REVIEW SHEET including EQUATIONS and CONSTANTS

PERIODIC TRENDS IN PROPERTIES:

PHOTOELECTRON SPECTROSCOPY (PES): (x-rays)

ENERGY (light and electrons)

E = hv (for 1 photon of light)

E = energy(J)

 $h = 6.626. \times 10^{-34} (J \cdot s)$

 $v = \text{frequency } (s^{-1})$

 $c = \lambda v$ (for 1 photon of light)

 $c=2.998 \ X \ 10^8 \ (m/s) \ \ (speed \ of \ light)$

 $\lambda = \text{wavelength (m)}$ 1 m = 10⁹ nm

BONDING & IMAFs

Unit 2, 3a

Coulombic Attraction: $F \propto \frac{q_1 q_2}{r^2}$

q = charge (more charge is more attraction)

r = radius (more distance is less attraction)

LEWIS STRUCTURES

Count------Connect------Octet------Octet------Mult. Bonds (val e-'s) (bonds) (outer) (central) (double or triple)

Formal Charge = val e - #lone e - #bonds

	domains	hybridization	shape	angle
AB2	2	sp	linear	180°
АВз	3	sp ²	trigonal planar	120°
AB4	4	sp ³ tetrahedral		109.5°
AB5	5	NA	trigonal	90°&
Abs	3	IVA	bipyramidal	120°
AB6	6	NA octahedral		90°

single	bond order = 1	σ (sigma)
double	bond order = 2	σ, π (sigma, pi)
triple	bond order = 3	σ, π, π (sigma, pi, pi)

IMAFs

- <u>H-bonds</u> (if H bonded to very electronegative N,O,F) (e- deficient H *attracts* N,O,F of another molecule)
- <u>dipole-dipole int's</u> (*polar*)

(stronger with greater Δ electronegativity)

• <u>dispersion forces</u>, LDFs (*nonpolar*)(temporary dipoles) (stronger with more e-'s, more polarizable)

ATTRACTIONS IN SOLIDS, LIQUIDS, & GASES

<u>Type</u>	Forces Between Particles	<u>Properties</u>	
Molecular	Intermolecular Attractions (IMAFs) London dispersion forces (nonpolar) Soft		
Ar I ₂ CO ₂ H ₂ O C ₂ H ₅ OH C ₁₁ H ₂₂ O ₁₁	Dipole-dipole interactions (polar) δ^- Hydrogen bonds (H with N, O, F)		
C _(diamond) Covalent- SiO ₂ Network	$\frac{\textbf{Covalent Bonds}}{C_{(diamond)}}, SiO_{2} (quartz), \\WC_{2} (tungsten carbide), etc$	<i>Very</i> hard Very high mp Poor conductor	
NaCl CuSO ₄ lonic	$\begin{array}{c} \underline{\text{lonic Bonds}} \\ \underline{\text{crystal lattice of}} \\ \underline{\text{charged ions}} \end{array} \qquad \frac{q}{d} + \frac{1}{d}$	Hard and brittle High mp Conducts as (aq) or (l)	
All metals Metallic & alloys: Cu, Fe, K, Al,	Metallic Bonds + metal ions in delocalized "sea" of e-'s Malleat	Soft to very hard Low to very high mp ole, Ductile, Conductor	

 $1 \, \text{kJ} = 1000 \, \text{J}$

Interstitial
(different sizes)
increased density

Stronger Attractions cause...

- <u>harder</u> and <u>higher mp</u> of solid (higher ΔH_{fusion})
- <u>higher bp</u> of liquid (higher $\Delta H_{\text{vaporization}}$)
- <u>higher viscosity</u> (resistance to flow)
- *lower* vapor pressure (less vapor above a liquid)

MASS, COMPOSITION, STOICH, & SOLUTIONS Unit 1, 3b, 3c, 4c mass % = $\frac{g \text{ part}}{g \text{ total sample}} \times 100\%$ % yield = $\frac{\text{experimental}}{\text{theoretical}} \times 100\%$ % error = $\frac{|\text{experimental-theoretical}|}{100\%}$ theoretical mass (g) 6.022×10^{23} moles(n) = -1 mole molar mass (MM) Find EMPIRICAL & MOLECULAR FORMULA: 1) % to mass (g) (if %'s given, write as grams) 2) mass to mol (convert with molar mass) $3) \div by small$ (to get lowest ratio) 4) times 'til whole (if necessary, x by 2 or 3) $\frac{\text{molecular mass}}{\dots} = \text{multiple of empirical} \rightarrow$ Molecular empirical mass Formula Unit: g B, or L B, or particles B, etc. STOICHIOMETRY $\underline{g} A \times \underline{1} \underline{\text{mol } A} \times \underline{\text{mol } B} \times \underline{\text{mol } B} = \text{Whatever}$ mol B unit of B mol A g A (if given asked for. grams A) (molar mass) (mole ratio) **ELECTROLYTES:** ionize or dissociate into charges in solution conducting electricity (strong, weak, non) Always soluble ions: **SNAP** (Na⁺, NO₃⁻, NH₄⁺, K⁺) moles solute Concentration [] in Molarity, M =L solution $M_1V_1 = M_2V_2$ (dilution) 1000 mL = 1 LSOLUTION FORMATION solute-solute att's break Exo solute-solvent att's form Endo more soluble with more similar solute-solvent att's (similar IMAFs or ion-dipole) solvent-solvent att's break

