ALGORITHM FOR SOLVING T-PERIOD EGSS. Start T=2.

- 1. Guess $q(\theta_0)$ and Y
- 2. Solve for effort a_1 and a_2 using

$$a_t = \left[\frac{z_t a_t}{\psi_1(Y - \frac{\kappa}{q(\theta)})} - \frac{\psi_t}{\epsilon_F} (h'(a_t) \sigma_{\eta})^2 \right]^{\frac{\varepsilon}{1+\varepsilon}}$$

- 3. Check whether Y is consistent with the a_t 's guessed, given a process for z's
- 4. Update Y to implied \hat{Y}

$$\hat{Y} = \mathbb{E}_0 \left[\sum_{t=0}^{T} (\beta(1-s))^t z_t a_t \right]$$

- (a) Discretize z on a number of values. Assign probability weights to them. Calculate $a_t(z)$. Take expectation numerically.
- 5. Repeat 2-4 until convergence of $Y(\theta_0)$
- 6. Solve for w_0 using (zero profit condition)

$$w_0 = \psi_1 \left(Y(\theta_0) - \frac{\kappa}{q(\theta_0)} \right)$$

- 7. Solve for path of $\mathbb{E}[\log w_t]$: $t = \{1, 2, ..., T\}$ using difference equation in EGSS notes. (Can do for savings or no savings)
 - (a) Again, do the discretizing of z trick from 4 to get the $h'(a_t)$ piece we need.
- 8. Then use this to calculate to value of participation constraint assuming log utility in consumption (so $\mathbb{E}[\log w_t]$ is exactly what we need).
- 9. If implied LHS of participation constraint (expected utility from contract) $> \omega$ then lower guess of θ_0 to $\hat{\theta}$ (check that this seems to be converging; make sure we don't need to raise guess of θ_0).
 - (a) Dichotomy/bisection algorithm. E.g. start with range $\theta \in [\theta_L, \theta_H]$. For starters, let's take $\theta_L = 0$, $\theta_H = 1$. Start with guess $\hat{\theta}_0 = \frac{1}{2}(\theta_L + \theta_H) = 0.5$ (midpoint). If algo above reveals $\hat{\theta}_0 < \theta^*$, then update $\theta_L^1 \to 0.5$ and then $\hat{\theta}_1 = 0.5(\theta_L^1 + \theta_H)$
- 10. Iterate steps 2-??? till convergence.

UTILITY FUNCTIONS

$$u(c) - h(a) = \log c - \frac{a^{1+1/\epsilon}}{1+1/\epsilon}$$

setting $\epsilon=0.5$ following Doligalski, Ndiaye and Werquin (2022)

0.0.1 With savings

$$\max_{c} \sum_{s} \beta^{s} (\log(c_{s}) - h(a_{s}))$$

BC and natural borrowing limit

I think in this income fluctuation problem agents consume a fixed fraction of NPV income

2 changes:

zero profit condition in step 7 and 4

• consumption (income fluctuation