Verjetnost in statistika - zapiski s predavanj prof. Drnovška

Tomaž Poljanšek

študijsko leto 2022/23

Kazalo

0.1	Pogojna porazdelitev in pogojno matematično upanje	1
0.2	Višji momenti in vrstilne karakteristike	4
0.3	Rodovne funkcije	7
0.4	Momentno rodovna funkcija	10
0.5	Šibki in krepki zakon velikih števil	12
0.6	Centralni limitni izrek	15

$$= \int_{-\infty}^{\infty} y e^{-\frac{1}{2}y^2} dy = \frac{1}{\sqrt{2\pi(1-\rho^2)}} \int_{-\infty}^{\infty} x e^{-\frac{1}{2(1-\rho^2)}(x-\rho y)^2} dx =$$

$$E(N(\rho y, \sqrt{1-\rho^2})), \text{ ker je } p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$= \rho \frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{\infty} y^2 e^{-\frac{1}{2}y^2} dy =$$

$$(\frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{\infty} y^2 e^{-\frac{1}{2}y^2} = D(N(0,1)) = 1) \implies = \rho$$

Torej sta X in Y nekorelirani $\stackrel{\text{v splošnem}}{\Longrightarrow} \rho = 0 \stackrel{\text{ta primer}}{\Longrightarrow} X, Y$ neodvisni Kakšna je gostota, če je ρ blizu 1? $\rho \uparrow 1: \rho \downarrow -1:$ gostota je škoraj skoncentriranana neki premici, torej med X in Y obstaja skoraj linearna zveza

0.1 Pogojna porazdelitev in pogojno matematično upanje

Izberimo si dogodek B sP(B) > 0

Definicija 0.1. Pogojna porazdelitvena funkcija slučajne spremnljivke X glede na B je $F_X(X\mid B):=P(X\leq x\mid B)=\frac{P(X\leq x\wedge B)}{P(B)}$

Ima enake lastnosti kot porazdelitvena funkcija

A Diskreten primer

Naj bo (X,Y) diskretno porazdeljen slučajni vektor z verjetnostno funkcijo $p_{ij} = P(X = x_i, Y = y_i)i, j = 1, 2 \cdots$

Za pogoj B vzemimo $B=(Y=y_j)$ pri nekem j, torej $q_j=P(Y=Y_j)$ Potem je pogojna porazdelitvena funkcija slučajne spremenljivke X glede $F_X(X\mid Y=y):=\frac{P(X\leq x|Y=y_j)}{P(Y=y_j)}=\frac{1}{q_j}\sum_{j:x_j\leq x}p_{ij}$

Če vpeljemo pogojno verjetnostno funkcije $P_{i|j}=P(X=x_i\mid Y=y_j)=\frac{p_{ij}}{q_j},\,F_X(X\mid Y=y_j)=\sum_{i:x_i\leq X}p_{i|j}$

Pogojno matematično upanje slučajne spremenljivke X glede na $Y = y_j$ je matematično upanje te porazdelitve:

$$E(X \mid Y = y_j) := \sum_{i} x_i \cdot p_{i|j} = \frac{1}{q_j} \sum_{i} x_j \cdot p_{ij}$$

Regresijska funkcija $\ell(y_i) = \sum (X \mid Y = y_i)$, ki je definirana na zalogi vrednoti slučajne spremenljivke Y

Definirajmo novo slučajno spremenljivko $E(X \mid Y) = \ell(y)$, ki ji rečemo pogojno matematično upanje slučajne spremenljivke X glede slučajne spremenljivke Y

Ta ima shemo
$$E(X \mid Y) = \begin{pmatrix} \ell(y_1) & \ell(y_2) & \cdots \\ q_1 & q_2 & \cdots \end{pmatrix} = \begin{pmatrix} E(X \mid Y = y_1) & \cdots \\ q_1 & \cdots \end{pmatrix}$$
 Zanjo velja

$$E(X \mid Y) = \sum_{i} \ell(y_i) \cdot q_i? \sum_{i} \sum_{i} x_i \cdot p_{ij} = \sim_i x_i (\sum_{i} p_{ij}) = \sum_{i} x_i \cdot p_i = E(X)$$

kjer je $p_i = P(X = x_i)$

Kaj dobimo, če sta X in Y neodvisni slučajni spremenljivki? Tedaj je
$$p_{i|j} = \frac{p_{i:j}}{q_j} = \frac{p_{i:q_j}}{q_j} = p_i$$
 in $\ell(y_j) = E(E(X \mid Y = y_j)) = \sum_i x_i \cdot p_{i|j} = \sum_i x_i \cdot p_i = E(X)$, torej je regresijska funkcija kar konstanta $E(X)$ oz. je $E(X \mid Y)$ izrojena slučajna spremenljivka z vrednostjo $E(X)$

Primer. Kokoš znese N jajc, kjer je $N \sim Poi(\lambda)$ z $\lambda > 0$. Iz vsakega jajca se z verjetnostjo $p \in (0,1)$ izvali piščanec, neodvisno od drugih jajc. Naj bo K število piščancev Dolocino $E(K \mid N), E(K)inE(N \mid K)$

$$P(N=n) = \frac{\lambda^n}{n!} e^{-\lambda} \ n = 0, 1, 2 \cdots$$

$$P(K=k \mid N=n) = \binom{n}{k} p^k q^{n-k} \ k = 0, 1 \cdots n$$

$$\ell(n) = E(K \mid N=n) = E(Bin(n,p)) = n \cdot p$$

torej je $E(K \mid N) = \ell(n) = p \cdot N$

$$E(K \mid N) = \begin{pmatrix} p \cdot 0 & p \cdot 1 & p \cdot 2 & \cdots \\ P(N=0) & P(N=1) & P(N=2) & \cdots \end{pmatrix}$$

$$E(K) = E(E(K \mid N)) = E(p \cdot N) = p \cdot E(N) = p \cdot \lambda$$

$$P(K=k) = \sum_{n=k}^{\infty} P(K=k \mid N=n) \cdot P(N \leq n) = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} p^k q^{n-k} \cdot \frac{\lambda^n}{n!} e^{-\lambda} = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} p^k q^{n-k} \cdot \frac{\lambda^n}{n!} e^{-\lambda}$$

$$= \frac{1}{k!} e^{-\lambda} p^k \lambda^k \sum_{n=k}^{\infty} \frac{(qk)^{n-k}}{(n-k)!} = \frac{(p\lambda)^k}{k!} e^{-\lambda} e^{q\lambda} = \frac{(p\lambda)^k}{k!} e^{-p\lambda} \ k = 0, 1 \cdots n$$

