Многослойные нейросети

Основы Deep Learning

Полносвязная нейросеть

- Вход:
 Числовая матрица **X** размера (n, k)
- Внутри:
 Матрицы параметров (веса нейросети)
- Выход: вектор ответов **у** размера (n, 1)
 - метки классов (классификация)
 - вещественные числа (регрессия)

Один нейрон

- Вход:
 Матрица объекты-признаки **X** размера (n, k)
- Внутри:
 Вектор весов w размера (k, 1)
- Выход:
 Вектор чисел а размера (n, 1)

$$f(X @ w) = a$$

Первый слой

- Вход:
 Матрица объекты-признаки **X** размера (n, k)
- Внутри:
 Вектора весов w[1]..w[L1] размера (k, 1)
- Выход:
 Вектор чисел a[i] размера (n, 1) от i-го нейрона

L1 нейронов

Первый слой

- Вход:
 Матрица объекты-признаки **X** размера (n, k)
- Внутри:
 Матрица весов W[1] размера (k, L1)
- Выход:
 Матрица чисел A[1] размера (n, L1)

$$f(X @ W[1]) = A[1]$$

L1 нейронов

Второй слой

- Вход:
 Матрица A[1] с первого слоя размера (n, L1)
- Внутри:
 Матрица весов W[2] размера (L1, L2)
- Выход:
 Матрица чисел A[2] размера (n, L2)

f(A[1] @ W[2]) = A[2]

L1 L2 нейронов нейронов

Слой номер і

- Вход:
 Матрица A[i-1] с предыдущего слоя размера (n, L[i-1])
- Внутри:
 Матрица весов W[i] размера (L[i-1], L[i])
- Выход:
 Матрица чисел A[i] размера (n, L[i])

f(A[i-1] @ W[i]) = A[i]

L[i-1] L[i] нейронов

Forward pass

- Процесс прохождения данных через нейросеть
- = умножение матриц слоёв друг на друга
- Называется forward pass

Backward pass

- Процесс распространения ошибок обратно для обновления весов сети
- Градиентный спуск для одной нейрона
 = backpropagation для одного нейрона
- Подробнее здесь

L -- функция потерь