Sequence and Series

Yashas.N

1 Trivial properties

- The below properties are for in general complete spaces. whose defining property is the presiding point
- ullet Cauchy sequence \iff Convergent sequence

(in general metric spaces \mathbb{R}^n for $n \in \mathbb{N}$ are complete in particular \mathbb{R} and \mathbb{C} are complete).

 $\bullet \ \alpha_n \to o \ \text{as} \ n \to \infty \ \text{is a necessary condition}$ for a series $\sum_{n=1}^\infty \alpha_n \ \text{to converge}.$

2 Tests for positive termed series

• Below tests apply for series whose general terms are positive only (i.e. ≥ 0)

(Note : it can also be used to check for absolute convergence as taking absolute value of each term results in ≥ 0 terms)

- Comparison test: for series $\sum u_n$, $\sum v_n$ if $u_n \leq k \times v_n$ for k > 0 then u_n follows behaviour (convergence or divergence) of v_n
- Limit form of comparison test for series $\sum u_n, \sum v_n$ if

$$l = \lim_{n \to \infty} \frac{u_n}{v_n}.$$

then:

- if $l \neq o$ then $\sum u_n$ follows behaviour of $\sum v_n$.
- if l = o then $\sum u_n$ converges if $\sum v_n$ converges.

(as $o < u_m \le v_m$ holds for sufficiently large m, and also if $\sum u_n$ diverges then $\sum v_n$ diverges).

■ if $l = \infty$ u_n diverges if $\sum v_n$ does (as $o < v_m \le u_m$ holds like above point).

- Condensation test : if f(n) is a monotone decreasing sequence of positive numbers > 1 then for $m \in \mathbb{N} \sum f(n)$ and $\sum m^n f(m^n)$ have same behaviour.
- Raabe's Test: for series $\sum u_n$ of positive real numbers if $D_n = n \left(\mathbf{1} \frac{u_n}{u_{n+1}} \right)$ and

$$D = \limsup D_n$$
, $d = \liminf D_n$

then:

- if D < 1 series converges
- if $\mathbf{d} > \mathbf{1}$ series diverges
- no conclusions if $d \le 1 \le D$
- Integral test : if $f(x) \ge 0$ in $[1, \infty)$ and is monotonically decreasing then $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(x) dx$ follow same behaviour.
- Intergral inequality : if $\sum_{n=1}^{\infty} f(n)$ is as above and converges to s then the for partial sums $s_n = \sum_{k=1}^n f(k)$ we have

$$\int_{n+1}^{\infty} f(t)dt \le s - s_n \le \int_{n}^{\infty} f(t)dt$$

3 General tests

• Ratio test for series $\sum z_n$ with non zero terms $\in \mathbb{C}$ if $r_n = \left| \frac{z_{n+1}}{z_n} \right|$

$$r = \lim \inf r_n$$
, $R = \lim \sup r_n$.

then:

- if R < 1 series converges absolutely
- \blacksquare if r > 1 series diverges
- no conclusion of behaviour if $r \le 1 \ge R$

• Root test : for series $\sum z_n$ if

$$L = \limsup |z_n|^{1/n}$$

then:

- if L < 1 series converges absolutely.
- if L > 1 series diverges.
- if L = 1 no conclusion.

4 Miscellaneous series properties

- if $\sum (x_n + y_n)$ converges then both $\sum x_n$ and $\sum y_n$ converge or diverge (one cannot diverge and another converge).
- if $\sum a_n$ and $\sum b_n$ converge absolutely then $\sum c_n = \sum a_n b_n$ converges absolutely.
- restatement of above point : $a_n, b_n > o$ and $\sum a_n, \sum b_n$ converge then $\sum a_n b_n$ converges
- if $a_n \geq 0$ and $\sum a_n$ converges then $\sum a_n^k$ for $k \geq 1$ converges (as $a_n \to 0$, for sufficiently large n we get $a_n < 1 \implies (a_n)^k \leq a_n$ and by comparison test convergence follows).
- if $o \leq a_n \rightarrow a$ then

