	Polinomios de Laguerre
D 11 () 1 1 E/:	<u> </u>
Problema(s) de la Física	Propagación de ondas electromagnéticas, átomo hidrogenoide
Ecuación diferencial	xy''(x) + (1-x)y'(x) + ny(x) = 0
Ecuación diferencial (po-	$xy''(x) + (\alpha + 1 - x)y'(x) + ny(x) = 0$
linomios asociados)	$xy(x) + (\alpha + 1 - x)y(x) + ny(x) = 0$
Soluciones	$\sum_{k=0}^{\infty} a_k x^k$; con $a_{k+1} = \frac{k-n}{(k+1)^2} a_k$
Función generatriz	$\sum_{n=0}^{\infty} L_n(x)t^n = \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{(-1)^k}{k!} \left(\frac{n}{k}\right) x^k t^n t < 1$
Función genera-	
triz(polinomios aso-	$\sum_{n=0}^{\infty} L_n^{\alpha}(x) t^n = \frac{1}{(1-t)^{\alpha+1}} e^{\frac{-xt}{1-t}} t < 1$
ciados)	
Ortogonalidad	$\int_0^\infty e^{-x} L_m(x) L_n(x) dx = \delta_{nm}$
Ortogonalidad(polinomios	$\int_0^\infty e^{-x} x^{\alpha} L_m^{\alpha}(x) L_n^{\alpha}(x) dx = \frac{\Gamma(n+\alpha+1)}{n!} \delta_{nm}$
asociados)	$\int_0^\infty e^{-x} L_m(x) L_n(x) dx = \frac{1}{n!} \sigma_{nm}$
Relaciones de Recurren-	(+1)I $()$ $(0+1)I$ $()$ I $()$
cia	$(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) - xL_{n-1}(x)$
Relaciones de recu-	
rrencia(polinomios	$L_n^{\alpha}(x) = L_n^{\alpha+1}(x) - L_{n-1}^{\alpha+1}(x)$
asociados)	$n \rightarrow n \rightarrow$
	$\frac{d}{dx}L_n^{\alpha}(x) = -L_{n-1}^{\alpha+1}(x)$
	$nL_n^{\alpha} = (n+\alpha)L_{n-1}^{\alpha}(x) - xL_{n-1}^{\alpha+1}(x)$
	10 () 10 1 ()
	$(n+1)L_{n+1}^{\alpha}(x) = (2n+\alpha+1-x)L_n^{\alpha}(x) - (n+\alpha)L_{n-1}^{\alpha}(x)$
	$x\frac{d}{dx}L_n^{\alpha}(x) = nL_n^{\alpha}(x) - (n+\alpha)L_{n-1}^{\alpha}(x)$

fuentes:

https://es.wikipedia.org/wiki/Polinomios_de_Chebyshov

 $https://es.wikipedia.org/wiki/Polinomios_de_Legendre$

 $https://es.wikipedia.org/wiki/Polinomios_de_Laguerre$

Lebedev, N. N., Silverman, R. A. (1972). Special Functions Their Applications (Revised ed.). Dover Publications.

Polinomios de Chebychev		
Problema(s) de la Física	Análisis numérico, ondas periódicas	
Geometría	Sistema coordenado polar	
Ecuación diferen-	$(1 - x^2)y''(x) - xy'(x) + \nu^2 y(x) = 0$	
cial (tipo 1) Ecuación diferen-		
cial (tipo 2)	$(1 - x^2)y''(x) - 3xy'(x) + p(p+2)y(x) = 0$	
Soluciones	$T_n(x) = \cos(n\cos^{-1}x)$ $\nu = n$ $V_n(x) = \sin(n\cos^{-1}x)$ $\nu = n$	
Funciones adiciona-		
les	$W_n(x) = (1 - x^2)^{-1/2} T_{n+1}(x)$	
	$U_n(x) = (1 - x^2)^{-1/2} V_{n+1}(x)$	
Solución General	$U_n(x) = (1 - x^2)^{-1/2} V_{n+1}(x)$ $y(x) = \begin{cases} c_! T_n(x) + c_2 \sqrt{1 - x^2} U_{n-1}(x) & \text{para } n = 1, 2, 3, \\ c_1 + c_2 \sin^{-1} x & \text{para } n = 0 \end{cases}$	
	$c_1 + c_2 \sin^{-1} x \qquad \text{para} \qquad n = 0$	
Función generatriz (tipo 1)	$\sum_{n=0}^{\infty} T_n(x)t^n = \frac{1 - tx}{1 - 2tx + t^2}$	
Función generatriz	$\sum_{n=1}^{\infty} II(n)t^n = 1$	
(tipo 2)	$\sum_{n=0}^{\infty} U_n(x)t^n = \frac{1}{1 - 2tx + t^2}$	
Ortogonalidad (tipo 1)	$\int_{-1}^{1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases} 0 & si & n \neq m \\ \pi & si & n = m = 0 \\ \pi/2 & si & n = m \neq 0 \end{cases}$ $\int_{-1}^{1} U_n(x) U_m(x) \sqrt{1-x^2} dx = \begin{cases} 0 & si & n \neq m \\ \pi/2 & si & n = m \end{cases}$	
Ortogonalidad (tipo 2)	$\int_{-1}^{1} U_n(x) U_m(x) \sqrt{1 - x^2} dx = \begin{cases} 0 & si \ n \neq m \\ \pi/2 & si \ n = m \end{cases}$	
Relaciones de Re- currencia (tipo 1)	$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) ; T_0(x) = 1 $ $T_1(x) = x$	
Relaciones de Re- currencia (tipo 2)	$U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x) ; U_0(x) = 1 U_1(x) = 2x$	
Relaciones de recu-	$T_n(x) = U_n(x) - xU_{n-1}(x)$	
rrencia mutua	10() 10 1()	
Paridad (tipo 1)	$(1 - x^2)U_n(x) = xT_{n+1}(x) - T_{n+2}(x)$ $T_{2n}(x) = T_{2n}(-x) ; T_{2n+1}(-x) = -T_{2n+1}(x)$	
Paridad (tipo 2)	$U_{2n}(x) = U_{2n}(-x) ; U_{2n+1}(-x) = -U_{2n+1}(x)$	
Fórmula de Rodrigues(tipo 1)	$T_n(x) = \left[\frac{(-1)^n \sqrt{\pi} (1-x^2)^{1/2}}{2^n (n-1/2)!}\right] \frac{d^n}{dx^n} (1-x^2)^{n-1/2}$	
Fórmula de Rodri-	$U_n(x) = \left[\frac{(-1)^n \sqrt{\pi}(n+1)}{2^{n+1}(n+1/2)!(1-x^2)^{1/2}} \right] \frac{d^n}{dx^n} (1-x^2)^{n+1/2}$	
gues	$\left[2^{n+1}(n+1/2)!(1-x^2)^{1/2} \right] dx^n$	

