Некоммерческое акционерное общество

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ Кафедра высшей математики

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Методические указания по выполнению лабораторных работ для студентов специальности 5В070200

Алматы 2014

СОСТАВИТЕЛИ: Астраханцева Л.Н., Жуматаева С. А., Нурпеисов С. А., Теория вероятности и математическая статистика. Методические указания по выполнению лабораторных работ для студентов специальности 5В070200.

1 Лабораторная работа №1

Цель лабораторной работы: знакомство с компьютерной системой Mathcad. Решение в этой системе задач элементарной математики, векторной и линейной алгебры

Задание 1. Вычислить.

1.1	$\left(\left(4,625 - \frac{13}{18} \cdot \frac{9}{26}\right) : \frac{9}{4} + 2,5:1,25:6,75\right) \cdot 7:1 \frac{53}{68}$
1.2	$\left(\frac{1}{2} - 0.375\right) \cdot 0.125 + \left(\frac{5}{6} - \frac{7}{12}\right) : (0.358 - 1.4796 : 1.3)$
1.3	$3,75:1\frac{1}{2} + \left(1,5:3\frac{3}{4}\right) \cdot 2\frac{1}{2} + \left(1\frac{1}{72} - \frac{23}{49}\right) : \frac{22}{147}$
1.4	$8,4 \cdot \frac{6}{7} \cdot \left(6 - \frac{(2,3+5:6,25)\cdot 7}{8\cdot 0,0125+6,9}\right) - 20,384:1,3$
1.5	$(3,4-1,275) \cdot \frac{16}{17} + 0,5 \cdot \left(2+12,5:\left(5,75+\frac{1}{2}\right)\right)$
1.6	$\left(520\cdot0,43:0,26-217\cdot2\frac{3}{7}\right) - \left(31,5:12\frac{3}{5}+114\cdot2\frac{1}{3}\right)$
1.7	$\left(1\frac{1}{7} - \frac{23}{47}\right) : \frac{22}{147} - \left(0,6:3\frac{3}{4}\right) \cdot 2\frac{1}{2} + 3,75 : 1\frac{1}{2}$
1.8	$0,125:0,25+1\frac{9}{16}:2,5+\left(\frac{17}{20}+1,9\right)\cdot0,5$
1.9	$\left(1\frac{7}{8} \cdot 8 - \left(8,9 - 2,6 : \frac{2}{3}\right)\right) \cdot 34\frac{2}{5} + 5 : 2\frac{1}{2}$

$$\begin{array}{c} 1.10 \\ 2:3\frac{1}{5} + \left(3\frac{1}{4}:13\right): \frac{2}{3} + \left(2\frac{5}{18} - \frac{17}{36}\right) \cdot 18.6 \\ \hline 1.11 \\ \left(0.3275 - \left(2\frac{18}{28} + \frac{4}{33}\right)12\frac{9}{9}\right): 0.07 - 22.5 \\ \hline 1.12 \\ \left(16\frac{1}{2} - 13\frac{7}{9}\right) \cdot \frac{18}{33} + 2.2 \cdot \left(0.24 - 0.09 \cdot 2\frac{1}{2}\right) + \frac{2}{11} \\ \hline 1.13 \\ \left(3.5 \cdot 1\frac{1}{3} - 4.75\right) \cdot 0.66 + 2\frac{4}{11} \cdot 0.2 \cdot 0.33 - 0.6 \\ \hline 1.14 \\ 3\frac{1}{3}: 10 + 0.175: 0.35 - \left(\frac{11}{18} - \frac{1}{15}\right) \cdot 1.4 - 12.35 \\ \hline 1.15 \\ \left(4.5 \cdot 1\frac{2}{3} - 6.75\right) \cdot 0.66 + 1\frac{4}{11} \cdot 0.22 \cdot 0.3 - 0.96 \\ \hline 1.16 \\ \left(\left(3.625 - \frac{12}{18} \cdot \frac{9}{24}\right) \cdot \frac{5}{4} + 2.51.25:6.75\right) \cdot 9: 1\frac{5}{6} \\ \hline 1.17 \\ \left(\frac{1}{2} - 0.175\right) \cdot 0.325 + \left(\frac{7}{6} - \frac{5}{12}\right) : (0.35 - 1.47 \cdot 1.3) \\ \hline 1.18 \\ 2.75: 1\frac{3}{4} + \left(1.23\frac{3}{4}\right) \cdot 2\frac{1}{2} + \left(1\frac{1}{7} - \frac{2}{49}\right) : \frac{1}{17} \\ \hline 1.19 \\ 8.2 \cdot \frac{1}{7} \cdot \left(5 - \frac{(2.3 + 5:6.25) \cdot 7}{8 \cdot 0.0125 + 4.9}\right) - 2.38 \cdot 1.3 \\ \hline 1.20 \\ \left(1.4 - 1.25\right) \cdot \frac{1}{17} + 0.3 \cdot \left(2 + 12.5\left(1.75 + \frac{1}{2}\right)\right) \\ \hline 1.21 \\ \left(20 \cdot 0.4 \cdot 0.26 - 21 \cdot 2\frac{3}{5}\right) - \left(30.5 \cdot 12\frac{5}{5} + 14 \cdot 2\frac{1}{3}\right) \\ \hline 1.22 \\ \left(2\frac{1}{5} - \frac{2}{47}\right) : \frac{27}{47} - \left(0.3 \cdot \frac{3}{4}\right) \cdot 1\frac{1}{2} + 3.15 : 1\frac{1}{2} \\ \hline 1.23 \\ 0.25: 0.125 + 1\frac{3}{16} : 1.5 + \left(\frac{7}{20} + 1.8\right) \cdot 0.5 \\ \hline 1.24 \\ \left(1\frac{7}{7} - \left(6.9 - 1.6^2\right) \cdot \frac{3}{3}\right) \cdot \frac{3}{5} + 5 : 2\frac{1}{2} \\ \hline 1.25 \\ 4: 3\frac{2}{5} + \left(5\frac{1}{4}:13\right) : \frac{1}{3} + \left(2\frac{5}{8} - \frac{7}{36}\right) \cdot 1.6 \\ \hline 1.26 \\ \left(0.275 - \left(2\frac{5}{8} + \frac{4}{33}\right) \cdot 2\frac{9}{9}\right) \cdot 0.08 - 21.5 \\ \hline 1.27 \\ \left(6\frac{1}{2} - 13\frac{9}{9}\right) \cdot \frac{8}{33} + 1.2 \cdot \left(0.4 - 0.09 \cdot 1\frac{1}{2}\right) + \frac{2}{13} \\ \hline 1.28 \\ 4: 2\frac{1}{5} + \left(6\frac{1}{4}:13\right) : \frac{1}{3} + \left(2\frac{5}{8} - \frac{17}{36}\right) \cdot 8.5 - 3.15 \\ \hline 1.29 \\ 2\frac{1}{3}: 11 + 0.125: 0.15 - \left(\frac{13}{18} - \frac{1}{15}\right) \cdot 1.2 - 12.25 \\ \hline$$

$$1.30 \left(3.5 \cdot 1\frac{1}{3} - 4.75 \right) \cdot 0.6 + 2\frac{4}{11} \cdot 0.2 : 0.33 - 0.6$$

Задание 2. Раскрыть скобки и привести подобные члены.

2.1
$$(n+5k)^2(n-k) + (n-5k)^2(n+k) - 2n(n+4k)(n-4k)$$

2.2 $(a+3z)^2(a-z) - (a-3z)^2(a+z) - 2z(3z+2a)(2a-3z)$
2.3 $2(5a+6x)(3a+2x) - (4a+7x)^2 - (3a-5x)(3a+5x)$
2.4 $(3a-2b)(3a+2b) + (a-3b)^2 - (5a-b)(2a-5b)$
2.5 $(4x-7y)^2 - (3x+5y)^2 - 2(2x+3y)(4y-17x)$
2.6 $(3a-5b)^2 + (2a+9b)^2 - (2a+3b)(27b-16a)$
2.7 $3(5x+2y)^2 + 2(3x-5y)^2$
2.8 $(y^3-3y^2z+2yz^2-6z^3)(2y-z) - (y^3-5y^2z-6yz^2+2z^3)(2y+3z)$
2.9 $2(7a-3x)^2 - 3(a-14x)^2$
2.10 $(2x^3+x^2y+3xy^2-y^3)(x+5y) - (x^3-2x^2y+3xy^2+5y^3)(2x-y)$
2.11 $(a^2+4ax+x^2)(a-2x) - (a^2-5ax-2x^2)(a+x)$
2.12 $(a^3-ab+2b^2)(a-b) - (a^2+2ab-b^2)(a+2b)$
2.12 $(b^3-b^2+b-1)(b+1)$
2.14 $(2a^3-a^2+2a-1)(a-1)$
2.15 $3(5a-4x)^2 - 2(a+4x)^2$
2.16 $(n-4k)^2(n+k) + (n+4k)^2(n-k) - n(n+2k)(n-2k)$
2.17 $(a+4z)^2(a-z) - (a-4z)^2(a+z) - z(z+2a)(2a-z)$
2.18 $(4a+6x)(a+2x) - (a+6x)^2 - (3a-x)(3a+x)$
2.19 $(a-2b)(a+2b) + (2a-3b)^2 - (3a-b)(2a-b)$
2.20 $(4x-y)^2 - (2x+5y)^2 - 2(2x+3y)(y-7x)$
2.21 $(a-3b)^2 + (2a+7b)^2 - (2a+3b)(17b-26a)$
2.22 $4(x+2y)^2 + 2(x-5y)^2$
2.23 $(y^3-2y^2z+3yz^2-4z^3)(y-z) - (2y^3-y^2z-2yz^2+z^3)(y+3z)$
2.24 $4(5a-3x)^2 - 3(a-15x)^2$
2.25 $(x^3+3x^2y+3xy^2-3x^2)(x+2y) - (x^3-2x^2y+2xy^2+4y^3)(3x-y)$
2.26 $(a^2+4ax+x^2)(a-2x) - (a^2-5ax-2x^2)(a+x)$
2.27 $(2a^2-ab+2b^2)(2a-b) - (a^2+ab-b^2)(a+2b)$
2.28 $(2b^3-b^2+3b-1)(b+2)$
2.29 $(3a^3-a^2+2a-1)(a+1)$

2.30
$$| 5(3a-x)^2 - 3(a+7x)^2$$

Задание 3.

- 1) Разложить на множители данный многочлен f(x).
- 2) Решить уравнение f(x)=0.

Сравнивая результаты в пунктах 1) и 2), сделать выводы.

	f(x)		f(x)
3.1	$x^5 - x^4 + 5x^3 - 5x^2 + 9x - 9$	3.2	$x^3 - x^2 - 29x + 45$
3.3	$x^{7} - x^{6} - x^{5} + x^{4} - x^{3} + x^{2} + x - 1$	3.4	$x^4 - 7x^3 + 8x^2 + 28x - 48$
3.5	$27x^3 - 27x^2 + 18x - 4$	3.6	$x^3 - 6x^2 + 11x - 6$
3.7	$x^3 + 2x^2 - 20x + 24$	3.8	$x^3 - 10x^2 + 23x - 14$
3.9	$2x^4 + 7x^3 - 2x^2 - 13x + 6$	3.10	$x^3 + 9x^2 + 23x + 15$
3.11	$2x^4 - x^3 - 9x^2 + 13x - 5$	3.12	$x^3 - 6x^2 - x + 30$
3.13	$x^4 - 2x^3 - 3x^2 + 4x + 4$	3.14	$x^4 + x^3 - 11x^2 - 5x + 30$
3.15	$x^4 - 2x^3 - 11x^2 + 12x + 36$	3.16	$x^4 + 2x^3 - 12x^2 - 38x - 24$
3.17	$x^4 + 2x^3 - 16x^2 - 2x + 15$	3.18	$x^4 + x^3 - 2x^2 + 4x - 24$
3.19	$27x^4 - 9x^2 + 14x - 4$	3.20	$x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6$
3.21	$-12x^4 + 4x^3 + 9x^2 - 1$	3.22	$x^5 + x^4 - 6x^3 - 14x^2 - 11x - 3$
3.23	$x^5 - 6x^4 + 16x^3 - 32x^2 + 48x - 32$	3.24	$x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$
3.25	$x^4 - 12x^2 + 32$	3.26	$x^4 - 20x^2 + 96$
3.27	$6x^4 - 5x^2 + 1$	3.28	$6x^3 - 36x^2 + 72x - 48$
3.29	$x^4 - 20x^2 + 64$	3.30	$128x^4 - 96x^3 + 24x^2 - 2a$

Задание 4. Даны векторы $\vec{a}, \vec{b}, \vec{c}$ и числа α, β, γ . Найти:

- 1) $\vec{\beta a}$;
- 2) $\beta \vec{a} \alpha \vec{b} + \gamma \vec{c}$;
- 3) скалярное произведение векторов \vec{a} и \vec{b} ;
- 4) векторное произведение векторов \vec{a} и \vec{b} ;
- 5) длину вектора \vec{a} и вектора, полученного в предыдущем пункте;
- 6) смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$.

	\vec{a}	$ec{b}$	\vec{c}	α	β	γ
4.1	(2, -3, 1)	(1, 2, 5)	(6, 2, -3)	2	1	3
4.2	(4, -2, 0)	(4, -2, 0)	(1, 2, -5)	1	2	2
4.3	(5, -1, 0)	(3, 2, 4)	(3, 2, -3)	-1	-2	1
4.4	(1, 2, -3)	(1, -2, 5)	(4, 1, -3)	7	3	-1
4.5	(5, 1, 2)	(2, 1, -4)	(6, 2, -3)	2	4	-3
4.6	(7, -1, 0)	(3, -6, 5)	(1, 5, -4)	5	1	2
4.7	(2, -3, 4)	(7, 2, 4)	(6, 2, -3)	6	2	-1
4.8	(5, -1, 3)	(3, -1, 6)	(7, 2, -3)	3	-3	2

	I		T		_	
4.9	(6, 2, -5)	(2, 2, -3)	(1,-7,5)	4	-5	1
4.10	(4, -1, 0)	(3, -3, 4)	(5, 2, -1)	-2	4	2
4.11	(7, 0, 6)	(1, 2, -5)	(3, -2, -1)	1	3	4
4.12	(1, -1, 5)	(-1, -5, 1)	(1, 3, -3)	2	4	3
4.13	(5, -1, 2)	(-3, 2, 4)	(4, 2, -5)	4	2	5
4.14	(6, -1, 4)	(1, 0, 7)	(2, -1, 0)	3	-1	1
4.15	(5, -1, 3)	(6, 2, -3)	(-5, 1, -3)	1	-2	5
4.16	(5, -1, 0)	(4, 3, 1)	(4, 6, -1)	2	1	3
4.17	(4, -2, 0)	(3, 1, 4)	(2, 2, -5)	1	2	2
4.18	(5, -5, 4)	(7, 2, 4)	(1, 2, -3)	-1	-2	1
4.19	(7, 2, -3)	(1, 2, 4)	(4, 1, -3)	7	3	-1
4.20	(4, 1, 2)	(3, 1, -4)	(6, 2, -3)	2	4	-3
4.21	(7, -1, 0)	(3, -6, 5)	(1, 5, -4)	5	1	2
4.22	(2, -3, 4)	(7, 2, 4)	(6, 2, -3)	6	2	-1
4.23	(5, -1, 3)	(3, -1, 6)	(7, 2, -3)	3	-3	2
4.24	(6, 2, -5)	(2, 2, -3)	(1,-7,5)	4	-5	1
4.25	(4, -1, 0)	(3, -3, 4)	(5, 2, -1)	-2	4	2
4.26	(7, 0, 6)	(1, 2, -5)	(3, -2, -1)	1	3	4
4.27	(1, -1, 5)	(-1, -5, 1)	(1, 3,-3)	2	4	3
4.28	(5, -1, 2)	(-3, 2, 4)	(4, 2, -5)	4	2	5
4.29	(6, -1, 4)	(1, 0, 7)	(2, -1, 0)	3	-1	1
4.30	(5, -1, 3)	(6, 2, -3)	(-5, 1, -3)	1	-2	5

Задание 5. Даны матрицы A, B, C. Найти:

- 1) определители матриц A и C;
- 2) матрицу B^T ;
- 3) матрицы обратные к матрицам A и C, если они существуют;
- 4) ранги матриц A и C.
- 5) произведение матриц A и B;
- 6) матрицу A^2 .

