HDB resale prices

Samuel Cheah Holmusk coding challenge

Problem Statement

HDB has provided a dataset of resale HDB transactions and would like understand the drivers of resale prices.

Date range analyzed: 2012-2020

Dataset features

- 1. Month YYYY-MM format
- 2. Town AMK, Bishan, etc
- 3. Flat_type 2-room, 3-room etc
- 4. Block
- 5. Street name
- 6. Storey range e.g. unit is between storey 10-12
- 7. Floor area in square meters (sqm)
- 8. Flat model Standard, Improved, Maisonette etc
- 9. Lease commence date
- 10. Resale price

Data preprocessing

- 1. Resale price
 - a. Adjusted for inflation using CPI for housing.
- 2. Month (YYYY-MM)
 - a. Split into 'year' and 'mth' features.
- 3. Flat type
 - a. Recoded on ordinal integer scale, 0-6.
- 4. Storey Range
 - a. Converted to average of range
- 5. Lease commencement date
 - a. Transformed into a remaining lease years feature

Data preprocessing

Combine block and street name into address

Use Onemap API to pull coordinates for each address.

Feature engineering

Distance to nearest MRT/LRT

- Better MRT access -> more valuable

Distance to nearest shopping mall

- Easier to access essential services, like food, groceries, banking - > more valuable

Feature engineering

Proximity to Top 20 primary school

- Primary school priority school admission is dependent on proximity of unit.
- Might be important to parents with young children.

Feature engineering

Distance/time to city centre

- Time to travel to work also important consideration
- Both variable created due to uncertainty about accuracy of Onemap API for time estimates

Examined distributions of numerical variables

- Resale price is right skewed.
- Expensive HDBs are rarer since HDBs are meant to be an affordable housing avenue.

In 2013 and 2014, we see the effects of the property cooling measures on number of resale transactions.

Transactions stabilize thereafter.

Transactions are lower during start and end of year

Most common flat types are 3, 4, and 5-room flats.

We see prices spread out as floor size increases.

There are also some outliers with floor area >200sqm.

- Terraces and maisonettes that are likely 2
 units combined into 1 to give the size.
- Dropped these units.

While maximum resale prices get higher as distance/time gets lower, minimum resale prices appear unaffected

Similar distribution with distance to MRT and mall.

Outliers present very far to the right. What are they?

Changi Village!

Some old HDBs still exist here, but very far from everyone else.

Dropped these units from dataset.

Maximum resale prices go up as years go by.

Minimum resale prices remain stable

- Housing remains affordable for majority.

No effect of month on price, dropped.

Between 60-90 years, price is quite stable.

Drops sharply below 60.

- Older houses risk lease expiry

Sudden jump in max resale price above 90 yrs

DBSS, Pinnacle@Duxton flats being sold after
 Minimum Occupancy Period for profit.

High correlation between flat type and floor area

- Dropped flat type

High correlation between dist_to_city and time_to_city

- Decided to drop dist_to_city

Only floor area has moderately high correlation with resale price.

-0.6

-0.4

-0.2

-0.2

Some towns clearly more expensive than others

- Bishan, Bukit Timah, Bukit Merah

Some towns have smaller IQR, prices more consistent

- Sembawang, Woodlands, Choa Chu Kang
- These are quite far away from city centre,
 unlikely to command \$1mil prices like other
 places.

After checking for multicollinearity, these are our final predictors:

- 1. Floor area
- 2. Remaining lease
- 3. Year bought/sold
- 4. Unit storey
- 5. Distance to nearest MRT
- 6. Distance to nearest mall
- 7. Is near top20 primary school
- 8. Town (dummied)
- 9. Flat model (dummied)

Multi-Linear Regression using statsmodel OLS.

Adjusted R2 = 0.861

Model is statistically significant

- Prob (F-statistic) = 0.00

Multicollinearity present due to dummied categorical variables

Dep. Variable:	resale_price_adj	R-squared:	0.861
Model:	OLS	Adj. R-squared:	0.861
Method:	Least Squares	F-statistic:	2.117e+04
Date:	Sat, 19 Jun 2021	Prob (F-statistic):	0.00
Time:	02:17:25	Log-Likelihood:	-2.1361e+06
No. Observations:	174397	AIC:	4.272e+06
Df Residuals:	174345	BIC:	4.273e+06
Df Model:	51		
Covariance Type:	nonrobust		

Predictions should be clustered around the diagonal line, but is not.

Residual plot display severe heteroscedasticity, also

displays left skew.

