

5 Zusammenfassung: Lineare Abbildungen

5.1 Definition

Gegeben sind zwei reelle Vektorräume V und W (V und W können auch gleich sein). Eine Abbildung $f:V\to W$ heisst *lineare Abbildung*, wenn für alle Vektoren $\vec{x},\vec{y}\in V$ und jeden Skalar $\lambda\in\mathbb{R}$ gilt:

- (1) $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$
- (2) $f(\lambda \cdot \vec{x}) = \lambda \cdot f(\vec{x})$

Der Vektor $f(\vec{x}) \in W$, der herauskommt, wenn man f auf einen Vektor $\vec{x} \in V$ anwendet, heisst *Bild* von \vec{x} .

Bemerkung

Linearität ist etwas Besonderes. Die allermeisten Abbildungen/Funktionen sind nicht linear!!!

5.2 Die Abbildungsmatrix einer linearen Abbildung

Satz

Wir betrachten die Vektorräume \mathbb{R}^m und \mathbb{R}^n , versehen mit den jeweiligen Standardbasen. Dann lässt sich jede lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ durch eine $m \times n$ -Matrix A darstellen:

$$f(\vec{x}) = A \cdot \vec{x}$$

Die Spalten der Matrix A sind die Bilder der Standardbasisvektoren von \mathbb{R}^n :

$$A = \begin{pmatrix} | & | & | \\ f(\vec{e}_1) & f(\vec{e}_2) & \cdots & f(\vec{e}_n) \\ | & | & | \end{pmatrix}$$

Satz

Wir betrachten zwei endlich-dimensionale Vektorräume V mit Basis $\mathcal{B} = \{\vec{b}_1; \vec{b}_2; ...; \vec{b}_n\}$ und W mit Basis $\mathcal{C} = \{\vec{c}_1; \vec{c}_2; ...; \vec{c}_n\}$. Dann gilt:

Jede lineare Abbildung $f: V \to W$ lässt sich durch eine $m \times n$ -Matrix ${}_{\mathcal{C}}A_{\mathcal{B}}$ darstellen:

$$(f(\vec{x}))_{\mathcal{C}} =_{\mathcal{C}} A_{\mathcal{B}} \cdot \vec{x}_{\mathcal{B}}$$

Die Spalten der Matrix $_{\mathcal{C}}A_{\mathcal{B}}$ sind die Bilder der Elemente von \mathcal{B} in der Komponentendarstellung bezüglich der Basis \mathcal{C} :

$$_{\mathcal{C}}A_{\mathcal{B}} = \begin{pmatrix} \left| & \left| & \left| & \left| \\ \left(f(\vec{b}_{1})\right)_{\mathcal{C}} & \left(f(\vec{b}_{2})\right)_{\mathcal{C}} & \cdots & \left(f(\vec{b}_{n})\right)_{\mathcal{C}} \\ \left| & \left| & \right| & \right| \end{pmatrix}_{\mathcal{B}}$$

5.3 Beispiele von linearen Abbildungen in der Ebene

Streckung um λ_1 in x und λ_2 in y	orthogonale Projektion auf die Gerade g: ax + by = 0 mit $a^2 + b^2 = 1$	Spiegelung an der Geraden g: ax + by = 0 mit $a^2 + b^2 = 1$	Rotation um den Ursprung um Winkel $φ$	Scherung in x-Richtung mit Faktor m
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$ \begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix} $	$ \begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix} $	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} $	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

5.4 Beispiele von linearen Abbildungen im Raum

Orthogonale Projektion auf die Ebene $E: ax + by + cz = 0 \text{ mit } a^2 + b^2 + c^2 = 1$	Spiegelung an der Ebene $E: ax + by + cz = 0 \text{ mit } a^2 + b^2 + c^2 = 1$	
$P = \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix} = E - \vec{n} \cdot \vec{n}^T$	$S = \begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix} = E - 2\vec{n} \cdot \vec{n}^T$	

Rotation um den Winkel φ	Rotation um den Winkel φ um die y -Achse	Rotation um den Winkel φ	
um die x-Achse	uiii die <i>y</i> -Actise	um die z -Achse	
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix} $	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} $	

Rotation um den Winkel φ um die Achse durch den Ursprung, deren Richtung durch den normierten Vektor \vec{a} festgelegt ist

$$\begin{pmatrix} \cos(\varphi) + a_1^2 (1 - \cos(\varphi)) & a_1 a_2 (1 - \cos(\varphi)) - a_3 \sin(\varphi) & a_1 a_3 (1 - \cos(\varphi)) + a_2 \sin(\varphi) \\ a_1 a_2 (1 - \cos(\varphi)) + a_3 \sin(\varphi) & \cos(\varphi) + a_2^2 (1 - \cos(\varphi)) & a_2 a_3 (1 - \cos(\varphi)) - a_1 \sin(\varphi) \\ a_1 a_3 (1 - \cos(\varphi)) - a_2 \sin(\varphi) & a_2 a_3 (1 - \cos(\varphi)) + a_1 \sin(\varphi) & \cos(\varphi) + a_3^2 (1 - \cos(\varphi)) \end{pmatrix}$$

5.5 Kern und Bild einer Abbildungsmatrix

Definition: Kern einer Matrix

Der $Kern \ker(A)$ einer $m \times n$ -Matrix A ist die Lösungsmenge des homogenen linearen Gleichungssystems $A \cdot \vec{x} = \vec{0}$.

