Introduction to Computer Midterm II Program Algorithm (Total 30 pts)

Instructor: Chi-cheng Chiu (邱繼正) Course Num: E316200

12/01/2022

Program Question Open: 12/6/2022 17:00 - 12/8/2022 17:00

Kinetic Monte Carlo

REF: https://en.wikipedia.org/wiki/Kinetic_Monte_Carlo

The kinetic Monte Carlo (kMC) method is a Monte Carlo method computer simulation intended to simulate the time evolution of some processes occurring in nature.

A simple kMC algorithm for simulating the time evolution of a reaction, where all possible processes can occur with known rates k_p , can be written as follows:

- 1. Set the time t = 0.
- 2. Set an initial state i.
- 3. Form the list of all possible N transition rates in the system, from state i into a generic state p.
- 4. Calculate the cumulative total rate $k_{tot} = \sum_{p}^{N} k_{p}$.
- 5. Get a uniform random number $u_1 \in (0,1]$.
- 6. Find the m event to carry out by finding the m for which $\sum_{p=0}^{m-1} k_p < u_1 \cdot k_{tot} \le \sum_{p=0}^{m} k_p$ (this can be

achieved efficiently using binary search).

- 7. Carry out event **m** (update the current state i —> m).
- 8. Get a second uniform random number $u_2 \in (0,1]$.
- 9. Update the time with $t_{new} = t_{old} + \Delta t$, where $\Delta t = \frac{\ln(1/u_2)}{k_{tot}}$.
- 10.Return to step 3.

圖 動態蒙地卡羅計算流程

Example:

Consider a reversible reaction:

$$A \xrightarrow{k_1} B$$

$$A \xleftarrow{k_{-1}} B$$

$$k_1 = 10 \text{ and } k_2 = 1$$

For 10 molecules started in A, the time evolution of the system can be calculate by kMC:

MC Step 1

1. All 10 molecules in state A, and calculate cumulated rates:

Reaction	$A \stackrel{k_1}{\rightarrow} B$	$A \stackrel{k_{-1}}{\longleftarrow} B$
Rate	$k_1 \times [A] = 10 \times 10 = 100$	$k_{-1} \times [B] = 1 \times 1 = 0$
Cumulated rate	100	100

2. calculate
$$k_{tot} = \sum_{p} k_p = 100$$

3. Get a uniform random number $u_1 \in (0,1]$,

In C, you can generate $u_1 = \text{rand}()/\text{RAND_MAX}$ assume you get $u_1 = 0.386$

4. Find the reaction event to carry out by finding m for which

$$\sum_{p=0}^{m-1} k_p < u_1 \cdot k_{tot} \le \sum_{p=0}^{m} k_p$$
. For $u_1 = 0.386$, the 1st reaction is picked. That is one

molecule is changed from A to B

5. Carry out event \mathbf{m} , update the current state $i \longrightarrow m$:

	A	В
Number	10> 9	0> 1

- 6. Get a second uniform random number $u_2 \in (0,1]$.
- 7. Update the time with $t_{new} = t_{old} + \Delta t$, where $\Delta t = \frac{\ln(1/u_2)}{k_{tot}}$.
- 8. Output current time and states.

MC Step 2

1. Current state:

Reaction	$A \stackrel{k_1}{\rightarrow} B$	$A \stackrel{k_{-1}}{\longleftarrow} B$
Rate	$k_1 \times [A] = 10 \times 9 = 90$	$k_{-1} \times [B] = 1 \times 1 = 1$
Cumulated rate	90	91

2. calculate
$$k_{tot} = \sum_{p} k_p = 91$$

- 3. Get a uniform random number $u_1 \in (0,1]$, In C, you can generate $u_1 = \text{rand}()/\text{RAND_MAX}$ assume you get $u_1 = 0.824$
- 4. Find the reaction event to carry out by finding m for which

$$\sum_{p}^{m-1} k_p < u_1 \cdot k_{tot} = 74.984 \le \sum_{p}^{m} k_p \text{. For } u_1 = 0.824, \text{ the 1st reaction is picked.}$$

That is one molecule is changed from A to B

5. Carry out event **m**, update the current state i —> m:

	A	В
Number	9> 8	1> 2

- 6. Get a second uniform random number $u_2 \in (0,1]$.
- 7. Update the time with $t_{new} = t_{old} + \Delta t$, where $\Delta t = \frac{\ln(1/u_2)}{k_{tot}}$.
- 8. Output current time and states.

Continue the kMC procedure with more MC steps