Database coursework due on the 13th march 2019.

To be done in groups of maximum two(2)

To be presented!!

Question 1:

Consider the following information about a university database:

- Professors have an SSN, a name, an age, a rank, and a research specialty.
- Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending date, and a budget.
- Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or Ph.D.).
- Each project is managed by one professor (known as the project's principal investigator).
- Each project is worked on by one or more professors (known as the project's co-investigators).
- Professors can manage and/or work on multiple projects.
- Each project is worked on by one or more graduate students (known as the project's research assistants).
- When graduate students work on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.
- Departments have a department number, a department name, and a main office.
- Departments have a professor (known as the chairman) who runs the department.
- Professors work in one or more departments, and for each department that they work in, a time percentage is associated with their job.
- Graduate students have one major department in which they are working on their degree.
- Each graduate student has another, more senior graduate student (known as a student advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only the basic ER model here, that is, entities, relationships, and attributes. Be sure to indicate any key and participation constraints.

Consider the university database above and ER diagram you have designed .write SQL statements to create corresponding relation and capture as many constraints as possible.if you cannot capture some constraints, explain why?

Question 2:

Consider the following schema:

Suppliers(sid: integer, snare: string, address: string)

Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name. Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write the following queries in relational algebra.

State what the following queries compute:

1.
$$\pi_{sname}(\pi_{sid}(\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)$$

2.
$$\pi_{sname}(\pi_{sid}((\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers))$$

3.
$$(\pi_{sname}((\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)) \cap (\pi_{sname}((\sigma_{color='areen'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers))$$

4.
$$(\pi_{sid}((\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)) \cap (\pi_{sid}((\sigma_{color='green'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers))$$

5.
$$\pi_{sname}((\pi_{sid,sname}((\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)) \cap (\pi_{sid,sname}((\sigma_{color='green'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)))$$