

Week **5** - **Markey** lecture highlights

- Distinguish between and use as appropriate each of structural induction, mathematical induction, and strong induction
- Prove correctness of iterative and recursive algorithms using induction

Recall: Proof by Strong Induction (Rosen 5.2 p337, zybooks 8.1)

To prove that a universal quantification over the set of all integers greater than or equal to some base integer b holds, pick a fixed non-negative integer j and then:

Basis Step: Show the statement holds for $b, b + 1, \ldots, b + j$.

Recursive Step: Consider an arbitrary integer n greater than or equal to b+j, assume (as the **strong**

induction hypothesis) that the property holds for each of $b, b + 1, \ldots, n$, and use

this and other facts to prove that the property holds for n+1.

For which non-negative integers n can we make change for n with coins of value 5 cents and 3 cents? Restating: We can make change for ______, we cannot make change for ______, and

Proof of \star by mathematical induction (b=8)

Basis step: WTS property is true about 8

Inductive step: Consider an arbitrary $n \geq 8$. Assume (as the IH) that there are nonnegative integers x, y such that n = 5x + 3y. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'. We consider two cases, depending on whether any 5 cent coins are used for n.

Case 1: Assume
Define x' =and y' =(both in N by case assumption).
Calculating:

$$5x' + 3y' \stackrel{\text{by def}}{=}$$

$$\stackrel{\text{rearranging}}{=}$$

$$\stackrel{\text{IH}}{=}$$

Case 2: Assume

Therefore n=3y and $n\geq 8$, by case assumption. Therefore, $y\geq 3$ Define x'=2 and y'=y-3 (both in $\mathbb N$ by case assumption). Calculating:

$$5x' + 3y' \stackrel{\text{by def}}{=} 5(2) + 3(y - 3) = 10 + 3y - 9$$

$$\stackrel{\text{rearranging}}{=} 3y + 10 - 9$$

$$\stackrel{\text{IH and case}}{=} n + 10 - 9 = n + 1$$

Proof of \star by strong induction (b = 8 and j = 2)

Basis step: WTS property is true about 8, 9, 10

Inductive step: Consider an arbitrary $n \ge 10$. Assume (as the IH) that the property is true about each of $8, 9, 10, \ldots, n$. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'.

Algorithms for making change

for i := 1 to r

 $n := n - c_i$

Think about the oly Change making (greedy) algorithm in pseudocode procedure $change(c_1, c_2, \dots, c_r; values of denominations of coins, where <math>c_1 > c_2 > \dots > c_r; n:a$ positive C, = 5 4 C2 = 3 $d_i := 0 \{d_i \text{ counts the number of coin of denomination } c_i \text{ used}\}$

The greedy approach doesn't work with 5¢ and 3¢ coins even for large values of n. However, we can write two new algorithms inspired by the proofs that we completed using mathematical induction and strong induction.

return $d_1, d_2, ..., d_r$ { d_i the number of coins of denomination c_i in the change for i=1, 2, ..., r}

 $d_i := d_i + 1$ {Add a coin of denomination c_i }

While an algorithm based on our proof for wins [induction of strong induction] Recursive algorithms for making change One recursive algo for making change using 5¢ and 3¢ coins procedure change1(n:a positive integer)

if (n=8) $(d_1, d_2) = (1,1)$ elle $\{(x,y) = \text{charge}(n-1)\}$ $y^{(x=0)}(d_1,d_2)=(2,y-3)$ $(d_1, d_2) = (x-1, y+2)$ return (d_1,d_2) $\{d_1, d_2 \text{ are the number of } 5¢ \text{ and } 3¢ \text{ coins respectively } \}$

Another recursive algo for making change using 5¢ and 3¢ coins

procedure change2(n:a positive integer)

3

10 11 12

13 14

15

if (n=8) $(d_1, d_2) = (1, 1)$ esse if (n=9) $(d_1, d_2) = (0, 3)$ esse if (n=10) $(d_1, d_2) = (2, 0)$

x, y = change(n-3) $(d_1,d_2) = (\chi,\gamma+1)$

return (d_1,d_2) $\{d_1, d_2 \text{ are the number of } 5¢ \text{ and } 3¢ \text{ coins respectively } \}$

in our strong induction proof the inductive case was proved for n+1 by wed n-2 = 3x + y

(n+1)-(n-2)= 3

Mot: For ease prove shory inductive case for n armoning 8, ..., n-1 daim for

Proving correctness of algorithms What does it take to show that some algorithm is correct?

We used induction / strong induction to show that $n = d_1 \cdot 5 + d_2 \cdot 3$

(i) briven a task

(ii) Come up with an algorithm

(iii) to show the correctness of the algorithm

Example 1: Prove that the algorithm findMax is correct

10M: findMax takes an input a sequence of numbers and returns the maximum number in the sequence

procedure $findMax(a_1, a_2, ..., a_n)$: a sequence of n integers)

Let f(n=1) return a_1 Let f(n=1) return a_1 f(n=1) retur

How do we show the correctness

-> Wo'll use induction along with functions

Define $f : a sequence of \longrightarrow m \in \{a_1, ..., a_n\}$ $f : man : integers s.t m = a; \forall i \in \{1, ..., n\}$ $\{a_1, ..., a_n\}$

Claim: The algorithm returns $f_{max}(a_1,...,a_n) = f_{max}(a_1,...,a_n) = f_{max}(a_1,...,a_n)$

We are going to pure the claim by induction on 11.

Prove that the algorithm findMax is correct (contd) Base Case: n=1, the sequence is fa, 3 fmax (a,) = a, by definition of fmax The algorithm returns a, by their returns fman puring the claim Mathematical hich includion Inductive lase: We need to show that

the algorithm returns $f_{max}(a_{1},...,a_{n})$ for n>1. (i.e) find Max(a,,..,an) = fmax(a,,..,an) By inductive hypothesis we can assume that, find Max (a,,...,an-1) = fmax (a1,..., an-1) Therefore, Let m = find Max(a,,...,an-1) tits11...,n-1}, a; ∈ m by IU -0 by definition of fmax and egn 10, If an≤m then, $m = f_{max}(a_1, ..., a_n)$ else if an > m then $\forall i \in \{1,...,n-1\}$ $a_i \leq m \leq a_n$: ai <an

Example 2: Prove the correctness of the Division Algorithm

	•	This completes proof
	Division Algorithm	V V
1	procedure DivisionAlgo(n: positive integer; d: positive integer)	The algorithm b correct.
2		The aloguithm is
3		. The ago with
4		/
5		1 pres
6		
7		
8		
9		
10		
11		
12		
13	return	
14	return	

Example 2: Prove the correctness of the Division Algorithm (contd)

