

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1956

Characteristics of a germanium power rectifier operated at 400 cycles per second.

Songer, Jack Richard

Monterey, California: U.S. Naval Postgraduate School

http://hdl.handle.net/10945/13991

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

CHARACTERISTICS OF A GERMANIUM POWER RECTIFIER OPERATED AT 400 CYCLES PER SECOND

Jack Richard Songer

Library U. S. Naval Postgraduate School Monterey, California

CHARACTERISTICS OF A GERMANIUM POWER RECTIFIER OPERATED AT 400 CYCLES PER SECOND

* * * * * *

Jack R. Songer

CHARACTERISTICS OF A GERMANIUM POWER RECTIFIER OPERATED AT 400 CYCLES PER SECOND

ру

Jack Richard Songer

Lieutenant, United States Naval Reserve

Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

United States Naval Postgraduate School Monterey, California

1956

This work is accepted as fulfilling the thesis requirements for the degree of

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

from the

United States Naval Postgraduate School

PREFACE

In the past few years the Navy has been making a serious effort to decrease the size and weight of all electrical and electronic equipment destined for installation in aircraft, and also to increase their reliability under normal operating conditions. An examination of data concerning new aircraft will indicate why this has become important. Todays modern jet fighter weighs nearly as much as some World War II bombers. Much of this increase in weight may be attributed to the large amount of electronic and electrical equipment which has been placed in the aircraft; at present the growth factor for a new aircraft is approximately seven pounds of additional airframe, engine and fuel for each pound of equipment added. If some method could be devised to reduce the size and weight of the electrical system of an aircraft, it would be very advantageous to the airframe manufacturer and to Naval Aviation in general.

One method of reducing aircraft electrical, system weight, now under investigation, involves replacing the direct-current power distribution system with an alternating-current system.

However even an aircraft with an alternating-current electrical system requires approximately ten percent of its generated power to be converted to direct current (1). This means the use of either a rotary converter or transformers and semiconductor rectifiers. The latter method is the more reliable since it requires no moving parts other than a possible cool-

ing fan; however, the space and weight factor make it less desirable.

In 1955 several rectifier systems designed for 60 cycle per second alternating current were installed in industry using a new germanium power rectifier. These had a weight reduction of four to one and a volume reduction of 40 to one over selenium rectifiers of comparable power rating (2).

Dallas and Reising (3) have proposed a conversion system for for aircraft using selenium rectifiers but no transformers, thus removing a large portion of the weight and volume. If the above mentioned germanium rectifiers that have proved successful at 60 cycles per second could be utilized in aircraft at 400 cycles per second, an additional savings in weight and volume could be obtained.

The purpose of this thesis is to investigate the properties and characteristics of a germanium power rectifier designed for 60 cycles per second but operated at 400 cycles per second. Three different stock rectifiers were obtained and tested to varying degrees.

The work on this thesis was done in the fall of 1955 and the spring of 1956 at the United States Naval Postgraduate School, Monterey, California under the direction and guidance of C. H. Rothauge, Associate Professor of Electrical Engineering. To him the author is greatly indebted for all help and assistance which he has so cheerfully given.

TABLE OF CONTENTS

				Page
CERTIFICATE	OF .	APPROVAL		i
PREFACE				ii
LIST OF ILL	USTR.	ATIONS	19	vi
TABLE OF SYMBOLS				vii
CHAPTER I	INT	RODUCTION		1,
	1.	Basic Concepts	d _{eng}	1
	2.	Test Items		4
	3.	Summary of Results		6
CHAPTER II	CHA	RACTERISTICS		7
	1.	General		7
	2.	Direct-Current Volt-Ampere Characteristics	* 4	8
	3.	Alternating-Current Volt-Ampere Characteristics		10
	4.	Resistance		17
	5.		,	19
	6.	The Effect of Temperature		21
CHAPTER III	REGULATION			24
	1.	Without Filter		24
	2.	With Filter		25
CHAPTER IV	EFF	ICIENCY .		31
	1.	Without Filter		31
	2.	With Filter		33

CHAPTER V	CONCLUSIONS	
	1. Volt-Ampere Characteristics	34
	2. Effect of Temperature	35
	3. Resistance	35
	4. Regulation	36
	5. Efficiency	37
	6. Summary	37
BIBLIOGRAPH	39	
APPENDIX A	GRAPHICAL RESULTS	140
	Figs. 13 through 46	40
APPENDIX B	PHOTOGRAPHIC DATA	75
	Figs. 47 through 66	75
APPENDIX C	TABLES	96
	Tables 1 through 53	96
APPENDIX D	RECTIFIER SPECIFICATIONS	155

LIST OF ILLUSTRATIONS

			Page
Figure	1.	Circuit Used to Obtain the Forward Direct- Current Volt-Ampere Characteristic	8
	2.	Circuit Used to Obtain the Reverse Direct- Current Volt-Ampere Characteristic	9
	3.	Single Phase Bridge Circuit with Shorted Output Terminals	10
	4.	Circuit Used to Obtain the Forward Alternating Current Volt-Ampere Characteristic	3 - 11
	5.	Circuit Used to Obtain the Forward Three Phase Volt-Ampere Characteristic	12
	6.	Single Phase Bridge Circuit with Open Output Terminals	14
	7.	Circuit Used to Obtain the Reverse Alter- nating-Current Volt-Ampere Characteristics	15
	8.	Full Wave Rectifier Circuit Used to Determine Regulation	24
	9.	Average Value of a Full Wave Rectified Sine Wave	25
1	١٥.	Three Phase Bridge Circuit	28
1	.1.	Output Waveform of a Three Phase Bridge Rectifier	29
1	.2	Circuit Used to Obtain Rectifier Efficiency	32
1	13.	through 46. Graphical Results, Pages 41 - 74	
4	₊ 7.	through 66. Photographic Results, Pages 76 - 95	5
Tables	٦.	through 53. Pages 97 - 15h	

TABLE OF SYMBOLS

(Listed in the order of their use in the text)

- °C degrees centigrade
- S a switch
- I current, a.c. or d.c.; also an ammeter
- V a voltmeter
- R resistance or resistive load
- μ micro, or 10^{-6}
- ma milli amperes
- cycles per second; or alternating-current source
- ih current through a diode or a rectifier
- eb voltage drop across a diode or rectifier
- ★ temperature coefficient of resistivity
- f, temperature correction factore
- ufd micro farads
 - Y ripple factor
 - L inductive load
 - ø phase
 - n efficiency

CHAPTER I

INTRODUCTION

1. Basic concepts.

Whereas the metallic rectifier as we now know it can be described as a recent developement, the phenomenon of asymmetric conduction has been studied for a long time. The properties of metal rectifiers are now known to be affected by a large number of manufacturing and operating conditions. Even now, however, the exact significance of a change in these conditions is not always perfectly understood.

Germanium rectifiers are a very recent developement (6), and the available amount of well-confirmed information concerning their manufacture and properties is still comparatively small. Many war-time applications demanded the use of reliable crystal diodes, giving good rectification and capable of operating over a wide range of temperatures. Germanium rectifiers were developed in order to meet this need. From this beginning it was a logical step to extend their application to the field of power rectification.

The metallic rectifier is a static device for converting alternating current into direct current. It makes use of a highly unusual property of certain materials which allows current to flow in only one direction. There have been a number of theories advanced to explain this uni-directional property such as: (a) Thermal Diffusion Theory, (b) Theory of Physical

Barrier Layer, (c) Theory of Discontinuous Space Charge, and many more (4). It is not the object of this thesis to explain these theories. Germanium power rectifiers are usually best explained by the barrier layer theory which is adequately covered in reference (7).

The pure metallic germanium does not have all the required qualities of a rectifier. The designation "P" type and "N" type germanium is currently being used to describe the actual structure as used in a rectifier. This simply means that some impurity or unbalance of the atomic structure is necessary to produce free electrons. Experiment has proven that alloying with indium produces "P" type germanium and alloying with antimony produces "N" type germanium. When put into a commercial unit, the germanium rectifier is a sandwich of five layers of material fused together. Top and bottom layers are of molybdenum, which has the same thermal expansion as germanium and has good heat conductivity. These layers provide strong stable support for the other layers during manufacture and provide good surfaces for attaching the electrical connections. The rectifying and center layer of the cell is a thin slice of germanium from a single crystal; this slice contains the small amount of impurity, which produces an excess of electrons and makes the germanium "N" type. The germanium is soldered to the bottom molybdenum layer with pure tin and to the top molybdenum layer with pure indium. The molybdenum to tin connection is ohmic, but the indium on

the top surface forms a P-N junction by diffusing into the germanium and changing its upper surface from "N" to "P" type. This permits easy current flow from "P" to "N" but deters current flow from "N" to "P". The crystal assembly is soldered to a metal base and has a flexible cable soldered to its top.

The wafer is usually sealed, for moisture is one of the most deleterious impurities; it increases the reverse leakage current at the edge of the junction.

As is well known, the operation of a metal rectifier is limited within certain maximum values of applied voltage and current. If these limits are exceeded the rectifier "breaks down", that is, its forward and reverse resistance tend to equalize and the disk thus becomes useless for rectification purposes.

The mechanism of rectifier breakdown is frequently misunderstood and, in particular, is often regarded as corresponding to the dielectric breakdown of an insulator. Actually rectifier breakdown is nearly always due to excessive heat accumulation which results from ohmic loss in the semi-conducting film and the barrier layer. The semi-conductor is never of perfectly uniform thickness and thus regions of lower resistance, and hence higher current densities and excessive heating, always occur. one way in which breakdown can occur applies to the case of prolonged exposure to a temperature which is insufficient to melt the electrodes, but is sufficient to cause a considerable increase in the mobility of the

impurity centers. The advantageous distribution of impurities which was achieved during the electrical forming process is then destroyed and the efficiency of the rectifier rapidly decreases until nearly all asymmetry of conduction disappears.

Under all conditions of operation the resulting temperature rise depends on the nature of the assembly as well as the losses in the rectifier disks. In particular the size of the cooling fins and the distance between these fins are of great importance in this respect. One objective of this thesis was to determine if this fin size and spacing as designed for 60 cycle operation was adequate for 400 cycle operation.

2. Test items.

Three types of germanium rectifiers were obtained and tested. Type I rectifier consisted of six matched rectifier disks in a three phase bridge circuit. Each rectifier connection was brought out to a terminal strip and jumpers were used to form the desired bridge circuit. Thus by proper manipulation of the jumpers a single rectifier could be operated alone or any desired circuit formed. This rectifier was manufactured by the General Electric Company and designated type 4JA3011BF1AB1 (see appendix D for the specifications). It is rated at five amperes direct current per cell, and at maximum peak inverse voltage of 200 volts, both ratings at 70°C fin temperature. These were the direct current limits used for all tests. During alternating-current operation using a single phase full wave circuit, ten amperes effective was

used as full load current. This gave a value of five amperes effective from each rectifier. An inverse voltage of 140 volts effective was set as the maximum. This gave a peak inverse voltage of 200 volts. Most tests were made with single phase alternating current to obtain the characteristics of the rectifier. The author realizes that the three phase bridge operation has certain advantages and these have been discussed in Chapter III, Section 2.

The type 2 rectifier consisted of a single cell made by the General Electric Company, model number 6RA2DF1. It was rated at eight ampers direct-current output and at 65 volts effective alternating-current input.

The type 3 rectifier was also a single cell made by the General Electric Company, model number 6RA2CF1. It was rated at 12 amperes direct-current output with 50 volts effective input. Rectifiers 2 and 3 were very similar and when operated as a pair, the direct current of each was limited to eight amperes and the alternating current to eight amperes effective (see appendix D for the specifications).

Tests were made on the three rectifiers using direct current, 60 and 400 cycle per second alternating current. In the conclusions, Chapter V, comparisons are made only between the 60 and 400 cycles per second tests to determine the effect of the increased frequency. The tests conducted included the determination of the effects of time and temperature on the conduction of the rectifiers; the forward and reverse volt-

1-

ampere characteristics; resistance; regulation; and efficiency.

3. Summary of results.

In no case investigated was 400 cycles per second detrimental to the operation of the rectifier. The effects of both time and temperature were found to be nearly identical for operation at both 60 and 400 cycles per second. There was a small change in the volt-ampere characteristics with the use of 400 cycles per second but it is concluded that the effect is negligible. The regulation and efficiency were the same as for 60 cycles per second while the addition of a filter capacitor across the output made the regulation and efficiency much better than for 60 cycles per second. Such a filter capacitor would only be used for single phase operation. For three phase operation the filter capacitor would not be necessary hence 400 cycles per second would have no advantage over 60 cycles per second.

In conclusion the author sees no reason why germanium power rectifiers as now manufactured for 60 cycles per second industrial power could not be utilized for 400 cycles per second aircraft power. The author believes that further studies should be made before a final approval can be given.

These studies could include: the measurement of rectifier self capacitance; the effect of extremely cold temperatures; and the transient effects of suddenly applied or removed loads.

ŀ

CHAPTER II

CHARACTERISTICS

1. General.

Probably the one most important piece of information about a rectifier is its V-I curve, voltage versus current. In the forward direction it is the voltage drop across the rectifier for a given load current that is of interest; while in the reverse direction it is the leakage current through the rectifier for a given applied voltage. Forward direction implies that current is flowing in the direction of least resistance, the direction for which the rectifier is approximately a short circuit. The symbol used is:

The reverse direction implies current flow in the direction of high resistance. For alternating-current power sources, the instantaneous current is considered.

Before any other data could be taken, it was necessary to determine what effect time had on the conduction of each rectifier. With this information on hand, it was known when to take measurements after the power had been applied.

Since it is known that temperature has a pronounced effect upon the resistance of a semi-conductor, it was necessary to determine this effect. The temperature of the rectifiers was held as near 22°C as possible. If it had previously

been determined that the temperature was critical for a test, temperature corrections were applied to the data for which the temperature was not 22°C.

2. Direct-current volt-ampere characteristics.

The direct-current characteristics were straight forward and easy to obtain. The circuit shown in Fig. 1 was used for

Fig. 1. Circuit used to obtain the forward direct-current volt-ampere characteristic.

the forward direction. The switch S was closed until the current I₁ was of approximately the proper magnitude. This was for additional safety. By means of the variable resistors, forward current was varied from zero to the maximum value for each rectifier; i.e., ten amperes for rectifier 1. The forward current, the voltage drop across the rectifier, and the temperature of the rectifier were recorded for each current setting. The resulting forward volt-amper curves are shown in

Fig. 29 for rectifier 1 and in Fig. 30 for rectifiers 2 and 3.

