微分しても変わらない不思議な関数

この式をぼんやりと眺めていると、

$$\frac{d}{dx}x^n = nx^{n-1}$$

- 左辺における $\frac{d}{dx}$ という記号に呼応して、右辺ではnが飛び出すというふうにも見える
- 左辺ではxのn乗だったものが、右辺ではn-1乗になっている

* * *

 x^n を n の階乗で割った $\frac{x^n}{n!}$ という関数を考える

この関数を微分すると、 $\frac{1}{n!}$ は微分の外に出せる

$$\frac{d}{dx}\left(\frac{x^n}{n!}\right) = \frac{1}{n!}\left(\frac{d}{dx}x^n\right) = \frac{nx^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!}$$

この式では、左辺と右辺で似た形が現れている 文字は左辺のnから右辺のn-1に化けるが、形は 同じ

nに具体的な数を入れて確かめてみる

•
$$n=0$$
 $\emptyset \geq 3$, $\frac{d}{dx}\left(\frac{x^0}{0!}\right)=0$

•
$$n=1$$
 \emptyset \succeq \mathfrak{F} , $\frac{d}{dx}\left(\frac{x^1}{1!}\right)=\frac{x^0}{0!}$

•
$$n=2$$
 \mathcal{O} \succeq \mathfrak{E} , $\frac{d}{dx}\left(\frac{x^2}{2!}\right)=\frac{x^1}{1!}$

•
$$n = 3$$
 $\mathcal{O} \succeq \mathfrak{F}$, $\frac{d}{dx} \left(\frac{x^3}{3!} \right) = \frac{x^2}{2!}$

•
$$n=4$$
 \mathcal{O} \succeq $\stackrel{\stackrel{\circ}{\underset{\sim}}}{\overset{\circ}{\underset{\sim}}} \frac{d}{dx} \left(\frac{x^4}{4!} \right) = \frac{x^3}{3!}$

•
$$n = 5$$
 \mathcal{O} \succeq \mathfrak{E} , $\frac{d}{dx} \left(\frac{x^5}{5!} \right) = \frac{x^4}{4!}$

微分すると斜め右下にまったく同じ形の式が現れ るというパターンが続く

上のリストではn=5で止めているが、たとえばn=100までいっても同じパターンが続く

そこで、 $\frac{x^n}{n!}$ を n=0 から順に全部足すことを考え、 それを f(x) とおく

$$f(x) = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
$$\frac{d}{dx}f(x) = 0 + \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \cdots$$

下の式は1個右にずれているので、途中で打ち切れば1個足りなくなるが、無限に足すと、上の式と下の式はぴったり一致している

したがって、

$$\frac{d}{dx}f(x) = f(x)$$

が成り立つことがわかる

つまり、関数 f(x) は微分したものが自分自身になっている!

いま無限級数として定義した関数 f(x) を何通りかの記法で表しておく

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$= \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$$

後にこの関数は、指数関数として e^x と書くことになる

ネイピアの数

次の関数に x = 0 と x = 1 を代入してみる

$$f(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$$

* * *

x=0 を代入すると 最初の1だけが残り、

$$f(0) = 1$$

x=1を代入すると 1を何乗しても1であるから、

$$f(1) = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

この f(1) の数値はどのくらいになるだろうか?

- 1. 第1項は1
- 2. 第2項も1
- 3. 第3項は0.5
- 4. 次は前の項を3で割るわけだから0.166...
- 5. 次はさらに 4 で割るから 0.041...
- 6. 次はさらにそれを 5 で割って 0.008...

