

NBXX-01 型模组应用手册

利尔达科技集团股份有限公司

LIERDA SCIENCE & TECHNOLOGY GROUP CO., LTD.

文件修订历史

		/ HI	□型号	NDAZ	X-01
编制人		编制]日期	2017	0405
序号	修改日志	修改人	审核人	文件版本	修改日期
1	创建文档	Mark	沈伟峰	V1.0.170425	×C
		310031	3(0)	3.2	

目录

1,	概述	4
2,	模组介绍	4
3、	主要特性······	4
4、	功能框架图·····	4
5、	应用功能······	5
	5.1 基本描述	5
6、	引脚定义	6
	6.1 管脚描述	6
	6.2 操作模式	8
	6.3 电源供电	8
	6.4 UART 接口	10
	6.5 USIM 卡接口	11
	6.6 RI 时序状态	12
	6.7 网络状态指示	12
	6.8 RF 参考设计	13
	6.9 RF 输出功率	13
	6.10 天线要求	14
7,	电气特性、可靠性和无线特性·······	14
8,	外观及结构·······	14
Co	ontact Us·····	15

1、概述

本文档定义了利尔达 NB-IoT 模块,描述了其硬件接口、应用方法等。

本文可以帮助您快速了解模块接口规范、电气和机械特性。结合其他相应的文件,你可以快速学会 NB-IoT 模块的使用方法。

本文档中写道的 NBXX-01 代表 NB05-01, NB08-01 这两个型号的统称。

2、模组介绍

NBXX-01 模块的目的是与移动网络运营商通信基础设施设备使用 NB-IoT 广播协议(3GPP NB-IoT Rel-13)。下表 NB-IoT 模块所使用的频段。

NBXX-01 系列模块使用的频段:

Mode	NB05-01	NB08-01
H-FDD	B5 (850MHZ)	B8 (900MHZ)

NBXX-01 模块外形尺寸为 20mm×16mm×2.2mm, 该模块几乎能够满足所有的物联网应用的要求,包括车辆和个人跟踪、安全系统、无线 POS、工业 PDA,智能计量、远程维护与控制、智慧城市等等。

NBXX-01 模块是 LCC 封装,是一个 SMD 类型模块, 它可以很容易地嵌入到应用电路中。 NBXX-01 模块的设计具有节能技术, 在睡眠模式时具有超低的功耗。 该模块完全符合欧盟 RoHS 指令。

3、主要特性

以下描述是利尔达 NBXX-01 模块的详细功能、关键特性:

Feature	Implementation
Power Supply	Supply voltage: 3.1 V $^{\sim}$ 4.2 V Typical Supply voltage : 3.6
	V
Power Saving	Sleep Current: < 5uA
Transmitting Power	$23 dBm \pm 2 dB$
Sensitivity	-128dBm
Temperature Range	Operation temperature range: -30° C ~ + 85° C
USIM/ESIM Interfaces	USIM, 3.0V
UART Interfaces	Main Port: 用于命令通信和数据传输,当前支持9600的波特率
Physical Characteristics	Size: $20 \pm 0.15 \times 16 \pm 0.15 \times 2.2 \pm 0.3$ mm
Fimware upgrade	Fimware upgrade via UART Port
Antenna Interface	50 Ohm Impedance Control

4、功能框架图

如下框图介绍了 NBXX-01 的主要功能: 无线电频率、电源管理、外围接口。

图1模块功能框图

5、 应用功能

5.1 基本描述

NB-IoT 模组共有 42 个 SMT 焊盘管脚,下章节具体介绍了各个模块:

电源

门限接口

UART 接口

USIM 接口

ADC 接口

射频接口

NETLIGH

6、引脚定义

图 2 NBXX-01 型模组引脚分布

6.1 管脚描述

下面描述了 NBXX-01 的各个管脚的定义和描述: 管脚描述:

电源管脚:	<u></u>				
管脚名称	管脚号	属性	描述	DC 特性	备注
VBAT	39, 40	PΙ	主电源模块	Vmax=4.2V	
			VBAT=3. 1V~4. 2V	Vmin=3.1V	
				Vnorm=3.6V	
VDD_EXT	7	PO	为外部电路提供	Vnorm=3.0V	如果未使用,
			3.0V 电压	IOmax=20mA	保持开放状
					态。如果使用,
					建议添加一个
					$2.2~^{\sim}~4.7~\mathrm{uF}$
					旁路电容
GND	1, 2, 13 [~] 19,		地		
	21, 38, 41~42				

