10 Schedule

Mon, Jul 28	Session
08:00-17:30	Registration Desk Open ()
08:45-09:00	Conference Opening (HH Auditorium)
09:00-10:00	Plenary Talk by Rohan Sawhney (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part I (HH Auditorium)
10:30-12:30	Track B: Domain Uncertainty Quantification (HH Ballroom)
10:30-12:30	Track C: Nested expectations: models and estimators, Part I (PH Auditorium)
10:30-12:30	Track D: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I (WH
	Auditorium)
10:30-12:30	Track E: Technical Session 1 - Markov Chain Monte Carlo (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences
	(HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: Stochastic Computation and Complexity, Part II (HH Auditorium)
15:30-17:30	Track G: Recent advances in optimization under uncertainty (HH Ballroom)
15:30-17:30	Track H: Computational Methods for Low-discrepancy Sampling and Applications
	(PH Auditorium)
15:30-17:30	Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 (WH Auditorium)
15:30-17:30	Track J: Technical Session 12 - PDEs (HH Alumni Lounge)
17:30-19:30	Welcome Reception (HH Lobby)

Tue, Jul 29	Session
08:30-17:30	Registration Desk Open (???)
09:00-10:00	Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:
	COSIMLA (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part III (HH Auditorium)
10:30-12:30	Track B: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part I (HH Ballroom)
10:30-12:30	Track C: Heavy-tailed Sampling (PH Auditorium)
10:30-12:30	Track D: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part I (WH Auditorium)
10:30-12:30	Track E: Technical Session 2 - Bayesian Methods (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and
	Screening: From Monte Carlo to Experimental Design ()
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: Stochastic Computation and Complexity, Part IV (HH Auditorium)
15:30-17:30	Track G: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part II (HH Ballroom)
15:30-17:30	Track H: Advances in Rare Events Simulation (PH Auditorium)
15:30-17:30	Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part II (WH Auditorium)
15:30-17:30	Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2 (HH Alumni Lounge)

Schedule 11

Wed, Jul 30	Session
08:30-16:30	Registration Desk Open ()
09:00-10:00	Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach
	to quantifying model uncertainty of SDEs (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part V (HH Auditorium)
10:30-12:30	Track B: Statistical Design of Experiments (HH Ballroom)
10:30-12:30	Track C: Advances in Adaptive Hamiltonian Monte Carlo (PH Auditorium)
10:30-12:30	Track D: Technical Session 15 - Simulation (WH Auditorium)
10:30-12:30	Track E: Technical Session 6 - Sampling (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-16:00	Track F: Stochastic Optimization (HH Auditorium)
14:00-16:00	Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications (HH
	Ballroom)
14:00-16:00	Track H: Monte Carlo Applications in High-performance Computing, Computer
	Graphics, and Computational Science (PH Auditorium)
14:00-16:00	Track I: Technical Session 16 - Statistics (WH Auditorium)
14:00-16:00	Track J: Technical Session 10 - Langevin (HH Alumni Lounge)
16:00-16:30	Coffee Break (HH Lobby)
18:00-20:30	Conference Dinner (Bridgeport Arts Center)
	a ·
Thu, Jul 31	Session Park Company (2022)
08:30-17:30	Registration Desk Open (???)
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-

Thu, Jul 31	Session
08:30-17:30	Registration Desk Open (???)
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-
	ods and Optimization Strategies (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: QMC and Applications Part I (HH Auditorium)
10:30-12:30	Track B: Analysis of Langevin and Related Sampling Algorithms, Part I (HH Ball-
	room)
10:30-12:30	Track C: Nested expectations: models and estimators, Part II (PH Auditorium)
10:30-12:30	Track D: Technical Session 8 - Finance (WH Auditorium)
10:30-12:30	Track E: Technical Session 13 - ML & Optimization (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte
	Carlo and its application to exact ecological inference (HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: QMC and Applications Part II (HH Auditorium)
15:30-17:30	Track G: Analysis of Langevin and Related Sampling Algorithms, Part II (HH Ball-
	room)
15:30-17:30	Track H: Recent Advances in Stochastic Gradient Descent (PH Auditorium)
15:30-17:30	Track I: Technical Session 7 - Sampling (WH Auditorium)
15:30-17:30	Track J: Technical Session 11 - SDEs (HH Alumni Lounge)
18:00-20:30	Steering Committee Meeting (by invitation) ()

