

"Can Simple Sampling Fix Bias in Face Gender Classification?"

Fairness Without Labels: Pseudo-Balancing for Bias Mitigation in Face Gender Classification

Haohua Dong^{1,2}, Ana Manzano Rodríguez^{1,3}, Camille Guinaudeau⁴, Shin'ichi Satoh¹

¹National Institute of Informatics, Japan ²INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal ³University of Amsterdam, The Netherlands ⁴LIMSI, CNRS / Université Paris-Saclay, France

Motivation

Automated face gender classifiers often exhibit **significant performance disparities across demographic groups** (e.g., race, gender, age)

- Biased training data that under-represents non-Western populations like East Asians or Black faces
- Collecting and retraining with new, balanced labeled datasets is expensive and time-consuming

Key Ideas

- Achieve fairness without ground-truth demographic labels by using demographically balanced data
- Fine-tune a CNN using pseudo-labelling methods
- Enforce demographic balance during pseudo-labeling selection

Model & Datasets

- ResNet18-based CNN pre-trained on the Kaggle Gender dataset
- FairFace (FF) → balanced across 7 racial groups (unlabeled training set)
- All-Ages-Face (AAF) → predominantly Asian (test set)

Model	Acc [%] (Male / Female)	SR [%]
Baseline	73.28 97.94 / 48.61	49.63
Fine-tuned with FF	87.54 95.36 / 79.71	83.59

Method

Pseudo-Balancing (PB): Manually enforce gender class balance when sampling pseudo-labels during self-training

- Preserves model accuracy through confidence-based sample selection
- Prevents majority-class domination

→ PB works with FixMatch, FlexMatch and other pseudo-labeling techniques

Experiments

- Evaluated PB across balanced, moderately biased, and severely biased FairFace subsets (race and/or gender biases)
- Tested with FixMatch and FlexMatch, with/without PB, on AAF benchmark

FixMatch Analysis

PB improves accuracy and fairness in most cases!

Results

				_
ixMatch	PB	Acc [%] (M / F)	SR[%]	
$\epsilon (\epsilon = 0.6)$	✓	80.05 91.12 / 69.98	76.80	
$\epsilon (\epsilon = 0.6)$	*	76.92 96.20 / 57.65	59.93	
$\epsilon (\epsilon = 0.9)$	✓	79.81 82.37 / 77.26	93.80	
$\epsilon (\epsilon = 0.9)$	*	75.73 97.35 / 54.12	55.59	
ast-Asian Female $\epsilon = 0.9$	✓	78.65 95.96 / 61.33	48.82	
ast-Asian Female $\epsilon = 0.9$)	*	81.30 87.99 / 74.60	84.78	
Black $\epsilon = 0.9$	✓	74.41 96.72 / 52.10	53.87	P
Black $\epsilon = 0.9$	*	71.35 99.05 / 43.66	44.08	*
Male $\epsilon = 0.6$	√	78.11 86.33 / 69.89	80.96	•*•
Male $\epsilon = 0.6$)	*	79.40 93.50 / 65.29	69.83	•
Female $\epsilon = 0.9$	√	76.19 97.86 / 54.52	55.81	
Female $\epsilon = 0.9$	*	78.86 95.84 / 61.89	64.58	*

FlexMatch	PB	Acc [%] (M / F)	SR[%]
FF	✓	83.36 89.62 / 77.10	86.03
FF	*	79.18 67.75 / 90.61	74.77
Gender- Balanced	✓	67.49 94.93 / 40.05	42.19
East-Asian Female	√	71.87 83.44 / 60.30	72.27
East-Asian Female	*	56.04 76.07 / 36.01	47.37
Male	√	62.92 52.61 / 73.21	71.86
Male	*	54.16 19.02 / 89.30	21.28

Pseudo-Labeling with PB

- Diverse & balanced unlabeled data (FairFace)→ boosts accuracy + fairness
- ❖ Biased & aligned subgroups (East-Asian Female, Female) → reinforces model bias, hurts fairness
- ❖ Biased subgroups (Male, Black)→spreads representation, counteracts bias

Conclusion

- Simple & effective fairness boost → PB works strongest with diverse, balanced or moderately biased unlabeled datasets
 - +6.53% accuracy and +44.17% SR over the baseline
- Label-free → scalable to real-world applications or different classification problems
- Limitations: less effective with severely biased unlabeled data

Full paper here!

