Университет ИТМО

Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №3 (УИР 3) "Исследование СМО произвольного вида"

по дисциплине "Моделирование"

Выполнили:

Студенты группы Р3334

Баянов Р. Д.

Кузнецов Д. А.

Преподаватель:

Авксентьева Е. Ю.

Санкт-Петербург 2024 г.

Содержание

Цель работы	3
Постановка задачи	4
Варианты исследуемой системы	5
Код на GPSS	7
Результаты имитационного моделирования	
Вариант 1	
Вариант 2	11
Вариант 3	12
Вариант 4	
Вариант 5	14
Вариант 6	15
Вариант 7 Error!	Bookmark not defined.
Вариант 8 Error!	Bookmark not defined.
Гистограммы полученных результатов	16
Длина очереди	16
Вероятность потери	
	17
Загрузка	
Загрузка Среднее время ожидания	18
	18 19
Среднее время ожидания	

Цель работы

Исследование свойств простейших одно- и многоканальных СМО типа G/G/K/E с однородным потоком заявок с использованием системы имитационного моделирования GPSS при различных предположениях о параметрах структурно-функциональной организации и нагрузки в соответствии с заданной программой исследований.

Постановка задачи

В процессе исследований необходимо оценить влияние на такие характеристики системы, как:

- длительность переходного процесса в системе;
- среднее время ожидания (пребывания) заявок в системе;
- вероятность потери заявок

следующих параметров нагрузки и структуры:

- ightharpoonup загрузки системы (в интервале от 0,1 до 0,9);
- ➤ характера потока поступающих в систему заявок (заданная трасса; аппроксимирующий поток; простейший поток);
- > законов распределения длительности обслуживания;
- ➤ количества приборов в системе (от 1 до 3);
- ➤ ёмкости накопителя.

В качестве исходной модели возьмём наилучшую модель системы, выбранную наилучшей в рамках УИР 2. Модель, которую мы будем исследовать — это модель G/G/K/E с двумя приборами и одним накопителем на первом приборе, ибо именно мы её сочли лучшей в прошлой УИР. Также возьмём среднее и коэффициент вариации из УИР1, как входные параметры потока заявок. А именно: среднее — 63.561 и коэффициент вариации, равный 1, так как время обслуживания приборов распределено по экспоненциальному закону. Чтобы выполнить исследование для этого необходимо скорректировать предлагаемую имитационную GPSS-модель СМО типа G/G/K/E (файл smo GGKE.gps).

Схема, исследуемой системы:

Варианты исследуемой системы

Φ орма $1-C$	Эписание исследуем	ых вариантов орг	ганизации системы
- I			,,

Номер в	арианта	1	2	3	4	5	6
Количество	о приборов	2	2	2	2	2	2
Емкость н	акопителя	3	3	3	10	10	3
Интервалы между	Ср. значение	63.56	63.56	63.56	63.56	63.56	63.56
заявками входящего потока	Вид потока	Аппрок	Эрланга 2-го порядка				
Длительно сть	Ср. значение	2	40	70	2	70	2
обслужива ния заявок	Коэф-т вариации	1	1	1	1	1	1

Пояснения к форме 1:

- 1. **Количество вариантов** (экспериментов) определяется самим исследователем и должно быть таким, чтобы давать достаточно полное представление о свойствах системы.
- 2. При определении количества вариантов следует иметь в виду, что наибольший интерес представляют системы с высокой нагрузкой, работающие в интервале загрузок более 90%.
- 3. Для параметра **Емкость накопителя** обязательно должен быть вариант, иллюстрирующий минимальную емкость, при которой в системе отсутствуют потери заявок, т.е. при которой система может рассматриваться как система с накопителем неограниченной емкости.
- 4. **Вид потока заявок:** 1) **Т** трасса; 2) **A** аппроксимирующий; 3) **П** простейший;

Таким образом, для исследования системы мы будем изменять такие параметры, как: среднее значение интервала времени между заявками, среднее время обслуживания и ёмкость накопителя.

