Case Study: How Can a Wellness Technology Company Play It Smart?

prepared by: Yasin MASLAK

date: 12.05.2024

Bellabeat Wellness Technology

Welcome to the Bellabeat data analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will imagine you are working for Bellabeat, a high-tech manufacturer of health-focused products for women, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

Ask Problem:

- 1. What are some trends in smart device usage?
- 2. How could these trends apply to Bellabeat customers?
- 3. How could these trends help influence Bellabeat marketing strategy?

The data isn't maximized in providing better business decisions for the company

Business Task: Focus on a Bellabeat product and analyze smart device usage data in order to gain insight into how people are already using their smart devices. Then, using this information, make a like high-level recommendations for how these trends can inform Bellabeat marketing strategy.

Guiding questions

- How should you organize your data to perform analysis on it?
- Has your data been properly formatted?
- What surprises did you discover in the data?
- What trends or relationships did you find in the data?
- How will these insights help answer your business questions?

Initial Thoughts:

The demographic and age may be a factor in predicting the people who are most likely to buy. Key Stakeholders: Urska Srsen, Sando Mur, Marketing Analytics Team

Possible data & metrics: usage, age distribution, smartphone devices

FitBit Fitness Tracker Data: https://www.kaggle.com/datasets/arashnic/fitbit

Same Data Anayze with Python: https://www.kaggle.com/code/mahmoudosama10/fitbit-fitness-tracker-analysis

https://www.kaggle.com/code/abhishekp297/google-data-analytics-case-study-2-python

	Id	ActivityDate	TotalStone	TotalDistance	TrackerDistance	LoggedAct
		-	•			LOGGEUAC
0	1503960366	4/12/2016	13162	8.500000	8.500000	
1	1503960366	4/13/2016	10735	6.970000	6.970000	
2	1503960366	4/14/2016	10460	6.740000	6.740000	
3	1503960366	4/15/2016	9762	6.280000	6.280000	
4	1503960366	4/16/2016	12669	8.160000	8.160000	
935	8877689391	5/8/2016	10686	8.110000	8.110000	
936	8877689391	5/9/2016	20226	18.250000	18.250000	
937	8877689391	5/10/2016	10733	8.150000	8.150000	
938	8877689391	5/11/2016	21420	19.559999	19.559999	
939	8877689391	5/12/2016	8064	6.120000	6.120000	
940 rd	ows × 15 colum	ins				

these datas has been reeding with daily_activity

Generate code with daily_activity

- daily_Calories
- dailyIntensities = pd.read_csv('<u>/content/drive/MyDrive/ColabNotebooks/Case_Study_2/dailyIntensities_merged.csv'</u>)

View recommended plots

View recommended plots

#Before de analyzes I checked each table is part of dataset for maximum information
weightLogInfo = pd.read_csv('/content/drive/MyDrive/ColabNotebooks/Case_Study_2/weightLogInfo_merged.csv')
weightLogInfo #this dataset has been not reeding with daily_activity

₹		Id	Date	WeightKg	WeightPounds	Fat	BMI	IsManualReport	
	0	1503960366	5/2/2016 11:59:59 PM	52.599998	115.963147	22.0	22.650000	True	1
	1	1503960366	5/3/2016 11:59:59 PM	52.599998	115.963147	NaN	22.650000	True	1
	2	1927972279	4/13/2016 1:08:52 AM	133.500000	294.317120	NaN	47.540001	False	1
	3	2873212765	4/21/2016 11:59:59 PM	56.700001	125.002104	NaN	21.450001	True	1
	4	2873212765	5/12/2016 11:59:59 PM	57.299999	126.324875	NaN	21.690001	True	1
	4							<u> </u>	F

#a brief informaton our first dataset

Next steps:

daily_activity.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 940 entries, 0 to 939
Data columns (total 15 columns):

200	columns (cocal is columns	, •	
#	Column	Non-Null Count	Dtype
0	Id	940 non-null	int64
1	ActivityDate	940 non-null	object
2	TotalSteps	940 non-null	int64
3	TotalDistance	940 non-null	float64
4	TrackerDistance	940 non-null	float64
5	LoggedActivitiesDistance	940 non-null	float64
6	VeryActiveDistance	940 non-null	float64
7	ModeratelyActiveDistance	940 non-null	float64
8	LightActiveDistance	940 non-null	float64
9	SedentaryActiveDistance	940 non-null	float64
10	VeryActiveMinutes	940 non-null	int64

