Seminar 12 **Sfera**

1) Să se găsească ecuația sferei care trece prin punctele $M_1(1,0,0), M_2(0,1,-2), M_3(1,-2,1), M_4(-1,0,-2)$. Soluție: Ecuația sferei prin patru puncte:

$$\Leftrightarrow (x^2 + y^2 + z^2)(-1) \begin{vmatrix} 1 & 1 & -2 \\ -1 & -2 & 1 \\ 0 & 0 & -2 \end{vmatrix} - x(-1) \begin{vmatrix} 0 & 1 & -2 \\ 7 & -2 & 1 \\ 0 & 0 & -2 \end{vmatrix} + y(-1) \begin{vmatrix} 1 & 4 & -1 & -2 \\ 14 & -2 & -2 \\ 0 & 0 & -2 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 1 & 2 \\ 0 & 0 & -2 \\ -1 & -2 \end{vmatrix} - x(-1)(-1)^{3+3}(-2) \begin{vmatrix} 0 & 1 \\ 7 & -2 \\ -1 & -2 \end{vmatrix} + y(-1)(-1)^{2+3}1 \begin{vmatrix} 1 & 4 & -1 \\ 14 & -2 \\ -2 & 1 \end{vmatrix} - z(-1)(-1)^{3+2}(-2) \begin{vmatrix} 2 & 1 \\ 5 & -2 \\ -2 & 1 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 8 & -2 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}(-2) \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + (-1)(-1)^{3+3}(-2) \end{vmatrix} + (-1)(-1)^{3+3}($$

 $x^2 + y^2 + x^2 - 7x + 7y + 9z + 6 = 0$

soluție:

3) Să se găsească ecuațiile planelor tangente la sfera $(x-2)^2 + (y+1)^2 + (z-3)^2 = 6$ în punctele de intersecție cu dreapta $\frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{2}$.

Soluție:

 $T_2(3, -2, 5)$ $T_1(1,0,1)$ $t_1 = 0$ $t_2 = 2$ $(t+1-2)^2 + (-t+1)^2 + (2t+1-3)^2 = 6 \iff (t-1)^2 + (t-1)^2 + 4(t-1)^2 = 6 \iff 6(t-1)^2 = 6 \iff (t-1)^2 = 1 \iff t-1 = \pm 1 \iff t-1 = \pm$

Centrul sferei:
$$C(2, -1, 3)$$

 $CT_1 \perp \Pi_1 \Longrightarrow \overrightarrow{n_1} = \overrightarrow{T_1C} \Longrightarrow \overrightarrow{n_1}(2-1, -1-0, 3-1) \Longleftrightarrow \overrightarrow{n_1}(1, -1, 2)$

Ecuația planului Π_1 care trece prin T_1 și are vectorul normal $\overrightarrow{n_1}$ este: $A_1(x-x_1)+B_1(y-y_1)+C_1(z-z_1)=0$, adică în cazul nostru:

$$\Pi_1: 1(x-1) + (-1)(y-0) + 2(z-1) = 0 \iff \Pi_1: x-y+2z-3=0$$

Analog:
$$\overrightarrow{n_2} = \overrightarrow{T_2C} \Longrightarrow \overrightarrow{n_2}(2-3,-1-(-2),3-5) \Longleftrightarrow \overrightarrow{n_2}(-1,1,-2)$$

$$\Pi_2: -1(x-3)+1(y+2)-2(z-5)=0 \iff \Pi_2: -x+y-2z+15=0 \iff \Pi_2: x-y+2z-15=0$$

$$2 = x_c = \frac{x_{T_1} + x_{T_2}}{2} \qquad \left(\frac{1+3}{2} = 1\right)$$

$$-1 = y_c = rac{y_{T_1} + y_{T_2}}{2} \qquad \left(rac{0 - 2}{2} =
ight)$$

$$3=z_c=rac{2}{z_{T_1}+z_{T_2}} \qquad \left(rac{2}{1+5}=
ight.$$

Centrul C se găsește pe dreapta perpendiculară în T pe planul Π . Ecuațiile dreptei: $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z-2}{1}$

($\overrightarrow{d} = \overrightarrow{n}(2, -2, 1)$ vectoral director al dreptei coincide cu vectoral normal al planului Π). Fie C(a, b, c) central sferei S. $\frac{a-1}{2} = \frac{b-1}{-2} = \frac{c-2}{1} = t$

$$\frac{a-1}{2} = \frac{b-1}{-2} = \frac{c-2}{1} = t$$

$$CT = 3 \iff \sqrt{(a-1)^2 + (b-1)^2 + (b$$

$$CT = 3 \iff \sqrt{(a-1)^2 + (b-1)^2 + (c-2)^2} = 3$$

a = 2t + 1

$$\begin{vmatrix} b = -2t + 1 \\ c = t + 2 \end{vmatrix}$$

$$\implies (2t+1-1)^2 + (-2t+1-1)^2 + (t+2-2)^2 = 9 \iff (2t)^2 + (-2t)^2 + t^2 = 9 \iff 9t^2 = 9 \iff t^2 = 1 \iff t_{1,2} = \pm 1$$

$$(a-1)^2 + (b-1)^2 + (c-2)^2 = 9$$

$$\Rightarrow \begin{cases} C_1(3,-1,3) \implies S_1: (x-3)^2 + (y+1)^2 + (z-3)^2 = 9 \\ C_2(-1,3,1) \implies S_2: (x+1)^2 + (y-3)^2 + (z-1)^2 = 9 \end{cases}$$

5) Să se scrie ecuația sferei care are centrul în planul $\Pi: 2x - y + z - 4 = 0$ și care este tangentă planului $\Pi_1: 4x + 3z - 29 = 0$ în punctul T(5, -2, 3).

