

Metody průmyslového inženýrství 2

Jan Vavruška

Andon

Informace o pracovišti

Systém varování

ANDON

- Výraz andon pochází z japonštiny, odkud by se dal přeložit jako "svítilna".
- Ve výrobních systémech se názvem andon označuje metoda signalizace a výstražných signálů.

Signál pro Team leadera

Andon

 Hlavním úkolem andonu je zviditelnit abnormality, aby byly jasně a okamžitě rozpoznatelné a mohla být ihned zjednána náprava.

 Pokud tedy dojde k abnormálnímu stavu, signalizace se spustí (rozsvítí či rozezní).

Typy ANDON prostředků

Andonové prostředky jsou dvojího tvou:

vizuální

zvukové

Andonové majáčky strojní

Kombinace a intenzita

Použití těchto prvků je často **současné**, protože tyto signály **musí vzbudit pozornost** obsluhy i dalších pracovníků.

Mezi vizuální signalizaci patří signální světla, majáky semafory, světelné panely, andonové tabule.

Zvuková signalizace se provádí pomocí **sirén a zvonků**.

Světelné tabule

- Různé barvy světel vyjadřují různé situace, např. pro upozornění se užívá žluté barvy a pro zastavení práce se používá světlo červené.
- Volba typu prvku závisí také na koncentraci hlídaných operací. Pro menší počet operací se užívají signální světla,
- Pro větší počet operací pak světelné tabule.

Shift Target 625
6-2 shift 654
2-10 shift 629
10-6 shift 593
5

Sport

- Rozjezd
- Semafor

Uplatnění andonu

- Andon lze použít pro signalizaci problémů abnormalit
- Andon se využívá také pro zjištění stavu zakázky (jak je výrobní systém daleko se zakázkou, je li ve skluzu oproti plánu)
- Informuje servisní a řídící pracovníky o statusu zařízení (pracuje, porucha, seřizování, čeká na obsluhu, nezaplánováno)
- Využívá se pro řízení dodávek materiálu či nástrojů.

Aplikace andonu ve Škodě Auto Jedno zatáhnutí lana

systému andon, vedoucí podél celé montážní linky zaktivuje viditelná signální zařízení. Odpovědní pracovníci za daný úsek musí tento problém okamžitě analyzovat a vyřešit, jinak se linka zastaví

Užití systému **andon souvisí s dalšími výrobními strategiemi**, jako např.:

- poka-yoke
- jidoka
- kanban
- Pick to light

Vychystávání dle světelného signálu

Pick to voice

Vychystávání hlasem

Závěr

- Princip andon také úzce souvisí s vizuálním managementem, resp. je jeho součástí.
- Z tohoto pojednání tedy vyplývá, že andon se aplikuje společně s jinými metodami a samostatným použitím nedosáhneme dobrých výsledků.

Poka Yoke

Odolnost proti chybám

Blbům vzdornost

Pět hlavních faktorů ovlivňující vznik vady

- Stroj
- Pracovní postup
- Materiál
- Informační systém
- Pracovník!!!

Přičemž **školení**, motivace a 100% vizuální kontrola **mají velice limitovaný prostor** pro efektivní posun při zvyšování spolehlivosti výrobních procesů

Cílené odstraňování možností vzniku selhání

Metoda věnující se cílenému odstraňování možností vzniku selhání pracovníků, je japonská metoda

Poka-Yoke.

Autorem metody je výrobní inženýr automobilky Toyota - **Shingeo Shingo**. Metodu navrhl jako součást svého systému nulových vad (*Zero Quality Control System*).

Název metody je složenina z japonských slov: [1]

Poka Yoke

Nízko nákladové, vysoce spolehlivé technická opatření, které zastaví proces a preventivně chrání výrobu před zmetky.

Zajišťuje **Procesní postup**, který umožňuje vykonat činnost pouze **jediným možným stylem.**

Tím se přímo v procesu **zajišťuje vysoká spolehlivost** a často také produktivita. [2]

Poka Yoke

- Metoda zabraňující vzniku chyb
- Metoda zabraňující další práci na neshodných dílech při neúmyslné chybě

Nejčastější český "překlad"

BLBÝM VZDORNOST

Odolnost proti chybám

Hlavní myšlenka: Zajisti ať to lze udělat jediným (a to správným) způsobem.

Nejde to udělat jinak než správně!

Historie Pak Yoke

- Poka Yoke byla poprvé publikována japonským inženýrem Shigeo Shigem v r. 1986.
- Tato metoda je využívaná asi od
 r. 1987, a to převážně u velkosériových montáží a výroben.
- Původní název Baka Yoke "idiot-proofing,"
 změněn na Poka Yoke

Základní otázky

Téměř všem chybám lze předejít. Je nutno je identifikovat *kdy, kde a proč* vznikají.

