CS344: Introduction to Artificial Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture 14-17: Predicate calculus, Prolog, Circuit verification

Models of human reasoning (1/2)

- Non-numerical
 - Non monotonic Logic
 - Negation by failure ("innocent unless proven guilty")
 - Abduction $(P \rightarrow Q AND Q gives P)$
 - Modal Logic
 - New operators beyond AND, OR, IMPLIES, Quantification etc.
 - Naïve Physics

Abduction Example

If

there is rain (P)

Then

there will be no picnic (Q)

Abductive reasoning:

Observation: There was no picnic(Q)

Conclude: There was rain(P); in absence

of any other evidence

Modeling human reasoning (2/2)

- Numerical
 - Fuzzy Logic
 - Probability Theory
 - Bayesian Decision Theory
 - Possibility Theory
 - Uncertainty Factor based on Dempster Shafer Evidence Theory (e.g. yellow_eyes→jaundice; 0.3)

Predicate calculus

Introduce through the "Himalayan Club Example"

Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
 - Facts
 - Rules

Example contd.

- Let mc denote mountain climber and sk denotes skier. Knowledge representation in the given problem is as follows:
 - 1. member(A)
 - member(B)
 - member(C)
 - 4. $\forall x [member(x) \rightarrow (mc(x) \ v \ sk(x))]$
 - $\forall x[mc(x) \rightarrow \sim like(x,rain)]$
 - 6. $\forall x[sk(x) \rightarrow like(x, snow)]$
 - $\forall x[like(B, x) \rightarrow \sim like(A, x)]$
 - 8. $\forall x [\sim like(B, x) \rightarrow like(A, x)]$
 - 9. like(A, rain)
 - 10. like(A, snow)
 - 11. Question: $\exists x [member(x) \land mc(x) \land \neg sk(x)]$
- We have to infer the 11th expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

- 1. member(A)
- 2. member(B)
- member(C)
- 4. $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
 - Can be written as
 - $member(x) \bigvee mc(x) \bigvee sk(x) mc(x) \vee sk(x))]$
- 5. $\forall x[sk(x) \rightarrow lk(x, snow)]$
 - $\sim sk(x) \vee lk(x, snow)$
- 6. $\forall x[mc(x) \rightarrow \sim lk(x, rain)]$
 - $\sim mc(x) \lor \sim lk(x, rain)$
- $\forall x[like(A, x) \rightarrow \sim lk(B, x)]$
 - $like(A, x) \lor \sim lk(B, x)$ 5-12/2/15 Pushpak Bhattacharyya

8.
$$\forall x [\sim lk(A, x) \rightarrow lk(B, x)]$$

$$= lk(A, x) \lor lk(B, x)$$

- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. $\exists x [member(x) \land mc(x) \land \sim sk(x)]$
 - Negate- $\forall x [\sim member(x) \lor \sim mc(x) \lor sk(x)]$

- Now standardize the variables apart which results in the following
- 1. member(A)
- $_{2.}$ member(B)
- member(C)
- 4. $\sim member(x_1) \vee mc(x_1) \vee sk(x_1)$
- 5. $\sim sk(x_2) \vee lk(x_2, snow)$
- 6. $\sim mc(x_3) \vee \sim lk(x_3, rain)$
- 7. $\sim like(A, x_4) \vee \sim lk(B, x_4)$
- 8. $lk(A, x_5) \vee lk(B, x_5)$
- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. $\sim member(x_6) \lor \sim mc(x_6) \lor sk(x_6)$ Pushpak Bhattacharyya

Well known examples in Predicate Calculus

Man is mortal : rule

 $\forall x [man(x) \rightarrow mortal(x)]$

- shakespeare is a man man(shakespeare)
- To infer shakespeare is mortal mortal(shakespeare)

Predicate Calculus: origin

Predicate calculus originated in language

Predicate Calculus: only for declarative sentences

- Is grass green? (Interrogative)
- Oh, grass is green! (Exclamatory)

Grass which is supple is green

$$\forall x(\operatorname{grass}(x)) \land \operatorname{supple}(x) \rightarrow \operatorname{green}(x))$$