	A	В	C
5.1	$ \begin{pmatrix} 1 & 2 & -1 \\ 3 & -5 & 0 \\ 4 & 2 & -1 \end{pmatrix} $	$\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} 3 & 7 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix} $
5.2	$ \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 1 \\ 9 & 7 & 5 \end{pmatrix} $	$\begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix}$	$ \begin{pmatrix} 3 & 1 & 2 \\ 2 & 2 & 5 \\ 5 & 3 & 7 \end{pmatrix} $

5.3	(1 4 1 2)	(1)	(1 -2 3 5)
3.3		$\left[\left(\begin{array}{c} 1 \\ 2 \end{array} \right) \right]$	$\begin{bmatrix} 1 & -2 & 3 & 5 \\ 5 & 1 & 4 & 3 \end{bmatrix}$
	$\begin{bmatrix} 2 & -2 & 1 & -1 \\ 4 & 1 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$	2 -4 6 8
	$\begin{bmatrix} 4 & 1 & 1 & 2 \\ 1 & -1 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} -3 \\ 0 \end{bmatrix}$	$\begin{pmatrix} 2 & -4 & 0 & 8 \\ 3 & 0 & 1 & 9 \end{pmatrix}$
5.4	$\begin{pmatrix} 1 & 1 & 2 & 1 \end{pmatrix}$	(7)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
J. T	$\begin{bmatrix} 3 & 4 & -1 \\ 2 & -1 & 1 \end{bmatrix}$	$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & -1 & & & \end{bmatrix}$	4 5 6
	$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 6 & 13 \end{bmatrix}$	$\left[\begin{array}{c} -1 \\ 2 \end{array} \right]$	$\begin{pmatrix} 7 & 8 & 9 \end{pmatrix}$
5.5	(3 6 -4)	(1 -2)	$(3 \ 2 \ 3)$
3.3	$\begin{bmatrix} 3 & 0 & -4 \\ 7 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$	4 5 6
	$\begin{bmatrix} 7 & 0 & 1 \\ 2 & 2 & 5 \end{bmatrix}$	$\begin{pmatrix} 0 & 3 \\ 4 & 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 3 & 6 \\ 2 & 6 & 6 \end{pmatrix}$
5.6	$\begin{pmatrix} 1 & 6 & -1 \end{pmatrix}$	(3)	(2 -1 3)
3.0	$\begin{bmatrix} 11 & 0 & 1 \\ 2 & 4 & 3 \end{bmatrix}$	4	$\begin{bmatrix} 2 & 1 & 3 \\ 5 & 7 & 0 \end{bmatrix}$
	$\begin{bmatrix} 2 & 1 & 3 \\ 5 & 0 & 2 \end{bmatrix}$		$\begin{pmatrix} 4 & -2 & 6 \end{pmatrix}$
5.7	(6 -1 3)	(7)	(1 1 1)
	$\begin{bmatrix} 0 & 1 & 3 \\ 5 & 1 & 0 \end{bmatrix}$	$\begin{vmatrix} 1 & 1 \\ -1 \end{vmatrix}$	
	$\begin{bmatrix} 21 & 4 & 2 \end{bmatrix}$		$\begin{bmatrix} 3 & 1 & 7 \end{bmatrix}$
5.8	(6 -2 1)	(8)	$(1 \ 2 \ 3)$
	4 3 2	5	4 5 6
	$\begin{bmatrix} 5 & 9 & -1 \end{bmatrix}$	$\left \left(2 \right) \right $	$\left \begin{pmatrix} 1 & 4 & 7 \end{pmatrix} \right $
5.9	(5 -1 3)	(1 -2)	(1 2 3)
		0 3	4 5 6
	$\begin{pmatrix} 6 & 0 & 2 \end{pmatrix}$	$\left(\begin{array}{cc} 4 & 1 \end{array}\right)$	$\begin{pmatrix} 1 & 5 & 9 \end{pmatrix}$
5.10	(2 -1 3)	(1)	(1 2 3)
	6 0 1	5	4 5 3
	$\begin{pmatrix} 7 & 3 & 5 \end{pmatrix}$	(2)	(5 6 3)
5.11	(6 2 -1)	(7)	(1 1 3)
	1 3 21		1 4 6
	$\begin{pmatrix} -2 & 4 & 0 \end{pmatrix}$	(2)	(1 7 9)
5.12	$\begin{pmatrix} 3 & 1 & -2 \end{pmatrix}$	(4)	$\begin{pmatrix} 1 & 1 & 3 \end{pmatrix}$
	0 4 5		4 1 6
	(7 3 -1)	(1)	(7 1 9)
5.13	$\begin{pmatrix} 4 & 2 & 1 \end{pmatrix}$	$\left \begin{array}{c} 6 \end{array} \right $	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
	-3 0 5		4 5 6
	(9 –1 1)	(0)	(5 6 7)
5.14	$\begin{pmatrix} 3 & 1 & 0 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 \end{pmatrix}$	$\begin{pmatrix} 4 & 2 & 1 \end{pmatrix}$
		$\begin{vmatrix} 3 \\ 1 \end{vmatrix}$	
	2 1 -1 2		(7 3 1)
	(1 -1 2 1)	(2)	

5.15	(3 5 2)	(1)	(1 2 3)
	$\begin{bmatrix} -4 & 1 & 3 \end{bmatrix}$	$\left \begin{array}{c} -1 \end{array} \right $	4 2 6
	$\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$	$\left \left(\begin{array}{c} 3 \end{array} \right) \right $	$\left \begin{pmatrix} 7 & 2 & 9 \end{pmatrix} \right $
5.16	(4 1 5)	(2)	(2 -1 0)
	1 2 7		1 3 4
	$\begin{pmatrix} 3 & -1 & 0 \end{pmatrix}$	$\left(-3\right)$	$\begin{pmatrix} 5 & 1 & 4 \end{pmatrix}$
5.17	(9 1 5)	(3)	(4 1 2)
	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	(5)	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$
5.18	$\begin{pmatrix} 2 & 1 & 5 \end{pmatrix}$	$\left(\begin{array}{c}2\end{array}\right)$	$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix}$
	$\begin{bmatrix} -1 & 2 & 7 \end{bmatrix}$		5 2 -1
	(5 6 0)	(-3)	$\begin{pmatrix} 3 & -3 & 6 \end{pmatrix}$
5.19	$\begin{pmatrix} 8 & 5 & 1 \\ 0 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 4 & 3 & 6 \\ 7 & 1 & 2 \end{pmatrix}$
	$\begin{bmatrix} 0 & -1 & 2 \\ 3 & 1 & 1 \end{bmatrix}$		$\begin{bmatrix} 7 & 1 & 2 \\ 5 & -1 & -2 \end{bmatrix}$
5 20	$ \begin{array}{c ccc} (3 & 1 & 1) \\ \hline (6 & 0 & -1) \end{array} $	(2)	,
5.20	$\begin{bmatrix} 0 & 0 & -1 \\ -1 & 2 & 4 \end{bmatrix}$	$\begin{pmatrix} 6 \\ 1 \end{pmatrix}$	$ \begin{bmatrix} 1 & 3 & 2 \\ -5 & 8 & 0 \end{bmatrix} $
	$\begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 1 \end{bmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 3 & 6 & 6 \\ 2 & 6 & 4 \end{pmatrix}$
5.21	$\begin{pmatrix} 1 & 1 & 5 \end{pmatrix}$	(5)	(6 2 2)
0.21	$\begin{bmatrix} 3 & 2 & 7 \end{bmatrix}$		$\begin{vmatrix} -1 & 4 & 7 \end{vmatrix}$
	$\begin{bmatrix} 7 & -1 & 0 \end{bmatrix}$		$\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$
5.22	(5 1 5)	(1)	(5 1 2)
		3	7 2 4
	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	$\left(-1\right)$	(3 1 2)
5.23	$\begin{pmatrix} 1 & 1 & 5 \end{pmatrix}$	(1)	$\begin{pmatrix} 7 & -5 & 0 \end{pmatrix}$
	-5 2 7	5	2 3 1
7.24	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	(6)	(4 6 2)
5.24	$\begin{pmatrix} 5 & 1 & 5 \\ 2 & 2 & 7 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 5 & 3 & 6 \\ 7 & 2 & 4 \end{pmatrix}$
	$\begin{bmatrix} 2 & 2 & 7 \\ 0 & -1 & 0 \end{bmatrix}$		$\begin{bmatrix} 7 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$
5.25	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	(6)	$\begin{pmatrix} -3 & 1 & 2 \end{pmatrix}$
3.23	$\begin{bmatrix} 3 & 1 & 3 \\ 5 & 2 & 7 \end{bmatrix}$		$\begin{bmatrix} 3 & 2 & 4 \\ 5 & -1 & -2 \end{bmatrix}$
	$\begin{bmatrix} 3 & 2 & 7 \\ 1 & -1 & 0 \end{bmatrix}$	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	$\begin{bmatrix} 3 & 1 & 2 \\ 7 & 1 & 2 \end{bmatrix}$
5.26	(5 1 5)	(8)	$\begin{pmatrix} 2 & 7 & 0 \end{pmatrix}$
	$\begin{vmatrix} -4 & 2 & 7 \end{vmatrix}$		-1 3 4
	$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$	$\left \begin{array}{c} 0 \end{array} \right $	$\begin{bmatrix} -2 & 6 & 8 \end{bmatrix}$
L	I	/	

5.27	$ \begin{pmatrix} 2 & 1 & 5 \\ 1 & 2 & 7 \end{pmatrix} $	4	$ \begin{bmatrix} 3 & 2 & -1 \\ 1 & 5 & 4 \end{bmatrix} $
	$\begin{pmatrix} 1 & 2 & 7 \\ 3 & -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$	$ \begin{pmatrix} 1 & 3 & 4 \\ 9 & 6 & -3 \end{pmatrix} $
5.28	$\begin{pmatrix} 3 & 1 & 5 \end{pmatrix}$	(2)	$\begin{pmatrix} 1 & -2 & 5 \end{pmatrix}$
	4 2 7	-1	
	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	(3)	(6 8 2)
5.29	$\begin{pmatrix} 2 & 1 & 5 \end{pmatrix}$	(3)	(3 2 4)
	5 2 7	5	
	$\begin{bmatrix} 7 & -1 & 0 \end{bmatrix}$	$\left(2\right)$	(5 4 8)
5.30	(1 1 5)	(7)	(2 7 0)
	5 2 7		1 -1 2
	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	(3)	$\begin{pmatrix} 3 & -3 & 6 \end{pmatrix}$

Задание 6. Дана система уравнений AX=B. Решить эту систему:

- 1) по формулам Крамера;
- 2) матричным способом, т.е. по формуле $X=A^{-1}B$; 3) с помощью операции lsolve(A,B);
- 4) с помощью операции rref(A).

	A	В		A	В
6.1	$ \begin{pmatrix} 2 & 1 & 1 & 2 \\ 1 & -3 & 1 & -1 \\ 1 & 4 & -1 & 2 \\ 1 & 1 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} 6 \\ -2 \\ 10 \\ 3 \end{pmatrix}$	6.2	$ \begin{pmatrix} 1 & 4 & 1 & 2 \\ 2 & -2 & 1 & -1 \\ 4 & 1 & 1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} 6 \\ -2 \\ 6 \\ -1 \end{pmatrix}$
6.3	$ \begin{pmatrix} 2 & 1 & 5 & 2 \\ 1 & -2 & 1 & -1 \\ 6 & 1 & -2 & 1 \\ 1 & 5 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} 3 \\ 7 \\ 1 \\ -8 \end{pmatrix}$	6.4	$ \begin{pmatrix} 1 & -1 & 1 & 4 \\ 3 & -1 & 2 & 2 \\ 1 & -1 & 2 & -1 \\ 3 & 0 & 1 & 2 \end{pmatrix} $	$\begin{pmatrix} 4 \\ 4 \\ -1 \\ 5 \end{pmatrix}$
6.5	$ \begin{pmatrix} 2 & 0 & 1 & 2 \\ 1 & -2 & 1 & -1 \\ 3 & 1 & -1 & 2 \\ 2 & -1 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} 6 \\ 3 \\ 7 \\ 6 \end{pmatrix}$	6.6	$ \begin{pmatrix} 2 & -1 & 1 & 4 \\ 3 & -1 & 2 & 2 \\ 1 & -1 & 2 & -1 \\ 3 & 0 & 1 & 2 \end{pmatrix} $	$\begin{pmatrix} 4 \\ 4 \\ -1 \\ 6 \end{pmatrix}$
6.7	$ \begin{pmatrix} 1 & 0 & 2 & 2 \\ 1 & -2 & 1 & -1 \\ 3 & 1 & -1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	(4) (6) (7) (5)	6.8	$ \begin{pmatrix} 3 & -2 & 1 & 4 \\ 2 & -1 & -1 & 2 \\ 0 & 1 & 2 & -1 \\ 3 & 2 & 1 & 2 \end{pmatrix} $	$\begin{pmatrix} 3 \\ -1 \\ 4 \\ 5 \end{pmatrix}$
6.9	$ \begin{pmatrix} 1 & 4 & 3 & 1 \\ 2 & -2 & 1 & 1 \\ 3 & 1 & -1 & 2 \\ 2 & -1 & 2 & 1 \end{pmatrix} $	(6) 3 7 5)	6.10	$ \begin{pmatrix} 4 & 6 & 3 & 1 \\ 1 & -2 & 1 & 1 \\ 3 & 1 & 1 & 2 \\ 2 & -1 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} -9\\7\\3\\4 \end{pmatrix}$

6.11	$ \begin{pmatrix} 5 & 1 & 4 & 1 \\ 2 & -2 & 3 & 1 \\ 3 & 4 & 5 & 2 \end{pmatrix} $	(4) (6) (5)	6.12	$ \begin{pmatrix} 2 & 1 & 4 & 1 \\ 2 & -2 & 1 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix} $	$\begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$
6.13	$ \begin{array}{c cccc} $	$ \begin{pmatrix} 4 \\ -8 \\ 8 \end{pmatrix} $	6.14	$ \begin{pmatrix} 2 & -1 & 5 & 1 \\ 1 & 2 & -1 & 1 \\ 2 & -2 & 1 & 1 \\ 3 & 1 & 1 & 2 \\ 2 & -1 & 5 & 1 \end{pmatrix} $	$ \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix} $
6.15	$ \begin{array}{c ccccc} (8 & -1 & 3 & 1) \\ \hline \begin{pmatrix} 2 & 0 & -1 & 1 \\ 2 & -2 & 1 & 1 \\ 6 & 1 & 1 & 1 \\ 2 & -1 & 5 & 1 \end{pmatrix} $	(7) (4) (4) 8) 4)	6.16	$ \begin{pmatrix} 2 & -1 & 5 & 1 \\ 1 & 2 & 1 & 4 \\ 6 & -1 & 1 & 2 \\ 1 & -1 & 2 & -1 \\ 3 & 0 & 1 & 2 \end{pmatrix} $	(7) (3) 2 7 7
6.17	$ \begin{pmatrix} 3 & 1 & 0 & 2 \\ 1 & 1 & 1 & -1 \\ 2 & 1 & -1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	$ \begin{bmatrix} 5 \\ 3 \\ 1 \\ 2 \end{bmatrix} $	6.18	$ \begin{bmatrix} 5 & 1 & 1 & 2 \\ 2 & 0 & 1 & -1 \\ 4 & 1 & 1 & 2 \\ 1 & -1 & 2 & 1 \end{bmatrix} $	$\begin{pmatrix} 6 \\ 4 \\ 6 \\ 0 \end{pmatrix}$
6.19	$ \begin{pmatrix} 5 & 1 & 1 & 2 \\ -1 & -3 & 1 & -1 \\ -1 & 4 & -1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} 4 \\ -3 \\ 5 \\ 2 \end{pmatrix}$	6.20	$ \begin{pmatrix} 8 & 2 & 1 & 3 \\ -1 & 9 & 1 & 0 \\ 3 & 7 & 2 & -1 \\ 3 & 1 & 8 & 2 \end{pmatrix} $	$ \begin{pmatrix} 10 \\ -2 \\ 0 \\ -3 \end{pmatrix} $
6.21	$ \begin{pmatrix} 6 & 1 & 5 & 3 \\ 1 & 2 & 1 & -1 \\ 2 & 4 & -1 & 2 \\ 7 & -1 & 2 & 1 \end{pmatrix} $	(5) 1 9 5)	6.22	$ \begin{pmatrix} 2 & -1 & 1 & 2 \\ 1 & 0 & 1 & -1 \\ 4 & 1 & 1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	(4) 1 2 3
6.23	$\begin{pmatrix} 4 & -1 & 1 & 2 \\ 1 & -3 & 1 & -1 \\ 1 & 2 & -1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 6 \\ -1 \\ 5 \\ 2 \end{pmatrix}$	6.24	$ \begin{pmatrix} 3 & 1 & 0 & 2 \\ 1 & 2 & 1 & -1 \\ 4 & 1 & -1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	(6) 3 6 3)
6.25	$ \begin{pmatrix} 7 & 2 & 1 & 3 \\ -1 & -1 & 1 & 0 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 1 & 2 \end{pmatrix} $	$\begin{pmatrix} 1 \\ 4 \\ 3 \\ 2 \end{pmatrix}$	6.26	$ \begin{pmatrix} 7 & 0 & 1 & 2 \\ 1 & 2 & 1 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 2 & 1 & 1 \end{pmatrix} $	(6) 1 2 3
6.27	$ \begin{pmatrix} 3 & 1 & 1 & 2 \\ 1 & -3 & 1 & -1 \\ 1 & 2 & 0 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	$ \begin{pmatrix} 7 \\ -2 \\ 3 \\ 4 \end{pmatrix} $	6.28	$ \begin{pmatrix} 4 & 1 & 1 & 2 \\ -1 & -1 & 1 & 0 \\ 1 & 2 & 2 & -1 \\ 3 & 1 & 1 & 2 \end{pmatrix} $	$ \begin{pmatrix} 5 \\ -1 \\ -5 \\ 5 \end{pmatrix} $
6.29	$ \begin{pmatrix} 5 & 1 & -1 & 2 \\ 1 & 2 & 1 & -1 \\ 2 & -1 & -1 & 2 \\ 1 & -1 & 2 & 1 \end{pmatrix} $	(8) 6 0 2	6.30	$ \begin{pmatrix} 6 & 2 & 1 & 2 \\ 1 & 2 & 1 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 2 & 1 & 1 \end{pmatrix} $	(5) 2 3 4)

Вопросы к лабораторной работе N = 1.

1. Как вызвать панель «Математика», на которой указаны ярлыки всех

основных рабочих математических панелей?

- 2. Сколько основных рабочих математических панелей и как они называются?
 - 3. Смысловая нагрузка трёх видов знака равенства в Mathcad.
 - 4. Назначение синего углового курсора и управление им.
- 5. Что нужно помнить при работе с формулами (запись десятичной дроби, место выражения для вычисления)?
 - 6. Как решить уравнение в Mathcad?
 - 7. Как записать вектор в координатной форме?
- 8. Какие способы решения систем линейных уравнений возможны в Mathcad?

Указания к выполнению лабораторной работы №1

Задание 1. Вычислить
$$\left(4\frac{2}{5}-2,7:8\frac{5}{6}\right):1,7+3,5\cdot21-0,62.$$

У к а з а н и е. Набрать выражение с клавиатуры, причём, в десятичной дроби вместо запятой набирается точка, знак умножения не опускается. Выделить всё синим угловым курсором и нажать клавишу =.