Polinomios de Legendre	
Problema(s) de la Física	Ecuación de Helmholtz, átomo de hidrógeno, movimiento de planetas
	propagación de señales y calor
Geometría	Sistema coordenado esférico
Geometría (Funciones asociadas)	Sistema coordenado polar
Ecuación diferen- cial	$(1 - x^2)y''(x) + 2xy'(x) + l(l+1)y(x) = 0$
Ecuación diferencial asociada	$(1 - x^2)y''(x) - 2xy'(x) + \left[l(l+1) - \frac{m^2}{1 - x^2}\right]y(x) = 0$
Soluciones	$y_1(x) = 1 - l(l+1)\frac{x^2}{2!} + (l-2)l(l+1)(l+3)\frac{x^4}{4!} - \dots$ $y_2(x) = x - (l-1)(l+2)\frac{x^3}{3!} + (l-3)(l-1)(l+2)(l+4)\frac{x^5}{5!} - \dots$ $y(x) = c_1y_1(x) + c_2y_2(x)$
Solución General	$y(x) = c_1 y_1(x) + c_2 y_2(x)$
Soluciones(Funciones asociadas)	$y_1(x) = 1 - l(l+1)\frac{x^2}{2!} + (l-2)l(l+1)(l+3)\frac{x^4}{4!} - \dots$
,	$y_2(x) = x - (l-1)(l+2)\frac{x^3}{3!} + (l-3)(l-1)(l+1)(l+4)\frac{x^5}{5!} - \dots$
Solución General (Funciones asociadas)	$y(x) = c_1 y_1(x) + c_2 y_2(x)$
Función generatriz	$\sum_{n=0}^{\infty} P(x)h^n$
Función generatriz	$\frac{\sum_{n=0}^{\infty} P_n(x)h^n}{\frac{(2m)(1-x^2)^{m/2}}{2^m m!(1-2xh+h^2)^{m+1/2}}} = \sum_{n=0}^{\infty} P_{n+m}^m(x)h^n$
Ortogonalidad	$\int_{-1}^{1} P_l(x) P_k(x) dx = 0 \qquad l \neq k$
Ortogonalidad (Funciones asociadas)	$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) dx = 0 \qquad l \neq k$
Relaciones de Re- currencia	$P'_{n+1} = (n+1)P_n + P'_n; \ P'_{n-1} = -nP_n + xP'_n$
	$(2n+1)P_n = P'_{n+1} - P'_{n-1}; \ (1-x^2)P'_{n+1} = n(P_{n-1} - xP_n)$
Relaciones de recurrencia (Funciones asociadas)	$P_n^{m+1} = \frac{2mx}{(1-x^2)^{1/2}} P_n^m + [m(m-1) - n(n+1)] P_n^{m-1}$
ŕ	$(2n+1)xP_n^m = (n+m)P_{n-1}^m + (n-m+1)P_{n+1}^m$ $(2n+1)(1-x^2)^{1/2}P_n^m = P_{n+1}^{m+1} - P_{n-1}^{m+1}$ $2(1-x^2)^{1/2}(P_n^m)' = P_n^{m+1} - (n+m)(n-m+1)P_n^{m-1}$ $P_n(-x) = P_n(x) \text{n par; } P_n(-x) = -P_n(x) \text{n impar}$
Paridad	$P_n(-x) = P_n(x)$ n par; $P_n(-x) = -P_n(x)$ n impar
Formula de Rodri-	$P_l(x) = \frac{1}{2^{ll}} \frac{d^l}{dx^l} (x^2 - 1)^l$
gues	$2^{i}l! dx^{i} = 1$
Armónicos esféricos (Funciones especia-	$Y_l^m(\theta, \phi) = (-1)^m \left[\frac{2l + 1(l + m)!}{4\pi(l - m)!} \right]^{1/2} P_l^m(\cos\theta \exp(im\phi))$
les)	$Y_l^{-m}(\theta,\phi) = (-1)^m [Y_l^m(\theta,\phi)]^*$