Technologie sieciowe 2

Projekt

Prowadzący:

dr inż. Michał Kucharzak

gr: WT/TN 17:05-18:45

Agnieszka Płoszaj 218353 Jeremiasz Romejko 230504

Spis treści:

1.	Wstę	p	3
2.	Inwer	ntaryzacja zasobów	4-6
	2.1.	Zasoby ludzkie	4
	2.2.	Zasoby sprzętowe	5
	2.3.	Punkty dystrybucyjne	5
	2.4.	Przepływy lokalne	6
	2.5.	Ruch internetowy (pracownicy)	6
	2.6.	Ruch internetowy (serwery zewnętrzne)	6
3.	Anali	za potrzeb użytkowników	7-12
	3.1.	Analiza przepustowości lokalnej	7-10
	3.2.	Analiza przepustowości w sieci Internet	11-12
4.	Założ	zenia projektowe	13
5.	Proje	kt sieci	14-25
	5.1.	Projekt logiczny sieci wraz z opisem koncepcji i uzasadnieniem	
	5.2.	Wybór urządzeń sieciowych	16-17
	5.3.	Projekt adresacji IP	17
	5.4.	Projekt konfiguracji urządzeń	18-20
	5.5.	Projekt podłączenia do internetu	21
	5.6.	Analiza bezpieczeństwa i niezawodności sieci	22-24
	5.7.	Kosztorys	24
6.	Karty	katalogowe proponowanych urządzeń	25-26

1. Wstęp

Zadaniem projektu jest zaprojektowanie lokalnej sieci komputerowej dla dużego przedsiębiorstwa znajdującego się na terenie Wrocławia. przedsiębiorstwo zajmuje się produkcją Owe oprogramowania dla specjalistycznych robotów. Zastosowanie tych urządzeń jest ściśle tajne. Przedsiębiorstwo mieści się w dwóch budynkach. W jednym z budynków znajdują się trzy grupy robocze (Zarząd i Kadry, Programiści i Testerzy, Administratorzy) w drugim dwie (Zarząd i Kadry, Programiści i Testerzy), dodatkowo w obu budynkach jest możliwość połączenia się gości do Internetu poprzez sieć Wifi. W budynkach przedsiębiorstwa zostało zainstalowane okablowanie strukturalne wraz z niezbędnymi szafami teleinformatycznymi oraz urządzenia końcowe(serwery, drukarki, komputery oraz kamery IP). Firma preferuje technologie z rodziny Ethernet. W naszym projekcie uwzględniliśmy potencjał rozwojowy firmy, poprzez wykonanie obliczeń na każdym etapie z uwzględnieniem obecnego zatrudnienia oraz jego wzrostu o około 20%.

2. Inwentaryzacja zasobów

2.1. Zasoby ludzkie

Zasoby ludzkie można podzielić uwzględniając:

- 1. obecnych pracowników (tabela 1a);
- 2. obecnych pracowników oraz przewidywany wzrost ich liczby o 20% (tabela 1b).

Tabela 1a. Zasoby ludzkie.

	Budynek A			Budynek B	
grupa robocza	parter	piętro 1	piętro 2	parter	suma
	MDF	IDF1	IDF2	IDF3	użytkowników
Zarząd i kadry	1	1	16	12	28
Programiści i Testerzy	1	49	31	68	148
Administratorzy	4				4
	suma	180			

Tabela 1b. Zasoby ludzkie powiększone o 20%.

	[Budynek A	4	Budynek B		
grupa robocza	parter	piętro 1	piętro 2	parter	suma	
	MDF	IDF1	IDF2	IDF3	użytkowników	
Zarząd i kadry	_	-	20	15	35	
Programiści i Testerzy	-	59	38	82	179	
Administratorzy	5 -		-	-	5	
	suma	219				

2.2. Zasoby sprzętowe

Tabela 2a. Zasoby sprzętowe.

		Budynek A	4	Budynek B	
grupa robocza	parter	piętro 1	piętro 2	parter	suma
	MDF	IDF1	IDF2	IDF3	
suma użytkowników	4	49	47	80	180
liczba drukarek	1	2	2	2	7
liczba robotów	16	0	0	0	16
liczba punktów	1	2	2	3	8
dostępowych do Wi-Fi	Т	2	2	3	3
kamery IP	8	4	4	8	24

Tabela 2b. Zasoby sprzętowe z uwzględnieniem wzrostu liczby pracowników o 20%.

