Fondamenti di Comunicazioni

Corso: Fondamenti di comunicazioni e Internet (canale I e II)

Argomento 11:Rappresentazione digitale dell'informazione

Tiziana Cattai email: tiziana.cattai@uniroma1.it

Digital Networks

La tecniche di trasmissione digitale abilitano la rete al trattamento di qualsiasi flusso informativo

Obiettivi e problemi

- Come ridurre il tempo di trasmissione di un "messaggio" (testo, immagine) ?
 - Qual è la lunghezza di un "messaggio" ?
 - Quali sono i vincoli che devono essere rispettati nella trasmissione di un "messaggio" ?
- Può una rete gestire chiamate vocali o video ?
 - Qual è la banda richiesta per il supporto di una chiamata vocale o video ?
 - Quali sono i vincoli di qualità che devono essere soddisfatti ?
- Qual è il tempo necessario a trasferire un messaggio senza errori ?
 - Per quale motivo si verificano errori in trasmissione ?
 - come è possibile rivelare e correggere gli errori in trasmissione ?
- Qual è la banda disponibile nei vari mezzi trasmissivi (rame, fibra, radio, ecc.) ?

Informazione a Blocchi vs. Stream

- Informazione a blocchi
- L'informazione è naturalmente strutturata in unità indipendenti (blocchi)
 - Text message
 - Data file
 - JPEG image
 - MPEG file
- Dimensione (size)
 - numero di bit (byte) per blocco

- Informazione Stream
- Informazione prodotta e trasmessa in modo continuo
 - Real-time voice
 - Streaming video
- Bit rate
 - misura la quantità di bit prodotti dalla sorgente in una unità di tempo

Delay di trasferimento di un messaggio

- L numero di bit in un messaggio
- R velocità del sistema di trasmissione (bit/s)
- t_{prop} tempo di propagazione lungo il mezzo trasmissivo
- d lunghezza del collegamento
- c velocità di propagazione sul mezzo trasmissivo (3x108 m/s nel vuoto, 2x108 m/s nei mezzi guidati)

Delay minimo =
$$t_{prop}$$
 + L/R = d/c + L/R

- L si riduce mediante tecniche di compressione
- R si aumenta mediante tecniche di trasmissione
- d si riduce avvicinando sender e receiver

Compressione

Algoritmi di compressione dati

- Riducono il numero di bit necessari alla rappresentazione dell'informazione riducendo la ridondanza
- Senza perdita (Lossless): l'informazione originale è ricostruita esattamente
 - zip, GIF, fax
- Con perdita (lossy): l'informazione decompressa non è identica all'originale
 - JPEG

Rapporto di compressione (Compression Ratio) (R_c)

- R_c = B_{orig}/B_{compr} (#bits file originale / #bits file compresso)
- Compromesso tra numero di bit e qualità

$$R_c = \frac{R_{orig}}{R_{compr}}$$

Immagine a colori

 $B_{orig} = 3 \times H \times W \text{ pixel} \times B \text{ bit/pixel} = 3HWB \text{ bit}$

Esempio: 8×10 inch picture a 400×400 pixel per inch² $400 \times 400 \times 8 \times 10 = 12.8$ million pixels 8 bits/pixel/color

12.8 megapixel × 3 byte/pixel = 38.4 megabyte

Esempi di informazione a blocchi

Tipo	Metodo	Formato	Originale	Compressed Ratio
Text	Zip	ASCII	Kbyte- Mbyte	2 <r<sub>c<6</r<sub>
Fax	CCITT Group 3	A4 page 200×100 pixel/in²	256 kbyte	5-54 kbyte (5 <r<sub>c<50)</r<sub>
Immagine a Colori	JPEG	8×10 in² photo 400² pixel/in²	38.4 Mbyte	1-8 Mbyte (5 <r<sub>c<30)</r<sub>

Stream Information

- Un segnale vocale nella forma originale è di tipo analogico
- Un segnale vocale deve essere digitalizzato e trasmesso in tempo reale
- Il livello del segnale analogico varia nel tempo

