14.03 Micro Theory & Public Policy

Lecture 3. Axioms of Consumer Preference and the Theory of Choice

David Autor (Prof), MIT Economics and NBER Jonathan Cohen (TA), MIT Economics

Cardinal and ordinal utility

A consumer's utility from consumption of a given bundle "A" is determined by a personal *utility function*.

Cardinal utility function

- U(A) is a cardinal number: $U:consumption\ bundle\ \longrightarrow\ reals$ measured in "utils"

Ordinal utility function

 $-\ U$ provides a "ranking" or "preference ordering" over bundles.

$$U: (A,B) \longrightarrow \left\{ \begin{array}{l} A \stackrel{P}{B} B \\ B \stackrel{P}{A} A \\ A \stackrel{I}{B} B \end{array} \right.$$

Cardinal vs. ordinal utility functions

- Problems with cardinal utility functions
 - 1. Difficult to find the appropriate measurement index (metric)
 - 2. Invite you to make interpersonal comparisons of utility, which is problematic. Want to focus on *intrapersonal* choices
- Using unit-free ordinal utility functions avoids these problems
- Significant progress on positive and normative questions is still possible

The axioms of consumer preference theory

The axioms of consumer preference theory were developed for three purposes:

- 1. Portray rational behavior
- 2. Mathematical representation of utility functions
- 3. Derive "well-behaved" demand curves

Axiom 1: Completeness

Axiom 1: Preferences are complete ("completeness")

- For any two bundles A and B, a consumer can establish a preference ordering.
- **1**. $A^{P}B$
- 2. B P A
- **3**. $A^{I}B$

Axiom 2: Transitivity

Axiom 2: Preferences are transitive ("transitivity")

- For any consumer if A^PB and B^PC then it must be that A^PC .
- Consumers are consistent in their preferences

Axiom 3: Continuity

Axiom 3: Preferences are continuous ("continuity")

- If A P B and C lies within an ε radius of B then A P C.
- We need continuity to derive well-behaved demand curves.

Axioms: Completeness, transitivity, and continuity

- Axiom 1: Preferences are complete ("completeness")
- Axiom 2: Preferences are transitive ("transitivity")
- Axiom 3: Preferences are continuous ("continuity")

Theorem

If Axioms 1–3 are obeyed, then we can define a cardinal utility function that represents the individual's preference.

Note: this theorem should be interpreted as an "as if" statement.

Indifference curves

- The indifference curve $IC(\overline{U})$ is the set of consumption bundles that generate utility level \overline{U} for a utility function U
- An Indifference Curve Map is a sequence of indifference curves defined over every utility level:

$$\{IC(0),IC(\varepsilon),IC(2\varepsilon),\ldots\}$$

with a small positive value for ε

Indifference curves

Indifference curves

Axiom 4: Non-satiation (never get enough)

We usually use two additional axioms

- Introduced to reflect observed behavior and to simplify
- But, they are not *necessary* for a theory of rational choice

Axiom 4: Non-Satiation

- $-\,$ Given two bundles A and B of goods X and Y , if $X_A=X_B$ and $Y_A>Y_B$ then A P B , regardless of the levels of X_A,X_B,Y_A,Y_B
- Implications:
 - 1. The consumer always places positive value on more consumption
 - 2. Indifference curve map stretches out endlessly

Axiom 5: Diminishing marginal rate of substitution

- "The more of something you have, the less you value it"
 - Captures, what we believe, is a fundamental feature of human preferences
 - □ Role in consumer theory:
 - » Makes the mathematics of consumer theory much simpler
 - » Avoids consumers spending all their money on one good
- Need to define Marginal Rate of Substitution first

Definition (Marginal rate of substitution)

MRS measures willingness to trade one bundle for another.

