

MSP430F6638, MSP430F6637, MSP430F6636, MSP430F6635 MSP430F6634, MSP430F6633, MSP430F6632, MSP430F6631, MSP430F6630

ZHCS409F - JUNE 2010 - REVISED SEPTEMBER 2018

MSP430F663x 混合信号微控制器

1 器件概述

1.1 特性

- 低电源电压范围: 1.8V 至 3.6V
- 超低功耗
 - 激活模式 (AM): 所有系统时钟激活: 在 8MHz、3.0V 且闪存程序执行时为 270μA/MHz(典型值)
 - 特机模式 (LPM3):
 带有晶振的看门狗和电源监视器工作、完全 RAM 保持、快速唤醒:
 2.2V 时为 1.8μA, 3.0V 时为 2.1μA (典型值)
 - 关断实时时钟 (RTC) 模式 (LPM3.5): 关断模式、采用晶振的 RTC 工作: 3.0V 时为 1.1μA (典型值)
 - 关断模式 (LPM4.5):3.0V 时为 0.3μA (典型值)
- 在 3µs (典型值) 内从待机模式唤醒
- 16 位精简指令集 (RISC) 架构、扩展存储器、高达 20MHz 的系统时钟
- 灵活的电源管理系统
 - 内置可编程的低压降稳压器 (LDO)
 - 电源电压监控、监视、和临时限电
- 统一时钟系统
 - 针对频率稳定的锁相环 (FLL) 控制环路
 - 低功耗低频内部时钟源 (VLO)
 - 低频修整内部基准源 (REFO)
 - 32kHz 晶振 (XT1)
 - 高达 32MHz 的高频晶振 (XT2)

1.2 应用范围

- 模拟和数字传感器系统
- 数字电机控制
- 遥控

- 4个定时器,分别配有3、5或7个捕捉/比较寄存器
- 两个通用串行通信接口 (USCI)
 - USCI_A0 和 USCI_A1 均支持:
 - 增强型通用异步收发器 (UART) 支持自动波特率检测
 - IrDA 编码和解码
 - 同步串行外设接口 (SPI)
 - USCI_B0 和 USCI_B1 每个都支持:
 - I²C
 - 同步串行外设接口 (SPI)
- 全速通用串行总线 (USB)
 - 集成的 USB 物理层 (PHY)
 - 集成 3.3V 和 1.8V USB 电源系统
 - 集成 USB- 锁相环 (PLL)
 - 8 输入和 8 输出端点
- 具有内部共用基准、采样保持、和自动扫描功能的 12 位模数转换器 (ADC)
- 具有同步功能的双通道 12 位数模转换器 (DAC)
- 电压比较器
- 对比度控制高达 160 段的集成液晶显示屏 (LCD) 驱动器
- 硬件乘法器支持 32 位运算
- 串行板上编程,无需外部编程电压
- 6 通道内部 DMA
- 具有电源电压备用开关的 RTC 模块
- 器件比较 汇总了可用的产品系列成员
- 恒温器
- 数字定时器
- 手持仪表

1.3 说明

TI 的 MSP430™系列超低功耗微控制器种类繁多,各成员器件配备不同的外设集以满足各类应用的 需要。该架构与五种低功耗模式配合使用,是延长便携式测量应用电池寿命的最优 选择。该器件 具有 一个强大的 16 位精简指令集 (RISC) 中央处理器 (CPU),使用 16 位寄存器以及常数发生器,以便获得最高编码效率。该数控振荡器 (DCO) 可在 3μs(典型值)内从低功率模式唤醒至激活模式。

MSP430F663x 器件为配有以下外设的微控制器:一个高性能 12 位 ADC、一个比较器、两个串行通信接口 (USCI)、USB 2.0、一个硬件乘法器、直接存储器访问 (DMA)、四个 16 位定时器、一个具有报警功能的 RTC 模块、一个 LCD 驱动器以及多达 74 个 I/O 引脚。

有关完整的模块说明,请参阅《MSP430F5xx 和 MSP430F6xx 系列用户指南》。

器件信息(1)

器件型号	封装	封装尺寸 ⁽²⁾
MSP430F6638IPZ	LQFP (100)	14mm x 14mm
MSP430F6638IZQW	BGA (113)	7mm x 7mm

- (1) 要获得最新的器件、封装和订购信息,请参见封装选项附录(节 8),或者访问 TI 网站www.ti.com.cn。
- (2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据(节8)。

1.4 功能框图

图 1-1 给出了 MSP430F6638、MSP430F6637 和 MSP430F6636 器件的功能框图。

Copyright © 2016, Texas Instruments Incorporated

图 1-1. 功能框图 - MSP430F6638、MSP430F6637 和 MSP430F6636

图 1-2 给出了 MSP430F6635、MSP430F6634 和 MSP430F6633 器件的功能框图。

Copyright © 2016, Texas Instruments Incorporated

图 1-2. 功能框图 - MSP430F6635、MSP430F6634 和 MSP430F6633

图 1-3 给出了 MSP430F6632、MSP430F6631 和 MSP430F6630 器件的功能框图。

Copyright © 2016, Texas Instruments Incorporated

图 1-3. 功能框图 - MSP430F6632、MSP430F6631 和 MSP430F6630

内容

1	器件	概述	<u>1</u>		5.33	USCI (SPI Slave Mode)	38
	1.1	特性	. <u>1</u>		5.34	USCI (I ² C Mode)	40
	1.2	应用范围	. <u>1</u>		5.35	LCD_B, Recommended Operating Conditions	41
	1.3	说明	2		5.36	LCD_B, Electrical Characteristics	42
	1.4	功能框图	3		5.37	12-Bit ADC, Power Supply and Input Range	
2	修订	历史记录	6			Conditions	43
3	Devi	ce Comparison	7			12-Bit ADC, Timing Parameters	_
	3.1	Related Products	_		5.39	12-Bit ADC, Linearity Parameters Using an Externa	
4	Term	ninal Configuration and Functions	_		5 40	Reference Voltage	<u>44</u>
	4.1	Pin Diagrams	_		5.40	12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage	11
	4.2	Signal Descriptions	_		5.41	12-Bit ADC, Linearity Parameters Using the Interna	
5		cifications	_		0.41	Reference Voltage	
•	5.1	Absolute Maximum Ratings			5.42	12-Bit ADC, Temperature Sensor and Built-In $V_{\mbox{\scriptsize MID}}$	
	5.2	ESD Ratings	_		5.43	REF, External Reference	
	5.3	Recommended Operating Conditions			5.44	REF, Built-In Reference	
	5.4	Active Mode Supply Current Into V _{CC} Excluding	<u></u>		5.45	12-Bit DAC, Supply Specifications	
	· · ·	External Current	21		5.46	12-Bit DAC, Linearity Specifications	
	5.5	Low-Power Mode Supply Currents (Into V _{CC})			5.47	12-Bit DAC, Output Specifications	
		Excluding External Current	<u>21</u>		5.48	12-Bit DAC, Reference Input Specifications	
	5.6	Low-Power Mode With LCD Supply Currents (Into			5.49	12-Bit DAC, Dynamic Specifications	_
		V _{CC}) Excluding External Current			5.50	12-Bit DAC, Dynamic Specifications (Continued)	
	5.7	Thermal Resistance Characteristics			5.51	Comparator_B	
	5.8	Schmitt-Trigger Inputs – General-Purpose I/O				·	
	5.9	Inputs – Ports P1, P2, P3, and P4			5.52	Ports PU.0 and PU.1	
	5.10	Leakage Current – General-Purpose I/O	<u>24</u>		5.53	USB Output Ports DP and DM	
	5.11	Outputs – General-Purpose I/O (Full Drive	0.4		5.54	USB Input Ports DP and DM	
	E 10	Strength)	<u>24</u>		5.55	USB-PWR (USB Power System)	
	5.12	Outputs – General-Purpose I/O (Reduced Drive Strength)	25		5.56	USB-PLL (USB Phase-Locked Loop)	
	5.13	Output Frequency – Ports P1, P2, and P3	_		5.57	Flash Memory	
	5.14	Typical Characteristics – Outputs, Reduced Drive	20	_	5.58	JTAG and Spy-Bi-Wire Interface	_
	0	Strength (PxDS.y = 0)	26	6		iled Description	_
	5.15	Typical Characteristics – Outputs, Full Drive			6.1	Overview	_
		Strength (PxDS.y = 1)	<u>27</u>		6.2	CPU	
	5.16	Crystal Oscillator, XT1, Low-Frequency Mode	<u>28</u>		6.3	Instruction Set	
	5.17	Crystal Oscillator, XT2	<u>29</u>		6.4	Operating Modes	
	5.18	Internal Very-Low-Power Low-Frequency Oscillator			6.5	Interrupt Vector Addresses	
		(VLO)	<u>30</u>		6.6	Memory	61
	5.19	Internal Reference, Low-Frequency Oscillator	20		6.7	Bootloader (BSL)	<u>62</u>
	F 20	(REFO)	_		6.8	JTAG Operation	<u>63</u>
	5.20	DCO Frequency			6.9	Flash Memory (Link to User's Guide)	<u>63</u>
	5.21	PMM, Brownout Reset (BOR)	_		6.10	RAM (Link to User's Guide)	64
	5.22	PMM, Core Voltage			6.11	Backup RAM	64
	5.23	PMM, SVS High Side			6.12	Peripherals	64
	5.24	PMM, SVM High Side			6.13	Input/Output Diagrams	87
	5.25	PMM, SVS Low Side			6.14	Device Descriptors	111
	5.26	PMM, SVM Low Side	<u>34</u>	7	器件	和文档支持	112
	5.27	Wake-up Times From Low-Power Modes and	3/1		7.1	入门和后续步骤	112
	E 00	Reset	_		7.2	Device Nomenclature	112
	5.28	Timer_A, Timers TA0, TA1, and TA2			7.3	工具与软件	
	5.29	Timer_B, Timer TB0			7.4	文档支持	116
	5.30	Battery Backup			7.5	相关链接	117
	5.31	USCI (UART Mode)			7.6	社区资源	_
	5.32	USCI (SPI Master Mode)	<u>36</u>			p= 1 25 v/4	

MSP430F6638, MSP430F6637, MSP430F6636, MSP430F6635 MSP430F6634, MSP430F6633, MSP430F6632, MSP430F6631, MSP430F6630

ZHCS409F - JUNE 2010 - REVISED SEPTEMBER 2018

www.ti.com

7.7	商标	<u>117</u>		7.10	Glossary	<u>118</u>
7.8	静电放电警告	<u>117</u>	8	机械,	封装和可订购信息	<u>119</u>
7.9	Export Control Notice	<u>118</u>				

2 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

anges from December 9, 2015 to September 17, 2018	Page
Added Section 3.1, Related Products	7
 Added typical conditions statements at the beginning of Section 5, Specifications 	19
 Changed the MIN value of the V_(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 5.21, PMM, Brownou 	
Reset (BOR)	
• Updated notes (1) and (2) and added note (3) in Section 5.27, Wake-up Times From Low-Power Modes and	
Reset	<u>34</u>
 Removed ADC12DIV from the formula for the TYP value in the second row of the t_{CONVERT} parameter in 	
Section 5.38, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division	<u>43</u>
 Removed the note that started "This impedance depends on" from the "Reference input resistance" paramet 	er
in Section 5.48, 12-Bit DAC, Reference Input Specifications	<u>51</u>
 Added second row for t_{EN_CMP} with Test Conditions of "CBPWRMD = 10" and MAX value of 100 μs in 	
Section 5.51, Comparator_B	<u>53</u>
 Renamed FCTL4.MGR0 and MGR1 in the f_{MCLK,MGR} parameter in Section 5.57, Flash Memory to be consistent 	
with header files	
• 将先前的开发工具支持 部分替换成了节 7.3 ,工具与软件	114

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1. Device Comparison⁽¹⁾⁽²⁾

					US	USCI						
DEVICE	FLASH (KB)	SRAM (KB) ⁽³⁾	Timer_A ⁽⁴⁾	Timer_B ⁽⁵⁾	CHANNEL A: UART, IrDA, SPI	CHANNEL B: SPI, I ² C	ADC12_A (Ch)	DAC12_A (Ch)	Comp_B (Ch)	USB	I/O	PACKAGE
MSP430F6638	256	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	2	12	Yes	74	100 PZ, 113 ZQW
MSP430F6637	192	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	2	12	Yes	74	100 PZ, 113 ZQW
MSP430F6636	128	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	2	12	Yes	74	100 PZ, 113 ZQW
MSP430F6635	256	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6634	192	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6633	128	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6632	256	16 + 2	5, 3, 3	7	2	2	-	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6631	192	16 + 2	5, 3, 3	7	2	2	-	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6630	128	16 + 2	5, 3, 3	7	2	2	-	-	12	Yes	74	100 PZ, 113 ZQW

⁽¹⁾ For the most current package and ordering information, see the *Package Option Addendum* in 节 8, or see the TI website at www.ti.com.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications.

Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement.

Companion Products for MSP430F6638 Review products that are frequently purchased or used in conjunction with this product.

Reference Designs for MSP430F6638 TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

⁽³⁾ The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.

⁽⁴⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

⁽⁵⁾ Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the pinout for the MSP430F6638, MSP430F6637, and MSP430F6636 devices in the 100-pin PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-1. 100-Pin PZ Package (Top View) - MSP430F6638, MSP430F6637, MSP430F6636

Figure 4-2 shows the pinout for the MSP430F6635, MSP430F6634, and MSP430F6633 devices in the 100-pin PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-2. 100-Pin PZ Package (Top View) - MSP430F6635, MSP430F6634, MSP430F6633

Figure 4-3 shows the pinout for the MSP430F6632, MSP430F6631, and MSP430F6630 devices in the 100-pin PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-3. 100-Pin PZ Package (Top View) - MSP430F6632, MSP430F6631, MSP430F6630

Figure 4-4 shows the pinout for all devices in the 113-pin ZQW package. See Section 4.2 for pin assignments and descriptions.

(A1)	(A2)	(A3)	(A4)	(A5)	(A6)	(A7)	(A8)	(A9)	(A10)	(A11)	(A12)
(B1)	(B2)	(B3)	(B4)	(B5)	(B6)	(B7)	(B8)	(B9)	(B10)	(B11)	(B12)
(C1)	(C2)	(C3)								(C11)	(C12)
(D1)	(D2)		(D4)	(D5)	(D6)	(D7)	(D8)	(D9)		(D]1)	(D12)
(E1)	(E2)		(E4)	(E5)	(E6)	(E7)	(E8)	(E9)		(E]1)	(E12)
(F1)	(F2)		(F4)	(F5)			(F8)	(F9)		(F11)	(F12)
(G1)	(G2)		(G4)	(G5)			(G8)	(G9)		(G11)	(G12)
(H1)	(H2)		(H4)	(H ₅)	(H ₆)	(H7)	(H8)	(H9)		(H11)	(H12)
(J1)	$(\widehat{J_2})$		$(\overline{J4})$	$(\overline{J5})$	(J <u>e</u>)	(J7)	$(\overline{18})$	(J <u>9</u>)		(J11)	(J12)
(K1)	(K2)									(K11)	(K12)
(L <u>1</u>)	(L2)	(L3)	(L4)	(L5)	(L6)	(L7)	(L8)	(L9)	(L10)	(L]1)	(L12)
(M ₁)	(M2)	(M3)	(M4)	(M ₅)	(M ₆)	(M7)	(M8)	(M9)	(M10)	(M11)	(M12)

NOTE: For terminal assignments, see Table 4-1.

Figure 4-4. 113-Pin ZQW Package (Top View) – MSP430F6638, MSP430F6637, MSP430F6636, MSP430F6635, MSP430F6634, MSP430F6633, MSP430F6632, MSP430F6631, MSP430F6630

4.2 Signal Descriptions

Table 4-1 describes the signals for all device variants and packages.

Table 4-1. Signal Descriptions

TERMINAL			e 4-1. Signal Descriptions	
TERMINAL	N	0.	I/O ⁽¹⁾	DESCRIPTION
NAME	PZ	zqw	"	DEGGINI HON
				General-purpose digital I/O
P6.4/CB4/A4	1	A1	I/O	Comparator_B input CB4
				Analog input A4 – ADC (not available on F6632, F6631, and F6630 devices)
				General-purpose digital I/O
P6.5/CB5/A5	2	B2	I/O	Comparator_B input CB5
				Analog input A5 – ADC (not available on F6632, F6631, and F6630 devices)
				General-purpose digital I/O
				Comparator_B input CB6
P6.6/CB6/A6/DAC0	3	B1	I/O	Analog input A6 – ADC (not available on F6632, F6631, and F6630 devices)
				DAC12.0 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)
				General-purpose digital I/O
				Comparator_B input CB7
P6.7/CB7/A7/DAC1	4	C2	I/O	Analog input A7 – ADC (not available on F6632, F6631, and F6630 devices)
				DAC12.1 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)
				General-purpose digital I/O
P7.4/CB8/A12	P7.4/CB8/A12 5 C1	C1	I/O	Comparator_B input CB8
				Analog input A12 –ADC (not available on F6632, F6631, and F6630 devices)
				General-purpose digital I/O
P7.5/CB9/A13	6	С3	I/O	Comparator_B input CB9
				Analog input A13 – ADC (not available on F6632, F6631, and F6630 devices)
				General-purpose digital I/O
				Comparator_B input CB10
P7.6/CB10/A14/DAC0	7	D2	I/O	Analog input A14 – ADC (not available on F6632, F6631, and F6630 devices)
				DAC12.0 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)
				General-purpose digital I/O
				Comparator_B input CB11
P7.7/CB11/A15/DAC1	8	D1	I/O	Analog input A15 – ADC (not available on F6632, F6631, and F6630 devices)
				DAC12.1 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)
				General-purpose digital I/O
P5.0/VREF+/VeREF+	9	D4	I/O	Output of reference voltage to the ADC
				Input for an external reference voltage to the ADC
				General-purpose digital I/O
P5.1/VREF-/VeREF-	10	E4	I/O	Negative terminal for the reference voltage of the ADC for both sources, the internal reference voltage, or an external applied reference voltage
AVCC1	11	E1, E2		Analog power supply

⁽¹⁾ I = input, O = output, N/A = not available on this package offering

TERMINAL				
	NO.		I/O ⁽¹⁾	DESCRIPTION
NAME	PZ	ZQW		
AVSS1	12	F2		Analog ground supply
XIN	13	F1	I	Input terminal for crystal oscillator XT1
XOUT	14	G1	0	Output terminal of crystal oscillator XT1
AVSS2	15	G2		Analog ground supply
				General-purpose digital I/O
P5.6/ADC12CLK/DMAE0	16	H1	I/O	Conversion clock output ADC (not available on F6632, F6631, and F6630 devices)
				DMA external trigger input
DO O/DOMA DO	47	0.4	1/0	General-purpose digital I/O with port interrupt and mappable secondary function
P2.0/P2MAP0	17	G4	I/O	Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.1/P2MAP1	18	H2	I/O	Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I ² C data
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.2/P2MAP2	19	J1	I/O	Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I ² C clock
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.3/P2MAP3	20	H4	I/O	Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.4/P2MAP4	21	J2	I/O	Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.5/P2MAP5	22	K1	I/O	Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.6/P2MAP6/R03	23	K2	I/O	Default mapping: no secondary function
1 2.5/1 21VIAI 5/1(05	20	112		Input/output port of lowest analog LCD voltage (V5)
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.7/P2MAP7/LCDREF/R13	24	L2	I/O	Default mapping: no secondary function
				External reference voltage input for regulated LCD voltage
				Input/output port of third most positive analog LCD voltage (V3 or V4)
DVCC1	25	L1		Digital power supply
DVSS1	26	M1		Digital ground supply
VCORE ⁽²⁾	27	M2		Regulated core power supply (internal use only, no external current loading)
P5.2/R23	28	L3	I/O	General-purpose digital I/O
				Input/output port of second most positive analog LCD voltage (V2)
				LCD capacitor connection
LCDCAP/R33	29	МЗ	I/O	Input/output port of most positive analog LCD voltage (V1)
				CAUTION: LCDCAP/R33 must be connected to DV _{SS} if not used.
COM0	30	J4	0	LCD common output COM0 for LCD backplane
				General-purpose digital I/O
P5.3/COM1/S42	31	L4	I/O	LCD common output COM1 for LCD backplane
				LCD segment output S42
				General-purpose digital I/O
P5.4/COM2/S41	32	M4	I/O	LCD common output COM2 for LCD backplane
				LCD segment output S41

⁽²⁾ VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, C_{VCORE}.