Код на GPSS

```
********************
*********
              Модель CMO G/G/K/E
************************
*********
             Исходные данные
*************************
**********
E bufEQU 3; емкость накопителя (буфера)
    EQU 63.56; средний интервал между поступающими заявками
         EQU 10; минимальный интервал между заявками (для
t a min
равномерного распределения)
         EQU 30; максимальный интервал между заявками (для
t a max
равномерного распределения)
    EQU 2; средняя длительность обслуживания заявки в приборе
RN a EQU 20; номер генератора для потока
RN bEQU 553; номер генератора для длительности обслуживания
* Параметры гиперэкспоненциального распределения:
RN H
         EQU 91; номер генератора для гиперэкспоненциального
распределения
    EQU 0.9278; вероятность выбора первой фазы
qq
    EQU 69.471; мат. ожидание первой фазы гиперэкспоненциального
распределения
tt 2 EQU 10.370; мат. ожидание второй фазы гиперэкспоненциального
распределения
* Параметры гипоэкспоненциального распределения (Эрланга):
k erl EQU 2; порядок распределения Эрланга
        EQU 31; номер первого генератора для распределения Эрланга
RN erl1
2-го порядка
         EQU 125; номер второго генератора для распределения Эрланга
RN erl2
2-го порядка
******************
*********
TU uzel TABLE M1,0.2,0.2,50;
TU buf
         QTABLE buf1,0.1,0.1,50;
uzell STORAGE 1; ПЕРВЫЙ ПРИБОР С НАКОПИТЕЛЕМ 3
uzel2 STORAGE 1; ВТОРОЙ ПРИБОР БЕЗ НАКОПИТЕЛЯ
Erl 2 VARIABLE
    (Exponential(RN erl1,0,t a/2))+(Exponential(RN erl2,0,t a/2));
сл.величина по закону Эрланга 2-го порядка
*******
```

```
* Служебные переменные, необходимые для процедуры
GetRandomNumberFromFile *
********************
*****
ErrorCodes MATRIX ,2,1; Коды ошибок открытия/закрытиия файла (при
наличии ошибок в конце моделирования будут записаны ненулевые
значения)
FilePosition MATRIX ,1,1; Текущий номер строSIЕки в файле, из которой
читается число (увеличивается на 1 с каждым чтением)
***********************
* В качестве исполняемого оставить только ОДИН оператор GENERATE *
*GENERATE
             (Exponential(RN a,0,t a))
             (GetRandomNumberFromFile("D:\ITMO\3 course
*GENERATE
ITMO\Моделирование\УИР3\track.txt"))
             (hyper1(RN H, qq, tt 1, tt 2))
*GENERATE
GENERATE
             V$Erl 2
             .45,,TO PR2
TRANSFER
TESTL
        Q$buf1,E buf,zyx
OUEUE
        buf1
ENTER
        uzel1
DEPART buf1
ADVANCE (Exponential(RN b,0,t b))
LEAVE
       uzel1
TABULATE
             TU uzel
TERMINATE
TO PR2
       ENTER
                 uzel2
ADVANCE (Exponential(RN b,0,t b))
LEAVE
        uzel2
TERMINATE
             1
TABULATE
             TU uzel
zyx TERMINATE 1
********************
* Процедура возвращает следующее прочитанное из файла число. *
* Числа в файле расположены по одному на каждой строчке.
* При выходе за границы файла чтение начинается с начала.
*****************
PROCEDURE GetRandomNumberFromFile(FileName) BEGIN
 TEMPORARY OpenError, CloseError, LineFromFile, FileId;
 FileId = 1:
 OpenError = open(FileId,FileName);
 if (OpenError /= 0) then begin
   FileId = 2:
```

```
OpenError = open(FileId,FileName);
    if (OpenError /=0) then begin
      ErrorCodes[1,1] = OpenError;
      return "";
    end;
  end;
  FilePosition[1,1] = FilePosition[1,1] + 1;
  seek(FileId,FilePosition[1,1]);
  LineFromFile = read(FileId);
  if (LineFromFile = "") then begin
    FilePosition[1,1] = 1;
    seek(FileId,FilePosition[1,1]);
    LineFromFile = read(FileId);
  end;
  CloseError = close(FileId);
  if (CloseError /=0) then begin
    ErrorCodes[2,1] = CloseError;
    return "";
  end;
  return value(LineFromFile);
END;
*****************
* Процедура возвращает значение псевдослучайной величины, *
* распределенной по гиперэкспоненциальному закону, в
* соответствии с параметрами распределения qq, tt 1, tt 2. *
*******************
PROCEDURE hyper1(RN H, qq, tt 1, tt 2) BEGIN
     if (uniform(1,0,1) < qq) then return exponential(RN H,0,tt 1);
     else return exponential(RN H,0,tt 2);
END;
```

