Europäisches Patentamt European Patent Office

Office européen des brevets

(11) EP 1 006 183 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 07.06.2000 Bulletin 2000/23

(21) Application number: 98122969.3

(22) Date of filing: 03.12.1998

(51) Int. CI.⁷: **C12N 15/12**, C07K 14/705, C12N 1/21, C12N 15/70, G01N 33/53, G01N 33/68, A61K 38/17, C07K 17/00

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(71) Applicant:

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 80539 München (DE) (72) Inventor:

The designation of the inventor has not yet been filed

(74) Representative:

Böhm, Brigitte, Dipl.-Chem. Dr. et al Kopernikusstrasse 9 81679 Munich (DE)

(54) Recombinant soluble Fc receptors

(57) Recombinant soluble Fc receptors according to the present invention are characterized by the absence of transmembrane domains, signal peptides and glycosylation. Such Fc receptors can easily be obtained by expressing respective nucleic acids in prokaryotic host cells and renaturation of the obtained inclusion bodies, which procedure leads to a very homogenous and pure product.

The products can be used for diagnostic as well as pharmaceutical applications and also for the generation of crystal structure data. Such crystal structure data can be used for the modelling of artificial molecules.

A further embodiment comprises coupling the Fc receptors according to the invention to solid materials like chromatography materials that can be used to separate and/or enrich antibodies.

Application No.: 10/756,153

Attorney Docket No.: 13783-105015

References

B8

P 1 006 183 A

Description

[0001] The present invention relates to recombinant soluble Fc receptors (FcR), recombinant nucleic acids coding for such Fc receptors, host cells containing corresponding nucleic acids as well as a process for the determination of the amount of antibodies of a certain type contained in the blood, plasma or serum of a patient, a process for the determination of the immune status of patients with chronic diseases of the immune system and a process for the screening of substances in view of their ability to act as inhibitors of the recognition and binding of antibodies to the respective cellular receptors. Further, the present invention is concerned with pharmaceutical compositions containing the recombinant soluble FcRs, the use of a crystalline preparation of recombinant soluble FcRs for the generation of crystal structure data of Fc receptors as well as FcR inhibitors and pharmaceutical compositions containing such FcR inhibitors.

[0002] A still further subject of the present invention is a recombinant Fc receptor coupled to a solid phase, e.g. a chromatography carrier material. The use of such chromatography material, which is another subject of the present invention, lies in the absorption of immunoglobulins from a body fluid of patients or from culture supernatants of immunoglobulin producing cells.

[0003] Fc receptors (FcRs) play a key role in defending the human organism against infections. After pathogens have gained access to the blood circulation they are opsonized by immunoglobulins (lgs). The resulting immunocomplexes bind due to their multivalency with high avidity to FcR bearing cells leading to clustering of the FcRs, which triggers several effector functions (Metzger, H., 1992A). These include, depending on the expressed FcR type and associated proteins, endocytosis with subsequent neutralization of the pathogens and antigen presentation, antibody-dependent cellular cytotoxity (ADCC), secretion of mediators or the regulation of antibody production (Fridman et al, 1992; van de Winkel and Capel, 1993).

[0004] Specific FcRs exist for all Ig classes, the ones for IgG being the most abundant with the widest diversity. Together with the high affinity receptor for IgE (Fc ϵ Rla), Fc γ Rl (CD64), Fc γ RlI (CD32) and Fc γ RlIa (CD16) occur as type I transmembrane proteins or in soluble forms (SFcRs) but also a glycosylphosphatidylinositol anchored form of the Fc γ RlII (Fc γ RlIIb) exists. Furthermore, Fc γ Rs occur in various isoforms (Fc γ Rla, b1, b2, c; Fc γ RlIa 1-2, b1-3, c) and alleles (Fc γ RlIa1-HR, -LR; Fc γ RlIIb-NA1,-NA2) (van de Winkel and Capel, 1993). In contrast to the overall homologous extracellular parts, the membrane spanning and the cytoplasmic domains differ. They may be deleted entirely or be of a size of 8 kDa. They may contain either a 26 amino acid immunoreceptor tyrosine-based activation motif (ITAM) as in Fc γ RlIa or a respective 13 amino acid inhibitory motif (ITIM) in Fc γ RlIb involved in signal transduction (Amigorena et al, 1992).

[0005] Judged by the conserved spacing of cysteins, the extracellular part of the FcRs consists of three (Fc γ RI, CD64) or two (Fc ϵ RI, Fc γ RII, CD32 and Fc γ RIII, CD16) Ig-like domains (10 kDa/domain) and therefore belongs to the immunoglobulin super family. These highly glycosylated receptors are homologues, and the overall identity in amino acid sequence among the Fc γ Rs and Fc ϵ RIa exceeds 50% in their extracellular regions. Nevertheless, the affinity of FcRs to their ligands varies widely. The higher affinity of $\approx 10^8 M^{-1}$ of the Fc γ RI to Fc-fragment is assigned to its third domain, while the other Fc γ Rs with two domains have an affinity to IgG varying between 10^5 and $10^7 M^{-1}$. The affinity of the two domain Fc ϵ RIa to IgE exceeds these values by far with a constant of $10^{10} M^{-1}$ (Metzger, H., 1992B).

FcγRs are expressed in a defined pattern on all immunological active cells. FcγRl is constitutively expressed on monocytes and macrophages and can be induced on neutrophils and eosinophils. The physiological role of FcγRl is still unknown as the expression on monocytes is not vital (Ceuppens et al, 1988). The GPI anchored form of FcγRIII (FcγRIIIb) is exclusively expressed on granulocytes. Due to its missing cytoplasmic part, the signal transduction into the cell occurs solely via other transmembrane proteins like complement receptor type 3 (CR3) that can at least associate with FcγRIIIb (Zhou et al, 1993; Poo et al, 1995). FcγRIIIa is mainly expressed on monocytes and macrophages but only in conjunction with associated proteins (e.g. α - or γ -chains). FcγRII is the receptor with the widest distribution on immunocompetent cells and is mainly involved in the endocytosis of immunocomplexes.

[0006] Fc γ RIIa and Fc γ RIIb differ in their extracellular region by only 7% of the amino acid residues. Nevertheless, both forms can be distinguished by their binding characteristics to human and mouse IgG subclasses (van de Winkel and Capel, 1993) and their differing affinity to human IgGs (Sondermann et al, 1998A). The situation is rendered even more complicated by the high responder/low responder (HR/LR) polymorphism of Fc γ RIIa named after the ability of T cells from some individuals to respond to murine IgG1-induced mitogenesis (Tax et al, 1 983). Later, it was found that the two exchanges in the amino acid sequence between the LR and the HR form modify the ability to bind human IgG2, which leads to the suggestion that at least one of them is involved in IgG binding (Hogarth et al, 1992).

[0007] In contrast to the beneficial role FcRs play in the healthy individual, they also transmit the stimulation of the immune system in allergies (Fc_ERla) or autoimmune diseases. Moreover, some viruses employ Fc_7Rs to get access to cells like HIV (Homsy et al, 1989) and Dengue (Littaua et al, 1990) or slow down the immune response by blocking Fc_7Rs as in the case of Ebola (Yang at al, 1998) and Measles (Ravanel et al, 1997).

[0008] Hence, the object underlying the present invention was to provide receptors which are easy to produce and can advantageously be used for medical or diagnostic applications. Moreover, it was an object of the invention to pro-

vide soluble receptors exhibiting a binding specificity and activity which is analogous to that of the receptors occurring naturally in the human body and which, additionally, make it possible to produce crystals suitable for a structure determination.

[0009] This object is accomplished by recombinant soluble Fc receptors which consist only of the extracellular portion of the receptor and are not glycosylated. The receptors according to the present invention are therefore characterized by the absence of transmembrane domains, signal peptides and glycosylation.

[0010] Particularly preferred for the present invention are Fc γ or Fc ϵ receptors. This is because IgG and IgE molecules are characteristic for a multiplicity of diseases and conditions, so that their determination and possible ways of influencing them are of great interest. Figure 8 shows an alignment of amino acid sequences of the extracellular parts of some Fc γ Rs and Fc ϵ Rl. The FcRs according to the invention include all these sequences or parts thereof that still retain binding capacity to antibodies and/or proper crystallization.

[0011] In a particularly preferred embodiment of the invention the recombinant soluble FcR is a FcyRllb receptor. Further, it is particularly preferred that the receptor be of human origin. In a particularly preferred embodiment, it contains an amino acid sequence as shown in SEQ ID NO:1 or SEQ ID NO:2.

[0012] According to the present invention, the preparation of the soluble Fc receptors preferably takes place in prokaryotic cells. After such expression, insoluble inclusion bodies containing the recombinant protein form in prokaryotic cells, thus facilitating purification by separation of the inclusion bodies from other cell components before renaturation of the proteins contained therein takes place. The renaturation of the FcRs according to the present invention which are contained in the inclusion bodies can principally take place according to known methods. The advantage of the preparation in prokaryotic cells, the production of inclusion bodies and the thus obtained recombinant soluble Fc receptors make it possible to obtain a very pure and, in particular, also very homogeneous FcR preparation. Also because of the absence of glycosylation the obtained product is of great homogeneity.

[0013] Soluble Fc receptors hitherto produced by recombinant means particularly exhibited the disadvantage that a much more elaborate purification was required, since they were expressed in eukaryotic cells and, due to the glycosylation which is not always uniform in eukaryotic cells, these products were also less homogeneous.

[0014] The recombinant soluble Fc receptors according to the present invention even make it possible to produce crystals suitable for use in X-ray analysis, as shall be explained lateron. The FcRs of the present invention moreover exhibit practically the same activity and specificity as the receptors naturally occurring in vivo.

[0015] A further subject matter of the present invention is a recombinant nucleic acid having a sequence coding for a recombinant soluble Fc receptor according to the present invention.

[0016] The nucleic acid according to the present invention may contain only the coding sequences or, additionally, vector sequences and, in particular, expression control sequences operatively linked to the sequence encoding the recombinant FcR, like promoters, operators and the like.

[0017] In a particularly preferred embodiment the nucleic acid of the present invention contains a sequence as shown in SEQ ID NO:3 or SEQ ID NO:4.

[0018] In these sequence protocols the atg start codons are in bold print and newly introduced restriction sites are underlined. For a comparison, SEQ ID NO:5 and SEQ ID NO:6 show the respective wild type sequences coding for FcγRIIb and FcεRIa. SEQ ID NOs:7-9 show the wild type sequences for FcγRI, FcγRIIa and FcγRIII, which can be modified in a similar way as SEQ ID NO:3 and SEQ ID NO:4 to obtain FcRs according to the invention.

[0019] If the nucleic acid of the present invention contains vector sequences, then these are preferably sequences of one or several prokaryotic expression vectors, preferably of pET vectors. Any other known functions of expression vectors may also be contained in the recombinant nucleic acid according to the present invention if desired. These may, for instance, be resistance genes allowing for an effective selection of transformed host cells.

[0020] A still further subject matter of the present invention is a host cell containing a recombinant nucleic acid according to the present invention. As repeatedly mentioned above, the host cell preferably is a prokaryotic host cell, particularly an E. coli cell.

[0021] The recombinant soluble Fc receptors according to the present invention can be used for a multitude of examinations or applications because they specifically react with antibodies. In vivo, the soluble Fc receptors are powerful immunoregulators which, if present in elevated levels, result in a remarkable suppression of the immune system which leads to many partly known and partly not yet understood effects. Based on these effects, several applications of the Fc receptors according to the present invention are further subject matters of the present invention.

[0022] One such subject is a process for the determination of the amount of antibodies of a certain type in the blood or serum of a patient, which is characterized by the use of a recombinant soluble FcR according to the invention in an immunoassay, and the determination of the presence of FcR-antibody complexes. Such assay allows to screen for the presence of a certain kind of antibody and allows also for the determination of the amount of antibodies present in the blood, plasma or serum of a patient.

[0023] Any type of immunoassay is principally suitable for the use according to the present invention, as long as the presence of FcR-antibody complexes can thereby be detected. Both ELISA (enzyme-linked immunosorbent immunoso

noassay), particularly sandwich assays, and RIA (radio-immunoassay) are suitable, but also competitive testing methods. In a preferred embodiment of the invention where the presence and/or the amount of IgE antibodies is to be examined, an FcER is used as recombinant soluble receptor according to the present invention. In particular, this method is suited and advantageous for determining a predisposition or manifestation of an allergy.

- [0024] Moreover, a method is preferred in which the presence of soluble FcRs is to be determined and, if required, quantified, an Fc₇R being used as recombinant soluble receptor according to the invention. By means of this test among others the immune status of patients with chronic diseases of the immune system can be determined in a competitive immunoassay. Chronic diseases in the sense of these processes are for instance AIDS, SLE (systemic lupus erythematosus), MM (multiple myeloma) or rheumatoid arthritis.
- [0025] A further advantageous use of the receptor according to the present invention lies in the screening of substances in view of their ability to act as inhibitors of the recognition and binding of antibodies to the respective cellular receptors.
- [0026] By means of modern screening techniques such as HTPS (high throughput screening) in combination with multi-well microtiter plates and automatic pipetting apparatuses it is nowadays possible to simultaneously test a multi-tude of substances for specific properties. As the FcRs according to the present invention can be easily produced at low cost, they can also be used in such series tests by which substances having an inhibiting effect can easily be identified.
- [0027] Particularly preferred is such use according to which Fc receptors according to the present invention are used to find inhibitors capable of inhibiting the recognition and binding of the respective antibodies to the particular receptor of interest.
- [0028] A further area of application of the substances according to the invention lies in the pharmaceutical field. Hence, a further subject matter of the invention is a pharmaceutical composition comprising as active agent a recombinant soluble FcR according to the invention. According to the present invention, this pharmaceutical composition may of course comprise conventional useful carrier and auxiliary substances. Such substances are known to the person of skill in the art, the mode of administration also having to be taken into account. The pharmaceutical composition of the present invention can be advantageously used for the treatment or prevention of autoimmune diseases, allergies or tumor diseases.
 - [0029] Soluble forms of Fc receptors such as FcγRIII mediate isotype-specific regulation of B cell growth and immunoglobulin production. In a murine model of myeloma, sFcR suppresses growth and immunoglobulin production of tumor cells (Müller et al, 1985; Roman et al, 1988; Teillaud et al, 1990). Furthermore, sFcR binds to surface IgG on cultures of human IgG-secreting myeloma cells and effects suppression of tumor cell growth and IgG secretion. Prolonged exposure of these cells to sFcR results in tumor cell cytolysis (Hoover et al, 1995).
 - [0030] Also, overreactions of the immune system in allergic reactions or due to massive antigen load might be reduced by, for example, intravenous application of soluble FcR (lerino et al, 1993).
- [0031] Therefore, a preferred pharmaceutical composition according to the invention for use in the treatment of AIDS, rheumatoid arthritis or multiple myeloma contains a recombinant soluble Fcγ receptor and, preferably, a receptor having the amino acid sequence as shown in SEQ ID NO:1.
 - [0032] It was also of great interest to obtain crystal structure data of Fc receptors. On the one hand, these are a key to the understanding of molecular mechanisms in immunocomplex recognition. On the other hand, these structural data can be used to find out common features in the structures of different Fc receptors and use the knowledge of the structures to generate inhibitors or identify and produce new artificial antibody receptors.
 - [0033] To obtain such crystal structure data, a crystalline preparation of the recombinant soluble Fc receptor according to the invention is used. The recombinant soluble FcRs according to the invention surprisingly can be obtained pure enough to produce crystals that give reliable X-ray structure determination data. Such crystallization was not possible with the hitherto produced receptor molecules, mostly due to their lack of homogeneity.
- The stated applications are merely preferred embodiments of the use of the crystal structure data. Many other applications seem possible, too.
 - [0035] Suitably, the structural data for the generation and/or identification of inhibitors or new receptors, respectively, are used in a computer-aided modelling program. Software for computer-aided modelling is available to the man skilled in the art. That application is already described for structure identification or design of other substances.
- [0036] Particularly preferred for the present invention are the structures as shown in the enclosed Examples and Figures for the respective receptors. Such structures can be used to design inhibitors, antagonists and artificial receptor molecules.
 - [0037] A still further subject matter of the present invention, therefore, is a FcR inhibitor which has a three-dimensional structure which is complementary to the recombinant soluble FcR according to the invention and inhibits the binding of antibodies to FcRs.
 - [0038] What is important for the inhibitors of the invention is that, owing to their structure and specificity, they are capable of binding to the FcRs and thus prevent their normal binding to the constant parts of antibodies.
 - [0039] Preferably, such FcR inhibitors are small organic molecules which can easily be administered orally. They

might be an interesting alternative to cortisone in the treatment of autoimmune diseases and host/graft rejections. Such a molecule would also suppress reinfection rates with certain viruses, e.g. Dengue virus where the antibody coated virus is $Fc_{\gamma}RIIb$ dependent internalized (Littaua et al, 1990), HIV where on CD4 positive T cells an antibody enhancement of HIV infection is mediated by $Fc_{\gamma}RIII$ (Homsy et al, 1989), or Ebola where the virus secreted glycoprotein inhibits early neutrophil activation by blocking $sFc_{\gamma}RIII$ which affects the host response to infection (Yang et al, 1998).

