Análisis exploratorio de datos de fitoplancton encontrado en canales Baker y Martinez, bajo CIMAR Fiordo N°20

Duncan Rosales Schulz

27 November, 2021

#CONSIDERACIONES INICIALES

##	# A tibble: 1,0	001 x 6					
##	ESPECIE		TIPO	PROFUNDIDAD	CANAL	ESTACIÓN	ABUNDANCIA
##	<chr></chr>		<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>
##	1 Cerataulina	bergonii	DIATOMEAS	0	BAKER	6	600
##	2 Cerataulina	bergonii	DIATOMEAS	0	BAKER	7	1500
##	3 Cerataulina	bergonii	DIATOMEAS	0	BAKER	8	1600
##	4 Cerataulina	bergonii	DIATOMEAS	0	MARTÍNEZ	96	2000
##	5 Cerataulina	bergonii	DIATOMEAS	0	MARTÍNEZ	97	300
##	6 Chaetoceros	affinis	DIATOMEAS	0	BAKER	5p	3400
##	7 Chaetoceros	affinis	DIATOMEAS	0	BAKER	5	2400
##	8 Chaetoceros	affinis	DIATOMEAS	0	BAKER	6	2700
##	9 Chaetoceros	affinis	DIATOMEAS	0	BAKER	7	900
##	10 Chaetoceros	affinis	DIATOMEAS	0	BAKER	8	1600
##	# with 991	more rows	3				

#Variables cuantitativas y factores

La variable cuantitativa, en este estudio, se trató de una cuantitativa de tipo discreta: ABUNDANCIA.

Los factores, que son varios, son los siguientes: ESPECIE, TIPO, PROFUNDIDAD, CANAL, ESTACION.

##		E	SPECIE	TIPO	PROFUNDIDAD
##	Pseudo-nitzsc	hia delicatiss	ima: 65 DIATOMEAS	:699	0 :325
##	Pseudo-nitzsc	hia subcurvata	: 54 DINOFLAGE	LADOS :301	5 :230
##	Thalassionema	nitzschioides	: 39 SILICOFLA	GELADOS: 1	10:168
##	Rhizosolenia	setigera	: 36		20:123
##	Thalassiosira	mendiolana	: 34		30:104
##	Leptocylindru	s danicus	: 32		50: 51
##	(Other)		:741		
##	CANAL	ESTACIÓN	ABUNDANCIA		
##	BAKER :609	7 :134	Min. : 100		
##	MARTÍNEZ:392	6 : 94	1st Qu.: 200		
##		5 : 91	Median: 600		
##		96 : 91	Mean : 10441		
##		5p : 85	3rd Qu.: 2200		
##		8 : 81	Max. :641200		
##		(Other):425			
##	# A tibble: 6	x 6			
##	ESPECIE	TIPO	PROFUNDIDAD CA	NAL ESTACIÓ	N ABUNDANCIA
##	<fct></fct>	<fct></fct>	<fct> <fct> <f< th=""><th>ct> <fct></fct></th><th><dbl></dbl></th></f<></fct></fct>	ct> <fct></fct>	<dbl></dbl>

```
600
## 1 Cerataulina bergonii DIATOMEAS 0
                                                 BAKER
## 2 Cerataulina bergonii DIATOMEAS 0
                                                 BAKER
                                                          7
                                                                          1500
## 3 Cerataulina bergonii DIATOMEAS 0
                                                 BAKER
                                                                          1600
## 4 Cerataulina bergonii DIATOMEAS 0
                                                                          2000
                                                 MARTÍNEZ 96
## 5 Cerataulina bergonii DIATOMEAS 0
                                                 MARTÍNEZ 97
                                                                          300
## 6 Chaetoceros affinis DIATOMEAS 0
                                                                          3400
                                                 BAKER
                                                          5р
## tibble [1,001 x 6] (S3: tbl_df/tbl/data.frame)
   $ ESPECIE
                 : Factor w/ 90 levels "Centrodinium pavillardi",..: 3 3 3 3 3 11 11 11 11 11 ...
##
   $ TIPO
                 : Factor w/ 3 levels "DIATOMEAS", "DINOFLAGELADOS", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
  $ PROFUNDIDAD: Factor w/ 6 levels "0","5","10","20",...: 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 2 levels "BAKER", "MARTÍNEZ": 1 1 1 2 2 1 1 1 1 1 ...
  $ CANAL
                 : Factor w/ 13 levels "10","11","12",...: 7 8 9 11 12 6 5 7 8 9 ...
   $ ESTACIÓN
   $ ABUNDANCIA : num [1:1001] 600 1500 1600 2000 300 3400 2400 2700 900 1600 ...
```

