Algoritmos e Lógica de Programação

Douglas Baptista de Godoy

Ementa

- Projeto e representação de algoritmos.
- Estruturas de controle de fluxo de execução: sequência, seleção e repetição.
- Tipos de dados básicos e estruturados (vetores e registros).
- Rotinas. Arquivos.
- Implementação de algoritmos usando uma linguagem de programação.

Objetivo

 Analisar problemas computacionais e projetar soluções por meio da construção de algoritmos.

Avaliação

- Nota1 Avaliar os conhecimentos adquiridos no 1º bimestre Nota 1
 - 15/10/2020
- Nota2 Avaliar os conhecimentos adquiridos no 2º bimestre Nota 2
 - 10/12/2020
- Recuperação Substituíra a menor nota do aluno. O aluno só poderá fazer se tirar menos do que 6 em uma das duas provas. - Recuperação abordando todo o conteúdo da disciplina no semestre.
 - 17/12/2020

Princípios de programação

- Linguagem C/C++
- Segundo Schildt(1996), Dennis Ritchie inventou a linguagem C e foi o primeiro a implementa-la usando um computador DEC PDP-11, que utilizava o sistema operacional Unix.
- A linguagem C++ é uma extensão da linguagem C, e as instruções que fazem parte desta ultima representam um subconjunto da primeira. Os incrementos encontrados na linguagem C++ foram feitos para dar suporte à programação orientada a objetos, e a sintaxe dessa linguagem é basicamente a mesma da linguagem C.

Paradigmas de programação

Paradigmas de Programação

 Um paradigma de programação esta intimamente relacionado à forma de pensar do programador e como ele busca a solução para os problemas.

Paradigma Estruturado

O paradigma estruturado, qualquer problema pode ser quebrado em problemas menores, de fácil solução, chamados de sub-rotinas ou funções e ainda, que todo processamento pode ser realizado pelo uso de três tipos de estrutura: sequencial, condicional e iterativa (de repetição)

- Paradigmas de programação
- Paradigma Orientado a Objetos
- Paradigma orientado a objetos compreende o problema como uma coleção de objetos interagindo por meio de trocas de mensagem. Os objetos são estruturas de dados contendo estado (dados) e comportamento (logica). Dessa maneira, um conjunto de objetos com informações comuns e com o mesmo comportamento da origem a uma classe

Algoritmo em pseudocódigo

Estrutura básica: Este é o mínimo para todos os Algoritmo em pseudocódigo

ALGORITMO

DECLARE nome_da_variável tipo_da_variável

bloco_de_comandos

FIM_ALGORITMO.

- Algoritmo em pseudocódigo
- Declaração de variáveis em algoritmos
- As variáveis são declaradas após a palavra DECLARE e os tipos mais utilizados são: NUMÉRICO (para variáveis que receberão números), LITERAL (para variáveis que receberão caracteres) e LÓGICO (para variáveis que receberão apenas dois valores: verdadeiro ou falso).
- Exemplo:

DECLARE X NUMÉRICO Y, Z LITERAL TESTE LÓGICO

- Algoritmo em pseudocódigo
- Comando de atribuição em algoritmos
- O comando de atribuição é utilizado para conceder valores ou operações a variáveis, sendo representado pelo símbolo ←. (=)

Exemplo:

$$x \leftarrow 4$$

 $x \leftarrow x + 2$
 $y \leftarrow$ "aula"
teste \leftarrow falso

- Algoritmo em pseudocódigo
- Comando de entrada em algoritmos
- O comando de entrada é utilizado para receber dados digitados pelo usuário, que serão armazenados em variáveis. Esse comando é representado pela palavra LEIA.

Exemplo:

LEIA X

Um valor digitado pelo usuário será armazenado na variável X.

LEIA Y

Um ou vários caracteres digitados pelo usuário serão armazenados na variável Y.

- Algoritmo em pseudocódigo
- Comando de saída em algoritmos
- O comando de saída é utilizado para mostrar dados na tela ou na impressora. Esse comando é representado pela palavra ESCREVA, e os dados podem ser conteúdos de variáveis ou mensagens.

Exemplo:

ESCREVA X

Mostra o valor armazenado na variável X.

ESCREVA "Conteúdo de Y = ",Y

Mostra a mensagem "Conteúdo de Y = " e, em seguida, o valor armazenado na variável Y.

