Equivalence Rules and Inference Rules

(Updated September 13, 2016)

Table 1. Equivalence Rules of Propositional Logic

Expression	Equivalent to	Name (abbreviation)
$P \lor Q$	$Q \vee P$	Commutative (comm)
$P \wedge Q$	$Q \wedge P$	
$(P \vee Q) \vee R$	$P \lor (Q \lor R)$	Associative (ass)
$(P \wedge Q) \wedge R$	$P \wedge (Q \wedge R)$	
$P \lor (Q \land R)$	$(P \vee Q) \wedge (P \vee R)$	Distributive (dist)
$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$	
$\neg(P \land Q)$	$\neg P \lor \neg Q$	De Morgan's laws (DeMorgan)
$\neg(P \lor Q)$	$\neg P \land \neg Q$	
$P \to Q$	$\neg P \lor Q$	Implication (imp)
P	$\neg \neg P$	Double negation (dn)
$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$	Equivalence (equ)
$(P \land Q) \to R$	$P \to (Q \to R)$	Deduction (ded)
$P \to Q$	$\neg Q \rightarrow \neg P$	Contraposition (cont)

Table 2. Inference Rules of Propositional Logic

From	Can Derive	Name (abbreviation)
$P, P \to Q$	Q	Modus Ponens (mp)
$P \to Q, \neg Q$	$\neg P$	Modus Tollens (mt)
P, Q	$P \wedge Q$	Conjunction (conj)
$P \wedge Q$	P	Simplification (sim)
$P \wedge Q$	Q	
\overline{P}	$P \lor Q$	Addition (add)
$P \to Q, Q \to R$	$P \to R$	Hypothetical syllogism (hs)
$P \lor Q, \neg P$	Q	Disjunctive syllogism (ds)
\overline{P}	$P \wedge P$	Self-reference (self)
$P \vee P$	P	Self-reference (self)
$\neg P, P$	Q (for any Q)	Inconsistency (inc)

Table 3. Inference Rules of Predicate Logic

From	Can Derive	Name (abbreviation)	Restrictions
$(\forall x)P(x)$	P(t) where t is a variable or constant.	Universal Instantiation (ui)	If t is a variable, it must not be quantified inside $P(x)$.
$(\exists x)P(x)$	P(a) where a is a constant.	Existential Instantiation (ei)	Must be the first use of the constant a
P(x)	$(\forall x)P(x)$	Universal Generalization (ug)	P(x) hasn't been deduced from hypotheses where x is free, nor by using ei on a wff with x free.
P(x) or $P(a)$	$(\exists x)P(x)$	Existential Generalization (eg)	To get $(\exists x)P(x)$ from $P(a)$, x can't already appear in $P(a)$.

Remarks: We can prove that Deduction (ded) is an equivalence rule. That is, we showed that the following is a tautology:

$$[(P \land Q) \to R] \quad \longleftrightarrow \quad [P \to (Q \to R)].$$

So the wff's on either side of \longleftrightarrow are equivalent. We denote this by

$$(P \wedge Q) \to R \quad \Longleftrightarrow \quad P \to (Q \to R).$$

(Some authors call ded "exportation" (exp) and consider it an inference rule.)