ZILFIMIAN

Regularization/GLM (Q6L7)

48% (10/21)

- 1. Overdispersion in Poisson Regression occurs when
 - (A) var(Y|X)>var(Y)
 - B var(Y|X)>mean(Y|X)
 - C Variance is decreasing
 - D I do not know
- ✓ 2. Which one of these is the measure for goodness of fit for Poisson Regression?
 - (A) Ordinal R^2
 - B Chi-square & Pseudo R^2
 - C I do not know
 - D There are not measure for it
- ✓ 3. Which one of these is the correct interpretation of the coefficient of Poisson Regression?
 - (A) For a 1-unit increase in X, we expect a b1 unit increase in Y.
 - B For a 1-unit increase in X, we expect b1 percentage increase in Y.
 - C For a 1-percentage increase in X, we expect b1 percentage increase in Y.
 - \bigcirc For a 1-percentage increase in X, we expect b1 unit increase in Y.
 - (E) I do not know
- X 4. In Poisson regression...
 - (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
 - B The distribution of the maximum likelihood estimates is multivariate normal.
 - The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
 - D I do not know
- 5. Pseudo R-Squared Measures are calculated based on...
 - $ig(\mathsf{A}ig)$ The likelihood function
 - (B) Chi-squared value
 - C I do not know
 - (D) Overdispersion term

Mary Page 1 of 5

X	6.	In the case of intercept-only model
	A	The mean of the dependent variable equals the exponential value of intercept
	В	The mean of the dependent variable equals the intercept
	(c)	The mean of the dependent variable equals 0
	D	I do not know
/	7. e^(-	In(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: 0.2)=0.78
	A	One unit increase in female brings a 0.2 decrease in ln(lambda).
	B	Being female decreases the average number of articles by 0.78 percent
	C	Being female decreases the average number of articles by 22%
	D	I do not know
/	8. lam	While running the Poisson Regression we will have never faced with the value of obda
	В	1
	\bigcirc	2
		I do not know
	9.	Why does not quasi-Poisson model have AIC?
	A	Quasi-Poisson is used quasi-likelihood instead of log-likelihood estimates.
	(B)	Quasi-Poisson does not use iterative estimation
	(c)	I do not know
/	10.	Why Poisson regression is called log-linear?
	A	Because we use a log link to estimate the logarithm of the average value of the dependent variable
	B	Because we use a log values of independent variable
	(c)	Because we use a log value of an independent variable is transformed to linear
		I do not know

Mary Page 2 of 5

	11.	In the multiple linear regression, we assume that
	A	The number of observations is much larger than the number of variables (n>>p)
	B	The number of observations is slightly larger than the number of variables (n>p)
	\bigcirc	The number of observations equals than the number of variables (n=p)
	D	The number of observations is lees than the number of variables (n <p)< th=""></p)<>
	(E)	It is not important
	F	I do not know
×	12.	The way of solving the problem of a large number of variables is
	(A)	Subset Selection & Shrinkage (Regularization)
	(B)	Shrinkage (Regularization) & Maximum Likelihood estimation
	\overline{C}	Dimension Reduction & OLS estimation
	D	I do not know
	E	The absence of the right answer
×	13.	The bias of an estimator (e.g. z^) equalsHint: the OLS coefficients are unbias
	:)	
		$E(z^{\Lambda}) - z$
	(B)	$E(z^2) - [E(z)]^2$
	(c)	$[E(z^2) - E(z)]^2$
	(D)	$E(z^2)$
	E	I do not know
×	14.	Which of following is not a type of regularization:
	A	L1 - Lasso
	\bigcirc B	L2 - Ridge
	(C)	Elastic Net
	D	L3 - Passo
	E	I do not know
×	15.	The main idea of regularization is
	A	To introduce a small amount of bias in order to have less variance.
	\bigcirc B	To introduce a small amount of variance in order to have less bias.
	(c)	To introduce a small amount of variance and bias in order to have less bias.
	D	I do not know

Mary Page 3 of 5

×	16.	With which function we can show regularization in R
	A	glmnet()
	В	regular()
	(c)	lm()
	\bigcirc D	glm()
	E	I do not know
/	17.	How the tune of any parametr can be made
	A	using Cross validation
	B	It is impossible
	(c)	I do not now
		using larger sample
	E	only having population
×	18.	Elastic Net is
	A	the combination of L1 and L2 regularization
	B	the combination of L2 and L3 regularization
	\overline{C}	is independent from other types of refularization
	D	I do not know
	E	not a type of regularization
×	19.	Regularization is used only for
	A	Poisson Regression
	B	Linear Regression
	C	Logistic Regression
	D	any regression
	E	I do not know
/	20.	Regularization can solve the problem of
	(A)	heteroscedasticity
	В	multicollinearity
	(C)	autocorrelation
	D	I do not know

Mary Page 4 of 5

X 21. Multicollinearity occurs when

- A rank(X)<m (m is the number of explanatory variables)
- (B) var(ε)= σ^2 I
- (c) E(ϵ)=0
- D cov(εi,εj)=const
- E I do not know

Mary Page 5 of 5