NPRE 330 Hw 2

Joseph Specht

September 23, 2024

The code for this homework can be found on GitHub at: https://github.com/jspecht3/uiuc_classes/tree/main/npre330/hw2

1 Crystal Structure of Compounds I

To find the crystal structure for an AX compound, we first need to:

- 1. find the ionic radii of the cation and anion from Table 12.3,
- 2. then calculate the ratio of cation radius to anion radius,
- 3. find the coordination number corresponding to the ratio from Table 12.2,
- 4. use the coordination number to find the structure name and anion packing from table 12.4.

Doing the above steps for all given AX compounds: CaO, MnS, KBr, CsBr, 457generates the following results, which have been tabulated for ease of comparison.

	Ionic Species		Ionic Radii			Crystal Structure			
	Cation	Anion	r_c [nm]	r_a [nm]	$r_c \div r_a$	CN	Type	Anion Packing	
CaO	Ca	О	0.1	0.14	0.714	6	Rock Salt (NaCl)	FCC	
MnS	Mn	S	0.067	0.184	0.364	4	Zinc Blende (Sphalerite)	FCC	
KBr	K	Br	0.138	0.196	0.704	6	Rock Salt (NaCl)	FCC	
CsBr	Cs	Br	0.17	0.196	0.867	8	Cesium Chloride	SC	

Table 1: Question 1 Results

The only argument that I can use to justify these selections is an appeal to authority as I used Callister for the references.

2 Crystal Structure of Compounds II

Below are the steps to find the atomic packing factor of Al₂O₃ given a = 0.4759 nm, c = 1.2989 nm, and $\rho = 3.99 \ g/cm^3$.

1. Get the radii from Table 12.3: $r_{Al} = 0.053 \cdot 10^{-7} \ cm$ and $r_O = 0.140 \cdot 10^{-7} \ cm$.

2. Calculate the volume of a unit cell from the equation we derived in the first homework:

$$V_C = \frac{3^{3/2}a^2c}{2} = 7.643 \cdot 10^{-22} \ cm^3 \tag{1}$$

- 3. Get the atomic densities of Al and O from google: $M_{Al} = 29.98 \ g/mol$ and $M_O = 16.00 \ g/mol$.
- 4. Use Callister Eq. 12.1 to find the number of formula units, n' per unit cell.

$$\rho = \frac{n'(\Sigma A_c + \Sigma A_a)}{N_A V_C} \longrightarrow n' = \frac{\rho N_A V_C}{\Sigma A_c + \Sigma A_a} = 18.011 \ molecules/cell$$
 (2)

5. Find the volumes of Al and O assuming they are spheres.

$$V_{Al} = \frac{4}{3}\pi r_{Al}^3 = 6.235 \cdot 10^{-25} \ cm^3 \tag{3}$$

$$V_O = \frac{4}{3}\pi r_O^3 = 1.149 \cdot 10^{-25} \ cm^3 \tag{4}$$

6. Use Eq. 2, 3, and 4 to find the volume of atoms in a unit cell.

$$V_f = n' (2V_{Al} + 3V_O) = 6.435 \cdot 10^{-22} \text{ cm}^3$$
(5)

7. Take the ratio of Eq. 1 and 5 to find the atomic packing factor.

$$APF = \frac{V_f}{V_C} = 0.842 \tag{6}$$

3 Crystal Structure of Compounds III

3.a

To find the unit cell length of LiF, do the following steps.

- 1. Find the molar mass of Li⁺ and F⁻: $M_{Li} = 6.941 \ g/mol$ and $M_F = 18.998 \ g/mol$.
- 2. Sum the two molar masses to find the molar mass of LiF = $25.939 \ g/mol$
- 3. Start with a formula for density and solve for the edge length.

$$\rho = \frac{ZM_{LiF}}{a^3N_A} \longrightarrow a = \left(\frac{ZM_{LiF}}{\rho N_A}\right)^{\frac{1}{3}} = 0.40467 \ nm. \tag{7}$$

Where Z is the number of molecules in the FCC, which is 4.

3.b

To find the density of BeF₂ assuming a fluorite crystal structure with $r_{F^-} = 0.133$ nm and $r_{Be^{2+}}$, do the following steps.

1. Assume in the unit cell, the diagonal from the corner to opposite corner, d, is $4 r_F + 4 r_{Be}$.

$$d = 4r_{F^-} + 4r_{Be^{2+}} (8)$$

2. Find the side length, a, corresponding to that diagonal. The side length, a, is half the diagonal as the cube diagonal is $\sqrt{2}$ times the square diagonal, which is $\sqrt{2}$ times the side length.

$$a = \frac{d}{2} = 3.56 \cdot 10^{-8} \ cm \tag{9}$$

3. Find the molar mass of BeF_2 .

$$M_{BeF_2} = M_{Be} + 2M_F = 47.01 \ g/mol$$
 (10)

4. Use the formula for density in Eq. 7.

$$\rho = \frac{ZM_{BeF_2}}{a^3N_A} = 6.921 \ g/cc \tag{11}$$

This is 3.5 times higher than the actual density of 1.99 g/cm^3 . The discrepancy is from the assumption that BeF₂ has a fluorite crystal structure, which is not true as it has a trigonal structure.

The packing fractions of BCC, which is the assumed fluorite structure, has an APF of 0.68 while the true BeF₂ structure, trigonal, has an APF of 0.52, which accounts for some discrepancy, but not the amount I have. The expected value for this problem would be $2.5 \ g/cm^3$

4 X-ray Diffraction

4.a

To determine the index, we use the fact that the sum of the lattice parameters h+k+l is even. We also assume the first peak corresponds to n=1 and each subsequent peak increases n by 1. To determine the peak corresponding to the correct index, take $\sqrt{h^2+k^2+l^2}$ – the lower the norm, the lower the order.

Table 2: Indices for each Peak

Peak n:	1	2	3	4	5
2 θ [deg]	40	59	73	86	101
Indices (h k l)	(1 1 0)	(2 0 0)	(2 1 1)	(2 2 0)	(3 1 0)

4.b

To find the interplanar spacing, use Bragg's law and solve for d.

$$n\lambda = 2d\sin\theta \longrightarrow d = \frac{n\lambda}{2\sin\theta}$$
 (12)

4.c

To find the radius of W, do the following steps.

Table 3: Interplanar spacing for each Peak

Peak n:	1	2	3	4	5
2 θ [deg]:	40	59	73	86	101
d [nm]	0.225	0.313	0.389	0.452	0.500

1. Take the interplanar distance and multiply it by the norm of the index to find the edge length of a BCC cell (Eq. 3.22).

$$a = \frac{d}{\sqrt{h^2 + k^2 + l^2}} \tag{13}$$

2. Use Eq. 3.4 to find the radius.

$$R = \frac{a\sqrt{3}}{4} \tag{14}$$

3. Normalize by n as each "unit cell" is really n unit cells joined together.

$$R_W = R/n \tag{15}$$

Table 4: Interplanar spacing for each Peak

Peak n:	1	2	3	4	5
2 θ [deg]:	40	59	73	86	101
a [nm]	0.319	0.626	0.952	1.279	1.580
\mathbf{R}_W [nm]	0.138	0.136	0.137	0.138	0.137