SYSC 4101 / 5105

Graph Criteria (Part I)

Test Criteria Based on Structure [Offutt]

Graphs

Logical E

Method body
Methods and calls
Components interactions
State and transitions

Input Domain Characterization

Syntactic Structures

$$z = x - y$$
;

else

$$z = 2 * x$$

Graph Principles

- A directed graph is defined by:
 - a set N of nodes
 - a set N₀ of initial nodes, where N₀⊆N: |N₀|≥1
 - a set N_f of **final nodes**, where N_f ⊂N: $|N_f| \ge 1$
 - a set E of edges, where E⊆N×N
- Path = a sequence [n₁, n₂, ..., n_M] of nodes, where each pair of adjacent nodes [n_i,n_{i+1}], 1≤i<M-1, is in E.
 - [n] is a path of length zero
 - Two nodes may share several edges, in which case a path definition needs to indicate edges and nodes
- The length of path p is the number of its edges.
- A sub-path of path p is a subsequence of p (possibly p itself).
 - $[n_2,n_3]$ is a sub-path of $[n_2,n_3,n_6,n_7]$
 - [n₁,n₄,n₅] is a sub-path of [n₁,n₄,n₅,n₇,n₉]
 - $[n_4]$ is a sub-path of $[n_1,n_4,n_5]$

Graph Testing—Criteria

- Graph criteria define a set of test requirements to be achieved
 - These requirements are stated in terms of elements of the graph to be exercised.
 - The requirements then translate into paths from an initial to a final node [to exercise the required elements]: a.k.a. test paths.
 - The paths then become test cases: one identifies (inputs) values to execute the path.
- ➤ Graph criteria, therefore, consider the <u>syntax</u> of the graph
 - Not its semantics!
- > A criterion may result in infeasible objectives (and therefore paths)
 - See example next.
- Reachability:
 - Node n [or edge e] is syntactically reachable from node n_i if there exists a path from node n_i to n [or e]
 - Node n [or edge e] is also semantically reachable if it is possible to execute at least one of the paths with some input.

Example: Power Function

Program computing Z=X^Y

```
BEGIN
  read (X, Y) ;
  W = abs(Y) ;
  Z = 1 ;
  WHILE (W <> 0) DO
    Z = Z * X ;
  W = W - 1 ;
  END
  IF (Y < 0) THEN
    Z = 1 / Z ;
  END
  print (Z) ;
END</pre>
```


Test requirement [1,2,4,5] is:

- Syntactically feasible/reachable: path [1,2,4,5,6] is possible in the graph.
- Semantically infeasible/unreachable: need to satisfy y=0 and y<0.

Graph Testing—Terminology

- Test Path
 - A path p, possibly of length zero, that starts at some node in N₀ and ends at some node in N_f.
 - A complete traversal of the graph, from an initial node to a final node.
 - A test path p visits node n [resp. edge e] if n [resp. e] is in p.
 - A test path p tours sub-path q if q is a sub-path of p.
- Unless the system is non-deterministic, a test case executes <u>one</u> test path.
 - path[T] is the set of test paths executed by test set T.

Path [1, I, 4, 5, 7, 9]:

- Visits node 5
- Visits edge (7,9)
- Tours path [5, 7, 9]

Graph Testing—Two Families of Criteria

Control Flow Criteria

- Only consider the flow of nodes and edges
- Seven criteria (many more criteria exist)

Data Flow Criteria

- Considers the definitions and usages of data along paths
- Three criteria (many more criteria exist)

Reminder: a criterion can be an selection criterion or a coverage criterion.

- One can use selection control flow criterion A and coverage control flow criterion B
- One can use selection control flow criterion A and coverage data flow criterion B
- One can use selection data flow criterion A and coverage control flow criterion B

<u>• ...</u>

Graph Testing—Control Flow Criteria [textbook]

- Graph Criteria (generic/template definition)
 - Given a set TR of test requirements for a graph criterion C, a test set T satisfies C on graph G if and only if for every test requirement tr in TR, there is at least one test path p in path[T] such that p meets tr.
 - Overall, all the tr in TR are exercised by paths in path[T], the paths exercised by T.
 - Recall the procedure:

Criterion \rightarrow Test Requirements (paths) \rightarrow Test Paths \rightarrow Test inputs

- All-Nodes Criterion [NC]:
 - TR contains each reachable node in G.
- All-Edges Criterion [EC]:
 - TR contains each reachable [sub-]path of length up to 1, inclusive, in G.
 - Length of 0 or 1, i.e., nodes and edges. (All-edges subsumes All-Nodes by construction.)
- All-Edge-Pairs Criterion [EPC]:
 - TR contains each reachable path of length up to 2, inclusive, in G.
 - Length of 0, 1, or 2, i.e., nodes, edges and pairs of consecutive edges. (All-Edge-Pairs subsumes All-Edges by construction.)

