SEQUENCE LISTING

<110>	DSM IP ASSETS : Institute Natio		herche Ag	ronomique		
<120>	YEAST STRAINS	WITH IMPROVED	FRUCTOSE	FERMENTATIO	ON CAPACITY	
<130>	21568WO			-	·	
<150> <151>	EP 03078992.9 2003-12-19		•			
<160>	30					
<170>	PatentIn versi	on 3.1			•	
<210> <211> <212> <213>	1 23 DNA primer					
<400>	1			•	•	
gtgcgg	gatc cgaaggcaat	atc			•	23
<210> <211> <212> <213>	.2 27 DNA primer		,			
<400>	2		. •			
gatcgga	atcc atcatcacgt	tcctagc				27
<210> <211> <212> <213>	3 63 DNA primer		· ·	8	•	
<400>	3	-	•			
aagtga	cggg cgatgagtaa	gaaagaaata a	ctgactcat	tagaccatca	tcacgttcct	. 60
agc			•	*		63
<210> <211> <212> <213>	4 20 DNA primer					
<400> ttaagc	4 atga tcgtctaggc		•			20
<210> <211> <212>	5 68 DNA					

<213>	primer		•			
<400>	5					
aacacaa	aaaa caaaaagttt	ttttaatttt	aatcaaaaac	tgagttaaac	aatcatgaat	60
tcaacto	cc					68
<210>	6				•	
<211>	65					
<212>	DNA		1. 4.	•		
<213>	primer		we regard to		•	
<400>	6	-	-			
gaatgta	aagc gtgacataac	taattacatg	actcgagacg	gtttagcgtg	aaattatttc	60
ttgcc .						65
						-,-,
<210>	7 -					
<211>	20		•			
<212>	DNA					
<213>	primer				•	
		•				
<400>	7		•			
gacaca	gtga catatgcacc					20
<210>	8					
<211>	21	•		•	•	
<212>	DNA			•		
<213>	primer					
			•	•		
<400>	8				•	
gccaat	actt cacaatgttc	đ				. 21
	•		•	•		
<210>	9					
<211>	60				•	
<212>	DNA					
<213>	primer	•				
<400>	9			_ecc-		-
	tggt attgccgttt	tatotoctat	attastttat	ttcatacact	acaaataaaa	60
cyccyy	egge detgeogeee	cacceccae	geegaeeeee	e cog caogo c	gcaggccgac	00
401.0 5	10					
<210> <211>	10 62					
<211>	DNA		•			
<213>	primer	•				
-210/	bramer		,		-	
<400>	10	•				
cacaga	gttg gagtagttct	tagtaccgaa	gttggtacag	gcataggcca	ctagtggatc	. 60
+ ~		-			•	
+ ~		•		• •	•	

	11							,
<211>	60					•		
<212>	DNA					:		
<213>	prime	er						
<400>	11							
tttcgaa	aact 1	tctattg	ttt t	teggtgtegt	caacttcttc	ttcgtacgct	gcaggtcgac	60
		•		• '•				
<210>	12							
<211>	62							
<212>	DNA	•	-					
<213>	prime	er	-		•			
<400>	12			•				
		agaccat	acc a	aatoocacca	tataacaaac	gcataggcca	ctagtggatc	60
						9		
tg								62
5 8 22						•		
<210>					D - 47 -			
				•				
<211>	20		•					
<212>	DNA							
<213>	prime	er						
<400>	13	•						
		tgtacgg	tcg.					20
<210>	14							
<211>	20							
<212>	DNA			**				
<213>	prim	er						
-100-								
<400>	14		~+ ^					20
ayayatı	yere	ttgcttc	gic					20
	• •			•				
<210>	15			•			•	
<211>	20							
<212>	DNA					•		
<213>	prim	er						
<400>	15	. . _	.					0.0
ggtate	atga	tccaatc	tct			,		20
<210>	16		•	·	• •	•		
<211>	20							
<212>	DNA			•				
<213>		er						
•								
<400>	16							
ggccat	aatc	tagtgac	tcc					20
<210>	17				•			
	- '							

