Лабораторная работа 3

Настройка DHCP-сервера

Лушин Артём Андреевич

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Вывод	17
4	Контрольные вопросы	18

Список иллюстраций

2.1	Установка dhcp	5
2.2	Перенос файлов dhcp	5
2.3	Изменения в dhcpd.conf	6
2.4	Перемещение файла dhcpd.service	6
2.5	Редактирование файла dhcpd.service	6
2.6	Перезагрузка dhcpd	7
2.7	Изменения прямой зоны	7
2.8	Изменения обратной зоны	7
2.9	Перезапуск named	7
2.10	Проверка DHCP	8
2.11	Редактирование межсетевого экрана	8
	Восстановление SELinux	8
	Мониторинг ошибок	9
2.14	Заполнение л 01-routing.sh	9
2.15	Подключение в Vagrantfile	10
2.16	Подключение клиента	10
2.17	Инфорамция о клиенте	11
	Файл aalushin.net	12
2.19	Перезапуск днс	12
2.20	Динамическое обновление	12
2.21	Появление user.net.jnl	13
2.22	Содержание user.net.jnl	13
2.23	Проверка записи	14
2.24	Перенос конфигурационных файлов	14
	Замена сервера	14
2.26	Создание dhcp.sh	15
2.27	Скрип в dhcp.sh	15
2.28	Изменения в Vagrantfile	16
	Отключение машин	16

1 Цель работы

Приобретение практических навыков по установке и конфигурированию DHCP-сервера.

2 Выполнение лабораторной работы

1) Я запустил виртуальную машину server, перешёл на суперпользователя и установил dhcp.

Рис. 2.1: Установка dhcp

2) Скопировал файлы конфигурации dhcp в мои каталоги.

```
[root@server.aalushin.net ~]# cd /etc/dhcp
[root@server.aalushin.net dhcp]# cp /usr/share/doc/dhcp*/dhcpd.conf.example /etc/dhcp
[root@server.aalushin.net dhcp]# mv /etc/dhcp/dhcpd.conf.example /etc/dhcp/dhcpd.conf
mv: overwrite '/etc/dhcp/dhcpd.conf'? y
[root@server.aalushin.net dhcp]# ls
dhclient.d dhcpd6.conf dhcpd.conf
```

Рис. 2.2: Перенос файлов dhcp

3) В файле dhcpd.conf изменил строку option domain-name под своего пользователя. Так же заменил option domain-name-servers на свои данные. Раскоментировал authoritative. Задал собственную конфигурация подсети.

```
dhcpd.conf [-M--] 0 L:[ 18+ 7 25/ 37] *(692 / 907b) 0035 0x023 [*][X]
authoritative;

# Use this to send dhcp log messages to a different log file (you also
# have to hack syslog.conf to complete the redirection).
log-facility local7;

# No service will be given on this subnet, but declaring it helps the.

B DHCP server to understand the network topology.

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.30 192.168.1.199;
    option routers 192.168.1.1;
    option broadcast-address 192.168.1.255;
}
```

Рис. 2.3: Изменения в dhcpd.conf

4) Настроил привязку dhcpd к интерфейсу eth1. В файле dhcpd.service заменил ExecStart на свои данные.

```
[root@server.aalushin.net dhcp]# cp /lib/systemd/system/dhcpd.service /etc/systemd/system/
[root@server.aalushin.net dhcp]# cd /etc/systemd/system/
[root@server.aalushin.net system]# ls
basic.target.wants
bluetooth.target.wants
ctrl-alt-del.target
dbus-org.fedoraproject.FirewallD1.service
dbus-org.fedoraproject.FirewallD1.service
dbus-org.freedesktop.Avahi.service
dbus-org.freedesktop.ModemManager1.service
dbus-org.freedesktop.m-dispatcher.service
dbus-org.freedesktop.wants
dbus-org.freedesktop.wants
tdus-org.freedesktop.wants
tdus-org.freedesktop.wants
tdus-org.freedesktop.del.wants
dbus-org.freedesktop.del.wants
tdus-org.freedesktop.wants
tdefault.target
default.target
default.target
default.target.wants
default.target.wants
dede-virtio\x2dports-org.qemu.guest_agent.0.device.wants'
vmtoolsd.service.requires
```

Рис. 2.4: Перемещение файла dhcpd.service

Рис. 2.5: Редактирование файла dhcpd.service

5) Перезагрузил конфигурацию dhcpd и разрешил загрузку DHCP-сервера при запуске машины.

