Aim 1 Differential Discovery Analysis

Setup

```
# libraries
library(diffcyt)
library(tidyverse)
library(tidymodels)
library(lme4)
# source utils
source('~/GitHub/classes/BIOMEDIN_212/r_scripts/pap_utils.R', echo = FALSE)
# paths
data_path <-
  file.path("~", "GitHub", "classes", "BIOMEDIN_212", "data-raw", "cell_table.csv")
metadata_path <-
  file.path(
    "~", "GitHub", "classes",
    "BIOMEDIN_212", "data-raw", "fov_labels.csv"
  )
surfactant_path <-</pre>
  file.path(
    "~", "GitHub", "classes",
    "BIOMEDIN_212", "data-raw", "surfactant_masks"
# qlobals
healthy_fovs_in_pap_patients <-
  c(9, 15, 20, 29, 40)
functional_markers <-</pre>
     "cd11c", "cd123", "cd14",
     "cd16", "cd163", "cd20",
     "cd206", "cd209", "cd3",
     "cd31", "cd4", "cd45",
     "cd45ro", "cd57", "cd68",
     "cd8", "calprotectin",
     "epox", "foxp3",
     "grz_b", "h3k27me3", "h3k9ac",
     "hh3", "hla_dr", "ho_1",
     "ido", "if_ng", "ki67",
     "lag3", "mmp9",
     "na_kat_pase", "pd1", "pan_ck",
```

```
"sma", "si", "tim3",
  "tryptase", "vim",
  "i_nos", "p_s6"
)
```

Read in data

```
# metadata
metadata <-
 metadata_path %>%
 read_csv() %>%
 rename(fov_id = point) %>%
  janitor::clean_names()
# mibi data
mibi_data <-
  data_path %>%
  read_csv() %>%
  rename(
   fov_id = point,
   cell_id = label,
   cluster_id = pixelfreq_hclust_cap,
   cluster_name = name,
   centroid_x = `centroid-0`,
    centroid_y = `centroid-1`
  ) %>%
  janitor::clean_names()
# surfactant data
surf_data <-
 tibble(
    filenames =
      surfactant_path %>%
      list.files(),
    paths =
      surfactant_path %>%
      list.files(full.names = TRUE),
    data = map(.x = paths, .f = pap_read_tif)
  )
surf_data <-
  surf_data %>%
  unnest(cols = data) %>%
  transmute(
   fov_id = str_extract(filenames, pattern = "[:digit:]+"),
   х,
    у,
    values
```

Pre-process data

First, I'll just join the metadata into the mibi_data cell-level expression matrix.

```
mibi_data <-
  mibi_data %>%
  left_join(metadata)

mibi_data %>%
  count(category)

## # A tibble: 4 x 2
## category n
```

```
## category n
## <chr> <chr> <int>
## 1 nonSJIA-PAP 10584
## 2 Normal 4987
## 3 Pneumonia 6161
## 4 SJIA-PAP 57324
```

Because of our limited sample size, we more or less have to combine the "Normal" and "Pneumonia" category FOVs into a single category ("Control"). However, we should acknowledge that these two controls are not created equal - in fact, if we perform a simple t-test between the Pneumonia and Normal patient FOVs' proportion of each our immune cell clusters, we can see that there are significant differences (at the level of p = 0.05) even after Benjamini-Hochberg adjustment.

```
cancer pneumonia counts <-
  mibi_data %>%
  filter(category %in% c("Pneumonia", "Normal")) %>%
  mutate(cluster_name = as.factor(cluster_name)) %>%
  count(patient_id, fov_id, category, cluster_name, .drop = FALSE) %>%
  group_by(fov_id) %>%
  mutate(prop = n / sum(n))
t_tests <-
  cancer_pneumonia_counts %>%
  group_by(cluster_name) %>%
  nest() %>%
  mutate(
   p_value =
      map_dbl(
        x = data
        .f = ~
          t.test(
            x =
              .x %>%
              dplyr::filter(patient_id == 13) %>%
              pull(prop),
            y =
              .x %>%
              dplyr::filter(patient_id == 14) %>%
              pull(prop)
          ) %>%
          tidy() %>%
          pull(p.value)
      ) %>%
      p.adjust(method = "BH")
```

```
t_tests %>%
  select(-data) %>%
  arrange(p_value) %>%
  mutate(significant = if_else(p_value < 0.05, "*", "")) %>%
  knitr::kable()
```

cluster name	p value	significant
Mast cell	0.0024518	*
Lung_Epithelium	0.0024510 0.0042509	*
CD57+ CD8+ Tcell	0.0129929	*
M2 Mac	0.0230855	*
Eosinophil	0.0341076	*
Endothelial	0.0561127	
CD8+_Tcell	0.0632200	
$CD209+_Mac$	0.0735467	
$iNOS+_Pneumocyte$	0.1045573	
CD16+_ImmuneOther	0.1383749	
Fibroblast	0.1780802	
$CD11c+_mDC$	0.2475057	
Neutrophil	0.2509420	
Bcell	0.2793292	
$iNOS+_Mac$	0.5925798	
CD57+_ImmuneOther	0.6663467	
CD4+_Tcell	0.7789749	
Mesenchymal	0.9513561	
Treg	0.9617596	
CD14+_Mono	0.9904512	

```
cluster_order <-</pre>
 t_tests %>%
 arrange(p_value) %>%
 pull(cluster_name) %>%
 as.character()
sig_clusters <-
 t_tests %>%
 filter(p_value < 0.05) %>%
 pull(cluster_name) %>%
 as.character()
cancer_pneumonia_counts %>%
 mutate(cluster_name = factor(cluster_name, levels = cluster_order)) %%
 filter(cluster_name %in% sig_clusters) %>%
  ggplot(aes(y = prop, x = category, fill = category)) +
 geom_violin() +
 geom_jitter(shape = 21, width = 0.1) +
 facet_wrap(facets = vars(cluster_name), scales = "free") +
   subtitle = "Differentially abundant clusters in our 2 control samples",
   x = NULL,
```

```
y = "Proportion of cells in a FOV in a cluster",
fill = NULL,
caption = "Each point represents an FOV;\nall means are significantly different at p = 0.05"
)
```

