Robotics

Estimation and Learning with Dan Lee

Basic Intro to Probability

Why Learn About Probability?

- The real world has huge aspects of randomness and uncertainty.
- Still, we hope to make useful predictions and inferences.
- Randomness often follows reliable laws.
- The language of these laws is the language of probability (and statistics).

Contents

- 1. Definition of Probability
- 2. Independence
- 3. Conditional Probability
- 4. Bayes Rule
- 5. Random Variables
- 6. Density and Distribution Functions

1. Definition of Probability

- Consider an (potentially abstract) experiment
 - \circ A **sample space** Ω is the set of *all possible* outcomes of that experiment
 - \circ An **elementary event** ω is a single outcome of the set.
- Example (Rolling two dice):
 - \circ Sample space $\Omega = \{(1,1), (1,2), (1,3), ..., (6,5), (6,6)\}$
 - \circ Each member $\omega \in \Omega$ is an elementary event
 - Example of non-elementary event : Rolling doubles

$$B = \{(1,1), (2,2), (3,3), \dots, (6,6)\}$$

1. Definition of Probability

- Consider a finite^{*} set Ω
- A **probability space** (Ω, P) is a sample space Ω , together with a function P, satisfying the following:

i.
$$0 \le P(\omega) \le 1$$
 for all $\omega \in \Omega$
ii. $\sum_{\omega \in \Omega} P(\omega) = 1$

iii. For any event $A \subseteq \Omega$, $P(A) = \sum_{\omega \in A} P(\omega)$

• The function P is called **probability measure**.

^{*}To deal with countably infinite or uncountable space, we need third element called sigma algebra, but here we are simplifying.

1. Definition of Probability

Basic Consequences

$$P(\emptyset) = 0$$

$$P(\Omega) = 1$$

$$P(A^{C}) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

2. Independence

 Given a probability space, two events A and B are independent if and only if:

$$P(A \cap B) = P(A)P(B)$$

• Two events are dependent if they are not independent.

2. Independence

- Example (two coin flip): $\Omega = \{HH, HT, TH, TT\}$
 - \circ Assume $\forall \omega \in \Omega, P(\omega) = \frac{1}{|\Omega|} = \frac{1}{4}$.
 - Define event A: "First flip is H." $A = \{HH, HT\}$
 - Define event B: "Second flip is H." $B = \{HH, TH\}$
 - Are A and B Independent?
 - i) $P(A \cap B) = P(\{HH\}) = 1/4$
 - ii) $P(A)P(B) = 1/2 * 1/2 = 1/4 \rightarrow Yes$

2. Independence

- Example (two coin flip): $\Omega = \{HH, HT, TH, TT\}$
 - \circ Assume $\forall \omega \in \Omega, P(\omega) = \frac{1}{|\Omega|} = \frac{1}{4}$.
 - Define event A: "First flip is H." $A = \{HH, HT\}$
 - \circ Define event B: "Contains a T." $B = \{HT, TH, TT\}$
 - Are A and B Independent?
 - i) $P(A \cap B) = P(\{HT\}) = 1/4$
 - ii) $P(A)P(B) = 1/2 * 3/4 = 3/8 \rightarrow No$

3. Conditional Probability

• Given some probability space (Ω, P) , for any two events A and B, if $P(B) \neq 0$, then we define the **conditional probability** P(A|B) that A occurs given that B occurs as,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

From this follows Chain Rule:

$$P(A \cap B) = P(A|B) P(B)$$

 $P(A \cap B \cap C) = P(A|B \cap C) P(B \cap C)$
 $= P(A|B \cap C) P(B|C)P(C)$
and so on..

3. Conditional Probability

- Example (two coin flip): What is the probability that both are head, GIVEN at least one is head?
- Probability Problem:

$$\Omega = \{HH, HT, TH, TT\}$$
 $B = \{HH, HT, TH\} \rightarrow$ "At least one is head."
 $A = \{HH\} \rightarrow$ "Both are heads."
 $P(A \cap B) = P(\{HH\}) = 1/4$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/4}{3/4} = \frac{1}{3}$$

3. Conditional Probability

Consequences

$$P(\emptyset|B) = 0$$

$$P(B|B) = 1$$

$$P(A|B) = 1 - P(A^C|B)$$

4. Bayes Rule

• From chain rule, $P(A \cap B) = P(A|B) P(B)$ $P(B \cap A) = P(B|A) P(A)$

• Intersections are commutative, $A \cap B = B \cap A$.

$$P(A \cap B) = P(A|B) P(B)$$

$$\parallel$$

$$P(B \cap A) = P(B|A) P(A)$$

• As a result, we have **Bayes Rule**:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

4. Bayes Rule

• Each term is often called:

Posterior
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
Evidence

5. Random Variables

- Given some probability space (Ω, P) , a **random variable** $X: \Omega \to R$ is a *function* that maps the sample space to the reals.
- When we say P(X = a), we actually mean the probability of the inverse image $X^{-1}(a)$. That is,

$$P(X = a) = P(X^{-1}(a)) = P(\{\omega \in \Omega | X(\omega) = a\})$$

• Example (single coin flip): $\Omega = \{Head, Tail\}$ X(Head) = 1, X(Tail) = 0 $P(X = 1) = P(X^{-1}(1)) = P(Head)$

5. Random Variables

- Example: 3 coin flips
 - $\circ \Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - \circ Let us define $X(\omega)$ to be the number of Heads in a given flip. Then,

$$X(HHH) = 3, X(HHT) = X(HTH) = 2, ..., X(TTT) = 0$$

 $P(X = 3) = 1/8, P(X = 2) = P(X = 1) = 3/8, P(X = 0) = 1/8$

5. Random Variables

- Example: 3 coin flips
 - $\circ \Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - \circ This time, let us define $X(\omega)$ to be 1 if H appears in a given flip, otherwise is 0. Then,

$$X(HHH) = X(HHT) = \cdots = 1$$
, $X(TTT) = 0$
 $P(X = 1) = 7/8$, $P(X = 0) = 1/8$

6. Density/Distribution Functions

- Probability mass function (pmf) of discrete RVs
- Probability density function (pdf) of continuous RVs

$$f: R \to [0,1]$$

$$\forall a \in R, f_X(a) = P(X = a)$$

6. Density/Distribution Functions

Cumulative distribution functions (cdf)

$$F: R \to [0,1]$$

$$\forall a \in R, F_X(a) = P(X \le a)$$

• A cdf is a monotonic nondecreasing function, i.e., $\forall x \leq y, F(x) \leq F(y)$

Acknowledgement

• Thanks to Daniel Moroz, Dan Lee's master student at the University of Pennsylvania, for allowing us to take parts of contents from his slides.