<211>	20						
<212>	DNA						
<213>	primer						
<400>	17						
ggtatca	itga tccaatctct						20
		•		•			
<210>	18						
<211>	20						
<212>	DNA						
<213>	primer			•			
<400>	18						
atcatad	cagt taccagcacc						20
							•
•							
<210>	19						
<211>	31						
<212>	DNA ·			•			•
<213>	primer				•		
				•			
<400>	19	•			_		
cgaggg	gato caatcatgaa tto	caactcca	g				31
	•		•				
<210>	20						
<211>	31						
<212>	DNA						
<213>	primer						
<400>	20						
cgagga	agct tcgtgaaatt att	ttcttgcc	g	•			31
-		•					
<210>	21						
<211>	37						
<212>	DNA						
<213>	primer			•		,	
							•
<400>	21			•			
cctaag	gaaa tgagaggtac tti	tagtctcc	tgttacc				37
					•		
<210>	22						
<211>	37						
<212>	DNA			-		•	
<213>	primer						
4400:							
<400>	22						
ggtaac	agga gactaaagta cc	tctcattt	ccttagg				37
/21 Os	23					•	
<210>	23						
<211>	40						
<212>	DNA						

<400> 23 cctgttacca actgatgatt accttgggta ttttcttggg	40
<210> 24 <211> 40 <212> DNA <213> primer	
<400> 24 cccaagaaaa tacccaaggt aatcatcagt tggtaacagg	40
<210> 25 <211> 1704 <212> DNA <213> Saccharomyces cerevisiae	
<400> 25 atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgctgac	60
ctgccttcga atagctctca ggtaatgaac atgcctgaag aaaaaggtgt tcaagatgat	120
ttccaagetg aggeegacea agtaettace aacceaaata caggtaaagg tgcatatgte	180
actgtgtcta tctgttgtgt tatggttgcc ttcggtggtt tcgttttcgg ttgggatact	240
ggtaccattt ctggtttcgt cgcccaaact gatttcttga gaagattcgg tatgaagcat	300
aaagatggta gttattattt gtctaaggtt agaactggtt taattgtctc cattttcaac	360
attggttgtg ccattggtgg tattattttg gctaaattgg gtgatatgta cggtcgtaaa	420
atgggtttga ttgtcgttgt tgttatctac atcatcggta ttattattca aattgcatcc	480
atcaacaaat ggtaccaata tttcatcggt agaattattt ccggtttggg tgttggtggt	540
attgccgttt tatctcctat gttgatttct gaagtcgctc ctaaggaaat gagaggtact	600
ttagtctcct gttaccaact gatgattacc ttgggtattt tcttgggtta ctgtaccaac	660
tteggtaeta agaactaete caactetgtg caatggagag ttecattagg tttgtgtttt	720
gcctgggctt tgtttatgat cggtggtatg actttcgttc cagaatcccc acgttatttg	780
gttgaagctg gtcaaattga cgaagcaaga gcatctcttt ccaaagttaa caaggttgcc	840
ccagaccatc cattcattca acaagagttg gaagttattg aagctagtgt tgaagaagct	900
agagctgctg gttcagcatc atggggtgag ttgttcactg gtaagccggc catgtttaag	960
cgtactatga tgggtatcat gatccaatct ctacaacaat tgactggtga taactatttc	1020
ttctactatg gtactaccgt ttttaacgct gttggtatga gtgattcttt cgaaacttct	1080
attgttttcg gtgtcgtcaa cttcttctct acttgttgtt ctttgtacac tgtcgatcgt	1140

tttggacgtc g	gtaactgttt	gttatatggt	gccattggta	tggtctgctg	ttatgtagtt	1200
tacgcttctg t	tggtgtcac	cagactatgg	ccaaatggtg	aaggtaatgg	ttcatccaag	1260
ggtgctggta a	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	tgctaccact	1320
tgggctccaa t	tgcttatgt	tgttatttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta t	tgctacagc	tgctaattgg	ttgtggggtt	tcttgattgg	tttcttcact	1440
ccatttatta c	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact t	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata t	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagag o	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aaģaaaatgt t	tcggcaagaa	ataa	• •		`.	1704

