# 一、单项选择题

1. 文件系统是指\_\_\_

|     | A. | 实现文件管理的一组 | 软件    | E          | 3. 戈        | <b>て件的</b> | 目录 |
|-----|----|-----------|-------|------------|-------------|------------|----|
|     | C. | 文件的集合     |       |            |             |            |    |
|     | D. | 文件、管理文件的较 | 文件及数  | 据结         | 构的          | ]总体        |    |
| 2.  | 从  | 用户角度看,引入  | 文件系   | 系统日        | 的主          | 三要目        | 的是 |
| 8   | 0  | E Old     |       |            |             |            |    |
|     | A. | 保存用户和系统文档 |       | B. 1       | 呆存          | 系统文        | 档  |
|     | C. | 实现虚拟存储 ]  | D. 实现 | 对文化        | 牛的          | 按名有        | 平取 |
| 3.  | 文  | 件的逻辑组织将文件 | 分为记录  | 录式ス        | 文件          | 和          |    |
| 文件。 |    |           |       |            |             |            |    |
|     | A. | 索引文件      | B.    | 流式         | 文           | 件          |    |
|     | C. | 字符文件      | D.    | 读写         | 言文/         | 件          |    |
| 4.  | 文  | 件系统中用     | 管理文件  | <b>‡</b> 。 |             |            |    |
|     | A. | 作业控制块     | B.    | 外页         | 表           |            |    |
|     | C. | 目录        | D.    | 软硬         | 更件:         | 结合的        | 方法 |
| 5.  | 为  | 了解决不同用户文件 | 的"命   | 名冲多        | 芝"          | 问题,        | 通常 |
| 在文件 | 系统 | 充中采用。     |       |            |             |            |    |
|     | A. | 约定的方法     | В.    | 多级         | <b>夏</b> 目: | 录          |    |
|     |    |           |       |            |             |            |    |

|    | C. 路径    |              | D. 索   | [号]      |             |
|----|----------|--------------|--------|----------|-------------|
| 6  | 一个文件的绝对是 | 路径名是从        |        | _开始,     | 逐步沿着        |
|    | 每一级子目录向  | 可下追溯,        | 最后到指   | 定文件      | 的整个通        |
|    | 路上所有子目录  | <b></b> 名组成的 | 一个字符   | 串。       |             |
|    | A. 当前目录  |              | В.     | 根目录      | L.          |
|    | C. 多级目录  |              | D.     | 二级目      | 录           |
| 7. | 磁盘上的文件以  | J            | 为单位读   | 写。       |             |
|    | A. 块     |              | B. 记录  |          |             |
|    | C. 柱面    |              | D. 磁   | 道        |             |
| 8. | 磁带上的文件一  | 一般只能         | o      |          |             |
|    | A. 顺序存取  |              |        | B. 随机    | <b>乳</b> 存取 |
|    | C. 以字节为单 | 位存取          |        | D. 直     | 妾存取         |
| 9. | 使用文件前必须  | 页先           | 文件。    |          |             |
|    | A. 命名    |              | B. 建   |          |             |
|    | C. 打开    |              | D. 备   | -份       |             |
| 10 | . 位示图可用于 | o            |        |          |             |
|    | A. 文件目录的 | <b></b> 查找   | B.     | 磁盘空      | 区间的管理       |
|    | C. 主存空间的 | J共享 I        | D. 实现文 | 7件的保     | 以           |
| 11 | . 按物理结构划 | 分,文件主        | 要有三类   | <u> </u> | A, 2        |

| C_和 <u>③D</u> 。 |               |
|-----------------|---------------|
| A. 索引文件         | B. 读写文件       |
| C. 顺序文件         | D. 链接文件       |
| 12. 在文件系统中,文件的  | 的不同物理结构有不同的优缺 |
| 点。在下列文件的物理      | 结构中,不具有直接     |
| 读写文件任意一个记录      | 的能力。          |
| A. 顺序结构         | B. 链接结构       |
| C. 索引结构         | D. Hash 结构    |
| 13. 在下列文件的物理结   | 构中,不利于文件长     |
| 度动态增长。          |               |
| A. 顺序结构         | B. 链接结构       |
| C. 索引结构         | D. Hash 结构    |
| 14. 如果文件采用直接存   | 取方式且文件大小不固定,则 |
| 宜选择文件结构。        |               |
| A. 直接           | B. 顺序         |
| C. 随机           | D. 索引         |
| 15. 常用的文件存取方法   | 有两种:顺序存取和     |
| 存取。             |               |
| A. 流式           | B. 串联         |