[0040] The development of inhibitors might also lead to substances that interfere with the recognition of IgE by their receptors. From the modelled structure of Fc_ERI, peptides have already been developed which inhibit mast cell degranulation in vitro. With the knowledge of the structures of the receptor or the receptor-antibody complex in atomic detail, a new possibility for a rational drug design is opened.

[0041] A further subject matter of the present invention therefore is a pharmaceutical composition containing as active agent an FcR inhibitor as mentioned above. Such pharmaceutical compositions may, for example, be used in the treatment or prevention of diseases which are due to overreactions or faulty reactions of the immune system, preferably the treatment or prevention of allergies, autoimmune diseases or anaphylactic shock.

[0042] A further subject of the present invention is the sFcR according to the invention, bound to a solid phase. Such heterogeneous receptors might be used for immunoassays or other applications where the receptor in an immobilized form can be used beneficially.

[0043] In a preferred embodiment of the invention the solid phase is a chromatography carrier material onto which the Fc receptor is fixed, e.g. sepharose, dextransulfate etc. Such chromatography materials with Fc receptors bound thereto can beneficially be used for the adsorption of immunoglobulins from the blood, plasma or serum of patients or from the culture supernatant of immunoglobulin producing cells (meaning concentration, enrichment and purification of antibodies).

[0044] On the one hand, the antibodies bound to the chromatography material can be eluted and, for example, the immune status of a patient can thereby be determined. On the other hand, antibodies from the blood of a patient can thereby be enriched before carrying out further tests, which is a further preferred embodiment of the present invention. In many cases it is difficult to conduct diagnostic assays using blood samples if the latter contains only a very small number of the antibodies to be identified. By means of a concentration using a specific chromatographic column with Fc receptors according to the present invention, antibodies of interest can easily be concentrated and separated from many other substances which might disturb the test.

[0045] Basically, it is also possible to use a chromatography material according to the present invention in an extracorporeal perfusion system for lavage of the blood in case of certain diseases where the removal of antibodies plays a crucial role.

[0046] The following Examples are to further illustrate the invention in conjunction with the Figures.

Example 1

35

10

1.1 Cloning and Expression

The cDNA of human FcyRIIb2 (Engelhardt et al, 1990) was modified using mutagenous PCR (Dulau et al, 1989). Therefore, a forward primer was used for the introduction of a new start methionine after the cleavage site of the signal peptide within a Ncol site (5'-AAT AGA ATT CCA TGG GGA CAC CTG CAG CTC CC-3') while the reverse primer introduced a stop codon between the putative extracellular part and the transmembrane region followed by a Sall site (5' CCC AGT GTC GAC AGC CTA AAT GAT CCC C-3'). The PCR product was digested with Ncol and Sall, cloned into a pET11d expression vector (Novagen) and the proposed sequence was confirmed. The final construct was propagated in BL21 (DE3) (Grodberg and Dunn, 1988). For the overexpression of FcyRllb a single colony of the transformed bacteria was inoculated in 5ml LB medium containing 100 µg ampicillin per ml (LB-Amp100) and incubated overnight at 37°C. The culture was diluted 200-fold in LB-Amp100 and incubation was continued until an OD600 of 0.7-0.9 was achieved. The overproduction of the protein was induced by adding IPTG to a final concentration of 1 mM. After a growing period of 4 hours the cells were harvested by centrifugation (30 mm, 4000 x g) and resuspended in sonification buffer (30 mM sodium phosphate, 300 mM sodium chloride, 0.02% sodium azide, pH 7.8). After addition of 0.1 mg lysozyme per ml suspension and incubation for 30 min at room temperature the sonification was performed on ice (Branson Sonifier, Danbury, CT; Macrotip, 90% output, 80% interval, 15 min). The suspension was centrifuged (30 min, 30,000 x g) and resuspended with a Dounce homogenizer in sonification buffer containing 0.5% LDAO. The centrifugation step and resuspension in LDAO containing buffer was repeated once before this procedure was repeated twice without LDAO. The purified inclusion bodies were stored at 4°C.

1.2 Refolding and purification of soluble human FcyRllb (shFcyRllb)

[0048] The purified inclusion bodies were dissolved to a protein concentration of 10 mg/ml in 6 M guanidine chlo-

ride, 100 mM 2-mercaptoethanol and separated from the insoluble matter by centrifugation. The refolding was achieved by rapid dilution. Therefore, one ml of the inclusion body solution was dropped under stirring within 15 hours into 400 ml of the refolding buffer (0.1 M TRIS/HCl, 1.4 M arginine, 150 mM sodium chloride, 5 mM GSH, 0.5 mM GSSG, 0.1 mM PMSF, 0.02% sodium azide, pH 8.5, 4°C). Afterwards, the mixture was stirred for 2-3 days until the concentration of free thiol groups was reduced to 1 mM by air oxidation as measured according to Ellman (Ellman, 1959). The solution was dialyzed against PBS and sterile filtered before it was concentrated 10-fold in a stirring cell equipped with a 3kD MWCO ultrafiltration membrane. The protein solution was applied to a hlgG sepharose column (50 mg hlgG per ml sepharose 4B). Unbound protein was washed out with 50 mM TRIS pH 8.0 before elution of Fc_YRIIb by pH jump (150mM sodium chloride, 100mM glycine, 0.02% sodium azide, pH 3.0). The eluate was immediately neutralized with 1 M TRIS pH 8.0. The Fc_YRIIb containing solution was concentrated and subjected to gel filtration on a Superdex-75 column equilibrated with crystallization buffer (2 mM MOPS 150 mM sodium chloride, 0.02% sodium azide pH 7.0). The fractions containing Fc_YRIIb were pooled, concentrated to 7 mg/ml and stored at -20°C.

1.3 Equilibrium gel filtration experiments

15

[0049] A Superdex75 column was connected to FPLC and equilibrated with PBS containing 10 μ g shFcRIIb per ml. Human Fc fragment was solved to a concentration of 1 μ g/10 μ l in the equilibration buffer and injected. The resulting chromatogram yielded a positive peak comprising the complex of the shFc γ RIIb and the Fc fragment while the negative peak represents the lack of receptor consumed from the running buffer for complex formation.

1.4 Crystallization and data collection

[0050] Initial crystallization trials employing a 96 condition sparse matrix screen (Jancarik and Kim, 1991) were performed in sitting drops at 20° C using the vapor diffusion method. Occuring crystals were improved by changing the pH as well as the salt, precipitant and additive concentration. Diffraction data from suitable crystals was collected on an image plate system (MAR research) using graphite monochromated CuK $_{\alpha}$ radiation from a RU200b rotating anode generator (Rigaku) operated at 50 kV and 100 mA. The reflections were integrated with the program MOSFLM (Leslie, 1997) and subsequently the data was scaled, reduced and truncated to obtain the structure-factor amplitudes using routines from the CCP4 program suite (Collaborative Computational Project, 1994).

1.5 Summary of expression, purification and refolding of shFcyRllb

[0051] The extracellular part of $Fc\gamma RIIb$ was expressed in high levels under the control of a T7 promoter in the T7 RNA polymerase positive E. coli strand BL21/DE3 (Grodberg & Dunn, 1988). The protein was deposited in inclusion bodies, which were employed in the first purification step. The isolation of the inclusion bodies was started with an intense combined lysozyme/ sonification procedure to open virtually all cells which would otherwise contaminate the product. The subsequent washing steps with the detergent LDAO, which has excellent properties in solving impurities but not the inclusion bodies itself already yielded a product with a purity of >90% (Fig. 1).

This product was used for refolding trials without further purification. The inclusion bodies were dissolved in [0052] high concentration of 2-mercaptoethanol and guanidine to ensure the shift of covalent and non-covalent aggregates to monomers. This solution was rapidly diluted with refolding buffer to minimize contacts between the unfolded protein molecules which would otherwise form aggregates. The use of arginine in the refolding buffer prevents the irreversible modification of side chains as often recognized with urea. After addition of the protein to the refolding buffer, the solution was stirred at 4°C until the concentration of free thiol groups was reduced to 1 mM, which was absolutely necessary as earlier dialysis resulted in an inactive product. In a second purification step the dialyzed and refolded FcyRIIb was bound to immobilized hlgG to remove minor fractions of E. coli proteins and inactive receptor. The protein was eluted with a pH jump and immediately neutralized. After this affinity chromatography step shFcyRIIb is essentially pure except for a minor contamination resulting from the coeluting IgG which leached out of the matrix even after repeated use (Fig. 1). The IgG as well as receptor multimers which are not visible in the reducing SDS-PAGE could easily be removed by gel filtration. Parallel to the removal of the contaminants in this step the buffer is quantitatively exchanged. This procedure ensures a defined composition of the protein solution as even slight variations can cause irreproducibility of the crystallization attempts or even inhibit the formation of crystals. Overall 6 mg pure protein could be gained per litre E. coli culture, which is about 10 % from the Fc_YRIIb content of the inclusion bodies.

[0053] N-terminal protein sequencing revealed the identity with the expected sequence H_2N -GTPAAP without detectable contamination. ESI-MS analysis showed that the final material used in crystallization trials is homogenous with respect to size. From the primary sequence the molecular weight was calculated to 20434 Da, which corresponds to 20429 Da found by mass spectroscopy. The discrepancy lies within the error of the instrument, and no additional peak for a species containing the leading methionine is found.

[0054] The crystallization of shFcγRllb was performed in sitting drops using the vapor diffusion method. Initial trials with a sparse matrix screen (Jancarik & Kim, 1991) resulted already in small crystalline needles. Subsequent optimization of the preliminary crystallization condition by varying precipitant, salt, their concentration and pH led to the isolation of three different crystal forms. Orthorhombic crystals grew from mixture of 1.5 μl reservoir solution (33% PEG2000, 0.2 M sodium acetate, pH 5.4) with 3 μl of the protein solution. They appeared within 3 days and reached their final size of approximately $80\mu m \times 80\mu m \times 500\mu m$ after one week. These crystals diffracted to 1.7 Å. Crystals could also be grown in two other space groups from reservoir solution containing 26% PEG8000, 0.2 M sodium acetate, pH 5.6, 5 mM Zn(OAc)₂, 100 mM sodium chloride (hexagonal form) and 26% PEG8000, 0.2 M NaOAc, pH 5.6, 10% (v/v) 1,4-Dioxan, 100 mM sodium chloride (tetragonal form). These crystals were of suitable size for X-ray analysis but diffracted only to 2.7 Å and 3.8 Å for the tetragonal and hexagonal crystal form respectively (Table 1).

[0055] Fc $_{Y}$ RII was expressed in E. coli which, besides the comparatively low production costs and the availability, has several advantages especially when the glycosylation performed by mammalian cells is not necessary for the function of the protein as in the case of Fc $_{Y}$ RII where IgG binding occurs independently of carbohydrate attachment (Sondermann et al, 1998A). In E. coli a homogenous product can reproducibly be generated, which is in contrast to the expression in mammalian cells where batch dependent variances are often observed. In such a system the product is for several days exposed to proteases at temperatures of more than 30°C. In contrary, the expression of the protein in E. coli under the control of the strong T7 promoter at 37°C frequently leads to the formation of protease inaccessible inclusion bodies. A further advantage of the expression in bacteria is that the material could be considered to be free of pathogenic germs, which might derive from employed fetal calf serum or the cell line itself. In mammalian expression particular care must be taken during the purification of the target protein because potential effective hormones or growth factors might be copurified. One case where the effects of sFc $_{Y}$ R were ascribed to a TGF $_{B}$ 1 contamination is already reported (Galon et al, 1995).

1.6 Purification

25

30

[0056] The purification procedure is straightforward. It consists of three steps which can easily be performed in a single day. The protein is obtained in a pure form and in high yields and could even be obtained in considerable quality without the expensive IgG affinity column. The success of such a protocol would depend on the careful preparation of the inclusion bodies, as most of the impurities can be eliminated already in the first purification step.

1.7 Characterization

[0057] The purified $Fc\gamma RIIb$ was characterized by SDS-PAGE and isoelectric focussing as well as N-terminal sequencing and mass spectroscopy. Thus, the material can be considered pure and homogeneous with respect to its chemical composition, but the intriguing question whether the receptor is correctly folded remains to be discussed. All cysteins are paired, since no free thiol groups are detected with Ellman's test. The material is monomeric and eludes with the expected retention time in peaks of symmetrical shape from a size exclusion chromatography column. Furthermore, $Fc\gamma RIIb$ binds to IgG sepharose, recombinant $Fc\gamma RIIb$ from E. coli is active because it specifically binds IgG.

40 1.8 Crystallization

[0058] The orthorhombic crystal form of $Fc_{\gamma}RIIb$ diffracted X-rays to a resolution of 1.7 Å, which is a drastic improvement compared to previously reported crystals of the same molecule derived from insect cell expression (Sondermann et al, 1998A). These crystals diffracted to 2.9 Å and were of space group $P3_121$. Thus, the glycosylation of the insect cell derived receptor influences the crystallization conditions. Instead of the trigonal space group, three different crystal forms are found. After a possible solution of the structure these crystal forms will help identify artificial conformations of the protein due to crystal contacts.

[0059] Fc γ Rs do not exhibit any sequence similarity to other proteins but due to a conserved cystein spacing they are affiliated to the immunoglobulin super family. Consequently, we tried to solve its structure by molecular replacement, but extensive trials using IgG domains from a variety of molecules failed. Thus the structure of Fc γ RIIb has to be solved by the methods of multiple isomorphous replacement.

[0060] We have shown for the first time that $Fc\gamma RIIb$ can be obtained in an active form from E. coli. This is the basis for crystallographic investigations that will soon, due to the already gained crystals of exceptional quality, result in the structure solution of this important molecule. The structure will provide information on the IgG binding site and provide a starting point for the knowledge based design of drugs that interfere with recognition of the ligand by its receptor. Furthermore, because of the high homology between $Fc\gamma RIIb$ and other FcRs including $Fc\epsilon RIa$ it seems possible that these molecules can be produced in the same way, which would provide valuable material for the ongoing research.

Example 2

2.1 Methods

5 Protein chemistry

[0061] Recombinant soluble human Fc₇RIIb was expressed in E.coli, refolded purified and crystallized as described elsewhere (Sondermann et al, 1998b). Briefly, the putative extracellular region of hFc₇RIIb2 (Engelhardt et al, 1990) was overexpressed in E. coli. Inclusion bodies were purified by lysozyme treatment of the cells and subsequent sonification. The resulting suspension was centrifuged (30 min 30,000 x g) and washed with buffer containing 0.5% LDAO. A centrifugation step and resuspension in LDAO containing buffer was repeated once before this procedure was repeated twice without LDAO. The inclusion bodies were solved in 6 M guanidine hydrochloride and the protein was renaturated as described. The dialyzed and filtrated protein solution was applied to a hlgG sepharose column and eluted by pH jump. The concentrated neutralized fractions were subjected to size-exclusion chromatography on a Superdex-75 column (26/60, Pharmacia).

Crystallization

[0062] Crystallization was performed in sitting drops at 20°C using the vapor diffusion technique. Crystallization screens were performed by changing pH, salt, precipitant and additives. The final crystals used for data collection were grown in 33% PEG2000, 0.2 M sodium acetate, pH 5.4 (orthorhombic form) 26% PEG8000, 0.2 M sodium acetate, pH 5.6, 10% (v/v) 1,4-dioxane, 100 mM sodium chloride (tetragonal form), and 26% PEG8000, 0.2 M sodium acetate, pH 5.6, 5mM ZN(OAc)₂, 100mM sodium chloride (hexagonal form). The insect cell derived protein was crystallized in 32% PEG6000, 0.2 M sodium acetate, pH 5.3.

Preparation of heavy-atom derivatives

[0063] The heavy-atom derivatives were prepared by soaking the crystals in the crystallization buffer containing 2 mM platinum(II)-(2,2'-6,2"terpyridinium) chloride for 24 hours or 10 mM uranylchloride for 8 days.

X-ray data collection

30

40

[0064] Diffraction data was collected on an image plate system (MAR research) using graphite monochromated CuK_{α} radiation from a RU200b rotating anode generator (Rigaku) operated at 50 kV and 100 mA. The reflections were integrated with the program MOSFLM 5.50 (Leslie, 1997) and subsequently the data was scaled and truncated to obtain the structure-factor amplitudes using routines from the CCP4 program suite (Collaborative Computational Project, 1994).

