MAT3458 – ÁLGEBRA LINEAR II 2ª Lista de Exercícios – 2º semestre de 2020

- 1. Em cada um dos itens abaixo, verifique se a transformação T dada é linear.
 - (i) $T: \mathbb{R} \to \mathbb{R}$ definida por T(x) = x + 1.
 - (ii) $T: M_n(\mathbb{R}) \to \mathbb{R}$ definida por $T(A) = \det(A)$.
 - (iii) $T: M_{m \times n}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$ definida por $T(A) = A^{t}$, a matriz transposta de A.
 - (iv) $T: M_2(\mathbb{R}) \to \mathbb{R}$ definida por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 3a 4b + c d$.
 - (v) $T: M_2(\mathbb{R}) \to \mathbb{R}$ definida por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a^2 + b^2$.
 - (vi) $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ definida por $T(a+bx+cx^2) = a+b(x+1)+c(x+1)^2$.
 - (vii) $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ definida por $T(a+bx+cx^2) = (a+1)+(b+1)x+(c+1)x^2$.
- 2. Em cada um dos itens abaixo, verifique se a transformação T dada é linear.
 - (i) $T: \mathcal{C}(\mathbb{R}) \to \mathbb{R}$ definida por T(f) = f(a), para toda f em $\mathcal{C}(\mathbb{R})$, onde a é um número real fixado.
 - (ii) $T: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$ definida por T(f) = f', para toda f em $\mathcal{C}^{\infty}(\mathbb{R})$.
 - (iii) $T: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$ definida por T(f) = af'' + bf' + cf, para toda f em $\mathcal{C}^{\infty}(\mathbb{R})$, onde a, b e c são números reais fixados.
 - (iv) $T: \mathcal{C}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ definida por $T(f)(x) = \int_a^x f(t) dt$, para toda f em $\mathcal{C}^{\infty}(\mathbb{R})$ e todo $x \in \mathbb{R}$, onde $a \in \mathbb{R}$ é um número real fixado.
- 3. Ache uma transformação linear $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_4(\mathbb{R})$ tal que $T(1) = x^4$, $T(x+x^2) = 1$ e $T(x-x^2) = x + x^3$. Determine $T(a+bx+cx^2)$.
- 4. Seja V um espaço vetorial e seja $T: V \to V$ uma tranformação linear. Sejam $v, w \in V$. Ache T(3v+w) e T(w) em termos de v e w, sabendo que T(v-w)=2v-w e T(2w-v)=v+w.
- 5. Recorde que o traço de uma matriz quadrada A é a soma de todos os elementos de sua diagonal principal, isto é, se $A = (a_{ij})_{n \times n}$, então $\operatorname{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$.
 - (i) Mostre que a função tr: $M_n(\mathbb{R}) \to \mathbb{R}$ é linear.
 - (ii) Mostre que dim $(Ker(T)) = n^2 1$.
 - (iii) Mostre que $tr(A) = tr(A^t)$, onde A^t denota a transposta da matriz A.
- 6. Sejam E um espaço vetorial de dimensão finita com produto interno e S um subespaço de E. Seja $T \colon E \to E$ o operador linear definido por $T(u) = \operatorname{proj}_S u$, para todo $u \in E$. Considere as afirmações:
 - (I) $\operatorname{Ker}(T) = S^{\perp} \operatorname{e} \operatorname{Im}(T) = S$.
 - (II) Se $\{v_1,\ldots,v_k\}$ é uma base de S e $u\in E$, então $T(u)=\frac{\langle u,v_1\rangle}{\|v_1\|^2}v_1+\cdots+\frac{\langle u,v_k\rangle}{\|v_k\|^2}v_k$.
 - (III) T(u) = u se, e somente se, $u \in S$.

Pode-se afirmar corretamente que

- (a) apenas as afirmações (I) e (III) são falsas.
- (b) todas as afirmações são verdadeiras.
- (c) apenas as afirmações (II) e (III) são falsas.
- (d) apenas a afirmação (II) é falsa.
- (e) apenas as afirmações (I) e (II) são falsas.
- 7. Seja $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ definida por T(M) = AM MA, onde $A \in M_n(\mathbb{R})$ é uma matriz fixada. Mostre que T é linear e determine seu núcleo. A matriz identidade pertence à imagem de T?

8. Ache uma transformação linear $T \colon \mathcal{P}_3(\mathbb{R}) \to M_3(\mathbb{R})$ tal que $\operatorname{Im}(T)$ seja gerada pelos vetores

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 4 \\ 3 & 5 & -2 \\ 0 & -1 & -3 \end{pmatrix}, \quad \begin{pmatrix} 0 & 6 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Ache uma base para Im(T) e uma base para Ker(T).

- 9. Determine um operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ cujo núcleo seja a reta $\{(x,y) \in \mathbb{R}^2 : y = x\}$ e cuja imagem seja a reta $\{(x,y) \in \mathbb{R}^2 : y = 2x\}$.
- 10. Determine um operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ que tenha como núcleo e como imagem a reta [(1,0)].
- 11. Determine um operador linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $\operatorname{Ker}(T) = \operatorname{Im}(T)$.
- 12. Considere o operador linear $T: \mathcal{C}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ definido por $T(f) = \varphi$, onde $\varphi(x) = \int_0^x f(t) dt$, para todo $x \in \mathbb{R}$. Determine o núcleo e a imagem desse operador.
- 13. Sejam $a, b \in \mathbb{R}$ e seja $T \colon \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ a transformação linear tal que

$$T(1) = (1, 2, 1), T(1+x) = (1, a, b), T(1+x+x^2) = (1, 1, 2).$$

Então, T é injetora se, e somente se,

- (a) a + b = 3.
- (b) $a + b \neq 5$.
- (c) $a + b \neq 3$.
- (d) a + b = 5.
- (e) a = b.
- 14. Seja W um espaço vetorial com produto interno $\langle \, , \, \rangle$. Dados um espaço vetorial V e uma transformação linear $T\colon V \to W$ defina

$$\langle\langle v_1, v_2\rangle\rangle = \langle T(v_1), T(v_2)\rangle$$
, para todos $v_1, v_2 \in V$.

