Determination of the effective saturation intensity I_{sat}

To image the cloud of atoms by absorption, we shine a pulse of resonant light with an intensity I_0 . After its propagation through the packet of atoms, the intensity of the imaging beam I(x, y) obeys the following equation:

$$\frac{I_0}{I_{\text{sat}}} - \frac{I}{I_{\text{sat}}} + \ln\left(\frac{I_0}{I}\right) = DO_{\text{real}} \equiv d(x, y) \tag{1}$$

where d(x,y) is the real optical density. In the following, d denotes the maximum optical density $d = \max\{d(x,y)\}$. Experimentally, we measure an effective maximal optical density δ :

$$\ln\left(\frac{I_0}{I}\right) = DO_{\text{measured}} \equiv \delta \tag{2}$$

We deduce from Eq. (1) the equation fulfilled by the parameters d, δ , I_0 , and I_{sat} :

$$1 - e^{-\delta} = \frac{I_{\text{sat}}}{I_0} (d - \delta) \tag{3}$$

We now take a series of absorption images of the same cloud but with different durations ΔT for the pulse of light while keeping the product $\Delta T I_0$ constant. ΔT is varied from $\Delta T_{\rm min}=250$ ns to $\Delta T_{\rm max}=100~\mu{\rm s}$, and the intensity from $I_{0\rm max}\simeq 23~{\rm mW/cm^2}$ to $I_{0\rm min}\simeq 0.06~{\rm mW/cm^2}$. The incident intensity of the beam I_0 is measured from the total power of the beam and the size of the beam at the level of the cloud : $I_0=P/(2\pi\Delta x\Delta y)$ with $P=13~{\rm mW}, \, \Delta x=0.24~{\rm cm}$ and $\Delta_y=0.37~{\rm cm}$. From each image, we can plot the value of the function $g(\delta)$ as a function of the duration of the pulse ΔT :

$$g(\delta) = \frac{1 - e^{-\delta}}{d - \delta} = \frac{I_{\text{sat}}}{I_0} = \frac{I_{\text{sat}}}{I_{0\text{max}} \Delta T_{\text{min}}} \Delta T \tag{4}$$

Actually, d is obtained in the low incident intensity limit (i.e. for the "long pulses" : $\Delta T \geq 20 \ \mu s \Rightarrow I_0 \leq 0.3 \ \text{mW/cm}^2$) for which $\delta \simeq d$. We stress that for this kind of experiment, d needs to be quite low $(d \leq 1)$ in order to minimize the correction to optical density due to the finite linewidth of the imaging laser. In practice, we used $d \approx 0.7$ to perform those experiments.

The plot obtained from Eq. (4) gives a straight line with a slope $I_{\rm sat}/(I_{0\rm max}\Delta T_{\rm min})$, from which we deduce the effective intensity of saturation $I_{\rm sat}$. We use here only the points $\Delta T \leq 2 \ \mu s \Rightarrow I_0 \geq 3 \ {\rm mW/cm^2}$ for which $\delta < d$, the other points corresponding to longer pulses are used to determine d. These experiments have been done with various polarizations for the imaging beam¹. The results are summarized in the following table:

Polar	$I_0 \ [\mathrm{mW/cm^2}]$	$I_{ m sat} \ [{ m mW/cm^2}]$	Mean
$\pi 150^{\circ}$	23.3	5.2 ± 0.2	5.4 ± 0.2
π 60°	23.3	5.5 ± 0.3	
σ^+	22.7	3.6 ± 0.1	3.55 ± 0.1
σ^{-}	23.3	3.5 ± 0.1	

For a given incident intensity, we can saturate more the atoms by using a circularly polarized light.

[&]quot;"2005_11_10_!_ DATA_!_Polar_and_Int_at_Nbr_ph_fix.OPJ" for the row data, and 2005_11_10_!_STAT ! Polar and Int at Nbr ph fix.OPJ" for the result.