Linear model analysis for temperature difference size

2024-11-08 20:12:07.517711

```
library(viridisLite)
```

Temperature difference.

```
d2$dtemp <- d2$Itemp - d2$Otemp

fit1 <- lm(Itemp ~ poly(glorad, 3) + poly(Otemp, 3) + poly(wv2, 3), data = d2)
fit2 <- lm(dtemp ~ poly(glorad, 3) + poly(Otemp, 3) + poly(wv2, 3), data = d2)</pre>
```

Check results

```
summary(fit1)
```

```
##
## Call:
## lm(formula = Itemp ~ poly(glorad, 3) + poly(Otemp, 3) + poly(wv2,
      3), data = d2)
##
## Residuals:
      Min
##
               1Q Median
                               3Q
                                      Max
## -7.8227 -0.5742 0.0287 0.5749 7.5529
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    15.07577
                                0.01404 1073.801 < 2e-16 ***
## poly(glorad, 3)1 47.94051
                                1.59253
                                          30.103 < 2e-16 ***
                                          -4.954 7.42e-07 ***
## poly(glorad, 3)2
                   -6.16850
                                1.24507
## poly(glorad, 3)3
                     5.05989
                                1.21319
                                          4.171 3.07e-05 ***
## poly(Otemp, 3)1 472.01562
                                1.38080 341.841 < 2e-16 ***
## poly(Otemp, 3)2
                    62.94090
                                1.23672
                                         50.894 < 2e-16 ***
## poly(Otemp, 3)3
                    37.86700
                                1.22338
                                          30.953 < 2e-16 ***
## poly(wv2, 3)1
                    -0.85992
                                1.41834
                                          -0.606 0.544345
## poly(wv2, 3)2
                    -1.13793
                                          -0.904 0.366016
                                1.25875
                                          -3.881 0.000105 ***
## poly(wv2, 3)3
                    -4.73877
                                1.22117
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.195 on 7230 degrees of freedom
## Multiple R-squared: 0.9607, Adjusted R-squared: 0.9606
## F-statistic: 1.963e+04 on 9 and 7230 DF, \, p-value: < 2.2e-16
```

summary(fit2)

summary(fit3)

```
##
## Call:
## lm(formula = dtemp ~ poly(glorad, 3) + poly(Otemp, 3) + poly(wv2,
       3), data = d2)
##
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -7.8227 -0.5742 0.0287
                                    7.5529
                           0.5749
##
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     1.11794
                                0.01404 79.627 < 2e-16 ***
## poly(glorad, 3)1 47.94051
                                1.59253 30.103 < 2e-16 ***
## poly(glorad, 3)2 -6.16850
                                1.24507
                                         -4.954 7.42e-07 ***
## poly(glorad, 3)3 5.05989
                                1.21319
                                          4.171 3.07e-05 ***
## poly(Otemp, 3)1
                   80.78311
                                1.38080
                                         58.504
                                                < 2e-16 ***
## poly(Otemp, 3)2
                   62.94090
                                1.23672
                                         50.894
                                                 < 2e-16 ***
## poly(Otemp, 3)3 37.86700
                                1.22338
                                         30.953
                                                < 2e-16 ***
## poly(wv2, 3)1
                    -0.85992
                                1.41834
                                         -0.606 0.544345
## poly(wv2, 3)2
                    -1.13793
                                1.25875 -0.904 0.366016
                                1.22117 -3.881 0.000105 ***
## poly(wv2, 3)3
                    -4.73877
                  0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
## Signif. codes:
## Residual standard error: 1.195 on 7230 degrees of freedom
## Multiple R-squared: 0.6411, Adjusted R-squared: 0.6406
## F-statistic: 1435 on 9 and 7230 DF, p-value: < 2.2e-16
```

Temperature difference model is better-lower residual standard error. (R-squared is lower but that is just because we have already removed a lot of the variation by calculating a difference.)

