Ex.No.6

Data Wrangling

Aim:

To do Data Wrangling functions

Description:

Data wrangling is the task in data science and analysis which includes operations

like: Data Sorting: To rearrange values in ascending or descending order.

Data Filtration: To create a subset of available data.

Data Reduction: To eliminate or replace unwanted values.

Data Access: To read or write data files.

Data Processing: To perform aggregation, statistical, and similar operations on specific values.

- 1. Using join function to join two DataFrames.
- 2. Using combine function to combine two DataFrames.
- 3. Using merge function to merge two DataFrames.
- 4. Using replace function to replace the NaN values by average value.
- 5. Filtering and dropping the rows and rows and columns respectively.
- 6. Using concat function to concatenate two DataFrames.
- 7. Using melt function to reshape the DataFrame dimention.
- 8. Using groupby function to group the data set.
- 9. Using duplicated function to remove duplicated rows in the DataFram
- 10. Using merge function to merge two DataFrame data sets.

PROGRAM:

```
import pandas as pd
```

```
marks = {'Marks': [80, 76, 'NaN', 74, 66,71,68,83, 'NaN']}
df1= pd.DataFrame(data1)
df2= pd.DataFrame(data2)
marks = pd.DataFrame(marks)
print("\nOriginal DataFrame 1:\n",df1)
print("\nOriginal DataFrame 2:\n",df1)
print("\nMarks:\n",marks)
df1 = df1.join(marks) print("\nDataFrame
1:\n",df1)
# Compute average c
= avg=0
for ele in df1['Marks']: if
  str(ele).isnumeric():
     c += 1
     avg += ele
avg/=c
# Replace missing values
df1 = df1.replace(to_replace="NaN",value=avg) df2 =
df2.replace(to_replace="NaN",value=avg) # Display
data
print("\nReplacing NaN with Average marks:\nData Frame 1\n",df1)
print("\n\nData Frame 2\n",df2)
def myfunc(a, b):
  return a if a > b else b
df_combined = df1['Marks'].combine(df2['Marks'], myfunc)
```

```
# Print the result
print("\nCombining the above two DataFrames using combine function with some condition:\n", df_combined)
newdf = df1.merge(df2, how='right')
print("\nMerge operation:\n",newdf)
df3 = pd.concat([df1,df2])
print("\nConcatenated DataFrame using cancat function:\n",df3)
print("\nOriginal DataFrame:\n",df3)
#reshape DataFrame from wide format to long format
df = pd.melt(df3, id_vars='Roll No', value_vars=['Gender', 'Marks']) #view
updated DataFrame
print("\nReshaped Data Frame:\n",df)
# Filter top scoring students
df3=df3[df3['Marks'] >= 75] print("\nAfter
Filtering function:\n",df3) #Remove age
row
df3 = df3.drop(['Age'],axis=1)
# Display data
print("\nAfter Dropping function:\n",df3)
```

print("\nOriginal DataFrame:\n",df3)

- # Here df.duplicated() list duplicate Entries in Rollno.
- # So that ~(NOT) is placed in order to get non duplicate values. non_duplicate

=df3[~df3.duplicated('Roll No')]

#printing non-duplicate values

print("\nRemoved duplicated rows:\n",non_duplicate)

OUTPUT:

Original DataFrame 1:

	Name	Roll No A	ge Gender	•
0	Jai	4	17	\mathbf{M}
1	Princi	8	17	F
2	Gaurav	2	18	M
3	Anuj	1	17	M
4	Ravi	9	18	M
5	Natasha	7	17	F
6	Tom	14	19	F
7	Rovana	11	16	M
8	Riya	10	17	F

Original DataFrame 2:

	Name	Roll No	Age G	ender Mark	S	
0	Kelly	5	5 1	9	F	95
1	Natasha	7	7 1	.7	F	71
2	Jack	3	3 1	6	M	76
3	Stacy	12	2	20	F	94
4	Stark	13	1	7	M	NaN
5	Loki	ϵ	5 1	.8	M	80
6	Rovana	11	1	6	F	83
7	Tom	14	1	9	M	68

Marks:

	Marks
0	80
1	76
2	NaN
3	74
4	66
5	71
6	68
7	83
8	NaN

DataFrame 1:

	Name	Roll No	Ag	ge Gendei	Marks	
0	Jai		4	17	M	80
1	Princi		8	17	F	76
2	Gaurav		2	18	M	NaN
3	Anuj		1	17	M	74
4	Ravi		9	18	M	66
5	Natasha		7	17	F	71
6	Tom	1	14	19	F	68
7	Rovana]	1	16	M	83
8	Riya	1	0	17	F	NaN

Replacing NaN with Average marks:

Data Frame 1

	Name	Roll No	Age	e Gender	Marks	
0	Jai		4	17	\mathbf{M}	80.0
1	Princi		8	17	F	76.0
2	Gaurav		2	18	M	74.0
3	Anuj		1	17	M	74.0
4	Ravi		9	18	M	66.0
5	Natasha		7	17	F	71.0
6	Tom]	14	19	F	68.0
7	Rovana]	11	16	M	83.0
8	Riya]	10	17	F	74.0

Data Frame 2

	Name	Roll No A	ge Gender	Marks	
0	Kelly	5	19	F	95.0
1	Natasha	7	17	F	71.0
2	Jack	3	16	M	76.0
3	Stacy	12	20	F	94.0
4	Stark	13	17	M	74.0
5	Loki	6	18	M	80.0
6	Rovana	11	16	F	83.0
7	Tom	14	19	M	68.0

Combining the above two DataFrames using combine function with some condition:

95.0 1 76.0 2 76.0 3 94.0 4 74.0 5 80.0 6 83.0 7 83.0 8 NaN

Name: Marks, dtype: float64

Merge	operation:
MICIEC	obciation.

