HO unification from object language to meta language

Enrico Tassi enrico.tassi@inria.fr Université Côte d'Azur, Inria France Davide Fissore davide.fissore@inria.fr Université Côte d'Azur, Inria France

ABSTRACT

Specifying and implementing a logic from scratch requires significant effort. Logical Frameworks and Higher Order Logic Programming Languages provide dedicated, high-level Meta Languages (ML) to facilitate this task in two key ways: 1) variable binding and substitution are simplified when ML binders represent object logic ones; 2) proof construction, and even proof search, is greatly simplified by leveraging the unification procedure provided by the ML. Notable examples of ML are Elf [13], Twelf [14], λ Prolog [10] and Isabelle [20] which have been utilized to implement various formal systems such as First Order Logic [5], Set Theory [12], Higher Order Logic [11], and even the Calculus of Constuctions [4].

The object logic we are interested in is Coq's [18] Dependent Type Theory (DTT), for which we aim to implement a unification procedure \simeq_o using the ML Elpi [3], a dialect of λ Prolog. Elpi's equational theory comprises $\eta\beta$ equivalence and comes equipped with a higher order unification procedure \simeq_λ restricted to the pattern fragment [9]. We want \simeq_o to be as powerful as \simeq_λ but on the object logic DTT. Elpi also comes with an encoding for DTT that works well for meta-programming [17, 16, 7, 6]. Unfortunately this encoding, which we refer to as \mathcal{F}_o , "underuses" \simeq_λ by restricting it to first-order unification problems only. To address this issue, we propose a better-behaved encoding, \mathcal{H}_o , demonstrate how to map unification problems in \mathcal{F}_o to related problems in \mathcal{H}_o , and illustrate how to map back the unifiers found by \simeq_λ , effectively implementing \simeq_o on top of \simeq_λ for the encoding \mathcal{F}_o .

We apply this technique to the implementation of a type-class [19] solver for Coq [18]. Type-class solvers are proof search procedures based on unification that back-chain designated lemmas, providing essential automation to widely used Coq libraries such as Stdpp/Iris [8] and TLC [1]. These two libraries constitute our test bed.

KEYWORDS

Logic Programming, Meta-Programming, Higher-Order Unification, Proof Automation

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference'17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-x-xxxx-x/YY/MM

https://doi.org/ZZZZZZZZZZZZZ

1 INTRODUCTION

Specifying and implementing a logic from scratch requires significant effort. Logical Frameworks and Higher Order Logic Programming Languages provide dedicated, high-level Meta Languages (ML) to facilitate this task in two key ways: 1) variable binding and substitution are simplified when ML binders represent object logic ones; 2) proof construction, and even proof search, is greatly simplified by leveraging the unification procedure provided by the ML. Notable examples of ML are Elf [13], Twelf [14], λ Prolog [10] and Isabelle [20] which have been utilized to implement various formal systems such as First Order Logic [5], Set Theory [12], Higher Order Logic [11], and even the Calculus of Constuctions [4].

The object logic we are interested in is Coq's [18] Dependent Type Theory (DTT), and we want to code a type-class [19] solver for Coq [18] using the Coq-Elpi [17] meta programming framework. Type-class solvers are unification based proof search procedures that combine a set of designated lemmas in order to providing essential automation to widely used Coq libraries.

As the running example we take the Decide type class, from the Stdpp [8] library. The class identifies predicates equipped with a decision procedure. The following three designated lemmas (called Instances in the type-class jargon) state that: 1) the type fin n, of natural numbers smaller than n is finite; 2) the predicate nfact n nf, linking a natural number n to its prime factors nf, is decidable; 3) the universal closure of a predicate has a decision procedure if the predicate has and if its domain is finite.

```
Instance fin_fin n : Finite (fin n). (* r1 *)
Instance nfact_dec n nf : Decision (nfact n nf). (* r2 *)
Instance forall_dec A P : Finite A \rightarrow (* r3 *)
\forall x:A, \ Decision \ (P \ x) \rightarrow Decision \ (\forall x:A, \ P \ x).
```

Under this context of instances a type-class solver is able to prove the following statement automatically by back-chaining.

```
Check \_: Decision (forall y: fin 7, nfact y 3). (g)
```

The encoding of DTT provided by Elpi, that we will discuss at length later in section ?? and ??, is an Higher Order Abstract Syntax (HOAS) datatype tm featuring (among others) the following constructors:

Following standard $\lambda Prolog~[10]$ the concrete syntax to abstract, at the meta level, an expression e over a variable x is «x\ e», and square brackets denote a list of terms separated by comma. As an example we show the encoding of the Coq term « $\forall y:t,~nfact~y~3$ »:

```
all (con"t") y\ app[con"nfact", y, con"3"]
```

We now illustrate the encoding of the three instances above as higher-order logic-programming rules: capital letters denote rule parameters; :- separates the rule's head from the premises; pi w\ p introduces a fresh nominal constant w for the premise p.

```
finite (app[con"fin", N]).
(r1)
```

decision (all A x\ app[P, x]) :- finite A,
$$(r3)$$
 pi w\ decision (app[P, w]).

Unfortunately this translation of rule (r3) uses the predicate P as a first order term: for the meta language its type is tm. If we try to backchain the rule (r3) on the encoding of the goal (g) given below

```
decision (all (app[con"fin", con"7"]) y\
  app[con"nfact", y, con"3"]).
```

we obtain an unsolvable unification problem (p): the two lists of terms have different lengths!

```
app[con"nfact", y, con"3"] = app[P, y] (p)
```

In this paper we study a more sophisticated encoding of Coq terms allowing us to rephrase the problematic rule (r3) as follows:

```
decision (all A \times \ Pm \ x) :- link Pm \ P \ A, finite A, (r3a) pi x \ decision (app[P, x]).
```

Since Pm is an higher-order unification variable of type tm -> tm, with x in its scope, the unification problem (p') admits one solution:

After unifying the head of rule (r3a) with the goal, Elpi runs the premise «link Pm A P» that is in charge of bringing the assignment for Pm back to the domain tm of Coq terms:

```
P = lam A a\ app[con"nfact", a, con"3"]
```

This simple example is sufficient to show that the encoding we seek is not trivial and does not only concern the head of rules, but the entire sequence of unification problems that constitute the execution of a logic program. In fact the solution for P above generates a (Coq) β -redex in the second premise (the predicate under the Pi w\):

```
decision (app[lam A (a\ app[con"nfact", a, con"3"]), w])
```

In turn this redex prevents the rule (r2) to backchain properly since the following unification problem has no solution:

```
app[lam A (a\ app[con"nfact", a, con"3"]), x] =
app[con"nfact", N, NF]
```

The root cause of the problems we sketched in the running example is that the unification procedure \simeq_{λ} of the meta language is not aware of the equational theory of the object logic, even if both theories include $\eta\beta$ -conversion and admit most general unifiers for unification problems in the pattern fragment \mathcal{L}_{λ} [9].

Contributions. In this paper we discuss alternative encodings of Coq in Elpi (Section 2), then we identify a minimal language \mathcal{F}_0 in which the problems sketched here can be fully described. We then detail an encoding comp from \mathcal{F}_0 to \mathcal{H}_0 (the language of the

meta language) and a decoding decomp to relate the unifiers bla bla.. TODO citare Teyjus.

2 PROBLEM STATEMENT

The equational theory of Coq's Dependent Type Theory is very rich. In addition to the usual $\eta\beta$ -equivalence for functions, terms (hence types) are compared up to proposition unfolding and fixpoint unrolling. Still, for efficiency and predictability reasons, most form of automatic proof search employ a unification procedure that captures a simpler one, just $\eta\beta$, and that solves higher-order problems restricted to the pattern fragment \mathcal{L}_{λ} [9]. We call this unification procedure \simeq_o .

The equational theory of the meta language Elpi that we want to use to implement a form of proof automation is strikingly similar, since it it comprises $\eta\beta$ (for the meta language functions), and the unification procedure \simeq_{λ} solves higher-order problems in \mathcal{L}_{λ} .

In spite of the similarity the link between \simeq_{λ} and \simeq_{o} is not trivial, since the abstraction and application term constructors the two unification procedures deal with are different. For example

One could ignore this similarity, and "just" describe the object language unification procedure in the meta language, that is crafting a unif predicate to be used as follows in rule (r3):

```
decision X :- unif X (all A x\ app[P, x]), finite A,
  pi x\ decision (app[P, x]).
```

This choice would underuse the logic programming engine provided by the metalanguage since by removing any datum from the head of rules indexing degenerates. Moreover the unification procedure built in the meta language is likely to be faster than one implemented in it, especially if the meta language is interpreted as Elpi is.

To state precisely the problem we solve we need a \mathcal{F}_o representation of DTT terms and a \mathcal{H}_o one. We call $=_o$ the equality over ground terms in \mathcal{F}_o , $=_\lambda$ the equality over ground terms in \mathcal{H}_o , \simeq_o the unification procedure we want to implement and \simeq_λ the one provided by the meta language. TODO extend $=_o$ and $=_\lambda$ with reflexivity on uvars.

We write $t_1 \simeq_{\lambda} t_2 \mapsto \sigma$ when t_1 and t_2 unify with substitution σ ; we write σt for the application of the substitution to t, and $\sigma X = \{\sigma t | t \in X\}$ when X is a set; we write $\sigma \subseteq \sigma'$ when σ is more general than σ' . We assume that the unification of our meta language is correct:

$$t_i \in \mathcal{L}_{\lambda} \Rightarrow t_1 \simeq_{\lambda} t_2 \mapsto \rho \Rightarrow \rho t_1 =_{\lambda} \rho t_2$$
 (1)

$$t_i \in \mathcal{L}_{\lambda} \Rightarrow \rho t_1 =_{\lambda} \rho t_2 \Rightarrow \exists \rho', t_1 \simeq_{\lambda} t_2 \mapsto \rho' \wedge \rho' \subseteq \rho$$
 (2)

We illustrate a compilation $\langle s \rangle \mapsto (t, m, l)$ that maps a term s in \mathcal{F}_0 to a term t in \mathcal{H}_0 , a variable mapping m and list of links l. The variable map connects unification variables in \mathcal{H}_0 with variables in \mathcal{F}_0 and is used to "decompile" the assignment, $\langle \sigma, m, l \rangle^{-1} \mapsto \rho$. Links represent problematic sub-terms which are linked to the

unification These We \mathcal{N} . East steps substitution for the firm of the steps of the step of the steps of the steps of the step of the

unification variable that stands in their place in the compiled term. These links are checked for or progress XXX improve....