TERMINAL						
NAME	MF NO.		I/O ⁽¹⁾	DESCRIPTION		
NAME	PZ	ZQW				
				General-purpose digital I/O		
P5.5/COM3/S40	33	J5	I/O	LCD common output COM3 for LCD backplane		
				LCD segment output S40		
				General-purpose digital I/O with port interrupt		
P1.0/TA0CLK/ACLK/S39	34	L5	I/O	Timer TA0 clock signal TACLK input		
11.0/1/100210/10210000	01		1,0	ACLK output (divided by 1, 2, 4, 8, 16, or 32)		
				LCD segment output S39		
				General-purpose digital I/O with port interrupt		
P1.1/TA0.0/S38	35	M5	I/O	Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output		
F1.1/1A0.0/536	33	IVIS	1/0	BSL transmit output		
				LCD segment output S38		
				General-purpose digital I/O with port interrupt		
D4 0/T40 4/007	00	10	1/0	Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output		
P1.2/TA0.1/S37	36	J6	I/O	BSL receive input		
				LCD segment output S37		
				General-purpose digital I/O with port interrupt		
P1.3/TA0.2/S36	37	H6	I/O	Timer TA0 CCR2 capture: CCl2A input, compare: Out2 output		
				LCD segment output S36		
				General-purpose digital I/O with port interrupt		
P1.4/TA0.3/S35	38	M6	I/O	Timer TA0 CCR3 capture: CCl3A input compare: Out3 output		
				LCD segment output S35		
				General-purpose digital I/O with port interrupt		
P1.5/TA0.4/S34	39	L6	I/O	Timer TA0 CCR4 capture: CCl4A input, compare: Out4 output		
				LCD segment output S34		
				General-purpose digital I/O with port interrupt		
P1.6/TA0.1/S33	40	J7	I/O	Timer TA0 CCR1 capture: CCl1B input, compare: Out1 output		
				LCD segment output S33		
				General-purpose digital I/O with port interrupt		
P1.7/TA0.2/S32	41	M7	I/O	Timer TA0 CCR2 capture: CCl2B input, compare: Out2 output		
				LCD segment output S32		
				General-purpose digital I/O with port interrupt		
				Timer TA1 clock input		
P3.0/TA1CLK/CBOUT/S31	42	L7	I/O	Comparator_B output		
				LCD segment output S31		
				General-purpose digital I/O with port interrupt		
P3.1/TA1.0/S30	43	H7	I/O	Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output		
				LCD segment output S30		
				General-purpose digital I/O with port interrupt		
P3.2/TA1.1/S29	44	M8	I/O	Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output		
	•			LCD segment output S29		
				200 dogmont dulput 020		

TERMINAL						
NAME	NAME NO.		I/O ⁽¹⁾	DESCRIPTION		
NAME	PZ	ZQW				
				General-purpose digital I/O with port interrupt		
P3.3/TA1.2/S28	45	L8	I/O	Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output		
				LCD segment output S28		
				General-purpose digital I/O with port interrupt		
P3.4/TA2CLK/SMCLK/S27	46	J8	I/O	Timer TA2 clock input		
1 O.A/ 17/2 OLIV OWOLIV OZI	40	00	1,0	SMCLK output		
				LCD segment output S27		
				General-purpose digital I/O with port interrupt		
P3.5/TA2.0/S26	47	M9	I/O	Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output		
				LCD segment output S26		
				General-purpose digital I/O with port interrupt		
P3.6/TA2.1/S25	48	L9	I/O	Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output		
				LCD segment output S25		
				General-purpose digital I/O with port interrupt		
P3.7/TA2.2/S24	49	M10	I/O	Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output		
				LCD segment output S24		
				General-purpose digital I/O with port interrupt		
P4.0/TB0.0/S23	50	J9	I/O	Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output		
				LCD segment output S23		
				General-purpose digital I/O with port interrupt		
P4.1/TB0.1/S22	51	M11	1 1/0	Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output		
				LCD segment output S22		
				General-purpose digital I/O with port interrupt		
P4.2/TB0.2/S21	52	L10	I/O	Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output		
				LCD segment output S21		
				General-purpose digital I/O with port interrupt		
P4.3/TB0.3/S20	53	M12	I/O	Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output		
				LCD segment output S20		
				General-purpose digital I/O with port interrupt		
P4.4/TB0.4/S19	54	L12	I/O	Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output		
				LCD segment output S19		
				General-purpose digital I/O with port interrupt		
P4.5/TB0.5/S18	55	L11	I/O	Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output		
				LCD segment output S18		
				General-purpose digital I/O with port interrupt		
P4.6/TB0.6/S17	56	K11	I/O	Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output		
				LCD segment output S17		
				General-purpose digital I/O with port interrupt		
				Timer TB0: Switch all PWM outputs high impedance		
P4.7/TB0OUTH/SVMOUT/S16	57	K12	I/O	SVM output		
				LCD segment output S16		
	l	l	L			

TERMINAL					
	N	NO.		DESCRIPTION	
NAME	PZ	ZQW			
				General-purpose digital I/O	
P8.0/TB0CLK/S15	58	J11	I/O	Timer TB0 clock input	
				LCD segment output S15	
				General-purpose digital I/O	
P8.1/UCB1STE/UCA1CLK/S14	59	J12	I/O	USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output	
				LCD segment output S14	
				General-purpose digital I/O	
P8.2/UCA1TXD/UCA1SIMO/S13	60	H11	I/O	USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out	
				LCD segment output S13	
P8.3/UCA1RXD/UCA1SOMI/S12	61	H12	I/O	General-purpose digital I/O	
F8.3/UCATRAD/UCATSOIVII/S12	61	ПІ	1/0	USCI_A1 UART receive data; USCI_A1 SPI slave out/master in	
				LCD segment output S12	
				General-purpose digital I/O	
P8.4/UCB1CLK/UCA1STE/S11	62	G11	I/O	USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable	
				LCD segment output S11	
DVSS2	63	G12		Digital ground supply	
DVCC2	64	F12		Digital power supply	
				General-purpose digital I/O	
P8.5/UCB1SIMO/UCB1SDA/S10	65	F11	I/O	USCI_B1 SPI slave in/master out; USCI_B1 I ² C data	
				LCD segment output S10	
				General-purpose digital I/O	
P8.6/UCB1SOMI/UCB1SCL/S9	66	66 G9	I/O	USCI_B1 SPI slave out/master in; USCI_B1 I ² C clock	
				LCD segment output S9	
P8.7/S8	67	E12	I/O	General-purpose digital I/O	
1 0.1700	0.		., 0	LCD segment output S8	
P9.0/S7	68	E11	I/O	General-purpose digital I/O	
1 0.0/01			., 0	LCD segment output S7	
P9.1/S6	69	F9	I/O	General-purpose digital I/O	
1 0.1700		. 0	., 0	LCD segment output S6	
P9.2/S5	70	D12	I/O	General-purpose digital I/O	
1 0.2/00		0.12	., 0	LCD segment output S5	
DO 2/04	74	D44	1/0	General-purpose digital I/O	
P9.3/S4	71	D11	I/O	LCD segment output S4	
				General-purpose digital I/O	
P9.4/S3	72	E9	I/O	LCD segment output S3	
				General-purpose digital I/O	
P9.5/S2	73	C12	I/O	LCD segment output S2	
				General-purpose digital I/O	
P9.6/S1	74	C11	I/O	LCD segment output S1	
				General-purpose digital I/O	
P9.7/S0	75	D9	I/O	LCD segment output S0	
ļ		L	L		

TERMINAL				
NAME	N	NO.		DESCRIPTION
NAME	PZ	ZQW		
VSSU	76	B11, B12		USB PHY ground supply
PU.0/DP	77	A12	I/O	General-purpose digital I/O, controlled by USB control register. Port U is supplied by the LDOO rail.
				USB data terminal DP
PUR	78	B10	I/O	USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to invoke the default USB BSL. TI recommends a 1-M Ω resistor to ground. See \dagger 6.7.1 for more information.
PU.1/DM	79	A11	I/O	General-purpose digital I/O, controlled by USB control register. Port U is supplied by the LDOO rail.
				USB data terminal DM
VBUS	80	A10		USB LDO input (connect to USB power source)
VUSB	81	A9		USB LDO output
V18	82	B9		USB regulated power (internal use only, no external current loading)
AVSS3	83	A8		Analog ground supply
P7.2/XT2IN	84	B8	I/O	General-purpose digital I/O
7.2/7(12)14	0-1	Во	1/0	Input terminal for crystal oscillator XT2
DZ 2/VT2OLIT	0.5	D7	1/0	General-purpose digital I/O
P7.3/XT2OUT	85	B7	I/O	Output terminal of crystal oscillator XT2
VBAK	86	A7		Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see C_{BAK} in Recommended Operating Conditions.
VBAT	87	D8		Backup or secondary supply voltage. If backup voltage is not supplied, connect to DVCC externally.
P5.7/RTCCLK	88	D7	I/O	General-purpose digital I/O RTCCLK output
DVCC3	89	A6		Digital power supply
DVSS3	90	A5		Digital ground supply
2.000	- 00	710		Test mode pin: selects digital I/O on JTAG pins
TEST/SBWTCK	91	B6	- 1	Spy-Bi-Wire input clock
				General-purpose digital I/O
PJ.0/TDO	92	B5	I/O	Test data output port
				General-purpose digital I/O
PJ.1/TDI/TCLK	93	A4	I/O	
				Test data input or test clock input
PJ.2/TMS	94	E7	I/O	General-purpose digital I/O
				Test mode select
PJ.3/TCK	95	D6	I/O	General-purpose digital I/O
				Test clock
				Reset input (active low) ⁽³⁾
RST/NMI/SBWTDIO	96	АЗ	I/O	Nonmaskable interrupt input
				Spy-Bi-Wire data input/output
				General-purpose digital I/O
P6.0/CB0/A0	97	B4	I/O	Comparator_B input CB0
				Analog input A0 – ADC (not available on F6632, F6631, and F6630 devices)

⁽³⁾ When this pin is configured as reset, the internal pullup resistor is enabled by default.

TERMINAL				
NAME	N	Ο.	I/O ⁽¹⁾	DESCRIPTION
NAME	PZ	ZQW		
!				General-purpose digital I/O
P6.1/CB1/A1	98	В3	I/O	Comparator_B input CB1
				Analog input A1 – ADC (not available on F6632, F6631, and F6630 devices)
				General-purpose digital I/O
P6.2/CB2/A2	99	A2	I/O	Comparator_B input CB2
				Analog input A2 – ADC (not available on F6632, F6631, and F6630 devices)
				General-purpose digital I/O
P6.3/CB3/A3	100	D5	I/O	Comparator_B input CB3
				Analog input A3 – ADC (not available on F6632, F6631, and F6630 devices)
Reserved	N/A	E5, E6, E8, F4, F5, G5, G8, H5, H8,		Reserved. TI recommends connecting to ground (DVSS, AVSS).

5 Specifications

All graphs in this section are for typical conditions, unless otherwise noted.

Typical (TYP) values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}	-0.3	4.1	V
Voltage applied to any pin (excluding VCORE, VBUS, V18) (2)	-0.3	V _{CC} + 0.3	V
Diode current at any device pin		±2	mA
Maximum junction temperature, T _J		95	°C
Storage temperature, T _{stg} ⁽³⁾	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
.,		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
		PMMCOREVx = 0	1.8		3.6	
V	Supply voltage during program execution and flash	PMMCOREVx = 0, 1	2.0		3.6	V
V _{CC}	programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 = $DV_{CC} = V_{CC}$) ⁽¹⁾ (2)	PMMCOREVx = 0, 1, 2	2.2		3.6	V
		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	
		PMMCOREVx = 0	1.8		3.6	
	Supply voltage during USB operation, USB PLL disabled	PMMCOREVx = 0, 1	2.0		3.6	
V	$(USB_EN = 1, UPLLEN = 0)$	PMMCOREVx = 0, 1, 2	2.2		3.6	V
$V_{CC,USB}$		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	V
	Supply voltage during USB operation, USB PLL enabled (3)	PMMCOREVx = 2	2.2		3.6	
	(USB_EN = 1, UPLLEN = 1)	PMMCOREVx = 2, 3	2.4		3.6	
V _{SS}	Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = V_{SS})			0		V
V	Dealers cumply valtage with DTC energtional	$T_A = 0$ °C to 85°C	1.55		3.6	V
$V_{BAT,RTC}$	Backup-supply voltage with RTC operational	$T_A = -40$ °C to +85°C	1.70		3.6	V
$V_{BAT,MEM}$	Backup-supply voltage with backup memory retained	$T_A = -40$ °C to +85°C	1.20		3.6	V
T _A	Operating free-air temperature	I version	-40		85	°C
TJ	Operating junction temperature	I version	-40		85	°C
C _{BAK}	Capacitance at pin VBAK		1	4.7	10	nF

⁽¹⁾ TI recommends powering AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.

⁽²⁾ All voltages referenced to V_{SS}. VCORE is for internal device use only. No external DC loading or voltage should be applied.

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JÉP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽²⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 5.23 for the exact values and more details.

USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation.

Recommended Operating Conditions (continued)

			MIN	NOM	MAX	UNIT
C _{VCORE}	Capacitor at VCORE ⁽⁴⁾			470		nF
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10			
		PMMCOREVx = 0, 1.8 V \leq V _{CC} \leq 3.6 V (default condition)	0		8.0	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency) (5) (6)	PMMCOREVx = 1, 2 V \leq V _{CC} \leq 3.6 V	0		8.0 12.0 16.0 20.0	MHz
0.0.2	(see Figure 5-1)	PMMCOREVx = 2, 2.2 V \leq V _{CC} \leq 3.6 V	0		16.0	
		PMMCOREVx = 3, 2.4 V \leq V _{CC} \leq 3.6 V	0		8.0 12.0 16.0	
f _{SYSTEM_USB}	Minimum processor frequency for USB operation		1.5			MHz
USB_wait	Wait state cycles during USB operation			16		cycles

⁽⁴⁾ A capacitor tolerance of ±20% or better is required.

⁽⁶⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

NOTE: The numbers within the fields denote the supported PMMCOREVx settings.

Figure 5-1. Frequency vs Supply Voltage

⁽⁵⁾ The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.

5.4 Active Mode Supply Current Into V_{cc} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1)(2)(3)

					FF	REQUEN	CY (f _{DCC}	= f _{MCLK}	= f _{SMCL}	к)		
PARAMETER	EXECUTION MEMORY	V _{cc}	PMMCOREVx	1 M	1 MHz		lHz	12 MHz		20 MHz		UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.32	0.36	2.1	2.4					
	Floob	2.1/	1	0.36		2.4		3.6	4.0			A
IAM, Flash	Flash	3 V	2	0.37		2.5		3.8				mA
			3	0.39		2.7		4.0		6.6		
			0	0.18	0.21	1.0	1.2					
	DAM	2.1/	1	0.20		1.2		1.7	1.9			A
I _{AM, RAM}	RAM	M 3 V	2	0.22		1.3		2.0				mA
			3	0.23		1.4		2.1		3.6		

⁽¹⁾ All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

5.5 Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

						TE	MPERA	TURE (T	A)			
	PARAMETER	V _{CC}	PMMCOREVx	-40)°C	25	°C	60	°C	85	Ç	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 0 ⁽³⁾⁽⁴⁾	2.2 V	0	71		75	87	81		85	99	
ILPM0,1MHz	Low-power mode o	3 V	3	78		83	98	89		94	108	μA
	Low-power mode 2 ⁽⁵⁾⁽⁴⁾	2.2 V	0	6.3		6.7	9.9	9.0		11	16	
I _{LPM2} Low-	Low-power mode 2	3 V	3	6.6		7.0	11	10		12	18	μA
			0	1.6		1.8	2.4	4.7		6.5	10.5	
		2.2 V	1	1.6		1.9		4.8		6.6		
			2	1.7		2.0		4.9		6.7		
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode (6) (4)		0	1.9		2.1	2.7	5.0		6.8	10.8	μΑ
	oryotal mode	3 V	1	1.9		2.1		5.1		7.0		
		3 V	2	2.0		2.2		5.2		7.1		
			3	2.0		2.2	2.9	5.4		7.3	12.6	

⁽²⁾ The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.

⁽³⁾ Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0). $f_{ACLK} = 32786$ Hz, $f_{DCO} = f_{MCLK} = f_{SMCLK}$ at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.

⁽¹⁾ All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

⁽²⁾ The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.

⁽³⁾ Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).

⁽⁴⁾ Current for brownout included. Low-side supervisor (SVS_L) and low-side monitor (SVM_L) disabled. High-side supervisor (SVS_H) and high-side monitor (SVM_H) disabled. RAM retention enabled.

⁽⁵⁾ Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled.
USB disabled (VUSBEN = 0, SLDOEN = 0).

⁽⁶⁾ Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).

Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)

					•	TE	MPERA	TURE (T	A)	•		
	PARAMETER	V _{CC}	PMMCOREVx	-40)°C	25	°C	60	°C	85	°C	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.9		1.2	1.9	4.0		5.9	10.3	
I _{LPM3} .	Low-power mode 3, VLO mode, Watchdog	3 V	1	0.9		1.2		4.1		6.0		
VLO,WDT	enabled ⁽⁷⁾⁽⁴⁾	3 V	2	1.0		1.3		4.2		6.1		μΑ
			3	1.0		1.3	2.2	4.3		6.3	11.3	
			0	0.9		1.1	1.8	3.9		5.8	10	
	Low power made 4 (8) (4)	3 V	1	0.9		1.1		4.0		5.9		
I _{LPM4}	Low-power mode 4 ⁽⁸⁾⁽⁴⁾	3 V	2	1.0		1.2		4.1		6.1		μΑ
			3	1.0		1.2	2.1	4.2		6.2	11	
I _{LPM3.5} , RTC,VCC	Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DV _{CC} ⁽⁹⁾	3 V				0.5				0.8	1.4	μΑ
I _{LPM3.5} , RTC,VBAT	Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT ⁽¹⁰⁾	3 V				0.6				0.8	1.4	μΑ
I _{LPM3.5} , RTC,TOT	Total low-power mode 3.5 (LPM3.5) current with active RTC ⁽¹¹⁾	3 V		1.0		1.1		1.3		1.6	2.8	μΑ
I _{LPM4.5}	Low-power mode 4.5 (LPM4.5) ⁽¹²⁾	3 V		0.2		0.3	0.6	0.7		0.9	1.4	μΑ

- (7) Current for watchdog timer clocked by VLO included. $\mathsf{CPUOFF} = 1, \mathsf{SCG0} = 1, \mathsf{SCG1} = 1, \mathsf{OSCOFF} = 0 \ (\mathsf{LPM3}), \mathsf{f}_{\mathsf{ACLK}} = \mathsf{f}_{\mathsf{MCLK}} = \mathsf{f}_{\mathsf{DCO}} = 0 \ \mathsf{MHz}$ USB disabled (VUSBEN = 0, SLDOEN = 0).
- (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$ USB disabled (VUSBEN = 0, SLDOEN = 0).
- (9) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active (10) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
- (11) $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0$ MHz, $f_{ACLK} = 32768$ Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
- (12) Internal regulator disabled. No data retention.
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz

Low-Power Mode With LCD Supply Currents (Into V_{CC}) Excluding External Current 5.6

				TEMPERATURE (T _A)								
	PARAMETER		PMMCOREVx	−40°C		25°C		60°C		85°C		UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 3		0	2.3		2.7	3.1	5.4		7.4	11.5	
I _{LPM3,} LCD,	(LPM3) current, LCD 4-	3 V	1	2.3		2.7		5.6		7.5		
ext. bias	mux mode, external biasing (3) (4)	3 V	2	2.4		2.8		5.8		7.7		μA
	biasing		3	2.4		2.8	3.5	5.9		7.9	13.2	

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz Current for brownout included. Low-side supervisor and monitors disabled (SVS_L, SVM_L). High-side supervisor and monitor disabled (SVS_H, SVM_H). RAM retention enabled.
- LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz) Current through external resistors not included (voltage levels are supplied by test equipment). Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

Low-Power Mode With LCD Supply Currents (Into V_{cc}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

						TE	MPERA	TURE (T	A)			
	PARAMETER	V _{CC}	PMMCOREVx	-40	°C	25	°C	60	°C	85	°C	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 3		0	2.7		3.2	3.8	5.9		7.9	12.2	
I _{LPM3,} LCD,	(LPM3) current, LCD 4- mux mode, internal	3 V	1	2.7		3.2		6.1		8.1		
int. bias		3 V	2	2.8		3.3		6.2		8.3		μA
	biasing, charge pump disabled ⁽³⁾⁽⁵⁾		3	2.8		3.3	4.9	6.4		8.4	13.7	
			0			3.8						
		2.2 V	1			3.9						μA
	Low-power mode 3 (LPM3) current, LCD 4-		2			4.0						
I _{LPM3} LCD,CP	mux mode, internal		0			4.0						
LCD,CP	biasing, charge pump enabled (3)(6)	2.1/	1			4.1						
	onablea	3 V	2			4.2						μA
			3			4.2						

⁽⁵⁾ LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz)

Even segments S0, S2 = 0, odd segments S1, S3 = 1, No LCD page load

5.7 Thermal Resistance Characteristics

	PARAMETER		VALUE	UNIT
D0	Junction-to-ambient thermal resistance, still air ⁽¹⁾	QFP (PZ)	122	°C/W
	Junction-to-ambient thermal resistance, still all V	BGA (ZQW)	108	10/00
D0	lunction to acco (tan) thermal registeres (2)	QFP (PZ)	83	°C/W
KOJC(TOP)	Junction-to-case (top) thermal resistance (2)	BGA (ZQW)	72	10/00
Rθ _{JB}	horseting to be and the arrest reciptors (3)	QFP (PZ)	98	90044
	Junction-to-board thermal resistance ⁽³⁾	BGA (ZQW)	76	°C/W

⁽¹⁾ The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

(6) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (V_{LCD} = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

⁽²⁾ The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

⁽³⁾ The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

5.8 Schmitt-Trigger Inputs – General-Purpose I/O⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Positive going input threshold voltage		1.8 V	0.80		1.40	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.50		2.10	V
V	Negative going input throughold voltage		1.8 V	0.45		1.00	V
V_{IT-}	Negative-going input threshold voltage		3 V	0.75		1.65	V
V	Input valtage bystereeig (// //)		1.8 V	0.3		8.0	V
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.4		1.0	V
R _{Pull}	Pullup or pulldown resistor ⁽²⁾	For pullup: V _{IN} = V _{SS} For pulldown: V _{IN} = V _{CC}		20	35	50	kΩ
CI	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

⁽¹⁾ Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).

5.9 Inputs – Ports P1, P2, P3, and P4⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
t _(int)	External interrupt timing (2)	Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag	2.2 V, 3 V	20		ns

⁽¹⁾ Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

5.10 Leakage Current – General-Purpose I/O

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
$I_{lkg(Px.x)}$	High-impedance leakage current	See (1)(2)	1.8 V, 3 V	±50	nA

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pins, unless otherwise noted.

5.11 Outputs – General-Purpose I/O (Full Drive Strength)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.8 V	V _{CC} - 0.25	V _{CC}	
V _{OH}	High lovel output voltage	$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.0 V	$V_{CC} - 0.60$	V_{CC}	V
	High-level output voltage	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	3 V	V _{CC} - 0.25	V_{CC}	
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$		V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	4.0.1/	V _{SS}	$V_{SS} + 0.25$	V
V		$I_{(OLmax)} = 10 \text{ mA}^{(2)}$	1.8 V	V _{SS}	$V_{SS} + 0.60$	
V _{OL}	Low-level output voltage	I _(OLmax) = 5 mA ⁽¹⁾	3 V	V _{SS}	V _{SS} + 0.25	
		$I_{(OLmax)} = 15 \text{ mA}^{(2)}$	3 V	V _{SS}	$V_{SS} + 0.60$	

⁽¹⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified

²⁾ Also applies to RST pin when pullup or pulldown resistor is enabled.

