Process for preparing yellow-green rare-earth glass with long afterglow

Patent Number:

CN1305967

Publication date:

2001-08-01

Inventor(s):

LI CHENGYU (CN); LU YUHUA (CN); SU QIANG (CN)

Applicant(s):

CHANGCHUN APPLIED CHEMISTRY (CN)

Requested Patent:

CN1305967

Application Number: CN20000128255 20001214 Priority Number(s):

CN20000128255 20001214

IPC Classification:

C03C4/00; C03C3/15; C03C6/00; C03C1/00

EC Classification:

Equivalents:

200

CN1101349B

Abstract

A yellow-green rare-earth glass with long afterglow is prepared from matrix (strontium oxide, Al2O3 and B2O3), flux and rare-earth elements through grinding, uniform mixing, and constant-temp treatment. Its afterglow can reach 24 hrs after it is radiated by sun for 0.5 hr.

Data supplied from the esp@cenet database - I2

「197中华人民共和国国家知识产权局

[51] Int. Cl⁷

C03C 4/00

C03C 3/15 C03C 6/00

C03C 1/00

[12] 发明专利申请公开说明书

[21] 申请号 00128255.7

2001年8月1日 [43]公开日

[11]公开号 CN 1305967A

[22]申请日 2000.12.14 [21]申请号 00128255.7

[71]申请人 中国科学院长春应用化学研究所

地址 130022 吉林省长春市人民大街 159 号

[72] 发明人 苏 锵 李成宇 吕玉华

[74]专利代理机构 中国科学院长春专利事务所 代理人 曹桂珍

权利要求书2页 说明书4页 附图页数0页

[54] 发明名称 稀土黄绿色长余辉玻璃的制备方法 [57]摘要

本发明提供一种稀土黄绿色长余辉玻璃的制造方 法,该方法选择氧化锶,三氧化二铝,三氧化二硼为玻璃 基质,加入助融剂和掺杂稀土,经研磨混匀后,恒温处理 得到稀土黄绿色长余辉玻璃。该玻璃在日光下照射半小 时后, 余辉可长达24小时。

S

权 利 要 求

- 1. 一种稀土黄绿色长余辉玻璃的制备方法,其特征在于选择的玻璃基质摩尔百分比组成为:氧化锶 44%-55%,三氧化二铝 20%-29%,三氧化二硼 20%-29%;玻璃基质中加入 0.5%-1%的二氧化硅或碳酸锂作助融剂,在玻璃基质中掺杂两种稀土氧化物,第一种是三氧化二铕,第二种是三氧化二镝、氧化镨、三氧化二铒、三氧化二钬中的任意一种,掺杂稀土的摩尔百分含量为 0.05%-0.15%,将玻璃基质和掺杂稀土研磨混匀后,加入氧化铝坩埚中,在高温炉中于 1250℃—1500℃恒温 0.5 小时一3 小时生成玻璃液,同时通入还原气体:97%氮气加 3%氢气、一氧化碳或氨气;玻璃液出炉后有两种热处理方式:第一种是在 0℃至 150℃之间淬火,得到的玻璃在还原气氛保护下于 600℃至 900℃之间恒温处理 1-6 小时;第二种是在 150℃至 1000℃之间退火时,用还原气氛保护。
- 2. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于 所述玻璃基质中加入 0.5% -1%的二氧化硅作助融剂。
- 3. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述玻璃基质中加入 0.5%-1%的碳酸锂作助融剂。
- 4. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法, 其特征在于所述在玻璃基质中掺杂稀土氧化物为三氧化二铕。
- 5. 如权利要求1所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述在玻璃基质中掺杂稀土氧化物为三氧化二镝。
 - 6. 如权利要求1所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于

所述在玻璃基质中掺杂稀土氧化物为氧化镨。

- 7. 如权利要求1所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述在玻璃基质中掺杂稀土氧化物为三氧化二铒。
- 8. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述在玻璃基质中掺杂稀土氧化物为三氧化二钬。
- 9. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述在高温炉中恒温,同时通入还原气体 97%氦气加 3%氢气。
- 10. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述在高温炉中恒温,同时通入还原气体一氧化碳。
- 11. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述在高温炉中恒温,同时通入还原气体氨气。
- 12. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述玻璃液出炉后热处理方式是在 0℃至 150℃之间淬火,得到的玻璃在还原气氛保护下于 600℃至 900℃之间恒温处理 1-6 小时。
- 13. 如权利要求 1 所述的稀土黄绿色长余辉玻璃的制备方法,其特征在于所述玻璃液出炉后热处理方式是在 150℃至 1000℃之间退火,当在 500℃至 1000℃之间退火时,用还原气氛保护。