Generate code with weightLogInfo

```
int64
     11 FairlyActiveMinutes
                                 940 non-null
     12 LightlyActiveMinutes
                                 940 non-null
                                                int64
                                 940 non-null
     13 SedentaryMinutes
                                                int64
     14 Calories
                                 940 non-null
                                                int64
    dtypes: float64(7), int64(7), object(1)
    memory usage: 110.3+ KB
#e brief informaton our second dataset
weightLogInfo.info()
<pr
    RangeIndex: 67 entries, 0 to 66
    Data columns (total 8 columns):
                       Non-Null Count Dtype
     # Column
                        67 non-null
     0
        Id
                                       int64
     1
        Date
                        67 non-null
                                       object
        WeightKg
                        67 non-null
                                       float64
         {\tt WeightPounds}
                        67 non-null
                                       float64
     3
                        2 non-null
                                       float64
     4
        Fat
         BMI
                        67 non-null
                                       float64
        IsManualReport 67 non-null
                                       bool
         LogId
                        67 non-null
                                       int64
    dtypes: bool(1), float64(4), int64(2), object(1)
    memory usage: 3.9+ KB
```

In first step we focus on fist dataset because it can gives us to max knowledge second dataset may be can useful after analyze first one

daily_activity = daily_activity.copy()
daily_activity.head()

_		Id	ActivityDate	TotalSteps	TotalDistance	TrackerDistance	LoggedActiv
	0	1503960366	4/12/2016	13162	8.50	8.50	
	1	1503960366	4/13/2016	10735	6.97	6.97	
	2	1503960366	4/14/2016	10460	6.74	6.74	
	3	1503960366	4/15/2016	9762	6.28	6.28	
	4	1503960366	4/16/2016	12669	8.16	8.16	

Next steps: Generate code with daily_activity

View recommended plots

daily_activity.columns

Index(['Id', 'ActivityDate', 'TotalSteps', 'TotalDistance', 'TrackerDistance', 'LoggedActivitiesDistance', 'VeryActiveDistance', 'ModeratelyActiveDistance', 'LightActiveDistance', 'SedentaryActiveDistance', 'VeryActiveMinutes', 'FairlyActiveMinutes', 'LightlyActiveMinutes', 'SedentaryMinutes', 'Calories'],

Dataset Column names

dtype='object')

'Id' *'ActivityDate', *'TotalSteps', *'TotalDistance', *'TrackerDistance', *'LoggedActivitiesDistance', *'VeryActiveDistance', *'ModeratelyActiveDistance', *'LightActiveDistance', *'SedentaryActiveDistance', VeryActiveMinutes', 'FairlyActiveMinutes', LightlyActiveMinutes', '*SedentaryMinutes', *'Calories

daily_activity.describe().T

^{**} Fist Step: Understanding Dataset**

#To check null datas
daily_activity.isnull().values.any() #False null data is not exist our dataset

→ False

#Variables types is important to correct informations during analyze daily activity.dtypes

- we here focus on totalsteps and minutes and it's relationship with calories burned.
- * we will remove the unnecessary columns

_		Id	ActivityDate	TotalSteps	VeryActiveMinutes	FairlyActiveMinutes	L
	0	1503960366	4/12/2016	13162	25	13	
	1	1503960366	4/13/2016	10735	21	19	
	2	1503960366	4/14/2016	10460	30	11	
	3	1503960366	4/15/2016	9762	29	34	
	4	1503960366	4/16/2016	12669	36	10	
	935	8877689391	5/8/2016	10686	17	4	
	936	8877689391	5/9/2016	20226	73	19	
	937	8877689391	5/10/2016	10733	18	11	
	938	8877689391	5/11/2016	21420	88	12	
	939	8877689391	5/12/2016	8064	23	1	
	940 rc	ows × 8 column	S		_		•

Next steps:

Generate code with daily_activity

View recommended plots

daily_activity.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 940 entries, 0 to 939
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Id	940 non-null	int64
1	ActivityDate	940 non-null	object
2	TotalSteps	940 non-null	int64
3	VeryActiveMinutes	940 non-null	int64
4	FairlyActiveMinutes	940 non-null	int64
5	LightlyActiveMinutes	940 non-null	int64
6	SedentaryMinutes	940 non-null	int64
7	Calories	940 non-null	int64

dtypes: int64(7), object(1)
memory usage: 58.9+ KB

daily_activity['TotalMinutes'] = daily_activity['VeryActiveMinutes'] + daily_activity['FairlyActiveMinutes'] + daily_activity['LightlyA
daily_activity

→		Id	ActivityDate	TotalSteps	VeryActiveMinutes	FairlyActiveMinutes	L
	0	1503960366	4/12/2016	13162	25	13	
	1	1503960366	4/13/2016	10735	21	19	
	2	1503960366	4/14/2016	10460	30	11	
	3	1503960366	4/15/2016	9762	29	34	
	4	1503960366	4/16/2016	12669	36	10	
	935	8877689391	5/8/2016	10686	17	4	
	936	8877689391	5/9/2016	20226	73	19	
	937	8877689391	5/10/2016	10733	18	11	
	938	8877689391	5/11/2016	21420	88	12	
	939	8877689391	5/12/2016	8064	23	1	
	940 rc	ows × 9 column	S				→
	,						

Next steps:

Generate code with daily_activity

View recommended plots

daily_activity['TotalHours'] = round(daily_activity.TotalMinutes / 60)
daily_activity

	Id	ActivityDate	TotalSteps	VeryActiveMinutes	FairlyActiveMinutes
0	1503960366	4/12/2016	13162	25	13
1	1503960366	4/13/2016	10735	21	19
2	1503960366	4/14/2016	10460	30	11
3	1503960366	4/15/2016	9762	29	34
4	1503960366	4/16/2016	12669	36	10
935	8877689391	5/8/2016	10686	17	4
936	8877689391	5/9/2016	20226	73	19
937	8877689391	5/10/2016	10733	18	11
938	8877689391	5/11/2016	21420	88	12
939	8877689391	5/12/2016	8064	23	1
940 rc	ows × 10 colum	ns			

Next steps:

Generate code with daily_activity

View recommended plots

#convert the ActivityDate column to datetime type not object
Before analyze is so important because wrong datetype gives wrong result in each step
daily_activity.ActivityDate = pd.to_datetime(daily_activity.ActivityDate)
daily_activity.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 940 entries, 0 to 939
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Id	940 non-null	int64
1	ActivityDate	940 non-null	datetime64[ns]
2	TotalSteps	940 non-null	int64
3	VeryActiveMinutes	940 non-null	int64
4	FairlyActiveMinutes	940 non-null	int64
5	LightlyActiveMinutes	940 non-null	int64
6	SedentaryMinutes	940 non-null	int64
7	Calories	940 non-null	int64
8	TotalMinutes	940 non-null	int64
9	TotalHours	940 non-null	float64
dtyp	es: datetime64[ns](1),	float64(1), int	64(8)
memo	ry usage: 73.6 KB		

We catch days of Week and add as a column
daily_activity['DayOfWeek'] = daily_activity.ActivityDate.dt.day_name()
daily_activity

	Id	ActivityDate	TotalSteps	VeryActiveMinutes	FairlyActiveMinutes
0	1503960366	2016-04-12	13162	25	13
1	1503960366	2016-04-13	10735	21	19
2	1503960366	2016-04-14	10460	30	11
3	1503960366	2016-04-15	9762	29	34
4	1503960366	2016-04-16	12669	36	10
935	8877689391	2016-05-08	10686	17	4
936	8877689391	2016-05-09	20226	73	19
937	8877689391	2016-05-10	10733	18	11
938	8877689391	2016-05-11	21420	88	12
939	8877689391	2016-05-12	8064	23	1
940 ro	ws × 11 colum	ns			

Next steps:

