Apellido y Nombre: email (@mi.unc.edu.ar): Nota:

Lenguajes y Compiladores

Examen Final 07-02-2024

1. Considerá la siguiente ecuación recursiva.

$$g(x) = \begin{cases} 1 & \text{si } x = 0 \\ g(|x| - 2) & \text{si } x \neq 0 \end{cases}$$

Sea $F: (\mathbb{Z} \to \mathbb{Z}_{\perp}) \to \mathbb{Z} \to \mathbb{Z}_{\perp}$ definido por:

$$F f x = \begin{cases} x + 1 & \text{si } x \in \{0, 1\} \\ f(|x| - 2) & \text{si } x \notin \{0, 1\} \end{cases}$$

- a) Escribí de la manera más clara posible $\bigsqcup_k (F^k \perp)$.
- \boldsymbol{b}) ¿Es ese supremo una solución para g? Justificá tu respuesta.
- 2. Considerá el lenguaje imprerativo con fallas, input y output. Sea c el comando x := 1; while x > 0 do !x. Sea $\omega_0, \omega_1, \omega_2, \ldots$ la cadena en Ω tal que $\llbracket c \rrbracket = \sqcup_i(\omega_i)$.
 - a) Escribí explícitamente los valores de ω_i para i < 5.
 - **b**) Sea ω'_j una cadena en Ω tal que $\omega'_i = \omega_i$ si i < 5 pero que $\omega'_6 = \omega'_5$. Proponé un comando c' cuya semántica sea $\sqcup_j(\omega'_i)$.
- 3. Considerá el cálculo lambda puro. Proponé una expresión e que tenga distintas formas canónicas en los órdenes de evaluación. Justificá tu respuesta haciendo las evaluaciones.
- 4. Considerá el lenguaje eager con recursión y la expresión

$$e = \lambda y$$
.letrec $f \equiv \lambda x$.if $x < y$ then x else $f(x - y)$ in f

- \boldsymbol{a}) Evalúa e 5 9.
- **b**) ¿Cúal es la semántica denotacional de e(-3) 3?
- 5. Considerá el lenguaje eager con referencias. Proponé una expresión e_1 y otra expresión e_2 tales que:

$$\mathbf{[val (ref } e_1)] \sigma = \iota_{norm} \langle \sigma', \iota_{int} 2 \rangle \quad \mathbf{y}$$

$$\mathbf{[val (ref } e_2)] \sigma = tyerr$$

- 6. **Ejercicio para libres:** Considerá la expresión $e = (\lambda x . \langle K(\lambda z.z+2), x \wedge \mathbf{true}, x-2 \rangle.0)$ 4 en el lenguaje aplicativo.
 - a) Evalúa la expresión e en orden normal.
 - \boldsymbol{b}) Calculá la semántica denotacional eager de e.