Precision Confluency Analysis in Live/Dead Stain Assays

Removing Non-Adherent Cells Through Image Subtraction

Isolating Adherent Cell Signaling Through Image Thresholding

Slice	Count	Total Area	Average Size	%Area
20230806 DMEM 10 FBS D6_0005_af594.jpg	840	6676633.469	7948.373	41.419
Result of 20230806 DMEM 10 FBS D6_0005_fitc.jpg	1290	725007.877	562.022	4.498

6676633 / 725007 = 10.8 Percent Confluency

Project:

- A. Develop image analysis pipeline for 3D cell confluency measurements.
- B. Deploy an in-house web application that can be readily used by scientists to assess 3d cell growth

Link to application: https://cellconfluencyapppy-4xdscga9uxkzbsssqritkq.streamlit.app/

Cell Confluency Calculator

Loading Images:

Important Rules:

1. Make sure the live/dead pairs have identical names but only differ in channel (e.g. **af594**, **fitc**)

***on the Echo microscope, you can automate this process by choosing 'overlay' as the photo collection option. The program will save your designated name then tag on the af594/fitc options

Important Rules:

1. High magnification (greater than 2X/ 0.8 scale) resolves **less microcarriers** and introduces shallow depth of field artifacts.

Analyzing images: 20230806 DMEM 10 PL D6_0010_fitc.jpg ------- 20230806 DMEM 10 PL D6_0010_af594.jpg

Percent Confluence: 1.43%

	Live File	Dead File	Percent Confluence
0	20230806 DMEM 10 PL D6_0010_fitc.jpg	20230806 DMEM 10 PL D6_0010_af594.jpg	1.43

Important Rules:

1. An in-focus image at (2x/0.08) resolves multiple microcarriers which are readily analyzed

Analyzing images: 20230808 dmem 10 PL d8_0007_fitc.jpg ------ 20230808 dmem 10 PL d8_0007_af594.jpg

Percent Confluence: 55.46%

Live File	Dead File	Percent Confluence
20230808 dmem 10 PL d8_0007_fitc.jpg	20230808 dmem 10 PL d8_0007_af594.jpg	55.46

Cell Confluency Calculator

Note: Make sure the live/dead pairs have the same name other than differing by _fitc/ _af594

Example: test_file_0000_fitc.jpg / test_file_0000_af594.jpg

Live Images (FITC)

Upload Your 3d Live(s) Image Below:

Feel free to drop replicates of each image type

Analyzing images: 20230806 DMEM 10 PL D6_0000_fitc.jpg ------ 20230806 DMEM 10 PL D6_0000_af594.jpg

	Live File	Dead File	Percent Confluence
0	20230806 DMEM 10 PL D6_0000_fitc.jpg	20230806 DMEM 10 PL D6_0000_af594.jpg	34.56
1	20230806 DMEM 10 PL D6_0002_fitc.jpg	20230806 DMEM 10 PL D6_0002_af594.jpg	34.66
2	20230806 DMEM 10 PL D6_0003_fitc.jpg	20230806 DMEM 10 PL D6_0003_af594.jpg	31.53
3	20230806 DMEM 10 PL D6_0004_fitc.jpg	20230806 DMEM 10 PL D6_0004_af594.jpg	32.94
4	20230806 DMEM 10 PL D6_0005_fitc.jpg	20230806 DMEM 10 PL D6_0005_af594.jpg	141.6

Download data as CSV

- Doing so will generate averages/ standard deviations for your replicates
- If you want to plot your own data, download your measurements to a csv file

Percent Confluence Summary

Mean Percent Confluence: 55.06 Standard Deviation: 43.29