Training a Machine Learning algorithm on Human Excercise data

Introduction

For this project, I was asked to train a Machine Learning algorithm to identify the type of excercise being done using data from various wearable sensors.

Exploratory Data Analysis

We begin by loading the data and the necessary libraries and setting a seed to allow for reproducibility:

```
training <- read.csv("pml-training.csv")
testing <- read.csv("pml-testing.csv")
library(caret); library(ggplot2); library(janitor); library(e1071)

## Loading required package: ggplot2

## Loading required package: lattice

##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':

##
## chisq.test, fisher.test
set.seed(24051998)</pre>
```

We can see that there are some unnecessary variables , we proceed by cleansing both the training and testing data sets:

```
unn_vars <- c("X","user_name","raw_timestamp_part_1","raw_timestamp_part_2","cvtd_timestamp","problem_intraining <- training[,-which(names(training) %in% unn_vars)]
testing <- testing[,-which(names(testing) %in% unn_vars)]
training <- training[,-grep("^var|^std|^avg|^kurtosis|^skewness|^amplitude|^max|^min",names(training))]
testing <- testing[,-grep("^var|^std|^avg|^kurtosis|^skewness|^amplitude|^max|^min",names(testing))]</pre>
```

We factorize the new_window and the classe variables and create a validation data set:

```
training$new_window <- as.factor(training$new_window)
training$classe <- as.factor(training$classe)
testing$new_window <- as.factor(testing$new_window)
inTrain <- createDataPartition(training$classe, p = 0.7, list = F)
training <- training[inTrain,]
validation <- training[-inTrain,]</pre>
```

