Obliczenia Naukowe - laboratorium 1

Łukasz Machnik

23 października 2023

1 Zadanie 1

1.1 Epsilon maszynowy macheps

Epsilon maszynowy to najmniejsza liczba większa od 0 która może być reprezentowana w danej arytmetyce i dla której zachodzi fl(1.0 + macheps) > 1.0 i fl(1.0 + macheps) = 1 + macheps. A zatem macheps jest odległością liczby 1.0 od kolejnej liczby większej od 1 reprezentowanej w danej arytmetyce.

Epsilon maszynowy musi być potęgą dwójki przez sposób zapisu liczb w systemie zmiennopozycyjnym - jest to najmniejsza możliwa liczba którą można zapisać w części ułamkowej mantysy. Aby znaleźć wartość liczby *macheps* zaimplementowałem następujący algorytm:

- 1. Deklaracja zmiennej x danego typu
- 2. Przypisanie x = 1.0
- 3. Dopóki x + 1.0 > 1.0
 - (a) Zapamiętanie obecnej wartości \boldsymbol{x} jako \boldsymbol{x}_p
 - (b) Przypisanie $x = \frac{x}{2}$
- 4. Zwrócenie wartości zmiennej x_p

Następująca tabela prezentuje porównanie wyników zwróconych przez powyższy algorytm, wyników zwróconych przez wbudowaną w język Julia funkcję eps(Typ) oraz danych z pliku float.h mojej instalacji języka C.

Typ	Float16	Float32 (float)	Float64 (double)
macheps	0.000977	$1.1920929 * 10^{-7}$	$2.220446049250313*10^{-16}$
eps(Typ)	0.000977	$1.1920929 * 10^{-7}$	$2.220446049250313 * 10^{-16}$
float.h	N/A	$1.1920928955078125 * 10^{-7}$	$2.220446049250313080847263336181640625*10^{-16}$

Można stwierdzić że eksperyment został przeprowadzony poprawnie gdyż otrzymane wartości są takie same jak wartości zwracane przez funkcję eps(Typ). Widać też że w języku C epsilon maszynowy ma większą precyzję niż w Julii.

Precyzja arytmetyki to najmniejsza taka liczba ϵ że $\frac{|fl(x)-x|}{|x|} \le |\epsilon|$. A skoro odległość między 1.0 a następną liczbą maszynową wynosi macheps to $\epsilon = \frac{macheps}{2}$

1.2 Liczba maszynowa eta

Liczba maszynowa eta to najmniejsza liczba większa od 0.0, która ma swoją reprezentację w danej arytmetyce. Można zatem doszukać się sporej analogii do poprzedniego podpunktu, a więc i algorytm wyszukiwania tej liczby jest bardzo podobny:

- 1. Deklaracja zmiennej x danego typu
- 2. Przypisanie x = 1.0
- 3. Dopóki x > 0.0
 - (a) Zapamiętanie obecnej wartości x jako x_p
 - (b) Przypisanie $x = \frac{x}{2}$

4. Zwrócenie wartości zmiennej x_p

Wyniki zwrócone przez ten algorytm w porównaniu z wynikami wywołania funkcji nextfloat(0.0) (zwracającej następną liczbę maszynową w danej arytmetyce) przedstawia poniższa tabela:

Eksperyment ponownie można uznać za udany - liczba wyznaczona eksperymentalnie pokrywa się z liczba zwróconą przez funkcję wbudowaną.

Liczbę MIN_{sub} definiujemy jako $MIN_{sub}=2^{-(t-1)}2^{c_{min}}$ gdzie t oznacza długość mantysy, a $c_{min}=-2^{d-1}+2$ gdzie d ilość bitów przeznaczonych na zapis cechy. Po znormalizowaniu do danego typu liczba MIN_{sub} jest równa liczbie eta.

