# Survival Analysis on Pediatric Kidney Transplants

Niels van der Drift - Severin Holtmann - Mikdad Kanbar

#### Introduction

- Data inspection, overall survival, and mortality ratio based on donor type
- Hazard Ratio's and Univariate Cox Models
- Multivariate Cox Model and Proportional Hazard Assumptions

# **Data Inspection**

#### **Research background:**

A cohort of 9775 children who have undergone kidney transplantation from United Network for Organ Sharing (UNOS)

#### Variables of interest:

- **Age.1**: Age of the recipient
- Age: Age of the donor
- **txtype**: Deceased vs Alive Donor (0/1)
- **hlamat**: HLA Match Level (0-6); immune system match between donor and recipient

age.1

Min. : 0.00

1st Qu.: 8.00

Median :13.00

3rd Qu.:16.00

Mean:11.65

Max. :18.00

NA's :9

age

Min. : 0.0

1st Qu.:21.0

Median:33.0

3rd Qu.:41.0

Mean :31.3

Max. :73.0

NA's:113

hlamat

Min. :0.000

1st Qu.:2.000

Median :3.000

3rd Qu.:3.000

Mean :2.574

Max. :6.000

NA's :234

| • | Cold_isc: Hours a kidney spends out of the donor body before transplant |
|---|-------------------------------------------------------------------------|
|   |                                                                         |

| Surviv | Survival variables:                             |  |  |  |  |  |  |  |
|--------|-------------------------------------------------|--|--|--|--|--|--|--|
| •      | <b>fu</b> : Follow-up time (years)              |  |  |  |  |  |  |  |
| •      | death: Alive vs Post Transplant Mortality (0/1) |  |  |  |  |  |  |  |
|        |                                                 |  |  |  |  |  |  |  |
|        |                                                 |  |  |  |  |  |  |  |

year

Min. :1990

1st Qu.:1993

Median:1996

3rd Qu.:1999

Mean :1996

Max. :2002

NA

sex

NA

Min.: 0.0000

1st Qu.:0.0000

Median :1.0000

3rd Qu.:1.0000

Mean: 0.5894

Max. :1.0000

fu

NA

Min.: 0.000

1st Qu.: 1.096

Median: 3.115

3rd Qu.: 5.978

Mean: 3.888

Max. :12.532

txtype

Min. :0.0000

1st Qu.:0.0000

Median: 0.0000

3rd Qu.:1.0000

Mean: 0.4734

Max. :1.0000

NA

| <ul> <li>Cold_isc: Hours a kidney spends out of the donor body before transplant</li> </ul> |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                             |  |  |  |  |  |  |  |
|                                                                                             |  |  |  |  |  |  |  |
|                                                                                             |  |  |  |  |  |  |  |

death

NA

Min.: 0.00000

1st Qu.:0.00000

Median: 0.00000

Mean: 0.04757

Max. :1.00000

3rd Qu.:0.00000

cold isc

Min.: 0.00

1st Qu.: 1.00

Median: 7.00

3rd Qu.:19.00

Mean:10.86

Max. :72.00

NA's :2250

| <b>Cold_isc:</b> Hours a kidney spends out of the donor body before transplant |
|--------------------------------------------------------------------------------|
|                                                                                |
|                                                                                |

# **Data Inspection**



| hlamat        | age          | age.1       | cold_isc      | death           | year         | sex            | txtype         | fu             |
|---------------|--------------|-------------|---------------|-----------------|--------------|----------------|----------------|----------------|
| Min. :0.000   | Min.: 0.0    | Mean :11.65 | Min.: 0.00    | Min.:0.00000    | Min. :1990   | Min. :0.0000   | Min. :0.0000   | Min.: 0.000    |
| 1st Qu.:2.000 | 1st Qu.:21.0 |             | 1st Qu.: 1.00 | 1st Qu::0.00000 | 1st Qu.:1993 | 1st Qu.:0.0000 | 1st Qu.:0.0000 | 1st Qu.: 1.096 |
| Median :3.000 | Median:33.0  |             | Median: 7.00  | Median:0.00000  | Median :1996 | Median :1.0000 | Median :0.0000 | Median: 3.115  |
| Mean :2.574   | Mean:31.3    |             | Mean:10.86    | Mean:0.04757    | Mean :1996   | Mean :0.5894   | Mean :0.4734   | Mean: 3.888    |
| 3rd Qu.:3.000 | 3rd Qu.:41.0 |             | 3rd Qu.:19.00 | 3rd Qu::0.00000 | 3rd Qu.:1999 | 3rd Qu.:1.0000 | 3rd Qu.:1.0000 | 3rd Qu.: 5.978 |
| Max. :6.000   | Max. :73.0   | Max. :18.00 | Max. :72.00   | Max. :1.00000   | Max. :2002   | Max. :1.0000   | Max. :1.0000   | Max. :12.532   |
| NA's :234     | NA's :113    | NA's :9     | NA's :2250    | NA              | NA           | NA             | NA             | NA             |