ここまでの6項の和で2.716...となる

加える項は急速に 0 に近づく

項が 100 個くらいまで進むと、次に加える $\frac{1}{100!}$ は 小数点以下に 0 が 150 個以上並ぶくらい小さな数 になる(10^{152} < 100! < 10^{164} という不等式より)

このように、無限級数 f(1) は収束がとても速く、

$$f(1) = 2.71828...$$

という数になる

* * *

■定理

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{k=0}^{\infty} \frac{1}{k!}$$

証明のスケッチ 二項展開を用いて、

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k}$$

ここで、k=2以降の各項は次のように展開する

$$\frac{n!}{2!(n-2)!} \cdot \frac{1}{n^2} = \frac{n(n-1)}{2!} \cdot \frac{1}{n^2}$$
$$= \frac{1}{2!} \cdot \frac{n-1}{n}$$
$$= \frac{1}{2!} \left(1 - \frac{1}{n}\right)$$

$$\frac{n!}{3!(n-3)!} \cdot \frac{1}{n^3} = \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3}$$
$$= \frac{1}{3!} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n}$$
$$= \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right)$$

これらを用いると、

$$\left(1 + \frac{1}{n}\right)^n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \cdots$$

n が大きくなると $\frac{1}{n}$ は 0 に近づくので、 $1 - \frac{1}{n}$ は 1 に近づき、

$$\left(1+\frac{1}{n}\right)^n = 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots$$

となるロ

無限級数 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ の収束

n を大きくすると n! は急速に大きくなるので、 x=1 のときには無限級数 $\sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!}$ が収束 することは納得できる

では、x > 1 のときもこの無限級数は収束するといえるのだろうか?

* * *

そもそも数列の各項が 0 に近づかないと、その数 列の総和は収束しないため、まず次の問いを考え る(以下では x を固定しておく) ■問題 n をどんどん大きくしたとき、 $\frac{x^n}{n!}$ は 0 に近づくか?

この問いは、 x^n と n! の大きさを比べようという問題である

たとえばn = 100 とすると、実は100! の方が 10^{100} よりも圧倒的に大きくなることをすでに示している

n=100 に限らず、「x を止めたとき、 x^n と n! の比である $\frac{x^n}{n!}$ は、n を大きくすると分母が圧倒的に大きくなり、比は 0 に近づく」ことが同様の議論で示される

* * *

無限級数の各項が 0 に近づいたとしても、「塵も積 もれば山となる」(足し合わせると発散する) こと も起こり得る

では、次の問題はどうだろうか?

■問題 無限級数 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ は収束するか?

実はこの無限級数は、等比級数 $\sum_{n=0}^{\infty} \frac{1}{2^n}$ よりももっと速く収束する

証明のスケッチ

xは固定して、nに関する和を考える

整数nが十分に大きければ、

$$\frac{|x|^n}{n!} < \frac{1}{2^n}$$

これは、「無限級数 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ が等比級数 $\sum_{n=0}^{\infty} \frac{1}{2^n}$ より速く収束する」という 1 つの表現

正確には、 $8x^2 + 1$ より大きいすべての自然数n に対して、

$$\frac{|x|^n}{n!} < \frac{1}{2^n}$$

が成り立つ

このことがいえれば、 $8x^2$ より大きい整数 N に対して、無限級数 $\sum_{n=N+1}^{\infty} \frac{x^n}{n!}$ は次のように等比級数

$$\sum_{n=N+1}^{\infty} \frac{1}{2^n}$$
 より速く収束する

$$\left| \sum_{n=N+1}^{\infty} \frac{x^n}{n!} \right| \le \sum_{n=N+1}^{\infty} \frac{|x|^n}{2^n}$$

$$< \sum_{n=N+1}^{\infty} \frac{1}{2^n}$$

$$= \frac{1}{2^N}$$

上の計算のうち、 $\left|\sum_{n=N+1}^{\infty}\frac{x^n}{n!}\right| \leq \sum_{n=N+1}^{\infty}\frac{|x|^n}{2^n}$ では、次のような三角不等式を利用している

$$|a_1 + a_2 + \dots + a_m| \le |a_1| + |a_2| + \dots + |a_m|$$

$$\left| \sum_{n=N+1}^{\infty} a_n \right| \le \sum_{n=N+1}^{\infty} |a_n|$$

そこで、無限級数 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ を、n=N までの有限和 と、n=N+1 からの無限級数に分けて考える

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{N} \frac{x^n}{n!} + \sum_{n=N+1}^{\infty} \frac{x^n}{n!}$$