The structure of the data:

```
head(training)
```

```
8.07
## 5
                         12
                                  1.48
                                                       -94.4
             no
## 6
                         12
                                  1.45
                                              8.06
                                                       -94.4
                                                                             3
             nο
                                              8.09
                                                       -94.4
                                                                             3
## 7
             nο
                         12
                                  1.42
## 8
                         12
                                  1.42
                                              8.13
                                                       -94.4
                                                                             3
             no
##
     gyros_belt_x gyros_belt_y gyros_belt_z accel_belt_x accel_belt_y accel_belt_z
## 1
             0.00
                           0.00
                                        -0.02
                                                         -21
                                                                         4
## 3
             0.00
                            0.00
                                        -0.02
                                                         -20
                                                                         5
                                                                                      23
                                                                         2
## 5
             0.02
                            0.02
                                        -0.02
                                                         -21
                                                                                      24
## 6
             0.02
                            0.00
                                        -0.02
                                                         -21
                                                                         4
                                                                                      21
## 7
             0.02
                            0.00
                                        -0.02
                                                         -22
                                                                         3
                                                                                      21
## 8
             0.02
                            0.00
                                        -0.02
                                                         -22
                                                                         4
                                                                                      21
##
     magnet_belt_x magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm
                                                                          -161
## 1
                 -3
                               599
                                             -313
                                                       -128
                                                                 22.5
## 3
                 -2
                               600
                                             -305
                                                       -128
                                                                 22.5
                                                                          -161
## 5
                 -6
                               600
                                             -302
                                                       -128
                                                                 22.1
                                                                          -161
                                             -312
## 6
                  0
                               603
                                                       -128
                                                                 22.0
                                                                          -161
## 7
                 -4
                               599
                                             -311
                                                      -128
                                                                 21.9
                                                                          -161
                 -2
                               603
## 8
                                             -313
                                                       -128
                                                                 21.8
                                                                          -161
##
     total_accel_arm gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y
## 1
                   34
                              0.00
                                          0.00
                                                       -0.02
                                                                    -288
## 3
                   34
                              0.02
                                          -0.02
                                                       -0.02
                                                                     -289
                                                                                  110
## 5
                   34
                              0.00
                                          -0.03
                                                       0.00
                                                                     -289
                                                                                  111
                                          -0.03
                                                                     -289
## 6
                   34
                              0.02
                                                       0.00
                                                                                  111
## 7
                   34
                              0.00
                                          -0.03
                                                       0.00
                                                                     -289
                                                                                  111
## 8
                   34
                              0.02
                                          -0.02
                                                       0.00
                                                                     -289
                                                                                  111
     accel_arm_z magnet_arm_x magnet_arm_y magnet_arm_z roll_dumbbell
## 1
            -123
                          -368
                                                       516
                                                                 13.05217
                                          337
## 3
            -126
                           -368
                                          344
                                                       513
                                                                 12.85075
## 5
            -123
                           -374
                                          337
                                                       506
                                                                 13.37872
            -122
                           -369
## 6
                                          342
                                                       513
                                                                 13.38246
## 7
                           -373
            -125
                                          336
                                                       509
                                                                 13.12695
## 8
            -124
                           -372
                                          338
                                                       510
                                                                 12.75083
     pitch_dumbbell yaw_dumbbell total_accel_dumbbell gyros_dumbbell_x
          -70.49400
                        -84.87394
## 1
                                                       37
                                                       37
                                                                          0
## 3
          -70.27812
                        -85.14078
## 5
          -70.42856
                        -84.85306
                                                       37
                                                                          0
## 6
          -70.81759
                        -84.46500
                                                       37
                                                                          0
## 7
          -70.24757
                        -85.09961
                                                       37
                                                                          0
                                                       37
## 8
          -70.34768
                        -85.09708
##
     gyros_dumbbell_y gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y
                 -0.02
                                       0
                                                      -234
                 -0.02
## 3
                                       0
                                                       -232