Structure determination

The structure was solved with the standard procedures of the MIR method. From the large number of soaks [0065] carried out with different heavy-atom components only the two compounds yielded interpretable Patterson maps. The heavy-atom positions for each derivative were determined from difference Patterson maps and initial phases were calculated. Cross-phased difference Fourier maps were used to confirm heavy atom positions and establish a common origin for the derivatives. Anomalous data were included to discriminate between the enantiomers. The heavy atom parameters were further refined with the program MLPHARE from the CCP4 package leading to the statistics compiled in Table 2. An electron-density map was calculated to a resolution of 2.1 Å and the phases were improved further by solvent flattening and histogram matching with the program DM from the CCP4 suite. The resulting electron density map was of sufficient quality to build most of the amino acid residues. Model building was performed with O (Jones et al, 1991) on an Indigo2 work station (Silicon Graphics Incorporation). The structure refinement was done with XPLOR (Brünger et al, 1987) by gradually increasing the resolution to 1.7 Å using the parameter set of Engh and Huber (Engh & Huber, 1991). When the structure was complete after several rounds of model building and individual restraint B-factors refinement (R_{fac} = 29% / R_{Free} = 36%), 150 water molecules were built into the electron density when a Fo-Fc map contoured at 3.5 σ coincided with well defined electron density of a 2Fo-Fc map contoured at 1 σ . The resulting refinement statistic is shown in Table 3.

2.2 Structure determination

[0066] The crystal structure of recombinant soluble human Fc γ RIIb was solved by multiple isomorphous replacement (MIR) to 1.7 Å resolution, since a structure solution by molecular replacement with isolated domains of the Fc fragment from human IgG1 (Huber et al, 1976, PDB entry 1fc1; Deisenhofer, 1981) failed. The putative extracellular part of the receptor (amino acid residues 1-187 as depicted in SEQ ID NO:2) was used for crystallization trials (Sondermann et al, 1998B) while the model contains the residues 5-176 as the termini are flexible and not traceable into the electron density. Additionally, the model contains 150 water molecules and the refinement statistics are summarized in Table 2. The structure contains a cis proline at position 11. None of the main chain torsion angles is located in disallowed regions of the Ramachandran plot. The fully refined model was used to solve the structure of the same protein in crystals of space group P4 $_2$ 2 $_1$ 2 and of the glycosylated form derived from insect cells in crystals of space group P3 $_1$ 21 (Table 2).

[0067] The polypeptide chain of $Fc_{\gamma}RIlb$ folds into two Ig-like domains as expected from its affiliation with the immunoglobulin super family. Each domain consists of two beta sheets that are arranged in a sandwich with the conserved disulfide bridge connecting strands B and F on the opposing sheets (Fig. 3). Three anti-parallel β -strands (A1, B, E) oppose a sheet of 5 β -strands (C', C, F, G, A2), whereby strand A1 leaves the 3-stranded β -sheet and crosses over to the 4-stranded anti-parallel sheet adding the short parallel 5th strand A2. The arrangement of secondary structure elements as well as their connectivity is identical in both domains of the Fc γ RIlb and a rigid body fit of one domain onto the other revealed a r.m.s. distance of 1 .29 Å of 67 matching C α atoms.

[0068] The domains are arranged nearly perpendicularly to each other enclosing an angle of 70 degrees between their long axes forming a heart-shaped overall structure. This arrangement results in an extensive contact region between the domains (Fig. 4). Residues from strand A2 and from the segment linking A2 and A1 of the N-terminal domain intermesh with residues of strands A1 and B from the C-terminal domain. This region is tightly packed and the interaction is strengthened by several hydrogen bonds resulting in a rigid arrangement. This is confirmed by the conservation of the structure in three different space groups. In orthorhombic, tetragonal and hexagonal (insect cell derived) crystal forms a deviation of less than 2° in the interdomain angle is found.

2.3 Overall structures

[0069] The structure of recombinant human Fc_YRIIb derived from E.coli was solved by MIR to 1.7 Å resolution from orthorhombic crystals. An essentially identical structure is found in tetragonal and with protein derived from insect cells in hexagonal crystals. In all three structures the last nine residues of the polypeptide chain were found disordered. The flexibility of the C-terminal linker region between the structured core of the molecule and the transmembrane part may be functionally relevant to allow some reorientation of the receptor to enhance the recognition of the Fc parts in immunocomplexes.

2.4 Homologue receptors

The Ig domains found in the Ig super family of proteins are characterized by a beta sandwich structure with a conserved disulfide bridge connecting two strands of the opposing sheets. The typical arrangement of 3 and 4 anti parallel beta strands that form a sandwich as found in FcqRIIb occurs also in the T cell receptor, Fc fragment, CD4 or the Fab fragment. A structural alignment of the individual Ig domains of these molecules with the two domains of FcγRllb shows a common, closely related structure. The relative arrangement of the domains, however, is not related in these molecules and covers a broad sector. Despite the structural similarity between lg domains from different molecules and the strikingly low r.m.s. deviation of $C\alpha$ atoms that result when the two domains of Fc γ RII are superimposed, no significant sequence similarity is found (Figs. 5a and 5b). A structure-based sequence alignment shows a conserved hydrophobicity pattern along the sequence of the domains, together with, beside the cysteins, only few identical amino acid residues. We first prepared a structure-based alignment of the two C-terminal domains of the IgG1 heavy chain and the FcYRIIb and added the sequences of the other related FcYR and the FcERIa domains. This shows that the sequences of the three domain FcyRI and the two domain receptors are compatible with the hydrophobicity pattern of lg domains and several conserved amino acid residues are revealed. Firstly, the different domains of an FcR are more related to each other than to Ig domains from other molecules of the Ig super family. Secondly, the N-terminal domains of the receptors relate to each other as the second domains do. Thirdly, the sequence of the third domain of FcyRl shows features from both groups of domains. Taken together, we confirm the affiliation of the FcRs to the Ig super family and speculate that all FcR-domains originate from a common ancestor, an ancient one domain receptor that acquired a second domain by gene duplication. Further divergent development of such a two domain receptor resulted in the present diversity, including Fc_YRI that acquired a third domain.

[0071] Conservation of these amino acid residues that contribute to the interdomain contact in FcyRIIb in the align-

ment are a hint to a similar domain arrangement in different receptors. In Table 4 the residues contributing with their side chains to the interdomain contact (Fig. 4) are compiled for FcyRIIb together with the corresponding amino acid residues in other receptors according to the structure-based sequence alignment of Fig. 5b. Except for Asn15, which is not conserved between the FcRs, the involved residues are identical or conservatively replaced providing strong support for a similar structure and domain arrangement in all FcRs.

2.5 The contact interface to IgG

[0072] Limited information about the interactions of FcRs with their ligands is available from mutagenesis studies (Hogarth et al, 1992; Hulett et al, 1994; Hulett et al, 1995). By systematically exchanging loops between the β -strands of Fc γ Rlla for Fc ϵ Rla amino acid residues the B/C, C'/E and F/G loops of the C-terminal domain were evaluated as important for ligand binding (Fig. 3, Fig. 5b). In the structure model these loops are adjacent and freely accessible to the potential ligand. Additionally, most of the amino acid residues in these loops were exchanged for alanines by single site mutations which resulted in a drastic alteration of the affinity of Fc γ Rlla to dimeric human IgG1. Also, the single amino acid exchange Arg 131 to His in the C-terminal domain (C'/E loop) in the high responder/low responder polymorphism, which alters the affinity of the Fc γ Rlla to murine IgG1, points to that region. Thus, the amino acid residues in this area are either important for ligand binding or the structural integrity of that region. Here, the structure shows a clustering of the hydrophobic amino acid residues Pro 114, Leu 115 and Val 116 in the neighbourhood of Tyr 157. This patch is separated from the region Leu 159, Phe 121 and Phe 129 by the positively charged amino acid residues Arg 131 and Lys 117 which protrude from the core structure (Fig. 5b).

2.6 Glycosylation

[0073] In the sequence of $Fc_{\gamma}RIIb$ three potential N-glycosylation sites are found. All three sites are on the surface of the molecule and are accessible. They are located in the E/F loops (N61 and N142) of both domains and on strand E (N135) of the C-terminal domain (Fig. 3, Fig. 6). Since the material used for the solution of this structure was obtained from E. coli, it does not contain carbohydrates, while the FcRs isolated from mammalian cells are highly glycosylated. The three potential glycosylation sites are located rather far from the putative E/E binding region, and non-glycosylated E/E binds human E/E by suggesting a minor role of glycosylation in binding. This was confirmed by the structure of the E/E binding region, and non-glycosylated (Sondermann et al. 1998A). Except for a E/E change of the interdomain angle possibly due to different crystal contacts, no differences between the glycosylated and unglycosylated protein structures were found. The three glycosylation sites are only optionally used as shown by SDS-PAGE where the material appears in 4 bands. No additional electron density for those sugars was found a consequence of chemical and structural heterogeneity.

2.7 The modeled complex

35

[0074] The newly solved structure of $Fc_{\gamma}RIIb$ complements the information gained from the structure of the $Fc_{\gamma}RIIb$ complement and the available biochemical data regarding the $Fc_{\gamma}RIIb$ complex.

[0075] While diverse biochemical information concerning the binding site of $Fc\gamma RIIb$ (see above) is available, only limited data exists regarding the contact area contributed by the antibody. The IgG isotypes are closely related and exhibit graded affinities to $Fc\gamma Rs$. However, they still carry too many amino acid exchanges for the determination of the binding site and the preparation of IgG mutants is tedious. The only available information results from experiments with $Fc\gamma R$ bearing cells on which bound immunocomplexes could be displaced with protein A (Ades et al, 1976), suggesting an at least partially overlapping binding site of protein A and $Fc\gamma RIIb$ on the antibody.

[0076] With the structures of both constituents at hands we attempted to model the Fc_YRII:lgG complex using the program FTDock (Gabb et al, 1997). FTDock uses Fourier correlation theory for evaluation of the shape and electrostatic complementarity of the complex component surfaces. In the hands of the authors the program has produced good results in predicting complex structures, but in some cases additional biochemical information on the location of the contact area was needed to exclude false positive solutions.

[0077] Without applying additional restrictions concerning the region of the contact surface between Fc γ RIIb and the Fc fragment, the calculations resulted in a single solution clearly scoring above the rather constant background. The program predicted a complex structure with the B/C, C'/E and F/G loops of the Fc γ RIIb domain 2 contributing to the contact site as predicted by the mutagenesis experiments. The only observed interaction of the N-terminal domain with the Fc fragment is via E19 that forms a salt bridge to a lysine of the CH $_2$ domain. Some involvement of residues of the N-terminal domain in complex formation is expected since the N-terminal domain of Fc γ RIIa cannot be exchanged against the corresponding domain of Fc ϵ RIa (Hulett et al., 1995) without losing the ligand binding capability of the receptor.

[0078] From the predicted interaction a model of the membrane bound complex between IgG and FcyRllb is pro-

posed (Fig. 7). Two Fc_YRIIb bind into the cleft between the third and the fourth domain of the IgG heavy chains employing the 2-fold symmetry of the Fc fragment. Protein A (Deisenhofer et al, 1978; Deisenhofer, 1981) as well as protein G (Sauer-Eriksson et al, 1995) and the neonatal FcR (Burmeister et al, 1994) bind to a surface region around the exposed hydrophobic residue Ile 253 of the Fc fragment. Fc_YRIIb binds to a region in the vicinity consistent with the competitive binding of protein A and Fc_YR to the antibody. The 2:1 stoichiometry between Fc_YRIIb and Fc fragment in the complex could be shown in equilibrium gel filtration experiments (Sondermann et al, 1998A).

[0079] The complex can be positioned upright on the membrane, with the truncated C-termini of Fc_YRIIb oriented towards the membrane. The N-terminal domain of the receptor lies parallel to the membrane between the Fab arms when the complex is viewed along the Fc fragment. If the FcRs have evolved from a common one domain receptor we expect that the amino acid residues of the N-terminal domain that correspond to the binding region of the C-terminal domain form a second putative binding site. The corresponding surface region is accessible in the proposed complex and forms a large uncharged patch with a hydrophobic ridge comprising amino acid residues Pro 47, Leu 45, Phe 40, Leu 75, Pro 3, Pro 2 and Ala 1 (Fig. 6b). This region might represent a binding site for other ligands that have been discussed for Fc_YRIIb to explain the signalling capabilities of its soluble form.

[0080] Thus the modeled complex structure is consistent with the available biochemical data.

Fig. 1: 15% reducing SDS PAGE showing the purification of sFcyRllb

Lane 1: Molecular weight marker. Lane 2: E. coli lysate before induction. Lane 3: E. coli lysate 1 h after induction. Lane 4: E.coli lysate 4 h after induction. Lane 5: Purified inclusion bodies of sFc₇RIIb. Lane 6: Eluate of the hlgG affinity column. Lane 7: Pooled fractions of the gel filtration column.

Fig. 2: Equilibrium gel filtration

15

20

25

30

35

40

45

50

55

 $1~\mu g$ hFc solved in $10\mu l$ equilibration buffer ($10~\mu g$ sFc γ RIlb/ml PBS) was applied to a size exclusion chromatography column and the absorbance of the effluent was measured (280 nm) as a function of time. The injected Fc fragment forms a complex with the sFc γ RIlb in the equilibration buffer (t=22min). The negative peak of consumed sFc γ RIlb is observed at t=26~min.

Fig. 3: Overall structure of human sFcyRlib

Stereo ribbon representation of the sFc γ RIIb structure. The loops supposed to be important for IgG binding are depicted in red with some of the residues within the binding site and the conserved disulfide bridge in ball and stick representation. The potential N-glycosylation sites are shown as green balls. The termini are labeled and the β -strands are numbered consecutively for the N-terminal domain in black and for the C-terminal domain in blue. The figure was created using the programs MOLSCRIPT (Kraulis, 1991) and RENDER (Merritt and Murphy, 1994).

Fig. 4: Interdomain contacts

The figure shows a close-up on the residues involved in the interdomain contacts of sFc γ RIIb. The amino acid residues of the N-terminal domain are depicted blue and the residues of the C-terminal domain yellow. The model is covered by a 2Fo-Fc electron density contoured at 1 σ obtained from the final coordinates. Hydrogen bridges between the domains are represented by white lines. The figure was created using the program MAIN (Turk, 1992).

Fig. 5a: Superposition of the two FcγRIIb domains and the CH2 domain of human IgG1

Both domains of FcyRIIb and the CH2 domain of hlgG1 were superimposed. The N-terminal domain is depicted in blue, the C-terminal domain in red and the CH2 domain of hlgG1 in green. The respective termini are labeled and the conserved disulfide bridges are depicted as thin lines.

Fig. 5b: Structure based sequence alignment of the sFc_YRIIb domains with domains of other members of the FcR family

The upper part of the figure shows the structure based sequence alignment of the Fc γ RIIb and hlgG1 Fc fragment domains performed with the program GBF-3D-FIT (Lessel & Schomburg, 1994). Amino acid residues with a C α distance of less than 2.0 Å in the superimposed domains are masked: lilac for matching residues between the Fc fragment domains; yellow for residues in the Fc γ RIIb domains; and green when they can be superimposed in all four domains. The β -strands are indicated below this part of the alignment and are labeled consistent with Figure 3. The lower part of the figure shows the alignment of the amino acid sequences from the other Fc γ Rs and the homologue Fc ϵ RIa to the profile given in the upper part of the figure using routines from the GCG package (Genetics Computer Group, 1994). The upper and lower row of numbering refer to the N- and C-terminal domains of Fc γ RIIb. The conserved cysteins are typed in magenta and the potential glycosylation sites in blue. Identical residues within the first domain are masked orange, those in the second domain pink and green when the residues are conserved within both domains. The less conserved third domain of Fc γ RI is aligned between the first and the second

domains. Red arrows point to residues that are involved in side chain contacts between the first and the second domain while blue arrows depict residues that are relevant for IgG binding. The figure was produced with the program ALSCRIPT (Barton, 1993).

Fig. 6: The putative binding sites of FcyRllb

5

10

15

20

45

50

55

Solid surface representations of FcyRllb as produced with GRASP (Nicholls et al, 1991), the color coding is according to the relative surface potential from negative (red) to positive (blue). Fig. 6a shows the molecule as in Fig. 3 by a rotation of about 90° counter-clockwise around the vertical. In Fig. 6b the molecule is rotated 90° clockwise around the same axis. Both views show the putative binding regions on the C-terminal (Fig. 6a) and the N-terminal domain (Fig. 6b). The amino acid residues discussed in the text are labeled.

Fig. 7: Model of the FcyR-IgG complex

The cartoon shows a complete complex of two Fc_YRIIb binding one antibody as suggested by the program FFT-DOCK. The heavy chains of the antibody are depicted in red and green and the light chains in yellow. The blue atoms represent the C-terminal domain of sFcyRIIb while the white ones represent the N-terminal domain. A blue column connects the receptor to the membrane instead of the flexible linker region that remained invisible in the electron density. The image was produced with the program POVRAY.

Fig. 8: Alignment of the amino acid sequence of the extracellular parts of FcγR and FcεRla

Figure 8 shows an alignment of amino acid sequences of the extracellular parts of some FcγRs and FcεRI.