Digitalizzazione di segnali analogici

Campionamento (sampling) del segnale analogico nel tempo e codifica dell'ampiezza dei campioni

 R_s = Bit rate = # bit/sample x # sample/second

Bit rate dei segnali digitalizzati

- Larghezza di banda (Bandwidth) Ws (Hz)
 - indica quanto "velocemente" il segnale varia nel tempo
 - Maggiore bandwidth → campioni più frequenti
 - Frequenza di campionamento minima Fs = 2 x Fm
 - Chiamando con Ws la banda unilatera Fs = 2 x Ws
- Accuratezza della rappresentazione
 - Maggiore accuratezza
 - → minore spaziatura tra approssimazione dei campioni
 - → numero maggiore di bit per campione

Esempio: Voce & Audio

Codifica vocale (Telefonia)

- W_s = 4 kHz \rightarrow 8000 sample/sec
- 8 bit/sample
- $R_s = 8 \times 8000 = 64 \text{ kbit/s}$
- Nella telefonia mobile si usano codifiche con maggiore rapporto di compressione
 - $R_{s} = 8-12 \text{ kbit/s}$

CD Audio

- W_s = 22 kHz \rightarrow 44000 sample/sec
- 16 bit/sample
- R_s=16 x 44000= 704 kbps per canale
- MP3 usa una codifica con maggiore rapporto di compressione
 - R_s = 50 kbit/s per canale audio

Segnale video

- Sequenza di "quadri" (picture frame)
 - ogni picture è digitalizzata e compressa
- Frequenza di ripetizione delle frame
 - 10-30-60 frame/sec in relazione all'obiettivo di qualità
- Risoluzione di ogni picture (Frame resolution)
 - Bassa risoluzione per servizio di videoconferenza
 - Risoluzione maggiore per servizio broadcast TV
 - HDTV frames

Rate = M bits/pixel x (WxH) pixel/frame x F frame/second

Frame Video

Digital Video Signals

Tipo	Metodo	Formato	Original e	Compresso
Video Confer- enza	H.261	176x144 or 352x288 pix a 10-30 fr/sec	2-36 Mbit/s	64-1544 kbit/s
Full Motion	MPEG2	720x480 pix a 30 fr/sec	249 Mbit/s	2-6 Mbit/s
HDTV	MPEG2	1920x1080 a 30 fr/sec	1.6 Gbit/s	19-38 Mbit/s

Tipologia di informazioni stream

Constant bit-rate

- Flussi informativi a bit rate costante
 - Es. sorgente telefonica produce un flusso stream a rate costante 64 kbit/s
- La rete deve fornire un canale di comunicazione con banda almeno uguale al bit rate della sorgente
 - Es. Rete telefonica: canali di comunicazione (circuiti) a 64 kbit/s

Variable bit-rate

- Flussi informativi con bit rate variabile nel tempo
 - Es. sorgente video a qualità costante produce un flusso in cui il bit rate varia in funzione del movimento tra due picture consecutive
- La rete deve supportare in modo efficiente la variabilità del bit rate
 - Es. commutazione di pacchetto o rate-smoothing

Parametri di qualità per servizi di tipo Stream

- Possibili problemi introdotti dal transito in rete (Network Impairment)
 - Ritardo (Delay)
 - Per ogni servizio occorre individuare il vincolo sul ritardo massimo di attraversamento della rete
 - Variabilità del ritardo (Jitter)
 - Per ogni servizio occorre individuare il vincolo sulla variabilità massima consentita del ritardo di attraversamento della rete
 - Perdita di informazioni (Loss)
 - Per ogni servizio occorre individuare il vincolo sul percentuale massima di bit persi (per errori o congestione) sul totale dei bit trasmessi (Probabilità di perdita)
 - I protocolli di trasferimento sono progettati per gestire questi problemi

Introduzione alle trasmissioni numeriche

Schema di un sistema di trasmissione

Trasmettitore

- Converte il flusso informativo prodotto da una sorgente in un segnale adatto alla trasmissione
- Trasmette il segnale nel mezzo trasmissivo/canale di comunicazione

