পরীক্ষাণের নাম: ক্লকড R-S ফ্লিপ-ফ্লপ তৈরি করা এবং এর ট্র্র্থ টেবিল ও কার্যাবলি চেক করা। পরীক্ষণের উদ্দেশ্য:

- (ক) Clocked R-S flip-flop এর কার্যপ্রক্রিয়া সর্ম্পকে জানা।
- (খ) এর আউটপুট অবস্থা চিহ্নিতকরণ।

প্রয়োজনীয় যন্ত্রপাতি:

- (ক) NAND গেট আই.সি (7400)-১টি
- (খ) এলইডি (LED)- ২টি
- (গ) ট্রেইনার বোর্ড-১টি
- (ঘ) পাওয়ার সাপ্লাই
- (ঙ) সংযোগ তার।

সার্কিট ডায়াগ্রাম:

চিত্র: Clocked R-S flip-flop সার্কিট ভায়াগ্রাম

চিত্র: NAND গেট আই.সি (7400)

ট্রথ টেবিল:

ইনপুট		আউটপুট
Set (S)	Reset(R)	Q
0	1	Reset
1	0	Set
1	1	Invalid
o	0	No change

কাজের ধাপ:

- ১। সার্কিট ডায়াগ্রামে প্রদর্শিত চিত্রানুযায়ী সংযোগ প্রদান করতে হবে।
- ২। সার্কিট বা বর্তনীতে সংযোগসমূহ পরীক্ষা করতে হবে এবং ভূল থাকলে তা সংশোধন করতে হবে।
- ৩। এবার সংযোগ ঠিক থাকলে সরবরাহ প্রদান করতে হবে।
- ৪। সুইচ-এর মাধ্যমে সার্কিটে ইনপুট প্রদান করতে হবে এবং প্রাপ্ত আউটপুট প্রদত্ত ট্র্থ টেবিলের মাথে তুলনা করতে হবে। সতর্কতা:
- ১। সার্কিটসমূহকে নির্ভূলভাবে সংযোগ দিতে হবে।
- ২। পাওয়ার সাপ্লাই প্রদানের পূর্বেও সংযোগসমূহ পরীক্ষা করতে হবে।
- ৩। যন্ত্রপাতি সমূহকে সাবধনতার সাথে নাড়াচাড়া করতে হবে।

মন্তব্য:

ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে ক্লকড R-S ফ্লিপ-ফ্লপ তৈরি করা এবং এর ট্র্থ টেবিল ও কার্যাবলি কি ভাবে চেক করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা প্ররিপূণ বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: ক্লকড D এবং T ফ্লিপ-ফ্লপ তৈরি করা এবং এর ট্র্থ টেবিল ও কার্যাবলি চেক করা। পরীক্ষণের উদ্দেশ্যঃ

- (ক) ডিজিটাল লজিক লেভেল ট্রিগারড D ফ্লিপ-ফ্লপ চিহ্নিতকরণ এবং কার্যপ্রক্রিয়া সর্ম্পকে জানতে পারা ।
- (খ) ডিজিটাল লজিক T ফ্লিপ-ফ্লপ চিহ্নিতকরণ, কার্যপ্রক্রিয়া সর্ম্পকে জানা এবং ডিজিটাল লজিক অপারেশন সর্ম্পকে ধারণা লাভ করতে পারা।

প্রয়োজনীয় যন্ত্রপাতি:

- (ক) ডুয়াল D ফ্লিপ-ফ্লপ আইসি (7474)-১টি
- (খ) ডুয়াল T ফ্লিপ-ফ্লপ আইসি (7476)-১টি
- (গ) এলইডি (LED)- ৪টি
- (ঘ) ট্রেইনার বোর্ড-১টি
- (৬) পাওয়ার সাপ্লাই
- (চ) সংযোগ তার।

সার্কিট ডায়াগ্রাম:

চিত্র: D ফ্লিপ-ফ্লপ সার্কিট ডায়াগ্রাম

চিত্র: D ফ্লিপ-ফ্লপ আইসি(7474) পিন ডায়াগ্রাম।

চিত্র: T ফ্লিপ-ফ্লপ সার্কিট ডায়াগ্রাম

চিত্র: T ফ্রিপ-ফ্রপ আইসি(7476) পিন ডায়াগ্রাম।

Truth table:

Initial Q	D	Q
0	0	0
0	1	1
1	0	0
1	0	1

Truth	table	for	D	f-f
-------	-------	-----	---	-----

Initial Q	T	Q
0	0	0
0	1	1
1	0	1
1	1	0

Truth table for T f-f

কাজের ধারা:

- 🕽 । সার্কিট ডায়াগ্রামে প্রদর্শিত চিত্রানুযায়ী সংযোগ প্রদান হবে।
- ২। সার্কিট বা বর্তনীতে সংযোগসমূহ পরীক্ষা করতে হবে এবং ভূল থাকলে তা সংশোধন করতে হবে।
- ৩। এবার সংযোগ ঠিক থাকলে সরবরাহ প্রদান করতে হবে।
- 8। সুইচ-এর মাধ্যমে সার্কিটে ইনপুট প্রদান করতে হবে এবং প্রাপ্ত আউটপুটকে প্রদন্ত ট্র্থ টেবিলের সাথে তুলনা করতে হবে।

সতর্কতা:

- 🕽 । সার্কিটসমূহকে নির্ভূলভাবে সংযোগ দিতে হবে।
- ২। পাওয়ার সাপ্লাই প্রদানের পূর্বে সংযোগসমূহ পরীক্ষা করতে হবে।
- ৩। যন্ত্রপাতিসমূহকে সাবধানতার সাথে নাড়াচড়া করতে হবে।

মন্তব্য : ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে ক্লকড D এবং T ফ্লিপ-ফ্লপ তৈরী করা এবং এর ট্রুথ টেবিল ও কার্যাবলি চেক করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা প্ররিপূণ বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: ক্লকড JK এবং মাস্টার স্লেভ ফ্লিপ-ফ্লপ তৈরি করা এবং এর ট্রথ টেবিল ও কার্যাবলি চেক করা। পরীক্ষণের উদ্দেশ্যঃ

- (ক) ডিজিটাল লজিক JK ও মাস্টার স্লেভ ফ্লিপ-ফ্লপ সর্ম্পকে জানতে পারা।
- (খ) ডিজিটাল লজিক JK ও মাস্টার স্লেভ ফ্লিপ-ফ্লপ এর কার্যপ্রক্রিয়া সম্পর্কে জানতে পারা। প্রয়োজনীয় যন্ত্রপাতি:
- (ক) J-K ফ্লিপ-ফ্লপ (7476)-১টি
- (খ) ডুয়াল J-K ফ্লিপ-ফ্লপ আইসি (74LS73)-১টি
- (গ) এল.ই.ডি (LED)- 8টি
- (ঘ) ট্রেইনার বোর্ড-১টি
- (৬) পাওয়ার সাপ্লাই
- (চ) সংযোগ তার।

সার্কিট ডায়াগ্রাম:

চিত্র: JK ফ্লিপ-ফ্লপ সার্কিট ডায়াগ্রাম

চিত্র: JK ফ্লিপ-ফ্লপ আইসি(7476) পিন ডায়াগ্রাম।

চিত্র: মাস্টার স্লেভ JK ফ্লিপ-ফ্লপ এর ট্রুথ টেবিল।

চিত্র: ডুয়াল J-K ফ্লিপ-ফ্লপ আইসি (74LS73) পিন ডায়াগ্রাম

ট্রথ টেবিল:

<u>इ</u> न्	াপুট	আউটপুট এর পরিবর্তন
J	K	
0	0	No change
0	1	Reset
1	0	Set
1	1	Change state

চিত্র: JK ফ্লিপ-ফ্লপ এর ট্রথ টেবিল।

কাজের ধাপ:

- ১। সার্কিট ডায়াগ্রামে প্রদর্শিত চিত্রানুযায়ী সংযোগ প্রদান করতে হবে।
- ২। সার্কিট বা বর্তনীতে সংযোগসমূহ পরীক্ষা করতে হবে এবং ভুল থাকলে তা সংশোধন করতে হবে।
- ৩। এবার সংযোগ ঠিক থাকলে সরবরাহ প্রদান করতে হবে।
- ৪।সুইচ-এর মাধ্যমে সার্কিটে ইনপুট প্রদান করতে হবে এবং প্রাপ্ত আউটপুটকে প্রদত্ত ট্রুথ টেবিলের সাথে তুলনা করতে হবে।

