6. Rezistory

Rezistory jsou nejběžnější součástkou v elektronických zařízeních.

Rezistory

Rezistor má v ideálním případě, nezávisle na pracovních podmínkách a fyzikálních parametrech okolního prostředí, vykazovat čistě reálný elektrický odpor.

To znamená, že napětí na svorkách rezistoru je přímo úměrné proudu, který jím protéká a v případě, že napětí a proud jsou střídavé, nemají proti sobe žádný fázový posun.

Vlastnosti rezistoru jsou určeny:

- velikost elektrického odporu (jeho jmenovitá hodnota a tolerance)
- teplotní závislost elektrického odporu
- napěťová závislost elektrického odporu a maximální provozní napětí
- kmitočtová závislost elektrického odporu (impedance)
- maximální ztrátový výkon ohřívající rezistor
- stárnutí rezistoru (změna odporu v závislosti na čase)
- šum rezistoru

U rezistorů je nutné vyrábět prvky s velkým rozsahem hodnot $(\Omega \text{ až } G\Omega)$ tak, aby byla každá dekáda rovnoměrně pokryta se zaručenou přesností (tolerancí).

Tomto vyhovuje nejvíce výběr z geometrické řady $\sqrt[n]{10}$

Rezistory se vyrábějí v řadách E6, E12, E24, E96 a E192.

E12:
$$\sqrt[12]{10}$$
 =1,21 tolerance=1/12 (10%); 12 hodnot

E24:
$$\sqrt[24]{10}$$
 =1,10 tolerance=1/24 (5%); 24 hodnot

E96:
$$\sqrt[96]{10}$$
 =1,02 tolerance=1/96 (1%); 96 hodnot

Např. 4 prvek z řady E24 se vypočte 10^{4/24}=1,47 (1,5)

Dovolené odchylky jmenovitých hodnot (s příslušným omezením podle typu) jsou od \pm 20 % u běžných rezistoru do \pm 0,1 % u metalizovaných stabilních rezistoru s nízkým teplotním součinitelem odporu.

 E3
 1,0
 2,2
 4,7

 E6
 1,0
 1,5
 2,2
 3,3
 4,7
 6,8

 E12
 1,0
 1,2
 1,5
 1,8
 2,2
 2,7
 3,3
 3,9
 4,7
 5,6
 6,8
 8,2

 E24
 1,0
 1,1
 1,2
 1,3
 1,5
 1,6
 1,8
 2,0
 2,2
 2,4
 2,7
 3,0

 E24
 3,3
 3,6
 3,9
 4,3
 4,7
 5,1
 5,6
 6,2
 6,8
 7,5
 8,2
 9,1

Např.

E24:
$$\sqrt[24]{10}$$
 =1,10 tolerance=1/24 (5%); 24 hodnot

1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,4 2,7 3,0

3,3 3,6 3,9 4,3 4,7 5,1 5,6 6,2 6,8 7,5 8,2 9,1

24 hodnot

Jmenovitý odpor je na součástce vyznačen bud **písmenovým** nebo **barevným** kódem. "Doporučuje se součástku před osazením změřit." Vyloučí se tím použití vadné součástky.

R47 $(0,47 \Omega)$; 1R0 $(1,00 \Omega)$; 4K7 $(4,7 k\Omega)$; M1 $(0,1 M \Omega)$ 100M $(100 M\Omega)$

HSC200 R14 J 0313

Barevný kód se užívá pro označování jmenovitých hodnot odporu a jejich dovolených odchylek zvláště v těch případech, kdy se požaduje čtení údajů z různých směrů, případně kdy rozměry součástky nedovolují použití písmenového kódu.

Hnědá; černá; černá; hnědá; hnědá. Tím jsou vyjádřeny číslice 1; 0; 0; 1 a tolerance +/- 1%.

První tři číslice je vyjádření čísla 100, za ním následuje exponent čísla. Výsledek je 100x10 =1000 Ω s tolerancí +/- 1%.