Mostre que $\langle \langle , \rangle \rangle$ é um produto interno em V se, e somente se, T é injetora.

- 15. Seja $T: V \to W$ uma transformação linear entre os espaços vetoriais V e W. Seja $\mathcal{B} = \{v_1, \ldots, v_n\}$ um conjunto de vetores de V, e considere o conjunto $\mathcal{C} = \{T(v_1), \ldots, T(v_n)\}$ de vetores de W. Demonstre as afirmações a seguir.
 - (i) Se \mathcal{C} é linearmente independente, então \mathcal{B} também é.
 - (ii) Se $Ker(T) = \{0_V\}$ e \mathcal{B} é linearmente independente, então \mathcal{C} também é.
 - (iii) Se $W = [\mathcal{C}]$, então $\operatorname{Im}(T) = W$.
 - (iv) Se $V = [\mathcal{B}]$, então $\operatorname{Im}(T) = [\mathcal{C}]$.
- 16. Seja W o subespaço vetorial de \mathbb{R}^3 definido por $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Assinale a alternativa correta.
 - (a) Existe uma única transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\operatorname{Ker}(T) = W \operatorname{e} \operatorname{Im}(T) = [(1, 1, -1)]$.
 - (b) Existem infinitas transformações lineares $T\colon\mathbb{R}^3\to\mathbb{R}^3$ tais que $\mathrm{Ker}(T)=W$ e $\mathrm{Im}(T)=\big[(1,1,-1)\big].$
 - (c) Existe uma única transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\operatorname{Ker}(T) = W \operatorname{e} \operatorname{Im}(T) = [(1, 1, -1), (0, 0, 1)].$
 - (d) Existem infinitas transformações lineares $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que Ker(T) = W, Im(T) = [(1, 1, -1), (0, 0, 1)].
 - (e) Existem infinitas transformações lineares $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tais que $\operatorname{Ker}(T) = W$, $\operatorname{Im}(T) = [(1,1,-1)]$ e T(1,1,0) = (2,2,-2).

17. Sejam $a, b, c \in \mathbb{R}$ e $T: M_{4\times 1}(\mathbb{R}) \to M_{4\times 1}(\mathbb{R})$ a transformação linear definida por T(X) = AX, $X \in M_{4\times 1}(\mathbb{R})$, onde

$$A = \begin{pmatrix} 0 & 1 & -1 & a \\ b & 0 & 2b & 0 \\ 0 & c & -1 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}.$$

Pode-se afirmar corretamente que

- (a) T não é injetora.
- (b) se $a=1,\,b\neq 0$ e $c\neq 1$, então T é injetora.
- (c) T é bijetora se, e somente se, $a = 1, b \neq 0$ e $c \neq 1$.
- (d) T não é sobrejetora.
- (e) se $a \neq 1$, $b \neq 0$ e $a + c \neq 2$, então T não é bijetora.
- 18. Verdadeiro ou falso? Justifique suas respostas.
 - (i) $T: \mathbb{R} \to \mathbb{R}$ definida por $T(x) = x^2$ é linear.
 - (ii) $T \colon \mathbb{R} \to \mathbb{R}$ definida por T(x) = |x| é linear.
 - (iii) $T: \mathcal{P}_n(R) \to \mathbb{R}$ definida por $T(a_0 + a_1x + \dots + a_nx^n) = a_n$ é linear.
 - (iv) Qualquer matriz real 5×6 define uma transformação linear de \mathbb{R}^6 em \mathbb{R}^5 .
 - (v) Se $T: V \to W$ é uma transformação linear, $\dim(V) = 6$, $\dim(W) = 4$ e $\dim(\mathrm{Ker}(T)) = 2$, então T é sobrejetora.
 - (vi) Se $T: V \to W$ é uma transformação linear e $\operatorname{Im}(T) = \{0\}$, então T(x) = 0, para todo $x \in V$.
 - (vii) Se $T: V \to W$ é uma transformação linear e $\dim(V) \leq \dim(W)$, então T é injetora.
 - (viii) Se $T: V \to W$ é uma transformação linear injetora, então $\dim(V) \leq \dim(W)$.
- 19. Verdadeiro ou falso? Justifique suas respostas.
 - (i) Existe uma transformação linear inversível $T \colon \mathcal{P}_3(\mathbb{R}) \to M_2(\mathbb{R})$.
 - (ii) Se $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ é definida por T(p) = p', então T é sobrejetora.
 - (iii) Existe uma transformação linear injetora $T: \mathbb{R}^3 \to M_2(\mathbb{R})$.
 - (iv) Se V é um espaço vetorial de dimensão finita e $T:V\to V$ é um operador linear, então T é sobrejetor se, e somente se, $\mathrm{Ker}(T)=\{0_V\}.$
 - (v) Existe um operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\mathbb{R}^3 = \operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.
- 20. Considere o espaço vetorial $\mathcal{P}_5(\mathbb{R})$ com o produto interno

$$\langle p, q \rangle = \int_0^{33333} p(t)q(t) dt.$$

Seja $U = [1 + x, x^2]$. Assinale a alternativa contendo uma afirmação **FALSA**.

