轨道力学笔记

19320125 易鹏

2021年10月17日

第1章 质点运动学

第2章 二体问题

2.1 惯性系的运动方程

2.1.1 质心 G 的运动物理量

质心
$$G$$
 位置矢量 $R_G = \frac{m_1 R_1 + m_2 R_2}{m_1 + m_2}$
速度 $v_G = \frac{m_1 \dot{R}_1 + m_2 \dot{R}_2}{m_1 + m_2}$
加速度 $a_G = \frac{m_1 \ddot{R}_1 + m_2 \ddot{R}_2}{m_1 + m_2}$ (2.1)

2.1.2 质心 G 与惯性系原点

记相对位置矢量为 $r = R_2 - R_1$, 单位化为 \hat{u}_r 由牛顿第二定律,

$$\begin{cases} \boldsymbol{F}_{21} = \frac{Gm_1m_2}{r^2} \cdot (-\widehat{\boldsymbol{u}}_r) = m_2 \ddot{\boldsymbol{R}}_2 \\ \\ \boldsymbol{F}_{12} = \frac{Gm_1m_2}{r^2} \cdot (\widehat{\boldsymbol{u}}_r) = m_1 \ddot{\boldsymbol{R}}_1 \end{cases}$$

所以

$$m_1\ddot{R}_1 + m_2\ddot{R}_2 = 0$$
 \Rightarrow $a_G = 0$ \Rightarrow 质心可作为惯性坐标系原点 \Rightarrow $R_G = R_{G_0} + v_G t$ (2.2)

2.2 相对运动方程

$$\ddot{r} = -\frac{\mu}{r^3} r \quad \mu = G(m_1 + m_2) \tag{2.3}$$

有类似的结果

$$\begin{cases}
\ddot{\mathbf{r}}_{2} = -\frac{\mu'}{r^{3}} \cdot \mathbf{r}_{2} & \mu' = \left(\frac{m_{1}}{m_{1} + m_{2}}\right)^{3} \cdot \mu \\
\ddot{\mathbf{r}}_{2} = -\frac{\mu''}{r^{3}} \cdot \mathbf{r}_{2} & \mu'' = \left(\frac{m_{2}}{m_{1} + m_{2}}\right)^{3} \cdot \mu
\end{cases} (2.4)$$

其原因为

$$\ddot{r} = \ddot{r}_{\text{fl}} + \dot{\Omega} \times r + \Omega \times (\Omega \times r) + 2\Omega \times \dot{r}_{\text{fl}}$$
(2.5)

 $\ddot{r} = \ddot{r}_{\text{flat}}$ 当且仅当 $\Omega = \dot{\Omega} = 0 \longrightarrow \text{运动坐标系为非旋转坐标系时,<math>\ddot{r}$ 可以用 $r_{\text{flat}} \longrightarrow \text{二体问题中的任一物体 flat}$ 相对于质心的运动方程有相同的形式。

2.3 角动量和轨道方程

2.3.1 角动量的定义

 m_2 相对于 m_1 的角动量为

$$H_{12} = \mathbf{r} \times m_2 \dot{\mathbf{r}} \tag{2.6}$$

定义比角动量为

$$\boldsymbol{h} = \boldsymbol{r} \times \dot{\boldsymbol{r}} = h \cdot \hat{\boldsymbol{h}} \tag{2.7}$$

2.3.2 角动量的性质

1. 两体问题中角动量不变

$$\frac{\mathrm{d}\boldsymbol{h}}{\mathrm{d}t} = \boldsymbol{r} \times \left(-\frac{\mu}{r^3}\boldsymbol{r}\right) = 0\tag{2.8}$$

2. 角动量的大小仅取决于相对速度的垂直分量

$$\boldsymbol{h} = r \boldsymbol{v}_{\perp} \cdot \hat{\boldsymbol{h}} \tag{2.9}$$

3. 开普勒第二定律

$$dA = \frac{1}{2}v dt \cdot r \sin \phi = \frac{1}{2}r(v \sin \phi)dt = \frac{1}{2}rv_{\perp}dt \quad \Rightarrow \quad \frac{dA}{dt} = \frac{h}{2}$$
 (2.10)