It will be noticed that the characteristic curves for rectifiers 2 and 3 are nearly identical in the forward direction.

It is in the reverse direction where these two rectifiers differ.

For the reverse direction the circuit of Fig. 2 was used.

The switch was left open during the adjustment of R until the voltage V did not exceed the peak inverse voltage rating of the rectifier. The voltage V across the rectifier, the reverse

Fig. 2. Circuit used to obtain the reverse direct-current volt-ampere characteristics.

current through the rectifier I (leakage current), and the temperature were recorded for each setting of V while V was varied from zero to the maximum peak inverse voltage for each rectifier (200 volts for rectifier 1). The resulting voltampere curve for rectifier 1 is shown in Fig. 31. Two curves are shown representing data taken on two widely separated days to check reproducibility. The results for rectifier 2 are shown in Fig. 32 and for rectifier 3 in Fig. 33. It is

important to note the difference in current scales for each of the three rectifiers.

3. Alternating-current volt-ampere characteristics.

The circuits used for the direct-current characteristics were not suitable for the alternating-current characteristics measurements. Every half cycle the rectifier has an inverse voltage across it, thus a voltmeter-reading across the rectifier would be proportional to this inverse voltage and not the smaller forward voltage drop. Likewise an ammeter in series with the rectifier would read the forward current and give no indication of the much smaller reverse current.

Fig. 3. Single phase bridge circuit with shorted output terminals.

For measuring the voltage drop in the forward direction, the method outlined by Henisch (4) known as the "short circuit test" was used. This can be visualized as a single phase full-wave bridge circuit as in Fig. 3(a) with the output terminals x,y shorted. The circuit can be redrawn as in Fig. 3(b). Only one pair of rectifiers is needed, a and b. During

one half cycle of applied voltage rectifier a acts as a low impedance and the current through the ammeter is the forward current through rectifier a plus the negligible reverse current through rectifier b. The reverse current through one .. rectifier will be in the order of 1/100,000 of the forward current through the other rectifier at any one time. The voltage drop across the pair of rectifiers is the forward voltage drop across rectifier a. During the next half cycle the applied voltage reverses and now rectifier b is a low impedance. The current through the ammeter is the forward current through rectifier b and the voltage drop across the pair is the forward voltage drop across rectifier b. Thus if the two rectifiers are matched, the ammeter reads the effective value of the forward current through each rectifier and the voltmeter reads the effective value of the forward voltage drop across each rectifier.

Fig. 4. Circuit used to obtain the forward alternatingcurrent volt-ampere characteristic.

The actual circuit used for the forward alternatingcurrent characteristic tests is shown in Fig. 4. The three

variacs were used to give a fine control over the applied voltage. The dropping resistor R was used to allow the variacs to work at a higher output voltage for better stability of settings.

The resulting forward characteristics for rectifier 1 for both a 60 and 400 cycle per second power source are shown in Fig. 34. In addition, six rectifiers of type 1 were connected as in Fig. 5 to form a "short circuit test" for a three

Fig. 5. Circuit used to obtain the forward three phase voltampere characteristic.

phase bridge. The forward volt-ampere characteristic for this three phase rectifier is also shown on Fig. 34.

Fig. 35 shows the forward volt-ampere characteristic of rectifiers 2 and 3 in a short circuit test. This was possible with these two rectifiers since it was shown in Fig. 30 that they had very similar forward characteristics; however, they

are not matched in the reverse direction.

Fig. 47 shows photographs of the forward volt-ampere characteristics of rectifier 1 for 60 cycles per second.

Fig. 48 shows the same for 400 cycles per second. Figs. 47(a) and 48(a) are for a full load current of ten amperes. In Figs. 47(b) and 48(b) the load has been reduced to five amperes with no change in gain settings of the oscilloscope.

It will be noticed that for the actual alternating-current characteristic, the upward swinging trace and the return trace do not coincide. The higher the frequency, the more pronounced these loops become; also the higher the load current, the larger the separation between traces. The exact mechanism of this phenomenon is not yet understood, but it is probably connected with the inter-action between the voltage-dependent resistance and the voltage-dependent self-capacitance of the rectifier.

For measuring the current in the reverse direction, the "open circuit" method (4) was used. This can again be visualized as a single phase full-wave bridge circuit as in Fig. 6(a) with the output terminals x,y open circuited. The circuit can be redrawn with two parallel paths as in Fig. 6(b). Only one of these paths is required during the test. During one half cycle of the applied voltage, rectifier a acts as a low impedance but rectifier b acts as a very high impedance. Essentially all of the applied voltage as read by the voltmeter will be across rectifier b as an inverse voltage. An

examination of the foreard characteristic will disclose that the voltage drop across rectifier a is essentially zero with less than one milli-ampere of current flowing in the forward

Fig. 6. Single phase bridge circuit with open output terminals.

direction. The high impedance of rectifier b will be the limiting factor for the current and thus the ammeter will read only the reverse current of rectifier b. During the other half cycle the functions of the two rectifiers will be reversed and if the rectifiers are matched the voltmeter reads the inverse voltage across a single rectifier and the ammeter the reverse current.

The actual circuit used for the reverse alternating-current characteristic tests is shown in Fig. 7. Because the reverse current was only a few micro-amperes, current readings were taken by means of the voltage drop across a known non-reactive resistor.

The resulting reverse characteristics for rectifier 1 for both a 60 and 400 cycles per second power source are shown in Fig. 36.

Fig. 49 shows photographs of the reverse volt-ampere characteristic of rectifier 1 for 60 cycles per second. Gain settings were held constant and only the applied inverse voltage decreased. Fig. 50 shows the actual reverse volt-ampere characteristic of rectifier 1 for 400 cycles per second. Again

Fig. 7. Circuit used to obtain the reverse alternatingcurrent volt-ampere characteristics.

the separation of the traces is clearly evident and shows the effect of frequency and applied voltage.

Examination of Fig. 34 indicates that the forward voltampere characteristic curve for a germanium rectifier has the same general shape as that for a vacuum tube diode rectifier.

It is known that, provided the initial velocities of the electrons are neglected, the plate current of a diode is given by a relationship of the form

$$i_b = Ke_b^{3/2}$$
.

This relationship is known as Child's Law. The initial electron velocities due to thermionic emission are very small in

comparison with the final velocities if the plate voltage is of high enough potential to cause sufficient acceleration. At low plate voltages the initial and final velocities are of the same order of magnitude and Child's Law does not hold. It is obvious from Fig. 34 that some such power law may hold for the germanium rectifier.

It was found that the relationship

$$i_b = 20 e_b^{3.2}$$

gave a curve which approximated very closely the 60 cycle per second curve of Fig. 34. See Fig. 37.

Here again the relationship does not hold for low values of voltage. The current through the rectifier is essentially zero until the applied voltage across the rectifier reaches a definite value. This potential imparts sufficient energy to the free electrons to enable them to over come the forbidden energy levels. This is analogous to the concept of overcoming the work function of a metal.

For the 400 cycle per second curve the exponential power factor was found to be the same; but the constant was decreased.

gave a good approximation as shown in Fig. 38.

It is thus possible to approximate the germanium forward volt-ampere characteristic by an equation which for practical purposes is independent of frequency at the lower frequencies.

A value of K such that

$$i_b = 19 e_b^{3.2}$$

shown on both Fig. 37 and Fig. 38 illustrate this. 4. Resistance.

There are two types of resistance, D.C. and A.C. The D.C. resistance at any point on the characteristic curve is defined as the voltage divided by the current at that point,

$$R_{d.c.} = \frac{E}{I}$$
.

For an alternating-current power source, the effective voltage and current are used. This gives an equivalent resistance which can be used to replace the rectifier to give the same voltage drop for a specified load current. When the resistance is obtained from the forward characteristic curve it is called the forward resistance. When the reverse characteristic curve is used, it is called the back resistance.

The A.C. or dynamic resistance is defined as the slope of the curve at that point,

$$R_{a.c.} = \frac{dE}{dI}$$
.

The rectifier can then be thought of as being biased by a direct-current voltage equal to the effective voltage at the operating point on the characteristic curve. The slope of the curve at this point is thus an equivalent resistance for a small amplitude alternating voltage operating about this biased point. This is analogous to the characteristic curves of a triode where the dynamic plate resistance is the slope

of the curve at an operating point and the operating point is determined by the bias on the tube.

The D.C. resistances were calculated from the characteristic curves for direct-current and 60 and 400 cycle per second alternating current. The results are shown in Figs. 39 and 40. It can be noted that in the forward direction the D.C. resistance is nearly identical for each of the three types of power.

The A.C. resistances were calculated for only 60 and 400 cycle per second alternating current. The results are shown in Figs. 41 and 42. It can be noted that in the reverse direction the rectifier has a maximum resistance at about 40 to 50 inverse volts.

The ratio of back to front resistance is often taken as one method of rating a semi-conductor rectifier. For rectifier 1 the A.C. resistance at the rated peak inverse voltage of 140 volts and the resistance at the rated forward current of ten amperes was used to give the following back to front resistance ratios:

60 cycles per second ---- 44,500,000 to 1 400 cycles per second ---- 53,500,000 to 1

Using the maximum back resistance and the minimum forward resistance, the following values were obtained:

60 cycles per second ---- 121,000,000 to 1 400 cycles per second ---- 127,000,000 to 1

5. The effect of time.

For the forward direction, the rectifier was placed in operation conducting a constant current and the voltage drop across it was recorded as a function of time after applying power. This was done for direct current, 60 and 400 cycle per second alternating current. The circuit used for the direct-current case is shown in Fig. 1, and the basic method was the same as that outlined in section 2 for the forward volt-ampere characteristic. For the alternating-current case, the circuit of Fig. 4 was used and the method outlined in section 3 for the forward volt-ampere characteristic.

In all cases and for all rectifiers, the forward voltage drop was constant with time. See Tables I through V.

For the reverse direction the rectifier was placed in operation with a fixed inverse voltage across it and the leakage current recorded as a function of time. The circuit used for the direct-current case is shown in Fig. 2 and the basic method used was the same as that outlined in section 2 for the reverse volt-ampere characteristics. For the alternating-current cases, the circuit is shown in Fig. 7 and the method outlined in section 3. For rectifier 1 there again was no effect of time. See Tables VI, VII and VIII. The slight variation in reverse current was found due to changes in temperature. For both rectifiers 2 and 3 there was a definite "creep" of reverse current with time. This is clearly shown in Fig. 13 for rectifier 3. For an additional test a constant

inverse voltage was applied to the rectifier and held until the reverse current had become nearly steady. The power was then removed for a short period of time, and reapplied. This was to determine to what value the current would return. The results are shown in Figs. 14 and 15. The period the power was off was varied and also the inverse voltage being reapplied. Fig. 14 also shows the effect of a sudden increase in voltage without shutting down the power.

During the first five or ten minutes a rectifier was on, the peak reverse current was found to be a function of how long the rectifer had previously been sitting idle with no power. A rectifier that had not been used for several days had a higher reverse current during the first few minutes of use than one that had been idle for only a few hours. This is clearly shown in Fig. 16 where the rectifier drew more reverse current with 50 volts across it after sitting idle for seven days than it did with 70 volts across it after sitting idle for only 20 hours.

Because the reverse current changed during the first few minutes after the application of power, any tests made using a fixed voltage were made after the rectifier had been warmed up at that voltage for at least an hour. If the input voltage was to be an independent variable the tests were made in such a manner that all readings were taken at exactly one minute after a change in voltage had been made. This helped insure that successive readings would be comparable. Of course this

precaution was not necessary with rectifier 1 because there was no "creep" of current.

6. The effect of temperature.

The temperature measured was that of the cooling fin immediately adjacent to the rectifier junction. Measurements were made by means of an iron-constantine thermo-couple using ice-water in a Dewar Flask as a reference point. The indicating device was a Weston Model 440 galvanometer with 60 divisions for full scale and calibrated to read from zero to 60 degrees centigrade. The same circuits and methods were used as for measuring the volt-ampere characteristics in sections 2 and 3. See Figs. 1, 2, 4 and 7.

For the forward direction a constant current was maintained through the rectifier and the voltage drop across the rectifier recorded as the temperature was varied. A combination of a variable speed direct-current electric fan and a heat lamp were used to get any desired temperature from 20°C to 60°C . It can be noted from the resulting curves shown in Figs. 17 through 22 that the forward voltage drop decreased as the temperature increased indicating a negative temperature coefficient of resistivity, \propto_{t} . It will also be noted that the decrease was linear.

In the reverse direction the voltage was held fixed and the reverse current recorded as the temperature was varied. For rectifiers 2 and 3, a one hour warm up was required to eliminate the time variable. The results shown in Figs. 23

through 27 indicate that the current increases with an increase in temperature, again a negative temperature coefficient of resistivity, $\alpha_{\rm t}$. Here the rate of change is non-linear with the current increasing more rapidly as the temperature is increased.

The results of these "effect of temperature" curves were used to correct any observed data to a standard temperature of 22°C . This value was chosen because it represented the average room temperature and thus corrections were kept to a minimum. For those tests decribed in other sections, the fan was used continually to keep the rectifier temperature as near 22°C as possible. An example of the method of correcting for temperature is shown in Table XXV and Fig. 28. Here the current I_{τ} at any temperature T is divided into the current I at 22°C to give a correction factor. This correction factor, f_{τ} , is plotted versus temperature in Fig. 28. Thus for all future direct-current work on rectifier 1, the reverse current I_{τ} at any temperature T can be corrected to the value it would have been at 22°C , I_{22} . This is done by multiplying I_{τ} by the correction factor f_{τ} for the temperature T from Fig. 28.

The temperature to which rectifier 1 would rise using no forced air cooling was also checked. This was done using alternating current only. It was first done using 60 cycles per second, 400 cycles per second, and 400 cycles per second three phase while the rectifiers were connected for the "short circuit test" described in section 3. The results are tabulated

in Table XXVI. The rectifiers were next connected for normal full wave rectification as in Fig. 8 using both resistive and inductive loads; with and without a filter. A full load of ten amperes direct current was established and the final steady state temperature recorded in Table XXVI.