	Ta	able 1							
	Crystallog	raphic results							
The obtained preliminary crystallographic data are shown in this table.									
	Orthorhombic	Tetragonal	Hexagonal						
Space group	P2 ₁ 2 ₁ 2 ₁ [19]	P4 ₂ 2 ₁ 2 [94]	P3 [143] a=80.9Å,b=80.9Å c=157.0Å, α=90°, β=90°,γ=90°						
Unit cell dimensions	a=40.8Å,b=50.9Å, c=80.5Å, α=90°, β=90°,γ=90°	a=85.7Å,b=85.7Å, c=63.4Å, α=90°, β=90°,γ=90°							
R _{merge}	5.8%	9.8%	13.6%						
Resolution	1.7Å	2.7Å	3.8Å						
Unique	18,040	6,616	7,210						
Completeness	89.1%	97.1%	63.0%						
Multiplicity	3.5	4.4	1.3						
V_{M} , molecules per asymmetric unit, solvent content	2.09Å ³ /Da, 1mol., 41 % solvent	2.91Å/Da, 1 mol, 58% solvent	2.97Å/Da, 5 mol, 59% sol vent						

Table 2: Data collection statistics

1	0	

Derivative	Space Group	No. of Multi- unique plicity (Å)		Resolution (Å)	Completeness (overall/ last shell) (%/%)	Ř _m (%)	No. of sites	Phasing power
NATI	P2,2,2,.	18009	3.6	1.74	92.9/86.4	5.5		
NATI	P4 ₂ 2 ₁ 2	6615	4.5	2.70	97.1/94.3	10.1		
NATI- Baculo	P3,21	3545	2.5	3.0	93.0/98.9	14.4		
UOAc	P2,2,2,.	7722	4.2	2.1	96.8/95.7	7.3	1	1.79
PtPy	P2,2,2,.	5520	3.9	2.3	89.7/49.6	10.5	1	1.39

$$R_m = \Sigma I/_{h^-} < /_h > I/\Sigma < /_h >$$

Phasing power: $\langle F_H \rangle / E$, where $\langle F_H \rangle = \Sigma (F_H^2/n)^{1/2}$ is the r.m.s. heavy atom structure amplitude.

 $E = \Sigma[(F_{PHC}-F_{PH})^2/n]^{1/2}$ is the residual lack of closure error with F_{PH} being the structure factor amplitude and $F_{PHC}=IF_P+F_HI$ the calculated structure factor amplitude of the derivative.

Table 3

•	

Refinement statistics									
Resolution range (Å)	8.0 - 1.74 Å								
No. of unique reflections (F>Oσ (F))	16252								
R factor	19.4								
R _{free} *	27.9								
No. of atoms per asymmetric unit									
protein	1371								
solvent	150								
Rms deviation from ideal geometry									
bond length (Å)	0.009								
bond angle (°)	2.007								
Average B factors (Å ²)									
protein main chain	18.8								
protein side chain	25.2								
solvent	36.7								
Rms deviation of bonded B factors (Å ²)	4.1								

^{*}R_{free}:5% of the reflections were used as a reference data set and were not included in the refinement.

Table 4

Residues that contribute to the interdomain contact via side chains										
FcγRIIb	FcγRIIa	FcyRIII	Fc _Y RI	FcεRla						
Asn15	Asn	Ser	Ser	Arg						
Asp20	Asp	Asp	Glu	Glu						
Gln91	Gln	Gln	Gln	Gln						
His108	His	His	His	His						
Trp110	Trp	Trp	Trp	Trp						

SEQ ID NO:1

GTPAAPPKAV LKLEPQWINV LQEDSVTLTC RGTQSPESDS IQWFHNGNLI PTHTQPSYRF
KANNNDSGEY TCQTGQTSVS DPVHLTVLSE WLVLQTPHLE FQEGETIVLR CHSWKDKPLV
KVTFFQNGKS KKFSRSDPNF SIPQANHSHS GDYHCTGNIG YTLYSSKPVT ITVQAP...S
SSPMGII

SEQ ID NO:2

AVPOKPK VSLNPPWNRI FKGENVTLTC NGNNFFEVSS TKWFHNGSLS EETNSSLNIV

NAKFEDSGEY KCQHQQVNES EPVYLEVFSD WLLLQASAEV VMEGQPLFLR CHGWRNWDVY

KVIYYKDGEA LKYWYENHNI SITNATVEDS GTYYCTGKVW QLDYESEPLN ITVIKAPREK

YWLQ(F)

SEQ ID NO:3

15

25

45

aacagaa ttccATGqgg acacctgcag ctcccccaaa ggctgtgctg aaactcgagc cccagtggat caacgtgctc caggaggact 181 30 241 ctgtgactct gacatgccgg gggactcaca gccctgagag cgactccatt cagtggttcc acaatgggaa teteatteee acceacacge ageceageta caggtteaag gecaacaaca 301 atgacagogg ggagtacacg tgccagactg gccagaccag cctcagogac cctgtgcatc 361 tgacagtgct ttctgagtgg ctggtgctcc agacccctca cctggagttc caggagggag 35 421 aaaccatcgt gctgaggtgc cacagctgga aggacaagcc tctggtcaag gtcacattct 481 541 tocagaatgg aaaatccaag aaattttccc gttcggatcc caacttctcc atcccacaag caaaccacag tcacagtggt gattaccatt gcacaggaaa cataggctac acgctgtact 601 catccaagec tgtgaccatc actgtccaag ctcccagetc ttcaccgatg gggatcattT 661 40 721 AGgctgtcga cactggg

0

SEQ ID NO:4

5 gatggccata tggcagtccct cagaaaccta aggtctcctt gaaccctcca tggaatagaa tatttaaagg agagaatgtg 121 acticttacat gtaatgggaa caattticttt gaagtcagtt ccaccaaatg gtticcacaat 181 qqqaqccttt cagaagagac aaattcaagt ttgaatattg tgaatgccaa atttgaagac 241 10 agtggagaat acaaatgtca gcaccaacaa gttaatgaga gtgaacctgt gtacctggaa 301 qtetteaqtq aetqqetqet cetteaggee tetgetgagg tggtgatgga gggeeageee 361 ctettectea qqtqccatgq ttgqaqqaac tgqqatqtqt acaaggtgat etattataag 421 481 qatqqtqaaq ctctcaagta ctggtatgag aaccacaaca tctccattac aaatgccaca gttgaagaca gtggaaccta ctactgtacg ggcaaagtgt ggcagctgga ctatgagtct 541 15 qaqcccctca acattactgt aataaaagct ccgcgtgaga agtactggct acaattttag 601 661 gatccattg

20

SEQ ID NO:5

human FcyRIIb2 ggotgtgact gotgtgotot gggogocact ogotocaggg agtgatggga atcotgtoat 7 25 ttttacctqt ccttqccact gagagtgact gggctgactg caagtccccc cagccttggg 61 gtcatatgct tetgtggaca getgtgetat teetggetee tgttgetggg acaeetgeag 121 ctccccaaa qqctqtqctq aaactcgagc cccagtggat caacgtgctc caggaggact 181 ctgtgactct gacatgccgg gggactcaca gccctgagag cgactccatt cagtggttcc 241 30 acaatgggaa totoattooc accoacacgo agoccagota caggiticaag gocaacaaca 301 atgacagogg ggagtacacq tgccagactg gccagaccag cctcagogac cctgtgcatc 361 tgacagtgct ttctgagtgg ctggtgctcc agacecetea cetggagttc caggagggag 421 aaaccatcgt getgaggtge cacagetgga aggacaagee tetggteaag gteacattet 481 35 tocagaatgg aaaatocaag aaattttooc gttoggatoo caacttotoo atoocacaag 541 caaaccacag tcacagtggt gattaccatt gcacaggaaa cataggctac acgctgtact 601 catecaagee tgtgaceate actgtecaag eteccagete tteacegatg gggateattg 661 tggctgtggt cactgggatt gctgtagctg ccattgttgc tgctgtagtg gccttgatct 721 actgcaggaa aaagcggatt tcagccaatc ccactaatcc tgatgaggct gacaaagttg 40 781 gggctgagaa cacaatcacc tattcacttc tcatgcaccc ggatgctctg gaagagcctg 841 atgaccagaa ccgtatttag tctccattgt cttgcattgg gatttgagaa gaaatcagag 901 agggaagate tggtatttee tggeetaaat teeeettggg gaggacaggg agatgetgea 961 gttccaaaag agaaggtttc ttccagagtc atctacctga gtcctgaagc tccctgtcct 1021 45 gaaagccaca gacaatatgg teccaaatge eegaetgeae ettetgtget teagetette 1081 ttgacatcaa ggetetteeg ttecacatee acacageeaa tecaattaat caaaccaetg 1141 ttattaacag ataatagcaa cttgggaaat gcttatgtta caggttacgt gagaacaatc atgtaaatct atatgatttc agaaatgtta aaatagacta acctctacca gcacattaaa 1261 50 agtgattgtt totgggtgat aaaattattg atgattttta ttttctttat ttttctataa 1321 agatcatata ttacttttat aataaaacat tataaaaac 1381

SEQ ID NO:6

5		
5	human	FceRIa
	1	agateteage acagtaagea eeaggagtee atgaagaaga tggeteetge catggaatee
	61	cctactctac tgtgtgtagc cttactgttc ttcgctccag atggcgtgtt agcagtccct
10	121	cagaaaccta aggtctcctt gaaccctcca tggaatagaa tatttaaagg agagaatgtg
	181	actettacat gtaatgggaa caatttettt gaagteagtt ccaccaaatg gttccacaat
	241	ggcagccttt cagaagagac aaattcaagt ttgaatattg tgaatgccaa atttgaagac
	301	agtggagaat acaaatgtca gcaccaacaa gttaatgaga gtgaacctgt gtacctggaa
15	361	gtettcagtg actggctget cettcaggee tetgetgagg tggtgatgga gggccagece
	421	ctcttcctca ggtgccatgg ttggaggaac tgggatgtgt acaaggtgat ctattataag
	481	gatggtgaag ctctcaagta ctggtatgag aaccacaaca tctccattac aaatgccaca
	541	gttgaagaca gtggaaccta ctactgtacg ggcaaagtgt ggcagctgga ctatgagtct
20	601	gagecectea acattactgt aataaaaget eegegtgaga agtactgget acaattttt
	661	ateceattgt tggtggtgat tetgtttget gtggacaeag gattatttat eteaaeteag
	721	cagcaggtca catttctctt gaagattaag agaaccagga aaggcttcag acttctgaac
	781	ccacatecta agecaaacee caaaaacaac tgatataatt aactcaagaa atatttgcaa
25	841	cattagtttt tttccagcat cagcaattgc tactcaattg tcaaacacag cttgcaatat
	901	acatagaaac gtctgtgctc aaggatttat agaaatgctt cattaaactg agtgaaactg
	961	attaagtggc atgtaatagt aagtgctcaa ttaacattgg ttgaataaat gagagaatga
	1021	atagattcat ttattagcat ttgtaaaaga gatgttcaat ttagatct
30		
35		
35		
40		
45		
50		

SEQ ID NO:7

5 human mRNA for high affinity Fc receptor (FcγRI) gacagattte aetgeteeca ecagettgga gacaacatgt ggttettgae aactetgete 1 ctttgggttc cagttgatgg gcaagtggac accacaaagg cagtgatctc tttgcagcct 61 ccatgggtca gcgtgttcca agaggaaacc gtaaccttgc actgtgaggt gctccatctg 121. 10 cctgggagca gctctacaca gtggtttctc aatggcacag ccactcagac ctcgaccccc 181 agctacagaa tcacctctgc cagtgtcaat gacagtggtg aatacaggtg ccagagaggt 241 ctctcagggc gaagtgaccc catacagctg gaaatccaca gaggctggct actactgcag 301 gtetecagea gagtetteae ggaaggagaa eetetggeet tgaggtgtea tgegtggaag 15 361 gataagetgg tgtacaatgt getttactat egaaatggca aageetttaa gtttttecae 421 tggaatteta aceteaceat tetgaaaace aacataagte acaatggcae etaccattge 481 traggratgg gaaagratrg ctaracatra graggaatat rtgtractgt gaaagagrta 541 tttccagctc cagtgctgaa tgcatctgtg acatccccac tectggaggg gaatctggtc 20 601 accetgaget gtgaaacaaa gttgetettg cagaggeetg gtttgeaget ttaettetee 661 ttotacatgg gcagcaagac cotgogaggo aggaacacat cototgaata ccaaatacta 721 actgctagaa gagaagactc tgggttatac tggtgcgagg ctgccacaga ggatggaaat 781 gtccttaage gcagccctga gttggagett caagtgettg geetecagtt accaactect 25 841 gtctggtttc atgtcctttt ctatctggca gtgggaataa tgtttttagt gaacactgtt 901 ctctgggtga caatacgtaa agaactgaaa agaaagaaaa agtgggattt agaaatctct 961 ttggattctg gtcatgagaa gaaggtaact tccagccttc aagaagacag acatttagaa 1021 gaagagetga aatgteagga acaaaaagaa gaacagetge aggaaggggt geaceggaag 30 1081 gagececagg gggecaegta geageggete agtgggtgge categatetg gaeegtecee 1141 tgcccacttg ctccccgtga gcactgcgta caaacatcca aaagttcaac aacaccagaa 1201 ctgtgtgtct catggtatgt aactcttaaa gcaaataaat gaactgactt caaaaaaaaa 1261 35 1321

45

40

50

SEQ ID NO:8

5		
5	human	FcγRIIa
	1	cccaaatgtc tcagaatgta tgtcccagaa acctgtggct gcttcaacca ttgacagttt
	61	tgctgctgct ggcttctgca gacagtcaag ctgcagctcc cccaaaggct gtgctgaaac
	121	ttgagccccc gtggatcaac gtgctccagg aggactctgt gactctgaca tgccaggggg
10	181	ctcgcagccc tgagagcgac tccattcagt ggttccacaa tgggaatctc attcccaccc
	241	acacgcagcc cagctacagg ttcaaggcca acaacaatga cagcggggag tacacgtgcc
	301	agactggcca gaccagcctc agcgaccctg tgcatctgac tgtgctttcc gaatggctgg
	361	tgctccagac ccctcacctg gagttccagg agggagaaac catcatgctg aggtgccaca
15	421	gctggaagga caagcctctg gtcaaggtca cattcttcca gaatggaaaa tcccagaaat
	481	totocogttt ggatocoaco ttotocatoo cacaagcaaa ccacagtcac agtggtgatt
	541	accactgcac aggaaacata ggctacacge tgttctcatc caagcetgtg accatcactg
	601	tocaagtgoo cagcatgggo agotottoac caatggggat cattgtggot gtggtcattg
20	661	cgactgctgt agcagccatt gttgctgctg tagtggcctt gatctactgc aggaaaaagc
	721	ggatttcagc caattccact gatcctgtga aggctgccca atttgagcca cctggacgtc
	781	aaatgattgc catcagaaag agacaacttg aagaaaccaa caatgactat gaaacagctg
	841	acggeggeta catgactetg aaccecaggg cacctactga egatgataaa aacatetace
	901	tgactettee teccaacgae catgteaaca gtaataacta aagagtaacg ttatgecatg
25	961	tggtcatact ctcagcttgc tgatggatga caaaaagagg ggaattgtta aaggaaaatt
	1021	taaatggaga ctggaaaaat cctgagcaaa caaaaccacc tggcccttag aaatagcttt
	1081	aactttgett aaactacaaa cacaagcaaa acttcacggg gtcatactac atacaagcat
	1141	aagcaaaact taacttggat catttetggt aaatgettat gttagaaata agacaacce
30	1201	agccaatcac aagcagccta ctaacatata attaggtgac tagggacttt ctaagaagat
	1261	acctaccccc aaaaaacaat tatgtaattg aaaaccaacc gattgccttt attttgcttc
	1321	cacattttcc caataaatac ttgcctgtga cattttgcca ctggaacact aaacttcatg
	1381	aattgegeet cagattitte etttaacate tittittit tigacagagi etcaateigt
35	1441	tacccagget ggagtgcagt ggtgctatet tggctcactg caaacccgcc tcccaggttt
	1501	aagegattet tatgeeteag eeteecagta getgggatta gaggeatgtg eeateatace
	1561	cagctaattt tigtattitt tattittat tittagtaga gacagggitt cgcaatgitg
	1621	gccaggccga totogaactt otggcotota gcgatotgco cgcotoggco toccaaagtg
40	1681	ctgggatgac cgcatcagec ccaatgteca geetetttaa catettettt eetatgeeet
70	1741	ctctgtggat ccctactgct ggtttctgcc ttctccatgc tgagaacaaa atcacctatt
	1801	cactgettat geagteggaa getecagaag aacaaagage ecaattaeca gaaceacatt
	1861	aagtotocat tgttttgoot tgggatttga gaagagaatt agagaggtga ggatotggta
	1921	tttcctggac taaattccct tggggaagac gaagggatgc tgcagttcca aaagagaaagg
45	1981	actettccag agtcatctac ctgagtccca aageteeetg teetgaaage cacagacaat
	2041	atggtcccaa atgactgact gcacettetg tgcctcagce gttcttgaca tcaagaatet
	2101	totgttecac atccacacag ccaatacaat tagtcaaacc actgttatta acagatgtag
	2161	caacatgaga aacgcttatg ttacaggtta catgagagca atcatgtaag tctatatgac
50	2221	ttcagaaatg ttaaaataga ctaacctcta acaacaaatt aaaagtgatt gtttcaaggt
	2281	gatgcaatta ttgatgacct attttatttt tctataatga tcatatatta cctttgtaat
	2341	aaaacattat aaccaaaac

SEQ ID NO:9

5		
	human	FcγRIII
	1	tetttggtga ettgtecaet eeagtgtgge atcatgtgge agetgeteet eecaactget
	61	ctgctacttc tagtttcagc tggcatgcgg actgaagatc tcccaaaggc tgtggtgttc
10	121	ctggagcctc aatggtacag cgtgcttgag aaggacagtg tgactctgaa gtgccaggga
	181	gectaetece etgaggacaa ttecacaeag tggttteaca atgagageet cateteaage
	241	caggectega getaetteat tgaegetgee acagteaacg acagtggaga gtacaggtge
	301	cagacaaacc tetecaecet cagtgaeceg gtgeagetag aagteeatat eggetggetg
15	361	ttgctccagg cccctcggtg ggtgttcaag gaggaagacc ctattcacct gaggtgtcac
	421	agctggaaga acactgctct gcataaggtc acatatttac agaatggcaa agacaggaag
	481	tattttcatc ataattctga cttccacatt ccaaaagcca cactcaaaga tagcggctcc
	541	tacttctgca gggggcttgt tgggagtaaa aatgtgtctt cagagactgt gaacatcacc
20	601	atcactcaag gtttggcagt gtcaaccatc tcatcattct ctccacctgg gtaccaagtc
	661	tetttetget tggtgatggt acteettttt geagtggaca eaggaetata tttetetgtg
	721	aagacaaaca tttgaagctc aacaagagac tggaaggacc ataaacttaa atggagaaag
	781	gacceteaag acaaatgace eccateceat gggagtaata agageagtgg cageageate
25	841	totgaacatt tototggatt tgcaacccca toatcotcag gooteto

30 References

[0081]

40

55

Ades, E.W., Phillips, D.J., Shore, S.L., Gordon, D.S., LaVia, M.F., Black, C.M., Reimer, C.B. (1976), Analysis of mononuclear cell surfaces with fluoresceinated Staphylococcal protein A complexed with IgG antibody or heat-aggregated γ-globulin, J. Immunol. 117, 2119-?.