Generate code with daily_activity

View recommended plots

Kodlamaya başlayın veya yapay zeka ile kod <u>oluşturun</u>.

```
13.05.2024 21:37
                                                                    aa_WellnessAnalysis (2).ipynb - Colab
    days_ordered= ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
    daily_activity['DayOfWeek'] = pd.Categorical(daily_activity['DayOfWeek'], categories=days_ordered, ordered=True)
    daily_activity = daily_activity.sort_values('DayOfWeek')
    daily_activity
    \overline{\Sigma}
                        Id ActivityDate TotalSteps VeryActiveMinutes FairlyActiveMinutes L
          845 8378563200
                               2016-05-09
                                                8382
                                                                       71
                                                                                             13
          112 1844505072
                               2016-05-02
                                                    0
                                                                       0
                                                                                             0
          336 3977333714
                               2016-05-02
                                                16520
                                                                       24
                                                                                            143
              6290855005
                               2016-04-18
                                                                        0
          631
                                                6885
                                                                                             0
          831
              8378563200
                               2016-04-25
                                                12405
                                                                      117
                                                                                             16
          118
               1844505072
                               2016-05-08
                                                    0
                                                                        0
                                                                                             0
          830
              8378563200
                               2016-04-24
                                                3703
                                                                        0
                                                                                             0
          328
              3977333714
                               2016-04-24
                                                14112
                                                                       30
                                                                                             95
          111
              1844505072
                               2016-05-01
                                                2573
                                                                        0
                                                                                              7
          469 4445114986
                               2016-05-08
                                                                        0
                                                7303
                                                                                              8
         940 rows × 11 columns
                  Generate code with daily_activity
                                                        View recommended plots
     Next steps:
    #last check of dataset we use this data set just only exploratory analyze but maybe our prep dataset use ML process.
    #here we see if there's null data
    daily_activity.isnull().sum()
    \rightarrow
        Id
         ActivityDate
                                  0
         TotalSteps
                                  a
         VeryActiveMinutes
                                  a
         FairlyActiveMinutes
                                  0
         LightlyActiveMinutes
                                  0
         SedentaryMinutes
                                  0
         Calories
         TotalMinutes
         TotalHours
                                  0
         DayOfWeek
                                  0
         dtype: int64
    #check about missing values
    daily_activity.isna().sum()
         Id
                                  0
    \overline{\rightarrow}
```

ActivityDate 0 TotalStens 0 VeryActiveMinutes 0 FairlyActiveMinutes 0 LightlyActiveMinutes 0 SedentaryMinutes 0 Calories 0 TotalMinutes 0 TotalHours 0 DayOfWeek dtype: int64

daily_activity.duplicated().sum()

→ 0

daily_activity.info()

<class 'pandas.core.frame.DataFrame'> Index: 940 entries, 845 to 469 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Id	940 non-null	int64
1	ActivityDate	940 non-null	datetime64[ns]
2	TotalSteps	940 non-null	int64
3	VeryActiveMinutes	940 non-null	int64
4	FairlyActiveMinutes	940 non-null	int64
5	LightlyActiveMinutes	940 non-null	int64
6	SedentaryMinutes	940 non-null	int64
7	Calories	940 non-null	int64

```
8 TotalMinutes 940 non-null int64
9 TotalHours 940 non-null float64
10 DayOfWeek 940 non-null category
dtypes: category(1), datetime64[ns](1), float64(1), int64(8)
memory usage: 82.0 KB
```

Analysis and Visualization

daily_activity.describe()

₹		Id	ActivityDate	TotalSteps	VeryActiveMinutes	FairlyActive
	count	9.400000e+02	940	940.000000	940.000000	940
	mean	4.855407e+09	2016-04-26 06:53:37.021276672	7637.910638	21.164894	13
	min	1.503960e+09	2016-04-12 00:00:00	0.000000	0.000000	C
	25%	2.320127e+09	2016-04-19 00:00:00	3789.750000	0.000000	C
	50%	4.445115e+09	2016-04-26 00:00:00	7405.500000	4.000000	6
	4		2016_05_04			>

```
plt.figure(figsize=(6, 6))
plt.hist(daily_activity.DayOfWeek, bins=7, color='lightskyblue', width=0.6)
```

```
plt.xlabel('Day of Week')
plt.ylabel('Freq')
plt.xticks(rotation = 90)
plt.title('Freq by Day of Week');
```


