国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5

C07D 215/00, 215/00, 235/00 C07D 239/72, 239/84, 239/94 C07D 239/95, A61K 31/47 A61K 31/505

(71) 出願人(米国を除くすべての指定国について)

高瀬保孝(TAKASE, Yasutaka)[JP/JP]

渡辺信久(WATANABE, Nobuhisa)[JP/JP] 〒305 茨城県つくば市天久保2-23-5 メゾン学園105

松井 誠(MATSUI, Makoto)[JP/JP]

生田博志(IKUTA, Hironori)[JP/JP]

木村禎治(KIMURA, Teiji)[JP/JP]

(75) 発明者/出願人(米国についてのみ)

ェーザイ株式会社(EISAI OO., LTD.)[JP/JP]

〒112-88 東京都文京区小石川4丁目6番10号 Tokyo, (JP)

〒305 茨城県つくば市春日4~19-13 エーザイ紫山寮308

〒466 愛知県名古屋市昭和区山里町69番地 Aichi, (JP)

〒305 茨城県つくは市梅園2-16-1 ルンピーニ梅園604

〒300-12 茨城県牛久市栄町2-35-12 Ibaraki, (JP)

(11) 国際公開番号

WO 93/07124

A1

(43) 国際公開日

1993年4月15日(15.04.1993)

(21)国際出願番号

PCT/JP92/01258

1992年9月30日(30.09.92) (22)国際出願日

(30) 優先権データ

特顯平3/320853

(72)発明者;および

Ibaraki, (JP)

Ibaraki, (JP)

1991年9月30日(30.09.91) JΡ 〒300-03 茨城県稲敷郡阿見町中央7-7-18 Ibaraki. (JP)

徳村忠一(TOKUMURA, Tadakazu)[JP/JP]

足立秀之(ADACHI, Hideyuki)[JP/JP]

〒300 茨城県土浦市桜ヶ丘町32-5 Ibaraki, (JP)

餅田久利(MOCHIDA, Hisatoshi)[JP/JP]

〒483 愛知県江南市藤ヶ丘7-1-2 江南団地216-106

秋田靖典(AKITA, Yasunori)[JP/JP]

〒300-24 茨城県筑波郡谷和原村下小目122 Ibaraki, (JP)

左右田茂(SOUDA, Shigern)[JP/JP]

〒300-12 茨城県牛久市牛久町1687-21 Ibaraki, (JP)

(74) 代理人

弁理士 古谷 馨,外(FURUYA, Kaoru et al.) 〒103 東京都中央区日本番堀留町1-8-11 日本橋TMヒル

Tokyo, (JP)

(81) 指定国

AT(欧州特許), AU, BE(欧州特許), CA, OH(欧州特許),

DE(欧州特許), DK(欧州特許), ES(欧州特許), FI,

FR(欧州特許), GB(欧州特許), GR(欧州特許), HU,

IE(欧州特許), IT(欧州特許), JP, KR, LU(欧州特許),

NL(欧州特許)、NO、RU、SE(欧州特許)、US.

添付公開書類

国際調査報告書

Ibaraki, (JP) 佐伯隆生(SAEKI, Takao)[JP/JP] 〒302-01 茨城県北相馬郡守谷町松前台2-9-6 Ibaraki, (JP)

(54) Title: NITROGENOUS HETEROCYCLIC COMPOUND

(54) 発明の名称 含窒素複素環化合物

BEST AVAILABLE COPY

$$-N-(CH_2)r-R^{20}$$

(57) Abstract

A nitrogenous heterocyclic compound represented by general formula (I) or a pharmacologically acceptable salt thereof, efficacious in treating various ischemic cardiac diseases, wherein ring A represents a benzene, pyridine or cyclohexane ring; ring B represents a pyridine, pyrimidine or imidazole ring; R¹, R², R³ and R⁴ represent each hydrogen, halogen, lower alkoxy, etc.; R⁵ represents -NR¹¹R¹² (wherein R¹¹ and R¹² represent each hydrogen, lower alkyl, etc.), etc.; and R⁶ represents (a) (whereein R¹⁹ represents hydrogen, lower alkyl, etc.; R²⁰, R²¹ and R²² represent each hydrogen, halogen, hydroxy, etc.; and r represents an integer of 0.1 to 8), etc.

種々の虚血性心疾患などに有効な、下配式(1)で表される含窒 素複素環化合物またはその薬理学的に許容できる塩を提供する。

〔式(1)中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環、環Bはピリジン環、ピリミジン環又はイミダゾール環を意味する。 R^1 、 R^2 、 R^3 及び R^4 は水素原子、ヘロゲン原子、低級アルコキシ基等の基を意味し、 R^5 は式 $-NR^{11}$ R^{12} (式中、 R^{11} 、 R^{12} は水素原子、低級アルキル基等の基を意味する。)で示される基等

素原子、低級アルキル基等的強、R²⁰、R²¹、R²² は水素原子、ヘロゲン原子、水酸基等的基を意味する。 rは 0 又は 1 ~ 8 の整数を意味する。) で示される基等を意味する。)

情報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

NL オラング NO ファイー NO ファイーラング アレーラングニューラング PL ホールーフが RO コークング SD スプロープン SE スプローグン SE スプローグ SE スプローグ SE スプローグ SE スプローグ SE スプローグ TO チャーゴ TTG トーーラ UA 米ヴィー US 米ヴィー US 米ヴィー US 米ヴィー

明 細 膏

含窒素複素環化合物

〔産業上の利用分野〕

本発明は、医薬として優れた作用を有する含窒素複素環化合物に関する。 (発明の背景及び先行技術)

虚血性心疾患の1つである狭心症は、これまで高齢者に多い疾患として知られてきた。その治療剤としては、硝酸及び亜硝酸化合物、カルシウム拮抗剤、β-遮断剤などが使われてきたが、狭心症治療や心筋梗塞への進展予防にはまだまだ効果が不十分である。さらに最近、生活形態の変化、社会の複雑化に伴うストレスの増大などにより、狭心症患者の年齢の低下、病態の複雑化などがみられるようになり、新しいタイプのより優れた薬剤が渇望されている。

現在使用されている先に挙げた薬剤のうち、硝酸及び亜硝酸化合物の作用は、細胞内セカンドメッセンジャーとして知られているサイクリックヌクレオチドの中のサイクリックGMP(以下 c GMPと略す)が関与していると考えられている。 c GMPについては血管平滑筋ならびに気管支平滑筋の弛緩作用がよく知られている。これらの薬剤の作用機序は必ずしも明らかではないが、この c GMPの活性はグアニレートシクラーゼを活性化し、 c GMP合成を促進することに起因するものと一般に考えられている。しかし、これらの薬剤は、生物学的利用率が低く、比較的作用時間が短い。また、耐性を生じることが報告されており、臨床上問題となっている。

このような実情に鑑み、本発明者等は新しいタイプのより優れた薬剤を開発すべく探索研究に着手した。

すなわち本発明者らは、cGMPホスホジエステラーゼ(以下cGMP-PD

WO 93/07124 PCT/JP92/01258

Eと略す)阻害作用に着目し、これらの作用を有する化合物について長年にわたって鋭意研究を重ねてきた。その結果下記に示す含窒素複素環化合物がこれらの作用を有し、種々の虚血性心疾患などに有効であることを見出し、本発明を完成した。

医薬として有用なキナゾリン誘導体としては、例えば特表平2-502462 号が挙げられるが、本発明化合物とは構造・作用共に異にするものである。

(発明の開示)

本発明は、下記一般式(1) で表される含窒素複素環化合物またはその薬理学的 に許容できる塩を提供する。

(式(1) 中、環Aはベンゼン環、ビリジン環又はシクロヘキサン環を意味する。 環Bはビリジン環、ビリミジン環又はイミダブール環を意味する。

ただし、環Aと環Bは2つの原子を共有して結合しており、その共有する原子は炭素原子でも窒素原子でもよい。

なお、環Aがピリジン環の場合であって、このピリジン環の窒素原子を環B

が共有して結合している場合以外のときは、環Aは R² で示される

ものとする。

 R^1 、 R^2 、 R^3 及び R^4 は同一又は相異なる水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい低級アルキル基、置換されていてもよいシクロアル

(0)

キル基、低級アルコキシ基、ハイドロキシアルキル基、ニトロ基、シアノ基、

rシルアミノ基、保護されていてもよいカルボキシル基、式 $-S-R^7$ (式中、 R^7 は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示される基、又は、式-N< $R^{4.5}$ (式中、 $R^{4.5}$ 、 $R^{4.6}$ は同-又は相異なる水素原子

あるいは低級アルキル基を意味する。 R^{45} と R^{46} が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。また、 R^{1} 、 R^{2} 、 R^{3} 及び R^{4} のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル基、保護されていてもよいカルボキシ

ル基、式 $-S-R^8$ (式中、 R^8 は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^8$ (式中、 R^8 は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又は

 $(0)_{m}$

置換されていてもよいベンジル基を意味する。)で示される基、式 - \mathbb{R}^{23}

(式中、R²³ は水酸基、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいへテロアリール基、置換されていてもよい1,3-ベンズジオキソリル基、置換されていてもよい1,4-ベンズジオキシル基、置換さ

れていてもよい 1 、 3 - ベンズジオキソリルアルキル基、置換されていてもよい 1 、 4 - ベンズジオキシルアルキル基、式- $C(R^{24})$ = X (式中、 X は酸素原子、硫黄原子又は式= N - R^{10} (式中、 R^{10} は水酸基、シアノ基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 R^{24} は水素原子又は低級アルキル基を意味する。)で示される基、又は式 - $NR^{11}R^{12}$ (式中、 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、保護されていてもよいカルボキシアルキルカルバモイル基、置換されていてもよいヘテロアリールアルキル基、 1 、 3 - ベンズオキソリルアルキル基又は 1 、 4 - ベンズジオキシルアルキル基を意味する。さらに、 R^{11} $ext{ }$ $ext{ }$ ext

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェ

ニルアルキルオキシ基、式
$$-N$$
 R^{13} (式中、 R^{13} 、 R^{14} は同一又

は相異なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに、 R^{18} 、 R^{14} は一緒になってメチレンジオキシ又はエチレンジオキシを形成

していてもよい。)で示される基、式
$$-N$$
 で示される基、 R^{16} R^{16}

式
$$-N$$
 R^{15} で示される基、式 $-N$ R^{15} R^{16} で示される基、

$$R^{15}$$
 R^{16} で示される基(これらの式中、 R^{15} 、 R^{16} は、同一又は相異

なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに R^{16} と R^{16} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2'-ジオキサン-1-イル基、式

$$-Z$$
-(CH₂)。 R^{48} (式中、 R^{48} 、 R^{49} は同一又は相異なる水素原子、

低級アルキル基又は低級アルコキシ基を意味する。さらに、R48とR49は、一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。 Zは

硫黄原子又は酸素原子を意味する。)で示される基、式-N、R⁵⁰ (式中、

R⁵⁰ は水酸基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、シアノ基、ハイドロキシアルキル基又はカルボ

キシアルキル基を意味する。)で示される基、式 $-N-Y-R^{18}$ 〔式中、 R^{17} は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)$ 。 (式中、qは0又は $1\sim8$ の整数を意味する)で示される基、

又は式-C-で示される基を意味する。さらに式 $-(CH_2)$ 。 で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$ 個の置換基を有していてもよい。 R^{18} は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換されていてもよいヘテロアリール基又は置換されていてもよいシクロアルキル基を意味する。)で示される基、又は

$$R^{19}$$
 | R^{20} | 式 $-N^{-}(CH_2)_r$ R^{21} R^{21} (式中、 R^{19} は水素原子、低級アルキル基、低級

アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R^{20} 、 R^{21} 、 R^{22} は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシルズミノ基、アルキルスルホニルアミノ基、ヒドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R^{20} 、 R^{21} 、 R^{22} のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。]

前記一般式(1) で表される含窒素複素環化合物又はその薬理学的に許容できる 塩の好ましい態様の一つとして、下記一般式(I)で表されるキナゾリン誘導体 又はその薬理学的に許容できる塩が挙げられる。

〔式(I)中、R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、 低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基、シアノ基、ア

(0)

∥ シルアミノ基、保護されていてもよいカルボキシル基、式ーSーR¹(式中、R¹ は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示される基を意味する。また、 R^1 、 R^2 、 R^3 及び R^4 のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル

 $(0)^{m}$

基、保護されていてもよいカルボキシル基、式 $-\ddot{S}-R^s$ (式中、 R^s は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^s$ (式中、 R^s は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又はベンジル基を意味する。)で示される

基、式 - (式中、R²³ は水酸基、低級アルキル基、低級アルコキシ

基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいヘテロアリール基、置換されていてもよい 1、3 - ベンズジオキソリル基、置換されていてもよい 1、4 - ベンズジオキソリル基、置換されていてもよい 1、4 - ベンズジオキソリルアルキル基、置換されていてもよい 1、4 - ベンズジオキシルアルキル基、式 - $C(R^{24})$ = X (式中、Xは酸素原子又は式=N- R^{10} (式中、 R^{10} は水酸基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 R^{24} は水素原子又は低級アルキル基を意味する。)で示される基、又は式 - $NR^{11}R^{12}$ (式中、 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アリアルキル基、 R^{11} に R^{12} は R^{12} に R^{11} に R^{11} に R^{11} に R^{11} に R^{12} に R^{11} に R^{11} に R^{12} に R^{11} に R^{11} に R^{12} に R^{11} に R^{11} に R^{11} に R^{12} に R^{11} に R^{11} に R^{11} に R^{11} に R^{12} に R^{11} に R^{11} に R^{11} に R^{12} に R^{11} に R^{11} に R^{12} に R^{11} に R^{12} に R^{11} に R^{11} に R^{12} に R^{11} に R^{12} に R^{11} に R^{12} に R^{11} に R^{11} に R^{12} に R^{12} に R^{11} に R^{12} に R^{11} に R^{12} に R^{11} に R^{12} に R^{12}

が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子 を含んでいてもよい環を形成することができる。また、この環は置換されてい てもよい。)で示される基を意味する。

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェニルアルキルオキシ

低級アルキル基又は低級アルコキシ基を意味する。さらに、R¹³、R¹⁴は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)で

示される基、式
$$-N$$
 で示される基、式 $-N$ で示される基、 R^{16} R^{16}

式
$$-N$$
 R^{15} R^{16} で示される基、式 $-N$ R^{16} で示される基(これらの式

中、 R^{15} 、 R^{16} は、水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに R^{15} と R^{16} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジンー 4 - スピロー 2° - ジオキサン- 1 -

「イル基、 式-N-Y-R¹⁸ (式中、R¹⁷ は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式-(CH₂)。- (式中、 q は 0

|| | 又は1~8の整数を意味する)で示される基、又は式-C-で示される基を意 味する。さらに式 $-(CH_2)$ 。-で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$ 個の置換基を有していてもよい。 R^{18} は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換され

ていてもよいヘテロアリール基又は式 (で示される基を意味す

$$R^{19}$$
 人 R^{20} る。)で示される基、又は式 $-N^{-1}$ R^{20} R^{21} R^{21} R^{22}

原子、低級アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R^{20} 、 R^{21} 、 R^{22} は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシルアミノ基、アルキルスルホニルアミノ基、ヒドロキシイミノアルキル基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R^{20} 、 R^{21} 、 R^{22} のうち 2 つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは 0 又は 1 ~ 8 の整数を意味する。) で示される基を意味する。 $\}$

また、本発明は、前記含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする、ホスホジエステラーゼ阻害作用が有効な、特にサイクリックーGMPホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤を提供する。

そのような疾患として、虚血性心疾患、具体的には狭心症、高血圧、心不全及び喘息が挙げられる。

さらに、本発明は、治療に有効な量の前記含窒素複素環化合物及び/又はその 薬理学的に許容できる塩と、薬理学的に許容される賦形剤とからなる医薬組成物 を提供する。

そして、本発明は、ホスホジエステラーゼ阻害作用が有効な疾患の治療薬を製造するという含窒素複素環化合物又はその薬理学的に許容できる塩の用途、及び、ホスホジエステラーゼ阻害作用が有効な疾患に罹患している患者に、含窒素複素環化合物及び/又はその薬理学的に許容できる塩を、治療に有効な量投与することからなる疾患の治療方法を提供する。

本発明化合物(1) における上記の定義において、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^{8} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{16} , R^{17} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R²⁴、 R⁴⁵、 R⁴⁶、 R⁴⁸、 R⁴⁹、 R⁵⁰ の定義にみられる低級アルキル基とは、炭 素数1~8の直鎖もしくは分枝状のアルキル基、例えばメチル基、エチル基、ブ ロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-プチル基、tert-ブチル基、ペンチル基(アミル基)、ネオペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、1,2-ジメチルプロピル基、ヘキシル 基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチ ルペンチル基、2, 2-ジメチルブチル基、2, 3-ジメチルブチル基、3, 3 ジメチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、 1, 2, 2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチルー2-メチルプロピル基、ヘプチル基、オクチル基などを意味する。これ らのうち好ましい基としては、メチル基、エチル基、プロピル基、イソプロピル 基などを挙げることができる。これらのうち特に好ましい基としては、メチル基、 エチル基を挙げることができる。

また、これら低級アルキル基は、末端の炭素原子がスルホン酸基(-SO₃H) や式 -ONO₂ で示される基で置換されていてもよい。さらに、スルホン酸基は、式 -SO₃Na、式-SO₃K で示される基のような塩を形成していてもよい。

 R^1 、 R^2 、 R^3 および R^4 の定義にみられるハロゲン原子で置換されていてもよい低級アルキル基とは、上記低級アルキル基の水素原子が1 個または2 個以上ハロゲン原子で置換されていてもよい低級アルキル基を意味する。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{13} 、 R^{14} 、 R^{15} 、 R^{16} 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{23} 、 R^{48} 、 R^{49} 、 R^{50} の定義の中にみられる低級アルコキシ基とは、炭素数 $1 \sim 8$ の 直鎖もしくは分枝状のアルコキシ基、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、 sec-ブトキシ基、tert-ブトキシ基、2-メチルプトキシ基、2, 3-ジメチルプトキシ基、ヘキシルオキシ基などを意味する。これらのうち好ましい基としては、メトキシ基、エトキシ基などを挙げることができる。

 R^5 、 R^6 、 R^{20} 、 R^{21} 、 R^{22} の定義にみられる低級アルケニル基とは、上記低級アルキル基から誘導される基、例えばエチレン基、プロピレン基、ブチレン基、イソプチレン基などを挙げることができる。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{11} 、 R^{12} 、 R^{17} 、 R^{19} 、 R^{23} 、 R^{50} の定義にみられる ハイドロキシアルキル基とは、上記の低級アルキル基から誘導される基を意味する。

R®の定義において、保護されていてもよいハイドロキシアルキル基とは、ハイドロキシアルキルにおける水酸基が、例えばニトロ基で保護された基である場合や、メチル基、エチル基など上記に掲げた低級アルキル基で保護された基である場合や、アセチル基、プロピオニル基、プチロイル基、ピバロイル基、ニコチノイル基などのアシル基で保護された基である場合や、その他cGMP-PDE阻害活性を有すると思われる基で保護された基である場合が挙げられる。また、こ

れらの保護基は生体内ではずれて又はそのままで薬効を発揮する。

R¹⁷、R¹⁸、R¹⁹、R²⁰、R²¹、R²²の定義にみられるアシル基とは、脂肪族、 芳香族、複素環から誘導されたアシル基、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、イソバレリル基、ピバロイル基などの低級アルカノイル基、ベンゾイル基、トルオイル基、ナフトイル基などのアロイル基、フロイル基、ニコチノイル基、イソニコチノイル基などのヘテロアロイル基などを挙げることができる。これらのうち好ましくは、ホルミル基、アセチル基、ベンゾイル基などを挙げることができる。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{18} 、 R^{50} の定義においてカルボキシル基の保護基とし ては、メチル、エチル、 t ープチルなどの低級アルキル基;p ーメトキシベンジ ル、p-ニトロベンジル、3,4-ジメトキシベンジル、ジフェニルメチル、ト リチル、フェネチルなどの置換基を有していても良いフェニル基で置換された低 ′級アルキル基;2,2,2-トリクロロエチル、2-ヨードエチルなどのハロゲ ン化低級アルキル基;ピバロイルオキシメチル、アセトキシメチル、プロピオニ ルオキシメチル、ブチリルオキシメチル、バレリルオキシメチル、1-アセトキ シエチル、2-アセトキシエチル、1-ピバロイルオキシエチル、2-ピバロイ ルオキシエチルなどの低級アルカノイルオキシ低級アルキル基;パルミトイルオ キシエチル、ヘプタデカノイルオキシメチル、1-バルミトイルオキシエチルな どの高級アルカノイルオキシ低級アルキル基:メトキシカルボニルオキシメチル、 1-プトキカルボニルオキシエチル、1-(イソプロポキシカルボニルオキシ) エチル等の低級アルコキシカルボニルオキシ低級アルキル基;カルボキシメチル、 2-カルボキシエチル等のカルボキシ低級アルキル基;3-フタリジル等の複素 環基; 4-グリシルオキシベンゾイルオキシメチル、4-〔N-(t-プトキシ カルボニル) グリシルオキシ) ベンゾイルオキシメチル等の置換基を有していて も良いベンゾイルオキシ低級アルキル基; (5-メチル-2-オキソー1, 3ジオキソレン-4-イル)メチル等の(置換ジオキソレン)低級アルキル基:1
-シクロヘキシルアセチルオキシエチル等のシクロアルキル置換低級アルカノイルオキシ低級アルキル基、1-シクロヘキシルオキシカルボニルオキシエチル等のシクロアルキルオキシカルボニルオキシ低級アルキル基などが挙げられる。

更に、種々の酸アミドとなっていても良いが、生体内で分解してカルボキシル 基になりうる保護基であればいかなるものでも良い。これらの保護基は、生体内 ではずれて又はそのままで薬効を発揮する。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{18} の定義にみられる置換されていてもよいシクロアルキル基とは、炭素数 $3\sim 8$ のものを意味するが、好ましくは炭素数 $3\sim 6$ のものである。

 R^{5} 、 R^{18} 、 R^{20} 、 R^{21} および R^{22} の定義にみられる置換されていてもよいヘテロアリール基においてヘテロアリールとは、ヘテロ原子として $1\sim2$ 個の酸素原子、窒素原子または硫黄原子を含んだ $5\sim7$ 員環の単環基または縮合ヘテロ環基をいい、例えばフリル基、ピリジル基、チエニル基、イミダブリル基、キナブリル基、ベンブイミダブリル基などが挙げられる。

R¹¹、R¹²の定義にみられる置換されていてもよいヘテロアリールアルキル基においてヘテロアリールとは、上記のヘテロアリール基と同様の意味を有する。また、この場合のアルキル基とは、上記低級アルキル基と同様の意味を有する。

R¹¹、R¹²及び R⁴⁵、R⁴⁶の定義に見られる「R^{11 (45)} とR^{12 (46)} が結合している 窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成 することができる」とは、具体的に例を挙げれば、ピペリジノ基、ピペラジノ基、モルホリノ基などを意味する。さらにこの環に置換しうる置換基としては、水酸 基;塩素原子、フッ素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル、エチル、tープチルなどの低級アルキル基;メトキシ、エトキシ、tープトキシ などの低級アルコキシ基;シアノ基;保護されていてもよいカルボキシル基;ヒ

WO 93/07124 PCT/JP92/01258

ドロキシアルキル基:カルボキシアルキル基;テトラゾリル基などのヘテロアリール基などを挙げることができる。これら置換基は、上記環に1~2個有することができる。

また、 R^5 , R^{18} , R^{20} , R^{21} , R^{22} の定義に見られる「置換されていてもよいへテロアリール基」、 R^6 の定義にみられる「置換されていてもよいフェニルアルキルオキシ基」、 R^5 の定義にみられる「置換されていてもよい1,3 - ベンズジオキソリル基、置換されていてもよい1,4 - ベンズジオキシル基、置換されていてもよい1,4 - ベンズジオキソリルアルキル基、置換されていてもよい1,4 - ベンズジオキソリルアルキル基」、 R^0 の定義にみられる「置換されていてもよいベンジル基」、 R^{11} 、 R^{12} の定義にみられる「置換されていてもよいヘテロアリールアルキル基」において、置換基としては、例えば、水酸基:ニトロ基:塩素原子、フッ素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル、エチル、 t - ブチルなどの低級アルキル基:メトキシ、エトキシ、t - ブトキシなどの低級アルコキシ基;保護されていてもよいカルボキシル基:ヒドロキシアルキル基;カルボキシアルキル基;テトラブリル基などを挙げることができる。

更に Yの定義にみられる「式-(CH₂)。-で示される基において、q が $1 \sim 8$ の整数のとき、それぞれの炭素は $1 \sim 2$ 個の置換基を有していてもよい。」において、置換基とは、上記の置換基と同様の意味を有する。

 R^1 、 R^2 、 R^3 、 R^4 、 R^{20} 、 R^{21} 、 R^{22} の定義においてアシルアミノ基とは、上記のアシル基がアミノ基の窒素原子に結合した基、すなわちモノ置換-アシルアミノ基、ジ置換のアシルアミノ基を意味するが、モノ置換のアシルアミノ基が好ましい。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{50} の定義においてハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味する。

 R^{5} 、 R^{9} 、 R^{10} 、 R^{11} 、 R^{12} 、 R^{17} 、 R^{18} の定義において保護されていてもよい

カルボキシアルキル基とは、上記カルボキシル基の保護基によって保護されていてもよいカルボキシアルキル基を意味する。また、このカルボキシアルキルにおけるカルボキシ基は上記低級アルキル基のいずれかの炭素原子に1~2個結合していてよいものとする。

R⁵の定義において保護されていてもよいカルボキシアルケニル基とは、上記カルボキシル基の保護基によって保護されていてもよいカルボキシアルケニル基を意味する。また、このカルボキシアルケニルにおけるカルボキシル基は、上記低級アルケニル基のいずれかの炭素原子に1~2個結合していてよいものとする。

 R^{17} 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{22} の定義において低級アルコキシアルキル基とは、上記の低級アルキル基より誘導される基、例えばメトキシメチル基、メトキシエチル基、メトキシブチル基、エトキシエチル基などを挙げることができる。

R¹¹、R¹² の定義においてアミノアルキル基とは、上記の低級アルキル基を構成しているいずれかの炭素原子にアミノ基が置換している基を意味する。

R¹¹、R¹² の定義においてアルキルカルバモイル基とは、上記低級アルキル基 より誘導される基を意味する。

R¹¹、R¹²の定義にみられる保護されていてもよいカルボキシアルキルカルバモイル基とは、上記アルキルカルバモイル基のアルキルのいずれかの炭素に保護されていてもよいカルボキシが結合しているものを意味する。

R²⁰、 R²¹、R²² の定義においてアルキルスルホニルアミノ基とは、上記低級アルキル基より誘導される基を意味する。

R²⁰、 R²¹、R²² の定義にみられるヒドロキシイミノアルキル基とは、上記低級アルキル基のいずれかの炭素原子にヒドロキシイミノ基が結合したものをいう。

R²⁰、R²¹、R²² の定義にみられるアルキルオキシカルボニルアミノ基とは、 上記低級アルキル基から誘導されたアルキルオキシカルボニルがアミノ基の窒素 原子にモノあるいはジ置換したものをいうが、モノ置換のアルキルオキシカルボ ニルアミノ基の方が好ましい。

R²⁰、R²¹、R²²の定義にみられるアルキルオキシカルボニルオキシ基とは、上記低級アルキル基から誘導されたアルキルオキシカルボニルが酸素原子に結合している基を意味する。

R²³の定義にみられるハイドロキシアルキルオキシ基とは、上記ハイドロキシアルキル基より誘導される基を意味する。

本発明化合物群は、環Aと環Bが一緒になって、2環性の、又は環Aの置換基のうちの2つが一緒になって環を形成する場合には3環以上の環部を形成するものであるが、これらの中で好ましいものは以下のものである。

この中でもさらに好ましいものは、a)、b)、c)、e)を挙げることができ、更に 好ましくはa)、b)、c)を挙げることができる。最も好ましいのはa)である。

薬理学的に許容できる塩とは、例えば塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩 等の無機酸塩、例えば酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、 ベンゼンスルホン酸塩、トルエンスルホン酸塩等の有機酸塩、又は例えばアルギ ニン、アスパラギン酸、グルタミン酸等のアミノ酸との塩などを挙げることができる。更に化合物によってはNa、K、Ca、Mg等の金属塩をとることがあり、本発明の薬理学的に許容できる塩に包含される。

また、本発明化合物群は置換基の種類や組み合わせなどによって、シス体、トランス体などの幾何異性体や、d体、1体などの光学異性体等の各種異性体をとり得るが、いずれの異性体も本発明化合物群に包含されることは言うまでもない。

本発明の理解を容易にするために、本発明の好ましい化合物群の一例を具体的に示すが、これらは本発明の化合物を限定するものではないことは言うまでもない。

最も好ましい化合物群を具体的に示すと、下記の一般式(A) で表される化合物 及びその薬理学的に許容できる塩である。

〔一般式(A) において、 R^1 、 R^2 、 R^3 、 R^4 、 R^{11} 、 R^{12} 、 R^{10} 、 R^{20} 、 R^{21} 、 R^{22} およびr は一般式(1) におけるこれら各々と同様の意味を有する。〕

R¹、R²、R³およびR⁴としては、同一又は相異なる水素原子、ハロゲン原子又はシアノ基が好ましく、その中でもさらに好ましくは水素原子、シアノ基、塩素原子である。

 R^1 、 R^2 、 R^3 及び R^4 の好ましい組み合わせは、 R^1 、 R^2 、 R^3 、 R^4 のいずれか 1 つがシアノ基又は塩素原子であり、残りの 3 つが水素原子である場合であり、その中でも R^2 がシアノ基又は塩素原子であり、 R^1 、 R^3 及び R^4 が水素原子である場合が最も好ましい。

WO 93/07124 PCT/JP92/01258

 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、保護されていてもよいカルボキシアルキル基である場合が好ましく、また、これらの中でも水素原子、メチル基、3-カルボキシプロピル基が好ましい。

更に最も好ましい R¹¹とR¹² は、結合している窒素原子と一緒になって置換されていてもよい環を形成する場合であり、この中でもピペリジン環が最も好ましい。まこ、この環は低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、水酸基、ハロゲン原子、ヒドロキシアルキル基、カルボキシアルキル基などの置換基で置換されているとさらに好ましく、この中でも特に好ましくは、保護されていてもよいカルボキシル基である。

R¹⁸ は水素原子又はメチル基、エチル基などの低級アルキル基が好ましいが、 特に水素原子が好ましい。

rは0、1または2が好ましく、1が最も好ましい。

 R^{20} 、 R^{21} 及び R^{22} は、水素原子、低級アルキル基、低級アルコキシ基、ハロゲン原子、又は R^{20} 、 R^{21} もしくは R^{22} のうち 2 つが一緒になってメチレンジオキシもしくはエチレンジオキシを形成するものが好ましい。

(製造方法)

以下に本発明化合物の代表的な製造方法を示す。

以下においては、主にキナゾリン骨格を有する化合物について説明するが、環 部がその他の骨格の場合にも、同様に適用できる。

製造方法1

一般式(I)において、R⁵が水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基の中から選択される基のとき、以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^2 & R^1 & 0 \\
R^3 & R^4 & R^5 &
\end{array}$$
(11)

| オキシ塩化リン 又は | オキシ塩化リン+五塩化リン/加熱

(一連の式中、 R^5 。は前記 R^5 において、水素原子、ハロゲン原子及び前記キナゾリン骨格に直接炭素原子で結合する基から選択される基を示す。 R^1 、 R^2 、 R^3 及び R^4 は前記の意味を有する。)

すなわち、一般式(II)で表されるキナゾリン誘導体にオキシ塩化リンを作用させるか、五塩化リン存在下オキシ塩化リンを作用させ加熱することにより、一般式(III)で表されるキナゾリン誘導体を得る反応である。

製造方法2

一般式(I)において、 R^5 が水素原子、ハロゲン原子、 式 $-S-R^8$ (式中、 R^8 、 mは前記の意味を有する)で示される基、式 $-0-R^9$ (式中、 R^9 は前記の意味を有する。)で示される基、置換されていてもよいヘテロアリール基、環部に直接炭素原子で結合する基(例えば、低級アルキル基、保護されていてもよいカルボキシル基、置換されていてもよい1、3-ベンゾジオキソリル基、置換されて

いてもよい1, 4-ベンゾジオキシル基、置換されていてもよい1, 3-ベンゾジオキソリルアルキル基及び置換されていてもよい1, 4-ベンゾジオキシルアルキル基)から選択される基であり、R⁶が前記R⁶の定義から水素原子、ハロゲン原子、低級アルキル基を除いた中から選択される基のとき、以下の方法で得ることができる。

〔一連の式中、R¹、R²、R³及びR⁴は前記の意味を有する。R⁵。は水素原子、ハ

(0) m 間 ロゲン原子、式-S-R®(式中、R®、 mは前記の意味を有する。)で示される基、式-O-R®(式中R®は前記の意味を有する。)で示される基、置換されていてもよいヘテロアリール基、及び環部に直接炭素原子で結合する基(例えば、低級アルキル基、保護されていてもよいカルボキシル基、置換されていてもよい1、3-ベンゾジオキソリル基、置換されていてもよい1、4-ベンゾジオキシル基、置換されていてもよい1、4-ベンゾジオキシルを、置換されていてもよい1、4-ベンゾジオキシルアルキル基及び置換されていてもよい1、4-ベングジオキシルアルキル基)の中から選択さ

れる基を意味する。R⁶。は前記R⁶の定義から水素原子、ハロゲン原子、低級アルキル基を除いた中から選択される基を意味する。 Bは脱離基を意味する。 J すなわち、一般式 (IV) で表されるキナゾリン誘導体と一般式 (VI) で表される化合物を縮合させることにより、目的化合物 (V) を得るという方法である。

式中 Bで表される脱離基としては、ハロゲン原子、アルコキシ基が挙げられる。 本方法は必要により、塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム t ープトキシド等のアルコキシド類等が挙げられる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用できるが、例として エタノール、イソプロピルアルコール、テトラヒドロフラン、ジメチルホルムア ミド、ジメチルスルホキシド等を挙げることができる。また、本方法は、場合に よって反応溶媒が存在しなくても反応をすすめることができる。

反応温度は-20℃~ 300℃が好ましい。

製造方法3

一般式(I)において、R⁵が前記R⁵の定義から水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基を除いた中から選択される基であり、R⁵が前記R⁶の定義からハロゲン原子を除いた中から選択される基であるときは、以下の方法で製造することができる。

$$\begin{array}{c|c}
R^1 & R^6_b \\
R^2 & N \\
R^3 & R^4
\end{array}$$
(VIII)

(一連の式中、 R^1 、 R^2 、 R^3 及び R^4 は前記の意味を有する。 R^5 。は前記 R^5 の定義から水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基を除いた中から選択される基を意味する。

R⁶。は前記R⁶の定義からハロゲン原子を除いた中から選択される基を意味する。

Fは脱離基を意味する。)

すなわち、一般式(VII) で表される化合物と一般式(IX) で表される化合物を縮合させることにより、目的化合物(VIII)を得るという方法である。

式中 Fで表される脱離基としては、ハロゲン原子、アルキルチオ基などを例として挙げることができる。

本方法は、必要により塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム tーブトキシドなどのアルコキシド類などを挙げることができる。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用できるが、例を挙げればエタノール、イソプロパノール、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。

反応温度は0℃~ 300℃が好ましい。

製造方法 4

0 || 一般式(I)において、R⁵が式-C-R²4 (式中、R²4 は水素原子、低級アル キル基を意味する。)で示される基のときは、以下の方法でも製造することがで きる。

$$R^2$$
 R^1 R^6 R^5 R^4 R^6 R^5 R^4 R^6 R^5 R^4 R^6 R^2 R^4 R^6 R^6 R^7 R^6 R^8 $R^$

(一連の式中、 R^1 、 R^2 、 R^3 、 R^4 及び R^6 は前記の意味を有する。 R^{24} 、 R^{25} は同一又は相異なる水素原子又は低級アルキル基を意味する。)

すなわち、一般式(X)で表される化合物を通常の還元剤や求核試薬により、 直接又は場合によってはアルコール体(XII)を経由して酸化して目的化合物(XI) を得る方法である。

還元剤としては、リチウムアルミニウムハイドライド、水素化ホウ素ナトリウム、ジイソプチルアルミニウムハイドライドなどを挙げることができる。

求核試薬としては、メチルリチウム、メチルマグネシウムプロミド等の低級ア ルキル金属などを挙げることができる。

アルコールを経由した場合の酸化剤としては、重クロム酸カリウムー硫酸、ジメチルスルホキシドーオキザリルクロリド等が挙げられる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は 0 ℃から溶媒の還流温度である。

製造方法 5

一般式 (I) において、 R^5 が式 -C=N-0 R^{10} (式中、 R^{10} 、 R^{24} は前記の意

味を有する。)で示される基のときは、以下の方法でも製造することができる。

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{3} \xrightarrow{R^{4}} N \xrightarrow{C-R^{2}} (XI)$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{3} \xrightarrow{R^{4}} N \xrightarrow{C=N0} R^{10}$$

$$R^{3} \xrightarrow{R^{4}} N \xrightarrow{R^{4}} R^{6}$$

(一連の式中、R¹、R²、R³、R⁴、R⁴、R⁴、R¹°及び R²⁴は前記の意味を有する。)
 すなわち、一般式 (XI) で表される化合物とヒドロキシアミンを反応させて、
 一般式 (XIII) で表される化合物を得る方法である。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

反応温度は0℃から溶媒の還流温度である。

製造方法 6

一般式(I)において、
$$R^5$$
が式 $-C=C$ $\subset R^{2.6}$ (式中、 $R^{2.4}$ は前記の意味を有 $R^{2.7}$

する。 R²⁶は水素原子又は低級アルキル基を意味する。 R²⁷は水素原子、低級アルキル基、保護されていてもよいカルボキシル基、保護されていてもよいカルボキシアルキル基を意味する。) で示される基のとき、以下の方法によっても製造することができる。

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{3} \xrightarrow{R^{4}} N \xrightarrow{C} C$$

$$R^{24}$$

$$(Ph0)_{2}PCH \xrightarrow{R^{26}} (XVI) \times I$$

$$Ph \xrightarrow{Ph} P = C \xrightarrow{R^{26}} (XVII)$$

$$R^{27} \times I$$

$$R^{2} \xrightarrow{R^{2}} I$$

(一連の式中、R¹、R²、R³、R⁴、R⁶、 R²⁴、 R²⁶、R²⁷ は前記の意味を有する。 Phはフェニル基を意味する。)

すなわち、一般式 (XIV)で表される化合物を一般式(XVI) 又は一般式(XVII)で表される化合物とウィティッヒ反応により反応させ、一般式(XV)で表される化合

物を得る方法である。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

反応温度は0℃から溶媒の還流温度までである。

製造方法7

一般式(I)において、
$$R^5$$
が式 $-CH-CH$ R^{26} R^{27} (式中、 R^{24} 、 R^{26} 、 R^{27} は R^{24}

前記の意味を有する。)で示されるとき、以下の方法でも製造することができる。

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{2}} N$$

$$C = C \xrightarrow{R^{2}} R^{2}$$

$$R^{2} \xrightarrow{R^{2}} R^{4}$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{2}} N$$

$$CH - CH \xrightarrow{R^{2}} R^{2}$$

$$(XVIII)$$

(一連の式中、R¹、R²、R³、R⁴、R⁶、 R²⁴、R²⁶ 及び R²⁷は前記の意味を有する。)

すなわち、製造方法 6 で得られた一般式(XV)で表される化合物を還元することによって、目的化合物(XVIII) を得る方法である。

還元は通常の方法、例えばパラジウムー炭素あるいは白金触媒による接触還元

などによって行われる。

反応溶媒は、反応に関与しないあらゆる溶媒が用いられる。

製造方法 8

一般式
$$(I)$$
 において、 R^6 が式 $-N$ - (CH_2) 、 R^{20} (式中、 R^{19} 、 R^{20} 、 R^{19}

 \mathbb{R}^{21} 及び \mathbf{r} は前記の意味を有する。)で示される基のときは、以下の方法でも製造することができる。

(一連の式において、R¹、R²、R³、R⁴、R⁵、 R¹°、 R²°、R²¹ 及びrは前記の 意味を有する。)

すなわち、一般式(XIX) で表される化合物を還元して、目的化合物(XX)を得る 方法である。 WO 93/07124 PCT/JP92/01258

還元は通常の方法、例えばパラジウムー炭素あるいは白金触媒による接触還元 又は鉄、スズを用いた還元などで行われる。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

製造方法9

一般式(I)において、R⁵が式-0-R⁹ (式中、R⁹ は保護されていてもよいカルボキシアルキル基を意味する。)で示される基のとき、以下の方法で製造することができる。

(第一工程)

$$R^2$$
 R^1 R^6 R^3 R^4 R^6 R^2 R^1 R^6 R^2 R^4 R^6 R^2 R^4 R^6 R^8 R^8

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 及び R^6 は前記の意味を有する。 mは 0 又は $1\sim 2$ の整数を意味する。)

すなわち、一般式(XXI)で表される化合物を通常の方法で酸化して、一般式(XXII)で表される化合物を得る反応である。

酸化剤としては、通常用いられる酸化剤ならばあらゆるものが使用できるが、

例えば六価クロム、ジメチルスルホキシド、オキザリルクロリド等を挙げること ができる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は0℃から溶媒の還流温度までである。

(第二工程)

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 、 R^6 及び mは前記の意味を有する。 R^{28} 、 R^{28} 、 R^{30} は同一又は相異なる水素原子又は低級アルキル基を意味する。)

WO 93/07124 PCT/JP92/01258

すなわち、第一工程で得られた化合物(XXII)にウィティッヒ試薬(XXIII) 又は
(XXIII) と反応させて、一般式(XXIV)で表される化合物を得る方法である。
反応溶媒は、反応に関与しないあらゆるものを用いることができる。
反応温度は0℃から溶媒の還流温度までである。

(第三工程)

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 、 R^6 、 R^{29} 、 R^{30} 及び mは前記の意味を有する。)

すなわち、第二工程で得られた化合物(XXIV)を還元して、目的化合物(XXV)を 得るという方法である。

還元は通常の方法により行われるが、例えばパラジウムー炭素あるいは白金触 媒による接触還元などが挙げられる。

製造方法10

一般式(I)において、
$$R^6$$
が式 $-N$ -(CH_2), R^{20} (式中、 R^{19} 、 R^{20} 、 R^{19}

R²¹ 及びr は前記の意味を有する。 R³¹はアシル基、低級アルキルスルホニル基、低級アルキルオキシカルボニル基を意味する。) で示される基のときは、以下の方法でも製造することができる。

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{31} 及びr は前記の意味を有する。)

すなわち、製造方法8で得られた一般式(XX)で表される化合物を塩基存在下、 通常の方法によるアシル化、スルホニル化又はアルコキシカルボニル化すること により、目的化合物(XXVI)を得る方法である。 WO 93/07124 PCT/JP92/01258

アシル化剤としては、酸クロリド、酸無水物、混合酸無水物などのカルボン酸活性体、ジシクロヘキシルカルボジイミドなどの縮合剤等、通常用いられるあらゆるアシル化剤が用いられる。

スルホニル化剤としては、通常用いられるあらゆるスルホニル化剤が使用可能 だが、例を挙げれば、低級アルキルスルホニルクロリド、低級アルキルスルホン 酸無水物などである。

アルコキシカルボニル化剤としては、通常用いられるあらゆるアルコキシカルボニル化剤、例えば低級アルキルオキシカルボニルクロリド、低級アルキルピロカーボネートなどを挙げることができる。

塩基としては、あらゆる塩基が使用可能だが、例えばピリジン、トリエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基などを挙げることができる。

製造方法11.