Выполнение задания

$$\frac{4\frac{2}{5} - \frac{2.7}{8\frac{5}{6}}}{1.7} + 3.521 - 0.62 = 75.28$$
 ЭЛИ

$$\left(4\frac{2}{5} - 2.7 \div 8\frac{5}{6}\right) \div 1.7 + 3.521 - 0.62 = 75.288$$

Задание 2. Раскрыть скобки и привести подобные члены в выражении $(x+1)(x-1)(x^2-x+1)(x^2+x+1)$.

У к а з а н и е. Набрать выражение с клавиатуры с учётом указания для первого задания, выделить всё синим угловым курсором, щёлкнуть по позиции *Символы, Расширить* или вызвать панель *Symbolic, Expand*.

Выполнение задания

$$(x+1)\cdot(x-1)\cdot(x^2-x+1)\cdot(x^2+x+1)$$
 expand, $x \rightarrow$

Задание 3.

1) Разложить на множители многочлен $f(x) = x^4 - 4x^3 + 4x^2$.

- 2) Решить уравнение f(x)=0. Сравнивая результаты в 1) и 2), сделать выводы.
- 1) У к а з а н и е. Набрать выражение с клавиатуры с учётом указания для первого задания, выделить всё синим угловым курсором, щёлкнуть по позиции *Символы, Фактор*.

Выполнение задания

$$4 - 4 \cdot x^{3} + 4 \cdot x^{2}$$
Other: $x^{2} \cdot (x - 2)^{2}$.

2) У к а з а н и е. Привести уравнение к виду f(x)=0 (если в правой части уравнения не 0), набрать с клавиатуры левую часть уравнения, вызвать панель *Symbolic*, *Solve*, заполнить просвет переменной, относительно которой решается уравнение, и щелкнуть по свободному месту страницы.

Выполнение задания

$$x^4 - 4 \cdot x^3 + 4 \cdot x^2$$
 solve $x \rightarrow \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}$

т.к. уравнение $x^4 - 4x^3 + 4x^2 = 0$ имеет два двукратных корня x=0 и x=2, то левая часть уравнения разлагается на множители $x^2(x-2)^2$, что совпадает с результатом в пункте 1).

Задание 4. Даны векторы $\bar{a}=$ (1,2,3), $\bar{b}=$ (4,-2,-1), $\bar{c}=$ (-3,2,-1) и числа $\alpha=2$, $\beta=-3$, $\gamma=-2$. Найти:

- 1) $\vec{\beta a}$;
- 2) $\beta \vec{a} \alpha \vec{b} + \gamma \vec{c}$;
- 3) скалярное произведение векторов \vec{a} и \vec{b} ;
- 4) векторное произведение векторов \vec{a} и \vec{b} ;
- 5) длину вектора \vec{a} и вектора, полученного в предыдущем пункте;
- 6) смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$.

У к а з а н и е. Набрать с клавиатуры выражения $\beta \vec{a}$ и $\beta \vec{a} - \alpha \vec{b} + \gamma \vec{c}$, причём знак умножения не опускать, выделить всё синим уголком и нажать знак =: Набрать с использованием панели *Matrix* три вектора как матрицы - столбцы (три строки и один столбец) и три числа, затем последовательно выполнить все 6 заданий.

Выполнение заданий

$$a := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad b := \begin{bmatrix} 4 \\ -2 \\ -1 \end{bmatrix} \qquad c := \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix}$$

$$\alpha := 2$$
 $\beta := -3$ $\gamma := -2$

- 1)-2) Набрать с клавиатуры выражения $\beta \vec{a}$ и $\beta \vec{a} \alpha \vec{b} + \gamma \vec{c}$, причём знак умножения не опускать, выделить всё синим уголком и нажать знак =:
- 3)-4) Вызвать панель *Matrix, Dot product* (затем *cross product*), в пробелы ввести сомножители, выделить всё синим уголком и нажать знак =:

$$a \cdot b = -3$$
 $a \times b = \begin{bmatrix} 4 \\ 13 \\ -10 \end{bmatrix}$

5) Вызвать панель *Matrix*, *Determinant*, заполнить пробел вектором a или $a \times b$ выделить всё синим уголком, и нажать знак =:

6) Набрать с помощью панели *Matrix*, *Dot* и *cross product* выражение $(a \times b) \cdot c$, выделить всё синим уголком и нажать знак =: $(a \times b) \cdot c = 24$ или $abc := (a \times b) \cdot c \rightarrow 24$.

Задание 5. Даны матрицы

$$A = \begin{pmatrix} 6 & 5 & 2 \\ 11 & 9 & 2 \\ 4 & 5 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 0 \\ 9 \end{pmatrix}, C = \begin{pmatrix} 1 & -10 & 2 \\ -1 & 5 & 1 \\ 1 & -5 & 0 \end{pmatrix}.$$

Найти.

- 1) определители матриц A и C;
- 2) матрицу B^{T} ;
- 3) матрицы обратные к матрицам А и С, если они существуют;
- 4) ранги матриц A и C;
- 5) произведение матриц A и B;

6) матрицу A^2 .

У к а з а н и е. Набрать с использованием панели *Matrix* три матрицы, затем последовательно выполнить все 6 заданий:

Выполнение заданий

$$A := \begin{bmatrix} 6 & 5 & 2 \\ 11 & 9 & 2 \\ 4 & 5 & 2 \end{bmatrix} \qquad B := \begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix} \qquad C := \begin{bmatrix} 2 & -10 & 2 \\ -1 & 5 & 1 \\ 1 & -5 & 0 \end{bmatrix}$$

1) Определители матриц A и C найти как указано в задании 4.5:

2) Задание выполняется с помощью панели *Matrix*, *Transpose*: $B^{T} = \begin{pmatrix} 2 & 0 & 9 \end{pmatrix}$.

3) Задание выполняется с помощью панели *Matrix, Inverse*, причём, если определитель матрицы равен нулю, то матрица не имеет обратной:

$$C^{-1}$$
 - не существует, т.к. её определитель равен нулю,
$$A^{-1} = \begin{bmatrix} 0.5 & 0 & -0.5 \\ -0.875 & 0.25 & 0.625 \\ 1.188 & -0.625 & -0.063 \end{bmatrix}$$

4) Ранги матриц определяются с помощью функции rank, которую набирают с клавиатуры

$$rank(A) = 3$$
 $rank(C) = 2$

5)-6) Задания выполняются с помощью операций умножение и возведение в степень либо с клавиатуры, либо используя панель Calculator:

15

$$\mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} 30 \\ 40 \\ 26 \end{bmatrix}, \quad \mathbf{A}^2 = \begin{bmatrix} 99 & 85 & 26 \\ 173 & 146 & 44 \\ 87 & 75 & 22 \end{bmatrix}.$$

Задание 6. Дана система уравнений AX = B, где

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & -3 & 4 \\ 0 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 30 \\ 10 \\ 3 \\ 10 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Решить эту систему:

- 1) по формулам Крамера;
- 2) матричным способом;

- 3) с помощью функции lsolve(A, B);
- 4) с помощью функции $\operatorname{rref}(A)$.

У к а з а н и е. Набрать матрицы A и B с использованием панели Matrix, затем последовательно выполнить первые 3 задания:

Выполнение заданий

$$A := \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & -3 & 4 \\ 0 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \quad B := \begin{bmatrix} 30 \\ 10 \\ 3 \\ 10 \end{bmatrix}$$

1) Для решения системы по правилу Крамера следует набрать ещё четыре матрицы, затем по формулам Крамера найти решение:

$$A1 := \begin{bmatrix} 30 & 2 & 3 & 4 \\ 10 & 2 & -3 & 4 \\ 3 & 1 & -1 & 1 \\ 10 & 1 & 1 & 1 \end{bmatrix} \quad A2 := \begin{bmatrix} 1 & 30 & 3 & 4 \\ -1 & 10 & -3 & 4 \\ 0 & 3 & -1 & 1 \\ 1 & 10 & 1 & 1 \end{bmatrix} \quad A3 := \begin{bmatrix} 1 & 2 & 30 & 4 \\ -1 & 2 & 10 & 4 \\ 0 & 1 & 3 & 1 \\ 1 & 1 & 10 & 1 \end{bmatrix} \quad A4 := \begin{bmatrix} 1 & 2 & 3 & 30 \\ -1 & 2 & -3 & 10 \\ 0 & 1 & -1 & 3 \\ 1 & 1 & 1 & 10 \end{bmatrix}$$

$$x := \frac{|A1|}{|A|} \quad y := \frac{|A2|}{|A|} \quad z := \frac{|A3|}{|A|} \quad t := \frac{|A4|}{|A|}$$

$$x = 1 \quad y = 2 \quad z = 3 \quad t = 4 \quad .$$

Таким образом, система имеет одно решение X = (1, 2, 3, 4).

2) Для решения системы матричным способом нужно набрать ещё матрицу A^{-1} , затем умножить A^{-1} на B и нажать знак =:

$$A^{-1} = \begin{bmatrix} -1 & 1 & -3 & 3 \\ 0.75 & -1.25 & 4 & -2 \\ 0.5 & -0.5 & 1 & -1 \\ -0.25 & 0.75 & -2 & 1 \end{bmatrix} \qquad A^{-1} \cdot B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Otbet: X = (1, 2, 3, 4).

3) Для решения системы с помощью функции Isolve следует набрать эту функцию с клавиатуры, в качестве аргументов записать матрицы A и B, вызвать знак стрелки с панели Symdolic, щёлкнуть по свободному месту и после появившихся записей нажать знак =:

Isolve(A, B)
$$\rightarrow$$
 Isolve
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & -3 & 4 \\ 0 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 30 \\ 10 \\ 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$$
Otbet: $X = (1, 2, 3, 4).$

4) Для решения системы с помощью функции $\operatorname{rref}(A)$ следует набрать расширенную матрицу системы. Операция $\operatorname{rref}(A)$ преобразует матрицу A в матрицу AI, строки которой соответствуют уравнениям системы, разрешённым относительно неизвестных. Операция $\operatorname{rref}(A)$ набирается с клавиатуры:

$$A := \begin{pmatrix} 1 & 2 & 3 & 4 & 30 \\ -1 & 2 & -3 & 4 & 10 \\ 0 & 1 & -1 & 1 & 3 \\ 1 & 1 & 1 & 1 & 10 \end{pmatrix} \qquad A1 := ref(A) \qquad A1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix} .$$

Из первой строки матрицы A1 имеем x=1, из второй -y=2; из третьей -z=3; из четвёртой -t=4.

2 Лабораторная работа № 2

Цель лабораторной работы: обучение студентов правилам и приёмам использования Mathcad для построения графиков функций, вычисления пределов и производных, вычисления интегралов, исследования функций с помощью производных.

Задание 1. Дана функция f(x) и точка x_0 :

- 1) найти предел f(x) в точке x_0 ;
- 2) найти производные f'(x), $f'(x_0)$, f''(x), $f''(x_0)$;
- 3) построить график функции y=f(x) в декартовой системе координат; построить в том же графике касательную и нормаль в указанной точке.

	f(x)	X_0		f(x)	\mathcal{X}_0		f(x)	\mathcal{X}_0
1.1	$\sqrt[3]{(x-3)^2x}$	-1	1.11	$\sqrt[3]{(x+2)^2x}$	1	1.21	$\sqrt[3]{x^2(x+2)}$	-5
1.2	$x^2 + 2$	-3	1.12	$x^2 + 8$	3	1.22	$x^2 - 8$	-5
	$\sqrt{x^2-4}$			$\sqrt{x^2-4}$			$\sqrt{4x^2-1}$	
1.3	$\sqrt[3]{x(x+6)^2}$	-8	1.13	$\sqrt[3]{x^2(x+6)}$	8	1.23	$\sqrt[3]{x^2(x-6)}$	-3
1.4	$\underline{x(x-2)}$	-3	1.14	$\underline{x(x-1)}$	3	1.24	$x^{2} + 6$	-5
	x + 2			x+2			$\sqrt{x^2-1}$	
1.5	$2 + \frac{1}{-}$	-1	1.15	$2 - \frac{1}{}$	1	1.25	3	-1
	x			\bar{x}			X	
1.6	4	-2	1.16	$\frac{2}{}$	2	1.26	<u>5</u>	5
	X			X			X	
1.7	$1-\frac{1}{x}$	-1	1.17	$1+\frac{1}{x}$	1	1.27	$\frac{x^2-3}{\sqrt{4x^2-1}}$	5

1.8	$\frac{x(x-1)}{x+1}$	-2	1.18	$\frac{x(x-4)}{x+1}$	2	1.28	$\frac{x^2+6}{\sqrt{x^2-1}}$	3
1.9	$\sin 2x$	0,5	1.19	$\sin 3x$	-0,5	1.29	$\sqrt[3]{x^2(x+1)}$	5
1.10	$\cos 2x$	0,5	1.20	$\cos 3x$	-0,5	1.30	$\sqrt[3]{x^2(x+2)}$	1

Задание 2 Построить график функции y=f(x), заданной параметрически.

	x(t)	y(t)		x(t)	y(t)
2.1	$-t^2$	$2t^3$	2.16	t^2-2t	$t^2 + 2t$
2.2	$t-2\sin t$	$1-2\cos t$	2.17	$2\cos^3 t$	$2\sin^3 t$
2.3	$t - \sin t$	$1-\cos t$	2.18	$t^3 + 3t + 1$	$t^3 - 3t + 1$
2.4	$4\cos^3\frac{t}{4}$	$4\sin^3\frac{t}{4}$	2.19	$t + \frac{1}{t}$	$t + \frac{1}{t^2}$
2.5	$2\cos^2 t + \cos t$	$2\cos t \sin t + \sin t$	2.20	$\cos t - \cos 2t$	$\sin t - \sin 2t$
2.6	$3t^{2}$	_ 3 <i>t</i>	2.21	t^2	t
	$-\frac{1}{1+t^3}$	$1+t^3$		$\overline{t-1}$	$\overline{t^2-1}$
2.7	$-\frac{3t}{1+t^3}$ $\frac{3t^2}{1+t^3}$	$\frac{3t}{1+t^3}$	2.22	$t + \frac{2}{t}$	$\frac{t}{t^2 - 1}$ $t + \frac{2}{t^2}$
	$1+t^3$	$1+t^3$		t	<i>t</i> 2
2.8	t^2	$\frac{2t^3}{t^3}$	2.23		$3t-t^3$
2.9	t^2	t^3	2.24	t^2	$t(1-t^2)$
	$\overline{1+t^2}$	$1+t^2$		$1+t^2$	$\frac{3t - t^3}{t(1 - t^2)}$ $\frac{t(1 - t^2)}{1 + t^2}$
2.10		$\cos t \sin t + \sin t$	2.25		$\sin t(1+\cos t)$
2.11	t^2	t	2.26		3 <i>t</i>
	$\overline{1+t^3}$	$-\frac{1}{1+t^3}$		$1+t^3$	$-\frac{1}{1+t^3}$
2.12	t^2	t^3	2.27	$t-t^2$	$2t-t^3$
2.13	$-t^2$	t^3	2.28	1-2t	$2-t^2$
2.14	$3\cos t$	$4\sin t$	2.29	5cost	$2\sin t$
2.15	1-t	$1-t^2$	2.30	te ^t	te^{-t}

Задание 3. Построить график функции $\rho = \rho(\phi)$ в полярной системе координат.

	$\rho(\varphi)$		$ ho(\phi)$		$ ho(\phi)$
3.1	3φ	3.11	$-2ctg\varphi$	3.21	$4\sqrt{\cos 2\varphi}$
3.2	$2ctg\varphi$	3.12	$2\cos\varphi + 3$	3.22	$2\sqrt{\cos 2\varphi}$
3.3	$2\cos\varphi + 2$	3.13	$2\sin 3\varphi$	3.23	$2\cos 2\varphi$

3.4	$\frac{3}{-} + 3$	3.14	<u>2</u> + 2	3.24	3
	φ		$\sin \varphi$		$\overline{arphi^2}$
3.5	$2\cos\varphi+1$	3.15	$2\varphi + 1$	3.25	2^{φ}
3.6	$5\sin\frac{\varphi}{2}$	3.16	<u>2</u> +1	3.26	1
	3		$\cos \varphi$		$\overline{arphi^2}$
3.7	$\frac{1}{2}$ + 2	3.17	$\frac{2}{}+3$	3.27	$\frac{2}{0000000000000000000000000000000000$
	φ		$\sin \varphi$		$\sin \varphi$
3.8	$2tg\varphi$	3.18	3^{φ}	3.28	$2\sin 6\varphi$
3.9	$5\sin\frac{4\varphi}{}$	3.19	$\frac{2}{+3}$	3.29	2
	$\frac{3\sin 3}{3}$		$\cos \varphi$		$\cos \varphi$
3.10	$2(1-\cos\varphi)$	3.20	$1+tg\varphi$	3.30	$2\cos 6\varphi$

Задание 4. Построить график кусочно-непрерывной функции f(x) (т.е. функции на различных интервалах области определения заданной разными аналитическими выражениями).

f(x)	f(x)
$\begin{cases} x+3, & x \le -1 \\ 4.1 & x^2+2, & -1 < x \le 1 \end{cases}$	$\begin{cases} x+1, & x \le 0 \\ (x+1)^2, & 0 < x \le 2 \end{cases}$
2x, x>1	$ 4.2 \left\{ (x+1)^2, 0 < x \le 2 \\ -x+4, x > 2 \right. $
$ \begin{cases} x + 2, & x \le -1 \\ 4.3 & x^2 + 1, & -1 < x \le 1 \\ -x + 3, & x > 1 \end{cases} $	$ \begin{cases} -x, & x \le 0 \\ -(x-1)^2, & 0 < x \le 2 \\ -x+4, & x > 2 \end{cases} $
-x+3, $x>1$	-x+4, x>2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-x$, $x \le 0$
$4.5 \begin{cases} -2(x+1), & x \le -1 \\ (x+1)^3, & -1 < x \le 1 \\ x, & x > 1 \end{cases}$	$4.6 \begin{cases} -x, & x \le 0 \\ x^2, & 0 < x < 2 \\ x+1, & x \ge 2 \end{cases}$
$ 4.7 \begin{cases} x^2 + 1, & x \le 1 \\ 2x, & 1 < x \le 3 \\ x + 2, & x > 3 \end{cases} $	$\begin{cases} x-4, & x \leq 0 \end{cases}$
	$ \begin{cases} x + 1, & 0 < x \le 5 \\ x + 4, & x > 5 \end{cases} $
$4.9 \begin{cases} x-2, & x \le -1 \\ (x+1)^2, & -1 < x \le 2 \\ x+3, & x > 2 \end{cases}$	$4.10 \begin{cases} 2x^2, & x \le 0 \\ x, & 0 < x \le 1 \\ x + 2, & x > 1 \end{cases}$
$4.11 \begin{cases} \sin x, & x < 0 \\ x, & 0 \le x \le \pi \\ 4, & x > \pi \end{cases}$	$4.12 \begin{cases} \cos x, & x \le 0 \\ 2, & 0 < x \le \pi \\ x, & x > \pi \end{cases}$

