ECE450 - Embedded Systems Design

University: Midwest Engineering College **Course Duration:** Full Year (Fall and Winter)

Instructor: Dr. Emily Johnson

Contact Information: emily.johnson@mec.edu

Office Hours: Mondays and Wednesdays, 1:00 PM - 3:00 PM

Course Description

This course focuses on the design and development of embedded systems. Students work on projects such as building a fully functional radio, developing a home automation system, or creating a component for a robot. The course emphasizes hands-on experience with microcontrollers, sensors, and actuators.

Learning Outcomes

By the end of this course, students will be able to:

- 1. Program microcontrollers for various applications.
- 2. Integrate sensors and actuators into embedded systems.
- 3. Design and implement embedded system software.
- 4. Test and debug embedded systems.
- 5. Document and present their design and implementation process.

Course Schedule and Deliverables

Fall Semester:

Table

Date	Deliverable	Description	Weight
September 15, 2020	Team Formation and Project Proposal	Teams form and submit a proposal outlining the project scope and objectives.	10%
October 20, 2020	Requirements Specification Document	Detailed requirements analysis and specification document.	15%
November 25, 2020	Preliminary Design Review	Presentation of initial design, including architecture and key components.	15%
December 10, 2020	Midterm Progress Report	Report on progress, challenges, and next steps.	10%

Winter Semester:

Table

Date	Deliverable	Description	Weight
February 15, 2021	Detailed Design Document	Comprehensive design document with detailed architecture and component design.	15%
March 20, 2021	Implementation and Testing Report	Report on implementation progress and testing results.	20%
April 10, 2021	Final Presentation and Demonstration	Final presentation and demonstration of the embedded system project.	15%

Grading Breakdown

Team Formation and Project Proposal: 10%Requirements Specification Document: 15%

Preliminary Design Review: 15%
Midterm Progress Report: 10%
Detailed Design Document: 15%

Implementation and Testing Report: 20%Final Presentation and Demonstration: 15%

Total: 100%

Course Policies

- **Attendance:** Regular attendance is required. More than three unexcused absences may result in a lower grade.
- Late Submissions: Assignments submitted late will incur a penalty of 5% per day, up to a maximum of 25%.
- **Academic Integrity:** All students are expected to adhere to the university's academic integrity policy. Plagiarism or cheating will result in disciplinary action.

Required Materials

- Textbook: "Embedded Systems: Real-Time Interfacing to Arm Cortex-M Microcontrollers" by Jonathan W. Valvano
- Access to microcontroller development kits (e.g., Arduino, Raspberry Pi)
- Prototyping materials (to be specified based on project requirements)

Additional Resources

- University Library
- Embedded Systems Lab
- Online tutorials and workshops