tópicos de matemática - lcc

paula mendes martins

departamento de matemática - uminho

O Sr. Preto, o Sr. Castanho e o Sr. Verde estavam a almoçar juntos.

Um deles trazia uma gravata preta, outro trazia uma gravata castanha e o terceiro trazia uma gravata verde.

"Já repararam que", disse o homem da gravata verde, "apesar das nossas gravatas serem de cores iguais aos nossos nomes, nenhum de nós traz a gravata que corresponde ao seu nome?"

"Realmente tens razão", exclamou o Sr. Castanho.

De que cor era a gravata de cada um?

- 1. Exatamente uma destas frases é falsa;
- 2. Exatamente duas destas frases são falsas;
- 3. Exatamente três destas frases são falsas;
- 4. Exatamente quatro destas frases são falsas;
- 5. Exatamente cinco destas frases são falsas;
- 6. Exatamente seis destas frases são falsas;
- 7. Exatamente sete destas frases são falsas;
- 8. Exatamente oito destas frases são falsas;
- 9. Exatamente nove destas frases são falsas;
- 10. Exatamente dez destas frases são falsas.

Das 10 afirmações, quantas são verdadeiras e quantas são falsas?

Um crime foi cometido por uma e apenas uma pessoa de um grupo de cinco suspeitos: Armando, Bernardo, Carlos, Daniel e Eduardo.

Questionados sobre quem era o culpado, cada um deles respondeu:

Armando: "Sou inocente."

Carlos: "O Eduardo é o culpado."

Eduardo: "O Daniel é o culpado."

Bernardo: "O Armando disse a verdade."

Daniel: "O Carlos mentiu."

Sabendo que apenas um dos suspeitos mentiu e que todos os outros disseram a verdade, quem é o culpado?

"O Ernesto tem mais de mil livros", diz o Alberto.

"Não tem", diz o Jorge, "tem menos que isso."

"Certamente, tem pelo menos um livro", diz a Henriqueta.

Se apenas uma das afirmações é verdadeira, quantos livros tem o Ernesto?

Temos 3 caixas, uma com bolas brancas, outra com bolas pretas e a terceira com bolas brancas e bolas pretas.

Temos 3 etiquetas que dizem: "Bolas brancas", "Bolas pretas" e "Bolas brancas e pretas".

As etiquetas estão coladas nas caixas mas nenhuma está colada na caixa correspondente.

Qual o número mínimo de bolas que temos de retirar das caixas para colocar as etiquetas corretamente?

preliminares de lógica

Preliminares de lógica

O que é a matemática?

Teorias Matemáticas envolvem:

- construção de objetos matemáticos;
- formação de relações entre esses objetos;
- a pesquisa daquelas relações que são verdadeiras (i.e., demonstrações dos Teoremas)

Para provar os seus resultados a matemática usa um processo de raciocínio que se baseia na **lógica**.

lógica: o que é?

Do grego "logos" que significa sentença, razão, regra...

A lógica é o estudo dos princípios do raciocínio correto:

- Análise dos métodos de raciocínio;
- Interesse na forma dos argumentos, não no seu conteúdo.

A tarefa da lógica é fundamentalmente a formalização e análise do método de raciocínio.

Exemplo:

Situação 1: Todos os que estão nesta sala gostam de Matemática. Eu estou nesta sala. Então, eu gosto de Matemática.

Situação 2: Todos os coelhos comem cenouras. Este animal é um coelho. Então, este animal come cenouras.

Formalmente, o raciocínio das duas situações é o mesmo.

Linguagem

Para exprimir argumentos precisos e rigorosos sobre afirmações é indispensável uma linguagem simples, clara, na qual as afirmações efetuadas não tenham significado ambíguo.

A linguagem corrente não tem estes requisitos:

- "Não fiz nada."
- "Não gostas de mim?" perguntei. "Não." respondeu ele.

É necessário utilizar uma linguagem formal.

A construção de uma linguagem formal exige uma *Sintaxe* e uma *Semântica*.

A **Sintaxe** é o conjunto de regras para escrita e manipulação de afirmações. No aspeto sintático, uma linguagem formal permite construir demonstrações e refutações - Teoria da Dedução; interessa a interligação das afirmações de acordo com regras de inferência.