CHAPTER III

REGULATION

1. No filter.

To determine the regulation of the rectifier, the full wave rectifier circuit of Fig. 8 was used. The voltage V, across the secondary of the transformer was held at 120 volts

Fig. 8. Full wave rectifier circuit used to determine regulation.

effective, putting 60 volts across each rectifier in the forward direction. The inverse voltage across each rectifier was 120 volts effective and controled the maximum input voltage that could be used. Fig. 9 shows that the maximum direct-current voltage that can be obtained is 54 volts. Fig. 43 shows the full load output voltage to be 51.8 volts for 60 cycles per second input or a regulation of 96 percent, where percent

regulation is defined as

Fig. 43 also shows the full load output for 400 cycles per second to be 52.4 volts or 97 percent regulation. The no filter regulation curve is linear and very flat. Figs. 51 and 52 show that the voltage across the load and the rectifier current are both rectified sine waves with no distortion.

Fig. 9. Average value of a full wave rectified sine wave.

2. With filter.

A filter composed of a 240 micro-farad capacitor across the load was used next. As shown in Fig. 43 the effect on regulation was much more pronounced with 400 cycles per second than with 60 cycles per second. The theoretically possible no load voltage is now the peak voltage 84.9 volts. The full load voltage for 60 cycles per second is 52.8 volts giving a 62.8 percent regulation. Fig. 53(a) shows the voltage wave-form across the load. The ripple factor for this wave is

0.483 where ripple factor is defined as :

Y = Effective value of the alternating component
Direct or average value

Fig. 53(b) is for the same circuit but the load has been reduced to 1.2 amperes giving a ripple factor $\gamma = 0.150$.

The full load voltage for 400 cycles per second is 63.1 volts giving a 74.2 percent regulation. See Fig. 43. Fig. 54(a) shows the full load wave form and Fig. 54(b) the wave form with 1.28 amperes. The ripple factor is 0.098 and 0.018 respectively.

Figs. 55 and 56 show the combined current I from the two branches of the rectifiers at 60 and 400 cycles per second with full and partial loads. It is evident that there is a period during each half cycle when neither rectifier is conducting and load current is being supplied by the capacitor. However since average output current remains the same, the peak current must increase. Fig. 55(a) shows that for a full load of ten amperes direct current, a peak current of 15.07 amperes flows through the rectifier. If the average load current is reduced by a factor of 8.3 to 1.20 amperes as in Fig. 55(b) the peak current is reduced only by a factor of 2 to 7.46 amperes. With 400 cycles per second, for a load current of ten amperes, a peak current of 22 amperes flows through the rectifiers.

The filter capacitance was increased to 550 micro-farads.

13

The effect on the operation at 400 cycles per second was insignificant, but there was an increase in regulation for the conditions at 60 cycles per second. See Fig. 43. The effect on ripple factor is clearly shown in Figs. 57 and 58. Although the additional capacitance did not change the regulation for 400 cycles per second, it did improve the ripple factor. Figs. 59 and 60 show the rectifier current with 550 microfarads capacitance. Comparison of Figs. 56 and 60 shows that the increase in capacitance had no effect on the current wave shape with 400 cycles per second. Comparison of Figs. 55 and 59 shows that with 60 cycles per second the additional filter capacitance caused a narrower and sharper pulse of current from the rectifier. Again the peak current increased to maintain the same average current.

Operation at 60 cycles per second with a 550 micro-farad capacitor had a regulation of 68.1 percent. Using the 400 cycle per second power source and decreasing the capacitance it was found that only 58 micro-farads were required to give the same 68.1 percent regulation. The full load ripple factor for 60 cycles per second with 550 micro-farad capacitance was 0.392. It required only 61 micro-farads to give the same ripple factor for 400 cycles per second. See Fig. 61. Fig. 44 shows the effect of capacitance on output voltage and ripple factor for the rectifier system when operated at 400 cycles per second.

The resistive load was replaced with an inductive load

consisting of a direct-current motor driving a loaded generator. The 550 micro-farad filter capacitor was used. The regulation curve at 400 cycles per second was identical to that for a resistive load and 550 micro-farads. The regulation curve at 60 cycles per second was not the same as that for a resistive load and 550 micro-farads but was very similar to that for a resistive load and 240 micro-farads. See Fig. 43.

Fig. 10. Three phase bridge circuit.

The wave form of voltage across the inductive load with 60 cycles per second is different from that with a resistive load. See Figs. 62 and 57. The regulation is poorer and the ripple factor figher for the inductive load. For 400 cycles per second the waveforms are very similar for inductive and resistive loads. See Figs. 63 and 58.

Comparison of Figs. 64(a) and 59(a) shows a considerable variation in the rectifier current waveform for 60 cycles per using an inductive and resistive load respectively. Comparison

of Figs. 64(b) and 60(a) shows no variation in the rectifier current waveform for 400 cycles per second using either an inductive or resistive load.

Rectifiers 2 and 3 were used to form a full wave rectifier circuit with a resistive load an no filter. Figs. 65 and 66 are the voltage waveforms across the load for 60 and 400 cycles per second respectively. The waveforms for 60 cycles per second are normal except at full load there is a short dead spot when neither recitier is conducting. This dead spot is more pronounced for the 400 cycle per second waveform, also this waveform is a distorted sine wave.

Fig. 11. Output waveform of a three phase bridge rectifier.

The author realizes that in a practical installation the alternating-current source is normally three phase and a three phase bridge circuit as in Fig. 10 would be used. In such a circuit each rectifier conducts for only 120 degrees out of each cycle and rests for 240 degrees; consequently, the load current through each rectifier can be increased by 50 percent.

Such a circuit does not normally employ a filter capacitor. With an effective input voltage of 60 volts, giving a peak voltage of 84.9 volts, an output direct-current voltage of 79.2 volts is theoretically possible. See Fig. 11. The ripple factor for this wave is 0.042 without a filter.

CHAPTER IV

EFFICIENCY

1. Without filter.

The efficiency of a full wave rectifier system is defined (5) as

$$\eta = \frac{P_{d.c. (out)}}{P_{a.c. (in)}} = 2\left(\frac{2}{\pi}\right)^2 \times \frac{1}{1 + \frac{R_o}{R}} = \frac{81.2}{1 + \frac{R_o}{R}},$$

where R_o is the internal resistance of the rectifier in the forward direction, assumed to be linear, and R is the resistance of the load. This efficiency is known as the "conversion efficiency", the ability to convert alternating-current power into direct-current power. The efficiency approaches a theoretical maximum of 81.2 percent for this idealized full-wave rectifier as R becomes large compared with R_o. The factor

$$\frac{1}{1+\frac{R}{R}}$$

accounts for the heat lost in the rectifier element; it is the fraction of the input power delivered to the load. Only a portion of the power delivered to the load is direct-current power. The remainder is dissipated as heat associated with the alternating components of the load current. The factor

$$2\left(\frac{2}{77}\right)^2$$

accounts for this loss in the circuit and is the fraction of the power delivered to the load that is converted to direct-current power.

The circuit used to measure the efficiency of rectifier 1 is shown in Pig. 12. The secondary voltage V, was held at

Fig. 12. Circuit used to obtain rectifier efficiency.

120 volts. The wattmeter was placed in the primary circuit for two reasons. First the transformer action reversed one half cycle of the current giving an alternating current instead of a pulsating direct current. Second the inductance of the transformer tended to smooth out the narrow pulses of current which occurred when a filter capacitor was in the circuit. Both effects reduced the higher harmonics of current and gave more accurate readings with the wattmeter. This circuit arrangement required the determination of the transform-

er losses in order to obtain the true input power on the secondary side. Fig. 45 shows these losses as a function of output alternating current.

The no-filter efficiency curves for 60 and 400 cycles per second are shown in Fig. 46. The full load efficiency is approximately 77 percent and the efficiency curve is flat over most of the operating range.

2. With filter.

A 240 micro-farad filter capacitor was applied across the load. The capacitor reduces the alternating components of load current and consequently the losses associated with them. The better the filtering action, the higher the efficiency should be. This is borne out in Fig. 46. With 60 cycles per second the filter is effective only at low values of load current and thus the efficiency at these points is higher. At full load where the ripple factor is still 0.483 the efficiency is 77.5 percent as compared to about 77 percent with no filter. For 400 cycles per second the filter is effective at full load where the ripple factor is 0.098 and the efficiency as shown by Fig. 46 is approximately 91 percent.

CHAPTER V

CONCLUSIONS

1. Volt-ampere characteristics.

Fig. 34 indicates that there is little change in the forward volt-ampere characteristics when going from 60 to 400 cycles per second. The voltage drop for a given load current is slightly greater for 400 cycles per second than for 60 cycles per second. It was possible that this change could be caused by some type of aging in the rectifier since the 60 cycle per second tests were made several days prior to the 400 cycle per second tests. Consequently a new forward volt-ampere curve for 60 cycles per second was obtained and it lay identically on top of the first. Thus the change between the 60 and 400 cycle per second curves can be attributed only to frequency.

In the reverse direction the 60 and 400 cycle per second curves were nearly identical, with the 400 cycle per second curve having a slightly greater leakage current than the 60 cycle per second curve for a given inverse voltage.

In both the forward and reverse directions rectifier 1 is a better rectifier at 60 cycles per second than at 400 cycles per second; however, the difference is probably insignificant and it is concluded that the rectifier would operate equally well at either frequency.

2. Effect of temperature.

The effect of temperature is nearly the same for both 60 and 400 cycles per second. In the forward direction the voltage drop across the rectifier decreases with an increase in temperature. This decrease is perceptibly more rapid for 400 than for 60 cycles per second. This implies a decrease in resistance or an increase in current with an increase in temperature and thus more losses in the rectifier.

In the reverse direction an increase in temperature causes an increase in reverse current. This increase becomes very rapid at high temperatures with the result that reverse I²R losses increase greatly with temperature. The difference between the effect of temperature on operation at 60 and 400 cycles per second in the reverse direction is negligible.

The steady state temperature of the rectifier with no cooling fan averaged $2\frac{1}{2}$ degrees higher at 60 cycles per second than at 400 cycles per second. This was 12 percent of the total temperature rise. It is concluded that rectifier 1 would operate cooler at 400 cycles per second than at 60 cycles per second but that the difference is insignificant.

3. Resistance.

It is obvious that since the characteristic curves for 60 and 400 cycles per second are so similar, the resistance curves would likewise be very similar. What ever value of resistance is chosen to represent the rectifier at 60 cycles per second could adequately represent it at 400 cycles per

second.

4. Regulation.

The regulation without a filter capacitor was very similar for both 60 and 400 cycles per second and it can be concluded that neither has an advantage. However, when a filter capacitor is added the 400 cycle per second power has a decided advantage, which would be true for any type of rectifier. The operation at 400 cycles per second can give a specified regulation or ripple factor with a much smaller capacitor than can 60 cycles per second. As the filter capacitor is increased, the peak current through the rectifier increases. For the rectifier circuit tested the peak currents nearly doubled. In this case there appeared to be no adverse effects on the rectifier. It must be remembered that increasing the peak current increases the I2R losses in the rectifier thus raising the rectifier temperature. Table XXVI shows that adding 550 micro-farads of capacitance raised the temperature 2.3 degrees for 60 cycles per second and 3.5 degrees for 400 cycles per second. Raising the temperature of the rectifier allows the reverse current to increase greatly thus there is an upper limit to the forward peak current.

It was noted that the waveforms at 400 cycles per second were the same for both a resistive and inductive load; however, for 60 cycles per second the inductive load introduced considerable distortion.

It is concluded that the rectifier operation is as good

or better with 400 cycles per second than with 60 cycles per second when only regulation is the governing factor.

5. Efficiency.

It was shown in Fig. 46 that the efficiency curves for 60 and 400 cycles per second were very similar if no filter capacitor was used. With the addition of a specified filter capacitor the 400 cycle per second operation had a decided advantage. Therefore it is concluded that the rectifier operation is as good or better with 400 cycles per second than with 60 cycles per second when only efficiency is the governing factor.

6. Summary.

In no case investigated was 400 cycle per second power detrimental to the operation of the rectifier. The effects of time and temperature were the same as for 60 cycles per second. The volt-ampere characteristics were the same as for 60 cycles per second. The regulation and efficiency were the same as for 60 cycles per second while the addition of a filter capacitor across the output made the regulation and efficiency much better than for 60 cycles per second. Such a filter capacitor would normally only be used for single phase operation.

In conclusion the author sees no reason why germanium power rectifiers as now manufactured for 60 cycle per second industrial power could not be effectively utilized for 400 cycle per second aircraft power. The author believes that

further studies should be made before a final approval can be given. These studies could include: the measurement of rectifier self capacitance; the effect of extremely cold temperatures; the transient effects of suddenly applied or removed loads.

BIBLIOGRAPHY

1.	Garbarino, H. L.; Hawks, A. K. and Granath, J. A.	A WEIGHT ANALYSIS OF MODERN AIRCRAFT ELECTRICAL SYSTEMS, A.I.E.E.: Applications and Industry, p 463, January 1955
2.	McIntyre, H. N.	GERMANIUM RECTIFIERS - BIG LOW COST POWER, General Electric Review, p 11, November 1954
3.	Dallas, J. R. and Reising, C. A.	STUDY OF TRANSFORMERLESS RECTIFIED HIGHER VOLTAGE D-C AIRCRAFT ELECTRICAL SYSTEMS, A.I.E.E.: Applications and Industry, p 253, November 1954
4.	Henisch, H. K.	METAL RECTIFIERS, Oxford Press, 1949
5.	Gray, T. S.	APPLIED ELECTRONICS, John Wiley and Sons, 1954
6.	Cornelius	GERMANIUM CRYSTAL DIODES, Electronics, p 118, February 1946
7.	Lawson, T. R.	SEMICONDUCTORS, THEIR CHARACTERISTICS AND PRINCIPLES, Westinghouse Engineer, p 178, September 1954

APPENDIX A

GRAPHICAL RESULTS

The following pages contain the curves and graphs which resulted from the data taken. Each curve is a graphical representation of one or more tables in Appendix C.

