TENSOR WORKSHEET

TANMAY AGARWAL

November 3, 2020

Abstract

In this paper we will be convering most of the tensors and their various transformations. We will also take a look on the dirac notation formalizations

Contents

1 Initial Tensor And Their Transformations
2 Transformations For Contra Tensors
2 Transformations For Co-Tensors
2

1 Initial Tensor And Their Transformations

Firstly we will be looking at the tensors which have only one index. Broadly as we all know there are two types of tensors

1. Contra-variant tensors

2.Co-variant tensors

In contra-variant tensors the components transfrom in a "contra" manner. If the components increase, their respective products will decrese(If still any confusion please refer the main notes). The various Transformations of contra-variant vectors are given as

$$X^{'i} = \frac{\partial X^{'i}}{\partial X^j} \cdot X^j \tag{1}$$

In co-variant tensors the components trusform in a "co" manner. If the components increase or decrease, even the products increases or decrease. Their tansformation is

$$X_{i}^{'} = \frac{\partial X^{j}}{\partial X_{i}^{'}} \cdot X^{j} \tag{2}$$

These transformations can also be representes as follows

$$X^{,i} = \wedge^{ij} \cdot X^j \tag{3}$$

and

$$X_{i}^{'} = \wedge^{ji} \cdot X^{j} \tag{4}$$

here

$$\wedge^{\alpha\beta} = \frac{\partial X^{'\alpha}}{\partial X^{\beta}} \tag{5}$$

2 Transformations For Contra Tensors

For contra-variant tesnors a list of various transformations are

$$x^{i} = \frac{\partial x^{i}}{\partial x^{j}} \cdot x^{j} \text{ (or) } x^{i} = \wedge^{ij} \cdot x^{j}$$

$$\tag{6}$$

$$A^{\alpha} = \frac{\partial x^{'\alpha}}{\partial x^{\beta}} \cdot A^{\beta} \tag{7}$$

$$T^{\alpha\beta} = \frac{\partial x^{'\alpha}}{\partial x^{j}} \frac{\partial x^{'\beta}}{\partial x^{j}} \cdot T^{ij} \tag{8}$$

or

$$T^{\alpha\beta} = \wedge^{\alpha i} \wedge^{\beta j} \cdot T^{ij}$$

Proceeding

$$T^{\alpha\beta} = \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \cdot T^{ij} \tag{9}$$

here

$$y^{\alpha} = x^{'}$$

Moving on, a mixed tensor is defined as

$$T^{\alpha}_{\beta} = \frac{\partial x^{'\alpha}}{\partial x^{i}} \frac{\partial x^{j}}{\partial x^{'\beta}} \cdot T^{i}_{j} \tag{10}$$

3 Transformations For Co-Tensors

For Co-variant tensors the list of various transformations are

$$x_{i}^{'} = \frac{\partial x^{j}}{\partial x^{'i}} \cdot x_{j} \tag{11}$$

$$A_i = \frac{\partial x^j}{\partial x^{i}} \cdot A_j \tag{12}$$

$$T_{\alpha\beta} = \frac{\partial x^i}{\partial x'^{\alpha}} \frac{\partial x^j}{\partial x'^{\beta}} \cdot T_{ij}$$
 (13)

$$\Gamma^{\alpha}_{\mu\nu} = \frac{\partial x^{\lambda}}{\partial x^{\alpha}} \cdot \frac{\partial^{2} x^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}$$

$$\sum_{i} A_{i}$$
(14)