APPENDIX

Please cancel claims 5, 7, and 12, without prejudice.

- 1. A projection display system, comprising:
 - (a) a light source that provides light;
 - (b) a polarizing device that receives said light;
 - (c) at least one polarizing beam splitter that receives said light that has previously been received by said polarizing device;
 - (d) at least one liquid crystal panel for generating an image that receives light that has previously been received by said polarizing beam splitter;
 - (e) a projection source for projecting said image; and
 - (f) a color component rotator <u>optically</u> located between said <u>polarizing</u>

 [polarization converter] <u>device</u> and said projection source, <u>wherein at</u>

 <u>least a portion of said light passes through said color component rotator</u>,

 <u>wherein said color component rotator changes the polarization state of a</u>

 <u>first wavelength of said light incident thereon while being free from</u>

 <u>changing the polarization state of a second wavelength of light incident</u>

 thereon.
- 17. A projection display system, comprising:
 - (a) a light source that provides light;
 - (b) a polarization converter that receives said light;
 - (c) at least two polarizing [beamsplitters] beam splitters that receive said light that has previously been received by said polarizing device;
 - (d) at least three liquid crystal display panels that receive said light that has previously been received by at least one of said polarizing beam splitters, each for generating a respective image;

- (e) a projection source for projecting said images; and
- (f) at least two color component rotators, each of said color component rotators being optically located between said polarization converter and said projection source, wherein at least a portion of said light passes through at least one of said color component rotators and at least a portion of said light passes through another one of said color component rotators.
- 32. A method for displaying an image, comprising:
 - (a) providing light comprised of a first color component, a second color component, and a third color component;
 - (b) converting said light to a single polarization state;
 - (c) separating said first color component from said second and third color components while said first, second, and third color components are in the same beam;
 - (d) changing said polarization state of said second color component relative to said third color component while said second and third color components are within the same beam;
 - (e) separating said second color component from said third color component while said second and third color components are within the same beam;
 - (f) generating respective images from each of said first, second, and third color components <u>separated from one another into different beams</u>; and
 - (g) projecting said images.