Défi IA 2020

Détection d'anomalies dans les données des accéléromètres de AIRBUS

Joseph ASSAHOUA
Essan Armelle KADIA
Marc MFOUTOU
Youssouf SOUMAHORO
JANVIER 2020

Présentation

Présentation

- Institut National Polytechnique Félix Houphouet Boigny INP-HB
 - Enseignement Supérieur, Côte d'Ivoire.
 - Position géographique: Yamoussoukro capitale politique située à 230 kilomètres d'Abidjan la capitale économique.
 - Directeur général : M. KOFFI N'guessan
- International Data Science Institute:
 - Master DATA SCIENCE BIG DATA
 - Directeur: M. TANOH Tanoh Lambert

Enjeux métier

- Données des capteurs des plateformes AIRBUS
- Séquences d'une minute de mesure d'accéléromètre.
- Un individu = une séquence.
- Le problème métier : expliquer si une séquence est une anomalie ou pas.

Objectif

Construire des méthodes permettant de détecter des changements anormaux, connaissant des séquences normales.

Les données

Les données

- Une base d'apprentissage \mathcal{B}_1 : 1677 séquences.
- Une base de validation \mathcal{B}_2 : 594 séquences.
- Une base de test \mathcal{B}_3 : 1917 séquences.

Notations:

- $x_i^{(1)} := \text{donn\'ees de } \mathcal{B}_1.$
- $x_i^{(2)} := \text{donn\'ees de } \mathcal{B}_2.$
- $x_i^{(3)} := \text{donn\'ees de } \mathcal{B}_3.$

Problème statistique

Détecter les courbes anormales dans \mathcal{B}_2 (puis \mathcal{B}_3 pour la phase finale)

Les données: Visualisation

Identification des séquences

(a) Résumé statistique: séquences normales

(b) Résumé statistique: séquences anormales

Méthodes et résultats

La démarche tourne autour de trois étapes essentielles.

- Etape 1 : Apprentissage non supervisé
 - IsolationForest
- Etape 2 : Apprentissage supervisé
 - RandomForest
 - Gradient Boosting
 - K-ppv
- Etape 3 : Aggrégation de méthodes

Etape 1 : Apprentissage non supervisé

Idée

Apprendre sur la base \mathcal{B}_1 des séquences normales $x_i^{(1)}$.

Algorithme: IsolationForest

- Algorithme permettant de détecter des anomalies dans un jeu de données.
- Calcule le score d'anomalie pour chaque donnée du jeu.
- Il isole les données atypiques, autrement dit celles qui sont trop différentes de la plupart des autres données.
- 1. On applique l'algorithme sur la base \mathcal{B}_1 .
- 2. On prédit sur les séquences $x_i^{(2)}$ de \mathcal{B}_2 .
- 3. Résultats:
 - 260 séquences anormales.

Etape 2 : Apprentissage supervisé

Nouvelle base d'apprentissage

- On construit un échantillon $\mathcal{D}_1 = \left\{ (x_i^{(1)}, z_i) \right\}$ de taille n_1 tel que $x_i^{(1)} \in \mathcal{B}_1$ avec $z_i = 0 \ \forall i = 1, ..., n_1$.
- On construit un échantillon $\mathcal{D}_2 = \left\{ (x_i^{(2)}, y_i) \right\}$ de taille n_2 avec $x_i^{(2)}$ une séquence anormale de \mathcal{B}_2 et $y_i = 1 \ \forall i = 1, ..., n_2$.
- La nouvelle base d'apprentissage:

$$\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$$

Illustration

9

Etape 2 : démarche

- Choix du critère : on considérera l'AUC et l'erreur de classification.
- On effectue une validation croisée en 10 blocs sur $\mathcal D$ pour choisir l'algorithme.

Méthodes

- RandomForest
- GradientBoosting
- k-ppv
- On prédit les séquences $x_i^{(2)} \in \mathcal{B}_2$ qui n'ont pas été prédites comme étant des anomalies à l'étape 1.
- $x_i^{(2)}$ est considérée comme anomalie si:

$$\frac{1}{3}\sum_{i=1}^3 p_{ij} \geq 0.$$

 $p_{ij} :=$ la probabilité que $x_i^{(2)}$ soit prédite comme étant une anomalie par la méthode j.

Résultats:

- 297 séquences anormales détectées dans la base de validation \mathcal{B}_2 .
- 297 séquences normales.

Etape 3 : Aggrégation de méthodes

idée

- Reconstituer l'ensemble d'apprentissage.
- Construire des échantillons bootstrap.
- Appliquer les méthodes sur chaque échantillon bootstrap.

Etape 3 : Démarche

Soient:

- $\mathcal{B}_2^{(0)}$ l'ensemble des données normales dans \mathcal{B}_2 .
- $\mathcal{B}_2^{(1)}$ l'ensemble des données anormales dans \mathcal{B}_2 .
- Pour k = 1, ..., 100
 - On construit un échantillon \$\mathcal{L}_1^{(k)}\$ de taille 150 à partir de \$\mathcal{B}_1\$.
 On construit un échantillon \$\mathcal{L}_2^{(k)}\$ de taille 150 à partir de \$\mathcal{B}_2^{(0)}\$.

 - On obtient l'échantillon bootstrap :

$$\mathcal{L}^k = \mathcal{L}_1^{(k)} \cup \mathcal{L}_2^{(k)} \cup \mathcal{B}_2^{(1)}$$

13

Un échantillon bootstrap ressemble à ceci:

$$\begin{pmatrix}
x_{11}^{(1)} & \cdots & x_{1p}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{n1}^{(1)} & \cdots & x_{np}^{(1)} \\
x_{11}^{(2)} & \cdots & x_{1p}^{(2)} \\
\vdots & \ddots & \vdots \\
x_{n1}^{(2)} & \cdots & x_{np}^{(2)} \\
x_{11}^{(2)} & \cdots & x_{1p}^{(2)} \\
\vdots & \ddots & \vdots \\
x_{m1}^{(2)} & \cdots & x_{mp}^{(2)}
\end{pmatrix}
\begin{pmatrix}
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
1
\end{pmatrix}$$

Etape 3: Algorithme

Algoritme

Soient p le nombre de méthodes, K le nombre d'échantillons bootstrap.

- Pour j = 1, ..., p
 - Pour k = 1, ..., K
 - On construit l'échantillon bootstrap $\mathcal{L}^{(k)}$
 - On applique la méthode j sur $\mathcal{L}^{(k)}$.
 - On prédit sur l'ensemble test \mathcal{B}_3 : on note $g_{jk}(x_i^{(3)})$ la prédiction de $x_i^{(3)} \in \mathcal{B}_3$.
 - La prédiction de $x_i^{(3)}$ à l'issue de K=100 échantillons bootstrap est donnée par :

$$g_j(x_i^{(3)}) = \begin{cases} 1 & \text{si } \sum_{k=1}^K 1_{g_{jk}(x_i^{(3)})=1} > 50 \\ 0 & \text{sinon} \end{cases}$$

Suite algorithme

Enfin, pour la prédiction finale de $x_i^{(3)}$, on procède par un vote majoritaire:

$$\tilde{g}(x_i^{(3)}) = \underset{k=0,1}{\operatorname{argmax}} \sum_{j=1}^{p} 1_{g_j(x_i^{(3)}) = k}$$

Résultat:

791 anomalies détectées dans la base de test.

Merci de votre aimable attention!