We represent a logic program run in \mathcal{F}_0 as a list $steps\ p$ of length \mathcal{N} . Each made of a unification problem between terms \mathcal{S}_{p_l} and \mathcal{S}_{p_r} taken from the set of all terms \mathcal{S} . The composition of these steps starting from the empty substitution ρ_0 produces the final substitution $\rho_{\mathcal{N}}$. The initial here ρ_0 is the empty substitution

$$fstep(\mathcal{S}, p, \rho) \mapsto \rho'' \stackrel{def}{=} \rho \mathcal{S}_{p_l} \simeq_o \rho \mathcal{S}_{p_r} \mapsto \rho' \wedge \rho'' = \rho \cup \rho'$$
$$frun(\mathcal{S}, \mathcal{N}) \mapsto \rho_{\mathcal{N}} \stackrel{def}{=} \bigwedge_{p=1}^{\mathcal{N}} fstep(\mathcal{S}, p, \rho_{p-1}) \mapsto \rho_p$$

We simulate each run in \mathcal{F}_0 with a run in \mathcal{H}_0 as follows. Note that σ_0 is the empty substitution.

$$\begin{split} \operatorname{hstep}(\mathcal{T}, p, \sigma, \mathbb{L}) &\mapsto \sigma'' \stackrel{def}{=} \\ &\sigma \mathcal{T}_{p_{l}} \simeq_{\lambda} \sigma \mathcal{T}_{p_{r}} \mapsto \sigma' \wedge \operatorname{check}(\mathbb{L}, \sigma \cup \sigma') \mapsto \sigma'' \\ \operatorname{hrun}(\mathcal{S}, \mathcal{N}) &\mapsto \rho_{\mathcal{N}} \stackrel{def}{=} \\ &\mathcal{T} \times \mathbb{M} \times \mathbb{L} = \{(t_{j}, m_{j}, l_{j}) | s_{j} \in \mathcal{S}, \langle s_{j} \rangle \mapsto (t_{j}, m_{j}, l_{j})\} \\ &\wedge_{p=1}^{\mathcal{N}} \operatorname{hstep}(\mathcal{T}, p, \sigma_{p-1}, \mathbb{L}) \mapsto \sigma_{p} \\ &\langle \sigma_{\mathcal{N}}, \mathbb{M}, \mathbb{L} \rangle^{-1} \mapsto \rho_{\mathcal{N}} \end{split}$$

Here hstep is made of two sub-steps: a call to \simeq_{λ} (on the compiled terms) and a call to check on the set of links. We claim the following:

Proposition 2.1 (Simulation). $\forall S, \forall N$

$$\operatorname{frun}(\mathcal{S}, \mathcal{N}) \mapsto \rho_{\mathcal{N}} \Leftrightarrow \operatorname{hrun}(\mathcal{S}, \mathcal{N}) \mapsto \rho_{\mathcal{N}}$$

That is, the two executions give the same result. Moreover:

Proposition 2.2 (Simulation fidelity). In the context of hrun, we have that $\forall p \in 1 \dots N$

$$fstep(S, p, \rho_{p-1}) \mapsto \rho_p \Leftrightarrow hstep(\mathcal{T}, p, \sigma_{p-1}, \mathbb{L}) \mapsto \sigma_p$$

In particular this property guarantees that a *failure* in the \mathcal{F}_0 run is matched by a failure in \mathcal{H}_0 at the same step. We consider this property very important from a practical point of view since it guarantees that the execution traces are strongly related and in turn this enables a user to debug a logic program in \mathcal{F}_0 by looking at its execution trace in \mathcal{H}_0 .

We can define $s_1 \simeq_0 s_2$ by specializing the code of hrun to $S = \{s_1, s_2\}$ as follows:

$$s_{1} \simeq_{o} s_{2} \mapsto \rho \stackrel{def}{=}$$

$$\langle s_{1} \rangle \mapsto (t_{1}, m_{1}, l_{1}) \land \langle s_{2} \rangle \mapsto (t_{2}, m_{2}, l_{2})$$

$$t_{1} \simeq_{\lambda} t_{2} \mapsto \sigma' \land \operatorname{check} (\{l_{1}, l_{2}\}, \sigma') \mapsto \sigma'' \land$$

$$\langle \sigma'', \{m_{1}, m_{2}\}, \{l_{1}, l_{2}\} \rangle^{-1} \mapsto \rho$$

Proposition 2.3 (Properties of \simeq_0).

$$s_i \in \mathcal{L}_\lambda \Rightarrow s_1 \simeq_0 s_2 \mapsto \rho \Rightarrow \rho s_1 =_0 \rho s_2$$
 (3)

$$s_i \in \mathcal{L}_{\lambda} \Rightarrow \rho s_1 =_{\rho} \rho s_2 \Rightarrow \exists \rho', s_1 \simeq_{\rho} s_2 \mapsto \rho' \land \rho' \subseteq \rho$$
 (4)

$$\rho s_1 =_{\rho} \rho s_2 \Rightarrow \rho' \subseteq \rho \Rightarrow \rho' s_i \in \mathcal{L}_{\lambda} \Rightarrow \rho' s_1 \simeq_{\rho} \rho' s_2 \tag{5}$$

Properties 3 and 4 state, respectively, that in \mathcal{L}_{λ} the implementation of \simeq_o is correct, complete and returns the most general unifier.

Property 5 states that \simeq_o , hence our compilation scheme, is resilient to unification problems outside \mathcal{L}_{λ} solved by a third party.

We believe this property is of practical interest since we want the user to be able to add heuristics via hand written rules to the ones obtained by our compilation scheme. A Typical example is the following problem (q) that is outside \mathcal{L}_{λ} :

app [F, con"a"] = app[con"f", con"a", con"a"]
$$(q)$$

$$F = lam x \land app[con"f", x, x]$$
 (h)

Instead of rejecting it our scheme accepts it and guarantees that if (h) is given (after the compilation part of the scheme, as a run time hint) then ...

2.1 The intuition in a nutshell

A term s is compiled in a term t where any "problematic" subterm p is replaced by a fresh unification variable h and an accessory link that represent a suspended unification problem $h \simeq_{\lambda} p$. As a result \simeq_{λ} is "well behaved" on t, meaning it does not contradict $=_{o}$ (as it would do on "problematic" terms). We now define "problematic" and "well behaved" more formally.

Definition 2.4 (
$$\Diamond \eta$$
). $\Diamond \eta = \{t \mid \exists \rho, \rho t \text{ is an eta expansion}\}$

An example of term t in $\Diamond \eta$ is $\lambda x.\lambda y.F$ y x since the substitution $\rho = \{F \mapsto \lambda a.\lambda b.fba\}$ makes $\rho t = \lambda x.\lambda y.fxy$ that is the eta long form of f.

Definition 2.5
$$(\lozenge \beta)$$
. $\lozenge \beta = \{Xt_1 \dots t_n \mid Xt_1 \dots t_n \notin \mathcal{L}_{\lambda}\}.$

An example of t in $\Diamond \beta$ is Fa for a constant a. Note however tha an oracle could provide an assignment $\rho = \{F \mapsto \lambda x.x\}$ that makes the resulting term fall outside of $\Diamond \beta$.

Definition 2.6 (Subterm $\mathcal{P}(t)$).

$$t \in \mathcal{P}(t)$$

$$t = ft_1 \dots t_n \Rightarrow \mathcal{P}(t_i) \subseteq \mathcal{P}(t) \land f \in \mathcal{P}(t)$$

$$t = \lambda x.t' \Rightarrow \mathcal{P}(t') \subseteq \mathcal{P}(t)$$

We write $\mathcal{P}(X) = \bigcup_{t \in X} \mathcal{P}(t)$.

Definition 2.7 (Well behaved set). Given a set of terms $X \subseteq \mathcal{H}_0$,

$$W(X) \Leftrightarrow \forall t \in \mathcal{P}(X), t \notin (\Diamond \beta \cup \Diamond \eta)$$

Proposition 2.8 (*W*-preservation). $\forall \mathcal{T}, \forall \mathbb{L}, \forall p, \forall \sigma, \forall \sigma'$

$$\mathcal{W}(\sigma\mathcal{T}) \land \text{hstep}(\mathcal{T}, p, \sigma, \mathbb{L}) \mapsto \sigma' \Rightarrow \mathcal{W}(\sigma'\mathcal{T})$$

A less formal way to state 2.8 is that hstep never "commits" an unneeded λ -abstraction in σ (a λ that could be erased by an η -contraction), nor puts in σ a flexible application outside \mathcal{L}_{λ} (an application node that could be erased by a β -reduction).

Note that proposition 2.8 does not hold for \simeq_o since decompilation can introduce (actually restore) terms in $\diamond \eta$ or $\diamond \beta$ that were move out of the way (put in $\mathbb L$) by compilation.

3 ALTERNATIVE ENCODINGS AND RELATED WORK

Paper [2] introduces semi-shallow.

Our encoding of DTT may look "semi shallow" since we use the meta-language lambda abstraction but not its application (for the terms of type tm). A fully shallow encoding unfortunately does not fit our use case, although it would make the running example work:

 $^{^1}$ If the same rule is used multiple time in a run we just consider as many copies as needed of the terms composing the rules, with fresh unification variables each time

```
finite (fin N). decision (nfact N NF). decision (all A \times P \times):- finite A, pi \times decision (P \times).
```

There are two reasons for dismissing this encoding. The first one is that in DTT it is not always possible to adopt it since the type system of the meta language is too weak to accommodate terms with a variable arity, like the following example:

```
Fixpoint arr T n := if n is S m then T -> arr T m else T. Definition sum n : arr nat n := .... Check sum 2 7 8 : nat. Check sum 3 7 8 9 : nat.
```

The second reason is the encoding for Coq is used for meta programming the system, hence it must accommodate the manipulation of terms that are now know in advance (not even defined in Coq) without using introspection primitives such as Prologs's functor and arg.

In the literature we could find a few related encoding of DTT. TODO In [4] is related and make the discrepancy between the types of ML and DTT visible. In this case one needs 4 application nodes. Moreover the objective is an encoding of terms, proofs, not proof search. Also note the conv predicate, akin to the unif we rule out.

TODO This other paper [15] should also be cited.

None of the encodings above provide a solution to our problem.

4 PRELIMINARIES: \mathcal{F}_o AND \mathcal{H}_o

In order to reason about unification we provide a description of the \mathcal{F}_0 and \mathcal{H}_0 languages where unification variables are first class terms, i.e. they have a concrete syntax. We keep these languages minimal, for example, we omit the all quantifier of DTT we used in the example in Section 1 together with the type notation of terms carried by the lam constructor.

```
kind fm type. kind tm type. type fapp list fm -> fm. type app list tm -> tm. type flam (fm -> fm) -> fm. type lam (tm -> tm) -> tm. type fcon string -> fm. type con string -> tm. type fuva nat -> fm. type uva nat -> list tm -> tm.
```

Figure 1: \mathcal{F}_o and \mathcal{H}_o language

In the case of \mathcal{F}_0 unification variables fuva have no explicit scope: the arguments of an higher order unification variable are via the fapp constructor. For example in the statement of the instance forall_dec the term $P \times is$ represented as fapp[fuva N, x], where N is a memory address and x is a bound variable.

In \mathcal{H}_o the representation of P x is instead uva N [x]. We say that the unification variable uva N L is in \mathcal{L}_{λ} iff distinct L holds.

```
type distinct list A -> o.
distinct [].
distinct [X|XS] :- name X, not(mem X XS), distinct XS.
```

The name builtin predicate tests if a term is a bound variable. ² The compiler ?? needs to support terms outside \mathcal{L}_{λ} for practical reasons, so we don't assume all out terms are in \mathcal{L}_{λ} but rather test. what??

In both languages unification variables are identified by a natural number, which can be seen as a memory address. The memory and its associated operations are described below:

```
typeabbrev memory A (list (option A)).
type set?    nat -> memory A -> A -> o.
type unset? nat -> memory A -> o.
type assign nat -> memory A -> A -> memory A -> o.
```

If a memory cell is none, then the corresponding unification variable is not set. assign sets an unset cell to the given value.

Since in \mathcal{H}_0 unification variables have a scope, their solution needs to be abstracted over it in order to enable the instantiation of a single solution to different scopes. On the contrary solutions to \mathcal{F}_0 variables are plain terms.

```
typeabbrev fsubst (memory ftm).
kind assmt type.
type abs (tm -> assmt) -> assmt.
type val tm -> assmt.
typeabbrev subst (memory assmt).
```

We call fsubst the memory of \mathcal{F}_0 , while we call subst the one of \mathcal{H}_0 . Both have the invariant that they are not cyclic, TODO explain. Other invariant: the terms in ho_subst never contains eta and beta expansion

4.1 Equational theory and Unification

here we give the functions/signatures to express the properties 3-5 in the problem statement

Together with the description of the terms of the language, we need some auxiliary functions to perform operations like term equality, unification, dereferencing. There predicates are supposed to be implemented in the OL and the ML following respectively their specification. In the following few paragraphs we give a brief proposition of them.