		Budynek A	4	Budynek B	
grupa robocza	parter	piętro 1	piętro 2	parter	suma
	MDF	IDF1	IDF2	IDF3	
suma użytkowników	5	59	58	97	219
liczba drukarek	1	2	2	2	7
liczba robotów	16	0	0	0	16
liczba punktów	1	2	2	3	8
dostępowych do Wi-Fi	т			3	0
kamery IP	8	4	4	8	24

2.3. Punkty dystrybucyjne

Tabela 3. Lokalizacja punktów dostępowych.

	1 1	
oznaczenie	lokalizacja	podłączone punkty abonenckie
MDF	Budynek A, Parter	Budynek A, Parter
IDF1	Budynek A, Piętro 1	Budynek A, Piętro 1
IDF2	Budynek A, Piętro 2	Budynek A, Piętro 2
IDF3	Budynek B, Parter	Budynek B, Parter

2.4. Przepływy lokalne

Tabela 4. Przepływy lokalne (na jednego użytkownika). Wszystkie wartości podane są w kb/s.

Crupa robocza	Serwe	er P1	Serwe	Serwer P2		WWW		Pocztowy		Drukarka	
Grupa robocza	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP	
Zarząd i kadry	-	-	600	550	230	45	330	440	10	180	
Programiści i Testerzy	-	-	700	550	190	30	380	430	10	170	
Administratorzy	8000	600	800	300	210	60	380	390	10	175	
Kamera	100	2800	-	-	-	-	-	-	-	1	
Roboty		DOWN					UP				
Noboty		1700						170	00		

2.5. Ruch internetowy (pracownicy)

Tabela 5. Przepływy jednego użytkownika z i do internetu. Wszystkie wartości podane są w kb/s.

Litatkownik Anlikacia	Przeglądarka		Praca w chmurze		Komunikator		Wideorozmowy	
Użytkownik Aplikacja	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP
Zarząd i kadry	80	15	23	36	15	15	40	40
Programiści i Testerzy	110	10	30	53	15	15	40	40
Administratorzy	100	20	20	30	15	15	-	-
Sieć gości	20	10	5	5	5	5	-	-

2.6. Ruch internetowy (serwery zewnętrzne)

Tabela 6. Ruch internetowy na serwerach zewnętrznych firmy. Wszystkie wartości podane są w kb/s.

serwery internetowe	down	up	sesje
serwer WWW	80	170	96
serwer pocztowy	890	410	12

3. Analiza potrzeb użytkowników

Infrastruktura sieciowa musi gwarantować stały dostęp do Internetu oraz płynną i szybką komunikację w sieci lokalnej.

3.1. Analiza przepustowości lokalnej

Pomiędzy użytkownikami, a serwerami plików 1 oraz plików 2, odbywa się główny ruch lokalny. W celu wyliczenia ruchu w ramach sieci lokalnej konieczne jest przemnożenie wartości z tabeli 4 przez wartości z tabeli 7a oraz 7b. Wynik takiego działania można zobaczyć w tabelach 8a oraz 8b. Następnie na podstawie wyników z tabel 8a oraz 8b powstały tabele 9a oraz 9b, które przedstawiają całkowite obciążenie ruchu lokalnego.

Tabela 7a. Liczba użytkowników podpiętych do każdego punktu dostępowego.

grupa robocza	MDF	IDF1	IDF2	IDF3
Zarząd i Kadry	1	1	16	12
Programiści i Testerzy	-	49	31	68
Administratorzy	4	-	-	-
Kamery IP	8	4	4	8

Tabela 7b. Liczba użytkowników podpiętych do każdego punktu dostępowego ((z uwzględnieniem wzrostu zatrudnienia o 20%).

grupa robocza	MDF	IDF1	IDF2	IDF3
Zarząd i Kadry	-	-	20	15
Programiści i Testerzy	-	59	38	82
Administratorzy	5	-	-	-
Kamery IP	8	4	4	8

Tabela 8a. Przepustowość lokalna. Wszystkie wartości podane są w kb/s.

