

사물인터넷 8주차

목차

WSN

- WSN 특징
- 6LoWPAN

Wi-Fi

- MAC service set, MAC data frame
- CSMA/CA 동작 방식

ZigBee

- ZigBee 물리 계층
- MAC 계층 슈퍼프레임
- 분산 주소 할당 기법의 이해 및 응용 연습
 - C_{skip}(d)
- 지그비 라우팅 기법 (트리, 메쉬)

WSN (Wireless Sensor Network) 개념도

- ◆ 주요 특징
- Ad-hoc 네트워크: 중앙 통제 없이 노드 간 자율적 연결
- 멀티홉 통신: 직접 연결되지 않아도 중간 노드들이 중계
- 에너지 효율성: 배터리 수명이 중요 → 저전력 설계 필요
- 자체 구성(Self-organizing): 노드 추가/고장 시 자동으로 경로 재구성

WSN 구성

구분	싱크 노드 (Sink Node)	게이트웨이 (Gateway)
위치	WSN 내부 끝단	WSN 외부와 인터넷 사이
역할	센서 데이터 수집	네트워크 간 데이터 변환·전송
프로토콜	Zigbee, 6LoWPAN 등	Wi-Fi, Ethernet, MQTT, HTTP 등
예시	Zigbee Coordinator	Raspberry Pi, IoT Hub
연결 대상	센서 노드들	싱크 노드 ↔ 서버/클라우드

ZigBee Application layer

ZigBee network layer

IEEE 802.15.4 MAC layer

IEEE 802.15.4 PHY layer

Application layer

Transport layer

IPv6 with LoWPAN

IEEE 802.15.4 MAC layer

IEEE 802.15.4 PHY layer

ZigBee

6LoWPAN

출처 - https://www.researchgate.net/figure/ZigBee-6LoWPAN-protocol-stacks-6_fig1_268202840

• Wi-Fi IEEE 표준에 따른 비교

IEEE 표준	802.11b	802.11a	802.11g	802.11n
주파수 대역 (Frequency)	2400-2483,5Hz	5150-5250 MHz 5250-5350 MHz 5725-5825 MHz	2400-2483.5 MHz	2.4GHz & 5 GHz
MAC	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA
전송 방식	DSSS	OFDM	OFDM	OFDM/OFDMA With MIMO
변조 방식 (Modulation)	BPSK,QPSK, CCK	BPSK, QPSK, 16 - 64 QAM	CCK, QAM	Same
도달거리	~100m	~50m	~100m	~100m (g) ~50m (a)

IEEE(Institute of Electrical and Electronics Engineers)는 전기, 전자공학, 컴퓨터 공학, 정보 기술 등 다양한 공학 분야에서 세계 최대의 전문가 단체입니다. IEEE는 기술 혁신을 촉진하고, 표준을 개발하며, 회원들에게 전문 교육, 네트워킹, 연구 발표 기회를 제공합니다.

Wi-Fi

- Wi-Fi 구성
 - IEEE 802.11 Working Group에서 표준화 작업
 - AP (Access Point)와 station (STA)으로 구성
 - AP: 유무선 공유기
 - STA: 노트북, 스마트폰 등

출처 - 김한규, 박동선, 이재광 옮김, 데이터 통신과 네트워킹, 2005

Wi-Fi Service Set

- BSS(Basic Service Set)
 - AP가 없으면 ad hoc 모드
 - AP가 있으면 infrastructure 모드
- ESS(Extended Service Set)
 - 두 개 이상의 BSS들이 모여서 구성

- MAC 방식
 - PCF(Point coordination function)
 - Option
 - 중앙집중식 Polling 방식 사용
 - DCF(Distributed coordination function)
 - CSMA/CA 사용. Station에서 사용

MAC Data Frame

• 주소 체계

a. Case 1 BSS 내 통신: ToDS=0, FromDS=0

b. Case 2 유선에서 무선 BSS: ToDS=0, FromDS=1

c. Case 3 무선 BSS에서 유선 LAN: ToDS=1, FromDS=0

d. Case 4 무선 BSS에서 무선 BSS: ToDS=1, FromDS=1

	То	From	Address	Address	Address	Address
	DS	DS	1	2	3	4
	0	0	Destination	Source	BSS ID	N/A
	0	1	Destination	Sending AP	Source	N/A
H	1	0	Receiving AP	Source	Destination	N/A
	1	1	Receiving AP	Sending AP	Destination	Source