Let's generate scaled predictor variables for standardized coefficients (relative to 1 standard deviation of predictor variable). This will show which predictors are the most important compared to how much they vary.

```
fit3 <- lm(dtemp ~ poly(scale(glorad), 3) + poly(scale(Otemp), 3) + poly(scale(wv2), 3), data = d2)
```

```
##
## Call:
  lm(formula = dtemp ~ poly(scale(glorad), 3) + poly(scale(Otemp),
##
       3) + poly(scale(wv2), 3), data = d2)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -7.8227 -0.5742 0.0287 0.5749 7.5529
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept)
                           1.11794
                                      0.01404 79.627 < 2e-16 ***
## poly(scale(glorad), 3)1 47.94051
                                      1.59253
                                               30.103 < 2e-16 ***
## poly(scale(glorad), 3)2 -6.16850
                                      1.24507
                                               -4.954 7.42e-07
## poly(scale(glorad), 3)3 5.05989
                                                4.171 3.07e-05
                                      1.21319
## poly(scale(Otemp), 3)1 80.78311
                                      1.38080
                                               58.504
                                                       < 2e-16
## poly(scale(Otemp), 3)2 62.94090
                                      1.23672 50.894
                                                      < 2e-16 ***
## poly(scale(Otemp), 3)3 37.86700
                                      1.22338
                                               30.953 < 2e-16 ***
## poly(scale(wv2), 3)1
                          -0.85992
                                      1.41834
                                               -0.606 0.544345
                                               -0.904 0.366016
## poly(scale(wv2), 3)2
                          -1.13793
                                      1.25875
## poly(scale(wv2), 3)3
                          -4.73877
                                      1.22117 -3.881 0.000105 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.195 on 7230 degrees of freedom
## Multiple R-squared: 0.6411, Adjusted R-squared: 0.6406
## F-statistic: 1435 on 9 and 7230 DF, p-value: < 2.2e-16
```

It looks like temperature (Otemp) is the most important. Is that supported by the measurements?

```
pairs(d2[, .(Otemp, glorad, wv2, dtemp)])
```


Seem so, yes.

Let's see how much worse the model is without the other two.

```
fit4 <- lm(dtemp ~ poly(Otemp, 3), data = d2)</pre>
```

```
summary(fit4)
```

```
##
## Call:
## lm(formula = dtemp ~ poly(Otemp, 3), data = d2)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -8.2102 -0.7387 -0.0205 0.5493 7.8603
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
                    1.11794 0.01519
                                        73.60 <2e-16 ***
## (Intercept)
## poly(Otemp, 3)1 103.12430
                             1.29249
                                        79.79
                                               <2e-16 ***
## poly(Otemp, 3)2 69.13284
                               1.29249
                                         53.49
                                                <2e-16 ***
## poly(Otemp, 3)3 35.25896
                               1.29249
                                         27.28
                                                <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.292 on 7236 degrees of freedom
## Multiple R-squared: 0.5795, Adjusted R-squared: 0.5793
## F-statistic: 3324 on 3 and 7236 DF, p-value: < 2.2e-16
```

It is almost the same as 2. So effects of radiation and wind look small, surprisingly.

Generate predictions for plotting.

```
d2$Itemp.pred <- predict(fit1)
d2$dtemp.pred2 <- predict(fit2)
d2$dtemp.pred4 <- predict(fit4)</pre>
```

And take a look.

```
ggplot(d2, aes(Otemp, dtemp, colour = glorad)) +
  geom_line(aes(Otemp, dtemp.pred2), colour = 'blue') +
  geom_line(aes(Otemp, dtemp.pred4), colour = 'red') +
  geom_point() +
  scale_color_viridis_c(option = 'magma') +
  theme_bw() +
  xlab('Ambient soil surface temperature (C)') + ylab('DFC soil surface temperature (C)')
```


So, temperature alone indeed does as well as the most complete model. But both miss a lot of the variation. How about effects of earlier weather? For that we need to add lagged predictor variables. Try previous hour.

```
wthr <- unique(d2[, .(t.start, Otemp, glorad, wv2)])
wthr[, t.start := t.start - 3600]
d2 <- merge(d2, wthr, by = 't.start', suffixes = c('', '.lag1'))
wthr[, t.start := t.start - 3600]
d2 \leftarrow merge(d2, wthr, by = 't.start', suffixes = c('', '.lag2'))
fit5 <- lm(dtemp ~ poly(glorad, 3) + poly(0temp, 3) + poly(wv2, 3) + poly(glorad.lag1, 3) + poly(0temp.
summary(fit5)
##
## Call:
## lm(formula = dtemp ~ poly(glorad, 3) + poly(Otemp, 3) + poly(wv2,
##
       3) + poly(glorad.lag1, 3) + poly(Otemp.lag1, 3) + poly(wv2.lag1,
       3), data = d2)
##
##
## Residuals:
                10 Median
                                 3Q
                                        Max
##
   -4.2062 -0.5393 0.0354
                            0.5314
                                     6.6285
```