Fri, Aug 1	Session
08:30-12:15	Registration Desk Open (???)
09:00-10:30	Track A: Forward and Inverse Problems for Stochastic Reaction Networks (HH Au-
	ditorium)
09:00-10:30	Track B: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH
	Ballroom)
09:00-10:30	Track C: Technical Session 3 - Simulation (PH Auditorium)
09:00-10:30	Track D: Technical Session 9 - Sampling (WH Auditorium)
09:00-10:30	Track E: Technical Session 14 - Markov Chain Monte Carlo (HH Alumni Lounge)
10:30-11	Coffee Break (HH Lobby)
11:00-12:00	Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference
	(HH Auditorium)
12:00-12:15	Closing Remarks ()

b
\vdash
•=
\Box
ت
ornin
. •
Ž
_
- 1
- 1
10
77
C
2025
\sim
61
_
$\frac{28}{9}$
W
\sim
- '
$\overline{}$
Jul
_

			TBD	Track E: Technical Session	1 - Markov Chain Monte	Carlo	Chair: TBD	Zhihao Wang,			Heavy-tailed Sampling, p. 138	Ruben Seyer, Creating	rejection-free samplers by	rebalancing skew-balanced	jump processes, p. 139				Philippe Gagnon,	Theoretical guarantees for	lifted samplers, p. 140								
			Special Session, TBD	Track D: Hardware or	Software for	(Quasi-)Monte Carlo	Algorithms, Part I, p. 35 Chair: TBD	Pieterjan Robbe,	Multilevel quasi-Monte	Carlo without replications,	p. 80	Irina-Beatrice Haas, A	nested Multilevel Monte	Carlo framework for	efficient simulations on	FPGAs, p. 80			Mike Giles, CUDA	implementation of MLMC	on NVIDIA GPUs, p. 81			Chaina Mina Loi Coolabla	and User-friendly OMC	Sampling with UMBridge,	p. 82		
			Special Session, TBD	Track C: Nested	expectations: models and	estimators, Part I, p. 34	Chair: TBD	Abdul Lateef Haji Ali, An	Adaptive Sampling	Algorithm for Level-set	Approximation, p. 77	Sebastian Krumscheid,	Double-loop randomized	quasi-Monte Carlo	estimator for nested	integration, p. 77			$Vinh\ Hoang,$	Posterior-Free A-Optimal	Bayesian Design of	Experiments via	Conditional Expectation,	p. 78 Voca Kaaminia OMC for	Bayesian optimal	experimental design with	application to inverse	problems governed by	PDEs. p. 79
	whney, p. ?? Chair:		Special Session, TBD	Track B: Domain	Uncertainty Quantification	, p. 33	Chair: <i>TBD</i>	André-Alexander	Zepernick, Domain UQ	for stationary and	time-dependent PDEs using OMC, p. 74	Carlos Jerez-Hanckes,	Domain Uncertainty	Quantification for	Electromagnetic Wave	Scattering via First-Order	Sparse Boundary Element	Approximation, p. 75	Jürgen Dölz, Quantifying	uncertainty in spectral	clusterings: expectations	for perturbed and	incomplete data, p. 76	Hami Halmila Madal	Problems for PDEs on	Uncertain Domains, p. 76			
Registration Desk Open	Conference Opening Plenary Talk: Rohan Sawhney, p. ??	Coffee Break	Special Session, TBD	Track A: Stochastic	Computation and	Complexity, Part I, p. 32	Chair: TBD	Andreas Neuenkirch, A	strong order 1.5 boundary	preserving discretization	scheme for scalar SDEs defined in a domain. p. 72	Christopher Rauhögger,	An adaptive Milstein-type	method for strong	approximation of systems	of SDEs with a	discontinuous drift		Verena Schwarz, Stong	order 1 adaptive	approximation of	jump-diffusion SDEs with	discontinuous drift, p. 73						
08:00-17:30	08:45-09:00 $9:00-10:00$	10:00-10:30						10:30–12:30				10:30-12:30							10:30–12:30					10.30 19.30	00:01				

