May 17, 2017 [13:10-14:30]

MATH216 Final Exam / MAT216 Final Sinavi

Page 1 of 7

Your Name / İsim Soyisim	Your Signature / İmza
Student ID # / Öğrenci Numarası	Professor's Name / Öğretim Üyesi

- A student who has cheated or attempted to cheat in the exam will get a zero (0).
- Calculators, cell phones are not allowed.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Use a **BLUE ball-point pen** to fill the cover sheet. Please make sure that your exam is complete.
- Time limit is 80 min.

Do not write in the table to the right.

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

Elementary Laplace Transforms: Suppose that $a,b \in \mathbb{R}$, $n \in \mathbb{N}$, and $\mathcal{L}\{f(t)\}$ exists and $F(s) = \mathcal{L}\{f(t)\}$

- $\bullet \ \mathscr{L}\{1\} = \frac{1}{s}, s > 0$
- $\bullet \ \mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}, \ s > a,$
- $\bullet \ \mathscr{L}\lbrace t^n\rbrace = \frac{n!}{s^{n+1}}, \ s > 0,$
- $\mathscr{L}\lbrace t^n e^{at}\rbrace = \frac{n!}{(s-a)^{n+1}}$
- $\mathscr{L}\lbrace e^{at}\sin bt\rbrace = \frac{b}{(s-a)^2 + b^2}$
- $\mathscr{L}\{\cos at\} = \frac{s}{s^2 + a^2}, s > 0$
- $\mathscr{L}\{\sin at\} = \frac{a}{s^2 + a^2}, s > 0$
- $\mathcal{L}\left\{\cosh at\right\} = \frac{s}{s^2 a^2}, \ s > |a|$
- $\mathscr{L}\{\sinh at\} = \frac{a}{s^2 a^2}, \ s > |a|$
- $\mathscr{L}{f(ct)} = \frac{1}{c}F(\frac{s}{c}), c > 0$
- $\mathcal{L}\{u_c(t)f(t-c)\}=e^{-cs}\mathcal{L}\{f(t)\}$
- $\mathscr{L}{u_c(t)} = \frac{e^{-cs}}{s}, s > 0$
- $\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$
- $\mathcal{L}\lbrace e^{at}\cos bt\rbrace = \frac{s-a}{(s-a)^2+b^2}$
- 1. (a) 20 points Find the solution of the $2\frac{dy}{dt} y = 2t$, $y(0) = y_0, y_0 \in \mathbb{R}$

Solution: $2\frac{dy}{dt} - y = 2t$ is a linear differential equation. Let us find the integrating factor.

$$\lambda = e^{\int -\frac{1}{2}dt} = e^{-\frac{t}{2}}$$

The general solution is

$$y(t) = e^{\frac{t}{2}} \int te^{-\frac{t}{2}} dt$$

$$y(t) = e^{\frac{t}{2}} \left(-2te^{-\frac{t}{2}} + 2 \int e^{-\frac{t}{2}} dt \right)$$

$$y(t) = e^{\frac{t}{2}} \left(-2te^{-\frac{t}{2}} - 4e^{-\frac{t}{2}} + C \right)$$

$$y(t) = -2t - 4 + Ce^{\frac{t}{2}}$$

Let us use initial values $y(0) = y_0$, $y(0) = -4 + C = y_0 \Rightarrow C = y_0 + 4$, then $y(t) = -2t - 4 + (y_0 + 4)e^{\frac{t}{2}}$

- (b) 5 points There exists a number $a \in \mathbb{R}$ such that:
 - If $y_0 < a$ then $y(t) \to -\infty$ as $t \to \infty$.
 - If $y_0 > a$ then $y(t) \to \infty$ as $t \to \infty$. Find a.

Solution: If $y_0 + 4 \le 0$ and $t \to \infty$, then $(y_0 + 4)e^{\frac{t}{2}} \to -\infty$ so $y(t) \to -\infty$. If $y_0 + 4 > 0$ and $t \to \infty$, then $(y_0 + 4)e^{\frac{t}{2}} \to \infty$, so $y(t) \to \infty$.