Рис. 2.6: Перезагрузка dhcpd

6) Добавил файл DHCP в конец файла прямой днс-зоны. Также изменил файл обратной зоны и заменил серийные номера.

Рис. 2.7: Изменения прямой зоны

Рис. 2.8: Изменения обратной зоны

7) Перезапустил named.

```
[root@server.aalushin.net fz]# systemctl restart named
[root@server.aalushin.net fz]#
```

Рис. 2.9: Перезапуск named

8) Проверил, что можно обратиться к DHCP-серверу по имени. После выполнения большого количество операций всё сработало правильно, никаких ошибок нет, потеря пакетов составила 0%.

```
64 bytes from dhcp.aalushin.net (192.168.1.1): icmp_seq=63 ttl=64 time=0.075 ms
64 bytes from ns.aalushin.net (192.168.1.1): icmp_seq=64 ttl=64 time=0.064 ms
64 bytes from dhcp.aalushin.net (192.168.1.1): icmp_seq=65 ttl=64 time=0.062 ms
64 bytes from server.aalushin.net (192.168.1.1): icmp_seq=65 ttl=64 time=0.042 ms
64 bytes from server.aalushin.net (192.168.1.1): icmp_seq=66 ttl=64 time=0.057 ms
64 bytes from ns.aalushin.net (192.168.1.1): icmp_seq=68 ttl=64 time=0.056 ms
64 bytes from ns.aalushin.net (192.168.1.1): icmp_seq=69 ttl=64 time=0.056 ms
64 bytes from ns.aalushin.net (192.168.1.1): icmp_seq=70 ttl=64 time=0.098 ms
64 bytes from ns.aalushin.net (192.168.1.1): icmp_seq=71 ttl=64 time=0.060 ms
64 bytes from ns.aalushin.net (192.168.1.1): icmp_seq=72 ttl=64 time=0.060 ms
64 bytes from server.aalushin.net (192.168.1.1): icmp_seq=73 ttl=64 time=0.070 ms
64 bytes from server.aalushin.net (192.168.1.1): icmp_seq=75 ttl=64 time=0.054 ms
64 bytes from dhcp.aalushin.net (192.168.1.1): icmp_seq=75 ttl=64 time=0.054 ms
64 bytes from dhcp.aalushin.net (192.168.1.1): icmp_seq=75 ttl=64 time=0.145 ms
64 bytes from dhcp.aalushin.net (192.168.1.1): icmp_seq=75 ttl=64 time=0.145 ms
65 currently interpretable interpretab
```

Рис. 2.10: Проверка DHCP

9) Изменил настройки межсетевого экрана узла сервер, разрешил работу с DHCP.

```
[root@server.aalushin.net fz]# firewall-cmd --add-service=dhcp
success
[root@server.aalushin.net fz]# firewall-cmd --add-service=dhcp --permanent
success
[root@server.aalushin.net fz]#
```

Рис. 2.11: Редактирование межсетевого экрана

10) Восстановил контекстные метки в SELinux.

```
[root@server.aalushin.net fz]# restorecon -vR /etc
Relabeled /etc/systemd/system/dhcpd.service from unconfined_u:object_r:systemd_unit_file_t:s0 to
unconfined_u:object_r:dhcpd_unit_file_t:s0
Relabeled /etc/sysconfig/network-scripts/ifcfg-eth1 from unconfined_u:object_r:user_tmp_t:s0 to u
nconfined_u:object_r:net_conf_t:s0
[root@server.aalushin.net fz]# restorecon -vR /var/named
[root@server.aalushin.net fz]# restorecon -vR /var/lib/dhcpd/
[root@server.aalushin.net fz]#
```

Рис. 2.12: Восстановление SELinux

11) В доп терминале запустил мониторинг происходящих в системе процессов. В основном терминале перезапустил DHCP-сервер и проверил, чтобы не было ошибок.

```
|root@server.aalushin.net fZ]# systemctl start d | Sep 16 11:80:27 server dhcpd[18629]: Server starting service. | Sep 16 11:80:27 server systemd[1]: Started DHCPv4 Server Daemon. | [root@server.aalushin.net fZ]# |
```

Рис. 2.13: Мониторинг ошибок.

