punti stazionari

Sia y = f(x) una funzione definita nell'intervallo [a, b] e sia x_0 un punto appartenente all'intervallo [a, b]. Si dice che x_0 è un **punto stazionario** della funzione f(x) se $f'(x_0) = \mathbf{0}$

Graficamente ciò significa che la tangente al grafico nel punto stazionario è orizzontale.

I punti stazionari di una funzione sono i punti di massimo relativo , di minimo relativo o di flesso orizzontale

più in generale per la ricerca dei punti stazionari si può seguire il seguente schema:

- si calcola la derivata prima di f(x)
- si pone f'(x) = 0
- si risolve l'equazione ottenendo le soluzioni x_0 , x_1 , x_2 , ...
- i punti x_0 , $x_{1,}$ $x_{2,}$... possono essere punti di massimo, di minimo o di flesso orizzontale
- i punti così trovati si analizzano uno alla volta sostituendoli nelle derivate di ordine successivo
- analizziamo, ad esempio, il punto x_0 sostituendo il suo valore nella derivata seconda ed eventualmente nelle derivate successive

• se

 $f''(x_0) > 0 \rightarrow x_0$ è un punto di **minimo relativo** $f''(x_0) < 0 \rightarrow x_0$ è un punto di **massimo relativo** $f''(x_0) = 0 \rightarrow$ si calcola f'''(x)

• se:

 $f'''(x_0) \neq 0 \rightarrow x_0$ è un punto di **flesso orizzontale** $f'''(x_0) = 0 \rightarrow \text{si calcola } f^{IV}(x)$

• se

 $f^{IV}(x_0) > 0 \rightarrow x_0$ è un punto di **minimo relativo** $f^{IV}(x_0) < 0 \rightarrow x_0$ è un punto di **massimo relativo** $f^{IV}(x_0) = 0 \rightarrow$ si calcola $f^V(x)$ e così via

ricerca dei punti di flesso a tangente NON orizzontale

I **punti di flesso a tangente NON orizzontale** sono quei punti appartenenti al dominio della funzione che annullano la derivata seconda ma non annullano la derivata prima e non annullano la derivata terza della funzione cioè:

$$x_0$$
 è punto di flesso a tangente **non** orizzontale se
$$\begin{cases} f'(x) \neq 0 \\ f''(x) = 0 \\ f'''(x) \neq 0 \end{cases}$$

Un punto di flesso si dice **ascendente** se a sinistra la concavità è rivolta verso il basso e a destra verso l'alto, analogamente si dice discendente se a sinistra la concavità è rivolta verso l'alto e a destra verso il basso.

I punti di flesso a tangente non orizzontale si cercano imponendo la derivata seconda uguale a zero. I casi possibili sono:

flesso ascendente	flesso discendente	flesso ascendente	flesso discendente
$ \begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \\ \chi_0 \end{array} $	\xrightarrow{F}	$\begin{array}{c} \uparrow \\ \downarrow \\ \ddot{x}_0 \end{array} \longrightarrow$	$\begin{array}{c} \uparrow \\ \downarrow \\ \chi_0 \end{array} \longrightarrow$
$f'(x_0) > 0$ $f''(x_0) = 0$ $f'''(x_0) > 0$	$f'(x_0) > 0$ $f''(x_0) = 0$ $f'''(x_0) < 0$	$f'(x_0) < 0$ $f''(x_0) = 0$ $f'''(x_0) > 0$	$f'(x_0) < 0$ $f''(x_0) = 0$ $f'''(x_0) < 0$