第二次仿真实验报告

张蔚桐 2015011493 自 55

2017年4月4日

目录

1	单管	BJT 放大电路的搭建和仿真测试	3
	1.1	静态工作点的调整	3
	1.2	动态参数的测定	3
		1.2.1 电压放大倍数的测定	3
		1.2.2 输入电阻的测定	3
	1.3	输出电阻的测量	5
		1.3.1 频率响应的测试	6
	1.4	性能指标的改进	6
	1.5	失真的产生和消去	6
	1.6	实际电路的搭建	6
2	单管	MOS 放大电路的搭建和仿真测试 1	1
	2.1	datasheet 和传输特性的测试	. 1
	2.2	静态工作点的调整1	. 1
	2.3	动态参数的测定	. 1
		2.3.1 电压放大倍数的测定	. 1
		2.3.2 输入电阻的测定 1	4
	2.4	输出电阻的测量	4
		2.4.1 频率响应的测试 1	4
	2.5	性能指标的改进	.4
	2.6	失真的产生和消去1	4
	2.7	实际电路的搭建	8.
3	集成	运放的搭建和仿真测试 1	9
	3.1	电路的搭建 1	9
	3.2	静态工作点的确定 1	9

目录 2

	3.3	动态参	>数的测定	19
		3.3.1	电压放大倍数的测定	19
		3.3.2	输入电阻的测量	19
		3.3.3	输出电阻的测定	19
		3.3.4	频率特性的测量	19
		3.3.5	U_{IO}, I_{IO}, I_{IB} 的测量 $\dots \dots \dots$	24
		3.3.6	SR 特性的测试	24
4	负反	馈放大	电路自激震荡的产生和消去	2 4
	4.1	自激震	憂荡的产生	24
	4 2	白激電	毫落的消 去	24

1 单管 BJT 放大电路的搭建和仿真测试

1.1 静态工作点的调整

如图1所示是仿真采用的单管放大电路。电路采用阻容耦合方式和射级稳 Q 电路。经过对变阻器 R_1 的调整,使得如图所示的静态工作电流 $I_c=2mA$

下面对 R_1 的数值进行理论计算。经过之前几次的仿真可以知道 $BJT\beta \approx 220$ 因此可以得到 $I_c \approx I_e \approx 2mA$, $U_e = 2.4V$

进一步,考虑 BJT 的开启电源 $U_{on} \approx 0.7 \mathrm{V}$ 因此可以得到 $U_b = 3.1 \mathrm{V}$

图 1: 单管 BJT 放大电路

可以认为三极管基极电流可以

忽略不计,那么我们可以得到分压电阻上的电流为 $I=\frac{U_b}{R_2}=0.206 {
m mA}$ 并进一步得到上拉电阻阻值为 $\frac{V_{cc}-U_b}{T}=57 {
m k}\Omega$

经过仿真测试,可以发现经过调整上拉电阻为 $36k\Omega + 20k\Omega = 56k\Omega$ 时系统静态工作点满足上述要求,和理论计算基本相符

1.2 动态参数的测定

1.2.1 电压放大倍数的测定

首先进行理论估算,采用三极管的中频段模型进行估算并设 $r_{be}=3$ k Ω 可以迅速得到 $A_u=-rac{\beta(R_c//R_L)}{r_{be}}=-147$

对图1的电路外接示波器和失真度仪进行测量,可以得到如图2的波形示意图,可以得到电路的仿真放大倍数为 -frac753+8035.24+5.49=-145 发现和理论计算还是很相近的

1.2.2 输入电阻的测定

首先进行理论计算,根据图1电路所示,可得输入电阻 $R_i=R_2//(R_1+R_3)//r_be\approx 2.4$ k Ω

如图3采用半压法对输入电阻进行测量,发现在输入 $V_{pk}=10 \mathrm{mV}$ 即 $V_{rms}=7.07 \mathrm{mV}$ 时,外接电阻 $R_8=23.1 \mathrm{k}\Omega$ 时可得到输入分压为 $3.534 \mathrm{mV}$,因此可得仿真测量输入电阻为 $23.1 \mathrm{k}\Omega$ 和理论计算相差不大

图 2: 电压增益的仿真波形曲线

图 3: 放大电路输入电阻的测量

图 4: 放大电路空载输出电压

图 5: 放大电路输出电阻的测量

1.3 输出电阻的测量

理论计算可以迅速得到输出电阻为 3.3kΩ

同样采取半压法进行仿真测试,首先测量空载时的输出电压有效值为888.93mV,如图4所示,外接滑动变阻器如图5,当调节至 3.1kΩ 时发现输出电压为空载输出电压的一半,因此可以得到仿真测试的输出电阻为 3.1kΩ 和理论计算值相近

