

ASM1064 SATA Host Controller Datasheet

Copyright Notice:

Copyright © 2008, ASMedia TECHNOLOGY INC. All Rights Reserved.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF ASMEDIA TECHNOLOGY INC. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN ASMEDIA'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, ASMEDIA ASSUMES NO LIABILITY WHATSOEVER, AND ASMEDIA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF ASMEDIA PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Products of ASMEDIA TECHNOLOGY INC. are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

ASMedia may make changes to specifications and product descriptions at any time, without notice.

ASMedia TECHNOLOGY INC. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Contact your local ASMedia sales office or your agent to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other ASMedia literature may be obtained by calling +886-2-22196088 or by visiting ASMedia's website at www.asmedia.com.tw.

ASMedia and ASMedia logo are trademarks or registered trademarks of ASMedia TECHNOLOGY INC. in Taiwan and other countries.

© 2008 祥碩科技股份有限公司,著作權所有,並保留一切權利

本文資料為與祥碩科技股份有限公司之產品相關。本文並未明示或默示授權任何智慧財產權予第三人。除在祥碩科技股份有限公司對該產品提供的買賣條款及條件以外,祥碩科技股份有限公司免於擔負任何責任,且不對產品的買賣及使用做任何明示或默示的保證,包含產品適於特殊使用目的、以及產品不侵害任何專利權、著作權或其他智慧財產權。祥碩科技股份有限公司之產品不用於醫療的、救助生命的、生命維持的、安全控管系統或核子設施等用途之上。

祥碩科技股份有限公司可隨時不經通知,逕行增訂或修改產品規格及描述。

本文之相關專利權、申請中之專利權、商標權、著作權及其餘智慧財產權均屬祥碩科技股份有限公司所有。本文及其他資訊並未明示或默示的提 供任何專利、商標、著作權及其餘智慧財產權之授權。

請於下產品訂單前先聯絡當地的祥碩科技銷售處或代理商以取得最新的產品規格書。

本文提及之有訂單號碼之文件或其他詳細資料可參閱祥碩科技網站 www.asmedia.com.tw 或撥打+886-2-22196088

ASMEDIA 和 ASMEDIA 商標均為祥碩科技股份有限公司在台灣和其他國家的註冊商標或商標。

Office:

ASMedia Technology, Inc. 6F, No.115, Minquan Rd., Xindian District, New Taipei City 231, Taiwan, R.O.C. http://www.asmedia.com.tw

Tel: 886-2-2219-6088 Fax: 886-2-2219-6080

Revision History

Rev.	Date	Description
0.1	May 2, 2019	First release
0.2	July 8, 2019	Fix pin description
0.3	July 25, 2019	 Add strapping information in pin description Change strapping pin note Fix UPE_CLK* to PECLK* Add chip temperature information Add chip power consumption data
1.0	June 1, 2020	Remove suspend power description
1.1	Oct. 12, 2020	Change max payload size to 256Byte
		Remove suspend power description Change max payload size to 256Byte

Table of Contents

1	. Introduction	5
	1.1 Features of ASM1064	5
	1.2 Branding and Part Number	
	1.3 ASM1064 Block Diagram	
2	. Function Description	
	2.1 SATA port/LED/DEVSLP mapping	
3		9
4		
•	4.1 Upstream PCI Express ® Interface	
	4.2 Downstream SATA Interface	
	4.3 Miscellaneous Pins	
	4.4 Power/Ground Pins	
	4.5 Strap Information	
5		
6	3	
Ü	6.1 Power Rail Specification.	
	6.1.1 Absolute Maximum Ratings	
	6.1.2 Recommended Operating Conditions	
	6.2 DC Characteristic	
	6.3 System Clock Specification	
	6.3.1 System Clock Description	
_	6.3.2 System Clock Input Frequency Specification	
7.		
8		
	8.1 Package Overview	
	8.2 Chip temperature	. 19

Figure List

Figure 1 ASM1064 Block Diagram	7
Figure 2 Pin Assignment	9
Figure 3 Strap timing diagram	
Figure 4 Power Sequence	
Figure 5 Package information	

Table List

Table 1 SATA port / LED / DEVSLP mapping	8
Table 2 Upstream Interface	
Table 3 Downstream SATA Interface	10
Table 4 Miscellaneous Pins	10
Table 5 Power/Ground Pins	11
Table 6 Strap Information	12
Table 7 Strap timing requirement	12
Table 8 Power Sequence Timing	13
Table 9 Absolute Maximum Ratings	14
Table 10 Recommanded Operating Conditions	14
Table 11 Electrical Characteristic of Digital Pins (GPIO, Miscellaneous)	15
Table 12 System Clock Description	15
Table 13 Crystal AC Specification	15
Table 14 Clock Oscillator Electrical Specification	16
Table 15 UPE_CLK AC Specification	16
Table 16 power consumption	17
Table 17 Chin temperature equation	19

1. Introduction

ASM1064, a SATA host controller(AHCI) with upstream PCIe Gen3 x1 and downstream four SATA Gen3 ports. It's a low latency, low cost and low power AHCI controller. With four SATA ports and cascaded port multipliers, ASM1064 can enable users to build up various high speed IO systems, including server, high capacity system storage or surveillance platforms.

