CAPITOLO 2

Meccanica lagrangiana

1. Formalismo lagrangiano

1.1. Sottovarietà regolari. La necessità di sviluppare una adeguata teoria per sistemi vincolati di molti punti materiali, in particolare quando questi sono soggetti a vincoli olonomi fissi, ha motivato la nascita della *meccanica lagrangiana*. Questo formalismo ha permesso di inquadrare in un potente quadro geometrico la meccanica, e di individuare proprietà non banali del moto meno evidenti nel formalismo newtoniano.

Abbiamo già studiato il caso di un singolo punto materiale soggetto ad un vincolo olonomo unidimensionale, ovvero vincolato a muoversi su una guida. Abbiamo anche ridotto problemi più complessi, come quello di un punto materiale in campo centrale, allo stesso tipo di analisi. Il caso di N punti materiali è più complesso, perché ci costringe a studiare il sistema in uno spazio, in generale, di dimensione più alta. A questo scopo saranno utili i concetti introdotti riguardanti superfici in \mathbb{R}^3 e la generalizzazione di tali concetti al caso di ipersuperfici in \mathbb{R}^{3N} . Supponiamo quindi di considerare un sistema di N punti P_1, \ldots, P_N , in \mathbb{E}^3 , le cui posizioni sono soggette in generale ad evoluzione rispetto alla variabile temporale t. Ogni punto P_i quindi è associato, secondo un certo riferimento, ad una certa terna \mathbf{x}_i : abbiamo già introdotto la concatenazione $\mathbf{X} = \bigoplus_i \mathbf{x}_i \in \mathbb{R}^{3N}$ che rappresenta la configurazione del sistema. Se qualsivoglia configurazione è ammessa, il sistema si dice libero, e lo spazio esplorabile da \mathbf{X} è effettivamente \mathbb{R}^{3N} . Viceversa, un sistema vincolato presenta una condizione su \mathbf{X} da rispettare durante tutta l'evoluzione. Considereremo vincoli olonomi nella forma

$$\boldsymbol{\varphi}(\mathbf{X},t) = \mathbf{0},$$

dove $\varphi : \mathbb{R}^{3N} \times \mathbb{R} \to \mathbb{R}^{3N-n}$, con $n \leq 3N$. Si noti che il vincolo è in generale *mobile*, ovvero l'applicazione φ dipende, in generale, esplicitamente dal tempo. Il vincolo determinerà un sottoinsieme di \mathbb{R}^{3N} , eventualmente dipendente dal tempo, che è lo *spazio delle configurazioni* del sistema,

(2.1)
$$\mathcal{M}(t) := \{ \mathbf{X} \in \mathbb{R}^{3N} : \boldsymbol{\varphi}(\mathbf{X}, t) = \mathbf{0} \}.$$

Nel caso in cui \mathcal{M} sia *indipendente* dal tempo, si dice che il vincolo è *scleronomo*, viceversa si dice *reonomo*. Sotto certe ipotesi, *che assumeremo soddisfatte*, il vincolo così introdotto identifica, in ogni istante di tempo t, una *sottovarietà regolare* su cui il sistema evolve che supporremo di dimensione n. Per precisare cosa intendiamo con questa affermazione, facciamo una breve digressione.

 $1.1.1.\ Sottovariet\`{a}$ regolari. Diamo anzitutto questa definizione preliminare.

DEFINIZIONE 1.1 (Sottovarietà regolare). Sia $\mathcal{A} \subset \mathbb{R}^K$ aperto connesso, con K > 1, e sia $\varphi \colon \mathcal{A} \to \mathbb{R}^s$, $1 \le s < K$, una applicazione di classe $\mathcal{C}^p(\mathcal{A})$, con $p \ge 2$. Sia anche definito l'insieme $\mathcal{M} \coloneqq \{\mathbf{x} \in \mathcal{A} \colon \varphi(\mathbf{x}) = \mathbf{0}\}$ supposto non vuoto. Se la matrice jacobiana dell'applicazione φ ha rango s in ogni punto di \mathcal{M} , allora \mathcal{M} si dice sottovarietà regolare di dimensione n = K - s di \mathbb{R}^K e ordine p.

Vale il seguente teorema.

TEOREMA 1.1. Sia data una sottovarietà regolare n-dimensionale di ordine $p \geq 2$ $\mathcal{M} \coloneqq \{\mathbf{x} \in \mathcal{A} : \boldsymbol{\varphi}(\mathbf{x}) = \mathbf{0}\} \subset \mathbb{R}^K$, $\boldsymbol{\varphi} \in \mathcal{C}^p(\mathcal{A})$, $\mathcal{A} \subseteq \mathbb{R}^K$. Allora, per ogni $\mathbf{x}_0 \in \mathcal{M}$ esiste un intorno aperto $\mathcal{V} \subset \mathbb{R}^n$ ove è definita unica una funzione iniettiva $\boldsymbol{\chi} \colon \mathcal{V} \to \mathbb{R}^K$ differenziabile con continuità tale che $\mathbf{x}_0 = \boldsymbol{\chi}(\mathbf{q}_0)$ per un certo $\mathbf{q}_0 \in \mathcal{V}$ e tale che $\boldsymbol{\chi}(\mathbf{q}) \in \mathcal{M}$ per $\mathbf{q} \in \mathcal{V}$.

DIMOSTRAZIONE. Consideriamo l'insieme finito \mathcal{I} di tutte le funzioni iniettive $h: \{1, \ldots, s\} \to \{1, \ldots, K\}$. Per ciascuna di esse, introduciamo l'insieme

$$\mathcal{U}_h \coloneqq \left\{ \mathbf{x} \in \mathcal{A} \colon \det \left(\frac{\partial \varphi_a}{\partial x_{h(b)}} (\mathbf{x}) \right)_{\substack{1 \leq a \leq s \\ 1 < b < s}} \neq 0 \right\}.$$

Dato che il rango dello jacobiano di φ è massimo in ogni punto di \mathcal{M} , allora $\mathcal{M} \subseteq \bigcup_{h \in \mathcal{I}} \mathcal{U}_h$. Supponiamo quindi che $\mathbf{x}_0 \in \mathcal{U}_h \cap \mathcal{M}$, e in particolare che h(b) = n + b per $b = 1, \ldots, s$ (possiamo sempre riordinare le variabili in modo che questo sia verificato). Scriviamo $(x_1, \ldots, x_n) \equiv \mathbf{q}$ e $(x_{n+1}, \ldots, x_K) = \mathbf{y}$, di modo che $\mathbf{x} = (\mathbf{q}, \mathbf{y})$ e in particolare indichiamo $\mathbf{x}_0 = (\mathbf{q}_0, \mathbf{y}_0)$. Per il teorema della funzione implicita, la condizione det $\frac{\partial \boldsymbol{\varphi}}{\partial \mathbf{y}}(\mathbf{q}_0, \mathbf{y}_0) \neq 0$ implica che esiste un aperto $\mathcal{V} \subset \mathbb{R}^n$ contenente \mathbf{q}_0 , un aperto $\mathcal{W} \subset \mathbb{R}^{K-n}$ contenente \mathbf{y}_0 ed un'unica funzione $\boldsymbol{\psi} \colon \mathcal{V} \to \mathcal{W}$ di classe \mathcal{C}^p tale che $\boldsymbol{\psi}(\mathbf{q}_0) = \mathbf{y}_0$ e $\boldsymbol{\varphi}(\mathbf{q}, \boldsymbol{\psi}(\mathbf{q})) = \mathbf{0}$ per ogni $\mathbf{q} \in \mathcal{V}$. La funzione $\boldsymbol{\chi}$ desiderata è quindi $\boldsymbol{\chi}(\mathbf{q}) = (\mathbf{q}, \boldsymbol{\psi}(\mathbf{q}))$. Essa è iniettiva, dato che, dati $\mathbf{q}, \mathbf{q}' \in \mathcal{V}, \boldsymbol{\chi}(\mathbf{q}) = \boldsymbol{\chi}(\mathbf{q}') \Leftrightarrow (\mathbf{q}, \boldsymbol{\psi}(\mathbf{q})) = (\mathbf{q}', \boldsymbol{\psi}(\mathbf{q}')) \Rightarrow \mathbf{q} = \mathbf{q}'$.

1.1.2. Spazio tangente e spazio normale. Consideriamo una parametrizzazione locale $\chi: \mathcal{V} \to \mathcal{M}$ nella forma $\chi(\mathbf{q}) = (\mathbf{q}, \psi(\mathbf{q}))$, come individuata dal teorema precedente in un intorno di un punto $\mathbf{X}_0 = \chi(\mathbf{q}_0)$. Allora

$$\operatorname{rank}(\partial_a \chi_i(\mathbf{q}_0))_{ai} = \operatorname{rank} \begin{pmatrix} 1 & 0 & \dots & 0 & \partial_1 \psi_1(\mathbf{q}_0) & \cdots & \partial_1 \psi_{K-n}(\mathbf{q}_0) \\ 0 & 1 & \dots & 0 & \partial_2 \psi_1(\mathbf{q}_0) & \cdots & \partial_2 \psi_{K-n}(\mathbf{q}_0) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \partial_n \psi_1(\mathbf{q}_0) & \cdots & \partial_n \psi_{K-n}(\mathbf{q}_0) \end{pmatrix} = n, \quad \partial_a \chi_i(\mathbf{q}) \coloneqq \frac{\partial \chi_i(\mathbf{q})}{\partial q_a}.$$

Gli n vettori $\partial_a \chi(\mathbf{q}_0)$ sono quindi linearmente indipendenti e sono una base per uno spazio che chiamiamo spazio tangente in P,

$$\mathsf{T}_P \mathcal{M} = \mathrm{span} \{ \partial_a \boldsymbol{\chi}(\mathbf{q}_0) \}_{a=1}^n.$$

Per spiegare questa terminologia, consideriamo una curva regolare su $\mathcal{M}, \boldsymbol{\gamma} \colon [-\epsilon, \epsilon] \to \boldsymbol{\chi}(\mathcal{V}) \subseteq \mathcal{M}$ con $\boldsymbol{\gamma}(0) = \boldsymbol{\chi}_0 = \boldsymbol{\chi}(\mathbf{q}_0)$. Questa può essere parametrizzata in un intorno di P in termini delle coordinate \mathbf{q} , di modo che $\boldsymbol{\gamma}(u) \equiv (\boldsymbol{\chi} \circ \mathbf{q})(u)$, dove $\mathbf{q}(u)$ è la controimmagine di $\boldsymbol{\gamma}$ in \mathcal{V} , univocamente determinata essendo $\boldsymbol{\chi}$ iniettiva e tale che $\mathbf{q}(0) = \mathbf{q}_0$. Abbiamo quindi

$$\boldsymbol{\gamma}'(0) = \sum_{a=1}^n q_a'(0) \partial_a \boldsymbol{\chi}(\mathbf{q}_0).$$

Si ha perciò che $\gamma'(0) \in \mathsf{T}_P \mathcal{M}$ e in particolare si può intendere $\mathbf{q}'(0)$ come il vettore delle componenti della tangente a γ in P secondo la base $\{\partial_a \chi\}_a$. Lo spazio tangente è quindi lo spazio in cui vivono i vettori tangenti alle curve in P su \mathcal{M} , cioè lo spazio dei vettori tangenti ad \mathcal{M} in P.

Se n è la dimensione dello spazio tangente, la quantità K-n è la dimensione dello spazio normale: in un intorno di un punto $\mathbf{x}_0 \in \mathcal{M}$, infatti, esistono K-n vettori normali a \mathcal{M} , ovvero $\{\nabla \varphi_j\}_{j=1}^{K-n}$, e la condizione di rango massimo significa che tali vettori sono linearmente indipendenti. Per vedere questo fatto, data come sopra una curva $\boldsymbol{\gamma}: [-\epsilon, \epsilon] \to \mathcal{M}$ passante per

 $\mathbf{x}_0 = \boldsymbol{\gamma}(0) = \boldsymbol{\chi}(\mathbf{q}_0)$, abbiamo che

$$\frac{\mathrm{d}}{\mathrm{d} u} \varphi_j(\boldsymbol{\gamma}(u))|_{u=0} = \sum_{a=1}^n \langle \nabla \varphi_j(\mathbf{x}_0), \partial_a \boldsymbol{\chi}(\mathbf{q}_0) \rangle q_a'(0) = 0,$$

per qualsivoglia curva, ovvero $\langle \nabla \varphi_j, \partial_a \mathbf{\chi} \rangle = 0$: i vettori $\nabla \varphi_j$ calcolati in un certo punto P sono perciò effettivamente normali allo spazio tangente. Scriveremo

$$(\mathsf{T}_P \mathcal{M})^{\perp} = \mathrm{span} \{ \nabla \varphi_j(\mathbf{x}) \}_{j=1}^{K-n}.$$

1.1.3. Cambio di parametrizzazione. La parametrizzazione di una sottovarietà regolare n-dimensionale \mathcal{M} in un intorno di un suo punto \mathbf{x}_0 non è unica, tuttavia lo spazio tangente e lo spazio normale in \mathbf{x}_0 non dipendono dalla parametrizzazione. Supponiamo di disporre di una parametrizzazione $\mathbf{\chi} \colon \mathcal{V} \to \mathcal{M}$, di modo che $\mathbf{x}_0 = \mathbf{\chi}(\mathbf{q}_0)$, e sia $\boldsymbol{\phi} \colon \hat{\mathcal{V}} \to \mathcal{V}$, con $\hat{\mathcal{V}} \subseteq \mathbb{R}^n$ aperto connesso, un C^p -diffeomorfismo, ovvero una applicazione biettiva con derivate continue fino all'ordine p, la cui inversa esiste e ha derivate continue fino all'ordine p. La mappa $\hat{\mathbf{\chi}} = \mathbf{\chi} \circ \boldsymbol{\phi} \colon \hat{\mathcal{V}} \to \mathcal{U}$ è anch'essa una parametrizzazione di \mathcal{U} . Se dunque il punto P ha coordinate $\mathbf{x}_0 = \mathbf{\chi}(\mathbf{q}_0)$ e $\mathbf{q}_0 = \boldsymbol{\phi}(\hat{\mathbf{q}}_0)$

$$\frac{\partial \hat{\boldsymbol{\chi}}}{\partial \hat{q}_a}(\hat{\mathbf{q}}_0) = \sum_b \frac{\partial \boldsymbol{\chi}}{\partial q_b}(\boldsymbol{\phi}(\hat{\mathbf{q}}_0)) \frac{\partial \phi_b}{\partial \hat{q}_a}(\hat{\mathbf{q}}_0) = \sum_b \frac{\partial \boldsymbol{\chi}}{\partial q_b}(\mathbf{q}_0) \frac{\partial \phi_b}{\partial \hat{q}_a}(\hat{\mathbf{q}}_0),$$

il che implica che $\frac{\partial \hat{\mathbf{x}}}{\partial \hat{q}_a}(\hat{\mathbf{q}}_0) \in \mathsf{T}_P \mathcal{M}$ e d'altronde, essendo la matrice jacobiana della funzione $\boldsymbol{\phi}$ di rango n, rank $\left(\frac{\partial \hat{\mathbf{x}}_i}{\partial \hat{q}_a}(\hat{\mathbf{q}}_0)\right)_{ai} = n$ ovvero $\mathsf{T}_P \mathcal{M} = \mathrm{span}\left\{\frac{\partial \hat{\mathbf{x}}}{\partial \hat{q}_a}(\hat{\mathbf{q}}_0)\right\}_a$. Di conseguenza, anche lo spazio normale rimane inalterato.

