Análise Gráfica

Análise Gráfica

O objetivo da análise gráfica é transmitir visualmente as informações da amostra sobre a população.

Dividimos a análise Gráfica em três situações:

- Variável Qualitativa (Ordinal e Nominal)
- Variável Quantitativa Discreta
- Variável Quantitativa Contínua

Variável Qualitativa

Para variáveis qualitativas, podemos fazer dois tipos de gráficos:

•Gráficos de barras

•Gráficos em setores

Exemplo – Variável qualitativa

Na pesquisa sobre o Grau de Instrução dos chefes de família, temos 120 chefes de famílias no bairro Saco Grande II entrevistados com a seguinte distribuição de frequência:

Distribuição de frequência			
Grau de Instrução	Frequência	Proporção	Porcentagem
Nenhum grau completo	38	0,3167	31,67
Primeiro grau completo	37	0,3083	30,83
Segundo grau completo	45	0,3750	37,50
Total	120	1,0000	100,00

Gráfico de Barras

Nesse gráfico, a altura das barras é a frequência da Distribuição de Frequência. O leitor precisa olhar a altura para captar a informação que o pesquisador deseja transmitir.

Gráfico em setores

Este gráfico tem o formato de "pizza" e é divido em setores. Cada setor representa a frequência da categoria da variável. O ângulo entre as divisórias do setor é calculado por $proporção~X~360^{\circ}$.

GRÁFICO EM SETORES

Variável Quantitativa Discreta

Para a variável quantitativa discreta, podemos fazer três gráficos:

- •Gráfico de barras
- •Gráfico de Setores
- •Gráfico de dispersão unidimensional

Exemplo – Variável Quantitativa Discreta

Considere a variável número de filhos da empresa XXX. Na tabela abaixo, mostramos a distribuição de frequência.

Distribuição de Frequência			
Número de filhos	Frequência	Proporção	Porcentagem
0	20	0,5556	55,56
1	5	0,1389	13,89
2	7	0,1944	19,44
3	3	0,0833	8,33
4	0	0,0000	0,00
5	1	0,0278	2,78
Total	36	1,0000	100,00

Exemplo – Variável Quantitativa Discreta

Considere a variável número de filhos da empresa XXX. Na tabela abaixo mostramos a distribuição de frequência.

Distribuição de Frequência			
Número de filhos	Frequência	Proporção	Porcentagem
0	20	0,5556	55,56
1	5	0,1389	13,89
2	7	0,1944	19,44
3	3	0,0833	8,33
4	0	0,000	0,00
5	1	0,0278	2,78
Total	36	1,0000	100,00

Gráfico de barras

Nesse gráfico, a altura das barras é a frequência da Distribuição de Frequência. O leitor precisa olhar a altura para captar a informação que o pesquisador deseja transmitir.

Gráfico em setores

Este gráfico tem o formato de "pizza" e é divido em setores. Cada setor representa a frequência da categoria da variável. O ângulo entre as divisórias do setor é calculado por proporção X 360°.

Gráfico em setores

Gráfico de dispersão unidimensional Alternativa I

Para cada valor, representamos a frequência por "bolinhas" sobre um eixo com marcações dos valores.

Gráfico de dispersão unidimensional Alternativa II

Para cada valor, representamos a frequência por "bolinhas" sobre um eixo colocando n bolinhas sobre cada valor.

Gráfico de dispersão unidimensional Alternativa III

Desenhamos no plano cartesiano os pontos (valor da variável, frequência do valor).

Variável Quantitativa Contínua

Para uma variável quantitativa contínua, podemos fazer três gráficos:

- •Gráfico de barras
- •Gráfico em setores
- Histograma
- Ramos-e-folhas

Exemplo – Variável Quantitativa Contínua

Considere a variável no estudo do perfil socioeconômico dos funcionários da empresa XXX. Para uma variável quantitativa contínua, criamos classes de salário conforme a tabela de distribuição de frequência abaixo.

Distribuição de frequência Salário			
Classe de Salário	Frequência	Proporção	Porcentagem
4 8	10	0,2778	27,78
8 12	12	0,3333	33,33
12 16	8	0,2222	22,22
16 20	5	0,1389	13,89
20 24	1	0,0278	2,78
Total	36	1,0000	100,00

Gráfico de barras

Para cada classe de salário, o leitor deve observar a altura de cada barra no gráfico. A altura é a frequência de cada classe.

Gráfico em setores

O gráfico de setores tem forma de uma "pizza", e a área de Cada setor é proporcional a frequência. Note que para variáveis contínuas categorizamos os dados, o que acarreta em perda de informação.

GRÁFICO EM SETORES

Histograma

Histograma é um gráfico de barras contíguas cuja soma das áreas das barras é um. A área da barra transmite a frequência. Para isso precisamos desenhar corretamente a base e altura para que a área seja a proporção.

Histograma			
Base	Proporção	Altura	
4 8	0,2778	0,1389	
8 12	0,3333	0,1667	
12 16	0,2222	0,1111	
16 20	0,1389	0,0694	
20 24	0,0278	0,0139	
Total	1,0000		

Histograma

Usando a tabela do slide anterior, construímos o gráfico abaixo.

Ramos-e-folhas

Uma observação relevante sobre o Histograma, Gráfico de barras e em setores é que perdemos informação ao agregar os dados em classes ou intervalos.

O gráfico de ramos-e-folhas consiste de um diagrama com duas partes divididas por uma barra. O lado esquerdo é a parte inteira dos dados e o lado direito a parte fracionária. Os números são apresentados em ordem crescente.

Exemplo – Ramos-e-Folhas

Considere a variável salário no estudo do perfil socioeconômico dos funcionários da empresa XXX. O Gráfico de ramos-e-folhas é apresentado abaixo.

```
06
     379
     446
     157
     01488
     58
     08
     269
     77
     026
19
20
21
```

Ramos-e-Folhas

•Vantagem:

• O Gráfico de Ramos-e-Folhas é capaz de transmitir as informações sem perdemos muitos dados.

•Desvantagem:

Não é recomendado se temos muitos ramos e folhas.