Temps de survie ajusté sur la qualité de vie Estimation de l'effet d'un traitement en vue d'une médecine personnalisée

S Chevret 15 janvier 2024

Présentation

- Equipe mixte (Inserm-Université Paris Cité)
- ECSTRRA: Epidemiology and Clinical Statistics for Tumor, Respiratory, and Resuscitation
- Lieu : hôpital Saint Louis, Paris 10
 - Hémato-cancérologie
 - Greffe de moelle
 - Réanimation
- Axes de recherche
 - Essais thérapeutiques innovants
 - Inférence causale pour données observationnelles
 - Modèles pronostiques
 - Données manquantes

Contexte épidémiologie clinique Evaluation thérapeutique

Introduction

Recherche (épidémiologie) clinique

Evaluation thérapeutique

Etudes « expérimentales »

- Intervention sur le soin
- Très réglementées
- 4 phases d'évaluation

Phase 1

Tolérance

Recherche d'une dose tolérée

Phase 2

Phase 3

Efficacité

Phase 4

Autorisation de mise sur le marché (AMM)

Evaluation thérapeutique

Etudes « expérimentales »

- Intervention sur le soin
- Très réglementées
- 4 phases d'évaluation

Evaluation observationnelle

Contexte Clinique : pathologies hématologiques (malignes)

Pathologies Hématologiques

- Concernent les lignées sanguines
 - globules rouges, globules blancs, plaquettes
- Anomalies d'une ou plusieurs de ces lignées
- Malignes

Prolifération excessive de cellules sanguines ou de leurs précurseurs (cellules souches hématopoïétiques) qui se différencient de manière anormale

Pathologies Hématologiques

- Nécessitent des traitements intensifs (et toxiques)
 - Chimiothérapies
 - Greffe de moelle osseuse (de cellules souches hématopoïétiques)

Moelle = lieu où sont fabriquées les cellules souches hématopoïétiques, à l'origine des différentes cellules du sang

But = modifier les cellules souches du malade

Autologue = Autogreffe, quand cellules proviennent du malade

Allogénique = Allogreffe, quand cellules proviennent d'un donneur

Exemple:

Essai Graaph 2014 Ph+ ALL Front-line 18-60v

Conduit dans LAL de l'adulte (leucémie aiguë lymphoblastique)

4 cycles de chimiothérapie ± greffe de moelle

Contexte Statistique

Délais de survie

Critères d'évaluation en hématologie

- Délais d'événement d'intérêt depuis la randomisation
 - En « tout ou rien »
 - Exemple princeps : le décès : « (délai de) survie »: terme devenu générique

Caractéristiques des délais de survie (1)

- T est une variable aléatoire
 - Positive (>0)
 - Asymétrique

distribution décrite préférentiellement par

Propriétés de S(t)

$$S(t)$$
 décroissante
 $S(0) = 1$
 $\lim_{t \to \infty} S(t) = 0$

1) Fonction de survie :
$$S(t) = 1 - F(t) = P(T > t)$$

Caractéristiques des délais de survie (1)

- T est une variable aléatoire
 - Positive (>0)
 - Asymétrique

distribution décrite préférentiellement par

2) Fonction de risque instantané

modèle lognormal

(densité conditionnelle)

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

NB: Formulations équivalentes de loi T

Rappel : définition d'une probabilité conditionnelle

$$f(t) = \lim_{\partial t \to 0} \frac{P(t \le T < t + \partial t)}{\partial t}$$
$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

• Donc
$$h(t) = \frac{f(t)}{S(t)}$$
 et $f(t) = \frac{dF(t)}{dt} = \frac{-dS(t)}{dt}$

•
$$\lambda(t) = \frac{f(t)}{S(t)} = \frac{-\frac{dS(t)}{dt}}{S(t)} = \frac{d(-logS(t))}{dt} = \frac{-d}{dt}\log(S(t))$$

•
$$S(t) = \exp(-\int_0^t \lambda(u)du)$$

Loi exponentielle, E(T)= $1/\lambda$

$$f(t) = \lambda \exp(-\lambda t)$$

$$S(t) = \exp(-\int_{0}^{t} \lambda(u)du) = \exp(-\lambda t)$$

$$h(t) = \frac{\exp(\lambda t)}{\lambda \exp(-\lambda)} = 1/\lambda$$

Remarque : Espérance de T, E(T)