Differentially abundant clusters in our 2 control samples

Each point represents an FOV; all means are significantly different at p=0.05

Keeping this in mind, we proceed with annotating the outcome variable such that the pneumonia sample and cancer sample are treated equally as "controls" (we would be relatively underpowered otherwise in later comparisons, although this lumping is sub-optimal).

```
mibi_data <-
mibi_data %>%
mutate(
   outcome =
      if_else(category %in% c("Normal", "Pneumonia"), "Control", category)
)
```

Basic data summary

Number of unique FOVs in each condition

```
mibi_data %>%
  distinct(outcome, fov_id) %>%
  count(outcome, name = "num_fovs") %>%
  arrange(-num_fovs)
## # A tibble: 3 x 2
##
    outcome num_fovs
##
     <chr>
                <int>
## 1 SJIA-PAP
                      48
## 2 Control
                      10
## 3 nonSJIA-PAP
                       9
```

Number of unique patients in each condition

```
mibi_data %>%
  distinct(outcome, patient_id) %>%
  count(outcome, name = "num_patients") %>%
  arrange(-num_patients)
## # A tibble: 3 x 2
##
     outcome num_patients
##
     <chr>
                        <int>
## 1 SJIA-PAP
                           12
## 2 Control
                            2
## 3 nonSJIA-PAP
                            2
```

Number of unique cells in each condition

```
mibi_data %>%
  count(outcome, name = "num_cells") %>%
  arrange(-num_cells)
## # A tibble: 3 x 2
##
     outcome
             num_cells
##
     <chr>
                    <int>
## 1 SJIA-PAP
                     57324
## 2 Control
                     11148
## 3 nonSJIA-PAP
                     10584
```

Number of cells for each patient

```
##
              13
                      6161
##
   4
              10
                      5811
##
   5
               9
                      5294
##
   6
               8
                      5061
   7
                      4987
##
              14
##
  8
               4
                      4972
##
  9
              12
                      4935
               2
## 10
                      4590
## 11
               5
                      4140
               7
## 12
                      4115
               3
## 13
                      4025
## 14
               6
                      3433
## 15
              15
                      2879
## 16
                      2238
               1
```

Number of cells in each FOV

```
mibi_data %>%
  count(fov_id, name = "num_cells") %>%
  arrange(-num_cells)
```

```
## # A tibble: 67 x 2
##
      fov_id num_cells
##
       <dbl>
                 <int>
##
   1
          14
                  2634
##
   2
          44
                  2341
##
   3
          12
                  2019
   4
##
          32
                  1924
##
   5
          43
                  1891
##
   6
          1
                  1885
##
   7
          25
                  1759
##
   8
          26
                  1754
##
  9
          49
                  1752
## 10
          38
                  1726
## # ... with 57 more rows
```

Differential Abundance Analysis - between patients

In Aim 1, we proposed a differential abundance analysis of different immune cell subtypes (represented by the column cluster_name in mibi_data) across different types of MIBI images. The first of these analyses is to compare the abundance of each immune cell subtype between independent patients, each of which has either SJIA-PAP, PAP caused by something other than SJIA (nonSJIA-PAP), pneumonia, or lung cancer (which we code as "Normal" in mibi_data). We combine the last two conditions into the "control" category because neither of them have PAP, so they make as much sense as any sample we have access to to form our basis of comparison.

To perform our differential abundance analysis, we use the statistical framework proposed in the {{diffcyt}}} framework.

Specifically, we use generalized linear mixed models (GLMMs) to test for differences in cluster abundance and cluster marker expression. The benefit of using mixed-models in this context is that, unlike more traditional differential abundance/expression testing tools commonly applied to cytometry data like CITRUS, GLMMs can account for complex experimental designs such as paired or block designs with known covariates representing batch effects or individual-to-individual variation. In the case of the present study, using random effects to model the variance in cluster abundance and marker expression that arises from random variation between individual patients (from whom we draw multiple FOVs), we can more reliably detect differences attributable solely to the effect of the outcome variable.

To do this, we can use the {diffcyt} R package to test for differential abundance of clusters across different levels of outcome using binomial regression. For each cluster, we can fit a binomial regression model in which we model the log-odds (and thus indirectly the proportion of cells in a given cluster) of each cluster in a given patient i and a given FOV j p_{ij} according to the following equation:

$$logit(p_{ij}) = log(\frac{p_{ij}}{1 - p_{ij}}) = \beta_0 + \alpha_i + \beta_1 X_j$$

In the equation above, we use the following definitions:

- p_{ij} : The proportion of cells in a given cluster in patient i and FOV j
- $\alpha_i^{(p)}$: A random intercept for each patient i in which $\alpha_i^{(p)} \sim N(0, \sigma_p)$, where σ_p is estimated during model fitting.
- X_j : an indicator variable representing whether or not an FOV j was taken from an SJIA-PAP patient (1 if yes, 0 otherwise). Depending on which comparisons we're making, what X_j stands for can change (but it always represents which outcome FOV j has been annotated with.
- All β 's are linear model parameters optimized during model fitting

Using the above setup, we can apply null-hypothesis significance testing to β_1 (under the null hypothesis that $\beta_1 = 0$): if β_1 is significantly different from 0 in the model, we can state that the proportion of cells in our cluster differs significantly between the levels of outcome we're investigating while controlling for individual-to-individual variation.

