Mechanical testing

How to change shape?

41680 Introduction to advanced materials

DTU Construct

Department of Civil and Mechanical Engineering

Mechanical testing - tensile test

• Tensile testing

Measurement

• Specimen

Reduced section

60 mm

12.8 mm Diameter

50 mm

Gauge length

9.5 mm Radius

Elongation

41680 Intro to advanced materials

F24

Measurement and mechanical measures

(Normal) Force F_n

- Depends on initial cross section A₀ of specimen
- (a specimen twice as thick requires twice the force)

Elongation ΔI

- Depends on initial length I₀ of specimen
- (a specimen with twice the length achieves twice the elongation)

Stress

$$\sigma = \frac{F_n}{A_0}$$

Strain (relative elongation)

$$\varepsilon = \frac{\Delta I}{I_0}$$

3 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Engineering stress and engineering strain

• Engineering stress

$$\sigma = \frac{F_n}{A_0}$$

- Units 1 Pa = 1 N/m^2 Usually 1 MPa = 10^6 N/m^2
- Engineering strain

$$\varepsilon = \frac{\Delta I}{I_0} = \frac{I - I_0}{I_0}$$

- Units 1 m/m or dimensionless (%)
- Relative elongation
- Tensile stress $\sigma >$
- ullet Compressive stress $\ \sigma < 0$

 A_0 initial cross section area I specimen length I_0 initial specimen length $\Delta I = I - I_0$ elongation

Stress

Tensile stress σ

$$\sigma = \frac{F_n}{A_0}$$

Compressive stress $\boldsymbol{\sigma}$

 A_0 Initial cross section area F_n Normal Force F_t Tangential Force

Shear stress τ

$$\tau = \frac{F_t}{A_0}$$

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Strain

Elongation due to tension

= positive strain

Contraction due to compression

= negative strain

Shear strain

 $\gamma = \tan \theta$

Mechanical testing - tensile test

• Tensile testing

Measurement

Slope = modulus of elasticity = Young's modulus

Unload

Slope = modulus of elasticity of elasticity = Young's modulus

Specimen

41680 Intro to advanced materials

F24

Elastic properties

41680 Introduction to advanced materials

First materials law 1660 *ceiiinosssttuv* 1678 *ut tensio, sic vis*

DTU Construct

Department of Civil and Mechanical Engineering

Elastic behavior

Hooke's law

$$\sigma = E\varepsilon$$

ut tensio, sic vis

Proportionality factor

Elastic modulus Young's modulus *E*-modulus Correlation between Young's modulus and melting temperature

	E	T _m
Pb	16 GPa	327 °C
Αl	71 GPa	660 °C
Cu	130 GPa	1084 °C
Fe	210 GPa	1538 °C
W	411 GPa	3422 °C

 Both controlled by bonding energy

9 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Property correlations – elements

 Young's modulus and bonding energy

Bonding and elastic behavior

• Counteracting forces for deviations from equilibrium

11 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Bonding energy

Affects materials properties Bond energy \rightarrow melting temperature (boiling temp.) Energy profile \rightarrow Elastic modulus, thermal expansion

Property correlations – elements

- Melting temperature and bonding energy
- Boiling temperature and bonding energy

13 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Property correlations – elements

- Young's modulus and bonding energy
- Thermal expansion coefficient and bonding energy

Young's modulus and temperature

- Young's modulus E decreases with temperature
- Example: copper

$$\tau = \mathbf{G} \gamma$$

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Young's modulus and crystallography

- E depends on lattice direction
- Anisotropy (usually)

$$E_{\langle 111\rangle} > E_{\langle 110\rangle} > E_{\langle 100\rangle}$$

	Modulus of Elasticity (GPa)				
Metal	[100]	[110]	[111]		
Aluminum	63.7	72.6	76.1		
Copper	66.7	130.3	191.1		
Iron	125.0	210.5	272.7		
Tungsten	384.6	384.6	384.6		