Pokud bude vynechán poslední pruh značící toleranci, je tolerance odporu +/- 20%. Ale někdy může být vyznačen ještě pátý pruh, který vyjadřuje teplotní koeficient. Aby to nebylo tak jednoduché, podle vojenské normy MIL-STD-199 může být vyznačen ještě šestý pruh, který vyjadřuje spolehlivost.

Značení součástek SMD

Odpory jsou značeny pomocí čísla a exponentu:

270 značí číslo 27 a exponent 0. Hodnota je tedy 27 x 1 = 27 Ω (100=1)

272 číslo 27 a exponent 2. Hodnota je 27 x $100 = 2700 \Omega = 2k7 (102=100)$

"Zkrátka za číslo napíšeme tolik nul, kolik jich určuje exponent, nebo o tolik míst posuneme desetinou čárku

Značení součástek SMD

Rezistory SMD

- Rezistory SMD 0402 [43]
- Rezistory SMD 0603 1% [82]
- Rezistory SMD 0603 5% [1]
- Rezistory SMD 0805 1% [93]
- Rezistory SMD 0805 5% [1]
- Rezistory SMD 1206 1% [94]
- Rezistory SMD 1206 5% [1]
- Rezistory SMD 2010 [122]
- Rezistory SMD 2512 [123]

odpory, kondenzátory

typ	značení EIA	L	w	В	T - výška	pozn.
10	0603	1,6 +/- 0,15	0,8 +/- 0,15	0,3 +/- 0,2	0,8 +/- 0,1	
21	0805	2,0 +/- 0,2	1,25 +/- 0,2	0,4 +/- 0,2	1,25 max	
31	1206	3,2 +/- 0,2	1,6 +/- 0,2	0,4 +/- 0,2	1,45 max	
31	1206	3,2 +/- 0,2	1,5 +/- 0,2	0,4 +/- 0,2	0,66 max	pod IO
32	1210	3,2 +/- 0,2	2,5 +/- 0,2	0,4 +/- 0,2	0,66 max	pod IO

Rezistory

- Rezistory pevné
 - Uhlíkové rezistory do 00.5W
 - Uhlíkové rezistory do 01W
 - Metalizované rezistory do 00.5W
 - Metalizované rezistory do 01W
 - Metalizované rezistory do 02W
 - Metalizované rezistory do 05W
 - Metal oxidové rezistory do 02W
 - Metal oxidové rezistory do 05W
 - Metal oxidové rezistory do 10W
 - Metal oxidové rezistory do 20W

- Drátové rezistory do 02W
- Drátové rezistory do 05W
- Drátové rezistory do 10W
- Drátové rezistory do 20W
- Drátové rezistory do 50W
- SMD rezistory 0201
- SMD rezistory 0402
- SMD rezistory 0603
- SMD rezistory 0805
- SMD rezistory 1206
- SMD rezistory 2010
- SMD rezistory 2512
- SMD rezistory MELF 0204
- SMD rezistory MELF 0207
- Rezistorové sítě
- Termistory
- Varistory
- Trimry
- Potenciometry

Např.

Metalizovaný rezistor – 1 W, vel. 0312, ±1 %

AAC

Technické údaje:	
Označení pro objednání:	RR 1W hodnota
Jmenovité zatížení při 70 °C:	1,0 W
Rozsah hodnot v:	Ε12 (1Ω až 100 kΩ)
Tolerance:	±1 %
Teplotní koeficient:	. ± 50 ppm (10 Ω – 1 M Ω)
Teplotní koeficient:	±100 ppm (ostatní)
Maximální napětí trvale:	500 V
Maximální napětí krátkodobě:	1000 V
Teplotní rozsah:	55 až +155 °C
Značení:pěti proužkov	ý barevný kód dle IEC 63
Balení:	2000 ks
Minimální odběr z velokoobchodu: 50	ks a další celé násobky
pro každou hodnotu	

