My English is poor, so stopme any time if you have any question during the class

What is this excerce class about?

Do the homeworks.

Answer your questions

- D Questions during doing homework
- 22 Questions claring the class but you dich't figure out 3 Any question else.
- 3) Give you some exercises. Do it during the exercise class, not necessary complete.

Deadline for hownework:

Homework 2 and Homework 3 should be signed before

26th March!

(c). $e^{i2\pi} = \cos z\pi + i \sin z\pi = 1$ $e^{i\frac{2\pi}{3}}$ is a third root of unity Notice the $e^{x} \cdot e^{y} = e^{x+y}$ what's the general n-th root of unity?

The general n-th root of unity shoul be E for $K=0,1,2,\dots$ Since $\left(e^{i\frac{2k\pi}{n}}\right)^n = e^{n\cdot\left(i\frac{2k\pi}{n}\right)} = e^{i2k\pi} = 1$ Question. Are these n-th root of unity distinct? $e^{i\frac{2\pi n}{n}}$ K=0,1,2,3,-..,n,n+1,...claim $e^{i\frac{2k_1\pi}{n}} = e^{i\frac{2k_2\pi}{n}}$ if and only if $n \mid k_1 - k_2$ Do it youself if you want!

3. Compute the determinant of the following matrix:

$$A := \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$
 Block matrix

3. Let
$$A_{i} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 $A_{2} = \begin{pmatrix} 5 & 6 \\ 9 & 10 \end{pmatrix}$ $A_{3} = \begin{pmatrix} 7 & 8 \\ 11 & 12 \end{pmatrix}$

We need to check uniqueness of u and w.

If we have u.EU, w.EW. so that v = u + w = u + w.

only if part? 2021年3月13日 16:52 (countinued). J= U+N = N+N V=UDW => パール, = w, -w. MUU 3 JK-JK = , N-K By by definition UNW=0. $1\sqrt{2\sigma}=2\sigma$ bus, N=N \in $\sigma=2\sigma-1, \sigma=1, N-N$ ~ 2 This proves uniqueness of u and W. If you have any problems that you have learn't before but you forget, and we will use in class, you can ask, I will try to remind you in exercise class (If time permit?)