

Artificial Intelligence with Python

Search

1	2	3	4
5	6	7	8
9	10	111	12
13	14	15	

Search Problems

agent

entity that perceives its environment and acts upon that environment

state

a configuration of the agent and its environment

2	4	5	7
8	3	1	11
14	6		10
9	13	1 5	12

12	9	4	2
8	7	3	14
	1	6	11
5	13	10	15

1 5	4	10	3
13	1	11	12
9	5	14	7
6	8		2

initial state

the state in which the agent begins

initial state

2	4	5	7
8	3	1	11
14	6		10
9	13	1 5	12

actions

choices that can be made in a state

actions

 $\overline{ACTIONS(s)}$ returns the set of actions that can be executed in state s

actions

transition model

a description of what state results from performing any applicable action in any state

transition model

RESULT(s, a) returns the state resulting from performing action a in state s

RESULT(

transition model

 RESULT(
 2
 4
 5
 7

 14
 3
 1
 11

 14
 6
 10
 12

 9
 13
 15

2	4	5	7
8	3	1	11
14	6	10	
9	1 3	1 5	12

state space

the set of all states reachable from the initial state by any sequence of actions

goal test

way to determine whether a given state is a goal state

path cost

numerical cost associated with a given path

Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

solution

a sequence of actions that leads from the initial state to a goal state

optimal solution

a solution that has the lowest path cost among all solutions

node

a data structure that keeps track of

- a state
- a parent (node that generated this node)
- an action (action applied to parent to get node)
- a path cost (from initial state to node)

Search

Artificial Intelligence with Python