	Name	Roll No	Ag	ge Gender	Marks	
0	Kelly		5	19	F	95.0
1	Natasha		7	17	F	71.0
2	Jack		3	16	M	76.0
3	Stacy		12	20	F	94.0
4	Stark		13	17	M	74.0
5	Loki		6	18	M	80.0
6	Rovana		11	16	F	83.0
7	Tom		14	19	M	68.0

Concatenated DataFrame using cancat function: Name Roll No Age Gender Marks

	Gender	Marks			
0	Jai	4	17	M	80.0
1	Princi	8	17	F	76.0
2	Gaurav	2	18	M	74.0
3	Anuj	1	17	M	74.0
4	Ravi	9	18	M	66.0
5	Natasha	7	17	F	71.0
6	Tom	14	19	F	68.0
7	Rovana	11	16	M	83.0
8	Riya	10	17	F	74.0
0	Kelly	5	19	F	95.0
1	Natasha	7	17	F	71.0
2	Jack	3	16	M	76.0
3	Stacy	12	20	F	94.0
4	Stark	13	17	M	74.0
5	Loki	6	18	M	80.0
6	Rovana	11	16	F	83.0
7	Tom	14	19	M	68.0

Grou	up by age	17:				
	Name	Roll	No	Age	Gender	Marks
0	Jai		4	17	M	80.0
1	Princi		8	17	F	76.0
3	Anuj		1	17	M	74.0
5	Natasha		7	17	F	71.0
8	Riya		10	17	F	74.0
1	Natasha		7	17	F	71.0
4	Stark		13	17	M	74.0

Original DataFrame: Name Roll No Age Gender Marks

	Name	Roll No	Αg	ge Gender	Marks	
0	Jai		4	17	M	80.0
1	Princi		8	17	F	76.0
2	Gaurav		2	18	M	74.0
3	Anuj		1	17	M	74.0
4	Ravi		9	18	M	66.0
5	Natasha		7	17	F	71.0
6	Tom		14	19	F	68.0
7	Rovana		11	16	M	83.0
8	Riya		10	17	F	74.0
0	Kelly		5	19	F	95.0
1	Natasha		7	17	F	71.0
2	Jack		3	16	M	76.0
3	Stacy		12	20	F	94.0
4	Stark		13	17	M	74.0
5	Loki		6	18	M	80.0
6	Rovana		11	16	F	83.0
7	Tom		14	19	M	68.0

Reshaped Data Frame:

Resnapeu Data Franie.						
_	Roll No vari					
0	4	Gender	M			
1	8	Gender	F			
2	2 1	Gender	M			
3		Gender	M			
4 5	9	Gender	M			
5	7	Gender	F			
6	14	Gender	F			
7	11	Gender	M			
8	10	Gender	F			
9	5	Gender	F			
10	7	Gender	F			
11	3	Gender	M			
12	12	Gender	F			
13	13	Gender	M			
14	6	Gender	M			
15	11	Gender	F			
16	14	Gender	M			
17	4	Marks	80.0			
18	8	Marks	76.0			
19	2 1	Marks	74.0			
20	1	Marks	74.0			
21	9 7	Marks	66.0			
22	7	Marks	71.0			
23	14	Marks	68.0			
24	11	Marks	83.0			
25	10	Marks	74.0			
26	5	Marks	95.0			
27	7	Marks	71.0			
28	3	Marks	76.0			
29	12	Marks	94.0			
30	13	Marks	74.0			
31	6	Marks	80.0			
32	11	Marks	83.0			
33	14	Marks	68.0			
_						

After Filtering function:

	Name	Roll No Age	Gender	Marks	
0	Jai	4	17	M	80.0
1	Princi	8	17	F	76.0
7	Rovana	11	16	M	83.0
0	Kelly	5	19	F	95.0
2	Jack	3	16	M	76.0
3	Stacy	12	20	F	94.0
5	Loki	6	18	M	80.0
6	Rovana	11	16	F	83.0

After Dropping function:

	Name	Roll No Gender		Marks
0	Jai	4	M	80.0
1	Princi	8	\mathbf{F}	76.0
7	Rovana	11	M	83.0
0	Kelly	5	\mathbf{F}	95.0
2	Jack	3	M	76.0
3	Stacy	12	\mathbf{F}	94.0
5	Loki	6	M	80.0
6	Rovana	11	F	83.0

Original DataFrame:

	Name	Roll No Gender		Marks
0	Jai	4	M	80.0
1	Princi	8	F	76.0
7	Rovana	11	M	83.0
0	Kelly	5	F	95.0
2	Jack	3	M	76.0
3	Stacy	12	F	94.0
5	Loki	6	M	80.0
6	Rovana	11	F	83.0

Removed duplicated rows:

	Name	Roll No Gender	Marks	
0	Jai	4	M	80.0
1	Princi	8	F	76.0
7	Rovana	11	M	83.0
0	Kelly	5	F	95.0
2	Jack	3	M	76.0
3	Stacy	12	F	94.0
5	Loki	6	M	80.0

Result:

The programs were run successfully