2. (a) 15 points Find the general solution of $y' = \frac{2x - 3y}{3x + 5y}$.

Solution: First Way: Let us substitute $x \to \lambda x$ and $y \to \lambda y$, then

$$y' = \frac{2\lambda x - 3\lambda y}{3\lambda x + 5\lambda y} = \frac{\lambda(2x - 3y)}{\lambda(3x + 5y)} = \frac{2x - 3y}{3x + 5y}$$

Therefore, it is a homogeneous differential equation and we use the substitution y = vx.

$$y = vx \Rightarrow \frac{dy}{dx} = x\frac{dv}{dx} + v$$

$$x\frac{dv}{dx} + v = \frac{2x - 3vx}{3x + 5vx} = \frac{2 - 3v}{3 + 5v}$$

$$x\frac{dv}{dx} = \frac{2 - 3v}{3 + 5v} - v = \frac{2 - 3v - 3v - 5v^2}{3 + 5v} = \frac{2 - 6v - 5v^2}{3 + 5v}$$

$$x\frac{dv}{dx} = \frac{2 - 6v - 5v^2}{3 + 5v}$$

$$\frac{3 + 5v}{2 - 6v - 5v^2} dv = \frac{dx}{x}$$

$$\int \frac{3 + 5v}{2 - 6v - 5v^2} dv = \int \frac{dx}{x}$$

$$-\frac{1}{2} \ln|2 - 6v - 5v^2| = \ln x + \ln C$$

$$2 - 6v - 5v^2 = \frac{1}{(Cx)^2}$$

$$2 - 6\frac{y}{x} - 5\frac{y^2}{x^2} = \frac{1}{(Cx)^2}$$

$$2x^2 - 6xy - 5y^2 = D, D = \frac{1}{C^2}$$

Second Way: Verilen diferansiyel denklemi (3y-2x)dx+(3x+5y)dy=0 şeklinde yeniden düzenleyelim.M(x,y)=3y-2x ve N(x,y)=3x+5y alalım. $M_y=N_x=3$ olduğundan verilen denklem tam diferansiyel denklemdir. Buna göre $F_x(x,y)dx+F_y(x,y)dy=0$ olacak şekilde bir F(x,y)=0 fonksiyonu vardır. Dolayısıyla

$$F_x = M(x,y) = 3y - 2x \Rightarrow F(x,y) = \int (3y - 2x)dx \Rightarrow F(x,y) = 3xy - x^2 + h(y)$$

$$F_y = N(x,y) = 3x + 5y \Rightarrow F_y = 3x + h'(y) = 3x + 5y \Rightarrow h(y) = \frac{5y^2}{2} + C$$

$$F(x,y) = 3xy - x^2 + \frac{5y^2}{2} + C = 0$$

(b) 10 points Find the solution of the y'' - 6y' + 9y = 0, y(0) = 0, y'(0) = 3.

Solution: The characteristic equation of the given differential equation and its roots are obtained as follows.

$$r^2 - 6r + 9 = 0 \Rightarrow (r - 3)^2 = 0 \Rightarrow r_1 = r_2 = 3$$

 $y(x) = c_1 e^{3x} + c_2 x e^{3x}$

The solution of the initial value problem

$$y(0) = 0 \Rightarrow y(0) = c_1 = 0$$

$$y'(0) = 3 \Rightarrow y' = 3c_1e^{3x} + 3c_2xe^{3x} + c_2e^{3x} \Rightarrow y'(0) = 3c_1 + c_2 = 3 \Rightarrow c_2 = 3$$

$$y(t) = 3xe^{3x}$$

May 17, 2017 [13:10-14:30]