Ricevitore

- Riceve il segnale dal mezzo trasmissivo/canale di comunicazione
- Converte il segnale ricevuto in una forma utilizzabile dall'utente finale (destinazione)

Transmission Impairments

Canale di Comunicazione

- Coppie simmetriche
- Cavi coassiali
- Radio
- Fibra ottiche
- Light in air
- Infrarossi

Transmission Impairments

- Attenuazione del segnale
- Distorsione del segnale
- Rumore additivo
- Interferenza con altri segnali

Limitano la lunghezza del collegamento

Trasmissioni analogiche a lunga distanza

Tratta Trasmissiva

- Le comunicazioni analogiche sono distance-limited
- Analogia
 - Copie multiple di una cassetta musicale

Analog vs. Digital Transmission

Trasmissioni analogiche

tutti i dettagli del segnale devono essere ricostruiti accuratamente

Trasmissioni numeriche

- devono essere ricostruiti solo i livelli discreti del segnale
- l'impulso originale era positivo o negativo ?

Trasmissione numeriche a lunga distanza

Tratta Trasmissiva

- Un rigeneratore ricostruisce la sequenza iniziale di bit e la ritrasmette sulla tratta successiva
 - E' possibile progettare un rigeneratore in modo che la probabilità di errore sia piccola
 - Il segnale rigenerato è in pratica identico a quello originale
- Analogia
 - copie multiple di un file MP3
- Le comunicazioni numeriche sono possibili anche a lunghissima distanza
- Sistemi numerici vs. sistemi analogici
 - Minore potenza, distanze maggiori, costi ridotti
 - Funzioni più semplici di monitoraggio, multiplazione, codifica, ecc.

Segnale numerico binario

Bit rate(Fb) = 1 bit / T seconds

Per uno specifico mezzo trasmissivo

- Come possiamo aumentare il bit rate in trasmissione ?
- Come possiamo ottenere un trasferimento affidabile ?
- Ci sono limiti al bit rate e all'affidabilità della trasmissione ?

Trasmissione ad impulsi

Obiettivo

 Rendere massimo il rate di trasmissione degli impulsi in un canale, ovvero rendere T il più piccolo possibile

- Se l'ingresso è un impulso di breve durata, l'uscita sarà un impulso "allargato" e "arrotondato"
 - due impulsi consecutivi possono sovrapporsi tra loro

Domanda

qual è la frequenza massima F di trasmissione degli impulsi in modo che non ci sia interferenza tra loro ?

Risposta

- = $F = 2 \times W_c$ impulsi/secondo
- dove W_c è the larghezza di banda unilaterale del canale (Bandwidth)

Larghezza di banda di un canale trasmissivo

- Se il segnale di ingresso ad un canale è una sinusoide di frequenza f allora
 - l'uscita sarà una sinusoide della stessa frequenza f
 - attenuata di un fattore A(f) che dipende da f
 - A(f)≈1, il segnale transita inalterato
 - A(f)≈0, il segnale è bloccato
- La larghezza di banda *W_c* è definita come l'intervallo di frequenze per cui A(f)≈1

Canale passa basso ideale

Trasmissione ad impulsi multilivello

- Se l'ampiezza degli impulsi può assumere due valori (-D a +D), ogni impulso può rappresentare un solo bit informativi
- Se l'ampiezza degli impulsi può assumere valori finiti e discreti tra _D e +D ogni impulso può rappresentare 2 bit.
- Per rappresentare un segnale che può assumere M = 2^K livelli, si ha bisogno di K bit. Fb = K x Fs
- In assenza di rumore il bit rate può essere incrementato aumentando il valore di m (quindi i livelli M del segnale)
 - Attenzione: aumentando M si riduce la distanza tra livelli adiacenti