1.1.4. Tensore metrico. Una sottovarietà regolare \mathcal{M} di dimensione n può essere naturalmente dotata di una struttura riemanniana indotta dalla metrica naturale su \mathbb{R}^K . Supponiamo infatti di avere una curva regolare $\boldsymbol{\gamma} \colon [-\epsilon, \epsilon] \to \boldsymbol{\chi}(\mathcal{V}) \subseteq \mathcal{M}$, di modo che $\boldsymbol{\gamma}(0) = \mathbf{x} = \boldsymbol{\chi}(\mathbf{q})$, dove $\boldsymbol{\chi} \colon \mathcal{V} \to \mathcal{M}$ una parametrizzazione di \mathcal{M} in un intorno del punto P di coordinate \mathbf{x} . Sia $\mathbf{q} = \boldsymbol{\chi}^{-1} \circ \boldsymbol{\gamma} \colon [-\epsilon, \epsilon] \to \mathcal{V}$. L'infinitesimo di lunghezza quadra della curva in un intorno di \mathbf{x} si può scrivere

$$ds^{2} = \langle d\boldsymbol{\gamma}, d\boldsymbol{\gamma} \rangle = \sum_{ab} \left\langle \frac{\partial \boldsymbol{\chi}}{\partial q_{a}}, \frac{\partial \boldsymbol{\chi}}{\partial q_{b}} \right\rangle dq_{a} dq_{b} = \sum_{ab} g_{ab}(\mathbf{q}) dq_{a} dq_{b} = : (d\mathbf{q}, d\mathbf{q})$$

dove abbiamo introdotto il tensore metrico $\mathbf{g}(\mathbf{q})$ in ogni punto $\mathbf{x} \in \mathcal{M}$ localmente data da

$$g_{ab}(\mathbf{q}) \coloneqq \left\langle \frac{\partial \mathbf{\chi}(\mathbf{q})}{\partial q_a}, \frac{\partial \mathbf{\chi}(\mathbf{q})}{\partial q_b} \right\rangle$$

e la forma quadratica tra due vettori $\mathbf{v}, \mathbf{u} \in \mathsf{T}_P \mathcal{M}$

$$(\mathbf{v}, \mathbf{u}) \coloneqq \sum_{ab} g_{ab}(\mathbf{q}) v_a u_b, \qquad (\bullet, \bullet) \colon \mathsf{T}_P \mathcal{M} \times \mathsf{T}_P \mathcal{M} \to \mathbb{R}.$$

La forma introdotta è simmetrica definita positiva e permette di riscrivere per esempio la lunghezza ℓ della curva come

$$\ell = \int_{-\epsilon}^{\epsilon} \sqrt{(\mathbf{q}'(u), \mathbf{q}'(u))} \, \mathrm{d} u.$$

La matrice g_{ab} si trasforma come un *tensore* quando si esegue un cambio di variabili. Quel che questa espressione significa è che, supponendo che $\mathbf{q} = \boldsymbol{\phi}(\hat{\mathbf{q}})$ con $\boldsymbol{\phi}$ diffeomorfismo come

FIGURA 1. Proiezione stereografica.

sopra, allora ad essa sarà associata una diversa matrice $\hat{\mathbf{g}}(\hat{\mathbf{q}})$ che però è legata alla precedente da una trasformazione nella forma

$$\hat{g}_{ab}(\hat{\mathbf{q}}) = \left\langle \frac{\partial \hat{\mathbf{\chi}}(\hat{\mathbf{q}})}{\partial \hat{q}_a}, \frac{\partial \hat{\mathbf{\chi}}(\hat{\mathbf{q}})}{\partial \hat{q}_a} \right\rangle = \sum_{uv} \left\langle \frac{\partial \mathbf{\chi}}{\partial q_u}(\mathbf{q}), \frac{\partial \mathbf{\chi}}{\partial q_v}(\mathbf{q}) \right\rangle \frac{\partial \phi_u}{\partial \hat{q}_a}(\hat{\mathbf{q}}) \frac{\partial \phi_v}{\partial \hat{q}_b}(\hat{\mathbf{q}}) = \sum_{uv} g_{uv}(\mathbf{q}) \frac{\partial q_u}{\partial \hat{q}_a}(\hat{\mathbf{q}}) \frac{\partial q_v}{\partial \hat{q}_b}(\hat{\mathbf{q}}).$$

Esempio 2.1 — La sfera \mathbb{S}^2 in \mathbb{R}^3

$$S^2 := \{ \mathbf{x} \in \mathbb{R}^3 : \varphi(\mathbf{x}) = x_1^2 + x_2^2 + x_3 - 1 = 0 \}$$

è una sottovarietà regolare di dimensione 2, essendo

$$\begin{pmatrix} \frac{\partial \varphi}{\partial x_1} & \frac{\partial \varphi}{\partial x_2} & \frac{\partial \varphi}{\partial x_3} \end{pmatrix} = \begin{pmatrix} 2x_1 & 2x_2 & 2x_3 \end{pmatrix}$$

di rango 1 in ogni punto di \mathbb{S}^2 . La mappa data da

$$oldsymbol{\chi}_+(oldsymbol{q}) = rac{1}{1+\|oldsymbol{q}\|^2} egin{pmatrix} 2q_1 \ 2q_2 \ \|oldsymbol{q}\|^2-1 \end{pmatrix}, \qquad oldsymbol{\chi}_+ \colon \mathbb{R}^2 o \mathbb{R}^3,$$

permette di parametrizzare l'intorno di qualsivoglia punto di \mathbb{S}^2 eccezion fatta per il polo nord $\mathbf{z}_+ = (0,0,-1)^\intercal$, mentre la mappa

$$oldsymbol{\chi}_-(oldsymbol{\mathfrak{q}}) = rac{1}{1+\|oldsymbol{\mathfrak{q}}\|^2} egin{pmatrix} 2q_1 \ 2q_2 \ 1-\|oldsymbol{\mathfrak{q}}\|^2 \end{pmatrix}, \qquad oldsymbol{\chi}_- \colon \mathbb{R}^2 o \mathbb{R}^3,$$

permette di parametrizzare l'intorno di qualsivoglia punto di S^2 eccezion fatta per il polo sud $\mathbf{z}_- = (0,0,-1)^{\mathsf{T}}$. Ciascuna delle due mappe introdotte corrisponde ad una proiezione stereografica della sfera, vedasi Fig. 1. Con un po' di algebra, si trova che in entrambi i casi

$$g_{ab}(\mathbf{q}) = \frac{4}{(1 + \|\mathbf{q}\|^2)^2} \delta_{ab}.$$

1.2. Coordinate lagrangiane e principio di d'Alembert-Lagrange. Nel contesto della meccanica, abbiamo a che fare come abbiamo visto con condizioni olonome nella forma dell'Eq. (2.1). Nel seguito, assumeremo sempre che $\mathcal{M}(t)$ sia una sottovarietà regolare di dimensione n in uno spazio di dimensione 3N per ogni valore di t, ovvero che in ogni istante di tempo t valga

$$3N-n=\mathrm{rank}\left(\frac{\partial\varphi_j}{\partial X_i}(\mathbf{X},t)\right)_{\substack{1\leq i\leq 3N\\1\leq j\leq 3N-n}} \quad \forall \mathbf{X}\in\mathcal{M}(t).$$

FIGURA 2. Asta rotante con punto materiale vincolato su di essa.

Per quanto detto sopra, in un intorno di un punto P, individuato da $\mathbf{X} \in \mathcal{M}(t)$, sarà possibile introdurre (non univocamente) n parametri, detti nel contesto della meccanica coordinate lagrangiane, $\mathbf{q} \in \mathcal{V}(t) \subseteq \mathbb{R}^n$, in cui potremo ri-esprimere localmente le vecchie variabili cartesiane, ovvero $\mathbf{X} \equiv \boldsymbol{\chi}(\mathbf{q},t)$ per una opportuna $\boldsymbol{\chi}(\mathbf{q},t) : \mathcal{V}(t) \to \mathcal{M}(t)$ in ciascun istante. Si noti che se il vincolo è reonomo $\boldsymbol{\chi}$ dipende dal tempo t; viceversa, se il vincolo è scleronomo, allora semplicemente $\mathbf{X} \equiv \boldsymbol{\chi}(\mathbf{q})$. In seguito assumeremo che la dipendenza di $\boldsymbol{\chi}$ dal tempo sia tale che $\boldsymbol{\chi}$ abbia derivate continue almeno fino alla seconda in t.

La traiettoria del sistema su $\mathcal{M}(t)$ si scrive localmente come

$$\mathbf{X}(t) = \boldsymbol{\chi}(\mathbf{q}(t), t)$$

per un opportuno set di coordinate lagrangiane, dove $\mathbf{q}(t)$ incorpora la dipendenza dal tempo delle coordinate lagrangiane del sistema durante l'evoluzione. Lo spazio in cui varia la coppia $(\mathbf{q}, \dot{\mathbf{q}})$ è detto spazio delle fasi ed esiste una corrispondenza tra l'evoluzione della coppia $(\mathbf{q}, \dot{\mathbf{q}})$ e l'evoluzione di $(\mathbf{X}, \dot{\mathbf{X}})$. Se infatti da un lato $\mathbf{X} = \boldsymbol{\chi}(\mathbf{q}, t)$, potremo inoltre scrivere

$$\dot{\mathbf{X}} = \sum_{a=1}^{n} \dot{q}_a \partial_a \mathbf{X} + \partial_t \mathbf{X} = \sum_{a=1}^{n} \dot{q}_a \partial_a \mathbf{\chi}(\mathbf{q}, t) + \partial_t \mathbf{\chi}(\mathbf{q}, t),$$

che esibisce due termini diversi: il primo,

$$\hat{oldsymbol{\mathsf{V}}}\coloneqq\sum_{a}\dot{q}_{a}\partial_{a}oldsymbol{\chi}(oldsymbol{\mathsf{q}},t)\in\mathsf{T}_{P}\mathcal{M}(t)$$

è detto velocità virtuale e vive nello spazio tangente ad M(t) in P, punto individuato da $\mathbf{X}(t)$. Si tratta del contributo alla velocità a vincolo fisso: $\hat{\mathbf{V}}$ è effettivamente tangente a $\mathcal{M}(t)$ nel senso usuale nell'istante di tempo t. Il secondo termine, $\partial_t \mathbf{X} \equiv \partial_t \mathbf{\chi}(\mathbf{q}, t)$ è dovuto invece alla sola dipendenza del vincolo dal tempo: questa velocità è detta velocità di trascinamento ed è nulla se i vincoli sono scleronomi.

Esempio 2.2 — Consideriamo un punto materiale vincolato a muoversi lungo un'asta infinita passante per l'origine in un riferimento cartesiano come in Fig. 2. L'asta mantiene un angolo fisso $\alpha \in (0, \pi/2)$ rispetto alla direzione x_3 , mentre precede attorno a tale asse, in modo che l'angolo tra l'asse x_1 e il piano contenente l'asse x_3 e l'asta sia $\theta = \omega t$ per un qualche $\omega \in \mathbb{R}$. L'asta mobile è in effetti una sottovarietà

 $^{^1}$ In seguito tratteremo in generale χ come una funzione definita su un dominio in \mathbb{R}^n di cui ignoreremo la dipendenza temporale e dipendente dal tempo. La trattazione di varietà dipendenti dal tempo è un argomento interessante che va però oltre lo scopo del corso, essendo la sua trattazione rigorosa non particolarmente utile ai fini degli argomenti trattati qui.

regolare di \mathbb{R}^3 , spazio delle configurazioni del punto, su cui quest'ultimo è vincolato. Essa è identificata dalla condizione $\mathcal{M}(t)$: $\boldsymbol{\varphi}(\mathbf{x},t) = \mathbf{0}$ }, dove

$$\varphi(\mathbf{x}) = \begin{pmatrix} \sin \omega t \, x_1 - \cos \omega t \, x_2 \\ x_1 - \tan \alpha \sin \omega t \, x_3 \end{pmatrix}, \qquad t \in \mathbb{R}.$$

La matrice jacobiana associata è

$$\frac{\partial \boldsymbol{\varphi}}{\partial \mathbf{x}} = \begin{pmatrix} \sin \omega t & -\cos \omega t & 0\\ 1 & 0 & -\tan \alpha \sin \omega t \end{pmatrix}$$

che ha rango 2 in ogni punto di $\mathcal{M}(t)$ e per ogni t, per cui $\mathcal{M}(t)$ ha dimensione 1. Una applicazione $\chi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^3$ che permette di parametrizzare globalmente $\mathcal{M}(t)$ è la seguente

$$\mathbf{\chi}(q,t) = \begin{pmatrix} q \sin \alpha \cos \omega t \\ q \sin \alpha \sin \omega t \\ q \cos \alpha \end{pmatrix}.$$

In altre parole, q è la distanza (con segno) lungo l'asta di P dall'origine. In particolare, la traiettoria $\mathbf{x}(t)$ del punto P può essere parametrizzata come $\mathbf{x}(t) = \boldsymbol{\chi}(q,t)$, con q dipendente dal tempo, di modo che

$$\dot{\mathbf{x}} = \frac{\partial \mathbf{\chi}}{\partial q} \dot{q} + \frac{\partial \mathbf{\chi}}{\partial t} = \dot{q} \begin{pmatrix} \sin \alpha \cos \omega t \\ \sin \alpha \sin \omega t \\ \cos \alpha \end{pmatrix} + q \omega \sin \alpha \begin{pmatrix} -\sin \omega t \\ \cos \omega t \\ 0 \end{pmatrix}.$$

Il primo termine, come si vede, è diretto come \mathbf{x} , ovvero nella direzione dell'asta, e corrisponde infatti alla componente della velocità tangente a $\mathcal{M}(t)$ nell'istante t. Il secondo termine, invece, è ortogonale all'asse x_3 (tangente alla circonferenza tratteggiata in figura) ed è esclusivamente dovuto al fatto che l'asta è in movimento (è infatti identicamente nullo per $\omega = 0$).