We notice that people are very active in tuesday, wednesday, and thursday, so we can send motivation message for people in the other days

```
Data columns (total 11 columns):
# Column Non-Null Count Dtype
```

```
Ιd
                           940 non-null
                                            int64
     ActivityDate
                                            datetime64[ns]
                           940 non-null
1
2
    TotalSteps
                           940 non-null
                                            int64
3
     VeryActiveMinutes
                            940 non-null
                                            int64
4
     FairlyActiveMinutes
                            940 non-null
                                            int64
5
     LightlyActiveMinutes
                           940 non-null
                                            int64
     SedentaryMinutes
                            940 non-null
                                            int64
    Calories
                            940 non-null
                                            int64
     TotalMinutes
                            940 non-null
                                            int64
8
    TotalHours
                            940 non-null
                                            float64
10 DayOfWeek
                            940 non-null
                                            category
dtypes: category(1), datetime64[ns](1), float64(1), int64(8)
memory usage: 82.0 KB
```

Define the Numerical Values to find the relationship between these columns and the calories column numerical_columns_corr = daily_activity[["TotalSteps", "VeryActiveMinutes", "FairlyActiveMinutes", "LightlyActiveMinutes", "SedentaryMin

Here we display the corr between all columns
sns.heatmap(numerical_columns_corr,cmap="coolwarm",annot=True)

from the heatmap we can notice that the TotalSteps and VeryActiveMintues Columns have the highest influence on the Calories column

```
# Visualize the relationship between the TotalSteps column and the Calories column
plt.figure(figsize=(8, 6))
plt.scatter(daily_activity['TotalSteps'],daily_activity['Calories'],c = daily_activity['Calories'])
median_steps = 7405
median_calories = 2134

plt.axhline(median_calories, color = 'blue', label='median of calories')
plt.axvline(median_steps, color = 'red', label='median of steps')

plt.xlabel('Steps')
plt.ylabel('Calories by total steps');
plt.title('Calories by total steps');
plt.legend()
plt.show()
```



```
# Visualize the relationship between the TotalHours column and the Calories column
plt.figure(figsize=(8, 6))
plt.scatter(daily_activity['TotalHours'],daily_activity['Calories'],c = daily_activity['Calories'])

median_hours = 24
median_calories = 2134

plt.axhline(median_calories, color = 'blue', label='median of calories')
plt.axvline(median_hours, color = 'red', label='median of hours')

plt.xlabel('Hours')
plt.ylabel('Calories')

plt.title('Calories by Total Hours');
plt.legend()
plt.show()

Calories by Total Hours
```


we notice that there is a weak relationship between them, and I think this happened because the few number of active minutes

```
# visualize the percentage of each column of these columns (veryactiveminutes, rairlyactiveminutes, LightlyActiveminutes, Sedentaryminute
FairlyActiveMinutes = daily_activity['FairlyActiveMinutes'].sum()
VeryActiveMinutes = daily_activity['UeryActiveMinutes'].sum()
LightlyActiveMinutes = daily_activity['LightlyActiveMinutes'].sum()
SedentaryMinutes = daily_activity['SedentaryMinutes'].sum()

minutes = [VeryActiveMinutes, FairlyActiveMinutes, LightlyActiveMinutes, SedentaryMinutes]
labels = ['VeryactiveMinutes', 'FairlyActiveMinutes', 'LightlyActiveMinutes', 'SedentaryMinutes']

plt.pie(minutes, labels=labels, autopct='%1.2f%', explode=[0.6, 0.6, 0, 0]);
```


We can say that most people use the company's products to calculate calories burned in normal daily activities such as walking to the market or to the bus stop, etc., and not sports activities such as running

```
# Sort the DataFrame by Country column in ascending order
sorted_calories_table = daily_activity.sort_values(by=['Calories'], ascending=False)
```

sorted_calories_table

₹	Id		ActivityDate TotalSte		VeryActiveMinutes	FairlyActiveMinutes	LightlyActiveMinutes	SedentaryMinutes	Calories
	606	6117666160	2016-04-21	19542	11	19	294	579	4900
	572	5577150313	2016-04-17	12231	200	37	159	525	4552
	913	8877689391	2016-04-16	29326	94	29	429	888	4547
	586	5577150313	2016-05-01	13368	194	72	178	499	4546
	585	5577150313	2016-04-30	12363	207	45	163	621	4501
	345	3977333714	2016-05-11	746	4	0	9	13	52
	879	8583815059	2016-05-12	0	0	0	0	1440	0
	653	6290855005	2016-05-10	0	0	0	0	1440	0
	817	8253242879	2016-04-30	0	0	0	0	1440	0
	30	1503960366	2016-05-12	0	0	0	0	1440	0
	940 ro	ws × 11 colum	ns						

