Resolución TP2:

Ejercicio 6 - a

Sobre la trayectoria $\alpha(t)=(t,t^2+1)$ con $0 \le t \le 2$. Representar gráficamente y obtener una ecuación cartesiana.

Al manejar trayectorias debemos recordar lo siguiente:

$$\alpha(t) = (x(t); y(t))$$

Por lo tanto:

$$\begin{cases} x(t) = t \\ y(t) = t^2 + 1 \end{cases} \to \begin{cases} x = t \\ y = t^2 + 1 \end{cases} \to y = x^2 + 1$$

$$\begin{cases} x(t) = t \\ 0 \le t \le 2 \end{cases} \rightarrow 0 \le x \le 2$$

Finalmente

Usando tabla de valores se puede graficar evitando la ecacion cartesiana:

t	$t^2 + 1$	PUNTO= $lpha(t)$
0	1	r(0)=(0 ; 1)
0,25	1,0625	r(0,25)=(0,25 ; 1,0625)
0,5	1,25	r(0,5)=(0,5 ; 1,25)
0,75	1,5625	r(0,75)=(0,75 ; 1,5625)
1	2	r(1)=(1 ; 2)
1,25	2,5625	r(1,25)=(1,25 ; 2,5625)
1,5	3,25	r(1,5)=(1,5 ; 3,25)
1,75	4,0625	r(1,75)=(1,75; 4,0625)
2	5	r(2)=(2 ; 5)

