

Soil Loss Data

Heatmap of proportion of zeros of RUSLE2 observations in South Dakota

Heatmap of sample sizes of RUSLE2 observations in South Dakota

Histogram for RUSLE2 in South Dakota

Histogram for simulated data under zero-inflated lognormal model

Soil Loss Data

Heatmap of proportion of zeros of RUSLE2 observations in South Dakota

Heatmap of sample sizes of RUSLE2 observations in South Dakota

Histogram for simulated data under zero-inflated lognormal model

Model

- Variable of interest: $y_{ij}^* = y_{ij} \delta_{ij} \ge 0$, population parameter: $\bar{y}_{N_i}^* = \frac{1}{N_i} \sum_{j=1}^{N_i} y_{ij}^*$
 - Positive part: $\log(y_{ij}) = \beta_0 + z'_{1ij}\beta_1 + u_i + e_{ij}$
 - ▶ Binary part: δ_{ij} ~ Bernoulli(p_{ij}), $g(p_{ij}) = \alpha_0 + z'_{2ij}\alpha_1 + b_i$, $g(\cdot)$ is a specific parametric link function.
 - $(u_i, b_i, e_{ij}) \sim N(\mathbf{0}, \operatorname{diag}(\sigma_u^2, \sigma_b^2, \sigma_e^2))$
- Observed data: $(y^*, z) = \{y_{ij}^*, i = 1, ..., D, j \in s_i\} \cup \{z_{ij} : i = 1, ..., D, j = 1, ..., N_i\}$
- Empirical Bayes predictor: $\hat{y}_{ij}^{*EB} = \hat{y}_{ij}^{*MMSE}|_{\hat{\theta}=\theta}, \hat{y}_{ij}^{*MMSE} = E_{\theta}\{y_{ij}^{*}|(y^{*},z)\}$
- MSE estimator: analytic "one-step" and parametric bootstrap.