Notes du cours d'Analyse et Géometrie

Professeur: Christian Gérard

Yehor Korotenko

January 24, 2025

Contents

1	Intr	roduction
	1.1	Éspaces \mathbb{R}^d \mathbb{C}^d
	1.2	Éspaces \mathbb{R}^d \mathbb{C}^d
	1.3	Distance sur \mathbb{R}^d
2	Ésp	paces métriques
	2.1	Boules dans un espace métrique
	2.2	Parties bornées de (E,d)
	2.3	Fonctions bornées
	2.4	Distance entre ensembles
	2.5	Topologie des espaces métriques
	2.6	Intérieur, adhérence, frontière
	2.7	Suite dans un éspace métrique
		Compacité
		Limites et applications continues

Abstract

Professeur: Christian Gérard

- CC: 0.15
 - Pour les CC une semaine avant CC le prof va envoyer une liste des question. Les CC durent 30 minutes en TD en semaines:
 - -17/2
 - -17/3
 - -17/4
- P: 0.35
- E: 0.5

Il y aura des démonstrations en examens Chercher dans google "page personnelle cristiang gérard Orsay", puis MDD251

Chapter 1

Introduction

1.1 Éspaces \mathbb{R}^d \mathbb{C}^d

Definition 1.1.

$$\mathbb{R}^d = \{X = (x_1, \dots, x_d), x_i \in \mathbb{R}\}$$

 x_1, \ldots, x_d coordonnées cartésiennes de X

Example 1.2. d=2 coordonnées polaires:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$0 \le r \le \infty \quad \theta \in [0, 2\pi[$$

Definition 1.3. \mathbb{R}^d est un espace vectoriel sur \mathbb{R}

$$\vec{X} + \vec{Y} = (x_1 + y_1, \dots, x_d + y_d)$$
$$\lambda X = (\lambda x_1, \dots, \lambda x_d) \quad \lambda \in \mathbb{R}$$
$$\vec{0}_d = \vec{0} = (0, \dots, 0)$$

Definition 1.4. Un produit scalaire:

$$X \cdot Y = x_1 y_1 + x_2 y_2 + \dots x_d y_d = ||X|| ||Y|| \cos(\theta)$$
 (où θ est une angle entre X et Y)

Intuition. Ce produit nous dit how closely the vectors point in the same direction (cosinus tend vers 1 quand θ tend vers 0° , et cosinus tend vers 0 quand θ tend vers 90°). Et ce produit nous permet d'avoir une projection

de X sur Y par la formule:

$$Proj(X) = \frac{X \cdot Y}{\|Y\|} \cdot \frac{Y}{\|Y\|}$$

 $X \cdot Y$ donne la longeur de X et Y ensemble, en divisant cette longeur par ||Y|| (la longeur de Y) on obtient la longeur de X sur Y, il nous reste de multiplier cette longeur par un vecteur unitaire(de longeur 1) qui pointe dans la même direction que Y, (on l'obtient par $\frac{Y}{||Y||}$)

Proposition 1.5. Produit scalaire respectes ces propriétés:

- 1. bilinaiarité $\lambda \in \mathbb{R}$
 - (a) $(X+Y) \cdot Z = X \cdot Z + Y \cdot Z$
 - (b) $(\lambda X) \cdot Z = \lambda (X \cdot Z)$
 - (c) $Z \cdot (X + Y) = Z \cdot X + Z \cdot Y$
 - (d) $Z \cdot (\lambda X) = \lambda (Z \cdot X)$
- 2. symétrie $X \cdot Y = Y \cdot X$
- 3. défini positif: $X \cdot X \ge 0$ et $X \cdot X = 0 \Leftrightarrow X = 0_d$

Proposition 1.6. Cauchy-Schwarz:

$$|X \cdot Y| \le (X \cdot X)^{\frac{1}{2}} (Y \cdot Y)^{\frac{1}{2}}$$

Definition 1.7. La **norme euclidienne** d'un vecteur X est noté:

$$||X|| = \left(\sum_{n=1}^{d} x_i^2\right)^{\frac{1}{2}} = \sqrt{x_1^2 + \dots + x_d^2} = (X \cdot X)^{\frac{1}{2}}$$

souvent noté $||X||_2$

Intuition. Par le théorème de Pythogore, c'est une longeur de ce vecteur.

Proposition 1.8. La norme suit ces propriétés:

- 1. $\|\lambda X\| = |\lambda| \|X\| X \in \mathbb{R}^d, \ \lambda \in \mathbb{R}$
- 2. $||X + Y|| \le ||X|| + ||Y||$ (inégalité triangulaire)
- 3. $||X|| \ge 0$ et $||X|| = 0 \Leftrightarrow X = 0_d$

Proof. de (2)

$$\begin{split} \|X+Y\|^2 &= (X+Y) \cdot (X+Y) = X \cdot (X+Y) + Y \cdot (X+Y) = X \cdot X + X \cdot Y + Y \cdot X + Y \cdot Y \\ &= \|X\|^2 + 2X \cdot Y + \|Y\|^2 \le \|X\|^2 + 2\|X\| \|Y\| + \|Y\|^2 = (\|X\| + \|Y\|)^2 \end{split}$$

2

Definition 1.9. Une <u>norme</u> sur \mathbb{R}^d est une application $N: \mathbb{R}^d \to \mathbb{R}$ tell que:

1.
$$N(\lambda X) = |\lambda| N(X)$$

2.
$$N(X + Y) \le N(X) + N(Y)$$

3.
$$N(X) \ge 0$$
 et $N(X) = 0 \Leftrightarrow X = 0_d$

Example 1.10.

$$||X||_1 = \sum_{n=1}^d |x_i|$$
$$||X||_{\infty} = \max_{1 \le i \le n} |x_i|$$

1.2 Éspace \mathbb{C}^d

Definition 1.11.

$$\mathbb{C}^d = \{X = (x_1, \dots, x_d) : x_i \in \mathbb{C}\}$$

$$z \in \mathbb{C} \quad \overline{z} = a - ib \quad \overline{z}z = a^2 + b^2 \quad |z| = \sqrt{\overline{z}z} = \sqrt{a^2 + b^2}$$

$$z = a + ib \quad a = Re z, b = Im z$$

$$Re X = (Re x_1, \dots, Re x_d) \in \mathbb{R}^d$$

$$Im X = (Im x_1, \dots, Im x_d) \in \mathbb{R}^d$$

$$X = Re X + i Im X$$

$$\in \mathbb{C}^d = Re X + i Im X$$

$$\in \mathbb{R}^d$$

 \mathbb{C}^d est un espace vécrotiel sur \mathbb{C} (même formules avec $\lambda \in \mathbb{C}$ corps des scalaires)

Definition 1.12. Produit scalaire:

$$(X|Y) = \sum_{n=1}^{d} \overline{x_i} y_i \in \mathbb{C}$$

Proposition 1.13. .

- 1. (X|Y) est "linéaire par rapport à Y"
 - $\bullet \ (Z|X+Y) = (Z|X) + (Z|Y)$
 - $(Z|\lambda X) = \lambda(Z|X) \quad \lambda \in \mathbb{C}$
 - $(Z|\lambda X + \mu Y) = \lambda(Z|X) + \mu(Z|Y)$
 - (X + Y|Z) = (X|Z) + (Y|Z)
 - $(\lambda X|Z) = \overline{\lambda}(X|Z) \quad \lambda \in \mathbb{C}$
 - $(\lambda X + \mu Y|Z) = \overline{\lambda}(X|Z) + \mu(Y|Z)$
- 2. $(Y|X) = \overline{(X|Y)}$
- 3. $(X|X) = \sum_{n=1}^{d} \overline{x_i} x_i = \sum_{n=1}^{d} |x_i|^2$ $(X|X) \ge 0$ et $(X|X) = 0 \Leftrightarrow X = 0_d$

Proof. On a Cauchy-Schwarz:

$$(X|Y) \le (X|X)^{\frac{1}{2}}(Y|Y)^{\frac{1}{2}}$$

même preuve qu'avant

On pose:

$$||X||$$
 (ou $||X||_2$)
= $(X|X)^{\frac{1}{2}} = \left(\sum_{n=1}^d |x_i|^2\right)^2$

norme hibertienne

$$\|X\|^2 = \|\mathop{Re}_{\in \mathbb{R}^d} X\|^2 + i \, \|\mathop{Im}_{\in \mathbb{R}^d} X\|^2$$

Lemma 1.14.

$$||X|| = \sup_{\|Y\| \le 1} |(X|Y)|$$

Proof. $|(X|Y)| \le ||X|| ||Y|| \le ||X|| \text{ si } ||Y|| \le 1$

$$\sup_{\|Y\| \le 1} |X|| |X||$$

Autre sens:

$$\begin{split} X \neq 0 \quad Y &= \frac{X}{\|X\|} = \lambda X \quad \lambda = \frac{1}{\|X\|} \\ \|Y\| &= |\lambda| \|X\| = \frac{1}{\|X\|} \|X\| = 1 \\ (X|Y) &= (X|\frac{X}{\|X\|}) = \frac{1}{\|X\|} (X|X) = \|X\| \\ sup\{|(X|Y)|: \|Y\| \leq 1\} \\ \|X\| \leq sup\{|(X|Y)|: \|Y\| \leq 1\} \quad \text{(prendre } Y = \frac{X}{\|X\|}\text{)} \end{split}$$

Autres normes sur \mathbb{C}^d

- $||X||_1 = \sum_{n=1}^d |x_i| \quad X \in \mathbb{C}^d$
- $\bullet ||X||_{\infty} = \sup_{1 \le i \le d} |x_i|$

1.3 Distance sur \mathbb{R}^d

On oublie norme et produit scalaire. On introduit la distance

Definition 1.15. La distance

$$d(X,Y) = \|X - Y\|$$

Definition 1.16. La distance euclidienne

$$d(X,Y) = ||X - Y|| = \sqrt{\sum_{n=1}^{d} (x_i - y_i)^2}$$

Proposition 1.17. Une distance est une application:

$$d: \mathbb{R}^d \longrightarrow \mathbb{R}$$

 $(X,Y) \longmapsto d((X,Y))$

qui suit ces propriétés:

- 1. d(X,Y) = d(Y,X) (symétrie)
- 2. $d(X,Y) \leq d(X,Z) + d(Z,Y)$ (inég. triangulaire) $\forall X,Y,Z$
- 3. $d(X,Y) \ge 0 \quad \forall X, Y \text{ et } d(X,Y) = 0 \Leftrightarrow X = Y$

Example 1.18. Distances

- 1. $d_2(X,Y) = ||X Y||_2$ (distance euclidienne sur \mathbb{R}^d)
- 2. $d_1(X,Y) = ||X Y||_1$ $d_{\infty}(X,Y) = ||X - Y||_{\infty}$
- 3. distance logarithmique sur \mathbb{R}_+ : d(a,b) = |b-a|

$$\log_{10}(a) = \frac{\log(a)}{\log(10)}$$

$$x, y \in]0, +\infty[$$
 $d_{\log}(x, y) = |\log_{10}(\frac{y}{x})|$
 $i \text{ est une distance sur }]0, +\infty[$
 $d_{\log}(100, 110) = \log_{10}(1, 1)$

4. distance SNCF

d(X,Y) distance usuelle dans \mathbb{R}^2 on pose:

$$\delta(X,Y) = \begin{cases} d(X,Y) \text{ si } X,0,Y \text{ align\'es} \\ d(X,0) + d(0,Y) \text{ sinon} \end{cases}$$

5

Chapter 2

Éspaces métriques

Definition 2.1. E muni d'une application de distance d (voir Definition 1.15) se note (E, d): espace métrique

Remark 2.2. si $d_1 \neq d_2$ (E, d_1) n'a rien à faire avec (E, d_2)

Remark 2.3. Retenir la version suivante de l'inégalité triangulaire:

$$|d(x,z) - d(y,z)| \le d(x,y)$$

Remark 2.4. <u>Distance induite:</u>

Si (E,d) espace métrique et $U \subset E$. Je peux restreidnre d à $U \times U$: (U,d) est aussi un éspace metrique.

2.1 Boules dans un espace métrique

Definition 2.5. (E,d) espace métrique. Soit $x_0 \in E$ et $r \geq 0$

- 1. $B(x_0, r) = \{x \in E : d(x_0, x) < r \}$ boule ouverte de centre x_0 , de rayon r
- 2. $B_f(x_0,r)=\{x\in E: d(x_0,x)\leq r\}$ boule fermée de centre $x_0,$ de rayon r

(a) boules ouverte (i.e $d(x_0, x) < r$)

(b) boules fermée (i.e $d(x_0, x) \leq r$)

Lemma 2.6.

- 1. $B(x_0,0) = \emptyset$ (car impossible d'avoir des points qui en distance sont strictement plus petit que 0)
- 2. $B_f(x_0,0) = \{x_0\}$
- 3. $B(x_0, r_1) \subset B_f(x_0, r_1) \subset B(x_0, r_2)$ si $r_1 < r_2$
- 4. $B(x_1, r_1) \subset B(x_0, r)$ si $d(x_0, x_1) + r_1 \leq r$

Figure 2.2: Lemma 4

Proof. Je suppose que $d(x_0, x_1) \leq r$

Soit $x \in B(x_1, r_1)$ donc $d(x_1, x) < r_1$ à montrer: $x \in B(x_0, r)$ (i.e $d(x_0, x) < r$?)

L'inégalité triangulaire me dit:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $< d(x_0, x_1) + r_1 \le r$
 $\Rightarrow x \in B(x_0, r)$

Example 2.7. 1. $E = \mathbb{R}, \quad d(x, y) = |x - y|$

$$B(x_0, r) =]x_0 - r, x_0 + r[$$

2. $E = \mathbb{R}^d$, d = 2, 3, $X = (x_1, \dots, x_d)$

$$||X||_{2} = \left(\sum_{i=1}^{d} x_{i}^{2}\right)^{\frac{1}{2}}$$
$$||X||_{1} = \sum_{i=1}^{d} x_{i}$$
$$||X||_{\infty} = \max_{1 \le i \le d} |x_{i}|$$

$$d_2(X,Y) = ||Y - X||_2 = ||\vec{XY}||_2$$

$$d_1(X,Y), d_{\infty}(X,Y)$$

Property. Dans \mathbb{R}^n

- $d_{\infty}(X,Y) \leq d_1(X,Y) \leq nd_{\infty}(X,Y)$
- $d_{\infty}(X,Y) \leq d_2(X,Y) \leq \sqrt{n}d_{\infty}(X,Y)$

2.2 Parties bornées de (E, d)

Definition 2.8. Soit $A \subset E$. A est bornée si $\exists R > 0$ et $\exists x_0 \in E$ tel que

$$A \subset B(x_0, R)$$

Figure 2.3: Exemple d'un enesemble borné

Lemma 2.9. Les propriétés suivantes sont équivalentes:

- 1. A est bornée
- 2. $\forall x_0 \in E, \exists r > 0 \text{ tel que } A \subset B(x_0, r)$
- 3. $\exists r > 0$ tel que $\forall x, y \in A$ on a d(x, y) < r

Proof. de lemme

• (1) \Rightarrow (2): Hyp: $\exists x_1 \in E, \exists r_1 \in E \text{ tq } A \subset B(x_1, r_1)$ Soit $x_0 \in E$. But: trouver r tel que $A \subset B(x_0, r)$ si $x \in A$, on a: $d(x_1, x) < r_1$ <u>Je veux</u>: $d(x_0, x) < r$

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x) \le d(x_0, x_1) + r_1 < r$$
 si $r > d(x_0, x_1) + r_1$

Property. 1. Toute partie finie est bornée

- 2. Si Abotnée et $B\subset A$ alors Bbornée
- 3. L'union d'un nombre <u>fini</u> de bornés est borné

Proof. de (3).

 A_1,\ldots,A_n sont bornés. <u>Je fixe $x_0\in E$,</u> A_i borné $(1\leq i\leq n)$, donc $\exists r_i>0$ tel que $A_i\subset B(x_0,r_i)$ si $r=\max_{1\leq i\leq n}r_i$

$$A_i \subset B(x_0, r), \, \forall i \Rightarrow \bigcup_{i=1}^n A_i \subset B(x_0, r)$$

2.3 Fonctions bornées

Definition 2.10. Soit B un ensemble. Une fonction $F: B \to E$ est bornée si $F(B) = \{F(b) : b \in B\} \subset E$ est borné.

2.4 Distance entre ensembles

Definition 2.11. La distance entre deux ensembles A, B est:

$$d(A,B) := \inf_{x \in A, y \in B} d(x,y)$$

Intuitivement, on cherche deux points x et y tel que la distance est la plus petite possible.

Definition 2.12. La distance entre un points x et un ensemble B est:

$$d(x,B) := \inf_{y \in B} d(x,y)$$

La même intuition.

Property. $\forall x \in A, y \in B, d(x,y) \ge d(A,B)$ et $\forall \varepsilon > 0, \exists x \in A, y \in B$ tq $d(x,y) \le d(A,B) + \varepsilon$

Figure 2.4: Distance entre ensembles

2.5 Topologie des espaces métriques

distance $d(x,y) \longrightarrow \text{boules } B(x_0,r) \longrightarrow \text{ensembles ouverts}$

Definition 2.13. Soit (E, d) espace métrique.

1. $U \subset E$ est ouvert si $\forall x_0 \in U, \exists r > 0 \ r(x_0)$ tel que $B(x_0, r) \subset U$

2. $F \subset E$ est fermé si $E \setminus F$ est ouvert

 \emptyset est ouvert et E est ouvert. \emptyset est fermé et E est fermé.

À la borne, il est impossible de trouver une boules qui appartient à F, car il est impossible d'avoir une boule ouverte de r=0. Exemple: circle bleu foncé Pour tout point dans $E\setminus F$ on peut trouver une boule ouverte

(b) Un ensemble ouvert pour tout point pres de la borne on peut trouver une boule infiniment petite avec des points autour ce point inclu dans U.

Figure 2.5: Démonstration des espaces ouverts et fermés

Remark 2.14. dans $\mathbb R$ les intervalles ouverts sont des ouverts (pareil pour fermés)

Remark 2.15. Une distance entre deux ensembles ouverts toujours existe et elle est infimum (qui n'est jamais atteint)

Lemma 2.16. 1. $B(x_0, r_0)$ est ouvert.

2. $B_f(x_0, r_0)$ est fermé.

Proof. 1. Soit $x_1 \in B(x_0, r_0)$ $(d(x_0, x_1) < r_0)$. But: touver $r_1 > 0$ tel que $B(x_1, r_1) \subset B(x_0, r_0)$?

> $x \in B(x_1, r_1) : d(x_1, x) < r_1$ $x \in B(x_0, r_0) \text{ si } d(x_0, x) < r_0$

facile:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $\le d(x_0, x_1) + r_1$
 $< r_0 \text{ si}$

$$r_1 < r_0 - d(x_0, x_1) > 0$$

Example 2.17. bizzare.

Soit $E = \mathbb{R}$, d(x,y) = |y-x|, A =]0,1[ouvert, pas fermé dans \mathbb{R} .

Je regarde A comme partie de (A,d). Comme $A \setminus A = \emptyset$ qui est ouvert, donc A est fermé dans A. Par contre, les bornes ne sont jamais atteints, alors A est ouvert dans (A,d).

Theorem 2.18.

- 1. Soit U_i , $i \in I$ une collection d'ouverts. Alors, $\bigcup_{i \in I} U_i$ est ouvert. Translate: Une union des ensembles ouverts est ouvert.
- 2. Si U_1, \ldots, U_n sont ouverts

 $\bigcap_{i=1}^{n} U_i \text{ est ouvert.}$

Translate: intersection des ensembles ouverts est ouvert.

- 1. Soit $U_i, i \in I$ une collection de fermés. Alors, $\cup_{i \in I} U_i$ est fermé. Translate: Une union des ensembles fermés est fermé.
- 2. Si U_1, \ldots, U_n sont fermés

 $\bigcap_{i=1}^{n} U_i \text{ est ferm\'e.}$

Translate: intersection des ensembles fermés est fermé.

Proof. .

- 1. Soit $x \in U := \bigcup_{i \in I} U_i$. Il existe un i noté i_0 tel que $x \in U_{i_0}$, U_{i_0} est ouvert, donc $\exists r > 0$ tel que $B(x,r) \subset U_{i_0} \subset U := \bigcup_{i \in I} U_i$.
- 2. Soit $x \in U := \bigcap_{1 \le i \le n} U_i$.

On fixe i. $x \in U_i$, U_i ouvert, donc $\exists r_i > 0$ tel que $B(x,r) \subset U_i$, $1 \le i \le n$, donc $B(x,r) \subset U := \bigcap_{1 \le i \le n} U_i$

2.6 Intérieur, adhérence, frontière

Soit $A \subset E$.

Definition 2.19. Un point $x \in E$ est intérieur à A s'il existe $\delta > 0$ tel que $B(x, \delta) \subset A$. Ensembles des points intérieur à A se note Int(A) ou \mathring{A} .

Intuition. Int(A) est un ensemble qui est totalement dans A est se trouve loin des bords.

Definition 2.20. Un point $x \in E$ est adhérent à A si $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ (toute boule centré dans x intersecte A).

Ensemble des points adhérents à A se note Adh(A) ou \overline{A} .

Intuition. Si A est ouvert (see bords n'appartiennent pas à A), see bords appartiennent à Adh(A). Cette notion est utile pour completer des ensembles.

Example 2.21. $\overline{\mathbb{Q}} = \mathbb{R}$

Definition 2.22. $Adh(A) \cap Adh(E \setminus A)$ est le bord de A est s'appelle la frontière de A.

2.7 Suite dans un éspace métrique

Definition 2.23. Une suite $(x_n)_{n\in\mathbb{N}}$ converge vers $x\in E$, si $\forall \varepsilon>0, \exists N\in\mathbb{N}$ tel que :

$$\forall n \geq N, d(x_n, x) \leq \varepsilon$$

Proposition 2.24. Soit $A \in E$.

- 1. $x \in Adh(A)$ si et seulement si, il existe une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de A telle que $x_n \xrightarrow[n \to +\infty]{} x$
- 2. A est fermé (i.e contient sa frontière) si et seulement si la limite de toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A appartient à A.

Intuition. 1. Si $(x_n)_{n\in\mathbb{N}}$ est d'éléments de A ($\forall n\in\mathbb{N}, x_n\in A$), donc elle converge vers un éléments x qui peut être soit dans A, soit la borne des éléments de A, alors à la frontière.

2. Si la limite de toute suite $(x_n)_{n\in\mathbb{N}}$ des éléments de A est aussi dans A, alors la frontière de A est inclu dans A. Car l'une des suites tend vers la borne.

Definition 2.25. Une suite $(x_n)_{x\in\mathbb{N}}$ est de Cauchy si $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ tel que:

$$\forall n, p \geq N, d(x_n, x_p) \leq \varepsilon$$

Intuition. Une suite de Cauchy c'est comme on mesure un point et on le localise, i.e:

- 1. On dit qu'il est entre 0 et 1.
- 2. Ensuite, on precise plus et on dit qu'il est entre 0.5 et 0.6.
- 3. Puis, entre 0.55 et 0.56

On peut infiniment augmenter le niveau de précision. C'est ça l'idée d'une suite de Cauchy.

Definition 2.26. Un éspace métrique (E,d) est **complet** si toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E converge vers une limite x qui appartient aussi à E.

Example 2.27. Un éspace métrique (]0,1],d) avec d une distance euclidienne n'est pas complet, car soit une suite: $x_n = \frac{1}{n}$ dont la limite est 0. Par contre, $0 \notin]0,1]$. Donc cet éspace n'est pas complet.

Figure 2.6: (]0,1],d) n'est pas complet

Example 2.28. Un éspace (\mathbb{Q}, d) n'est pas complet. Car on peut prendre une suite x_n tendant vers $\sqrt{2} \notin \mathbb{Q}$.

Figure 2.7: \mathbb{Q} pas complet

Definition 2.29. Soit une suite $(x_n)_{n\in\mathbb{N}}$ et une application $\phi: \mathbb{N} \to \mathbb{N}$ <u>strictement croissante</u>. Une suite $(x_n)_{\phi(n)}$ est appellée une sous-suite.

Example 2.30. Soit une application $\phi : \mathbb{N} \to \mathbb{N}$ telle que $\phi(n) = 2n$. Donc $(x_n)_{\phi(n)}$ est une sous-suite de $(x_n)_{n \in \mathbb{N}}$ et:

$$(x_n)_{\phi(n)} = \{x_0, x_2, x_4, \ldots\}$$

2.8 Compacité

Definition 2.31. Soit $F \subset E$. Un **recouvrement ouvert** de F, est une union des enesembles ouverts: $\bigcup_{i \in I} U_i$ tel que $F \subset \bigcup_{i \in I} U_i$

Example 2.32. Soit F =]0,1[. Soit $A = \{]\frac{1}{n}, 1 + \frac{1}{n}[, n \in N\}$. $F \subset \bigcup_{n \in N^*} A_n$ i.e union infinie des A_i couvre F.

Definition 2.33. Un ensemble $F \subset E$ est **compact** si <u>pour tout</u> recouvrement ouvert, i.e <u>pour tout</u> union des ensembles ouvert $\bigcup_{i \in I} U_i$ qui couvre F, on peut prendre un nombre <u>fini</u> des U_i et couvrir F.

Theorem 2.34. Un ensemble $K \subset E$ est compact, si toute suite $(x_n)_{n \in \mathbb{N}}$ des éléments de K, possede une sous-suite qui converge vers un éléments $x \in K$.

Intuition. S'il existe tel suite $(x_n)_{n\in\mathbb{N}}$ sans sous-suite convergente vers un éléments de K, donc les valeurs sont en-dehors de K et donc il existe un ensemble qui couvre K seulement avec un nombre infini des ensembles.

Pourquoi a-t-on besoin de compacité? Car cela nous donne une

Proposition 2.35. Si $K\subset E$ est compact, alors K est fermé et borné. Si K est compact est F est borné, donc $K\cap F$ est compact Si K est compact, donc K est complet

Property. La différence entre *compacité* et complecité:

- complecité nous assure qu'il n'y a pas de trou dans un espace
- compacité nous assure qu'un ensemble est fermé et borné

2.9 Limites et applications continues