Jul 28, 2025 – Afternoon

12:30–14:00					
14:00-15:00	k:	Christiane Lemieux, U of Waterloo	of Waterloo, Golden ratio nets and sequences, p. 22	equences, p. 22 Chair:	
15:00–15:30	Special Session, TBD Track F: Stochastic Computation and Complexity, Part II, p. 37 Chair: TBD	Special Session, TBD Track G: Recent advances in optimization under uncertainty, p. 38 Chair: TBD	Special Session, TBD Track H: Computational Methods for Low-discrepancy Sampling and Applications, p. 39 Chair: TBD	TBD Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 Chair: TBD	TBD Track J: Technical Session 12 - PDEs Chair: TBD
15:30–17:30	Michael Gnewuch, Optimality of deterministic and randomized QMC-cubatures on several scales of function spaces, p. 82	Tapio Helin, Stability of Expected Utility in Bayesian Optimal Experimental Design, p. 85	François Clément, Searching Permutations for Constructing Low-Discrepancy Point Sets and Inverstigating the Kritzinger Sequence, p. 88	Christian Weiss, Halton Sequences, Scrambling and the Inverse Star-Discrepancy, p. 148	Adrien Richou, A probabilistic Numerical method for semi-linear elliptic Partial Differential Equations, p. 171
15:30–17:30	Kateryna Pozharska, Optimal designs for function discretization and construction of tight frames, p. 84	Karina Koval, Subspace accelerated measure transport methods for fast and scalable sequential experimental design, p. 86	Nathan Kirk, Minimizing the Stein Discrepancy, p. 89	Xiaoda Xu, Star discrepancy and uniform approximation under weighted simple and stratified random sampling, p. 149	Abdujabar Rasulov, Monte Carlo method for the Spatially Homogenous Boltzmann equation, p. 171
15:30–17:30	Leszek Plaskota, Complexity of approximating piecewise smooth functions in the presence of deterministic or random noise, p. 85	Johannes Milz, Randomized quasi-Monte Carlo methods for risk-averse stochastic optimization, p. 87	Makram Chahine, Improving Efficiency of Sampling-based Motion Planning via Message-Passing Monte Carlo, p. 89	Sifan Liu, Transport Quasi-Monte Carlo, p. 150	Miguel Alvarez, A New Approach for Unbiased Estimation of Parameters of Partially Observed Diffusions, p. 172
15:30–17:30		Arved Bartuska, Efficient expected information gain estimators based on the randomized quasi-Monte Carlo method, p. 87	Gregory Seljak, An Empirical Evaluation of Robust Estimators for RQMC, p. 90	Ambrose Emmett-Iwaniw, Using Normalizing Flows for Efficient Quasi-Random Sampling for Copulas, p. 151	Håkon Hoel, High-order adaptive methods for exit times of diffusion processes and reflected diffusions, p. 173
17:30-19:30	Welcome Reception				

