Operační systémy

Tomáš Hudec

Tomas.Hudec@upce.cz

http://fei-as.upceucebny.cz/usr/hudec/vyuka/os/

Osnova

- definice OS
- historie
- rozdělení dle určení
- koncepce
- systémová volání
- rozdělení dle struktury
- vlastnosti moderního OS

Literatura

- Tanenbaum A.: Modern Operating Systems. 3. vydání.
 Pearson, 2014. ISBN 987-1-292-02577-3.
- Tanenbaum, A.: Structured Computer Organization.
 6. vydání. Pearson, 2013. ISBN 978-0-273-76924-3.
- Tanenbaum, A. Woodhull, A.: Operating Systems:
 Design and Implementation. 3. vydání. Pearson, 2009.

 ISBN 978-0-13-505376-3.
- Intel 64 and IA-32 Architectures: Software Developer's
 Manual: Volume 3A: System Programming Guide,
 Part 1 [online]. Intel, c 2007–2015 [cit. 2015-01-28].
 URL: http://www.intel.com/design/processor/manuals/253668.pdf

Tomáš Hudec – Operační systémy

Literatura (obrázek)

Citáty

- "Software is like sex: it's better when it's free."
 - Linus Torvalds, 1996

- "I started Linux as a desktop operating system. And it's the only area where Linux hasn't completely taken over.
- That just annoys the hell out of me."
 - Linus Torvalds, 2012

Co je to OS

- rozšíření stroje (virtualizace) pohled "shora"
 - zjednodušující interface, abstrakce
 - příklad: čtení/zápis na disk
- správce prostředků pohled "zdola"
 - procesory, paměti, V/V zařízení
 - příklad: tisk na tiskárnu
 - multiplexing (sharing) sdílení prostředků
 - v čase (CPU)
 - v prostoru (RAM)

Historie OS, generace (1)

- 1. G 1945–55: elektronky, zásuvné karty
 - počítače zabíraly celé místnosti, OS neexistoval
- 2. G 1955–65: tranzistory a dávkové systémy
 - mainframes
 - obsluha se již dělí
 - designéři, builders, operátoři, programátoři a údržbáři
 - jazyk FORTRAN nebo assembler
 - dávkové systémy

Dávkový systém (obrázek)

Programátoři nosí karty k IBM 1401, kde se programy přepíší do dávky na pásku. Po zaplnění pásky ji operátor přesune k IBM 7094, kde se dávka úloh zpracuje a vygeneruje se výstupní páska. Operátor ji pak přenese k dalšímu IBM 1401, kde se z ní výsledky přečtou a vytisknou.

Historie OS, generace (2)

- 3. G 1965–80: IO, multiprogramming
 - SSI (small-scale integrated circuits)
 - IBM System/360, OS/360
 - multiprogramming
 - spooling (Simultaneous Peripheral Operation On Line)
 - timesharing, CTSS (Compatible Time Sharing System)
 - MULTICS
 - UNIX
 - POSIX standard

Historie OS, generace (3)

- 4. G 1980–současnost: osobní počítače
 - LSI (large scale integration)
 - (předchůdci) OS:
 - CP/M
 - DOS
 - GUI
 - Mac OS
 - X Window
 - NeXTSTEP
 - Windows

ZOO OS (1)

- mainframe OS sálové počítače
 - obrovská kapacita V/V operací IBM OS/360, z/OS
- serverové OS
 - síťové služby UNIX, BSD, Linux, Windows Server
- distribuované (rozptýlené, vícepočítačové) OS
 - clustery, paralelní počítače
 - obvykle modifikace existujících OS (Linux), QNX
- osobní OS PC: mac OS, Linux, Windows

ZOO OS (2)

- real-time OS důležité je dodržení termínů
 - QNX, VxWorks, RT-Linux
- vestavěné (embedded) OS
 - PDA, TV-sety, mikrovlnky, mobily
 - QNX, VxWorks, PalmOS, iOS, Linux
- smart card OS, SIM card OS
 - specializované miniaturní vestavěné systémy
 - platební karty Chip OS (COS, MACOS), MULTOS

Ontogeneze rekapituluje fylogenezi

- z biologie:
 - ontogeneze = vývoj jedince
 - fylogeneze = vývoj druhů
- vývoj OS pro (nová) jednodušší a menší zařízení postupuje podobným procesem jako vývoj OS celkově

Koncepce OS

- procesy
- správa paměti
- správa vstupů a výstupů
- správa úložišť
- systémová volání

Procesy

- programy, které běží v systému
 - adresový prostor (core image), přidělené prostředky
 - spuštění, ukončení procesu, pozastavení, ...
- tabulka procesů, PCB (process control block)
- komunikace mezi procesy
- signály (alarm, V/V operace, …)
- identifikace uživatele

Problematika – nežádoucí stavy

- problémy souběhu
 - vyhladovění, deadlock, vzájemné vylučování
 - OS nabízí prostředky na jejich řešení
- deadlock stav uváznutí, příklad:
 - dva procesy potřebují dvě zařízení (A, B)
 - proces 1 má přiděleno zařízení A
 - proces 2 má přiděleno zařízení B
 - oba čekají na uvolnění druhého zařízení

