Statistical Analyisis of viral load data

Richard Green

February 11, 2017

The data report below outlines the statistical tests of significance with viral load data from the heterozygous CC lines (F/N + N/f) and the null lines (N/N).

```
# load dplyr for data transformations
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.2.5

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

## display my entire session info
sessionInfo()
```

```
## R version 3.2.3 (2015-12-10)
## Platform: x86 64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC MONETARY=English United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
##
## other attached packages:
## [1] dplyr_0.5.0
##
## loaded via a namespace (and not attached):
  [1] Rcpp 0.12.8
                       digest 0.6.11
                                       rprojroot 1.1
                                                       assertthat 0.1
## [5] R6_2.2.0
                       DBI 0.5-1
                                       backports_1.0.4 magrittr_1.5
  [9] evaluate_0.10 stringi_1.1.2
                                       rmarkdown_1.3 tools_3.2.3
## [13] stringr_1.1.0
                       yaml_2.1.14
                                       htmltools_0.3.5 knitr_1.15.1
## [17] tibble_1.2
```

```
# Load qpcr data
qpcr_data <- read.csv(file="C:\\gale_lab\\oas1b_manuscript\\revisions\\qpcr_data_4_ttests.csv",
header=T)
#Evaluate which fields we are interested in
names(qpcr_data)</pre>
```

```
## [1] "Mating" "Outcome" "UNC_ID" "Oas1b_status"
## [5] "Virus" "Tissue" "Timepoint" "fc.mean"
```

```
# We will first filter by spleen tissue
qpcr_spleen <- filter(qpcr_data, Tissue=="Spleen")
# Next filter by Oas1b status

qpcr_spleen_NF_FN_NN <- filter(qpcr_spleen, Oas1b_status %in% c("Null+Functional","Functional+Nu
11", "Null+Null"))
# Pool heterozgous data

qpcr_spleen_NF_FN <- filter(qpcr_spleen, Oas1b_status %in%
c("Null+Functional","Functional+Null"))
# Pool null spleen data

qpcr_spleen_NN <- filter(qpcr_spleen, Oas1b_status %in% c("Null+Null"))

qpcr_spleen_NF_FN_NN <- filter(qpcr_spleen, Oas1b_status %in% c("Null+Functional","Functional+Nu
11", "Null+Null"))
# perform student t-test on viral spleen data
t.test(qpcr_spleen_NF_FN$fc.mean,qpcr_spleen_NN$fc.mean)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: qpcr_spleen_NF_FN$fc.mean and qpcr_spleen_NN$fc.mean
## t = -0.65543, df = 292.5, p-value = 0.5127
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -33.18763 16.60523
## sample estimates:
## mean of x mean of y
## 51.26664 59.55784
```

```
# They do not appear signifcant in the spleen
# next filter by day 4 post infection

qpcr_spleen_NF_FN_D4 <- filter(qpcr_spleen_NF_FN, Timepoint==4)

qpcr_spleen_NN_D4 <- filter(qpcr_spleen_NN, Timepoint==4)
# perform student t-test on viral spleen data at day 4 post infection

t.test(qpcr_spleen_NF_FN_D4$fc.mean,qpcr_spleen_NN_D4$fc.mean)</pre>
```

```
#They are not distinctly significant day 4 post infection either

### Lets compare the two heterozygous CC lines in the spleen with all timepoints (2,4,7,12) inor
der to give us greater statistical power

qpcr_spleen_NF <- filter(qpcr_spleen, Oas1b_status %in% c("Null+Functional"))

qpcr_spleen_FN <- filter(qpcr_spleen, Oas1b_status %in% c("Functional+Null"))

t.test(qpcr_spleen_NF$fc.mean,qpcr_spleen_FN$fc.mean)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: qpcr_spleen_NF$fc.mean and qpcr_spleen_FN$fc.mean
## t = 0.3956, df = 118.21, p-value = 0.6931
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -24.67300 36.99195
## sample estimates:
## mean of x mean of y
## 54.62636 48.46688
```

```
###

# next filter by day 7 post infection

qpcr_spleen_NF_FN_D7 <- filter(qpcr_spleen_NF_FN, Timepoint==7)

qpcr_spleen_NN_D7 <- filter(qpcr_spleen_NN, Timepoint==7)

# perform student t-test on viral spleen data at day 7 post infection

t.test(qpcr_spleen_NF_FN_D7$fc.mean,qpcr_spleen_NN_D7$fc.mean)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: qpcr_spleen_NF_FN_D7$fc.mean and qpcr_spleen_NN_D7$fc.mean
## t = -0.032616, df = 48.701, p-value = 0.9741
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.41387 17.82577
## sample estimates:
## mean of x mean of y
## 17.73181 18.02586
```

```
#They are not distinctly significant day 7 post infection either

#Lets look at the viral brain qPCR

qpcr_brain <- filter(qpcr_data, Tissue=="Brain")

# Next filter by Oas1b status

qpcr_brain_NF_FN <- filter(qpcr_brain, Oas1b_status %in% c("Null+Functional","Functional+Null"))
# Null

qpcr_brain_NN <- filter(qpcr_brain, Oas1b_status %in% c("Null+Null"))
# Hetero

qpcr_brain_NF_FN_NN <- filter(qpcr_brain, Oas1b_status %in% c("Null+Functional","Functional+Null", "Null+Null"))
# perform student t-test on viral brain data
t.test(qpcr_brain_NF_FN$fc.mean,qpcr_brain_NN$fc.mean)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: qpcr_brain_NF_FN$fc.mean and qpcr_brain_NN$fc.mean
## t = -2.109, df = 128.39, p-value = 0.03689
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9613.9006 -306.6125
## sample estimates:
## mean of x mean of y
## 143.6763 5103.9329
```

```
# this p value of 0.03689 meetings our criteria (p-value <=.05) and therefore shows significance

# Next lets filter by timepoint. Day 7 and 12 post infection

qpcr_brain_NF_FN_D7 <- filter(qpcr_brain_NF_FN, Timepoint==7)

qpcr_brain_NF_FN_D12 <- filter(qpcr_brain_NF_FN, Timepoint==12)

# Null

qpcr_brain_NN_D7 <- filter(qpcr_brain_NN, Timepoint==7)

qpcr_brain_NN_D12 <- filter(qpcr_brain_NN, Timepoint==12)

#perform student t-test on viral brain data at day 7 post infection

t.test(qpcr_brain_NF_FN_D7$fc.mean,qpcr_brain_NN_D7$fc.mean)</pre>
```

```
#perform student t-test on viral brain data at day 12 post infection

t.test(qpcr_brain_NF_FN_D12$fc.mean,qpcr_brain_NN_D12$fc.mean)
```

```
##
## Welch Two Sample t-test
##
## data: qpcr_brain_NF_FN_D12$fc.mean and qpcr_brain_NN_D12$fc.mean
## t = -2.0146, df = 35.083, p-value = 0.05166
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -32872.3115 124.3175
## sample estimates:
## mean of x mean of y
## 385.8939 16759.8909
```

this p value of 0.05 meetings our criteria (p-value <=.05) and therefore shows significance