

COMPUTER ENGINEERING

DS ODD SEM 2021-22/EXPERIMENT 9

NAME:- GAURAV AMARNANI (D7A, 67)

10000	
_	
	Experiment - 9
	ATM: Application of Binary Search Technique
_	Theory:
	A binary search tree also known as an
	- Uralika hinam her is a mariant of 1: +
-	in which the nodes are arranged in an od.
	Tollary week a non-linear data struct
	which is a Collection of elements called ada
	In a binary tree the topmost element is called
	the not-node. An element can have o I at the
	most 2 child motes nodes
	The order of binary tree is
	- All the values in the left Sub-tree has a value less than that of a not node.
	All the value is the wiell
	-All the values in the right node has a greater value than the value of a not node.
	- The same rule is carried forward to all the
6	Subtree in tree.
	Susure in the tree is already adjust the time
	taken to come out a search prevention on the tree
	Time the tree is already ordered the time taken to carry out a search operation on the tree is generally reduced as how we don't have to
	trongerso the outile tree but at even lub-lies
	traverse the entire tree but at every sub-lieur he get hint where to search next binary trees also help in speed up the insertion and deletion operation.
	hat in suced in the insertion and deletion or vation
	They in speed up the metalling geralist
Sundaram	FOR EDUCATIONAL USE

Algorithm to insert element into Binary Search Step 1: IF TREE NULL Allocate memory for TREE SET TREE-> DATA : ITEM SET TREE -> LEFT : TREE -> RIGHT NULL ELSE IF ITEM < TREE > DATA INSERT TREE > LEFT , ITEM) FLSE INSERT (TREE - RIGHET, ITEM) (END OF IF) (END of IF) Step 2: END Algorithm to search element in binary tree Step 1: IF ROOT -> DATA = ITEM OR ROOT = NULL RETURN ROOT ELSE IF ROOT < ROOT -> DATA RETURN SEARCH LROOT -> RIGHT ITEM) [END OF IF] [END OF IF] Step-2: END. FOR EDUCATIONAL USE Sundaram

Algorithm to delete an element from binary tree Step 1: IF TREE = NULL write item not found in tree FISE IF ITEMS TREE -> DATA Delete (TREE -> LEFT, ITEM) EISE IF ITEM -> TREE -> DATA · Delete LTREE -> RIGHT, TIEM) EISE IF TREE > LEFT AND TREE- RIGHT SET TEMP = find Largest Mode (TREE -> LEFT) SET TREE - DATA = TEMP -> DATA Delete (TREE -) LEFT TEMP -> DATA) ELSE SET TEMP = TREE IF TREE -> LEFT = NULL AND TREE -> RIGHT = NULL SET TREE = NULL ELSE IF TREE -> LEFT = NULL SET TREE - TREE - SLEPT SET TREE - TREE -> RIGHT [END OF IF] FREE TEMP [FND OF IS] Step 2: END FOR EDUCATIONAL USE undaram

	Algorithm for inorder traversal for binary search tree Step 1: Repeat Steps 2 to 4 Shile TREE = NULL Step 2: INDRDER LTREE -> LEFT) Step 3: Write TREE -> DATA
	Step 4: INDRDER (TREE -> RIGHET) [END OF LOOP] Step 5: END Algorithm for preorder traversal for binary search
	Step 1: Repeat Steps 2 to 4 bhile TREF = NULL Step 2: borte TREE -> DATA Step 3: PREORDER (TREE -> LEFT) Step 4: PREORDER (TREE -> RIGHT) [FND OF LOOP]
•	Step 5: END Algorithm for Postorder Traversal in binary search tree Step 1: Repeat Steps 2 to 4 Shile TREE! = NULL
	Step 3: Post ORDER (TREE -> LEFT) Step 3: Post ORDER (TREE -> RIGHT) Step 4: Write TREE -> DATA [FND OF LOOP] Step 5: END
(Jundaram)	FOR EDUCATIONAL USE

	Algorithm to Count total number of nodes in binary tree (Internal) Step 1: If TREE - NULL Return 0 IF TREE -> LEFT = NULL AND TREE-> RIGHT-NUL Return 0 ELSE Return Total Internal Nodes (tree) total Internal nodes (TREE -> RIGHT)
	[END OF IF] Step 2: END
	Algorithm to count total number of nodes in binary Search tree (External) Step 1: IF TREE = NULL RETURN 0
•	ELSE IF TREE -> LEFT = NULL AND TREE -> RIGHT = NULL Return 1 E-1SE
	Return total External Node (TREE -> LEFT)+ total External Node (TREE -> RIGHT) [END OF IF]
	Step 2: END
Sundaram	FOR EDUCATIONAL USE

