Appl. No. 10/086,250 Doc. Ref. AJ20

⑩日本国特許庁(JP)

10 特許出額公開

#### ① 公開特許公報(A) 昭60 - 130203

Colnt Cl.

脸別配号

广内整理番号

H 03 D 7/00

7402 - 5J

母公開 昭和60年(1985)7月11日

客査請求 未請求 発明の数 1 (全3頁)

❷発明の名称 周波数変換器

> 頤 昭58-239242 创特 顧 昭58(1983)12月19日 田田

分発 明 者

玉井

徳 迪

門真市大字門真1006番地 松下電器產業株式会社内

砂発 明 者

野村

尚生

門耳市大字門真1006番地 松下電器產業株式会社内

切出 願 人

松下電器產業株式会社

門真市大字門真1006番地

の代理

弁理士 中尾 敏男

外1名

7月

1、発明の名称

网族数要换器

#### 2、特許辦求の範囲

入力信号の間故数を帯放制限する第1 のフィル 夕回路部と、前配館1のフィルチ網路部通過値分 を所定周期でサンブリングするサンブリング回路 部と、同サンプリング側路部で生じた時間離散係 - 写より、前記入力信の間故数から前記サンプリン グ間切の修改倍推移した周波数帯域を選択する第 2のフィルタ同路都とをそなえた周放歓変機器。

### 3、発明の詳細な説明

産業上の利用分野

水乳明は、変鯛、復鯛などに必要な周故飲変換 処理を行なうための間放散変換層に関する。

従来例の構成とその問題点

従来の間放政変換器は、拡木的には、掛け採用 略を用いて機成されている。ナなわち、従来の周 放散変換階では、入力信号VIを

(ことで、 Ei :入力信号の伝統値、 ⇔i :入力 信号の角周被数、し:時間)とし、掛け算のため に導入される局部発版信号 V。を

(ととで、 E』 :局部発板信牙の捩幅値、 w』 : 同傷分の角層故数、七:時間)とすれば、これら を掛け称して称られる偶多V。は

$$V_{o} = E_{1} \cdot E_{\ell} \cdot \omega_{1} \cdot \omega_{1} \cdot \omega_{2} \cdot \omega_{\ell} \cdot E_{\ell} \cdot \omega_{1} \cdot \omega_{1$$

となる。そとで、帯蛟フィルタ回鶻によって、上 配偶号 Vo から、 ( o + o t ) 、または ( o ω』)の間彼数成分を取り出して、関放数変換が 行なわれていた。

しかしながら、とれらの実施回路はナベてアナ ログ側路梯底となっており、装配の膨大化ならび に開発機能が複雑になる傾向があり、装置の小型  の間面があった。

発明の目的

本発明は、掛け算回路構成によらず、サンプリング方式による関放散変換器を提供するものである。

発明の構成

本税明は、契約するに、入力信号の局位数を帯 被制限する解1のフィルが国路部と、前記解1の フィルが国路部通過信号を所定 国期でサンプリン がするサンプリング回路部と、同サンプリング回路部で生じた時間離散信号より、前記入力信号に 放数から前記サンプリング 関期の整数倍能部した 関数数等域を超択する第2のフィルが回路部とと で生た時間路がであり、これにより、比較 でなえた関路が成によって任意の間被数変換が実 行され、装置の小型化、安定化が速成される。

## 实施例の脱明

第1 図は、木苑明実施例の基本構成図であり、 入力帽子1、第1フィルタ回路部2、サンプリング回路部3、第2フィルメ回路部4本よび出力帽

(wーnw。) を抜き出すことのできるフィルタ 阿路に収入し、その出力を出力絹子をから取り出 すことにより、関数数変換が可能である。

第2 図は、木苑明の実施例具体構成図であり、 第1 図の構成に加えて、入力信号!(1)を適当なレベルまで増続する入力信号増幅回路部6、サンブリング回路部3への制御信号入力帽子でかよび出力信号増幅回路部8をそなえたものである。

前3内は、角間波取削板での動作を示す戦長院
別図である。この図を参照して、前2内に示す实施側構成の動作をのべると、入力端子1に入った入力傷牙がは回路即6で適切ない。大力傷牙が1分を、入力傷牙が1分を、入力傷牙が1分を、入力傷牙が1分を、入力傷牙が1分を、入力傷牙が1分を、から、から、から、から、から、から、から、前3回中の行子ので示される角間放放。中の個子を選択する。次に、これをサンブリング回路部3に導いて、第3回中の符号10で示すような任意の角間放数。のサンブリンがを行かったのサンブリング回路部日で生じ

子ををそなえたものである。

第1図示の報成で、入力信号 f(1)を入力増子 1 化与え、第1フィルタ回路部2で入力信号 f(1)を 希望の間放散帯域に制限し、これをサンブリング 回路部3でサンブリングする。このサンブリング 化よって生じた時間軽飲信号 f<sub>a</sub> (1)は

$$f_g(t) = \sum_{n=-\infty}^{\infty} f(nT) \delta(t-nT) \cdots (4)$$

(ととで、T:サンプリング時間、 b(t): デルタ 観散 , n : 整数 ) と表わかことができる。

また、(4)式で示される時間能散信号 f。 (4)をフーリエ変換すると、その変換信号 F。 (4)は

$$\mathbf{F} \ (\omega) = \frac{1}{\mathbf{T}} \sum_{n=-\infty}^{\infty} \mathbf{F} \left( \omega - n \omega_{0} \right) \dots \dots (6)$$

(ことで、F(M:入力信号f(I)のフーリエ変換信号、ω。:2π/Tで扱わされる角間放散)で表わされる角間放散)で表わされる。したがって、サンプリング同路部3で生じた時間能散信号f。(I)を、適当な第2フィルタ回路部4、ナなわち、(G)式で扱わされるフーリエ変換信号のうちの希望ナるフーリエ変換信号F

るほうは、何式に表わされるフーリエ変換信号を 有しているので、とのうちから、直当なロウパス フィルタ何格が4によって、第3図中の符号11 で示すような角層被数(ωp ーω。)の低い周被 排放の出力信号を得る。そして、最終的には、出 力信号増額回路部8によって、その信号を十分な レベルまで増額して、出力増子6から直切を出力 信号を取り出す。

本売別の関放数変換器では、サンプリング時間 Tを任意に制御するととによって、入力信号を任 意の関放数帯域に関放数変換するととができる。 発別の効果

本乳別によれば、所定関放散帯板の信号のみを 通過させる第1のフィルタ団路部と、サンプリン が回路側およびこのサンプリンが回路部で生じた 信号を選択的に核き出す館2のフィルタ目路とに より、入力信号を任意の関放散帯板の信号に関放 数変換することができる。また、木発明の周放数 変換階は、掛け算回路を用いずに実現できる点か ちみでも、接種の小型化が容易でもり、さらだ。 級師を低子化するととにより、ディッタル信号処理技能にも広範囲に適用できるものであり、信号 伝送係の高信頼性を実現し得るものである。

## 4、 関間の簡単な説明

第1 四社本発明实施例の基本機成図、第2 四社 木龍明实施例具体標成図、第3 四社四实施例の角 間数数削減での概要説明図である。

1 ……入力増子、2 ……パンドパスフィルタ回路部、3 ……サンプリング回路部、4 ……ロウパスフィルタ同路部、5 ……出力増予、6 ……入力債分均額回路部、7 ……サンプリング回路創却増予、6 ……出力個分均額回路部。

代職人の氏名 弁理士 中 尾 畝 男 ほか1名

第 1 図



# 第 2 図



鄉 3 刻