- (a) Existe uma transformação linear injetora $T: U^{\perp} \to \mathbb{R}^5$.
- (b) A transformação linear $\mathcal{P}_5(\mathbb{R}) \to U$, $v \mapsto \operatorname{proj}_U v$, é sobrejetora.
- (c) A transformação linear $\mathcal{P}_5(\mathbb{R}) \to U^{\perp}, v \mapsto \operatorname{proj}_{U^{\perp}} v$, é sobrejetora.
- (d) Se $L: \mathcal{P}_5(\mathbb{R}) \to \mathbb{R}^5$ é uma transformação linear, então dim $(\text{Ker}(L)) \ge 1$.
- (e) Existe uma transformação linear sobrejetora $T\colon U^\perp\to\mathbb{R}^5.$
- 21. Seja V um espaço vetorial de dimensão finita com produto interno. Seja $T\colon V\to V$ um operador linear com a seguinte propriedade:

$$\left\langle T(x),T(y)\right\rangle =\langle x,y\rangle ,\;para\;todo\;x,y\in V.$$

Pode-se afirmar corretamente que T

- (a) é invertível.
- (b) é injetor, mas pode não ser sobrejetor.
- (c) é a aplicação identidade.
- (d) pode não ser nem injetor nem sobrejetor.
- (e) pode ser sobrejetor, mas não injetor.
- 22. Sejam *U* e *V* espaços vetoriais de dimensão finita. Decida se cada uma das afirmações abaixo é verdadeira ou falsa. Justifique suas respostas.
 - (i) Uma transformação linear $T: U \to V$ é sobrejetora se, e somente se, $\dim(\operatorname{Ker}(T)) = \dim(U) \dim(V)$.
 - (ii) Dada uma transformação linear $T\colon U\to V$ e um vetor $v\in V$, o conjunto $G=\big\{x\in U: T(x)=v\big\}$ é um subespaço de U.
 - (iii) O núcleo de uma transformação linear $T \colon \mathbb{R}^5 \to \mathbb{R}^3$ tem dimensão maior ou igual a 3.
 - (iv) Se uma transformação linear $T: \mathbb{R}^m \to \mathbb{R}^n$ for injetora, então dim $(\operatorname{Im}(T)) = m$.
 - (v) Se $T: \mathbb{R}^m \to \mathbb{R}^n$ for uma transformação linear sobrejetora, então $\dim(\operatorname{Ker}(T)) = m n$.
- 23. Use o Teorema da Dimensão para provar que um sistema linear homogêneo que tem mais incógnitas do que equações tem que ter uma solução não trivial.
- 24. Mostre que toda matriz A em $M_n(\mathbb{R})$ é da forma $A = B^t 3B$ para uma única B em $M_n(\mathbb{R})$. (Sugestão: Considere a função $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ definida por $T(B) = B^t 3B$.)
- 25. Seja a um número real. Considere o subespaço $W = \{p \in \mathcal{P}_n(\mathbb{R}) : p(a) = 0\}$ de $\mathcal{P}_n(\mathbb{R})$. Prove que $\{x a, (x a)^2, \dots, (x a)^n\}$ é uma base de W. (Sugestão: Considere a função avaliação $F_a : \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}, F_a(p) = p(a)$.)
- 26. Sejam V um espaço vetorial de dimensão finita e $T: V \to V$ um operador linear. Prove que $V = \text{Ker}(T) \oplus \text{Im}(T)$ se, e somente se, $\text{Ker}(T) \cap \text{Im}(T) = \{0_V\}$.
- 27. Seja U um espaço vetorial de dimensão 200. Seja $T\colon U\to U$ uma transformação linear. Considere as seguintes afirmações:
 - (I) Existe T tal que $20 \dim(\text{Ker}(T)) + 30 \dim(\text{Im}(T)) = 3500$.
 - (II) Se dim(Im(T)) = 150, então Im(T) não está contida em Ker(T).
 - (III) Se dim(Ker(T)) = 185, então Im(T) está contida em Ker(T).

Assinale a alternativa correta.

- (a) Apenas (I) e (II) são verdadeiras.
- (b) Apenas (II) é verdadeira.
- (c) Apenas (I) e (III) são verdadeiras.
- (d) As três afirmações são verdadeiras.
- (e) Apenas (I) é verdadeira.
- 28. Sejam E um espaço vetorial de dimensão 2 e $T\colon E\to E$ um operador linear não nulo tal que $T\circ T=0$. Considere as afirmações:
 - (I) $\operatorname{Im}(T) = \operatorname{Ker}(T)$.
 - (II) $\dim(\operatorname{Im}(T)) = 2$.
 - (III) $\dim(\operatorname{Ker}(T)) = 1$.

Está correto afirmar que

- (a) apenas as afirmações (I) e (II) são verdadeiras.
- (b) apenas a afirmação (II) é falsa.

- (c) apenas a afirmação (III) é falsa.
- (d) todas as afirmações são falsas.
- (e) todas as afirmações são verdadeiras.
- 29. Sejam V um espaço vetorial de dimensão finita e $T: V \to V$ um operador linear tal que T e T^2 tenham o mesmo posto. (Recorde que o *posto* de uma transformação linear é a dimensão de sua imagem.) Prove que $\text{Ker}(T) \cap \text{Im}(T) = \{0_V\}$. Vale a recíproca?
- 30. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ o operador linear definido por T(x, y, z, w) = (-y, x y, z, -w). Mostre que $T^6 = I$ e determine T^{-1} .
- 31. Determine a matriz do operador derivação $\mathcal{D} \colon \mathcal{P}_4(\mathbb{R}) \to \mathcal{P}_4(\mathbb{R})$, definido por $\mathcal{D}(p) = p'$, relativamente à base $\{1, x, x^2, x^3, x^4\}$ de $\mathcal{P}_4(\mathbb{R})$.
- 32. Considere os subespaços vetoriais U e V de $C^{\infty}(\mathbb{R})$ cujas bases são, respectivamente, $B = \{\cos x, \sin x\}$ e $C = \{e^x \cos x, e^x \sin x, e^{2x} \cos x, e^{2x} \sin x\}$. Determine as matrizes dos operadores de derivação $f \in U \mapsto f' \in U$ e $f \in V \mapsto f' \in V$ em relação às bases B e C, respectivamente.
- 33. Qual é a matriz, relativamente à base canônica, do operador $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(2,3) = (2,3) e T(-3,2) = (0,0)?
- 34. Se $T: \mathcal{P}_1(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ é a transformação linear cuja matriz em relação às bases $B = \{1, 1+t\}$ de $\mathcal{P}_1(\mathbb{R})$ e $C = \{2+t^2, t+t^2, 1-t^2\}$ de $\mathcal{P}_2(\mathbb{R})$ é $\begin{pmatrix} 1 & 0 \\ -2 & 1 \\ 1 & 3 \end{pmatrix}$. Então, T(1+2t) é igual a
 - (a) $1 + 7t^2$
 - (b) $3+4t-2t^2$
 - (c) $5+4t-t^2$
 - (d) $-1 + 4t + 5t^2$
 - (e) $9 6t^2$
- 35. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear cuja matriz em relação à base $B = \{(-1,1), (0,1)\}$ é $\begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$. Considere as seguintes afirmações:
 - (I) T(x,y) = (x,3x+y), para todos $x,y \in \mathbb{R}$.
 - (II) A imagem pela transformação T da parábola $\{(x,y)\in\mathbb{R}^2:y=x^2\}$ é a parábola $\{(x,y)\in\mathbb{R}^2:y=x^2-2x\}$.
 - (III) O vetor (2,3) pertence à imagem de T.

