Cache Oblivious Searching and Sorting

Gerth Stølting Brodal

■BRICS

University of Aarhus

Joint work with Rolf Fagerberg (Århus), Riko Jacob (Munich), Michael A. Bender, Dongdong Ge, Simai He, Haodong Hu (SUNY Stony Brook), John Iacono (Polytechnic, NY), Alejandro López-Ortiz (Waterloo)

IT University of Copenhagen, April 30, 2003

Outline of Talk

- Hardware
 - Computational models
 - RAM model (Random Access Machine)
 - IO model
 - Cache oblivious model
 - Binary searching and dictionaries
 - Sorting
 - Priority queues
 - Concluding remarks

Hardware

Hardware

- Dell Latitude L400, 700Mhz (January 2002)
- Mobile Intel Pentium III
- Primary 16 Kb instruction cache and 16 Kb write-back data cache
- 256 Kb Level 2 Cache
- 256 Mb SDRAM
- 10 Gb disk

Hardware

- Dell Latitude L400, 700Mhz (January 2002)
- Mobile Intel Pentium III
- Primary 16 Kb instruction cache and 16 Kb write-back data cache
- 256 Kb Level 2 Cache
- 256 Mb SDRAM
- 10 Gb disk

Memory hierarchy

Trends in Implementation Technology

	L1 Cache	L2 Cache	Virtual memory
Block size	4-32 bytes	32 – 256 bytes	4-16KB
Hit time (cycles)	1-2	6-15	10-100
Miss penalty (cycles)	8-66	30 - 200	700.000 - 6.000.000
Size	1 – 128 KB	256 KB – 16 MB	16-8192 MB

Source: Computer Architecture – A Quantitative Approach, Hennessy & Patterson, 2nd. Ed. 1996

The Unknown Machine

Algorithm

↓
C program

↓ gcc
Object code

↓ linux

Can be executed on machines with a specific class of CPUs

Execution

Algorithm

Java program

Javac

Java bytecode

Java

Interpretation

Can be executed on any machine with a Java interpreter

The Unknown Machine

Algorithm

C program

C gcc

Object code

Iinux

Execution

Algorithm

Java program

Javac

Java bytecode

Java

Interpretation

Can be executed on machines with a specific class of CPUs

Can be executed on any machine with a Java interpreter

Goal Develop algorithms that are optimized w.r.t. memory hierarchies without knowing the parameters

Outline of Talk

- Hardware
- Computational models
 - RAM model (Random Access Machine)
 - IO model
 - Cache oblivious model
 - Binary searching and dictionaries
 - Sorting
 - Priority queues
 - Concluding remarks

RAM Model (Random Access Machine)

RAM Model (Random Access Machine)

$$+-*/\vee\wedge\neq\dots$$
 $O(1)$ time Memory access $O(1)$ time

RAM Model (Random Access Machine)

$$+-*/\lor\land\ne\dots$$
 $O(1)$ time Memory access $O(1)$ time

Ignores the presence of memory hierarchies

Aggarwal and Vitter 1988

N = problem size

M = memory size

B = I/O block size

- One I/O moves B consecutive records from/to disk
- Cost: number of I/Os

Aggarwal and Vitter 1988

N = problem size

M = memory size

B = I/O block size

- One I/O moves B consecutive records from/to disk
- Cost: number of I/Os

$$\mathsf{Scan}(N) = O(N/B) \qquad \quad \mathsf{Sort}(N) = O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$$

Cache Oblivious Model

Frigo, Leiserson, Prokop, Ramachandran 1999

- Program in the RAM model
- Analyze in the I/O model (for arbitrary B and M)
- Optimal off-line cache replacement strategy

Cache Oblivious Model

Frigo, Leiserson, Prokop, Ramachandran 1999

- Program in the RAM model
- Analyze in the I/O model (for arbitrary B and M)
- Optimal off-line cache replacement strategy

Advantages

- ullet Optimal on arbitrary level \Rightarrow optimal on all levels
- ullet B and M not hard-wired into algorithm

Outline of Talk

- Hardware
- Computational models
 - RAM model (Random Access Machine)
 - IO model
 - Cache oblivious model
- Binary searching and dictionaries
 - Sorting
 - Priority queues
 - Concluding remarks

RAM model: Binary Searching

- Sorted array of n elements
 static dictionary
- Binary search requires $O(\log_2 N)$ time

RAM model: Binary Searching

- Sorted array of n elements
 static dictionary
- Binary search requires $O(\log_2 N)$ time

RAM model: Binary Searching

- Sorted array of n elements
 static dictionary
- Binary search requires $O(\log_2 N)$ time

A binary search is cache oblivious and uses $O\left(\log_2 \frac{N}{B}\right)$ I/Os

IO model: B-trees

- Each node stores B keys and has degree B+1
- Searches use $O(\log_B N)$ I/Os

Recursive layout of binary tree

= van Emde Boas layout

Recursive layout of binary tree

= van Emde Boas layout

Recursive layout of binary tree

≡ van Emde Boas layout

Recursive layout of binary tree

= van Emde Boas layout

Recursive layout of binary tree

= van Emde Boas layout

Recursive layout of binary tree

= van Emde Boas layout

Searches use $O(\log_B N)$ I/Os

- Each green tree has height between $(\log_2 B)/2$ and $\log_2 B$
- Searches visit between $\log_B N$ and $2\log_B N$ green trees, i.e. perform at most $4\log_B N$ I/Os (misalignment)

Example: Recursive Layout

Example: Recursive Layout

Dynamic Dictionaries

RAM model: Balanced binary search trees, e.g.