1.1 Features of ASM1064

PCIe interface

- 1- lane PCle® connecting with root port
- Automatic detection of lane configuration on boot-up
- Supporting transfer rate of 2.5Gb(250MB/s), 5Gb(500MB/s) or 8Gb(1GB/s) per lane
- Support L0s/L1/L23/L3 power saving states
- Support L1 substate deep power saving mode
- Support LTR
- Support AER
- Support SRIS
- Max Payload Size = 256Byte

SATA interface

- AHCI SPEC Rev. 1.4
- Four SATA Gen3 (6GBps) ports
- Support NCQ
- Support SATA LED
- Supported port multiplier command based switching
- Support Partial/Slumber power management
- Support Device Sleep power management

General Features

- 25MHz Crystal
- Support SSC for both PCIe and SATA
- GPIO for extra IO control
- Package type: 8x8 QFN64

1.2 Branding and Part Number

1. asmedia: ASMedia Logo

2. ASM1064: Product Name

3. B: Version of ASMedia Logo

4. XXXXXXXXX: Serial No. Reserved for Vendor

5. YYWW: Date Code

1.3 ASM1064 Block Diagram

Figure 1 ASM1064 Block Diagram

2. Function Description

2.1 SATA port/LED/DEVSLP mapping

Table 1 SATA port / LED / DEVSLP mapping

SATA port	LED	DEVSLP
ST(R)XP(N)0	LED_S0	DEVSLP0
ST(R)XP(N)1	LED_S1	DEVSLP1
ST(R)XP(N)2	LED_S2	
ST(R)XP(N)3	LED_S3	DEVSLP3
		DEVSLP3

3. Pin Assignment

Figure 2 Pin Assignment

4. Pin Descriptions

4.1 Upstream PCI Express ® Interface

Table 2 Upstream Interface

Pin Name	Pin No.	Type	Voltage	Functional Description	
PERXP0	33	A-I	VDD105	Upstream PCIe® Lane 0 Receive positive	
PERXN0	34	A-I	VCC25	Upstream PCIe® Lane 0 Receive negative	
PETXP0	36	A-O		Upstream PCIe® Lane 0 Transmit positive	
PETXN0	37	A-O		Upstream PCIe® Lane 0 Transmit negative	
PECLKP	53	A-I		PCIe® clock input positive	
PECLKN	54	A-I		PCIe® clock input negative	
CLKREQN	41	OD	VCC33	PCIe® clock request	
PERSTN	21	1	VCC33	PCle® reset	
REXT	49	A-I	VCC25	External Reference Resistor with 12.1K ohm to GND for PCI Express	

4.2 Downstream SATA Interface

Table 3 Downstream SATA Interface

Pin Name	Pin No.	Туре	Voltage	Functional Description	
SRXP0	31	A-I	VDD105	SATA Port 0 Receive positive	
SRXN0	30	A-I	VCC25	SATA Port 0 Receive negative	
STXP0	28	A-O		SATA Port 0 Transmit positive	
STXN0	29	A-O	4410	SATA Port 0 Transmit negative	
SRXP1	23	A-I		SATA Port 1 Receive positive	
SRXN1	24	A-I		SATA Port 1 Receive negative	
STXP1	26	A-0		SATA Port 1 Transmit positive	
STXN1	25	A-O		SATA Port 1 Transmit negative	
SRXP2	10	A-I		SATA Port 2 Receive positive	
SRXN2	9	A-I		SATA Port 2 Receive negative	
STXP2	7	A-O		SATA Port 2 Transmit positive	
STXN2	8	A-O		SATA Port 2 Transmit negative	
SRXP3	2	A-I		SATA Port 3 Receive positive	
SRXN3	3	A-I		SATA Port 3 Receive negative	
STXP3	5	A-O		SATA Port 3 Transmit positive	
STXN3	4	A-O		SATA Port 3 Transmit negative	
LED_S0	61	OD	VCC33	SATA Port 0 LED	
LED_S1	20	OD		SATA Port 1 LED	
LED_S2	19	OD		SATA Port 2 LED	
LED_S3	18	OD		SATA Port 3 LED	
DEVSLP0	59	1/0		SATA Port 0 Device Sleep / GPIO	
DEVSLP1	58	1/0		SATA Port 1 Device Sleep / GPIO	
DEVSLP2	57	1/0		SATA Port 2 Device Sleep / GPIO	
DEVSLP3	56	1/0		SATA Port 3 Device Sleep / GPIO	