MATH216 Final Exam / MAT216 Final Sınavı

Page 3 of 7

3. 25 points Solve the initial value problem $\mathbf{x}' = \begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix} \mathbf{x}, \mathbf{x}(0) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Solution: First Way: The eigenvalue and the corresponding eigenvectors of matrix $A = \begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$ are obtained by as follows

$$|A - \lambda I| = 0 \Rightarrow \begin{vmatrix} 3 - \lambda & 1 \\ -4 & -1 - \lambda \end{vmatrix} = 0 \Rightarrow (3 - \lambda)(-1 - \lambda) - 1(-4) = 0 \Rightarrow \lambda^2 - 2\lambda + 1 = 0 \Rightarrow (\lambda - 1)^2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 1$$

$$\lambda_1 = \lambda_2 = 1 \Rightarrow (A - I)\mathbf{v} = \mathbf{0} \Rightarrow \begin{bmatrix} 3 - 1 & 1 & 0 \\ -4 & -1 - 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ -4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$(A - I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 2 & 1 & 1 \\ -4 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ 1 - 2w_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} w_1 \Rightarrow w_1 = 0 \Rightarrow \mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The general solution of the given system is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^t + c_2 \left(\begin{bmatrix} 1 \\ -2 \end{bmatrix} t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) e^t$$

Let us find arbitrary coefficients c_1 and c_2 by using initial value $\mathbf{x}(0) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \Rightarrow \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \Rightarrow c_1 = 2 \text{ and } c_2 = 3$$

Therefore, the solution of the initial value problem is

$$\mathbf{x}(t) = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^t + 3 \left(\begin{bmatrix} 1 \\ -2 \end{bmatrix} t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) e^t$$

$$\mathbf{x}(t) = \begin{bmatrix} 2 \\ -4 \end{bmatrix} e^t + \left(\begin{bmatrix} 3 \\ -6 \end{bmatrix} t + \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right) e^t$$

$$\mathbf{x}(t) = \begin{bmatrix} 3t + 2 \\ -6t - 1 \end{bmatrix} e^t$$

Alternatively we can find the solution by using fundamental matrix. The general solution can be rewrite as

$$\mathbf{x} = \begin{bmatrix} e^t & te^t \\ -2e^t & (-2t+1)e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\Rightarrow \Psi(t) = \begin{bmatrix} e^t & te^t \\ -2e^t & (-2t+1)e^t \end{bmatrix} \Rightarrow \Psi^{-1}(t) = \frac{1}{e^{2t}} \begin{bmatrix} (-2t+1)e^t & -te^t \\ 2e^t & e^t \end{bmatrix} \Rightarrow \Psi^{-1}(0) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$\mathbf{x}(t) = \Psi(t)\Psi^{-1}(0)\mathbf{x}(0) = \begin{bmatrix} e^t & te^t \\ -2e^t & (-2t+1)e^t \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} e^t & te^t \\ -2e^t & (-2t+1)e^t \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3t+2 \\ -6t-1 \end{bmatrix} e^t$$

May 17, 2017 [13:10-14:30]

MATH216 Final Exam / MAT216 Final Sınavı

Page 4 of 7

Second Way: We can solve this problem by using Laplace Transformation.

$$\mathcal{L}\left\{\mathbf{x}'\right\} = \mathcal{L}\left\{\begin{bmatrix} 3 & 1\\ -4 & -1 \end{bmatrix}\mathbf{x}\right\}$$

$$s\mathcal{L}\left\{\mathbf{x}\right\} - \mathbf{x}(0) = \begin{bmatrix} 3 & 1\\ -4 & -1 \end{bmatrix}\mathcal{L}\left\{\mathbf{x}\right\}$$

$$\left(sI - \begin{bmatrix} 3 & 1\\ -4 & -1 \end{bmatrix}\right)\mathcal{L}\left\{\mathbf{x}\right\} = \mathbf{x}(0)$$

$$\begin{bmatrix} s - 3 & -1\\ 4 & s + 1 \end{bmatrix}\mathcal{L}\left\{\mathbf{x}\right\} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$$

$$\mathcal{L}\left\{\mathbf{x}\right\} = \begin{bmatrix} 2 & 1\\ -1 & s + 1 \end{bmatrix}\begin{bmatrix} 2\\ -1 \end{bmatrix} = \frac{1}{(s-3)(s+1)-4(-1)}\begin{bmatrix} s+1 & 1\\ -4 & s-3 \end{bmatrix}\begin{bmatrix} 2\\ -1 \end{bmatrix}$$

