Кодирование внутренних состояний для модели Мили на счетчике.

Для кодирования 9 состояний (а0-а8) требуется 4-х разрядный счетчик.

Коды состояний для модели Мили на счетчике

Состояние	a0	a1	a2	a3	a4	a5	a6	a7	a8
Код	0001	0010	0011	0100	0101	0110	0111	1000	0000

Прямая структурная таблица переходов и выходов автомата модели Мили на счетчике

Исходное	Код ат	Состояние	Код а	Входной сигнал	Выходные	Функция
состояние		перехода а _s		$X(a_m, a_s)$	сигналы Y(a _m , a _s)	возбуждения
a0	0001	a0	0001	¬X0	-	-
		a1	0010	X0	y0, y1, y2	+1
a1	0010	a2	0011	1	y3, y4	+1
a2	0011	a2	0011	¬X0	-	-
		a3	0100	X0	y1	+1
a3	0100	a0	0001	X1	y12	D0, EWR
		a4	0101	¬X1¬X2	y4, y5	+1
		a8	0000	¬X1X2	y2, y9	R
a4	0101	a0	0001	X3	y11	D0, EWR
		a5	0110	¬X3¬X4	y3	+1
		a8	0000	¬X3X4	y2, y9	R
a5	0110	a6	0111	1	y7	+1
a6	0111	a5	0110	¬X5	y3	-1
		a8	0000	X5¬X6¬X7X8	y6	R
		a8	0000	X5¬X6¬X7¬X8	-	R
		a8	0000	X5¬X6X7	y2, y9	R
		a7	1000	X5X6	y8	+1
a7	1000	a0	0001	X3	y11	D0, EWR
		a8	0000	¬X3X8	y6	R
		a8	0000	¬X3¬X8	-	R
a8	0000	a0	0001	X9	y10	+1
		a8	0000	¬X9	_	-

Логические выражения для каждой функции возбуждения счетчика:

$$D0 = a3X1 v a4X3 v a7X3$$

$$-1 = a6 \neg X5$$

$$R = a3 - X1X2 v a4 - X3X4 v a6X5 - X6 v a7 - X3$$

$$EWR = D0$$

Логические выражения для функций выходов:

$$y0 = a0X0$$

```
y1 = a0X0 v a2X0

y2 = a0X0 v a3¬X1X2 v a4¬X3X4 v a6X5¬X6X7

y3 = a1 v a4¬X3¬X4 v a6¬X5

y4 = a1 v a3¬X1¬X2

y5 = a3¬X1¬X2

y6 = a6X5¬X6¬X7X8 v a7¬X3X8

y7 = a5

y8 = a6X5X6

y9 = a3¬X1X2 v a4¬X3X4 v a6X5¬X6X7

y10 = a8X9

y11 = a4X3 v a7X3

y12 = a3X1
```

После выделения общих частей в логических выражениях и некоторого их упрощения получаем логические уравнения для построения функциональной схемы управляющего автомата:

```
e0 = a8X9(2)
e1 = a0X0(2)
e2 = a2X0(2)
e3 = a3X1(2)
e4 = a3 - X1X2(3)
e5 = a4 \neg X3X4(3)
e6 = a6X5 \neg X6 (3)
e7 = a6X5X6(3)
e8 = a3 \neg X1 \neg X2 (3)
e9 = a4 \neg X3 \neg X4 (3)
e10 = a6 \neg X5 (2)
e11 = a4X3(2)
e12 = a7X3(2)
e13 = a7 \neg X3 (2)
p0 = e1 \text{ v } e2 (2)
p1 = e4 \text{ v } e5 (2)
p2 = e11 \text{ v } e12 (2)
p3 = e6X7(2)
q0 = p1 \text{ v } p3 (2)
q1 = e3 v p2 (2)
q2 = e6 - X7X8(3)
q3 = e13X8(2)
D0 = q1(0)
+1 = p0 v a1 v e8 v e9 v a5 v e7 v e0 (7)
```

Инверторы: $\neg X1$, $\neg X2$, $\neg X3$, $\neg X4$, $\neg X5$, $\neg X6$, $\neg X7$, $\neg X8$ (8)

Цена по Квайну:

$$\sum = KC + HB + 3\Pi + HY + DC = 70 + 8 + 9 + 2 + 4 = 93$$

Схема формирования начальной установки на счетчике