In un sistema di N punti materiali vincolati sul $\mathcal{M}(t)$, ciascun punto (P_i, m_i) sarà sottoposto ad una forza totale $\mathbf{F}_i = \mathbf{F}_i^{(\mathrm{a})} + \mathbf{F}_i^{(\mathrm{v})}$, dove $\mathbf{F}_i^{(\mathrm{a})}$ è il contributo attivo ed $\mathbf{F}_i^{(\mathrm{v})}$ è il contributo vincolare, dovuto proprio alla presenza del vincolo. Possiamo concatenare tali contributi vincolari in un unico vettore di dimensione 3N scrivendo $\mathbf{F}^{(\mathrm{v})} \coloneqq \bigoplus_i \mathbf{F}_i^{(\mathrm{v})}$, similmente possiamo concatenare le forze attive $\mathbf{F}^{(\mathrm{a})} \coloneqq \bigoplus_i \mathbf{F}_i^{(\mathrm{a})}$ e introdurre $\mathbf{Q} \coloneqq \bigoplus_i (m_i \mathbf{v}_i)$, di modo che

$$\dot{\mathbf{Q}} = \mathbf{F}^{(a)} + \mathbf{F}^{(v)}.$$

La potenza espressa da queste reazioni vincolari è

$$\Pi^{(\mathrm{v})} = \sum_{i=1}^{N} \langle \mathbf{F}_i^{(\mathrm{v})}, \dot{\mathbf{x}}_i \rangle = \langle \mathbf{F}^{(\mathrm{v})}, \dot{\mathbf{X}} \rangle = \sum_{a=1}^{n} \dot{q}_a \left\langle \partial_a \mathbf{X}, \mathbf{F}^{(\mathrm{v})} \right\rangle + \left\langle \partial_t \mathbf{X}, \mathbf{F}^{(\mathrm{v})} \right\rangle = \left\langle \hat{\mathbf{V}}, \mathbf{F}^{(\mathrm{v})} \right\rangle + \left\langle \partial_t \mathbf{X}, \mathbf{F}^{(\mathrm{v})} \right\rangle.$$

Il primo contributo nell'espressione precedente si dice *potenza virtuale della reazione vincolare*. Il suo valore è discriminante, come già abbiamo anticipato per il caso del singolo punto materiale, per distinguere tra vincoli lisci e scabri nel caso di sistemi di punti soggetti a vincoli olonomi.

DEFINIZIONE 1.2 (Principio di d'Alembert–Lagrange). Un sistema olonomo si dice *a vincoli lisci* se la potenza virtuale del sistema di reazioni vincolari è nulla in qualsiasi istante e in corrispondenza di qualunque stato cinematico del sistema. Ne consegue che se il sistema è soggetto a sole forze conservative e vincoli lisci e fissi, la legge di conservazione dell'energia resta valida.

In altre parole, in un vincolo liscio per ogni $\delta \mathbf{X} = \bigoplus_i \delta \mathbf{x}_i \in \mathsf{T}_P \mathcal{M}(t), \langle \mathbf{F}^{(v)}, \delta \mathbf{X} \rangle = 0$. Il principio può essere trovato espresso in forme diverse. Una di queste si ottiene osservando che $\mathbf{F}_i^{(v)} = 0$

 $\dot{\mathbf{Q}}_i - \mathbf{F}_i^{(\mathrm{a})}$, per cui

$$\sum_{i=1}^{N} \left\langle \mathbf{F}_{i}^{(\mathrm{a})} - \dot{\mathbf{Q}}_{i}, \delta \mathbf{x}_{i} \right\rangle = \left\langle \mathbf{F}^{(\mathrm{a})} - \dot{\mathbf{Q}}, \delta \mathbf{X} \right\rangle = 0,$$

dove $\delta \mathbf{X} \in \mathsf{T}_P \mathcal{M}(t)$ viene detto spostamento virtuale, di modo che $\delta \mathbf{x}_i$ sia la terna in $\delta \mathbf{X}$ corrispondente al punto P_i . Come nel caso del singolo punto materiale, perciò, questa condizione equivale a richiedere che $\mathbf{F}^{(v)}$ viva nello spazio normale in ogni istante di tempo e generalizza il concetto di vincolo liscio al caso di moto di un sistema su sottovarietà. Come si vede, il principio ha il grande pregio di non dipendere dalle forze vincolari, ma solo dalla geometria del vincolo e dalle forze attive.

1.3. Equazioni di Lagrange. Cerchiamo ora di riscrivere le equazioni del moto e le quantità derivate nel caso del punto materiale in questo contesto più generale in cui il sistema, che immaginiamo composto da n punti materiali $\{(P_k, m_k)\}_{k=1}^N$, si muove su una sottovarietà di dimensione $n \leq 3N$, nell'assunzione di aver a che fare con vincoli olonomi. Anzitutto riscriviamo opportunamente l'energia cinetica: ricordando che localmente $\mathbf{X} = \boldsymbol{\chi}(\mathbf{q},t)$, essa può essere riscritta come

$$T = \frac{1}{2} \sum_k m_k \langle \dot{\mathbf{x}}_k, \dot{\mathbf{x}}_k \rangle = \frac{1}{2} \sum_{ab} \dot{q}_a \dot{q}_b A_{ab}(\mathbf{q}, t) + \sum_a \dot{q}_a B_a(\mathbf{q}, t) + C(\mathbf{q}, t).$$

dove abbiamo denotato con

$$A_{ab}(\mathbf{q},t) \coloneqq \sum_{k} m_{k} \left\langle \frac{\partial \mathbf{x}_{k}}{\partial q_{a}}, \frac{\partial \mathbf{x}_{k}}{\partial q_{b}} \right\rangle, \quad B_{a}(\mathbf{q},t) \coloneqq \sum_{k} m_{k} \left\langle \frac{\partial \mathbf{x}_{k}}{\partial t}, \frac{\partial \mathbf{x}_{k}}{\partial q_{a}} \right\rangle \quad C(\mathbf{q},t) \coloneqq \frac{1}{2} \sum_{k} m_{k} \left\langle \frac{\partial \mathbf{x}_{k}}{\partial t}, \frac{\partial \mathbf{x}_{k}}{\partial t} \right\rangle.$$

Qui occorre osservare che $\mathbf{x}_k = \mathbf{\chi}_k(\mathbf{q},t)$, dove $\mathbf{\chi}_k$ è il vettore tridimensionale che individua le coordinate del punto P_k . L'espressione si riscrive più semplicemente come

$$T(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \langle \dot{\mathbf{q}}, \mathbf{A} \dot{\mathbf{q}} \rangle + \langle \mathbf{B}, \dot{\mathbf{q}} \rangle + C.$$

Nel caso di *vincoli fissi*, localmente $\mathbf{X} \equiv \boldsymbol{\chi}(\mathbf{q})$ per opportune variabili lagrangiane, e quindi i termini in \mathbf{B} e C sono nulli. La matrice \mathbf{A} , a volte detta *matrice di massa*, ha l'importante proprietà stabilita dal seguente teorema.

TEOREMA 1.2. La forma in v

$$\hat{T}(\mathbf{q},\mathbf{v})=rac{1}{2}\langle\mathbf{v},\mathbf{A}(\mathbf{q})\mathbf{v}
angle$$

è quadratica simmetrica definita positiva, ovvero A è simmetrica definita positiva.

DIMOSTRAZIONE. Basta semplicemente esplicitare la forma in termini di velocità virtuali: $\langle \mathbf{v}, \mathbf{A}\mathbf{v} \rangle = \sum_{k=1}^n m_k \langle \frac{\partial \mathbf{x}_k}{\partial \mathbf{q}} \mathbf{v}, \frac{\partial \mathbf{x}_k}{\partial \mathbf{q}} \mathbf{v} \rangle > 0$, dove abbiamo indicato con $\frac{\partial \mathbf{x}_k}{\partial \mathbf{q}} \mathbf{v} \coloneqq \sum_a v_a \partial_a \mathbf{x}_k$. Si noti che la disuguaglianza è stretta: la quantità può essere zero solo se tutti i vettori $\frac{\partial \mathbf{x}_k}{\partial \mathbf{q}} \mathbf{v}$ sono nulli, ma in questo caso lo sarebbe anche $\sum_a v_a \partial_a \mathbf{X} = \sum_a v_a \partial_a \mathbf{\chi}$, cosa impossibile (per via della lineare indipendenza) a meno che $\mathbf{v} = \mathbf{0}$. La simmetria infine si nota osservando direttamente che $A_{ab}(\mathbf{q},t) \coloneqq \sum_k m_k \left\langle \frac{\partial \mathbf{x}_k}{\partial q_a}, \frac{\partial \mathbf{x}_k}{\partial q_b} \right\rangle = A_{ba}$.

Dall'energia cinetica è possibile definire anche un vettore ${\bf p}$ di variabili coniugate a ${\bf q}$, che raccoglie i cosiddetti momenti cinetici o coniugati

$$p_a := \frac{\partial T}{\partial \dot{q}_a} = \sum_b A_{ab} \dot{q}_b + B_a.$$

Essi hanno la caratteristica di essere le *componenti lagrangiane* del vettore \mathbf{Q} , ovvero la proiezione di \mathbf{Q} sullo spazio tangente,

$$\langle \mathbf{Q},\!\partial_a \mathbf{X} \rangle \! = \! \sum_k \! m_k \langle \dot{\mathbf{x}}_k,\!\partial_a \mathbf{x}_k \rangle \! = \! \sum_k \! m_k \sum_b \! \dot{q}_b \langle \partial_b \mathbf{x}_k,\!\partial_a \mathbf{x}_k \rangle + \! \sum_k \! m_k \langle \partial_t \mathbf{x}_k,\!\partial_a \mathbf{x}_k \rangle \! = \! \sum_b \! A_{ab} \dot{q}_b + B_a \! \equiv \! p_a.$$

Derivando ulteriormente p_a rispetto al tempo si ha

$$\dot{p}_a = \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{\partial T}{\partial \dot{q}_a} \right) = \left\langle \dot{\mathbf{Q}}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle + \left\langle \mathbf{Q}, \frac{\partial \dot{\mathbf{X}}}{\partial q_a} \right\rangle = \left\langle \mathbf{F}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle + \left\langle \mathbf{Q}, \frac{\partial \dot{\mathbf{X}}}{\partial q_a} \right\rangle.$$

L'ultimo termine a destra si può scrivere come

$$\left\langle \mathbf{Q},\frac{\partial \dot{\mathbf{X}}}{\partial q_{a}}\right\rangle =\sum_{k}m_{k}\left\langle \dot{\mathbf{x}}_{k},\frac{\partial \dot{\mathbf{x}}_{k}}{\partial q_{a}}\right\rangle =\frac{\partial T}{\partial q_{a}}.$$

In definitiva abbiamo ottenuto l'equazione

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\frac{\partial T}{\partial \dot{q}_a}\right) - \frac{\partial T}{\partial q_a} = f_a, \qquad f_a \coloneqq \left\langle \mathbf{F}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle = \left\langle \mathbf{F}, \frac{\partial \mathbf{\chi}}{\partial q_a} \right\rangle.$$

Di nuovo, f_a sono le componenti lagrangiane della forza totale (a volte indicate con Q_a , ma eviteremo questa notazione dato che potrebbe indurre in confusione). Quelle ottenute per $a = 1, \ldots, n$ sono le equazioni di Lagrange.

1.3.1. Normalità delle equazioni di Lagrange. Sia ora $\mathbf{f}=(f_a)_a$ il vettore di componenti $f_a\coloneqq\langle\mathbf{F},\partial_a\mathbf{X}\rangle$. Assumiamo che questo vettore dipenda da \mathbf{q} e t e, al più (tramite \mathbf{F}) $\dot{\mathbf{q}}$. Le equazioni di Lagrange possono quindi riscriversi

$$\mathbf{A}\ddot{\mathbf{q}} + \dot{\mathbf{A}}\dot{\mathbf{q}} + \mathbf{B} - \left(\frac{1}{2}\left\langle \dot{\mathbf{q}}, \frac{\partial \mathbf{A}}{\partial \mathbf{q}} \, \dot{\mathbf{q}} \right\rangle + \left\langle \frac{\partial \mathbf{B}}{\partial \mathbf{q}}, \dot{\mathbf{q}} \right\rangle + \frac{\partial C}{\partial \mathbf{q}} \right) = \mathbf{f}.$$

Nell'espressione precedente, abbiamo usato le notazioni compatte

$$\left\langle \dot{\mathbf{q}}, \frac{\partial \mathbf{A}}{\partial \mathbf{q}} \, \dot{\mathbf{q}} \right\rangle = \sum_{uv} \dot{q}_u \dot{q}_v \frac{\partial A_{uv}}{\partial \mathbf{q}}, \qquad \left\langle \frac{\partial \mathbf{B}}{\partial \mathbf{q}}, \dot{\mathbf{q}} \right\rangle = \sum_u \frac{\partial B_u}{\partial \mathbf{q}} \dot{q}_u.$$

Inoltre, indichiamo con $\frac{\partial f(\mathbf{q})}{\partial \mathbf{q}}$ il gradiente rispetto a \mathbf{q} della funzione scalare f. Osservando ora che \mathbf{A} è una matrice definita positiva, possiamo invertirla e scrivere le equazioni di Lagrange in forma normale

$$\ddot{\mathbf{q}} = \mathbf{A}^{-1} \left(\mathbf{f} - \dot{\mathbf{A}} \dot{\mathbf{q}} - \mathbf{B} + \frac{1}{2} \left\langle \dot{\mathbf{q}}, \frac{\partial \mathbf{A}}{\partial \mathbf{q}} \, \dot{\mathbf{q}} \right\rangle + \left\langle \frac{\partial \mathbf{B}}{\partial \mathbf{q}}, \dot{\mathbf{q}} \right\rangle + \frac{\partial C}{\partial \mathbf{q}} \right).$$

Si tratta quindi di un insieme di equazioni del secondo ordine in forma normale, la cui integrazione locale richiede, secondo il teorema di Cauchy, un insieme di condizioni iniziali $\mathbf{q}(0) = \mathbf{q}_0$ e $\dot{\mathbf{q}}(0) = \mathbf{v}_0$, purché il termine a destra sia sufficientemente regolare.

1.3.2. Forze conservative e vincoli lisci. Più interessante è il caso in cui le forze attive siano conservative, ovvero che esista un potenziale V tale che

$$\mathbf{F}^{(\mathrm{a})} = -\nabla V$$

In questo caso, si ha che il contributo dovuto alla forza attiva $\mathbf{F}^{(a)}$ nel termine destro dell'equazione di Lagrange è

$$\left\langle \mathbf{F}^{(\mathrm{a})}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle = -\left\langle \nabla V, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle = -\frac{\partial V}{\partial q_a}$$

dove, nell'ultimo passaggio, V è da intendersi ristretta alla varietà, ovvero $V=V(\pmb{\chi}(\mathbf{q},t))$. Le equazioni di Lagrange diventano così

(2.2)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_a} \right) - \frac{\partial \mathcal{L}}{\partial q_a} = \left\langle \mathbf{F}^{(\mathrm{v})}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle,$$

dove abbiamo introdotto la funzione lagrangiana

$$\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) \coloneqq T - V.$$

Una lagrangiana nella forma sopra può più in generale ottenersi se esiste una funzione \hat{V} tale che

$$\left\langle \mathbf{F}^{(\mathrm{a})}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle = -\frac{\partial \hat{V}}{\partial q_a} + \frac{\mathrm{d}}{\mathrm{d}\,t} \frac{\partial \hat{V}}{\partial \dot{q}_a},$$

quindi non esclusivamente con forze conservative: anche in questo caso si ottengono le stesse equazioni di Lagrange nella forma in Eq. (2.2). Una funzione \hat{V} che soddisfi le equazioni la condizione precedente è detta potenziale generalizzato.

