Équations différentielles

1.1 Définitions

Une équation différentielle d'ordre n est une équation de la forme

$$F(x, y, y', \dots, y^{(n)}) = 0 (E_{\text{diff}})$$

où F est une fonction de (n + 2) variables.

- Une *solution* d'une telle équation sur un intervalle $I \subset \mathbb{R}$ est une fonction $y:I\to\mathbb{R}$ qui est n fois dérivable et qui vérifie l'équation (E_{diff}) . Si on change d'intervalle, on peut très bien obtenir d'autres
- Exemple. Une équation différentielle à variables séparées est une équation du type y' = g(x)/f(y) ou y'f(y) = g(x). Une telle équation se résout par calcul de primitives de part et d'autre de l'égalité y'f(y) = g(x).
- Une équation différentielle linéaire est de la forme

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = g(x)$$
 (E)

où les a_i et g sont des fonctions continues sur un intervalle $I \subset \mathbb{R}$.

Une équation différentielle linéaire est homogène, ou sans second membre, si la fonction g est nulle :

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = 0$$
 (E_h)

Une équation différentielle linéaire est à coefficients constants si les fonctions a_i ci-dessus sont constantes :

$$a_0y + a_1y' + \dots + a_ny^{(n)} = g(x)$$

où les a_i sont des constantes réelles et g une fonction continue.

Proposition (Principe de linéarité). Si y1 et y2 sont solutions de l'équation différentielle linéaire homogène (E_h) alors, quels que soient $\lambda, \mu \in \mathbb{R}$, $\lambda y_1 + \mu y_2$ est aussi solution de cette équation.

Méthode pour résoudre une équation différentielle linéaire (E) avec second membre;

- 1. Trouver une solution particulière y_p de l'équation (E).
- 2. Trouver l'ensemble \mathcal{S}_h des solutions y_h de l'équation homogène associée (E_h) .
- 3. Conclure par le principe de linéarité : les solutions de (E) sont les

$$y = y_p + y_h$$
 avec $y_h \in \mathcal{S}_h$.

Équation différentielle linéaire du premier ordre

Une équation différentielle *linéaire du premier ordre* est une équation du type y' = a(x)y + b(x) où a et b sont des fonctions définies sur un intervalle ouvert I de \mathbb{R} .

Théorème (y' = ay). Les solutions de y' = ay où $a \in \mathbb{R}$ est une constante sont les fonctions y définies sur \mathbb{R} par :

$$y(x) = ke^{ax}$$

où $k \in \mathbb{R}$ est une constante quelconque.

Preuve rapide : on intègre à gauche et à droite l'équation $\frac{y'}{y}=a$ pour trouver : $\ln |y(x)|=ax+b$. Donc $|y(x)|=e^{ax+b}$. Ainsi $y(x)=\pm e^b e^{ax}$.

Exemple: 3y' - 5y = 0 a pour solution $y(x) = ke^{\frac{5}{3}x}$, où $k \in \mathbb{R}$.

Théorème (y' = a(x)y). Soit $a : I \to \mathbb{R}$ une fonction continue. Soit $A: I \to \mathbb{R}$ une primitive de a. Les solutions de y' = a(x)y sont les fonctions y définies par :

$$y(x) = ke^{A(x)}$$

où $k \in \mathbb{R}$ est une constante quelconque.

Exemple: $x^2y' = y \text{ sur } I =]0, +\infty[$. L'équation est $y' = \frac{1}{x^2}y$, donc a(x) = $\frac{1}{x^2}$, dont une primitive est $A(x) = -\frac{1}{x}$. Les solutions sont $y(x) = ke^{-\frac{1}{x}}$, où $k \in \mathbb{R}$.

Théorème (y' = a(x)y + b(x)). Soit l'équation y' = a(x)y + b(x) où $a, b: I \to \mathbb{R}$. Soit y_p une solution particulière et $y_h(x)$ les solutions de l'équation homogène y' = a(x)y. Les solutions sont les $y = y_p + y_h$.

Recherche d'une solution particulière : méthode de variation de la constante.

- On trouve les solutions $y(x) = ke^{A(x)}$ de l'équation homogène y' = a(x)y où k est une constante.
- On cherche une solution particulière de y' = a(x)y + b(x) sous la forme $y_p(x) = k(x)e^{A(x)}$, où k est maintenant une fonction.
- L'équation $y'_p = a(x)y_p + b(x)$ permet de déterminer k'(x), puis k(x).

Recherche d'une solution particulière : cas des coefficients constants. y' = ax + g(x), où $a \in \mathbb{R}^*$ est une constante. Le principe est de chercher une solution particulière de la même forme que le second membre.

