

Escuela Profesional de Ciencia de la Computación

BDI Fase 3

Base de Datos I

Dr. Edward Hinojosa C.

Dr. Edgar Sarmiento C.

Universidad Nacional de San Agustín de Arequipa

2020/Semestre Par

Índice

- 1 Fases del Proyecto de BD
- 2 Lenguaje de Manipulación de Datos en BDR
- 3 Algebra Relacional
- 4 Cálculo Relacional
- 5 SQL SELECT DRL
- 6 SQL SELECT Funciones de Agregación

Fases del Proyecto de BD

Lenguajes de consulta en BDR

- Vamos a estudiar tres lenguajes de consulta en bases de datos relacionales:
 - Algebra Relacional.
 - Cálculo Relacional.
 - SQL (Structured Query Language).

- Álgebra y cálculo relacional son dos formalismos lógico-matemáticos para escribir consultas.
- Álgebra y cálculo relacional fueron propuesto por Codd como lenguajes de consulta en BDR. Ambos son equivalentes.
- SQL se diseñó basándose en álgebra y cálculo relacional.
- Hasta cierto punto equivalentes a SQL pero permitiendo asegurar la consistencia matemática.

- Los lenguajes de consulta son los lenguajes en el que los usuarios solicitan información de la base de datos.
- Estos lenguajes son generalmente de más alto nivel que los lenguajes de programación.
- Los lenguajes de consulta pueden clasificarse como procedimentales y no procedimentales.

- Los lenguajes de consulta son los lenguajes en el que los usuarios solicitan información de la base de datos.
- Estos lenguajes son generalmente de más alto nivel que los lenguajes de programación.
- Los lenguajes de consulta pueden clasificarse como procedimentales y no procedimentales.

- Los lenguajes de consulta procedimentales requiren que el usuario especifique que datos se necesitan y cómo obtenerlos.
- El álgebra relacional es un lenguaje de consulta procedimental.
- El álgebra relacional define operadores que funcionan sobre las tablas, por ejemplo, unión, intersección, etc, para llegar al resultado deseado o información.

- Los lenguajes de consulta no procedimentales requieren que el usuario especifique que datos se necesitan sin especificar cómo obtenerlos.
- El cálculo relacional es un lenguaje de consulta no procedimental.
- El cálculo relacional define el resultado o información a ser obtenida sin dar un procedimiento específico para obtener dicha información.

 Álgebra Relacional se define como un conjunto de operaciones que se ejecutan sobre las relaciones (tablas) para obtener un resultado, el cual es otra relación.

- Las operaciones se pueden dividir en dos:
 - Operaciones tradicionales: unión, intersección, diferencia y producto cartesiano.
 - Operaciones especiales: selección, proyección, entre otras.

Empleado:

CodEmpleado	Nombres	PrimerApellido	SegundoApellido	FechaNacimiento	Direccion	Sexo	Salario	Supervisor	CodDepto
123456789	Juan	Perez	Rodriguez	1965-01-09	Calle Numero A 1	М	300	333445555	5
333445555	Frank	Velazquez	Flores	1955-12-08	Calle Numero B 2	M	4000	888665555	5
999887777	Alice	Jimenez	Portugal	1968-07-19	Calle Numero C 3	F	2500	987654321	4
987654321	Luisa	Santos	Ferrel	1951-06-20	Calle Numero D 4	F	430	888665555	4
666884444	Pedro	Lima	Maldonado	1952-09-15	Calle Numero E 5	M	1200	333445555	5
453453453	Daniela	Acco	Olivares	1962-07-31	Calle Numero F 6	F	2500	333445555	5
987987987	Mateo	Vela	Marruecos	1979-03-29	Calle Numero H 7	M	2500	987654321	4
888665555	Francisco	Linares	Gomez	1957-11-10	Calle Numero I 8	M	5500	NULL	1

Departamento:

CodDepto	NombreDepto	CodGerente	FechaInicioGerencia
1	Direccion	888665555	2001-06-19
4	Administracion	987654321	1995-01-01
5	Investigacion	333445555	1998-05-22

Localizaci	Localizacion_Depto:						
CodDepto	Localizacion						
1	Lima						
4	Arequipa						
5	Puno						
5	Trujillo						
5	Cuzco						
	4 = 1 4 = 1						

Trabaja_en:

CodEmpleado	CodProyecto	Horas
123456789	1	32
123456789	2	7
666884444	3	40
453453453	1	20
453453453	2	20
333445555	2	10
333445555	3	10
333445555	10	10
333445555	20	10
999887777	30	30
999887777	10	10
987987987	10	35
987987987	30	5
987654321	30	20
987654321	20	15
888665555	20	NULL

Proyecto:

CodProyecto	NombreProyecto	Localizacion	CodDepto
1	Proyecto X	Puno	5
2	Proyecto Y	Trujillo	5
3	Proyecto Z	Cuzco	5
10	Proyecto A	Arequipa	4
20	Proyecto B	Lima	1
30	Proyecto C	Arequipa	4

