PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2003-182152

(43)Date of publication of application: 03.07.2003

(51)Int.Cl.

B41J 2/44

B41J 2/45 B41J 2/455

(21)Application number : 2001-390595

(71)Applicant: RICOH CO LTD

(22)Date of filing:

21.12.2001

(72)Inventor: SUZUKI HIROKATSU

(54) IMAGING APPARATUS

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an imaging apparatus exhibiting excellent gradation and color reproducibility while eliminating longitudinal streak in which the yield of LED array head is increased by managing the variation of exposure intensity distribution such that unevenness of image density becomes inconspicuous.

element array 30 where a large number of LED elements
31 are arranged in one or a plurality of rows, and a lens
array 33 for focusing light emitted from the LED
elements by lighting them with a specified driving current
based on an input signal is faced against an image
carrier and an image is formed by electrophotographic
system. In such an imaging apparatus, some characteristic values in the exposure intensity
distribution of respective LED elements averaged for the number of pixels in the main

LEGAL STATUS

[Date of request for examination]

04.11.2004

[Date of sending the examiner's decision of

scanning direction of a dither matrix are set to fall within a specified range.

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] This invention uses an LED array print head for equipment write-in [optical], and relates to image formation equipments, such as a printer which performs image formation with an electrophotography method, a digital copier, and facsimile apparatus.

[0002]

[Description of the Prior Art] With the image formation equipment which forms an image by the xerography, although it is in use to use for equipment write-in [optical] the laser scan optical system by the polygon mirror which carries out the deflection scan of a laser light source and its laser beam, in recent years, the LED array printer which used the LED array head for equipment write-in [optical] from the accelerable reason of ** attracts attention also in the high-density writing which can attain small and simplification of the whole equipment. When many LED components are arranged in a main scanning direction and an LED array head carries out burning control of each LED component based on a picture signal, the optical writing to a photo conductor top is performed, and an electrostatic latent image is formed. Here, the conventional general LED array head is explained using drawing 14. The LED array head 3 consists of an LED component array substrate 30 with which many LED components 31 arrange in the shape of a straight line, and are arranged, and the lens array section 33 by which two or more image formation lenses 32 are arranged in parallel. The light emitted from each LED component passes along two or more image formation lenses in a lens array, and they carry out image formation on a photo conductor 1. As a lens array 33, the good selfoc-lens array (brand name; it is henceforth called SLA) of condensing nature is used widely. On the other hand, since dispersion (dispersion in the lightemitting part configuration of each LED component or an array) in an LED component array and dispersion (dispersion in the optical-character ability of each lens or an installation location) in a lens array are included, the LED array head is impossible for manufacturing so that all the optical properties by each LED component may become uniform in an image surface top (on a photo conductor side) as a matter of fact. Therefore, it changes with each LED components, and in the area gradation method by binary writing, dispersion in the dot image serves as concentration unevenness, the dot image formed also appears, and a gradation expression is degraded remarkably. Since it exposes by the same LED component especially in the direction of vertical scanning by the LED array printer, said concentration unevenness will become the vertical stripe image of the direction of vertical scanning, and will be generated. Then, the quantity of light of each LED component is measured, and the approach of changing an actuation current and actuation time amount, and amending them is proposed so that all light exposure may become fixed (reference, such as JP,3-196070,A). This is creating the amendment data which control an actuation current, and attains equalization of the quantity of light so that it may fall within a specification range with the quantity of light of all LED components to the average of the quantity of light of all LED components. And existence of the LED component of the quantity of light outside the specification range which cannot be amended in that case will make the LED array head itself a defect.

[0003]

[Problem(s) to be Solved by the Invention] However, it turns out that the vertical stripe which is concentration unevenness occurs when it amends so that the quantity of light may become uniform to all LED components, and a gradation expression, graininess, and color repeatability may be worsened. Moreover, when an LED array head like 1200dpi by which densification was carried out was used, it turned out that concentration unevenness occurs especially in many cases. As this cause, dispersion in the configuration of the exposure intensity distribution of each LED component can be considered. <u>Drawing 15</u> expresses the exposure intensity distribution in the main scanning direction of the LED component in a different location. These show that the configurations of the exposure intensity distribution differ greatly, although the quantity of light is equalized by the quantity of light amendment approach from the former. In order to make an array consistency high in a high density LED array head like 1200dpi especially, it is necessary to make an LED component small, the precision on a process becomes severer, and since an LED component becomes small, there is a problem that dispersion in the configuration of the exposure intensity distribution of each LED component becomes large rather than before, from the reason of the diameter of the beam spot being minor-diameter-ized. Like JP, 11-227254, A as what observed this problem, the amendment approach of attaining equalization of luminescence intensity distribution with parameters, such as a beam diameter, is learned paying attention to the focus in the luminescence intensity distribution of each LED component. However, if compared with the conventional 600dpi about an LED array head like 1200dpi as mentioned above which carried out densification, it will be doubling an element number and that dispersion in the exposure intensity distribution of each LED component becomes large, and it will become difficult to equalize a beam diameter about the effective image width whole region (for example, about 15000 dots of A3 width of face). It became difficult to make the diameter of the beam spot of an LED component into specification within the limits, the LED array head made into a defect increased, and the cost rise accompanying large aggravation of the yield had arisen. Then, this invention is managing dispersion in exposure intensity distribution so that image concentration nonuniformity may be hard to be recognized, and the yield of an LED array head is improved and it aims at offering the image formation equipment which does not have a vertical stripe and was excellent in gradation nature or color repeatability. [0004]

[Means for Solving the Problem] In order to solve the aforementioned technical problem, in invention according to claim 1 The LED array head which has a lens array for carrying out image formation of the light which made said LED component turn on with a predetermined actuation current based on the LED component array and input signal with which many LED components were arranged by two or more trains or the single tier In the image formation equipment which is confronted with image support and forms an image with an electrophotography method About a certain weighted solidity in the exposure intensity distribution of each LED component, the value averaged for every number of pixels of the main scanning direction of a dither matrix is characterized [main] by the image formation equipment set up so that it may become a certain predetermined within the limits. Generally, near 1 [cycle/mm] has high sensibility at the spatial frequency characteristics of human being's vision, and it is known by the 600dpi pan that it will be hard to be recognized in the high-frequency field in 1200dpi units. Moreover, this human being's vision property is used, by expressing gradation in the high screen ruling periodic structure is hard to recognize, the visual storage effect is urged and the smooth gradation expression of a natural image etc. also of area gradation methods, such as a dither method which is the gradation expression in a binary printer, is attained. Therefore, to concentration change with the period of the 1pixel unit in the resolution of 600dpi and 1200dpi, human being's vision property is insensible. That is, it is expected that the image concentration unevenness is completely satisfactory on vision depending on extent of dispersion in the configuration of said 1-pixel exposure intensity distribution. Then, it is desirable to manage with the average of the exposure intensity distribution in a certain period in consideration of a vision property rather than to to manage dispersion in the exposure intensity distribution of an LED component per 1 pixel. By this invention, an image without concentration unevenness, such as a vertical stripe image, can be obtained by using the LED array head which

suppressed dispersion at the time of equalizing about a certain weighted solidity in the exposure intensity distribution of each LED component in a certain predetermined range by making the number of pixels of the main scanning direction of a dither matrix into a period.

[0005] In invention according to claim 2, it is characterized [main] by the image formation equipment according to claim 1 a certain weighted solidity of whose in the exposure intensity distribution of each of said LED component is the beam-spot area at the time of slicing the exposure intensity distribution of each LED component with a predetermined threshold. The physical relationship of fluctuation of this beam-spot area and the vertical stripe which is concentration nonuniformity found by experiment of artificers that there was correlation. However, the part which cannot take concentration nonuniformity and a response also existed (in the pixel from which beam-spot area has shifted from the average, the vertical stripe which is concentration nonuniformity might not necessarily be observed). [in / fluctuation of the beam-spot area in every pixel is large, and it is difficult for the dispersion to manage, and / in the fluctuation in every pixel / an image] Then, by using the value which averaged beam-spot area about the pixel of a dither matrix as weighted solidity, since it becomes easy to manage the dispersion, an image without concentration unevenness, such as a vertical stripe image, can be obtained. In invention according to claim 3, it is characterized [main] by the image formation equipment according to claim 1 which is the diameter of the beam spot a certain weighted solidity of whose in the exposure intensity distribution of each of said LED component is the horizontal-scanning lay length at the time of slicing the exposure intensity distribution of each LED component with a predetermined threshold. In fluctuation of the beam-spot area by dispersion in exposure intensity distribution, it turned out especially that correlation with the vertical stripe which is concentration nonuniformity is strong about fluctuation of horizontal-scanning lay length. Therefore, if the diameter of the beam spot of a main scanning direction is managed, inspection of the exposure intensity distribution of each LED component can be simplified, and a vertical stripe can be controlled effectively.

[0006] In invention according to claim 4, said predetermined threshold is characterized [main] by the image formation equipment of a publication at claims 2 and 3 set up to 10% or less to the average of the exposure peak value on the strength in all LED components. It becomes easy to take the response of the location of dispersion in the exposure intensity distribution of each LED component, and the vertical stripe which is the concentration nonuniformity in an output image by setting a predetermined threshold to 10% or less of the average of an exposure peak on the strength. In invention according to claim 5, the diameter of the beam spot of each LED component is characterized [main] by the image formation equipment of a publication at claims 1-4 which are 40 micrometers or less. About the configuration of exposure intensity distribution, to a pixel, if the breadth is too large, it cannot manage weighted solidity with a sufficient precision. Therefore, it inspects effectively on this condition. In invention according to claim 6, said image formation equipment is characterized [main] by the image formation equipment of a publication at claims 1-5 which are the so-called color picture formation equipment which forms an image with the toner of four colors of yellow, cyanogen, a Magenta, and black at least. Since concentration dispersion of each color leads to aggravation of color repeatability as it is, it is necessary to manage dispersion in the exposure intensity distribution of each LED component by this invention for high-definition-izing. In invention according to claim 7, it is characterized [main] by the image formation equipment of a publication at claims 1-6 to which a different dither matrix for every color is set. It prevents that the concentration nonuniformity for every monochrome by quantity of light dispersion laps with the same period, and emphasizes concentration nonuniformity by setting up a screen angle for every color. In invention according to claim 8, the ratio of the weighted solidity of the exposure intensity distribution equalized for every number of pixels of the main scanning direction of the dither matrix in black and the average of the weighted solidity in the whole LED array head is characterized [main] by the image formation equipment of a publication at claims 1-7 which are within the limits of a certain predetermined value in the color picture formation equipment which performs image formation of each color with the same LED array head. By inspecting using the predetermined value of the large black of lightness change, the vertical stripe image which is concentration unevenness can be prevented. In invention according to claim 9, it is characterized [main] by the image formation

equipment of a publication at claims 1-7 to which the range of said predetermined value is set for every LED array head of each color in the color picture formation equipment which performs image formation of each color with two or more LED array heads. By setting up the range of a predetermined value according to lightness change of each color, it can inspect gradually, aggravation of the yield of an LED array head can be controlled, and a cost cut can be aimed at.