$$s_n = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_n}{n} \to \alpha$$

- for converse of above point if s_n converges and if for $b_n = a_n a_{n-1}$, $\lim nb_n = o$ then s_n converges
- \bullet similar to above point if $|nb_n| \leq M < \infty \ \forall n$ and $lim \ s_n = s$ then $\alpha_n \to s$
- if $o < a_n \rightarrow a$ then

$$(\alpha_1.\alpha_2...\alpha_n)^{1/n} \to \alpha$$

- \bullet if $\sum \alpha_n$ converges then $\sum \frac{\sqrt{\alpha_n}}{n}$ converges
- \bullet if $\alpha_n \to o$ and $\sum \alpha_n$ converges then $\sum \sqrt{\alpha_n \alpha_{n+1}}$ converges.
- Series $\sum_{n=0}^{\infty} \left(\frac{az+b}{cz+d}\right)^n$ for |a|=|c|>0 converges whenever

$$\frac{|b|^2-|d|^2}{2} < Re(z(c\bar{d}-\alpha\bar{b})).$$

or in general if $|a| \neq |c|$, then converges whenever

$$\frac{(|a|^2-|c|^2)|z|^2+|b|^2-|d|^2}{2} < Re(z(c\bar{d}-a\bar{b})).$$

- Dirichlet's Test :If $\left\{\sum_{k=1}^n \alpha_k\right\}$ is a bounded sequence and $\{b_n\}$ is an null sequence $(b_n \to 0)$ as $n \to \infty$) then $\sum_{n=1}^\infty \alpha_n b_n$ converges.
- **Abel's Test**: if $\{x_n\}$ is convergent monotone sequence and series $\sum y_n$ is convergent then $\sum x_n y_n$ is convergent.
- if $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ diverges, $s_n = \sum_{k=1}^{n} a_k$

then

- For any sequence $\{a_n\}$

$$\left| \liminf \left| \frac{\alpha_{n+1}}{\alpha_n} \right| \leq \lim \inf |\alpha_n|^{1/n}$$

$$\leq lim \, sup \, |\alpha_n|^{1/n} \leq lim \, sup \left| \frac{\alpha_{n+1}}{\alpha_n} \right|$$

- if $\sum a_n$ converges and $\{b_n\}$ is monotonic and bounded then $\sum a_n b_n$ converges
- \bullet Leibniz Theorem : if $\{c_n\}$ is such that $c_n > o$ and is monotonic decreasing to o (i.e. $c_{n+1} < o$

$$c_n$$
, $c_n \to 0$) then $\sum_{n=1}^{\infty} (-1)^{n+1} c_n$ converges.

- a series $\sum a_n$ is said to be absolutely convergent if $\sum |a_n|$ converges
- if a series is absolutely convergent the it is convergent.

• if
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely, $\sum_{n=0}^{\infty} a_n = A$,

$$\sum_{n=0}^{\infty}b_n=B \text{ and } c_n=\sum_{k=0}^{n}\alpha_kb_{n-k} \text{ (Cauchy product) then } \sum_{n=0}^{\infty}c_n=AB$$

- Cauchy product of two absolutely convergent series is absolutely convergent.
- if $\{k_n\}$ is a sequence in $\mathbb N$ such that every integer appears once and if $\alpha_n' = \alpha_{k_n}$ then a rearrangement of $\sum \alpha_n$ is of type $\sum \alpha_n'$

• Riemann Rearrangement Theorem : if series of real numbers $\sum a_n$ converges but not absolutely then for any $-\infty \ge \alpha \ge \beta \ge \infty$ series $\sum a_n$ and be rearranged to $\sum a'_n$ with partial sum s'_n such that

$$\lim \inf s'_n = \alpha$$
 and $\lim \sup s'_n = \beta$

• for a given double sequence $\{a_{ij}\}$ for i =1, 2, ..., j = 1, 2, ... if $\sum_{i=1}^{\infty} |a_{ij}| = b_i$ and $\sum b_i$ converges then