Результаты имитационного моделирования

Вариант 1

 Φ орма 2- Pезультаты имитационного эксперимента 1

Исх.да	анные	К	E	поток	а	b	КВ			
(вариа		2	3	гипер.	63.56	2	1			
	Поте-	Вер-ть		Длина	Загру-	Ср.вр.		СКО	Дов.	
Заявок	ри	потери	П(%)	очер.	зка	ож.	O(%)	вр.ож.	инт.	Д(%)
10	0	0,00	-	0,002	0,110	0,629	-	0,090	0,280	44,586
20	0	0,00	0,00	0,001	0,012	0,236	-166,53	0,667	5,539	2347,242
50	0	0,00	0,00	0,000	0,018	0,036	-555,56	0,166	9,038	25104,938
100	0	0,00	0,00	0,000	0,015	0,014	-157,14	0,086	12,040	86000,000
200	0	0,00	0,00	0,000	0,014	0,021	33,33	0,186	17,360	82666,667
500	0	0,00	0,00	0,000	0,015	0,021	0,00	0,253	23,613	112444,444
1000	0	0,00	0,00	0,001	0,016	0,105	80,00	0,727	13,571	12924,444
2000	0	0,00	0,00	0,000	0,015	0,034	-208,82	0,307	17,698	52051,903
5000	0	0,00	0,00	0,000	0,015	0,041	17,07	0,351	16,780	40925,640
10000	0	0,00	0,00	0,000	0,016	0,049	16,33	0,458	18,320	37387,755
20000	0	0,00	0,00	0,000	0,016	0,051	3,92	0,537	20,638	40465,975
50000	0	0,00	0,00	0,000	0,016	0,045	-13,33	0,424	18,468	41039,012
100000	0	0,00	0,00	0,000	0,016	0,045	0,00	0,431	18,772	41716,543
150000	0	0,00	0,00	0,000	0,016	0,043	-4,65	0,422	19,235	44733,369
200000	0	0,00	0,00	0,000	0,016	0,044	2,27	0,426	18,976	43128,099
300000	1	0,00	100,00	0,000	0,016	0,045	2,22	0,423	18,424	40942,222
350000	0	0,00	0,00	0,000	0,016	0,045	0,00	0,425	18,511	41135,802
400000	0	0,00	0,00	0,000	0,016	0,044	-2,27	0,414	18,442	41913,223
500000	0	0,00	0,00	0,000	0,016	0,044	0,00	0,421	18,754	42621,901
1000000	0	0,00	0,00	0,000	0,016	0,043	-2,33	0,413	18,825	43779,340

За длительность переходного процесса возьмём время, за которое прошло 20000 заявок, так как при увеличении заявок характеристики системы не меняются значительно.