1.3 Floatmin

Zadanie polega na sprawdzeniu co wyświetla funkcja floatmin(T) dla Float32 i Float64 i porównanie tych wartości z liczbą $MIN_{nor}=2^{c_{min}}$ dla $c_{min}=-2^{d-1}+2$

$$\begin{array}{c|cccc} Typ & Float32 & Float64 \\ \hline floatmin() & 1.1754944*10^{-38} & 2.2250738585072014*10^{-308} \\ fl(MIN_{nor}) & 1.1754944*10^{-38} & 2.2250738585072014*10^{-308} \\ \end{array}$$

Można zauważyć że funkcja floatmin
() zwraca wartość znormalizowaną wartość MIN_{nor} dla danego typu danych

1.4 Floatmax

Ostatnim podpunktem jest iteracyjne wyznaczenie liczby fmax będącej największą liczbą jaką można zapisać w danej arytmetyce i porównanie tej liczby z wartością zwracaną przez wbudowaną funkcję floatmax() oraz podanymi na wykładzie wartościami $MAX = (2-2^{-(t-1)})2^{c_{max}}$ dla każdego typu danych.

Algorytm wyznaczający fmax wykorzystuje wyliczoną wcześniej wartość eps i działa w następujący sposób:

- 1. Deklaracja zmiennej x danego typu
- 2. Przypisanie x = 2.0 eps()
- 3. Dopóki $x < \infty$
 - (a) Zapamiętanie obecnej wartości x jako x_p
 - (b) Przypisanie x = x * 2
- 4. Zwrócenie wartości zmiennej x_p

Algorytm ten na początku ustawia mantysę na największą możliwą liczbę a następnie iteracyjnie zwiększa cechę dopóki liczba jest mniejsza niż nieskończoność. Wyniki uzyskane w ten sposób wraz z porównaniem wymaganym w zadaniu prezentuje poniższa tabela:

Typ	Float16	Float32	Float64
			$1.7976931348623157 * 10^{308}$
floatmax()	$6.55*10^{4}$	$3.4028235 * 10^{38}$	$1.7976931348623157 * 10^{308}$
fl(MAX)	N/A	$3.4028235 * 10^{38}$	$1.7976931348623157 * 10^{308}$

Jak widać eksperyment można uznać za udany gdyż eksperymentalnie wyznaczone wartości są takie same jak wartości zwrócone przez funkcję floatmax() oraz jak znormalizowane wartości MAX obliczone wg. wzoru z wykładu.

2 Zadanie 2

Niech $f()=3(\frac{4}{3}-1)-1$. Wartość funkcji f() w naturalnej arytmetyce wynosi 0 jednak w arytmetyce zmiennopozycyjnej sprawa wygląda inaczej ponieważ wynik odejmowania w nawiasie to $\frac{1}{3}$ a jest to liczba której nie da się dokładnie reprezentować w systemie binarynm. Efekty zaokrąglenia tej liczby kumuluje się przy mnożeniu przez 3 oraz przy odejmowaniu dwóch bardzo podobnych siebie liczbco skutkuje otrzymaniem następujących wyników:

Typ	Float16	Float32	Float64
f()	-0.000977	$1.1920929 * 10^{-7}$	$-2.220446049250313*10^{-16}$
eps()	0.000977	$1.1920929 * 10^{-7}$	$2.220446049250313*10^{-16}$

Jak widać wartość funkcji f() jest równa $\pm eps()$, a więc potwierdziła się teza że za pomocą funkcji f() można obliczyć wartość eps()

3 Zadanie 3

W arytmetyce double w standardzie IEEE 754 (w języku Julia typ Float64) liczby zmiennopozycyjne w przedziale [1;2] są rozmieszczone równomiernie z krokiem $\delta=2^{-52}$. Zatem każda liczba może być przedstawiona jako $x=1+k\delta$ dla $k\in\{0,1,2,\ldots,2^{52}\}$ i $\delta=2^{-52}$. Moim zadaniem było potwierdzić ten fakt eksperymentalnie oraz sprawdzić rozmieszczenie liczb w przedziałach $\left[\frac{1}{2};1\right]$ oraz [2;4]

W celu wykonania zadania wykorzystałem funkcję bitstring() wyświetlającą daną liczbę jako ciąg bitów. Zaczynając od k=0 wyświetlałem kolejno reprezentacje binarne liczb $x=1+k\delta$.

k	bitstring(x)
0	0 01111111111 0000000000000000000000000
1	0 01111111111 0000000000000000000000000
2	0 01111111111 0000000000000000000000000
3	0 01111111111 0000000000000000000000000
4	0 01111111111 0000000000000000000000000
$2^{52} - 4$	0 0111111111 11111111111111111111111111
$2^{52} - 3$	0 0111111111 11111111111111111111111111
$2^{52} - 2$	0 0111111111 11111111111111111111111111
$2^{52} - 1$	0 0111111111 11111111111111111111111111
2^{52}	0 1000000000 00000000000000000000000000

