2020-2학기 프로젝트 9조 예비보고서

CNN 모델을 활용한 흑백 이미지(비디오) 변환

흑백에 아름다움을 더하는 인공지능

1. 프로젝트 주제 선정 계기

1960 년대 이전에 촬영한 사진이나 영상들 대부분은 흑백이다. 흑백 자료들은 피사체의 형태에 더욱 집중할 수 있게 한다는 장점도 있지만, 색 정보가 없어 당시의 정황이나 생동감을 반만 담고 있다.

색을 입혀 컬러로 만들려면 사람이 작업을 하는 데, 이는 시간도 많이 소요될 뿐 아니라 비용적 측면에서도 비효율적이다. 최근 복잡한 채색 과정을 인공지능의 신경망 기술을 이용하여 컬러 변환이 가능해졌다.

OpenCV 이미지 처리 및 인공지능 모델을 활용하여 방대한 이미지자료를 학습시킬 수 없었던 기존의 기술의 한계를 해결하고 누구나 쉽게 이미지처리 인공지능을 경험해 볼 수 있다는 점에서 유의미한 프로젝트가 될 것이라 생각한다.

2. 프로젝트 개요

-데이터 출처

웹상의 대부분의 사진은 저작권이 있어 https://pixabay.com/= 이용하여 흑백사진 데이터를 얻는다.

-알고리즘 출처

https://github.com/kairess/colorizer (알고리즘 출처) 〈Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang,isola,efros}@eecs.berkeley.edu 〉

https://github.com/demul/auto_colorization_project - 추가 논문자료

- 어떠한 시도를 할 것인가?

- -norebel 모델을 사용하여서 안전하게 컬러를 도출한다.
- -다층 퍼셉트론 기반 흑백 항공사진 컬러화를 시도해본다.
- -OpenCV 의 쓰임과 colorization caffemodel 의 합성곱신경망(CNN)을 이해한다. colorization Turing test 반드시 실제 사진속의 색채를 되찾는 것이 아니라, 사람을 납득시킬 수 있는 그럴듯한 컬러사진으로 변환할 것이다.
 - -흑백사진의 질감 및 색상 등 여러 특성들을 통계적으로 모델링 하여 시각적으로 매력적인 결과를 도출할 것이다.

2. 기대효과

- -CNN 모델이 이미지 변환에 어떻게 적용이 되는지 알고리즘을 통해 알 수 있고 인공지능이 어떻게 데이터를 예측하고 새로운 결과를 도출하는지 이해할 수 있다.
- -이미지 전 처리 과정에서 RGB와 LAB모드로 변환하는 방법과 학습과정을 이해한다.
- -역사적으로 가치 있는 흑백 사진과 영상들을 컬러로 바꾸어 기성세대에는 추억을 신세대에겐 흥미를 일으켜 새로운 가치를 배울 수 있는 기회를 제공할 수 있다. 옛 모습들을 복원함으로써 그당시의 생동감을 현 시대 사람들에게 선명하게 전달할 수 있다.
- -단순히 흑백사진에 어울리는 색깔을 골라서 컬러로 바꾸는 작업이라고 생각하기보다, 세상의 수많은 시각데이터를 바탕을 학습한 인공지능이 적절한 색상을 선정해 새로운 작품을 덧입힌다는 것을 알 수 있다.