Predict number of Bike in sharing systems

Nada Fadhel AL-Towerky

Final Project

Choosing the dataset

API tools in Twitter

It took more than 3 days to verify my account.

2 Squid game tweets.
Form kiggle – hard in second week

Seoul Bike sharing system
Its good dataset because II care
about the weather and the
environment in general because I
work in the Ministry of Environment

Introduction

Bike sharing systems are a means of renting bicycles where the process of obtaining membership, rental, and bike return is automated via a network of kiosk locations throughout a city. Using these systems, people are able rent a bike from a one location and return it to a different place on an as-needed basis.

Describe the data frame

- 14 features
 - Date
 - Rented Bike count
 Solar radiation
 - Hour
 - Temperature
 - Humidity
 - Windspeed
 - Visibility

- Dew point temperature
- Rainfall
- Snowfall
- Seasons
- Holiday
- Functional Day

4 The Dataframe

4	Date	Rented Bike Count	Hour	Temperature(�C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(�C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Seasons	Holiday	Functioning Day
	09/09/2018	1662	14	28.2	29	2.0	2000	8.4	3.09	0.0	0.0	Autumn	No Holiday	Yes
	24/06/2018	2094	18	29.8	35	3.3	1805	12.6	1.15	0.0	0.0	Summer	No Holiday	Yes
	10/05/2018	0	14	21.2	47	3.7	1142	9.4	3.22	0.0	0.0	Spring	No Holiday	No
	28/01/2018	187	16	-2.1	27	4.0	2000	-18.6	0.52	0.0	0.0	Winter	No Holiday	Yes
	08/07/2018	2266	17	27.4	44	1.7	2000	14.0	1.17	0.0	0.0	Summer	No Holiday	Yes

Plot

As shown the hist of humidity and temp and wend speed looks Normal

Rain and Snow

Snowfall and Rainfall are highly skewed

Correlation Heatmap

es Correlating with Rented Bike Cou

Summer have high rented bike (the mean temp in Autumn higher than spring)

MONTHS

Most of bike rented for work

Modeling

Regular Linear Regression

R-squared 0.755

Lasso Regression

R-squared 0.462