- Example:
 - \square Bundle A=(7 hours of sleep, 80 points on the problem set)
 - \square Bundle B = (6 hours of sleep, 90 points on the problem set)
 - $\hfill\Box$ If indifferent, a student is willing to give up 1 more hour of sleep for 10 more points on the problem set

$$MRS$$
 (hours of sleep for points) = $|-10| = 10$

- MRS is measured along an indifference curve and may vary along the same indifference curve
 - MRS is defined relative to some bundle (starting point)

By definition, utility is constant along an indifference curve:

$$\bar{U} = U(x, y)$$

By definition, utility is constant along an indifference curve:

$$\begin{split} \bar{U} &= U(x,y) \\ 0 &= \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy \\ 0 &= M U_x dx + M U_y dy \\ -\frac{dy}{dx} &= \frac{M U_x}{M U_y} = \text{MRS of x for y} \end{split}$$

- MRS of x for y is the marginal utility of x divided by the marginal utility of y (holding total utility constant), which is equal to -dy/dx.
- "How much y do you need to compensate for a unit loss in x?"

MRS must always be evaluated at some particular point

Axiom 5: Diminishing marginal rate of substitution

Axiom 5: The MRS of x for y decreases as x increases

- The ratio MU_x/MU_y is decreasing in x

Convexity and MRS

- Diminishing MRS implies that consumers prefer diversity in consumption
- A convex utility function exhibits diminishing MRS

Definition

A function U(x,y) is convex if for any arguments (x_1,y_1) and (x_2,y_2) where $(x_1,y_1)\neq (x_2,y_2)$:

$$U(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) \ge \alpha U(x_1, y_1) + (1 - \alpha)U(x_2, y_2),$$

where $\alpha \in (0,1)$.

Example of convex utility function

A utility function $U\left(\cdot\right)$ exhibits diminishing MRS iff the indifference curves of $U\left(\cdot\right)$ are convex.

Example of non-convex utility function

Example of concave utility function

Suppose you love coffee and sushi, but dislike consuming them together

 If your indifference curves were concave as above, you should not diversify consumption

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve (Axiom 1: Completeness)

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve (Axiom 1: Completeness)
 - □ Indifference curves are smooth

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve (Axiom 1: Completeness)
 - Indifference curves are smooth (Axiom 3: Continuity)

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve (Axiom 1: Completeness)
 - Indifference curves are smooth (Axiom 3: Continuity)
 - □ Indifference curves are convex

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve (Axiom 1: Completeness)
 - Indifference curves are smooth (Axiom 3: Continuity)
 - Indifference curves are convex (Axiom 5: Diminishing MRS)

- Properties of Indifference Curve Map:
 - □ Every consumption bundle lies on some indifference curve (Axiom 1: Completeness)
 - Indifference curves are smooth (Axiom 3: Continuity)
 - Indifference curves are convex (Axiom 5: Diminishing MRS)
 - □ Indifference curves cannot intersect ...

Non-crossing of indifference curves

- Proof: say two indifference curves intersect:

Non-crossing of indifference curves

Proof: say two indifference curves intersect:

- According to these indifference curves, (i) A^PB (by non-satiation), (ii) B^IC , (iii) C^PD (by non-satiation), (iv) D^IA
- By transitivity, $A\ ^P\ D$ and $A\ ^I\ D$, which is a contradiction

Cardinal vs ordinal utility

- Utility function U(x,y) = f(x,y) is cardinal
 - □ It reads off "utils" as a function of consumption
 - But, choices are inherently ordinal
- However, we do care that the MRS along an indifference curve is well defined
 - □ Important to know how people trade off among goods
- In consumer theory, we choose to use ordinal not cardinal utility functions

(Positive) Monotone transformation

- Q: How do we preserve properties of utility that we care about and believe in without imposing cardinal properties?
 - Utility function is only defined up to a "positive monotone transformation"
- If utility function $\tilde{g}()$ is a monotone transformation of utility function g(), they are identical for purposes of consumer theory

Definition (Monotone Transformation)

Let I be an interval on the real line (\mathbb{R}) then: $g:I\longrightarrow\mathbb{R}$ is a monotone transformation if g is a <u>strictly</u> increasing function on I.

- If g(x) is differentiable and $g'(x) > 0 \ \forall x$, then g(x) is monotone.
- Note that not all monotone functions have $g'(x) > 0 \ \forall x$, e.g., $x = y^3$.