<210> 26 <211> 567 <212> PRT

.<213> .Saccharomyces cerevisiae

<400> 26

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn 10

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro 20 25 30

Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val 40 45

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile 55

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr 70 65 75

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe 85

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr

Gly	Ile 115	Ser		Ile	Gly	Cys	11e 125	Gly	

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile 130 135 140

Val Val Val Val Ile Tyr Ile Ile Gly Ile Ile Gln Ile Ala Ser 145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu 165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val.
180 185 ... 190

Ala Pro Lys Glu Met Arg Gly Thr Leu Val Ser Cys Tyr Gln Leu Met 195 200 205

Ile Thr Leu Gly Ile Phe Leu Gly Tyr Cys Thr Asn Phe Gly Thr Lys 210 220

Asn Tyr Ser Asn Ser Val Gln Trp Arg Val Pro Leu Gly Leu Cys Phe 225 230 235 240

Ala Trp Ala Leu Phe Met Ile Gly Gly Met Thr Phe Val Pro Glu Ser 245 250 255

Pro Arg Tyr Leu Val Glu Ala Gly Gln Ile Asp Glu Ala Arg Ala Ser 260 265 270

Leu Ser Lys Val Asn Lys Val Ala Pro Asp His Pro Phe Ile Gln Gln 275 280 285

Glu Leu Glu Val Ile Glu Ala Ser Val Glu Glu Ala Arg Ala Ala Gly 290 295 300

Ser Ala Ser Trp Gly Glu Leu Phe Thr Gly Lys Pro Ala Met Phe Lys 305 310 315

Arg Thr Met Met Gly Ile Met Ile Gln Ser Leu Gln Gln Leu Thr Gly 325 330 335

Asp Asn Tyr Phe Phe Tyr Tyr Gly Thr Thr Val Phe Asn Ala Val Gly

340 345 350

Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe 355 360 365

Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg 370 375 380

Asn Cys Leu Leu Tyr Gly Ala Ile Gly Met Val Cys Cys Tyr Val Val 385 390 395 400

Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Glu Gly Asn

Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Ala Cys Phe 420 425 430

Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val
435 440 445

Ile Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile 450 455 460

Ala Thr Ala Ala Asn Trp Leu Trp Gly Phe Leu Ile Gly Phe Phe Thr 465 470 475 480

Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met 485 490 495

Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Phe Val Pro Glu 500 510

Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly 515 520 525

Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly 530 535, 540

Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr 545 550 555 560

Lys Lys Met Phe Gly Lys Lys 565

<210> 27 <211> 567 <212> PRT <213> Mutated HXT3 protein <400> 27 Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn 10 Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro 25 Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val 35 40 Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile 55 50 Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr 100 Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile 120 125 Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile Val Val Val Ile Tyr Ile Ile Gly Ile Ile Gln Ile Ala Ser 150 155 160 Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu 165 .