Se i vincoli sono lisci, $\langle \mathbf{F}^{(v)}, \partial_a \mathbf{X} \rangle = 0$ per via del principio di d'Alembert, e l'equazione di Lagrange assume la forma molto compatta, e assolutamente fondamentale

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{a}}\right) - \frac{\partial\mathcal{L}}{\partial q_{a}} = 0.$$

Una lagrangiana *non* è univocamente definita, nel senso che a ciascuna lagrangiana corrispondono infinite altre lagrangiane associate alle stesse equazioni del moto. Supponiamo infatti di considerare

$$\hat{\mathcal{L}}(\mathbf{q}, \dot{\mathbf{q}}, t) = \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) + \frac{\mathrm{d} f(\mathbf{q}, t)}{\mathrm{d} t}$$

per una generica funzione $f(\mathbf{q},t)$ differenziabile di classe almeno \mathcal{C}^2 rispetto a tutti i suoi argomenti. Allora, osservando che

$$\frac{\mathrm{d} f(\mathbf{q}, t)}{\mathrm{d} t} = \sum_{a} \frac{\partial f(\mathbf{q}, t)}{\partial q_{a}} \dot{q}_{a} + \frac{\partial f(\mathbf{q}, t)}{\partial t},$$

possiamo verificare che

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \hat{\mathcal{L}}}{\partial \dot{q}_{a}} \right) - \frac{\partial \hat{\mathcal{L}}}{\partial q_{a}} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} \right) - \frac{\partial \mathcal{L}}{\partial q_{a}} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial q_{a}} \right) - \sum_{b} \frac{\partial^{2} f}{\partial q_{a} \partial q_{b}} \dot{q}_{b} - \frac{\partial^{2} f}{\partial q_{a} \partial t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} \right) - \frac{\partial \mathcal{L}}{\partial q_{a}}.$$

Esempio 2.3 (Potenziali generalizzati) — Un caso particolare ma importante di potenziale generalizzato è quello utile per lo studio del moto di punti materiali carichi in campo elettromagnetico. Si assume che esistano due campi ${\bf E}$ e ${\bf B}$ definiti in tutto lo spazio, di modo che la forza applicata ad un punto materiale P di carica e sia espressa dalla forza di Lorentz

$$\mathbf{F} = e \left(\mathbf{E} + \frac{\mathbf{v}}{c} \wedge \mathbf{B} \right)$$

dove c è la velocità della luce e ${\bf v}$ la velocità del punto. I campi ${\bf E}$ ed ${\bf B}$ devono soddisfare le equazioni di Maxwell, che in presenza di una densità di carica ϱ e di una densità di corrente ${\bf j}$ nello spazio assumono la forma

$$\nabla \cdot \mathbf{B} = 0, \qquad \nabla \wedge \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}, \quad \nabla \cdot \mathbf{E} = 4\pi \varrho, \quad \nabla \wedge \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{j}.$$

Immaginiamo che la particella sia soggetta *esclusivamente* all'azione di E ed B: in questo caso, quindi, non sarà necessario introdurre coordinate lagrangiane: potremo utilizzare $(\mathbf{q}, \dot{\mathbf{q}}) \equiv (\mathbf{x}, \mathbf{v})$ essendo $\mathcal{M} \equiv \mathbb{R}^3$.

La prima equazione di Maxwell permette di scrivere $\mathbf{B} = \nabla \wedge \mathbf{A}$, per un certo campo \mathbf{A} detto potenziale vettore. La seconda equazione può quindi essere scritta come

$$\nabla \wedge \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = \mathbf{0} \Rightarrow \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi,$$

per una certa funzione scalare φ . La forza di Lorentz si può quindi riscrivere

$$\mathbf{F} = e \left(-\nabla \varphi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{1}{c} \mathbf{v} \wedge (\nabla \wedge \mathbf{A}) \right).$$

Ora utilizziamo l'identità formale $\boldsymbol{a} \wedge (\nabla \wedge \boldsymbol{b}) = \nabla \langle \boldsymbol{a}, \boldsymbol{b} \rangle - \langle \boldsymbol{a}, \nabla \rangle \boldsymbol{b}$ per riscrivere

$$\mathbf{v} \wedge (\nabla \wedge \mathbf{A}) = \nabla \langle \mathbf{v}, \mathbf{A} \rangle - \langle \mathbf{v}, \nabla \rangle \mathbf{A} = \nabla \langle \mathbf{v}, \mathbf{A} \rangle - \frac{\mathrm{d}}{\mathrm{d} t} + \frac{\partial \mathbf{A}}{\partial t}.$$

Sostituendo nell'espressione di F abbiamo

$$\mathbf{F} = e\left(-\nabla\varphi + \frac{1}{c}\nabla\langle\mathbf{v},\mathbf{A}\rangle - \frac{1}{c}\frac{\mathrm{d}\,\mathbf{A}}{\mathrm{d}\,t}\right) = -\nabla\hat{V} + \frac{\mathrm{d}}{\mathrm{d}\,t}\frac{\partial\hat{V}}{\partial\mathbf{v}}, \qquad \hat{V} \coloneqq \varphi - \frac{1}{c}\langle\mathbf{v},\mathbf{A}\rangle.$$

Detta m la massa del punto materiale, la lagrangiana è quindi

$$\mathcal{L} = \frac{1}{2}m\|\mathbf{v}\|^2 - e\left(\varphi - \frac{1}{c}\langle\mathbf{v}, \mathbf{A}\rangle\right).$$

Esempio 2.4 (Forze dissipative) — Si osserva sperimentalmente che, nel caso di vincoli scabri, una possibilità è che la reazione vincolare $\mathbf{F}^{(v)}$ abbia una componente diretta lungo il moto nella forma $\mathbf{F}_{k,t}^{(v)} = -\mu_k \dot{\mathbf{x}}_k$ per un qualche coefficiente di attrito dinamico $\mu_k > 0$. Abbiamo già studiato forze di questo tipo discutendo il caso unidimensionale. Una forza siffatta non soddisfa il principio di d'Alembert e produce nel contributo nell'equazione di Lagrange

$$\left\langle \mathbf{F}_{t}^{(\mathrm{v})},\frac{\partial \mathbf{X}}{\partial q_{a}}\right\rangle = -\sum_{k}\sum_{k}\mu_{k}\dot{q}_{b}\left\langle \frac{\partial \mathbf{x}_{j}}{\partial q_{a}},\frac{\partial \mathbf{x}_{k}}{\partial q_{b}}\right\rangle$$

che può essere pensata come il risultato di un "potenziale" delle variabili cinetiche, detto funzione di dissipazione di Rayleigh,

$$\mathcal{R}(\dot{\mathbf{q}}) \coloneqq \frac{1}{2} \sum_{k} \sum_{ab} \mu_{k} \dot{q}_{a} \dot{q}_{b} \left\langle \frac{\partial \mathbf{x}_{j}}{\partial q_{a}}, \frac{\partial \mathbf{x}_{k}}{\partial q_{b}} \right\rangle \Rightarrow \left\langle \mathbf{F}_{t}^{(\mathrm{v})}, \frac{\partial \mathbf{\chi}}{\partial q_{a}} \right\rangle = -\frac{\partial \mathcal{R}(\dot{\mathbf{q}})}{\partial \dot{q}_{a}}.$$

Se le reazioni vincolari dissipative sono solo in questa forma, allora le equazioni di Lagrange sono

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{a}}\right) - \frac{\partial\mathcal{L}}{\partial q_{a}} + \frac{\partial\mathcal{R}(\dot{\mathbf{q}})}{\partial\dot{q}_{a}} = 0.$$

Un esempio di applicazione di questo formalismo è il caso di un punto materiale su una guida soggetto a una forza armonica e ad uno smorzamento, che abbiamo già studiato. Se q è l'ascissa curvilinea del punto materiale di massa m lungo una guida, e se il punto è soggetto ad una forza elastica di modo che vi sia applicato un potenziale $V(q) = \frac{1}{2}kq^2$, la lagrangiana sarà

$$\mathcal{L}(q, \dot{q}) = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2.$$

Questa lagrangiana produce, come atteso, le equazioni del moto dell'oscillatore armonico. La presenza di un termine di smorzamento si può includere considerando la funzione di Rayleigh

$$\mathcal{R}(\dot{q}) = \frac{1}{2}\sigma\dot{q}^2,$$

con $\sigma > 0$, di modo che le equazioni di Eulero–Lagrange siano quelle che abbiamo già visto per il moto armonico smorzato in Eq. (1.8) (in assenza di forzante), ovvero

$$(2.4) m\ddot{q} + \sigma\dot{q} + kq = 0.$$

1.4. Intermezzo: problemi variazionali. Una classe di problemi di grande rilevanza per lo studio della meccanica è quella dei cosiddetti *problemi variazionali*.

Supponiamo di avere una curva regolare $\gamma \colon [t_0,t_1] \to \mathcal{M}$ su una sottovarietà regolare $\mathcal{M} \subseteq \mathbb{R}^N$ n-dimensionale, con $N \geq n$, e assumiamo che tale curva giaccia in una porzione $\mathcal{U} \subset \mathcal{M}$ tale per cui ogni $\mathbf{X} = \boldsymbol{\chi}(\mathbf{q}) \in \mathcal{U}$ è parametrizzabile con la stessa applicazione $\boldsymbol{\chi} \colon \mathcal{V} \subset \mathbb{R}^n \to \mathcal{U}$: questa assunzione può essere rilassata ma non influisce sul risultato. Possiamo quindi scrivere $\boldsymbol{\gamma}(t) = \boldsymbol{\chi}(\mathbf{q}(t))$ per una certa parametrizzazione $\mathbf{q} \colon [t_0, t_1] \to \mathcal{V}$. Definiamo "intorno" di questa curva come segue.

DEFINIZIONE 1.3. Sia data una curva regolare $\boldsymbol{\gamma} = \boldsymbol{\chi} \circ \mathbf{q} \colon [t_0, t_1] \to \mathcal{U} \subseteq \mathcal{M}$ su una sottovarietà regolare *n*-dimensionale, parametrizzata in \mathcal{U} dalla mappa $\boldsymbol{\chi} \colon \mathcal{V} \to \mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^n$. Chiamiamo

(2.5)
$$\mathcal{Q}_{\epsilon}(\boldsymbol{\gamma}) \coloneqq \{ \tilde{\boldsymbol{\gamma}} = \boldsymbol{\chi} \circ \tilde{\mathbf{q}} \mid \tilde{\mathbf{q}} : (-\epsilon, \epsilon) \times [t_1, t_2] \to \mathcal{V} \text{ almeno } \mathcal{C}^2 \text{ rispetto ai suoi argomenti,}$$

$$\tilde{\mathbf{q}}(u, t_i) = \mathbf{q}(t_i) \ i = 1, 2, \ \forall u \in (-\epsilon, \epsilon), \quad \tilde{\mathbf{q}}(0, t) = \mathbf{q}(t) \ \forall t \in [t_1, t_2] \}.$$

Si tratta quindi di un insieme di curve aventi gli stessi estremi di γ e ottenute alterando con continuità \mathbf{q} . Consideriamo ora un funzionale $\mathcal{S} \colon \mathcal{Q}_{\epsilon}(\gamma) \to \mathbb{R}$ su una generica curva in $\mathcal{Q}_{\epsilon}(\gamma)$ nella forma

$$\mathcal{S}(ilde{oldsymbol{\gamma}}) = \int\limits_{t_0}^{t_1} \mathcal{L}(ilde{oldsymbol{q}}, \dot{ ilde{oldsymbol{q}}}, t) \, \mathrm{d}\, t$$

dove \mathcal{L} si assume differenziabile con continuità nei suoi argomenti.

DEFINIZIONE 1.4. Il funzionale $\mathcal{S}(\tilde{\boldsymbol{\gamma}})$ si dice essere stazionario su $\boldsymbol{\gamma}$ se

$$\frac{\mathrm{d}\,\mathcal{S}(\tilde{\boldsymbol{\gamma}})}{\mathrm{d}\,u}\Big|_{u=0} = 0, \qquad \forall \tilde{\boldsymbol{\gamma}} \in \mathcal{Q}_{\epsilon}(\boldsymbol{\gamma}).$$

TEOREMA 1.3. Il funzionale

$$\mathcal{S}(\tilde{oldsymbol{\gamma}}) = \int\limits_{t_0}^{t_1} \mathcal{L}(ilde{oldsymbol{q}}, \dot{ ilde{oldsymbol{q}}}, t) \, \mathrm{d}\, t$$

valutato su $\tilde{\boldsymbol{\gamma}} = \boldsymbol{\chi} \circ \tilde{\mathbf{q}} \in \mathcal{Q}_{\epsilon}(\boldsymbol{\gamma})$ è stazionario su $\boldsymbol{\gamma} = \boldsymbol{\chi} \circ \mathbf{q}$ se \mathbf{q} soddisfa le equazioni di Eulero

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\frac{\partial\mathcal{L}}{\partial\dot{q}_a} = \frac{\partial\mathcal{L}}{\partial q_a}, \qquad a = 1, \dots, m.$$

DIMOSTRAZIONE. Siano quindi $\tilde{\mathbf{q}}(t)$ le coordinate lagrangiane della generica curva $\tilde{\boldsymbol{\gamma}} \in \mathcal{Q}_{\epsilon}(\boldsymbol{\gamma})$, di modo che, come da costruzione, $\mathbf{q}(t) \equiv \tilde{\mathbf{q}}(0,t)$ siano le coordinate lagrangiane di $\boldsymbol{\gamma}(t)$. Possiamo scrivere

(2.6)
$$\left. \frac{\mathrm{d}\,\mathcal{S}(\tilde{\boldsymbol{\gamma}})}{\mathrm{d}\,u} \right|_{u=0} = \sum_{a=1}^{n} \int_{t_0}^{t_1} \left(\frac{\partial \mathcal{L}}{\partial \tilde{q}_a} \frac{\mathrm{d}\,\tilde{q}_a}{\mathrm{d}\,u} + \frac{\partial \mathcal{L}}{\partial \dot{\tilde{q}}_a} \frac{\mathrm{d}\,\dot{\tilde{q}}_a}{\mathrm{d}\,u} \right) \mathrm{d}\,t \right|_{u=0}.$$

Integrando per parti il secondo termine, e usando il fatto che $\partial_u \tilde{\mathbf{q}}(u, t_0) = \partial_u \tilde{\mathbf{q}}(u, t_1) = \mathbf{0}$,

(2.7)
$$\frac{\mathrm{d}\,\mathcal{S}(\tilde{\boldsymbol{\gamma}})}{\mathrm{d}\,u}\bigg|_{u=0} = \sum_{a=1}^{n} \int_{t_0}^{t_1} \frac{\mathrm{d}\,\tilde{q}_a}{\mathrm{d}\,u}\bigg|_{u=0} \left(\frac{\partial\mathcal{L}}{\partial q_a} - \frac{\mathrm{d}}{\mathrm{d}\,t}\frac{\partial\mathcal{L}}{\partial \dot{q}_a}\right) \mathrm{d}\,t.$$

Questa formula mostra come le equazioni di Eulero siano sufficienti per la stazionarietà. Dato però che vogliamo che la quantità sopra sia nulla per $ogni \, \tilde{\boldsymbol{\gamma}} \in \mathcal{Q}_{\epsilon}(\boldsymbol{\gamma})$, e quindi ogni $\tilde{\boldsymbol{q}}$, le equazioni sono anche necessarie.