Форма 2 – Результаты имитационного эксперимента 2

Исх.да	нные	К	E	поток	a	b	КВ]		_
(вариан	ıт <u>1</u>):	2	3	гипер.	63.56	40	1			
	Поте-	Вер-ть		Длина	Загру-	Ср.вр.		СКО	Дов.	
Заявок	ри	потери	П(%)	очер.	зка	ож.	0(%)	вр.ож.	инт.	Д(%)
10	0	0,000	-	0,066	0,214	17,751	-	30,746	3,395	19,125
20	0	0,000	0,00	0,159	0,312	18,474	3,91	33,460	3,550	19,216
50	0	0,000	0,00	0,066	0,862	6,049	-205,41	14,899	4,828	79,808
100	0	0,000	0,00	0,177	0,327	22,192	72,74	39,421	3,482	15,689
200	0	0,000	0,00	0,177	0,258	21,244	-4,46	49,515	4,568	21,504
500	2	0,004	100,00	0,184	0,307	19,444	-9,26	39,814	4,013	20,641
1000	11	0,011	63,64	0,170	0,294	19,842	2,01	40,983	4,048	20,403
2000	14	0,007	-57,14	0,181	0,301	21,735	8,71	46,936	4,233	19,473
5000	30	0,006	-16,67	0,163	0,300	19,700	-10,33	42,965	4,275	21,699
10000	46	0,005	-30,43	0,161	0,303	19,280	-2,18	41,024	4,170	21,631
20000	117	0,006	21,37	0,158	0,304	18,910	-1,96	40,253	4,172	22,063
50000	265	0,005	-10,38	0,156	0,303	18,805	-0,56	40,005	4,170	22,173
100000	631	0,006	16,01	0,166	0,303	18,808	0,02	40,004	4,169	22,165
150000	845	0,006	-12,01	0,159	0,305	19,119	1,63	40,837	4,186	21,897
200000	1149	0,006	1,94	0,160	0,305	19,192	0,38	41,752	4,264	22,217
300000	1698	0,006	-1,50	0,160	0,305	19,280	0,46	41,263	4,195	21,757
350000	1981	0,006	0,00	0,161	0,304	19,296	0,08	41,455	4,211	21,822
400000	2395	0,006	5,47	0,163	0,305	19,510	1,10	41,574	4,177	21,407
500000	2864	0,006	-4,53	0,162	0,304	19,409	-0,52	41,332	4,174	21,505
1000000	5570	0,006	-2,84	0,161	0,016	19,261	-0,77	41,188	4,191	21,761

За длительность переходного процесса возьмём время, за которое прошло 10000 заявок, так как при увеличении заявок характеристики системы не меняются значительно.

Форма 2 – Результаты имитационного эксперимента 3

Исх.да	нные	К	E	поток	a	b	КВ]		_
(вариан	ıт <u>1</u>):	2	3	гипер.	63.56	70	1			
	Поте-	Вер-ть		Длина	Загру-	Ср.вр.		СКО	Дов.	
Заявок	ри	потери	П(%)	очер.	зка	ож.	O(%)	вр.ож.	инт.	Д(%)
10	0	0,000	-	0,042	0,645	4,652	_	10,401	4,382	94,200
20	0	0,000	0,00	0,247	0,677	23,708	80,38	26,116	2,159	9,107
50	0	0,000	0,00	0,212	0,483	30,970	23,45	62,096	3,930	12,689
100	5	0,050	100,00	0,797	0,631	88,964	65,19	97,896	2,157	2,424
200	4	0,020	-150,00	0,384	0,450	48,511	- 83,39	76,034	3,072	6,333
500	30	0,060	66,67	0,598	0,504	69,315	30,01	99,965	2,827	4,078
1000	47	0,047	-27,66	0,561	0,495	70,324	1,43	109,241	3,045	4,329
2000	57	0,029	-64,91	0,459	0,516	57,747	-21,78	87,235	2,961	5,127
5000	146	0,029	2,40	0,508	0,513	64,057	9,85	95,708	2,928	4,572
10000	263	0,026	-11,03	0,491	0,516	61,288	-4,52	93,686	2,996	4,889
20000	883	0,044	40,43	0,497	0,518	62,152	1,39	94,242	2,972	4,782
50000	1495	0,030	-47,66	0,497	0,516	62,890	1,17	96,008	2,992	4,758
100000	3387	0,034	11,72	0,511	0,520	64,238	2,10	98,486	3,005	4,678
150000	4833	0,032	-5,12	0,508	0,520	64,048	-0,30	97,614	2,987	4,664
200000	6327	0,032	-1,85	0,505	0,520	63,791	-0,40	97,612	2,999	4,702
300000	9579	0,032	0,92	0,501	0,520	63,183	-0,96	97,123	3,013	4,768
350000	11023	0,031	-1,38	0,502	0,518	63,341	0,25	96,943	3,000	4,736
400000	13030	0,033	3,32	0,504	0,519	63,330	-0,02	96,565	2,989	4,719
500000	16097	0,032	-1,18	0,504	0,518	63,437	0,17	97,008	2,997	4,725
1000000	31628	0,032	-1,79	0,507	0,521	63,607	0,27	96,826	2,984	4,691

За длительность переходного процесса возьмём время, за которое прошло 150000 заявок, так как при увеличении заявок характеристики системы не меняются значительно.