[0007] In invention according to claim 10, the range of the predetermined value of black is characterized [main] by small image formation equipment according to claim 9 compared with other colors. The vertical stripe image which is concentration unevenness can be prevented by managing severely dispersion in the exposure intensity distribution of the LED array head used for the large black of lightness change compared with other colors. In invention according to claim 11, the range of the predetermined value of said black is characterized [main] by the image formation equipment according to claim 10 which is **10%. In invention according to claim 12, the range of the predetermined value of yellow is characterized [main] by the image formation equipment of a publication at large claims 9-11 compared with the predetermined value of other colors. Since the LED array head which is outside tolerance by other colors can be used by making a permissible level large for dispersion in the exposure intensity distribution of the LED array head used for the small yellow of lightness change compared with other colors, control and a cost cut of aggravation of the yield can be aimed at. In invention according to claim 13, the range of the predetermined value of said yellow is characterized [main] by the image formation equipment according to claim 12 which is **20%. In invention according to claim 14, the array consistency of the main scanning direction of the LED component in said LED array head is characterized [main] by the image formation equipment of a publication at claims 1-13 which are 1200 or more per inch. In invention according to claim 15, said LED component is characterized [main] by the image formation equipment of a publication at claims 1-14 in which burning actuation is carried out by binary image data per dot. [0008]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained to a detail based on a drawing. <u>Drawing 1</u> is the sectional view of the example 1 of the image formation equipment of this invention. It has in the center the photo conductor drum 1 which is the latent-image support which carries out revolution actuation in the direction of arrow-head A. In the perimeter the electrification equipment 2 which gives a charge uniformly to a photo conductor drum front face, the aligner 3 in which expose a photo conductor based on a picture signal, and an electrostatic latent image is made to form, and each color (black --) By the so-called revolver type developing-machine style which counters said photo conductor because yellow, cyanogen, and each development unit (4K, 4Y, 4C, 4M) equipped with the toner of a Magenta carry out a sequential revolution By imprinting the toner image on the developer 4 which makes a toner image form for every color on a photo conductor 1, and a photo conductor 1 to medium imprint belt 5a for every color in developing the electrostatic latent image on said photo conductor 1 The cleaning equipment 6 grade which removes the toner which remained on the photo conductor after the imprint process to the medium imprint equipment 5 and medium imprint equipment which obtain the toner image which carried out the color pile on said medium imprint belt 5a is arranged in order. Moreover, the imprint equipment 8 which imprints the toner image formed on the medium imprint belt to the record material 7, such as paper conveyed in the direction of arrow-head B, and the anchorage device 9 established in record material [finishing / an imprint] are also arranged like a graphic display. Electrification equipment 2 uses the so-called scorotron electrification machine. The electrification potential on a photo conductor is controlled by impressing the grid electrical potential difference Vg to the grid electrode of the shape of a mesh which counters a photo conductor. In this example, it can carry out adjustable [of this grid electrical potential difference Vg] on the basis of -700V. In addition, the configuration of an electrification machine cannot be restricted to this and can also use an electrification roller etc. The LED array head which is an aligner 3 is the configuration shown in drawing 14 mentioned above, and SLA20D of a selfoc-lens array (trade name) is used for it as a lens array. Moreover, the array consistency of the main scanning direction of an LED component is 1200dpi (1200 per inch), and the total LED element number N is 15360 pieces. The developer 4 has

contained the two component developer which consists of a toner and a carrier inside, and a toner and a carrier are charged by frictional electrification at the same time a developer is conveyed on the conveyance screw 41 at a before [drawing 1 skillful] and back side. In this example, the toner and the 50-micrometer carrier whose mean particle diameter is 6.9 micrometers were used as a developer. Moreover, the developing roller 42 which counters a photo conductor and is arranged consists of a magnet fixed to a pivotable development sleeve and the pivotable interior, and a developer is drawn on a development sleeve front face with the magnet in a developing roller. After the developer which adhered on the development sleeve after that is made into a fixed thin layer by the doctor 43 which is developer specification-part material, it is conveyed to a development field. Development bias is impressed to the development sleeve and a latent image develops because only a toner adheres to the latent image on a photo conductor by the development electric field formed between the photo conductor and the development sleeve. By this example, development bias is the so-called AC bias which superimposed the alternating current component, and is impressed to a dc component here on condition that the symmetry square wave of direct-current-voltage VB DC=-500V, and peak TSUUPIKU electricalpotential-difference Vpp= 0.8kV and frequency [of f= 2.4kHz] **. [0009] Next, control of burning actuation of an LED array is explained. Drawing 2 is the block diagram showing the configuration of the LED array actuator 10. This LED array actuator is the thing of a common knowledge configuration, and is constituted by a shift register 11, latch 12, the AND gate 13, and the LED driver 14. A shift register 11 inputs image data "0" or "1"1-dot binary in an order from a dot 1 by clock signal CLOCK, and it operates so that each of those dot data may be sent to each register inside. If all the dot data for N individual are sent, latch 12 latches the data, and if a strobe pulse STB is inputted into the AND gate 13, only the dot (LED component) to which "1" of image data was sent will be based on only the width of face of a strobe pulse STB emitting light by the LED driver 15. Next, it explains based on the block diagram showing the configuration of the LED array control section 20 in drawing 3. First, color correction and halftone processing are made in the image-processing section, and the data of RGB8bit inputted from the scanner, the frame memory, etc. are generated as CMYK1bit binary image data. Then, the FIFO (First-In First-Out) memory 21 for incorporating 1-bit binary image data from the outside by one line is formed in the input side of said LED array actuator 10. This FIFO memory 21 is reset by the horizontal-scanning line synchronizing signal / LSYNC from the controller section 22, and incorporates the image data for horizontal scanning of one line. And similarly the LED array actuator 10 is reset by the horizontal-scanning line synchronizing signal / LSYNC from the controller section 22, and image data is sent out one by one to an LED array actuator from said FIFO memory from a dot 1 to Dot N by clock signal CLOCK generated from the oscillator 23. Moreover, to said LED array actuator, the strobe pulse generating section 24 is connected into said LED array control section. This strobe pulse generating section 24 is constituted by the counter, the comparator, etc., and generates a strobe pulse STB. In the LED array actuator 10, image data will emit [the dot of "1"] light to the timing of a strobe pulse STB. These control is shown in the timing chart of drawing 4. [0010] Next, the dither matrix used by this example is explained. As shown in drawing 5, the dither matrix according to individual which had a screen include angle for every color on the basis of 200 lines is used. For example, the dither matrix of black is performing the gradation expression as the aggregate of a basic dither like <u>drawing 6</u>. Next, the inspection approach about the exposure intensity distribution of each LED component of the LED array head in this invention is explained. In this example, the beamspot area in the exposure intensity distribution of each LED component was observed. First, the flow chart of drawing 7 explains acquisition of the beam-spot area of each LED component. In addition, measurement of exposure intensity distribution is performed by the two-dimensional CCD measuring instrument, and it is detected for every pixel of XY coordinate on the level whose exposure reinforcement is 8 bits. Again. By attaching an LED array head on the stage of power feed, it is a measurable system automatically about exposure intensity distribution for every LED component. Exposure intensity-distribution [of the i-th LED component] I (i) is measured first (#1b), and this is measured about all LED components (i= 1 - N) (- (#1d)). (#1a) Subsequently, peak value Ip (i) is acquired from obtained exposure intensity-distribution I (i), this is averaged about all LED components,

and the average peak intensity value Ip0 is computed (#(Ip0= (sigmaIp (i)) / N) 1e). Subsequently, the threshold T0 which determines beam-spot area is set up (#1f). In this example, 10% of value of the average Ip0 of peak intensity was set up as a threshold T0. Subsequently, said area beyond threshold T0 is computed and it is referred to as beam-spot area S (i) (#1g). The schematic diagram of the beam-spot area in this case is shown in drawing 8. Subsequently, as an average beam-spot area, S0 is computed by averaging S (i) of all LED components (#(S0= (sigmaS (i)) / N)1h). Furthermore, it judges whether it is smaller than the predetermined area St with the obtained average beam-spot area S0 (#1i). Here, it considered as St=1600[mum^2]. When it is a false, dispersion in beam-spot area judges that it is large and concentration unevenness cannot be permitted, and does not carry this LED array head in equipment as a defect (#1j). About the decision of the threshold T0 for the above-mentioned beam-spot area calculation, a response with the generating situation of the vertical stripe which is the concentration nonuniformity of a actual image output is decided on. Especially in order to acquire correlation of the vertical stripe which are beam-spot area and concentration nonuniformity, it is desirable to set up a threshold in 10% or less of location of peak intensity.

[0011] Next, the flow chart of <u>drawing 9</u> R> 9 explains the case managed with the value which equalized the beam-spot area which is the weighted solidity of the exposure intensity distribution of each LED component with the number of pixels of the main scanning direction of a dither matrix. In this example, since the LED array head single as an aligner is used, beam-spot area is equalized using the dither matrix of black, and the number of pixels of the dither matrix of a main scanning direction is X= 32 as <u>drawing 5</u>. First, for every number X of pixels of the dither matrix of a main scanning direction, beam-spot area is equalized and average beam-spot area S_ave (k) for every dither matrix is computed (#2b). Average beam-spot area S_ave (k) of the k-th dither matrix expresses the average beam-spot area of the pixel of eye watch (kX+1) (X) (k+1) to eye watch of beam-spot area S (i) here.

$$(k+1) X$$

 $S_ave(k) = \sum S(i) / X$
 $kX+1$

Next, dispersion in average beam-spot area S_ave (k) in the k-th obtained dither matrix judges whether it is settled in C_bk as a ratio to the average beam-spot area S0 in all LED components (#2c). (|S_ave (k)-S0|/S0 <=C_bk) When it is a false, it judges that there is a large part of dispersion in the beam-spot area which cannot permit concentration nonuniformity in this LED array head, and does not carry in equipment as a defect (#2d). This predetermined value was set to C_bk=0.10 in this example. In a true case, it carries out until it repeats the above-mentioned inspection processing and becomes X>N which is all the range of an LED array head (k+1) (#2f), and if the above-mentioned inspection processing is truth, the LED array head will be made possible [loading to equipment] for concentration nonuniformity as permissible level (#2g).