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{ij}=\sum_{i=1}^{\infty}\sum_{i=1}^{\infty}a_{ij}$$

, same holds true i.e. summation can be changed if each of $a_{ij} \geq 0$ also.

$$\lim_{n\to\infty}\sum_{r=\alpha}^{\beta}\frac{1}{n}f(\frac{r}{n})=\int_{\alpha}^{b}f(x)dx$$

where replace:

$$\begin{array}{l} r/n \rightarrow x \\ \mathbf{1}/n \rightarrow dx \\ \alpha = \lim_{n \rightarrow \infty} \alpha/n \\ b = \lim_{n \rightarrow \infty} \beta/n \end{array}$$

Some limits and theorems

- L'Hospital Rule : if f, g are real differentiable functions in (a,b) (for $-\infty < a < b < \infty$) such that $g'(x) \neq o$ in (a, b) then as $x \rightarrow a$ $f(x) \rightarrow o, g(x) \rightarrow o \text{ or if } g(x) \rightarrow \pm \infty \text{ and}$ if $\frac{f'(x)}{g'(x)} \to A$ then $\frac{f(x)}{g(x)} \to A$ (analogous result holds for $x \rightarrow b$) (is also true if f, g are complex valued and $f(x) \rightarrow o, g(x) \rightarrow o$
- for f, g: D $\subset \mathbb{R} \to \mathbb{R}$, if $\lim_{x \to c} f(x) = 0$ and g(x) is bounded in some deleted neighborhood of c then $\lim_{x \to a} f(x)g(x) = 0$
- if $\lim_{x \to a} f(x) = 1$ and g is continuous at 1 or in some set whose limit point is 1 then $\lim_{x \to c} g(f(x)) = \lim_{x \to l} g(x)$

- $\lim_{n\to\infty}\sum_{m=1}^n\frac{1}{m}-\ln n=\gamma \text{ a fixed number}$
- $\lim_{n\to\infty} |z|^n = 0$ if |z| < 1
- if a > 1 and p(n) is a fixed polynomial in nthen $\lim_{n\to\infty} \frac{a^n}{p(n)} = \pm \infty$ (depends on p(n), precisely on coefficient of largest degree term).
- $\lim_{n \to \infty} n^{1/n} = 1$ in particular if $|z| \neq 0$ then $\lim_{n\to\infty}|z|^{1/n}=1$
- $\lim_{n \to \infty} (1 + \frac{\alpha}{n})^{1/n} = e^{\alpha}$ for $\alpha \in \mathbb{R}$, p > 0 we have $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$
- if α , β > 0 and $x \in \mathbb{R}$ then: $\lim_{x \to \infty} \frac{(\ln(x))^{\alpha}}{x^{\beta}} = 0$ $\lim_{x \to \infty} \frac{x^{\alpha}}{e^{\beta x}} = 0$
- series $\sum_{n=0}^{\infty} \frac{\mathbf{1}}{n^p}$ converges for p > 1 and di-
- series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converges for $p \rightarrow 1$ and diverges for $p \le 1$ this result can be continued to series like $\sum_{n=2}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p}$ $\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln \ln n (\ln \ln \ln n)^p} \text{ and so on.}$

Uniform Convergence

- define uniform norm for a function $f : A \subseteq$ $\mathbb{R} \to \mathbb{R}$ as $||f||_A = \sup(|f(\mathfrak{a})| \text{ for } \mathfrak{a} \in A)$
- ullet A sequence of bounded functions $\{f_n\}$ in $\mathbb R$ converges uniformly to f in domain $A \subseteq R$ iff $||f_n - f||_A \to 0$ i.e. the uniform norm of $f_n - f$ converges too.
- one way to find the uniform norm for a function is to differentiate it and find its maximum on domain.
- Dinni's Theorem : if $\{f_n\}$ is a monotone sequence of continuous functions on [a, b] (closed and bounded) that converges to f which is continuous on [a, b] then the convergence is uniform.