

150 mA, ultra-low quiescent current linear voltage regulator

Datasheet - production data

Features

- Input voltage from 1.5 to 5.5 V
- Very low quiescent current:
 - 1.0 μA (typ) at no load
 - 1.4 μA (typ) at 150 mA load
 - 1 nA (typ) in OFF mode
 - 200 nA max in OFF mode at 125 °C
- Output voltage tolerance: ± 2% at 25 °C
- 150 mA guaranteed output current
- Wide range of output voltages: 0.8 V to 3.3 V in 100 mV steps
- Logic-controlled electronic shutdown
- Compatible with ceramic capacitor (C_{OUT} = 1 µF)
- Internal current and thermal limit
- Package: SOT666-6L
- Temperature range: -40 °C to 125 °C

Description

The STLQ015xx provides 150 mA of maximum current from an input voltage ranging from 1.5 V to 5.5 V, with a typical dropout voltage of 112 mV. The key feature of this device is its quiescent current, which is just 1.4 μ A at maximum output

current. The device is stable with a ceramic capacitor on the output. It offers very low quiescent current, extending battery life and making the device suitable for applications requiring very long standby time. The enable logic control function puts the STLQ015xx in shutdown mode, reducing total current consumption to 1 nA. The device also includes short-circuit constant-current limiting and thermal protection. Typical applications for the device are portable and battery-powered systems, electronic sensors, and microcontroller power supply.

Table 1. Device summary

Part numbers	Order codes	Output voltages
STLQ015XX12	STLQ015XG12R	1.2 V
STLQ015XX15	STLQ015XG15R	1.5 V
STLQ015XX18	STLQ015XG18R	1.8 V
STLQ015XX25	STLQ015XG25R	2.5 V
STLQ015XX28	STLQ015XG28R	2.8 V
STLQ015XX30	STLQ015XG30R	3.0 V
STLQ015XX31	STLQ015XG31R	3.1 V
STLQ015XX33	STLQ015XG33R	3.3 V

Contents STLQ015xx

Contents

1	STLQ015xx block diagram	. 3
2	Pin configuration and description	. 4
3	Typical application	. 5
4	Maximum ratings	. 6
5	Electrical characteristics	. 7
6	Typical performance characteristics	. 9
7	Package mechanical data	12
R	Revision history	15

1 STLQ015xx block diagram

Figure 1. Device block diagram

2 Pin configuration and description

Figure 2. Pin configuration (top view)

Table 2. Pin description

Pin	Symbol	Function			
1	EN	Enable input. Set V_{EN} = High to turn on the device. Set V_{EN} = Low to turn off the device.			
2	GND	Ground			
3	IN	Input voltage			
4	OUT	Output voltage			
5	NC	Not connected			
6	NC	Not connected			

STLQ015xx Typical application

3 Typical application

Figure 3. Typical application circuit

Maximum ratings STLQ015xx

4 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	-0.3 to 7	V
V _{OUT}	DC output voltage	- 0.3 to V _{IN} + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to V _{IN} + 0.3	٧
I _{OUT}	Output current	Internally limited	mA
ESD	Human Body Model	± 3	kV
E3D	Machine Model	± 300	٧
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Max junction temperature	150	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	SOT666	Unit
R _{thJA}	Thermal resistance junction-ambient	132	°C/W
R _{thJC}	Thermal resistance junction-case	56	°C/W

