$$\frac{\frac{\tau_{0}^{mi} - \tau_{i,n}}{\Delta c} - \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta x^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} + c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{mi} + \frac{1}{\Delta y^{2}} \left(\frac{c^{ij} - c^{ij} - 1}{2} \right) \tau_{i,j-1}^{m$$

Parameter Estimation Of 2D Heat Distribution In Heterogeneous Media

SiSc Laboratory Project group 2

Muhammad Sajid Ali Shubhaditya Burela Aneesh Futane Pourya Pilva

Supervisors:

Univ.-Prof. Dr.rer. nat. Uwe Naumann Leppkes Klaus

Overview

- Introduction
 - Heat Distribution
 - Parameter Estimation
- > FDM
- Discretization in space
- Discretization in time
- Linear system of equations
- > Implementation
 - > The code
 - Input file
 - Linear solvers
 - Optimization
 - Visualization

- Results
 - > Test case 1
 - > Test case 2
 - > Test case 3
 - Solver timings
 - Adjoint vs Tangent timings
- Project management
- Conclusion

Introduction

Introduction: Heat Distribution

2D Heat Equation with heat source :

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(c(x, y) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(c(x, y) \frac{\partial T}{\partial y} \right) + q(x, y)$$

where T=T(x, y, t, c)

x: Space

y: Space

t: Time

c: Heat diffusivity

T: Temperature

q: Heat flux

C(x,y) C(x,y) C(x,y)

 L_x

Boundary Conditions:

$$T(x, y, t = 0) = T_{\text{init}}$$

$$T(x = 0, y, t) = T_{left}$$

$$T(x = L_x, y, t) = T_{right}$$

Introduction: Parameter Estimation

Minimizing the objective function:

$$J(c) = \frac{1}{n} \sum_{j=0}^{n-1} \left(T_j^{O}(c) - T_j^{M}(c) \right)^2$$

.....with the help of gradient descent

$$c^{i+1} = c^i - \nabla_C J(c) = c^i - \alpha \frac{\partial J}{\partial c}$$

- ightharpoonup c(x,y) is the optimal parameter
- \rightarrow J(c) is the objective function
- $\succ T_i^O$ is the observed temperature
- $ightharpoonup T_j^M$ is the measured temperature

Source: easyai.tech

FDM

Discretization in Space

Central difference scheme

$$\Delta x = \frac{L_x}{n_x - 1} , \quad \Delta y = \frac{L_y}{n_y - 1}$$

$$\frac{\partial}{\partial x} \left(c(x, y) \frac{\partial T_{i,j}}{\partial x} \right) \approx \frac{1}{\Delta x} \left\{ \left(\frac{C_{i+1,j} + C_{i,j}}{2} \right) \left(\frac{T_{i+1,j} - T_{i,j}}{\Delta x} \right) - \left(\frac{C_{i-1,j} + C_{i,j}}{2} \right) \left(\frac{T_{i,j} - T_{i-1,j}}{\Delta x} \right) \right\} + O(\Delta x)^2$$

$$\frac{\partial}{\partial y} \left(c(x, y) \frac{\partial T_{i,j}}{\partial y} \right) \approx \frac{1}{\Delta y} \left\{ \left(\frac{C_{i,j+1} + C_{i,j}}{2} \right) \left(\frac{T_{i,j+1} - T_{i,j}}{\Delta y} \right) - \left(\frac{C_{i,j-1} + C_{i,j}}{2} \right) \left(\frac{T_{i,j} - T_{i,j-1}}{\Delta y} \right) \right\} + O(\Delta y)^2$$

$$i = 0,...,n_x - 1$$

$$j = 0,....,n_y - 1$$

Combining

$$\begin{split} &\frac{\partial}{\partial x} \left(c(x,y) \frac{\partial T_{i,j}}{\partial x} \right) + \frac{\partial}{\partial y} \left(c(x,y) \frac{\partial T_{i,j}}{\partial y} \right) = \frac{1}{\Delta y^2} \left(\frac{C_{i,j} + C_{i,j-1}}{2} \right) T_{i,j-1} + \\ &\frac{1}{\Delta x^2} \left(\frac{C_{i-1,j} + C_{i,j}}{2} \right) T_{i-1,j} - \left\{ \frac{1}{\Delta x^2} \left(\frac{C_{i-1,j} + 2C_{i,j} + C_{i+1,j}}{2} \right) + \frac{1}{\Delta y^2} \left(\frac{C_{i,j-1} + 2C_{i,j} + C_{i,j+1}}{2} \right) \right\} T_{i,j} + \\ &\frac{1}{\Delta x^2} \left(\frac{C_{i+1,j} + C_{i,j}}{2} \right) T_{i+1,j} + \frac{1}{\Delta y^2} \left(\frac{C_{i,j+1} + C_{i,j}}{2} \right) T_{i,j+1} \end{split}$$

Discretization in Time

> Implicit Euler

$$\Delta t = \frac{t_f}{m}$$
 where t_f is the final time and m is the no. of steps

$$\frac{\partial T_{i,j}}{\partial t} = \frac{T_{i,j}^{n+1} - T_{i,j}^{n}}{\Delta t} + O(\Delta t)$$

