b||_2}$
- Can do the same thing for relaxation methods
 - compute the sum of the squares of the error in each equation
 - do this at the end of each iterative loop over *n*
 - · stop if this is small enough

11

11

Pseudocode for Residual Calculation

12

Notes on Residual

- For a perfect solution, residue will be zero
 - in practice we will get a finite value
 - usually stop when it is "small", e.g. a tolerance of res $< 10^{-6}$
 - there will be a limit to how small the residual can get
 - · can easily hit the limits of single precision
 - use double precision everywhere (or at least perform residual calculation using doubles)
- Normalisation
 - need to divide by the norm of the b vector
 - we saw before that *b* corresponds to the boundary values
 - in 1D: bnorm = sqrt(u(0)*u(0) + u(M+1)*u(M+1))
 - in 2D, need to sum values of squares of $u_{i,j}$ over all edges

13

13

Residual Against Iteration

- Decreases exponentially
 - with a zero initial guess for u, should equal 1.0 at iteration zero

Parallelisation

- · Very simple for Jacobi
- Decompose the problem domain regularly across processes/threads
 - for MPI we need halo regions due to $i\pm 1, j\pm 1$ references
 - halos are 1 cell wide for 5-point stencil
 - could be wider for larger stencils
 - swap halos between neighbouring processes every iteration
- · Require global sums for, e.g., residue calculation

15

15

Relaxation Methods

- · About to cover some variations on Jacobi
 - which we hope will be faster!
- · How can we tell if a method will work at all?
- Necessary (but not sufficient) condition
 - if the method arrives at the correct solution it must stay there
- Is this true for Jacobi? $u_i^{(n+1)} = \frac{1}{2} \left(u_{i-1}^{(n)} + u_{i+1}^{(n)} \right)$
 - $\text{ for solution: } -u_{i-1}^{(n)} + 2u_i^{(n)} u_{i+1}^{(n)} = 0, \text{ i.e. } ^1\!/_2 \left(u_{i-1}^{(n)} + u_{i+1}^{(n)}\right) = u_i^{(n)} = u_i^{(n+1)}$
 - so, $u_i^{(n+1)} = u_i^{(n)}$ and we stay at the solution
 - worth checking this for other methods

Gauss Seidel

• Why do we need both u_{new} and u?

• Why not do the update in place?

```
update: loop over internal points: i = 1, 2, ... M

u(i) = 0.5*(u(i-1) + u(i+1))

end loop over i
```

- this is called the Gauss-Seidel method

17

17

Parallelisation Gauss Seidel

- · Order of the update loop is now significant
 - we used normal (lexicographic) order: other orderings possible
- Parallelisation of Jacobi was easy
 - Just divide grid and each processor sends its boundary data to neighbouring processor ("halo-swapping")
- Parallelisation of Gauss Seidel is harder

- e.g. in 1D $u_i = \frac{1}{2}(u_{i-1} + u_{i+1})$

"new" was just updated

"old" just about to be updated

 Updating of every point depends on the one before, which in turns depends on the one before that...

19

19

Parallel Gauss Seidel (wavefront)

- Consider dependencies (in 2D)
 - $u_{i,j}$ depends on recently updated values $u_{i-1,j}$ and $u_{i,j-1}$
- In pattern below have inter-colour dependencies,
 - E.g. updates to brown elements depend on red elements
 - ...but brown elements don't depend on each other
 - E.g. $u_{2,2}$ does not depend on $u_{3,1}$ or vice versa
 - Brown squares can all be calculated simultaneously
 - i.e. can do the brown (or any colour) in parallel!
- Also works in 3D (more parallelism!)

epcc

20

Parallel Gauss Seidel (red-black)

- · Red-black order divides grid into chequerboard
 - 2 loops: update all the red squares (in parallel) first then all the black ones (in parallel)
 - new ordering removes some dependence on already updated elements
 - enables Gauss Seidel method to be parallelised
 - ordering can affect convergence (different underlying matrix)

Processor 2

Processor 2

21

21

Over Relaxation

· Recall how Jacobi solution progressed

- we have increased the value of u_i by a small amount
 - · but we know the real solution is even higher
- why not increase by more than suggested
 - i.e. multiply the change by some factor $\omega>1$