PAP vs. non-PAP

Using this framework, we can first compare the PAP samples (either SJIA-PAP or nonSJIA-PAP) to the control samples in our cohort. Note that we set a filter so that clusters that have fewer than 3 cells in 5 samples are removed from the analysis, as clusters with this few cells can't be used to estimate reliable proportions for a cell subtype's relative abundance in the sample it was collected from.

```
pap_daa <-
   mibi_data %>%
   select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
   mutate(outcome = if_else(outcome %in% c("SJIA-PAP", "nonSJIA-PAP"), "PAP", outcome)) %>%
   pap_perform_daa(
```

```
data_tibble = .,
    sample_col = fov_id,
    cluster_col = cluster_name,
    fixed_effect_cols = outcome,
    random_effect_cols = c(patient_id),
    include_observation_level_random_effects = FALSE
)

pap_daa$da_results %>%
    topTable(all = TRUE) %>%
    as_tibble() %>%
    arrange(p_adj) %>%
    mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
    knitr::kable()
```

cluster_id	p_val	p_adj	significance
CD209+ Mac	0.0284889	0.2848894	
Neutrophil	0.0149365	0.2848894	
Bcell	0.3262681	0.7449216	
$CD11c+_mDC$	0.1519862	0.7449216	
CD14+_Mono	0.4472275	0.7449216	
$CD57+_CD8+_Tcell$	0.4812898	0.7449216	
CD8+_Tcell	0.2688716	0.7449216	
Endothelial	0.2369884	0.7449216	
Fibroblast	0.2432184	0.7449216	
iNOS+_Mac	0.1652710	0.7449216	
iNOS+_Pneumocyte	0.4402886	0.7449216	
Mesenchymal	0.4841990	0.7449216	
Treg	0.3633710	0.7449216	
CD16+_ImmuneOther	0.5616607	0.8023724	
CD4+_Tcell	0.6354191	0.8074845	
CD57+_ImmuneOther	0.6459876	0.8074845	
Eosinophil	0.8001735	0.9413806	
Lung_Epithelium	0.9541837	0.9541837	
M2_Mac	0.9149582	0.9541837	
$Mast_cell$	0.8741013	0.9541837	
$Giant_cell$	NA	NA	NA

From these results, we can see that, when taking indivual random-effects into account, there are no statistically significant differentially abundance clusters between PAP and non-PAP samples (at least at the level of power we have available to us in this study).

```
overall_daa$da_results_limma %>%
  topTable(all = TRUE) %>%
  as_tibble()
```

SJIA-PAP vs. Controls

The second comparison we can run is between SJIA-PAP samples and control samples.

```
daa_sjia_pap_vs_controls <-
mibi_data %>%
select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
```

```
#filter(!(fov_id %in% healthy_fovs_in_pap_patients)) %>%
filter(outcome != "nonSJIA-PAP") %>%
pap_perform_daa(
    data_tibble = .,
    sample_col = fov_id,
    cluster_col = cluster_name,
    fixed_effect_cols = outcome,
    random_effect_cols = c(patient_id),
    include_observation_level_random_effects = FALSE
)

daa_sjia_pap_vs_controls$da_results %>%
    topTable(all = TRUE) %>%
    as_tibble() %>%
    arrange(p_adj) %>%
    mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
    knitr::kable()
```

cluster_id	p_val	p_adj	significance
Neutrophil	0.0000533	0.0010658	*
CD11c+_mDC	0.1296667	0.6439611	
CD14+_Mono	0.3199656	0.6439611	
$CD209+_Mac$	0.1100076	0.6439611	
CD8+_Tcell	0.2086889	0.6439611	
Endothelial	0.2859825	0.6439611	
Fibroblast	0.2608195	0.6439611	
$iNOS+_Mac$	0.1769249	0.6439611	
Mesenchymal	0.3219806	0.6439611	
Treg	0.2466686	0.6439611	
$CD57+_CD8+_Tcell$	0.3558237	0.6469522	
Bcell	0.4690123	0.7785946	
CD4+_Tcell	0.5060865	0.7785946	
CD16+_ImmuneOther	0.7383804	0.9488822	
CD57+_ImmuneOther	0.8849907	0.9488822	
Eosinophil	0.9014381	0.9488822	
Lung_Epithelium	0.6759856	0.9488822	
M2_Mac	0.8072448	0.9488822	
$Mast_cell$	0.7877623	0.9488822	
iNOS+_Pneumocyte	0.9523543	0.9523543	

In these results, we can see that neutrophils are differentially abundant in SJIA-PAP and control samples.

```
daa_sjia_pap_vs_controls$da_results_limma %>%
  topTable(all = TRUE) %>%
  as_tibble()
```

