SELF-ADAPTIVE FINANCIAL FRAUD DETECTION SYSTEM

Team #9

Aman Kumar & Manan Raheja Electrical and Computer Engineering

Motivation

- Detecting fraudulent transactions is one of the major challenges faced by financial institutes, causing heavy financial loss and negative user experience
- Machine learning to the rescue?
- Static ML models struggle with data drift, a "feature" of fraudulent transactions
- Reasons for the data drift:
 - fraudsters constantly changing their methods
 - evolving technology landscape

Objective of the project:

- A system that can adapt and self-optimize in response to data drift
- Maintains optimal performance over time

Data drift

Source: [1]

Our Approach

 Integrating principles of Self-Adaptative Systems (MAPE-K loop) into the MLOps lifecycle (Data Engineering -> Model Engineering -> Model Deployment).

Architecture of the System

- **3** main components -
 - 1. **Data Streamer:** Simulates a data stream from a static dataset
 - 2. **MLOps pipeline:** Data Preprocessing -> Model Training -> Deploy
 - **3. Driver program:** Orchestrates the complete self-adaptative process

Results

- Simulating data drift with 2 datasets (original, augmented)
- Conducted an extensive series of experiments with 15 models to find the best-performing ML model
- Built a **custom voting classifier** combining XGBoost, Random Forest and Gaussian Naïve Bayes
- The observations demonstrate system's ability to sustain optimal performance and adaptability even under significant data drift

Classifier	Recall
AdaBoost	74.48%
Bagging Classifier	80.61%
BernoulliNB	63.26%
Calibrated Classifier CV	63.26%
DecisionTreeClassifier	75.51%
ExtraTreeClassifier	76.53%
ExtraTreesClassifier	82.64%
GaussianNB	84.69%
KNeighborsClassifier	80.61%
XGBoost	82%
LinearSVC	78%
SVC	67%
Random Forest	81%
Logistic Regression	65%
Gradient Boosting (max_depth=15)	78%
Custom Voting Classifier	83%

TABLE I: Performance of different classifiers on the Credit Fraud Dataset

Results (Cloud Runtime)

- Pipeline 1 trains and deploys initial model.
- Model achieves 99.99% Recall due to data augmentation and model selection.
- Pipeline 2 retrains and redeploys the model when accuracy drops.

THANK YOU!:)

Any questions?

Image Credits

- [1] https://www.evidentlyai.com/ml-in-production/data-drift
- [2] https://www.databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html
- [3] https://learn.uwaterloo.ca/d2l/le/content/949359/viewContent/5154165/View
- [4] https://ml-ops.org/content/mlops-principles

PRESENTATION TITLE PAGE 8