⁽²⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

⁽²⁾ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

5.12 Outputs – General-Purpose I/O (Reduced Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V _{CC}	V
V _{OH}	High lovel output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.0 V	V _{CC} - 0.60	V_{CC}	
	riigri-ievei output voitage	$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.25	V _{CC}	
		$I_{(OHmax)} = -6 \text{ mA}^{(3)}$	3 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(2)}$	4.0.1/	V _{SS}	V _{SS} + 0.25	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.8 V	V _{SS}	$V_{SS} + 0.60$	
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(2)}$	3 V	V _{SS}	$V_{SS} + 0.25$	V
		I _(OLmax) = 6 mA ⁽³⁾	3 V	V _{SS}	V _{SS} + 0.60	

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

5.13 Output Frequency - Ports P1, P2, and P3

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
f _{Px.y}	Port output frequency (with load)	P3.4/TA2CLK/SMCLK/S27,	V _{CC} = 1.8 V, PMMCOREVx = 0		8	MHz
		$C_L = 20 \text{ pF}, R_L = 1 \text{ k}\Omega^{(1)} \text{ or } 3.2 \text{ k}\Omega^{(2)(3)}$	V _{CC} = 3 V, PMMCOREVx = 3		20	IVII
	Clock output from your	P1.0/TA0CLK/ACLK/S39, P3.4/TA2CLK/SMCLK/S27,	V _{CC} = 1.8 V, PMMCOREVx = 0		8	MHz
†Port_CLK	Clock output frequency	$P2.0/P2MAP0 (P2MAP0 = PM_MCLK),$ $C_L = 20 pF^{(3)}$	V _{CC} = 3 V, PMMCOREVx = 3		20	IVII

Full drive strength of port: A resistive divider with 2 x 0.5 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ Reduced drive strength of port: A resistive divider with 2 x 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽³⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

5.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

5.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

5.16 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, T_A = 25°C			0.075		
$\Delta I_{DVCC,LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0,\\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 2,\\ &T_A = 25^{\circ}\text{C} \end{aligned}$	3 V		0.170		μΑ
		$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3, \\ &T_A = 25^{\circ}\text{C} \end{aligned}$			0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10	32.768	50	kHz
ΟΔ. –	Oscillation allowance for	$ \begin{array}{l} XTS = 0, \\ XT1BYPASS = 0, XT1DRIVEx = 0, \\ f_{XT1,LF} = 32768 Hz, C_{L,eff} = 6 pF \end{array} $		210		kΩ	
OA _{LF}	LF crystals ⁽⁴⁾	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			300		1,72
		$XTS = 0$, $XCAPx = 0^{(6)}$			1		
C	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF
$C_{L,eff}$	capacitance, LF mode ⁽⁵⁾	XTS = 0, $XCAPx = 2$			8.5		рг
		XTS = 0, $XCAPx = 3$			12.0		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, $f_{XT1,LF} = 32768 \text{ Hz}$		30%		70%	
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	$XTS = 0^{(8)}$		10		10000	Hz
t	Start-up time, LF mode	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C}, \\ &C_{L,eff} = 6 \text{ pF} \end{aligned} $	3 V		1000		ms
t _{START,LF}		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3, \\ &T_A = 25^{\circ}\text{C}, \\ &C_{L,eff} = 12 \text{ pF} \end{aligned} $	3 V		500		1113

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - For XT1DRIVEx = 0, $C_{L,eff} \le 6$ pF. For XT1DRIVEx = 1, 6 pF $\le C_{L,eff} \le 9$ pF. For XT1DRIVEx = 2, 6 pF $\le C_{L,eff} \le 10$ pF.
- For XT1DRIVEx = 3, C_{L,eff} ≥ 6 pF.
 (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

5.17 Crystal Oscillator, XT2

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		$f_{OSC} = 4$ MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, $T_A = 25^{\circ}C$			200		
ı	XT2 oscillator crystal current consumption	$\begin{aligned} &f_{OSC} = 12 \text{ MHz, } XT2OFF = 0, \\ &XT2BYPASS = 0, XT2DRIVEx = 1, \\ &T_A = 25^{\circ}C \end{aligned}$	3 V		260		μА
I _{DVCC,XT2}		$ \begin{aligned} &f_{OSC} = 20 \text{ MHz, } \text{XT2OFF} = 0, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 2, \\ &T_{A} = 25^{\circ}\text{C} \end{aligned} $	3 V		325		
		$\label{eq:fosc} \begin{array}{l} f_{OSC} = 32 \text{ MHz, } \text{XT2OFF} = 0, \\ \text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 3, \\ T_{A} = 25^{\circ}\text{C} \end{array}$			450		
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, XT2BYPASS = 0 ⁽³⁾		4		8	MHz
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 ⁽³⁾		8		16	MHz
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 ⁽³⁾		16		24	MHz
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 ⁽³⁾		24		32	MHz
f _{XT2,HF,SW}	XT2 oscillator logic-level square- wave input frequency	XT2BYPASS = 1 (4) (3)		0.7		32	MHz
		$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450		
04	Oscillation allowance for	$XT2DRIVEx = 1$, $XT2BYPASS = 0$, $f_{XT2,HF1} = 12$ MHz, $C_{L,eff} = 15$ pF			320		Ω
OA _{HF}	HF crystals ⁽⁵⁾	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		77
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200		
	Chart up time	$ \begin{aligned} &f_{OSC} = 6 \text{ MHz} \\ &\text{XT2BYPASS} = 0, \text{ XT2DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 15 \text{ pF} \end{aligned} $	3 V		0.5		
t _{START,} HF	Start-up time	$\begin{split} f_{OSC} &= 20 \text{ MHz} \\ \text{XT2BYPASS} &= 0, \text{XT2DRIVEx} = 3, \\ T_{A} &= 25^{\circ}\text{C}, \text{C}_{L,eff} = 15 \text{ pF} \end{split}$	3 V		0.3		ms
$C_{L,eff}$	Integrated effective load capacitance, HF mode (6) (1)				1		pF
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40%	50%	60%	
f _{Fault,HF}	Oscillator fault frequency ⁽⁷⁾	XT2BYPASS = 1 (8)		30		300	kHz

- (1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- (2) To improve EMI on the XT2 oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
 - Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
 - · Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When XT2BYPASS is set, the XT2 circuit is automatically powered down.
- (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- (8) Measured with logic-level input frequency but also applies to operation with crystals.

5.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	

¹⁾ Calculated using the box method: (MAX(-40°C to +85°C) – MIN(-40°C to +85°C)) / MIN(-40°C to +85°C) / (85°C – (-40°C))

5.19 Internal Reference, Low-Frequency Oscillator (REFO)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	3		μΑ
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	32768		Hz
f _{REFO}	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V		±3.5%	
		T _A = 25°C	3 V		±1.5%	
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V	0.01		%/°C
df _{REFO} /dV _{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V	1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40% 50%	60%	
t _{START}	REFO start-up time	40%/60% duty cycle	1.8 V to 3.6 V	25		μs

 $^{(1) \}quad \text{Calculated using the box method: } \\ \left(\text{MAX}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MIN}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MIN}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{85^{\circ}\text{C}} - (-40^{\circ}\text{C}) \right) \\ \left(\text{10^{\circ}\text{C}} + (-40^{\circ}\text{C}) + (-40^{\circ}\text{C}) \right) \\ \left(\text{10^{\circ}\text{C}} + (-40^{\circ}\text{C}) + (-40^{\circ}\text{C}) + (-40^{\circ}\text{C}) \right) \\ \left(\text{10^{\circ}\text{C}} + (-40^{\circ}\text{C}) + (-40^{\circ}\text{C}) + (-40^{\circ}\text{C}) + (-40^{\circ}\text{C}) \right) \\ \left(\text{10^{\circ}\text{C}} + (-40^{\circ}\text{C}) + (-40^{$

⁽²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

⁽²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

5.20 DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{DCO(0,0)}	DCO frequency (0, 0)	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07		0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31)	DCORSELx = 0, $DCOx = 31$, $MODx = 0$	0.70		1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0)	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15		0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31)	DCORSELx = 1, DCOx = 31, MODx = 0	1.47		3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0)	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32		0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31)	DCORSELx = 2, DCOx = 31, MODx = 0	3.17		7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0)	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64		1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31)	DCORSELx = 3, DCOx = 31, MODx = 0	6.07		14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0)	DCORSELx = 4, $DCOx = 0$, $MODx = 0$	1.3		3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31)	DCORSELx = 4, DCOx = 31, MODx = 0	12.3		28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0)	DCORSELx = 5, DCOx = 0, MODx = 0	2.5		6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31)	DCORSELx = 5, DCOx = 31, MODx = 0	23.7		54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0)	DCORSELx = 6, $DCOx = 0$, $MODx = 0$	4.6		10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31)	DCORSELx = 6, DCOx = 31, MODx = 0	39.0		0.88	MHz
f _{DCO(7,0)}	DCO frequency (7, 0)	DCORSELx = 7, DCOx = 0, MODx = 0	8.5		19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31)	DCORSELx = 7, DCOx = 31, MODx = 0	60		135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2		2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40%	50%	60%	
df _{DCO} /dT	DCO frequency temperature drift	f _{DCO} = 1 MHz		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift	f _{DCO} = 1 MHz		1.9		%/V

Figure 5-10. Typical DCO Frequency

5.21 PMM, Brownout Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(DVCC_BOR_IT-)	BOR _H on voltage, DV _{CC} falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.45	V
V _(DVCC_BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	dDV _{CC} /d _t < 3 V/s	0.80	1.30	1.50	٧
V _(DVCC_BOR_hys)	BOR _H hysteresis		50		250	mV
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset		2			μs

5.22 PMM, Core Voltage

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	$2.4 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{\text{CORE}}) \le 21 \text{ mA}$	1.90		V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	$2.2 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{\text{CORE}}) \le 21 \text{ mA}$	1.80		٧
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	$2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}, 0 \text{ mA} \leq \text{I}(\text{V}_{\text{CORE}}) \leq 17 \text{ mA}$	1.60		٧
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	$1.8 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{\text{CORE}}) \le 13 \text{ mA}$	1.40		٧
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ $I(V_{CORE})$ ≤ 30 μA	1.94		٧
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ $I(V_{CORE})$ ≤ 30 μA	1.84		٧
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ I(V _{CORE}) ≤ 30 μA	1.64		V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V, 0 μ A ≤ $I(V_{CORE})$ ≤ 30 μ A	1.44		٧

5.23 PMM, SVS High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSHE = 0, DV _{CC} = 3.6 V		0		nA
I _(SVSH)	SVS current consumption	SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 0		200		nA
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		2.0		μA
		SVSHE = 1, SVSHRVL = 0	1.59	1.64	1.69	
\ /	C)/C	SVSHE = 1, SVSHRVL = 1	1.79	1.84	1.91	V
V _(SVSH_IT-)	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 2	1.98	2.04	2.11	V
		SVSHE = 1, SVSHRVL = 3	2.10	2.16	2.23	
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.81	
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.01	V
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.21	
M		SVSHE = 1, SVSMHRRL = 3	2.20	2.26	2.33	
V(SVSH_IT+)		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.48	
		SVSHE = 1, SVSMHRRL = 5	2.56	2.70	2.84	
		SVSHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	•
		SVSHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	
	CVC proposition dolor	SVSHE = 1, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVSHFP = 1		2.5		
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs
	C)/C	SVSHE = 0→1, SVSHFP = 1		12.5		
t _(SVSH)	SVS _H on or off delay time	SVSHE = 0→1, SVSHFP = 0		100		μs
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s

⁽¹⁾ The SVS_H settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and usage.

5.24 PMM, SVM High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DVCC = 3.6 V		0		~ A
$I_{(SVMH)}$	SVM _H current consumption	SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0		200		nA
		SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1		2.0		μΑ
		SVMHE = 1, SVSMHRRL = 0	1.65	1.74	1.86	
		SVMHE = 1, SVSMHRRL = 1	1.85	1.94	2.02	
	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 2	2.02	2.14	2.22	
		SVMHE = 1, SVSMHRRL = 3	2.18	2.26	2.35	
$V_{(SVMH)}$		SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.48	V
		SVMHE = 1, SVSMHRRL = 5	2.56	2.70	2.84	
		SVMHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	
		SVMHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	
		SVMHE = 1, SVMHOVPE = 1		3.75		
	C)/NA managerian dalam	SVMHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVMHFP = 1		2.5		
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, dV _{DVCC} /dt = 1 mV/µs, SVMHFP = 0		20		μs
	C)/M on or off dolay time	SVMHE = 0→1, SVSMFP = 1	12.5			
t _(SVMH)	SVM _H on or off delay time	SVMHE = 0→1, SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and usage.

5.25 PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSLE = 0, PMMCOREV = 2		0		nA
I _(SVSL)	SVS _L current consumption	SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		IIA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		2.0		μΑ
	SVS _L propagation delay	SVSLE = 1, dV _{CORE} /dt = 10 mV/µs, SVSLFP = 1		2.5		
t _{pd} (SVSL)		SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		20		μs
	SVS _L on or off delay time	SVSLE = 0→1, SVSLFP = 1		12.5		
t _(SVSL)		SVSLE = 0→1, SVSLFP = 0		100		μs

5.26 PMM, SVM Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMLE = 0, PMMCOREV = 2		0		~ ^
I _(SVML)	SVM _L current consumption	SVMLE = 1, PMMCOREV = 2, SVMLFP = 0		200		nA
, ,		SVMLE = 1, PMMCOREV = 2, SVMLFP = 1		2.0		μΑ
	SVM _L propagation delay	SVMLE = 1, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, $SVMLFP = 1$		2.5		
t _{pd(SVML)}		SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVMLFP = 0		20		μs
	SVM _L on or off delay time	SVMLE = 0→1, SVMLFP = 1		12.5		
t _(SVML)		SVMLE = 0→1, SVMLFP = 0		100		μs

5.27 Wake-up Times From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4 MHz		3	6.5	
t _{WAKE-UP-FAST}	LPM3, or LPM4 to active mode ⁽¹⁾	(where n = 0, 1, 2, or 3), SVSLFP = 1	1 MHz < f _{MCLK} < 4 MHz		4	8.0	μs
twake-up-slow	Wake-up time from LPM2, LPM3, or LPM4 to active mode ⁽²⁾⁽³⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
twake-up-lpm5	Wake-up time from LPM3.5 or LPM4.5 to active mode (4)				2	3	ms
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (4)				2	3	ms

⁽¹⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-FAST} is possible with SVS_L and SVM_L in full performance mode or disabled. For specific register settings, see the *Low-Side SVS* and *SVM* Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide.

(4) This value represents the time from the wake-up event to the reset vector execution.

⁽²⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-SLOW} is set with SVS_L and SVM_L in normal mode (low current mode). For specific register settings, see the *Low-Side SVS and SVM Control and Performance Mode Selection* section in the *Power Management Module and Supply Voltage Supervisor* chapter of the *MSP430x5xx and MSP430x6xx Family User's Guide*.

⁽³⁾ The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4.

5.28 Timer_A, Timers TA0, TA1, and TA2

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10%	1.8 V, 3 V	20	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20	ns

5.29 Timer_B, Timer TB0

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10%	1.8 V, 3 V	20	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20	ns

5.30 Battery Backup

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	V _{cc}	MIN	TYP	MAX	UNIT
			$T_A = -40$ °C			0.43		
		VBAT = 1.7 V, DVCC not connected,	$T_A = 25^{\circ}C$			0.52		
		RTC running	$T_A = 60^{\circ}C$			0.58		
			$T_A = 85^{\circ}C$			0.64		
			$T_A = -40$ °C			0.50		
	Current into VBAT terminal if no	VBAT = 2.2 V, DVCC not connected,	$T_A = 25^{\circ}C$			0.59		
I _{VBAT}	primary battery is connected	RTC running	$T_A = 60^{\circ}C$			0.64		μΑ
			$T_A = 85^{\circ}C$			0.71		
			T _A = -40°C			0.68		
		VBAT = 3 V,	T _A = 25°C			0.75		
		DVCC not connected, RTC running	T _A = 60°C			0.79		
			T _A = 85°C			0.86		
	Switch-over level (V _{CC} to VBAT)	C _{VCC} = 4.7 μF	General			V _{SVSH_IT} -		
			SVSHRL = 0		1.59		1.69	
V_{SWITCH}			SVSHRL = 1		1.79		1.91	V
			SVSHRL = 2		1.98		2.11	
			SVSHRL = 3		2.10		2.23	
R _{ON_VBAT}	ON-resistance of switch between VBAT and VBAK	V _{BAT} = 1.8 V		0 V		0.35	1	kΩ
				1.8 V		0.6	±5%	
V_{BAT3}	VBAT to ADC input channel 12: V_{BAT} divided, $V_{BAT3} = V_{BAT}/3$			3 V		1.0	±5%	V
	VBAT GIVIGOG, VBAT3 - VBATO			3.6 V		1.2	±5%	
t _{Sample} , VBAT3	VBAT to ADC: Sampling time required if VBAT3 selected	ADC12ON = 1, Error of conversion resu	ılt ≤ 1 LSB		1000			ns
V _{CHVx}	Charger end voltage	CHVx = 2			2.65	2.7	2.9	V
		CHCx = 1					5	
R _{CHARGE}	Charge limiting resistor	CHCx = 2					10	kΩ
	2 0	CHCx = 3					20	

5.31 USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)				1	MHz
	LIABT receive decilitate time (1)		2.2 V	50	600	2
ι _τ	UART receive deglitch time ⁽¹⁾		3 V	50	600	ns

Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

5.32 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-11 and Figure 5-12)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK or ACLK, Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
		PMMCOREV = 0	1.8 V	55		
	SOMI input data actus timo	PIVIVICOREV = 0	3 V	38		no
t _{SU,MI}	SOMI input data setup time	PMMCOREV = 3	2.4 V	30		ns
		PIVIVICOREV = 3	3 V	25		
	SOMI input data hold time	DMMCODEV 0	1.8 V	0		
		PMMCOREV = 0	3 V	0		
t _{HD,MI}		DMMCODEV 2	2.4 V	0		ns
		PMMCOREV = 3	3 V	0		
		UCLK edge to SIMO valid,	1.8 V		20	ns
	20042 (2)	C _L = 20 pF, PMMCOREV = 0	3 V		18	
t _{VALID,MO}	SIMO output data valid time (2)	UCLK edge to SIMO valid,	2.4 V		16	
		C _L = 20 pF, PMMCOREV = 3	3 V		15	
		O CONTENTANCOREY O	1.8 V	-10		ns
	(3)	$C_L = 20 \text{ pF}, \text{PMMCOREV} = 0$	3 V	-8		
t _{HD,MO}	SIMO output data hold time (3)	0. 00 5 514400551/ 0	2.4 V	-10		
		$C_L = 20 \text{ pF}, \text{PMMCOREV} = 3$	3 V	-8		

 $f_{\text{UCxCLK}} = 1/2 t_{\text{LO/HI}} \text{ with } t_{\text{LO/HI}} \geq \max(t_{\text{VALID,MO(USCI)}} + t_{\text{SU,SI(Slave)}}, t_{\text{SU,MI(USCI)}} + t_{\text{VALID,SO(Slave)}})$ For the slave parameters $t_{\text{SU,SI(Slave)}}$ and $t_{\text{VALID,SO(Slave)}}$, see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-11 and Figure 5-12.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-11 and Figure 5-12.