- For most cubic lattices
- Relevant for single crystals
- Usually: polycrystals

Young's modulus of alloys (substitutional solid solutions)

- Depends on composition and alloy type
- Substitutional solid solutions
- Example: Cu Ni

Legering	E/GPa		
Cu	115		
CuNi10FeMn	130		
CuNi25	145		
CuNi30Mn1Fe3	150		
CuNi44Mn1	165		
Ni	207		

Alternatives to solid solutions

- Intermetallic compound
 - Different crystal structure
 - Different bonds
 - Different elastic moduli
- Mixture of phases
 - Rule of mixtures
 - Young's modulus depends on spatial arrangement
 - -See composites L13

18 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Elastic behavior - cross contraction

 Change in extension perpendicular to load

Poisson's ratio

$$v = -\frac{\Delta d/d_0}{\Delta I/I_0} = -\frac{\varepsilon_x}{\varepsilon_z}$$

- •for load along z-direction
- •usually $0.25 \le v \le 0.35$ (most times 0.3)
- Note: volume conservation v = 0.5

Advanced material of the day: Metamaterials

- Change in extension perpendicular to load
- Poisson's ratio

What does a negative Poisson ratio mean?

Can materials possess a negative Poisson ratio?

- Negative Poisson ratio
 - Auxetic materials
 - Foams

20 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Mechanical testing - shear test

Shear stress

$$\tau = \frac{F_s}{A_0}$$

• Shear strain

$$\gamma = \frac{\Delta X}{h_0}$$

• Hooke's law

$$\tau = G\gamma$$

• Shear modulus G

Shear test

• Elastic isotropic materials

$$G = \frac{E}{2(1+\nu)}$$

Tensile testing

- Elastic behavior reversible
- Plastic behavior irreversible

23 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Tensile testing

- Elastic behavior reversible
- Plastic behavior irreversible

Materials selection

41680 Introduction to advanced materials

Mechanical properties

41680 Intro to advanced materials

F24

ANSYS GRANTA EduPack (formerly Cambridge Engineering Selector)

Materials property data base

DTU Construct

Department of Civil and Mechanical Engineering

ANSYS GRANTA EduPack Databases

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Organization of entire information

Organization of information: materials tree

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

ANSYS GRANTA EduPack Databases

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Properties of elements

Relationship between properties - elements

Relationship between properties - materials

F24 41 E

Relationship between properties - elements

41680 Intro to advanced materials

F24

Materials properties Electrical resistivity

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Materials properties Thermal conductivity

Materials property chart (level 2)

Thermal conductivity

VS.

electrical resistivity

Relationship between properties - elements

Relationship between properties - materials

ANSYS GRANTA EduPack Databases

DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Materials property chart (level 2) Young's modulus vs. mass density

Group exercises

51 DTU Mechanical Engineering, Technical University of Denmark

41680 Intro to advanced materials

F24

Stiff and lightweight rod

$$\begin{split} \sigma &= \frac{F}{A_0} & \varepsilon = \frac{\Delta l}{l_0} & \sigma = E\varepsilon \\ A_0 &= \frac{Fl_0}{E\Delta l} & d_0 &= \sqrt{\frac{4A_0}{\pi}} = \sqrt{\frac{4}{\pi}\frac{Fl_0}{E\Delta l}} = \sqrt{\frac{4}{\pi}\frac{mgl_0}{E\Delta l}} \end{split}$$

	Fe	W	Ni	Al	Mg	Ti
d_0/mm	10.9	7.8	11.0	18.9	23.5	15.3
$\rho/\mathrm{g\ cm^{-3}}$	7.9	19.3	8.9	2.7	1.73	4.5
m_0/kg	<mark>1.48</mark>	1.86	1.68	<mark>1.51</mark>	<mark>1.51</mark>	1.65

$$m_0 = \rho V_0 = \rho A_0 l_0 = \rho \frac{F l_0}{E \Delta l} l_0 = \frac{\rho}{E} \frac{F}{\Delta l} l_0^2$$