Term dereferencing: ρs and σt . Since in our encoding we explicitly carry a substitution we need to define the operation that applies it to a term. Its proposition takes care to normalize (flatten) applications, for example it turns (app [app [con"f",con"a"],con"b"]) into (app [con"f",con"a",con"b"]).

dereference variables of the two languages. This is particularly useful to check if two terms in the OL (resp. in the ML) are equal. The constructors representing rigid terms, namely app, lam and con, make the dereferencing procedure to recurse over the their subterms. The code below display this behavior for the dereferencing performed by the OL:

```
type fder fsubst -> fm -> o.
fder S (fapp A) (fapp B) :- map (fder S) A B.
fder S (flam F) (flam G) :-
    pi x\ fder S x x => fder S (F x) (G x).
fder _ (fcon C) (fcon C).
fder S (fuva N) R :- set? N S T, fder S T R.
fder S (fuva N) (fuva N) :- unset? N S.

type fderef fsubst -> fm -> o. (ρs)
fderef S T R :- fder S T T', napp T' R.
```

²one could always load name x for every x under a pi and get rid of the name builtin

```
type (=_{\lambda}) tm -> tm -> o.

app A =_{\lambda} fapp B :- map (=_{\lambda}) A B.

lam F =_{\lambda} flam G :- pi x\ x =_{\lambda} x => F x =_{\lambda} G x.

con C =_{\lambda} fcon C.

uva N A =_{\lambda} fuva N B :- map (=_{\lambda}) A B.
```

Figure 2: Equal predicate ML

```
type napp fm \rightarrow fm \rightarrow o.
```

TODO explain napp. We use the cut operator to keep the code compact. It is possible to rewrite the rule for application traversal so that it is mutually exclusive with the first one, but that requires a rather verbose analysis of the head of A.

The corresponding code for \mathcal{H}_0 is similar, we only show the last two rules that differ in a substantial way:

```
type deref subst -> tm -> tm -> o.
                                                        (\sigma t)
deref S (app A) (app B) :- map (deref S) A B.
deref S (lam F) (lam G) :-
 pi x \cdot deref S x x \Rightarrow deref S (F x) (G x).
deref _ (con C) (con C).
deref S (uva N A) R :- set? N S F, move F A T, deref S T R.
deref S (uva N A) (uva N B) :- unset? N S, map (deref S) A B.
type move assignment -> list tm -> tm -> o.
                      [H|L] R :- move (Bo H) L R.
move (abs Bo)
move (val A)
                      A :- !.
move (val (uva N A)) L
                            (uva N X) :- std.append A L X.
```

TODO: no need to napp, see the beta section. Note that when the substitution S maps a unification variable N to an assignment F we

TODO: invariant: variables in subst are always fully applied, and length of scope is the arity of the HO variable.

Important!!! A different reasoning is to be addressed to the variables of the ML. Firstly, a meta variable cannot appear in the app node as the first element of the list, we will explain why in section 5

Term equality: $=_o \ vs. =_\lambda$. We can test if two terms are equal following the equational theory of the language being considered. In ?? we provide an implementation of the $=_o$ predicate. The first four rules check if the two terms are equal regarding the structure of the current node, that is, two terms are equal if they have same head and if recursively each subterm is two by two equal. Moreover, since the theory of the OL accepts η - and β -equivalence, then we implement the corresponding rules.

The equality relation for the ML, accepts $\eta\beta$ -equivalence between terms of the ML. Recall that abs x\ f x, is a valid η expansion of

the function f and that lam x\ app[f, x] is not that equivalent to f at meta level. However, since we are interested in using the unification procure of the ML, by eq. (1), we can use the \approx_{λ} relation to test, when needed if two terms are equal in the ML.

Term unification: $\simeq_o vs. \simeq_\lambda$. The last but not least important relation we should take care of before presenting our full algorithm aiming to unify terms of the OL in the ML and provide the substitution produced in the ML to the OL, is term unification. This procedure is a more powerful version of the equal predicate, since unification checks if two terms can be equal be assigning unification variables. In our representation, variable assignment (or refinement) is performed by modifying the corresponding substitution mapping. We will not give an implementation of \simeq_o , since we are giving an implementation of it using our algorithm, see ??.

```
type (\simeq_{\lambda}) tm -> tm -> subst -> o.
```

On the other hand, unification in the ML needs to be defined. In ??, we give an implementation of \simeq_{λ} but that is actually what our meta language provides as a builtin.

This predicate has four arguments, the two terms t_1 and t_2 to unify, the old substitution map ρ_1 , and the new substitution map ρ_2 , with the invariant $\rho_1 \subseteq \rho_2$. The first three rules unify terms with same rigid heads, and call the unification relation on the sub-terms. If t_1 (resp. t_2) is an assigned variables, t_1 is dereferenced to t_1' (resp. t_2') and the unification is called between t_1' and t_2 (resp. t_1 and t_2'). If both terms are unification variables, we test that their arguments are in the pattern fragment, we allocate a new variable w in ρ_1 such that w is the pruning of the arguments of t_1 and t_2 , we assign both t_1 and t_2 to w and return the new mapping ρ_2 containing all the new variable assignment. Finally, if only one of the two terms is an unification variable v, after having verified that v does not occur in the other term t, we bind v to t and return the new substitution mapping.

_OLD _

A key property needed in unification is being able to verify if two terms are equal wrt a given equational theory. This relation allow to compare terms under a certain substitution mapping, so that any time a variable v is assigned in a subterm, a dereferencing of v is performed. After variable dereferencing, the test for equality is continued on the new-created subterm.

The base equality function over terms can be defined as follows: The solution we are proposing aim to overcome these unification issues by 1) compiling the terms t and u of the OL into an internal version t' and u' in the ML; 2) unifying t' and u' at the meta level instantiating meta variables; 3) decompiling the meta variable into terms of the OL; 4) assigning the variables of the OL with the decompiled version of their corresponding meta variables. We claim that t and u unify if and only if t' and u' unify and that the substitution in the object language is the same as the one returned by the ML.

In the following section we explain how we deal with term (de)compilation and links between unification variables.

5 BASIC COMPILATION \mathcal{F}_o TO \mathcal{H}_o

In this section we describe a basic compilation scheme that we refine later, in the following sections.

same or - ⊇ or ⊆

```
581
            The objective of the compilation is to recognize the higher-order
         variables available in \mathcal{H}_0 when expressed in a first order way in
  582
  583
         \mathcal{F}_0. The compiler also generates a list of links that are used to bring
         back the substitution from \mathcal{H}_0 to \mathcal{F}_0 and allocates in the memory a
  584
  585
         cell for each variable.
  586
            kind link type.
  587
            type link nat -> nat -> nat -> subst. % link Fo Ho Arity
  588
            typeabbrev links list link.
  589
            type comp fm -> tm -> links -> links -> subst -> o.
            comp (fcon X) (con X) L L S S.
            comp (flam F) (lam G) K L R S :- pi x y\
              (pi A S \setminus comp x y L L S S) \Rightarrow comp (F x) (G y) K L R S.
  593
            comp (fuva M) (uva N []) K [link M N z|K] R S :- new R N S.
  594
            comp (fapp[fuva M|A]) (uva N B) K L R S :- distinct A, !,
  595
              fold4 comp A B K K R R,
  596
              new R N S, len A Arity,
  597
              L = [link N M Arity | K].
  598
            comp (fapp A) (app B) K L R S :- fold4 comp A B K L R S.
  599
  600
         Note that link carries the arity (number of expected arguments) of
sa\overset{601}{v}
         the variable.
when
            type solve-links links -> links -> subst -> subst -> o.
this is
            solve-links L L S S.
neededed
            Then decomp
  606
  607
            type decompile links -> subst -> fsubst -> o.
  608
            decompile L S O :-
              609
  610
              (pi N X\ knil N X :- mem L (link X N \_) ; N = X) =>
  611
                decompl S L 01 0.
  612
            type knil nat -> nat -> o.
  613
  614
            type decompl links -> subst -> fsubst -> o.
  615
            decompl S [] [].
            decompl S [link \_ N \_ |L] O P :- unset? N S X,
              decompl S L O P.
  618
            decompl S [link M N _ |L] O P :- set? N S X,
              decomp-assignment S X T, assign M O (some T) O1,
  620
              decompl S L 01 P.
  621
  622
            type decomp-assignment subst -> assignment -> fm -> o.
  623
            decomp-assignment S (abs F) (flam G) :-
  624
              pi \times y \setminus decomp-tm S \times y \Rightarrow decomp-assignment S (F x) (G y).
  625
            decomp-assignment S (val T) T1 :- decomp S T T1.
  626
  627
            type decomp subst -> tm -> fm.
  628
            decomp _ (con C) (fcon C).
  629
            decomp S (app A) (app B) :- map (decomp S) A B.
            decomp S (lam F) (flam G) :-
  631
              pi \times y \setminus decomp S \times y \Rightarrow decomp S (F \times) (G y).
  632
            decomp S (uva N A) R :- set? N S F,
  633
              move F A T, decomp S T R.
  634
            decomp S (uva N A) R :- unset? N S,
  635
              map (decomp S) A B, knil N M, napp (fapp[fuva M|B]) R.
TOPO
            Now unif
lin<mark>€7</mark>
TOBO
                                                                               6
nuove
```

subst TODO: code unif

```
type (\simeq_o) fm -> fm -> subst -> o.
                                                                       639
  (X \simeq_o Y) S S1 :-
                                                                       640
    fderef S X X0, fderef S Y Y0,
                                                          (norm)
                                                                       641
    comp X0 X1 [] S0 [] L0,
                                                        (compile)
    comp Y0 Y1 S0 S1 L0 L1,
    (X1 \simeq_{\lambda} Y1) [] HS0,
                                                          (unif y)
                                                                       644
    solve-links L1 L2 HS0 HS1,
                                                           (link)
                                                                       645
    decompile L2 HS1 S1.
                                                      (decompile)
                                                                       646
5.1 Prolog simulation
Allows us to express the properties, we take all terms involved
in a search (if a rule is used twice we simply take a copy of it),
                                                                       651
we compile all of them, and then we pick the unification prblems
                                                                       652
among these terms and step trough them.
                                                                       653
                                                                       654
  type pick list A -> (pair nat nat) -> (pair A A) -> o.
  pick L (pr X Y) (pr TX TY) :- nth X L TX, nth Y L TY.
                                                                       655
                                                                       657
  type prolog-fo list fm -> list (pair nat nat) -> subst -> o.
  prolog-fo Terms Problems S :-
                                                                       658
    map (pick Terms) Problems FoProblems,
                                                                       659
                                                                       660
    fold4 (\simeq_o) FoProblems [] S.
  type step-ho (pair tm tm) -> links -> links -> subst -> subst -> 620.
  step-ho (pr X Y) L0 L1 S0 S2 :-
                                                                       664
    (X1 \simeq_{\lambda} Y1) S0 S1,
    solve-links L0 L1 S1 S2.
                                                                       665
                                                                       666
  type prolog-ho list fm -> list (pair nat nat) -> subst -> o.
                                                                       667
  prolog-ho Terms Problems S :-
    fold4 comp Terms HoTerms [] L0 [] HS0,
    map (pick HoTerms) Problems HoProblems,
                                                                       671
    fold4 step-ho HoProblems L0 L HS0 HS,
    decompile L HS S.
                                                                       672
                                                                       673
the proprty is that if a step for Fo succeds then the Ho one does,
                                                                       674
and if Fo fails then the Ho fails ()
5.2 Example
OK
                                                                       678
                                                                       679
  Terms [ flam x\ fapp[fcon"g",fapp[fuva z, x]]
                                                                       680
         , flam x\ fapp[fcon"g", fcon"a"] ]
                                                                       681
  Problems = [ pr z (s z) ] % \lambda x.g(Fx) = \lambda x.ga
  lam x \sim app[con"g", uva z [x]] \simeq_o lam x \sim app[con"g", con"a"]
                                                                       683
  link z z (s z)
                                                                       684
  HS = [some (abs x con"a")]
                                                                       685
  S = [some (flam x \land fcon a)]
                                                                       686
  KO
                                                                       687
    Terms [ flam x\ fapp[fcon"g",fapp[fuva z, x]]
    , flam x\ fapp[fcon"g", fcon"a"] ]
  Problems = [ pr 0 1 % A = \lambda x.x
              , pr 2 3 ] % Aa = a
                                                                       691
  lam x\ app[con"g",uva z [x]] \simeq_o lam x\ app[con"g", con"a"]
                                                                       692
  link z z (s z)
                                                                       693
  HS = [some (abs x con"a")]
                                                                       694
```