MAC 계층 - 채널 접근 방식

- CSMA-CA (Wireless) , IEEE 802.11
 - Carrier sense Multiple Access with Collision Avoidance
 - CS (Carrier Sense): 네트워크가 현재 사용 중인지 알아냄
 - MA (Multiple Access): 네트워크가 비어있으면 누구든 사용 가능
 - CA (Collision Avoidance) : 충돌 회피 (RTS/CTS)
- 참고: CSMA-CD (Ethernet), IEEE 802.3
 - Carrier sense Multiple Access with Collision Avoidance
 - CS (Carrier Sense): 네트워크가 현재 사용 중인지 알아냄
 - MA (Multiple Access): 네트워크가 비어있으면 누구든 사용 가능
 - CD (Collision Detection) : 충돌 감지

MAC 계층 - 채널 접근 방식

- 충돌 (컬리젼, Collision)
 - 두 개 이상의 노드가 같은 시간대에 같은 노드에게 패킷을 전송
 - 수신 측은 데이터를 제대로 읽을 수 없게 됨
 - 충돌을 방지하고자, 채널이 사용되지 않는 것 같아도 랜덤한 시간 동안 백오프함 (기다림)
 - RTS, CTS 를 사용하면,충돌이 발생할 확률이 줄어듦

MAC 계층 - 채널 접근 방식

- Hidden Terminal Problem (숨겨진 노드 문제)
 - 중간 터미널(A)는 양쪽 터미널(B,C)와 통신이 가능
 - 양쪽 터미널(B,C)는 서로의 통신을 감지하지 못함
 - 신호 전송 범위가 달라서 서로의 존재를 알 수가 없음
 - 즉, Carrier Sening이 힘듦 ← RTS, CTS 를 사용하는 이유

- 일반적인 CSMA-CA 동작 방식 (무선 랜 등에서 사용) 경합 방식: 채널을 사용하고자 하는 기기들끼리 경쟁
 - 1. 기기 A는 다른 기기가 데이터를 송신중인지 감지
 - 2. 만약 송신 중이면 채널이 비워질 때까지 대기한다.
 - 3. 채널이 비워지면, DIFS시간만큼 기다린 후 랜덤 한 백오프 시간을 설정
 - 4. 백오프 타이머를 감소시키며 채널을 계속 감시 (다른기기가 송신을 시작, 백오프타이머 일시정지, 채널이 다시 비워질 때까지 기다림.)
 - 5. 데이터 전송을 시작한다.
 - 단계 1: 송신 단->수신 단: RTS(Request To Send)
 - 단계 2: 수신 단->송신 단: CTS(Clear To Send)
 - 단계 3: 송신 단->수신 단: Data 전송
 - 단계 4: 수신 단->송신 단: ACK(ACKnowledgement)

- RTS-CTS-DATA-ACK 방식 (일반적 CSMA-CA)
 - 송신 측에서 RTS 전송 후, 수신 측에서 CTS 전송
 - 송신 측에서 CTS를 전송 받지 못하면, 일정 시간 대기 후, RTS를 다시 전송

참고: CSMA-CD

- CSMA-CD (Collision Detection)
 - 이더넷 (Ethernet)에 쓰이는 채널 접근 방식
 - 송신 중 충돌이 감지(detection)되면, 전송을 중지하고 랜덤한 시간 동안 기다리고 (백오프), 다시 전송 시도
 - 유선에서는 구현이 쉬우나, 무선에서는 어려움
 - Why? : 유선에서는 송신 중에, 수신기를 켜 둘 수 있으나, 무선에서는 송신 중, 수신기를 켜두기 어렵다.
- CSMA-CA의 CSMA-CD와 비교한 장단점
 - <u>장점: 저 가격으로 구현</u>
 - 단점: 데이터 전송이 많이 지연될 수 있음
 - (전송 빈도가 높아지면, 충돌 방지 신호의 전송 속도가 느려짐)

ZigBee 스택

- 스택
 - 프로토콜, 소프트웨어 관한 집합체라 볼 수 있음
- 지그비 스택
 - 지그비에서 정의한 프로토콜 들의 구현

ZigBee 스택

- 물리 (PHY) 계층
 - DSSS (Direct Sequence Spread Spectrum)
- 매체 접근제어 (MAC) 계층
 - 다수의 기기들이 전송할 때 서로 충돌을 회피
- 네트워크 (NWK) 계층
 - 다수의 노드들이 네트워크를 형성
- 응용지원 (APS, Application Support Sub-Layer)계층
 - 응용 (Application)이 네트워크를 사용할 수 있도록 지원
- 응용 (APL, APpLication)
 - 응용 프로그램 동작

물리(PHY) 계층

- IEEE 802.15.4 PHY 계층 특징
 - _ 무선으로 직접 데이터를 주고 받는 계층
 - 3개의 밴드에 27개의 채널 사용
 - DSSS (Direct Sequence Spread Spectrum) 사용
 - 빠른 응답지원
 - 조이스틱과 같은 빠른 응답이 필요한 기기도 지원함
 - 전력소모를 최소화하는 전력 관리
 - 잠복기 (수면기)에서도 잘 동작

