

秩方差分析

主讲人: 刘宏志

liuhz@ss.pku.edu.cn

Kruskal-Wallis秩和检验

- · 简称K-W检验, 也称H检验
- 由Kruskal和Wallis二人在1952年提出
- 一种单因素方差分析方法
- 将两个独立样本的秩和检验推广到3个或更 多组的检验
- 基本原理:
 - ▶若各组的处理效应相同,则混合编秩后,各组的平均秩应近似相等

单因素方差分析的数据结构

	因素(A)					
-	水平 A_1	水平 A_2	• • •	水平 A_K		
重 复	x_{11}	x_{21}	•••	x_{k1}		
观	x_{12}	x_{22}	•••	x_{k2}		
察量	:	:	:	:		
	:	:	:	:		
	x_{1n_1}	x_{1n_2}	•••	x_{1n_k}		

单因素方差分析的秩矩阵

	因素(A)					
重	水平A ₁	水平 A_2	• • •	水平 A_K		
复	R_{11}	R_{21}	•••	R_{k1}		
观 察	R_{12}	R_{22}	•••	R_{k2}		
量 的	:	:	:	:		
秩	:	:	:	•		
	R_{1n_1}	R_{2n_2}	•••	$R_{k n_k}$		
秩和	R_1 .	R_2 .	•••	R_k .		

各组的平均秩: $\bar{R}_{i\cdot} = R_{i\cdot}/n_i$ 混合后的平均秩: $\bar{R}_{\cdot\cdot} = (N+1)/2$

检验统计量: H值

$$H = \sum_{i=1}^{k} \frac{(R_{i.} - n_{i} \overline{R}_{..})^{2}}{n_{i} S^{2}}$$

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (R_{ij} - \overline{R}_{..})^{2} = \frac{1}{N-1} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} R_{ij}^{2} - N \overline{R}_{..}^{2}$$

如果没有同秩(tie)现象,则有

$$S^{2} = \frac{1}{N-1} \left[\frac{N(N+1)(2N+1)}{6} - \frac{N(N+1)^{2}}{4} \right] = \frac{N(N+1)}{12}$$

$$H = \frac{12}{N(N+1)} \sum \frac{R_i^2}{n_i} - 3(N+1)$$

当混合编秩过程中出现同秩现象时,需要对H统计量进行校正

K-W检验:一般步骤

1.建立假设、确定检验水准

 H_0 : 各样本分布位置相同

 H_1 : 各样本分布位置不全相同

 $\alpha = 0.05$

2. 选择检验方法、计算统计量

- (1)混合编秩
- (2)求秩和 (R_i) 和统计量H值:

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{\infty} \frac{R_i^2}{n_i} - 3(N+1)$$

3.确定P值,作出推断结论

(1)小样本情况:

当组数 $k \leq 3$,且 $n_i < 5$ 时,查H界值表,确定P值。

如果 $H > H_{\alpha}$, 则 $P < \alpha$; 反之, $P > \alpha$ 。

(2)大样本情况:

若k>3或 $n_i>5$ 时,理论上,H近似服从自由度为k-1的 χ^2 分布,可查 χ^2 界值表确定P值。

如果 $H > H_{\alpha}$, 则 $P < \alpha$; 反之, $P > \alpha$ 。

示例: 杀灭钉螺的药物比较

三种药物杀灭钉螺的死亡率(%)比较

甲药		乙数		丙药	 丙药		
死亡率	 秩	死亡率	 秩	死亡率			
32.5	10	16.0	4	6.5	1		
35.5	11	20.5	6	9.0	2		
40.5	13	22.5	7	12.5	3		
46.0	14	29.0	9	18.0	5		
49.0	15	36.0	12	24.0	8		
R_i	63		38		19		
n_i	5	_	5		5		

1.建立假设、确定检验水准

Ho: 三种药物杀灭钉螺的死亡率总体分布位置相同

 H_{\parallel} : 三种药物杀灭钉螺的死亡率总体分布位置不全相同

$$\alpha = 0.05$$

2. 求检验统计量H值: $H = \frac{12}{N(N+1)} (\sum \frac{R_i^2}{n_i}) - 3(N+1)$

$$H = \frac{12}{15(15+1)} \left(\frac{63^2 + 38^2 + 19^2}{5}\right) - 3(15+1) = 9.74$$

3.确定P值,作出推断结论

$$\chi^2_{0.05}(2)=5.99 < H$$

拒绝H₀,接受H₁,认为三种药物的效果不同

多个相关样本的比较: M检验

- Friedman M检验,用于推断随机区组设计的 多个相关样本所来自的多个总体分布的位 置是否有差别
- 检验假设与备择假设和多个独立样本比较的Kruskal-Wallis 检验相同

多个相关样本的比较: M检验

受试对象(<i>j</i>)-		因素(A)) j	
	水平 A_1	水平 A_2	• • •	水平AK
1	X_{11}	X_{21}	• • •	X_{k1}
2	X_{12}	X_{22}	•••	X_{k2}
:	:	:	:	:
:	:	:	•	:
п	X_{1n}	X_{2n}	•••	X_{kn}

多个相关样本的比较: M检验

受试对象(<i>j</i>) -		因素(A)) i	
	水平 A_1	水平A2	•••	水平AK
1	R_{11}	R_{21}	• • •	R_{k1}
2	R_{12}	R_{22}	•••	R_{k2}
:	•	:	:	:
:	:	:	:	:
n	R_{1n}	R_{2n}	•••	$R_{k n}$
秩和	R_1 .	R_2 .	•••	R_{k}
对每个受试对象	在不同水平-	下的观测值{R	1i, R _{2i} ,	, R _i }独立编科

8名受试对象对4种不同频率声音刺激的反应率(%)

受试号·	频率 A		频率 B		频率 C		频率 D	
	反应率	秩	反应率	秩	反应率	秩	反应率	秩
1	8.4	1	9.6	2	9.8	3	11.7	4
2	11.6	1	12.7	4	11.8	2	12.0	3
3	9.4	2	9.1	1	10.4	4	9.8	3
4	9.8	2	8.7	1	9.9	3	12.0	4
5	8.3	2	8.0	1	8.6	3.5	8.6	3.5
6	8.6	1	9.8	3	9.6	2	10.6	4
7	8.9	1	9.0	2	10.6	3	11.4	4
8	7.8	1	8.2	2	8.5	3	10.8	4
$\overline{R_i}$		11		16		23.5		29.5

M统计量

$$\overline{R}_{i\cdot} = \frac{1}{n} \sum_{j=1}^{n} R_{ij}$$

$$\overline{R}_{\cdot\cdot} = \frac{1}{nk} \sum_{j=1}^{n} \sum_{i=1}^{k} R_{ij}$$

$$SS_{t} = n \sum_{i=1}^{k} \left(\overline{R}_{i\cdot} - \overline{R}_{\cdot\cdot} \right)^{2}$$

$$M = \frac{12n}{k(k+1)} \sum_{i=1}^{k} \left(\overline{R}_{i\cdot} - \overline{R}_{\cdot\cdot} \right)^{2}$$

M服从什么分布?

M检验:一般步骤

1.建立假设

 H_0 : 各样本分布位置相同

 H_1 : 各样本分布位置不全相同

2. 计算检验统计量

(1)每个对象独立编秩

(2)求统计量M值:
$$M = \frac{12n}{k(k+1)} \sum_{i=1}^{k} \left(\overline{R}_{i\cdot} - \overline{R}_{\cdot\cdot}\right)^{2}$$

3.确定P值,作出推断结论

- (1) 根据检验水平 α 和自由度k-1查 χ^2 分布表,确定临界值
- (2) 比较临界值和统计量值,做出结论

