Probabilidad y estadística

Clase 5

Estimación no paramétrica

Función de distribución empírica

Tenemos tal que

 $F(x) = P(x \le x)$ $\sum_{x_1, \dots, x_n} P(x) = P(x) = P(x) = P(x)$ $\sum_{x_1, \dots, x_n} P(x) = P(x) = P(x) = P(x) = P(x)$ $\sum_{x_1, \dots, x_n} P(x) = P(x)$

Función de distribución empírica (ECDF):

Basándose en una muestra de tamaño n, aproxima la función de distribución poblacional, poniendo una masa de probabilidad puntual de haring 1/n en cada observación:

$$\hat{F}_n(x) = rac{1}{n} \sum_{i=1}^n 1\{X_i \leq x\}$$

Propiedades de la ECDF

Para cada $x \in \mathbb{R}$,

$$\mathbb{E}\left(\widehat{F}_n(x)\right) = F(x),$$

$$\mathbb{V}\left(\widehat{F}_n(x)\right) = \frac{F(x)(1 - F(x))}{n}, \quad \mathcal{O}(\frac{1}{n})$$

$$\mathbb{E}\left(\widehat{F}_n(x)\right) = F(x),$$

$$\mathbb{E}\left(\widehat{F}_n(x)\right) = F(x),$$

$$\frac{F(x)(1 - F(x))}{n} \to 0,$$

$$\widehat{F}_n(x) \xrightarrow{P} F(x).$$

$$\widehat{F}_n(x) \xrightarrow{P} F(x).$$

$$\widehat{F}_n(x) \xrightarrow{P} F(x)$$

All of Statistics, Wasserman

Ejercicio 1

Usemos el <u>Advertising Sales Dataset</u>. Allí se presentan valores del presupuesto asignado (en 1000\$) en distintos medios (TV, radio, diarios) y las ventas asociadas.

- 1. A partir de la muestra 8.7, 14.2, 18.3, 18.4, 23.2, 25.9, 29.7, 35.2 } 1.51.2, 54.7, 65.9, 75 obtener la función de distribución empírica a mano.
- Utilizar la columna "Newspaper" del archivo "advertising.csv" y calcular la func. de distribución empírica usando Python.

Estimación de densidades (smoothing)

$$= \langle \hat{\theta} - \theta \rangle^{2} = B(3)^{2} + \sqrt{2} + \sqrt{2$$

A la hora de estimar funciones de densidad, queremos tener una medida de cuán buena es la estimación. (Equivalente al ECM para parámetros)

8 E. H. & la fundam de moltos integrables es for spiral y them it pro spiral for spiral for

Para densidades vamos a definir el riesgo: PECMI

 $rac{1}{\sqrt{2}}R(ec{g},\hat{g}_n)=\mathbb{E}[\int_{-\infty}^{\infty}\{g(x)-\dot{\hat{g}}_n(x)\}^2dx]$ Bias-variance tradeoff / Risk

 $=\int_{-\infty}^{\infty}b^2(x)dx+\int_{-\infty}^{\infty}v(x)dx$ ess Smoothing More Smoothing $b(x) = \mathbb{E}[\hat{g}_n(x)] - g(x)$ $v(x) = \mathbb{E}[\{\hat{g}_n(x) - \mathbb{E}[\hat{g}_n(x)]\}^2]$ anks

Histogramas

- 1. Se toman los valores máximo y mínimo y se divide el intervalo en m sub-intervalos de longitud h. A cada subintervalo lo llamaremos B_j .
- 2. Se cuenta la cantidad de observaciones que caen en cada B_j : $\nu_j = \sum_{i=1}^n 1\{X_i \in B_j\}$
- 3. Normalizamos dividiendo por la cantidad total de muestras n , y por la longitud del subintervalo h.

$$\hat{f}_{n}(x) = \frac{1}{nh} \sum_{j=1}^{m} [\hat{\nu}_{j}] \{x \in B_{j}\} \qquad \qquad \hat{f}_{n}(x) \, dx = 1$$

$$\Rightarrow \hat{f}_{n}(x) = \frac{1}{h} \sum_{j=1}^{m} [\hat{p}_{j}] 1\{x \in B_{j}\} \quad \text{donde} \qquad \hat{p}_{j} = \nu_{j}/n$$
So definition
$$\hat{g}_{T} = P(x \in B_{T}) = \sum_{j=1}^{n} f(x) \, dx \qquad m$$

$$\forall x_{j} = [\hat{f}_{n}(x)] = \sum_{j=1}^{n} f(x) \, dx \qquad \text{or} \qquad f(x) \, dx = 1$$

Ejercicio 2

A partir de los datos del ejercicio 1,

- 1. Calcular a mano, el histograma de 6 bins
- 2. A partir de todos los datos del dataset graficar el histograma utilizando Python

Propiedades del histograma

Teorema: Sea x y m fijos, y sea B_n el bin que contiene a x, luego

$$\mathbb{E}(\widehat{f}_n(x)) = \frac{p_j}{h} \qquad \mathbb{V}(\widehat{f}_n(x)) = \frac{p_j(1-p_j)}{nh^2}.$$

Obs: Al aumentar la cantidad de bins (*m*), Disminuye el sesgo, pero aumenta la varianza. Acá esta el tradeoff.