Dle analýzy přijmout rozhodnutí a vytvořit protiopatření - na správném **místě**, ve správný **okamžik** na správné **úrovni** za adekvátní **cenu** [3]

FMEA

- Výskyt pravděpodobnost
- Závažnost důsledky
- Detekce odhalitelnost

RN -číslo

Poka Yoke dle charakteru místa užití

- Preventivní
 - (před provedením operace) vada by mohla nastat.
- Kontrolní
 - (po provedení operace) vada již nastala

Základní kroky Poka Yoke preventivní

 Kontrola zjišťující chyby se nasazuje v místě jejich zdroje – před tím, než způsobí vadu.

 Nejčastěji mechanická řešení, tvarové prvky zajišťující polohu a orientaci.

Příkladem: kolík, který zabrání nesprávné orientaci opracovávaného dílu.

Základní kroky Poka Yoke preventivní

Opatření při zjištění nestandardní situace

- 1. vypnutí při zjištění vady není výrobní operace spuštěna/není proveditelná.
- 2. kontrola nemožnost provedení jakékoli chyby.
- varování signalizace odchylky od normálního stavu

<u>Příklady</u>

Příklad 1: Konstrukční úprava – přidání středícího prvku [1]

Inženýr Shingo byl jednou nucen řešit problém při montáži tachometrů do vozů Toyota.Ruční centrování přístrojů bylo náročné na přesnost pracovníků montáže a stávalo se, že některé přístroje byly mírně natočeny oproti správné poloze. .

Přístroje byly vybaveny výčnělkem pro automatické vystředění,proti kterému byla do přístrojové desky navržena centrovací drážka, do které při montáži výčnělek zapadl (viz obr č. 2). Přístroj byl tedy *vycentrován automaticky* a odpadla tím celá operace "centrování". Polohu přístrojů navíc *není nutné kontrolovat*, protože k výše uvedené nepřesnosti montáže již nemůže dojít

√ Vodící kolíky

praxe

Halogenová žárovka

 Hřídel volantu – jde zasunout pouze jedním směrem (vynechán jeden zub)

Není umožněno zpětné vytočení závitníku pokud nebyl sepnutý spínač dorazu

Příklad 2:Konektory

Podle systému Poka – Yoke jsou například různé zástrčky a konektory vhodně barevně a tvarově odlišeny, tudíž jednu zástrčku mohu zasunout pouze do příslušné zásuvky a pouze jedním, správným směrem.

[OBR 4]-tvarově odlišné konektory

[OBR 6]-konektory PS/2

[OBR 5]-britská zásuvka

Příklad 3: Bezpečnostní pás

Tento bezpečnostní pás má na sponě červenou rysku.Při nesprávném spojení je červený pruh

viditelný. Při správném zapojení je pruh překryt pásem.

[OBR 7]-nesprávné zapojení

[OBR 8]-nesprávné zapojení

Zde se již nejedná o Poka Yoke Jde pouze o vizualizaci vady

Základní kroky Poka Yoke kontrolní

- 100% kontrola dílu pomocí levného snímacího prvku jako např. koncový spínač. Při výskytu abnormality se aktivuje zvuková, nebo světelná signalizace.
- Okamžité kroky k zastavení operace, jakmile je zjištěna vada.

Příklad: blokovací obvod,který automaticky vypne stroj a uzamkne součást. Je vyžadován zásah autorizované osoby

- ✓ Nekontaktní spínače vysílají paprsek
- ✓ Chybová světla

Kontrola odebírání správného dílu a pořadí

Včasná implementace Poka Yoke

 Mechanické prostředky, které jsou navrženy pro předcházení vadě přímo v místě vzniku, jsou nejefektivnější.

Implementace již ve fázi návrhu výrobku

 Prostředky pro zachycení vady a okamžité zastavení činnosti patří mezi cenné součásti procesu snižování vad.

Implementace z nouze při ladění procesu

Nejčastější prvky Poka Yoke

- Vodící kolíky různých velikostí
- Koncové spínače
- Počítadla
- Optické snímače

Detektory chyb obecně dělíme pak na kontaktní a bezkontaktní:

- a) KONTAKTNÍ
- b)BEZKONTAKTNÍ

Nejčastější prvky Poka Yoke

Koncové spínače

Koncové spínače detekují správnou pozici dílce, až poté spustí pracovní cyklus

Detekují posuv nástroje. Při dosažení koncové polohy (po sepnutí koncového spínače) se nástroj vrací do základní polohy.

Počítadla

Na počítadle je nastaven přesný počet operací, popř. počet montovaných dílců. V případě,že se skutečný počet liší od referenčního, je spuštěna světelná či zvuková signalizace.

