Cours: Suites

Table des matières

1	Suites réelles et complexes		
	1.1	Définition	1
	1.2	Suites et relation d'ordre	1
2	Notion de limite		
	2.1	Limites finies	2
	2.2	Limites infinies	3
	2.3	Limites et relation d'ordre	3
	2.4	Théorèmes usuels et limites usuelles	4
	2.5	Suites extraites	4
3	Suites monotones		
	3.1	Suites monotones	5
	3.2	Étude des suites définies par $u_{n+1} = f(u_n)$	5
	3.3	Suites adjacentes	6
4	Suites équivalentes, suite négligeable devant une autre		
	4.1	Suites équivalentes	6
	4.2	Suite négligeable devant une autre	7
	4.3	Suite dominée par une autre	8

1 Suites réelles et complexes

1.1 Définition

Définition 1. On appelle suite numérique toute famille $(u_n)_{n\in\mathbb{N}}$ de réels (ou complexes) indexée par \mathbb{N} .

Remarques:

 \Rightarrow On dit qu'une suite (u_n) est en progression arithmétique de raison $r \in \mathbb{C}$ lorsque $u_{n+1} = u_n + r$ pour tout $n \in \mathbb{N}$. Si tel est le cas, $u_n = u_0 + nr$. De même, on dit qu'une suite (u_n) est en progression géométrique de raison $r \in \mathbb{C}$ lorsque $u_{n+1} = ru_n$ pour tout $n \in \mathbb{N}$. Si tel est le cas, $u_n = u_0 r^n$.

Définition 2.

- On dit qu'une suite (u_n) vérifie la propriété \mathcal{P} à partir d'un certain rang lorsqu'il existe $N \in \mathbb{N}$ tel que la suite $(u_n)_{n \geq N}$ vérifie la propriété \mathcal{P} .
- On dit qu'une propriété \mathcal{P} est asymptotique lorsque quelles que soient les suites (u_n) et (v_n) égales à partir d'un certain rang, $\mathcal{P}((u_n))$ est vrai si et seulement si $\mathcal{P}((v_n))$ est vrai.

Exemples:

□ La propriété « est nulle » est-elle asymptotique? Montrer que la propriété « s'annule une infinité de fois » l'est.

Remarques:

 \Rightarrow Pour montrer qu'une propriété \mathcal{P} est asymptotique, il suffit de se donner deux suites (u_n) et (v_n) égales à partir d'un certain rang telles que $\mathcal{P}(u)$ est vrai et de montrer que $\mathcal{P}(v)$ est vrai.

1.2 Suites et relation d'ordre

Définition 3. On dit qu'une suite réelle (u_n) est :

— croissante lorsque :

$$\forall n \in \mathbb{N} \quad u_n \leqslant u_{n+1}$$

— décroissante lorsque :

$$\forall n \in \mathbb{N} \quad u_{n+1} \leqslant u_n$$

- monotone lorsqu'elle est croissante ou décroissante.
- strictement croissante lorsque :

$$\forall n \in \mathbb{N} \quad u_n < u_{n+1}$$

 $-- strictement\ d\'ecroissante\ lors que:$

$$\forall n \in \mathbb{N} \quad u_{n+1} < u_n$$

— strictement monotone lorsqu'elle est strictement croissante ou strictement décroissante.

Remarques:

- \Rightarrow Pour étudier la monotonie de la suite (u_n) , il est souvent utile de simplifier $u_{n+1} u_n$ afin de déterminer son signe. Si la suite (u_n) est à valeurs strictement positives, on peut comparer u_{n+1}/u_n à 1. Par exemple, si a > 0, la suite de terme général a^n est croissante si $a \ge 1$ et décroissante si $a \le 1$.
- \Rightarrow Pour étudier la monotonie d'une suite donnée par son terme général, on peut aussi l'écrire $u_n = f(n)$ et étudier la fonction f.
- ⇒ Les suites constantes sont à la fois croissantes et décroissantes ; ce sont d'ailleurs les seules. Certaines suites ne sont ni croissantes ni décroissantes.

Exemples:

⇒ Étudier la monotonie des suites de terme général

$$\sum_{k=1}^{n} \frac{1}{k^3} \qquad \binom{2n}{n} \qquad \left(1 + \frac{1}{n}\right)^n$$

Définition 4. On dit qu'une suite réelle (u_n) est :

— majorée lorsque :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad u_n \leqslant M$$

— minorée lorsque :

$$\exists m \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad u_n \geqslant m$$

Les propriétés « est majorée » et « est minorée » sont asymptotiques.

