2022 年 5 月 13 日 实变函数 强基数学 002 吴天阳 2204210460 59

习题 2.4

1. 证明 [0,1] 上 Cantor 集的 Lebesgue 测度是零.

证明. 令
$$C$$
 为 $[0,1]$ 上的 Cantor 集,则 $m^*([0,1]-C)=\frac{1}{3}+\frac{2^1}{3^2}+\frac{2^2}{3^3}+\cdots=\frac{\frac{1}{3}}{1-\frac{2}{3}}=1$,所以 $m^*(C)=m^*([0,1])-m^*([0,1]-C)=1-1=0$.

2. 设 g(x) 是 $(-\infty, \infty)$ 上单调增加右连续函数, L^g 是关于 g 的 Lebesgue-Stieltjes 可测集类, g 是 L^g 上 Lebesgue-Stieltjes 测度. 证明

(i)
$$g(\{a\}) = g(a) - g(a-0)$$
; $g((a,b)) = g(b-0) - g(a)$; $g([a,b]) = g(b) - g(a-0)$; $g([a,b)) = g(b-0) - g(a-0)$;

当开集
$$O = \bigcup_{\nu} (a_{\nu}, b_{\nu}) \left(\{ (a_{\nu}, b_{\nu}) \} \ \text{$\not E$ O} \ \text{的构成区间全体)} \ \text{时}, g(O) = \sum_{\nu} (g(b_{\nu} - 0) - g(a_{\nu})).$$

(ii) 引理 2. 定理 2.4.5-2.4.9 对于 L^g , g 也成立.

证明.

(i)
$$g(\{a\}) = g\left(\bigcap_{n=0}^{\infty} \left(a - \frac{1}{n}, a + \frac{1}{n}\right)\right) = \lim_{n \to \infty} g(a + \frac{1}{n}) - g(a - \frac{1}{n}) = g(a) - g(a - 0),$$

$$g([a, b]) = g\left(\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n}\right)\right) = \lim_{n \to \infty} g(b + \frac{1}{n}) - g(a - \frac{1}{n}) = g(b) - g(a - 0),$$

$$g((a, b)) = g([a, b]) - g(\{a\}) - g(\{b\}) = g(b - 0) - g(a),$$

$$g([a, b)) = g([a, b]) - g(\{b\}) = g(b - 0) - g(a - 0),$$

$$g(O) = g\left(\bigcup_{\nu} (a_{\nu}, b_{\nu})\right) = \sum_{\nu} g(a_{\nu}, b_{\nu}) = \sum_{\nu} (g(b_{\nu} - 0) - g(a_{\nu})).$$

- (ii) 证明与 L, m 情况完全一致, 只需将 m 换成 g, m^* 换成 g^* .
- **4.** 设 g(x) 是 $(-\infty, \infty)$ 上单调增加右连续函数. 证明 g(x) 能够产生出 Lebesgue 可测集类 \boldsymbol{L} 上的测度 g, 并且存在常数 α , 对一切 $E \in \boldsymbol{L}$, $g(E) = \alpha m(E)$ 成立的充要条件是 $g(x) = \alpha x + c$, 这里 c 是常数.

证明. "⇒": 由于 g, m 均满足定理 2.4.5, 存在开集 G 使得, g(G) = g(E), m(G) = m(E), 设 (a_i,b_i) $(i \in I)$ 为 G 的构成区间全体,则

$$g(E) = g(G) = \sum_{i \in I} g((a_i, b_i)) = \sum_{i \in I} (g(b_i - 0) - g(a_i)) = \alpha m(E) = \alpha \sum_{i \in I} (b_i - a_i)$$

由于 a_i , b_i 的任意性, 可知 g(x) 在 \mathbb{R} 上是连续的, 不妨将 a_i 视为自变量 x, 则 $g'(x) = \alpha$, 于是 $g(x) = \alpha x + c$.

" \leftarrow ": 类似必要性证明, 任意的 $E \in L^g$, 取开集使得 g(G) = g(E), 则

$$g(E) = g(G) = \sum_{i \in I} g((a_i, b_i)) = \sum_{i \in I} \alpha(b_i - a_i) = \alpha \sum_{i \in I} (b_i - a_i) = \alpha m(G) = \alpha m(E)$$

所以 m(G) = m(E), 则 $E \in \mathbf{L}$, 所以 $\mathbf{L}^g \subset \mathbf{L}$, 同理可证, $\mathbf{L} \subset \mathbf{L}^g$, 所以 $\mathbf{L} = \mathbf{L}^g$, 且 $g(E) = \alpha m(E)$.