0.01311 86.350 < 2e-16 ***

Estimate Std. Error t value Pr(>|t|)

1.13238

##

##

Coefficients:

(Intercept)

```
## poly(glorad, 3)1
                         95.80272
                                      3.89008
                                              24.627 < 2e-16 ***
## poly(glorad, 3)2
                         -16.59054
                                      2.00486 -8.275 < 2e-16 ***
## poly(glorad, 3)3
                           4.82763
                                      1.39403
                                               3.463 0.000537 ***
                                      6.91358 16.890 < 2e-16 ***
## poly(Otemp, 3)1
                         116.77069
## poly(Otemp, 3)2
                          -8.41262
                                      4.28916
                                              -1.961 0.049875 *
## poly(Otemp, 3)3
                                      3.15370 -3.539 0.000404 ***
                         -11.16063
## poly(wv2, 3)1
                         19.06307
                                      3.15036
                                               6.051 1.51e-09 ***
## poly(wv2, 3)2
                           4.55615
                                      2.04077
                                                2.233 0.025609 *
## poly(wv2, 3)3
                          -0.40015
                                      1.57065 -0.255 0.798913
## poly(glorad.lag1, 3)1 -42.18464
                                      3.57016 -11.816 < 2e-16 ***
## poly(glorad.lag1, 3)2
                         -8.54178
                                      1.91974 -4.449 8.74e-06 ***
## poly(glorad.lag1, 3)3
                          0.33860
                                      1.37231
                                                0.247 0.805121
## poly(Otemp.lag1, 3)1
                                      7.42097
                                              -6.036 1.66e-09 ***
                        -44.78975
## poly(Otemp.lag1, 3)2
                         73.11074
                                      4.36503 16.749 < 2e-16 ***
## poly(Otemp.lag1, 3)3
                          54.94227
                                      3.20825
                                              17.125 < 2e-16 ***
## poly(wv2.lag1, 3)1
                         -24.15847
                                      3.18324
                                              -7.589 3.63e-14 ***
                                      2.04170 -2.134 0.032866 *
## poly(wv2.lag1, 3)2
                          -4.35724
## poly(wv2.lag1, 3)3
                          -6.75304
                                      1.58355
                                              -4.264 2.03e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 7111 degrees of freedom
## Multiple R-squared: 0.6951, Adjusted R-squared: 0.6944
## F-statistic: 900.8 on 18 and 7111 DF, p-value: < 2.2e-16
```