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = C_{OUT} = 1 $\mu\text{F},~I_{OUT}$ = 1 mA, V_{EN} = $V_{IN},$ unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Operating input valtage	I _{OUT} = 0	1.5		5.5	V
V _{IN}	Operating input voltage	-40°C < T _J < 125°C, I _{OUT} = 150mA	1.55		5.5	\ \ \ \ \ \
		I _{OUT} = 1mA	-2		2	%
V_{OUT}	V _{OUT} accuracy	I _{OUT} = 1mA, V _{OUT} < 1V	-20		+20	mV
		I _{OUT} = 1mA, -40°C < T _J < 125°C	-3		3	%
ΔV _{OUT} -	Static line regulation	$V_{OUT} + 1V \le V_{IN} \le 5.5V$, $I_{OUT} = 1mA$		±0.01		%/V
ΔV _{OUT} - LOAD	Static load regulation	I _{OUT} = 1mA to 150mA		±0.002		%/mA
V	Dropout voltage (1)	I _{OUT} = 150mA		112		mV
V _{DROP}	Dropout voltage V	I _{OUT} = 150mA, -40°C < T _J < 125°C			300	IIIV
e _N	Output noise voltage	10kHz to 100kHz, I _{OUT} = 10mA, V _{OUT} = 0.8V		75		μV _{RMS}
		$V_{IN} = V_{OUTNOM} + 1V + /-V_{RIPPLE}$ $V_{RIPPLE} = 0.1V$, Freq. = 1kHz $I_{OUT} = 10mA$		40		
SVR	Supply voltage rejection V _{OUT} = 0.8V	$V_{IN} = V_{OUTNOM} + 1V + V_{RIPPLE}$ $V_{RIPPLE} = 0.1V$, Freq.=10kHz $I_{OUT} = 1$ mA		30		dB
		$V_{IN} = V_{OUTNOM} + 1V + /-V_{RIPPLE}$ $V_{RIPPLE} = 0.1V$, Freq.=100kHz $I_{OUT} = 1$ mA		15		
		I _{OUT} = 0		1.0	1.7	
IQ	Quiescent current	$I_{OUT} = 0$ to 150mA, -40°C < T _J < 125°C		1.7	2.4	μA
I _{OFF}	Shutdown current (2)	V_{IN} input current in OFF mode: $V_{EN} = GND, -40^{\circ}C < T_J < 125^{\circ}C$		200	nA	
I _{SC}	Short circuit current	R _L = 0	250	350		mA
\/	Enable input logic low	V _{IN} = 1.5V to 5.5V		0.4	V	
V _{EN}	Enable input logic high	V _{IN} = 1.5V to 5.5V	0.7			٧
I _{EN}	Enable pin input current	V _{EN} = 5.5V 1 200		200	nA	
T _{ON}	Turn-on time (3)	V _{OUT} = 0.8 V, I _{OUT} = 150 mA		160		μs
Т	Thermal shutdown			170		- °C
T _{SHDN}	Hysteresis		15			

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{OUT}	Output capacitor	Capacitance (see typical performance characteristics for stability)	0.47		10	μF
	ESR		0.056		6	Ω

^{1.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V

During shutdown and at no load, P-channel leakage current flowing through the internal resistor divider determines the increase of V_{OUT}

^{3.} Turn-on time is the time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value

6 Typical performance characteristics

Figure 4. Output voltage vs. temperature

1.00% 0.80% $I_{OUT} = 1 \text{ mA}$ 0.60% 0.40% variation [%] 0.20% 0.00% -0.20% -0.40% -0.60% -0.80% -1.00% 0 100 120 140 -20 20 40 60 80 Temperature [°C]

Figure 5. Output voltage vs. input voltage $(V_{OUT} = 0.8 \text{ V})$

Figure 6. Output voltage vs. input voltage $(V_{OUT} = 3.3 \text{ V})$

Figure 7. Dropout voltage vs. temperature

Figure 8. Dropout voltage vs. output current Figure 9. Quies

2.00 $V_{IN} = 1.5 \text{ V}, V_{O} = 0.8 \text{ V}$ 1.80 • V_{IN} = 4.3 V, V_O = 3.3 V 1.60 1.40 1.20 ¥ 1.00 0.80 0.60 0.40 0.20 40 60 80 100 120 140 20 Temperature [°C]

current Figure 9. Quiescent current vs. temperature

Figure 10. Supply voltage rejection vs. frequency

Figure 11. Supply voltage rejection vs. I_{OUT}

Figure 12. Quiescent current vs. input voltage Figure 13. Quiescent current vs. output current

Figure 14. Output noise voltage vs. frequency Figure 15. C_{OUT} stability region

10/16 Doc ID 17285 Rev 3

Figure 16. Startup transient

Figure 17. Enable transient

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 6. SOT666 mechanical data

Dim.		mm. inch.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.45		0.60	0.018		0.024	
A3	0.08		0.18	0.003		0.007	
b	0.17		0.34	0.007		0.013	
b1	0.19	0.27	0.34	0.007	0.011	0.013	
D	1.50		1.70	0.059		0.067	
Е	1.50		1.70	0.059		0.067	
E1	1.10		1.30	0.043		0.051	
е		0.50			0.020		
L1		0.19			0.007		
L2	0.10		0.30	0.004		0.012	
L3		0.10			0.004		

Ε1 7366479

Figure 18. SOT666 dimensions drawing

Figure 19. SOT666 footprint recommended data (mm.)

STLQ015xx Revision history

8 Revision history

Table 7. Document revision history

Date	Revision	Changes	
23-Mar-2010	1 Initial release.		
20-Jan-2011	2	Modified: <i>Table 6 on page 12</i> and <i>Figure 18 on page 13</i> . Added: <i>Figure 19 on page 14</i> .	
11-Sep-2012	3	Added: new order codes STLQ015XG12R, STLQ015XG15R and STLQ015XG18R <i>Table 1 on page 1</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES. ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 17285 Rev 3