BALANCE DE DATOS Y VERIFICACIÓN DE DATOS

Tabla de frecuencia sobre factores de clasificacion con función table(), sobre la variable ABUNDANCIA.

##											
##	100	200	300	400	500	600	700	800	900	1000	1100
##	187	113	89	57	41	44	31	30	29	17	18
##	1200	1300	1400	1500	1600	1700	1800	2000	2100	2200	2300
##	20	14	9	5	13	6	7	12	6	9	6
##	2400	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400
##	8	7	5	7	1	5	4	6	2	3	4
##	3500	3600	3700	3800	3900	4000	4100	4200	4300	4400	4500
##	3	1	2	3	1	2	4	1	1	2	1
##	4600	4800	4900	5000	5100	5200	5300	5500	5600	5800	5900
##	3	2	1	1	1	1	1	2	1	4	2
##	6100	6300	6400	6600	6700	7000	7100	7200	7400	7600	8000
##	2	1	3	2	1	1	1	1	1	3	1
##	8200	8300	8500	8600	8700	8900	9000	9500	10000	10300	10500
##	3	1	1	1	2	1	1	1	1	1	2
##	10800	11000	11200	11400	11600	11700	12000	12200	12700	12800	13100
##	1	1	2	1	1	1	2	1	1	3	3
##	13400	13500	13700	14200	15000	15200	15800	16000	16200	16500	16600
##	2	3	1	1	1	1	1	1	2	1	1
##	16800	16900	17000	17100	17500	18100	18300	20600	20800	21300	21400
##	1	1	2	2	1	1	1	1	1	1	1
##	21600	22800	22900	23200	23800	24000	24200			27600	32500
##	1	2	1	1	1	1	2	2	1	1	1
##	32800	33100	33900	34800	36400	36500	36600	39400	40200	41200	44300
##	1	1	1	1	1	1	1	1	1	1	1
##	47900	50400	54000	55800	61400	64700	65000	67600	75600	79200	79400
##	1	1	1	1	1	1	1	1	1	1	1
##	91400	95800	96400	99600	1e+05	100900	101600	102700	106400	108200	110900
##	1	1	1	1	1	1	1	1	1	1	1
##	111000	115700	126200	140700	142800	148200	161500	161800	162200	204800	238400
##	1	1	1	2	1	1	1	1	1	1	1
##	298400		369800		407676				569200	641200	
##	1	1	1	1	1	1	1	1	1	1	

#HISTOGRAMA

Como primera aproximación, se realizó un histograma de la distribución de frecuencia, de la variable ABUNDANCIA.

Se decidió mostrar la distribución de frecuencia de la variable ABUNDANCIA, separada entre DIATOMEAS y DINOFLAGELADOS.

#RELACIÓN ENTRE VARIABLES Y FACTORES

Se realizaron gráficos boxplot entre ABUNDANCIA, variable respuesta, y los factores o variables regresoras.

