Tarea II

Román Contreras

February 15, 2018

1 Paralelismo y ortogonalidad en el espacio

1.1 Parelelismo y ortogonalidad de planos y rectas

Ejercicio 1.1. Sea Π un plano $y \ \ell \ y \ \ell'$ dos rectas paralelas. Demuestra que ℓ es perpendicular a Π si y solo si ℓ' es perpendicular a Π

Ejercicio 1.2. Sea Π un plano y P un punto en Π . Demuestra que existe una única recta ℓ que es perpendicular a Π y pasa por P. (Da una construcción explícita de dicha recta)

1.2 Proyecciones ortogonales sobre planos

Recordemos que en clase demostramos que dado un plano Π y un punto cualquiera P, existe una única recta ℓ tal que el punto está en dicha recta y la recta es perpendicular al plano Π .

Así mismo, definimos la proyección ortogonal de P en Π como la intersección de ℓ con Π

Demuestra las siguientes propiedades de la proyección ortogonal:

Ejercicio 1.3. La proyección de una recta sobre un plano es:

- Un punto si y solo si la recta es ortogonal al plano
- Una recta en los demás casos

Ejercicio 1.4. La proyección de un plano sobre otro plano es:

- $\bullet \ \ Una \ recta \ si \ y \ solo \ si \ el \ los \ dos \ planos \ son \ ortogonales$
- Todo el plano en los demás casos

Ejercicio 1.5. La proyección de un segmento de recta es un segmento de recta cuya longitud es menor o igual que la de el segmento original. La longitud es igual si y solo si el segmento de recta está contenido en un plano paralelo al plano sobre el que se proyecta.

Ejercicio 1.6. Sea ABC un tríangulo y sean A', B' y C' las proyecciones de dichos puntos. El triángulo ABC es congruente al triángulo A'B'C' si y solo si el plano que contiene a los puntos ABC es paralelo al plano sobre el que se está proyectando.