summary(fit2)

```
##
## Call:
  lm(formula = dtemp ~ poly(glorad, 3) + poly(Otemp, 3) + poly(wv2,
##
       3), data = d2)
##
## Residuals:
                1Q Median
                                3Q
## -7.8227 -0.5742 0.0287 0.5749
                                  7.5529
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    1.11794
                               0.01404 79.627 < 2e-16 ***
## poly(glorad, 3)1 47.94051
                               1.59253 30.103 < 2e-16 ***
## poly(glorad, 3)2 -6.16850
                               1.24507
                                        -4.954 7.42e-07 ***
## poly(glorad, 3)3 5.05989
                               1.21319
                                         4.171 3.07e-05 ***
## poly(Otemp, 3)1
                   80.78311
                               1.38080
                                        58.504
                                                < 2e-16 ***
## poly(Otemp, 3)2
                                        50.894
                   62.94090
                               1.23672
                                                < 2e-16 ***
## poly(Otemp, 3)3
                   37.86700
                                1.22338
                                        30.953 < 2e-16 ***
## poly(wv2, 3)1
                   -0.85992
                                1.41834
                                        -0.606 0.544345
## poly(wv2, 3)2
                   -1.13793
                                1.25875
                                        -0.904 0.366016
                                        -3.881 0.000105 ***
## poly(wv2, 3)3
                   -4.73877
                               1.22117
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.195 on 7230 degrees of freedom
## Multiple R-squared: 0.6411, Adjusted R-squared: 0.6406
## F-statistic: 1435 on 9 and 7230 DF, p-value: < 2.2e-16
```

```
d2$dtemp.pred5 <- predict(fit5)</pre>
```

```
ggplot(d2, aes(Otemp, dtemp, colour = glorad)) +
  geom_line(aes(Otemp, dtemp.pred2), colour = 'blue') +
  geom_line(aes(Otemp, dtemp.pred4), colour = 'red') +
  geom_line(aes(Otemp, dtemp.pred5), colour = 'orange') +
  geom_point() +
  scale_color_viridis_c(option = 'magma') +
  theme_bw() +
  xlab('Ambient soil surface temperature (C)') + ylab('DFC soil surface temperature (C)')
```



```
ggplot(d2) +
  geom_point(aes(dtemp, dtemp.pred2), colour = 'blue', alpha = 0.2) +
  geom_point(aes(dtemp, dtemp.pred4), colour = 'red', alpha = 0.2) +
  geom_point(aes(dtemp, dtemp.pred5), colour = 'orange', alpha = 0.2) +
  theme_bw()
```



```
newdat <- expand.grid(glorad = 0:10 * 100, Otemp = 0:10 * 3, wv2 = 2)
setDT(newdat)
newdat$dtemp.pred5 <- predict(fit2, newdata = newdat)
newdat[dtemp.pred5 > 5, ]
```

```
##
       glorad Otemp
                        wv2 dtemp.pred5
        <num> <num>
##
                     <num>
                                   <num>
##
    1:
          1000
                  21
                          2
                               5.332794
##
    2:
            0
                  24
                          2
                               5.366631
##
    3:
          100
                  24
                          2
                               5.784040
          200
##
    4:
                  24
                          2
                               6.079520
##
    5:
          300
                  24
                          2
                               6.289129
##
    6:
          400
                  24
                          2
                               6.448925
##
    7:
          500
                  24
                          2
                               6.594966
##
          600
                  24
                          2
                               6.763309
    8:
##
    9:
          700
                  24
                          2
                               6.990013
          800
                  24
                          2
                               7.311135
## 10:
## 11:
          900
                  24
                          2
                               7.762733
## 12:
          1000
                  24
                          2
                               8.380865
## 13:
            0
                  27
                          2
                              10.241125
## 14:
                  27
                          2
                              10.658533
          100
## 15:
          200
                  27
                          2
                              10.954013
                              11.163623
## 16:
           300
                  27
                          2
## 17:
           400
                  27
                          2
                              11.323419
## 18:
                  27
          500
                              11.469460
```

```
## 19:
          600
                  27
                          2
                              11.637803
## 20:
          700
                  27
                          2
                              11.864507
## 21:
          800
                  27
                          2
                              12.185629
## 22:
          900
                  27
                          2
                              12.637227
## 23:
         1000
                  27
                          2
                              13.255359
## 24:
            0
                  30
                          2
                              17.356997
## 25:
                          2
          100
                  30
                              17.774406
## 26:
                          2
                              18.069886
          200
                  30
                          2
## 27:
          300
                  30
                              18.279495
## 28:
          400
                  30
                          2
                              18.439291
## 29:
          500
                  30
                          2
                              18.585332
## 30:
          600
                  30
                          2
                              18.753675
## 31:
          700
                  30
                          2
                              18.980379
## 32:
                          2
                              19.301501
                  30
          800
## 33:
          900
                  30
                          2
                              19.753099
## 34:
                          2
         1000
                  30
                              20.371231
##
       glorad Otemp
                       wv2 dtemp.pred5
```

Looks at some subsets.

newdat[dtemp.pred5 > 3,]