Форма 2 – Результаты имитационного эксперимента 4

Исх.да	нные	К	E	поток	a	b	КВ]		
(вариан	ıт <u>1</u>):	2	10	гипер.	63.56	2	1			
	Поте-	Вер-ть		Длина	Загру-	Ср.вр.		СКО	Дов.	
Заявок	ри	потери	П(%)	очер.	зка	ож.	O(%)	вр.ож.	инт.	Д(%)
10	0	0,000	-	0,002	0,011	0,629	-	1,090	3,397	539,984
20	0	0,000	0,00	0,000	0,016	0,000	0,00	0,000	0,000	0,000
50	0	0,000	0,00	0,001	0,022	0,076	100,00	0,365	9,413	12385,734
100	0	0,000	0,00	0,001	0,016	0,110	30,91	0,541	9,640	8763,306
200	0	0,000	0,00	0,000	0,013	0,016	- 587,5 0	0,121	14,823	92640,625
500	0	0,000	0,00	0,000	0,016	0,049	67,35	0,428	17,120	34938,776
1000	0	0,000	0,00	0,001	0,015	0,063	22,22	0,464	14,436	22913,580
2000	0	0,000	0,00	0,001	0,015	0,067	5,97	0,518	15,153	22617,064
5000	0	0,000	0,00	0,000	0,015	0,050	-34,00	0,475	18,620	37240,000
10000	0	0,000	0,00	0,000	0,016	0,035	-42,86	0,351	19,656	56160,000
20000	0	0,000	0,00	0,000	0,016	0,044	20,45	0,410	18,264	41508,264
50000	0	0,000	0,00	0,000	0,016	0,040	-10,00	0,401	19,649	49122,500
100000	0	0,000	0,00	0,000	0,016	0,046	13,04	0,442	18,833	40941,399
150000	0	0,000	0,00	0,000	0,016	0,045	-2,22	0,424	18,468	41039,012
200000	0	0,000	0,00	0,000	0,016	0,045	0,00	0,428	18,642	41426,173
300000	0	0,000	0,00	0,000	0,016	0,045	0,00	0,428	18,642	41426,173
350000	0	0,000	0,00	0,000	0,016	0,045	0,00	0,428	18,642	41426,173
400000	0	0,000	0,00	0,000	0,016	0,045	0,00	0,428	18,642	41426,173
500000	0	0,000	0,00	0,000	0,016	0,045	0,00	0,428	18,642	41426,173
1000000	0	0,000	0,00	0,000	0,016	0,045	0,00	0,428	18,642	41426,173

За длительность переходного процесса возьмём время, за которое прошло 150000 заявок, так как при увеличении заявок характеристики системы не меняются значительно.

Форма 2 – Результаты имитационного эксперимента 5

Исх.да	нные	К	E	поток	a	b	КВ]		
(вариан		2	10	трасса	63.56	70	1			
	Поте-	Вер-ть		Длина	Загру-	Ср.вр.		СКО	Дов.	
Заявок	ри	потери	П(%)	очер.	зка	ож.	O(%)	вр.ож.	инт.	Д(%)
10	0	0,000	-	0,059	0,366	16,241	-	28,131	3,395	20,903
20	o	0,000	0,00	0,435	0,531	46,828	65,32	80,256	0,000	0,000
50	0	0,000	0,00	1,147	0,674	118,595	60,51	123,460	2,040	1,720
100	0	0,000	0,00	1,145	0,599	126,75 0	6,43	182,081	2,816	2,221
200	0	0,000	0,00	0,741	0,449	89,251	- 42,02	145,290	3,191	3,575
500	0	0,000	0,00	0,831	0,539	87,388	-2,13	117,774	2,642	3,023
1000	0	0,000	0,00	0,931	0,520	106,244	17,75	152,617	2,815	2,650
2000	3	0,002	100,00	0,748	0,527	88,900	-19,51	89,127	1,965	2,210
5000	0	0,000	0	0,742	0,529	88,710	-0,21	135,508	2,994	3,375
10000	10	0,001	100,00	0,788	0,533	93,862	5,49	143,181	2,990	3,185
20000	21	0,001	4,76	0,876	0,533	103,702	9,49	151,131	2,856	2,754
50000	24	0,000	-118,75	0,827	0,533	98,946	-4,81	147,317	2,918	2,949
100000	104	0,001	53,85	0,886	0,533	104,824	5,61	156,446	2,925	2,791
150000	119	0,001	-31,09	0,879	0,533	104,539	-0,27	154,579	2,898	2,772
200000	163	0,001	2,66	0,859	0,533	102,316	-2,17	153,681	2,944	2,877
300000	291	0,001	15,98	0,868	0,533	103,500	1,14	156,593	2,965	2,865
350000	254	0,001	-33,66	0,846	0,533	100,549	-2,93	151,006	2,944	2,927
400000	383	0,001	24,21	0,877	0,533	103,938	3,26	155,473	2,932	2,821
500000	463	0,001	-3,40	0,868	0,533	102,953	-0,96	154,107	2,934	2,850
1000000	818	0,001	-13,20	0,871	0,533	103,156	0,20	152,919	2,906	2,817