2.3.3 轨道方程

矢量方程r

$$\frac{\mathbf{r}}{r} + \mathbf{e} = \frac{\dot{\mathbf{r}} \times \mathbf{h}}{u} \tag{2.11}$$

标量方程 r

$$r = \frac{h^2}{\mu} \frac{1}{1 + e \cos \theta} \tag{2.12}$$

速度v

$$\begin{cases} v_{\perp} = \frac{h}{r} = r^{2}\dot{\theta} = \frac{\mu}{h}(1 + e\cos\theta) \\ v_{r} = \frac{dr}{dt} = \frac{\mu}{h}e\sin\theta \end{cases} \Rightarrow v^{2} = v_{r}^{2} + v_{\perp}^{2} = \frac{\mu^{2}}{h^{2}}(e^{2} + 2e\cos\theta + 1)$$
 (2.13)

飞行速度角 γ

$$\tan \gamma = \frac{v_r}{v_\perp} = \frac{e \sin \theta}{1 + e \cos \theta} \tag{2.14}$$

近地点

$$\theta = 0: \begin{cases} r_p = \frac{h^2}{\mu} \frac{1}{1+e} \\ v_r = 0 \end{cases}$$
 (2.15)

半通径 p

$$p = \frac{h^2}{\mu} \tag{2.16}$$

2.4 能量定律

能量定义

$$\varepsilon = \frac{v^2}{2} - \frac{\mu}{r} = \frac{1}{2} \frac{\mu^2}{h^2} (e^2 - 1) \tag{2.17}$$

2.5 小结

轨道方程
$$r=\frac{h^2}{\mu}\longrightarrow$$
 参数 $h,\mu,e,\theta,p\longrightarrow$ \begin{cases} 近地点 拱线 \longrightarrow 能量定律: $\varepsilon=\frac{v^2}{2}-\frac{\mu}{r}=\frac{1}{2}\frac{\mu^2}{h^2}(e^2-1)$ 飞行路径角

2.6 圆轨道 (e=0)

轨道半径	$r = \frac{h^2}{\mu}$	速度	$v = v_{\perp} = \frac{h}{r} = \frac{\mu}{h}$
径向速度	$v_r = 0$	切向速度	$v_{\perp} = \frac{h}{r} = \frac{\mu}{h}$
轨道周期	$T = \frac{2\pi r}{v} = \frac{2\pi rh}{\mu} = \frac{2\pi}{\sqrt{\mu}} \cdot r^{\frac{3}{2}}$	轨道能量	$\varepsilon = -\frac{1}{2} \frac{\mu}{h^2} = -\frac{\mu}{2r}$

表 1: 圆轨道的各个参数

2.7 椭圆轨道 (0 < e < 1)

远地点	$r_a = \frac{h^2}{\mu} \frac{1}{1 - e} = a(1 + e)$	近地点	$r_p = \frac{h^2}{\mu} \frac{1}{1+e} = a(1-e)$
短半轴	$a = \frac{r_a + r_p}{2} = \frac{h^2}{\mu} \frac{1}{1 - e^2}$	长半轴	$b = a\sqrt{1 - e^2}$
离心率	$e = \frac{r_a - r_p}{r_a + r_p}$	飞行路径角	$\tan \gamma = \frac{e \sin \theta}{1 + e \cos \theta}$
轨道半径	$r = \frac{h^2}{\mu} \frac{1}{1 + e \cos \theta} = \frac{a(1 - e^2)}{1 + e \cos \theta}$	速度	$v^{2} = v_{r}^{2} + v_{\perp}^{2} = \frac{\mu^{2}}{h^{2}} (e^{2} + 2e \cos \theta + 1)$
径向速度	$v_r = \frac{\mu}{h}e\sin\theta$	切向速度	$v_{\perp} = \frac{\mu}{h} (1 + e \cos \theta)$
轨道周期	$T = \frac{\Delta A}{h/2} = \frac{2\pi ab}{h} = 2\pi \left(\frac{h}{\sqrt{1 - e^2}}\right)^3 = \frac{2\pi}{\sqrt{\mu}}a^{\frac{3}{2}}$	轨道能量	$\varepsilon = -\frac{1}{2} \frac{\mu}{h^2} (1 - e^2) = -\frac{\mu}{2a}$

