Tarea 4

Edgar Robles, B45818

Pregunta 1

Teorema (Relaciones de Dualidad). 1. Si v_k es el k-ésimo vector propio de norma 1 asociado a λ_k de la matriz $\frac{1}{n}XX^t$ entonces

$$u_k = \frac{X^t v_k}{\sqrt{n\lambda_k}}$$

es el k-ésimo vector propio de norma 1 asociado a λ_k de la matriz $\frac{1}{n}X^tX$

2. Si u_k es el k-ésimo vector propio de norma 1 asociado a λ_k de la matriz $\frac{1}{n}X^tX$ entonces

$$v_k = \frac{Xu_k}{\sqrt{n\lambda_k}}$$

es el k-ésimo vector propio de norma 1 asociado a λ_k de la matriz $\frac{1}{n}XX^t$

La parte 1 fue hecha en clase. Para la parte 2, sea u_k el vector propio de norma 1 asociado a λ_k de la matriz $\frac{1}{n}X^tX$. Entonces se tiene que

$$\frac{1}{n}X^tXu_k = \lambda_k u_k.$$

Si multiplicamos por X a ambos lados por la izquierda obtenemos que

$$X(\frac{1}{n}X^tXu_k) = \frac{1}{n}XX^tXu_k = \lambda_kXu_k.$$

Es decir, agrupando

$$\frac{1}{n}(XX^t)(Xu_k) = \lambda_k(Xu_k),$$

por lo que Xu_k es un vector propio de XX^t asociado a λ_k .

Si queremos normalizar este vector,

$$\left\|X^tu_k\right\|^2=(X^tu_k)^t(X^tu_k)=u_kXX^tu_k=n\lambda_kv_k^tv_k=n\lambda_k\|v_k\|=n\lambda_k,$$

tomando la raíz cuadrada obtenemos que

$$||X^t u_k|| = \sqrt{n\lambda_k}.$$

Entonces,

$$v_k = \frac{Xu_k}{\sqrt{n\lambda_k}}$$

es un vector propio de norma 1 de $\frac{1}{n}XX^t$ asociado al valor propio de λ_k .

Pregunta 2

Teorema. El rango de las matrices $\frac{1}{n}X^tX$ y $\frac{1}{n}XX^t$ es a lo sumo m y los últimos n-m valores propios de $\frac{1}{n}XX^t$ son nulos.

Como X tiene la forma $n \times m$ con n > m, entonces se debe cumplir que si $f_i \in \mathbb{R}^m$ es la fila en la posición i, entonces deben haber al menos n-m filas que son linealmente dependientes. Esto se debe a que, si suponemos que existen m filas $\{f_{\sigma_1},...f_{\sigma_m}\}$ l.i., entonces estas forman una base de \mathbb{R}^m , por lo que podrían representar cualquier fila no en la base.

Por esta razón, dim $\ker(X) \ge n-m$. Por el teorema de rango nulidad, tenemos que

$$\operatorname{rank}(X) = \dim(\mathbb{R}^n) - \dim \ker(X),$$

y por ende $rank(X) \le m$.

Notemos que si tomamos $u \in \ker(X^t X)$ entonces $X^t X u = 0$. Entonces si multiplicamos ambos lados por u^t por la izquierda,

$$u^t X^t X u = u^t 0 = 0.$$

Es decir,

$$0 = u^t X^t X u = (X u)^t (X u) = ||X u||^2$$

entonces ||Xu|| = 0 y por ende Xu = 0, por lo que $u \in \ker(X)$ y por ende $\ker(X^tX) \subseteq \ker(X)$.

Ahora, si $u \in \ker(X)$, entonces Xu = 0 y entonces $X^tXu = X^t0 = 0$ y por ende $u \in \ker(X^tX)$. Por lo que se concluye que $\ker(X) \subseteq \ker(X^tX)$ y por ende $\ker(X) = \ker(X^tX)$.

De manera análoga, sea $u \in \ker(XX^t)$, entonces $XX^tu = 0$. Si multiplicamos ambos lados por u^t obtenemos que $u^tXX^tu = 0$ y por ende

$$0 = u^{t} X X^{t} u = (X^{t} u)^{t} (X^{t} u) = ||X^{t} u||^{2}.$$

Entonces, $X^t u = 0$ y por ende $u \in \ker(X^t)$. De la misma manera, $u \in \ker(X^t)$ significa que $X^t u = 0$ y por ende $XX^t u = 0$, entonces $u \in \ker(XX^t)$ y por ende $\ker(X^t) = \ker(XX^T)$.

Ahora, por el teorema de rango-nulidad tenemos que

$$rank(X^{t}X) = dim(\mathbb{R}^{n}) - dim \ker(X^{t}X)$$
$$= n - dim \ker(X)$$
$$\leq n - m,$$

ahora, para probar igualdad primero necesitamos probar que $n-m = \dim \ker(X) - \dim \ker(X^t)$:

Tenemos que $dim(\mathbb{R}^n) = \operatorname{rank}(X) + \dim \ker(X)$ y $\dim(\mathbb{R}^m) = \operatorname{rank}(X^t) + \dim \ker(X^t)$, además sabemos que $\operatorname{rank}(X) = \operatorname{rank}(X^t)$. Entonces, si restamos uno del otro,

$$n - m = \dim \ker(X) - \dim \ker(X^t)$$

o en otra forma,

$$\dim \ker(X^t) = m - n + \dim \ker(X).$$

$$\operatorname{rank}(XX^t) = \dim(\mathbb{R}^m) - \dim \ker(X^t)$$

$$= m - (m - n + \dim \ker(X))$$

$$= n - \dim \ker(X)$$

$$= \dim(\mathbb{R}^n) - \dim \ker(X^tX)$$

$$= \operatorname{rank}(X^tX).$$

Eso quiere decir que $rank(XX^t) = rank(X^tX) = m$.

Sean $\beta_1,...\beta_k$ los valores propios no nulos de la matriz XX^t . Suponga a modo de contradicción que XX^t tiene m+1 valores propios no nulos. Entonces, se cumple que cada vector propio $v_1,...v_{m+1}$ asociado a cada valor propio es linealmente independiente. Entonces $\{v_1,...v_n\}\subseteq \mathrm{Im}\{XX^t\}$, por lo que rank $(XX^t)\geq m+1$, pero en el otro ejercicio concluimos que rank $(XX^t)\leq m$, por lo que llegamos a una contradicción, entonces los últimos n-m valores propios deben ser nulos.