                                                                           46
## 5
                 -0.02
                                       0
                                                       -233
                                                                           48
## 6
                 -0.02
                                       0
                                                       -234
                                                                           48
## 7
                 -0.02
                                       0
                                                       -232
                                                                           47
                                       0
                 -0.02
                                                       -234
## 8
                                                                           46
##
     accel_dumbbell_z magnet_dumbbell_x magnet_dumbbell_z
## 1
                  -271
                                     -559
                                                          293
                                                                             -65
## 3
                  -270
                                     -561
                                                          298
                                                                             -63
## 5
                  -270
                                     -554
                                                          292
                                                                             -68
## 6
                  -269
                                     -558
                                                          294
                                                                             -66
## 7
                  -270
                                     -551
                                                          295
                                                                             -70
## 8
                  -272
                                     -555
                                                          300
     roll_forearm pitch_forearm yaw_forearm total_accel_forearm gyros_forearm_x
```

```
## 3
            28.3
                         -63.9
                                      -152
                                                            36
                                                                         0.03
                         -63.9
## 5
            28.0
                                      -152
                                                            36
                                                                         0.02
            27.9
                         -63.9
                                      -152
                                                            36
## 6
                                                                         0.02
## 7
            27.9
                         -63.9
                                      -152
                                                            36
                                                                         0.02
## 8
            27.8
                         -63.8
                                      -152
                                                            36
                                                                         0.02
    gyros_forearm_y gyros_forearm_z accel_forearm_x accel_forearm_y
               0.00
                              -0.02
## 1
                                                192
## 3
              -0.02
                               0.00
                                                196
                                                                204
## 5
               0.00
                              -0.02
                                                189
                                                                206
              -0.02
                              -0.03
                                                193
                                                                203
                                                195
                                                                205
## 7
               0.00
                              -0.02
                                                                205
## 8
              -0.02
                               0.00
                                                193
    accel_forearm_z magnet_forearm_x magnet_forearm_y magnet_forearm_z classe
##
## 1
               -215
                                 -17
                                                  654
                                                                   476
## 3
               -213
                                 -18
                                                  658
                                                                   469
                                                                           Α
## 5
               -214
                                 -17
                                                  655
                                                                   473
                                                                           Α
## 6
               -215
                                  -9
                                                  660
                                                                   478
                                                                           Α
## 7
               -215
                                 -18
                                                  659
                                                                   470
                                                                           Α
## 8
               -213
                                  -9
                                                  660
                                                                   474
                                                                           Α
str(training)
## 'data.frame':
                   13737 obs. of 55 variables:
                         : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 . . .
   $ new_window
                               11 11 12 12 12 12 12 12 12 12 ...
##
   $ num_window
   $ roll belt
                                1.41 1.42 1.48 1.45 1.42 1.42 1.45 1.43 1.45 1.48 ...
  $ pitch belt
                                8.07 8.07 8.07 8.06 8.09 8.13 8.18 8.18 8.2 8.15 ...
                                -94.4 - 94.4 - 94.4 - 94.4 - 94.4 - 94.4 - 94.4 - 94.4 - 94.4 - 94.4 \dots
##
   $ yaw_belt
                         : num
##
   $ total accel belt
                         : int
                                3 3 3 3 3 3 3 3 3 ...
                                0 0 0.02 0.02 0.02 0.02 0.03 0.02 0 0 ...
##
   $ gyros_belt_x
                         : num
##
   $ gyros_belt_y
                                0 0 0.02 0 0 0 0 0 0 0 ...
                         : num
                                -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0 0 ...
##
   $ gyros_belt_z
                         : num
##
                                -21 -20 -21 -21 -22 -22 -21 -22 -21 -21 ...
   $ accel_belt_x
                           int
##
   $ accel_belt_y
                         : int
                                4 5 2 4 3 4 2 2 2 4 ...
                                22 23 24 21 21 21 23 23 22 23 ...
   $ accel_belt_z
                         : int
                                -3 -2 -6 0 -4 -2 -5 -2 -1 0 ...
##
   $ magnet_belt_x
                         : int
                                599 600 600 603 599 603 596 602 597 592 ...
##
   $ magnet_belt_y
                         : int
##
                                -313 -305 -302 -312 -311 -313 -317 -319 -310 -305 ...
   $ magnet_belt_z
                         : int
                                $ roll arm
                         : num
   $ pitch_arm
##
                           num
                                22.5 22.5 22.1 22 21.9 21.8 21.5 21.5 21.4 21.3 ...
##
   $ yaw arm
                                : num
##
                                34 34 34 34 34 34 34 34 34 ...
   $ total_accel_arm
                         : int
##
   $ gyros arm x
                         : num
                                0 -0.02 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 0 0 ...
##
   $ gyros arm y
                          num
##
                                -0.02 -0.02 0 0 0 0 0 0 -0.03 -0.03 ...
   $ gyros_arm_z
                         : num
##
   $ accel arm x
                                -288 -289 -289 -289 -289 -289 -290 -288 -289 -289 ...
                         : int
##
                                109 110 111 111 111 111 110 111 111 109 ...
   $ accel_arm_y
                         : int
##
   $ accel_arm_z
                         : int
                                -123 -126 -123 -122 -125 -124 -123 -123 -124 -121 ...
##
                                -368 -368 -374 -369 -373 -372 -366 -363 -374 -367 ...
   $ magnet_arm_x
                         : int
                                337 344 337 342 336 338 339 343 342 340 ...
   $ magnet_arm_y
                         : int
##
                                516 513 506 513 509 510 509 520 510 509 ...
   $ magnet_arm_z
                         : int
##
   $ roll_dumbbell
                         : num
                                13.1 12.9 13.4 13.4 13.1 ...
##
   $ pitch_dumbbell
                         : num
                                -70.5 -70.3 -70.4 -70.8 -70.2 ...
   $ yaw_dumbbell
                         : num
                                -84.9 -85.1 -84.9 -84.5 -85.1 ...
```