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val

185

190

180

Ala Pro Lys Glu Met Arg Gly Thr Leu Val Ser Cys Tyr Gln Leu Met 195 200 205

Val Thr Leu Gly Ile Phe Leu Gly Tyr Cys Thr Asn Phe Gly Thr Lys 210 215 220

Asn Tyr Ser Asn Ser Val Gln Trp Arg Val Pro Leu Gly Leu Cys Phe 225 230 235 240

Ala Trp Ala Leu Phe Met Ile Gly Gly Met Thr Phe Val Pro Glu Ser 245 250 255

Pro Arg Tyr Leu Val Glu Ala Gly Gln Ile Asp Glu Ala Arg Ala Ser 260 265 270

Leu Ser Lys Val Asn Lys Val Ala Pro Asp His Pro Phe Ile Gln Gln 275 280 285

Glu Leu Glu Val Ile Glu Ala Ser Val Glu Glu Ala Arg Ala Ala Gly 290 295 300

Ser Ala Ser Trp Gly Glu Leu Phe Thr Gly Lys Pro Ala Met Phe Lys 305 310 315 320

Arg Thr Met Met Gly Ile Met Ile Gln Ser Leu Gln Gln Leu Thr Gly 325 330 335

Asp Asn Tyr Phe Phe Tyr Tyr Gly Thr Thr Val Phe Asn Ala Val Gly
340 345 350

Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe 355 360 365

Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg 370 375 380

Asn Cys Leu Leu Tyr Gly Ala Ile Gly Met Val Cys Cys Tyr Val Val 385 390 395 400

Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Glu Gly Asn.. 405 410

Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Ala Cys Phe

			420					425					430			
Tyr	Ile	Phe 435	Cys	Phe	Ala	Thr	Thr 440	Trp	Ala	Pro	Ile	Ala 445	Tyr	Val	Val.	
Ile	Ser 450	Glu	Thr	Phe	Pro	Leu 455	Arg	Val	Lys	Ser	Lys 460	Ala	Met	Ser	Ile	
Ala 465	Thr	Ala	Ala	Asn	Trp 470	Leu	Trp	Gly	Phe	Leu 475	Ile	Gly	Phe	Phe	Thr 480	
Pro	Phe	Ile			Ala						Gly	Tyr 	Val	Phe 495	Met	
Gly	Cys	Met	Val 500	Phe	Ala	Tyr	Phe	Tyr 505	Val	Phe	Phe	Phe	Val 510	Pro	Glu	
Thr	Lys	Gly 515	Leu	Thr	Leu	Glu	Glu 520	Val	Asn	Asp	Met	Tyr 525	Ala	Glu	Gly	
Val	Leu 530	Pro	Trp	Lys	Ser	Ala 535	Ser	-	Val	Pro	Thr 540	Ser	Gln	Arg	Gly	
Ala 545	Asn	Tyr	Asp	Ala	Asp 550	Ala	Leu	Met	His	Asp 555	Asp	Gln	Pro	. Phe	Tyr 560	
Lys	Lys	Met	Phe	Gly 565	Lys	Lys							· .	٠		· ·
<21 <21 <21 <21	1> 2>	28 1704 DNA Muta	ted !	нхтз	gen	e		-		_						
<40 atg		28 caa	ctcc	agat	tt a	atat	ctcc	a ca	aaag	tcaa	gtg	agaa	ttc	gaat	gctgac	60
ctg	cctt	cga	atag	ctct	ca g	gtaa	tgaa	c at	gcct	gaag	aaa	aagg	tgt	tcaa	gatgat	120
ttc	caag	ctg	aggc	cgac	ca a	gtac	ttac	c aa	ccca	aata	cag	gtaa	agg	tgca	tatgtc	180
															gatact	240
															aagcat	300
aad	yacg	yıa	yıta	LLac	ii g	LUTA	aygt	ı ag	aact	ggtt	Lad	LLYL	. د د د	Catt	ttcaac	360

WO 2005/058947 PCT/EP2004/014577 12/16

attggttgtg	ccattggtgg	tattattttg	gctaaattgg	gtgatatgta	cggtcgtaaa	420
atgggtttga	ttgtcgttgt	tgttatctac	atcatcggta	ttattattca	aattgcatcc	480
atcaacaaat	ggtaccaata	tttcatcggt	agaattattt	ccggtttggg	tgttggtggt	540
attgccgttt	tatctcctat	gttgatttct	gaagtcgctc	ctaaggaaat	gagaggtact	600
ttagtctcct	gttaccaact	gatggttacc	ttgggtattt	tcttgggtta	ctgtaccaac	660
ttcggtacta	agaactactc	qaactctgtg	caatggagag	ttccattagg	tțtgtgtttt	720
gcctgggctt	tgtttatgat	cggtggtatg	actttcgttc	cagaatcccc	acgttatttg	. 780
gttgaagctg	gtcaaattga	cgaagcaaga	gcatctcttt	ccaaagttaa	caaggttgcc	840
ccagaccatc	cattcattca	acaagagttg	gaagttattg	aagctagtgt	-tgaagaagct	. 900
agagctgctg	gttcagcatc	atggggtgag	ttgttcactg	gtaagccggc	catgtttaag	960
cgtactatga	tgggtatcat	gatccaatct	ctacaacaat	tgactggtga	taactatttc-	1020
ttctactato	gtactaccgt	ttttaacgct	gttggtatga	gtgattcttt	cgaaacttct	1080
attgttttcg	gtgtcgtcaa	cttcttctct	acttgttgtt	ctitgtacac	tgtcgatcgt	1140
tttggacgtc	gtaactgttt	gttatatggt	gccattggta	tggtctgctg	ttatgtagtt	1200
tacgcttctg	ttggtgtcac	cagactatgg	ccaaatggtg	aaggtaatgg	ttcatccaag	1260
ggtgctggta	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	tgctaccact	1320
tgggctccaa	ttgcttatgt	tgttatttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta	ttgctacagc	tgctaattgg	ttgtggggtt	tcttgattgg	tttcttcact	1440
ccatttatta	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagaq	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aagaaaatgt	tcggcaagaa	ataa		-		1704
<210> 29	•					