Dependiente:

CodEmpleado	NomDependiente	Sexo	FechNacimiento	Parentesto					
333445555	Ana	F	1976-04-03	Hija					
333445555	Victor	M	1973-10-25	Hijo					
333445555	Juana	F	1958-05-05	Conyugue					
987654321	Igor	M	1952-02-29	Conyugue					
123456789	Michael	М	1988-01-21	Hijo					
123456789	Anabel	F	1998-12-31	Hija					
123456789	Elizabeth	F	1957-05-05	Convugue					

 La operación de Selección es utilizada para seleccionar un conjunto de tuplas de una relación:

$$\sigma_{< cond>}(< R >)$$

 Donde < cond > es una condición de selección y < R > es el nombre de una relación.

Algebra Relacional: Selección

• Ejemplo: Seleccionar todos los empleados que trabajan en el departamento 5.

$$\sigma_{CodDepto=5}(Empleado)$$

CodEmpleado	Nombres	Primer Apellido	SegundoApellido	FechaNacimiento	Direccion	Sexo	Salario	Supervisor	CodDepto
123456789	Juan	Perez	Rodriguez	1965-01-09	Calle Numero A 1	М	300	333445555	5
333445555	Frank	Velazquez	Flores	1955-12-08	Calle Numero B 2	М	4000	888665555	5
666884444	Pedro	Lima	Maldonado	1952-09-15	Calle Numero E 5	М	1200	333445555	5
453453453	Daniela	Acco	Olivares	1962-07-31	Calle Numero F 6	F	2500	333445555	5

Algebra Relacional: Selección

- Es una operación unitaria (realizada en una única relación).
- El grado (número de atributos) de la relación resultante es el mismo de la relación original.
- Se puede combinar un conjunto de operaciones de Selección en una única operación de Selección.
- La operación de selección es conmutativa:

$$\sigma_{< cond1>}(\sigma_{< cond2>}(< R>)) = \sigma_{< cond2>}(\sigma_{< cond1>}(< R>))$$

 La operación de Proyección es utilizada para seleccionar un conjunto de atributos de una relación:

$$\pi_{} \(< R >\)$$

• Donde < atributos > es una lista de atributos dentro de los atributos de la relación R y < R > es el nombre de un relación.

Algebra Relacional: Proyección

• Ejemplo: Listar el nombre, primer apellido y el salario de todos los empleados.

 $\pi_{Nombres, PrimerApellido, Salario}(Empleado)$

Nombres	PrimerApellido	Salario
Juan	Perez	300
Frank	Velazquez	4000
Alice	Jimenez	2500
Luisa	Santos	430
Pedro	Lima	1200
Daniela	Acco	2500
Mateo	Vela	2500
Francisco	Linares	5500

Algebra Relacional: Proyección

- Es una operación unitaria (realizada en una única relación).
- Caso la lista de atributos incluya solamente atributos que no sean claves de R, es posible que ocurran tuplas duplicadas:
 - La operación Proyección elimina tuplas duplicadas de tal forma que el resultado sea una relación válida.
 - Con ello, el número de tuplas en la relación resultante es siempre menor o igual al número de tuplas de la relación R.
- La operación de proyección no es conmutativa.

- Es común aplicar diversas operaciones del álgebra relacional, una después de la otra (secuencia de operaciones).
- Se puede escribir las operaciones en la forma de una única expresión o aplicar una operación secuencialmente, creando relaciones de resultado intermedio, en ese último caso, se debe nombrar las relaciones implicadas.

• Ejemplo: Listar el nombre, primer apellido y el salario de todos los empleados que trabajan en el Departamento número 5.

 $\pi_{Nombres, PrimerApellido, Salario}(\sigma_{CodDepa=5}(Empleado))$

Equivalente a:

 $Dep5Empleado \leftarrow \sigma_{CodDepa=5}(Empleado)$

 $Resultado \leftarrow \pi_{Nombres, PrimerApellido, Salario}(Dep5Empleado)$

Nombres	PrimerApellido	Salario
Juan	Perez	300
Frank	Velazquez	4000
Pedro	Lima	1200
Daniela	Acco	2500

Algebra Relacional: Secuencia de Operaciones

 Se puede utilizar la técnica de secuencia de operaciones para renombrar los atributos en la relaciones intermedias y del resultado: debemos listar los nombres de los nuevos atributos entre paréntesis juntamente con los nombres de las nuevas relaciones:

 $Dep5Empleado \leftarrow \sigma_{CodDepa=5}(Empleado)$

Resultado(Nom, ApePaterno, Sueldo) \leftarrow

 $\pi_{Nombres,PrimerApellido,Salario}(Dep5Empleado)$

- El álgebra relacional posee un grupo patrón de operaciones matemáticas sobre conjuntos:
 - Las operaciones son binarias, es decir, envuelven dos relaciones.
 - Para algunas operaciones, las relaciones deben poseer el mismo tipo de tuplas, siendo consideradas compatibles para la unión, intersección y diferencia.
- Dos relaciones $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$ son compatibles para la unión, intersección y diferencia si poseen el mismo grado "n" y si $dom(A_i) = dom(B_i)$ para 1 <= i <= n.

- Las operaciones de teoría de conjuntos que exigen relaciones compatibles son:
 - Unión: Denotada por $R \cup S$, genera una relación que incluye todas las tuplas que están en R o en S o en ambas.
 - Intersección: Denotada por $R \cap S$, genera una relación que incluye todas las tuplas que están en R y en S.
 - Diferencia: Denotada por *R*–*S*, genera una relación que incluye todas las tuplas que están en *R*, pero no en *S*.

- La relación resultante de las operaciones posee los mismos nombres de atributos de la primera relación (R) envueltas en las operaciones.
- Las operaciones de unión e intersección son conmutativas y asociativas.

$$R \cup S = S \cup R$$
 $R \cap S = S \cap R$

$$R \cup (S \cap T) = (R \cup S) \cap T$$
 $R \cap (S \cup T) = (R \cap S) \cup T$

 Listar el código de todos los empleados que trabajan en el departamento 5 o que supervisan a algún empleado que trabaje en el departamento 5.

 $Dep5Empleados \leftarrow \sigma_{codDepto=5}(Empleado)$

 $Resultado1 \leftarrow \pi_{CodEmpleado}(Dep5Empleados)$

 $Resultado2(CodEmpleado) \leftarrow \pi_{supervisor}(Dep5Empleados)$

 $Resultado(CodEmpleado) \leftarrow Resultado1 \cup Resultado2$

CodEmpleado	Nombres	PrimerApellido	SegundoApellido	FechaNacimiento	Direction	Sexo	Salario	Supervisor	CodDepto
123456789	Juan	Perez	Rodriguez	1965-01-09	Calle Numero A 1	М	300	333445555	5
333445555	Frank	Velazquez	Flores	1955-12-08	Calle Numero B 2	М	4000	888665555	5
999887777	Alice	Jimenez	Portugal	1968-07-19	Calle Numero C 3	F	2500	987654321	4
987654321	Luisa	Santos	Ferrel	1951-06-20	Calle Numero D 4	F	430	888665555	4
666884444	Pedro	Lima	Maldonado	1952-09-15	Calle Numero E 5	М	1200	333445555	5
453453453	Daniela	Acco	Olivares	1962-07-31	Calle Numero F 6	F	2500	333445555	5
987987987	Mateo	Vela	Marruecos	1979-03-29	Calle Numero H 7	М	2500	987654321	4
888665555	Francisco	Linares	Gomez	1957-11-10	Calle Numero I 8	М	5500	NULL	1

- La operación de conjunto binaria Producto Cartesiano, representada por x, es utilizada para combinar tuplas de dos relaciones de forma combinatoria.
- Las relaciones no necesitan ser compatibles como para la unión.
- El resultado $R(A_1, A_2, ..., A_n) \times S(B_1, B_2, ..., B_m)$ es una relación $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_n)$ con n + m atributos.
- La relación Q posee una tupla para cada combinación de tuplas de las relaciones implicadas: Si R posee n_R tuplas y S posee n_S tuplas, entonces Q poseerán $n_R * n_S$ tuplas.

- No es una operación muy usual porque genera tuplas que no hacen sentido. Siempre se usa seguida por una Selección que combina valores de atributos en las relaciones implicadas.
- Ejemplo: Mostrar el Nombre, Apellido Paterno y Código de todos los empleados de sexo femenino que tengan dependientes:

```
EmpMujeres \leftarrow \sigma_{sexo='F'}(Empleado)
```

NomEmpleado(Nom, ApePaterno, CodigoEmp)

 $\leftarrow \pi$ Nombres, Primer Apellido, Cod Empleado (Emp Mujeres)

 $DepenEmple \leftarrow NomEmpleado \times Dependiente$

 $DepenCorrectos \leftarrow \sigma_{codigoEmp=CodEmpleado}(DepenEmple)$

 $Resultado \leftarrow \pi_{Nomb,ApePaterno,CodigoEmp}(DepenCorrectos)$

CodEmpleado	Nombres	Primer Apellido	SegundoApellido	FechaNacimiento	Direction	Sexo	Salario	Supervisor	CodDepto
123456789	Juan	Perez	Rodriguez	1965-01-09	Calle Numero A 1	М	300	333445555	5
333445555	Frank	Velazquez	Flores	1955-12-08	Calle Numero B 2	М	4000	888665555	5
999887777	Alice	Jimenez	Portugal	1968-07-19	Calle Numero C 3	F	2500	987654321	4
987654321	Luisa	Santos	Ferrel	1951-06-20	Calle Numero D 4	F	430	888665555	4
666884444	Pedro	Lima	Maldonado	1952-09-15	Calle Numero E 5	М	1200	333445555	5
453453453	Daniela	Acco	Olivares	1962-07-31	Calle Numero F 6	F	2500	333445555	5
987987987	Mateo	Vela	Marruecos	1979-03-29	Calle Numero H 7	М	2500	987654321	4
888665555	Francisco	Linares	Gomez	1957-11-10	Calle Numero I 8	M	5500	HULL	1

CodEmpleado	NomDependiente	Sexo	FechNacimiento	Parentesto
333445555	Ana	F	1976-04-03	Hija
333445555	Victor	М	1973-10-25	Hijo
333445555	Juana	F	1958-05-05	Conyugue
987654321	Igor	М	1952-02-29	Conyugue
123456789	Michael	М	1988-01-21	Hijo
123456789	Anabel	F	1998-12-31	Hija
123456789	Elizabeth	F	1957-05-05	Conyugue

- Una vez que la operación Producto Cartesiano, seguida de la operación Selección, es usada con frecuencia, fue definida una operación especial, denominada Yunción, para especificar tal secuencia como una única operación.
- La operación Yunción es utilizada para combinar tuplas relacionadas de dos relaciones en un única tupla:

$$R \bowtie_{< cond>} S$$

 Donde R y S son relaciones y < cond > es una condición de yunción entre las relaciones.

- $R(A_1, A_2, ..., A_n) \bowtie_{< cond>} S(B_1, B_2, ..., B_m)$ es una relación $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_n)$ con n + m atributos.
- La relación Q posee una tupla para cada combinación de tuplas de las relaciones implicadas, siempre que la combinación satisfaga la condición de yunción.
- Una condición general de yunción es: < cond₁ > y < cond₂ > y ... y ... < cond_N >, donde cada condición es de la forma A_iθB_i:
- A_i es el atributo de R, B_i es el atributo de S del mismo dominio de A_i , y θ es un operador de comparación $=,<,>,<,\geq,\neq$.

 Ejemplo: Mostrar el Nombre, Apellido Paterno y Código de todos los empleados de sexo femenino que tengan dependientes:

 $EmpMujeres \leftarrow \sigma_{sexo='F'}(Empleado)$

 $NomEmpleado(Nom, ApePaterno, CodigoEmp) \leftarrow \pi_{Nombres, PrimerApellido, NomEmpleado(Nom, ApePaterno, CodigoEmp) \leftarrow \pi_{Nombres, PrimerApellido, NomEmpleado(NomEmple$

 $DepenCorrectos \leftarrow NomEmpleado \bowtie_{codigoEmp=CodEmpleado} (Dependiente$

 $Resultado \leftarrow \pi_{Nomb,ApePaterno,CodigoEmp}(DepenCorrectos)$

- La operación Yunción más común, denominada Equiyunción, envuelve apena condiciones de yunción con comparaciones de igualdad.
- Una equiyunción donde dos atributos de la comparación tienen el mismo nombre es llamada de Yunción Natural, siendo definida por *; en ese caso, apenas uno de los atributos de la comparación aparece en la relación resultante y la condición de yunción no es especificada.
- Ejemplo: Listar, para cada empleado del sexo femenino, los nombres de sus dependientes:

 $EmpMujeres \leftarrow \sigma_{sexo='F'}(Empleado)$ $DepenCorrectos \leftarrow EmpMujeres * Dependiente$ $Resultado \leftarrow \pi_{Nomb,ApePaterno,CodigoEmp}(DepenCorrectos)$

- Al igual que el Álgebra Relacional (AR), el Cálculo Relacional de Tuplas (CRT) es un lenguaje de consulta asociado al Modela Relacional.
- CRT es un lenguaje declarativo o no procedimental: Describe cuáles tuplas se deben devolver pero no como se calculan.
- Cualquier consulta escrita en AR puede ser expresada en CRT y viceversa, es decir, ambos tienen la misma expresividad.

- El CRT posee una base firme en la lógica matemática.
- El CRT se basa sobre la especificación de variables tupla.
- Cada variable tupla se extiende a lo largo de una relación y puede tomar como valor cualquier tupla de esa relación.
- El lenguaje de consulta estándar (SQL) tiene muchos de sus fundamentos en el CRT. Veremos ejemplos de selección, proyección y yunción (también podemos usar unión, intersección y diferencia pero no veremos ejemplos de ello).

 La Fórmula General de Expresión puede ser definida de la siguiente manera:

$$\{t|F(t)\}$$

Conjunto de tuplas t tal que F(t) es verdadera.