Predicate Calculus: more expressive power than propositional calculus

- 2 is even and is divisible by 2: P1
- 4 is even and is divisible by 2: P2
- 6 is even and is divisible by 2: P3
 Generalizing,

$$\forall x ((Integer(x) \land even(x) \Rightarrow divides(2, x)))$$

Predicate Calculus: finer than propositional calculus

- Finer Granularity (Grass is green, ball is green, leaf is green (green(x)))
- Succinct description for infinite number of statements which would need

 number of properties

3 place predicate

Example: x gives y to z give(x,y,z)

4 place predicate

Example: x gives y to z through w give(x,y,z,w)

Double causative in Hindi giving rise to higher place predicates

- जॉन ने खाना खाया
 John ne khana khaya
 John <CM> food ate
 John ate food
 eat(John, food)
- जॉन ने जैक को खाना खिलाया
 John ne Jack ko khana khilaya
 John < CM> Jack < CM> food fed
 John fed Jack
 eat(John, Jack, food)
- जॉन ने जैक को जिल के द्वारा खाना खिलाया
 John ne Jack ko Jill ke dvara khana khilaya
 John < CM> Jack < CM> Jill < CM> food made-to-eat
 John fed Jack through Jill
 eat(John, Jack, Jill, food)

PC primitive: N-ary Predicate

$$P(a_1,\ldots a_n)$$

$$P:D^n \to \{T,F\}$$

- Arguments of predicates can be variables and constants
- Ground instances : Predicate all whose arguments are constants

N-ary Functions

$$f:D^n\to D$$

president(India) : Pranab Mukherjee

- Constants & Variables : Zero-order objects
- Predicates & Functions : First-order objects

Prime minister of India is older than the president of India

older(prime_minister(India), president(India))

Operators

$$\wedge \vee \sim \oplus \forall \rightarrow \exists$$

- Universal Quantifier
- Existential Quantifier

All men are mortal

$$\forall x [man(x) \rightarrow mortal(x)]$$

Some men are rich

$$\exists x [man(x) \land rich(x)]$$

Tautologies

$$\sim \forall x(p(x)) \to \exists x(\sim p(x))$$

$$\sim \exists x(p(x)) \rightarrow \forall x(\sim p(x))$$

- 2nd tautology in English:
 - Not a single man in this village is educated implies all men in this village are uneducated
- Tautologies are important instruments of logic, but uninteresting statements!

Inferencing: Forward Chaining

- \blacksquare $man(x) \rightarrow mortal(x)$
 - Dropping the quantifier, implicitly Universal quantification assumed
 - man(shakespeare)
- Goal mortal(shakespeare)
 - Found in one step
 - $\mathbf{x} = \mathbf{x}$ shakespeare, unification

Backward Chaining

- \blacksquare $man(x) \rightarrow mortal(x)$
- Goal mortal(shakespeare)
 - $\mathbf{x} = \mathbf{shakespeare}$
 - Travel back over and hit the fact asserted
 - man(shakespeare)

Wh-Questions and Knowledge

Fixing Predicates

Natural Sentences

Verb(subject,object)

Examples

- Ram is a boy
 - Boy(Ram)?
 - Is_a(Ram,boy)?
- Ram Playes Football
 - Plays(Ram,football)?
 - Plays_football(Ram)?

Knowledge Representation of Complex Sentence

"In every city there is a thief who is beaten by every policeman in the city"

Knowledge Representation of Complex Sentence

"In every city there is a thief who is beaten by every policeman in the city"

```
\forall x[city(x) \rightarrow \{\exists y((thief(y) \land lives\_in(y,x)) \land \forall z(policeman(z,x) \rightarrow beaten\_by(z,y)))\}]
```

Insight into resolution

Resolution - Refutation

- $\blacksquare man(x) \rightarrow mortal(x)$
 - Convert to clausal form
 - -man(shakespeare) \lor mortal(x)
- Clauses in the knowledge base
 - ~man(shakespeare) ∨ mortal(x)
 - man(shakespeare)
 - mortal(shakespeare)

Resolution – Refutation contd

- Negate the goal
 - ~man(shakespeare)
- Get a pair of resolvents

Resolution Tree

Search in resolution

- Heuristics for Resolution Search
 - Goal Supported Strategy
 - Always start with the negated goal
 - Set of support strategy
 - Always one of the resolvents is the most recently produced resolute

