

LICENCE 3^E ANNÉE PARCOURS MATHÉMATIQUES

2017-2018 M67, Géométrie élémentaire

TD1: GÉOMÉTRIE PLANE

Le plan euclidien

Le plan cartésien \mathbb{R}^2 est noté \mathcal{P} . Il est muni de la distance euclidienne

$$d(A, B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

pour tous $A = (x_A, y_A), B = (x_B, y_B)$ dans \mathcal{P} .

Exercice 1 (Projeté orthogonal)

Soient A un point et \mathcal{D} une droite du plan.

- a) Montrer qu'il existe une unique droite perpendiculaire 1 à \mathcal{D} passant par A. On appelle projeté orthogonal de A sur \mathcal{D} le point d'intersection de \mathcal{D} et sa perpendiculaire passant par A.
- b) Exprimer les coordonnées du projeté H en fonction de celles de A et d'une équation de \mathcal{D} .
- c) Montrer que $d(A, H) \leq d(A, M)$ pour tout $M \in \mathcal{D}$, avec égalité si et seulement si M = H.
- d) Étudier l'intersection d'une droite \mathcal{D} et d'un cercle $\mathcal{C}(A,r)$.

Exercice 2 (Inégalité triangulaire)

Soient A, B, C trois points du plan.

- a) Montrer que si A, B et C sont alignés dans cet ordre (c.-à-d. si $B \in [AC]$) alors d(A, B) + d(B, C) = d(A, C).
- b) Pour $A \neq C$, en considérant le projeté orthogonal de B sur (AC), montrer que

$$d(A,C) \leqslant d(A,B) + d(B,C),$$

avec égalité si et seulement si $B \in [AC]$. Et si A = C?

- c) Retrouver cette inégalité (et le cas d'égalité) en rappelant que $d(A,B)^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$.
- d) Étudier l'intersection des deux cercles $\mathcal{C}(A_1, r_1)$ et $\mathcal{C}(A_2, r_2)$.
- e) Sous quelle condition sur les réels a, b, c existe-t-il un triangle dont les côtés ont pour longueurs a, b et c? Comment se simplifie cette condition si $a \le b$? et si $a \le b \le c$?

^{1.} Deux droites sont perpendiculaires si elles se coupent en formant un angle droit, ou encore si tout vecteur directeur de l'autre.

Exercice 3 (Triangle rectangle)

Soit $\triangle ABC$ un triangle rectangle en A, et soit H le pied de la hauteur issue de A (autrement dit, le projeté orthogonal de A sur (BC)). Montrer que

$$BA^2 = BH \cdot BC$$
, $CA^2 = CH \cdot CB$, $AH^2 = BH \cdot CH$.

Indication : On pourra utiliser la trigonométrie vue au collège, ou les triangles semblables.

Exercice 4 (Triangle isocèle)

Soit $\triangle ABC$ un triangle isocèle avec AB = AC > BC. On porte des points D sur (AB), avec B entre A et D, et E sur (BC), avec C entre B et E, et tels que BD = CE = AB - BC.

Montrer que $\triangle ADE$ est un triangle isocèle.

Nombres constructibles à la règle et au compas

Un point M du plan est constructible en un pas (sous-entendu à la règle et au compas) à partir d'un ensemble de points $S = \{A_1, \ldots, A_k\}$ si c'est un point d'intersection

- de deux droites distinctes passant chacune par deux points de S,
- ou d'une droite passant par deux points distincts de S et d'un cercle centré en un point de S et passant par un autre point de S,
- ou de deux cercles distincts centrés en des points de S et passant par des points de S.

Un point M est dit constructible à partir de S s'il est constructible en un nombre fini de pas, c'est à dire s'il existe $M_1, M_2, \ldots, M_{r-1}, M_r = M$ tels que M_{i+1} est constructible en un pas à partir de $S \cup \{M_1, \ldots, M_i\}$ pour tout $i = 1, \ldots, r-1$.

Un point constructible est un point constructible à partir de O = (0,0) et I = (1,0).

Enfin, un nombre réel x est un nombre constructible si le point (x,0) est constructible.

Exercice 5 (Premières constructions)

Tracer à la règle et au compas les figures suivantes :

- a) le symétrique d'un point A par rapport à un point O,
- b) la médiatrice d'un segment [AB] avec $A \neq B$,
- c) le milieu d'un segment [AB],
- d) la parallèle à une droite (AB) passant par un point donné,
- e) la perpendiculaire à une droite (AB) passant par un point donné (attention aux cas particuliers),
- \mathbf{f}) le partage d'un segment en n segments de même longueur,
- g) la bissectrice d'un angle \widehat{BAC} ,
- h) le centre d'un cercle donné,
- i) le cercle de centre A et de rayon BC. Ainsi on peut ajouter dans la définition de point constructible les cercles centrés en un point déjà construit et de rayon égal à la distance entre deux points déjà construit, ce qui revient à reporter l'écartement du compas.

Exercice 6 (Comment dépasser les bords de la feuille)

Soient Δ et Δ' deux droites qui se coupent en un point O situé en dehors de la feuille.

- a) Soit A un point situé sur la feuille. Tracer la droite (OA).
- b) Tracer la bissectrice de l'angle formé par les deux droites (plus précisement de l'angle saillant formé par les demi-droites de la feuille).

Exercice 7 (Polygones réguliers)

- a) Construire à la règle et au compas un triangle équilatéral, un carré, un hexagone régulier, un octogone régulier.
- b) Construire un pentagone régulier.