- $E(T) = \int_0^\infty t f(t) dt$
 - Or $f(t) = \frac{-dS(t)}{dt}$
 - Donc $E(T) = \int_0^\infty -\frac{t}{dt} dS(t) dt = -tS(t) \Big]_0^\infty + \int_0^\infty S(t) dt$
 - $E(T) = \int_0^\infty S(t)dt$
 - Aire sous S(t)
 - Mauvais paramètre de position

Exemple: Espérance de vie à naissance

Caractéristiques des délais de survie (2)

- T est une variable aléatoire
 - Censurée : tous les sujets ne présentent pas l'événement à la fin de leur suivi
- Censure définie par T>C (où C délai de censure)
- 3 types
 - I : fixe (C=u, constante)
 - II: séquentielle (censure après r événements : T^(r))
 - III: aléatoire +++

Censure à droite aléatoire

- La durée d'observation (délai C de censure) est aléatoire
- Données : $\{(X_i, \delta_i), i = 1, ..., n\}$

Avec
$$X_i = min(T_i, C_i)$$
 et $\delta_i = 1(T_i \le C_i)$

- Intérêts : modélisation des données de cohorte
- Suppose de plus variable de censure et de survie **indépendantes** en probabilités

Censure à droite aléatoire

- Modèle de l'essai thérapeutique
 - Inclusion des sujets à des dates différentes
 - Evaluation de l'état (avec/sans événement) à une date donnée (fin étude/analyse)

On distingue 2 types de censure

- Administrative (état connu après date)
- Interruption suivi avant date

Censure à droite aléatoire

- Modèle de l'essai thérapeutique
 - On suppose toutes censures "administratives", le temps de censure et de survie indépendants en probabilité

Estimation des distributions de survie, S(t)

Non paramétrique +++
 (Edward L. Kaplan, Paul Meier, 1958)

1920-2006

1924-2011

- Généralisation de l'estimateur empirique d'une function de répartition
 - Utilise toute l'information disponible (X_i, δ_i) avec $\delta_i = 1[X_i = T_i], i = 1, ..., n$
 - Un sujet censuré a au moins survécu jusqu'à son temps de censure ($T_i > C_i$)

Estimation des distributions de survie, S(t)

Non paramétrique +++
 (Edward L. Kaplan, Paul Meier, 1958)

1920-2006

1924-2011

= Produit de probabilités conditionnelles

P(Survie en t)= P(Survie en t si survie en t-1) P(survie en t-1)
P(Survie en t-1)= P(Survie en t-1 si survie en t-2) P(survie en t-2)

• • •

P(Survie en t)= $\prod P(vivant\ en\ t\ | vivant\ en\ t-1)$

$$\hat{S}(t) = \prod_{t p s \ dc} \frac{n_j - d_j}{n_j} = \prod_{s \le t} \left(1 - \frac{\sum_{i=1}^n 1[T_i = s]}{n - \sum_{i=1}^n 1[X_i < s]} \right)$$

NB: suppose censure 'non informative'

Le concept statistique de **censure "non informative"** traduit le concept probabiliste de censure "**indépendante**"

- on considère que les données censurées n'apportent aucune information sur la loi de T
- On parle de "vraisemblance partielle"

$$L(\boldsymbol{\theta}) = \prod \left\{ f_{T,\boldsymbol{\theta}}(\boldsymbol{x})^{\delta} \left[S_{T,\boldsymbol{\theta}}(\boldsymbol{x}) \right]^{1-\delta} \right\}$$

Estimation des distributions de survie, S(t)

- Fonction monotone décroissante de 1 à 0
 - Définie sur tout l'intervalle des observations (et non en dehors)

- Allure "en marches d'escalier"
- = position des décès

Estimation de la survie moyenne

Nécessité d'une troncature
 « restricted mean survival time », RMST

Estimation de la survie moyenne

- Nécessité d'une troncature
- « restricted mean survival time », RMST
 - mesure d'effet entre groupes de traitement

Exemple

Evaluating treatment strategies in chronic lymphocytic leukemia: Use of quality-adjusted survival analysis

Vincent Levy^{a,b}, Raphaël Porcher^{a,b}, Fabrice Delabarre^a, Michel Leporrier^c, Bruno Cazin^d, Sylvie Chevret^{a,b,*}, for the French Cooperative CLL Group

Journal of Clinical Epidemiology 54 (2001) 747–754

Fig. 1. Partitioned survival plots for (a) ChOP, (b) CAP and (c) fludarabine. Survival curves are plotted for OS, PFS (Progression Free Survival), treatment and toxicity. Areas between the curves represent the mean times spent in the health states.

