Formgedächtnislegierung

Mehmet Ulrich

24. Juli 2020

Gliederung

Grundlagen

Formgedächtnislegierungen

Warum FGL

Gliederung: Grundlagen

Grundlagen

Kristallgitter

Legierungen

Spannung und Dehnung

Formgedächtnislegierungen

Warum FGI

Kristallgitter

Das Kristallgitter in Metallen:

- Kubisch-primitives Gitter (simple cubic)
- Kubisch-raumzentriertes Gitter (body centered cubic)
- Kubisch-flächenzentriertes Gitter (face centered cubic)

Kubisch-raumzentriertes Gitter

alpha-/ delta-Fe; beta-Ti, beta-Zr, Cr, V, Mg, Mo, W, Ta, Li, Na, K Quelle:https://de.wikibooks.org/wiki/Werkstoffkunde_Metall/_Innerer_Aufbau/_Struktur

Kubisch-flächenzentriertes Gitter

gamma-Fe, beta-Co, Cu, Pt, Al, Au, Ag, Pb Quelle:https://de.wikibooks.org/wiki/Werkstoffkunde_Metall/_Innerer_Aufbau/_Struktur

Legierung

Bronze (Metall-Metall Legierung).

- Erste von Menschen genutzte Legierung.
- Kupfer und Zinn (CuSn)
- Härter als reines Kupfer
- ca 3300v. Chr. in Palästina

Legierung

Eisen

- Wichtigste binäre Legierung Kohlenstoff
- ► Stahl bis 2,06% Kohlenstoff
- ► Gusseisen bis 6,67% Kohlenstoff

Eisen-Kohlenstoff-Diagramm

Spannung und Dehnung

$Spannungs-Dehnungs-Diagramm\ mit\ ausgepr\"{a}gter\ Streckgrenze$

Quelle: https://de.wikipedia.org/wiki/Spannungs-Dehnungs-Diagramm

Spannung und Dehnung

Spannungs-Dehnungs-Diagramm

Quelle:https://de.wikipedia.org/wiki/Spannungs-Dehnungs-Diagramm

Gliederung: Formgedächtnislegierungen

Grundlagen

Formgedächtnislegierungen

Effekte

Vergleich

Einwegeffekt

Zweiwegeffekt

Pseudoelastizität

Nutzbare FGL

Warum FGI

NITINOL

Nickel Titanium Naval Ordnance Laboratory.

Durch zufall 1958 entdeckt.

Beispiel Büroklammer

Effekte

Verschiedene Effekte von Formgedächtnislegierungen:

- Einwegeffekt
- Zweiwegeffekt
- Pseudoelastizität.

Vergleich

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 32).

Temperaturstrahl

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 3).

- Formgedächtnislegierunge

└ Einwegeffekt

Einwegeffekt

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 6).

└ Zweiwegeffekt

Zweiwegeffekt

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 7).

Pseudoelastizität

Die Umwandlungstemperatur liegt unter der Arbeitstemperatur (Umgebugstemperatur), im Normalfall unter 0°C.

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 8).

Widerstandsänderung

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 110).

Nutzbare FGL

Eigenschaften	NiTi	CuZnAl	CuAlNi	FeNiCoTi	FeMnSi
Umwandlungs- temp. [°C]	-50100	-100100	80200	-150300	50250
max. Einweg- effekt [%]	8	5	5	1,5	2,0
max. Zweiweg- effekt [%]	6	1	1	0,5	0,3
max. Pseudo- elastizität [%]	8	2	2	1,5	1,5
Nachteil	schlechte Zer- spanbarkeit, hohe Kosten	Entmischung, Grobkorn- bildung	schlechte Kalt- umformbarkeit	Stabilität und Effekt gering	Stabilität und Effekt gering
Vorteil	max. Effekte, höchste Stabilität, korrosions- beständig	niedrige Kosten, gute Umform- barkeit	niedrige Kosten	niedrige Kosten, gute Umform- barkeit	niedrige Kosten, gute Umform- barkeit

Quelle: Sven Langbein & Alexander Czechowicz. Konstruktionspraxis Formgedächtnistechnik. Potentiale - Auslegung - Beispiele (Seite: 9).

Gliederung: Warum FGL

Grundlagen

Formgedächtnislegierungen

Warum FGL

Warum FGL Was habe ich gemacht

Warum FGL

Warum FGL

- ► Arbeit als Studentische Hilfskraft
- Noch zu lösende Probleme
- Neue Forschungsansätze und anfrage einer Thesis

Ziel

Hinderniserkennung mit Widerstandsänderung des FGL

- Messen des Leitwerts wärend des Bestromens
- Software entwickeln welche ein Hindernis erkennt