Správa paměti, V/V

- správa paměti
 - logický adresní prostor
 - fyzický adresní prostor
 - virtuální paměť
- vstupy a výstupy (V/V)
 - OS má subsystém správy V/V zařízení
 - ovladače (drivers)

Soubory, souborové systémy

- souborové systémy
 - kořenový adresář (root)
 - cesta (path)
 - absolutní
 - relativní
 - pracovní adresář
- soubory a operace čtení, zápis, posun
 - file descriptor, handle
- speciální soubory blokové, znakové, roura

Systémová volání

- volání služeb jádra OS
- volání probíhá většinou přes knihovnu:
 - parametry na stack (v opačném pořadí)
 - volání systémové funkce v knihovně
 - knihovna: nastavení registru na typ volání
 - knihovna: instrukce TRAP (skok do jádra OS)
 - jádro: dispatch, volání příslušného ovladače
 - (návrat do knihovny a programu)

Příklady systémových volání

- procesy
 - vznik, nahrazení, čekání na ukončení, ukončení
- soubory (V/V)
 - otevření, zavření, čtení, zápis, stat, ioctl
- adresáře a souborové systémy
 - vytvoření, zrušení, odkazy, připojování FS
- ostatní (práva, signály, ...)
 - změna práv, signál, zjištění času

Systémová volání – Win32

- Win32 API (Application Interface)
 - vrstva mezi skutečnými funkcemi OS a aplikacemi
 - oproti systému UNIX založeno na událostech (zpracování fronty zpráv)
 - obsahuje API pro GUI
 - extrémně velké (tisíce procedur)
 - POSIX: asi sto systémových volání

Dělení OS dle struktury – monolitické jádro

- monolitické OS (The Big Mess)
 - vše v jednom vnitřně nečleněné jádro
 - z hlediska hierarchie volání procedur
 - každá procedura může volat libovolnou jinou
 - mohou mít i strukturu:
 - hlavní program (obsahuje dispatcher)
 - obslužné procedury
 - užitkové procedury
 - procedury mají pevně definované rozhraní

Dělení OS dle struktury – vícevrstvé jádro

vícevrstvé OS

- vrstva smí volat jen procedury stejné nebo nejbližší nižší vrstvy – zajištěno HW (úrovně oprávnění)
- MULTICS
- Dijkstra: THE (Technishe Hogeschool Eindhoven):
 - 5 operátor
 - 4 uživatelské programy
 - 3 správa V/V zařízení, buffering
 - 2 komunikace mezi procesy a konzolí operátora
 - 1 správa paměti
 - 0 alokace CPU a multiprogramming

Dělení OS dle struktury – virtuální jádro

- virtuální stroje, virtualizace na úrovní jádra
 - obecně: VM monitor / hypervizor multiprogramming
 - již v r. 1972: IBM VM/370 + OS/360 nebo CMS
 - jediné jádro OS + kontejnery: izolace skupin procesů, uživatelů (vč. správce), sítě i souborového systému
 - Solaris 11 kernel zones
 - FreeBSD Jails
 - Linux-Vserver modifikované jádro Linuxu
 - OpenVZ kontejnery, modifikované jádro Linuxu
 - Linux Containers (LXC, od verze jádra 2.6.24, 2008) –
 cgroups: izolace prostředků: CPU, paměť, disk I/O, síť, ...

Dělení OS dle struktury – exokernel

exokernely

- klon počítače založen na rozdělení HW
 - multiplex systémových prostředků
- minimalistické jádro se základními abstrakcemi
 - důležitá designová rozhodnutí o abstrakcích lze učinit až na vyšší (uživatelské, programátorské) úrovni
- koncept vznikl na MIT
 - projekty Aegis (proof of concept) a XOK

Dělení OS dle struktury – mikrojádro

- model klient-server, mikrojádro (microkernel)
 - trend moderních OS
 - mikrojádro správa komunikace mezi procesy
 - klientské procesy správa paměti, FS, ovladače, …
 - náročné na implementaci i režii
 - GNU/Hurd (Hird of Unix-Replacing Daemons,
 Hird = Hurd of Interfaces Representing Depth)
 - QNX [kjuniks]
 - unixový real-time OS (pro vestavěná zařízení)
 - MINIX 3

Mikrojádro (obrázek)

Minimalistické jádro zajišťuje jen nejnutnější funkce:

- mikroprogramování alokace CPU (plánovač)
- zajištění ochrany paměti
- základní meziprocesová komunikace

Vlastnosti moderního OS

- preemptivní (a efektivní) plánování procesů
- izolace procesů
- efektivní správa paměti
 - operační paměť logické adresování, virtualizace
 - úložiště souborové systémy
- víceuživatelský OS, izolace uživatelů
 - implementace oprávnění (procesů, souborů)
- podpora IPC komunikace a synchronizace