МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ВТ

тафедра Б1

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Цифровая обработка сигналов»

Тема: Исследование характеристик сигналов во временной и частотной областях

Студентка гр. 0321	Земсков Д.И.
Студент гр. 0321	Федосеев А.В.
Преподаватель	Курдиков Б. А.

Санкт-Петербург 2023 г.

Отчет по лабораторной работе №1

Исследование характеристик сигналов во временной и частотной областях

Цель работы - исследование свойств характеристик сигналов во временной и частотной областях при моделировании в среде пакета МАТLAB (использован пакет-аналог OCTAVE).

Задания:

- 1. Сформировать гармонические сигналы с частотами $f_1 < (f_s/2), (f_s/2) < f_2 < f_s, f_3 > f_s$. Для каждого сигнала получить его спектр и восстановить сигнал по его спектру. Вывести в графической форме исходный и восстановленный сигналы, а также спектр. Разметить соответствующие оси графиков в единицах времени и частоты. Объяснить полученные результаты.
- 2. Сформировать четную и нечетную гармонические последовательности, получить их спектры. Вывести в графической форме исходные сигналы, а также их спектры. Объяснить полученные результаты.
- 3. Повторить п.2 с изменением времени наблюдения на полпериода входной последовательности.
- 4. Сформировать сигнал сложной формы, получить его спектр и восстановить сигнал по его спектру. Вывести в графической форме исходный и восстановленный сигналы, а также спектр. Объяснить полученные результаты.

Исходные данные вариант 2: F_1 = 40 Γ ц, F_2 = 120 Γ ц,T = 0,05 c, dt = 0.001 c

1) Сформировать гармонические сигналы с частотами $f_1 < (f_s / 2), (f_s / 2) < f_2 < f_s, f_3 > f_s$.

Код программы:

```
% вариант 2
clc; clear;
%f1 = 40;
%f2 = 120:
Т = 0.05; % время действия сигнала
dt = 0.001; % интервал дискредитации
fs = 1/dt; % частота дискретизации (s = sample) = 1/0, 0.001 = 1 кГц
f1 = 400; %400, 800, 1100
N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
n = 0:1:(N-1); % array of counts
f = n * df; % recovered freq
x = \sin(2^*pi^*f1^*t); % return a vector x of sinus - non odd
X = fft(x); % спектр сигнала x (ДПФ)
p1 = sum(x.^2)/N; % равенство персиваля
p2 = sum(abs(X).^2)/(N^2);
if (round(10^4*p1)/10^4 = round(10^4*p2)/10^4) % округляем до 0,0001
  printf("Pagencroo Персиваля выполняется, p1 = %d, p2 = %d", p1, p2);
else
  printf("Равенство Персиваля НЕ выполняется, p1 = %d, p2 = %d", p1, p2);
endif
xv = ifft(X); % восстановленная по спектру последовательность (ОДПФ)
diff = x.-xv; % разница между реальным и восстанвленным сигналом
t_orign = 0:0.000005:Т; % для построения заданной частоты
figure(1); % - для системы 1-го порядка:
subplot(411), plot(t_orign,sin(2*pi*f1*t_orign),'-k;x(t);'), title('Исходный сигнал'), xlabel('c'), grid minor
subplot(412), plot(t,x,'-k;x(n);'), title('Частота сигнала по дискретным отсчётам dt'), <math>xlabel('c'), yrid minor;
subplot(413), plot(t,real(xv),'-m;real(xv);'), title('Восстановленный сигнал'), xlabel('c'), grid minor;
subplot(414), plot(t,real(diff),'-c;real(diff);'), title('Погрешность при восстановлении'), xlabel('c'), grid minor;
```

```
figure(2); % - для системы 1-го порядка: subplot(311), plot(f,real(X),'-r;real(X(f));'), title('Действительная составляющая спектра'), xlabel('Гц'), grid minor; subplot(312), plot(f,imag(X),'-b;imag(X(f));'), title('Мнимая составляющая спектра'), xlabel('Гц'), grid minor; subplot(313), plot(f,abs(X),'-g;abs(X(f);'), title('Составляющая спектра по модулю'), xlabel('Гц'), grid minor;
```

1) Задание 1.1 Сигнал с частотой $f_1 < (f_s/2); \ f_s = 1000 \ \Gamma u, \frac{f_s}{2} = 500 \ \Gamma u, f_1 = 400 \ \Gamma u$

