# **Empty Single Linked List**



Head = NULL Tail = NULL

Insert\_At\_Tail(100)



Head = 1000 Tail = 1000

#### Insert\_At\_Tail(200)



Head = 1000 Tail = 2000

## Insert\_At\_Tail(300)



# **Empty Single Linked List**



Head = NULL Tail = NULL

Insert\_At\_Head(100)



Head = 1000 Tail = 1000

### Insert\_At\_Head(200)



Head = 2000 Tail = 1000

#### Insert\_At\_Head(300)



# **Single Linked List with 2 nodes**



Head = 1000 Tail = 2000

### Insert\_At\_Position(1,300)

Step − 1 : Consider the new node with data as 300 at some address



**Step – 2 : Change the next node address of 300 as 2000** 



**Step – 3 : Change the next node address of 100 as 3000** 



# Single Linked List with three nodes



#### Delete\_At\_Tail()



**Head = 1000** 

**Tail = 2000** 

### Delete\_At\_Tail()



Head = 1000 Tail = 1000

### Delete\_At\_Tail()



Head = NULL Tail = NULL Prints no nodes. Since Linked List is empty

# Single Linked List with three nodes



#### Delete\_At\_Head()



Head = 2000

**Tail = 3000** 

#### Delete\_At\_Head()



Head = 3000 Tail = 3000

### Delete\_At\_Head()



Head = NULL Tail = NULL Prints no nodes. Since Linked List is empty

## **Single Linked List with three nodes**



#### Delete\_At\_Position(1)

Step – 1 : Change the next node address of  $0^{th}$  [1 – 1] node as 3000



Step – 2 : Change the next node address of  $1^{st}$  node as NULL



**Step – 3**: Remove unwanted node and free its memory.

