Universität Leipzig Institut für Informatik Bioinformatik/IZBI		und Datenstruktu 4 – Freiwillige Serie	
P.F. Stadler, T. Gatter	Ausgabe am	Lösung am	Seite
	07.05.2024	14.05.2024	1/3

Algorithmen und Datenstrukturen II SoSe 2024 – Serie 6

1 Matching

Gegeben sei der folgende ungerichtete Graph G:

Geben Sie in einer Tabelle mit ja oder nein an, ob es sich bei den in a), b) und c) gegebenen Kantenmengen um ein Matching, ein Maximales Matching und/oder ein Perfektes Matching handelt.

- a) $\{\{B,A\}, \{D,E\}, \{F,C\}\}$
- b) {{G,E}, {A,D}, {B,C}, {F,E}}

Perfekt

Maximal

c) $\{\{A,B\}, \{G,D\}\}$

Matching

noch ein Matching

Lösung:

a) Ja	Nein^1	${ m Ja}$		
b) Nein ²	$Nein^3$	Nein^3		
c) Ja	$Nein^4$	$ m Nein^5$		
¹ nicht perfel	t da G fehlt			
² ist kein M	atching weil	jeder Kno	ten nur in einer Kante vorkommen dar	f und E
mehrfach vor		-		
$3 da^2 kann e$	s auch nicht j	perfekt ode	er maximal sein	
⁴ nicht perfel	t da E,C und	l F fehlen		
⁵ man kann	noch eine Ka	nte, z.B. {	$\{C,F\}$ oder $\{C,E\}$, hinzufügen und erhäl	t immer

d) Ermöglicht der Graph ein Perfektes, aber nicht Maximales Matching. Begründen Sie Ihre Antwort bzw. geben Sie das Matching an.

Universität Leipzig Institut für Informatik Bioinformatik/IZBI		und Datenstruktu 4 – Freiwillige Serie	
P.F. Stadler, T. Gatter	Ausgabe am 07.05.2024	Lösung am 14.05.2024	Seite 2/3

e) Ist der Graph bipartit? Begründen Sie die Antwort.

Lösung:

- d) Nein. Jedes Perfekte Matching ist Maximal und die ungerade Knotenzahl verhindert ein perfektes Matching.
- e) Nein. Die Dreiecke C–E–F und D–E–G lassen sich nicht bipartit auflösen und damit G auch nicht.

2 Gomory - Hu

Gegeben ist folgender ungerichteter Graph:

Wenden Sie den Gomory-Hu Algorithmus wie in der Vorlesung an. Wählen Sie für den nächsten Schnitt jeweils den (Teil-)Graphen mit $|V| \geq 2$ aus, der das alphabetisch kleinste Element enthält und wählen Sie innerhalb dieses (Teil-)Graphen die alphabetisch kleinsten Elemente als s und t aus. Notieren Sie in einer Tabelle für jeden rekursiven Aufruf des Algorithmus die jeweilige Knotenmenge V des (Teil-)Graphen, die Buchstaben der gewählten s und t Knoten, sowie den Wert des minum-cut(s, t). Zeichnen Sie den resultierenden Gomory-Hu Baum.

Universität Leipzig Institut für Informatik Bioinformatik/IZBI		und Datenstruktu 4 – Freiwillige Serie	
P.F. Stadler, T. Gatter	Ausgabe am 07.05.2024	Lösung am 14.05.2024	Seite 3/3

Lösung:

V	s	t	\min -cut(s,t)
$ \overline{\{a,b,c,d,e,f,g\}} $	a	b	19
$\{a,c,f,g\}$	a	c	23
$\{a,f,g\}$	a	f	24
$\{a,g\}$	a	g	27
$\{b,d,e\}$	b	d	20
$\{b,e\}$	b	e	11
			•

Schrittweise Berechnung (hier mit expliziten Kontraktionen). In der Visualisierung wird die Rekursion parallel ausgeführt um Platz zu sparen. Grün: s,t; Rot: min-cut.