1) Задание 1.2 Сигнал с частотой $(f_s/2) < f_z < f_s$ $f_s = 1000 \, \Gamma y$, $\frac{f_s}{2} = 500 \, \Gamma y$, $f_z = 800 \, \Gamma y$

3) Задание 1.3 Сигнал с частотой $f_3 > f_s f_s = 1000 \, \Gamma y$, $\frac{f_s}{2} = 500 \, \Gamma y$, $f_2 = 1100 \, \Gamma y$

Вывод: из графиков видно, что восстановленные сигналы практически полностью совпадают с исходными в случае выполнения условий теоремы Котельникова, в противном случае – ошибка восстановления возрастает. На частоте f = 1000 Гц всплески спектров не соответствуют заданной частоте, так как она выше частоты дискретизации. Равенство Персиваля, при этом, всегда выполняется:

```
Равенство Персиваля выполняется, p1 = 0.5, p2 = 0.5
>>
```

4) Задание 2.

Сформировать четную и нечетную гармонические последовательности, получить их спектры. Вывести в графической форме исходные сигналы, а также их спектры.:

Код программы:

```
% вариант 2
clc; clear;
f1 = 120:
%f2 = 120:
Т = 0.05; % время действия сигнала
dt = 0.001; % интервал дискредитации
fs = 1/dt; % частота дискретизации (s = sample) = 1/0, 0.001 = 1 кГц
N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
n = 0:1:(N-1); % array of counts
f = n * df; % recovered freq
x1 = \sin(2*pi*f1*t); % return a vector x of sinus - non odd
x2 = cos(2*pi*f1*t); % return a vector x of sinus - non odd
X1=fft(x1); % спектр сигнала x (ДПФ)
X2=fft(x2); % спектр сигнала x (ДПФ)
xv1 = ifft(X1); % восстановленная по спектру последовательность (ОДПФ)
xv2 = ifft(X2); % восстановленная по спектру последовательность (ОДПФ)
p1 = sum(x1.^2)/N; % равенство персиваля
p2 = sum(abs(X1).^2)/(N^2);
if (round(10^4*p1)/10^4 = round(10^4*p2)/10^4) % округляем до 0,0001
  printf("Paвeнство Персиваля для чётной функции выполняется, p1 = %d, p2 = %d", p1, p2);
else
  printf("Равенство Персиваля для чётной функции НЕ выполняется, p1 = %d, p2 = %d", p1, p2);
endif
p1 = sum(x2.^2)/N; % равенство персиваля
p2 = sum(abs(X2).^2)/(N^2);
if (round(10^4*p1)/10^4 = round(10^4*p2)/10^4) % округляем до 0,0001
```

```
printf("\nРавенство Персиваля для нечётной функции выполняется, p1 = %d, p2 = %d", p1, p2); else printf("\nРавенство Персиваля для нечётной функции НЕ выполняется, p1 = %d, p2 = %d", p1, p2); endif subplot(321), plot(t,x1,'-g;x1(t);'), title('Чётный сигнал'), xlabel('c'), grid minor subplot(322), plot(t,x2,'-m;x2(t);'), title('Нечётный сигнал'), xlabel('c'), grid minor; subplot(323), plot(f,real(X1),'-b;abs(X1(f);'), title('Действительная составляющая спектра чётного сигнала'), xlabel('Гц'), grid minor; subplot(324), plot(f,real(X2),'-b;abs(X2(f);'), title('Действительная составляющая спектра нечётного сигнала'), xlabel('Гц'), grid minor; subplot(325), plot(f,imag(X1),'-r;abs(X1(f);'), title('Мнимая составляющая спектра чётного сигнала'), xlabel('Гц'), grid minor; subplot(326), plot(f,imag(X2),'-r;abs(X2(f);'), title('Мнимая составляющая спектра нечётного сигнала'), xlabel('Гц'), grid minor;
```

Результат:

Вывод: спектры сигналов с чётной и нечётной гармонической последовательностью отличаются мнимой и действительной составляющей.