• Considere la siguiente BD para expresar fórmulas del CRT:

PROVEEDORES

Р#	PNOMBRE	CATEGORIA	CIUDAD
P1	CARLOS	20	SEVILLA
P2	JUAN	10	MADRID
P3	JOSE	30	SEVILLA
P4	INMA	20	SEVILLA
P5	EVA	30	CACERES

COMPONENTES

C #	CNOMBRE	COLOR	PESO	CIUDAD
C1	X3A	ROJO	12	SEVILLA
C2	B85	VERDE	17	MADRID
C3	C4B	AZUL	17	MALAGA
C4	C4B	ROJO	14	SEVILLA
C5	VT8	AZUL	12	MADRID
C6	C30	ROJO	19	SEVILLA

ENVIOS

Р#	C #	T#	CANTIDAD
		T1	
P1	C1	T4	700
P2	C3	T1	400
	C3		200
P2	C3	T3	200
	C3		500
P2	C3	T5	600
P2	C3	T6	400
P2	C3	T7	800
		T2	100
Р3	C3	T1	200
	C4		500
P4	C6	T3	300
P4	C6	T7	300
P5	C2	T2	200
P5	C2	T4	100
P5	C5	T4	500
P5	C5	T7	100
			200
P5	C1	T4	100
P5	C3	T4	200
P5	C4	T4	800
P5	C5	T5	400
P5	C6	T4	500

ARTICULOS

T#	TNOMBRE	CIUDAD
T1	CLASIFICADORA	MADRID
T2	PERFORADORA	MALAGA
T3	LECTORA	CACERES
T4	CONSOLA	CACERES
T5	MEZCLADORA	SEVILLA
T6	TERMINAL	BARCELONA
T7	CINTA	SEVILLA

- PROVEEDORES .- Representa los datos de proveedores de componentes para la fabricación de artículos y su ciudad de residencia.
- COMPONENTES.- Indica la información de piezas utilizadas en la fabricación de diferentes artículos, indicándose el lugar de fabricación de dichos componentes.
- ARTICULOS.- Información sobre los diferentes artículos que se fabrican y el lugar de montaje del mismo.
- ENVIOS.- Suministros realizados por los diferentes proveedores de determinadas cantidades de componentes asignadas para la elaboración del artículo correspondiente.

Cálculo Relacional: Relación de Intervalo (Range)

• Ejemplo: Listar todas las tuplas de la tabla proveedores:

$$\{t|t\in proveedores\}$$

P #	PNOMBRE	CATEGORIA	CIUDAD
P1	CARLOS	20	SEVILLA
P2	JUAN	10	MADRID
Р3	JOSE	30	SEVILLA
P4	INMA	20	SEVILLA
P5	EVA	30	CACERES

Cálculo Relacional: Selección

 Ejemplo: Listar las tuplas de la tabla artículos que tengan esten en la Ciudad Caceres.

$$\{t|t \in articulos \land t.Ciudad = `Caceres`\}$$

T#	TNOMBRE	CIUDAD
T3	LECTORA	CACERES
T4	CONSOLA	CACERES

 Ejemplo: Mostrar las columnas PNombre y Categoria de la tabla proveedores.

$$\{t|\exists s \in proveedores(t.PNombre = t.PNombre \land t.Categoria = s.Categoria)\}$$

PNOMBRE	CATEGORIA
CARLOS	20
JUAN	10
JOSE	30
INMA	20
EVA	30

 Ejemplo: Mostrar el nombre del proveedor y su ciudad de todos los proveedores que envían el componente X3A. (No se eliminan resultados iguales).

$$\{t|\exists pr \in proveedores \ \exists co \in componentes \ \exists en \in envios \}$$

 $\{t.PNombre = pr.PNombre \land t.Ciudad = pr.Ciudad \}$
 $\{t.PNombre = pr.PNombre \land t.Ciudad = pr.Ciudad \}$

PNOMBRE	CIUDAD
CARLOS	SEVILLA
CARLOS	SEVILLA
EVA	CACERES

SQL - Data Retrieval Language (DRL) - SELECT

 Para obtener información de una BDR podemos utilizar el comando SFI ECT

```
SELECT
    [ALL | DISTINCT | DISTINCTROW ]
    [HIGH_PRIORITY]
    [STRAIGHT JOIN]
    [SQL SMALL RESULT] [SQL BIG RESULT] [SQL BUFFER RESULT]
    [SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
    select_expr [, select_expr] ...
    [into option]
    [FROM table_references
     [PARTITION partition list]]
    [WHERE where condition]
    [GROUP BY {col_name | expr | position}, ... [WITH ROLLUP]]
    [HAVING where condition]
    [WINDOW window name AS (window spec)
       [, window_name AS (window_spec)] ...]
    [ORDER BY {col_name | expr | position}
     [ASC | DESC], ... [WITH ROLLUP]]
    [LIMIT {[offset,] row_count | row_count OFFSET offset}]
    [into_option]
    [FOR {UPDATE | SHARE}
       [OF tbl_name [, tbl_name] ...]
       INOWAIT | SKIP LOCKED1
     | LOCK IN SHARE MODE]
    [into_option]
into option: {
    INTO OUTFILE 'file_name'
       [CHARACTER SET charset_name]
       export options
  | INTO DUMPFILE 'file_name'
  | INTO var name [, var name] ...
```

• Muestre al estudiante con código 666884444.