Objectifs

Questions spécifiques du projet

Objectif

- Mesurer le bénéfice d'un nouveau traitement en intégrant, outre la quantité, la qualité de la survie
 - En tenant compte par exemple des toxicités ou d'une rechute
 - ➤ Critère de survie moyenne sans maladie ni toxicité

 TwIST = Time without symptoms & treatment toxicities

Secondairement mesure pondérée par des utilités

Estimer la moyenne du temps de survie sans maladie (rechute) ni toxicité

TwIST = Time without symptoms & treatment toxicities

1) Partition du délai de survie en 3 états

Estimer la moyenne du temps de survie sans maladie (rechute) ni toxicité

TwIST = Time without symptoms & treatment toxicities

2) Estimer les durées moyennes dans chaque état

 Nécessitera de tronquer les délais de survie

Pondération de chaque durée par un coefficient « d'utilité »

Q-TwIST = quality adjusted- TwiST

Chaque coefficient varie sur une échelle de 0 (mort) à 1 (TwiST, optimale)

POUR QUELLE(S)
COMBINAISON(S) DE
COEFFICIENTS LE BENEFICE DU
TRAITEMENT EST IL MODIFIE ?

Application

Données Essai GRAAPH 2014

Données

- 155 observations
- 104 variables

identifiant	SUBJECT_REF	identifiant sujet
randomisation	R1	groupe de randomisation
	randodt	Date de randomisation
	age	Age, années
	sEXE	Sexe
	bmi	Indice de masse corporelle, Kg/m2
	tRANSCRIT	Type de transcrit
	sTRATE	Strate de randomisation
	cNS	Attentinte du système nerveux central
diagnostic	BLASTESDIAG	Nb blastes circulants au diagnostic, Giga/L
	GBDIAG	Nb globules blancs au diagnostic, Giga/L
	gb10	1 si GB>10 ; 0 sinon
	gb20	2 si GB>20 ; 0 sinon
	gb30	3 si GB>30 ; 0 sinon
	PS	Échelle de statut de performance-ECOG
	RATEDG	Atteinte rate au diagnostic
	FOIEDG	Atteinte foie au diagnostic
	MEDIASTINDG	atteinte médiastin au diagnostic
	BLASTEMODIAG	Nb blastes moelle au diagnostic, Giga/L
	PBLASTEMODIAG	% blastes moelle au diagnostic, 0-100
	HBDIAG	taux Hb au diagnostic, g/dL
	PNNDIAG	Nb neutrophiles au diagnostic, Giga/L
	LYMPHODIAG	Nb lymphocytes au diagnostic, Giga/L
	MONODIAG	Nb monocytes au diagnostic, Giga/L
	PLQDIAG	Nb plaquettes au diagnostic, Giga/L
oncogénétique	IKZF1	Délétion IKZF1 recherchée
	nO_IKZF1	Si non, motif
	tECH_IKZF1	Si oui, technique
	rES_IKZF1	Resultat
	eXONS_IKZF1	Si délété, exons délétés
	IKZF1_2	Deuxième technique
	tECH2_IKZF1	Si oui, technique
	rES2_IKZF1	Resultat
	eXONS2_IKZF1	Si délété, exons délétés
préphase	prephasdt	Date de préphase
	NBJRPREPHASE	Nb jours préphase, 0-11
	PLPREPHASE	Ponction lombaire préphase
	SNCDIAG	Atteinte système nerveux central au diagnostic
	SIGNCLI	Signes cliniques
	ATTBIO	Atteinte biologique
	PLTRAUMA	Ponction lombaire traumatique
	TLP	TLP
	cNSTARDIF	Atteinte SNC tardive
	tLPTARDIF	TLP tardif
	GBJ1	Nb globules blancs à J1, Giga/L
	BLASTESJ1	Nb blastes à J1, Giga/L

