Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Спецкурс: системы и средства параллельного программирования.

Отчёт № 3. Поиск простых чисел с помощью «решета Эратосфена».

Работу выполнил **Тимачев А. А.**

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена".

Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Формат командной строки: <первое число из диапазона> <последнее число из диапазона> <имя файла для записи простых чисел>.

Описание алгоритма.

Математическая постановка: Алгоритм заключается в прохождении по сетке натуральных чисел (изначально все числа невычеркнуты). Если мы встречаем невычеркнутое число, то оно простое, и мы вычеркиваем все кратные ему числа. Например, при нахождении 2 надо вычеркнуть 4, 6, 8, 10 и т.д.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция MPI_Wtime().

Верификация: Для проверки корректности работы программы осуществлялся поиск на диапазонах, для которых уже известны все простые числа.

Результаты выполнения.

Результаты:

Проводился поиск простых чисел в диапазоне от 1 до 10⁸ на Polus и Bluegene. Зависимость времени от количества процессов представлена ниже:

Polus					
Диапазон	Количество процессов	Суммарное время	Максимальное время		
	2	3.311509s	1.711129s		
	4	3.530943s	0.940332s		
$1-10^{8}$	8	3.545875s	0.483720s		
	16	4.552073s	0.345706s		
	32	5.459185s	0.326844s		

Bluegene					
Диапазон	Количество процессов	Суммарное время	Максимальное время		
	16	28.940534s	2.072550s		
	32	28.889294s	1.074442s		
1-10 ⁸	64	28.767855s	0.556429s		
	128	28.529190s	0.289598s		
	256	27.953056s	0.150971s		

Основные выводы.

Исследования показывают, что на Bluegene данная задача хорошо поддается распараллеливанию, при увеличении количества процессов в 2 раза время работы уменьшается почти в 2 раза; суммарное время на всех процессах при этом практически не изменяется. На Polus при малом количестве процессов происходит то же самое, однако при значительном увеличении числа процессов начинается рост суммарного времени, и очень слабое уменьшение максимального времени.