Amigorena, S., Bonnerot, C., Drake, J.R., Choquet, D., Hunziker, W., Guillet, J.G., Webster, P., Sautes, C., Mellman, I., Fridman, W.H. (1992), Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes, Science 256, 1808-1812.

Barton, G.C. (1993), ALSCRIPT: tool to format multiple sequence alignments, Prot. Eng. 6, 37-40.

Bazil, V. and Strominger, J.L. (1994), Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes, J. Immunol. 152, 1314-1322.

Brünger, A.T., Kuriyan, J., Karplus, M. (1987), Crystallographic R factor refinement by molecular dynamics, Science 35, 458-460.

Burmeister, W.P., Huber, A.H., Bjorkman, P.J. (1994), Crystal structure of the complex of rat neonatal Fc receptor with Fc, Nature 372, 379-383.

Ceuppens, J.L., Baroja, M.L., van Vaeck, F., Anderson, C.L. (1988), Defect in the membrane expression of high affinity 72kD Fc γ receptors on phagocytic cells in four healthy subjects, J. Clin. Invest. 82, 571-578.

Collaborative computational project, Number 4 (1994), The CCP4 suite: Programs for protein crystallography, Acta crystallogr. D50, 760-763.

- Deisenhofer, J., Jones, T.A., Huber, R., Sjodahl, J., Sjoquist, J. (1978), Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from Staphylococcus aureus, Z. Phys. Chem. 359, 975-985.
- Deisenhofer, J. (1981), Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8A resolution, Biochemistry 20, 2361-2370.
 - Dulau, L., Cheyrou, A., Aigle, M. (1989), Directed mutagenesis using PCR, Nucleic Acids Res. 17, 2873.
- Ellman (1959), Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82, 79-77.

- Engelhardt, W., Geerds, C., Frey, J. (1990), Distribution, inducibility and biological function of the cloned and expressed human βFc receptor II, Eur. J. Immunol. 20, 1367-1377.
- Engh, R.A. and Huber, R. (1991), Accurate bond and angle parameters for X-ray protein structure refinement, Acta crystallogr. A47, 392-400.
 - Fleit, H.B., Kobasiuk, C.D., Daly, C., Furie, R., Levy, P.C., Webster, R.O. (1992), A soluble form of FcγRIII is present in human serum and other body fluids and is elevated at sites of inflammation, Blood 79, 2721-2728.
- Fridman, W.H., Bonnerot, C., Daeron, M., Amigorena, S., Teillaud, J.-L., Sautès, C. (1992), Structural bases of Fcy receptor functions, Immunol. Rev. 125, 49-76.
- Fridman, W.H., Teillaud, J.-L., Bouchard, C., Teillaud, C., Astier, A., Tartour, E., Galon, J., Mathiot, C., Sautès, C. (1993), Soluble Fcγ receptors, J. Leukocyte Biol. 54, 504-512.
 - Gabb, H.A., Jackson, R.M., Steinberg, M.J.E. (1997), Modelling protein docking using shape complementarity, electrostatics and biochemical information, J. Mol. Biol. 272, 106-120.
- Galon, J., Bouchard, C., Fridman, W.H., Sautès, C. (1995), Ligands and biological activities of soluble Fcγ receptors, Immunol. Lett. 44, 175-181.
 - Genetics Compouter Group (1994), Program Manual for the Wisconsin Package Version 8, Madison, Wisconsin.
- Grodberg, J. and Dunn, J.J. (1988), OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification, J. Bacteriol. 170, 1245-1253.
 - Hogarth, P.M., Hulett, M.D., Ierino, F.L., Tate, B., Powell, M.S., Brinkworth, R.I. (1992), Identification of the immunoglobulin binding regions (IBR) of FcγRII and FcεRI, Immunol. Rev. 125, 21-35.
 - Homsy, J., Meyer, M., Tateno, M., Clarkson, S., Levy, J.A. (1989), The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells, Science 244, 1357-1360.
- Hoover, R.G., Lary, C., Page, R., Travis, P., Owens, R., Flick, J., Kornbluth, J., Barlogie, B. (1995), Autoregulatory circuits in myeloma: Tumor cell cytotoxity mediated by soluble CD16, J. Clin. Invest. 95, 241 -247.
 - Huber, R., Deisenhofer, J., Colman, P.M., Matsushima, M. and Palm, W. (1976), Crystallographic structure studies of an IgG molecule and an Fc fragment, Nature 264, 415-420.
- Hulett, M.D., Witort, E., Brinkworth, R.I., McKenzie, I.F.C., Hogarth, P.M. (1994), Identification of the IgG binding site of the human low affinity receptor for IgG FcγRII, J. Biol. Chem. 269, 15287-15293.
 - Hulett, M.D., Witort, E., Brinkworth, R.I., McKenzie, I.F.C., Hogarth, P.M. (1995), Multiple regions of human FcγRII (CD32) contribute to the binding of IgG, J. Biol. Chem. 270, 21188-21194.
- Ierino, F.L., Powell, M.S., Mckenzie, I.F.C., Hogarth, P.M. (1993), Recombinant soluble human FcγRII: Production, characterization, and inhibition of the arthus reaction, J.Exp. Med. 178, 1617-1628.

- Jancarik, J. and Kim, S.H. (1991), Sparse matrix sampling: A screening method for crystallization of proteins, J. Appl. Crystallogr. 24, 409-411.
- Jones, T.A., Zou, J.-Y., Cowan, S.W., Kjeldgaard, M. (1991), Improved methods for building protein models in electron density maps and the location of errors in these models, Acta crystallogr. A47, 110-119.
 - Khayat, D., Soubrane, C., Andriew, J.M., Visonneau, S., Eme, D., Tourani, J.M., Beldjord, K., Weil, M., Fernandez, E., Jaquillat, C. (1990), Changes of soluble CD16 levels in serum of HIV patients: Correlation with clinical and biological prognostic factors, J. Infect. Dis. 161, 430-435.
 - Kraulis, P.J. (1991), MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures, J. Appl. Cryst. 24, 946-950.
- Leslie, A.G.W. (1997), Mosflm user guide, mosflm version 5.50, MRC Laboratory of Molecular Biology, Cambridge, UK.
 - Lessel, U. and Schomburg, D. (1994), Similarities between protein 3-D structures, Protein Eng. 7, 1175-1187.
- Littaua, R., Kurane, I. and Ennis, F.A. (1990), Human IgG Fc receptor II mediates antibody-dependent enhance-20 ment of dengue virus infection, J. Immunol. 144, 3183-3186.
 - Lynch, R.G., Hagen, M., Mueller, A., Sandor, M. (1995), Potential role of FcγR in early development of murine lymphoid cells: Evidence for functional interaction between FcγR on pre-thymocytes and an alternative, non-lg ligand on thymic stromal cells, Immunol. Lett. 44, 105-109.
- Mathiot, C., Teillaud, J.L., Elmalek, M., Mosseri, L., Euller-Ziegler, L., Daragon, A., Grosbois, B., Michaux, J.L., Facon, T., Bernard, J.F., Duclos, B., Monconduit, M., Fridman, W.H. (1993), Correlation between serum soluble CD16 (sCD16) levels and disease stage in patients with multiple myeloma, J. Clin. Immunol. 13, 41-48.
- Merritt, E.A. and Murphy, M.E.P. (1994), Raster 3D Version 2.0. A program for photorealistic molecular graphics, Acta Cryst. D50, 869-873.
 - Metzger, H. (1992A), Transmembrane signaling: The joy of aggregation, J. Immunol. 149, 1477-1487.
- Metzger, H. (1992B), The receptor with high affinity for lg E, Immunol. Rev. 125, 37-48.

10

- Müller, S. and Hoover, R.G. (1985), T cells with Fc receptors in myeloma; suppression of growth and secretion of MOPC-315 by T alpha cells, J. Immunol. 134, 644-7.
- Nicholls, A., Sharp, K.A., Honig, B. (1991), Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins 11, 281-296.
 - Poo, H., Kraus, J.C., Mayo-Bond, L., Todd, R.F., Petty, H.R. (1995), Interaction of Fcγ receptor IIIB with complement receptor type 3 in fibroblast transfectants: evidence from lateral diffusion and resonance energy transfer studies, J. Mol. Biol. 247, 597-603.
 - Rappaport, E.F., Cassel, D.L., Walterhouse, D.O., McKenzie, S.E., Surrey, S., Keller, M.A., Schreiber, A.D., Schwartz, E. (1993), A soluble form of the human Fc receptor FcyRlla: cloning, transcript analysis and detection. Exp. Hematol. 21, 689-696.
- Ravanel, K., Castelle, C., Defrance, T., Wild, T.F., Charron, D., Lotteau, V., Rabourdincombe, C. (1997), Measles virus nucleocapsid protein binds to FcγRII and inhibits human B cell antibody production. J. Exp. Med. 186, 269-278.
- Roman, S., Moore, J.S., Darby, C., Muller, S., Hoover, R.G. (1988), Modulation of Ig gene expression by Ig binding factors. Suppression of alpha-H chain and lambda-2-L chain mRNA accumulation in MOPC-315 by IgA-binding factor, J. Immunology 140, 3622-30.

Sauer-Eriksson,	A.E., Kleywegt,	G.J., Uhlen,	M., Jones, T.A	ı. (1995),	Crystal structure of t	the C2 fragment of strep
tococcal protein	G in complex wi	th the Fc don	nain of humar	IgG, Str	ucture 3, 265-78.	

- Sondermann, P., Huber, R., Jacob, U. (1998B), Preparation and crystallization of active soluble human FcγRIIb derived from E.coli, Protein Structure, submitted.
 - Sondermann, P., Kutscher, C., Jacob, U., Frey, J. (1998A), Characterization and crystallization of soluble human Fcγ receptor 11 isoforms produced in insect cells, Biochemistry, submitted.
- Sondermann, P., Kutscher, C., Jacob, U., Frey, J., Analysis of complexes of IgG and soluble human Fcγ-Receptor II produced in insect cells and its crystallization, submitted.
 - Tax, W.J.M., Willems, H.W., Reekers, P.P.M., Capel, P.J.A., Koene, R.A.P. (1983), Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells, Nature 304, 445-447.
 - Teillaud, J.L., Brunati, S., Elmalek, M., Astier, A., Nicaise, P., Moncuit, J., Mathiot, C., Job-Deslandre, C., Fridman, W.H. (1990), Involvement of FcR + T cells and of IgG-BF in the control of myaloma cells, Mol. Immunol. 27, 1209-17.
- 20 Turk, D. (1992), Ph.D. Thesis, TU München, Germany.

15

30

40

45

50

- Ulvestad, E., Matre, R., Tonder, O. (1988), IgG Fc receptors in sera from patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus, Scand. J. Rheumatol., Suppl. 75, 203-208.
- van de Winkel, J.G.J. and Capel, P.J.A. (1993), Human IgG Fc receptor heterogeneity: Molecular aspects and clinical implications, Immunol. Today 14, 215-221.
 - Varin, N., Sautès, C., Galinha, A., Even, J., Hogarth, P.M., Fridman, W.H. (1989), Recombinant soluble reseptors for the Foy portion inhibit antibody production in vitro, Eur. J. Immunol. 19, 2263-2268.
 - Yang, Z., Delgado, R., Xu, L., Todd, R.F., Nabel, E.G., Sanchez, A., Nabel, G.J. (1998), Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins, Science 279, 983-984.
- Zhou, M.-J., Todd, R.F., van de Winkel, J.G.J., Petty, H.R. (1993), Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcγ receptor III on human neutrophils. Possible role of lectin-like interactions, J. Immunol. 150, 3030-3041.

SEQUENZPROTOKOLL

5	<110> Max-Planck-Gesellschaft zur Förderung der Wissensc	
	<120> Recombinant soluble Fc receptors	
	<130> recombinant soluble fc receptors	
10	<140> 98 122 969.3	
	<141> 1998-12-03	
	<160> 14	
15	<170> PatentIn Ver. 2.1	
	<210> 1	
	<211> 1321	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
25	<222> (37)(1158)	
	<400> 1	
	gacagattte actgetecca ecagettgga gacaac atg tgg tte ttg aca act 54	
30	Met Trp Phe Leu Thr Thr	
	1	
	ctg ctc ctt tgg gtt cca gtt gat ggg caa gtg gac acc aca aag gca 102	
	Leu Leu Trp Val Pro Val Asp Gly Gln Val Asp Thr Thr Lys Ala	
35	10 15 20	
	gtg atc tct ttg cag cct cca tgg gtc agc gtg ttc caa gag gaa acc 150	
	Val Ile Ser Leu Gln Pro Pro Trp Val Ser Val Phe Gln Glu Glu Thr	
40	25 30 35	
40	gta acc ttg cac tgt gag gtg ctc cat ctg cct ggg agc agc tct aca 198	}
	Val Thr Leu His Cys Glu Val Leu His Leu Pro Gly Ser Ser Ser Thr	
	40 45 50	
	40	
45	cag tgg ttt etc aat gge aca gee act eag ace teg ace eee age tac 246	õ
	Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln Thr Ser Thr Pro Ser Tyr	
	55 60 65 70	
	and the section of the set of the	4
50	aga atc acc tct gcc agt gtc aat gac agt ggt gaa tac agg tgc cag 294 Arg Ile Thr Ser Ala Ser Val Asn Asp Ser Gly Glu Tyr Arg Cys Gln	
	Arg The Thr Ser Ala Ser val Ash Asp Ser Gly Gld Tyl May 515 516	
	13	

24

	-	ggt Gly		Ser													342
5	aac	tgg	cta	90 cta	cta	саσ	atc	tcc		aga	atc	ttc	acq		gga	qaa	390
		Trp															
10	cct	ctg	acc	tta	acc	tat	cat	aca	taa	aaq	gat	aaq	cta	ata	tac	aat	438
		Leu 120															
15		ctt															486
	Val 135	Leu	Tyr	Tyr	Arg	Asn 140	GTÀ	гÀз	Ala	rne	145	rne	Phe	HIS	Trp	150	
20		aac Asn															534
					155					160					165		
25		tgc Cys															582
		_		170					175					180			
30		act Thr															630
30			185					190					195	.			630
		tcc Ser															678
35		200					205					210					
		ttg Leu															726
40	215					220					225					230	
	_	ggc Gly	-														774
					235					240					245		
45		cta															822
	Ile	Leu	Thr	Ala 250	Arg	Arg	Glu	Asp	Ser 255	Gly	Leu	Tyr	Trp	Cys 260	Glu	Ala	
50		aca															870
	Ala	Thr	G1u 265	Asp	стĀ	ASN	val	270	ьys	Arg	ser	FEO	275		GIU	ren	