Zapis binarny liczb Float64 można podzielić na 3 części:

- 1 bit przeznaczony na zapis znaku
- 11 bitów reprezentujących cechę
- 52 bity zapisujące mantysę

Jak widać zwiększając k o 1 zwiększamy mantysę o 1 a cecha pozostaje bez zmian. Cecha zmienia się dopiero dla x=2.0. Można stąd wysnuć wniosek że liczby na przedziale [1; 2] są rozmieszczone równomiernie z krokiem $\delta=2^{-52}$

Analogicznie sprawdziłem jak wygląda reprezentacja bitowa liczb w przedziale $[\frac{1}{2};1]$ eksperymentalnie sprawdzając że dla równomiernego rozmieszczenia krok powinien wynosić $\delta=2^{-53}$ a $k\in\{0,1,2,\ldots,2^{51}\}$:

k	bitstring(x)
0	0 011111111110 000000000000000000000000
1	0 01111111110 0000000000000000000000000
2	0 01111111110 0000000000000000000000000
3	0 01111111110 0000000000000000000000000
4	0 01111111110 0000000000000000000000000
$2^{51} - 4$	0 01111111110 1111111111111111111111111
$2^{51} - 3$	0 01111111110 1111111111111111111111111
$2^{51} - 2$	0 01111111110 1111111111111111111111111
$2^{51} - 1$	0 01111111110 1111111111111111111111111

Oraz w przedziałe [2;4] z krokiem $\delta = 2^{-51}$ oraz $k \in \{0, 1, 2, \dots, 2^{52}\}$:

k	bitstring(x)
0	0 1000000000 00000000000000000000000000
1	0 1000000000 00000000000000000000000000
2	0 1000000000 00000000000000000000000000
3	0 1000000000 00000000000000000000000000
4	0 10000000000 0000000000000000000000000
$2^{52} - 4$	0 10000000000 1111111111111111111111111
$2^{52} - 3$	0 10000000000 1111111111111111111111111
$2^{52} - 2$	0 10000000000 1111111111111111111111111
$2^{52} - 1$	0 10000000000 1111111111111111111111111

Wniosek jest następujący: dla każdego przedziału $[2^n; 2^{n+1}]$ dla $n \in \mathbb{Z}$ liczby w arytmetyce double w standardzie IEEE 754 są rozmieszczone równomiernie z krokiem $\delta = 2^{-52+n}$. Dla liczb ujemnych działa to analogicznie - jedyna różnica to bit znaku ustawiony na 1

4 Zadanie 4

Polecenie każe znaleźć najmniejszą liczbę z przedziału (1;2) w arytmetyce Float64 taką że $x*\frac{1}{x} \neq 1$. Wykorzystując wiedzę z poprzedniego zadania stworzyłem bruteforce'owy program przeglądający wszystkie reprezentowalne w tym przedziałe liczby od najmniejszej $(fl(1.0+2^{-52}))$ aż do natrafienia na liczbę spełniającą powyższe równanie.

Najmniejszą taką liczbą jest 1.000000057228997.

Należy pamiętać że działając w arytmetyce Float64 nie zawsze otrzymujemy dokładny wynik - często jest to tylko przybliżenie z jakąś dokładnością. W przypadku liczby 1.000000057228997 błąd przybliżenia jest na tyle niefortunny, że wykonując zadane działanie nie otrzymujemy oczekiwanego wyniku.