5. 定义 2.4.4 设 E 是直线上 Lebesgue 可测集, $x_0 \in E$. 又设 (a,b) 是包含 x_0 的任一开区间. 如果下列极限存在

$$d = \lim_{(a,b)\to x_0} \frac{m((a,b)\cap E)}{b-a},$$

称 $d \in E$ 在点 x_0 的**密度**. 显然 $0 \le d \le 1$. 如果 d = 1, 称 $x_0 \in E$ 的**全密点**.

- (i) 点 a 是否是 E = [a, b] 的有密度的点.
- (ii) 作一个集 E, 使它在给定点 x_0 具有密度, 并且密度等于实现给定的值 c (0 < c < 1).

解答. (i) 不是, 因为
$$\lim_{n \to \infty} \frac{m((a - \frac{1}{n}, a + \frac{1}{n}) \cap [a, b])}{\frac{2}{n}} = \lim_{n \to \infty} \frac{n}{2} \cdot m([a, a + \frac{1}{n})) = \frac{1}{2}$$
,但

- (ii) 不妨令 $x_0 = 0$, 仿照 Cantor 集构造方法, 在 (0,1) 中取 $\frac{1}{2}$ 为中点, 长度为 c_1 的区间, 在余下两个区间中取长度 c_1^2 的区间, 等等. 将这一列开区间记为 E_1 , 则 $m(E_1) = c_1 + 2c_1^2 + 4c_1^3 + \cdots = \frac{c_1}{1-2c_1}$, 对于任何 c (0 < c < 1), 取 c_1 使得 $\frac{c_1}{1-2c_1} = c$. 则 $m(E_1) = c$. 类似的, 对 Cantor 集的余集 C^c 的每一个小区间 Δ_i , 作以上划分为 A_{Δ_i} , 可得 $m(A_{\Delta_i}) = c \cdot m(\Delta_i)$, 将 (-1,0) 上对称的作出集合 B_{Δ_j} , 再令 $E = \left(\bigcup_i A_{\Delta_i}\right) \cup \left(\bigcup_j B_{\Delta_j}\right)$, 则 E 满足题目要求.
- 9. 举例说明引理 2 中的开集 O 不能换为闭集.

证明. 令 $E = \mathbb{Q}$, 取闭集 F 为全体有理点, 则 F^c 为只包含无理点的开集. 下证 $F^c = \emptyset$.

假设 $F^c \neq \varnothing$, 则 $\forall a \in F^c$, 满足 $\exists \delta > 0$ 使得 $(a - \delta, a + \delta) \subset F^c$. 由实数的稠密性可知, $\exists q$ 为有理数, 使得 $q \in (a - \delta, a + \delta) \subset F^c$, 这与 F^c 中只有无理点矛盾, 所以 $F^c = \varnothing$. 于是 $F = \mathbb{R}$ 与 $m^*(E) = 0$ 矛盾.

11. 令 *O* 为直线上开集全体, *F* 是直线上有界闭集全体. 作 $O \cup F$ 上的集函数 μ 如下: 当 $\{(a_{\nu},b_{\nu})\}$ 是互不相交的开区间时,

$$\mu\left(\bigcup_{\nu}(a_{\nu},b_{\nu})\right) = \sum_{\nu}(b_{\nu} - a_{\nu}).$$

当 $F \in \mathbf{F}$ 时, 如果 $F \subset (a, b)$, 那么规定 $\mu(F) = b - a - \mu((a, b) - F)$. 对一切直线上的有界集 E, 定义

$$\mu^*(E)=\inf\{\mu(O): E\subset O, O\in \textbf{\textit{O}}\}, \; \mu_*(E)=\sup\{\mu(F): F\subset E, F\in \textbf{\textit{F}}\}.$$

当 $\mu^*(E) = \mu_*(E)$ 时, 称 E 是可测集. 令 \mathbf{L}' 是可测集全体. 证明 \mathbf{L}' 是 \mathbf{L} 中有界集全体, 而且在 \mathbf{L}' 上 $\mu^* = \mu_* = m^*$.