BEER-LAMBERT LAW (LAB)

concentration determined by light absorbed thru solution

 $A = \varepsilon bc$

A = absorbance

 $\varepsilon = \text{molar absorptivity } (M^{-1}\text{cm}^{-1})$

b = path length (cm)

c = concentration (M)

<u>Greater A</u> (absorbance), <u>Higher c</u> (concentration)

REACTIONS Net Ionic Equations (NIE's) Unit 4a Complete----- Dissociate----- Cross----- Net------ Bal (molecular) (strongs & SNAP) (spectators) if REDOX: REDOX (OX#'s change) (elements have OX# 0) O HE BAL U **RED**: $O_2^0(q) + 4 e^{-} \rightarrow 2 O^{2-}(aq)$ $Mg^{0}(s) \rightarrow Mg^{2+}(aq) + 2 e_{-}$ ions shown) rxns $2 \text{ Mg}^0 + \text{O}_2{}^0 \rightarrow 2 \text{ MgO}$ 1) Synthesis $2 H_2O \rightarrow 2 H_2^0 + O_2^0$ 2) Decomposition 3) Single Replacement $Zn^{0} + 2 H^{+} \rightarrow Zn^{2+} + H_{2}^{0}(q)$ (metal + acid) Single Replacement $2 \text{ Na}^0 + \text{Fe}^{2+} \rightarrow 2 \text{ Na}^+ + \text{Fe}^0$ (metal + metal ion) $CH_4 + O_2^0 \rightarrow CO_2 + 2 H_2O$ 4) Combustion **NOT REDOX** (same ions w/ same charges, just switch partners) 5) Double Rep. $Ag^+ + Cl^- \rightarrow AgCl(s)$ (Precipitation) Double Rep. $HC_2H_3O_2 + OH^- \rightarrow C_2H_3O_2^- + H_2O$ (Acid-Base) Double Rep. $MgCO_3 + 2 H^+ \rightarrow Mg^{2+} + H_2O + CO_2(q)$ (acid + carbonate)

10 15 20 25 30

1 L T

 $X \text{ analyte}(A) + Y \text{ titrant}(T) \rightarrow products$

Stoich: $L T \times mol T \times X \mod A = mol A \div L = M$

analyte and titrant

Y mol T $OR \times g/mol = g$

GASES

Unit 3b

|PV = nRT| (Ideal Gas Law)

1 atm = 760 mmHg = 760 torrP = pressure

V = volume(L)1 L = 1000 mL

n = moles

R = gas constant $0.08206 \frac{\text{L·atm}}{\text{mol·K}}$ **OR** 62.36 $\frac{\text{L·torr}}{\text{mol·K}}$

 $^{\circ}\text{C} + 273 = \text{K}$ T = temperature (K)

$$MM = \frac{mRT}{PV}$$
 (molar mass of a gas)

$$P_{A} = P_{total} \times X_{A} \quad \text{mole fraction, } X_{A} = \frac{\text{moles A}}{\text{total moles}}$$

$$P_{total} = P_{A} + P_{B} + P_{C} + \dots$$

STP = 273.15 K and 1.0 atm

22.4 L·mol⁻¹ @ STP (volume of 1 mol of gas)

$$Density(D) = \frac{m}{V} \qquad MM = \frac{DRT}{P}$$

$$KE_{molecule} = \frac{1}{2}mv^2$$

m = mass (or molecular mass)

v = velocity

lower mass $(\downarrow m)$, faster speed $(\uparrow v)$ higher Temp (\uparrow KE), faster speed (\uparrow v)

IDEAL vs NON-IDEAL

Most ideal with weakest IMAFs and at:

- high Temp b/c IMAFs are negligible (high KE)
- <u>low Pressure</u> b/c particle volume is negligible compared to great total volume

KINETICS

Unit 5

activation enerav

Rate of rxn depends on:

- 1) collision **frequency**
- 2) collision **energy** (E_{act})
- 3) proper **orientation** of particles

(intermediate: produced then consumed

↑ exposed surface area = more frequent collisions ↑ concentration = more frequent collisions

↑ Temp = more frequent collisions & more KE

Rate = $k[A]^m[B]^n$ (general rate law) shows reactants in RDS (slow step) of mechanism

 $|A|_t =$ concentration of A after some amount of time $[A]_0$ = initial concentration of A

 0^{th} order: rate law: Rate = k

integrated rate law: $[A]_t - [A]_0 = -kt$

Rate is *M/t* so: Rate = k

M = ?

units of k: $M \cdot t^{-1}$ t is s OR min OR etc.

1st order: rate law: Rate = $k[A]^1$

integrated rate law: $\ln[A]_t - \ln[A]_0 = -kt$

Rate is *M/t* so: Rate = $k[A]^1$

 $M = ? \cdot M$

units of k: t^{-1} t is s OR min OR etc.