12) В каталоге vagrant/provision/client создал файл л 01-routing.sh и заполнил его нужными командами.

```
C:\work\aalushin\vagrant\provision\client\01-routing.sh
#!/bin/bash

echo "Provisioning script $0"

nmcli connection modify "System eth1" ipv4.gateway "192.168.1.1"

nmcli connection up "System eth1"

nmcli connection modify eth0 ipv4.never-default true

nmcli connection modify eth0 ipv6.never-default true

nmcli connection down eth0

nmcli connection up eth0

# systemctl restart NetworkManager
```

Рис. 2.14: Заполнение л 01-routing.sh

13) В Vagrantfile подключил конфигурацию.

```
\aalushin\vagrant\Vagrantfile
## Client configuration
config.vm.define "client", autostart: false do |client|
  client.vm.box = "rocky9"
  client.vm.hostname = 'client'
  client.vm.boot_timeout = 1440
  client.ssh.insert_key = false
  client.ssh.username = 'vagrant'
  client.ssh.password = 'vagrant'
  client.vm.network :private_network,
                       type: "dhcp'
                      virtualbox__intnet: true
  client.vm.provision "client dummy",
                        type: "shell
                        preserve_order: true,
                        path: "provision/client/01-dummy.sh"
  client.vm.provision "client routing",
                        type: "shell
                        preserve_order: true,
                        run: "always"
                        path: "provision/client/01-routing.sh"
```

Рис. 2.15: Подключение в Vagrantfile

14) Зафиксировал изменения и запустил машину клиент. В окне с мониторингом происходящего увидел, что клиент подключился к серверу и ему выдался адрес.

```
Sep 16 11:32:39 server dhcpd[10629]: DHCPREQUEST for 192.168.1.30 f rom 08:00:27:d9:5b:dc (client) via eth1

Sep 16 11:32:39 server dhcpd[10629]: DHCPACK on 192.168.1.30 to 08: 00:27:d9:5b:dc (client) via eth1

Sep 16 11:32:58 server dhcpd[10629]: DHCPREQUEST for 192.168.1.30 f rom 08:00:27:d9:5b:dc (client) via eth1

Sep 16 11:32:58 server dhcpd[10629]: DHCPACK on 192.168.1.30 to 08: 00:27:d9:5b:dc (client) via eth1

Sep 16 11:33:58 server dhcpd[10629]: DHCPACK on 192.168.1.30 to 08: 00:27:d9:5b:dc (client) via eth1

Sep 16 11:33:05 server named[10465]: REFUSED unexpected RCODE resol ving 'mirrors.rockylinux.org/AAAA/IN': 80.250.174.240#53

Sep 16 11:33:05 server named[10465]: REFUSED unexpected RCODE resol ving 'mirrors.rockylinux.org/A/IN': 80.250.174.240#53
```

Рис. 2.16: Подключение клиента

15) В машине клиента ввёл команду и вывел информацию о подключении. Вывелась информация о трёх сетевых интерфейсах: eth0, eth1 и локальный(lo).
О каждом интерфейсе вывелся одинаковый набор информации. Разберём

интерфейс eth1. ags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 192.168.1.30 netmask 255.255.255.0 broadcast 192.168.1.255 \ ip-адрес версии 4, маска сети и широковещательный адрес inet6 fe80::a00:27ff:fe23:cc66 prefixlen 64 scopeid 0x20\ ip-адрес версии 6, префикс сети и область dhcp, которой принадлежит адрес ether 08:00:27:23:cc:66 txqueuelen 1000 (Ethernet) \ MAC-адрес сетевого оборудования RX packets 18 bytes 3054 (2.9 KiB) \ количество и размер отправленных пакетов RX errors 0 dropped 0 overruns 0 frame 0 \ количество ошибок, сброшенных и превышающих время отправленных пакетов TX packets 317 bytes 33002 (32.2 KiB) \ количество и размер полученных пакетов TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 \ количество ошибок, сброшенных, превысящих время пакетов. а также несущих и коллизий

```
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
inet6 fe80::a00:27ff:fe69:a8d prefixlen 64 scopeid 0x20cther 08:00:27;69:0a:8d txqueuelen 1000 (Ethernet)
RX packets 1417 bytes 159878 (156.1 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1235 bytes 189229 (184.7 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.30 netmask 255.255.255.0 broadcast 192.168.1.255
inet6 fe80::a00:27ff:fed9:5bdc prefixlen 64 scopeid 0x20<link>
ether 08:00:27:d9:5b:dc txqueuelen 1000 (Ethernet)
RX packets 26 bytes 3855 (3.7 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 319 bytes 34528 (33.7 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
   inet 127.0.0.1 netmask 255.0.0.0
   inet6::1 prefixlen 128 scopeid 0x10<hoodstylenether host of the collisions of the colli
```

Рис. 2.17: Инфорамция о клиенте

16) На машине сервер отредактировал файл aalushin.net. Разрешил обновление зоны с локального адреса.