稀土黄绿色长余辉玻璃的制备方法

本发明属于稀土黄绿色长余辉玻璃的制备方法。

目前,国内外报道的长余辉材料绝大部分是多晶粉末,而长余辉玻璃极少见报导。稀土黄绿色长余辉玻璃作为一种新型材料,在建筑,节能,医疗器械,航空,紧急照明,美术工艺品等方面有着广泛的用途。

1998年106卷第12期的《固态通讯》第795至798页,发表了题目为"二价销掺杂的钙铝硼玻璃的长余辉发光"的文章。文中介绍了一种钙铝硼玻璃,这种玻璃的摩尔百分比组成是:40%的氧化钙,30%的三氧化二铝,30%的三氧化二硼,0.25%的三氧化二销。生成条件是首先将上述配比的玻璃料混匀后加入白金坩埚,于1450℃在高温炉中恒温一小时生成玻璃液,然后把玻璃液倒在不锈钢板上冷却至室温:将得到的玻璃放入铂坩埚,在1450℃在高温炉中于95%氩气加5%氢气气氛中恒温一小时,最后通过淬冷得到黄绿色的玻璃。用2×10⁴流明的白色荧光灯照射该玻璃30分钟后,移去荧光灯,玻璃有余辉现象,即使过8小时在黑暗中仍可肉眼辨别该余辉。但该方法分两步来获得产品,且使用白金坩埚作为生产工具,成本较高;所得产品的余辉时间不是特别长,并且只用白色荧光灯来激发,存在着激发源单一,使用范围窄的缺点。

本发明的目的是提供一种稀土黄绿色长余辉玻璃的制备方法,该方法选择 氧化锶,三氧化二铝,三氧化二硼为玻璃基质,加入助融剂和掺杂稀土,经研 磨混匀后,恒温处理得到稀土黄绿色长余辉玻璃。该玻璃在日光下照射半小时 后, 余辉可长达 24 小时。

长余辉现象的产生是由于掺杂引起杂质能级的产生,在激发阶段,杂质能 级捕获空穴或电子, 当激发完成后, 这些电子和空穴由于热运动而缓慢释放, 电子和空穴结合放出能量,从而产生长余辉现象。当三价稀土离子 RE3+掺入 含有二价铕的碱土铝酸盐 SrAl₂O₄:Eu²⁺中时,三价稀土离子 RE³⁺不等价取代二 价的碱土离子 Sr2+, 从而产生了具有合适深度的陷阱, 热释光谱峰宜在 50℃附 近:陷阱可用以存储电子和空穴,当陷阱深度太深时,电子和空穴不能从陷阱 中释放出来,而当陷阱深度太浅时,电子和空穴被释放的速度则太快,这两种 情况都不利于长余辉现象的产生。除了要求合适的陷阱深度,掺杂的三价稀土 离子对陷阱中电子和空穴具有合适的亲和力也很重要,太强或太弱的亲和力对 余辉均起不到延长作用。在《中国稀土学报》1999年第17卷上公开了苏锵等 人曾用光谱法求得三价稀土离子的光学电负性 x , 并通过实验证明: 只有 \ , $=1.21\sim1.09$ 的三价共激活离子 Dy^{3+} , Nd^{3+} , Ho^{3+} , Pr^{3+} , Er^{3+} 可有效地延长余辉, 它们分别处于镧系中前半部的轻镧系和后半部的重镧系的中部,它们的光学电 负性 x 分别为 1.21,1.21,1.14,1.18,1.09。这样, 在室温下, 陷阱中的电子和空穴 能够克服陷阱能级,缓慢地释放到 Eu2+的 5d 激发态上,在发生从 Eu2+的 5d 激 发态至基态 8S7/2 的跃迁,从而可使 Eu2+发射长余辉荧光,发射峰在 520nm。

