Task Manager

Contents

- Task manager
- Experiments with frequent real workloads
 - Word (printing a document)
 - Windows XP (start activities)
 - Internet access
 - Virus scan
 - Music player
 - Acrobat (making pdf file from doc file)
- Experiments with the flip-flop program

Task Manager

Functions:

- Tracking status of applications
- Tracking all processes
- Measuring usage of CPU and page file activity
- Monitoring network activities
- Monitoring users
- Activation of task manager:
 - Right click the taskbar
 - Start Task Manager

What Is the processor activity for printing a10 page document from WinWord?

- Printing is performed using a laser printer. We have no information to develop an analytic or simulation model for solving this problem.
- The only way to find the solution is to measure processor utilization using a suitable tool.
- Two measurement tools are available under Windows:
 - Task manager (simple)
 - Performance monitor (more complex)

Printing 10 Pages from Word (Dell Dimension 8200)

Observations

- This is an example of using CP to serve the I/O operations. This is typical for inexpensive machines where peripherals do not have advanced (and expensive) intelligent controllers.
- Most of the measured processor activity is in kernel mode (CP working for the OS).
- In advanced computer architectures I/O activities are performed with minimum use of CP.

Printing 10 Pages from Word

Windows
XP start
activities
(Dell
Dimension
8200)

Moving task manager window from A to B followed by an interval permanent move

Jozo Dujmović

Processor Activity for starting Netscape

Computer = Dell Dimension 8200

CPU = Pentium 4 @ **1.69 GHz**

Memory = 256 MB of RAM

Workload includes a significant kernel activity.

Starting Netscape followed by activating webmail and reading a message (networking activity)

Jozo Dujmović

Starting Netscape followed by activating webmail and reading a message: CP activity, kernel+user

Jozo Dujmović

Internet access followed by viewing the retrieved contents

Internet access followed by viewing the retrieved contents processor activity for user+kernel

McAfee VirusScan (Full Scan) Dell XPS400 – 2 processor cores

Processor Activity for Playing a Music CD

Computer = Dell Dimension 8200

CPU = Pentium 4 @ 1.69 GHz

Memory = 256 MB of RAM

Average processor utilization = 50-60%

Initialization of this process takes more processor power.

Workload is mostly kernel activity.

Jozo Dujmović

Converting a Word Document to PDF file (Acrobat)

Dell Dimension 8200

The Flip-Flop Program

```
#include <iostream.h>
#include <time.h>
                 // clock t clock( void );
#include <Windows.h> // void Sleep(unsigned long MilliSeconds)
void Run(unsigned long Milliseconds)
  clock_t EndTick = clock_t(0.001*Milliseconds*CLOCKS_PER_SEC) + clock();
  while(clock() < EndTick);
void main(void)
  unsigned long TotalTime
                             = 40000,
               NumberOfCycles = 80,
               ms = TotalTime/2/NumberOfCycles, i;
  for(i=0; i<NumberOfCycles; i++)</pre>
     Run(ms);
    Sleep(ms);
    Jozo Dujmović
                                                                            18
                                     Task Mgr
```

Compiling and execution flip-flop cycles

Compiling and execution of 10 flip-flop cycles

Compiling and execution of 20 flip-flop cycles

Compiling and execution of 40 flip-flop cycles

Compiling and execution of 80 flip-flop cycles

Compiling and execution of 160 flip-flop cycles

Measurement of processor utilization

- We use the modified FlopFlop program to alternate intervals of 4 seconds of processor activity followed by 4 seconds of idling.
- This pattern should produce total accumulated processor time that is exactly 50% of the total elapsed physical time.
- Processor utilization should be 50%

MODIFIED FlipFlop PROGRAM

```
#include <iostream.h>
#include <time.h>
                          // clock t clock( void );
#include <Windows.h>
                          // void Sleep(unsigned long MilliSeconds)
double sec(void) {return double(clock())/double(CLOCKS PER SEC);}
void Run(unsigned long Millisec)
 clock_t EndTick = clock_t(0.001*Millisec*CLOCKS_PER_SEC)+clock( );
 while(clock( ) < EndTick);</pre>
void main(void)
{ unsigned long TotalTime
                             = 40000, // Total time = 40 sec
               i, ms = TotalTime/2/NumberOfCycles; // ms = 4 sec
 double CPUtime, RealTime;
 CPUtime = sec();
                                   // Accumulated processor time
 RealTime = time(NULL);
                                   // Physical time
 for(i=0 ; i<NumberOfCycles ; i++)</pre>
                                   // Each cycle contains 50% of
     Run(ms);
                                   // processor activity followed by
                                   // 50% of idling with intention
     Sleep(ms);
                                   // to cause processor utilization
 CPUtime = sec() - CPUtime;
                                   // of exactly 50%
 RealTime = time(NULL) - RealTime;
 cout << "\nCPU time
                       = " << CPUtime << " sec"
            << "\nRealTime = " << RealTime << " sec"</pre>
            << "\nProcessor utilization = "
            << 100.* CPUtime/RealTime << " %\n\n";
```

Modified FlipFlop program for measurement of processor time and real time during the execution of FlipFlop workload that uses processor 50% of time

Under Windows
XP this program
generates wrong
results caused by
clock function that
returns physical
time instead of
CPU time.

Jozo Dujmović

Task Mgr

Wrong results generated by the modified FlipFlop program

CPU time = 40 sec

RealTime = 40 sec

Processor utilization = 100 %

Task manager clearly shows 5 FlipFlop cycles that cause processor utilization = 50%

Processor time vs. real time

- Processor time consists of the sum of all processor quanta assigned to a specific process
- Real time is the physical elapsed time
- Generally: Real time = processor busy time + processor idle time