# **Data Inspection**



|                    | of ColdIschemiaTim | е                     |    |   |
|--------------------|--------------------|-----------------------|----|---|
| 0.100 -            |                    |                       |    |   |
| 0.075 -<br>O.050 - |                    |                       |    |   |
| 0.025 -            |                    |                       |    |   |
| 0.000-             |                    |                       |    | _ |
| Ö                  | 20<br>Co           | 40<br>oldIschemiaTime | 60 |   |

| hlamat        | age          | age.1         | cold_isc      | death           | year         | sex            | txtype         | fu             |
|---------------|--------------|---------------|---------------|-----------------|--------------|----------------|----------------|----------------|
| Min. :0.000   | Min.: 0.0    | Min.: 0.00    | Min.: 0.00    | Min. :0.00000   | Min. :1990   | Min. :0.0000   | Min. :0.0000   | Min.: 0.000    |
| 1st Qu.:2.000 | 1st Qu.:21.0 | 1st Qu.: 8.00 | 1st Qu.: 1.00 | 1st Qu.:0.00000 | 1st Qu.:1993 | 1st Qu.:0.0000 | 1st Qu.:0.0000 | 1st Qu.: 1.096 |
| Median :3.000 | Median:33.0  | Median:13.00  | Median: 7.00  | Median :0.00000 | Median :1996 | Median :1.0000 | Median :0.0000 | Median: 3.115  |
| Mean :2.574   | Mean :31.3   | Mean :11.65   | Mean :10.86   | Mean :0.04757   | Mean :1996   | Mean :0.5894   | Mean :0.4734   | Mean: 3.888    |
| 3rd Qu.:3.000 | 3rd Qu.:41.0 | 3rd Qu.:16.00 | 3rd Qu.:19.00 | 3rd Qu.:0.00000 | 3rd Qu.:1999 | 3rd Qu.:1.0000 | 3rd Qu.:1.0000 | 3rd Qu.: 5.978 |
| Max. :6.000   | Max. :73.0   | Max. :18.00   | Max. :72.00   | Max. :1.00000   | Max. :2002   | Max. :1.0000   | Max. :1.0000   | Max. :12.532   |
| NA's :234     | NA's :113    | NA's :9       | NA's :2250    | NA              | NA           | NA             | NA             | NA             |

# **Overall survival probability 12 years after transplant**





## **Comparing Mortality Rates**

Deceased donor:

|      | Time      | Occurrences | People at Risk | Hazard | 1 - Hazard | Survival  | Mortality | cumHaz    |
|------|-----------|-------------|----------------|--------|------------|-----------|-----------|-----------|
| 1    | 0.0000000 | 0           | 5148           | 0      | 1          | 1.0000000 | 0.0000000 | 0.0000000 |
| 99   | 0.3287671 | 0           | 4637           | 0      | 1          | 0.9898905 | 0.0101095 | 0.0101592 |
| 190  | 0.6657534 | 0           | 4374           | 0      | 1          | 0.9870652 | 0.0129348 | 0.0130170 |
| 286  | 1.0000000 | 0           | 4056           | 0      | 1          | 0.9845543 | 0.0154457 | 0.0155638 |
| 515  | 2.0000000 | 0           | 3428           | 0      | 1          | 0.9782992 | 0.0217008 | 0.0219362 |
| 745  | 3.0000000 | 0           | 2829           | 0      | 1          | 0.9730770 | 0.0269230 | 0.0272876 |
| 973  | 4.0000000 | 0           | 2297           | 0      | 1          | 0.9669280 | 0.0330720 | 0.0336255 |
| 1206 | 5.0000000 | 0           | 1789           | 0      | 1          | 0.9616331 | 0.0383669 | 0.0391150 |

