Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 1 - Calculus Review

Proof. 1 Let us take the set $-A = \{-a \mid a \in A\}$ since A is bounded below then -A is bounded above and because of the The Least Upper Bound Axiom we know there is $u = \sup(-A)$ such that if $x \in -A$ then $x \leq \sup(-A)$ so $-x \geq -\sup(-A)$ and $-x \in A$ then $-\sup(-A)$ is an lower bound of A.

Now let us suppose that l is a Lower Bound of A such that $-x \ge l > -\sup(-A)$ we want to arrive to a contradiction to show there is no such an l. Then $x \le -l < \sup(-A)$ but $\sup(-A)$ is the Least Upper Bound of -A and this cannot be so we have a contradiction and must be the case that if l is a Lower Bound then $l \le -\sup(-A)$.

Therefore $-\sup(-A)$ is the Greatest Lower Bound of A.

Proof. 3 Supremum characterization.

 (\rightarrow)

- (i) If $s = \sup(A)$ then s is the Least Upper Bound for A so by definition s is an upper bound for A.
- (ii) Let $\epsilon > 0$. Since s is the Least Upper Bound of A, then $s \epsilon < s$ and $s \epsilon$ cannot be an upper bound of A thus there exists $a \in A$ such that $s \ge a > s \epsilon$.
- (\leftarrow) Now we want to show by contradiction that s is the Least Upper Bound for A. Suppose $u \neq s$ is the Least Upper Bound for A so $u = \sup(A)$ which means that if $a \in A$ then $a \leq u$ and since s is an upper bound for A then u < s. We also have that $a > s \epsilon$ for every $\epsilon > 0$ so let us take $\epsilon = s u$ then we have that a > s (s u) = u but we said that $a \leq u$ which means that we have a contradiction. Therefore s must be the Least Upper Bound for $a \in S$ i.e. $a \in S$ is the Least Upper Bound for $a \in S$ i.e. $a \in S$ is the Least Upper Bound for $a \in S$ is the Least Upper B

Infimum characterization. Let A be a nonempty set of \mathbb{R} that is bounded below. We want to prove that $i = \inf(A)$ if and only if (i) i is a lower bound for A, and (ii) for every $\epsilon > 0$ there is an $a \in A$ such that $a < i + \epsilon$. (\rightarrow)

- (i) If $i = \inf(A)$ then i is the Greatest Lower Bound for A so by definition i is a lower bound for A.
- (ii) Let $\epsilon > 0$. Since i is the Greatest Lower Bound for A, then $i + \epsilon > i$ and $i + \epsilon$ cannot be a lower bound of A thus there exists $a \in A$ such that $i \leq a < i + \epsilon$.
- (\leftarrow) Now we want to show by contradiction that i is the Greatest Lower Bound for A. Suppose $l \neq i$ is the Greatest Lower Bound for A so $l = \inf(A)$ which means that if $a \in A$ then $a \geq l$ and since i is an lower bound for A then i < l. We also have that $a < i + \epsilon$ for every $\epsilon > 0$ so let us take $\epsilon = l i$ then we have that a < i + (l i) = l but we said that $a \geq l$ which means that we have a contradiction. Therefore i must be the Least Upper Bound for A i.e. $i = \inf(A)$.

Proof. **6** Let the sequence (a_n) to be convergent to $a \in \mathbb{R}$, so for every positive $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ whenever $n \geq N$. Also let us notice that

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| < \epsilon + |a|$$

so in summary $|a_n| < |a| + \epsilon$. Let us take then

$$M = max\{|a_1|, |a_2|, ..., |a_n|, |a| + \epsilon\}$$

so we see that $|a_n| < M$ and therefore (a_n) is bounded.

Given that (a_n) is bounded below and above then because of The Least Upper Bound Axiom and The Greatest Lower Bound Axiom we know that (a_n) has a Supremum and an Infimum.

Now we want to show by contradiction that $a \leq \sup(a_n)$. Let us suppose that $\sup(a_n) < a$ then if we take $\epsilon = a - \sup(a_n) > 0$ we have that there must be some $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - a| < a - \sup(a_n)$ so this means that $-a + \sup(a_n) < a_n - a < a - \sup(a_n)$ then $\sup(a_n) < a_n < 2a - \sup(a_n)$ but $\sup(a_n)$ is the supremum of a_n so we have a contradiction. Therefore must be the case that $a \leq \sup(a_n)$.

In the same way we want to show by contradiction that $\inf(a_n) \leq a$. Let us suppose now that $\inf(a_n) > a$ then if we take $\epsilon = \inf(a_n) - a > 0$ we have that there must be some $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - a| < \inf(a_n) - a$ so this means that $a - \inf(a_n) < a_n - a < \inf(a_n) - a$ then $2a - \inf(a_n) < a_n < \inf(a_n)$ but $\inf(a_n)$ is the Infimum of a_n so we have a contradiction. Therefore must be the case that $\inf(a_n) \leq a$.

Proof. 7 Since b-a>0 we can apply Lemma 1.2 to get a positive integer q' such that q'(b-a)>1 we also know that $\sqrt{2}>1$ so $\sqrt{2}q'(b-a)>1$ then we see that $\sqrt{2}q'b$ is bigger than $\sqrt{2}q'a$ by a value bigger than 1 so this means that there is some $p\in\mathbb{Z}$ between them, thus $\sqrt{2}q'b>p>\sqrt{2}q'a$ then it follows that $a<\sqrt{2}p/q< b$ where we used that 2q'=q and that $\sqrt{2}\cdot\sqrt{2}=2$. Therefore there is some irrational number of the form $\sqrt{2}p/q$ between a and b.