C. 顺序

D. 随机

## 二、填空题

- 1. 索引文件大体上由<u>①</u>区和<u>②</u>区构成。其中 ③\_区一般按关键字的顺序存放。
- 2. 对操作系统而言,打开文件广义指令的主要作用是装入\_\_\_\_\_目录表。 答:文件
- 3. 磁盘文件目录表的内容至少应包含<u>①</u>和 ②\_。
- 4. 操作系统实现按名存取进行检索等关键在于解决文件名与\_\_\_\_\_的转换。
- 5. \_\_\_\_\_\_是指避免文件拥有者或其他用户因有意或 无意的错误操作使文件受到破坏。
- 6. 在文件系统中,要求物理块必须连续的物理文件是
  - 7. 文件系统为每个文件另建立一张指示逻辑记录和物理 块之间的对应关系表,由此表和文件本身构成的文件

是。

9. 文件的结构就是文件的组织形式,从用户观点出发所看到的文件组织形式称为文件的<u>①</u>;从实现观点出发,文件在外存上的存放组织形式称为文件的 ②\_。

## 解析题

1. 文件系统中常采用的物理结构有哪些?

解:文件的物理结构侧重于提高存储空间的利用率和减少存取时间,它对文件的存取方法有较大的影响。目前操作系统中常采用如下物理结构文件:

- (1) **顺序文件** 它是按照逻辑文件中的记录顺序,依次 把逻辑记录存储到连续的物理块中而形成的文件。
- (2) **链接文件** 它的物理块不是连续的,也不必顺序排列,但每个物理块中设置一个指针,指向下一个物理块的地址,这样,所有的物理块被链接起来,形成一个物理文件,称为链接文件或串联文件。

- (3) **索引文件** 它是文件系统为每个文件另外建立一张 指示逻辑记录和物理块之间的对应关系表,此表称 为索引表,文件本身和索引表组成的文件称为索引 文件。
- 2. 有一磁盘组共有 10 个盘面,每个盘面上有 100 个磁道,每个磁道有 16 个扇区。假定分配以扇区为单位,若使用位示图管理磁盘空间,问位示图需要占用多少空间?若空白文件目录的每个表目占用 5 个字节,问什么时候空白文件目录大于位示图?

解: 由题目所给条件可知, 磁盘组扇区总数为:

 $16 \times 100 \times 10 = 16000$ 

因此,使用位示图描述扇区状态需要的位数为:

16000 位=2000 字节

又由题目所给条件可知,空白文件目录的每个表目占 5 个字节,由上述计算知位示图需要占 2000 字节,2000 字节 可存放表目数为:

2000/5 = 400

所以当空白区数目大于400时,空白文件目录大于位示

图。

3. 设某文件为链接文件,由 5 个逻辑记录组成,每个逻辑记录的大小与磁盘块大小相等,均为 512 字节,并依次存放在 50、121、75、80、63 号磁盘块上。若要存取文件的第1569 逻辑字节处的信息,问要访问哪一个磁盘块?

解: 因为: 1569=512×3+33

所以要访问字节的逻辑记录号为 3,对应的物理磁盘块号为 80。故应访问第 80 号磁盘块。

4. 假定磁带记录密度为每英寸 800 字符,每一逻辑记录为 160 个字符,块间隙为 0.6 英寸。今有 1500 个逻辑记录需要存储,试计算磁带利用率?若要使磁带空间利用率不少于 50%,至少应以多少个逻辑记录为一组?

【分析及相关知识】 磁带是一种典型的顺序存取设备,由于磁带的启动和停止都要花费一定的时间,因此应在磁带上所存储的数据记录间留有间隙。当数据记录较小,数据记录所需的磁带长度比间隙所需磁带长度小得多时,为了减少间隙造成的浪费,可以采用组块方法进行存储,即将几个数据记录合成一块,只在块与块之间留有间隙。

解:

(1)因磁带记录密度为每英寸 800 字符,则一个逻辑记录占据的磁带长度为:

160/800=0.2 英寸

1500个逻辑记录要占据的磁带长度为:

(0.2+0.6) ×1500=1200 英寸

磁带利用率为:

0.2/(0.2+0.6)=25%

(2)要使磁带利用率不少于 50%,即磁带利用率大于或等于 50%,则一组逻辑记录所占的磁带长度应与间隙长度相等,所以一组中的逻辑记录数至少为:

0.6/0.2=3

5. 假定磁盘块的大小为 1K,对于 540M 的硬盘,其文件分配表 FAT 需要占用多少存储空间? 当硬盘容量为 1.2G时,FAT 需要占用多少空间?

