機器學習於材料資訊的應用 Machine Learning on Material Informatics

陳南佑(NAN-YOW CHEN)

nanyow@narlabs.org.tw

楊安正(AN-CHENG YANG)

acyang@narlabs.org.tw

Material Properties Prediction

digging into the periodic table

Problem Define

- □ 在早期,元素被發現的種類不多,化學家只能局部的對某些性質相近的元素進行歸類整理,例如1865年英國化學家伍德林(W. Woodling)按原子量排列元素順序,初步排出今日元素週期表中的鹵族、氮族、氧族。
- □ 俄國化學家門得列夫(Dmitri Ivanovich Mendeleev, 1834 1907)全面考慮了元素的各種性質,不僅根據元素的原子量,而且很重視元素的性質及其與其他元素的關係,他依原子量遞增的順序把元素排列成幾行,同時把各行中性質相似的元素左右對齊,這樣使得每一横排化學元素的性質相近,每一縱列化學元素性質的變化也呈現着規律性,整資料的整個元素系列呈現出周期性變化。

 理歸納
- □ 1869年2月,門得列夫發表了《元素性質和原子量的關係》論文,同時公布了他的第一 張化學元素週期表,周期表中留下了四個空位,空位上没有元素名稱,只有預計的原子 量,表示尚待發現的元素。
- □ 那化合物的特性能不能找出週期性?
- □ 可不可以從既有的材料資料庫預測出新材料的性質?

預測

Get Data

Material Project https://materialsproject.org/

為2011年MGI計畫中的的旗艦計畫也是材料 資訊最為成功的一個例子

Get Data

手動下載

自動化下載

open Materials Application Programming Interface (API)

Clean, Prepare, Manipulate Data

Pretty Formula	Density	Band Gap
LiH	0.814395727	3.018
BeH2	0.807534506	5.3418
B3H5	0.811598971	3.6983
НС	1.409269759	3.091
HN	1.336811255	4.1598
H2O2	1.834767366	4.1525
HF	1.721540912	6.7187
NaH	1.394380186	3.7974
MgH2	1.450102639	3.6284
AIH3	1.459511166	2.1855

Clean, Prepare, Manipulate Data

- numpy
 - > .shape()
 - .quantile

#看陣列大小#取出四分位數

- pandas
 - > .read csv
 - .head()
 - .info()
 - .isnull()
 - .describe()
 - > .corr()

#讀檔案

#顯示頭幾行

#顯示表格訊息

#顯示有無缺值

#顯示統計數據

#顯示關聯性

cudf (a gpu alternatives to pandas)

cuDF (RAPIDS)

Clean, Prepare, Manipulate Data

- Matplotlib
 - > .hist
 - .scatter
- Seaborn
 - .heatmap
 - .boxplot
 - .pairplot

#劃出次數分配表 #劃出散點圖查看資料分布

#劃出heatmap #劃出boxplot #劃出欄位倆倆關係的散點圖

Model Finding a function from data

```
)=aaaaa f_2(\square)=eeeee
HE )=bbbb
               f_2(HF)=fffff
   )=cccc f_2(Licr)=ggggg
_{\text{BeO}} )=ddddd f_2(_{\text{BeO}})=hhhhh
```

訓練的過程說穿了就是找出一個合適的function來描述輸入和輸出的關係

Model Finding a function from data

評斷好壞:diff(f_n(____) – Real_Ans)

有多種metric,這次示範的是???問題

- Regression:
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
 - R-Squared
 - Adjusted R-squared
 - Classification:

- Classification:
 - Accuracy
 - Precision and Recall
 - Specificity
 - F1-score
 - AUC-ROC

Scikit-Learn Regression algorithm

- Linear Models
- ☐ Kernel ridge regression
- Support Vector Machines
- Gaussian Processes
- Decision Trees
- Ensemble methods
- ...

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Test Data (Test Model)

- □ 不要把所有所有的資料都餵進去給model,只要把一部分的資料餵進去(Training Dataset)訓練模型,需要保留一些資料拿來檢驗模型(Testing Dataset)。
- □ Cross Validation(交叉驗證)的部份之後會再講。

Train/Test Split(Manually)

□ 使用python list 物件的slice功能

my_list[start(開始的index):end(結束的index):sep(間隔)]

取出來的值只會包含開頭的元素,不包含結束的元素。間隔如果沒有特別輸入的話,預設值為 1。

```
x = range(10) \# [0, 1, 2, ..., 9]
x[1:5] ---> [1, 2, 3, 4]
x[:3] ---> [0, 1, 2] #省略開始的元素,表示從第一個開始取。
x[3:] ---> [3, 4, 5, ..., 9] #省略結束的元素,表示取到最後一個。
<math>x[0:-1] ---> [1, 2, ..., 8] #-1表示取到倒數第一個元素。
```