- Como hemos visto, el comando WHERE puede utilizarse para seleccionar datos condicionalmente de una tabla.
- Esta condición puede ser una condición simple (como la vimos anteriormente), o puede ser una condición compuesta. Las condiciones compuestas están formadas por múltiples condiciones simples conectadas por AND u OR.
- No existe límites en el número de condiciones simples que pueden presentarse en una sola instrucción SQL.

Muestre los estudiantes con código 666884444 o 333445555

```
🔚 | 🥖 🙀 👰 🕛 | 🗞 | 💿 🔞 | Limit to 1000 rows
       USE universidad:
       SELECT * FROM estudiante
       WHERE
        estu id = 666884444 OR
       estu id = 333445555;
Edit: 🍊 🖶 🖶
  estu_id
            nombres
                    prim_apel
                           segu_apel
                                       depa_id
                                              prof_id
  333445555
           Frank
                    Velazguez
                            Flores
  666884444
           Pedro
                            Maldonado
                    Lima
                                      NULL
           NULL
```

 Muestre los estudiantes con código 666884444 o 333445555 O 123456789.

• Muestre el nombre y los créditos de cada curso.

		1	T	Q	0	%	\bigcirc	\otimes	8	Limit t	o 100	0 rows
	1 •	USE	univ	ers	idad;							
	2 •	SELE	CT n	omb	re AS	Non	bre,	cre	ditos	'Cré	dit	os'
	3	FROM	cur	`so;								
	4											
	5											
	6											
<												
Re	sult Grid	1	43	Filte	r Rows:					Export:		Wrap
	Nombre	2			Créd	itos						
>	Base de	Datos	I		4							
	Inteliger	ncia Ar	tificial	I	6							
	Ingenier	ria del S	Softw	are	4							
	Base de	Datos	II		2							
	Inteliger	ncia Ar	tificial	II	4							

- LIKE es otro comando que se utiliza en la cláusula WHERE.
- Básicamente, LIKE nos permite hacer una búsqueda basada en un patrón en vez de especificar exactamente lo que se desea.
- Tarea: Estudiar las forma de búsqueda de textos.

- patrón generalmente consiste en comodines. Por ejemplo:
- 'A_Z': Toda línea que comience con 'A', otro carácter y termine con 'Z'. Por ejemplo, 'ABZ' y 'A2Z' deberían satisfacer la condición, mientras 'AKKZ' no debería (debido a que hay dos caracteres entre A y Z en vez de uno).
- 'ABC%': Todas las líneas que comienzan con 'ABC'. Por ejemplo, 'ABCD' y 'ABCABC' ambas deberían satisfacer la condición.
- '%XYZ': Todas las líneas que terminan con 'XYZ'. Por ejemplo, 'WXYZ' y 'ZZXYZ' ambas deberían satisfacer la condición.
- '%AN %': Todas las líneas que contienen el patrón 'AN' en cualquier posición. Por ejemplo, 'LOS ANGELES' y 'SAN FRANCISCO' ambos deberían satisfacer la condición.

SQL - SELECT - Proyección y Selección - BDR Universidad

 Muestre el nombre y los créditos de cada curso que empiezen con 'l'.

		P F Q	O 😘 🤄		Limit to 1000 rows
	1 •	USE universi	.dad;		
	2 •	SELECT nombr	e AS Nombre	, creditos	'Créditos'
	3	FROM curso			
	4	WHERE nombre	LIKE 'I%'		
	5				
	6				
Re	sult Gri	d 🔢 🙌 Filter	Rows:	Exp	port: 📳 Wrap
	Nombr	·e	Créditos		
٠	Intelige	encia Artificial I	6		
	Ingenie	eria del Software	4		
	Intelige	encia Artificial II	4		

SQL - SELECT - BDR Universidad

- Hemos visto cómo obtener datos de una tabla utilizando los comandos SELECT y WHERE.
- Con frecuencia, necesitamos mostrar el resultado en un orden particular. Esto podría ser en orden ascendente, en orden descendente, o podría basarse en valores numéricos o de texto. En tales casos, podemos utilizar el comando ORDER BY.

SQL - SELECT - BDR Universidad

- Hemos visto cómo obtener datos de una tabla utilizando los comandos SELECT y WHERE.
- Con frecuencia, necesitamos mostrar el resultado en un orden particular. Esto podría ser en orden ascendente, en orden descendente, o podría basarse en valores numéricos o de texto. En tales casos, podemos utilizar el comando ORDER BY.
- La cláusula ORDER BY ASC significa que los resultados se mostrarán en orden ascendente, y DESC significa que los resultados se mostrarán en orden descendente. Si no se especifica ninguno, la configuración predeterminada es ASC.
- Es posible ordenar por más de una columna.

SQL - SELECT - Proyección y Selección - BDR Universidad

 Muestre el nombre, primer apellido y segundo apellido de todos los estudiantes ordenados de forma alfabética según el primer apellido, seguido del segundo apellido y por último el nombre.

