Exercícios sobre problemas NP-Completos

Rosaldo Rossetti

Desenho de Algoritmos, L.EIC

Índice

Exemplos de redução:

- Conjunto Independente e Cobertura de Vértices
- Problema do Caminhada (*Jogging (J)*)

Problemas de exames passados:

- Problema da Marcação de Exames
- Problema do Clique
- Problema da Partilha de Viaturas

Vertex Cover (VC)

• Uma cobertura de vértices de um grafo G = (V, E) é um subconjunto $V_C \subseteq V$, tal que toda aresta $(a, b) \in E$ é incidente em pelo menos um vértice $u \in V_C$.

- Vértices em V_c "cobrem" todas as arestas em G.
- Problema de decisão (VC):
 - O grafo *G* tem uma cobertura de vértices de tamanho ≤*k*?

Independent Set (IS)

• Um conjunto independente de um grafo G = (V, E) é um subconjunto $V_I \subseteq V$, tal que não há dois vértices em V_I que partilham uma aresta de E

u, v ∈ V_I não podem ser vizinhos em G.

- Problema de decisão (IS):
 - O grafo G tem um conjunto independente de tamanho $\geq k$?

Dualidade VC ↔ IS

- Dado grafo não dirigido G=(V,E), seja I, J uma partição de V em dois subconjuntos disjuntos (i.e., $I \cup J = V$ e $I \cap J = \emptyset$)
- Se I é um conjunto independente de vértices, então não podem existir arestas do tipo a, logo os vértices em J tocam todos as arestas de G, logo J é uma cobertura de vértices
- Se J é uma cobertura de vértices, então não podem existir arestas do tipo a, logo I é um conjunto independente de vértices.
- I é um conj. indep. de vértices $\Leftrightarrow V \setminus I$ é uma cobertura de vértices

Vertex Cover é NPC?

- Problema: Sabendo-se que $IS \in NPC$, provar que $VC \in NPC$
- Resolução:
 - a) Dada um conjunto candidato de vértices V_C , é fácil verificar em tempo polinomial $se \mid V_C \mid \leq k$ e se toca em todas as arestas, logo $\underline{VC \in NP}$
 - b) Para provar que <u>VC ∈ NP-hard</u>, indicamos de seguida uma redução de tempo polinomial de IS em VC

Redução de IS a VC

- Seja uma instância qualquer de IS: G = (V, E), k
- Pela propriedade da dualidade, G tem um conjunto independente de vértices (V_l) de tamanho $\geq k$ sse tiver uma cobertura de vértices (V_c) de tamanho $\leq k$, com k'=|V|-k
- Assim, a conversão de entradas é trivial:
 - Dada uma instância qualquer de IS: G = (V, E), k
 - Constrói-se uma instância de VC: G = (V, E), k' = |V| k
- A conversão de saídas é também trivial:
 - Conversão de 'certificados': $V_c \rightarrow V_l = V \setminus V_c$
 - Conversão de decisão: mantém-se a mesma decisão

Problema do Caminhada (Jogging (J))

- Considere um grafo n\u00e3o dirigido G, admitindo arestas paralelas e an\u00e9is, com pesos inteiros positivos nas arestas, no qual se distingue um v\u00e9rtice home.
- O problema da caminhada (Jogging (J)) consiste em verificar se existe um caminho de peso total k, começando e terminando em home, sem repetir arestas.

 Prove que J é um problema NPC, sabendo-se que <u>o problema da</u> soma de subconjuntos é NPC.

Problema da Soma de Subconjuntos (SS)

Dado um conjunto de inteiros positivos, S, há um subconjunto, S' em S, tal que a soma dos elementos de S' seja k?

Find S' with sum = 15!

Problema da Caminhada é NPC?

- Um caminho candidato é facilmente verificável em tempo polinomial, logo $J \in NP$
- Para provar que $J \in NP$ -hard, reduz-se SS a J em tempo polinomial. Como?
 - Dado um conjunto S, cria-se um grafo G com um único vértice home e um anel de peso x para cada elemento x∈S (conversão de entradas)
 - S tem um subconjunto de soma k sse G tem um caminho de peso total k sem repetir arestas (conversão de saídas)

Problema da Marcação de Exames

Problema da Marcação de Exames

(exame 2016/17)

- Estudantes podem inscrever-se em vários cursos.
- Todos os exames finais terão duração de 1h.
- Determinar o número mínimo de slots de exame de 1 hora, a fim de evitar que estudantes inscritos em vários cursos tenham exames sobrepostos
- a) Reformule este problema como um problema de decisão.
- b) Verifique se há uma solução eficiente para este problema, explicando os passos da sua solução.
- Sugestão: Poderá utilizar as seguintes definições de problemas
 NP-completo: Cobertura de Vértices, Coloração de Grafos