0.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
0.00975 V/c $I = 10 a$ $0.00125 V/c$ $I = 5 a$ $0.00125 V/c$ $I = 5 a$ $0.00125 V/c$ $I = 10 a$		
	.000975 V/°C	+ + + + + + + + + + + + + + + + + + + +
.00125 V/°c I = 5 a .00128 V/°c I = 5 a .00128 V/°c I = 7 a	7=	10 a
I = 5a 0.6 $0.00728 V/%$ $I = 1/a$ 0.3 0.4 0.4		
I = 5a 0.6 $0.00728 V/%$ $I = 1/a$ 0.3 0.4 0.4		
0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7		
EFFECT of TEMPERATURE on FORWARD 60N VOLTAGE DROP of RECTIFIER 1		Jai
EFFECT of TEMPERATURE on FORWARD 60N VOLTAGE DROP of RECTIFIER 1		
EFFECT OF TEMPERATURE ON FORWARD 60N VOLTAGE DROP OF RECTIFIER 1		
EFFECT of TEMPERATURE on FORWARD 60v VOLTAGE DROP of RECTIFIER 1	.00/28 V/°c	
EFFECT of TEMPERATURE on FORWARD 60v VOLTAGE DROP of RECTIFIER 1	Z=	$/\alpha$
EFFECT of TEMPERATURE on FORWARD 60v VOLTAGE DROP of RECTIFIER 1		
FFFECT of TEMPERATURE on FORWARD 600 VOLTAGE DROP of RECTIFIER 1	0.3	
FFFECT OF TEMPERATURE ON FORWARD 600 VOLTAGE DROP OF RECTIFIER 1	Temperoture - °C	
		20
(from Table XVII)	VOLTAGE DROP OF RECTIFIER 1	
Fig. 20.	(from Table XVII)	
Fig. 20.		
	Fig. 20.	

APPENDIX B

PHOTOGRAPHIC RESULTS

The following pages contain photographs of the voltage and current waveforms observed across the load and the rectifier. The photographs were taken with a Bolsey 35 mm camera. A Tektronix oscilloscope was used.

Terminal points:

I = 10 amps.

E = 0.908 volts.

Terminal points:

I = 5 amps.

E = 0.775 volts.

THE FORWARD 60 CYCLE VOLT-AMPERE CHARACTERISTIC OF RECTIFIER 1.

(b)

Fig. 47.

Terminal points:

I = 10 amps.

E = 0.844 volts.

Terminal points:

I = 5 amps.

E = 0.640 volts.

THE FORWARD 400 CYCLE VOLT-AMPERE CHARACTERISTIC OF RECTIFIER 1.

(b)

Fig. 48.

Terminal points:

E = 140 volts

I = 149 u amps

Terminal points:

E = 70 volts

I = 110 u amps

THE REVERSE 60 CYCLE VOLT-AMPERE CHARACTERISTIC OF RECTIFIER 1

Terminal points:

E = 140 volts

I = 147 u amps

Terminal points:

E = 70 volts

I = 112 u amps

(b)

THE REVERSE 400 CYCLE VOLT-AMPERE CHARACTERISTIC OF RECTIFIER 1.

Fig. 50.

60 cycles.

Resistive load.

No capacitance.

84 volts peak.

400 cycles.

Resistive load.

No capacitance.

83 volts peak.

FULL LOAD OUTPUT VOLTAGE WAVEFORM OF RECTIFIER 1 WITH NO FILTER.

Fig. 51.

60 cycles.

Resistive load.

No capacitance.

10 amp load current.

14.9 amp peak current.

400 cycles.

Resistive load.

No capacitance.

10 amp load current.

15.5 amp peak current.

FULL LOAD OUTPUT CURRENT WAVEFORM OF RECTIFIER 1 WITH NO FILTER.

Fig. 52.

60 cycles.

Resistive load.

240 ufd capacitance.

10 amp load current

ripple factor = 0.483

60 cycles.

Resistive load.

240 ufd capacitance.

1.2 amp load current.

ripple factor = 0.150

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIER 1 WITH 240 ufd CAPACITOR FILTOR

AND 60 CYCLES.

Fig. 53.

400 cycles.

Resistive load.

240 ufd capacitor.

10 amp load current.

ripple factor = 0.098

400 cycles.

Resistive load.

240 ufd capacitor.

1.28 amp load current.

ripple factor = 0.018

(-,

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIER 1 WITH 240 ufd CAPACITOR FILTER

AND 400 CYCLES.

Fig. 54.

60 cycles.

Resistive load.

240 ufd capacitor.

10 amp. load current.

15.07 amp peak current.

60 cycles.

Resistive load.

240 ufd capacitor.

1.20 amp load current.

7.46 amp peak current.

(b)

WAVEFORMS OF COMBINED CURRENT FROM RECTIFIER 1 WITH 240 ufd CAPACITOR
FILTER AND 60 CYCLES.

Fig. 55.

400 cycles.

Resistive load.

240 ufd capacitor.

10 amp load current.

22.9 & 20.5 ampere peak current.

400 cycles.

Resistive load.

240 ufd capacitor.

1.27 amp load current.

4.99 & 4.07 amp peak current.

WAVEFORMS OF COMBINED CURRENT FROM RECTIFIER 1 WITH 240 ufd CAPACITOR
FILTER AND 400 CYCLES.

Fig. 56.

60 cycles. Resistive load. 550 ufd capacitor. 10 amp load current. ripple factor = 0.392

60 cycles. Resistive load. 550 ufd capacitor. 1.33 amp load current. Ripple factor = 0.051

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIER 1 WITH 550 ufd CAPACITOR FILTER AND 60 CYCLES.

Fig. 57.

400 cycles.

Resistive load.

550 ufd capacitor.

10. amp load current.

Ripple factor = 0.037

400 cycles.

Resistive load.

550 ufd capacitor.

1.27 amp load current.

Ripple factor = 0.006

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIER 1 WITH 550 ufd CAPACITOR FILTER
AND 400 CYCLES.

Fig. 58.

60 cycles.

Resistive load.

550 ufd capacitor.

10 amp load current.

26.5 amp peak current.

60 cycles.

Resistive load.

550 ufd capacitor.

1.20 amp load current.

7.43 amp peak current.

WAVEFORMS OF COMBINED CURRENT FROM RECTIFIER 1 WITH 550 ufd CAPACITOR
FILTER AND 60 CYCLES.

Fig. 59.

400 cycles.

Resistive load.

550 ufd capacitor.

10.18 amp load current.

22.8 & 19.8 amp peak current.

(a)

400 cycles.

Resistive load.

550 ufd capacitor.

1.20 amp load current.

5.07 & 4.34 amp peak current.

(b)

WAVEFORMS OF COMBINED CURRENT FROM RECTIFIER 1 WITH 550 ufd CAPACITOR
FILTER AND 400 CYCLES.

Fig. 60.

400 cycles.

Resistive load.

61 ufd capacitor

10 amp load current.

Ripple factor = 0.392

(a)

60 cycles.

Resistive load.

550 ufd capacitor.

10 amp load current.

Ripple factor = 0.392

FILTER CAPACITORS REQUIRED TO GIVE COMPARABLE RIPPLE FACTOR
FOR 60 AND 400 CYCLES.

Fig. 61.

60 cycles.

Inductive load.

550 ufd capacitor.

10 amp load current.

Ripple factor = 0.497

60 cycles.

Inductive load.

550 ufd capacitor.

2.83 amp load current.

Ripple factor = 0.227

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIER 1 WITH 550 ufd CAPACITOR FILTER

AND 60 CYCLES.

Fig. 62.

400 cycles.

Inductive load.

550 ufd capacitor.

10 amp load current.

Ripple factor = 0.035.

(a)

400 cycles.

Inductive load.

550 ufd capacitor.

2.94 amp load current.

Ripple factor = 0.010.

(0)

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIER 1 WITH 550 ufd CAPACITOR FILTER

AND 400 CYCLES.

Fig. 63.

60 cycles.

Inductive load.

550 ufd capacitor.

10 amp load current.

20.5 amp peak current.

400 cycles.

Inductive load.

550 ufd capacitor.

10 amp load current.

22.8 & 20.1 amp peak current.

WAVEFORMS OF COMBINED CURRENT FROM RECTIFIER 1 WITH 550 ufd CAPACITOR
AND INDUCTIVE LOAD.

Fig. 64.

60 cycles.

Resistive load.

No filter.

8 amp load current.

(b)

Resistive load.
No filter.

0.4 amp load current.

60 cycles.

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIERS 2 AND 3

FOR 60 CYCLES AND NO FILTER.

Fig. 65.

400 cycles.

Resistive load.

No filter.

8 amp load current.

400 cycles.

Resistive load.

No filter.

0.4 amp load current.

(b)

OUTPUT VOLTAGE WAVEFORMS OF RECTIFIERS 2 AND 3

FOR 400 CYCLES AND NO FILTER.

Fig. 66.

APPENDIX C

TABLES

The following pages contain tables of the actual data taken during the tests.

TABLE I

RECTIFIER D.C. FORWARD VOLTAGE DROP vs TIME

I,	t	V,	T
amp.	min.	volts	°C
1.0	0.5	0.45	23.0
1.0	1.0	0.45	23.0
1.0	1.5	0.45	23.1
1.0	2.0	0.45	23,2
1.0	3.0	0.45	23.3
1.0	5.0	0.45	23.3
5.0	0.5	0.66	24.1
5.0	1.0	0.66	24.8
5.0	1.5	0.66	25.1
5.0	2.0	0.66	25.3
5.0	3.0	0.66	25.5
5.0	5.0	0.66	25.7
10.0	0.5	0.84	24.9
10.0	1.0	0.84	26.2
10.0	1.5	0.84	27.2
10.0	2.0	0.84	27.9
10.0	3.0	0.84	28.2
10.0	5.0	0.84	28.7

TABLE II

RECTIFIER 60~ FORWARD VOLTAGE DROP

vs TIME

Z,	t	V.	T
gmp.	min	volts	°C
1.0	0.5	0.440	24.3
1.0	1.0	0.439	24.3
1.0	1.5	0.440	24.4
1.0	2.0	0.440	24,5
1.0	3.0	0.440	24.5
1.0	5.0	0.440	24.6
		•	
5.0	0.5	0.654	24.9
5.0	1.0	0.654	25.2
5.0	1.5	0.656	25.5
5.0	2.0	0.654	25.6
5.0	3.0	0.652	25.7
5.0	5.0	0.652	25.8
10.0	0.5	0.814	26.0
10.0	1.0	0.814	26.8
10.0	1.5	0.814	27.1
10.0	2.0	0.813	27.3
10.0	3.0	0.816	27.6
10.0	5.0	0.817	27.9
10.0	8.0	0,816	27.8

TABLE III

RECTIFIER 400~ FORWARD VOLTAGE DROP vs TIME

	I,	I, t		T
_	amp.	min.	volts	°C
	1.0	0.5	0,443	25.7
	1.0	1.0	0.443	25.7
	1.0	1.5	0.443	25.7
	1.0	2.0	0.443	25.6
	1.0	3.0	0.443	25.6
	1.0	5.0	0,443	25.6
	5.0	0.5	0.660	26.1
	5.0	1.0	0.658	26.4
	5.0	1.5	0.658	26.8
	5.0	2.0	0.658	26.9
	5.0	3.0	0.658	27.0
	5.0	5.0	0.658	27.1
	10.0	0.5	0.818	27.5
	10.0	1.0	0.818	28.1
	10.0	1.5	0.819	28.7
	10.0	2.0	0.819	29.0
	10.0	3.0	0.819	29.0
	10.0	5,0	0.818	29,2

TABLE IV

RECTIFIER 2 D.C. FORWARD VOLTAGE DROP VS TIME

Z,	t	t V,	
amp.	min.	volts	°C
2.0	0.5	0.272	25.1
2.0	1.0	0.272	25.0
2.0	2.0	0.272	24.9
2.0	4.0	0.272	25.0
2.0	6.0	0.272	24.9
2.0	8.0	0.272	24.8
2.0	10.0	0.272	24.8
4.0	0.5	0.312	23,2
4.0	1.0	0.312	23.8
4.0	1.5	0.312	23.9
4.0	2.0	0.312	24.0
4.0	3.0	0.312	24.0
4.0	5.0	0.311	24.0
4.0	10.0	0.311	24.6
8.0	0.5	0.358	25.5
8.0	1.0	0.358	25,9
8.0	2.0	0.357	26.1
8.0	4.0	0.356	26.3
8.0	6.0	0.356	26.4
8.0	8.0	0.355	26.6
8.0	10.0	0.355	26.8

TABLE II

RECTIFIER 3 D.C. FORWARD VOLTAGE DROP'S TIME

I,	t	V.	T
amp.	min.	volts	°C
4.0	0,5	0.306	24.9
1.0	1.0	0.305	25.1
4.0	2.0	0.304	25.5
4.0	3.0	0.303	25.7
4.0	5.0	0.303	25.7
4.0	10.0	0.303	26.0
4.0	13.0	0,303	26.0
8.0	0.5	0.341	26.4
8.0	1.0	0.341	27.0
8.0	2.0	0.340	27.3
8.0	3.0	0.340	27.8
8.0	5.0	0.340	27.8
8.0	7.0	0.339	27.9
8.0	10.0	0.339	27.9

TABLE VI

RECTIFIER 1 D.C. REVERSE CURRENT "TIME

V= .	50	V	
------	----	---	--

V	=	100v	
v		1000	

t	I	t	I
min	M amp	min	Mamp
0.25	102.3	0.25	110.7
0.50	102.2	0.50	110.5
0.75	102.3	0.75	110.5
1.00	102.4	1.00	110.4
1,5	102.5	1.5	110.3
2.0	102.5	2.0	110.2
3,0	102.6	3.0	110.0
4.0	103.0	5.0	110.0
5.0	10 3.4	8.0	109.9
. 7.0	103.9	10.0	109.8
10.0	103.9	15.0	109.8
15.0	103.9	20.0	110.2
20.0	103.9	25.0	110.2
25.0	104.0	30.0	110.4

TABLE VII

RECTIFIER 1 600 REVERSE CURRENT VS TIME

-4	$\frac{V = 50}{V_R}$) _V	
t		I	7
min.	volts	u amp.	°C
0.25	0.688	118.3	23,1
0.50	0.688	118.3	23.1
1.00	0.687	118.2	23,/
1.5	0.688	118.3	23,1
2.0	0.687	118.2	23.1
3.0	0.691	118.8	23.1
5.0	0.695	119.6	23.2
7.0	0.697	119.9	23.2
10.0	0.698	120,1	23.2
15.0	0.698	120.1	23.2
20,1	0.698	120.1	23.2
	V = 10	OV	
		· ·	
0.25	0.819	140.8	23.2
0.50	0.819	140.8	23.2
1.00	0.820	141.1	23.2
1.5	0.820	141.1	23.2
2.0	0.822	141,5	23.2
3.0	0 823	141.7	23.3
5.0	0.819	140.8	23.3
7.0	0.826	142.2	23,3
10.0	0.822	141.5	23.2
15.0	0.820	141.1	23.1

TABLE VIII cont.