[0012] Next, the example 2 of this invention is explained. <u>Drawing 10</u> is the sectional view of the example 2 of the image formation equipment of this invention. The color picture formation equipment of <u>drawing 10</u> is called so-called tandem system. Carry out revolution actuation in the direction of arrowhead C, and the photo conductor 1 which is latent-image support, the electrification equipment 2 uniformly charged in a photo conductor drum front face, the aligner 3 using the LED head in which expose a photo conductor based on a picture signal, and an electrostatic latent image is made to form, and said electrostatic latent image are developed using a toner. The developer 4 which makes a toner image form on a photo conductor, and the image formation unit equipped with the cleaning equipment 6 grade which removes the toner which remained on the photo conductor after the imprint process mentioned later are arranged for every color at the serial. Carried out the sequential imprint to the record material 7, such as paper to which the toner image formed in each photo conductor is sent with the conveyance belt 5 using each imprint equipment 8, record material was made to carry out heat fixation of the toner image on the record material which piled up each color with the anchorage device 9, and the image has been obtained. At this example, it is the description on a configuration to have the aligner

which is an LED array head for every color, and burning actuation of other LED components etc. is the same as that of an example 1 fundamentally. In addition, the halftone processing for every color is as having been shown in drawing 5.

[0013] The inspection approach about the exposure intensity distribution of each LED component of the LED array head in this invention is explained. In this example, the diameter of the beam spot of the main scanning direction in the exposure intensity distribution of each LED component was observed. Thereby, measurement is simplified compared with the time of beam-spot area, and inspection time amount can be shortened. First, the flow chart of drawing 11 explains acquisition of the diameter of the beam spot of each LED component. In addition, measurement of exposure intensity distribution is performed by the two-dimensional CCD measuring instrument, it is detected for every pixel of XY coordinate on the level whose exposure reinforcement is 8 bits, and the 1-dimensional exposure intensity distribution of a main scanning direction are acquired in data processing. Again. By attaching an LED array head on the stage of power feed, it is a measurable system automatically about exposure intensity distribution for every LED component. The exposure intensity distribution Ix of the i-th LED component (i) are measured first (#3b), and this is measured about all LED components (i= 1 - N) (-(#3d)). (#3a) Subsequently, peak value Ip (i) is acquired from obtained exposure intensity-distribution I (i), this is averaged about all LED components, and the average peak intensity value Ip0 is computed (# (Ip0= (sigmaIp (i)) / N) 3e). Subsequently, the threshold T0 which determines the diameter of the beam spot is set up (#3f). In this example, 10% of value of the average Ip0 of peak intensity was set up as a threshold T0. Subsequently, the die length sliced with said threshold T0 is computed, and it considers as the diameter Wx of the beam spot (i) (#3g). The schematic diagram of the diameter of the beam spot at this time is shown in drawing 12. Furthermore, as a diameter of the average beam spot, Wx0 is computed by averaging Wx (i) of all LED components (#(Wx0= (sigmaWx (i)) / N)3h). It judges whether it is smaller than the predetermined value Wxt with the obtained diameter Wx0 of the average beam spot (#3i). Here, it considered as Wxt=40[mum]. When it is a false, dispersion in the diameter of the beam spot judges that it is large and concentration unevenness cannot be permitted, and does not carry this LED array head in equipment as a defect (#3j). About the decision of the threshold T0 for the above-mentioned beam-spot area calculation, a response with an example 1 and the generating situation of the vertical stripe which is the concentration nonuniformity of a actual image output similarly is decided on. Especially in order to acquire correlation of the vertical stripe which are a diameter of the beam spot, and concentration nonuniformity, it is desirable to set up a threshold in 10% or less of location of peak intensity. In this example, the predetermined value which specifies the permissible variation of the diameter of the beam spot equalized by the dither matrix is set up for every color. With the large black of lightness change, it is small in a predetermined value, and by the small yellow of lightness change, specifically according to the magnitude of lightness change, the predetermined value of each color is set up so that a predetermined value may be referred to as large. Possibility that it can be used in yellow by this with black even if it is the LED array head which was substandard is high. That is, by inspecting an LED array head gradually for every color, aggravation of the yield can be controlled substantially.

[0014] The above-mentioned inspection approach is explained based on the flow chart of drawing 13. A constant col is first set as 0 (#4a). col is a constant showing a color and expresses 0:black, 1:cyanogen or a Magenta, and 2:yellow here. Next, for every number X_col of pixels of the dither matrix of a main scanning direction, the diameter of the beam spot is equalized and diameter Wx_aveof the average beam spot (k)_col for every dither matrix is computed (#4c). Diameter Wx_aveof the average beam spot (k)_col of the k-th dither matrix expresses the diameter of the average beam spot in the pixel of eye watch (kX+1) (X) (k+1) to eye watch of the diameter Wx of the beam spot (i) here. Moreover, X_col is the number of pixels of horizontal scanning of a dither matrix as shown in a table 5 in the color col at that time.

$$(k+1) X_c o l$$

 $Wx_a ve (k) _c o l = \Sigma Wx (i) / X_c o l$
 $kX_c o l + 1$

Next, the above-mentioned diameter calculation processing of the average beam spot is repeated, and it carries out about all the range of an LED array head (#4e). (k+1) (until it becomes X>N) subsequently, each ratio of said maximum of Wx_ave(k)_col to the diameter Wx0 of the average beam spot of all LED components, and the minimum value -- A_col and B_col are acquired. Here, it is A=MAX(Wx_ave(1)_col, Wx_ave(2)_col, --, Wx_ave(k)_col, --)/Wx0 B=MIN (Wx_ave(1)_col, Wx_ave(2)_col, --, Wx_ave(k)_col, --)/Wx0. In addition, in the above, the average and MAX () express maximum, and, as for MIN (), AVE () expresses the minimum value, respectively. Furthermore, it judges whether the following formulas are filled about predetermined value C_col decided for every color of a constant col (#4g).

Formula: MAX(A_col -1, 1-B_col) <= C_col C_col is set up due to C_0 < C_1 < C_2 at this time, and predetermined value C_col is large, so that lightness change of a color is small. Specifically, it was referred to as predetermined value C_1=0.15 of predetermined value C_0=0.10 of black, cyanogen, and a Magenta, and predetermined value C_2=0.20 of yellow. When processing of (#4g) is truth, according to the value of a constant Col, it judges for which color the LED array head is used. When Col is 0, an LED array head is sorted out noting that it can carry in yellow, respectively (#4l.) at cyanogen or a Magenta (#4j) (#4k), and the time of 2 at black (#4h) (#4i) and the time of 1. When processing of (#4g) is a false, a constant Col is incremented (#4m) and it returns to processing from (#4b) about the following color. When a constant Col exceeds 2 here, it judges that it is the LED array head with which (#4n) and quantity of light dispersion are not permitted, and it is not carried in equipment as a defect (#4o). Since the LED array head used for every color can be set up by the above-mentioned inspection approach according to the level of dispersion in the weighted solidity of exposure intensity distribution, the yield can aim at improvement and a cost cut substantially. In addition, although weighted solidity was made into the diameter of the beam spot in this example, a more exact inspection is attained by performing same processing in beam-spot area.

[0015]

[Effect of the Invention] The LED array head which has a lens array for carrying out image formation of the light which made said LED component turn on with a predetermined actuation current based on the LED component array and input signal with which many LED components were arranged by two or more trains or the single tier according to claim 1 as explained above In the image formation equipment which is confronted with image support and forms an image with an electrophotography method About a certain weighted solidity in the exposure intensity distribution of each LED component, the value averaged for every number of pixels of the main scanning direction of a dither matrix It is image formation equipment characterized by being set up so that it may become a certain predetermined within the limits. By observing the value which averaged the weighted solidity in consideration of a vision property for every number of pixels of the main scanning direction of a dither matrix, in case dispersion in the exposure intensity distribution of each LED component after lens array transparency is managed Correlation with the vertical stripe which is concentration nonuniformity can be taken, there is no vertical stripe, and the good image quality of gradation nature is acquired, and the yield of an LED array head becomes good, and a cost cut can be aimed at. In claim 1, the image formation equipment of this invention according to claim 2 with a certain weighted solidity in the exposure intensity distribution of each of said LED component In the LED array from which it is image formation equipment characterized by being the beam-spot area at the time of slicing the exposure intensity distribution of each LED component with a predetermined threshold, and the peak of exposure reinforcement differs for every LED component By becoming easy to take the response of a location with the vertical stripe which is concentration nonuniformity, and managing dispersion in the beam-spot area by specifying the beam-spot area in a certain threshold The good image which was compatible in sharp nature and

gradation nature can always be obtained, and the yield of an LED array head becomes good, and a cost cut can be aimed at.

[0016] In claim 1, the image formation equipment of this invention according to claim 3 with a certain weighted solidity in the exposure intensity distribution of each of said LED component Are image formation equipment characterized by being the diameter of the beam spot which is the horizontalscanning lay length at the time of slicing the exposure intensity distribution of each LED component with a predetermined threshold, and the weighted solidity of each LED component by considering as the diameter of the beam spot in a certain threshold It becomes easy to take the response of a location with the vertical stripe which is concentration nonuniformity, and the processing in inspection becomes easy. Therefore, the good image which was compatible in sharp nature and gradation nature can always be obtained, and the yield of an LED array head becomes good, and a cost cut can be aimed at. The image formation equipment of this invention according to claim 4 is set to claims 2 and 3. Said predetermined threshold Since it is image formation equipment characterized by being set up to 10% or less to the average of the exposure peak value on the strength in all LED components and becomes easy to take the response of the concentration nonuniformity generating location of the exposure intensity distribution of each LED component, and an output image, It can inspect with a sufficient precision, generating of the vertical stripe which is concentration nonuniformity can be prevented, and the good image which was compatible in sharp nature and gradation nature can always be obtained, the image formation equipment of this invention according to claim 5 be image formation equipment characterize by the diameter of the beam spot of each LED component be 40 micrometers or less in claims 1-4, can serve as conditions for manage dispersion in exposure intensity distribution with sufficient precision, and can prevent generating of the vertical stripe which be concentration nonuniformity by this, and the good image which be compatible in sharp nature and gradation nature can always be obtain. In claims 1-5, the image formation equipment of this invention according to claim 6 be image formation equipment characterize by for said image formation equipment to be the so-called color picture formation equipment which form an image with the toner of four colors of yellow, cyanogen, a Magenta, and black at least, and the image quality which be excellent in the gradation nature which be an important image quality item, or color repeatability in the color picture be acquire, and the yield of an LED array head become good, and it can aim at a cost cut.

