Simulating a Droplet Within a Two-phase Viscous Flow

Matt Cho

Common Ground

We have a mental model. Is it closer to what we think is real or not?

Scientific Method

Analytical method where we go through an iterative process of:

 $\textbf{Question} \rightarrow \textbf{Hypothesis} \rightarrow \textbf{Experiment} \rightarrow \textbf{Refinement}$

(Engineering methodology is identical, but with cost constraints added.)

Scientific Method

Computational Math ("Post-Moore's Law")

We have a virtual model written in the form of an algorithm. How do we make the most of it?

Computational Math ("Post-Moore's Law")

Process is fundamentally the same, but we now have 1000s of CPUs to do what we want:

 $\begin{array}{l} \textbf{Question} \rightarrow \textbf{Hypothesis} \rightarrow \textbf{Experiment} \rightarrow \textbf{Experiment} \\ \rightarrow \textbf{Experiment} \rightarrow \textbf{Experiment} \rightarrow \textbf{Experiment} \\ \rightarrow \dots \end{array}$

Computational Math ("Post-Moore's Law")

Computational Math ("Post-Moore's Law")

Introducing Basilisk

General Purpose PDE Solver specializing in solving over adaptive meshes.

Creator is Stéphane Popinet of Sorbonne Université (formerly Université Pierre-et-Marie-Curie) in Paris

Introducing Basilisk

Introducing Basilisk

What is this really?

A solution to the Navier-Stokes equations, using the Volume-of-Fluid method (VOF).

What is this really?

A solution to the Navier-Stokes equations, using the Volume-of-Fluid method (VOF).

Problem of analysing real droplet behavior is a combination of problems. In isotropic conditions, this is essentially solving for a two-phase flow problem where the substrate is a solid boundary.

(For now, we are interested in viscosity and advection more than heat transfer.)

What is this really?

c) Dispersed two-phase flow.

What is this really?

```
#include "navier-stokes/centered.h"
      #include "two-phase.h"
      #include "curvature.h"
3
      #include "contact.h"
4
      #include "vof.h"
      #include "tension.h"
      #include "log-conform.h"
      #include "view.h"
```

Some Problems and Solutions:

- Even for symmetric problems, mirroring about an axis isn't sufficient.

Some Problems and Solutions:

- Even for symmetric problems, mirroring about an axis isn't sufficient. \rightarrow Use a 2D model.

Some Problems and Solutions:

- Even for symmetric problems, mirroring about an axis isn't sufficient. \rightarrow Use a 2D model.
- At small length scales, numerical errors dominate the physics unless if they are mitigated.

Some Problems and Solutions:

- Even for symmetric problems, mirroring about an axis isn't sufficient. \rightarrow Use a 2D model.
- At small length scales, numerical errors dominate the physics unless if they are mitigated.
- \rightarrow Use an adaptive grid and tune it.
- ightarrow There is no avoiding going smaller without approximation, which is not a suitable solution.

Some Problems and Solutions:

- Even for symmetric problems, mirroring about an axis isn't sufficient.
- At small length scales, numerical errors dominate the physics unless if they are mitigated.
- Experiment Design: Trying to match real conditions is incredibly computationally intensive, have to settle for simpler/coarser model with respective changes in non-dimensional numbers.

Currently have a fairly reasonable simulation of a "nanodroplet" (micro and nanometer length scale) that agrees with constants reported in literature:

(Wang et. al. "Phase diagram for nanodroplet impact on solid surfaces" 2021).

FIG. 1. Initial configuration of the simulated system, where Pt atoms are in blue and water molecules are in red.

Literature Example:

under the following conditions: $P_{A} = 0.02$ to $P_{A} = 0.03$ to $P_{A} = 0.03$

We = 0.02 to 220, Re = 0.33 to 40,

Literature Example:

under the following conditions:

$$We = 0.02$$
 to 220, $Re = 0.33$ to 40,

Our Constants:

$$\mathsf{Reynolds} = 5.0$$

Weber =
$$\frac{\rho v^2 I}{\sigma} = \frac{(0.001)(2.0)(0.5)}{0.05} = 0.02$$
 (nice!)

Okay, that's cool, but where are your numbers?

```
JOBID PARTITION
                                 NAME
                                           USER ST
                                                                NODES NODELIST(REASON)
                         gpu basilisk
                                                                     1 (AssocGrpBillingMinutes)
            29903
                                          mc462 PD
                                                          0:00
                                                                     1 (AssocGrpBillingMinutes)
            29902
                         opu basilisk
                                          mc462 PD
                                                          0:00
            29901
                         apu basilisk
                                          mc462 PD
                                                          0:00
                                                                     1 (AssocGrpBillingMinutes)
                         gpu basilisk
                                                                     1 (AssocGrpBillingMinutes)
            29900
                                          mc462 PD
                                                          0:00
            29896
                         opu basilisk
                                          mc462
                                                          1:00
                                                                     1 n0027
            29897
                         gpu basilisk
                                          mc462
                                                          1:00
                                                                     1 n0091
                         gpu basilisk
                                          mc462
                                                          1:00
                                                                     1 n0089
            29899
                         opu basilisk
                                          mc462
                                                          1:00
                                                                     1 n0024
            29895
                         qpu basilisk
                                          mc462
                                                          1:34
                                                                     1 n0068
            29892
                         gpu basilisk
                                          mc462
                                                                       n0047
            29893
                         opu basilisk
                                          mc462
                                                          1:37
                                                                     1 n0047
            29894
                         qpu basilisk
                                          mc462
                                                          1:37
                                                                     1 n0068
            29890
                                                                       n0046
                         opu basilisk
                                          mc462
                                                          1:56
            29889
                         apu basilisk
                                          mc462
                                                          2:31
                                                                     1 n0069
            29888
                         qpu basilisk
                                          mc462
                                                          2:34
                                                                     1 n0027
            29887
                         opu basilisk
                                          mc462
                                                          2:37
                                                                     1 n0005
            29886
                         apu basilisk
                                          mc462
                                                          2:40
                                                                     1 n0004
                         opu basilisk
                                          mc462
                                                          2:46
                                                                       n0002
            29884
                         opu basilisk
                                          mc462
                                                          2:50
                                                                     1 n0002
            29883
                         gpu basilisk
                                          mc462
                                                          2:53
                                                                     1 n0090
            29882
                         gpu basilisk
                                          mc462
                                                          2:57
                                                                       n0089
            29881
                         opu basilisk
                                          mc462
                                                          3:00
                                                                     1 n0088
            29880
                         qpu basilisk
                                          mc462 R
                                                          5:18
                                                                     1 n0069
mc462@login02 basilisk-tx1S
```

```
mattcho@mc462:~$ ./wulver.sh
mc462@wulver.njit.edu's password:
Connection closed by 128.235.212.9 port 22
```

Future Work

Currently have a fairly reasonable simulation of a "nanodroplet" (micro and nanometer length scale) that agrees with constants reported in literature.

Natural thing to do would be to incrementally approach larger scale (mm length).

Future Work

Currently have a fairly reasonable simulation of a "nanodroplet" (micro and nanometer length scale) that agrees with constants reported in literature.

Natural thing to do would be to incrementally approach larger scale (mm-scale drops).

The way forward is simply applying known computer programming/engineering techniques to make computational problem tractable.