 1^{st} order has **constant half-life** $(t_{1/2})$

$$t_{1/2} = \frac{0.693}{k}$$

 2^{nd} order: rate law: Rate = k[A]²

integrated rate law:

time

Rate is *M/t* so: Rate = $k[A]^2$

 $\underline{M} = ? \cdot M^2$

units of k: $M^{-1} \cdot t^{-1}$ t is s OR min OR etc. $-\Delta H = \underline{exo}$ thermic

(heat <u>lost</u> *to* surroundings so ↑ Temp)

 $+\Delta H = \underline{endo}$ thermic

(heat <u>absorbed</u> from surroundings so \downarrow Temp)

If rxn is <u>reverse</u>, ... then ΔH is <u>opposite</u> ($-\Delta H$).

If rxn is <u>multiplied</u> by 2, ½, 3, etc....

...then ΔH is $\underline{multiplied}$ by that number, too.

If rxn 1 is added to rxn 2, ...

...then ΔH_1 is also added to ΔH_2

 $\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}}$ products – $\Sigma \Delta H_{f^{\circ}}$ reactants

 $\Delta H^{\circ} = \Sigma BE(reactants) - \Sigma BE(products)$ (bonds broken) - (bonds formed)

CALORIMETRY (LAB)

 $q = mc\Delta T$

q = heat energy (J)

m = mass(g)

 $c = specific heat capacity \left(\frac{J}{g \cdot C}\right) or \left(\frac{J}{g \cdot K}\right)$

 ΔT = change in temperature (°C) or (K)

 $\Delta H_{system} = -q_{surroundings}$

convert J to kJ and \div by moles to get "molar heat of rxn" (ΔH_{rxn} in kJ/mol)

 $c = \text{specific heat capacity } \left(\frac{J}{g \cdot C}\right) \text{ or } \left(\frac{J}{g \cdot K}\right)$

means the amount of heat energy lost OR gained to change 1 g of matter by 1°C.

HEATING CURVES

Heat Added

In Sections Q and S, added heat does *not* increase KE (Temp), but <u>increases PE</u> by <u>overcoming attractions</u> and separating particles to <u>change phase</u>.

EQUILIBRIUM

 $aA + bB \rightleftharpoons cC + dD$ [no (s) or (1) in K expressions]

$$\boxed{\mathbf{K_c} = \frac{[\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^{\mathbf{d}}}{[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^{\mathbf{b}}} \quad \text{(conc's in } M\text{)} \quad \textbf{(aq) } OR \textbf{(g)}}$$

$$\left| \mathbf{K_p} = \frac{(\mathbf{P_C})^{\mathbf{c}} (\mathbf{P_D})^{\mathbf{d}}}{(\mathbf{P_A})^{\mathbf{a}} (\mathbf{P_B})^{\mathbf{b}}} \right| \text{ (P in atm)} \quad \textbf{(g) ONLY}$$

K > 1; more products than reactants @ equilibrium K < 1; more reactants than products @ equilibrium

If rxn is <u>reverse</u>, ... then K is <u>inverse</u> (1/K *OR* K⁻¹)

If rxn is <u>multiplied</u> by 2, ½, 3, etc....

...then K is <u>raised</u> to that power: K^2 , $K^{\frac{1}{2}}$, K^3 , etc.

If rxn 1 is <u>added</u> to rxn 2,then K_1 is <u>multiplied</u> to K_2

Q (reaction quotient)

Q = K; at equilibrium

Q > K; too much product, **shift left** form reactant

Q < K; too much reactant, **shift right** form product

$$A_m B_n(s) \leftrightarrows mA^+(aq) + nB^-(aq)$$

 $\mathbf{K}_{sp} = [A^+]^m [B^-]^n$ (solubility product constant)

Q = K; saturated

Q > K; saturated, shift left to precipitate solid

Q < K; unsaturated, shift right dissolve into ions

Common Ion Effect: *shift left* (less soluble)

<u>Use **RICE tables**</u> to track what changes during rxn: **R** eaction (shows mole ratios as coefficients)

Initial (write units! mol OR M OR atm)

<u>C</u> hange

<u>E</u> quilibrium (<u>write units!</u> <u>mol</u> OR <u>M</u> OR <u>atm</u>)

Le Châtelier's Principle

System **at equilibrium disturbed** by <u>change</u> (affecting collisions) will <u>shift</u> (\leftarrow or \rightarrow) to counteract the change.

- Add R or P: shift away faster (consume)
- Remove R or P:shift toward faster (replace)
- <u>Volume</u>: $\downarrow V$ shifts to fewer mol of gas $(\downarrow n_{gas})$ (P_{total}) $\uparrow V$ shifts to more mol of gas $(\uparrow n_{gas})$
- <u>Temp.</u>(changes K)($H + R \leftrightarrow P$) ($R \leftrightarrow P + H$)

↑T shifts in endo dir. to use up heat

 \downarrow T shifts in exo dir. to make more heat

- Catalyst: no shift