RECTIFIER 1 60~ REVERSE CURRENT VS TIME

V= 130 v

t	VR	I	7
min.	volts	м отр.	°C
0.25	0.944	162.3	23,3
0.50	0.950	163.4	23,4
1.00	0.948	163.2	23,4-
1.5	0.946	162.9	23.4
2.0	0.953	163.9	23,5
3.0	0.946	162.9	23.4
4.0	0.948	163.2	23.5
5,0	0,955	164.3	23.5
7.0	0.961	165.4	23.6
10.0	0.964	165.9	23.7
15.0	0,825	142.0	20.8
	opene	ed wina	low)

TABLE VIII RECTIFIER 1 400~ REVERSE CURRENT VS TIME

V=50v

	t	VR	I	T
_	min.	volts	Mamp.	°C
	0.25	0.677	116.6	23.1
	0.50	0.680	117.0	23.1
	1.00	0.688	118.3	23.2
	1.5	0.688	118.3	23.2
	2.0	0.692	119.1	23.2
	3.0	0.700	120.4	23.3
	5.0	0.7/3	122.7	23.3
	7.0	0.723	124.3	23.4
	10.0	0.739	127.1	23.7
n.F	15.0	0.739	127.1	23.7

V=/00v

0.25 0.835 143.7 23.2 23.2 0.50 0.838 144.1 1.00 0.832 143.2 23.2 0.832 143.2 23.15 1.5 2.0 0.825 142.0 23./ 3.0 0.828 142.4 23.0 0.857 /47.6 23.7 5.0 7.0 0.802 138.0 22.6 10.0 0.807 /38.9 22.9 0.834 143.5 23.2 15.0

TABLE IIII continued

V = 130v

t	VR	I	T
min	volts	uamp.	°C
0.25	0.958	164.8	23.2
0.50	0.962	165.6	23.3
1.00	0.970	166.9	23.5
. 1.5	0.974	167.6	23.45
2.0	0.975	167.7	23,5
3.0	0.988	170.0	23.7
5.0	0.990	170.3	23.7
7.0	0.988	170.0	23.7
10.0	0.907	156.1	22.3
15.0	0.955	164.4	23,25

TABLE IX

RECTIFIER 3 D.C. REVERSE CURRENT VS TIME

V= 50 v				
t	I_{t}	I_{22} °	T	
min.	ma	ma	°C	
0.5	39.7	38.9	23.4	
1.0	43.3	41.8	24.3	
1.5	45.3	43.5	24.9	
2.0	46.3	44.0	24.9	
2.5	47.0	44.7	25.0	
3.0	47.3	44.8	25,1	
3.5	47.4	44.9	25.1	
4.0	47.4	11.8	25.2	
4.5	47.4	44.8	25.3	
5.0	47,4	44.8	25.3	
6.0	47.4	44.8	25.3	
7.0	47.1	44.5	25.3	
8.0	46.9	44.3	25.4	
10.0	46.2	13.6	25.3	
12.0	46.0	43.4	25.4	
15.0	45.3	12.7	25.4	
18.0	44.7.	42.2	25.4	
23.0	44.2	41.5	25.6	
26.0	43.9	41.3	25.6	
30.0	43.6	41.0.	25.6	
35.0	43.0	40.4	25.7	
40.0	42.8	40.2	25.7	
45.0	42.4	39.8	25.7	
50.0	42.1	39.7	25,3	
55.0	42.1	39.6	25.6	
60.0	41.7	39.4	25,3	
72.0	41.4	39.1	25.3	

TABLE X

RECTIFIER 3 D.C. REVERSE CURRENT VS TIME:

V= 30v

t	It	I22°	7
min	ma,	ma.	°C
0.5	24.0	23.2	24.1
1.0	25.3	24.3	24.3
1.5	26.0	25.2	24.6
2.0	26.8	25.6	24.6
2.5	27.0	25.9	24,5
3.0	27.1	26.0	24.5
3,5	27.2	26.1	24.4
4.0	27.2	26.1	24.4
4.5	27.2	26.1	24.4
5.0	27.2	26.1	24.4
6.0	27.1	26.0	24.3
8.0	27.0	25.9	24.3
10.0	26.9-	25.8	24.3
12.0	26.8	25.7	24,3
16.0	26.5	25.4	24.3
23.0	26.1	25.2	24.2
25.0	26.1	25.2	24.2
30.0	26.1	25.1	24.3
35.0	25.9	24.9	24.4
40.0	25.8	24.8	24.3
45.0	25.6	24.6	24.3
50.0	25.4.	24.4	24.4
. 55.0	25.3	24.3	24.3
60.0	25,2	24.2	24.4

TABLE XI
RECTIFIER 3 D.C. REVERSE CURRENT VS TIME

t	V	I_{t}	I22°	7
min	volts	ma	ma	°C
0.5	40	30.2	29.6	23.4
1.0		31.0	30.1	23.7
1.5		31.1	30.2	23.8
2.0		31.1	30.2	23.8
3.0		31.1	30.2	23.9
5.0		31.0	30.1	23.9
7.0		30,9	29.9	23.9
10.0		30.9	29.9	23.9
15.0		30.8	29.8	23.9
20.0		30.7	29.8	23.9
25.0		30.6	29.7	23,9
30.0		30.5	29.6	23.9
35.0	¥	30.3	29.4	23.9
3.7.0-	40	30.6	29.5	24.1
37.0+	0	0.0	0.0	24.1
38.0-	. 0	0.0	0.0	23.9
38.25	40	29.8	28.9	23.8
38,5		30.0	29.1	23.8
39.0		30.1	29.2	23.9
39.5		30.3	29.4	23.9
40.0		30.3	29.4	23.9
. 41.0		30.4	29.7	23.9
43.0		30,6	29.6	24.0
45.0	¥	30.7	29.7	24.0
50.0-	40	30.7	29.7	24.0
50.0+	0	0.0	0.0	24.0
53.0-	0	0.0	0.0	23.7
53.25	30	22.9	22.4	23.5
53.5		23,1	22.5	23.5
54.0	¥	23.1	22.5	23.5

TABLE XI continued.

t	V	I_t	I22°	7
min	volts	ma	ma	°C
55,0	30	23,2	22.6	23.6
57.0	\	23.2	22.6	23.6
60.0	V	23.2	22.6	23.6
61.0-	30	23.2	22.6	23.6
61.0+	0	0.0	0.0	23.6
63.0-	0	0.0	0.0	23.7
63.25	50	36.9	35.8	23.8
63.5		37.3	36.2	23.9
64.0		37.8	36.5	24.1
65.0		38.2	36.7	24.3
66.0		38.3	36.7	24.6
69.0		38.5	36.7	24.8
72.0		38.6	-36.7	24.9
79.0	٧	38.4	36.6	24.8
99.0-	50	38.6	36.7	24.9
99.0+	0	0.0	0.0	24.9
101.0-	0	0.0	0.0	24.8
101.25	60	44.9	43.1	24.4
101.5		45.6	43.5	24.7
102.0		46.1	43.7	25.1
103.0		46.9	44.3	25.4
104.0		46.9	44.3	25.4
105.0		46.7	44.0	25.4
109.0	V	46.6	43.9	25.4

TABLE XII

RECTIFIER 2 D.C. REVERSE CURRENT VS TIME

t	V	I t	I220	7
min.	volts	ma	ma	°C
0.5	50	8.6	8,49	23.0
1.0		11.3	11.17	23.0
1.5		12.7	12.56	22.9
2.0		13,33	13.19	22.9
2.5		13.76	13,63	22.8
3.0		13.90	13.79	22.9
3,5		13.97	13.83	22.8
4.0		13.98	13.84	22,8
5.0		13.88	13.75	22.8
6.0		13.69	13.57	22.8
7.0		13.48	13.36	22,8
8.0		13.25	/3./3	22.8
9.0		13.03	12.92	22.8
10.0		12.82	12.70	22.8
12.0		12.43	12.30	22.8
16.0		11.80	11.66	22.9
20.0		11.28	11.13	22.9
26.0		10.68	10.52	22.9
29.0		10.42	10.26	22.9
35.0		10.08	9.92	23.0
40.0		9.82	9.62	23.0
45.0		9.59	9.38	2 3.1
50.0		9.39	9.15	2 3./
56.0		9.23	8.98	24.0
60.0		9.16	8.90	24.1
65.0		9.02	8.75	24.1
70.0		8.89	8.65	24.0
75.0		8.81	8,57	24.0
80,0		8,72	8.48	24.0
85.0		8.62	8.38	24.0

TABLE XII continued

t	V	Ir	I_{22} .	T
min.	volts	ma	ma	°C
90.0	50	8.52	8.28	24.0
94.0-	50	8.46	8.23	24.0
94.0+	0	0.0	0.0	24.0
95.0-	0	0.0	0.0	23.9
95.25	50	4.42	4.31	23.8
95,50		5.28	5.15	23.8
95.75		5.99	5.85	23,8
96.0		6.53	6.37	23,8
96.5		7.23	7.07	23,8
97.0		7.63	7.44	23,9
98.0		8.00	7.79	23, 9
99.0		8.14	7.93	23,9
100.0		8.21	8.00	23,9
102.0		8.27	8.05	23,9
104.0		8.24	8.02	24.0
108.0		8.20	7.98*	24.0
115.0	Y	8.16	7.94	24.0
116.0-	50	8.14	7.92	24.0
116.0+	0	0.0	0.0	24.0
121.0-	0	0.0	0.0	23.8
121.25	50	4.75	4.64	23.8
121,50		5.47	5.34	23.8
121.75		6.01	5.86	23.8
122.0		6.42	6.27	23.7
122.5		7.03	6.86	23,8
123.0		7.38	7.20	23,8
124.0		7. 77	7.58	23.8
125.0		7,96	7.75	23.9
126.0		8.03	7.82	23,9
127.0	Y	8.08	7.87	23,9

TABLE XII continued

t	\vee	Ir	I22°	7
min.	volts	ma ·	ma	°C
128.0	50	8.08	7.87	23.9
134.0-	50	8.00	7.79	23,9
134,0+	0	0.0	0.0	23.9
144,0-	0	0.0	0.0	23.7
144.25	50	4.96	4.85	23,7
144.50		5.73	5.60	23.7
144.75		6.24	6.10	23,7
145.0		6.60	6.44	23.8
145.5		7.09	6.92	23,8
146.0		7.41	7.23	23,8
147.0		7.78	7.59	23,8
148.0		7.94	7.73	23,9
149,0		8.02	7.81	23,9
150.0		8.07	7.86	23,9
151.0	V	8.07	7.86	23.9
153.0	.50	8.04	7.82	24,0
153,25	70	9.94	9.67	24.0
15 3.50		10.07	9.78	24.1
153.75		10.12	9.83	24.1
154.0		10.19	9.88	24.2
154.5		10.24	9.95	24.2
155.0		10.27	9.96	24.2
156.0		10.30	9.96	24.3
158.0	/	10.28	9.95	24.3
160.0	Y	10.21	9.89	24.3

TABLE XIII RECTIFIER 2 D.C. REVERSE CURRENT VS TIME

V = 70 volts

t	I_r	I22°	T
min.	ma	ma	° C
0.5	7.2	7.2	22.0
1.0	9.5	9.49	22.1
1.5	10.7	10.67	22.3
2.0	11.31	11.21	22,7
2.5	11.74	11.62	22.9
3.0	12.00	11.87	22.9
4.0	12.29	12.03	23.0
5.0	12.37	12.23	23. /
6.0	12.31	12.20	23.1
7.0	12.26	12.14	23.2
8.0	12.15	12.08	23. 2
9.0	12.03	11.97	23.2
10.0	11.91	11.87	23.2
11.0	11.77	11.73	23.2
13.0	11.51	11.34	23.2
15.0	11.24	11.08	23,2
17.0	11.02	10.88	23.1
20.0	10.71	10.57	23.1
24.0	10.47	10.32	2 3. 1
28.0	10.26	10.10	23.2
32.0	10.06	9.91	23.2
36.0	9.88	9.72	23.3
40.0	9.70	9.55	23.3
45.0	9.54	9.38	23.3
50.0	9.42	9.27	23.3
55.0	9.29	9.14	23,3
60.0	9,19	9,02	23.4

TABLE XIV

RECTIFIER 1 D.C. FORWARD VOLTAGE DROP. VERSUS

TEMPERATURE

<u> </u>	1.0 a	I = 5	.0 a		I=/C). Oa
下	V,	7	V.		7	V,
_°C	volts	°C	volts	_	°C	vo 1ts
23.0	0.450	23,0	0.668		24.0	0.848
24.0	0.449	24.0	0.667		25.0	0.847
25.0	0.448	25.0	0.666		26.0	0.847
26.0	0.447	26.0	0.664		27.0	0.846
27.0	0.446	27.0	0.663		28.0	0.844
28.0	0.444	28.0	0.662		29.0	0,843
30.0	0.441	30.0	0.660		30.0	0.841
32.0	0.438	32.0	0,6 58		32.0	0.840
34.0	0.436	34.0	0.6 56		34.0	0,839
36.0	0,432	36.0	0,6 54		36.0	0,838
38.0	0.429	38.0	0.651		37.0	0,8 38
42.1	0.422	40.0	0.650		40,0	0.836
45.0	0.420	42.0	0.648		42.0	0.833
46,0	0.419	46.0	0.643		46.0	0,831
48.0	0.416	48.0	0.641		48.0	0,830
50.0	0.4 12	50.0	0,640		50.0	0,829
52.0	0.410	52.0	0,638		52.0	0,829
54.0	0.408	54,0	0.637		54.0	0.828
56.0	0.405	56.0	0,634		56.0	0.827
58.0	0.402	58.0	0.632		58.0	0,825
60.0	0.400	60.0	0.630		60.0	0.824