Assinale a alternativa correta.

- (a) Apenas as afirmações (I) e (III) são verdadeiras.
- (b) Apenas a afirmação (I) é verdadeira.
- (c) Todas as afirmações são verdadeiras.
- (d) Apenas as afirmações (II) e (III) são verdadeiras.
- (e) Todas as afirmações são falsas.
- 36. Sejam $B = \{(-1,2), (1,-1)\}$ e $C = \{(1,2,1), (2,1,0), (-1,0,1)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Seja $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que $[T]_{BC} = \begin{pmatrix} 1 & 0 \\ -3 & 2 \\ 2 & 1 \end{pmatrix}$. Então, T(1,2) é igual a
 - (a) (-9, 5, 13)
 - (b) (1, 1, 4)

- (c) (-7, -1, 3)
- (d) (3, -1, 10)
- (e) (1, -1, 3)
- 37. Seja $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ definida por $T(p) = \left(p(0), p'(1), p''(2)\right)$. Seja B uma base de $\mathcal{P}_2(\mathbb{R})$ tal que a matriz da transformação linear T em relação à base B e à base canônica de \mathbb{R}^3 é $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. A soma dos elementos de B é
 - (a) $2x^2 3$
 - (b) $x^2 2x + 2$
 - (c) $x^2 + 3$
 - (d) $-x^2 + 2x + 2$
 - (e) $2x^2 2x + 3$
- 38. Seja $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ a transformação linear cuja matriz em relação às bases $\{1, x+1, x^2+x, x^3-1\}$ e $\{2, x-1, x^2+1\}$ é $\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ -1 & 1 & 2 & 1 \end{pmatrix}$. O núcleo de T é gerado por
 - (a) $3x^3 + 3x^2 x + 2$
 - (b) $2x^3 3x^2 + 2x + 2$
 - (c) $3x^3 + x^2 2x + 1$
 - (d) $3x^3 + 2x^2 x + 1$
 - (e) $2x^3 x^2 + 2x + 4$
- 39. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear. Sejam $\mathcal{B} \in \mathcal{C}$ as seguintes duas bases de \mathbb{R}^3 :

$$\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}, \quad \mathcal{C} = \{(1,1,1), (0,1,1), (0,0,1)\}.$$

Suponha que

$$[T]_{\mathcal{BC}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$$

Então, para todo $(x, y, z) \in \mathbb{R}^3$, tem-se

- (a) T(x, y, z) = (x z, x y, -y + z)
- (b) T(x, y, z) = (x y, 0, x + y)
- (c) T(x, y, z) = (x z, x y z, 0)
- (d) T(x, y, z) = (0, x + y, x z)
- (e) T(x, y, z) = (x + 2z, y + 2z, 3x z)
- 40. Considere as transformações lineares $T: \mathbb{R}^{n+1} \to \mathcal{P}_n(\mathbb{R})$ e $S: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}^{n+1}$ definidas por $T(a_0, a_1, \ldots, a_n) = a_0 + a_1 x + \cdots + a_n x^n$ e $S(p) = (p(0), p(1), \ldots, p(n))$. Determine as matrizes de $S \circ T$ e de $T \circ S$ com respeito às bases canônicas apropriadas.
- 41. Sejam $F \in G$ operadores lineares em \mathbb{R}^3 tais que F(x,y,z) = (x,2y,y-z), para todo $(x,y,z) \in \mathbb{R}^3$, e tais que a matriz do operador 2F G em relação à base $B = \{(0,1,0), (1,1,0), (0,0,1)\}$ seja $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$. Ache a matriz que representa o operador $F^2 + G^2$ com respeito às bases $B \in C = \{(1,0,1), (0,1,0), (0,1,1)\}$.

42. Sejam $T, S \colon \mathbb{R}^3 \to \mathbb{R}^3$ operadores lineares tais que T(x,y,z) = (x+2y,y+2z,3z), para todos $x,y,z \in \mathbb{R}$, e

$$[S \circ T]_{\mathsf{can}} = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 3 & 2 \\ 0 & 3 & 6 \end{bmatrix}.$$

O traço da matriz $[S]_{\sf can}$ (ou seja, a soma dos elementos da diagonal principal de $[S]_{\sf can}$) é igual a

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5
- 43. Sejam $T: \mathbb{R}^3 \to \mathcal{P}_2(\mathbb{R})$ e $G: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ transformações lineares tais que

$$[T]_{BC} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \quad e \quad [G]_{CB} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & 2 \end{bmatrix},$$

em que $B = \{(1,1,0), (0,1,0), (0,1,1)\}$ e $C = \{1,1+x,x+x^2\}.$

- (i) Determine bases para $Ker(G \circ T)$ e $Ker(T \circ G)$.
- (ii) Seja $H = 3(T \circ G) + I$. Determine $[H]_{DC}$, em que $D = \{1, x, x^2\}$.
- 44. Sejam $a,b \in \mathbb{R}$ e seja $T \colon \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ a transformação linear cuja matriz em relação às bases canônicas de $\mathcal{P}_2(\mathbb{R})$ e \mathbb{R}^3 é $\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & -1 \\ a & 0 & b \end{bmatrix}$. Assinale a alternativa correta.
 - (a) Não existem a e b que tornem T injetora.
 - (b) T é bijetora para quaisquer $a, b \in \mathbb{R}$.
 - (c) T é bijetora para quaisquer $a, b \in \mathbb{R}$ com $a \neq b$.
 - (d) Não existem $a, b \in \mathbb{R}$ que tornem T sobrejetora.
 - (e) T é bijetora se a = b.
- 45. Seja U um espaço vetorial de dimensão finita e seja $T\colon U\to U$ um operador linear. Considere as seguintes afirmações:
 - (I) T é sobrejetor se, e somente se, para toda base \mathcal{B} de U, o determinante da matriz $[T]_{\mathcal{B}}$ é diferente de zero.
 - (II) Se T não for injetor, existe uma base \mathcal{B} de U tal que $[T]_{\mathcal{BC}}$ contém uma coluna de zeros para qualquer base \mathcal{C} de U.