Algoritmo em pseudocódigo

 Exemplo: Faca um algoritmo para mostrar o resultado da divisão de dois números

```
ALGORITMO
DECLARE N1, N2, D NUMÉRICO
ESCREVA "Digite dois Números"
LEIA N1, N2
SE N2 = 0 ENTÃO
ESCREVA "Impossível dividir"
SENÃO INÍCIO
D = N1/N2
ESCREVA "Divisão = ", D
FIM
FIM_ALGORITMO
```


Princípios de programação

- Princípios de programação
 - Paradigmas de programação;
 - Conceitos de usabilidade de sistemas;
 - Linguagens de programação e códigos fonte, objeto e arquivo executável

Princípios de programação

- Princípios de programação
 - Paradigmas de programação;
 - Conceitos de usabilidade de sistemas;
 - Linguagens de programação e códigos fonte, objeto e arquivo executável

Comandos da linguagem de programação

- Funções pré-definidas
- *Expressões e tabela da verdade
- *Tratamento de erros e exceções
- Memória, tipos de dados e variáveis
- Entrada, saída e conversão de tipos
- -Operadores aritméticos, relacionais e lógicos.

*Será visto mais a frente

Comandos da linguagem de programação

Estrutura Sequencial

```
#include<nome_da_biblioteca>
int main()
{
    bloco_comandos;
    return 0;
}
```


Tipo	Faixa de Valores	Tamanho
char	- 128 a 127	8 bits = 1 bytes
int	-2.147.483,648 a 2.147.483,647	32 bits = 4 bytes
float	3.4×10^{-38} a 3.4×10^{38}	32 bits = 4 bytes
double	1.7×10^{-308} a 1.7×10^{308}	64 bits = 8 bytes

Validação de Informações

```
//Limites do Tipo de dados INT

#include <stdio.h>
#include <limits.h>
const int min_int = INT_MIN;
const int max_int = INT_MAX;
int main()
{
    printf(" %d\n",min_int);
    printf(" %d\n",max_int);
}
```

//C:

```
-2147483648
2147483647

Process returned 0 (0x0) execution time : 0.141 s

Press any key to continue.

-
```


Validação de Informações

```
// Faça um programa em C que mostra quantos bytes
//ocupam cada uma das variáveis: char, int, float e double.
#include <stdio.h>
int main(void)
{
    printf("Char: %d bytes\n", sizeof(char));
    printf("Int: %d bytes\n", sizeof(int));
    printf("Float: %d bytes\n", sizeof(float));
    printf("Double: %d bytes\n", sizeof(double));
    return 0;
```

```
Char: 1 bytes
Int: 4 bytes
Float: 4 bytes
Double: 8 bytes
-----
Process exited after 0.03259 seconds with return value 0
Pressione qualquer tecla para continuar. . .
```


- Declaração de variáveis em C/C++
- As variáveis são declaradas após a especificação de seus tipos. Os tipos de dados mais utilizados são: int,float e char.
- Exemplo

```
float x;
float y,z;
char sexo;
```

```
#include <stdio.h>
      int main ()
3 🖃
        int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos quatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
       scanf("%d%*c",&n3);
11
       scanf("%d%*c",&n4);
12
13
       // Soma os números digitados
14
       soma = n1 + n2 + n3 + n4;
15
       // Mostra mensagem e o resultado da soma
       printf("\nResultado da soma = %d\n", soma);
16
17
       // Pára o programa a espera de um ENTER
18
       getchar();
19
        return 0:
20
```


- Declaração de constantes em C/C++
- As constantes são declaradas depois das bibliotecas e seus valores não podem ser alterados durante a execução do programa. A declaração deve obedecer à seguinte sintaxe: "#define nome valor"
- Exemplo
- #define x 7
- #define y 4.5
- #define nome "MARIA"

```
#include <stdio.h>
     #define x 7
     int main ()
       int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos guatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
10
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
       scanf("%d%*c",&n3);
       scanf("%d%*c",&n4);
       // Soma os números digitados
15
       soma = n1 + n2 + n3 + n4;
16
       // Mostra mensagem e o resultado da soma
17
       printf("\nResultado da soma = %d\n",soma);
       printf("valor de x %d",x);
19
       // Pára o programa a espera de um ENTER
20
       getchar();
       return 0;
```


- Comando de entrada em C/C++
- O comando de entrada é utilizado para receber dados digitados pelo usuário. Os dados recebidos são armazenados em variáveis.
- Exemplo
- scanf("%d%*c",&x);
- scanf("%f%*c",&z);
- scanf("%c%*c",&sexo);

```
#include <stdio.h>
      int main ()
        int n1, n2, n3, n4, soma;
        // Mostra mensagem antes da leitura dos quatro números
        // \n - coloca o cursor na linha de baixo
        printf("\nDigite quatro números\n");
        // Recebe os quatro números
        scanf("%d%*c",&n1);
        scanf("%d%*c",&n2);
11
        scanf("%d%*c",&n3);
12
        scanf("%d%*c",&n4);
13
        // Soma os números digitados
        soma = n1 + n2 + n3 + n4;
15
        // Mostra mensagem e o resultado da soma
16
        printf("\nResultado da soma = %d\n",soma);
17
       // Pára o programa a espera de um ENTER
18
        getchar();
19
        return 0;
```


Escola Técnica Estadual

Comando de saída em C/C++

O camando de saída é utilizado para mostrar dados na tela

ou na impressora.