	^ 	▼∅ 3,2	2 ± 0.5
			==
28,0 ± 2,0	9,9±0,5	1	Ø0,58± 0.02

Тур	Sklad. číslo	MC	Popis
RR W1 1R	114-487	1,50	1R
RR W1 1R2	114-488	1,50	1R2
RR W1 1R5	114-489	1,50	1R5
RR W1 1R8	114-490	1,50	1R8
RR W1 2R2	114-491	1,50	2R2
RR W1 2R7	114-492	1,50	2R7
RR W1 3R3	114-493	1,50	3R3
RR W1 3R9	114-494	1,50	3R9
RR W1 4R7	114-495	1,50	4R7
RR W1 5R6	114-496	1,50	5R6
RR W1 6R8	114-497	1,50	6R8
RR W1 8R2	114-498	1,50	8R2
RR W1 10R	114-442	1,50	10R
RR W1 12R	114-443	1,50	12R
RR W1 15R	114-444	1,50	15R
RR W1 18R	114-445	1,50	18R
RR W1 22R	114-446	1,50	22R
RR W1 27R	114-447	1,50	27R
RR W1 33R	114-448	1,50	33R
RR W1 39R	114-449	1,50	39R
RR W1 47R	114-450	1,50	47R
RR W1 82R	114-451	1,50	82R
RR W1 56R	114-452	1,50	56R
RR W1 100R	114-453	1,50	100R
RR W1 120R	114-454	1,50	120R
RR W1 150R	114-455	1,50	150R
RR W1 180R	114-456	1,50	180R
RR W1 220R	114-457	1,50	220R
RR W1 270R	114-458	1,50	270R

Тур	Sklad. čísle	MC	Popis
RR W1 330R	114-439	1,50	330R
RR W1 390R	114-459	1,50	390R
RR W1 470R	114-460	1,50	470R
RR W1 680R	114-461	1,50	680R
RR W1 820R	114-462	1,50	820R
RR W1 1K	114-463	1,50	1K
RR W1 1K5	114-464	1,50	1K5
RR W1 1K8	114-465	1,50	1K8
RR W1 2K2	114-466	1,50	2K2
RR W1 2K7	114-467	1,50	2K7
RR W1 3K3	114-468	1,50	3K3
RR W1 3K9	114-469	1,50	3K9
RR W1 4K7	114-470	1,50	4K7
RR W1 5K6	114-471	1,50	5K6
RR W1 6K8	114-472	1,50	6K8
RR W1 8K2	114-473	1,50	8K2
RR W1 10K	114-474	1,50	10K
RR W1 12K	114-475	1,50	12K
RR W1 15K	114-476	1,50	15K
RR W1 18K	114-477	1,50	18K
RR W1 22K	114-478	1,50	22K
RR W1 27K	114-479	1,50	27K
RR W1 33K	114-480	1,50	33K
RR W1 39K	114-481	1,50	39K
RR W1 47K	114-482	1,50	47K
RR W1 56K	114-483	1,50	56K
RR W1 68K	114-484	1,50	68K
RR W1 82K	114-485	1,50	82K
RR W1 100K	114-486	1,50	100K

Rezistory – lineární, neproměnné

Obr. 9.2. Vrstvové rezistory pro různé výkony (přibližně skutečná velikost)

Obr. 9.3. Drátové rezistory (není v měřítku - mohou být i značných rozměrů)

Rezistory – princip

ρ je měrný odpor (Ω), **S** je průřez (m⁻²) a **I** je délka (m)

 Lineární (mají lineární VA charakteristiku a tedy i prakticky konstantní elektrický odpor)

•Neproměnné

potenciometry

•Proměnné (nastavitelné změnou délky odporové dráhy)

 Nelineární (hodnota odporu je závislá na vnějších fyzikálních vlivech (teplota, připojené napětí, mechanická deformace)

6. Rezistory

Podle způsobu vytvoření dráhy dělíme na:

Vrstvové

Hmotové

Nejrozšířenější jsou rezistory **VRSTVOVÉ**.

Jejich základním mechanickým prvkem je nosné tělísko, vyrobené většinou ze speciálního elektrotechnického porcelánu, na kterém je nanesena funkční vrstva.

