Geometric Progression Problems 101-113

Shiv Shankar Dayal

September 15, 2021

101. If $x = \sum_{n=0}^{\infty} a^n, y = \sum_{n=0}^{\infty} b^n, z = \sum_{n=0}^{\infty} c^n$ where a, b, c are in A.P., such that |a| < 1, |b| < 1, |c| < 1, then show that $\frac{1}{x}, \frac{1}{t}, \frac{1}{z}$ are in A.P. as well.

Solution.

$$x = \frac{1}{1-a}, y = \frac{1}{1-b}, z = \frac{1}{1-c}$$
$$\therefore \frac{1}{x} = 1 - a, \frac{1}{y} = 1 - b, \frac{1}{z} = 1 - c$$

which are in A.P. because a,b,c are in A.P.

102. Given that $0 < x < \frac{\pi}{4}, \frac{\pi}{4} < y < \frac{\pi}{2}$ and $\sum_{k=0}^{\infty} (-1)^k \tan^{2k} x = p, \sum_{k=0}^{\infty} (-1)^k \cot^{2k} y = q$ then prove that $\sum_{k=0}^{\infty} \tan^{2k} x \cot^{2k} y$ is $\frac{1}{\frac{1}{p} + \frac{1}{q} - \frac{1}{pq}}$

$$\begin{split} \text{Solution: For } p, a = 1, r = -\tan^2 x \\ & \therefore p = \frac{1}{1 + \tan^2 x} = \cos^2 x \end{split}$$
 For $q, a = 1, r = -\cot^2 y$
$$\therefore q = \frac{1}{1 + \cot^2 y} = \sin^2 y$$

$$\therefore S = \frac{1}{1 - \tan^2 x \cot^2 y} = \frac{1}{1 - \frac{1 - \cos^2 x}{\cos^2 x} \frac{1 - \sin^y}{\cos^2 y} }$$

$$= \frac{pq}{p + q - 1} = \frac{1}{\frac{1}{p} + \frac{1}{q} - \frac{1}{pq} } \end{split}$$

103. An equilateral triangle is drawn by joining the mid-points of a given equilateral triangle. A third equilateral triangle is drawn inside the second in the same manner and the process is continued indefinitely. If the side of first equilateral triangle is $3^{1/4}$ inch, then find the sum of areas of all these triangles.

Solution: Let side of outermost equilateral triangle is a, then its area is $\frac{\sqrt{3}}{4}a^2$. The sides of subsequent internal triangles will be $\frac{a}{2}$, $\frac{a}{4}$, $\frac{a}{8}$, ...

Therefore, total area is
$$\frac{\sqrt{3}}{4}a^2\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots\right)$$

$$=\frac{\sqrt{3}}{4}a^2.\frac{1}{4}\frac{1}{1-\frac{1}{4}}=1$$

104. If $S = exp(1+|\cos x|+\cos^2 x+|\cos^3 x|+\cos^4 x$... to $\infty)\log_c 4$ satisfies the roots of the equation $t^2-20t+64=0$ for $0< x<\pi$ then find the values of x.

```
Solution: \cos^2 x = |\cos^2 x| Sum of infinite series is S = \frac{1}{1-|\cos x|} where |\cos x| < 1 E = e^{Slog_e 4} = 4^S E satisfie the equation t^2 - 20t + 64 = 0: t = 16, 6 \Rightarrow S = 1, 2 \Rightarrow |\cos x| = 0, \pm \frac{1}{2} x = \frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}
```

105. If $S \subset (-\pi,\pi)$, denote the set of values of x satisfying the equation $8^{1+|\cos x|+\cos^2 x+|\cos^3 x|+...$ to $\infty=4^3$ then find the value of S.

Solution: The given equation may be written as

$$8^{1+|\cos x|+|\cos^2 x|+|\cos^3 x|+\dots$$
 to $\infty=4^3=8^2$

$$1 + |\cos x| + |\cos^2 x| + |\cos^3 x| + \dots \text{ to } \infty = 2$$

To sum the G.P., we must observer that for $-\pi < x < \pi$, we have $|\cos x| < 1$

$$\therefore \frac{1}{1 - |\cos x|} = 2 \Rightarrow \cos x = \pm 1/2$$

106. If $0 < x < \frac{\pi}{2}$ and $2^{\sin^2 x + \sin^4 x + \dots$ to ∞ satisfies the roots of the equation $x^2 - 9x + 8 = 0$, then find the value of $\cos x/(\cos x + \sin x)$