1.4.1. Geodetiche. Un caso relativamente semplice da studiare riguarda la ricerca di una curva di distanza estremale tra due punti. In questo caso abbiamo già visto come la lunghezza di una generica curva $\gamma = \chi \circ \mathfrak{q} : [t_0, t_1] \to \mathcal{M}$ si scriva

$$\mathcal{S}(\boldsymbol{\gamma}) = \int\limits_{t_0}^{t_1} \sqrt{\langle \dot{\boldsymbol{\gamma}}(t), \dot{\boldsymbol{\gamma}}(t) \rangle} \, \mathrm{d}\, t = \int\limits_{t_0}^{t_1} \sqrt{\langle \dot{\mathbf{q}}(t), \dot{\mathbf{q}}(t) \rangle} \, \mathrm{d}\, t \qquad \text{dove} \quad (\dot{\mathbf{q}}(t), \dot{\mathbf{q}}(t)) \coloneqq \sum_{ab} g_{ab}(\mathbf{q}) \dot{q}_a \dot{q}_b.$$

In questo caso quindi

(2.8)
$$\mathcal{L} \equiv \mathcal{L}(\dot{\mathbf{q}}) = \sqrt{(\dot{\mathbf{q}}(t), \dot{\mathbf{q}}(t))} \equiv \dot{s},$$

dove abbiamo indicato con \dot{s} l'ascissa curvilinea. Applichiamo le equazioni di Eulero per cercare la curva che rende stazionario il funzionale \mathcal{S}

(2.9)
$$\frac{\partial \mathcal{L}}{\partial q_a} = -\frac{1}{2\mathcal{L}(\dot{\mathbf{q}})} \sum_{bc} \frac{\partial g_{bc}}{\partial q_a} \dot{q}_b \dot{q}_c,$$

$$(2.10) \quad \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{\partial \mathcal{L}}{\partial q_{a}} \right) = -\frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{1}{\mathcal{L}(\dot{\mathbf{q}})} \sum_{b} g_{ab} \dot{q}_{b} \right)$$

$$= \frac{1}{\mathcal{L}(\dot{\mathbf{q}})} \frac{\mathrm{d} \ln \mathcal{L}(\dot{\mathbf{q}})}{\mathrm{d}\,t} \sum_{b} g_{ab} \dot{q}_{b} - \frac{1}{\mathcal{L}(\dot{\mathbf{q}})} \sum_{bc} \frac{\partial g_{ab}}{\partial q_{c}} \dot{q}_{b} \dot{q}_{c} - \frac{1}{\mathcal{L}(\dot{\mathbf{q}})} \sum_{b} g_{ab} \ddot{q}_{b}$$

$$= \frac{1}{\mathcal{L}(\dot{\mathbf{q}})} \frac{\mathrm{d} \ln \mathcal{L}(\dot{\mathbf{q}})}{\mathrm{d}t} \sum_{b} g_{ab} \dot{q}_{b} - \frac{1}{2\mathcal{L}(\dot{\mathbf{q}})} \sum_{bc} \frac{\partial g_{ab}}{\partial q_{c}} \dot{q}_{b} \dot{q}_{c} - \frac{1}{2\mathcal{L}(\dot{\mathbf{q}})} \sum_{bc} \frac{\partial g_{ac}}{\partial q_{b}} \dot{q}_{b} \dot{q}_{c} - \frac{1}{\mathcal{L}(\dot{\mathbf{q}})} \sum_{b} g_{ab} \ddot{q}_{b}$$

per cui, raccogliendo tutti i termini,

$$\sum_{b} g_{ab} \ddot{q}_{b} + \frac{1}{2} \sum_{bc} \left(\frac{\partial g_{ab}}{\partial q_{c}} \dot{q}_{b} \dot{q}_{c} + \frac{\partial g_{ac}}{\partial q_{b}} \dot{q}_{b} \dot{q}_{c} - \frac{\partial g_{bc}}{\partial q_{a}} \dot{q}_{b} \dot{q}_{c} \right) = \frac{\mathrm{d} \ln \mathcal{L}(\dot{\mathbf{q}})}{\mathrm{d} t} \sum_{b} g_{ab} \dot{q}_{b}$$

Moltiplichiamo ora per la matrice inversa della matrice metrica \mathbf{g} , i cui elementi indichiamo con g^{ab} . Otteniamo

$$\ddot{q}_u + \frac{1}{2} \sum_{abc} g^{ua} \left(\frac{\partial g_{ab}}{\partial q_c} + \frac{\partial g_{ac}}{\partial q_b} - \frac{\partial g_{bc}}{\partial q_a} \right) \dot{q}_b \dot{q}_c = \frac{\mathrm{d} \ln \mathcal{L}(\dot{\mathbf{q}})}{\mathrm{d} t} \dot{q}_u.$$

Si tratta di una equazione piuttosto complessa, in particolare per via del termine a destra che abbiamo lasciato implicito. Ricordiamo ora che se introduciamo l'ascissa curvilinea s lungo la curva, $\dot{s} \equiv \mathcal{L}(\dot{\mathbf{q}})$ e osserviamo che, se invece di utilizzare t come variabile tempo utilizziamo l'ascissa curvilinea,

$$\dot{q}_a = \dot{s} \frac{\mathrm{d} \, q_a}{\mathrm{d} \, s}, \quad \ddot{q}_a = \ddot{s} \frac{\mathrm{d} \, q_a}{\mathrm{d} \, s} + \dot{s}^2 \frac{\mathrm{d}^2 \, q_a}{\mathrm{d}^2 \, s}, \quad \frac{\mathrm{d} \ln \mathcal{L}(\dot{\mathbf{q}})}{\mathrm{d} \, t} = \ddot{s},$$

per cui il termine a destra scompare

$$\frac{\mathrm{d}^2 q_u}{\mathrm{d} s^2} + \frac{1}{2} \sum_{abc} g^{ua} \left(\frac{\partial g_{ab}}{\partial q_c} + \frac{\partial g_{ac}}{\partial q_b} - \frac{\partial g_{bc}}{\partial q_a} \right) \frac{\mathrm{d} q_b}{\mathrm{d} s} \frac{\mathrm{d} q_c}{\mathrm{d} s} = 0.$$

Quella ottenuta è l'equazione di una geodetica su \mathcal{M} .

Esercizio 2.1 — Mostrare che una curva regolare non degenere su \mathcal{M} che soddisfa l'equazione per le geodetiche ha versore normale principale ortogonale ad \mathcal{M} .

Soluzione. — Nel caso in cui \mathcal{M} sia una superficie regolare nello spazio tridimensionale, abbiamo definito una geodetica come una curva regolare non degenere su \mathcal{M} avente versore normale principale ortogonale ad \mathcal{M} stesso: l'esercizio è finalizzato quindi a verificare la consistenza di questa definizione con quella data

in termini di curve su sottovarietà regolari. Partiamo dall'equazione per la geodetica, moltiplichiamo per g_{vu} e sommiamo su u,

$$\sum_{u} g_{vu} \frac{\mathrm{d}^{2} q_{u}}{\mathrm{d} s^{2}} + \frac{1}{2} \sum_{bc} \left(\frac{\partial g_{vb}}{\partial q_{c}} + \frac{\partial g_{vc}}{\partial q_{b}} - \frac{\partial g_{bc}}{\partial q_{v}} \right) \frac{\mathrm{d} q_{b}}{\mathrm{d} s} \frac{\mathrm{d} q_{c}}{\mathrm{d} s} = 0$$

dove abbiamo usato $\sum_{u} g_{vu} g^{ua} = \delta_{va}$. Ora eseguiamo qualche manipolazione nel termine tra parentesi, ricordando che $g_{ab} = \langle \frac{\partial \mathbf{x}}{\partial q_a}, \frac{\partial \mathbf{x}}{\partial q_b} \rangle$:

$$(2.11) \quad \frac{1}{2} \left(\frac{\partial g_{vb}}{\partial q_c} + \frac{\partial g_{vc}}{\partial q_b} - \frac{\partial g_{bc}}{\partial q_v} \right) =$$

$$= \frac{1}{2} \left(\frac{\partial}{\partial q_c} \left\langle \frac{\partial \mathbf{\chi}}{\partial q_v}, \frac{\partial \mathbf{\chi}}{\partial q_b} \right\rangle + \frac{\partial}{\partial q_b} \left\langle \frac{\partial \mathbf{\chi}}{\partial q_v}, \frac{\partial \mathbf{\chi}}{\partial q_c} \right\rangle - \frac{\partial}{\partial q_v} \left\langle \frac{\partial \mathbf{\chi}}{\partial q_b}, \frac{\partial \mathbf{\chi}}{\partial q_b} \right\rangle \right) = \left\langle \frac{\partial \mathbf{\chi}}{\partial q_v}, \frac{\partial^2 \mathbf{\chi}}{\partial q_b \partial q_c} \right\rangle.$$

L'equazione quindi si può riscrivere come

$$\left\langle \frac{\partial \boldsymbol{\chi}}{\partial q_a}, \sum_b \frac{\partial \boldsymbol{\chi}}{\partial q_b} \frac{\mathrm{d}^2 q_b}{\mathrm{d} s^2} + \sum_{bc} \frac{\mathrm{d} q_b}{\mathrm{d} s} \frac{\mathrm{d} q_c}{\mathrm{d} s} \frac{\partial^2 \boldsymbol{\chi}}{\partial q_b \partial q_c} \right\rangle = 0.$$

Sia ora $\boldsymbol{\gamma}(s) = (\boldsymbol{\chi} \circ \mathbf{q})(s)$ una curva su \mathcal{M} che soddisfa l'equazione per le geodetiche. Allora $\boldsymbol{\gamma}'(s) = \sum_a \frac{\mathrm{d}\,q_a}{\mathrm{d}\,s}\,\partial_a\boldsymbol{\chi}$, mentre

$$\boldsymbol{\gamma}''(s) = \sum_b \frac{\partial \boldsymbol{\chi}}{\partial q_b} \frac{\mathrm{d}^2 q_b}{\mathrm{d} s^2} + \sum_{bc} \frac{\mathrm{d} q_b}{\mathrm{d} s} \frac{\mathrm{d} q_c}{\mathrm{d} s} \frac{\partial^2 \boldsymbol{\chi}}{\partial q_b \partial q_c}.$$

L'equazione per le geodetiche esprime quindi esattamente il fatto che il vettore γ'' è ortogonale allo spazio $T_P \mathcal{M}$. Essendo questa direzione unica per superfici bidimensionali in \mathbb{R}^3 , la condizione è in tal caso *caratterizzante* per le geodetiche.

Possiamo così dare una definizione generale di geodetica.

DEFINIZIONE 1.5 (Geodetica). Data una varietà differenziabile m-dimensionale \mathcal{M} , una curva regolare $\boldsymbol{\gamma}$ su di essa è una geodetica se, data una sua parametrizzazione locale $\mathbf{q}(s)$ in un intorno del punto $\boldsymbol{\gamma}(s)$, questa soddisfa

$$\frac{\mathrm{d}^2\,q_c}{\mathrm{d}\,s^2} + \sum_{ab} \Gamma^c_{ab} \frac{\mathrm{d}\,q_a}{\mathrm{d}\,s} \frac{\mathrm{d}\,q_b}{\mathrm{d}\,s} = 0, \qquad \Gamma^c_{ab} \coloneqq \frac{1}{2} \sum_{i=1}^m g^{ci} \left(\frac{\partial g_{bi}}{\partial q_a} + \frac{\partial g_{ai}}{\partial q_b} - \frac{\partial g_{ab}}{\partial q_i} \right),$$

dove g^{ab} è l'elemento (a,b) della matrice inversa della matrice metrica, la quantità Γ^c_{ab} è detta simbolo di Christoffel, ed s è la parametrizzazione naturale, o affine, della curva, ovvero tale che $\left(\frac{\mathrm{d}\,\mathbf{q}}{\mathrm{d}\,\mathbf{s}},\frac{\mathrm{d}\,\mathbf{q}}{\mathrm{d}\,\mathbf{s}}\right)=1$.

1.5. Principî variazionali. La notazione utilizzata ha già probabilmente fatto notare che le equazioni di Lagrange che abbiamo ottenuto riproducono esattamente le equazioni di Eulero per la risoluzione di problemi variazionali su varietà, e sono infatti spesso chiamate equazioni di Eulero-Lagrange. Questo fatto ha condotto Hamilton a formalizzare questa corrispondenza nel seguente teorema.

Teorema 1.4 (Principio di Hamilton). Il moto naturale di un sistema soggetto a vincoli olonomi lisci e forze conservative rende stazionaria l'azione hamiltoniana, definita come

$$\mathcal{S}(oldsymbol{\gamma}) = \int\limits_{t_0}^{t_1} \mathcal{L}(oldsymbol{q},\dot{oldsymbol{q}},t) \,\mathrm{d}\,t$$

sulla classe di tutti i moti sincroni (ovvero, seguenti la stessa scala temporale) che tengano fisse le configurazioni $\gamma(t_0)$ e $\gamma(t_1)$, dove $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$ è ottenuta considerando la differenza tra una

forma quadratica in $\dot{\mathbf{q}}$, detta energia cinetica, e una applicazione differenziabile $V: \mathcal{M} \to \mathbb{R}$ detta energia potenziale.