(1 10	(1 10
$\begin{cases} x+1, & x \leq 0 \end{cases}$	$x+1, x \leq 0$
$4.13 \ x^2 - 1, 0 < x \le 2$	$ 4.14 x^2 - 1, 0 < x < 1$
	$-x, x \ge 1$
$\left[-x, x \le 0\right]$	$\begin{cases} x+3, & x \leq 0 \end{cases}$
$4.15 \left\{ x^2 + 1, 0 < x \le 2 \right\}$	$ 4.16 1, 0 < x \le 2$
x+1, x>2	$x^2-3, x>2$
$x-1, x \le 0$	$ 4.18 \begin{cases} -x+1, & x \le -1 \\ 2, & -1 < x \le 1 \\ \ln x, & x > 1 \end{cases} $
$4.17 \left\{ \cos x, 0 < x \le \pi \right.$	$ 4.18 $ 2, $-1 < x \le 1$
$3, x > \pi$	$\ln x$, $x > 1$
$\begin{cases} x+1, & x \leq 0 \end{cases}$	$\left(-x+1, x \le 0\right)$
$4.19 \left\{ 2^x, 0 < x \le 2 \right\}$	$ 4.20 $ x^2 , $0 < x \le 1$
1, x > 2	3, x > 1
$2x+1, x \leq -2$	$\int x^3, x \leq -1$
$4.21 \begin{cases} x^2, -2 < x \le 2 \end{cases}$	$4.22 \begin{cases} x-1, & -1 < x \le 2 \end{cases}$
$ \begin{cases} x^2, & -2 < x \le 2 \\ 4, & x > 2 \end{cases} $	-x+3, x>2
$\begin{cases} x-2, & x \leq -3 \end{cases}$	$\int e^x, x \leq 0$
$4.23 \begin{cases} x^2 - 1, & -3 < x \le 2 \end{cases}$	$ 4.24 x, 0 < x \le 2$
$ \begin{cases} x - 2, & x \le -3 \\ x^2 - 1, & -3 < x \le 2 \\ 0, & x > 2 \end{cases} $	$\begin{cases} 4.24 & x, 0 < x \le 2 \\ 3, x > 2 \end{cases}$
$-x, x \leq -1$	$\int x^2 + 1, x \le 0$
$4.25 \left\{ (x+1)^2, -1 < x < 2 \right\}$	$4.26 \begin{cases} 2x+3, & 0 < x \le 2 \end{cases}$
$5, x \ge 2$	1, x > 2
$x+1, x \leq 0$	$3x+1, x \leq 0$
$4.27 \begin{cases} \sin x, & 0 < x \le \pi \end{cases}$	$\begin{vmatrix} 4.28 \\ \cos x, & 0 < x \le \pi \end{vmatrix}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 1, & x > \pi \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{cases} 3x - 1, & x \le -1 \\ 4.29 & x^3, & -1 < x \le 2 \end{cases}$	$\begin{cases} 4, & x \le -1 \\ 4.30 & (x+1)^2, & -1 < x \le 1 \end{cases}$
	$\left \ln x, x > 1 \right $

Задание 5 Дана функция f(x):

- 1) разложить f(x) на сумму простейших дробей;
- 2) найти неопределённый интеграл $\int f(x)dx$;
- 3) вычислить определённый интеграл $\int_{a}^{b} f(x)dx$.

	f(x)	a	b		f(x)	a	b
5.1	$x^2 + 4x + 4$	3	5	5.16	1	1	2
	$x(x-1)^{2}$				$x(x^2+2)$		
5.2	1	2	4	5.17	<u>x-1</u>	0	3
	$\overline{x(x-1)}$				$\sqrt{(x^2+1)^3}$		
5.3	$3x^2 + 2x - 1$	-1	3	5.18	$x^{3} + 2$	4	5
	(x+2)				$\overline{x^3-4x}$		
5.4	$2x^2 - 1$	0	2	5.19	$\frac{x}{(x-1)(x^2+1)}$	4	5
	$x^3 - 5x^2 + 6x$				`		
5.5	$\frac{2x-5}{(x-3)^2}$	0	3	5.20	$\frac{x^2-x+4}{x^2-x+4}$	3	4
	$\overline{(x+4)^3}$				(x-2)(x+1)		
5.6	5 <i>x</i> –13	0	1	5.21	$x^3 - 2x^2 - 3x + 4$	3	5
	$(x^2 - 5x + 6)^2$				$x^4 - 4x^3 + 4x^2$		
5.7	$x^2 + 9x + 2$	3	5	5.22	$-x^3 + 13x^2 - 27x + 25$	3	5
	$(x+2)(x^2-1)$				$(x-2)^3(x+3)$		
5.8	<i>X</i>	6	8	5.23	$2x^2 + 41x - 91$	8	10
	$2x^2 - 3x - 2$				(x+3)(x-4)(x-1)		
5.9	$\frac{x^3 - 6x^2 + 11x - 5}{(x^2 + 1)^4}$	3	4	5.24	$\frac{x^3-1}{x^3-1}$	5	7
7.10	$(x-2)^4$				$4x^3-x$		
5.10	$\frac{1}{6x^3 - 7x^2 - 3x}$	3	15	5.25	$\frac{x^3 - 6x^2 + 9x + 7}{(x^3 - 6x^2)^2}$	-2	-1
					$(x-2)(x-5)^2$		
5.11	$\frac{x^5 + x^4 - 8}{x^5 + x^4 - 8}$	-3	0	5.26	$\frac{x^5}{x^5}$	2	5
	x^3-4x				$(x-1)^2(x^2-1)^2$		
5.12	<u> </u>	3	9	5.27	$2x^2$	7	10
	$x^4 - 3x^2 + 2$				$\overline{x^3-5x^2}$		
5.13	$\frac{x^2-2x+3}{}$	0	1	5.28	$-7x^3 - 9$	5	6
	<i>x</i> – 9				$x^4 - 5x^3 + 6x^2$		
5.14	$\frac{x^2}{x^2}$	0	2	5.29	$\frac{x^3+1}{x^2}$	3	9
	$x^3 + 5x^2 + 8x + 4$				$\overline{x^3-x^2}$		_
5.15	$\frac{1}{\sqrt{1-\frac{1}{2}}}$	2	15	5.30	$\frac{x^2}{(x+2)^2(x+4)^2}$	3	7
	$\overline{x^4-x^2}$				$(x+2)^2(x+4)^2$		

Задание 6. Провести полное исследование функции f(x), т.е. найти:

- 1) область определения и точки разрыва;
- 2) асимптоты графика функции;
- 3) точки пересечения графика с осями координат;

- 4) чётность и нечётность;
- 5) интервалы монотонности, точки экстремума;
- 6) интервалы выпуклости, вогнутости, точки перегиба;
- 7) построить график.

	f(x)		f(x)		f(x)
6.1	$x^2 - 2x + 2$	6.2	<u>x+1</u>	6.3	2
	x-1		$(x-1)^2$		$\sqrt{x^2+2x}$
6.4	<u>x</u>	6.5	$4x-x^2-4$	6.6	$\frac{x^2}{4x^2-1}$
	$\overline{9-x}$		<i>x</i> 8		
6.7		6.8		6.9	$\frac{x^2 + 2x - 15}{}$
	$\overline{x^2-1}$		$\sqrt{x^2-4x}$		x-1
6.10	x^3	6.11	x^3	6.12	$x^2 - 3x - 10$
	$\overline{x^2-x+1}$		$\sqrt{x^2-1}$		x-4
6.13	x^2-x-1	6.14	$(x-2)^2$	6.15	$x^2 - 5x + 6$
	x^2-2x		$\overline{x+1}$		$\overline{x-4}$
6.16	$x^2 + 3$	6.17	$x^2 + 6$	6.18	$x^2 - 4x - 10$
			$\sqrt{x^2+1}$		$\overline{x-5}$
6.19	<i>x</i> 7	6.20	$x^2 - 3x + 2$	6.21	2x-1
	$\sqrt{x^2-3x}$		$\overline{x+1}$		$(x-1)^2$
6.22	$\frac{x^5}{x^4 - 1}$	6.23	$\frac{x^3+4}{x^2}$	6.24	4
	$\sqrt{x^4-1}$		$-x^2$		$\sqrt{x^2+7x}$
6.25	x^3	6.26	$x^{3} - 8$	6.27	$x^2 + \frac{1}{x^2}$
	$\overline{x^4-1}$		$\overline{x^2}$		$\frac{x}{x^2}$
6.28	$5x^4 + 3$	6.29	$\frac{x^3 - 8}{x^2}$ $\frac{4 - 2x}{1 - x^2}$	6.30	5 <i>x</i>
	<u> x</u>		$1-x^2$		$4-x^2$

Вопросы к лабораторной работе №2

- 1. Как в прямоугольной системе координат построить график функции так, чтобы он был удобен для чтения (т.е. как поменять масштаб, изобразить оси координат и т.д.)?
- 2. Как в одной системе координат построить несколько графиков, например, функции, касательной, нормали?
 - 3. Как в полярной системе координат изменить масштаб?
- 4. С помощью какой панели находятся пределы, производные и интегралы?
- 5. Как найти и изобразить на графике вертикальные, горизонтальные и наклонные асимптоты графика функции?
 - 6. Как построить график кусочно-непрерывной функции?

- 7. Как построить график функции заданной параметрически?
- 8. Что должно быть включено в таблицы при определении экстремумов и интервалов монотонности?

Указания к выполнению лабораторной работы №2

Задание 1. Дана функция $f(x) = \cos 2x + 1$ и точка $x_0 = \frac{\pi}{3}$:

- 1) найти предел f(x) в точке x_0 ;
- 2) найти производные f'(x), $f'(x_0)$, f''(x), $f''(x_0)$;
- 3) построить график функции y=f(x) в декартовой системе координат; построить в том же графике касательную и нормаль в указанной точке.

У казание. Набрать с клавиатуры заданную функцию и точку x_0 :

- 1) вызвать с панели *Calculus* знак *Пределы*, заполнить его и вычислить как указано ниже;
- 2) вызвать с панели *Calculus* знак *Производной и Второй производной*, заполнить, и вычислить производные и их значения в точке x_0 как указано ниже;
- 3) набрать с клавиатуры угловой коэффициент касательной k, уравнения касательной yk(x) и нормали yn(x). Вызвать с панели Graph, X-Y plot, заполнить метки (причём набор трёх функций по оси Oy производить через запятую) и щёлкнуть по свободному месту вне поля графика.

Выполнение задания

$$f(x) := \cos(2x) + 1$$
, $x0 := \frac{\pi}{3}$

$$\lim_{x \to x0} f(x) \to \frac{1}{2}$$

2)
$$\frac{d}{dx}f(x) \rightarrow -2 \cdot \sin(2 \cdot x) \text{ expand}, x \rightarrow -4 \cdot \cos(x) \cdot \sin(x)$$

$$\frac{d}{dx0}f(x0) \to -\sqrt{3} \qquad \frac{d^2}{dx^2}f(x) \to -4 \cdot \cos(2 \cdot x) \qquad \frac{d^2}{dx0^2}f(x0) \to 2$$

3)
$$k := \frac{d}{dx0}f(x0)$$
 $yk(x) := k \cdot (x - x0) + f(x0)$

$$\operatorname{yn}(x) := \frac{-1}{k} \cdot (x - x0) + f(x0)$$

Рисунок 1

Задание 2. Построить график функции y=f(x), заданной параметрически $\begin{cases} x=t-2\sin t \\ y=1-2\cos t \end{cases}$

У казание. Набрать с клавиатуры заданную функцию, вызвать с панели Graph, X-Y plot, заполнить метки, причём по оси Ox набрать x(t), а по оси Oy-y(t), и щёлкнуть по свободному месту вне поля графика.

Выполнение задания

$$x(t) := t - 2 \cdot \sin(t);$$
 $y(t) := 1 - 2 \cdot \cos(t).$

$$y(t) = 1 - 2 \cdot \cos(t).$$

Рисунок 2

Задание 3. Построить график функции $ho = tg\,2\phi$ в полярной систем координат.

Указание. Набрать с клавиатуры заданную функцию, вызвать с панели *Graph, Polar plot,* заполнить метки и щёлкнуть по свободному месту вне поля графика.

Выполнение задания

 $\rho(\phi) := \tan(2\cdot\phi)$

Рисунок 3

Задание 4. Построить график кусочно-непрерывной функции

$$f(x) = \begin{cases} -x, ecлu \ x \le 0 \\ \sin 2x, ecлu \ 0 < x \le 2. \\ 1, ecлu \ x > 2 \end{cases}$$

У казание. Вызвать панель *Programming*. Заданную функцию набирают с помощью *Add line* на этой панели, причём, если меток не хватает для задания функции, на *Add line* нажимают столько раз, сколько требуется.

Выполнение задания

$$f(x) := \begin{vmatrix} -x & \text{if } x \le 0 \\ \sin(2 \cdot x) & \text{if } 0 < x \le 2 \\ 1 & \text{if } x > 2 \end{vmatrix}$$

 \mathbf{X}

Рисунок 4

Задание 5 Дана функция
$$f(x) = \frac{x^2 - 3x + 7}{(x-1)^2(x+1)}$$
:

- 1) разложить f(x) на сумму простейших дробей;
- 2) найти неопределённый интеграл $\int f(x)dx$;
- 3) вычислить определённый интеграл $\int\limits_{2}^{3} f(x)dx$.

У казание. Набрать выражение с клавиатуры, выделить синим угловым курсором переменную x, щёлкнуть по позиции *Символы, Переменные, Преобразовать в частичные доли* или вызвать панель *Sivbolic, Parfrac*. Вычисление интегралов выполняется с использованием панели *Calculus*. Для вычисления определённого интеграла в десятичных дробях выделяют его значение синим уголком и нажимают клавишу =.

Выполнение задания

$$f(x) := \frac{x^2 - 3 \cdot x + 7}{(x - 1)^2 \cdot (x + 1)}$$

1)
$$f(x) \text{ parfrac} \rightarrow \frac{11}{4 \cdot (x+1)} - \frac{7}{4 \cdot (x-1)} + \frac{5}{2 \cdot (x-1)^2}$$

2)
$$\int f(x) dx \rightarrow \frac{11 \cdot \ln(x+1)}{4} - \frac{7 \cdot \ln(x-1)}{4} - \frac{5}{2 \cdot (x-1)}$$

$$\int_{2}^{3} f(x) dx \rightarrow \frac{15 \cdot \ln(2)}{4} - \frac{11 \cdot \ln(3)}{4} + \frac{5}{4} = 0.828$$

Задание 6. Дана функция $f(x) = \frac{x^3 - 3x}{x^2 - 1}$. Найти:

- 1) область определения и точки разрыва;
- 2) асимптоты графика функции;
- 3) точки пересечения графика с осями координат;
- 4) чётность и нечётность;
- 5) интервалы монотонности, точки экстремума;
- 6) интервалы выпуклости, вогнутости, точки перегиба;
- 7) построить график.

Указания.

- 1) Найти точки разрыва f(x) (т.е. точки, в которых функция не определена), записать область определения.
- 2) Вычислить односторонние пределы в точках разрыва. Записать уравнения вертикальных асимптот (x=a, если a точка разрыва). Односторонние пределы определяют поведение функции вблизи точки разрыва.

Вычислить пределы $k = \lim_{x \to \infty} \frac{f(x)}{x}$, $b = \lim_{x \to \infty} (f(x) - kx)$. Составить уравнение наклонной (или горизонтальной, если k=0) асимптоты y=kx+b.

- 3) Вычислить значение f(0) это точка пересечения с OY. Решить уравнение f(x)=0 его корни являются точками пересечения с OX.
- 4) Если f(-x)=f(x), то функция чётная, если f(-x)=-f(x), то нечётная; при невыполнении ни одного из этих равенств функция общего вида.
- 5) Найти производную функции f'(x). Найти критические точки, т.е. точки, в которых f'(x)=0 или не существует. Разбить критическими точками область определения на части, найти знак производной в каждой части; если знак плюс, то в этой части функция возрастает, если минус, то убывает. Все данные занести в таблицу.
- 6) Найти производную второго порядка функции f''(x). Найти точки, где f''(x)=0 или не существует. Разбить область определения функции этими точками на части, определить знак второй производной в каждой части; если знак плюс, то в этой части график функции вогнутый, если минус, то выпуклый. Все данные занести в таблицу.
- 7) Задать функцию и её асимптоты, причём задание вертикальной асимптоты x=a имеет вид f1(x)=x+a. При заполнении меток в декартовом графике по оси ординат набирают названия функции и асимптот через запятые, по оси абсцисс аргументы этих функций в том же порядке, также через запятые; для вертикальной асимптоты аргумент a.

Выполнение задания

1)
$$f(x) = \frac{x^3 - 3x}{x^2 - 1}$$
, $x^2 - 1 \neq 0$, $x = \pm 1$ – точки разрыва.

Д(f):
$$(-\infty,-1)$$
 \cup $(-1,1)$ \cup $(1,+\infty)$.