- En SQL la yunción es representada por el comando JOIN el cual se utiliza para combinar filas de dos o más tablas, en función a una columna relacionada entre ella.
- Tenemos diferentes tipos:
 - Cross Join (FULL JOIN)
 - Inner Join (Más utilizado)
 - Left Join
 - Right Join

- Para demostrar el funcionamiento de los métodos o comandos de yunción (joins) vamos a crear dos tablas entre las cuales se debe realizar algún relacionamiento para "cruzar" datos.
- Veremos algunos ejemplos en relación a la Base de Datos Universidad.

SQL - SELECT - Cross Join - BDR Universidad

- El comando Inner Join (Yunción Interna) realiza la yunción de tablas basándose en un condición de yunción (o punto en común).
- Veremos varios ejemplos de este comando.

 Muestre el código y nombre de los cursos, así como los departamentos al que pertenece cada curso.

	f 🙇 🕛 🔂 l	Limit to 1000 rows
1 • USE u	niversidad;	
2 • SELEC	T c.nombre Curso,	, d.nombre Departamento
3 FROM	curso c	
4 INNER	JOIN	
5 depar	tamento d	
6 ON c.	depa_id = d.depa_	_id;
esult Grid	Filter Rows:	Export: Wrap C
Curso	Departamen	ito
Base de Datos I	Computacion	
Inteligencia Artif	ficial I Computacion	
Ingenieria del So	oftware Computacion	
Base de Datos II	Computacion	
Inteligencia Artif	ficial II Computacion	

 Muestre a todos los estudiantes con sus teléfonos (en caso tengan teléfono).

```
USE universidad;
      SELECT CONCAT(e.prim_apel, " ", e.segu_apel, ", ", e.nombres) AS Nombre, et.telefono Telefono
      FROM estudiante e
      TNNER JOTN
      estudiante telefono et
      ON e.estu id = et.estu id
      ORDER BY Nombre;
sult Grid | Filter Rows:
                                   Export: Wrap Cell Content: TA
 Nombre
                 Telefono
Perez Rodriguez, Juan
                88888888
Perez Rodriguez, Juan 999999999
Santos Ferrel, Luisa
                333333333
Santos Ferrel, Luisa
              55555555
Santos Ferrel, Luisa
                 77777777
```

 Muestre todos los profesores que han dictado el curso de Base de Datos I en el año 2019.

 Muestre los cursos con sus pre-requisitos (lo cursos que tienen pre-requisito).

		P 7 Q	(D) 180 (O) (S)	Limit to 1000 rows				
1	•	USE univers	idad;					
2	•	SELECT c.no	mbre Curso, c1.no	mbre Prerequisito				
3		FROM curso	С					
4		INNER JOIN						
5		pre_requ pr	e					
6		ON c.curso_	id = pre.curso_id	_2				
7		INNER JOIN						
8		curso c1	curso c1					
9		ON cl.curso	_id = pre.curso_i	d_1;				
10								
esu	lt Gric	d 🔢 🙌 Filte	er Rows:	Export: Wrap				
(Curso		Prerequisito					
В	ase de	e Datos II	Base de Datos I					
I	ntelige	encia Artificial II	Inteligencia Artificial I					

 Muestre los cursos, año y semestre donde el alumno con código 987654321 se ha matriculado.

 Muestre los cursos, año y semestre para todos los alumnos matriculados en el año 2019 ordenados de forma descendente según su primer apellido.

SQL - SELECT - LEFT JOIN

- El comando LEFT JOIN (Yunción a la izquierda) hará yunción entre las tablas dando de preferencia a los registro de la tabla más a la izquierda en el código, mostrando todos sus registros.
- Cuando no hubiera correspondencia será mostrado el valor NULL.

Muestre a todos los alumnos con sus teléfonos.

SQL - SELECT - RIGHT JOIN

- El comando RIGHT JOIN (Yunción a la derecha) hará yunción entre las tablas dando de preferencia a los registro de la tabla más a la derecha en el código, mostrando todos sus registros.
- Cuando no hubiera correspondencia será mostrado el valor NULL.

SQL - SELECT - RIGHT JOIN

• Muestre a todos los profesores por departamento.

SQL - SELECT - INNER, FULL, LEFT, RIGHT JOIN

SQL - SELECT - Funciones de Agregación

- Las funciones de agregadas son funciones que toman una colección (un conjunto o conjunto múltiple) de valores como entrada y devuelven un solo valor.
- SQL ofrece cinco funciones agregadas integradas estándar:

Total: SUM

Average: AVG

Minimum: MINMaximum: MAX

Count: COUNT

- La entrada para SUM y AVG debe ser una colección de números.
- Las otras funciones trabajan con colecciones de tipos de datos no numéricos, como cadenas de texto.

SQL - SELECT - SUM

 Obtener la suma (SUM) de los presupuestos de los departamentos.