TABLE XV

RECTIFIER 2 D.C. FORWARD VOLTAGE DROP- VERSUS

TEMPERATURE

I= 2	. O a	<u> </u>	I = 4.0 a		I = 8.0a	
7 °C	V. volts	7 °C	V. volts		T °C	V. volts
25.7	0.272	25.2		_	27.0	0.356
26.0	0.272	26.0	0.309		28.0	0.353
27.0	0,270	27.0	0,308		30.0	0.350
28.0	0.269	28.0	0.306		32.0	0.347
30.0	0,266	30.0	0.302		34.0	0.343
32.0	0.261	32.0	0.300		36.0	0.340
34.0	0.259	34.0	0.297		38.0	0,338
36.0	0.256	36.0	0.293		40.0	0,336
38.0	0.252	38.0	0.290		42.0	0.331
40.0	0:249	40.0	0,288		46.0	0.327
42.0	0.247	42.0	0.283		48.0	0,323
44.0	0.242	46.0	0,279		50.0	0.320
46.0	0.239	48.0	0,276		52.0	0.318
48.0	0.236	50.0	0.272		54.0	0.316
50.0	0.232	52.0	0.269		56.0	0.3/2
52.0	0.229	54.0	0.267		58.0	0,309
54.0	0.227	56.0	0.263		60.0	0.307
56.0	0.221	58.0	0,260			
58.0	0.220	60.0	0.258			
59.0	0.220					

TABLE XVI RECTIFIER 3 O.C. FORWARD VOLTAGE DROP VS TEMPERATURE

I= 4.0 a		k .	I = 8.	0 a
7 °C	V, volts	•	7 °C	V, volts
26.2	0.303		28.0	0.339
27.0	0.301		30.0	0.337
28.0	0.300		32.0	0.332
30.0	0.297		33.0	0.330
32.0	0.292		35.0	0.329
34.0	0.290		37.0	0.326
36.0	0.288		39.0	0.322
38.0	0.284		41.0	0,320
40.0	0.281		43.0	0.318
42.0	0.279		45.0	0.314
44.0	0.276		47.0	0.311
46.0	0.272		49.0	0,309
48.0	0.269		51.0	0.307
50.0	0.266		53.0	0.304
52.0	0.262		55.0	0.301
54.0	0.260		57.0	0,299
56.0	0.257		59.0	0.297
58.0	0.254		60.0	0.294
60.0	0.252			

TABLE XVII RECTIFIER 1 60~ FORWARD VOLTAGE DROP VS TEMPERATURE

I = 1.0 a	<u> T = 5.0 a</u>	I = 10.0a
TV	7 V	7 V
°C volts	°C volts.	°C volts
23.0 0.455	24.0 0.662	23,0 0.830
24.0 0.452	25.0 0.661	24.0 0.830
25.0 0.449	26.0 0.660	25.0 0.828
26.0 0.447	27.0 0.659	26,0 0.827
27.0 0.446	28.0 0.658	27.0 0.826
28.0 0.445	30.0 0.655	28.0 0.826
30.0 0,442	32.0 0.653	30.0 0.822
32.0 0.440	34.0 0.650	32.0 0.821
34,0 0,439	36.0 0.648	34.0 0.820
36.0 0.437	38.0 0.646	36.0 0.818
38.0 0.434	40.0 0.643	38.0 0.8/7
40.0 0.432	42.0 0.642	40.0 0.816
42.0 9.428	46.0 0.638	42.0 0.811
44.0 0.426	48.0 0.636	44,0 0,809
46.0 0.420	50.0 0,630	46.0 0.807
48.0 0.419	52.0 0.627	48.0 0.805
50.0 0,418	54,0 0,622	50.0 0.803
52.0 0,416	56.0 0,621	52.0 0.802
54.0 0.414	58.0 0.620	54,0 0.799
56.0 0.412	60.0 0.618	57.0 0.799
58.0 0.409		59.0 0.797
60,0 0.406		60.0 0.797

TABLE XVIII

RECTIFIER 1 400 ~ VOLTAGE DROP (FORWARD) VS

TEMPERATURE

I = 1.0 a	I = 5.0 a	I = 10.0 a
TV	T V	TV
°C volts	<u> </u>	°C volts
23.0 0.452	24.0 0.657	22.0 0.847
24.0 0.450	25.0 0.658	23,0 0.846
25.0 0.448	26.0 0.657	24.0 0.845
26.0 0.446	27.0 0.657	25.0 0.845
27.0 0.443	28.0 0.656	26.0 0.844
29.0 0.440	30.0 0.654	27.0 0.843
30.0 0.438	32.0 0.650	28.0 0.843
32.0 0.434	34.0 0.646	30,0 0.841
34.0 0.431	36.0 0.613	32.0 0.839
36.0 0.426	38.0 0.641	34.0 0.837
38.0 0.422	40.0 0.640	36.0 0.835
40.0 0.418	42,0 0.637	38.0 0.832
42.0 0.416	44.0 0.634	40.0 0.829
44.0 0.413	46.0 0.629	42.0 0.827
46.0 0.408	48.0 0.626	44.0 0.825
48.0 0.403	50.0 0.624	46.0 0.822
50.0 0.401	52.0 0.622	48.0 0.821
52.0 0.398	54.0 0.620	50.0 0.819
54.0 0.396	56.0 0.617	52,0 0 818
56.0 0.393	58.0 0.614	54.0 0.815
58.0 0.386	60.0 0.612	56.0 0.813
60.0 0.380		58.0 0.811
		60.0 0.809
2	•	

TABLE XIX

RECTIFIER 1 400~-3\$\phi\$ FORWARD VOLTAGE DROP VS

TEMPERATURE

I = 1.0	<u>a</u>	I = 5.	<u> </u>	I = /0	0.0 a
7	V	7	V	7	V
°C v	0/+s	°C	volts	°C	volts
22.0 0.	460	25.0	0.915	24.0	0.692
23.0 0.	.460	26.0	0,914	25.0	0.691
24.0 0.	.460	27.0	0.913	26.0	0.692
25.0 0.	. 45-9	28.0	0.912	27.0	0.691
26.0 0	. 457	30.0	0.911	28.0	0.690
27.0 0	. 454	32.0	0,907	30,0	0,688
28.00	.452	34.0	0.905	32.0	0.686
30,0 0.	.449	36.0	0.903	34.0	0.684
32.0 0.	,444	38.0	0.901	36.0	0,681
34.0 0	. 441	40.0	0.900	38.0	0.680
36.0 0	,439	42,0	0.898	40.0	0.678
38.0 0	.436	45.0	0,897	42.0	0.676
40.0 0	.429	46.0	0.895	44.0	0.672
42.0 0.	.426	48.0	0.892	46.0	0.666
44.0 0.	423	50.0	0.888	48.0	0.664
46.0 0.	,420	52.0	0.885	50.0	0.661
48.0 0	.418	54.0	0.880	52.0	0.659
50.0 0	.414	56.0	0.879	54.0	0.659
52.0 0	. 411	58.0	0.878	56.0	0.658
54.0 0	.406	60.0	0.876	58.0	0.654
56.0 0	. 402			60.0	0,650
58.0 0	.399				
60.0 0	393			`	

TABLE XX
RECTIFIER 1 D.C. REVERSE CURRENT VS TEMPERATURE

V= 30 v	-	V = 100v		
7 I		7	I	
°C uan		°C		
22.4 91.		22.0	97,5	
23.0 97.		23.0	109.9	
24.0 104.		24.0	118.0	
25.0 /16.	0	25.0	129.0	
26.0 125.	0	26.0	141.5	
28.0 151.	0	28.0	170.0	
30.0 /77.	0	30.0	198.6	
32.0 215.	0	32.0	234	
34.0 248		34.0	274	
36.0 288		36,0	315	
38.0 335		37.0	343	
40.0 392		40.0	424	
42.0 458		42.0	492	
44.0 511		44.0	547	
45.0 538		45.2	595	
48.0 656		47.0	660	
50.0 740		50,0	792	
52.0 830		52.0	876	
54.0 940		54.0	981	
56.0 1060		56.0	1096	
58.0 1158		58.0	1225	
60.0 1283		60.0	1355	

TABLE XXI RECTIFIER 2 D.C. REVERSE CURRENT VS TEMPERATURE

V= 70 v

7	I
°C	ma
24.3	10.21
25.0	10.28
26.0	10.39
28.0	10.84
30.0	11.31
32.0	11.90
36.0	12.62
.38.0	13.38
40.0	14,50
41.0	15.40
44.0	16.3
46.0	18.8
48.0	20.9
50.0	23.1
52.0	25.7
54.0	33,0
56.0	37.4
58.0	44.1
60.0	50.2

TABLE XXII RECTIFIER 3 D.C. REVERSE CURRENT VS TEMPERATURE

<u>V=30</u> ,			V= 50v		
7 °C	I M a		7 °C	I	
24.1	25.0	-	24,7 25,1	38.0 38.2	
25.0 26.0	25.6		26.0	38.8	
28.0	27.3 28.3		28.0	39.9 41.9	
32.0 34.0	2 9.2 30.6		<i>32.0 34.3</i>	43.7	
36.0 38.0	32.3		36.0 38.0	46.9 48.8	
40.0 42.0	35.9 38.9		40.0	51.2 54.7	
46.0 48.0	42.4 45.0		43.0 46.0	57,7 58.8	
50.0 52.0	47.7 50.0		48.0 50.0	62.1	
54,0 56.0	52.2 54.9		52.0 54.0	68,3 72,4	
58.0 60.0	58.0 59,9		56.0 58.0	76.8 81.2	
			60,0	85.8	

TABLE XXIII

RECTIFIER 1 60 ~ REVERSE CURRENT VS TEMPERATURE

· V= 30	V				V = 110 v	,
T VR	I			T	VR	I
						Mamp
/7.2 0,309	53.2			17.2	0.474	81.6
18.0 0.369	63,5			18.0	0.527	96.7
19.0 0.415	71.4			19.0	0.586	100.8
20.0 0,460	79,2			20.0	0.640	110.1
21.0 0.500	86, 1			21.0	0.704	121.1
22.0 0,580	99.8			22.0	0.774	/33./
23.0 0.634	109,1			23.0	0.828	142.4
24.0 0.693	119,2			24.0	0,906	155.9
26,0 0.848	146.0			25.0	1.01	165.0
28,0 0,96	165,2			26.0	1.22	173.9
30.0 1.16	199.7			28.0	1.46	210
32.0 1.42	244			30.0	1.77	251
34.0 1.66	286			32.2	2.03	305
36.0 1.93	332			34.0	2.38	349
38.0 2.27	391		:	36.0	2.61	409
40.0 2.46	424			38,0	2.99	449
42.0 2.83	487		4	10.0	3,50	514
44.0 3.20	551		4	12.0	3.90	603
47.0 3.80	654		4	14.0	4.38	67/
50.0 4.51	776		4	16.0	4.97	754
52.0 4.99	859		4	18.0	5.63	856
54.0 5.57	959		٤	50.2	6.20	952
56.2 6.22	1071		3	52.0	6.81	1077
58.0 6.84	1177.	:	3	54.0	7.60 .	1172
60.0 7.54	1298		5	56,0	8.34	1307
			5	8.0	9,81	1434
			6	60.0	10,21	1688

TABLE XXIV RECTIFIER 1 400 ~ REVERSE CURRENT VERSUS TEMPERATURE

<u>\lambda</u>	r = 30v	_				V= 100) v
oc °C	VR volts	I			T ℃	VR volts	I
			sade s	-			
20.9	0.326	91			18.7	0,497	86
21.0	0.539	93			19.3	0,563	97
22.0	0.607	104			20.0	0.602	104
23.0	0.669	115			21.0	0.645	///
	0.738	127			22.0	0.696	120
	0.806	139			23.0	0.768	132
	0.869	150			24.0	0.848	146
28.0	1.01	174			25.0	0.918	158
30.0	1.17	201			26.0	1.01	174
32.4	1.44	248			28.0	1.21	208
34.2	1.63	280			30.0	1.41	242
36.3	1.89	325			32.0	1.65	284
38.0	2.11	363			34.0	1.94	333
40.0	2.36	406			36.0	2.22	382
42.0	2.86	492			38.0	2.52	433
45.0	3.50	602			40.0	2.86	491
47.0	3.85	663			42.0	3.31	569
50.2	4.50	774			14.0	3,66	629
52.0	5.02	864			46.0	4.19	720
54.0	5.66	974			48.0	4.74	814
56.0	6.48	1/14			50.0	5.37	924
58.0	7.51	1292			52.0	5.96	1024
60.0	8.80	1514			54.0	6.73	1157
					56.0	7.65	1314
3		٠			58.3	8.62	1482
					60.0	9.82	1688

TABLE XXV TEMPERATURE CORRECTION FACTORS FOR RECTIFIER 1 D.C. REVERSE CURRENT

JV j 122	= 84 u amp	V = ,	100 v ;	122 = 5	11.5 u amp
		•			
I_{τ}	FR		T	IT	FR
Mamp	122/17	_	°C	u anip	I_{22}/I_T
93	0.903		23	108	0.903
102	0.823		24	118	0.826
122	0.689		26	140	0.696
148	0.568		28	167	0.583
180	0.467		30	199	0.490
232	0.362		33	253	0.385
294	6.286		36	3/7	0.307
392	0.214		40	419	0.233
477	0.176		43	511	0.191
576	0.146		46	619	0.158
740	0.113		50	785	0.124
887	0.095		53	926	0.105
1055	0.080		56	1094	0.089
1278	0.066		60	1352	0.072
	IT 24 amp 93 102 122 148 180 232 294 392 477 576 740 887 1055	24 amp $\frac{1}{22}/I_{7}$ $93 0.903$ $102 0.823$ $122 0.689$ $148 0.568$ $180 0.461$ $232 0.362$ $294 6.286$ $392 0.214$ $477 0.176$ $576 0.146$ $740 0.113$ $887 0.095$ $1055 0.080$	I_{T} f_{R} u_{amp} $\frac{1}{22}/I_{T}$ 93 0.903 102 0.823 122 0.689 148 0.568 180 0.461 232 0.362 294 6.286 392 6.214 477 0.176 576 0.146 740 0.113 887 0.095 1055 0.080	I_{τ} f_{R} T u_{amp} I_{22}/I_{τ} c_{C} 93 0.903 23 102 0.823 24 122 0.689 26 148 0.568 28 180 0.467 30 232 0.362 33 294 0.286 36 392 0.214 40 477 0.176 43 576 0.146 46 740 0.113 50 887 0.095 53 1055 0.080 56	I_{7} f_{R} T I_{7} g

TABLE XXVI
FINAL TEMPERATURE RISE OF RECTIFIER 1 UNDER
FULL LOAD WITH NO FORCED AIR
(Full wave rectifier ckt.)