SJIA-PAP vs. nonSJIA-PAP

The third comparison we can run is between SJIA-PAP and nonSJIA-PAP samples.

```
daa_sjia_pap_vs_nonsjia_pap <-
mibi_data %>%
select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
```

```
filter(outcome != "Control") %>%
  pap_perform_daa(
   data_tibble = .,
   sample_col = fov_id,
   cluster_col = cluster_name,
   fixed_effect_cols = outcome,
   random_effect_cols = c(patient_id),
    include observation level random effects = FALSE
  )
daa_sjia_pap_vs_nonsjia_pap$da_results %>%
  topTable(all = TRUE) %>%
  as tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", ""))</pre>
## # A tibble: 21 x 4
##
      cluster_id
                       p_val p_adj significance
##
      <fct>
                         <dbl> <dbl> <chr>
                        0.126 0.595 ""
## 1 CD209+_Mac
## 2 CD4+ Tcell
                        0.0965 0.595 ""
## 3 CD57+ ImmuneOther 0.0777 0.595 ""
## 4 M2 Mac
                        0.149 0.595 ""
## 5 Mesenchymal
                        0.0569 0.595 ""
## 6 Fibroblast
                        0.184 0.614 ""
## 7 CD16+ ImmuneOther 0.247 0.618 ""
## 8 Treg
                        0.217 0.618 ""
## 9 Neutrophil
                        0.358 0.795 ""
## 10 Bcell
                        0.494 0.824 ""
## # ... with 11 more rows
And once again we can see that there are no differentially abundant clusters between these sample types.
daa_sjia_pap_vs_nonsjia_pap$da_results_limma %>%
  topTable(all = TRUE) %>%
```

nonSJIA-PAP vs. Controls

as_tibble()

The final between-patients comparison we can run is between nonSJIA-PAP samples and control samples.

```
daa_control_vs_nonsjia_pap <-
   mibi_data %>%
   select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
   #filter(!(fov_id %in% healthy_fovs_in_pap_patients)) %>%
   filter(outcome != "SJIA-PAP") %>%
   pap_perform_daa(
        data_tibble = .,
        sample_col = fov_id,
        cluster_col = cluster_name,
        fixed_effect_cols = outcome,
        random_effect_cols = c(patient_id),
        include_observation_level_random_effects = FALSE
)
```

```
daa_control_vs_nonsjia_pap$da_results %>%
  topTable(all = TRUE) %>%
  as_tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", ""))</pre>
## # A tibble: 21 x 4
##
      cluster_id
                           p_val
                                   p_adj significance
##
      <fct>
                           <dbl>
                                  <dbl> <chr>
## 1 iNOS+ Pneumocyte 0.000208 0.00416 "*"
## 2 CD14+_Mono
                        0.00768 0.0487 "*"
## 3 Endothelial
                        0.00974 0.0487 "*"
## 4 iNOS+_Mac
                                         "*"
                        0.00658 0.0487
                                         11 11
## 5 CD57+_ImmuneOther 0.0125
                                 0.0502
## 6 CD16+_ImmuneOther 0.0346
                                 0.115
                                         11 11
## 7 Bcell
                        0.119
                                 0.283
## 8 Fibroblast
                        0.127
                                 0.283
                        0.122
                                 0.283
                                         11 11
## 9 Treg
## 10 CD11c+_mDC
                        0.312
                                 0.567
## # ... with 11 more rows
```

And in this case we can see that there are several cell subtypes that are differentially abundant (pneumocytes, monocytes, endothelial cells, and iNOS+ Macrophages).

```
daa_control_vs_nonsjia_pap$da_results_limma %>%
  topTable(all = TRUE) %>%
  as_tibble()
```

Visualization

```
interesting_clusters <-
    c("Neutrophil", "CD209+_Mac", "CD14+_Mono", "iNOS+_Mac")

mibi_data %>%
    count(fov_id, cluster_name, patient_id, outcome) %>%
    group_by(fov_id) %>%
    mutate(
        total_cells = sum(n),
        prop = n / total_cells
) %>%
    filter(cluster_name %in% interesting_clusters) %>%
    ggplot(aes(x = outcome, y = prop, fill = outcome)) +
    geom_violin(draw_quantiles = 0.5) +
    geom_point(shape = 21, position = position_dodge(width = 0.3)) +
    facet_wrap(facets = vars(cluster_name), scales = "free")
```



```
mibi_data %>%
  count(fov_id, cluster_name, patient_id, outcome) %>%
  group_by(fov_id) %>%
  mutate(
    total_cells = sum(n),
    prop = n / total_cells
  ) %>%
  group_by(cluster_name, outcome) %>%
  summarize(prop = mean(prop)) %>%
  ggplot(aes(y = cluster_name, x = prop, fill = outcome)) +
  geom_col(position = "dodge") +
  geom_point(
    position = position_dodge(width = 1),
    size = 0.2,
    data =
      mibi_data %>%
      count(fov_id, cluster_name, patient_id, outcome) %>%
      group_by(fov_id) %>%
      mutate(
        total_cells = sum(n),
        prop = n / total_cells
      ) %>%
      ungroup()
 )
```


Differential Abundance Analysis - within patients

In addition to the between-patients comparisons, we can also run another set of comparisons that leverages a within-subjects design to increase statistical power. As it turns out, for several of our SJIA-PAP samples, one of the FOVs collected was annotated as a "healthy" section of tissue relative to the others (which had more of the hallmark histopathological features of SJIA-PAP). We can compare the abundance of each of our immune cell subpopulations within the same patients by comparing the "healthy" FOV to the other FOVs taken from the same patient.

```
# find patients who had at least one "healthy" FOV
interesting_patients <-
   mibi_data %>%
   filter(fov_id %in% healthy_fovs_in_pap_patients) %>%
   distinct(patient_id) %>%
   pull(patient_id)
interesting_patients
```

```
## [1] 16 8 9 11 1
```

Processing

```
paired_patients <-
  mibi_data %>%
  filter(patient_id %in% interesting_patients) %>%
  # annotate FOVs that are "healthy-looking" according to our pathologist
  mutate(
    fov_condition =
        if_else(fov_id %in% healthy_fovs_in_pap_patients, "healthy", "pap")
)
```