解:由题目所给条件可知,硬盘大小为 540M,磁盘块的大小为 1K,所以该硬盘共有盘块:

540M/1K=540K (个)

又

512K < 540K < 1024K

故 540K 个盘块号要用 20 位二进制表示,即文件分配表的每个表目为 2.5 个字节。

FAT 要占用的存储空间总数为:

 $2.5 \times 540 \text{K} = 1350 \text{K}$ 

当硬盘大小为 1.2G, 硬盘共有盘块:

1.2G/1K=1.2M ( $\uparrow$ )

又

1M < 1.2M < 2M

故 1.2M 个盘块号要用 31 位二进制表示。为方便文件分配表的存取,每个表目用 32 位二进制表示,即文件分配表的每个表目大小为 4 个字节。

FAT 要占用的存储空间总数为:

 $4 \times 1.2M = 4.8M$ 

6. (北京大学 1990 年试题)一个树形结构的文件系统如图 7.9 所示:

该图中的框表示目录, 圈表示文件。

- (1) 可否进行下列操作:
  - a. 在目录 D 中建立一个文件, 取名为 A。
  - b. 将目录 C 改名为 A。
- (2) 若E和G分别为两个用户的目录:
  - a. 用户 E 欲共享文件 Q, 应有什么条件, 如何操作?
  - b. 在一段时间内,用户 G 主要使用文件 S 和 T。为 简便操作和提高速度,应如何处理?
  - c. 用户 E 欲对文件 I 加以保护, 不许别人使用, 能否实现? 如何实现?



解:在本题中,文件系统采用了多级目录组织方式。(1)

- a. 由于目录 D 中没有已命名为 A 的文件, 因此在目录 D 中, 可以建立一个取名为 A 的文件。
- b. 因为在文件系统的根目录下已存在一个取名为 A 的目录, 所以根目录下的目录 C 不能改名为 A。

(2)

- a. 用户 E 欲共享文件 Q,需要用户 E 有访问文件 Q 的权限。在访问权限许可的情况下,用户 E 可通过相应路径来访问文件 Q,即用户 E 通过自己的主目录 E 找到其父目录 C,再访问到目录 C 的父目录根目录,然后依次通过目录 D、目录 G、目录 K 和目录 O 访问到文件 Q。若用户 E 当前目录为 E,则访问路径为: ../../D/G/K/O/Q,其中符号".."表示一个目录的父目录,符号"/"用于分隔路径中的各目录名。
- b. 用户 G 需要通过依次访问目录 K 和目录 P, 才能访问到文件 S 及文件 T。为了提高访问速度,可以在目录 G 下建立两个链接文件,分别链接到文件 S

及文件 T 上。这样,用户 G 就可以直接访问这两个文件了。

c. 用户 E 可以通过修改文件 I 的存取控制表来对文件 I 加以保护,不让别的用户使用。具体实现方法是,在文件 I 的存取控制表中,只留下用户 E 的访问权 限,其他用户对该文件无操作权限,从而达到不让 其他用户访问的目的。

7.有一文件系统如图 7.10 (a) 所示。图中的框表示目录, 圈表示普通文件。根目录常驻内存,目录文件组织成链接文件,不设文件控制块,普通文件组织成索引文件。目录表目 指示下一级文件名及其磁盘地址(各占 2 个字节,共 4 个字节)。若下级文件是目录文件,指示其第一个磁盘块地址。 若下级文件是普通文件,指示其文件控制块的磁盘地址。每 个目录文件磁盘块最后 4 个字节供拉链使用。下级文件在上级目录文件中的次序在图中为从左至右。每个磁盘块有 512字节,与普通文件的一页等长。



(a)

|    | 该文件的有关描 |
|----|---------|
|    | 述信息     |
| 1  | 磁盘地址    |
| 2  | 磁盘地址    |
| 3  | 磁盘地址    |
| :  |         |
| 11 | 磁盘地址    |
| 12 | 磁盘地址    |
| 13 | 磁盘地址    |
|    | (b)     |