Napařená vrstva u levnějších rezistorů bývá *uhlíková*, borouhlíková nebo borosilikátová. U "lepších" rezistorů se používá vrstev z *kovových slitin*. Nejobvyklejším materiálem je tedy pyrolyticky nanesený **uhlík**, případně **kovové slitiny** *Ni-Cr*, **Si-Fe-Cr**, **oxidové vrstvy SnO**, **SbO** a nitridu tantalu.

Konečná ohmická hodnota odporu se získá výbrusem šroubovice na válcové ploše tělíska rezistoru, nebo vytvořením dělicích rysek.

Vývody funkční vrstvy jsou realizovány převážné bud nalisovanými kovovými čepičkami s přivařenými vývody nebo drátové vývody jsou připájeny na kontaktní kovovou vrstvu.

Povrch rezistoru se opatruje speciálními ochrannými laky nebo smalty, případně se rezistor zalisuje do umělé pryskyřice. Povrchová vrstva chrání funkční vrstvu mechanicky, v izolovaném provedení zajišťuje elektrickou pevnost mezi odporovou vrstvou a povrchem součástky a dále chrání rezistor před vlhkostí. Pro náročné klimatické podmínky je nutno rezistor izolovat hermeticky.

Pro vetší výkonová zatížení se používají <u>drátové</u> rezistory. Zhotovují se obvykle vinutím odporového drátu na nosné keramické tělísko. Odporový drát je kovový - konstantan, nikelin ap.

Drátové rezistory mají kladný teplotní součinitel elektrického odporu

(jejich elektrický odpor roste s teplotou). Vývody jsou přivařeny ke koncům odporového drátu, případně jsou tvořeny páskovými objímkami.

Povrch drátových rezistoru se chrání speciálním lakem, smaltem nebo tmelem, připadne rezistory jsou zatmeleny do keramického pouzdra, vyplněného křemenným pískem.

<u>Drátové rezistory</u> se užívají i jako přesné rezistory, odporový drát se vine bifilárne nebo jiným způsobem, který umožní potlačit indukčnost (nevýhoda klasických vrstvových rezistoru).

Obr. 9.4. Vinutí s potlačenou indukčností: a) bifilární, b) Chaperonovo

Jmenovitá hodnota odporu R_N [Ω]

udávaná výrobcem na tělese rezistoru číselným nebo barevným kódem. Hodnoty odpovídají zvoleným číslům geometrických řad E6, E12, E24 u běžných rezistorů, případně i E48, E96 a E192 u přesných rezistorů.

Dovolená odchylka [% RN]

vyjadřuje toleranci jmenovité hodnoty a má vztah ke zvolené řadě, při čemž např. řadě E6 odpovídá dovolená odchylka až 20%. Další řady mají odchylku vyznačenu na tělese rezistoru písmenovým nebo barevným kódem: řada E12, tolerance 10% (ozn. A); E24, 5%, (B); E48, 2%, (C); E96, 1%, (D); E192, 0,5%, (E).

Jmenovité zatížení P_N [W]

udává nejvyšší přípustnou hodnotu dlouhodobého zatížení rezistoru při dané teplotě okolí ∂a (obvykle 25℃). S tím souvisí i zatěžovací charakteristika udávající provozní zatížení rezistoru v závislosti na teplotě okolí.

Technické údaje:	
Jmenovité zatížení při 70 °C:	0,6 W
Rozsah:	Ε24 (1Ω až 10 MΩ)
Tolerance:	±1 %
Teplotní koeficient:	±50 ppm (5 Ω až 2,4 MΩ), ostatní ±100 ppm
Maximální trvalé napětí:	350 V
Maximální napětí:	700 V
Průrazná pevnost:	>700 V
Rozsah pracovních teplot:	55 až +165 °C
Značení: pěti proužkový barevn	ný kód dle IEC 63 (pátý proužek = hnědá = 1 %)
Balení:	5000 ks
Minimální odběr z velkoobcho	odu: 50 ks a další celé násobky pro každou
hodnotu	↓
ISO 9002	23±0.5 6±0.3 ↑ +2.3±0.2