Torej je $K \sim Poi(p \cdot \lambda)$

$$P(N = n \mid K = k) = \frac{P(N = n, K = k)}{P(K = k)} = \frac{P(K = k \mid N = n) \cdot P(N = n)}{P(K = k)} = \frac{P(N = n, K = k)}{P(K = k)} = \frac{P(N = n, K = k)}{P(N = n)}$$

$$= \frac{n!p^kq^{n-k}}{k!(n-k)!} \cdot \frac{\lambda^n e^{-\lambda}}{n!} \cdot \frac{pk!e^{p\lambda}}{(p\lambda)^k} = \frac{(q\lambda)^{n-k}}{(n-k)!} \cdot e^{-q\lambda}n = k, k+1 \cdots$$

To je za k premaknjena Poissonova porazdelitev: $k + Poi(q\lambda)$

Potem je $\psi(k) = E(N \mid K = k) = E(k + Poi(qk)) = k + q \cdot \lambda$ in zato je $E(N \mid K) = \psi(k) = k \cdot q + \lambda$

Preizkus: $E(E(N \mid K)) = E(k + q \cdot \lambda) = p\lambda + q\lambda = \lambda = E(N)$ (ok) Regresijsko premico je vpeljal Golten (1822-1911)

B Zvezni primer

Naj bo (X,Y) zvezno porazdeljen slučajni vektor z gostoto $p_{(X,Y)}(x,y)$. Vzemimo $B = (y < Y \le y + k)$ za nek $y \in \mathbb{R}, k > 0$.

Potem je
$$F_X(X\mid y< Y\leq y+k)=P(x\leq x\mid y< Y\leq y+k)=\frac{P(X\leq x,y< Y\leq y+k)}{P(y< Y\leq y+k)}=\frac{F_{(X,Y)}(x,y+k)-F_{(X,Y)}(x,y)}{F_Y(y+k)-F_Y(y)}$$
 Pogojna porazdelitvena funkcija slučajne spremenljivke X glede na do-

godek (Y = y) je limita, če obstaja:

$$F_X(x \mid Y = y) = \lim_{h \downarrow 0} F_X(x \mid y < Y \le y + h) = \lim_{h \downarrow 0} \frac{F_{(X,Y)}(x, y + h) - F_{(X,Y)}(x, y)}{F_Y(y + h) - F_Y(y)}$$

Denimo sedaj, da sta $p_{X,Y}$ in p_Y zvezni funkciji. Tedaj je $F_X(X \mid Y =$ $f(y) = \frac{\frac{\partial}{\partial y} F_{(X,Y)}(x,y)}{F'_{(Y)}(y)} = \frac{1}{p_Y(y)} \int_{-\infty}^x p_{(X,Y)}(x,v) dv$

Če vpeljemo pogojno gostoto $p_X(x \mid Y = y) := \frac{p_{(X,Y)}(x,y)}{p_Y(y)}$, je torej

$$F_{(X,Y)}(x \mid Y = y) = \int_{-\infty}^{x} p_X(u \mid y) du$$

Pogojno matematično upanje slučajne spremenljivke X glede na dogo- $\operatorname{dek}(Y=y)$ je

$$E(X \mid Y = y) := \int_{-\infty}^{\infty} x \cdot p_X(x|y) dx = \frac{1}{p_Y(y)} \cdot \int_{-\infty}^{\infty} x p_{(X,Y)}(x,y) dx$$

Vpeljimo regresijsko funkcijo $l(y) := E(X \mid Y = y)$, definirano na zalogi vrednosti slučajne spremenljivke Y. Tako dobimo novo slučajno spremenljivko $E(X \mid Y) := l(y)$: pogojno matematično upanje slučajne spremenljivke X glede na slucajno spremenljivko Y.

Kot v diskretnem primeru se pokaže enakost $E(E(X \mid Y)) = E(X)$

Primer. $(X,Y) \sim N(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$ Robna gostota za Y je $N(\mu_u, \sigma_u)$

Zato je pogojna gostota

$$p_X(x \mid y) = \frac{p_{(X,Y)}(x,y)}{p_y(x)} = \frac{\text{D.N.}}{\cdots} = \frac{1}{\sigma_x \sqrt{(2\pi)(1-\rho^2)}} exp(-\frac{1}{2(1-\rho)^2} (\frac{x-\mu_x}{\sigma_x} - \rho \frac{y-\mu_y}{\sigma_y})^2)$$

torej je
$$N(\mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y), \sigma_x \sqrt{1 - \rho^2})$$

Eksponent: $\frac{1}{2(1-\rho^2)}\sigma_x^2(x - (\mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y)))^2$
 $\implies l(y) = E(X \mid Y = y) = \mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y)$ - 1. parameter
 $= \alpha + \beta y : \beta = \rho \frac{\sigma_x}{\sigma_y}, \alpha = \mu_x - \frac{\sigma_x}{\sigma_y} \cdot \mu_y$
Torej je $E(x \mid y) = \alpha + \beta y$

Primer. Meritev onesnaženosti zraka

Slučajna spremenljivka X meri koncentracijo ogljikovih delcev (v $\mu q/m^3$), Y pa koncentracijo ozona (v $\mu l/l = ppm$)

