Yakeen NEET 2.0 2026

Physics by MR Sir

DPP: 1

Motion in a Plane

- **Q1** In projectile motion, which of the following remains same ?
 - (A) Speed
 - (B) Velocity
 - (C) Acceleration
 - (D) Only magnitude of acceleration
- **Q2** Acceleration of a particle under projectile motion at the highest point of its trajectory is:
 - (A) g
 - (B) Zero
 - (C) Less than g
 - (D) Dependent upon projection velocity
- Q3 The velocity of a projectile at the initial point A is $(2\hat{i}+3\hat{j}) m/s$. Its velocity (in m/s) at point B is

- (A) $-2\hat{i}-3\hat{j}$
- (B) $-2\hat{i}+3\hat{j}$
- (C) $2\hat{i}-3\hat{j}$
- (D) $2\hat{i} + 3\hat{j}$
- **Q4** A ball is projected with a velocity 10 ms⁻¹ at an angle of 60° with the vertical direction. Its speed at the highest point of its trajectory will be
 - (A) 5 m s^{-1}
- (B) 10 m s⁻¹
- (C) Zero
- (D) $5\sqrt{3}~{
 m ms}^{\mbox{\scriptsize -1}}$

- **Q5** Two bodies are projected with the same velocity, if one is projected at an angle of 30° and the other at an angle of 60° to the horizontal, the ratio of the maximum heights reached is:
 - (A) 3:1
- (B) 1:3
- (C) 1:2
- (D) 2:1
- Q6 When do we get maximum height in a simple projectile motion?
 - (A) When $heta=45^\circ$
 - (B) When $heta=60^\circ$
 - (C) When $\theta=90^\circ$
 - (D) When $\theta=0^\circ$
- Q7 Two bodies are thrown up at angles of 45° and 60° respectively, with the horizontal. If both bodies attain same vertical height, then the ratio of velocities with which these are thrown is:
 - (A) $\sqrt{\frac{2}{3}}$
 - (B) $\frac{\sqrt{2}}{\sqrt{3}}$
 - (C) $\sqrt{\frac{3}{2}}$
 - (D) $\frac{\sqrt{3}}{2}$
- **Q8** If a projectile is fired at an angle θ with the vertical with velocity u, then maximum height attained is given by
 - (A) $\frac{u^2 \cos \theta}{2a}$
 - (B) $\frac{u^2 \sin^2 \theta}{2a}$
 - (C) $\frac{u^2 \sin^2 \theta}{2}$
 - (D) $\frac{u^2 \cos^2 \theta}{2g}$

Q9

If angles of projection are $\left(\frac{\pi}{4}+\theta\right)$ and $\left(\frac{\pi}{4}-\theta\right)$ where $\theta<\frac{\pi}{4}$, then the ratio of horizontal ranges described by the projectile is (projection speed is same);

- (A) 2:1
- (B) 1:2
- (C) 1 : 1
- (D) 2:3
- **Q10** For angle of projection 20° , range of a projectile is R. For the same range, another angle of projection should be
 - (A) 40°
 - (B) 50°
 - (C) 60°
 - (D) 70°
- Q11 The motion of a projectile is described by the equation $y=ax-bx^2$. The range of projectile is
 - (A) a^2/b^2
 - (B) a/2b
 - (C) a/b
 - (D) None of the above
- Q12 Trajectories of two projectiles are shown in figure. Let T_1 and T_2 be the time of flight and u_1 and u_2 their speeds of projection. Then

- (A) $T_2 > T_1$
- (B) $T_1 = T_2$
- (C) Both (2) and (4)
- (D) $u_1 < u_2$

Answer Key

Q1	(C)	Q7	(C)
	(A)	Q7 Q8 Q9 Q10 Q11 Q12	(D)
Q3	(C)	Q9	(C)
Q4	(D)	Q10	(D)
Q5	(B)	Q11	(C)
Q6	(C)	Q12	(C)

Master NCERT with PW Books APP