<210>

120

<211> 1704

<212> DNA

<213> Mutated HXT3 gene II

atgaattcaa ctccagattt aatatctcca caaaagtcaa gtgagaattc gaatgctgac 60، ctgccttcga atagctctca ggtaatgaac atgcctgaag aaaaaggtgt tcaagatgat

ttccaagctg	aggccgacca	agtacttacc	aacccaaata	caggtaaagg	tgcatatgtc	180
actgtgtcta	tctgttgtgt	tatggttgcc	ttcggtggtt _.	tcgttttcgg	ttgggatact	240
ggtaccattt	ctggtttcgt	cgcccaaact	gatttcttga	gaagattcgg	tatgaagcat	300
aaagatggta	gttattattt	gtctaaggtt	agaactggtt	taattgtctc	cattttcaac	360
attggttgtg	ccattggtgg	tattattttg	gctaaattgg	gtgatatgta	cggtcgtaaa	420
atgggtttga	ttgtcgttgt	tgttatctac	atcatcggta	ttattattca	aattgcatcc	480
atcaacaaat	ggtaccaata	cttcatcggt	agaattattt	ccggtttggg	tgttggtggt	540
attgccgttt	tatctcctat	gttgatttct	gaagtcgctc	ctaaggaaat	gagaggtgct	600
ttagtctcct	gttaccaact	gatggttacc	ttgggtattt	tcttgggtta	ctgtaceaao-	660
ttcggtacta	agaactactc	caactctgtg	caatggagag	ttccattagg	tttgtgtttt	720
gcctgggctt	tgtttatgat	cggtggtatg	actttcgttc	cagaatcccc	acgttatttg	780
gttgaagctg	gtcaaattga	cgaagcaaga	gcatctcttt	ccaaagttaa	caaggttgcc	840
ccagaccató	cattcattca	acaagagttg	gaagttattg	aagctagtgt	tgaagaagct	900
agagctgctg	gttcagcatc	atggggtgag	ttgttcactg	gtaagccggc	catgtttaag	960
cgtactatga	taggtatcat	gatccaatct	ctacaacaat	tgactggtga	taactatttc	1020
ttctactatg	gtactaccgt	ttttaacgct	gttggtatga	gtgattcttt	cgaaacttct	1080
attgttttcg	gtgtcgtcaa	cttcttctcc	acttgttgtt	ctctgtacac	cgttgaccgt	1140
tttggccgtc	gtaactgttt	gatgtggggt	gctgtcggta	tggtctgctg	ttatgttgtc	1200
tatgcttctg	ttggagtcac	tagattatgg	ccaaatggtc	aaaacaacgg	ctcatccaag	1260
ggtgctggta	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	cgctactacc.	1320
tgggccccaa	ttgcttatgt	cgttgtttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta	ttgctacagc	tgctaactgg	atctggggtt	tcttgattgg	tttcttcact	1440
ccatttatta	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagag	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aagaaaatgt	tcggcaagaa	ataa				1704