				V3Zy3tkie W	MDF	,				
			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	0	0	0	0	0	0	0	0	0
Programiści i Testerzy	0	0	0	0	0	0	0	0	0	0
Administratorzy	32000	3200	840	1520	40	2400	1200	240	1560	700
Kamery IP	800	0	0	0	0	22400	0	0	0	0
suma	32800	3200	840	1520	40	24800	1200	240	1560	700
					IDF1					
			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	0	0	0	0	0	0	0	0	0
Programiści i Testerzy	0	34300	9310	18620	490	0	26950	1470	21070	8330
Administratorzy	0	0	0	0	0	0	0	0	0	0
Kamery IP	400	0	0	0	0	11200	0	0	0	0
suma	400	34300	9310	18620	490	11200	26950	1470	21070	8330
					IDF2					
aruna rala 2.72			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	9600	3680	5280	160	0	8800	720	7040	2880
Programiści i Testerzy	0	21700	5890	11780	310	0	17050	930	13330	5270
Administratorzy	0	0	0	0	0	0	0	0	0	0
Kamery IP	400	0	0	0	0	11200	0	0	0	0
suma	400	31300	9570	17060	470	11200	25850	1650	20370	8150
					IDF3					
grupa robocza			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	7200	2760	3960	120	0	6600	540	5280	2160
Programiści i Testerzy	0	47600	12920	25840	680	0	37400	2040	29240	11560
Administratorzy	0	0	0	0	0	0	0	0	0	0
Kamery IP	800	0	0	0	0	22400	0	0	0	0
suma	800	54800	15680	29800	800	22400	44000	2580	34520	13720

Tabela 8b. Przepustowość lokalna (z uwzględnieniem wzrostu zatrudnienia o 20%). Wszystkie wartości podane są w kb/s.

					MDF					
			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	0	0	0	0	0	0	0	0	0
Programiści i Testerzy	0	0	0	0	0	0	0	0	0	0
Administratorzy	40000	4000	1050	1900	50	3000	1500	300	1950	875
Kamery IP	800	0	0	0	0	22400	0	0	0	0
suma	40800	4000	1050	1900	50	25400	1500	300	1950	875
					IDF1					
			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	0	0	0	0	0	0	0	0	0
Programiści i Testerzy	0	41300	11210	22420	590	0	32450	1770	25370	10030
Administratorzy	0	0	0	0	0	0	0	0	0	0
Kamery IP	400	0	0	0	0	11200	0	0	0	0
suma	400	41300	11210	22420	590	11200	32450	1770	25370	10030
	IDF2									
			DOWN					UP		
grupa robocza	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	12000	4600	6600	200	0	11000	900	8800	3600
Programiści i Testerzy	0	26600	7220	14440	380	0	20900	1140	16340	6460
Administratorzy	0	0	0	0	0	0	0	0	0	0
Kamery IP	400	0	0	0	0	11200	0	0	0	0
suma	400	38600	11820	21040	580	11200	31900	2040	25140	10060
					IDF3					
grupa robocza			DOWN					UP		
дгара горосzа	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka	Serwer P1	Serwer P2	WWW	Pocztowy	Drukarka
Zarząd i Kadry	0	9000	3450	4950	150	0	8250	675	6600	2700
Programiści i Testerzy	0	47600	15580	31160	820	0	45100	2460	35260	13940
Administratorzy	0	0	0	0	0	0	0	0	0	0
Kamery IP	800	0	0	0	0	22400	0	0	0	0
suma	800	56600	19030	36110	970	22400	53350	3135	41860	16640

Tabela 8c Przepustowość lokalna robotów. Wszystkie wartości podane są w kb/s.

MDF					
grupa robocza	DOWN	UP			
roboty	1700	1700			

Tabela 9a. Całkowite obciążenie ruchu lokalnego. Wszystkie wartości podane są w kb/s.

MDF IDF1		F1	IDF2		IDF3			
Down	UP	Down	UP	Down	UP	Down	UP	
65600	55700	63120	69020	58800	67220	101880	117220	
		Budyı	nek A			Budy	nek B	
	Down				UP		UP	
	200 580 1					101880	117220	
	Całe przedsiębiorstwo							
Down					UP			
302 460					309 160			

Tabela 9b. Całkowite obciążenie ruchu lokalnego (z uwzględnieniem wzrostu zatrudnienia o 20%). Wszystkie wartości podane są w kb/s.

