Automated Essay Scoring

Team members

19K41A0590: A.AMOGH

19K41A0592 : A.SAIKIRAN

19K41A04F3: ASMATH FATHIMA

Under the guidance of: D. Ramesh(Assoc. Prof.)

Contents

- Introduction
- Problem Statement
- Literature Review
- Model Used
- Data Set
- Results
- Conclusion

Introduction

- Essay writing is considered to be one of the best ways to analyze students performance and perfection. They have become a major part of formal education and entry level test in competitive exams.
- Grading automatically is proven effective.
- Our aim is to develop a deep learning technique using K-Means clustering.
- Our project will determine relationship between sentences in the essay and assess the students performance.

Problem Statement

- Essay consists of many paragraphs and evaluating them is a time consuming task.
- The number of participants or applicants is also huge and doing it manually would be a laborious work.
- Moreover, essays are the work piece of writer which help in analysing there ideas and observations. Doing it manually at times may not help evaluator to clearly understand their ideas.
- Our aim is to build a model that can take an essay as input and automatically predicts the grade/score of that essay.

Literature Review

				I
AES System	Approach	Data-set	Features applied	Evaluation Metrics & results
PedroUriaRodriguezetal.()	BERT,Xlnet	ASAPKaggle	Error correction.	QWK0.755
JiaweiLiuetal.()	CNN,LSTM,BERT	ASAPKaggle	semanticdata,handcraftedfeature s like grammar correction,essay length etcf	QWK0.709
Darwish andMohamed ()	Multiple LinearRegression	ASAPKaggle	Styleandcontent-basedfeatures	QWK0.77
JiaqiLunetal.()	BERT	SemEval-2013	Student Answer, R	Accuracy0.8277(2- way)
Süzen,Neslihan,et al.()	Textmining	Introduction to computer science in UNT, Assignments	Sentence similarity	Correlationscore0.81
WilsonZhuandYuSunin()	RNN(LSTM,Bi-LSTM)	ASAPKaggle	Word embedding, grammarcount,word coun	QWK0.70
Salim Yafetetal.()	XGBoostmachine learningclasif	ASAPKaggle	Word Count,POS, parse tree,coherence,cohestion,type token ration	Accuracy68.12
Andrzej Cader ()	DeepNeuralNetwork	University of Social Sciences in L	asynchronousfeature	Accuracy0.99
TashuTM,HorváthT()	Rule basedalgorithm,Similarit y based algorithm	ASAPKaggle	Similarity based feature applied	Accuracy0.68
Masaki Uto(B) and MasashiOkano ()	Item Response Theory Models(CNN- LSTM,BERT)	ASAPKaggl		ASAPKaggl

Model Used

K-Means clustering:

K-means clustering is a method used for clustering analysis, especially in data mining and statistics. It aims to partition a set of observations into a number of clusters (k), resulting in the partitioning of the data into Voronoi cells

Transfer-Learning:

For natural language processing, the transformers architecture is the go-to model for solving different problems, e.g. text classification, machine translation, language modeling, text generation, question answering, etc. Thanks to Huggingface and its ecosystem, transfer learning with transformers has been made very easy to start with.

Flow Chart

Data Set

F -	E	D	L	В	Α
Organization	word choice	Reviewer-2	Reviewer-1	Response	iD
1	3	4	4	An operating system (OS) is system	1
3	2	5	5	An operating system is the most im	1
1	1	1	2	Collection of programs that manage	1
0	1	1	2	It is an interface user and machine(I	1
1	2	2	3	An operating system is a software w	1
1	1	1	1	It is a platform for humans to intera	1
3	3	5	5	An operating system (OS) is system	1
1	2	2	3	software which act as interface bety	1
1	2	4	4	Operating System is a software syst	1
2	2	4	4	An operating system (OS) is system	1
1	2	2	2	Operating system is nothing but a so	1
1	1	2	2	An operating system, or OS is softw	1
1	1	2	2	It is the interface between compute	1
1	1	3	3	An operating system (OS) is system	1

Consists of 2 dependent features and 3 independent variables

Results

```
result=cohen_kappa_score(lis,abc,weights='quadratic')
print(result)

... 0.09624577645852728
```

Kappa Score

```
from scipy.cluster import hierarchy
   threshold = 0.1
   Z = hierarchy.linkage(embeddings, "average", metric="cosine")
   C = hierarchy.fcluster(Z, threshold, criterion="distance")
   print(embeddings,Z,C)
[[-0.02357353 -0.01503747 -0.00397871 ... 0.02411804 0.0362772
  0.0074688 ]
 [-0.02846667 0.03639808 0.00822516 ... 0.03154779 0.01749238
  -0.000485671
 [-0.00468063 -0.02878353 -0.03404774 ... 0.00117501 -0.02464179
  0.003384771
 [-0.02753562 -0.01181827 -0.02199969 ... -0.03585221 0.05486577
  -0.01896431]
 [ 0.01241688 -0.06888344 -0.03817156 ... -0.02222495 -0.00727084
  -0.03246032]
[-0.01234783 -0.00325741 -0.02912418 ... -0.0427<u>9251 0.02785357</u>
  -0.00177822]] [[0.00000000e+00 6.00000000e+00 0.00000000e+00 2.00000000e+00]
 [2.59000000e+02 2.85000000e+02 0.00000000e+00 2.00000000e+00]
 [9.00000000e+00 2.39000000e+03 0.00000000e+00 3.00000000e+00]
 [4.73000000e+03 4.74900000e+03 8.64300949e-01 4.00000000e+00]
[4.77400000e+03 4.77600000e+03 9.09938693e-01 2.36600000e+03]
 [4.77500000e+03 4.77700000e+03 9.64334096e-01 2.39000000e+03]] [736 734 831 ... 209 264 206]
```

Embedded essay

```
clustered sentences = [[] for i in range(num clusters)]
   for sentence id, cluster id in enumerate(cluster assignment):
       clustered sentences[cluster id].append(X['Reviewer-1'])
   for i, cluster in enumerate(clustered sentences):
       print("Cluster ", i+1)
       print(cluster)
       print("")
Output exceeds the size limit. Open the full output data in a text editor
Streaming output truncated to the last 5000 lines.
2386
2387
       2
2388
       1
2389
        2
Name: Reviewer-1, Length: 2390, dtype: int64, 0
                                                      4
1
        2
2
        2
2385
       2
2386
       3
2387
        2
2388
       1
2389
        2
```

Clustered Data

DATA VISULAIZATION WITH RESULTS

Scattering of reviewer 1, clusters

Clusters

Graph for embedding

Conclusion

- We have designed a new way of analyzing the essay and scoring them based on clustering.
- This deep learning model helps in understanding the sentences and similarities between them. Hence, it is more useful to create vectors.
- We have designed the model with an aim to help reduce the burden of essay evaluators and make the work automated and productive.

THANK YOU