

Empowering and Assessing the Utility of Large Language Models in Crop Science

NEURAL INFORMATION PROCESSING SYSTEMS

Thong¹, Github:

Hang Zhang^{1*}, Jiawei Sun^{1*}, Renqi Chen^{1*}, Wei Liu¹, Zhonghang Yuan¹, Xinzhe Zheng¹, Zhefan Wang¹, Zhiyuan Yang⁴, Hang Yan¹, Hansen Zhong¹, Xiqing Wang³, Wanli Ouyang¹, Fan Yang^{2†}, Nanqing Dong^{1†}

¹ Shanghai Artificial Intelligence Laboratory ² Yazhouwan National Laboratory ³ China Agricultural University ⁴ Hangzhou Dianzi University

1. Motivation for the CROP

- Crop cultivation has historically been a significant challenge, with uncertainties in harvest yields.
- Recent progress in large language models (LLMs), offers promising opportunities. LLMs can generate professional knowledge and context in response to user inquiries, finding applications in various fields.
- However, LLMs currently face limitations in specific areas, such as pest management, and the existing datasets for agricultural evaluation are insufficient in quantity and locality.

2. Overview of the CROP

To harness the full potential of LLMs for crop science, we propose a suite called CROP, which encompasses

- an extensive instruction-tuning dataset, designed to enhance the domainspecific proficiency of LLMs in crop science.
- a meticulously constructed benchmark, aimed at assessing the performance of LLMs across a variety of domain-related tasks.

3. CROP Dataset Collection

Schematic overview of the dialogue collection procedure

- Raw data is first converted to TXT or XLS format.
- Prompt an LLM to generate Q&As from unstructured data or design templates that transform structured data into dialogue format.
- Filtering steps with both human and LLM involved.

Schematic overview of the multi-turn dialogue dataset collection procedure

- An LLM creates tasks under the guidance of domain experts and assigns roles to two agents.
- Using task-dependent prompts from researchers, the LLM generates dialogues with RAG.
- Filtering steps.

4. CROP Dataset Analysis

5. CROP Benchmark Collection

- We prompt an LLM to generate MCQs from TXT files.
- After additional filtering steps with both human and LLM involved, we
 get the CROP benchmark, comprising three difficulty levels.

6. CROP Benchmark Analysis

- 5,045 questions in the benchmark have three difficulty levels:
- > Easy (1613, 31.97%)
- ➤ Moderate (2754, 53.72%)
- > Difficult (722, 14.31%)
- CROP benchmark consists of 5045 Chinese and English MCQs and covers 22 countries across six continents.

7. Experiments

1. The performance of selected LLMs on the CROP benchmark

Model	Access	Size	Overall ↑	Difficulty			
		Size		Easy ↑	Moderate ↑	Difficult ↑	
Commercial LLMs	5						
$GPT-4^1$	API	N/A	0.856	1.000^2	1.000^2	0.000^{2}	
$GPT-3.5^{1}$	API	N/A	0.328	1.000^2	0.000^{2}	0.061	
Claude-3 ¹	API	N/A	0.900	0.982	0.968	0.458	
Qwen ¹	API	N/A	0.866	0.987	0.945	0.301	
Open-source LLM	Ts .						
LLaMA3-Base	Weights	8B	0.348	0.443	0.341	0.161	
+CQIA	Weights	8B	0.643 (+0.295)	0.791 (+0.348)	0.651 (+0.310)	0.281 (+0.12)	
+CROP	Weights	8B	0.752 (+0.404)	0.866 (+0.432)	0.772 (+0.431	0.378 (+0.21	
+CQIA+CROP	Weights	8B	0.754 (+0.406)	0.918 (+0.475)	0.779 (+0.438)	0.295 (+0.13	
Qwen1.5-Base	Weights	7B	0.646	0.799	0.646	0.302	
+CQIA	Weights	7B	0.688 (+0.042)	0.880 (+0.081)	0.689 (+0.043)	0.258 (-0.044	
+CROP	Weights	7B	0.676 (+0.030)	0.849 (+0.050)	0.688 (+0.042)	0.202 (-0.10	
+CQIA+CROP	Weights	7B	0.709 (+0.063)	0.910 (+0.111)	0.704 (+0.058)	0.227 (-0.07	
InternLM2-Base	Weights	7B	0.368	0.445	0.381	0.148	
+CQIA	Weights	7B	0.723 (+0.355)	0.861 (+0.416)	0.750 (+0.369)	0.317 (+0.16	
+CROP	Weights	7B	0.748 (+0.380)	0.945 (+0.500)	0.761 (+0.380)	0.212 (+0.06	
+CQIA+CROP	Weights	7B	0.768 (+0.400)	0.939 (+0.494)	0.794 (+0.413)	0.285 (+0.13	

2. The performance of fine-tuned LLMs under different training epochs and languages.

Model	Epoch	Size	Overall ↑	Difficulty			Language		
				Easy ↑	Moderate ↑	Difficult ↑	Chinese ↑	English ↑	Variation ↓
LLaMA3-Base	N/A	8B	0.348	0.443	0.341	0.161	0.327	0.369	4.2%
+CQIA+CROP	1	8B	0.738	0.903	0.758	0.292	0.719	0.757	3.8%
+CQIA+CROP	2	8B	0.742	0.902	0.772	0.271	0.729	0.755	2.6%
+CQIA+CROP	4	8B	0.754	0.918	0.779	0.295	0.738	0.770	3.2%
Qwen1.5-Base	N/A	7B	0.646	0.799	0.646	0.302	0.667	0.624	4.3%
+CQIA+CROP	1	7B	0.702	0.910	0.717	0.183	0.725	0.680	4.5%
+CQIA+CROP	2	7B	0.670	0.875	0.677	0.181	0.690	0.649	4.1%
+CQIA+CROP	4	7B	0.709	0.910	0.704	0.227	0.717	0.686	3.1%
InternLM2-Base	N/A	7B	0.368	0.445	0.381	0.148	0.409	0.327	8.2%
+CQIA+CROP	1	7B	0.764	0.942	0.787	0.276	0.770	0.757	3.3%
+CQIA+CROP	2	7B	0.809	0.909	0.855	0.414	0.811	0.807	0.4%
+CQIA+CROP	4	7B	0.768	0.939	0.794	0.285	0.770	0.766	0.4%