WO 2005/069389 9 PCT/KR2005/000150

Claims

	Claims	
[1]	1. A gallium nitride-based III-V group compound semiconductor device	
	comprising:	
	a gallium nitride-based semiconductor layer; and	
	an ohmic electrode layer formed on the gallium nitride-based semiconductor	
	layer,	
	wherein the ohmic electrode layer comprises a contact metal layer, a reflective	
	metal layer, and a diffusion barrier layer.	
[2]	2. The semiconductor device according to claim 1, wherein the ohmic electrode	
	layer further comprises at least one bonding metal layer.	
[3]	3. The semiconductor device according to claim 2, wherein the ohmic electrode	
	layer is formed by sequentially laminating the contact metal layer, the reflective	
	metal layer, the diffusion barrier layer, and the bonding metal layer.	
[4]	4. The semiconductor according to any one of claims 1 to 3, wherein the contact	
	metal layer comprises at least one of Ni, Ir, Pt, Pd, Au, Ti, Ru, W, Ta, V, Co, Os	Ξ,
	Re, and Rh.	
[5]	5. The semiconductor according to any one of claims 1 to 3, wherein the	
	reflective metal layer comprises at least one of Al and Ag.	
[6]	6. The semiconductor according to any one of claims 1 to 3, wherein the	
	diffusion barrier layer comprises at least one of Ru, Ir, Re, Rh, Os, V, Ta, W,	
	ITO (Indium Tin Oxide), IZO (Indium Zinc oxide), RuO2, VO2, MgO, IrO2, ReO	Э
	, RhO, OsO, TaO, and WO.	
[7]	7. The semiconductor according to claim 2 or 3, wherein the bonding metal layer	
	comprises first and second bonding metal layers, said first bonding metal layer	
	comprising at least one of Ni, Cr, Ti, Pd, Ru, Ir, Rh, Re, Os, V, and Ta, said	
	second bonding metal layer comprising at least one of Au, Pd, and Pt.	
[8]	8. A method of manufacturing a gallium nitride-based III-V group compound	
	semiconductor device, comprising steps of:	
	forming a gallium nitride-based semiconductor layer having a PN contact	
	structure on a substrate; and	
	forming an ohmic electrode layer on the semiconductor layer,	
	wherein the ohmic electrode layer comprises a contact metal layer, a reflective	
	metal layer, and a diffusion barrier layer.	
[9]	9. The method of according to claim 8, wherein the step of forming the ohmic	

electrode layer comprises steps of:
sequentially laminating the contact metal layer, the reflective metal layer, and the
diffusion barrier layer on the semiconductor layer;
performing a thermal treatment process; and

forming a bonding metal layer on the diffusion barrier layer.

- [10] 10. The method of according to claim 8, wherein the step of forming the ohmic electrode layer comprises steps of: sequentially laminating the contact metal layer, the reflective metal layer, the diffusion barrier layer and bonding metal layer on the semiconductor layer; and performing a thermal treatment process.
- [11] 11. The method of according to any one of claims 8 to 10, wherein the thermal treatment process is a rapid thermal annealing process performed under an atmosphere of 5 to 100% oxygen at a temperature of 100 to 700 °C for 10 to 100 seconds.