За длительность переходного процесса возьмём время, за которое прошло 5000 заявок, так как при увеличении заявок характеристики системы не меняются значительно.

Форма 2 – Результаты имитационного эксперимента 6

Исх.да	нные	К	E	поток	a	b	КВ			
(вариан	ıт <u>1</u>):	2	3	эрланг.	63.56	2	1			
Заявок	Поте- ри	Вер-ть потери	П(%)	Длина очер.	Загру- зка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	0	0,000	_	0,000	0,008	0,000	-	0,000	0,000	0,000
20	0	0,000	0,00	0,000	0,015	0,000	0,00	0,000	0,000	0,000
50	0	0,000	0,00	0,000	0,017	0,000	0,00	0,000	0,000	0,000
100	0	0,000	0,00	0,000	0,011	0,000	0,00	0,000	0,000	0,000
200	0	0,000	0,00	0,000	0,018	0,000	0,00	0,000	0,000	0,000
500	0	0,000	0,00	0,000	0,015	0,000	0,00	0,000	0,000	0,000
1000	0	0,000	0,00	0,000	0,016	0,000	0,00	0,000	0,000	0,000
2000	0	0,000	0,00	0,000	0,016	0,003	100,00	0,105	68,600	2286666,667
5000	0	0,000	0,00	0,000	0,016	0,002	-50,00	0,043	42,140	2107000,000
10000	0	0,000	0,00	0,000	0,016	0,002	0,00	0,084	82,320	4116000,000
20000	0	0,000	0,00	0,000	0,016	0,004	50,00	0,120	58,800	1470000,000
50000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,135	66,150	1653750,000
100000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,129	63,210	1580250,000
150000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,113	55,370	1384250,000
200000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,132	64,680	1617000,000
300000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,122	59,780	1494500,000
350000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,118	57,820	1445500,000
400000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,124	60,760	1519000,000
500000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,118	57,820	1445500,000
1000000	0	0,000	0,00	0,000	0,016	0,004	0,00	0,123	60,270	1506750,000

За длительность переходного процесса возьмём время, за которое прошло 5000 заявок, так как при увеличении заявок характеристики системы не меняются значительно.

Гистограммы полученных результатов

Длина очереди

Заметим, что средняя длина очереди, увеличивается в зависимости от нагрузки системы и от самой ёмкости очереди, если и нагрузка, и ёмкость накопителя велики, то и средняя длина очереди увеличивается. Но длина очереди нашей системы не сильно велика, так как загрузка системы не принимает большие значения.

Вероятность потери

Заметим, что в случаях, когда среднее время обслуживания увеличивается (то бишь приближается или даже превышает интервалы времени поступления заявок), то мы начинаем наблюдать небольшую вероятность потери заявок, но в силу того, что у нас два прибора, и есть накопитель, эта вероятность крайне мала. В 5 эксперименте у нас среднее время обслуживания больше, чем интенсивность поступления заявок, но увеличенная ёмкость спасает положение, и мы не замечаем увеличение вероятности потери. Таким образом, при разных уровнях нагрузки система всё равно быстро обрабатывает заявки.