সতর্কতা :

- ১। সার্কিটসমূহকে নির্ভুলভাবে সংযোগ দিতে হবে।
- ২। পাওয়ার সাপ্লাই প্রদানের পূর্বে সংযোগসমূহ পরীক্ষা করতে হবে।
- ৩। যন্ত্রপাতিসূহকে সাবধানতার সাথে নড়াচাড়া করতে হবে।

মন্তব্য:

ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে ক্লকড JK এবং মাস্টার স্লেভ ফ্লিপ-ফ্লপ তৈরি করা এবং এর ট্রুথ টেবিল ও কার্যাবলি চেক করা করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা প্ররিপূণ বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: সিরিয়াল/প্যারালাল ইন সিরিয়াল/প্যারালাল আউট শিফট রেজিস্টার তৈরিকরণ এবং এদের কার্যপ্রণালি পর্যবেক্ষণকরণ।

পরীক্ষণের উদ্দেশ্য:

- (ক) সিরিয়াল-ইন সিরিয়াল-আউট শিফট রেজিস্টারের কার্যপ্রণালি ও সংযোগ অনুধাবন করতে পারা।
- (খ) সিরিয়াল-ইন প্যারালাল -আউট শিফট রেজিস্টারের কার্যপ্রণালি ও সংযোগ অনুধাবন করতে পারা।
- (গ) প্যারালাল-ইন সিরিয়াল -আউট শিফট রেজিস্টারের কার্যপ্রণালি ও সংযোগ অনুধাবন করতে পারা।
- (ঘ) প্যারালাল-ইন প্যারালাল -আউট শিফট রেজিস্টারের কার্যপ্রণালি ও সংযোগ অনুধাবন করতে পারা।
- (৬) 7495 আইসি ব্যবহার করে শিফট রেজিস্টারের কার্যাবলি পর্যবেক্ষণ। প্রয়োজনীয় যন্ত্রপাতি :
- (ক) শিফট রেজিস্টার আইসি (7495)-১ টি
- (খ) এল.ই.ডি (LED)- 8টি
- (গ) ট্রেইনার বোর্ড-১টি
- (ঘ) পাওয়ার সাপ্লাই
- (ঙ) সংযোগ তার।
- (ক) সিরিয়াল-ইন সিরিয়াল-আউট শিফট রেজিস্টার:

সার্কিট ডায়াগ্রাম:

Clock	Serial i/p	QA	QB	QC	QD
1	d0=0	0	X	X	X
2	d1=1	1	0	X	X
3	d2=1	1	1	0	X
4	d0=1	1	1	1	0=d0
5	X	X	1	1	1=d1
6	X	X	X	1	1=d2
7	X	X	X	X	1=d3

চিত্র: সিরিয়াল-ইন সিরিয়াল-আউট শিফট রেজিস্টার

ট্রথ টেবিল: SISO শিফট রেজিস্টার

কাজের ধাপ:

- 🕽 । প্রথমে সার্কিট ডায়াগ্রাম অনুযায়ী সংযোগগুলো তৈরি করতে হবে।
- ২। একটি ক্রমানুসারে ৪ বিট যাটাকে সিরিয়ালি রেজিস্টারে লোড করতে হবে।
- ৩। চতুর্থ ক্লক পালস শেষে প্রথম ডাটা 'd0'QD এ প্রদর্শিত হবে।
- 8। পরবর্তী ক্লক পালস প্রয়োগ করলে'd1'QD এ তৃতীয় ডাটা প্রদর্শিত হবে।
- ৫। অবার আরেকটি ক্লক পালস প্রয়োগ করলে QD এ প্রদর্শিত হবে । এভাবে ইনপুট এর ক্রমানুসারে প্রয়োগ করা ডাটা QD-এ ক্রমানুসারে প্রদর্শিত হবে।

(খ) সিরিয়াল-ইন প্যারালাল -আউট শিফট রেজিস্টার: সার্কিট ভায়াগ্রাম:

Clock	Serial i/p	QA	QB	QC	QD
1	0	0	X	X	X
2	1	1	0	X	X
3	1	1	1	0	X
4	1	1	1	1	0

চিত্র: সিরিয়াল-ইন প্যারালাল -আউট শিফট রেজিস্টার

ট্রথ টেবিল : SIPO শিফট রেজিস্টার

কাজের ধাপ:

- 🕽 । প্রথমে সার্কিট ডায়াগ্রাম অনুযায়ী সংযোগগুলো তৈরি করতে হবে ।
- ২। এ ধাপে সিরিয়াল i/p এ ডাটা প্রয়োগ করতে হবে।
- ৩। এখন ক্লক 1 -এ একটি ক্লক পালস প্রয়োগ করতে হবে এবং OA তে এই ডাটাকে পর্যবেক্ষণ করতে হবে।
- 8। সিরিয়াল i/p-এ পরবর্তী ডাটাকে প্রয়োগ করতে হবে।
- e। এই ধাপে ক্লক ২এ একটি ক্লক পালস প্রয়োগ করতে হবে, দেখতে হবে যে QA- এর ডাটা QB- তে স্থানান্তরিত হয় কি না এবং একটি নতুন ডাটা QA-এ প্রদান করতে হবে।
- ৬। এখন ২ নং ধাপ এবং ৩ নং ধাপের পুনরাবৃত্তি করতে হবে যতক্ষণ না ৪ বিট ডাটাকে একের পর এক শিফট রেজিস্টারে প্রয়োগ না হয়।
- (গ) প্যারালাল-ইন সিরিয়াল -আউট শিফট রেজিস্টার: সার্কিট ডায়াথাম:

Mode	Clock	Parallel i/p			Parall	allel o/p			
		A	В	C	D	QA	QB	QC	QD
1	1	1	0	1	1	1	0	1	1
0	2	X	X	X	X	X	1	0	1
0	3	X	X	X	X	X	X	1	0
0	4	X	X	X	X	X	X	X	1

চিত্র: প্যারালাল-ইন সিরিয়াল -আউট শিফট রেজিস্টার

ট্রুথ টেবিল: PISO শিফট রেজিস্টার

কাজের ধাপ:

- 🕽 । প্রথমে সার্কিট ডায়াগ্রাম অনুযায়ী সংযোগগুলো তৈরি করতে হবে।
- ২। এ ধাপে পছন্দসই ৪ বিটের ডাটাকে $A \ B \ C \ D$ ইনপুটে প্রয়োগ করতে হবে।
- ৩। মোড নিয়ন্ত্রণ $M{=}1$ ধারে রেখে একটি ক্লক পালস প্রয়োগ করতে হবে। এখন $A \ B \ C \ D$ ইনপুটে প্রয়োগকৃত ডাটা যথাক্রমে $QA,\ QB,\ QC$ এবং $\ QD$ -এ প্রদর্শিত হবে।
- 8। এখন মোড নিয়ন্ত্রণ $M{=}0$ রেখে একে একে ক্লক পালস প্রয়োগ করে QD তে ক্রমানুসারে ডাটা আসছে কি না তা পর্যবেক্ষণ করতে হবে।
- (ঘ) প্যারালাল-ইন প্যারালাল -আউট শিফট রেজিস্টার: সার্কিট ডায়াগ্রাম:

Clock	Clock Parallel i/p Parallel o/p							
	A	В	С	D	QA	QB	QC	QD
1	1	0	1	1	1	0	1	1

চিত্র: প্যারালাল-ইন প্যারালাল -আউট শিফট রেজিস্টার

ট্রুথ টেবিল : PIPO শিফট রেজিস্টার

কাজের ধাপ:

- 🕽 । প্রথমে সার্কিট ডায়াগ্রাম অনুযায়ী সংযোগগুলো তৈরি করতে হবে।
- ২। এ ধাপে পছন্দসই ৪ বিটের ডাটাকে $A \ B \ C \ D$ ইনপুটে প্রয়োগ করতে হবে।
- ৩। ক্লক ২-এ একটি ক্লক পালস প্রয়োগ করতে হবে (দ্রস্টব্য: মোড কন্ট্রোল $M{=}1$)
- 8। এখন এখন $A \ B \ C$ এবং D এ প্রয়োগকৃত 8 বিট ডাটা যথাক্রমে $QA, \, QB, \, QC$ এবং $\, QD$ -এ প্রদর্শিত হবে। সতর্কতা:
- 🕽 । সার্কিটসমূহকে নির্ভুলভাবে সংযোগ দিতে হবে।
- ২। পাওয়ার সাপ্লাই প্রদানের পূর্বে সংযোগসমূহ পরীক্ষা করতে হবে।
- ৩। যন্ত্রপাতিসমূহকে সাবধানতার সাথে নড়াচাড়া করতে হবে।