Teplotní součinitel odporu TKR [%/°C]

(někdy označován α_R) udává vratnou změnu odporu rezistoru v závislosti na teplotě definovanou na 1 °C

$$TKR = \frac{1}{R} \cdot \frac{\Delta R}{\Delta \vartheta} \cdot 100.$$

Napěťový součinitel odporu k_U [%/V] udává změnu odporu při změně přiloženého napětí o 1 V

$$k_U = \frac{1}{R} \cdot \frac{\Delta R}{\Delta U} \cdot 100.$$

<u>Šum rezistoru</u>

je způsoben vznikem rušivých střídavých napětí na odporové dráze. U rezistorů se uplatňuje **tepelný Johnsonův**) **šum**. Na vývodech nezatíženého rezistoru vzniká šumové napětí

$$U_n^2 = 4 \cdot k \cdot \Theta \cdot R_N \cdot \Delta f,$$

kde je k ... Boltzmannova konstanta,

Θ... absolutní teplota,

 R_N ... jmenovitá hodnota odporu,

 Δf ... frekvenční pásmo, ve kterém je šum měřen.

Technické údaje:
Jmenovité zatížení při 70 °C:
Rozsah:Ε24 (1Ω až 10 MΩ)
Tolerance:±1 %
Teplotní koeficient:±50 ppm (5 Ω až 2,4 M Ω), ostatní ±100 ppm
Maximální trvalé napětí:
Maximální napětí:
Průrazná pevnost:
Rozsah pracovních teplot:55 až +165 °C
Značení: pěti proužkový barevný kód dle IEC 63 (pátý proužek = hnědá = 1 %)
Balení:
Minimální odběr z velkoobchodu: 50 ks a další celé násobky pro každou hodnotu
nodnotu + 40.45
ISO 9002
130 3002 (23±0.5), 6±0.3 (7¢2.3±0.2

Characteristics - Electrical HSC - 100 Watts to 300 Watts

	HSC100	HSC150	HSC200	HSC250	HSC300
Dissipation @ 25°C with Heatsink (Watts):	100	150	200	250	300
Without Heatsink:	50	55	50	60	75
Ohmic Value Min (Ohms):	R05	R10	R10	R10	R10
Max:	100K	100K	50K	68K	82K
Maximum Working Voltage (DC or ACrms) Volts:	1900	2500	1900	2200	2500
Dielectric Strength (AC Peak) Volts:	5000	5000	5600	5600	5600
Stability (% resistance change, 1000 hours) (%):	2	2	3	3	3
Standard Heatsink - Area (mm²):	99500	99500	375000	476500	578000
Thickness (mm):	3	3	3	3	3
Number of Mounting Holes:	4 hole	4 hole	6 hole	6 hole	6 hole

Náhradní schéma rezistoru

Náhradní schéma rezistoru slouží k popisu chování rezistoru ve vysokofrekvenční oblasti, kde

R je rezistance odporové dráhy,

Ls je indukčnost přívodů,

La a Ca jsou indukčnost a kapacita odporové dráhy.

U nejobvyklejších <u>vrstvových rezistorů</u> bývají hodnoty Ca ~ 100 pF, Ls ~10-2 μH, La ~ (10-2 ; 102) μH,

Pozn. přitom vyšší hodnoty La platí pro rezistory se šroubovicovou drážkou.

Náhradní schéma rezistoru

<u>Drátové rezistory</u> s velkými hodnotami indukčností a kapacit jsou nevhodné pro vf obvody. Pro potlačení indukčností u přesných drátových rezistorů a odporových normálů se používá již zmíněného bifilárního vinutí.

