Q1 Macro Study Guide

2020 Entering Cohort*

June 20, 2021

Overlapping Generations

Social Planner's Problem

Objective function

 \bullet Maximize utility function for current old and current young (c_t^t, c_t^{t-1})

$$\max U(c_t^t, c_t^{t-1})$$

Constraints

- Sum of consumption across generations = sum of young and old endowments
- \bullet Other assets = initial stock + interest

$$c_t^t + c_t^{t-1} = w_1 + w_2$$

Other notes

- Planners don't take into account price level, wages, or rental rate of capital
- Planners account for population size in the constraints, but not in the objective function

Competitive Equilibrium

Objective function

 \bullet Maximize utility function for one generation while they're young and old (c_t^t, c_{t+1}^t)

$$\max U(c_t^t, c_{t+1}^t)$$

^{*}Contributions made by Sarah Bass, (add names here)

Constraints

- Time t consumption + assets = time t endowment ***adjust for price level at t
- Time t+1 consumption = time t+1 endowment + assets ***adjust for price level at t+1

$$p_t c_t^t + M_{t+1}^t = p_t w_1$$
$$p_{t+1} c_{t+1}^t = M_{t+1}^t + p_{t+1} w_2$$

• When $M_{t+1}^t > 0$, this can be consolidated into one budget constraint:

$$p_t c_t^t + p_{t+1} c_{t+1}^t = p_t w_1 + p_{t+1} w_2$$

• Introducing lump sum Social Security taxes/payments:

$$p_t c_t^t + p_{t+1} c_{t+1}^t = p_t (w_1 - \tau) + p_{t+1} (w_2 + b)$$

• Solve for steady states by combining HHBC w/ FOC

Market Clearing

- Competitive equilibrium occurs when agents optimize and markets clear
- Market clearing conditions are basically the constraints from the planner's problem (subscripts must match)
- Population size doesn't factor into constraints, but does factor into MCC
- Use total production for MCC supply = demand
- MCC doesn't take into account price level, wages, or rental rate of capital

$$c_t^t + c_t^{t-1} = w_1$$
$$M_{t+1}^t = \bar{M}$$

Welfare Theorems

- First Welfare Theorem: Any competitive equilibrium is pareto optimal
- **Second Welfare Theorem:** Any pareto optimal allocation can be achieved by a competitive equilibrium with the right transfers (taxes)
- There are multiple CEs that are all pareto optimal

Labor Choice

Social Planner's Problem

• Planner chooses $\{c, n\}$ to maximize utility of representative agent:

$$\max u(c) - g(n)$$

s.t.
$$c \le y = f(n)$$

Competitive Equilibrium

- Firms are owned by households, so firm profits are returned to households
- Firm Problem:

$$\max F(n) - wn$$

$$\rightarrow w = F_n$$

• Household Problem:

$$\max u(c) - g(n)$$

s.t.
$$c = wn + \pi$$

• Market Clearing:

Labor Market: $n^d = n^s$

$$n^d = n^s$$

Goods Market: c = f(n)

Ramsey Problem (With Commitment)

Timing

- 1) Government chooses tax rate τ
- 2) Households choose investment
- Households solve for x, taking τ as given.
- Consistency: $x^r(\tau) = X^r(\tau)$
- Goods markets clear: $c + g = w + (R 1)X^{r}(\tau)$
- Government solves for max of utility given household X.

First Solve Social Planner Problem

$$\max u(c)$$
s.t. $x + m = w$
and $c + g = m + Rx$
 \rightarrow Invest in productive technology

Second Solve HH Problem

$$\max u(c)$$
s.t. $x + m = w$
and $c = m + (1 - \tau)Rx$

- A CE is when HHs solve this problem, the government budget constraint clears, and markets clear.
- If $(1-\tau)R > 1$, same solution as planners problem.
- Laffer curve: Maps out the government tax revenue as a function of tax rate. Peak revenue occurs at $(1-\tau)R=1$.

Nash Equilibrium (No Commitment)

Timing

- 1) Households choose investment
- 2) Government chooses tax rate τ
- Government solves for τ , taking X as given.
- Households solve for x, no household makes an impact individually, but they all make the same decision.

Same social planner as Ramsey

HH problem

• Households know the government will set tax rate $\tau = 1$, so they will not invest at all. No need for math

Capital-based Model

Other notes

• write MCC in terms of production function, K, L (show firm side = household side)

Idiosyncratic Model

- Households are going to be assigned a shock of high or low employment
- \bullet Duong is going to cover this in OH 5/18

Other Definitions

- Pareto-Optimal: no one situation can be improved w/o making someone worse off
- Autarkic equilibrium: no trading, no one wants money in the money market