[0017] Since the image formation equipment of this invention according to claim 7 is image formation equipment characterized by setting up a different dither matrix for every color in claims 1-6 and a screen angle can be changed and set up for every color There is no concentration nonuniformity like a vertical stripe, it is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired [it is not conspicuous and has periodic structure for every color and], and the yield of an LED array head becomes good, and a cost cut can be aimed at. The image formation equipment of this invention according to claim 8 is set to claims 1-7. In the color picture formation equipment which performs image formation of each color with the same LED array head The weighted solidity of the exposure intensity distribution equalized for every number of pixels of the main scanning direction of the dither matrix in black, Because a ratio with the average of the weighted solidity in the whole LED array head is image formation equipment characterized by being within the limits of a certain predetermined value and inspects using the predetermined value of the large black of lightness change There is no concentration nonuniformity like a vertical stripe, it is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired, and the yield of an LED array head becomes good, and a cost cut can be aimed at. The image formation equipment of this invention according to claim 9 is set to claims 1-7. In the color picture formation equipment which performs image formation of each color with two or more LED array heads By being image formation equipment characterized by setting up the range of said predetermined value for every LED array head of each color, and setting up a predetermined value with the magnitude of lightness change of each color There is no concentration nonuniformity like a vertical stripe, it is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired [inspection is made efficient,], and the yield of an LED array head becomes good, and a cost cut can be aimed at. The image formation equipment of this

invention according to claim 10 By the range of the predetermined value of black being image formation equipment characterized by the small thing compared with other colors in claim 9, and making the predetermined value of the large black of lightness change smaller than other colors [0018] which there is no concentration nonuniformity like a vertical stripe, it is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired [inspection is made efficient,], and the yield of an LED array head becomes good, and can aim at a cost cut In claim 10, the range of the predetermined value of said black is image formation equipment characterized by being **10%, and does not have concentration nonuniformity like a vertical stripe, the image formation equipment of this invention according to claim 11 is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired. The image formation equipment of this invention according to claim 12 By the range of the predetermined value of yellow being image formation equipment characterized by the large thing compared with the predetermined value of other colors in claims 9-11, and making the predetermined value of the small yellow of lightness change larger than other colors Possibility that the LED array head which was out of range can be used for yellow is built, other colors -- predetermined --There is no concentration nonuniformity like a vertical stripe, it is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired [inspection is made efficient,], and the yield of an LED array head becomes good substantially, and a cost cut can be aimed at. In claim 12, since the LED array head which is outside tolerance by other colors can be used for the range of the predetermined value of said yellow by making a permissible level large for dispersion in the exposure intensity distribution of the LED array head which is image formation equipment characterized by being **20%, and is used for the small yellow of lightness change compared with other colors, the image formation equipment of this invention according to claim 13 can aim at control and a cost cut of vield aggravation. The image formation equipment of this invention according to claim 14 In claims 1-13 the array consistency of the main scanning direction of the LED component in said LED array head Are image formation equipment characterized by being 1200 or more per inch, and it also sets on a highdensity LED array head. Dispersion in the exposure intensity distribution can be inspected efficiently, and it is obtained, without there being no concentration nonuniformity like a vertical stripe, and being stabilized and spoiling sharp nature for image quality with sufficient gradation nature and color repeatability, and the yield of an LED array head becomes good, and a cost cut can be aimed at. The image formation equipment of this invention according to claim 15 In claims 1-14 said LED component Since image formation stabilized even if it is image formation equipment characterized by burning actuation being carried out by binary image data per dot, and simplification of inspection was completed, and it carried out densification and dispersion in exposure intensity distribution became large can be performed There is no concentration nonuniformity like a vertical stripe, it is stabilized, and image quality with sufficient gradation nature and color repeatability is acquired, and the yield of an LED array head becomes good, and a cost cut can be aimed at.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the sectional view of the example 1 of the image formation equipment of this invention.

[Drawing 2] It is the block diagram showing the configuration of the LED array actuator of this invention.

[Drawing 3] It is the block diagram showing the configuration of the LED array control section of this invention.

[Drawing 4] It is the timing chart of the LED array control section of this invention.

[Drawing 5] It is drawing showing the dither matrix used by this invention.

[Drawing 6] It is drawing showing the dither matrix of the black used by this invention.

[Drawing 7] It is a flow chart for acquisition of the beam-spot area of each LED component used in the example 1 of this invention.

[Drawing 8] It is drawing showing the schematic diagram of the beam-spot area of this invention.

[Drawing 9] It is a flow chart for managing with the value which equalized the beam-spot area which is the weighted solidity of the exposure intensity distribution of each LED component of this invention.

[Drawing 10] It is the sectional view of the example 2 of the image formation equipment of this invention.

[Drawing 11] It is a flow chart for acquisition of the diameter of the beam spot of each LED component used in this invention example 2.

[Drawing 12] It is drawing showing the schematic diagram of the diameter of the beam spot of this invention.

[Drawing 13] It is a flow chart for inspecting an LED array head gradually for every color.

[Drawing 14] It is an explanatory view about the conventional general LED array head.

[Drawing 15] It is drawing showing the exposure intensity distribution in the main scanning direction of the LED component in the location where the former differs.

[Description of Notations]

1 Photo Conductor Drum, 2 Electrification Equipment, 3 Aligner (LED Array Head), Four developers, 5 Medium imprint equipment, 6 Cleaning equipment, 7 Record material, 8 Imprint equipment, 9 An anchorage device, 10 An LED array actuator, 11 Shift register, Twelve latches, 13 The AND gate, 15 An LED driver, 20 LED array control section, 21 A FIFO memory, 22 The controller section, 23 Oscillator, 24 The strobe pulse generating section, 30 An LED component array substrate, 31 An LED component, 32 image-formation lens, 33 The lens array section, 41 A conveyance screw, 42 A developing roller, 43 Doctor

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The LED array head which has a lens array for carrying out image formation of the light which made said LED component turn on with a predetermined actuation current based on the LED component array and input signal with which many LED components were arranged by two or more trains or the single tier In the image formation equipment which is confronted with image support and forms an image with an electrophotography method Image formation equipment characterized by being set up so that the value averaged for every number of pixels of the main scanning direction of a dither matrix may become a certain predetermined within the limits about a certain weighted solidity in the exposure intensity distribution of each LED component.

[Claim 2] Image formation equipment according to claim 1 characterized by a certain weighted solidity in the exposure intensity distribution of each of said LED component being the beam-spot area at the time of slicing the exposure intensity distribution of each LED component with a predetermined threshold.

[Claim 3] Image formation equipment according to claim 1 characterized by a certain weighted solidity in the exposure intensity distribution of each of said LED component being a diameter of the beam spot which is the horizontal-scanning lay length at the time of slicing the exposure intensity distribution of each LED component with a predetermined threshold.

[Claim 4] Said predetermined threshold is image formation equipment given in claims 2 and 3 characterized by being set up to 10% or less to the average of the exposure peak value on the strength in all LED components.

[Claim 5] Image formation equipment given in claims 1-4 characterized by the diameter of the beam spot of each LED component being 40 micrometers or less.

[Claim 6] Said image formation equipment is image formation equipment given in claims 1-5 characterized by being the so-called color picture formation equipment which forms an image with the toner of four colors of yellow, cyanogen, a Magenta, and black at least.

[Claim 7] Image formation equipment given in claims 1-6 characterized by setting up a different dither matrix for every color.

[Claim 8] Image formation equipment given in claims 1-7 to which the ratio of the weighted solidity of the exposure intensity distribution equalized for every number of pixels of the main scanning direction of the dither matrix in black and the average of the weighted solidity in the whole LED array head is characterized by being within the limits of a certain predetermined value in the color picture formation equipment which performs image formation of each color with the same LED array head.

[Claim 9] Image formation equipment given in claims 1-7 characterized by setting up the range of said predetermined value for every LED array head of each color in the color picture formation equipment which performs image formation of each color with two or more LED array heads.

[Claim 10] Image formation equipment according to claim 9 with which the range of the predetermined value of black is characterized by the small thing compared with other colors.

[Claim 11] The range of the predetermined value of said black is image formation equipment according

to claim 10 characterized by being **10%.

[Claim 12] Image formation equipment given in claims 9-11 to which the range of the predetermined value of yellow is characterized by the large thing compared with the predetermined value of other colors.

[Claim 13] The range of the predetermined value of said yellow is image formation equipment according to claim 12 characterized by being **20%.

[Claim 14] The array consistency of the main scanning direction of the LED component in said LED array head is image formation equipment given in claims 1-13 characterized by being 1200 or more per inch.

[Claim 15] Said LED component is image formation equipment given in claims 1-14 characterized by burning actuation being carried out by binary image data per dot.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2003-182152 (P2003-182152A)

(43)公開日 平成15年7月3日(2003.7.3)

(51) Int.CL'

識別記号

FΙ

テーマコート*(参考)

B41J 2/44

2/45

2/455

B41J 3/21 L 2C162

審査請求 未請求 請求項の数15 OL (全 12 頁)

(21)出願番号

特額2001-390595(P2001-390595)

(22)出顧日

平成13年12月21日(2001.12.21)

(71)出題人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 鈴木 宏克

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

Fターム(参考) 2C162 AE12 AE15 AE28 AE47 AF23

AF47 AF84 FA04 FA17

(54) 【発明の名称】 画像形成装置

(57)【要約】

【課題】 画像濃度ムラが認識されにくいように露光強 度分布のばらつきを管理することで、LEDアレイヘッ ドの歩留まりを良くし、かつ、縦スジがなく階調性や色 再現性に優れた画像形成装置を提供すること。

【解決手段】 多数のLED素子31が複数列または一 列に配列されたLED素子アレイ30と入力信号に基づ いて前記LED素子を所定の駆動電流にて点灯させた光 を結像するためのレンズアレイ33とを有するLEDア レイヘッドを、像担持体に対峙させて電子写真方式によ り画像を形成する画像形成装置において、各LED素子 の露光強度分布におけるある特性値について、ディザマ トリクスの主走査方向の画素数毎に平均した値が、ある 所定範囲内になるように設定されていることを特徴とす る。