图 7.10 文件系统结构示意图及普通文件的文件控制块组

普通文件的文件控制块组织如图 7.10(b) 所示。其中,

每个磁盘地址占 2 个字节,前 10 个地址直接指示该文件前 10 页的地址。第 11 个地址指示一级索引表地址,一级索引表中每个磁盘地址指示一个文件页地址;第 12 个地址指示二级索引表地址,二级索引表中每个地址指示一个一级索引表地址;第 13 个地址指示三级索引表地址,三级索引表中每个地址指示一个二级索引表地址。问:

- (1) 一个普通文件最多可有多少个文件页?
- (2) 若要读文件 J 中某一页,最多启动磁盘多少次?
- (3) 若要读文件 W 中的某一页, 最少启动磁盘多少次?
- (4) 就(3) 而言,为最大限度减少启动磁盘的次数,可采用什么方法?此时,磁盘最多启动多少次?

#### 解:

(1) 由题目中所给条件可知,磁盘块大小为 512 字节,每个磁盘地址占 2 个字节。因此,一个一级索引表可容纳 256 个磁盘地址。同样地,一个二级索引表可容纳 256 个一级索引表地址,一个三级索引表可容纳 256 个二级索引表地址。这样,一个普通文件最多可有页数为:

#### $10+256+256\times256+256\times256\times256=16843018$

(2) 从图 7.10 (a) 中可以看出,目录文件 A 和目录文件 D 中,目录项都只有两个,因此这两个目录文件 都不需拉链。若要读文件 J 中的某一页,首先从内存的根目录中找到目录文件 A 的磁盘地址,将其读入内存(第 1 次访问磁盘)。然后再从目录 A 中找出目录文件 D 的磁盘地址,并将其读入内存(第 2 次访问磁盘)。从目录 D 中找出文件 J 的文件控制块地址,将文件 J 的文件控制块读入内存(第 3 次访问磁盘)。在最坏情况下,要访问页的磁盘地址需通过三级索引才能找到,这时要三次访问磁盘才能将三级索引表读入内存(第 4、5、6 次访问磁盘)。最后读入文件 J 中的相应页(第 7 次访问磁盘)。

由此可知,若要读文件 J 中的某一页,最多启动磁盘 7 次。

(3) 从图 7.10 (a) 中可以看出,目录文件 C 和目录文件 U 中,目录项数目较多,若目录项数超过 127 (512/4-1=127),则目录文件的读入可能需要多次磁盘读(因目录文件组织成链接文件)。在最好情

况下,所找的目录项都在目录文件的第一个磁盘块 中。若要读文件 W 中的某一页, 首先从内存的根 目录中找到目录文件 C 的磁盘地址, 将其读入内存 (第 1 次访问磁盘)。在最好情况下,能从目录 C 的第一个磁盘块中找出目录文件I的磁盘地址,并 将其读入内存(第2次访问磁盘)。从目录 I 中找出 目录文件 P 的的磁盘地址,将其读入内存(第3次 访问磁盘)。从目录 P 中找到目录文件 U 的磁盘地 址,将其读入内存(第4次访问磁盘)。在最好情 况下, 能从目录 U 的第一个磁盘块中找出文件 W 的文件控制块地址,将文件 W 的文件控制块读入 内存(第5次访问磁盘)。在最好情况下,要访问 的页在前 10 页中,这时可直接得到该页的磁盘地 址。最后读入文件 W 中的相应页 (第 6 次访问磁 盘)。

由此可知,若要读文件 W 中的某一页,最少启动磁盘 6 次。

(4) 由于通过文件控制块访问文件所需的访问磁盘次数 无法改变,要减少访问磁盘的次数,只有通过减少 访问目录文件的次数来达到。为最大限度地减少启动磁盘的次数,可以将文件 W 直接链接在根目录的最左端(或其目录项在根目录的前 127 个项内)。这样,若要读文件 W 中的某页时,首先从内存的根目录中找到文件 W 的文件控制块地址,将文件 W 的文件控制块读入内存(第 1 次访问磁盘)。在最坏情况下,要访问页的磁盘地址需通过三级索引才能找到,这时要三次访问磁盘才能将三级索引表读入内存(第 2、3、4 次访问磁盘)。最后读入文件 W 中的相应页(第 5 次访问磁盘)。

由此可知,若将文件 W 直接链接在根目录的最左端,要读文件J中的某一页,最多启动磁盘 5 次。