PLUS and QUIC: Deploying the MCP

Brian Trammell / Mirja Kühlewind, ETH Zürich

3. MAMI Plenary, Seville, 6 February 2017

measurement

architecture

experimentation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688421. The opinions expressed and arguments employed reflect only the authors' view. The European Commission is not responsible for any use that may be made of that information.

Overview Internet-drafts and preprints

- SPUD (expired)
 - draft-kuehlewind-spud-use-cases-00: Use Cases for a Substrate Protocol for User Datagrams (SPUD)
 - draft-trammell-spud-req-04: Requirements for the design of a Substrate Protocol for User Datagrams (SPUD)

PLUS

- draft-trammell-plus-statefulness-02: Transport-Independent Path Layer State Management
- draft-trammell-plus-abstract-mech-00: Abstract Mechanisms for a Cooperative Path Layer under Endpoint Control
- draft-trammell-plus-spec-00: Path Layer UDP Substrate Specification

QUIC

draft-kuehlewind-quic-appman-00: Applicability and Management of the QUIC Transport Protocol

IPIM

Principles for Measurability in Protocol Design: describes an abstract In-Protocol Internet
 Measurement (IPIM) facility to be implemented in PLUS/MCP, https://arxiv.org/pdf/1612.02902v1.pdf

Abstract Mechanisms for the Path Layer (PLUS BoF, Berlin, "-abstract-mech")

Anatomy of the Path Layer (PLUS BoF, Berlin)

- UDP encapsulation
 - userspace implementation
 - ports for NAT
 - ~95% deployable today
- encoding for abstract signaling mechanisms

- crypto (unspecified) to protect transport headers and above
- Unable to achieve IETF consensus due to concerns about privacy and operator abuse of path signaling.

Reframing the MCP problem

- We really want three different sets of features:
 - TCP wire image replacement for encrypted transport protocols — state exposure and basic measurement
 - Sender to path signaling for one-bit signals (e.g. LoLa)
 - Additional sender-to-path and path-to-receiver signals for future troubleshooting, management, provisioning network functions.
- So let's define a wire image with these features in mind.

Transport-Independent Exposure of Transport State ("-statefulness")

Require closing signals in both directions to prevent injection

Force three-way handshake to prove return routability

PLUS Basic Header ("-spec")


```
6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
UDP source port
                            UDP destination port
UDP length
                            UDP checksum
                                                      identifies packet as PLUS
                                                      token for load balancing,
                                                      NAT rebinding, association
      connection/association token CAT
                                                      and confirmation signals
         packet serial number PSN
                                                      for loss and RTT measurement,
                                                      and stop signal confirmation
         packet serial echo
                              PSE
                                                    \ stop, extended header,
  ign
                                                      latency sensitivity, and
                                                    / reordering OK flags
  transport protocol header/payload (encrypted)
```


PLUS Extended Header ("-spec")


```
UDP source port
                           | UDP destination port
      UDP length
                               UDP checksum
                          magic
             connection/association token CAT
               packet serial number PSN
               packet serial echo PSE
|S|1|L|R| ign | PCF Type
               PCF value (variable-length)
        transport protocol header/payload (encrypted)
```

sender-to-path and path-to-receiver signals (length/behavior specified by PCF type)

PLUS Path Communication Field vocabulary

- Sender to path:
 - Timestamp/Timestamp Echo (less useful with PSN/PSE)
 - Relative priority (not in -00)
 - Congestion exposure (not in -00)
- Path to receiver:
 - MTU accumulator
 - State timeout accumulator
 - Rate limit accumulator
 - Path delay accumulator
 - Path element trace (IPIM §4.3)

QUIC (Interim WG Mtg. Tokyo, Jan 2017)

- QUIC will deploy before PLUS getting some MCP concepts into it is worth the effort.
 - Primary focus: PSN/PSE, two-way stop.
 - Secondary focus: make sure QUIC can layer on PLUS for experimentation.
 - Align PSN/PSE, CAT semantics.
- Applicability and manageability document(s) for QUIC:
 - Description of in-network functions supported by QUIC's design

QUIC+ implementation plan

- Fork https://github.com/lucas-clemente/quic-go
 - first step: update implementation to match current spec (with or without crypto)
 - H2 implementation out of the box
 - Basic server, test client
 - Measure PLUS connectivity towards target test servers at DigitalOcean, ETH, etc.
- Reference PLUS middlebox: https://fd.io?
 - focusing on NAT and traffic diagnostics
- Experimental PLUS passive measurements based on https://github.com/britram/mokumokuren (new PathSpider observer)
 - potential experimentation with extended header to increase measurement accuracy