Рис. 2.18: Файл aalushin.net

17) Перезапустил днс-сервер.

```
[root@server.aalushin.net named]# systemctl restart named
[root@server.aalushin.net named]#
```

Рис. 2.19: Перезапуск днс

18) Изменил конфигурационный файл и добавил разрешения на динамическое обновление днс-записей с локального узла прямой и обратной зоны.

Рис. 2.20: Динамическое обновление

19) Перезапустил DHCP-сервер. Перезапуск произошёл успешно и в каталоге /var/named/master/fz появился файл user.net.jnl в бинарной виде.

[root@server.aalushin.net dhcp]# cd /var/named/master/fz
[root@server.aalushin.net fz]# ls
aalushin.net aalushin.net.jnl

Рис. 2.21: Появление user.net.jnl

Рис. 2.22: Содержание user.net.jnl

20) С помощью утилиты dig убедился о наличии днс-записи в клиенте. Анализ информации:

; «» DiG 9.16.23-RH «» [192.168.1.1?] client.aalushin.net \ версия DIG; (1 server found) \ найден один сервер;; global options: +cmd \глобальная опция, говорящая, что нужно отображать \ аргументы при анализе;; Got answer: \ ответ получен;; -»HEADER«- opcode: QUERY, status: NOERROR, id: 61619 \ код операции – \запрос, ошибок нет, ID процесса 61619;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1 \ указаны флаги qr(указывающий, что мы производим запрос), \rd(рекурсия желательна), aa (ответ авторитетный). \ra(указывает, что сервер поддерживает рекурсивный запрос);; OPT PSEUDOSECTION: \псевдосекция; EDNS: version: 0, flags:; udp: 1232 \ версия EDNS флаги и \ размер UDP пакета; COOKIE: а8се51bda0ead2e101000000655112aac7f304ea8831b8d9 (good) \ куки;; QUESTION SECTION: \ полученные ответы ; client.aaushin.net. IN A \ A - ір-адреса версии 4;; ANSWER SECTION: \ ответ client.aalushin.net. 300 IN A 192.168.1.30 \ ір-адрес версии 4;; Query time: 4 msec \ время запроса;; SERVER: 192.168.1.1#53(192.168.1.1) \ адрес сервера;; WHEN: Sun Nov 12 18:00:10 UTC 2023 \ дата;; MSG SIZE rcvd: 94 \ размер сообщения

```
[aalushin@client.aalushin.net ~]$ dig @192.168.1.1 client.aalushin.net
  <>>> DiG 9.16.23-RH <<>> @192.168.1.1 client.aalushin.net
  (1 server found)
 ; global options: +cmd
 ; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 58706
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
  EDNS: version: 0, flags:; udp: 1232
COOKIE: 44f47b6c3d01793c0100000066e8lb525692a58a89f66205 (good)
 ; QUESTION SECTION:
client.aalushin.net.
                                   IN
;; ANSWER SECTION:
client.aalushin.net. 300 IN A
                                                     192,168,1,30
;; Query time: 1 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Mon Sep 16 11:49:35 UTC 2024
  MSG SIZE rcvd: 92
[aalushin@client.aalushin.net ~]$
```

Рис. 2.23: Проверка записи

21) На машине сервер перешёл в каталог для внесения изменений в настройки внутреннего окружения. Создал новый каталог и поместил туда конфигурационные файлы DHCP.

```
[root@server.aalushin.net fz]# cd /vagrant/provision/server/
[root@server.aalushin.net server]# mkdir -p /vagrant/provision/server/dhcp/etc/dhcp
[root@server.aalushin.net server]# mkdir -p /vagrant/provision/server/dhcp/etc/systemd/system
[root@server.aalushin.net server]# cp -R /etc/dhcp/dhcpd.conf /vagrant/provision/server/dhcp/etc/
dhcp/
[root@server.aalushin.net server]# cp -R /etc/systemd/system/dhcpd.service /vagrant/provision/ser
ver/dhcp/etc/systemd/system/
[root@server.aalushin.net server]#
```

Рис. 2.24: Перенос конфигурационных файлов

22) Заменил конфигурационные файлы днс-сервера.

```
[root@server.aalushin.net dns]# cp -R /var/named/* /vagrant/provision/server/dns/var/named/cp: overwrite '/vagrant/provision/server/dns/var/named/master/fz/aalushin.net'? y cp: overwrite '/vagrant/provision/server/dns/var/named/master/rz/192.168.1'? y [root@server.aalushin.net dns]# cp -R /etc/named/* /vagrant/provision/server/dns/etc/named/cp: overwrite '/vagrant/provision/server/dns/etc/named/aalushin.net'? y
```