A **Semântica** é a tradução do significado das afirmações através da sua interpretação numa estrutura. No aspeto semântico, uma linguagem formal permite exprimir propriedades da estrutura e determinar quando é verdadeira uma afirmação numa dada estrutura - Teoria de Modelos; interessa o significado intrínseco das afirmações.

Linguagem lógica mais simples: cálculo proposicional.

Cálculo proposicional

Sintaxe

proposições simples: frases com um verbo e um sujeito, na afirmativa, sem variáveis. Representam-se por letras (p, q, r, ...)

conectivos (ou operadores):

```
\sim ou \neg - negação
```

$$\Rightarrow$$
 ou \rightarrow - implicação

$$\Leftrightarrow$$
 ou \leftrightarrow - equivalência

símbolos auxiliares:

```
() – parêntesis
```

fórmulas proposicionais ou proposições compostas: sequências de símbolos do alfabeto construídas de acordo com certas regras.

Como? Dadas as proposições p e q escrevemos:

```
\sim p (lê-se não p);

p \wedge q (lê-se p e q);

p \vee q (lê-se p ou q);

p \Rightarrow q (lê-se se p então q);

p \Leftrightarrow q (lê-se p se e só se q).
```

O significado destes conectivos tem de ser rigorosamente definido.

Semântica

O aspeto semântico do cálculo proposicional parte da noção de verdade.

A definição de valores de verdade envolve 2 objetos: **F** (falso) e **V** (verdadeiro).

O objetivo é estudar a verdade das proposições compostas a partir da verdade das proposições simples que as compõe e do significado dos conectivos.

Representamos os conectivos através de funções de verdade.

Seja $B = \{V, F\}$. Dado $n \in \mathbb{N}$, chama-se **função de verdade** n-**ária** a qualquer aplicação de B^n em B.

Observação: No caso do cálculo proposicional, vamos estudar funções de verdade unárias e binárias:

$$B \rightarrow B$$
 e $B \times B \rightarrow B$.

- função de verdade unária da negação

$$\sim: B \to B \qquad \begin{array}{c|c} x & \sim x \\ \hline V & F \\ F & V \end{array}$$

- função de verdade binária da conjunção

- função de verdade binária da disjunção

- função de verdade binária da implicação

- função de verdade binária da equivalência

As tabelas que representam as funções de verdade dizem-se **tabelas de verdade**.

Como valorar as proposições?

Seja S o conjunto das proposições simples. Chama-se **valoração simples** a qualquer aplicação v de S em $B = \{V, F\}$

$$v: S \to B$$

 $p \mapsto v(p)$

Pode-se estender uma valoração simples a qualquer proposição composta de modo que o significado dos conectivos seja respeitado.

Teorema.

Sejam P o conjunto de todas as proposições de uma linguagem, S o conjunto de todas as suas proposições simples e $v:S\to B$ uma valoração simples. Então, existe uma e uma só valoração $\overline{v}:P\to B$ tal que:

- **1.** Para qualquer $p \in S$, $\overline{v}(p) = v(p)$;
- **2.** Para quaisquer $a, b \in P$,

$$\overline{v}(a \wedge b) = \begin{cases} V & \text{se } \overline{v}(a) = \overline{v}(b) = V \\ F & \text{caso contrário} \end{cases}$$
;

3. Para quaisquer $a, b \in P$,

$$\overline{v}(a \lor b) = \begin{cases} F & \text{se } \overline{v}(a) = \overline{v}(b) = F \\ V & \text{caso contrário} \end{cases}$$
;

4. Para quaisquer $a, b \in P$,

$$\overline{v}(a \Rightarrow b) = \begin{cases} F & \text{se } \overline{v}(a) = V \text{ e } \overline{v}(b) = F \\ V & \text{caso contrário} \end{cases}$$
;

5. Para quaisquer $a, b \in P$,

$$\overline{v}(a \Leftrightarrow b) = \begin{cases} V & \text{se } \overline{v}(a) = \overline{v}(b) \\ F & \text{se } \overline{v}(a) \neq \overline{v}(b) \end{cases}$$
;

6. Para qualquer $a \in P$,

$$\overline{v}(\sim a) = \left\{ egin{array}{ll} F & se \ \overline{v}(a) = V \ V & se \ \overline{v}(a) = F \end{array}
ight.$$

 \overline{v} diz-se uma valoração total que estende v.

Consequência imediata do Teorema: Cada fórmula tem uma e uma só valoração.

