131,072-word × 8-bit High Speed CMOS Static RAM

HITACHI

Rev. X January 1995

The Hitachi HM628128A is a CMOS static RAM organized 128 kword \times 8 bit. It realizes higher density, higher performance and low power consumption by employing 0.8 μ m Hi-CMOS process technology.

It offers low power standby power dissipation; therefore, it is suitable for battery back-up systems. The device, packaged in a 525-mil SOP (460-mil body SOP) or a 600-mil plastic DIP, or a 8×20 mm TSOP with thickness of 1.2 mm, is available for high density mounting. TSOP package is suitable for cards, and reverse type TSOP is also provided.

Features

- · High speed
 - Fast access time: 55/70/85/100 ns (max)
- Low power
 - Active: 75 mW (typ)Standby: 10 µW (typ)
- Single 5 V supply
- Completely static memory
 No clock or timing strobe required
- · Equal access and cycle times
- Common data input and output Three state output
- Directly TTL compatible All inputs and outputs
- Capability of battery back up operation
 2 chip selection for battery back up

Ordering Information

Type No.	Access time	Package	Type No.	Access time	Package
HM628128ALP-5 HM628128ALP-7 HM628128ALP-8 HM628128ALP-10	55 ns 70 ns 85 ns 100 ns	600-mil 32-pin plastic DIP (DP-32)	HM628128ALT-5 HM628128ALT-7 HM628128ALT-8 HM628128ALT-10	55 ns 70 ns 85 ns 100 ns	8 mm × 20 mm 32-pin TSOP (normal type) (TFP-32D)
HM628128ALP-5L HM628128ALP-7L HM628128ALP-8L HM628128ALP-10L	55 ns 70 ns 85 ns 100 ns	-	HM628128ALT-5L HM628128ALT-7L HM628128ALT-8L HM628128ALT-10L	55 ns 70 ns 85 ns 100 ns	-
HM628128ALP-5SL HM628128ALP-7SL HM628128ALP-8SL HM628128ALP-10SL	55 ns 70 ns 85 ns 100 ns	-	HM628128ALT-5SL HM628128ALT-7SL HM628128ALT-8SL HM628128ALT-10SL	55 ns 70 ns 85 ns 100 ns	-
HM628128ALFP-5 HM628128ALFP-7 HM628128ALFP-8 HM628128ALFP-10	55 ns 70 ns 85 ns 100 ns	525-mil 32-pin plastic SOP (FP-32D)	HM628128ALR-5 HM628128ALR-7 HM628128ALR-8 HM628128ALR-10	55 ns 70 ns 85 ns 100 ns	8 mm × 20 mm 32-pin TSOP (reverse type) (TFP-32DR)
HM628128ALFP-5L HM628128ALFP-7L HM628128ALFP-8L HM628128ALFP-10L	55 ns 70 ns 85 ns 100 ns		HM628128ALR-5L HM628128ALR-7L HM628128ALR-8L HM628128ALR-10L	55 ns 70 ns 85 ns 100 ns	
HM628128ALFP-5SL HM628128ALFP-7SL HM628128ALFP-8SL HM628128ALFP-10Sl	70 ns 85 ns		HM628128ALR-5SL HM628128ALR-7SL HM628128ALR-8SL HM628128ALR-10SL	55 ns 70 ns 85 ns 100 ns	

Pin Arrangement

Pin Description

Pin name	Function
A0 – A16	Address
I/O0 – I/O7	Input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable

Pin name	Function					
ŌĒ	Output enable					
NC	No connection					
Vcc	Power supply					
V _{SS}	Ground					

Block Diagram

Function Table

CS1	CS2	ΘE	WE	Mode	V _{CC} current	I/O pin	Ref. cycle
Н	Χ	Χ	Χ	Standby	I _{SB} , I _{SB1}	High-Z	_
X	L	Χ	Χ	Standby	I _{SB} , I _{SB1}	High-Z	_
L	Н	Н	Н	Output disable	Icc	High-Z	_
L	Н	L	Н	Read	Icc	Dout	Read cycle
L	Н	Н	L	Write	Icc	Din	Write cycle (1)
L	Н	L	L	Write	Icc	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage relative to V _{SS}	V _{CC}	-0.5 to +7.0	V
Voltage on any pin relative to V _{SS} *1	V_{T}	-0.5^{*2} to $V_{CC} + 0.3^{*3}$	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	–10 to +85	°C