Rozdělení lineárních neproměnných rezistorů:

- a) Rezistory pro všeobecné použití v obvodech zesilovačů, filtračních členů, děličů napětí atd. Jsou vyráběny v hodnotách 100 106Ω, pro zatížení 0,25 2W (výkonové až 100 W) a provozní napětí do 750 V.
- b) **Stabilní rezistory** (přesné s malým TKR) pro obvody měřicích zařízení, odporové dekády, útlumové články, počítače atd. Jsou vyráběny v hodnotách 100-106Ω, s malými odchylkami a s vysokou stabilitou parametrů v omezeném oboru zatížitelnosti P< 1 W.
- c) **Miniaturní rezistory** pro subminiaturizaci elektronických obvodů s polovodičovými součástkami. Jsou vyráběny v hodnotách 100 106 Ω pro jmenovité zatížení 0,125 W až 0,5 W a nižší pracovní napětí 150 až 300 V.
- d) **Vysokoohmové rezistory** pro elektrometrická měření velmi malých napětí a proudů. Jsou vyráběny v hodnotách od 107 Ω do 1014 Ω a to pro velmi malá napěťová zatížení (mají velký součinitel $k_{\rm H}$).

Rozdělení lineárních neproměnných rezistorů:

- e) **Vysokonapěťové rezistory** pro speciální použití v obvodech vn do 15 kV. Jsou vyráběny v hodnotách do 1010Ω a jmenovitá zatížení 1 až 2 W.
- f) Rezistory s potlačenou indukčností pro vf obvody vysílačů, přijímačů, radiolokační a měřicí zařízení pro f > 100 MHz. Jsou vyráběny s nižšími hodnotami $R_{\rm N} < 4~{\rm k}\Omega$, v uspořádání bez drážky nebo jako hmotové k omezení indukčnosti a kapacity.

Proměnné odpory (**potenciometry**, příp.. reostaty) jsou tvořeny odporovou dráhou a běžcem. Mechanický pohyb běžce je obvykle rotační (potenciometry otočné) nebo přímočarý (posuvné typy).

Obr. 9.7. Potenciometry (zleva): jednoduchý s odbočkou, tandemový, dvojitý

Konstrukčně jsou potenciometry provedeny jako jednoduché (s jedním systémem) nebo dvojité (se dvěma samostatnými systémy), případně tandemové (se dvěma systémy souběžné ovládanými jednou osou).

Vyrábějí se bud jako vrstvové, drátové nebo z vodivých plastu. U vrstvových potenciometru je na podkladovém materiálu (tvrzený papír, keramika) nanesena vodivá vrstva (z polovodičového laku nebo cermentu).

Požadovaného průběhu odporové dráhy se dosahuje vhodným tvarem vrstvy, případně jejím složením. Podle závislosti odporu na úhlu natočení hřídele rozlišujeme

potenciometry

• s lineárním (označení N),

- logaritmickým (G)
- a exponenciálním (E)

průběhem odporu.

Pro jmenovitá zatížení od jednotek do stovek W se používají drátové potenciometry; na jejich výrobu se používá drátu s velkým měrným odporem, který je navinutý na kostru. Pro zatížení do několika W byly v drátové potenciometry vytlačeny potenciometry z vodivých plastu.

Rozdělení lineárních proměnných rezistorů:

Uspořádání proměnných rezistorů vychází z provedení odporové dráhy.

U drátových nastavitelných rezistorů se požadované hodnoty odporu nastavují posuvem jezdce po odporové dráze. Jezdec je tvořen jednoduchou sponou nebo kombinací spony se šroubovým pohybem.

Vrstvové bývají posuvné nebo otočné. Odporová dráha je umístěna na izolační podložce (pertinax, keramika).33

Odporové <u>trimry</u> mají odporovou dráhu stejného složení jako vrstvové potenciometry. Konstrukčně však se od nich liší; nejsou určeny k mnohonásobnému přestavování polohy bežce (obvykle pomocí nástroje - šroubováku).