Равенство Персиваля для чётной функции выполняется, p1 = 0.5, p2 = 0.5 Равенство Персиваля для нечётной функции выполняется, p1 = 0.5, p2 = 0.5>>

5) Задание 3.1 Увеличим Т (время наблюдения) в 2 раза:

Код программы:

```
% вариант 2
clc; clear;
f1 = 120;
%f2 = 120;
T = 0.05/2; % время действия сигнала T = 0.05/2
dt = 0.001; % интервал дискредитации
fs = 1/dt; % частота дискретизации (s = sample) = 1/0, 0.001 = 1 кГц
N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
n = 0:1:(N-1); % array of counts
f = n * df; % recovered freq
x1 = \sin(2*pi*f1*t); % return a vector x of sinus - non odd
x2 = cos(2*pi*f1*t); % return a vector x of sinus - non odd
X1=fft(x1); % спектр сигнала x (ДПФ)
X2=fft(x2); % спектр сигнала x (ДПФ)
xv1 = ifft(X1); % восстановленная по спектру последовательность (ОДПФ)
xv2 = ifft(X2); % восстановленная по спектру последовательность (ОДПФ)
p1 = sum(x1.^2)/N; % равенство персиваля
p2 = sum(abs(X1).^2)/(N^2);
if (round(10^4*p1)/10^4 == round(10^4*p2)/10^4) % округляем до 0,0001
  printf("Paseнcтво Персиваля для чётной функции выполняется, p1 = %d, p2 = %d", p1, p2);
else
  printf("Равенство Персиваля для чётной функции НЕ выполняется, p1 = %d, p2 = %d", p1, p2);
endif
p1 = sum(x2.^2)/N; % равенство персиваля
p2 = sum(abs(X2).^2)/(N^2);
if (round(10^4*p1)/10^4 == round(10^4*p2)/10^4) % округляем до 0,0001
  printf("\nPавенство Персиваля для нечётной функции выполняется, p1 = %d, p2 = %d", p1, p2);
else
  printf("\nPавенство Персиваля для нечётной функции НЕ выполняется, p1 = %d, p2 = %d", p1, p2);
```

endif

```
subplot(411), plot(t,x1,'-g;x1(t);'), title('Чётный сигнал'), xlabel('c'), grid minor subplot(412), plot(t,x2,'-m;x2(t);'), title('Нечётный сигнал'), xlabel('c'), grid minor; subplot(413), plot(f,abs(X1),'-g;abs(X1(f);'), title('Спектр чётного сигнала'), xlabel('Гц'), grid minor; subplot(414), plot(f,abs(X2),'-m;abs(X2(f);'), title('Спектр нечётного сигнала'), xlabel('Гц'), grid minor;
```

3) Задание 3.1 Увеличим Т (время наблюдения) в 2 раза:

Вывод: из графиков видно, что с увеличением длительности исходных сигналов увеличивается значение энергии и ширина спектра.

Равенство Персиваля для чётной функции выполняется, p1 = 0.5, p2 = 0.5 Равенство Персиваля для нечётной функции выполняется, p1 = 0.5, p2 = 0.5>>

4) Задание 4. Сформировать сигнал сложной формы, получить его спектр и восстановить сигнал по его спектру. Вывести в графической форме исходный и восстановленный сигналы, а также спектр.

```
% вариант 2
clc; clear;
f1 = 40;
f2 = 120;
Т = 0.05; % время действия сигнала
dt = 0.001; % интервал дискредитации
fs = \frac{1}{dt}; % частота дискретизации (s = sample) = \frac{1}{0}, 0.001 = 1 кГц
N = fix(T/dt); % число отсчетов в реализации (перевод в целое число)
t = 0:dt:(N-1)*dt; % вектор дискретизации по времени
n = 0:1:(N-1); % array of counts
f = n * df; % recovered freq
x1 = \sin(2*pi*f1*t); % return a vector x of sinus - non odd
x2 = \sin(2 \cdot pi \cdot f2 \cdot t); % return a vector x of sinus - non odd
x3 = \sin(2*pi*f1*t) + \cos(2*pi*f2*t) - (-1+1.*rand(1,N));
X3 = fft(x3); % спектр сигнала x (ДПФ)
xv3 = ifft(X3); % восстановленная по спектру последовательность (ОДПФ)
diff = x3.-xv3;
subplot(311), plot(t,x1,'-b;x1(t);'), hold on, plot(t,x2,'-r;x2(t);'), hold on,
plot(t,x3,'-k;x3(t);'), title('Сложный сигнал и его составляющие'), xlabel('c'), grid minor;
subplot(312), plot(f,abs(X3),'-q;abs(X1(f);'), title('Спектр сигнала'), xlabel('Гц'), grid minor;
subplot(313), plot(f,real(xv3),'-m;real(xv3);'), title('Восстановленный спектр'), xlabel('n'), grid minor;
```

Результаты работы:

На графиках показаны исходные гармонические сигналы x1 (синусоида с частотой 40 Гц), x2 (синусоида с частотой 120 Гц), сигнал x3 (сумма сигналов x1, x2 + случайный шум) и их спектры.