【特許請求の範囲】

【請求項1】 多数のLED素子が複数列または一列に 配列されたLED素子アレイと入力信号に基づいて前記 LED素子を所定の駆動電流にて点灯させた光を結像す るためのレンズアレイとを有するLEDアレイヘッド を、像担持体に対峙させて電子写真方式により画像を形 成する画像形成装置において、各LED素子の露光強度 分布におけるある特性値について、ディザマトリクスの 主走査方向の画素数毎に平均した値が、ある所定範囲内 装置。

【請求項2】 前記各LED素子の露光強度分布におけ るある特性値とは、各LED素子の露光強度分布を所定 間値でスライスした際のピームスポット面積であること を特徴とする請求項1に記載の画像形成装置。

【請求項3】 前記各LED素子の露光強度分布におけ るある特性値とは、各LED素子の露光強度分布を所定 閾値でスライスした際の主走査方向の長さであるビーム スポット径であることを特徴とする請求項1に記載の画 像形成装置。

【請求項4】 前記所定閾値は、全LED素子における 露光強度ピーク値の平均値に対して10%以下に設定さ れていることを特徴とする請求項2および3に記載の画 像形成装置。

【請求項5】 各LED素子のビームスポット径が40 μm以下であることを特徴とする請求項1から4に記載 の画像形成装置。

【請求項6】 前記画像形成装置は、少なくともイエロ ー、シアン、マゼンタ、ブラックの4色のトナーにより 画像を形成する、いわゆるカラー画像形成装置であるこ 30 とを特徴とする請求項1から5に記載の画像形成装置。 【請求項7】 各色ごとに異なるディザマトリクスが設 定されていることを特徴とする請求項1から6に記載の 画像形成装置。

【請求項8】 同一のLEDアレイヘッドにて各色の画 像形成を行なうカラー画像形成装置において、ブラック でのディザマトリクスの主走査方向の画素数毎に平均化 した露光強度分布の特性値と、LEDアレイヘッド全体 での特性値の平均値との比が、ある所定値の範囲内であ ることを特徴とする請求項1から7に記載の画像形成装 40 置。

【請求項9】 複数のLEDアレイヘッドにて各色の画 像形成を行なうカラー画像形成装置において、各色のL EDアレイヘッド毎に前記所定値の範囲が設定されてい ることを特徴とする請求項1から7に記載の画像形成装 置。

【請求項10】 ブラックの所定値の範囲が他の色に比 べ小さいことを特徴とする請求項9に記載の画像形成装 置。

0%であることを特徴とする請求項10に記載の画像形 成装置。

【請求項12】 イエローの所定値の範囲が他の色の所 定値に比べて大きいことを特徴とする請求項9から11 に記載の画像形成装置。

【請求項13】 前記イエローの所定値の範囲は、±2 0%であることを特徴とする請求項12に記載の画像形 成装置。

【請求項14】 前記LEDアレイヘッド中のLED素 になるように設定されていることを特徴とする画像形成 10 子の主走査方向の配列密度は、1インチあたり1200 個以上であることを特徴とする請求項1から13に記載 の画像形成装置。

> 【請求項15】 前記LED素子は、1ドットあたり2 値の画像データにより点灯駆動されることを特徴とする 請求項1から14に記載の画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光書込装置にLE Dアレイプリントヘッドを用いて、電子写真方式により 20 画像形成を行うプリンタ、デジタル複写機、ファクシミ リ装置等の画像形成装置に関するものである。

[0002]

【従来の技術】電子写真法により画像を形成する画像形 成装置では、光書込装置にレーザ光源とそのレーザ光を **偏向走査させるポリゴンミラー等によるレーザ走査光学** 系を用いるのが主流であるが、近年では、装置全体の小 型・簡易化が図れる、高密度な書込みにおいても高速化 が可能である、等の理由から、光書込装置にLEDアレ イヘッドを用いたLEDアレイプリンタが注目されてい る。LEDアレイヘッドは、多数のLED素子が主走査 方向に配列されたものであり、各LED素子を画像信号 に基づき点灯制御することにより感光体上に対する光書 き込みが行われ、静電潜像が形成される。ここで、従来 の一般的なLEDアレイヘッドについて、図14を用い て説明する。LEDアレイヘッド3は、多数のLED素 子31が直線状に並べて配置されているLED素子アレ イ基板30と、複数の結像レンズ32が並列されている レンズアレイ部33から構成される。各LED素子から 発せられた光はレンズアレイ中の複数の結像レンズを通 り、感光体1上に結像する。レンズアレイ33として は、集光性の良いセルフォックレンズアレイ(商標名: 以後SLAという) が広く用いられている。一方、LE Dアレイヘッドは、LED素子アレイにおけるばらつき (各LED素子の発光部形状や配列のばらつき)とレン ズアレイにおけるばらつき(各レンズの光学性能や設置 位置のばらつき)を含むために、像面上(感光体面上) においては各LED素子による光学特性が全て均一とな るように製造することは事実上不可能である。よって、 形成されるドット画像も各LED素子によって異なり、 【請求項11】 前記ブラックの所定値の範囲は、±1 50 2値書込みによる面積階調方式においては、そのドット

画像のばらつきが濃度むらとなって現れ、階調表現を著 しく劣化させる。特にLEDアレイプリンタでは副走査 方向においては同一のLED素子によって露光を行なう ので、前記濃度むらは副走査方向の縦スジ画像となって 発生してしまう。そこで、露光量が全て一定になるよう に、各LED素子の光量を計測して、駆動電流及び駆動 時間を変化させるなどして補正する方法が提案されてい る (特開平3-196070号公報等参照)。 これは全 LED素子の光量の平均値に対して、すべてのLED素 子の光量がある規格範囲内に収まるように、駆動電流を 10 制御する補正データを作成することで、光量の均一化を 図るものである。そして、その際に補正しきれない規格 範囲外の光量のLED素子が存在すると、そのLEDア レイヘッド自体が不良とされてしまう。

[0003]

【発明が解決しようとする課題】ところが、全てのLE D素子に対して光量が均一となるように補正した場合に おいても、濃度むらである縦スジが発生し、階調表現や 粒状性および色再現性を悪化させる場合があることがわ かっている。 また、1200 dp i のような高密度化さ れたLEDアレイヘッドを使用する場合において、濃度 むらの発生することが特に多いことがわかった。この原 因としては、各LED素子の露光強度分布の形状のばら つきが考えられる。図15は異なる位置にあるLED素 子の、主走査方向における露光強度分布を表している。 これらは従来からの光量補正方法によって光量が均一化 されているが、その露光強度分布の形状が大きく異なる ことを示している。特に、1200dpiのような高密 度LEDアレイヘッドにおいては配列密度を高くするた めにLED素子を小さくする必要があり、製法上の精度 30 がより厳しくなる、および、LED素子が小さくなるこ とからビームスポット径が小径化される、などの理由か ら、従来よりも各LED素子の露光強度分布の形状のば らつきが大きくなるという問題がある。この問題に注目 したものとして特開平11-227254号公報のよう に、各LED素子の発光強度分布における特徴点に注目 して、ビーム径などのパラメータで発光強度分布の均一 化を図る補正方法が知られている。しかしながら、前述 のように1200dpiのような高密度化したLEDア レイヘッドについては従来の600dpiに比べれば素 子数は倍増することと、各LED素子の露光強度分布の ばらつきが大きくなることで、有効画像幅全域 (例えば A3幅の約15000ドット) についてビーム径を均一 化することが困難になってくる。LED素子のビームス ポット径を規格範囲内にすることが難しくなり、不良と されるLEDアレイヘッドが増加し、歩留まりの大幅な 悪化に伴うコストアップが生じてしまっていた。そこで 本発明は画像濃度ムラが認識されにくいように露光強度 分布のばらつきを管理することで、LEDアレイヘッド の歩留まりを良くし、かつ、縦スジがなく階調性や色再 50 ことで、そのばらつきを管理しやすくなるので、縦スジ

現性に優れた画像形成装置を提供することを目的とす

[0004]

る。

【課題を解決するための手段】前記の課題を解決するた めに、請求項1記載の発明では、多数のLED素子が複 数列または一列に配列されたLED素子アレイと入力信 号に基づいて前記LED素子を所定の駆動電流にて点灯 させた光を結像するためのレンズアレイとを有するLE Dアレイヘッドを、像担持体に対峙させて電子写真方式 により画像を形成する画像形成装置において、各LED 素子の露光強度分布におけるある特性値について、ディ ザマトリクスの主走査方向の画素数毎に平均した値が、 ある所定範囲内になるように設定されている画像形成装 置を最も主要な特徴とする。一般的に、人間の視覚の空 間周波数特性で感度が高いのは1[cycle/mm] 付近であり、600dpiさらには1200dpi単位 での高周波数領域においては認識されにくいことが知ら れている。また、2値プリンタにおいての階調表現であ るディザ法などの面積階調方式もこの人間の視覚特性を 利用しており、周期構造が認識しづらい高スクリーン線 数にて階調を表現することで、視覚の積分効果を促し、 自然画像などのなめらかな階調表現が可能となる。よっ て、600 dp i および1200 dp i の解像度におけ る1 画素単位の周期での濃度変化に対しては、人間の視 覚特性は鈍感である。 つまり、前記1画素の露光強度分 布の形状のばらつきの程度によっては、その画像濃度む らは視覚上まったく問題がないことが予想される。そこ でLED素子の露光強度分布のばらつきを1画素単位で 管理するのではなく、視覚特性を考慮したある周期にお ける露光強度分布の平均値によって管理することが望ま しい。本発明ではディザマトリクスの主走査方向の画素 数を周期として、各LED素子の露光強度分布における ある特性値について平均化した際のばらつきをある所定 範囲に抑えたLEDアレイヘッドを用いることで、縦ス ジ画像などの濃度むらのない画像を得ることができる。 【0005】請求項2記載の発明では、前記各LED素 子の露光強度分布におけるある特性値とは、各LED素 子の露光強度分布を所定閾値でスライスした際のビーム スポット面積である請求項1に記載の画像形成装置を主 要な特徴とする。このビームスポット面積の変動と濃度 ムラである縦スジとの位置関係には相関があることが発 明者らの実験によりわかった。しかしながら、1 画素毎 におけるビームスポット面積の変動は大きく、そのばら つきが管理するのが困難で、また1画素毎の変動は画像 における濃度ムラと対応が取れない部分も存在した(平 均よりビームスポット面積がずれている画素において、 かならずしも濃度ムラである縦スジが観察されないこと があった)。そこで、ビームスポット面積をディザマト リクスの画素について平均した値を特性値として用いる