Statistical analysis

```
paired_daa_results <-
  paired_patients %>%
  filter(outcome != "nonSJIA-PAP") %>%
  pap_perform_daa(
   data_tibble = .,
   sample_col = fov_id,
   cluster_col = cluster_name,
   fixed effect cols = fov condition,
   random_effect_cols = patient_id,
    include_observation_level_random_effects = FALSE
  )
paired_daa_results %>%
  pluck("da_results") %>%
  topTable(all = TRUE) %>%
  as_tibble() %>%
  mutate(significant = if_else(p_adj < 0.05, "*", "")) %>%
  arrange(p_adj) %>%
  knitr::kable()
```

p_val	p_adj	significant
0.0000000	0.0000000	*
0.0000000	0.0000000	*
0.0000000	0.0000000	*
0.0000001	0.0000005	*
0.0000008	0.0000025	*
0.0000007	0.0000025	*
0.0022011	0.0056600	*
0.0037262	0.0083839	*
0.0102007	0.0204013	*
0.1098600	0.1797709	
0.1097409	0.1797709	
0.1863928	0.2795892	
0.2171053	0.3006073	
0.2976274	0.3826638	
0.3671814	0.4130791	
0.3620723	0.4130791	
0.4157340	0.4401889	
0.7218197	0.7218197	
NA	NA	NA
NA	NA	NA
	0.0000000 0.0000000 0.0000000 0.0000001 0.0000008 0.0000007 0.0022011 0.0037262 0.0102007 0.1098600 0.1097409 0.1863928 0.2171053 0.2976274 0.3671814 0.3620723 0.4157340 0.7218197 NA	0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000001 0.0000005 0.0000008 0.0000025 0.0022011 0.0056600 0.0037262 0.0083839 0.0102007 0.0204013 0.1098600 0.1797709 0.1863928 0.2795892 0.2171053 0.3006073 0.2976274 0.3826638 0.3671814 0.4130791 0.4157340 0.4401889 0.7218197 NA

```
paired_daa_results %>%
  pluck("da_results_limma") %>%
  topTable(all = TRUE) %>%
  as_tibble() %>%
  mutate(significant = if_else(p_adj < 0.05, "*", "")) %>%
  arrange(p_adj)
```

From these results, we can see that there are several immune cell subtypes that, when using a paired design, we find are enriched in parts of the SJIA-PAP lung that actually show histopathological signs of disease compared to paired parts of the SJIA-PAP lung that do not show histopathological signs of disease.

We can visualize these differences below.

Visualization

```
paired_p_values <-
   paired_daa_results %>%
   pluck("da_results") %>%
   topTable(all = TRUE) %>%
   as_tibble() %>%
   mutate(
        significant = if_else(p_adj < 0.05, "*", """),
        new_cluster_name = if_else(significant == "*", str_c(cluster_id, "*"), as.character(cluster_id))
   ) %>%
   arrange(p_adj) %>%
   rename(cluster_name = cluster_id)

sig_clusters <-
   paired_p_values %>%
   filter(significant == "*") %>%
   pull(cluster_name)
```

```
# calculate the number of fovs used for each patient in each "condition"
num_fov_tibble <-</pre>
  paired_patients %>%
  distinct(fov id, patient id, fov condition) %>%
  count(patient_id, fov_condition, name = "num_fovs")
paired_plot_data <-</pre>
  paired patients %>%
  mutate(
    cluster_name =
      factor(cluster_name, levels = pull(paired_p_values, cluster_name)) ,
  ) %>%
  count(cluster_name, patient_id, fov_id, fov_condition, .drop = FALSE) %>%
  group_by(fov_id) %>%
  mutate(
    total_fov_cells = sum(n),
    prop = n / total_fov_cells
  ) %>%
  ungroup() %>%
  group_by(fov_condition, patient_id, cluster_name) %>%
  summarize(
   sd = sd(prop, na.rm = TRUE),
   prop = mean(prop, na.rm = TRUE),
  ) %>%
  drop_na(cluster_name) %>%
  ungroup() %>%
  #mutate(across(c(patient_id, fov_condition), .f = as.factor)) %>%
  complete(patient_id, fov_condition, cluster_name, fill = list(prop = 0)) %>%
  left_join(num_fov_tibble) %>%
  mutate(
    sem = sd / sqrt(num_fovs)
  )
paired_plot_data %>%
  left_join(paired_p_values) %>%
  mutate(new_cluster_name = fct_reorder(new_cluster_name, p_adj)) %>%
  drop_na(new_cluster_name) %>%
  ggplot(aes(y = prop, x = fov_condition, fill = fov_condition)) +
  geom_line(aes(group = patient_id), color = "black") +
  geom_errorbar(
    aes(x = fov_condition, y = prop, ymin = prop - sem, ymax = prop + sem),
    width = 0.2,
    alpha = 0.7
  ) +
  geom_point(shape = 21) +
  #scale_y_continuous(oob = scales::oob_squish_infinite) +
  facet wrap(facets = vars(new cluster name), scales = "free", ncol = 4) +
  labs(
    x = NULL
    y = "Proportion of cells"
```



```
cluster_type =
    case_when(
     p_adj > 0.05 ~ "Not significant",
     fc < 1
                  ~ "Decreased"
   )
) %>%
ggplot(aes(x = log2_fc, y = neg_log_p_val, fill = cluster_type)) +
geom_hline(yintercept = -log(0.05), color = "black", linetype = "dashed") +
geom_vline(xintercept = 0, color = "black", linetype = "dashed") +
geom_point(shape = 21, size = 2.5) +
ggrepel::geom_text_repel(aes(label = new_cluster_name), size = 2.5, color = "black") +
 subtitle = "Differentially abundant clusters in diseased vs. non-diseased regions of paired SJIA-PA
 x = "log2FC",
 y = "-log(p-value)",
 fill = NULL
```