	Algorithm to Determine Height of a Binary Search
	Step 1: IP there TREE-NULL Return O
	ELSE
	SET LEFT HEIGHT = HEIGHT (TREE -> LEFT)
•	Return LEFT HEIGHT + 1
	FISE
	Return RICHT HEIGHT +1 Step 2: END
	Algorithm to obtain mirror image of binary Search
	Step 1: IF TREE! = NULL
	MIRROR IMAGE (TREE -> LEFT) MIRROR TMAGE (TREE -> RIGHT)
•	SET TEMP =TREE → LEFT
	SET TREE → LEFT = TREE → RIGHT SET TREE → RIGHT = TEMP
	[END OF JF]
	Step 2: END
	FOR EDUCATIONAL USE
Sundaram	POR EDUCATION OF THE PROPERTY

	Algorithm to find smallest node in binary search tree Step 1: IF TREE=NULL OF TREE > LEFT = NULL RETURN TREE ELSE RETURN SMALEST ELEMENT (TREE > LEFT)
-	Step 2: END
	Algorithm to find largest node in binary search tree Step 1: IF TREE -> NULL OF TREE -> RIGHT = NULL RETURN TREE CLSE RETURN FIND LARGEST CLEMENT (TREE -> RIGHT) [END OF IF] Step 2: END
Sundaram	FOR EDUCATIONAL USE

	C 1 .
	Conclusion:
	Hence by performing this experiment we
	learned various application and techniques of
	Busine Coards Thee and all involves had
	Strang starm the and also implemented
	différent lechniques into lode.
	Conclusion: Hence by performing this experiment we learned various application and techniques of Binary Search Tree and also implemented different techniques into code.
Sundaram	FOR EDUCATIONAL USE
- 1 W- (W)	