一般式(1) において、環Aがベンゼン環、ビリジン環、シクロヘキサン環のいずれかから選択され、環Bがビリジン環、ビリミジン環、イミダゾール環から選択され、かつR⁵が前記R⁶の定義のうち環部に直接炭素原子で結合する基を除いたものから選択される基を意味し、R⁶が前記R⁶の定義のうち環部に直接炭素原子で結合する基を除いたものから選択される基のとき、一般式(1)で表される化合物は、以下の方法でも製造することができる。尚、以下には上記の代表として環部がキナゾリン骨格を形成している場合を示す。

(第一工程)

$$\begin{array}{c|c}
R^2 & X \\
R^3 & X
\end{array}$$
(XXVII)

$$\begin{array}{c|c}
R^5 - H \\
R^2 & N \\
R^3 & N
\end{array}$$
(XXVIII)

(一連の式中、 R^1 , R^2 , R^3 , R^4 は前記の意味を有する。 R^5 は前記 R^5 の定義のうち、環部に直接炭素原子で結合する基を除いたものの中から選択される基を意味する。 Xはハロゲン原子を意味する。)

すなわち、通常の方法による縮合反応である。

反応溶媒は、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミドなどを用いるのが好ましいが、反応に関与しないあらゆる有機溶媒を用いることができる。

R⁵。が窒素原子で環部に結合する場合は、トリエチルアミン等の3級アミン存在下で加熱還流して発生する HC1を除去しながら反応をすすめるのが好ましい。また、R⁵。が酸素原子や硫黄原子で環部に結合する場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

(第二工程)

$$\begin{array}{c|c}
R^6 & -H \\
R^2 & N \\
R^3 & R^4 & R^6 \\
\end{array}$$
(XXIX)

(一連の式中、R¹, R², R³, R⁴, R⁵, Xは前記の意味を有する。R⁶, は前記R⁶の定 義の中から、環部に直接炭素原子で結合する基を除くものから選択される基を 意味する。)

第一工程で得られた化合物(XXVIII)を通常の方法で一般式 R⁶ -Hで示される化合物と縮合させる反応である。

反応溶媒は、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミドなどを用いるのが好ましいが、反応に関与しないあらゆる有機溶媒を用いることができる。

R⁶. が窒素原子で環部に結合する場合は、トリエチルアミン、ピリジン、エチルジイソプロピルアミンなどの有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、水酸化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tーブトキシド等のアルコキシド等の存在下で加熱還流して反応をすすめるのが好ましい。また、R⁶. が酸素原子や硫黄原子で環部に結合する場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

製造方法12

一般式(1) で示される化合物が次の一般式(XXXII):

$$\begin{array}{c|c}
R^1 & R^6 \\
R^2 & N \\
R^3 & R^4
\end{array}$$

$$\begin{array}{c}
R^5 \\
R^5
\end{array}$$

$$\begin{array}{c}
(XXXII)
\end{array}$$

で示される化合物であるとき、この化合物は以下の方法でも製造することができる。

$$\begin{array}{c|cccc}
R^{2} & & & & & & \\
R^{8} & & & & & & & \\
R^{8} & & & & & & & \\
R^{8} & & & & & & & \\
R^{1} & & & & & & \\
R^{1} & & & & & & \\
R^{1} & & & & & & \\
R^{8} & & & & & & \\
R^{8} & & & & & & \\
R^{8} & & & & & & \\
R^{5} & & & & \\
R^{5} & & & & \\
R^{5} & & & & \\
R^{5} & & & & \\$$

(一連の式中、R¹, R², R³, R⁴ およびR⁵は前記の意味を有する。R⁶, は前記R⁶の 定義中、環部に直接炭素原子で結合する基から選択される基を意味する。) すなわち、アルカリ存在下、通常の方法で、例えばピペロニルクロライド (XXXI)を一般式(XXX) で示されるベンズイミダゾール誘導体と反応させて、目的 化合物を得る反応である。

アルカリとしては、ヨウ化ナトリウムなどが好ましい。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用可能であるが、好ま

しくはジメチルホルムアミドなどの極性溶媒を挙げることができる。 反応温度は約60~ 100℃が好ましく、特に好ましくは約70~80℃である。

製造方法13

本発明化合物は、以下の方法でも製造することができる。

(第一工程)

$$R^{2}$$
 R^{2}
 Q^{\prime}

(一連の式中、 R^1 , R^2 , R^3 , R^4 は前記の意味を有する。 R^6 。は前記 R^6 の定義から 環部に直接炭素原子で結合する基を除いたものの中から選択される基を意味す る。 Q及び Q^1 はハロゲン原子を意味する。)

第一工程は、通常の方法による縮合反応である。

R⁶ a が窒素原子で環部に結合する場合は、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tープトキシド等のアルコキシド類等の存在下で加熱還流して反応をすすめるのが好ましい。また、R⁶ a が酸素原子や硫黄原子で環部に結

合する場合、水酸化ナトリウム、炭酸ナトリウムなどの無機塩基存在下で加熱還 流して反応を進行させるのが好ましい。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用できるが、例として エタノール、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフ ランなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルスルホキシド等を 挙げることができる。また、本方法は、場合によって反応溶媒が存在しなくても 反応をすすめることができる。

(第二工程)

$$R^3$$
 R^4
 R^5
 R^6
 R^6
 R^5

(一連の式中、 R^1 , R^2 , R^3 , R^4 , R^6 _a, Qは前記の意味を有する。 R^5 _aは前記 R^5 の定義中から環部に直接炭素原子で結合する基を除くものから選択される基を意味する。)

すなわち、第一工程で得られた化合物と一般式R⁵。-Hで表される化合物を縮合させることにより、目的化合物を得るという方法である。

WO 93/07124 PCT/JP92/01258

本方法は、必要により塩基の存在下で反応をすすめることができる。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用できるが、例を挙げればエタノール、イソプロパノールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。

反応温度は0℃~ 300℃が好ましい。

R⁵ a が窒素原子で環部に結合する基の場合は、トリエチルアミン等の3級アミン存在下で加熱還流して反応をすすめるのが好ましい。また、R⁵ a が酸素原子や硫黄原子で環部に結合する基の場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

以上製造方法1~13で得られた化合物は、水酸化ナトリウムや水酸化カリウム、メタンスルホン酸クロルなどを加えるなど、通常行われる方法によって塩をつくることができる。

次に製造方法で用いた原料化合物の製造方法を示す。

製造方法A

製造方法13で用いた出発物質のうち、環部がキナゾリン環であり、 Q及びQ' が塩素原子である化合物は以下の方法でも製造することができる。

$$R^2$$
 R^3
 R^4
 NH_2
(a)

(一連の式中、 R^1 , R^2 , R^3 , R^4 は前記の意味を有する。X は水酸基、アルコキシ 基又はアミノ基のいずれかの基を意味する。)

すなわち、化合物(a) を通常行われる方法で閉環し、化合物(b) を得、その後 通常の方法で塩素化することにより、目的化合物(c) を得る方法である。

第一工程は、閉環反応である。尿素と化合物(a) を反応させて化合物(b) を得る工程である。この場合の反応温度は約 170~ 190℃が好ましく、反応溶媒は反応に関与しないものであればあらゆる有機溶媒を用いることができるが、好ましくはN-メチルピロリドンなどを挙げることができる。また、本工程は無溶媒でも反応を進行させることができる。

さらに、X がアミノ基である時は、カルボニルジイミダゾールなどにより環化 させるか、あるいはクロロギ酸エステルなどでウレタンにした後、酸あるいは塩 基性条件下環化させることによっても得ることができる。 WO 93/07124 PCT/JP92/01258

第二工程は、塩素化反応である。この工程は、通常行われる方法で行うことができるが、例えば、五塩化リンおよびオキシ塩化リン、又は、オキシ塩化リンと、 攪拌下加熱還流して塩素化する方法などを挙げることができる。

製造方法B

製造方法1で用いた出発物質(II)は以下の方法で製造することができる。

(一連の式中、 R¹, R², R³, R⁴は前記の意味を有する。R⁵。は前記R⁵の定義中、 ハロゲン原子、環部に炭素原子で結合する基の中から選択される基を意味する。) すなわち、第一工程で通常の方法によりアミド体を得、第二工程で酸又は塩基 の存在下で閉環させる反応である。

アミド体(e) は通常の方法で得ることができるが、例えば、塩基存在下、化合物(d) を R^5 。-COCI で示される酸塩化物等のアシル化剤と反応させることにより得ることができる。

塩基としては、好ましくはトリエチルアミン等の3級アミンやピリジンなどの 有機塩基を挙げることができる。

アシル化剤としては、具体的には、ベンゾイルクロリド、アセチルクロリド、エチルオキサリルクロリド、ベンジルオキシアセチルクロリドなどの酸塩化物等を挙げることができる。

反応温度は約0℃~30℃が好ましい。

第二工程においては、第一工程で得られた化合物(e)を、酸又は塩基存在下、加熱還流することによって、化合物(f)が得られる。

酸としては、無水酢酸などを挙げることができる。

塩基としては、水酸化ナトリウムなどを挙げることができる。

製造方法C

製造方法1において、R⁵。が水素原子のとき、出発物質(II)は以下の方法でも 製造することができる。

 $(一連の式中、 R^1, R^2, R^3, R^4$ は前記の意味を有する。X''は水酸基又は低級アルコキシ基を意味する。)

すなわち、通常の方法による閉環反応である。

例えば、原料化合物(g) をホルムアミドと加熱還流して縮合させるか、ギ酸と 加熱することにより、目的化合物(h) を合成することができる。

(発明の効果)

次に本発明化合物の効果を詳述するために、実験例を掲げる。

実験例

ブタ大動脈より得たcGMP-PDEを用いた酵素阻害作用

1. 実験方法

プタ大動脈より調製した c GMP-PDEの酵素活性を、Thompsonらの方法 (1) に準じて測定した。1 mM E G T A 存在下、1 μ M c G M P を基質として測定した。本発明化合物は、DMSOで溶解し反応液に加え、阻害活性をみた。なお、反応液中のDMSOの最終濃度は4%以下とした。

(1) Thomson, W. J. and Strada, S. J., Cyclic Nucleotide Phosphodiesterase (PDE), in Methods of Enzymatic analysis, vol 4, p127-234, 1984 c GMP-PDEの調製

ブタ大動脈を細断し、Buffer A(20mM Tris/HCl, 2mM Mg acetate, 1mM Dithiothreitol, 5mM EDTA, 1400TIU/リットルaprotinin, 10mg/リットル leupeptin, 1mM benzamidine, 0.2mM PMSF, pH 7.5) の10倍容を加え、ホモジネートした。ホモジネートを10万×g、1時間で遠心し、得られた上清

をDEAE-Toyopearl 650S(Tosoh, Tokyo, Japan) カラムにかけた。Buffer B(50mM Tris/HCl, 0.1mM EGTA, 2mM Mg acetate, 1mM Dithiothreitol, 0.2mM PMSF, pH 7.5) でカラムを洗浄した後、0.05~0.4M NaCl のグレー

ジェントをかけて溶出し、CaM-independent c GMP-PDE分画を得た。

2. 実験結果

表 1-6B に本発明化合物における実験結果を示す。

表 1

実施例No	I C 50 (μM)
7	1.0
1 9	0. 39
2 2	0. 36
2 5	0.78
3 3	0. 37
3 8	0.42
4 0	0. 65
4 1	0.35
4 2	0.19
4 5	0.41
4 6	0.24
4 9	0.041
5 0	0.032
5 1	0.069
5 2	0.069
5 3	0.12
5 4	0. 47
5 5	0.030
5 7	0.038
5 8	0.042
5 9	0. 27
6 0	0.18
6 1	0.42

実施例No	I C 50 (μM)
6 4	0.38
6 5	0.093
6 7	0.14
6 8	0.62
6 9	0.19
7 0	0.84
7 1	0.81
7 2	0.73
7 3	0.94
7 4	0.35
7 8	0.50
8 1	0.44
8 2	0. 55
8 3	0.024
8 4	0.22
8 6	0.96
8 7	0. 68
8 9	0.16
9 1	0.036
9 2	0.094
9 3	0.032
9 5	0.20
9 7	0.79

実施例No	I C 50 (μM)
9 8	0.062
1 0 4	0.010
1 0 5	0.18
1 0 7	0.0040
1 1 4	0.0030
1 1 2	0.0020
1 1 5	0.0020
1 2 0	0.0010
1 2 1	0.65
1 2 2	0.0050
1 2 3	0.031
1 2 4	0.0080
1 2 5	0.0090
1 2 6	0.0010
1 2 7	0.11
1 2 8	0.30
1 3 3	0.77
1 3 4	0.0050
1 3 6	0.93
1 3 7	0.38
1 3 8	0.81
1 3 9	0. 021
1 4 0	0.68

実施例No.	I C 50 (μM)
1 4 6	0015
1 5 0	0.0072
1 5 1	0. 081
1 5 2	0.11
1 6 4	0.0080
1 6 5	0.016
1 6 6	0.026
1 6 7	0.56
1 6 8	0.011
1 6 9	0. 011
1 7 0	0. 029
171	0.00040
1 7 2	0. 095
174	0.0040
175	0.0060
176	0.0030
177	0.012
178	0.011
179	0. 0020
1 8 0	0. 0090
1 8 1	0.0050
182	0.0080
183	0. 00040

実施例Na	I C 50 (μM)
1 8 4	0.0060
1 8 5	0.010
1 8 7	0.12
1 8 8	0. 029
1 8 9	0.016
1 9 0	0. 0050
1 9 1	0.019
1 9 2	0. 020
1 9 3	0.00080
1 9 4	0.0040
1 9 7	0.066
2 0 0	0.064
2 0 1	0.049
202	0.0020
2 0 3	0.028
2 0 4	0.0040
206	0.029
208	0.00019
2 1 3	0.023
2 1 4	0.0090
2 1 6	0.017
2 2 0	0.00024
2 2 2	0.0065

表 6 A

実施例No.	I C 50 (μM)
2 2 7	0.0026
2 2 8	0.00052
2 3 0	0.0058
2 3 1	0.41
2 3 2	0.044
2 3 3	0.013
2 3 4	0.0060
2 3 5	0.0020
2 3 6	0.0060
2 3 7	0.014
2 3 8	0.0050
2 3 9	0.0080
2 4 0	0.0040
2 4 1	0.18
2 4 3	0.00015
2 4 4	0.0090
2 4 5	0.10

表 6B

実施例Na	I C 50 (μM)
2 5 5	0.032
2 5 6	0.0021
2 6 0	0.00016
2 6 2	0.88
2 6 6	0.11
2 7 8	0. 25
2 8 0	0. 25
3 7 6	0.021
L	

上記の実験例から、本発明化合物は、PDE、ことにcGMP-PDE阻害作用を有することが明らかとなった。すなわち、本発明化合物は、cGMP-PDE阻害作用を示すことにより、cGMPの生体内濃度を上昇させる効果を有することが明らかとなった。従って、本発明化合物である含窒素複素環化合物は、cGMP-PDE阻害作用が有効である疾患の予防及び治療に有効である。これらの疾患として例を挙げれば、例えば、狭心症、心筋梗塞、慢性および急性心不全などの虚血性心疾患、肺性心を併発していてもよい肺高血圧症、その他あらゆる成因による高血圧症、末梢循環不全、脳循環不全、脳機能不全および気管支喘息、アトピー性皮膚炎若しくはアレルギー性鼻炎等のアレルギー性疾患等を挙げることができる。

また、本発明化合物群の中にはカルモジュリン依存型PDEを阻害するものも 含まれている。この作用が有効な疾患は上述の c GMP-PDE阻害作用が有効 な疾患と同様の可能性が高く、この点からも、本発明化合物は、上記疾患の予防 および治療に使用できるものであるといえる。 また、本発明化合物は、毒性が低く安全性も高いので、この意味からも本発明価値が高い。

本発明化合物をこれらの医薬として使用する場合は、経口投与若しくは非経口 投与により投与される。投与量は、症状の程度;患者の年令、性別、体重、感受 性差;投与方法;投与の時期、間隔、医薬製剤の性質、調剤、種類;有効成分の 種類などによって異なり、特に限定されない。

経口投与の場合は、通常成人 1 日あたり約 $1 \sim 1.000 mg$ 、好ましくは約 $5 \sim 500 mg$ 、更に好ましくは $10 \sim 100 mg$ であり、これを通常 1 日 $1 \sim 3$ 回にわけて投与する。

注射の場合は、通常 $1~\mu$ g / kg $\sim 3,000~\mu$ g / kg $\sim 5,000~\mu$ g / kg $\sim 1,000~\mu$ kg / kg $\sim 1,000~\mu$ kg / kg / kg / kg / kg

経口用固形製剤を調製する場合は、主薬に賦形剤、更に必要に応じて結合剤、 崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠 剤、顆粒剤、散剤、カプセル剤などとする。

賦形剤としては、例えば乳糖、コーンスターチ、白糖、ブドウ糖、ソルビット、結晶セルロース、二酸化ケイ素などが、結合剤としては、例えばポリビニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、アラビアコム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリン、ペクチン等が、滑沢剤としては、例えばステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化植物油等が、着色剤としては医薬品に添加することが許可されているものが、矯味矯臭剤としては、ココア末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末等が用いられる。これらの錠剤、顆粒剤には糖衣、ゼラチン衣、その他必要により適宜コーティングすることは勿論差し支えない。

注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剤、懸濁化剤、

溶解補助剤、安定化剤、等張化剤、保存剤などを添加し、常法により静脈、皮下、 筋肉内注射剤とする。その際必要により、常法により凍結乾燥物とすることも必 要である。

整濁剤としての例を挙げれば、例えばメチルセルロース、ポリソルベート80、
ヒドロキシエチルセルロース、アラビアゴム、トラガント末、カルボキシメチル
セルロースナトリウム、ポリオキシエチレンソルビタンモノラウレートなどを挙
げることができる。

溶解補助剤としては、例えばポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マ グロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

(実施例)

次に本発明の実施例を掲げるが、本発明がこれらのみに限定されることがないことは言うまでもない。また、実施例に先立って、本発明の化合物の原料化合物の製造例を掲げる。尚、Meはメチル基、Btはエチル基、 Bzlはベンジル基、Acはアセチル基を示す。

製造例1

2-エトキシカルボニルー6-クロロキナゾリン-4(3H)-オン

2-アミノー5-クロロベンズアミド2.50g (0.0147モル)をピリジン15mlに 溶解させ、室温撹拌下、エチルオキサリルクロリド 2.0mlを滴下する。数時間撹拌後、溶媒を減圧下留去し、得られる残渣をそのまま次の反応に使用した。

残渣を酢酸50mlに溶解させ、これに無水酢酸5mlを加え一昼夜加熱還流する。

溶媒を減圧下留去し、得られる結晶にエタノールを加え、結晶を濾取する。エタ ノール、エーテルで洗い、風乾して、標題化合物の淡黄色晶2.78gを得た。

•収率;75%

・融 点:239~240℃

• Mass; $253(M+H)^+$

• NMR δ (DMSO-d₆):

1.36(3H, t, J=7.2Hz), 4.39(2H, q, J=7.2Hz), 7.86(1H, d, J=8.8Hz),

7. 92(1H, dd, J=8. 8Hz, 2. 4Hz), 8. 11(1H, d, J=2. 4Hz), 12. 85(1H, brs)

実施例1

4-クロロー6-シアノキナゾリン

4-ヒドロキシー6-カルバモイルキナゾリン2g、塩化チオニル30ml及びオキシ塩化リン60mlの混合物を20時間加熱還流した。反応液を減圧下濃縮し、得られた残渣を酢酸エチル 100mlに溶解した。これを水洗(150ml)後、硫酸マグネシウムで乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィーに付した。酢酸エチル及びアセトンで溶出し、標題化合物を800mg 得た。

·分子式; C₉H₄N₃Cl (189.5)

•収率:40%

・融 点;>290℃

• Mass: $190(M+1)^+$

• NMR δ (DMS0-d₆);

7.79(1H, d, J=8.8Hz), 8.16(1H, dd, J=8.8Hz, 2.0Hz), 8.26(1H, s),

8. 49(1H, d, J=2.0Hz)

実施例 2

2, 4-ジクロロー6-シアノキナゾリン

2,4-ジヒドロキシー6-カルバモイルキナゾリン12g及び五塩化リン48.8 gをオキシ塩化リン 200ml及び塩化チオニル70mlに懸濁し、24時間加熱還流した。 反応液を減圧下濃縮し、得られた結晶性残渣を酢酸エチル 100ml及びn-ヘキサン 100mlで洗い、標題化合物を 6.8g得た。

·分子式; CeHaCl2Na

• 収 率;52%

・融 点:161~163℃

• Mass: $224(M+1)^+$

· NMR δ (CDCl₃);

7.94(1H, d, J=8.0Hz), 8.00(1H, dd, J=8.0Hz, 2.0Hz), 8.49((1H, d, J=2.0Hz)

実施例3

2-エトキシカルボニル-4,6-ジクロロキナゾリン

製造例 1 で得られた 2 - エトキシカルボニルー 6 - クロロキナゾリンー 4 (3 H) - オン2.68 g (0.0106モル)をオキシ塩化リン40mlに懸濁させ、1 時間加熱

還流する。溶媒を減圧下留去し、残渣を酢酸エチルに溶解させ、飽和重曹水にて洗う。有機層を分液し、無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去し、標題化合物の淡黄色晶2.82gを得た。

• 収率(%);98

・融点(℃);129~130

• Mass : $271(M+1)^+$

• NMR δ (CDC1₂);

1.50(3H, t, J=7.2Hz), 4.60(2H, q, J=7.2Hz), 7.99(1H, dd, J=8.8Hz, 2.4Hz),

8. 25(1H, d, J=8. 8Hz), 8. 34(1H, d, J=2. 4Hz)

実施例4

4-(3, 4-メチレンジオキシベンジル) アミノー6, 7, 8-トリメトキシ キナゾリン

4-クロロー6, 7, 8-トリメトキシキナゾリン21.2g(0.083モル)、ピペロニルアミン17.0g(0.112モル)、炭酸ナトリウム13.5g(0.127モル)をイソプロピルアルコール 400mlに混合し、一昼夜加熱還流した。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製後、酢酸エチルより再結晶して、標題化合物の淡黄色針状晶21.3gを得た。

·分子式; C19H19N2O5

・収率(%);69

・融点(℃);197~198

· Mass ; 370(M+H) +

• NMR δ (CDCl₃)):

3.94(3H, s), 4.03(3H, s), 4.12(3H, s), 4.76(2H, d, J=8.0Hz),

5.55(1H, brs), 5.97(2H, s), 6.64(1H, s), 6.80(1H, d, J=8.0Hz),

6.87(1H, d. J=8.0Hz), 6.91(1H, s), 8.66(1H, s)

実施例5~48

実施例4の方法に準じて次の化合物を合成した。

実施例5

<u>4-(3,4-メチレンジオキシフェニル)アミノ-6,7,8-トリメトキシ</u> キナゾリン

·分子式; C18H17N3O5

・収率(%);58

・融点(℃);254~255 (分解)

• Mass ; 356(M+H)+

• NMR δ (CDCl₃):

4.02(3H.s), 4.05(3H.s), 4.13(3H.s), 5.99(2H.s),

6.83(1H.d.J=7.6Hz), 7.02(1H.d.J=7.6Hz), 7.32(1H.s), 7.33(1H.s),

8.49(1H.brs), 8.63(1H.s)

実施例6

4-ベンジルアミノー6,7,8-トリメトキシキナゾリン

·分子式; C18H19N3O3

・収率(%);91

・融点(℃);180~181

• Mass ; $326(M+H)^+$

· NMR δ (CDCl₃);

3.94(3H,s), 4.03(3H,s), 4.13(3H,s), 4.87(2H,d,J=5.2Hz),

5.62(1H, brs), 6.65(1H, s), 7.4(5H, m), 8.67(1H, s)

実施例7

4-(4-メトキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C19H21N3O4

· 収率 (%);97

・融点(℃):174~175

• Mass : $356(M+H)^+$

· NMR δ (CDCl₃) ;

3.82(3H,s), 3.93(3H,s), 4.03(3H,s), 4.13(3H,s),

4.79(2H, d, J=4.8Hz), 5.53(1H, brs), 6.63(1H, s),

6.92(2H, d, J=8.4Hz), 7.35(2H, d, J=8.4Hz), 8.67(1H, s)

実施例8

4-(3-メトキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H21N3O4

・収率(%);89

・融点(℃);142~143

• Mass ; 356(M+H)+

· NMR δ (CDC1₃);

3.80(3H.s), 3.96(3H.s), 4.03(3H.s), 4.12(3H.s).

4.85(2H, d, J=4.8Hz), 5.96(1H, brs), 6.76(1H, s),

6.86(1H, d, J=8.0Hz), 6.99(1H, d, J=8.0Hz), 7.02(1H, s),

7.29(1H, t. J=8.0Hz), 8.65(1H, s)

実施例 9

4-(4-ニトロベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H18N4O5

· 収率 (%);28

・融点(℃);210~212

• Mass ; $371(M+H)^+$

• NMR δ (CDCl₂);

3.97(3H, s), 4.05(3H, s), 4.13(3H, s), 5.01(2H, d, J=5.6Hz),

5.96(1H.brs), 6.76(1H.s), 7.54(2H.d.J=8.8Hz),

8.17(2H, d, J=8.8Hz), 8.62(1H, s)

実施例 1 0

4-(3-ニトロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

$$\begin{array}{c} & & & & \\ \text{MeO} & & & & \\ \text{MeO} & & & & \\ \end{array}$$

·分子式 ; C18H18N4O5

・収率(%);30

・融点(℃);159~160

· Mass ; 371(M+H) +

• NMR δ (CDCl₃);

3.97(3H, s), 4.04(3H, s), 4.12(3H, s), 4.99(2H, d, J=5.6Hz),

6.06(1H, brs), 6.79(1H, s), 7.51(1H, t, J=8.0Hz),

7.76(1H. d. J=8.0Hz), 8.12(1H. d. J=8.0Hz), 8.22(1H. s), 8.63(1H. s)

実施例11

4-(4-クロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C18H18N3O3Cl

·収率(%);61

・融点(℃);181~182

· Mass ; 360(M+H)+

· NMR δ (CDCl₃);

3.94(3H, s), 4.03(3H, s), 4.12(3H, s), 4.85(2H, d, J=5.6Hz),

5.76(1H. brs), 6.70(1H, s), 7.32(4H, brs), 8.64(1H, s)

<u>実施例12</u>

4-(3-クロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C18H18NsOsCl

• 収率(%);85

・融点(℃);161~162

• Mass ; $360(M+H)^+$

• NMR δ (CDCl₃);

3.97(3H, s), 4.04(3H, s), 4.13(3H, s), 4.87(2H, d, J=5.2Hz),

5.66(1H.brs), 6.68(1H.s), 7.29(3H.s), 7.39(1H.s), 8.65(1H.s)

実施例 1 3

4-フルフリルアミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H17N3O4

• 収率(%);81

・融点(℃);198~199

• Mass; $316(M+H)^+$

· NMR δ (CDCl₃):

3.97(3H, s), 4.03(3H, s), 4.12(3H, s), 4.87(2H, d, J=5.2Hz),

5.67(1H.brs), 6.37(2H.m), 6.68(1H.s), 7.42(1H.s), 8.67(1H.s)

実施例 1 4

4-(4-ピコリル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C17H18N4O3

· 収率 (%);76

・融点(℃);166~168

• Mass ; 327(M+H)+

· NMR δ (CDCl₃) ;

3.97(3H, s), 4.05(3H, s), 4.12(3H, s), 4.92(2H, d, J=6.0Hz).

6.06(1H.brs), 6.80(1H.s), 7.28(2H.d.J=6.0Hz),

8.55(2H, d, J=6.0Hz), 8.62(1H, s)

実施例 1 5

4-(4-エチルベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C20H23N3O3

• 収率(%);88

・融点(℃);195~196

• Mass ; $354(M+H)^+$

· NMR δ (CDCl₃);

1.25(3H. t. J=7.6Hz). 2.67(2H. q. J=7.6Hz), 3.94(3H. s), 4.03(3H. s).

4.13(3H, s), 4.83(2H, d, J=4.8Hz), 5.56(1H, brs), 6.63(1H, s),

7.23(2H, d, J=8.0Hz), 7.35(2H, d, J=8.0Hz), 8.67(1H, s)

実施例16

4-(インダン-5-イルメチル)アミノ-6,7,8-トリメトキシキナゾリ

<u>ン</u>

$$\begin{array}{c} \text{HN} \\ \text{Me0} \\ \text{Me0} \\ \text{Me0} \end{array}$$

·分子式 ; C21H23N3O3

· 収率(%);61

・融点(℃);198~~199

• Mass ; $366(M+H)^+$

• NMR δ (CDC1₃);

2.11(2H. quintet, J=7.2Hz). 2.93(4H. t. J=7.2Hz). 3.94(3H. s).

4.04(3H,s), 4.14(3H,s), 4.83(2H,d,J=4.4Hz), 5.55(1H,brs),

6.64(1H, s), 7.2~7.3(3H, m), 8.68(1H, s)

実施例17

WO 93/07124 PCT/JP92/01258

4-(4-カルボキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H18N3O5

• 収率 (%);86

・融点(℃);227~228 (分解)

• Mass ; $370(M+H)^+$

• NMR δ (DMSO-d₆):

3.89(3H,s), 3.92(3H,s), 3.98(3H,s), 4.86(2H,d,J=5.6Hz),

7.46(2H, d, J=8.0Hz), 7.54(1H, s), 7.90(2H, d, J=8.0Hz),

8.35(1H,s). 8.67(1H,brs)

実施例 1 8

<u>4-(3-ヒドロキシメチルベンジル)アミノ-6,7,8-トリメトキシキナ</u> <u>ブリン</u>

·分子式 ; C19H21N3O4

・収率(%);86

・融点(℃);アモルファス

• Mass ; 356(M+H)+

· NMR δ (CDCl₃);

3.93(3H,s), 4.03(3H,s), 4.12(3H,s), 4.70(2H,s),

4.86(2H, d, J=5.2Hz), 5.82(1H, brs), 6.72(1H, s), 7.3~7.4(4H, m),

8.63(1H,s)

実施例19

<u>ン</u>

4-(3, 4-ジクロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリ

·分子式 ; C18H17N3O3Cl2

· 収率 (%);85

・融点 (℃):205~206

• Mass ; $394(M+H)^+$

· NMR δ (CDCl₃) :

3.97(3H, s), 4.04(3H, s), 4.12(3H, s), 4.84(2H, d, J=5.6Hz),

5.88(1H, brs), 6.74(1H, s), 7.24(1H, d. J=8.4Hz),

7.40(1H, d, J=8.4Hz), 7.47(1H, s), 8.63(1H, s)

実施例20

4-(3-クロロ-4-メトキシベンジル) アミノー6, 7, 8-トリメトキシ キナゾリン

·分子式 ; C19H20N3O4CI

• 収率(%);83

・融点(℃);164~165

• Mass : $390(M+H)^+$

• NMR δ (CDCl₃) :

3.90(3H,s), 3.97(3H,s), 4.04(3H,s), 4.13(3H,s),

4.80(2H, d, J=5.2Hz), 5.90(1H, brs), 6.75(1H, s),

6.91(1H, d, J=8.8Hz), 7.30(1H, dd, J=8.8Hz, 2.0Hz).

7.43(1H, d, J=2.0Hz), 8.65(1H, s)

実施例 2 1

4-(3,4-ジフルオロベンジル) アミノ-6,7,8-トリメトキシキナゾ

リン

·分子式 ; C18H17N3O3F2

・収率(%);96

・融点(℃);175~177

• Mass : $362(M+H)^+$

• NMR δ (CDCl₃);

3.97(3H, s), 4.04(3H, s), 4.13(3H, s), 4.85(2H, d, J=5.2Hz),

5.73(1H, brs), 6.69(1H, s), 7.1~7.3(3H, m), 8.64(1H, s)

実施例22

<u>4-(3-フルオロ-4-メトキシベンジル) アミノ-6, 7, 8-トリメトキ</u>シキナゾリン

$$\begin{array}{c|c} & & & & \\ \text{MeO} & & & & \\ & & & & \\ \text{MeO} & & & & \\ \end{array}$$

·分子式 ; C19H20N3O4F

・収率(%);82

・融点(℃);171~172

• Mass ; $374(M+H)^+$

• NMR δ (CDCl₃);

3.89(3H, s), 3.98(3H, s), 4.04(3H, s), 4.12(3H, s),

4.81(2H, d, J=5.6Hz), 6.27(1H, brs), 6.86(1H, s), 6.94(1H, m),

7.14~7.19(2H, m). 8.64(1H, s)

<u>実施例23</u>

*

4-(3,4-ジメトキシベンジル)アミノー6,7,8-トリメトキシキナゾ

<u>リン</u>

·分子式 ; C20H23N3O5

·収率(%);32

・融点(℃);171~172

· Mass ; 386(M+H) +

• NMR δ (CDCI₃):

3.87(3H.s), 3.89(3H,s), 3.94(3H,s), 4.03(3H,s), 4.13(3H,s),

4.79(2H.d.J=5.2Hz), 5.67(1H.brs), 6.69(1H.s),

6.86(1H, d, J=8.8Hz), 6.96(1H, s), 6.98(1H, d, J=8.8Hz), 8.67(1H, s)

実施<u>例 2 4</u>

4-(4-ヒドロキシ-3-メトキシベンジル) アミノ-6, 7, 8-トリメト キシキナブリン

·分子式 ; C19H21N3O5

• 収率(%);16

・融点(℃);201~202 (分解)

• M a s s : $372(M+H)^+$

• NMR δ (CDCI₃) :

3.88(3H,s), 3.96(3H,s), 4.03(3H,s), 4.12(3H,s),

4.78(2H, d, J=5.2Hz), 6.00(1H, brs), 6.77(1H, s), 6.91(1H, s).

6.92(1H, s), 6.97(1H, s), 8.65(1H, s)

実施例25

<u>4-(3, 4-エチレンジオキシベンジル) アミノ-6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C20H21N3O5

·収率(%);92

・融点(℃);217~219

• Mass ; $384(M+H)^+$

· NMR δ (CDCl₃);

3.95(3H,s), 4.03(3H,s), 4.13(3H,s), 4.26(4H,s),

4.75(2H, d, J=5.2Hz), 5.54(1H, brs), 6.64(1H, s).

6.87(1H, d, J=8.0Hz), 6.90(1H, d, J=8.0Hz),

6.94(1H,s). 8.66(1H,s)

WO 93/07124 PCT/JP92/01258

実施例 2_6

·分子式 ; C23H27N3O5

·収率(%);49

・融点(℃);120~121

· Mass ; 426(M+H)+

· NMR δ (CDCl₃) :

3.41(2H, d, J=6.8Hz), 3.48(3H, s), 3.94(3H, s), 4.03(3H, s),

4.12(3H, s), 4.77(2H, d, J=5.2Hz), 5.06(2H, m), 5.21(2H, s),

5.78(1H, brs), 5.98(1H, m), 6.71(1H, s), 7.07(1H, d, J=8.4Hz),

7.23(1H, s), 7.24(1H, d, J=8.4Hz), 8.65(1H, s)

実施例 2 7

<u>4-(ベンズイミダゾール-5-イルメチル)アミノー6,7,8-トリメトキシキナゾリン</u>

·分子式 ; C19H19N503

・収率(%);52

・融点(℃);235~240 (分解)

• Mass : 366(M+H)+

• NMR δ (DMSO-d₆);

3.93(3H,s), 3.95(3H,s), 3.98(3H,s), 4.97(2H,d,J=6.0Hz),

7. 30(1H, dd, J=8. 4Hz, 1. 6Hz), 7. 57(1H, d, J=8. 4Hz), 7. 63(1H, d, J=1. 6Hz),

7.83(1H.s), 8.31(1H.s), 8.36(1H.brs), 8.52(1H.s), 9.76(1H.brs)

実施例 2 8

4 - (4 - ベンジルオキシー <math>3 -ニトロベンジル) アミノー6, 7, 8 -トリメ

トキシキナゾリン

·分子式 ; C₂₅H₂₄N₄O₆

·収率(%);81

・融点(℃);181~182

• Mass ; $477(M+1)^+$

• NMR δ (CDCl₃);

3.98(3H, s), 4.03(3H, s), 4.10(3H, s), 4.85(2H, d, J=5.2Hz),

5.21(2H, s), 6.54(1H, brs), 6.93(1H, s), 7.06(1H, d, J=8.4Hz),

7. $30\sim7$. 45(5H, m), 7. 60(1H, dd, J=8.4Hz, 2.4Hz), 7. 87(1H, d, J=2.4Hz),

WO 93/07124 PCT/JP92/01258

8.61(1H.s)

実施例 2 9

<u>4-(4-クロロ-3-ニトロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン</u>

·分子式 ; C18H17N4O5Cl

· 収率(%);88

・融点(℃);218~219 (分解)

• Mass : 405(M+H) +

• NMR δ (CDCl₃):

3.98(3H, s), 4.04(3H, s), 4.13(3H, s), 4.93(2H, d, J=6.0Hz),

5.98(1H. brs), 6.75(1H. s), 7.50(1H. d. J=8.4Hz),

7.58(1H. dd. J=8.4Hz. 2.0Hz), 7.87(1H. d. J=2.0Hz), 8.61(1H. s)

<u>実施例30</u>

4-(2-プロポキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C21H25N3O4

・収率(%);80

・融点(℃);139~140

• Mass ; $384(M+H)^+$

· NMR δ (CDCl₃);

1.07(3H, t, J=7.4Hz), 1.85(2H, m), 3.95(3H, s), 4.02(3H, s),

4.02(2H, t, J=6.4Hz), 4.10(3H, s), 4.89(2H, d, J=5.6Hz), 6.72(1H, s),

6.9(2H, m), 7.28(1H, m), 7.38(1H, d, J=7.2Hz), 8.64(1H, s)

実施例31

<u>4-(2, 4, 6-トリメトキシベンジル) アミノー6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C21H25N3O6

·収率(%);64

・融点(℃);213~215

• Mass ; 416(M+H)+

· NMR δ (CDCl₃);

3.85(9H,s), 3.92(3H,s), 4.01(3H,s), 4.11(3H,s),

4.79(2H, d, J=4.4Hz), 5.65(1H, brs), 6.20(2H, s), 6.60(1H, s),

8.68(1H, s)

実施例32

<u>4-(3, 4, 5-トリメトキシベンジル) アミノ-6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C21H25N3O6

·収率(%);60

・融点(℃);153~154

· Mass : 416(M+H)+

· NMR δ (CDCl₃) :

3.85(9H,s), 3.97(3H,s), 4.03(3H,s), 4.13(3H,s),

4.80(2H, d, J=5.6Hz), 6.66(2H, s), 6.80(1H, s), 8.66(1H, s)

実施例 3 3

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \end{array}$$

·分子式 ; C1 eH1 eN 2 O 5 Cl

· 収率(%);76

・融点(℃);220~221

• Mass ; $404(M+H)^+$

• NMR δ (CDCl₃):

3.97(3H,s), 4.02(3H,s), 4.11(3H,s), 4.86(2H,d,J=6.0Hz),

5.95(2H.s), 6.70(1H.brt.J=6.0Hz), 6.86(1H.s), 6.95(1H.s),

6.98(1H,s), 8.61(1H,s)

実施例34

4-(4,5-メチレンジオキシ-2-ニトロペンジル)アミノ-6,7,8-トリメトキシキナゾリン

$$\begin{array}{c|c} & & & & \\ & & & \\ \text{Me0} & & & \\ & & & \\ \text{Me0} & & & \\ \end{array}$$

·分子式 ; C18H18N4O7

・収率(%);15

・融点(℃);182~183

• Mass ; $415(M+H)^+$

· NMR δ (CDCl₃) :

3.99(3H,s), 4.02(3H,s), 4.10(3H,s), 5.08(2H,d,J=6.4Hz),

6.09(2H.s), 6.82(2H.s & brs), 7.27(1H.s), 7.57(1H.s), 8.61(1H.s)

実施例 3 5

4

<u>4-(2-(4--トロフェニル) エチル) アミノー6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C19H20N4O5

• 収率(%);58

・融点(℃);152~153

• Mass ; $385(M+H)^+$

·NMR δ(CDCl₃);

3.18(2H. t. J=7.2Hz), 3.92(3H.s), 3.96(3H.m), 4.04(3H.s),

4.13(3H, s). 5.57(1H, brs), 6.58(1H, s), 7.41(2H, d, J=8.8Hz),

8.17(2H, d, J=8.8Hz), 8.66(1H, s)

実施例36

<u>4-[2-(3, 4-メチレンジオキシフェニル) エチル] アミノー6, 7, 8</u> -トリメトキシキナゾリン

·分子式 ; C20H21N2O5

・収率(%);68

・融点(℃);193~194

• Mass : $384(M+H)^+$

• NMR δ (CDCl₃) :

2.96(2H. t, J=6.8Hz), 3.87(2H.m), 3.93(3H.s), 4.03(3H.s),

4.12(3H, s), 5.43(1H, brs), 5.95(2H, s), 6.52(1H, s),

6.71(1H.d, J=8.0Hz), 6.77(1H.s), 6.78(1H.d, J=8.0Hz),

8.65(1H, s)

実施例37

<u>4- (2- (イミダゾール-4-イル) エチル) アミノー6, 7, 8-トリメト</u> キシキナゾリン

·分子式 ; C16H19N5O2

・収率(%);77

・融点(℃);164~166 (分解)

• Mass ; $330(M+H)^+$

• NMR δ (DMSO-d₆);

3.00(2H, t, J=7.2Hz), 3.81(2H, m), 3.87(3H, s), 3.92(3H, s),

3.97(3H.s), 7.25(1H.s), 7.56(1H.s), 8.39(1H.s), 8.45(1H.s).

8.50(1H.brs)

<u>実施例38</u>

ŧ

トリメトキシキナゾリン

·分子式 ; C20H21N3O5

• 収率(%);67

・融点(℃);200~201

· Mass : 384(M+H) +

• NMR δ (CDCl₃);

1.67(2H, d, J=6.8Hz), 3.99(3H, s), 4.04(3H, s), 4.13(3H, s),

5.47(1H, brs), 5.57(1H, t. J=6.8Hz), 5.97(2H, s), 6.65(1H, s),

6.81(1H, d, J=7.6Hz), 6.94(1H, d, J=7.6Hz), 6.95(1H, s), 8.63(1H, s)

実施例 3 9

 $4 - (1 - \cancel{x} + \cancel{x} + \cancel{y} - 1 - (3, 4 - \cancel{x} + \cancel{y} +$

$$\begin{array}{c} \text{Me} \quad \text{Me} \\ \text{Me} \\$$

·分子式 : C21H23N3O5

·収率(%);4

・融点(℃);191~192

• Mass : $398(M+H)^+$

· NMR δ (CDCl₃);

1.90(6H, s), 4.03(3H, s), 4.03(3H, s), 4.09(3H, s), 5.93(2H, s),

6.74(1H, d, J=7.6Hz), 6.82(1H, s), 6.92(2H, m), 8.46(1H, s)

実施例40

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ & & & \\ \text{MeO} & & & \\ \end{array}$$

·分子式; C21H23N3O5

• 収率(%):73

・融点(℃);100~101

• Mass ; 398(M+H) +

• NMR δ (CDCl₃);

1.37(3H, t, J=7.0Hz), 3.56(3H, s), 3.67(2H, q, J=7.0Hz), 4.03(3H, s),

4.11(3H, s), 4.79(2H, s), 5.98(2H, s), 6.85(1H, d, J=7.2Hz),

6.93(1H,s), 6.93(1H,d,J=7.2Hz), 6.97(1H,s), 8.69(1H,s)

実施例41

4

·分子式 ; C23H25N3O7

• 収率 (%);41

·融点(℃);油状物質

- Mass : $456(M+H)^+$

• NMR δ (CDCl₃);

1.29(3H, t, J=7.2Hz), 3.44(3H, s), 4.02(3H, s), 4.10(3H, s),

4.20(2H, s), 4.25(2H, q, J=7.2Hz), 4.98(2H, s), 6.00(2H, s),

6.88(1H, d, J=8.0Hz), 6.97(1H, s), 7.01(1H, d, J=8.0Hz), 8.64(1H, s)

実施例 4 2

·分子式 : C22H25N3O6

・収率(%);21

・融点(℃);87~88

· Mass : 428(M+H) *

• NMR δ (CDCl₃);

3.36(3H.s), 3.58(3H.s), 3.80~3.85(4H.m), 4.02(3H.s),

4.10(3H, s), 4.92(2H, s), 5.97(2H, s), 6.83(1H, d, J=7.6Hz),

6.92(1H, d, J=7.6Hz), 6.94(1H, s), 7.19(1H, s), 8.67(1H, s)

実施例 4 3

 $\frac{4-(6,7-3)$ メトキシ-1,2,3,4-テトラヒドロイソキノリン-2-イル)-6,7,8-トリメトキシキナゾリン

·分子式 ; C₂₂H₂₅N₃O₅

· 収率(%);79

・融点(℃);157~158

• Mass ; $412(M+H)^+$

• NMR δ (CDCl₃);

3.11(2H. t, J=5.8Hz), 3.87(3H. s), 3.89(3H. s), 3.96(2H. t, J=5.8Hz),

3.99(3H, s), 4.07(3H, s), 4.14(3H, s), 4.80(2H, s), 6.67(1H, s),

6.71(1H, s), 7.03(1H, s), 8.74(1H, s)

実施例44

*

<u>4- (4- (1-ヒドロキシエチル) ベンジル) アミノー 6-メトキシキナゾリン</u>

·分子式 ; C18H19N3O2

・収率(%);46

・融点(℃);アモルファス

· Mass ; 310(M+H) +

· NMR δ (CDCl₃) :

1.47(2H, d, J=6.4Hz), 3.91(3H, s), 4.87(2H, d, J=5.2Hz).

4.84~4.94(1H.m), 7.34~7.42(6H.m), 7.59(1H.brs),

7.79(1H. d. J=8.8Hz), 8.52(1H. s)

実施例 4 5

4-(ベンズイミダゾール-5-イルメチル)アミノ-6-メトキシキナゾリン

·分子式 ; C17H15N50

・収率(%);18

・融点(℃);254~255

• Mass ; 306(M+1)*

• NMR δ (DMSO-d₆);

3.88(3H,s), 4.91(2H,d,J=6.0Hz), 7.24(1H,d,J=8.4Hz),

7. 40(1H, dd, J=9. 2Hz, 2. 8Hz), 7. 54(1H, d, J=8. 4Hz), 7. 56(1H, s).

7. 63(1H, d, J=9. 2Hz), 7. 73(1H, d, J=2. 8Hz), 8. 16(1H, s), 8. 37(1H, s),

8.67(1H, t, J=6.0Hz), 12.33(1H, brs)

実施例 4 6

4-(3,4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン

·分子式 ; C17H15N8O3

• 収率(%);86

・融点(℃);207~208

• Mass ; $310(M+H)^+$

• NMR δ (CDCl₃);

3.89(3H, s), 4.78(2H, d, J=5.2Hz), 5.70(1H, brs), 5.97(2H, s),

6.80(1H, d, J=7.6Hz), 6.9(3H, m), 7.40(1H, d, J=9.2Hz),

7.80(1H, d, J=9.2Hz), 8.63(1H, s)

実施例 4 7

4-(2-(3, 4-メチレンジオキシフェニル) ピロリジノ) -6-メトキシ キナゾリン

$$Me0 \xrightarrow{N} N$$

·分子式 ; C20H18N3O3

·収率(%);85

·融点(℃);油状物質

· Mass ; 350(M+1)+

·NMR δ (CDCl₃):

1.95~2.10(3H, m), 2.37(1H, m), 3.58(3H, s), 4.05~4.20(2H, m),

5.58(1H, m), 5.93(1H, s), 5.94(1H, s), 6.78(1H, d, J=8.4Hz),

6.84(1H, s), 6.85(1H, d, J=8.4Hz), 7.30(1H, d, J=10.0Hz), 7.35(1H, s),

7.74(1H.d.J=10.0Hz). 8.53(1H.s)

実施例 4 8

4-(4-メトキシ-3-ニトロベンジル)アミノ-6-メトキシキナゾリン

$$\begin{array}{c|c} & & & & \\ & & & \\ \text{Me0} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

·分子式 ; C17H16N4O4

・収率(%);22

・融点(℃);205~206 (分解)

• Mass : $341(M+1)^+$

· NMR δ (CDC1₃) ;

3.93(3H.s), 3.94(3H.s), 4.91(2H.d.J=6.0Hz),

7.07(1H, dd, J=8.4Hz.1.2Hz). 7.21(1H, d, J=1.2Hz).

7.39(1H, dd, J=9.2Hz.2.4Hz). 7.53(1H, d, J=2.4Hz).

7.75(1H. d. J=9.2Hz), 7.82(1H. d. J=8.4Hz), 8.03(1H. brs), 8.51(1H, s)

実施例49

4-(3, 4-メチレンジオキシベンジル) アミノー6-メチルチオキナゾリン

4-クロロー6-メチルチオキナゾリン4.12g(0.0196モル)、ピペロニルアミン3.70g(0.0245モル)、炭酸ナトリウム3.50g(0.0330モル)をイソプロピルアルコール 100mlに混合し、一昼夜加熱還流する。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーn-ヘキサン)により精製後、クロロホルムーn-ヘキサンより再結晶して、標題化合物の淡黄色晶5.32gを得た。

·分子式 ; C₁₇H₁₅O₂N₃S

・収率(%);83

・融点(℃);174~175

• Mass : $326(M+H)^+$

• NMR δ (CDC1₃);

2.59(3H,s), 4.79(2H,d,J=5.6Hz), 5.93(2H,s), 6.77(1H,d,J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.94(1H, s), 7.62(1H, dd, J=8.8Hz, 2.0Hz),

7.75(1H.d., J=8.8Hz), 7.97(1H.d., J=2.0Hz), 8.10(1H.brs), 8.56(1H.s)

実施例50~54

実施例49の方法に準じて次の化合物を合成した。

WO 93/07124 PCT/JP92/01258

実施例 5_0

4-(3, 4-ジクロロベンジル) アミノー6-メチルチオキナゾリン

·分子式 ; C16H13N3SCl2

• 収率(%);85

・融点(℃);184~185

• Mass : 350(M+H)+

• NMR δ (CDCl₃);

2.61(3H, s). 4.83(2H, d, J=5.6Hz). 7.28(1H, dd, J=8.4Hz, 2.0Hz).

7.40(1H, d, J=8.4Hz). 7.51(1H, d, J=2.0Hz). 7.64(1H, dd, J=8.8Hz, 2.0Hz).

7.76(1H, d, J=8.8Hz), 7.97(1H, d, J=2.0Hz), 8.19(1H, brs), 8.55(1H, s)

実施例 5_1

<u>4-(3-フルオロ-4-メトキシベンジル) アミノー6-メチルチオキナゾリン</u>

·分子式 ; C17H16N3OSF

- 収率 (%);89

・融点(℃);168~169

• Mass : $330(M+H)^+$

• NMR δ (CDC1₃);

2.58(3H,s), 3.90(3H,s), 4.82(2H,d,J=5.6Hz), 6.29(1H,brs),

6.95(1H.m), 7.13~7.18(2H.m), 7.54(1H.s), 7.63(1H.d, J=8.8Hz),

7.79(1H, d, J=8.8Hz), 8.64(1H, s)

実施例52

<u>4- (ベンズイミダゾール-5-イルメチル) アミノー6-メチルチオキナゾリン</u>

·分子式 ; C17H15N5S

• 収率(%);48

・融点(℃);271~275 (分解)

• Mass ; $322(M+H)^+$

• NMR δ (DMSO-d₆):

2.67(3H.s), 5.06(2H.d.J=5.6Hz), 7.47(1H.d.J=8.4Hz).

7.68(1H.d, J=8.8Hz), 7.77(2H.m), 7.87(1H.d.J=8.8Hz),

8.40(1H,s), 8.77(1H,s), 8.84(1H,s), 10.68(1H,brs)

実施例 5 3

4

4 - (N - (2 - メトキシエチル) - (3, 4 - メチレンジオキシベンジル) ア <math>= (3, 4 - 3) + (3

·分子式 ; C20H21N3O3S

·収率(%);27

・融点(℃):92~93

• Mass ; $384(M+H)^+$

·NMR δ(CDCl₃):

2.16(3H, s), 3.35(3H, s), 3.82(2H, t, J=5.0Hz), 3.89(2H, t, J=5.0Hz),

5.01(2H, s), 5.98(2H, s), 6.84(1H, d, J=8.4Hz), 6.89(1H, d, J=8.4Hz),

6.90(1H, s). 7.56(1H, dd, J=8.8Hz, 2.0Hz), 7.66(1H, d, J=2.0Hz),

7.82(1H, d, J=8.8Hz)

実施例 5 4

 $\frac{4-(N-(2-ヒドロキシエチル)-(3,4-メチレンジオキシベンジル)}{rミノ)-6-メチルチオキナゾリン}$

$$\begin{array}{c|c} H0 & & & \\ MeS & & & \\ & N & & \\ \end{array}$$

·分子式 ; C19H18N3O3S

· 収率 (%);21

・融点 (℃) ;146 ~147 (分解)

• Mass : $370(M+H)^+$

· NMR δ (CDCl₃):

2.00(3H, s), 3.93(2H, t, J=4.2Hz), 4.01(2H, t, J=4.2Hz), 5.00(2H, s),

6.01(2H,s), 6.89(3H,m), 7.57(2H,m), 7.82(1H,d,J=9.2Hz), 8.55(1H,s)

実施例 5 5

4-(4-クロロ-3-ニトロベンジル)アミノー6-クロロキナゾリン

4,6-ジクロロキナゾリン3.00g(0.015モル)、4-クロロ-3-ニトロベンジルアミン 塩酸塩3.80g(0.0170モル)を、イソプロピルアルコール 100ml、トリエチルアミン15mlに溶解させ、一昼夜加熱還流する。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-酢酸エチル)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶4.85gを得た。

·分子式 ; C15H10N4O2Cl2

· 収率(%);92

・融点(℃):199~200

• Mass : $349(M+H)^+$

• NMR δ (CDCl₃);

4. 85(2H, d, J=6. 0Hz), 7. 49(1H, d, J=8. 4Hz), 7. 61(1H, dd, J=8. 4Hz, 2. 0Hz),

7. 66(1H, dd, J=8. 8Hz, 2. 0Hz), 7. 76(1H, d, J=8. 8Hz), 7. 96(1H, d, J=2. 0Hz),

8. 20(1H, d, J=2. 0Hz), 8. 23(1H, brt, J=6. 0Hz), 8. 58(1H, s)

WO 93/07124 PCT/JP92/01258

実施例 5_6

4-(α-エトキシカルボニルー3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

4, 6-ジクロロキナゾリン704mg に2-プロパノール30ml、トリエチルアミン1.07g、α-エトキシカルボニル-3, 4-メチレンジオキシベンジルアミン1.01gを加え、4時間還流した。水を加え、クロロホルムで3回抽出し、合わせた有機層を硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣を再結晶(エタノールー酢酸エチルーへキサン)し、標題化合物 1.167gを得た。

·分子式 ; C19H16N3O4Cl

・収率(%);86

・融点(℃);169~170

• Mass m/e ; 386(M+1)

· NMR δ (CDC1₃);

1.28(3H, t, J=7.2Hz), 4.27(2H, m), 5.85(1H, d, J=6.4Hz), 5.98(2H, s),

6.70(1H, brs), 6.81(1H, d, J=8.8Hz), 6.99(2H, m),

7. 10(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 83(1H, d, J=2. 4Hz).

8.85(1H, d, J=8.8Hz), 8.63(1H, s)

実施例 5 7 ~ 6 4

実施例55~56の方法に準じて次の化合物を合成した。

実施例 5 7

4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

·分子式 ; C16H12N2O2Cl

・収率(%);76

・融点(℃);199~200

• Mass ; $314(M+H)^+$

• NMR δ (CDC1₃) :

4.76(2H, d, J=5.6Hz), 5.82(1H, brs), 5.98(2H, s), 6.81(1H, d, J=8.0Hz),

6.87(1H, d, J=8.0Hz), 6.89(1H, s), 7.67(1H, s), 7.69(1H, d, J=8.0Hz),

7.81(1H, d, J=8.0Hz), 8.70(1H, s)

実施例58

4-(3, 4-ジクロロベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C15H10N3Cl3

・収率(%);72

・融点(℃);215~216

• Mass ; $338(M+H)^+$

• NMR δ (CDCl₃) :

4.85(2H.d.J=5.6Hz). 5.94(1H.brs), 7.24(1H.d.J=8.4Hz),

7. 43(1H. d. J=8. 4Hz), 7. 70(1H. d. J=9. 2Hz), 7. 72(1H. s),

7.83(1H, d, J=9.2Hz), 8.68(1H, s)

実施例<u>59</u>

4-(3,4-ジメトキシベンジル)アミノー6-クロロキナゾリン

·分子式 ; C17H16N3O2Cl

• 収率 (%);73

・融点(℃);174~175

· Mass ; 330(M+H)+

· NMR δ (CDCl₃) :

3.87(6H, s). 4.78(2H, d, J=5.2Hz), 6.85(1H, d, J=8.0Hz).

6.96(1H, d, J=8.0Hz), 6.98(1H, s), 7.34(1H, brs).

7.65(1H, dd, J=9.2Hz, 2.0Hz), 7.78(1H, d, J=9.2Hz),

8.08(1H, d, J=2.0Hz), 8.65(1H, s)

実施例 6 0

4-(ベンズイミダゾール-5-イルメチル)アミノ-6-クロロキナゾリン

·分子式 ; C16H12N5C1

・収率(%);76

·融点(℃);243~244(分解)

• Mass ; $310(M+H)^+$

• NMR δ (DMSO-d₆);

4.89(2H, d, J=5.6Hz), 7.27(1H, d, J=8.4Hz), 7.55(1H, d, J=8.4Hz),

7.59(1H, s), 7.72(1H, d, J=8.8Hz), 7.80(1H, dd, J=8.8Hz, 2.4Hz).