Differentially abundant clusters in diseased vs. non-diseased regions of paired SJIA-PAP

Differential Expression Analysis - between patients

[Blurb about how we're doing the same as the between-patients design above, but this time using a LMM to predict median marker expression for each cluster]

PAP vs. non-PAP

```
pap_dea <-
  mibi_data %>%
  select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
  mutate(outcome = if_else(outcome %in% c("SJIA-PAP", "nonSJIA-PAP"), "PAP", outcome)) %>%
  pap_perform_dea(
    data_tibble = .,
    sample_col = fov_id,
    cluster_col = cluster_name,
    fixed_effect_cols = outcome,
    random_effect_col = c(patient_id),
   min_cells = 5,
    min_samples = 5
# only show the top 25 most significant results
pap_dea$de_results %>%
  topTable(top_n = 25) \%
  as_tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
  knitr::kable()
```

aluaton id	marker id	n rol	n adi	significance
cluster_id	marker_id	p_val	p_adj	
$CD4+_Tcell$	ho_1	0.0000000	0.0000003	*
$CD8+_Tcell$	ido	0.0000000	0.0000120	*
Treg	calprotectin	0.0000001	0.0000227	*
$CD8+_Tcell$	sma	0.0000037	0.0007343	*
Neutrophil	cd31	0.0000072	0.0011498	*
$CD8+_Tcell$	cd45ro	0.0000337	0.0044886	*
Neutrophil	hh3	0.0001206	0.0137804	*
CD8+_Tcell	cd14	0.0001441	0.0144104	*
CD8+_Tcell	cd31	0.0004699	0.0376558	*
$Mast_cell$	calprotectin	0.0004707	0.0376558	*
$M2_Mac$	cd31	0.0006038	0.0439119	*
CD14+_Mono	cd31	0.0007405	0.0447756	*
Neutrophil	hla_dr	0.0007836	0.0447756	*
CD8+_Tcell	$_{ m vim}$	0.0007542	0.0447756	*
Neutrophil	cd45ro	0.0014519	0.0725940	
$CD11c+_mDC$	hla_dr	0.0013935	0.0725940	
CD4+_Tcell	cd45ro	0.0017349	0.0816402	
$iNOS+_Mac$	$_{ m vim}$	0.0024281	0.1079161	
Treg	cd163	0.0032848	0.1274656	
Eosinophil	ido	0.0033460	0.1274656	
CD8+_Tcell	p_s6	0.0032649	0.1274656	
CD4+_Tcell	calprotectin	0.0039012	0.1300399	
$CD8+_Tcell$	hh3	0.0038458	0.1300399	
$CD8+_Tcell$	pan_ck	0.0035863	0.1300399	

cluster_id	marker_id	p_val	p_adj	significance
Bcell	cd8	0.0041655	0.1321142	

SJIA-PAP vs. Controls

```
dea_sjia_pap_vs_controls <-</pre>
  mibi_data %>%
  select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
  #filter(!(fov_id %in% healthy_fovs_in_pap_patients)) %>%
  filter(outcome != "nonSJIA-PAP") %>%
  pap_perform_dea(
    data_tibble = .,
    sample_col = fov_id,
    cluster_col = cluster_name,
    fixed_effect_cols = outcome,
    random_effect_col = c(patient_id),
   min_cells = 5,
   min_samples = 5
dea_sjia_pap_vs_controls$de_results %>%
  topTable(top_n = 25) \%
  as_tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
  knitr::kable()
```

cluster_id	$marker_id$	p_val	p_adj	significance
CD4+_Tcell	ho_1	0.0000000	0.0000040	*
$CD8+_Tcell$	sma	0.0000000	0.0000040	*
$CD4+_Tcell$	calprotectin	0.0000000	0.0000053	*
$CD8+_Tcell$	ido	0.0000007	0.0001413	*
$CD8+_Tcell$	cd45ro	0.0000088	0.0014110	*
Neutrophil	cd31	0.0000346	0.0046129	*
$CD8+_Tcell$	cd14	0.0000745	0.0085159	*
$CD8+_Tcell$	cd31	0.0001685	0.0149745	*
Treg	calprotectin	0.0001672	0.0149745	*
Neutrophil	hla_dr	0.0003534	0.0235578	*
$CD8+_Tcell$	pan_ck	0.0003145	0.0235578	*
$CD8+_Tcell$	vim	0.0003497	0.0235578	*
Neutrophil	hh3	0.0006470	0.0398161	*
$CD8+_Tcell$	cd4	0.0013638	0.0727353	
$CD4+_Tcell$	cd45ro	0.0012871	0.0727353	
$CD8+_Tcell$	hh3	0.0016627	0.0831329	
$CD8+_Tcell$	calprotectin	0.0026299	0.1237621	
Treg	cd163	0.0043787	0.1821522	
Neutrophil	cd45ro	0.0047842	0.1821522	
$Mast_cell$	calprotectin	0.0050092	0.1821522	
$CD11c+_mDC$	hla_dr	0.0047077	0.1821522	
$iNOS + _Mac$	$_{ m vim}$	0.0046123	0.1821522	
$CD209+_Mac$	hla_dr	0.0052589	0.1829181	
$CD11c+_mDC$	h3k27me3	0.0060519	0.2017299	

