Topics in Unsupervised Learning

Amit Ezer, Tzvi Greenfeld

${\rm April}\ 2023$

Contents

	Synthetic data tests	2
	1.1 K-means results (For the first initialization)	3
	1.2 PDC-DP results (For the first initialization)	
2	Mandrill	5
	2.1 K-means	6
	2.2 PDC-DP	7
3	Final project statement	8

1 Synthetic data tests

Figure 1: Different initialization results

1.1 K-means results (For the first initialization)

Figure 2: K-means clustering for synthetic data with different k values

As shown by the plots above, we can clearly see that as k gets closer to the number of isotropic Gaussians used to generate the data, the results are clustered better. As expected, for k = 1 we only got 1 cluster and for k = n there are n clusters with single point in each cluster.

1.2 PDC-DP results (For the first initialization)

Figure 3: PDC-DP clustering for synthetic data with different λ values

When clustering with PDC-DP-means, we can see the relation between λ and the space populated by our data. Here we have limited the data to be in $\{[-10, 10], [-10, 10]\}$ and the best results were obtained by setting $\lambda = 10$.

2 Mandrill

Figure 4: Original image of a mandrill

The image is 500×800 pixels, therefore the data is $n=40,000,data\subset R^3$

2.1 K-means

Figure 5: K-means RGB clustering results

2.2 PDC-DP

Figure 6: PDC-DP RGB clustering results

As λ gets smaller, the number of clusters grows. For $\lambda = 500$ we got 3 clusters, and for $\lambda = 100$ we got 64 clusters, leading to the output image being closer to the input data.

3 Final project statement

We chose to Extend the (P)DC-DP-means Algorithm to Streaming data. (Project #1)