Exemplo: Queremos estudar a valoração da proposição composta $(p \land (q \lor p)) \Rightarrow \sim q$.

Esta proposição tem duas proposições simples, *p* e *q*, pelo que a tabela que vamos construir tem 4 linhas, que corresponde ao número de combinações possíveis das valorações das duas proposições.

p	q	$q \lor p$	$p \wedge (q \vee p)$	$\sim q$	$(p \land (q \lor p)) \Rightarrow (\sim q)$
V	V	V	V	F	F
V	F	V	V	V	V
F	V	V	F	F	V
F	F	F	F	V	V

Analisando a tabela, podemos concluir que a proposição $(p \land (q \lor p)) \Rightarrow \sim q$ é falsa se p e q são ambas verdadeiras e é verdadeira caso contrário.

O cálculo proposicional é uma **lógica bivalente**, pois temos 2 princípios:

Princípio da não contradição: Uma proposição não pode ser simultaneamente verdadeira e falsa.

Princípio do 3º excluído: Uma proposição ou é verdadeira ou é falsa.

Tautologias e contradições

Uma **tautologia** é uma fórmula proposicional cuja valoração total é V quaisquer que sejam as valorações das proposições simples que a definem.

Exemplo: As proposições $p \lor \sim p$ ou $p \Rightarrow p$ são tautologias.

O conceito de tautologia permite-nos definir **fórmulas logicamente equivalentes**: p e q dizem-se fórmulas logicamente equivalentes se $p \Leftrightarrow q$ é uma tautologia.

Exemplo: A fórmula $(p \land (q \lor p)) \Rightarrow \sim q$ é logicamente equivalente à fórmula $\sim (p \land q)$, pois

$$((p \land (q \lor p)) \Rightarrow \sim q) \Leftrightarrow (\sim (p \land q))$$

é uma tautologia.

Uma **contradição** é uma fórmula proposicional cuja valoração total é F quaisquer que sejam as valorações das proposições simples que a definem.

Exemplo: As proposições $p \Leftrightarrow \sim p$ e $p \land \sim p$ são contradições.

Tautologias importantes

- 1. $p \lor \sim p$;
- 2. $\sim (p \land \sim p)$;
- 3. $p \Rightarrow p$;
- 4. $p \Leftrightarrow (p \lor p)$; $p \Leftrightarrow (p \land p)$; (idempotência)
- 5. $\sim \sim p \Leftrightarrow p$; (dupla negação)
- 6. $(p \lor q) \Leftrightarrow (q \lor p);$ $(p \land q) \Leftrightarrow (q \land p);$ $(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p);$ (comutatividade)

- 7. $(p \lor (q \lor r)) \Leftrightarrow ((p \lor q) \lor r);$ $(p \land (q \land r)) \Leftrightarrow ((p \land q) \land r);$ (associatividade)
- 8. $(p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r));$ $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r));$ (distributividade)
- p ⇔ (p ∨ C), onde C é uma contradição (identidade para a disjunção)
 p ⇔ (p ∧ T), onde T é uma tautologia (identidade para a conjunção)
- 10. $T\Leftrightarrow (p\lor T)$; onde T é uma tautologia (elemento absorvente para a disjunção) $C\Leftrightarrow (p\land C)$; onde C é uma contradição (elemento absorvente para a conjunção)
- 11. $\sim (p \land q) \Leftrightarrow (\sim p \lor \sim q);$ $\sim (p \lor q) \Leftrightarrow (\sim p \land \sim q);$ (leis de De Morgan)

12.
$$(p \Rightarrow q) \Leftrightarrow (\sim p \lor q);$$

 $\sim (p \Rightarrow q) \Leftrightarrow (p \land \sim q);$

13.
$$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p));$$

 $(p \Leftrightarrow q) \Leftrightarrow (\sim p \Leftrightarrow \sim q);$

14.
$$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$$
; (lei do contra-reíproco)

15.
$$p \Rightarrow (p \lor q)$$
;

16.
$$(p \land (p \Rightarrow q)) \Rightarrow q$$
; (Modus Ponens - modo de afirmar)

17.
$$((p \Rightarrow q) \land \sim q) \Rightarrow \sim p$$
; (Modus Tollens - modo de negar)

18.
$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$
. (transitividade)

Exemplo: Usando tautologias, pretende-se simplificar a proposição

$$(p \wedge q) \vee (p \wedge (\sim q)).$$

$$(p \wedge q) \vee (p \wedge (\sim q)) \iff p \wedge (q \vee \sim q)$$
 (distributividade) $\iff p \wedge V$ (taut. 1) $\iff p$ (elt.° neutro)

Condições

Conceitos básicos

No raciocínio matemático, é muitas vezes necessário fazer afirmações sobre valores/elementos não concretos que são representados por letras às quais chamamos **variáveis**.