	CSR	Cortico sensibilité
raitement	C1dt	Date de cure 1
	C2dt	Date de cure 2
	C3dt	Date de cure 3
	C4dt	Date de cure 4
	pnn1_dt	Date PNN < 0.5 G/L cycle 1
	pnn1dt	Date PNN >= 0.5 G/L cycle 1
	plq1_dt	Date plaquettes < 50 G/L cycle 1
	plq1dt	Date Plaquettes >= 50 G/L cycle 1
	pnn2_dt	Date PNN < 0.5 G/L cycle 2
	pnn2dt	Date PNN >= 0.5 G/L cycle 2
	plq2_dt	Date plaquettes < 50 G/L cycle 2
	plq2dt	Date Plaquettes >= 50 G/L cycle 2
	pnn3_dt	Date PNN < 0.5 G/L cycle 3
	pnn3dt	Date PNN >= 0.5 G/L cycle 3
	plq3_dt	Date plaquettes < 50 G/L cycle 3
	plq3dt	Date Plaquettes >= 50 G/L cycle 3
	pnn4_dt	Date PNN < 0.5 G/L cycle 4
	pnn4dt	Date PNN >= 0.5 G/L cycle 4
	plq4_dt	Date plaquettes < 50 G/L cycle 4
	plq4dt	Date Plaquettes >= 50 G/L cycle 4
	Inter1dt	Date de interphase 1
	Inter2dt	date de interphase 2
	arrpremadt	Date arrêt prématuré étude
	ARPREMARAISON	Cause de arrêt prématuré
reffe	bmtdt	Date de greffe de moelle
	Type.bmt	Type de greffe
	agvhdt	Date maladie aiguë du greffon contre hôte
	cgvhdt	Date maladie chronique du greffon contre hôte
uivi	Suivi	suivi en mois
	greffe	greffe
	agvhd	maladie aiguë du greffon contre hôte
	cgvhd	maladie chronique du greffon contre hôte
	rech	rechute
	pfs	evenement
	dc	deces
	DEATH_CAUSE_C1	cause deces lie traitement
	DEATH_CAUSE_C2	cause deces liée greffe
	DEATH_CAUSE_C3	cause deces lié LAL
	DEATH_CAUSE_C4	cause deces liée autre
	relapsdt	Date de rechute
	deathdt	Date de deces
	Datemax	Date de dernier suivi

Exemple Essai Graaph 2014

Ph+ ALL Front-line 18-60y

4 cycles de chimiothérapie ± greffe de moelle

Mesures de toxicités (neutrophiles et plaquettes)

head(graaph.ensai[,c("SUBJECT_REF","randodt","prephasdt","C1dt","C2dt","C3dt","C4dt","c1.rando","Inter1dt","Inter2dt","maxttdt","bmtdt")])

	SUBJECT_REF	randodt	prephasdt	C1dt	C2dt	C3dt	C4dt	Inter1dt I	nter2dt	maxttdt	bmtdt
1	001-1006-G-R	2016-05-24	2016-05-16	2016-05-25	2016-06-25	2016-07-25	2016-08-24	<na></na>	<na></na>	2016-08-24	2016-10-28
2	001-1018-L-C	2016-08-19	2016-08-12	2016-08-19	2016-09-20	2016-10-17	2016-11-17	2017-01-0	2 2017-02-06	2017-02-06	2017-03-21
3	001-1089-S-F	2017-12-27	2017-12-19	2017-12-26	2018-01-30	2018-03-01	2018-04-04	<na></na>	<na></na>	2018-04-04	2018-05-30
4	001-1117-K-F	2018-05-31	2018-05-25	2018-06-01	2018-07-03	2018-08-01	2018-09-07	2018-10-0	9 <na></na>	2018-10-09	<na></na>
10	003-1069-G-C	2017-07-26	2017-07-19	2017-07-27	2017-08-26	2017-09-25	2017-10-23	2017-11-2	7 2018-01-11	2018-01-11	2018-04-13
11	003-1140-M-A	2018-10-19	2018-10-12	2018-10-19	2018-11-19	2018-12-17	2019-01-16	2019-02-2	0 <na></na>	2019-02-20	2019-04-03

To do list

- Résumer les données
- Réfléchir aux diverses partitions des temps de survie
 - Événement= fin de traitement
 - Événement = début de toxicité
 - Evénement= fin de toxicité
 - Événement= rechute
 - Événement= décès
- Estimer les distributions de chaque temps

Avec ou sans greffe (et sa toxicité propre : GVHD)