Estimación de densidad por kernel

X et de verende fonte

Los histogramas son discontinuos

Existen los estimadores de densidad por kernel (KDE), que son más suaves y convergen más rápido a la verdadera densidad de los datos.

Estos estimadores asignan un peso a cada muestra que se "desparrama" a los puntos vecinos

Primero:

marcamos las observaciones en el eje x

Segundo:

Montamos una función (kernel) sobre cada muestra

Segundo:

Montamos una función (kernel) sobre cada muestra

Segundo:

Montamos una función (kernel) sobre cada muestra

Tercero: dividimos todo por n y sumamos las curvas

Kernels

Se define un $\underline{\mathsf{kernel}}$ como una función K suave tal que:

$$\{K(x)\geq 0, \int \widetilde{K(x)}dx=1\}$$
 $\int x \underbrace{K(x)}_{arphi_{\chi^{(v)}}} dx$ = 0, y $=$ $\Xi_{arphi_{\chi}}(x)=0$

Algunos kernels comunes:

• Epanechinkov:
$$K(x)=\left\{egin{array}{ll} rac{3}{4}(1-x^2/5)/\sqrt{5}, & |x|<5 \ 0 & e.\,o.\,c. \end{array}
ight.$$

Es óptima en el sentido de error cuadrático medio

Gaussiano (simple)

KDE

Def: Dado un kernel K y un número positivo h, llamado ancho de banda, el estimador de densidad por kernel se define como $\hat{f}(x) = \left(\frac{1}{n}\right) \sum_{i=1}^{n} \frac{1}{h} H(\frac{x-X_i}{h})$

Nuevamente el parámetro h es el que nos controla el tradeoff sesgovarianza

Ejercicio 3

A partir de la columna 'Newspaper' del dataset estimar la densidad por el método de KDE.

Intervalos de confianza

Motivación

Fo(x) ques extens o bessintme

Hasta ahora habíamos visto estimadores puntuales, que, dada un muestra, nos devuelven un único valor $\hat{\theta}$ que se aproxima al valor verdadero del parámetro deseado θ .

Una forma de obtener información sobre la precisión de la estimación, en el caso de que θ sea unidimensional, es proporcionar un intervalo [a(X),b(X)] de manera que la probabilidad de que dicho intervalo contenga el verdadero valor θ sea alta, por ejemplo, 0.95.

Región de confianza

Def: Dada una m.a. \underline{X} con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, una región de confianza $S(\underline{X})$ para θ con nivel de confianza $1-\alpha$ será un conjunto tal que

$$\mathbb{P}(\theta \in S(X)) = 1 - \alpha.$$
 (*) $20,95$

Obs: θ **no** es aleatorio, lo aleatorio es (*) es $S(\underline{X})$.

Obs: Si $S(\underline{X}) = (a(\underline{X}), b(\underline{X}))$ diremos que es un intervalo de confianza. Si $S(\underline{X}) = (\min(\Theta), b(\underline{X}))$ diremos que es una cota superior. $\bullet \in \Theta$ Si $S(\underline{X}) = (a(\underline{X}), \max(\Theta))$ diremos que es una cota inferior.

Juguemos un poquito

Usemos la siguiente <u>api</u> para entender mejor qué es un IC

Método del pivote

$$\frac{X - \tilde{\epsilon}[\bar{x}]}{Vu(\bar{x})^{1}} \stackrel{P_{3}}{\sim} \frac{\bar{x} - u}{\bar{x}} \stackrel{T_{n}}{\sim} N(0,1)$$

Teorema: Sea \underline{X} una muestra aleatoria con distribución perteneciente a una familia $F_{\theta}(x)$, con $\theta \in \Theta$, y sea $\underline{U = g(\underline{X}, \theta)}$ una variable cuya distribución **no** depende $\underline{de}\ \theta$. Sean a y b tales que $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$ $\mathbb{P}(a \leq \underline{U} \leq b) = 1 - \alpha. \text{ Luego,}$

es una región de confianza para θ . A U se lo llama pivote.