8.25(1H.s), 8.50(1H.s), 8.53(1H.d. J=2.4Hz), 9.07(1H.brt, J=5.6Hz)

実施例 6 1

<u>4-(2-メトキシ-2, 3-ジヒドロベンゾフラン-5-イル)メチルアミノ</u> -6-クロロキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

·分子式 ; C18H16N3O2Cl (341.798)

· 収率(%);53

・融点(℃);178~179

• Mass ; $342(MH^+)$

• NMR δ (DMSO-d₆) :

2.88(1H, dd, J=2.0Hz, 17.0Hz), 3.28~3.34(1H, m), 4.68(1H, d, J=5.7Hz),

5. 68(1H, dd, J=2. 0Hz, 6. 6Hz), 6. 79(1H, d, J=8. 2Hz), 7. 14(1H, d, J=8. 2Hz),

7.24(1H,s), 7.70(1H,d,J=9.0Hz), 7.79(1H,dd,J=2.2Hz,9.0Hz),

8.46(1H, d, J=2.2Hz), 8.48(1H, s), 8.82(1H, t, J=5.7Hz)

実施例 6 2

<u>4-(2-メチルベンズイミダゾール-5-イルメチル)アミノー6-クロロキ</u>ナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

·分子式 ; C17H14N5Cl

・収率(%);17

・融点(℃);273~274 (分解)

· Mass : 324(M+H)

• NMR δ (DMSO-d₆);

2.71(3H, s), 4.94(2H, d, J=5.6Hz), 7.48(1H, d, J=8.4Hz),

7.63(1H, d, J=8.4Hz), 7.70(1H, s), 7.77(1H, d, J=8.8Hz),

7.86(1H, dd, J=8.8Hz, 2.0Hz), 8.58(1H, s), 8.65(1H, d, J=2.0Hz),

9.65(1H.brs)

<u>実施例 6 3</u>

·分子式 ; C18H16N3O2Cl

・収率(%);32

・融点(℃);175~176

• Mass ; $342(M+H)^+$

· NMR δ (CDCl₃);

1.92(6H, s), 5.95(2H, s), 6.14(1H, brs), 6.76(1H, d, J=7.6Hz),

6.92(1H, d, J=7.6Hz), 6.93(1H, s), 7.67(1H, dd, J=8.8Hz),

7.77(1H, d, J=2.0Hz), 7.86(1H, d, J=8.8Hz), 8.50(1H, s)

実施例 6 4

4-(3,4-メチレンジオキシベンジル)アミノ-6-エトキシキナゾリン

·分子式 ; C18H17N3O3

· 収率(%);44

・融点(℃);190~191

· Mass ; 324(M+H)+

• NMR δ (CDC1₃) :

1.46(3H, t, J=6.8Hz), 4.10(2H, q, J=6.8Hz), 4.77(2H, d, J=5.2Hz),

5.68(1H.brs). 5.97(2H.s). 6.80(1H.d.J=8.0Hz), 6.87~6.92(3H.m),

7. 39(1H, dd, J=9. 2Hz, 2. 8Hz), 7. 79(1H, d, J=9. 2Hz), 8. 62(1H, s)

実施例 6 5

4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン

4-クロロー6-シアノキナゾリン140mg にイソプロピルアルコール15ml、トリエチルアミン75mg及びピペロニルアミン125mg を加え、5時間加熱還流した。 沈殿物を濾取し、シリカゲルカラムクロマトグラフィーに付した。酢酸エチルで 溶出し、標題化合物を200mg 得た。

·分子式 ; C17H12N4O2

• 収率(%);89

・融点(℃);243~244

· Mass ; 305 (M+1)+

• NMR δ (DMSO-d₆) :

4.67(2H, d, J=5.6Hz), 5.96(2H, s), 6.84(2H, s), 6.95(1H, s),

7.77(1H, d, J=8.4Hz), 8.56(1H, s), 8.89(1H, s), 9.04(1H, br)

実施例 6 6 ~ 8 7

実施例65の方法に準じて以下の化合物を合成した。

実施例 6 6

4- [3-(1-イミダゾリル) プロピル] アミノー6-シアノキナゾリン

·分子式 ; C15H14N6

• 収率(%);22

・融点(℃);196~197

· Mass m/e; 279(M+1)

· NMR δ (CDCl₃);

2.27(2H, quintet, J=6.4Hz), 3.66(2H, q, J=6.4Hz), 4.17(2H, t, J=6.4Hz),

7.07(1H, s), 7.11(1H, s), 7.82(1H, s), 7.82(1H, s), 8.09(1H, s),

8.37(1H.brs). 8.66(1H.s). 8.84(1H.s)

<u>実施例 6 7</u>

4-(ベンズイミダゾール-5-イル)メチルアミノ-6-シアノキナゾリン

·分子式 ; C17H12N6

・収率(%);68

・融点(℃);274~277

· Mass ; 301 (M+1) +

• NMR δ (DMSO-d₆);

WO 93/07124 PCT/JP92/01258

4.88(2H, d, J=5.6Hz). 7.21~7.24(1H, m), 7.35~7.76(2H, m),

7.78(1H. d. J=8.8Hz), 7.06(1H, dd, J=8.8Hz, 1.6Hz), 8.15(1H, s),

8.57(1H, s). 8.92(1H, s), 9.14(1H, m), 12.32(1H, m)

実施例 6.8

<u>4-(3, 4-メチレンジオキシベンジル) アミノー6-エトキシカルボニルキナゾリン</u>

·分子式 ; C18H17N3O4

• 収率 (%); 48

・融点(℃);156~157

· Mass : 352(M+H)+

· NMR δ (CDCl₃) :

1.43(3H, t, J=7.2Hz), 4.44(2H, q, J=7.2Hz), 4.79(2H, d, J=5.2Hz),

5.98(2H.s), 6.14(1H.brs), 6.82(1H.d, J=8.0Hz), 6.89(1H.d, J=8.0Hz),

6.90(1H, s), 7.87(1H, d, J=8.8Hz), 8.33(1H, d, J=8.8Hz), 8.46(1H, s),

8.74(1H, s)

実施例 6_9

4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルキナゾリン

·分子式 ; C17H15N3O2

·収率(%);68

・融点(℃);203~204

• Mass : $294(M+H)^+$

• NMR δ (CDCl₃);

2.49(3H,s), 4.76(2H,d,J=5.6Hz), 5.79(1H,brs), 5.96(2H,s),

6.81(1H.d, J=8.0Hz), 6.88(1H.d, J=8.0Hz), 6.91(1H.s), 7.44(1H.s),

7.57(1H, d, J=8.4Hz), 7.76(1H, d, J=8.4Hz), 8.66(1H, s)

実施例70

4-(3.4-メチレンジオキシベンジル)アミノー6,7-ジメトキシキナゾ

<u>リン</u>

·分子式 ; C18H17N3O4

·収率(%);77

・融点(℃);221~222

• Mass ; $340(M+H)^+$

- NMR δ (DMSO-d₆) :

3.88(3H,s), 3.89(3H,s), 4.68(2H,d,J=6.0Hz), 5.97(2H,s),

6.85(2H,s), 6.94(1H,s), 7.09(1H,s), 7.64(1H,s), 8.33(1H,s),

8.37(1H. t, J=6.0Hz)

実施例 7_1

<u>4-(3, 4-メチレンジオキシベンジル) アミノー6, 8-ジメトキシキナゾ</u>リン

·分子式 ; C18H17N3O4

・収率(%);88

・融点(℃):217~218

· Mass ; 340(M+H) +

• NMR δ (CDCl₃) :

3.89(3H,s), 4.01(3H,s), 4.77(2H,d,J=5.2Hz), 5.63(1H,brs),

5. 97(2H, s). 6. 42(1H, d, J=2. 4Hz), 6. 77(1H, d, J=2. 4Hz),

6.80(1H, d, J=7.6Hz), 6.88(1H, dd, J=7.6Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz),

8.65(1H.s)

<u>実施例72</u>

<u>4-(3, 4-メチレンジオキシベンジル) アミノ-5, 6-ジメトキシキナゾリン</u>

$$\begin{array}{c|c} & & & \\ & & & \\ \text{MeO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

·分子式 ; C18H17N3O4

・収率(%);74

・融点(℃);122~123

• Mass : $340(M+1)^{+}$

• NMR δ (CDC1₂):

3. 97(6H, s), 4. 77(2H, d, J=5. 2Hz), 5. 97(2H, s), 6. 81(1H, d, J=8. 0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz), 7.49(1H, d, J=8.8Hz),

7.82(1H, d, J=8.8Hz), 8.51(1H, s), 8.64(1H, brs)

<u>実施例73</u>

<u>4-(3, 4-メチレンジオキシベンジル) アミノ-6-アセトアミド-7-メ</u> トキシキナゾリン

·分子式 ; C1.8H1.8N4O4

・収率(%);66

・融点(℃);164~165

· Mass ; 367(M+H) +

• NMR δ (CDCl₃) :

2.26(3H, s), 4.04(3H, s), 4.76(2H, d, J=5.6Hz), 5.95(2H, s),

6.22(1H, brs), 6.77(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz),

6.89(1H.s), 7.31(1H.s), 8.02(1H.brs), 8.59(1H.s), 8.81(1H.s)

実施<u>例74</u>

4-(3, 4-メチレンジオキシベンジル) アミノー 6-メチルチオー 7-メト キシキナゾリン

·分子式 ; C18H17N3O3S

・収率(%);39

・融点(℃);200~205(分解)

· Mass ; 356(M+H)+

· NMR δ (CDCl₃) :

2.50(3H, s), 4.01(3H, s), 4.78(2H, d, J=5.6Hz), 5.95(2H, s),

6.13(1H. brs), 6.79(1H. d. J=8.0Hz), 6.88(1H. d. J=8.0Hz),

6.91(1H, s), 7.15(1H, s), 7.33(1H, s), 8.56(1H, s)

実施例75

4-(3,4-メチレンジオキシベンジル)アミノキナゾリン

·分子式 ; C16H18N3O2

• 収率(%);69

・融点(℃);197~198

• Mass : $280(M+H)^+$

· NMR δ (CDCl₃) :

4.78(2H. d. J=5.2Hz), 5.85(1H. brs), 5.96(2H. s), 6.80(1H. d. J=8.0Hz).

6.88(1H, d, J=8.0Hz), 6.91(1H, s), 7.46(1H, t, J=8.0Hz),

7.68(1H, d, J=8.0Hz), 7.75(1H, t, J=8.0Hz), 7.87(1H, d, J=8.0Hz),

8.71(1H.s)

<u>実施例76</u>

4-(3,4-メチレンジオキシベンジル)アミノ-8-メトキシキナゾリン

·分子式 ; C17H15N3O3

・収率(%);76

・融点(℃);195~196

• Mass : $310(M+H)^+$

-NMR δ (CDCl₃);

4.03(3H, s). 4.78(2H, d, J=5.6Hz), 5.94(2H, s), 6.77(1H, d, J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.92(1H, s), 6.95(1H, brs), 7.12(1H, d, J=8.0Hz),

7.39(1H, t, J=8.0Hz), 7.48(1H, d, J=8.0Hz), 8.70(1H, s)

実施例77

4-(3, 4-メチレンジオキシベンジル)アミノ-7-クロロキナゾリン

·分子式 ; C21H22N3O2Cl

・収率(%);62

・融点(℃);209~210

· Mass : 314(M+H)+

· NMR δ (CDCl₃) :

4.77(2H. d. J=5.6Hz), 5.95(2H, s), 6.78(1H, d. J=8.0Hz),

6.88(1H, d, J=8.0Hz), 6.92(1H, s), 7.39(1H, dd, J=8.8Hz, 2.0Hz),

7.4(1H. brs), 7.83(1H. d. J=2.0Hz), 7.96(1H. d. J=8.8Hz), 8.63(1H. s)

実施例 7 8

4-(3, 4-メチレンジオキシベンジル) アミノベンゾ [g] キナゾリン

$$\bigcup_{N} \bigcup_{0}$$

·分子式 ; C₂₀H₁₅N₃O₂ (329)

· 収率(%);45

・融点(℃);265 (分解)

• Mass : $330(M+1)^+$

• NMR δ (DMSO-d₆);

4. 92(2H, d, J=6. 0Hz), 5. 97(2H, s), 6. 88(1H, d, J=8. 0Hz),

6. 94(1H, dd, J=8. 0Hz, 1. 6Hz), 7. 06(1H, d, J=1. 6Hz), 7. 68~7. 81(2H, m),

8.11(1H, d, J=8.4Hz), 8.21(1H, d, J=8.4Hz), 8.33(1H, s), 8.90(1H, s),

9.36(1H,s), 11.09(1H,br)

実施例79

·分子式 ; C₁₇H₁₃N₃O₄ (323)

·収率(%);55

・融点(℃);229~231

• Mass ; $324(M+1)^+$

• NMR δ (DMSO-d₆);

4. 62(2H, d, J=5. 6Hz), 5. 94(2H, s), 6. 16(2H, s), 6. 79(1H, d, J=8. 0Hz),

6.82(1H, dd, J=8.0Hz, 2.0Hz), 6.89(1H, d, J=2.0Hz), 7.06(1H, s),

7. 68(1H, s). 8. 26(1H, brt, J=5. 6Hz), 8. 28(1H, s)

実施例 8 0

<u>4-(3, 4, 5-トリメトキシベンジル) アミノ-6, 7-メチレンジオキシ</u> キナゾリン

·分子式 ; C19H19N3O5 (369)

• 収率(%);59

・融点(℃);240~241

· Mass ; 370(M+1)+

• NMR δ (DMSO-d₆);

3.61(3H, s), 3.70(6H, s), 4.65(2H, d, J=6.0Hz), 6.16(2H, s),

6.675(2H.s), 7.06(1H.s), 7.72(1H.s), 8.23(1H.brt, J=6.0Hz),

8.30(1H,s)

実施例 8 1

2-メチル-4-(3, 4-メチレンジオキシベンジル) アミノ-6, 7, 8-

トリメトキシキナゾリン

·分子式 ; C20H21N3O5

· 収率(%);58

・融点(℃);190~191

• Mass ; $384(M+H)^+$

· NMR δ (CDC1₃) :

2.67(3H.s), 3.93(3H.s), 4.01(3H.s), 4.11(3H.s),

4.77(2H, d, J=5.2Hz), 5.96(2H, s), 6.70(1H, s), 6.79(1H, d, J=7.6Hz),

6.89(1H, d, J=7.6Hz), 6.93(1H, s)

実施例82

トキシキナゾリン

·分子式 ; C20H21N3O3

· 収率 (%);84

・融点 (℃);157~158

· Mass ; 352(M+1)+

· NMR δ (CDCl₃):

1.36(6H, d, J=6.8Hz), 3.15(1H, septet, J=6.8Hz), 3.88(3H, s),

4.81(2H, d, J=5.6Hz), 5.94(2H, s), 6.78(1H, d, J=8.0Hz),

6. 91(1H. dd. J=8. OHz, 2. OHz), 6. 96(1H. d, J=2. OHz),

6. 99(1H, brd, J=2. 4Hz), 7. 32(1H, dd, J=9. 2Hz, 2. 4Hz),

7. 79(1H, d, J=9. 2Hz)

実施例83

2-(2-プロポキシフェニル)-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

·分子式 ; C₂₅H₂₂N₃O₃Cl

・収率(%);20

・融点(℃);208~209

· Mass : 446(M+1)+

- NMR δ (CDCl₃):

0.97(3H, t, J=7.6Hz), 1.71~1.81(2H, m), 4.01(2H, t, J=6.4Hz),

4.81(2H, brs), 5.80(1H, br), 5.96(2H, s), 6.79~7.86(10H, m)

実施例 8 4

·分子式 ; C₂₅H₂₃N₂O₃ (413)

· 収率(%);15

・融点(℃);130~131

• Mass : $414(M+1)^+$

• NMR δ (CDC1₃);

0.96(3H, t, J=7.2Hz), 1.71 \sim 1.77(2H, m), 4.00(2H, t, J=6.4Hz),

4.83(2H,s), 5.95(2H,s), 6.77~7.93(12H,m)

実施例 8 5

<u>4-(3, 4-メチレンジオキシベンズアミド)-6,7,8-トリメトキシキナゾリン</u>

$$\begin{array}{c|c} & & & & \\ & & & \\ \text{MeO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

·分子式 ; C19H17N2O6

・収率(%);13

・融点(℃);190~192

• Mass : $384(M+H)^+$

• NMR δ (CDCl₃):

4.10(6H,s), 4.12(3H,s), 6.07(2H,s), 6.91(1H,d,J=8.0Hz).

7.86(1H,s), 7.90(1H,s), 8.06(1H,d,J=8.0Hz), 8.18(1H,s)

<u>実施例 8 6</u>

4-(3, 4-メチレンジオキシベンジル)オキシー6,7,8-トリメトキシ

キナゾリン

·分子式 ; C19H18N2Os

• 収率(%);49

・融点(℃);141~142

· Mass ; 371(M+H)+

• NMR δ (CDC1₃);

3.97(3H, s), 4.05(3H, s), 4.13(3H, s), 5.53(2H, s), 5.99(2H, s),

6.84(1H.d.J=8.0Hz), 7.00(1H.dd.J=8.0Hz.2.0Hz), 7.02(1H.d.J=2.0Hz),

7.20(1H, s), 8.74(1H, s)

<u>実施例87</u>

4-(3,4-メチレンジオキシベンジル)オキシ-6-メチルチオキナゾリン

·分子式 ; C17H14N2O2Cl

·収率(%);69

・融点(℃):104~105

• Mass ; $327(M+H)^+$

• NMR δ (CDCl₃);

2.59(3H, s), 5.56(2H, s), 6.00(2H, s), 6.85(1H, d, J=8.0Hz).

7. 01(1H. dd, J=8. 0Hz. 1. 6Hz), 7. 03(1H. d, J=1. 6Hz),

7.72(1H, dd, J=8.8Hz, 1.6Hz), 7.88(1H, d, J=8.8Hz), 7.89(1H, d, J=1.6Hz),

8,78(1H,s)

実施例 8 8

2, 4, 6-トリメトキシキナゾリン

2, 4-ジクロロー6-メトキシキナゾリン 5.0g(0.022モル)をメタノール 150 mlに懸濁させ、水素化ナトリウム 3.5gを徐々に加えた後、加熱還流する。 数時間後、反応液を減圧濃縮し、水を加えて析出晶を濾取し、水で洗い風乾して、標題化合物の粗黄色晶 4.8gを得た。

・融点(℃):143~144

• Mass : $221(M+1)^+$

· NMR δ (CDCl₃);

3.90(3H, s), 4.08(3H, s), 4.18(3H, s), 7.36(1H, d, J=2.8Hz),

7. 39(1H, dd, J=8. 8Hz, 2. 8Hz), 7. 67(1H, d, J=2. 8Hz)

<u>実施例 8 9</u>

2, 6-ジメトキシー4-(3, 4-メチレンジオキシベンジル) アミノキナゾ リン

·分子式 ; C18H17N3O4

・収率(%);18

・融点(℃);166~167

• Mass ; $340(M+1)^+$

- NMR δ (CDCl₃);

3.89(3H.s), 4.03(3H.s), 4.77(2H.d.J=5.2Hz), 5.94(2H.s),

6.76(1H, d, J=8.0Hz), 6.89(1H, dd, J=8.0Hz, 1.2Hz), 6.93(1H, d, J=1.2Hz),

7. 29(1H, dd, J=8. 8Hz, 2. 8Hz), 7. 32(1H, brs), 7. 59(1H, d, J=8. 8Hz)

実施例 9 0

2, 4-ビスペンジルオキシー6-メトキシキナゾリン

ベンジルアルコール3mlをテトラヒドロフラン50mlに溶解させ、水素化ナトリ

ウム 1.0gを加えて30分間40~50℃にて攪拌した後、2,4~ジクロロー6~メトキシキナゾリン2.50g(0.0109モル)を加え、数時間加熱還流する。反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥する。 濾過、減圧下溶媒を留去し、得られる結晶をクロロホルムーn~ヘキサンより再結晶して、標題化合物の黄色晶3.84gを得た。

・収率(%);95

・融点(℃);144~145

• Mass : $373(M+1)^+$

• NMR δ (CDCl₃);

3.87(3H, s), 5.53(2H, s), 5.62(2H, s), 7.31 \sim 7.55(12H, m),

7. 70(1H, d, J=8. 8Hz)

実施例 9 1

2-ベンジルオキシ-4-(3, 4-メチレンジオキシベンジル) アミノ-6-メトキシキナゾリン

·分子式 ; C₂₄H₂₁N₃O₄

·収率(%);18

・融点(℃):163~164

• Mass ; 416(M+H)+

·NMR δ(CDCl₃):

3.86(3H.s), 4.75(2H.d.J=5.2Hz), 5.49(2H.s), 5.68(1H.brs),

5.96(2H,s), 6.79(1H,d,J=8.0Hz), 6.84~6.87(3H,m),

7.28~7.36(4H, m), 7.51~7.53(2H, m), 7.63(1H, d, J=9.2Hz)

実施例 9 2

2, 6-ジクロロ-4-(3, 4-メチレンジオキシベンジル) アミノキナゾリ ン

$$c1$$
 N
 $c1$

2, 4, 6-トリクロロキナゾリン 3.6g、ピペロニルアミン 2.4g、トリエチルアミン 1.6g及びイソプロピルアルコール50mlの混合物を 1.5時間加熱還流した。熱時、沈殿物を遮取して、標題化合物を 5.2g 得た。

·分子式 : C16H11N3O2Cl2

・収率(%);98

・融点(℃);215

• Mass ; 349 (M+1)+

• NMR δ (DMSO-d₆);

4.61(2H,s), 5.97(2H,s), 6.85(2H,s), 6.95(1H,s).

7. 63(1H, d, J=8. 8Hz), 7. 80(1H, dd, J=8. 8Hz, 2. 4Hz),

8. 45(1H. d. J=2. 4Hz), 9. 24(1H. br)

実施例93

<u>2-クロロー4-(3, 4-メチレンジオキシベンジル) アミノー6-シアノキ</u>ナゾリン

2, 4-ジクロロー6-シアノキナゾリン2gにイソプロピルアルコール35ml、トリエチルアミン900mg及びピペロニルアミン1.35gを加え、 1.5時間加熱還流した。熱時、反応混合物中の沈殿物を濾取して、標題化合物を 2.4g得た。

·分子式 ; C₁₇H₁₁N₄O₂Cl

・収率(%);79

・融点(℃);234~236 (分解)

· Mass ; 339 (M+1) *

• NMR δ (DMSO-d₆);

4.63(2H, d, J=5.6Hz), 5.97(2H, s), 6.86(2H, s), 6.97(1H, s),

7. 72(1H, d, J=8. 4Hz), 8. 10(1H, dd, J=8. 4Hz, 1. 8Hz),

8.90(1H, d, J=1.8Hz), 9.50(1H, br)

実施例 9 4

<u>2-クロロー4-(3-クロロー4-メトキシベンジル)アミノー6-シアノキ</u>ナゾリン

$$\begin{array}{c|c} & & & & \\ & & & \\ NC & & & \\ & & & \\ N & & \\ & & & \\ \end{array}$$

2, 4-ジクロロー6-シアノキナゾリン4gに3-クロロー4-メトキシベンジルアミン3.9g、トリエチルアミン3.97g、2-プロパノール 200mlを加え30分間還流した。反応混合物を室温まで冷し、析出した結晶を遮取し、水、クロロホルムで順次洗浄し、標題化合物を5.563g得た。

·分子式 ; C17H12N4OCI2

• 収率(%);87

・融点(℃);264~266

 \cdot Mass m/e; 359(M+1)

· NMR δ (CDC1₃) :

3.90(3H, s), 4.73(2H, d, J=5.2Hz). 6.92(1H, d, J=8.4Hz),

7. 33(1H. dd, J=8. 4Hz, 2. 0Hz), 7. 45(1H. d, J=2. 0Hz), 7. 74(1H. d, J=8. 4Hz),

7.83(1H, dd, J=8.4Hz, 1.6Hz), 8.78(1H, d, J=1.6Hz), 8.85(1H, brs)

実施例95~105

実施例88~94の方法に準じて次の化合物を合成した。

実施例 9 5

·分子式 ; C1.8H1.8N2O5Cl

· 収率(%);50

・融点(℃);193~194

• Mass : $404(M+H)^+$

• NMR δ (CDCl₃):

3.94(3H, s), 4.03(3H, s), 4.10(3H, s), 4.75(2H, d, J=5.2Hz).

5.65(1H.brs), 5.98(2H.s), 6.59(1H.s), 6.81(1H.d.J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.91(1H, s)

実施例 9 6

2-2ロロー4-(3-2)ロロー4-3トキシベンジル)アミノー6, 7, 8-

トリメトキシキナゾリン

·分子式 ; C19H19Cl2N3O4

·収率(%);45

・融点(℃);199~200

• Mass ; $424(M+1)^+$

· NMR δ (CDCl₃) :

3.89(3H,s), 3.95(3H,s), 4.02(3H,s), 4.08(3H,s),

4.76(2H, d, J=5.6Hz), 6.39(1H, brs), 6.83(1H, s). 6.89(1H, d, J=8.3Hz),

7. 31 (1H, dd, J=8. 4Hz. 2. 0Hz), 7. 40 (1H, d, J=2. 0Hz)

実施例97

2-000-4-(3, 4-メチレンジオキシベンジル) アミノー6, 7-ジメトキシキナブリン

$$\begin{array}{c|c} & & & \\ \text{Me0} & & & \\ & & & \\ \text{Me0} & & & \\ & & & \\ \end{array}$$

·分子式 ; C18H16N3O4Cl

·収率(%);97

・融点(℃);177~178

· Mass : 374(M+H)+

·NMR & (CDCI3):

3.95(3H.s), 3.97(3H.s), 4.75(2H.d.J=5.2Hz), 5.74(1H.brt,J=5.2Hz),

5.97(2H,s), 6.80(1H,d,J=8.0Hz), 6.81(1H,s).

6.88(1H. dd, J=8.0Hz, 2.0Hz), 6.91(1H, d, J=2.0Hz), 7.14(1H, s)

実施例 9 8

<u>2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシ</u> キナゾリン

·分子式 ; C17H14N8O8Cl

・収率(%);80

・融点(℃);202~203

• Mass ; $344(M+1)^+$

• NMR δ (CDC1₂) :

3.91(3H,s), 4.77(2H,d,J=5.6Hz), 5.94(2H,s), 6.76(1H,d,J=8.0Hz),

6. 91(1H. dd, J=8. 0Hz, 1. 6Hz), 6. 95(1H. d. J=1. 6Hz),

7.35(1H, dd, J=9.2Hz, 2.8Hz). 7.46(1H, brd, J=2.8Hz).

7.69(1H, d, J=9.2Hz), 7.90(1H, brs)

実施例 9 9

2-クロロー4-(3-クロロー4-メトキシベンジル) アミノー6-メトキシキナゾリン

·分子式 ; C17H15N3O2Cl2

・収率(%);88

・融点(℃);171~172

• Mass ; $364(M+1)^+$

• NMR δ (DMS0):

3.83(3H,s), 3.88(3H,s), 4.68(2H,d,J=5.6Hz), 7.13(1H,d,J=8.8Hz).

7. 33(1H. dd, J=2. 4Hz, 8. 8Hz). 7. 44(1H, dd, J=2. 8Hz, 9. 2Hz).

7.46(1H, d, J=2.4Hz), 7.58(1H, d, J=9.2Hz), 7.72(1H, d, J=2.8Hz),

9.05(1H, t, J=5.6Hz)

実施例 1 0 0

2, 6-ジクロロー4-ベンジルアミノキナゾリン

·分子式 ; C15H11N3Cl2

· 収率 (%);77

・融点(℃);227~228

· NMR δ (CDCl₃):

4.85(2H, d, J=5.2Hz). 5.97(1H, brs), 7.33~7.43(5H, m).

7.62(1H, d, J=2.0Hz), 7.68(1H, dd, J=8.8Hz, 2.0Hz),

7.74(1H. d. J=8.8Hz)

実施例101

2, 6-ジクロロ-4- [2-(3, 4-メチレンジオキシフェニル) エチル) アミノキナゾリン

·分子式 ; C17H13N3O2Cl2

・収率(%);71

・融点(℃);228~229

• NMR δ (DMS0-d₆);

2.88(2H, t, J=7.4Hz), 3.68(2H, m), 5.96(2H, s),

6.70(1H, dd, J=8.0Hz, 1.6Hz). 6.81(1H, d, J=8.0Hz), 6.87(1H, d, J=1.6Hz).

7.63(1H, d, J=8, 8Hz), 7.80(1H, dd, J=8.8Hz, 2.0Hz), 8.40(1H, d, J=2.0Hz),

8.86(1H, d, J=5.2Hz)

実施例102

2, 6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキナゾリ

<u>ン</u>

·分子式 ; C16H12N3OCl3

·収率(%);93

・融点(℃);207~208

• Mass m/e; 368(M+1)

PCT/JP92/01258

• NMR δ (CDC1₃) ;

3.90(3H, s), 4.73(2H, d, J=5.6Hz), 6.91(1H, d, J=8.4Hz),

7. 32(1H. d. J=8. 4Hz, 2. 0Hz), 7. 45(1H. d. J=2. 0Hz),

7. 62(1H, dd, J=8. 8Hz, 2. 0Hz), 7. 66(1H, d, J=8. 8Hz).

8.07(1H, brs), 8.16(1H, d, J=2.0Hz)

実施例 1 0 3

2, 6-ジクロロー4-(ベンズイミダゾール-5-イル)メチルアミノキナゾ リン

·分子式 ; C16H11N5Cl2 (344.205)

・収率(%);81

・融点(℃);>290

• Mass ; 344(M+1)+

• NMR δ (DMS0);

4.85(2H, d, J=6.0Hz), 7.25(1H, dd, J=1.6Hz, 6.4Hz),

7.57(1H, d, J=6.4Hz), 7.60(1H, s), 7.66(1H, d, J=8.8Hz).

7.83(1H, dd, J=2.0Hz.8.8Hz), 8.21(1H,s), 8.44(1H,brs).

8.52(1H.d, J=2.0Hz), 9.37(1H, t, J=6.0Hz)

実施例104

<u>2-クロロー4-(ベンズイミダゾールー5-イル)メチルアミノー6-シアノ</u> <u>キナゾリン</u>

·分子式 ; C17H11N6Cl (334.5)

・収率(%);58

・融点(℃);>290

• Mass : $335 (M+1)^+$

• NMR δ (DMS0-d₈)

4.81(2H, s), 7.21~7.68(3H, m), 7.73(1H, d, J=8.8Hz),

8.10(1H, d, J=8.8Hz), 8.17(1H, s), 8.91(1H, s), 9.55(1H, br)

実施例105

$$\begin{array}{c|c} H0 & & & \\ Me0 & & & \\ Me0 & & & \\ Me0 & & & \\ \end{array}$$

·分子式 ; C21H22N3O6Cl

・収率(%);55

• Mass ; $448(M+H)^+$

• NMR δ (CDCl₃):

3.38(3H, s), 3.88(2H, t, J=4.4Hz), 4.01(2H, t, J=4.4Hz), 4.03(3H, s),

4.07(3H, s), 4.92(2H, s), 6.01(2H, s), 6.88~6.91(3H, m), 7.00(1H, s)

実施例106

2-ホルミルー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

2-エトキシカルボニルー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン0.50g(0.0013モル)を塩化メチレン20ml、テトラヒドロフラン20mlの混合溶媒に溶解させ、-78℃攪拌下、水素化ジイソブチルアルミニウムの1.0Mトルエン溶液を2.6ml滴下する。数時間-78℃にて攪拌後、反応液にメタノール20mlを加え、減圧下溶媒を留去する。残渣をシリカゲルカラムクロマトグラフィーにて精製した後、酢酸エチルーn-ヘキサンより再結晶し、標題化合物の淡黄色晶0.23gを得た。

·収率(%);52

・融点(℃);200~202 (分解)

• Mass : $342(M+1)^+$

• NMR δ (CDCl₃);

4.86(2H, d, J=5.2Hz), 5.98(2H, s), 6.81(1H, d, J=7.6Hz),

6.90(1H, d, J=7.6Hz), 6.92(1H, s), 7.72(1H, d, J=2.0Hz),

7.77(1H, dd, J=8.8Hz, 2.0Hz), 8.01(1H, d, J=8.8Hz), 10.05(1H, s)

実施例107

2-エトキシカルボニル-4-(3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン

2-xトキシカルボニルー 4, 6-ジクロロキナゾリン2.72g(0.0100モル)、ピペロニルアミン1.75g(0.0116モル)、炭酸ナトリウム1.60g(0.0151モル)をイソプロピルアルコール 100m1にて混合し、一昼夜加熱還流する。溶媒を減圧下留去し、得られる残渣をシリカゲルカラムクロマトグラフィーにより精製した後、クロロホルム-n-ヘキサンより再結晶し、標題化合物の無色針状晶3.56gを得た。

·分子式 ; C1.6H1.6N3O4Cl

・収率(%);92

・融点(℃);212~213

• Mass ; $386(M+H)^+$

• NMR δ (CDCl₃) :

1.49(3H, t, J=7.2Hz), 1.54(2H, q, J=7.2Hz), 4.83(2H, d, J=5.6Hz),

5.96(1H. brs). 5.97(2H. s). 6.80(1H. d. J=8.0Hz).

6. 91(1H, dd, J=8. 0Hz, 1. 6Hz), 6. 97(1H, d, J=1. 6Hz), 7. 70(1H, d, J=2. 0Hz),

7.72(1H, dd, J=8.8Hz. 2.0Hz), 8.00(1H, d, J=8.8Hz)

実施例108~111

4

実施例106又は実施例107の方法に準じて以下の化合物を得た。

実施例108

2-エトキシカルボニルー4-(3-クロロー4-メトキシベンジル)アミノー

6-クロロキナゾリン

·分子式 ; C19H17N2O3Cl2

· 収率(%);88

・融点(℃);185~186

• Mass : $406(M+1)^+$

·NMR δ (CDCI3);

1.49(3H, t, J=7.2Hz), 3.90(3H, s), 4.54(2H, q, J=7.2Hz),

4.84(2H.d.J=5.2Hz). 6.09(1H.brs). 6.90(1H.d.J=8.4Hz).

7. 33(1H, dd, J=8. 4Hz, 2. 4Hz), 7. 48(1H, d, J=2. 4Hz).

7.72(1H, dd, J=8.8Hz, 2.4Hz), 7.74(1H, d, J=2.4Hz).

7.99(1H, d, J=8.8Hz)

<u>実施例109</u>

2-エトキシカルボニル-4-(3,4-メチレンジオキシベンジル)アミノー

6, 7, 8-トリメトキシキナゾリン

·分子式 ; C₂₂H₂₈N₈O₇

· 収率(%);定量的

・融点(℃);163~165(分解)

• Mass ; $442(M+1)^+$

• NMR δ (CDCl₃);

1.45(3H, t, J=7.2Hz), 3.94(3H, s), 4.02(3H, s), 4.18(3H, s),

4.46(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz), 5.89(1H, brt, J=5.2Hz),

5.94(2H, s), 6.74(1H, d, J=7.6Hz), 6.76(1H, s),

6.86(1H, dd, J=7.6Hz, 1.6Hz), 6.94(1H, d, J=1.6Hz)

実施例110

2-エトキシカルボニル-4-(3-クロロ-4-メトキシベンジル)アミノー 6-メトキシキナゾリン

·分子式 ; C20H20N8O4Cl

・収率(%);73

・融点(℃);192~193

• Mass : $402(M+1)^+$

• NMR δ (CDCl₃);

7.

¥,

1.49(3H, t, J=7.2Hz), 3.90(3H, s), 3.91(3H, s), 4.53(2H, q, J=7.2Hz),

4.86(2H, d, J=5.6Hz), 5.90(1H, brt, J=5.6Hz), 6.90(1H, d, J=8.4Hz),

6. 96(1H, d, J=2. 4Hz), 7. 36(1H, dd, J=8. 4Hz, 2. 4Hz),

7. 44(1H. dd. J=9. 2Hz. 2. 4Hz), 7. 49(1H. d. J=2. 4Hz), 8. 00(1H. d. J=9. 2Hz)

実施例111

<u>2-エトキシカルボニルー4-(ベンズイミダゾール-5-イルメチル)アミノ</u> -6-メトキシキナゾリン

·分子式 ; C20H19N5O3

•収率(%);48

・融点(℃);244~245 (分解)

• Mass : 378(M+1)+

• NMR δ (DMSO-d₆) :

1.35(3H, t, J=7.2Hz). 3.90(3H, s). 4.33(2H, q, J=7.2Hz).

4.94(2H, d, J=6.0Hz), 7.31(1H, d, J=8.0Hz), 7.47(1H, dd, J=8.8Hz, 2.8Hz),

7.53(1H.d.J=8.0Hz). 7.65(1H.brs). 7.77(1H.d.J=8.8Hz), 7.78(1H.s),

8.17(1H, s), 8.89(1H, brt, J=6.0Hz)

実施例112

2-ホルミルー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン4.00g(0.0117モル)のテトラヒドロフラン 250ml溶液に、水素化ナトリウム0.52g(0.013モル)を加え、氷冷攪拌下、トリエチル 2-ホスホノプロピオネート 2.8ml(0.013モル)を滴下する。しばらく氷冷攪拌を続けた後、室温まで昇温し、さらに1時間攪拌した。8M塩酸-エタノール 1.5mlを加え、少量のシリカゲルを通した後、減圧下溶媒を留去し、残渣をカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、クロロホルム-n-ヘキサンより再結晶して、標題化合物2.00gを得た。

·分子式 ; C₂₂H₂₀N₃O₄Cl

・収率(%);40

・融点 (℃) ; 179 ~180 (分解)

• Mass ; $426(M+1)^+$

• NMR δ (CDCl₃);

1.35(3H, t, J=7.2Hz), 2.50(3H, d, J=1.6Hz), 4.29(2H, q, J=7.2Hz),

4.78(2H, d, J=5.2Hz), 5.77(1H, brt, J=5.2Hz), 5.97(2H, s),

6.81(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 1.6Hz), 6.89(1H, d, J=1.6Hz),

7.62(1H, q, J=1.6Hz), 7.64(1H, d, J=2.0Hz), 7.68(1H, dd, J=8.8Hz, 2.0Hz).

7.81(1H, d, J=8.8Hz)

実施例113~119

実施例112の方法に準じて以下の化合物を得た。

<u>実施例113</u>

(Z) - 2 - (2 - エトキシカルボニル - 1 - プロペニル) - 4 - (3, 4 - メ チレンジオキシベンジル) アミノー <math>6 - 2 ロロキナゾリン

·分子式 ; C22H20N3O4Cl

·収率(%);13

·収量(g);0.64

・融点(℃):162~164 (分解)

· Mass ; 426(M+1)+

• NMR δ (CDCl₃);

1. 20(3H, t, J=7. 2Hz), 2. 17(3H, d, J=1. 6Hz), 4. 21(2H, q, J=7. 2Hz),

4.70(2H. d. J=4.8Hz). 5.64(1H. brs). 5.97(2H. s). 6.53(1H. q. J=1.6Hz).

6.81(1H.d.J=7.6Hz). 6.85(1H.dd,J=7.6Hz.1.6Hz). 6.87(1H.d.J=1.6Hz).

7.58(1H. d. J=2.4Hz), 7.62(1H. dd, J=8.8Hz.2.4Hz), 7.71(1H. d. J=8.8Hz)

実施例 1 1 <u>4</u>

(E) - 2 - (2 - x + 2) ルボニルビニル) - 4 - (3, 4 - x + 2) キシベンジル) アミノー6 - 2 ロロキナゾリン

·分子式 ; C21H18N3O4Cl

• 収率 (%);67

・融点(℃);195~196

• Mass ; $412(M+1)^+$

• NMR δ (CDCl₃);

1.35(3H, t. J=7.2Hz). 4.29(2H, q. J=7.2Hz). 4.80(2H, d. J=5.2Hz).

5.77(1H, brs), 5.97(2H, s), 6.81(1H, d, J=7.6Hz), 6.89(1H, d, J=7.6Hz),

6.90(1H, s), 7.21(1H, d, J=15.6Hz), 7.64(1H, d, J=2.0Hz),

7. 66(1H, d. J=15. 6Hz), 7. 68(1H, dd, J=9. 2Hz, 2. 0Hz), 7. 82(1H, d. J=9. 2Hz)

実施例115

(E) -2-(2-エトキシカルボニルビニル) <math>-4-(3-2) -4-(3-2) + シベンジル) アミノー6-20 ローキナゾリン

·分子式 ; C21H19N3O3Cl2

・収率(%);74

・融点(℃);211~212

• Mass $: 432(M+1)^+$

• NMR δ (CDCl₃) ;

1.35(3H, t, J=7.2Hz), 3.89(3H, s), 4.28(2H, q, J=7.2Hz),

4.79(2H, d, J=5.6Hz), 6.91(1H, d, J=8.4Hz), 7.16(1H, d, J=15.6Hz),

7. 33(1H, dd, J=8. 4Hz, 2. 0Hz), 7. 46(1H, d, J=2. 0Hz).

7. 62(1H, d, J=15. 6Hz), 7. 64(1H, dd, J=8. 8Hz, 2. 4Hz),

7.75(1H, d, J=8.8Hz), 7.77(1H, brs), 8.16(1H, d, J=2.4Hz)

実施例 1 1 6

(E) - 2 - (2 - x + 2) カルポニル- 1 - 7 ロペニル) - 4 - (3 - 2) ロロ- 4 - x + 2 グンジル) アミノ- 6 - 2 ロロキナゾリン

·分子式 ; C₂₂H₂₁N₃O₃Cl₂

• 収率(%);54

・融点(℃);154~155

· Mass ; 446(M+1)+

·NMR δ(CDCl₃);

1.35(3H, t, J=7.2Hz), 2.48(3H, d, J=1.6Hz), 3.91(3H, s),

4. 29(2H, q, J=7. 2Hz), 4. 80(2H, d, J=5. 2Hz), 5. 82(1H, brt, J=5. 2Hz),

6. 92(1H, d, J=8.8Hz). 7.27(1H, dd, J=8.8Hz, 2.0Hz),

7. 42(1H, d, J=2. 0Hz), 7. 62(1H, q, J=1. 6Hz), 7. 67(1H, d, J=2. 4Hz),

7. 69(1H. dd, J=8. 8Hz. 2. 4Hz), 7. 82(1H. d, J=8. 8Hz)

<u>実施例117</u>

(Z) - 2 - (2 - x + 2) カルボニルー1 - 7 ロペニル) -4 - (3 - 2) ロロー -4 - x + 2 グンジル) アミノー6 - 2 ロロキナゾリン

·分子式 ; C22H21NsOsCl2

• 収率(%);11

・融点(℃);141~142

• Mass ; $446(M+1)^+$

• NMR δ (CDC1₃) :

1.19(3H, t, J=7.2Hz), 2.17(3H, d, J=1.6Hz), 3.91(3H, s),

4.19(2H, q, J=7.2Hz), 4.73(2H, d, J=5.2Hz), 5.69(1H, brt, J=5.2Hz),

6.53(1H, q, J=1.6Hz), 6.92(1H, d, J=8.4Hz), 7.26(1H, dd, J=8.4Hz, 2.0Hz),

7. 40(1H, d, J=2.0Hz), 7. 60(1H, d, J=2.0Hz), 7. 63(1H, dd, J=8.8Hz, 2.0Hz).

7.71(1H. d. J=8.8Hz)

実施例118

·分子式 : C25H27N3O7

·収率(%);51

・融点(℃);175~176

• Mass ; $482(M+1)^+$

• NMR δ (CDCl₃);

1.35(3H, t, J=7.2Hz), 2.52(3H, d, J=1.6Hz), 3.95(3H, s), 4.04(3H, s).

4.14(3H, s), 4.28(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz),

5.60(1H, brt. J=5.2Hz). 5.96(2H, s). 6.67(1H, s), 6.80(1H, d, J=8.0Hz),

6.87(1H, dd, J=8.0Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.69(1H, q, J=1.6Hz)

実施例 1 1 9

·分子式 ; C₂₅H₂₇N₃O₇

·収率(%);11

・融点(℃);157~158 (分解)

• Mass : $482(M+1)^+$

· NMR δ (CDCl₃);

1.19(3H, t, J=7.2Hz). 2.16(3H, s), 3.92(3H, s), 4.02(3H, s),

4.09(3H, s), 4.21(2H, q, J=7.2Hz), 4.72(2H, d, J=5.2Hz), 5.43(1H, brs),

5.96(2H, s). 6.59~6.61(2H, m). 6.80(1H, d, J=8.0Hz). 6.86~6.89(2H, m)

実施例120

<u>(E) −2−(2−カルボキシ−1−プロペニル) −4−(3,4−メチレンジ</u> オキシベンジル) アミノ−6−クロロキナゾリン

(E) -2-(2-xトキシカルボニルプロペニル) -4-(3,4-x) レジオキシベンジル) アミノー6-クロロキナゾリン1.00g(0.0023 モル) をテトラヒドロフラン5ml、エタノール20mlに溶解させ、1N水酸化ナトリウム水溶液20mlを加えて数時間室温攪拌した。1N塩酸20mlにて中和し、減圧下濃縮して析出する結晶を濾取し、水で洗って風乾し、標題化合物0.85gを得た。

·分子式 ; C20H16N3O4Cl

・収率(%);91

・融点 (℃) : 145 ~146

• Mass : $398(M+1)^+$

• NMR δ (DMSO-d₆):

2.36(3H, d, J=1.6Hz), 4.70(2H, d, J=5.6Hz), 5.97(2H, s), 6.85(2H, s),

6.95(1H, s), 7.34(1H, q, J=1.6Hz), 7.72(1H, d, J=8.8Hz).

7.79(1H, dd, J=8.8Hz, 2.0Hz), 8.46(1H, d, J=2.0Hz),

8.86(1H, brt, J=5.6Hz)

実施例121~128

実施例120の方法に準じて以下の化合物を得た。

実施例121

·分子式 ; C17H12N3O4Cl

· 収率(%);定量的

・融点(℃);240 (分解)

• Mass ; $402(M-1+2Na)^+$

• NMR δ (DMSO-d₆) :

4.71(2H, d, J=5.6Hz), 5.96(2H, s), 6.83(1H, d, J=8.0Hz),

6.89(1H, dd, J=8.0Hz, 1.2Hz), 7.06(1H, d, J=1.2Hz),

7.75(1H. dd. J=8.8Hz. 2.4Hz), 7.90(1H. d. J=8.8Hz),

8.48(1H, d, J=2.4Hz), 8.82(1H, brt, J=5.6Hz)

実施例 1 2 2

(E) -2-(2-カルボキシビニル) -4-(3,4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C19H14N3O4Cl

・収率(%):43

・融点(℃);114~115

• Mass : $428(M-1+2Na)^+$

• NMR δ (DMSO-d₆) :

4.71(2H. d, J=5.6Hz), 5.96(2H, s), 6.84(1H, d, J=8.0Hz),

6. 90(1H, dd, J=8. 0Hz, 1. 6Hz), 6. 99(1H, d, J=1. 6Hz),

7. 02(1H, d, J=15.6Hz), 7. 23(1H, d, J=15.6Hz), 7. 73(1H, d, J=9.2Hz),

7. 78(1H, dd, J=9. 2Hz, 2. 0Hz), 8. 44(1H, d, J=2. 0Hz),

8.89(1H, brt, J=5.6Hz)

実施例123

(Z) - 2 - (2 - カルボキシ - 1 - プロペニル) - 4 - (3, 4 - メチレンジ オキシベンジル) アミノー<math>6 - 2ロロキナゾリン

·分子式 ; C20H16N3O4Cl

・収率(%);定量的

・融点(℃);195~196 (分解)

• Mass ; $398(M+1)^+$

• NMR δ (DMSO-d₆);

2.10(3H, d, J=1.6Hz), 4.70(2H, d, J=5.6Hz), 5.97(2H, s),

6.56(1H, d, J=1.6Hz), 6.86(1H, d, J=8.0Hz), 6.91(1H, dd, J=8.0Hz, 1.6Hz),

7.00(1H, d, J=1.6Hz), 7.65(1H, d, J=9.2Hz), 7.81(1H, dd, J=9.2Hz, 2.4Hz),

8. 46(1H. d. J=2. 4Hz), 8. 96(1H. brt. J=5. 6Hz)

<u>実施例124</u>

(E) -2-(2-カルボキシビニル) -4-(3-クロロ-4-メトキシベンジル) アミノー<math>6-クロロキナゾリン

·分子式 ; C19H15N3OaCl2

· 収率(%);定量的

・融点(℃);109~110

• Mass; $448(M-1+2Na)^+$

- NMR δ (DMSO-d₆);

3.81(3H, s), 4.73(2H, d, J=5.6Hz), 6.95(1H, d, J=15.6Hz),

7.05(1H.d.J=15.6Hz). 7.08(1H.d.J=8.4Hz).

7. 37(1H. dd. J=8. 4Hz. 2. 0Hz). 7. 48(1H. d. J=2. 0Hz).

7.68(1H.d.J=8.8Hz), 7.73(1H.dd,J=8.8Hz,2.0Hz),

8.42(1H, d, J=2.0Hz). 8.91(1H, brt, J=5.6Hz)

実施例125

(E) -2-(2-カルボキシー1-プロペニル) <math>-4-(3-クロロ-4-メトキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C20H17N3O3Cl2

· 収率(%);定量的

・融点(℃):151~152

• Mass ; $462(M-1+2Na)^+$

• NMR δ (DMSO-d₆) :

2. 33(3H, d, J=1. 2Hz), 3. 82(3H, s), 4. 72(2H, d, J=5. 6Hz),

7.09(1H, d, J=8.4Hz). 7.20(1H, d, J=1.2Hz). 7.32(1H, dd, J=8.4Hz, 2.0Hz),

7. 44(1H, d, J=2. 0Hz), 7. 67(1H, d, J=8. 8Hz), 7. 74(1H, dd, J=8. 8Hz, 2. 4Hz),

8. 43(1H, d, J=2. 4Hz), 8. 87(1H, brt, J=5. 6Hz)

実施例126

(Z) - 2 - (2 - カルボキシ-1 - プロペニル) - 4 - (3 - クロロー4 - メ)トキシベンジル) アミノー6 - クロロキナゾリン

·分子式 ; C20H17N3O3Cl2

・収率(%);定量的

・融点(℃);207~208(分解)

• Mass : $418(M+1)^+$

• NMR δ (DMSO-d₆);

J.

2.10(3H, d, J=1.4Hz), 3.83(3H, s), 4.72(2H, d, J=5.2Hz),

6.54(1H, d, J=1.4Hz), 7.10(1H, d, J=8.4Hz), 7.38(1H, dd, J=8.4Hz, 2.4Hz),

7. 49(1H, d, J=2. 4Hz), 7. 65(1H, d, J=8. 8Hz), 7. 81(1H, dd, J=8. 8Hz, 2. 4Hz),

8.44(1H, d, J=2.4Hz), 8.95(1H, brt, J=5.2Hz)

実施例127

(E) -2-(2-カルボキシ-1-プロペニル)-4-(3,4-メチレンジ オキシベンジル) アミノー <math>6, 7, 8-トリメトキシキナゾリン

·分子式 ; C23H23N3O7

·収率(%);91

・融点(℃);200~201 (分解)

• Mass : $454(M+1)^+$

• NMR δ (DMSO-d₆) :

2.38(3H, s), 3.89(3H, s), 3.92(3H, s), 4.01(3H, s),

4.71(2H, d, J=5.6Hz), 5.97(2H, s), 6.85(2H, s), 6.93(1H, s),

7.37(1H, s), 7.53(1H, s), 8.53(2H, brt, J=5.6Hz), 12.55(1H, brs)

実施例128

(Z) - 2 - (2 - カルボキシ-1 - プロペニル) - 4 - (3, 4 - メチレンジ オキシベンジル) アミノー <math>6, 7, 8 -トリメトキシキナゾリン

·分子式 ; C23H23N3O7

• 収率(%);90

・融点(℃);237~238 (分解)

• Mass : $454(M+1)^+$

• NMR δ (DMSO-d₆);

2.11(3H, d, J=1.2Hz), 3.92(3H, s), 3.93(3H, s), 3.94(3H, s).