Figure 5-11. SPI Master Mode, CKPH = 0

Figure 5-12. SPI Master Mode, CKPH = 1

5.33 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5-13 and Figure 5-14)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		DIMIOODEW 0	1.8 V	11		
	OTEL III OTEL I I	PMMCOREV = 0	3 V	8		
t _{STE,LEAD}	STE lead time, STE low to clock	DIMIOODEW 0	2.4 V	7		ns
		PMMCOREV = 3	3 V	6		
		DIAMACOREV. O	1.8 V	3		
	OTEL SILVE OTELS	PMMCOREV = 0	3 V	3		
t _{STE,LAG}	STE lag time, Last clock to STE high	DIMIOODEW 0	2.4 V	3		ns
		PMMCOREV = 3	3 V	3		
		DIMIOODEW 0	1.8 V		66	
	0.75	PMMCOREV = 0	3 V		50	
t _{STE,ACC}	STE access time, STE low to SOMI data out	DI WIGODEW 6	2.4 V		36	ns
		PMMCOREV = 3	3 V		30	
		DIMIOODEW 0	1.8 V		30	
		PMMCOREV = 0	3 V		23	ne
t _{STE,DIS}	STE disable time, STE high to SOMI high impedance	DI II I CODEI I	2.4 V		16	ns
		PMMCOREV = 3	3 V		13	
		DI WIGODEW A	1.8 V	5		ns
		PMMCOREV = 0	3 V	5		
t _{SU,SI}	SIMO input data setup time	DIMIOODEW 0	2.4 V	2		
		PMMCOREV = 3	3 V	2		
		D. W. (20 D. T.)	1.8 V	5		
	0040	PMMCOREV = 0	3 V	5		
t _{HD,SI}	SIMO input data hold time	DI II I CODEI I	2.4 V	5		ns
		PMMCOREV = 3	3 V	5		
		UCLK edge to SOMI valid,	1.8 V		76	
	SOMI output data valid time ⁽²⁾	$C_L = 20 \text{ pF},$ PMMCOREV = 0	3 V		60	no
t _{VALID,SO}	Solvii output data valid time 47	UCLK edge to SOMI valid,	2.4 V		44	ns
		$C_L = 20 \text{ pF},$ PMMCOREV = 3	3 V		40	
		C _L = 20 pF,	1.8 V	18		
	COMI output data hald time (3)	PMMCOREV = 0	3 V	12		1
t _{HD,SO}	SOMI output data hold time (3)	C _L = 20 pF,	2.4 V	10		ns
		PMMCOREV = 3	3 V	8		

 $f_{UCxCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq \max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)}) \\ \text{For the master parameters } t_{SU,MI(Master)} \text{ and } t_{VALID,MO(Master)}, \text{ see the SPI parameters of the attached master.} \\ \text{Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams to the southern of the south$ in Figure 5-13 and Figure 5-14.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

Figure 5-13. SPI Slave Mode, CKPH = 0

Figure 5-14. SPI Slave Mode, CKPH = 1

5.34 USCI (I²C Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0	400	kHz
4	Lold time (repeated) START	f _{SCL} ≤ 100 kHz	221/21/	4.0		
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
4	Catura time for a repeated CTART	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.7		
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250		ns
	Catura time a few CTOD	f _{SCL} ≤ 100 kHz	221/21/	4.0		
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Pulse duration of spikes suppressed by		2.2 V	50	600	ns
t _{SP}	input filter		3 V	50	600	

Figure 5-15. I²C Mode Timing

5.35 LCD_B, Recommended Operating Conditions

	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
V _{CC,LCD_B} , CP en,3.6	Supply voltage range, charge pump enabled, V _{LCD} ≤ 3.6 V	LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, V _{LCD} ≤ 3.6 V)	2.2		3.6	V
V _{CC,LCD_B,} CP en,3.3	Supply voltage range, charge pump enabled, $V_{LCD} \le 3.3 \text{ V}$	LCDCPEN = 1, 0000 < VLCDx \leq 1100 (charge pump enabled, $V_{LCD} \leq$ 3.3 V)	2.0		3.6	V
V _{CC,LCD_B, int. bias}	Supply voltage range, internal biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	V
V _{CC,LCD_B} , ext. bias	Supply voltage range, external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	V
V _{CC,LCD_B} , vlcdext	Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.0		3.6	V
V _{LCDCAP/R33}	External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.4		3.6	V
C _{LCDCAP}	Capacitor on LCDCAP when charge pump enabled	LCDCPEN = 1, VLCDx > 0000 (charge pump enabled)	4.7	4.7	10	μF
f _{Frame}	LCD frame frequency range	$f_{LCD} = 2 \times mux \times f_{FRAME}$ (mux = 1 (static), 2, 3, 4)	0		100	Hz
f _{ACLK,in}	ACLK input frequency range		30	32	40	kHz
C _{Panel}	Panel capacitance	100-Hz frame frequency			10000	pF
V_{R33}	Analog input voltage at R33	LCDCPEN = 0, VLCDEXT = 1	2.4		V _{CC} + 0.2	V
V _{R23,1/3bias}	Analog input voltage at R23	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V _{R13}	V_{R03} + 2/3 × $(V_{R33}$ - $V_{R03})$	V _{R33}	V
V _{R13,1/3bias}	Analog input voltage at R13 with 1/3 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V_{R03}	V_{R03} + 1/3 x $(V_{R33} - V_{R03})$	V_{R23}	V
V _{R13,1/2bias}	Analog input voltage at R13 with 1/2 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1	V_{R03}	V _{R03} + 1/2 x (V _{R33} - V _{R03})	V_{R33}	V
V _{R03}	Analog input voltage at R03	R0EXT = 1	V _{SS}			V
V _{LCD} -V _{R03}	Voltage difference between V _{LCD} and R03	LCDCPEN = 0, R0EXT = 1	2.4		V _{CC} +0 .2	V
V _{LCDREF/R13}	External LCD reference voltage applied at LCDREF/R13	VLCDREFx = 01	0.8	1.2	1.5	V

5.36 LCD_B, Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		VLCDx = 0000, VLCDEXT = 0	2.4 V to 3.6 V		V _{CC}		
		LCDCPEN = 1, VLCDx = 0001	2 V to 3.6 V		2.60		
		LCDCPEN = 1, VLCDx = 0010	2 V to 3.6 V		2.66		
		LCDCPEN = 1, VLCDx = 0011	2 V to 3.6 V		2.72		
		LCDCPEN = 1, VLCDx = 0100	2 V to 3.6 V		2.79		
		LCDCPEN = 1, VLCDx = 0101	2 V to 3.6 V		2.85		
		LCDCPEN = 1, VLCDx = 0110	2 V to 3.6 V		2.92		
	LODesaltana	LCDCPEN = 1, VLCDx = 0111	2 V to 3.6 V		2.98		.,
V_{LCD}	LCD voltage	LCDCPEN = 1, VLCDx = 1000	2 V to 3.6 V		3.05		V
		LCDCPEN = 1, VLCDx = 1001	2 V to 3.6 V		3.10		
		LCDCPEN = 1, VLCDx = 1010	2 V to 3.6 V		3.17		
		LCDCPEN = 1, VLCDx = 1011	2 V to 3.6 V		3.24		
		LCDCPEN = 1, VLCDx = 1100	2 V to 3.6 V		3.30		
		LCDCPEN = 1, VLCDx = 1101	2.2 V to 3.6 V		3.36		
		LCDCPEN = 1, VLCDx = 1110	2.2 V to 3.6 V		3.42		
		LCDCPEN = 1, VLCDx = 1111	2.2 V to 3.6 V		3.48	3.6	
I _{CC,Peak,CP}	Peak supply currents due to charge pump activities	LCDCPEN = 1, VLCDx = 1111	2.2 V		400		μΑ
t _{LCD,CP,on}	Time to charge C _{LCD} when discharged	C _{LCD} = 4.7 μF, LCDCPEN = 0→1, VLCDx = 1111	2.2 V		100	500	ms
I _{CP,Load}	Maximum charge pump load current	LCDCPEN = 1, VLCDx = 1111	2.2 V	50			μΑ
R _{LCD,Seg}	LCD driver output impedance, segment lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 µA	2.2 V			10	kΩ
R _{LCD,COM}	LCD driver output impedance, common lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 µA	2.2 V			10	kΩ

5.37 12-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	AVCC and DVCC are connected together, AVSS and DVSS are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 V$		2.2		3.6	V
$V_{(Ax)}$	Analog input voltage range (2)	All ADC12 analog input pins Ax		0		AV_{CC}	V
	Operating supply current into	£ 5 MH-(4)	2.2 V		150	200	
IADC12_A	Operating supply current into AV _{CC} terminal ⁽³⁾	f _{ADC12CLK} = 5 MHz ⁽⁴⁾	3 V		150	250	μA
Cı	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		20	25	pF
R _I	Input MUX ON resistance	0 V ≤ V _{IN} ≤ V _(AVCC)		10	200	1900	Ω

⁽¹⁾ The leakage current is specified by the digital I/O input leakage.

5.38 12-Bit ADC, Timing Parameters

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference ⁽¹⁾		0.45	4.8	5.0	
f _{ADC12CLK}	ADC conversion clock	For specified performance of ADC12 linearity parameters using the internal reference (2)	2.2 V, 3 V	0.45	2.4	4.0	MHz
		For specified performance of ADC12 linearity parameters using the internal reference (3)		0.45	2.4	2.7	
f _{ADC12OSC}	Internal ADC12 oscillator ⁽⁴⁾	ADC12DIV = 0, f _{ADC12CLK} = f _{ADC12OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
	Conversion time	REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock	2.2 V, 3 V	2.4		3.1	
^t CONVERT	Conversion time	External f _{ADC12CLK} from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0		13 × 1 / f _{ADC12CLK}			μs
t _{Sample}	Sampling time	$R_S = 400 \Omega$, $R_I = 200 \Omega$, $C_I = 20 pF$, $\tau = (R_S + R_I) \times C_I^{(5)}$	2.2 V, 3 V	1000			ns

⁽¹⁾ REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with f_{ADC12CLK} maximum of 5 MHz.

⁽²⁾ The analog input voltage range must be within the selected reference voltage range V_{R+} to V_R for valid conversion results. If the reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are required. See Section 5.43 and Section 5.44.

⁽³⁾ The internal reference supply current is not included in current consumption parameter IADC12.

⁽⁴⁾ ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0

⁽²⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1

⁽³⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2.

⁽⁴⁾ The ADC12OSC is sourced directly from MODOSC inside the UCS.

⁽⁵⁾ Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:
t_{Sample} = ln(2ⁿ⁺¹) x (R_S + R_I) x C_I + 800 ns, where n = ADC resolution = 12, R_S = external source resistance

5.39 12-Bit ADC, Linearity Parameters Using an External Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
_	Integral	$1.4 \text{ V} \le \text{dVREF} \le 1.6 \text{ V}^{(2)}$	2.2 V, 3 V		±2	LSB
E _I	linearity error ⁽¹⁾	1.6 V < dVREF ⁽²⁾	2.2 V, 3 V		±1.7	LOD
E _D	Differential linearity error ⁽¹⁾	(2)	2.2 V, 3 V		±1	LSB
_	Offset error ⁽³⁾	$dVREF \le 2.2 \ V^{(2)}$	2.2 V, 3 V	±3	±5.6	LSB
Eo	Offset effor 17	$dVREF > 2.2 V^{(2)}$	2.2 V, 3 V	±1.5	±3.5	LOD
E _G	Gain error ⁽³⁾	(2)	2.2 V, 3 V	±1	±2.5	LSB
_	Total unadjusted	$dVREF \le 2.2 \ V^{(2)}$	2.2 V, 3 V	±3.5	±7.1	LSB
E _T	error	$dVREF > 2.2 V^{(2)}$	2.2 V, 3 V	±2	±5	LOD

⁽¹⁾ Parameters are derived using the histogram method.

5.40 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
Eı	Integral linearity error ⁽¹⁾	See (2)	2.2 V, 3 V			±1.7	LSB
E _D	Differential linearity error ⁽¹⁾	See (2)	2.2 V, 3 V			±1	LSB
Eo	Offset error ⁽³⁾	See (2)	2.2 V, 3 V		±1	±2	LSB
E_G	Gain error ⁽³⁾	See (2)	2.2 V, 3 V		±2	±4	LSB
E _T	Total unadjusted error	See (2)	2.2 V, 3 V		±2	±5	LSB

⁽¹⁾ Parameters are derived using the histogram method.

5.41 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage

	PARAMETER	TEST CONDITI	ONS ⁽¹⁾	V _{CC}	MIN	TYP	MAX	UNIT
_	Integral	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V			±1.7	LSB
Eı	linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±2.5	LOD
		ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz		-1		+1.5	
E_D	Differential linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1	LSB
	middiny offici	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz		-1		+2.5	
_	Offset error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	001/01/		±2	±4	LSB
Eo	Oliset ellor	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V		±2	±4	LOD
_	Gain error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±1	±2.5	LSB
⊏G	E _G Gain error ⁽³⁾	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1% ⁽⁴⁾	VREF
_ Total unadjusted		ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±2	±5	LSB
E _T	error	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1% ⁽⁴⁾	VREF

⁽¹⁾ The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = V_{R+} - V_R.

⁽²⁾ The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = V_{R+} - V_{R-}. V_{R+} < AVCC. V_{R-} > AVSS. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the MSP430F5xx and MSP430F6xx Family User's Guide.</p>

⁽³⁾ Parameters are derived using a best fit curve.

⁽²⁾ AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.

⁽³⁾ Parameters are derived using a best fit curve.

⁽²⁾ Parameters are derived using the histogram method.

⁽³⁾ Parameters are derived using a best fit curve.

⁽⁴⁾ The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode the reference voltage used by the ADC12_A is not available on a pin.

5.42 12-Bit ADC, Temperature Sensor and Built-In V_{MID}⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Temperature sensor voltage (2)	ADC12ON = 1, INCH = 0Ah,	2.2 V		680		mV
V _{SENSOR}	(see Figure 5-16)	$T_A = 0$ °C	3 V		680		IIIV
TC	Temperature coefficient of	ADC12ON 1 INCL. OAR	2.2 V		2.25		mV/°C
TC _{SENSOR}	sensor ⁽²⁾	ADC12ON = 1, INCH = 0Ah	3 V		2.25		IIIV/C
	Sample time required if	ADC12ON = 1, INCH = 0Ah,	2.2 V	100			
tSENSOR(sample)	channel 10 is selected ⁽³⁾	Error of conversion result ≤ 1 LSB	3 V	100			μs
V	AV _{CC} divider at channel 11	ADC12ON = 1, INCH = 0Bh,	2.2 V	1.06	1.1	1.14	V
V _{MID}	AV _{CC} divider at charmer 11	$V_{MID} \approx 0.5 \times V_{AVCC}$	3 V	1.46	1.5	1.54	V
t _{VMID(sample)}	Sample time required if channel 11 is selected (4)	ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB	2.2 V, 3 V	1000			ns

- (1) The temperature sensor is provided by the REF module. See the REF module parametric, I_{REF+}, regarding the current consumption of the temperature sensor.
- (2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's Guide.
- (3) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.
- (4) The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

Figure 5-16. Typical Temperature Sensor Voltage

5.43 REF, External Reference

1	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (2)		1.4	AV_{CC}	V
V _{REF-} /V _{eREF-}	Negative external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (3)		0	1.2	V
V _{eREF+} - V _{REF-} /V _{eREF-}	Differential external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (4)		1.4	AV _{CC}	V
I _{VeREF+} , I _{VREF-}	/REF- Static input current	$1.4~V \le V_{eREF+} \le V_{AVCC}$, $V_{eREF-} = 0~V$, $f_{ADC12CLK} = 5~MHz$, ADC12SHTx = 1h, Conversion rate 200 ksps	2.2 V, 3 V	-26	26	
VeREF+, IVREF- VeREF-		$\begin{array}{l} 1.4~V \leq V_{eREF+} \leq V_{AVCC}~,~V_{eREF-} = 0~V,\\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 8h,\\ Conversion~rate~20~ksps \end{array}$	2.2 V, 3 V	-1.2	+1.2	μA
C _{VREF+/-}	Capacitance at VREF+ or VREF- terminal (5)			10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to let the charge settle for 12-bit accuracy.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

⁽³⁾ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

⁽⁴⁾ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

⁽⁵⁾ Connect two decoupling capacitors, 10 μF and 100 nF, to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide.

5.44 REF, Built-In Reference

	PARAMETER	TEST CONDITION	IS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1 , I _{VREF+} =	0 A	3 V		2.5	±1%	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2 V, REFON = REFOUT = 1, I _{VREF+} = 0) A	3 V		2.0	±1%	V
		REFVSEL = {0} for 1.5 V, REFON = REFOUT = 1, I _{VREF+} = 0) A	2.2 V, 3 V		1.5	±1%	
	AVCC minimum voltage,	REFVSEL = {0} for 1.5 V			2.2			
$AV_{CC(min)}$	Positive built-in reference	REFVSEL = {1} for 2 V			2.3			V
	active	REFVSEL = {2} for 2.5 V			2.8			
		ADC12SR = $1^{(4)}$, REFON = 1, REF REFBURST = 0	FOUT = 0,			70	100	μΑ
	Operating supply current	ADC12SR = 1 ⁽⁴⁾ , REFON = 1, REF REFBURST = 0	FOUT = 1,	0.14		0.45	0.75	mA
I _{REF+}	into AVCC terminal (2) (3)	ADC12SR = $0^{(4)}$, REFON = 1, REF REFBURST = 0	FOUT = 0,	3 V		210	310	μΑ
		ADC12SR = $0^{(4)}$, REFON = 1, REI REFBURST = 0	FOUT = 1,			0.95	1.7	mA
I _{L(VREF+)}	Load-current regulation, VREF+ terminal ⁽⁵⁾	REFVSEL = $\{0, 1, 2\}$, $I_{VREF+} = +10 \mu A$, $-1000 \mu A$, $AV_{CC} = AV_{CC(min)}$ for each reference REFVSEL = $\{0, 1, 2\}$, REFON = R	ce level, EFOUT = 1			1500	2500	μV/mA
C _{VREF+}	Capacitance at VREF+ terminal	REFON = REFOUT = $1^{(6)}$, 0 mA \leq I _{VREF+} \leq I _{VREF+} (max)		2.2 V, 3 V	20		100	pF
TC _{REF+}	Temperature coefficient of built-in reference ⁽⁷⁾	I _{VREF+} is a constant in the range of 0 mA ≤ I _{VREF+} ≤ −1 mA	REFOUT = 0	2.2 V, 3 V		20		ppm/ °C
TC _{REF+}	Temperature coefficient of built-in reference ⁽⁷⁾	I _{VREF+} is a constant in the range of 0 mA ≤ I _{VREF+} ≤ −1 mA	REFOUT = 1	2.2 V, 3 V		20	50	ppm/ °C
PSRR_DC	Power supply rejection ratio (DC)	$\begin{array}{l} \text{AV}_{\text{CC}} = \text{AV}_{\text{CC}}(\text{min}) \text{ to AV}_{\text{CC}}(\text{max}), \\ \text{T}_{\text{A}} = 25^{\circ}\text{C}, \text{ REFVSEL} = \{0, 1, 2\}, \text{ FREFOUT} = 0 \text{ or } 1 \end{array}$	REFON = 1,			120	300	μV/V
PSRR_AC	Power supply rejection ratio (AC)	$\begin{array}{l} \text{AV}_{\text{CC}} = \text{AV}_{\text{CC}}(\text{min}) \text{ to AV}_{\text{CC}}(\text{max}), \\ \text{T}_{\text{A}} = 25^{\circ}\text{C}, \text{REFVSEL} = \{0,1,2\}, \text{F} \\ \text{REFOUT} = 0 \text{ or } 1 \end{array}$	REFON = 1,			1		mV/V
	Settling time of reference	$AV_{CC} = AV_{CC}(min)$ to $AV_{CC}(max)$, REFVSEL = {0, 1, 2}, REFOUT = 0 REFON = 0 \rightarrow 1),			75		1.2
^t SETTLE	voltage ⁽⁸⁾	$AV_{CC} = AV_{CC}(min)$ to $AV_{CC}(max)$, $C_{VREF} = C_{VREF}(max)$, $REFVSEL = REFOUT = 1$, $REFON = 0 \rightarrow 1$	{0, 1, 2},			75		μs

⁽¹⁾ The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the V_{REF+} terminal. When REFOUT = 1, the reference is available at the V_{REF+} terminal, as well as, used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and uses the smaller buffer.

⁽²⁾ The internal reference current is supplied by the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load.

⁽³⁾ The temperature sensor is provided by the REF module. Its current is supplied by terminal AVCC and is equivalent to I_{REF+} with REFON = 1 and REFOUT = 0.

⁽⁴⁾ For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.

⁽⁵⁾ Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other external factors.

⁽⁶⁾ Connect two decoupling capacitors, 10 μF and 100 nF, to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide.

⁽⁷⁾ Calculated using the box method: (MAX(-40°C to +85°C) – MIN(-40°C to +85°C)) / MIN(-40°C to +85°C)/(85°C – (-40°C)).

⁽⁸⁾ The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1.

5.45 12-Bit DAC, Supply Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
AV_{CC}	Analog supply voltage	$AV_{CC} = DV_{CC}$, $AV_{SS} = DV_{SS} = 0 V$		2.20	<u> </u>	3.60	V
I _{DD}		DAC12AMPx = 2, DAC12IR = 0, DAC12OG = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = 1.5 V	3 V		65	110	
	Supply current, single DAC channel (1) (2)	DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}			125	165	
	channel ⁽¹⁾ (2)	DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}	2.2 V, 3 V		250	350	μА
		DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}			750	1100	
PSRR	Power supply rejection ratio (3) (4)	DAC12_xDAT = 800h, VeREF+ = 1.5 V, ΔΑV _{CC} = 100 mV	2.2 V 70		70		dB
		DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V, Δ AV _{CC} = 100 mV	3 V	3 V 70			uБ

- (1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
- (2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.
- (3) PSRR = 20 log ($\Delta AV_{CC} / \Delta V_{DAC12_xOUT}$)
- (4) The internal reference is not used.

5.46 12-Bit DAC, Linearity Specifications

	PARAMETER	TEST CONI	DITIONS	V _{cc}	MIN	TYP	MAX	UNIT
	Resolution	12-bit monotonic			12			bits
15.11	1-11111(1)	VeREF+ = 1.5 V, DAC12AMI	Px = 7, DAC12IR = 1	2.2 V		±2	±4 ⁽²⁾	1.00
INL	Integral nonlinearity ⁽¹⁾	VeREF+ = 2.5 V, DAC12AMI	Px = 7, DAC12IR = 1	3 V		±2	±4	LSB
D. II	D:# :: (1)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1		2.2 V		±0.4	±1 ⁽²⁾	- 00
DNL	Differential nonlinearity ⁽¹⁾	VeREF+ = 2.5 V, DAC12AMI	Px = 7, DAC12IR = 1	3 V		±0.4	±1	LSB
		Without calibration ⁽¹⁾ (3)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V			±21 ⁽²⁾	
Eo	Offset voltage		VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V			±21	\/
EO		With calibration ⁽¹⁾ (3)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V			±1.5 ⁽²⁾	mV
			VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V			±1.5	
d _{E(O)} /d _T	Offset error temperature coefficient (1)	With calibration		2.2 V, 3 V		±10		μV/°C
_	Coin annu	VeREF+ = 1.5 V		2.2 V			±2.5	0/ ECD
E _G	Gain error	VeREF+ = 2.5 V		3 V			±2.5	%FSR
d _{E(G)} /d _T	Gain temperature coefficient ⁽¹⁾			2.2 V, 3 V		10		ppm of FSR/ °C

⁽¹⁾ Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. $V_{DAC12_xOUT} = E_O + (1 + E_G) \times (VeREF + / 4095) \times DAC12_xDAT$, DAC12IR = 1.

⁽²⁾ This parameter is not production tested.

⁽³⁾ The offset calibration works on the output operational amplifier. Offset calibration is triggered by setting the DAC12CALON bit.

12-Bit DAC, Linearity Specifications (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 🛭 5-17)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{Offset_Cal}	Time for offset calibration (4)	DAC12AMPx = 2	2.2 V, 3 V		165		
		DAC12AMPx = 3, 5				66	ms
		DAC12AMPx = 4, 6, 7				16.5	

(4) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may effect accuracy and is not recommended.