5	Caa gtg ctt ggc ctc cag tta cca act cct gtc tgg ttt cat gtc ctt Gln Val Leu Gly Leu Gln Leu Pro Thr Pro Val Trp Phe His Val Leu 280 285 290	
40	ttc tat ctg gca gtg gga ata atg ttt tta gtg aac act gtt ctc tgg 966 Phe Tyr Leu Ala Val Gly Ile Met Phe Leu Val Asn Thr Val Leu Trp 300 305 310	
10	gtg aca ata cgt aaa gaa ctg aaa aga aag aaa aag tgg gat tta gaa 1014 Val Thr Ile Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asp Leu Glu 315 320 325	
15	atc tct ttg gat tct ggt cat gag aag gta act tcc agc ctt caa 1062 Ile Ser Leu Asp Ser Gly His Glu Lys Lys Val Thr Ser Ser Leu Gln 330 335 340	
20	gaa gac aga cat tta gaa gaa gag ctg aaa tgt cag gaa caa aaa gaa 1110 Glu Asp Arg His Leu Glu Glu Glu Leu Lys Cys Gln Glu Gln Lys Glu 345 350 355	
25	gaa cag ctg cag gaa ggg gtg cac cgg aag gag ccc cag ggg gcc acg 1158 Glu Gln Leu Gln Glu Gly Val His Arg Lys Glu Pro Gln Gly Ala Thr 360 365 370	
	tagcagegge teagtgggtg gecategate tggacegtee cetgeecact tgeteecegt 1218	:
30	gageactgeg tacaaacate caaaagttea acaacaceag aactgtgtgt eteatggtat 1278	1
	gtaactetta aagcaaataa atgaactgae tteaaaaaaa aaa 1323	
35	<210> 2 <211> 374 <212> PRT	
40	<213> Homo sapiens	
	<pre><400> 2 Met Trp Phe Leu Thr Thr Leu Leu Leu Trp Val Pro Val Asp Gly Gln 1 5 10 15</pre>	
45	Val Asp Thr Thr Lys Ala Val Ile Ser Leu Gln Pro Pro Trp Val Ser 20 25 30	
50	Val Phe Gln Glu Glu Thr Val Thr Leu His Cys Glu Val Leu His Leu 35 40 45	
	Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln	
55		

		50					55					60				
5	Thr 65	Ser	Thr	Pro	Ser	Tyr 70	Arg	Ile	Thr	Ser	Ala 75	Ser	Val	Asn	Asp	Ser 80
10	Gly	Glu	Tyr	Arg	C ys 85	Gln	Arg	Gly	Leu	Ser 90	Gly	Arg	Ser	Asp	Pro 95	Ile
10	Gln	Leu	Glu	11e 100	His	Arg	Gly	Trp	Le u 105	Leu	Leu	Gln	Val	Ser 110	Ser	Arg
15	Val	Phe	Thr 115	Glu	Gly	Glu	Pro	Leu 120	Ala	Leu	Arg	Суз	His 125	Ala	Trp	Lys
	Asp	Lys 130	Leu	Val	Tyr	Asn	Val 135	Leu	Tyr	Tyr	Arg	Asn 140	Gly	Lys	Ala	Phe
20	Lys 145	Phe	Phe	His	Trp	Asn 150	Ser	Asn	Leu	Thr	Ile 155	Leu	Lys	Thr	Asn	Ile 160
25	Ser	His	Asn	Gly	Thr 165	Tyr	His	Cys	Ser	Gly 170	Met	Gly	Lys	His	Arg 175	Tyr
	Thr	Ser	Ala	Gly 180	Ile	Ser	Val	Thr	Val 185	Lys	Glu	Leu	Phe	Pro 190	Ala	Pro
30	Val	Leu	Asn 195	Ala	Ser	Val	Thr	Ser 200	Pro	Leu	Leu	Glu	Gly 205	Asn	Leu	Val
35	Thr	Leu 210	Ser	Cys	Glu	Thr	Lys 215	Leu	Leu	Leu	Gln	Arg 220	Pro	Gly	Leu	Gln
	Leu 225	Tyr	Phe	Ser	Phe	Tyr 230	Met	Gly	Ser	Lys	Thr 235	Leu	Arg	Gly	Arg	Asn 240
40	Thr	Ser	Ser	Glu	Tyr 245	Gln	Ile	Leu	Thr	Ala 250	Arg	Arg	Glu	Asp	Ser 255	Gly
	Leu	Tyr	Trp	Cys 260		Ala	Ala	Thr			Gly		Val	Leu 270	Lys	Arg
45	Ser	Pro	Glu 275	Leu	Glu	Leu	Gln	Val 280		Gly	Leu	Gln	Leu 285		Thr	Pro
50	Val	Trp 290	Phe	His	Val	Leu	Phe 295		Leu	Ala	Val	Gly 300		Met	Phe	Leu
	Val	Asn	Thr	Val	Leu	Trp	Val	Thr	Ile	Arg	Lys	Glu	Leu	Lys	Arg	Lys
55																

Lys Lys Trp Asp Leu Glu Ile Ser Leu Asp Ser Gly His Glu Lys Lys 325 Val Thr Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 340 Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Glu Gly Val His Arg Lys 355 360 Lys Lys Asp Ser Gly His Glu Lys Lys 335	
340 345 350 10 Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys	
Cys Gln Glu Gln Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys	
Glu Pro Gin Gly Ala Thr 15 370	
<210> 3	
<220> <221> CDS <222> (45)(917)	
<pre><400> 3</pre>	56
tca ttt tta cct gtc ctt gcc act gag agt gac tgg gct gac tgc aag Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp Ala Asp Cys Lys 5 10 15 20	104
tcc ccc cag cct tgg ggt cat atg ctt ctg tgg aca gct gtg cta ttc Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr Ala Val Leu Phe 25 30 35	152
ctg get cet gtt get ggg aca cet gea get eee eea aag get gtg etg Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro Lys Ala Val Leu 40 45 50	200
aaa ctc gag ccc cag tgg atc aac gtg ctc cag gag gac tct gtg act Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu Asp Ser Val Thr 55 60 65	248
50 ctg aca tgc cgg ggg act cac agc cct gag agc gac tcc att cag tgg Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp Ser Ile Gln Trp 70 75 80	296

5		aat Asn									344
	-	gcc Ala									392
10		agc Ser									440
15	-	ctc Leu 135									488
20		agg Arg									536
25		cag Gln									584
30		atc Ile									632
<i>35</i>		aac Asn									680
40	-	caa Gln 215	-								728
45		Gly									776
	Tyr	tgc Cys						Pro			824
50		gac Asp		Gly			Ile				872

5	atg cac ccg gat gct ctg gaa gag cct gat gac cag aac cgt att Met His Pro Asp Ala Leu Glu Glu Pro Asp Asp Gln Asn Arg Ile 280 285 290	7
	tagtotocat tgtottgcat tgggatttga gaagaaatca gagagggaag atotggtatt 97	7
10	tectggeeta aatteeeett ggggaggaca gggagatget geagtteeaa aagagaaggt 10	137
	ttettecaga gteatetace tgagteetga ageteeetgt eetgaaagee acagacaata 10	
15	tggtcccaaa tgcccgactg caccttctgt gcttcagctc ttcttgacat caaggctctt 11	
,5	cogttocaca tocacacago caatocaatt aatcaaacca otgttattaa cagataatag 12	
	caacttggga aatgettatg ttacaggtta cgtgagaaca atcatgtaaa tetatatgat 12	
20	ttcagaaatg ttaaaataga ctaacctcta ccagcacatt aaaagtgatt gtttctgggt 1	
	gataaaatta ttgatgattt ttattttctt tatttttcta taaagatcat atattacttt 1:	419
25	tataataaaa cattataaaa ac	•••
30	<210> 4 <211> 291 <212> PRT <213> Homo sapiens	
35	<pre><400> 4 Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp</pre>	
	Ala Asp Cys Lys Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr 20 25 30	
4 0	Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro 35 40 45	
45	Lys Ala Val Leu Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu 50 55 60	
50	Asp Ser Val Thr Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp 65 70 75 80	
	Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln 85 90 95	

5	Pro Ser	Tyr	Arg 100	Phe	Lys	Ala	Asn	Asn 105	Asn	Asp	Ser	Gly	Glu 110	Tyr	Thr
	Cys Glr	Thr 115	Gly	Gln	Thr	Ser	Leu 120	Ser	Asp	Pro	Val	His 125	Leu	Thr	Val
10	Leu Ser 130		Trp	Leu	Val	Leu 135	Gln	Thr	Pro	His	Leu 140	Glu	Phe	Gln	Glu
	Gly Glu 145	Thr	Ile	Val	Leu 150	Arg	Суз	His	Ser	Trp 155	Lys	Asp	Lys	Pro	Leu 160
15	Val Lys	val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
20	Ser Ası	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	His 190	Ser	Gly
	Asp Ty	195		Thr	Gly	Asn	Ile 200	Gly	Tyr	Thr	Leu	Tyr 205	Ser	Ser	Lys
25	Pro Va		Ile	Thr	Val	Gln 215	Ala	Pro	Ser	Ser	Ser 220	Pro	Met	Gly	Ile
30	Ile Va 225	l Ala	Val	Val	Thr 230		Ile	Ala	Val	Ala 235		Ile	Val	Ala	Ala 240
	Val Va	l Ala	Leu	Ile 245		Cys	Arg	Lys	Lys 250		Ile	Ser	Ala	As n 255	Pro
35	Thr As		260					265	i				270		
40	Tyr Se	r Let 275		Met	His	Pro	280		Leu	G1u	Glu	285		Asp	Gln
	Asn Ar 29	~	•												
45	<210> <211>	2359													
	<212> <213>		sapi	ens											
50	<220> <221> <222>		. (938	3)											
55															

	<400	> 5															
			g to	t ca	g aa	t gt	a tg	t cc	c ag	a aa	c ct	g tg	g ct	g ct	t ca	a cca	50
																n Pro	
5			1				5				1	0				15	
	ttg	aca	gtt	ttg	ctg	ctg	ctg	gct	tct	gca	gac	agt	caa	gct	gca	gct	98
			Val														
10					20					25					30		
	ccc	сса	aag	gct	gtg	ctg	aaa	ctt	gag	ccc	ccg	tgg	atc	aac	gtg	ctc	146
	Pro	Pro	Lys	Ala	Va1	Leu	Lys	Leu	Glu	Pro	Pro	Trp	Ile	Asn	Val	Leu	
				35					40					45			
15																	
			gac														194
	Gln	Glu	Asp	Ser	Val	Thr	Leu	Thr	Cys	Gln	Gly	Ala	Arg	Ser	Pro	Glu	
			50					55					60				
20																	
20	agc	gac	tcc	att	cag	tgg	ttc	cac	aat	ggg	aat	ctc	att	CCC	acc	cac	242
	Ser	Asp	Ser	Ile	Gln	Trp	Phe	His	Asn	Gly	Asn	Leu	Ile	Pro	Thr	His	
		65					70					75					
25			ccc														290
	Thr	Gln	Pro	Ser	Tyr	Arg	Phe	Lys	Ala	Asn	Asn	Asn	Asp	Ser	Gly		
	80					85					90					95	
						•											
20			tgc														338
30	Tyr	Thr	Cys	Gln	Thr	Gly	Gln	Thr	Ser		Ser	qaA	Pro	Val		Leu	
					100					105					110		
																	206
			ctt														386
35	Thr	Val	Leu		Glu	Trp	Leu	Val		Gln	Thr	Pro	HIS			Pne	
				115					120					125			
													.				434
			gga														424
40	Gln	Glu	Gly	Glu	Thr	Ile	Met		Arg	Cys	HIS	Ser			Asp	ոֆո	
40			130					135					140				
													+ ~ ~			++0	482
	cct	ctg	gtc	aag	gtc	aca	TEC	TEC	cag	aat	gya	Tue	Cor	. cay	Tire	ttc	702
	Pro			Lys	Val	Thr			GIII	ASI	GIY	155		GIL	LLYS	Phe	
45		145					150					133					
												~ 03			ant	cac	530
	tcc	: cgt	ttg	gat	CCC	acc	tto	ECC	atc	. cca	Caa C1-	y Cal	A a a c	uite	See	cac His	220
			Leu	Asp	Pro			ser	тте	FIC			. HOI		, JEI	His 175	
	160) .				165	•				170					113	
50														+-	. ++-	+c=	578
																tca Ser	5,0
	Ser	Gly	/ Asp	Tyr	HIS	Cys	rnr	GTÄ	ASI	TTE	: GrĀ	TAT	1111	. ner	. 1.116	Ser	

					180					185					190		
	tcc									ata	ccc	200	ato	aac	age	tct	626
5	Ser	aag -	CCL	grg	acc	Tio	The	y.c. Val	Gla	Val	Pro	Ser	Met	Glv	Ser	Ser	
	Ser	ГĀЗ	Pro	195	Int	116	1111	***	200	***		002		205			
				193													
	tca	cca	ato	aaa	atc	att	ata	act	ata	gtc	att	gcg	act	gct	gta	gca	674
10	Ser	Pro	Met	Glv	Ile	Ile	Val	Ala	Val	Val	Ile	Ala	Thr	Ala	Val	Ala	
	001		210	1				215					220				
	gcc	att	gtt	gct	gct	gta	gtg	gcc	ttg	atc	tac	tgc	agg	aaa	aag	cgg	722
	Ala	Ile	Val	Ala	Ala	Val	Val	Ala	Leu	Ile	Tyr	Cys	Arg	Lys	Lys	Arg	
15		225					230					235					
																	220
	att	tca	gcc	aat	tcc	act	gat	cct	gtg	aag	gct	gcc	caa	ttt	gag	cca	770
	Ile	Ser	Ala	Asn	Ser		Asp	Pro	Val	Lys		Ala	Gin	Pne	Glu	255	
20	240					245					250					233	
						_ 4.4.		-+-	243	224	202	caa	ctt	gaa	gaa	acc	818
	cct	gga	cgt	caa	atg	Tle	gec Ala	TIA	Ara	Lve	Ara	Gln	Leu	Glu	Glu	Thr	
	Pro	GIY	Arg	GIII	260	116	ALG	110	My	265					270		
25					200												
	aac	aat	gac	tat	gaa	aca	gct	gac	ggc	ggc	tac	atg	act	ctg	aac	ccc	866
	Asn	Asn	Asp	Tyr	Glu	Thr	Ala	Asp	Gly	Gly	Tyr	Met	Thr	Leu	Asn	Pro	
			Ī	275					280					285			
22																	
30	agg	gca	cct	act	gac	gat	gat	aaa	aac	ato	tac	ctg	act	ctt	cct	ccc	914
	Arg	Ala	Pro	Thr	Asp	Asp	Asp			Ile	Tyr	Leu			Pro	Pro	
			290					295					300	,			
								~~~	. +		*+==	catt	atoo	ca t	ataa	rtcata	968
35										lagay	jeaa	cyc	ucge		. 3 - 3 -		
	Asn	305		vai	. Asn	Ser	310		•								
		303															
	cto	tcad	ctt	acto	atgo	at d	racaa	aaaq	ra go	ggaa	attgt	: taa	agga	aaa	ttta	aatgga	1028
40	0.0			J				-									
	gac	tgga	aaa	atco	tgaç	jca a	acaa	aaco	ca co	ctggd	cctt	: aga	aata	agct	ttaa	ectttgc	1088
	tta	aact	aca	aaca	caaç	ca a	aact	tcac	cg gg	ggtca	atact	aca	ataca	aagc	ataa	agcaaaa	1148
45														<b></b>			1208
	ctt	aact	tgg	atca	attto	etg (	gtaaa	atgct	tt a	tgtta	agaaa	a taa	agac	aacc	cca	gccaatc	1200
									h	~+ ~ ~	~~ c1	- + <b>+</b>	rt a a	nsar	ata	cctaccc	1268
	aca	agca	agcc	tact	caaca	ata 1	taati	Laggi	Ly a	Liay	gyacı		-cad	2003		cctaccc	
50	~		3272	2++	at ort:	aat 1	tgaa	aacc	aa c	cgat	tacci	t tt	attt	tgct	tcc	acatttt	1328
50	008		a	a						<i>y</i> - •				-			
	ccc	caata	aat	act	tgcci	tgt (	gaca	tttt	gc c	actg	gaac	a ct	aaac	ttca	tga	attgcgc	1388
					-	-											

	ctcagatttt teetttaaca tetttttttt ttttgacaga gtetcaatet gttacceagg 1448
5	ctggagtgca gtggtgctat cttggctcac tgcaaacccg cctcccaggt ttaagcgatt 1508
	cttatgcctc agcctcccag tagctgggat tagaggcatg tgccatcata cccagctaat 1568
	ttttgtattt tttatttttt atttttagta gagacagggt ttcgcaatgt tggccaggcc 1628
10	gatetegaac ttetggeete tagegatetg ceegeetegg ceteccaaag tgetgggatg 1688
	acceptateag coccaatete caecetettt aacatettet tteetatee eteteteteg 1748
15	atccctactg ctggtttctg ccttctccat gctgagaaca aaatcaccta ttcactgctt 1808
	atgcagtcgg aagctccaga agaacaaaga gcccaattac cagaaccaca ttaagtctcc 1868
20	attgttttgc cttgggattt gagaagagaa ttagagaggt gaggatctgg tatttcctgg 1928
	actamattcc cttggggaag acgaagggat gctgcagttc caaaagagaa ggactcttcc 1988
	agagteatet acctgagtee caaageteee tgteetgaaa gecacagaca atatggteee 2048
25	aaatgactga ctgcacctte tgtgcctcag eegttettga catcaagaat ettetgttee 2108
	acatecaeac agecaataea attagteaaa eeaetgttat taacagatgt ageaacatga 2168
30	gaaacgctta tgttacaggt tacatgagag caatcatgta agtctatatg acttcagaaa 2228
	tgttaaaata gactaaccte taacaacaaa ttaaaagtga ttgtttcaag gtgatgcaat 2288
35	tattgatgac ctattttatt tttctataat gatcatatat tacctttgta ataaaacatt 2348
33	ataaccaaaa c 2359
	<210> 6
40	<211> 311
	<212> PRT
	<213> Homo sapiens
45	<400> 6
	Met Ser Gln Asn Val Cys Pro Arg Asn Leu Trp Leu Leu Gln Pro Leu 10 15
	1 5 . 10 13
50	Thr Val Leu Leu Leu Ala Ser Ala Asp Ser Gln Ala Ala Ala Pro 20 25 30
50	20
	Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val Leu Gln

