PavlovYarN 30112024-105659

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 27 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 38 МГц?

Варианты ОТВЕТА:

1) 186.6 нГн 2) 341.7 нГн 3) 235 нГн 4) 128.3 нГн

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 321 МГц, частота ПЧ 42 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 279 ΜΓμ
- 2) 1284 МГц
- 3) 1005 MΓ_{II}
- 4) 1605 МГц.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = 0.15983 - 0.28241i$, $s_{31} = 0.30882 + 0.17478i$.

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -23 дБн 2) -25 дБн 3) -27 дБн 4) -29 дБн 5) -31 дБн 6) -33 дБн 7) -35 дБн
- 8) -37 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 4?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{4;-9\} \quad 2) \ \{7;-9\} \quad 3) \ \{5;-34\} \quad 4) \ \{7;-19\} \quad 5) \ \{7;-34\} \quad 6) \ \{6;6\} \quad 7) \ \{4;-24\}$$

8) $\{5; -19\}$ 9) $\{8; -44\}$

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $3432~\mathrm{M}\Gamma\mathrm{_{II}}$ с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $13~\mathrm{д}\mathrm{Sm}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 527 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 7380 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2854 МГц до 2904 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -78 дБм 2) -81 дБм 3) -84 дБм 4) -87 дБм 5) -90 дБм 6) -93 дБм 7) -96 дБм 8) -99 дБм 9) -102 дБм

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 0.1 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 15 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 8.8 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 5.8 дБ 2) 6.4 дБ 3) 7 дБ 4) 7.6 дБ 5) 8.2 дБ 6) 8.8 дБ 7) 9.4 дБ 8) 10 дБ
- 9) 10.6 дБ