695 696

 $S = [some (flam x \land fcon a)]$

756

760

761

762

763

766

767

768

769

770

771

772

773

774

775

776

777

780

781

782

783

784

787

788

789

793

794

795

796

797

798

799

800

801

802

803

806

807

808

809

810

811

812

753

754

697

698

699

```
lam x \cdot app[f, app[X, x]] = Y,
  lam x \setminus x) = X.
```

TODO: Goal: $s_1 \simeq_o s_2$ is compiled into $t_1 \simeq_{\lambda} t_2$

TODO: What is done: uvars fo_uv of OL are replaced into uvars ho_uv of the ML

TODO: Each fo_uv is linked to an ho_uv of the OL

TODO: Example needing the compiler v0 (tra l'altro lo scope è ignorato):

lam x\ app[con"g",app[uv 0, x]] \simeq_o lam x\ app[con"g", c"a"] TODO: Links used to instantiate vars of elpi

TODO: After all links, the solution in links are compacted and given to coq

TODO: It is not so simple, see next sections (multi-vars, eta,

The compilation step is meant to recover the higher-order variables of the OL, expressed in a first order way, by replacing them with higher-order variables in the ML. In particular, every time a variable of the OL is encountered in the original term, it is replaced with a meta variable, and if the OL variable is applied to a list of distinct names *L*, then this list becomes the scope of the variable. For all the other constructors of tm, the same term constructor is returned and its arguments are recursively compiled. The predicate in charge for term compilation is:

type comp tm -> tm -> links -> links -> subst -> o. where, we take the term of the OL, produce the term of the ML, take a list of link and produce a list of new links, take a substitution and return a new substitution.

In particular, due to programming constraints, we need to drag the old subst and return a new one extended, if needed, with the new declared meta-variables.

The following code

```
kind link type.
type link nat -> nat -> nat -> subst.
```

defines a link, which is a relation between to variables indexes, the first being the index of a OL variable and the second being the index of a ML variable. The third integer is the number of term in the scope of the two variables, or equivalently, in a typed language, their arity.

As an example, let's study the following unification problem (a slightly modified version from section 1):

```
lam x\ app[c"decision", app[c"nfact", x, c"3"]] \simeq_o
  lam x\ app [c"decision", app[uv 0, x]]
```

we have the main unification problem where the nested app nodes have lists of different lengths making the unification to fail. The compilation of these terms produces a new unification problem with the following shape:

```
lam x\ app[c"decision", app[c"nfact", x, c"3"]] \simeq_{\lambda}
  lam x\ app [c"decision", uv 1 [x]]
```

The main difference is the replacement of the subterm app[uv \emptyset , x] of the OL with the subterm uv 0 [x]. Variable indexes are chosen by the ML, that is, the index 0 for that unification variable of the OL term has not the sam meaning of the index \emptyset in the ML. There exists

two different substitution mapping, one for the OL and one for the ML and the indexes of variable point to the respective substitution. decomp che mappa abs verso lam TODO: An other example: $lam x \cdot app[f, app[X, x]] = Y, (lam x \cdot x) = X.$

6 USE OF MULTIVARS

Se il termine initziale è della forma

```
app[con"xxx",X,X]
```

allora se non uso due X diverse non ho modo di recuperare il quoziente che mi manca.

a sto punto consideriamo liste di problemi e così da eliminare sta xxx senza perdità di generalità (e facciamo problemi più corti, e modellizziamo anche la sequenza)

6.1 Problems with η

```
TODO: The following goal necessita v1 (lo scope è usato):
X = lam x \setminus lam y \setminus Y y x, X = lam x \setminus f
TODO: The snd unif pb, we have to unif lam x\ lam y\ Y x y
```

with lam x\ f

TODO: It is not doable, with the same elpi var

Invarianti: A destra della eta abbiamo sempre un termine che comincia per $\lambda x.bla$

```
La deduplicate eta:
```

- viene chiamata che della forma [variable] -> [eta1] e

(a destra non c'è mai un termine con testa rigida)

- i due termini a dx vengono unificati con la unif e uno
- \hookrightarrow dei due link viene buttato

NOTA!! A dx abbiamo sempre un termine della forma lam

Altrimenti il link sarebbe stato risolto!!

- dopo l'unificazione rimane un link [variabile] -> [etaX]
- nella progress-eta, se a sx abbiamo una constante o
- un'app, allora eta-espandiamo
- di uno per poter unificare con il termine di dx.

6.2 Problems with β

 β -reduction problems ($\Diamond \beta$) appears any time we deal with a subterm $t = Xt_1 \dots t_n$, where X is flexible and the list $[t_1 \dots t_n]$ in not in \mathcal{L}_{λ} . This unification problem is not solvable without loss of generality, since there is not a most general unifier. If we take back the example given in section 2.1, the unification Fa = a admits two solutions for $F: \rho_1 = \{F \mapsto \lambda x.x\}$ and $\rho_2 = \{F \mapsto \lambda_{-}a\}$. Despite this, it is possible to work with $\Diamond \beta$ if an oracle provides a substitution ρ such that ρt falls again in the \mathcal{L}_{λ} .

On the other hand, the \simeq_{λ} is not designed to understand how the β -redexes work in the object language. Therefore, even if we know that *F* is assigned to $\lambda x.x$, \simeq_{λ} is not able to unify *Fa* with a. On the other hand, the problem Fa = G is solvable by \simeq_{λ} , but the final result is that G is assigned to $(\lambda x.x)a$ which breaks the invariant saying that the substitution of the meta language does not generate terms outide W (Property 2.8).

814

815

816

817

818

819

820

821

822

824

825

826

827

a link

is ₈₃₁

sid-

ered

in two

cases.

then

make

2 para-

graphs

A bit

too 843

fast,

we₈₄₅

first

com-

pile,

then

unify,

then

the

then

the

ma-

nip...

858

859

860

861

862

863

864

865

866

867

868

869

870

oracle,

recon-

871

872

873

875

876

877

878

882

883

884

885

886

887

888

889

890

891

892

897

898

899

900

901

902

903

904

905

906

908

909

910

911

912

913

914

915

916

917

918

919

921

922

923

924

925

926

927

928

The solution to this problem is to modify the compiler such that any sub-term t considered as a potential β -redex is replaced with a hole *h* and a new dedicated link, called link- β .

```
type link-beta tm -> tm -> link.
```

This link carries two terms, the former representing the variable h for the new created hole and the latter containing the subterm t. As for the link- η , we will call h and t respectively the left hand side (LHS) and the right hand side (RHS) of the link- β .

A subterm is in $\Diamond \beta$ if it has the shape fapp[fuva N | L] and distinct L does not hold. In that case, L is split in two sublist PF and NPF such that former is the longest prefix of L such that distinct PF holds. NPF is the list such that append PF NPF L. The LHS is set to a new variable named M with PF in scope whereas the RHS is given by the term app[uva N' PF | NPF] where the \mathcal{H}_0 variable identified signpostiffs: N' is mapped to the \mathcal{F}_0 variable named N.

After its creation, a link- β remain suspended until the head of the RHS is instantiated by the oracle (see eq. (5)). In this case the RHS is β -reduced to a new term t. t is either a term in \mathcal{L}_{λ} , in which case *t* is unified with the LHS, otherwise, the link remain suspended and no progress is performed. Another way to wake a link- β up is when the LHS is a term \top and RHS has the shape app[uva N PF | NPF] and some of the arguments in the NPF list become names. This is possible after the resolution of other links. In this case, the list L obtained by the concatenation between PF and NPF is split again in to lists PF' and NPF'. If PF is not that same as PF', then we can 1) remove the current link- β , 2) create a new $link-\beta$ between T and app[uva N' PF' | NPF'] and 3) create a new link- η between the variables N and N'.

An example justifying this last link manipulation is given by the following unification problem:

```
f = flam x\ fapp[F, (X x), a] % f = \lambda x.F(Xx)a
```

under the substitution $\rho = \{X \mapsto \lambda x.x\}$.

The links generated from this unification problem are:

```
X \mapsto X1; F \mapsto X2 % The mappings
  \vdash X0 =\eta= x\ `X3 x'
x \vdash X3 \quad x = \beta = X2 \quad X1 \quad x' \quad a
```

where the first link is a link- η between the variable X0, representing the right side of the unification problem (it is a $\Diamond \eta$) and X3; and a link- β between the variable X3 and the subterm c0\ X2 'X1 c0' a (it is a $\Diamond \beta$). The substitution tells that $x + X1 \times x = x$.

We can now represent the hrun execution from this configuration which will, at first, dereference all the links, and then try to solve them. The only link being modified is the second one, which is set to X3 x = β = X2 x a. The RHS of the link has now a variable which is partially in the PF, we can therefore remove the original link- β and replace it with the following couple on links:

```
\vdash X1 = \eta = x \ `X4 x'
x \vdash X3 x = \beta = x \ `X4 x' a
```

By these links we say that X1 is now η -linked to a fresh variable X4 with arity one. This new variable is used in the new link- β where the name x is in its scope. This allows

6.3 Tricky examples

```
triple ok (@lam x\ @app[@f, @app[@X, x]]) @Y,
triple ok @X (@lam x\ x),
triple ok @Y @f
% @okl 22 [
  triple ok (@lam x\ @lam y\ @app[@Y, y, x]) @X,
   triple ok (@lam x\ @f) @X,
```

7 FIRST ORDER APPROXIMATION

TODO: Coq can solve this: f 1 2 = X 2, by setting X to f 1 **TODO:** We can re-use part of the algo for β given before

8 UNIF ENCODING IN REAL LIFE

TODO: Il ML presentato qui è esattamente elpi TODO: Il OL presentato qui è esattamente coq TODO: Come implementatiamo tutto ciò nel solver

RESULTS: STDPP AND TLC

TODO: How may rule are we solving? **TODO:** Can we do some perf test

10 CONCLUSION

REFERENCES

- [1] Arthur Charguéraud. "The Optimal Fixed Point Combinator". In: Interactive Theorem Proving. Ed. by Matt Kaufmann and Lawrence C. Paulson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 195-210. ISBN: 978-3-642-14052-5.
- Cvetan Dunchev, Claudio Sacerdoti Coen, and Enrico Tassi. "Implementing HOL in an Higher Order Logic Programming Language". In: Proceedings of the Eleventh Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. LFMTP '16. Porto, Portugal: Association for Computing Machinery, 2016. ISBN: 9781450347778. DOI: 10.1145/2966268. 2966272. URL: https://doi.org/10.1145/2966268.2966272.
- Cvetan Dunchev et al. "ELPI: Fast, Embeddable, λProlog Interpreter". In: Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings. Ed. by Martin Davis et al. Vol. 9450. 2015, pp. 460-468. DOI: 10.1007/978-3-662-48899-7_32. URL: http://dx.doi.org/10.1007/978-3-662-48899-7%5C 32.
- Amy Felty. "Encoding the Calculus of Constructions in a Higher-Order Logic". In: ed. by M. Vardi. IEEE, June 1993, pp. 233-244. DOI: 10.1109/LICS.1993.287584.
- Amy Felty and Dale Miller. "Specifying theorem provers in a higher-order logic programming language". In: Ninth International Conference on Automated Deduction. Ed. by Ewing Lusk and Ross Overbeck. 310. Argonne, IL: Springer, May 1988, pp. 61-80. DOI: 10.1007/BFb0012823.