$$\mathcal{L}\left\{\mathbf{x}\right\} = \frac{1}{s^2 - 2s + 1}\begin{bmatrix} 2(s+1)+1(-1)\\ (-4)2+(s-3)(-1) \end{bmatrix} = \frac{1}{s^2 - 2s + 1}\begin{bmatrix} 2s+1\\ -s-5 \end{bmatrix}$$

$$\mathbf{x}(t) = \mathcal{L}^{-1}\left\{\begin{bmatrix} \frac{2s+1}{(s-1)^2}\\ \frac{-s-5}{(s-1)^2} \end{bmatrix}\right\}$$

$$\frac{2s+1}{(s-1)^2} = \frac{2(s-1)+3}{(s-1)^2} = \frac{2}{s-1} + \frac{3}{(s-1)^2}$$

$$\frac{-s-5}{(s-1)^2} = \frac{-(s-1)-6}{(s-1)^2} = -\frac{1}{s-1} - \frac{6}{(s-1)^2}$$

$$\Rightarrow \mathbf{x}(t) = \mathcal{L}^{-1}\left\{\begin{bmatrix} \frac{2}{s-1} + \frac{3}{(s-1)^2}\\ -\frac{1}{s-1} - \frac{6}{(s-1)^2} \end{bmatrix}\right\}$$

$$\mathbf{x}(t) = \begin{bmatrix} 2e^t + 3te^t\\ -e^t - 6te^t \end{bmatrix}$$

4. 25 points Find the solution of the initial value problem $\mathbf{x}' = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}, \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Solution: First Way: Let us find the eigenvalues and the corresponding eigenvectors of $A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$.

$$|A - \lambda I| = 0 \Rightarrow \begin{vmatrix} 2 - \lambda & 3 \\ -1 & -2 - \lambda \end{vmatrix} = (2 - \lambda)(-2 - \lambda) - 3(-1) = \lambda^{2} - 1 = 0 \Rightarrow \lambda_{1} = 1 \text{ and } \lambda_{2} = -1$$

$$\lambda_{1} = 1 \Rightarrow (A - I)\mathbf{v} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & 3 & 0 \\ -1 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\lambda_{1} = -1 \Rightarrow (A + I)\mathbf{w} = \mathbf{0} \Rightarrow \begin{bmatrix} 3 & 3 & 0 \\ -1 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\Psi(t) = \begin{bmatrix} -3e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \Rightarrow \Psi^{-1}(t) = \frac{1}{-3+1} \begin{bmatrix} e^{-t} & e^{-t} \\ -e^{t} & -3e^{t} \end{bmatrix} \Rightarrow \Psi^{-1}(0) = -\frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix}$$

$$e^{At} = \Psi(t)\Psi^{-1}(0) = \begin{bmatrix} -3e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \left(-\frac{1}{2} \right) \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3e^{t} - e^{-t} & 3e^{t} - 3e^{-t} \\ -e^{t} + e^{-t} & -e^{t} + 3e^{-t} \end{bmatrix}$$

$$\mathbf{x}(t) = e^{At}\mathbf{x}_0 + e^{At} \int_0^t e^{-Ax} f(x) dx$$

$$\mathbf{x}(t) = \frac{1}{2} \begin{bmatrix} 3e^t - e^{-t} & 3e^t - 3e^{-t} \\ -e^t + e^{-t} & -e^t + 3e^{-t} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 3e^t - e^{-t} & 3e^t - 3e^{-t} \\ -e^t + e^{-t} & -e^t + 3e^{-t} \end{bmatrix} \int_0^t \frac{1}{2} \begin{bmatrix} 3e^{-x} - e^x & 3e^{-x} - 3e^x \\ -e^{-x} + e^x & -e^{-x} + 3e^x \end{bmatrix} \begin{bmatrix} e^{2x} \\ -e^{2x} \end{bmatrix} dx$$

$$\mathbf{x}(t) = \frac{1}{2} \begin{bmatrix} 3e^t - e^{-t} & 3e^t - 3e^{-t} \\ -e^t + e^{-t} & -e^t + 3e^{-t} \end{bmatrix} \int_0^t \frac{1}{2} \begin{bmatrix} 3e^x - e^{3x} - 3e^x + 3e^{3x} \\ -e^x + e^{3x} + e^x - 3e^{3x} \end{bmatrix} dx$$