画像などの濃度むらのない画像を得ることができる。請 求項3記載の発明では、前記各LED素子の露光強度分 布におけるある特性値とは、各LED素子の露光強度分 布を所定閾値でスライスした際の主走査方向の長さであ るビームスポット径である請求項1に記載の画像形成装 置を主要な特徴とする。露光強度分布のばらつきによる ビームスポット面積の変動において、特に主走査方向の 長さの変動について濃度ムラである縦スジとの相関が強 いことがわかった。よって主走査方向のビームスポット 径を管理すれば、各LED素子の露光強度分布の検査が 10 簡単化でき、かつ効果的に縦スジを抑制することができ る。

【0006】請求項4記載の発明では、前記所定閾値 は、全LED素子における露光強度ピーク値の平均値に 対して10%以下に設定されている請求項2および3に 記載の画像形成装置を主要な特徴とする。所定閾値を露 光強度ピークの平均値の10%以下に設定することで、 各LED素子の露光強度分布のばらつきと出力画像での 濃度ムラである縦スジとの位置の対応をとりやすくな る。請求項5記載の発明では、各LED素子のビームス 20 ポット径が40μm以下である請求項1から4に記載の 画像形成装置を主要な特徴とする。露光強度分布の形状 について、その広がりが画素に対し大きすぎると特性値 を精度良く管理することができない。よってこの条件に て効果的に検査を行なうものである。請求項6記載の発 明では、前記画像形成装置は、少なくともイエロー、シ アン、マゼンタ、ブラックの4色のトナーにより画像を 形成する、いわゆるカラー画像形成装置である請求項1 から5に記載の画像形成装置を主要な特徴とする。各色 の濃度ばらつきはそのまま色再現性の悪化につながるの 30 で、高画質化のために各LED素子の露光強度分布のば らつきを本発明により管理する必要がある。 請求項7記 載の発明では、各色ごとに異なるディザマトリクスが設 定されている請求項1から6に記載の画像形成装置を主 要な特徴とする。各色毎にスクリーン角を設定すること で、光量ばらつきによる単色毎の濃度ムラが同じ周期に 重なって濃度ムラを強調することを防止する。 請求項8 記載の発明では、同一のLEDアレイヘッドにて各色の 画像形成を行なうカラー画像形成装置において、ブラッ クでのディザマトリクスの主走査方向の画素数毎に平均 化した露光強度分布の特性値と、LEDアレイヘッド全 体での特性値の平均値との比が、ある所定値の範囲内で ある請求項1から7に記載の画像形成装置を主要な特徴 とする。明度変化の大きいブラックの所定値を用いて検 査することで、濃度むらである縦スジ画像を防止するこ とができる。請求項9記載の発明では、複数のLEDア レイヘッドにて各色の画像形成を行なうカラー画像形成 装置において、各色のLEDアレイヘッド毎に前記所定 値の範囲が設定されている請求項1から7に記載の画像

所定値の範囲を設定することで、段階的に検査を行な い、LEDアレイヘッドの歩留まりの悪化を抑制でき、 コストダウンが図れる。

【0007】請求項10記載の発明では、ブラックの所 定値の範囲が他の色に比べ小さい請求項9に記載の画像 形成装置を主要な特徴とする。明度変化の大きいブラッ クに用いる LEDアレイヘッドの露光強度分布のばらつ きを、他の色に比べて厳しく管理することにより、濃度 むらである縦スジ画像を防止することができる。請求項 11記載の発明では、前記ブラックの所定値の範囲は、 ±10%である請求項10に記載の画像形成装置を主要 な特徴とする。 請求項12記載の発明では、イエローの 所定値の範囲が他の色の所定値に比べて大きい請求項9 から11に記載の画像形成装置を主要な特徴とする。明 度変化の小さいイエローに用いるLEDアレイヘッドの 露光強度分布のばらつきを、他の色に比べて許容レベル を広くすることにより、他の色では許容範囲外であるし EDアレイヘッドを使用することができるので、歩留ま りの悪化の抑制とコストダウンが図れる。請求項13記 載の発明では、前記イエローの所定値の範囲は、±20 %である請求項12に記載の画像形成装置を主要な特徴 とする。請求項14記載の発明では、前記LEDアレイ ヘッド中のLED素子の主走査方向の配列密度は、1イ ンチあたり1200個以上である請求項1から13に記 載の画像形成装置を主要な特徴とする。 請求項15記載 の発明では、前記LED素子は、1ドットあたり2値の 画像データにより点灯駆動される請求項1から14に記 載の画像形成装置を主要な特徴とする。

[0008]

【発明の実施の形態】以下、図面に基づき本発明の実施 の形態を詳細に説明する。図1は本発明の画像形成装置 の実施例1の断面図である。矢印A方向に回転駆動する 潜像担持体である感光体ドラム1を中央に備え、その周 囲には、感光体ドラム表面に一様に電荷を付与する帯電 装置2、画像信号に基づき感光体を露光して静電潜像を 形成させる露光装置3、各色(ブラック、イエロー、シ アン、マゼンタ)のトナーを備えた各現像ユニット(4 K. 4Y. 4C. 4M) が順次回転することで前記感光 体に対向する、いわゆるリボルバー式現像機構により、 前記感光体1上の静電潜像を現像することで、感光体1 上に各色毎にトナー像を形成させる現像装置4、感光体 1上のトナー像を各色毎に中間転写ベルト5aに転写す ることで、前記中間転写ベルト5a上で色重ねしたトナ 一像を得る中間転写装置5、中間転写装置への転写工程 後に感光体上に残ったトナーを除去するクリーニング装 置6等が順に配置されている。また、中間転写ベルト上 に形成したトナー像を矢印B方向に搬送されてくる紙な どの記録材7に転写する転写装置8、転写済みの記録材 を定着する定着装置9も図示のように配置される。 帯電 形成装置を主要な特徴とする。各色の明度変化に応じて 50 装置2はいわゆるスコロトロン帯電器を用いている。感

30

光体に対向するメッシュ状のグリッド電極に、グリッド 電圧Vgを印加することにより感光体上の帯電電位を制 御する。本実施例ではこのグリッド電圧Vgは-700 Vを基準とし、可変することができる。なお、帯電器の 構成はこれに限るものではなく、帯電ローラ等を用いる こともできる。露光装置3であるLEDアレイヘッド は、前述した図14に示した構成で、レンズアレイとし ては、セルフォックレンズアレイ(商品名)のSLA2 ODを用いている。またLED累子の主走査方向の配列 密度は1200dpi(1インチあたり1200個)で 10 あり、全LED素子数Nは15360個である。現像装 置4は、トナーとキャリアからなる二成分現像剤を内部 に収納しており、搬送スクリュー41によって現像剤が 図1上手前側と奥側に搬送されると同時にトナーとキャ リアが摩擦帯電によって帯電する。本実施例では現像剤 として、平均粒径が6.9µmのトナーと50µmのキ ャリアを用いた。また感光体に対向して配置される現像 ローラ42は回転可能な現像スリーブと内部に固定され た磁石からなり、現像ローラ内の磁石により現像剤は現 像スリーブ表面に引き付けられる。その後現像スリーブ 20 の上に付着した現像剤は現像剤規制部材であるドクタ4 3によって一定の薄層にされた後に、現像領域に搬送さ れる。現像スリーブには現像バイアスが印加されてお り、感光体と現像スリーブ間で形成された現像電界によ り感光体上の潜像にトナーのみが付着することで潜像が 顕像化する。ここで本実施例では、現像バイアスは直流 成分に交流成分を重畳した、いわゆる交流バイアスで、 直流電圧VB__D.C=-500V、ピークツウピーク電 EVpp=0.8kV、周波数f=2.4kHz、の対 称矩形波の条件で印加している。

【0009】次にLEDアレイの点灯駆動の制御につい て説明する。図2はLEDアレイ駆動部10の構成を示 すブロック図である。このLEDアレイ駆動部は周知構 成のものであり、シフトレジスタ11とラッチ12とA NDゲート13とLEDドライバ14とにより構成され ている。シフトレジスタ11はクロック信号CLOCK によって "0" 又は "1" なる1ドット2値の画像デー タをドット1から順番に入力し、内部ではその各ドット データを各レジスタに送るように動作する。N個分の全 てのドットデータが送られるとラッチ12がそのデータ をラッチし、ストローブパルスSTBがANDゲート1 3に入力されると、画像データの"1"が送られたドッ ト (LED素子) のみがLEDドライバ15によってス トローブパルスSTBの幅だけ発光することを基本とす る。次にLEDアレイ制御部20の構成を図3に示すブ ロック図に基づき説明する。まず、スキャナやフレーム メモリ等から入力されたRGB8bitのデータが画像 処理部にて色補正、中間調処理がなされ、CMYK1b it2値の画像データとして生成される。その後、1ビ ット2値の画像データを1ライン分外部から取り込むた 50 所定面積Stより小さいか否かを判断する(#1i)。

めのFIFO (First-In First-Out) メモリ21が前記 LEDアレイ駆動部10の入力側に設けられている。こ のFIFOメモリ21はコントローラ部22からの主走 **査ライン同期信号/LSYNCによってリセットされ、** 主走査1ライン分の画像データを取り込む。そして、同 じくコントローラ部22からの主走査ライン同期信号/ LSYNCでLEDアレイ駆動部10がリセットされ、 発振器23から発生したクロック信号CLOCKにより 前記FIFOメモリから画像データがドット1からドッ トNまで順次LEDアレイ駆動部に送出される。また、 前記LEDアレイ制御部中において前記LEDアレイ駆 動部に対しては、ストローブパルス発生部24が接続さ れている。このストローブパルス発生部24は例えばカ ウンタ、コンパレータ等により構成されており、ストロ ーブパルスSTBを発生する。LEDアレイ駆動部10 では、画像データが"1"のドットがストローブパルス STBのタイミングで発光することになる。これらの制 御を図4のタイミングチャートに示してある。