Définition 5. On dit qu'une suite (u_n) est bornée lorsque :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leqslant M$$

La propriété « est bornée » est asymptotique.

Remarques:

- ⇒ Une suite réelle est bornée si et seulement si elle est majorée et minorée.
- ⇒ Une combinaison linéaire de suites bornées est bornée. De même, le produit de deux suites bornées est bornée.

2 Notion de limite

2.1 Limites finies

Définition 6. Soit (u_n) une suite et $l \in \mathbb{C}$. On dit que (u_n) converge vers l et on note $u_n \xrightarrow[n \to +\infty]{} l$ lorsque :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad |u_n - l| \leqslant \varepsilon$$

La propriété « converge vers l » est asymptotique.

Remarques:

 \Rightarrow Une suite réelle (u_n) converge vers $l \in \mathbb{R}$ si et seulement si

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad l - \varepsilon \leqslant u_n \leqslant l + \varepsilon$$

- \Rightarrow Si $l \in \mathbb{C}$, la suite constante égale à l converge vers l.
- \Rightarrow Si (u_n) est une suite et $l \in \mathbb{C}$, alors (u_n) converge vers l si et seulement si

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad |u_n - l| < \varepsilon$$

Cependant, conformément aux bonnes manières de l'analyse, nous éviterons soigneusement d'utiliser cette définition car elle fait intervenir une inégalité stricte à un endroit où l'inégalité large suffit.

$\mathbf{Exemples}:$

Soit A un ensemble non vide et α un majorant de A. Montrer que si il existe une suite d'éléments de A convergeant vers α , alors α est la borne supérieure de A.

Définition 7.

— On dit qu'une suite (u_n) est convergente lorsqu'il existe $l \in \mathbb{C}$ tel que :

$$u_n \xrightarrow[n \to +\infty]{} l$$

Si tel est le cas, l'est unique; on l'appelle limite de la suite (u_n) .

— Dans le cas contraire, on dit que (u_n) est divergente.

Exemples:

Soit (u_n) une suite convergente d'entiers. Montrer qu'elle est constante à partir d'un certain rang. En déduire que la suite de terme général $(-1)^n$ diverge.

Proposition 1. Toute suite convergente est bornée.

Proposition 2. Soit (u_n) une suite convergeant vers $l \in \mathbb{C}$. Alors:

$$\overline{u_n} \xrightarrow[n \to +\infty]{} \overline{l} \ et \ |u_n| \xrightarrow[n \to +\infty]{} |l|$$

Proposition 3. Soit (u_n) et (v_n) des suites convergent respectivement vers l_1 et $l_2 \in \mathbb{C}$.

— $Si \lambda, \mu \in \mathbb{C}, alors$:

$$\lambda u_n + \mu v_n \xrightarrow[n \to +\infty]{} \lambda l_1 + \mu l_2$$

— De plus :

$$u_n v_n \xrightarrow[n \to +\infty]{} l_1 l_2$$

— Enfin, si $l_1 \neq 0$, la suite (u_n) ne s'annule pas à partir d'un certain rang et :

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{l_1}$$

$\mathbf{Exemples}:$

- Soit (u_n) une suite réelle positive telle que la suite de terme général $u_n/(1+u_n)$ converge vers 0. Montrer que la suite (u_n) converge vers 0.
- Arr On souhaite montrer que la suite de terme général $\sin n$ diverge. Raisonner par l'absurde en supposant qu'elle converge, montrer que la suite de terme général $\cos n$ converge et aboutir à une absurdité.

Proposition 4. Soit (u_n) une suite et $l \in \mathbb{C}$. Alors:

$$u_n \xrightarrow[n \to +\infty]{} l \iff \left[\operatorname{Re}(u_n) \xrightarrow[n \to +\infty]{} \operatorname{Re} l \ et \ \operatorname{Im}(u_n) \xrightarrow[n \to +\infty]{} \operatorname{Im} l \right]$$

2.2 Limites infinies

Définition 8. Soit (u_n) une suite réelle.

— On dit que u_n tend vers $+\infty$ lorsque n tend vers $+\infty$ lorsque :

$$\forall m \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad u_n \geqslant m$$

Si tel est le cas, on note :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

— On dit que u_n tend vers $-\infty$ lorsque n tend vers $+\infty$ lorsque :

$$\forall M \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad u_n \leqslant M$$

Si tel est le cas, on note :

$$u_n \xrightarrow[n \to +\infty]{} -\infty$$

Ces propriétés sont asymptotiques. De plus u_n tend vers $+\infty$ lorsque n tend vers $+\infty$ si et seulement si $-u_n$ tend vers $-\infty$ lorsque n tend vers $+\infty$.