2)
$$f(x) = \frac{x^3 - 3x}{x^2 - 1}$$
, T.K.

$$\lim_{x\to -1^+} f(x) \to -\infty \qquad \qquad \lim_{x\to 1^+} f(x) \to -\infty$$

$$\lim_{x\to -1^-} f(x) \to \infty \qquad \qquad \lim_{x\to 1^-} f(x) \to \infty$$

то $x = \pm 1$ вертикальные асимптоты.

Найдём наклонную асимптоту y=kx+b:

$$k := \lim_{X \to \infty} \frac{x^3 - 3 x}{(x^2 - 1) \cdot x} \to 1$$

$$b:=\lim_{x\to\infty}\left(\frac{x^3-3\ x}{x^2-1}-x\right)\to 0$$
, таким образом, $y=x$ — наклонная асимптота. 3) Точки пересечения графика функции с осями координат:

3) Точки пересечения графика функции с осями координат:

c OX: y=0
$$\rightarrow \frac{x^3 - 3x}{x^2 - 1} = 0 \rightarrow x^3 - 3x = 0 \rightarrow x = 0, x = \pm \sqrt{3} \rightarrow (0,0), (\pm \sqrt{3},0);$$

c OY: $x=0 \to y=0 \to (0,0)$.

4) Так как
$$f(-x) = \frac{(-x)^3 - 3(-x)}{(-x)^2 - 1} = -\frac{x^3 - 3x}{x^2 - 1} = -f(x)$$
, то функция нечётная.

интервалы монотонности,

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) \rightarrow \frac{\left(3 \cdot x^2 - 3\right)}{\left(x^2 - 1\right)} - 2 \cdot \frac{\left(x^3 - 3 \cdot x\right)}{\left(x^2 - 1\right)^2} \cdot x \text{ simplify } \rightarrow \frac{\left(x^4 + 3\right)}{\left(x^2 - 1\right)^2}$$

так как $y' = \frac{df(x)}{dx} > 0 \forall x$, то функция f(x) везде в области определения возрастает. Точек экстремума нет.

6) Найдём интервалы выпуклости, вогнутости, точки перегиба:

$$f2(x) := \frac{d^2}{d x^2} f(x)$$

$$\frac{d^{2}}{d x^{2}} f(x) \Rightarrow 6 \cdot \frac{x}{\left(x^{2} - 1\right)} - 4 \cdot \frac{\left(3 \cdot x^{2} - 3\right)}{\left(x^{2} - 1\right)^{2}} \cdot x + 8 \cdot \frac{\left(x^{3} - 3 \cdot x\right)}{\left(x^{2} - 1\right)^{3}} \cdot x^{2} - 2 \cdot \frac{\left(x^{3} - 3 \cdot x\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} + 3\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)^{2}}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)^{2}}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)^{2}}{\left(x^{2} - 1\right)^{2}} simplify \Rightarrow -4 \cdot x \cdot \frac{\left(x^{2} - 1\right)^{2}}{$$

f2(x)=0:

$$-4 \cdot x \cdot \frac{\left(x^2 + 3\right)}{\left(x^2 - 1\right)^3} \text{ solve}, x \rightarrow \begin{bmatrix} 0 \\ i \cdot \sqrt{3} \\ -i \cdot \sqrt{3} \end{bmatrix}$$
, итак, $x = 0$ может быть абсциссой точки перегиба. Заполним таблицу:

перегиба. Заполним таблицу:

X	$(-\infty,-1)$	(-1,0)	0	(0,1)	(1,∞)
y"	+	-	0	+	-
y	U	\cap	0	U	\cap

Определение знаков второй производной в указанных интервалах:

$$f2(-2) = 2.074$$
 $f2\left(\frac{-1}{2}\right) = -15.407$
 $f2\left(\frac{1}{2}\right) = 15.407$ $f2(2) = -2.074$

Таким образом, (0,0) -точка перегиба.

7) Построим графики функции и асимптот:

$$f(x) := \frac{x^3 - 3 \cdot x}{x^2 - 1},$$

$$f(x) := x - 1,$$

$$f(x) := x + 1,$$

$$f(x) := x + 1,$$

Рисунок 5

3 Лабораторная работа №3

Цель лабораторной работы: рассмотреть примеры применения Mathcad к решению задач теории вероятностей: непосредственный подсчёт вероятностей, формулы полной вероятности, Байеса, формулы Бернулли, Пуассона, локальная и интегральная теоремы Лапласа, дискретные и непрерывные случайные величины, некоторые основные законы распределения случайных величин.

Задание 1. В урне N шаров одинакового размера и веса, среди них M белых, остальные чёрные. Шары тщательно перемешаны. Найти:

- 1) относительную частоту белых шаров в урне;
- 2) вероятность того, что все m шаров, взятых наугад из урны, будут белыми;
- 3) вероятность того, что среди m шаров, взятых наугад из урны, будет m_1 белых.

	N	M	m	$m_{_1}$		N	M	m	$m_{\scriptscriptstyle 1}$
1.1	100	25	10	8	1.16	70	8	5	3
1.2	90	15	12	7	1.17	75	9	8	4
1.3	85	10	7	4	1.18	85	6	5	2
1.4	80	9	5	3	1.19	90	12	7	4
1.5	95	15	9	3	1.20	87	10	8	3
1.6	70	10	9	5	1.21	100	30	15	5
1.7	80	15	7	5	1.22	90	20	9	3
1.8	90	10	6	4	1.23	95	15	10	4
1.9	75	10	8	4	1.24	85	10	7	2

1.10	100	20	10	7	1.25	90	12	6	3
1.11	90	10	8	5	1.26	85	10	5	2
1.12	80	7	5	3	1.27	75	8	5	3
1.13	95	10	8	5	1.28	100	15	9	4
1.14	96	12	7	1	1.29	80	10	7	4
1.15	89	13	5	2	1.30	85	7	5	2

Задание 2. В сборный цех поступило 1000 деталей из трёх цехов: n_1 деталей из первого цеха, n_2 - из второго, остальные из третьего. В первом, втором и третьем цехах производится соответственно m_1 , m_2 и m_3 процентов нестандартных деталей. Наугад выбрана одна деталь:

- 1) найти вероятность того, что она нестандартная;
- 2) выбранная деталь оказалась нестандартной. Найти вероятность того, что она сделана в i том цехе (i =1,2,3).

	$n_{_1}$	n_{2}	$m_{\scriptscriptstyle \perp}$	m_2	m_3	i
2.1	100	250	7	8	5	1
2.2	430	180	5	4	7	2
2.3	170	540	6	5	8	3
2.4	650	120	10	9	8	2
2.5	400	180	7	10	5	1
2.6	120	380	10	6	9	2
2.7	270	340	9	5	4	3
2.8	430	120	10	7	6	2
2.9	360	120	5	10	8	1
2.10	420	210	8	7	6	1
2.11	370	130	10	6	5	2
2.12	410	200	5	10	8	3
2.13	280	510	10	6	5	3
2.14	710	120	2	10	4	3
2.15	460	240	5	9	7	1
2.16	520	220	5	8	7	1
2.17	270	410	10	5	9	2
2.18	250	140	8	7	4	2
2.19	190	380	5	9	30	1
2.20	290	610	6	3	3	2
2.21	270	430	10	6	4	2
2.22	280	360	7	10	9	1
2.23	520	110	5	7	10	1
2.24	240	290	9	8	4	3
2.25	310	410	7	2	5	3
2.26	520	110	3	6	7	2

2.27	280	310	9	8	4	2
2.28	400	320	4	5	8	1
2.29	350	240	9	8	7	1
2.30	190	520	5	2	4	3

Задание 3. Проводится n испытаний, в каждом из которых вероятность появления события A равна p. Найти вероятность того, что событие A появится:

- 1) ровно k_1 раз;
- 2) менее k_1 раз;
- 3) более k_2 раз;
- 4) хотя бы один раз;
- 5) от k_1 до k_2 раз.

Для а) использовать формулу Бернулли, где это возможно; для б) — локальную и интегральную теоремы Лапласа.

	n	$k_{\scriptscriptstyle 1}$	k_2	p		n	$k_{\scriptscriptstyle 1}$	k_2	p	
3.1 a)	5	2	3	0,9	3.16 a)	8	3	7	0.6	
б)	100	80	90		б)	100	70	95		
3.2 a)	4	2	3	0.8	3.17 a)	7	5	6	0.8	
б)	100	85	95		б)	100	50	60		
3.3 a)	9	5	7	0.6	3.18 a)	8	4	7	0.8	
б)	100	83	93		б)	100	70	80		
3.4 a)	10	4	8	0.4	3.19 a)	6	3	5	0.3	
б)	100	65	75		б)	100	62	82		
3.5 a)	11	7	9	0.2	3.20 a)	7	4	6	0.3	
б)	100	40	50		б)	100	55	75		
3.6 a)	5	3	4	0.4	3.21 a)	5	2	4	0.4	
б)	100	80	95		б)	100	40	60		
3.7 a)	7	3	6	0.6	3.22 a)	4	2	3	0.8	
б)	100	50	70		б)	100	50			
3.8 a)	9	4	7	0.3	3.23 a)	5	3	4	0.7	
б)	100	45	80		б)	200	80	170		
3.9 a)	10	3	6	0.4	3.24 a)	9	4	6	0,9	
б)	100	35	70		б)	100	40	65		
3.10 a)	11	5	8	0.8	3.25 a)	8	4	7	0.8	
б)	100	40	65		б)	100	20	60		
3.11 a)	7	4	4	0.7	3.26 a)	6	3	5	0.6	
б)	100	50	80		б)	200	85	150		
3.12 a)	8	3	6	0.8	3.27 a)	8	3	7	0.4	
б)	100	40	79	1	б)	100	35	70		
3.13 a)	6	3	4	0.7	3.28 a)	7	5	6	0.2	
б)	200	45	75		б)	100	47	80		

3.14 a)	4	2	3	0,9	3.29 a)	5	2	4	0.4
б)	100	55	75		б)	100	62	82	
3.15 a)	6	4	5	0.8	3.30 a)	4	2	3	0.6
б)	100	50	70		б)	100	90	95	

Задание 4. Дискретная случайная величина X задана рядом распределения. Найти:

- 1) её функцию распределения F(x), построить график F(x);
- 2) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду;
 - 3) вероятность попадания X в интервал (a;b).

	W								1
	X	x_1	x_2	x_3	X_4	x_{5}	x_6	a	b
	P	$p_{\scriptscriptstyle 1}$	$p_{_2}$	p_3	$p_{_4}$	p_{5}	$p_{\scriptscriptstyle 6}$		
4.1	X	0	1	2	4	6	9	-2	7
	P	0.05	0.15	0.3	0.25	0.15	0.1		
4.2	X	-3	-2	-1	0	2	4	-1	3
	P	0.15	0.3	0.02	0.14	0.18	0.31		
4.3	X	1	2	3	5	7	8	-3	6
	P	0.3	0.14	0.16	0.1	0.2	0.1		
4.4	X	-4	-3	-2	0	1	2	0	1
	P	0.2	0.08	0.23	0.27	0.12	0.1		
4.5	X	1	2	4	5	7	9	3	8
	P	0.19	0.21	0.06	0.14	0.12	0.28		
4.6	X	-1	0	2	3	5	7	-4	4
	P	0.26	0.14	0.07	0.2	0.03	0.3		
4.7	X	-2	-1	0	3	5	7	1	6
	P	0.18	0.09	0.01	0.2	0.22	0.3		
4.8	X	1	2	4	5	6	8	0	6
	P	0.3	0.17	0.13	0.1	0.2	0.1		
4.9	X	1	2	3	4	7	9	5	8
	P	0.11	0.29	0.06	0.14	0.17	0.23		
4.10	X	0	1	2	3	7	9	4	8
	P	0.06	0.14	0.3	0.25	0.15	0.1		
4.11	X	-3	-2	0	1	2	4	-1	3
	P	0.15	0.3	0.01	0.14	0.19	0.31		
4.12	X	-1	0	3	5	7	8	1	6
	P	0.25	0.14	0.16	0.1	0.2	0.15		
4.13	X	-4	-3	-2	0	2	4	-1	3
	P	0.2	0.07	0.24	0.26	0.13	0.1		
4.14	X	-3	-1	0	3	4	7	-2	6
	P	0.12	0.09	0.01	0.2	0.28	0.3		

4.15	X	-1	0	1	3	7	8	2	6
	\overline{P}	0.26	0.14	0.15	0.2	0.3	0.15	_	J
4.16	X	-2	-1	0	1	2	7	-3	5
	\overline{P}	0.17	0.09	0.01	0.3	0.23	0.2	1	
4.17	X	1	2	3	5	6	7	0	4
	\overline{P}	0.1	0.14	0.16	0.1	0.2	0.3		-
4.18	X	-3	-1	0	3	5	6	-2	4
	P	0.16	0.09	0.01	0.3	0.24	0.2	=	
4.19	X	1	2	5	6	7	8	3	6
	\overline{P}	0.2	0.15	0.15	0.1	0.3	0.1	-	
4.20	X	-1	0	2	4	7	8	1	5
	P	0.23	0.18	0.12	0.2	0.1	0.17		
4.21	X	1	2	4	5	6	8	0	7
	P	0.3	0.14	0.16	0.03	0.2	0.17		
4.22	X	-4	-3	-1	0	1	3	-2	2
	P	0.2	0.03	0.24	0.26	0.17	0.1		
4.23	X	1	2	3	4	7	9	0	8
	P	0.17	0.23	0.09	0.11	0.12	0.28		
4.24	X	0	1	3	5	7	8	2	6
	P	0.2	0.14	0.16	0.12	0.3	0.08		
4.25	X	-5	-3	-2	0	1	3	-4	2
	P	0.2	0.06	0.21	0.29	0.14	0.1		
4.26	X	1	2	3	5	8	9	4	7
	P	0.18	0.22	0.05	0.15	0.12	0.28		
4.27	X	1	3	4	5	7	8	2	6
	P	0.3	0.16	0.14	0.01	0.2	0.19		
4.28	X	-5	-3	-1	0	1	3	-4	2
	P	0.1	0.03	0.14	0.36	0.17	0.2		
4.29	X	0	2	3	4	6	8	1	7
	P	0.26	0.14	0.05	0.15	0.12	0.28		
4.30	X	-1	0	2	3	7	8	1	6
	P	0.21	0.16	0.14	0.1	0.2	0.19		

Задание 5. Непрерывная случайная величина X задана плотностью распределения f(x). Найти:

- 1) её функцию распределения F(x);
- 2) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду, медиану;
- 3) вероятность попадания X в интервал (a;b). Построить графики F(x) и f(x).

0/)	1	-		0()		-
$f(\mathbf{v})$	α	h		f(v)	α	h
$I(\lambda)$	и	ν		$I(\lambda)$	и	ν
$J^{(-1)}$		-	II	$J(^{\circ\circ})$		-

5.1	$0, x \le 0, x > 4$	1	3	5.16		-1	2
3.1		1	3	5.10		-1	2
	$\int \frac{x}{8}, 0 < x \le 4$				$\begin{cases} \frac{1}{3}(1 - \frac{x}{3}), 0 < x \le 3 \end{cases}$		
5.2	$0, x \le -3, x > -2$	-	0	5.17	$0, x \le 0, x > \frac{\pi}{6}$	0	π
	$\left\{ \frac{6}{x^2}, -3 < x \le -2 \right\}$	2,5			1		12
	$(x^2)^{-1}$				$4\sin 2x, 0 < x \le \frac{\pi}{6}$		
5.3	$0, x \le -\frac{\pi}{2}, x > \frac{\pi}{2}$	0	$\frac{\pi}{4}$	5.18	$0, x \le 1, x > 2$	0	1,5
			4		$\left\{\frac{2}{x^2}, 1 < x \le 2\right\}$		
	$0.5\cos x, -\frac{\pi}{2} < x \le \frac{\pi}{2}$				(x^2)		
5.4	$0, x \le 0, x > 1$	0	$\frac{\sqrt{3}}{3}$	5.19	$0, x \le -2, x > 3$	1	2,5
	$\left\{\frac{4}{\pi(1+x^2)}, 0 < x \le 1\right\}$		3		$\begin{cases} \frac{2x}{5}, -2 < x \le 3 \end{cases}$		
5.5	(' '	0	1	5.20	()	0.1	1
5.5	$ \begin{cases} 0, x \le 0, x \ge 1 \\ 2 \end{cases} $	0	$\frac{1}{2}$	5.20	$0, x \le 0, x > \frac{1}{\sqrt{3}}$	0,1	1
	$\left\{ \frac{2}{\pi \sqrt{1-x^2}}, 0 < x < 1 \right\}$		2		\\		
	$(n \mathbf{v}_1 - x)$				$\left \frac{6}{\pi(1+x^2)}, 0 < x \le \frac{1}{\sqrt{3}} \right $		
5.6	$\int 0, x \le 0, x > \pi$	0	π	5.21	$0, x \le -1, x > 2$	0	1
	$\begin{cases} 0.5\sin x, 0 < x \le \pi \end{cases}$		$\frac{\pi}{2}$		$\begin{cases} \frac{1}{3}(x+1)^2, -1 < x \le 2 \end{cases}$		
		1		7.00	$(3^{(x+1)}, 1 \le x \le 2)$	4	1
5.7	$ \begin{cases} 0, x \leq 0, x > 2 \end{cases} $	1	2	5.22	$0, x \le 0, x \ge \frac{1}{2}$	$\frac{1}{4}$	1
	$\left\{\frac{x+2}{6}, 0 < x \le 2\right\}$					4	
					$\left(\frac{6}{\pi\sqrt{1-x^2}}, 0 < x < \frac{1}{2}\right)$		
5.8	$0, x \le -4, x > 5$	3	4,5	5.23	$\int 0, x \le \frac{\pi}{2}, x > \frac{5\pi}{6}$	0	2π
	$\left\{\frac{2x}{9}, -4 < x \le 5\right\}$				3		3
	(9				$\left -2\cos x, \frac{\pi}{2} < x \le \frac{5\pi}{6} \right $		
5.9	$\int 0, x \le 3, x > 5$	2	4	5.24	$\int 0, x \le 1, x > 2$	0	1,5
	$\left\{ \frac{7.5}{x^2}, 3 < x \le 5 \right\}$				$\begin{cases} 0, x \le 1, x > 2 \\ 2x - 2, 1 < x \le 2 \end{cases}$		
7. 40	(X	1 -		7.07	(0	
5.10	$\begin{cases} 0, x \le 1, x > 2 \\ 3(x-1)^2, 1 < x \le 2 \end{cases}$	1,5	2	5.25	$0, x \le 0, x > \frac{\pi}{6}$	0	$\frac{\pi}{12}$
	$(3(x-1), 1 < x \le 2)$				$\begin{cases} 6\sin 3x, 0 < x \le \frac{\pi}{6} \end{cases}$		12
	((6		
5.11	$0, x \le 0, x > \frac{\pi}{4}$	$\frac{\pi}{8}$	$\frac{\pi}{4}$	5.26	$0, x \le -2, x > 2$	0	1
	· ·	8	4		$\left\{ \frac{1}{2\pi} \sqrt{4 - x^2}, -2 < x \le 2 \right\}$		
	$2\cos 2x, 0 < x \le \frac{\pi}{4}$				(2π)		
		1	1	ll		1	

