11

(1)

$$v_t = v_0 + at$$
 より、
$$v_t = -12^{m}/_{S} \ , \ v_0 = 4^{m}/_{S} \ , \ t = 8sec \ を代入して、 \\ -12 = 4 + a \cdot 8 \\ \therefore a = -2^{m}/_{S^2}$$
 よって加速度の大きさは $2^{m}/_{S^2}$,向きは左向きである。

(2)

$$v_t = v_0 + at$$
 より、
 $v_0 = 4^m/_S$, $a = -2^m/_{S^2}$ を代入して、
 $v_t = 4 - 2t$ …①
となる。
①のグラフを図示すればよい。
グラフは解答参照

(3)

方向転換する瞬間が最も右に位置するので、

①式より、

$$v_t = 0^m/_S$$
 となる時間 t を求めればよい。 $\therefore t = 2sec$

(4)

$$v^2 - v_0^2 = 2ax$$
 より、 $v_0 = 4^m/_S$, $a = -2^m/_{S^2}$, $x = 0m$ を代入して、 $v^2 - 4^2 = 2 \cdot (-2) \cdot 0$ $\therefore v = \pm 4^m/_S$ $v < 0^m/_S$ より、 (左向きなので) $v = -4^m/_S$ よって、速さは $4^m/_S$ である。

(5)

$$x = \frac{1}{2}at^2 + v_0t$$
 より、(等加速度運動の基本関係式) $a = -2\frac{m}{s^2}$, $t = 8sec$, $v_0 = 4\frac{m}{s}$ を代入して、 $x = \frac{1}{2} \cdot (-2) \cdot 8^2 + 4 \cdot 8$ $= -32m$

よって、出発点の左方32mの地点に位置する。