Numerical representations à la ornamentation

Josh Ko

Department of Computer Science University of Oxford

Fun in the Afternoon 28 Feb 2012, Oxford, UK

Operations on data structures ≈ numerical operations

weight

 2^{0}

21

22

23

number

0

0

0

()

Operations on data structures \approx numerical operations

weight

 2^{0}

21

22

23

number

1

0

0

()

Operations on data structures \approx numerical operations

weight

21

72

number 1 1

Operations on data structures ≈ numerical operations

weight

number

Operations on data structures \approx numerical operations

weight

 2^{0}

21

22

23

number

0

1

0

()

Operations on data structures \approx numerical operations

weight

 2^{0}

21

22

 2^3

number

1

1

0

()

data structure $\left(z\right)$

Operations on data structures \approx numerical operations

weight

 2^{0}

21

22

 2^3

number

1 1

1

0

()

Operations on data structures \approx numerical operations

weight

 2^{0}

21

22

 2^3

number

0

1 1

0

()

Operations on data structures ≈ numerical operations

weight

 2^0

21

 2^2

 2^3

number

0

0

1

()

Ornamenting a datatype

data Bin : Set where

nul : Bin

zero : Bin → Bin

one : Bin → Bin

Ornamenting a datatype

data Bin : Set where

nul : Bin

zero : Bin → Bin

one : BTree → Bin → Bin

Ornamenting a datatype

```
data BHeap : Set where
nul : BHeap
zero : BHeap → BHeap
one : BTree → BHeap → BHeap
```

```
toBin : BHeap → Bin
toBin nul = nul
toBin (zero h) = zero (toBin h)
toBin (one t h) = one (toBin h)
```

"Strong resemblance" made precise

incr : Bin → Bin

insert : V → BHeap → BHeap

$$size = 2^{rank}$$

using dependent types

```
data BTree : Nat → Set where
  node : V → BTree ^ r → BTree r
   -- BTree \wedge 3 =
         BTree 2 \times (BTree 1 \times (BTree 0 \times \top))
\_^{}: (Nat \rightarrow Set) \rightarrow Nat \rightarrow Set
X ^ zero
X \wedge (suc r) = X r \times X \wedge r
```

using dependent types

```
attach : BTree r → BTree r → BTree (suc r)
attach t (node x ts) = node x (t , ts)
link : BTree r → BTree r → BTree (suc r)
link t u = if root t ≤ root u
then attach t u else attach u t
```

```
data BTree : Nat → Set where
  node : V → BTree ^ r → BTree r

_^_ : (Nat → Set) → Nat → Set

X ^ zero = ⊤

X ^ (suc n) = X n × X ^ n
```

```
data BHeap : Nat → Set where
nul : BHeap r
zero : BHeap (suc r) → BHeap r
one : BTree r → BHeap (suc r) → BHeap r
```

```
data BHeap : Nat → Set where
nul : BHeap r
zero : BHeap (suc r) → BHeap r
one : BTree r → BHeap (suc r) → BHeap r
```

```
BinaryD : IDesc ⊤
BinaryD tt = \sigma C \lambda { nul \rightarrow
                              ; zero → v tt
                              ; one \rightarrow v tt }
\llbracket \_ \rrbracket: IDesc I \rightarrow (I \rightarrow Set) \rightarrow (I \rightarrow Set)
data µ (D : IDesc I) : I → Set where
   con : [D](\mu D) \Rightarrow \mu D
```

```
BinaryD : IDesc ⊤

BinaryD tt = σ C λ { nul → ■

; zero → v tt

; one → v tt }
```

```
BHeapOD : IOrnDesc Nat ! BinaryD

BHeapOD r = \sigma C \lambda \{ \text{nul} \rightarrow \blacksquare \}
; zero \rightarrow V \text{ (ok (suc r))}
; one \rightarrow \Delta \text{ (BTree r)}
\lambda \rightarrow V \text{ (ok (suc r))} \}

L_J : IOrnDesc J e D \rightarrow Desc J
```

```
BHeapOD: IOrnDesc Nat! BinaryD
BHeapOD r =
  \sigma \in \Lambda  nul \rightarrow \blacksquare
            ; zero \rightarrow v (ok (suc r))
            ; one \rightarrow \Delta (BTree r)
                             \lambda \rightarrow v (ok (suc r)) 
forget : (0 : IOrnDesc J e D) →
             \mu ^{L} 0 ^{J} \Rightarrow \mu ^{D} \circ e
```

```
data BHeap: Nat → Set where
 nul : BHeap r
  zero: BHeap (suc r) → BHeap r
 one: BTree r \rightarrow BHeap (suc r) \rightarrow BHeap r
toBin : BHeap r → Bin
toBin nul = nul
toBin (zero h) = zero (toBin h)
toBin (one t h) = one (toBin h)
```

