École Supérieure PRivée d'Ingénierie & de Technologies

AU : 2020-2021

Session principale

Systèmes Multivariables

22/03/21

Enseignant : A. Mhamdi

Nom & Prénom :

CIN :

SCEM-MÉCA

Salle :

Durée : 1½ h

Ce document comporte 7 pages numérotées de 1/7 à 7/7. Dès qu'il vous est remis, assurez-vous qu'il est complet. Le sujet est constitué de 4 exercices qui peuvent être traités dans l'ordre de votre choix.

Les règles suivantes s'appliquent :

- Une feuille A4 recto-verso manuscrite est autorisée.
- **L'usage** de tout matériel électronique, sauf calculatrice, est strictement interdit.
- **8** La rigueur de la rédaction entrera pour une part importante dans la notation.

Exercice	Barème	Note
1	6	
2	4	
3	4	
4	6	
Total	20	

Ne rien écrire dans ce tableau.

Exercice $N^{\underline{0}}$ 1 (6 points)

Proposez une représentation d'état possible pour chacune des fonctions de transfert suivantes :

(a) (2 points)

$$G_1(s) = \frac{3s+1}{0.5s^2+0.5}$$
 (1)

La fonction de transfert G_1 peut s'écrire sous cette forme :

$$G_1(s) = \frac{6s+2}{s^2+1}$$

Il en résulte la forme commandable suivante :

$$A = \begin{bmatrix} 0 & 1 \\ & & \\ -1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 6 \end{bmatrix} \qquad D = 0$$

*****-----

(b) (2 points)

$$G_2(s) = \frac{1}{s+1} - \frac{0.3}{(s+1)^3} + \frac{1.45}{s} - \frac{0.5}{(s-1)^2}$$
 (2)

L'ordre de la fonction de transfert \mathcal{G}_2 est : 6=3+1+2. Ses pôles sont :

Pôle	Ordre de multiplicité
-1	3
0	1
1	2

Il en résulte la forme modale suivante :

(c) (2 points)

$$\mathcal{G}_3(s) = \frac{s^2 + s + 1}{0.25s^2 + s + 0.5} \tag{3}$$

La fonction de transfert \mathcal{G}_3 peut s'écrire sous cette forme :

$$\mathcal{G}_3(s) = 4 - \frac{12s + 4}{s^2 + 4s + 2}$$

×------

Il en résulte la forme commandable suivante :

$$A = \begin{bmatrix} 0 & 1 \\ & & \\ -2 & -4 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} -4 & -12 \end{bmatrix} \qquad D = 4$$

Exercice N^{0}_{2} (4 points)

Soit la représentation d'état suivante :

$$\dot{x}(t) = \begin{bmatrix} -3 & 1 \\ & & \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$
(4)

(a) (1 point) Étudiez la stabilité du système.

det(A) = -1 & trace(A) = $-3 \rightarrow Systeme instable$.

(b) (1 point) Étudiez la commandabilité du système.

$$\xi(A, B) = \begin{bmatrix} B & AB \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

Rang de $\xi(A, B)$ est égal à $2 \rightarrow$ Système commandable

(c) (2 points) Afin de stabiliser le système et améliorer sa dynamique, nous concevons une commande par retour d'état en régime libre de la forme :

$$u(t) = -Lx(t). (5)$$

Calculez L de sorte que les valeurs propres du système bouclé soient placées aux valeurs suivantes : $\lambda_1 = -1$ et $\lambda_2 = -2$.

*****-----

$$A - BL = A - B \underbrace{\begin{bmatrix} l_1 & l_2 \end{bmatrix}}_{L}$$

$$= \begin{bmatrix} -3 - l_1 & 1 - l_2 \\ 1 - l_1 & -l_2 \end{bmatrix}$$

$$\begin{cases} \operatorname{trace}(A - BL) = -3 - l_1 - l_2 = -3 \\ \det(A - BL) = 4l_2 + l_1 - 1 = 2 \end{cases} \begin{cases} l_1 = -1 \\ l_2 = 1 \end{cases}$$

Exercice N_{-3}^{0} (4 points)

On considère le système suivant :

$$\dot{x}(t) = \begin{bmatrix} 0 & -6 \\ 1 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$
(6)

(a) (1 point) Ce système est-il stable? Justifiez.

$$\begin{cases} \operatorname{trace}(A) &= -5 \\ \det(A) &= 6 \end{cases}$$

Le polynôme caractéristique de A est :

$$\chi_A(\lambda) = \lambda^2 \underbrace{+5}_{-\text{trace}(A)} \lambda \underbrace{+6}_{+\text{det}(A)} = (\lambda + 2)(\lambda + 3)$$

Les deux pôles de *A* sont alors –2 et –3. Le système est donc stable puisque les deux racines sont à parties réelles négatives.

(b) (1 point) Étudiez l'observabilité du système.

