Manual de Operação – Une Dune Te Data Logger

1. Introdução

Este Data Logger monitora temperatura, umidade relativa e luminosidade utilizando sensores DHT11 e um sensor analógico de luz. Os dados são armazenados na EEPROM do Arduino e podem ser acessados via serial monitor ou através do próprio código. Alertas de anomalia são indicados pelo LED vermelho e buzzer.

2. Componentes do Sistema

- Arduino Uno ou compatível
- Sensor DHT11 (Temperatura e Umidade)
- Sensor de luminosidade (LDR)
- LCD 16x2 I2C
- LED vermelho (alerta)
- Buzzer (alerta sonoro)
- Botões para navegação das telas
- Protoboard e jumpers

3. Funcionalidades

- Monitoramento em tempo real da temperatura, umidade e luminosidade.
- Alerta visual e sonoro em caso de valores fora dos limites configurados:

Temperatura: 20°C – 30°C
Umidade: 30% – 50%
Luminosidade: 0% – 30%

- Navegação pelas telas pressionando e segurando os botões:
 - Home → Tela principal com data e hora
 - o **Temperatura** → Tela com valor da temperatura
 - ∪midade → Tela com valor da umidade
 - Luminosidade → Tela com valor da luminosidade
- Registro de dados na EEPROM, incluindo logs de anomalias, disponíveis via serial.

4. Operação do Sistema

4.1 Inicialização

- 1. Conecte o Arduino à fonte de alimentação.
- 2. O LCD exibirá a **tela de carregamento** com animação e título "UNE DUNE TE DATA LOGGER".
- 3. Aguarde até o sistema iniciar.

4.2 Navegação pelas telas

- Para mudar de tela, pressione e segure o botão correspondente:
 - o Botão Home → Tela de data e hora
 - Botão Temperatura → Tela de temperatura
 - o Botão **Umidade** → Tela de umidade
 - Botão Luminosidade → Tela de luminosidade

Observação: a atualização das telas depende da pressão contínua do botão; o sistema não possui refresh automático.

4.3 Alertas de Anomalia

- Caso algum parâmetro esteja fora do intervalo permitido, o LED vermelho acende e o buzzer emite um som curto.
- A tela do LCD exibirá o tipo de anomalia (TEMP, UMI ou LUM) por 3 segundos.
- Os dados de anomalia são registrados na EEPROM, mas não aparecem na tela de navegação.

4.4 Registro de Dados

- A cada minuto, os valores são armazenados na EEPROM (data/hora, temperatura, umidade e luminosidade).
- Para acessar os registros via Serial Monitor, utilize a função get_log() no código.

5. Configuração de Parâmetros

- Temperatura mínima e máxima: trigger_t_min e trigger_t_max
- Umidade mínima e máxima: trigger_u_min e trigger_u_max
- Luminosidade mínima e máxima: trigger_l_min e trigger_l_max

Estes valores podem ser alterados diretamente no código antes da compilação.

6. Cuidados e Observações

- O projeto está montado em protoboard; cuidado com deslocamentos acidentais dos fios.
- Não há proteção contra curto-circuitos, portanto manuseie com atenção.
- As medições dependem da calibração do sensor DHT11 e da LDR.
- Recomenda-se alimentação estável do Arduino para evitar perda de dados.

7. Extensões Futuras

- Implementação de carcaça protetora.
- Exibição de logs de anomalia na tela LCD.
- Integração com SD card ou transmissão via Wi-Fi.