MP2I PV

À rendre le lundi 13 mai.

Problème : Similitude entre une matrice et son inverse.

posé au concours blanc 2022

Dans tout le problème, E est un \mathbb{R} -espace vectoriel de <u>dimension 3</u>.

Pour u endomorphisme de E et n entier naturel non nul, on note $u^n = u \circ u \circ \cdots \circ u$ (u écrit n fois). On rappelle que $u^0 = \mathrm{id}_E$.

On note $M_3(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre 3, $GL_3(\mathbb{R})$ l'ensemble des matrices inversibles de $M_3(\mathbb{R})$, et I_3 la matrice identité de $M_3(\mathbb{R})$.

On notera par 0 l'endomorphisme nul, la matrice nulle et le vecteur nul.

Pour deux matrices A et B de $M_3(\mathbb{R})$, on dira que la matrice A est **semblable** à la matrice B s'il existe une matrice P de $GL_3(\mathbb{R})$ telle que : $A = P^{-1}BP$.

Partie A

1. Une question de cours.

On notera $A \sim B$ pour dire que la matrice A est semblable à la matrice B.

- (a) Redémontrer que la relation \sim est une relation d'équivalence sur $M_3(\mathbb{R})$.
- (b) Redémontrer que deux matrices semblables ont même trace.
- 2. Soit u un endomorphisme de E et soit i et j deux entiers naturels.

On considère l'application w de $Ker(u^{i+j})$ vers E définie par : $w(x) = u^j(x)$. Ainsi,

$$w: \left\{ \begin{array}{ccc} \operatorname{Ker}(u^{i+j}) & \to & E \\ x & \mapsto & u^{j}(x) \end{array} \right..$$

- (a) Montrer que $\operatorname{Im}(w) \subset \operatorname{Ker}(u^i)$.
- (b) En déduire que $\dim(\operatorname{Ker}(u^{i+j})) \leq \dim \operatorname{Ker}(u^i) + \dim \operatorname{Ker}(u^j)$.

- 3. Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et $\operatorname{rg} u = 2$.
 - (a) Montrer que dim $(Ker(u^2)) = 2$. (On pourra utiliser deux fois la question 2 (b)).
 - (b) Justifier l'existence d'un vecteur a non nul de E tel que $u^2(a) \neq 0$. En déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - (c) Ecrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- 4. Soit u un endomorphisme de E vérifiant : $u^2 = 0$ et $\operatorname{rg} u = 1$.
 - (a) Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - (b) Justifier l'existence d'un vecteur c de Ker(u) tel que la famille (u(b), c) soit libre, puis montrer que la famille (b, u(b), c) est une base de E.
 - (c) Ecrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie B

Soit désormais une matrice A de $M_3(\mathbb{R})$ semblable à une matrice de la forme

$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix} \text{ de } M_3(\mathbb{R}).$$

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} .

On pose alors $N=\begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$, et se donne une matrice P de $GL_3(\mathbb{R})$ telle que

- 5. Justifier que A est inversible.
- 6. Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- 7. On suppose dans cette question que N=0, montrer alors que les matrices A et A^{-1} sont semblables.

- 8. On suppose dans cette question que rg(N) = 2. On pose $M = N^2 N$.
 - (a) Montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et, en utilisant la question A-3, en déduire, une matrice semblable à la matrice M.
 - (b) Calculer M^3 et déterminer rg(M).
 - (c) Montrer que les matrices M et N sont semblables.
 - (d) Montrer alors que les matrices A et A^{-1} sont semblables.
- 9. On suppose dans cette question que rg(N) = 1. On pose $M = N^2 N$. Montrer que les matrices A et A^{-1} sont semblables.
- 10. **Exemple**: Soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

On note (a, b, c) une base de E et u l'endomorphisme de E de matrice A dans cette base.

- (a) Montrer que $Ker(u-id_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1, e_2) .
- (b) Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
- (c) Montrer que les matrices A et A^{-1} sont semblables.
- 11. Réciproquement, toute matrice de $M_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$?