RMSE = 50500

Solution: apply log transformation to resale price

After logging target, this is our regression equation

$$\log(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$
 Adjusted R2 = 0.881

RMSE = 47492

Model is still statistically significant, and all individual predictors are now statistically significant at 95% confidence level

Dep. Variable:	resale_price_adj	R-squared:	0.882
Model:	OLS	Adj. R-squared:	0.881
Method:	Least Squares	F-statistic:	2.543e+04
Date:	Sat, 19 Jun 2021	Prob (F-statistic):	0.00
Time:	02:41:02	Log-Likelihood:	1.4781e+05
No. Observations:	174397	AIC:	-2.955e+05
Df Residuals:	174345	BIC:	-2.950e+05
Df Model:	51		
Covariance Type:	nonrobust		

Predictions are now nicely clustered around actual price.

Residuals are largely homoscedastic, with a few outliers

that we will examine later.

Residuals are normally distributed.

Our model shows a linear relationship between log(y) and our predictors.

Exponentiate the equation to return y to linear space

$$y = e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}$$

Each unit increase of X1 increases y by $e^{\beta}1$ *times*.

		coef				
	const	12.8821			const	393203.193
	floor_area_sqm	0.0093	Exponentiate		floor_area_sqm	1.009
β_X	year 0.	0.0085	-	ρ^{β_p}	year	1.009
FA	avg_storey	0.0081			avg_storey	1.008
	remaining_lease	0.0100			remaining_lease dist to mrt	1.010 0.886
	dist_to_mrt				d13c_co_iiii c	0.000

When we say a unit increase of X1 increases y by e^{β_1} times, what is the base reference?

Base reference is when all predictors are 0, i.e. $y = e^{\beta_0}$, or \$393,203.

This hypothetical unit, when all predictors=0, is a unit with these characteristics:

Town	F_type	Floor area	Remaining lease	Avg unit storey	Distance to MRT	Distance to mall	Near top20 pri sch	Year bought/sold
AMK	2-room	97.1 sqm	75 yrs	8th floor	0.66km	0.68km	No	2016

Examine predictions vs actual resale price back

in linear space.

Some outliers present.

Outliers

town	address	floor_area_sqm	dist_to_mrt	time_to_city	year	flat_model	f_type	avg_storey	remaining_lease	resale_price_adj	preds
bishan	240 BISHAN ST 22	156.000	1.127	38.050	2012	maisonette	5	3	79	732138.118	844732.817
bishan	247 BISHAN ST 22	146.000	1.222	37.033	2019	maisonette	5	2	72	777345.919	743959.383

bishan	443 SIN MING AVE	199.000	1.298	43.267	2013	maisonette	5	8	76	778521.411	1287096.356
bishan	445 SIN MING AVE	190.000	1.345	43.283	2016	maisonette	5	11	73	828878.499	1203376.828

Outliers

444 000				-	-rybe	avg_storey	remaining_lease	resale_price_adj	preds
111.000	1.066	35. <mark>1</mark> 83	2017	terrace	2	2	54	708375.836	784392.277
119.000	1.066	35.183	2019	terrace	2	2	52	817979.182	842718.967
108.000	1.066	35.183	2019	terrace	2	2	52	854804.609	760441.463
181.000	1.020	37.083	2017	terrace	2	2	54	770804.587	1509406.082
	108.000	108.000 1.066	108.000 1.066 35.183	108.000 1.066 35.183 2019	108.000 1.066 35.183 2019 terrace	108.000 1.066 35.183 2019 terrace 2	108.000 1.066 35.183 2019 terrace 2 2	108.000 1.066 35.183 2019 terrace 2 2 52	108.000 1.066 35.183 2019 terrace 2 2 52 854804.609

Different towns have different price premiums placed on them.

However, recall that we had to drop time_to_city due to

multicollinearity. Some of the premium due to time is reflected

here inside town. (Limitation)

Biggest price premium is placed on terraces, maisonettes,

DBSS, and the Pinnacle@Duxton units.

Conclusions

MLR model showed linear relationship between log of resale price and predictors.

Model is statistically significant, with adjusted R2 of 0.881, RMSE of 47492.

All predictor variables are significant at the 95% confidence level.

Conclusions

Factors with positive relationship to price:

- Floor area, remaining lease years, unit storey, year transacted, proximity to top20 primary school

Factors with negative relationship to price:

- Distance to nearest MRT, distance to nearest mall

Limitations

- 1. Town variable contains information about time to city.
 - a. Need to isolate these effects out to better understand how town affects price
- 2. Flat model variable not consistent in characteristics it measures
 - a. What is the difference between Model A vs Standard vs Apartment?
 - b. Are flat models related to size, or secondary characteristics like terraces having backyards?
- 3. Model performs poorly on jumbo sized units (>180sqm)
 - a. These units not much more expensive than much smaller units in same location

Recommendations

- 1. Engineer other variables to capture unique characteristics of town separate from time factors.
 - a. Vibrancy of community, maturity of estate etc
- 2. Extract salient secondary characteristics of flat models that distinguish them from regular flats
 - Maisonettes have 2 storeys, lofts have higher ceilings, terraces have backyards etc
- 3. Consider building separate model to account for extra large flats.
- 4. Interaction terms were not explored here, possible future avenue for improvements.