$$\mathbf{x}(t) = \frac{1}{2} \begin{bmatrix} 3e^t - e^{-t} & 3e^t - 3e^{-t} \\ -e^t + e^{-t} & -e^t + 3e^{-t} \end{bmatrix} \int_0^t \begin{bmatrix} e^{3x} \\ -e^{3x} \end{bmatrix} dx$$

$$\mathbf{x}(t) = \frac{1}{2} \begin{bmatrix} 3e^t - e^{-t} & 3e^t - 3e^{-t} \\ -e^t + e^{-t} & -e^t + 3e^{-t} \end{bmatrix} \left(\begin{bmatrix} \frac{e^{3t}}{3} \\ -\frac{e^{3t}}{3} \end{bmatrix} - \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} \right)$$

$$\mathbf{x}(t) = \frac{1}{6} \left(\begin{bmatrix} 3e^{4t} - e^{2t} - 3e^{4t} + 3e^{2t} \\ -e^{4t} + e^{2t} + e^{4t} - 3e^{2t} \end{bmatrix} + \begin{bmatrix} -3e^t + e^{-t} + 3e^t - 3e^{-t} \\ e^t - e^{-t} - e^t + 3e^{-t} \end{bmatrix} \right)$$

$$x(t) = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t} + \frac{1}{3} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t}$$

Second Way: Let us find the general solution of the homogeneous system $\mathbf{x}' = A\mathbf{x}$

$$|A - \lambda I| = 0 \Rightarrow \begin{vmatrix} 2 - \lambda & 3 \\ -1 & -2 - \lambda \end{vmatrix} = (2 - \lambda)(-2 - \lambda) - 3(-1) = \lambda^2 - 1 = 0 \Rightarrow \lambda_1 = 1 \text{ and } \lambda_2 = -1$$

$$\lambda_1 = 1 \Rightarrow (A - I)\mathbf{v} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & 3 & 0 \\ -1 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\lambda_1 = -1 \Rightarrow (A + I)\mathbf{w} = \mathbf{0} \Rightarrow \begin{bmatrix} 3 & 3 & 0 \\ -1 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_h(t) = c_1 \begin{bmatrix} -3 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t}$$

Let us find the \mathbf{x}_p by using Method of Undetermined Coefficients.

$$\mathbf{x}_{p} = \begin{bmatrix} A \\ B \end{bmatrix} e^{2t} \Rightarrow \mathbf{x}_{p}' = \begin{bmatrix} 2A \\ 2B \end{bmatrix} e^{2t}$$

$$\mathbf{x}_{p}' = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \mathbf{x}_{p} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$

$$\begin{bmatrix} 2A \\ 2B \end{bmatrix} e^{2t} = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} e^{2t} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t} = \begin{bmatrix} 2A + 3B + 1 \\ -A - 2B - 1 \end{bmatrix} e^{2t}$$

$$\Rightarrow \begin{aligned} 2A &= 2A + 3B + 1 \\ 2B &= -A - 2B - 1 \end{aligned} \Rightarrow A = \frac{1}{3}B = -\frac{1}{3}$$

$$\mathbf{x}_{p} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$

We can use method of Variation of parameters to find \mathbf{x}_p .

$$\mathbf{x}_{p} = \Psi(t) \int \Psi^{-1}(t) \mathbf{f}(t) dt \Rightarrow \begin{bmatrix} -3e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \Rightarrow \Psi^{-1}(t) = -\frac{1}{2} \begin{bmatrix} e^{-t} & e^{-t} \\ -e^{t} & -3e^{t} \end{bmatrix}$$

$$\mathbf{x}_{p} = \begin{bmatrix} -3e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \int -\frac{1}{2} \begin{bmatrix} e^{-t} & e^{-t} \\ -e^{t} & -3e^{t} \end{bmatrix} \begin{bmatrix} e^{2t} \\ -e^{2t} \end{bmatrix} dt$$

$$\mathbf{x}_{p} = \begin{bmatrix} -3e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \int \begin{bmatrix} 0 \\ -e^{3t} \end{bmatrix} dt$$

$$\mathbf{x}_{p} = \begin{bmatrix} -3e^{t} & -e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{3}e^{3t} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$$