ACT

- Further analyses relating to customer segmentation still needed to be done to better understand customer archetypes, particularly on those who might be interested in improving their overall well-being. Bellabeat is well-poised to delivering a tech-based solution for this group of customers.
- Since our target population is those who have yet purchase a Bellabeat product, the marketing strategy have to include reasons to why
 customers should buy Bellabeat's wearables and use Bellabeat's app. Recall that our business task is to uncover insights into how
 consumers are using smart devices, not why consumers should purchase our smart devices. The former is what we were tasked to
 analyse but note that this differed from the ultimate goal of convincing prospective customers to purchase our products.
- Another minor point to point out is that the Bellabeat team is astute in how they positioned their products. Bellabeats unique selling point
 (USP) is how their products are focused on women, and they made a very convincing pitch to how Bellabeat is the smart device of choice
 for women, with women-focused products like reproductive health tracking and pregnancy tracking integrated into their suite of products.

Let's back second dataset

#Before de analyzes I checked each table is part of dataset for maximum information
weightLogInfo = pd.read_csv('/content/drive/MyDrive/ColabNotebooks/Case_Study_2/weightLogInfo_merged.csv')
weightLogInfo

	Id	Date	WeightKg	WeightPounds	Fat	BMI	IsManualReport	LogId
0	1503960366	5/2/2016 11:59:59 PM	52.599998	115.963147	22.0	22.650000	True	1462233599000
1	1503960366	5/3/2016 11:59:59 PM	52.599998	115.963147	NaN	22.650000	True	1462319999000
2	1927972279	4/13/2016 1:08:52 AM	133.500000	294.317120	NaN	47.540001	False	1460509732000
3	2873212765	4/21/2016 11:59:59 PM	56.700001	125.002104	NaN	21.450001	True	1461283199000
4	2873212765	5/12/2016 11:59:59 PM	57.299999	126.324875	NaN	21.690001	True	1463097599000
62	8877689391	5/6/2016 6:43:35 AM	85.000000	187.392923	NaN	25.440001	False	1462517015000
63	8877689391	5/8/2016 7:35:53 AM	85.400002	188.274775	NaN	25.559999	False	1462692953000
64	8877689391	5/9/2016 6:39:44 AM	85.500000	188.495234	NaN	25.610001	False	1462775984000
65	8877689391	5/11/2016 6:51:47 AM	85.400002	188.274775	NaN	25.559999	False	1462949507000
66	8877689391	5/12/2016 6:42:53 AM	84.000000	185.188300	NaN	25.139999	False	1463035373000

Next steps: Generate code with weightLogInfo View recommended plots

 $\label{lem:weightLogInfo} weightLogInfo.sort_values(by= ['Id','WeightKg'], ascending=False) \\ weightLogInfo$

From our users 6962181067 and 8877689391 use frequently our apps for health monitoring

```
# Infos of Id's 6962181067 user
user_6962181067 =weightLogInfo.loc[weightLogInfo['Id'] == 6962181067]
user_6962181067
```


Infos of Id's 8877689391 user
user_8877689391 =weightLogInfo.loc[weightLogInfo['Id'] == 8877689391]
user_8877689391

#Merging two most user datas

 $\label{lem:special_two_user} $$\operatorname{pd.concat}([\operatorname{user}_8877689391,\ \operatorname{user}_6962181067],\ \operatorname{axis=0})$$ $$\operatorname{special_two}_{\operatorname{user.head}}(10)$$

Sorted that Id and Date and group by Id thanks to that we save merged datas and users info together special_two_user_sorted = (special_two_user.sort_values(by=['Id','Date'], ascending=False)).groupby('Id') special_two_user_sorted.head(10)