Obr. 9.8. Měnitelné rezistory (trimry) do plošných spojů: a) keramický, b) víceotáčkový cermentový

Zatímco výrobce udává u vrstvových potenciometru mechanickou trvanlivost 10³ - 10⁴ pracovních cyklu, u trimru je tato hodnota podstatne nižší (20 - 50 cyklu)₃₄

Potenciometry

- Uhlíkové potenciometry 12mm mono
- Uhlíkové potenciometry 12mm stereo
- Uhlíkové potenciometry 12mm se spínačem
- Uhlíkové potenciometry 16mm mono
- Uhlíkové potenciometry 16mm stereo
- Uhlíkové potenciometry 16mm se spínačem
- Uhlíkové potenciometry 20mm mono
- Uhlíkové potenciometry 20mm stereo
- Uhlíkové potenciometry 20mm se spínačem
- Tahové potenciometry mono
- Tahové potenciometry stereo
- Drátové potenciometry do 10W
- Drátové potenciometry do 20W
- Drátové potenciometry do 50W
- Víceotáčkové potenciometry

Lineární rezistory proměnné - potenciometry

Vrstvové potenciometry mají jmenovité hodnoty odporu pole řady E3 (připouští se i rada E6);

Potenciometry s plastovým pouzdrem

PC16ML	AEO
Technické parametry:	
Odporová dráha:	lineární
Jmenovité zatížení:	
	250 V
Tolerance:	20 %
Úhel otočení mechanicky:	300° ±5°
Úhel otočení elektricky:	280° ±20°
Pracovní teplota:	25 až +70 °C
	50 ks
	PC16ML hodnota = jednoduchý
9 6.5 9 9 9 45 8	16 82 65 Ø13·2·1

Trimry

- Uhlíkové trimry 06mm ležaté
- Uhlikové trimry 06mm stojaté
- Uhlíkové trimry 10mm ležaté
- Uhlíkové trimry 10mm stojaté
- Uhlíkové trimry 15mm ležaté
- " Uhlíkové trimry 15mm stojaté
- Uhlíkové trimry ostatní
- Cermentové trimry 06mm ležaté
- Cermentové trimry 06mm stojaté
- Cermentové trimry 10mm ležaté
- Cermentové trimry 10mm stojaté
- Cermentové trimry 15mm ležaté
- Cermentové trimry 15mm stojaté
- Cermentové trimry ostatní
- Cermentové trimry víceotáčkové - ležaté
- Cermentové trimry víceotáčkové - stojaté
- SMD cermentové trimry 3314
- SMD cermentové trimry 4312
- SMD cermentové trimry 4315

Lineární rezistory proměnné - trimry

Rezistorové trimry uhlíkové – 6,6 mm

Technické údaje:	PT625, PT655
Odporová dráha:	uhlíková
Průběh:	
Úhel otáčení mech.:	210° ±20°
Rozsah hodnot:	500 Ω až 1 MΩ
Řada hodnot:	1 – 2,5 – 5
Tolerance:	
Teplotní rozsah:	–10 až 70 °C
Maximální zatížení při 40 °C:	
Maximální napětí:	
Minimální odběr z velkoobchodu:	

Pro velmi přesné nastavení odporů v měřicí a regulační technice se používá speciálních víceotáčkových potenciometrů se spirálově uspořádanou odporovou dráhou.

7/8" (22mm) Precision Wirewound Potentiometer

Note: The color of this product is changing to blue, during the internal period you may recieve either black or blue.

ADDITIONAL FEATURES

- Special Resistance Tolerances to 1%
- · Rear Shaft Extensions and Support Bearing
- · Non Turn Lug
- · Dual Gang Configuration and Concentric Shafts
- · High Torque and Center Tap
- · Special Markings and Front Shaft Extensions
- · Servo Unit available and Slipping Clutch

PARAMETER	MODEL 533	MODEL 534	MODEL 535
Resistance Range			
Standard Values	50Ω to 20KΩ	100Ω to 100KΩ	50Ω to 50KΩ
Capability Range	5Ω to 60KΩ	10Ω to 200KΩ	5Ω to 100KΩ
Standard Tol	± 5%	± 5%	± 5%
Linearity (Independent)	± 0.25%	0.20%	± 0.25%
Noise	100Ω ENR	100Ω ENR	100Ω ENR
	4		

Parametry proměnných rezistorů:

- Jmenovitá hodnota odporu R_N, měřená mezi krajními body odporové dráhy. Hodnoty jsou uspořádány v řadách E6 a E12, někdy též podle normy výrobce.
- Průběh odporové dráhy v závislosti na úhlu natočení nebo posuvu běžce.
- Přípustné odchylky hodnoty odporu od stanoveného průběhu jsou často uváděny tolerančním polem.
- **Provozní zatížení P_N [W]** je s výjimkou drátových potenciometrů obvykle malé a udává se obdobně jako u neproměnných rezistorů.
- Šelest sběrače je udáván poměrem střídavého napětí mezi sběračem a krajním vývodem odporové dráhy při pohybu běžce, ke stejnosměrnému napětí na zatíženém potenciometru. Typická hodnota je menší než 2,5 m³/V.

Nelineární rezistory (Rezistory s výraznou závislostí na fyzikálních veličinách)

Tato skupina zahrnuje rezistory s výraznou závislostí odporu na některé fyzikální veličině, např.

> na teplotě - termistory, na napětí - varistory, na magnetickém poli - magnetorezistory, na mechanickém napětí - tenzometry, na osvětlení - fotorezistory atp.

Jsou založeny obvykle na působení objemových jevů v polovodičových polykrystalických materiálech vyvolaných jmenovanými vnějšími vlivy.

40

Termistor (THERMal rezISTOR) je součástka s velkou závislostí elektrického odporu na teplotě se záporným (negistory) nebo kladným (pozistory) teplotním součinitelem elektrického odporu.

Termistory s NTC (Negative Thermal Coefficient) - negistory jsou vyráběny z poly-krystalických oxidů kovů (Mn, Ni, Co, Fe, Ti), pracují s teplotním vybuzením (generací) volných nosičů proudu (odpor s růstem teploty klesá). Změna el. odporu při změně teploty $\Delta\Theta$ (v okolí a Θ a) lze odvodit přibližný vztah:

$$R_{\Theta} = R_{\Theta_a} \cdot \left[B \cdot \left(\frac{1}{\Theta} - \frac{1}{\Theta_a} \right) \right]$$

, kde je R_{Θ_a} - odpor termistoru při vztažné teplotě Θ a (zpravidla 25 °C), B - tepelná citlivost termistoru daná jeho materiálem a uspořádáním (tvarem).

Základní vlastnosti termistoru s NTC lze popsat průběhem VA charakteristiky, vyjadřující změny elektrických vlastností termistoru při ohřevu způsobeném protékajícím elektrickým proudem za konstantní teploty okolí.

Typická závislost odporu termistoru NTC na teplotě a protékajícím proudu.

Termistory s PTC (Positive Thermal Coefficient) - pozistory, jsou vyráběny na bázi polovodičových feroelektrických materiálů (BaTiO3, BaO, TiO3 aj.) a pracují v určitém teplotním okolí ΘC. Po překročení ΘC vzniká u těchto polykrystalických materiálů anomální stav projevující se strmým nárůstem odporu.

Př. do skupiny termistorů PTC lze zařadit i křemíkové krystalové snímače teploty.

43

Features

- · Temperature dependent Resistor with Positive Temperature Coefficient
- · Small plastic package
- · Fast response
- · High reliability due to multilayer gold contacts
- · n-conducting silicon crystal
- Polarity independent due to symmetrical construction
- Available selected in ± 1% tolerance groups

Electrical Characteristics

at $T_{\rm A}$ = 25 °C unless otherwise specified

Parameter	Symbol	Li	Unit		
		min.	typ.	max.	
Temperature sensor resistance IB = 1 mA	R_{25}				Ω
KT 100		1940	_	2060	
KTY 10-5		1950	_	1990	
KTY 10-6		1980	_	2020	
KTY 10-62		1990	_	2010	
KT 10-7		2010	_	2050	
Thermal time constant (63% of $\Delta T_{\rm A}$)					s
in still air	τ_{air}	_	40	_	
in still oil (Freon FC40/PP7)	τ_{oil}	_	4	-	

