Grupo Quociente

José Antônio O. Freitas

MAT-UnB

17 de novembro de 2020

Seja N um subgrupo normal

$$G/N = \{aN \mid a \in G\}$$

$$G/N = \{aN \mid a \in G\}$$

o conjunto das classes de equivalência determinadas por N.

$$G/N = \{aN \mid a \in G\}$$

o conjunto das classes de equivalência determinadas por N.

Defina em G/N a operação

$$G/N = \{aN \mid a \in G\}$$

o conjunto das classes de equivalência determinadas por N.

Defina em G/N a operação

$$G/N = \{aN \mid a \in G\}$$

o conjunto das classes de equivalência determinadas por N.

Defina em G/N a operação

$$(aN)(bN) = (ab)N$$

$$G/N = \{aN \mid a \in G\}$$

o conjunto das classes de equivalência determinadas por N.

Defina em G/N a operação

$$(aN)(bN) = (ab)N$$

para todos $a, b \in N$.

i) [(aN)(bN)](cN)

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$

i) [(aN)(bN)](cN) = (an)[(bN)(cN)] para todos aN, bN, $cN \in G/N$;

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii) (aN)(eN)

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$
 para todo $aN \in G/N$;

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$
 para todo $aN \in G/N$;

iii)
$$(aN)(a^{-1}N)$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$
 para todo $aN \in G/N$;

iii)
$$(aN)(a^{-1}N) = (aa^{-1})N$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$
 para todo $aN \in G/N$;

iii)
$$(aN)(a^{-1}N) = (aa^{-1})N = eN$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$
 para todo $aN \in G/N$;

iii)
$$(aN)(a^{-1}N) = (aa^{-1})N = eN = (a^{-1}a)N$$

i)
$$[(aN)(bN)](cN) = (an)[(bN)(cN)]$$
 para todos aN , bN , $cN \in G/N$;

ii)
$$(aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN)$$
 para todo $aN \in G/N$;

iii)
$$(aN)(a^{-1}N) = (aa^{-1})N = eN = (a^{-1}a)N = (a^{-1}N)(aN)$$

- i) [(aN)(bN)](cN) = (an)[(bN)(cN)] para todos aN, bN, $cN \in G/N$;
- ii) (aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN) para todo $aN \in G/N$;
- iii) $(aN)(a^{-1}N) = (aa^{-1})N = eN = (a^{-1}a)N = (a^{-1}N)(aN)$ para todo $aN \in G/N$.

- i) [(aN)(bN)](cN) = (an)[(bN)(cN)] para todos aN, bN, $cN \in G/N$;
- ii) (aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN) para todo $aN \in G/N$;
- iii) $(aN)(a^{-1}N) = (aa^{-1})N = eN = (a^{-1}a)N = (a^{-1}N)(aN)$ para todo $aN \in G/N$.

Assim, o conjunto G/N é um grupo com a multiplicação de conjuntos.

- i) [(aN)(bN)](cN) = (an)[(bN)(cN)] para todos aN, bN, $cN \in G/N$;
- ii) (aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN) para todo $aN \in G/N$;
- iii) $(aN)(a^{-1}N) = (aa^{-1})N = eN = (a^{-1}a)N = (a^{-1}N)(aN)$ para todo $aN \in G/N$.

Assim, o conjunto G/N é um grupo com a multiplicação de conjuntos.

Nesse grupo o elemento neutro é eN

- i) [(aN)(bN)](cN) = (an)[(bN)(cN)] para todos aN, bN, $cN \in G/N$;
- ii) (aN)(eN) = (ae)N = aN = (ea)N = (eN)(aN) para todo $aN \in G/N$;
- iii) $(aN)(a^{-1}N) = (aa^{-1})N = eN = (a^{-1}a)N = (a^{-1}N)(aN)$ para todo $aN \in G/N$.

Assim, o conjunto G/N é um grupo com a multiplicação de conjuntos.

Nesse grupo o elemento neutro é eN e $(aN)^{-1} = (a^{-1})N$.

Sejam G um grupo e N um subgrupo normal de G.