AVL-trees and red-black trees

IO model: B-trees

Cache oblivious model: ?

Dynamic Cache Oblivious Dictionaries

Brodal and Fagerberg 2002

- Embed a dynamic height $\log_2 N + O(1)$ tree in a complete tree
- Static van Emde Boas layout

Dynamic Binary Trees of Small Height

- If an insertion causes non-small height then rebuild subtree at nearest ancestor with sufficient few descendents
- Insertions require amortized $O(\log^2 N)$ time

Dynamic Cache Oblivious Dictionaries

Brodal and Fagerberg 2002

Search $O(\log_B N)$ Updates $O\left(\log_B N + \frac{\log^2 N}{B}\right)$

• Updates can be improved to $O(\log_B N)$ I/Os by buckets of size $\Theta(\log_2 N)$ and one level of indirection

Lower bounds

(Comparison) RAM model : $\log n$ comparisons

(decision tree argument)

IO model : $\log_{B+1} N$ I/Os

(reduction to RAM model)

Cache oblivious model : $\log_{B+1} N$ I/Os

(follows from IO model)

 $\log_2 e \cdot \log_B N pprox 1.443 \log_B N$ I/Os

Bender et al. 2003

Outline of Talk

- Hardware
- Computational models
 - RAM model (Random Access Machine)
 - IO model
 - Cache oblivious model
- Binary searching and dictionaries
- Sorting
 - Priority queues
 - Concluding remarks

Sorting

RAM model: Binary MergeSort takes $O(N \log_2 N)$ time

IO model : $\Theta\left(\frac{M}{B}\right)$ -way MergeSort achieves optimal

$$O(\operatorname{Sort}(N) = O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$$
 I/Os

Aggarwal and Vitter 1988

Cache oblivious : FunnelSort achieves O(Sort(N)) I/Os

Frigo, Leiserson, Prokop and Ramachandran 1999 Brodal and Fagerberg 2002

k-merger

Frigo et al., FOCS'99

Sorted output stream

k sorted input streams

k-merger

Frigo et al., FOCS'99

k-merger

Frigo et al., FOCS'99

Recursive Layout

Lazy k-merger

Brodal and Fagerberg 2002

Lazy k-merger

Brodal and Fagerberg 2002

Procedure Fill(v)

while out-buffer not full
 if left in-buffer empty
 Fill(left child)
 if right in-buffer empty
 Fill(right child)
 perform one merge step

Lazy k-merger

Brodal and Fagerberg 2002

Procedure Fill(v)

while out-buffer not full
if left in-buffer empty
Fill(left child)
if right in-buffer empty
Fill(right child)
perform one merge step

Lemma

If $M \geq B^2$ and output buffer has size k^3 then $O(\frac{k^3}{B}\log_M(k^3) + k)$ I/Os are done during an invocation of Fill(root).

FunnelSort

Brodal and Fagerberg 2002 Frigo, Leiserson, Prokop and Ramachandran 1999

Divide input in $N^{1/3}$ segments of size $N^{2/3}$ Recursively **MergeSort** each segment Merge sorted segments by an $N^{1/3}$ -merger

FunnelSort

Brodal and Fagerberg 2002 kop and Ramachandran 1999

Frigo, Leiserson, Prokop and Ramachandran 1999

Divide input in $N^{1/3}$ segments of size $N^{2/3}$ Recursively **MergeSort** each segment Merge sorted segments by an $N^{1/3}$ -merger

Theorem Provided $M \ge B^2$ (tall cache assumption), FunnelSort performs optimal $O(\operatorname{Sort}(N))$ I/Os

Computational Geometry

Brodal and Fagerberg 2002

Cache oblivious $O(\operatorname{Sort}(N))$ distribution sweeping algorithms for

- Maxima for point set (3D)
- Measure of a set of axis-parallel rectangles (2D)
- Visibility of non-intersecting line segments from a point (2D)
- All nearest neighbors for point set (2D)

Cache oblivious $O(\operatorname{Sort}(N) + \frac{\operatorname{output}}{B})$ algorithms for

- Orthogonal line segment intersection reporting (2D)
- Batched orthogonal range queries on point set (2D)
- Pairwise intersections of axis-parallel rectangles (2D)

Outline of Talk

- Hardware
- Computational models
 - RAM model (Random Access Machine)
 - IO model
 - Cache oblivious model
- Binary searching and dictionaries
- Sorting
- Priority queues
 - Concluding remarks

Priority Queues

Classic RAM:

• Heap: $O(\log_2 n)$ time

Williams 1964

Priority Queues

Classic RAM:

• Heap: $O(\log_2 n)$ time, $O\left(\log_2 \frac{N}{M}\right)$ I/Os

Williams 1964

Priority Queues

Classic RAM:

• Heap: $O(\log_2 n)$ time, $O\left(\log_2 \frac{N}{M}\right)$ I/Os

Williams 1964

I/O model:

• Buffer tree:
$$O\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right) = O\left(\frac{\operatorname{Sort}(N)}{N}\right)$$
 I/Os Arge 1995

Cache-Oblivious Priority Queues

•
$$O\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right)$$
 I/Os

Arge, Bender, Demaine, Holland-Minkley and Munro 2002

- Uses sorting and selection as subroutines
- Requires tall cache assumption, $M \geq B^2$
- Funnel heap

Brodal and Fagerberg 2002

- Uses only binary merging
- Profi le adaptive, i.e. $O\!\left(\frac{1}{B}\log_{M/B}\frac{N_i}{B}\right)$ l/Os

 N_i is either the size profile, max depth profile, or #insertions during the lifetime of the ith inserted element

The Priority Queue

The Priority Queue

The Priority Queue

In total: A single binary merge tree

Operations — **DeleteMin**

- If A_1 is empty, call Fill(v_1)
- Search I and A_1 for minimum element

Operations — **Insert**

- Insert in I
- If I overflows, call Sweep(i) for first i where $c_i \leq k_i$

Sweep \approx addition of one to number $c_1c_2...c_i...c_{\max}$

$$s_i = s_1 + \sum_{j=1}^{i-1} k_j s_j$$

Analysis

We can prove:

Number N of insertions performed:

$$s_{i_{\max}} \leq N$$

• Number of I/Os per Insert for link *i*:

$$O\left(\frac{1}{B}\log_{M/B}s_i\right)$$

• By the doubly-exponentially growth of s_i , the total number of I/Os per Insert is

$$O\left(\sum_{k=0}^{\infty} \frac{1}{B} \log_{M/B} N^{(3/4)^k}\right) = O\left(\frac{\operatorname{Sort}(N)}{N}\right)$$

DeleteMin is amortized for free

Outline of Talk

- Hardware
- Computational models
 - RAM model (Random Access Machine)
 - IO model
 - Cache oblivious model
- Binary searching and dictionaries
- Sorting
- Priority queues
- Concluding remarks

Some Cache-Oblivious Results

- Scanning ⇒ stack, queue, median fi nding,....
- Sorting, matrix multiplication, FFT

Frigo, Leiserson, Prokop, Ramachandran, FOCS'99

Cache oblivious search trees

Prokop 99

Bender, Demaine, Farach-Colton, FOCS'00

Rahman, Cole, Raman, WAE'01

Bender, Duan, Iacono, Wu and Brodal, Fagerberg, Jacob, SODA'02

Priority queue and graph algorithms

Arge, Bender, Demaine, Holland-Minkley, Munro, STOC'02 Brodal, Fagerberg, ISAAC'02

Computational geometry

Brodal, Fagerberg, ICALP'02

Bender, Cole, Raman, ICALP'02

Scanning dynamic sets

Bender, Cole, Demaine, Farach-Colton, ESA'02

Cache Oblivious Technics

- Scanning
- Sorting
- Recursion
- Recursive layout (van Emde Boas layout)
- Merging (FunnelSort, distribution sweeping, FunnelHeap)

Conclusions

- Cache oblivious model : Simpel and general
- Algorithms exist for many problems
 - stacs, queues, dictionaries, priority queues, sorting, selection, permuting, matrix multiplicataion, FFT, graph algorithms, computational geometry...
- Limitations
 - searching costs a factor $\log_2 e$
 - sorting and priority queues requires a tall cache

Brodal and Fagerberg 2003

Open problems

- Other algorithms ...
- Cache obliviousness vs parallel disks?
- Implementations and experiments?
- Libraries?

• ...

References

- The Cost of Cache-Oblivious Searching, Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Dongdong Ge, Simai He, Haodong Hu, John Iacono, and Alejandro López-Ortiz. Submitted.
- On the Limits of Cache-Obliviousness, Gerth Stølting Brodal and Rolf Fagerberg. To appear in *Proc. 35th Annual ACM Symposium on Theory of Computing*, 2003.
- Funnel Heap A Cache Oblivious Priority Queue, Gerth Stølting Brodal and Rolf Fagerberg. In *Proc. 13th Annual International Symposium on Algorithms and Computation*, volume 2518 of *Lecture Notes in Computer Science*, pages 219-228. Springer Verlag, Berlin, 2002.
- Cache Oblivious Distribution Sweeping, Gerth Stølting Brodal and Rolf Fagerberg. In *Proc. 29th International Colloquium on Automata,* Languages, and Programming, volume 2380 of Lecture Notes in Computer Science, pages 426-438. Springer Verlag, Berlin, 2002.
- Cache-Oblivious Search Trees via Trees of Small Height, Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. In *Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 39-48, 2002.