图 5-17. Linearity Test Load Conditions and Gain/Offset Definition

5.47 12-Bit DAC, Output Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		No load, VeREF+ = AV_{CC} , DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7	- 2.2 V, 3 V	0		0.005	
V _O	Output voltage range (1)	No load, VeREF+ = AV_{CC} , DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7		AV _{CC} - 0.05		AV _{CC}	V
	(see 图 5-18)	$R_{Load} = 3 \text{ k}\Omega$, $VeREF+ = AV_{CC}$, $DAC12_xDAT = 0h$, $DAC12IR = 1$, $DAC12AMPx = 7$	2.2 V, 3 V	0		0.1	V
		$R_{Load} = 3 \text{ k}\Omega$, $VeREF+ = AV_{CC}$, $DAC12_xDAT = 0FFFh$, $DAC12IR = 1$, $DAC12AMPx = 7$		AV _{CC} - 0.13		AV _{CC}	
C _{L(DAC12)}	Maximum DAC12 load capacitance		2.2 V, 3 V			100	pF
l. a. a. a.	Maximum DAC12 load	$\begin{aligned} &DAC12AMPx = 2,\ DAC12_xDAT = 0FFFh, \\ &V_{O/P(DAC12)} > AV_{CC} - 0.3 \end{aligned}$	2.2 V, 3 V	-1			mA
I _{L(DAC12)} current	current	$\begin{aligned} &DAC12AMPx = 2, DAC12_xDAT = 0h, \\ &V_{O/P(DAC12)} < 0.3 V \end{aligned}$	2.2 V, 3 V			1	ША
		$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ V}_{O/P(DAC12)} < 0.3 \text{ V}, \\ DAC12AMPx &= 2, \text{ DAC12_xDAT} = 0 \text{h} \end{aligned}$			150	250	
R _{O/P(DAC12)} Output resistance (see ⊠ 5-18)	$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ V}_{O/P(DAC12)} > \text{AV}_{CC} - 0.3 \text{ V}, \\ DAC12_xDAT &= 0 \text{FFFh} \end{aligned}$	2.2 V, 3 V		150	250	Ω	
	图 5-10)	$ \begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \\ 0.3 \text{ V} &\leq V_{O/P(DAC12)} \leq AV_{CC} - 0.3 \text{ V} \end{aligned} $				6	

(1) Data is valid after the offset calibration of the output amplifier.

图 5-18. DAC12_x Output Resistance Tests

5.48 12-Bit DAC, Reference Input Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT		
VeREF+	Reference input voltage range	DAC12IR = $0^{(1)}$ (2)	2.2 V, 3 V	22 \/ 3 \/	221/21/		AV _{CC} / 3	AV _{CC} + 0.2	V
		DAC12IR = 1 ⁽³⁾ (4)			AV_CC	AV _{CC} + 0.2	v		
	Reference input resistance	DAC12_0 IR = DAC12_1 IR = 0	2.2 V, 3 V	20			МΩ		
D:		DAC12_0 IR = 1, DAC12_1 IR = 0			48				
Ri _(VREF+) , Ri _(VeREF+)		DAC12_0 IR = 0, DAC12_1 IR = 1			48		kΩ		
		DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx ⁽⁵⁾			24				

- (1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
- (2) The maximum voltage applied at reference input voltage terminal VeREF+ = $(AV_{CC} V_{E(O)}) / (3 \times (1 + E_G))$.
- (3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
- (4) The maximum voltage applied at reference input voltage terminal VeREF+ = $(AV_{CC} V_{E(O)}) / (1 + E_G)$.
- (5) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.

5.49 12-Bit DAC, Dynamic Specifications

 $V_{REF} = V_{CC}$, DAC12IR = 1 (see \boxtimes 5-19 and \boxtimes 5-20), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		DAC12_xDAT = 800h,	DAC12AMPx = $0 \rightarrow \{2, 3, 4\}$			60	120	
t _{ON}	DAC12 on time	$Error_{V(O)} < \pm 0.5 LSB^{(1)}$	$DAC12AMPx = 0 \to \{5, 6\}$	2.2 V, 3 V		15	30	μs
		(see 图 5-19)	DAC12AMPx = $0 \rightarrow 7$			6	12	
			DAC12AMPx = 2			100	200	
t _{S(FS)} Settling time, full scale	DAC12_xDAT = 80h → F7Fh → 80h	DAC12AMPx = 3, 5	2.2 V, 3 V		40	80	μs	
		0011 7 1 1 1 1 7 0011	DAC12AMPx = 4, 6, 7			15	30	
		DAC12_xDAT = 3F8h → 408h → 3F8h, BF8h → C08h → BF8h	DAC12AMPx = 2	2.2 V, 3 V		5		μs
t _{S(C-C)}	Settling time, code to code		DAC12AMPx = $3, 5$			2		
	code		DAC12AMPx = 4, 6, 7			1		
			DAC12AMPx = 2		0.05	0.35		
SR	Slew rate	$DAC12_xDAT = 80h \rightarrow F7Fh \rightarrow 80h^{(2)}$	DAC12AMPx = $3, 5$	2.2 V, 3 V	0.35	1.10		V/µs
		0011 → 1 71 11 → 0011···	DAC12AMPx = 4, 6, 7		1.50	5.20		
	Glitch energy	DAC12_xDAT = 800h → 7FFh → 800h	DAC12AMPx = 7	2.2 V, 3 V		35		nV-s

- (2) Slew rate applies to output voltage steps ≥ 200 mV.

图 5-19. Settling Time and Glitch Energy Testing

图 5-20. Slew Rate Testing

5.50 12-Bit DAC, Dynamic Specifications (Continued)

over recommended ranges of supply voltage and $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
BW _{-3dB}	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h			40			
		DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2 V, 3 V	180			kHz	
		DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		550				
	Channel-to-channel	DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , f _{DAC12_1OUT} = 10 kHz at 50/50 duty cycle	201/01/		-80		dB	
	crosstalk ⁽¹⁾ (see 图 5-22)	DAC12_0DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , DAC12_1DAT = 800h, No load, f _{DAC12_0OUT} = 10 kHz at 50/50 duty cycle	2.2 V, 3 V		-80		uБ	

(1) $R_{Load} = 3 k\Omega$, $C_{Load} = 100 pF$

图 5-21. Test Conditions for 3-dB Bandwidth Specification

图 5-22. Crosstalk Test Conditions

5.51 Comparator_B

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			40	
	Comparator operating supply current	CBPWRMD = 00	2.2 V		30	50	
I _{AVCC_COMP}	into AVCC terminal, excludes		3 V		40	65	μΑ
	reference resistor ladder	CBPWRMD = 01	2.2 V, 3 V		10	30	
		CBPWRMD = 10	2.2 V, 3 V		0.1	0.5	
I _{AVCC_REF}	Quiescent current of local reference voltage amplifier into AVCC terminal	CBREFACC = 1, CBREFLx = 01				22	μΑ
V _{IC}	Common-mode input range			0		V _{CC} – 1	V
\ /	land offert veltage	CBPWRMD = 00				±20	mV
V _{OFFSET}	Input offset voltage	CBPWRMD = 01, 10				±10	IIIV
C _{IN}	Input capacitance				5		pF
D	Sorios input registance	On (switch closed)			3	4	kΩ
R _{SIN}	Series input resistance	Off (switch open)		50			МΩ
	Propagation delay, response time	CBPWRMD = 00, CBF = 0				450	ns
t _{PD}		CBPWRMD = 01, CBF = 0				600	
		CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.0	· µs
	Decreased and delegation of the Change of the	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	
t _{PD,filter}	Propagation delay with filter active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	
		CBON = 0 to CBON = 1, CBPWRMD = 00, 01			1	2	
t _{EN_CMP}	Comparator enable time, settling time	CBON = 0 to CBON = 1, CBPWRMD = 10				100	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 to CBON = 1			0.3	1.5	μs
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN × (n + 0.5) / 32	VIN x (n + 1) / 32	VIN × (n + 1.5) / 32	٧

5.52 Ports PU.0 and PU.1

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V_{OH}	High-level output voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%, I_{OH} = -25 \text{ mA}$	2.4		V
V_{OL}	Low-level output voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%, I_{OL} = 25 \text{ mA}$		0.4	V
V_{IH}	High-level input voltage	V _{USB} = 3.3 V ±10%	2.0		٧
V _{IL}	Low-level input voltage	V _{USB} = 3.3 V ±10%		0.8	V

5.53 USB Output Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{OH}	D+, D- single ended	USB 2.0 load conditions	2.8	3.6	V
V_{OL}	D+, D- single ended	USB 2.0 load conditions	0	0.3	V
Z _(DRV)	D+, D- impedance	Including external series resistor of 27 Ω	28	44	Ω
t _{RISE}	Rise time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns
t _{FALL}	Fall time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns

5.54 USB Input Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
V _(CM)	Differential input common-mode range	0.8	2.5	V
Z _(IN)	Input impedance	300		kΩ
V_{CRS}	Crossover voltage	1.3	2.0	V
V _{IL}	Static SE input logic low level		0.8	V
V _{IH}	Static SE input logic high level	2.0		V
VDI	Differential input voltage		0.2	V

5.55 USB-PWR (USB Power System)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{LAUNCH}	V _{BUS} detection threshold				3.75	V
V _{BUS}	USB bus voltage	Normal operation	3.76		5.5	V
V _{USB}	USB LDO output voltage			3.3	±9%	V
V ₁₈	Internal USB voltage ⁽¹⁾			1.8		V
I _{USB_EXT}	Maximum external current from VUSB terminal (2)	USB LDO is on			12	mA
I _{DET}	USB LDO current overload detection (3)		60		100	mA
I _{SUSPEND}	Operating supply current into VBUS terminal. (4)	USB LDO is on, USB PLL disabled			250	μΑ
C _{BUS}	VBUS terminal recommended capacitance			4.7		μF
C _{USB}	VUSB terminal recommended capacitance			220		nF
C ₁₈	V18 terminal recommended capacitance			220		nF
t _{ENABLE}	Settling time V _{USB} and V ₁₈	Within 2%, recommended capacitances			2	ms
R _{PUR}	Pullup resistance of PUR terminal ⁽⁵⁾		70	110	150	Ω

This voltage is for internal use only. No external DC loading should be applied.

This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB

A current overload is detected when the total current supplied from the USB LDO, including I_{USB_EXT}, exceeds this value.

Does not include current contribution of R_{pu} and R_{pd} as outlined in the USB specification.

This value, in series with an external resistor between PUR and D+, produces the R_{pu} as outlined in the USB specification.

5.56 USB-PLL (USB Phase-Locked Loop)

	PARAMETER	MIN	TYP	MAX	UNIT
I _{PLL}	Operating supply current			7	mA
f _{PLL}	PLL frequency		48		MHz
f _{UPD}	PLL reference frequency	1.5		3	MHz
t _{LOCK}	PLL lock time			2	ms
t _{Jitter}	PLL jitter		1000		ps

5.57 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TJ	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	V
I _{PGM}	Average supply current from DVCC during program			3	5	mA
I _{ERASE}	Average supply current from DVCC during erase			6	11	mA
I _{MERASE} , I _{BANK}	Average supply current from DVCC during mass erase or bank erase			6	11	mA
t _{CPT}	Cumulative program time ⁽¹⁾				16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	25°C	100			years
t _{Word}	Word or byte program time (2)		64		85	μs
t _{Block, 0}	Block program time for first byte or word ⁽²⁾		49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or word (2)		37		49	μs
t _{Block, N}	Block program time for last byte or word (2)		55		73	μs
t _{Seg Erase}	Erase time for segment, mass erase, and bank erase when available (2)		23		32	ms
f _{MCLK,MGR}	MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)		0		1	MHz

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes.

5.58 JTAG and Spy-Bi-Wire Interface

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) ⁽¹⁾	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
	TCV input fraguency (4 wire ITAC)(2)	2.2 V	0		5	MHz
f _{TCK}	TCK input frequency (4-wire JTAG) ⁽²⁾	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ These values are hardwired into the state machine of the flash controller.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

www.ti.com.cn

6 Detailed Description

6.1 Overview

The MSP430F663x devices include a high-performance 12-bit ADC, comparator, two USCIs, USB 2.0, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver, and up to 74 I/O pins.

6.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see 8 6-1).

Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions.

图 6-1. Integrated CPU Registers

6.3 Instruction Set

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. $\frac{1}{2}$ 6-1 lists examples of the three types of instruction formats; $\frac{1}{2}$ 6-2 lists the address modes.

表 6-1. Instruction Word Formats

INSTRUCTION WORD FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5 → R5
Single operands, destination only	CALL R8	$PC \rightarrow (TOS), R8 \rightarrow PC$
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

表 6-2. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	+	+	MOV Rs,Rd	MOV R10,R11	R10 → R11
Indexed	+	+	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	$M(2+R5) \rightarrow M(6+R6)$
Symbolic (PC relative)	+	+	MOV EDE,TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	+	+	MOV &MEM, &TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	+		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	$M(R10) \rightarrow M(Tab+R6)$
Indirect auto-increment	+		MOV @Rn+,Rm	MOV @R10+,R11	$\begin{array}{c} M(R10) \rightarrow R11 \\ R10 + 2 \rightarrow R10 \end{array}$
Immediate	+		MOV #X,TONI	MOV #45,TONI	#45 → M(TONI)

⁽¹⁾ S = source, D = destination

www.ti.com.cn

6.4 Operating Modes

These devices have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

Software can configure the following operating modes:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 3.5 (LPM3.5)
 - Internal regulator disabled
 - No data retention
 - RTC enabled and clocked by low-frequency oscillator
 - Wake-up signal from RST/NMI, RTC B, P1, P2, P3, and P4
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wake-up signal from RST/NMI, P1, P2, P3, and P4

6.5 **Interrupt Vector Addresses**

The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see 表 6-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

表 6-3. Interrupt Sources, Flags, and Vectors of MSP430F663x Configurations

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, External Reset Watchdog Time-out, Key Violation Flash Memory Key Violation	WDTIFG, KEYV (SYSRSTIV) ⁽¹⁾⁽²⁾	Reset	0FFFEh	63, highest
System NMI PMM Vacant Memory Access JTAG Mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator Fault Flash Memory Access Violation	NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) ⁽¹⁾⁽²⁾	(Non)maskable	0FFFAh	61
Comp_B	Comparator B interrupt flags (CBIV) ⁽¹⁾⁽³⁾	Maskable	0FFF8h	60
Timer TB0	TB0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFF6h	59
Timer TB0	TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TBIV) ⁽¹⁾ (3)	Maskable	0FFF4h	58
Watchdog Interval Timer Mode	WDTIFG	Maskable	0FFF2h	57
USCI_A0 Receive or Transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)(3)	Maskable	0FFF0h	56
USCI_B0 Receive or Transmit	UCB0RXIFG, UCB0TXIFG (UCB0IV)(1)(3)	Maskable	0FFEEh	55
ADC12_A ⁽⁴⁾	ADC12IFG0 to ADC12IFG15 (ADC12IV) ⁽¹⁾⁽³⁾	Maskable	0FFECh	54
Timer TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFEAh	53
Timer TA0	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) ⁽¹⁾⁽³⁾	Maskable	0FFE8h	52
USB_UBM	USB interrupts (USBIV) (1)(3)	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV) ⁽¹⁾⁽³⁾	Maskable	0FFE4h	50
Timer TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE2h	49
Timer TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾⁽³⁾	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ^{(1) (3)}	Maskable	0FFDEh	47
USCI_A1 Receive or Transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV)(1)(3)	Maskable	0FFDCh	46
USCI_B1 Receive or Transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV)(1)(3)	Maskable	0FFDAh	45
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ^{(1) (3)}	Maskable	0FFD8h	44
LCD_B	LCD_B Interrupt Flags (LCDBIV) ⁽¹⁾	Maskable	0FFD6h	43
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) (1)(3)	Maskable	0FFD4h	42
DAC12_A ⁽⁵⁾	DAC12_0IFG, DAC12_1IFG ⁽¹⁾⁽³⁾	Maskable	0FFD2h	41
Timer TA2	TA2CCR0 CCIFG0 ⁽³⁾	Maskable	0FFD0h	40
Timer TA2	TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) ⁽¹⁾⁽³⁾	Maskable	0FFCEh	39
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽¹⁾⁽³⁾	Maskable	0FFCCh	38
I/O Port P4	P4IFG.0 to P4IFG.7 (P4IV) ⁽¹⁾⁽³⁾	Maskable	0FFCAh	37

⁽¹⁾ Multiple source flags

A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

Interrupt flags are in the module.

Only on devices with peripheral module ADC12_A, otherwise reserved.

Only on devices with peripheral module DAC12_A, otherwise reserved. (5)

表 6-3. Interrupt Sources, Flags, and Vectors of MSP430F663x Configurations (continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
			0FFC8h	36
Reserved	Reserved ⁽⁶⁾		:	€
			0FF80h	0, lowest

⁽⁶⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations.

6.6 Memory

表 6-4 summarizes the memory map for all device variants.

表 6-4. Memory Organization⁽¹⁾⁽²⁾

		MSP430F6636 MSP430F6633 MSP430F6630	MSP430F6637 MSP430F6634 MSP430F6631	MSP430F6638 MSP430F6635 MSP430F6632
Memory (flash) Main: interrupt vector	Total Size	128KB 00FFFFh-00FF80h	192KB 00FFFFh-00FF80h	256KB 00FFFFh-00FF80h
	Bank 3	N/A	N/A	64KB 047FFFh-038000h
Main, aada maman,	Bank 2	N/A	64KB 037FFFh–028000h	64KB 037FFFh-028000h
Main: code memory	Bank 1	64KB 027FFFh–018000h	64KB 027FFFh–018000h	64KB 027FFFh-018000h
	Bank 0	64KB 017FFFh–008000h	64KB 017FFFh–008000h	64KB 017FFFh–008000h
	Sector 3	4KB 0063FFh–005400h	4KB 0063FFh-005400h	4KB 0063FFh-005400h
DAM	Sector 2	4KB 0053FFh–004400h	4KB 0053FFh-004400h	4KB 0053FFh-004400h
RAM	Sector 1	4KB 0043FFh–003400h	4KB 0043FFh-003400h	4KB 0043FFh-003400h
	Sector 0	4KB 0033FFh–002400h	4KB 0033FFh-002400h	4KB 0033FFh-002400h
USB RAM ⁽³⁾	Size RAM	2KB 0023FFh–001C00h	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h
	Info A	128 B 0019FFh–001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h
Information memory	Info B	128 B 00197Fh–001900h	128 B 00197Fh–001900h	128 B 00197Fh–001900h
(flash)	Info C	128 B 0018FFh–001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h
	Info D	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h
Bootloader (BSL)	BSL 2	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h
memory (flash)	BSL 1	512 B 0013FFh–001200h	512 B 0013FFh–001200h	512 B 0013FFh–001200h
	BSL 0	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h
Peripherals	Size	4KB 000FFFh–000000h	4KB 000FFFh-000000h	4KB 000FFFh-000000h

⁽¹⁾ N/A = Not available.

⁽²⁾ Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

³⁾ USB RAM can be used as general-purpose RAM when not used for USB operation.

6.7 Bootloader (BSL)

The BSL lets users program the flash memory or RAM using various serial interfaces. Access to the device memory by the BSL is protected by an user-defined password. For complete description of the features of the BSL and its implementation, see MSP430 Programming With the Bootloader (BSL).

6.7.1 USB BSL

All devices come preprogrammed with the USB BSL. Use of the USB BSL requires external access to six pins (see 表 6-5). In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT or proper decoupling.

表 6-5. USB BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
PU.0/DP	USB data terminal DP
PU.1/DM	USB data terminal DM
PUR	USB pullup resistor terminal
VBUS	USB bus power supply
VSSU	USB ground supply

The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If the PUR pin is pulled high externally, the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends applying a $1-M\Omega$ resistor to ground.

6.7.2 UART BSL

A UART BSL is also available that can be programmed by the user into the BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires external access to six pins (see 表 6-6).

表 6-6. UART BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P1.1	Data transmit
P1.2	Data receive
VCC	Power supply
VSS	Ground supply

6.8 JTAG Operation

6.8.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. 表 6-7 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.

	-	
DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

表 6-7. JTAG Pin Requirements and Functions

6.8.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. 表 6-8 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide*. For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming With the JTAG Interface*.

DEVICE SIGNAL	DIRECTION	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input/output
VCC		Power supply
VSS		Ground supply

表 6-8. Spy-Bi-Wire Pin Requirements and Functions

6.9 Flash Memory (Link to User's Guide)

The flash memory can be programmed by the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
- Segment A can be locked separately.

6.10 RAM (Link to User's Guide)

The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM include:

- RAM has n sectors. The size of a sector can be found in Memory Organization.
- Each sector 0 to n can be complete disabled; however, data retention is lost.
- Each sector 0 to n automatically enters low power retention mode when possible.
- For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.

6.11 Backup RAM

The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the Battery Backup System module is implemented.

Eight bytes of backup RAM are available. The backup RAM can be wordwise accessed by the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

6.12 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide.

6.12.1 Digital I/O (Link to User's Guide)

Up to nine 8-bit I/O ports are implemented: P1 through P6, P8, and P9 are complete, P7 contains six individual I/O ports, and PJ contains four individual I/O ports.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- · Programmable drive strength on all ports.
- All eight bits of ports P1, P2, P3, and P4 support edge-selectable interrupt input.
- All instructions support read and write access to port-control registers.
- Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).

6.12.2 Port Mapping Controller (Link to User's Guide)

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. 表 6-9 lists the mnemonic for each function that can be assigned.

表 6-9. Port Mapping Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION	
0	PM_NONE	None	DV_{SS}	
1	PM_CBOUT	ı	Comparator_B output	
I	PM_TB0CLK	Timer TB0 clock input	_	
2	PM_ADC12CLK	_	ADC12CLK	
2	PM_DMAE0	DMAE0 Input	_	
	PM_SVMOUT	T.	SVM output	
3	PM_TB0OUTH	Timer TB0 high-impedance input TB0OUTH	_	
4	PM_TB0CCR0B	Timer TB0 CCR0 capture input CCI0B	Timer TB0: TB0.0 compare output Out0	
5	PM_TB0CCR1B	Timer TB0 CCR1 capture input CCI1B	Timer TB0: TB0.1 compare output Out1	
6	PM_TB0CCR2B	Timer TB0 CCR2 capture input CCI2B	Timer TB0: TB0.2 compare output Out2	

表 6-9. Port Mapping Mnemonics and Functions (continued)

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION				
7	PM_TB0CCR3B	Timer TB0 CCR3 capture input CCl3B	Timer TB0: TB0.3 compare output Out3				
8	PM_TB0CCR4B	Timer TB0 CCR4 capture input CCl4B Timer TB0: TB0.4 compare output					
9	PM_TB0CCR5B	Timer TB0 CCR5 capture input CCI5B Timer TB0: TB0.5 compare output					
10	PM_TB0CCR6B	Timer TB0 CCR6 capture input CCI6B	Timer TB0: TB0.6 compare output Out6				
11	PM_UCA0RXD	USCI_A0 UART RXD (Direction controlled by USCI – input)					
11	PM_UCA0SOMI	USCI_A0 SPI slave out mast	er in (direction controlled by USCI)				
12	PM_UCA0TXD	USCI_A0 UART TXD (Direct	ction controlled by USCI – output)				
12	PM_UCA0SIMO	USCI_A0 SPI slave in maste	r out (direction controlled by USCI)				
13	PM_UCA0CLK	USCI_A0 clock input/output	ut (direction controlled by USCI)				
13	PM_UCB0STE	USCI_B0 SPI slave transmit enable (direction controlled by USCI – input)					
14	PM_UCB0SOMI	USCI_B0 SPI slave out master in (direction controlled by USCI)					
14	PM_UCB0SCL	USCI_B0 I ² C clock (open dra	n and direction controlled by USCI)				
15	PM_UCB0SIMO	USCI_B0 SPI slave in maste	r out (direction controlled by USCI)				
15	PM_UCB0SDA	USCI_B0 I ² C data (open drai	n and direction controlled by USCI)				
16	PM_UCB0CLK	USCI_B0 clock input/output	ut (direction controlled by USCI)				
16	PM_UCA0STE	USCI_A0 SPI slave transmit enab	le (direction controlled by USCI – input)				
17	PM_MCLK	-	MCLK				
18	Reserved	Reserved for test purpo	oses. Do not use this setting.				
19	Reserved	Reserved for test purpo	oses. Do not use this setting.				
20–30	Reserved	None	DVSS				
31 (0FFh) ⁽¹⁾	PM_ANALOG		chmitt-trigger to prevent parasitic cross currents ng analog signals.				