Sejam G um grupo e N um subgrupo normal de G. Nessas condições,

Sejam G um grupo e N um subgrupo normal de G. Nessas condições, o **grupo quociente**

Sejam G um grupo e N um subgrupo normal de G. Nessas condições, o **grupo quociente** de G por N

Sejam G um grupo e N um subgrupo normal de G. Nessas condições, o **grupo quociente** de G por N é o par formado pelo conjunto quociente G/N

Sejam G um grupo e N um subgrupo normal de G. Nessas condições, o **grupo quociente** de G por N é o par formado pelo conjunto quociente G/N e da operação de multiplicação de conjuntos aplicadas aos elementos desse conjunto.

Exemplos

(1) Seja $G = \{1, -1, i, -i\}$ um grupo

(1) Seja $G = \{1, -1, i, -i\}$ um grupo e $N = \{1, -1\}$.

(2) Seja
$$G = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$$

(2) Seja
$$G = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$$
 e $H = \{\overline{0}, \overline{3}\}$.

(3) Seja
$$G = S_3$$
.

(3) Seja $G = S_3$. Já vimos que se tomamos

$$Id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix},$$

(3) Seja $G = S_3$. Já vimos que se tomamos

$$Id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

(3) Seja $G = S_3$. Já vimos que se tomamos

$$\text{Id} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \text{e} \quad g = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

então

$$S_3 = \{Id, f, f^2, g, gf, gf^2\}.$$

(3) Seja $G = S_3$. Já vimos que se tomamos

$$\text{Id} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \text{e} \quad g = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

então

$$S_3 = \{Id, f, f^2, g, gf, gf^2\}.$$

Considere o subgrupo H = [f]

(3) Seja $G = S_3$. Já vimos que se tomamos

$$\mathit{Id} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \mathit{f} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad e \quad \mathit{g} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

então

$$S_3 = \{Id, f, f^2, g, gf, gf^2\}.$$

Considere o subgrupo $H = [f] = \{Id, f, f^2\}.$

Se N é um subgrupo normal de G,

Se N é um subgrupo normal de G, então a função $\mu: G
ightarrow G/N$

Se N é um subgrupo normal de G, então a função $\mu:G\to G/N$ definida por $\mu(a)=aN$

Se N é um subgrupo normal de G, então a função $\mu:G\to G/N$ definida por $\mu(a)=aN$ é um homomorfismo sobrejetor

Se N é um subgrupo normal de G, então a função $\mu:G\to G/N$ definida por $\mu(a)=aN$ é um homomorfismo sobrejetor de grupos tal que

Se N é um subgrupo normal de G, então a função $\mu:G\to G/N$ definida por $\mu(a)=aN$ é um homomorfismo sobrejetor de grupos tal que

$$ker(\mu) = N$$
.

Se N é um subgrupo normal de G,

Se N é um subgrupo normal de G, então o homomorfismo $\mu: G o G/N$

Se N é um subgrupo normal de G, então o homomorfismo $\mu: G \to G/N$ definido por $\mu(a) = aN$

Se N é um subgrupo normal de G, então o homomorfismo $\mu: G \to G/N$ definido por $\mu(a) = aN$ é chamado de **homomorfismo canônico**

Se N é um subgrupo normal de G, então o homomorfismo $\mu: G \to G/N$ definido por $\mu(a) = aN$ é chamado de **homomorfismo canônico** de G sobre G/N.

Se $f: G \rightarrow L$ é um homomorfismo de grupos,

Se $f: G \rightarrow L$ é um homomorfismo de grupos, então $N = \ker(f)$

Se $f: G \to L$ é um homomorfismo de grupos, então $N = \ker(f)$ é um subgrupo normal de G

Se $f: G \to L$ é um homomorfismo de grupos, então $N = \ker(f)$ é um subgrupo normal de G e, portanto, G/N é um grupo.

Seja $f: G \to L$ um homomorfismo sobrejetor

Seja $f: G \rightarrow L$ um homomorfismo sobrejetor de grupos.

Seja $f: G \to L$ um homomorfismo sobrejetor de grupos. Se $N = \ker(f)$,

Seja $f: G \to L$ um homomorfismo sobrejetor de grupos. Se $N = \ker(f)$, então o grupo quociente G/N é isomorfo ao grupo L.

Dado um inteiro m > 1,

Dado um inteiro m > 1, considere o homomorfismo $\rho_m : \mathbb{Z} \to \mathbb{Z}_m$

Dado um inteiro m > 1, considere o homomorfismo $\rho_m : \mathbb{Z} \to \mathbb{Z}_m$ definido por $\rho_m(x) = \overline{x}$.