Aula 6 Meios de Comunicação

O meio de transmissão serve para transportar fisicamente os sinais codificados entre o transmissor e receptor.

Qualquer meio físico capaz de transportar informações eletromagnéticas é passível de ser usado em redes de computadores.

SENAI

TIPOS

Meios de transmissão guiados – Par trançado, cabo coaxial, fibra óptica.

Meios de transmissão sem fio – Radiodifusão, infravermelho, microondas, ondas de luz.

PAR TRANÇADO

Quatro pares de fios de cobre, enrolados em aspiral:

- Este sistema cria uma barreira eletromagnética que reduz o ruído externo;
- Cada par utiliza um padrão de entrançamento diferente para evitar a interferência entre os pares.
- Os cabos de rede precisam suportar frequências muito altas, causando um mínimo de atenuação do sinal.
- Os cabos de par trançado são classificados em categorias, que indicam a qualidade do cabo e a frequência máxima suportada por ele.

SENAI

PAR TRANÇADO

- Categoria 3: 16 MHz; Redes Ethernet de 10 Mbits. Possui pelo menos 24 tranças por metro. Continua sendo utilizado, mas em instalações telefônicas.
- Categoria 4: 20 MHz; Não é mais recomendado pela TIA.
- Categoria 5: 100 MHz; Requisito mínimo para redes de 100 e 1000 Mbits.
 Dificilmente encontrado, pois foi substituído pela categoria 5e.
- Categoria 5e: O "e" vem de "enhanced"; Versão aperfeiçoada do padrão, com normas mais estritas, desenvolvidas de forma a reduzir a interferência entre os cabos e a perda de sinal, o que ajuda em cabos mais longos, perto dos 100 metros permitidos.

Cat. 5e

SENAI

PARTRANÇADO

- Categoria 6: 250 MHz; originalmente desenvolvida para ser usada em redes de 1000 Mbps, mas com desenvolvimento do padrão para cabos categoria 5e sua adoção acabou sendo retardada, já que embora os cabos categoria 6 ofereçam uma qualidade superior, o alcance continua sendo de apenas 100 metros; Podem ser usadas em redes 10Gbps, mas nesse caso o alcance é de apenas 55 metros.
- Categoria 6a: 500 MHz; o "a" vem de "augmented"; permite o uso de até 100 metros em redes 10Gbps; possui especificações técnicas melhoradas para reduzir a perda de sinal e tornar o cabo mais resistente a interferências.

PAR TRANÇADO – Pesquisar sobre:

- Categoria 7
- Categoria 7a
- Categoria 8

Categorias cabos de Par Trançado				
Categoria	Frequência	Velocidade	Comprimento Máximo (m)	
Categoria 1	0,4 MHz	-	-	
Categoria 2	4 MHz	•	-	
Categoria 3	16 MHz	10BASE-T e 100BASE-T4	100	
Categoria 4	20 MHz	10BASE-T e 100BASE-T4	100	
Categoria 5	100 MHz	10BASE-T - 100BASE-TX	100	
Categoria 5E	100 MHz	1000BASE-T	100	
Categoria 6	250 MHz	10/100/1000BASE-T	100	
Categoria 6	250 MHz	10GBASE-T	55	
Categoria 6A	500 MHz	10GBASE-T	100	
Categoria 7	600 MHz	10GBASE-T	100	
Categoria 7A	1000 MHz	10GBASE-T	100	
Categoria 8	2000 MHz	40GBASE-T	36	

(Não reconhecido pela TIA/EIA) (Não reconhecido pela TIA/EIA)

FIBRA ÓPTICA

São feitas de fios de vidro opticamente puro, tão finos quanto um fio de cabelo, que transmitem informação digital ao longo de grandes distâncias.

A fibra ótica não envia dados da mesma maneira que os cabos convencionais. Para garantir mais velocidade, todo o sinal é transformado em luz, com o auxílio de conversores integrados aos transmissores.

FIBRA ÓPTICA

Existem várias camadas que fazem parte da estrutura essencial de um cabo de fibra óptica:

- Proteção plástica
- Fibra de fortalecimento
- Revestimento interno
- Camada de refração
- Núcleo

FIBRA ÓPTICA - TIPOS

Monomodo

FIBRA ÓPTICA - TIPOS

FIBRA ÓPTICA - SUBMARINA

FIBRA ÓPTICA - VELOCIDADES

Fibra Óptica Multimodo 62,5/125µm					
Padrão	Janela (nm)	Distância Máxima (m)	Velocidade		
10BASE-FL	850	2.000	10Mbps		
100BASE-FX	1300	2.000	100Mbps		
1000BASE- SX	850	275	1Gbps		
1000BASE-LX	1300	550	1Gbps		
10GBASE-SR	850	33	10Gbps		
10GBASE- LX4	1300	300	10Gbps		
Fibra Óptica Multimodo 50/125µm					
Padrão	Janela	Distância Máxima	Velocidade		
	(nm)	(m)			
1000BASE- SX	850	1.000	1Gbps		
10GBASE-SR	850	300	10Gbps		
Fibra Óptica Monomodo 9/125µm					
Padrão	Janela (nm)	Distância Máxima (m)	Velocidade		
1000BASE-LX	1300	5.000	1Gbps		
10GBASE-LR	1310	10.000	10Gbps		
10GBASE-ER	1550	40.000	10Gbps		

SENAI

REDES SEM FIO

Rede sem fio é um meio de transmissão que pode reduzir custos por não precisar de cabeamento, além de oferecer certa comodidade à maior mobilidade. Esse meio trabalha com velocidade média e alta, porém é sujeita a interferências e é menos seguro em relação à intrusos.

REDES SEM FIO - WPAN

Rede pessoal sem fio. Normalmente utilizada para interligar dispositivos eletrônicos fisicamente próximos, os quais não se quer que sejam detectados a distância. Esse tipo de rede é ideal para eliminar os cabos usualmente utilizados para interligar teclados, impressoras, telefones móveis, agendas eletrônicas, computadores de mão, câmeras fotográficas digitais, mouses e outros.

É utilizado a tecnologia Blueto oth para estabelecer esta comunicação.

REDES SEM FIO - WLAN

Rede de área local sem fio, é uma rede local que usa ondas de rádio para fazer uma conexão Internet ou entre uma rede, ao contrário de rede cabeada.

Wireless LAN (WLAN)

WIFI

É uma rede sem fio, em que se permite por meio de ondas de rádio conectar-se a internet e transmitir dados de dispositivos para outro.

É a rede sem fio mais utilizada no mundo, pois, tem uma boa criptografia.

O Wifi pode ter um alcance muito grande, mas, isso vai depender do aparelho transmissor da rede. Hoje em dia, o Wifi tem duas frequências muito conhecidas que são a 2.4 ghz e 5 ghz.

Wi-Fi – Pesquisar sobre os padrões:

- IEEE 802.11 b
- IEEE 802.11 g
- IEEE 802.11 n
- IEEE 802.11 ac
- IEEE 802.11 ax