- [6] Davide Fissore and Enrico Tassi. "A new Type-Class solver for Coq in Elpi". In: *The Coq Workshop 2023*. Bialystok, Poland, July 2023. URL: https://inria.hal.science/hal-04467855.
- [7] Benjamin Grégoire, Jean-Christophe Léchenet, and Enrico Tassi. "Practical and sound equality tests, automatically Deriving eqType instances for Jasmin's data types with Coq-Elpi". In: CPP '23: 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2023: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. Boston MA USA, France: ACM, Jan. 2023, pp. 167–181. DOI: 10.1145/3573105.3575683. URL: https://inria.hal.science/hal-03800154.
- [8] RALF JUNG et al. "Iris from the ground up: A modular foundation for higher-order concurrent separation logic". In: Journal of Functional Programming 28 (2018), e20. DOI: 10.1017/S0956796818000151.
- [9] Dale Miller. "Unification under a mixed prefix". In: Journal of Symbolic Computation 14.4 (1992), pp. 321–358. DOI: 10. 1016/0747-7171(92)90011-R.
- [10] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University Press, 2012. DOI: 10.1017/ CBO9781139021326.
- [11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL A Proof Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer, 2002. ISBN: 3-540-43376-7.
- [12] Lawrence C. Paulson. "Set theory for verification. I: from foundations to functions". In: J. Autom. Reason. 11.3 (Dec. 1993), pp. 353–389. ISSN: 0168-7433. DOI: 10.1007/BF00881873. URL: https://doi.org/10.1007/BF00881873.
- [13] F. Pfening. "Elf: a language for logic definition and verified metaprogramming". In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science. Pacific Grove, California, USA: IEEE Press, 1989, pp. 313–322. ISBN: 0818619546.
- [14] Frank Pfenning and Carsten Schürmann. "System Description: Twelf A Meta-Logical Framework for Deductive Systems". In: Automated Deduction CADE-16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 202–206. ISBN: 978-3-540-48660-2.
- [15] Colin Rothgang, Florian Rabe, and Christoph Benzmüller. "Theorem Proving in Dependently-Typed Higher-Order Logic". In: Automated Deduction – CADE 29. Ed. by Brigitte Pientka and Cesare Tinelli. Cham: Springer Nature Switzerland, 2023, pp. 438–455. ISBN: 978-3-031-38499-8.
- [16] Enrico Tassi. "Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers in Coq". In: ITP 2019 - 10th International Conference on Interactive Theorem Proving. Portland, United States, Sept. 2019. DOI: 10.4230/ LIPIcs. CVIT. 2016.23. URL: https://inria.hal.science/hal-01897468.
- [17] Enrico Tassi. "Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog dialect)". In: *The Fourth International Workshop on Coq for Programming Languages*. Los Angeles (CA), United States, Jan. 2018. URL: https://inria. hal.science/hal-01637063.
- [18] The Coq Development Team. *The Coq Reference Manual Release 8.18.0.* https://coq.inria.fr/doc/V8.18.0/refman. 2023.