			1	T	<u>Q</u> (D	3 6	9 6	8	Limit	to 100	00 rows	
	1		USE	univ	ersi	dad;							
	2												
	3		SEL	ECT S	UM (p i	resup	uesto) AS	"Suma	a Pres	upues	stos"	
	4		FRO	M dep	arta	nento	j						
	5												
	6												
Re	sult	Gri	d 🛮 🔢	43	Filter	Rows:				Export		Wrap	Cell
	Su	ma	Presup	uestos	;								
	279	981.	.74										

SQL - SELECT - AVG

• Obtener el promedio (average) de los presupuestos de los departamentos.

		H		%	T	0	0	<u>%</u> €	8	8	Limit	to 100	0 rows	•
	1	•		USE	uni	vers	idad;							
	2													
	3	•		SELI	CT	AVG	(pres	upuesto) "P	romed:	io Pr	esupu	esto"	
	4			FRO	1 de	part	ament	0;						
	5													
	6													
<														
Re	su	lt G	rid		43	Filb	er Rows:				Export:		Wrap C	ell Cont
	F	ron	ned	io Pre	supu	esto								
•	9	327	.24	6667										

SQL - SELECT - MIN

 Obtener el mínimo (MIN) de los presupuestos de los departamentos.

	H	🥖 📝 👰 🕛 🜇 📀 🔞 🔞 Limit to 1000 rows	+
1	•	USE universidad;	
2			
3	•	SELECT MIN(presupuesto) AS "Mínimos Presupuesto	
4		FROM departamento;	
5			
6			
tesu	ılt Gr	H H Export: Wrap (Cell C
	Mínim	s Presupuesto	
1	748.	5	

SQL - SELECT - MAX

 Obtener el máximo (MAX) de los presupuestos de los departamentos.

```
USE universidad;

SELECT MAX(presupuesto) AS "Máximo Presupuesto"
FROM departamento;

Máximo Presupuesto

Export: Wap Cell C

Máximo Presupuesto

21447.59
```

- La función COUNT permite contar el número de filas en una tabla determinada.
- Obtener la cantidad de Departamentos.

```
USE universidad;

3 • SELECT COUNT(depa_id) AS "N Departamentos"

4 FROM departamento;

5

6

Result Grid  Fiter Rows: Export: Wrap

N Departamentos
```

SQL - SELECT - GROUP BY

- La cláusula GROUP BY es un comando SQL que se usa para agrupar filas que tienen los mismos valores
- La cláusula GROUP BY se utiliza en la instrucción SELECT.
- Opcionalmente se usa junto con funciones agregadas para producir informes resumidos de la base de datos.

• Muestre la cantidad de profesores por departamento.

a, a	.,	oqt. no o							
		🦻 f 👰 🔘 🚱 ⊘ 🔞 🔞 Limit to 1000 rows 🔻 🌟 🥩 ℚ ¶ 🖫							
	1 • U	ISE universidad;							
	2								
	3 • 5	ELECT d.nombre "Departamento", COUNT(p.prof_id) "Cantidad Profesores"							
4 FROM departamento d									
	5 L	EFT JOIN profesor p							
	6 ON d.depa_id = p.depa_id								
	7 G	ROUP BY d.nombre;							
	8								
	sult Grid								
	Departan	nento Cantidad Profesores							
•	Computac	ion 3							
	Ingenieria	0							
	Biomedica	s 0							

- La cláusula GROUP BY se puede utilizar con el comando WHERE.
- Muestre la cantidad de profesores por departamento que comienzan con B o C.

```
🚞 🖫 | 🐓 💯 👰 🔘 | 🚱 | 🥥 🔕 燭 | Limit to 1000 rows 🔻 | 🔧 | 🥩 🔍 🗻
        USE universidad:
        SELECT d.nombre "Departamento", COUNT(p.prof id) "Cantidad Profesores"
        FROM departamento d
        LEFT JOIN profesor p
        ON d.depa id = p.depa id
        WHERE d.nombre LIKE "B%" OR d.nombre LIKE "C%"
        GROUP BY d.nombre;
Result Grid | Filter Rows:
                                        Export: Wrap Cell Content: IA
   Departamento Cantidad Profesores
  Computacion
  Biomedicas
```

<u>SQL - SELECT - HAVING</u>

- La función HAVING se utiliza para incluir condiciones con alguna función de agregación de SQL.
- Como la cláusula WHERE no se puede utilizar con funciones de agregación SQL, entonces se puede utilizar HAVING.

SQL - SELECT - HAVING

 Muestre los departamentos que tengan una cantidad mayor o igual a 2 profesores.

```
USE universidad;
       SELECT d.nombre "Departamento", COUNT(p.prof id) "Cantidad Profesores"
       FROM departamento d
       LEFT JOIN profesor p
       ON d.depa id = p.depa id
       GROUP BY d.nombre
       HAVING COUNT(p.prof id) >= 2;
 8
 9
 10
Result Grid
          Filter Rows:
                                  Export: Wrap Cell Content: IA
  Departamento Cantidad Profesores
  Computacion
```

¡GRACIAS!