【0010】次に本実施例で用いるディザマトリクスに ついて説明する。図5に示すように、200線を基本と して、各色毎にスクリーン角度を持った個別のディザマ トリクスを用いている。例えば、ブラックのディザマト リクスは図6のような基本ディザの集合体として階調表 現を行なっている。次に、本発明におけるLEDアレイ ヘッドの各LED素子の露光強度分布についての検査方 法について説明する。本実施例においては、各LED素 子の露光強度分布におけるビームスポット面積に注目し た。まず、各LED素子のビームスポット面積の取得に ついて、図7のフローチャートにて説明する。 なお露光 強度分布の測定は、2次元CCD測定器にて行なわれ、 XY座標の画素毎に露光強度が8bitのレベルで検出 される。また。LEDアレイヘッドを自動送りのステー ジ上に取り付けることで、各LED素子毎に露光強度分 布を自動的に計測可能なシステムになっている。先ずi 番目のLED素子の露光強度分布I(i)を測定し(# 1b)、これを全LED素子について($i=1\sim N$) 測 定する ((#1a)~(#1d))。 次いで得られた露 光強度分布 I(i) からピーク値 Ip(i) を得、これ を全LED素子について平均し、平均ピーク強度値Ip Oを算出する(IpO=(Σ Ip(i))/N)(#1 e)。次いでビームスポット面積を決定する閾値TOを 設定する(#1f)。本実施例ではピーク強度の平均値 Ip0の10%の値を閾値T0として設定した。次いで 前記閾値TO以上の面積を算出し、ビームスポット面積 S(i)とする(#1g)。この際のビームスポット面 積の概略図を図8に示してある。 次いで平均ビームスポ ット面積として、全LED素子のS(i)を平均してS Oを算出する (SO=(ΣS(i))/N) (#1 h)。更に得られた平均ビームスポット面積SOがある

ここで、 $St = 1600 [\mu m^{2}]$ とした。偽である ときは、このLEDアレイヘッドはビームスポット面積 のばらつきが大きく、濃度むらが許容できないと判断 し、不良として装置には搭載しない(#1j)。上記ビ ームスポット面積算出のための閾値TOの決定について は、実際の画像出力結果の濃度ムラである縦スジの発生 状況との対応とって決める。ビームスポット面積と濃度

ムラである縦スジの相関を得るためには、特にピーク強 度の10%以下の位置で閾値を設定することが望まし 11.

【0011】次に、ディザマトリクスの主走査方向の画 素数にて各LED素子の露光強度分布の特性値であるビ ームスポット面積を平均化した値で管理する事例を、図 9のフローチャートにて説明する。本実施例において は、露光装置としては単一のLEDアレイヘッドを用い ているため、ブラックのディザマトリクスを用いてビー ムスポット面積の平均化を行なっており、主走査方向の ディザマトリクスの画素数は図5の通りX=32であ る。先ず主走査方向のディザマトリクスの画素数X毎 毎の平均ビームスポット面積S_ave(k)を算出す る(#2b)。ここでk番目のディザマトリクスの平均 ビームスポット面積S_ave(k)は、ビームスポッ ト面積S(i)の、(kX+1)番目から((k+1) X) 番目の画素の平均ビームスポット面積を表す。

(k+1)X $S_ave(k) = \Sigma S(i) / X$ k X + 1

次に全LED素子での平均ビームスポット面積SOに対 して、得られた k 番目のディザマトリクスでの平均ビー 30 ムスポット面積S ave(k)のばらつきが、比率と してC_bk内に収まっているか否か(|S_ave (k)-S0|/S0≤C_bk)を判断する(#2 c)。偽であるときは、このLEDアレイヘッドには濃 度ムラが許容できない、ビームスポット面積のばらつき の大きい部分があると判断し、不良として装置には搭載 しない(#2d)。本実施例においてはこの所定値をC _bk=0.10とした。 真の場合は、上記検査処理を 繰り返しLEDアレイヘッドの全範囲である(k+1) X>Nになるまで行い(#2f)、上記の検査処理が真 40 であれば、そのLEDアレイヘッドは濃度ムラは許容で きるレベルとして、装置への搭載が可能であるとする (#2g).

【0012】次に本発明の実施例2について説明する。 図10は本発明の画像形成装置の実施例2の断面図であ る。図10のカラー画像形成装置は、いわゆるタンデム 方式といわれ、矢印C方向に回転駆動し潜像担持体であ る感光体1、感光体ドラム表面を一様に帯電する帯電装 置2、画像信号に基づき感光体を露光して静電潜像を形

像をトナーを用いて現像して、感光体上にトナー像を形 成させる現像装置4、後述する転写工程後に感光体上に 残ったトナーを除去するクリーニング装置6等を備えた 画像形成ユニットが各色毎に直列に配置されており、各 感光体において形成されたトナー像を、 各転写装置8を 用いて搬送ベルト5により送られる紙などの記録材7へ 順次転写し、定着装置9にて各色を重ね合わせた記録材 上のトナー像を記録材に熱定着させて画像を得ている。 本実施例では各色毎にLEDアレイヘッドである露光装 10 置を備えていることが構成上の特徴であり、その他のL ED素子の点灯駆動などは基本的に実施例1と同様であ る。なお各色毎の中間調処理は図5に示したとおりであ る。

【0013】本発明におけるLEDアレイヘッドの各し

10

ED素子の露光強度分布についての検査方法について説 明する。本実施例においては、各LED素子の露光強度 分布における主走査方向のビームスポット径に注目し た。これにより、ビームスポット面積のときにくらべ測 定が簡単化され、検査時間を短縮することが出来る。ま に、ビームスポット面積を平均化し、ディザマトリクス 20 ず、各LED素子のビームスポット径の取得について、 図11のフローチャートにて説明する。 なお露光強度分 布の測定は、2次元CCD測定器にて行なわれ、XY座 標の画素毎に露光強度が8bitのレベルで検出され、 データ処理にて主走査方向の1次元の露光強度分布が得 られる。また。LEDアレイヘッドを自動送りのステー ジ上に取り付けることで、各LED素子毎に露光強度分 布を自動的に計測可能なシステムになっている。先ずi 番目のLED素子の露光強度分布Ix(i)を測定し (#3b)、これを全LED素子について $(i=1\sim$ N) 測定する ((#3a)~(#3d))。 次いで得ら れた露光強度分布I(i)からピーク値Ip(i)を 得、これを全LED素子について平均し、平均ピーク強 度値IpOを算出する(IpO=(ΣIp(i))/ N) (#3e). 次いでビームスポット径を決定する閾 値TOを設定する(#3f)。本実施例ではピーク強度 の平均値 I p 0の10%の値を閾値T0として設定し た。次いで前記閾値TOにてスライスされた長さを算出 し、ビームスポット径Wx(i)とする(#3g)。こ のときのビームスポット径の機略図を図12に示す。更 に平均ビームスポット径として、全LED素子のWx (i)を平均してWx0を算出する(Wx0=(ΣWx (i))/N)(#3h)。得られた平均ビームスポッ ト径WxOがある所定値Wxtより小さいか否かを判断 する (#3 i)。ここで、Wxt=40 [μm] とし た。偽であるときは、このLEDアレイヘッドはビーム スポット径のばらつきが大きく、濃度むらが許容できな いと判断し、不良として装置には搭載しない(#3 j)。上記ビームスポット面積算出のための閾値TOの 決定については、実施例1と同様に実際の画像出力結果 成させるLEDヘッドを用いた露光装置3、前記静電潜 50 の濃度ムラである縦スジの発生状況との対応とって決め 11

る。ビームスポット径と濃度ムラである縦スジの相関を 得るためには、特にピーク強度の10%以下の位置で関 値を設定することが望ましい。本実施例では、ディザマ トリクスで平均化したビームスポット径の許容ばらつき を規定する所定値を、各色毎に設定している。具体的に は、明度変化の大きいブラックでは所定値を小さく、明 度変化の小さいイエローでは所定値を大きく、というよ うに、明度変化の大きさに合わせて各色の所定値を設定 している。これにより、ブラックでは規格外であったし できる可能性が高い。つまりLEDアレイヘッドを各色 毎に段階的に検査することで、歩留まりの悪化を大幅に 抑制することができる。

【0014】上記の検査方法について図13のフローチ*

 $(k+1) X_col$

 $Wx_ave(k)_col = \Sigma Wx(i)/X_col$ kX_col+1

次に上記平均ビームスポット径算出処理を繰り返し、L EDアレイヘッドの全範囲について行う((k+1)X 均ビームスポット径Wx0に対する、前記Wx_ave (k)_colの最大値と最小値のそれぞれの比A_c o1, B_colを取得する。ここで、

 $A=MAX(Wx_ave(1)_col, Wx_av$ e(2)_col, ..., Wx_ave(k)_col, ···) /Wx0

 $B=MIN(Wx_ave(1)_col,Wx_av$ e(2)_col, ..., Wx_ave(k)_col, ...) /Wx0

AX()は最大値、MIN()は最小値を、それぞ れあらわす。更に定数colの色毎に決められた所定値 C_colについて、以下の式を満たすか否か判断する (#4g).

式: $MAX(A_col-1, 1-B_col) \le C_$ col

このときC colはC_0<C_1<C_2の関係で 設定されており、色の明度変化が小さいほど所定値C_ colが大きくなっている。具体的には、ブラックの所 定値C_0=0.10、シアンおよびマゼンタの所定値 40 C_1=0.15、イエローの所定値C_2=0.20 とした。(#4g)の処理が真の時は、定数Colの値 に応じて、そのLEDアレイヘッドがどの色に用いられ るかを判断する。ColがOのときはブラック(#4 h) (#4i)、1のときはシアンまたはマゼンタ(# 4j) (#4k)、2のときはイエローに(#41) そ れぞれ搭載可能であるとして、LEDアレイヘッドが選 別される。(#4g)の処理が偽の時は、定数Co1を インクリメントし(#4m)、次の色について(#4

*ャートに基づき説明する。先ず定数colをOに設定す る (#4a)。ここでcolは色を表す定数で、0:ブ ラック、1:シアンまたはマゼンタ、2:イエローを表 す。次に主走査方向のディザマトリクスの画素数X_c o 1 毎に、ビームスポット径を平均化し、ディザマトリ クス毎の平均ビームスポット径Wx_ave(k)_c o 1を算出する(#4c)。ここでk番目のディザマト リクスの平均ピームスポット径Wx_ave(k)_c o 1 は、ビームスポット径Wx(i)の、(kX+1) EDアレイヘッドであっても、イエローにおいては使用 10 番目から((k+1)X)番目の画素における平均ビー ムスポット径を表す。また、X_colはそのときの色 colにおける、表5に示すようなディザマトリクスの 主走査の画素数である。

※た場合には(#4n)、光量ばらつきが許容されないL EDアレイヘッドであると判断し、不良として装置には >Nになるまで)(#4e)。次いで全LED素子の平 20 搭載されない(#4o)。上記の検査方法により、露光 強度分布の特性値のばらつきのレベルに応じて、色毎に 使用するLEDアレイヘッドを設定できるため、歩留ま りが大幅に向上とコストダウンを図ることができる。な お、本実施例では特性値をビームスポット径としたが、 ビームスポット面積で同様な処理を行なうことでより正 確な検査が可能となる。

[0015]