Exemplo: *x* é um número primo.

Notação: Representamos afirmações como esta por p(x).

Esta notação simplifica a notação para a concretização da variável:

p(7): 7 é um número primo;

p(8): 8 é um número primo.

Se uma afirmação contém variáveis, não podemos, muitas vezes, dizer que é verdadeira ou que é falsa. A sua valoração depende da concretização das variáveis. A esta afirmação chamamos **condição** ou **expressão proposicional** e ao conjunto das possíveis concretizações da variável chamamos **domínio da variável**.

Exemplo: " $x \ge 5$ " é uma condição.

É verdadeira? É falsa?

Concretizemos a variável x: por exemplo, x = 4.

Da condição " $x \ge 5$ " obtemos a proposição $4 \ge 5$.

 $4 \geq 5$ é uma proposição falsa.

Classificação de condições

Condição impossível é uma condição que se transforma numa proposição falsa qualquer que seja a concretização da variável (ou variáveis) no seu domínio.

Exemplo: $p(x): x^2 < 0$ é uma condição impossível em \mathbb{R} .

Condição possível é uma condição que não é impossível.

Exemplo: q(x): $x^2 > 0$ é uma condição possível.

Condição universal é uma condição que se transforma numa proposição verdadeira qualquer que seja a concretização da variável (ou variáveis) no seu domínio.

Exemplo: r(x): $x^2 \ge 0$ é uma condição universal em \mathbb{R} .

q(x): $x^2 > 0$ não é uma condição universal em \mathbb{R} .

Operações lógicas com condições

Conectivos

Os conectivos lógicos que definimos para as proposições estendem-se naturalmente às condições.

Assim, se p(x) e q(x) são condições,

$$p(x) \land q(x), \ p(x) \lor q(x), \ \sim p(x), \ p(x) \Rightarrow q(x) \in p(x) \Leftrightarrow q(x)$$

são condições.

As propriedades dos conectivos transmitem-se, automaticamente, aos conectivos entre condições.

Exemplo: $p(x) \land (q(x) \land r(x)) \iff (p(x) \land q(x)) \land r(x)$.

Quantificação de condições

As quantificações universal e existencial são duas operações lógicas que se aplicam unicamente a condições.

Quantificação universal

$$\forall x, p(x)$$
 (qualquer que seja x, x satisfaz $p(x)$)

 \forall - quantificador universal

O símbolo \forall (lê-se *qualquer que seja*) transforma a condição p(x) na proposição $\forall x, p(x)$.

Exemplo:

$$p(x)$$
: x é primo — condição
$$\forall x \in \mathbb{N}, \ x$$
 é primo — proposição falsa
$$\forall x \in \{2,3,5,7,11\}, \ x$$
 é primo — proposição verdadeira

Quantificação existencial

 $\exists x: p(x)$ (existe algum x tal que x satisfaz p(x)) (para algum x, x satisfaz p(x))

 \exists - quantificador existencial

O símbolo \exists (lê-se *existe algum*) transforma a condição p(x) na proposição $\exists x : p(x)$.

Exemplo:

p(x): x é primo — condição — proposição verdadeira $\exists x \in \{2,3,5,7,11\}$: x é primo — proposição verdadeira $\exists x \in \{2,4,8,11\}$: x é primo — proposição verdadeira $\exists x \in \{4,8,9\}$: x é primo — proposição falsa

Existência e Unicidade: o símbolo \exists^1 (lê-se *existe um e um só*) é mais restritivo que o símbolo \exists .

Exemplo:

p(x): x é primo – condição

 $\exists x \in \mathbb{N} : x \text{ \'e primo}$ — proposição verdadeira

 $\exists^1 x \in \mathbb{N} : x \text{ \'e primo}$ — proposição falsa

observações importantes:

1 - Quando quantificamos uma condição, a variável (ou variáveis) quantificada(s) torna(m)-se *muda(s)*.