5 Zadanie 5

Mamy zadane dwa wektory:

```
x = \begin{bmatrix} 2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957 \end{bmatrix}
y = \begin{bmatrix} 1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049 \end{bmatrix}
```

I chcemy policzyć ich iloczyn skalarny:

$$S = \sum_{i=1}^{5} x[i] * y[i]$$

W tym celu używam czterech różnych algorytmów:

- \bullet S_a : oblicza sume idac w wektorach od początku do końca
- \bullet S_b : oblicza sumę idac w wektorach od końca do początku
- S_c : zapamiętuje wszystkie iloczyny częściowe a potem dodaje je: osobno ujemne od najmniejszego do najmiększego, osobno nieujemne od największego do najmniejszego, a na końcu dodaje te dwie sumy częściowe
- S_d : zapamiętuje wszystkie iloczyny częściowe a potem dodaje je: osobno ujemne od największego do najmniejszego, osobno nieujemne od najmniejszego do największego, a na końcu dodaje te dwie sumy częściowe

Prawidłowa wartość $S=-1.00657107*10^{-11}$ Wyniki każdego z tych algorytmów oraz błąd bezwzględny względem wartości dodatniej (Δ) przedstawia tabela poniżej:

Typ	Float32	Float64
S_a	-0.4999443	$1.0251881368296672 * 10^{-10}$
S_b	-0.4543457	$-1.5643308870494366 * 10^{-10}$
S_c	-0.5	0.0
S_d	-0.5	0.0
Δ_a	0.49994429944939167	$1.1258452438296672 * 10^{-10}$
Δ_b	0.4543457031149343	$1.4636737800494365 * 10^{-10}$
Δ_c	0.4999999999999343	$1.00657107 * 10^{-11}$
Δ_d	0.4999999999899343	$1.00657107 * 10^{-11}$

Niezależnie od algorytmu występują większe lub mniejsze błędy. Dla Float
32 najbliżej poprawnej wartości był algorytm S_b a dla Float
64 mimo pozornie najmniejszej precyzji najbliżej były algorytmy
 S_c i S_d z wynikiem 0.0

6 Zadanie 6

Zadane są dwie funkcje:

$$f(x) = \sqrt{x^2 + 1} - 1$$
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

Teoretycznie te funkcje są sobie równe jednak w arytmetyce zmiennopozycyjnej zwracane przez nie wartości mogą się różnić. Poniżej tabela wartości zwracanych przez funkcje dla $x = 8^{-n}$

n	1	2	3	
f(x)	0.0077822185373186414	0.00012206286282867573	1.9073468138230965e - 6	
g(x)	0.0077822185373187065	0.00012206286282875901	1.907346813826566e - 6	

Dla małych n różnica jest niewielka ale nawet dla $x=\frac{1}{8}$ różnica w uzyskanych wynikach występuje

Dla $n \ge 9$ wartość funkcji f(x) wynosi 0.0 podczas gdy wartość funkcji g(x) jest rózna od 0 aż do n=178. Funkcji g(x) można ufać bardziej nie dlatego że dłużej daje wyniki różne od 0 (wszak nie muszą być to wyniki bliższe poprawnym) ale dlatego żę z punktu widzenia obliczeń arytmetyki zmiennoprzecinkowej wykonujemy w niej "bezpieczne" działania. x jest liczbą bardzo małą dlatego $\sqrt{x^2+1}$ jest bliskie 1. zatem w funkcji f(x) odejmujemy dwie bliskie sobie liczby co podwyższa prawdopodobieństwo wystąpienia błędu

7 Zadanie 7

Mamy zadaną funkcje:

$$f(x) = sin(x) + cos(3x)$$

Wiadomo że pochodna tej funkcji jest następująca:

$$f'(x) = \cos(x) - 3\sin(3x)$$

Przybliżoną wartość pochodnej w punkcie x_0 można obliczyć za pomocą następującej funkcji:

$$\tilde{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

Napisałem program obliczający przybliżoną wartość pochodnej w punkcie $x_0=1$ dla $h=2^{-n},$ $n\in\{0,1,2,\ldots,54\}$ oraz odległość tego wyniku od wartość funkcji f'(1)=0.11694228168853815 Poniższy wykres przedstawia błąd bezwzględny otrzymanego wyniku w zależności od parametru h dla $h=2^{-n}$

Poniższy wykres przedstawia przybliżenie na wartości tej funkcji dla $10\leqslant n\leqslant 45$

Błąd bardzo szybko maleje do wartości bliskich 0 już dla n=17 jednak dla wartości n>40 znowu rośnie. Jest to spowodowane tym że jeśli weźmiemy zbyt małe h to w liczniku będziemy odejmować bardzo bliskie siebie liczby co może spowodować że zaokrąglenie wyniku będzie mocno odbiegać od wyniku realnego.