5.12	$\begin{cases} 0, x \le 0, x > 4 \\ \frac{1}{2} (1 - \frac{x}{4}), 0 < x \le 4 \end{cases}$	1	3	5.27	$\begin{cases} 0, x \le 0, x > 5 \\ \frac{2}{5} (1 - \frac{x}{5}), 0 < x \le 5 \end{cases}$	1	4
5.13	$\int 0, x \le 0, x > 2$	-1	1	5.28	$ \begin{array}{ c c } \hline 0, x \le 0, x > \frac{\pi}{6} \end{array} $	$\frac{\pi}{12}$	$\frac{\pi}{9}$
	$\left\{ \frac{x+1}{4}, 0 < x \le 2 \right\}$				$\begin{cases} 3\cos 3x, 0 < x \le \frac{\pi}{6} \end{cases}$		
5.14	$\begin{cases} 0, x \le 0, x > 1 \\ 3x^2, 0 < x \le 1 \end{cases}$	0,2	1,2	5.29	$\begin{cases} 0, x \le -3, x > 3 \\ \frac{1}{2\pi} \sqrt{9 - x^2}, -3 < x \le 3 \end{cases}$	0	2
5.15	$\begin{cases} 0, x \le 0, x > \frac{\pi}{3} \\ 2\sin x, 0 < x \le \frac{\pi}{3} \end{cases}$	0	$\frac{\pi}{6}$	5.30	$\begin{cases} 0, x \le 1, x > 4 \\ \frac{2x}{15}, 1 < x \le 4 \end{cases}$	2	3

Задание 6. Аппаратура состоит из n элементов. Вероятность отказа одного элемента за время t не зависит от состояния других элементов и равна p. Найти:

- 1) закон распределения числа отказавших элементов;
- 2) вероятность отказа не менее m элементов.

	N	m	p		N	m	p
6.1	2000	4	0,001	6.16	1500	3	0,002
6.2	1000	5	0,007	6.17	2000	4	0,001
6.3	3000	7	0,004	6.18	1000	5	0,007
6.4	2000	5	0,002	6.19	3500	1	0,002
6.5	1000	6	0,005	6.20	2000	5	0,001
6.6	5000	2	0,001	6.21	1000	6	0,005
6.7	2000	4	0,001	6.22	4500	2	0,003
6.8	1500	5	0,008	6.23	2000	4	0,001
6.9	3500	7	0,004	6.24	1000	5	0,007
6.10	2000	2	0,003	6.25	3000	7	0,004
6.11	1500	6	0,005	6.26	2000	5	0,002
6.12	4000	2	0,006	6.27	1000	6	0,005
6.13	8000	2	0,001	6.28	6500	8	0,007
6.14	6500	6	0,002	6.29	7000	6	0,002
6.15	3000	2	0,005	6.30	5500	9	0,004

- 7. Случайная ошибка измерения подчинена нормальному закону распределения с параметрами а и σ . Найти:
 - 1) плотность распределения f(x);
 - 2) функцию распределения F(x);

- 3) математическое ожидание, дисперсию;
- 4) вероятность попадания в интервал (α, β) ;
- 5) вероятность того, что измерение будет произведено с ошибкой, не превосходящей по абсолютной величине δ .

Построить графики f(x) и F(x).

	a	σ	α	β	δ		a	σ	α	β	δ
7.1	10	1	8	14	2	7.16	10	2	9	14	2
7.2	12	2	7	14	3	7.17	12	4	5	14	3
7.3	14	3	10	15	5	7.18	14	1	9	15	5
7.4	11	5	9	12	3	7.19	11	6	8	12	3
7.5	13	2	6	13	2	7.20	13	4	6	17	2
7.6	12	3	7	15	4	7.21	12	9	8	15	4
7.7	10	2	8	17	2	7.22	10	3	6	17	2
7.8	12	4	6	14	6	7.23	12	5	6	13	6
7.9	14	6	11	19	5	7.24	14	2	12	19	5
7.10	15	5	8	12	3	7.25	15	3	4	12	3
7.11	17	4	6	14	2	7.26	17	1	5	14	2
7.12	12	5	7	18	4	7.27	12	4	9	18	4
7.13	18	5	6	12	3	7.28	11	3	4	12	3
7.14	10	4	6	15	2	7.29	17	2	5	19	5
7.15	12	3	5	18	4	7.30	13	5	6	18	3

Вопросы к лабораторной работе №3

- 1. Формулы для вычисления числа сочетаний и размещений из n элементов по m; число перестановок из n элементов?
- 2. Какие встроенные функции используются в Mathcad для вычисления числа сочетаний и размещений?
- 3. Как вычислить в Mathcad число перестановок из n элементов, a значит n факториал?
- 4. Какие подходы для определения вероятности случайного события существуют в теории вероятностей?
 - 5. Классическое определение вероятности случайного события.
- 6. Условия, при которых применяются формула полной вероятности и формула Байеса.
- 7. Точная и приближённые формулы для вычисления вероятности появления события ровно m раз в n испытаниях, в каждом из которых вероятность наступления события одинакова.
- 8. Важность в теории вероятностей функции Лапласа, где и как она используется?

Указания к лабораторной работе №3

Задание 1. В урне 120 шаров, среди них 40 белых. Найти:

- 1) относительную частоту белых шаров;
- 2) вероятность того, что все 20 шаров, взятых наугад из урны, будут белыми;
- 3) вероятность того, что среди 20 шаров, взятых наугад из урны, будет 9 белых.

Указание. Относительная частота события A находится по формуле $P^*(A) = m/n$, где n общее число испытаний, m число появления события A; вероятность появления события A находится по формуле P(A) = m/n, где m – число испытаний, благоприятствующих появлению события A, n – общее число испытаний; в пунктах 2) и 3) общее число испытаний одно и то же $n = C_{120}^{20}$; в пункте 2) $m = C_{40}^{20}$; в пункте 3) $m = C_{40}^{9} \cdot C_{80}^{11}$.

При вычислении числа сочетаний в Mathcad используется функция combin; combin(Q,R) вводится как функция пользователя C(Q,R), позволяющая получать значения сочетаний при произвольных Q и R.

Выполнение задания

$$C(Q,R) := combin(Q,R),$$

$$C(120,20) = 2.946 \times 10^{22}, \qquad C(40,20) = 1.378 \times 10^{11}$$

$$C(40,9) = 2.734 \times 10^{8}, \qquad C(80,11) = 1.048 \times 10^{13}$$

$$\frac{C(40,9) \cdot C(80,11)}{C(120,20)} = 0.097$$

$$MTak, 1) $P^*(A) = 40/120 = 1/3;$

$$2) P(A) = m/n = C_{40}^{20}/C_{120}^{20} = 4,679 \times 10^{-12};$$

$$3) P(A) = m/n = C_{40}^{9}/C_{120}^{11}/C_{120}^{20} = 0,097.$$$$

Задание 2. В сборный цех поступило 1000 деталей из трёх цехов: 100 деталей из первого цеха, 300- из второго, остальные из третьего. В первом, втором и третьем цехах производится соответственно 5, 4 и 6 процентов нестандартных деталей. Наугад выбрана одна деталь:

- 1) найти вероятность того, что она нестандартная;
- 2) выбранная деталь оказалась нестандартной. Найти вероятность того, что она сделана во 2-ом цехе.

У казание. Пусть событие A — выбрана нестандартная деталь, а события B_1 , B_2 , B_3 - деталь сделана соответственно в первом, втором, третьем цехе (эти события называются гипотезами).

- 1) вероятность события A находится по формуле полной вероятности: $P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + P(B_3)P(A/B_3)$, где $P(A/B_i)$ условные вероятности того, что выбранная наугад деталь из і— го цеха (i=1,2,3). По условию задачи имеем: $P(B_1) = 100/1000 = 0,1$; $P(B_2) = 300/1000 = 0,3$; $P(B_3) = 600/1000 = 0,6$; $P(A/B_1) = 0,05$; $P(A/B_2) = 0,04$; $P(A/B_3) = 0,06$. Поэтому $P(A) = 0.1 \cdot 0.05 + 0,3 \cdot 0,04 + 0,6 \cdot 0,06 = 0,053$;
- 2) в этом пункте требуется найти условную вероятность $P(B_2/A)$. По формуле Байеса имеем:

$$P(B_2/A) = \frac{P(B_2)P(A/B_2)}{P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + P(B_3)P(A/B_3)} = \frac{0.3 \cdot 0.04}{0.053} = 0.226.$$

Задание 3. Проводится n испытаний, в каждом из которых вероятность появления некоторого события равна 0,8. Найти вероятность того, что событие появится:

- 1) ровно k_2 раз (событие A);
- 2) менее k_1 раз (событие B);
- 3) более k_2 раз (событие C);
- 4) хотя бы один раз (событие D);
- 5) от k_1 до k_2 раз (событие E);

a)
$$n=10$$
, $k_1=3$, $k_2=8$; 6) $n=100$, $k_1=70$, $k_2=80$.

Указания: а) по формуле Бернулли $P_n(k) = C_n^k p^k q^{n-k}$, определяется вероятность появления k раз (k=0,1,2,..n) некоторого события в n независимых испытаниях, q=1-p. Вероятности событий B, C и E определяются как суммы вероятностей: $P_n(k+1) + P_n(k+2) + ... + P_n(n)$ вероятность того, что событие произойдёт более, чем k раз в n независимых испытаниях, т.е. или k+1,..., или n раз; $P_n(0) + P_n(1) + ... + P_n(k-1)$ вероятность того, что событие произойдёт менее k раз в n независимых испытаниях, т.е. или 0, или 1,..., или k-1 раз; $P_n(k_1) + P_n(k_1+1) + ... + P_n(k_2)$ вероятность того, что событие произойдёт от k_1 до k_2 раз включительно. Эти вероятности называют комулятивными (накопленными). Все эти вероятности в Маthсаd можно вычислить непосредственно с использованием функции combin или с применением встроенных функций dbinom и pbinom.

Выполнение задания

Первый вариант вычислений:

$$\begin{array}{l} C(Q,R) \coloneqq \text{combin}(Q,R), & 1 - C(10,0) \cdot 0.8^{0} \cdot 0.2^{10} = 1 \\ C(10,9) \cdot 0.8^{9} \cdot 0.2^{1} + C(10,10) \cdot 0.8^{10} \cdot 0.2^{0} = 0.376 \\ C(10,8) \cdot 0.8^{0} \cdot 0.2^{2} = 0.302 \\ C(10,0) \cdot 0.8^{0} \cdot 0.2^{10} + C(10,1) \cdot 0.8^{1} \cdot 0.2^{9} + C(10,2) \cdot 0.8^{2} \cdot 0.2^{8} = 7.793 \times 10^{-5} \\ \end{array}$$

Вероятность события E здесь не приводится ввиду его громоздкости в этом варианте;

Второй вариант вычислений:

$$k1 := 3$$
 $k2 := 8$ $n := 10$

dbinom(k2, n, 0.8) = 0.302 R := pbinom(k2, n, 0.8)

$$R = 0.624$$
 , $1 - R = 0.376$, $pbinom(2, n, 0.8) = 7.793 \times 10^{-5}$

1 - dbinom(0, n, 0.8) = 1

$$T_{\text{m}} = \text{pbinom}(k1, n, 0.8), \qquad T = 2.139 \times 10^{-11}$$

$$R - T = 0.624$$

Таким образом,

1)
$$P(A) = P_{10}(8) = C_{10}^8 \cdot 0.8^8 \cdot 0.2^2 = 0.302;$$

2)
$$P(B) = P_{10}(0) + P_{10}(1) + P_{10}(2) = 0,000078;$$

3)
$$P(C) = P_{10}(9) + P_{10}(10) = 0.376$$
;

4)
$$P(D) = 1 - P(\overline{D}) = 1 - P_{10}(0) \approx 1$$
, где \overline{D} противоположное D событие;

5)
$$P(E) = P_{10}(3) + ... + P_{10}(8) = 0.624$$
;

б) в случае, когда число независимых испытаний n велико, вероятность $P_n(k)$ можно определить по локальной теореме Муавра-Лапласа:

$$P_{_{n}}(k) \cong \frac{1}{\sqrt{npq}} \varphi(x)$$
, где $x = \frac{k - np}{\sqrt{npq}}$, $0 , $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$ (значения$

этой функции находят из таблиц или с помощью встроенной функции dnorm в системе Mathcad). Применение компьютера позволяет и в этом случае найти точное значение $P_{n}(k)$ по формуле Бернулли.

Для определения вероятностей событий B, C и E используют интегральную теорему Муавра-Лапласа: вероятность $P_{\scriptscriptstyle n}(k_{\scriptscriptstyle 1},k_{\scriptscriptstyle 2})$ того, что число появления некоторого события будет находится в промежутке от $k_{\scriptscriptstyle 1}$ до $k_{\scriptscriptstyle 2}$

приближённо равна
$$P_{\scriptscriptstyle n}(k_{\scriptscriptstyle 1},k_{\scriptscriptstyle 2}) \approx \Phi(x_{\scriptscriptstyle 2}) - \Phi(x_{\scriptscriptstyle 1})$$
, где $x_{\scriptscriptstyle 2} = \frac{k_{\scriptscriptstyle 2} - np}{\sqrt{npq}}$, $x_{\scriptscriptstyle 1} = \frac{k_{\scriptscriptstyle 1} - np}{\sqrt{npq}}$,

 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \exp(-t^2/2) dt$ - функция Лапласа, значения которой находятся из специальных таблиц или с помощью встроенной функции pnorm в системе Mathcad.

Выполнение задания

$$n := 100$$
, $k1 := 70$, $k2 := 80$, $p := 0.8$, $q := 1 - p$

$$x1 \coloneqq \frac{k1 - n \cdot p}{\sqrt{n \cdot p \cdot q}}$$
 $x2 \coloneqq \frac{k2 - n \cdot p}{\sqrt{n \cdot p \cdot q}}$ $x3 \coloneqq \frac{n - n \cdot p}{\sqrt{n \cdot p \cdot q}}$ $x4 \coloneqq \frac{0 - n \cdot p}{\sqrt{n \cdot p \cdot q}}$ $x1 \coloneqq -2.5$ $x2 = 0$, $dnom(x2,0,1) = 0.399$, $dnom(x2,0,1) = 0.1$, $dnom(x2,0,1) = 0.$

Итак,

 $\Phi(x3) = 0.5$ $\Phi(x4) = -0.5$

1) по таблице:
$$x = \frac{80 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = 0$$
, $\varphi(0) = 0.3989$, $P(A) = P_{100}(80) \cong \frac{1}{\sqrt{100 \cdot 0.8 \cdot 0.2}} \varphi(0) = 0.09972$;

через встроенные функции (см. файл): $P(A) = \frac{0,399}{\sqrt{100 \cdot 0,8 \cdot 0,2}} = 0,1$ или по формуле Бернулли: P(A) = 0,099;

2) $P(B) = P_{100}(k < 70) = P_{100}(0.70) \approx \Phi(x_1) - \Phi(x_2) = 0.006$

3)
$$P(C) = P_{100}(k > 80) = P_{100}(80,100) \approx \Phi(x_3) - \Phi(x_2) = 0.5;$$

4)
$$P(D) = 1 - P(\overline{D}) = 1 - P_{100}(0) \approx 1$$
,

T.K.
$$x = \frac{0 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = -20, \ \varphi(-20) = \varphi(20) = 0, \ P_{100}(0) \cong \frac{1}{\sqrt{100 \cdot 0.8 \cdot 0.2}} \varphi(-20) = 0;$$

$$5) \ P(E) = P_{100}(70.80) \approx \Phi(x_2) - \Phi(x_1) = 0.494$$

Задание 4. Дискретная случайная величина F(x) задана рядом распределения

X	0	10	20	30	40	50
P	0,05	0,15	0,3	0,25	0,2	0,05

Найти:

- 1) её функцию распределения F(x), построить график F(x);
- 2) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду;
 - 3) вероятность попадания X в интервал (15;45).

Указания. Функция распределения для дискретной случайной величины находится по формуле $F(x) = P(X < x) = \sum_{x_i < x} p_i = \sum_{x_i < x} P(X = x_i)$, где суммирование ведётся по всем i, для которых $x_i < x$.

Числовые характеристики для дискретной случайной величины определяются так: математическое ожидание: $M(X) = \sum_i x_i p_i$;

дисперсия : $D(X) = \sum_i (x_i - M(X))^2 \cdot p_i$ или $D(X) = \sum_i x_i^2 p_i - (\sum_i x_i p_i)^2$; среднее квадратическое отклонение: $\sigma(x) = \sqrt{D(x)}$; мода дискретной случайной величины (обозначается M_0) — это её значение, принимаемое с наибольшей вероятностью.

Вероятность попадания X в интервал (a;b) находится по формуле P(a;b) = F(b) - F(a).