Living donor:

|   |      | Time      | Occurrences | People at Risk | Hazard    | 1 - Hazard | Survival  | Mortality | cumHaz    |
|---|------|-----------|-------------|----------------|-----------|------------|-----------|-----------|-----------|
|   | 1    | 0.0000000 | 4           | 4627           | 0.0008645 | 0.9991355  | 0.9991355 | 0.0008645 | 0.0008645 |
|   | 106  | 0.3287671 | 0           | 4158           | 0.0000000 | 1.0000000  | 0.9766033 | 0.0233967 | 0.0236692 |
|   | 203  | 0.6657534 | 0           | 3897           | 0.0000000 | 1.0000000  | 0.9708459 | 0.0291541 | 0.0295813 |
| • | 305  | 1.0000000 | 2           | 3630           | 0.0005510 | 0.9994490  | 0.9667654 | 0.0332346 | 0.0337926 |
|   | 562  | 2.0000000 | 0           | 3023           | 0.0000000 | 1.0000000  | 0.9557460 | 0.0442540 | 0.0452542 |
|   | 829  | 3.0000000 | 0           | 2419           | 0.0000000 | 1.0000000  | 0.9472001 | 0.0527999 | 0.0542342 |
|   | 1094 | 4.0000000 | 0           | 1853           | 0.0000000 | 1.0000000  | 0.9365245 | 0.0634755 | 0.0655662 |
|   | 1343 | 5.0000000 | 0           | 1408           | 0.0000000 | 1.0000000  | 0.9250764 | 0.0749236 | 0.0778614 |
|   |      |           |             |                |           |            |           |           |           |

## **Comparing Mortality Rates**



When dividing deceased donor mortality by living donor mortality, we find a ratio of roughly 0.5.

This suggests that the risk of death is about twice as high if the donor is still alive.

Counter-intuitive? One would assume that a kidney from a living donor would lead to higher survival

#### **Comparing Kaplan-Meier Curves between Donor Types**



#### Cox model with donor type as predictor

```
## Call:
## coxph(formula = Surv(fu, death) ~ txtype, data = unos_data)
##
##
    n= 9775, number of events= 465
##
##
           coef exp(coef) se(coef) z Pr(>|z|)
## txtype 0.64469 1.90539 0.09558 6.745 1.53e-11 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
         exp(coef) exp(-coef) lower .95 upper .95
            1.905
                      0.5248
                                 1.58
                                          2,298
## txtype
##
## Concordance= 0.586 (se = 0.012)
## Likelihood ratio test= 47.1 on 1 df, p=7e-12
## Wald test = 45.5 on 1 df, p=2e-11
## Score (logrank) test = 47.09 on 1 df, p=7e-12
```

The exp(coef) value of 1.90539 represents the hazard ratio for living donor kidney recipients compared to deceased donor kidney recipients.

This means that the hazard of mortality is **1.91 times** higher for living donor kidney recipients compared to deceased donor kidney recipients. ( wrong coding ? )

### **Cox Model with Recipient Age (Continuous) as Predictor**

```
call:
coxph(formula = Surv(fu, death) \sim age.1, data = unos_data)
 n= 9766, number of events= 464
   (9 observations deleted due to missingness)
          coef exp(coef) se(coef) z Pr(>|z|)
age.1 -0.042550 0.958342 0.008434 -5.045 4.53e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
     exp(coef) exp(-coef) lower .95 upper .95
age.1 0.9583 1.043 0.9426 0.9743
Concordance= 0.586 (se = 0.016)
Likelihood ratio test= 24.81 on 1 df, p=6e-07
wald test = 25.45 on 1 df, p=5e-07
Score (logrank) test = 25.75 on 1 df, p=4e-07
```

