Roteiro do Laboratório 01

Laboratório de Algoritmos e Estrutura de Dados

O objetivo deste roteiro é compreender o passo-a-passo de depurar e revisionar o código. A revisão consistirá dos passos abaixo:

- Clone;
- Codificar;
- Git Add;
- Git Checkout (branchSiglasIntegrantes)
- Git commit
- Git Push

Observação: Subam no código um arquivo com o nome dos integrantes do grupo.

A codificação consiste em escolher 3 questões das listadas neste arquivo. Os alunos que não estiverem presentes, codificarão as questões: 21, 22 e 26.

O passo a passo a ser realizado na sala de aula é descrito e apresentado na ordem que aparece abaixo:

- Programar;
- Compilar;
- Executar;
- Depurar;

1 Problemas a serem resolvidos

Problema 1 Escreva um programa para somar uma sequência de inteiros e calcular sua média. Suponha que o primeiro inteiro lido com scanf especifique o número de valores a serem inseridos. Seu programa deve ler apenas um valor cada vez que scanf é executado. Uma sequência de entrada típica pode ser:

7 678 234 315 489 536 456 367

Problema 2 Escreva um programa que converta temperaturas de 30 ^{o}C a 50 ^{o}C para a escala Fahrenheit espaçados de 1 ^{o}C . O programa deve imprimir

uma tabela exibindo as temperaturas nas duas escalas lado a lado. [Dica: F = C + 32]

Problema 3 Escreva um programa para calcular e imprimir a soma de todos os múltiplos de 7 partindo de 1 até 100.

Problema 4 Escreva um programa para calcular e imprimir uma lista de todos os números primos de 1 a 100.

Problema 5 Escreva um programa que imprima a soma, a soma dos quadrados e a soma dos cubos de todos os números naturais de 1 até qualquer número inserido pelo usuário.

Problema 6 A função fatorial é frequentemente usada em problemas de probabilidade. O fatorial é igual ao produto dos inteiros positivos de 1 a n. Escreva um programa que avalie os fatoriais dos inteiros de 1 a n. Imprima os resultados em formato tabular.

Problema 7 Uma aplicação interessante de computadores é desenhar gráficos e gráficos de barras. Escreva um programa que leia cinco números (cada um entre 1 e 30). Para cada número lido, seu programa deve imprimir uma linha contendo aquele número de asteriscos adjacentes. Por exemplo, se seu programa lê o número sete, ele deve imprimir ******.

Problema 8 Um varejista online vende cinco produtos diferentes, cujos preços de varejo são mostrados na tabela a seguir:

Número do	Preço no
produto	varejo
1	3,00
2	4,00
3	2,80
4	1,95
5	5,00

Escreva um programa que leia uma série de pares de números da seguinte forma: Número do produto e Quantidade vendida por um dia. Seu programa deve usar uma instrução **switch** para ajudar a determinar o preço de varejo de cada produto. Seu programa deve calcular e exibir o valor total de varejo de todos os produtos vendidos na semana passada.

Problema 9 Escreva um programa para converter e imprimir os caracteres para os valores ASCII de 0 a 127. O programa deve imprimir 10 caracteres por linha.

Problema 10 Calcule o valor de π da série infinita:

$$\pi = 4 * \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} \dots\right)$$

Apresente o resultado com os valores, lado a lado, da quantidade de temos utilizado e da aproximação do valor de π .

Problema 11 Um triângulo retângulo pode ter lados inteiros. O conjunto de três valores inteiros para os lados de um triângulo retângulo é chamado de triplo pitagórico. Esses três lados devem satisfazer a relação de que a soma dos quadrados de dois dos lados é igual ao quadrado da hipotenusa. Encontre todos os triplos pitagóricos para cateto1, cateto2 e a hipotenusa, todos com até o valor de n, indicado como parâmetro.

Problema 12 Escreva um programa que imprima uma tabela de todos os equivalentes de algarismos romanos dos números decimais no intervalo de 1 a 100.

Problema 13 Determine o dia da semana para qualquer data compreendida entre 0 DC até 1 de fevereiro de 2023. Exemplo de execução:

Entra como valor de entrada via *scanf* três numerais:

> 1 de fevereiro de 2023

> Wednesday

Problema 14 Defina uma função chamada hipotenusa que calcula o comprimento da hipotenusa de um triângulo retângulo quando os outros dois lados são dados.

Problema 15 Escreva uma função que exibe um retângulo sólido de asteriscos cujos lados são especificados nos parâmetros inteiros lado1 e lado2. Por exemplo, se os lados são 4 e 5, a função exibe o seguinte:

* * * * *

* * * * *

* * * * *

* * * * *

Problema 16 Escreva a função anterior e passe como parâmetro o caractere que deseja imprimir.

Problema 17 Escreva uma função que considere o tempo como três argumentos inteiros (para horas, minutos e segundos) e retorne o número de

segundos desde a última vez que o relógio bateu 12. Use esta função para calcular a quantidade de tempo em segundos entre dois tempos, ambos dentro de um ciclo de 12 horas do relógio.

Problema 18 Um número inteiro é considerado um número perfeito se seus fatores, incluindo 1 (mas não o próprio número), somam o número. Por exemplo, 6 é um número perfeito porque 6 = 1 + 2 + 3. Escreva uma função isPerfect que determina se o número do parâmetro é um número perfeito. Use esta função em um programa que determina e imprime todos os números perfeitos entre 1 e 1000. Imprima os fatores de cada número perfeito para confirmar que o número é realmente perfeito.

Problema 19 Escreva dois programas que recebem como parâmetro três inteiros representando os coeficientes de uma função do segundo grau e execute:

- a) O teste para saber se essa função tem raízes reais;
- b) O valor das raízes reais.

Problema 20 Escreva uma função que receba um inteiro e retorne a soma de seus dígitos. Por exemplo, dado o número 7631, a função deve retornar 17.

1.0.1 Funções recursivas

Problema 21 Escreva funções recurivas para calcular:

- a) Máximo Divisor Comum entre dois número inteiros;
- b) Fatorial de um número natural;
- c) A série de fibonacci (1, 1, 2, 3, 5..., a, b, (a + b)...);
- d) isPrime(n): Verificador recursivo se n é um número natural primo.

Problema 22 Defina uma função recursiva que, dado os valores inteiros de x_1 e x_2 , determine $y = x_1x_2$.

Problema 23 Função para inverter um número. Exemplo: f(1234) = 4321

Problema 24 Somatório de valores de 1 até N.

Problema 25 Implemente a seguinte função matemática f(m,n) definida por partes:

I.
$$f(m,n) = m+1$$
, se $n = 1$.

II.
$$f(m,n) = n + 1$$
, se $m = 1$.

III.
$$f(m,n) = f(m,n-1) + f(m-1,n)$$
, se $m > 1, n > 1$.

Problema 26 Defina a recursivamente a Função de Ackermann A(m,n):

I.
$$n + 1$$
, se $m = 0$.

II.
$$A(m-1,1)$$
, se $m > 0, n = 0$.

III.
$$A(m-1, A(m, n-1))$$
, se $m > 0, n > 0$.