Exemples:

 \Rightarrow Soit $\alpha \in \mathbb{R}$. Montrer que $n + \alpha \xrightarrow[n \to +\infty]{} +\infty$.

Proposition 5. Si u_n admet une limite dans $\overline{\mathbb{R}}$, alors cette limite est unique; on l'appelle limite de la suite (u_n) et on la note:

$$\lim_{n\to\infty} u_n$$

Remarques:

 \Rightarrow Une suite qui tend vers $+\infty$ est divergente. On dit aussi qu'elle diverge vers $+\infty$.

Exemples:

 \Rightarrow Une suite non majorée diverge-t-elle toujours vers $+\infty$? Une suite divergeant vers $+\infty$ est-elle toujours croissante à partir d'un certain rang?

Proposition 6. Soit (u_n) et (v_n) deux suites réelles.

— Si u_n tend vers $+\infty$ et (v_n) est minorée, alors :

$$u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$$

— Si u_n tend vers $+\infty$ et (v_n) est minorée par m>0, alors :

$$u_n v_n \xrightarrow[n \to +\infty]{} +\infty$$

Proposition 7. Soit (u_n) une suite réelle.

— Si (u_n) diverge vers $+\infty$, alors il existe un rang à partir duquel $u_n > 0$ et :

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} 0$$

— $Si(u_n)$ converge vers 0 et est strictement positive, alors :

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} + \infty$$

2.3 Limites et relation d'ordre

Proposition 8. Soit (u_n) une suite réelle admettant $l \in \mathbb{R}$ pour limite.

- $Si(u_n)$ est majorée par $M \in \mathbb{R}$, alors $l \leq M$.
- Si (u_n) est minorée par $m \in \mathbb{R}$, alors $l \geqslant m$.

Proposition 9. Soit (u_n) une suite réelle admettant $l \in \mathbb{R}$ pour limite.

— Si M est un réel tel que l < M, il existe un rang $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N \quad u_n \leqslant M$$

— Si m est un réel tel que l > m, il existe un rang $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N \quad u_n \geqslant m$$

Proposition 10. Soit (a_n) , (b_n) et (u_n) des suites réelles telles que :

$$\forall n \in \mathbb{N} \quad a_n \leqslant u_n \leqslant b_n$$

On suppose que a_n et b_n admettent la même limite finie $l \in \mathbb{R}$. Alors :

$$u_n \xrightarrow[n \to +\infty]{} l$$

Exemples:

 \Rightarrow Donner le limite éventuelle de la suite de terme général $\frac{E(\sqrt{n})}{\sqrt{n}}$.

Arr Soit (u_n) et (v_n) deux suites à valeurs dans [0,1] telles que $u_n + v_n \xrightarrow[n \to +\infty]{} 2$. Que dire des suites (u_n) et (v_n) ?

Proposition 11. Soit (u_n) et (v_n) deux suites réelles telles que :

$$\forall n \in \mathbb{N} \quad u_n \leqslant v_n$$

 $- si u_n \xrightarrow[n \to +\infty]{} +\infty, alors v_n \xrightarrow[n \to +\infty]{} +\infty$ $- si v_n \xrightarrow[n \to +\infty]{} -\infty, alors u_n \xrightarrow[n \to +\infty]{} -\infty$

Exemples:

- Donner la limite éventuelle de la suite de terme général $n + \sin n$.
- Soit (u_n) une suite réelle telle que la suite de terme général $u_{n+1} u_n$ converge vers $\alpha > 0$. Montrer que la suite (u_n) diverge vers $+\infty$.

Proposition 12. Soit (u_n) une suite, $l \in \mathbb{C}$ et (v_n) une suite réelle positive telle que: $-\forall n \in \mathbb{N} \quad |u_n - l| \leqslant v_n$ Alors:

$$u_n \xrightarrow[n \to +\infty]{} l$$

Exemples:

Étudier la convergence de la suite de terme général

$$\frac{\cos 1 + \cos 2 + \dots + \cos n}{n}$$

Une suite réelle strictement positive convergeant vers 0 est-elle décroissante à partir d'un certain rang?

Théorèmes usuels et limites usuelles

Proposition 13. Soit (u_n) et (v_n) deux suites réelles ayant pour limites respectives l_1 et $l_2 \in \overline{\mathbb{R}}$.