Program:

```
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node {
int data;
struct node *left; struct node *right;
};
struct node *tree;
void create tree(struct node *);
struct node *insertElement(struct node *, int);
void preorderTraversal(struct node *);
void inorderTraversal(struct node *);
void postorderTraversal(struct node *);
struct node *findSmallestElement(struct node *);
struct node *findLargestElement(struct node *);
struct node *deleteElement(struct node *, int);
struct node *mirrorImage(struct node *);
struct node *deleteTree(struct node *);
int totalNodes(struct node *);
int totalExternalNodes(struct node *);
int totalInternalNodes(struct node *);
int Height(struct node *);
int main() {
int option, val;
struct node *ptr;
create tree(tree);
do {
printf("\n ***MAIN MENU** \n");
printf("\n 1. Insert Element");
printf("\n 2. Preorder Traversal");
printf("\n 3. Inorder Traversal");
printf("\n 4. Postorder Traversal");
printf("\n 5. Find the smallest element");
printf("\n 6. Find the largest element");
printf("\n 7. Delete an element");
printf("\n 8. Count the total number of nodes");
printf("\n 9. Determine the height of the tree");
printf("\n 10. Find the mirror image of the tree");
printf("\n 11. Delete the tree");
printf("\n 12. Exit");
printf("\n\n Enter your option : ");
scanf("%d", &option);
switch (option) {
case 1:
printf("\n Enter the value of the new node : ");
scanf("%d", &val);
tree = insertElement(tree, val);
break;
case 2:
printf("\n The elements of the tree are : \n");
preorderTraversal(tree);
break;
case 3:
printf("\n The elements of the tree are : \n");
inorderTraversal(tree);
break;
case 4:
printf("\n The elements of the tree are : \n");
postorderTraversal(tree);
```

```
break;
case 5:
ptr = findSmallestElement(tree);
printf("\n Smallest element is :%d", ptr->data);
break;
case 6:
ptr = findLargestElement(tree);
printf("\n Largest element is : %d", ptr->data);
break;
case 7:
printf("\n Enter the element to be deleted : ");
scanf("%d", &val);
tree = deleteElement(tree, val);
break;
case 8:
printf("\n Total no. of nodes = %d", totalNodes(tree));
break;
case 9:
printf("\n The height of the tree = %d", Height(tree));
break;
case 10:
tree = mirrorImage(tree);
break; case 11:
tree = deleteTree(tree);
break;
} while (option != 14);
getch();
return 0;
void create_tree(struct node *tree) {
tree = NULL;
struct node *insertElement(struct node *tree, int val) {
struct node *ptr, *nodeptr, *parentptr;
ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = val;
ptr->left = NULL; ptr->right = NULL;
if (tree == NULL) {
tree = ptr;
tree->left = NULL;
tree->right = NULL;
}
else {
parentptr = NULL;
nodeptr = tree;
while (nodeptr != NULL) {
parentptr = nodeptr;
if (val< nodeptr->data) nodeptr = nodeptr->left;
else
nodeptr = nodeptr->right;
if (val<parentptr->data) parentptr->left = ptr;
else
parentptr->right = ptr;
return tree;
void preorderTraversal(struct node *tree) {
if (tree != NULL) {
printf("%d\t", tree->data);
preorderTraversal(tree->left);
```

```
preorderTraversal(tree->right);
void inorderTraversal(struct node *tree) {
if (tree != NULL) {
inorderTraversal(tree->left);
printf("%d\t", tree->data);
inorderTraversal(tree->right);
void postorderTraversal(struct node *tree) {
if (tree != NULL) {
postorderTraversal(tree->left);
postorderTraversal(tree->right);
printf("%d\t", tree->data);
struct node *findSmallestElement(struct node *tree) {
if ((tree == NULL) || (tree->left == NULL)) return tree;
else
return findSmallestElement(tree->left);
struct node *findLargestElement(struct node *tree) {
if ((tree == NULL) || (tree->right == NULL))
return tree;
else
return findLargestElement(tree->right);
struct node *deleteElement(struct node *tree, int val) {
struct node *cur, *parent, *suc, *psuc, *ptr;
if (tree->left == NULL) {
printf("\n The tree is empty ");
return (tree);
parent = tree; cur = tree->left;
while (cur != NULL && val != cur->data) {
parent = cur;
cur = (val< cur->data) ? cur->data : cur->right;
if (cur == NULL) {
printf("\n The value to be deleted is not present in the tree");
return (tree);
if (cur->left == NULL) ptr = cur->right;
else if (cur->right == NULL) ptr = cur->left;
else {
psuc = cur;
cur = cur->left;
while (suc->left != NULL) {
psuc = suc;
suc = suc -> left;
if (cur == psuc) {
suc->left = cur->right;
suc->left = cur->right;
psuc->left = suc->right;
suc->right = cur->right;
ptr = suc;
parent->left = ptr;
else
```

```
parent->right = ptr;
free(cur);
return tree;
int totalNodes(struct node *tree) {
if (tree == NULL)
return 0;
else
}
return (totalNodes(tree->left) + totalNodes(tree->right) + 1);
int Height(struct node *tree) {
int leftheight, rightheight;
if (tree == NULL)
return 0;
else {
leftheight = Height(tree->left);
rightheight = Height(tree->right);
if (leftheight > rightheight)
return (leftheight + 1);
else
return (rightheight + 1);
struct node *mirrorImage(struct node *tree) {
struct node *ptr;
if (tree != NULL) {
mirrorImage(tree->left);
mirrorImage(tree->right);
ptr = tree->left;
ptr->left = ptr->right;
tree->right = ptr;
struct node *deleteTree(struct node *tree) {
if (tree != NULL) {
deleteTree(tree->left);
deleteTree(tree->right);
free(tree);
```

Output:

```
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: 1

Enter the value of the new node: 50

***MAIN MENU**

1. Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option:
```

```
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit
Enter your option: 4
The elements of the tree are:
50 40 30 20
***MAIN MENU**
1. Insert Element
2. Preorder Traversal3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit
Enter your option :
```

```
Count the total number of nodes
Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit
Enter your option : 5
Smallest element is :10
***MAIN MENU**
1. Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
   Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit
Enter your option :
```

```
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: 6

Largest element is: 50
***MAIN MENU**

1. Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: _
```

```
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: 8

Total no. of nodes = 5
***MAIN MENU**

1. Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: _
```

```
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: 9

The height of the tree = 5
***MAIN MENU**

1. Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Determine the height of the tree
10. Find the mirror image of the tree
11. Delete the tree
12. Exit

Enter your option: _
```