Questo principio introduce un punto di vista largamente utilizzato in meccanica analitica, ovvero il punto di vista variazionale, in cui il moto fisico di un sistema viene caratterizzato come stazionario in un certo funzionale rispetto a tutti gli altri moti possibili. È importante notare che il funzionale azione è invariante se a \mathcal{L} si aggiunge una derivata totale nel tempo di una funzione che ha uguale valore negli estremi di integrazione,

$$\mathcal{L} \mapsto \mathcal{L} + rac{\mathrm{d}\,f}{\mathrm{d}\,t}, \qquad f(\mathbf{q},t_0) = f(\mathbf{q},t_1).$$

La corrispondenza tra \mathcal{L} e \mathcal{S} non è perciò univoca, ma due lagrangiane che differiscono per una derivata totale descrivono la stessa dinamica. È questo un fatto che avevamo già osservato ma che viene coerentemente riprodotto dall'approccio variazionale.

Esempio 2.5 — Consideriamo un sistema olonomo autonomo, non soggetto a forze eccettuata la reazione vincolare, che vive su una sottovarietà regolare \mathcal{M} . La sua lagrangiana coincide con la sola energia cinetica, che in coordinate locali avrà la forma

$$T=rac{1}{2}\langle\dot{\mathbf{q}},\mathbf{A}(\mathbf{q})\dot{\mathbf{q}}
angle.$$

Osserviamo ora che l'energia cinetica è una forma quadratica definita positiva. Possiamo definire la distanza propria infinitesima del moto su $\mathcal M$

$$ds^2 = \sum_{uv} A_{uv}(\mathbf{q}) dq_u dq_v =: (d\mathbf{q}, d\mathbf{q}).$$

Questo equivale ad identificare $\bf A$ con un "tensore metrico", di modo che la lagrangiana, e quindi l'energia cinetica, assumono la forma semplice

$$\mathcal{L} = T = \frac{1}{2}(\dot{\mathbf{q}}, \dot{\mathbf{q}}) \Rightarrow \mathcal{S} = \frac{1}{2} \int_{t_0}^{t_1} (\dot{\mathbf{q}}, \dot{\mathbf{q}}) \, \mathrm{d} \, t.$$

Il funzionale che abbiamo ottenuto è molto simile a quello in Eq. (2.8): applicando il criterio variazionale di Hamilton, e ripetendo esattamente gli stessi calcoli si ottiene che le variabili ${\bf q}$ devono evolvere secondo l'equazione per le geodetiche in accordo con la metrica ${\bf A}$: in altre parole, ${\bf A}$ rimpiazza ${\bf g}$ nelle equazioni di Eulero-Lagrange, mostrando che il moto avviene non secondo la "metrica naturale" $g_{uv} = \sum_{k=1}^N \langle \partial_u {\bf x}_k, \partial_v {\bf x}_k \rangle$ ma secondo una metrica modificata,

$$A_{uv} = \sum_{k=1}^N m_k \langle \partial_u \mathbf{x}_k, \partial_v \mathbf{x}_k
angle.$$

Il principio variazionale di Hamilton è equivalente al principio di d'Alembert con cui si caratterizzano i vincoli ideali. Supponiamo che il nostro sistema sia soggetto a sole forze conservative indotte da un potenziale V, oltre al vincolo che lo costringe a vivere su \mathcal{M} . Qui ci limitiamo ad osservare che, nell'Eq. (2.7), la condizione di stazionarietà su una deformazione $\mathbf{q} \equiv \mathbf{q}(u,t)$ ha la forma

$$\int_{t_0}^{t_1} \left(\frac{\partial \mathcal{L}}{\partial q_a} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_a} \right) \frac{\mathrm{d}\,\tilde{q}_a}{\mathrm{d}\,u} \Big|_{u=0} \, \mathrm{d}\,t = 0, \qquad \forall a,$$

che deve valere per ogni $\tilde{\mathbf{q}}(u,t)$ deformata rispetto alla traiettoria seguita dal sistema $\mathbf{q}(t) \equiv \tilde{\mathbf{q}}(0,t)$. Assumendo ora che il sistema sia autonomo, sia $\mathcal{L} = \frac{1}{2} \langle \dot{\mathbf{q}}, \mathbf{A} \dot{\mathbf{q}} \rangle - V(\mathbf{q})$, abbiamo visto

che $\frac{\partial \mathcal{L}}{\partial \dot{q}_a} = \frac{\partial T}{\partial \dot{q}_a} = \langle \mathbf{Q}, \partial_a \mathbf{X} \rangle$. Inoltre, $\frac{\partial T}{\partial q_a} = \frac{1}{2} \sum_{bc} \partial_a A_{bc}(\mathbf{q}) \dot{q}_b \dot{q}_c = \sum_k m_k \sum_{bc} \langle \partial_b \mathbf{x}_k, \partial_{ac} \mathbf{x}_k \rangle \dot{q}_b \dot{q}_c = \langle \mathbf{Q}, \frac{\mathrm{d}}{\mathrm{d}t} \partial_a \mathbf{X} \rangle$, e dunque

$$\frac{\partial \mathcal{L}}{\partial q_a} - \frac{\mathrm{d}}{\mathrm{d}\,t} \frac{\partial \mathcal{L}}{\partial \dot{q}_a} = \langle \mathbf{Q}, \frac{\mathrm{d}}{\mathrm{d}\,t} \partial_a \mathbf{X} \rangle - \frac{\partial V(\mathbf{q})}{\partial q_a} - \frac{\mathrm{d}}{\mathrm{d}\,t} \langle \mathbf{Q}, \partial_a \mathbf{X} \rangle = - \langle \partial_a \mathbf{X}, \nabla V + \dot{\mathbf{Q}} \rangle.$$

La condizione di estremalità si riscrive

$$\int\limits_{t_0}^{t_1} \left\langle \nabla V + \dot{\mathbf{Q}}, \frac{\partial \mathbf{X}}{\partial q_a} \right\rangle \frac{\mathrm{d}\, \tilde{q}_a}{\mathrm{d}\, u} \Big|_{u=0} \, \mathrm{d}\, t = 0.$$

Il vettore $\frac{\partial \mathbf{X}}{\partial q_a} \frac{\mathrm{d}\tilde{q}}{\mathrm{d}u}\Big|_{u=0} = \frac{\mathrm{d}\mathbf{X}}{\mathrm{d}u}\Big|_{u=0}$ è un vettore diretto tangenzialmente al vincolo nella direzione della deformazione indotta da $\tilde{\mathbf{q}}$, mentre $\dot{\mathbf{Q}} + \nabla V = \mathbf{F}^{(v)}$ è semplicemnte la reazione vincolare: in definitiva la condizione di stazionarità richiede che per ogni campo vettoriale tangente la reazione vincolare sia ortogonale al vincolo. Data l'arbitrarietà delle deformazioni, questo equivale al principio di d'Alembert-Lagrange:

$$\langle \dot{\mathbf{Q}} + \nabla V, \delta \mathbf{X} \rangle = 0 \quad \forall \delta \mathbf{X} \in \mathsf{T}_P \mathcal{M}.$$

Questo principio è interpretato in termini di criterio per l'equilibrio. Se infatti la forza attiva totale vive nello spazio normale, essa è bilanciata dalla reazione vincolare; viceversa, in un punto di equilibrio la forza totale è nulla, ovvero la forza attiva è bilanciata esattamente dalla reazione vincolare.

TEOREMA 1.5. Un punto P di coordinate $\mathbf{X} \in \mathcal{M}$ è di equilibrio se e solo se la forza attiva totale vive nello spazio normale $(\mathsf{T}_P\mathcal{M})^{\perp}$.

1.6. Teorema di Noether e leggi di conservazione. Abbiamo già incontrato un certo numero di leggi di conservazione, riguardanti per esempio il momento angolare o l'energia meccanica. Un'altra legge di conservazione che emerge dalle equazioni di Lagrange riguarda il momento coniugato

$$p_a \coloneqq \frac{\partial \mathcal{L}}{\partial \dot{q}_a}.$$

Infatti le equazioni di Lagrange implicano immediantamente il risultato seguente.

TEOREMA 1.6. Il momento p_a coniugato alla variabile lagrangiana q_a si conserva se e solo se $\frac{\partial \mathcal{L}}{\partial a_a} = 0$.

Se p_a si conserva, la variabile q_a si chiama ciclica: essa non compare esplicitamente nella lagrangiana.

La presenza di quantità conservate non è "accidentale" e risulta da un teorema fondamentale che introdurremo in questa sezione. Sia come al solito \mathcal{M} il nostro spazio delle configurazioni e $\mathcal{L}(\mathbf{q},\dot{\mathbf{q}},t)$ la lagrangiana del nostro sistema. Diamo la seguente definizione.

DEFINIZIONE 1.6. Si dice che la famiglia ad un parametri $G^s : \mathbb{R} \times \mathcal{M} \times \mathbb{R} \to \mathcal{M} \times \mathbb{R}$, $s \in \mathbb{R}$, è un gruppo ad un parametro di trasformazioni invertibili se, dette $\mathbf{z} = (\mathbf{q}, t)$ le coordinate lagrangiane locali e il tempo, valgono le seguenti proprietà:

- G^0 **z** = **z** per ogni **z**;
- $G^{s_1}(G^{s_2}z) = G^{s_1+s_2}z;$
- $G^s \mathbf{z}$ è analitica in un intorno di s=0, di modo che $G^s \mathbf{z}=\mathbf{z}+(\boldsymbol{\xi},\tau)s+o(s^2)$ dove $\boldsymbol{\xi}\equiv\boldsymbol{\xi}(\mathbf{q},t)$ e $\tau\equiv\tau(\mathbf{q},t)$ sono due funzioni continue con derivate continue nei loro argomenti.

DEFINIZIONE 1.7. Un gruppo ad un parametro di trasformazioni invertibili $G^s \colon \mathcal{M} \times \mathbb{R} \to \mathcal{M} \times \mathbb{R}$ è ammissibile per un sistema lagrangiano se lascia inalterata l'azione, ovvero

$$rac{\mathrm{d}}{\mathrm{d}\,s}\int\limits_{t_{0,s}}^{t_{1,s}}\mathcal{L}(\mathbf{q}_s,\mathbf{q}_s',t_s)\,\mathrm{d}\,t_s=0$$

dove abbiamo indicato con $\mathsf{G}^s \mathbf{z} = \mathsf{G}^s(\mathbf{q},t) = (\mathbf{q}_s,t_s)$ le variabili lagrangiane e tempo trasformate, e $\mathbf{q}_s' = \frac{\mathrm{d}\,\mathbf{q}_s}{\mathrm{d}\,t_s}$.

Possiamo ora enunciare il seguente teorema.

TEOREMA 1.7 (Noether). Se un sistema lagrangiano ammette un gruppo ad un parametro di trasformazioni invertibili G^s : $\mathbb{R} \times \mathcal{M} \times \mathbb{R} \to \mathcal{M} \times \mathbb{R}$, di modo che $G^s(\mathbf{q},t) = (\mathbf{q}_s,t_s)$, allora le equazioni di Lagrange corrispondenti hanno un integrale primo che in coordinate locali assume la forma

$$I(\mathbf{q}, \dot{\mathbf{q}}) = \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \boldsymbol{\xi} - \tau \dot{\mathbf{q}} \right\rangle + \tau \mathcal{L}, \qquad dove \quad \boldsymbol{\xi}(\mathbf{q}, t) \coloneqq \left. \frac{\mathrm{d} \, \mathbf{q}_s}{\mathrm{d} \, s} \right|_{s=0}, \quad \tau(\mathbf{q}, t) \coloneqq \left. \frac{\mathrm{d} \, t_s}{\mathrm{d} \, s} \right|_{s=0}.$$

DIMOSTRAZIONE. Iniziamo osservando che, in un intorno sufficientemente piccolo di s=0, possiamo riscrivere l'azione variata in termini del parametro temporale non trasformato, dato che $\lim_{s\to 0} t_s = t$ e, per via della nostra ipotesi di analiticità, $\lim_{s\to 0} \dot{t}_s = 1$,

$$\int\limits_{t_0}^{t_{1,s}} \mathcal{L}(\mathbf{q}_s,\mathbf{q}_s',t_s) \,\mathrm{d}\,t_s = \int\limits_{t_0}^{t_1} \mathcal{L}\left(\mathbf{q}_s,\frac{\dot{\mathbf{q}}_s}{\dot{t}_s},t_s\right) \dot{t}_s \,\mathrm{d}\,t.$$

Imponiamo ora l'invarianza. Adoperando questa formula, imporre la derivata a zero dell'azione variata equivale a richiedere che la derivata dell'argomento dell'integrale rispetto ad s sia nulla, ovvero

$$0 = \frac{\mathrm{d}}{\mathrm{d}\,s} \left[\mathcal{L} \left(\mathbf{q}_s, \mathbf{q}_s', t_s \right) \dot{t}_s \right] = \dot{t}_s \left(\left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{q}_s}, \frac{\mathrm{d}\,\mathbf{q}_s}{\mathrm{d}\,s} \right\rangle + \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{q}_s'}, \frac{\mathrm{d}\,\mathbf{q}_s'}{\mathrm{d}\,s} \right\rangle + \frac{\partial \mathcal{L}}{\partial t_s} \frac{\mathrm{d}\,t_s}{\mathrm{d}\,s} \right) + \mathcal{L} \frac{\mathrm{d}\,\dot{t}_s}{\mathrm{d}\,s}.$$

Calcoliamo l'espressione precedente in s=0, ottenendo

$$0 = \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{q}}, \mathbf{\xi} \right\rangle + \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \frac{\mathrm{d} \, \mathbf{q}_s'}{\mathrm{d} \, s} \right|_{s=0} + \frac{\partial \mathcal{L}}{\partial t} \tau + \mathcal{L} \dot{\tau}$$

dove, come da ipotesi

$$\tau(\mathbf{q},t) \coloneqq \left. \frac{\mathrm{d} \, t_s(\mathbf{q},t)}{\mathrm{d} \, s} \right|_{s=0}, \qquad \mathbf{\xi}(\mathbf{q},t) \coloneqq \left. \frac{\mathrm{d} \, \mathbf{q}_s(\mathbf{q},t)}{\mathrm{d} \, s} \right|_{s=0}.$$

Occorre calcolare con una certa cura la derivata di $\mathbf{q}_s' = \frac{\dot{\mathbf{q}}_s}{\dot{t}_s}$ rispetto ad s. Scriviamo

$$\frac{\mathrm{d}\,\mathbf{q}_s'}{\mathrm{d}\,s}\bigg|_{s=0} = \left. \left(\frac{1}{\dot{t}_s} \frac{\mathrm{d}\,\dot{\mathbf{q}}_s}{\mathrm{d}\,s} - \frac{\dot{\mathbf{q}}_s}{\dot{t}_s^2} \frac{\mathrm{d}\,t_s}{\mathrm{d}\,s} \right) \right|_{s=0} = \dot{\boldsymbol{\xi}} - \dot{\tau}\dot{\mathbf{q}}$$

che ci permette di riscrivere

$$(2.12) \quad 0 = \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{q}}, \boldsymbol{\xi} \right\rangle + \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \dot{\boldsymbol{\xi}} - \dot{\tau} \dot{\mathbf{q}} \right\rangle + \frac{\partial \mathcal{L}}{\partial t} \tau + \mathcal{L} \dot{\tau} =$$

$$= \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{q}}, \boldsymbol{\xi} - \tau \dot{\mathbf{q}} \right\rangle + \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \dot{\boldsymbol{\xi}} - \dot{\tau} \dot{\mathbf{q}} - \tau \ddot{\mathbf{q}} \right\rangle + \tau \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \ddot{\mathbf{q}} \right\rangle + \tau \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{q}}, \dot{\mathbf{q}} \right\rangle + \frac{\partial \mathcal{L}}{\partial t} \tau + \mathcal{L} \dot{\tau}$$

$$= \frac{\mathrm{d}}{\mathrm{d} t} \left[\left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \boldsymbol{\xi} - \tau \dot{\mathbf{q}} \right\rangle + \tau \mathcal{L} \right],$$

dove abbiamo usato l'equazione di Lagrange $\frac{\partial \mathcal{L}}{\partial \mathbf{q}} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}$, e quindi in definitiva la quantità

$$I(\mathbf{q},\dot{\mathbf{q}},t)\coloneqq\left\langle rac{\partial\mathcal{L}}{\partial\dot{\mathbf{q}}},oldsymbol{\xi}- au\dot{\mathbf{q}}
ight
angle + au\mathcal{L}$$

si conserva nel tempo, dimostrando il teorema.