Ejercicio 4

Sea $\underline{X} = (X_1, \dots, X_n)$ una muestra aleatoria de tamaño n de una población con distribución normal de media μ y varianza 4. Hallar una cota inferior del 95% para μ . $P[\mu \in (2,+\infty) = 0,95]$

Suponer n=20 y μ =3, simular la muestra y obtener el valor de la

cota.

$$V = g(x, \mu) = \frac{\bar{x} - \mu}{2}$$
 so $\sqrt{s}(0, 1)$

$$P[g(x|M) < 3] = 0.95 \Rightarrow F_{U}(a) = 0.95 \Rightarrow J = F_{U}(0.95) = 1.64$$

$$P\left(\frac{x-u}{\sigma} \sqrt{n} < 1,64\right) = 0,95$$

$$P\left(\frac{x-u}{\sigma} \sqrt{x} - 1,64\right) = 0,95$$

$$P\left(\frac{x-u}{\sigma} \sqrt{x} - 1,64\right) = 0,95$$

$$P\left(\frac{x-u}{\sigma} \sqrt{x} + \infty\right) = 0,95$$

$$P\left(\frac{x-u}{\sigma} \sqrt{x} + \infty\right) = 0,95$$
ex un i.c. de neul 0,95.

P(g(x,m)<1,64)=0,05

Algunos resultados importantes

Teorema: Sea $\underline{X} = X_1, \dots, X_n$ una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$

$$Z = \sqrt{n} \frac{(\bar{X} - \mu)}{(\sigma)} \sim \mathcal{N}(0, 1)$$

$$W = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{\sigma^2} \sim \chi^2_{n-1}$$

$$W = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{\sigma^2} \sim \chi^2_{n-1}$$

V y W son independientes

Si
$$S^2=rac{1}{n-1}\sum_{i=1}^n (X_i-ar{X})^2$$
 $U=\sqrt{n}rac{(ar{X}-\mu)}{S}\sim t_{n-1}$

Obs: en general vale que si $X\sim \mathcal{N}(0,1)$ y $Y\sim \chi_n^2$, con X e Y independientes vale que $\frac{X}{\sqrt{Y/n}}\sim t_n$

Algunos pivotes para variables normales

Dada \underline{X}_n una m.a. de una distribución $\mathcal{N}(\mu, \sigma^2)$ definimos algunos pivotes:

- Para la media con varianza conocida: $U(\underline{X},\mu)=rac{(\overline{X}-\mu)}{\sigma_{\bullet}}\sqrt{n}\sim\mathcal{N}(0,1)$
- Para la media con va<u>rianza desconocida: $U(\underline{X},\mu) = \frac{(\overline{X}-\mu)}{S_{\bullet}} \sqrt{n} \sim t_{n-1}$ </u>
 Para el desvío con media conocida: $U(\underline{X},\sigma) = \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma} \sim \chi_{n}^{2}$
 - ullet Para el desvío con media desconocida: $U(\underline{X},\sigma)=rac{\sum_{i=1}^n(X_i-\overline{X})^2}{\sigma}\sim\chi_{n-1}^2$

Dada también \underline{Y}_m una m.a. de una distribución $\mathcal{N}(\lambda, \sigma^2)$ y sea :

- Comparación de medias con varianzas conocidas: $U(\underline{X}, \Delta) = \frac{X Y \Delta}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{T}}} \sim \mathcal{N}(0, 1)$
- Comparación de medias con varianzas desconocidas e iguales:

$$U(\underline{X},\Delta)=rac{\overline{X}-\overline{Y}-\Delta}{S_p\sqrt{rac{1}{n}+rac{1}{m}}}\sim t_{n+m-2}$$
 , con $S_p^2=rac{(m-1)S_X^2+(n-1)S_Y^2}{n+m-2}$

Ejercicio 5

Dada una muestra aleatoria $\underline{X} = (X_1, \dots, X_n)$ de una población con distribución normal con media y varianza desconocidas, hallar el intervalo de confianza de nivel 0.99 para la media de la población.

Suponer n=50, $\mu = 2, \sigma = 3$, simular la muestra y calcular el IC resultante de la misma.

$$U(x_{M}) = \frac{x_{M}}{s} \text{ for } \sim t \text{ and } s^{2} = \frac{1}{u-1} \sum_{i=1}^{M} (x_{i}-x_{i})^{2}$$

$$P(a < U(x_{M}) < b) = 0.99$$

$$a = F_{0}(0.005) \text{ sy } b = F_{0}(0.995) = 3.26$$

Bibliografía

- <u>"Notas de Estadística"</u>, Graciela Boente y Víctor Yohai, FCEyN, UBA.
- "All of Statistic: A concise Course in Statistical Inference", Larry Wasserman