Inferencing in Predicate Calculus

- Forward chaining
 - Given P, $P \rightarrow Q$, to infer Q
 - P, match *L.H.S* of
 - Assert Q from R.H.S
- Backward chaining
 - Q, Match R.H.S of $P \rightarrow Q$
 - assert P
 - Check if P exists
- Resolution Refutation
 - Negate goal
 - Convert all pieces of knowledge into clausal form (disjunction of literals)
- See if contradiction indicated by null clause ☐ can be derived
 5-12/2/15 Pushpak Bhattacharyya

- I. P
- 2. $P \rightarrow Q$ converted to $\sim P \vee Q$
- 3. ~ *Q*

Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.

Theoretical basis of Resolution

- Resolution is proof by contradiction
- resolvent1 .AND. resolvent2 => resolute is a tautology

Tautologiness of Resolution

Using Semantic Tree

Theoretical basis of Resolution (cont ...)

- Monotone Inference
 - Size of Knowledge Base goes on increasing as we proceed with resolution process since intermediate resolvents added to the knowledge base
- Non-monotone Inference
 - Size of Knowledge Base does not increase
 - Human beings use non-monotone inference

Interpretation in Logic

- Logical expressions or formulae are "FORMS" (placeholders) for whom <u>contents</u> are created through interpretation.
- Example:

$$\exists F [\{F(a) = b\} \land \forall x \{P(x) \rightarrow (F(x) = g(x, F(h(x))))\}]$$

- This is a Second Order Predicate Calculus formula.
- Quantification on 'F' which is a function.

Examples

Interpretation: 1

D=N (natural numbers)

a = 0 and b = 1

 $X \in \mathcal{N}$

P(x) stands for x > 0

g(m,n) stands for $(m \times n)$

h(x) stands for (x - 1)

Above interpretation defines Factorial

Examples (contd.)

Interpretation: 2

$$D=\{strings\}$$

$$a = b = \lambda$$

P(x) stands for "x is a non empty string" q(m, n) stands for "append head of m to n"

h(x) stands for tail(x)

Above interpretation defines "reversing a string"

Other examples

$$\exists P[\forall x \exists y P(x, y) \land \forall x \neg P(x, x) \land \forall x \forall y \forall z [(P(x, y) \land P(y, z)) \Rightarrow P(x, z)]]$$

$$\forall x_1 x_2 x_3 [\{P(x_1, x_1) \land P(x_2, x_2) \land P(x_3, x_3)\} \Rightarrow \{P(x_1, x_2) \lor P(x_1, x_3) \lor P(x_2, x_3)\}]$$

True in all domains of cardinality <=3

Prolog

Introduction

- PROgramming in LOGic
- Emphasis on what rather than how

A Typical Prolog program

```
Compute_length ([],0).
Compute_length ([Head|Tail], Length):-
Compute_length (Tail, Tail_length),
Length is Tail_length+1.
```

High level explanation:

The length of a list is 1 plus the length of the tail of the list, obtained by removing the first element of the list.

This is a declarative description of the computation.

Fundamentals

(absolute basics for writing Prolog Programs)

Facts

- John likes Mary
 - like(john,mary)
- Names of relationship and objects must begin with a lower-case letter.
- Relationship is written first (typically the predicate of the sentence).
- Objects are written separated by commas and are enclosed by a pair of round brackets.
- The full stop character '.' must come at the end of a fact.

More facts

Predicate	Interpretation
valuable(gold)	Gold is valuable.
owns(john,gold)	John owns gold.
father(john,mary)	John is the father of Mary
gives (john,book,mary)	John gives the book to Mary

Questions

- Questions based on facts
- Answered by matching

Two facts *match* if their predicates are same (spelt the same way) and the arguments each are same.

- If matched, prolog answers yes, else no.
- No does not mean falsity.

Prolog does theorem proving

- When a question is asked, prolog tries to match transitively.
- When no match is found, answer is no.
- This means not provable from the given facts.