Note: 1. With respect to V_{SS}

2. -3.0 V for pulse half-width $\leq 30 \text{ ns}$

3. Maximum voltage is 7.0V.

Recommended DC Operating Conditions (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input voltage	V_{IH}	2.2	_	$V_{CC} + 0.3$	V
(HM628128A-7/8/10)	V _{IL}	-0.3 ^{*1}	_	0.8	V
Input voltage	V_{IH}	2.4	_	V _{CC} + 0.3	V
(HM628128A-5)	V _{IL}	-0.3 ^{*1}	_	0.8	V

Note: 1. -3.0 V for pulse half-width $\leq 30 \text{ ns}$

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V)

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current	I _{LI}	_	_	1.0	μΑ	Vin = V _{SS} to V _{CC}
Output leakage current	I _{LO}	_	_	1.0	μΑ	
Operating power supply current: DC	Icc	_	15	30	mA	$\overline{\text{CS1}} = \text{V}_{\text{IL}}, \text{CS2} = \text{V}_{\text{IH}},$ Others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}$ $\text{I}_{\text{I/O}} = 0 \text{ mA}$
Operating power supply current	I _{CC1} (HM628128 A-7/8/10)	_	45	70	mA	$\frac{\text{Min cycle, duty} = 100\%,}{\text{CS1}} = \text{V}_{\text{IL}}, \text{CS2} = \text{V}_{\text{IH}},}\\ \text{Others} = \text{V}_{\text{IH}}/\text{V}_{\text{IL}}$
	I _{CC1} (HM628128 A-5)	_	50	80	mA	$I_{I/O} = 0 \text{ mA}$
	I _{CC2}	_	15	25	mA	$\begin{split} & \text{Cycle time} = 1 \text{ µs, duty} = 100\%, \\ & \text{I}_{\text{I/O}} = 0 \text{ mA, } \overline{\text{CS1}} \leq 0.2 \text{ V,} \\ & \text{CS2} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \\ & \text{V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V, V}_{\text{IL}} \leq 0.2 \text{ V} \end{split}$
Standby power supply current: DC	I _{SB}	_	1	2	mA	(1) $\overline{\text{CS1}} = \text{V}_{\text{IH}}$, CS2 = V _{IH} or (2) CS2 = V _{IL}
Standby power supply current (1): DC	I _{SB1} (L version)	_	2	100	μA	$0 \text{ V} \leq \text{Vin} \leq \text{V}_{CC} ,$ $(1) \overline{\text{CS1}} \geq \text{V}_{CC} - 0.2 \text{ V},$
	I _{SB1} (L-L/L-SL version)	_	2	50	μΑ	CS2 \geq V _{CC} - 0.2 V or (2) 0 V \leq CS2 \leq 0.2 V
Output voltage	V _{OL}			0.4	V	I _{OL} = 2.1 mA
	V _{OH}	2.4	_		V	$I_{OH} = -1.0 \text{ mA}$

Note: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_{a} = +25^{\circ}\text{C}$ and specified loading.

Capacitance $(Ta = 25^{\circ}C, f = 1.0 \text{ MHz})^{*1}$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	_	8	pF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	_	10	pF	$V_{I/O} = 0 V$

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, unless otherwise noted.)

Test Conditions

• Input pulse levels: 0.8 V to 2.4 V (HM628128A-7/8/10)

0 V to 3 V (HM628128A-5)

• Input rise and fall times: 5 ns

• Input and output timing reference levels: 1.5 V

• Output load: 1 TTL Gate and CL (100 pF) (HM628128A-7/8/10)

1 TTL Gate and CL (30 pF) (HM628128A-5) (Including scope & jig)

Read Cycle

	HM628128A										
		-5		-7		-8		-10		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	70	_	85	_	100	_	ns	
Address access time	t _{AA}	_	55	_	70	_	85	_	100	ns	
Chip selection to	t _{CO1}	_	55	_	70	_	85	_	100	ns	
output valid	t _{CO2}	_	55	_	70	_	85	_	100	ns	
Output enable to output valid	t _{OE}	_	30	_	35	_	45	_	50	ns	
Chip selection to	t _{LZ1}	5	_	10	_	10	_	10	_	ns	2, 3
output in low-Z	t _{LZ2}	5	_	10	_	10	_	10	_	ns	2, 3
Output enable to output in low-Z	t _{OLZ}	5	_	5	_	5	_	5	_	ns	2, 3
Chip deselection to	t _{HZ1}	0	20	0	25	0	30	0	35	ns	1, 2, 3
output in high-Z	t _{HZ2}	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output hold from address change	t _{OH}	5	_	10	_	10	_	10	_	ns	

Read Timing Waveform *4

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 3. This parameter is sampled and not 100% tested.
- 4. WE is high for read cycle.