(III) Se
$$\mathcal{D} = \{e_1, e_2, e_3\}$$
 e $\mathcal{E} = \{e_2, e_3, e_1\}$ são bases de U tais que $[T]_{\mathcal{D}\mathcal{E}} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, então $T^3 = 0$.

Escolha a alternativa correta.

- (a) Apenas (I) e (II) são corretas.
- (b) Apenas (II) e (III) são corretas.
- (c) Apenas (I) é correta.
- (d) As três afirmações são corretas.
- (e) Nenhuma das afirmações é correta.

- 46. Verdadeiro ou falso? Justifique suas respostas.
 - (i) Existe uma transformação linear $T: \mathcal{P}_3(\mathbb{R}) \to M_2(\mathbb{R})$ cuja matriz em relação às bases canônicas é a matriz identidade.
 - (ii) Se $T: \mathcal{P}_8(\mathbb{R}) \to \mathcal{P}_8(\mathbb{R})$ é definida por T(p) = p', então existe uma base de $\mathcal{P}_8(\mathbb{R})$ tal que a matriz de T em relação a essa base é inversível.
 - (iii) Se $T: \mathbb{R}^3 \to M_2(\mathbb{R})$ é uma transformação linear injetora, então a matriz de T em relação quaisquer bases de \mathbb{R}^3 e $M_2(\mathbb{R})$ é inversível.
 - (iv) Seja V é um espaço vetorial de dimensão finita e seja $T\colon V\to V$ é um operador linear. Então T é sobrejetor se, e somente se, existe uma base de V tal que a matriz de T em relação a essa base é inversível.
- 47. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear tal que $T^2 = T$. Prove que T = 0 ou T = I ou existe uma base B de \mathbb{R}^2 tal que $[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- 48. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear não nulo tal que $T^2 = 0$. Prove que existe uma base B de \mathbb{R}^2 tal que $[T]_B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.
- 49. Mostre que se $A \in M_n(\mathbb{R})$ é diagonalizável, então a matriz A^m é diagonalizável qualquer que seja o número natural $m, m \geq 1$.
- 50. Exiba uma matriz A não diagonalizável tal que a matriz A^2 seja diagonalizável. (Sugestão: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.)
- 51. Mostre que o operador linear $T: \mathcal{C}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ definido por

$$T(u)(x) = \int_0^x u(s) ds, \quad x \in \mathbb{R},$$

não tem autovalores.

- 52. Seja λ um autovalor do operador linear $T\colon V\to V$ e seja n um número natural. Mostre que
 - (i) λ^n é um autovalor de T^n ;
 - (ii) se f(t) é um polinômio qualquer, então $f(\lambda)$ é um autovalor de f(T).
- 53. Sejam V um espaço vetorial, $T: V \to V$ um operador linear, u um autovetor de T associado ao autovalor λ e v um autovetor de T associado ao autovalor μ . Pode-se afirmar corretamente que
 - (a) u + v é autovetor de T se, e somente se, $\mu = \lambda$ e $u + v \neq 0_V$.
 - (b) se $\lambda = \mu$, então $\lambda u + v$ não é um autovetor de T.
 - (c) se $\lambda \neq \mu$, então u e v podem ser linearmente dependentes.
 - (d) se $\lambda \neq \mu$, então, para todo $\beta \in \mathbb{R}$, $3u + \beta v$ é autovetor de T associado ao autovalor $3\lambda + \beta \mu$.
 - (e) se $\lambda = \mu$, então u v é autovetor de T associado ao autovalor 0.
- 54. Seja T um operador linear com autovalores 0, 1, 2 e 3. Assinale a alternativa contendo uma afirmação **FALSA**.
 - (a) 5, 6, 9 e 14 são autovalores de $5I + T^2$.
 - (b) T é inversível e 0, 1, $\frac{1}{2}$ e $\frac{1}{3}$ são autovalores de T^{-1} .
 - (c) $0, 1, 4 e 9 são autovalores de <math>T^2$.
 - (d) 0, 1, 8 e 27 são autovalores de T^3 .
 - (e) 0, 3, 6 e 9 são autovalores de 3T.