Relación ABUNDANCIA y CANAL

Canal Relación ABUNDANCIA y PROFUNDIDAD

Relación ABUNDANCIA y ESTACIÓN

#**TRANSFORMACIÓN

A continuación, se transforman los datos ABUNDANCIA; evalúa balance datos, generación histograma, boxplot de lo ya generado

```
##
##
                  2 2.30102999566398 2.47712125471966 2.60205999132796
                187
                                  113
##
  2.69897000433602 2.77815125038364 2.84509804001426 2.90308998699194
##
                                   44
                                                     31
   2.95424250943932
                                    3 3.04139268515822 3.07918124604762
##
##
                 29
                                   17
                                                     18
   3.11394335230684
                    3.14612803567824 3.17609125905568
##
                                                        3.20411998265593
                                                      5
##
                 14
                                    9
                                                                      13
  3.23044892137827 3.25527250510331 3.30102999566398 3.32221929473392
##
                                                     12
##
                  6
   3.34242268082221 3.36172783601759 3.38021124171161 3.39794000867204
##
##
   3.41497334797082 3.43136376415899 3.44715803134222 3.46239799789896
##
##
##
   3.47712125471966 3.49136169383427 3.50514997831991 3.51851393987789
                  4
                                                                       3
##
   3.53147891704225 3.54406804435028 3.55630250076729 3.56820172406699
                                    3
##
##
  3.57978359661681
                     3.5910646070265 3.60205999132796 3.61278385671974
##
                  3
    3.6232492903979 3.63346845557959 3.64345267648619 3.65321251377534
##
##
                                    1
```

```
## 3.66275783168157 3.68124123737559 3.69019608002851 3.69897000433602
   3.70757017609794 3.7160033436348 3.72427586960079 3.74036268949424
    3.7481880270062 3.76342799356294 3.77085201164214 3.78532983501077
                                   4
                                                    2
                  1
   3.79934054945358 3.80617997398389 3.81954393554187 3.82607480270083
                                   3
   3.84509804001426 3.85125834871908 3.85733249643127 3.86923171973098
                  1
                                   1
                                                    1
   3.88081359228079 3.90308998699194 3.91381385238372 3.91907809237607
                  3
                                   1
                                                    3
   3.92941892571429 3.93449845124357 3.93951925261862 3.94939000664491
                  1
                                   1
                                                    2
  3.95424250943932 3.97772360528885
                                                    4 4 01283722470517
  4.02118929906994\ 4.03342375548695\ 4.04139268515823\ 4.04921802267018
  4.05690485133647 4.06445798922692 4.06818586174616 4.07918124604763
                                   1
  4.08635983067475 4.10380372095596 4.10720996964787 4.11727129565576
                                   1
                                                    3
  4.12710479836481 4.13033376849501 4.13672056715641 4.15228834438306
                                   3
                                                    1
  4.17609125905568 4.18184358794477 4.19865708695442 4.20411998265593
                  1
                                   1
                                                    1
  4.20951501454263\ 4.21748394421391\ 4.22010808804005\ 4.22530928172586
                                                    1
                                   1
   4.22788670461367\ \ 4.23044892137827\ \ 4.23299611039215\ \ 4.24303804868629
                                   2
                                                    2
                  1
   4.25767857486918 4.26245108973043 4.31386722036915 4.31806333496276
                  1
                                   1
                                                    1
   4.32837960343874 4.33041377334919 4.33445375115093 4.35793484700045
                  1
                                   1
   4.35983548233989 4.3654879848909 4.37657695705651 4.38021124171161
                  1
                                   1
                                                    1
  4.38381536598043 4.39445168082622 4.41329976408125 4.44090908206522
                  2
                                   2
##
                                                    1
   4.51188336097887 4.51587384371168 4.51982799377572 4.53019969820308
                  1
                                   1
                                                    1
   4.54157924394658 4.56110138364906 4.56229286445647 4.56348108539441
                  1
                                   1
                                                    1
   4.59549622182557 4.60422605308447 4.61489721603313 4.64640372622307
                 1
                                   1
                                                    1
   4.68033551341456 4.70243053644553 4.73239375982297 4.74663419893758
                                                    1
  4.78816837114117 4.8109042806687 4.81291335664286 4.82994669594164
  4.87852179550121 4.89872518158949 4.8998205024271 4.96094619573383
  4.98136550907854 4.98407703390283 4.9982593384237
                                                                      5
                 1
                                  1
## 5.00389116623691 5.0068937079479 5.01157044359728 5.02694162795903
```

```
## 5.03422726077055 5.04493154614916 5.04532297878666 5.06333335895175
## 1 1 1 1 1 1 1
## 5.10105935490812 5.14829409743475 5.15472820744016 5.17084820364331
## 5.20817252666712 5.20897851727625 5.21005084987514 5.31132995230379
## 1 1 1 1 1 1 1
## 5.3773062510682 5.47479881880063 5.5497387312649 5.56796690682315
## 1 1 1 1 1 1 1 1
## 5.68500927990246 5.61031514516723 5.62716095237478 5.64048143697042
## 1 1 1 1 1 1 1 1
## 5.67043140936061 5.75526489141225 5.80699351368211
## 1 1 1 1 1 1
```