4.76(2H, d, J=5.6Hz), 5.98(2H, s), 6.8~6.9(3H, m), 6.97(1H, s),

7.61(1H, s), 9.08(1H, brt, J=5.6Hz)

実施例129

 $4-(\alpha-x)$ トキシカルボニルー 3、4-xチレンジオキシベンジル)アミノー 6-2 ロロキナゾリン 100 mgにエタノール10 ml、水 5 ml、水 8 ml、8 ml 8 ml、8 ml、8 ml、8 ml、8 ml、8 ml、8 ml、8 ml、8 ml 8 ml

·分子式 ; C17H12N3O4Cl

・収率(%);49

・融点(℃);235~236

• Mass m/e; 358(M+1)

• NMR δ (DMSO-d₆):

5.75(1H. d. J=6.4Hz). 6.01(2H. s). 6.89(1H. d. J=8.0Hz).

7.00(1H. d. J=8.0Hz), 7.08(1H. s), 7.70(1H. d. J=8.8Hz),

7.75(1H, dd, J=1.6Hz, 8.8Hz). 8.49(1H, s), 8.59(1H, d, J=6.4Hz),

8.70(1H, d, J=1.6Hz)

実施例<u>130~131</u>

実施例129の方法に準じて以下の化合物を得た。

実施例 1 3 0

4 - (N - (カルボキシメチル) - (3, 4 - メチレンジオキシベンジル) アミ<math>J) - 6, 7, 8 - トリメトキシキナゾリン

$$\begin{array}{c|c} H00C & N & 0 \\ Me0 & N & 0 \\ Me0 & Me0 & N \end{array}$$

·分子式 ; C21H2iN3O7

·収率(%);90

・融点(℃);134~136

· Mass ; 428(M+H)+

· NMR δ (CDCl₃) :

3.43(3H,s), 4.06(3H,s), 4.17(3H,s), 4.62(2H,s), 5.16(2H,s),

6.03(2H,s), 6.87(1H,s), 6.91(2H,s), 7.06(1H,s), 8.87(1H,s)

実施例131

4-(3,4-メチレンジオキシベンジル)アミノ-6-カルボキシキナゾリン

·分子式 ; C17H13N3O4

・収率(%);98

・融点(℃);247~248(分解)

• Mass : $324(M+H)^+$

• NMR δ (DMSO-d₆);

4.86(2H.d, J=5.6Hz), 5.99(2H.s), 6.89(1H.d, J=8.0Hz),

6. 92(1H, d, J=8. 0Hz), 7. 02(1H, s), 7. 92(1H, d, J=8. 8Hz).

8.46(1H, d, J=8.8Hz), 8.96(1H, s), 9.20(1H, s), 10.88(1H, brs)

実施例132

 $4 - (\alpha - \pi)$ $\alpha - \beta$ α

4-(α-エトキシカルボニル-3, 4-メチレンジオキシベンジル)アミノ
-6-クロロキナゾリン 200mgに10%のアンモニアエタノール溶液20mlを加え、
室温で3日間攪拌した。析出している結晶を濾取し、標題化合物60mgを得た。

·分子式 ; C17H13N4O3Cl

· 収率 (%);32

・融点 (℃) ;230 ~231

· Mass m/e : 357(M+1)

• NMR δ (CDC1₃+DMS0-d₆);

5.96(3H, m), 6.42(1H, brs), 6.79(1H, d, J=8.0Hz).

7.09(1H, dd, J=8.0Hz, 1.6Hz), 7.14(1H, d, J=1.6Hz), 7.15(1H, brs),

7.67(1H, dd, J=8.8Hz, 2.0Hz), 7.75(1H, d, J=8.8Hz), 8.28(1H, d, J=2.0Hz),

8.57(1H,s)

実施例133~134

実施例132の方法に準じて以下の化合物を得た。

実施<u>例133</u>

4-(3,4-メチレンジオキシベンジル)アミノ-6-カルバモイルキナゾリ

<u>ン</u>

$$\begin{array}{c|c} & & & \\ & & & \\ 0 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C17H14N4O3

• Mass ; 323(M+H) +

• NMR δ (DMSO-d₆);

4.68(2H.d., J=6.0Hz), 5.97(2H,s), 6.85(1H.d., J=8.0Hz),

6.88(1H.d.J=8.0Hz). 6.97(1H.s). 7.55(1H.brs). 7.70(1H.d.J=8.4Hz),

7.97(1H. brs). 8.18(1H. dd, J=8.4Hz, 1.6Hz). 8.50(1H. s).

8.84(1H, d, J=1.6Hz). 8.92(1H, brt, J=6.0Hz)

実施例134

·分子式 ; C17H13C1N4O3

· 収率(%);71

·融点(℃);245~247 (分解)

• Mass : 357(M+1)

• NMR δ (DMSO-d₆):

4.77(2H. d, J=5.2Hz), 5.97(2H. s), 6.85(1H. d, J=8.0Hz),

6.92(1H, d, J=8.0Hz), 7.04(1H, s), 7.66(1H, brs), 7.83(2H, m),

8.07(1H, brs), 8.49(1H, s), 8.99(1H, brs)

実施例 1 3 5

WO 93/07124 PCT/JP92/01258

-6-クロロキナゾリン 200mgにエタノール10ml、水素化ホウ素ナトリウム 197 mgを加え、30分間還流した。水 5 mlを加え、溶媒を減圧濃縮した後、再び水10mlを加えた。析出した結晶を濾取し、標題化合物30mgを得た。

·分子式 ; C17H14N3O3Cl

· 収率(%);17

・融点(℃);204~205

• Mass m/e; 344(M+1)

• NMR δ (CDCl₃(+DMSO-d₆));

3.95(2H, m). 5.43(1H, q, J=4.4Hz). 5.92(1H, d, J=1.6Hz).

5. 93(1H, d, J=1. 6Hz), 6. 76(1H, d, J=8. 0Hz), 6. 90(1H, dd, J=8. 0Hz, 1. 6Hz),

6.95(1H. d. J=1.6Hz). 7.60(1H. brs). 7.65(1H. dd, J=8.4Hz, 2.4Hz).

7.74(1H, d, J=8.4Hz). 8.31(1H, d, J=2.4Hz). 8.53(1H, s)

実施例136

4- ((3, 4-メチレンジオキシベンジル) アミノー6-ヒドロキシメチルキ ナゾリン

実施例135の方法に準じて標題化合物を得た。

·分子式 ; C17H15N3O3

・収率(%);34

・融点(℃);176~177

· Mass m/e : 310(M+1)

• NMR δ (DMSO-d₆);

4. 62(2H, d, J=5. 6Hz), 4. 65(2H, d, J=5. 6Hz), 5. 36(1H, t, J=5. 6Hz),

5.94(2H,s), 6.82(1H,s), 6.82(1H,s), 6.92(1H,s),

7.63(1H.d, J=8.4Hz), 7.70(1H.d, J=8.4Hz), 8.20(1H.s), 8.41(1H.s),

8.74(1H, t, J=5.6Hz)

実施例137

<u>4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルスルフィニルキ</u>ナゾリン

$$\begin{array}{c|c} 0 & HN \\ \parallel & & \\ Me-S & & \\ \end{array}$$

4-(3, 4-メチレンジオキシベンジル)アミノー6-メチルチオキナゾリン1.80g(5.53ミリモル)のクロロホルム(100ml)溶液に、氷冷攪拌下、m-クロロ過安息香酸1.20g(6.95ミリモル)のクロロホルム(30ml)溶液を滴下する。数時間氷冷攪拌した後、反応液を飽和重曹水で洗い、無水硫酸マグネシウムで乾燥する。濾過後、シリカゲルカラムクロマトグラフィー(酢酸エチルーアセトン)にて精製し、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶1.51gを得た。

·分子式 ; C₁₇H₁₅N₈O₂S

• 収率(%);80

・融点(℃);154~155

• Mass ; 342(M+H) +

• NMR δ (CDCl₃);

WO 93/07124 PCT/JP92/01258

2.75(3H, s), 4.80(2H, d, J=5.2Hz), 5.96(2H, s), 6.80(1H, d, J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.91(1H, s), 7.06(1H, brs), 7.64(1H, d, J=8.8Hz),

7.98(1H. d. J=8.8Hz), 8.43(1H.s), 8.74(1H.s)

実施例138

<u>4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルスルホニルキナ</u> ブリン

実施例137で得られた4-(3,4-メチレンジオキシベンジル)アミノー6-メチルスルフィニルキナゾリン1.00g(2.93ミリモル)のクロロホルム(50 ml)溶液に、室温攪拌下、m-クロロ過安息香酸0.65g(3.8ミリモル)のクロロホルム(20ml)溶液を滴下する。数時間室温攪拌した後、反応液を飽和重曹水で洗い、無水硫酸マグネシウムで乾燥する。濾過後、シリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製し、クロロホルム-n-ヘキサンより再結晶して、標題化合物の黄色晶0.85gを得た。

·分子式 ; C17H15N3O4S

・収率(%);81

・融点(℃):192~193

· Mass ; 358(M+H) +

· NMR δ (CDCl₃);

3.13(3H, s), 4.80(2H, d, J=5.2Hz), 5.95(2H, s), 6.79(1H, d, J=8.0Hz),

į

6.91(1H, d, J=8.0Hz), 6.95(1H, s), 8.05(1H, d, J=8.8Hz),

8.17(1H, d, J=8.8Hz), 8.72(1H, s), 8.81(1H, brs), 8.98(1H, s)

実施例139

2-ヒドロキシメチル-4-(3, 4-メチレンジオキシベンジル) アミノ-6 -メトキシキナゾリン

2-ベンジルオキシメチル-4-(3, 4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン1.26g(2.93ミリモル)の酢酸エチル-エタノール溶液(20ml-20ml)に10%パラジウム-カーボン粉末 1.5gを加え、水素気流下一昼夜室温攪拌する。反応液をセライト濾過し、熱酢酸エチル-エタノールで洗って、濾液と洗液とを減圧下溶媒留去し、標題化合物の淡黄色晶0.89gを得た。

·分子式 ; C18H17N3O4

収率(%);89

・融点(℃);216~218

• Mass ; $340(M+H)^+$

• NMR δ (CDCl₃);

3.91(3H, s), 4.15(1H, brs), 4.68(2H, brs), 4.77(2H, d, J=5.6Hz),

5.95(2H.s), 6.79(1H.d, J=7.6Hz), 6.85(1H.brs),

6.88(1H.dd, J=7.6Hz, 1.6Hz), 6.92(1H.d, J=1.6Hz), 7.21(1H.d, J=2.8Hz),

7. 37(1H, dd, J=9. 2Hz, 2. 8Hz), 7. 72(1H, d. J=9. 2Hz)

実施例140

2-ヒドロキシー4-(3, 4-メチレンジオキシベンジル) アミノー6-メト

キシキナゾリン

実施例139の方法に準じて標題化合物を得た。

·分子式 ; C₁₇H₁₅N₃O₄

·収率(%);16

・融点(℃);215~217 (分解)

· Mass ; 326(M+H)+

• NMR δ (DMSO-d₆);

3.79(3H.s). 4.62(2H.d.J=5.6Hz). 5.98(2H.s). 6.84~6.87(2H.m).

6.94(1H, s), 7.09(1H, d, J=8.8Hz), 7.22(1H, dd, J=8.8Hz, 2.8Hz),

7.60(1H.d.J=2.8Hz), 8.65(1H.brt,J=5.6Hz), 10.55(1H.s)

実施例141

塩化オキサリル 1.0ml (11ミリモル) の塩化メチレン10ml溶液に、-78℃攪拌 下ジメチルスルホキシド 1.5mlの塩化メチレン5ml溶液を滴下する。-78℃にて 15分間攪拌後、2-ヒドロキシメチル-4-(3,4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン0.74g(2.2ミリモル)のジメチルスルホキシド7ml溶液を滴下する。-78℃にて20分間攪拌後、トリエチルアミン5mlを滴下して室温まで昇温させながら30分間攪拌する。反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去して、標題化合物の粗茶褐色油状物0.74gを得た。

·分子式 ; C18H15NsO4

・収率(%);定量的

• NMR δ (CDCI₃) :

3.93(3H,s), 4.86(2H,d,J=5.6Hz), 5.95(2H,s), 6.28(1H,brs),

6.78(1H, d, J=8.0Hz), 6.89(1H, dd, J=8.0Hz, 1.6Hz),

6. 92(1H, d, J=1.6Hz), 7. 09(1H, d, J=2.8Hz), 7. 47(1H, dd, J=9.2Hz, 2.8Hz),

7. 97(1H, d, J=9. 2Hz), 10. 02(1H, s)

実施例142

'n

2-カルボキシー4-(3, 4-メチレンジオキシベンジル) アミノー6-メト キシキナゾリン

実施例 141 で得られた 2-ホルミル-4-(3,4-メチレンジオキシベンジル) アミノー<math>6-メトキシキナゾリン0.59g(1.8ミリモル) の 1,4-ジオキサン20m1溶液に、酸化銀(I) <math>1.00g、1N水酸化ナトリウム水溶液15m1を加え、60 でにて攪拌する。30分後、反応液をセライトにて濾過し、少量のジオキサン、

水で洗って、速液と洗液とを1N塩酸にて中和し、クロロホルム-エタノールで抽出する。有機層を無水硫酸マグネシウムで乾燥後、濾過し、滤液を減圧下溶媒留去して、得られる結晶を濾取し、クロロホルムで洗い、標題化合物の淡黄色晶0.34gを得た。

·分子式 ; C18H15N3O5

・収率(%);55

・融点(℃);190~191 (分解)

• Mass ; $354(M+H)^+$

• NMR δ (DMSO-d₆):

3.90(3H,s), 4.77(2H,d,J=5.6Hz), 5.97(2H,s), 6.86(1H,d,J=8.0Hz),

6.92(1H, d, J=8.0Hz), 7.05(1H, s), 7.49(1H, dd, J=9.2Hz, 2.8Hz),

7.76(1H.d.J=2.8Hz), 7.79(1H.d.J=9.2Hz), 8.91(1H.brt,J=5.6Hz)

実施例 1 4 3 ~ 1 4 5

実施例141~142の方法に準じて以下の化合物を得た。

実施例143

4-(3-ホルミルベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C19H19N2O4

· 収率(%);定量的

·融点(℃);油状物質

• NMR δ (CDCl₃):

3.96(3H, s), 4.04(3H, s), 4.13(3H, s), 4.97(2H, d, J=5.6Hz),

5.97(1H, brt, J=5.6Hz), 6.76(1H, s), 7.53(1H, t, J=7.6Hz),

7.70(1H, d, J=7.6Hz), 7.81(1H, d, J=7.6Hz), 7.91(1H, s), 8.64(1H, s),

10.00(1H, s)

実施例 1 4 4

4-(3-カルボキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C19H19N3O5

・収率(%);45

・融点(℃);245~246 (分解)

• Mass; $370(M+H)^+$

• NMR δ (DMSO-d₆) :

3.89(3H, s), 3.93(3H, s), 3.98(3H, s), 4.86(2H, d, J=5.6Hz).

7. 46(1H, d, J=7. 6Hz), 7. 56(1H, s), 7. 62(1H, d, J=7. 6Hz),

7.83(1H, d, J=7.6Hz), 7.95(1H, s), 8.39(1H, s), 8.83(1H, brs)

実施例145

4-(4-アセチルベンジル)アミノ-6-メトキシキナゾリン

·分子式 ; C18H17N3O2

• 収率(%);41

・融点(℃);204~206

• Mass ; 308(M+H)+

· NMR δ (CDC1₃);

2.60(3H.s). 3.91(3H.s). 4.97(2H.d.J=5.6Hz). 5.96(1H.brs).

6.98(1H, s), 7.42(1H, d, J=9.2Hz), 7.50(2H, d, J=8.0Hz).

7.82(1H, d, J=9.2Hz), 7.94(2H, d, J=8.0Hz), 8.61(1H, s)

実施例146

2-ヒドロキシイミノメチルー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

2-ホルミル-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン1.00g(2.93ミリモル)のエタノール30ml溶液に、ヒドロキシルアミン塩酸塩<math>0.60g、1 N水酸化ナトリウム水溶液 3.0mlを加え、60 にて30 分間攪拌する。放冷後、析出晶を濾取し、エタノール、n- ヘキサンで洗って風乾し、標題化合物の白色晶1.00gを得た。

·分子式 ; C17H13N4O3Cl

・収率(%);96

・融点(℃);245~246 (分解)

• Mass : 357(M+1)

· NMR δ (DMSO-d₆);

4. 69(2H, d, J=6. 0Hz), 5. 96(2H, s), 6. 84(1H, d, J=7. 6Hz).

6. 91(1H, d, J=7. 6Hz, 1. 6Hz), 7. 05(1H, d, J=1. 6Hz),

7.72(1H, d, J=8.8Hz), 7.78(1H, dd, J=8.8Hz, 2.0Hz), 7.96(1H, s),

8.45(1H, d, J=2.0Hz), 8.91(1H, brt, J=6.0Hz), 11.83(1H, s)

実施例147~149

実施例146の方法に準じて以下の化合物を得た。

実施例 1 4 7

2-Eドロキシイミノメチルー 4-(3, 4-メチレンジオキシベンジル) アミノー 6- メトキシキナゾリン

·分子式 ; C18H16N4O4

・収率(%);46

・融点(℃);229~230 (分解)

• Mass ; $353(M+H)^+$

• NMR δ (DMSO-d₆);

3.88(3H,s), 4.72(2H,d,J=5.6Hz), 5.96(2H,s), 6.85(1H,d,J=8.0Hz),

6. 91 (1H, d, J=8. 0Hz), 7. 05 (1H, s), 7. 40 (1H, dd, J=9. 2Hz, 2. 8Hz),

7.66(1H, d, J=9.2Hz), 7.69(1H, d, J=2.8Hz), 7.94(1H.s).

8.62(1H, brt, J=5.6Hz). 11.63(1H, s)

実施例148

WO 93/07124 PCT/JP92/01258

<u>4-(3-ヒドロキシイミノメチルベンジル) アミノー6,7,8-トリメトキ</u>シキナゾリン

·分子式 ; C19H20N4O4

• 収率(%);56

・融点(℃);231~232 (分解)

• Mass ; $369(M+H)^+$

· NMR δ (DMSO-d₆);

3.88(3H,s), 3.91(3H,s), 3.98(3H,s), 4.80(2H,d,J=6.0Hz),

7.3~7.5(3H, m), 7.52(1H, s), 7.60(1H, s), 8.11(1H, s), 8.35(1H, s),

8.60(1H, brs), 11.17(1H, s)

実施例 1 4 9

<u>4-[4-(1-ヒドロキシイミノエチル) ベンジル) アミノー6-メトキシキナゾリン</u>

·分子式 ; C18H18N4O2

·収率(%);定量的

・融点(℃);245~246 (分解)

• Mass ; $323(M+H)^+$

• NMR δ (DMSO-d₆);

2.13(3H, s), 3.95(3H, s), 4.97(2H, d, J=5.6Hz), 7.44(2H, d, J=8.4Hz),

7.63(2H, d, J=8.4Hz), 7.68(1H, dd, J=9.2Hz, 2.8Hz),

7.83(1H, d, J=9.2Hz), 8.14(1H, d, J=2.8Hz), 8.84(1H, s), 10.75(1H, brs),

11.18(1H, s)

実施例150

2-ヒドロキシイミノメチルー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン0.50g(1.4ミリモル)のジメチルホルムアミド25ml 懸濁液に水素化ナトリウム0.10g(2.5ミリモル)を加え攪拌する。30分後プロモ酢酸エチルの25ml(2.3ミリモル)を滴下し、数時間室温攪拌した後、反応液に水を加え、酢酸エチルで抽出する。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去する。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーn-ヘキサン)にて精製し、標題化合物の淡黄色晶0.52gを得た。

・分子式 ; C21H19N4O5Cl

・収率(%);84

・融点(℃);154~155

• Mass ; 443(M+1)

• NMR δ (CDCl₃) :

1.29(3H. t. J=7.2Hz), 4.23(2H, q. J=7.2Hz), 4.74(2H, d. J=5.2Hz).

4.88(2H,s), 5.96(2H,s), 6.03(1H,brt, J=5.2Hz), 6.78(1H,d,J=7.6Hz),

6.87(1H, d, J=7.6Hz.1.6Hz), 6.93(1H, d, J=1.6Hz),

7.65(1H.dd, J=8.8Hz, 2.0Hz), 7.70(1H, d, J=2.0Hz), 7.84(1H, d, J=8.8Hz),

8.25(1H.s)

実施例 1 5 <u>1</u>

4-(3-アミノ-4-クロロベンジル)アミノ-6-クロロキナゾリン

4-(4-クロロー3-ニトロベンジル)アミノー6-クロロキナゾリン1.00g(2.86ミリモル)、鉄粉0.85g、酢酸10ml、エタノール50mlの混合物を数時間加熱還流する。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、標題化合物の淡黄色晶0.91gを得た。

·分子式 ; C₁₅H₁₂N₄Cl₂

·収率(%);定量的

・融点(℃);226~229 (分解)

• Mass ; $319(M+H)^+$

• NMR δ (CDCl₃) :

4.19(2H, brs), 4.73(2H, d, J=6.0Hz), 6.71(1H, dd, J=8.0Hz, 2.0Hz),

6.83(1H, d, J=2.0Hz), 7.18(1H, d, J=8.0Hz), 7.64(1H, dd, J=8.8Hz, 2.0Hz),

7.72(1H. brs), 7.74(1H. d. J=8.8Hz), 8.19(1H. d. J=2.0Hz), 8.60(1H. s)

実施例 1 5 2

4-(4-クロロ-3-ホルムアミドベンジル)アミノー6-クロロキナゾリン

実施例151で得られた4-(3-アミノ-4-クロロベンジル)アミノ-6
-クロロキナゾリン0.90g(2.82ミリモル)を蟻酸15mlに溶解させ、無水酢酸1
mlを加えて数時間室温攪拌した。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)により精製後、酢酸エチルより再結晶して、標題化合物の淡黄色晶0.64gを得た。

·分子式 ; C16H12N4OCl2

・収率(%):65

・融点(℃);229~230

• Mass : $347(M+H)^+$

• NMR δ (DMSO-d₆);

4.74(2H, d, J=5.6Hz), 7.15(1H, dd, J=8.4Hz, 2.0Hz), 7.43(1H, d, J=8.4Hz).

7.72(1H. d. J=8.8Hz), 7.80(1H. dd. J=8.8Hz. 2.0Hz), 8.16(1H. d. J=2.0Hz),

8.32(1H, d, J=2.0Hz), 8.45(1H, s), 8.46(1H, s), 8.95(1H, brs),

9.83(1H.brs)

実施例 1 5 3

龙

4-(3-ホルムアミド-4-メトキシベンジル)アミノー6-クロロキナゾリ

PCT/JP92/01258

WO 93/07124

<u>ン</u>

4-(3-ニトロー4-メトキシベンジル)アミノー6-クロロキナゾリン1g、酢酸4ml、水4ml、エタノール40mlの混合物をゆるやかに加熱還流しながら鉄粉末1gを少量ずつ加え、2時間加熱還流した。反応液の不溶物を遮去し、褐色の遮液に濃塩酸を少しずつ加え黄色澄明液を得、氷冷して析出した結晶を遮取、乾燥して、4-(3-アミノー4-メトキシベンジル)アミノー6-クロロキナゾリン塩酸塩を1.1g得た。この塩酸塩をエタノールー水に溶解し、15%水酸化ナトリウム水溶液を少しずつ加えアルカリ性にし、次いで水を少しずつ加え、生じた結晶を遮取、水洗、乾燥して、4-(3-アミノー4-メトキシベンジル)アミノー6-クロロキナゾリン(アニリン体)770mgを得た。次に氷冷下無水酢酸2mlに蟻酸1mlを滴下し、その後50℃で15分間加熱し、直ちに氷冷し、その混合物に上記アニリン体200mgを結晶のまま加えた。同温で1時間、次いで室温で1時間反応し、水を加えて生じた結晶を滤取、水洗、乾燥し、標題化合物を130mg得た。

·分子式 ; C₁₇H₁₅N₄O₂Cl (342.786)

•収率(%):60

・融点(℃);208~209

· Mass ; 343 (MH) +

• NMR δ (DMSO-d₆);

3.82(3H, s), 4.68(2H, d, J=5.7Hz), 6.98(1H, d, J=8.2Hz),

7. 09(1H, dd, J=2. 0Hz, 8. 2Hz). 7.71(1H, d, J=9. 0Hz),

7.79(1H, dd, J=2.4Hz, 9.0Hz), 8.23(1H, d, J=2.0Hz),

8.27(1H.d, J=2.4Hz), 8.47(2H.s), 8.88(1H.t, J=5.7Hz), 9.62(1H.brs)

実施例 1 5 4

<u>4-(3-メタンスルホニルアミノ-4-クロロベンジル)アミノ-6-クロロ</u> キナゾ<u>リン</u>

$$C1$$
 HN
 $C1$
 $C1$
 $C1$

4-(3-アミノ-4-クロロベンジル) アミノ-6-クロロキナゾリン 100 mg、ピリジン 3 mlの混合物にメタンスルホニルクロリド75 μ 1 を加え、室温で 1.5 時間攪拌した。反応混合物に水20mlを少しずつ加え、生じた結晶を濾取し、水洗、乾燥し、標題化合物 109mgを得た。

·分子式 ; C16H14N4O2SCl2 (397.284)

・収率(%);88

・融点(℃);209~210

· Mass ; 397 (MH) +

• NMR δ (DMSO-d₆):

3.01(3H, s), 4.75(2H, d, J=5.7Hz), 7.23(1H, dd, J=2.2Hz, 8.2Hz),

7. 45(1H, d, J=8. 2Hz), 7. 46(1H, d, J=2. 2Hz), 7. 73(1H, d, J=9. 0Hz).

7. 81(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 45(1H, d, J=2. 4Hz), 8. 47(1H, s),

8.97(1H, brt, J=5.7Hz), 9.4(1H, brs)

実施例155~161

実施例151~154の方法に準じて以下の化合物を得た。

実施例155

<u>4-(3-アミノ-4-ヒドロキシベンジル) アミノ-6, 7, 8-トリメトキ</u>シキナゾリン

·分子式 ; C18H20N4O4

· 収率 (%);定量的

・融点(℃);アモルファス

 $Mass : 357(M+H)^{+}$

·NMR δ(CDCl₃):

3.68(1H, brs), 3.82(1H, brs), 3.95(3H, s), 4.02(3H, s), 4.11(3H, s),

4.68(2H, d, J=4.4Hz). 6.61(1H, brs), 6.64(1H, d, J=7.6Hz).

6.77(1H, d, J=7.6Hz), 7.01(1H.s), 8.50(1H.brs), 8.60(1H.s)

<u>実施例156</u>

·分子式 ; C24H28N4O8

· 収率(%);54

・融点(℃);229~230 (分解)

• Mass : $501(M+H)^+$

· NMR δ (CDC1₃);

1.31(3H, t, J=7.2Hz), 1.40(3H, t, J=7.2Hz), 3.95(3H, s), 4.03(3H, s),

4.11(3H, s), 4.21(2H, q, J=7.2Hz), 4.35(2H, q, J=7.2Hz),

4.81(1H, d, J=5.2Hz), 5.80(1H.brt, J=5.2Hz), 6.74(1H.s), 6.87(1H.s),

7.13(1H, d, J=8.0Hz), 7.20(1H, d, J=8.0Hz), 8.18(1H, brs), 8.64(1H, s)

実施例157

7, 8-トリメトキシキナゾリン

$$\begin{array}{c} H \\ N \\ Me0 \\ Me0 \end{array}$$

·分子式 ; C19H18N4O5

• 収率(%);62

r 12 ・融点(℃);232~233 (分解)

• Mass : 383(M+H)*

• NMR δ (DMSO-d₆);

3.87(3H,s), 3.90(3H,s), 3.96(3H,s), 4.78(2H,d,J=5.6Hz),

7.06(1H.s), 7.07(1H.d.J=8.0Hz), 7.20(1H.d.J=8.0Hz), 7.50(1H.s),

WO 93/07124 PCT/JP92/01258

8.35(1H,s), 8.58(1H,brt,J=5.6Hz), 11.48(1H,brs)

実施例158

8-トリメトキシキナゾリン

$$\begin{array}{c} H \\ N-SO_2Me \\ MeO \\ MeO \end{array}$$

· 分子式 ; C1 9 H2 2 N4 O6 S

·収率(%);56

・融点(℃);215~216 (分解)

· Mass ; 435(M+H) +

• NMR δ (DMSO-d₆) :

2.91(3H.s), 3.86(3H.s), 3.89(3H.s), 3.96(3H.s).

4.65(2H, d, J=5.6Hz), 6.83(1H, d, J=8.0Hz), 7.04(1H, dd, J=8.0Hz, 2.0Hz).

7.22(1H, d, J=2.0Hz), 7.50(1H, s), 8.34(1H, s), 8.52(1H, brt, J=5.6Hz),

8.66(1H.brs), 9.75(1H.brs)

実施例159

<u>4-(3-アミノ-4-クロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン</u>

·分子式 ; C18H19N4OsCl

・収率(%);86

・融点(℃);181~182 (分解)

• Mass ; $375(M+H)^+$

• NMR δ (CDCl₃);

3.95(3H, s), 4.03(3H, s), 4.08(2H, brs), 4.13(3H, s),

4.75(2H, d, J=5.6Hz), 5.65(1H, brs), 6.67(1H, s),

6.72(1H, dd, J=8.0Hz, 2.0Hz), 6.81(1H, d, J=2.0Hz), 7.23(1H, d, J=8.0Hz),

8.65(1H, s)

<u>実施例160</u>

4-(4-クロロー3-ホルムアミドベンジル) アミノー6, 7, 8-トリメト

キシキナゾリン

·分子式 ; C19H19N4O4Cl

・収率(%);68

ž

·融点(℃);202~204 (分解)

· Mass : 403(M+H)+

· NMR δ (DMSO-d₆);

3.88(3H.s), 3.91(3H.s), 3.98(3H.s), 4.75(2H.d.J=5.6Hz),

7.14(1H, dd, J=8.4Hz, 2.0Hz), 7.42(2H, d, J=8.4Hz), 7.52(1H, s),

8.15(1H.d.J=2.0Hz), 8.32(1H.s), 8.35(1H.s), 8.67(1H.brs),

9.83(1H, brs)

実施例 1 6 1

4-(3-アセタミド-4-クロロベンジル)アミノ-6-クロロキナゾリン

·分子式 ; C₁₇H₁₄N₄OCl₂ (361.232)

·収率(%);77

・融点(℃);267~268

· Mass : 361 (MH) +

• NMR δ (DMSO-d₆):

2.06(3H, s), 4.74(2H, d, J=5.7Hz), 7.17(1H, dd, J=2.0Hz, 8.2Hz),

7.42(1H, d, J=8.2Hz), 7.69(1H, brs), 7.72(1H, d, J=9.0Hz),

7.81(1H, dd, J=2.4Hz.9.0Hz), 8.45(1H, d, J=2.4Hz), 8.46(1H, s).

8.96(1H, brt, J=5.7Hz), 9.48(1H, brs)

実施例162

4-(3, 4-ジヒドロキシベンジル) アミノー6, 7, 8-トリメトキシキナ

ゾリン 塩酸塩

4-(3,4-メチレンジオキシベンジル)アミノー6,7,8-トリメトキシキナゾリン2.00g(5.41ミリモル)のクロロホルム150ml溶液に、三塩化ホウ素の1.0M塩化メチレン溶液30mlを室温攪拌下滴下した。2日間室温攪拌した後にメタノールを加え、減圧下溶媒留去した。この操作を3回繰り返した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-n-ヘキサン)により精製した。溶出液に塩酸-エタノールを加えて、減圧下溶媒留去後、エタノールを加えて結晶を濾取し、標題化合物の無色針状晶0.59gを得た。

・分子式 ; C₁₈H₁₉N₃O₅・HCl

・収率(%);28

·融点(℃);204~205(分解)

• Mass : $358(M+H)^+$

·NMR δ (DMSO-d₆) :

3.98(3H, s), 3.99(3H, s), 3.99(3H, s), 4.78(2H, d, J=5.6Hz),

6. $65 \sim 7.71(2H, m)$, 6. 79(1H, s), 7. 94(1H, s), 8. 71(1H, s).

8.90(2H, brs), 10.54(1H, brs), 14.06(1H, brs)

実施例163

4-(3, 4-ジヒドロキシベンジル)アミノー6-クロロキナゾリン 塩酸塩

4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン 2.00g(6.37ミリモル)のクロロホルム 150ml溶液に、三塩化ホウ素の 1.0M塩化メチレン溶液40mlを室温攪拌下滴下した。2日間室温攪拌した後にメタノールを加え、減圧下溶媒留去した。この操作を2回繰り返した後、析出晶をメタノールで洗い、エタノールより再結晶して、標題化合物の黄色晶1.53gを得た。

·分子式 ; C15H12N3O2Cl·HCl

・収率(%);71

・融点(℃);154~155 (分解)

• Mass ; 302(M+H)+

• NMR δ (DMSO-d_e) ;

4.74(2H, d, J=5.6Hz). 7.67(1H, dd, J=8.0Hz, 2.0Hz), 6.70(1H, d, J=8.0Hz),

6.81(1H, d, J=2.0Hz), 7.87(1H, d, J=8.8Hz), 8.02(1H, dd, J=8.8Hz, 2.0Hz),

8.76(1H, d, J=2.0Hz), 8.85(1H, s), 8.90(2H, brs), 10.42(1H, brs)

実施例164

2-(2-メトキシエトキシ)-4-(3, 4-メチレンジオキシベンジル) アミノ-<math>6-クロロキナゾリン

エチレングリコールモノメチルエーテル20mlと55%水素化ナトリウム70mgの混合物を100℃に加熱し、2,6ージクロロー4ー(3,4ーメチレンジオキシベンジル)アミノキナゾリン 500mgとエチレングリコールモノメチルエーテル5mlの混合物を加え、2時間加熱還流した。反応液を水50ml中に注ぎ、酢酸エチル50mlで2回抽出した。有機層を塩化ナトリウム水溶液70mlで2回洗い、硫酸マグネシウムで乾燥し、減圧下濃縮して結晶性残渣を得た。残渣を酢酸エチルーnーへキサンより再沈殿させ、標題化合物を 420mg得た。

·分子式 ; C18H18N3O4C1

• 収率(%);75

・融点(℃);138~139

• Mass ; $388 (M+1)^+$

• NMR δ (CDCl₃) :

3. 43(3H, s), 3. $78\sim3$. 81(2H, m), $4.57\sim4$. 61(2H, m),

4.73(2H, d, J=5.2Hz), 5.72(1H, br), 5.96(2H, s), 6.79 \sim 6.87(3H, m),

7. $52 \sim 7.58(3H, m)$

実施例165~177

実施例162~164の方法に準じて以下の化合物を得た。

実施例165

2-メトキシ-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロ キナゾリン

·分子式 ; C17H14N3O3Cl

・収率(%);15

・融点(℃);187~189

Mass ; 344 (M+1)+

· NMR δ (CDCl₃) :

4.03(3H,s), 4.50(2H,d,J=5.6Hz), 5.91(1H,br), 5.96(2H,s),

6.78(1H. d. J=7.6Hz), 6.81(1H. dd. J=7.6Hz.1.6Hz). 6.82(1H. d. J=1.6Hz).

7.58~7.60(3H, m)

実施例 1 6 6

<u>2-メトキシー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノ</u> キナゾリン

·分子式 ; C18H14N4O3 (334)

·収率(%);23

·融点(℃);224 (分解)

· Mass ; 335 (M+1)+

• NMR δ (DMSO-d₆):

3.87(3H,s), 4.60(2H,brs), 5.95(2H,s), 6.84(2H,s), 6.95(1H,s),

7.55(1H, d, J=8.8Hz), 7.94(1H, dd, J=8.8Hz, 1.6Hz), 8.83(1H, d, J=1.6Hz),

9.18(1H.br)

実施例167

2, 6, 7, 8-テトラメトキシー4-(3, 4-メチレンジオキシベンジル)-アミノキナゾリン

・分子式 ; C20H21N3O6

・収率(%);28

・融点(℃);128~129

• Mass ; $400(M+H)^+$

• NMR δ (CDCl₃);

3.91(3H, s), 4.04(3H, s), 4.07(3H, s), 4.14(3H, s),

4.75(2H, d, J=5.2Hz), 5.51(1H, brs), 5.97(2H, s), 6.60(1H, s).

6.80(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 2.0Hz), 6.90(1H, d, J=2.0Hz)

実施例168

2-(2-E) 2-(3, 4-y+2) 2-(3, 4-

·分子式 ; C18H16N3O4Cl (373.5)

WO 93/07124 PCT/JP92/01258

·収率(%);97

・融点 (℃) ;191 ~193

• Mass : $374 (M+1)^+$

• NMR δ (DMSO-d_e) :

3.65~3.69(2H, m), 4.27(2H, dd, J=8.8Hz, 5.6Hz), 4.60(2H, d, J=5.2Hz),

4.82(1H, t, J=5.6Hz), 5.95(2H, s), 6.81~6.84(2H, m), 6.92(1H, s),

7. 47(1H, d, J=8.8Hz), 7. 65(1H, dd, J=8.8Hz, 2.2Hz), 8. 34(1H, d, J=2.2Hz),

8.82(1H.br)

実施例 1 6 9

2-(2-ヒドロキシエトキシ)-4-(3,4-メチレンジオキシベンジル) アミノー6-シアノキナゾリン

·分子式 ; C19H16N4O4 (364)

・収率(%):94

・融点(℃);227~229

· Mass ; 365 (M+1) +

• NMR δ (DMSO-d₆) :

3.68(2H. t, J=5.2Hz), 4.30(2H. t, J=5.2Hz), 4.44(1H. br), 5.97(2H, s),

6.82(2H.s), 6.95(1H.s), 7.54(1H.d, J=8.4Hz),

7.95(1H. dd, J=8.4Hz, 1.6Hz), 8.78(1H, d, J=1.6Hz), 9.04(1H, br)

実施例 1 7 0

·分子式 ; C20H21N3O5 (383)

・収率(%);68

・融点(℃);118~119

• Mass : $384 (M+1)^+$

· NMR δ (DMSO-d₆);

3.26(3H,s), 3.60(2H,t,J=4.8Hz), 3.61(3H,s), 4.33(2H,t,J=4.8Hz),

4.63(2H, d, J=6.0Hz), 5.95(2H, s), 6.81(1H, d, J=7.6Hz),

6.84(1H, dd, J=7.6Hz.0.4Hz), 6.91(1H, d, J=0.4Hz),

7. 29(1H, dd, J=8. 8Hz, 2. 8Hz), 7. 40(1H, d, J=8. 8Hz), 7. 63(1H, d, J=2. 8Hz),

8.62(1H.br)

実施例171

2-(2-メトキシエトキシ)-4-(ベンズイミダゾール-5-イル)メチル アミノ-6-シアノキナゾリン

·分子式 ; C20H18N6O2 (374)

•収率(%);68

·融点(℃);267 (分解)

· Mass ; 375 (M+1) +

• NMR δ (DMSO-d₆);

3.21(3H.s), 3.60(2H.s), 4.40(2H.s), 4.82(2H.s), 7.17~7.66(4H.m),

7.94(1H, d, J=9.6Hz), 8.16(1H, s), 8.81(1H, s), 9.15(1H, br)

実施例172

2-プロポキシー4-(3, 4-メチレンジオキシベンジル) アミノー6, 7,

8-トリメトキシキナゾリン

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \end{array}$$

·分子式 ; C22H25N3O6

•収率(%);6

・融点(℃);122~123

· Mass ; 428(M+H)+

• NMR δ (CDCl₃) :

1.05(3H, t, J=7.4Hz), 1.89(2H, m), 3.90(3H, s), 4.03(3H, s),

4.13(3H, s). 4.41(2H, t, J=7.0Hz). 4.76(2H, d, J=5.2Hz). 5.49(1H, brs),

5.97(2H.s). 6.60(1H,s). 6.80(1H,d,J=8.0Hz). 6.87(1H,d,J=8.0Hz).

6.90(1H.s)

実施例 1 7 3

$\frac{2-(3-ヒドロキシプロポキシ)-4-(3,4-メチレンジオキシベンジル}$ アミノ-6-クロロキナゾリン

·分子式 ; C19H18N3O4C1 (387.5)

· 収率(%);60

・融点(℃);118~120

• Mass ; $388 (M+1)^+$

· NMR δ (CDC1₃) :

2.02(2H, tt, J=5.6Hz, 5.6Hz), 3.70(2H, t, J=5.6Hz), 3.95(1H, br),

4.66(2H, t, J=5.6Hz), 4.71(2H, d, J=5.2Hz), 5.95(2H, s), 6.08(1H, br),

6.77(1H, d, J=8.0Hz), 6.83(1H, d, J=8.0Hz), 6.85(1H, s),

7.51(1H, d, J=8.8Hz), 7.56(1H, dd, J=8.8Hz, 2.0Hz), 7.61(1H, d, J=2.0Hz)

実施例174

2-(4-ヒドロキシブトキシ)-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C20H20N3O4CI (401.5)

• 収率 (%);23

・融点(℃);121~124

• Mass ; $402 (M+1)^+$

• NMR δ (CDC1₃) :

1. $47 \sim 1.73(4H, m)$, 3. $40 \sim 3.47(2H, m)$, 4. 20(2H, t, J=6.7Hz).

4.55(2H, d, J=5.2Hz), 5.72(2H, s), 6.56(1H, d, J=8.0Hz),

6. 66(1H, dd, J=8. 0Hz, 1. 6Hz), 6. 71(1H, d, J=1. 6Hz), 7. 30(2H, s),

7.88(1H.brt.J=5.2Hz), 7.99(1H.s)

実施例175

$\frac{2-(4-x)++ y)++ y)-4-(3,4-x++ y)}{2-(4-x)++ y)}$

·分子式 ; C21H22N3O4Cl (415.5)

・収率(%);26

・融点(℃);120~123

• Mass : $416 (M+1)^+$

• NMR δ (CDCl₃) :

1.77(2H, tt, J=8.8Hz, 6.8Hz), 1.90(2H, tt, J=8.8Hz, 6.8Hz), 3.34(3H, s),

3.44(2H, t, J=6.8Hz). 4.44(2H, t, J=6.8Hz), 4.72(2H, d, J=5.2Hz).

5.71(1H.br), 5.96(2H.s), 6.79(1H.d, J=8.0Hz),

6.84(1H, dd, J=8.0Hz, 1.8Hz), 6.87(1H, d, J=1.8Hz), 7.53~7.59(3H, m)

実施例176

2-(6-ヒドロキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C22H24N3O4Cl (429.5)

· 収率(%);66

・融点(℃);144~146

• Mass : $430 (M+1)^+$

• NMR δ (CDCl₃);

1.14~1.40(6H.m), 1.58~1.64(2H.m), 3.06(1H.br), 3.38(2H.br),

4.17(2H. t, J=6.8Hz), 4.52(2H. d. J=5.6Hz), 5.73(2H. s).

6.56(1H, d, J=8.0Hz), 6.66(1H, dd, J=8.0Hz, 1.6Hz),

6.71(1H, d, J=1.6Hz), 7.30(2H.s), 7.85(1H.br), 7.96(1H.s)

<u>実施例177</u>

2-ヒドロキシ-4-(3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン

·分子式 ; C16H12N3O3Cl (329.5)

・融点(℃):257 (分解)

• NMR δ (DMSO-d₆);

4.668(2H, d, J=5.6Hz), 5.967(2H, s), 6.846~6.905(2H, m),

6.995(1H.s), 7.821~7.859(2H.m), 8.508(1H.s), 10.103(1H.br),

11.916(1H,s)

実施例 1 7 8

2-(2, 3-3ヒドロキシプロピル) オキシー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

5-ヒドロキシー2-フェニルー1, 3-ジオキサン 300mgとジメチルホルムアミド5mlの混合物に水素化ナトリウム 100mgを加え、80^{\circ} \circ に加熱して発泡がおさまったら、2, 6-ジクロルー4-(3, 4-メチレンジオキシベンジル)アミノキナゾリン 300mgを結晶のまま加え、その後 140^{\circ} \circ \circ 0、2時間加熱した。冷後水を加え酢酸エチルで抽出し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(2-フェニルー1, 3-ジオキサンー5-イル)オキシー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロコキナゾリンを 118mg得た。この化合物 100mgを常法により濃塩酸-エタノールで加水分解したところ、転移して標題化合物60mgを得た。

ž

·分子式 ; C19H18CIN3O5

· 収率(%);73

・融点(℃);106~107

• Mass : $404(MH^+)$

• NMR δ (DMSO-d₆) :

3. 42(2H, t, J=5. 7Hz), 3. 79(1H, sextet, J=5Hz).

4. 17(1H, dd, J=6. 6Hz, 11. 0Hz), 4. 31(1H, dd, J=4. 2Hz, 11. 0Hz),

4. 63(2H, d, J=5.7Hz), 4. 66(1H, t, J=6.0Hz), 4. 94(1H, d, J=5.3Hz),

5.98(2H,s), 6.85(2H,s), 6.95(1H,s), 7.49(1H,d.J=9.0Hz),

7. 68(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 37(1H, d, J=2. 4Hz), 8. 83(1H, t, J=5. 7Hz)

実施例 1 7 9

 $2-(3-\pi)$ ルポキシプロピル) オキシ $-4-(3,4-\chi$ チレンジオキシベンジル) アミノ-6-シアノキナブリン

オキザリルクロリド 150μ1 と塩化メチレン15mlの混合物をドライアイスーアセトン浴で冷却しておき、まずジメチルスルホキシド 250μ1 をゆっくり滴下し、次いで10分後同温で2-(2-ヒドロキシエチル) オキシー4-(3,4-メチレンジオキシベンジル) アミノー6-シアノキナゾリン 500mgのジメチルスルホキシド1mlに溶解した溶液を滴下し、さらに10分後同温でN,N-ジイソプロピルエチルアミン 1.4mlを滴下した。同温で10分間攪拌した後、室温に戻し、20分後にエトキシカルボニルメチレントリフェニルホスホラン600mg を結晶のまま加え、30分間反応させた。反応液に水を加え酢酸エチルで抽出し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(3-

エトキシカルボニルー 2 ープロペニル)オキシー 4 ー (3, 4 ーメチレンジオキシベンジル)アミノー 6 ーシアノキナゾリン (cis/trans mixture)を400mg 得た。

上記化合物全量を酢酸エチル30mlに溶解し、10%パラジウムー炭素を触媒に用いて常圧接触還元し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(3-エトキシカルボニルプロピル)オキシー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン(飽和エステル)を 250mg得た。

上記飽和エステル 250mgをエタノール50mlに溶解し、1 N水酸化ナトリウム水溶液 1.7mlを加え、室温で10時間、次いで40℃で2時間反応し、冷後、1 N塩酸水 1.7mlを加えて中和し、さらに水を加えて生じた結晶を濾取した。これをエタノールー水で再結晶し、標題化合物 200mgを得た。

·分子式 ; C21H18N4O5 (406.398)

• 収率(%);86

・融点(℃);>290

· Mass ; 407(MH+)

· NMR δ (DMS0):

- 1.93(2H, quintet, J=7Hz), 2.35(2H, t, J=7.3Hz), 4.32(2H, t, J=6.6Hz),
- 4.64(2H, d, J=5.7Hz), 5.98(2H, s), 6.87(2H, s), 6.97(1H, s),
- 7.56(1H, d, J=8.8Hz), 7.96(1H, dd, J=1.8Hz, 8.8Hz), 8.80(1H, d, J=1.8Hz),
- 9.05(1H, t, J=5.7Hz)

実施例180

2-メチルチオー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

÷

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

2, 6-ジクロロ-4-(3, 4-メチレンジオキシベンジル) アミノキナゾ リン1gにN, N-ジメチルホルムアミド20ml、ナトリウムチオメトキシド 221 mgを加え 110℃で1時間攪拌した。1N塩酸を加え中和し、室温で1時間攪拌した後、水を加えた。析出した結晶を濾取し、標題化合物 780mgを得た。

·分子式 ; C₁₇H₁₄ClN₈O₂S

・収率(%);76

・融点(℃);214~216

• Mass m/e; 360(M+1)

• NMR δ (CDCl₃);

2.66(3H,s), 4.85(2H,d,J=5.6Hz), 5.93(2H,s), 6.73(1H,d,J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.93(1H, s), 7.64(1H, dd, J=8.8Hz, 2.0Hz),

8.16(1H, d, J=8.8Hz), 8.77(1H, d, J=2.0Hz)

実施例 1 8 1

2-モルホリノー 4-(3, 4-メチレンジオキシベンジル) アミノー 6-シア ノキナゾリン

2-クロロ-4-(3, 4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 338mg、モルホリン 435mg及びイソプロピルアルコール20mlの混合物を3時間加熱還流した。加熱したまま水30mlを加え、沈殿物を濾取した。沈殿物を水30ml及び酢酸エチル30mlで洗滌し、標題化合物を 310mg得た。

・分子式 ; C21H1sN5O3 (389)

· 収率(%);80

・融点(℃);270~272 (分解)

• Mass ; $390 (M+1)^+$

• NMR δ (DMSO-d₆):

 $3.57\sim3.61(4H, m)$, $3.73\sim3.79(4H, m)$, 4.57(2H, d, J=5.6Hz),

5.95(2H,s). 6.82(1H,d,J=8.0Hz). 6.85(1H,d,J=8.0Hz), 6.93(1H,s).

7.27(1H, d. J=8.8Hz), 7.74(1H, dd, J=8.8Hz, 1.6Hz), 8.56(1H, d, J=1.6Hz),

8.75(1H. brt, J=5.6Hz)

実施例182~183

実施例181の方法に準じて以下の化合物を合成した。

実施例182

·分子式 ; C20H18N4O3Cl (398.850)

· 収率(%):96

・融点(℃);208~209

· Mass ; 399 (MH) +

· NMR δ (DMSO-d₆) :

3.61(4H, t, J=5Hz), 3.72(4H, t, J=5Hz), 4.58(2H, d, J=5.7Hz),

5.97(2H, s), 6.85(2H, s), 6.95(1H, s), 7.28(1H, d, J=9.0Hz),

7.51(1H, dd, J=2.4Hz, 9.0Hz), 8.18(1H, d, J=2.4Hz), 8.60(1H, t, J=5.7Hz)

実施例183

<u>2-モルホリノ-4-(3-クロロ-4-メトキシベンジル) アミノー6-シア</u> ノキナブリン

·分子式 ; C21H20N5O2Cl (407.5)

·収率(%);51

・融点(℃);222~223

• Mass : $410 (M+1)^+$

· NMR δ (DMSO-d₆);

 $3.56 \sim 3.61(4H, m)$, $3.74 \sim 3.80(4H, m)$, 3.80(3H, s).

4.58(2H, d, J=5.2Hz), 7.27~7.32(2H, m), 7.44(1H, d, J=1.6Hz),

7.75(1H, dd, J=8.8Hz, 1.6Hz), 8.55(1H, d, J=1.6Hz).

8.80(1H, brt, J=5.2Hz)

実施例184

 $\frac{2-(4-ヒドロキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)}{アミノ-6-シアノキナゾリン}$

2-クロロー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 339mg、4-ヒドロキシピペリジン 500mg及びN,N-ジメチルホルムアミド20mlの混合物を5時間加熱還流した。反応液を水50ml中に注ぎ、酢酸エチル50mlを加え、不溶物を遮去した。濾液の有機層を硫酸マグネシウムで乾燥し、減圧下濃縮して結晶性残渣を得た。この残渣をクロロホルムで洗滌し、標題化合物を145mg 得た。

·分子式 ; C₂₂H₂₁N₅O₃ (403)

・収率(%);36

・融点(℃);229

· Mass : 404 (M+1)+

• NMR δ (DMSO-d₆) :

1.19~1.30(2H, m), 1.64~1.77(2H, m), 3.21~3.30(2H, m),

3.63~3.75(1H, m), 4.34~4.38(2H, m), 4.55(2H, d, J=5.6Hz),

4.66(1H, d, J=4.0Hz), 5.94(2H, s), 6.80~6.86(2H, m),

6.93(1H, d, J=0.8Hz). 7.24(1H, d, J=8.4Hz). 7.70(1H, dd, J=8.4Hz, 1.6Hz).