Variables

- Always begin with a capital letter
 - ?- likes (john,X).
 - ?- likes (john, Something).
- But not
 - ?- likes (john,something)

Example of usage of variable

```
Facts:
    likes(john,flowers).
    likes(john,mary).
    likes(paul, mary).
Question:
   ?- likes(john,X)
Answer:
    X=flowers and wait
    mary
    no
```

Conjunctions

- Use ',' and pronounce it as and.
- Example
 - Facts:
 - likes(mary,food).
 - likes(mary,tea).
 - likes(john,tea).
 - likes(john,mary)
- **?**-
- likes(mary,X),likes(john,X).
- Meaning is anything liked by Mary also liked by John?

Backtracking (an inherent property of prolog programming)

likes(mary,X),likes(john,X)

likes(mary,food) likes(mary,tea) likes(john,tea) likes(john,mary)

- 1. First goal succeeds. *X=food*
- 2. Satisfy likes(john,food)

Backtracking (continued)

Returning to a marked place and trying to resatisfy is called Backtracking

- 1. Second goal fails
- 2. Return to marked place and try to resatisfy the first goal

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john,tea)
likes(john,mary)

- 1. First goal succeeds again, X=tea
- 2. Attempt to satisfy the *likes(john,tea)*

Backtracking (continued)

likes(mary,X),likes(john,X)

likes(mary,food)
likes(mary,tea)
likes(john,tea)
likes(john,mary)

- 1. Second goal also suceeds
- 2. Prolog notifies success and waits for a reply

Rules

- Statements about objects and their relationships
- Expess

5-12/2/15

- If-then conditions
 - I use an umbrella if there is a rain
 - use(i, umbrella) :- occur(rain).
- Generalizations
 - All men are mortal
 - mortal(X) :- man(X).
- Definitions
 - An animal is a bird if it has feathers
 - bird(X):- animal(X), has_feather(X).
 Pushpak Bhaftacharyya

Syntax

- <head> :- <body>
- Read ':-' as 'if'.
- E.G.
 - likes(john,X) :- likes(X,cricket).
 - "John likes X if X likes cricket".
 - i.e., "John likes anyone who likes cricket".
- Rules always end with '.'.

Another Example

```
sister_of (X,Y):- female (X),
parents (X, M, F),
parents (Y, M, F).
```

X is a sister of Y is

X is a female and

X and Y have same parents

Question Answering in presence of *rules*

- Facts
 - male (ram).
 - male (shyam).
 - female (sita).
 - female (gita).
 - parents (shyam, gita, ram).
 - parents (sita, gita, ram).

Question Answering: Y/N type: is sita the sister of shyam?

Question Answering: wh-type: whose sister is sita?

Rules

- Statements about objects and their relationships
- Express
 - If-then conditions
 - I use an umbrella if there is a rain
 - use(i, umbrella) :- occur(rain).
 - Generalizations
 - All men are mortal
 - mortal(X) :- man(X).
 - Definitions
 - An animal is a bird if it has feathers
 - bird(X):- animal(X), has_feather(X).

Make and Break

Fundamental to Prolog

Prolog examples using making and breaking lists

```
%incrementing the elements of a list to produce another list incr1([],[]). incr1([H1|T1],[H2|T2]) :- H2 is H1+1, incr1(T1,T2). %appending two lists; (append(L1,L2,L3) is a built is function in Prolog) append1([],L,L). append1([H|L1],L2,[H|L3]):- append1(L1,L2,L3). %reverse of a list (reverse(L1,L2) is a built in function reverse1([],[]). reverse1([H|T],L):- reverse1(T,L1),append1(L1,[H],L).
```

Remove duplicates

Problem: to remove duplicates from a list

- rem_dup([],[]).
- 2. rem_dup([H|T],L) :- member(H,T), !, rem_dup(T,L).
- 3. rem_dup([H|T],[H|L1]) :- rem_dup(T,L1).

Note: The cut! in the second clause needed, since after succeeding at member(H,T), the expression no. 3 clause should not be tried even if rem_dup(T,L) fails, which prolog will otherwise do.

