ADVANCED PROBLEMS

Problem 1. Suppose $f \in L_1[a,b]$ and that $\int_a^c f(t) dt = 0$ for all $c \in [a,b]$. Prove that f(x) = 0 a.e.

Problem 2. Suppose f is a real-valued function defined on an interval I, and that all the Dini numbers of f for x in I lie between -K and K, where K is some positive constant. Must f be Lipschitz on I? If so, what is the relation between the Lispchitz constant of f and K?

Problem 3. Compute the Dini numbers of the Cantor-Lebesgue function at each point x of [0, 1].

Problem 4. Does there exist a strictly increasing functions f defined on an interval I so that f' = 0 a.e. on I?

Problem 5. Suppose f is a real-valued function defined on I. Show that if f is not constant and f' = 0 a.e., then f cannot be Lipschitz on I.

Problem 6. Let f be a real-valued continuous function defined on I = [a, b], and suppose that f is AC on [a, d], for any d < b. Show that f is AC on I.

Problem 7. Let f be AC on I, and $f(I) \subseteq J$. If $\phi: J \to \mathbb{R}$ is Lipschitz, show that $\phi \circ f$ is AC on I.

Problem 8. Suppose f is a non-decreasing, AC function on I, and $f(I) \subseteq J$. Show that if ϕ is AC on J, then $\phi \circ f$ is AC on I.

Problem 9. Given that $f \in L_1(\mathbb{R})$ and that $\int_{\mathbb{R}} \int_{\mathbb{R}} f(4x) f(x+y) dx dy = 1$, calculate $\int_{\mathbb{R}} f(x) dx$.

Problem 10. Calculate $\int_0^\infty \int_0^{\sqrt{\pi}} \frac{x^3 y^3 \cos(y^2)}{(x^4 + y^4)^{3/2}} dy dx$.

Problem 11. Given $f \in L_1(\mathbb{R})$ and h.0, let $\phi_h(x) = \frac{1}{2h} \int_x^{x+h} f(t) dt$. Prove that $\phi_h \in L_1(\mathbb{R})$ and $\int_{\mathbb{R}} |\phi_h(x)| dx \leq ||f||_1$.

Problem 12. Suppose $g \in L_1[0,1]$, $1 \le p < \infty$ and that there exists a constant M > 0 such that $\left| \int_0^1 g(x)s(x) \, dx \right| \le M \|s\|_p$ for all simple functions s. Prove that $g \in L_q[0,1]$ and $\|g\|_q \le M$, where q satisfies 1/p + 1/q = 1.

Problem 13. Let $\varphi \geq 0$ with $\int_{\mathbb{R}^n} \varphi(y) dy = 1$. Denote $\varphi_{\varepsilon}(x) = 0$ $\varepsilon^n \varphi(x/\varepsilon)$. Prove the following statements:

(i)
$$\int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) dx = \int_{\mathbb{R}^n} \varphi(x) dx$$
.

- (ii) For any $\delta > 0$, $\lim_{\varepsilon \to 0} \int_{\{|x| > \delta\}} \varphi_{\varepsilon}(x) dx = 0$.
- (iii) If $f \in L_p(\mathbb{R}^n)$, $1 \leq p < \infty$, then $\lim_{\varepsilon \to 0} ||f * \varphi_{\varepsilon} f||_p = 0$. (iv) If $f \in L_{\infty}(\mathbb{R}^n)$, then $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) = f(x)$.

Problem 14. Compute the Fourier transform of $H(x) = (4\pi)^{-n/2}e^{-|x|^2/4}$, $x \in \mathbb{R}^n$.

Hint: Show that
$$\phi(\xi) = (4\pi)^{-1/2} \int_{\mathbb{R}} \cos(2\pi x \xi) e^{-x^2/4} dx$$
 satisfies $\phi'(\xi) = -8\pi^2 \xi \phi(\xi)$.

Problem 15. Prove that for all $f \in L_1(\mathbb{R}^n)$, and a.e. $x \in \mathbb{R}^n$,

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) e^{-2\pi i x \cdot \xi} d\xi.$$

Hint: Use the approximation to the identity given by $\varphi = H$.

Problem 16. Let $f \in L_1(\mathbb{R}^n)$. Prove the following statements:

- (i) If f is non-negative, then $\|\widehat{f}\|_{\infty} = \widehat{f}(0) = \|f\|_{1}$.
- (ii) If f is continuous at 0 and \hat{f} is non-negative, then $\|\hat{f}\|_1 = f(0)$.

Problem 17. Let $f \in C_c^{\infty}(\mathbb{R}^n)$ be a radial function. Prove that its Fourier transform is also radial.

Problem 18. Let f be a function on the real line \mathbb{R} such that both f and g(x) = xf(x) are in $L_2(\mathbb{R})$. Prove that $f \in L_1(\mathbb{R})$ and $||f||_1^2 \le$ $8||f||_2||g||_2$.

Problem 19. Let F be a closed set in \mathbb{R}^n with $m(\mathbb{R}^n \setminus F) < \infty$. Let $\delta_F(x) = \inf\{|x-y| : y \in F\}$ denote the distance from the point x to the set F. Prove that there exists a constant C > 0 such that $\int_F \mathfrak{I}_F(x) dx \leq Cm(\mathbb{R}^n \setminus F)$, where

$$\mathfrak{I}_F(x) = \int_{\mathbb{R}^n} \frac{\delta_F(y)}{|x - y|^{n+1}} \, dy.$$