MDF IDF		F1	IDF2		IDF3			
Down	UP	Down	UP	Down	UP	Down	UP	
75000	57225	75920	80820	72440	80340	113510	137385	
Budynek A						Budy	nek B	
	Down			UP	UP		UP	
	223360			218385		113510	137385	
	Całe przedsiębiorstwo							
Down					UP			
336 870					355 770			

3.2. Analiza przepustowości w sieci Internet

W celu wyliczenia ruchu w ramach sieci internetowej konieczne jest zsumowanie przemnożonych wartości z tabeli 5 przez wartości z tabeli 7a oraz tabeli 7b oraz wartości z komórek Down oraz UP z tabeli 6 przez ilość Sesji z tabeli 6. Wynik takiego działania można zobaczyć w tabelach 10a, 10b oraz tabeli 11. Następnie na podstawie wyników z tabel 10a, 10b oraz tabeli 11 powstały tabele 12a oraz 12b, które przedstawiają całkowite obciążenie ruchu lokalnego.

Tabela 10a Zapotrzebowanie użytkowników sieci. Wszystkie wartości podane są w kb/s.

Crupa robocza	Przeglądarka		Praca w chmurze		Komunikator		Wideorozmowy	
Grupa robocza	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP
Zarząd i kadry	2240	420	644	1008	420	420	1120	1120
Programiści i Testerzy	16280	1480	4440	7844	2220	2220	5920	5920
Administratorzy	400	80	80	120	60	60	0	0
Sieć gości	6000	3000	1500	1500	1500	1500	0	0
suma	24920	4980	6664	10472	4200	4200	7040	7040

Tabela 10b Zapotrzebowanie użytkowników sieci dla 120%. Wszystkie wartości podane są w kb/s.

Crupa robocza	Przeglądarka		Praca w chmurze		Komunikator		Wideorozmowy	
Grupa robocza	DOWN	UP	DOWN	UP	DOWN	UP	DOWN	UP
Zarząd i kadry	2800	525	805	1260	525	525	1400	1400
Programiści i Testerzy	19690	1790	5370	9487	2685	2685	7160	7160
Administratorzy	500	100	100	150	75	75	0	0
Sieć gości	6000	3000	1500	1500	1500	1500	0	0
suma	28990	5415	7775	12397	4785	4785	8560	8560

Tabela 11 Zapotrzebowanie serwerów internetowych. Wszystkie wartości podane są w kb/s.

Serwery	DOWN	UP	cocio	łącznie		
internetowe	DOWN	UP	sesje	DOWN	UP	
Serwer WWW	80	170	96	7680	16320	
Serwer Pocztowy	890	410	12	10680	4920	
			suma	18360	21240	

Tabela 12a Całkowite obciążenie ruchu Internetowego. Wszystkie wartości podane są w kb/s.

	DOWN	UP
użytkownicy	42824	26692
serwery internetowe	18360	21240
SUMA	61184	47932

Tabela 12b Całkowite obciążenie ruchu Internetowego (z uwzględnieniem wzrostu zatrudnienia o 20%). Wszystkie wartości podane są w kb/s.

	DOWN	UP
użytkownicy	50110	31157
serwery internetowe	18360	21240
SUMA	68470	52397

4. Założenia projektowe

- Projekt będzie realizowany przy pomocy technologii z rodziny Ethernet
- Mając na uwadze fakt przyszłego rozwoju firmy projekt będzie realizowany dla 120% pracowników aby nie narażać przedsiębiorstwa na dodatkowy koszt modernizacji sieci w przyszłości.
- Zapotrzebowanie na przepustowość sieci lokalnej można zobaczyć w podpunkcie 3.1 w Tabeli 10a oraz 10b.
- Zapotrzebowanie na przepustowość Internetu można zobaczyć w podpunkcie 3.2 w Tabeli 12a oraz 12b. Zakładamy gwarantowaną przepustowość Internetu na poziomie, co najmniej 40% przepustowości dla 100% pracowników co ilustruje poniższa tabela.