Jul~29,~2025-Morning

	Chair:		TBD	Track E: 1echnical Session	2 - Bayesian Methods Chair: <i>TBD</i>		Lorenzo Nagar, Optimizing Generalized Hamiltonian Monte Carlo for Bayesian Inference applications, p. 141	Hamza Ruzayqat, Bayesian Anomaly Detection in Variable-Order and Variable-Diffusivity Fractional Mediums, p. 142	Arghya Datta, Theoretical Guarantees of Mean Field Variational Inference for Bayesian Principal Component Analysis, p. 143	Jimmy Lederman, Bayesian Analysis of Latent Underdispersion Using Discrete Order Statistics, p. 143
	Algebra: COSIMLA, p. 23		Special Session, TBD	$\underset{(\widehat{\boldsymbol{n}})}{\operatorname{Irack}} \underline{\boldsymbol{n}} . . \underline{\boldsymbol{n}} .$	(Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part I, p. 46	Chair: TBD	Hwanwoo Kim, Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration, p. 98			
	ng Simulation and Linear		Special Session, TBD	Irack C: Heavy-tailed	Sampling, p. 44 Chair: <i>TBD</i>		Sebastiano Grazzi, Parallel computations for Metropolis Markov chains Based on Picard maps, p. 95	Federica Milinanni, A large deviation principle for Metropolis-Hastings sampling, p. 96	Xingyu Wang, Sharp Characterization and Control of Global Dynamics of SGDs with Heavy Tails, p. 97	
0	Peter Glynn, Stanford U, Combining Simulation and Linear Algebra: COSIMLA, p. 23		Special Session, TBD	1rack B: Next-generation	optimal experimental design: theory, scalability, and real world impact: Part I, p. 42	Chair: TBD	Xun Huan, Optimal Pilot Sampling for Multi-fidelity Monte Carlo Methods, p. 93	Adrien Corenflos, A recursive Monte Carlo approach to optimal Bayesian experimental design, p. 94	Ayoub Belhadji, Weighted quantization using MMD: From mean field to mean shift via gradient flows, p. 94	
Begistration Desk Onen	Plenary Talk: Peter Gly	Coffee Break	Special Session, TBD	Irack A: Stochastic	Computation and Complexity, Part III, p. 41 Chair: TBD		Jean-François Chassagneux, Computing the stationary measure of McKean-Vlasov SDEs, p. 91	Noufel Frikha, On the convergence of the Euler-Maruyama scheme for McKean-Vlasov SDEs, p. 91	Sotirios Sabanis, Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients, p. 92	
08:30-17:30	09:00-10:00	10:00-10:30					10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	te Carlo to Experimental		TBD	Track J: Technical Session 5 - Quasi-Monte Carlo,	Part 2	Chair: <i>TBD</i>	$Peter\ Kritzer,$	Approximation using	median lattice algorithms,	p. 132	Yang Liu, Convergence	Rates of Randomized	Quasi-Monte Carlo	Megularity Conditions.	p. 152	Jakob Dilen, Use of rank-1	lattices in the Fourier	nemai operator, p. 195				Aadit Jain, Investigating	the Optimum RQMC	Datch Size for Detting and	Empirical Bernstein	Commence intervals, p. 153
) u	ınd Screening: From Mon		Special Session, TBD	Track I: Frontiers in (Quasi-)Monte Carlo and	Markov Chain Monte	Carlo Methods, Part II, p. 51 Chair: TBD	Takashi Goda,	Quasi-uniform	quasi-Monte Carlo digital	nets, p. 103	Ziang Niu, Boosting the	inference for generative	models by (Quasi-)Monte	Carlo resampung, p. 100		Chenyang Zhong, A hit	and run approach for	samping and analyzing ranking models. p. 107								
1 1	Roshan Joseph, Georgia Institute of Lechnology, Sensitivity and Screening: From Monte Carlo to Experimental Chair:		Special Session, TBD	Track H: Advances in Rare Events Simulation, p. 50	Chair: TBD		Victor Elvira, Multiple	Importance Sampling for	Rare Event Simulation in	Communication Systems, p. 103	Bruno Tuffin, Asymptotic	robustness of smooth	functions of rare-event	estillators, p. 105		Eya Ben Amar,	Importance Sampling	Differential Equations for	the Estimation of the	Right Tail of the CCDF of	the Fade Duration, p. 104	Shyam Mohan Subbiah	Fillai, Estimating rare	event probabilities	associated with	McNeall-Viasov SDES, p. 104
	osepn, Georgia Institute o		Special Session, TBD	Track G: Next-generation optimal experimental	design: theory, scalability,	and real world impact: Part II, p. 48 Chair: TBD	Alen Alexanderian, Goal	Oriented Sensor Placement	for Infinite-Dimensional	bayesian inverse Problems, p. 100	jacopo iollo,	Diffusion-Based Bayesian	Experimental Design:	Advalleng DED for Practical Applications.	p. 101	Tommie Catanach,	Robust Bayesian Optimal	nnder Model	Misspecification, p. 102							
	Plenary Talk: Roshan J. Design, p. 24 Chair:	Coffee Break	Special Session, TBD	Track F: Stochastic Computation and	Complexity, Part IV, p. 47	Chair: TBD	Larisa Yaroslavtseva,	Optimal strong	approximation of SDEs	with Holder continuous drift coefficient, p. 98	Gunther Leobacher,	Tractability of	L_2 -approximation and	integration in weighten Hermite spaces of finite	smoothness, p. 99	Alexander Steinicke,	Malliavin differentiation of	Elpschitz SDEs and BSDEs and an Application	to Quadratic	Forward-Backward SDEs,	p. 100					
12:30–14:00	14:00–15:00	15:00-15:30					15:30–17:30				15:30-17:30					15:30–17:30						15:30–17:30				