4.3 Miscellaneous Pins

Table 4 Miscellaneous Pins

Pin Name	Pin No.	Туре	Voltage	Functional Description	
TESTEN	17	1	VCC33	Test enable	
UART_TX	14	0		UART Transmit /test purpose (Strapping of SRIS mode,	
				SRIS EN#)	

ASM1064 SATA Host Controller Datasheet

UART_RX	15	1	UART Receive	
SPI_SDIO	63	1/0	SPI Interface, Data in/out (Strapping of SATA SSC enable,	
			SSSC_EN)	
SPI_CLK	62	1/0	SPI Interface, Clock (Strapping of PCIe SSC enable, PSSC_EN)	
SPI_CS	64	0	SPI Interface, Chip Select	
I2CS_CLK	12	1/0	I2C clock	
I2CS_DAT	13	1/0	I2C data	
XI	51	I	Crystal in	
XO	52	0	Crystal out	
GPIO0	48	1/0	General Purpose Input/Output 0	
GPIO1	47	1/0	General Purpose Input/Output 1	
GPIO2	46	1/0	General Purpose Input/Output 2	
GPIO3	45	1/0	General Purpose Input/Output 3	
GPIO4	44	1/0	General Purpose Input/Output 4	
GPIO5	43	1/0	General Purpose Input/Output 5	

4.4 Power/Ground Pins

Table 5 Power/Ground Pins

Pin Name	Pin No.	Voltage/GND	Description
VCC25	6, 27	2.5V	PHY power (PCIe)
VCC25P	35	2.5V	PHY power (SATA)
VCC25CK	50	2.5V	PHY power (Clock Gen)
VCC25O	39	2.5V	LDO power output
VCC33	16, 40, 60	3.3V	Digital IO Power
VDD105	1, 11, 22, 32, 38, 42, 55	1.05V	Core Logic Power
	ASMedic		

4.5 Strap Information

Table 6 Strap Information

Strapping pins	Function					
	Test mode enable					
TESTEN	1: Test mode					
	0: Function mode					
	SRIS mode					
SRIS_EN#	1: SRIS mode disable					
	0: SRIS mode enable					
	PCIe SSC enable					
PSSC_EN	1: PCle SSC enable					
	0: PCle SSC disable					
	SATA SSC enable					
SSSC_EN	1: SATA SSC enable					
	0: SATA SSC disable					

Note: PSSC_EN is available only when SRISP_EN# = 1'b0. If SRISP_EN# = 1'b1, PCIe SSC follows 100MHz clock source.

Strap timing requirement

Figure 3 Strap timing diagram

Table 7 Strap timing requirement

	Parameter	Min	Max	Unit
Ts	Setup time for capture	1		ms
Тн	Hold time for capture	1		ms

5. Power Sequence and Timing

Figure 4 Power Sequence

Table 8 Power Sequence Timing

Symbol	Minimum	Maximum	Description	
T1	0us	20ms	Normal power 3.3V/2.5V to Normal power 1.05V	
T2	100ms		Normal power 3.3V/2.5 to PERSTN deassert	
T3	1ms		Crystal stable to PERSTN deassert	
T4	100us		UPE_CLK* stable to PERSTN deassert	
T5	1us		PERSTN asserted to Normal power off	
T6	0us		PERSTN assert to Crystal off	
T7	Ous		PERSTN assert to UPE clock off	

6. Electrical Characteristic

6.1 Power Rail Specification

6.1.1 Absolute Maximum Ratings

Table 9 Absolute Maximum Ratings

Parameter	Range	Unit	
Power Supply for Core Power	-0.5 ~ VDD105 +0.5	V	
Power Supply for PHY Power	-0.5 ~ VCC25 +0.5	V	
Power Supply for IO Power	-0.5 ~ VCC33 +0.5	V	
DC Input Voltage for IO	-0.5 ~ VCC33 +0.5	V	
Output Voltage for IO	-0.5 ~ VCC33 +0.5	V	
Storage Temperature	JEDEC J-STD-	033B MSL 3	
HBM ESD	+/-4KV		
MM ESD	+/-20	VOOV	

6.1.2 Recommended Operating Conditions

Table 10 Recommanded Operating Conditions

Symbols	Parameter	Min.	Тур.	Max.	Units
VCC33	Normal Power Supply	3.0	3.3	3.6	V
VCC25	Normal Power Supply	2.25	2.5	2.75	V
VDD105	Normal Power Supply	1.00	1.05	1.1	V
Tj	Operating Junction Temperature	0	25	90	°C
Tc	Opertating Case Temperature	0	25	85	°C