Train/Test Split

sklearn.model_selection.train_test_split

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.2, random_state = 0)
```

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Regression algorithm(Manually)

- □ Regression的過程是找出輸入(independent variable, feature)和輸出(dependent variable, target) 之間的關係。
- □ 使用線性關係(模型)描述feature與target就稱為 Linear regression。
- ☐ Simple linear regression

$$y(w, x) = w_0 + w_1 x_1$$

multiple regression

$$y(w, x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p$$

$$w_0$$
是截距(Intercept)
 $w = (w_1, w_2, w_p)$ 是斜率(Slope)

Regression algorithm(Manually)

- □ Regression的過程是找 w_0 和 $w = (w_1, w_2, w_p)$ 。
- □ 收集一組資料 (x_i, y_i) , i = 1, 2, ..., n · 將每個點都帶到模型內可以得到模型的預估值

$$y(\widehat{w}, x_i) = w_0 + w_1 x_i$$
, $i = 1, 2, ..., n$

□ 預估值和實際值的差異稱為誤差(error)或稱為殘差(Residual)

$$\varepsilon_i = y(w, x_i) - y(\widehat{w, x_i})$$

□ Regression的目標是希望找到一組參數($\widehat{w_0}$, $\widehat{w_1}$) 使得模型的殘差越小越好,數值上有許多種方法可以找出這組參數,最小平方法是一種常用的方法。

- □ Regression的過程是找 w_0 和 $w = (w_1, w_2, w_p)$ 。
- □ 收集一組資料 (x_i, y_i) , i = 1, 2, ..., n ,將每個點都帶到模型內可以得到模型的預估值 $\widehat{y(w, x_i)} = w_0 + w_1 x_i$,i = 1, 2, ..., n
- □ 預估值和實際值的差異稱為誤差(error)或稱為殘 差(Residual)

$$\varepsilon_i = \chi(w, x_i) - \widehat{\chi(w, x_i)}$$

□ Regression的目標是希望找到一組參數($\widehat{w_0}$, $\widehat{w_1}$) 使得模型的殘差越小越好,數值上有許多種方法可以找出這組參數,最小平方法是一種常用的方法。

 χ_1

Regression algorithm(Manually)

- □ 因為誤差值有正有負,取平方後皆為正值,所以我們會很希望所有訓練樣本的誤差平方和(Sum Square error, SSE)接近0。
- \square Loss $(\widehat{w_0}, \widehat{w_1}) = \sum_{i=1}^n (y_i \widehat{y_i})^2 = \sum_{i=1}^n (y_i (\widehat{w_0} + \widehat{w_1}x_i))^2$
- \square 極值會出現在微分為0的地方。對殘差分別做 $\widehat{w_0}$, $\widehat{w_1}$ 的偏微分。

$$\frac{\partial \operatorname{Loss}(\widehat{w_0}, \widehat{w_1})}{\partial \widehat{w_0}} = \frac{\partial \sum_{i=1}^n (y_i - (\widehat{w_0} + \widehat{w_1} x_i))^2}{\partial \widehat{w_0}} = 0$$

$$\rightarrow -2 \sum_{i=1}^n (y_i - \widehat{w_0} - \widehat{w_1} x_i) = 0 \rightarrow \widehat{w_0} = \overline{y} - \widehat{w_1} \overline{x}$$

$$\square \frac{\partial \operatorname{Loss}(\widehat{w_0}, \widehat{w_1})}{\partial \widehat{w_1}} = \frac{\partial \sum_{i=1}^n (y_i - (\widehat{w_0} + \widehat{w_1} x_i))^2}{\partial \widehat{w_1}} = 0$$

$$\rightarrow -2 \sum_{i=1}^n (y_i - \widehat{w_0} - \widehat{w_1} x_i) x_i = 0 \rightarrow \widehat{w_1} = \frac{\sum_{i=1}^n (y_i - \overline{y}) (x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

sklearn.linear_model.LinearRegression

```
from sklearn import linear_model
lr = linear_model.LinearRegression()
lr.fit(X_train.reshape(-1, 1), y_train)
y_pred = lr.predict(test)
```

□sklearn.linear_model.Lasso()

```
from sklearn import linear_model
lasso = linear_model.Lasso()

lasso.fit(X_train.reshape(-1, 1), y_train)
y_pred = lasso.predict(test)
```

□sklearn.linear_model.Ridge()

```
from sklearn import linear_model
lr = linear_model.Ridge()

rr.fit(X_train.reshape(-1, 1), y_train)
y_pred = rr.predict(test)
```

□sklearn.ensemble.RandomForestRegressor()

```
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=100,
random_state=0)
regressor.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = regressor.predict(test)
```

□sklearn.sklearn.neural_network.MLPRegressor

```
from sklearn.neural_network import MLPRegressor
mlpr = MLPRegressor(hidden_layer_sizes=(5, 3),
activation='relu', solver='adam', alpha=0.0001,
batch_size='auto', learning_rate_init=0.001, max_iter=10000,
random_state=497)
mlpr.fit(X_train.reshape(-1, 1), y_train)
y_pred = mlpr.predict(test)
```

Evaluation of models

□sklearn.metrics

```
from sklearn.metrics import mean_squared_error, r2_score
print('LR score:'+str(lr.score(X_test.values.reshape(-1,1), y_test)))
print('MSE:'+str(mean_squared_error(y_test,
lr.predict(X_test.values.reshape(-1, 1)))))
print('r2_score:'+str(r2_score(y_test, lr.predict(X_test.values.reshape(-1, 1)))))
```

Evaluation of models

□scipy.stats.pearsonr()

```
from scipy_stats import pearsonr
corr, _ = pearsonr(y_test, Ir_predict(X_test_values_reshape(-1, 1)))
print('Pearson's r: ', corr )
```