cluster_id	marker_id	p_val	p_adj	significance
M2_Mac	cd31	0.0069729	0.2147075	

SJIA-PAP vs. nonSJIA-PAP

```
dea_sjia_pap_vs_nonsjia_pap <-
  mibi_data %>%
  select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
  #filter(!(fov_id %in% healthy_fovs_in_pap_patients)) %>%
  filter(outcome != "Control") %>%
  pap_perform_dea(
    data_tibble = .,
    sample_col = fov_id,
    cluster_col = cluster_name,
   fixed_effect_cols = outcome,
   random_effect_col = c(patient_id),
   min_cells = 20,
   min_samples = 10
dea_sjia_pap_vs_nonsjia_pap$de_results %>%
  topTable(top_n = 25) \%
  as_tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
  knitr::kable()
```

cluster_id	$marker_id$	p_val	p_adj	significance
Mesenchymal	lag3	0.0000161	0.0090116	*
iNOS+_Pneumocyte	lag3	0.0001722	0.0482035	*
Mesenchymal	vim	0.0003095	0.0577704	
CD8+_Tcell	cd123	0.0010664	0.0996289	
CD8+_Tcell	lag3	0.0008544	0.0996289	
iNOS+_Pneumocyte	vim	0.0010675	0.0996289	
Endothelial	cd206	0.0020487	0.1409582	
$CD4+_Tcell$	calprotectin	0.0018725	0.1409582	
Endothelial	ido	0.0025171	0.1409582	
$Mast_cell$	vim	0.0024047	0.1409582	
$CD4+_Tcell$	cd123	0.0046176	0.1879792	
$M2_Mac$	cd123	0.0039847	0.1879792	
$Mast_cell$	lag3	0.0046995	0.1879792	
Neutrophil	lag3	0.0040967	0.1879792	
$CD8+_Tcell$	hla_dr	0.0059429	0.2218684	
$Mast_cell$	cd123	0.0068880	0.2410811	
Fibroblast	lag3	0.0074621	0.2458120	
$CD14+_Mono$	cd123	0.0147420	0.2948396	
Mesenchymal	cd123	0.0118887	0.2948396	
$CD8+_Tcell$	cd45ro	0.0141040	0.2948396	
Endothelial	cd45ro	0.0136826	0.2948396	
$iNOS+_Pneumocyte$	hh3	0.0120917	0.2948396	
$Mast_cell$	hh3	0.0146146	0.2948396	
Mesenchymal	hh3	0.0123219	0.2948396	

cluster_id	marker_id	p_val	p_adj	significance
M2_Mac	lag3	0.0110886	0.2948396	

nonSJIA-PAP vs. Controls

```
dea_control_vs_nonsjia_pap <-</pre>
  mibi_data %>%
  select(fov_id, cluster_name, outcome, patient_id, any_of(functional_markers)) %>%
  #filter(!(fov_id %in% healthy_fovs_in_pap_patients)) %>%
  filter(outcome != "SJIA-PAP") %>%
  pap_perform_dea(
    data_tibble = .,
    sample_col = fov_id,
   cluster_col = cluster_name,
   fixed_effect_cols = outcome,
   random_effect_col = c(patient_id),
   min_cells = 20,
   min_samples = 10
dea_control_vs_nonsjia_pap$de_results %>%
  topTable(top_n = 25) \%
  as_tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
  knitr::kable()
```

cluster_id	$marker_id$	p_val	p_adj	significance
Neutrophil	cd14	0.0000717	0.0177454	*
CD8+_Tcell	cd45	0.0002662	0.0177454	*
$M2_Mac$	cd45	0.0001778	0.0177454	*
$M2_Mac$	cd68	0.0001100	0.0177454	*
CD4+_Tcell	hh3	0.0002257	0.0177454	*
CD4+_Tcell	$_{ m vim}$	0.0001781	0.0177454	*
Neutrophil	cd163	0.0006408	0.0366184	*
$M2_Mac$	cd163	0.0010146	0.0474647	*
Mast_cell	tryptase	0.0010680	0.0474647	*
CD4+_Tcell	cd45	0.0011993	0.0479737	*
CD8+_Tcell	cd8	0.0016696	0.0513734	
$M2_Mac$	calprotectin	0.0016307	0.0513734	
$M2_Mac$	na_kat_pase	0.0014304	0.0513734	
$Mast_cell$	hh3	0.0021202	0.0605763	
$CD8+_Tcell$	cd45ro	0.0030115	0.0803060	
$M2_Mac$	cd11c	0.0037483	0.0881944	
CD4+_Tcell	lag3	0.0036630	0.0881944	
Neutrophil	cd45ro	0.0040223	0.0893840	
Mast_cell	ido	0.0054926	0.1156347	
$M2_Mac$	ho_1	0.0069143	0.1279904	
Mesenchymal	na_kat_pase	0.0068203	0.1279904	
CD4+_Tcell	pd1	0.0070395	0.1279904	
CD4+_Tcell	cd123	0.0075248	0.1292888	
$M2_Mac$	vim	0.0080806	0.1292888	

