Semantics of Probabilistic Programs Mark Goldstein

1 Intro

A walkthrough of [1] and [2], mainly focusing on the presentation in [2]. We first briefly review measures and kernels because they show up in the semantics.

2 Measures

A σ -algebra Σ_X on a set X is a collection of subsets of X that contains \emptyset and is closed under complements and countable unions. A **measurable space** is a pair (X, Σ_X) of a set and a σ -algebra on it. The elements of Σ_X , which are themselves sets of elements in X, are called **measurable sets**. For example, the Borel sets are the smallest σ -algebra on \mathbb{R} that contains the intervals. This is the usual σ -algebra for \mathbb{R} . For any countable set, you can always start off with the individual elements of the set: satisfying complements and unions this gives you the powerset σ -algebra.

A measure on a measurable space (X, Σ_X) is a function $\mu : \Sigma_X \to [0, \infty]$ into the set $[0, \infty]$ of extended non-negative reals that takes countable disjoint unions to sums, i.e. $\mu(\emptyset) = 0$ and $\mu(\bigcup_{n \in \mathbb{N}} U_n) = \sum_{n \in \mathbb{N}} \mu(U_n)$ for any \mathbb{N} -indexed sequence of disjoint measurable sets U_n . A **probability measure** is a measure μ such that $\mu(X) = 1$. For example, the Lebesgue measure λ on \mathbb{R} is generated by $\lambda(a,b) = b-a$. For any $x \in X$, the Dirac measure $\delta_x(U) = 1$ if $x \in U$ and 0 otherwise.

3 Kernels

A **kernel** k from X to Y, notated $k: X \rightsquigarrow Y$, is a function $k: X \times \Sigma_Y \to [0, \infty]$ such that

- for fixed $x, k(x, -): \Sigma_Y \to [0, \infty]$ is a measure
- for fixed dy, $k(-, dy): X \to [0, \infty]$ is a measurable function.

An intuitive example of kernels at work is conditional probability. Take k(x, -) to be a probability measure $\mu_Y : \Sigma_Y \to [0, 1]$ on Y given a particular value X = x: $\sum_{dy \in \Sigma_y} k(x, dy) = 1$. Note that $\sum_{x \in X} k(x, dy) \neq 1$ in general.

Let X,Y,Z be measurable spaces and let $k^1:X\times Y\leadsto Z$ and $k^2:X\leadsto Y$ be s-finite kernels (**TODO**: explain s-finiteness). Then we can define the composition $(k^1\star k^2):X\leadsto Z$ as

$$(k^1 \star k^2)(x, U) = \int_Y k^2(x, dy) k^1(x, y, U)$$

For intuition, consider $k(x, -): \Sigma_Y \to [0, 1]$ to be the probability measure that tells you how likely it is to start off at location x and end up in the interval dy. Then the composition $(k^1 \star k^2)(x, dz) = \int_Y k^2(x, dy) k^1(x, y, dz)$ can be taken to represent the probability of starting off at x and ending up in the interval dz, where we take a step in-between to land on y, but average out across all intervals dy that we can land in when jumping from x.

4 Types and Semantics

The two papers [1,2] don't actually define the set of terms, but they are implied to be the typical ones in a language like Haskell. The 2018 POPL paper on semantics for higher-order languages [3] does formally introduce a kind and type system and a set of terms. We define our types as:

$$\mathbb{A}, \mathbb{B} ::= \mathbb{R}|P(\mathbb{A})|1|\mathbb{A} \times \mathbb{B}|\sum_{i} \mathbb{A}_{i \in I}$$

where I is countable and non-empty. As we will see, types are to be interpreted as measurable spaces $[[\mathbb{A}]]$. We have sum and product types. We have a type \mathbb{R} that denotes the Reals $[[\mathbb{R}]]$. We have a type $P(\mathbb{A})$ that denotes the set of probability measures $[[P(\mathbb{A})]]$ over a space denoted by \mathbb{A} . We have the type 1 the denotes a singleton set. For bools, we can just take (1+1) and P(1+1) is the type for distributions over bools. For the natural numbers, we can use $\sum_{i\in\mathbb{N}} 1$.

Typing judgements: $\Gamma \vdash_d$ for deterministic judgements and $\Gamma \vdash_p$ for probabilistic judgements. Having the two typing judgements is mainly for notational clarity: it helps us to define interpretation differently for deterministic and probabilistic terms.

4.1 Typing Judgements and Interpretations for Deterministic Terms

Deterministic terms $\Gamma \vdash_d t : \mathbb{A}$ are interpreted as measurable functions $[[t]] : [[\Gamma]] \to [[\mathbb{A}]]$, where $[[t]](\gamma) = x$ is an element of the underlying set $[[\mathbb{A}]]$ and not a measurable set in $\Sigma_{[[\mathbb{A}]]}$. **Note:** the following informally uses the notation $\Gamma :: (x : \mathbb{A}) :: \Gamma'$ to show a particular variable x of type \mathbb{A} in the environment.

