Struktur Elektronik: Platinum

Zohan Syah Fatomi

Rekayasa Komputasi Material

Input:

Koordinat atomik

Density Functional Theory (DFT) + Komputasi Numerik + Komputer

Output:

Sifat **elektronik**, Optik, Magnetik, dlsb

Struktur elektronik

Density Functional Theory (Kohn-Sham Equation)

- $n_0(r)$: Initial electron density
- $V_{\rm eff}$: Effective potential
- V_{ext} : External potential
 V_h : Hartree potential
- V_{xc} : Exchange-Correlation potential
- $-\frac{1}{2}\nabla^2$: Kinetic Energy
- : Kohn-Sham Orbitals
- E : Total Energy
- : Total Force

Sistem Kristal

Struktur Band

Sifat Elektronik pada Material

Berdasarkan kemagnetannya material dibedakan menjadi 3:

- 1. **Konduktor**: conduction band & valence band timpang tindih (overlap).
 - Contoh: besi (Fe), tembaga (Cu) dll.
- 2. **Semikonduktor**: memiliki band gap sedang (0.1 4.0 eV). Contoh: Silicon, Germanium dll.
- 3. **Isolator**: memiliki band gap besar (> 4.0 eV) Contoh: Diamond, kaca

Platinum (Pt)

Struktur kristal unit sel Platinum (Pt) adalah Face Center Cubic (FCC).

Berapa atom Pt pada sebuaunit sel Platinum?

Platinum (Pt)

Struktur kristal unit sel Platinum (Pt) adalah Face Center Cubic (FCC).

Berapa atom tetangga pada sebuah atom Pt?

Platinum (Pt)

Unit sel Primitif Platinum (Pt)

Struktur kristal unit sel Platinum (Pt) adalah Face Center Cubic (FCC).

Vektor kisi Platinum

$$a_1 = \frac{a}{2}\hat{y} + \frac{a}{2}\hat{z}$$

$$a_2 = \frac{a}{2}\hat{x} + \frac{a}{2}\hat{z}$$

$$a_3 = \frac{a}{2}\hat{x} + \frac{a}{2}\hat{y}$$

Vektor unit sel primitif Platinum (Pt)

Berapa atom Pt pada sebuah unit sel primitif Platinum (Pt)?

Kalkulasi DFT PHASE0

Untuk melakukan kalkulasi DFT pada PHASE0 dibutuhkan 3 file utama:

- 1. Filenames.data -> deklarasi penamaan file.
- 2. Input.data -> konfigurasi perhitungan dan sistem kristal
- 3. Pseudopotential.data -> file pseudo potential

Silahkan download kode pada url berikut!

https://github.com/zohansyahfatomi/struktur-elektronik

filenames.data

filenames.data digunakan untuk mengidentifikasi file **input** dan **pseudopotential**.

Ubah nama file pada F_POT(1) dengan nama

Pseudopotential yang sesuai (Fe_ggapbe_paw_us_02.pp)

nfinp.data

```
1 Control{
      cpumax = 3600 sec
      condition = Initial
5 accuracy{
      cutoff wf = 25.00 rydberg
      cutoff cd = 225.00 rydberg
      num bands = 16
      ksampling{
          mesh{
              nx = 2
              nv = 2
              nz = 1
17 structure{
      unit cell type = primitive
      unit cell{
          a vector = 4.6646320985 0.00 0.00
          b vector = -2.3323160493 4.0396898966 0.00
          c vector = 0.00 0.00 18.895488655
      atom list{
          atoms{
              #tag element rx ry rz mobile
               C 0.66666667 0.33333333 0.0 1
               C 0.33333333 0.66666667 0.0 1
      element list{
          #tag element atomicnumber mass zeta deviation
           C 6 21894.5796 0.0 1.83
```

Block **Control**: mengatur **kondisi** kalkulasi (maksimal waktu kalkulasi, jenis kalkulasi dlsb)

Block **Accuracy**: mengatur **akurasi** kalkulasi (energi cut-off, jumlah band, jumlah kpoint dlsb)

Block **Structure**: pengaturan **konfigurasi** struktur kristal, apakah kristal itu **Iron (Fe)**, **graphene**, **diamond**, **stanene**, **silicine** dlsb, tergantung konfigurasi pada block tsb.

File pseudopotential

File pseudopotential ada di phase/samples

Pseudopotential digunakan untuk mengaproksimasi bentuk potential yang ekstrim.

Setiap Unsur memiliki pseudopotential sendiri.

SCF

14

Kalkulasi SCF Platinum

Kalkulasi telah selesai dengan waktu 10 detik

Energi Total -11.399 Hartree

Platinum DOS

mpirun -np 2 ekcal

perl dos.pl dos.data -erange=-10,10 -color -with_fermi

Platinum Band Structure

mpirun -np 2 ekcal

Berapa band gap dari platinum?

Material platinum apakah termasuk konduktor atau semikonduktor atau isolator?

perl band.pl nfenergy.data bandkpt.in -with_fermi -color

Platinum (3D) Charge Density

- 1. Buka aplikasi Vesta
- 2. Masukan nfchr.cube dengan drag