Вывод: из графиков сигналов видно, что для сигнала, состоящего из одной гармоники, спектр сигнала представлен одним всплеском на заданной частоте сигнала, у случайного сигнала (белого шума) спектр распределен по всей частотной полосе и значения частотных коэффициентов небольшие. У сигнала, состоящего из суммы 2-х гармонических сигналов с частотами 40 и 120 Гц и случайного сигнала, спектр представлен двумя пиками на частотах 40 и 120 Гц и небольшими всплесками по всей частотной полосе, соответствующими шумовой составляющей. Таким образом можно сделать вывод, что чем сложнее сигнал (из большего числа гармоник состоит), тем сложнее спектр этого сигнала.

Ответы на контрольные вопросы:

1. Единичный импульс имеет сплошной спектр, который с увеличением частоты убывает. У синусоидальной и косинусоидальной последовательностей спектр будет состоять из одного пика на соответствующей частоте (частота определяется количеством периодов в 1 секунду).

2.

Отношение между частотой периодического сигнала и длиной реализации важно для правильного выбора параметров дискретизации и обработки сигналов. Это связано с концепцией разрешения по частоте и по времени.

Много периодов сигнала в реализации:

Преимущества: Большее количество периодов в реализации может быть полезным, если вам важно анализировать частотные компоненты сигнала с высоким разрешением по частоте. Это позволяет лучше различать близкие по частоте компоненты.

Недостатки: Возможно, потребуется больше ресурсов для обработки и хранения данных. Если частота сигнала очень высока, это может привести к неэффективному использованию ресурсов.

Больше отсчетов на один период в реализации:

Преимущества: Большее количество отсчетов на один период может быть полезным, если важно анализировать временные характеристики сигнала с высоким разрешением по времени. Это позволяет более точно определить временные события в сигнале.

Недостатки: Если частота сигнала очень высока, это может привести к эффекту алиасинга, особенно если выборка производится с недостаточной частотой.

Вывод:

Если важна детализация частотных компонент сигнала, то иметь больше периодов в реализации может быть предпочтительным.

Если важна точность в определении временных характеристик сигнала, то лучше иметь больше отсчетов на один период в реализации.

3. Равенство Парсеваля выражает квадрат нормы сигнала в Гильбертовом пространстве со скалярным произведением через квадраты модулей коэффициентов Фурье этого сигнала по некоторой ортогональной системе функций, т. е. находит энергию сигнала.

Пояснения на замечания от 30.11.2023:

1. Вы задаете гармонические сигналы, а на графиках они совсем не похожи на гармонические. Почему?

1. Всё из-за низкой частоты дискретизации. Так как интервалы дискретизации достаточно большие, то и выборка сигнала осуществляется достаточно редко, из-за этого графики на диаграммах состоят из ломаных линий, по сравнению с исходным сигналом, в котором для улучшения восприятия сигнала интервал дискретизации равен 5 мкс.

2. Вы задали частоту 1100 Гц, а на графике она другая. Почему

2. Я задал частоту f2 = 1100 Гц (при частоте дискретизации fs = 1000 Гц), тем самым нарушив условие теоремы Котельникова fs = 2 * f2, и на графике вижу гармонический сигнал частотой f = 1/T = 1 / 0.01 с = 100 Гц:

Данную частоту также легко найти по формуле f = f1 - fs = 1100 - 1000 = 100 Гц По спектру ДПФ частота также определяется как равная 100 Гц:

В данном случае произошёл так называемый Алиасинг (aliasing) — эффект, приводящий к наложению, неразличимости различных непрерывных сигналов при их дискретизации.

3. Во второй части Вы утверждаете, что у двух разных сигналов одинаковые спектры. Этого не может быть.

3. Действительно, если рассматривать чётный и нечётный гармонические сигналы, то их действительная и мнимая спектральная характеристика будет следующей:

эту особенность я также отразил в своём отчёте.

4. dF рассчитана неправильно, и где Вы её используете?

4. dF нигде не используется, поэтому я удалил эту переменную.