Freg.	Id.C.	Load	Filter	T-final	T-room	T-rise
c. P. S	amp	Type	u fd	°C	°C	°C
60	10.15		0		25.0	20.2
60	10.17	R	550	46.8	24.3	22.5
60	10.00	4	550	43.7	24.2	19.5
400	9.90	. R	0	42.0	25.6	16.4
400	10.10	R	550	45.8	25.9	19.9
400	10.07	4	550	43.8	25.3	18.5

RECTIFIER 1 (Short circuit Test)

Freq.	Ia.c	T. rise
c. p.s	anip.	°C
60	10.0	14.1
400	10.0	16.0
400, 3¢	10.0	17.5

TABLE XXVII FORWARD D.C. VOLT-AMPERE CHARACTERISTIC of RECTIFIER 1

I,	` V.	T	V250
amp.	volts	°C	volts
0.10	0.281	25,1	0.281
0.30	0.350	25.0	0.350
0.44	0.380	25.1	0.380
0.80	0.428	25.0	0.428
1.23	0.468	25.1	0.468
1.54	0.492	25.1	0.492
1.81	0.509	25.2	0.509
2.03	0.523	25.2	0.523
2.58	0.552	25.9	0,553
3.00	0.576	26.1	0.577
3,53	0,600	26.3	0.601
4.01	0.622	26.8	0.624
4,30	0.634	27.0	0,636
4.98.	0.661	27.3	0.663
5.63	0.688	27.8	0.691
6.01	0.702	28.1	0.705
6.51	0.720	28,3	0.723
7.18	0.746	28.8	0.750
7.54	0.758	29.5	0.763
8.40	0.789	30,0	0.794
9.08	0.812	30,4	0.817
9.70	0.832	30.7	0.838

TABLE XXVIII FORWARD D.C. VOLT-AMPERE CHARACTERISTIC of RECTIFIER 2

I,	V,		
amp	volts		
0.01	0.033		
0.25	0.182		
0.50	0.211		
0.75	0.227		
1.01	0.240		
1.26	0.249		
1.50	0.256		
1.99	0.268		
2.49	0.278		
3.00	0.287		
3.51	0.297		
4.01	0.303		
4.50	0.312		
5.00	0.321		
€.00	0.326		
7.03	0.339		
8.00	0,353		

TABLE XXIX FORWARD D.C. VOLT-AMPERE CHARACTERISTIC of RECTIFIER 3

Z,	V,		
amps	volts		
0.01	0.030		
0.06	0.///		
0.11	0.140		
0.25	0.176		
0.50	0.204		
0.76	0.221		
1.00	0.233		
1.24	0.242		
1.50	0.251		
2.00	0.259		
2.50	0,272		
3.00	0.281		
3.50	0.289		
4.00	0.296		
4,51	0.301		
5.00	0.309		
5.97	0,317		
7.00	0.326		
8.00	0.337		
8.98	0.341		
9.98	0.351		
11.05	0.360		
11.98	0.370		

TABLE XXX

REVERSE D.C. VOLT-AMPERE CHARACTERISTIC of

RECTIFIER 1

V	I	I22°	7
volts	Mamp	Mamp	°C
0.4	86.0	76.4	23,2
1.2	86.6	76.9	23.2
3.3	88.6	78.4	23.2
6.8	90.6	80.1	23.2
10.0	92.4	81.0	23.3
15.3	93.9	82.0	23.4
20.3	95.7	83.0	23.4
25.7	97.5	83.9	23.5
32.0	98.8	84.3	23.6
36.6	99.8	85.1	23.7
41.2	100.1	86.6	23.5
45.6	100.9	88.0	23.4
50.8	102.7	88. /	23.6
54.8	103.6	89.1	23.6
60.3	104.1	90.5	23,4
65.1	105.6	90.5	23.6
69.9	106.3	90.8	23.6
74.8	107.5	91.4	23.7
80.4	108.4	92.1	23.7
85.2	109.6	92.6	23.7
90.1	110.6	93.4	23.7
95.0	112.1	94.2	23.8
100.0	113.4	95.4	23.8

TABLE XXXI RÉVERSE D.C. VOLT-AMPERE CHARACTERISTIC of RECTIFIER 1

V	I	I22 °	7
volts	Namp	u amp	°C
0.8	86.8	72.9	23.8
2.2	88.0	73.9	
3.8	89.4	75.0	
6.1	90,4	75.9	
11.6	92.6	77.5	Ÿ
20.5	97.0	80.9	23.9
30.3	99.6	83.1	
42.5	102.5	85.2	
51.6	104.4	86.8	V
62.4	106.9	88.5	24.0
70.2	108.7	89,4	V
81.2	110.7	91.0	Ψ
93.2	113.5	92.9	24.1
100.3	115,3	94.4	1
110.7	117,6	96,2	
120.2	120.2	97.9	
129.4	123.5	100.5	
140.0	127.9	104.0	Ą
150.2	132.3	107.1	24.2
160.6	138.7	112.2	
169.8	145.2	117,2	
180.7	153.9	124.1	V
189.5	160.8	129,1	24,3
200.2	170.9	136.7	24.4

TABLE XXXII

REVERSE D.C. VOLT-AMPERE CHARACTERISTIC of

RECTIFIER 2

V	I	I22°	7
volts	ma	ma	°C
5	2.27	2,25	22.9
10	2.51	2.48	
15	2.87	2.84	
20	3.30	3.26	
25	3,88	3.84	V
30	4.40	4.34	23.0
35	5.00	4.93	23.1
40	5.59	5.52	
45	6.17	6.09	Ą
50	6.70	6.60	23.2
55	7.26	7.15	23.2
60	7.79	7.66	23.3
65	8.33	8.16	23.5
70	8.89	8.70	23.6
75	9.40	9.19	23.7
80	9.91	9.67	238
85	10.40	10.13	23.9
90	10.91	10.63	23.9

TABLE XXXIII REVERSE D.C. VOLT-AMPERE CHARACTERISTIC of RECTIFIER 3

V	I	I22°	T
volts	177 α	ma	%
5	5.6	5.2	24.4
10	9.2	8.6	24.6
15	13.0	12.4	24.6
20	16.8	16,0	24.8
25	20.8	19.9	24,9
30	24.6	23.7	24.9
35	28.9	27.8	25.1
40	32.8	31.6	25,2
15	36.7	35.4	25,3
50	40.8	39.2	25,6
55	45.3	43.4	25,9
60	49.7	47.0	26.0
65	54.7	51.9	26.8
70	60.2	57.1	27.1

TABLE XXXIV FORWARD 60 ~ VOLT-AMPERE CHARACTERISTIC of RECTIFIER 1

I	V	V220	T
omps	volts	volts	°C
0.10	0.284	0.285	23.0
0.30	0.348	0.349	23.1
0.50	0.384	0.385	23.0
0.70	0.414	0.415	23.1
1.00	0,448	0.448	22.4
2.00	0.508	0.509	22.6
3.00	0.562	0.563	22.8
4.03	0.606	0,607	22.9
5.06	0.646	0.647	23,1
6,12	0.681	0.682	23.3
7.09	0.714	0.716	23.7
8.06	0.743	0.745	24.0
9.03	0.775	0.777	24.1
10.00	0.801	0.809	24.9

TABLE XXXV FORWARD 400 ~ VOLT-AMPERE CHARACTERISTIC of RECTIFIER 1

I	V	V220	7
amps	yolts	volts	°C
1.00	0.459	0.467	25.8
2.00	0.522	0.530	25.7
2.52	0,554	0.562	25.7
3.02	0.579	0,587	25.8
3,53	0.602	0.607	25,8
4.00	0.624	0.629	25.8
5.03	0.665	0.671	26.0
6.02	0.700	0.706	26.2
6.99	0.737	0.743	26,7
8.06	0.771	0.776	27.0
9.02	0.799	0.804	27.3
9,99	0.830	0.836	27.9

TABLE XXXVI FORWARD 400 ~, 3 PHASE VOLT - AMPERE CHARACTERISTIC of RECTIFIER 1

I	V	V220	T
omps	volts	volts	°C
1.00	0,465	0,467	24,2
2.20	0.554	0,556	24.2
2.75	0,587	0.589	24.2
3,32	0.618	0.620	24.3
3.87	0.646	0,649	24.6
4.40	0.673	0.676	24.8
4.93	0.699	0.702	24.9
5,49	0.721	0.724	25.0
6.05	0.746	0.750	25.2
7.18	0.795	0.800	25,5
7.76	0.818	0.823	25.8
8.30	0.838	0.843	26.0
8.84	0.859	0.865	26.2
9.39	0.881	0.887	26,3
9.91	0.900	0.907	26,5

TABLE XXXVII FORWARD 60~ VOLT-AMPERE CHARACTERISTIC of RECTIFIERS 2 and 3

I	V	7
omps	volts	°C
0.20	0.137	23.8
0.50	0.186	
0.70	0.200	
1.00	0.221	
1.24	0.234	Ψ
1,53	0.246	23,9
2.19	0.264	24.0
2.63	0.277	24.1
3, 13	0.286	
3,65	0.296	V
4,16	0.303	24,4
4.90	0.315	24.7
6.14	0.329	25.0
7.05	0.339	25.3
7.85	0.347	25,6

TABLE XXXVIII REVERSE 60~ VOLT-AMPERE CHARACTERISTIC of RECTIFIER 1

V	VR	I	· 122°	7
volts	volts	Mamp	Nomp	°C
0.11	0.085	14.6	13.2	23,1
0.20	0.165	28.4	25,7	
0.30	0.256	44.0	39,6	
0,43	0.357	61.4	55.3	\bigvee
0.62	0.423	72.8	65,1	23.2
0.98	0.472	81.2	72.6	
2.03	0.521	89.7	80.3	
4.01	0.532	94.8	84,4	
6.00	0.564	97.0	86.4	
8.00	0.576	99.2	88,3	٧
10.2	0.585	100.7	89.1	23.3
15.3	0.602	103.7	91.7	
20.4	0.617	106.2	94.1	
25.3	0.628	108.0	95.7	
30,5	0.641	110.3	97.8	
39.6	0.660	113.7	100.7	
50.3	0.679	116.8	103.3	
60,2	0.697	119.9	106.2	
70.3	0.7/8	123.6	109.4	
80.4	0.741	127.6	113,0	
90.7	0.766	131.9	116.8	
101	0.808	138.9	123.0	
110	0.836	143.9	127.4	
120	0.882	151.8	134.3	
130	0.928	159.7	141.3	
140	0.978	1683	149.1	٧

TABLE XXXIX

REVERSE 400 ~ VOLT - AMPERE CHARACTERISTIC

of RECTIFIER 1

V	VR	I	I22°	T
volts	volts	u amp	Mamp	°C
0.06	0.061	10,5	9.2	23.3
0.14	0.129	22.2	19.1	23.4
0.30	0.273	46.9	40.5	.23,4
0,50	0.421	72,4	62.1	23.4
0.71	0.472	81.2	70.4	23.4
1,11	0.523	89.9	78.3	23.3
2,54	0.580	99.7	86.9	
5.03	0.608	104.6	90.7	
7.00	0.622	107.0	92.8	
9.92	0.638	109.7	95.2	Ψ
15.0	0.656	112.8	97.4	23, 4
20.0	0.669	115.0	99 4	
25.0	0.682	117.2	100.7	V
300	0.697	119.9	102.3	23.5
40.0	0.720	123.8	104.1	23.6
50.0	0.742	127.7	107.0	23.7
60.0	0.764	131.3	110.1	
70.2	0.787	135.3	113.4	
80.7	0.809	139.1	116.1	
90.1	0.833	143.2	119.4	
100	0.870	149.6	124.8	Y
110	0,912	156.8	130.1	23,8
120	0.951	163.5	135.7	
130	0.994	170.8	141.7	
140	-1.02	175.4	145.0	Y

TABLE XL D. C. RESITANCE from D.C. CHARACTERISTIC

\vee	I	R= I
volts	amp	ohms
+0.85	+10.00	0.085
0.80	8.65	0.093
0.70	5.87	0.119
0.60	3,50	0.171
0.50	1.68	0.298
0.40	0.57	0.702
0.30	0.15	2.00
0.20	0.02	10.04
0.16	0.01	16.1
volts.	матр	chms 1000
- 0.8		//
2.0	73.5	27
5.0	75.3	66
10.0	77.2	130
20	80.3	249
40	846	473
60	87.7	684
80	90.9	881
100	93.9	1064
120	98.1	1223
140	103.7	1350
160	111.7	1433
180	123.1	1460
200	136.4	1467

TABLE XLI D.C. RESISTANCE from 60 ~ CHARACTERISTIC

\vee	I	R= Y
volts	amps	ohms
+0.80	+10.00	0.080
0.70	6.68	0.105
0.60	3.89	0.154
0.50	1.87	0.267
0.40	0.59	0.678
0.30	0.16	1.874
0.27	0.10	2.70
volts	Mamp	ohms 1000
-0.20	-25.7	8
0.62	65.1	8 9
1.49	77.4	19
4.01	84.4	48
10.2	89.1	114
20	93.8	213
30	97.6	308
40	100.5	398
50	103.4	483
60	106.3	564
70	109.4	640
80	113.0	708
90	117.0	769
100	121.8	822
110	127.7	862
120	134.3	893
130 .	141.4	919
140	148.9	941

TABLE XLII D.C. RESTANCE from 400 ~ CHARACTERISTIC

V	I	$R = \frac{V}{I}$
volts	amps	ohms
+0.83	+10.00	0.083
0.80	8.71	0.092
. 0.70	5.84	0.120
0.60	3.29	0.182
0.50	1.58	0.316
0.41	0.60	0.677
0.37	0.40	0.935
0.33	0.20	1.640
0.29	0.10	2.91
volts	Mamp	0hm 1000
- 0.06	- 9.15	7
0.21	29.3	7
0.62	70.4	9
1.//	78.3 .	14
2.83	87.5	32
5,98	91.6	65
9.01	94.4	96
15.0	97.2	154
20	98.8	203
30	101.7	295
40	104.2	384
60	110.0	546
80	116.0	690
100	124.1	806
110	129.4	849
120	135.1	889
130	140.8	924
140	146.8	954

