1a Avaluació	Física	1r Batxillerat	
La mesura		Data:	
Nom i cognoms:		Qualificació:	

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

1. S'ha mesurat la longitud (l) d'un insecte, en mm, 15 vegades i s'han obtingut els següents resultats:

Es demana trobar el millor valor per la mesura.

Calculem la mitjana arimètica

$$\bar{l} = \frac{2,31+2,38+2,32+2,33+2,35+2,36+2,35+}{15} = \frac{2,37+2,31+2,30+2,39+2,38+2,33+2,31+2,40}{15} = 2,346$$

Per la desviació estàndard fem servir una taula

7	1 1	(1 1)9
l_i	$l_i - l$	$ (l_i - l)^2 $
2,31	2,31-2,346=-0,036	0,001296
2,38	2,38-2,346=0,034	0,001156
2,32	2,32-2,346=-0,026	0,000676
2,33	2,33-2,346=-0,016	0,000256
2,35	2,35-2,346=0,004	0,000016
2,36	2,36-2,346=0,014	0,000196
2,35	2,35-2,346=0,004	0,000016
2,37	2,37-2,346=0,024	0,000576
2,31	2,31-2,346=-0,036	0,001296
2,30	2,30-2,346=-0,046	0,002116
2,39	2,39-2,346=0,044	0,001936
2,38	2,38-2,346=0,034	0,001156
2,33	2,33-2,346=-0,016	0,000256
2,31	2,31-2,346=-0,036	0,001296
2,40	2,40-2,346=0,054	0,002916
Σ	0	0,01516

Llavors,

$$\sigma = \sqrt{\frac{\sum (l_i - \bar{l})^2}{n}} = \sqrt{\frac{0,01516}{15}} = \sqrt{0,001010666} = 0,031790984$$

amb els càlculs fets podem dir que el valor més aproximat de la longitud és

$$l = \bar{l} \pm \sigma = 2,346 \pm 0,031790984$$

com que les dades tenien tres xifres significatives, la mitja aritmètica cal arrodonir-la a tres xifres significatives també, mentre que la desviació estàndard s'ha d'arrodonir a dos decimals (els que té la mitja aritmètica un cop arrodonida)

$$l = \bar{l} \pm \sigma = 2,35 \pm 0,03 \, mm$$

2. S'ha fet una enquesta sobre una població de 200 persones referent a l'estona (t), en hores, que dediquen a la lectura cada dia, obtenint-se els següents resultats:

0,25 h; 50 persones

0,50 h; 10 persones

0,75 h; 8 persones

1,00 h; 20 persones

1,25 h; 32 persones

1,50 h; 15 persones

1,75 h; 15 persones

2,00 h; 24 persones

2,25 h; 26 persones

Es demana trobar el millor valor de la mesura.

Calculem la mitjana arimètica (en aquesta correcció no escrivim totes les xifres significatives per simplicitat)

$$\bar{t} = \frac{0,25 \cdot 50 + 0,5 \cdot 10 + 0,75 \cdot 8 + 1 \cdot 20 + 1,25 \cdot 32 + 1,5 \cdot 15 + 1,75 \cdot 15 + 2 \cdot 24 + 2,25 \cdot 26}{200} = 1,19375$$

Per la desviació estàndard fem servir una taula

t_i	f_i	$t_i - ar{t}$	$(t_i - \bar{t})^2$
0,25	50	0,25-1,19375 = -0,94375	0,890664062
0,50	10	0, 5 - 1, 19375 = -0,69375	0,481289062
0,75	8	0,75 - 1,19375 = -0,44375	0,196914062
1,00	20	1 - 1,19375 = -0,19375	0,037539062
1,25	32	1,25-1,19375=0,05625	0,00316462
1,50	15	1, 5 - 1, 19375 = 0,30625	0,093789062
1,75	15	1,75-1,19375=0,55625	0,309414062
2,00	24	2 - 1,19375 = 0,80625	0,650039062
2,25	26	2,25-1,19375=1,05625	1,115664063
\sum	200	0^{\dagger}	102, 4297053‡

Llavors,

$$\sigma = \sqrt{\frac{\sum (t_i - \bar{t})^2}{n}} = \sqrt{\frac{102,4297053}{200}} = \sqrt{0,512148526} = 0,715645531$$

amb els càlculs fets podem dir que el valor més aproximat del temps és

$$t = \bar{t} \pm \sigma = 1,19375 \pm 0,715645531$$

com que les dades tenien tres xifres significatives, la mitja aritmètica s'ha d'arrodonir. El nombre de decimals de la desviació estàndard s'ha d'ajustar al mateix que la mitja aritmètica

$$t = \bar{t} \pm \sigma = 1, 19 \pm 0, 72 h$$

- † Recordem que per fer la suma de les desviacions hem de tenir en compte les freqüències.
- ‡ Aquí val el mateix comentari que en el cas anterior.