Assignment 3

Task 3: Loops & Numerical Computation

The goal is to prove the method mult(x, y) returns x * y for all x, $y \ge 0$

Loop invariant:

$$x * y == k * n + res$$

before the loop starts, we have

$$k = x$$

$$n = y$$

$$res = 0$$

which means:

$$k * n + res = x * y + 0 = x * y$$

the loop invariant (x * y == k * n + res) holds before the first iteration

there are two cases

Let

 $k_old = k$, $n_old = n$, $res_old = res$

After going that if:

res = res + n,
$$k = k / 2$$
, $n = 2 * n$

Case 2:
$$k \% 2 == 0$$
 (Even)
res remains unchanged
 $k = k / 2$, $n = 2 * n$

The loop will terminate when k == 0

This matches the postcondition
// post-condition: returns x * y

Task 4: Looping an Array

Precondition:

- 1. A is not Null (A!= null)
 - 2. X is any integer
 - 3. A.length >= 0

Postcondition:

- 1. if x appears in the array A, return the last index i that A[i] == x.
 - 2. if x doesn't appear in the array, then just return -1

Loop invariant

We iterate from the back of the array (i = n- 1) to the beginning (i=0) so

For all indices j that i < j < A.length, A[j] != x

By which I mean is that: Every element to the right of I has been checked but did not contain x

So, this ensures that when A[i] == x, it is the last occurrence.

So, we begin with

int n = A.length, i = n - 1;

at this point the range i < j < A.length is empty (no j satistfies this condition) so the invariant is fine

There are 2 cases

Case 1: A[i] == x

The function returns i

By the invariant, we know all j > i do not contain x, so i is the last occurrence. This satisfies the postcondition

Case 2: A[i] != x

Decrement will happen: i = i -1

We then can add i + 1 into the checked indices Since A[i + 1] != x, the invariant is maintained for the new i

Termination:

Loop will end when i < 0 which means all indices $0 \le j < A$.length have been checked, and none of them equal x

The function then returns -1

Poscondition is satisfied when x is not found