Рис. 2.25: Замена сервера

23) В каталоге /vagrant/provision/server создал исполняющий файл dhcp.sh и вписал соответствуйющий скрипт.

```
[root@server.aalushin.net ans]# ca ..
[root@server.aalushin.net server]# touch dhcp.sh
[root@server.aalushin.net server]# chmod +x dhcp.sh
```

Рис. 2.26: Создание dhcp.sh

```
dhcp.sh [-M--] 0 L:[ 3+16 19/ 24] *(36 echo "Provisioning script $0"

echo "Install needed packages" dnf -y install dhcp-server

echo "Copy configuration files" cp -R /vagrant/provision/server/dhcp/etc/* /etc

chown -R dhcpd:dhcpd /etc/dhcp

restorecon -vR /etc
restorecon -vR /var/lib/dhcpd

echo "Configure firewall" firewall-cmd --add-service=dhcp firewall-cmd --add-service=dhcp --permanent
```

Рис. 2.27: Скрип в dhcp.sh

24) В Vagrantfile добавил скрипт в разделе конфигурации сервера.

Рис. 2.28: Изменения в Vagrantfile

25) Выключил виртуальные машины клиент и сервер.

```
Far Manager, version 3.0.6364.0 x86
Copyright © 1996-2000 Eugene Roshal, Copyright © 2000-2024 Far Group
C:\work\aalushin\vagrant>vagrant halt server
==> server: Attempting graceful shutdown of VM...
C:\work\aalushin\vagrant>vagrant halt client
==> client: Attempting graceful shutdown of VM...
```

Рис. 2.29: Отключение машин

3 Вывод

Я приобрёл практические навыки по установке и конфигурированию DHCPсервера.

4 Контрольные вопросы

- 1) В каких файлах хранятся настройки сетевых подключений?
 - Конфигурация сетевого интерфейса хранится в /etc/sysconfig/networkscripts в соответствующем файле с префиксом ifcfg (там же конфигурационные файлы других интерфейсов).
- 2) За что отвечает протокол DHCP?
 - Протокол DHCP (Dynamic Host Configuration Protocol) отвечает за автоматическую настройку IP-адресов и других сетевых параметров для устройств в сети.
- 3) Поясните принцип работы протокола DHCP. Какими сообщениями обмениваются клиент и сервер, используя протокол DHCP?
 - Протокол DHCP работает по принципу клиент-серверной модели. Когда клиент подключается к сети, он отправляет DHCP-запрос на сервер, запрашивая IP-адрес и другие сетевые настройки. Сервер DHCP выделяет IP-адрес из своего пула доступных адресов и отправляет его клиенту вместе с другими настройками в сообщении DHCP-ответа.
- 4) В каких файлах обычно находятся настройки DHCP-сервера? За что отвечает каждый из файлов?
- Настройки хранятся в файле dhcpd.conf, а именно конфигурация dhcpсети(адрес подсети, диапазон адресов для распределения клиентам, адрес

маршрутизатора и broadcast-адрес), также доменное имя и его серверы. В файле dhcpd.service прописана привязка dhcpd к интерфейсу.

- 5) Что такое DDNS? Для чего применяется DDNS?
 - DDNS (Dynamic Domain Name System) это система, которая позволяет автоматически обновлять записи DNS при изменении IP-адресов устройств в сети. DDNS обеспечивает привязку доменных имен к динамически изменяющимся IP-адресам, что позволяет обращаться к сетевым ресурсам по именам, не зависящим от их текущего IP-адреса.
- 6) Какую информацию можно получить, используя утилиту ifconfig? Приведите примеры с использованием различных опций
 - Утилита ifconfig позволяет получить информацию о сетевых интерфейсах на компьютере, включая IP-адреса, маски подсети, MAC-адреса и другие параметры. Например, команда "ifconfig" выводит информацию о всех активных сетевых интерфейсах, а команда "ifconfig eth0" показывает информацию о конкретном сетевом интерфейсе eth0.
- 7) Какую информацию можно получить, используя утилиту ping? Приведите примеры с использованием различных опций.
- Утилита ping используется для проверки доступности и измерения задержки (ping) до удаленного хоста с использованием ICMP (Internet Control Message Protocol).