SPIM系统设计, part 1

畅星兆 2019.06.13

需求分析

- 1. 使用光纤形成光片
- 2. 兼容已有trapping系统
- 3. 性能要求

1.使用光纤形成光片

问题

• 则照明光路、探测光路固定, 样品可以移动

•则照明光路、探测光路固定, •能否实现操纵光纤进行扫描?

2. 兼容已有系统

- 1. 探测光路: 使用已有的显微镜系统进行探测 光片水平入射
- 2. PDMS:
 - 1. 照明光路工作距、探测光路工作距
 - 2. 折射率的匹配

- 问题:
 - 1. 正入射/斜入射?
 - 2. 封闭/开放?

3. 性能要求

- 1. 照明光路工作距
- 2. 探测光路工作距
- 3. 视场大小
- 4. 纵向分辨率/光片厚度
- 5. 横向分辨率
- 6. 扫描速度

典型值

	描述	照明物镜	照明光路工作距	视场大小	纵向分辨率	横向分辨率	探测光路工作距	成像速度	探测物镜
[1]		40*/ NA 0.8	3.3 mm		0.5 μm			1400 Hz	
[2]	IML- SPIM	40*/ NA 0.8			2 μm	500 nm		33 Hz	100*/ NA 1.1
		100*/ NA 1.1		80 μm	900 μm				
[3]	IsoView	/ NA 0.714	3.09 mm	800 μm	1.5 μm	0.3 μm	3.09 mm	2 Hz	/ NA 0.714
		/ NA 0.714			0.21 μm	0.21 μm			
[4]	soSPIM	100*/ NA 1.3		13 μm	0.6 μm			< 500 Hz	
		20*/ NA 0.5		220 μm	2.15 μm				
		10*/ NA 0.3		265 μm	2.6 μm				
[5]	DSLM	5*/ NA 0.16	12.1 mm				2.1 mm	15 Hz	63x/ NA1.0
[6]	АРОМ	100*/ NA 1.4	0.13 mm	70 μm ?	1 μm	μm			
[7]	Bessel + DSLM				0.3 μm	0.3 μm		200 Hz	
[8]	in solution	10*/ NA 0.28	33.5 mm	80 μm	1.5 μm		0.28 mm	100 Hz	40*/ NA 1.2
[9]	Ispim	40*/ NA 0.8	3.5 mm	50 μm	0.6 μm		3.5 mm		40*/ NA 0.8

3.1 照明光路设计

期望

- 1. 使用光纤+超表面
- 2. 光片水平入射
- 3. *工作距: *WD* ≥ 3 *mm*
- 4. *纵向分辨率: $r \le 1 \mu m$ (thickness $\le 2 \mu m$)
- 5. *视场大小: $50 \times 20 \, \mu m^2$

问题

- 1. 纤芯直径9 μm, 可否产生期 望的工作距和视场
- 2. 超表面的设计满足纵向分辨率要求

3.5 探测光路设计

- 采用探测光路采用的显微镜系统
- 工作距: 多少合适

问题汇总

1. 照明光路

- 光片正入射/斜入射
- 超表面的设计方案 (满足纵向分辨率要求)
- 光纤可否产生期望的工作距和视场
- 能否实现操纵光纤进行扫描?

2. 探测光路

- 是否使用已有的显微镜系统?
- 工作距

3. 其他

- 样本室封闭/开放
- 扫描方案

参考文献

- 1. Capoulade, Jérém et al., "Quantitative fluorescence imaging of protein diffusion and interaction in living cells", Nature Biotechnology, 2011.
- 2. Cella Zanacchi, Francesca et al., "Live-cell 3D super-resolution imaging in thick biological samples", Nature Methods, 2011.
- 3. Chhetri, Raghav K et al.," Whole-animal functional and developmental imaging with isotropic spatial resolution", Nature methods, 2015.
- 4. Galland, Remi, "3D high- and super-resolution imaging using single-objective SPIM", Nature methods, 2015.
- 5. Keller, Philipp J, "Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy", Science, 2008.
- 6. Li, Tongcang, "Axial Plane Optical Microscopy", Scientific reports, 2014.
- 7. Planchon, Thomas A, "Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination", Nature methods, 2011.
- 8. Ritter, Jörg Gerhard, "Light Sheet Microscopy for Single Molecule Tracking in Living Tissue", PLoS ONE, 2010.
- 9. Theer, Patrick, " π SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes", Scientific Reports, 2016.