##		glorad	Otemp	wv2	dtemp.pred5
##		<num></num>	<num $>$	<num $>$	<num></num>
##	1:	1000	9	2	3.105617
##	2:	1000	15	2	3.056096
##	3:	900	18	2	3.078057
##	4:	1000	18	2	3.696189
##	5:	200	21	2	3.031449
##	6:	300	21	2	3.241058
##	7:	400	21	2	3.400854
##	8:	500	21	2	3.546895
##	9:	600	21	2	3.715238
##	10:	700	21	2	3.941942
##	11:	800	21	2	4.263064
##	12:	900	21	2	4.714662
##	13:	1000	21	2	5.332794
##	14:	0	24	2	5.366631
##	15:	100	24	2	5.784040
##	16:	200	24	2	6.079520
##	17:	300	24	2	6.289129
##	18:	400	24	2	6.448925
##	19:	500	24	2	6.594966
##	20:	600	24	2	6.763309
##	21:	700	24	2	6.990013
##	22:	800	24	2	7.311135
##	23:	900	24	2	7.762733
##	24:	1000	24	2	8.380865
##	25:	0	27	2	10.241125
##	26:	100	27	2	10.658533
##	27:	200	27	2	10.954013
##	28:	300	27	2	11.163623
##	29:	400	27	2	11.323419

```
## 30:
          500
                  27
                         2
                              11.469460
## 31:
          600
                  27
                         2
                              11.637803
## 32:
          700
                  27
                         2
                              11.864507
## 33:
          800
                  27
                         2
                              12.185629
## 34:
                  27
                         2
          900
                              12.637227
## 35:
         1000
                  27
                         2
                              13.255359
## 36:
                          2
            0
                  30
                              17.356997
## 37:
                         2
                              17.774406
          100
                  30
                         2
## 38:
          200
                  30
                              18.069886
## 39:
          300
                  30
                         2
                              18.279495
## 40:
                          2
          400
                  30
                              18.439291
## 41:
          500
                  30
                          2
                              18.585332
                         2
## 42:
          600
                  30
                              18.753675
                         2
## 43:
          700
                  30
                              18.980379
## 44:
          800
                  30
                         2
                              19.301501
## 45:
                         2
          900
                  30
                              19.753099
## 46:
         1000
                  30
                         2
                              20.371231
##
       glorad Otemp
                       wv2 dtemp.pred5
```

newdat[dtemp.pred5 > 5,]

##		glorad	${\tt Otemp}$	wv2	dtemp.pred5
##		<num></num>	<num $>$	<num $>$	<num></num>
##	1:	1000	21	2	5.332794
##	2:	0	24	2	5.366631
##	3:	100	24	2	5.784040
##	4:	200	24	2	6.079520
##	5:	300	24	2	6.289129
##	6:	400	24	2	6.448925
##	7:	500	24	2	6.594966
##	8:	600	24	2	6.763309
##	9:	700	24	2	6.990013
##	10:	800	24	2	7.311135
##	11:	900	24	2	7.762733
##	12:	1000	24	2	8.380865
##	13:	0	27	2	10.241125
##	14:	100	27	2	10.658533
##	15:	200	27	2	10.954013
##	16:	300	27	2	11.163623
##	17:	400	27	2	11.323419
##	18:	500	27	2	11.469460
##	19:	600	27	2	11.637803
##	20:	700	27	2	11.864507
##	21:	800	27	2	12.185629
##	22:	900	27	2	12.637227
##	23:	1000	27	2	13.255359
##	24:	0	30	2	17.356997
##	25:	100	30	2	17.774406
##	26:	200	30	2	18.069886
##	27:	300	30	2	18.279495
##	28:	400	30	2	18.439291
##	29:	500	30	2	18.585332
##	30:	600	30	2	18.753675
##	31:	700	30	2	18.980379

```
## 32: 800 30 2 19.301501
## 33: 900 30 2 19.753099
## 34: 1000 30 2 20.371231
## glorad Otemp wv2 dtemp.pred5
```

newdat[dtemp.pred5 > 8,]

##		glorad	${\tt Otemp}$	wv2	dtemp.pred5
##		<num></num>	<num $>$	<num $>$	<num></num>
##	1:	1000	24	2	8.380865
##	2:	0	27	2	10.241125
##	3:	100	27	2	10.658533
##	4:	200	27	2	10.954013
##	5:	300	27	2	11.163623
##	6:	400	27	2	11.323419
##	7:	500	27	2	11.469460
##	8:	600	27	2	11.637803
##	9:	700	27	2	11.864507
##	10:	800	27	2	12.185629
##	11:	900	27	2	12.637227
##	12:	1000	27	2	13.255359
##	13:	0	30	2	17.356997
##	14:	100	30	2	17.774406
##	15:	200	30	2	18.069886
##	16:	300	30	2	18.279495
##	17:	400	30	2	18.439291
##	18:	500	30	2	18.585332
##	19:	600	30	2	18.753675
##	20:	700	30	2	18.980379
##	21:	800	30	2	19.301501
##	22:	900	30	2	19.753099
##	23:	1000	30	2	20.371231
##		glorad	${\tt Otemp}$	wv2	dtemp.pred5