Member (membership in a list)

```
member(X,[X|_]).
member(X,[_|L]):- member(X,L).
```

Union (lists contain unique elements)

```
union([],Z,Z).
union([X|Y],Z,W):-
   member(X,Z),!,union(Y,Z,W).
union([X|Y],Z,[X|W]):- union(Y,Z,W).
```

Intersection (lists contain unique elements)

```
intersection([],Z,[]).
intersection([X|Y],Z,[X|W]):-
   member(X,Z),!,intersection(Y,Z,W).
intersection([X|Y],Z,W):-
   intersection(Y,Z,W).
```

XOR

```
%xor of two lists
xor(L1,L2,L3):-
  diff1(L1,L2,X),diff1(L2,L1,Y),append(X,Y,L3).
%diff(P,Q,R) returns true if R is is P-Q
diff1([],Q,[]).
diff1([H|T],Q,R):-member(H,Q),!,diff1(T,Q,R).
diff1([H|T1],Q,[H|T2]):- diff1(T1,Q,T2).
```

Prolog Programs are close to Natural Language

Important Prolog Predicate:

member(e, L) /* true if e is an element of list L member(e,[e/L1). /* e is member of any list which it starts

member(e,[_|L1]):- member(e,L1) /*otherwise e is member of a list if the tail of the list contains e Contrast this with:

P.T.O.

Prolog Programs are close to Natural Language, C programs are not

```
For (i=0); i < length(L); i + + \}
  if (e==a[i])
       break(); /*e found in a[]
If (i<length(L){</pre>
   success(e,a); /*print location where e appears in
       a[]/*
else
   failure();
What is i doing here? Is it natural to our thinking?
```

Machine should ascend to the level of man

- A prolog program is an example of reduced man-machine gap, unlike a C program
- That said, a very large number of programs far outnumbering prolog programs gets written in C
- The demand of practicality many times incompatible with the elegance of ideality
- But the ideal should nevertheless be striven for

Prolog Program Flow, BackTracking and Cut

Controlling the program flow

Prolog's computation

- Depth First Search
 - Pursues a goal till the end
- Conditional AND; falsity of any goal prevents satisfaction of further clauses.
- Conditional OR; satisfaction of any goal prevents further clauses being evaluated.

Control flow (top level)

Given

$$g:-a, b, c.$$
 (1)

$$g:-d, e, f; p.$$
 (2)

If prolog cannot satisfy (1), control will automatically fall through to (2).

Control Flow within a rule

```
Taking (1),
g:- a, b, c.
```

If a succeeds, prolog will try to satisfy b, succeding which c will be tried.

For ANDed clauses, control flows forward till the '.', iff the current clause is *true*.

For ORed clauses, control flows forward till the '.', iff the current clause evaluates to *false*.

What happens on failure

REDO the immediately preceding goal.

Fundamental Principle of prolog programming

Always place the more general rule AFTER a specific rule.

CUT

Cut tells the system that

IF YOU HAVE COME THIS FAR

DO NOT BACKTRACK

EVEN IF YOU FAIL SUBSEQUENTLY.

'CUT' WRITTEN AS '!' ALWAYS
5-12/2/15 SUCCEEDS. Pushpak Bhattacharyya

Fail

- This predicate always fails.
- Cut and Fail combination is used to produce negation.
- Since the LHS of the neck cannot contain any operator, A → ~B is implemented as

B :- A, !, Fail.

Prolog and Himalayan Club example

- (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
 - Facts
 - Rules

A syntactically wrong prolog program!

- 1. belong(a).
- 2. belong(b).
- 3. belong(c).
- 4. mc(X);sk(X):- belong(X) /* X is a mountain climber or skier or both if X is a member; operators NOT allowed in the head of a horn clause; hence wrong*/
- 5. like(X, snow) :- sk(X). /*all skiers like snow*/
- 6. \+like(X, rain) :- mc(X). /*no mountain climber likes rain; \+ is the not operator; negation by failure; wrong clause*/
- 7. \+like(a, X) :- like(b,X). /* a dislikes whatever b likes*/
- 8. like(a, X) :- \+like(b,X). /* a likes whatever b dislikes*/
- 9. like(a,rain).
- 10. like(a, snow).
- ?- belong(X),mc(X),+sk(X).