Podatki kažejo, da ima (X,Y) približno dvorazsežno normalno porazdelitev, $\mu_x=10.7, \sigma_x^2=29, \mu_y=0.1, \sigma_y^2=0.02, \rho=0.72$ Koncentracija ozona je škodljiva zdravju, če je ≥ 0.3

Denimo, da naprava za merjenje ozona odpove, koncentracija škodljivih delcev je X = 200

- a kolikšna je pričakovana koncentracija ozona?
- b kolikšna je verjetnost, da je stopnja ozona zdravju skodljiva

a

$$E(Y \mid X = x) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x) = 0.1 + 0.72 \sqrt{\frac{0.02}{29} (20 - 10.7)} \doteq 0.28$$

b Pogojna porazdelitev $Y \mid X = x$ je $N(\mu_y + \rho \frac{\sigma_y}{\sigma_z}(x - \mu_x), \sigma_x \sqrt{1 - \rho^2}) =$ N(0.28, 0.1)

$$P(Y > 0.3 \mid X = 20) = 1 - P(Y \le 0.3 \mid X = 20) = 1 - F_{N(0,1)}(\frac{0.3 - 0.28}{0.1}) \doteq 0.42$$

0.2Višji momenti in vrstilne karakteristike

Definicija 0.2 (Momenti). Naj bo $k \in \mathbb{N}$ in $a \in \mathbb{R}$. Moment reda k glede na točko a je $m_k(a) := E((X-a)^k)$ (če obstaja)

Za a obicajno vzamemo

- 1. a=0: $z_k:=m_k(0)=E(X^k)$ začetni moment reda k
- 2. a = E(X): $m_k := m_k(E(X))$ cen
ralni moment reda k

Ocitno je $z_1 = E(X), m_2 = D(X)$

Trditev 0.3. Če $\exists m_n(a)$, potem obstajaj tudi moment $m_k(a)$ za vse k < n

Dokaz. (V zveznem primeru):

$$E((X-a)^{k}) = \int_{-\infty}^{\infty} (x-a)^{k} p_{X}(x) dx = \int a - 1^{a+1} (X-a)^{k} p_{X}(x) dx + \int_{(-\infty,a-1)\cup(a+1,\infty)} (x-a)^{k} p_{X}(x) dx$$

$$\leq \int_{-\infty}^{\infty} p_{X}(x) dx + \int_{(-\infty,a-1)\cup(a+1,\infty)} (x-a)^{k} p_{X}(x) dx \leq$$

$$\leq 1 + E((X-a)^{k}) < \infty$$

Trditev 0.4. Če obstaja zacetni moment z_n , potem obstaja $m_n(a)$ glede na poljubno točko $a \in \mathbb{R}$

Dokaz.

$$E((X-a)^n) \le E((|X|+|a|)^n) = \sum_{k=0}^n \binom{n}{k} E(a)^{n-k} \cdot E(|X|^k) < \infty$$

Centralne momente lahko izrazimo z začetnimi:

$$m_n(a) = E((X - a)^n) = \sum_{k=0}^n \binom{n}{k} (-a)^{n-k} E(X^k)$$

 $a = E(X) \implies m_k = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} z_1^{n-k} z_k$

Asimetrija slučajne spremenljivke X je $A(X):=E(X_s^3)=E((\frac{X-E(X)}{\sigma_x})^3)=\frac{m_3}{m_2^3}\ m_2=\sigma^2=D(X)$

$$A(N(\mu, \sigma)) = 0$$
, ker $A(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^3 e^{-\frac{1}{2}x^2} dx$

Sploščenost (kurtozis)
$$K(X) := E(X_s^4) = \frac{m_4}{m_5^2}$$

$$K(N(\mu, \sigma)) = 3$$

Ce momenti ne obstajajo (npr. že E(X) ne), potem si lahko pomagamo z vrstilnimi karakteristikami

Definicija 0.5 (Mediana). Mediana slučajne spremenljivke X je vsaka vrednost $x \in \mathbb{R}$, za katero velja $P(X \le x) \le \frac{1}{2}$ in $P(Y \ge x) \ge \frac{1}{2}(1 - P(X < x) = 1 - F(x - 1))$

Če je F porazdelitvena funkcija za X, je to ekvivalentno s pogojem $F(x-) \le \frac{1}{2} \le F(x)$

Če je X zvezno porazdeljena slučajna spremenljivka, dobimo $F(X)=\frac{1}{2}$ oz. $\int_{-\infty}^{\infty}p(t)dx=\frac{1}{2}$

Te vrednosti (lahko jih je več) označimo z $X_{\frac{1}{2}}$

Primer.

$$X \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$$

$$x_{\frac{1}{2}} = 1, E(X) = \frac{4}{5}$$

•
$$X: \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & \frac{2}{4} \end{pmatrix}$$

Mediane so $[0, 1]$

•

•
$$X \sim N(0,1)$$

 $x_{\frac{1}{2}} = \mu = E(X)$

Definicija 0.6 (Kvantil). Kvantil reda p $(p \in (0,1))$ je vsaka vrednost x_p , za katero velja $P(X \le x_p) \ge p$ in $P(X \ge x_p) \ge 1 - p$ Ekvivalentno je $F(x_p-) \le p \le F(x_p)$

Če je X zvezno porazdeljena, je pogoj $F(x_p)=p$ t.j. $\int_{-\infty}^{\infty}p(t)dt=p$

• Kvartili: $X_{\frac{1}{4}}, X_{\frac{2}{4}}, X_{\frac{3}{4}}$

• Percentili: $X_{\frac{1}{100}}, X_{\frac{2}{100}}, \cdots X_{\frac{99}{100}}$

Primer. Telesna višina odraslih moških

Definicija 0.7 ((Semiinter)kvartilni razmik). $s := \frac{1}{2}(x_{\frac{3}{4}} - x_{\frac{1}{4}})$

je nadomestek (analog) za standardno deviacijo

Primer.

