

SUMÁRIO

- Estratégias evolutivas
- Algoritmos
- Operadores

Introdução

- Estratégias evolutivas: Rechenberg et al. (1960)
- Objetivo
- Otimização de parâmetros de valores reais
- Indivíduo
- Vetor de valores reais

Algoritmo (μ, λ)

2

- 1) μ = número de pais selecionados
- 2) λ = número de filhos gerados, onde $\lambda \ge \mu$
- 3) Inicializa a população inicial
- 4) t = 0
- 5) Inicializar população $P_{\boldsymbol{\theta}}$
- 6) Enquanto critério de parada == falso
 - a) Avaliar população (Pt)
 - b) P' = Selecionar μ pais com melhor avaliação (P_t)
 - c) Para cada individuo $p \in P'$
 - i.F = Aplicar mutação μ/λ vezes
 - d) $P_{t+1} = F$
- e) t = t + 1

4

Algoritmo (μ, λ)

- Normalmente a proporção é 7 filhos para cada pai
- Os pais não participam da seleção
- Os filhos substituem os pais
- A melhor solução pode ser perdida

Algoritmo $(\mu + \lambda)$

- 1) μ = número de pais selecionados
- 2) λ = número de filhos gerados, onde $\lambda \ge \mu$
- 3) Inicializa a população inicial
- 4) t = 6
- 5) Inicializar população P_θ
- 6) Enquanto critério de parada == falso
 - a) Avaliar população (P_t)
 - b) P' = Selecionar μ pais com melhor avaliação (P_t)
 - c) Para cada individuo $p \in P'$

i.F = Aplicar mutação μ/λ vezes

- d) P_{t+1} = Selecionar sobreviventes(P' + F)
- e) t = t + 1

5

6

Algoritmo $(\mu + \lambda)$

- Os pais e filhos participam da seleção
- Na versão original (1 + 1)
- Um pai gera um filho quem tiver melhor fitness sobrevive
- Essa versão já não é mais utilizada

Mutação

Dado um cromossomo

$$C = \{x_1, x_2, x_3, \dots, x_n\}$$

O novo valor do filho é dado por

$$x_i' = x + N(0, \sigma, x_i)$$

onde, N é distribuição de probabilidades Gaussiana de média 0

Mutação

Distribuição de probabilidades Gaussiana de média 0

$$N(0,\sigma,x) = \frac{e^{-\frac{1}{2}(\frac{x}{\sigma})^2}}{\sigma\sqrt{2\pi}}$$

O valor do desvio padrão σ deve ser definido de acordo com o intervalo em que os dados se concentram

Mutação

Regra do 1/5

- Teorema de convergência
- Se a taxa de sucesso filhos melhores que os pais
- aumenta o desvio padrão
- Senão
- diminui o desvio padrão

9

10

Mutação

Regra do 1/5

$$\sigma = \begin{cases} \sigma, p_s = \frac{1}{5} \\ \sigma^* c, p_s < \frac{1}{5} \\ \frac{\sigma}{c}, p_s > \frac{1}{5} \end{cases}$$

- p_s = frequência de mutações bem sucedidas
- c = parâmetro escolhido de forma $ad\ hoc,\ onde\ 0.817 \le c \le 1$

REFERÊNCIAS BIBLIOGRÁFICAS

- Engelbrecht, Andries. Computational intelligence: an introduction. Wiley, ed. 2, 2007.
- Linden, Ricardo. Algoritmos Genéticos. Ciência Moderna, ed. 3, 2012.