Combining

On combining..

$$\begin{split} &\frac{T_{i,j}^{n+1}-T_{i,j}^{n}}{\Delta t} = \frac{1}{\Delta y^{2}} \left(\frac{C_{i,j}+C_{i,j-1}}{2}\right) T_{i,j-1}^{n+1} + \frac{1}{\Delta x^{2}} \left(\frac{C_{i-1,j}+C_{i,j}}{2}\right) T_{i-1,j}^{n+1} \\ &- \left\{\frac{1}{\Delta x^{2}} \left(\frac{C_{i-1,j}+2C_{i,j}+C_{i+1,j}}{2}\right) + \frac{1}{\Delta y^{2}} \left(\frac{C_{i,j-1}+2C_{i,j}+C_{i,j+1}}{2}\right)\right\} T_{i,j}^{n+1} \\ &+ \frac{1}{\Delta x^{2}} \left(\frac{C_{i+1,j}+C_{i,j}}{2}\right) T_{i+1,j}^{n+1} + \frac{1}{\Delta y^{2}} \left(\frac{C_{i,j+1}+C_{i,j}}{2}\right) T_{i,j+1}^{n+1} + q_{i,j} \end{split}$$

On rearranging

$$-\frac{\Delta t}{\Delta y^{2}} \left(\frac{C_{i,j} + C_{i,j-1}}{2}\right) T_{i,j-1}^{n+1} - \frac{\Delta t}{\Delta x^{2}} \left(\frac{C_{i-1,j} + C_{i,j}}{2}\right) T_{i-1,j}^{n+1} + \left[1 + \left\{\frac{1}{\Delta x^{2}} \left(\frac{C_{i-1,j} + 2C_{i,j} + C_{i+1,j}}{2}\right) + \frac{1}{\Delta y^{2}} \left(\frac{C_{i,j-1} + 2C_{i,j} + C_{i,j+1}}{2}\right)\right\}\right] T_{i,j}^{n+1} - \frac{\Delta t}{\Delta x^{2}} \left(\frac{C_{i,j+1} + C_{i,j}}{2}\right) T_{i,j+1}^{n+1} = T_{i,j}^{n} + \Delta t \ q_{i,j}$$

The linear system

In matrix form :

$$T^{n} = \begin{bmatrix} T_{0,0}^{n} \\ T_{1,0}^{n} \\ T_{2,0}^{n} \\ \vdots \\ T_{n_{x}-1,0}^{n} \\ T_{0,1}^{n} \\ \vdots \\ T_{i,j-1}^{n} \\ \vdots \\ T_{i,j}^{n} \\ T_{i,j}^{n} \\ \vdots \\ T_{i,j+1}^{n} \\ \vdots \\ T_{n_{x}-1,n_{y}-1}^{n} \end{bmatrix} \qquad T^{n+1} = \begin{bmatrix} T_{0,0}^{n+1} \\ T_{1,0}^{n+1} \\ \vdots \\ T_{n+1}^{n+1} \\ \vdots \\ T_{i,j-1}^{n+1} \\ \vdots \\ T_{i,j+1}^{n+1} \\ \vdots \\ T_{n_{x}-1,n_{y}-1}^{n+1} \end{bmatrix} \qquad Q = \begin{bmatrix} Q_{0,0} \\ Q_{1,0} \\ Q_{2,0} \\ \vdots \\ Q_{n_{x}-1,0} \\ Q_{0,1} \\ \vdots \\ Q_{i,j} \\ Q_{i,j-1} \\ \vdots \\ Q_{i,j-1} \\ \vdots \\ Q_{i,j} \\ Q_{i,j} \\ Q_{i,j} \\ Q_{i,j+1} \\ \vdots \\ Q_{n_{x}-1,n_{y}-1} \end{bmatrix}$$

$$(I - \Delta t. R)T^{n+1} = T^n + \Delta t. Q$$

where
$$S_{i-1,j}^{x}$$
 is defined as $\frac{1}{\Delta x^2} \left(\frac{c_{i-1,j} + c_{i,j}}{2} \right)$. Similarly $S_{i+1,j}^{x} = \frac{1}{\Delta x^2} \left(\frac{c_{i+1,j} + c_{i,j}}{2} \right)$, $S_{i,j-1}^{y} = \frac{1}{\Delta y^2} \left(\frac{c_{i,j-1} + c_{i,j}}{2} \right)$ and $S_{i,j+1}^{y} = \frac{1}{\Delta y^2} \left(\frac{c_{i,j+1} + c_{i,j}}{2} \right)$

Implementation

The code: Flowchart

The code: Structure

Input

- Json file to read input
- Rapidjson library used

```
Name - The name of the test case
Lx - Length in x-direction
Ly - Length in y-direction
nx - Number of points in x-direction
ny - Number of points in y-direction
tf - Final time
m - Number of time steps
T init - Initial temperature
T left - Left wall boundary temperature
T right - Right wall boundary temperature
nc - Number of different heat diffusivity cases
c1 - Heat diffusivity values in the form of [c; x-start; x-end; y-start;
y-end]
q - Heat source values in the form of [q; x-start; x-end; y-start; y-
end]
c init - Heat diffusivity starting value for parameter optimization
α- Descent step size
opt steps - Number of maximum optimization steps
opt err - RMS error of gradient to stop the optimization loop
```