Indication: On peut calculer la valeur de $\cos\frac{2\pi}{5}$ en commençant par remarquer que $0=1+e^{\frac{2i\pi}{5}}+e^{\frac{4i\pi}{5}}+e^{\frac{6i\pi}{5}}+e^{\frac{8i\pi}{5}}=1+2\cos\frac{2\pi}{5}+2\cos\frac{4\pi}{5}$.

Exercice 8 (Nombres constructibles)

- a) Montrer qu'un point (x, y) est constructible si et seulement si ses deux coordonnées x et y le sont.
- b) Montrer que tout point de \mathbb{Z}^2 est constructible.
- c) Montrer que $\sqrt{2}$ et $\sqrt{3}$ sont constructibles. Puis montrer que \sqrt{n} pour $n \in \mathbb{N}$ est constructible.
- d) Montrer que tout rationnel est constructible.

Exercice 9 (Structure de l'ensemble des nombres constructibles)

Soit K l'ensemble des nombres réels constructibles.

- a) Montrer que \mathcal{K} est un sous-corps non trivial de \mathbb{R} .
- b) Montrer que la racine carrée \sqrt{x} d'un réel > 0 constructible est encore constructible.

Exercice 10 (Une caractérisation des nombres constructibles)

- a) Soit K un sous-corps de \mathbb{R} et $d \in K$ un nombre strictement positif. Montrer que l'ensemble $K(\sqrt{d})$, défini par $K(\sqrt{d}) = \{a + b\sqrt{d}, a, b \in K\}$, est un sous-corps de \mathbb{R} qui contient K et \sqrt{d} . C'est le plus petit sous-corps de \mathbb{R} contenant K et \sqrt{d} .
- b) Soit M = (x, y) un point constructible en un pas à partir d'un ensemble $S = \{M_1, \ldots, M_n\}$. Soit K un corps contenant les coordonnées des points M_1, \ldots, M_n . Alors il existe $d \in K$, d > 0 tel que $x, y \in K(\sqrt{d})$.
- c) Montrer qu'un nombre réel x est constructible si et seulement s'il existe une suite $\mathbb{Q} = K_0 \subset K_1 \subset \cdots \subset K_n$ de sous-corps de \mathbb{R} tels que pour tout $i = 1, 2, \ldots, n$ il existe $d_i \in K_{i-1}$ tel que $K_i = K_{i-1}(\sqrt{d_i})$ et $x \in K_n$.

Exercice 11 (Une condition nécessaire de constructibilité)

- a) Soient $K \subset L$ deux corps (on dit que L est une extension de K). Constater que L est un espace vectoriel sur K. On note souvent [L:K] la dimension de L comme espace vectoriel sur K, appelée degré de l'extension L/K. Montrer que si $K \subset L \subset M$ est une tour d'extensions de degrés finis, alors [M:K] = [M:L][L:K].
- b) Soient L/K une extension de degré [L:K] fini et $x \in L$. Montrer que x est racine d'un polynôme $X^d + a_1 X^{d-1} + \cdots + a_d$ à coefficients dans K (on dit que x est algébrique sur K), puis qu'il existe un unique polynôme à coefficients dans K unitaire de degré minimal annulant x (appelé $polynôme\ minimal$). Montrer que le degré de ce polynôme minimal (appelé degré de x sur K) divise [L:K].
- c) En déduire, en utilisant l'exercice 10, que si x est un réel constructible, alors le degré de x sur \mathbb{Q} est une puissance de 2.

Exercice 12 (Résolution de quatre problèmes grecs)

Les Grecs avaient laissé quatre problèmes de construction à la règle et au compas non résolus : quadrature du cercle, duplication du cube, trisection de l'angle et construction des polygones réguliers. La condition nécessaire précédente permet de montrer l'impossibilité de ces constructions.

- a) (Quadrature du cercle) Construire un carré de même aire qu'un disque donné.
 - (i) Montrer que cela revient à construire le nombre $\sqrt{\pi}$.
 - (ii) Le théorème de Lindemann assure que π est transcendant, c.-à-d. non algébrique. En déduire que la quadrature du cercle est impossible.
- b) (Duplication du cube) Partant d'un cube de volume donné, construire un cube de volume double.
 - (i) Montrer que cela revient à construire le nombre $\sqrt[3]{2}$.
 - (ii) Montrer que $\sqrt[3]{2}$ est un nombre algébrique et calculer son degré. Conclure.
- c) (Trisection de l'angle) Partager un angle en trois angles égaux.
 - (i) Montrer que trisecter l'angle $\frac{\pi}{3}$ revient à construire $\cos(\frac{\pi}{9})$.
 - (ii) Montrer que $\cos 3\theta = 4\cos^3\theta 3\cos\theta$. En déduire que $2\cos\frac{\pi}{9}$ est racine du polynôme $P(X) = X^3 3X 1$.
 - (iii) Montrer que P n'a pas de racine dans \mathbb{Q} . Conclure.
- d) (Construction des polygones réguliers) Construire le polygone régulier à n côtés.
 - (i) Montrer que construire l'heptagone régulier revient à construire $\cos \frac{2i\pi}{7}$.
 - (ii) Montrer que $1+2\cos\frac{2\pi}{7}+2\cos\frac{4\pi}{7}+2\cos\frac{6\pi}{7}=0$ (considérer $\sum_{k=0}^6 e^{\frac{2ik\pi}{7}}$). En déduire que $\cos\frac{2i\pi}{7}$ est racine du polynôme $P(X)=8X^3+4X^2-4X-1$.
 - (iii) Montrer que P n'a pas de racine dans \mathbb{Q} . En déduire que l'heptagone régulier n'est pas constructible à la règle et au compas.