## CALCULUS AND PROBABILITY BASED STATISTICS

## MARK ANDREW GERADS

## 1. Finite statistics

1.1. Introduction. The purpose of this text is to have statistics built on a solid foundation of probability and calculus.

**Definition 1.1.** A is a repeatable event.

**Definition 1.2.** p is the probability that A will happen when A is given a chance to happen. For simplicity, we assume that p is the same every time A is given a chance to happen.

**Definition 1.3.**  $n \in \mathbb{W}$  is the number of times A had a chance to happen.

**Definition 1.4.**  $k \in \mathbb{W}$  is the number of times A actually happened.

Remark 1.5.  $k \leq n$ .

**Definition 1.6.**  $f_p$  is the probability is the probability distribution for p.

Remark 1.7.  $1 = \int_0^1 f_p dp$ 

**Definition 1.8.** m is the maximum value of  $f_p$ .

**Definition 1.9.** (a,b) is the prediction interval of p such that b-a is minimized.

**Definition 1.10.** c is the desired certainty for the prediction interval of p.

Remark 1.11.  $0 \le c = \int_a^b f_p dp \le 1$ 

Remark 1.12.  $0 \le a \le b \le 1$ 

Now that we have the definitions, here is the problem: n, k, c are known, and we must solve for a, b.

Remark 1.13. The probability of k events given n chances is  $\binom{n}{k} p^k (1-p)^{n-k}$ , but we must scale it to satisfy 1.7:

$$(1.1) f_p = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\int\limits_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp} = \frac{p^k (1-p)^{n-k}}{\int\limits_0^1 p^k (1-p)^{n-k} dp} = (n+1) \binom{n}{k} p^k (1-p)^{n-k}$$

## 1.2. The 4 cases of finding the interval.

1.2.1. Case n = k = 0. This case is self-symmetrical.

Remark 1.14. We have

(1.2) 
$$(a,b) = \left(\frac{1-c}{2}, \frac{1+c}{2}\right)$$

1.2.2. Case n > k = 0. This case is symmetrical to case 1.2.3.

Remark 1.15. We can solve

(1.3) 
$$\int_0^b (n+1)(1-p)^n dp = c = 1 - (1-b)^{n+1}$$

 $Remark\ 1.16.$  We have

(1.4) 
$$(a,b) = \left(0, 1 - (1-c)^{\frac{1}{n+1}}\right)$$

 $Date \colon \text{February 19, 2016}.$ 

1

1.2.3. Case n = k > 0. This case is symmetrical to case 1.2.2.

Remark 1.17. We can solve

(1.5) 
$$\int_{a}^{1} (k+1)p^{k} dp = c = 1 - a^{k+1}$$

Remark 1.18. We have

(1.6) 
$$(a,b) = \left( (1-c)^{\frac{1}{k+1}}, 1 \right)$$

1.2.4. Case n > k > 0. This case is self-symmetrical.

Remark 1.19. We desire to solve

(1.7) 
$$\int_{a}^{b} (n+1) {n \choose k} p^{k} (1-p)^{n-k} dp = c = (n+1) {n \choose k} (B_{b}(k+1, -k+n+1) - B_{a}(k+1, -k+n+1))$$

where B is the incomplete beta function.

Remark 1.20. We can use the hint

(1.8) 
$$a^{k}(1-a)^{n-k} = b^{k}(1-b)^{n-k}$$

Remark 1.21. By solving

$$\frac{\partial f_p}{\partial p} = 0$$

, we get

$$\lim_{c \to 0} (a, b) = \left(\frac{k}{n}, \frac{k}{n}\right), m = (n+1) \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k}$$

318 Thomas Drive, Marshalltown, Iowa, 50158  $E\text{-}mail\ address:}$  MGerads11@winona.edu, nazgand@gmail.com