Correct (?) Prolog Program

```
belong(a).
belong(b).
belong(c).
belong(X):-\+mc(X),\+sk(X), !, fail.
belong(X).
like(a,rain).
like(a,snow).
like(a,X) :- + like(b,X).
like(b,X) :- like(a,X),!,fail.
like(b,X).
mc(X):-like(X,rain),!,fail.
mc(X).
sk(X):- +like(X,snow),!,fail.
sk(X).
g(X):-belong(X),mc(X),\+sk(X),!. /*without this cut, Prolog will look for the next
    answer on being given ';' and return 'c' which is wrong*/
```

Himalayan club problem: working version

```
belong(a).
belong(b).
belong(c).
belong(X):-notmc(X),notsk(X),!, fail. /*contraposition to have horn clause
belong(X).
like(a,rain).
like(a,snow).
like(a,X) :- dislike(b,X).
like(b,X) :- like(a,X),!,fail.
like(b,X).
mc(X):-like(X,rain),!,fail.
mc(X).
notsk(X):- dislike(X,snow). /*contraposition to have horn clause
notmc(X):-mc(X),!,fail.
notmc(X).
dislike(P,Q):- like(P,Q),!,fail.
dislike(P,Q).
g(X)_{7} palong(X), mc(X), notsk(X), !._{Pushpak\ Bhattacharyya}
```

Circuit verification

Circuit Verification

Does the circuit meet the specs?

- Are there faults?
- are they locatable?

Example: 2-bit full adder

C1	X2	X1	Υ	C2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

X₁, X₂: inputs; C₁: prev. carry; C₂: next carry; Y: output

K-Map

$$Y = C1(\overline{X1 \oplus X2}) + \overline{C1}(X1 \oplus X2)$$
$$= (C1 \oplus (X1 \oplus X2))$$

K-Map (contd..)

$$C2 = X2X1 + C1(X1 + X2)$$

Circuit

Verification

- First task (most difficult)
 - Building blocks : predicates
 - Circuit observation : Assertion on terminals

Predicates & Functions

Function-1	signal(t)	t is a terminal; signal takes the value 0 or 1
Function-2	type(x)	x is a circuit element; type(x) takes the value AND, OR, NOT, XOR
Predicate – 3	connected(t1,t2)	t1 is an output terminal and t2 is an input terminal
Function-3	In(n,x)	n th input of ckt element x
Function-4	Out(x)	Output of ckt element x

Alternate Full Adder Circuit

Functions

- type(X): takes values AND, OR NOT and XOR, where X is a gate.
- in(n, X): the value of signal at the nth input of gate X.
- out(X): output of gate X.
- signal(t): state at terminal t = 1/0

Predicates

 connected(t1,t2): true, if terminal t1 and t2 are connected

General Properties

Commutativity:

```
\forall t_1, t_2 \text{ [connected}(t_1, t_2) \rightarrow \text{connected}(t_2, t_1)]
```

By definition of connection:

```
\forall t_1, t_2 \text{ [connected}(t_1, t_2) \rightarrow \{ \text{ signal}(t_1) = \text{ signal}(t_1) \}]
```

Gate properties

1. OR definition:

$$\forall X [\{type(X) = OR\} \equiv \{(out(X) = 1) \equiv \exists y (in(y, X) = 1)\}]$$

2. AND definition:

$$\forall X [\{type(X) = AND\} \equiv \{(out(X) = 1) \equiv \forall y (in(y, X) = 1)\}]$$

Gate properties contd...

1. XOR definition:

$$\forall X [\{type(X) = XOR\} \equiv$$

$$\{(out(X) = 1) \equiv (in(1, X) \neq in(2, X))\}]$$

2. NOT definition:

$$\forall X [\{type(X) = NOT\} \equiv$$

$$\{out(X) \neq in(1, X)\} \land (no_of_input(X) = 1)]$$

Some necessary functions

- a. no_of_input(x), takes integer values
- b. Count_ls(x), returns no. of 1s in the input of X

```
\forall X [\{type(X) = XOR\} \equiv \{(out(X) = 1) \equiv odd((count\_ls(X))\}]
```

Circuit specific properties

Connectivity:

```
connected(x_1, in(1,A<sub>1</sub>))
connected(x_1, in(2, A<sub>1</sub>))
connected(out(A<sub>1</sub>), in(1, A<sub>2</sub>))
connected(c1, in(2, A<sub>2</sub>))
connected(y, out(A<sub>2</sub>)) ...
```

Circuit elements:

```
type(A_1) = XOR,
type(A_2) = XOR,
type(A_3) = AND ...
```


Circuit