물리(PHY) 계층

• 3개 밴드에 27개의 채널 사용

PHY	Frequency Band	Channel Numbering
868/915 MHz	868-870 MHz	0
000/915 NITZ	902-928 MHz	1 to 10
2.4 GHz	2.4-2.4835 GHz	11 to 26

참고: 무선 랜과의 충돌

- 2.4GHz 대역에서 무선 랜과 겹치는 채널있음
 - Channel 25, 26번은 독자적으로 겹치지 않음
 - Channel 15, 20번도 무선 랜의 채널 선택이 권고안대로 되어 있다 면 겹치지 않음
 - 무선 랜이 사용하지 않는 채널 구간은 사용 가능

- DSSS (Direct Sequence Spread Spectrum)
 - 직접 시퀀스 확산 스펙트럼 변조 방식
 - 변조 : 아날로그 (반송파)에 정보를 싣는 과정 : 정보를 담기 위해 파형의 크기, 주파수, 위상 등을 변형
 - 양쪽 모두가 알고 있는 슈도 랜덤(pseudo random) 값인 +1 이나 -1을 데이터에 곱해서 보낸다.
 - → 이 시퀀스는 실제 반복되는 비트보다 훨씬 길이가 길어져서 높은 주파수가 된다. → 수신 측에서는 신호를 얻기 위해서 슈도 랜덤을 다시 곱하면 된다. (1 X 1 = 1, -1 X -1 = 1)
 - CDMA에서 사용되는 기술

MAC 계층

- MAC 계층 특징
 - 세 종류의 기기가 정의됨
 - Network Coordinator (NC): 네트워크 코디네이터
 - 네트워크를 관리함
 - Full Function Device(FFD) : 전기능기기
 - Reduced Function Device(RFD) : 축소기능기기
 - MAC의 선택 사양
 - 비콘 없는 (Non-Beacon) 통신
 - Non-slotted CSMA-CA 통신, 수신 패킷 성공을 위해 확인 응답
 - 비콘 (Beacon) 사용 통신
 - Slotted CSMA-CA 통신, 슈퍼 프레임 사용

- 지그비의 CSMA-CA
 - RTS, CTS 를 사용하지 않음
 - 비콘 없는 (Non-Beacon) 통신
 - Non-slotted CSMA-CA 통신, 수신 패킷 성공을 위해 확인 응답
 - 비콘 (Beacon) 사용 통신
 - Slotted CSMA-CA 통신, 슈퍼 프레임 사용
 - 백오프 하는 시간을 슬롯 단위로 한다.

MAC 계층 – 지그비 기기

- 비콘 없는 (Non-Beacon) 통신
 - Non-slotted CSMA-CA 통신, 수신 패킷 성공을 위해 확인 응답
 - 장점: 간단함,
 - 단점: sleep 기능 제공이 쉽지 않음
- 비콘 (Beacon) 사용 통신
 - Slotted CSMA-CA 통신, 슈퍼 프레임 사용
 - Slot (슬롯) : 작은 시간 단위, 이 단위 동안만 송수신을 함
 - 장점: 에너지를 절약할 수 있는 sleep 기능 제공이 쉬움
 - 단점: 복잡함

MAC 계층 - 슈퍼프레임

- 슈퍼 프레임 (Super Frame) 구조
 - 최대 16개의 슬롯(Slot)으로 구성
 - 슈퍼프레임은 비콘 (Beacon), CAP(Contention Access Period),
 CFP(Contention Free Period)으로 구성
 - 비활성화 구간이 있을 수 있음
 - 슈퍼프레임은 최소 15ms에서 최소 245초 가능
 - _ 항상 비콘으로 시작
 - 비콘은 PAN 코디네이터 (네트워크 코디네이터)가 송신

MAC 계층 - 슈퍼프레임

- CAP, 경쟁 구간
 - 슬롯 단위의 시간에 맞추어 송수신
- CFP, 경쟁 없이 송수신하는 구간
 - 코디네이터가 슬롯을 예약하여 지그비 기기들이 그 슬롯 시간에 송 수신
 - GTS : 예약된 슬롯을 GTS (Guaranteed Time Slot)이라 함
 - CFP는 0~7개의 슬롯까지 할당 가능
- Beacon (비콘)
 - 비콘에 따라 시간 동기화를 하여 슬롯 단위 송수신 가능
 - GTS가 어느 기기에 할당되었는지 알려줌

참고: 비활성화 구간

- 비활성화 구간
 - 지그비 기기의 전력 사용을 적게 하여 기기 수명을 늘리기 위해 비활성화 구간 사용
 - 비활성화 구간에서 송수신기를 꺼둔다.
 - 경우에 따라, Processor의 대부분의 기능을 꺼두는 경우도 있음