Выполнение задания

ORIGIN = 1
$$\qquad \text{s.} := (0 \ 10 \ 20 \ 30 \ 40 \ 50)$$

 $\text{p.} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05)$

1) Вычисление функции распределения и построение её графика:

$$i \coloneqq 0...5, \qquad q \coloneqq (0.05 \quad 0.15 \quad 0.3 \quad 0.25 \quad 0.2 \quad 0.05)^T,$$

$$F^T = (0.05 \quad 0.2 \quad 0.5 \quad 0.75 \quad 0.95 \quad 1).$$

$$F_{ii} \coloneqq \sum_{j=0}^{i} (q)_j \qquad F_{ii}(x) \coloneqq \begin{bmatrix} 0 & \text{if } x \le 0 \\ 0.05 & \text{if } 0 < x \le 10 \\ 0.2 & \text{if } 10 < x \le 20 \\ 0.5 & \text{if } 20 < x \le 30 \\ 0.75 & \text{if } 30 < x \le 40 \\ 0.95 & \text{if } 40 < x \le 50 \\ 1 & \text{if } x > 50 \end{bmatrix}$$

Рисунок 6

2) вычисление числовых характеристик:

$$\begin{split} \mathbf{M} &\coloneqq \mathbf{s}^{T} \cdot \mathbf{p}^{T}, \quad \mathbf{s}0 \coloneqq \mathbf{s}^{T} - \mathbf{M}, \\ \mathbf{M} &= 25.5 \\ \mathbf{D} &\coloneqq \boxed{(\mathbf{s}0 \cdot \mathbf{s}0)}^{T} \cdot \mathbf{p}^{T}, \quad \mathbf{D} = 154.75 \\ \mathbf{s}2 &\coloneqq \left(0^{2} \ 10^{2} \ 20^{2} \ 30^{2} \ 40^{2} \ 50^{2}\right), \end{split} \qquad \mathbf{s}0 = \begin{bmatrix} -25.5 \\ -15.5 \\ -5.5 \\ 4.5 \\ 14.5 \\ 24.5 \end{bmatrix}, \\ \mathbf{D}1 &\coloneqq \mathbf{s}2^{T} \cdot \mathbf{p}^{T} - \mathbf{M}^{2}, \qquad \mathbf{D}1 = 154.75 \\ \sigma &\coloneqq \sqrt{\mathbf{D}} = 12.44 \end{split}$$

Итак, математическое ожидание $M(X) = \sum_i x_i p_i = 25,5$; вычисление дисперсии проведено по обеим формулам и равно D(x)=154,75; мода $M_0 = 20$; среднее квадратическое отклонение $\sigma(x) = \sqrt{154,75} = 12,44$;

3) вероятность попадания X в интервал (15;45): P(15;45) = F(45) - F(15) = 0.95 - 0.2 = 08.

Задание 5. Непрерывная случайная величина X задана плотностью распределения $f(x) = \begin{cases} 0, \ ecnu \ x \leq 0 \\ \frac{2}{9}(3x - x^2), \ ecnu \ 0 < x \leq 3 \end{cases}$. Найти: $0, \ ecnu \ x > 3$

- 1) её функцию распределения F(x);
- 2) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду, медиану;

3) вероятность попадания X в интервал (1;4). Построить графики F(x) и f(x).

Указания. Для непрерывных случайных величин имеют место следующие формулы: $F(x) = \int\limits_{-\infty}^x f(x) dx$ - функции распределения; $M(x) = \int\limits_{-\infty(a)}^{\infty(b)} x f(x) dx$ - математическое ожидание; $D(x) = \int\limits_{-\infty(a)}^{\infty(b)} (x - M(x))^2 f(x) dx$ или $D(x) = \int\limits_{-\infty(a)}^{\infty(b)} x^2 f(x) dx - [M(x)]^2$ - дисперсия; $\sigma(x) = \sqrt{D(x)}$ - среднее квадратическое отклонение; модой непрерывной случайной величины X называется то её значение M_o , при котором плотность распределения максимальна; медианой непрерывной случайной величины X называется такое её значение M_e , для которого одинаково вероятно, окажется ли случайная величина меньше или больше M_e , т.е. $P(X < M_e) = P(X > M_e) = 0.5$; P(a < X < b) = F(b) - F(a) или $P(a < X < b) = \int\limits_{-\infty}^{b} f(x) dx$ - вероятность попадания X в интервал (a,b).

Выполнение задания

1) Так как
$$F(x) = \int_{-\infty}^{x} f(x) dx$$
, то если $x \le 0$, то $F(x) = \int_{-\infty}^{0} 0 dx = 0$; если $0 < x \le 3$, то $F(x) = \int_{-\infty}^{0} 0 dx + \int_{0}^{x} \frac{2}{9} (3x - x^{2}) dx = -\frac{x^{2}(2x - 9)}{27}$; если $x > 3$, то $F(x) = \int_{-\infty}^{0} 0 dx + \int_{0}^{3} \frac{2}{9} (3x - x^{2}) dx + \int_{3}^{x} 0 dx = 1$.

Итак, $F(x) = \begin{cases} 0, & \text{если } x \le 0 \\ -\frac{x^{2}(2x - 9)}{27}, & \text{если } 0 < x \le 3 \end{cases}$. $1, & \text{если } x > 3$

2) вычисления в Mathcad:

$$f(x) := \frac{2}{9} \cdot (3 \cdot x - x^2), \qquad \sqrt{\frac{9}{20}} = 0.671$$

$$\int_0^3 x \cdot f(x) \, dx \to \frac{3}{2} = 1.5$$

$$\int_0^3 x^2 \cdot f(x) \, dx - \left(\frac{3}{2}\right)^2 \to \frac{9}{20} = 0.45 \qquad \frac{d}{dx} f(x) \to \frac{2}{3} - \frac{4 \cdot x}{9}$$

$$f1(x) := \frac{d}{dx} f(x) \qquad \int_0^y f(x) dx \to -\frac{y^2 \cdot (2 \cdot y - 9)}{27},$$

$$f1(x) \text{ solve } \to \frac{3}{2}, \qquad f1(1) = 0.222 \qquad ,$$

$$f1(2) = -0.222 \qquad ,$$

$$-\frac{y^2 \cdot (2 \cdot y - 9)}{27} - 0.5 \text{ solve } \to \begin{pmatrix} 4.0980762113533159403 \\ -1.0980762113533159403 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 4.098 \\ -1.098 \\ 1.5 \end{pmatrix}$$

Итак, M(X) = 1.5; D(X) = 0.45; $\sigma(X) = 0.671$;

Для определения моды находим максимум функции $f(x) = 2/9(3x - x^2)$ средствами математического анализа: f'(x) = 2/3 - 4x/9, f'(x) = 0 при x = 3/2 - критическая точка. Так как f'(1) > 0, f'(2) < 0, т.е. при переходе через точку x = 3/2 знак производной сменился с плюса на минус, то эта точка максимума внутри интервала. Поскольку на концах интервала значения функции f(0) = f(3) = 0, то $M_a = 3/2$.

Так как $P(X < M_e) = 0.5$ и $P(X < M_e) = P(-\infty < X < M_e) = P(0 < X < M_e) = \int_0^{M_e} 2/9(3x - x^2) dx = -M_e^2 (2M_e - 9)/27$,

то, решая уравнение $-M_e^2(2M_e-9)/27=0.5$,

получим три корня, из которых подходит один: $M_{_e} = 1,5$ - медиана.

3) вычисления в Mathcad:

$$\int_{1}^{3} f(x) dx \rightarrow \frac{20}{27} = 0.741 \qquad f2(x) := -\frac{x^{2} \cdot (2 \cdot x - 9)}{27},$$

$$f2(1) = 0.259 \qquad f2(3) = 1 \qquad 1 - 0.259 = 0.741$$

Итак, вероятность попадания X в интервал (1;4) равна $P(1 < X < 4) = P(1 < X < 3) + P(3 < X < \infty) = \int_{1}^{3} 2/9(3x - x^2) dx + 0 = 0,741$

или

$$P(1 < X < 4) = P(1 < X < 3) + P(3 < X < \infty) = F(3) - F(1) =$$

$$= 3^{2} (2 \cdot 3 - 9) / 27 - 1^{2} (2 \cdot 1 - 9) / 27 = 1 - 0.259 = 0.741.$$

Графики функций F(x) и f(x) в системе Mathcad:

$$f(x) := \begin{bmatrix} 0 & \text{if } x \le 0 \\ \left[\frac{2}{9} \cdot \left(3 \cdot x - x^2\right)\right] & \text{if } 0 < x \le 3 \\ 0 & \text{if } x > 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \\ 1 & \text{if } x > 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

$$f(x) = \begin{bmatrix} 0 & \text{if } x \le 0 \\ \frac{x^2 \cdot (9 - 2 \cdot x)}{27} & \text{if } 0 < x \le 3 \end{bmatrix}$$

Задание 6. Аппаратура состоит из 1000 элементов. Вероятность отказа одного элемента за время t не зависит от состояния других элементов и равна 0,001. Найти:

- 1) закон распределения числа отказавших элементов;
- 2) вероятность отказа не менее 2 элементов за время t.

Указания. Дискретная случайная величина X — число отказавших элементов распределена по закону Пуассона (формула Пуассона $P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$ определяет приближённое значение вероятности $P_n(k)$, когда вероятность p мала, а число n велико, но $\lambda = np$ небольшое число; точное значение определяется по формуле Бернулли). Поэтому: $P(X=k) = P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$, где $\lambda = np = 1000 \cdot 0,001 = 1$, k = 0,1,2,...,1000, n = 1000. В среде Mathcad закону распределения Пуассона соответствуют специальные функции с корневым словом pois.

Выполнение задания

1)
$$p(k,\lambda) := dpois(k,\lambda),$$

 $p(0,\lambda) = 0.368$, $\lambda := 1$
 $p(1,\lambda) = 0.368$, $p(10,\lambda) = 1.014 \times 10^{-7},$
 $p(2,\lambda) = 0.184$, $p(1000,\lambda) = 0$,

$$p(3,\lambda) = 0.061$$

Таким образом,
$$P(X=0)=P_{_{1000}}(0)\approx\frac{1^{^{0}}}{0!}e^{^{-1}}=0,368;\ P(X=1)=P_{_{1000}}(1)\approx\frac{1^{^{0}}}{1!}e^{^{-1}}=0,368;\ P(X=2)=P_{_{1000}}(2)\approx\frac{1^{^{2}}}{2!}e^{^{-1}}=0,184;\ P(X=3)=P_{_{1000}}(3)\approx\frac{1^{^{3}}}{3!}e^{^{-1}}\quad0,061,\ \text{и т.д.}$$
 $P(X=10)=P_{_{1000}}(10)\approx\frac{1^{^{10}}}{10!}e^{^{-1}}=0,00000001\ \text{и т.д.}$

Искомый закон распределения:

X	0	1	2	3		10	• • •
p	0,368	0,368	0,184	0,061	• • •	0,0000001	• • •

2)
$$P(k,\lambda) := ppois(k,\lambda)$$

$$P(1,\lambda) = 0.736$$

 $1 - P(1,\lambda) = 0.264$

Итак, вероятность отказа не менее двух элементов равна:

$$P(X \ge 2) = \sum_{k=2}^{\infty} P_{1000}(k)$$
 или $P(X \ge 2) = 1 - \sum_{k=0}^{1} P_{1000}(k) = 1 - 0,736 = 0,264.$

Задание 7. Случайная ошибка измерения (случайная величина X) подчинена нормальному закону распределения с параметрами a =10 и σ =2. Найти:

- 1) плотность распределения f(x);
- 2) функцию распределения F(x);
- 3) математическое ожидание, дисперсию;
- 4) вероятность попадания в интервал (12;14);
- 5) вероятность того, что измерение будет произведено с ошибкой, не превосходящей по абсолютной величине δ =3.

Построить графики f(x) и F(x).

Указания. Нормальным называют закон распределения непрерывной случайной величины X с плотностью $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-a)^2}{2\sigma^2}}$, где a = M(X) — математическое ожидание, $\sigma = \sigma(X)$ — среднее квадратическое отклонение X. Формулы для нормального распределения: функция распределения — $F(x) = \int_{-\infty}^{x} f(t)dt = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x} \exp\left[\frac{-(t-a)^2}{2\sigma^2}\right]dt$ или $F(x) = \Phi\left(\frac{x-a}{\sigma}\right) + 0.5$, где

 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$ — функция Лапласа, её значения табулированы или их

можно найти в Mathcad ;
$$P(\alpha < X < \beta) = F(\beta) - F(\alpha) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$
;

 $P(|X-a| \le \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right)$ - вероятность отклонения X от математического

ожидания не более чем на δ . В Mathcad нормальному закону распределения соответствуют функции с корневым словом norm, например, dnorm (x,a,σ) – выводит значения плотности распределения f(x); pnorm (x,a,σ) – функции распределения F(x); значения функции Лапласа находят путём вычитания 0,5 из F(z) нормированного нормального распределения $(a=0,\sigma=1)$. Нормировка осуществляется заменой $z=\frac{x-a}{\sigma}$.

Выполнение задания

$$a := 10$$
 $\sigma := 2$

$$f(x) := dnorm(x, a, \sigma), \qquad F(x) := pnorm(x, a, \sigma),$$

$$F0(z) := pnorm(z,0,1),$$
 $\phi(z) := F0(z) - 0.5$

$$2 \cdot \Phi(1.5) = 0.866$$
 , $\Phi(2) - \Phi(1) = 0.136$

Итак,

1)
$$f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-10)^2}{8}}$$
;

2)
$$F(x) = \Phi\left(\frac{x-10}{2}\right) + 0.5$$
;

3)
$$M(X) = a = 10$$
, $\sigma(X) = \sigma = 2$, $D(X) = \sigma^2 = 4$;

4)
$$P(12 < X < 14) = \Phi\left(\frac{14-10}{2}\right) - \Phi\left(\frac{12-10}{2}\right) = \Phi(2) - \Phi(1) = 0,136;$$

5) вероятность того, что измерение произведено с ошибкой, не превосходящей по абсолютной величине δ = 3 будет равна $P(|X-10| \le 3) = 2\Phi\left(\frac{3}{2}\right) = 2\Phi(1,5) = 0,866.$

Графики f(x) и F(x):

Рисунок 9

4 Лабораторная работа №4

Цель лабораторной работы: применение Mathcad к решению задач математической статистики: получение упорядоченных статистических данных (вариационные и статистические ряды); оценка неизвестных законов распределения; оценка неизвестных числовых характеристик.

Задание 1. Для данной выборки найти:

- 1) вариационный ряд (выборку в порядке возрастания);
- 2) интервальный статистический ряд (минимальную и максимальную варианты, размах выборки, число интервалов, длину интервалов);
- 3) по интервальному статистическому ряду построить гистограмму частот и относительных частот;
 - 4) построить дискретный статистический ряд;
 - 5) по дискретному статистическому ряду найти:
 - а) полигон частот и относительных частот;
 - б) эмпирическую функцию распределения;
 - в) выборочную среднюю;
 - г) выборочную и исправленную выборочную дисперсии;
 - д) исправленное выборочное среднеквадратическое отклонение;
 - е) выборочные моду и медиану.

1.1	112	101	155	137	109	129	152	128	132	116
	125	125	142	140	125	118	125	135	149	145
	106	109	138	145	118	128	125	105	122	138
	120	118	133	118	129	149	124	153	132	118
	132	132	138	128	122	115	143	140	122	152

	128	118	126	132	134	123	122	159	112	110
1.2	87	85	91	94	102	80	75	102	99	101
1.2	120	122	101	88	80	97	92	91	94	82
	115	100	97	91	87	116	121	101	123	97
	88	90	101	95	93	92	88	94	98	99
	95	105	112	116	118	108	95	99	92	100
	93	105	112	122	100	92	93	82	111	100
	100	101	123	97	90	104	108	101	96	111
1.2	1									
1.3	547	565	587	553	548	554	561	562	551	572
	565	555	563	568	586	549	575	537	581	553
	543	568	574	564	547	549	553	572	535	555
	552	545	554	571	569	539	549	553	562	561
	558	563	563	547	552	562	554	563	558	572
	577	554	552	566	557	551	552	571	551	552
	599	561	552	551	561	538	533	541	588	558
1.4	90	123	132	85	122	105	125	142	99	125
	118	105	115	92	115	142	98	123	103	144
	106	92	118	105	118	86	125	105	122	138
	102	130	112	98	115	120	118	103	118	129
	112	115	88	118	103	102	95	124	106	135
	103	122	94	112	97	128	102	116	125	132
1.5	139	112	132	85	122	105	125	142	99	125
	116	105	92	115	98	123	103	144	115	142
	106	92	118	86	125	105	122	138	105	118
	102	130	112	98	115	120	118	103	118	129
	112	115	88	118	103	102	95	124	106	135
	95	124	103	102	118	112	115	103	95	122
	125	118	96	126	98	106	128	118	126	103
1.6	154	143	155	113	155	171	168	153	135	168
	145	168	122	163	117	165	132	139	107	125
	146	152	142	132	152	161	148	136	138	149
	157	178	149	195	146	166	182	135	136	170
	155	152	145	198	192	143	159	116	126	155
	163	169	165	148	151	153	139	166	138	128
1.7	670	801	790	606	564	1195	1033	502	1020	780
	1030	840	869	551	707	635	703	801	859	875
	779	797	789	875	698	1058	1021	1035	910	856
	1095	741	673	988	737	787	667	649	1079	939
	532	885	590	1059	975	1009	731	869	635	889
	1058	967	1095	531	775	885	756	656	680	741
	1095	758	511	857	536	699	574	789	1085	503
1.8	450	434	424	432	440	443	415	446	423	472