Jul~30,~2025-Morning

model uncertainty of				o - Sampling	Cnair: 1BD	Akash Sharma, Sampling	with constraints, p. 154		Jc			1 D C	from high-dimensional.			tempered Hamiltonian	Monte Carlo, p. 155			IOF non-Gaussian	distributions, p. 150			,	rrocesses, p. 150 n	
approach to quantifying		TBD	Track D: Technical Session	15 - Simulation	Cnair: 1 <i>bD</i>	Philippe Blondeel,	Combining quasi-Monte	Carlo with Stochastic Optimal Control for	Trajectory Optimization of	Autonomous Vehicles in	Mine Counter Measure	Simulations, p. 180	Carlo Approach to	Designing a Novel Sample	Holder for Enhanced	UV-Vis Spectroscopy,	p. 181		ARCANE Reweighting: A	technique to tackie the	sign problem in the simulation of collider	events in high energy	physics, p. 182	Nicole Aretz, Multindehty and Surrogate Modeling	Approaches for Uncertainty Quantification in Ice Sheet Simulations,	p. 183
of Klagenfurt, An optimal transport approach to quantifying model uncertainty of		Special Session, TBD	Track C: Advances in	Adaptive Hamiltonian	Monte Carlo, p. 30 Chair: TBD	Bob Carpenter, GIST:	Gibbs self-tuning for	locally adapting Hamiltonian Monte Carlo.	p. 113			Mannet Dan Dale	Acceleration of the	No-U-Turn Sampler, p. 113	1			Chirag Modi, ATLAS:	Adapting Trajectory	Lengths and Step-Size for	p. 114	•		Trevor Campbell, AutoStep: Locally	adaptive involutive MCMC, p. 115	
k Open Michaela Szölgyenyi, U of Klagenf r Chair:		Special Session, TBD	Track B. Statistical Design	of Experiments, p. 54	Onair: 1 <i>bD</i>	Simon Mak, Respecting	the boundaries:	Space-filling designs for surrogate modeling with	boundary information,	p. 110			designs: designing	multi-fidelity computer	experiments with target	predictive accuracy, p. 111		Qian Xiao, Optimal	design of experiments with	quantitative-sequence	lactors, p. 112			Chaofan Huang, Factor Importance Ranking and	Selection using 10tal Indices, p. 112	
Registration Desk Open Plenary Talk: Michaela SDEs, p. 25 Chair:	Coffee Break	Special Session, TBD	Track A: Stochastic	Computation and	Complexity, Fart v, p. 53 Chair: TBD	Stefan Heinrich, On the	quantum complexity of	parametric integration in Sobolev spaces, p. 108				I'F and H. R. Form G	Derna Rabentouel, Quantum Integration in	Tensor Product Besov	Spaces, p. 108			Nikolaos Makras, Taming	the Interacting Particle	Langevin Algoritum — The Currentiness Case	nie Supemiear Case, p. 109	1		Iosif Lytras, Sampling with Langevin Dynamics	from non-smooth and non-logconcave potentials., p. 109	1
08:30–16:30 09:00–10:00	10:00-10:30					10:30-12:30						10.90 19.90	10.30-12.30					10:30–12:30					00 00	10:30–12:30		

Jul~30,~2025-Afternoon

12:30–14:00	Lunch Break				
	Special Session, TBD Track F: Stochastic Optimization, p. 58 Chair: TBD	Special Session, TBD Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications, p. 59 Chair: TBD	Special Session, TBD Track H: Monte Carlo Applications in High-performance Computing, Computer Graphics, and Computational Science, p. 61 Chair: TBD	TBD Track I: Technical Session 16 - Statistics Chair: TBD	TBD Track J: Technical Session 10 - Langevin Chair: TBD
14:00–16:00	Raghu Bollapragada, Monte Carlo Based Adaptive Sampling Approaches for Stochastic Optimization, p. 115	Haotian Jiang, Algorithmic Discrepancy Theory: An Overview, p. 117	Arash Fahim, Gaining efficiency in Monte Carlo policy gradient methods for stochastic optimal control, p. 118	Kazeem Adeleke, Empirical Statistical Comparative Analysis of SNP Heritability Estimators and Gradient Boosting Machines (GBM) Using Genetic Data from the UK Biobank, p. 183	Attila Lovas, Stochastic gradient Langevin dynamics with non-stationary data, p. 165
14:00–16:00	Shane Henderson, A New Convergence Analysis of Two Stochastic Frank-Wolfe Algorithms, p. 116	Peng Zhang, Improving the Design of Randomized Experiments via Discrepancy Theory, p. 117	Silei Song, WoS-NN: Collaborating Walk-on-Spheres with Machine Learning to Solve Ellip- tic PDEs, p. 119	Carles Domingo-Enrich, Cheap permutation testing , p. 184	Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 166
14:00–16:00		Aleksandar Nikolov, Online Factorization for Online Discrepancy Minimization, p. 118		Christopher Draper, Moving PCG beyond LCGs, p. 185	
14:00–16:00				Yiming Xu , Hybrid least squares for learning functions from highly noisy data, p. 185	
$16:00-16:30\\18:00-20:30$	Coffee Break Conference Dinner				

