$$\overline{Z} = \begin{cases}
D \rightarrow A \\
F \rightarrow B
\end{cases}$$

$$DF \rightarrow E \\
B \rightarrow C$$

U = ABCDEF Find a lossless BCNF decomposition Is it dependency-preserving?

A relation with FDs F is in BCNF if for every $X \to Y$ in F

- $ightharpoonup Y \subseteq X$ (the FD is trivial), or
- X is a key

$$S = (U, \Xi)$$

$$(U_1, \Xi_1) \quad (U_2, \Xi_2)$$

Given a set of attributes U and a set of FDs F, a decomposition of (U,F) is a set

$$(U_1,F_1),\ldots,(U_n,F_n)$$

such that $U = \bigcup_{i=1}^n U_i$ and F_i is a set of FDs over U_i

BCNF decomposition if each (U_i, F_i) is in BCNF

u = ABCDEF Find a lassless BCNF decomposition Is it dependency-preserving?

 $T_{V}(\Xi)$

The projection of
$$F$$
 on $V \subseteq U$
$$\pi_V(F) = \{X \to Y \mid X, Y \subseteq V, \ Y \subseteq C_F(X)\}$$

is the set of all FDs over V that are implied by F

Can be often represented compactly as a set of FDs F^\prime such that

$$\forall X, Y \subseteq V \quad F' \models X \to Y \iff F \models X \to Y$$

Essential axiom

Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$ Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any ZTransitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Other axiom

Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$ Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

$$\begin{array}{c}
D \Rightarrow A \\
F \Rightarrow B \\
DF \Rightarrow E \\
B \Rightarrow C
\end{array}$$

U = ABCDEF

Find a lossless BCNF decomposition

Is it dependency-preserving?

- 1. $S := \{(U, F)\}$
- 2. While there is $(U_i, F_i) \in S$ not in BCNF: Replace (U_i, F_i) by $decompose(U_i, F_i)$
- 3. Remove any (U_i, F_i) for which there is (U_j, F_j) with $U_i \subseteq U_j$

remove small tables

Return S

Subprocedure decompose(U, F):

- 1. Choose $(X \to Y) \in F$ that violates BCNF
- 2. Set $V := C_F(X)$ and Z := U V
- 3. Return $(V, \pi_V(F))$ and $(XZ, \pi_{XZ}(F))$

$$\begin{array}{l}
P \to A \\
F \to B
\end{array}$$

$$\begin{array}{l}
E = BC \\
E \to B
\end{array}$$

$$\begin{array}{l}
S = (ABCDEF, E) \\
S = (ABCDEF, E)
\end{array}$$

$$\begin{array}{l}
S = (ABCDEF, E) \\
S = (ABCDEF, E)
\end{array}$$

$$\begin{array}{l}
S = (ABCDEF, E) \\
S = (ABCDEF, E)
\end{array}$$

$$\begin{array}{l}
S = (ABCDEF, E) \\
S = (ABCDEF, E)
\end{array}$$

$$\begin{array}{l}
S = (ABCDEF, E) \\
S = (ABCDEF, E)
\end{array}$$

$$\begin{array}{l}
S = (ABCDEF, E) \\
S = (BC, EBC, EBC, EBC, EBCDE, EBCDEF, EBCDE, EBCD$$