8.52(1H.d.J=1.6Hz). 8.70(1H.br)

実施例185~191

実施例184の方法に準じて以下の化合物を得た。

実施<u>例185</u>

·分子式 ; C21H21N4O3Cl (412.877)

• 収率(%);56

・融点(℃):157~158

• Mass ; $413(MH^+)$

• NMR δ (DMSO-d₆):

1.2~1.3(2H, m), 1.6~1.8(2H, m), 3.1~3.2(2H, m), 3.6~3.7(1H, m),

4.3~4.4(2H, m), 4.55(2H, d, J=5.7Hz), 4.65(1H, d, J=4.4Hz),

5.96(2H.s), 6.84(2H.s), 6.95(1H.s), 7.24(1H.d.J=9.0Hz),

7. 47(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 13(1H, d, J=2. 4Hz), 8. 53(1H, t, J=5. 7Hz)

実施例186

2-(4-ヒドロキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー6-シアノキナゾリン

·分子式 ; C22H22N5O2Cl (423.5)

·収率(%);80

WO 93/07124

・融点(℃);207~208

· Mass ; 424 (M+1)*

· NMR δ (DMSO-d₆);

1.18~1.30(2H, m), 1.65~1.76(2H, m), 3.21~3.33(2H, m), 3.30(3H, s),

3.64~3.72(1H, m). 4.29~4.37(2H, m). 4.57(2H, d, J=5.6Hz).

4.66(1H, d, J=1.8Hz), 7.07(1H, d, J=8.4Hz), 7.24(1H, d, J=8.8Hz).

7. 29(1H, dd, J=8. 4Hz, 2. 0Hz), 7. 43(1H, d, J=2. 0Hz).

7.71(1H, dd, J=8.8Hz, 2.0Hz), 8.51(1H, d, J=2.0Hz).

8.74(1H. brt, J=1.8Hz)

実施例187

 $\frac{2-(2-ヒドロキシエチル)}{2-(2-ヒドロキシエチル)}$ アミノー $\frac{4-(3,4-)$ アミノー $\frac{6}{2}$, $\frac{7}{2}$, $\frac{8-}{1}$ トリメトキシキナゾリン

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \end{array}$$

·分子式 ; C₂₁H₂₄N₄O₆

• 収率(%);38

・融点(℃);アモルファス

• Mass ; $429(M+H)^+$

· NMR δ (CDCl₂);

3.60(2H,m), 3.88(3H,s & 1H,m), 3.99(3H,s), 4.01(3H,s),

4.67(2H, d, J=5.6Hz), 5.32(1H, brs), 5.53(1H, brs), 5.97(2H, s),

6.55(1H, s), 6.80(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz), 6.89(1H, s)

実施例188

2 - (2 - ヒドロキシエチル) アミノー <math>4 - (3, 4 - メチレンジオキシベンジ

ル) アミノー6-クロロキナゾリン

·分子式 ; C18H17N4O3Cl

・収率(%);47

・融点(℃);138~139

• Mass m/e; 373(M+1)

• NMR δ (CDCl₃(+DMS0-d₆)) :

3.60(2H, m), 3.79(2H, t, J=4.8Hz), 4.65(2H, d, J=5.2Hz), 5.94(2H, s),

6.76(1H, d, J=8.0Hz), 6.85(1H, dd, J=8.0Hz, 2.0Hz), 6.90(1H, d, J=2.0Hz),

7. 34(1H. d, J=8.8Hz), 7. 44(1H. dd, J=8.8Hz, 2.4Hz), 8. 02(2H. brs)

実施例189

1

·分子式 ; C19H19N4O3Cl

・収率(%);48

・融点(℃);146~148

· Mass m/e: 387(M+1)

• NMR & (CDCI (+DMSO-de)) ;

3.27(3H, s), 3.82(2H, t, J=4.8Hz), 3.89(2H, t, J=4.8Hz),

4.67(2H, d, J=5.6Hz), 5.95(2H, s), 6.77(1H, d, J=8.0Hz).

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.43(2H, m),

7.76(1H. brs)

実施例190

·分子式 ; C₂₁H₂₁N₄O₃Cl (412.877)

• 収率(%);70

・融点(℃);182~183

• Mass ; $413(MH^+)$

• NMR δ (DMSO-d₆) :

1.8 \sim 2.0(4H, br 2 peaks), 3.4 \sim 3.7(3H, br 2 peaks),

4.1~4.2(1H, brs), 4.58(2H, d, J=5.8Hz), 5.96(2H, s).

6,84(1H,d,J=8.0Hz), 6.88(1H,dd,J=1.3Hz,8.0Hz),

6.96(1H, d, J=1.3Hz), 7.23(1H, d, J=8.8Hz),

7. 47(1H, dd, J=2. 4Hz, 8. 8Hz), 8. 15(1H, d, J=2. 4Hz), 8. 4~8. 6(1H, brs)

実施例 1 9 1

2-ビス(2-ヒドロキシエチル) アミノー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\$$

·分子式 ; C20H21N4O4Cl (416.865)

・収率(%):56

・融点(℃);167~168

· Mass : $417(MH^+)$

• NMR δ (DMSO-d₆);

 $3.5\sim3.7(8H, br\ 2\ peaks)$, 4.56(2H, d, J=5.7Hz), 5.96(2H, s),

6,85(2H,s), 6.93(1H,s), 7.22(1H,d,J=9.0Hz),

7. 47(1H, dd, J=2. 4Hz, 9. 0Hz). 8. 15(1H, d, J=2. 4Hz).

8.55(1H, brt, J=5.7Hz)

実施例192

水素化ナトリウム66mgのジメチルホルムアミド6 ml緊濁液に0 $\mathbb C$ でイミダゾール 103mgを加え10分間攪拌した。室温にて 2 , 6 - ジクロロー 4 - (3 , 4 - メチレンジオキシベンジル) アミノー6 - クロロキナゾリン 500mgを加え、 100 $\mathbb C$ で 20分間攪拌した。水を加え、析出した結晶を濾取し、水、エタノールーアセトンで順次洗浄し、標題化合物 325mgを得た。

·分子式 ; C19H14N5O2Cl

・収率(%);59

・融点(℃);275~276 (分解)

· Mass m/e: 380(M+1)

·NMR δ(DMSO-d_e);

4.74(2H, d, J=5.6Hz), 5.96(2H, s), 6.85(1H, d, J=8.0Hz),

6. 95(1H, dd, J=8. 0Hz, 1. 6Hz), 7. 03(1H, d, J=1. 6Hz), 7. 08(1H, d, J=1. 2Hz),

7. 68(1H, d, J=8. 8Hz), 7. 78(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 94(1H, d, J=1. 2Hz),

8.47(1H. d. J=2.4Hz), 8.58(1H, t, J=2.4Hz), 9.28(1H, t, J=5.6Hz)

実施例<u>193~197</u>

実施例192の方法に準じて以下の化合物を得た。

実施例 1 9 3

2-(イミダゾール-1-イル)-4-(3, 4-メチレンジオキシベンジル)

·分子式 ; C20H14N6O2 (370)

• 収率(%);81

・融点(℃);>290

· Mass ; 371 (M+1) *

• NMR δ (DMSO-d₆);

4.74(2H, d, J=6.0Hz), 5.95(2H, s), 6.86(1H, d, J=8.0Hz),

6.95(1H, dd, J=8.0Hz, 1.6Hz), 7.04(1H, d, J=1.6Hz),

7.09(1H. d, J=1.6Hz), 7.73(1H. d. J=8.4Hz), 7.95(1H. d. J=1.6Hz).

8.06(1H, dd, J=8.4Hz, 1.6Hz), 8.61(1H, d, J=1.6Hz), 8.87(1H, d, J=1.6Hz),

9.47(1H, brt, J=6.0Hz)

実施例 1 9 4

 $2 - \mathcal{C} \cup \mathcal{F} \cup \mathcal{$

·分子式 ; C21H23N4O2Cl

・収率(%);97

・融点(℃);194~195

• Mass m/e ; 399(M+1)

• NMR δ (CDCl₃) :

0.86(3H, t, J=7.2Hz), 1.29(4H, m), 1.58(2H, quintet, J=6.8Hz),

3.47(2H, q, J=6.8Hz), 4.78(2H, d, J=5.6Hz), 5.87(2H, s),

6.66(1H.d.J=8.0Hz), 6.89(1H.d.J=8.0Hz), 6.94(1H.s),

7.26(1H, d, J=8.8Hz), 7.41(1H, d, J=8.8Hz), 7.90(1H, t, J=5.6Hz),

8.55(1H,s), 9.53(1H,brs)

実施例 1 9 5

> ્રું સ

·分子式 ; C₂₁H₂₅N₅O₅

·収率(%);87

・融点(℃);アモルファス

• Mass ; $428(M+H)^+$

• NMR δ (CDCl₃);

1.44(2H,s), 2.93(2H,t,J=6.0Hz), 3.57(2H,brs), 3.88(3H,s),

4.00(3H, s), 4.07(3H, s), 4.70(2H, d, J=4.8Hz), 5.16(1H, brs),

5.51(1H, brs), 5.96(2H, s), 6.56(1H, s), 6.80(1H, d, J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.90(1H, s)

実施例196

2-ヒドラジノー4-(3,4-メチレンジオキシベンジル)アミノー6,7,

8-トリメトキシキナゾリン

·分子式 ; C19H21N5O5

· 収率 (%);12

· 融点(℃);油状物質

· Mass ; 400(M+H)+

·NMR δ(CDCI₃);

3.88(3H, s), 3.99(3H, s), 4.05(3H, s), 4.66(2H, d, J=3.6Hz).

5.92(2H,s), 6.75(1H,d,J=8.0Hz), 6.83(1H,d,J=8.0Hz), 6.87(1H,s),

7.04(2H.brs)

実施例197

2-(カルバモイルメチル) アミノー4-(3,4-メチレンジオキシベンジルアミノー6-クロロキナゾリン

·分子式 ; C18H16N5O3Cl

・収率(%);63

・融点(℃);259~260 (分解)

- Mass m/e : 386(M+1)

• NMR δ (DMSO-d₆) :

4.02(2H, d, J=4.8Hz), 4.66(2H, d, J=5.6Hz), 5.97(2H, s),

6.86(1H, d, J=8.0Hz). 6.91(1H, d, J=8.0Hz), 6.99(1H, s), 7.19(1H, s),

7.50(1H. d. J=8.8Hz), 7.61(1H.s), 7.83(1H.d.J=8.8Hz), 8.09(1H.brs),

8.49(1H, brs), 10.03(1H, brs)

実施例 1 9 8

2-(3, 4-メチレンジオキシベンジル) アミノー4, 6, 7, 8-テトラメトキシキナゾリン

2-クロロー4, 6, 7, 8-テトラメトキシキナゾリン1.00g(3.51ミリモル)、ピペロニルアミン0.60g(3.97ミリモル)、炭酸ナトリウム0.60gをイソプロピルアルコール30mlに混合し、一昼夜加熱還流する。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーn-ヘキサン)により精製し、標題化合物の油状物質0.12gを得た。

·分子式 ; C20H21N3O6

・収率(%);9

・融点(℃);油状物質

• NMR δ (CDC1₃);

3.91(3H.s), 4.02(3H.s), 4.04(6H.s), 4.63(2H.d.J=6.0Hz),

5.30(1H.brs), 5.93(2H.s), 6.75(1H.d.J=8.0Hz),

6.86(1H.dd, J=8.0Hz, 1.6Hz), 6.92(1H.d, J=1.6Hz), 7.06(1H, s)

実施例199

2-クロロー4, 6, 7, 8-テトラメトキシキナゾリン

2,4-ジクロロー6,7,8-トリメトキシキナゾリン5.00g(17.3ミリモル)をメタノール 100mlに懸濁させ、水素化ナトリウム 1.5gを徐々に加えた後、加熱還流する。数時間後、反応液を減圧濃縮し、水を加えて析出晶を濾取し、水で洗い、風乾して、標題化合物の淡桃色晶4.80gを得た。

• 収率(%);97

・融点(℃);119~120

• Mass : $285(M+1)^+$

• NMR δ (CDCl₃);

3.98(3H, s), 4.06(3H, s), 4.12(3H, s), 4.19(3H, s), 7.17(1H, s)

実施例200

2-アミノ-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン

2, 6-ジクロロ-4-(3, 4-メチレンジオキシベンジル) アミノキナゾリン 2.0gを圧力容器内のエタノール性アンモニア50ml中、 120℃で18時間加熱した。冷却後、減圧下反応液を濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーに付した。クロロホルム-メタノール(9:1)で溶出し、標題化合物を 830mg得た。

·分子式 ; C16H13N4O2Cl

· 収率(%);44

・融点(℃);285 (分解)

· Mass ; 329 (M+1)+

• NMR δ (CDCl₃) :

4.67(2H.d.J=5.6Hz). 4.98(2H.br). 5.74(1H.br). 5.96(2H.s).

6.78(1H, d, J=7.6Hz), 6.83(1H, dd, J=7.6Hz, 1.6Hz), 6.86(1H, d, J=1.6Hz),

7.38(1H.d.J=9.6Hz), 7.46~7.49(2H.m)

実施例201

2-アミノー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキ

ナゾリン

実施例199~200の方法に準じて標題化合物を得た。

·分子式 ; C₁₇H₁₈N₅O₂ (319)

• 収率(%);60

・融点(℃);284 (分解)

• Mass ; 320 (M+1) +

• NMR δ (CDC1₃);

4.31(2H, d, J=5.6Hz), 5.25(2H, brs), 5.58(2H, s), 6.40(1H, d, J=7.6Hz),

6.51(1H, dd, J=7.6Hz, 1.2Hz), 6.57(1H, d, J=1.2Hz), 6.95(1H, d, J=8.4Hz),

7.25(1H, dd, J=8.4Hz, 1.6Hz), 8.00(1H, br), 8.20(1H, d, J=1.6Hz)

実施例202

2-rミノー4-(3,4-メチレンジオキシベンジル) rミノー6-クロロキナゾリン 500mgにジメチルスルホキシド4ml、イソシアン酸メチル 260mgを加

え、50℃で3時間攪拌した。過剰のイソシアン酸メチルを減圧留去後、クロロホルム、水を加え、濾過し、その濾液をクロロホルムで2回抽出した。合わせた有機層を水で2回洗浄後、硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ベンゼンーアセトン)で精製し、さらに再結晶(ベンゼンークロロホルムーエタノール)し、標題化合物72mgを得た。

·分子式 ; C18H16N5OsCl

・収率(%):12

・融点(℃);245~247

· Mass m/e ; 386(M+1)

·NMR δ (DMSO-d₆);

2.75(3H, d, J=4.4Hz). 4.56(2H, d, J=6.0Hz), 5.95(2H, s).

6.82(1H, d, J=8.4Hz), 6.92(1H, d, J=8.4Hz), 7.11(1H, s),

7.56(1H, d, J=8.8Hz). 7.67(1H, dd, J=8.8Hz, 1.6Hz). 8.27(1H, d, J=1.6Hz),

8.90(1H, t, J=6.0Hz). 9.20(1H, s). 9.38(1H, d, J=4.4Hz)

実施例 2 0 3 ~ 2 0 4

実施例202の方法に準じて以下の化合物を得た。

<u>実施例203</u>

 $2 - \forall Z$ (メチルカルバモイル) アミノー $4 - (3, 4 - \forall F \cup Y)$ ジル) アミノー $6 - 2 \cup 2 \cup 2 \cup 3$

·分子式 ; C20H19NeO4Cl

• 収率(%);8

・収量(mg);45

・融点(℃);243~245

• Mass m/e ; 443(M+1)

• NMR δ (DMSO-d₆);

2.71(6H, d, J=4.8Hz), 4.53(2H, d, J=6.0Hz), 5.94(2H, s),

6.80(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz), 6.95(1H, s),

7.66(1H.d, J=8.8Hz), 7.72(1H.dd, J=8.8Hz.2.0Hz),

8. 32(1H, dd, J=2.0Hz). 8. 85(1H, dd, J=4.8Hz). 9. 01(1H, t, J=6.0Hz)

実施例 2 0 4

·分子式 ; C21H22N5OsCl

・収率(%);40

・融点(℃);209~210

• Mass m/e ; 428(M+1)

• NMR δ (DMSO-d₆);

0.89(3H, t, J=7.2Hz), 1.33(2H, sextet, J=7.2Hz),

1.45(2H, quintet, J=7.2Hz), 3.18(2H, t, J=7.2Hz), 4.56(2H, d, J=6.0Hz),

5.95(2H,s), 6.83(1H,d,J=8.0Hz), 6.91(1H,d,J=8.0Hz), 7.09(1H,s),

7.46(1H, d, J=8.8Hz), 7.66(1H, dd, J=8.8Hz, 2.0Hz), 8.27(1H, d, J=2.0Hz),

8.90(1H, t, J=6.0Hz). 9.17(1H, s). 9.58(1H, t, J=7.2Hz)

実施例205

2-(4-x++)カルボニルピペリジノ)-4-(3,4-x+)ベンジル)rミノー6-クロロキナゾリン

実施例 9 2 で得られた 2, 6 - ジクロロー4 - (3, 4 - メチレンジオキシベンジル) アミノキナゾリン 1 gにイソニペコチン酸メチル 3.61 g、トリエチルアミン2.32 g 及び 2 - プロパノール 5 mlを加え、 100分間還流した。クロロホルムで 2 回抽出し、合わせた有機層を水で洗浄後、硫酸マグネシウムで乾燥した。溶媒を留去後、残渣を再結晶 (エタノール-水) し、標題化合物 1.31 g を得た。

·分子式 ; C24H25C1N4O4

・収率(%);97

・融点(℃);118~119

· Mass ; 469(M+1)

• NMR δ (DMSO-d₆);

1.18(3H, t, J=7.2Hz), 1.42(2H, m), 1.82(2H, m), 2.58(1H, m),

2.98(2H, m), 4.06(2H, q, J=7.2Hz), 4.56(2H, d, J=5.6Hz), 4.62(2H, m),

5.96(2H, s). 6.82(1H, d, J=8.0Hz). 6.86(1H, dd, J=8.0Hz, 1.6Hz).

6.94(1H. d, J=1.6Hz), 7.26(1H, d, J=9.2Hz), 7.48(1H, dd, J=9.2Hz, 2.4Hz).

8.15(1H.d, J=2.4Hz), 8.56(1H.brt, J=5.6Hz)

実施例206

2-(4-エトキシカルボニルピペリジノ)-4-(3, 4-メチレンジオキシ ベンジル)アミノ-6-クロロキナゾリン 塩酸塩

実施例205で得られた2-(4-エトキシカルボニルピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリンから、エタノール-塩酸-エーテルを用い、標題化合物を得た。

·分子式 ; C₂₄H₂₅C1N₄O₄·HCl

• 収率(%);97

・融点(℃):174~175

• NMR δ (DMSO-d₆);

1.20(3H, t, J=7.2Hz), 1.59(2H, m), 1.97(2H, m), 2.75(1H, m).

3.31(2H, m), 4.09(2H, q, J=7.2Hz), 4.53(2H, m), 4.67(2H, d, J=5.6Hz),

5. 98(2H, s), 6. 86(1H, d, J=8. 0Hz), 6. 90(1H, dd, J=8. 0Hz, 1. 6Hz),

7.01(1H, d, J=1.6Hz), 7.83(1H, dd, J=8.8Hz, 2.0Hz), 7.91(1H, d, J=8.8Hz).

8.52(1H, d, J=2.0Hz), 10.15(1H, brs), 12.28(1H, brs)

実施例207

*

2-(4-エトキシカルボニルピペリジノ)-4-(3,4-メチレンジオキシ

ベンジル) アミノー 6 -シアノキナゾリン

2-クロロー4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン1gにイソニペコチン酸エチル3.71g、トリエチルアミン2.38g及び2-プロパノール10mlを加え、1時間還流した。反応液を室温まで冷やした後、析出した結晶を濾取した。水、エーテルで順次洗浄し、標題化合物 1.126gを得た。

·分子式 ; C25H25N5O4

·収率(%);83

・融点 (℃) :192 ~193

· Mass : 460(M+1)

· NMR δ (CDCl₃):

1.26(3H. t, J=7.2Hz), 1.71(2H.m), 1.99(2H.m), 2.59(1H,m),

3.12(2H, brt, J=12.0Hz), 4.15(2H, q, J=7.2Hz), 4.67(2H, d, J=5.2Hz),

4.82(2H.dt, J=13.2Hz, 3.6Hz), 5.96(2H, s), 6.79(1H.d, J=8.0Hz),

6.85(1H, dd, J=8.0Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz), 7.42(1H, brs),

7.61(1H.dd, J=8.8Hz, 1.6Hz), 7.84(1H.brs)

実施例208

2-(4-x)キシカルボニルピペリジノ)-4-(3-2)ロロー4-xトキシベンジル) アミノ-6-シアノキナゾリン

2-クロロ-4-(3-クロロ-4-メトキシベンジル)アミノ-6-シアノキナゾリン1gにイソニペコチン酸エチル 3.5g、トリエチルアミン2.25g及び2-プロパノール30mlを加え、30分間還流した。反応液を室温まで冷やした後、析出した結晶を濾取し、水、エタノールで順次洗浄し、標題化合物1.13gを得た。

·分子式 ; C₂₅H₂₆N₅O₃Cl

· 収率(%);85

・融点(℃);202~203

• Mass : 480(M+1)

• NMR δ (CDC1₈);

1.26(3H, t, J=7.2Hz), 1.72(2H, m), 1.99(2H, m), 2.59(1H, m),

3. 13(2H, brt, J=11. 2Hz), 3. 90(3H, s), 4. 15(2H, q, J=7. 2Hz),

4.69(2H, d, J=5.6Hz), 4.80(2H, m), 6.91(1H, d, J=8.4Hz).

7. 25(1H. dd, J=8. 4Hz, 2. 4Hz), 7. 42(1H. d, J=2. 4Hz), 7. 43(1H, brs),

7. 61(1H, dd, J=8, 8Hz, 1. 6Hz), 7. 87(1H, brs)

実施例209

. "

2-クロロ-4-(3, 4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 400mgにN-メチル-4-アミノ酪酸エチル塩酸塩 858mg、トリエチルアミン 238mg及び2-プロパノール4ml、N, N-ジメチルホルムアミド2mlを加え、1時間還流した。室温まで冷やした後、反応液を濾過し、濾液を減圧下溶媒留去した。残渣を再結晶(エタノール-水)し、標題化合物 410mgを得た。

·分子式 ; C24H25N5O4

·収率(%);78

・融点 (℃) ;152 ~153

• Mass : 448(M+1)

• NMR δ (CDC1₃):

1.22(3H, t, J=6.8Hz), 1.97(2H, brs), 2.30(2H, brs), 3.24(3H, s).

3.75(2H, brs), 4.10(2H, q, J=6.8Hz), 4.68(2H, d, J=5.2Hz), 5.96(2H, s),

6.79(1H.d.J=8.0Hz). 6.84(1H.d.J=8.0Hz). 6.87(1H.s). 7.42(1H.brs).

7.60(1H.d.J=8.8Hz). 7.81(1H.brs)

実施例210~221

実施例205~209の方法に準じて以下の化合物を得た。

実施例210

2-(4-x)トキシカルボニルピペリジノ)-4-(3, 4-x) というカルボニルピペリジノ)-4-(3, 4-x) を表しいジオキシベンジル)アミノー6, 7, 8-y というトリントキシキナゾリン 塩酸塩

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{COOEt} \end{array}$$

·分子式 ; C27H32N4O7 · HC1

• 収率(%);65

・融点(℃);148~150

• Mass : 525(M+1)

• NMR δ (CDCl₂) :

1.275(3H, t, J=7.2Hz), 1.76(2H, m), 2.03(2H, m), 2.63(1H, m),

3.38(2H,m), 3.99(3H,s), 4.08(3H,s), 4.12(3H,s),

4.17(2H, q, J=7.2Hz), 4.28(2H, m), 4.63(2H, d, J=6.0Hz), 5.88(2H, s).

6.68(1H.d, J=8.0Hz), 6.92(1H.dd, J=8.0Hz, 1.6Hz), 6.97(1H.d, J=1.6Hz).

8.23(1H, s), 9.38(1H, brs), 11.1(1H, s)

実施例211

2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー<math>6, 7, 8-トリメトキシキナゾリン 塩酸塩

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{COOEt} \\ \end{array} \quad \cdot \text{HC1}$$

·分子式 ; C27H33N4O6Cl·HCl

• 収率(%);93

・融点(℃);177~178

- Mass ; 545(M+1)

· NMR δ (CDCl₃) :

1.27(3H, t, J=7.2Hz), 1.80(2H, m), 2.06(2H, m), 2.67(1H, m),

3.40(2H,m), 3.82(3H,s), 3.98(3H,s), 4.07(3H,s), 4.11(3H,s),

4.17(2H, q, J=7.2Hz). 4.27(2H, m). 4.65(2H, d, J=6.0Hz).

6.84(1H, d, J=8.8Hz). 7.40(1H, d, J=2.0Hz). 7.48(1H, dd, J=8.8Hz, 2.0Hz),

8.23(1H.s), 9.26(1H.s), 11.27(1H.brs)

実施例 2 1 2

<u>2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシ</u>ベンジル)アミノ-6-クロロキナゾリン 塩酸塩

·分子式 ; C24H26N4O3Cl2·HCl

• 収率(%);97

・融点(℃);201~204

• Mass ; 489(M+1)

• NMR δ (DMSO-d₆);

1.17(3H, t, J=7.2Hz), 1.56(2H, m), 1.93(2H, m), 2.71(1H, m),

3.30(2H.m), 3.80(3H.s), 4.06(2H.q.J=7.2Hz). 4.48(2H.m),

4.66(2H, d, J=5.2Hz), 7.09(1H, d, J=8.4Hz), 7.34(1H, dd, J=8.4Hz, 2.0Hz),

7.49(1H, d, J=2.0Hz), 7.83(2H, brs), 8.48(1H, brs), 10.8(1H, brs)

実施例 2 1 3

·分子式 ; C20H19N4O4Cl

・収率(%);55

・融点(℃):218~219 (分解)

• Mass m/e; 415(M+1)

• NMR δ (DMSO-d₆);

1.13(3H, t, J=7.2Hz), 4.07(2H, q, J=7.2Hz), 4.18(2H, brs),

4.63(2H, brd, J=4.0Hz), 5.97(2H, s), 6.85~6.92(3H, m), 7.53(1H, brs),

7.84(1H.brd, J=8.0Hz). 8.35(1H.brs). 8.50(2H.m)

実施例214

2-(3-x)+2 2-(

·分子式 ; C22H23N4O4Cl

・収率(%);44

・融点(℃);96~98

• Mass m/e ; 443(M+1)

· NMR δ (CDCl₃);

1.24(3H, t, J=6.8Hz). 1.96(2H, quintet, J=7.2Hz), 2.41(2H, t, J=7.2Hz),

3.54(2H, q, J=7.2Hz), 4.12(2H, q, J=6.8Hz), 4.66(2H, q, J=5.2Hz),

5.97(2H, s), 6.79(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.87(1H, s),

7.30(1H.d.J=8.0Hz), 7.44(1H.s), 7.47(1H.d.J=8.0Hz)

実施例 2 1 5

2-(N-(3-x)+2) 2-(N-(3-x)

·分子式 ; C23H25N4O4Cl·HCl

· 収率 (%);67

・融点(℃);182~183

• Mass : 457(M+1)

• NMR δ (CDCl₃+DMSO-d₆);

1.23(3H. t. J=7, 2Hz), 1.90(2H, brs), 2.25(2H, brs), 2.84(3H, brs).

3.56(2H. brs), 4.10(2H, q, J=7.2Hz), 4.70(2H, d, J=5.6Hz), 5.94(2H, s),

6.76(1H, d, J=7.6Hz), 6.87(2H, m), 7.54(1H, dd, J=9.2Hz, 2.0Hz),

8. 40(1H, d, J=2. 0Hz), 8. 66(1H, d, J=9. 2Hz), 9. 69(1H, brs)

実施例 2 1 6

2-(5-x)+2 カルボニルペンチル) アミノー4-(3, 4-x)+2 キシベンジル) アミノー6-0 ロロキナゾリン

·分子式 ; C24H27N4O4Cl

・収率(%):46

・融点(℃):109~110

· Mass m/e; 471(M+1)

• NMR δ (CDCl₃);

1.25(3H, t, J=7.2Hz), 1.43(2H, quintet, J=7.6Hz), 1.66(4H, m),

2. 31(2H, t, J=7. 6Hz), 3. 49(2H, q, J=7. 6Hz), 4. 12(2H, q, J=7. 2Hz).

4. 68(2H, d, J=5. 2Hz), 5. 97(2H, s), 6. 79(1H, d, J=8. 0Hz),

6.84(1H, d, J=8.0Hz), 6.87(1H, s), 7.43(3H, m)

<u>実施例217</u>

PCT/JP92/01258 WO 93/07124

·分子式 ; C23H23N4O4Cl·HCl

·収率(%);52

・融点(℃);206~208

• Mass : 455(M+1)

·NMR δ(CDCl₃):

1.19(3H, t, J=7.2Hz). 2.17(3H, m). 2.32(1H, m). 4.12(2H, m).

4.24(2H, m), 4.62(2H, m), 4.67(1H, m), 5.93(2H, s),

6.77(1H.d.J=8.0Hz), 6.86(1H.dd.J=8.0Hz.1.6Hz), 6.89(1H.d.J=1.6Hz),

7.54(1H.d.J=8.8Hz), 8.38(1H.s), 8.64(1H.d.J=8.8Hz), 9.67(1H.brs),

13.38(1H.brs)

実施例218

 $\frac{2-(N-x)+2}{2}$ $\frac{2-(N-x)+2}{2}$ $\frac{2-(N-x)+2}{2}$ $\frac{2-(N-x)+2}{2}$

·分子式 ; C22H21N5O4

• 収率(%);75

・融点(℃):171~172

• Mass ; 420(M+1)

• NMR δ (DMSO-d₆) :

1.12(3H, m), 3.18(3H, s), 4.03(2H, m), 4.38(2H, m), 4.51(2H, m),

5.95(2H.s), 6.84(3H.m), 7.30(1H.m), 7.76(1H.m), 8.58(1H.s),

8.79(1H.m)

実施例 2 1 9

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$$

·分子式 ; C₂₅H₂₇N₅O₄ (461.522)

・収率(%);61

・融点(℃);142~143

• Mass ; 462(M+1)

• NMR δ (DMSO-d₆) :

1.0~1.15(3H. br 2 peaks), 1.13(3H. t. J=7.1Hz).

1.65~1.9(2H, br 2 peaks). 2.15~2.35(2H, br 2 peaks). 3.58(4H, brs),

4.01(2H, q, J=7.1Hz), 4.58(2H, d, J=5.7Hz), 5.96(2H, s), 6.84(2H, s),

6.93(1H, s), 7.25(1H, brs), 7.72(1H, dd, J=1.8Hz, 8.8Hz),

8.56(1H, d, J=1.8Hz). 8.72(1H, t, J=5.7Hz).

実施例220

· 分子式 ; C24H26N5O3Cl

· 収率(%);72

・融点(℃):127~128

• Mass : 468 (M+1)

• NMR δ (DMSO-d₆) :

1.11(3H, t, J=7.2Hz), 1.74(2H, brs), 2.14(2H, brs), 3.09(3H, s),

3.62(2H, brs), 3.81(3H, s), 3.98(2H, q, J=7.2Hz), 4.61(2H, d, J=6.0Hz),

7.07(1H, d, J=8.8Hz), 7.20~7.36(2H, m), 7.42(1H, s),

7.72(1H, d, J=8.8Hz). 8.55(1H, s). 8.75(1H, t, J=6.0Hz)

実施例 2 2 1

•分子式 ; C24H23N5O4 • HC1

・収率(%);44

・融点(℃);231~232

• Mass : 446(M+1)

• NMR δ (CDCl₃);

1.21(3H, t, J=7.2Hz), 2.19(3H, m), 2.36(1H, m), 4.15(2H, m),

4.28(2H, m), 4.62(2H, m), 4.76(1H, m), 5.95(2H, s),

6.79(1H, d, J=8.0Hz), 6.86(1H, d, J=8.0Hz), 6.88(1H, s),

7.80(1H, dd, J=8.8Hz, 1.6Hz), 8.82(1H, d, J=1.6Hz), 8.87(1H, d, J=8.8Hz),

9.85(1H, brs), 13.81(1H, s)

実施例222

2 - (4 - カルボキシピペリジノ) - 4 - (3, 4 - メチレンジオキシベンジル) アミノー6 - クロロキナゾリン

2-(4-x) キシカルボニルピペリジノ)-4-(3,4-x) チレンジオキシベンジル)アミノー6- クロロキナゾリン1 gにエタノール10ml、水5ml及び水酸化ナトリウム 820mgを加え、20分間還流した。溶媒を減圧濃縮した後、1 N 塩酸を加え中和し、析出した結晶を濾取し、標題化合物 920mgを得た。

·分子式 ; C22H21N4O4Cl

·収率(%);98

・融点(℃);221~222

· Mass m/e ; 441(M+1)

• NMR δ (DMS0-d₆);

1.38(2H, m), 1.80(2H, dd, J=13.2Hz, 2.4Hz), 2.48(1H, m).

2.96(2H. t. J=12.0Hz), 4.54(2H. d. J=5.6Hz).

4.56(2H, dt, J=12.0Hz, 3.2Hz), 5.94(2H, s), 6.81(1H, d, J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.93(1H, s), 7.24(1H, d, J=9.2Hz),

7. 46(1H, dd, J=9. 2Hz, 2. 0Hz), 8. 13(1H, d, J=2. 0Hz), 8. 55(1H, t, J=5. 6Hz)

実施例 2 2 3

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン ナトリウム塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン5.00g(11.3ミリモル)に1N水酸化ナトリウム水溶液12ml、水40mlを加え、加熱溶解させた後、放冷する。析出晶を吸引濾取し、少量の水で洗った後、五酸化リン存在下減圧乾燥し、標題化合物4.34gを得た。

·分子式 ; C22H20CIN4O4Na

· 収率(%);83

• NMR δ (DMSO-d₆);

1.42(2H, m), 1.73(2H, m), 2.06(1H, m), 2.95(2H, m), 4.52(2H, m),

4.56(2H, d, J=5.6Hz), 5.95(2H, s), 6.81(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1, 6Hz), 6.95(1H, d, J=1.6Hz), 7.22(1H, d, J=9.2Hz),

7. 44(1H, dd, J=9. 2Hz. 2, 4Hz), 8. 13(1H, d, J=2. 4Hz),

8.58(1H, brt, J=5.6Hz)

<u>実施例224</u>

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン カリウム塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン5.50g(12.5ミリモル)に1N水酸化カリウム水溶液12.5ml、水40mlを加え、加熱溶解させ、濾過した後、反応液を減圧下濃縮する。残渣にエタノール、エーテルを加えて析出する結晶を濾取し、エーテルで洗った後、五酸化リン存在下減圧乾燥し、標題化合物4.69gを得た。

·分子式 ; C22H20CIN4O4K

・収率(%);78

・融点(℃);230~234 (分解)

• NMR δ (DMSO-d₆) :

1.39(2H, m), 1.69(2H, m), 1.96(1H, m), 2.94(2H, m), 4.48(2H, m),

4.55(2H, d, J=5.6Hz), 5.96(2H, s), 6.81(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.94(1H, d, J=1.6Hz), 7.22(1H, d, J=8.8Hz),

7. 43(1H, dd, J=8. 8Hz. 2. 4Hz), 8. 11(1H, d, J=2. 4Hz).

8.50(1H, brt, J=5.6Hz)

<u>実施例225</u>

<u>2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル</u>) アミノー6-クロロキナゾリン 塩酸塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン2.00g(4.54ミリモル)をテトラヒドロフラン-エタノール(25m1-25m1)に加熱溶解させ、8 M HC1エタノール溶液 1.0mlを滴下する。放冷後、析出する結晶を遮取し、テトラヒドロフランで洗い、通風乾燥して、標題化合物1.87gを得た。

·分子式 ; C22H21N4O4Cl·HCl

· 収率(%);86

・融点(℃);284~286

· NMR δ (DMSO-d₆);

1.58(2H, m), 1.96(2H, m), 2.65(1H, m), 3.3(2H, m), 4.47(2H, m),

4. 67(2H, d, J=5. 6Hz), 5. 98(2H, s), 6. 87(1H, d, J=8. 0Hz),

6.90(1H, dd, J=8.0Hz, 1, 6Hz), 7.00(1H, d, J=1.6Hz), 7.83(2H, brs),

8.49(1H, brs), 10.09(1H, brs), 12.11(1H, brs), 12.40(1H, brs)

実施例 2 2 6

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン メタンスルホン酸塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン2.00g(4.54ミリモル)をテトラヒドロフラン-エタノール(25ml-25ml)に加熱溶解させ、メタンスルホン酸0.31ml(4.78ミリモル)を滴下する。放冷後、析出する結晶を濾取し、テトラヒドロフランで洗い、通風乾燥して、標題化合物2.21gを得た。

·分子式 ; C22H21N4O4Cl·CH4O3S

• 収率 (%);91

・融点(℃);265~266

• NMR δ (DMSO-d₆) :

1.59(2H.m). 1.97(2H.m). 2.32(3H.s). 2.65(1H.m). 3.3(2H.m).

4.40(2H.m), 4.68(2H.d, J=5.6Hz), 5.98(2H.s), 6.87(1H.d, J=8.0Hz),

6. 90(1H, dd, J=8. 0Hz, 1, 6Hz), 6. 98(1H, d, J=1. 6Hz), 7. 67(1H, d, J=8. 8Hz),

7.84(1H.dd, J=8.8Hz, 2.0Hz), 8.42(1H.d, J=2.0Hz), 9.95(1H.brs),

11.76(1H, brs), 12.37(1H, brs)

実施例227

 $\frac{2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)}{アミノ-6-シアノキナゾリン}$

2-(4-エトキシカルボニルピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 318mgにエタノール20ml、1 N水酸化ナトリウム水溶液 2.0mlを加え、50℃で30分間攪拌した。1 N塩酸で中和した後、析出した結晶を濾取し、シリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)で精製し、標題化合物 116mgを得た。

·分子式 ; C23H21N5O4

• 収率 (%);39

・融点(℃);269~271

• Mass m/e; 432(M+1)

- NMR δ (DMSO-d₆);

1.40(2H, m), 1.79(2H, m), 2.41(1H, m), 3.04(1H, dt, J=11.2Hz, 1.2Hz).

4.55(2H.d, J=5.6Hz), 4.57(2H.m), 5.95(2H.s), 6.82(1H.d, J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.94(1H, s), 7.25(1H, d, J=8.8Hz),

7.71(1H. d. J=8.8Hz), 8.53(1H.s), 8.72(1H.t.J=5.6Hz)

実施例228

 $\frac{2-(4-カルボキシピペリジノ)-4-(3-クロロー4-メトキシベンジル}$ アミノ-6-シアノキナゾリン

2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノ-6-シアノキナゾリン 1.0gにテトラヒドロフラン30ml、エタノール30ml、1N水酸化ナトリウム水溶液14mlを加え、室温で16時間攪拌した。1N塩酸で中和し、水 100mlを加え、析出した結晶を濾取した。結晶をテトラヒドロフラン-エタノール-水で再結晶し、標題化合物 860mgを得た。

·分子式 ; C23H22N5O2Cl

· 収率 (%);91

・融点(℃);277~278 (分解)

· Mass m/e ; 452(M+1)

• NMR δ (DMSO-d₆) :

1.40(2H.m), 1.84(2H.m), 2.51(1H.m), 3.05(2H, dt, J=12Hz, 2.4Hz),

3.82(3H, s), 4.59(2H, d, J=5.6Hz), 4.63(2H, m), 7.08(1H, d, J=8.4Hz),

7.28(1H, d, J=8.8Hz), 7.32(1H, dd, J=8.4Hz, 2.0Hz), 7.45(1H, d, J=2.0Hz),

7.74(1H. dd. J=8.8Hz. 2.0Hz), 8.54(1H. d. J=2.0Hz), 8.79(1H. t. J=5.6Hz)

実施例 2 2 9

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノー6-シアノキナゾリンナトリウム塩

実施例228で得られた2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノー6-シアノキナゾリン1.00g(2.21ミリモル)をテトラヒドロフラン-エタノール(30ml-40ml)に加熱溶解させ、1N水酸化ナトリウム水溶液 2.3ml、水 100mlを加え、減圧下濃縮する。析出する結晶を濾取し、水で洗い、通風乾燥して、標題化合物0.45gを得た。

·分子式 ; C23H21N5O2ClNa

・収率(%);43

• NMR δ (DMSO-d₆);

1.45(2H, m), 1.75(2H, m), 2.12(1H, m), 3.06(2H, m), 3.81(3H, s),

4.52(2H.m), 4.58(2H.d.J=5.6Hz), 7.07(1H.d.J=8.8Hz),

7.24(1H. d, J=8.4Hz), 7.32(1H. dd, J=8.4Hz, 2.0Hz), 7.45(1H. d, J=2.0Hz),

7. 69(1H, dd, J=8.8Hz, 2, OHz), 8. 54(1H, d, J=2. OHz),

8.86(1H, brt, J=5.6Hz)

実施例230

2- [N-(3-エトキシカルボニルプロピル)-N-メトキシアミノ]-4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 389mgにエタノール20ml、1N水酸化ナトリウム水溶液2.61mlを加え、室温で4時間、50℃で10分間攪拌した。1N塩酸で中和し、析出した結晶を濾取した。結晶をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)で精製し、更にエタノールーアセトン-水で再結晶し、標題化合物 305mgを得た。

·分子式 ; C22H21N5O4

・収率(%);84

・融点(℃);138~140

• Mass m/e; 420(M+1)

· NMR δ (CDCl₃(+DMSO-d₆));

1.96(2H. brs), 2.31(2H. brs), 3.24(3H.s), 3.76(2H. brs),

4.67(2H, d, J=5.6Hz), 5.94(2H, s), 6.77(1H, d, J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.91(1H, s), 7.58(1H, brs), 7.61(1H, d, J=8.4Hz),

8.48(2H, m)

実施例231~245

実施例222~230の方法に準じて以下の化合物を得た。

実施例 2.3 1

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

-アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C₂₅H₂₈N₄O₇

· 収率(%);73

・融点(℃);216~217

• Mass m/e : 297(M+1)

· NMR δ (CDCl₃) :

1.80(2H, m), 2.05(2H, m), 2.65(1H, m), 3.39(2H, dt, J=10.8Hz, 2.8Hz),

3.98(3H,s), 4.07(3H,s), 4.13(3H,s), 4.26(2H,m),

4.70(2H, d, J=6.0Hz), 5.88(2H, s), 6.69(1H, d, J=7.6Hz),

6.95(1H, dd, J=7.6Hz, 1.6Hz), 7.02(1H, d, J=1.6Hz), 8.38(1H, s),

9.36(1H, s), 11.24(1H, t, J=6.0Hz)

<u>実施例232</u>

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)

·分子式 ; C₂₅H₂₈N₄O₆Cl

· 収率(%);90

・融点(℃);197~198

• Mass m/e : 517(M+1)

· NMR δ (DMSO-d₆);

1.45(2H. brs), 1.90(2H. brs), 2.59(1H. brs), 3.22(2H. brs),

3.80(3H,s), 3.90(6H,s), 3.92(3H,s), 4.39(2H,brs),

4. 65(2H, d, J=5. 2Hz), 7. 05(1H, d, J=8. 4Hz), 7. 33(1H, d, J=8. 4Hz),

7.45(1H.s). 7.76(1H.brs). 10.70(1H.brs)

実施例 2 3 3

·分子式 ; C23H24N4O5 (436)

• 収率(%);79

・融点(℃);263 (分解)

· Mass ; 437 (M+1)+

• NMR δ (DMSO-d₆):

1.51~1.59(2H.m), 1.86~1.95(2H.m), 2.59~2.64(1H.m),

3.21~3.28(2H, m), 4.39~4.44(2H, m), 4.67(2H, d, J=5.6Hz).

5.78(2H, s), 6.85(1H, d. J=7.6Hz), 6.89(1H, d, J=7.6Hz),

6. 99(1H, s), 7. 42(1H, dd, J=9. 2Hz, 1. 6Hz), 7. 72(1H, d, J=9. 2Hz),

7.86(1H, d, J=1.6Hz), 10.02(1H, br), 11.89(1H, s)

実施例 2 3 4

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー6-メトキシキナゾリン

·分子式 ; C23H25N4O4Cl (456.930)

· 収率 (%);81

・融点(℃);245 (分解)

• Mass ; $457(MH^+)$

·NMR

1.3 \sim 1.5(2H, m), 1.79(2H, d, J=10Hz), 2.4 \sim 2.5(1H, m),

2. 91(2H, t, J=11Hz), 3. 81(3H, s), 4. 56(2H, d, J=13Hz),

4.60(2H, d, J=5.7Hz), 7.09(1H, d, J=8.6Hz), 7.18(1H, dd, J=2.7Hz, 9.2Hz).

7. 24(1H, d, J=9. 2Hz), 7. 32(1H, dd, J=2. 2Hz, 8. 6Hz), 7. 45(1H, d, J=2. 2Hz),

7. 49(1H, d, J=2. 7Hz), 8. 42(1H, t, J=5. 7Hz), 12. 15(1H, brs)

実施例235

*

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノ-6-クロロキナゾリン

·分子式 ; C22H22N4O3Cl2

・収率(%);92

・融点(℃);280~281

· Mass m/e ; 461(M+1)

· NMR δ (DMSO-d₆) :

1.59(2H, m), 1.94(2H, brd, J=11.6Hz), 2.62(1H, brs), 3.32(2H, m),

3.79(3H, s), 4.52(2H, d, J=13.6Hz), 4.64(2H, d, J=4.8Hz).

6.99(1H.d.J=8.4Hz), 7.30(1H.d.J=8.4Hz), 7.42(1H.s),

7.69(1H.d.J=8.8Hz). 8.00(1H.d.J=8.8Hz). 8.51(1H.s). 10.24(1H.s).

12. 42(1H, s)

実施例236

2-(4-カルボキシピペリジノ)-4-(ベンズイミダゾール-5-イル)メ チルアミノ-6-クロロキナゾリン

·分子式 ; C_{2 2}H_{2 1}N₆O₂Cl (436.903)

・収率(%);99

・融点(℃);230 (分解)

• Mass ; $437 (MH)^+$

• NMR δ (DMSO-d₆);

 $1.3\sim1.5(2H, m)$, 1.82(2H, d, J=10Hz), $2.4\sim2.5(1H, m)$,

2. 98(2H, t, J=11Hz), 4. 60(2H, d, J=13Hz), 4. 77(2H, d, J=5. 7Hz),

7.2 \sim 7.3(2H, m), 7.45 \sim 7.6(3H, m), 8.16(1H, s), 8.19(1H, d, J=2.4Hz),

8.68(1H, t, J=5.7Hz), 12.17(1H, brs), 12.33(1H, brs)

実施例237

·分子式 ; C18H15N4O4Cl

· 収率(%);64

·融点(°C):260~261 (分解)

· Mass m/e; 387(M+1)

• NMR δ (DMSO-d₆);

4.00(2H.brs), 4.57(2H.d.J=5.6Hz), 5.93(2H.s), 6.79(1H.d.J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.95(1H, s), 7.35(1H, brs), 7.50(1H, brs),

8.30~8.50(2H,m)

実施例238

 $2-(3-\pi)$ ルボキシプロピル) アミノー $4-(3, 4-\chi)$ チレンジオキシベンジル) アミノー $6-\phi$ ロロキナゾリン

·分子式 ; C20H19N4O4Cl

·収率(%);88

・融点(℃);170~172

• Mass m/e: 415(M+1)

• NMR δ (DMS0-d₆);

1.71(2H, brs). 2.23(2H, brs). 3.27(2H, brs). 4.56(2H, d, J=5.6Hz).

5.95(2H,s), 6.82(3H,m), 6.95(1H,s), 7.20(1H,brs).

7.46(1H, dd, J=8.8Hz, 1.6Hz). 8.12(1H, d, J=1.6Hz)

<u> 実施例239</u>

2-(5-カルボキシペンチル) アミノー4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C22H23N4O4Cl

· 収率(%);80

・融点(℃):190~192

• Mass m/e: 443(M+1)

• NMR δ (DMSO-d₆);

1.25(2H. brs), 1.47(4H. brs), 2.16(2H. brs), 3.31(2H. brs),

4.60(2H.brs), 5.94(2H.s), 6.84(2H.s), 6.96(1H.s), 7.33(1H.brs),

7.60(1H, brs), 8.25(1H, brs)

実施例240

2-[N-(3-カルボキシプロピル)-N-メチルアミノ]-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C21H21N4O4Cl

· 収率 (%);92

・融点(℃);143~144

• Mass m/e; 429(M+1)

• NMR δ (DMSO-d₆(+CD₃OD));

1.79(2H, brs), 2.20(2H, brs), 3.21(3H, s), 3.71(2H, t, J=7.2Hz),

4.65(2H, s), 5.95(2H, s), 6.81(1H, d, J=8.0Hz), 6.86(1H, d, J=8.0Hz),

6.95(1H, s), 7.79(1H, d, J=8.8Hz), 7.85(1H, d, J=8.8Hz), 8.49(1H, s)

実施例 2 4 1

 $\frac{2-(N-カルボキシメチル-N-メチルアミノ)-4-(3,4-メチレンジ$ オキシベンジル)アミノー6-シアノキナゾリン

·分子式 ; C20H17N5O4

·収率(%);68

・融点(℃);268~270

· Mass m/e : 392(M+1)

• NMR δ (DMSO-d₆) :

3.11(3H.s). 4.13(2H.brs), 4.56(2H.m), 5.94(2H.s), 6.83(2H.m),

6.93(1H.d, J=14.4Hz). 7.20(1H.m), 7.66(1H.m), 8.51(1H.s),

8.62(1H.m)

実施例 2 4 2

2-(N-x+y-N-(3-x+y)) アミノ(3-x+y) アミノ(3-

·分子式 ; C23H23N5O4 (433.468)

• 収率(%);96

・融点(℃);186~187

• Mass : 434(M+1)

• NMR δ (DMSO-d₆);

1.0 \sim 1.15(3H, br 2 peaks), 1.65 \sim 1.85(2H, br 2 peaks),

 $2.1\sim2.25(2H, br\ 2\ peaks)$, 3.57(4H, brs), 4.58(2H, d, J=5.7Hz),

5.96(2H,s), 6.84(2H,s), 6.93(1H,s), 7.26(1H,d,J=8.8Hz),

7.72(1H. dd, J=1.8Hz, 8.8Hz), 8.56(1H. d, J=1.8Hz), 8.71(1H. brs)

実施例 2 4 3

2-[N-(3-カルボキシプロピル)-N-メチルアミノ]-4-(3-クロロ-4-メトキシベンジル)アミノー<math>6-シアノキナゾリン

·分子式 ; C22H22N5O3Cl

•収率(%);88

75

・融点 (℃) :108 ~109

• Mass ; 440(M+1)

• NMR δ (DMSO-d₆) :

1.73(2H, brs), 2.13(2H, brs), 3.11(3H, s), 3.63(2H, brs), 3.82(3H, s),

4. 61(2H, d, J=5. 6Hz), 7. 07(1H, d, J=8. 4Hz), 7. 27(1H, d, J=8. 8Hz),

WO 93/07124 PCT/JP92/01258

7.31(1H, d, J=8.4Hz), 7.43(1H, s), 7.72(1H, s), 8.55(1H, s),

8.74(1H, brt, J=5.6Hz), 12.02(1H, brs)

実施例244

2-(4-カルボキシピペリジノ)-4-(ベンズイミダゾール-5-イル)メ

チルアミノー 6 -シアノキナゾリン

·分子式 ; C23H21N7O2 (427)

• 収率 (%);50

・融点(℃);>290

• Mass : $428 (M^++1)$

·NMR δ (DMSO-d₆);

1.29~1.42(2H, m), 1.76~2.20(2H, m), 2.39~2.51(2H, m).