- [19] P. Wadler and S. Blott. "How to Make Ad-Hoc Polymorphism Less Ad Hoc". In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '89. Austin, Texas, USA: Association for Computing Machinery, 1989, pp. 60–76. ISBN: 0897912942. DOI: 10.1145/ 75277.75283. URL: https://doi.org/10.1145/75277.75283.
- [20] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. "The Isabelle Framework". In: *Theorem Proving in Higher Order Logics*. Ed. by Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 33–38. ISBN: 978-3-540-71067-7.

```
APPENDIX
1045
                                                                                                                                                        1103
1046
                                                                                   type beta fm -> list fm -> fm -> o.
                                                                                                                                                        1104
       Note that (a infix b) c d de-sugars to (infix) a b c d.
1047
                                                                                  beta A [] A.
                                                                                                                                                        1105
                                                                                   beta (flam F) [H | L] R :- subst F H B,
       11 THE MEMORY
1049
                                                                                     beta B L R. % since F could be x\app[x|_] and H be lam _
         kind address type.
1050
                                                                                   beta (fapp A) L (fapp X) :- append A L X.
         type addr nat -> address.
1051
                                                                                   beta (fuva N) L (fapp [fuva N | L]).
                                                                                                                                                        1109
                                                                                  beta (fcon H) L (fapp [fcon H | L]).
                                                                                                                                                        1110
1052
         typeabbrev (mem A) (list (option A)).
1053
                                                                                                                                                        1111
1054
                                                                                   type subst (fm \rightarrow fm) \rightarrow fm \rightarrow fm \rightarrow o.
         type get nat -> mem A -> A -> o.
                                                                                   subst F H B :- napp (F H) B. % since (F H) may generate (app[app113 | _])
         get z (some Y :: _) Y.
         get (s N) (_ :: L) X :- get N L X.
                                                                                   type napp fm \rightarrow fm \rightarrow o.
                                                                                                                                                        1115
1057
                                                                                   napp (fcon C) (fcon C).
                                                                                                                                                        1116
1058
         type alloc-aux nat -> mem A -> o.
1059
                                                                                   napp (flam F) (flam G) :- pi \times napp \times x \Rightarrow napp (F \times x) (G \times x).
                                                                                                                                                        1117
         alloc-aux z [] [none] :- !.
1060
                                                                                   napp (fapp[fapp L|M]) R :- !, append L M N, napp (fapp N) R.
         alloc-aux z L L.
                                                                                   napp (fapp[X]) R :- !, napp X R.
1061
         alloc-aux (s N) [] [none | M] :- alloc-aux N [] M.
1062
                                                                                  napp (fapp A) (fapp B) :- map napp A B.
                                                                                                                                                        1120
         alloc-aux (s N) [X | L] [X | M] :- alloc-aux N L M.
                                                                                  napp (fuva N) (fuva N).
                                                                                                                                                        1121
1063
1064
                                                                                                                                                        1122
         type alloc address -> mem A -> mem A -> o.
1065
                                                                                                                                                        1123
                                                                                13 THE META LANGUAGE
         alloc (addr A as Ad) Mem1 Mem2 :- unset? Ad Mem1,
1066
                                                                                                                                                        1124
           alloc-aux A Mem1 Mem2.
1067
                                                                                   typeabbrev subst list (option assignment).
                                                                                                                                                        1125
                                                                                                                                                        1126
         type new-aux mem A -> nat -> mem A -> o.
                                                                                   kind inctx type -> type.
         new-aux [] z [none].
                                                                                   type abs (tm -> inctx A) -> inctx A.
         new-aux [A | As] (s N) [A | Bs] :- new-aux As N Bs.
                                                                                   type val A -> inctx A.
                                                                                                                                                        1129
1071
1072
                                                                                                                                                        1130
         type new mem A -> address -> mem A -> o.
1073
                                                                                   typeabbrev assignment (inctx tm).
                                                                                                                                                        1131
         new Mem1 (addr Ad) Mem2 :- new-aux Mem1 Ad Mem2.
1074
                                                                                                                                                        1132
                                                                                   kind tm type.
         type set? address -> mem A -> A -> o.
1076
                                                                                   type app list tm -> tm.
                                                                                                                                                        1134
         set? (addr A) Mem Val :- get A Mem Val.
                                                                                   type lam (tm \rightarrow tm) \rightarrow tm.
1077
                                                                                                                                                        1135
                                                                                                                                                        1136
1078
                                                                                   type con string -> tm.
         type unset? address -> mem A -> o.
1079
                                                                                   type uva address -> list tm -> tm.
                                                                                                                                                        1137
         unset? Addr Mem :- not (set? Addr Mem _).
                                                                                                                                                        1138
                                                                                   type (==1) tm -> tm -> subst -> subst -> o.
                                                                                                                                                        1139
         type assign-aux nat \rightarrow mem A \rightarrow A \rightarrow mem A \rightarrow o.
                                                                                   % congruence
         assign-aux z (none :: L) Y (some Y :: L).
                                                                                   ((app L1) ==1 (app L2)) S S1 :- fold2 (==1) L1 L2 S S1.
         assign-aux (s N) (X :: L) Y (X :: L1) :- assign-aux N L Y L1.
                                                                                   ((lam F1) == l (lam F2)) S S1 :=
                                                                                                                                                        1142
1084
1085
                                                                                     pi x copy x x \Rightarrow ((F1 x) == 1 (F2 x)) S S1.
                                                                                                                                                        1143
         type assign address -> mem A -> A -> mem A -> o.
1086
                                                                                   ((con X) == 1 (con X)) S S.
                                                                                                                                                        1144
         assign (addr A) Mem1 Val Mem2 :- assign-aux A Mem1 Val Mem2.
1087
                                                                                   % set variables
                                                                                                                                                        1145
1088
                                                                                   ((uva N Args) == 1 T) S S1 :-
                                                                                                                                                        1146
1089
                                                                                     mem.set? N S F,!, move F Args T1, (T1 ==1 T) S S1.
                                                                                                                                                        1147
       12 THE OBJECT LANGUAGE
1090
                                                                                   (T ==1 (uva N Args)) S S1 :-
                                                                                                                                                        1148
         type (=_o) ftm -> ftm -> o.
1091
                                                                                     mem.set? N S F,!, move F Args T1, (T ==1 T1) S S1.
                                                                                                                                                        1149
                                                                    (=_o)
1092
         fapp A =_o fapp B := map (=_o) A B.
                                                                                   % flex-flex
                                                                                                                                                        1150
1093
         flam F =_o flam G := pi x \ x =_o x => F x =_o G x.
                                                                                   ((uva M A1) ==1 (uva N A2)) S1 S2 :- !,
                                                                                                                                                        1151
1094
         fcon C =_o fcon C.
                                                                                     pattern-fragment A1, pattern-fragment A2,
                                                                                                                                                        1152
         fuva N =_{o} fuva N.
                                                                                     prune! M A1 N A2 S1 S2.
         flam F =_o T :=
                                                                                   ((uva N Args) == 1 T) S S1 :- not_occ N S T, pattern-fragment Args4
                                                                    (\eta_l)
           \label{eq:pi_x} \mbox{pi x$\backslash$ beta T [x] (R x), $x =_o x => F x =_o R x$.}
1097
                                                                                     bind T Args T1, mem.assign N S T1 S1.
                                                                                                                                                        1155
1098
         T =_o flam F :=
                                                                    (\eta_r)
                                                                                   % variable assigment
1099
           pi x\ beta T [x] (R x), x =_o x \Rightarrow R x =_o F x.
                                                                                   (T ==1 (uva N Args)) S S1 :- not_occ N S T, pattern-fragment Argus7
         fapp [flam X | L] =_o T :- beta (flam X) L R, R =_o T. (\beta_l)
                                                                                     bind T Args T1, mem.assign N S T1 S1.
1100
                                                                                                                                                        1158
         T =_o fapp [flam X | L] :- beta (flam X) L R, T =_o R. (\beta_r)
1101
                                                                                   (N == 1 N) S S := name N.
                                                                                                                                                        1159
                                                                                                                                                        1160
                                                                            10
```

```
1161
                                                                                std.map Args2 (keep Args1) Bits2,
                                                                                                                                                1219
1162
         % Note: We suppose the scopes to always be in PF
                                                                                std.filter Args1 (mem Args2) ToKeep1,
                                                                                                                                                1220
1163
         type prune! address -> list ho.tm -> address ->
                                                                                std.filter Args2 (mem Args1) ToKeep2,
                                                                                                                                                1221
                     list ho.tm -> subst -> o.
                                                                                std.map ToKeep2 (index ToKeep1) Pos,
                                                                                                                                                1222
1165
         prune! N A N A S S :- !.
                                                                                prune-build-ass2 N [] Bits2 Pos Ass2.
                                                                                                                                                1223
         prune! M A N A S1 S2 :- !, bind (uva M A) A Ass,
1166
                                                                                                                                                1224
                                                                              type move assignment -> list tm -> tm -> o.
1167
           mem.assign N S1 Ass S2.
                                                                                                                                                1225
         prune! N A1 N A2 S1 S3 :- !,
                                                                                                   [H|L] R :- move (Bo H) L R.
1168
                                                                              move (abs Bo)
                                                                                                                                                1226
1169
           std.assert!(len A1 {len A2}) "Not typechecking", !,
                                                                              move (val A)
                                                                                                    [] A :- !.
                                                                                                                                                1227
           mem.new S1 W S2, prune-same-variable W A1 A2 [] Ass,
                                                                              move (val (uva N A)) L
                                                                                                          (uva N X) :- std.append A L X.
           mem.assign N S2 Ass S3.
         prune! N A1 M A2 S1 S4 :- !,
                                                                              type beta tm -> list tm -> tm -> o.
           mem.new S1 W S2, prune-diff-variables W A1 A2 Ass1 Ass2,
                                                                              beta A [] A.
1173
                                                                                                                                                1231
           mem.assign N S2 Ass1 S3,
                                                                              beta (lam Bo) [H | L] R :- beta (Bo H) L R.
1174
                                                                                                                                                1232
1175
           mem.assign M S3 Ass2 S4.
                                                                              beta (app A) L (app X) :- std.append A L X.
                                                                                                                                                1233
1176
                                                                              beta (uva N A) L (uva N A') :- std.append A L A'.
                                                                                                                                                1234
         type prune-same-variable address -> list tm -> list tm ->
1177
                                                                              beta (con H) L (app [con H | L]).
                                                                                                                                                1235
1178
                                    list tm -> assignment -> o.
                                                                                                                                                1236
         prune-same-variable N [] [] ACC (val (uva N Args)) :-
                                                                                                                                                1237
1179
                                                                              type not occ aux address -> subst -> tm -> o.
                                                                              not_occ_aux N S (uva M _) :- mem.unset? M S, not (N = M).
1180
           std.rev ACC Args.
                                                                                                                                                1238
         prune-same-variable N [X|XS] [X|YS] ACC (abs F) :-
                                                                              not_occ_aux N S (uva M Args) :- mem.set? M S F,
1181
                                                                                                                                                1239
1182
           pi x\ prune-same-variable N XS YS [x|ACC] (F x).
                                                                                move F Args T, not_occ_aux N S T.
                                                                                                                                                1240
1183
         prune-same-variable N [_|XS] [_|YS] ACC (abs F) :-
                                                                              not_occ_aux N S (app L) :- forall1 (not_occ_aux N S) L.
                                                                                                                                                1241
           pi x\ prune-same-variable N XS YS ACC (F x).
                                                                              not_occ_aux N S (lam F) :- pi x\ not_occ_aux N S (F x).
                                                                                                                                                1242
1185
                                                                              not_occ_aux _ _ (con _).
1186
         type prune-build-ass1 address -> list tm ->
                                                                              not_occ_aux _ _ X :- name X.
                                                                                                                                                1245
1187
                                list bool -> assignment -> o.
1188
         prune-build-ass1 N Acc [] (val (uva N Args)) :-
                                                                              type not_occ address -> subst -> tm -> o.
                                                                                                                                                1246
1189
           std.rev Acc Args.
                                                                              not_occ N _ (uva N _).
                                                                                                                                                1247
         prune-build-ass1 N Acc [tt|L] (abs T) :-
1190
                                                                              not_occ N S (uva M Args) :- mem.set? M S F,
                                                                                                                                                1248
1191
           pi x\ prune-build-ass1 N [x|Acc] L (T x).
                                                                                move F Args T, not_occ N S T.
                                                                                                                                                1249
         prune-build-ass1 N Acc [ff|L] (abs T) :-
                                                                              not_occ N S (uva M Args) :- mem.unset? M S,
                                                                                                                                                1250
1192
           pi x\ prune-build-ass1 N Acc L (T x).
1193
                                                                                std.forall Args (not_occ_aux N S).
                                                                                                                                                1251
                                                                              not_occ _ _ (con _).
1194
                                                                                                                                                1252
         type build-order list nat -> list tm -> list tm -> o.
1195
                                                                              not_occ N S (app L) :- not_occ_aux N S (app L).