Загрузка

Заметим, что загрузка напрямую зависит от нагрузки системы и тут в независимости от того, по какому закону распределены интервалы поступления заявок, мы получаем высокую загрузку только при высоком отношении интенсивности обслуживания к интенсивности поступления. То бишь изменение среднего времени обслуживания сильно влияет на загрузку системы. Но загрузка ни в одном эксперименте не превысила 1, следовательно, система не будет копить заявки бесконечно.

Среднее время ожидания

Заметим, что, рассматривая данную характеристику, мы получаем схожий результат со средней длиной очереди.

Длина переходного процесса

Заметим, что длительность переходного процесса не сильно меняется от эксперимента к эксперименту. Но при увеличении очереди, мы наблюдаем увеличение длительности переходного процесса, так как большая очередь при даже низкой нагрузке оттягивает момент наступления статического режима системы.

Сравнение результатов имитационного моделирования и метода марковских процессов

Признак	Имитационное	Метод марковских
	моделирование	процессов
Загрузка	0,016	0,08
Вероятность потери	0	0,2
Среднее время	0,051	3
ожидания		
Длина очереди	0	0,8

Как мы видим, имитационное моделирование и метод марковских процессов дают сильно разные результаты. Объясняется это тем, что, во-первых: при рассмотрении нашей системы в имитационном моделировании и в методе марковских процессов мы по-разному нагружали нашу систему и использовали совершенно разные законы распределения интенсивности поступления заявок на систему, а во-вторых: метод марковских процессов, конечно же менее точен, чем имитационное моделирование. Система достаточно сложна, чтобы точно оценить её методом марковских процессов. Хоть оба эти метода и являются статическими, имитационное моделирование смотрится в разы выгоднее.

Сравнение для СМО типа М/М/1

$$\rho = \frac{\lambda}{\mu} = \frac{0.0157}{0.5} = 0.03$$

Вероятность потери – 0

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{0.0157^2}{0.5(0.5 - 0.0157)} = 0,001$$

$$W_q = \frac{1}{\mu - \lambda} = \frac{1}{0.5 - 0.0157} = 2,064$$

Признак	Наша система	M/M/1
Загрузка	0,016	0,03
Вероятность потери	0	0
Среднее время	0,051	2,064
ожидания		
Длина очереди	0	0,001

Заметим, что наша система оказалось лучше, так как в нашей системе заявки не простаивают так долго как в СМО типа M/M/1.

Сравнение для СМО типа M/G/1

$$\rho = \frac{\lambda}{\mu} = \frac{0.0157}{0.5} = 0.03$$

Вероятность потери – 0

$$L_q = b + \frac{\lambda^2 b^2}{2(1 - \rho)} = 2 + \frac{0.0157^2 \cdot 4}{2(1 - 0.03)} = 2,0005$$

$$W_q = \frac{\lambda^2 b^2}{2(1 - \rho)} = \frac{0.0157^2 \cdot 4}{2(1 - 0.03)} = 0,0005$$

Признак	Наша система	M/M/1
Загрузка	0,016	0,03
Вероятность потери	0	0
Среднее время	0,051	2,0005
ожидания		
Длина очереди	0	0,0005

Заметим, что наша система оказалось лучше, так как в нашей системе заявки не простаивают так долго как в СМО типа M/G/1.

Вывод

Выполнив данную лабораторную работу, мы научились пользоваться языком высокого уровня GPSS World для имитационного моделирования одно- и многоканальных СМО. Заметим, что имитационное моделирование хоть и является крайне точным способом оценить систему, оно не является быстрым способом понять зависимости наших характеристик от наших параметров. Но получив определённые результаты, мы выяснили, что нагрузка системы сильно влияет на характеристики системы. Чувствительнее всего оказалась загрузка системы. Любые изменения нагрузки, сильно влияют на загрузку. Остальные характеристики в силу особенностей нашей системы меняются незначительно, особенно длительность переходного процесса. Длительность переходного процесса дольше всего при высокой нагрузке и одновременно при большой ёмкости накопителя. Также характеристики системы сильно зависят от вида потока поступления заявок, так, например, при использовании распределения Эрланга 2-го порядка, система вообще устойчива почти к любым видам нагрузки. Но вс же огромную роль играет среднее время обслуживания заявок, именно этот параметр способен поменять все значения характеристик нашей системы.