Problem Set 2, Answers

Kevin Lacker

May 20, 2020

Problem 1. The idea is to use MAJ circuits to calculate PARITY, and thus use our lower bound on PARITY circuits to provide a lower bound on MAJ circuits.

First, we can create a circuit for the function that counts whether precisely half of the bits of the input are 1. I.e., HALF(x) = 1 iff |x| = n/2, with two MAJ circuits:

$$HALF(x) = MAJ(x) \land MAJ(\neg x)$$
 (1)

Here $\neg x$ represents the bitwise negation of x. Our circuit for for HALF uses two MAJ subcircuits and one more depth.

Now that we have HALF, we can construct a circuit to count whether precisely k bits of the input are 1, $EXACT_k$, by padding the input with ones or zeros and using a single HALF circuit on at most twice the input size.

We can then take one $EXACT_K$ for each odd number less than or equal to n, and take their conjunction to create a PARITY circuit of depth d+2. This PARITY circuit of depth d+2 is built of O(n) depth-d MAJ circuits, plus O(n) extra gates, where each MAJ circuit has at most 2n inputs.

Let $H_{MAJ}(n,d)$ denote the minimum size of a circuit of depth d calculating MAJ on a size-n input, and H_{PARITY} the same for PARITY. This construction demonstrates that

$$O(n) \cdot H_{MAJ}(n,d) \ge H_{PARITY}(n/2,d+2) \tag{2}$$

But we know that

$$H_{PARITY}(n,d) \ge exp(\Omega(n^{2^{-d}}))$$
 (3)

Substituting in and simplifying we get

$$H_{MAJ}(n,d) \ge exp(\Omega(n^{w^{-d-O(1)}})) \tag{4}$$