COROLLARIO 1.8. Se il sistema è autonomo e $G^s(\mathbf{q},t) = (\mathbf{q}_s,t)$ è un gruppo ad un parametro di trasformazioni ammissibile, allora la quantità

$$I(\mathbf{q},\dot{\mathbf{q}}) = \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \pmb{\xi} \right\rangle, \qquad \pmb{\xi}(\mathbf{q},t) \coloneqq \left. \frac{\mathrm{d}\,\mathbf{q}_s}{\mathrm{d}\,s} \right|_{s=0}$$

è conservata.

Si può dimostrare che l'integrale primo non dipende dalla scelta delle coordinate locali.

Esempio 2.6 (Invarianza traslazionale) — Un primo esempio di applicazione riguarda la possibilità che la lagrangiana sia invariante per traslazioni in una certa direzione \mathbf{r} , ovvero sotto l'azione di $\mathsf{G}^s(\mathbf{q},t) = (\mathbf{q} + s\mathbf{r},t)$. In questo caso $\boldsymbol{\xi} = \mathbf{r}$ e la quantità conservata è

$$I = \left\langle rac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \mathbf{\xi}
ight
angle = \left\langle \mathbf{p}, \mathbf{r}
ight
angle,$$

ovvero la proiezione del momento coniugato $\bf p$ lungo $\bf r$. Se in particolare la lagrangiana è invariante rispetto a *qualsivoglia* traslazione, allora $\bf p$ si conserva. Come abbiamo già visto, $\bf p$ contiene le componenti lagrangiane della quantità di moto: se il moto avviene senza vincoli, allora $\bf p = \bf Q$. La conservazione della quantità di moto, quando valida, esprime precisamente l'omogeneità dllo spazio in cui il moto avviene.

Esempio 2.7 (Invarianza rotazionale) — Supponiamo che la lagrangiana sia invariante sotto rotazioni, ovvero che detta $\mathbf{R}(s) \in \mathsf{SO}(m)$ dipendente da un unico parametro, $\mathsf{G}^s(\mathbf{q},t) = (\mathbf{R}(s)\mathbf{q},t)$. $\mathbf{R}(s)$ può essere ad esempio una rotazione di un angolo s attorno ad un asse, di modo che $\mathbf{R}(0) = \mathbf{I}$. Utilizziamo ora il Lemma 1.4 per studiare la trasformazione sopra. Nel calcolo dell'invariante, abbiamo bisogno di

$$|\boldsymbol{\xi}(\mathbf{q})| = \left. \frac{\mathrm{d}(\mathbf{R}(s)\mathbf{q})}{\mathrm{d}\,s} \right|_{s=0} = \dot{\mathbf{R}}(0)\mathbf{q}.$$

L'invariante è quindi

$$I = \left\langle \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \dot{\mathbf{R}}(0) \mathbf{q} \right\rangle.$$

Consideriamo ora il caso di un sistema meccanico di un punto materiale di massa m e posizione \mathbf{x} , non soggetto a vincoli e con lagrangiana

$$\mathcal{L} = \frac{1}{2}m\|\dot{\mathbf{x}}\|^2 - V(\mathbf{x}).$$

La formula trovata in questo caso diventa

$$I = m \left\langle \dot{\mathbf{x}}, \dot{\mathbf{R}}(0) \mathbf{x} \right\rangle \equiv \langle \mathbf{Q}, \dot{\mathbf{R}}(0) \mathbf{x} \rangle,$$

dove ${\boldsymbol{\mathsf Q}}$ è la quantità di moto del punto materiale. Indichiamo

$$\dot{\mathbf{R}}(0) = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_2 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$

e calcoliamo esplicitamente

$$I = \left\langle \mathbf{Q}, \dot{\mathbf{R}}(0) \mathbf{x} \right\rangle = (x_1 Q_2 - Q_1 x_2) \omega_3 - (x_1 Q_3 - Q_1 x_3) \omega_2 + (x_2 Q_3 - Q_2 x_3) \omega_1 \equiv \left\langle \mathbf{x} \wedge \mathbf{Q}, \boldsymbol{\omega} \right\rangle \text{ dove } \boldsymbol{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$$

ovvero la quantità conservata è la proiezione del momento angolare in una certa direzione ω associata all'azione infinitesima della trasformazione gruppale. Se il sistema è invariante per qualsivoglia rotazione nello spazio, ovvero lo spazio è isotropo, il momento angolare si conserva.

Esempio 2.8 (Indipendenza dal tempo) — Supponiamo infine che il sistema sia autonomo, che $G^s(\mathbf{q},t)=(\mathbf{q},t+s)$ sia una simmetria della lagrangiana, dato che questa non dipende esplicitamente dal tempo. In questo caso, $\xi=\mathbf{0}$ e $\tau=1$, per cui l'invariante è

$$I = \left\langle rac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}, \dot{\mathbf{q}}
ight
angle - \mathcal{L} = \left\langle \mathbf{p}, \dot{\mathbf{q}}
ight
angle - \mathcal{L} \equiv \mathcal{H}.$$

Come vedremo questa quantità ha il nome di hamiltoniana. Se $\mathcal{L} = \frac{1}{2} \langle \dot{\mathbf{q}}, \mathbf{A}(\mathbf{q}) \dot{\mathbf{q}} \rangle - V(\mathbf{q})$, dove \mathbf{A} è la matrice cinetica e V è l'energia potenziale, si trova subito che

$$I = rac{1}{2} \langle \dot{\mathbf{q}}, \mathbf{A}(\mathbf{q}) \dot{\mathbf{q}} \rangle + V(\mathbf{q}) \equiv E,$$

ovvero l'invariante associato all'invarianza per traslazioni temporali è l'energia meccanica, la cui conservazione può quindi essere vista come una sorta di conseguenza dell'omogeneità temporale.

Esempio 2.9 (Brachistocrona) — La conoscenza di invarianti è tipicamente molto utile per l'integrazione delle equazioni del moto, ma anche la risoluzione di problemi in cui non necessariamente compare una variabile "tempo". Supponiamo di voler sagomare una opportuna guida liscia in un piano verticale, su cui far scivolare un punto materiale P sotto l'azione gravitazionale. Parametrizziamo tale guida come $\gamma(u) = (u, -h(u))^{\mathsf{T}}, \ u \in [0, \bar{u}],$ dove la prima coordinata indica l'ascissa, la seconda l'ordinata con asse inteso orientato in maniera opposta al campo gravitazionale. La guida ha h(0) = 0 e $h(\bar{u}) = -\bar{h}$ dati, di modo che $\gamma(0) = (0,0)$ sarà il punto iniziale della corsa di P. Vorremmo trovare la sagoma in modo tale da rendere il tempo di percorrenza $minimo^2$. Poiché ipotizziamo il moto soggetto solo a forze conservative e vincoli lisci, quando il punto sarà ad afltezza h lungo γ la sua velocità sarà in modulo $\|\mathbf{v}_P\| = \sqrt{2gh}$. Il tempo per arrivare dal punto di partenza a quello di destinazione è

$$au(oldsymbol{\gamma}) = \int\limits_0^{ar{u}} \sqrt{rac{1+{h'}^2}{2gh}} \,\mathrm{d}\,u \equiv \int\limits_0^{ar{u}} \mathcal{L}(h,\partial_u h) \,\mathrm{d}\,u, \qquad \mathcal{L}(h,\partial_u h) \coloneqq \sqrt{rac{1+{h'}^2}{2gh}}.$$

Si tratta di un funzionale dipendente da h e dalla sua derivata, di cui vogliamo trovare un estremo: è quindi un problema totalmente analogo a quelli già studiati, in cui h svolge il ruolo di "coordinata lagrangiana" e u svolge il ruolo di "tempo". La forma della lagrangiana ci suggerisce subito che una quantità verrà "conservata", ovvero essendo $\mathcal L$ indipendente dalla variabile "tempo" u, la corrispondente "hamiltoniana" sarà conservata, ovvero

$$I = \frac{\partial \mathcal{L}}{\partial h'}h' - \mathcal{L} = -\frac{1}{2}\frac{1}{\sqrt{2gh(1 + h'^2)}},$$

che assume una forma più semplice quadrando,

$$h(1 - h'^2) = c^2, \quad c^2 := \frac{1}{8gI^2}.$$

Da questa espressione si ottiene

$$\sqrt{\frac{c^2}{h} - 1} = \frac{\mathrm{d}\,h}{\mathrm{d}\,u}$$

dove $h \le c^2$ e si assume che $\frac{dh}{du} \ge 0$ come ragionevole. È conveniente ora risolvere tentando di esprimere u in funzione di h, facendo una implicita assunzione di derivata nulla al più negli estremi, dopo aver introdotto una variabile ausiliaria $\phi \in [0, \pi]$,

$$h = c^2 \sin^2 \frac{\phi}{2} = \frac{c^2}{2} (1 - \cos \phi) \Rightarrow u = \frac{c^2}{2} (\phi - \sin \phi),$$

dove c va determinata imponendo la condizione di passaggio per il punto finale. La curva è ottenuta è matematicamente detta cicloide.

²Il problema è stato propriamente formulato per la prima volta da Johann Bernoulli nel 1696 e risolto da Isaac Newton l'anno successivo.

Esempio 2.10 (Trasformazioni di gauge) — Le trasformazioni contemplate dal teorema di Noether non sono il solo tipo di trasformazione in grado, in generale, di lasciare invariata una lagrangiana. Consideriamo per esempio la lagrangiana di un punto materiale carico in un campo elettromagnetico statico già vista in Eq. (2.3),

$$\mathcal{L} = \frac{1}{2} m \|\mathbf{v}\|^2 - e\left(\varphi - \frac{1}{c} \langle \mathbf{v}, \mathbf{A} \rangle\right).$$

Se eseguiamo la trasformazione

$$\mathbf{A} \mapsto \mathbf{A} + \nabla f, \qquad \varphi \mapsto \varphi - \frac{1}{c} \frac{\partial f}{\partial t},$$

dove $f \equiv f(\mathbf{x},t),$ la lagrangiana viene mappata in

$$\mathcal{L} \mapsto \mathcal{L} - \frac{e}{c} \frac{\mathrm{d} f}{\mathrm{d} t}.$$

La lagrangiana ha acquisito così un termine di derivata totale e quindi produce le stesse equazioni del moto a mezzo del principio di Hamilton. In effetti questo significa che il potenziale φ e il potenziale \mathbf{A} sono definiti a meno di una funzione arbitraria, ovvero una gauge, f che si può fissare arbitrariamente. Tuttavia questo tipo di trasformazione non è del tipo contemplato dal teorema: si tratta infatti di una simmetria "funzionale" che trasforma i campi in gioco, e i principi di conservazione ad esso legati necessitano di una trattazione più generale di quella qui presentata.

2. Equilibrio ed oscillazioni

Passiamo ora allo studio di come le equazioni di Lagrange permettano di individuare e caratterizzare le posizioni di equilibrio su $\mathcal{M}(t)$. Ci focalizzeremo sui *sistemi autonomi*, ovvero tali da non esibire una dipendenza esplicita dal tempo. Le equazioni di Lagrange possono essere scritte nella forma

$$\dot{\mathbf{v}} = \boldsymbol{\phi}(\mathbf{q}, \mathbf{v}), \qquad \dot{\mathbf{q}} = \mathbf{v}$$

per una opportuna funzione regolare ϕ in un intorno di $(\mathbf{q}_0, \mathbf{v}_0) \in \mathbb{R}^n \times \mathbb{R}^n$. In analogia con quanto fatto nel caso unidimensionale, possiamo considerare lo *spazio delle fasi* come lo spazio 2n dimensionale dove vivono le coppie (\mathbf{q}, \mathbf{v}) , in modo che

$$\mathbf{g}^t(\mathbf{q}_0,\mathbf{v}_0)\coloneqq (\mathbf{q}(t),\dot{\mathbf{q}}(t))$$

rappresenti la soluzione del sistema al tempo t ottenuta utilizzato le condizioni iniziali ($\mathbf{q}_0, \mathbf{v}_0$) per t=0: in altre parole, \mathbf{g}^t produce il flusso di fase associato al sistema in coordinate locali. Possiamo a questo punto generalizzare tutto quanto abbiamo detto nel caso unidimensionale a questo caso più generale. Per esempio, si può introdurre il concetto di stabilità secondo Lyapunov.

DEFINIZIONE 2.1. Un punto $\mathbf{X}_0 = \boldsymbol{\chi}(\mathbf{q}_0) \in \mathcal{M}$ è detto di equilibrio se la coppia $\mathbf{z}_0 \coloneqq (\mathbf{q}_0, \mathbf{0})$ è soluzione del problema in Eq. (2.13), ovvero $\mathbf{g}^t \mathbf{z}_0 = \mathbf{z}_0$. Un punto di equilibrio \mathbf{X}_0 è stabile secondo Lyapunov se per ogni $\epsilon > 0$ esiste un $\delta > 0$ tale che

$$\|\mathbf{z} - \mathbf{z}_0\| < \delta \Rightarrow \|\mathbf{g}^t \mathbf{z} - \mathbf{z}_0\| \le \epsilon, \quad \forall t > 0.$$

Diversamente il punto è detto instabile.

È evidente che un punto $\mathbf{X}(\mathbf{q}_0)$ può essere di equilibrio se e solo se $\phi(\mathbf{q}_0, \mathbf{0}) = \mathbf{0}$.

