

IG 4 - Algorithmique avancée

TD sur les flots/réductions

1 Rappels

Flots

Un **réseau** R est un triplet (G, s, t) où:

- G = (V, A) est un graphe orienté
- chaque arc $a \in A$ a une capacité c(a) > 0
- \bullet s (la source) et t (le puit) sont deux sommets particuliers de V

Soit R = (G, s, t) un réseau. Un flot f dans le réseau R est une fonction $f : A \mapsto \mathbb{R}^+$ vérifiant les propriétés suivantes:

- contrainte de capacité: pour tout $a \in A$, $f(a) \le c(a)$
- conservation du flot: pour tout u sauf s et t on a $f^+(v) = f^-(v)$, avec $f^+(v) = \sum_{vw \in A} f(vw)$ et $f^-(v) = \sum_{wv \in A} f(wv)$

On définit $\delta^+(X) = \{uv \in A, u \in X, v \notin X\}$, et $\Delta(v) = f^+(v) - f^-(v)$ pour tout $v \in V$. Les notations sont étendues aux sous ensembles. La propriété importante : étant donné $X \subseteq V$ (X peut contenir ou non s et ou t), on a $\Delta(X) = f(\delta^+(X)) - f(\delta^-(X))$.

- Une coupe S dans un réseau de R = (G, s, t) est un sous ensemble de sommets tel que $s \in S$ et $t \notin S$.
- Rappel : $\delta^+(S)$ arcs sortants de S, $\delta^-(S)$ arcs entrants de S
- La valeur d'une coupe est $c(S) = c(\delta^+(S))$ (attention on ne compte pas les arcs entrants)

Réduction en problèmes d'optimisation

Soit Π_1 et Π_2 deux problèmes de maximisation (avec c_i leurs fonctions de coût). On dit que Π_1 se S-réduit à Π_2 (et on note $\Pi_1 \leq_S \Pi_2$) ssi il deux algorithmes poly f, g tel que

- à partir d'une instance I_1 de Π_1 , f crée une instance I_2 de Π_2
- pour tout t, $\exists s_1$ solution de I_1 avec $c_1(s_1) \geq t \Leftrightarrow \exists s_2$ solution de I_2 avec $c_2(s_2) \geq t$
- pour toute solution s_2 , g calcule une solution s_1 tq $c_1(s_1) \ge c_2(s_2)$

2 Exercices sur les réductions (pour prouver la polynomialité)

Exercice 1.Pas cher pas cher les extensions

Dans cet exercice on s'intéresse à FLOT, une extension classique du problème du flot que l'on peut toujours résoudre en se ramenant à un problème classique de flot. Un réseau avec capacité sur les sommets est un triplet R = (G, s, t) avec G = (V, A) un graphe orienté, c_A une fonction de A dans \mathbb{R}^{+*} (capacité des arcs), c_V une fonction de V dans \mathbb{R}^+ (capacité des sommets) et s, t deux sommets particuliers de V. On étend la définition de flot à ces réseau en demandant en plus que $f^-(v) \leq c_V(v)$ pour tout $v \in V \setminus \{s, t\}$.

On définit FLOT comme le problème qui, étant donné un réseau avec capacité sur les sommets, consiste à trouver un flot de valeur maximale.

1. Montrer que $FLOT \leq_S FLOT$ (où FLOT est le problème classique du flot maximum).

Exercice 2. Problème de l'évacuation

Soit G une grille de $n \times n$ points et E un sous-ensemble de m points parmi les n^2 . Chaque point représente donc une personne. Le problème de l'évacuation consiste à maximiser le nombre de points pouvant être reliés au bord de la grille par des chemins sans sommets communs. Si l'on veut donc évactuer t personnes, il faut donc t chemins qui ne s'intersectent pas.

1. Donnez la valeur optimale pour les instances ci-dessous

2. Résoudre le problème Π de l'évacuation en montrant que $\Pi \leq_S F\tilde{LOT}$, avec $F\tilde{LOT}$ une des extensions du problème du flot vue précédement.

Exercice 3.Reductions du TP

Etudiez les réductions SEGMENTATIONIMAGE \leq_S SEGMENTATIONIMAGEGRAPHE et SEGMENTATIONIMAGEGRAPHE \leq_S MINCUT utilisées dans le TP.