cluster_id	marker_id	p_val	p_adj	significance
Neutrophil	vim	0.0077610	0.1292888	

Visualization

```
dea_sjia_pap_vs_control_results <-</pre>
  dea_sjia_pap_vs_controls$de_results %>%
  topTable(all = TRUE) %>%
  as_tibble() %>%
  arrange(p_adj) %>%
  mutate(significance = if_else(p_adj < 0.05, "*", "")) %>%
  rename(cluster_name = cluster_id)
# number of significantly different markers in each cluster
dea_sjia_pap_vs_control_results %>%
 filter(significance == "*") %>%
 count(cluster_name)
## # A tibble: 4 x 2
##
    cluster_name
     <fct>
               <int>
## 1 CD4+_Tcell
## 2 CD8+ Tcell
## 3 Neutrophil
## 4 Treg
feature_volcano_tibble <-</pre>
 mibi_data %>%
  filter(outcome != "nonSJIA-PAP") %>%
  group_by(cluster_name, outcome, patient_id) %>%
  summarize(across(any_of(functional_markers), .f = mean, na.rm = TRUE)) %>%
  ungroup() %>%
  pivot_longer(
   cols = any_of(functional_markers),
   names_to = "marker_id",
   values_to = "median"
  ) %>%
  group_by(outcome, marker_id, cluster_name) %>%
  summarize(median = mean(median, na.rm = TRUE)) %>%
  ungroup() %>%
  pivot_wider(
   names_from = outcome,
   values_from = median
  ) %>%
  mutate(
   fc = `SJIA-PAP` / Control,
   log2_fc = log(fc, base = 2)
  #filter(!is.nan(fc)) %>%
  left_join(
    dea_sjia_pap_vs_control_results %>%
      drop_na()
 ) %>%
```

```
arrange(p_adj) %>%
 mutate(
   neg_log_p_val = -log(p_adj),
   feature_type =
     case_when(
       p_adj > 0.05 ~ "Not significant",
       ~ "Increased"
       fc > 1
     ),
   feature = str_c(marker_id, cluster_name, sep = "@"),
 drop_na(feature_type, significance)
feature_volcano_tibble %>%
 ggplot(aes(x = log2_fc, y = neg_log_p_val, fill = feature_type)) +
 geom_hline(yintercept = -log(0.05), color = "black", linetype = "dashed") +
 geom_vline(xintercept = 0, color = "black", linetype = "dashed") +
 geom_point(shape = 21, size = 2.5) +
 ggrepel::geom_text_repel(
   aes(label = marker_id),
   data = filter(feature_volcano_tibble, feature_type != "Not significant"),
   size = 2.5,
   color = "black"
 ) +
 scale_x_continuous(oob = scales::oob_squish_infinite) +
 scale_y_continuous(oob = scales::oob_squish_infinite) +
 facet_wrap(facets = vars(cluster_name), ncol = 3) +
 labs(
   subtitle = "Differentially expressed markers in SJIA-PAP vs. control samples",
   x = "log2FC",
   y = "-log(p-value)",
   fill = NULL
```

Differentially expressed markers in SJIA-PAP vs. control samples

Differential Expression Analysis - within patients

```
paired_dea_results <-</pre>
  paired_patients %>%
  filter(outcome != "nonSJIA-PAP") %>%
    fov_id,
    cluster_name,
   fov_condition,
   patient_id,
    any_of(functional_markers)
  ) %>%
  pap_perform_dea(
   data_tibble = .,
   sample_col = fov_id,
   cluster_col = cluster_name,
   fixed_effect_cols = fov_condition,
   random_effect_col = c(patient_id),
   min_cells = 5,
   min_samples = 5
  )
paired_dea_results %>%
  pluck("de_results") %>%
  topTable(top_n = 25) \%
  as_tibble() %>%
  mutate(significant = if_else(p_adj < 0.10, "*", "")) %>%
  arrange(p_adj) %>%
  knitr::kable()
```

$cluster_id$	${\rm marker_id}$	p_val	p_adj	significant
Eosinophil	cd31	0.0000922	0.0313411	*
$CD209+_Mac$	ho_1	0.0000870	0.0313411	*
Eosinophil	hh3	0.0002986	0.0676921	*
Eosinophil	$_{ m vim}$	0.0008043	0.1367321	
Eosinophil	pan_ck	0.0010167	0.1382757	
$CD14+_Mono$	hh3	0.0024189	0.2741378	
Mesenchymal	cd45ro	0.0031148	0.3025807	
iNOS+_Pneumocyte	cd45ro	0.0044107	0.3749120	
$M2_Mac$	cd45ro	0.0052723	0.3983509	
Bcell	cd31	0.0089437	0.4933762	
Eosinophil	cd45ro	0.0089218	0.4933762	
$Mast_cell$	cd45ro	0.0074826	0.4933762	
$CD8+_Tcell$	hh3	0.0094322	0.4933762	
$CD4+_Tcell$	cd45ro	0.0132830	0.6021623	
Neutrophil	cd45ro	0.0132431	0.6021623	
$CD8+_Tcell$	cd45ro	0.0173989	0.6262957	
Treg	hh3	0.0163440	0.6262957	
Neutrophil	lag3	0.0153198	0.6262957	
Endothelial	pan_ck	0.0184205	0.6262957	
$iNOS+_Mac$	pan_ck	0.0179964	0.6262957	
CD14+_Mono	sma	0.0211224	0.6839636	
Neutrophil	cd123	0.0315969	0.7036612	

cluster_id	marker_id	p_val	p_adj	significant
CD209+_Mac CD14+_Mono CD4+_Tcell	cd14 cd31 cd31	0.0254273 0.0295660 0.0320787	0.7036612	

```
paired_dea_results_2 <-
  testDS_LMM(
    d_counts = calcCounts(paired_dea_results$data_diff),
    d_medians = calcMedians(paired_dea_results$data_diff),
    formula = paired_dea_results$my_formula,
    contrast = paired_dea_results$my_contrast,
    min_cells = 10,
    min_samples = 5,
    markers_to_test = rep(TRUE, nrow(paired_dea_results$marker_info))
)

paired_dea_results_2 %>%
  topTable(all = TRUE) %>%
  as_tibble() %>%
  mutate(significant = if_else(p_adj < 0.10, "*", "")) %>%
  arrange(p_adj)
```

Spatial Analysis

[surfactant analysis]