Bioinformatics

Presented by Theo N.

Foundation

RNA

Significance - College Dorms

Significance - ZIKA

Americas. *Nature*. 2017;546(7658):411

Significance -

Significance - COVID19

Zhang, JY., Wang, XM., Xing, X. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol 21, 1107–1118 (2020). https://doi.org/10.1038/s41590-020-0762-x

Significance - COVID19

https://directorsblog.nih.gov/2020/07/16/researchers-publish-encouraging-early-data-on-covid-19-vaccine/

Monocytes Kupffer Decidual

Microglia

HBC

THP1

Exponential Data Increase

Computational Biology vs. Bioinformatics

Programming of Commensal Bc Bacteroides thetail to Sense and Responsin the Murine Gut

Presented by Theo Nelson

Bulk vs. sc RNAseq

Bulk RNA sequencing

No change of expression of Gene X

Single-cell RNA sequencing

cDNA

tissue

Expression of Gene X is affected in cell type b only

Experimental Design

Data Collection Techniques

Questions? tmn2126@columbia.edu

Series GSE28660	Query DataSets for GSE28666
Status	Public on Apr 16, 2011
Title	RNA sequencing reveals two major classes of gene expression levels in metazoan cells
Organism	Mus musculus
Experiment type	Expression profiling by high throughput sequencing
Summary	The expression level of a gene is often used as a proxy for determining whether the protein or RNA product is functional in a cell or tissue. Therefore, it is of fundamental importance to understand the global distribution of gene expression levels, and to be able to interpret it mechanistically and functionally. Here we use RNA sequencing of mouse Th2 cells, coupled with a range of other techniques, to show that all genes can be separated, based on their expression abundance, into two distinct groups: one group comprising of lowly expressed and putatively non-functional mRNAs, and the other of highly expressed mRNAs with active chromatin marks at their promoters. Similar observations are made in other data sets, including sources such as Drosophila.
Overall design	RNA-seq data of two biological replicates of murine Th2 cells.
Contributor(s)	Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A, Teichmann SA
Citation(s)	Hebenstreit D, Fang M, Gu M, Charoensawan V et al. RNA sequencing reveals two major classes of gene expression levels in metazoan cells. <i>Mol Syst Biol</i> 2011 Jun 7;7:497. PMID: 21654674
	Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. <i>Cell Rep</i> 2014 May 22;7(4):1130-42. PMID: 24813893