•
$$X \sim N(0, 1)$$

 $X_{\frac{1}{2}} = 0$
 $\int_{-\infty}^{\frac{1}{4}} p(t)dt = \frac{1}{4} \xrightarrow{\text{tabelca}} x_{\frac{1}{4}} \doteq -0.67$
 $\xrightarrow{\text{simetrija}} x_{\frac{3}{4}} \doteq 0.67 \implies s = 0.67, \sigma(x) = 1$

• X naj ima Cauchyjevo porazdelitev $p(x) = \frac{1}{\pi(1+x^2)}$ $x_{\frac{1}{2}} = 0$ Momenti ne obstajajo

$$\int_{-\infty}^{x_{\frac{1}{4}}} \frac{1}{\pi} \frac{1}{1+x^2} dx = \frac{1}{4}$$

$$\frac{1}{\pi} \arctan x \Big|_{x=-\infty}^{x_{\frac{1}{4}}} = \frac{1}{4}$$

$$\frac{1}{\pi} \arctan x_{\frac{1}{4}} + \frac{1}{2} = \frac{1}{4}$$

$$\arctan x_{\frac{1}{4}} = \frac{1}{4} \implies x_{\frac{1}{4}} = -1$$

$$\xrightarrow{\text{simetrija}} x_{\frac{3}{4}} = 1, s = 1$$

0.3 Rodovne funkcije

Definicija 0.8. Naj bo X slučajna spremenljivka z vrednostmi v $\mathbb{N} \cup \{0\}$: $p_k = P(X = k)k = 0, 1, 2 \cdots p_k \geq 0, \sum_{k=0}^{\infty} = 1$ Rodovna funkcija skučajne spremenljivke X je

$$G_X(s) = p_0 + p_1 s + p_2 s^2 + \dots = \sum_{k=0}^{\infty} p_k \dots s^k$$

za $\forall s \in \mathbb{R}$, za katere vrsta absolutno konvergira.

Očitno je
$$G_X(0) = p_0, G_X(1) = \sum_{k=0}^{\infty} p_k = 1$$

Ker je $s^X : \begin{pmatrix} s^0 & s^1 & s^2 & \cdots \\ p_0 & p_1 & p_2 & \cdots \end{pmatrix}$, je $G_X(s) = E(s^X)$

Za $s \in [-1,1]$ velja $|p_k \cdot s^k| \leq P_k$ in $\sum_{k=0}^{\infty} p_k = 1$. Zato je vrsta konvergentna, če je $|s| \leq 1$. Torej je konvergenčni radij vrste vsaj 1

Primer.

•
$$X \sim geo(p), p \in (0,1)$$

$$p_k = P(X = k) = p \cdot q^{k-1} \ k = 1, 2, 3 \cdots$$

$$G_X(s) = \sum_{k=1}^{\infty} p \cdot q^{k-1} s^k = ps \sum_{k=0}^{\infty} (qs)^{k-1}$$

$$= ps \frac{1}{1 - as}$$

konvergira, ko $|qs|<1\Leftrightarrow |s|<\frac{1}{|q|}=:R$

•
$$p_k = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$G_X(s) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} \cdot e^{\lambda s} = e^{\lambda(s-1)}$$

$$R = \infty \ \forall s \in \mathbb{R}$$

Iz teorije Taylorjevih vrst sledi

Izrek 0.9 (O eniličnosti). Naj imata X in Y rodovni funkciji G_X in G_Y . Potem je $G_X(s) = G_Y(s)$ za $\forall s \in [-1,1] \leftrightarrow P(X=k) = P(Y=k)$ za vse $k = 0, 1, 2 \cdots$

Tedaj velja $P(X = k) = \frac{1}{k!}G_X^k(0)$

$$G_X(s) = \sum_{k=0}^{\infty} p_k s^k, p_k = P(X=k)$$

Naj ima rodovna funkcija G_X slučajne spremenljivke X konvergenčni radij R > 1. Potem za $\forall s \in (-R,R)$ velja $G_X'(s) = \sum_{k=1}^\infty k \cdot p_k s^{k-1}$ Če postavimo s=1, dobimo $G'(1) = \sum_{k=1}^\infty k \cdot p_k = E(X)$

Izrek 0.10. Naj ima X rodovno funkcijo $G_X(s)$ in naj bo $n \in \mathbb{N}$. Potem je

$$G_X^n(1-) \equiv \lim_{s \nearrow 1} G_X^n(s) = E(X(X-1)(X-2)\cdots(X-N+1))$$

Dokaz. Za
$$\forall s \in [0,1)$$
 je $G_X^n(s) = \sum_{k=n}^{\infty} k(k-1)(k-2)\cdots(k-n+1)p_k s^{k-n+1} =$
= $E(X(X-1)(X-2)\cdots(X-n+1)\cdot s^{X-n})$

Ko gre $s \uparrow 1$, z uporabo Abelove leme dobimo

$$\lim_{s \nearrow 1} G_X^n(s) = \lim_{s \nearrow 1} \sum_{k=n}^{\infty} k(k-1) \cdot (k-n+1) =$$

$$\stackrel{\text{Abelova lema}}{=} \sum_{k=n}^{\infty} \lim_{s \nearrow 1} k(k-1) \cdot (k-n+1) = \sum_{k=n}^{\infty} k(k-1) \cdot (k-n+1) p_k = E(X(X-1) \cdot \cdots \cdot (X-n+1))$$

Posledica 0.11.

$$E(X) = G_X'(1-)$$

$$D(X) = E(X^{2}) - (E(X))^{2} = E(X(X-1)) + E(X) - (E(X))^{2} = G_{X}^{(2)}(1-) + G_{X}^{(1)}(1) - (G_{X}^{(1)}(1-))^{2}$$

Izrek 0.12. Naj bosta X in Y neodvisni slučajni spremenljivki z rodovnima funkcijama G_X in G_Y . Potem je $G_{X+Y}(s) = G_X(s) \cdot G_Y(s)$ za $s \in [-1, 1]$