Jul~31,~2025-Morning

	. Strategies, p. 26		TBD Track E: Technical Session 13 - ML & Optimization Chair: TBD	Frédéric Blondeel, Learning cooling strategies in simulated annealing through binary interactions, p. 174	Du Ouyang, Accuracy of Discretely Sampled Stochastic Policies in Continuous-Time Reinforcement Learning, p. 175	Wei Cai, Martingale deep neural networks for quasi-linear PDEs and stochastic optimal controls in 10,000 dimensions, p. 176	Yiqing Zhou, Minimizing Functions with Sparse Samples: A Fast Interpolation Approach, p. 176
	Plenary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization Strategies, p. 26 Chair:		TBD Track D: Technical Session 7 8 - Finance 1 Chair: TBD	ev, The rential e Heston on Pricing,	Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion Expectation-based Simulations on Low-Volatility American Formula Stocks, p. 161	Hao Quan, Efficient Variable no Annuity via Simulation, q p. 163 simulation, p	H S S I I I I I I I I I I I I I I I I I
	-Based MCMC Sampling:		Special Session, TBD Track C: Nested expectations: models and estimators, Part II, p. 64 Chair: TBD	RAUL TEMPONE, Multilevel randomized quasi-Monte Carlo estimator for nested expectations, p. 124	Matteo Raviola, Stochastic gradient with least-squares control variates, p. 125	Philipp Guth, A one-shot method for Bayesian optimal experimental design, p. 126	
	ık, UC Berkeley, Gradient		Special Session, TBD Track B: Analysis of Langevin and Related Sampling Algorithms, Part I, p. 63 Chair: TBD	Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 122	Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 123	Xiaoou Cheng, Delocalization of Bias in Unadjusted Hamiltonian Monte Carlo, p. 124	
Registration Desk Open	Plenary Talk: Uros Selja Chair:	Coffee Break	Special Session, TBD Track A: QMC and Applications Part I, p. 62 Chair: TBD	Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 120	Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 121	Zhijian He, High-dimensional density estimation on unbounded domain, p. 121	Frances Y. Kuo, Application of QMC to Oncology, p. 122
08:30-17:30	09:00-10:00	10:00-10:30		10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

Jul 31, 2025 – Afternoon 12:30-14:00 Lunch Break

	ication to exact		TBD Track J: Technical Session 11 - SDEs Chair: TBD	Fabio Zoccolan, Dynamical Low-Rank Approximation for SDEs: an interacting particle-system ROM, p. 167	Riccardo Saporiti, Comparing Probabilistic Load Forecasters: Stochastic Differential Equations and Deep Learning, p. 169	Leon Wilkosz, Forward Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 170		
	Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact ence, p. 28 Chair:		TBD Track I: Technical Session 7 - Sampling Chair: TBD	Kun-Lin Kuo, Revisiting the Gibbs Sampler: A Conditional Modeling Perspective, p. 157	Sascha Holl, Concatenation of Markov processes for Monte Carlo Integration, p. 157	Josephine Westermann, Polynomial approximation for efficient transport-based sampling, p. 159	Soumyadip Ghosh, Fast Approximate Matrix Inversion via MCMC for Linear System Solvers, p. 159	
	ique de Paris, Saddlepoint		Special Session, TBD Track H: Recent Advances in Stochastic Gradient Descent, p. 67 Chair: TBD	Jose Blanchet, Inference for Stochastic Gradient Descent with Infinite Variance, p. 131	Jing Dong, Stochastic Gradient Descent with Adaptive Data, p. 132			
	Jhopin, Institut Polytechni Chair:		Special Session, TBD Track G: Analysis of Langevin and Related Sampling Algorithms, Part II, p. 66 Chair: TBD	Molei Tao, Langevin-Based Sampling under Nonconvex Constraints, p. 129	Yifan Chen, Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias, p. 129	Fuzhong Zhou, Entropy methods for the delocalization of bias in Langevin Monte Carlo, p. 130	Siddharth Mitra, Convergence of Ф-Divergence and Ф-Mutual Information Along Langevin Markov Chains, p. 130	; (by invitation)
	Plenary Talk: Nicolas C ecological inference, p. 28	Coffee Break	Special Session, TBD Track F: QMC and Applications Part II, p. 65 Chair: TBD	Dirk Nugens, Approximation of multivariate periodic functions, p. 126	Art Owen, Randomized QMC with one categorical variable, p. 127	Zexin Pan, QMC confidence intervals using quantiles of randomized nets, p. 128	Kosuke Suzuki, Quasi-uniform quasi-Monte Carlo lattice point sets, p. 128	Steering Committee Meeting (by invitation)
12:30-14:00	14:00-15:00	15:00-15:30		15:30–17:30	15:30–17:30	15:30–17:30	15:30–17:30	18:00-20:30