1.3.1 频率响应的测试

采用 $0.707A_{us}$ 作为上限截止频率和下限截止频率的标准。如图67所示,可得上限截止频率约为 230kHz,下限截止频率为 160Hz

1.4 性能指标的改进

我们希望在这个电路中能够提供较大的 A_u , 从理论上进行分析可以得到,该电路的 $A_u = -\frac{\beta(R_c//R_L)}{r_{be}}$ 因此为实现目标我们将 R_c 从 3.3k Ω 提升至5k Ω ,从理论上进行计算,则可得到 $A'_u = -185$ 得到了上升

如图8对电路进行改进,其中两个滑动变阻器的取值和图1中定值电阻的取值是相同的没有影响,可以得到如图9的电压波形曲线,仿真测量的 $A'_u = -\frac{928+991}{5.16+5.45} = -180$ 明显得到了提升并和理论估算的值相近。同时,静态工作点没有发生变化

1.5 失真的产生和消去

如图10所示,调整 R_1 使得静态工作电流 $I_c=3$ mA 输入 20mV 信号是发生如图11所示的失真现象。显然这是底部失真,由三极管进入饱和状态引起。因此考虑提高 U_{CQ} 使三极管远离饱和状态。具体的做法是降低 R_4 。如图12所示, $R_4=1$ k Ω ,产生的波形如图13所示,可以看出失真已经基本消除。从失真度上也可以看出明显的变化。

1.6 实际电路的搭建

在电子技术实验课中已经完成了这方面电路的搭建,具体可见附录中的实验报告,这里就不再重复了

图 6: 上限截止频率的测试

图 7: 下限截止频率的测试

图 9: 改进后放大波形

图 11: 失真波形

图 13: 消去失真之后的波形

2 单管 MOS 放大电路的搭建和仿真测试

2.1 datasheet 和传输特性的测试

查找相关资料可以得到 NMOS 管 2N7000 的 $U_{GS(th)}$ 在 U_{DS} = U_{GS} , I_D = 250 μ A 的测试条件下最小值为 1V,最大值为 3V,经典值为 2.1V,按照 datasheet 提供的测试条件搭建如图14所示的测试电路,对 V_2 进行直流仿真得到如图15的输入特性曲线,按照测试条件进行标定可得 $U_{GS(th)}$ = 2.50V 和经典值相近,小于最大值

下面测量 MOS 管在 $U_{GS} = 2U_{GS(th)}$ 时的电流 I_{D0} ,如图16所示是 2N7000 的传输特性测试电路图,仿真时将 IV 测试仪选择为 NMOS 管测量模式,将 U_{GS} 设置为 $4.1V \approx 2U_{GS(th)}$ 可以得到如图16所示的传输特性曲线,从曲线中我们可以看出恒流区电流 $I_{D0} = I_{DS} = 457 \text{mA}$

图 14: 2N7000 输入特性测试

2.2 静态工作点的调整

如图17为所搭建的电路。下面进行对静态工作点的理论分析

从 NMOS 管的特性方程可以得到 $I_{DSQ}=\frac{I_{D0}}{U_{GS(th)}^2}(3.75-I_{DSQ}R_1-U_{GS(th)})^2$ 解得 $I_{DSQ}=0.44$ mA 并且有 $U_G=3.75$ V, $U_S=1.32$ V, $U_D=13.68$ V

仿真电路测得实际静态工作电流为 408μ A 和理论计算值相近,同时测得 $U_G=3.75\mathrm{V},\mathrm{U_S}=1.22\mathrm{V},\mathrm{U_D}=13.7\mathrm{V}$ 均和理论计算相差不大。测试电路图采用探针进行测量,为节省篇幅这里略去。

2.3 动态参数的测定

2.3.1 电压放大倍数的测定

首先进行理论估算,可以计算得到 MOS 管的 $g_m=2\sqrt{I_{D0}I_{DSQ}}/U_{GS(th)}=11.34$ mA/V 同时进一步得到电压放大倍数为 $A_u=-g_m(R3//R_L)=-21.4$

图 16: 2N7000 传输特性

图 18: 电压增益的仿真波形曲线

对图17的电路外接示波器和失真度仪进行测量,可以得到如图18的波形示意图,可以得到电路的仿真放大倍数为 $-\frac{270+295}{20}=-28.2$ 发现和理论计算还是很相近的

2.3.2 输入电阻的测定

首先进行理论计算,根据图17电路所示,可得输入电阻 $R_i=6{
m M}\Omega$ 如图19采用半压法对输入电阻进行测量,发现在输入 $V_{pk}=10{
m mV}$ 即 $V_{rms}=7.07{
m mV}$ 时,外接电阻 $R_8=6{
m M}\Omega$ 时可得到输入分压为 $3.534{
m mV}$,和理论计算相同

2.4 输出电阻的测量

理论计算可以迅速得到输出电阻为 3kΩ

同样采取半压法进行仿真测试,首先测量空载时的输出电压有效值为222mV,外接滑动变阻器如图20,当调节至 3kΩ 时发现输出电压为空载输出电压的一半,因此可以得到仿真测试的输出电阻为 3kΩ 和理论计算值相近