Dokaz. $G_{X+Y}(s) = E(s^{X+Y}) = E(s^X \cdot s^Y) \stackrel{\text{izrek}}{=} E(s^X) \cdot E(s^Y) = G_X(s) \cdot G_Y(s)$, saj sta s^X in s^Y neodvisni slučajni spremenljivki

Posplo "sitev 0.13. Če so $X_1, X_2 \cdots X_n$ neodvisne slučajne spremenljivke, potem je za vse $s \in [-1, 1]G_{X_1 + \cdots + X_n}(s) = G_{X_1}(s) \cdot \cdots \cdot G_{X_n}(s)$. Če so $X_1, X_2 \cdots X_n$ enako porazdeljene in neodvisne, potem je

$$G_{X_1+\cdots+X_n}(s) = (G_X(s))^n$$

Izrek 0.14. Naj bodo za $\forall n \in \mathbb{N}$ slučajne spremenljivke $N, X_1, X_2 \cdots X_n$ neodvisne. Naj ima N rodovno funkcijo G_N, X_n pa rodovno funkcijo G_X . Potem ima slučajna spemenljivka $S := X_1 + X_2 + \cdots + X_n$ rodovno funkcijo enako $G_S = G_N \circ G_X$ oz. $G_S(s) = G_N(G_X(s))$ za $s \in [-1, 1]$

To je posplošitev formule dd: $P(N=n)=1, G_N(s)=1 \cdot s^n=s^n$

Dokaz. Zaradi neodvisnosti imamo $P(S=k) = \sum_{n=0}^{\infty} P(S=k, N=n) =$

$$= \sum_{n=0}^{\infty} P(N=n, X_1 + \dots + X_n = k) \stackrel{\text{neodvisnost}}{=} \sum_{n=0}^{\infty} P(N=n) \cdot P(X_1 + \dots + X_n = k)$$

Zato je

$$G_{S}(s) = \sum_{k=0}^{\infty} P(S=k) \cdot s^{k} = \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} P(N=n) \cdot P(X_{1} + \dots + X_{n} = k) \cdot s^{k} =$$

$$= \sum_{n=1}^{\infty} P(N=n) (\sum_{k=0}^{\infty} P(X_{1} + \dots + X_{n} = k) \cdot s^{k}) =$$

$$= \sum_{n=1}^{G_{X_{1} + \dots + X_{n}}(s)^{\text{neodvisnost}}(G_{X}(s)^{n})} \sum_{n=1}^{\infty} P(N=n) \cdot (G_{X}(s))^{n} = G_{N}(G_{X}(s))$$

za vse $s \in [-1, 1]$

Posledica 0.15. Pri predpostavkah iz izreka velja Waldova enakost:

$$E(S) = E(N) \cdot E(X)$$

Dokaz.

$$G_S(s) = G_N(G_X(s)) \forall s \in [-1, 1]$$

$$\tag{1}$$

$$E(S) = G'_{s}(1-) = G'_{N}(G_{X}(1-)) \cdot G'_{X}(1-) = E(N) \cdot E(X)$$
 (2)

Primer. Kokoš, jajca, piščanci

N jajc, $N \sim Poi(\lambda)$

K je število piščancev

Definiramo $X_i = 1$ dogodek, da se iz i-tega jajca izvali piščanec, sicer $X_i = 0$.

Potem je $X_i:\begin{pmatrix} 0 & 1\\ q & p \end{pmatrix}, q=1-p$ in X_i so neodvisne slučajne spremenljivke.

Očitno je $K = X_1 + X_2 + \cdots + X_n$ Ker je $G_N(s) = e^{\lambda(s-1)}$ in $G_X(s) = q \cdot s^0 + p \cdot s = q + ps$, je po izreku $G_K(s) = G_N(G_X(s)) = e^{\lambda(q+ps-1)} = e^{\lambda(ps-p)} = e^{\lambda p(s-1)} \forall s \in [-1, 1]$, zato je $K \sim Poi(\lambda p)$

0.4Momentno rodovna funkcija

Definicija 0.16 (Momentno rodovna funkcija). Momentno rodovna funkcija je $M_X(t) = E(e^{tX})$ za $t \in \mathbb{R}$, za katere obstaja matematično upanje

V primeru zvezne porazdelitve je $M_X(t) = \int_{-\infty}^{\infty} e^{tx} p_X(x) dx$

To je Laplaceova transformacija funkcije
$$p_X$$

V diskretnem primeru $X:\begin{pmatrix} x_1 & x_2 & \cdots \\ p_1 & p_2 & \cdots \end{pmatrix}$ je $M_X(t) = \sum_i e^{tx} p_i$

V posebnem primeru, ko ima X nenegative celoštevilske vrednosti, je $M_X(t) =$ $\sum_{i=0}^{\infty} e^{it} p_i =$

$$= \sum_{i=0}^{\infty} p_i(e^t)^i = G_X(e^t) \ (M_X(t) = E((e^t)^X) = G_X(e^t))$$
$$G_X(s) = E(s^X)$$

Očitno je
$$M_X(0) = E(e^0) = E(1) = 1$$

Primer.

$$X \sim N(0, 1)$$

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^2}{2}} dx \cdot e^{-\frac{t^2}{2}} =$$

$$= e^{\frac{t^2}{2}} \forall t \in \mathbb{R}$$

ker je $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^2}{2}}$ gostota za N(0,1)

Izrek 0.17. Naj bo $M_X(t) < \infty$ (obstaja, $< \infty$ zato, ker je $e^t > 0$) za $\forall t \in (-\delta, \delta)$ pri nekem $\delta > 0$. Potem je porazdelitev za X natanko določena z M_X , vsi začetni momenti obstajajo, $z_k = E(X^k) = M_X^k(0)$ za $\forall k \in \mathbb{N}$ in velja $M_X(t) = \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$ za $\forall t \in (-\delta, \delta)$