École Supérieure PRivée d'Ingénierie & de Technologies

AU : 2020-2021 Nom & Prénom : _____

Session principale CIN:

Systèmes Multivariables Classe : 3CEM-MÉCA______
22/03/21 Salle : ______

Enseignant : A. Mhamdi Durée : 11/2 h

*****-----

$$O(A, C) = \begin{bmatrix} C \\ \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \\ 1 & -5 \end{bmatrix}$$

Rang de O(A, C) est égal à $-1 \neq 0 \rightarrow$ Système observable

Un système dans sa forme d'état observable est toujours observable.

(c) (2 points) L'état x n'est pas mesurable. Synthétisez un observateur de type Luenberger qui permet de délivrer une valeur approchée \hat{x} de x, caractérisé par une dynamique double placée en -5.

$$\dot{\hat{x}} = A\hat{x} + Bu(t) + K(y(t) - C\hat{x}(t))$$

$$= (A - KC)\hat{x} + Bu(t) + Ky(t)$$

$$A - KC = \begin{bmatrix} 0 & -6 \\ 1 & -5 \end{bmatrix} - \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -6 - k_1 \\ 1 & -5 - k_2 \end{bmatrix}$$

$$\begin{cases} trace(A - KC) = -5 - k_2 = -10 \\ det(A - KC) = 6 + k_1 = 25 \end{cases}$$

$$\begin{cases} k_1 = 19 \\ k_2 = 5 \end{cases}$$

Exercice Nº4 (6 points)

On considère le système décrit par la fonction de transfert suivante :

$$\mathcal{H}(s) = \frac{s+10}{s(s+\alpha)(s+\beta)},\tag{8}$$

où α et β sont deux paramètres réels non nuls ($\alpha \neq 0$ et $\beta \neq 0$).

(a) (1 point) Déterminez les pôles de \mathcal{H} . Que dire de la stabilité du système? Justifiez.

*-----

Les pôles de la fonction \mathcal{H} sont 0, $-\alpha$ et $-\beta$.

 $\left\{ \begin{array}{l} \pmb{\alpha} < 0 \text{ ou } \pmb{\beta} < 0 & \text{ Le système est instable.} \\ \\ \pmb{\alpha} \geq 0 \text{ et } \pmb{\beta} \geq 0 & \text{ Le système est à la limite de stabilité.} \end{array} \right.$

(b) (2 points) Retrouvez la représentation d'état sous la forme canonique de commandabilité.

Il faut développer la fonction ${\cal H}$

$$\mathcal{H}(s) = \frac{s+10}{s^3 + (\alpha + \beta)s^2 + \alpha\beta s}$$

Il en résulte la forme commandable suivante :

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\alpha\beta & -\alpha-\beta \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 10 & 1 & 0 \end{bmatrix} \qquad D = 0$$

(c) $(1\frac{1}{2})$ points) Le système mis en équation d'état est-il commandable? Justifiez.

La forme canonique de commandabilité est toujours commandable. Pour vérifier, il suffit de calculer le rang de la matrice de commandabilité. Elle est donnée par $\xi(A, B) = [B \mid AB \mid A^2B]$:

$$\xi(A, B) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -\alpha - \beta \\ 1 & -\alpha - \beta & -\alpha\beta + (\alpha + \beta)^2 \end{bmatrix}$$

 $A^2B = A(AB)$. Pas besoin de calculer A^2 .

$$\det(\xi(A, B)) = -1 \neq 0.$$

Le système, tel que représenté par la forme canonique de commandabilité, est commandable car $\xi(A, B)$ est de rang plein.

*****------

(d) (1½ points) Pour quelles valeurs de α et β le système est-il observable?

La matrice d'observabilité est donnée par $O(A, C) = \begin{bmatrix} C \\ \hline CA \\ \hline CA^2 \end{bmatrix}$:

$$O(A, C) = \begin{bmatrix} 10 & 1 & 0 \\ \hline 0 & 10 & 1 \\ \hline 0 & -\alpha\beta & 10 - \alpha - \beta \end{bmatrix}$$

 $CA^2 = (CA)A$. Pas besoin de calculer A^2 .

$$\det(O(A, C)) = 10(100 - 10\alpha - 10\beta + \alpha\beta).$$

Ce système est observable ssi O(A, B) est de rang plein.

$$\det(O(A, C)) = 0 \quad \text{ssi} \quad \underbrace{\left(\underbrace{100 - 10\alpha - 10\beta + \alpha\beta}_{= (10 - \alpha)(10 - \beta)}\right)}_{= (10 - \alpha)(10 - \beta)} = 0$$

 $\det\left(O(A,\ C)\right)$ est nul ssi $\alpha=10$ ou $\beta=10$. Le système est complètement commandable ssi $\alpha\neq 0$ et $\beta\neq 10$.

Le système décrit par la fonction de transfert $\mathcal H$ est complètement commandable ou observable ssi la fonction $\mathcal H$ est minimale (irréductible, i.e., pas de simplification zéro/pôle). Cette condition n'est vérifiée que pour $\alpha \neq 10$ et $\beta \neq 10$.