Exemplo:

$$x+y=5$$
 — condição
$$\forall x, \; x+y=5 \qquad \qquad - \text{condição } (x \text{ \'e muda})$$

$$\forall y \forall x, \; x+y=5 \qquad \qquad - \text{proposição falsa}$$

2 - Os quantificadores universal e existencial podem ser combinados para quantificar uma mesma condição. Quando uma condição tem duas ou mais variáveis, a valoração da proposição obtida pela quantificação de todas as variáveis depende da ordem dessas quantificações.

Exemplo:

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} : x + y = 5$$

proposição verdadeira

$$\exists y \in \mathbb{Z} : \forall x \in \mathbb{Z}, \ x + y = 5$$

proposição falsa

3 - Quando quantificamos duas variáveis com o mesmo quantificador, a ordem é indiferente. Neste caso, simplificamos a escrita.

Exemplo:

$$\exists x, y \in \mathbb{Z} : x + y = 5$$

proposição verdadeira

$$\forall x,y\in\mathbb{Z},\ x+y=5$$

proposição falsa

Negação de proposições quantificadas

 $\sim (\forall x, \ p(x))$ é logicamente equivalente a $\exists x : \sim p(x)$.

Exemplo: Negar que "Todos os que estão nesta sala gostam de Matemática." é afirmar que "Existe alguém nesta sala que não gosta de Matemática.".

$$\sim (\exists x \colon p(x))$$
 é logicamente equivalente a $\forall x, \sim p(x)$.

Exemplo: Negar que "Alguém que está nesta sala vai reprovar a Tópicos de Matemática." é afirmar que "Todos os que estão nesta sala não vão reprovar a Tópicos de Matemática.".

$$\begin{array}{l} \sim (\forall x,\ p(x)) \Longleftrightarrow \exists x \colon \sim p(x) \\ \sim (\exists x \colon\ p(x)) \Longleftrightarrow \forall x,\ \sim p(x) \end{array} \right\} \text{ Segundas Leis de De Morgan}$$

Exemplos de proposições quantificadas

 $\forall x,y\in\mathbb{Z},\ x+y=y+x$ — propriedade comutativa da adição de inteiros relativos

 $\forall x, y, z \in \mathbb{Z}, \ (x+y)+z=x+(y+z)$ — propriedade associativa da adição de inteiros relativos

 $\exists x_0 \in \mathbb{Z} : \forall y \in \mathbb{Z}, \ y + x_0 = x_0 + y = y$ – existência de elemento neutro para a adição de inteiros relativos $(x_0 = 0)$

 $\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{Z}: \ y+x=x+y=0$ — existência de simétrico para cada um dos inteiros relativos (para cada x, consideramos y=-x).

Demonstrações

Definições básicas

Um **Argumento** é uma sequência finita de fórmulas $p_1, p_2, ..., p_n, q$ sob a forma

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Rightarrow q.$$

Também escrevemos

 p_1

 p_2

:

p_n

Às fórmulas $p_1, p_2, ..., p_n$ chamamos **premissas** ou **hipóteses** e à fórmula q chamamos **conclusão**.

Se sempre que p_1 , p_2 , ..., p_n foram verdadeiras, q é verdadeiro, o argumento diz-se **logicamente válido** ou **correto**.

Exemplo:

$$a \Rightarrow b$$
 $\sim b$
 $\sim a$
é um argumento válido.

Se tivermos todas as fórmulas $p_1, p_2, ..., p_n$ verdadeiras e q falsa, o argumento diz-se **logicamente inválido**, **incorreto** ou **falacioso**.

Exemplo:

$$a \Rightarrow b$$
 $\frac{\sim a}{\sim b}$ é um argumento falacioso.

Exemplo: 2=1

$$a = b \Rightarrow a^{2} = ab$$

$$\Rightarrow a^{2} - b^{2} = ab - b^{2}$$

$$\Rightarrow (a + b)(a - b) = b(a - b)$$

$$\Rightarrow a + b = b$$

$$\Rightarrow b + b = b$$

$$\Rightarrow 2b = b$$

$$\Rightarrow 2 = 1$$

Por que é que este argumento é falacioso?

Em Matemática, os teoremas são formulados de muitos modos diferentes. Os mais comuns são do tipo

$$p \Rightarrow q \in p \Leftrightarrow q$$
.

São também comuns os enunciados que envolvem quantificadores. De seguida apresentamos algumas estruturas de demonstração de teoremas.

