Collocations

- Words in context
 - distribution
 - fixed expressions
 - collocations
 - statistical properties
 - function words

Tests for collocations

- Statistics
- Significance tests

Significance

- Notations:
 - Type I error rate of .05
 - Alpha level of .05 or $\alpha = .05$
 - Finding is significant at the .05 level
 - Confidence level is 95%
 - 95% certainty that a result is not due to chance
 - A I in 20 chance of obtaining the result

- Statistics as testing of scientific hypotheses
- Strategies:
 - Formulating a Research Hypothesis or Alternative Hypothesis (Ha)
 - Statement of the expectation to be tested

- Strategies:
 - Derivation of a statement that is the opposite of the research hypothesis: Null Hypothesis (H0)
 - Testing the null hypothesis

- Statistics as testing of scientific hypotheses
- Strategies:
 - If the null hypothesis can be rejected, this is evidence in favor of the research hypothesis.

- Strategies:
 - Usually:
 - No prove for research hypothesis, just support for it.

- Research Hypothesis:
 - At IU linguistics students perform differently in statistics than computer science students.
 - $H_a: \mu_1 \neq \mu_2$
 - $H_a: \mu_1 \mu_2 \neq 0$

- Null Hypothesis:
 - At IU linguistics students perform the same in statistics as computer science students.
 - H_0 : $\mu_1 = \mu_2$
 - H_0 : μ_1 μ_2 = 0

- More specific: Research Hypothesis:
 - At IU linguistics students perform better in statistics than computer science students.
 - $H_a: \mu_1 > \mu_2$
 - H_a : $\mu_1 \mu_2 > 0$

- More specific: Null Hypothesis
 - At IU linguistics students perform worse in statistics, or equal to computer science students.
 - $H_0: \mu_1 \le \mu_2$
 - $H_0: \mu_1 \mu_2 \le 0$

- Given the distribution of a known area
 - e.g. normal distribution
- estimate the probability of obtaining a certain value as a result of chance.
- If the probability is low, the likelihood for a mere coincidence is low, i.e. a certain theory is correct.

- Two possible outcomes of test:
 - Rejection of null hypothesis
 - Acceptance of null hypothesis

Significance Table

	Ρ	0.99	0.95	0.10	0.05	0.01	0.005	0.001
d.f.	1	0.00016	0.0039	2.71	3.84	6.63	7.88	10.83
	2	0.020	0.10	4.60	5.99	9.21	10.60	13.82
	3	0.115	0.35	6.25	7.81	11.34	12.84	16.27
	4	0.297	0.71	7.78	9.49	13.28	14.86	18.47
_ 1	00	70.06	77.93	118.5	124.3	135.8	140.2	149.4

- Probability as significance level
- Example: Collocations
 - Null Hypothesis: independence of two words
 - $P(w_1w_2) = P(w_1) P(w_2)$

 Preferred activities over a population sample of 125 people:

	bowling	dancing	computer	total
male	30	29	16	75
female	12	33	5	50
total	42	62	21	125

- Is the choice of activities related to the gender?
 - If the two variables are independent, we can use these probabilities to predict how many people should be in each cell.
 - If the actual number is different from the expectation for independence, the two variables must be related.

- Research Hypothesis:
 - The variables are dependent.
- Null Hypothesis:
 - The variables are independent.

- Overall probability of a person in the sample being:
 - male: 75/125 = .6
 - female: 50/125 = .4

- Overall probability of each preference:
 - bowling: 42/125 = .336
 - dancing: 62/125 = .496
 - computer games: 21/125 = .168

- Independent events: multiplication rule
 - The probability of two events occurring is the product of their two probabilities.

- Probability of a person in the sample being male and preferring bowling:
 - P(male & bowling): $.6 \times .336 = .202$
 - Expectation: $.202 \times 125 = 25.2$

- Multiplication of row total with column total and division by total number in sample:
- $(75 \times 42) / 125 = 25.2$

	bowling	dancing	computer	total
male	30 (25.2)	29 (37.2)	16 (12.6)	75
female	12 (16.8)	33 (24.8)	5 (8.4)	50
total	42	62	21	125

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$
 • Formula:

$$\chi^2 = \frac{(30 - 25.2)^2}{25.2} + \frac{(29 - 37.2)^2}{37.2} + \frac{(16 - 12.6)^2}{12.6} + \frac{(12 - 16.8)^2}{16.8} + \frac{(33 - 24.8)^2}{24.8} + \frac{(5 - 8.4)^2}{8.4} = 9.097$$

- The larger χ^2 , the more likely the variables are related.
- Square effect of cells with large differences.

- Probability distribution of χ^2 :
 - Critical values in table
 - Degree-of-freedom:
 - df = (number-of-rows I) x (number-of-columns I)
 - Example: $(2 1) \times (3 1) = 2$
 - Example: 9.097 (< .025; > .01)

- Example: 9.097 (< .025; > .01)
 - Significance (at levels: .05, .01)!
 - Rejection of Null Hypotheses (independence of variables)

- Collocations
 - new, companies

	wi=new	wi¬new	total
w2=companies	8	4667	4675
w2¬companies	15820	14287181	14303001
total	15828	14291848	14307676