Case 1.json "name": "Case 1: Single diffusivity" "Lx": 1.0, "Ly": 1.0, "nx": 10, "ny": 10, "tf": 40, "m": 400, "T init": 300, "T left": 300, "T right": 330, "q": [1.0,0.4,0.6,0.4,0.6], "nc": 1, "c1": [0.0001,0.0,1.0,0.0,1.0], "c init": 0.0002, "alpha": 1e-8, "opt steps": 1000, "opt err": 1e-8

Linear solvers

Gauss elimination

$$Ax = b \longrightarrow (A|b) = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & b_n \end{pmatrix} \longrightarrow \begin{pmatrix} u_{1,1} & u_{1,2} & \cdots & u_{1,n} & b_1 \\ 0 & u_{2,2} & \cdots & u_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & u_{m,n} & b_n \end{pmatrix} \longrightarrow x_{n-1} + a_{(n-1,n)}x_n = b_{n-1}$$

Eigen/Dense

$$Ax = b \longrightarrow \begin{matrix} L\mathbf{y} &= P\mathbf{b} \\ U\mathbf{x} &= \mathbf{y} \end{matrix}$$

P - permutation matrix

L - Lower triangular matrix

U - upper triangular matrix

- Eigen/Sparse
 - LU decomposition (same as Eigen/Dense)
 - Sparse column major storage of matrix A

Optimizer

Adjoint mode

```
typedef active DCO BASE TYPE;
typedef gals<DCO BASE TYPE> DCO MODE;
typedef DCO MODE::type DCO TYPE;
typedef DCO MODE::tape t DCO TAPE TYPE;
DCO MODE::global tape=DCO TAPE TYPE::create();
std::vector<DCO TYPE> CC(nx*ny), TT obs(nx*ny);
typename dco::gals<active>::type J adjoint;
std::vector<DCO TYPE> Tnew(my input.nx * my input.ny);
// Initialization of the variables
for(int i = 0; i < my input.nx * my input.ny; i++){</pre>
    CC[i] = C[i];
   TT obs[i] = T obs[i];
    dJdc[i] = 0.0;
    DCO MODE::global tape->register variable(CC[i]);
// Solve for Tnew
Tnew = solve(T,CC,Q,my_input);
// Seeding
DCO MODE::global tape->register output variable(J adjoint);
J adjoint = cost function (TT obs, Tnew, my input.nx, my input.ny);
derivative (J adjoint) = 1.0;
// Harvest the derivatives
DCO MODE::global tape->interpret adjoint();
// Store the derivatives
for(int i = 0; i < my input.nx * my input.ny; i++)</pre>
    dJdc[i] = derivative(CC[i]);
DCO TAPE TYPE::remove(DCO MODE::global tape);
```

Tangent mode

```
typedef active DCO BASE TYPE;
typedef gt1s<DCO BASE TYPE> DCO MODE;
typedef DCO MODE::type DCO TYPE;
std::vector<DCO TYPE> CC(nx*ny), TT obs(nx*ny);
typename dco::gtls<active>::type J;
std::vector<DCO TYPE> Tnew(my input.nx * my input.ny);
// Initialization of the variables
for(int i = 0; i < my input.nx * my input.ny; i++){</pre>
    CC[i] = C[i];
    TT obs[i] = T obs[i];
    dJdc[i] = 0.0;
for(int i = 0; i<my input.nx*my input.ny;i++){</pre>
    derivative(CC[i]) = 1.0;
    Tnew = solve(T,CC,Q,my input);
   J = cost function (TT obs, Tnew, my input.nx, my input.ny);
    dJdc[i] = derivative(J);
    derivative(CC[i]) = 0.0;
```


Visualize

- Vtk files written
 - Rectilinear grid
 - Field data 2
 - > Temperature
 - Heat diffusivity

Visualized with Paraview

Results

Test case 1

Test case 2

Test case 3

Solver Timings

Note: Timings for 1 solve

Tangent vs Adjoint Timings

Note: Timings for 20 optimization steps

Project Management

Project management

- Code written in C++
- RWTH GitLab used

Member	Main Responsibility
Muhammad Sajid Ali	Main code, input parser, solvers, code integration
Shubhaditya Burela	Optimizer (dco), cmake, RWTH cluster integration, running tests on cluster
Aneesh Futane	Google tests, presentation
Pourya Pilva	Visualization (vtk), report

Conclusion

Conclusion

- > The problem successfully solved with FDM and parameters successfully optimized by Gradient Descent method
- Sparse solvers the fastest
- > Adjoint mode better than Tangent mode for our problem
- All requirements met: config file (json), cmake, google testing, vtk, GitLab
- Parallelize?
 - Max time taken by linear solver and dco::interpreter()
 - > Both are external libraries and hence hard to parallelize them

Scope for further work

- Non-gradient optimization methods
- > Training Neural Networks using the inputs and/or gradients to predict temperature

Thank you © Any questions???