- Si g(x) = P(x) est un polynôme de degré n, on cherche une solution particulière sous la forme $y_p(x) = Q(x)$ où Q est aussi un polynôme de degré n.
- Si $g(x) = ce^{\beta x}$, on cherche une solution particulière sous la forme $y_p(x) = de^{\beta x}.$
- Si $g(x) = c_1 \cos(\beta x) + c_2 \sin(\beta x)$, on cherche une solution particulière sous la forme $y_p(x) = d_1 \cos(\beta x) + d_2 \sin(\beta x)$,

Théorème (de Cauchy-Lipschitz). Soit y' = a(x)y + b(x) une équation différentielle linéaire du premier ordre, où $a,b:I\to\mathbb{R}$ sont des fonctions continues sur un intervalle ouvert I. Pour tout $x_0 \in I$ et pour tout $y_0 \in \mathbb{R}$, il existe une et une seule solution y telle que y' = a(x)y + b(x) et $y(x_0) = y_0$.

Équation différentielle linéaire du second ordre à coefficients constants

$$ay'' + by' + cy = g(x) \tag{E}$$

où $a, b, c \in \mathbb{R}$, $a \neq 0$ et g continue sur I intervalle ouvert. L'équation homogène associée

$$ay'' + by' + cy = 0 (E_h)$$

L'équation caractéristique est $ar^2 + br + c = 0$, de discriminant $\Delta =$ b^2-4ac .

Théorème.

1. Si $\Delta > 0$, l'équation caractéristique a deux racines réelles distinctes $r_1 \neq r_2$ et les solutions de (E_h) sont les

$$y(x) = \lambda e^{r_1 x} + \mu e^{r_2 x}$$
 où $\lambda, \mu \in \mathbb{R}$.

2. Si $\Delta = 0$, l'équation caractéristique a une racine double r_0 et les solutions de (E_h) sont les

$$y(x) = (\lambda + \mu x)e^{r_0x}$$
 où $\lambda, \mu \in \mathbb{R}$.

3. Si Δ < 0, l'équation caractéristique a deux racines complexes conjuguées $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$ et les solutions de (E_h) sont les

$$y(x) = e^{\alpha x} (\lambda \cos(\beta x) + \mu \sin(\beta x)) \quad \text{où } \lambda, \mu \in \mathbb{R}.$$

(Attention! y'' + y = 0 a pour équation caractéristique $r^2 + 1 = 0$.) Équation avec second membre

$$ay'' + by' + cy = g(x)$$
 (E)

Théorème (Théorème de Cauchy-Lipschitz). *Pour chaque* $x_0 \in I$ *et chaque* couple $(y_0, y_1) \in \mathbb{R}^2$, l'équation (E) admet une unique solution y sur I satisfaisant aux conditions initiales :

$$y(x_0) = y_0$$
 et $y'(x_0) = y_1$

Second membre $g(x) = e^{\alpha x} P(x)$. $\alpha \in \mathbb{R}$ et $P \in \mathbb{R}[X]$

Cela comprend le cas $g(x) = e^{\alpha x}$ (donc P(x) = 1 et alors Q(x) est une constante ci-dessous) et le cas g(x) = P(x) (donc $\alpha = 0$).

On cherche une solution particulière sous la forme $y_p(x) = e^{\alpha x} x^m Q(x)$, où Q est un polynôme de même degré que P avec :

- $y_p(x) = e^{\alpha x} Q(x)$ (m = 0), si α n'est pas une racine de l'équation caractéristique,
- $y_p(x) = xe^{\alpha x}Q(x)$ (m = 1), si α est une racine simple de l'équation caractéristique,
- $y_p(x) = x^2 e^{\alpha x} Q(x)$ (m = 2), si α est une racine double de l'équation caractéristique.

Second membre du type $e^{\alpha x} (P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$.

Cela comprend le cas $g(x) = c_1 \cos(\beta x) + c_2 \sin(\beta x)$ (donc $\alpha = 0$ et P_1 et P_2 polynômes constants).

Si $g(x) = e^{\alpha x} (P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$, où $\alpha, \beta \in \mathbb{R}$ et $P_1, P_2 \in$ $\mathbb{R}[X]$, on cherche une solution particulière sous la forme :

- $y_p(x) = e^{\alpha x} (Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$, si $\alpha + i\beta$ n'est pas une racine de l'équation caractéristique,
- $y_p(x) = xe^{\alpha x} (Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$, si $\alpha + i\beta$ est une racine de l'équation caractéristique.

Dans les deux cas, Q_1 et Q_2 sont deux polynômes de degré n= $\max\{\deg P_1, \deg P_2\}.$

Méthode de variation des constantes.

Si $\{y_1, y_2\}$ est une base de solutions de l'équation homogène (E_h) , on cherche une solution particulière sous la forme $y_p = \lambda y_1 + \mu y_2$, mais cette fois λ et μ sont deux fonctions.