MAC 계층 - MAC 프레임 형식

- MAC 프레임의 종류 (Type): 4가지
 - 비콘 프레임
 - 데이터 프레임
 - -확인 프레임
 - MAC 명령 프레임

상위 계층에 전달

MAC 계층 간에 전달을 위해 사용 상위 계층에 전달 안됨

• 데이터 프레임 (Data Frame)

- 데이터의 송수신에 사용
- Frame control 필드: Frame type, 주소 형식 등 Frame에 관한 정보
- Sequence Number 필드 : Frame의 일렬 번호 → 전송 확인하기 이해 사용
- Payload 필드: 실제 Data가 실리는 곳
- Frame check Sequence 필드: Frame의 error를 check

MAC계층 - 주소

• MAC 주소

- PAN (Personal Area Network) ID + 주소
- PAN ID : 네트워크 주소, 코디네이터가 할당한 ID
- Address : 2 Byte 또는 8 Byte
 - 2 Byte : 코디네이터가 할당해준 주소
 - 8 Byte : 처음 제작될 때 제작사가 할당해준 주소
 - **참고: Byte를 Octet이라고 함.

• MAC 주소 필드

주소 또는 PAN ID + 주소로 목적지(Destination)과 근원지(Source)를 표현

MAC계층 - 주소

- MAC 주소 표시 방법
 - 0/2는 없을 수도 있고, 2 Byte를 쓸 수도 있다는 의미
 - 대표적인 쓰임
 - 같은 네트워크 내: 목적지 주소(2) + 근원지 주소(2) → 4byte
 - 다른 네트워크 간 : 목적지 PAN ID(2) + 목적지 주소(2) 근원지 PAN ID(2) + 근원지 주소(2) → 8 byte
 - 다른 네트워크 간에서 코디네이터가 부여한 주소를 사용하지 않을 때:
 : 목적지 PAN ID(2) + 목적지 주소(8)
 근원지 PAN ID(2) + 근원지 주소(8) → 20 byte

목적지 PAN ID	목적지 주소	근원지 PAN ID	근원지 주소
0/2	2/8	0/2	2 /8

 어떤 주소 형식인지, 어떤 것을 (0)으로 하여 사용하지 않는지는, Frame control 필드에 표시된다.

MAC계층 - ZigBee 주소할당

- 분산 주소 할당 기법 (Distributed Address Assignment Mechanism)
 - 16 비트 어드레스 할당 방법
 - ZigBee 장치를 가진 노드가 ZigBee 네트워크에 참여할 때 이 노드의 부모 노드 가 정해진 식에 따라 부여
 - ZigBee 라우터는 모두 자신의 자식 노드에게 주소 할당을 할 수 있음→ 분산 방식

참고 : 중앙 집중 할당 기법과의 비교

- 중앙 집중 할당 기법: 하나의 노드가 모든 네트워크의 기기의 주소를 할
 당 → 제어 메시지 (제어 트래픽)이 많이 필요
- 분산 주소 할당 기법의 장점: 네트워크 상의 트래픽을 줄일 수 있음

MAC계층 – ZigBee 주소할당

• 분산 할당 식 - 깊이에 따른 주소 할당 크기

$$C_{\text{skip}}(d) = (1 + C_m - R_m - C_m R_m^{(L_m - d - 1)}) / (1 - R_m)$$

- C_m: 최대자식의 개수
- L_m: 네트워크 Tree 의 최대 깊이
- R_m: 자식으로 가질 수 있는 최대 ZigBee 라우터 개수
- d: 현재 노드의 깊이
- C_{skip}(d): 깊이 d 노드가 가질 수 있는 주소의 부분블록크기
- n: 어떤 부모노드를 통해 네트워크에 참여한 노드의 순서
- A_{parent}: 부모노드의 주소
- An: n-번째 엔드 디바이스의 주소

MAC계층 – ZigBee 주소할당

• 분산 할당의 예

$$- C_{m} = 3, R_{m} = 3, L_{m} = 3$$

Network depth (d)	Offset value, Cskip(d)
0	13
1	4
2	1
3	0

$$C_{skip}(0) = (1+3-3-3*3**(3-\underline{0}-1)/(1-3)$$

$$= -26/-2 = 13$$

$$C_{skip}(1) = (1+3-3-3*3**(3-\underline{1}-1)/(1-3)$$

$$= -8/-2 = 4$$

$$C_{skip}(2) = (1+3-3-3*3**(3-\underline{2}-1)/(1-3)$$

$$= -2/-2 = 1$$

$$(C_m=3, R_m=3, L_m=3)$$

MAC계층 – ZigBee 주소할당

• 주소 할당 단계

8주차 수업이 끝났습니다

고생하셨습니다.