Graph Testing—Control Flow Criteria [2]

- Prime-Path Criterion [PPC]: (textbook illustrates an algorithm to find them)
 - TR contains each prime path in G.
 - A path from n_i to n_j is a prime path if it is a simple path and it does not appear as a proper sub-path of any other simple path
 - A path from n_i to n_i is simple if no node appears more than once in the path.
 - Exception: the first and last nodes of the path may be identical (the sub-path is a loop).
 - A prime path is a simple path of maximum length.
- Simple-Round-Trip Criterion [SRTC]:
 - TR contains at least one round-trip path for each reachable node in G that begins and ends a round-trip path.
 - A round-trip path is a nonzero length prime path that starts and ends at the same node, i.e., a loop with at least one edge.
- Complete-Round-Trip Criterion [CRTC]:
 - TR contains all round-trip paths for each reachable node in G.
- Complete-Path Criterion [CPC]:
 - TR contains all paths in G.

Example

Each time, we list the set of test requirements and then test paths that are adequate for the criterion.

All-Nodes Criterion

- Test requirements:
 [n₀], [n₁], [n₂], [n₃], [n₄], [n₅], [n₆], [n₇], [n₈]
- path[t_1]=[n_0 , n_1 , n_2 , n_7 , n_8]
- path[t_2]=[n_0 , n_3 , n_4 , n_6 , n_5 , n_3 , n_2 , n_7 , n_8]
- T_{NC}={t₁,t₂} satisfies the All-Nodes criterion
 - Many other possibilities...

All-Edges Criterion

Test requirements

 $[n_0], [n_1], [n_2], [n_3], [n_4], [n_5], [n_6], [n_7], [n_8]$ $[n_0, n_1] [n_0, n_3] [n_1, n_2] [n_2, n_7] [n_2, n_8]$ $[n_3, n_4] [n_3, n_2] [n_4, n_5] [n_4, n_6] [n_5, n_3]$

- $[n_6, n_5]$ $[n_7, n_8]$
- path[t_3]=[n_0, n_1, n_2, n_8]
- path[t_2]=[n_0 , n_3 , n_4 , n_6 , n_5 , n_3 , n_2 , n_7 , n_8]
- path[t_4]=[n_0 , n_3 , n_4 , n_5 , n_3 , n_2 , n_7 , n_8]
- T_{EC}={t₂,t₃,t₄} satisfies the All-Edges criterion

All-Edge-Pairs Criterion

Test requirements

```
 [n_0], [n_1], [n_2], [n_3], [n_4], [n_5], [n_6], [n_7], [n_8] \\ [n_0,n_1] [n_0,n_3] [n_1,n_2] [n_2,n_7] [n_2,n_8] \\ [n_3,n_4] [n_3,n_2] [n_4,n_5] [n_4,n_6] [n_5,n_3] \\ [n_6,n_5] [n_7,n_8] \\ [n_0,n_1,n_2] [n_0,n_3,n_2] [n_0,n_3,n_4] \\ [n_1,n_2,n_7] [n_1,n_2,n_8] [n_2,n_7,n_8] \\ [n_3,n_4,n_6] [n_3,n_4,n_5] [n_3,n_2,n_7] [n_3,n_2,n_8] \\ [n_4,n_5,n_3] [n_4,n_6,n_5] [n_5,n_3,n_2] [n_5,n_3,n_4] \\ [n_6,n_5,n_3]
```

- path[t_1]=[n_0 , n_1 , n_2 , n_7 , n_8]
- path[t_3]=[n_0 , n_1 , n_2 , n_8]
- path[t_5]=[n_0 , n_3 , n_2 , n_7 , n_8]
- path[t_6]=[n_0 , n_3 , n_4 , n_6 , n_5 , n_3 , n_4 , n_5 , n_3 , n_2 , n_8]
- T_{EPC}={t₁,t₃,t₅, t₆} satisfies the All-Edge-Pairs criterion

SYSC 4101 / 5105

Prime-Path Criterion

Test requirements

 $\begin{array}{llll} & [n_0,n_1,n_2,n_8] & [n_0,n_1,n_2,n_7,n_8] & [n_0,n_3,n_2,n_8] \\ & [n_0,n_3,n_2,n_7,n_8] & [n_0,n_3,n_4,n_5] & [n_0,n_3,n_4,n_6,n_5] \\ & [n_3,n_4,n_5,n_3] & [n_3,n_4,n_6,n_5,n_3] & \\ & [n_4,n_5,n_3,n_2,n_8] & [n_4,n_5,n_3,n_2,n_7,n_8] & [n_4,n_6,n_5,n_3,n_4] \\ & [n_4,n_6,n_5,n_3,n_2,n_8] & [n_4,n_6,n_5,n_3,n_2,n_7,n_8] & [n_4,n_5,n_3,n_4] \\ \end{array}$

