QUESTIONS FROM COMPETITIVE EXAMS

7.1 Introduction 7.2 AC Generator

(MHT-CET 2002)

- 1. E.m.f. is given by $e = 200 \sin 50 t$. The r.m.s. value of current in a circuit of resistance 50Ω is
 - a) 0.02828
- b) 0.2828
- c) 2.828
- d) 28.28

7.3 Average and r.m.s. Values 7.4 Phasors

(MHT-CET 2003)

- 2. In an a.c. circuit containing only capacitor,
 - a) current leads voltage by π
- b) current is in phase with voltage
- c) current leads voltage by $\pi/2$
- d) current lags voltage by $\pi/2$

(MHT-CET 2009)

- 3. In a circuit the current lags behind the voltage by a phase difference of $\pi/2$, the circuit contains which of the following?
 - a) only R
- b) only C
- c) only L
- d) R and C

(MHT-CET 2022)

4. When a.c. source is connected across a pure capacitor, the correct phase relation between current (i_c) and voltage (e_c) is shown in figure

7.5 Different Types of AC Circuits

5. Which graph gives the correct relation between Z and f for the given R-C circuit?

13.4	HT-	CE	T	20	11)
	111.	-		Sales and	200	

		(1417.	•						
16.	An emf e = $200 \sqrt{2}$	sin (100t) volt is	applied across capa	citor of capacitance 2 μ F, then					
	current through ca	pacitor is	c) 2 mA	d) 3 mA					
	a) 4 mA	1. \ A(1) (3) (A)	T-CET 2012)						
	(MH1-CL1 2022)								
17.	In LCR series circu	n LCR series circuit an ac emf of 2 volt and frequency 50 Hz is applied across the ombination. If resistance is 4 Ω , capacitance is 8 μ F and inductance is 10 ⁻² H, then the							
	combination. If res	istance is 4 sz, cup		then the					
	voltage across indi	b) (5/3 V)	c) (2/3 V)	d) (0.02 V)					
	a) (3/5 V)	(MH	(-CET 2015)						
10	Same current is flor	wing in two a.c. C	ircuits. First contain	s only inductance and second					
18.	Same current is flowing in two a.c. circuits. First contains only inductance and second contains only capacitance. If frequency of a.c. is increased for both, the current will								
	a) increase in first circuit and decrease in second b) increase in both circuits								
	c) decrease in both	circuits							
	d) decrease in first	circuit and increa	ase in second						
		(МН	-CET 2018)						
19.	An alternating vol	tage e = $200\sqrt{2}$	sin (100 t) volt is	connected to 1 µF capacitor					
201	through a.c.ammete								
	a) 5mA	b) 10mA	c) 15mA	d) 20mA					
	*	(MH	Γ-CET 2019)						
20.	In a series LCR circ the circuit is	uit R = 300 Ω , L =	0.9 H, C = $2 \mu F$, ω =	1000 rad/s. The impedance of					
	a) 900 Ω	b) 500 Ω	c) 400 Ω	d) 1300 Ω					
21.	An alternating volta for the first time wh	ige is given by e = nen t =	100 sin ($\omega t + \pi/6$) V,	the voltage will be maximum					
	a) $\frac{T}{2}$, T	T	Т					
	$\frac{a}{2}$	b) $\frac{T}{12}$	c) $\frac{T}{6}$	d) $\frac{T}{3}$					
		(MH)	Γ-CET 2020)	**					
22.				series combination of resistor					
	'R' and inductance $\left(\frac{\sqrt{3}}{\pi}\right)$ H. If the phase difference between applied e.m.f. and current								
	'I' is 60°, then the va	alue of R is	1.50						
	a) 300 Ω	b) 50 Ω	c) 200 Ω	d) 100 Ω					
		(MH)	Γ-CET 2021)	200					
23.	A power supply of 220 V, 50 Hz is connected to the supply the								
	value is	flowing in the re	esistor, to change from	om maximum value to r.m.s.					
	a) 10×10^{-3} s	b) 2.5×10^{-3} s							
24.		Pacitor having	c) $2.5 \times 10^3 \text{ s}$	d) $5 \times 10^{-3} \text{ s}$					
	4. A parallel plate capacitor having plates of radius 6 cm has capacitance 100 pf. It is connected to 230 V a.c. supply with angular frequency 300 rad/s, the r.m.s. value								
-	a) 6.9 × 10 ⁻⁶ A	b) 2.3 × 10 ⁻⁵ A							

(MHT-CET 2014)

In LCR series circuit, an alternating e.m.f. 'e' and current 'i' are given by the equalion 31.

e = 100 sin (100 t) volt, i = 100 sin $\left(100t + \frac{\pi}{3}\right)$ mA.

The average power dissipated in the circuit will be

- b) 10 W
- d) 2.5 W

a) 100 W

(MH-CET 2017)

In series LCR circuit R = 18 Ω and impedance is 33 Ω. An r.m.s. voltage 220 V is applied 32. across the circuit. The true power consumed in the a.c. circuit is

- a) 220 W
- b) 400 W
- c) 600 W
- d) 800 W

Out of the following graphs, which graph shows the correct relation (graphical 33. representation) for LC parallel resonant circuit?

7.7 LC Oscillations

(MH-CET 2005)

The parallel combination of inductor and capacitor is called as 34.

- a) rectifier circuit
- b) tank circuit
- c) acceptor circuit d) filter circuit

(MH-CET 2009) The frequency of LC oscillation is given by 35.

a) $f = \frac{1}{2\pi \sqrt{1C}}$

b) $f = 2\pi \sqrt{LC}$

c) $f = \frac{1}{\pi \sqrt{1 C}}$

d) $f = \frac{1}{4\pi\epsilon_0} \int LC$

(MH-CET 2016) 36.

- The LC parallel resonant circuit
 - a) has a very high impedance
 - c) acts as resistance of very low value
- b) has a very high current
- d) has zero impedance

invita

7.8 Electric Resonance

(MHT-ECET 2004)

b) 1

d) 1.5

(MHT-CET 2007)

the p.d across the inductor (3 mH) is same as that across the condenser (30 µF) in a the p.d account, then the frequency of the applied emf is
b) 500 Hz

a) 180 Hz

d) 5 kHz

(MHT-CET 2009)

some current is flowing in two alternating circuits. The first circuit contains only inductance and the other contains only a capacitor. If the frequency of the emf of ac is inductation increased, the effect on the value of the current will be

- a) increases in the first and decreases in the other
- b) increases in both the circuits
- decreases in both the circuits
- d decreases in the first and increases in the other

(MHT-CET 2012)

In series LCR circuit at resonance,

- a) current is maximum and voltage is minimum
- b) current is maximum and voltage is maximum
- current is minimum and voltage is maximum
- d current is minimum and voltage is minimum

(MHT-CET 2021)

A resonant circuit has a capacitor of 2.5 µF and a coil of inductance L. In order to transmit a wave of wavelength 300 m, the value of inductance 'L' of the coil should be

a) 10-8 H

b) 10⁻⁶ H

c) $3 \times 10^{-8} \text{ H}$

d) 2×10^{-7} H

(MHT-CET 2022)

Which of the following graphs represents the impedance (Z) of LCR series resonant combination?

7.9 Q - factor

(MHT-CET 2005)

the industry (MHT-CET 2005)

(MHT-CET 2005)

(MHT-CET 2005) the inductance should be changed from L to

b) L/4

c) L/2

d) 2L