Huấn luyện mạng nơ-ron nhiều tầng ẩn bằng thuật toán Adam

Nhóm sinh viên thực hiện:

- Nguyễn Ngọc Lan Như 1712644
- Hoàng Minh Quân 1712688

Giáo viên hướng dẫn: Th.S. Trần Trung Kiên

Muc luc

- 1. Giới thiệu đề tài
- 2. Kiến thức nền tảng
- 3. Thuật toán Adam
- 4. Thí nghiệm
- 5. Tổng kết

Tại sao lại sử dụng mạng nơ-ron nhiều tầng ẩn?

Tại sao lại sử dụng mạng nơ-ron nhiều tầng ẩn?

MACHINE TRANSLATION

Tại sao lại sử dụng mạng nơ-ron nhiều tầng ẩn?

Tại sao lại sử dụng mạng nơ-ron nhiều tầng ẩn?

Bài toán huấn luyện mạng nơ-ron nhiều tầng ẩn

- Input: Hàm chi phí với tham số là các trọng số của mạng nơ-ron nhiều tầng ẩn. Hàm chi phí cho biết sự sai lệch giữa kết quả dự đoán của mạng nơ-ron so với giá trị đúng trên tập dữ liệu huấn luyện, hay độ lỗi.
- Output: Bộ trọng số của mạng nơ-ron nhiều tầng ẩn cho độ lỗi là nhỏ nhất, hoặc đủ nhỏ.

Giới thiệu đề tài Thách thức

- Mặt phẳng lỗi phức tạp:*
 - Nhiều cực tiểu địa phương.
 - Nhiều điểm yên ngựa.
 - Nhiều vùng bằng phẳng.
 - Nhiều rãnh hẹp.

*Yann Dauphin et al., "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", *Advances in Neural Information Processing Systems 27*, 2014, pp. 2933-2941.

Giới thiệu đề tài Đề tài liên quan: GD

- Hướng tiếp cận truyền thống: Gradient Descent (GD)
 - Sử dụng gradient của cả tập dữ liệu để xác định hướng đi có sự thay đổi lớn nhất.
 - Chi phí tính toán cao

Đề tài liên quan: SGD

- Hướng tiếp cận truyền thống: Stochastic Gradient Descent (SGD)
 - Sử dụng gradient của một tập con của dữ liệu để xấp xỉ hướng của gradient trên cả tập dữ liệu.

Đề tài liên quan: SGD

» 0

Gradient Descent

Stochastic Gradient Descent

Giới thiệu đề tài Đề tài liên quan: Momentum

- Cải tiến: Stochastic Gradient Descent with Momentum (Momentum)*.
 - Tăng độ lớn cập nhật khi chiều gradient không đổi.
 - Giảm độ lớn cập nhật khi chiều gradient thay đổi liên tục.

^{*}Ning Qian, "On the momentum term in gradient descent learning algorithms", *Journal of the International Neural Network Society*, 1999, vol. 12, pp. 145-151.

Đề tài liên quan: Momentum

Di chuyển nhanh hơn tại các vùng bằng phẳng

Đề tài liên quan: Momentum

Xấp xỉ gradient của cả tập dữ liệu tốt hơn.

GD with Momentum

SGD with Momentum

Đề tài liên quan: Momentum

Giảm dao động.

Đề tài liên quan: Momentum

 Dao động gần cực tiểu khi hệ số quán tính quá lớn.

Đề tài liên quan: NAG

- Cải tiến: Nesterov Accelerated Descent (NAG)*
 - Tính đạo hàm tại (điểm hiện tại + quán tính) để lấy hướng cập nhật tiếp theo rồi mới cộng quán tính vào lượng cập nhật.

*Nesterov, Y., "A method of solving a convex programming problem with convergence rate O(1/sqrt(k))", *Soviet Mathematics Doklady*, 1983, vol. 27, pp. 372-376.

Đề tài liên quan: NAG

Đường đi ổn định hơn.

2 --1-2 --2

SGD with Momentum

SGD with Nesterov

Đề tài liên quan: NAG

Cho phép sử dụng hệ số momentum lớn hơn.

2 --1-2 --2

SGD with Momentum

SGD with Nesterov

Đề tài liên quan: Hạn chế

 Tỉ lệ học cố định không phù hợp cho tất cả các hướng.

Đề tài liên quan: Hạn chế

2.0 1.800 1.5 - 1.575 1.0 - 1.350 0.5 - 1.125 0.0 0.900 0.675 -0.5 -- 0.450 -1.00.225 -1.5 -0.000 -2.0 -0.0 0.5 1.0 -2.0 -1.5 -1.0 -0.5

Adam

GD with Momentum

Đề tài liên quan: Hạn chế

- → Cần một tỉ lệ học phù hợp cho từng hướng.
- → Adaptive learning rate

Giới thiệu đề tài Bài báo tìm hiểu

- "Adam: A method for stochastic optimization",
 Diederik P. Kingma, Jimmy Lei Ba (2014).
 - Sử dụng tỉ lệ học riêng biệt cho từng trọng số.
 - Hội tụ về điểm cực tiểu có độ lỗi thấp.

Tối ưu hóa (optimization)

Tối ưu hóa (optimization)

Tối ưu hóa (optimization)

Momentum

Kiến thức nền tảng AdaGrad

Tính đạo hàm theo từng tham số.

$$g_t = \nabla_{\theta} \mathcal{L}(\theta_t)$$

Cập nhật G ở bước hiện tại.

$$G_t = G_{t-1} + diag(\boldsymbol{g_t}, \boldsymbol{g_t^T})$$

Cập nhật trọng số.

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}}.g_t$$

Kiến thức nền tảng AdaGrad

$$g_t = \begin{bmatrix} g_{t,1} \\ g_{t,2} \\ g_{t,3} \\ \vdots \\ g_{t,n} \end{bmatrix} g_t^T = \begin{bmatrix} g_{t,1} & \dots & g_{t,n} \end{bmatrix}$$

$$g_t \cdot g_t^T = \begin{bmatrix} g_{t,1} \\ g_{t,2} \\ g_{t,3} \\ \vdots \\ g_{t,n} \end{bmatrix} [g_{t,1} \quad \cdots \quad g_{t,n}] = \begin{bmatrix} g_{t,1}^2 & \cdots & g_{t,1} \cdot g_{t,n} \\ \vdots & \ddots & \vdots \\ g_{t,n} \cdot g_{t,1} & \cdots & g_{t,n} \end{bmatrix}$$

Kiến thức nền tảng AdaGrad

Tính đạo hàm theo từng tham số.

$$g_t = \nabla_{\theta} \mathcal{L}(\theta_t)$$

Cập nhật G ở bước hiện tại.

$$G_t = G_{t-1} + \boldsymbol{g}_t^2$$

Cập nhật trọng số.

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}}.g_t$$

AdaGrad

AdaGrad và RMSprop

AdaGrad

•
$$g_t = \nabla_{\theta} \mathcal{L}(\theta_t)$$

•
$$G_t = G_{t-1} + g_t^2$$

$$\theta_{t+1} = \theta_t / \frac{\eta}{\sqrt{G_t + \epsilon}} \cdot g_t$$

giá trị không âm

RMSprop

•
$$g_t = \nabla_{\theta} \mathcal{L}(\theta_t)$$

$$G_t = \gamma G_{t-1} + (1 - \gamma) \boldsymbol{g}_t^2$$

•
$$G_t = G_{t-1} + g_t^2$$
 • $G_t = \gamma G_{t-1} + (1 - \gamma)g_t^2$
• $\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \cdot g_t$ • $\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \cdot g_t$

"leaky"

3. Thuật toán Adam

Thuật toán Adam

Siêu tham số

- α: tỉ lệ học
- β_1 , β_2 : tỉ lệ suy biến của trung bình đạo hàm và bình phương đạo hàm (mặc định lần lượt là 0.9 và 0.999)
- ∈: hệ số nhỏ

Thuật toán Adam

Các bước thực hiện

Tăng bước chạy t

$$t = t + 1$$

Tính đạo hàm của hàm chi phí trên từng tham số

$$g_t = \nabla_{\theta} f_t(\theta_{t-1})$$

Thuật toán Adam

Các bước thực hiện

Cập nhật m_t và v_t

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t \quad ---- \quad \text{Momentum}$$

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \quad ---- \quad \text{RMSprop}$$

Tính **bias-correction** của m_t và v_t

$$\widehat{m_t} = \frac{m_t}{(1-\beta_1^t)}$$
 t tăng dần $\rightarrow \beta^t$ giảm dần $\rightarrow 1 - \beta^t$ tiến dần đến l $\widehat{v_t} = \frac{v_t}{(1-\beta_2^t)}$

Cập nhật **trọng số**

$$\theta_t = \theta_{t-1} - \alpha \cdot \widehat{m}_t / \sqrt{\widehat{v}_t} + \epsilon$$

4. Thí nghiệm

Thí nghiệm Cách thực hiện

- Khởi tạo mạng nơ-ron với các tham số ngẫu nhiên.
- Lưu các tham số này làm điểm xuất phát chung.
- Với mỗi thuật toán:
 - Nạp lại bộ trọng số đã lưu ở trên cho mạng nơ-ron.
 - Thực hiện tối ưu hóa mạng nơ-ron với số bước xác định.
 - Ghi nhận độ lỗi tại mỗi epoch.

Thí nghiệm

Linear regression với độ nhiễu cao

Thí nghiệm

Classification với dữ liệu thưa

Thí nghiệm 1000fc-1000fc - MNIST

Thí nghiệm

c64-c64-c128-1000FC - CIFAR10

Thí nghiệm Siêu tham số

	Learning Rate	Momentum/ Beta 1	Alpha/ Beta 2	Epsilon
SGDMomentum	0.01	0.9	-	10 ⁻⁸
AdaGrad	0.01	_	_	
RMSprop	0.0001	_	0.9	
Adam	0.0001	0.9	0.999	

5. Tổng kết

Tài liệu tham khảo

- Yann Dauphin et al., "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", in Advances in Neural Information Processing Systems 27, 2014, pp. 2933-2941.
- Ning Qian, "On the momentum term in gradient descent learning algorithms", *Journal of the International Neural Network Society*, 1999, vol. 12, pp. 145-151.
- Nesterov, Y., "A method of solving a convex programming problem with convergence rate O(1/sqrt(k))", *Soviet Mathematics Doklady*, 1983, vol. 27, pp. 372-376.
- J. C. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," *J. Mach. Learn. Res.*, 2011.

Tài liệu tham khảo

- T. Tieleman and G. Hinton, "Lecture 6.5 rmsprop," COURSERA: Neural Networks for Machine Learning, 2012.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," *International Conference for Learning Representation*, vol. abs/1412.6980, 2015.