• basic term $x : \mathbb{A}$

$$\frac{}{\Gamma :: (x : A) :: \Gamma' \vdash_d x : \mathbb{A}} \qquad [[x]](\gamma :: d :: \gamma') = d$$

• Disjoint Sum Type

$$\frac{\Gamma \vdash_d t : \mathbb{A}_i}{\Gamma \vdash_d (i, t) : \sum_{i \in I} \mathbb{A}_i} \qquad [[(i, t)]](\gamma) = (i, [[t]](\gamma))$$

• Deterministic case

$$\frac{\Gamma \vdash_d t : \sum_{i \in I} \mathbb{A}_i \qquad (\Gamma :: (x : \mathbb{A}_i) \vdash_d u_i : \mathbb{B})_{i \in I}}{\Gamma \vdash_d (\mathsf{case} \ t \ \mathsf{of} \ \{(i, x) \to u_i\}_{i \in I}) : \mathbf{B}}$$

[[case
$$t$$
 of $\{(i, x) \to u_i\}_{i \in I}$] $(\gamma) = [[u_i]](\gamma, d)$ if $[[t]](\gamma) = (i, d)$

• Unit ()

$$\frac{1}{\Gamma \vdash_d ():1} \qquad [[()]](\gamma) = ()$$

• Product Type

$$\frac{\Gamma \vdash_d t_0 : \mathbb{A}_0 \qquad \Gamma \vdash_d t_1 : \mathbb{A}_1}{\Gamma \vdash_d (t_0, t_1) : \mathbb{A}_0 \times \mathbb{A}_1} \qquad [[(t_0, t_1)]](\gamma) = ([[t_0]](\gamma), [[t_1]](\gamma))$$

• Projection

$$\frac{\Gamma \vdash_d t : \mathbb{A}_0 \times \mathbb{A}_1}{\Gamma \vdash_d \pi_j(t) : \mathbb{A}_j} \qquad [[\pi_j(t)]](\gamma) = d_j \text{ if } [[t]](\gamma) = (d_0, d_1)$$

where the case expression above has a deterministic continuation u_i . We will come back to the probabilistic continuation case. Now the semantics for sequencing.

4.2 Typing Judgements and Interpretations for Probabilistic Terms

Probabilistic terms $\Gamma \vdash_p t : \mathbb{A}$ are interpreted as s-finite kernels $[[t]] : [[\Gamma]] \leadsto [[\mathbb{A}]]$.

• return(t)

$$\frac{\Gamma \vdash_d t : \mathbb{A}}{\Gamma \vdash_p \mathtt{return}(t) : \mathbb{A}} \qquad \qquad [[\mathtt{return}(t)]](\gamma, da) = \delta_{[[t]](\gamma)}(da)$$

this corresponds to a Dirac Delta measure sitting at a point $[[t]]_{\gamma}$.

 \bullet let x = t in u

$$\frac{\Gamma \vdash_p t : \mathbb{A} \quad \Gamma, x : \mathbb{A} \vdash_p u : \mathbb{B}}{\Gamma \vdash_p \mathtt{let} \ x = t \ \mathtt{in} \ u : \mathbb{B}} \qquad \qquad [[\mathtt{let} \ x = t \ \mathtt{in} \ u]](\gamma, db) = \int_{x, dx \in [[\mathbb{A}]]} [[u]] \Big(\gamma, x, db\Big) [[t]] \Big(\gamma, dx\Big)$$

This one takes careful reading. Consider the kernel composition definition above. Take k_1 to be [[u]] and take k_2 to be [[t]]. Then $(k^1 \star k^2)(\gamma, db) = ([[u]] \star [[t])(\gamma, db)$

• probabilistic case

$$\frac{\Gamma \vdash_d t : \sum_{i \in I} \mathbb{A}_i \quad (\Gamma, x : \mathbb{A}_i \vdash_p u_i : \mathbb{B})_{i \in I}}{\Gamma \vdash_p (\mathsf{case} \ t \ \mathsf{of} \ \{(i, x) \to u_i\}_{i \in I}) : \mathbf{B}}$$

$$[[case \ t \ of \ \{(i,x) \to u_i\}_{i \in I}]](\gamma, db) = [[u_i]](\gamma :: d, db) \ if \ [[t]](\gamma) = (i,d)$$

• sample(t)

$$\frac{\Gamma \vdash_d t : P(\mathbb{A})}{\Gamma \vdash_p \mathtt{sample}(t) : \mathbb{A}} \qquad \qquad [[\mathtt{sample}(t)]](\gamma, da) = \Big([[t]](\gamma)\Big)(da)$$

• score(t)

$$rac{\Gamma dash_d \ t : \mathbb{R}}{\Gamma dash_p \ \mathtt{score}(t) : 1}$$

$$[[\mathtt{score}(t)]](\gamma, du) = \left\{ \begin{array}{ll} abs\Big([[t]](\gamma)\Big), & \text{if } du = \{()\} \\ 0, & \text{if } du = \emptyset \end{array} \right\}$$

4.3 Typing Judgements and Interpretation for Normalize

$$\frac{\Gamma \vdash_p t : \mathbb{A}}{\Gamma \vdash_d \mathtt{normalize}(t) : \mathbb{R} \times P(\mathbb{A}) + 1 + 1}$$

To give it a semantics, we must find the normalizing constant to divide by. Consider $\Gamma \vdash_p t : \mathbb{A}$ and let $evidence_t = [[t]]_{\gamma, [[\mathbb{A}]]}$. Then:

$$[[\mathtt{normalize}(t)]](\gamma) = \left\{ \begin{array}{ll} (0, (\mathtt{evidence}_t, \frac{[[t]](\gamma, (-))}{\mathtt{evidence}_t})), & \text{if } \mathtt{evidence}_t \in (0, \infty) \\ (1, ()), & \text{if } \mathtt{evidence}_t = 0 \\ (2, ()), & \text{if } \mathtt{evidence}_t = \infty \end{array} \right\}$$

5 Example Programs

...

6 Commutativity

...

7 Higher Order

...

8 Citation

- 1. Staton et al. Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. LICS 2016. https://arxiv.org/pdf/1601.04943.pdf
- 2. Staton. Commutative semantics for probabilistic programming. ESOP 2017. 'http://www.cs.ox.ac.uk/people/samuel.staton/papers/esop2017.pdf
- 3. Scibior et al. Denotational validation of Bayesian inference. POPL 2018. https://arxiv.org/pdf/1711.03219.pdf