Tabela 13 Wszystkie wartości podane są w kb/s.

	DOWN	UP
użytkownicy	17130	10677
serwery internetowe	7344	8496
SUMA	24474	19173

 Dodatkowo zapasowe łącze internetowe będzie działać z przepustowością równą 50% przepustowości dla 100% pracowników zapotrzebowania firmy, co ilustruje poniższa tabela.

Tabela 14 Wszystkie wartości podane są w kb/s.

	DOWN	UP
użytkownicy	21412	13346
serwery internetowe	9180	10620
SUMA	30592	23966

- Zabezpieczenia:
 - o Sieć zostanie podzielona za pomocą technologii VLAN
 - o Zostanie zastosowany router z firewallem
- Kosztorys będzie uwzględniał koszt wszystkich niezbędnych urządzeń, podłączenia do Internetu oraz kosztu korzystania z łącz Internetowych w okresie dwóch lat.

5. Projekt sieci

5.1. Projekt logiczny sieci wraz z opisem koncepcji rozwiązania i uzasadnieniem

Projekt logiczny został wykonany w środowisku przeglądarkowym draw.io.

Projekt sieci logicznej przedstawia dwa budynki firmy, połączone kablem skrętki kat6. Wykorzystane w sieci media to:

- > skrętki kat6 do obsługi standardu Gigabit Ethernet,
- > skrętka kat5e do obsługi standardu Fast Ethernet,
- > światłowód (dzierżawiony od ISP).

Wykorzystywana jest głównie skrętka kat5e, ze względu na obsługę standardu Fast Ethernet oraz niezbyt wysoki koszt zakupu.

Zdecydowaliśmy się na wykorzystanie światłowodowego podłączenia do dostawcy sieci Internet, w celu zapewnienia najwyżej jakości usługi i stabilności połączenia.

Poniższy schemat logiczny powstał w głównej mierze ze względu z myślą o bezpieczeństwie firmy jak i o swobodnym przesyle danych w całym przedsiębiorstwie. Serwer WWW jak i Serwer Pocztowy zostały zamknięte w strefie DMZ. Na wyjściu infrastruktury został umieszczony firewall który będzie odpowiedzialny za ochronę pracowników i klientów przedsiębiorstwa przed niebezpieczeństwami z zewnątrz. Skoncentrowanie sieci przy pomocy Routera pozwala na łatwe zarządzanie przepływem informacji oraz kontrolowanie użytkowników sieci. Zgodnie z założeniami projektowymi na każdym piętrze umieszczono Access Point.

Podział na sieci VLAN uzyskaliśmy poprzez przydzielenie każdej grupie roboczej (niezależnie od lokacji), jak też drukarkom, robotom, serwerom itp. własnej sieci.

Rys. 1 Projekt logiczny sieci

Rys.2 Podział na sieci VLAN

5.2. Wybór urządzeń sieciowych

Preferowaną marką wybieranych urządzeń była firma Cisco ®, która dostarcza urządzenia sieciowe najwyżej jakości. Dodatkowym kryterium wyboru była znajomość oraz umiejętność konfiguracji sprzętu. Wybrane modele sprzętu przedstawiono w poniższej tabeli:

Tabela 15 Urządzenia sieciowe

nazwa	model	ilość
Router	RV320-K9-G5	1
Switch L3	SG300-10	4
Switch L2	SF200-48	8
Access Point	AIR-AP1131G-A-K9	8

Switch L2

Model SF200-48 został wybrany z uwagi na dużą liczbę gniazd (48 Fast Ethernet przeznaczonych dla urządzeń oraz 2 Gigabit Ethernet do łączy szkieletowych). Z punktu widzenia projektowanej siedzi istotną cechą jest obsługa vlan oraz praca urządzenia w warstwie drugiej.

Switch L3

Model SG300-10 pozwala na utworzenie statycznego routingu pomiędzy vlanami. Wyposażony jest w 10 portów Gigabit Ethernet, dzięki którym można podłączyć go do każdej części warstwy szkieletu.

