

Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga

Année Universitaire 2021-2022

Filière: SMIA / S1

Pr. FAIZ

Rattrapage

Module: Physique 1

Durée: 1h30

Exercice 1

On considère un pendule simple constitué d'un objet ponctuel M de masse m, accroché à un fil inextensible de longueur l et de masse négligeable. Son mouvement a lieu dans le plan vertical (xOy) du référentiel fixe $\Re(O,xyz)$.

On écarte le pendule d'un angle θ de sa position d'équilibre (θ =0) et on le lâche sans vitesse initiale. Les forces de frottement sont supposées inexistantes.

L'ensemble est situé dans le champ de pesanteur terrestre \vec{q} considéré comme uniforme.

N.B: Toutes les expressions vectorielles doivent être exprimées dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{k})$

- 1) Exprimer les forces appliquées au point M.
- 2) Calculer \vec{V} (M/\Re) et $\vec{\gamma}$ (M/\Re) respectivement les vecteurs vitesse et accélération de M dans \Re .
- x3) En appliquant le PFD dans le référentiel galiléen ℜ:
- xa) Etablir l'équation différentielle du mouvement dans le cas de faibles oscillations.
- x b) Exprimer l'expression de la pulsation propre dans ce cas.
- √ 4) Etablir l'expression de la tension T du fil.
- § 5) Retrouver l'équation différentielle du mouvement en appliquant le théorème de l'énergie cinétique.

Exercice 2

Soient $\Re(O, x, y, z)$ un référentiel absolu supposé galiléen muni de la base orthonormée directe $(\vec{t}, \vec{j}, \vec{k})$, et $\Re 1$ (O, x1, y1, z1) un référentiel relatif muni de la base orthonormée directe $(\overrightarrow{e_\rho}, \overrightarrow{e_\phi}, \vec{t})$. Au cours du temps, les axes (Ox) et (Ox1) restent colinéaires. Dans le plan vertical (yOz), une tige circulaire de centre C et de rayon a est maintenue fixe. Un anneau M de masse m glisse sans frottement sur la tige circulaire. Il est repéré par $\overrightarrow{OM} = 2asin\varphi \ \overrightarrow{e_\rho}$ où $\varphi = (\vec{j}, \overrightarrow{OM})$. On désigne par $(\vec{\tau}, \vec{n}, \vec{t})$ la base de Frénet comme l'indique la figure $(\vec{n}$ est le vecteur dirigé vers le centre de cercle).

Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga

Année Universitaire 2021-2022 Filière : SMIA / S1

Pr. FAIZ

N.B : Toutes les expressions vectorielles doivent être exprimées dans la base $(\overrightarrow{e_{\varphi}},\overrightarrow{e_{\varphi}},\overrightarrow{t})$.

- $\sqrt{1}$) déterminer l'expression de la vitesse de rotation de $\Re 1$ par rapport à $\Re \ \vec{\Omega}$ ($\Re 1/\Re$)
- \checkmark 2) a) Calculer \overrightarrow{Vr} (M) et \overrightarrow{Va} (M) respectivement les vitesses relative et absolue de M.
- \checkmark b) En déduire $\vec{\tau}$ le vecteur tangent à la trajectoire.
- \sqrt{c}) Déterminer \vec{n} le vecteur normal à la trajectoire.
- $\sqrt{3}$) Déterminer $\overrightarrow{\gamma r}$ (M) l'accélération relative de M.
- $\sqrt{4}$) Déterminer $\overrightarrow{\gamma e}$ (M) l'accélération d'entrainement de M.
- $\sqrt{5}$) Déterminer γ c (M) l'accélération de Coriolis de M.
- $\sqrt{6}$) En déduire γ a (M) l'accélération absolue de M.