	Question 1- 12: Translate English into Chinese, 0.5pt/question 1. Covalent 共价的	6. fatigue strength 疲劳强度7. dislocation 位错8. life cycle analysis 生命周期分析
	2. modulus 模量	9. amorphous 无定型
	3. allotropy 同素异形体	10. yield strength 屈服强度
	4. creep 蠕变	11. specific heat 比热
	5. lattice parameter 晶格参数	12. Mohs Hardness 莫氏硬度
13.	The family of materials is composed of (A)	Metallics , (B) <u>Ceramics</u>
(C)_	Polymerics (D) Composites	_ and other materials. (4 pt)
	the materials cycle in order to facilitate recycl A) Design for Assembly, B) Des	
15.	Life cycle analysis aids in ensuring (1pt) B	
	A) High profits, B) Sustainable environment,	C) Minimal materials, D) Improved cycles
16.		ent bond is (A) <u>sharing</u> of electrons, electrons, and for ionic bond (C) <u>transfer</u>
17.	Which of the following crystal system has la (1pt) B	attice parameters of a=b \neq c; α = β =90°C, γ =120°C?
	A) Monoclinic crystal B) Hexagonal crys	tal C) Tetragonal crystal D) Cubic Crystal
18.	Crystal defects can be classified into <u>point</u> defects. (3pt)	defects, <u>line</u> defects, and <u>area</u>
19.	(T or F) Coarse-grained material will, at nor material. (1pt)	mal temperatures, be stronger than fine-grained
20.	Specify the bonding type in the following mat	erials: (3pt)
(1)	NaCl ionic bonding (3) Polyethylene covalent bonding	(2) Al metallic bonding
21.	The forming conditions for a substitutional so	lid solution are (1pt)
	A) Similar atomic sizes B) Sim	nilar Electron configurations
	C) Similar crystal lattice structure D) All	of the above
22.	<u>D</u> is a measure of the energy per fracture under static conditions. (1pt)	unit volume of a material required to produce
	A) Modulus of elasticity B) Modulus of	resilience

Students Number:

Name:

Quiz 1

Class:

Students Number:

Name:

C) Modulus of rigidity

D) Modulus of toughness

23.	Which	of the	following	diagram	can	be o	obtained	by	a	Fatigue	test.	(1pt))
-----	-------	--------	-----------	---------	-----	------	----------	----	---	---------	-------	-------	---

- A) $\sigma \sim \varepsilon$,
- B) S~N,
- C) T- θ ,
- **D**) τ ~ δ

24. Which property is vital important in selecting a material for steam turbine blades? (1pt)

- A) Creep resistance
- B) Thermal insulation C) Hardness
- D) Strength

25. Which statement concerning elastic modulus is NOT correct? (1pt)

- A) Elastic modulus is also known as Young's modulus.
- B) Elastic modulus is the constant of proportionality in Hooke's Law.
- C) Elastic modulus can be measured graphically in the plastic region of the stress-strain diagram.
- D) The higher the magnitude of elastic modulus, the higher the resistance of the materials to be deformed.
- 26. Under similar conditions, the temperature of a material with a higher heat capacity increases faster than the material with a low heat capacity. (T or F) (1pt)
- 27. The lower the coefficient of thermal expansion of a material, the higher its melting temperature. (T or F) (1pt)
- 28. Thermal expansion is important when dissimilar materials will be fastened and heated. (T or F) (1pt)
- 29. Thermal energy can be conducted through a material by two mechanisms: the movement of B____, and the movement of C . (2pt)
 - A) Neutrons,
- B) Electrons,
- C) Phonons
- D) Protons

30. Which of the following statement about the thermal conductivity is NOT correct? (1pt)

- A) Thermal conductivity of materials has a varied relationship to temperature.
- B) Oriented polymers have much higher conductivities than unoriented polymers.
- C) Thermal conductivities are lower for crystalline than for noncrystalline ceramics.
- D) Metals have comparatively high thermal conductivities while polymers have rather low values.
- 31. The two methods to measure ductility are Percent elongation and Percent reduction of area . (4pt)
- 32. (1) Draw a typical creep curve (4pt), and label the three stages, springback, and creep rate on the curve. (10pt)
- (2) Explain how a stress change and a temperature change affect the creep rate of a material. (6pt)

Quiz 1

Class:

Students Number:

Name:

(1)

As the temperature and stress increase, the creep rate increases.

33. Draw Stress~ Number of cycles to failure curve for ferrous alloys (4pt), and label Fatigue limit, Fatigue strength, and Fatigue life (6pt).

Quiz 1	Class:	Students Number:	Name:	

34. Compare the thermal expansion of Silica (ceramics), Aluminum (metal), PE 聚乙烯 **(thermoplastics), and Epoxy** 环氧树脂 **(thermosets)** using the symbol ">". And explain the reasons. For example: The hardness of Silica is greater than PE. Thus, the comparison is expressed as Silica > PE.

Thermal expansion: ① ______ > ② _____ > ③ _____ > ④ _____ __ > (6pt)

And explain the reasons. (10pt)

PE (thermoplastics)>Epoxy (thermosets)>Aluminum (metal)>Silica (ceramics)

补充: Thermal expansion of a material is related to the strength of its bonding forces. Smaller bonding forces lead to large thermal expansion.

PE (thermoplastics): van der Waals bonds between chains

Epoxy (thermosets): crosslinking (或答 covalent bonding) and van der Waals bonds between

chains

Aluminum (metal): metallic bonds

Silica (ceramics): Covalent and ionic bonds

- 35. Figure 1 is a stress-strain diagram of Metals versus Ceramics. (20pt)
- (A) Point out which curve (a or b) is the stress-strain curve of metals, which one is that of ceramics. Explain why. (4)

b is the stress-strain curve of metals (ductile); a is the stress-strain curve of ceramics (brittle).

- (B) Name c, d, e, f; (4)
- C: Elastic region D: Plastic region E: Yield point F: Tensile Strength
- (C) Compare the modulus of elasticity (E) of the Curve a and b. Explain how E is related to the structure (e.g. inter-atomic bonding forces) and stiffness of a material. (6)

Ea > Eb. E is a measure of interatomic bonding forces and the stiffness of materials.

Interatomic bonding forces ↑ E ↑ Stiffness↑

Covalent and ionic bonds of ceramics > metallic bonds of metals

- (D) Is curve b for a ductile or brittle material? Give two reasons to support your answer. (6) Ductile material.
- 1. wide difference between tensile strength and yield strength;
- 2. Extensive plastic deformation ahead of crack;
- 3. Large strains before rupture.

Fig.1 A stress-strain diagram