Chapter 5

作业

1.1

已知文法

$$G(E): E
ightarrow EE * |EE + |a|$$

- 1. 给出符号串 Eaa*a++ 的最右推导
- 2. 给出该句型的语法分析树
- 3. 给出其所有的短语,直接短语,句柄,素短语

最右推导:

$$E \Rightarrow EE+$$

$$\Rightarrow EEE++$$

$$\Rightarrow EEa++$$

$$\Rightarrow EEE*a++$$

$$\Rightarrow EEE*a++$$

$$\Rightarrow EEa*a++$$

$$\Rightarrow Eaa*a++$$

语法分析树:

短语,直接短语,句柄,素短语:

- 短语(遍历所有子根): Eaa*a++, aa*a+, aa*, a
- 直接短语(遍历最靠下的子根): a
- 句柄(最左直接短语): a
- 素短语(短语里面, 终结符含量最少(不为零)): a

1.2

已知文法

$$G(S): S o (A)|a \ A o A + S|S$$

- 1. 构造各非终结符的 FirstVT 集合和 LastVT 集合
- 2. 构造优先关系表

FirstVT 和 LastVT 集合, 遵循 石边的 加到 左边的 原则

780	A.	
$\stackrel{\mathtt{a}}{S}$	$-\{(,a\}$	$\{),a\}$

V_N	FirstVT	LastVT
A	$\{+,(,a\}$	$\{+,),a\}$

处理 A 的两个集合, 先从产生式直接看出的 非终结符 入手 (+)

于是, 可以构造优先关系表

构造过程中, 依次分析:

$$egin{aligned} S &
ightarrow (A) \ S &
ightarrow a \ A &
ightarrow A + S \ A &
ightarrow S \ (\#S\#) & \ldots & (\# \in V_T) \end{aligned}$$

	(a)	+	#
(<	<	-0-	<	
a			>	→	>
)			→	→	>
+	<	<	•>	•>	
#	<	<			<u></u>

1.3

已知文法

$$G(P): P
ightarrow aPb|Q \ Q
ightarrow bQc|bSc \ S
ightarrow Sa|a$$

- 1. 构造识别其文法 所有活前缀 的 DFA(M)
- 2. 构造其 SLR 分析表, 判断 G(P) 是否为 SLR(1) 文法

枚举所有的项目,并编号:

$$P'
ightarrow
ightarrow P$$
 $P'
ightarrow P$
 $P
ightarrow aPb$
 $P
ightarrow aPb
ightarrow aPb
ightarrow P$
 $P
ightarrow Q$
 $P
ightarrow Q$
 $Q
ightarrow bQc$
 $Q
ightarrow bQc$
 $Q
ightarrow bQc$
 $Q
ightarrow bSc$
 $Q
ightarrow bSc$
 $Q
ightarrow bSc$
 $Q
ightarrow bSc
ightarrow S
ightarrow S$
 $S
ightarrow Sa$
 $S
ightarrow Sa$

列出 G(P'):

求出 Follow 集:

180	
P'	{#}

V_N	Follow
P	$\{\#,b\}$
Q	$\{\#,b,c\}$
S	$\{\#,a,b,c\}$

随后, 即可构造 DFA(M):

然后构造 SLR 分析表:

State	Action				Goto		
	а	b	С	#	Р	Q	S
0	s2	s5			12	1	
1		r2		r2			
2	s2				3	1	
3		s4					
4		r1		r1			

State	Action				Goto		
5	s11	s5				6	8
6			s7				
7		r3	r3	r3			
8	s9	s10					
9		r4	r4	r4			
10	r5	r5	r5	r5			
11	r6	r6	r6	r6			
12				acc			

1.4

已知文法

$$G(A):A o BA|i \ B o AB|j$$

- 1. 构造识别其文法 所有活前缀 的 DFA(M)
- 2. 构造其 SLR 分析表, 判断 G(A) 是否为 SLR(1) 文法

首先, 枚举所有的项目, 并编号:

$$A'
ightarrow \cdot A$$
 $A'
ightarrow A \cdot A$
 $A
ightarrow \cdot BA$
 $A
ightarrow B \cdot A$
 $A
ightarrow i \cdot A$
 $A
ightarrow i \cdot AB$
 $A
ightarrow A \cdot B$
 $A
ightarrow AB \cdot AB \cdot B$
 $A
ightarrow AB \cdot B$

列出 G(A'):

$$G(A'):A' o A \ A o BA \ A o i \ B o AB \ B o j \ (4)$$

求出 Follow 集:

V_N	First	Follow
A'	$\{i,j\}$	{#}
A	$\{i,j\}$	$\{\#,i,j\}$
B	$\{i,j\}$	$\{i,j\}$

随后, 即可构造 DFA(M):

以及 SLR 表:

State	Action			Goto	
	i	j	#	А	В
0	s1	s2		3	4
1	r2	r2	r2		
2	r4	r4			
3		s2	acc	6	
4	s1			5	4
5	r1	r1	r1		
6		s2		6	7
7	r3	r3			

很显然的, 这张 SLR 分析表 不存在 包含 多重定义 的 入口, 不含有 动作冲 突, 所以说这就是 SLR(1) 文法

2.1

课本 P_{135} T_8

(说明: 判断 SLR(1) 文法使用先构造 SLR 分析表, 根据 SLR 分析表判断)

证明下面的文法:

$$S
ightarrow AaAb|BbBa$$
 $A
ightarrow \epsilon$ $B
ightarrow \epsilon$

是 LL(1) 但不是 SLR(1) 的

首先, 枚举所有项目, 并编号:

(一定要注意, 形如 $A \to \epsilon$ 的产生式, 有且仅有一个项目 $A \to \cdot$)

$$S' \rightarrow \cdot S$$

$$S' \rightarrow S \cdot$$

$$S \rightarrow \cdot AaAb$$

$$S \rightarrow A \cdot aAb$$

$$S \rightarrow Aa \cdot Ab$$

$$S \rightarrow AaA \cdot b$$

$$S \rightarrow AaAb \cdot$$

$$S \rightarrow BbBa$$

$$S \rightarrow Bb \cdot Ba$$

$$S \rightarrow BbB \cdot a$$

列出 G(S'):

$$G(S'): S' \to S \tag{0}$$

$$S \to AaAb$$
 (1)

$$S o BbBa$$
 (2)

$$A \to \epsilon$$
 (3)

$$B \to \epsilon$$
 (4)

求出 Follow 集:

V_N	First	Follow
S'	$\{\epsilon,a,b\}$	{#}
S	$\{\epsilon,a,b\}$	{#}
A	$\{\epsilon\}$	$\{a,b\}$
B	$\{\epsilon\}$	$\{a,b\}$

随后, 即可构造 DFA(M):

这里, 对于 I_0 状态中, 存在两个项目:

$$A
ightarrow \cdot \ B
ightarrow \cdot$$

按照规则, 我们需要为 $a \in Follow(A)$ 添加 r3, 再为 $b \in Follow(B)$ 添加 r4

但是, Follow(A)=Follow(B), 势必造成 多重定义, 并不是 SLR(1)接下来分析其 LL(1) 特征:

☑ 不存在左递归

 $lacksquare orall A \in V_N(A
ightarrow lpha_1 | lpha_2 | \dots | lpha_n)
ightarrow First(lpha_i) \cap First(lpha_j) = \Phi \ (i
eq j)$

orall $orall A\in V_N(\epsilon\in First(A)) o First(A)\cap Follow(A)=\Phi$ (关注 $A o\epsilon$, $B o\epsilon$)

因此, 这就是一个 LL(1) 文法