Título del Tema

Subtítulo o Capítulo

Prof. Arnoldo Del Toro Peña

5 de agosto de 2025

Resumen: Funciones y sus Aplicaciones

1. Dominio y Rango de Funciones

Definiciones

- **Dominio**: Conjunto de todos los valores posibles de entrada (x) para los cuales la función está definida.
- Rango: Conjunto de todos los valores posibles de salida (y) que puede tomar la función.

Determinación del Dominio

Para funciones polinomiales: $D=\mathbb{R}$ (todos los números reales) Para funciones racionales: excluir valores donde el denominador sea cero Para funciones con raíz cuadrada: el radicando debe ser ≤ 0

Determinación del Rango

- Analizar el comportamiento de la función
- Identificar valores máximos y mínimos
- Considerar las restricciones del contexto del problema

2. Tipos de Funciones Polinomiales

Clasificación por Grado

- 1. Grado 0 (Constante): f(x) = c
- 2. **Grado 1 (Lineal)**: f(x) = mx + b
- 3. Grado 2 (Cuadrática): $f(x) = ax^2 + bx + c$
- 4. Grado 3 (Cúbica): $f(x) = ax^3 + bx^2 + cx + d$
- 5. Grado n: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

Características Generales

- \blacksquare Dominio: $\mathbb R$ para todas las funciones polinomiales
- Continuidad en todo su dominio
- Diferenciables en todo punto de su dominio

3. Función Lineal y Variación

Función Lineal

Forma general: f(x) = mx + b

- m: pendiente (razón de cambio constante)
- b: ordenada al origen (intersección con eje y)

Aplicaciones de la Función Lineal

- 1. Problemas de costo: Costo total = Costo fijo + Costo variable \times cantidad
- 2. Movimiento uniforme: Distancia = velocidad \times tiempo + posición inicial
- 3. Conversiones: Celsius a Fahrenheit: $F = \frac{9}{5}C + 32$
- 4. **Depreciación lineal**: Valor = Valor inicial tasa × tiempo

Variación Directa

y = kx donde k es la constante de proporcionalidad

- \blacksquare Si x aumenta, y aumenta proporcionalmente
- La gráfica pasa por el origen

Variación Inversa

$$y = \frac{k}{x}$$
 donde k es constante

- \bullet Si xaumenta, y disminuye proporcionalmente
- Producto xy = k (constante)

4. Formas de la Ecuación Cuadrática

Forma Estándar

$$f(x) = ax^2 + bx + c$$

- *a* ≠ 0
- Fácil identificación de coeficientes
- Útil para encontrar la ordenada al origen

Forma Factorizada

$$f(x) = a(x-r_1)(x-r_2) \\$$

- lacksquare r_1 y r_2 son las raíces de la función
- Directa identificación de las intersecciones con el eje x
- Útil cuando se conocen las raíces

Forma Vértice (Canónica)

$$f(x) = a(x - h)^2 + k$$

- (h,k) son las coordenadas del vértice
- $h = -\frac{b}{2a}$ (eje de simetría)
- $k = f(\tilde{h})$ (valor máximo o mínimo)
- Útil para analizar el comportamiento de la parábola

5. Función Cuadrática y Modelos Cuadráticos

Características de la Función Cuadrática

- Gráfica: Parábola
- Dominio: \mathbb{R}
- Rango:
 - Si a > 0: $[k, +\infty)$ (parábola abre hacia arriba)
 - Si a < 0: $(-\infty, k]$ (parábola abre hacia abajo)

Elementos Importantes

- 1. Vértice: $(h,k)=\left(-\frac{b}{2a},f\left(-\frac{b}{2a}\right)\right)$ 2. Eje de simetría: $x=-\frac{b}{2a}$
- 3. Raíces: Soluciones de $ax^{2} + bx + c = 0$
- 4. Discriminante: $\Delta = b^2 4ac$
 - $\Delta > 0$: dos raíces reales distintas
 - $\Delta = 0$: una raíz real doble
 - $\Delta < 0$: no hay raíces reales

Aplicaciones de Modelos Cuadráticos

- 1. Tiro parabólico: $h(t) = -\frac{1}{2}gt^2 + v_0t + h_0$
- 2. Área de figuras: Optimización de perímetros y áreas
- 3. Problemas de maximización/minimización: Ingresos, ganancias, costos
- 4. Movimiento acelerado: $s(t) = s_0 + v_0 t + \frac{1}{2}at^2$

Estrategias de Resolución

- 1. Identificar las variables del problema
- 2. Establecer la ecuación cuadrática apropiada
- 3. Determinar la forma más conveniente (estándar, factorizada o vértice)
- 4. Analizar el contexto para interpretar las soluciones
- 5. Verificar que las soluciones tengan sentido en el problema original

Optimización con Funciones Cuadráticas

Para encontrar el valor máximo o mínimo:

- 1. Identificar si a>0 (mínimo) o a<0 (máximo)
- 2. Calcular el vértice: $x = -\frac{b^{'}}{2a}$
- 3. Evaluar $f\left(-\frac{b}{2a}\right)$ para obtener el valor óptimo
- 4. Interpretar el resultado en el contexto del problema