Divide-and-Conquer Paradigm CS313E - Elements of Software Design

Kia Teymourian

05/11/2022

Kia Teymourian

1 / 24

Agenda

- 1. Divide and Conquer
- 2. Merge Sort
- 3. Recurrences
- 4. Strassen's algorithm for Matrix Multiplication

Kia Teymourian

Divide-and-Conquer Paradigm

The divide-and-conquer paradigm has the following three steps at each level of the recursion:

- ▶ First, divide the problem into a number of subproblems that are smaller instances of the same problem.
- ▶ Then, conquer the subproblems by solving them recursively.
 If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- ▶ Finally, **combine** the solutions to the subproblems into the solution for the original problem.

3 / 24

We have an array A with n elements to sort.

125	44	780	128	816	743	594	170
0	1	2	3	4	5	6	7

We have an array A with n elements to sort.

We have an array A with n elements to sort.

Start merge the sorted array.

The merge sort procedure works as follows:

- First we compute length n_1 of the subarray A[p..q], and n_2 the length of subarray A[q+1..r].
- ② Then we create arrays L and R (left side and right side arrays) of the length $n_1 + 1$ and $n_2 + 1$ respectively
- **③** The we do two for-loops and copy the subarray A[p..q] into $L[1..n_1]$, and subarray A[q+1..r] into $R[1..n_2]$
- Then we put the sentinels (infinity values) at the end of the subarrays $L(n_1 + 1)$ and $R[n_1 + 1]$
- Then we start for-loop over the subarrays, divide, compare and merge the results.

7 / 24

$\mathbf{Algorithm} \ \mathbf{1} \ \mathrm{Merge}(A, \, p, \, q \, ,\! r) \; , \, \mathrm{Merge} \; \mathrm{Procedure}$

```
1: n1 = q - p + 1, n2 = r - q
 2: let L[1..n1 + 1] and R[1..n2 + 1] be new arrays
 3: for i = 1 to n1 do
   L[i] = A[p+i-1]
 5: end for
 6: for j = 1 to n2 do
   R[j] = A[q+j]
 8: end for
9: L[n1+1] = \infty
10: R[n2+1] = \infty
11: i = 1, j = 1
12: for k = p to r do
    if L[i] \leq R[j] then
13:
    A[k] = L[i]
14:
15: i = i + 1
16: else
17: A[k] = R[j]
      j = j + 1
18:
      end if
19:
```

20: end for

8 / 24

Merge Sort Algorith

$\bf Algorithm~2~{\rm Merge-Sort}(A,\,p,\,r)$, Merge Sort Algorithm

```
1: if p \le r] then
```

- 2: q = |(p+r)/2|
- 3: Merge-Sort(A,p,q)
- 4: Merge-Sort(A,q+1,r)
- 5: Merge(A, p, q, r)
- 6: end if

Kia Teymourian

Recurrences

10 / 24

Recurrences - Running time of divide-and-conquer algorithms

- Recurrences provide us a good way to characterize the running time of divide-and-conquer algorithms.
- ▷ A recurrence is an equation or inequality to provide a function in terms of its value on smaller input sizes.

$$T(n) = C1 + 2T(n/2) + C2n$$

- ightharpoonup C1: cost of divide
- $\triangleright 2T(n/2)$ cost of recursion
- \triangleright C2n: cost of merge

Kia Teymourian

Recurrence Tree Visualization - Merge Sort

- \triangleright We stat with cn because it dominates the costs
- \triangleright Number of leaves: n
- \triangleright Number of levels: 1 + lg(n)

$$T(n) = (1 + lg(n)) \times cn = \Theta(nlgn)$$

Recurrences - merge sort

$$T(n) = C1 + 2T(n/2) + C2n$$

$$T(n) = (1 + lg(n)) \times cn = \Theta(nlgn)$$

We can write this recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

13 / 24

Recurrences - Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Parameters are:

- Number of recursive calls, or the number of sub-problems that we solve in our recurse algorithm
- \triangleright Factor of the sub-problems or the factor that we divide the n size of the main problem into smaller problems
- ▶ The exponent of the running time outside of the recursive calls.

Solving the above recurrence:

- \triangleright After solving the above recurrence, we have the running time for merge sort to be $O(n \log(n))$.
- ▶ We will learn how to sovle recurrences (Next lecture)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

Strassen's algorithm for Matrix Multiplication

Strassen's algorithm

Simple divide and Conquer for Matrix Multiplication

- ▶ Use divide and conquer algorithms to do matrix multiplication
- $\,\triangleright\,$ Goal is to compute $C = A \cdot B$, n is exact power of 2 in each $n \times n$ matrix

$$C$$
 = $A \cdot B$

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Strassen's algorithm

Simple divide and Conquer for Matrix Multiplication

- ▶ Use divide and conquer algorithms to do matrix multiplication
- \triangleright Goal is to compute $C = A \cdot B$, n is exact power of 2 in each $n \times n$ matrix

$$C = A \cdot B$$

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

The straightforward matrix multiplication has $T(n) = \Theta(n^3)$.

