Practice quiz on Bayes Theorem and the Binomial Theorem

TOTAL POINTS 9

1. A jewelry store that serves just one customer at a time is concerned about the safety of its isolated customers.

1 / 1 point

The store does some research and learns that:

- 10% of the times that a jewelry store is robbed, a customer is in the store.
- A jewelry store has a customer on average 20% of each 24-hour day.
- The probability that a jewelry store is being robbed (anywhere in the world) is 1 in 2 million.

What is the probability that a robbery will occur while a customer is in the store?

- $\bigcirc \quad \frac{1}{500000}$
- $\frac{1}{2000000}$
- $\frac{1}{4000000}$
- $\frac{1}{5000000}$

✓ Correct

What is known is:

A: "a customer is in the store," P(A)=0.2

B: "a robbery is occurring," $P(B)=rac{1}{2,000,000}$

 $P(\text{a customer is in the store} \mid \text{a robbery occurs}) = P(A \mid B)$

 $P(A \mid B) = 10\%$

What is wanted:

 $P(\text{a robbery occurs} \mid \text{a customer is in the store}) = P(B \mid A)$

By the product rule:

$$P(B \mid A) = \frac{P(A, B)}{P(A)}$$

and
$$P(A,B) = P(A \mid B)P(B)$$

Therefore:

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)} = \frac{(0.1)\left(\frac{1}{2000000}\right)}{0.2} = \frac{1}{4000000}$$

2. If I flip a fair coin, with heads and tails, ten times in a row, what is the probability that I will get exactly six heads?

1/1 point

- 0.021
- 0.187
- 0.2051
- 0.305

Correct

By Binomial Theorem, equals

$$\binom{10}{6} \left(0.5^{10}\right)$$

$$= \left(\frac{10!}{4! \times 6!}\right) \left(\frac{1}{1024}\right)$$
$$= 0.2051$$

3. If a coin is bent so that it has a 40% probability of coming up heads, what is the probability of getting *exactly* 6 heads in 10 throws?

1 / 1 point

- 0.0974
- 0.1045
- 0.1115
- 0.1219

$$\binom{10}{6} \times 0.4^6 \times 0.6^4 = 0.1115$$

4. A bent coin has 40% probability of coming up heads on each independent toss. If I toss the coin ten times, what is the probability that I get at least 8 heads?

1 / 1 point

0.0213
0.0123
0.0312
0.0132
Correct The answer is the sum of three binomial probabilities: $ (\binom{10}{8} \times (0.4^8) \times (.6^2)) + (\binom{10}{9} \times (0.4^9) \times (0.6^1)) + \\ (\binom{10}{10}) \times (0.4^{10}) \times (0.6^0)) $
$((_{10})) \wedge (0.1) \wedge (0.0)$
Suppose I have a bent coin with a 60% probability of coming up heads. I throw the coin ten times and it comes up heads 8 times. What is the value of the "likelihood" term in Bayes' Theorem the conditional probability of the data given the parameter.
0.168835
0.043945
0.122885
0.120932
✓ Correct Bayesian "likelihood" the p(observed data parameter) is
p(8 of 10 heads coin has p = .6 of coming up heads)
${10 \choose 8} imes (0.6^8) imes (0.4^2) = 0.120932$
We have the following information about a new medical test for diagnosing cancer.
Before any data are observed, we know that 5% of the population to be tested actually have Cancer.

5.

Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer. The other 10% get a false test result of "Negative" for Cancer.

Of the people who do not have cancer, 90% of them get an accurate test result of "Negative" for cancer. The other 10% get a false test result of "Positive" for cancer.

What is the conditional probability that I have Cancer, if I get a "Positive" test result for Cancer?

**Formulas in the feedback section are very long, and do not fit within the standard viewing window. Therefore, the font is a bit smaller and the word "positive test" has been abbreviated as PT.

	O 4.5%
	O 9.5%
	O 67.9%
	$ \odot \ 32.1\%$ probability that I have cancer
	\checkmark Correct I still have a more than $\frac{2}{3}$ probability of not having cancer
	Posterior probability:
	p(l actually have cancer receive a "positive" Test)
	By Bayes Theorem:
	$= \frac{(\text{chance of observing a PT if I have cancer})(\text{prior probability of having cancer})}{(\text{marginal likelihood of the observation of a PT})}$
	$= \frac{p(\text{receiving positive test} \text{ has cancer})p(\text{has cancer} \text{ [before data is observed]})}{p(\text{positive} \text{ has cancer})p(\text{has cancer})+p(\text{positive} \text{ no cancer})p(\text{no cancer})}$
	= (90%)(5%) / ((90%)(5%) + (10%)(95%)
	=32.1%
7.	We have the following information about a new medical test for diagnosing cancer.
	Cancer.
	Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer.
	The other 10% get a false test result of "Negative" for Cancer.
	Of the people who do not have cancer, 95% of them get an accurate test result of "Negative" for cancer.
	The other 5% get a false test result of "Positive" for cancer.
	What is the conditional probability that I have cancer, if I get a "Negative" test result for Cancer?
	0.9%
	O 99.1%
	○ .80%
	O 88.2%

8. An urn contains 50 marbles – 40 blue and 10 white. After 50 draws, exactly 40 blue and 10 white are observed.

1 / 1 point

You are not told whether the draw was done "with replacement" or "without replacement."

What is the probability that the draw was done with replacement?

- \bigcirc 12.27%
- 0 13.98%
- 87.73%
- O 1

✓ Correct

p(40 blue and 10 white | draws without replacement) = 1 [this is the only possible outcome when 50 draws are made without replacement]

p(40 blue and 10 white | draws with replacement)

P = .8 [for draws with replacement] because 40 blue of 50 total means p(blue) = 40/50 = .8

$$(\binom{50}{40})(0.8^{40})(0.2^{10})$$

$$= 13.98\%$$

By Bayes' Theorem:	
p(draws with replacement observed data) =	
$rac{13.98\%(.5)}{(13.98\%)(.5)+(1)(.5)}$	
$= \frac{0.1398}{1.1398}$	
=12.27%	
According to Department of Customs Enforcement Research: 99% of people crossing into the United States are not smugglers.	1 / 1 point
The majority of all Smugglers at the border (65%) appear nervous and sweaty.	
Only 8% of innocent people at the border appear nervous and sweaty.	
If someone at the border appears nervous and sweaty, what is the probability that they are a Smuggler?	
O 7.92%	
92.42%	
7.58%	
O 8.57%	
✓ Correct By Bayes' Theorem, the answer is	
$\frac{(.65)(.01)}{((.65)(.01) + (.08)(.99))}$	

9.

=7.58%