Proof. 13

- (\rightarrow) We know that (s_n) converges so let $\epsilon > 0$ it follows then that there is some $s \in \mathbb{R}$ such that when $n \geq N$ then $|s_n s| < \epsilon$ which means that $|s_n| < |s| + \epsilon$. Let us take then $M = \max\{|s_1|, |s_2|, ..., |s_n|, |s| + \epsilon\}$, so we see that $|s_n| < M$ and since $a_n \geq 0$ then $s_n = \sum_{i=1}^n a_i \geq 0$ which means that $s_n < M$. Therefore (s_n) is bounded.
- (\leftarrow) Since we know now that (s_n) is bounded we want to prove by induction that it's a monotone (increasing) sequence. First we see that $a_1 \geq 0$ and $a_2 \geq 0$ then $s_1 = a_1 \leq a_1 + a_2 = s_2$.

Now let us suppose that the following expression is true

$$s_{n-1} = \sum_{i=1}^{n-1} a_i \le \sum_{i=1}^n a_i = s_n$$

then since $a_{n+1} \ge 0$ we have that

$$s_n = \sum_{i=1}^n a_i \le \sum_{i=1}^n a_i + a_{n+1} = s_{n+1}$$

Therefore we showed that (s_n) is bounded and monotone it follows then that it is convergent.

Proof. **22** Let us prove first by contradiction that $\inf_n a_n \leq \liminf_{n \to \infty} a_n$. Suppose $\inf_n a_n > \liminf_{n \to \infty} a_n = \sup_n t_n$ then $\inf_n a_n > \sup_n t_n \geq t_n$ but we know that $\inf_n a_n \leq t_n$ so we have a contradiction then it must be the case that $\inf_n a_n \leq \liminf_{n \to \infty} a_n$.

Now let us prove by contradiction that $\limsup_{n\to\infty} a_n \leq \sup_n a_n$. Suppose $\inf T_n = \limsup_{n\to\infty} > \sup_n a_n$ then $T_n \geq \inf T_n > \sup_n a_n$ but we know that $T_n \leq \sup_n a_n$ so we have a contradiction then it must be the case that $\limsup_{n\to\infty} a_n \leq \sup_n a_n$.

Finally we want to prove that

$$\sup t_n = \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n = \inf T_n$$

We know that $t_n \leq T_n$ so if we take limits in both sides we have that $\lim_{n\to\infty} t_n \leq \lim_{n\to\infty} T_n$ and since a_n is bounded then we have that

$$\lim\inf_{n\to\infty}a_n=\lim_{n\to\infty}t_n\leq\lim_{n\to\infty}T_n=\lim\sup_{n\to\infty}a_n$$

as we wanted.

Therefore joining the results we have that

$$\inf_{n} a_n \le \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n \le \sup_{n} a_n$$

Proof. **23** We know that (a_n) converges to some $a \in \mathbb{R}$ so let $\epsilon > 0$ then $|a_n - a| < \epsilon$ when $n \ge N$ then we have that

$$a - \epsilon < a_n < a + \epsilon$$

but this also means that

$$a - \epsilon \le t_n \le T_n \le a + \epsilon$$

and therefore their limits should be between that interval too, then

$$a - \epsilon \le \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n \le a + \epsilon$$

Therefore this means that $\liminf_{n\to\infty} a_n$ and $\limsup_{n\to\infty} a_n$ both converge to a or what it's the same

$$\lim\inf_{n\to\infty}a_n=\lim\sup_{n\to\infty}a_n=\lim_{n\to\infty}a_n$$

Proof. **24** We know that $\limsup_{n\to\infty} a_n = \inf\{\sup\{a_n, a_{n+1}, ...\}\}$ so this means that

$$\lim_{n \to \infty} \sup -a_n = \inf \{ \sup \{ -a_n, -a_{n+1}, \dots \} \}$$

But since $\sup -A = -\inf A$ we have that

$$\limsup_{n \to \infty} -a_n = \inf\{-\inf\{a_n, a_{n+1}, \ldots\}\}\$$

We also know that $\inf -A = -\sup A$ therefore

$$\limsup_{n \to \infty} -a_n = -\sup\{\inf\{a_n, a_{n+1}, \ldots\}\}\$$

It follows then by definition that

$$\limsup_{n \to \infty} -a_n = -\liminf_{n \to \infty} a_n$$

Proof. 25 TODO

We know that $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} \sup_{k\geq n} a_k = -\infty$ so this means that if we have an M<0 then we can find an $N\in\mathbb{N}$ such that if $k\geq N$ then $\sup_{k\geq N} a_k < M$ and in particular $a_k < M$ for any $k\geq N$. Therefore $\lim_{n\to\infty} a_n = -\infty$.

Now we have that $\limsup_{n\to\infty}a_n=+\infty$ so this means that if we have an M>0 then we can find an $N\in\mathbb{N}$ such that if $k\geq N$ then $\sup_{k\geq N}a_k>M$. Let us now take a subsequence b_n such that $b_k=a_k$ if $a_k>a_{k-1}$ but if $a_k\leq a_{k-1}$ then we take $b_k=a_{k-1}$ then b_k is an increasing subsequence which is not bounded, therefore it must diverge to $+\infty$.

For $\liminf_{n\to\infty} a_n = \pm \infty$ the procedure is analogous.