Ex.No.7 Hierarchical Clustering Algorithm

Date: 12-09-23

Aim

To implement Hierarchical Clustering Algorithm under unsupervised machine learning through R programming.

Procedure

- 1. To do programming in R, first install "RStudio" and "R" in the system. RStudio is an integrated development environment [IDE] for R and python.
- 2. Select the File in taskbar \rightarrow open New file \rightarrow R script or use shortcut "ctrl+shift+N"
- 3. Install the 'dplyr' package and load it in R.
- 4. Import the built-in dataset 'mtcars'
- 5. Apply the Hierarchical Clustering Algorithm on 'mtcars' dataset.
- 6. Write the program in the script and save it using the extension R.
- 7. Run the program by clicking Run option or use the shortcut "ctrl+enter".
- 8. See the output in the console tab.

Concepts Involved

• Applying the Hierarchical Clustering Algorithm on a Dataset.

Hierarchical Clustering Algorithm

Clustering is the most common form of unsupervised learning, a type of machine learning algorithm used to draw inferences from unlabeled data.

R - Hierarchical Clustering

This is of two types:

- **Agglomerative Hierarchical clustering:** It starts at individual leaves and successfully merges clusters together. It is a Bottom-up approach.
- **Divisive Hierarchical clustering:** It starts at the root and recursively split the clusters. It's a top-down approach.

Algorithm

- 1. Make each data point in a single point cluster that forms N clusters.
- 2. Take the two closest data points and make them one cluster that forms N-1 clusters.
- 3. Take the two closest clusters and make them one cluster that forms N- 2 clusters.
- 4. Repeat steps 3 until there is only one cluster.

Dendrogram is a hierarchy of clusters in which distances are converted into heights. It clusters **n** units or objects each with **p** feature into smaller groups. Units in the same cluster are joined by a horizontal line.

The leaves at the bottom represent individual units. It provides a visual representation of clusters.

Script

```
# Installing the package
```

install.packages("dplyr")

Loading package

library(dplyr)

Summary of dataset in package

head(mtcars)

Output

	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
Mazda RX4	21.Ŏ	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant [.]	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Script

Finding distance matrix

distance mat <- dist(mtcars, method = 'euclidean')

distance mat#representing some part for ease of view

Output

```
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout
Mazda RX4 Wag 0.6153251
Datsun 710 54.9086059 54.8915169
Hornet 4 Drive 98.1125212 98.0958939 150.9935191
Hornet Sportabout 210.3374396 210.3358546 265.0831615 121.0297564
Valiant 65.4717710 65.4392224 117.7547018 33.5508692
152.1241352
Script
```

Fitting Hierarchical clustering Model

to training dataset

set.seed(240) # Setting seed

Hierar cl <- hclust(distance mat, method = "average")

Hierar cl

Output

call:

hclust(d = distance_mat, method = "average")

Cluster method : average Distance : euclidean

Number of objects: 32

Script

Plotting dendrogram

plot(Hierar cl)

Output

Cluster Dendrogram

distance_mat hclust (*, "average")

Script

Choosing no. of clusters

Cutting tree by height

abline(h = 110, col = "violet")

Output

Cluster Dendrogram

distance_mat
hclust (*, "average")

Script

Cutting tree by no. of clusters

fit <- cutree(Hierar_cl, k = 3)

fit

Output

мazda	ı RX4 Maz	zda RX4 L	Wag [Datsun 710 Horn 1	et 4 Drive
2 Hor OD	net Sportabout	=	Valiant	Duster 360	Merc 24
1	2	2	2	2	
SE	Merc 230)	Merc 280	Merc 280C	Merc 450
2	1	L	1	1	
al	Merc 450SL	-	Merc 450SLC	Cadillac Fleetwood	Lincoln Continent
2	2	<u> </u>	2	2	
- Chr 1a	ysler Imperia		Fiat 128	Honda Civic	Toyota Corol
1	2	<u> </u>	1	1	
- 28	Toyota Corona	a Do	dge Challenger	AMC Javelin	Camaro Z

2	1	2	2	
2	Pontiac Firebird	Fiat X1-9	Porsche 914-2	Lotus Euro
pa 1	2	1	1	
т	Ford Pantera L	Ferrari Dino	Maserati Bora	Volvo 14
2E	2	1	3	
1				

Script

table(fit)

rect.hclust(Hierar_cl, k = 3, border = "green")

Output

Cluster Dendrogram

distance_mat hclust (*, "average")

Result

Thus, the cluster dendrogram is plotted using Hierarchical Clustering Algorithm using R programming successfully.