Dokaz. (bistvo)

$$M_X(t) = E(e^{t \cdot X}) = E(\sum_{k=0}^{\infty} t^k \frac{x^k}{k!}) = \sum_{k=0}^{\infty} \frac{E(X^k)}{k!} t^k = \sum_{k=0}^{\infty} \frac{z^k}{k!} t^k$$

Trditev 0.18. $M_{aX+b}(t) = e^{bt} M_X(at), a \neq 0, b \in R$

Dokaz.
$$M_{aX+b}(t) = E(e^{t(aX+b)}) = E(e^{(at)X} \cdot e^{bt}) = e^{bt} M_X(at)$$

Izrek 0.19. Če sta X in Y neodvisni slučajni spremenljivki, potem je $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

$$Dokaz. \ M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{t^X} \cdot e^{tY}) \stackrel{e^{tX}, e^{tY} \text{ neodvisni}}{=}$$
$$= E(e^{t^X}) \cdot E(e^{tY}) = M_X(t) \cdot M_Y(t)$$

Trditev 0.20. Naj bosta X in Y neodvisni slučajni spremenljivki in $X \sim N(\mu_x, \sigma_x), Y \sim N(\mu_y, \sigma_y)$. Potem je $X + Y \sim N(\mu_x + \mu_y, \sqrt{\sigma_x^2 + \sigma_y^2})$

Dokaz. Ker je

$$U := \frac{X - \mu_x}{\sigma_x} = \frac{X - E(X)}{\sigma(X)} \sim N(0, 1)$$

(standardizacija), je

$$X = \sigma_x \cdot U + \mu_x$$

in zato je

$$M_X(t) = e^{\mu_x t} \cdot M_U(\sigma_x t)$$

po zadnji trditvi. Potem je

$$M_U(t) = e^{\frac{t^2}{2}}$$

jе

$$M_X(t) = e^{\mu_x t} \cdot e^{\frac{\sigma_x^2 t^2}{2}} = e^{\frac{\sigma_x^2 t^2}{2} + \mu_x t} \,\forall t \, in \mathbb{R}$$

za Y velja podobno. Po zadnjem izreku je

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t) = e^{\frac{\sigma_X^2 t^2}{2} + \mu_X t} \cdot e^{\frac{\sigma_y^2 t^2}{2} + \mu_y t} =$$
$$= e^{\frac{(\sigma_X^2 + \sigma_y^2)t^2}{2} + (\mu_X + \mu_y)t}$$

Po izreku je

$$X + Y \sim N(\mu_x + \mu_y, \sqrt{\sigma_x^2 + \sigma_y^2})$$

Opomba. Če bi vedeli, da je X+Y porazdeljena normalno, bi "samo" izračunali parametra

Primer.

$$X \sim N(0,1), M_X(t) = e^{\frac{t^2}{2}} = \sum_{k=0}^{\infty} \frac{(\frac{t^2}{2})^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{2^k \cdot k!} t^{2k}$$

Po drugi strani je $M_X(t) = \sum_{j=0}^{\infty} \frac{z_j}{j!} t^j \ \forall t \in \mathbb{R}$ Primerjamo koeficiente:

- lihi koeficienti: $z_{2k-1} = 0 \ k \in \mathbb{N}$
- sodi koeficienti:

$$\frac{z_{2k}}{(2k)!} = \frac{1}{k!2^k} \implies z_{2k} = \frac{(2k)!}{k!2^k} =$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (2k)}{2 \cdot 4 \cdot 5 \cdot \dots \cdot (2k)} = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1) = (2k-1)!! \ k \in \mathbb{N}$$

0.5 Šibki in krepki zakon velikih števil

Definicija 0.21 (Verjetnostna konvergenca). Zaporedje slučajnih spremenljivk $\{X_n\}_{n\in\mathbb{N}}$ verjetnostno konvergira proti skučajni spremenljivki X, če za $\forall \epsilon>0$ velja $\lim_{n\to\infty}P(|X_n-X|\geq\epsilon)=0$ oz. $\lim_{n\to\infty}P(|X_n-X|<\epsilon)=1$

Definicija 0.22 (Skoraj gotova konvergenca). Zaporedje slučajnih spremenljivk $\{X_n\}_{n\in\mathbb{N}}$ skoraj gotovo konvergira proti skučajni spremenljivki X, če velja $P(p \lim_{n\to\infty} X_n = X) = 1$

Tukaj je
$$(\lim_{n\to\infty}X_n=X)=\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\}=$$

$$= \{ \omega \in \Omega : \forall k (\in \mathbb{N}) \exists m \in \mathbb{N} \forall n \ge m : |X_n(\omega) - X(\omega)| < \frac{1}{k} \} =$$

$$= \{ \cap_{k \in \mathbb{N}} \cup_{m \in \mathbb{N}} \cap_{n \ge m} \omega \in \Omega : |X_n(\omega) - X(\omega)| < \frac{1}{k} \}$$
 (3)

Opomba. Števne unije in preseki \implies smo v σ -algebri, torej je to res dogodek

Trditev 0.23. Če $X_n \xrightarrow{n \to \infty} X$ skoraj gotovo, potem za $\forall \epsilon > 0 \lim_{n \to \infty} P(|X_n - X_n|)$ $|X| < \epsilon \text{ za } n \ge m) = 1$

Dokaz. Označimo $c_m := (|X_n - X| < \epsilon \text{ za } n \ge m) = \bigcap_{n=m}^{\infty} (|x_n - X| < \epsilon).$ Potem je $c_1 \subseteq c_2 \subseteq \cdots$

je
$$c_m$$
 za $\epsilon = \frac{1}{k}$ in $(\lim_{n \to \infty} X_n = X) \subseteq \bigcup_{n=1}^{\infty} c_m$ (presek)
Torej je $1 = P(\lim_{n \to \infty} X_n = X) \subseteq (\bigcup_{m=1}^{\infty} c_m) = \lim_{m \to \infty} P(c_m)$
Od tod sledi $\lim_{m \to \infty} P(c_m) = 1$

Posledica 0.24. Če $X_n \xrightarrow{n \to \infty} X$ skoraj gotovo, potem $X_n \xrightarrow{n \to \infty} X$ verjetnostno konvergira.

