

TYPES of DELAY LINE Networks

Example: $F = 4$ Input Lines ($\alpha, \beta, \gamma, \delta$),
 $P = 2$ TTD States

Figure 1a

Figure 1b

PRIOR ART

Figure 3a

Port	A	B	C
Beam (Range)	1 (A1) 2 (A2)	1 (B1) 2 (B2)	1 (C1) 2 (C2)
Fiber	α β	γ δ	α β γ δ
	α β	γ δ	α β γ δ

Beam 1 to Port A

Beam 2 to Port B

Figure 3b

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Fiber Connections in 2-D Network Switched Delay Lines

(Fiber Rotman Port)

Port connections for
One Fiber in Array

Figure 12a

For a given port, the delay paths differ by ΔL_x and ΔL_y
while passing from fiber to fiber in the array

Connections to Fiber Array
for One Rotman Port

Figure 12b

$$\Delta L_x = (Dv/c)\sin \theta_x, \quad \Delta L_y = (Dv/c)\sin \theta_y,$$

D = Antenna element spacing
v = Light velocity in delay line
c = Light velocity in vacuum
 $\theta_x, \theta_y = x, y$ components of delay line scan angle

Figure 12

125

Figure 13

Figure 14

Figure 15a

Figure 15b

Figure 17

Figure 18

Figure 19