— Si $l_1 + l_2$ n'est pas une forme indéterminée :

$$u_n + v_n \xrightarrow[n \to +\infty]{} l_1 + l_2$$

— Si l_1l_2 n'est pas une forme indéterminée :

$$u_n v_n \xrightarrow[n \to +\infty]{} l_1 l_2$$

— Si $1/l_1$ n'est pas une forme indéterminée :

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{l_1}$$

Proposition 14. Soit $k \in \mathbb{N}^*$. Alors:

$$\frac{1}{n^k} \xrightarrow[n \to +\infty]{} 0 \text{ et } n^k \xrightarrow[n \to +\infty]{} +\infty$$

Proposition 15. Soit ω un réel positif. Alors :

$$-Si\ \omega > 1,\ \omega^n \longrightarrow +\infty$$

$$-Si \omega > 1, \omega^n \xrightarrow[n \to +\infty]{} +\infty$$

$$-Si \omega < 1, \omega^n \xrightarrow[n \to +\infty]{} 0$$

Proposition 16. Soit (u_n) une suite de réels strictement positifs. On suppose que :

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \omega \in \mathbb{R}_+ \cup \{+\infty\}$$

$$-Si\ \omega < 1,\ u_n \xrightarrow[n \to +\infty]{} 0$$

$$-Si \omega < 1, u_n \xrightarrow[n \to +\infty]{} 0$$

$$-Si \omega > 1, u_n \xrightarrow[n \to +\infty]{} +\infty$$

Exemples:

Déterminer la limite éventuelle des suites de terme général

$$\frac{e^n}{n!} \qquad \frac{(1+i)^n}{n}$$

Proposition 17. Soit f une fonction définie sur \mathcal{D}_f à valeurs dans \mathbb{C} . On suppose que:

$$f(x) \xrightarrow[x \to a]{} l$$

avec $a, l \in \mathbb{R}$. Si (u_n) est une suite d'éléments de \mathcal{D}_f admettant a pour limite, alors :

$$f\left(u_{n}\right) \xrightarrow[n \to +\infty]{} l$$

2.5 Suites extraites

Définition 9. On appelle extractrice toute application strictement croissante de N dans \mathbb{N} .

Remarques:

⇒ Les applications de N dans N définies par

$$\forall n \in \mathbb{N} \quad \varphi_1(n) = n+1 \qquad \varphi_2(n) = 2n \qquad \varphi_3(n) = 2n+1$$

sont des extractrices.

 \Rightarrow Si A est une partie infinie de N, l'énumération de A est une extractrice. Réciproquement, si φ est une extractrice, c'est l'énumération de $\varphi(\mathbb{N})$. En conclusion, se donner une extractrice revient à se donner une partie infinie de N.

Proposition 18. Si φ est une extractrice :

$$\forall n \in \mathbb{N} \quad \varphi(n) \geqslant n$$

Définition 10. Soit (u_n) une suite. On appelle suite extraite (ou sous-suite) de (u_n) toute suite du type $(u_{\varphi(n)})$ où φ est une extractrice.

Proposition 19. Si (u_n) est une suite réelle (resp. complexe) admettant $l \in \mathbb{R}$ (resp. $l \in \mathbb{C}$) pour limite, toute sous-suite de (u_n) tend vers l.

Remarques:

 \Rightarrow Pour montrer qu'une suite (u_n) n'est pas convergente, il suffit de trouver deux extractrices φ_1 et φ_2 telles que le suites de terme général $u_{\varphi_1(n)}$ et $u_{\varphi_2(n)}$ convergent vers des limites différentes.

Exemples:

- \Rightarrow Montrer que la suite de terme général $\frac{1}{n} + (-1)^n$ diverge.
- Soit (u_n) une suite réelle non majorée. Montrer qu'on peut en extraire une suite divergeant vers $+\infty$.

3 Suites monotones

3.1 Suites monotones

Théorème 1. Toute suite croissante majorée est convergente.

Exemples:

 \Rightarrow Soit $\alpha > 1$ et (u_n) la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n \frac{1}{k^\alpha}$$

Montrer que pour tout $k \geqslant 2$

$$\frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}x}{x^{\alpha}}$$

En déduire la convergence de la suite (u_n) .

 \Rightarrow La limite de l'exemple précédent est notée $\zeta(\alpha)$. On définit ainsi une fonction ζ de $]1,+\infty[$ dans $\mathbb R$ (cette fonction est appelée fonction zéta de Riemann). Montrer que ζ est décroissante sur $]1,+\infty[$.