本发明选择的玻璃基质摩尔百分比组成为:氧化锶 44%-55%,三氧化二铝 20%-29%,三氧化二硼 20%-29%;玻璃基质中加入 0.5%-1%的二氧化硅或碳酸锂作助融剂。在玻璃基质中掺杂两种稀土氧化物,第一种是三氧化二铕,第二种是三氧化二镝、氧化镨、三氧化二铒、三氧化二钬中的任意一种,掺杂稀土的摩尔百分含量为 0.05%-0.15%。将玻璃基质和掺杂稀土研磨混匀后,加入氧化铝坩埚中,在高温炉中于 1250℃-1500℃恒温 0.5 小时-3

小时生成玻璃液,同时通入还原气体: 97%氮气加 3%氢气、一氧化碳或氨气。玻璃液出炉后有两种热处理方式: 第一种是在 0℃至 150℃之间淬火,得到的玻璃在还原气氛保护下于 600℃至 900℃之间恒温处理 1—6 小时; 第二种是在 150℃至 1000℃之间退火时,应有还原气氛保护。采用这两种热处理方式中的任意一种,都可以得到稀土黄绿色长余辉玻璃。

本发明的稀土黄绿色长余辉玻璃的制备方法简单,制得的玻璃余辉明亮, 余辉时间长,阳光激发半小时后,玻璃的余辉可长达 24 小时,该玻璃可用日 光灯、阳光激发,阴天时自然光也可激发该玻璃,因此,在户内户外都能使用。 同时该长余辉玻璃无放射性,不会对环境造成危害;本发明采用氧化铝坩埚作 为玻璃的熔融工具,使生产成本较使用白金坩埚大为降低。

本发明提供的实施例如下:

实施例 1:

玻璃的摩尔百分比组成为: 20%三氧化二硼、26%三氧化二铝、54%氧化锶、0.15%三氧化二铕、0.15%三氧化二钬、1%二氧化硅; 原料研磨混匀后装入氧化铝坩埚, 在高温箱式炉中,于一氧化碳气氛下,在1250℃恒温3小时;玻璃液出炉后在0℃淬火,得到的玻璃在一氧化碳气氛中于900℃恒温1小时,得到外观为黄绿色的长余辉玻璃,阳光照射半小时后,余辉长25小时。

实施例 2:

玻璃的摩尔百分比组成为: 25%三氧化二硼、25%三氧化二铝、50%氧化 锶、0.09%三氧化二铕、0.09%三氧化二镝、0.5%二氧化硅; 原料研磨混匀后 装入氧化铝坩埚,在高温箱式炉中,于97%氮气加3%氢气气氛下,在1300℃恒温2小时,玻璃液出炉后在60℃淬火,冷却至室温,得到的玻璃在一氧化

碳气氛中于 600℃恒温 6 小时,得到外观为绿色的长余辉玻璃,阳光照射半小时后,余辉长 27 小时。

实施例 3:

玻璃的摩尔百分比组成为: 29%三氧化二硼、27%三氧化二铝、44%氧化锶、0.05%三氧化二铕、0.05%氧化镨、0.5%碳酸锂; 原料研磨混匀后装入氧化铝坩埚, 在高温箱式炉中,于一氧化碳气氛下,在 1400℃恒温 1 小时,玻璃液出炉后倒在 400℃的铸铁模中,退火至室温,得到外观为绿色的长余辉玻璃。阳光照射半小时后,余辉长 24 小时。

实施例 4:

玻璃的摩尔百分比组成为: 26%三氧化二硼、29%三氧化二铝、45%氧化 锶、0.12%三氧化二铕、0.12%三氧化二镝、1%碳酸锂; 原料研磨混匀后装入 氧化铝坩埚, 在高温箱式炉中,于 97%氮气加 3%氢气气氛下,在 1350℃恒温 1.5 小时,玻璃液出炉后在一氧化碳气氛保护下于 500℃退火至室温,得到外观为黄绿色的长余辉玻璃,阳光照射半小时后,余辉长 27 小时。

实施例 5:

玻璃的摩尔百分比组成为: 25%三氧化二硼、20%三氧化二铝、55%氧化锶、0.12%三氧化二铕、0.15%三氧化二铒、1%碳酸锂; 原料研磨混匀后装入氧化铝坩埚, 在高温箱式炉中,于氨气气氛下,在 1500℃恒温 0.5 小时,玻璃液出炉后在一氧化碳气氛保护下于 1000℃退火至室温,得到外观为黄绿色的长余辉玻璃,阳光照射半小时后,余辉长 26 小时。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.