⁽¹⁾ The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide, and the upper bits are ignored, which results in a maximum value of 31.

表 6-10 lists the default values for all pins that support port mapping.

表 6-10. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION			
P2.0/P2MAP0	PM_UCB0STE, PM_UCA0CLK		(direction controlled by USCI – input), (direction controlled by USCI)			
P2.1/P2MAP1	PM_UCB0SIMO, PM_UCB0SDA	USCI_B0 SPI slave in master out (direction controlled by USCI), USCI_B0 I ² C data (open drain and direction controlled by USCI)				
P2.2/P2MAP2	PM_UCB0SOMI, PM_UCB0SCL	USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 I ² C clock (open drain and direction controlled by USCI)				
P2.3/P2MAP3	PM_UCB0CLK, PM_UCA0STE	USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)				
P2.4/P2MAP4	PM_UCA0TXD, PM_UCA0SIMO		n controlled by USCI – output), ut (direction controlled by USCI)			
P2.5/P2MAP5	P2.5/P2MAP5 PM_UCA0RXD, PM_UCA0SOMI PM_UCA0SOMI PM_UCA0SOMI USCI_A0 UART RXD (direction controlled by USCI – input), USCI_A0 SPI slave out master in (direction controlled by USCI)					
P2.6/P2MAP6/R03	PM_NONE	-	DVSS			
P2.7/P2MAP7/LCDREF/R13	PM_NONE	- DVSS				

6.12.3 Oscillator and System Clock (Link to User's Guide)

The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch-crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-controlled oscillator DCO.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

6.12.4 Power-Management Module (PMM) (Link to User's Guide)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

6.12.5 Hardware Multiplier (MPY) (Link to User's Guide)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

6.12.6 Real-Time Clock (RTC_B) (Link to User's Guide)

The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply.

Using the MSP430 RTC_B Module With Battery Backup Supply describes how to use the RTC_B with battery backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, and how to perform correct reinitialization when the main power supply is restored.

6.12.7 Watchdog Timer (WDT_A) (Link to User's Guide)

The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

6.12.8 System Module (SYS) (Link to User's Guide)

The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.

表 6-11 lists the SYS interrupt vector registers.

表 6-11. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	INTERRUPT EVENT	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	Brownout (BOR)		02h	Highest
	RST/NMI (BOR)		04h	
	PMMSWBOR (BOR)		06h	
	LPM3.5 or LPM4.5 wakeup (BOR)		08h	
	Security violation (BOR)		0Ah	
	SVSL (POR)		0Ch	
	SVSH (POR)		0Eh	
CVCDCTIV Custom Doort	SVML_OVP (POR)	019Eh	10h	
SYSRSTIV, System Reset	SVMH_OVP (POR)	019En	12h	
	PMMSWPOR (POR)		14h	
	WDT time-out (PUC)		16h	
	WDT key violation (PUC)		18h	
	KEYV flash key violation (PUC)		1Ah	
	Reserved		1Ch	
	Peripheral area fetch (PUC)		1Eh	
	PMM key violation (PUC)		20h	
	Reserved	22h to 3Eh	Lowest	
	No interrupt pending		00h	
	SVMLIFG		02h	Highest
	SVMHIFG		04h	
	DLYLIFG		06h	
	DLYHIFG		08h	
SYSSNIV, System NMI	VMAIFG	019Ch	0Ah	
	JMBINIFG		0Ch	
	JMBOUTIFG		0Eh	
	SVMLVLRIFG		10h	
	SVMHVLRIFG		12h	
	Reserved		14h to 1Eh	Lowest
	No interrupt pending		00h	
	NMIIFG		02h	Highest
	OFIFG		04h	
SYSUNIV, User NMI	ACCVIFG	019Ah	06h	
	BUSIFG		08h	
	Reserved		0Ah to 1Eh	Lowest
	No interrupt pending		00h	
SYSBERRIV, Bus Error	USB wait state time-out	0198h	02h	Highest
	Reserved		04h to 1Eh	Lowest

6.12.9 DMA Controller (Link to User's Guide)

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. 表 6-12 lists the trigger assignments for each DMA channel.

The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments.

表 6-12. DMA Trigger Assignments⁽¹⁾

TDICOED	CHANNEL									
TRIGGER	0	1	2	3	4	5				
0	DMAREQ									
1	TA0CCR0 CCIFG									
2			TA0CC	R2 CCIFG						
3			TA1CC	R0 CCIFG						
4			TA1CC	R2 CCIFG						
5			TA2CC	R0 CCIFG						
6			TA2CC	R2 CCIFG						
7			TBCCI	R0 CCIFG						
8			TBCCI	R2 CCIFG						
9			Re	served						
10			Res	served						
11			Re	served						
12			Re	served						
13			Res	served						
14			Re	served						
15			Re	served						
16			UCA	0RXIFG						
17			UCA	.0TXIFG						
18			UCB	0RXIFG						
19			UCB	0TXIFG						
20			UCA	1RXIFG						
21			UCA	1TXIFG						
22			UCB	1RXIFG						
23			UCB	1TXIFG						
24				12IFGx ⁽²⁾						
25			DAC1	2_0IFG ⁽³⁾						
26	DAC12_1IFG ⁽³⁾									
27			USB	FNRXD						
28			USE	3 ready						
29			MP	Y ready						
30	DMA5IFG	DMA0IFG	DMA1IFG	DMA2IFG	DMA3IFG	DMA4IFG				
31			DI	MAE0						

⁽¹⁾ Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not cause any DMA trigger event when selected.

⁽²⁾ Only on devices with peripheral module ADC12_A. Reserved on devices without ADC.

⁽³⁾ Only on devices with peripheral module DAC12_A. Reserved on devices without DAC.

6.12.10 Universal Serial Communication Interface (USCI) (Links to User's Guide: UART Mode, SPI Mode, FC Mode)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3 or 4 pin) or I²C.

The MSP430F663x series includes two complete USCI modules (n = 0 or 1).

6.12.11 Timer TA0 (Link to User's Guide)

Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing (see 表 6-13). TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

表 6-13. Timer TA0 Signal Connections

INPUT PIN	INPUT PIN NUMBER		MODULE	MODULE	MODULE	DEVICE	OUTPUT PIN NUMBER	
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
34-P1.0	L5-P1.0	TA0CLK	TACLK					
		ACLK	ACLK	T:	NA	NIA		
		SMCLK	SMCLK	Timer	NA	NA		
34-P1.0	L5-P1.0	TA0CLK	TACLK					
35-P1.1	M5-P1.1	TA0.0	CCI0A				35-P1.1	M5-P1.1
		DV _{SS}	CCI0B	CCR0	TA0	TA0.0		
		DV _{SS}	GND	CCRU	TAU	1A0.0		
		DV _{CC}	V _{CC}					
36-P1.2	J6-P1.2	TA0.1	CCI1A				36-P1.2	J6-P1.2
40-P1.6	J7-P1.6	TA0.1	CCI1B			A1 TA0.1	40-P1.6	J7-P1.6
		DV _{SS}	GND	CCR1	TA1		ADC12_A (internal) $^{(1)}$ ADC12SHSx = {1}	
		DV _{CC}	V _{CC}					
37-P1.3	H6-P1.3	TA0.2	CCI2A				37-P1.3	H6-P1.3
41-P1.7	M7-P1.7	TA0.2	CCI2B	0000	TA2	TAO 2	41-P1.7	M7-P1.7
		DV _{SS}	GND	CCR2	1A2	TA0.2		
		DV _{CC}	V _{CC}					
38-P1.4	M6-P1.4	TA0.3	CCI3A				38-P1.4	M6-P1.4
		DV _{SS}	CCI3B	CCR3	TA3	TA0.3		
		DV _{SS}	GND	CCRS	TAS	1A0.5		
		DV _{CC}	V _{CC}					
39-P1.5	L6-P1.5	TA0.4	CCI4A				39-P1.5	L6-P1.5
		DV _{SS}	CCI4B	CCR4	TA4	TA0.4		
		DV _{SS}	GND	CCR4	174	1AU.4		
		DV _{CC}	V _{CC}					

⁽¹⁾ Only on devices with peripheral module ADC12_A.

6.12.12 Timer TA1 (Link to User's Guide)

Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple capture/compares, PWM outputs, and interval timing (see 表 6-14). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

表 6-14. Timer TA1 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PIN NUMBER	
PZ	ZQW	INPUT SIGNAL TA1CLK	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
42-P3.0	L7-P3.0	TA1CLK	TACLK					
		ACLK	ACLK	 .	NA	NA		
		SMCLK	SMCLK	rimer	Timer NA	NA		
42-P3.0	L7-P3.0	TA1CLK	TACLK					
43-P3.1	H7-P3.1	TA1.0	CCI0A				43-P3.1	H7-P3.1
		DV _{SS}	CCI0B	CCDO	TAO	TA4.0		
		DV _{SS}	GND	CCR0		TA1.0		
		DV_CC	V _{CC}					
44-P3.2	M8-P3.2	TA1.1	CCI1A			TA1.1	44-P3.2	M8-P3.2
		CBOUT (internal)	CCI1B	CCR1	TA1		DAC12_0	2_A ⁽¹⁾ , DAC12_1 ernal)
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
45-P3.3	L8-P3.3	TA1.2	CCI2A				45-P3.3	L8-P3.3
		ACLK (internal)	CCI2B	CCR2	TA2	TA1.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

⁽¹⁾ Only on devices with peripheral module DAC12_A.

6.12.13 Timer TA2 (Link to User's Guide)

Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple capture/compares, PWM outputs, and interval timing (see 表 6-15). TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

表 6-15. Timer TA2 Signal Connections

INPUT PIN NUMBER		DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PIN NUMBER	
PZ	ZQW	INPUT SIGNAL TA2CLK	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
46-P3.4	J8-P3.4	TA2CLK	TACLK	Timer NA				
		ACLK	ACLK			NA		
		SMCLK	SMCLK		INA			
46-P3.4	J8-P3.4	TA2CLK	TACLK					
47-P3.5	M9-P3.5	TA2.0	CCI0A				47-P3.5	M9-P3.5
		DV _{SS}	CCI0B	CCDO	TA0	TA2.0		
		DV _{SS}	GND	CCR0	TA0			
		DV _{CC}	V _{CC}					
48-P3.6	L9-P3.6	TA2.1	CCI1A			TA2.1	48-P3.6	L9-P3.6
		CBOUT (internal)	CCI1B	CCR1	TA1			
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
49-P3.7	M10-P3.7	TA2.2	CCI2A				49-P3.7	M10-P3.7
		ACLK (internal)	CCI2B	CCR2	TA2	TA2.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}			i .		

6.12.14 Timer TB0 (Link to User's Guide)

Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple capture/compares, PWM outputs, and interval timing (see 表 6-16). TB0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

表 6-16. Timer TB0 Signal Connections

INPUT PIN NUMBER		DEVICE		MODULE	MODULE	DEVICE	OUTPUT PIN NUMBER	
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK					
		ACLK	ACLK	Timer	NA	NA		
		SMCLK	SMCLK	rimer	INA	INA		
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK					
50-P4.0	J9-P4.0	TB0.0	CCI0A				50-P4.0	J9-P4.0
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.0	CCI0B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV_{SS}	GND	CCR0	TB0	TB0.0		nternal) ⁽²⁾ HSx = {2}
		DV_CC	V _{CC}					
51-P4.1	M11-P4.1	TB0.1	CCI1A				51-P4.1	M11-P4.1
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.1	CCI1B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
	DV _{SS} GND CCR1	TB1	TB0.1	ADC12 (internal) (2) ADC12SHSx = {3}				
		DV_CC	V _{CC}					
52-P4.2	L10-P4.2	TB0.2	CCI2A				52-P4.2	L10-P4.2
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.2	CCI2B	CCR2			P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV_SS	GND		CCR2	TB2	TB0.2	DAC12_0
		DV _{CC}	V _{CC}					
53-P4.3	M12-P4.3	TB0.3	CCI3A				53-P4.3	M12-P4.3
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.3	CCI3B	CCDA	TDO	TDO 2	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR3	TB3	TB0.3		
		DV_CC	V _{CC}					
54-P4.4	L12-P4.4	TB0.4	CCI4A				54-P4.4	L12-P4.4
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.4	CCI4B	CCR4	TB4	TP0 4	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV_SS	GND	CCR4	104	TB0.4		
		DV_CC	V _{CC}					
55-P4.5	L11-P4.5	TB0.5	CCI5A				55-P4.5	L11-P4.5
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.5	CCI5B	CCR5	TB5	TB0.5	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV_SS	GND	CCR5	163	160.5		
		DV_CC	V _{CC}					
56-P4.6	K11-P4.6	TB0.6	CCI6A				56-P4.6	K11-P4.6
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.6	CCI6B	CCR6	TB6	TRO 6	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCKO	100	TB0.6		
		DV_CC	V _{CC}		1			

⁽¹⁾ Timer functions selectable by the port mapping controller.

⁽²⁾ Only on devices with peripheral module ADC12_A.

⁽³⁾ Only on devices with peripheral module DAC12_A.

www.ti.com.cn

6.12.15 Comparator B (Link to User's Guide)

The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

6.12.16 ADC12_A (Link to User's Guide)

The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

6.12.17 DAC12_A (Link to User's Guide)

The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit mode, and may be used with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation.

6.12.18 CRC16 (Link to User's Guide)

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.12.19 Voltage Reference (REF) Module (Link to User's Guide)

The REF module generates all of the critical reference voltages that can be used by the various analog peripherals in the device.

6.12.20 LCD_B (Link to User's Guide)

The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus the contrast, by software. The module also provides an automatic blinking capability for individual segments.

6.12.21 USB Universal Serial Bus (Link to User's Guide)

The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM, when not used for USB communication, can be used by the system.

6.12.22 Embedded Emulation Module (EEM) (Link to User's Guide)

The EEM supports real-time in-system debugging. The L version of the EEM has the following features:

- Eight hardware triggers or breakpoints on memory access
- Two hardware triggers or breakpoints on CPU register write access
- Up to 10 hardware triggers can be combined to form complex triggers or breakpoints
- Two cycle counters
- Sequencer
- State storage
- Clock control on module level

6.12.23 Peripheral File Map

表 6-17 lists the register base address for all of the available peripheral modules.

表 6-17. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE ⁽¹⁾
Special Functions (see 表 6-18)	0100h	000h–01Fh
PMM (see 表 6-19)	0120h	000h–010h
Flash Control (see 表 6-20)	0140h	000h-00Fh
CRC16 (see 表 6-21)	0150h	000h-007h
RAM Control (see 表 6-22)	0158h	000h–001h
Watchdog (see 表 6-23)	015Ch	000h–001h
UCS (see 表 6-24)	0160h	000h–01Fh
SYS (see 表 6-25)	0180h	000h–01Fh
Shared Reference (see 表 6-26)	01B0h	000h–001h
Port Mapping Control (see 表 6-27)	01C0h	000h–003h
Port Mapping Port P2 (see 表 6-27)	01D0h	000h–007h
Port P1, P2 (see 表 6-28)	0200h	000h–01Fh
Port P3, P4 (see 表 6-29)	0220h	000h–01Fh
Port P5, P6 (see 表 6-30)	0240h	000h-00Bh
Port P7, P8 (see 表 6-31)	0260h	000h-00Bh
Port P9 (see 表 6-32)	0280h	000h-00Bh
Port PJ (see 表 6-33)	0320h	000h–01Fh
Timer TA0 (see 表 6-34)	0340h	000h-02Eh
Timer TA1 (see 表 6-35)	0380h	000h-02Eh
Timer TB0 (see 表 6-36)	03C0h	000h-02Eh
Timer TA2 (see 表 6-37)	0400h	000h-02Eh
Battery Backup (see 表 6-38)	0480h	000h–01Fh
RTC_B (see 表 6-39)	04A0h	000h–01Fh
32-bit Hardware Multiplier (see 表 6-40)	04C0h	000h-02Fh
DMA General Control (see 表 6-41)	0500h	000h-00Fh
DMA Channel 0 (see 表 6-41)	0510h	000h-00Ah
DMA Channel 1 (see 表 6-41)	0520h	000h-00Ah
DMA Channel 2 (see 表 6-41)	0530h	000h-00Ah
DMA Channel 3 (see 表 6-41)	0540h	000h-00Ah
DMA Channel 4 (see 表 6-41)	0550h	000h-00Ah
DMA Channel 5 (see 表 6-41)	0560h	000h-00Ah
USCI_A0 (see 表 6-42)	05C0h	000h–01Fh
USCI_B0 (see 表 6-43)	05E0h	000h–01Fh
USCI_A1 (see 表 6-44)	0600h	000h–01Fh
USCI_B1 (see 表 6-45)	0620h	000h-01Fh
ADC12_A (see 表 6-46)	0700h	000h-03Fh
DAC12_A (see 表 6-47)	0780h	000h–01Fh
Comparator_B (see 表 6-48)	08C0h	000h-00Fh
USB configuration (see 表 6-49)	0900h	000h–014h
USB control (see 表 6-50)	0920h	000h–01Fh
LCD_B control (see 表 6-51)	0A00h	000h-05Fh

⁽¹⁾ For a detailed description of the individual control register offset addresses, see the MSP430x5xx and MSP430x6xx Family User's Guide.

表 6-18. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

表 6-19. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high-side control	SVSMHCTL	04h
SVS low-side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

表 6-20. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

表 6-21. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC result	CRC16INIRES	04h

表 6-22. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RAM control 0	RCCTL0	00h

表 6-23. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

表 6-24. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h

表 6-25. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootloader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

表 6-26. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

表 6-27. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port mapping password	PMAPPWD	00h
Port mapping control	PMAPCTL	02h
Port P2.0 mapping	P2MAP0	00h
Port P2.1 mapping	P2MAP1	01h
Port P2.2 mapping	P2MAP2	02h
Port P2.3 mapping	P2MAP3	03h
Port P2.4 mapping	P2MAP4	04h
Port P2.5 mapping	P2MAP5	05h
Port P2.6 mapping	P2MAP6	06h
Port P2.7 mapping	P2MAP7	07h

表 6-28. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h

表 6-28. Port P1, P2 Registers (Base Address: 0200h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

表 6-29. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P3 interrupt vector word	P3IV	0Eh
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

表 6-30. Port P5, P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 pullup/pulldown enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 pullup/pulldown enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh

表 6-31. Port P7, P8 Registers (Base Address: 0260h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P7 input	P7IN	00h
Port P7 output	P7OUT	02h
Port P7 direction	P7DIR	04h
Port P7 pullup/pulldown enable	P7REN	06h
Port P7 drive strength	P7DS	08h
Port P7 selection	P7SEL	0Ah
Port P8 input	P8IN	01h
Port P8 output	P8OUT	03h
Port P8 direction	P8DIR	05h
Port P8 pullup/pulldown enable	P8REN	07h
Port P8 drive strength	P8DS	09h
Port P8 selection	P8SEL	0Bh

表 6-32. Port P9 Register (Base Address: 0280h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P9 input	P9IN	00h
Port P9 output	P9OUT	02h
Port P9 direction	P9DIR	04h
Port P9 pullup/pulldown enable	P9REN	06h
Port P9 drive strength	P9DS	08h
Port P9 selection	P9SEL	0Ah

表 6-33. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ drive strength	PJDS	08h

表 6-34. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter	TA0R	10h
Capture/compare 0	TA0CCR0	12h
Capture/compare 1	TA0CCR1	14h
Capture/compare 2	TA0CCR2	16h
Capture/compare 3	TA0CCR3	18h
Capture/compare 4	TA0CCR4	1Ah
TA0 expansion 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

表 6-35. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter	TA1R	10h
Capture/compare 0	TA1CCR0	12h
Capture/compare 1	TA1CCR1	14h
Capture/compare 2	TA1CCR2	16h
TA1 expansion 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

表 6-36. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 counter	TB0R	10h
Capture/compare 0	TB0CCR0	12h
Capture/compare 1	TB0CCR1	14h
Capture/compare 2	TB0CCR2	16h
Capture/compare 3	TB0CCR3	18h
Capture/compare 4	TB0CCR4	1Ah
Capture/compare 5	TB0CCR5	1Ch
Capture/compare 6	TB0CCR6	1Eh
TB0 expansion 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

表 6-37. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
Capture/compare control 2	TA2CCTL2	06h
TA2 counter	TA2R	10h
Capture/compare 0	TA2CCR0	12h
Capture/compare 1	TA2CCR1	14h
Capture/compare 2	TA2CCR2	16h
TA2 expansion 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

表 6-38. Battery Backup Registers (Base Address: 0480h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Battery backup memory 0	BAKMEM0	00h
Battery backup memory 1	BAKMEM1	02h
Battery backup memory 2	BAKMEM2	04h
Battery backup memory 3	BAKMEM3	06h
Battery backup control	BAKCTL	1Ch
Battery charger control	BAKCHCTL	1Eh

