Finite Dimensional Inner Product Spaces

Jason Kenyon

Contents

Chapter 1.	Vector Spaces	5
Chapter 2.	Linear Functions	7
Chapter 3.	Linear Systems of Equations	S
Chapter 4.	Eigenspaces	11
Chapter 5.	Orthogonality	13

Vector Spaces

Linear Functions

Linear Systems of Equations

We now apply fruits of our investigation into vector spaces and linearity to solve systems of linear equations.

Definition 1. A linear system of equations is a collection of m equations of the form:

$$a_1x_1 + \dots + a_nx_n = b$$

where $a_i, x_i, b \in \mathbb{F}$ for $1 \le i \le n$. Equivalently, we may say Ax = b for an $m \times n$ matrix A, where $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$. If $b = \mathbf{0}$, the linear system is said to

 $be\ homogenous.$

Definition 2. A solution to a linear system is a vector $s \in \mathbb{F}^n$ such that As = b

THEOREM 1. Let A be an $m \times n$ matrix over \mathbb{F} . If m < n, then the homogenous system Ax = 0 has a nontrivial solution.

PROOF. Notice that, the solution set to the system Ax = 0 is $Ker(L_A)$, so by the dimension theorem, $dim(Ker(A)) = n - rank(L_A)$. Additionally, we know that rank(A) is nothing but the number of linearly independent vectors defined by its rows which certainly cannot exceed m. Therefore $rank(A) \leq m < n$, in which case n - rank(A) = dim(Ker(A)) > 0, and so $ker(A) \neq \{0\}$.

THEOREM 2. For any solution s to the linear system Ax = b,

$$S = \{s + s_0 : As_0 = \mathbf{0}\}\$$

is its solution set.

PROOF. Suppose that As = b and As' = b. Then A(s' - s) = As' - As = b - b = 0. It follows that $s + (s' - s) \in S$. Conversely, if $y \in S$, then y = s + s', in which case Ay = A(s + s') = As + As' = b + 0 = b. That is, Ay = b.

Eigenspaces

$CHAPTER \ 5$

Orthogonality

Hello

Definition 3. There exists