Rumore

- Tutti i sistemi fisici introducono rumore
 - Gli elettroni vibrano a temperature superiori allo zero assoluto, il moto degli elettroni introduce rumore
- La presenza di rumore limita l'accuratezza della misura dell'ampiezza del segnale ricevuto
- L'effetto del rumore è modellabile come un <u>segnale additivo</u> rispetto al segnale utile
- Gli errori nella rivelazione del segnale ricevuto appaiono quando la separazione tra i livelli del segnale è comparabile con il livello di rumore
- Il Bit Error Rate (BER) aumenta quando diminuisce il rapporto segnalerumore (signal-to-noise ratio)
- Il rumore pone un limite al numero di livelli che possono essere utilizzati nella trasmissione di impulsi e quindi un limite al bit rate in trasmissione

Signal-to-Noise Ratio

SNR = Potenza media del segnale
Potenza media del rumore

 $SNR (dB) = 10 log_{10} SNR$

Limite di Shannon alla capacità di un canale

$$C = W_c \log_2 (1 + SNR)$$
 bit/s

- C è una funzione della larghezza di banda e del rapporto segnale rumore
- Se il bit rate di trasmissione R è inferiore a C (R<C) è possibile ottenere un BER arbitrariamente piccolo</p>
 - è necessario introdurre una codifica di linea opportuna
- Se R>C, non è possibile ridurre il BER a valori arbitrariamente piccoli
- La capacità C può essere utilizzata come una misura di riferimento per stabilire quanto un sistema di trasmissione è vicino alle migliori prestazioni possibili

Esempio

Calcolare la capacità limite di Shannon per un canale di comunicazione telefonico con W_c (banda unilatera)= 3400 Hz and SNR = 10000

Esempio

Calcolare la capacità limite di Shannon per un canale di comunicazione telefonico con W_c (banda unilatera)= 3400 Hz and SNR = 10000

$$C = W_c \log_2 (1 + SNR) = 3400 \log_2 (1 + 10000) =$$

= 3400 $\log_{10} (10001)/\log_{10} 2 = 45200 \text{ bit/s}$
= 45.2 kbit/s

Si osservi che SNR = 10000 corrisponde a SNR (dB) = 10 $log_{10}(10000) = 40$ dB

Bit rate in sistemi di trasmissione numerici

Sistema	Bit Rate	Osservazioni
Telephone twisted pair	33.6-56 kbit/s	4 kHz telephone channel
Ethernet twisted pair	10 Mbps, 100 Mbit/s	100 meters of unshielded twisted copper wire pair
Cable modem	500 kbps-4 Mbps	Shared CATV return channel
ADSL twisted pair	64-640 kbps in, 1.536- 6.144 Mbit/s out	Coexists with analog telephone signal
2.4 GHz radio	2-11 Mbit/s	IEEE 802.11 wireless LAN
28 GHz radio	1.5-45 Mbit/s	5 km multipoint radio
Optical fiber	2.5-40 Gbit/s	1 wavelength
Optical fiber	>1600 Gbit/s	Many wavelengths

Esempi di canali trasmissivi

Channel	Bandwidth	Bit Rate
Canale telefonico	3 kHz	33 kbit/s
Coppia simmetrica	1 MHz	1-6 Mbit/s
Cavo coassiale	500 MHz (6 MHz per canale)	30 Mbit/s/ channel
5 GHz radio (IEEE 802.11)	300 MHz (11 channels)	54 Mbit/s / channel
Fibra ottica	Molti TeraHertz	40 Gbit/s / wavelength

Canali di comunicazione

- Per canale di comunicazione si intende l'unione dei mezzi trasmissivi e dei dispositivi (elettronici o ottici) che sono attraversati dal segnale lungo il percorso tra sorgente e destinazione
 - Equalizzatori, amplificatori, ecc.
- Spesso si usa il termine filtro per indicare gli effetti del canale sul segnale che lo attraversa

Canale passabanda

- Alcuni canali di comunicazione si comportano come un filtro passa-banda
 - bloccano le basse e le alte frequenze
- La larghezza di banda è l'ampiezza dell'intervallo di frequenze per cui il segnale in uscita ha una potenza non trascurabile

Distorsione

$$x(t) = \sum a_k \cos(2\pi f_k t + \theta_k) \qquad \longrightarrow \qquad \text{Canale} \qquad \longrightarrow \qquad y(t)$$