◆□ ▶ ◆□ ▶ ◆ ■ ● りへで

Matrix Multiplication

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

- \triangleright We divide $n \times n$ into $4 n/2 \times n/2$ matrices
- \triangleright We assume n is an exact power of 2

◆□▶ ◆□▶ ◆■▶ ◆■ ● ◆○○

Simple divide and Conquer for Matrix Multiplication

13: EndFunction

Algorithm 3 Simple divide and Conquer for Matrix Multiplication

```
1: SquareMatrixMultiply(A, B)
 2: n = A.rows
 3: let C be a new n \times n matrix
 4: if n == 1 then
 5.
     c_{11} = a_{11} \cdot b_{11}
 6: else
       Partition A, B, and C
 7.
       C_{11} = SquareMatrixMultiply(A_{11}, B_{11}) + SquareMatrixMultiply(A_{12}, B_{21})
8:
       C_{12} = SquareMatrixMultiplyA_{11}, B_{12} + SquareMatrixMultiply(A_{12}, B_{22})
 9.
       C_{21} = SquareMatrixMultiply(A_{21}, B_{11}) + SquareMatrixMultiply(A_{22}, B_{21})
10:
       C_{22} = SquareMatrixMultiply(A_{21}, B_{12}) + SquareMatrixMultiply(A_{22}, B_{22})
11:
12: end if
         return C
```

Kia Teymourian 05/11/2022 18 / 24 Running time of Simple divide and Conquer for Matrix Multiplication

$$T(1) = \Theta(1)$$

 $T(n) = \Theta(1) + 8T(n/2) + \Theta(n^2)$
 $= 8T(n/2) + \Theta(n^2)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$
 (1)

 \triangleright Based on recurrence 1, the recursive matrix multiplication has $T(n) = \Theta(n^3)$

◆□▶ ◆□▶ ◆壹▶ 壹 めぬぐ

Running time of Simple divide and Conquer for Matrix Multiplication

$$T(1) = \Theta(1)$$

 $T(n) = \Theta(1) + 8T(n/2) + \Theta(n^2)$
 $= 8T(n/2) + \Theta(n^2)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$
 (1)

- \triangleright Based on recurrence 1, the recursive matrix multiplication has $T(n) = \Theta(n^3)$
- ➤ The simple divide-and-conquer approach is no faster than the straightforward matrix multiplication

Can we do better than this?

Strassen's Method

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Let us the fine the following 10 helper matrices:

$$S_1 = B_{12} - B_{22}$$

$$S_2 = A_{11} + A_{12}$$

$$S_3 = A_{21} + A_{22}$$

$$S_4 = B_{21} - B_{11}$$

$$S_5 = A_{11} + A_{22}$$

$$S_6 = B_{11} + B_{22}$$

$$S_7 = A_{12} - A_{22}$$

$$S_8 = B_{21} + B_{22}$$

$$S_9 = A_{11} - A_{21}$$

$$S_{10} = B_{11} + B_{12}$$

Strassen's Method

Let us define the following 7 matrices:

$$\begin{split} P_1 &= A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \\ P_2 &= S_2 \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_3 &= S_3 \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \\ P_4 &= A_{22} \cdot S_4 = A_{22} \cdot B_{21} - A_{22} \cdot B_{11} \\ P_5 &= S_5 \cdot S_6 = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_6 &= S_7 \cdot S_8 = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_7 &= S_9 \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} \end{split}$$

Strassen's Method

Let us define the following 7 matrices:

$$\begin{split} P_1 &= A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \\ P_2 &= S_2 \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_3 &= S_3 \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \\ P_4 &= A_{22} \cdot S_4 = A_{22} \cdot B_{21} - A_{22} \cdot B_{11} \\ P_5 &= S_5 \cdot S_6 = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_6 &= S_7 \cdot S_8 = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_7 &= S_9 \cdot S_10 = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} \end{split}$$

We can proof that the elements of the C matrix can be computed as follows:

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Kia Teymourian

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

 $C_{12} = P_1 + P_2$
 $C_{21} = P_3 + P_4$
 $C_{22} = P_5 + P_1 - P_3 - P_7$

- Divide the input matrices A and B and output matrix C into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices. This takes $\Theta(1)$
- ② Create the above 10 helper matrices $S_1, S_2, ..., S_{10}$, each of which is $\frac{n}{2} \times \frac{n}{2}$ in size, and is the sum of the differences of two matrices of step-1. This step takes $\Theta(n^2)$ to create all 10 matrices.
- ① Use the matrices created in the above 2 steps, recursively compute 7 product matrices P_1, P_2, \ldots, P_7 each of which $\frac{n}{2} \times \frac{n}{2}$
- Compute the desired submatrices $C_{11}, C_{12}, C_{21}, C_{22}$ of the result matrix C by adding and subtracting various combinations of the P_i matrices. We can compute this for all 4 submatrices in $\Theta(n^2)$ time.

Recurrence for the Strassen's Algorithm

We can setup the recurrence for the running time of Strassen's method as follows:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

Readings from CLRS Book (Introduction to Algorithms, 3rd Edition)

- ▶ Section 2.3.1 The divide-and-conquer approach
- ▷ Section 2.3.2 Analyzing divide-and-conquer algorithms
- ▶ Section 3.2. Standard notations and common functions
- ▶ Section 4.2. Strassen's algorithm for matrix multiplication
- ▷ Section 4.3 The substitution method for solving recurrences
- ▶ Section 4.5 The master method for solving recurrences