Dokaz. Izberemo $\epsilon > 0$. Potem velja

$$P(|X_n - X| < \epsilon \text{ za } \forall n \ge m) \le P(|X_m - X| < \epsilon)$$

Če uporabimo trditev, dobimo $\lim_{n\to\infty} P(|X_n-X|<\epsilon)=1$ (leva stran).

Opomba. Obratna implikacija ne velja

Definicija 0.25. Naj bo $X_1,X_2,X_3\cdots$ zaporedje slučajnih spremenljivk, ki imajo matematično upanje. Definirajmo $Y_n=\frac{S_n-E(S_n)}{n}=\frac{X_1+\cdots+X_n}{n}$ $E(X_1) + \dots + E(X_n)$

Potem je $E(Y_n) = 0$

Za $\{Y_n\}_{n\in\mathbb{N}}$ velja šibki zakon velikih števil (ŠZVŠ), kadar $Y_n \overset{n\to\infty}{\to} 0$ verjetnostno, torej za $\forall \epsilon > 0 \lim_{n \to \infty} (|y| < \epsilon) = 1 = \lim_{n \to \infty} (\left| \frac{S_n - E(S_n)}{n} \right| < \epsilon)$ Za $\{Y_n\}_{n\in\mathbb{N}}$ velja krepki zakon velikih števil (KZVŠ), kadar $Y_n \overset{n}{\to} 0$ skoraj gotovo, torej $P(\lim_{n\to\infty}\frac{S_n-E(S_n)}{n}=0)=1$ Če velja KVZŠ, potem velja ŠVZŠ

Primer. Mečemo kocko, X_k je # pik v k-tem metu. Potem je $E(X_k) = \frac{7}{2}$ in

Ali konvergira $\xrightarrow[n]{} \frac{X_1 + \dots + X_n}{n} \xrightarrow[n]{} \frac{7}{2}$ skoraj gotovo? (Da)

Izrek 0.26.

- a Neenakost Markova: če slučajna spremenljivka X ima matematično upanje, potem je $P(|X| \ge a) \le \frac{E(|X|)}{a}$ za $\forall a>0$
- b Neenakost Čebiševa: če slučajna spremenljivka X ima disperzijo, potem je $P(|X-E(X)| \geq a \cdot \sigma(x)) \leq \frac{1}{a^2}$ za $\forall a>0$ (pomembno za $a\geq 1$, ker je verjetnost ≤ 1)

oz. če pišemo
$$\epsilon = a \cdot \sigma(x) \implies P(|X - E(X)| \ge \epsilon) \le \frac{D(X)}{\epsilon^2}$$
 za $\forall \epsilon > 0$

Dokaz. (samo zvezni primer)

a

$$E(X) = \int_{-\infty}^{\infty} |x| p_x(x) dx \ge \int_{\{x:|x| \ge a\}} |x| p_x(x) dx \ge |a| \int_{\{x:|x| \ge a\}} p_x(x) dx = a \cdot P(|X| \ge a)$$

b

$$P((X - E(X)) \ge \epsilon) = P((X - E(X))^2 \ge \epsilon^2) \stackrel{\text{(a) za X-E(X)}}{\le} \frac{E((X - E(X))^2)}{\epsilon^2} = \frac{D(X)}{\epsilon^2}$$

Izrek 0.27 (Markov). Če za zaporedje slučajnih spremenljivk $\{X_n\}_{n\in\mathbb{N}}$ velja $\stackrel{D(S_n)}{\underset{n^2}{\longrightarrow}}$ 0, potem velja ŠZVŠ. Tukaj je $S_n:=X_1+\cdots+X_n$

Dokaz. V neenakosti Čebiševa vzamemo $X = \frac{S_n}{n}$

$$P(\frac{|S_n - E(S_n)|}{n} \ge \epsilon) \le \frac{P(S_n)}{n^2 \epsilon^2} \stackrel{n \to \infty}{\to} 0$$

Če vzamemo $Y_n = \frac{|S_n - E(S_n)|}{n}$, je $P(|Y_n| \ge \epsilon) \stackrel{n \to \infty}{\to} 0$ oz. $P(|Y_n| < \epsilon) \stackrel{n \to \infty}{\to} 1$

Zato $Y_n \stackrel{n \to \infty}{\to} 0$ verjetnostno, torej velja ŠZVŠ za zaporedje $\{X_n\}_{n \in \mathbb{N}}$

Posledica 0.28 (Izrek Čebišev). Če so $X_1, X_2 \cdots X_n$ paroma nekorelirane slučajne spremenljivke in $\sup_{n \in \mathbb{N}} D(X_n) < \infty$, potem za $\{X_n\}_{n \in \infty}$ velja ŠVZŠ

Dokaz. Ker je $D(S_n) = D(X_1) + \cdots + D(X_n) \le n \cdot c$, je $\frac{D(S_n)}{n^2} \le \frac{n \cdot c}{n^2} = \frac{c}{n} \xrightarrow{n \to \infty} 0$, zato po izreku Markova velja ŠZVŠ

 $Primer.\ X_n:\begin{pmatrix}0&1\\q&p\end{pmatrix}$ neodvisne slučajne spremenljivke, $D(X_n)=pq, E(X_n)=p, E(S_n)=n\cdot p$

