Floating Point

- Representation for non-integral numbers
- Including very small and very large numbers
- Scientific notation: A single digit to the left of the decimal point. A number in scientific notation that has no leading 0s is called a normalized number.
 - Normalized: -3.81×10^{22}
 - Not normalized: 0.006×10^{-5} , 105.75×10^{4}
- Just as in scientific notation, numbers are represented as a single nonzero digit to the left of the binary point (**floating point**). In binary, the form is: $\pm 1.xxxx_2 \times 2^{yyyy}$

- IEEE 754 Floating Point Standard
 - Single precision floating point (32-bit)
 - Double precision floating point (64-bit)

- In general, floating-point numbers are of the form $(-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$
- S: sign bit (0: non-negative, 1: negative)
- Normalized significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Exponent is unsigned
 - Single: Bias = **127**; Double: Bias = **1023**

• In general, floating-point numbers are of the form $(-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

• Example:
$$-0.75_{10}$$

 $-0.75_{10} = -0.11 = -1.1_2 \times 2^{-1}$
S= 1

Fraction = $10000...000_2$ (23 bit in single precision and 52 bit in double precision)

Exponent = -1 + Bias

Single: $-1 + 127 = 126 = 0111 \ 1110_2$ (8 bit)

Double: $-1 + 1023 = 1022 = 011 \ 1111 \ 1110_2$ (11 bit)

 $(-1)^1 \times (1 + .1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000) \times 2^{(126-127)}$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

• In general, floating-point numbers are of the form $(-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

• Example:
$$-0.75_{10}$$

 $-0.75_{10} = -0.11 = -1.1_2 \times 2^{-1}$

S= 1

Fraction = $10000...000_2$ (23 bit in single precision and 52 bit in double precision)

Exponent = -1 + Bias

Single: $-1 + 127 = 126 = 0111 \ 1110_2$ (8 bit)

Double: $-1 + 1023 = 1022 = 011 \ 1111 \ 1110_2$ (11 bit)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1 bit 11 bits 20 bits

- In general, floating-point numbers are of the form $(-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$
- (1 + Fraction) is known as significand
- Why is Bias here?
 - For the benefit of comparison
- Bias 127 (for single precision)
 - Lowest (0) and Highest (255) values of the exponent are reserved
 - The range of usable exponent values is [1,254]. So, the range of (exponent-127) is [-126 .. 127].

Single Precision Range

- Exponents 0000 0000 and 1111 1111 reserved
- Smallest value
 - Exponent: 0000 0001, actual exponent = 1 127 = -126
 - Fraction: 000...00 (23bits), significand = 1.0 (i.e., 1 + Fraction)
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 1111 1110, actual exponent = 254 127 = +127
 - Fraction: 111...11 (23bits), significand ≈ 2.0 (i.e., 1+Fraction)
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double Precision Range

- Exponents 000 0000 0000 and 111 1111 1111 reserved
- Smallest value
 - Exponent: 000 0000 0001, actual exponent = 1 1023 = -1022
 - Fraction: 000...00 (52bits), significand = 1.0 (i.e., 1 + Fraction)
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - exponent: 111 1111 1110, actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 (52bits), significand ≈ 2.0 (i.e., 1+Fraction)
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

EEE 754 encoding of floating-point numbers

Single p	recision	Double p	precision	Object represented			
Exponent	Fraction	Exponent	Fraction				
0	0	0	0	0			
0	Nonzero	0	Nonzero	± denormalized number			
1-254	Anything	1-2046	Anything	± floating-point number			
255	0	2047	0	± infinity			
255	Nonzero	2047	Nonzero	NaN (Not a Number)			

Denormal Number

- Exponent = 000...0, hidden bit is 0 $(-1)^S \times (0 + Fraction) \times 2^{-Bias}$
- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
 - For example, the smallest single precision denormalized number is $0.0000~0000~0000~0000~0001_2\times 2^{-126}$ or $1.0_2\times 2^{-149}$

whereas the smallest positive single precision normalized number was $1.0000~0000~0000~0000~0000~000_2\times 2^{-126}$

Floating Point Addition

- Example: (Binary Floating-Point Addition) Add the number 0.5 and -04375 in binary.
- Consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + (-1.110_2 \times 2^{-2})$
- 1. Align binary points
 - Shift the smaller number to right until its exponent would match the larger exponent
 - $1.000_2 \times 2^{-1} + (-0.111_2 \times 2^{-1})$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + (-0.111_2 \times 2^{-1}) = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no overflow / underflow
- 4. Round and renormalize if necessary
 - 1.000₂ \times 2⁻⁴(no change) = 0.0625

Rounding Bits

Rounding using Guard and round digits, and sticky bit

G	R	S	Action							
0	0	0	Truncate							
0	0	1	Truncate							
0	1	0	Truncate							
0	1	1	Truncate							
1	0	0	Round to Even							
1	0	1	Round Up							
1	1 1		Round Up							
1	1	1	Round Up							

1.100**GRS**

$$1.10001 = 1.53125$$

$$1.10010 = 1.56250$$

$$1.10011 = 1.59375$$