Average Variance

J. Poland

Risk Anoma

Results
In Sample
Out of Sample

Asset Allocatio

How to Look Clever and Have Envious Neighbors: Average Volatility Managed Leverage Timing

Jeramia Poland

Indian School of Business

July 7, 2018

Risk Anomaly

Results
In Sample
Out of Sample

Asset Allocatio

How Risky is your Aversion?

 Timing portfolio investment by realized portfolio (variance/volatility) = higher returns

Results
In Sample
Out of Sampl

Asset Allocatio

- Timing portfolio investment by realized portfolio (variance/volatility) = higher returns
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying

Results
In Sample
Out of Sample

Asset Allocatio

- Timing portfolio investment by realized portfolio (variance/volatility) = higher returns
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Realized volatility = volatility not returns

Results
In Sample
Out of Sample

Asset Allocatio

- Timing portfolio investment by realized portfolio (variance/volatility) = higher returns
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Realized volatility = volatility not returns
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - Avg cor and Avg var

Results
In Sample
Out of Sample

Asset Allocatio

- Timing portfolio investment by realized portfolio (variance/volatility) = higher returns
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Realized volatility = volatility not returns
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - Avg cor and Avg var
- Avg Cor = returns, Avg Var != returns

Risk Anomaly

Results
In Sample
Out of Sample

Asset Allocatio

Average Variance

• Timing leverage by variance generates higher returns

Results
In Sample
Out of Sampl

Asset Allocatio

Average Variance

- Timing leverage by variance generates higher returns
- Market variance contains average correlation

In Sample
Out of Sample

Asset Allocatio

Average Variance

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns

Asset Allocatio

Average Variance

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns
- $W_t = \frac{1}{AV_{t-1}}$ is the investment weight on the CRSP market portfolio

Risk Anomal

Results In Sample

Asset Allocation

Variance Prediction

AV	0.545***			0.489***	0.257***
	p = 0.000			p = 0.000	p = 0.001
AC		0.332***		0.160***	
		p = 0.000		p = 0.00001	
SV			0.551***		0.320***
			p = 0.000		p = 0.00002
Constant	-0.0005	-0.0001	-0.0003	-0.0005	-0.0004
	p = 0.989	p = 0.999	p = 0.993	p = 0.989	p = 0.991
R^2	0.297	0.110	0.304	0.320	0.317
Adjusted R ²	0.296	0.109	0.303	0.318	0.315

Average Variance

J. Poland

Risk Anomaly

Results
In Sample

Asset

Return Prediction

AV	-0.130^{***}			-0.168^{***}	-0.173^{*}
	p = 0.001			p = 0.0001	p = 0.052
AC		0.049		0.108***	
		p = 0.212		p = 0.010	
SV			-0.107^{***}		0.048
			p = 0.006		p = 0.588
Constant	-0.000	-0.000	-0.000	-0.000	-0.000
	p = 1.000	p = 1.000	p = 1.000	p = 1.000	p = 1.000
Ν	655	655	655	655	655
R^2	0.017	0.002	0.012	0.027	0.017
Adjusted R ²	0.015	0.001	0.010	0.024	0.014

Notes: ***,**, and * Significant at the 1, 5, and 10 percent levels.

Risk Anomaly

Results

In Sample
Out of Sample

Asset Allocatio

Out of Sample Results

Table: Sample 1970:07 to 2016:12

	DM	MSE-F	ENC-HLN
AC_{t+1}	1.074	109.736***	1
SV_{t+1}	1.53*	29.252***	1**
AV_{t+1}	2.286**	109.333***	1***
RET_{t+1}	1.278	11.801***	1*

Results

Out of Sample

Out of Sample Results

Table: Sample 1939:12 to 2016:12

	DM	MSE-F	ENC-HLN
AC_{t+1}	1.604*	46.251***	1**
SV_{t+1}	1.041	21.57***	0.956**
AV_{t+1}	3.104***	198.267***	1***
RET_{t+1}	-2.027	-8.702	0

Notes:

***, **, and * Significant at the 1,

5, and 10 percent levels.

Risk Anomal

Results

Asset Allocation

Returns

Asset Allocation

Investment Weight

 $w_{AV,t}=rac{c_{AV}}{AV_{t-1}}$ and $w_{SV,t}=rac{c_{SV}}{SV_{t-1}}$ c is a constant used to equalize the standard deviation of strategies to the buy and hold

Strategy Investment Weight

Risk Anomaly

Results

In Sample Out of Samp

Asset Allocation

Investment Weight

Portfolio	Target	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
SV	C ₀₂₉	0.697	0.762	0.009	0.246	0.512	0.874	8.743
AV	C ₀₂₉	0.702	0.383	0.018	0.425	0.667	0.915	2.296
SV	C _{0.35}	0.841	0.920	0.011	0.297	0.618	1.055	10.552
AV	C035	0.848	0.463	0.022	0.513	0.805	1.104	2.772
SV	C ₀₅₃	1.290	1.412	0.017	0.455	0.948	1.619	16.193
AV	C ₀₅₃	1.301	0.710	0.033	0.787	1.235	1.694	4.253

Asset Allocation

Performance

	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄
ВН	5.932	0.319	0.129	0.082	0.061
SV	8.598	0.462	0.208	0.132	0.097
AV	9.677***	0.520*	0.225	0.150*	0.112**

Risk Anomal

Recult

In Sample
Out of Sample

Asset Allocation

Drawdowns

Strategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
ВН	82	-84.803	-8.069	188	11.549	154	7.207
SV	65	-63.637	-11.196	246	14.954	135	7.446
AV	87	-60.264	-9.026	205	10.851	135	5.034

Average Variance

J. Poland

Risk Anomaly

Reculto

In Sample Out of Samp

Asset Allocation

Leverage

	Constraint - 1.5						C	onstraint -	3	
Portfolio	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄	Return	Sharpe	Sortino	Kappa ₃	Kapı
ВН	5.932	0.319	0.129	0.082	0.061	5.932	0.319	0.129	0.082	0.0
SV	6.171	0.467	0.200	0.128	0.091	7.606	0.456	0.199	0.129	0.09
AV	7.885***	0.486	0.204	0.133	0.097	9.677***	0.522**	0.226**	0.150**	0.112

Notes:

***,**, and * Significant at the 1, 5, and 10 percent lev

Risk Anomal

Dagulka

In Sample

Asset Allocation

Leverage

Risk Anomal

Danulan

In Sample

Asset Allocation

Leverage

