330 kWe Packaged CHP System with Reduced Emissions

DE-EE0003392

Cummins Power Generation/Cummins Engine Business Unit of Cummins, Inc.
October 1, 2010 through December 31, 2014

Kevin Keene – Cummins Power Generation Kevin.Keene@cummins.com 763-574-5966

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C.

May 6-7, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

- Increase the adoption rate for high-efficiency smallscale Combined Heat and Power systems via development of a flexible, containerized 330 kWe unit.
 - Simplifies installation
 - Reduces total cost of ownership

Technical Approach

Controls Development

- Dedicated control circuit board (eliminates costly PLC)
- Predictive service for components and consumables
- Dynamic total cost of ownership algorithms
- Custom maintenance schedules
- Remote monitoring and control
- High speed data logging

Technical Approach

Engine and Balance of Plant Development

- Leverage low cost, high volume components
- 2-Stage Charge Air Cooler
- Ultra-low noise enclosure with integrated hoist and 2.5' walkway
- 5% BTE engine improvement

Transition and Deployment

- Field Testing (Stage 4 Development & Verification)
 - System intent: "preheat" plant boiler, parallel to utility
- Commercialization
 - Utilize rigorous
 Cummins Value
 Package
 Introduction
 process
 (productization)

- Implement cost reduction opportunities while maintaining flexible architecture
- Leverage manufacturing efficiencies of scale
- Dedicated support distribution system of 145 U.S. locations

Transition and Deployment

Target Markets:

- Institutional
 - Schools and Universities
- Commercial
 - Commercial Laundries
 - Hospitals and Nursing Homes
 - Hotels and Resorts
- Small Industrial
 - Chemical Production
 - Food Processing
 - Heat Molding / Plastics
- Gas & Electric Utilities

Measure of Success

- Energy and Emissions Reduction:
 - 36% less total fuel per kWh (compared to Cummins 19L)
 - 950 tons CO2 estimated reduction per system (assuming 8000 hr/year, using National Grid Average Emissions)
- Transition DOE prototype to mass production
- Increase United States CHP system adoption rates
 - Reduce commercialization barriers at a State and Regional level (net metering, standby service tariffs)

Project Management & Budget

Total Project Budget		
DOE Investment	\$ 6.02 M	
Cost Share	\$ 3.22 M	
Project Total	\$ 9.24 M	

Results and Accomplishments

• Next Steps:

- Evaluate cost reduction opportunities
- Service, installation and manufacturing documentation
- Identify changes for scalability to various power nodes
- Evaluate impact of heat recovery architecture changes

Specification	Design target	Observed value
Electrical Power Output	330 kWe	330 kWe
Thermal Power Output	410 kWth	418 kWth
Brake Thermal Engine Efficiency	38%	38.3%
Emissions NOx	ı g/hp-hr	o.92 g/hp-hr
Overall System Efficiency (HHV)	70%	72.9%
System Noise Profile @ 6m	50 dB	46.5 dB
Customer Water Temperature Operating Range	5 - 95 C	12 - 95 C
Enclosure Size Equivalent	40' ISO	37' Custom