Algebra lineare di base

Con il termine data science si intende un insieme di metodi statistici per lo studio di una pluralità di variabili quantitative e/o qualitative rilevate su più unità. L'obiettivo dell'analisi dei dati è la ricerca di una struttura "pattern" nei dati che, in prima approssimazione, può essere costituita dall'accertamento delle relazioni tra le variabili e dall'individuazione di somiglianze tra le unità. Il punto di partenza per l'analisi è la tabella (matrice) X di dimensione $n \times p$ dove x_{is} (l'elemento che è all'incrocio della riga i e della colonna s indica la modalità o codice nella i-esima unità statistica della variabile s-esima ($i=1,\ldots,n$; $s=1,2,\ldots,p$). Ad esempio nel caso del file di input Firm.xlsx la matrice dei dati di partenza è di dimensione 107×9 (la prima colonna "Code" contiene i nomi delle righe). E' necessario, quindi, introdurre una serie di operazioni preliminari sulle matrici.

2.1 Operazioni elementari con le matrici

Una matrice A è un insieme di $n \times p$ elementi disposti in n righe e p colonne. L'elemento situato all'incrocio tra la riga i e la colonna j viene indicato con a_{ij} . Ciascuna colonna (contenente n elementi) può essere vista come un punto nello spazio R^n . Viceversa, ciascuna delle n righe (contenente p elementi) può essere vista come un punto nello spazio R^p . Una matrice $n \times p$ è anche un insieme di p vettori colonna (oppure di n vettori riga). Si chiama scalare un vettore di un solo elemento.

Una matrice A di dimensione $n \times p$ si dice quadrata se n = p. Data una matrice A di dimensione $n \times p$ la sua trasposta (di dimensione $p \times n$) si ottiene da A scambiando tra loro le righe con le colonne. Se A' = A allora la matrice si dice simmetrica.

Se c è uno scalare uguale e A e B sono due matrici le operazioni più comuni sono:

- 1. c * A: moltiplicazione di uno scalare per una matrice;
- 2. A': trasposta di A;
- 3. A + B: somma elemento per elemento;