2.99~3.07(3H, m), 4.60~4.64(2H, m), 4.76(2H, d. J=5.6Hz),

7.23(1H, d, J=8.4Hz), 7.25(1H, d, J=8.8Hz), 7.51(1H, d, J=8.4Hz),

7.56(1H, s), 7.71(1H, dd, J=8.4Hz, 1.6Hz), 8.14(1H, s),

8.57(1H. d. J=1.6Hz). 8.82(1H. brt, J=5.6Hz)

実施例 2 4 5

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

アミノー6-カルバモイルキナゾリン

·分子式 ; C23H23N5O5 (449)

• 収率(%);6

・融点(℃):180~182 (分解)

• Mass : 450(M+1)

• NMR δ (DMSO-d₆):

1.39(2H.m), 1.81(2H.m), 2.48(1H.m), 2.99(2H.m),

4.55(2H, d, J=5.6Hz), 4.62(2H, m), 5.93(2H, s), 6.81(1H, d, J=7.6Hz),

6.85(1H.dd, J=7.6Hz, 1.6Hz), 6.95(1H.d, J=1.6Hz), 7.20(1H.d, J=8.8Hz),

7.27(1H. br), 7.71(1H. br), 7.92(1H. dd, J=8.8Hz, 2.0Hz),

8.57(1H. d. J=2.0Hz), 8.59(1H. brt, J=5.6Hz), 12.09(1H. br)

実施例 2 4 6

2-ベンジルオキシメチルー4-クロロー6-メトキシキナゾリン

$$\begin{array}{c|c} & C1 \\ \hline & N \\ \hline & OBz1 \\ \end{array}$$

2-ベンジルオキシメチルー6-メトキシキナゾリンー4 (3 H) -オン1.50 g (5.06ミリモル) のアセトニトリル75ml 懸濁液にオキシ塩化リン30mlを加え、加熱還流する。1時間後、反応液を減圧下溶媒留去し、得られる残渣をクロロホ

ルムに溶解させ、飽和重曹水で洗う。有機層を無水硫酸マグネシウムで乾燥後、 濾過し、濾液を減圧下溶媒留去する。残渣をシリカゲルカラムクロマトグラフィ ー (酢酸エチルーnーヘキサン)により精製し、標題化合物の黄色晶1.10gを得た。

• 収率(%);69

・融点(℃);49~50

• Mass ; $315(M+1)^+$

· NMR δ (CDCl₃);

3.98(3H, s). 4.79(2H, s). 4.84(2H, s), 7.42(1H, d, J=2.8Hz),

7. $26 \sim 7.46(5 \text{H, m})$, 7. 57(1 H, dd, J=9.2 Hz), 8. 01(1 H, d, J=9.2 Hz)

実施例 2 4 7

 $\frac{2-\langle x \rangle + \langle x \rangle + \langle x \rangle + \langle x \rangle + \langle x \rangle}{|x \rangle - |x \rangle} = \frac{2-\langle x \rangle + \langle x \rangle + \langle x \rangle + \langle x \rangle}{|x \rangle - |x \rangle}$

実施例246で得られた2ーベンジルオキシメチルー4ークロロー6ーメトキシキナゾリン0.74g(2.4ミリモル)、ピペロニルアミン0.55g(3.6ミリモル)、 炭酸ナトリウム0.50gをイソプロピルアルコール20mlに混合し、加熱還流する。6時間後反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーnーヘキサン)により精製後、クロロホルムーnーヘキサンより再結品して、標題化合物の黄色品1.01gを得た。

·分子式 ; C₂₅H₂₃N₃O₄

· 収率(%);定量的

・融点(℃);158~159

• NMR δ (CDCl₃):

3.91(3H, s), 4.69(2H, s), 4.77(2H, s), 4.79(2H, d, J=5.6Hz),

5. 94(2H, s), 6. 77(1H, d, J=7. 6Hz), 6. 90(1H, dd, J=7. 6Hz, 1. 6Hz),

6.94(1H, d, J=1.6Hz), 7.10(1H, brs), 7.25~7.35(5H, m),

7.41~7.44(2H, m), 7.81(1H, d, J=9.2Hz)

実施例248~252

実施例222~230の方法に準じて以下の化合物を得た。

実施例248

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル)オキシキナゾリ

<u>ン</u>

$$C1$$
 N
 $C1$

·分子式 ; CieHioCl2N2Os

・収率(%);55

・融点(℃);141~142

• Mass m/e : 349(M+1)

• NMR δ (CDCl₃);

5.54(2H,s), 6.01(2H,s), 6.86(1H,d,J=8.8Hz), 7.01(1H,d,J=8.8Hz).

7.02(1H.s), 7.76(1H.dd, J=8.0Hz, 2.4Hz), 7.81(1H.dd, J=8.0Hz, 0.8Hz),

WO 93/07124 PCT/JP92/01258

8.09(1H, dd, J=2.4Hz, 0.8Hz)

実施例 2 4 9

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

オキシー6-クロロキナゾリン

·分子式 ; C22H20ClN2O5

· 収率 (%);84

・融点 (℃) :; 145 ~147

· Mass m/e: 442(M+1)

• NMR δ (DMSO-d₆);

1.47(2H, m), 1.88(2H, m), 2.49(1H, m), 3.10(2H, brt, J=13.2Hz),

4.60(2H, brd, J=13.2Hz), 5.43(2H,s), 6.01(2H,s).

6.91(1H.d.J=8.0Hz), 7.02(1H.d.J=8.0Hz), 7.11(1H.s),

7.39(1H, d, J=8.8Hz), 7.61(1H, dd, J=8.8Hz, 2.4Hz).

7.77(1H. d. J=2.4Hz)

実施例 2 5 0

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル)チオキナゾリン

$$C1$$
 N
 $C1$

·分子式 ; C16H10Cl2N2O2S

・収率(%);92

・融点(℃);180~182

• Mass m/e ; 365(M+1)

• NMR δ (CDCl₃);

4.55(2H.s), 5.96(2H.s), 6.77(1H.d.J=8.4Hz), 6.96(1H.s),

6. 96(1H, d, J=8. 4Hz), 7. 77(1H, dd, J=8. 8Hz, 2. 0Hz),

7. 82(1H, d, J=8.8Hz), 7. 99(1H, d, J=2.0Hz)

実施例 2 5 1

2 - (4 - カルボキシピペリジノ) - 4 - (3, 4 - メチレンジオキシベンジル)

チオー6-クロロキナゾリン

·分子式 ; C22H20ClN3O4S

・収率(%);98

・融点(℃);153~154

PCT/JP92/01258 WO 93/07124

· Mass m/e ; 458(M+1)

• NMR δ (DMSO-d₆) :

1.50(2H, m), 1.82(2H, m), 2.39(1H, brs), 3.18(2H, m), 4.48(2H, s),

4.55(2H.brs), 5.96(2H.s), 6.82(1H.d.J=8.0Hz), 6.92(1H.d.J=8.0Hz),

6.99(1H, s). 7.41(1H, brd, J=8.8Hz). 7.62(1H, brd, J=8.8Hz).

7.69(1H, brs)

実施例 2 5 2

·分子式 ; C21H20ClN5O5

・収率(%);11

・融点(℃);油状物質

· Mass m/e; $458(MH^+)$

• NMR δ (CDCl₃):

1.71~1.82(2H, m), 2.02~2.10(2H, m), 3.56~3.63(2H, m),

4.39~4.44(2H, m), 4.66(2H, d, J=5.2Hz), 5.18~5.22(1H, m),

5. 61 (1H. brt, J=5. 2Hz), 5. 96(2H, s), 6. 79(1H, d, J=7. 6Hz),

6.84(1H, dd, J=7.6Hz, 1.2Hz), 6.87(1H, d, J=1.2Hz).

7.39(1H. d. J=8.8Hz). 7.43~7.47(2H. m)

実施例 2 5 3

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル)アミノキノリン

$$C1$$
 N
 $C1$

a) 2, 4, 6-トリクロロキノリン

5-クロロアントラニル酸メチルエステルから出発して、ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー、68巻、1285頁(1946年)と同様な方法で標題化合物を得た。

• NMR δ (CDCl₃) :

7.55(1H, s), 7.74(1H, dd, J=9.0Hz, 2.2Hz), 7.98(1H, d, J=9.0Hz),

8. 19(1H. d. J=2. 2Hz)

a) で得られた化合物 500mg、3, 4-メチレンジオキシベンジルアミン 350 mg、N, N-ジイソプロピルエチルアミン1 ml、N-メチルー2-ピロリドン 4 mlの混合物を 130 $\mathbb C$ の油浴中10時間反応させた。反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー($5\sim20\%$ 酢酸エチル/ヘキサン)に付し、高極性成分として標題化合物 430 mg を得た。

·分子式 ; C₁₇H₁₂Cl₂N₂O₃

・融点 (℃) ;198 ~199 ℃

• Mass m/e; 347(M+1)

• NMR δ (CDC1₃);

4. 39(2H. d. J=4. 9Hz), 5. 21(1H. t. J=4. 9Hz), 6. 00(2H. s), 6. 47(1H. s),

6.82~6.87(3H.m). 7.58(1H, dd, J=9.0Hz, 2.2Hz), 7.65(1H, d, J=2.2Hz),

7.84(1H, d, J=9.0Hz)

同時に低極性成分として 4, 6-ジクロロ-2-(3, 4-メチレンジオキシベンジル) アミノキノリン <math>190mgを得た。

• NMR δ (CDC1₃) :

4.58(2H, d, J=5.7Hz), 5.00(1H, brt, J=5.7Hz), 5.94(2H, s), 6.74(1H, s),

6.77(1H, d, J=7.9Hz), 6.84(1H, dd, J=7.9Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz),

7.50(1H. dd, J=9.0Hz, 2.4Hz), 7.62(1H. d, J=9.0Hz), 7.96(1H. d, J=2.4Hz)

実施例 2 5 4

2, 6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキノリン

$$\begin{array}{c|c} & & & \\ & & & \\ \text{C1} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

実施例253の方法に準じて標題化合物を得た。

·分子式 ; C17H13CI3N2O

· 収率(%);59

・融点(℃);204~205

· NMR δ (CDCl₃):

3.91(3H, s), 3.40(3H, s), 4.38(2H, d, J=5.1Hz), 4.97(1H, t, J=5.1Hz).

5.93(1H, s). 6.93(1H, d, J=8.4Hz). 7.24(1H, dd, J=8.4Hz, 2.2Hz),

7. 40(1H. d. J=2. 2Hz), 7. 50(1H. dd. J=8. 8Hz. 2. 2Hz), 7. 59(1H. d. J=2. 2Hz).

7.71(1H, d, J=8.8Hz)

実施例 2 5 5

- a) 2-(4-x++)カルボニルピペリジノ) -4-(3, 4-x+) オキシベンジル) アミノー6-0ロロキノリン
- 2,6-ジクロロー4-(3,4-メチレンジオキシベンジル)アミノキノリン 130mg、イソニペコチン酸エチルエステル 500μl、N-メチル-2-ピロリドン1mlの混合物を 150℃の油浴中 3 時間加熱した。反応液を冷却後、水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20~50%酢酸エチル/ヘキサン)で精製し、標題化合物 150mgを得た。
- NMR δ (CDC1₃) :
 - 1.26(3H, t, J=7.1Hz). 1.70~1.81(2H, m), 1.95~2.02(2H, m),
 - 2.54(1H, tt, J=11.2Hz, 3.8Hz), 2.97~3.06(2H, m), 4.14(2H, q, J=7.1Hz),
 - 4.32~4.39(4H, m). 4.86(1H, t, J=5.5Hz), 5.98(3H, s).
 - 6. 81(1H, d, J=7.7Hz), 6. 84~6. 89(2H, m), 7. 39(1H, dd, J=9.0Hz, 2. 4Hz).
 - 7.47(1H, d, J=2.4Hz), 7.55(1H, d, J=9.0Hz)

ンジル) アミノー 6 -クロロキノリン

a)で得られた化合物 150mg、1 N水酸化ナトリウム水溶液 1 ml、エタノール 10mlの混合物を60℃の油浴中 2 時間加熱した。反応液を濃縮し、水を加え、さらに1 N塩酸 1 mlを加え中和し、生じた結晶を濾取し、水洗、乾燥することにより、標題化合物130mg を得た。

·分子式 ; C23H22ClN3O4

・収率(%);92

・融点(℃);235~237

· Mass m/e : 440(M+1)

• NMR δ (DMS0-d₆):

1.37~1.50(2H,m), 1.77~1.86(2H,m), 2.89~3.00(2H,br,3 peak),

4.20~4.28(2H, br. 2 peak), 4.42(2H, d, J=5.7Hz), 5.96(2H, s).

5.97(1H.s), 6.85(1H.d., J=7.9Hz), 6.92(1H.dd, J=7.9Hz, 1.5Hz),

6.98(1H.d.J=1.5Hz), 7.42(2H.brs), 7.58(1H.brs), 8.15(1H.brs)

実施例 2 5 6

2-(4-カルポキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノ-6-クロロキノリン

実施例255の方法に準じて標題化合物を得た。

·分子式 ; C23H23Cl2N3O3

・融点 (℃) : 282 ~283

• Mass m/e; 460(M+1)

• NMR δ (DMSO-d₆);

1.36~1.48(2H, m), 1.76~1.84(2H, m), 2.43~2.53(1H, m),

2.91(2H, t, J=11.2Hz), 4.26(2H, brd, J=13.2Hz), 4.44(2H, d, J=5.9Hz),

5.97(1H, s), 7.10(1H, d, J=8.6Hz), 7.36(1H, dd, J=8.6Hz, 2.2Hz),

7.38(2H, s), 7.50(2H, brs and d, J=2.2Hz), 8.11(1H, s)

実施例 2 5 7

<u>2-メトキシー4-(3-クロロー4-メトキシベンジル)アミノー6-クロロ</u> キノリン

2,6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキノリン 200mg、メタノール 0.5ml、カリウム tーブトキシド 200mg、1,4-ジオキサン3mlの混合物を1時間加熱還流した。反応液を冷却後、水を加え、酢酸エチルで抽出し、酢酸エチル層は飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、濃縮した。シリカゲルカラムクロマトグラフィー(10~30%酢酸エチル/ヘキサン)で精製後、酢酸エチルーヘキサンから再結晶して、標題化合物 150mgを得た。

·分子式; C18H18Cl2N2O2

・収率(%);76

・融点(℃);170~171

·NMR δ(CDCI₃) :

3. 93(3H, s). 4. 42(2H, d, J=5. 2Hz), 5. 22(1H, t, J=5. 2Hz), 6. 46(1H, s),

6.96(1H, d, J=8.4Hz), 7.25(1H, dd, J=8.4Hz, 2.2Hz), 7.41(1H, d, J=2.2Hz),

7.59(1H, dd, J=9.0Hz, 2.2Hz), 7.66(1H, d, J=2.2Hz), 7.85(1H, d, J=9.0Hz)

実施例 2 5 8

2-(3, 4-メチレンジオキシベンジル) アミノー4-(4-カルボキシピペリジノ) -6-クロロキノリン

実施例 253 の b)で副生した 4 , 6- ジクロロー2- (3 , 4- メチレンジオキシベンジル)アミノキノリン 140mgを用いて実施例 255 と同様の操作を行い、標題化合物 130mgを得た。

·分子式 ; C23H22ClN3O4

・収率(%);99

・融点(℃);270~272

· Mass m/e : 440(M+1)

• NMR δ (DMSO-d₆);

1.78~1.89(2H, m), 1.96~2.04(2H.m), 2.70~2.79(2H, m),

3.26~3.36(2H, m), 4.49(2H, d, J=5.7Hz), 5.96(2H, s), 6.37(1H, s),

6.85(2H.s), 6.94(1H.s), 7.37(1H,t,J=5.7Hz),

7.41(1H, dd, J=8.8Hz, 2.4Hz), 7.46(1H, d, J=8.8Hz), 7.60(1H, d, J=2.4Hz) 実施例 2 5 9

<u>2-クロロー4-(3-クロロー4-メトキシベンジル) アミノー6-シアノキ</u> ノリン

a) 4-ヒドロキシキノリン-2-オン-6-カルボン酸

4-アミノベンゼン-1, 4-ジカルボン酸ジメチルエステルから出発し、ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー、68巻、1285頁(1946年)と同様の操作で標題化合物を得た。

- NMR δ (DMS0-d₆);
 - 5.79(1H, s), 7.31(1H, d, J=8.6Hz), 8.02(1H, dd, J=8.6Hz, 2.0Hz),
 - 8.39(1H.d.J=2.0Hz), 11.51(1H.s), 11.63(1H.brs), 12.86(1H.brs)

b) 2, 4-ジクロロキノリン-6-カルボキサミド

a)で得られた化合物 9 g、オキシ塩化リン50mlの混合物を 1 時間加熱還流した。反応液を濃縮し、残渣に酢酸エチルーアセトンを加えて均一の懸濁液とし、 氷冷した濃アンモニア水の中に攪拌しながらゆっくり注いだ。30分後、析出した 結晶を濾取し、水、酢酸エチルで洗った後、乾燥して、標題化合物8.96gを得た。

- NMR δ (DMSO-d₆);
 - 7.72(1H, brs), 8.06(1H, s), 8.10(1H, d, J=8.8Hz),
 - 8.34(1H, dd, J=8.8Hz.2.0Hz), 8.43(1H, brs), 8.73(1H, d, J=2.0Hz)
- c) $2, 4-\frac{3}{2}$

WO 93/07124 PCT/JP92/01258

b)で得られた化合物 3 g、塩化リチウム 300mg、オキシ塩化リン30mlの混合物を 2 時間加熱還流した。反応液を濃縮し、ベンゼン 120mlを加え、飽和炭酸水素ナトリウム水溶液で洗い、ベンゼン層は飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、シリカゲルベッドを通して濾過後、シリカゲルはさらにベンゼンで洗い、合わせて濃縮し、残渣を酢酸エチルーへキサンから再結晶して、標題化合物 2.15 g を得た。

- · NMR δ (CDCl₃) :
 - 7.65(1H, s), 7.95(1H, dd, J=8.8Hz, 1.8Hz), 8.14(1H, d, J=8.8Hz),
 - 8.60(1H, d, J=1.8Hz)

·分子式 ; C18H13Cl2N3O

・収率(%);38

・融点(℃);254~255

• NMR δ (CDCl₃) :

- 3.94(3H, s), 4.45(2H, d, J=4.9Hz), 5.41(1H, d, J=4.9Hz), 6.54(1H, s),
- 6. 98(1H, d, J=8. 4Hz). 7. 26(1H, dd, J=8. 4Hz, 2. 2Hz). 7. 41(1H, d, J=2. 2Hz),
- 7.80(1H, dd, J=8.8Hz, 1.6Hz), 7.97(1H, d, J=8.8Hz), 8.08(1H, d, J=1.6Hz)

実施例 2 6 0

<u>2- (4-カルボキシピペリジノ) - 4- (3-クロロ-4-メトキシベンジル)</u> <u>アミノ-6-シアノキノリン</u>

2-クロロー4-(3-クロロー4-メトキシベンジル)アミノー6-シアノキノリン 750mg、イソニペコチン酸 1.6ml、N-メチルー2-ピロリドン5mlの混合物を 130℃油浴中3時間加熱した。冷後、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20~40%酢酸エチル/ヘキサン)に付し、次いで酢酸エチルーヘキサンから再結晶して、標題化合物 860mgを得た。

- NMR δ (CDCI₃);
 - 1.26(3H, t, J=7.1Hz), 1.68 \sim 1.79(2H, m), 1.95 \sim 2.03(2H, m).
 - 2.58(1H, tt, J=11.0Hz, 4.0Hz), 3.03~3.12(2H, m), 3.92(3H.s),
 - 4.15(2H, q, J=7.1Hz), 4.36~4.43(4H, m), 5.08(1H, t, J=5.1Hz),
 - 5. 94(1H, s), 6. 95(1H, d, J=8. 4Hz), 7. 26(1H, dd, J=8. 4Hz. 2. 2Hz),
 - 7. 42(1H, d, J=2.2Hz), 7. $55\sim$ 7. 61(2H, m), 7. 88(1H, s)
- a) で得られた化合物 500mg、1 N水酸化ナトリウム水溶液 2 ml、テトラヒドロフラン20ml、エタノール25mlの混合物を50℃で2時間反応させた。1 N塩酸 2

mIを加え、約20ml程留去すると、結晶が析出してきた。この結晶を濾取し、水、 酢酸エチルで洗った後、乾燥して、標題化合物 460mgを得た。

·分子式 ; C24H23C1N3O3

· 収率(%);98

・融点(℃);274~276 (分解)

• NMR δ (DMSO-d₆);

1.35~1.47(2H, m), 1.78~1.87(2H, m), 2.47~2.56(1H, m),

2.95~3.04(2H, m), 3.81(3H, s), 4.30~4.39(2H, m), 4.46(2H, d, J=5.7Hz),

6.01(1H, s), 7.11(1H, d, J=8.6Hz), 7.37(1H, dd, J=8.6Hz, 2.2Hz),

7. 40(1H. d. J=8. 8Hz), 7. 52(1H. d. J=2. 2Hz), 7. 65(1H. dd, J=8. 8Hz, 1. 6Hz),

7.68(1H, t. J=5.7Hz). 8.55(1H, d. J=1.6Hz). 12.20(1H, brs)

実施例 2 6 1

2-クロロー8-(3, 4-メトキシジオキシベンジル) アミノピリド〔2, 3-d〕 ピリミジン

2, 8-ジクロロピリド〔2, 3-d〕ピリミジン 118mgの20mlテトラヒドロフラン溶液にトリエチルアミン66mg、ピペロニルアミン89mgを加え、室温で16時間攪拌した。水を加え、析出した結晶を濾取し、標題化合物166mg を得た。

·分子式 ; C₁₅H₁₁ClN₄O₂

・収率(%);89

・融点(℃);200~202

• Mass m/e ; 315(M+1)

• NMR δ (DMSO-d₆) :

4.64(1H, d, J=5.6Hz), 5.97(2H, s), 6.85(1H, d, J=8.0Hz).

6.87(1H, d, J=8.0Hz), 6.96(1H, s), 7.55(1H, dd, J=8.0Hz, 4.4Hz),

8.73(1H, dd, J=8.0Hz, 1.6Hz), 8.96(1H, dd, J=4.4Hz, 1.6Hz),

9.46(1H, t, J=5.6Hz)

実施例262

2-(4-カルボキシピペリジノ) -8-(3, 4-メチレンジオキシベンジル) アミノピリド $\{2, 3-d\}$ ピリミジン

a) 2-(4-x+2) 2-(3, 4-x+2) 2-(3, 4-x+2) 2-(3, 4-x+2) 2-(3, 4-x+2) 2-(3, 4-x+2) 2-(3, 4-x+2)

2-2000-8-(3, 4-メチレンジオキシベンジル) アミノピリド〔2, 3-d〕 ピリミジン 127mgの 8 mlテトラヒドロフラン溶液にトリエチルアミン41

WO 93/07124 PCT/JP92/01258

mg、イソニペコチン酸エチル190mg を加え、2時間還流する。反応液に水を加え、クロロホルムで2回抽出し、合わせた有機層を硫酸マグネシウムで乾燥し、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、標題化合物 175mg (収率 100%)を得た。

b) $2-(4-\pi)\pi+\nu = 2\pi$ $2-(4-\pi)\pi+\nu = 2\pi$

2-(4-エトキシカルボニルピペリジノ)-8-(3, 4-メチレンジオキシベンジル)アミノピリド [2, 3-d] ピリミジン 170mgの10mlエタノール溶液に1N水酸化ナトリウム1.56mlを加え、室温で6時間攪拌した。1N塩酸、水を加えて中和した後、析出した結晶を遮取し、標題化合物 121mgを得た。

·分子式 ; C21H21N5O4

・収率(%);76

・融点(℃):255~256

· Mass m/e ; 408(M+1)

• NMR δ (DMSO-d₆);

1.39(2H, m), 1.80(2H, m), 2.51(1H, m), 3.01(2H, brt, J=11.2Hz),

4.56(2H, d, J=5.6Hz), 4.61(2H, brd, J=12.8Hz), 5.94(2H, s),

6.82(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.93(1H, s),

7.03(1H.dd, J=8.0Hz, 4.4Hz), 8.38(1H.dd, J=8.0Hz, 1.6Hz),

8. 61(1H. dd, J=4. 4Hz. 1. 6Hz), 8. 70(1H. t, J=5. 6Hz), 12. 16(1H. brs)

実施例 2 6 3

<u>5-クロロー2-メタンスルホニルー1-(3,4-メチレンジオキシベンジル)</u> ベンズイミダブール

6-クロロ-2-メルカプトベンズイミダゾール8.89gをジメチルホルムアミド 150mlに溶解し、氷冷下、炭酸カリウム6.65gとヨウ化メチル6.15gを加え、同温で50分間攪拌した。水を加え、酢酸エチルで抽出した。乾燥後、減圧下濃縮し、粗 6-クロロ-2-メチルチオペンズイミダゾールを得た。

上で得られた粗精製物を塩化メチレン 100mlに溶解し、80%m-CPBA 17.3 gを氷冷下加え、室温で一夜攪拌した。チオ硫酸ナトリウム7gを加え、室温で30分間攪拌し、水を加えた。有機層を分取し、乾燥後、シリカゲルカラムクロマトグラフィーに付して6-クロロ-2-メタンスルホニルベンズイミダゾール10 gを得た。

6-クロロ-2-メタンスルホニルベンズイミダゾール 2.3gをジメチルホルムアミド30m1に溶解し、氷冷下60%水素化ナトリウム 480mg、ピペロニルクロリド2.04gを加え、80℃で4時間加熱した。室温で一夜放置後、不溶物を濾去し、減圧下濃縮した。シリカゲルカラムクロマトグラフィーに付し、標題化合物を得た。

·分子式 : C18H18C1N2O4S

WO 93/07124 PCT/JP92/01258

・収率(%);25

・融点(℃);129~131

· Mass m/e : 365(MH+)

• NMR δ (CDC1₃);

3.48(3H, s), 5.64(2H, s), 5.91(2H, s), 6.73~6.76(3H, m),

7. 27(1H. d, J=8. 8Hz), 7. 31(1H. dd, J=8. 8Hz, 2. 0Hz).

7.80(1H, d, J=2.0Hz)

実施例 2 6 4

6-0ロロ-2-メタンスルホニル-1-(3, 4-メチレンジオキシベンジル)

ベンズイミダゾール

実施例263において、5-クロロ-2-メタンスルホニル-1-(3,4-メチレンジオキシベンジル)ベンズイミダゾール溶出後に更に溶出することによ り、標題化合物を得た。

×°

·分子式 ; C16H13ClN2O4S

·収率(%);22

・融点(℃);140~142

· Mass m/e : $365(MH^+)$

·NMR δ (CDC1₃) :

3.48(3H.s). 5.62(2H.s), 5.93(2H.s), 6.73~6.77(3H.m),

7. 32(1H, d, J=8. 4Hz), 7. 33(1H, d, J=1. 2Hz), 7. 74(1H, dd, J=8. 4Hz, 1. 2Hz)

実施例 2 6 5

WO 93/07124

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

5-クロロ-2-スルホニルメチル-1-(3, 4-メチレンジオキシベンジル)ベンズイミダゾールと6-クロロ-2-スルホニルメチル-1-(3, 4-メチレンジオキシベンジル)ベンズイミダゾールの混合物 448mgをメタノール20mlに溶解し、28%ナトリウムメトキシド10mlを加え、 1.5時間加熱還流した。氷冷し、10%塩酸で中和し、酢酸エチルで抽出した。乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィーに付して標題化合物を得た。

·分子式 ; C16H13ClN2O3

・収率(%);31

・融点(℃);117~118

• Mass m/e; 317(MH+)

• NMR δ (CDC1₈) :

4.21(3H, s), 5.01(2H, s), 5.92(2H, s), 6.65(1H, d, J=1.6Hz).

6. 68(1H, dd, J=8. 0Hz, 1. 6Hz), 6. 73(1H, d, J=8. 0Hz),

6. 96(1H, d, J=8. 4Hz), 7. 05(1H, dd, J=8. 4Hz, 2. 0Hz),

7.51(1H, d, J=2.0Hz)

WO 93/07124 PCT/JP92/01258

実施例 2 6 6

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

実施例265において、5-クロロ-2-メトキシ-1-(3,4-メチレンジオキシベンジル)ベンズイミダゾール溶出後に更に溶出することにより、標題化合物を得た。

·分子式 ; C16H12ClN2O3

・収率(%);26

・融点(℃);133~134

· Mass m/e : 317(MH+)

· NMR δ (CDCl₃);

4.21(3H,s), 4.99(2H,s), 5.92(2H,s), 6.65(1H,d,J=1.6Hz),

6.68(1H, dd, J=8.0Hz, 1.6Hz), 6.74(1H, d, J=8.0Hz), 7.05(1H, d, J=1.6Hz),

7. 10(1H, dd, J=8.8Hz, 1.6Hz), 7. 43(1H, d, J=8.8Hz)

<u>実施例267~280</u>

実施例263~266の方法に準じて以下の化合物を得た。

実施例 2 6 7

1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

$$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\rangle$$

·分子式 ; C₁₅H₁₂N₂O₂

• 収率(%);34

・融点(℃):107~108

· Mass m/e; $253(MH^+)$

· NMR δ (CDCl₃);

5.23(2H,s), 5.92(2H,s), 6.63(1H,d,J=1.6Hz).

6.70(1H, dd, J=8.0Hz, 1.6Hz), 6.76(1H, d, J=8.0Hz), 7.23~7.32(3H, m),

7.80~7.83(1H.m), 7.92(1H.s)

実施例 2 6 8

1-(2-プロポキシベンジル) ベンズイミダゾール

·分子式 ; C17H18N2O

・収率(%);89

・融点(℃);85~86

· Mass m/e ; 267(MH+)

· NMR δ (CDC1₃):

1.02(3H, t, J=7.4Hz), 1.78~1.86(2H, m), 3.95(2H, t, J=6.6Hz),

5.35(2H,s), 6.86~6.90(2H,m), 7.06~7.09(1H,m),

7. 23~7. 28(3H, m), 7. 40~7. 43(1H, m), 7. 79~7. 82(1H, m),

7.99(1H.s)

実施例 2 6 9

2-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

·分子式 ; C₁₅H₁₂N₂O₂

• 収率(%);62

・融点(℃):143~146

· Mass m/e : 253(MH+)

• NMR δ (DMSO-d₆);

4.43(2H,s), 5.99(2H,s), 6.89~6.94(2H,m), 7.09(1H,s),

7.48~7.52(2H, m), 7.72~7.76(2H, m)

<u> 実施例270</u>

1-(3,4-メチレンジオキシベンジル)-6-メトキシベンズイミダゾール

$$Me0 \xrightarrow{N} N$$

·分子式 ; C16H14N2O3

・収率(%):70

・融点(℃);134~135

• Mass m/e; 283(M+1)+

• NMR δ (CDCl₃);

3.82(3H,s), 5.21(2H,s), 5.95(2H,s), 6.64(1H,d,J=1.8Hz),

6.71(1H. dd, J=7.6Hz, 1.8Hz), 6.75(1H, d, J=2.4Hz), 6.78(1H, d, J=7.6Hz),

6. 93(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 70(1H, d, J=8. 8Hz), 7. 90(1H, s)

実施例 2 7 1

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

·分子式 ; C16H13ClN2O3

· 収率 (%);81

・融点(℃);108~109

· Mass m/e; 317(M+1)+

• NMR δ (CDCl₂):

3.84(3H.s), 5.322(2H.s), 5.97(2H,s), 6.40(1H,s), 6.80(1H,s),

6.91(1H.s), 6.95(1H.d.J=8.8Hz), 7.72(1H.d.J=8.8Hz), 7.96(1H.s)

実施例272

$$Me0 \longrightarrow N \longrightarrow 0$$

·分子式 ; C17H16N2O3

・収率(%);69

・融点(℃);油状物質

• Mass m/e ; 297(M+1)*

· NMR δ (CDCI₃) :

3.04(2H, t, J=6.8Hz), 3.87(3H, s), 4.31(2H, t, J=6.8Hz),

5. 93(2H, s), 6. 43(1H, dd, J=8. 0Hz, 2. 0Hz), 6. 52(1H, d, J=2. 0Hz),

6. 68(1H. d. J=8. 0Hz). 6. 77(1H. d. J=2. 4Hz), 6. 92(1H. dd. J=8. 8Hz. 2. 4Hz),

÷

7.57(1H, s). 7.67(1H, d, J=8.8Hz)

実施例273

6-0ロロー1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

·分子式 ; C15H11ClN2O2

・融点(℃);122~123

• Mass m/e; $287(MH^+)$

• NMR δ (CDCl₃);

5.18(2H, s), 5.94(2H, s), 6.61(1H, d, J=1.2Hz),

6. 68(1H, dd, J=8. 0Hz, 1. 2Hz), 6. 77(1H, d, J=8. 0Hz), 7. 22~7. 40(2H, m),

7.71(1H, d, J=8.8Hz), 7.90(1H, s)

実施例 2 7 4

5-クロロー1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

$$C1$$
 N
 0
 0

·分子式 ; C15H11ClN2O2

・収率(%);83

・融点(℃);113~114

· Mass m/e ; 287(MH⁺)

• NMR δ (CDCl₃);

5.20(2H.s), 5.93(2H.s), 6.60(1H.d.J=1.6Hz),

6. 67(1H, dd, J=7. 6Hz, 1. 6Hz), 7. 76(1H, d, J=7. 6Hz), 7. 18~7. 20(2H, m),

7.78(1H.s), 7.93(1H.s)

実施例275

 $\frac{6-2-1}{2}$ $\frac{6-2-1}{2}$ $\frac{6-2-1}{2}$ $\frac{3-(3,4-2+1)}{2}$ $\frac{3-(3,4-2+1)}{2}$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

·分子式 ; C17H15ClN2O2

・収率(%);40

・融点(℃);107~109

• Mass m/e : 315(MH+)

• NMR δ (CDCl₃);

2.13~2.21(2H, m). 2.54(2H, t, J=7.4Hz). 4.11(2H, t, J=7.2Hz).

5.94(2H, s), 6.59(1H, dd, J=8.0Hz, 1.6Hz), 6.64(1H, d, J=1.6Hz),

6.75(1H. d. J=8.0Hz). 7.24(1H. dd. J=8.4Hz.2.0Hz).

7.31(1H, d, J=2.0Hz), 7.71(1H, d, J=8.4Hz), 7.84(1H, s)

<u>実施例276</u>

6-2-1-2-ホルミル-1-(3, 4-メチレンジオキシベンジル) ベンズ

4,0

イミダゾール

·分子式 ; C18H11ClN2Os

• 収率(%);55

・融点(℃);120~122

• Mass m/e; $315(MH^+)$

• NMR δ (CDC1₃);

5.71(2H.s), 5.93(2H.s), 6.64(1H.d.J=1.6Hz),

6.70(1H, dd, J=7.6Hz, 1.6Hz), 6.75(1H, d, J=7.6Hz),

7.36(1H, dd, J=8.8Hz, 2.0Hz), 7.46(1H, d, J=2.0Hz), 7.86(1H, d, J=8.8Hz),

10.11(1H.s)

実施例277

2-アミノー6-クロロ-1-(3, 4-メチレンジオキシベンジル)ベンズイミダゾール

·分子式 ; C15H12ClN3O2

· 収率(%);10

・融点(℃);223~224

· Mass m/e ; 302(MH+)

• NMR δ (DMSO-d₆) :

5.13(2H, s), 5.95(2H, s), 6.68 \sim 6.71(3H, m), 6.77(1H, d, J=1.6Hz),

6.84(1H, d, J=7.6Hz), 6.90(1H, dd, J=8.4Hz, 2.4Hz), 7.07(1H, d, J=8.4Hz),

7. 18(1H, d, J=2. 4Hz)

実施例 2 7 8

 $\frac{6-000-2-(イミダゾール-1-イル)-1-(3, 4-メチレンジオキ}$ シベンジル) ベンズイミダゾール

·分子式 ; C18H13ClN4O2

· 収率(%);41

・融点(℃);127~129

· Mass m/e ; 353(MH+)

- NMR δ (CDCl₃):

5. 20(2H, s), 5. 97(2H, s), 6. 48~6. 50(2H, m), 6. 76(1H, d, J=7. 2Hz).

7.23~7.35(4H, m), 7.72(1H, d, J=8.4Hz), 7.89(1H, s)

<u>実施例279</u>

·分子式 ; C21H2oClNaO4

· 収率 (%);84

・融点(℃);201~202

• Mass m/e; $414(MH^+)$

• NMR δ (DMSO-d₆) :

1.64~1.77(2H, m), 1.84~1.90(2H, m), 2.40~2.46(1H, m).

2.92~3.00(2H,m), 3.43~3.47(2H,m), 5.15(2H,s), 5.96(2H,s),

6. 60(1H, dd, J=8. 0Hz, 1. 6Hz), 6. 72(1H, d, J=1. 6Hz), 6. 82(1H, d, J=8. 0Hz),

7.03(1H, dd, J=8.4Hz, 2.0Hz), 7.18(1H, d, J=8.4Hz), 7.42(1H, d, J=2.0Hz)

実施例280

·分子式 ; C21H20ClN3O4

・融点(℃);アモルファス

· Mass m/e : 414(MH+)

- NMR δ (DMSO-d₆);

1.70~1.79(2H, m), 1.80~1.89(2H, m), 2.31~2.42(1H, m),

2.90~2.97(2H, m), 3.39~3.45(2H, m), 5.15(2H, s), 5.96(2H, s).

6. 61 (1H. d. J=8. 0Hz), 6. 73 (1H. s), 6. 83 (1H. d. J=8. 0Hz),

7.06(1H, dd, J=8.4Hz, 2.0Hz), 7.30(1H, d, J=2.0Hz), 7.38(1H, d, J=8.4Hz)

実施例281~291

実施例88~94の方法に準じて以下の化合物を得た。

実施例281

·分子式 ; C23H21Cl2N5O3

·収率(%);98

・融点(℃);255~256 (分解)

· Mass m/e : 486(M+1)+

· NMR δ (DMSO-d₆) :

1.36(2H. brm). 1.80(2H. brm). 2.52(1H. m). 3.03(2H. m). 3.78(3H. s).

٩

4.59(2H, d, J=6.0Hz), 4.59(2H, brm), 7.29(1H, d, J=8.8Hz), 7.50(2H, s),

7.75(1H, dd, J=8.8Hz, 1.6Hz), 8.53(1H, d, J=1.6Hz),

8.85(1H, brt, J=6.0Hz), 12.18(1H, brs)

実施例282

2, 6-ジクロロー4-(4-エトキシカルボニルピペリジノ)キナゾリン

·分子式 ; C16H17Cl2N2O2

· 収率 (%);100

・融点(℃);101~103

• Mass m/e : 354(M+1)

• NMR δ (CDCl₃);

1.30(3H, t, J=7.2Hz), 1.99(2H, m), 2.14(2H, m), 2.69(1H, m),

3.35(2H, dt, J=11.2Hz, 2.4Hz), 4.20(2H, q, J=7.2Hz),

4.31(2H, dt, J=13.6Hz, 3.6Hz), 7.67(1H, dd, J=8.8Hz, 2.2Hz),

7.76(1H. d. J=8.8Hz). 7.79(1H. d. J=2.2Hz)

実施例283

2-[N-[2-(2-ビリジル) エチル]] メチルアミノー<math>4-(3, 4-) チレンジオキシベンジル) アミノー6-クロロキナゾリン 二塩酸塩

·分子式 ; C24H22C1N5O2·2HC1

•収率(%);94

・融点(℃):234~236 (分解)

· Mass m/e; 448(M+1)+

• $\dot{N}MR$ δ (DMSO-d₆):

3.2~3.3(5H, br), 4.12(2H, br), 4.61(2H, br), 5.97(2H, s),

6.82(1H.brd), 6.88(1H.brd), 7.00(1H.s), 7.74(2H.br),

7.86(1H, dd, J=9.2Hz, 2.0Hz), 8.01(1H, br), 8.26(1H, br),

8.57(1H, d, J=2.0Hz), 8.74(1H, br), 10.16(1H, brs), 12.12(1H, brs)

実施例284

2-(4-(カルボキシピペリジノ)-4-(3, 4-ジヒドロキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C21H21ClN4O4

・収率(%);95

・融点(℃);216~218(分解)

• Mass m/e; $429(MH^+)$

• NMR δ (DMSO-d₆);

1.38~1.47(2H, m), 1.80~1.84(2H, m), 2.44~2.49(1H, m),

2.93~3.00(2H, m), 4.48(2H, d, J=5.6Hz), 4.57~4.61(2H, m),

6. $60 \sim 6$. 65(2H.m), 6. 74(1H.d.J=1.6Hz), 7. 24(1H.d.J=8.8Hz).

7.46(1H, dd, J=8.8Hz, 2.0Hz), 8.15(1H, d, J=2.0Hz), 8.48(1H, brs),

8.675(1H, s), 8.75(1H, s), 12.14(1H, brs)

実施例285

2, 6-ジクロロー4-(5-ヒドロキシペンチル)アミノキナゾリン

·分子式 ; C13H15Cl2N30

・収率(%);82

・融点(℃);134~135

• Mass m/e; 300(M+1)+

• NMR δ (CDCl₃);

1.53(2H, m), 1.65(2H, m), 1.76(2H, m), 3.63(2H, m), 3.66(2H, m),

7.61(1H, dd, J=8.8Hz, 2.4Hz), 7.67(1H, d, J=8.8Hz), 7.85(1H, brs),

8. 20(1H, d, J=2. 4Hz)

実施例 2 8 6

 $\mathbf{f}_{\mathbf{q}}$

WO 93/07124 PCT/JP92/01258

2-(4-カルボキシピペリジノ)-4-(5-ニトロキシペンチル)アミノー6-クロロキナゾリン

·分子式 ; C19H24C1N5O5

• 収率 (%);80

・融点(℃);176~179 (分解)

· Mass m/e ; 438(MH+)

· NMR δ (DMSO-d₆) :

1.34~2.00(10H, m), 2.57~2.64(1H, m), 3.18~3.59(4H, m),

4.44~4.58(4H, m), 7.72~7.86(2H, m), 8.39~8.41(1H, m),

12.31(2H, brs)

<u>実施例287</u>

2-(カルボキシメチル)メチルアミノ-4-(3-ピリジルメチル)アミノ-6-クロロキナゾリン

·分子式; C17H16ClN502

• 収率(%);97

・融点(℃);222~223

• Mass m/e : 358(M+1)

• NMR δ (DMSO-d₆):

3.10(3H, s), 4.22(2H, brs), 4.63(2H, brs), 7.31(2H, m), 7.48(1H, m),

7.72(1H, m), 8.14(1H, d, J=2.4Hz), 8.43(1H, d, J=4.8Hz), 8.59(1H, m),

8.66(1H, brs)

実施例288

2 - (N - (3 - カルボキシプロピル) - N - メチルアミノ) - 4 - (3 - ピリ ジルメチル) アミノ <math>-6 - 0 ロロキナゾリン

・分子式 ; C18H20ClN5O2

・収率(%);41

・融点(℃);110~112

• Mass m/e : 386(M+1)

• NMR δ (DMSO-d₆);

1.67(2H, brs), 2.09(2H, m), 3.02(3H, s), 3.53(2H, t, J=6.8Hz),

4.67(2H.d, J=5.6Hz), 7.24(2H.d, J=8.8Hz), 7.31(1H, dd, J=8.0Hz, 4.8Hz),

WO 93/07124 PCT/JP92/01258

7.47(1H. dd, J=8.8Hz, 2.0Hz), 7.73(1H, d, J=8.0Hz), 8.13(1H, d, J=2.0Hz),

8.41(1H.d.J=4.8Hz). 8.58(1H.s). 8.62(1H.brs). 12.04(1H.brs)

実施例289

2-(4-カルボキシピペリジノ)-4-(2-ピリジルメチル) アミノー<math>6-

クロロキナゾリン

·分子式 ; C20H20ClN5O2

・収率(%):92

・融点(℃);235~237

· Mass m/e ; 398(M+1)

• NMR δ (DMSO-d₆) :

1.25~1.45(2H, m), 1.71~1.83(2H, m), 2.45~2.54(1H, m),

2.93~3.10(2H, m), 4.37~4.48(2H, m), 4.77(2H, d, J=5.5Hz),

7.25(1H, dd, J=7.7Hz, 5.0Hz), 7.37(1H, d, J=7.7Hz), 7.48(1H, brs),

7.63(1H, brs). 7.73(1H, td, J=7.7Hz.1.6Hz). 8.34(1H, brs).

8.51(1H, brd, J=5.0Hz). 12.23(1H, brs)

<u>実施例290</u>

2-(4-カルボキシピペリジノ)-4-(3-ピリジルメチル)アミノ-6-クロロキナゾリン

·分子式 ; C20H20ClN5O2

・収率(%);93

・融点(℃);>250

• Mass m/e; 398(M+1)

• NMR δ (DMSO-d₆):

1.45~1.60(2H, m), 1.84~1.97(2H, m), 2.58~2.68(1H, m),

3. $25\sim3$. 45(2H, m), 4. $45\sim4$. 54(2H, m), 4. 80(2H, d, J=5.7Hz),

7.41(1H, dd, J=7.9Hz, 4.8Hz), 7.82(1H, dd, J=9.0Hz, 2.0Hz),

7.86 \sim 7.96(2H.m), 8.50(1H.d.J=4.8Hz), 8.55(1H.d.J=1.6Hz).

8.69(1H.s)

実施例 2 9 1

<u>2-(4-カルボキシピペリジノ)-4-(4-ピリジルメチル)アミノ-6-</u> クロロキナゾリン

·分子式 ; C20H20ClN5O2

• 収率 (%);89

・融点 (℃) ;167 ~168

• Mass m/e; 398(M+1)

· NMR δ (DMSO-d₆);

1.24~1.36(2H, m). 1.68~1.77(2H, m). 2.40~2.49(1H, m).

2.86~2.96(2H, m), 4.42~4.50(2H, m), 4.66(2H, d, J=5.7Hz),

7.28(1H, d, J=9.0Hz), 7.34(2H, d, J=6.0Hz), 7.51(1H, dd, J=9.0Hz, 2.4Hz),

8.18(1H, d, J=2.4Hz). 8.47(2H, d, J=6.0Hz). 8.74(1H, t, J=5.7Hz)

実施例 2 9 2

2-(6-ヒドロキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 860mgをピリジン15mlに溶解し、氷冷下メチルクロリド 570mgを加え、10時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。乾燥後、溶媒を濃縮し、粗<math>2-(6-トシルオキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 1.2gを得た。

28

この粗生成物にヨウ化ナトリウム3g、ジメチルホルムアミド30mIを加え、60 ℃で1時間加熱した。水を加え、酢酸エチルで抽出した。有機層を塩化ナトリウ ム水溶液で洗い、乾燥後、濃縮した。シリカゲルカラムクロマトグラフィーで精製し、2-(6-ヨードヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 450mgを得た。

2-(6-3-)ドヘキシルオキシ)-4-(3,4-)メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 410mgをアセトニトリル15mlに懸濁し、硝酸銀 900mgを加え、60°Cで 1 時間加熱した。水、酢酸エチルを加え、不溶物をセライト遮去し、有機層を分取し、乾燥後、シリカゲルカラムクロマトグラフィーに付し、標題化合物を 340mg得た。

·分子式 ; C22H23C1N4O6 (474.5)

• 収率(%);95

・融点(℃);121~122

· Mass : 475 (MH+)

• NMR δ (CDCl₂):

1. $42\sim1.59(4H, m)$, $1.70\sim1.89(4H, m)$, 4.43(4H, q, J=6.8Hz),

4.73(2H, d, J=4.4Hz), 5.95(2H, s), 6.28(1H, br), 6.77(1H, d, J=8.0Hz),

6.83(1H, d, J=8.0Hz), 6.85(1H, s), 7.54(1H, d, J=8.8Hz),

7.58(1H, d, J=8.8Hz). 7.66(1H, s)

<u>実施例293</u>

2-(3-スルホキシプロポキシ)-4-(3,4-メチレンジオキシベンジル)アミノー6-2ロロキナゾリン ナトリウム塩

2-(3-ヒドロキシプロポキシ)-4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン1g、三酸化硫黄トリメチルアミン錯体 540 mgをピリジン10mlに懸濁し、室温で一夜攪拌する。酢酸エチルを加え、結晶を遮取する。結晶をメタノールに懸濁し、1N水酸化ナトリウムを加え溶解する。この溶液にエーテルを加えると結晶が析出する。これを濾取して標題化合物を400 mg (32%) 得た。

·分子式 ; C18H17ClN3NaO7S (489.5)

• 収率(%):32

・融点(℃);190~192 (分解)

· Mass : 490 (MH+)

• NMR δ (DMSO-d₆);

1.90~1.95(2H, m), 3.82(2H, t, J=6.4Hz), 4.28(2H, t, J=6.8Hz),

4.61(2H, d, J=5.6Hz), 5.95(2H, s), 6.84(2H, s), 6.98(1H, s),

7. 50(1H, d. J=8. 8Hz). 7. 64(1H, dd, J=8. 8Hz, 2. 4Hz), 8. 84(1H, d. J=2. 4Hz),

8.79(1H, t, J=1.6Hz)

実施例294

<u>2-(4-エトキシカルボニルピペリジノ)カルボニル-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン</u>塩酸塩

2-カルボキシー4-(3,4-メチレンジオキシベンジル)アミノー6-ク

ロロキナゾリン0.78g(2.2ミリモル)、イソニペコチン酸エチル0.50g(3.2ミリモル)のジメチルホルムアミド7μ1溶液に、氷冷攪拌下、シアノリン酸ジエチル0.50ml(3.3ミリモル)のジメチルホルムアミド3ml溶液、トリエチルアミン0.50ml(3.6ミリモル)を順次滴下し、30分間氷冷攪拌した後、室温にて3時間攪拌した。反応液に水を注ぎ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、塩酸-エタノール-エーテルより結晶化させ、標題化合物0.96gを得た。

·分子式 ; C₂₅H₂₅ClN₄O₅·HCl

・収率(%);82

・融点(℃);205~206 (分解)

• Mass m/e; $497(M+1)^+$

• NMR δ (DMSO-d₆);

1.18(3H, t, J=7.2Hz), 1.51(2H, m), 1.70(1H, m), 1.95(1H, m), 2.66(1H, m),

3.02(1H, m), 3.11(1H, m), 3.62(1H, m), 4.08(2H, q, J=7.2Hz), 4.31(1H, m),

4.71(1H, dd, J=14.9Hz, 6.0Hz), 4.78(1H, dd, J=14.9Hz, 6.0Hz).

