PK Nº1

Рубежный контроль №1. Емельянова Т.И. Вариант №5: задание 1, датасет 5

Задание:

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Набор данных состоит из информации, необходимой для прогнозирования поступления в аспирантуру в Индии.

```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
    %matplotlib inline
    sns.set(style="ticks")

In [2]: dataset = pd.read_csv('dataset/Admission_Predict.csv')

In [3]: print(dataset.shape[0], 'x', dataset.shape[1])

400 x 9
```

In [4]: dataset.head(5)

Out[4]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

Набор данных содержит несколько параметров, которые считаются важными при подаче заявки на магистерские программы. Включены следующие параметры:

- 1. Баллы GRE (из 340)
- 2. Баллы TOEFL (из 120)
- 3. Рейтинг университета (из 5)
- 4. Заявление о целях и рекомендательное письмо (из 5)
- 5. Средний балл бакалавриата (из 10)
- 6. Исследовательский опыт (0 или 1)
- 7. Шанс допуска (от 0 до 1)

In [5]: dataset.dtypes

Out[5]: Serial No. int64 GRE Score int64 TOEFL Score int64 University Rating int64 float64 SOP LOR float64 CGPA float64 int64 Research Chance of Admit float64

dtype: object

```
In [6]: print('Число уникальных значений для каждого столбца')
        dataset.nunique()
        Число уникальных значений для каждого столбца
Out[6]: Serial No.
                             400
        GRE Score
                              49
        TOEFL Score
                              29
        University Rating
                               5
        SOP
                               9
        LOR
                               9
        CGPA
                             168
        Research
                               2
        Chance of Admit
                              60
        dtype: int64
In [7]: print('Число пропусков')
        dataset.isna().sum()
        Число пропусков
Out[7]: Serial No.
                             0
        GRE Score
                             0
        TOEFL Score
        University Rating
        SOP
        LOR
        CGPA
                             0
        Research
        Chance of Admit
                             0
        dtype: int64
```

Визуализирование

Визуализация различных значений для каждого столбца:

```
In [11]: for column in dataset:
    plt.hist(dataset[column], 30)
    plt.xlabel(column)
    plt.show()
```


Парные диаграммы

In [9]: sns.pairplot(dataset)

Out[9]: <seaborn.axisgrid.PairGrid at 0x28067be5450>

RK1 Emelyanova IU5-65B 5 - Jupyter Notebook

Тепловая карта

```
In [10]: fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
    fig.suptitle('Koppeляционная матрица')
    sns.heatmap(dataset.corr(), ax=ax, annot=True, fmt='.3f')

Out[10]: <Axes: >
```

Корреляционная матрица

По тепловой карте видно, что такие признаки, как Баллы GRE и TOEFL, а также CGPA (средний бал бакалавриата) имеют сильную связь с шансом поступлнения. На основании этого можно сделать модель предсказания шанса поступления судя по этим параметрам.

Для этого можно использовать классифкацию (или регрессию) на основе метода k-ближайших соседей (также можно использовать SVM и дерево решений).

In []: