

Seamless Kernel Operations on GPU without memory overflows

B. Charlier¹

J. Feydy²

J. Glaunès³

G. Durif¹

F.-D. Collin¹

January 22th 2021 – State of the R

¹IMAG - CNRS - Univ Montpellier, France, ²Imperial College, London, UK, ³MAP5 - Univ Paris Descartes, France

http://www.kernel-operations.io/
ghislain.durif@umontpellier.fr

Outline

- 1. Introduction
- 2. Kernel operations and reductions
- 3. Computation on GPU
- 4. Implementation
- 5. Using KeOps
- 6. Conclusion

Introduction

What is KeOps?

http://www.kernel-operations.io/

KeOps = "Kernel Operations"

RKeOps = R package interfacing KeOps library

Compute **generic reductions** of very large arrays

e.g. row-wise or column-wise matrix sum

$$\sum_{i=1}^{M} a_{ij} \quad \text{or} \quad \sum_{j=1}^{N} a_{ij}$$

for some large matrix
$$\mathbf{A} = [a_{ij}] \in \mathbb{R}^{M \times N}$$

 $M, N \sim 10^4, 10^5, 10^6$

4

Compute kernel reduction

e.g.
$$\sum_{i=1}^{M} K(\mathbf{x}_i, \mathbf{y}_j)$$
 or $\sum_{j=1}^{N} K(\mathbf{x}_i, \mathbf{y}_j)$

and the associated gradients

(for a kernel function K and some data vectors $\mathbf{x}_i, \mathbf{y}_j \in \mathbb{R}^D$)

Intuitively: $[K(\mathbf{x}_i, \mathbf{y}_j)] \in \mathbb{R}^{M \times N}$ = matrix whose elements are given by a **formula**

- → manage large dimensions
 - even larger than GPU memory
 - M and $N \approx 10^4, 10^5, 10^6$

→ fast computation on CPU or on GPU without memory overflow

Kernels in Statistics and Learning

- Kernel density estimation
- · Classification/Regression: SVM, K-NN, etc...
- Kernel embeddings to compare distributions
- Interpolation and Kriging
- Optimal Transport

GPU user-friendly computing?

Only a few solution for specific tasks in R

See https://CRAN.R-project.org/view=HighPerformanceComputing (section GPUs)

Over the past 5 years: GPU computing development effort oriented toward deep learning

→ e.g. PyTorch or TensorFlow provide GPU implementation of common operations, together with automatic differentiation.

GPU computing can be used for **general purpose computations** and not only neural networks

→ Generic codes to use GPU computing require low-level tools (CUDA, OpenCL)

Needs: provide an effortless tool for GPU computing

Applications: statistics, machine learning and more...

Kernel operations and reductions

Kernel operator

Considering some data vector \mathbf{x}_i and \mathbf{y}_j in \mathbb{R}^D

(Intuitively)

a **kernel** function = an application $K : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$

$$(\mathbf{x}_i, \mathbf{y}_i) \mapsto K(\mathbf{x}_i, \mathbf{y}_i)$$

corresponding to a scalar product between \mathbf{x}_i and \mathbf{y}_j in a different space than usual \mathbb{R}^D

Kernel operator

Considering some data vector \mathbf{x}_i and \mathbf{y}_j in \mathbb{R}^D

(Very intuitively)

a **kernel** function ≈ "similarity measure"

between \mathbf{x}_i and \mathbf{y}_j

(different from Euclidean distance)

Example

Linear kernel

$$K(\mathbf{x}_i, \mathbf{y}_j) = \langle \mathbf{x}_i, \mathbf{y}_j \rangle = \mathbf{x}_i^\mathsf{T} \mathbf{y}_j = \sum_{k=1}^{5} x_{ik} y_{jk}$$

Gaussian kernel

$$K(\mathbf{x}_i, \mathbf{y}_j) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x}_i - \mathbf{y}_j\|_2^2\right)$$

Kernel reduction

- Row-wise or column-wise reduction on the matrix $\mathbf{K} = \left[K(\mathbf{x}_i, \mathbf{y}_j) \right] \in \mathbb{R}^{M \times N}$
- And more complex operations

Example:

$$\sum_{i=1}^{M} K_1(\mathbf{x}_i, \mathbf{y}_j) K_2(\mathbf{u}_i, \mathbf{v}_j) \langle \boldsymbol{\alpha}_i ; \boldsymbol{\beta}_j \rangle$$

for some kernel K_1 and K_2 , and some D-vectors $(\mathbf{x}_i)_i, (\mathbf{u}_i)_i, (\boldsymbol{\alpha}_i)_i \in \mathbb{R}^{M \times D}$ and $(\mathbf{y}_j)_j, (\mathbf{v}_j)_j, (\boldsymbol{\beta}_i)_j \in \mathbb{R}^{N \times D}$

Kernel reduction

- Row-wise or column-wise reduction on the matrix $\mathbf{K} = \left[K(\mathbf{x}_i, \mathbf{y}_j) \right] \in \mathbb{R}^{M \times N}$
- And more complex operations

$$\sum_{j=1}^{N} K_1(\mathbf{x}_i, \mathbf{y}_j) K_2(\mathbf{u}_i, \mathbf{v}_j) \langle \boldsymbol{\alpha}_i ; \boldsymbol{\beta}_j \rangle$$

for some kernel K_1 and K_2 , and some D-vectors $(\mathbf{x}_i)_i, (\mathbf{u}_i)_i, (\boldsymbol{\alpha}_i)_i \in \mathbb{R}^{M \times D}$ and $(\mathbf{y}_j)_j, (\mathbf{v}_j)_j, (\boldsymbol{\beta}_i)_j \in \mathbb{R}^{N \times D}$

Why GPU computing?

Matrix/kernel reduction = combination of generic matrix operations

 \rightarrow GPU are good for matrix computations

Computation on GPU

GPUs

 $\verb"source": \textbf{commons.wikimedia.org}$

GPUs

PLUS: thousands of computing units

 \rightarrow fast with heavily parallelized computations

MINUS: relatively small memory (compared to the number of computing units)

 \rightarrow issue to process large data

Challenge

Matrix
$$\mathbf{K} = \left[K(\mathbf{x}_i, \mathbf{y}_j) \right] \in \mathbb{R}^{M \times N}$$
 is very large
$$(M, N \approx 10^4, 10^5, 10^6)$$

- → store it in memory? NO!
- \rightarrow how to iterate through rows/columns?

Memory management on GPU

Data initially stored on the host (in RAM)

→ should be transfered to the device (GPU) for computations (bottleneck)

Different kinds of memory inside the GPU

 \rightarrow local (smaller) vs shared (bigger) memory

Memory management on GPU

Smart use of the shared memory

- → less transfer between device and host
- \rightarrow key to provide an efficient code in term of computational time

Tiling implementation

Tiled implementation

Computations are divided into steps

Data are divided into blocks (called tiles)

Use of accumulators to combine intermediate results from each step on each block

Tiled implementation

Objective for massive parallel computing:

- Shared memory stores data commonly used by all threads during a computation step
 - → reduce transfers between host and GPU
- Size of data only used by a single thread during a step is reduced (in local memory)
 - \rightarrow data locality

Example: matrix product

$$\mathbf{A} = [a_{ij}] \in \mathbb{R}^{M \times N}$$
 and $\mathbf{B} = [b_{jk}] \in \mathbb{R}^{N \times P}$

$$\mathsf{C}=\mathsf{A}\,\mathsf{B}$$

$$\mathbf{C} = [c_{ik}] \in \mathbb{R}^{M \times P}$$
 and $c_{ik} = \sum_j a_{ij} b_{jk} = \langle \mathbf{a}_{i\cdot}, \mathbf{b}_{\cdot k} \rangle$

Example: matrix product

$$\begin{bmatrix} & \cdot & \cdot & \cdot \\ \hline & a_{i} & \\ \hline & \cdot & \cdot & \cdot \\ \hline & \cdot & \cdot & \cdot \end{bmatrix}_{M \times N} \times \begin{bmatrix} & \cdot & & & \cdot \\ & \cdot & & b_{\cdot k} & & \cdot \\ & \cdot & & & \cdot \end{bmatrix}_{N \times P}$$

$$= \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \sum_{j} a_{ij} b_{jk} & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{M \times P}$$

Example: matrix product

Iterating through rows and columns

Iterating through rows and columns

Iterating through rows and columns

and so on...

Parallel matrix product

Thread 1 and thread 2 work in parallel

thread 1 computes
$$T_1 \rightarrow \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

= shared data between threads

 \Box = data only used by thread 1 \triangle = data only used by thread 2

Parallel matrix product

Thread 1 and thread 2 work in parallel

thread 1 computes
$$T_1 \rightarrow \begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

= shared data between threads

 \Box = data only used by thread 1 \triangle = data only used by thread 2

Parallel matrix product

Potential issues if dimension N is large (nb. of columns in matrix A)

- \rightarrow parallel threads are asynchronous and have to wait each other before updating shared memory (= using next column of matrix B)
- ightarrow rows of **A** are too large to fit into local memory used by each thread, hence numerous memory transfer

Thread 1 and thread 2 work in parallel

thread 1 accumulates over
$$T_{1k}$$
's \rightarrow thread 2 accumulates over T_{2k} 's \rightarrow

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ & & & \ddots \\ & & & \ddots \\ \end{bmatrix}$$

= shared "tile" between threads

 □ = "tile" only used by thread 1 \triangle = "tile" only used by thread 2

Thread 1 and thread 2 work in parallel

thread 1 accumulates over
$$T_{1k}$$
's \rightarrow thread 2 accumulates over T_{2k} 's \rightarrow

= shared "tile" between threads

 □ = "tile" only used by thread 1 \triangle = "tile" only used by thread 2

Thread 1 and thread 2 work in parallel

thread 1 accumulates over
$$T_{1k}$$
's \rightarrow
thread 2 accumulates over T_{2k} 's \rightarrow

= shared "tile" between threads

 □ = "tile" only used by thread 1 \triangle = "tile" only used by thread 2

- Tasks (scanning rows **a**_i.) divided into tiles
- All threads use the shared memory within a block
 - ightarrow a single memory transfer of each tile in **B** for all threads
- Accumulation (addition of the intermediate results) when scanning tiles across A

Benchmark

Runtime comparison for Gaussian matrix-vector product on GPU with different data size

- For small sample sizes (up to 10³): similar performance for KeOps and PyTorch
- For larger sample sizes (> 10³): **KeOps outperforms PyTorch**
- Memory overflow with PyTorch on large sample
- KeOps able to process data larger than GPU memory

skip benchmark II

Benchmark '

Runtime comparison between

- standard R
- · RKeOps
- PyKeOps
- · PyTorch

Different tasks

- Matrix-vector product with Gaussian kernel
- Solving Gaussian kernel linear system
- 10-iterations of K-means algorithm
- Exact K-nearest neighbor search

- RKeOps outperforms standard R and PyTorch with very large data sizes (except for K-means algorithm because of bad implementation)
- Memory overflow with PyTorch on large sample
- RKeOps able to process data larger than GPU memory

(a) Matrix-vector products with N-by-N Gaussian kernel matrices built from point clouds in dimension D=3.

(c) 10 iterations of K-means (Lloyd's algorithm) with N points in dimension D = 10 and $K = |\sqrt{N}|$ clusters.

(b) Solving an N-by-N Gaussian kernel linear system with ridge regularization (constant diagonal weights).

(d) Exact (K = 10)-nearest neighbor search: 10k queries in dimension D = 100 with a database of N samples.

Implementation

Coding generic formulas with KeOps

Mathematical formula with two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$:

$$\left(x,y\right)\mapsto \exp\left(\left\langle x,y\right\rangle\right)$$

 \rightarrow what I want to compute

A formula F in KeOps is first **encoded as a string** using combinations of elementary operations

 \rightarrow what I have to write

Under the hood

The formula *F* is expanded internally in the C++ code using templates:

A formula is an instantiation of a variadic recursively defined templated class

ightarrow KeOps compiles your operator on the fly to compute on GPU

Combining elementary operations

KeOps proposes a wide range of elementary operations

- Simple vector operations: scalar product, norm, distance, normalization, vector/vector element-wise operation (+,-,*,/), etc.
- Elementary $\mathbb{R} \to \mathbb{R}$ functions: exp, log, inverse, abs, pow, sqrt, sin, cos, etc.
- · Simple matrix operations: matrix product, etc.
- · Matrix reduction: sum, min, max, argmin, argmax, etc.

→ a formula = a combination of these operations

Using KeOps

http://www.kernel-operations.io/

· Complete documentation

Installation instructions (available on CRAN)

install.packages("rkeops")

Examples

KeOps stack

https://github.com/getkeops/keops

Open source (MIT licence)

We want to compute

$$\gamma_i = \sum_{j=1}^N \exp\left(-s \|\mathbf{x}_i - \mathbf{y}_j\|_2^2\right) \mathbf{b}_j$$

with
$$s \in \mathbb{R}$$
,
$$[\mathbf{x}_i]_{i=1,\dots,N} \in \mathbb{R}^{M\times 3}, [\mathbf{y}_j]_{j=1,\dots,N} \in \mathbb{R}^{N\times 3}$$
 and $[\mathbf{b}_j]_{j=1,\dots,N} \in \mathbb{R}^{N\times 6}$

Compilation on the fly of the operator

```
library(rkeops)
# implementation of a convolution with a Gaussian kernel
formula = "Sum Reduction(Exp(-s * SqNorm2(x - y)) * b, 0)"
# definition of input arguments
args = c("x = Vi(3)", # vector indexed by i (of dim 3)
         "y = Vj(3)",  # vector indexed by j (of dim 3)
"b = Vj(6)",  # vector indexed by j (of dim 6)
          "s = Pm(1)") # parameter (scalar)
# compilation
op <- keops kernel(formula, args)</pre>
```

Some data

```
# data and parameter values
nx <- 100
ny <- 150
X <- matrix(runif(nx*3), nrow=nx)  # matrix 100 x 3
Y <- matrix(runif(ny*3), nrow=ny)  # matrix 150 x 3
B <- matrix(runif(ny*6), nrow=ny)  # matrix 150 x 6
s <- 0.2</pre>
```

Run computations

```
# run computations on GPU (optional)
use_gpu()

# computation
# (order of input list similar to `args`)
res <- op(list(X, Y, B, s))</pre>
```

Gradient

```
# compile gradient regarding 'x' variable
grad_op <- keops_grad(op, var="x")</pre>
```

Conclusion

Take-home message: KeOps

Seamless Kernel Operations...

 \rightarrow write formulas with simple matrix operations in R

...on GPU...

 \rightarrow fast computations

...with auto-differentiation...

 \rightarrow automatic gradient computation

...and without memory overflows

 \rightarrow tiling implementation

In the future?

Lazy evaluation in R (example below with PyKeOps)

```
# Symbolic representation of data
x i = LazyTensor(x[:,None,:]) # shape (1e6, 1, 3)
y j = LazyTensor(y[None,:,:]) # shape (1, 2e6,3)
# Symbolic (1e6,2e6,1) matrix of squared distances
D ij = ((x i - y j)**2).sum(dim=2)
# Symbolic (1e6,2e6,1) Gaussian kernel matrix
K ij = (-D ij).exp()
## Result (computations on GPU are done here)
a i = K ij.sum(dim=1) # shape (1e6, 1)
```

Thank you for you attention

https://arxiv.org/abs/2004.11127 (pending publication)

http://www.kernel-operations.io/

https://github.com/getkeops/keops