LMM Examples

Alexander McLain

Contents

1 Example one: Framingham data

1

1 Example one: Framingham data

In the Framingham study, each of 2634 participants was examined every 2 years for a 10 year period for his/her cholesterol level. Study objectives: + How does cholesterol level change over time on average as people get older? + How is the change of cholesterol level associated with sex and baseline age? A subset of 200 subjects' data is used for illustrative purpose.

```
Cholst <- read.csv("cholst.csv", header = TRUE)
str(Cholst)

## 'data.frame': 1044 obs. of 5 variables:
## $ ID : int 1 1 1 1 1 1 2 2 2 2 ...
## $ cholst: int 175 198 205 228 214 214 299 328 374 362 ...
## $ sex : int 1 1 1 1 1 1 1 0 0 0 0 ...
## $ age : int 32 32 32 32 32 32 34 34 34 34 ...
## $ time : int 0 2 4 6 8 10 0 4 6 8 ...
head(Cholst,8)</pre>
```

ID	cholst	sex	age	time
1	175	1	32	0
1	198	1	32	2
1	205	1	32	4
1	228	1	32	6
1	214	1	32	8
1	214	1	32	10
2	299	0	34	0
2	328	0	34	4

First, thing i'm going to do is to change the formatting of some of the variables and create a variable that is the subjects age at the time of their measurement.

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
```

```
## v ggplot2 3.3.3 v purrr 0.3.4

## v tibble 3.0.6 v dplyr 1.0.4

## v tidyr 1.1.2 v stringr 1.4.0

## v readr 1.4.0 v forcats 0.5.1
```


Once we look at the data as a function of "age at measurement" it's clear how unbalenced the data are. To plot unbalenced data with a mean trend, we need to use <code>geom_smooth</code> with the lowess function.

$geom_smooth()$ using formula 'y ~ x'

`geom_smooth()` using formula 'y ~ x'

Does the mean actually go down? Do we want to model this by "age at measurement", "time" or both? library(lme4)

Loading required package: Matrix

##

```
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
library(lmerTest) # Added to get p-values
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
##
       lmer
## The following object is masked from 'package:stats':
##
       step
LMM formula <- cholst ~ time + age + (1 ID)
LMM_time_age <- lmer( formula = LMM_formula , data = Cholst)</pre>
LMM_formula <- cholst ~ time + age_at_meas + (1|ID)
LMM_time_age_at_meas <- lmer( formula = LMM_formula , data = Cholst)</pre>
anova(LMM_time_age,LMM_time_age_at_meas)
## refitting model(s) with ML (instead of REML)
```

	npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)
LMM_time_age	5	9974.247	9999.001	-4982.123	9964.247	NA	NA	NA
$LMM_time_age_at_meas$	5	9974.247	9999.001	-4982.123	9964.247	0	0	NA

Why are they the same?

```
fixef(LMM_time_age)
## (Intercept)
                       time
                                    age
## 157.083561
                  2.825912
                               1.492383
fixef(LMM_time_age_at_meas)
## (Intercept)
                       time age_at_meas
## 157.083561
                   1.333529
                               1.492383
1.333529 + 1.492383
## [1] 2.825912
LMM_formula <- cholst ~ time + age + sex + sex*time + (1|ID)
LMM_timebysex <- lmer( formula = LMM_formula , data = Cholst)</pre>
LMM_formula <- cholst ~ time + age + sex + sex*age + (1|ID)
LMM_agebysex <- lmer( formula = LMM_formula , data = Cholst)</pre>
LMM_formula <- cholst ~ time + age + sex + sex*age + sex*time + (1 ID)
LMM_timeagebysex <- lmer( formula = LMM_formula , data = Cholst)</pre>
```

refitting model(s) with ML (instead of REML)

	npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)
LMM_timebysex	7	9962.253	9996.909	-4974.127	9948.253	NA	NA	NA
$LMM_agebysex$	7	9973.648	10008.304	-4979.824	9959.648	0.0000000	0	NA
$LMM_age_at_meas_sex$	7	9957.706	9992.361	-4971.853	9943.706	15.9424963	0	NA
$LMM_timeagebysex$	8	9959.684	9999.291	-4971.842	9943.684	0.0214397	1	0.8835874

Now, let's look at what we really wanted to from the plots we saw.

```
LMM_formula <- cholst ~ time + log(age_at_meas) + sex +
    sex*log(age_at_meas) + (1|ID)

LMM_age_log <- lmer( formula = LMM_formula , data = Cholst)

LMM_formula <- cholst ~ log(time+1) + log(age_at_meas) + sex +
    sex*log(age_at_meas) + (1|ID)

LMM_all_log <- lmer( formula = LMM_formula , data = Cholst)

anova(LMM_age_log,LMM_all_log)</pre>
```

refitting model(s) with ML (instead of REML)

	npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)
LMM_age_log LMM_all_log	7 7			-4966.629 -4968.135		NA 0	NA 0	NA NA

```
LMM_formula <- cholst ~ time + log(age_at_meas) + sex +
    sex*time + (1 + time | ID)
LMM_age_log_rand_time <- lmer( formula = LMM_formula , data = Cholst)

LMM_formula <- cholst ~ time + log(age_at_meas) + sex +
    sex*log(age_at_meas) + (1 + log(age_at_meas) | ID)
LMM_age_log_rand_age <- lmer( formula = LMM_formula , data = Cholst)
anova(LMM_age_log_LMM_age_log_rand_time)</pre>
```

refitting model(s) with ML (instead of REML)

npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)
LMM_age_log 7	9947.257	9981.913	-4966.629	9933.257	NA	NA	NA
$LMM_age_log_rand_tim\Theta$	9935.682	9980.239	-4958.841	9917.682	15.57512	2	0.0004149

It say's that random log age fits better. Let's look into the results a little further.

VarCorr(LMM_age_log_rand_time)

```
## Groups Name Std.Dev. Corr
## ID (Intercept) 34.7685
## time 1.6894 0.236
## Residual 20.8342
```

confint(LMM_age_log_rand_time)

Computing profile confidence intervals ...

	2.5 %	97.5 %
.sig01	30.5983043	38.8804240
.sig02	-0.0638044	0.7194118
.sig03	0.9421964	2.2554851
.sigma	19.7624645	22.0048151
(Intercept)	-225.3094008	-5.1944775
time	-0.8837506	0.9251927
$\log(age_at_meas)$	61.6253365	120.6798372
sexM	-20.0906493	1.1375084
time:sexM	0.7594824	2.5586478

VarCorr(LMM_age_log_rand_age)

```
## Groups Name Std.Dev. Corr
## ID (Intercept) 223.755
## log(age_at_meas) 62.517 -0.990
## Residual 21.057
```

confint(LMM_age_log_rand_age)

```
## Computing profile confidence intervals ...
```

```
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
```

Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit

for .sig02: falling back to linear interpolation

	2.5 %	97.5 %
.sig01	98.2127990	311.0346463
.sig02	-0.9942734	-0.9673241
.sig03	33.4396309	84.8109487
.sigma	20.0075750	22.1863650
(Intercept)	-108.0487611	157.4196654
time	0.1145259	1.6161199
log(age_at_meas)	18.0378621	89.5543423
sexM	-415.3336492	-153.5784020
$\log(\text{age_at_meas})$:sexM	38.8366592	108.3629878

data.frame(VarCorr(LMM_age_log_rand_time))

grp	var1	var2	vcov	sdcor
ID	(Intercept)	NA	1208.845982	34.7684625
ID	time	NA	2.854119	1.6894139
ID	(Intercept)	$_{ m time}$	13.858769	0.2359408
Residual	NA	NA	434.063220	20.8341839

```
vcov_est_time <- data.frame( VarCorr(LMM_age_log_rand_time) )</pre>
str(vcov_est_time)
## 'data.frame': 4 obs. of 5 variables:
## $ grp : chr "ID" "ID" "ID" "Residual"
## $ var1 : chr "(Intercept)" "time" "(Intercept)" NA
## $ var2 : chr NA NA "time" NA
## $ vcov : num 1208.85 2.85 13.86 434.06
## $ sdcor: num 34.768 1.689 0.236 20.834
vcov_est_time <- vcov_est_time$vcov</pre>
time <- seq(0,10, 2)
var_func_time <- vcov_est_time[2]*time^2 + 2*vcov_est_time[3]*time +</pre>
 vcov_est_time[1] + vcov_est_time[4]
vcov_est_age <- data.frame( VarCorr(LMM_age_log_rand_age) )</pre>
vcov_est_age <- vcov_est_age$vcov</pre>
range( log(Cholst$age_at_meas) )
## [1] 3.433987 4.276666
log_age \leftarrow seq(3.434, 4.277, length.out = 200)
var_func_age <- vcov_est_age[2]*log_age^2 + 2*vcov_est_age[3]*log_age +</pre>
 vcov_est_age[1] + vcov_est_age[4]
par(mfrow = c(2,2))
plot( time, var_func_time, type="l")
plot(exp( log_age) , var_func_age, type="l")
plot( time, sqrt(var_func_time), type="l")
plot(exp( log_age) , sqrt(var_func_age), type="l")
```


refitting model(s) with ML (instead of REML)

	npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)
LMM_age_log_rand_timeage	9	9928.281	9972.838	-4955.140	9910.281	NA	NA	NA
$LMM_age_log_rand_time$	9	9935.682	9980.239	-4958.841	9917.682	0	0	NA

Let's look at the variance function.

```
vcov_est_timeage <- data.frame( VarCorr(LMM_age_log_rand_timeage) )
vcov_est_timeage</pre>
```

grp	var1	var2	vcov	sdcor
ID	time	NA	2.700901	1.6434419
ID	$\log(\text{age_at_meas})$	NA	83.100829	9.1159656
ID	time	$\log(\text{age_at_meas})$	2.065037	0.1378386
Residual	NA	NA	434.029092	20.8333649

```
vcov_est_timeage <- vcov_est_timeage$vcov</pre>
time <-0
log_age <- seq(3.434, 4.277, length.out = 200)
var_func_age_time0 <- vcov_est_timeage[2]*log_age^2 +</pre>
  2*vcov_est_timeage[3]*log_age*time +
  vcov_est_timeage[1]*time + vcov_est_timeage[4]
time <-5
var_func_age_time5 <- vcov_est_timeage[2]*log_age^2 +</pre>
  2*vcov_est_timeage[3]*log_age*time +
  vcov_est_timeage[1]*time + vcov_est_timeage[4]
time <- 10
var_func_age_time10 <- vcov_est_timeage[2]*log_age^2 +</pre>
  2*vcov_est_timeage[3]*log_age*time +
  vcov_est_timeage[1]*time + vcov_est_timeage[4]
par(mfrow = c(2,3))
plot( exp( log_age) , var_func_age_time0, type="1")
plot( exp( log_age) , var_func_age_time5, type="l")
plot( exp( log_age) , var_func_age_time10, type="1")
plot( exp( log_age) , sqrt(var_func_age_time0), type="1")
plot( exp( log_age) , sqrt(var_func_age_time5), type="l")
plot( exp( log_age) , sqrt(var_func_age_time10), type="1")
```



```
plot( time , var_func_age60_time, type="l")
plot( time , sqrt(var_func_age40_time), type="1")
plot( time , sqrt(var_func_age50_time), type="1")
plot( time , sqrt(var_func_age60_time), type="1")
     1750
                                                    1900
                                                                                                  2000
                                                    1850
     1700
var_func_age40_time
                                              var_func_age50_time
                                                                                             var_func_age60_time
                                                                                                  1950
                                                    1800
     1650
                                                                                                  1900
                                                    1750
     1600
                                                                                                  1850
                                                    1700
                2
                                 8
                                      10
                                                         0
                                                               2
                                                                          6
                                                                                8
                                                                                    10
                                                                                                             2
                                                                                                                              8
                                                                                                                                   10
                       time
                                                                      time
                                                                                                                    time
                                                                                                  45.0
                                                    43.5
     41.5
sqrt(var_func_age40_time)
                                              sqrt(var_func_age50_time)
                                                                                             sqrt(var_func_age60_time)
                                                                                                  44.5
                                                    43.0
     41.0
                                                                                                  44.0
                                                    42.5
     40.5
                                                                                                  43.5
                                                    42.0
     40.0
                                                                                                  43.0
                                                    Ŋ.
     39.5
                                 8
                                      10
                                                                                8
                                                                                    10
          0
                2
                           6
                                                         0
                                                               2
                                                                          6
                                                                                                        0
                                                                                                              2
                                                                                                                              8
                                                                                                                                   10
                       time
                                                                      time
                                                                                                                    time
data.frame( fixef(LMM_age_log), fixef(LMM_age_log_rand_timeage) )
                                              fixef.LMM_age_log.
                                                                            fixef.LMM\_age\_log\_rand\_timeage.
            (Intercept)
                                                            58.718554
                                                                                                            34.9100917
                                                                                                             0.9538988
            time
                                                             1.083544
            log(age at meas)
                                                                                                            50.7562017
                                                            44.338982
            sexM
                                                          -285.276065
                                                                                                         -278.4110593
```

```
summary(LMM_age_log_rand_timeage)
```

73.977934

72.0923021

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]

 $log(age_at_meas):sexM$

```
## Formula: LMM_formula
     Data: Cholst
##
##
## REML criterion at convergence: 9887.8
## Scaled residuals:
      Min 10 Median
                              30
## -4.3351 -0.5005 -0.0204 0.5267 3.8899
##
## Random effects:
## Groups
           Name
                            Variance Std.Dev. Corr
                              2.701
                                    1.643
## ID
            time
            log(age_at_meas) 83.101
                                     9.116
                                             0.14
## Residual
                            434.029 20.833
## Number of obs: 1044, groups: ID, 200
##
## Fixed effects:
##
                        Estimate Std. Error
                                                  df t value Pr(>|t|)
## (Intercept)
                         34.9101
                                    65.0400 281.8480
                                                      0.537 0.59187
                                    0.3946 317.8071
                                                       2.417 0.01620 *
                          0.9539
## time
## log(age_at_meas)
                         50.7562
                                    17.4697 285.5899
                                                       2.905 0.00395 **
## sexM
                        -278.4111
                                    64.7146 316.6421 -4.302 2.26e-05 ***
## log(age_at_meas):sexM 72.0923
                                    17.1525 325.7443
                                                      4.203 3.41e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
              (Intr) time lg(__) sexM
## time
              0.710
## log(g_t_ms) -0.998 -0.716
## sexM
          -0.538 -0.055 0.532
## lg(g_t_m):M 0.542 0.061 -0.539 -0.997
```