Proposition 20. Soit (u_n) une suite croissante.

- Si elle est majorée, alors elle est convergente.
- Sinon, elle diverge vers $+\infty$.

Exemples:

 \Rightarrow Soit (u_n) la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n \frac{1}{k}$$

Montrer que $u_{2n} - u_n$ est minoré par un réel $\alpha > 0$. En déduire que (u_n) diverge vers $+\infty$.

Proposition 21. Toute suite décroissante minorée est convergente.

Proposition 22. Soit (u_n) une suite décroissante.

- Si elle est minorée, alors elle est convergente.
- Sinon, elle diverge vers $-\infty$.

3.2 Étude des suites définies par $u_{n+1} = f(u_n)$

Exemples:

- Soit $\alpha \geqslant 0$ et (u_n) la suite définie par $u_0 = \alpha$ et $\forall n \in \mathbb{N}$ $u_{n+1} = \sqrt{1 + u_n}$. Étudier la convergence de la suite (u_n) .
- \Rightarrow Soit $\alpha \in \mathbb{R}$ et (u_n) la suite définie par

$$u_0 = \alpha \text{ et } \forall n \in \mathbb{N} \quad u_{n+1} = \frac{u_n^2 + 2}{3}$$

Étudier la convergence de la suite (u_n) .

Soit $\alpha \in \mathbb{R}$ et (u_n) la suite définie par $u_0 = \alpha$ et $\forall n \in \mathbb{N}$ $u_{n+1} = \cos(u_n)$. Étudier la convergence de la suite (u_n) .

Remarques:

- \Rightarrow Lorsqu'on étudie une suite définie par une relation de récurrence du type $u_{n+1} = f(u_n)$, on procède comme suit :
 - —Étude de f et tracé de son graphe :

On commencera toujours par tracer la graphe de la fonction f en prenant soin de placer correctement ce graphe par rapport à la droite d'équation y = x. En pratique, on étudiera les variations de f, ses limites aux bornes du domaine de définition, ainsi que le signe de f(x) - x.

—Conjectures:

Remarquons que si la suite (u_n) admet une limite $l \in \mathbb{R}$ et que cette limite est dans le domaine de définition de la fonction f que l'on suppose continue, alors l est un point fixe de f. La limite éventuelle de la suite (u_n) est donc à chercher parmi les points fixes de f et les bornes de son domaine de définition (éventuellement $\pm \infty$). En s'aidant du graphe établi plus haut, on fera ensuite des conjectures quant au comportement de la suite (u_n) selon la valeur de u_0 .

—Démonstration des résultats annoncés :

Enfin, on démontre rigoureusement ce que l'on a avancé lors de l'étape précédente. Supposons que l'on souhaite prouver que pour tout $\alpha \in I$ (où I est un intervalle), la suite (u_n) définie par $u_0 = \alpha$ et $u_{n+1} = f(u_n)$ tende vers $l \in \overline{\mathbb{R}}$. On procède ainsi :

- —On prouve que I est stable par f, c'est-à-dire que $f(I) \subset I$. Lorsque ce n'est pas évident, on en profite pour justifier l'existence de la suite (u_n) .
- —On prouve l'existence d'une limite pour (u_n) par un argument de monotonie avant de calculer cette même limite :
 - —Si f est croissante sur I: Dans ce cas, la suite (u_n) sera monotone (mais pas forcément croissante) et c'est la position de u_1 par rapport à u_0 , c'est-à-dire le signe de $f(\alpha) \alpha$, qui déterminera son sens de variation. Étant monotone, elle admet une limite que l'on déterminera en procédant par élimination parmi les limites éventuelles trouvées plus haut.

—Si f est décroissante sur I: Dans ce cas, on étudie les suites (u_{2n}) et (u_{2n+1}) . Ces suites vérifient une relation de récurrence faisant intervenir $f \circ f$. Comme f est décroissante sur I, on en déduit que $f \circ f$ est croissante sur I. On est donc ramené au cas précédent et on en déduit que les suites (u_{2n}) et (u_{2n+1}) sont monotones (remarquez qu'il est souvent inutile de déterminer leur monotonie même si l'une sera croissante et l'autre décroissante). Elles admettent donc des limites qui sont à chercher parmi les points fixes de $f \circ f$ et les bornes de I. Si ces deux suites admettent la même limite $l \in \mathbb{R}$ alors (u_n) converge vers l. Dans le cas contraire, la suite (u_n) est divergente.

