B9A2 Wir wollen zeigen, dass $\{\mathcal{N}(\mu, \sigma^2) \mid (\mu, \sigma^2) \in L \subset \mathbb{R} \times (0, \infty)\}$ genau dann straff ist, wenn L beschränkt ist. Angenommen L ist beschränkt. Wir wollen zeigen, dass für alle $\varepsilon > 0$ ein r > 0 existiert, sodass für alle $(\mu, \sigma) \in L$ gilt $\mathcal{N}(\mu, \sigma)([-r, r]) > 1 - \varepsilon$. Sei also $\varepsilon > 0$ gegeben. Es gilt

$$\mathcal{N}(\mu, \sigma)([-r, r]) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-r}^{r} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right] \mu(\mathrm{d}x).$$

Substitution mit $z = (x - \mu)/\sigma$ liefert

$$= \frac{1}{\sqrt{2\pi}} \int_{(-r-\mu)/\sigma}^{(r-\mu)/\sigma} \exp\left[-\frac{1}{2}z^2\right] \mu(\mathrm{d}x).$$

Es gilt $\mathcal{N}(\mu, \sigma)([-r, r])$

Sei L beschränkt und seien $\hat{\mu}$, $\hat{\sigma}$ die Schranken. Sei zudem $\varepsilon>0$ gegeben. Mit der Tschebyscheffschen Ungleichung gilt

$$\mathcal{N}(\mu, \sigma)(|X - \mu| < r) \ge 1 - \frac{\sigma^2}{r^2}$$

Dann ist

B9A4 Sei $(P_i)_{i \in I}$ eine Familie von Wahrscheinlichkeitsmaßen auf \mathbb{R}^d . Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. $(P_i)_{i \in I}$ ist straff
- 2. Für alle Projektionen π_1, \ldots, π_d ist $(P_i^{\pi_k})_{i \in I}$ straff.

Sei zunächst $(P_i)_{i\in I}$ straff. Dann gibt es für alle $\varepsilon > 0$ eine kompakte Menge $K \in \mathbb{R}^d$, sodass für alle $i \in I$ gilt $P_i(K) > 1 - \varepsilon$. Da für alle $k \leq d$ gilt, dass $K \subset \pi_k^{-1}(\pi_k(K))$, gilt aufgrund der Monotonie des Maßes auch für alle $\varepsilon > 0$ und alle $i \in I$ dass $P_i^{\pi_k}(\pi_k(K)) > 1 - \varepsilon$. Damit ist für $(P_i^{\pi_k})_{i \in I}$ für alle Projektionen π_1, \ldots, π_d straff.

Seien nun für alle Projektionen π_1, \ldots, π_d die Familien der Bildmaße $(P_i^{\pi_k})_{i \in I}$ straff. Dann gibt es für alle $\varepsilon > 0$ Kompakta K_1, \ldots, K_d , sodass für alle $i \in I$ gilt $P_i^{\pi_k}(K_k) = P_i(\pi_k^{-1}(K_k)) > 1 - \varepsilon$. Sei r > 0 so, dass $\overline{B}_r(0) \supset K_k$. Dann gilt auch $P_i^{\pi_k}(\overline{B}_r(0)) > 1 - \varepsilon$. Betrachte $K = \bigotimes_{k=1}^d \overline{B}_r(0)$. Dann

gilt für alle $i \in I$, dass $P_i(K) = P_i(\bigcap_{k=1}^d \{|\omega_k| \le r\})$. Entsprechend gilt, dass

$$P_i(K^{\mathrm{c}}) = P_i \left(\bigcup_{k=1}^d \{ |\omega_k| > r \} \right).$$

durch die $\sigma\text{-Subadditivität}$ der Maße P_i können wir abschätzen

$$\leq \sum\nolimits_{k=1}^{d} P_i(|\omega_k| > r) \,,$$

wobei $\{|\omega_k| > r\} = \pi_k^{-1} (\overline{B}_r(0)^c)$, sodass

$$\leq \sum\nolimits_{k=1}^{d} P_{i}^{\pi_{k}} \left(\overline{B}_{r}(0)^{c} \right).$$

Da wir r so gewählt haben, dass $P_i^{\pi_k} (\overline{B}_r(0)) > 1 - \varepsilon$, erhalten wir

$$< d\varepsilon$$
.

Sei nun $\delta>0$ gegeben. Wähle $\varepsilon=\delta/d,$ dann gilt für alle $i\in I,$ dass $P_i(K)>1-\delta.$ Somit ist (P_i) straff.