Exemplo

Estudantes Cursos Conflitos

Slot 1 C1 E1 C2 Slot 2
E3 C2
E4 C3
E5 C4 E4 C3

Resolução

- a) Determinar se é possível usar um número de slots ≤ k, a fim de evitar que estudantes inscritos em vários cursos tenham exames sobrepostos
- b) O problema é NP-Completo, pois:
 - É NP, pois uma marcação candidata pode obviamente ser verificada em tempo polinomial
 - É NP-difícil, pois o problema da Coloração de Grafos é redutível em tempo polinomial ao problema da Marcação de Exames
 - Dado um grafo G=(V,E), cada vértice é convertido num curso e cada aresta é convertida num estudante que está inscrito nos 2 cursos correspondentes aos vértices em que incide a aresta
 - Os *slots* da solução do problema da marcação de exames correspondem a cores no problema da coloração de grafos
 - Ver ilustrações a seguir

Coloração de Grafos

Marcação de Exames

Problema do Clique

Problema do Clique (recurso 2016/17)

- Um clique de um grafo não dirigido é um subconjunto dos seus vértices, tal que, para quaisquer pares de vértices u e v neste subconjunto, existe uma aresta do grafo que liga os vértices u e v. O problema de otimização consiste em encontrar um clique de tamanho máximo.
- a) Reformule este problema como um problema de decisão.
- b) Verifique se há uma solução eficiente para este problema, explicando os passos da sua solução.
- <u>Sugestão</u>: poderá utilizar as seguintes definições de problemas
 NP-completo: Coloração de Grafos, Conjunto Independente

Exemplo

3 4

Cliques de tamanho 3:

Resolução

- a) Dado um grafo não dirigido G=(V,E) e um k∈N, verificar se G tem um clique de tamanho ≥ k?
- b) O problema é NP-Completo, pois:
 - É NP, pois um clique candidato pode obviamente ser verificado em tempo polinomial
 - É NP-difícil, pois o problema do Conjunto Independente é redutível em tempo polinomial ao problema do Clique
 - Dado um grafo não dirigido G=(V,E), converte-se no grafo complementar G'=(V,E') com os mesmos vértices e o conjunto complementar de arestas
 - Um clique de tamanho k de G' é um conjunto independente de tamanho k de G, e vice-versa
 - Ver ilustrações a seguir

Problema do Conjunto Independente

(conjunto independente de tamanho 3)

Problema do Clique

(clique de tamanho 3)

Problema da Partilha de Viaturas

Problema da Partilha de Viaturas

- Um grupo de pessoas pretende organizar os transportes em viatura própria (ida e regresso) para uma atividade de lazer num ponto definido, minimizando o consumo de combustível.
 - Assumir que o consumo depende apenas da distância percorrida
- Para esse efeito, pessoas partindo de casas diferentes nas suas viaturas podem encontrar-se em pontos intermédios, deixando aí um dos carros (procedendo de forma inversa no regresso).
 - Assumir que é possível deixar o carro em qualquer ponto
- Mostrar que é um problema NP-completo, sabendo-se que o problema da Árvore de Steiner em Grafos (ver slide seguinte) é NP-completo

Problema da Árvore de Steiner (1/2)

- Seja G = (V, E) um grafo não dirigido com pesos não negativos
- Seja $S \subseteq V$ um subconjunto de vértices, chamados **terminais**.
- Uma árvore de Steiner é uma árvore em G que contém todos os vértices de S.
- Problema de otimização: encontrar uma árvore de Steiner de peso mínimo
 - É o mesmo que uma árvore de expansão mínima, no caso de S = V
- Problema de decisão (com pesos inteiros): determinar se existe uma árvore de Steiner de peso total que não excede um número natural k pré-definido
 - Sabe-se que é um problema NP-completo

Problema da Árvore de Steiner (2/2)

S={A, B, C, D, E}

Peso total da árvore: 33

Problema da Partilha de Viaturas

Distância total percorrida pelo conjunto de viaturas: $2 \times (18 + 6 + 2 + 7) = 2 \times 33 = 66$

Resolução

- Problema de decisão: é possível efetuar o transporte com distância total percorrida ≤ k, pelo conjunto de viaturas?
- É um problema NP, pois uma solução candidata (com plano de percursos das viaturas) pode ser facilmente verificada em tempo polinomial
- É um problema NP-difícil, pois o problema da Árvore de Steiner é redutível ao problema da Partilha de Viaturas em tempo polinomial
 - Faz-se corresponder conjunto S a conjunto de pontos de partida e de chegada (pode-se escolher um arbitrariamente como ponto de chegada)
 - Cada ponto de partida tem uma pessoa e uma viatura de capacidade=|S|
 - Existe árvore de Steiner de peso total \leq k se e só se existe forma de partilha de viaturas com peso total (distância total) \leq 2k