Exemplo

printf("%f",y);

printf("Conteudo de Y = %f",y);

- printf("Aula");
- printf("\nFácil");

```
#include <stdio.h>
     int main ()
3 🗔
       int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos quatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
11
       scanf("%d%*c",&n3);
       scanf("%d%*c",&n4);
12
       // Soma os números digitados
       soma = n1 + n2 + n3 + n4;
14
15
       // Mostra mensagem e o resultado da soma
       printf("\nResultado da soma = %d\n",soma);
16
       // Pára o programa a espera de um ENTER
17
18
       getchar();
       return 0;
```


Comando de atribuição em C/C++

O comando de atribuição é utilizado para conceder valores ou operações a variáveis, sendo representado por = (sinal de

igualdade).

Exemplo

```
• x = 4;
```

•
$$x = x + 2$$
;

```
• sexo = 'F';
```

```
#include <stdio.h>
     int main ()
 3 - {
       int n1, n2, n3, n4, soma;
       // Mostra mensaaem antes da leitura dos auatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
       scanf("%d%*c",&n2);
11
       scanf("%d%*c",&n3);
       scanf("%d%*c",&n4);
       // Soma os números digitados
       soma = n1 + n2 + n3 + n4;
15
       // Mostra mensagem e o resultado da soma
16
       printf("\nResultado da soma = %d\n",soma);
17
       // Pára o programa a espera de um ENTER
       getchar();
18
       return 0;
```

Fonte: Fundamentos da Programação de Computadores, Pearson Editora, 3º edição Faculdade de Tecnologia

Escola Técnica Estadual

- Comentários em C/C++
- Comentários são textos que podem ser inseridos em programas com o objetivo de documentá-los. Eles não são analisados pelo compilador.
- Os comentários podem ocupar uma ou várias linhas, devendo ser inseridos nos programas utilizando-se os símbolos /* */ ou //.
- Exemplo
- // comentário de uma linha
- /* comentário de múltiplas linhas */
- Ctrl + Shift + c
- Ctrl + Shift + x

```
int main ()
 3 □ {
       int n1, n2, n3, n4, soma;
       // Mostra mensagem antes da leitura dos quatro números
       // \n - coloca o cursor na linha de baixo
       printf("\nDigite quatro números\n");
       // Recebe os quatro números
       scanf("%d%*c",&n1);
        scanf("%d%*c",&n2);
        scanf("%d%*c",&n3);
12
       scanf("%d%*c",&n4);
13
       // Soma os números digitados
14
       soma = n1 + n2 + n3 + n4;
15
       // Mostra mensagem e o resultado da soma
16
       printf("\nResultado da soma = %d\n",soma);
17
       // Pára o programa a espera de um ENTER
18
       getchar();
        return 0;
```


Operadores Aritméticos

Operador	Exemplo	Comentário
=	x = y	O conteúdo da variável Y é atribuído à variável X (A uma variável pode ser atribuído o conteúdo de outra, um valor constante ou, ainda, o resultado de uma função).
+	x + y	Soma o conteúdo de X e de Y.
-	x – y	Subtrai o conteúdo de Y do conteúdo de X.
*	x * y	Multiplica o conteúdo de X pelo conteúdo de Y.
/	x / y	Obtém o quociente da divisão de X por Y. Se os operandos são inteiros, o resultado da operação será o quociente inteiro da divisão. Se os operadores são reais, o resultado da operação será a divisão. Por exemplo: int $z = 5/2$; \rightarrow a variável z receberá o valor 2. float $z = 5.0/2.0$; \rightarrow a variável z receberá o valor 2.5.
%	x % y	Obtém o resto da divisão de X por Y.

Operadores Aritméticos e Expressões Aritméticas

Operador	Exemplo	Comentário
+=	x + = y	Equivale a X = X + Y.
-=	x - = y	Equivale a $X = X - Y$.
* =	x * = y	Equivale a X = X * Y.
/=	x / = y	Equivale a X = X / Y.
% =	x % = y	Equivale a X = X % Y.
++	x + +	Equivale a X = X + 1.
++	y = + + x	Equivale a X = X + 1 e depois Y = X.
++	y = x + +	Equivale a Y = X e depois X = X + 1.
	X	Equivale a $X = X - 1$.
	y = x	Equivale a $X = X - 1$ e depois $Y = X$.
	y = x	Equivale a $Y = X$ e depois $X = X - 1$.