1. Provar que $p \Rightarrow q$ é verdadeiro

a pelo método da prova direta

Supomos que p é verdadeira e mostramos que, com este pressuposto, a proposição q é verdadeira.

Repare-se que se p é falsa, a implicação é automaticamente verdadeira.

Exemplo: Queremos provar que todo o número inteiro ímpar se escreve como a diferença de 2 quadrados perfeitos, i.e., se $n \in \mathbb{Z}$ é um inteiro ímpar, então, existem a, $b \in \mathbb{Z}$ tal que $n = a^2 - b^2$.

Suponhamos que $n \in \mathbb{Z}$ é um inteiro ímpar.

Então, existe $k \in \mathbb{Z}$ tal que n = 2k + 1.

Como $2k + 1 = k^2 + 2k + 1 - k^2 = (k+1)^2 - k^2$, concluímos que $n = (k+1)^2 - k^2$ onde k+1 e k são números inteiros.

1. Provar que $p \Rightarrow q$ é verdadeiro

b pelo método do contrarrecíproco

Para demonstrarmos que $p\Rightarrow q$ basta-nos provar que $\sim q\Rightarrow \sim p$, pois já vimos que as 2 fórmulas são logicamente equivalentes. Para provar que $\sim q\Rightarrow \sim p$ usamos o método da prova direta.

Exemplo: Queremos provar que $Se \times e \ y \ s\~ao \ dois \ n\'ameros inteiros tais que <math>x + y \ \'e \ par$, ent $\~ao$, $x \ e \ y \ t\^em \ a \ mesma \ paridade$.

Suponhamos que x e y **não** têm a mesma paridade.

Então um deles é par e o outro ímpar. Suponhamos, sem perda de generalidade, que x é ímpar e y é par.

Então, $x=2k_1+1$ e $y=2k_2$. Logo, $x+y=(2k_1+1)+2k_2=2(k_1+k_2)+1$, que é claramente um número ímpar.

1. Provar que $p \Rightarrow q$ é verdadeiro

c pelo método de redução ao absurdo

Neste método de prova, assumimos, juntamente com p, a negação de q e obtemos algum tipo de contradição.

Exemplo: Queremos provar que $se \ x \in \mathbb{R}$ é tal que $x^2 = 2$ então $x \notin \mathbb{Q}$.

Suponhamos que $x = \sqrt{2} \in \mathbb{Q}$.

Então, $x = \sqrt{2} = \frac{m}{n}$ onde m e n são inteiros positivos tais que m.d.c.(m, n) = 1.

Então, $2 = x^2 = \frac{m^2}{n^2}$, pelo que $2n^2 = m^2$.

Então, m é um número par, i.e., m = 2k, para algum inteiro k.

Então, temos que $4k^2 = 2n^2$, i.e., $2k^2 = n^2$.

Então, n é um número par.

Logo, 2 é um divisor comum de m e n, o que contradiz o facto de m.d.c.(m, n) = 1.

A contradição surgiu por supormos que $x^2=2$ e que $\sqrt{2}\in\mathbb{Q}$ aconteciam simultaneamente. Logo, estamos em condições de concluir que se $x^2=2$, então $x\not\in\mathbb{Q}$.

Importante. A diferença entre o método de contrarrecíproco e o método de redução ao absurdo para provar que $p \Rightarrow q$ é subtil. No primeiro, supomos $\sim q$ e provamos $\sim p$. No segundo, supomos $\sim q$ e p e encontramos um absurdo qualquer.

2. Provar que $p \Rightarrow q$ é falsa.

Para provarmos que uma dada afirmação é falsa, basta apresentarmos um exemplo de uma situação em que a afirmação não se verifica - a este exemplo chama-se **contraexemplo**. Neste caso, para provar que $p \Rightarrow q$ é falsa basta apresentar um exemplo onde a premissa p é verdadeira e a conclusão q é falsa.

Exemplo: Queremos provar que a afirmação " $x^2 = 1 \Rightarrow x = 1$ " é falsa.

Para isso, basta observar que, se x=-1, então $x^2=1$ e que $x\neq 1$.

3. Provar que $p \Rightarrow a \land b$ é verdadeira. Basta provar que $p \Rightarrow a$ e $p \Rightarrow b$ são verdadeiras.

4. Provar que $p \Rightarrow a \lor b$ é verdadeira.

Suponhamos que p é verdadeira. Se a é verdadeira, então, $a \lor b$ é verdadeira e, portanto, a implicação é verdadeira. Se a é falsa, temos de provar que b é verdadeira.