0.03

36

28.4

-63.9

-153

1

```
$ total accel dumbbell: int
                               37 37 37 37 37 37 37 37 37 37 ...
## $ gyros_dumbbell_x
                               0 0 0 0 0 0 0 0 0 0 ...
                         : nim
  $ gyros dumbbell y
##
                         : num
                               -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 ...
## $ gyros_dumbbell_z
                               0 0 0 0 0 0 0 0 0 0 ...
                         : num
##
   $ accel_dumbbell_x
                         : int
                               ##
  $ accel dumbbell y
                               47 46 48 48 47 46 47 47 47 48 ...
                         : int
  $ accel dumbbell z
                         : int
                               -271 -270 -270 -269 -270 -272 -269 -270 -270 -271 ...
##
   $ magnet_dumbbell_x
                         : int
                               -559 -561 -554 -558 -551 -555 -564 -554 -554 -554 ...
##
   $ magnet_dumbbell_y
                               293 298 292 294 295 300 299 291 294 297 ...
                         : int
##
  $ magnet_dumbbell_z
                         : num
                               -65 -63 -68 -66 -70 -74 -64 -65 -63 -73 ...
   $ roll_forearm
                               28.4 28.3 28 27.9 27.9 27.8 27.6 27.5 27.2 27.1 ...
                         : num
   $ pitch_forearm
                               -63.9 -63.9 -63.9 -63.9 -63.9 -63.8 -63.8 -63.8 -63.9 -64 ...
##
                         : num
##
   $ yaw_forearm
                               : num
##
  $ total_accel_forearm : int
                               36 36 36 36 36 36 36 36 36 ...
                                0.03 \ 0.03 \ 0.02 \ 0.02 \ 0.02 \ 0.02 \ 0.02 \ 0.02 \ 0.02 \ \dots 
   $ gyros_forearm_x
                         : num
##
   $ gyros_forearm_y
                               0 -0.02 0 -0.02 0 -0.02 -0.02 0.02 -0.02 0 ...
                         : num
                               -0.02 0 -0.02 -0.03 -0.02 0 -0.02 -0.03 -0.02 0 ...
##
   $ gyros_forearm_z
                         : num
  $ accel forearm x
                               192 196 189 193 195 193 193 191 192 194 ...
                         : int
## $ accel_forearm_y
                               203 204 206 203 205 205 205 203 201 204 ...
                         : int
## $ accel forearm z
                         : int
                               -215 -213 -214 -215 -215 -213 -214 -215 -214 -215 ...
## $ magnet_forearm_x
                         : int
                               -17 -18 -17 -9 -18 -9 -17 -11 -16 -13 ...
                               654 658 655 660 659 660 657 657 656 656 ...
## $ magnet_forearm_y
                         : num
## $ magnet_forearm_z
                               476 469 473 478 470 474 465 478 472 471 ...
                         : Factor w/ 5 levels "A", "B", "C", "D", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ classe
```

The unique values to be predicted are:

```
unique(training$classe)
```

```
## [1] A B C D E
## Levels: A B C D E
```

As we can see after the cleansing, the training data is comprised of 55 variables and 13737 observations.

Model Fitting

In this project we will try to fit 5 different models and validate/combine them to reach a good enough accuracy. The models we will use are:

- Random Forests
- Linear Discriminant Analysis
- Naive Bayes
- Boosting with Trees
- Support Vector Machine
- Combination of all of them

Random Forests

We fit the model:

##

```
model_rf <- train(classe ~ ., model = "rf", data = training)
model_rf$finalModel

##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry, model = "rf")</pre>
```