                                                                                                                                                1253
         build-order L T R :-
                                                                              not\_occ \ N \ S \ (lam \ L) :- pi \ x \setminus not\_occ \ N \ S \ (L \ x).
                                                                                                                                                1254
           len L Len, list-init Len z
                                                                              not_occ _ _ X :- name X.
             (p\r\ sigma Index Elt\ index L p Index, nth Index T r) R.
                                                                              type copy tm -> tm -> o.
                                                                              copy (app L) (app L') :- forall2 copy L L'.
         type prune-build-ass2 address -> list tm -> list bool ->
1200
                                                                                                                                                1258
1201
                             list nat -> assignment -> o.
                                                                              copy (lam T) (lam T') :- pi x\ copy x x => copy (T x) (T' x).1259
1202
         prune-build-ass2 N Acc [] Pos (val (uva N Args)) :-
                                                                              copy (uva N L) (uva N L') :- forall2 copy L L'.
           std.rev Acc Acc', build-order Pos Acc' Args.
1203
                                                                              copy (con C) (con C).
                                                                                                                                                1261
1204
         prune-build-ass2 N Acc [tt|L] Pos (abs T) :-
                                                                              copy N N :- name N.
                                                                                                                                                1262
1205
           pi x\ prune-build-ass2 N [x|Acc] L Pos (T x).
                                                                                                                                                1263
         prune-build-ass2 N Acc [ff|L] Pos (abs T) :-
                                                                              type bind tm -> list tm -> assignment -> o.
1206
                                                                                                                                                1264
           pi x\ prune-build-ass2 N Acc L Pos (T x).
                                                                              bind T [] (val T') :- copy T T'.
1207
1208
                                                                              bind T [X | TL] (abs T') :- pi x\ copy X x => bind T TL (T' x).1266
1209
         type keep list A -> A -> bool -> o.
         keep L A tt :- mem L A, !.
1210
                                                                              type deref subst -> tm -> tm -> o.
1211
         keep _ _ ff.
                                                                              deref S X _ :- (var S; var X), halt "flex deref".
1212
                                                                              deref H (uva N L) X
                                                                                                            :- mem.set? N H T.
         type prune-diff-variables address -> list tm -> list tm ->
                                                                                move T L X', !, deref H X' X.
                                                                                                                                                1271
1213
1214
                                    assignment -> assignment -> o.
                                                                              deref H (app L) (app L1) :- forall2 (deref H) L L1.
                                                                                                                                                1272
1215
         prune-diff-variables N Args1 Args2 Ass1 Ass2 :-
                                                                              deref \_ (con X) (con X).
                                                                                                                                                1273
           std.map Args1 (keep Args2) Bits1,
                                                                              deref H (uva X L) (uva X L1) :- mem.unset? X H,
1216
                                                                                                                                                1274
1217
           prune-build-ass1 N [] Bits1 Ass1,
                                                                                 forall2 (deref H) L L1.
                                                                                                                                                1275
1218
                                                                                                                                                1276
                                                                        11
```

```
:- pi x\ deref H (F x) (G x).
1277
         deref H (lam F)
                           (lam G)
                                                                              close-links (v\setminus[(L\ v)\mid XS\ v]) [ho.abs L|YS] :- !,
                                                                                                                                                1335
                                                                                close-links XS YS.
1278
         deref _ N
                           Ν
                                       :- name N.
                                                                                                                                                1336
1279
                                                                                                                                                1337
         type deref-assmt subst -> assignment -> o.
                                                                              type comp-lam (fo.fm -> fo.fm) -> (ho.tm -> ho.tm) ->
                                                                                                                                                1338
         deref-assmt S (abs T) (abs R) :- pi \times deref-assmt S (T \times x) (R \times x).
1281
                                                                                mappings -> mappings -> links -> links -> ho.subst ->
                                                                                                                                                1339
         deref-assmt S (val T) (val R) :- deref S T R.
                                                                                                                                                1340
1282
                                                                                  ho.subst -> o.
                                                                              comp-lam F F1 Mappings1 Mappings2 L L2 S S1 :-
                                                                                                                                                1341
1283
                                                                                pi x y\ (pi M L S\ comp x y M M L L S S) =>
                                                                                                                                                1342
1284
      14 THE COMPILER
1285
                                                                                  comp (F x) (F1 y) Mappings1 Mappings2 L (L1 y) S S1,
                                                                                                                                                1343
1286
         type use-binder fo.fm -> fo.fm -> o.
                                                                                     close-links L1 L2.
                                                                                                                                                1344
         use-binder N N.
1287
         use-binder N (fo.fapp L) :- exists (use-binder N) L.
                                                                              type comp fo.fm -> ho.tm -> mappings -> mappings -> links ->
         use-binder N (fo.flam B) :- pi x\ use-binder N (B x).
                                                                                links -> ho.subst -> ho.subst -> o.
1289
                                                                                                                                                1347
                                                                              comp (fo.fcon X) (ho.con X)
                                                                                                                   Map1 Map1 L1 L1 S1 S1.
1290
                                                                                                                                                1348
1291
         type maybe-eta fo.fm -> fo.fm -> list fo.fm -> o.
                                                                              comp (fo.flam F) (ho.uva E0 Scope) Map1 Map2 L1 L3 S1 S3 :-
                                                                                                                                                1349
1292
         maybe-eta N (fo.fapp[fo.fuva _[Args]) _ :- !,
                                                                                (pi x\ maybe-eta x (F x) [x]), !,
                                                                                                                                                1350
           exists (x\ maybe-eta-of [] N x) Args, !.
                                                                                  mem.new S1 E0 S2,
1293
                                                                                                                                                1351
1294
         maybe-eta N (fo.flam B) L :- !, pi x\ maybe-eta N (B x) [x | L].
                                                                                  comp-lam F F1 Map1 Map2 L1 L2 S2 S3,
                                                                                                                                                1352
                                                                                   (pi x\ locale x => get-scope (F1 x) Scope),
1295
         maybe-eta _ (fo.fapp [fo.fcon _|Args]) L :-
                                                                                                                                                1353
                                                                                  NewLink = ho.val(link-eta (ho.uva E0 Scope) (ho.lam F1)),
1296
           split-last-n {len L} Args First Last,
                                                                                                                                                1354
           forall1 (x\ forall1 (y\ not (use-binder x y)) First) L,
1297
                                                                                  L3 = [NewLink] L2].
                                                                                                                                                1355
1298
           forall2 (maybe-eta-of []) {std.rev L} Last.
                                                                              comp (fo.flam F) (ho.lam F1)
                                                                                                                   Map1 Map2 L1 L2 S1 S2 :-
                                                                                                                                                1356
                                                                                comp-lam F F1 Map1 Map2 L1 L2 S1 S2.
                                                                                                                                                1357
         type maybe-eta-of list fo.fm -> fo.fm -> o.
                                                                              comp (fo.fuva N) (ho.uva M []) Map1 Map2 L L S S1 :-
                                                                                                                                                1358
1301
         maybe-eta-of _ N N :- !.
                                                                                alloc Map1 Map2 (fv N) (hv M (arity z)) S S1.
                                                                              comp (fo.fapp [fo.fuva N|Ag]) (ho.uva M Scope) Map1 Map2 L1 L1 $$60 S2 :-
         maybe-eta-of L N (fo.fapp[fo.fuva _|Args]) :- !,
1302
           % Head is flex \rightarrow if N is in Args, we can have eta
                                                                                pattern-fragment Ag, !,
                                                                                                                                                1361
1303
           forall1 (x\ exists (maybe-eta-of [] x) Args) [N|L].
                                                                                                                                                1362
1304
                                                                                  fold6 comp Ag Scope Map1 Map1 L1 L1 S1 S1,
1305
         maybe-eta-of L N (fo.flam B) :- !,
                                                                                  len Ag Arity,
                                                                                                                                                1363
           pi x\ maybe-eta-of [x | L] N (B x).
                                                                                  alloc Map1 Map2 (fv N) (hv M (arity Arity)) S1 S2.
1306
1307
         maybe-eta-of L N (fo.fapp [N|Args]) :-
                                                                              comp (fo.fapp [fo.fuva N|Ag]) (ho.uva M' Scope) Map1 Map3 L1 L318 S4:
           % Head is rigid -> to be an eta we consider also L
                                                                                pattern-fragment-prefix Ag PF NPF,
1308
           last-n {len L} Args R,
                                                                                  fold6 comp PF PF1 Map1 Map1 L1 L1 S1 S1,
                                                                                                                                                1367
1309
           forall2 (maybe-eta-of []) R {std.rev L}.
                                                                                  fold6 comp NPF NPF1 Map1 Map2 L1 L2 S1 S2,
                                                                                                                                                1368
1310
1311
                                                                                  len PF Arity,
                                                                                                                                                1369
1312
         type locale ho.tm -> o.
                                                                                  alloc Map2 Map3 (fv N) (hv M (arity Arity)) S2 S3,
                                                                                                                                                1370
         type get-scope-aux ho.tm -> list ho.tm -> o.
1313
                                                                                  get-scope (ho.app {std.append PF1 NPF1}) Scope,
                                                                                                                                                1371
1314
         get-scope-aux (ho.con _) [].
                                                                                  mem.new S3 M' S4,
                                                                                  L3 = [@val-link-beta (ho.uva M' Scope) (ho.app[ho.uva M PF11373NPF1]]
1315
         get-scope-aux (ho.uva L) L1:-
           forall2 get-scope-aux L R,
                                                                              comp (fo.fapp A) (ho.app A1) Map1 Map2 L1 L2 S1 S2 :-
                                                                                                                                                1374
1316
1317
           flatten R L1.
                                                                                fold6 comp A A1 Map1 Map2 L1 L2 S1 S2.
                                                                                                                                                1375
1318
         get-scope-aux (ho.lam B) L1 :-
                                                                                                                                                1376
           pi x\ locale x => get-scope-aux (B x) L1.
                                                                              type make-eta-link-aux nat -> address -> address ->
                                                                                                                                                1377
1319
                                                                                list ho.tm -> links -> ho.subst -> ho.subst -> o.
1320
         get-scope-aux (ho.app L) L1 :-
                                                                                                                                                1378
1321
           forall2 get-scope-aux L R,
                                                                              make-eta-link-aux z Ad1 Ad2 Scope1 L H1 H1 :-
           flatten R L1.
                                                                                std.rev Scope1 Scope, eta-expand (ho.uva Ad2 Scope) @one T1, 1380
1322
         get-scope-aux X [X] :- name X, not (locale X).
                                                                                L = [@val-link-eta (ho.uva Ad1 Scope) T1].
1323
                                                                                                                                                1381
1324
         get-scope-aux X [] :- name X, (locale X).
                                                                              make-eta-link-aux (s N) Ad1 Ad2 Scope1 L H1 H3 :-
                                                                                                                                                1382
1325
                                                                                std.rev Scope1 Scope, mem.new H1 Ad H2,
                                                                                                                                                1383
1326
         type get-scope ho.tm -> list ho.tm -> o.
                                                                                eta-expand (ho.uva Ad Scope) @one T2,
         get-scope T Scope :- names N,
                                                                                (pi x\ make-eta-link-aux N Ad Ad2 [x|Scope1] (L1 x) H2 H3),
1328
           get-scope-aux T ScopeDuplicata.
                                                                                close-links L1 L2.
           std.filter N (mem ScopeDuplicata) Scope.
                                                                                L = [@val-link-eta (ho.uva Ad1 Scope) T2 | L2].
                                                                                                                                                1387
1329
1330
                                                                                                                                                1388
1331
         type close-links (ho.tm -> links) -> links -> o.
                                                                              type make-eta-link nat -> nat -> address -> address ->
                                                                                                                                                1389
         close-links (_\[]) [].
                                                                                      list ho.tm -> links -> ho.subst -> ho.subst -> o.
                                                                                                                                                1390
1332
         close-links (v\[L|XS\ v]) [L|YS] :- !, close-links XS YS.
                                                                              make-eta-link (s N) z Ad1 Ad2 Vars L H H1 :-
1333
                                                                                                                                                1391
1334
                                                                        12
```

```
1393
           make-eta-link-aux N Ad2 Ad1 Vars L H H1
                                                                              occur-check-err (ho.uva Ad _) T S :-
                                                                                                                                                1451
1394
         make-eta-link z (s N) Ad1 Ad2 Vars L H H1 :-
                                                                                not (ho.not_occ Ad S T).
                                                                                                                                                1452
1395
           make-eta-link-aux N Ad1 Ad2 Vars L H H1.
                                                                                                                                                1453
         make-eta-link (s N) (s M) Ad1 Ad2 Vars Links H H1 :-
                                                                              type progress-beta-link-aux ho.tm -> ho.tm ->
1397
           (pi x\ make-eta-link N M Ad1 Ad2 [x|Vars] (L x) H H1),
                                                                                      ho.subst -> ho.subst -> links -> o.
           close-links L Links.
                                                                              progress-beta-link-aux T1 T2 S1 S2 [] :- is-in-pf T2, !,
1398
                                                                                                                                                1456
                                                                                (T1 == 1 T2) S1 S2.
1399
                                                                                                                                                1457
         type deduplicate-mappings mappings -> mappings ->
                                                                              progress-beta-link-aux T1 T2 S S [@val-link-beta T1 T2] :- !.
                                                                                                                                                1458
1400
1401
                 ho.subst -> ho.subst -> links -> links -> o.
         deduplicate-mappings [] [] H H L L.
                                                                              type progress-beta-link ho.tm -> ho.tm -> ho.subst ->
         deduplicate-mappings [(mapping (fv 0) (hv M (arity LenM)) as X1) | Map1] Hoaps lbst H≯ Llinks ⇒ o.
           take-list Map1 (mapping (fv 0) (hv M' (arity LenM'))) _, !,
                                                                              progress-beta-link T (ho.app[ho.uva V Scope | L] as T2) S S2 [@val-link-
1404
           make-eta-link LenM LenM' M M' [] New H1 H2.
                                                                                arity T Arity, len L ArgsNb, ArgsNb >n Arity, !,
1405
                                                                                                                                                1463
                                                                                minus ArgsNb Arity Diff, mem.new S V1 S1,
           std.append New L1 L2,
                                                                                                                                                1464
1406
1407
           deduplicate-mappings Map1 Map2 H2 H3 L2 L3.
                                                                                eta-expand (ho.uva V1 Scope) Diff T1,
                                                                                                                                                1465
1408
         deduplicate-mappings [A|As] [A|Bs] H1 H2 L1 L2 :-
                                                                                ((ho.uva V Scope) == 1 T1) S1 S2.