Definition: Bild einer Matrix

Das *Bild* (auch: *Spaltenraum*) im(A) einer $m \times n$ -Matrix A, ist der Unterraum des m-dimensionalen Vektorraum W, der von den Spalten $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ der Matrix (aufgefasst als Vektoren in W) aufgespannt wird:

$$\operatorname{im}(A) = \operatorname{span}(\vec{a}_1, \vec{a}_2, ..., \vec{a}_n) = \left\{ \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + ... + \lambda_n \vec{a}_n \mid \lambda_k \in \mathbb{R} \right\}$$

Satz

Für jede $m \times n$ -Matrix A gilt:

$$\dim(\operatorname{im}(A)) = \operatorname{rg}(A)$$
 und $\dim(\ker(A)) + \dim(\operatorname{im}(A)) = n$

5.6 Verknüpfung von linearen Abbildungen

Wir betrachten eine lineare Abbildung $f: U \to V$ mit Abbildungsmatrix A sowie eine lineare Abbildung $g: V \to W$ mit Abbildungsmatrix B.

Die Verknüpfung $g \circ f$ ist wieder eine lineare Abbildung; ihre Abbildungsmatrix ist $B \cdot A$.

Wichtig ist die Reihenfolge: Die Abbildung, die **zuerst** ausgeführt wird, bzw. die zugehörige Abbildungsmatrix steht **rechts**; so trifft sie zuerst auf das \vec{x} .

5.7 Die Inverse einer linearen Abbildung

Gegeben ist eine invertierbare lineare Abbildung f mit Abbildungsmatrix A. Dann ist die Inverse A^{-1} die Abbildungsmatrix der inversen Abbildung f^{-1} .

5.8 Basiswechsel

Die Abbildungsmatrix ${}_{S}T_{B}$ für den Basiswechsel von \mathcal{B} nach \mathcal{S}

Die Spalten von $_{\mathcal{S}}T_{\mathcal{B}}$ sind die Vektoren aus \mathcal{B} in der Komponentendarstellung bezüglich \mathcal{S} :

$$_{\mathcal{S}}T_{\mathcal{B}} = \left((\vec{b_1})_{\mathcal{S}} \quad (\vec{b_2})_{\mathcal{S}} \right)_{\mathcal{B}}$$

Die Abbildungsmatrix ${}_{\mathcal{B}}T_{\mathcal{S}}$ für den Basiswechsel von \mathcal{S} nach \mathcal{B}

Die Matrix $_{\mathcal{B}}T_{\mathcal{S}}$ ist die Inverse von $_{\mathcal{S}}T_{\mathcal{B}}$: $_{\mathcal{B}}T_{\mathcal{S}} = _{\mathcal{S}}T_{\mathcal{B}}^{-1}$.

	\mathbb{R}^2	$\frac{\text{lineare Abbildung } f}{\Longrightarrow}$	\mathbb{R}^2
Darstellung bzgl. der Basis S (schwarzes Koordinatensystem)	\vec{x}	$\stackrel{_{\mathcal{S}}A_{\mathcal{S}}}{\longmapsto}$	$f(\vec{x})$
	$_{eta}T_{\mathcal{S}}$ \int		$\int_{\mathcal{S}} T_{\mathcal{B}}$
Darstellung bzgl. der Basis \mathcal{B} (blaues Koordinatensystem)	\vec{x}	\mapsto $_{_{\mathcal{B}}A_{\mathcal{B}}}$	$f(\vec{x})$

Satz

Gegeben ist ein Vektorraum V mit zwei Basen $\mathcal B$ und $\mathcal C$ sowie eine lineare Abbildung $f:V\to V$. Dann besteht zwischen den Abbildungsmatrizen $_{\mathcal B}A_{\mathcal B}$ und $_{\mathcal C}A_{\mathcal C}$ folgender Zusammenhang:

$$_{\mathcal{C}}A_{\mathcal{C}} = _{\mathcal{C}}T_{\mathcal{B}} \cdot_{\mathcal{B}}A_{\mathcal{B}} \cdot_{\mathcal{B}}T_{\mathcal{C}} = _{\mathcal{C}}T_{\mathcal{B}} \cdot_{\mathcal{B}}A_{\mathcal{B}} \cdot_{\mathcal{C}}T_{\mathcal{B}}^{-1}$$

Dabei sind die Spalten der Matrix ${}_{\mathcal{C}}T_{\mathcal{B}}$ die Elemente der Basis \mathcal{B} in der Komponentendarstellung bezüglich der Basis \mathcal{C} .

5.9 Homogene Koordinaten

Wir erweitern jeden **Vektor** um eine Komponente:

- Ortsvektoren (am Ursprung angeheftet): die zusätzliche Komponente wird 1 gesetzt.
- Freie Vektoren (parallel verschiebbar): die zusätzliche Komponente wird 0 gesetzt.

Abbildungsmatrizen von **linearen Abbildungen** erhalten eine zusätzliche Zeile und eine zusätzliche Spalte. Die zusätzlichen Matrix-Elemente werden alle 0 gesetzt ausser dem Element in der Ecke, das 1 wird. Dann macht die Abbildungsmatrix mit den Vektoren in homogenen Koordinaten das Gleiche wie vorher mit den gewöhnlichen Vektoren.

Nun können wir auch **Translationen** durch Matrizen darstellen, und zwar so: Wir ersetzen in der Einheitsmatrix die Nullen in der letzten Spalte durch die Komponenten des Translationsvektors.

Beispiele

Rotation $\mathbb{R}^2 \to \mathbb{R}^2$ um φ um den Ursprung	Translation $\mathbb{R}^2 \to \mathbb{R}^2$ um den Vektor $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$	Rotation und Translation in einem	
$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & a_1 \\ \sin(\varphi) & \cos(\varphi) & a_2 \\ 0 & 0 & 1 \end{pmatrix} $	