このように考えると、左辺の無限級数が、右辺の 有限和に収束することがわかる

不等式
$$\frac{|x|^n}{n!} < \frac{1}{2^n}$$
 の証明

$$A^n < n!$$

という不等式が成り立つことを示す

$$A = 2|x|$$
 の場合 $(2|x|)^n < n!$ が、 $\frac{|x|^n}{n!} < \frac{1}{2^n}$ となる

n が偶数 (= 2m) の場合、 $n > 2A^2$ の n を 2m に置き換えることで、 $m > A^2$ となり、

$$n! = (2m)! = 2m \cdot (2m - 1) \cdot \cdot \cdot 2 \cdot 1$$

$$> m \cdot m \cdot \cdot \cdot m = m^m = m^{\frac{n}{2}}$$

$$> \left(A^2\right)^{\frac{n}{2}} = A^n$$

が成り立つ

n が奇数の場合、n-1 は偶数なので、偶数の場合 の結果から $(n-1)! > A^{n-1}$ がいえる さらに、 $n > 2A^2 + 1 > A$ なので、

$$n! = n \cdot (n-1)!$$

$$> n \cdot A^{n-1}$$

$$> A \cdot A^{n-1} = A^n$$

となり、いずれの場合も $A^n < n!$ が成り立つ \Box

関数等式

無限級数 $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ に x + y を代入し、f(x + y) を計算してみる

$$f(x+y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^k y^{n-k} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{k!(n-k)!} x^k y^{n-k} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} \right)$$

2重和 何かを算出したいとき、一旦小計を取る ことがある

小計を取ってから、小計を足し合わせて総計を取るのが2重和

小計として何を選ぶかには自由度がある たとえば、1ヶ月の支出を計算するときに、

- 食費や本代などの品目ごとの小計をを取り、 それを足し合わせる
- 日々の支出を計算し、それを足し合わせる

どちらの方法を選んでも、まったく同じ総額が得 られる

一般の2重和の計算においても、何を小計として 選んでも総和は同じになる

多重積分における累次積分の計算法は、2 重和 $\sum \sum$ を一般化したものになっている

* * *

f(x+y) で現れる 2 重和は、そもそも全体として何を算出しようとしているのか?

a,b という自然数 (0 を含む)を固定して、 $x^a y^b$ という項が f(x+y) の 2 重和の中にどのように出現しているのか探す

$$f(x+y) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{x^{k}}{k!} \frac{y^{n-k}}{(n-k)!} \right)$$

この式において、

• $x^k y^{n-k}$ が $x^a y^b$ となるのは、a = k, b = n - k の 場合

- (k,n) の組は a,b によって k = a, n = a + b と ただ 1 つ定まる

まとめると、(a,b) = (k,n-k) すなわち (k,n) = (a,a+b) という等式の下で、組 (a,b) と組 (k,n) が 1 対 1 に対応している

そのため、 $x^a y^b$ は、f(x+y) の2重和の中で、

$$\frac{x^a}{a!} \cdot \frac{y^b}{b!} = \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!}$$

という形で現れることがわかる

また、

- a = 0, 1, 2, ... b = 0, 1, 2, ...
- n = 0, 1, 2, ... $n \ge 0 \le k \le n$

という数の範囲の条件も、1対1に対応している

このことから、 $\sum_{n=0}^{\infty} \sum_{k=0}^{n} \delta \sum_{a=0}^{\infty} \sum_{b=0}^{\infty} c$ 書き換えることができて、

$$f(x+y) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} \right)$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{x^n}{n!} \frac{y^k}{b!}$$

が成り立つ

このように書き換えると、2重和の計算の順序は入れ替えてもよいことがわかる

* * *

ここでさらに、かけ算の分配法則(有限個の場合と同様に、和がきちんと収束すれば分配法則が成

り立つ)を使って書き直すと、

$$f(x+y) = \sum_{a=0}^{\infty} \sum_{b=0}^{\infty} \frac{x^a}{a!} \frac{y^b}{b!}$$
$$= \left(\sum_{a=0}^{\infty} \frac{x^a}{a!}\right) \left(\sum_{b=0}^{\infty} \frac{y^b}{b!}\right)$$

f(x) の定義式 $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ より、

$$f(x+y) = f(x)f(y)$$

f(x + y) を二項展開を使って 2 重和として書き表し、「小計の取り方を変えても、結局は同じ総和が計算できる」という 2 重和のトリックを使うと、f(x)f(y) という積になった