			35					40					45			
5	Glu	<b>Asp</b> 50	Ser	Val '	Thr	Leu '	Thr 55	Суѕ	Gln	Gly	Ala .	Arg 60	Ser	Pro	Glu	Ser
	Asp 65	Ser	Ile	Gln	Trp	Phe 70	His	Asn	Gly	Asn	Leu 75	Ile	Pro	Thr	His	Thr 80
10	Gln	Pro	Ser	Tyr	Arg 85	Phe	Lys	Ala	Asn	Asn 90	Asn	qeA	Ser	Gly	Glu 95	Tyr
15	Thr	Cys	Gln	Thr 100	Gly	Gln	Thr	Ser	Leu 105	Ser	Asp	Pro	Val	His 110	Leu	Thr
	Val	Leu	Ser 115	Glu	Trp	Leu	Val	Leu 120	Gln	Thr	Pro	His	<b>Le</b> u 125	Glu	Phe	Gln
20	Glu	Gly 130	Glu	Thr	Ile	Met	Leu 135	Arg	Cys	His	Ser	Trp 140	Lys	Asp	Lys	Pro
25	145					150					155					Ser 160
	Arg	Leu	Asp	Pro	Thr 165	Phe	Ser	Ile	Pro	Gln 170	Ala	Asn	His	Ser	His 175	s Ser
30	Gly	Asp	Tyr	His 180		Thr	Gly	Asr	185		Tyr	Thr	Leu	190	e Sez	r Ser
, as			195					200	)				205	Ď.		r Ser
35		210	)				215	5				220	)			a Ala
40	225	5				230	)				235	5				g Ile 240
					24	5				25	0				23	
45	Gl	y Ar	g Gli	260		e Ala	a Il	e Ar	g Ly 26		g Gli	n Le	u Gl	u G1 27	u Th	r Asn
50			27	5				28	0				28	5		o Arg
	Al	a Pr	o Th	r As	p As	p As	p Ly	s As	in Il	e Ty	r Le	u Th	r Le	u Pr	o Pi	co Asn
55				*												

	290	295	300
5	Asp His Val Asn Ser A	Asn Asn 310	
10	<210> 7 <211> 887 <212> DNA <213> Homo sapiens		
15	<220> <221> CDS <222> (34)(732)		
20	<400> 7 tetttggtga ettgtecaet	t ccagtgtggc atc atg tgg Met Trp 1	cag ctg ctc ctc cca 54 Gln Leu Leu Leu Pro 5
25		cta gtt toa gct ggc atg Leu Val Ser Ala Gly Met 15	
30		ttc ctg gag cct caa tgg Phe Leu Glu Pro Gln Trp 30	
35		ctg aag tgc cag gga gcc Leu Lys Cys Gln Gly Ala 45 50	
40		ttt cac aat gag agc ctc Phe His Asn Glu Ser Leu 65	
45		gac gct gcc aca gtc aac Asp Ala Ala Thr Val Asn 80	
45		ctc tcc acc ctc agt gac Leu Ser Thr Leu Ser Asp 95	
50		ctg ttg ctc cag gcc cct Leu Leu Leu Gln Ala Pro 110	

5	gag gaa gac cot att cac otg agg tgt cac ago tgg aag aac act got 438 Glu Glu Asp Pro Ile His Leu Arg Cys His Ser Trp Lys Asn Thr Ala 120 125 130 135
	ctg cat aag gtc aca tat tta cag aat ggc aaa gac agg aag tat ttt 486 Leu His Lys Val Thr Tyr Leu Gln Asn Gly Lys Asp Arg Lys Tyr Phe 140 145 150
10	the gas att coa and goo aca oto and gat ago 534
	cat cat aat tot gac tto cac att oca aaa goo aca oto aaa gat ago 534 His His Asn Ser Asp Phe His Ile Pro Lys Ala Thr Leu Lys Asp Ser 155 160 165
15	ggc too tac tto tgc agg ggg ctt gtt ggg agt aaa aat gtg tot tca 582
	Gly Ser Tyr Phe Cys Arg Gly Leu Val Gly Ser Lys Asn Val Ser Ser 170 175 180
00	gag act gtg aac atc acc atc caa ggt ttg gca gtg tca acc atc 630
20	Glu Thr Val Asn Ile Thr Ile Thr Gln Gly Leu Ala Val Ser Thr Ile 185 190 195
	tea tea tto tet eea eet ggg tae eaa gto tet tto tge ttg gtg atg 678
25	Ser Ser Phe Ser Pro Pro Gly Tyr Gln Val Ser Phe Cys Leu Val Met
	200 205 210 215
	gta etc ett ttt gea gtg gae aca gga eta tat tte tet gtg aag aca 726
30	Val Leu Leu Phe Ala Val Asp Thr Gly Leu Tyr Phe Ser Val Lys Thr 220 225 230
35	aac att tgaagetcaa caagagactg gaaggaccat aaacttaaat ggagaaagga 782 Asn Ile
55	contraagan aaatgaceee cateecatgg gagtaataag agnagtggca goagnatete 842
	tgaacattte tetggatttg caaceecate ateeteagge etete 887
40	
	<210> 8
	<211> 233 <212> PRT
45	<213> Homo sapiens
70	
	<400> 8  Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala
	Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Bed Bed Val 502 122
50	
	Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 25 30

	Gln Trp	Tyr 35	Ser	Val	Leu	Glu	Lys 40	Asp	Ser	Val	Thr	Leu 45	Lys	Cys	Gln
5	Gly Ala 50		Ser	Pro	Glu	<b>Asp</b> 55	Asn	Ser	Thr	Gln	Trp 60	Phe	His	Asn	Glu
10	Ser Leu 65	Ile	Ser	Ser	Gln 70	Ala	Ser	Ser	Tyr	Phe 75	Ile	Asp	Ala	Ala	Thr 80
	Val Asn	Asp	Ser	Gly 85	Glu	Tyr	Arg	Суз	Gln 90	Thr	Asn	Leu	Ser	Thr 95	Leu
15	Ser Asp	Pro	Val 100	Gln	Leu	Glu	Val	His 105	Ile	Gly	Trp	Leu	Leu 110	Leu	Gln
20	Ala Pro	Arg 115	Trp	Val	Phe	Lys	Glu 120	Glu	Asp	Pro	Ile	His 125	Leu	Arg	Cys
	His Ser 130		Lys	Asn	Thr	Ala 135	Leu	His	Lys	Val	Thr 140	Tyr	Leu	Gln	Asn
25	Gly Lys 145	Asp	Arg	Lys	Tyr 150	Phe	His	His	Asn	Ser 155		Phe	His	Ile	Pro 160
30	Lys Ala			165					170					175	
	Gly Ser		180					185					190		
35	Gly Let	195					200					205			
40	Val Ser 210		Cys	Leu	Val	Met 215		Leu	. Leu	Phe	Ala 220		. Asp	Thr	Gly
40	Leu Ty: 225	r Phe	. Ser	Val	Lys 230		Asn	Ile	ì						
45	<210> <211>	1068													
	<212> (213> )		sapi	.ens											
50	<220> <221> <222>		(81	LO)											

	<400																
	agat	ctca	gc a	cagt	aago	a cc	agga	gtcc								atg	54
5											Lys	Met	Ala 5		Ala	Met	
									1				3				
	~~~	tcc	aat	• c+	ct a	cta	tat	αta	acc	tta	cta	ttc	ttc	act	cca	gat	102
		Ser															
10	314	10			200		15					20				•	
	aac	gtg	tta	qça	qtc	cct	cag	aaa	cct	aag	gtc	tac	ttg	aac	cct	cca	150
		Val															
	25					30					35					40	
15																	
		aat															198
	Trp	Asn	Arg	Ile	Phe	Lys	Gly	Glu	Asn	Val	Thr	Leu	Thr	Cys	Asn	Gly	
					45					50					55		
20																	
		aat															246
	Asn	Asn	Phe		Glu	Val	Ser	Ser		Lys	Trp	Phe	HIS		GIA	Ser	
				60					65					70			
05						4			***	-	2++	ata	22t	acc	222	+++	294
25		tca Ser															277
	Leu	ser	75	GIU	inr	ASII	ser	80	neu	ASII	110	407	85	nau	~10		
			75					00					-				
	~~~	gac	ant	aaa	ma a	tac	aaa	tat	cag	cac	caa	caa	att	aat	gag	agt	342
30		Asp															
	010	90		1		- 2	95	-				100					
	qaa	cct	gtg	tac	ctg	gaa	gtc	ttc	agt	gac	tgg	ctg	ctc	ctt	cag	gcc	390
35		Pro															
	105					110					115					120	
		gct															438
	Ser	Ala	Glu	Val	Val	Met	Glu	Gly	Gln		Leu	Phe	Leu	Arg		His	
40					125					130					135		
													4-4				105
		tgg															486
	Gly	Trp	Arg			Asp	Val	Tyr		vaı	iie	ī Ņī	TÄT	150	wsħ	GLY	
45				140					145					130			
		gct				• ~~	+ 2 +	asa	220	cac	220	atc	tcc	att	aca	aat	534
		Ala															
	GIU	Ala	155		1 7 1	110	1 9 2	160		0			165				
50			100														
50	acc	aca	att	gaa	gac	agt	gga	acc	tac	tac	tgt	acg	ggc	aaa	gtg	tgg	582
	Ala	Thr	Val	Glu	Asp	Ser	Glv	Thr	Tyr	Tyr	Cys	Thr	Gly	Lys	Val	Trp	
		-			•		-		_	-							

	170 175 180	
5	cag ctg gac tat gag tct gag ccc ctc aac att act gta ata aaa gct 630 Gln Leu Asp Tyr Glu Ser Glu Pro Leu Asn Ile Thr Val Ile Lys Ala 185 190 195 200	
10	ccg cgt gag aag tac tgg cta caa ttt ttt atc cca ttg ttg gtg gtg 678 Pro Arg Glu Lys Tyr Trp Leu Gln Phe Phe Ile Pro Leu Leu Val Val 205 210 215	
15	att ctg ttt gct gtg gac aca gga tta ttt atc tca act cag cag cag 726  Ile Leu Phe Ala Val Asp Thr Gly Leu Phe Ile Ser Thr Gln Gln  220 225 230	;
20	gtc aca ttt ctc ttg aag att aag aga acc agg aaa ggc ttc aga ctt 774 Val Thr Phe Leu Leu Lys Ile Lys Arg Thr Arg Lys Gly Phe Arg Leu 235 240 245	
25	ctg aac cca cat cct aag cca aac ccc aaa aac aac tgatataatt 820 Leu Asn Pro His Pro Lys Pro Asn Pro Lys Asn Asn 250 255 260	J
	aactcaagaa atatttgcaa cattagtttt tttccagcat cagcaattgc tactcaattg 880	)
30	tcaaacacag cttgcaatat acatagaaac gtctgtgctc aaggatttat agaaatgctt 940	ì
30	cattaaactg agtgaaactg attaagtggc atgtaatagt aagtgctcaa ttaacattgg 100	10
	ttgaataaat gagagaatga atagattcat ttattagcat ttgtaaaaga gatgttcaat 106	50
35	ttagatet 106	:8
40	<210> 10 <211> 260 <212> PRT <213> Homo sapiens	
45	<pre>&lt;400&gt; 10 Met Lys Lys Met Ala Pro Ala Met Glu Ser Pro Thr Leu Leu Cys Val</pre>	
50	Ala Leu Leu Phe Phe Ala Pro Asp Gly Val Leu Ala Val Pro Gln Lys 20 25 30	
	Pro Lys Val Ser Leu Asn Pro Pro Trp Asn Arg Ile Phe Lys Gly Glu 35 40 45	
55		

	Asn Val		Leu	Thr	Суз	Asn 55	Gly	Asn	Asn	Phe	Phe 60	Glu	Val	Ser	Ser
5	Thr Ly:	Trp	Phe	His	Asn 70	Gly	Ser	Leu	Ser	G1u 75	Glu	Thr	Asn	Ser	Ser 80
10	Leu Ası	ı Ile	Val	Asn 85	Ala	Lys	Phe	Glu	Asp 90	Ser	Gly	Glu	Tyr	Lys 95	Суз
	Gln Hi	s Gln	Gln 100	Val	Asn	Glu	Ser	Glu 105	Pro	Val	Tyr	Leu	Glu 110	Val	Phe
15	Ser As	7rp	Leu	Leu	Leu	Gln	Ala 120	Ser	Ala	G1u	Val	Val 125	Met	Glu	Gly
20	Gln Pr 13		Phe	Leu	Arg	Cys 135	His	Gly	Trp	Arg	Asn 140	Trp	Asp	Val	Tyr
	Lys Va 1 <b>4</b> 5	l Ile	Tyr	Tyr	L <b>ys</b> 150	Asp	Gly	Glu	Ala	Leu 155	Lys	Tyr	Trp	Tyr	Glu 160
25	Asn Hi	s Asn	Ile	Ser 165		Thr	Asn	Ala	Thr 170	Val	Glu	Asp	Ser	Gly 175	Thr
30	Tyr Ty	r Cys	Thr 180		Lys	Val	Trp	Gln 185		Asp	Tyr	Glu	Ser 190	Glu	Pro
	Leu As	n Ile 195		Val	Ile	Lys	Ala 200		Arg	Glu	Lys	Tyr 205		Leu	Gln
35	Phe Ph		Pro	Leu	Leu	Val 215		. Ile	e Leu	Phe	Ala 220		Asp	Thr	Gly
40	Leu Pl 225	ne Ile	e Ser	Thr	Glr 230		Glr	val	l Thi	235		Leu	Lys	Ile	Lys 240
	Arg T	ar Ar	g Lys	3 Gly 245		Arç	, Lei	ı Lei	250		Hi:	Pro	Lys	255	
45	Pro L	ys As:	n Ası 260												
50	<210> <211> <212> <213>	584 DNA	sap	iens											
55															

_	<220> <221> CDS <222> (12)(569)	
5	<220> <221> mat_peptide <222> (15)(569)	
10		
	<pre>&lt;400&gt; 11 aatagaatte c atg ggg aca cet gca gct ccc cca aag gct gtg ctg aaa 50 Met Gly Thr Pro Ala Ala Pro Pro Lys Ala Val Leu Lys -1 1 5 10</pre>	
15		
	ctc gag ccc cag tgg atc aac gtg ctc cag gag gac tct gtg act ctg 98 Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu Asp Ser Val Thr Leu 15 20 25	
20	aca tgc cgg ggg act cac agc cct gag agc gac tcc att cag tgg ttc 14  Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp Ser Ile Gln Trp Phe  30 35 40	5
25	cac aat ggg aat ctc att ccc acc cac acg cag ccc agc tac agg ttc 19 His Asn Gly Asn Leu Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe 45 50 55 60	4
30	aag god aac aac aat gac ago ggg gag tac acg tgo cag act ggo cag 24  Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr Cys Gln Thr Gly Gln  65 70 75	2
35	acc agc ctc agc gac cct gtg cat ctg aca gtg ctt tct gag tgg ctg 29 Thr Ser Leu Ser Asp Pro Val His Leu Thr Val Leu Ser Glu Trp Leu 80 85 90	0
	gtg ctc cag acc cct cac ctg gag ttc cag gag gga gaa acc atc gtg 33 Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu Gly Glu Thr Ile Val 95 100 105	8
40	ctg agg tgc cac agc tgg aag gac aag cct ctg gtc aag gtc aca ttc 38 Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe 110 115 120	6
45	ttc cag aat gga aaa tcc aag aaa ttt tcc cgt tcg gat ccc aac ttc 45 Phe Gln Asn Gly Lys Ser Lys Lys Phe Ser Arg Ser Asp Pro Asn Phe 125 130 135 140	4
50	tcc atc cca caa gca aac cac agt cac agt ggt gat tac cat tgc aca  Ser Ile Pro Gln Ala Asn His Ser His Ser Gly Asp Tyr His Cys Thr  145 150 155	12