Write Cycle

HM628128A

		-5		-7		-8		-10		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t_{WC}	55	_	70	_	85	_	100	_	ns	
Chip selection to end of write	t _{CW}	50	_	60	_	75	_	80	_	ns	
Address setup time	t _{AS}	0	_	0	_	0	_	0	_	ns	
Address valid to end of write	t _{AW}	50	_	60	_	75	_	80	_	ns	
Write pulse width	t_{WP}	40	_	50	_	55	_	60	_	ns	
Write recovery time	t_{WR}	0	_	0	_	0	_	0	_	ns	
Write to output in high-Z	t_{WHZ}	0	20	0	25	0	30	0	35	ns	10
Data to write time overlap	t _{DW}	25	_	30	_	35	_	40	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	0	_	ns	
Output active from end of write	t _{OW}	5	_	5	_	5	_	5	_	ns	10

Write Timing Waveform (1) $(\overline{OE} Clock)$

Write Timing Waveform (2) (OE low Fixed)

Notes: 1. A write occurs during the overlap of a low $\overline{CS1}$, a high CS2, and a low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high, and \overline{WE} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low, and \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.

- 2. t_{CW} is measured from the later of $\overline{CS1}$ going low or CS2 going high to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the earliest of $\overline{\text{CS1}}$ or $\overline{\text{WE}}$ going high or CS2 going low to the end of write cycle.
- 5. During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- 6. If the $\overline{CS1}$ goes low simultaneously with \overline{WE} going low or after the \overline{WE} going low, the outputs remain in a high impedance state.
- 7. Dout is the same phase of the latest written data in this write cycle.
- 8. Dout is the read data of next address.
- 9. If $\overline{\text{CS1}}$ is low and CS2 high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.
- 10. This parameter is sampled and not 100% tested.
- 11. In the write cycle with OE low fixed, twp must satisfy the following equation to avoid a problem of

data bus contention. $t_{WP} \ge t_{DW} \; min \; + \; t_{WHZ} \; max \label{eq:total_tot$

Low V_{CC} **Data Retention Characteristics** (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions*4
V _{CC} for data retention	V_{DR}	2.0	_	_	V	$\label{eq:cstate} \begin{split} \overline{CS1} &\geq V_{CC} - 0.2 \text{ V,} \\ CS2 &\geq V_{CC} - 0.2 \text{ V or} \\ 0 \text{ V} &\leq CS2 \leq 0.2 \text{ V} \\ \text{Vin>0 V} \end{split}$
Data retention current	I _{CCDR} (L version)	_	1	50 ^{*1}	μΑ	$\frac{V_{CC}}{CS1} = 3.0 \text{ V}, \text{ Vin } \ge 0 \text{ V}$ $\frac{V_{CC}}{V_{CC}} = 0.2 \text{ V}$
	I _{CCDR} (L-L version	 n)	1	30 ^{*2}	μΑ	$^{-}$ CS2 ≥ V _{CC} $^{-}$ 0.2 V or 0 V ≤ CS2 ≤ 0.2 V
	I _{CCDR} (L-SL version)	_	1	15 ^{*3}	μΑ	_
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	5	_	_	ms	

Low V_{CC} Data Retention Timing Waveform (1) ($\overline{CS1}$ Controlled)

Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)

Notes: 1. 20 μ A max at Ta = 0 to 40°C (L-version).

- 2. $6 \mu A \text{ max at Ta} = 0 \text{ to } 40^{\circ} \text{C (L-L-version)}.$
- 3. $3 \mu A \max \text{ at Ta} = 0 \text{ to } 40^{\circ} \text{C (L-SL-version)}.$
- 4. CS2 controls address buffer, \overline{WE} buffer, $\overline{CS1}$ buffer, \overline{OE} buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address, \overline{WE} , \overline{OE} , $\overline{CS1}$, I/O) can be in the high impedance state. If $\overline{CS1}$ controls data retention mode, CS2 must be $CS2 \ge V_{CC} 0.2$ V or 0 V $\le CS2 \le 0.2$ V. The other input levels (address, \overline{WE} , \overline{OE} , I/O) can be in the high impedance state.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.