Po izreku Čebiševa velja ŠZVŠ: $P(\frac{|S_n - E(S_n)|}{n} \ge \epsilon) \stackrel{n \to \infty}{\to} 0$

$$\implies P(|\frac{S_n}{n} - p| \ge \epsilon) \stackrel{n \to \infty}{\to} 0$$

 S_n je frekvenca dogodka, $\frac{S_n}{n}$ je relativna frekvenca, $\frac{S_n}{n}=\frac{X_1+\cdots+X_n}{n}\stackrel{n\to\infty}{\to} p$ verjetnostno

To je Bernoulijev zakon velikih števil iz 1713

Izrek 0.29 (Kolmogorov). Če za neodvisne slučajne spremenljivke $\{X_n\}_{n\in\mathbb{N}}$ velja $\sum_{n=1}^{\infty} \frac{D_n}{n^2} < \infty$, potem velja KZVŠ, t.j. $P(\lim_{n\to\infty} \frac{S-n-E(S_n)}{n} = 0) = 1$. Posebej je pogoj za vrsto izpolnjen, če je sup_n $D(X_n) < \infty$

Primer. $X_n:\begin{pmatrix} 0 & 1\\ q & p \end{pmatrix}$ neodvisne slučajne spremenljivke, $D(X_n)=pq$

Po izreku Kolmogorova velja KVZŠ, t.j. $\frac{S_n}{n}=\frac{X_1+\cdots+X_n}{n}\stackrel{n\to\infty}{\to} p$ skoraj gotovo. To posplošuje Bernoullijev zakon

0.6 Centralni limitni izrek

Definicija 0.30. Naj bo $\{X_n\}_{n\in\mathbb{N}}$ zaporedje slučajnih spremenljivk s končnimi disperzijami. Definiramo $S_n:=X_1+\cdots+X_n$ in standardizirajmo: $Z_n=\frac{S_n-E(S_n)}{\sigma(S_n)}$, torej $E(Z_n)=0, D(Z_n)=1$

Za $\{X_n\}_{n\in\mathbb{N}}$ velja centralni limitni izrek, če je $F_{Z_n}(x)=P(Z_n\leq x)\stackrel{n\to\infty}{\to} F_{N(0,1)} \forall x\in\mathbb{R},$ t.j.

$$P(\frac{S_n - E(S_n)}{\sigma(S_n)} \le x) \stackrel{n \to \infty}{\to} \frac{1}{2\pi} \int_{-\infty}^x e^{-\frac{t^2}{2}} dx \text{ za } \forall x \in \mathbb{R}$$

Pracimo, da $\{Z_n\}_{n\in\mathbb{N}}$ po porazdelitvi konvergira proti standardizirani normalni porazdelitvi.

Izrek 0.31 (Centralni limitni izrek (CLI, osnovna verzija)). Naj bodo $X_1, X_2 \cdots$ neodvisne in enako porazdeljene slučajne spremenljivke. Potem zanje velja centralni limitni zakon, t.j

$$P(\frac{S_n - E(S_n)}{\sigma(S_n)} \le x) \stackrel{n \to \infty}{\to} \int_{-\infty}^x e^{\frac{t^2}{2}} dx \text{ za } \forall x \in \mathbb{R}$$

Dokazal je Ljapunov (1900), s tem je posplošil Laplaceov izrek iz leta 1812. V dokazu bomo uporabili

Izrek 0.32 (O zveznosti rodovne funkcije). Naj za zaporedje $\{Z_n\}_{n\in\mathbb{N}}$ slučajnih spremenljivk velja:

$$M_{Z_n}(t) \to M_{N(0,1)}(t) = e^{\frac{t^2}{2}}$$
 za vse $t \in (-\delta, \delta)$ pri nekem $\delta > 0$
Potem $F_{Z_n}(x) \to F_{N(0,1)}(x)$ za $\forall x \in \mathbb{R}$

 $\begin{array}{l} Dokaz. \text{ CLI v primeru, ko } X_n \text{ imajo moment no rodovno funkcijo} \\ M_X(t) = E(e^{tX_n}) \text{ na neki okolici točke } 0 \\ \text{Naj bo } E(X_n) = \mu, D(X_n) = \sigma^2 \text{ in } U_n := X_n - \mu = X_n - E(X_n). \text{ Torej je } \\ E(U_n) = 0 \text{ in } D(U_n) = \sigma^2 \text{ ter } M_U(t) = 1 + tE(U_n) + \frac{t^2}{2!}E(U_n^2) + o(t^2) = \\ = 1 + \frac{t^2}{2}\sigma^2 + o(t^2) \text{ } (\lim_{n \to \infty} \frac{o(n)}{n} = 0) \\ \text{Ker je } D(S_n) \stackrel{\text{neodvisne}}{=} D(X_1) + \dots + D(X_n) = n \cdot \sigma^2 \text{ in } E(S_n) = n \cdot \mu = \\ E(X_1) + \dots + E(X_n), \text{ je } Z_n = \frac{S_n - E(S_n)}{\sigma(S_n)} = \\ = \frac{1}{\sigma\sqrt{n}} \left(\sum_{n=0}^n U_i\right) \\ \text{Potem je } M_{Z_n}(t) = E(e^{tZ_n}) = E(e^{\frac{t}{\sigma\sqrt{n}}(U_1 + \dots + U_n)}) = E(e^{\frac{t}{\sigma\sqrt{n}}U_1}) \dots \cdot E(e^{\frac{t}{\sigma\sqrt{n}}U_n}) = \\ \stackrel{\text{enaki}}{=} \left(M_U(\frac{t}{\sigma\sqrt{n}}))^n = (1 + \frac{t^2}{2n} + o(\frac{1}{n}))^n \\ \xrightarrow{n \to \infty} \stackrel{\text{ool}}{=} o(\frac{1}{n} \to 0)}{e^{\frac{t^2}{2}}} \end{array}$

Lema 0.33. Če
$$X_n \to X$$
, potem $(1 + \frac{X_n}{n})^n \stackrel{n \to \infty}{\to} e^x$

Po prejšnjem izreku: $F_{Z_n}(x) \stackrel{n \to \infty}{\to} F_{N(0,1)}(x)$