

Prof. Jessen Vidal

10 AVALIAÇÃO DE LP - Prof. Reinaldo

1) (2,0) "Pega ladrão! Pega ladrão!" Roubaram a bolsa de uma inocente senhora que caminhava na praia da Fatecalândia e o ladrão fugiu em direção ao mar. Seu plano parece óbvio: ele pretende pegar um barco e escapar!O fugitivo, que a essa altura já está a bordo de sua embarcação de fuga, pretende seguir perpendicularmente à costa em direção ao limite de águas internacionais, que fica a 12 milhas náuticas de distância, onde estará são e salvo das autoridades locais. Seu barco consegue percorrer essa distância a uma velocidade constante de VF nós.

A Guarda Costeira pretende interceptá-lo, e sua embarcação tem uma velocidade constante de VG nós. Supondo que ambas as embarcações partam da costa exatamente no mesmo instante, com uma distância de D milhas náuticas entre elas, será possível a Guarda Costeira alcançar o ladrão antes dolimite de águas internacionais?

Assuma que a costa da Fatecalância é perfeitamente retilínea e o mar bastante calmo, de forma a permitir uma trajetória tão retilínea quanto a costa. Cada caso de teste é descrito em um linha contendo três inteiros, D, VF e VG, indicando respectivamente a distância inicial entre o fugitivo e a Guarda Costeira, a velocidade da embarcação do fugitivo e a velocidade da embarcação da Guarda Costeira.

Para cada caso de teste imprima uma linha contendo 'S' se for possível que a Guarda Costeira alcance o fugitivo antes que ele ultrapasse o limite de águas internacionais ou 'N' caso contrário.1 \leq D \leq 100 ; 1 \leq VF \leq 100; 1 \leq VG \leq 100 . Dica : Teorema de Pitágoras a² = b²+ c²

Exemplo de entrada	Saída para o exemplo de entrada	
5 1 12	S	
12 10 7	N	
12 9 10	N	
10 5 5	N	
9 12 15	S	

2) (2,0) Dado dois vetores de números inteiros A (10 elementos) e B (8 elementos) faça um programa que imprima os valores comuns aos dois vetores e caso não haja fatores comuns imprima "vazio".

3)(2,0) Dada a $\sum_{n=0}^{100} \frac{(n+1)x^n}{2^n}$ encontre a fórmula de recorrência e implemente as duas versões: sem fórmula de recorrência e com uso da fórmula de recorrência.

4) (2,0) Faça um programa que leia uma frase de no maximo 100 caracteres e compacte a frase eliminando os espaços e as vogais, a frase compactada deve estar no mesmo vetor de char.

5) (2,0)

(a) Construa uma função encaixa que, dados dois inteiros positivos a e b, verifica se b corresponde aos últimos dígitos de a.

Exemplo:

а	b	retorno
567890	890	1
1234	1234	1
2457	245	0
457	2457	0

(b) Usando a função do item anterior, faça um programa que lê dois inteiros positivos a e b e verifica se o menor deles e segmento do outro.

Exemplo

a	b	
567890	678	b é segmento de a
1243	2212435	a é segmento de b
235	236	um não é segmento do outro