মন্তব্য:

ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে সিরিয়াল/প্যারালাল ইন সিরিয়াল/প্যারালাল আউট শিফট রেজিস্টার তৈরিকরণ এবং এদের কার্যপ্রণালি পর্যবেক্ষণ চেক করা করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা আমরা গুরুত্ব সহকারে বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: লেফট শিফট এবং রাইট শিফট রেজিস্টার তৈরিকরণ এবং এদের কার্যপ্রণালি পর্যবেক্ষণকরণ। পরীক্ষার উদ্দেশ্য:

- (क) লেফট শিফট এবং রাইট শিফট রেজিস্টারের কার্যপ্রণালি ও সংযোগ অনুধাবন করতে হবে।
- (খ) 7495 আইসি ব্যবহার করে লেফট শিফট এবং রাইট শিফট রেজিস্টারের কার্যপ্রণালি পর্যবেক্ষণকরণ । প্রয়োজনীয় যন্ত্রপাতি:
- (ক) শিফট রেজিস্টার আইসি (7495)- ১টি।
- (খ) এল.ই.ডি (LED)- 8টি
- (গ) ট্রেইনার বোর্ড-১টি
- (ঘ) পাওয়ার সাপ্লাই
- (ঙ) সংযোগ তার।

লেফট-রাইট শিফটিং: শিফট রেজিস্টার 7495 রাইট শিফট অপারেশনের জন্য ওয়্যারিং করা থাকে। লেফট শিফট অপারেশনের জন্য পূর্ববতী ফ্লিপ-ফ্লপের ইনপুটের সঙ্গে প্রত্যেক ফ্লিপ-ফ্লপের আউটপুট লাগাতে হবে বাইরে থেকে, কেবল সিরিজ এট্রি হবে D ইনপুটে।

সার্কিট ডায়াগ্রাম:

কাজের ধাপ:

- ১। মোড কন্ট্রোল সুইচ SW-1 কে গ্রাইন্ড করতে হবে, যাতে IC রাইট শিফট অপারেশনে সক্ষম হয়।
- ২। SW-2 ও SW-3 কে গ্রাউন্ড করা হলো। চারটি ক্লক পালস দিয়ে ফাইনাল আউটপুট স্টেট লিপিবদ্ধ করতে হবে। ডাটা কোন দিকে সরে ডায় লক্ষ করতে হবে।
- ৩। SW-2 তে +5v দিতে হবে। এবারের চারটি ক্লক পালস দিয়ে ফাইনাল আউটপুট ঐভাবে লিপিবদ্ধ করতে হবে। ডাটা কোন দিকে সরে যায় লক্ষ করতে হবে।
- ৪। সুইচ SW-2 গ্রাউন্ট করতে হবে। এবারে চারটি ক্লক পালস দিয়ে দেখতে হবে ডাটা (বাইনারি মান) কোন দিকে সরে যায়।
- ৫। এবার মোড কন্ট্রোল সুইচ SW-1 কে +5v প্রান্তে স্থাপন করতে হবে। SW-3 কে ও +5v রাখতে হবে। এবার শিফট পালস দিয়ে কোন দিকে তথ্যটি সরে যায় তা দেখাতে হবে। চারটে পালস দেওয়ার পর শেষ অবস্থাটি লিপিবদ্ধ করতে হবে।
- ৬। এবার SW-3 সুইচকে বাইনারি ০ অর্থাৎ গ্রাউন্ড করতে হবে। দুটো শিফট পালস প্রয়োগ করে রেজিস্টার বাইনারি মানটি লিপিবদ্ধ করতে হবে।

সতর্কতা:

- 🕽 । সার্কিটসমূহ নির্ভূলভাবে সংযোগ দিতে হবে।
- ২। পাওয়ার সাপ্লাই প্রদানের পূর্বে সংযোগসমূহ পরীক্ষা হবে।
- ৩। যন্ত্রপাতিসমূহকে সাবধানতার সাথে নাড়াচাড়া করতে হবে।

মন্তব্য:

ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে লেফট শিফট এবং রাইট শিফট রেজিস্টার তৈরিকরা এবং এদের কার্যপ্রণালি পর্যবেক্ষণ চেক করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা আমরা গুরুত্ব সহকারে বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: ট্রথ টেবিলসহ আপ/ডাউন কাউন্টারের সার্কিট তৈরিকরণ ও কার্যাবলি পর্যবেক্ষণ।

পরীক্ষার উদ্দেশ্য:

আপ/ডাউন কাউন্টারের কার্যপ্রণালি ও সংযোগ অনুধাবন করতে পারা।

প্রয়োজনীয় যন্ত্রপাতি:

- **১**। 7432, 7408, 7476 আইসি-(প্রয়োজন মতো)।
- ২। ইলেকট্রনিক সার্কিট ডিজাইনার
- ৩। লজিক লেভেল ইন্ডিকেটর -৪টি
- ৪। পাওয়ার সাপ্লাই
- ৫। সংযোগ তার।

সার্কিট ডায়াগ্রাম:

চিত্র: আপ-ডাউন কাউন্টার

এখানে চারটি JK ফ্লিপ-ফ্লপকে AND OR গেট ইত্যাদি দিয়ে সংযুক্ত করা হয়েছে। ফরওয়ার্ড ও রিভার্স কাউন্টিং ছাড়াও এই কাউন্টারে কিছু বাড়তি বৈশিষ্ট্য রয়েছে: সেটা হলো রিসেট এবং প্রিসেট । কাউন্টারকে রিসেট করার অর্থ সব JK ফ্লিপ-ফ্লপের আউটপুট বাইনারি শূন্যতে স্থির করা । এভাবে গণনা শুরুর সময় আউটপুট শূন্য থেকে শুরু করা হয় অনেকটা স্টপ ওয়াচের এর মতো । স্টপ ওয়াচের রিসেট চাবি টিপলে কাঁটা আবার শূন্যের ঘরে ফিরে আসে । কখনও কখনও এমন পরিস্থিতি হয় যে, কাউন্টার শূন্য থেকে না শুরু করে একটা নির্দিষ্ট মান থেকে শুরু করতে হয় । কাউন্টার প্রিসেট করার অর্থ কোনো বাইনারি সংখ্যা কাউন্টারে সংরক্ষণ করে রাখা অর্থাৎ 4 বিট কাউন্টার0000 থেকে শুরুর বদলে মনে করি 1010 দিয়ে শুরু হলো। উপরের চিত্রের কাউন্টার শূন্য হওয়ার পর, একটা ধনাত্মক পালস প্রিসেট সিগন্যাল হিসেবে গেট 11, 12, 13, 14 দিয়ে কাউন্টারের সেট পিনে ঢোকে এবং আমরা যে নির্দিষ্ট বাইনারি সংখ্যা দিয়ে শুরু করতে চাই সেখানে কাউন্টারকে স্থির করে রাখে । উপরের চিত্রে বাইনারি প্রিসেট সংখ্যাটি হলো 1010। নিচরে চিত্রে IC 74193 একটি ইন্টিগ্রেটেড সার্কিট, যাকে প্রোগ্রাম করে নির্দিষ্ট বাইনারি মান থেকে আপ বা ডাউন উভয় দিকে গণনা করা যায়।

এই ৪ বিট কাউন্টারে সব ফ্লিপ-ফ্লপকে একসঙ্গে ক্লক পালস দেওয়া যায়। এর ফলে একসঙ্গে চারটি ফ্লিপ-ফ্লপে আউটপুট পরিবর্তন হয়। এ ধরনের প্রয়োগ আউটপুট স্পাইক (তীক্ষ্ণ বৃদ্ধি) বা রিপল কাউন্টাওে সাধারণভাবে পাওয়া যায় তা পরিত্যক্ত হয়। IC 74193 এর প্রতিটি কাউন্টারকে সম্পূর্ণ ভাবে প্রিসেট করা যায়।

কাজের ধারা :

- 🕽 । প্রথমে সার্কিট ডায়াগ্রাম অনুযায়ী সংযোগগুলো তৈরি করতে হবে।
- ২। পাওয়ার সাপ্লাই সুইচ অন করতে হবে।
- ৩। ক্লক পালস প্রয়োগ করতে হবে এবং আউটপুট পর্যবেক্ষণ করতে হবে।

সতর্কতা:

- 🕽 । সার্কিটসমূহকে নির্ভূলভাবে সাংযোগ দিতে হবে।
- ২। পাওয়ার সাপ্লাই প্রদানের পূর্বে সংযোগসমূহ পরীক্ষা করতে হবে।
- ৩। যন্ত্রপাতিসমূহকে সাবধঅনতার সাথে নড়াচাড়া করতে হবে।

মন্তব্য:

ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে ট্রথ টেবিলসহ আপ/ডাউন কাউন্টারের সার্কিট তৈরিকরণ ও কার্যাবলি পর্যবেক্ষণ চেক করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা আমরা গুরুত্ব সহকারে বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: ডি/এ কনভাটার এর পদ্ধতি দেখানো ।

পরীক্ষার উদ্দেশ্য:

- ১। মৌলিক A/D Converter শনাক্ত ও ব্যাখ্যা করতে হবে।
- ২। অপারেশন ব্যাখ্যা এবং এর সমাধান অসিলোস্কোপের সাহায্যে পর্যবেক্ষণ করতে পারা।

প্রয়োজনীয় যন্ত্রপাতি:

- 🕽 । রেজিস্টিভ ল্যাডার
- ২। অপারেশনাল অ্যামপ্লিফায়ার
- ৩। অসিলোস্কোপ।

সার্কিট ডায়াগ্রাম:

চিত্র: R-2R Ladder DAC

কাজের ধাপ:

- ১। $D_0,\,D_1,\,D_2,\,D_3$ এর I/O ভোল্টেজ বের করতে হবে।
- ২। 4-bit, 2R ল্যাডার ডিজাইন করতে হবে, যার মোট আউটপুট ভোল্টেজ হবে 10V।
- ৩। $1010,\,1110,\,0001,\,0101$ এর 1100 এর বাইনারি সংখ্যাগুলোর আউটপুট বের করতে হবে।

ফলাফল: ডিজিটাল সংখ্যাগুলোর O/P অসিলোস্কোপ এ $Analog\ signal$ আকারে প্রদর্শন হবে ।

মন্তব্য: ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে ডি/এ কনভাটার এর পদ্ধতি চেক করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা আমরা গুরুত্ব সহকারে বুঝতে সক্ষম হয়েছি।

পরীক্ষাণের নাম: একটি ডিজিটাল ঘড়ি তৈরিকরণ এবং আউটপুট পর্যবেক্ষণকরণ।

পরীক্ষার উদ্দেশ্য:

১। একটি ডিজিটাল গড়ি ডিজাইন এবং এর ঘন্টা, মিনিট, সেকেন্ড প্রদর্শন করতে পারা। প্রয়োজনীয় যন্ত্রপাতি:

১। সোর্স: অ্যাস্টেবল মাল্টিভাইবেটর

২। কাউন্টার

৩। BCD থেকে 7 সেগমেন্ট ডিকোডার

8। 7 সেগমেন্ট LED ডিসপ্লে।

সার্কিট ডায়াগ্রাম:

চিত্ৰ: Block Diagram of a 24-hour digital clock

কাজের ধাপ:

- ১। 1PPS ফ্রিকুয়েন্সি ব্যবহার করে অ্যাস্টেবল মাল্টিভাইব্রেটার ডিজাইন করতে হবে 555 টাইমার IC দ্বারা।
- ২। দশক বুফার জন্য উপযুক্ত IC নির্বাচন করতে হবে। ৬ দ্বারা ভাগ করতে হবে এবং ৩টি কাউন্টার দ্বারা ভাগ করতে হবে।
- ৩। BCD to 7 Segment Decoder এর জন্য উপযুক্ত IC নির্বাচন করতে হবে। IC এর Operation যাচাই করতে হবে।
- 8। পছন্দমতো 7 Segment LED সিলেক্ট করতে হবে।
- ৫। সম্পূর্ণ ডিজিটাল ঘড় একত্রিত বা Assemble করতে হবে। (চিত্রানুসারে) তারপর সঠিক সময় সেট করে দিতে হবে।

মন্তব্য: ক্লাস শিক্ষক আমাদের অতি গুরুত্বের সাহায্যে কি ভাবে ডি/এ কনভাটার এর পদ্ধতি চেক করতে হয় তা শিখিয়ে দিয়েছেন এবং আমরা তা আমরা গুরুত্ব সহকারে বুঝতে সক্ষম হয়েছি।