【発明の効果】以上説明したように、請求項1によれ ば、多数のLED素子が複数列または一列に配列された である。なお、上記においてAVE()は平均値、M 30 LED素子アレイと入力信号に基づいて前記LED素子 を所定の駆動電流にて点灯させた光を結像するためのレ ンズアレイとを有するLEDアレイヘッドを、像担持体 に対峙させて電子写真方式により画像を形成する画像形 成装置において、各LED素子の露光強度分布における ある特性値について、ディザマトリクスの主走査方向の 画素数毎に平均した値が、ある所定範囲内になるように 設定されていることを特徴とする画像形成装置であり、 レンズアレイ透過後の各LED素子の露光強度分布のば らつきを管理する際に、視覚特性を考慮してある特性値 をディザマトリクスの主走査方向の画素数毎に平均した 値に注目することにより、濃度ムラである縦スジとの相 関が取れ、縦スジがなく階調性の良い画質が得られ、か つLEDアレイヘッドの歩留まりが良くなりコストダウ ンが図れる。請求項2に記載の本発明の画像形成装置 は、請求項1において、前記各LED素子の露光強度分 布におけるある特性値とは、各LED素子の露光強度分 布を所定閾値でスライスした際のビームスポット面積で あることを特徴とする画像形成装置であり、各LED素 子毎に露光強度のピークが異なるLEDアレイにおい b) からの処理へもどる。ここで定数Colが2を越え※50 て、ある閾値におけるビームスポット面積を規定するこ

14

とで、濃度ムラである縦スジとの位置の対応が取りやすくなり、そのビームスポット面積のばらつきを管理することで、鮮鋭性と階調性を両立した良好な画像を常に得ることが出来、かつLEDアレイヘッドの歩留まりが良くなりコストダウンが図れる。

【0016】請求項3に記載の本発明の画像形成装置 は、請求項1において、前記各LED素子の露光強度分 布におけるある特性値とは、各LED素子の露光強度分 布を所定閾値でスライスした際の主走査方向の長さであ るビームスポット径であることを特徴とする画像形成装 置であり、各LED素子の特性値をある閾値におけるビ ームスポット径とすることで、濃度ムラである縦スジと の位置の対応が取りやすくなり、かつ、検査における処 理が簡単になる。よって鮮鋭性と階調性を両立した良好 な画像を常に得ることが出来、かつLEDアレイヘッド の歩留まりが良くなりコストダウンが図れる。請求項4 に記載の本発明の画像形成装置は、請求項2および3に おいて、前記所定閾値は、全LED素子における露光強 度ピーク値の平均値に対して10%以下に設定されてい ることを特徴とする画像形成装置であり、各LED素子 20 の露光強度分布と出力画像との濃度ムラ発生位置の対応 がとりやすくなるため、精度よく検査することが出来、 濃度ムラである縦スジの発生を防止し、鮮鋭性と階調性 を両立した良好な画像を常に得ることが出来る。請求項 5に記載の本発明の画像形成装置は、請求項1から4に おいて、各LED素子のビームスポット径が40μm以 下であることを特徴とする画像形成装置であり、露光強 度分布のばらつきを精度よく管理するための条件とな り、これにより濃度ムラである縦スジの発生を防止し、 鮮鋭性と階調性を両立した良好な画像を常に得ることが 30 出来る。請求項6に記載の本発明の画像形成装置は、請 求項1から5において、前記画像形成装置は、少なくと もイエロー、シアン、マゼンタ、ブラックの4色のトナ ーにより画像を形成する、いわゆるカラー画像形成装置 であることを特徴とする画像形成装置であり、カラー画 像において重要な画質項目である階調性や色再現性に優 れた画質が得られ、かつLEDアレイヘッドの歩留まり が良くなりコストダウンが図れる。

【0017】請求項7に記載の本発明の画像形成装置 いて、前記イエローの所定値の範囲は、±20%であるは、請求項1から6において、各色ごとに異なるディザ 40 ことを特徴とする画像形成装置であり、明度変化の小さ マトリクスが設定されていることを特徴とする画像形成 装置であり、各色毎にスクリーン角を変えて設定できるので、各色毎の周期構造を目立たなくし、縦スジのよう な濃度ムラがなく、安定して階調性や色再現性の良い画質が得られ、かつしEDアレイへッドの歩留まりが良く なりコストダウンが図れる。請求項8に記載の本発明の 画像形成装置は、請求項1から7において、同一のLE Dアレイへッドにて各色の画像形成を行なうカラー画像 形成装置において、ブラックでのディザマトリクスの主 走査方向の画素数毎に平均化した露光強度分布の特性値 50 においても、その露光強度分布のばらつきを効率良く検

と、LEDアレイヘッド全体での特性値の平均値との比 が、ある所定値の範囲内であることを特徴とする画像形 成装置であり、明度変化の大きいブラックの所定値を用 いて検査することで、縦スジのような濃度ムラがなく、 安定して階調性や色再現性の良い画質が得られ、かつし EDアレイヘッドの歩留まりが良くなりコストダウンが 図れる。請求項9に記載の本発明の画像形成装置は、請 求項1から7において、複数のLEDアレイヘッドにて 各色の画像形成を行なうカラー画像形成装置において、 各色のLEDアレイヘッド毎に前記所定値の範囲が設定 されていることを特徴とする画像形成装置であり、各色 の明度変化の大きさにより所定値を設定することで、検 査を効率的にし、縦スジのような濃度ムラがなく、安定 して階調性や色再現性の良い画質が得られ、かつLED アレイヘッドの歩留まりが良くなりコストダウンが図れ る。請求項10に記載の本発明の画像形成装置は、請求 項9において、ブラックの所定値の範囲が他の色に比べ 小さいことを特徴とする画像形成装置であり、明度変化 の大きいブラックの所定値を他の色より小さくすること で、検査を効率的にし、縦スジのような濃度ムラがな く、安定して階調性や色再現性の良い画質が得られ、か つLEDアレイヘッドの歩留まりが良くなりコストダウ ンが図れる

【0018】請求項11に記載の本発明の画像形成装置 は、請求項10において、前記ブラックの所定値の範囲 は、±10%であることを特徴とする画像形成装置であ り、縦スジのような濃度ムラがなく、安定して階調性や 色再現性の良い画質が得られる。請求項12に記載の本 発明の画像形成装置は、請求項9から11において、イ エローの所定値の範囲が他の色の所定値に比べて大きい ことを特徴とする画像形成装置であり、明度変化の小さ いイエローの所定値を他の色より大きくすることで、他 の色にて所定範囲外であったLEDアレイヘッドをイエ ローに使用できる可能性をつくり、検査を効率的にし、 縦スジのような濃度ムラがなく、安定して階調性や色再 現性の良い画質が得られ、かつLEDアレイヘッドの歩 留まりが大幅に良くなりコストダウンが図れる。請求項 13に記載の本発明の画像形成装置は、請求項12にお いて、前記イエローの所定値の範囲は、±20%である ことを特徴とする画像形成装置であり、明度変化の小さ いイエローに用いるLEDアレイヘッドの露光強度分布 のばらつきを、他の色に比べて許容レベルを広くするこ とにより、他の色では許容範囲外であるLEDアレイへ ッドを使用することができるので、歩留まり悪化の抑制 とコストダウンが図れる。 請求項14に記載の本発明の 画像形成装置は、請求項1から13において、前記LE Dアレイヘッド中のLED素子の主走査方向の配列密度 は、1インチあたり1200個以上であることを特徴と する画像形成装置であり、高密度なLEDアレイヘッド

査することができ、縦スジのような濃度ムラがなく、安 定して階調性や色再現性の良い画質を鮮鋭性を損なうこ となく得られ、かつLEDアレイヘッドの歩留まりが良 くなりコストダウンが図れる。 請求項15に記載の本発 明の画像形成装置は、請求項1から14において、前記 LED素子は、1ドットあたり2値の画像データにより 点灯駆動されることを特徴とする画像形成装置であり、 検査の簡略化ができ、かつ高密度化して露光強度分布の ばらつきが大きくなっても安定した画像形成が行なえる ので、縦スジのような濃度ムラがなく、安定して階調性 10 である。 や色再現性の良い画質が得られ、かつLEDアレイヘッ

【図面の簡単な説明】

【図1】本発明の画像形成装置の実施例1の断面図であ

ドの歩留まりが良くなりコストダウンが図れる。

【図2】本発明のLEDアレイ駆動部の構成を示すブロ ック図である。

【図3】本発明のLEDアレイ制御部の構成を示すプロ ック図である。

【図4】本発明のLEDアレイ制御部のタイミングチャ 20 ートである。

【図5】 本発明で用いるディザマトリクスを示す図であ

【図6】本発明で用いるブラックのディザマトリクスを 示す図である。

【図7】本発明の実施例1で用いる各LED素子のビー . ムスポット面積の取得のためのフローチャートである。

【図8】 本発明のビームスポット面積の機略図を示す図

である。

【図9】本発明の各LED素子の露光強度分布の特性値 であるビームスポット面積を平均化した値で管理するた めのフローチャートである。

16

【図10】本発明の画像形成装置の実施例2の断面図で ある。

【図11】本発明実施例2で用いる各LED素子のビー ムスポット径の取得のためのフローチャートである。

【図12】本発明のビームスポット径の機略図を示す図

【図13】 LEDアレイヘッドを各色毎に段階的に検査 するためのフローチャートである。

【図14】従来の一般的なLEDアレイヘッドについて の説明図である。

【図15】従来の異なる位置にあるLED素子の、主走 査方向における露光強度分布をあらわす図である。

【符号の説明】

1 感光体ドラム、2 帯電装置、3 露光装置 (LE Dアレイヘッド)、4現像装置、5 中間転写装置、6 クリーニング装置、7 記録材、8 転写装置、9 定着装置、10 LEDアレイ駆動部、11 シフトレ ジスタ、12ラッチ、13 ANDゲート、15 LE Dドライバ、20 LEDアレイ制御部、21 FIF Oメモリ、22 コントローラ部、23 発振器、24 ストローブパルス発生部、30 LED素子アレイ基 板、31 LED素子、32結像レンズ、33 レンズ アレイ部、41 搬送スクリュー、42 現像ローラ、 43 ドクタ

【図1】

【図2】

【図4】

/LSYNC		
CLOCK		mmm
DATA	0280567890 7	
STR	_[-

【図5】

	Yellow	H agenta	Cyan	Black
スクリーン線数	200	190	190	212
スクリーン角度	0	72	18	45
マトリクスサイズ (主×期)	48×48	40×40	40×40	32×32

【図13】

