Статистика 1

Фонин А.Ю.

March 10, 2021

Exercise 1

1)
$$\xi \sim U[-a, a]$$

Тогда μ = 0, σ^2 = $\frac{a^2}{3}$

$$\gamma_4 = \frac{\int_{-a}^a z^4 \cdot \frac{1}{2a} dz}{\frac{a^4}{2}} - 3 = \frac{\frac{z^5}{5} \Big|_{-a}^a}{\frac{2}{9} a^5} = \frac{2a^5 \cdot 9}{10a^5} - 3 = \frac{9}{5} - 3 = -\frac{6}{5}$$

То есть γ_4 не зависит от а

2) $\xi \sim L(\alpha,\beta)$. Тогда $p_{\xi}(x) = \frac{\alpha}{2}e^{-\alpha(x-\beta)}$. Так как коэффициент эксцесса не зависит от смещения, можем β положить равную 0.

$$\gamma_4 = \frac{\int_{-\infty}^{\infty} z^4 \cdot \frac{\alpha}{2} e^{-\alpha x} dz}{\sigma^4} - 3 = \frac{\int_{0}^{\infty} (\alpha z)^4 \cdot e^{-\alpha x} d\alpha z}{\sigma^4 \sigma^4} - 3$$

Замена переменной $\alpha z = x$. Найдем числитель.

$$\int_{0}^{\infty} x^{4} e^{-x} dx = \int_{0}^{\infty} x^{4} (-e^{-x})' dx = -x^{4} e^{-x} + 4 \int_{0}^{\infty} x^{3} e^{-x} dx =$$

$$\int_{0}^{\infty} x^{3} e^{-x} dx = -x^{3} e^{-x} + 3 \int_{0}^{\infty} x^{2} e^{-x} dx$$

$$\int_{0}^{\infty} x^{2} e^{-x} dx = -x^{2} e^{-x} + 2 \int_{0}^{\infty} x e^{-x} dx$$

$$\int_{0}^{\infty} x e^{-x} dx = -x e^{-x} + \int_{0}^{\infty} e^{-x} dx = -x e^{-x} - e^{-x}$$

$$= -(x^{4} + 4x^{3} + 12x^{2} + 24x + 24)e^{-x} \Big|_{0}^{\infty} = -24$$

Так как $\sigma^2 = \frac{2}{\alpha^2}$

$$\gamma_4 = \frac{24}{4} - 3 = 3$$

То есть тоже не зависит от параметров

Exercise 2

По определению \bar{a}_n - состоятельная оценка для a, если $a_n \stackrel{p}{\longrightarrow} a$ при п $\stackrel{\infty}{\longrightarrow}$

Зафиксируем x'

Используем ЗБЧ, так как индикаторы распределены одинакого с конечным мат ожиданием

$$\overline{F_n}(x') = \sum \frac{\{X_i < x'\}}{n} \xrightarrow{p} E\{x_1 < x'\} = P(x_1 < x') \cdot 1 + P(x_1 \ge x') \cdot 0 = F(x')$$

Exercise 3

Возникает противоречие вследствие того, что распределение X_n есть $F^n(x)$, а у X_1 - F(x)

Exercise 4

Заметим, что $I\{X_i < y\}$ - с.в с распределением Бернулли с параметром F(y), так как она принимает 1, если $X_i < y$, и 0 иначе

$$P(I\{X_i < y\} = 1) = P(X_i < y) = F(y)$$

Мы знаем, что мат. ожидание бернуллевской с.в = F(y), а дисперсия $F(y) \cdot (1 - F(y))$

а) Так как $I\{X_i < y\}$ распределены одинакого

$$EF_n(y) = E\frac{\sum_{i=1}^n I(X_i < y)}{n} = \frac{\sum_{i=1}^n EI(X_i < y)}{n} = \frac{nEI(X_1 < y)}{n} = F(y)$$

b) Так как $I\{X_i < \gamma\}$ еще и независимы

$$DF_n(y) = D\frac{\sum_{i=1}^n I(X_i < y)}{n} = \frac{\sum_{i=1}^n DI(X_i < y)}{n^2} = \frac{nDI(X_1 < y)}{n^2} = \frac{F(y)(1 - F(y))}{n}$$

Exercise 5

 $X_1 \dots X_n$ Выборка из распределения Бернулли с параметрами р $y_1 \dots y_n$ где $y_i = F(X_i)$, а F(y) - функция распределения Бернулли

$$F(y) = \begin{vmatrix} 0 & k \le 0 \\ q & 0 < k \le 1 & \text{Пусть } F(x) = P(X < x) \\ 1 & k > 1 \end{vmatrix}$$

Так как X_i может принимать либо 0, либо 1, то $y_i = 0$ с вероятностью 1 – p и q с вероятностью по p

Exercise 6

Рассмотри пространство квадратично-интегрируемых функций L^2 с весом р. т.е. $\{f:\int\limits_{-\infty}^{\infty}f^2(x)p(x)dx<\infty\}$ в котором скалярное произведение \forall f, g \in L_2 имеет вид

$$(f,g) = \int_{-\infty}^{\infty} f(x)g(x)p(x)dx$$

Для него выполнено неравенство Коши-Буняковского

$$\left(\int f(x)g(x)p(x)dx\right)^2 \leq \left(\int f(x)^2p(x)dx\right)\cdot \left(\int g(x)^2p(x)dx\right)$$

 x^2 и 1 принадлежит $L_2 \Rightarrow$ для них выполнено неравенство Коши

Тогда

$$\int x^4 p dx \le (\int x^2 p dx)^2$$

То есть $\sigma^4 \leq \mu_4$, если μ_1 = 0, а если не равно, то можем сделать сдвиг, γ_4 не поменяется. Тогда

$$1 \le \frac{\mu_4}{\sigma^4}$$

$$\gamma_4 \geq -2$$