Assim, provar que $p \Rightarrow a \lor b$ é verdadeira é o mesmo que provar que $p \land \sim a \Rightarrow b$ é verdadeira.

Exemplo: Queremos provar o seguinte resultado: *Sejam* $x, y \in \mathbb{R}$. *Se* xy = 0 *então* x = 0 *ou* y = 0.

Suponhamos que xy = 0 e que $x \neq 0$. Então,

$$xy = 0 \Rightarrow x^{-1}xy = 0 \Leftrightarrow y = 0.$$

5. Provar que $p \Leftrightarrow q$ é verdadeira.

A condição $p \Leftrightarrow q$ é também conhecida como *condição necessária e suficiente*.

 $p \Rightarrow q$ significa que sempre que p acontece, também acontece q. É considerada a condição suficiente.

Também podemos afirmar que q só acontece se acontecer p. Assim, para além de ser suficiente, p é também necessária para que q aconteça. Logo, temos $q \Rightarrow p$.

$$p \Leftrightarrow q$$
 $p \text{ se e s\'o se } q$
$$\begin{cases} p \Rightarrow q & \text{q se } p \\ q \Rightarrow p & \text{q s\'o se } p \end{cases}$$

Assim, provar uma equivalência é provar um dupla implicação.

Exemplo: Queremos provar que: Dado um natural n, n^2 é impar se e só se n é impar.

Suponhamos primeiro que n é ímpar. Então, n^2 é o produto de dois números ímpares que sabemos ser um número ímpar. Provámos, assim, que

$$n \text{ impar } \Rightarrow n^2 \text{ impar.}$$

Vamos provar que

$$n^2 \text{ impar } \Rightarrow n \text{ impar}$$

por contrarrecíproco. Suponhamos que n não é ímpar. Então, n é par. Logo, n^2 é um número par pois é o produto de dois números pares. Estamos em condições de concluir que n^2 não é um número ímpar.

6. Provar que $\forall x, \exists y : p(x, y)$ é verdadeira.

Fixa-se x_0 no domínio de x. Prova-se que existe y_1 no domínio de y tal que $p(x_0, y_1)$ é verdadeira.

Observação: Há demonstrações onde é relativamente fácil escolher y_1 em função de x_0 . Noutros casos provamos apenas que y_1 existe, sem o especificar.

Exemplo: Queremos provar que *Dado um número real qualquer x*, existe um inteiro z tal que $z \le x \le z + 1$.

Seja $x \in \mathbb{R}$. Então, a característica de x, [x], é, por definição, um inteiro relativo tal que $[x] \le x \le [x] + 1$. Logo, basta considerar z = [x].

7. Provar que $\exists x : \forall y, p(x, y)$ é verdadeira.

Caso seja possível, determinamos x_0 no domínio de x para o qual $p(x_0, y)$ é verdadeira independentemente do valor de y.

Tal como no caso anterior, há demonstrações onde apenas conseguimos provar que tal x_0 existe, sem o especificar.

Exemplo: Queremos provar que

$$\exists x \in \mathbb{R} : \forall y \in \mathbb{R}, xy + x - 4 = 4y.$$

Seja x=4. Então, para qualquer $y\in\mathbb{R}$, xy+x-4=4y+4-4=4y. Logo, a condição é satisfeita, independentemente do valor de y.

8. Provar que $\exists^1 x : p(x)$ é verdadeira.

Temos de provar:

- a existência de x (o raciocínio é análogo aos anteriores);
- a unicidade de x (supondo que existem a e b nas condições do enunciado, temos de concluir que a = b).

Exemplo: Queremos provar que

$$\exists^1 x \in \mathbb{R} : \forall y \in \mathbb{R}, xy + x - 4 = 4y.$$

Existência. Seja x=4. Então, para qualquer $y\in\mathbb{R}$, xy+x-4=4y+4-4=4y. Logo, a condição é satisfeita, independentemente do valor de y.

Unicidade. Suponhamos que existe $a \in \mathbb{R}$ nas mesmas condições de x=4. Então, ay+a-4=4y, para qualquer $y\in\mathbb{R}$. Em particular, para y=0, temos que

$$a \times 0 + a - 4 = 4 \times 0$$
,

i.e.,

$$a = 4$$
.