PSALTer results panel

```
\mathcal{S} = \\ \iiint \left(\frac{1}{6}\left(6t_{1}^{2}\mathcal{A}^{\alpha_{i}}_{\alpha}\mathcal{A}^{\theta}_{i}^{\theta}+6\mathcal{A}^{\alpha\beta\chi}_{\alpha}\sigma_{\alpha\beta\chi}+6f^{\alpha\beta}_{i}^{\alpha}\tau(\Delta+\mathcal{K})_{\alpha\beta}-12t_{1}^{2}\mathcal{A}^{\theta}_{\alpha}\partial_{i}f^{\alpha_{i}}+12t_{1}^{2}\mathcal{A}^{\theta}_{i}\partial_{i}f^{\alpha_{i}}^{\alpha}-6t_{1}^{2}\partial_{i}f^{\theta}_{\alpha}\partial_{i}f^{\alpha_{i}}^{\alpha}+6t_{1}^{2}\partial_{i}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}^{\alpha}+6t_{1}^{2}\partial_{i}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}^{\beta}+12t_{1}^{2}\partial_{i}f^{\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}^{\beta}+4r_{1}^{2}\partial_{\beta}\mathcal{A}_{\alpha\beta}\partial_{\beta}\mathcal{A}^{\alpha\beta_{i}}+4r_{1}^{2}\partial_{\theta}\mathcal{A}_{\alpha\beta_{i}}\partial_{\theta}\mathcal{A}^{\alpha\beta_{i}}+6r_{5}^{2}\partial_{i}\mathcal{A}^{\kappa}_{\alpha}\partial_{\theta}\mathcal{A}^{\alpha\beta_{i}}-6r_{5}^{2}\partial_{\theta}\mathcal{A}^{\kappa}_{\alpha}\partial_{\theta}f^{\alpha_{i}}+4t_{1}^{2}\mathcal{A}_{\beta\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}+4t_{1}^{2}\mathcal{A}_{\beta\alpha_{i}}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\alpha}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\alpha}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\alpha}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}f_{\alpha\beta}\partial_{\theta}f^{\alpha_{i}}+2t_{1}^{2}\partial_{\theta}
```

Wave operator

	${}^{0^+}\!\mathcal{F}^{\parallel}$	0 <u>.</u> +f	$0.^+f^{\perp}$	${}^{0}\mathcal{A}^{\parallel}$	_									
${}^{0^+}\mathcal{R}^{\parallel}$ †	-t. 1	$i\sqrt{2} kt$	0	0										
0.+ <i>f</i> †	$-i\sqrt{2} kt$	$-2k^2t$.	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
⁰ . A [∥] †	0	0	0	t. 2	${}^{1^+}_{\cdot} \mathscr{F}^{\parallel}{}_{\alpha\beta}$	$\overset{1^{+}}{\cdot}\mathcal{H}^{{}^{\perp}}{}_{\alpha\beta}$	$1^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{H}^{\parallel}{}_{\alpha}$	$^{1}\mathcal{H}^{\perp}_{\alpha}$	$^{1}f^{\parallel}_{\alpha}$	$^{1}f_{\alpha}^{\perp}$			
				$^{1.}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{6} (6 k^2 (2 r_1 + r_1) + t_1 + 4 t_1)$	- •	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0			
				$^{1.}^{+}\mathcal{H}^{\perp}\dagger^{lphaeta}$	$-\frac{t\cdot -2t\cdot }{3\sqrt{2}}$	$\frac{t.+t.}{\frac{1}{3}}$	$\frac{1}{3}ik(t_1+t_1)$	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
				$^{1}\mathcal{H}^{\parallel}$ † lpha	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t}{\sqrt{2}}$	0	ikt. 1			
				1. <i>β</i> 1. †α	0	0	0	$\frac{\frac{t_1}{\sqrt{2}}}{\sqrt{2}}$	0	0	0			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	-līkt. 1	0	0	0	$2^+_{\cdot}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	${}^{2}\mathcal{A}^{\parallel}{}_{\alpha\beta\chi}$
											$^{2.}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$		$-\frac{i k t}{\sqrt{2}}$	0
											$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$.	0
											²⁻ \mathcal{A}^{\parallel} † ^{αβχ}	0	0	$k^2 r_1 + \frac{t_1}{2}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1			
$-2 i k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$\frac{1}{2ik \cdot 1 \cdot \sigma^{\perp}^{\alpha} + 1 \cdot \tau^{\perp}^{\alpha} == 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
$\frac{1}{1} \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$\overline{ik} 1^+_{\cdot \sigma^{\perp}} \sigma^{\perp} + 1^+_{\cdot \tau} ^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{$	3			
$-2 i k 2^{+} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}{}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\lambda}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\lambda}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\lambda}$	5			
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$				
Total expected gauge generators:					

Massive spectrum

Parity:

Massless spectrum

Even

(No particles)

Spin:

Parity:

Unitarity conditions

r. < 0 && t. < 0 && t. > -t. && r. > -2 r.1 2 5 1