- 55. Seja $A \in M_n(\mathbb{R})$, onde $n \geq 2$. Assuma que a soma dos elementos de qualquer linha de A seja igual a 1. Assinale a alternativa correta.
 - (a) A pode não possuir autovalores reais.
 - (b) 1 e 0 são necessariamente autovalores de A.
 - (c) A possui algum autovalor real, mas pode ser que nem 1 nem 0 sejam autovalores de A.
 - (d) 1 é necessariamente autovalor de A, mas 0 pode não ser.
 - (e) 0 é necessariamente autovalor de A, mas 1 pode não ser.
- 56. Mostre que se $A \in M_2(\mathbb{R})$, então seu polinômio característico é dado por $p_A(t) = t^2 a_1 t + a_0$, onde $a_0 = \det(A)$ e $a_1 = \operatorname{tr}(A)$.
- 57. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear tal que todo vetor não nulo é um autovetor de T. Escreva, então, $T(e_i) = \alpha_i e_i$, onde $\alpha_i \in \mathbb{R}$ para i = 1, 2, 3 e $\{e_1, e_2, e_3\}$ denota a base canônica de \mathbb{R}^3 .
 - (i) Calcule $T(e_1 + e_2 + e_3)$.
 - (ii) Mostre que $\alpha_1 = \alpha_2 = \alpha_3$.
 - (iii) Prove que existe um número $\alpha \in \mathbb{R}$ de modo que o polinômio característico de T seja $p_T(t) = (t \alpha)^3$.
 - (iv) Conclua que $T = \alpha I$, onde I denota o operador identidade de \mathbb{R}^3 .
- 58. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear definido por T(x, y, z) = (3x + y + z, y, x + 2y + 3z), para todo $(x, y, z) \in \mathbb{R}^3$. A soma dos autovalores de T é igual a
 - (a) 6
 - (b) 7
 - (c) 5
 - (d) 2
 - (e) 3
- 59. Seja $A = \begin{bmatrix} 2 & 4 \\ 3 & 13 \end{bmatrix}$. Calcule A^n , $n \in \mathbb{N}$. Determine uma raiz quadrada de A, se existir. (Sugestão: Lembre que se M e B são matrizes quadradas de mesmo tamanho, com M inversível, vale $(M^{-1}BM)^n = M^{-1}B^nM$ para todo $n \in \mathbb{N}$.)
- 60. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear com autovetores $v_1 = (1, -1)$ e $v_2 = (1, 1)$ correspondendo respectivamente aos autovalores $\lambda_1 = \frac{1}{2}$ e $\lambda_2 = 2$. Seja v = (5, 1). Calcule $T^{10}(v)$.
- 62. Verifique se cada uma das matrizes abaixo é ou não diagonalizável. Quando for diagonalizável, determine uma matriz invertível M tal que $M^{-1}AM$ seja uma matriz diagonal.

$$(i) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 \\ -2 & 1 & 2 & -1 \end{bmatrix} \quad (ii) \begin{bmatrix} 3 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad (iii) \begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad (iv) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

63. Seja $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear cuja matrizem relação às bases

$$B = \{ (1,1,0), (1,0,0), (0,1,1) \} \quad e \quad C = \{ (0,1,0), (1,1,0), (1,0,1) \}$$

$$\text{\'e dada por } \begin{bmatrix} 0 & -3 & 2 \\ -1 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}.$$

- (i) Encontre os autovalores e autovetores de T.
- (ii) É T diagonalizável?
- 64. Seja V um espaço vetorial de dimensão 3 seja $T: V \to V$ um operador linear e seja B uma base

de
$$V$$
 tal que $[T]_B = \begin{bmatrix} -a & 0 & -a \\ 0 & b & 0 \\ -3a & c & a \end{bmatrix}$, onde $a, b, c \in \mathbb{R}$. Assinale a alternativa correta.

- (a) Se $b \neq a = 0$, então T não é diagonalizável.
- (b) Se $|b| \neq 2|a|$ e $a \neq 0$, então T é diagonalizável.
- (c) Se $a \neq 0$ e b = 2a = c, então T é diagonalizável.
- (d) Se a = b = 0 e $c \neq 0$, então T é diagonalizável.
- (e) Se c = 0 e $b = -2a \neq 0$, então T não é diagonalizável.
- 65. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ uma transformação linear com polinômio característico $p_T(t)$. Verifique se T é diagonalizável em cada um dos seguintes casos:
 - (i) $p_T(t) = t^4 1$
 - (ii) $p_T(t) = t^3(t+1) e \dim(\text{Ker}(T)) = 2.$
 - (iii) $p_T(t) = t^2(t^2 4) \text{ e dim}(\text{Ker}(T)) = 2.$
 - (iv) $p_T(t) = t^2(t-2)^2 e \dim(\text{Ker}(T)) = 2.$
- 66. Seja U um espaço vetorial de dimensão 5, seja $T: U \to U$ um operador linear e seja p(t) = $-t(t+1)^3(t+2)$ seu polinômio característico. Assinale a alternativa correta.
 - (a) $\dim(\operatorname{Ker}(T)) \geq 2$.
 - (b) $\dim(\operatorname{Ker}(T)) = 1$, $\dim(\operatorname{Ker}(T+2I)) = 1$ e $\dim(\operatorname{Ker}(T+I)) = 3$.
 - (c) T é sobrejetor.
 - (d) T não é diagonalizável, pois $\dim(U) = 5$ e p(t) possui apenas três raízes reais.
 - (e) T é diagonalizável se, e somente se, existem $v_1, v_2, v_3 \in U$, linearmente independentes, tais que $T(v_1) = -v_1$, $T(v_2) = -v_2$ e $T(v_3) = -v_3$.
- 67. Sejam V um espaço vetorial de dimensão n > 4, $T: V \to V$ um operador linear com polinômio característico $p(t) = (1-t)(2-t)^3(3-t)^{n-4}$. Assinale a alternativa FALSA:
 - O operador T é diagonalizável se, e somente se,
 - (a) $\dim(\operatorname{Im}(T-3I)) \dim(\operatorname{Ker}(T-2I)) = 1$
 - (b) $V = \operatorname{Ker}(T I) + \operatorname{Ker}(T 2I) + \operatorname{Ker}(T 3I)$
 - (c) $\dim(\operatorname{Im}(T-I)) + \dim(\operatorname{Im}(T-2I)) + \dim(\operatorname{Im}(T-3I)) = n$
 - (d) $\dim(\operatorname{Ker}(T-I)) + \dim(\operatorname{Ker}(T-2I)) + \dim(\operatorname{Ker}(T-3I)) = n$
 - (e) $\dim(\operatorname{Ker}(T-2I)) + \dim(\operatorname{Ker}(T-3I)) = n-1$
- 68. Sejam V um espaço vetorial de dimensão finita e $T: V \to V$ um operador linear. Suponha que λ e μ sejam autovalores distintos de T. Considere as seguintes afirmações:
 - (I) Se dim(V) dim $(V(\lambda))$ = 1, então T é diagonalizável.
 - (II) Se dim(V) = dim $(V(\lambda))$ + dim $(V(\mu))$, então T é diagonalizável.
 - (III) T é diagonalizável se, e somente se, $\dim(V) = 2$.