5	gga a: Gly A:				_				Ser	-						530
10	gtc ca Val G	-	Pro	_			-	-				tag 185	gct	gtcg	aca	579
	ctggg	10														584
15	<210> <211> <212> <213>	18 <b>5</b> PRT	sapi	ens												
20	<400> Met G	y Thr		5					10			-		15		
25	Gln Tr		20					25					30	•	•	
30	Asn Le	35					40				•	45			•	
35	Asn As	n Asp	Ser	Gly	Glu 70	Tyr	Thr	Суз	Gln	Thr 75	Gly	Gln	Thr	Ser	Leu 80	
40	Ser As			85					90		·			95		
	Thr Pr		100					105					110	-	-	
45	Gly Ly	115		_			120		-			125				
50	13 Gln Al	0	-	•		135	•		•		140					
	145	- 11011	334.43	JUL	150	Jul	JAY	-14P	• 3 -	155	~y3	****	J-y	and it	160	

	Gly Tyr Thr Leu Tyr Ser Ser Lys Pro Val Thr Ile Thr Val Gln Ala 165 170 175
5	Pro Ser Ser Pro Met Gly Ile Ile 180 185
10	<210> 13 <211> 570 <212> DNA <213> Homo sapiens
15	<220> <221> CDS <222> (10)(561)
20	<220> <221> mat_peptide <222> (13)(561)
25	<pre>&lt;400&gt; 13 gatggccat atg gca gtc cct cag aaa cct aag gtc tcc ttg aac cct cca 51 Met Ala Val Pro Gln Lys Pro Lys Val Ser Leu Asn Pro Pro -1 1 5 10</pre>
30	tgg aat aga ata ttt aaa gga gag aat gtg act ctt aca tgt aat ggg 99 Trp Asn Arg Ile Phe Lys Gly Glu Asn Val Thr Leu Thr Cys Asn Gly 15 20 25
35	aac aat tto ttt gaa gto agt too acc aaa tgg tto cac aat ggo agc 147  Asn Asn Phe Phe Glu Val Ser Ser Thr Lys Trp Phe His Asn Gly Ser  30 35 40 45
40	ctt tca gaa gag aca aat tca agt ttg aat att gtg aat gcc aaa ttt 195 Leu Ser Glu Glu Thr Asn Ser Ser Leu Asn Ile Val Asn Ala Lys Phe 50 55 60
45	gaa gac agt gga gaa tac aaa tgt cag cac caa caa gtt aat gag agt 243 Glu Asp Ser Gly Glu Tyr Lys Cys Gln His Gln Gln Val Asn Glu Ser 65 70 75
. <del>.</del>	gaa cct gtg tac ctg gaa gtc ttc agt gac tgg ctg ctc ctt cag gcc 291 Glu Pro Val Tyr Leu Glu Val Phe Ser Asp Trp Leu Leu Gln Ala 80 85 90
50	tet get gag gtg gtg atg gag gge cag cee ete tte ete agg tge cat  Ser Ala Glu Val Val Met Glu Gly Gln Pro Leu Phe Leu Arg Cys His  95 100 105

5															gat Asp		387
															aca Thr 140		435
10															gtg Val		483
15															aaa Lys		531
20	-	cgt Arg 175								tag	gate	ccati	Eg				570
25	<213 <213	0> 14 1> 18 2> P1 3> Ho	3 3 RT	sapi	ens												
30		0> 1 Ala		Pro	Gln 5	Lys	Pro	Lys	Val	Ser 10	Leu	Asn	Pro	Pro	Trp 15	Asn	
35				20					25					30			
40			35					40 Asn					45 Lys		Leu		
45	Ser	Gly	Glu	Tyr	Lys	Cys		His	Gln	Gln	Val 75		Glu	Ser	Glu	Pro 80	
	65																
50	65		Leu	Glu	Val		Ser	Asp	Trp	Leu 90		Leu	Glr	ı Ala	Ser 95		

Arg Asn Trp Asp Val Tyr Lys Val Ile Tyr Tyr Lys Asp Gly Glu Ala 125 120 115 5 Leu Lys Tyr Trp Tyr Glu Asn His Asn Ile Ser Ile Thr Asn Ala Thr 140 135 130 Val Glu Asp Ser Gly Thr Tyr Tyr Cys Thr Gly Lys Val Trp Gln Leu 10 160 155 150 145 Asp Tyr Glu Ser Glu Pro Leu Asn Ile Thr Val Ile Lys Ala Pro Arg 175 170 165 15 Glu Lys Tyr Trp Leu Gln Phe 180 20

### Claims

25

- Recombinant soluble Fc receptor characterized by the absence of transmembrane domains, signal peptide and glycosylation.
- Recombinant Fc receptor according to claim 1,
   wherein the receptor is a FcγR or a FcεR.
  - 3. Recombinant Fc receptor according to claim 1 or 2, wherein the receptor is a Fc $\gamma$ RIIb.
- Recombinant Fc receptor according to any one of claims 1 to 3, wherein the receptor is of human origin.
  - Recombinant Fc receptor according to any one of claims 1 to 4, wherein it contains the amino acids as shown in SEQ ID NO: 1 or SEQ ID NO:2.
  - Recombinant nucleic acid containing a sequence encoding a recombinant Fc receptor according to any one of claims 1 to 5.
- Recombinant nucleic acid according to claim 6,
   wherein it contains a sequence as shown in SEQ ID NO:3 or SEQ ID NO:4.
  - Recombinant nucleic acid according to claim 6 or 7, wherein it additionally contains expression control sequences operably linked to the sequence encoding the recombinant Fc receptor.
- 9. Recombinant nucleic acid according to any one of claims 6 to 8,
   wherein it is contained on a prokaryotic expression vector, preferably a pET vector.
  - 10. Host cell characterized by the presence of a recombinant nucleic acid according to any one of claims 6 to 8.
  - Host cell according to claim 10, wherein it is a prokaryotic host cell, preferably an E. coli cell.

- 12. Process for the determination of the amount of antibodies of a certain type in the blood, plasma or serum of a patient, characterized by the use of a recombinant soluble Fc receptor according to any one of claims 1 to 5 in an immunoassay and determination of the presence of FcR-antibody complexes.
- 5 13. Process according to claim 12, wherein the immunoassay is an ELISA and preferably a sandwich assay.
  - 14. Process according to claim 12 or 13, wherein the antibodies to be determined are IgE antibodies and the recombinant soluble receptor is a FcεR.
- 10 15. Process according to claim 14 for the determination of a predisposition or manifestation of an allergy.
  - 16. Process according to claim 12 or 13, wherein the antibodies to be determined are IgG antibodies and the recombinant soluble receptor is a  $Fc\gamma R$ .
- 17. Process for the determination of the immune status of patients with chronic diseases of the immune system, wherein a Fc receptor according to any one of claims 1 to 5 is used in a competitive immunoassay and the amount of the corresponding sFcRs in the blood, plasma or serum of a patient is determined.
  - 18. Process according to claim 17, wherein the chronic disease is AIDS, SLE, MM or rheumatoid arthritis.

- 19. Use of a recombinant soluble Fc receptor according to any one of claims 1 to 5 for the screening of substances in view of their ability to act as inhibitors of the recognition and binding of antibodies to the respective cellular receptors.
- 25. Use according to claim 19, wherein recombinant soluble FcγRs are used and recognition and binding of IgG antibodies is of interest.
  - 21. Pharmaceutical composition containing as active agent a recombinant soluble FcR according to any one of claims 1 to 5.
  - 22. Pharmaceutical composition according to claim 21 for use in the treatment or prevention of autoimmune diseases, allergies or tumor diseases.
- 23. Pharmaceutical composition according to claim 21 or 22 for use in the treatment of AIDS, rheumatoid arthritis or multiple myeloma, containing a recombinant soluble FcγR preferably having the amino acid sequence as shown in SEQ ID NO:1.
  - 24. Use of a crystalline preparation of a recombinant soluble Fc receptor according to any one of claims 1 to 5 for the generation of crystal structure data of Fc receptors.
  - 25. Use of crystal structure data obtained by the use according to claim 24 for the identification and preparation of Fc receptor inhibitors.
- 26. Use of crystal structure data obtained by the use according to claim 24 for the identification and preparation of new antibody receptors.
  - 27. Use according to any one of claims 24 to 26 in a computer-aided modelling program.
- 28. FcR inhibitor characterized in that it has a three-dimensional structure which is complementary to the recombinant soluble FcR according to any one of claims 1 to 5.
  - 29. Pharmaceutical composition containing as active agent a FcR inhibitor according to claim 28.
- 30. Pharmaceutical composition according to claim 29 for use in the treatment or prevention of diseases which are due to overreactions or faulty reactions of the immune system.
  - 31. Pharmaceutical composition according to claim 29 or 30 for the treatment or prevention of allergies, autoimmune diseases or an anaphylactic shock.

32. Fc receptor according to claims 1-5, bound to a solid phase. 33. Pc receptor according to claim 32, wherein the solid phase is a chromatography carrier material. 34. Use of a chromatography carrier material according to claim 33 for the adsorption of immunoglobulins from the blood, plasma or serum of a patient or from culture supernatants of immunoglobulin producing cells. 35. Use according to claim 34 for the enrichment of antibodies from a patient's blood, serum or plasma or from culture supernatants of immunoglobulin producing cells for the conduction of further tests. 



FIG. 1



FIG. 2



FIG. 3



FIG. 4



FIG. 5A



IG. 5





FTG. 6



·IG.

Alignment (without 8	Alignment of the amino acid sequence of the extracellular parts of FcyR and FckRIa (without signal sequence and transmembrane region)
FCYRIIA FCYRIID FCYRIII FCYRI	SQAAAPPKAV LKLEPPWINV LQEDSVTLTC QGARSPESDS IQWFHNGNLI PTHTQPSYRF KANNNDSGEY TCQTGQTSLS DPVHLTVLSE WLVLQTPHLE GTPAAPPKAV LKLEPQWINV LQEDSVTLTC RGTQSPESDS IQWFHNGNLI PTHTQPSYRF KANNNDSGEY TCQTGQTSVS DPVHLTVLSE WLVLQTPHLE MRTEDLPKAV VFLEPQWYSV LEKDSVTLKC QGAYSPEDNS TQWFHNESLI SSQASSYFID AATVNDSGEY RCQTNLSTLS DPVQLEVHIG WLLLQAPRWV
FCYRIIA FCYRIID FCYRIII FCYRI	FORGETIMLR CHSWKDKPLV KVTFFQNGKS QKFSRLDPTF SIPQANHSHS GDYHCTGNIG YTLFSSKPVT ITVQVPSMGS SSPMGII  FQEGETIVLR CHSWKDKPLV KVTFFQNGKS KKFSRSDPNF SIPQANHSHS GDYHCTGNIG YTLYSSKPVT ITVQAPS SSPMGII  FKEEDPIHLR CHSWKNTALH KVTYLQNGKD RKYFHHNSDF HIPKATLKDS GSYFCRGLVG SKNVSSETVN ITITQGLAVS TISSFSPP  FTEGEPLALR CHAWKDKLVY NVLYYRNGKA FKFFHWNSNL TILKTNISHN GTYHCSG.MG KHRYTSAGIS VTVKELFPAP VLNASVTSPL LEGNLVTLSC  VMEGQPLFLR CHGWRNWDVY KVIYYKDGEA LKYWYENHNI SITNATVEDS GTYYCTGKVW QLDYESEPLAN ITVIKAPREK YWLQ
	201
FCYRIIA FCYRIII FCYRII FCYRI	ETKLLLQRPG LQLYFSFYMG SKTLRGRNTS SEYQILTARR EDSGLYWCEA ATEDGNVLKR SPELELQVLG LQLPTPV



## PARTIAL EUROPEAN SEARCH REPORT

**Application Number** 

which under Rule 45 of the European Patent ConventionEP 98 12 2969 shall be considered, for the purposes of subsequent proceedings, as the European search report

Category	Citation of document with indicati of relevant passages	on, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	EP 0 614 978 A (ROUSSEI 14 September 1994	UCLAF)	1-3,6, 8-11, 21-23	C12N15/12 C07K14/705 C12N1/21
	* page 3, line 1 - page examples *	e 7, line 33;		C12N15/70 G01N33/53 G01N33/68
(	US 5 623 053 A (LOUIS I 22 April 1997	N. GASTINEL ET AL.)	1,4,6, 8-13, 24-27	A61K38/17 C07K17/00
	* column 5, line 60 - o examples *	column 8, line 67;		
(	WO 96 40199 A (UNIVERS 19 December 1996	ITY OF PENNSYLVANIA)	1,2,4,6, 8-16, 19-22, 32-35	
	* page 22, line 24 - p. claims 13-16,36-39; ex	age 24, line 14; amples I,II * -		
X	WO 95 09002 A (UNIVERS 6 April 1995	ITY OF PENNSYLVANIA)	1,2,4,6, 8-13,16, 21,32,33	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	* page 15, line 4 - pa claims 28-31; examples		,,	C07K C12N G01N
		-/		A61K
INCO	MPLETE SEARCH			
not comp be carrie	rch Division considers that the present applic by with the EPC to such an extent that a med d out, or can only be carried out partially, for earched completely:	iningful search into the state of the art c	√do eannot	
Claims s	earched incompletely :			
Claims n	ot searched :			
28-	31			
	for the limitation of the search: ject-matter directed to	inhibitors has not b	been	
sea	rched due to the lack o	f adequate technical	- 2 <del></del>	
des	cription thereof in the	application.		
		Date of completion of the search		Examiner
	Place of search THE HAGUE	6 May 1999	Mon	tero Lopez, B
	THE HAUDE	0, 1555		
	CATEGORY OF CITED DOCUMENTS	T : theory or principle	e andenand me	
X : pa	CATEGORY OF CITED DOCUMENTS rticularly relevant if taken alone	E : earlier patent do after the filing dat	cument, but publ te	ished on, or
X:pa Y:pa doo		E : earliér patent dos after the filing dat D : document cited i L : document cited fo	cument, but publi te n the application or other reasons	ished on, or



# PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 98 12 2969

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.CI.6)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	EP 0 791 653 A (SCHERING BIOTECH CORPORATION) 27 August 1997  * column 5, line 56 - column 10, line 1;	1,2,4,6, 8-11,21, 22	
X	example III *  JÉRÔME GALON ET AL.: "Ligands and biological activities of soluble Fcgamma receptors"  IMMUNOLOGY LETTERS, vol. 44, January 1995, pages 175-181, XP000574018  * page 175, right-hand column, last paragraph - page 177, left-hand column, paragraph 1 *  * page 179, right-hand column, paragraph 3 - page 180, right-hand column, paragraph 3	1-4,6, 8-13,15, 16,19-22	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
X	* WO 92 01049 A (THE GENERAL HOSPITAL CORPORATION) 23 January 1992 * page 10, line 18 - page 11, line 19 * * page 13, line 11 - page 14, line 4; example X; table 2 *	5-11	
Ε	WO 99 05271 A (GOULD, HANNAH ET AL.) 4 February 1999  * page 4, line 6 - line 19 * * page 5, line 22 - page 6, line 2 * * page 7, line 22 - page 8, line 23 * * page 10, line 31 - page 11, line 31 *	1,2,4,6, 8-15,21, 22,32	

#### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 12 2969

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-05-1999

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 614978	Α	14-09-1994	FR CA JP	2702481 A 2118558 A 7149800 A	16-09-19 10-09-19 13-06-19
US 5623053	Α	22-04-1997	NONE		
WO 9640199	Α	19-12-1996	AU CA EP US	6386996 A 2223402 A 0831875 A 5858981 A	30-12-19 19-12-19 01-04-19 12-01-19
WO 9509002	A	06-04-1995	AU AU CA EP JP US	701919 B 7924494 A 2172392 A 0723455 A 9506072 T 5858981 A	11-02-19 18-04-19 06-04-19 31-07-19 17-06-19 12-01-19
EP 791653	A	27-08-1997	AU EP EP JP JP KR WO US CA	3740089 A 0343950 A 0449828 A 2657221 B 3501484 T 149012 B 8911490 A 5767077 A 2000355 A	12-12-19 29-11-19 09-10-19 24-09-19 04-04-19 17-08-19 30-11-19 16-06-19 19-07-19
WO 9201049	A	23-01-1992	AU CA EP JP PT US US US	658370 B 8528691 A 2087272 A 0551301 A 6504186 T 98326 A,B 5506126 A 5849898 A 5830731 A	13-04-19 04-02-19 14-01-19 21-07-19 19-05-19 30-06-19 09-04-19 15-12-19 03-11-19
WO 9905271	A	04-02-1999	NONE		

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82