5.97(2H, s), 6.84(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 1.2Hz).

6.97(1H, d, J=1.2Hz), 7.82(1H, d, J=9.2Hz), 7.97(1H, dd, J=9.2Hz, 2.0Hz).

8.67(1H, d, J=2.0Hz), 10.13(1H, brs)

実施例 2 9 5

2-(N-(2-スルホエチル) カルバモイル<math>)-4-(3,4-メチレンジオ キシベンジル) アミノー6-クロロキナゾリン 塩酸塩

2ーカルボキシー4ー(3, 4ーメチレンジオキシベンジル)アミノー6ークロロキナブリン0.50g(1.4ミリモル)、タウリンナトリウム塩0.28g(1.9ミリモル)のジメチルホルムアミド15ml溶液に、氷冷攪拌下、シアノリン酸ジエチル0.60ml(3.8ミリモル)、トリエチルアミン0.90ml(6.4ミリモル)を順次滴下し、数日間室温攪拌した。反応液に1N塩酸10mlを加え、水を加え、析出晶を濾取し、水で洗った後、風乾し、標題化合物0.61gを得た。

·分子式 ; C1.6H1.7ClN4O6S·HCl

·収率(%);93

·NMR δ (DMSO-d₆);

2.76(2H, t, J=6.4Hz), 3.67(2H, q, J=6.4Hz), 5.01(2H, d, J=5.6Hz),

5.99(2H, s), 6.88(1H, d, J=7.6Hz), 7.05(1H, dd, J=7.6Hz, 1.6Hz),

7.11(1H, d, J=1.6Hz), 8.09(1H, dd, J=8.8Hz, 2.0Hz),

8. 13(1H, d, J=8.8Hz), 8. 68(1H, d, J=2.0Hz), 9. 97(1H, t, J=5.6Hz),

10.55(1H.brs)

実施例 2 9 6

a) 2-(4-x)+2)カルボニルシクロヘキシルカルボニル) アミノー 5- クロロベンツアミド

2-アミノ-5-クロロベンツアミド 塩酸塩1.23g、N, N-ジイソプロピ

ルエチルアミン3 ml、テトラヒドロフラン 100mlの混合物に、室温で、4-エトキシカルボニルシクロヘキサンカルボニルクロリド 1.5gを加え、室温で一晩反応させた。水を加え、酢酸エチルで抽出し、水、飽和食塩水で洗った後、硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(30~35%酢酸エチル/ヘキサン)に付し、標題化合物 1.5gを得た。(シス、トランスの混合物)

- b) <u>2-(4-エトキシカルボニルシクロヘキシル)-6-クロロキナゾリン</u> -4-オン
- a)で得た化合物 1.3gをエタノール20mlに懸濁し、そこへ室温でカリウム tープトキシド 320mgを3回に分けて加え、室温で一晩反応させた。反応液を一部濃縮し、水を加え、次いで1N塩酸 3.5mlを加え、析出した結晶を濾取し、水洗後、五酸化リン上で真空乾燥し、標題化合物1.16gを得た。(シス、トランスの混合物)
- c) <u>2-(4-シス-エトキシカルボニルシクロヘキシル)-4,6-ジクロ</u>ロキナゾリン
- b)で得た化合物 1.0gにオキシ塩化リン20mlを加え、2時間加熱還流した。 反応液を濃縮し、残渣にクロロホルム50mlを加えて溶解し、氷冷した飽和炭酸水 素ナトリウム水溶液に注ぎ、クロロホルム層を取り、水層をクロロホルム30mlで 抽出し、合わせたクロロホルム層は飽和食塩水で洗い、硫酸マグネシウムで乾燥 後、シリカゲルベッドを通して濾過した。シリカゲルは10%酢酸エチル/ヘキサンで洗い、濾液を合わせて濃縮し、残渣をシリカゲルカラムクロマトグラフィー (5%酢酸エチル/ヘキサン)に付し、標題化合物 145mgを得た。
- NMR δ (CDCI₃) :
 - 1.28(3H, t, J=7.2Hz), 1.69 \sim 1.78(2H, m), 1.92 \sim 2.02(2H, m),
 - 2.05~2.21(4H, m), 2.61~2.68(1H, m), 3.05~3.13(1H, m),

PCT/JP92/01258

- 4.17(2H, q. J=7.2Hz). 7.83(1H, dd, J=9.2Hz, 2.4Hz). 7.94(1H, d, J=9.2Hz).
- 8. 19(1H. d. J=2. 4Hz)

同時により極性の高い成分として2-(4-トランス-エトキシカルボニルシクロヘキシル)-4, 6-ジクロロキナゾリン 470mgを得た。

- · NMR δ (CDCl₃);
 - 1.28(3H, t, J=7.2Hz), 1.57~1.69(2H, m), 1.71~1.84(2H, m),
 - 2.13~2.24(4H.m), 1.41(1H, tt, J=12.2Hz, 3.5Hz),
 - 2.99(1H, tt. J=12.2Hz, 3.5Hz), 4.15(2H, q, J=7.2Hz),
 - 7.84(1H, dd, J=9.2Hz, 2.4Hz), 7.94(1H, d, J=9.2Hz), 8.20(1H, d, J=2.4Hz)
- d) 2-(4-)スーエトキシカルボニルシクロヘキシル) -4-(3, 4-) メチレンジオキシベンジル) アミノー6-クロロキナゾリン
- c)で得た化合物 145mg、3,4-メチレンジオキシベンジルアミン80mg、トリエチルアミン20μ1、イソプロピルアルコール5mlの混合物を80℃で3時間反応させ、反応液を濃縮し、酢酸エチルー水で抽出した。酢酸エチル層は、水、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に付し、標題化合物190mg を得た。
- NMR δ (CDC1₃) :
 - 1.25(3H. t, J=7.2Hz), 1.66~1.75(2H.m), 1.84~1.72(2H.m),
 - 2.05~2.23(4H.m). 2.60~2.66(1H.m). 2.85~2.93(1H.m).
 - 4. 15(2H, q, J=7. 2Hz), 4. 74(2H, d, J=5. 6Hz), 5. 72(1H, t, J=5. 6Hz),
 - 5.96(2H, s), 6.79(1H, d, J=8.0Hz), 6.85~6.90(2H, m), 7.58~7.62(2H, m),
 - 7.74(1H, d, J=9.6Hz)

d)で得られた化合物にエタノール25ml、1N水酸化ナトリウム水溶液2mlを加え、60℃で8時間、さらに加熱還流で3時間反応させた。反応液を室温まで冷却し、1N塩酸水溶液2mlを加え、部分濃縮した。析出した結晶を濾取した後、水、ジエチルエーテルで洗い、五酸化リン上で真空乾燥し、標題化合物 138mgを得た。

·分子式 ; C23H22ClN3O4

· 収率(%);77

・融点(℃);152~153

• Mass m/e : 440(M+1)

• NMR δ (DMSO-d₆);

1.54~1.64(2H.m), 1.66~1.76(2H.m), 1.89~2.02(4H.m),

2.69~2.77(1H, m), 4.63(2H, d, J=5.6Hz), 5.96(2H, s),

6.84(1H, d, J=8.0Hz) 6.89(1H, dd, J=8.0Hz.1.6Hz), 6.95(1H, d, J=1.6Hz),

7. 63(1H, d, J=8. 8Hz), 7. 71(1H, dd, J=8. 8Hz, 2. 4Hz), 8. 36(1H, d, J=2. 4Hz),

8.71(1H, t, J=5.6Hz)

実施例 2 9 7

2-(4-1) クロールボキシシクロへキシル)-4-(3, 4-1) オキシベンジル)アミノ-6-0 ロロキナゾリン

a) 2-(4-h) 2-(1-h) 2-(1-h)

WO 93/07124 PCT/JP92/01258

実施例296のc)で得られたトランス異性体 145mgを用い、実施例296のd)と同様の操作を行い、標題化合物 180mgを得た。

- NMR δ (CDCl₃) :
 - 1.27(3H, t, J=7.2Hz), 1.54~1.67(2H, m), 1.70~1.83(2H, m),
 - 2.08~2.17(4H, m), 2.39(1H, tt. J=12.2Hz, 3.2Hz),
 - 2.79(1H. tt. J=12.2Hz, 3.2Hz), 4.14(2H, q, J=7.2Hz), 4.76(2H, d, J=5.5Hz),
 - 5.82(1H, t, J=5.5Hz). 5.96(2H, s), 6.79(1H, d, J=7.9Hz).
 - 6.86(1H, dd, J=7.9Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), $7.59 \sim 7.63(2H, m)$,
 - 7.73(1H, d, J=7.9Hz)
- b) 2-(4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1)
- a) で得られた化合物を実施例296のe) と同様に加水分解し、標題化合物163mg を得た。
- ·分子式 ; C23H22ClN3O4
- ·収率(%);96
- ・融点(℃);245~246
- · Mass m/e : 440(M+1)
- NMR δ (DMS0-d₆):
 - 1.38~1.50(2H, m), 1.55~1.68(2H, m), 1.94~2.04(4H, m),
 - 2.34(1H, tt, J=11.9Hz, 3.1Hz), 2.60(1H, tt, J=11.9Hz, 3.1Hz),
 - 4.66(2H, d, J=5.7Hz), 5.97(2H, s), 6.85(1H, d, J=8.1Hz).
 - 6.88(1H, dd, J=8.1Hz, 1.5Hz), 6.98(1H, d, J=1.5Hz), 7.63(1H, d, J=9.0Hz),

٠,*

- 7. 72(1H, dd, J=9. 0Hz, 2. 4Hz), 8. 37(1H, d, J=2. 4Hz).
- 8.71(1H, brt, J=5.7Hz). 12.04(1H, s)

実施例298

۶,

 $\frac{2-(4-h)-(3-h)$

a) $4 - (4 - \sqrt{1 + 2}) + (4 - \sqrt{1 + 2}$

4-アミノベンゼン-1,3-ジカルボキサミド3.6g、N,N-ジメチルアニリン5ml、テトラヒドロフラン50mlの混合物に4-メトキシカルボニルシクロヘキサンカルボニルクロリド5.1gを室温で加え、そのまま一晩反応させた。反応液に水を加え、析出した結晶を遮取し、水、ジエチルエーテルで洗った後、乾燥して、標題化合物5.77gを得た。

- b) 2-(4-x)+2) 2-(4-x)+2) 2-(4-x)+2 2-(4-x) 2-(4-x) 2-(4-x)
- a)で得た化合物 5.7gをメタノール 200mlに懸濁し、カリウム tープトキシド1.84gを加え、室温で一晩反応させた。反応液に水、濃塩酸を加え、酸性にして、生じた結晶を濾取した後、水、ジエチルエーテルで洗い、乾燥し、標題化合物5.04gを得た。
- c) <u>2-(4-トランス-メトキシカルボニルシクロヘキシル)-4-クロロ</u> -シアノキナゾリン
- b)で得た化合物 2.0g、塩化リチウム 2.0g、オキシ塩化リン40mlの混合物を6時間加熱還流した。反応液中の不溶物を濾去した後、濃縮し、残渣をシリカゲルカラムクロマトグラフィー (10%酢酸エチル/ヘキサン) に付し、トランス

WO 93/07124 PCT/JP92/01258

体とシス体と分離し、標題化合物を 180mg得た。

- NMR δ (CDC1₃) :
 - 1.57~1.70(2H, m), 1.72~1.84(2H, m), 2.12~2.26(4H, m),
 - 2. 43(1H, tt, J=12. 3Hz, 3. 2Hz), 3. 03(1H, tt, J=11. 9Hz, 3. 0Hz).
 - 3.71(3H.s), 8.04(1H.dd.J=8.8Hz.1.6Hz).
 - 8.08(1H, dd, J=8.8Hz, 0.5Hz), 8.62(1H, dd, J=1.6Hz, 0.5Hz)
- d) 2-(4-h) 2-(1-h) -
- c) で得られた化合物 180 mg、3, 4-メチレンジオキシベンジルアミン 100 mg、トリエチルアミン 200μ 1、イソプロピルアルコール 5 ml の混合物を $80 ^{\circ}$ $^{\circ}$ $^{\circ}$ 1 時間反応させた。反応液を濃縮し、酢酸エチルー水で抽出した。酢酸エチル層は飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10 % 酢酸エチル/ベンゼン)に付し、標題化合物 157 mg を得た。
- NMR δ (CDC1₃) :
 - 1.55~1.68(2H, m). 1.70~1.82(2H, m). 2.10~2.18(4H, m).
 - 2. 42(1H, tt, J=12. 3Hz, 3. 2Hz), 2. 81(1H, tt, J=11. 9Hz, 3. 0Hz), 3. 70(3H, s),
 - 4.78(2H, d, J=5.5Hz), 6.96(2H, s), 6.20(1H, t, J=5.5Hz),
 - 6.80(1H, d, J=7.9Hz), 6.88(1H, dd, J=7.9Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz),
 - 7.82(2H.s), 8.11(1H.s)
- e) 2-(4-h)ランスーカルボキシシクロヘキシル) -4-(3, 4-x)レンジオキシベンジル) アミノー6-シアノキナゾリン
- d) で得られた化合物 157mg、1N水酸化ナトリウム水溶液 1ml、メタノール 3ml、テトラヒドロフラン 6mlの混合物を室温で24時間反応させた。1N塩酸 1ml 1m

題化合物 138mgを得た。

·分子式 ; C24H22N4O4

• 収率(%);91

・融点(℃);269~270

· Mass m/e; 431(M+1)

• NMR δ (DMSO-d₆):

1.38~1.50(2H,m), 1.55~1.68(2H,m), 1.95~2.04(4H,m),

2.24(1H, tt, J=11.9Hz, 3.1Hz), 2.63(1H, tt, J=11.9Hz, 3.1Hz),

4.68(2H, d, J=5.7Hz), 5.97(2H, s), 6.86(1H, d, J=7.9Hz),

6.90(1H, dd, J=7.9Hz, 1.5Hz), 6.99(1H, d, J=1.5Hz), 7.71(1H, d, J=8.8Hz),

8.01(1H. dd, J=8.8Hz.1.6Hz), 8.82(1H. d, J=1.6Hz), 8.95(1H. t, J=5.7Hz)

実施例299

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

- a) 2-エトキシカルボニルメチル-4-(3,4-メチレンジオキシベンジ
- ル) アミノー6-クロロキナゾリン

実施例296と同様の操作で標題化合物を得た。

• NMR δ (CDCl₃);

1.27(3H, t, J=7.1Hz), 3.93(2H, s), 4.22(2H, q, J=7.1Hz),

4.71(2H, d, J=5.5Hz), 5.83(1H, t, J=5.5Hz), 5.96(2H, s).

- 6.78(1H. d, J=7.9Hz), 6.85(1H. dd, J=7.9Hz, 1.6Hz),
- 6. 89(1H. d. J=1. 6Hz), 7. 60 \sim 7. 65(2H, m), 7. 74(1H, d, J=9. 0Hz)
- a) で得られた化合物 200mg、エタノール20mlの混合物を氷冷し、ここにアンモニアガスを通じて飽和させ、ゆっくり室温に戻して3日間反応させた。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(0~20%エタノール/酢酸エチル)に付し、標題化合物24mgを得た。

実施例300

 $\frac{2-(4-シアノピペリジノ)-4-(3,4-メチレンジオキシベンジル)ア}{ミノ-6-クロロキナブリン}$

2-(4-カルバモイルピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン 3.8g (0.0086モル)に塩化チオニル75ml、アセトニトリル 150mlを加え、1時間加熱還流した。反応液を減圧下溶媒留去し、残渣に飽和重曹水、トリエチルアミンを加え、酢酸エチルで抽出する。有機層を飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濾過、減圧下溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーn-ヘキサン)にて精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物 3.1gを

得た。

·分子式 ; C22H20CIN5O2

・収率(%);85

・融点(℃);169~170

• NMR δ (CDC1₃):

1.88(2H, m), 1.95(2H, m), 2.87(1H, m), 3.73(2H, m), 4.25(2H, m),

4. 67(2H, d, J=5. 6Hz), 5. 65(1H, t, J=5. 6Hz), 5. 97(2H, s),

6.79(1H, d, J=8.0Hz), 6.84(1H, dd, J=8.0Hz, 1.6Hz),

6.87(1H, d, J=1.6Hz), 7.39(1H, d, J=8.8Hz), 7.44(1H, d, J=2.4Hz),

7. 46(1H, dd, J=8. 8Hz, 2. 4Hz)

実施例301

4;

2-(4-(1H-テトラゾール-5-イル) ピペリジノ<math>)-4-(3,4-x) チレンジオキシベンジル) アミノー6-クロロキナゾリン 塩酸塩

2-(4-シアノピペリジノ)-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン0.50g(0.0012モル)、トリメチルスタニルアジド0.50g(0.0024モル)にトルエン10mlを加え、二昼夜加熱還流した。反応液を減圧下溶媒留去し、残渣をエタノール10mlに懸濁させ、1N塩酸10mlを加え、数時間室温にて攪拌した。結晶を減取、水で洗った後、風乾し、標題化合物0.60g

を得た。

·分子式 ; C22H21ClN8O2·HCl

· 収率(%);定量的

・融点(℃);212~214

· Mass m/e ; 465(M+1)+

-NMR δ (DMSO-d₆);

1.80(2H.m), 2.17(2H.m), 3.45(2H.m), 4.62(2H.m), 4.69(2H.d.J=5.6Hz),

5.97(2H, s), 6.86(1H, d, J=7.6Hz), 6.91(1H, dd, J=7.6Hz, 1.6Hz),

7.01(1H, d, J=1.6Hz), 7.84(1H, dd, J=8.8Hz, 1.6Hz), 7.88(1H, d, J=8.8Hz),

8.51(1H, d, J=1.6Hz), 10.13(1H, brs), 12.28(1H, brs)

実施例 3 0 2

2-(1H-テトラゾール-5-イル)-4-(3,4-メチレンジオキシベンジル) アミノー <math>6- クロロキナゾリン 塩酸塩

実施例301の方法に準じて標題化合物を得た。

·分子式 ; C17H12C1N7O2・HC1

• 収率(%);37

・融点(℃);201~204(分解)

• Mass m/e; 382(MH)+

• NMR δ (DMSO-d₆);

4. 90(2H, d, J=5. 6Hz), 5. 97(2H, s), 6. 87(1H, d, J=8. 0Hz),

6. 98(1H, dd, J=8. 0Hz, 2. 0Hz), 7.11(1H, d, J=2. 0Hz), 7.92~7.94(2H, m),

8.60(1H, d, J=1.6Hz), 9.53(1H, brs)

実施例303~410

前記のいずれかの方法で、以下に示す化合物を合成した。

実施例303

2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシ -7-シクロペンチルオキシキナゾリン

·分子式 ; C22H22C1N3O4

・収率(%);88

・融点(℃);176~177

• Mass ; $428(M+1)^+$

• NMR δ (CDCl₃);

1.64(2H, m), 1.82(2H, m), 1.93(2H, m), 2.02(2H, m), 3.90(3H, s),

4.74(2H, d, J=5.6Hz), 4.85(1H, m), 5.72(1H, t, J=5.6Hz), 5.96(2H, s),

6.79(1H, d, J=7.6Hz), 6.79(1H, s), 6.87(1H, dd, J=7.6Hz, 1.6Hz),

6. 90(1H, d, J=1.6Hz). 7.11(1H, s)

私		
鑩		
NMR	δ (DMSO-d _e); 1.70(2H, brs), 1.90(2H, m), 2.54(1H, m) 3.11(2H, m), 3.98(2H, m) 4.40(2H, d, J=6.4Hz), 5.93(2H, s) 6.80(2H, brs), 6.84(1H, brs) 7.02(1H, m), 7.28(1H, m), 7.44(1H, brs) 7.68(1H, d, J=8.8Hz), 12.24(1H, brs)	δ (DMSO-d _e); 1.79(2H, m), 2.47(1H, m) 2.96(2H, t, J=11.2Hz) 4.55(2H, d, J=5.6Hz), 4.58(2H, m) 5.93(2H, s), 6.82(2H, s) 6.92(1H, s) 7.05(1H, dd, J=8.8Hz, 2.4Hz) 7.23(1H, d, J=2.4Hz) 8.00(1H, d, J=8.8Hz) 8.58(1H, t, J=5.6Hz), 12.15(1H, brs)
Mass	441 (M+1)	441 (M+1)
気を (%)	97	97
融 点 収率 (°C) (%)	264- 265	258- 259
. R.	— N—С00Н	NHI I
s Cc:	NH I	-NC00H
<u>~</u>	C1	10
张摇室	304	305

_

服

淅		
鑩		
NMR	5 (CDC1s); 1. 25(3H, t, J=7. 2Hz), 1. 64-1. 77(2H, m) 1. 94-2. 01(2H, m). 2. 52-2. 61(1H, m) 3. 04-3. 14(2H, m). 3. 25(3H, s) 3. 91(3H, s), 4. 14(3H, q, J=7. 2Hz) 4. 72-4. 81(2H, m), 4. 74(2H, s) 6. 93(1H, d, J=8. 4Hz) 7. 19(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 37(1H, d, J=2. 0Hz) 7. 43(1H, d, J=8. 4Hz) 7. 58(1H, d, J=8. 4Hz) 8. 06(1H, d, J=8. 4Hz)	δ (DMSO-d ₆): 1.35-1.50(2H, m), 1.79-1.86(2H, m) 2.50-2.55(1H, m), 2.99-3.08(2H, m) 3.30(3H, s), 4.54-4.62(2H, m) 4.81(2H, s), 5.98(2H, s) 6.82(1H, dd, J=8.0Hz, 1.6Hz) 6.92(1H, d, J=1.6Hz) 7.33(1H, d, J=2.4Hz) 7.33(1H, d, J=2.4Hz) 8.27(1H, d, J=1.6Hz) 8.27(1H, d, J=1.6Hz)
Mass	494(MH+)	446(MH+)
収率 (%)	. 86	44
融 点 収率 (°C) (%)	ፓ €₿ファス	196- 198
Re	Me _N _C1	Me _ N _ O _ O _ O _ O _ O _ O _ O _ O _ O
s &	-N∕-C00Bt	—N——С00Н
R²	CN	CN
実施例	306	307

R. R. R.

œ

袠

*	F		
₹	2		
OWN	N W K	δ (DMSO-d ₄); 1. 97(2H, quintet, J=7. 4Hz) 2. 26(2H, t, J=7. 4Hz) 2. 72(2H, t, J=7. 4Hz) 3. 82(3H, s), 4. 67(2H, d, J=5. 7Hz) 7. 08(1H, d, J=8. 6Hz) 7. 34(1H, dd, J=8. 6Hz, 2. 2Hz) 7. 47(1H, d, J=2. 2Hz) 7. 64(1H, d, J=9. 0Hz) 7. 74(1H, dd, J=9. 0Hz) 8. 37(1H, d, J=2. 4Hz) 8. 37(1H, t, J=5. 7Hz)	δ (DMSO-d _e); 1, 28-1, 88(10H, m), 2, 46-2, 48(1H, m) 2, 91-3, 01(2H, m), 3, 35-3, 42(4H, m) 4, 39(1H, brs), 4, 57-4, 63(2H, m) 7, 22(1H, d, J=8, 8Hz) 7, 43(1H, dd, J=8, 8Hz, 2, 4Hz) 8, 11(1H, brt, J=4, 0Hz) 8, 15(1H, d, J=2, 4Hz)
, o y	Mass	420 (N+1)	393 (MH+)
负率	(%)	66	17
棗	(%)	180-	> 250
90	¥	HIN C1	HO NH
200	R6 C00H		-и -соон
200	2 C2		13
张籍	室	308	808

တ

衆

Nes		
龜		
NMR	δ (DMSO); 0. 23-0. 29(2H, m), 0. 41-0. 48(2H, m) 1. 11-1. 22(1H, m), 1. 40-1. 52(2H, m) 1. 81-1. 87(2H, m), 2. 45-2. 52(1H, m) 2. 93-3. 01(2H, m), 3. 26-3. 35(2H, m) 4. 60-4. 67(2H, m) 7. 25(1H, d, J=9. 2Hz) 7. 47(1H, dd, J=9. 2Hz, 2. 4Hz) 8. 14(1H, m), 8. 16(1H, d, J=2. 4Hz) 12. 18(1H, brs)	δ (DMSO-d ₆); 1. 75(2H, m), 1. 98(2H, m), 2. 64(1H, m) 3. 39(2H, m), 4. 23(2H, brd, J=13. 2Hz) 7. 71(1H, d, J=8. 8Hz) 7. 84(1H, dd, J=8. 8Hz, 2. 0Hz) 7. 93(1H, d, J=2. 0Hz)
Mass	361 (MH+)	326(M+1)
坂奉 (%)	100	43
融 点 収率 (°C) (%)	> 250	172- 174
Re	HN	-NC00H
s œ	-N-C00H	C1
R 2	C1	13
张摇 室	310	311

- 2 9 1 -

掀		塩酸塩		
每				
N		δ (DMSO-d ₆); 1. 60(2H, m), 1. 74(2H, m) 1. 97(4H, brt, J=15. 2Hz), 2. 68(2H, m) 3. 32(2H, t, J=11. 6Hz) 3. 53(2H, t, J=11. 6Hz) 4. 55(2H, d, J=13. 6Hz) 7. 86(2H, d, J=13. 2Hz) 7. 86(1H, s), 8. 18(1H, d, J=9. 2Hz) 13. 0(1H, brs) 1. 21(3H, t, J=7. 2Hz), 1. 75(2H, brm) 1. 95(2H, brm), 2. 65(1H, m) 3. 14(2H, brm), 4. 00(2H, brm) 4. 10(2H, q, J=7. 2Hz) 4. 43(2H, d, J=6. 0Hz), 5. 94(2H, s) 6. 80(2H, brs), 6. 91(1H, brs) 7. 43(1H, brd, J=9. 2Hz) 7. 51(1H, dd, J=9. 2Hz) 7. 51(1H, dd, J=9. 2Hz)		
N S S S		419(N+1)	469(M+1) [*]	
収率	(%)	91	56	
棗	(%) (a)	260- 262	159- 160	
å	•	-N-C00H	-NC00Bt	
8	:	-N-C00H	-N-H-	
2	<u>-</u>	13	10	
実施	:E	312	313	

* Z Z Z

ΉK

柳		
種		
NMR	δ (DMSO-d ₆); 1. 75(2H, brm), 1. 94(2H, brm) 2. 56(1H, m), 3. 14(2H, brm) 3. 99(2H, brm), 4. 43(2H, d ₄ J=6. 4Hz) 5. 94(2H, s), 6. 81(2H, brs) 6. 91(1H, brs), 7. 34(1H, brd, J=8. 8Hz) 7. 43(1H, d ₄ , J=8. 8Hz, 2. 4Hz) 7. 51(1H, d ₄ , J=8. 8Hz, 2. 4Hz) 7. 62(1H, d, J=2. 4Hz) 7. 62(1H, d, J=2. 4Hz) 1. 22-1. 33(2H, m), 1. 36-1. 51(4H, m) 1. 69-1. 82(4H, m), 2. 25-2. 81(1H, m) 1. 69-1. 82(4H, m), 3. 32-3. 52(4H, m) 4. 29-4. 52(3H, m), 4. 72(2H, brs) 5. 98(2H, s), 6. 80-6. 92(2H, m) 7. 29(1H, d, J=9. 2Hz), 7. 45(1H, dd, J=9. 2Hz), 7. 44(1H, d	
Mass	441 (N+1)*	527 (MH+)
収率 (%)	89	89
融 点 収率 (°C) (%)	238- 239 (分解点)	170(分解点)
R	-N-C00H	HO
s e	0 H N-	-N → C00H
R2	13	C1
実施例	314	315

轰

淅		
零		
QXZ	71 1/1 1/1	δ (CDC1 _s); 1. 26(3H, t, J=7. 2Hz) 1. 66-1. 77(2H, m), 1. 93-2. 01(2H, m) 2. 51-2. 62(1H, m), 3. 09-3. 13(2H, m) 3. 23(3H, s), 4. 14(2H, q, J=7. 2Hz) 4. 74-4. 80(2H, m), 4. 79(2H, s) 5. 98(2H, s), 6. 80-6. 84(3H, m) 7. 42(1H, d, J=8. 8Hz) 7. 57(1H, dd, J=8. 8Hz) 8. 05(1H, d, J=2. 0Hz),
7 o y	M & W	474(MH+)
収率	(%)	定量的
融	(%) (a)	治 大 整
o c	u	Me N O
R°		-N—COOBt
R2		CN
東施例		316

" Z Z Z

တ —

蚁

歉		
箍		
NMR	δ (DMSO-d ₆); 1.49(2H, m), 1.88(2H, m), 2.53(1H, m), 3.08(2H, m), 3.74(3H, s) 4.58(2H, d, J=5.2Hz), 4.61(2H, m) 6.71(1H, d, J=8.0Hz) 6.80(1H, dd, J=8.0Hz), 7.56(1H, d, J=2.0Hz), 7.38(1H, brs) 7.56(1H, brs), 8.25(1H, brs) 8.86(1H, s), 12.19(1H, brs)	δ (DMSO-d _e): 1.48(2H, m), 1.88(2H, m), 2.54(1H, m) 3.10(2H, m), 3.72(3H, s), 4.54(2H, m) 4.56(2H, d, J=5.6Hz) 6.77(1H, dd, J=8.0Hz, 2.0Hz) 6.82(1H, d, J=2.0Hz) 6.84(1H, d, J=8.0Hz) 7.45(1H, brs), 7.60(1H, brs) 8.28(1H, brs), 8.90(1H, s) 12.21(1H, brs)
Mass	443(M+1)*	443(M+1) [†]
収率(%)	定量的	26
融 点 収率 (°C) (%)	244-245	254- 255 (分解点)
R°	HN ONe	HN OMe
Rs	—N——соон	-N ← C00H
R2	C1	5
実施例	317	318

R² R⁶ R⁵ R⁵

1 4

炭

*	f.		
€	B		
NMR		δ (DMSO-d ₆); 3.71(3H, s), 4.57(2H, d, J=5.6Hz) 6.74(1H, dd, J=8.4Hz, 2.0Hz) 6.77(1H, d, J=2.0Hz) 6.84(1H, d, J=8.4Hz) 7.62(1H, d, J=8.8Hz) 7.79(1H, dd, J=8.8Hz, 2.4Hz) 8.46(1H, d, J=2.4Hz) 8.91(1H, s), 9.22(1H, t, J=5.6Hz)	
N o o	เหนออ	350(M+1) ⁺	
収率	(%)	58	
翻点	(%) (2.)	193- 194	
90	4	HN I I I I I I I I I I I I I I I I I I I	
R°		10	
R2		C1	
実施例		319	

磤

柳		
毎		
NMR	δ (CDC1 ₈); 1. 26(3H, t, J=7. 2Hz), 1. 72(2H, m) 1. 98(2H, m), 2. 56(1H, m), 3. 05(2H, m) 3. 88(3H, s), 4. 15(2H, q, J=7. 2Hz) 4. 68(2H, d, J=5. 2Hz), 4. 82(2H, m) 5. 56(1H, t, J=5. 2Hz), 5. 65(1H, brs) 6. 90(3H, m), 7. 39(1H, d, J=8. 8Hz) 7. 42(1H, d, J=2. 4Hz) 7. 44(1H, dd, J=8. 8Hz, 2. 4Hz)	δ (CDC1 ₈): 1.26(3H, t, J=7.2Hz), 1.72(2H, m) 1.97(2H, m), 2.55(1H, m), 3.04(1H, m) 8.90(3H, s), 4.15(2H, q, J=7.2Hz) 4.66(2H, d, J=5.2Hz), 4.80(2H, m) 5.57(1H, t, J=5.2Hz), 5.68(1H, brs) 6.83(1H, d, J=8.0Hz) 6.87(1H, dd, J=8.0Hz), 7.38(1H, d, J=2.0Hz), 7.41(1H, d, J=2.4Hz) 7.43(1H, dd, J=8.4Hz) 7.43(1H, dd, J=8.8Hz)
Mass	471(H+1)*	471(M+1)*
坂福 (%)	78	91.
融点(°C)	173-	170-
R°	HN OMe	HN OMe
so Coc	-N—-C00Bt	−N ←C00Bt
R2	[0]	C1
张	320	321

垂	- 1	型 愛 数 強 強	
a M Z	71 141 141	δ (DMSO-d ₀); 1. 53(2H, m), 1. 90(2H, m), 2. 62(1H, m) 3. 29(2H, m), 4. 41(2H, m) 4. 83(2H, d, J=5. 6Hz) 7. 74(1H, d, J=8. 4Hz) 7. 76(1H, dd, J=8. 4Hz) 7. 85(1H, d, J=8. 4Hz) 7. 90(1H, d, J=8. 4Hz) 8. 15(1H, d, J=2. 0Hz), 8. 51(1H, s) 10. 34(1H, brs), 12. 28(1H, brs)	δ (DMSO-d ₆); 1.95(2H, m), 2.63(1H, m) 3.32(2H, m), 4.45(2H, m) 4.62(2H, d, J=5.2Hz), 5.33(2H, brs) 6.58(1H, dd, J=8.0Hz, 2.0Hz) 7.13(1H, d, J=8.0Hz) 7.85(1H, d, J=8.8Hz) 7.85(1H, d, J=8.8Hz) 8.51(1H, s), 10.14(1H, brs) 12.22(1H, brs)
0 N	M a o o	476(M+1)*	446(M+1)*
収率	(%)	66	65
聚心	(2,)	> 260	
	×	HIN NO.	HN I C1
50	R* -N-C00H		- N-C00H
200	¥	10	
#K ‡	旨室	822	328

Z Z Z

-

袮		
毎		
NMR	δ (DMSO-d _a): 1. 20(3H, t, J=7. 2Hz), 1. 57(2H, m) 1. 96(2H, m), 2. 73(1H, m), 3. 31(2H, m) 4. 08(2H, q, J=7. 2Hz), 4. 49(2H, m) 4. 61(2H, d, J=5. 6Hz) 6. 59(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 13(1H, d, J=8. 0Hz) 7. 13(1H, d, J=9. 2Hz) 7. 85(1H, dd, J=9. 2Hz, 2. 4Hz) 7. 93(1H, d, J=9. 2Hz, 2. 4Hz) 8. 53(1H, d, J=2. 4Hz) 10. 19(1H, brt, J=5. 6Hz) 12. 31(1H, brs)	δ (DMSO-d ₆); 3. 74(3H, s), 4. 58(2H, d, J=5. 6Hz) 6. 70(1H, d, J=8. 0Hz) 6. 75(1H, d, J=1. 6Hz) 7. 00(1H, d, J=1. 6Hz) 7. 61(1H, d, J=8. 8Hz) 7. 78(1H, dd, J=8. 8Hz) 8. 46(1H, d, J=2. 4Hz), 8. 87(1H, s) 8. 19(1H, t, J=5. 6Hz)
Mass	476(M+1)*	350(M+1) ⁺
収率(%)	25	11
融点('C')	218- 219 (分解点)	186- 187
Re	HIN NH2	HN OMe
Rs	-N C00Et	13
**************************************	C1	13
张 摇囱	324	325

R. R.

__ &_

뫲

揪	塩酸塩	
髰	朝	!
NMR	δ (DMSO-d ₆); 1. 198(3H, t, J=7. 2Hz); 1. 203(3H, t, J=7. 2Hz), 1. 65(2H, m); 1. 78(2H, m), 2. 01(4H, m), 2. 76(1H, m); 2. 82(1H, m), 3. 31(2H, m), 3. 55(2H, m); 4. 09(2H, q, J=7. 2Hz); 4. 10(2H, q, J=7. 2Hz), 4. 41(2H, m); 4. 53(2H, m); 7. 84(1H, dd, J=8. 8Hz, 1. 6Hz); 7. 90(1H, d, J=1. 6Hz); 8. 00(1H, d, J=8. 8Hz);	δ (DMSO-d _a); 4. 81(2H, d, J=5. 6Hz) 7. 67(1H, d, J=8. 4Hz) 7. 71(1H, dd, J=8. 4Hz) 7. 74(1H, d, J=8. 4Hz) 7. 84(1H, dd, J=8. 4Hz, 2. 0Hz) 8. 11(1H, d, J=2. 0Hz) 8. 44(1H, d, J=5. 6Hz) 9. 39(1H, t, J=5. 6Hz)
Mass	475(M+1)*	383(M+1)*
(%)	92	1.1
融点 中华 (*C) (%)	175- 176	220- 221
	-N\C00Bt	HN NO2
S C C C	-Nc00Bt	19
22	ច	13
実施例	326	327

X

箍	型 数 型	塩酸塩
NMR	δ (DMSO-d ₆); 1. 20(3H, t, J=7. 2Hz), 1. 51(2H, m) 1. 89(2H, m), 2. 72(1H, m), 3. 27(2H, m) 4. 08(2H, q, J=7. 2Hz), 4. 44(2H, m) 4. 82(2H, d, J=5. 6Hz) 7. 73(1H, dd, J=8. 4Hz) 7. 76(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 85(1H, dd, J=8. 8Hz, 2. 0Hz) 7. 92(1H, d, J=8. 8Hz) 8. 14(1H, d, J=2. 0Hz) 8. 52(1H, d, J=2. 0Hz) 12. 35(1H, brs)	δ (DMSO-d ₈); 1. 58(2H, m), 1. 95(2H, m), 2. 63(1H, m) 8. 32(2H, m), 4. 45(2H, m) 4. 62(2H, d, J=5. 2Hz), 5. 33(2H, brs) 6. 58(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 13(1H, d, J=8. 0Hz) 7. 85(1H, d, J=8. 8Hz) 7. 89(1H, d, J=8. 8Hz) 7. 89(1H, d, J=8. 8Hz) 10. 14(1H, brs), 12. 22(1H, brs)
Mass	504(M+1)*	446(M+1) [*]
収略 (%)	73	65
融点収率(°C)(%)	230- 231	> 260
R°	HN C1	HIN NH2
F. G	-Nc00Bt	— М— соон
R 2		: :
実施例	328	329

R²

2 0

揪			
學	!		
Z Z		δ (CDC1 _s); 1. 95-2. 10(3H, m), 2. 37(1H, m) 3. 58(3H, s), 4. 05-4. 20(2H, m) 5. 58(1H, m), 5. 93(1H, s), 5. 94(1H, s) 6. 78(1H, d, J=8. 4Hz), 6. 84(1H, s) 6. 85(1H, d, J=8. 4Hz) 7. 30(1H, d, J=10. 0Hz), 7. 35(1H, s) 7. 74(1H, d, J=10. 0Hz), 8. 53(1H, s)	δ (DNSO-d ₆); 1.44(2H, m), 1.82(2H, m), 2.03(2H, m) 2.46(1H, m), 2.94(2H, m), 3.59(2H, m) 3.96(2H, t, J=6.0Hz), 4.62(2H, m) 5.91(2H, s) 6.32(1H, dd, J=8.4Hz, 2.4Hz) 6.56(1H, d, J=2.4Hz) 7.22(1H, d, J=8.4Hz) 7.22(1H, d, J=8.8Hz) 7.44(1H, dd, J=8.8Hz) 8.05(1H, brt), 8.08(1H, d, J=2.4Hz) 12.14(1H, brt), 8.08(1H, d, J=2.4Hz)
M a s			485(M+1)*
収率	(%)	85	88
類点	(%) (a)	苗 物質	139- 140
***			O O NH
25		Н	H000-C00H
22	:	ОМе	61
	室	330	331

_

Ж

金	植 酸 血	
NMR	δ (DMSO-d ₆); 1. 18(3H, t, J=7.2Hz), 1. 59(2H, m) 1. 95(2H, m), 2. 05(2H, m), 2. 72(1H, m) 3. 3(2H, m), 3. 71(2H, m) 3. 98(2H, t, J=6.0Hz) 4. 07(2H, q, J=7.2Hz), 4. 48(2H, m) 5. 91(2H, s) 6. 29(1H, dd, J=8.4Hz, 2. 4Hz) 6. 52(1H, d, J=2.4Hz) 6. 74(1H, d, J=8.4Hz) 7. 81(2H, brs) 12. 07(1H, brs), 9. 59(1H, brs)	δ (CDC1 ₈); 2.21(2H, m), 3.88(2H, m) 4.16(2H, t, J=5.4Hz), 5.94(2H, s) 6.39(1H, dd, J=8.4Hz, 2.8Hz) 6.56(1H, d, J=2.8Hz), 6.72(1H, brs) 6.74(1H, d, J=8.4Hz) 7.63(1H, d, J=2.0Hz) 7.66(1H, dd, J=8.8Hz, 2.0Hz) 7.70(1H, dd, J=8.8Hz, 2.0Hz)
Mass	513(M+1)*	392(M+1)*
(%)	97	87
職 点 京場 (%)	184- 185	148- 149
, B	HN 0 0	NH O NH
19 CC:	-N ← COOBt	C1
R2	13	C1
実施例	332	333

°2-	N-	N R.
Š		

表

板		
種		
NMR	δ (DMSO-d _e); 1. 39(2H, m), 1. 80(2H, m), 2. 47(1H, m) 2. 96(2H, d, J=5, 6Hz) 4. 66(2H, d, J=5, 6Hz) 7. 15-7. 45(6H, m) 7. 48(1H, dd, J=9, 2Hz, 1. 6Hz) 8. 17(1H, d, J=1. 6Hz), 8. 64(1H, brs) 12. 15(1H, brs)	6 (CDC1,); 1. 96-2. 03(2H, m) 1. 96-2. 03(2H, m) 1. 57-1. 64(1H, m), 3. 08-3. 18(2H, m) 3. 25(3H, s), 3. 91(3H, s) 4. 70-4. 79(2H, m), 4. 80(2H, s) 6. 93(1H, d, J=8. 4Hz) 7. 19(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 36(1H, d, J=8. 8Hz) 7. 58(1H, d, J=8. 8Hz) 7. 58(1H, d, J=8. 8Hz) 8. 06(1H, d, J=2. 0Hz)
Mass	397(M+1)*	466 (MH+)
坂梅 (%)	09	40
融点収率(*C)(%)	240- 241 (分解点)	176-
Re		Me C1 OMe
R.	-NC00H	-NC00H
2 X	13	S
実施例	334	335

~,

枫

4			
a M.N.		6 (DMSO-d ₆); 3. 42(3H, s), 4. 93(2H, s), 5. 99(2H, s) 6. 86(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 90(1H, d, J=8. 0Hz) 6. 98(1H, d, J=1. 6Hz) 7. 73(1H, d, J=8. 4Hz) 8. 08(1H, dd, J=8. 4Hz, 2. 0Hz) 8. 63(1H, dd, J=2. 0Hz)	δ (DMSO-d ₆); 3.44(3H, s), 3.83(3H, s), 4.95(2H, s) 7.13(1H, d, J=8.8Hz) 7.34(1H, dd, J=2.4Hz) 7.50(1H, d, J=2.4Hz) 7.74(1H, d, J=8.8Hz) 8.08(1H, dd, J=8.8Hz) 8.65(1H, dd, J=1.6Hz)
Ma S		353(MH+)	373(MH+)
収率	(%)	88	98
 學点	(°C)	156- 158	178- 175
9 2		Me N O	Me _N _C1
s X		C1	C1
22	:	ĊN	CN
-	室	336	337

表

淅	?		
種	a		
a N N	TANK T	δ (DMSO-d ₆): 3.83(3H, s), 4.75(2H, d, J=5.6Hz) 7.10(1H, d, J=8.4Hz) 7.38(1H, dd, J=8.4Hz) 7.53(1H, d, J=2.4Hz) 7.84(1H, d, J=8.8Hz) 7.88(1H, dd, J=8.8Hz) 8.50(1H, d, J=2.0Hz) 9.15(1H, d, J=5.6Hz)	δ (DMSO-d ₄); 1.97(2H, quintet, J=7.4Hz) 2.26(2H, t, J=7.4Hz) 2.72(2H, t, J=7.4Hz), 3.82(3H, s) 4.67(2H, d, J=5.7Hz) 7.08(1H, d, J=8.6Hz) 7.34(1H, dd, J=8.6Hz, 2.2Hz) 7.47(1H, d, J=9.0Hz) 7.64(1H, d, J=9.0Hz) 7.74(1H, dd, J=9.0Hz) 8.37(1H, d, J=5.4Hz) 8.76(1H, t, J=5.7Hz)
Mose	141 62 5 5	378(N+1)*	420(M+1)*
収率	(%)	88	66
融	(၁.)	187~ 188	180- 181
90	×	HN C1	HN C1
80	×	COOH	C00H
	<u>-</u>	13	61
	富定	838	339

വ

ntv

飾	植 酸 苗	
NMR	δ (DMSO-d ₄); 1. 20(3H, t, J=7. 2Hz), 1. 67(2H, m) 2. 01(2H, m), 2. 77(1H, m) 2. 89(2H, t, J=7. 2Hz), 3. 39(2H, m) 3. 75(2H, m), 4. 10(2H, q, J=7. 2Hz) 4. 56(2H, m), 5. 96(2H, s) 6. 69(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 80(1H, d, J=8. 0Hz) 7. 83(1H, dd, J=8. 8Hz) 7. 83(1H, dd, J=8. 8Hz) 7. 95(1H, d, J=8. 8Hz) 8. 44(1H, d, J=2. 4Hz), 9. 69(1H, brs) 12. 34(1H, brs)	δ (DMSO-d ₆); 1. 50(2H, m), 1. 88(2H, m), 2. 52(1H, m) 2. 86(2H, t, J=7. 4Hz), 3. 03(2H, m) 3. 63(2H, m), 4. 65(2H, m), 5. 96(2H, s) 6. 69(1H, d, J=8. 0Hz) 6. 82(1H, d, J=8. 0Hz), 6. 83(1H, s) 7. 27(1H, d, J=9. 2Hz) 7. 48(1H, dd, J=9. 2Hz, 2. 4Hz) 8. 10(1H, d, J=2. 4Hz), 8. 17(1H, brs) 12. 19(1H, brs)
Mass	483(M+1)*	455(M+1) [*]
京格(%)	88	75
聚 (°C)	178- 174	186- 187
8	HIN 0	O NIH
Rè	18002-(N-	-М-Соон
R2	C1	C1
実施例	340	341

R. R.

2 6

絮

箍	塩酸塩	植 種
NMR	δ (DMSO-d _e); 1, 19(3H, t, J=7. 2Hz), 1, 57(2H, m) 1, 94(2H, m), 2. 73(1H, m), 3. 31(2H, m) 4, 08(2H, q, J=7. 2Hz), 4. 48(2H, m) 4, 77(2H, d, J=5. 6Hz) 7, 25-7, 45(5H, m), 7. 85(2H, s) 8, 52(1H, s), 10. 19(1H, brs) 12, 19(1H, brs)	δ (DMSO-d _e); 1. 12(3H, t, J=7. 2Hz), 1. 80(2H, brs) 2. 23(2H, brs), 3. 24(3H, s) 3. 73(2H, brs), 3. 82(3H, s) 3. 99(2H, q, J=7. 2Hz) 4. 71(2H, d, J=6. 0Hz) 7. 09(1H, d, J=8. 8Hz) 7. 35(1H, d, J=8. 4Hz), 7. 48(1H, s)
Mass	425(M+1)*	477 (M+1)*
京報	95	41
職 点 反降 (°C) (%)	166-	212- 213
. N	NH -	HN C1
25 25	-NCOORt	-N - Ne Me
8%	I CI	5
東 	342	343

		, ,
<u>~</u>	~~\ 	Z
		>
5	سر ا	

u _m		
拠		
響		:
NMR	δ (DMSO-d ₆): 1.74(2H, brm), 1.59(2H, brm) 3.10(3H, s), 3.61(2H, t, J=7.2Hz) 3.81(3H, s), 4.61(2H, d, J=5.6Hz) 7.07(1H, d, J=8.4Hz) 7.81(1H, dd, J=8.4Hz, 2.0Hz) 7.86(1H, brs), 7.48(1H, d, J=2.0Hz) 7.55(1H, brs), 8.20(1H, brs) 12.03(1H, brs)	δ (DMSO-d ₆); 3. 81(3H, s), 4. 71(2H, d, J=5. 6Hz) 7. 55(2H, s), 7. 76(1H, d, J=8. 4Hz) 8. 14(1H, dd, J=8. 4Hz, 2. 0Hz) 8. 88(1H, d, J=2. 0Hz) 9. 49(1H, brt, J=5. 6Hz)
Mass	449(M+1)*	393 (M+1)
収率 (%)	81	78
融点収率(*C)(%)	140- 141	248- 249
Re	HN C1	HN C1
R	-N - -	10
25	C1	S
東施例	344	345

新			
每	Ĕ 		
M N N	× * * * * * * * * * * * * * * * * * * *	δ (DMSO-d _e); 1.17(3H, t, J=7.2Hz), 1.36(2H, brm) 1.82(2H, brm), 2.62(1H, m) 3.03(2H, m), 3.78(3H, s) 4.05(2H, q, J=7.2Hz) 4.59(2H, brd, J=5.6Hz) 4.63(2H, brm), 7.29(1H, d, J=8.8Hz) 7.50(2H, s) 7.75(1H, dd, J=8.8Hz, 2.0Hz) 8.53(1H, d, J=2.0Hz) 8.86(1H, brt, J=5.6Hz)	δ (CDC1 ₈); 1.25-2.02(12H, m), 2.47-2.57(1H, m) 3.02-3.18(2H, m), 3.50-3.58(2H, m) 4.42(2H, t, J=6.6Hz) 4.63-4.74(2H, m), 4.75(2H, s) 5.47(2H, s), 6.80-6.81(3H, m) 7.41(1H, dd, J=8.0Hz, 2.0Hz) 7.50(1H, d, J=2.0Hz) 7.62(1H, d, J=2.0Hz)
w w X	M. G & &	514(M+1) [†]	572(MH+)
京	(%)	88	6 1
凝点	(%) (c.)	207-208	ፓ モルファス
0.00	•	HIN H H OMe	0 2 NO
Re -N - COOBt			- N-соон
D 2	CN CN		22
実施例		346	347

** Z

တ

. .

