Campo Electromagnético 2007/2008

Aula 17

- · Força magnética entre fios.
- · Força electromotriz induzida.
- Estudo da lei de Faraday da indução.
- · Princípio de Lenz.
- · Estudo do campo magnético criado pela força
- electromotriz induzida
- · Resolução de exercícios.

Maria Rute André rferreira@ua.pt

Força magnética entre fios

Consideremos dois fios condutores, de comprimento L_1 e L_2 , que transportam correntes diferentes

A força total exercida em cada fio será:

$$\vec{F}_{21} = I_2 \vec{l}_2 \times \vec{B}_1 \quad \wedge \quad \vec{F}_{12} = I_1 \vec{l}_1 \times \vec{B}_2$$

$$F_{21} = I_2 l_2 B_1 \wedge F_{12} = I_1 l_1 B_2$$

$$\begin{split} \vec{F}_{21} &= I_2 \vec{l}_2 \times \vec{B}_1 \quad \wedge \quad \vec{F}_{12} = I_1 \vec{l}_1 \times \vec{B}_2 \\ \textbf{Em módulo:} \\ F_{21} &= I_2 l_2 B_1 \quad \wedge \quad F_{12} = I_1 l_1 B_2 \\ \textbf{Pela Lei de Biot-Savat} \\ B_1 &= \frac{\mu_0 I_1}{2\pi r} \quad \wedge \quad B_2 = \frac{\mu_0 I_2}{2\pi r} \end{split}$$

 $F_{21} = \frac{\mu_0 l_2 I_1 I_2}{2\pi r} \wedge F_{12} = \frac{\mu_0 l_1 I_1 I_2}{2\pi r}$ Considerando os fios infinitos,

Pela "regra da mão direira", cada força tende a aproximar um fio do outro

Força magnética entre fios

Corrente a circular no mesmo sentido

Corrente a circular em sentidos opostos

✓. Resolução de exercícios

8. Dois fios condutores rectilíneos, paralelos e infinitos, distanciado de d, estão percorridos pelas correntes I e I'. Entre eles e no mesmo plano, coloca-se um terceiro fio condutor de comprimento L, percorrido por I" e podendo deslocar-se lateralmente.

- a) Como devem ser os sentidos das correntes para existir uma posição de equilíbrio do 3º condutor entre os dois primeiros?
- b) Qual é a posição de equilíbrio do 3º condutor? Será que o comprimento desse tem uma influência? Discute a estabilidade do equilíbrio.

a) I e Γ de mesmo sentido **b)** $x = \frac{I}{|I - \Gamma|} d$

. Resolução de exercícios

16. Um fio condutor está enrolado sobre um toróide de eixo vertical Δ e de raio b. As espiras formam círculos de raio a (a<b) e são juntas, de modo que se conta N espiras/rad. Determine o campo magnético no interior das espiras, e no exterior, quando o fio está percorrido por uma intensidade I.

Solução:
$$\overrightarrow{B}_{int} = \mu_0 \frac{NI}{r} \overrightarrow{u}_\theta$$
; $\overrightarrow{B}_{ext} = \overrightarrow{0}$

Indução magnética

Lei geral da indução ou lei de Faraday

Até agora, sabemos que:

- distribuições de carga, geram campo eléctrico
- 2. distribulções de corrente, geram campo magnético, podendo concluir que o O campo elécrico e magnético são independentes.

Tal só é válido, se o campo magnético não variar no tempo. Se o campo magnético Variar no tempo, origina um campo eléctrico (induzido) que, de um modo geral, também varia no tempo (Faraday, em 1831).

Indução magnética

Lei geral da indução ou lei de Faraday

Consideremos a seguinte experiência

Indução magnética

Lei geral da indução ou lei de Faraday

Verifica-se, experimentalmente, que ε só depende da taxa de variação do fluxo magnético (ϕ), através da espira:

$$\varepsilon = -\frac{d\phi}{dt}$$

Como sabemos que:

$$\phi = \int \vec{B} \vec{dS}$$

Existem situações em que há variação do fluxo e, por conseguinte, a existência de correntes induzidas:

- 1. variação da intensidade de campo magnético
- 2. variação da área dS
- 3. variação do ângulo entre os vectores campo magnético (B) e dS

Indução magnética

Lei geral da indução ou lei de Faraday

Vamos definir as várias convenções de sinais:

- Fem e correntes s\u00e3o positivas se forem contr\u00e1rias ao sentido de movimento dos ponteiros do rel\u00f3gio;
- 2. o fluxo é positvo se apontar no sentido do observador

Basta pensar que o sentido positivo do fluxo e corrente se relaciona com a regra do saca rolhas.

Indução magnética

Lei geral da indução ou lei de Faraday

If aumenta com o tempo: $\left(-\frac{dI1}{dt}>0\right)$ If diminui com o tempo: $\left(-\frac{dI1}{dt}<0\right)$ It é negativa

$$\Rightarrow \frac{d\phi}{dt} < 0 \Leftrightarrow -\frac{d\phi}{dt} > 0 \Rightarrow \qquad \Rightarrow \frac{d\phi}{dt} > 0 \Leftrightarrow -\frac{d\phi}{dt} < 0 =$$

 \Rightarrow corrente induzida $I_2(\alpha\varepsilon)$ é postiva \Rightarrow corrente induzida $I_2(\alpha\varepsilon)$ é negativa

Indução magnética

Lei geral da indução ou lei de Faraday

Se existe f.e.m induzida no segundo circuito, existe um campo eléctrico que tem as seguintes características:

$$\oint Edl = 2\pi r E \neq 0 \Rightarrow rot \vec{E} \neq 0$$

$$\varepsilon = \oint Edl = -\frac{d\phi}{dt} = -\frac{d}{dt} \int_{s} BdS$$

Aplicando o teorema de Stokes

Indução magnética

Lei de Lenz: a f.e.m induzida, produz um fluxo que tende a opor-se à causa que a originou.

Exemplos práticos

Se I1 está a aumentar no tempo, então do fluxo do vector B, através do segundo circuito, também, aumenta no tempo.

A Corrente I2, cria um campo B induzido que se opõe a esta variação de B

O sentido de **B** é oposto a **B**_{induzido}.

Indução magnética

Lei de Lenz: a f.e.m induzida, produz um fluxo que tende a opor-se à causa que a originou.

Exemplos práticos

Se I1 está a diminuir no tempo, então do fluxo do vector B, através do segundo circuito, também, diminui no tempo.

A corrente I_2 , cria um campo $B_{induzido}$ que se opõe a esta variação de B

O sentido de **B** é o mesmo de **B**_{induzido}.

f.e.m numa espira
$$\varepsilon = -\frac{d\phi}{dt}$$

$$\text{f.e.m em } \textit{n} \text{ espiras } \varepsilon = -n \frac{d\phi}{dt}$$