	442	452	444	425	403	458	455	431	446	424
	438	442	482	432	416	477	431	432	412	462
	496	468	424	438	452	446	418	474	432	452
	466	488	452	489	451	422	442	492	473	402
	481	468	404	498	467	398	440	449	417	425
	444	498	466	442	483	462	492	435	449	422
1.9	250	244	224	232	240	224	244	226	253	232
	248	216	230	254	258	202	225	224	252	234
	242	212	231	251	204	246	232	282	242	252
	296	242	254	218	226	252	238	224	298	260
	276	254	282	242	270	254	260	232	268	242
	244	276	224	240	272	268	281	234	268	251
	271	212	234	262	204	261	254	266	278	248
1.10	165	143	152	167	164	199	171	171	156	149
	147	155	158	145	158	177	161	181	153	171
	175	153	174	154	163	174	152	188	162	197
	187	158	154	171	163	172	152	178	151	172
	153	186	147	169	147	166	161	171	161	186
	148	161	189	199	162	167	198	168	135	152
1.11	153	174	154	163	174	152	188	162	197	134
	188	158	154	171	163	172	152	178	151	172
	155	186	147	169	147	166	161	171	161	186
	149	161	189	199	162	167	198	168	135	152
	156	175	163	149	162	161	161	193	172	175
	162	164	178	138	164	172	187	178	143	161
	165	163	177	161	149	146	152	139	156	152
1.12	212	231	251	204	246	232	282	242	252	276
	297	242	254	218	226	252	238	224	298	260
	277	254	282	242	270	254	260	232	268	242
	245	276	224	240	272	268	281	234	268	232
	272	212	234	292	204	261	254	266	278	248
	253	262	256	264	272	242	244	246	253	234
1 12	237	264	252	248	247	268	229	235	262	212
1.13	165	143	152	166	164	199	171	171	156	171
	148	155	158	145	158	177	161	181	153	171
	176	153 158	174	154	163	174 172	152	188 178	162	197 172
	189 157	186	154 147	171 169	163 147	166	152 161	171	151 161	186
	150	161	189	199	162	167	198	168	135	152
1.14	216	230	254	258	202	225	224	252	234	250
1.14	243	212	234	258	202	246	232	282	242	252
	298	242	254	218	226	252	232	224	298	260
	<i>2</i> 70	Z 4 Z	234	210	220	<i>LJL</i>	230	<i>LL</i> 4	270	200

	278	254	282	242	270	254	260	232	268	242
	246	276	224	240	272	268	281	234	268	232
	273	212	234	262	201	261	254	266	278	248
	254	262	256	264	272	242	244	246	253	234
1.15	165	143	152	167	165	199	171	171	156	152
	149	155	158	145	158	177	161	181	153	171
	153	174	154	163	174	152	188	162	197	178
	190	158	154	171	163	172	152	178	151	172
	159	186	147	169	147	166	161	171	161	186
	151	161	189	199	162	167	198	168	135	152
	160	175	163	149	162	161	161	193	172	175
	165	164	178	137	164	172	187	178	143	161
1.16	147	153	179	165	159	149	141	102	169	157
	169	154	143	155	113	155	171	168	153	135
	150	152	142	132	152	161	148	136	138	149
	157	178	149	195	146	166	182	135	136	170
	156	152	145	198	192	143	159	116	126	155
	164	169	165	148	151	153	139	166	138	128
	169	169	155	152	175	177	131	154	174	187
	180	177	162	149	146	113	151	152	134	125
1.17	558	563	569	547	552	562	554	549	575	578
	561	552	551	561	538	533	547	552	557	543
	547	565	587	553	548	554	561	564	562	558
	566	555	563	568	586	549	575	564	553	555
	567	556	546	552	543	554	556	566	592	562
	544	568	574	564	547	549	553	578	557	561
	553	545	554	571	569	539	549	538	575	554
	577	552	566	557	551	552	546	584	572	535
1.18	577	568	557	564	547	549	553	578	557	575
	554	545	554	571	569	539	549	538	575	566
	558	563	563	547	552	562	554	549	575	558
	547	595	587	553	548	554	561	564	562	544
	555	563	568	586	549	575	564	553	585	592
	577	554	552	566	557	551	552	546	584	556
	601	561	552	551	561	538	533	547	552	557
	553	562	561	572	535	555	543	556	546	538
1.19	77	45	49	92	13	69	52	26	22	36
	48	25	59	57	65	69	55	68	49	63
	38	53	48	68	52	73	42	62	71	45
	63	55	16	78	52	95	77	66	35	54
	68	55	49	65	79	48	59	53	41	38
	12	39	57	51	65	66	43	52	63	43

	55	69	31	62	48	46	51	43	16	34
	74	51	82	52	46	75	49	55	57	54
1.20	347	365	387	348	354	361	364	362	346	358
	365	355	363	368	359	375	364	353	385	363
	343	368	374	364	347	349	353	378	357	358
	352	345	354	352	371	369	349	338	375	388
	366	358	363	347	352	362	354	349	375	341
	377	354	352	366	357	351	352	346	384	351
	399	363	361	352	351	361	338	353	333	357
1.21	9	9	6	9	9	7	6	11	6	7
	6	10	6	7	6	8	6	5	5	4
	6	6	7	12	5	7	8	5	10	9
	7	7	5	11	9	7	6	5	7	6
	5	5	12	9	8	7	9	8	5	5
	6	13	11	11	5	8	10	9	4	7
	3	6	9	8	12	11	9	10	4	14
1.22	39	40	38	43	41	42	40	38	41	42
	41	40	42	39	41	41	36	43	41	42
	34	36	37	42	42	42	40	41	41	46
	47	48	52	56	68	70	68	64	56	58
	41	42	39	33	34	37	43	45	47	71
	43	42	43	41	42	47	48	49	52	53
1.23	10	15	16	17	18	19	20	15	16	11
	17	12	13	14	15	11	18	16	15	18
	20	20	21	23	26	28	23	28	27	24
	27	24	25	25	26	32	33	31	34	43
	26	32	26	27	28	29	30	21	22	23
	42	24	23	35	23	25	36	37	24	21
	58	54	49	47	32	36	43	23	24	28
1.24	150	144	124	132	140	124	144	153	151	148
	116	130	154	158	102	125	124	152	134	148
	142	121	112	131	151	104	146	132	182	142
	152	196	142	154	158	118	126	152	138	124
	144	176	124	140	172	168	181	134	168	132
	144	112	134	162	104	161	154	166	178	148
1.25	128	105	115	92	115	142	98	123	103	144
	112	115	88	118	103	102	95	124	106	135
	95	124	103	102	118	112	115	92	115	119
	92	112	132	85	122	105	125	142	99	125
	106	92	118	105	118	86	125	105	122	138
	102	130	112	98	115	120	118	103	118	129
	103	122	94	112	97	128	102	116	125	132

1.26	102	112	118	85	112	115	103	95	122	125
	157	178	149	195	146	166	182	135	136	170
	157	143	179	165	159	149	141	102	169	168
	151	168	122	163	117	165	132	139	107	125
	152	152	142	132	152	161	148	136	138	149
	153	154	143	155	113	155	171	168	153	135
	157	152	145	198	192	143	159	116	126	155
1.27	242	254	218	226	252	238	224	298	260	287
	250	216	230	254	258	202	225	224	252	234
	244	212	231	251	204	246	232	282	242	252
	299	254	282	242	270	254	260	232	268	242
	276	224	240	272	268	281	234	268	232	300
	274	212	234	262	204	261	254	266	278	248
	255	262	256	264	272	242	244	246	253	234
1.28	262	267	275	266	246	252	261	269	262	268
	259	248	266	259	252	248	252	232	269	287
	253	286	275	235	202	239	225	236	237	224
	253	268	277	249	248	263	243	266	212	255
	249	288	213	264	247	242	228	277	256	251
	267	232	258	246	278	279	257	255	243	258
	254	244	265	274	252	265	222	269	254	278
1.29	558	565	587	553	548	554	561	564	562	544
	563	568	586	549	575	564	553	585	577	553
	563	564	547	552	562	554	549	575	558	592
	546	577	568	574	564	547	549	553	578	557
	557	577	568	574	564	547	549	538	575	566
	558	554	552	566	557	551	552	546	584	532
	602	561	552	551	561	538	533	547	552	557
1.30	165	143	152	167	164	199	171	171	156	151
	155	155	158	145	158	177	161	181	153	171
	177	153	174	154	163	174	152	188	162	197
	191	158	154	171	163	172	152	178	151	172
	161	186	147	169	147	166	161	171	161	186
	161	189	199	162	167	198	168	135	152	146
	162	175	163	149	162	161	161	193	172	175

Вопросы к лабораторной работе №4

- 1. Определение основных понятий математической статистики: генеральной и выборочной совокупности (выборки), объёма выборки, варианты.
 - 2. Способы упорядочения статистических данных.

- 3. Как построить интервальный статистический ряд?
- 4. Что такое гистограмма частот и относительных частот?
- 5. Как построить дискретный статистический ряд?
- 6. Определение полигона частот и относительных частот.
- 7. Аналогом какой теоретической функции является эмпирическая функция распределения.
 - 8. Числовые характеристики статистических распределений.

Указания к лабораторной работе №4

Задание

Дана выборка

20	15	17	19	23	18	21	15	16	13
20	16	19	20	14	20	16	14	20	19
15	19	17	16	15	22	21	12	10	21
18	14	14	18	18	13	19	18	20	23
16	20	19	17	19	17	21	17	19	17
13	17	11	18	19					

Найти:

- 1) вариационный ряд (выборку в порядке возрастания);
- 2) интервальный статистический ряд (минимальную и максимальную варианты, размах выборки, число интервалов, длину интервалов);
- 3) по интервальному статистическому ряду построить гистограмму частот и относительных частот;
 - 4) построить дискретный статистический ряд;
 - 5) по дискретному статистическому ряду найти:
 - а) полигон частот и относительных частот;
 - б) эмпирическую функцию распределения;
 - в) выборочную среднюю;
 - г) выборочную и исправленную выборочную дисперсии;
 - д) исправленное выборочное среднеквадратическое отклонение;
 - е) выборочные моду и медиану.

Указания. Вычисления и построение графиков производится в среде Mathcad. То, что получено в Mathcad следует оформить и пояснить.

Выполнение задания

n := 55

 $X := (20 \ 15 \ 17 \ 19 \ 23 \ 18 \ 21 \ 15 \ 16 \ 13 \ 20 \ 16 \ 19 \ 20 \ 14 \ 20 \ 16 \ 14 \ 20 \ 19 \ 15$

 $w2^{T} = (0.018 \quad 0.036 \quad 0.109 \quad 0.164 \quad 0.236 \quad 0.291 \quad 0.145)$

Рисунок 10

Рисунок 11

$$0.018 + 0.036 + 0.109 + 0.164 + 0.236 + 0.291 + 0.145 = 0.999$$
, $x2 := var(X)$, $x2 = 8.428$, $M := median(X)$, $mode(X) = 19$, $s := \frac{n}{n-1} \cdot x2$, $M = 18$, $s = 8.584$, $stdev(X) = 2.903$, $\sigma := \sqrt{s}$, $\sigma = 2.93$, $w4 := \frac{w3}{n}$

Рисунок 12

Рисунок 13

$$i := 0...6$$
, $w := (0.018 \ 0.036 \ 0.109 \ 0.164 \ 0.236 \ 0.291 \ 0.145)^T$

$$F_{ij} := \sum_{j=0}^{1} w_{j}$$
 $F^{T} = (0.018 \ 0.054 \ 0.163 \ 0.327 \ 0.563 \ 0.854 \ 0.999)$

$$F(y) \coloneqq \begin{array}{|c|c|c|c|}\hline 0 & \text{if} & y \leq 10\\ 0.018 & \text{if} & 10 < y \leq 12\\ 0.054 & \text{if} & 12 < y \leq 14\\ 0.163 & \text{if} & 14 < y \leq 16\\ 0.327 & \text{if} & 16 < y \leq 18\\ 0.563 & \text{if} & 18 < y \leq 20\\ 0.854 & \text{if} & 20 < y \leq 23\\ 1 & \text{if} & y > 23\\ \end{array}$$

Рисунок 14

Рисунок 15

Пояснения к вычислениям в Mathcad:

1) объём выборки n=55. Вариационный ряд (выборка в порядке возрастания):

$\mathbf{Y}^{\mathrm{T}} = \mathbf{I}$		0	1	2	3	4	5	6	7	8	9
	0	10	11	12	13	13	14	14	14	14	

(в среде Mathcad эта таблица просматривается вся нажатием на указатель направления движения);

2) для построения интервального статистического ряда найдены: наибольшая и наименьшая варианты $a=x_{\min}=10$, $b=x_{\max}=23$; размах выборки R=b-a=13; величина интервалов определена по формуле Стерджеса $h=\frac{x_{\max}-x_{\min}}{1+\log_2 n}$, h=1,917, после округления $h\approx 2$; число интервалов —

знаменатель формулы Стерджеса $m=1+\log_2 n$ или $m=\frac{R}{h}=6,781$, после округления $m\approx 7$; за начало первого интервала рекомендуется брать величину $x_{Haq}=x_{\min}-\frac{h}{2}, \quad x_{Haq}=9,041\approx 9$; число вариант, попавших в каждый интервал (т.е. частоты n_i) и относительные частоты (т.е. $p_i=\frac{n_i}{n}$) в среде Мathcad смотри $w1^T$ и $w2^T$.

Таким образом, интервальный ряд имеет вид:

интервалы	[9,11)	[11,13)	[13,15)	[15,17)	[17,19)	[19,21)	[21,23]
n_i	1	2	6	9	13	16	8
$p_i = \frac{n_i}{n}$	0,018	0,036	0,109	0,164	0,236	0,291	0,145

3) по интервальному статистическому ряду построены гистограммы частот и относительных частот:

4) для построения дискретного статистического ряда найдены середины интервалов $\frac{x_i + x_{i+1}}{2}$ (в Mathcad x^T), им будут отвечать соответствующие частоты и относительные частоты из интервального ряда.

Дискретный статистический ряд:

$\frac{x_i + x_{i+1}}{2}$	10	12	14	16	18	20	22
n_i	1	2	6	9	13	16	8
p_i	0,018	0,036	0,109	0,164	0,236	0,291	0,145

- 5) по дискретному статистическому ряду построены:
 - а) полигон частот и относительных частот:

б) эмпирическая функция распределения (см. F^T и F(y) в Mathcad):

$$F(x) = \begin{cases} 0, & npu \ x \le 10 \\ 0,018, & npu \ 10 < x \le 12 \\ 0,054, & npu \ 12 < x \le 14 \\ 0,163, & npu \ 14 < x \le 16 \\ 0,327, & npu \ 16 < x \le 18 \end{cases};$$

$$0,563, & npu \ 18 < x \le 20 \\ 0,854, & npu \ 20 < x \le 23 \\ 1, & npu \ x > 23 \end{cases}$$

Рисунок 20

в) выборочная средняя (см. mean(X) в Mathcad): $\bar{x}_{\mathcal{B}} = \frac{\sum x_i n_i}{n}$ или $\bar{x}_{\mathcal{B}} = \sum_i x_i \cdot p_i = 17,564$;

$$\Gamma) \quad D_{\boldsymbol{\theta}} = \frac{\sum n_{\boldsymbol{i}} (x_{\boldsymbol{i}} - \overline{x}_{\boldsymbol{\theta}})^2}{n} \quad \text{или} \quad D_{\boldsymbol{\theta}} = \frac{\sum n_{\boldsymbol{i}} \cdot x_{\boldsymbol{i}}^2}{n} - (\overline{x}_{\boldsymbol{\theta}})^2 = 8{,}428 \; - \quad \text{выборочная}$$
 дисперсия;

 $s^2 = \frac{n}{n-1}D_e = 8,584$ — исправленная выборочная дисперсия (см. var(X) и s в Mathcad);

- д) исправленное выборочное среднеквадратическое отклонение (см. σ или stdev(X) в Mathcad): $\sigma = \sqrt{s} = 2.93$
- е) выборочные мода и медиана (см. $\operatorname{mode}(X)$ и $\operatorname{median}(X)$ в Mathcad): мода $M_0 = 19$ определяет варианту, имеющую наибольшую частоту; медиана $M_e = 18$ определяет середину вариационного ряда и зависит от чётности объёма выборки:

$$M_e = \begin{cases} x_{k+1}, & npu \ n = 2k+1 \\ \frac{x_k + x_{k+1}}{2}, & npu \ n = 2k \end{cases}.$$

Список литературы

- 1. Васильев А.Н. Mathcad 13 на примерах. Спб.:БХВ- Петербург, 2006.-528 с.
 - 2. Кирьянов Д.В. Mathcad 14. Спб.: БХВ- Петербург, 2007. 704 с.
- 3. Ивановский Р.И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами и задачами в среде Mathcad.-Спб.: БХВ- Петербург, 2008.- 528 с.
- 4. Письменный Д. Конспект лекций по теории вероятностей и математической статистике, случайные процессы.-М.:Айрис-пресс,2006.- 288 с.
- 5. Астраханцева Л.Н., Байсалова М.Ж. Теория вероятностей и математич. статистика. Метод. указания и задания к выполнению РГР для студентов спец. 5В070400 Вычислительная техника и программное обеспечение, 5В070300 Информационные системы. Часть 1.-Алматы: АУЭС, 2011.-28 с.
- 6. Астраханцева Л.Н., Байсалова М.Ж. Теория вероятностей и математ. статистика. Метод. указания и задания к выполнению РГР для студентов спец. 5В070400 Вычислительная техника и программное обеспечение, 5В070300 Информационные системы. Часть 2.-Алматы: АУЭС, 2011.-27 с.

Содержание

1 Лабораторная работа №1	3
2 Лабораторная работа №2	16
3 Лабораторная работа №3	29
4 Лабораторная работа №4	48
Список литературы	61

Астраханцева Людмила Николаевна Жуматаева Светлана Абановна Нурпеисов Сатыбалды Арыстанович

ТЕОРИЯ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методические указания по выполнению лабораторных работ для студентов специальности 5B070200

Редактор Н.М. Голева	
Специалист по стандартизации Н.І	К. Молдабекова

Подпись в печать	Формат 6084 1/16
Тираж 150 экз.	Бумага типографическая №1
Объем 3,9 учиз.л.	Заказ цена 950 тг.

Копировально-множительное бюро Некоммерческого акционерного общества «Алматинский университет энергетики и связи» 050013, Алматы, ул.Байтурсынова, 126