Math 462 - Advanced Linear Algebra Assignment 2

Trevor Klar

October 19, 2017

Exercises:

1. Let $T:V\to V'$ be a surjective linear transformation of finite-dimensional vector spaces. Show that there exists a subspace W of V such that

$$V = \operatorname{Ker}(T) \oplus W$$
 with $W \cong V'$.

PROOF Let $\{v_1,\ldots,v_n\}$ be a basis for $\operatorname{Ker}(T)$. Now extend this basis so that it spans V, as follows: $\{v_1,\ldots,v_n,w_1,\ldots,w_k\}$. Now, $\{v_1,\ldots,v_n\}\subset\operatorname{Ker}(T)$, so $T(\{v_1,\ldots,v_n\})=0$. This means that, since $\{v_1,\ldots,v_n,w_1,\ldots,w_k\}$ spans V and T is surjective, then $T(\{v_1,\ldots,v_n,w_1,\ldots,w_k\})=T(\{w_1,\ldots,w_k\})\cup\{0\}$ spans V'. Thus, $\{w_1,\ldots,w_k\}$ spans some $W\subset V$ and $T(\{w_1,\ldots,w_k\})\cup\{0\}$ spans V', so $W\subseteq V'$.

2. Let k be a field. Let $\{0\}$ denote the zero vector space over k. A sequence of vector spaces of the form

$$\{0\} \xrightarrow{\alpha_0} V_1 \xrightarrow{\alpha_1} V_2 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_{n-1}} V_n \xrightarrow{\alpha_n} \{0\}$$

where each α_i is a k-linear transformation with $\operatorname{im}(a_i) = \ker(a_{i+1})$ is called an exact sequence.

Show that $\sum_{i=0}^{n} (-1)^i \dim V_i = 0$.

PROOF

$$\sum_{i=0}^{n} (-1)^{i} \operatorname{dim} V_{i} = \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{im}\alpha_{i}) + \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i}) \quad (\operatorname{By \ Rank-Nullity \ Thm})$$

$$= \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i+1}) + \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i}) \quad (\operatorname{Substitution})$$

$$= \sum_{i=1}^{n+1} (-1)^{i-1} \operatorname{dim}(\operatorname{ker}\alpha_{i}) + \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i}) \quad (\operatorname{Change \ of \ index})$$

$$= (-1)^{n} \operatorname{dim}(\operatorname{ker}\alpha_{n+1}) + \sum_{i=1}^{n} (-1)^{i-1} \operatorname{dim}(\operatorname{ker}\alpha_{i}) + \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i}) + \operatorname{dim}(\operatorname{ker}\alpha_{0})$$

$$= (-1)^{n} \operatorname{dim}(\operatorname{im}\alpha_{n}) + \sum_{i=1}^{n} (-1)^{i-1} \operatorname{dim}(\operatorname{ker}\alpha_{i}) + \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i}) + \operatorname{dim}(\operatorname{ker}\alpha_{0})$$

$$= 0 + \left(\sum_{i=1}^{n} (-1)^{i-1} \operatorname{dim}(\operatorname{ker}\alpha_{i}) + \sum_{i=0}^{n} (-1)^{i} \operatorname{dim}(\operatorname{ker}\alpha_{i})\right) + 0$$

$$= 0$$