3.3 Suites adjacentes

Définition 11. Soit (u_n) et (v_n) deux suites réelles. On dit que (u_n) et (v_n) sont adjacentes lorsque :

- $-\forall n \in \mathbb{N} \quad u_n \leqslant v_n$
- $-(u_n)$ est croissante et (v_n) est décroissante
- $-v_n-u_n\xrightarrow[n\to+\infty]{}$

Remarques:

 \Rightarrow Si deux suites (u_n) et (v_n) vérifient les deux derniers points, alors elles vérifient le premier point. En théorie il est donc inutile de le vérifier, mais l'usage veut qu'on le fasse.

Proposition 23. Soit (u_n) et (v_n) deux suites adjacentes. Alors (u_n) et (v_n) convergent vers la même limite $l \in \mathbb{R}$. De plus :

$$\forall n \in \mathbb{N} \quad u_n \leqslant l \leqslant v_n$$

Exemples:

 \Rightarrow Montrer que les suites (u_n) et (v_n) définies par

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n \frac{1}{n+k} \text{ et } v_n = \sum_{k=n}^{2n} \frac{1}{k}$$

sont adjacentes. En utilisant une comparaison avec des intégrales, montrer qu'elles convergent vers $\ln 2$.

4 Suites équivalentes, suite négligeable devant une autre

4.1 Suites équivalentes

Définition 12. Soit (u_n) et (v_n) deux suites. On dit que (u_n) est équivalente à (v_n) lorsqu'il existe une suite (α_n) convergent vers 1 et un rang $N \in \mathbb{N}$ tels que :

$$\forall n \geqslant N \quad u_n = \alpha_n v_n$$

Si tel est le cas, on note :

$$u_n \underset{n \to +\infty}{\sim} v_n$$

La propriété « est équivalente à » est asymptotique.

Remarques:

- \Rightarrow Il est possible qu'une suite (u_n) soit équivalente à une suite (v_n) sans qu'il n'existe de suite (α_n) convergeant vers 1 telle que $\forall n \in \mathbb{N}$ $u_n = \alpha_n v_n$.
- \Rightarrow Si (u_n) est équivalente à (v_n) et que cette dernière admet une limite dans $\overline{\mathbb{R}}$, alors (u_n) admet la même limite. Cependant il est possible que deux suites admettent la même limite sans être équivalentes.

Proposition 24. La relation « est équivalente à » est une relation d'équivalence sur l'ensemble des suites.

Remarques:

 \Rightarrow La relation étant symétrique, on dira désormais « les suites (u_n) et (v_n) sont équivalentes » plutôt que « la suite (u_n) est équivalente à la suite (v_n) ».

Proposition 25. Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors :

$$u_n \underset{n \to +\infty}{\sim} v_n \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$$

Remarques:

 \Rightarrow Si $a_0, a_1, \ldots, a_p \in \mathbb{C}$ avec $a_p \neq 0$, alors $a_p n^p + \cdots + a_1 n + a_0 \sim a_p n^p$. Si de plus $b_0, b_1, \ldots, b_q \in \mathbb{C}$ sont tels que $b_q \neq 0$, alors

$$\frac{a_p n^p + \dots + a_1 n + a_0}{b_q n^q + \dots + b_1 n + b_0} \underset{n \to +\infty}{\sim} \frac{a_p}{b_q} \cdot n^{p-q}$$

 \Rightarrow Contrairement à ce qu'on pourrait être tenté de dire, on n'a pas toujours $u_{n+1} \underset{n \to +\infty}{\sim} u_n$.

Exemples:

⇒ Donner des équivalents simples des suites de terme général

$$\frac{1}{n} - \frac{1}{n+1}$$
, $\sum_{k=0}^{n} a^k$ où $a \in \mathbb{R}_+^* \setminus \{1\}$, $\sum_{k=1}^{n} k!$

Proposition 26. Soit (u_n) une suite et $l \in \mathbb{C}^*$. Alors:

$$u_n \underset{n \to +\infty}{\sim} l \iff u_n \xrightarrow[n \to +\infty]{} l$$

De plus, u_n est équivalent à 0 lorsque n tend vers $+\infty$ si et seulement si la suite (u_n) est nulle à partir d'un certain rang.

Remarques:

 \Rightarrow Si $l \neq 0$, dire que u_n est équivalent à l signifie que la suite (u_n) converge vers l. On ne conclura donc jamais un raisonnement de la sorte. Si l = 0, dire que u_n est équivalent à 0 signifie que la suite (u_n) est nulle à partir d'un certain rang. Si vous obtenez un tel résultat, c'est sûrement que vous avez fait une erreur.