6.2 DC Characteristic

Table 11 Electrical Characteristic of Digital Pins (GPIO, Miscellaneous)

Symbols	Parameter	Min.	Тур.	Max.	Units	Remark
V _{IH}	Input High Level	2			V	
VIL	Input Low Level			0.8	V	
V HYS	Input Hysteresis	0.32	0.37	0.4	V	
V TH-L2H	VTH of Schmitt Trigger low to high	1.4	1.6	1.8	V	
V TH-H2L	VTH of Schmitt Trigger high to low	1	1.23	1.4	V	
Rup	Internal Pull-up resistance while Vin=0V	65	96	140	ΚΩ	
Nup	Internal Pull-up resistance while Vin=VCCH/2 V	38	56	81	ΚΩ	
IIL-UP	Input pull-up leakage current while Vin=0V	21	34.4	56	uA	
IIL-UP	Input pull-up leakage current while Vin=VCCH/2 V	18	29.4	47	uA	
Rdown	Internal Pull-down resistance while Vin=0V	59	96	142	ΚΩ	
RDOWN	Internal Pull-down resistance while Vin=VCCH/2 V	35	55	79	ΚΩ	
Iil-down	Input pull-down leakage current while Vin=0V	21	34.5	60	uA	
IIL-DOWN	Input pull-down leakage current while Vin=VCCH/2 V	18	30	50	uA	
Vон	Output High Voltage @IOH	2.4			V	
Vol	Output Low Voltage @IOL			0.4	V	
Іон	Driving Current of Output High	12			mA	
Iol	Driving Current of Output Low	12			mA	

6.3 System Clock Specification

6.3.1 System Clock Description

Table 12 System Clock Description

Clock Domain	Frequency	Source	
XI, XO	25MHz	25MHz Crystal	
PECLKP, PECLKN	100MHz	Main Clock Generator	

6.3.2 System Clock Input Frequency Specification

Table 13 Crystal AC Specification

Symbol	Parameter	Min.	Тур	Max.	Unit
fxtal	Frequency		25		MHz
△fxtal	Long Term Stability (at 25°C)	-30		30	ppm
Тс	Temperature Stability	-30		30	ppm
FA	Aging	-5		5	ppm
CL	Load Capacitance (Single-end mode)		16		pF
Co	Shunt Capacitance	1	3	7	pF

Table 14 Clock Oscillator Electrical Specification

Symbol	Parameter	Min.	Тур	Max.	Unit
fclk	Frequency		25		MHz
△fclĸ	Long Term Stability (all condition)	-150		150	ppm
Сх	External Load Capacitance (Differential mode)		8		pF
Стотац	Total External Equivalent Capacitance from XI pin to XO pin (Differential mode)	9	11	15	Pf
RTOTAL	Total External Equivalent Series Resistance from XI pin to XO pin			60	Ω

Table 15 UPE_CLK AC Specification

Cymbol	Parameter	100 Mi	Unit	
Symbol	Parameter	Min	Max	Offic
V_{IH}	Differential Input high voltage	+150		mV
V _{IL}	Differential Input low voltage		-150mV	mV
Vcross	Absolute crossing point voltage	+250	+550	mV
T _{PERIOD_AVG}	Average clock period accuracy	-300	+300	ppm
T _{CCJITTER}	Cycle to Cycle jitter		150	ps
T _{DC}	Reference Duty Cycle	40	60	%
Rising Edge Rate	Rising Edge Rate	0.6	4.0	V/ns
Falling Edge Rate	falling Edge Rate	-4.0	-0.6	V/ns
	ASMedia			

7. Power Consumption

Table 16 power consumption

	Full Running	Idle (L1 enable)	Suspend (Normal power off)
VCC33 (mA)	100	TBD	N/A
VDD105 (mA)	493		N/A
Total Power (mW)	847		0

8. Package Information

8.1 Package Overview

Figure 5 Package information

8.2 Chip temperature

Table 17 Chip temperature equation

Symbol	Parameter	How to get?
Та	Ambient temperature	Measure temperature around chip
Tj	Operating junction temperature	Tj = Θja * power + Ta
Тс	Operating case temperature	Tc = Tj - Ψjt * power
Θја	Junction to Ambient thermal resistance	Provided by package vendor: 25.8
Ψjt	Junction to top thermal characterization	Provided by package vendor: 0.08
Power	Chip power consumption	Measure chip power consumption (Max: 0.847 W)
Tj = 25	e: If chip power consumption is TBDV 5.8 * 0.847 + 25 = 46.8°C 5.8 - 0.08 * 0.847 = 46.7°C	V; Ta=25°C

- Thermal test board condition, please refer to JEDEC JESD51-5
- **Thermal Test Method Environmental Conditions refer JESD51-2**
- Example: If chip power consumption is TBDW; Ta=25°C