Router

Model RV320-K9-G5 jest modelem dedykowanym dla małych firm. Jego głównym atutem jest niewielki rozmiar idący w parze z niewielką ceną w porównaniu do możliwości. Z głównych cech wykorzystywanych w projekcie, jest osobny port dla strefy DMZ, 4 porty LAN pozwalające na utworzenie redundancji połączenia do sieci, oraz wbudowany Firewall.

Access Point

Model AIR-AP1131G-A-K9 został wybrany ze względu na szeroką gamę algorytmów szyfrowania zapewniających bezpieczeństwo połączeń bezprzewodowych.

5.3. Projekt adresacji IP

Tabela 16 Adresacja IP

Grupa Robocza	VLAN	Liczba urządzeń	Adres	Adres bramy	Maska	Maksymalna liczba urządzeń
Programiści i Testerzy	10	179	192.168.0.0	192.168.0.1	24	254
Zarząd i Kadry	20	35	192.168.1.0	192.168.1.1	26	62
Kamery IP	30	24	192.168.1.64	192.168.1.65	27	30
Roboty	40	16	192.168.1.96	192.168.1.97	27	30
Wi-Fi	50	8	192.168.1.128	192.168.1.129	28	14
Drukarki	60	7	192.168.1.144	192.168.1.145	28	14
Administratorzy	70	5	192.168.1.160	192.168.1.161	29	6
Serwery	80	4	192.168.1.168	192.168.1.169	29	6

5.4. Projekt konfiguracji urządzeń

5.4.1. Przełączniki warstwy drugiej

Tabela 17 Konfiguracja przełączników warstwy drugiej

kod urządzenia	konfiguracja urządzenia			
	Int g0/1: łącze trunk			
C2 0 1	Int f0/1 - f0/33: łącza dostępowe			
S2-0-1	Int f0/34 - f0/35: łącza VLAN drukarki			
	Int f0/36 - f0/38: łącza VLAN AP			
S2-0-2	Int g0/1: łącze trunk			
32-0-2	Int f0/1 - f0/34: łącza dostępowe			
S2-0-3	Int g0/1: łącze trunk			
32-0-3	Int f0/1 - f0/33: łącza dostępowe			
	Int g0/1: łącze trunk			
	Int f0/1 - f0/5: łącza dostępowe			
S1-0-1	Int f0/6 : łącze VLAN drukarki			
	Int f0/7: łącze VLAN AP			
	Int f0/8 - f0/23: łącza VLAN robotów			
	Int g0/1: łącze trunk			
S1-1-1	Int f0/1 - f0/30: łącza dostępowe			
	Int f0/31 - f0/32: łącza VLAN AP			
	Int g0/1: łącze trunk			
S1-1-2	Int f0/1 - f0/29: łącza dostępowe			
	Int f0/30 - f0/31: łącza VLAN drukarki			
	Int g0/1: łącze trunk			
S1-2-1	Int f0/1 - f0/29: łącza dostępowe			
	Int f0/30 - f0/31: łącza VLAN AP			
	Int g0/1: łącze trunk			
S1-2-2	Int f0/1 - f0/29: łącza dostępowe			
	Int f0/30 - f0/31: łącza VLAN drukarki			

5.4.2. Przełączniki warstwy trzeciej

Tabela 18.1 Konfiguracja przełączników warstwy trzeciej

kod urządzenia	konfiguracja urządzenia			
	Int g0/1 : łącze trunk z S1-0-1			
	Int g0/2: nieaktywne			
L3-1-0	Int g0/3: łącze z L3-1-1			
	Int g0/4: łącze z L3-1-2			
	Int g0/5: łącze z L3-2-0			
	Int g0/6: nieaktywne			
	Int g0/7: nieaktywne			
(MDF)	Int g0/8: nieaktywne			
	Int g0/9: nieaktywne			
	Int g0/10: łącze z R01			
	Int g0/1 : łącze trunk z S1-1-1			
	Int g0/2: łącze trunk z S1-1-2			
L3-1-1	Int g0/3: nieaktywne			
	Int g0/4: nieaktywne			
	Int g0/5: nieaktywne			
	Int g0/6: nieaktywne			
	Int g0/7: nieaktywne			
(IDF1)	Int g0/8: nieaktywne			
	Int g0/9: nieaktywne			
	Int g0/10: łącze z L3-1-0			
	Int g0/1 : łącze trunk z S1-2-1			
	Int g0/2: łącze trunk z S1-2-2			
L3-1-2	Int g0/3: nieaktywne			
	Int g0/4: łącze z SP1			
	Int g0/5: nieaktywne			
	Int g0/6: nieaktywne			
	Int g0/7: nieaktywne			
(IDF2)	Int g0/8: nieaktywne			
	Int g0/9: nieaktywne			
	Int g0/10: łącze z L3-1-0			