Proposition 27. Soit (u_n) et (v_n) deux suites telles que :

$$u_n \underset{n \to +\infty}{\sim} v_n$$

- Alors, il existe un rang à partir duquel (u_n) et (v_n) s'annulent simultanément.
- Si de plus elles sont réelles, il existe un rang à partir duquel elles sont de même signe.

Proposition 28.

— Soit (a_n) , (b_n) , (c_n) , (d_n) des suites telles que :

$$a_n \underset{n \to +\infty}{\sim} b_n \ et \ c_n \underset{n \to +\infty}{\sim} d_n$$

Alors:

$$a_n c_n \underset{n \to +\infty}{\sim} b_n d_n$$

Si de plus (c_n) et (d_n) ne s'annulent pas à partir d'un certain rang :

$$\frac{a_n}{c_n} \underset{n \to +\infty}{\sim} \frac{b_n}{d_n}$$

— Soit (u_n) et (v_n) deux suites et $\alpha \in \mathbb{R}$. Si u_n^{α} et v_n^{α} ont un sens à partir d'un certain rang, alors :

$$u_n \underset{n \to +\infty}{\sim} v_n \implies u_n^{\alpha} \underset{n \to +\infty}{\sim} v_n^{\alpha}$$

Remarques:

 \Rightarrow Les autres opérations usuelles sur les équivalents conduisent le plus souvent à des résultats faux. Il est donc interdit de sommer, d'élever à une puissance dépendant de n et de composer les équivalents.

 \Rightarrow Nous utiliserons cependant le fait que si deux suites équivalentes (u_n) et (v_n) tendent vers 0 ou $+\infty$, alors $\ln u_n$ est équivalent à $\ln v_n$. En particulier, si $a_0, a_1, \ldots, a_p \in \mathbb{R}$ avec $a_p > 0$, alors

$$\ln\left(a_p n^p + \dots + a_1 n + a_0\right) \underset{n \to +\infty}{\sim} p \ln n$$

Exemples:

⇒ Donner des équivalents simples de

$$\sqrt{n^4 + 2n^2 - 1}$$
 et $\sqrt{n+1} - \sqrt{n-1}$

Remarques:

⇒ Comparaison série-intégrale :

Soit f une fonction monotone de \mathbb{R}_+^* dans \mathbb{R}_+ , telle que

$$\int_{1}^{x} f(t) dt \xrightarrow[x \to +\infty]{} +\infty$$

On considère la suite (u_n) définie par : $\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n f(k)$ Alors, un encadrement de f(k) par

$$\int_{k}^{k-1} f(t) dt \text{ et } \int_{k}^{k+1} f(t) dt$$

permet de trouver simplement un équivalent de u_n . Cette technique essentielle est appelée technique de comparaison série-intégrale.

En suivant cette méthode, montrer que

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n$$

4.2 Suite négligeable devant une autre

Définition 13. Soit (u_n) et (v_n) deux suites. On dit que (u_n) est négligeable devant (v_n) lorsqu'il existe une suite (ε_n) convergent vers 0 et un rang $N \in \mathbb{N}$ tels que :

$$\forall n \geqslant N \quad u_n = \varepsilon_n v_n$$

Si tel est le cas, on note :

$$u_n = \mathop{o}_{n \to +\infty} \left(v_n \right)$$

La propriété « est négligeable devant » est asymptotique.

Remarques:

 \Rightarrow Si (u_n) est négligeable devant (v_n) , il existe un rang à partir duquel u_n est nul dès que v_n est nul

Proposition 29. Soit (u_n) , (v_n) et (w_n) trois suites. Alors:

$$\left[u_n = \underset{n \to +\infty}{o}(v_n) \text{ et } v_n = \underset{n \to +\infty}{o}(w_n)\right] \implies u_n = \underset{n \to +\infty}{o}(w_n)$$

Proposition 30. Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors :

$$u_n = \underset{n \to +\infty}{o} (v_n) \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$$

Remarques:

 \Rightarrow La suite $(|u_n|)$ est négligeable devant la suite $(|v_n|)$ si et seulement si (u_n) est négligeable devant (v_n) .

Exemples:

Soit (u_n) une suite réelle divergeant vers $+\infty$. Démontrer qu'il existe une suite (v_n) , négligeable devant (u_n) qui diverge aussi vers $+\infty$.

Proposition 31.