Relación ABUNDANCIA y PROFUNDIDAD

Relación ABUNDANCIA y ESTACIÓN

#OTROS

A continuación, algunos análisis adicionales que estoy pensando en hacer, pero no considerar todavía como finales.

Table 1: Tabla 1. Resumen de la abundancia de diatomeas

mean	sd	$\max(ABUNDANCIA)$	$\min(ABUNDANCIA)$
14733.01	57856.17	641200	100

Table 2: Tabla 2. Resumen de la abundancia de dinoflagelados

mean	sd	$\max(ABUNDANCIA)$	$\min(ABUNDANCIA)$
507.6412	1036.167	13400	100

`summarise()` has grouped output by 'CANAL', 'PROFUNDIDAD'. You can override using the `.groups` arg

Table 3: Tabla 1. Resumen de la abundancia de fitoplancton, por canal y profundidad

CANAL	PROFUNDIDAD	TIPO	mean	sd	n
BAKER	0	DIATOMEAS	30717.0886	82920.4816	158
BAKER	0	DINOFLAGELADOS	808.1967	849.3714	61
BAKER	0	SILICOFLAGELADOS	100.0000	NA	1
BAKER	5	DIATOMEAS	15555.1282	46344.9787	78
BAKER	5	DINOFLAGELADOS	412.8205	561.5671	39
BAKER	10	DIATOMEAS	7778.3333	20761.0546	60

CANAL	PROFUNDIDAD	TIPO	mean	sd	n
BAKER	10	DINOFLAGELADOS	288.2353	286.8478	34
BAKER	20	DIATOMEAS	1936.2319	4257.8982	69
BAKER	20	DINOFLAGELADOS	200.0000	182.5742	22
BAKER	30	DIATOMEAS	1970.2703	3453.5702	37
BAKER	30	DINOFLAGELADOS	211.1111	127.8275	18
BAKER	50	DIATOMEAS	581.4815	627.5943	27
BAKER	50	DINOFLAGELADOS	180.0000	178.8854	5
MARTÍNEZ	0	DIATOMEAS	12171.4286	31105.9696	84
MARTÍNEZ	0	DINOFLAGELADOS	1019.0476	2862.9738	21
MARTÍNEZ	5	DIATOMEAS	20720.0000	91205.8578	65
MARTÍNEZ	5	DINOFLAGELADOS	650.0000	1257.6574	48
MARTÍNEZ	10	DIATOMEAS	24022.1818	92072.8581	44
MARTÍNEZ	10	DINOFLAGELADOS	396.6667	335.7784	30
MARTÍNEZ	20	DIATOMEAS	2869.2308	5486.2570	26
MARTÍNEZ	20	DINOFLAGELADOS	150.0000	122.4745	6
MARTÍNEZ	30	DIATOMEAS	932.5000	2357.1373	40
MARTÍNEZ	30	DINOFLAGELADOS	188.8889	136.4225	9
MARTÍNEZ	50	DIATOMEAS	436.3636	310.7176	11
MARTÍNEZ	50	DINOFLAGELADOS	175.0000	138.8730	8