Seminar 2

- 1. Prove using the ε -definition that $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$ and $\lim_{n\to\infty}\frac{n+1}{2n+3}=\frac{1}{2}$.
- 2. Find the limit points, $\liminf_{n\to\infty}$ and $\limsup_{n\to\infty}$ for each of the following sequences:

(a) $\sin(n\pi)$.

- (b) $\frac{(-1)^n \cdot n}{n+1}$.
- 3. Study if the sequence (x_n) is bounded, monotone, and convergent, for each of the following:

(a) $x_n = \sqrt{n+1} - \sqrt{n}$.

(c) $x_n = \frac{\sin(n)}{n}$. (d) $x_n = \frac{2^n}{n!}$.

(b) $x_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n(n+1)}$.

- 4. Find the limit for each of the following sequences:

(a) $\sqrt{n}(\sqrt{n+1}-\sqrt{n})$.

(d) $\sqrt[n]{1+2+\ldots+n}$

(a) $\sqrt{n}(\sqrt{n+1} - \sqrt{n})$. (b) $(a_1^n + a_2^n + \dots + a_k^n)^{\frac{1}{n}}$, with $a_i > 0$. (c) $\frac{2^n + (-1)^n}{3^n}$.

(f) $\frac{(an+1)^2}{4n^2-2n+1}$, $a \in \mathbb{R}$.

5. Consider the sequence (e_n) given by

$$e_n = \left(1 + \frac{1}{n}\right)^n.$$

Prove that (e_n) is increasing and bounded – its limit is denoted by e (Euler's number).

6. Find the limit for each of the following sequences:

(a) $\left(\frac{2n+1}{2n-1}\right)^n$.

(b) $n(\ln(n+2) - \ln(n+1))$. (c) $(\frac{\ln(n+1)}{\ln n})^n$.

7. \bigstar Prove that the sequence (x_n) given by

$$x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n.$$

is decreasing and bounded, hence convergent – its limit is denoted by γ (Euler's constant).

8. (Stolz-Cesàro lemma) Let $(a_n), (b_n)$ be two sequences such that

(i) $a_n \to 0$ and $b_n \to 0$ with (b_n) decreasing;

(ii) $b_n \to \infty$ with (b_n) increasing.

If

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \ell, \quad \text{then } \lim_{n \to \infty} \frac{a_n}{b_n} = \ell.$$

(a) Let (x_n) be a convergent sequence. What can you say about the sequence (a_n) of averages

 $a_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$?

Give an example where the averages converge, even though the sequence does not.

(b) Compare

 $1 + \frac{1}{2} + \ldots + \frac{1}{n}$

with n and $\ln n$, respectively.

(c) Let (x_n) be a sequence such that

 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell.$

Then

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \ell.$$

- 9. Find the limit for each of the following sequences:
 - (a) $\frac{n}{\sqrt[n]{n!}}$.

- (b) $\frac{n^n}{1+2^2+3^3+...+n^n}$.
- (c) $\frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$, $p \in \mathbb{N}$.
- 10. (Banach fixed point theorem) Let $f:[a,b]\to\mathbb{R}$ be a contraction, meaning that there exists $\alpha\in(0,1)$ such that

$$|f(x) - f(y)| \le \alpha |x - y|, \quad \forall x, y \in [a, b].$$

Let an arbitrary $x_1 \in [a, b]$ and consider the sequence (x_n) given by

$$x_{n+1} = f(x_n), \quad \forall n \in \mathbb{N}.$$

Prove that the sequence (x_n) is Cauchy, and that its limit x^* is a fixed point, i.e. $f(x^*) = x^*$.

11. \bigstar Let $\alpha \in (0,1)$ and $x_1, x_2 \in \mathbb{R}$. Study the convergence of the sequence (x_n) given by

$$x_{n+2} = \alpha x_{n+1} + (1-\alpha)x_n, \quad \forall n \in \mathbb{N}.$$

12. * Give an example of a sequence having the set of limit points equal to [0,1]. Justify.

Homework questions are marked with \bigstar . Bonus questions are marked with *. Solutions should be handed in at the beginning of next week's lecture.