らつられ	Ì
_	1,
	20

08:30_19:15	Registration Desk Open				
00:00	Crocial Costion TRD	Special Session TBD	TBN	ТВЛ	ТВП
	Theol: A. Domingard and	Theol. B. Hendmen on	Treel C. Toohnieel Coccion	Theoly D. Tookning Contion	Though F. Tookning Comics
	Ifack A: Forward and	Track B: Hardware or	Irack C: lechnical Session	1 rack D: 1 technical Session ::	Irack E: 1echnical Session
	Inverse Problems for	Software for	3 - Simulation	9 - Sampling	14 - Markov Chain Monte
	Stochastic Reaction	(Quasi-)Monte Carlo	Chair: TBD	Chair: TBD	Carlo
	Networks, p. 68	Algorithms, Part II, p. 69			Chair: TBD
	Chair: TBD	Chair: TBD			
09:00-10:30	Zhou Fang, Fixed-budget	Niklas Baumgarten, A	Yashveer Kumar, Monte	$Nicola\ Branchini,$	Kevin Bitterlich, Delayed
	simulation method for	High-performance	Carlo simulation approach	Revisiting self-normalized	Acceptance Slice
	growing cell populations.	Multi-level Monte Carlo	to solve distributed order	importance sampling: new	Sampling: A Two-Level
	5 129	Coffusion for Dall Diold	frontional mothematical	mothode and discondition	mothod for Improved
	p. 132		ractional mathematical	methods and diagnostics,	mernoa 101 improvea
		Estimates and	model, p. 145	p. 163	Efficiency in
		Applications in Optimal			High-Dimensional Settings
		Control, p. ??			, p. 177
09:00-10:30	Sophia Münker.	Aleksei Sorokin. Fast	Serena Fattori.	Daniel Yukimura.	Reuben Cohn-Gordon.
	Dimongionality Dodugtion		Donohmonling +ho	Onentitetim manite on	Crediont beend MOMO in
	for Effective Dense E	daussian i locesses, p. 199	Communication of the communica	danciality is and on	diadient-based Monto
	for Emclent Rare Event		Geant4-DINA UHDR	sampiing iroin	nign dimensions, p. 178
	Estimation, p. 133		Example for Monte Carlo	quasi-stationary	
			Simulation of pH Effects	distributions, p. 164	
			on Radiolytic Species		
			Yields Using a Mesoscopic		
			Approach, p. 145		
09:00-10:30	Maksim Chupin, Filtered	Johannes Krotz, Hybrid	Toon Ingelaere, Multilevel	Amit Subrahmanya, Serial	Philip Schaer, Parallel
	Markovian Projection:	Monte Carlo methods for	simulation of ensemble	ensemble filtering with	Affine Transformation
	Dimensionality Reduction	kinetic transport n 136	Kalman methods:	marginal counting a 165	Tining: Dresticelly
		william arangem, p. 100		marginar coapiing, p. 100	T
	In Filtering for Stochastic		interactions across levels,		Improving the
	Reaction Networks, p. 134		p. 147		Effectiveness of Slice
					Sampling, p. 179
09:00-10:30	Muruhan Rathinam, State		Muhammad Noor ul Amin,		$Annabelle\ Carrell,$
	and parameter inference in		Adaptive Max-EWMA		Low-Rank Thinning,
	stochastic reaction		Control Chart with SVR:		p. 180
	networks, p. 135		Monte Carlo Simulation		•
			for Run Length Analysis.		
			p. 147		
	Coffee Break				
11.00-12.00	<u>:</u>	Ročková, II of Chicago	Vernnika Bočková. II of Chicago. AI-Pomered Banesian Inference n 30	rence n 30 Chair.	
7 0000		Trocuration of the control of			