CS 5350/6350: Machine Learning Spring 2018

Homework 3 Solutions

Yulong Liang (u1143816)

April 4, 2018

1 Simple Conjunction Learner Analysis

- 1. [50 points]
 - (a) $n = 100, 1 \delta = 0.9, \epsilon = 0.1$

$$m > \frac{n}{\epsilon} \left(\ln(n) + \ln(\frac{1}{\delta}) \right) = \frac{100}{0.1} \left(\ln(100) + \ln(\frac{1}{0.1}) \right) \approx 6907.8$$

We will need at least 6,908 examples.

(b) $n = 100, 1 - \delta = 0.99, \epsilon = 0.1$

$$m > \frac{n}{\epsilon} \left(\ln(n) + \ln(\frac{1}{\delta}) \right) = \frac{100}{0.1} \left(\ln(100) + \ln(\frac{1}{0.01}) \right) \approx 9210.3$$

We will need at least 9,211 examples.

(c) $n = 100, 1 - \delta = 0.9, \epsilon = 0.01$

$$m > \frac{n}{\epsilon} \left(\ln(n) + \ln(\frac{1}{\delta}) \right) = \frac{100}{0.01} \left(\ln(100) + \ln(\frac{1}{0.1}) \right) \approx 69077.6$$

We will need at least 69,078 examples.

(d) $n = 100, 1 - \delta = 0.99, \epsilon = 0.01$

$$m > \frac{n}{\epsilon} \left(\ln(n) + \ln(\frac{1}{\delta}) \right) = \frac{100}{0.01} \left(\ln(100) + \ln(\frac{1}{0.01}) \right) \approx 92103.4$$

We will need at least 92, 104 examples.

(e) $n = 1000, 1 - \delta = 0.99, \epsilon = 0.01$

$$m > \frac{n}{\epsilon} \left(\ln(n) + \ln(\frac{1}{\delta}) \right) = \frac{1000}{0.01} \left(\ln(1000) + \ln(\frac{1}{0.01}) \right) \approx 1151292.5$$

We will need at least 1, 151, 293 examples.

2. [10 points] Show that for $0 \le x \le 1$,

$$1 - x \le e^{-x}.$$

Proof Let
$$f(x) = e^{-x} - (1 - x) = e^{-x} + x - 1$$
.

The derivative $f'(x) = -e^{-x} + 1$

The second derivative $f''(x) = -(-e^{-x}) = e^{-x}$

$$\therefore f''(x) = e^{-x} > 0, x \in [0, 1]$$

$$\therefore f'(x) \text{ increases within } [0, 1]$$

$$f'(0) = -e^{-0} + 1 = -1 + 1 = 0$$

$$\therefore f'(x) \ge 0, x \in [0, 1]$$

$$\therefore f(x) \text{ increases within } [0, 1]$$

$$f(0) = e^{-0} + 0 - 1 = 1 - 1 = 0$$

$$\therefore f(x) \ge 0, x \in [0, 1]$$

$$\therefore e^{-x} \ge 1 - x$$

2 Occam's Razor and PAC guarantee for consistent learners

- 1. [20 points]
 - (a) I will prefer L_2 . According to Occam's Razor principle, we should refer simpler explanations over more complex ones. Since both algorithms can find a hypothesis consist with the training data, I will prefer L_2 because it has a smaller hypothesis space.
 - (b) According to the about inequality, the number of training examples needed \mathbf{m} is proportional to the logarithm of size of hypothesis space |H|, logarithm of reciprocal of probability of failure δ and reciprocal of error level ϵ . For a fixed probability level $1-\delta$ and a fixed error level ϵ , the larger hypothesis space is, the more training examples are required.

3 PAC Learnable Results

- 1. [10 points] General disjunctions out of n binary variables.
 - size of hypothesis space:

$$|H| = 3^n$$

• number of training examples needed:

$$m > \frac{1}{\epsilon} \left(\ln(|H|) + \ln(\frac{1}{\delta}) \right) = \frac{1}{\epsilon} \left(n \ln(3) + \ln(\frac{1}{\delta}) \right)$$

The number of training examples needed m is polynomial to $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, n, and |H|. Thus general disjunctions out of n binary variables is **PAC learnable**.

- 2. [10 points] m-of-n rules (Note that m is a fixed constant).
 - size of hypothesis space:

$$|H| = m \binom{n}{m} \approx mn^m$$

• number of training examples needed:

$$m > \frac{1}{\epsilon} \left(\ln(|H|) + \ln(\frac{1}{\delta}) \right) = \frac{1}{\epsilon} \left(\ln(m) + m \ln(n) + \ln(\frac{1}{\delta}) \right)$$

The number of training examples needed m is polynomial to $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, n, and |H|. Thus m-of-n rules is **PAC learnable**.

- 3. [10 points] Simple conjunctions out of n binary variables.
 - size of hypothesis space:

$$|H|=2^n$$

• number of training examples needed:

$$m > \frac{1}{\epsilon} \left(\ln(|H|) + \ln(\frac{1}{\delta}) \right) = \frac{1}{\epsilon} \left(n \ln(2) + \ln(\frac{1}{\delta}) \right)$$

The number of training examples needed m is polynomial to $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, n, and |H|. Thus simple conjunctions out of n binary variables is **PAC learnable**.

- 4. [10 points] k-CNF out of n binary variables.
 - number of conjuncts:

$$O((2n)^k)$$

• size of hypothesis space:

$$|H| = O(2^{(2n)^k})$$

 $ln(|H|) = O((2n)^k \ln 2)$

• number of training examples needed:

$$m > \frac{1}{\epsilon} \left(\ln(|H|) + \ln(\frac{1}{\delta}) \right) = O\left(\frac{1}{\epsilon} \left((2n)^k \ln(2) + \ln(\frac{1}{\delta}) \right) \right)$$

The number of training examples needed m is polynomial to $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, n, and |H|. Thus k-CNF out of n binary variables is **PAC learnable**.

- 5. [10 points] General boolean functions of n binary variables.
 - size of hypothesis space:

$$|H| = 2^{2^n}$$

• number of training examples needed:

$$m > \frac{1}{\epsilon} \left(\ln(|H|) + \ln(\frac{1}{\delta}) \right) = \frac{1}{\epsilon} \left(2^n \ln(2) + \ln(\frac{1}{\delta}) \right)$$

The number of training examples needed m is exponential to n. Thus general boolean functions of n binary variables is **NOT PAC learnable**.