Web Information Processing and Applications: Web Mining

Roadmap

Content Mining

Structure Mining

Web

Mining

Mining

Classification, Clustering

Social network analysis

Recommendation

What do the following things have in common?

- World economy
- Human cell
- Railroads
- Brain
- Internet
- Friends and Family
- Media & Information
- Society

The Network!

Behind each such system there is an intricate wiring diagram, a network, that defines the interactions between the components

Networks: Social

Facebook social graph 4-degrees of separation

Networks: Communication

Graph of the Internet (Autonomous Systems)
Power-law degrees

Networks: Media

Connections between political blogs Polarization of the network

Networks: Information

Citation networks and Maps of science

Networks: Knowledge

Understand how humans navigate Wikipedia

Get an idea of how people connect concepts

Networks: Economy

Bio-tech companies

Networks: Brain

Human brain has between 10-100 billion neurons

Networks: Biology

Protein-Protein Interaction Networks:

Nodes: Proteins

Edges: 'physical' interactions

Metabolic networks:

Nodes: Metabolites and enzymes

Edges: Chemical reactions

Why Networks?

- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social Science, Physics, Economics, Statistics, Biology
- Data availability
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, social media...

Networks: Why Now?

Networks: Size Matters

Network data: Orders of magnitude

- ▶ 436-node network of email exchange at a corporate research lab [Adamic-Adar, SocNets '03]
- ▶ 43,553-node network of email exchange at a university [Kossinets-Watts, Science '06]
- ▶ 4.4-million-node network of declared friendships on a blogging community [Liben-Nowell et al., PNAS '05]
- ▶ 240-million-node network of communication on Microsoft Messenger [Leskovec-Horvitz, WWW '08]
- ▶ 800-million-node Facebook network [Backstrom et al. 'I I]

Networks: Online

- Communication networks:
 - ▶ Intrusion (入侵) / fraud (欺诈) detection,

Social networks:

- Link prediction, friend recommendation
- Social circle detection, community detection
- Social recommendations
- Identifying influential nodes, Viral marketing

Information networks:

Navigational aids

Networks: Impact

Web/Networks Structure Mining: Structure of the Web Graph

Structure of Networks?

Network is a collection of objects where some pairs of objects are connected by links

What is the structure of the network?

Components of a Network

- ▶ Objects: nodes, vertices
- ► Interactions: links, edges E
- **System:** network, graph G=(V, E)

Networks or Graphs?

- Network often refers to real systems
 - Web, Social network, Metabolic network

Language: Network, node, link

- ▶ Graph is mathematical representation of a network
 - Web graph, Social graph (a Facebook term)

Language: Graph, vertex, edge

In most cases we will use the two terms interchangeably

Networks: Common Language

Undirected vs. Directed Networks

Undirected

Links: undirected (symmetric, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

Web as a Graph

Q:What does the Web "look like"?

- Here is what we will do next:
 - We will take a real system (i.e., the Web)
 - We will collect lots of Web data
 - We will represent the Web as a graph
 - We will use language of graph theory to reason about the structure of the graph
 - Do a computational experiment on the Web graph
 - Learn something about the structure of the Web!

Web/Networks Structure Mining: Communities

One of the most important structural properties in networks

Network Communities (社区)

 Granovetter's theory (and common sense) suggest that networks are composed of tightly connected sets of nodes

Network communities:

Sets of nodes with lots of connections inside and few to outside (the rest of the network)

Communities, Clusters, Groups, Modules

Finding Network Communities

How to automatically find such densely connected groups of nodes?

 Ideally such automatically detected clusters would then correspond to real groups

Communities, Clusters, Groups, Modules

Zachary's Karate Club Network

- Social ties and rivalries in a university karate club
- Two conflicting groups
- Split could be explained by a minimum cut in the network

Social Communities

Protein-Protein Interactions

Community Detection

▶ How to find communities?

We will work with **undirected** networks

Community Detection Methods

Connection between community detection and clustering

- Agglomerative hierarchical clustering
- Partitional clustering
 - ▶ K-means

Based on Structural Similarity

Vertex Similarity

A: adjacency matrix of undirected G

- $A_{ij} = I$ if (i,j) is an edge, else 0
- ullet Structural dissimilarity measure $d_{ij} = \sqrt{\sum_{k
 eq i,j} (A_{ik} A_{jk})^2}$
- Jaccard similarity

$$Jaccard(\mathbf{v}_i, \mathbf{v}_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$$

Cosine similarity

$$cosine(\mathbf{v}_i, \mathbf{v}_j) = \frac{\sum_k A_{ik} A_{jk}}{\sqrt{\sum_s A_{is}^2} \sqrt{\sum_t A_{jt}^2}}$$

Vertex Similarity

$$Jaccard(4,6) = \frac{|\{5\}|}{|\{1,3,4,5,6,7,8\}|} = \frac{1}{7}$$
$$cosine(4,6) = \frac{1}{\sqrt{4 \cdot 4}} = \frac{1}{4}$$

Community Detection Methods

Connection between community detection and clustering

- Agglomerative hierarchical clustering
- Partitional clustering
 - K-means
- Divisive hierarchical algorithm Girvan and Newman
- Spectral graph cut
- Modularity maximization

Divisive Removal of Weak Ties/Bridges

Bridges:

Form part of the shortest path between pairs of nodes in different parts of the network

Simple idea:

Remove bridges and local bridges

Generalize the Role of Bridges

- Look for the edges that carry the most of "traffic" in a network
 - Without the edge, paths between many pairs of nodes may have to be "re-routed" a longer way
 - Edges to link different densely-connected regions
 - Good candidates for removal in a divisive method
 - Generalize the (local) bridges

Traffic in a Network

- For nodes A and B connected by a path assume I unit of "flow"
 - (If A and B in different connected components, flow = 0)
- Divide flow evenly along all possible shortest paths from A to B
 - if k shortest paths from A and B, then 1/k units of flow pass along each
- ▶ Eg: 2 shortest paths from I to 5, each with I/2 units of flow

Edge Betweenness

- Betweenness of an edge: the total amount of flow it carries
 - counting flow between all pairs of nodes using this edge

Eg:

- Edge 7-8: each pair of nodes between [1-7] and [8-14]; each pair with traffic = 1; total $7 \times 7 = 49$
- Edge 3-7: each pair of nodes between [1-3] and [4-14]; each pair with traffic = 1; total 3 x 11 = 33
- Edge I-3: each pair of nodes between [1] and [3-14] (not node 2); each pair with traffic = 1; total 1 x 12 = 12
 - > similar for edges 2-3, 4-6, 5-6, 9-10, 9-11, 12-13, and 12-14
- Edge I-2: each pair of nodes between [I] and [2] (no other); each pair with traffic = I; total I x I = I
 - > similar for edges 4-5, 10-11, and 13-14

Girvan-Newman

- Divisive hierarchical clustering based on the notion of edge betweenness:
 - Number of shortest paths passing through the edge
- Girvan-Newman Algorithm:
 - Undirected unweighted networks

Repeat until no edges are left:

Homework

- Calculate betweenness of edges $(O(mn), or O(n^2))$ on a sparse graph, with breadth-first-search
- Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan-Newman: Example

Step 1:

Step 2:

Step 3:

Hierarchical network decomposition:

Divisive clustering based on edge betweenness

Initial betweenness value

Table 3.3: Edge Betweenness									
	1	2	3	4	5	6	7	8	9
1	0	4	1	9	0	0	0	0	0
2	4	0	4	0	0	0	0	0	0
3	1	4	0	9	0	0	0	0	0
4	9	0	9	0	10	10	0	0	0
5	0	0	0	10	0	1	6	3	0
6	0	0	0	10	1	0	6	3	0
7	0	0	0	0	6	6	0	2	8
8	0	0	0	0	3	3	2	0	0
9	0	0	0	0	0	0	8	0	0

After remove e(4,5), the betweenness of e(4,6) becomes 20, which is the highest;

After remove e(4,6), the edge e(7,9) has the highest betweenness value 4, and should be removed.

Girvan-Newman: Results