The general solution is $\mathbf{x}(t) = \mathbf{x}_h + \mathbf{x}_p = c_1 \begin{bmatrix} -3 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t} + \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$. Let us use initial values to find c_1 and c_2 .

$$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{x}(0) = c_1 \begin{bmatrix} -3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \begin{cases} -3c_1 - c_2 + \frac{1}{3} = 0 \\ c_1 + c_2 - \frac{1}{3} = 0 \end{cases} \Rightarrow c_1 = 0, c_2 = \frac{1}{3}$$

The solution of the initial value problem is $\mathbf{x}(t) = \mathbf{x}_h + \mathbf{x}_p = \frac{1}{3} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t} + \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{2t}$.

Third Way: Let us solve the system by using Laplace Transformation.

May 17, 2017 [13:10-14:30]

MATH216 Final Exam / MAT216 Final Sinavi

Page 7 of 7

$$\mathcal{L}\left\{\mathbf{x}'\right\} = \mathcal{L}\left\{\begin{bmatrix}2 & 3\\ -1 & -2\end{bmatrix}\mathbf{x} + \begin{bmatrix}1\\ -1\end{bmatrix}e^{2t}\right\}$$

$$s\mathcal{L}\left\{\mathbf{x}\right\} - \mathbf{x}(0) = \begin{bmatrix}2 & 3\\ -1 & -2\end{bmatrix}\mathcal{L}\left\{\mathbf{x}\right\} + \begin{bmatrix}1\\ -1\end{bmatrix}\mathcal{L}\left\{e^{2t}\right\}$$

$$\left(sI - \begin{bmatrix}2 & 3\\ -1 & -2\end{bmatrix}\right)\mathcal{L}\left\{\mathbf{x}\right\} = \begin{bmatrix}1\\ -1\end{bmatrix}\frac{1}{s-2}$$

$$\begin{bmatrix}s-2 & -3\\ 1 & s+2\end{bmatrix}\mathcal{L}\left\{\mathbf{x}\right\} = \begin{bmatrix}1\\ -1\end{bmatrix}\frac{1}{s-2}$$

$$\mathcal{L}\left\{\mathbf{x}\right\} = \begin{bmatrix}\frac{1}{s-2} - 3\\ 1 & s+2\end{bmatrix}\mathcal{L}\left\{\mathbf{x}\right\} = \begin{bmatrix}1\\ -1\end{bmatrix}\frac{1}{s-2}$$

$$\frac{s-1}{(s-2)(s+2)+3}\begin{bmatrix}s+2 & 3\\ -1 & s-2\end{bmatrix}\begin{bmatrix}\frac{1}{s-2}\\ -\frac{1}{s-2}\end{bmatrix} = \frac{1}{s^2-1}\begin{bmatrix}\frac{s-1}{s-2}\\ \frac{-s+1}{s-2}\end{bmatrix}$$

$$\frac{s-1}{(s-2)(s-1)(s+1)} = \frac{1}{(s-2)(s+1)} = \frac{1}{3}\frac{1}{s-2} - \frac{1}{3}\frac{1}{s+1}$$

$$\frac{-s+1}{(s-2)(s-1)(s+1)} = -\frac{1}{(s-2)(s+1)} = -\frac{1}{3}\frac{1}{s-2} + \frac{1}{3}\frac{1}{s+1}$$

$$\mathbf{x}(t) = \mathcal{L}^{-1}\left\{\begin{bmatrix}\frac{1}{3}\frac{1}{s-2} - \frac{1}{3}\frac{1}{s+1}\\ -\frac{1}{3}\frac{1}{s-2} + \frac{1}{3}\frac{1}{s+1}\end{bmatrix}\right\}$$

$$\mathbf{x}(t) = \frac{1}{3}\begin{bmatrix}1\\ -1\end{bmatrix}e^{2t} + \frac{1}{3}\begin{bmatrix}-1\\ 1\end{bmatrix}e^{-t}$$