TEOREMA 2.1 (Dirichlet). Supponiamo di avere un sistema olonomo con vincoli lisci e fissi, e soggetto a forze conservative indotte da un potenziale V. Se \mathbf{q}_0 è un minimo locale isolato dell'energia potenziale, la corrispondente configurazione è stabile.

DIMOSTRAZIONE. Assumiamo per iniziare che il sistema sia soggetto a sole forze conservative. Per ipotesi, $\nabla V|_{\mathbf{q}=\mathbf{q}_0}=\mathbf{0}$ ed esiste un intorno \mathcal{U} di \mathbf{q}_0 tale che $\forall \mathbf{q}\in\mathcal{U}\setminus\{\mathbf{q}_0\}$ si ha che $V(\mathbf{q})>V(\mathbf{q}_0)$. Supponiamo in particolare che $V(\mathbf{q}_0)=0$ e consideriamo un intorno \mathcal{B} del punto $(\mathbf{q}_0,\mathbf{0})$ dello spazio delle fasi. Osservando ora che esiste sempre un $a_0>0$ tale che $T(\mathbf{q},\dot{\mathbf{q}})>a_0\|\dot{\mathbf{q}}\|^2$, definiamo

$$\Omega_{\epsilon} := \{ (\mathbf{q}, \dot{\mathbf{q}}) \in \mathcal{U} \times \mathbb{R}^n \mid a_0 ||\dot{\mathbf{q}}||^2 + V(\mathbf{q}) < \epsilon \}.$$

Ogni traiettoria che ha origine in Ω_{ϵ} rimane in Ω_{ϵ} per via della conservazione dell'energia; d'altra parte, per ϵ sufficientemente piccolo $\Omega_{\epsilon} \subset \mathcal{B} = \{(\mathbf{q}, \dot{\mathbf{q}}) \in \mathcal{U} \times \mathbb{R}^n \mid ||\dot{\mathbf{q}}||^2 + ||\mathbf{q} - \mathbf{q}_0||^2 \le \delta\}$, cosa che fornisce la condizione di stabilità cercata. Il ragionamento è valido a maggior ragione nel caso in cui siano presenti forze dissipative, dato che l'energia durante il moto non potrà aumentare e il moto sarà comunque limitato a Ω_{ϵ} .

Una conseguenza di questo fatto è che, dato un sistema olonomo a vincoli fissi e lisci le cui forze attive sono solo dovute alla gravità, le posizioni di equilibrio stabile sono minimi isolati della quota del baricentro.

2.1. Piccole oscillazioni. Supponiamo che \mathbf{q}_0 sia una posizione di equilibrio stabile in un sistema autonomo soggetto a vincoli lisci e fissi, e a forze conservative. La lagrangiana, in generale nella forma

$$\mathcal{L}(\mathbf{q},\dot{\mathbf{q}}) = \frac{1}{2} \sum_{ab} A_{ab}(\mathbf{q}) \dot{q}_a \dot{q}_b - V(\mathbf{q}),$$

può essere riscritta in termini di nuove variabili $\underline{\mathbf{q}} := \mathbf{q} - \mathbf{q}_0$ utilizzando una approssimazione quadratica per il termine di potenziale, che possiamo sempre supporre tale che $V(\mathbf{q}_0) = 0$: possiamo cioè introdurre una lagrangiana approssimata nella forma

$$\hat{\mathcal{L}}(\underline{\mathbf{q}},\underline{\dot{\mathbf{q}}}) = \frac{1}{2} \sum_{ab} A_{ab}(\mathbf{q}_0) \underline{\dot{q}}_a \underline{\dot{q}}_b - \frac{1}{2} \sum_{ab} \hat{V}_{ab} \underline{q}_a \underline{q}_b \equiv \frac{\langle \underline{\dot{\mathbf{q}}}, \hat{\mathbf{A}} \underline{\dot{\mathbf{q}}} \rangle - \langle \underline{\mathbf{q}}, \hat{\mathbf{V}} \underline{\mathbf{q}} \rangle}{2}.$$

dove abbiamo indicato con $\hat{\mathbf{A}} = \mathbf{A}(\mathbf{q}_0)$ e

$$\hat{V}_{ab} \coloneqq \left. rac{\partial^2 V_{ab}(\mathbf{q})}{\partial q_a \partial q_b} \right|_{\mathbf{q}=\mathbf{q}_0}.$$

Questo sistema è di semplice analisi, dato che le corrispondenti equazioni di Lagrange sono lineari,

$$\hat{\mathbf{A}}\ddot{\mathbf{q}} + \hat{\mathbf{V}}\mathbf{q} = \mathbf{0}.$$

Sappiamo già che $\hat{\mathbf{A}}$ è simmetrica definita positiva, e, se il potenziale ha derivate continue fino alla seconda, questo vale anche per $\hat{\mathbf{V}}$. Sotto queste ipotesi, vale il seguente teorema.

Teorema 2.2. Esiste una trasformazione lineare che disaccoppia il sistema in Eq. (2.14) in n oscillazioni armoniche indipendenti, dette modi normali del sistema, ciascuno con una propria frequenza, detta frequenza propria.

DIMOSTRAZIONE. Osserviamo anzitutto che esiste una trasformazione ortogonale \mathbf{S} che mappa $\hat{\mathbf{A}}$ in una matrice diagonale, avente reali positivi α_i , $i=1,\ldots,n$, sulla diagonale, ovvero $\mathbf{S}\hat{\mathbf{A}}\mathbf{S}^{\dagger}=\mathrm{diag}(\alpha_i)$. Definiamo ora la sua radice, $\hat{\mathbf{A}}^{1/2}:=\mathbf{S}^{\dagger}\mathrm{diag}(\sqrt{\alpha_i})\mathbf{S}$, e introduciamo la variabile

$$\mathbf{Y} = \hat{\mathbf{A}}^{1/2}\mathbf{q}$$

che ci permette di riscrivere il problema come

$$\ddot{\mathbf{Y}} + \mathbf{\Omega} \mathbf{Y} = \mathbf{0}$$
 $\mathbf{\Omega} \coloneqq \hat{\mathbf{A}}^{1/2} \hat{\mathbf{V}} \hat{\mathbf{A}}^{-1/2}$.

Cerchiamo una soluzione nella forma $\mathbf{Y}(t) = \mathbf{u} e^{i\omega t}$ e $\mathbf{u} \in \mathbb{R}^n$. Sostituendo nell'equazione si trova l'equazione agli autovalori

$$(\omega^2 \mathbf{I} - \mathbf{\Omega}) \mathbf{u} = \mathbf{0},$$

Essendo Ω simmetrica e definita positiva, anch'essa ha n autovalori (non necessariamente distinti) positivi. Sia \mathbf{O} una matrice ortogonale che diagonalizza $\mathbf{\Omega}$, di modo che diag $(\omega_i^2) = \mathbf{O}^{\mathsf{T}}\mathbf{\Omega}\mathbf{O}$. Introduciamo ancora una volta una nuova variabile $\mathbf{z} = \mathbf{O}^{\mathsf{T}}\mathbf{u}$: l'equazione diventa nuovamente

$$\ddot{\mathbf{z}} - \operatorname{diag}(\omega_i^2)\mathbf{z} = \mathbf{0} \Leftrightarrow \ddot{z}_i - \omega_i^2 z_i = 0.$$

In questa equazione le componenti di **z** sono disaccoppiate e soddisfano ciascuna una equazione armonica con pulsazione ω_i , come anticipato nella tesi.

FIGURA 3. Problema dei pendoli accoppiati (sinistra). Fenomeno dei battimenti per $0 < k \ll 1$ (destra).

Esempio 2.11 (Pendoli accoppiati) — Due pendoli di uguale lunghezza ℓ e uguale massa m sono uniti da una molla di costante elastica k e lunghezza a riposo nulla. Essi sono attaccati allo stesso punto, vincolati a oscillare in un piano verticale passante per il punto a cui sono agganciati. Siano q_1 e q_2 gli angoli che i due pendoli descrivono rispetto alla verticale, come in Fig. 3. L'energia cinetica del sistema è

$$T(\dot{q}_1,\dot{q}_2)=rac{m\ell^2}{2}(\dot{q}_1^2+\dot{q}_2^2),$$

mentre quella potenziale è

$$V(q_1, q_2) = -mg\ell \cos q_1 - mg\ell \cos q_2 + \frac{k\ell^2}{2} \left((\cos q_1 - \cos q_2)^2 + (\sin q_2 - \sin q_1)^2 \right).$$

Si vede facilmente che $q_1 = q_2 = 0$ è di equilibrio *stabile*. Possiamo quindi studiare le piccole oscillazioni attorno a questa configurazione scrivendo

$$V(q_1,q_2) = -2mg\ell + \frac{mg\ell}{2}(q_1^2 + q_2^2) + \frac{k\ell^2}{2}(q_1 - q_2)^2 + o(\|\mathbf{q}\|^2)$$

per cui, in approssimazione di piccole oscillazioni e trascurando costanti additive irrilevanti,

$$\mathcal{L}(\mathbf{q},\dot{\mathbf{q}}) = \frac{m\ell^2}{2} \langle \dot{\mathbf{q}},\dot{\mathbf{q}} \rangle - \frac{1}{2} \langle \mathbf{q}, \hat{\mathbf{V}} \mathbf{q} \rangle, \qquad \hat{\mathbf{V}} = \begin{pmatrix} mg\ell + k\ell^2 & -k\ell^2 \\ -k\ell^2 & mg\ell + k\ell^2 \end{pmatrix}.$$

Per semplicità, assumiamo di utilizzare unità di massa, lunghezza e tempo tali che $m=1,\,\ell=1$ e g=1. L'espressione diventa più maneggevole:

$$\mathcal{L}(\mathbf{q},\dot{\mathbf{q}}) = \frac{1}{2} \langle \dot{\mathbf{q}},\dot{\mathbf{q}} \rangle - \frac{1}{2} \langle \mathbf{q},\hat{\mathbf{V}}\mathbf{q} \rangle, \qquad \hat{\mathbf{V}} = \begin{pmatrix} 1+k & -k \\ -k & 1+k \end{pmatrix}.$$

La matrice cinetica $\bf A$ in questo problema è già diagonale, per cui possiamo semplicemente fare un cambio di base che diagonalizzi $\hat{\bf V}$: troviamo in particolare che

$$\hat{\mathbf{V}} = \begin{pmatrix} 1+k & -k \\ -k & 1+k \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1+2k \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Per quanto detto sopra, possiamo quindi introdurre una nuova variabile

$$\mathbf{z} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} \frac{q_1+q_2}{\sqrt{2}} \\ \frac{q_1-q_2}{\sqrt{2}} \end{pmatrix},$$

che soddisfa le equazioni

$$\dot{z}_1 - z_1 = 0, \qquad \dot{z}_2 - \omega^2 z_2 = 0$$

dove abbiamo introdotto

$$\omega = \sqrt{1 + 2k}.$$

Le equazioni per la nuova variabile \boldsymbol{z} ammettono due speciali tipi di soluzione:

Oscillazioni in fase: Se $z_2 \equiv 0$ per ogni t, allora $q_1 = q_2$ e i due pendoli oscillano in fase con frequenza $\omega_1 = 1$.

FIGURA 4. Esempi di figure Lissajous per diversi valori di ω .

Oscillazioni in opposizione di fase: Se $z_1 \equiv 0$ per ogni t, allora $q_1 = -q_2$ e i due pendoli oscillano in opposizione di fase con frequenza $\omega_2 = \omega = \sqrt{1+2k} > 1$.

Supponiamo ora che in t=0 si ha $q_1=q_2=0$, e che $\dot{q}_1=v_0$, mentre $\dot{q}_2=0$. Con queste condizioni iniziali, $z_1(0)=z_2(0)=0$, mentre $\dot{z}_1(0)=\dot{z}_2(0)=\frac{1}{\sqrt{2}}v_0$, per cui la soluzione del problema è

$$z_1(t) = \frac{v_0}{\sqrt{2}}\sin t, \qquad z_2(t) = \frac{v_0}{\omega\sqrt{2}}\sin \omega t,$$

per cui, tornando alle coordinate q_1 e q_2 ,

$$q_1(t) = v_0 \left(\sin t + \frac{1}{\omega} \sin \omega t \right)$$
 $q_2(t) = v_0 \left(\sin t - \frac{1}{\omega} \sin \omega t \right).$

Se $0 < k \ll 1$, $\omega^{-1} = 1 - o(k)$ e si verificano dei *battimenti*, come abbiamo già visto: questo significa che periodicamente il moto di un pendolo si smorza completamente e tutta l'energia è trasferita nell'altro.

Invertendo la relazione tra ${\bf z}$ e ${\bf q}$, si può esprimere l'energia meccanica del sistema in termini delle variabili ${\bf z}$. Si trova

$$E = \frac{\dot{z}_1^2 + \dot{z}_2^2}{2} + \frac{z_1^2 + \omega^2 z_2^2}{2}.$$

Le due variabili descrivono due oscillatori *non accoppiati* che conservano *separatamente* le loro energie, di modo che in ogni istante di tempo vale

$$\frac{\dot{z}_1^2}{2} + \frac{z_1^2}{2} = E_1, \quad \frac{\dot{z}_2^2}{2} + \frac{z_2^2}{2} = E_2, \quad E_1 + E_2 = E,$$

e il moto avviene nel piano (z_1, z_2) è circoscritto al rettangolo

$$z_1^2 \le 2E_1, \qquad z_2^2 \le 2E_2.$$

In questo rettangolo, la traiettoria del sistema è individuata da una curva bidimensionale $\gamma(t) = (z_1(t), z_2(t))$ che produce una cosiddetta figura di Lissajous, tipicamente osservata negli oscillografi. Se $\omega = 1$ la figura è una ellisse. Tra le curve con $\omega = n$ vi sono dei polinomi, detto di Chebyshev, di interesse indipendente.

2.2. Funzioni di Lyapunov. Se sono presenti forze dissipative, come intuibile esse possono "stabilizzare" il sistema, portandolo in una posizione di equilibrio stabile da posizioni vicine agendo per un tempo sufficientemente lungo. La definizione di punto di equilibrio asintoticamente stabile nel contesto lagrangiano è la seguente.

DEFINIZIONE 2.2. Un punto di equilibrio $\mathbf{X}_0 = \boldsymbol{\chi}(\mathbf{q}_0)$ si dice asintoticamente stabile se esiste un $\delta > 0$ tale che, detto $\mathbf{z}_0 = (\mathbf{q}_0, \mathbf{0})$,

$$\|\mathbf{z} - \mathbf{z}_0\| \le \delta \Rightarrow \lim_{t \to +\infty} \|\mathbf{g}^t \mathbf{z} - \mathbf{z}_0\| = 0.$$

La caratterizzazione dei punti asintoticamente stabili avviene tramite una funzione speciale, detta funzione di Lyapunov.