表 6-39. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds	RTCSEC	10h
RTC minutes	RTCMIN	11h
RTC hours	RTCHOUR	12h
RTC day of week	RTCDOW	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion	BIN2BCD	1Ch
BCD-to-binary conversion	BCD2BIN	1Eh

表 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h

表 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 x 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control 0	MPY32CTL0	2Ch

表 6-41. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA general control: DMA module control 0	DMACTL0	00h
DMA general control: DMA module control 1	DMACTL1	02h
DMA general control: DMA module control 2	DMACTL2	04h
DMA general control: DMA module control 3	DMACTL3	06h
DMA general control: DMA module control 4	DMACTL4	08h
DMA general control: DMA interrupt vector	DMAIV	0Ah
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA channel 3 control	DMA3CTL	00h
DMA channel 3 source address low	DMA3SAL	02h
DMA channel 3 source address high	DMA3SAH	04h
DMA channel 3 destination address low	DMA3DAL	06h
DMA channel 3 destination address high	DMA3DAH	08h
DMA channel 3 transfer size	DMA3SZ	0Ah
DMA channel 4 control	DMA4CTL	00h

表 6-41. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 4 source address low	DMA4SAL	02h
DMA channel 4 source address high	DMA4SAH	04h
DMA channel 4 destination address low	DMA4DAL	06h
DMA channel 4 destination address high	DMA4DAH	08h
DMA channel 4 transfer size	DMA4SZ	0Ah
DMA channel 5 control	DMA5CTL	00h
DMA channel 5 source address low	DMA5SAL	02h
DMA channel 5 source address high	DMA5SAH	04h
DMA channel 5 destination address low	DMA5DAL	06h
DMA channel 5 destination address high	DMA5DAH	08h
DMA channel 5 transfer size	DMA5SZ	0Ah

表 6-42. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA0CTL0	00h
USCI control 1	UCA0CTL1	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

表 6-43. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB0CTL0	00h
USCI synchronous control 1	UCB0CTL1	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

表 6-44. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA1CTL0	00h
USCI control 1	UCA1CTL1	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

表 6-45. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB1CTL0	00h
USCI synchronous control 1	UCB1CTL1	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

表 6-46. ADC12_A Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12 control 0	ADC12CTL0	00h
ADC12 control 1	ADC12CTL1	02h
ADC12 control 2	ADC12CTL2	04h
Interrupt flag	ADC12IFG	0Ah
Interrupt enable	ADC12IE	0Ch
Interrupt vector word	ADC12IV	0Eh
ADC memory control 0	ADC12MCTL0	10h
ADC memory control 1	ADC12MCTL1	11h
ADC memory control 2	ADC12MCTL2	12h
ADC memory control 3	ADC12MCTL3	13h
ADC memory control 4	ADC12MCTL4	14h
ADC memory control 5	ADC12MCTL5	15h
ADC memory control 6	ADC12MCTL6	16h
ADC memory control 7	ADC12MCTL7	17h
ADC memory control 8	ADC12MCTL8	18h

表 6-46. ADC12_A Registers (Base Address: 0700h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC memory control 9	ADC12MCTL9	19h
ADC memory control 10	ADC12MCTL10	1Ah
ADC memory control 11	ADC12MCTL11	1Bh
ADC memory control 12	ADC12MCTL12	1Ch
ADC memory control 13	ADC12MCTL13	1Dh
ADC memory control 14	ADC12MCTL14	1Eh
ADC memory control 15	ADC12MCTL15	1Fh
Conversion memory 0	ADC12MEM0	20h
Conversion memory 1	ADC12MEM1	22h
Conversion memory 2	ADC12MEM2	24h
Conversion memory 3	ADC12MEM3	26h
Conversion memory 4	ADC12MEM4	28h
Conversion memory 5	ADC12MEM5	2Ah
Conversion memory 6	ADC12MEM6	2Ch
Conversion memory 7	ADC12MEM7	2Eh
Conversion memory 8	ADC12MEM8	30h
Conversion memory 9	ADC12MEM9	32h
Conversion memory 10	ADC12MEM10	34h
Conversion memory 11	ADC12MEM11	36h
Conversion memory 12	ADC12MEM12	38h
Conversion memory 13	ADC12MEM13	3Ah
Conversion memory 14	ADC12MEM14	3Ch
Conversion memory 15	ADC12MEM15	3Eh

表 6-47. DAC12_A Registers (Base Address: 0780h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DAC12_A channel 0 control 0	DAC12_0CTL0	00h
DAC12_A channel 0 control 1	DAC12_0CTL1	02h
DAC12_A channel 0 data	DAC12_0DAT	04h
DAC12_A channel 0 calibration control	DAC12_0CALCTL	06h
DAC12_A channel 0 calibration data	DAC12_0CALDAT	08h
DAC12_A channel 1 control 0	DAC12_1CTL0	10h
DAC12_A channel 1 control 1	DAC12_1CTL1	12h
DAC12_A channel 1 data	DAC12_1DAT	14h
DAC12_A channel 1 calibration control	DAC12_1CALCTL	16h
DAC12_A channel 1 calibration data	DAC12_1CALDAT	18h
DAC12_A interrupt vector word	DAC12IV	1Eh

表 6-48. Comparator_B Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comp_B control 0	CBCTL0	00h
Comp_B control 1	CBCTL1	02h
Comp_B control 2	CBCTL2	04h
Comp_B control 3	CBCTL3	06h
Comp_B interrupt	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

表 6-49. USB Configuration Registers (Base Address: 0900h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USB key/ID	USBKEYID	00h
USB module configuration	USBCNF	02h
USB PHY control	USBPHYCTL	04h
USB power control	USBPWRCTL	08h
USB power voltage setting	USBPWRVSR	0Ah
USB PLL control	USBPLLCTL	10h
USB PLL divider	USBPLLDIV	12h
USB PLL interrupts	USBPLLIR	14h

表 6-50. USB Control Registers (Base Address: 0920h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Input endpoint_0 configuration	USBIEPCNF_0	00h
Input endpoint_0 byte count	USBIEPCNT_0	01h
Output endpoint_0 configuration	USBOEPCNF_0	02h
Output endpoint_0 byte count	USBOEPCNT_0	03h
Input endpoint interrupt enables	USBIEPIE	0Eh
Output endpoint interrupt enables	USBOEPIE	0Fh
Input endpoint interrupt flags	USBIEPIFG	10h
Output endpoint interrupt flags	USBOEPIFG	11h
USB interrupt vector	USBIV	12h
USB maintenance	USBMAINT	16h
Timestamp	USBTSREG	18h
USB frame number	USBFN	1Ah
USB control	USBCTL	1Ch
USB interrupt enables	USBIE	1Dh
USB interrupt flags	USBIFG	1Eh
Function address	USBFUNADR	1Fh

表 6-51. LCD_B Registers (Base Address: 0A00h)

REGISTER DESCRIPTION	REGISTER	OFFSET
LCD_B control 0	LCDBCTL0	000h
LCD_B control 1	LCDBCTL1	002h
LCD_B blinking control	LCDBBLKCTL	004h
LCD_B memory control	LCDBMEMCTL	006h
LCD_B voltage control	LCDBVCTL	008h
LCD_B port control 0	LCDBPCTL0	00Ah
LCD_B port control 1	LCDBPCTL1	00Ch
LCD_B port control 2	LCDBPCTL2	00Eh
LCD_B charge pump control	LCDBCTL0	012h
LCD_B interrupt vector word	LCDBIV	01Eh
LCD_B memory 1	LCDM1	020h
LCD_B memory 2	LCDM2	021h
:	:	:
LCD_B memory 22	LCDM22	035h
LCD_B blinking memory 1	LCDBM1	040h
LCD_B blinking memory 2	LCDBM2	041h
:	i i	:

表 6-51. LCD_B Registers (Base Address: 0A00h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
LCD_B blinking memory 22	LCDBM22	055h

6.13 Input/Output Diagrams

6.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger

图 6-2 shows the pin diagram. 表 6-52 summarizes how to select the pin function.

图 6-2. Port P1 (P1.0 to P1.7) Diagram

表 6-52. Port P1 (P1.0 to P1.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	LCDS3239		
		P1.0 (I/O)	I: 0; O: 1	0	0		
P1.0/TA0CLK/ACLK/	0	Timer TA0.TA0CLK	0	1	0		
S39	U	ACLK	1	1	0		
		S39	X	Х	1		
		P1.1 (I/O)	I: 0; O: 1	0	0		
D4 4/TA0 0/C20	1	Timer TA0.CCI0A capture input	0	1	0		
P1.1/TA0.0/S38	1	Timer TA0.0 output	1	1	0		
		S38	X	Х	1		
		P1.2 (I/O)	I: 0; O: 1	0	0		
D4 0/T40 4/007		Timer TA0.CCI1A capture input	0	1	0		
P1.2/TA0.1/S37	2	Timer TA0.1 output	1	1	0		
		S37	X	Х	1		
		P1.3 (I/O)	I: 0; O: 1	0	0		
D4 0/T40 0/000		Timer TA0.CCI2A capture input	0	1	0		
P1.3/TA0.2/S36	3	Timer TA0.2 output	1	1	0		
		S36	X	Х	1		
		P1.4 (I/O)	I: 0; O: 1	0	0		
D4 4/TA0 0/005	١,	Timer TA0.CCI3A capture input	0	1	0		
P1.4/TA0.3/S35	4	Timer TA0.3 output	1	1	0		
		S35	X	Х	1		
		P1.5 (I/O)	I: 0; O: 1	0	0		
D4 5/TAO 4/C24	_	Timer TA0.CCI4A capture input	0	1	0		
P1.5/TA0.4/S34	5	Timer TA0.4 output	1	1	0		
		S34	X	Х	1		
		P1.6 (I/O)	I: 0; O: 1	0	0		
D4 C/TA0 4/C22	_	Timer TA0.CCI1B capture input	0	1	0		
P1.6/TA0.1/S33	6	Timer TA0.1 output	1	1	0		
		S33	X	Х	1		
		P1.7 (I/O)	I: 0; O: 1	0	0		
D4 7/TA0 2/C22	7	Timer TA0.CCI2B capture input	0	1	0		
P1.7/TA0.2/S32	'	Timer TA0.2 output	1	1	0		
		S32	X	Х	1		

(1) X = Don't care

6.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger

图 6-3 shows the pin diagram. 表 6-53 summarizes how to select the pin function.

图 6-3. Port P2 (P2.0 to P2.7) Diagram

表 6-53. Port P2 (P2.0 to P2.7) Pin Functions

DINI NIAME (DO)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL.x	P2MAPx	
DO O/DOMA DO	0	P2.0 (I/O)	I: 0; O: 1	0		
P2.0/P2MAP0	0	Mapped secondary digital function	Х	1	≤ 19	
DO 4/DOMA D4	1	P2.1 (I/O)	I: 0; O: 1	0		
P2.1/P2MAP1	'	Mapped secondary digital function	Х	1	≤ 19	
P2.2/P2MAP2	2	P2.2 (I/O)	I: 0; O: 1	0		
P2.2/P2IVIAP2	2	Mapped secondary digital function	Х	1	≤ 19	
DO O/DOMA DO	3	P2.3 (I/O)	I: 0; O: 1	0		
P2.3/P2MAP3	3	Mapped secondary digital function	Х	1	≤ 19	
DO 4/DOMAD4	4	P2.4 (I/O)	I: 0; O: 1	0		
P2.4/P2MAP4	4	Mapped secondary digital function	Х	1	≤ 19	
DO E/DOMADE	5	P2.5 (I/O	I: 0; O: 1	0		
P2.5/P2MAP5	5	Mapped secondary digital function	Х	1	≤ 19	
		P2.6 (I/O)	I: 0; O: 1	0		
P2.6/P2MAP6/R03	6	Mapped secondary digital function	Х	1	≤ 19	
		R03	Х	1	= 31	
		P2.7 (I/O)	I: 0; O: 1	0		
P2.7/P2MAP7/ LCDREF/R13	7	Mapped secondary digital function	Х	1	≤ 19	
LODILLI /ICIO		LCDREF/R13	Х	1	= 31	

⁽¹⁾ X = Don't care

6.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger

图 6-4 shows the pin diagram. 表 6-54 summarizes how to select the pin function.

图 6-4. Port P3 (P3.0 to P3.7) Diagram

表 6-54. Port P3 (P3.0 to P3.7) Pin Functions

DIN 11414 (Do)			CONT	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3SEL.x	LCDS2431		
		P3.0 (I/O)	I: 0; O: 1	0	0		
P3.0/TA1CLK/CBOUT/	0	Timer TA1.TA1CLK	0	1	0		
S31	0	CBOUT	1	1	0		
		S31	Х	Х	1		
		P3.1 (I/O)	I: 0; O: 1	0	0		
D0 4/TA4 0/000		Timer TA1.CCI0A capture input	0	1	0		
P3.1/TA1.0/S30	1	Timer TA1.0 output	1	1	0		
		S30	X	Х	1		
		P3.2 (I/O)	I: 0; O: 1	0	0		
D0 0/TA4 4/000		Timer TA1.CCI1A capture input	0	1	0		
P3.2/TA1.1/S29	2	Timer TA1.1 output	1	1	0		
		S29	X	Х	1		
		P3.3 (I/O)	I: 0; O: 1	0	0		
D0 0/T4 4 0/000		Timer TA1.CCI2A capture input	0	1	0		
P3.3/TA1.2/S28	3	Timer TA1.2 output	1	1	0		
		S28	X	Х	1		
		P3.4 (I/O)	I: 0; O: 1	0	0		
P3.4/TA2CLK/SMCLK/	4	Timer TA2.TA2CLK	0	1	0		
S27	4	SMCLK	1	1	0		
		S27	X	Х	1		
		P3.5 (I/O)	I: 0; O: 1	0	0		
D0 5/T40 0/000	_	Timer TA2.CCI0A capture input	0	1	0		
P3.5/TA2.0/S26	5	Timer TA2.0 output	1	1	0		
		S26	X	Х	1		
		P3.6 (I/O)	I: 0; O: 1	0	0		
D0 0/T40 4/005		Timer TA2.CCI1A capture input	0	1	0		
P3.6/TA2.1/S25	6	Timer TA2.1 output	1	1	1		
		S25	X	Х	1		
		P3.7 (I/O)	I: 0; O: 1	0	0		
D2 7/TA2 0/024	7	Timer TA2.CCI2A capture input	0	1	0		
P3.7/TA2.2/S24	'	Timer TA2.2 output	1	1	0		
		S24	X	Х	1		

(1) X = Don't care

6.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger

图 6-5 shows the pin diagram. 表 6-55 summarizes how to select the pin function.

图 6-5. Port P4 (P4.0 to P4.7) Diagram

表 6-55. Port P4 (P4.0 to P4.7) Pin Functions

		FUNCTION		CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x	P4SEL.x	LCDS1623		
		P4.0 (I/O)	I: 0; O: 1	0	0		
D.4.0/TD0.0/000		Timer TB0.CCI0A capture input	0	1	0		
P4.0/TB0.0/S23	0	Timer TB0.0 output ⁽²⁾	1	1	0		
		S23	Х	Х	1		
DA 4/TDO 4/C22		P4.1 (I/O)	I: 0; O: 1	0	0		
D. 1 (TD. 1 (D.)		Timer TB0.CCI1A capture input	0	1	0		
P4.1/TB0.1/S22	1	Timer TB0.1 output ⁽²⁾	1	1	0		
		S22	X	Х	1		
		P4.2 (I/O)	I: 0; O: 1	0	0		
D. () (TD.) (O.)		Timer TB0.CCI2A capture input	0	1	0		
P4.2/TB0.2/S21	2	Timer TB0.2 output ⁽²⁾	1	1	0		
		S21	Х	Х	1		
		P4.3 (I/O)	I: 0; O: 1	0	0		
D. (a / T D. a / O. a)		Timer TB0.CCI3A capture input	0	1	0		
P4.3/TB0.3/S20	3	Timer TB0.3 output ⁽²⁾	1	1	0		
		S20	X	Х	1		
		P4.4 (I/O)	I: 0; O: 1	0	0		
D		Timer TB0.CCI4A capture input	0	1	0		
P4.4/TB0.4/S19	4	Timer TB0.4 output (2)	1	1	0		
		S19	Х	Х	1		
		P4.5 (I/O)	I: 0; O: 1	0	0		
D . = (TD . = (0	_	Timer TB0.CCI5A capture input	0	1	0		
P4.5/TB0.5/S18	5	Timer TB0.5 output ⁽²⁾	1	1	0		
		S18	Х	Х	1		
		P4.6 (I/O)	I: 0; O: 1	0	0		
D. 1. 0 (TD. 0. 10. 1 -		Timer TB0.CCI6A capture input	0	1	0		
P4.6/TB0.6/S17	6	Timer TB0.6 output ⁽²⁾	1	1	0		
		S17	Х	Х	1		
		P4.7 (I/O)	I: 0; O: 1	0	0		
P4.7/TB0OUTH/		Timer TB0.TB0OUTH	0	1	0		
SVMOUT/S16	7	SVMOUT	1	1	0		
		S16	Х	Х	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.

6.13.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger

图 6-6 shows the pin diagram. 表 6-56 summarizes how to select the pin function.

图 6-6. Port P5 (P5.0 and P5.1) Diagram

表 6-56. Port P5 (P5.0 and P5.1) Pin Functions

DIN NAME (DE v)	х	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)		FUNCTION	P5DIR.x	P5SEL.x	REFOUT	
P5.0/VREF+/VeREF+		P5.0 (I/O) ⁽²⁾	I: 0; O: 1	0	X	
	0	VeREF+ ⁽³⁾	X	1	0	
		VREF+ ⁽⁴⁾	Х	1	1	
P5.1/VREF-/VeREF-	1	P5.1 (I/O) ⁽²⁾	I: 0; O: 1	0	Х	
		VeREF- ⁽⁵⁾	X	1	0	
		VREF- ⁽⁶⁾	Х	1	1	

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.

⁽⁴⁾ Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A VREF+ reference is available at the pin.

⁽⁵⁾ Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.

⁽⁶⁾ Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A VREF- reference is available at the pin.

6.13.6 Port P5 (P5.2 to P5.7) Input/Output With Schmitt Trigger

图 6-7 shows the pin diagram. 表 6-57 summarizes how to select the pin function.

图 6-7. Port P5 (P5.2 to P5.7) Diagram

表 6-57. Port P5 (P5.2 to P5.7) Pin Functions

DINI NAME (DE)		FUNCTION	CONT	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)	Х	FUNCTION	P5DIR.x	P5SEL.x	LCDS4042		
P5.2/R23	2	P5.2 (I/O)	I: 0; O: 1	0	na		
P3.2/R23		R23	X	1	na		
		P5.3 (I/O)	I: 0; O: 1	0	0		
P5.3/COM1/S42	3	COM1	X	1	X		
		S42	X	0	1		
P5.4/COM2/S41		P5.4 (I/O)	I: 0; O: 1	0	0		
	4	COM2	X	1	Х		
		S41	X	0	1		
		P5.5 (I/O)	I: 0; O: 1	0	0		
P5.5/COM3/S40	5	COM3	Х	1	Х		
		S40	Х	0	1		
		P5.6 (I/O)	I: 0; O: 1	0	na		
P5.6/ADC12CLK/DMAE0	6	ADC12CLK	1	1	na		
		DMAE0	0	1	na		
DE 7/DTCCLV	7	P5.7 (I/O)	I: 0; O: 1	0	na		
P5.7/RTCCLK	/	RTCCLK	1	1	na		

⁽¹⁾ X = Don't care

6.13.7 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger

图 6-8 shows the pin diagram. 表 6-58 summarizes how to select the pin function.

图 6-8. Port P6 (P6.0 to P6.7) Diagram

表 6-58. Port P6 (P6.0 to P6.7) Pin Functions

DINI NIAME (DO)		FUNCTION		CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x	CBPD.x	DAC12OPS	DAC12AMPx
		P6.0 (I/O)	I: 0; O: 1	0	0	n/a	n/a
P6.0/CB0/A0	0	CB0	X	Х	1	n/a	n/a
		A0 ⁽²⁾ (3)	X	1	Х	n/a	n/a
		P6.1 (I/O)	I: 0; O: 1	0	0	n/a	n/a
P6.1/CB1/A1	1	CB1	X	Х	1	n/a	n/a
		A1 ⁽²⁾ (3)	X	1	Х	n/a	n/a
		P6.2 (I/O)	I: 0; O: 1	0	0	n/a	n/a
P6.2/CB2/A2	2	CB2	X	Х	1	n/a	n/a
		A2 ⁽²⁾ (3)	Х	1	Х	n/a	n/a
		P6.3 (I/O)	I: 0; O: 1	0	0	n/a	n/a
P6.3/CB3/A3	3	CB3	Х	Х	1	n/a	n/a
		A3 ⁽²⁾ (3)	X	1	Х	n/a	n/a
		P6.4 (I/O)	I: 0; O: 1	0	0	n/a	n/a
P6.4/CB4/A4	4	CB4	X	Х	1	n/a	n/a
		A4 ^{(2) (3)}	X	1	Х	n/a	n/a
		P6.5 (I/O)	I: 0; O: 1	0	0	n/a	n/a
P6.5/CB5/A5	5	CB5	X	Х	1	n/a	n/a
		A5 ^{(2) (3)}	X	1	Х	n/a	n/a
		P6.6 (I/O)	I: 0; O: 1	0	0	Х	0
DC C/CDC/AC/DACO	_	CB6	Х	Х	1	Х	0
P6.6/CB6/A6/DAC0	6	A6 ^{(2) (3)}	Х	1	Х	Х	0
		DAC0	Х	Х	Х	0	>1
		P6.7 (I/O)	I: 0; O: 1	0	0	Х	0
D0 7/0D7/47/D404	_	CB7	Х	Х	1	Х	0
P6.7/CB7/A7/DAC1	7	A7 ^{(2) (3)}	Х	1	Х	Х	0
		DAC1	Х	Х	Х	0	>1

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC12_A channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.13.8 Port P7 (P7.2) Input/Output With Schmitt Trigger

图 6-9 shows the pin diagram. 表 6-59 summarizes how to select the pin function.

