CS 6375 ASSIGNMENT 2 Report

Names of students in your group: Yash Nadkarni (ydn200000) Soham Savalapurkar (sxs200389)

Number of free late days used: 0

Details about our Dataset:

For assignment 2, we used the banknote authentication dataset from the UCI website. This dataset has 4 independent variables and 1 dependent (target) variable. It has 1372 instances.

Independent Variables:

- 1. Variance of Wavelet
- 2. Skewness of Wavelet
- 3. Curtosis of Wavelet
- 4. Entropy of Image

Target Variable:

1. Class(integer)

For more information, check here.

Model History Plot of our model:

Output in tabular format:

1. Output for different combination of parameters

	activation	learning_rate	epochs	num_hidden_layers	training_accuracy \
0	sigmoid	0.01	100	2	0.990876
1	sigmoid	0.01	100	3	0.987226
2	sigmoid	0.01	200	2	0.989051
3	sigmoid	0.01	200	3	1.00000
4	sigmoid	0.10	100	2	0.990876
5	sigmoid	0.10	100	3	1.000000
6	sigmoid	0.10	200	2	0.989964
7	sigmoid	0.10	200	3	1.000000
8	tanh	0.01	100	2	0.988139
9	tanh	0.01	100	3	1.000000
10	tanh	0.01	200	2	0.990876
11	tanh	0.01	200	3	1.000000
12	tanh	0.10	100	2	1.000000
13	tanh	0.10	100	3	1.000000
14	tanh	0.10	200	2	1.000000
15	tanh	0.10	200	3	1.000000
16	relu	0.01	100	2	0.989051
17	relu	0.01	100	3	1.000000
18	relu	0.01	200	2	0.552007
19	relu	0.01	200	3	0.552007
20	relu	0.10	100	2	0.990876
21	relu	0.10	100	3	0.991788
22	relu	0.10	200	2	0.552007
23	relu	0.10	200	3	0.986314

2. Table for the training and testing errors

		819 0		
	testing_accuracy			
0	0.992727	0.008365	0.007273	
1	0.992727	0.007792	0.007273	
2	0.992727	0.007093	0.007273	
3	1.000000	0.000115	0.000000	
4	0.996364	0.006052	0.003636	
5	1.000000	0.000014	0.000000	
6	0.992727	0.009058	0.007273	
7	1.000000	0.000006	0.00000	
8	0.985455	0.009645	0.014545	
9	1.000000	0.001569	0.00000	
10	0.992727	0.008961	0.007273	
11	1.000000	0.000057	0.00000	
12	1.000000	0.000510	0.000000	
13	1.000000	0.000016	0.00000	
14	1.000000	0.000179	0.000000	
15	1.000000	0.000003	0.000000	
16	0.992727	0.007161	0.007273	
17	1.000000	0.000006	0.000000	
18	0.567273	0.447993	0.432727	
19	0.567273	0.447993	0.432727	
20	0.989091	0.008127	0.010909	
21	0.996364	0.006371	0.003636	
22	0.567273	0.447993	0.432727	
23	0.978182	0.014015	0.021818	

Brief Report Summary:

From the observations, we observed that on changing only the hyperparameters and keeping the model definition the same the accuracy is changed, and we obtain different values in most cases. From the observed results of the model, tanh performed the best. Though generally relu performs the best, on further research, we found that in few cases the relu function might be facing the dying relu problem, due to which the accuracy for some cases is low.

Assumptions: None

References:

https://stats.stackexchange.com/questions/126238/wha t-are-the-advantages-of-relu-over-sigmoid-function-indeep-neural-networks

Referred the following link for dying relu problem.