Lecture 25

Thomas Cohn

12/2/19

Characters

Let V be a finite-dimensional complex representation of a group G.

Defn: The character of V is the function $\mathcal{X}_V: G \to \mathbb{C}$ $q \mapsto \operatorname{tr}(q|_V)$

Lemma:

• $\mathcal{X}_{V \oplus W} = \mathcal{X}_V + \mathcal{X}_W$

• $\mathcal{X}_{\operatorname{Hom}(V,W)} = \overline{\mathcal{X}_V} \mathcal{X}_W$

• $\mathcal{X}_{V^*} = \overline{\mathcal{X}_V}$

Lemma: \mathcal{X}_V satisfies $\mathcal{X}_V(ghg^{-1}) = \mathcal{X}_V(h), \forall g, h \in G$.

Defn: A class function on G is a function $f: G \to \mathbb{C}$ s.t. $f(ghg^{-1}) = f(h), \forall g, h \in G$.

Ex: \mathcal{X}_V is a class function.

Defn: $\mathscr{C}(G)$ is the space of all class functions. It is a \mathbb{C} -vector space, and its dimension is the number of conjugacy classes in G.

For $\varphi, \psi \in \mathscr{C}(G)$, define

$$\langle \varphi, \psi \rangle = \frac{1}{\#G} \sum_{g \in G} \overline{\varphi(g)} \psi(g)$$

This is a positive definite Hermitian inner product on $\mathscr{C}(G)$.

Defn: $\mathcal{X}_{\text{triv}} = \mathbb{1} \in \mathscr{C}(G)$ is the function $g \mapsto 1, \forall g \in G$.

Thm: If V is a representation of G, then $\dim V^G = \langle \mathbb{1}, \mathcal{X}_V \rangle$. Idea of a proof: Define $\pi: V \to V$ where $v \mapsto \frac{1}{\#G} \sum_{g \in G} gv$. Clearly, $\operatorname{tr}(\pi) = \langle \mathbb{1}, \mathcal{X}_V \rangle$. On the other hand, $\pi^2 = \pi$, and $\operatorname{im}(\pi) = V^G$, so $\operatorname{tr}(\pi) = \dim V^G$.

Cor: For V, W representations of G, dim $\operatorname{Hom}_G(V, W) = \langle \mathcal{X}_V, \mathcal{X}_W \rangle$. Proof: Recall $\operatorname{Hom}_G(V, W) = \operatorname{Hom}(V, W)^G$. By the theorem,

$$\dim \operatorname{Hom}_G(V, W) = \left\langle \mathbb{1}, \mathcal{X}_{\operatorname{Hom}(V, W)} \right\rangle = \left\langle \mathbb{1}, \overline{\mathcal{X}_V} \mathcal{X}_W \right\rangle = \left\langle \mathcal{X}_V, \mathcal{X}_W \right\rangle$$

Thm: (Schur's Lemma) For V, W irreducible representations of G,

$$\dim \operatorname{Hom}_G(V,W) = \left\{ \begin{array}{ll} 0 & V \not\cong W \\ 1 & V \cong W \end{array} \right.$$

Moreover, if V = W, $\text{Hom}_G(V, V) = \text{span}(\text{Id}_V)$.

Cor: (Schur Orthogonality) If V, W are irreducible representations, then

$$\langle \mathcal{X}_V, \mathcal{X}_W \rangle = \left\{ \begin{array}{ll} 0 & V \ncong W \Leftrightarrow \mathcal{X}_V \neq \mathcal{X}_W \\ 1 & V \cong W \Leftrightarrow \mathcal{X}_V = \mathcal{X}_W \end{array} \right.$$

This implies the number of irreducible representations (up to isomorphism) is at most dim $\mathscr{C}(G)$, which in turn is the number of conjugacy classes of G.

Let L_1, \ldots, L_r be "the" irreducible representations of G (that is, choose one from each isomorphism class). Any representation V can be decomposed as

$$V \cong L_1^{\oplus m_1} \oplus L_2^{\oplus m_2} \oplus \cdots \oplus L_r^{\oplus m_r}$$

Defn: m_i is called the **multiplicity** of L_i in V.

 $\mathcal{X}_V = m_1 \mathcal{X}_1 + \cdots + m_r \mathcal{X}_r$. By Schur Orthogonality, $m_i = \langle \mathcal{X}_i, \mathcal{X}_r \rangle$.

Cor: If $\mathcal{X}_V = \mathcal{X}_W$, then $V \cong W$.