Type of random forest: classification

```
##
                         Number of trees: 500
## No. of variables tried at each split: 28
##
           OOB estimate of error rate: 0.25%
##
## Confusion matrix:
             В
##
                        D
                             E class.error
        Α
## A 3904
                   0
                             1 0.0005120328
             1
        8 2643
## B
                   6
                        1
                             0 0.0056433409
## C
        0
             3 2393
                        0
                             0 0.0012520868
## D
        0
             0
                   9 2242
                             1 0.0044404973
## E
                   0
                        4 2520 0.0019801980
Then predict on the testing data set:
predict_rf <- predict(model_rf, validation)</pre>
head(predict_rf)
## [1] A A A A A A
## Levels: A B C D E
The accuracy for this model is:
confusionMatrix(predict_rf, validation$classe)$overall
##
         Accuracy
                            Kappa
                                   AccuracyLower
                                                    AccuracyUpper
                                                                     AccuracyNull
##
        1.0000000
                        1.0000000
                                        0.9991055
                                                        1.0000000
                                                                        0.2850558
## AccuracyPValue
                    McnemarPValue
        0.000000
Linear Dsicriminant Analysis
We begin by fitting the model
model_lda <- train(classe ~ ., model = "lda", data = training)</pre>
model_lda$finalModel
##
## Call:
   randomForest(x = x, y = y, mtry = param$mtry, model = "lda")
##
                   Type of random forest: classification
                         Number of trees: 500
##
## No. of variables tried at each split: 28
##
           OOB estimate of error rate: 0.25%
##
## Confusion matrix:
##
             В
                  C
                             E class.error
        Α
                        D
## A 3904
                   0
                        0
                             1 0.0005120328
                   3
## B
        9 2645
                             0 0.0048908954
                        1
## C
        0
             3 2392
                        1
                             0 0.0016694491
## D
        0
                  10 2241
                             1 0.0048845471
             0
## E
        0
                   0
                        3 2521 0.0015841584
Then predict on the testing data set:
predict_lda <- predict(model_lda, validation)</pre>
head(predict_lda)
## [1] A A A A A A
```

Levels: A B C D E

The accuracy for this model is:

```
confusionMatrix(predict_lda, validation$classe)$overall
```

```
## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 1.0000000 1.0000000 0.9991055 1.0000000 0.2850558
## AccuracyPValue McnemarPValue
## 0.0000000 NaN
```

Naive Bayes

We begin by fitting the model

```
model_nb <- train(classe ~ ., model = "nb", data = training)
model_nb$finalModel</pre>
```

```
##
## Call:
##
    randomForest(x = x, y = y, mtry = param$mtry, model = "nb")
                  Type of random forest: classification
##
                         Number of trees: 500
##
## No. of variables tried at each split: 28
##
##
           OOB estimate of error rate: 0.25%
## Confusion matrix:
##
                  C
                        D
                             E class.error
        Α
             В
## A 3904
                             1 0.0005120328
             1
                  0
                        0
       11 2642
## B
                  4
                        1
                             0 0.0060195636
                             0 0.0012520868
## C
        0
             3 2393
                        0
## D
        0
             0
                  7 2244
                             1 0.0035523979
## E
             1
                  0
                        4 2520 0.0019801980
```

Then predict on the testing data set:

```
predict_nb <- predict(model_nb, validation)
head(predict_nb)</pre>
```

```
## [1] A A A A A A ## Levels: A B C D E
```

The accuracy for this model is:

confusionMatrix(predict_nb, validation\$classe)\$overall

```
## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 1.0000000 1.0000000 0.9991055 1.0000000 0.2850558
## AccuracyPValue McnemarPValue
## 0.0000000 NaN
```