* * *

■定理 無限級数 $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ は次の関数等式を満たす

$$f(x + y) = f(x)f(y)$$

指数関数の拡張

先ほど示した関数等式は、<mark>指数法則</mark>ともいう

* * *

f(x) が無限級数として定義されていたことは一旦 忘れて、

- x > 0 のとき f(x) > 0
- f(x + y) = f(x)f(y)
- f(0) = 1, f(1) = e

という性質だけを用いて何が言えるか見ていく

* * *

■定理 *m* を自然数とするとき、

$$f(mx) = f(x)^m$$

が成り立つ

m = 0 の場合 f(0) = 1 より、f(0x) = f(0) = 1 また、 $f(x)^0 = 1$ より、 $f(x)^0 = f(0x)$ が成り立つ m = 1 の場合 $f(x) = f(x)^1$ が成り立つ

一般の場合の証明 m+1 の場合を考える y = mx とおくと、x+y = (m+1)x となり、関数等 式が使える

よって、 $f(mx) = f(x)^m$ が m で成り立つなら、

$$f((m+1)x) = f(mx)f(x)$$
$$= f(x)^m f(x)$$
$$= f(x)^{m+1}$$

となり、m+1でも成り立つ

これで、数学的帰納法によって、すべての自然数m に対して $f(mx) = f(x)^m$ が成り立つことが示された \Box

* * *

x = 1 の場合 n が自然数のとき、

$$f(n) = f(1)^n = e^n$$

x が正の有理数の場合 x を正の有理数 $x = \frac{n}{m}$ とする

m は自然数なので、先ほど示した $f(x)^m = f(mx)$ が成り立ち、

$$f(x)^m = f(mx) = f\left(m \cdot \frac{n}{m}\right) = f(n)$$

さらにnも自然数なので、 $f(n) = e^n$ となり、

$$f(x)^m = e^n$$

f(x) > 0 に注意して、両辺の m 乗根を取れば、

$$f(x) = e^{\frac{n}{m}} = e^x$$

となり、x が正の有理数のときも $f(x) = e^x$ が成り立つ

x が負の有理数の場合 関数等式より、

$$f(-x)f(x) = f(-x + x) = f(0) = 1$$

なので、f(-x) は f(x) の逆数となる したがって、 $f(-x) = \frac{1}{f(x)}$ であり、 $f(x) = e^x$ より、

$$f(-x) = \frac{1}{f(x)} = \frac{1}{e^x} = e^{-x}$$

x を -x に置き換えても、 $f(x) = e^x$ が成り立つことがわかる

* * *

以上の議論から、x が有理数のとき $f(x) = e^x$ となることがわかった

x が有理数以外のときに、 e^x はどうやって定義すればよいだろうか?

有理数での近似による定義 1つの考え方として、 どんな実数でも有理数を使っていくらでも近似で きるということを用いる

たとえば、実数 x を小数点以下 3 桁まで表示して得られる数 y は、 $y = \frac{\text{整数}}{1000}$ と表せるので有理数であり、しかも x との誤差が 10^{-3} 未満になる

 e^x の値が変数 x について連続的に動くと考えると、 実数 x を有理数 $\frac{n}{m}$ で近似すれば、 $e^{\frac{n}{m}}$ は e^x を近似 できるだろう

そこで、近似をどんどん精密にしたときの極限として e^x の値を定義する

べき級数展開による定義 x が有理数とは限らない場合に指数関数 e^x を定義する別の方法として、

次のべき級数展開を用いるという考え方もある

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

x が有理数でなくても、右辺の無限級数で定義した関数を e^x と表記しよう、という発想

べき乗という1つの観点にこだわっていると、xが複素数の場合にeのx乗が何を意味するのかは、哲学的な問題となってしまう無限級数であれば、xが複素数であっても意味を持つ

x が複素数の場合も含めて、無限級数で指数関数 e^x を定義しておくと、指数関数と三角関数も結び つき、さらに世界が拡がる