Dreapta $d \equiv TC$ este perpendiculară pe planul Π_1 . Deci $\overrightarrow{d} = \overrightarrow{n_1}(4,0,3)$. $d: \frac{x-5}{4} = \frac{y+2}{0} = \frac{z-3}{3} = t$

$$d: \frac{x-5}{4} = \frac{y+2}{0} = \frac{z-3}{3} = t$$

Centrul $C = d \cap \Pi$

$$y = -2$$
 $\implies 8t + 10 + 2 + 3t + 3 - 4 = 0 \iff 11t + 11 = 0 \iff t = -1$ $2x - y + z - 4 = 0$

$$C(1, -2, 0)$$
 $R = CT = \sqrt{(5-1)^2 + (-2 - (-2))^1 + (3-0)^2} = \sqrt{4^2 + 0^1 + 3^2} = 5$
 $S: (x-1)^2 + (y+2)^2 + z^2 = 25$

6) Se dau sferele $S_1: x^2 + y^2 + z^2 - 9 = 0$ și $S_2: x^2 + y^2 - 2x - 4y + 4z = 0$. Să se afle centrul și raza cercului de intersecție.

$$\Pi: S_1 - S_2 = 0 \quad 2x + 4y - 4z - 9 = 0$$

$$C_1(0,0,0), R_1 = 3$$

$$d = d(C_1,C) = d(C_1,\Pi) = \frac{|-9|}{\sqrt{4+16+16}} = \frac{9}{6} = \frac{3}{2}$$

$$R^2 = R_1^2 - d^2 = 9 - \frac{9}{4} = \frac{27}{4} \implies R = \frac{3\sqrt{3}}{2}$$

$$C_1C: \frac{x}{2} = \frac{y}{4} = \frac{z}{-4} | \cdot 2 \iff \frac{x}{1} = \frac{y}{2} = \frac{z}{-2} = t$$
(dreapta care trece prin C_1 și este perpendiculară pe Π)

$$^{2} = R_{1}^{2} - d^{2} = 9 - \frac{9}{4} = \frac{27}{4} \implies R = \frac{3\sqrt{3}}{2}$$

 $C: \frac{x}{2} = \frac{y}{2} = \frac{z}{2} | \cdot 2 \iff \frac{x}{2} = \frac{y}{2} = \frac{z}{2} = t$

$$C_1 C \cap \Pi = \{C\}$$

$$x = t$$

$$y = 2t$$

$$z = -2t$$

$$2x + 4y - 4z - 9 = 0 \Leftrightarrow 18t = 9 \Leftrightarrow t = \frac{1}{2}$$

$$2x + 4y - 4z - 9 = 0$$

$$\Rightarrow C\left(\frac{1}{2}, 1, -1\right).$$

7) Să se scrie ecuația sferei care trece prin cercul $\mathscr{C}: \left\{ \begin{array}{c} x^2 + y^2 - 2y = 0 \\ \text{`și prin punctul } P(1,2,-1). \end{array} \right.$ z = 0

Soluție:

reprezintă ecuațiile unui cerc: → prima ecuație este ecuația unei suprafețe cilindrice; $x^2 + y^2 - 2y = 0$ Sistemul

intersecția sferei S_1 cu planul xOy. \rightarrow a doua ecuație este ecuația planului xOy. $\int x^2 + (y-1)^2 + z^2 = 1$ z = 0Sistemul este echivalent cu: (*) $\left\{ x^2 + y^2 + z^2 - 2y = 0 \right\}$

Mulțimea tuturor sferelor care trec printr-un cerc se numește fascicul de sfere.

Dacă cercul este dat prin intersecția a două sfere $S_1=0$ și $S_2=0$ atunci ecuația fasciculului este $\lambda_1S_1+\lambda_2S_2=0$, cu $\lambda_1^2+\lambda_2^2\neq 0$, λ_1 , $\lambda_2\in\mathbb{R}$ sau $S_1+\lambda S_2=0$ (fascicul

Dacă cercul este dat prin intersecția unei sfere S = 0 cu un plan $\Pi = 0$, atunci ecuația fasciculului este $\lambda_1 S + \lambda_2 \Pi = 0$ sau $S + \lambda \Pi = 0$. În cazul nostru, toate sferele care trec prin cercul dat de sistemul (*) au ecuația

 $S_{\lambda}: x^2 + y^2 + z^2 - 2y + \lambda z = 0$

 $P \in S_{\lambda} \implies 1^2 + 2^2 + (-1)^2 - 2 \cdot 2 + \lambda(-1) = 0 \implies \lambda = 2$

Deci sfera căutată are ecuția:

 $x^2 + y^2 + z^2 - 2y + 2z = 0 \iff x^2 + (y - 1)^2 + (z + 1)^2 = 2$

Altă soluție: Găsim 3 puncte pe cercul \mathscr{C} . O(0,0,0), A(0,2,0), B(1,1,0).

Scriem ecuația sferei prin patru puncte: O,A,B,P.