CLAIMS

LAZI .	-		•	
What	10	Clai	IMP	7 IC
AATICAL	10	vial	ロロしい	u IO.

1	1.	A dua	al bit di	electric memory cell comprising:		
2		a)	a sub	ostrate comprising a source region, a drain region, and a channel		
3	regio	n positi	oned t	here between;		
4		b)	a mu	Itilevel charge trapping dielectric positioned on the surface of the		
5	subst	rate; a	nd			
6		c)	a cor	ntrol gate positioned on the surface of the multilevel charge trapping		
7	dielec	tric an	d posit	tioned over the channel region; and		
8		d)	wher	ein the multilevel charge trapping dielectric includes:		
9			i)	a tunnel layer adjacent to the substrate of a first dielectric material;		
0			ii)	a top dielectric layer adjacent to the control gate of a second		
1	dielectric material; and					
2			iii)	a charge trapping layer positioned between the tunnel layer and the		
3		top di	electri	c layer and including a source charge trapping region and a drain		
4		charg	e trapp	oing region separated by an isolation barrier there between.		
5						
6						
1	2.	The d	lual bit	dielectric memory cell of claim 1, wherein the isolation barrier is an		
2	oxide.	•	•			
3						
1	3.	The d	lual bit	dielectric memory cell of claim 2, wherein charge trapping layer		
2	range	s from	about	50 A to 100 A in thickness.		
3						
1	4.	The d	lual bit	dielectric memory cell of claim 3, wherein the source charge		
2	trappi	ng regi	on and	d the drain charge trapping region are comprised of a nitride		
3	comp	ound.		·		
4						
1	5.	The d	ual bit	dielectric memory cell of claim 4, wherein the source charge		

trapping region and the drain charge trapping region comprise a material selected from

- the group consisting of Si₂N₄ and SiO_xN₄.
- 1 6. The dual bit dielectric memory cell ell of claim 5, wherein each of the source
- 2 charge trapping region and the drain charge trapping region have a lateral width
- beneath the top dielectric layer from about 300 A to 500 A.
- 1 7. The dual bit dielectric memory cell of claim 1, wherein the tunnel dielectric layer
- is comprised of material with a very low hydrofluoric acid etch rate.
- 1 8. The dual bit dielectric memory cell of claim 7, wherein the isolation barrier is an
- 2 oxide.

4

3

3

4

4

- 1 9. The dual bit dielectric memory cell of claim 8, wherein charge trapping layer
- 2 ranges from about 50 A to 100 A in thickness.
- 1 10. The dual bit dielectric memory cell of claim 9, wherein the source charge
- trapping region and the drain charge trapping region are comprised of a nitride
- 3 compound.
- 1 11. The dual bit dielectric memory cell of claim 10, wherein the source charge
- trapping region and the drain charge trapping region comprise a material selected from
- 3 the group consisting of Si₂N₄ and SiO_xN₄.
- 1 12. The dual bit dielectric memory cell of claim 11, wherein each of the source
- 2 charge trapping region and the drain charge trapping region have a lateral width
- beneath the top dielectric layer from about 300 A to 500 A.
- 1 13. The dual bit dielectric memory cell of claim 12, wherein the top dielectric layer is
- 2 comprised of material selected from the group consisting of an aluminum oxide
- compound, a Hafnium oxide compound, and a zirconium oxide compound.

1 14. The dual bit dielectric memory cell of claim 13, wherein the top dielectric layer is comprised of material selected from the group consisting of Al₂O₃, HfSiO_x, HfO₂, and ZrO₂.

4

1

2

3

4

5

6

7

8

- 15. A method of storing data in dual bit dielectric memory cell, the method comprising:
- a) utilizing a source-to-drain bias in the presence of a control gate field to inject a charge into a source charge trapping region;
 - b) utilizing a drain-to-source bias in the presence of a control get field to inject a charge into a drain charge trapping region;
 - c) providing an isolation barrier between the source charge trapping region and the drain charge trapping region.

9

1

16. The method of claim 15, wherein the step of providing an isolation barrier includes providing an isolation barrier comprised of oxide.

3

2

The method of claim 16, wherein the step of providing an isolation barrier 17. 1 comprised of oxide includes providing an isolation barrier from about 50 A to 100 A in 2 thickness, the step of utilizing a source-to-drain bias in the presence of a control gate 3 field to inject a charge into a source charge trapping region includes injecting a charge into a source charge trapping region that is from about 50 A to 100 A in thickness, and 5 the step of utilizing a drain-to-source bias in the presence of a control gate, field to inject 6 a charge into a drain charge trapping region includes injecting a charge into a drain 7 charge trapping region that is from about 50 A to 100 A in thickness. 8

9

1 18. The method of claim 17, wherein the step of utilizing a source-to-drain bias in the 2 presence of a control gate field to inject a charge into a source charge trapping region 3 includes injecting a charge into a source charge trapping region comprising a nitride 4 compound, and the step of utilizing a drain-to-source bias in the presence of a control gate field to inject a charge into a drain charge trapping region includes injecting a charge into a drain charge trapping region comprising the nitride compound.

7

1

. 2

3

4

5

6

19. The method of claim 18, wherein the step of utilizing a source-to-drain bias in the presence of a control gate field to inject a charge into a source charge trapping region includes injecting a charge into a source charge trapping region comprising a material selected from the group consisting of Si₂N₄ and SiO_xN₄, and the step of utilizing a drain-to-source bias in the presence of a control gate field to inject a charge into a drain charge trapping region includes injecting a charge into a drain charge trapping region comprising the material.

8

The method of claim 19, wherein the step of utilizing a source-to-drain bias in the presence of a control gate field to inject a charge into a source charge trapping region includes injecting a charge into a source charge trapping region that extends beneath a control a length from about 300Å to about 500Å, and the step of utilizing a drain-to-source bias in the presence of a control gate field to inject a charge into a drain charge trapping region includes injecting a charge into a drain charge trapping region that extends beneath a control a length from about 300Å to about 500Å.

8

21. A method of fabricating a dual bit charge storage device on a silicon substrate, the method comprising:

3 -

5

6

7

8

10

11

a) fabricating a layered island on the surface of the substrate with an island perimeter defining a gate region, the layered island comprising a tunnel dielectric layer on the surface of the silicon on insulator wafer, an isolation barrier dielectric layer on the surface of the tunnel dielectric layer, a top dielectric layer on the surface of the isolation barrier dielectric layer, and a polysilicon gate on the surface of the top dielectric layer;

9 b) r

- b) removing a portion of the isolation barrier dielectric layer to form an undercut region within the gate region;
 - c) depositing a charge trapping material within the undercut region.

1 22. The method of claim 21, further comprising implanting buried bit lines within the substrate on opposing sides of the layered island.

3

1 23. The method of claim 21, wherein the charge trapping material is a silicon nitride compound.

3

1 24. The method of claim 23, wherein the step of depositing a charge trapping material in the undercut region comprises:

depositing a layer of the silicon nitride compound on the surface of the wafer using a vapor deposition process;

performing an anisotropic etch to remove the layer of the silicon nitride compound from the horizontal surface.

7

6

5

- 25. The method of claim 21, wherein:
- the tunnel dielectric layer comprises a material with a low hydrofluoric acid etch rate; and
- the step of removing a portion of the isolation barrier dielectric layer to form an undercut region within the gate region comprised performing an isotropic etch using dilute hydrofluoric acid.

7

1 26. The method of claim 25, wherein the under cut region extends between 300A 2 and 500A into the gate region.

3

1 27. The method of claim 21, wherein the isolation barrier dielectric comprises silicon dioxide and has a thickness of between 50A and 100A.

3

- 1 28. The method of claim 21, wherein the top dielectric layer is a compound with a
- dielectric constant greater than silicon dioxide and greater than the dielectric constant of
- 3 the tunnel dielectric layer.

1	29.	The method of claim 28, wherein the top dielectric layer is a compound selected				
2	from	the group of Al ₂ O ₃ , HfSiO _x , HfO ₂ , and ZrO ₂ .				
3						
1	30.	The method of claim 29, wherein the top dielectric layer has a thickness of				
2	betw	een 70A and 130A.				
3						
1	31.	A method of fabricating a dual bit charge storage device on a silicon substrate				
2	the method comprising:					
3		depositing a tunnel dielectric layer on the surface of the substrate;				
4		depositing an isolation barrier dielectric layer on the surface of the tunnel				
5	diele	ctric layer;				
6		depositing a top dielectric layer on the surface of the isolation barrier dielectric				
7	layer					
8		depositing a polysilicon gate layer on the surface of the top dielectric layer;				
9		masking a gate pattern on the surface of the polysilicon gate layer to define a				
0	gate	region and expose a non-gate region;				
1		removing the polysilicon gate layer, the top dielectric layer, the isolation barrier				
12	diele	ctric layer and the tunnel dielectric layer in the non-gate region;				
13		removing a portion of the isolation barrier dielectric layer to undercut the gate				
14	regio	on and define undercut regions; and				
15		depositing a charge trapping material within the undercut regions.				
16						
1	32.	The method of claim 31, further comprising implanting buried bit lines on				
2	oppo	sing sides of the gate region.				

1 33. The method of claim 31, wherein the charge trapping material is a silicon nitride compound.

3

3

34. The method of claim 33, wherein the step of depositing a charge trapping

material within the undercut region comprises: 2 depositing a layer of the silicon nitride compound on the surface of the wafer 3 using a vapor deposition process; 4 performing an anisotropic etch to remove the layer of the silicon nitride 5 compound from horizontal surfaces. 6 7 The method of claim 31, wherein: 35. 1 the tunnel dielectric layer comprises a material with a low hydrofluoric acid etch 2 rate; and 3 the step of removing a portion of the isolation barrier dielectric layer to undercut 4 the gate region comprises performing an isotropic etch using dilute hydrofluoric acid. 5 6 The method of claim 35, wherein the under cut region extends between 300A 36. 1 and 500A into the gate region. 2 3 The method of claim 31, wherein the isolation barrier dielectric comprises silicon 37. dioxide and has a thickness of between 50A and 100A. 2 3 38. The method of claim 31, wherein the top dielectric layer is a compound with a dielectric constant greater than silicon dioxide and greater than the dielectric constant of 2 the tunnel dielectric layer. The method of claim 38, wherein the top dielectric layer is a compound selected 39. 1 from the group of Al₂O₃, HfSiO_x, HfO₂, and ZrO₂. 2 3

The method of claim 39, wherein the top dielectric layer has a thickness of

40.

between 70A and 130A.

1

2