CWD 按口					
SWD 接口	200	TO	由怎体业坦丹口	WOI 0 4W	田子山戸田が
SWD_IO	36	IO	串行线数据信号	VOLmax=0.4V	用于出厂固件
				VOHmin=2.4V	烧写,此接口
				VILmin=-0.3V	烧写固件会重
				VILmax=0.6V	置 IMEI 号,出
				VIHmin=2.1V	厂后需要通过
				VIHmax=3.3V	UART 更新程
SWD_CLK	37	DI	串行线时钟信号	VOLmax=0.4V	序,保护 IMEI
				VOHmin=2.4V	号不被重置。
复位管脚					X
RESET	22	DI	对模块复位	RPU≈78kΩ	内部上拉,工
				VIHmax=3.3V	作时为低电平
				VIHmin=2.1V	(1.0
				VILmax=0.6V	O_{i}
模拟输入输出	· 接口		I		
RIO<1>	9	AIO	模拟		暂未使用,保
					持悬空状态
AIO<0>	32	AIO	模拟		暂未使用,保
				\bigcirc	持悬空状态
网络状态指示	· 端口				
NETLIGHT	27	DO	网络状态指示	VOLmax=0.4V	如果未使用,
				VOHmin=2.4V	保持悬空状
					态。
ADC 接口					
ADC	33	AI	通用模拟数字转换		暂未使用,保
					持悬空状态
主 UART 通信接	<u> </u>				
RXD	23	DI	接收数据	VILmax=0.6V	3.0V 电压范
				VIHmin=2.1V	围,如果未使
	76			VIHmax=3.3V	用,保持悬空
				VIIIIIdaa o. o.	状态。
TXD	24	DO		VOLmax=0.4V	3.0V 电压范
IND		טט		VOHmin=2.4V	围,如果未使
				VOIIIIIII—2. 4V	用,保持悬空
. 0)					
DT	24	DO		VOLmax=0.4V	状态。 3.0V 电压范
RI	34	DO	信号指示		
				VOHmin=2.4V	围,如果未使
					用,保持悬空
公 去 山 戸					状态
仿真端口	0-	D.T.	الله الله علما		
DBG_RXD	25	DI	接收数据	VILmax=0.6V	如果未使用,
				VIHmin=2.1V	保持悬空状态
				VIHmax=3.3V	
DBG_TXD	26	DO	发送数据	VOLmax=0.4V	如果未使用,

			_		_
				VOHmin=2.4V	保持悬空状态
USIM 接口					
USIM_VDD	31	DO	为USIM卡提供电	Vnorm=3.0V	USIM接口的所
			压		有信号应该用
USIM_RST	30	DO	USIM 复位端	VOLmax=0.4V	TVS二极管阵
				VOHmin=2.4V	列对其进行
USIM_DATA	28	10	USIM 数据端	VOLmax=0.4V	ESD 保护。
				VOHmin=2.4V	
				VILmin=-0.3V	
				VILmax=0.6V	X
				VIHmin=2.1V	
				VIHmax=3.3V	
USIM_CLK	29	DO	USIM 时钟端	VOLmax=0.4V	(1.0
				VOHmin=2.4V	\cup
USIM_GND	35		USIM地	和 GND 共地	
RF 接口					
RF_ANT	20	10	RF 天线接口	阻抗 50 Ω	
保留引脚				VA. ,	
GPIO11	6	10			如果未使用,
					保持悬空状态
NC	3~5, 8, 10~12	保留			暂时不接任何
			~ <i>O</i> /)		引脚

6.2 操作模式

NBXX-01 模块有三种操作模式, 根据使用情景确定不同级别的低功耗功能。在正常操作情况下分为:

主动模式	在主动模式下,所有的功能模块是可用的,所有的处理器是可工作的。射频发射和接受可以执行。
待机模式	在待机模式下,所有处理器都不工作,但所有外设可以工作。系统时钟是工作的并且通过时钟控制和功率控制可以减少功耗。
深度睡眠模式	在深度睡眠模式下,只有32 khz RTC工作,RTC中断或使用RTC产生的外部事件都可以改变模块的工作状态。

6.3 电源供电

NBXX-01 模块的供电范围为 3.1 V 至 4.2 V,要确保输入电压不会低于 3.1V。如果电源电压低于 3.1 V,该模块将会出现异常。模块性能的好坏很大程度上取决于电源,所以电源模块的设计是非常重要的,其中电源提供的电流至少 0.5A。

为更好的提高性能, 建议在 VBAT 附近放一个 $100\mathrm{uF}$ 的钽电容和三个陶瓷电容器 $100\mathrm{\ nf}$ 、 $100\mathrm{\ pf}$ 和 $22\mathrm{\ pf}$ 。参考电路如下图所示。

图 3 电源参考设计

上电模式:该模块可以通过给 VBAT 引脚供电而自动开始工作,时序图如下:

图 4 上电时序

掉电模式:该模块可以通过断开 VBAT 引脚的电而自动停止工作,时序图如下:

图 5 关闭电源时序

NBXX-01 模块复位:模块可以通过给复位引脚一个一定时间的低电平进行复位。推荐电路如下,可以通过寄存器或者机械开关对其输出一个低电平:

图 6 复位电路(左 MCU IO 驱动,右按键驱动)

6.4 UART 接口

NBXX-01 模块有两组 UART 端口:主通信口和调试口。

主通信端口:

TXD: 发送数据端,与底板 MCU 链接

RXD:接受数据端,与底板 MCU 链接

RI : 指示信号端,与底板 MCU 链接

主通信端口通过 AT 命令进行数据传输,波特率为 9600bps。

调试端口:

DBG_TXD: 发送数据给上位机的 COM 口

DBG RXD: 接收上位机 COM 口的数据

调试端口可通过 PC 软件 UE Log View 软件用于查看系统日志,波特率为 921600bps。

图 7 串口电路参考设计

图 8 调试串口电路参考设计

串口应用设计: 3.3V 系统的设计参考如下:

图 9 串口电压匹配电路参考设计

6.5 USIM卡接口

NBXX-01 的 ESIM、USIM 接口支持 3 GPP 规范, 适用于常规的应用工具。在模块上有一个 USIM 接口的监控电路,只支持 3.0 V的 USIM 卡。6 个引脚的 USIM 卡电路设计如下:

图 10 USIM卡座电路参考设计

为了提高 USIM 卡在应用中的可靠性和可用性。 请按照 USIM 电路设计中的标准设计。

- (1) USIM卡槽在模块的距离尽可能近,走线长度尽可能小于 200mm。
- (2) USIM 信号远离 RF 和 VBAT 电路。
- (3)确保模块和 USIM 卡槽之间的地连接短而宽。地线的走线宽度不小于 0.5mm,以保持相同的电势。USIM VDD 靠近 USIM 卡槽处需添加小于 1uF 去耦电容。
- (4) 避免 USIM_DATA 和 USIM_CLK 之间的串扰。保持它们彼此远离,并用包围的地面屏蔽它们。

- (5) 为了提供良好的 ESD 保护,建议添加一个 TVS 二极管阵列。将 TVS 管靠近 USIM 卡槽,保证模组的 USIM 接口不会被 ESD 损坏。在模块和 USIM 卡槽之间应串联 $22\,\Omega$ 电阻,以抑制 EMI 杂散传输并增强 ESD 保护。 请注意,USIM 外围电路应靠近 USIM 卡连接器。
 - (6)将 RF 旁路电容(33pF)靠近 USIM 卡槽放置,以提高 EMI 抑制。

6.6 RI时序状态

状态	RI 响应
Standby	HIGH
SMS	当接收一个 SMS 信号时, RI 变成 LOW, 维持 LOW 状态约 120ms 后变成 HIGH 状
	态
URC	一些 URC 信号可以出发 RI 保持 120ms 低电平

图 11 当接收到 URC 或者 SMS 时候的 RI 状态

6.7 网络状态指示

网络状态指示信号可以用 LED 灯进行指示,引脚工作状态在下表中列出:

状态		模块功能
LOW	该模块不工作或者没有与网络同步	
HIGH	模块与网络同步	

参考电路设计如下:

图 12 网络指示灯电路参考设计

6.8 RF参考设计

射频电路设计参考如下:

图 13 RF 电路参考设计

NBXX-01 模块提供了一个与天线相连接的射频焊盘,在天线焊盘两边有一些接地脚,目的是为了给射频部分提供更好的对地连接,此外,有一个与电路相配的 π 电容用来调节射频的性能,设计时最好靠近模块的 RF_ANT 引脚。在射频 PCB 设计时应该注意,模块射频引脚与天线射频端的特性阻抗应该设置在 50 欧姆。

6.9 RF输出功率

RF 输出功率如下表:

频率	MAX
900MHz	23dBm±2dB
850MHz	23dBm±2dB

RF 灵敏度如下表:

频率	灵敏度
900MHz	-128dBm
850MHz	-128dBm

工作频率如下表:

频率	接收	发送
900MHz	925~960MHz	880~915MHz
850MHz	869 [~] 894MHz	824 [~] 849MHz

6.10 天线要求

如下表所示 NB-IoT 天线要求:

需求
824-960MHz
€2
≥1
5
50
线性

7、电气特性、可靠性和无线特性

NBXX-01 模块模拟电压和数字电压的额定电压参数如下表所示:

参数	Min.	Max.	Unit				
VBAT	3. 1	+4.2	V				
电源最大电流	0	0. 3	A				
RMS 电流	0	0. 25	A				
数字引脚电压	-0.3	+3.0	V				
模拟引脚电压	-0.3	+4.2	V				
模拟/数字引脚在掉电状态电压	-0. 25	+0. 25	V				

工作温度:

参数	Min.	Тур.	Max.	Unit
操作温度范围	-30	+25	+85	${\mathbb C}$
存储温度范围	-40		+125	$^{\circ}$

8、外观及结构

图 14 外观图尺寸

图 15 封装图单位 (mm)

Contact Us

公司地址:杭州市文一西路 1326 号利尔达物联网科技园 1 号楼 1401

联系电话: 0571-88800000

联系邮箱: NBIoT_support@lierda.com

官方网址: Http://www.lierda.com