#### **Cox Model with Recipient Age (Categorical) as Predictor**

```
## Call:
## coxph(formula = Surv(fu, death) ~ age_cat, data = unos_data)
##
##
    n= 7303, number of events= 348
##
     (44 observations deleted due to missingness)
##
##
                  coef exp(coef) se(coef) z Pr(>|z|)
## age_cat(10,15] -0.1336
                        0.8750 0.1294 -1.032
                                              0.302
0.401
##
                exp(coef) exp(-coef) lower .95 upper .95
##
## age_cat(10,15] 0.8750
                            1.143 0.6789
                                             1.128
## age_cat(15,Inf] 0.8964
                            1.116 0.6944 1.157
##
## Concordance= 0.53 (se = 0.016)
## Likelihood ratio test= 1.25 on 2 df,
                                   p=0.5
## Wald test
                    = 1.26 on 2 df, p=0.5
## Score (logrank) test = 1.26 on 2 df, p=0.5
```

#### Multivariate Cox Model with All Variables as Predictors

```
Call:
coxph(formula = Surv(fu, death) \sim cold_isc + sex + txtype + hlamat +
   age.1 * age, data = unos_data, method = "breslow")
 n= 7347, number of events= 351
   (2428 observations deleted due to missingness)
               coef exp(coef) se(coef) z Pr(>|z|)
cold_isc  0.0047135  1.0047247  0.0067681  0.696  0.48616
      -0.0806924 0.9224774 0.1086716 -0.743 0.45776
sex
txtype 0.3471755 1.4150650
                               0.1891947 1.835 0.06650 .
hlamat -0.0612583 0.9405802 0.0443540 -1.381 0.16724
age.1 -0.0666207 0.9355500
                              0.0222801 -2.990 0.00279 **
age -0.0224923 0.9777588
                               0.0096357 -2.334 0.01958 *
age.1:age 0.0016306 1.0016319
                               0.0007316 2.229 0.02583 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### **Backward Selection Method**

```
call:
coxph(formula = Surv(fu, death) \sim sex + txtype + hlamat + age.1 *
   age, data = unos_data, method = "breslow")
 n= 9433, number of events= 449
   (342 observations deleted due to missingness)
               coef exp(coef) se(coef) z Pr(>|z|)
sex -0.0999397 0.9048920 0.0959073 -1.042 0.29739
txtype 0.3773892 1.4584718
                               0.1222194 3.088 0.00202 **
hlamat -0.0915721 0.9124955
                               0.0402870 -2.273 0.02303 *
age.1 -0.1313814 0.8768832
                              0.0178443 -7.363 1.80e-13
age -0.0453338 0.9556784
                              0.0077646 -5.838 5.27e-09
age.1:age 0.0033324 1.0033380
                               0.0005994 5.560 2.70e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Sex is the least significant predictor so we dropped it

#### Final model

```
call:
coxph(formula = Surv(fu, death) \sim txtype + hlamat + age.1 * age,
   data = unos_data, method = "breslow")
 n= 9433, number of events= 449
  (342 observations deleted due to missingness)
               coef exp(coef) se(coef) z Pr(>|z|)
        0.3735962 1.4529503
                               0.1221736 3.058 0.00223 **
txtype
hlamat
       -0.0924870 0.9116611
                               0.0402858 -2.296 0.02169 *
age.1 -0.1303368 0.8777997
                               0.0178149 -7.316 2.55e-13 ***
age -0.0453928 0.9556221
                               0.0077665 -5.845 5.08e-09 ***
age.1:age 0.0033232 1.0033287
                               0.0005993 5.545 2.94e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

## **Sensitivity Analysis**

Investigate extremes of Donor-Patient Match under Living and Deceased
 Donors

Median Patient Age, Donor Age used

#### **Survival Function for HLAMAT and TXTYPE Groups**



# **Proportional Hazard Assumptions (cox.zph)**

|           | chisq | df | р       |
|-----------|-------|----|---------|
| txtype    | 2.95  | 1  | 0.08577 |
| hlamat    | 8.36  | 1  | 0.00384 |
| age.1     | 34.19 | 1  | 5.0e-09 |
| age       | 11.43 | 1  | 0.00072 |
| age.1:age | 22.53 | 1  | 2.1e-06 |
| GLOBAL    | 42.68 | 5  | 4.3e-08 |

## **Proportional Hazard Assumptions (Schoenfeld Residuals)**



## **Proportional Hazard Assumptions (Schoenfeld Residuals)**



## **Conclusion**

- Donor Status has the greatest impact, Donor Age too
- Interaction between Donor, Patient Age is small, yet significant
- Donor, Patient being Older raises chance of survival
- PH assumptions violated Predictors not very consistent.

## **Questions?**

Thank you for listening.