# Progress Presentation

June 27th - July 19th

### Agenda

- \* small updates to the algorithm
- \* experiments
- \* revisiting some diagnostic plots
- \* paper, schedule, examiner, etc.



#### Updates to Algorithm

- \* Beliefs are now allowed to diverge -> random actions
  - \* If the belief in the root node of the top level forest diverges, the run ends
  - \* If the target node is initialised with a diverged belief at the start of a single simulation, the simulation fails and we move on to the next one
- \* Softargmax for determining actions for a lower forest:

\* before: 
$$\mathbb{P}(a_j \mid b) \propto \exp\left(\frac{N_+(b, a_j)}{\sqrt{N_+(b)}}\right) = \exp\left(\frac{W(b, a_j)}{W(b)}\sqrt{N_+(b)}\right)$$

\* now: 
$$\mathbb{P}(a_j \mid b) \propto \exp\left(\frac{\hat{U}(b, a_j)}{c_{\text{sft}} \cdot (1/\sqrt{N_+(b)})}\right)$$

- \* (Boltzmann distribution with "state energies"  $-\hat{U}(b,a_j)$  and temperature  $1/\sqrt{N_+(b)}$ )
- \* Improved memory usage (with 3 agents it was using 20+GB, now around 10-15GB at most)

#### Experiments

#### \* Experiment 1

- \* goal: investigating the effect of different costs of attacking in a two-agent system
- \* independent variable: the cost of attacking (0.01, 0, -0.01, -0.1, -0.9, -1)
- \* dependent variables:
  - \* proportions of different actions over the duration of the simulation
  - \* distribution of attack streak lengths
- \* how to quantify "bounded rationality" / prediction error?
  - \* number of times a lower forest belief diverges is not a good metric, because the upper forest is exploring different actions
  - \* instead: at the end of a turn, compare the actions each agent would perform and the actions we think they will perform

Number of simulations

- averages over 5 runs
- two agents
- exploration coefficient 0.1
- reasoning level 1
- only first time step
- results from one agent's forests



Exploration Coefficient

- averages over 5 runs
- two agents
- 10k simulations
- reasoning level 1
- only first time step
- results from one agent's forests



- averages over 5 runs
- 10k simulations
- exploration coefficient 0.1
- reasoning level 1
- only first time step
- results from one agent's forests
  - Note: particle counts (left and middle plots) are from the level 1 forest

Number of Agents



Search depth

- averages over 5 runs
- 10k simulations
- exploration coefficient 0.1
- two agents
- reasoning level 1
- only first time step
- results from one agent's forests



#### Practicalities

- \* paper
  - \* first draft of methods is done
  - \* next: literature review?
- \* what is the examiner situation?
- \* schedule is looking tight

#### Notes from Meeting

#### \* Paper:

- \* finish section 3.1: be as comprehensive as possible
- \* make a figure illustrating the structure of interactive states (similar in style to the "matrix" format used in slides)
- \* literature review: write more in the style of a thesis. Around 5 pages
- \* Memory usage:
  - \* check global variables, Python is not very good at handling them memory-wise
- \* New softargmax approach:
  - \* think of an appropriate range for  $c_{\rm sft}$
  - \* similar to quantal response equilibrium
- \* Quantifying bounded rationality:
  - \* agent-level
  - \* system-level: how does payoff received differ from optimal behaviour (which is for everyone to never do anything)