Tabela 18.2 Konfiguracja przełączników warstwy trzeciej

kod urządzenia	konfiguracja urządzenia			
	Int g0/1 : łącze trunk z S2-0-1			
	Int g0/2: łącze trunk z S2-0-2			
L3-2-0	Int g0/3: łącze trunk z S2-0-3			
	Int g0/4: nieaktywne			
	Int g0/5: łącze z SP2			
	Int g0/6: nieaktywne			
	Int g0/7: nieaktywne			
(IDF3)	Int g0/8: nieaktywne			
	Int g0/9: nieaktywne			
	Int g0/10: łącze z L3-1-0			

5.4.3. Router

Tabela 19 Konfiguracja routera

kod urządzenia	konfiguracja urządzenia			
	nt g0/0 : łącze do Internetu NAT outside			
R01	Int g0/1 : łącze do Serwer (FTP i WWW) NAT inside			
	Int g0/2 : łącze do L3-1-0 NAT inside			

5.5. Projekt podłączenia do Internetu

Aby zapewnić niezawodność połączenia internetowego zdecydowaliśmy się na wybranie niezależnych usługodawców, by w razie problemów leżących po stronie operatorów zapewnić stały dostęp do usług internatowych. Głównym łączem internetowym będzie Internet od firmy Orange która zapewnia nam pobieranie na poziomie o wiele większym niż zapotrzebowanie, jednak jest to spowodowane tym, że usługodawca nie oferuje połączeń symetrycznych oraz wartością wysyłaną która nawet przy minimalnej przepustowości zapewnia jakość połączenia na poziomie 25% potrzeb firmy. Dodatkowo proponujemy światłowodowy Internet od operatora UPC który w przeciwieństwie do Orange świadczy już usługę połączeń symetrycznych. W zupełności wystarczy Internet o maksymalnej przepustowości 50 000 kb/s. Nie jest to połącznie główne ze względu na słabą pomoc techniczną firmy która obsługuje klientów tylko w wybranych godzinach.

Tabela 20 Łącze główne – Orange

Technologia		Upload maksymalny	Download minimalny	Upload minimalny	Okres umowy	Aktywacja	Cena za pierwszy rok/na mies	Cena za drugi rok/na mies
światłowód	600 000 kb/s	60 000 kb/s	150 000 kb/s	15 000 kb/s	24 miesiące	100,00 zł	69,43 zł	81,30

Tabela 21 Łącze zapasowe – UPC

Technologia	Download maksymalny	Upload maksymalny	Download minimalny	Upload minimalny	Okres umowy	Aktywacja	Cena za mies
światłowód	50 000 kb/s	50 000 kb/s	10 000 kb/s	10 000 kb/s	24 miesiące	100,00 zł	65 zł

5.6. Analiza bezpieczeństwa i niezawodności sieci

Atak na urządzenie końcowe.

Router główny jest wyposażony w sprzętowy firewall co powinno zabezpieczyć sieć przed atakami na urządzenia końcowe dzięki skoncentrowaniu w jednym punkcie ruchu sieciowego bez problemowo jesteśmy w stanie kontrolować wszelki próby nieautoryzowanego dostępu do sieci LAN.

Atak na serwerownię.

Zastosowano dodatkowy firewall który znajduje się między serwerami a resztą infrastruktury sieciowej co zabezpiecza nasze dane przed nieautoryzowanym dostępem poprzez złośliwe oprogramowanie zainstalowane na stacjach roboczych. Dodatkowo owe serwery zostaną umieszczone w strefie zdemilitaryzowanej w celu zmniejszeniu dostępu do samych serwerów.