22

Over-Relaxed Gauss Seidel

- Gauss-Seidel method: $u_i = \frac{1}{2}(u_{i-1} + u_{i+1})$
 - i.e. $u_i = u_i + \frac{1}{2} [(u_{i-1} 2u_i + u_{i+1})]$
- \circ Multiply change (in square brackets) by ω
 - over-relaxed update: $u_i = u_i + {}^1\!/{}_2\,\omega[(u_{i-1} 2u_i + u_{i+1})]$ or $u_i = (1-\omega)u_i + {}^1\!/{}_2\,\omega(u_{i-1} + u_{i+1})$
- Notes
 - original method corresponds to $\omega=1$
 - if we get to a solution we stay there for any value of ω
 - Theorem by Kahan: ω has to be in range (0,2)
 - Sometimes ω known in advance, sometimes trial and error or adaptive

23

23

Non-Linear Equations

- Relaxation methods deal directly with equations
 - doesn't matter that we cannot express them as Au = b
 - equally valid for non-linear equations (e.g. fluid dynamics)
- Non-linear equations can be very unstable
 - may need to under-relax to get convergence, i.e. $\omega\,<1$

24

2/

Extending to 2 Dimensions

- Initialise
 - set boundary values (purple)
 - · zero on top, bottom and left
 - · hump function on right
 - zero interior (white)
- Loop over interior
 - $\cdot i = 1, 2, \dots, M$
 - j = 1, 2, ..., M
 - update $u_{i,i}$ as appropriate
- Repeat until converged
- Write results
 - include boundaries so that the solution looks nice!

2D example with M = 8

25

Notes (1)

- How do we convert from (i, j) to (x, y) coordinates?
 - for a domain of size 1×1 :
 - x = ih and y = jh
- What is the hump function?
 - $-u(1.0,y) = k(y_2 y)^2(y y_1)^2$
 - a peak, centred at $(y_2 + y_1)/2$, dropping to zero for $y < y_1$ and $y > y_2$
 - for this example, take $y_1 = 0.4$ and $y_2 = 0.6$

Notes (2)

- How do we convert from (x, y) to (i, j) coordinates?
 - e.g. what lattice point do we look at to find u(0.20,0.33)?
 - (0.20,0.33) is unlikely to fall exactly on a lattice point
 - the four nearest neighbours are:
 - i = int(x/h)
 - j = int(y/h)

- do weighted average of these four values (see exercise notes)

27

Convection-Diffusion Equations

• 1D Gauss-Seidel update
$$u_i = \left(\frac{1}{2+ah}\right)(u_{i-1} + (1+ah)u_{i+1})$$

1D Over-Relaxed update

$$u_i = (1 - \omega)u_i + \omega \left(\frac{1}{2 + ah}\right) (u_{i-1} + (1 + ah)u_{i+1})$$

2D Discrete Equations
$$u_{i,j} = \frac{1}{\left(4 + \left(a_x + a_y\right)h\right)} \left(u_{i,j-1} + u_{i-1,j} + (1 + a_x h)u_{i+1,j} + \left(1 + a_y h\right)u_{i,j+1}\right)$$

 (a_x, a_y) = wind strength from x (East) and y (North) respectively

Notes

- Have multiplied all the equations by h^2
 - equations now explicitly depend on h for a non-zero wind a
 - straightforward to derive update equations for 2D case
- A different convention for Krylov methods (later)
 - maintain the $1/h^2$ factor in matrix A
 - therefore need to multiply RHS by same factor
 - · happens to be more convenient
- Finite wind
 - matrix *A* is now non-symmetric
 - in 1D, lower-diagonal elements are (1 + ah), upper elements are 1
 - gives some minor technical issues when normalising the residue
 - · see practical notes
 - if correctly normalised, residue at zero iterations will always be 1.0 if the initial guess is a zero solution

29

29

Summary

- Relaxation methods
 - guess at an initial solution
 - update many times and stop when residue is small enough
- Update rule is very straightforward
 - solve exactly for each individual u_i
 - obtain formula by rearranging difference equations so u_i is on the LHS
- Interior points updated according to the PDE
 - boundary points set by the boundary conditions
- Jacobi is the simplest method
 - Gauss Seidel acts "in-place" and requires roughly half the iterations
 - appropriate over-relaxation can accelerate this even more
 - finding the best value of ω requires some experimentation!

30