Está correto o que se afirma em

- (a) (I) e (II), apenas.
- (b) (II), apenas.
- (c) (I) e (III), apenas.

- (d) (I), (II) e (III).
- (e) (II) e (III), apenas.
- 69. Seja V um espaço vetorial de dimensão finita e seja $T \colon V \to V$ um operador linear invertível. Prove que
 - (i) se λ é um valor próprio de T, então $\lambda \neq 0$;
 - (ii) λ é um valor próprio de T se, e somente se, $\frac{1}{\lambda}$ é um valor próprio de T^{-1} (onde T^{-1} denota o operador inverso de T);
 - (iii) se λ é um valor próprio de T, então a multiplicidade algébrica de λ é igual à multiplicidade algébrica de $\frac{1}{\lambda}$.
- 70. Seja V um espaço vetorial de dimensão finita e seja $T:V\to V$ um operador linear de posto 1. Prove que ou T é diagonalizável ou T^2 é o operador nulo.
- 71. Seja V um espaço vetorial de dimensão finita e seja $T: V \to V$ um operador linear tal que $T^2 = T$.
 - (i) Prove que se λ é um autovalor de T, então $\lambda=0$ ou $\lambda=1$.
 - (ii) Prove que $V = \text{Ker}(T) \oplus \text{Im}(T)$, e conclua que T é diagonalizável.
- 72. Seja $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ o operador linear tal que $T(M) = M^t$, para todo $M \in M_n(\mathbb{R})$, onde M^t denota a transposta de M. Prove que T é diagonalizável.
- 73. Seja $T: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ definida por T(f(t)) = f(t+1) para todo $f(t) \in \mathcal{P}_n(\mathbb{R})$. É T diagonalizável? Por quê?
- 74. Se T denota o operador linear de \mathbb{R}^2 cuja matriz em relação à base canônica é $\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$, então $T^{555}(0,1)$ é igual a
 - (a) $(2^{556} 3^{555}, 2^{556} 3^{555})$
 - (b) $(2^{555} 3^{556}, 2^{556} 3^{555})$
 - (c) $(2^{555} 3^{555}, 2^{555} 3^{555})$
 - (d) $(2^{555} 3^{555}, 2^{555} 3^{556})$
 - (e) $(2^{555} 3^{555}, 2^{556} 3^{555})$
- 75. Seja T um operador linear em \mathbb{R}^3 tal que (1,2,1), (0,1,0) e (2,0,1) sejam autovetores de T associados aos autovalores -1, 1 e 2, respectivamente. A soma dos elementos da primeira coluna da matriz de T em relação à base canônica de \mathbb{R}^3 é igual a
 - (a) 12
 - (b) 11
 - (c) 10
 - (d) 9
 - (e) 8
- 76. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear definido por T(x,y)=(3x-y,2x), para todo $(x,y)\in \mathbb{R}^2$. Então, $T^{2018}(0,1)$ é igual a
 - (a) $(1-2^{2018}, 2-2^{2018})$
 - (b) $(1, 1 3^{2018})$
 - (c) $(2^{2019}, 2 3^{2018})$
 - (d) $(1-2^{2018}, 2^{2019})$
 - (e) $(1-2^{2019}, 1-3^{2018})$

77. Seja $a \in \mathbb{R}$, e considere o operador linear $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ definido por

$$T(x,y) = (ax - y, x + y), \quad (x,y) \in \mathbb{R}^2.$$

Então, T é diagonalizável se, e somente se

- (a) $a \le -1$ ou $a \ge 3$
- (b) $0 \le a \le 2$
- (c) a < 0 ou a > 2
- (d) -1 < a < 3
- (e) a < -1 ou a > 3
- 78. Sejam a e b números reais distintos, seja V um espaço vetorial de dimensão finita e seja $T: V \to V$ um operador linear. Suponha que o polinômio característico de T seja $p(x) = (x-a)^2(b-x)$. Sejam v_1, v_2 autovetores distintos de T associados ao autovalor a, e sejam w_1, w_2 autovetores distintos de T associados ao autovalor b. Assinale a alternativa contendo uma afirmação **FALSA**.
 - (a) Se $v_1 + v_2 \neq 0$, então $v_1 + v_2$ é um autovetor de T.
 - (b) O conjunto $\{w_1, w_2\}$ é linearmente dependente.
 - (c) Se o conjunto $\{v_1, v_2\}$ for linearmente independente, então T será diagonalizável.
 - (d) O conjunto $\{v_1, w_1\}$ é linearmente independente.
 - (e) $v_1 + w_1$ é um autovetor de T.
- 79. Sejam $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ e $S: \mathcal{P}_1(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ as transformações lineares definidas por

$$T(q) = q', \ q \in \mathcal{P}_2(\mathbb{R}), \quad \text{e} \quad S(a_0 + a_1 x) = a_0 + a_0 x + \frac{a_1}{2} x^2, \ a_0, a_1 \in \mathbb{R},$$

e seja $H: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ o operador linear dado por $H = S \circ T$. Assinale a alternativa contendo uma afirmação **FALSA**.

- (a) O polinômio característico de $H \in p(t) = -t(1-t)^2$.
- (b) $\operatorname{Ker}(H-I)=[x^2]$, onde I denota o operador identidade de $\mathcal{P}_2(\mathbb{R})$.
- (c) H é diagonalizável.
- (d) $\dim(\operatorname{Ker}(H)) = 1$.
- (e) Os únicos autovalores de H são 0 e 1.
- 80. Sejam $a,b,c\in\mathbb{R}$ e seja $\mathcal{B}=\{e_1,e_2,e_3\}$ uma base de \mathbb{R}^3 . Seja $T\colon\mathbb{R}^3\to\mathbb{R}^3$ o operador linear cuja matriz em relação à base \mathcal{B} é $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ a & b & c \end{pmatrix}$. Se $\mathrm{Ker}(T)=[e_1+e_2+e_3]$, o polinômio característico de T é $p(t)=-t(t-2)^2$ e T é diagonalizável, então $a^2-b^2+c^2$ é igual a
 - (a) 1
 - (b) 9
 - (c) 7
 - (d) 4
 - (e) 3
- 81. Considere as afirmações abaixo.
 - (I) Se U é um espaço vetorial de dimensão 75, então existe um operador linear $T: U \to U$ satisfazendo $\operatorname{Ker}(T-I) \cap \operatorname{Ker}(T-2I) \cap \operatorname{Ker}(T-3I) \neq \{0_U\}$, onde I denota o operador identidade de U.