<210> 30 <211> 567

<212> PRT

<213> Mutated HXT3 protein II

<400> 30

Met Asn Ser Thr Pro Asp Leu Ile Ser Pro Gln Lys Ser Ser Glu Asn
1 5 10 15

Ser Asn Ala Asp Leu Pro Ser Asn Ser Ser Gln Val Met Asn Met Pro 20 25 30

Glu Glu Lys Gly Val Gln Asp Asp Phe Gln Ala Glu Ala Asp Gln Val 35 40 45

Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser Ile 50 55 60

Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp Thr 65 70 75 80

Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg Phe 85 90 95

Gly Met Lys His Lys Asp Gly Ser Tyr Tyr Leu Ser Lys Val Arg Thr 100 105 110

Gly Leu Ile Val Ser Ile Phe Asn Ile Gly Cys Ala Ile Gly Gly Ile 115 120 125

Ile Leu Ala Lys Leu Gly Asp Met Tyr Gly Arg Lys Met Gly Leu Ile 130 135 140

Val Val Val Val Ile Tyr Ile Ile Gly Ile Ile Gln Ile Ala Ser 145 150 155 160

Ile Asn Lys Trp Tyr Gln Tyr Phe Ile Gly Arg Ile Ile Ser Gly Leu 165 170 175

Gly Val Gly Gly Ile Ala Val Leu Ser Pro Met Leu Ile Ser Glu Val 180 185 190

Ala Pro Lys Glu Met Arg Gly Ala Leu Val Ser Cys Tyr Gln Leu Met 195 200 205

ts. .

Val Thr Leu Gly Ile Phe Leu Gly Tyr Cys Thr Asn Phe Gly Thr Lys 210 215 220

Asn Tyr Ser Asn Ser Val Gln Trp Arg Val Pro Leu Gly Leu Cys Phe 225 230 235 240

Ala Trp Ala Leu Phe Met Ile Gly Gly Met Thr Phe Val Pro Glu Ser 245 250 255

Pro Arg Tyr Leu Val Glu Ala Gly Gln Ile Asp Glu Ala Arg Ala Ser 260 265 270

Glu Leu Glu Val Ile Glu Ala Ser Val Glu Glu Ala Arg Ala Ala Gly 290 295 300

Ser Ala Ser Trp Gly Glu Leu Phe Thr Gly Lys Pro Ala Met Phe Lys 305 310 315 320

Arg Thr Met Ile Gly Ile Met Ile Gln Ser Leu Gln Gln Leu Thr Gly 325 330 335

Asp Asn Tyr Phe Phe Tyr Tyr Gly Thr Thr Val Phe Asn Ala Val Gly
340 345 350

Met Ser Asp Ser Phe Glu Thr Ser Ile Val Phe Gly Val Val Asn Phe 355 360 365

Phe Ser Thr Cys Cys Ser Leu Tyr Thr Val Asp Arg Phe Gly Arg Arg 370 375 380

Asn Cys Leu Met Trp Gly Ala Val Gly Met Val Cys Cys Tyr Val Val 385 390 395 400

Tyr Ala Ser Val Gly Val Thr Arg Leu Trp Pro Asn Gly Gln Asn Asn 405 410 415

Gly Ser Ser Lys Gly Ala Gly Asn Cys Met Ile Val Phe Ala Cys Phe · 420 425 430

Tyr Ile Phe Cys Phe Ala Thr Thr Trp Ala Pro Ile Ala Tyr Val Val

435 440 445 Val Ser Glu Thr Phe Pro Leu Arg Val Lys Ser Lys Ala Met Ser Ile 455 Ala Thr Ala Ala Asn Trp Ile Trp Gly Phe Leu Ile Gly Phe Phe Thr 470 Pro Phe Ile Thr Gly Ala Ile Asn Phe Tyr Tyr Gly Tyr Val Phe Met 485 .490 Gly Cys Met Val Phe Ala Tyr Phe Tyr Val Phe Phe Phe Val Pro Glu ..500 505 Thr Lys Gly Leu Thr Leu Glu Glu Val Asn Asp Met Tyr Ala Glu Gly. 515 520 Val Leu Pro Trp Lys Ser Ala Ser Trp Val Pro Thr Ser Gln Arg Gly 535 540 " Ala Asn Tyr Asp Ala Asp Ala Leu Met His Asp Asp Gln Pro Phe Tyr 545 550

Lys Lys Met Phe Gly Lys Lys 565