Increment & insertion

```
incr : Bin → Bin
incr nul = one nul
incr (zero b) = one b
incr (one b) = zero (incr b)
insT : BTree r → BHeap r → BHeap r
insT t nul = one t nul
insT t (zero h) = one t h
insT t (one u h) = zero (insT (link t u) h)
insert : V → BHeap 0 → BHeap 0
insert x = insT (node x tt)
```

```
incr : Bin → Bin
incr nul = one nul
incr (zero b) = one b
incr (one b) = zero (incr b)
```

We do not get the coherence property for free!

```
insT : BTree r → BHeap r → BHeap r
insT t nul = one t nul
insT t (zero h) = one t h
insT t (one u h) = zero (insT (link t u) h)
```

Realisability predicate

Indexing the type of a heap with its underlying number

Realisability predicate

Indexing the type of a heap with its underlying number

```
BHeap r \cong (b : Bin) \times BHeap' r b
toBin : BHeap r → Bin
fromBHeap : (h : BHeap r) → BHeap' r (toBin h)
fromBHeap nul = nul
fromBHeap (zero h) = zero (fromBHeap h)
fromBHeap (one t h) = one t (fromBHeap h)
toBHeap: (b: Bin) × BHeap' r b → BHeap r
toBHeap (._, nul) = nul
toBHeap (. \_ , zero h) = zero (toBHeap h)
toBHeap (. \_, one t h) = one t (toBHeap h)
```

Insertion revisited

```
incr : Bin → Bin
incr nul = one nul
incr (zero b) = one b
incr (one b) = zero (incr b)
insT': BTree r →
       BHeap'r b → BHeap'r (incr b)
insT' t nul = one t nul
insT' t (zero h) = one t h
insT' t (one u h) = zero (insT' (link t u) h)
```

Insertion revisited

```
insT t
                                       → BHeap r
BHeap r
      toBin ,
fromBHeap >
                                                 toBHeap
(b : Bin)
                        incr
(b: Bin) \xrightarrow{incr} (b: Bin) \times BHeap'rb \times insT't \times BHeap'rb
```

Insertion revisited fromBHeap insT t → BHeap BHeap toBin , fromBHeap > toBHeap

```
(b: Bin) \xrightarrow{incr} (b: Bin) \times BHeap'r b
```

Insertion revisited

```
fromBHeap
                      insT t
                                       → BHeap
BHeap
      toBin ,
fromBHeap >
                                            toBHeap
(b: Bin) \xrightarrow{incr} (b: Bin) \times BHeap'r b \times insT't \times BHeap'r b
                         incr
(b : Bin)
```

Insertion revisited

```
insT t
                                        → BHeap r
BHeap r
      toBin ,
fromBHeap >
                                               < toBin ,
fromBHeap >
(b : Bin)
(b: Bin) \xrightarrow{incr} (b: Bin) \times BHeap'r b \times insT't \times BHeap'r b
                         incr
```


A calculational proof

```
toBin • insT t = incr • toBin
               insT t
                            → BHeap r
BHeap r
                 incr
```

A calculational proof

```
toBin ∘ insT t
= { definition of insT }
  toBin · toBHeap ·
    (incr × insT' t) ∘ < toBin , fromBHeap >
= { cancellation; absorption }
  fst ∘ < toBin , fromBHeap > ∘ toBHeap ∘
    < incr ∘ toBin , insT' t ∘ fromBHeap >
= { isomorphism }
  fst ∘ < incr ∘ toBin , insT' t ∘ fromBHeap >
= { cancellation }
  incr ∘ toBin
```

Cost and gain

Write:

Get (via generic programming):

Bin, and BHeap as an ornamentation of Bin

realisability predicate BHeap' and corresponding isomorphism

incr on Bin and insT' on BHeap'

insT on BHeap and the coherence property w.r.t. incr

Where the ideas come from

and also where to find more

- Conor McBride. Ornamental algebras, algebraic ornaments. To appear in *Journal of Functional Programming*.
- Hsiang-Shang Ko and Jeremy Gibbons.
 Modularising inductive families. Workshop on Generic Programming 2011.
- Pierre-Evariste Dagand and Conor McBride.
 Transporting functions across ornaments.
 Technical report, January 2012.

Thanks!

Towards extraction

Total functions only in dependently typed programs

```
data Bin : Bool → Set where
  nul : Bin false
  zero : Bin nz → Bin nz
  one : Bin nz → Bin true
decr : Bin true → (nz : Bool) × Bin nz
decr (zero b) = _ , one (snd (decr b))
decr (one b) = _ , zero b
```

Towards extraction

Total functions only in dependently typed programs