证明. 规定: 下面证明中所涉及到的 a, b 均为有限数.

设 L^* 为 L 中有界集全体, 即 $L^* = \{E \in L : E \subset (a,b)\}$, 则命题等价于证明 $L^* = L'$. 由于 μ 在开集上的定义与 m 的定义相同, 所以根据引理 2 可知, $\mu^* = m^*$. 且对于任意的有界闭集 F, 不妨令 $F \subset (a,b)$, 则 $\mu(F) = b - a - \mu((b-a) - F) = b - a - m((b-a) - F) = m(F)$.

 $\forall E \in L^*$, 则 E 为 L-可测有限集, 不妨令 $E \subset (a,b), E_1 = (a,b) - E$, 则

$$\mu_*(E) = \sup\{\mu(F) : F \subset E, F \subset \mathbf{F}\} = \sup\{m(F) : F \subset E, F \subset \mathbf{F}\}$$
$$= b - a - \inf\{m(O) : E_1 \subset O, O \subset \mathbf{O}\} = b - a - m^*(E_1) = m^*(E) = \mu^*(E).$$

则 $\mu_*(E) = \mu^*(E)$, 所以 $E \in \mathbf{L}'$, 有 $\mathbf{L}^* \subset \mathbf{L}'$.

 $\forall E \in \mathbf{L}', 则 \mu_*(E) = \mu^*(E),$ 由定义可知, $\forall \varepsilon > 0$, 存在开集 O 和闭集 F 使得, $F \subset E \subset O$ 且

$$\mu(O) - \varepsilon < \mu(E) < \mu(F) + \varepsilon$$

则 $\mu(O) - \mu(F) < 2\varepsilon$. 由于 O 和 F 均为 Borel 集, 于是 $m(O) - m(F) < 2\varepsilon$, 则存在两个集列 $\{O_n\}, \{F_n\},$ 满足 $m(O_n) - m(F_n) < \frac{1}{n}, \ (n = 1, 2, \cdots).$

由于
$$\bigcup_{n=1}^{\infty} F_n \subset E \subset \bigcap_{n=1}^{\infty} O_n$$
, 则 $\bigcap_{n=1}^{\infty} O_n - E \subset O_n - F_n$, 于是由测度的单调性可知

$$m\left(\bigcap_{n=1}^{\infty} O_n - E\right) \leqslant m(O_n - F_n) \xrightarrow{m$$
無有可加性
$$m(O_n) - m(F_n) < \frac{1}{n} \to 0 \quad (n \to \infty)$$

所以 $\left(\bigcap_{n=1}^{\infty} O_n - E\right)$ 为 Lebesgue 零集.

由于 $E = \left(\bigcap_{n=1}^{\infty} O_n\right) - \left(\bigcap_{n=1}^{\infty} O_n - E\right)$, 所以 E 可以表示为 Borel 集和 Lebesgue 零集的差,根据**定理 2.4.9** 可知, $E \in L^*$, 有 $L' \subset L^*$. 综上, $L^* = L'$.

16. 设 m 是平面上的 Lebesgue 测度, u_{θ} 是平面上的一个映照 (旋转): $(x,y) \mapsto (x',y')$,

$$x' = x \cos \theta + y \sin \theta, \ y' = -x \sin \theta + y \cos \theta.$$

证明: 对平面上任何 Lebesgue 可测集 E, $u_{\theta}E$ 也 Lebesgue 可测集, 而且 $m(u_{\theta}E) = m(E)$. 证明. 由于 u_{θ} 是双射, 则 $E \in \mathbf{L}$, 任何的 $F \subset \mathbb{R}^2$, 都有

$$m^*(F) = m^*(F \cap E) + m^*(F - E) \Rightarrow m^*(u_\theta F) = m^*(u_\theta F \cap u_\theta E) + m^*(u_\theta F - u_\theta E),$$

又由于 $u_{\theta}F$ 是任意集, 所以 $u_{\theta}E \in \mathbf{L}$.

由 Lebesgue 积分可知

$$m^*(u_{\theta}E) = \int_{u_{\theta}E} dxdy \stackrel{u_{\theta}}{=} \int_{E} |\det u_{\theta}| dxdy = \int_{E} dxdy = m^*(E)$$