Prospects for Detection of Space Vampires

Addy J. Evans
Astronomy on Tap, Bryan, TX
Nov. 24th, †2021 +

Can we detect space vampires?

What about...refracting telescopes?

Reflecting vs. refracting telescopes

The Yerkes Observatory: the largest refracting telescope ever made

→ 40 inch aperture!

The Yerkes Observatory: the largest refracting telescope ever made

 \rightarrow 40 inch aperture!

→ Can we use this to detect space vampires?

40 inch aperture! Has a limiting magnitude of ~ 17 Can we use this to detect space vampires???

→ Ideally, you want to search for an object in the wavelength regime that it's brightest at!

40 inch aperture! Has a limiting magnitude of ~ 17 Can we use this to detect space vampires??? We can answer this question using...

40 inch aperture! Has a limiting magnitude of ~ 17 Can we use this to detect space vampires???

We can answer this question using...

Blackbody radiation!

40 inch aperture! Has a limiting magnitude of ~ 17 Can we use this to detect space vampires???

And also...

Wien's Displacement Law (a result of assuming blackbody radiation)!

 $\lambda_{ ext{max}} = rac{b}{T}$

???

→ Vampires were people once so presumably they have human-ish skin?

→ Vampires were people once so presumably they have human-ish skin?

→ The human body begins to sustain burns around ~ 120 degrees Fahrenheit

- → Vampires were people once so presumably they have human-ish skin?
- → The human body begins to sustain burns around ~ 120 degrees Fahrenheit
- → Let's say for funsies that vampires can withstand the temperature of space, -450 degrees Fahrenheit

$$\lambda_{ ext{max}} = rac{b}{T}$$

$$\lambda_{max} = b / T$$

b = 2898 microns Kelvin

T = our very scientific temperature, 120 degrees Fahrenheit = 322 Kelvin

$$\lambda_{ ext{max}} = rac{b}{T}$$

$$\lambda_{max} = b / T$$

b = 2898 microns Kelvin

T = our very scientific temperature, 120 degrees Fahrenheit = 322 Kelvin

$$\lambda_{\text{max}} = \text{b/T} = 9 \text{ microns}$$

$$\lambda_{ ext{max}} = rac{b}{T}$$

 $\lambda_{max} = 9 \text{ microns}$

$$\lambda_{ ext{max}} = rac{b}{T}$$

 $\lambda_{max} = 9 \text{ microns}$

BUT WAIT!!!

40 inch aperture! Has a limiting magnitude of ~ 17 Can we use this to detect space vampires???

BUT WAIT!!!

→ Refractors are only good for looking at objects that emit at optical wavelengths

→ Can we see space vampires with other kinds of telescopes?

→ Sensitive to wavelengths of 0.6 to 20 microns

 \rightarrow Sensitive to wavelengths of 0.6 to 20 microns

We can use the sensitivity of the instrument to define a lower limit on the temperature of the vampire:

$$\lambda_{max} = b / T = 20 \text{ microns}$$

T = 144.9 Kelvin = -199 degrees Fahrenheit

→ Sensitive to wavelengths of 0.6 to 20 microns

Now we know for detection of space vampires using NIRCam, the vampiric temperature range is -199 to 120 degrees Fahrenheit

- \rightarrow Sensitive to wavelengths of 0.6 to 20 microns
- → Has an angular resolution of ~0.01 arcseconds

Now we know for detection of space vampires using NIRCam, the vampiric temperature range is -199 to 120 degrees Fahrenheit

At what distance could JWST see a human-sized space vampire?

At what distance could JWST see a human-sized space vampire?

Vampire height ~ 6 ft = 1.8 meters $\theta = 0.01$ arcseconds

 $sin\theta = 1.8 \text{ meters / hypotenuse}$

 $\rightarrow \theta = 0.01$ arcseconds = 1.8 meters / distance

At what distance could JWST see a human-sized space vampire?

Vampire height \sim 6 ft = 1.8 meters θ = 0.01 arcseconds

distance ~ 23,000 miles

 $sin\theta = 1.8 \text{ meters / hypotenuse}$

 $\rightarrow \theta = 0.01$ arcseconds = 1.8 meters / distance

In comparison...

 \rightarrow The moon is ~230,000 miles away

- \rightarrow The moon is ~230,000 miles away
- \rightarrow GPS satellites orbit the Earth at \sim 12,000 miles

- \rightarrow The moon is ~230,000 miles away
- ightarrow GPS satellites orbit the Earth at \sim 12,000 miles
- → Satellites in geosynchronous orbit are at ~ 22,000 miles

At what distance could JWST see a space vampire conglomerate?

→ Vampires don't like sunlight (starlight). So maybe...

→ Vampires don't like sunlight (starlight).So maybe...

→ Cosmic voids?

- → Vampires don't like sunlight (starlight).So maybe...
- → Cosmic voids? → The Local Void?

- → Vampires don't like sunlight (starlight). So maybe...
- → Cosmic voids? → The Local Void?

Vampire conglomerate size = ??? $\theta = 0.01$ arcseconds

 $\sin\theta = ???$ / hypotenuse

 $\rightarrow \theta = ??? / distance$

- → Vampires don't like sunlight (starlight). So maybe...
- → Cosmic voids? → The Local Void?

Vampire conglomerate size = ??? $\theta = 0.01$ arcseconds

- $\sin\theta = ??? / hypotenuse$
- $\rightarrow \theta = ??? / distance$

conglomerate size ~ 3.63 light years

- → Vampires don't like sunlight (starlight).So maybe...
- → Cosmic voids?
- → Rogue planets?

- → Vampires don't like sunlight (starlight).So maybe...
- → Cosmic voids?
- \rightarrow Rogue planets?

conglomerate size ~ 20 light seconds

~ 3 million miles

→ What if vampires sparkle?

 \rightarrow What if vampires sparkle?

 \rightarrow What if vampires sparkle?

→ Vampires as dark matter?

 \rightarrow What if vampires s

 \rightarrow Vampires as dark m

THANKS FOR LISTENING:-)

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution