

# FunBaT: Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data

**ICLR 2024** 

Shikai Fang, Xin Yu, Zheng Wang, Shibo Li,Robert M. Kirby, Shandian Zhe

\*Presenter: Shikai Fang









Github: github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition



# Regular Tensor Data

• Multi-dim array for high-order structural data

Entry: (index1, index2.. )-> value  $\Leftrightarrow$  Interaction of multiple objects

integer coordinates!

#### **Social Network**



(user, user, message)

**Online Ads** 



(item, group, site, device)

**Traffic Flow** 



(city, road, population, period)



# Regular Tensor Decomposition





#### Continuous-indexed Tensor

More general data form for real-world case



(latitude, longitude, height, time)

Tensor indexes: continuous & real-valued number!



#### Formulation of FunBaT

• Tensor entry  $\Leftrightarrow$  Tucker-form interaction of <u>latent functions</u>

$$f(\mathbf{i}) = f(i_1, \dots i_K) \approx \text{vec}(\mathcal{W})^{\top} \Big( \mathbf{U}^1(i_1) \otimes \dots \otimes \mathbf{U}^K(i_K) \Big)$$



#### Formulation of FunBaT

• Assign Gaussian Processes(GPs) prior to latent function

$$\mathbf{U}^{k}(i_{k}) = [u_{1}^{k}(i_{k}), \dots, u_{r_{k}}^{k}(i_{k})]^{T}; \ u_{j}^{k}(i_{k}) \sim \mathcal{GP}(0, \kappa(i_{k}, i_{k}')), j = 1 \dots r_{k}$$

Apply State-Space Gaussian Processes(SSGPs) to efficient representation

$$p(\mathbf{U}^k) = p(\mathbf{Z}^k) = p(\mathbf{Z}^k(i_k^1), \dots, \mathbf{Z}^k(i_k^{N_k})) = p(\mathbf{Z}^k_1) \prod_{s=1}^{N_k-1} p(\mathbf{Z}^k_{s+1} | \mathbf{Z}^k_s),$$
 where 
$$p(\mathbf{Z}^k_1) = \mathcal{N}(\mathbf{Z}^k(i_k^1) | \mathbf{0}, \tilde{\mathbf{P}}^k_{\infty}); \ p(\mathbf{Z}^k_{s+1} | \mathbf{Z}^k_s) = \mathcal{N}(\mathbf{Z}^k(i_k^{s+1}) | \tilde{\mathbf{A}}^k_s \mathbf{Z}^k(i_k^s), \tilde{\mathbf{Q}}^k_s).$$

#### Joint Prob. and Inference

• Joint prob., and approx. posterior:

$$\begin{split} p(\mathcal{D}, \mathbf{\Theta}) &= p(\mathcal{D}, \{\mathbf{Z}^k\}_{k=1}^K, \mathcal{W}, \tau) = p(\tau) p(\mathcal{W}) \prod_{k=1}^K [p(\mathbf{Z}_1^k) \prod_{s=1}^{N_k - 1} p(\mathbf{Z}_{s+1}^k | \mathbf{Z}_s^k)] \prod_{n=1}^N l_n, \\ p(\mathbf{\Theta}|\mathcal{D}) &\approx q(\mathbf{\Theta}) = q(\tau) q(\mathcal{W}) \prod_{k=1}^K q(\mathbf{Z}^k) \\ q(\mathbf{Z}_s^k) &= q(\mathbf{Z}_{s-1}^k) p(\mathbf{Z}_s^k | \mathbf{Z}_{s-1}^k) \prod_{n \in \mathcal{D}^k} f_n(\mathbf{Z}_s^k), \end{split}$$

• Linear-cost Inference with <u>messege passing and Bayesian Filter + Smoother</u>



## Numerical Results: Synthetic Data



Figure 1: Results of Synthetic Data



### Numerical Results: Real-world Data

|                                                     |                   | RMSE              |                                |                   | MAE               |                                |
|-----------------------------------------------------|-------------------|-------------------|--------------------------------|-------------------|-------------------|--------------------------------|
| Datasets                                            | PM2.5             | PM10              | SO2                            | PM2.5             | PM10              | SO2                            |
| Resolution: $50 \times 50 \times 150$               |                   |                   |                                |                   |                   |                                |
| P-Tucker                                            | $0.805 \pm 0.017$ | $0.787 \pm 0.006$ | $0.686 \pm 0.02$               | $0.586 \pm 0.003$ | $0.595 \pm 0.005$ | $0.436 \pm 0.011$              |
| Tucker-ALS                                          | $1.032 \pm 0.049$ | $1.005 \pm 0.029$ | $0.969 \pm 0.027$              | $0.729 \pm 0.016$ | $0.741 \pm 0.007$ | $0.654 \pm 0.034$              |
| Tucker-SVI                                          | $0.792 \pm 0.01$  | $0.8 \pm 0.026$   | $0.701 \pm 0.08$               | $0.593 \pm 0.01$  | $0.605 \pm 0.019$ | $0.423 \pm 0.031$              |
| Resolution: $100 \times 100 \times 300$             |                   |                   |                                |                   |                   |                                |
| P-Tucker                                            | $0.8 \pm 0.101$   | $0.73 \pm 0.021$  | $0.644\pm0.023$                | $0.522 \pm 0.011$ | $0.529\pm0.013$   | $0.402\pm0.008$                |
| Tucker-ALS                                          | $1.009 \pm 0.027$ | $1.009 \pm 0.026$ | $0.965 \pm 0.023$              | $0.738 \pm 0.01$  | $0.754 \pm 0.007$ | $0.68 \pm 0.011$               |
| Tucker-SVI                                          | $0.706 \pm 0.011$ | $0.783 \pm 0.067$ | $0.69 \pm 0.086$               | $0.509 \pm 0.008$ | $0.556 \pm 0.031$ | $0.423 \pm 0.031$              |
| Resolution: $300 \times 300 \times 1000$            |                   |                   |                                |                   |                   |                                |
| P-Tucker                                            | $0.914 \pm 0.126$ | $1.155 \pm 0.001$ | $0.859 \pm 0.096$              | $0.401 \pm 0.023$ | $0.453 \pm 0.002$ | $0.366 \pm 0.015$              |
| Tucker-ALS                                          | $1.025 \pm 0.044$ | $1.023 \pm 0.038$ | $1.003 \pm 0.019$              | $0.742 \pm 0.011$ | $0.757 \pm 0.011$ | $0.698 \pm 0.007$              |
| Tucker-SVI                                          | $1.735 \pm 0.25$  | $1.448 \pm 0.176$ | $1.376 \pm 0.107$              | $0.76 \pm 0.033$  | $0.747 \pm 0.028$ | $0.718 \pm 0.023$              |
| Resolution: $428 \times 501 \times 1461$ (original) |                   |                   |                                |                   |                   |                                |
| P-Tucker                                            | $1.256 \pm 0.084$ | $1.397 \pm 0.001$ | $0.963 \pm 0.169$              | $0.451 \pm 0.017$ | $0.493 \pm 0.001$ | $0.377 \pm 0.019$              |
| Tucker-ALS                                          | $1.018 \pm 0.034$ | $1.012 \pm 0.021$ | $0.997 \pm 0.024$              | $0.738 \pm 0.005$ | $0.756 \pm 0.007$ | $0.698 \pm 0.011$              |
| Tucker-SVI                                          | $1.891 \pm 0.231$ | $1.527 \pm 0.107$ | $1.613 \pm 0.091$              | $0.834 \pm 0.032$ | $0.787 \pm 0.018$ | $0.756 \pm 0.014$              |
| Methods using continuous indexes                    |                   |                   |                                |                   |                   |                                |
| FTT-ALS                                             | $1.020 \pm 0.013$ | $1.001 \pm 0.013$ | $1.001 \pm 0.026$              | $0.744 \pm 0.007$ | $0.755 \pm 0.007$ | $0.696 \pm 0.011$              |
| FTT-ANOVA                                           | $2.150 \pm 0.033$ | $2.007 \pm 0.015$ | $1.987 \pm 0.036$              | $1.788 \pm 0.031$ | $1.623 \pm 0.014$ | $1.499 \pm 0.018$              |
| FTT-cross                                           | $0.942 \pm 0.025$ | $0.933 \pm 0.012$ | $0.844 \pm 0.026$              | $0.566 \pm 0.018$ | $0.561 \pm 0.011$ | $0.467 \pm 0.033$              |
| RBF-SVM                                             | $0.995 \pm 0.015$ | $0.955 \pm 0.02$  | $0.794 \pm 0.026$              | $0.668 \pm 0.008$ | $0.674 \pm 0.014$ | $0.486 \pm 0.026$              |
| BLR                                                 | $0.998 \pm 0.013$ | $0.977 \pm 0.014$ | $0.837 \pm 0.021$              | $0.736 \pm 0.007$ | $0.739 \pm 0.008$ | $0.573 \pm 0.009$              |
| FunBaT-CP                                           | $0.296 \pm 0.018$ | $0.343 \pm 0.028$ | $\boldsymbol{0.386 \pm 0.009}$ |                   | $0.233 \pm 0.013$ | $0.242 \pm 0.003$              |
| FunBaT                                              | $0.288 \pm 0.008$ | $0.328 \pm 0.004$ | $0.386 \pm 0.01$               | $0.183 \pm 0.006$ | $0.226 \pm 0.002$ | $\boldsymbol{0.241 \pm 0.004}$ |

Table 1: Prediction error over BeijingAir-PM2.5, BeijingAir-PM10, and BeijingAir-SO2 with R=2, which were averaged over five runs. The results for R=3,5,7 are in the supplementary.

#### Learned Latent Functions



(a)  $U^1(i_1)$ : Mode of latitude



(b)  $U^2(i_2)$ : Mode of longitude



Figure 3:  $U^3(i_3)$ : Mode of time



# Thank you!

Q&A