(II) Se o espaço vetorial \mathbb{R}^4 está munido do seu produto interno canônico, U é um subespaço de \mathbb{R}^4 de dimensão 1 e $T \colon \mathbb{R}^4 \to \mathbb{R}^4$ é o operador linear definido por $T(v) = \operatorname{proj}_U v$, para todo $v \in \mathbb{R}^4$, então existe uma base \mathcal{B} de \mathbb{R}^4 tal que

(III) Se $T: \mathbb{R}^6 \to \mathbb{R}^6$ é um operador linear cujo polinômio característico é $p(t) = (t-2)^4 (t+3)^2$, então T é invertível.

Está correto que se afirma apenas em

- (a) (I) e (III).
- (b) (I) e (II).
- (c) (III).
- (d) (II) e (III).
- (e) (II).

Respostas

- 1. São lineares apenas (iii), (iv) e (vi).
- 2. Todas as transformações dadas são lineares.

3.
$$T(a+bx+cx^2) = \frac{b+c}{2} + \frac{b-c}{2}x + \frac{b-c}{2}x^3 + ax^4$$
.

4.
$$T(3v + w) = 18v$$
 e $T(w) = 3v$.

- 6. (d)
- 7. $\operatorname{Ker}(T) = \{ M \in M_n(\mathbb{R}) : AM = MA \} \in I_n \notin \operatorname{Im}(T).$
- 8. Defina, por exemplo,

$$T(a+bx+cx^{2}+dx^{3}) = \begin{pmatrix} a+2b & b+6c & a+4b+2c \\ 3b+c & a+5b & a-2b \\ 2a & -b & a-3b-c \end{pmatrix}.$$

Neste caso, uma base de Ker(T) é $\{x^3\}$. Uma base de Im(T) é constituída pelas matrizes dadas no enunciado do exercício.

- 9. Defina, por exemplo, T(x,y) = (x-y, 2x-2y).
- 10. Defina, por exemplo, T(x, y) = (y, 0).
- 11. Defina, por exemplo, T(x, y, z, t) = (z, t, 0, 0). Assim, Ker(T) = Im(T) = [(1, 0, 0, 0), (0, 1, 0, 0)].
- 12. $Ker(T) = \{0\}; Im(T) = \{\varphi \in C^1(\mathbb{R}) : \varphi(0) = 0\}.$
- 13. (c)
- 16. (b)
- 17. (b)
- 18. (i) falso (ii) falso (iii) verdadeiro (iv) verdadeiro (vi) verdadeiro (vii) falso (viii) verdadeiro
- 19. (i) verdadeiro (ii) falso (iii) verdadeiro (iv) verdadeiro (v) verdadeiro
- 20. (e)
- 21. (a)
- 22. (i) verdadeira (ii) falsa (iii) falsa (iv) verdadeira (v) verdadeira
- 27. (b)
- 28. (b)

$$31. \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

32.
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 e $\begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$

$$33. \begin{pmatrix} \frac{4}{13} & \frac{6}{13} \\ \frac{6}{13} & \frac{9}{13} \end{pmatrix}$$

- 34. (b)
- 35. (a)
- 36. (a)
- 37. (c)
- 38. (e)
- 39. (c)
- 39. (c) $40. \text{ Ambas as matrizes são iguais a} \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & n & n^2 & \cdots & n^n \end{pmatrix}.$
- $41. \begin{pmatrix} 0 & 2 & 0 \\ 12 & 9 & -10 \\ 1 & 0 & 10 \end{pmatrix}$
- 42. (a)
- (i) $Ker(G \circ T) = [(1, 2, 1)]] Ker(T \circ G) = [x + x^2]$

(ii)
$$[H]_{DC} = \begin{pmatrix} 13 & -19 & 19 \\ 6 & -5 & 5 \\ 3 & -6 & 7 \end{pmatrix}$$

- 44. (c)
- 45. (d)
- 46. (i) verdadeiro (ii) falso (iii) falso (iv) verdadeiro
- 53. (a)
- 54. (b)
- 55. (d)
- 58. (b)

59.
$$\frac{1}{13} \begin{pmatrix} 12 + 14^n & -4 + 4 \cdot 14^n \\ -3 + 3 \cdot 14^n & 1 + 12 \cdot 14^n \end{pmatrix}$$

60.
$$(2^{-9} + 3 \cdot 2^{10}, -2^{-9} + 3 \cdot 2^{10})$$

- 61. As respostas vão variar; uma possibilidade é $M=\begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{pmatrix}.$
- (i) É diagonalizável. Uma possibilidade é $M = \begin{pmatrix} 0 & -2 & -2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 3 & 3 & 1 \end{pmatrix}$.
 - (ii) Não é diagonalizável.

- (iii) Não é diagonalizável.
- (iv) É diagonalizável. Uma possibilidade é $M=\begin{pmatrix}1&1&-1\\1&1&1\\1&-2&0\end{pmatrix}$.
- 63. (i) autovalores: -1 e 3; V(-1) = [(1,1,0),(1,1,1)] e V(3) = [(-1,1,0)]
 - (ii) sim
- 64. (b)
- 65. (i) não (ii) não (iii) sim (iv) depende
- 66. (e)
- 67. (c)
- 68. (a)
- 74. (e)
- 75. (a)
- 76. (a)
- 77. (e)
- 78. (e)
- 79. (b)
- 80. (d)
- 81. (c)