Solution:

$$S_{\infty} = \frac{\sin^x}{1 - \sin^x} = \tan^2 x$$
$$L.H.S. = 2^{\tan^2 x}$$

The roots of the equattion $x^2 - 9x + 8 = 0$ are 1 and 8

$$2^{\tan^2 x} = 1 = 2^0, 2^{\tan^2 x} = 8 = 2^3$$

$$\therefore \tan^2 x = 0, \tan^2 x = 3$$

$$\therefore x = \frac{\pi}{3} \text{ is the only value of } x \text{ satisfying the condition } 0 < x < \frac{\pi}{2}$$

$$\frac{\cos x}{\cos x + \sin x} = \frac{1}{1 + \tan x} = \frac{1}{1 + \sqrt{3}}$$

107. If
$$S_\lambda = \sum_{r=0}^\infty \frac{1}{\lambda^r}$$
, then find $\sum_{\lambda=1}^n (\lambda-1) S_\lambda$

Solution:

$$S_{\lambda} = \frac{\lambda}{\lambda - 1}$$

$$\sum_{\lambda = 1}^{n} (\lambda - 1) S_{\lambda} = \sum_{\lambda = 1}^{n} \lambda = \frac{n(n+1)}{2}$$

108. If a,b,c are in A.P. then prove that $2^{ax+1},2^{bx+1},2^{cx+1}$ are in G.P. $\forall x \neq 0$

Solution:

$$\frac{2^{bx+1}}{2^{ax+1}} = \frac{2^{cx+1}}{2^{bx+1}}$$

$$(b-a)x = (c-b)x \Rightarrow b-a = c-b \ \forall x \neq 0$$

Above is true as a,b,c are in A.P.

109. If $\frac{a+be^x}{a-be^x}=\frac{b+ce^x}{b-ce^x}=\frac{c+de^x}{c-de^x}$ then prove that a,b,c,d are in G.P.

Solution: Writing $a + be^x = 2a - (a - be^x)$, we have

$$\frac{2a}{a - be^x} - 1 = \frac{2b}{b - ce^x} - 1 = \frac{2c}{c - de^x} - 1$$

$$\Rightarrow \frac{a - be^x}{a} = \frac{b - ce^x}{b} = \frac{c - de^x}{c}$$

$$1 - \frac{b}{a}e^x = 1 - \frac{c}{b}e^x = 1 - \frac{d}{c}e^x$$

$$\frac{b}{a} = \frac{c}{b} = \frac{d}{c}$$

Thus, a, b, c, d are in G.P.

110. If x, y, z arein G.P. and $\tan^{-1} x, \tan^{-1} y, \tan^{-1} z$ are in A.P. then prove that x = y = z but their common values are not necessarily zero.

Solution: Since
$$x,y,z$$
 are in G.P. $y^2=xz$ and $2\tan^{-1}y=\tan^{-1}x+\tan^{-1}z$
$$\frac{2y}{1-y^2}=\frac{x+z}{1-xz}\Rightarrow 2y=x+z$$

$$4y^2=(x+z)^2\Rightarrow (x-z)^2=0\Rightarrow x=z$$

$$\therefore x=y=z$$

111. If a,b,c are three unequal numbers such that a,b,c are in A.P. and b-a,c-b,a are in G.P. then prove that a:b:c=1:2:3

Solution:

$$\begin{aligned} b-a &= c-b, (c-b)^2 = a(b-a) \\ \Rightarrow (b-a)^2 &= a(b-a) \Rightarrow b = 2a \\ c &= 2b-a = 3a \\ & \because a:b:c=1:2:3 \end{aligned}$$

112. The sides a,b,c of a triangle are in G.P. sych that $\log a - \log 2b, \log 2b - \log 3c, \log 3c - a$ are in A.P., then prove that $\triangle ABC$ is an obtuse angled triangle.

Solution: $\log \frac{a}{2b}$, $\log \frac{2b}{3c}$, $\log \frac{3c}{a}$ are in A.P.

Also, a, b, c are in G.P. i.e. $b^2 = ac$

$$\frac{9c^2}{4} = ac : a = \frac{9}{4}c$$

Thus, sides are $\frac{9}{4}c, \frac{6}{4}c, c$. Clearly, a is greatest side so corresponding angle will be largest.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = -\frac{29}{48} < 0$$

Therefore $\angle A$ is obtuse so the triangle is obtuse angled triangle.

113. If the roots of the equation $ax^3 + bx^2 + cx + d = 0$ be in G.P. then prove that $c^3a = b^3d$

Solution: Given, three roots are in G.P. so we take them as $\frac{p}{r}, p, pr$ Product of roots is $p^3 = -\frac{d}{a} \Rightarrow ap^3 + d = 0$ Also, p is a root of the equation, therefore, $ap^3 + bp^2 + cp + d = 0$ $\Rightarrow bp^2 + cp = 0 \Rightarrow bp = -c \Rightarrow b^3p^3 + c^3 = 0$ $\Rightarrow b^3\left(-\frac{d}{a}\right) + c^2 \Rightarrow b^3d = c^3a$