Spam

Zainstalowany zostanie na serwerze SMTP program antywirusowy Norton™ Premium Security który jest wyposażony w zawansowany filtr zapobiegający przeniknięciu niechcianych maili do stacji roboczych. Niebezpieczne maile zostaną odfiltrowane do osobnej przestrzeni pamięci a następnie usuwane w momencie jej przepełnienia zaczynając od najstarszych.

Wirusy w programach instalowanych na stanowiskach pracowników.

Zainstalowano na wszystkich stanowiskach pracowników zawansowany program antywirusowy Norton™ Premium Security . Zapewnia on wystarczające zabezpieczenie przed wirusami ściąganymi z sieci Internet jak i instalowanych z urządzeń przenośnych np. pendrive.

Uszkodzenie okablowania.

Aby zapewnić bez problemowe działanie przełączników w razie uszkodzenia kabli zastosujemy protokół MST aby przełączniki w razie problemów mogły połączyć się z użytkownikami używając innej drogi. Mogą być uszkodzone jednocześnie 2 kable Gigabit Ethernet choć tylko 1 z wychodzący tego samego przełącznika.

Problem z dostępem do Internetu.

W związku z niezerowym prawdopodobieństwem wystąpienia problemów w świadczeniu usług internetowych przez usługodawcę sieć będzie korzystać z dwóch łączy internetowych od niezależnych operatorów sieć zapasowa będzie miała mniejszą przepustowość lecz nadal wystarczającą do funkcjonowania przedsiębiorstwa. W razie awarii łącza podstawowego osoba administrująca sieciami będzie mogła podpiąć firmę do łącza zapasowego.

Przeciążenie łącza bezprzewodowego.

W celu uniknięcia nadmiernego wykorzystania łącza internetowego przez osoby łączące się bezprzewodowo, zastosowano zabezpieczenie polegające na rozłączaniu tych urządzeń, które pracują w danej sieci nieprzerwanie przez 30 minut. Takie rozwiązanie pozwoli uniknąć ściągania przez użytkowników dużych plików z Internetu oraz pozwoli połączyć się gościom którym nie udało się połączyć ze względu na ograniczoną liczbę urządzeń połączonych jednocześnie do Access Point.

Wirusowe zagrożenie komputerów pracowników i gości.

Na wejściu do infrastruktury sieciowej umieszczono firewall który chroni sieć od zagrożeń z zewnątrz które mogłyby zostać ściągnięte na stacje robocze lub urządzenia gości. Sieć bezprzewodowa korzysta z łącza, które również jest najpierw filtrowane poprzez firewall

Wykorzystanie sieci przez osoby nieuprawnione.

Sieć zostanie zabezpieczona hasłem z szyfrowane WPA2-PSK co powinno zniechęcić osoby nieuprawnione do próby łamania tego zabezpieczenia.

5.7. Kosztorys

Tabela

Tabela				
nazwa	model	cena netto	ilość	łączna cena
Hazwa	model	za sztukę	11030	netto
Router	RV320-K9-G5	638,00 zł	1	638,00 zł
Switch L3	SG300-10	625,90 zł	4	2 503,60 zł
Switch L2	SF200-48	8	8 670,40 zł	
Access Point	AIR-AP1131G-A-K9	8	2 800,00 zł	
opłata mies				
	12	833,16 zł		
opłata mies				
	12	975,60 zł		
opłata mi				
	24	1 560,00 zł		
opłata z				
	22	8 579,78 zł		
		12 941,56 zł		

6. Karty katalogowe proponowanych urządzeń

6.1. Przełącznik warstwy drugiej

Model: SF200-48

Firma: Cisco

Link: https://www.cisco.com/c/en/us/support/switches/sf200-48p-48-port-

10-100-poe-smart-switch/model.html

6.2. Przełącznik warstwy trzeciej

Model: SG300-10

Firma: Cisco

Link: https://www.cisco.com/c/en/us/support/switches/sg300-10-10-port-

gigabit-managed-switch/model.html

6.3. Router

Model: RV320-K9-G5

Firma: Cisco

Link: https://www.cisco.com/c/en/us/products/collateral/routers/rv320-dual-

gigabit-wan-vpn-router/data_sheet_c78-726132.html

6.4. Access Point

Model: AIR-AP1131G-A-K9

Firma: Cisco

Link: https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-

1130-ag-series/product_data_sheet0900aecd801b9058.html