图 6-9. Port P7 (P7.2) Diagram

6.13.9 Port P7 (P7.3) Input/Output With Schmitt Trigger

图 6-10 shows the pin diagram. 表 6-59 summarizes how to select the pin function.

图 6-10. Port P7 (P7.3) Diagram

表 6-59. Port P7 (P7.2 and P7.3) Pin Functions

DIN NAME (DE v.)					FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)	X	FUNCTION	P7DIR.x	P7SEL.2	P7SEL.3	XT2BYPASS			
		P7.2 (I/O)	I: 0; O: 1	0	X	X			
P7.2/XT2IN 2	2	XT2IN crystal mode ⁽²⁾	Х	1	Х	0			
		XT2IN bypass mode ⁽²⁾	Х	1	Х	1			
P7.3/XT2OUT		P7.3 (I/O)	I: 0; O: 1	0	0	Х			
	3	XT2OUT crystal mode ⁽³⁾	Х	1	Х	0			
		P7.3 (I/O) ⁽³⁾	Х	1	0	1			

⁽¹⁾ X = Don't care

⁽²⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O.

6.13.10 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger

图 6-11 shows the pin diagram. 表 6-60 summarizes how to select the pin function.

图 6-11. Port P7 (P7.4 to P7.7) Diagram

表 6-60. Port P7 (P7.4 to P7.7) Pin Functions

DINI NIAME (DZ)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾					
PIN NAME (P7.x)	Х	FUNCTION	P7DIR.x	P7SEL.x	CBPD.x	DAC12OPS	DAC12AMPx	
P7.4/CB8/A12		P7.4 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
	4	Comparator_B input CB8	X	Х	1	n/a	n/a	
		A12 ^{(2) (3)}	Х	1	Х	n/a	n/a	
		P7.5 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
P7.5/CB9/A13	5	Comparator_B input CB9	Х	Х	1	n/a	n/a	
		A13 ^{(2) (3)}	Х	1	Х	n/a	n/a	
P7.6/CB10/A14/DAC0	6	P7.6 (I/O)	I: 0; O: 1	0	0	Х	0	
		Comparator_B input CB10	Х	Х	1	Х	0	
		A14 ^{(2) (3)}	Х	1	Х	Х	0	
		DAC12_A output DAC0	Х	Х	Х	1	>1	
P7.7/CB11/A15/DAC1	7	P7.7 (I/O)	I: 0; O: 1	0	0	Х	0	
		Comparator_B input CB11	Х	Х	1	Х	0	
		A15 ^{(2) (3)}	Х	1	Х	Х	0	
		DAC12_A output DAC1	Х	Х	Х	1	>1	

X = Don't care

Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog (2) signals.

The ADC12_A channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.13.11 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger

图 6-12 shows the pin diagram. 表 6-61 summarizes how to select the pin function.

图 6-12. Port P8 (P8.0 to P8.7) Diagram

表 6-61. Port P8 (P8.0 to P8.7) Pin Functions

PIN NAME (P9.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
		FUNCTION	P8DIR.x	P8SEL.x	LCDS816	
		P8.0 (I/O)	I: 0; O: 1	0	0	
P8.0/TB0CLK/S15	0	Timer TB0.TB0CLK clock input	0	1	0	
		S15	Х	Х	1	
	1	P8.1 (I/O)	I: 0; O: 1	0	0	
P8.1/UCB1STE/UCA1CLK/S14		UCB1STE/UCA1CLK	Х	1	0	
		S14	Х	Х	1	
		P8.2 (I/O)	I: 0; O: 1	0	0	
P8.2/UCA1TXD/UCA1SIMO/S13	2	UCA1TXD/UCA1SIMO	X	1	0	
		S13	Х	X	1	
		P8.3 (I/O)	I: 0; O: 1	0	0	
P8.3/UCA1RXD/UCA1SOMI/S12	3	UCA1RXD/UCA1SOMI	X	1	0	
		S12	X	X	1	
		P8.4 (I/O)	I: 0; O: 1	0	0	
P8.4/UCB1CLK/UCA1STE/S11	4	UCB1CLK/UCA1STE	Х	1	0	
		S11	X	X	1	
	5	P8.5 (I/O)	I: 0; O: 1	0	0	
P8.5/UCB1SIMO/UCB1SDA/S10		UCB1SIMO/UCB1SDA	X	1	0	
		S10	X	X	1	
	6	P8.6 (I/O)	I: 0; O: 1	0	0	
P8.6/UCB1SOMI/UCB1SCL/S9		UCB1SOMI/UCB1SCL	X	1	0	
		S9	Х	Х	1	
P8.7/S8	7	P8.7 (I/O)	I: 0; O: 1	0	0	
F0.1/30	′	S8	Х	Х	1	

⁽¹⁾ X = Don't care

6.13.12 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger

图 6-13 shows the pin diagram. 表 6-62 summarizes how to select the pin function.

图 6-13. Port P9 (P9.0 to P9.7) Diagram

表 6-62. Port P9 (P9.0 to P9.7) Pin Functions

DIN NAME (DO v)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P9.x)	X	FUNCTION	P9DIR.x	P9SEL.x	LCDS07		
D0 0/97	0	P9.0 (I/O)	I: 0; O: 1	0	0		
P9.0/S7	0	S7	X	X	1		
D0 1/C6	1	P9.1 (I/O)	I: 0; O: 1	0	0		
P9.1/S6		S6	X	X	1		
P9.2/S5	2	P9.2 (I/O)	I: 0; O: 1	0	0		
F9.2/33	2	S5	X	X	1		
P9.3/S4	3	P9.3 (I/O)	I: 0; O: 1	0	0		
P9.3/54	3	S4	X	X	1		
P9.4/S3	4	P9.4 (I/O)	I: 0; O: 1	0	0		
P9.4/53	4	S3	Х	X	1		
D0 E/C2	5	P9.5 (I/O)	I: 0; O: 1	0	0		
P9.5/S2	5	S2	X	Х	1		
D0 6/04	6	P9.6 (I/O)	I: 0; O: 1	0	0		
P9.6/S1	О	S1	X	Х	1		
P9.7/S0	7	P9.7 (I/O)	I: 0; O: 1	0	0		
F3.1/3U	'	S0	X	Х	1		

⁽¹⁾ X = Don't care

106

6.13.13 Port PU (PU.0/DP, PU.1/DM, PUR) USB Ports

图 6-14 shows the pin diagram. 表 6-63 summarizes how to select the pin function.

图 6-14. Port PU (PU.0 and PU.1) Diagram

表 6-63. Port PU.0/DP and PU.1/DM Output Functions

CONTROL BITS				PIN NAME		FUNCTION	
PUSEL	PUDIR	PUOUT1	PUOUT0	PU.1/DM	PU.0/DP	FUNCTION	
0	0	X	X	Hi-Z	Hi-Z	Outputs off	
0	1	0	0	0	0	Outputs enabled	
0	1	0	1	0	1	Outputs enabled	
0	1	1	0	1	0	Outputs enabled	
0	1	1	1	1	1	Outputs enabled	
1	X	X	X	DM	DP	Direction set by USB module	

表 6-64. Port PUR Input Functions

CONTR	OL BITS	FUNCTION
PUSEL	PUREN	FUNCTION
0	0	Input disabled Pullup disabled
0	1	Input disabled Pullup enabled
1	0	Input enabled Pullup disabled
1	1	Input enabled Pullup enabled

6.13.14 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output

图 6-15 shows the pin diagram. 表 6-65 summarizes how to select the pin function.

图 6-15. Port J (PJ.0) Diagram

6.13.15 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

图 6-16 shows the pin diagram. 表 6-65 summarizes how to select the pin function.

图 6-16. Port PJ (PJ.1 to PJ.3) Diagram

表 6-65. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾
` ,			PJDIR.x
DI O/TDO	0	PJ.0 (I/O) ⁽²⁾	l: 0; O: 1
PJ.0/TDO	0	TDO ⁽³⁾	X
DIA/TDI/TCI K	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
PJ.1/TDI/TCLK	1	TDI/TCLK ⁽³⁾ (4)	X
D.L.O/TMO		PJ.2 (I/O) ⁽²⁾	l: 0; O: 1
PJ.2/TMS	2	TMS ⁽³⁾ (4)	X
D L 2/TOV	_	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
PJ.3/TCK	3	TCK ⁽³⁾ (4)	X

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

6.14 Device Descriptors

表 6-66 list the contents of the device descriptor tag-length-value (TLV) structure.

表 6-66. MSP430F663x Device Descriptor Table⁽¹⁾

	DESCRIPTION	4000000	SIZE					VALUE				
	DESCRIPTION	ADDRESS	(bytes)	F6638	F6637	F6636	F6635	F6634	F6633	F6632	F6631	F6630
	Info length	01A00h	1	06h								
	CRC length	01A01h	1	06h								
lata Dia di	CRC value	01A02h	2	per unit								
Info Block	Device ID	01A04h	2	801Ch	801Ah	8018h	8016h	804Eh	804Ch	804Ah	8048h	8046h
	Hardware revision	01A06h	1	per unit								
	Firmware revision	01A07h	1	per unit								
	Die record tag	01A08h	1	08h								
	Die record length	01A09h	1	0Ah								
Die Desemb	Lot/wafer ID	01A0Ah	4	per unit								
Die Record	Die X position	01A0Eh	2	per unit								
	Die Y position	01A10h	2	per unit								
	Test results	01A12h	2	per unit								
	ADC12 calibration tag	01A14h	1	11h	11h	11h	11h	11h	11h	05h	05h	05h
	ADC12 calibration length	01A15h	1	10h								
	ADC gain factor	01A16h	2	per unit	N/A	N/A	N/A					
	ADC offset	01A18h	2	per unit	N/A	N/A	N/A					
	ADC 1.5-V reference Temperature sensor 30°C	01A1Ah	2	per unit	N/A	N/A	N/A					
ADC12	ADC 1.5-V reference Temperature sensor 85°C	01A1Ch	2	per unit	N/A	N/A	N/A					
Calibration	ADC 2.0-V reference Temperature sensor 30°C	01A1Eh	2	per unit	N/A	N/A	N/A					
	ADC 2.0-V reference Temperature sensor 85°C	01A20h	2	per unit	N/A	N/A	N/A					
	ADC 2.5-V reference Temperature sensor 30°C	01A22h	2	per unit	N/A	N/A	N/A					
	ADC 2.5-V reference Temperature sensor 85°C	01A24h	2	per unit	N/A	N/A	N/A					

⁽¹⁾ NA = Not applicable

器件和文档支持

7.1 入门和后续步骤

有关 MSP430™系列器件、工具和库的更多相关信息,请访问 入门 页面。

7.2 **Device Nomenclature**

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP).

XMS - Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

XMS devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. 8 7-1 provides a legend for reading the complete device name.

Processor Family	CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device						
MCU Platform	430 = MSP430 low-power microcor	ntroller platform					
Device Type	Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory	Specialized Application AFE = Analog Front End BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter					
Series	1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD 5 = Up to 25 MHz 6 = Up to 25 MHz with LCD 0 = Low-Voltage Series						
Feature Set	Various levels of integration within a	a series					
Optional: A = Revision	N/A						
Optional: Temperature Range	S = 0°C to 50°C C = 0°C to 70°C I = -40°C to 85°C T = -40°C to 105°C						
Packaging	http://www.ti.com/packaging						
Optional: Tape and Reel	T = Small reel R = Large reel No markings = Tube or tray						
Optional: Additional Features	-EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified						

图 7-1. Device Nomenclature

113

7.3 工具与软件

所有 MSP 微控制器均受多种软件和硬件开发工具的支持。相关工具由 TI 以及多家第三方供应商提供。可从低功耗 MCU 开发套件和软件获取全部信息。

表 7-1 列 出 了 MSP430F663x MCU 的调试功能。关于可用特性的详细信息,请参见《适用于 MSP430 的 Code Composer Studio 用户指南》。

表 7-1. 硬件调试 特性

MSP430 架构	四线制 JTAG	2线 JTAG	断点 (N)	范围断点	时钟控制	状态序列发生 器	跟踪缓冲器	LPMx.5 调试支 持
MSP430Xv2	有	是	8	是	是	是	是	是

设计套件与评估模块

MSP-TS430PZ100USB - 适用于 MSP430F5x 和 MSP430F6x MCU 的 100 引脚目标开发板 MSP-TS430PZ100USB 是一款独立的 100 引脚 ZIF 插座目标板,用于通过 JTAG 接口或 Spy Bi-Wire (2 线 JTAG) 协议在系统内对 MSP430 MCU 进行编程和调试。

适用于 MSP430F5x 和 MSP430F6x MCU 的 100 引脚目标开发板和 MSP-FET 编程器捆绑包 MSP-FET 是一款强大的闪存仿真工具,可在 MSP430 MCU 上快速开始应用开发。它包含 USB 调试接口,用于通过 JTAG 接口或节省引脚的 Spy Bi-Wire(2 线 JTAG)协议在系统内对 MSP430 进行编程和调试。只需使用几次按键即可在数秒钟内擦除闪存并对其进行编程,此外,由于MSP430 闪存具有超低功耗,因此无需外部电源。

软件

- MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资源,打包提供给用户。除了提供已有 MSP430 设计资源的完整集合外,MSP430Ware 软件还包含名为 MSP430 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编程。MSP430Ware 软件以 CCS 组件或独立软件包两种形式提供。
- MSP430F563x、MSP430F663x 代码示例 根据不同应用需求配置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。
- MSP 驱动程序库 驱动程序库的抽象化 API 通过提供易于使用的函数调用使您不再拘泥于 MSP430 硬件的 细节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证 的参数的详细信息。开发人员可以使用驱动程序库功能,以最低开销编写完整项目。
- MSP EnergyTrace™ 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,用于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。
- ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,从而充分利用 MSP 和 MSP432 微控制器独特的 超低功耗 功能。ULP Advisor 的目标人群是微控制器的资深开发者和开发新手,可以根据详尽的 ULP 检验表检查代码,以便最大限度地利用应用程序。在编译时,ULP Advisor 会提供通知和备注以突出显示代码中可以进一步优化的区域,进而实现更低功耗。
- IEC60730 软件包 IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010 (家用及类似用途的自动化电气控制-第1部分:一般要求) B 类产品的要求。其中涵盖家用电器、电弧检测器、电源转换器、电动工具、电动自行车及其他诸多产品。IEC60730 MSP430 软件包可以嵌入在 MSP430 中 运行的客户应用,从而帮助客户简化其消费类器件在功能安全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。

- 适用于 MSP 的定点数学运算库 MSP IQmath 和 Qmath 库是为 C 语言开发者提供的一套经过高度优化的高精度数学运算函数集合,能够将浮点算法无缝嵌入 MSP430 和 MSP432 器件的定点代码中。这些例程通常用于计算密集型实时 应用, 而优化的执行速度、高精度以及超低能耗通常是影响这些实时应用的关键因素。与使用浮点数学算法编写的同等代码相比,使用 IQmath 和 Qmath 库可以大幅提高执行速度并显著降低能耗。
- 适用于 MSP430 的浮点数学运算库 TI 在低功耗和低成本微控制器领域锐意创新,为您提供 MSPMATHLIB。这是标量函数的浮点数学运算库,能够充分利用器件的智能外设,使性能提 升高达 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使用并集成在 Code Composer Studio 和 IAR IDE 中。如需深入了解该数学运算库及相关基准,请阅读用户指南。

开发工具

- 适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio 是一种集成开发环境 (IDE),支持所有 MSP 微控制器。Code Composer Studio 包含一整套开发和调试嵌入式应用 的嵌入式软件实用程序的工具。它包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调试器、描述器以及其他多种 功能。直观的 IDE 提供了单个用户界面,有助于完成应用程序开发流程的每个步骤。熟悉的实用程序和界面可提升用户的入门速度。Code Composer Studio 将 Eclipse 软件框架的优点和 TI 先进的嵌入式调试功能相结合,为嵌入式开发人员提供了一种功能丰富的优异开发环境。当 CCS 与 MSP MCU 搭配使用时,可以使用独特而强大的插件和嵌入式软件实用程序,从而充分利用 MSP 微控制器的功能。
- 命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG 或 Spy-Bi-Wire (SBW) 通信通过 FET 编程器或 eZ430 对 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或 .hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。
- MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在 MSP 低功耗微控制器 (MCU) 中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序 下载到 MSP 器件,以进行验证和调试。MSP-FET 在主机和目标 MSP 间提供调试通信通道。 此外,MSP-FET 还可在计算机的 USB 接口和 MSP UART 间提供反向通道 UART 连接。这 为 MSP 编程器提供了一种在 MSP 和计算机上运行的终端之间进行串行通信的便捷方法。它 还支持使用 BSL(引导加载程序)通过 UART 和 I²C 通信协议将程序(通常称为固件)加载 到 MSP 目标中。
- MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 或 MSP432 器件编程器,可同时对多达八个完全相同的 MSP430 或 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准的 RS-232 或 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流程。MSP Gang 编程器配有扩展板,即"Gang 分离器",可在 MSP Gang 编程器和多个目标器件间实施互连。提供了八条电缆,用于将扩展板与八个目标器件相连(通过 JTAG 或 SPY-Bi-Wire 连接器)。编程工作可在 PC 或独立设备上完成。PC 端具备基于 DLL 的图形化用户界面。

7.4 文档支持

以下文档对 MSP430F663x MCU 进行了介绍。www.ti.com.cn 网站上提供了这些文档的副本。

接收文档更新通知

要接收文档更新通知(包括器件勘误表),请转至 ti.com 上相关器件的产品文件夹(请参阅节 7.5)。请单击右上角的"通知我"按钮。点击注册后,即可收到产品信息更改每周摘要(如有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。

勘误

《MSP430F6638 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6637 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6636 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6635 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6634 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6633 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6632 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6631 器件勘误表》 说明了该器件已知的功能技术规格例外情况。 《MSP430F6630 器件勘误表》 说明了该器件已知的功能技术规格例外情况。

用户指南

《MSP430x5xx 和 MSP430x6xx 系列用户指南》 详细介绍了该器件系列提供的模块和外设。

- 《适用于 MSP430 的 Code Composer Studio 用户指南》 此用户指南介绍如何将 TI Code Composer Studio IDE 与 MSP430 超低功耗微控制器结合使用。
- 《适用于 MSP430 的 IAR Embedded Workbench 用户指南》 本手册介绍了 MSP430 超低功率微控制器 在 IAR 嵌入式工作平台 (EW430) 的使用。
- 《MSP430™ 闪存器件引导加载程序 (BSL) 用户指南》 MSP430 引导加载程序 (BSL, 之前称为引导装载程序) 方便用户在原型建模阶段、最终生产和维修期间与 MSP430 微控制器中的嵌入式存储器进行通信。可编程存储器 (闪存) 和数据存储器 (RAM) 能够按照要求进行变更。不要将此处的引导加载程序与某些数字信号处理器 (DSP) 中将外部存储器中的程序代码(和数据)自动加载到 DSP 内部存储器的引导装载程序混为一谈。
- 《通过 JTAG 接口对 MSP430 进行编程》 此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还介绍了如 何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。此文档介绍了使用标准四线制 JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。

《MSP430 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对 MSP430 超低功耗微控制器的程序开发工具。文中对提供的接口类型,即并行端口接口和 USB 接口进行了说明。

应用报告

《MSP430 32kHz 晶体振荡器》 选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体振荡器的关键。该应用报告总结了晶体振荡器的功能,介绍了用于选择合适的晶体以实现MSP430 超低功耗运行的参数。此外,还给出了正确电路板布局的提示和示例。此外,为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振荡器测试,该文档中提供了有关这些测试的详细信息。

《MSP430 系统级 ESD 注意事项》 随着硅晶技术向更低电压方向发展以及设计具有成本效益的超低功耗 组件的需求的出现,系统级 ESD 要求变得越来越苛刻。该应用报告介绍了三个不同的 ESD 主 题,旨在帮助电路板设计人员和 OEM 理解并设计出稳健耐用的系统级设计。

7.5 相关链接

表 7-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链接。

器件	产品文件夹	立即订购	技术文档	工具与软件	支持和社区
MSP430F6638	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6637	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6636	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6635	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6634	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6633	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6632	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6631	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
MSP430F6630	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

表 7-2. 相关链接

7.6 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点,请参见 TI 的《使用条款》。

TI E2E™ 社区

TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。

TI嵌入式处理器维基网页

德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。

7.7 商标

MSP430, MSP430Ware, EnergyTrace, ULP Advisor, 适用于 MSP 微控制器的 Code Composer Studio, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

7.8 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

7.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

8 机械,封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼, 邮政编码: 200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司

29-Dec-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430F6630IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6630	Samples
MSP430F6631IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6631	Samples
MSP430F6632IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6632	Samples
MSP430F6632IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6632	Samples
MSP430F6633IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6633	Samples
MSP430F6633IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6633	Samples
MSP430F6633IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6633	Samples
MSP430F6633IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6633	Samples
MSP430F6634IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6634	Samples
MSP430F6634IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6634	Samples
MSP430F6634IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6634	Samples
MSP430F6635IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6635	Samples
MSP430F6635IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6635	Samples
MSP430F6635IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6635	Samples
MSP430F6636IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6636	Samples

www.ti.com

PACKAGE OPTION ADDENDUM

29-Dec-2018

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430F6636IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6636	Samples
MSP430F6636IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6636	Samples
MSP430F6637IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6637	Samples
MSP430F6638IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6638	Samples
MSP430F6638IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6638	Samples
MSP430F6638IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6638	Samples
MSP430F6638IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6638	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

29-Dec-2018

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Feb-2019

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F6632IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6633IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6633IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6633IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6634IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6635IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6635IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6636IZQWR	BGA MI CROSTA R JUNI	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Feb-2019

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	OR											
MSP430F6638IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6638IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6638IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F6632IPZR	LQFP	PZ	100	1000	350.0	350.0	43.0
MSP430F6633IPZR	LQFP	PZ	100	1000	350.0	350.0	43.0
MSP430F6633IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F6633IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0
MSP430F6634IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F6635IPZR	LQFP	PZ	100	1000	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Feb-2019

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F6635IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F6636IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F6638IPZR	LQFP	PZ	100	1000	350.0	350.0	43.0
MSP430F6638IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F6638IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

PZ (S-PQFP-G100)

PLASTIC QUAD FLAT PACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

ZQW (S-PBGA-N113)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司