

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

M. L. Fernald (Rhodora 10:46-55. 1908), in notes on some plants of northeastern America, publishes a number of new combinations, forms, and varieties, and also new species under Potamogeton, Fragaria, Callitriche, and Vaccinium.— A. FINET (Bull. Soc. Bot. France IV. 7:531-538. 1908) has published a new genus (Pseudoliparis) of Orchidaceae from China, and also (idem, Mémoires, pp. 65. pls. 12) an account of African orchids of the tribe Sarcantheae, including many new species and the new genera Monixus, Rhaphidorhynchus, Ancistrorhynchus, and Dicranotaenia.—F. GAGNEPAIN (idem 538-544) has described two new genera (Oligolobos and Xystrolobos) of Hydrocharitaceae from China.— T. Makino (Bot. Mag. Tokyo 22:14-20. 1908) has described the new genera Alectorurus (Liliaceae) and Tuboca psicum (Solanaceae) from Japan.—S. OKAMURA (idem 29-31, 41-44. pls. 2, 3) has published two new genera (Orthomniopsis and Okamuraea Broth.) of mosses from Japan.—MARCUS E. JONES (Contrib. Western Bot. No. 12. pp. 100. 1908) has described numerous (96) new species of western plants, including Scopulophila (Illecebraceae) and Cusickia (Umbelliferae) as new genera; and has critically reviewed the western Umbelliferae, adopting Cogswellia to replace Peucedanum.—W. R. MAXON (Contrib. U. S. Herb. 10:473-503. pls. 55, 56. 1908), in the first number of a series of studies of tropical American ferns, has described as new genera Holodictyum (an "asplenioid fern") and Ananthacorus (allied to Vittaria), and several new species.—J. M. GREENMAN (Field Columb. Mus. Publ. Bot. 2:247-287. 1908), in a paper on new or noteworthy spermatophytes from Mexico, Central America, and the West Indies, has described new species under numerous genera, 25 species of Senecio being new or fully characterized for the first time, and Goldmania (Coreopsideae) being a new genus.—D. Prain (Kew Bull. 1908:114) has described a new genus (Acrymia) of Labiatae from Malaya.—J. M. C.

Diseases of apples.—Burrill² and Blair³ have published two bulletins presenting what may be considered a summary of their extensive investigations of the bitter rot of apples, both as to its botanical relations and methods of control and eradication by removal of the cankers and proper spraying methods. Few orchard diseases have received such attention, and every orchardist and plant pathologist should read these two publications, which are too extensive to be summarized here.

STEVENS and HALL⁴ have recently published a description of several apple diseases. The volutella rot of the fruit is due to *Volutella fructi* Stevens and Hall. *Coniothyrium juckelii* Sacc. is recorded as causing a fruit rot and also producing

² Burrill, T. J., Bitter rot of apples. Botanical investigations. Bull. Ill. Exp. Stat. 118:553-608. pls. 10. 1907.

³ Blair, J. C., Bitter rot of apples. Horticultural investigations. Bull. Ill. Exp. Stat. 117:481-552. pls. 2. 1907.

⁴ STEVENS, F. L., and HALL, J. G., Some apple diseases. Bull. N. Car. Exp. Stat. 196:37-55. figs. 5. 1907.

cankers on the twigs. Twig cankers due to the black rot fungus (Sphaeropsis) is also reported as being frequent. Apple scurf, a twig disease, is described as due to Phyllosticta or *Phoma prunicola*.—E. MEAD WILCOX.

The roots of Lycopodium Selago.—Miss Saxelbys has studied the origin of the roots of Lycopodium Selago, working with young plants grown from bulbils. She reports that the roots arise near the apex of the stem, but below the first leaves, and grow down through the cortex of the stem, emerging at the level of the ground. It is probable that "origin below the first leaves" is too sweeping a statement, for in preparations made by the reviewer from the same species the roots usually arise higher up than the first leaf. Miss Saxelby finds that the dermatogen of the root arises from several cells of the innermost layer of the stem periblem; while the periblem and plerome arise from the plerome of the stem. It is interesting to note that the author finds three meristematic regions: plerome, periblem, and a dermatogen which forms both epidermis and root cap. The roots are usually diarch, with the metaxylem in the form of a horseshoe; but they may be tetrarch, with the metaxylem in two parallel bands; or there may be a transition between the two conditions.—Alma G. Stokey.

Germination of Fucus.—KNIEP finds ninety pages barely sufficient to relate and discuss the observations of three and a half months, at Bergen, on the physiology of fertilization and germination in Fucus serratus, F. vesiculosus, and F. spiralis.⁶ After a serious attempt it appears impracticable for the reviewer to discover in this voluminous paper the author's results and conclusions, for he does not make clear the outcome of his work, nor anywhere give so much as a line by way of summary regarding a single topic. His observations were directed particularly to the influence of external factors on the gametes and sporelings. The main topics are the effect of concentration of the total salts in sea water upon the movement of sperms, fertilization, germination, and geographical distribution; the influence of temperature (brief); the directive and formative effects of light; certain phases of regeneration in sporelings; and finally the possible induction of polarity by chemical stimuli.—C. R. B.

Californian Hepaticae.—HUMPHREY publishes together a series of notes on the physiology and morphology of certain Californian Hepaticae.⁷ He reports that Fossombronia longiseta, Fimbriaria californica, Aneura multifida, Anthoceros Pearsoni, and Porella Bolanderi are infested commonly with fungi, parasitic in the first case, symbiotic in the second, and epiphytic in the last three. In Fegatella conica fertilization occurs in early spring, the spores pass the dry

⁵ SAXELBY, E. MARY, The origin of the roots in *Lycopodium Selago*. Annals of Botany 22:21-33. pl. 3. 1908.

⁶ KNIEP, H., Beiträge zur Keimungs-Physiologie und -Biologie von Fucus. Jahrb. Wiss. Bot. **44**:635–724. figs. 12. 1907.

⁷ Humphrey, H. B., Studies in the physiology and morphology of some California Hepaticae. Proc. Wash. Acad. Sci. 10:1-50. pls. 1, 2. 1908.