Operadores Aritméticos e Expressões Aritméticas

 Faça um programa que receba três notas e seus respectivos pesos, calcule e mostre a media ponderada.

```
#include <stdio.h>
     int main()
       float nota1, nota2, nota3, peso1, peso2, peso3, media;
       printf("Digite as três notas e seus pesos ");
       // Recebe as três notas e seus pesos
       scanf("%f%*c",&nota1);
       scanf("%f%*c",&nota2);
       scanf("%f%*c",&nota3);
       scanf("%f%*c",&peso1);
       scanf("%f%*c",&peso2);
11
       scanf("%f%*c",&peso3);
12
13
       // Calcula a média
       media = (nota1 * peso1 + nota2 * peso2 + nota3 * peso3)/(peso1 + peso2 + peso3);
14
       // Mostra o resultado da média
15
       // Formatando a saída para mostrar no mínimo 3 caracteres
16
       // e destes, 2 caracteres para a parte decimal
17
       printf("%3.2f\n", media);
18
       // Pára o programa a espera de uma tecla
19
20
       getchar();
       return 0;
```


Operadores Relacionais

Operador	Exemplo	Comentário
==	x = = y	O conteúdo de X é igual ao conteúdo de Y.
! =	x ! = y	O conteúdo de X é diferente do conteúdo de Y.
<=	x < = y	O conteúdo de X é menor ou igual ao conteúdo de Y.
>=	x > = y	O conteúdo de X é maior ou igual ao conteúdo de Y.
<	x < y	O conteúdo de X é menor que o conteúdo de Y.
>	x > y	O conteúdo de X é maior que o conteúdo de Y.

Funções pré-definidas

Funções Matemáticas - biblioteca math.h			
Função	Exemplo	Comentário	
ceil	ceil (X)	Arredonda um numero real para cima. Por exemplo, ceil (3.2) é 4.	
cos	cos (X)	Calcula o cosseno de X (X deve estar representado em radianos).	
ехр	exp (X)	Obtém o logaritmo natural e elevado à potência X.	
abs	abs (X)	Obtém o valor absoluto de X.	
floor	floor (X)	Arredonda um número real para baixo. Por exemplo, floor (3.2) é 3.	
log	log (X)	Obtém o logaritmo natural de X.	
log10	log10 (X)	Obtém o logaritmo de base 10 de X.	
modf	z = modf (X, & Y)	Decompõe o número real armazenado em X em duas partes: Y recebe a parte fracionária e z, a parte inteira do número.	
pow	pow (X, Y)	Calcula a potência de X elevado a Y.	
sin	sin (X)	Calcula o seno de X (X deve estar representado em radianos).	
sqrt	sqrt (X)	Calcula a raiz quadrada de X.	
tan	tan (X)	Calcula a tangente de X (X deve estar representado em radianos).	

Comandos da linguagem de programação

Estrutura Sequencial em C/C++

Exemplo: Faça um programa que calcule e mostre a área de

um triângulo.

```
#include <stdio.h>
     int main()
3 🖃
     float base, altura, area;
       // Mostra mensagem antes da leitura da base
 5
       printf("\nDigite a base do triângulo\n");
       // Recebe a base
       scanf("%f%*c",&base);
       // Mostra mensagem antes da leitura da altura
       printf("\nDigite a altura do triângulo\n");
11
       // Recebe a altura
12
       scanf("%f%*c",&altura);
13
       // Calcula a área
       area = (base * altura)/2;
15
       // Mostra a área
       printf("\nA área do triângulo é %4.2f",area);
16
17
       // Pára o programa a espera de um ENTER
18
       getchar();
19
       return 0;
```


Funções pré-definidas

• Faça um programa que calcule e mostre a área de um círculo. Sabe-se que: Área = π * R^2

```
//Faça um programa que calcule e mostre a área de um
   //círculo. Sabe-se que: Área = pi * R 2
     #include <stdio.h>
     #include <math.h>
     int main()
     float area, raio;
       // Mostra mensagem antes da leitura do raio
       printf("\nDigite o raio: ");
 8
       // Recebe o raio
       scanf("%f%*c",&raio);
10
       // Calcula a área
11
       area = 3.1415 * pow(raio,2);
12
       // Mostra a área
13
       printf("\nA área é: %4.3f", area);
14
       // Pára o programa a espera de um ENTER
16
       getchar();
17
       return 0;
18
```


Referencias Bibliográficas

• ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene Aparecida Veneruchi de, **Fundamentos da Programação de Computadores**, Pearson Editora, 3ª edição.

