Práctica 18: Circuitos multivibradores

Nombre: Colín Ramiro Joel No. de lista: 3

Cálculos del punto 1

T(s)	$t_1(s)$	$t_2(s)$	C(f)	$R_1(\Omega)$	$R_2(\Omega)$
1	<mark>.7</mark>	.3	1000 u	<mark>1440</mark>	<mark>430</mark>
5	3	<mark>2</mark>	200 u	4.7 k	<mark>14k</mark>
200 m	<mark>15.246 m</mark>	184.75 m	100 u	<mark>2445</mark>	220
10	<mark>4</mark>	6	<mark>820 u</mark>	<mark>10k</mark>	10 k
8	4	4	100 u	<mark>560</mark>	560

 $S = \frac{4}{4} + \frac{4}{4}$ $\frac{4}{4} = 0.603 (R_1 + 500) C$ $\frac{4}{4} = 0.603 (SCD) C$ $C = \frac{6}{6} \frac{63}{(R_2)} = C = \frac{4}{6} \frac{100 \text{ Hz}}{(0.63)(R_2)} = C = \frac{100 \text{ Hz}}{4}$ $R_1 = \frac{6}{6} \frac{63}{6} \frac{(R_2)}{C} = \frac{2}{6} \frac{100 \text{ Hz}}{(0.63)(R_2)} = \frac{2}{6} \frac{100 \text{ Hz}}$

Cálculos del punto 3

_T(s)	C(f)	$R_a(\Omega)$	
2	1000 u	1.8k	
2	200 u	<mark>9k</mark>	
2	100 u	<mark>18k</mark>	
2	<mark>180 u</mark>	10 k	
2	<mark>3200 u</mark>	560	

 $ta = 1.1 (R_a) C$ $1 - 12 = 1.1 (R_a) (1000)$ $ta = \frac{1}{1.1} (R_a) (1000)$ $ta = \frac{1}{1.1} (R_a) (1000)$ $ta = \frac{1}{1.1} (R_a) (1000)$

27 9=3.1 (RA) (700)

Ra = 4.1) C -> (1.1) (700×169) = 90901

Capturas de Proteus

Circuito astable

Circuito monoestable