- Il canale introduce sul segnale in ingresso x(t) due effetti
 - Se la risposta in frequenza non è "piatta", le componenti di frequenza del segnale d'uscita y(t) avranno ampiezza diversa rispetto a quelle del segnale d'ingresso x(t)
 - Se la risposta in fase non è "piatta", le componenti di frequenza del segnale d'ingresso x(t) subiranno ritradi diversi

$$y(t) = \sum A(f_k) \ a_k \cos \left[2\pi f_k t + \theta_k + \Phi(f_k) \right]$$

Esempio: Distorsione di ampiezza (1)

$$x(t) = -0.5 + \frac{4}{\pi} sen(\frac{\pi}{4}) cos(2\pi 1000t) +$$

$$+\frac{4}{\pi}$$
sen $\left(\frac{2\pi}{4}\right)$ cos $\left(2\pi2000t\right)$ +

$$+\frac{4}{\pi}$$
sen $\left(\frac{3\pi}{4}\right)$ cos $\left(2\pi3000t\right)+...$

- Sia x(t) il segnale in ingresso ad un canale che si comporta come un filtro passa basso ideale
 - ritardo nullo
 - $W_c = 1.5 \text{ kHz}, 2.5 \text{ kHz}, o$ 4.5 kHz
- Se W_c = 1.5 kHz passano solo i primi due termini
- Se W_c = 2.5 kHz passano solo i primi tre termini
- W_c = 4.5 kHz passano solo i primi cinque termini

Esempio: Distorsione di ampiezza (2)

Tanto maggiore è la banda del canale, tanto minore sarà la distorsione introdotta dal canale sul segnale di ingresso

Caratterizzazione nel dominio del tempo

- La caratterizzzione di un canale nel dominio del témpo richiede la conoscenza della risposta impulsiva h(t)
 - Si applica in ingresso al canale un impulso di durata molto breve si osserva il segnale in uscita
 - tipicamente h(t) è una copia ritardata e distorta dell'impulso in ingresso
- La larghezza della risposta impulsiva fornisce un'indicazione di quanto velocemente l'uscita segue l'ingresso e quindi di quanto velocemente possono essere trasmessi gli impulsi in ingresso

Canali passa-banda

- I canali passa-banda sono passanti per un intervallo di frequenze centrate intorno ad una frequenza centrale f_c
 - Canali radio channels, modem telefonici e xDSL
- I modulatori numerici (Modem) utilizzano forme d'onda che hanno frequenze che sono passanti per un canale passa-banda
- Un segnale sinusoidale di frequenza f_c è centrato nella banda del canale
 - Un modulatore inserisce l'informazione in una sinusoide [cos(2pf_ct)]

Modulazione di Ampiezza

- Un modulatore ASK mappa ogni bit informativo nell'ampiezza di una sinusoide a frequenza f_c
 - "1" trasmissione del segnale sinusoidale
 - "0" nessun segnale
- Il demodulatore individua i periodi in cui è presente il segnale e i periodi in cui il segnale è assente

Modulazione di Frequenza

- Un modulatore FSK mappa ogni bit informativo nella frequenza di un segnale sinusoidale
 - "1" trasmissione di un segnale di frequenza f_c+d
 - "0" trasmissione di un segnale di frequenza f_c-d
- Un demodulatore individua la potenza intorno alle frequenze f_c+d o f_c-d

Modulazione di Fase

- Un modulatore PSK mappa ogni bit informativo nella fase di un segnale sinusoidale
 - "1" trasmissione del segnale A cos(2pft) \rightarrow fase 0
 - "0" trasmissione del segnale A cos(2pft+p) \rightarrow fase p
- E' equivalente a moltiplicare un segnale cos(2pft) per +A or -A
 - "1" trasmissione del segnale A $\cos(2pft) \rightarrow \text{multiplazione per A}$
 - "0" trasmissione del segnale A cos(2pft+p) = A cos(2pft) → multiplazione per -A