TABLE XLIII
A.C. RESISTANCE from 60 ~ CHARACTERISTIC

V	ΔV	ΔT	R= AV
volts	volts	amps	ohms
+0.8	+0.263	+8.51	0.031
0.7	0.200	6.16	0.033
0.6	0.375	8.87	0.042
0.5	0.479	7.78	0.062
0.4	0.800	4.72	0.169
0.3	1.000	2.70	0.371
volts	volts	Mamp	0 hms
- 0.1	- 0.76	-100	8
0.6	2.0	68.1	29
1.0	3.0	38.3	78
2.0	4.0	18.0	222
4.0	6.0	4.8	1250
6.0	6.0	4.8	1250
10.0	6.0	4.8	1250
20	80	.32.0	2500
30	80	25.8	3100
40	100	28.4	3520
50	100	28.4	3520
60	100	28.4	3520
70	100	33.2	3520
80	80	29.0	2760
90	100	43.8	2290
100	80	40.6	1972
110	80	50.5	1584
120	76	53.0	1434
130	75	55.0	1364
140	74.6	56.3	1317

TABLE XLIV A.C. RESISTANCE from 400 ~ CHARACTERISTIC

\vee	ΔV	$\triangle I$	$R = \frac{\Delta V}{\Delta I}$
volts	volts	amps	ohms
+0.83	+0.294	+ 9.46	0.031
0.80	0.285	8.73	0.033
0.70	0.349	10.13	0.034
0.60	0.400	8.26	0.048
0.50	0.60	7.94	0,076
0.40	0.80	4.79	0,167
0.30	1.00	2.53	0.395
volts	volts.	Mamp	<u>ohms</u> 1000
- 0.3	- 0.78	-98.6	8
0.7	3,00	100.4	30
1.0	4.00	65.7	61
2.0	5.00	23.2	215
4.0	40	52.4	764
6.0	60	54.3	1106
10.0	80	45.8	1746
20.0	80	26.5	3020
30.0	80	20,1	3990
40.0	80	20.2	3960
50.0	100	29.0	3450
60.0	80	24.1	3320
70.0	100	30.1	3320
80.0	80	25.1	3190
90.0	100	39.4	2540
100.0	80	40.6	1973
111.0	80	43.4	1847
120.0	80	45.9	1747
130.0	80	47.2	1700
140.0	80	47,9	1673

TABLE XLV REGULATION, RESISTIVE LOAD, NO FILTER

f = 60	$N : V_1 = I_2$	20 v r.m.	S .	r = 4	00~;	V, = 120	v r.m.s.
I	V_2	7	V3	I	V2	7	V ₃
d.c. amp	d.c. volts	°C	*	d.c. amp	d.c. volts	°C	*
0	53.7	25.2		0	53.9	25.6	
0.46	53.3			0.47	53.8	25.9	
0.89	53.2			0.92	53.4	25.5	
1. 34	53,1			1.81	53,3	25.5	
1.79	53.0	٧		2.70	53.2	25.8	
2.22	53.0	25.3		3,59	53.1	26.0	
2.67	52.9	25.3		4.48	53.0	26.2	
3.08	52.8	25.4		5.37	53.0	26.3	
3,53	52.7	25.7		6.20	52.8	26.7	
3.97	52,7	25.9		7.07	52,7	27.1	
4.43	52.7	26.0		7.92	52.7	27.6	
4.89.	52.7	26.1		8.79	52.6	27.9	
5.31	52.6	26.1	*	9.62	52,4	28.1	83,0
5.76	52,6	26.2		10.49	52,2	28.6	
6.62	52.4	26.6		11.37	52.1	28.9	
7.50	52.2	26.8		12.18	52.0	29.1	
8.37	52.1	27.1		13.11	52.0	29.7	
9.22	52.1	27.3					
10.08	51.8	27.7	84.0				
11.23	51.8	28.1					
12.08	51.6	28.8					
13.77	51.4	29.2					

^{*} Peak to peak voltage of ripple.

TABLE XLVI REGULATION, RESISTIVE LOAD; 240 MFd. CAPACITOR

f=60~; V,=120v r.m.s.			f = 4	100n; L	1, = 120v	r. m. s.	
I d.c. amp	V ₂ d.c.volts	7 ℃	V3 *	I	V2 d.c.volts	T °C	V₃ *
0	89.1	25,7		0	84.8	25.8	
0.67	77.2	25.7		0.67	77.6	25.2	
1.20	70.6	25.8	30.0	1.27	75.0	25.2	4.0
2.18	64,6	25.9		1.87	73.6	25.3	
3.08	60,3	26.0		2.42	72,/	25.3	
3.91	58.0	26.2		3.54	70.1	25.5	
4.77	56.6	26.6		4.60	68.3	25.9	
5.58	55.3	26.8		5.66	67.7	26.5	
6.39	54.7	27.2		6.68	66.3	26.8	
7.21	54.0	27.4		7.62	65.1	27.0	
8.03	53.4	27.7		8.61	64.6	27.6	
8.88	53.1	28.1		9.53	63.7	27,9	
9.68	52.8	28.3		10.46	. 63.0	28.2	
10.52	52.7	28.8		11.34	62.0	28.7	
11.32	52.3	29.0		12.23	61.2	28.9	
12.20	52.1	29.2		13.10	60.3	29.2	
13.01	52.0	29.6		9.97	63.1	28.1	21.0
10.11	52.8	28.8	72.3				

^{*} Peak to peak voltage of ripple.

TABLE XLVII

REGULATION, RESISTIVE LOAD, 550 & Fol CAPACITOR

f = 60 N; V, = 120 v r.m.s.			f = 400 n; V1 = 120 v r.m.s.				
I d.c. amp	V2 d.c.amp.	T °C	V₃ **	I d.c.amp	V2 d.c.volts	7 °C	V3 *
0	83,9	22.8		0	83, 9	24,2	78
0.70	81.1	22.8		0.68	77.2	24.2	
1.33	79.1	22.9	14.0	1.27	74.9	24.2	1.5
2.49	74.8	23,1		1.87	73.1	24.3	
1,96	77.0	23.2		2.41	71.8	24.5	
3.54	69.7	23.6		3,54	69,6	24.8	
4,44	65,9	23.9		4.58	67.8	25.1	
5.30	63.1	24.1		5.59	66,2	25.3	
6.18	61.3	29.4		6.58	65.3	25.9	
7.03	59.9	24.9		7,50	64.0	26.2	
7.89	59.0	25,4		8.51	63.7	26.7	
8,69	58.0	25.9		9,42	62.7	27.0	
9.51	57.1	26.2		10.37	61.8	27,3	
10.31	56.3	26.7		11.26	61.2	27.8	
11.17	55.8	27.0		12.13	60,4	28.2	
11.97	55.2	27.4		13.00	59.8	28.6	
12.81	54.8	27.9		9.83	62.1	28.0	8.0
13.60	54.2	28.2					
9.97	57.1	27.0	64,6				

^{*} Peak to peak voltage of ripple.

TABLE XLVIII EFFECT of CAPACITANCE on 400 ~ REGULATION

C	I	V2	7	V3	Ripple	Regulation
su fd	d.C. amp	d.c. volts	°C	*	Factor	%
400	9.92	62.8	30.8	13.0	0.060	74.1
550	9.83	62.5	28.0	8.0	0.037	74.1
320	9.93	62.8	29.4	14.0	0.064	74.1
240	10.00	63.1	29.3	17.0	0.079	74,4
160	10.04	63.1	29.8	29.0	0.137	74.4
80	10.18	60.8	30.0	58,0	0.329	72.4
77	10.13	60.3	30.8	58.2	0.333	71.9
70	10.02	59.7	30.8	61.0	0.352	71.1
62	9.80	58.4	30.8	63.3	0.374	69.5
61	10.18	57.7	30.9	65.0	0.389	68.7
60	10.13	57.5	30.2	67.6	0.404	68.4
58	10,12	57.2	30.7	68.0	0.407	68.1
40	9.87	53.4	30.2	77.6	0.490	63.5
20	10.08	52,2	30,2	76.0	0.495	62.1

^{*} Peak to peak voltage of ripple.

TABLE XLIX
REGULATION; INDUCTIVE LOAD, 550 MFJ CAPACITOR

f=60~; V, =120v r.m.s.			f=400~; V, = 120 v r,m.s.				
I	V2	T	V3	I	V_2	7	V3
d.c.amp	d.c. volts	°C	*	d,c.amp	d.c.volts	°C	*
0	83.9	24.7		0	84.0	24.2	
2.83	60.2	24.1	47.5	2.94	70.6	24.3	2.5
4.17	57.1	24.2		1.40	67.8	24.7	
4.78	56.3	24.4		4.71	67.6	24.8	
6,03	54.6	24.8		5.08	67.1	25.0	
6.47	54.0	25.1		5.39	66.7	25.2	
7.08	53.7	25.3		6.05	65.8	25.3	
7.61	52.9	25.6		6.97	64.8	25.6	
8.70	52.4	25.9		7.64	64.2	25.8	
9,49	52.1	26.2		8.94	63,3	26.2	
10.22	51.8	26.6		10.14	62.1	26.7	
11,42	51.2	26.8		10.83	61.4	26.9	
12.51	50.8	27.1		11.31	61.2	27.3	
13.41	50.7	27.5		12.68	60.0	27.7	
10,00	51.8	27.0	74.2	13.50	59.8	28.1	
				10.03	61.8	27.3	7.5

^{*} Peak to peak voltage of ripple.

	TER	££	%	82.7	79.5	80,2	79.4	77.7	1111	77.8	77.4	76.9	76,4	76.2
	NO FILTER	Pin (sec)	watts	3.9	120	237	295	412	523	632	739	852	903	099
		Trans.	Losses	13	13.5	15.2	9.91	19.6	25,3	33.5	430	52.4	57.2	35.5
/7	07 JAL	Pin (pri)	Watts	72	134	252	312	432	548	999	782	804	098	969
TABLE LI	RES/57	<u></u>	20	26,4	26.7	26.9	27.3	27.9	28.2	280	289	30.8	31.2	30.8
	00 2 , 6	Pout	watts	48.8	9.5.8	130	234	320	403	492	572	655	089	502
	;Y, 40	I_2	d.c. amp	0.81	1.80	3.58	4.43	11.9	7.77	9.48	11.11	12,77	13,54	9.89
	EFFICIENCY,	>	d.c. volts	53.7	53.2	53.0	52.8	52.4	51.8	51.9	51.4	51.2	50.9	51.7
	EFF	Ï	a.c.amp	1.06	2.06	4.01	4.36	6.50	8,5	10.5	12.3	14.1	15:1	10.9

CITOR

EFFI	EFFICIENCY,	Y, 60 v,		SLE SISTIV	L 11 E LOA	0, 24	TABLE LII RESISTIVE LOAD, 240 MH	CAPAC
I,	V2 de volte d	Iz	Pout WAtts	۲ %	Pin (pri) Watts	Trans. Losses	Pin (sec) Watts	£££ %
234	129	1.70	1/4	27.4	142	61	123	92.7
4, 4 0, 0		2,60	162	27.8	200	50	180	8.68
5.42		3.83	222	28.1	284	21	263	84.5
7.05			299	28.7	394	24	370	80.9
3 00	53.4	7.10	379	29.7	208	29	419	79.2
11.5			498	29.8	819.	39	639	77.9
14.15				30.8	958	2	805	26.8
15.7		13.4		31.5	896	58	916	74.8
11.9			218	30.1	210	4/	699	77.5
2,71	70.2		84	293	901	61	81	86.8

ACITOR

FFIL	EFF/C/ENCY,		1A 400~, R	BLE ESIST	L/// /VE 1	OAD,	240 m	TABLE LIII RESISTIVE LOAD, 240 mtd CAPA
I,	V2 d.c. volt	Iz F	Pout	١ %	Pin(pri) watts	Trans. Losses	Pin (sec) Watts	Eff %
	74.8	1.27	95	27.0	011	13	47	98.0
3.72	871	2.40	112	27.1	27.1 196	15	181	95.2
15	70.0	3,53	247	27.2	276	17	259	95.3
7.60	66.4	5.57	370	27.7	418	22	386	93.5
4	64.0	7.47	478	28.2	260	31	529	4.08
12.28	62.9	9.37	588	28.9	089	43	637	92.4
		11.92	717	29.8	870	57	813	88.3
17.3	593	13.78	817	30.6	466	89	956	88.2
13.25	8.19	10.23	632	30.7	742	47	694	91.2

APPENDIX D

RECTIFIER SPECIFICATIONS

1. Rectifier, type 1.

Manufacturer

General Electric

Model No.

4JA3011BF1AB1

Absolute Maximum Ratings (per cell) (60 cps, Resistive or inductive load) (70°C Fin Temperature, 55°C ambient)

Peak Inverse Voltage	200	volts
RMS Inverse Voltage	140	volts
D.C. Output Current	5	amps
One Cycle Fault Current	150	amps
Continuous Reverse Working Voltage	100	volts
Leakage current (60 cps input) Peak Average	10 5	ma ma
Full Load Voltage Drop	0.5	volts
Power Dissipation at Full Load	3	watts
Storage Temperature	100	° C

2. Rectifier, type 2.

Manufacturer

General Electric

Model No.

6RA2DF1

Cell mounted on copper cooling fin, fan cooled at 200 ft. per minute.

Applied Voltage	65	volts rms
D.C. Output Current	8	amps
Max. Cell Temperature	60	°C

3. Rectifier, type 3.

Manufacturer

General Electric

Model No.

6RA2CF1

Cell mounted on copper cooling fin, fan cooled at 200 ft. per minute.

Applied voltage	50	volts rms
D.C. Output Current	12	amps
Max. Cell Temperature	60	°C

Thesis

S6657 Songer

23075

Characteristics of a germanium power rectifier operated at 400 cycles per second.

Thesis

\$6657 Songer

03075

Characteristics of a germanium power rectifier operated at 400 cycles per second.