Boosting with Trees

We begin by fitting the model

```
model_gbm <- train(classe ~ ., model = "gbm", data = training)
model_gbm$finalModel</pre>
```

```
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry, model = "gbm")
```

```
Type of random forest: classification
##
##
                         Number of trees: 500
## No. of variables tried at each split: 28
##
##
           OOB estimate of error rate: 0.2%
## Confusion matrix:
             В
                  С
                        D
                             E class.error
##
        Α
## A 3904
             1
                   0
                        0
                             1 0.0005120328
## B
        8 2647
                  2
                        1
                             0 0.0041384500
             3 2393
                        0
## C
        0
                             0 0.0012520868
## D
        0
             0
                  7 2244
                             1 0.0035523979
## E
                   0
                        3 2521 0.0015841584
        0
             1
Then predict on the testing data set:
predict_gbm <- predict(model_gbm, validation)</pre>
head(predict_gbm)
## [1] A A A A A A
## Levels: A B C D E
The accuracy for this model is:
confusionMatrix(predict_gbm, validation$classe)$overall
##
         Accuracy
                            Kappa
                                   AccuracyLower AccuracyUpper
                                                                    AccuracyNull
        1.0000000
                        1.000000
                                        0.9991055
                                                        1.0000000
                                                                        0.2850558
##
## AccuracyPValue
                   McnemarPValue
##
        0.000000
                              NaN
Support Vector Machine
We begin by fitting the model
model_svm <- svm(classe ~ ., data = training)</pre>
model_svm
##
## Call:
## svm(formula = classe ~ ., data = training)
##
##
## Parameters:
      SVM-Type: C-classification
##
##
    SVM-Kernel:
                 radial
##
          cost: 1
##
## Number of Support Vectors: 6322
Then predict on the testing data set:
predict_svm <- predict(model_svm, validation)</pre>
head(predict_svm)
    3 6 15 16 21 22
    A A A A A
## Levels: A B C D E
```

The accuracy for this model is:

confusionMatrix(predict_svm, validation\$classe)\$overall

```
##
                            Kappa
                                   AccuracyLower AccuracyUpper
                                                                    AccuracyNull
         Accuracy
                                        0.9455043
                                                       0.9587455
                                                                       0.2850558
##
        0.9524503
                        0.9397458
## AccuracyPValue
                   McnemarPValue
##
        0.000000
                              NaN
```

Combination

Since we now have all four models, we can use a combination of all using Random Forests once again to get a better accuracy:

```
df_all <- data.frame(predict_rf, predict_lda, predict_nb, predict_gbm, predict_svm, classe = validation
model_all <- train(classe ~ ., method = "rf", data = df_all)</pre>
model all$finalModel
##
## Call:
##
   randomForest(x = x, y = y, mtry = param$mtry)
                   Type of random forest: classification
##
                         Number of trees: 500
##
## No. of variables tried at each split: 2
##
           OOB estimate of error rate: 0%
##
## Confusion matrix:
##
        Α
            В
                C
                     D
                         E class.error
## A 1175
                     0
            0
                0
                         0
                                      0
## B
        0 789
                0
                     0
                         0
                                      0
                                      0
## C
        0
            0 739
                     0
                         0
                                      0
## D
        0
            0
                0 642
                         0
```

Now we try to predict once again using this new model:

0 777

```
predict_all <- predict(model_all, validation)
head(predict_all)</pre>
```

```
## [1] A A A A A A ## Levels: A B C D E
```

0

0

0

With this accuracy:

E

confusionMatrix(predict_all, validation\$classe)\$overall

```
##
         Accuracy
                            Kappa
                                   AccuracyLower
                                                   AccuracyUpper
                                                                    AccuracyNull
        1.0000000
                                        0.9991055
                                                       1.0000000
                                                                       0.2850558
##
                        1.0000000
##
  AccuracyPValue
                   McnemarPValue
##
        0.000000
```

0

Predictions on Test data set

Since all models have a high accuracy, we will proceed to use only the Random Forest model to try to predict the results on the test set, which will be used on the quiz:

```
predict_test <- predict(model_rf,testing)
predict_test</pre>
```

```
## [1] BABAAEDBAABCBAEEABBB
```

Levels: A B C D E

Appendix

Plot of the Random Forest model:

plot(model_rf)

Plot of the General Boosted Trees model:

plot(model_gbm)

Plot of the Linear Discriminant Analysis model:

Plot of the Naive Bayes model:

