

Linear Inequations Ex 15.6 Q1(iii)

We have,

$$x-y \le 1$$
, $x+2y \le 8$, $2x+y \ge 2$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we obtain

$$x - y = 1$$
, $x + 2y = 8$ $2x + y = 2$, $x = 0$ and $y = 0$.

Region represented by $x-y \le 1$:

Putting x = 0 in x - y = 1,

we get y = -1

Putting y = 0 in x - y = 1,

we get x = 1

.. The line x-y=1 meets the coordinate axes at (0,-1) and (1,0). Draw a thick line joining these points.

Now, putting x = 0 and y = 0 in $x - y \le 1$

in $x - y \le 1$, we get, $0 \le 1$

Clearly, we find that (0,0) satisfies inequation $x-y \le 1$

Region represented by $x + 2y \le 8$:

Putting x = 0 in x + 2y = 8,

we get, $y = \frac{8}{2} = 4$

Putting y = 0 in x + 2y = 8,

we get x = 8,

:. The line x + 2y = 8 meets the coordinate axes at (8,0) and (0,4). Draw a thick line joining these points.

Now, putting x = 0, y = 0

in $x + 2y \le 8$, we get $0 \le 8$

Clearly, we find that (0,0) satisfies inequation $x + 2y \le 8$.

Region represented by $2x + y \ge 2$

Putting x = 0 in 2x + y = 2, we get y = 2

Putting y = 0 in 2x + y = 2, we get $x = \frac{2}{2} = 1$.

The line 2x + y = 2 meets the coordinate axes at (0,2) and (1,0). Draw a thick line joining these points.

Linear Inequations Ex 15.6 Q1(iv)

We have,

$$x+y \ge 1$$
, $7x+9y \le 63$, $x \le 6$, $y \le 5$ $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we obtain

$$x + y = 1$$
, $7x + 9y = 63$ $x = 6$, $y = 5$, $x = 0$ and $y = 0$.

Region represented by $x+y \ge 1$: Putting x=0 in x+y=1, we get y=1Putting y=0 in x+y=1, we get x=1

.. The line x + y = 1 meets the coordinate axes at (0,1) and (1,0), join these point by a thick line.

Now, putting x=0 and y=0 in $x+y\geq 1$, we get $0\geq 1$ This is not possible

∴ (0,0) is not satisfies the inequality $x+y \ge 1$. So, the portion not containing the origin is represented by the inequation $x+y \ge 1$.

Region represented by $7x + 9y \le 63$

Putting
$$x = 0$$
 in $7x + 9y = 63$, we get, $y = \frac{63}{9} = 7$.

Putting y = 0 in
$$7x + 9y = 63$$
, we get $x = \frac{63}{7} = 9$.

:. The line 7x + 9y = 63 meets the coordinate axes of (0,7) and (9,0). Join these points by a thick line.

Now, putting x = 0 and y = 0in $7x + 9y \le 63$, we get, $0 \le 63$

 \therefore we find (0,0) satisfies the inequality $7x+9y\leq 63$. So, the portion containing the origin represents the solution set of the inequation $7x+9y\leq 63$.

Region represented by $x \le 6$: Clearly, x = 6 is a line parallel to y-axis at a distance of 6 units from the origin. Since (0,0) satisfies the inequation $x \le 6$. so, the portion lying on the left side of x = 6 is the region represented by $x \le 6$.

Region represented by $y \le 5$: Clearly, y = 5 is a line parallel to x-axis at a distance 5 from it. since $\{0,0\}$ satisfies by the given inequation.

Region represented by $x \ge 0$ and $y \ge 0$: dearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

The common region of the above six regions represents the solution set of the given inequation as shown below.

****** END ******