                                                                                                                                                1466
           deduplicate-mappings As Bs H1 H2 L1 L2, !.
1409
                                                                                                                                                1467
1410
                                                                              progress-beta-link (ho.uva _ _ as T) (ho.app[ho.uva Ad1 Scope1 46L1] as
1411
                                                                                std.append Scope1 L1 Scope1L.
       15 THE PROGRESS FUNCTION
1412
                                                                                                                                                1470
                                                                                pattern-fragment-prefix Scope1L Scope2 L2,
1413
         macro @one :- s z.
                                                                                not (Scope1 = Scope2), !,
                                                                                                                                                1471
1414
                                                                                mem.new S1 Ad2 S2,
                                                                                                                                                1472
1415
         type contract-rigid list ho.tm -> ho.tm -> ho.tm -> o.
                                                                                len Scope1 Scope1Len,
                                                                                                                                                1473
1416
         contract-rigid L (ho.lam F) T :-
                                                                                len Scope2 Scope2Len,
1417
           pi x\ contract-rigid [x|L] (F x) T. % also checks H Prefix does nomakee eta-link Scope1Len Scope2Len Ad1 Ad2 [] LinkEta S2 S3,
                                                                                if (L2 = []) (NewLinks = LinkEta, T2 = ho.uva Ad2 Scope2)
1418
         contract-rigid L (ho.app [H|Args]) T :-
           std.rev L LRev, std.appendR Prefix LRev Args,
                                                                                  (T2 = ho.app [ho.uva Ad2 Scope2 | L2],
                                                                                                                                                1477
1419
1420
           if (Prefix = []) (T = H) (T = ho.app [H|Prefix]).
                                                                                  NewLinks = [@val-link-beta T T2 | LinkEta]).
                                                                                                                                                1478
1421
                                                                                                                                                1479
         type progress-eta-link ho.tm -> ho.tm -> ho.subst -> ho.subst -> limmogress-eta-link T1 (ho.app[ho.uva _ _ | _] as T2) _ _ _ :- 1480
1422
1423
         progress-eta-link (ho.app _ as T) (ho.lam x\ _ as T1) H H1 [] :- !, not (T1 = ho.uva _ _), !, fail.
           ({eta-expand T @one} == 1 T1) H H1.
1424
         progress-eta-link (ho.con _ as T) (ho.lam x\ _ as T1) H H1 [] :- !progress-beta-link (ho.uva _ _ as T) (ho.app[ho.uva _ _ | _] as 142) S1 .
1425
           (\{eta-expand T @one\} == 1 T1) H H1.
                                                                                occur-check-err T T2 S1, !, fail.
1426
1427
         progress-eta-link (ho.lam _ as T) T1 H H1 [] :- !,
           (T == 1 T1) H H1.
                                                                              progress-beta-link T1 (ho.app[ho.uva _ _ | _] as T2) H H [@val-link-beta
         progress-eta-link (ho.uva _ _ as X) T H H1 [] :-
           contract-rigid [] T T1, !, (X ==1 T1) H H1.
                                                                              progress-beta-link T1 (ho.app [Hd | T1]) S1 S2 B :-
         progress-eta-link (ho.uva Ad _ as T1) T2 H H [@val-link-eta T1 T2] :ho!beta Hd T1 T3,
1431
           if (ho.not_occ Ad H T2) true fail.
                                                                                progress-beta-link-aux T1 T3 S1 S2 B.
                                                                                                                                                1490
1432
1433
                                                                                                                                                1491
1434
         type is-in-pf ho.tm -> o.
                                                                              type solve-link-abs link -> links -> ho.subst -> ho.subst -> o.1492
         is-in-pf (ho.app [ho.uva _ _ | _]) :- !, fail.
                                                                              solve-link-abs (ho.abs X) R H H1 :-
1435
         is-in-pf (ho.lam B) :- !, pi x\ is-in-pf (B x).
1436
                                                                                pi x \land ho.copy x x \Rightarrow (pi S \land ho.deref S x x) \Rightarrow
                                                                                                                                                1494
1437
         is-in-pf (ho.con _).
                                                                                  solve-link-abs (X x) (R' x) H H1,
                                                                                                                                                1495
         is-in-pf (ho.app L) :- forall1 is-in-pf L.
                                                                                close-links R' R.
                                                                                                                                                1496
1438
1439
         is-in-pf N :- name N.
                                                                                                                                                1497
1440
         is-in-pf (ho.uva _ L) :- pattern-fragment L.
                                                                              solve-link-abs (@val-link-eta A B) NewLinks S S1 :- !,
                                                                                                                                                1498
1441
                                                                                progress-eta-link A B S S1 NewLinks.
                                                                                                                                                1499
1442
         type arity ho.tm -> nat -> o.
                                                                                                                                                1500
1443
         arity (ho.con _) z.
                                                                              solve-link-abs (@val-link-beta A B) NewLinks S S1 :- !,
                                                                                progress-beta-link A B S S1 NewLinks.
1444
         arity (ho.app L) A :- len L A.
                                                                                                                                                1503
1445
         type occur-check-err ho.tm -> ho.tm -> ho.subst -> o.
                                                                              type take-link link -> links -> link -> links -> o.
1446
                                                                                                                                                1504
1447
         occur-check-err (ho.con _) _ _ :- !.
                                                                              take-link A [B|XS] B XS :- link-abs-same-lhs A B, !.
                                                                                                                                                1505
         occur-check-err (ho.app _) _ _ :- !.
                                                                              take-link A [L|XS] B [L|YS] :- take-link A XS B YS.
1448
                                                                                                                                                1506
1449
         occur-check-err (ho.lam _) _ _ :- !.
                                                                                                                                                1507
1450
                                                                                                                                                1508
                                                                        13
```

```
1509
         type link-abs-same-lhs link -> link -> o.
                                                                                mem.unset? VM H, decompl-subst Map Tl H F F2.
                                                                                                                                                 1567
1510
         link-abs-same-lhs (ho.abs F) B :-
                                                                                                                                                 1568
1511
           pi x\ link-abs-same-lhs (F x) B.
                                                                              type tm->fm mappings -> ho.tm -> fo.fm -> o.
                                                                                                                                                 1569
         link-abs-same-lhs A (ho.abs G) :-
                                                                              tm->fm _ (ho.con C) (fo.fcon C).
1512
                                                                                                                                                 1570
1513
           pi x\ link-abs-same-lhs A (G x).
                                                                              tm->fm L (ho.lam B1) (fo.flam B2) :-
                                                                                                                                                 1571
         link-abs-same-lhs (@val-link-eta (ho.uva N _) _) (@val-link-eta (ho.uva x y \_) tm}->fm _ x y => tm->fm L (B1 x) (B2 y).
                                                                                                                                                 1572
1514
                                                                              tm->fm L (ho.app L1) T :- forall2 (tm->fm L) L1 [Hd|Tl],
                                                                                                                                                 1573
1515
         type same-link-eta link -> link -> ho.subst -> ho.subst -> o.
                                                                                                                                                 1574
1516
                                                                                fo.mk-app Hd Tl T.
1517
         same-link-eta (ho.abs F) B H H1 :- !, pi x\ same-link-eta (F x) B HtmH>fm L (ho.uva VM TL) T :- mem L (mapping (fv VO) (hv VM _)),1575
1518
         same-link-eta A (ho.abs G) H H1 :- !, pi x\ same-link-eta A (G x) H Hfbrall2 (tm->fm L) TL T1, fo.mk-app (fo.fuva V0) T1 T.
         same-link-eta (@val-link-eta (ho.uva N S1) A)
                       (@val-link-eta (ho.uva N S2) B) H H1 :-
                                                                              type add-new-mappings-aux ho.subst -> list ho.tm -> mappings ->1578
           std.map2 S1 S2 (x\y\r\ r = ho.copy x y) Perm,
                                                                                     mappings -> fo.subst -> fo.subst -> o.
1521
                                                                                                                                                 1579
           Perm => ho.copy A A',
1522
                                                                              add-new-mappings-aux _ [] _ [] S S.
                                                                                                                                                 1580
1523
           (A' == 1 B) H H1.
                                                                              add-new-mappings-aux H [T|Ts] L L2 S S2 :-
                                                                                                                                                 1581
1524
                                                                                 add-new-mappings H T L L1 S S1,
                                                                                                                                                 1582
         type solve-links links -> links -> ho.subst -> ho.subst -> o.
                                                                                 add-new-mappings-aux H Ts L1 L2 S1 S2.
1525
                                                                                                                                                 1583
1526
         solve-links [] [] X X.
                                                                                                                                                 1584
         solve-links [AIL1] [AIL3] S S2 :- take-link A L1 B L2. !.
1527
                                                                              type add-new-mappings ho.subst -> ho.tm -> mappings ->
                                                                                                                                                 1585
           same-link-eta A B S S1.
                                                                                   mappings -> fo.subst -> fo.subst -> o.
1528
                                                                                                                                                 1586
           solve-links L2 L3 S1 S2.
                                                                              add-new-mappings _ (ho.uva N _) Map [] F1 F1 :-
1529
                                                                                                                                                 1587
1530
         solve-links [L0|L1] L3 S S2 :- deref-link S L0 L,
                                                                                 mem Map (mapping _ (hv N _)), !.
                                                                                                                                                 1588
1531
           solve-link-abs L R S S1, !,
                                                                              add-new-mappings H (ho.uva N L) Map [Map1 | MapL] F1 F3 :-
                                                                                                                                                 1589
           solve-links L1 L2 S1 S2, std.append R L2 L3.
1532
                                                                                 mem.new F1 M F2.
                                                                                 len L Arity, Map1 = mapping (fv M) (hv N (arity Arity)),
1534
                                                                                                                                                 1592
                                                                                 add-new-mappings H (ho.app L) [Map1 | Map] MapL F2 F3.
      16 THE DECOMPILER
1535
                                                                              add-new-mappings H (ho.lam B) Map NewMap F1 F2 :-
                                                                                                                                                 1593
1536
         type abs->lam ho.assignment -> ho.tm -> o.
                                                                                 pi x\ add-new-mappings H (B x) Map NewMap F1 F2.
                                                                                                                                                 1594
1537
         abs->lam (ho.abs T) (ho.lam R) :- !, pi x\ abs->lam (T x) (R x). add-new-mappings H (ho.app L) Map NewMap F1 F3 :-
                                                                                                                                                 1595
                                                                                 add-new-mappings-aux H L Map NewMap F1 F3.
1538
         abs->lam (ho.val A) A.
                                                                                                                                                 1596
1539
                                                                              add-new-mappings _ (ho.con _) _ [] F F :- !.
         type commit-links-aux link -> ho.subst -> ho.subst -> o.
                                                                              add-new-mappings _ N _ [] F F :- name N.
                                                                                                                                                 1598
1540
         commit-links-aux (@val-link-eta T1 T2) H1 H2 :-
                                                                                                                                                 1599
1541
           ho.deref H1 T1 T1', ho.deref H1 T2 T2',
                                                                              type complete-mapping-under-ass ho.subst -> ho.assignment ->
1542
                                                                                                                                                 1600
1543
           (T1' == 1 T2') H1 H2.
                                                                                 mappings -> mappings -> fo.subst -> fo.subst -> o.
                                                                                                                                                 1601
1544
         commit-links-aux (@val-link-beta T1 T2) H1 H2 :-
                                                                              complete-mapping-under-ass H (ho.val Val) Map1 Map2 F1 F2 :-
                                                                                                                                                 1602
           ho.deref H1 T1 T1', ho.deref H1 T2 T2',
                                                                                 add-new-mappings H Val Map1 Map2 F1 F2.
           (T1' == 1 T2') H1 H2.
                                                                              complete-mapping-under-ass H (ho.abs Abs) Map1 Map2 F1 F2 :-
1546
         commit-links-aux (ho.abs B) H H1 :-
                                                                                 pi x\ complete-mapping-under-ass H (Abs x) Map1 Map2 F1 F2.
1547
           pi x\ commit-links-aux (B x) H H1.
1548
                                                                                                                                                 1606
1549
                                                                              type complete-mapping ho.subst -> ho.subst ->
                                                                                                                                                 1607
1550
         type commit-links links -> links -> ho.subst -> ho.subst -> o.
                                                                                 mappings -> mappings -> fo.subst -> fo.subst -> o.
                                                                                                                                                 1608
         commit-links [] [] H H.
                                                                                                                                                 1609
1551
                                                                              complete-mapping _ [] L L F F.
1552
         commit-links [Abs | Links] L H H2 :-
                                                                              complete-mapping H [none | T1] L1 L2 F1 F2 :-
                                                                                                                                                 1610
1553
           commit-links-aux Abs H H1, !, commit-links Links L H1 H2.
                                                                                complete-mapping H Tl L1 L2 F1 F2.
                                                                                                                                                 1611
                                                                              complete-mapping H [some T0 | T1] L1 L3 F1 F3 :-
                                                                                                                                                 1612
1554
         type decompl-subst mappings -> mappings -> ho.subst ->
                                                                                 ho.deref-assmt H T0 T,
                                                                                                                                                 1613
1555
1556
           fo.subst -> fo.subst -> o.
                                                                                 complete-mapping-under-ass H T L1 L2 F1 F2,
                                                                                                                                                 1614
1557
         decompl-subst _{-} [A|_] _{-} _{-} :- fail.
                                                                                 std.append L1 L2 LAll,
                                                                                                                                                 1615
                                                                                 complete-mapping H Tl LAll L3 F2 F3.
1558
         decompl-subst _ [] _ F F.
                                                                                                                                                 1616
         decompl-subst Map [mapping (fv V0) (hv VM _)[T1] H F F2 :-
           mem.set? VM H T, !,
                                                                              type decompile mappings -> links -> ho.subst ->
                                                                                                                                                 1618
1560
           ho.deref-assmt H T TTT,
                                                                                 fo.subst -> fo.subst -> o.
                                                                                                                                                 1619
1561
           abs->lam TTT T', tm->fm Map T' T1,
                                                                              decompile Map1 L HO FO FO2 :-
1562
                                                                                                                                                 1620
1563
           fo.eta-contract T1 T2, mem.assign V0 F T2 F1,
                                                                                commit-links L L1_ H0 H01, !,
                                                                                                                                                 1621
           decompl-subst Map Tl H F1 F2.
                                                                                 complete-mapping HO1 HO1 Map1 Map2 FO FO1,
1564
                                                                                                                                                 1622
         decompl-subst Map [mapping _ (hv VM _)|T1] H F F2 :-
1565
                                                                                 decompl-subst Map2 Map2 H01 F01 F02.
                                                                                                                                                 1623
                                                                                                                                                 1624
1566
                                                                        14
```

```
17 AUXILIARY FUNCTIONS
  type fold4 (A \rightarrow A1 \rightarrow B \rightarrow B \rightarrow C \rightarrow C \rightarrow o) \rightarrow list A \rightarrow
    list A1 -> B -> B -> C -> C -> o.
  fold4 _ [] [] A A B B.
  fold4 F [X|XS] [Y|YS] A A1 B B1 :- F X Y A A0 B B0,
    fold4 F XS YS A0 A1 B0 B1.
  type len list A -> nat -> o.
  len [] z.
  len [\_|L] (s X) :- len L X.
```