Contour Integration-1

Evaluate by Contour integration!

(i)
$$\int_{0}^{2\pi} \frac{G_{0} > 0}{5 - 460} dO (ii) \int_{0}^{\pi} \frac{G_{0} > 20 dO}{1 - 20 d \approx 10^{-1}} dO (iii) \int_{0}^{2\pi} \frac{G_{0} > 20 dO}{1 - 20 d \approx 10^{-1}} dO (iv) \int_{0}^{\pi} \frac{1}{5 - 4600} dO (v) \int_{0}^{2\pi} \frac{1}{5 + 36 i n o} dO (v) \int_{0}^{\pi} \frac{G_{0} > 0}{5 - 4600} dO (v) \int_{0}^{\pi} \frac{G_{0} > 0}{5$$

1-02

0

7

Residue at
$$2=\frac{1}{2}$$
 is

$$\lim_{z \to \frac{1}{2}} (2-k_2) \cdot \frac{2^3}{2z^2-52+2}$$

$$= \lim_{z \to \frac{1}{2}} (2-k_2) \cdot \frac{2^3}{(2-k_2)(2z-1)}$$

$$= \lim_{z \to \frac{1}{2}} (2-k_2) \cdot \frac{2^3}{2(2-2)(2-k_2)}$$

$$= \lim_{z \to \frac{1}{2}} (2-k_2) \cdot \frac{2^3}{2(2-2)(2-k_2)}$$

$$= -\frac{1}{24}$$
By Cauchy's residue theorem we have,
$$\oint_C f(z) dz = 2\pi i \left(-\frac{1}{24}\right)$$

$$= -\frac{\pi i}{12}$$

$$= -\frac{\pi i}{12}$$

$$= R \cdot P \cdot \delta f - \frac{1}{i} \cdot \left(-\frac{\pi i}{12}\right)$$

$$= \frac{\pi}{12}$$
(ii) let $f = \int_0^{\pi} \frac{as20d0}{1-2a(s0+a^2)}$

$$= \frac{1}{2} \int_0^{2\pi} \frac{as20d0}{1-2a(s0+a^2)}$$

i.
$$I = RP$$
 of $\frac{1}{2} \oint_{C} \frac{2^{1} \cdot dx}{1-a(2+\frac{1}{2})+a^{2}}$

$$= RP$$
 of $\frac{1}{2i} \oint_{C} \frac{2^{2} dx}{2-ax^{2}-a+a^{2}}$

$$= RP$$
 of $\frac{-1}{2i} \oint_{C} \frac{2^{2} dx}{ax^{2}-a^{2}z-2+a}$

$$= RP$$
 of $\frac{-1}{2i} \oint_{C} f(z) dx$

where $f(z) = \frac{2^{2}}{ax^{2}-a^{2}z-2+a}$

Polen of $f(z)$ are given by $az^{2}-az^{2}-2+a=0$

or, $(z-a)(az-1)=0$
 $\therefore z=a, \frac{1}{a}$

Only simple pole $z=a$ lies inside C .

Residue at $z=a$ is,

$$\lim_{z\to a} \frac{(z-a)}{(z-a)(az-1)}$$

$$= \frac{a}{a^{2}-1}$$

Hence by Cauchy's residue theorem we get $f(z)dz = 2\pi i \left(\frac{a^{2}-1}{a^{2}-1}\right)$
 $\therefore I = RP \cdot f(-\frac{1}{2i} \oint_{C} f(z) dz$
 $= \frac{\pi a^{2}-1}{2i} \cdot 2\pi i \left(\frac{a^{2}-1}{a^{2}-1}\right)$
 $= \frac{\pi a^{2}-1}{2i} \cdot 2\pi i \left(\frac{a^{2}-1}{a^{2}-1}\right)$

(iii) let
$$I = \int_{0}^{2H} \frac{do}{1-2a4ao+a}$$

$$= \int_{0}^{2H} \frac{do}{1-a(e^{10}+e^{10})+a}$$

$$= \oint_{C} \frac{do}{1-a(e^{10}+e^{10})+a}$$

$$= \oint_{C} \frac{do}{1-a(e^{10}+e^{10})+a}$$

$$= \int_{0}^{2H} \frac{do}{1-a(e^{10}+e^$$

$$\begin{aligned} & = \frac{1}{2} \int_{0}^{11} \frac{\sin^{2} do}{5 - 4600} \\ & = \frac{1}{2} \int_{0}^{211} \frac{\sin^{2} do}{5 - 4600} \left[\frac{2}{5} \int_{0}^{11} \int_$$

$$I = R. P. of \frac{-1}{4i} \cdot 2\pi i \left(-\frac{1}{4}\right)$$

$$= \frac{1}{8}$$
(V) let $I = \int_{0}^{2\pi} \frac{do}{5+34i\pi o}$

$$= \int_{0}^{2\pi} \frac{do}{5+34i\pi o}$$

$$= \int_{0}^{2\pi} \frac{do}{5+32i\pi o}$$

$$= \int_{0}^{2\pi} \frac{do}{5+32i$$

1. 2=-31,- /3 since |-13|= \frac{1}{3}, so only simple pole 2=-13 lies îmide C.

Hence by Cauchy's residue theorem, we sel-I tande = 2ni (si) : 1=2.2 ni (-si)

Residue at simple pole
$$2=-\frac{i}{3}$$
 is

by Cauchy's residue

in, we set

 $2 \rightarrow -\frac{i}{3}$
 $2 \rightarrow$

Evaluate by contour integration: 121 sinzodo 1-22600+22, a <1 Solution: Let I= 1 21 8/120 do = maginary part of \ 21 = 120 do \ 1-2600 + 62 = I.p. of \(\frac{e^{i20} \lambda_0}{1-2a_1 \frac{1}{2} \left(e^{i0} + e^{i0} \right) + a^2} \) let us put e'o = 2 : e'o ido = dz et us put $e'' = \pm \frac{1}{2}$ $e'' = \frac{dz}{dz}$ $e'' = \frac{dz}{dz}$ = I.P. 8 $\frac{1}{i}$ $\oint_{C} \frac{2^{2}dz}{2-az^{2}-a+a^{2}z}$ = I.P. 8 $\frac{-1}{i}$ $\oint_{C} \frac{2^{2}dz}{az^{2}-z-a^{2}z+a}$ = I.P. of -1 6 5(2) dz .-- 1 where $f(2) = \frac{2^2}{22^2 - 2 - a^2 + a}$ poles of fee are given by a22-2-a2+a=0 or, 2(02-1) -a(02-1)=0 or, (a2-1) (2-a)=0 . . 2= ta, a since at <1, so 2= a lies inside C. Residue at simple pole 2-a is lim (2-h). 2 (az-1)(2/a) Hence by Cauchy's residue theorem, we get \$ f(2) de = 2ni (a) So from (1) we get I= I.p. of -1 . 2511 (at) = I.P. of (200 + i.o)