 $[n_6, n_5, n_3, n_4, n_6]$

- path[t_1]=[n_0 , n_1 , n_2 , n_7 , n_8]
- path[t_3]=[n_0 , n_1 , n_2 , n_8]

 $[n_5, n_3, n_4, n_5]$

- path[t_5]=[n_0 , n_3 , n_2 , n_7 , n_8]
- path[t_6]=[n_0 , n_3 , n_4 , n_6 , n_5 , n_3 , n_4 , n_5 , n_3 , n_2 , n_8]
- path[t_7]=[n_0 , n_3 , n_2 , n_8]
- path[t_8]=[n_0 , n_3 , n_4 , n_5 , n_3 , n_2 , n_7 , n_8]
- path[t_9]=[n_0 , n_3 , n_4 , n_6 , n_5 , n_3 , n_2 , n_7 , n_8]
- path[t_{10}]=[n_0 , n_3 , n_4 , n_6 , n_5 , n_3 , n_2 , n_8]
- path[t_{11}]=[n_0 , n_3 , n_4 , n_5 , n_3 , n_4 , n_6 , n_5 , n_3 , n_4 , n_6 , n_5 , n_3 , n_2 , n_8]
- T_{PPC} ={ t_1 , t_3 , t_5 , t_6 , t_7 , t_8 , t_9 , t_{10} , t_{11} } satisfies the Prime-Path criterion

 $[n_5, n_3, n_4, n_6, n_5]$

Simple-Round-Trip Criterion

Test requirements

 $[n_3, n_4, n_5, n_3]$ $[n_3, n_4, n_6, n_5, n_3]$ (one of these 2)

 $[n_4, n_5, n_3, n_4]$ $[n_4, n_6, n_5, n_3, n_4]$ (one of these 2)

 $[n_5, n_3, n_4, n_5]$ $[n_5, n_3, n_4, n_6, n_5]$ (one of these 2)

 $[n_6, n_5, n_3, n_4, n_6]$

- path[t_{12}]=[n_0 , n_3 , n_4 , n_5 , n_3 , n_4 , n_6 , n_5 , n_3 , n_4 , n_6 , n_5 , n_3 , n_2 , n_7 , n_8]
 - · Covered requirements are underlined.
- T_{SRTC}={t₁₂} satisfies the Simple-Round-Trip criterion

Complete-Round-Trip Criterion

- Test requirements
 - See above: all the seven round trips must be exercises
- path[t_{13}]=[n_0 , n_3 , n_4 , n_5 , n_3 , n_4 , n_6 , n_5 , n_3 , n_4 , n_5 , n_3 , n_4 , n_5 , n_3 , n_2 , n_7 , n_8]
- T_{SRTC}={t₁₃} satisfies the Complete-Round-Trip criterion

Complete Path Coverage

 $[n_0,n_1,n_2,n_8]$ $[n_0,n_1,n_2,n_7,n_8]$ $[n_0,n_3,n_2,n_7,n_8]$

infinite number of paths involving loops!

- Alternative to Complete Path Coverage when there are loops!
- Specified Path Coverage [SPC]
 - TR contains a set S of test paths, where S is supplied as a parameter (judgement call by test engineer).
 - For instance, for each loop, S contains
 - · a path that bypasses the loop,
 - · a path that takes the loop once,
 - a path that takes the loop a reasonable number of times (say, 5).

(if these are feasible)

SYSC 4101 / 5105

- T_{NC} does not satisfy the All-Edges Criterion.
 - It misses edges $[n_2,n_8]$ and $[n_4,n_5]$.
- T_{EC} does not satisfy the Edge-Pair Criterion.
 - It misses $[n_0,n_3,n_2]$, $[n_1,n_2,n_7]$, $[n_3,n_2,n_8]$, $[n_5,n_3,n_4]$.
- T_{EPC} does not satisfy the Prime-Path Criterion.
 - It misses $[n_0,n_3,n_2,n_8]$, $[n_0,n_3,n_4,n_5]$, $[n_4,n_5,n_3,n_2,n_7,n_8]$, $[n_4,n_6,n_5,n_3,n_2,n_7,n_8]$.
- T_{PPC} does not satisfy the Complete-Path Criterion.
 - It misses many loops involving nodes n_3 , n_4 , n_5 , and n_6 .
- The Simple-Round-Trip Criterion and the Complete-Round-Trip Criterion do not even exercise all the transitions
 - But they are useful when testing state machines, which are often connected.
 - Exercising round-trips (SRTC, CRTC) must be combined with another criterion that exercises at least all the edges.
- The Complete-Path Criterion if often not achievable when there are loops.
 - An alternative exists.