— Soit $a, b \in \mathbb{R}$. Alors:

$$n^a = \underset{n \to +\infty}{o} (n^b) \iff a < b$$

Autrement dit:

$$\frac{1}{n^a} = \underset{n \to +\infty}{o} \left(\frac{1}{n^b} \right) \quad \Longleftrightarrow \quad a > b$$

— Soit $(\omega_a, \omega_b) \in \mathbb{C} \times \mathbb{C}^*$. Alors:

$$\omega_a^n = \underset{n \to +\infty}{o} (\omega_b^n) \quad \Longleftrightarrow \quad |\omega_a| < |\omega_b|$$

— Soit $\alpha, \beta > 0$ et $\omega \in \mathbb{C}$ tel que $|\omega| > 1$. Alors :

$$(\ln n)^{\alpha} = \underset{n \to +\infty}{o} (n^{\beta}) \qquad n^{\alpha} = \underset{n \to +\infty}{o} (\omega^{n}) \qquad n^{\alpha} = \underset{n \to +\infty}{o} (e^{\beta n})$$
$$\omega^{n} = \underset{n \to +\infty}{o} (n!) \qquad e^{\beta n} = \underset{n \to +\infty}{o} (n!)$$

Exemples:

 \Rightarrow Comparer les suites suivantes données par leur terme général :

$$n^n$$
, $n^{\ln n}$, e^{n^2} , $(\ln n)^{n \ln n}$

Proposition 32. Soit (u_n) une suite. Alors:

$$u_n = \underset{n \to +\infty}{o} (1) \iff u_n \xrightarrow[n \to +\infty]{} 0$$

Proposition 33.

— Soit (u_n) une suite. Alors:

$$\forall \lambda, \mu \in \mathbb{C}$$
 $\lambda \underset{n \to +\infty}{o} (u_n) + \mu \underset{n \to +\infty}{o} (u_n) = \underset{n \to +\infty}{o} (u_n)$

— Soit (u_n) et (v_n) deux suites. Alors :

$$u_n \underset{n \to +\infty}{o} (v_n) = \underset{n \to +\infty}{o} (u_n v_n)$$

cette égalité pouvant se lire dans les deux sens.

— Soit (u_n) et (v_n) deux suites. Alors :

$$\underset{n \to +\infty}{o} (u_n) \underset{n \to +\infty}{o} (v_n) = \underset{n \to +\infty}{o} (u_n v_n)$$

Remarques:

- \Rightarrow Soit (u_n) et (v_n) deux suites équivalentes. Une suite est négligeable devant (u_n) si et seulement si elle est négligeable devant (v_n) .
- \Rightarrow Soit (u_n) une suite et $\lambda \in \mathbb{C}^*$. Une suite est négligeable devant (u_n) si et seulement si elle est négligeable devant (λu_n) .

Proposition 34. Soit (u_n) et (v_n) deux suites. Alors :

$$u_n \underset{n \to +\infty}{\sim} v_n \iff u_n = v_n + \underset{n \to +\infty}{o} (v_n)$$

4.3 Suite dominée par une autre

Définition 14. Soit (u_n) et (v_n) deux suites. On dit que (u_n) est dominée par (v_n) lorsqu'il existe une suite bornée (B_n) et un rang $N \in \mathbb{N}$ tels que :

$$\forall n \geqslant N \quad u_n = B_n v_n$$

 $Si\ tel\ est\ le\ cas,\ on\ note:$

$$u_n = \mathop{O}_{n \to +\infty} \left(v_n \right)$$

La propriété « est dominée par » est asymptotique.

Proposition 35.

— Soit (u_n) une suite. Alors:

$$u_n = \mathop{O}_{n \to +\infty} \left(u_n \right)$$

— Soit (u_n) , (v_n) et (w_n) trois suites. Alors:

$$\left[u_n = \underset{n \to +\infty}{O}(v_n) \text{ et } v_n = \underset{n \to +\infty}{O}(w_n)\right] \implies u_n = \underset{n \to +\infty}{O}(w_n)$$

De plus si dans l'hypothèse, un des O est un o, alors (u_n) est négligeable devant (w_n) .

Proposition 36. Soit deux suites (u_n) et (v_n) . Alors :

$$u_n = \underset{n \to +\infty}{o} (v_n) \implies u_n = \underset{n \to +\infty}{O} (v_n)$$

Proposition 37. Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors :

$$u_n = \underset{n \to +\infty}{O}(v_n) \iff \frac{u_n}{v_n} \text{ est born\'ee}$$