表 2: 椭圆轨道的各个参数

 m_1, m_2 在整个运动周期内的平均距离为

$$\bar{r} = a\sqrt{1 - e^2} = \sqrt{r_a r_p} = b$$
 (2.18)

将真近点角平分 n 等分, 空间上的平均。

2021 年秋季学期

新近线
 海点
 β
 β
 虚焦点
 拱线

图 2: 双曲线轨道示意图

2.8 抛物线轨道 (e = 1)

离心率	<i>e</i> = 1	飞行路径角	$\tan \gamma = \frac{\sin \theta}{1 + \cos \theta} \implies \gamma = \frac{\theta}{2}$
轨道半径	$r = \frac{h^2}{\mu} \frac{1}{1 + \cos \theta}$	(逃逸) 速度	$v = \sqrt{\frac{2\mu}{r}}$
径向速度	$v_r = \frac{\mu}{h} \sin \theta$	切向速度	$v_{\perp} = \frac{\mu}{h} (1 + \cos \theta)$
轨道周期	无 $(\theta \to 180^\circ, r \to \infty)$	轨道能量	$\varepsilon = -\frac{1}{2} \frac{\mu}{h^2} (1 - e^2) = 0$

表 3: 抛物线轨道的各个参数

2.9 双曲线轨道 (e > 1)

短半轴	$a = \frac{r_a + r_p}{2} = \frac{h^2}{\mu} \frac{1}{e^2 - 1}$	长半轴	$b = a\sqrt{e^2 - 1}$
远地点	$r_a = \frac{h^2}{\mu} \frac{1}{1 - e} = -a(e + 1)$	近地点	$r_p = \frac{h^2}{\mu} \frac{1}{1+e} = a(1-e)$
转向角	$\sin\frac{\delta}{2} = \sin(90^\circ - \beta) = \cos\beta = \frac{1}{e}$	准径	$\Delta = a\sqrt{e^2 - 1}$
轨道半径	$r = \frac{h^2}{\mu} \frac{1}{1 + e \cos \theta} = \frac{a(e^2 - 1)}{1 + e \cos \theta}$	速度	$v^{2} = v_{r}^{2} + v_{\perp}^{2} = \frac{\mu^{2}}{h^{2}} (e^{2} + 2e \cos \theta + 1)$
径向速度	$v_r = \frac{\mu}{h}e\sin\theta$	切向速度	$v_{\perp} = \frac{\mu}{h} (1 + e \cos \theta)$
轨道周期	\mathcal{E} $(\theta \to \theta_{\infty}, r \to \infty)$	轨道能量	$\varepsilon = -\frac{1}{2} \frac{\mu}{h^2} (1 - e^2) = -\frac{\mu}{2a}$

表 4: 双曲线轨道的各个参数

图 3: 抛物线示意图

双曲线的飞行路径角按照统一的公式计算:

$$\tan \gamma = \frac{e \sin \theta}{1 + e \cos \theta} \tag{2.19}$$

极限角 θ_{∞} 为

$$\sin \theta_{\infty} = \frac{\sqrt{e^2 - 1}}{e} \tag{2.20}$$

2.10 剩余速度

在三种轨道类型中,只有双曲线轨道的轨道能量是正值,则定义剩余速度为

$$v_{\infty} = \sqrt{\frac{\mu}{a}} = \frac{\mu}{h} \sqrt{e^2 - 1}$$
 (2.21)

代表航天器超出中心引力逃逸所需要的能量,则双曲线轨道的速度可以写为

$$v^2 = v_{\text{ihith}}^2 + v_{\infty}^2 \tag{2.22}$$

记特征能量为

$$C_3 = v_{\infty}^2 \tag{2.23}$$

设计火箭的特征能量要比其任务所需的特征能量大,以防突发情况。

抛物线是在无穷远闭合的轨道,是能量为负值的椭圆轨道和非闭合且轨道能量为正值的双曲线轨道之间的分界 线。