Nejčastější prvky Poka Yoke

Vodící kolíky různých velikostí

Kolíky umístěné ve spodním dílu formy přesně zapadají do děr v horním dílu formy-umožňují správné a jednoznačné založení pouze požadovaného dílce.

<u>Optické snímače</u>

V případě, že snímač detekuje chybějící dílec odešle signál do řídícího systému zařízení, který zablokuje výrobek v přípravku, popř. světelně a zvukově signalizují chybějící díl obsluze.

výsledek

- Snížení stresu a psychického vypětí pracovníka
- Minimalizace nebo úplné omezení chyb vzniklých nepozorností pracovníka
- Zvýšení kvality výrobku trvale (snížení zmetkovitosti)

Poka Yoke X vyzualizace

- Často bývá diskutováno zda některé vizuální prvky, lze považovat za prvky Poka Yoke
- Poka Yoke má za cíl znemožnit pokračování v činnosti dojde li k nestandardní situaci. "Vizuálni Poka Yoke"tak již není Poka Yoke, protože umožňuje pokračovat v činnosti při nedodržení kázně.

Přínos Poka Yoke

Více strojová obsluha

Pracoviště, na kterém je operátor pomocí prvků průmyslové automatizace uvolněn od pasivního dohledu nad strojem (čekání až se něco stane) a je mu umožněno využít čas smysluplněji. Operátorovi je umožněno využívat čas na práci, která vytváří hodnotu pro zákazníka (např. obsluhovat další stroj).

JIDOKA

Autonomní pracoviště

Integrace kvality,produktivity a humanity práce

- Automatizace s lidským rozměrem
- Toyota je proslulá kontrolou kvality uplatňovanou v každém kroku výrobního procesu.
- Výrobní zařízení jsou konstruována tak, že upozorňují na možné abnormality.
- Jakmile je strojem nebo lidskou obsluhou zjištěna jakákoli nedokonalost, je výroba zastavena a odchylky jsou okamžitě řešeny.

- Jidoka princip je okamžitý STOP výrobního procesu je li podezření na procesní abnormality,
- Jedná se o filozofii kvalitu vyrobit nikoliv vykontrolovat.
- Pouze analýza abnormalit a problémů v reálném čase umožňuje efektivně odhalovat a eliminovat skutečné kořenové příčiny.

- Lidé mají pravomoc stisknout tlačítko, nebo zatáhnout šňůrku a úplně zastavit linku.
- Každý člen týmu je povinný zastavit linku vždy, když zpozoruje-li abnormalitu.
- Pracovníci mají ve svých rukou zodpovědnost za kvalitu. Pociťuje tuto zodpovědnost a mají pocit moci.
- Vědí, že v tom nejsou samy a že na nich firmě záleží.

- JIDOKA je primárně zaměřena na zabudování kvality do procesu.
- Neméně důležitými přínosy Jidoky jsou však i růst produktivity práce ve spojení s její humanitou.

- Hlavní myšlenka JIDOKA navrhování zařízení a procesů tak, aby se zastavily v okamžiku výskytu jakéhokoliv problému, významně posunula původní myšlenku zabudování kvality přímo do výrobku a procesu směrem do praxe!!!
- Proto je tato myšlenka zachována v rámci filozofie dalších metod jako je např. KANBAN

Implementace Jidoka

Zdroj: Martina Krajáčková BPM

Jidoka má dva hlavní směry odhalování vad

- Směr technických opatření, na které se specializuje metoda Poka Yoke. Kde je snahou plně eliminovat neúmyslné chyby
- Směr lidé a vizualizace, kde se nesnažíme chybám přímo zabráni, ale snažíme se je zviditelnit a umožnit je včas odhalit operátorem který zajistí zastavení výroby.

V rychlé a správné reakci je sílá Jidoka

Zdroj:ipaslovakia.sk

Postup při odhalení vady

Reakce na překročení tolerancí:

- 1. Zjištění chyby
- 2. Zastavení procesu
- 3. Zjištění příčiny či alespoň okolností vady
- 4. Zkoumání kořenové příčiny
- 5. Přijetí trvalého opatření

Příklad autonomizace výroby

Zdroj: Ipaslovakia.sk

- Další zásadní odlišností JIDOKY je to, že je založena na 100% kontrole, nikoli výběrové kontrole. Čímž se významně liší od běžného statistického řízením jakosti
- Zastavování procesu navíc dramatizuje situaci, dostavují se tak výraznější návrhy opatření.
 Odhalují se příčiny problémů, které by zůstávaly skryty v případě odložení řešení problému na později. [3]

Výsledky

- Průběžná úplná kontrola kvality
- Zrušení kontrolních pracovišť
- Snížení zmetkovitosti
- Okamžité odstraňování problémů ve výrobě
- Odpovědnost za kvalitu přebírají přímo výrobní operátoři