2.4.1 频率响应的测试

采用 $0.707A_{us}$ 作为上限截止频率和下限截止频率的标准。如图21所示,可得上限截止频率约为 5MHz,下限截止频率为 51Hz

2.5 性能指标的改进

希望提高电压放大倍数 A,考虑到 $A_u = -g_m(R3//R_L)$ 因此可以通过增大 R_3 来提高电压放大倍数,令 $R_3 = 7k\Omega$ 得到对应的电压放大倍数理论值为-33.47 从理论上看的确得到了提升

实际仿真如图22所示,可以测得电压放大倍数为 $-\frac{343+328}{20}=-33.55$ 可以发现电压放大倍数的确得到了提升

2.6 失真的产生和消去

将输入电压峰峰值调整至 50mV,如图23所示可以明显看出出现了失真,这是顶部失真,由于 MOS 管进入截止区产生,因此想要消除这种失真,必须提升 U_{GS} ,因此采用将下拉电阻增大即 $R_2=3\text{k}\Omega$,仿真波形如24所示发现失真得到明显的消去

图 19: 放大电路输入电阻的测量

图 20: 放大电路输出电阻的测量

图 21: 上限截止频率的测试

图 22: 改进的输出电压放大倍数

图 24: 失真的消去

2.7 实际电路的搭建

因为时间有限, 此选做任务没有完成

3 集成运放的搭建和仿真测试

3.1 电路的搭建

如图25所示,参考 F007 型集成运放的电路设计,完成了电路的搭建,同时调整电阻 $R_5=21.15\mathrm{k}\Omega, C=0\mathrm{pF}$ 对电路的低频特性进行了调整,同时保证电路输入端没有电压时输出端电压尽可能接近 $0\mathrm{V}$

3.2 静态工作点的确定

经过调整,电路的静态工作点如图26所示,因为静态工作参数太多这里 就不逐一叙述了

3.3 动态参数的测定

3.3.1 电压放大倍数的测定

如图27所示测量电压放大倍数,其中原信号由中间抽头接地测量,因此电压实际上为原来的 2 倍,可以计算得到电压放大倍数为 $-\frac{300m+298.6m}{2u} = -3 \times 10^5$ 在集成运放信号放大的数量级内

3.3.2 输入电阻的测量

如图29测量输入电阻,因为电路输入电阻很大,因此直接采用探针进行测量,如图30所示,测得输入电流可以估计为 45fA, 输入电压为 $1\mu V$ 因此可以得到输入电阻为 $22M\Omega$ 基本符合集成运放的工作特性

3.3.3 输出电阻的测定

采取半压法进行仿真测试,首先测量空载时的输出电压峰值为 300 mV,如图31所示,外接滑动变阻器如图32,当调节至 100Ω 时发现输出电压为空载输出电压的一半,因此可以得到仿真测试的输出电阻为 100Ω

3.3.4 频率特性的测量

如图28所示是集成运放的频率响应,读图立刻可知 $f_{bw}=54$ Hz, $f_{\rm C}=5.96$ MHz

图 26: 集成运放静态工作点

图 28: 集成运放频率特性

图 30: 输入电流

图 32: 集成运放输出电阻的测量

3.3.5 U_{IO}, I_{IO}, I_{IB} 的测量

将电路中的输入电压置零,可得 $U_O=30$ mV 因此可以得到 $U_{IO}=\frac{30m}{3\times10^5}=1\times10^{-8}$,因为仿真中专门为优化 U_{IO} 调整了电路参数,因此 U_{IO} 性能很好

简单测量可以得到 $I_{IO} = 2.6 \text{nA}, I_{B} = 1.21 \mu \text{A}$

3.3.6 SR 特性的测试

如图33所示将输入电压源换位等值的方波,测量波形如图34所示。按照 95% 定义的恢复时间计算,可得 $SR = \frac{1.4723}{908.85m} = 1.61 \text{V/S}$

4 负反馈放大电路自激震荡的产生和消去

4.1 自激震荡的产生

从图28中可以看出 3 中搭建的运放是一个闭环稳定的系统,不能产生自激震荡,因此考虑在输出端并联一个电容降低稳定性,如图35所示,得到电路如图36所示,bode 图如37所示,可以看出系统不论是相角裕度还是幅值裕度均不满足闭环稳定条件,系统闭环不稳定。仿真出现如图38的自激震荡,幅值大约为 20mV,已经影响正常工作

4.2 自激震荡的消去

在输出上级联超前补偿如图39所示,经过调整可以消去自激震荡到 nV 量级一下,已经和噪声基本相同了,发现失真得到明显的消去

图 34: 集成运放 SR 特性

图 35: 集成运放的封装和调整

图 36: 外部电路图

图 38: 自激震荡

图 39: 超前相位补偿