<u> </u>	叛		
	龜		
	NMR	δ (DMSO-d ₆); 1. 40(2H, m), 1. 72(2H, m), 2. 84(1H, m) 2. 54(2H, t, J=7. 2Hz), 2. 89(2H, m) 3. 31(2H, m), 3. 82(3H, s) 4. 59(2H, d, J=5. 6Hz), 4. 78(2H, m) 7. 09(1H, d, J=8. 4Hz) 7. 28(1H, d, J=8. 4Hz) 7. 32(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 45(1H, dd, J=2. 0Hz) 7. 72(1H, dd, J=2. 0Hz) 7. 74(1H, t, J=5. 6Hz) 8. 54(1H, d, J=2. 0Hz) 8. 54(1H, d, J=2. 0Hz) 8. 77(1H, t, J=5. 6Hz)	δ (DMSO-d _s): 1. 38-1. 47(2H, m), 1. 80-1. 84(2H, m) 2. 44-2. 49(1H, m), 2. 93-3. 00(2H, m) 4. 48(2H, d, J=5. 6Hz) 4. 57-4. 61(2H, m), 6. 60-6. 65(2H, m) 6. 74(1H, d, J=1. 6Hz) 7. 24(1H, d, J=8. 8Hz) 7. 46(1H, dd, J=8. 8Hz) 8. 15(1H, d, J=2. 0Hz), 8. 48(1H, brs) 8. 675(1H, s), 8. 75(1H, s) 12. 14(1H, brs)
	Mass		429(MH+)
坂樹	(%)	62	. 62
題	(၁့	> 250	216- 218 (分解点)
	HN C1		HO NH
	R° -N-H SO°Na		H000
	R R		C1
嵌	新福室 848		349

R⁸ R⁸

တ တ

黑

		•		
極				
鑩				
NMR		δ (CDCl _s); 1.41(2H, m), 2.16(2H, m), 2.60(1H, m) 3.69(2H, m), 4.02(3H, s), 4.03(3H, s) 4.11(3H, s), 4.55(2H, m), 4.63(1H, s) 5.06(1H, s), 5.75(1H, brs) 6.83(1H, brs), 8.59(1H, s)	δ (CDC1 _a); 1.86(2H, m), 1.79(2H, m) 2.14(2H, dd, J=14.4Hz, 5.6Hz) 2.27(1H, m), 8.68(2H, m), 8.99(3H, s) 4.02(3H, s), 4.11(3H, s), 4.50(2H, m) 4.62(1H, s), 5.03(1H, s), 5.78(1H, brs) 6.76(1H, s), 8.60(1H, s)	δ (CDC1s); 1.87(2H, m), 1.99(2H, m), 2.63(1H, m) 3.73(2H, m), 4.00(3H, s), 4.03(3H, s) 4.11(3H, s), 4.58(2H, m), 4.80(1H, s) 5.17(1H, s), 6.14(1H, brs), 6.80(1H, s) 8.59(1H, s)
Mass		362(M+1)	376(N+1)*	362(M+1)*
校學	(%)	70	37	70
١	(c)	163~	173- 174	170- 171
R®		0 H NH	HN NH	H NH II
**		ЖеО	MeO	MeO
82		MeO	MeO	MeO
R² Me0		MeO	MeO	MeO
実施例		350	351	352

~ ~

嵌

*	r			
. 4		·		
awn		5 (CDC1,); 1.77(2H, m), 1.80(2H, m), 1.97(2H, m) 2.07(1H, m), 3.64(2H, m), 3.98(3H, s) 4.03(3H, s), 4.10(3H, s), 4.58(2H, m) 4.83(1H, s), 5.12(1H, s), 6.24(1H, brs) 6.92(1H, s), 8.60(1H, s)	δ (CDC1 _s); 2. 16(2H, quintet, J=6. 8Hz) 2. 52(1H, t, J=6. 8Hz) 3. 85(2H, dt, J=6. 8Hz, 6. 0Hz) 3. 99(3H, s), 4. 03(3H, s), 4. 10(3H, s) 6. 29(1H, brs), 6. 90(1H, s), 8. 60(1H, s)	δ (CDC1s); 1.81(2H, m), 1.94(2H, m) 2.47(2H, t, J=6.8Hz) 3.75(2H, dt, J=6.8Hz, 6.0Hz) 4.00(3H, s), 4.03(3H, s), 4.11(3H, s) 5.91(1H, brs), 6.82(1H, s), 8.60(1H, s)
S S M	0 0	376(M+1)	303(M+1)	317(M+1)*
収率	(%)	88		94
聚点	(°C)	143- 144	139-	160- 161
9 00	ŧ	HN IN	HN CN	HIN
70	4	МеО	MeO	МеО
8 0	:	MeO	MeO	МеО
B 2	4	MeO	MeO	MeO
紙框	室	353	354	355

Re Re

3

1	ń.	
	3	
NMR		δ (CDC1,); 1. 6-1. 8(6H, m), 2. 40(2H, t, J=7. 0Hz) 3. 70(2H, dt, J=7. 0Hz, 5. 6Hz) 4. 00(3H, s), 4. 03(3H, s), 4. 11(3H, s) 6. 00(1H, brs), 6. 84(1H, s), 8. 60(1H, s)
2 2 2	M & S	331 (M+1) ⁺
坂本	(%)	22
黀	(%) (0.)	155- 156
č	X	HN
R4		We0
R3		MeO
R²		Me0
実施例		356

*~~\\	
	`~`~
2 24	~ ~

က က

袮		
每		
NMR	δ (DMSO-d ₆); 0. 93(2H, m), 1. 18(2H, m), 1. 44(1H, m) 1. 51(2H, m), 1. 64(2H, brd, J=12. 0Hz) 2. 18(2H, t, J=7. 6Hz), 2. 75(2H, brt, J=12. 0Hz) 4. 53(2H, d, J=5. 6Hz), 4. 73(2H, brd, J=12. 8Hz) 5. 94(1H, s), 6. 83(2H, s), 6. 93(1H, s) 7. 22(1H, d, J=8. 8Hz) 7. 45(1H, d, J=8. 8Hz, 2. 4Hz) 8. 11(1H, d, J=2. 4Hz), 8. 50(1H, t, J=5. 6Hz)	δ (DMSO-d ₈); 1. 90-1. 95(2H, m), 3. 82(2H, t, J=6. 4Hz) 4. 28(2H, t, J=6. 8Hz), 4. 61(2H, d, J=5. 6Hz) 5. 95(2H, s), 6. 04(2H, s), 6. 13(1H, s) 7. 50(1H, d, J=8. 8Hz) 7. 64(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 54(1H, dd, J=2. 4Hz), 8. 75(1H, t, J=1. 6Hz)
Mass	483(M+1)	490 (MH+)
収率(%)	85	32
融点収率(°C)(%)	225- 227	190- 192 (分解点)
R\$	-N C00H	0 0 0 0
R2	C1	CI
実施例	357	358

	0
₹-	Z-Z Z-Z Z-Z
	E

*				塩酸塩
₩	*		G	
axiv	14 IVI IX	δ (CDCl ₁); 1. 42-1.59(4H, m), 1. 70-1.89(4H, m), 4. 43(4H, q, J=6.8Hz), 4. 73(2H, d, J=4.4Hz) 5. 95(2H, s), 6. 28(1H, br) 6. 77(1H, d, J=8.0Hz), 6. 83(1H, d, J=8.0Hz) 6. 85(1H, s), 7. 54(1H, d, J=8.8Hz) 7. 58(1H, d, J=8.8Hz), 7. 66(1H, s)	\$\(\text{DMSO-d}_{\epsilon} \); 2. 66(4H, t. J=4.8Hz), \(3. 66(1H, t. J=4.8Hz) \) 4. 54(2H, d. J=6.0Hz), \(5. 94(2H, s) \) 6. 83(2H, s), \(6. 92(1H, s), \) 7. 22(1H, d. J=8.8Hz) 7. 46(1H, dd, J=8.8Hz, 2.4Hz) 8. 12(1H, d. J=2.4Hz), \(8. 51(1H, t. J=6.0Hz) \)	δ (DMSO-d*); 1.58(2H, m), 1.95(2H, m), 2.75(1H, m) 3.3(2H, m), 3.61(3H, s), 4.46(2H, m) 4.65(2H, d, J=5.6Hz), 5.96(2H, s) 6.84(1H, d, J=8.0Hz) 6.87(1H, dd, J=8.0Hz, 1.2Hz) 6.97(1H, dd, J=1.2Hz), 7.78(1H, brd, J=8.8Hz) 7.81(1H, brd, J=8.8Hz), 8.45(1H, brs) 10.05(1H, brs), 12.05(1H, brs)
7	W 0 0	475(MH+)	398(M+1)	455(M+1)*
负容		95	86	88
融	(%) (2.)	121- 122	173- 175	233- 234
30	N.	- 0 V ONO	HE N	—N—Сооме
80	۳	19	61	5
-	多	359	360	361

N. N.		N. P. B.
ĬĘ.		
	2≈	

8

殹

淅		
每		
NMR	δ (DMS0-d ₆); 1.48(2H, m), 1.64(1H, m), 1.85(1H, m) 2.36(1H, m), 2.96(2H, m), 3.28(1H, m) 4.19(1H, m), 4.64(2H, d, J=5.6Hz) 5.95(2H, s), 6.82(2H, s), 6.93(1H, s) 7.71(1H, brd), 7.79(1H, brd), 8.47(1H, s) 9.04(1H, brs)	δ (CDC1 ₈); 4.76(2H, d, J=5.2Hz), 5.97(2H, s) 6.15(1H, brs), 6.80(1H, d, J=8.0Hz) 6.87(1H, dd, J=8.0Hz, 1.6Hz) 6.89(1H, d, J=1.6Hz) 7.44(1H, ddd, J=8.0Hz, 6.8Hz, 1.6Hz) 7.66(1H, d, J=8.0Hz), 7.74(1H, t, J=6.8Hz) 7.78(1H, dd, J=6.8Hz, 1.6Hz)
Mass		314(M+1)
収率 (%)	12	94
融 点 収率 (°C) (%)		191– 192
R.º	N - COOH	61
R²	61	×
実施例	362	363

	,
NE -	
;	

淅		
每		
NMR	δ (DMSO-d ₆); 1. 38(2H, m), 1. 79(2H, brd, J=12. 8Hz) 2. 47(1H, m), 2. 94(2H, brt, J=11. 2Hz) 4. 56(2H, d, J=5. 6Hz), 4. 61(2H, m) 5. 93(2H, s), 6. 81(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 24(1H, d, J=1. 6Hz), 7. 04(1H, t, J=8. 4Hz) 7. 24(1H, d, J=8. 4Hz), 7. 48(1H, t, J=8. 4Hz) 7. 98(1H, t, J=8. 4Hz), 8. 47(1H, brs) 12. 13(1H, brs)	δ (DMS0-d _s); 1.12(3H, s), 1.25(2H, m), 1.88(2H, m) 3.23(2H, m), 4.20(2H, m), 4.53(2H, d, J=6.0Hz) 5.94(2H, s), 6.83(2H, s), 6.92(1H, s) 7.23(1H, d, J=9.2Hz) 7.46(1H, dd, J=9.2Hz, 2.4Hz) 8.12(1H, d, J=2.4Hz), 8.53(1H, t, J=6.0Hz)
Mass	407 (M+1)	455(M+1)
長子(%)	97	81
聚 点 反锋 (*C) (%)	159- 161	243-
28	-N-C00H	-N COOH
25	±	10
実施例	364	365

	,
NE -	

~

嵌

	 化"		2 塩酸塩
	男		2 2
NMR		δ (DMSO-d ₆): 1. 66(2H, quintet, J=7. 2Hz) 2. 24(2H, t, J=7. 2Hz), 2. 29(2H, t, J=7. 2Hz) 2. 35(4H, m), 3. 72(4H, m), 4. 55(2H, d, J=5. 6Hz) 5. 95(2H, s), 6. 83(2H, s), 6. 93(1H, s) 7. 24(1H, d, J=8. 8Hz) 7. 47(1H, dd, J=8. 8Hz) 8. 14(1H, d, J=2. 4Hz), 8. 53(1H, t, J=5. 6Hz)	5 (DMSO-d ₈); 2. 79(3H, s), 3. 14(2H, m), 3. 54(2H, m) 3. 62(2H, m), 4. 71(2H, d, J=5. 6Hz), 4. 94(2H, m) 5. 99(2H, s), 6. 87(1H, d, J=8. 0Hz) 6. 94(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 03(1H, d, J=1. 6Hz), 7. 87(1H. brd) 8. 07(1H, brs), 8. 60(1H, brs), 10. 29(1H, brs) 11. 36(1H, brs), 13. 13(1H, brs)
,	N 2 2 3 3	484(M+1)	定量的 412(№1)*
坂本	(%)	66	定量的
職 点 (°C) 174- 175		174- 175	237- 239 (分解点)
Rs		N C00H	−N N-Me
R2		C1	61
実施例		366	367
	D2 D3	R* R* R* Mass Mass NMR 備 (°C) (%)	Ref. (%) Mass Mass NMR

	-
≜	~ ~ ~ ~
·	

တ

表

*	7			
1	1			
の M R		δ (DMSO-d _θ); 2. 58(4H, m), 3. 00(2H, brs), 3. 75(4H, m) 4. 53(2H, brd, J=6. 0Hz), 5. 94(2H, s) 6. 82(2H, brs), 6. 92(1H, s) 7. 23(1H, d, J=8. 8Hz), 7. 47(1H, brd, J=8. 8Hz) 8. 14(1H, brs), 8. 55(1H, t, J=6. 0Hz)	δ (DMSO-d ₆); 2.39(6H, m), 2.56(2H, t, J=7.2Hz) 3.71(2H, brs), 4.55(2H, d, J=5.6Hz) 1.83(2H, s), 6.93(1H, s), 7.24(1H, d, J=8.8Hz) 7.48(1H, dd, J=8.8Hz, 2.4Hz) 8.14(1H, d, J=2.4Hz), 8.55(1H, t, J=5.6Hz)	δ (DMSO-d ₈); 2.86(2H, t, J=7.2Hz), 8.53(2H, q, J=8.0Hz) 4.74(2H, d, J=5.2Hz), 5.97(2H, s) 6.86-6.89(2H, m), 7.01(1H, d, J=1.2Hz) 7.18-7.32(5H, m), 7.83(1H, d, J=8.8Hz) 7.86(2H, dd, J=8.8Hz, 2.0Hz) 8.50(1H, d, J=2.0Hz), 8.70(1H, brt, J=5.2Hz) 9.02(1H, brt, J=5.0Hz)
3 0 7	M & & &	456 (M+1)	470(M+1)	461 (MH+)
収率	(%)	86	06	80
聚近	(%)	193- 195	174- 176	166- 169 (分解点)
19 6	X	-N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-N_COOH	- CONH
80	<u>.</u>	61	13	Ö
张‡	畜室	368	369	370

	z-√°2
` <u>`</u> ₩	
**************************************	مسر

တ

蝦

妆		
毎		
NMR	δ (DMS0-d ₆); 3. 37(2H, q, J=6. 0Hz), 3. 53(2H, q, J=5. 8Hz) 4. 75(2H, d, J=6. 0Hz), 4. 82(1H, t, J=5. 4Hz) 5. 97(2H, s), 6. 86(1H, d, J=8. 0Hz) 6. 94(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 04(1H, d, J=1. 6Hz), 7. 81-7. 88(2H, m) 8. 50(1H, d, J=2. 0Hz), 8. 64(1H, t, J=6. 0Hz) 9. 04(1H, t, J=6. 0Hz)	δ (DMSO-d ₈); 0.99(3H, t, J=7.4Hz), 1.79-1.84(2H, m) 4.41(2H, t, J=6.6Hz), 4.83(2H, d, J=5.6Hz) 5.97(2H, s), 6.85(1H, d, J=28.0Hz) 6.93(1H, dd, J=8.0Hz, 1.6Hz) 7.03(1H, d, J=1.6Hz), 7.87(1H, d, J=8.8Hz) 7.91(1H, dd, J=8.8Hz, 2.2Hz) 8.56(1H, d, J=2.2Hz), 8.727(1H, brt, J=5.6Hz)
Mass	401 (MH⁺)	424 (MH+)
収率(%)	42	
融点 収率 (°C) (%)	223- 225 (分解点)	199- 201 (分解点)
Rs	CONH OH	N2 -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
R²	C1	61
実施例	371	372
		•

	× ~ ~
` <u>`</u> ≅~~~	
. 22	٠ سر

表

t .	論			塩酸塩
	IN IN IK	δ (DMSO-d _s); 4. 63(2H, d, J=5. 6Hz), 5. 99(2H, s), 6. 87(2H, s) 6. 97(1H, s), 7. 57(1H, d, J=8. 8Hz) 7. 92(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 61(1H, d, J=2. 0Hz), 9. 26(1H, t, J=5. 6Hz)	δ (DMSO-d _e); 4.65(2H, d, J=5.6Hz), 5.99(2H, s), 6.87(2H, s) 6.97(1H, s), 7.71(2H, m), 8.17(1H, m) 9.14(1H, t, J=5.6Hz)	δ (DMSO-d _e); 1. 17(3H, t, J=7. 2Hz), 1. 56(2H, m), 1. 94(2H, m) 2. 72(1H, m), 3. 3(2H, m), 4. 06(2H, q, J=7. 2Hz) 4. 49(2H, m), 4. 64(2H, d, J=6. 0Hz), 5. 95(2H, s) 6. 83(1H, d, J=8. 0Hz) 6. 87(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 91(1H, dd, J=1. 6Hz), 7. 80(1H, d. J=8. 8Hz) 7. 91(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 60(1H, d, J=2. 0Hz), 10. 10(1H, brs) 12. 22(1H, brs)
3	Mass	392(M+1)*	332(M+1)*	513(M+1)*
収率	(%)	80	80	80
題	(%) (a)	213- 214	192- 193	239-
an C	W.	61	61	-N∕-C00Bt
20	×	Вг	Ċ.	Br
-	富定	373	374	375

HN	

X

椒		
龕		
NMR	5 (DMSO-d ₄); 1. 38(2H, m), 1. 79(2H, m), 2. 46(1H, m) 2. 95(2H, m), 4. 53(2H, d, J=6.0Hz), 4. 58(2H, m) 5. 93(2H, s), 6. 80(1H, d, J=8.0Hz) 6. 83(1H, dd, J=8.0Hz, 1. 6Hz) 6. 91(1H, d, J=1. 6Hz), 7. 16(1H, d, J=9.2Hz) 7. 55(1H, dd, J=9.2Hz, 2. 4Hz) 8. 24(1H, d, J=2. 4Hz), 8. 52(1H, t, J=6.0Hz) 12. 13(1H, brs)	δ (CDC1 ₃) : 1. 62(2H, m), 1. 73(4H, m), 3. 21(4H, t, J=5. 4Hz) 4. 76(2H, d, J=5. 2Hz), 5. 80(1H, t, J=5. 2Hz) 5. 97(2H, s), 6. 76(1H, d, J=2. 4Hz) 6. 81(1H, d, J=8. 0Hz) 6. 88(1H, dd, J=8. 0Hz, 1. 2Hz) 6. 91(1H, d, J=1. 2Hz) 7. 48(1H, dd, J=9. 2Hz, 2. 4Hz) 7. 66(1H, d, J=9. 2Hz, 2. 4Hz)
Mass	485(M+1) ⁺	397 (M+1) ⁺
(%)	96	98
融点 収率(°C)(%)	209-	200-
R°		C1
8 2	Æ	<u></u>
実施例	376	377

Æ.		S. W. B.
	2	

表

袱	•		
每			
NMR	δ (DMSO-d ₆); 2. 99(6H, s), 4. 63(2H, d, J=6. 0Hz), 5. 96(2H, s) 6. 84(2H, s), 6. 98(1H, s), 7. 20(1H, d, J=2. 8Hz) 7. 37(1H, dd, J=9. 2Hz, 2. 8Hz) 7. 46(1H, d, J=9. 2Hz), 8. 84(1H, t, J=6. 0Hz)	\$\circ\$ (DMSO-d_4); \$2.48(2H, t, J=6.4Hz); \$2.48(2H, t, J=6.4Hz); \$3.46(4H, brs), \$3.71(2H, brs), \$3.77(2H, brs); \$4.56(2H, d, J=5.6Hz), \$5.95(2H, s); \$6.83(1H, d, J=8.0Hz), \$6.86(1H, d, J=8.0Hz); \$6.94(1H, s), \$7.27(1H, d, J=8.8Hz); \$7.50(1H, dd, J=8.8Hz, 2.0Hz); \$8.16(1H, d, J=2.0Hz), \$8.16(1H, t, J=5.6Hz)\$	
Mass	357 (M+1)*	498 (M+1)	
坂母(%)	94	88	
融 点 収率 (°C) (%)	226- 227 (分解点)	183- 185	
R°	C1	H000 N N -	
R ²	Me N-	13	
実施例	378	879	

NIII NIII

被 4

	報			
	NMR		S (DMSO-d ₆); 3.44(6H, m), 3.73(2H, m), 3.78(2H, m) 4.56(2H, d, J=5.6Hz), 5.93(2H, s) 6.83(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz) 6.94(1H, s), 7.27(1H, d, J=8.8Hz) 7.50(1H, dd, J=8.8Hz, 2.0Hz) 8.16(1H, dd, J=2.0Hz), 8.61(1H, t, J=5.6Hz)	δ (CDC1s): 1. 00(3H, t, J=7. 6Hz) 1. 70(2H, sextet, J=7. 6Hz) 2. 36(2H, t, J=7. 6Hz). 3. 54(2H, brs) 3. 69(2H, t, J=4. 8Hz). 3. 89(2H, t, J=4. 8Hz) 3. 92(2H, brs). 4. 68(2H, d, J=5. 2Hz) 5. 65(1H, brs). 5. 97(2H, s) 6. 80(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz). 7. 40(1H, m). 7. 46(1H, m) 7. 48(1H, m)
	Mass		484(M+1)	468 (M+1)
-	収率	(%)	85	79
	平河	(%) (2.)	193- 195	204-
	s 2		HOOO NO	
	R²		13	13
	张福 室		380	381
-				:

	\ 0	
NH-	/ -{ 	N N R⁵

#13K

爺	塩酸塩	
NMR	5 (DMSO-d ₆); 1.58(2H, m), 1.95(2H, m), 2.75(1H, m) 3.3(2H, m), 3.61(3H, s), 4.46(2H, m) 4.65(2H, d, J=5, 6Hz), 5.96(2H, s) 6.84(1H, d, J=8.0Hz) 6.87(1H, dd, J=8.0Hz, 1.2Hz) 6.97(1H, dd, J=1.2Hz), 7.78(1H, brd, J=8.8Hz) 7.81(1H, brd, J=8.8Hz), 8.45(1H, brs) 10.05(1H, brs), 12.05(1H, brs)	δ (CDCl ₈); 1. 25(3H, t, J=7. 2Hz), 1.54(1H, m), 1.70(1H, m) 1. 78(1H, m), 2.11(1H, m), 2.52(1H, m), 2. 98(1H, m), 3. 14(1H, m), 4. 15(2H, q, J=7. 2Hz) 4. 66(2H, m), 4. 73(1H, m), 4. 98(1H, m) 5. 61(1H, brt), 5. 95(2H, s) 6. 78(1H, d, J=8. 0Hz) 6. 85(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 88(1H, dd, J=1. 6Hz), 7. 37-7. 44(3H, m)
Mass	455 (M+1)*	469(N+1)*
京母	86	66
融点版(%)	233-234	ፓ ድ
S. ST	-М—Сооме	C00Bt
R²	19	13
実施例	382	383

	```` ```
₹-	
	~

വ

民

 $\tau^{\rm ir}$ 

糸		
印		
NMR	δ (DMS0-d _e ): 1. 34(1H, m), 1. 56(1H, m), 1. 65(1H, m) 1. 97(1H, m), 2. 28(1H, m), 2. 85(1H, m) 2. 95(1H, m), 4. 53(2H, m), 4. 57(1H, m) 4. 81(1H, m), 5. 93(2H, s), 6. 78(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 91(1H, d, J=1. 6Hz), 7. 24(1H, d, J=8. 8Hz) 7. 45(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 12(1H, d, J=2. 4Hz), 8. 55(1H, brs)	\$\langle (CDCl_s) : 3.18(1H, br), 4.75(2H, d, J=5.2Hz) 5.97(2H, s), 6.17(1H, br) 6.81(1H, d, J=8.4Hz) 6.87(1H, dt, J=8.4Hz, 1.6Hz) 6.88(1H, d, J=1.6Hz), 7.72(1H, d, J=2.0Hz) 7.75(1H, dd, J=2.0Hz) 7.85(1H, d, J=2.0Hz)
Mass	441(M+1) ⁺	339(M+1)*
(%)	86	35
聚点 ( ) ( ) ( ) ( ) ( ) ( )	275- 276 (分解点)	198- 199
S S	C00H	- CN
R2	. 61	
実施例	384	385

	/	-
	<b>&gt;</b>	<b>8</b> 2
<b>≅</b> −	<u> </u>	
	<u>"</u> ~	<u>/</u> /

**ў** 46

4	fb.			
1	豐			
NMR		δ (CDCl _s ); 2. 59(3H, s), 4. 79(2H, d, J=5. 6Hz) 5. 93(2H, s), 6. 77(1H, d, J=8. 0Hz) 6. 89(1H, d, J=8. 0Hz), 6. 94(1H, s) 7. 62(1H, dd, J=8. 8Hz, 2. 0Hz) 7. 75(1H, d, J=8. 8Hz), 7. 97(1H, d, J=2. 0Hz) 8. 10(1H, brs), 8. 56(1H, s)	δ (CDC1 ₃ ); 2. 75(3H, s), 4. 80(2H, d, J=5. 2Hz) 5. 96(2H, s), 6. 80(1H, d, J=8. 0Hz) 6. 89(1H, d, J=8. 0Hz), 6. 91(1H, s) 7. 06(1H, brs), 7. 64(1H, d, J=8. 8Hz) 7. 98(1H, d, J=8. 8Hz), 8. 43(1H, s), 8. 74(1H, s)	δ (DMSO-d ₆ ); 1. 68(2H, m), 3.11(3H, s), 3.40(2H, t, J=6.2Hz) 3. 65(2H, t, J=7.0Hz), 4. 60(2H, d, J=5.6Hz) 6. 83(1H, d, J=7.6Hz) 6. 87(1H, dd, J=7.6Hz, 1.2Hz) 6. 95(1H, d, J=1.2Hz), 7.31(1H, br) 7. 52(1H, br), 8. 19(1H, br)
200	M ឧ s s	326(M+H) [→]	342(M+H) ⁺	401 (M+1)*
収率	(%)	83	80	71
氰	(%)	174- 175	154- 155	154- 155
O	R H		H	-N OH
DS	4	MeS	0 ↑ -S-Me	<b>C1</b>
· 张 接	<b>紙福度</b> 88		387	388

	`0 /
	} _Z√ _Z Z
H-	
	<b>~</b>

喪

*								
題	<b></b>							
a N N	δ (DMSO-d _e ); 6. 04(2H, S), 6. 95 7. 11(1H, dd, J=8. 4 7. 88(1H, d, J=2. 0H 7. 86(1H, dd, J=8. 8 8. 66(1H, d, J=2. 4H δ (DMSO-d _e ); 4. 62(2H, d, J=5. 6H 6. 81-6. 82(2H, m), 7. 51(2H, d, J=8. 0H 7. 90(2H, d, J=8. 0H 7. 96(1H, dd, J=8. 0H 7. 96(1H, dd, J=8. 0H		6		δ (CDC1 ₈ ); 3.92(3H, s), 4.74(2H, d, J=5.2Hz), 5.58(2H, s) 5.92-5.99(1H, m), 5.99(2H, s)	6. 60-6. 69(3H, m), 7. 57(2H, d, J=8. 0Hz) 7. 70(1H, d, J=8. 8Hz) 7. 80(1H, dd, J=8. 8Hz, 1. 6Hz) 7. 95(1H, d, J=1. 6Hz), 8. 03(2H, d, J=8. 0Hz)		
w w w	3	334(N+1)*		455 (MH +)		-	469(MH+)	
収率	(%)	48		29			35	
雷河	(%) (%)	194- 195 (分解点)		298-	300(分解点)	176-	179	
19 CM	•	5		Ş	H000	<	— 0 Сооме	
<b>8</b> %	:	C1			5	S		
-	<b>\$</b>	389		390			391	

HN		N Rs
	<b>2</b>	

4

*	<b>A</b>		
₹	<b>F</b>		
2 2 2	IN IN K	δ (DMSO-d _a ); 1. 39(2H, m), 1. 69(2H, m), 2. 31(1H, m) 2. 54(2H, t, J=7. 2Hz), 2. 82(2H, m) 3. 31(2H, m), 4. 56(2H, d, J=5. 6Hz) 4. 74(2H, m), 5. 96(2H, s), 6. 83(1H, d, J=8. 0Hz) 6. 86(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 47(1H, d, J=1. 6Hz), 7. 26(1H, d, J=8. 8Hz) 7. 47(1H, dd, J=8. 8Hz, 2. 4Hz) 7. 72(1H, t, J=5. 6Hz), 8. 14(1H, d, J=2. 4Hz) 8. 54(1H, t, J=5. 6Hz)	S (DMSO-d _e ); 1.01(2H, m), 1.66(2H, brd, J=13.2Hz) 1.90(1H, brs), 2.12(2H, d, J=7.2Hz) 2.79(2H, brt, J=12.0Hz) 4.53(2H, d, J=5.6Hz), 4.71(2H, brd, J=13.2Hz) 5.94(2H, s), 6.82(2H, m), 6.92(1H, s) 7.22(1H, d, J=8.8Hz) 7.45(1H, dd, J=8.8Hz) 8.11(1H, d, J=2.4Hz), 8.51(1H, t, J=5.6Hz)
, , , , , , , , , , , , , , , , , , ,	Mass		455 (M+1.)
安略	(%)	51	96
覆板	(%) (%)	230 (分解点)	255- 256
90	II.	-N H SO.8Na	- N C00H
*0	<b>4</b>	61	C1
-	<b>E</b>	392	393

_

华			
¥	<u> </u>		
aAN	IN INI IN	δ (DNSO-d _s ); 3. 54(2H, s), 4. 66(2H, d, J=5.7Hz) 5. 97(2H, s), 6. 84(1H, d, J=7.9Hz) 6. 90(1H, dd, J=7.9Hz, 1. 6Hz) 6. 98(2H, brs, d, J=1. 6Hz), 7. 43(1H, brs) 7. 66(1H, d, J=9.0Hz) 7. 76(1H, dd, J=2.0Hz), 8. 77(1H, t, J=5.7Hz)	δ (DMSO-d _s ); 4.39(2H, d, J=6.0Hz), 4.55(2H, d, J=5.6Hz) 5.98(4H, d, J=8.0Hz), 6.77(5H, m) 6.80(1H, br), 7.20(2H, br) 7.45(1H, dd, J=8.8Hz, 0.8Hz) 8.11(1H, d, J=2.4Hz), 8.38(1H, br)
N o N	IM & S	371 (M+1)	463(M+1)
収率	(%)	13	54
融点	(%) (2.)	222- 223	176- 177
9 0	K	€CONH.	
. 0	¥	61	13
実は	多	394	395

	0	•
<b>№</b> -	<i>`</i> } ⊸{₹	N. S.

50

P. 25		赵	根	融点収率	o o e M	aMN	将
	4		(%) (a)	<b>%</b>	0 0 1	N M IN	
CN — 0 — 1.	-0-С00Ме	<b>.</b>	176- 179	35	469(MH+)	3.92(3H, s), 4.74(2H, d, J=5.2Hz), 5.58(2H, s) 5.92-5.99(1H, m), 5.98(2H, s), 6.60-6.69(3H, m), 7.57(2H, d, J=8.0Hz) 7.70(1H, d, J=8.8Hz) 7.80(1H, dd, J=8.8Hz) 7.95(1H, dd, J=1.6Hz), 8.03(2H, d, J=8.0Hz)	
CN -0 -0 30 80-	2982 S C000H	298 3 3 5	298- 300 (分解点)	29	455 (MH+)	δ (DMSO-d ₆ ); 4. 62(2H, d, J=5.6Hz), 5. 47(2H, s), 5. 45(2H, s) 6. 81-6. 82(2H, m), 6. 90(1H, s) 7. 51(2H, d, J=8.0Hz), 7. 57(1H, d, J=8.8Hz) 7. 90(2H, d, J=8.0Hz) 7. 91(1H, dd, J=8.8Hz, 2.0Hz) 8. 79(1H, d, J=2.0Hz), 9. 10(1H, brt, J=5. 1Hz)	

	班		塩酸塩	
•	a N N	I A INI IV	δ (DNSO-d ₆ ); 1.10(6H, s), 1.11(3H, t, J=7.2Hz) 1.76(2H, brs), 3.22(3H, s), 3.64(2H, m) 3.97(2H, q, J=7.2Hz), 4.71(2H, d, J=5.6Hz) 5.97(2H, s), 6.84(2H, s), 6.95(1H, s) 7.84(1H, dd, J=9.2Hz, 2.0Hz) 7.93(1H, d, J=9.2Hz), 8.53(1H, d, J=2.0Hz) 10.10(1H, brs), 11.95(1H, brs)	δ (DMSO-d ₆ ); 1. 086(6H, s), 1. 66(2H, m), 3. 03(3H, s) 3. 54(2H, m), 4. 59(2H, d, J=5. 6Hz), 5. 94(2H, s) 6. 82(2H, s), 6. 90(1H, s), 7. 22(1H, d, J=9. 2Hz) 7. 45(1H, dd, J=9. 2Hz, 2. 0Hz) 8. 12(1H, d, J=2, 0Hz), 8. 46(1H, brs)
	Moss	N G	485(M+1)	457 (M+1)
	収率	(%)	27	78
	融点	(%) (2,)	236- 237	240- 241 (分解点)
	90	<b>2</b>	Me Me ——N ——COOEt ——I ——Me	Me Me -N COOH     Me
	24 E2		13	C1
	张华	富定	898	399

NH NH	z – Ö
28	·

罴

淅		
緀		
NMR	δ (DMSO-d ₆ ); 1. 05(3H, d, J=6. 0Hz), 1. 51(1H, m), 1. 81(1H, m) 2. 26(1H, m), 3. 05(3H, s), 3. 57(2H, m) 4. 57(2H, d, J=5. 6Hz), 5. 94(2H, s), 6. 82(2H, s) 6. 91(1H, s), 7. 23(1H, d, J=8. 8Hz) 7. 46(1H, dd, J=8. 8Hz, 1. 2Hz) 8. 13(1H, d, J=1. 2Hz), 8. 49(1H, brs)	δ (CDC1 ₈ ); 2.85(2H, t, J=7.0Hz), 3.72-8.78(2H, m) 4.85(2H, d, J=5.2Hz), 5.84(2H, s) 6.35(1H, brt, J=5.4Hz), 6.66(1H, d, J=8.0Hz) 6.78(1H, dd, J=8.0Hz, 1.6Hz) 6.82(1H, d, J=1.6Hz), 7.18-7.29(5H, m) 7.61(1H, dd, J=8.8Hz, 2.2Hz) 7.69-7.72(2H, m), 7.99(1H, br)
M a s s	443(M+1)	485 (MH+)
<b>坂梅</b>	21	80
融 点 収略 (°C) (%)	148- 150	180- · 182 (分解点)
R®	-N COOH	-C-N             
<b>82</b>	61	61
张摇囱	400	401

E N

က

搬

	袱		
	鑩		
	NMR	δ (DMS0-d _e ); 3. 77-3. 81(2H, m), 4. 76(2H, t, J=5. 2Hz) 4. 92(2H, d, J=6. 0Hz), 5. 97(2H, s) 6. 86(1H, d, J=8. 0Hz) 6. 97(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 05(1H, d, J=2. 0Hz), 7. 83(1H, d, J=8. 8Hz) 7. 92(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 56(1H, d, J=2. 4Hz), 9. 04(1H, t, J=6. 0Hz) 9. 4848(1H, t, J=6. 0Hz)	δ (DMS0-d ₆ ); 3.44-3.48(2H, m), 3.56-3.60(2H, m) 4.37-4.51(3H, m), 5.94(2H, s) 6.83(1H, d, J=8.0Hz) 6.94(1H, dd, J=8.0Hz, 1.6Hz) 7.02(1H, d, J=1.6Hz), 7.80(1H, d, J=8.8Hz) 7.89(1H, dd, J=8.8Hz), 9.20(1H, br) 8.53(1H, d, J=2.4Hz), 9.20(1H, br)
	Mass	470(MH+)	425 (MH+)
:	収率 (%)	62	58
	融 点 収率 (°C) (%) 169 (分解点)		243- 245 (分解点)
	Rs	-C-N    0N0 ×    N	H-C-N N CN
	C1		01
	<b>张</b> 摇室	402	403
	•		

		-
		-% -8-
HN		
	~ <u>~</u> }	

罴

柳		
每		
NMR	δ (DMSO-d ₆ ); 4.41(2H, d, J=6.0Hz), 4.66(2H, d, J=5.6Hz) 4.84(1H, t, J=6.0Hz), 5.95(2H, s) 6.83(1H, d, J=7.6Hz) 6.86(1H, dd, J=7.6Hz, 1.6Hz) 6.97(1H, d, J=1.6Hz), 7.67(1H, d, J=8.8Hz) 7.75(1H, dd, J=8.8Hz, 2.4Hz) 8.40(1H, d, J=2.4Hz), 8.78(1H, t, J=5.6Hz)	6 (DMSO-d ₆ ); 1. 97(2H, quintet, J=7. 4Hz) 2. 26(2H, t, J=7. 4Hz), 2. 72(2H, t, J=7. 4Hz) 4. 65(2H, d, J=5. 7Hz), 5. 97(2H, s) 6. 83(1H, d, J=8. 0Hz) 6. 88(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 96(1H, d, J=1. 6Hz), 7. 63(1H, d, J=9. 0Hz) 7. 73(1H, dd, J=9. 0Hz, 2. 2Hz) 8. 39(1H, d, J=2. 2Hz), 8. 72(1H, t, J=5. 7Hz)
Mass	344(MH+)	400 (M+1)
収率(%)		97
融 点 収率 (°C) (%)	210 213 (分解点)	191-
Re	H >	H000
25	13	ច
実施例	404	405

	) ()
<u></u>	~ ~ ~ ~

δ (DMSO-d _s ): 1. 98(2H, quintet, J=7. 4Hz) 2. 29(2H, t. J=7. 4Hz), 2. 75(2H, t, J=7. 4Hz) 4. 68(2H, d. J=5. 7Hz), 5. 97(2H, s) 6. 85(1H, d. J=7. 9Hz), 6. 97(2H, s) 6. 89(1H, dd. J=7. 9Hz), 7. 72(1H, d. J=8. 6Hz) 8. 02(1H, dd. J=8. 6Hz), 7. 72(1H, d. J=8. 6Hz) 8. 84(1H, d. J=1. 6Hz), 8. 96(1H, t. J=5. 7Hz)	δ (DMSO-d ₆ ); 2. 71(2H, t, J=7. 1Hz), 2. 96(2H, t, J=7. 1Hz) 4. 65(2H, d, J=5. 7Hz), 5. 97(2H, s) 6. 85(1H, d, J=7. 9Hz) 6. 89(1H, dd, J=7. 9Hz, 1. 6Hz) 6. 98(1H, dd, J=1. 6Hz), 7. 62(1H, d, J=9. 0Hz) 7. 78(1H, dd, J=9. 0Hz, 2. 2Hz) 8. 39(1H, d, J=3. 2Hz), 8. 73(1H, t, J=5. 7Hz)
391 (M+1)	386(M+1)
55	66
245-	201-
H000	нооо
CN	C1.
406	407
	CN

	0	
≅-	) -{	N R
	Z Z	

5

罴

稲水		塩酸塩	
a N N	14 174 17	6 (DMSO-d ₆ ); 1.40(2H, m), 1.71(2H, m), 2.34(1H, m) 2.82(2H, m), 4.56(2H, d, J=5.6Hz), 4.74(2H, m) 5.95(2H, s), 6.73(1H, brs) 6.82(1H, d, J=8.0Hz) 6.86(1H, dd, J=8.0Hz, 1.6Hz) 6.94(1H, d, J=1.6Hz), 7.25(1H, brs) 7.25(1H, d, J=8.8Hz) 7.47(1H, dd, J=8.8Hz) 8.14(1H, d, J=2.4Hz), 8.53(1H, brt, J=5.6Hz)	δ (DMSO-ds); 1.27(3H, t, J=7.0Hz), 3.21(3H, s) 4.30(2H, q, J=7.0Hz), 4.55(2H, brs) 4.97(2H, s), 5.89(2H, s), 6.52-8.42(10H, m) 12.20(1H, brs)
00 00 00 00 00	in a s	440(M+1)*	505 (MH+)
収率	(%)	42	81
融	(%) (a)	231- 232 (分解点)	215 (分解点)
N. S.	4	—N—CONH.	-N-IN-IN-IN-IN-IN-IN-IN-IN-IN-IN-IN-IN-I
250	4	10	61
<b>张</b> 摇	医	408	409

HH

2

锹

析					
箍					
NMR	δ (DMSO-d ₆ ); 3. 07(2H, S), 4. 50(2H, br S), 4. 81(2H, S) 5. 89(2H, S), 6. 51-6. 88(3H, m) 7. 22(2H, d, J=8. 0Hz), 7. 26(1H, d, J=9. 2Hz) 7. 48(1H, dd, J=9. 2Hz, 2. 4Hz) 7. 80(2H, d, J=8. 0Hz), 8. 15(1H, d, J=2. 4Hz) 8. 58(1H, br S), 12. 77(1H, br S)				
M a s	477 (MH+)				
長後(%)	91				
融点 収率(*C)(%)	279- 280 (分解点)				
<b>8</b>	-N-     Ne				
R 2	1.9				
<b>米</b>	410				

<u></u>		
₹-	IJ ₹	
	<u></u>	

罴

(0)

## 請求の範囲

1. 下記一般式(1) で表される含窒素複素環化合物またはその薬理学的に許容できる塩。



(式(1) 中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環を意味する。 環Bはピリジン環、ピリミジン環又はイミダゾール環を意味する。

ただし、環Aと環Bは2つの原子を共有して結合しており、その共有する原子は炭素原子でも窒素原子でもよい。

なお、環Aがピリジン環の場合であって、このピリジン環の窒素原子を環B

が共有して結合している場合以外のときは、環Aは R² で示される

ものとする。

R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、ハイドロキシアルキル基、ニトロ基、シアノ基、

アシルアミノ基、保護されていてもよいカルボキシル基、式 $-S-R^7$ (式中、 $R^7$ は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示さ

 $(0)_{m}$ 

れる基、又は、式-N< $R^{45}$  $R^{$ 

あるいは低級アルキル基を意味する。  $R^{45}$ と $R^{46}$  が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。また、 $R^{1}$ 、 $R^{2}$ 、 $R^{3}$ 及び $R^{4}$ のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシシアルケニル基、ハイドロキシアルキル基、保護されていてもよいカルボキシ

ル基、式 $-S-R^8$ (式中、 $R^8$ は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^8$ (式中、 $R^8$ は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又は

置換されていてもよいベンジル基を意味する。)で示される基、式 -

(式中、 $R^{23}$  は水酸基、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいへテロアリール基、置換されていてもよい 1 、 3 - ベンズジオキソリル基、置換されていてもよい 1 、 4 - ベンズジオキシル基、置換されていてもよい 1 、 4 - ベンズジオキシルアルキル基、置換されていてもよい 1 、 4 - ベンズジオキシルアルキル基、式 -  $C(R^{24})$  = X 〔式中、 Xは酸素原子、硫黄原子又は式 = N- $R^{10}$  (式中、  $R^{10}$ は水酸基、シアノ基又は保護されて

いてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 $R^{24}$ は水素原子又は低級アルキル基を意味する。〕で示される基、又は式 $-NR^{11}R^{12}$ (式中、 $R^{11}$ 、 $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、保護されていてもよいカルボキシアルキルカルバモイル基、置換されていてもよいヘテロアリールアルキル基、1,3-ベンズオキソリルアルキル基又は1, $4-ベンズジオキシルアルキル基を意味する。さらに、<math>R^{11}$ と $R^{12}$ が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェ

ニルアルキルオキシ基、式
$$-N$$
  $R^{13}$  (式中、 $R^{13}$  、 $R^{14}$  は同 $-X$ 

は相異なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに、 $R^{13}$ 、 $R^{14}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成

していてもよい。)で示される基、式
$$-N$$
 で示される基、 $R^{15}$   $R^{16}$ 

$$R^{16}$$
で示される基(これらの式中、  $R^{15}$ 、  $R^{16}$ は、同一又は相異

なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに  $R^{16}$  と  $R^{16}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2'-ジオキサン-1-イル基、式

$$-Z$$
-(CH₂)。 $R^{48}$  (式中、  $R^{48}$ 、  $R^{48}$  は同一又は相異なる水素原子、

低級アルキル基又は低級アルコキシ基を意味する。さらに、R48とR49は、一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。 Zは

硫黄原子又は酸素原子を意味する。)で示される基、式-N R⁵⁰ (式中、

R⁵⁰ は水酸基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、シアノ基、ハイドロキシアルキル基又はカルボ

キシアルキル基を意味する。)で示される基、式 $-N-Y-R^{18}$  〔式中、 $R^{17}$  は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)$ 。 (式中、Qは0又は $1\sim8$ の整数を意味する)で示され

る基、又は式-C-で示される基を意味する。さらに式 $-(CH_2)$ 。- で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$ 個の置換基を有していてもよい。 $R^{18}$  は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換されていてもよいヘテロアリール基又は置換

WO 93/07124 PCT/JP92/01258

されていてもよいシクロアルキル基を意味する。〕で示される基、又は

$$R^{18}$$
 |  $R^{20}$  式  $-N^{-(CH_2)}$   $R^{21}$  (式中、 $R^{18}$  は水素原子、低級アルキル基、低級  $R^{22}$ 

アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシルを、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。]

2 下記一般式(2) で表される請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

(式(2) 中の $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 及び $R^6$ は、各々、式(1) 中の $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 及び $R^6$ と同様の意味を有する。〕

3. 下記一般式 (I) で表される請求項1記載の含窒素複素環化合物又はその薬

 $(0)_n$ 

理学的に許容できる塩。

〔式(I)中、R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基、シアノ基、ア

シルアミノ基、保護されていてもよいカルボキシル基、式 $-\ddot{S}-R^7$ (式中、 $R^7$  は低級アルキル基を意味し、n は 0 又は  $1\sim 2$  の整数を意味する。)で示される基を意味する。また、 $R^1$ 、 $R^2$ 、 $R^3$ 及び $R^4$ のうちの 2 つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル

基、保護されていてもよいカルボキシル基、式 $-S-R^s$ (式中、 $R^s$ は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^s$ (式中、 $R^s$ は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又はベンジル基を意味する。)で示される

基、式 - (式中、R²³ は水酸基、低級アルキル基、低級アルコキシ

基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。) で示される基、置換されていてもよいヘテロアリール基、置換されていてもよ い1、3 -ベンズジオキソリル基、置換されていてもよい1、4 -ベンズジオキソリルアルキル基、置換されていてもよい1、4 -ベンズジオキソリルアルキル基、置換されていてもよい1、4 -ベンズジオキシルアルキル基、式-C( $R^{24}$ )=X (式中、 Xは酸素原子又は式=N-R 10  (式中、  $R^{10}$ は水酸基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、  $R^{24}$ は水素原子又は低級アルキル基を意味する。〕で示される基、又は式-NR 11 R 12 (式中、  $R^{11}$  、  $R^{12}$  は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、1,3 -ベンズオキソリルアルキル基又は1,4 -ベンズジオキシルアルキル基を意味する。さらに、  $R^{11}$ と $R^{12}$ が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェニルアルキルオキシ

低級アルキル基又は低級アルコキシ基を意味する。さらに、 $R^{13}$ 、 $R^{14}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)で

示される基、式
$$-N$$
 で示される基、式 $-N$  で示される基、 $R^{15}$   $R^{15}$   $R^{16}$ 

式-N 
$$R^{15}$$
  $R^{16}$ で示される基、式-N  $R^{16}$ で示される基(これらの式

中、  $R^{15}$ 、  $R^{16}$ は、水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに  $R^{15}$ と  $R^{16}$ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2-ジオキサン-1-

イル基、  $式-N-Y-R^{18}$   $〔式中、<math>R^{17}$  は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式- $(CH_2)_{\circ}$ - (式中、<math>qは0又

は  $1 \sim 8$  の整数を意味する)で示される基、又は式-C-で示される基を意味する。 さらに式 $-(CH_2)$ 。- で示される基において、q が  $1 \sim 8$  の整数のとき、それぞれの炭素は  $1 \sim 2$  個の置換基を有していてもよい。 $R^{18}$  は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換され

アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ

基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 $R^{20}$ 、 $R^{21}$ 、 $R^{22}$ のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。rは0又は1~8の整数を意味する。)で示される基を意味する。)

4. 下記一般式(3) で表される請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

 (式(3) 中のR¹、R²、R³、R⁴、R⁵及びR⁶は、各々、式(1) 中のR¹、R²、R³、R⁴、

 R⁵及びR⁶と同様の意味を有する。〕

5. 下記一般式(4) で表される請求項1記載の含窒素複素環化合物又はその薬理 学的に許容できる塩。

$$\begin{array}{c|c}
R^{2} & R^{1} & R^{6} \\
R^{2} & N & R^{5}
\end{array}$$

$$\begin{array}{c}
R^{2} & R^{5} & R^{5} \\
R^{3} & R^{4} & R^{5}
\end{array}$$

(式(4) 中のR¹、R²、R³、R⁴、R⁵及びR⁶は、各々、式(1) 中のR¹、R²、R³、R⁴、R⁵及びR⁶と同様の意味を有する。)

6. 下記一般式(5) で表される請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

$$\begin{array}{c|c}
R^2 & R^1 & R^6 \\
R^3 & N & N & R^6
\end{array}$$
(5)

- (式(5) 中のR¹、R²、R³、R⁵及びR⁵は、各々、式(1) 中のR¹、R²、R³、R⁵及び

   R⁵と同様の意味を有する。〕
- 7. 前記一般式(1) において、R¹、R²、R³及びR⁴が同一又は相異なる水素原子、シアノ基、ハロゲン原子又は低級アルコキシ基である請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 8. 前記一般式(1) において、R¹、R²、R³及びR⁴のうちの1つがシアノ基、塩素原子又はメトキシ基である請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 9. 前記一般式(I)において、R¹、R²、R²及びR⁴が同一又は相異なる水素原子、シアノ基、ハロゲン原子又は低級アルコキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 10. 前記一般式(I)において、R¹、R²、R³及びR⁴のうちの1つがシアノ基、塩素原子又はメトキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 11. 前記一般式(I)において、R²がシアノ基である請求項3記載の含窒素復素 環化合物又はその薬理学的に許容できる塩。
- 12. 前記一般式(I)において、R²がハロゲン原子である請求項3記載の含窒素 複素環化合物又はその薬理学的に許容できる塩。
- 13. 前記一般式 (I) において、R2が塩素原子である請求項3記載の含窒素複素

PCT/JP92/01258

環化合物又はその薬理学的に許容できる塩。

- 14. 前記一般式(I)において、R²が低級アルコキシ基である請求項3記載の含 窒素複素環化合物又はその薬理学的に許容できる塩。
- 15. 前記一般式(I)において、R²がメトキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 16. 前記一般式(I)において、R⁵が式-NR¹¹R¹²(式中、R¹¹、R¹² は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、1、3-ベンズジオキソリルアルキル基又は1、4-ベンズジオキシルアルキル基を意味する。さらに、R¹¹とR¹²が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

$$R^{19}$$
 | R²⁰ | (式中、 $R^{6}$ が式  $-N^{-}$ (CH₂),  $R^{21}$  | (式中、 $R^{18}$ R²²

は水素原子、低級アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、  $R^{20}$ 、  $R^{21}$ 、  $R^{22}$ のうち2つが一緒になって窒素原子、

硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。)で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

- 18. 前記一般式(I)において、R⁶が式-N R⁶ (式中、R⁶ は保護されていてもよい水酸基、シアノ基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、ハイドロキシアルキル基、カルボキシアルキル基又はヘテロアリール基を意味する。)である請求項3に記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 19. 前記一般式 (I) において、 $R^5$ が式-N  $-R^{61}$  (式中、 $R^{61}$  は保護されていてもよいカルボキシル基又はヘテロアリール基を意味する。) で示される基である請求項 3 記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 20. 前記一般式 (I) において、R⁵が式-N-(CH₂)_u-R⁶¹ (式中、R⁶¹ は保護されていてもよいカルボキシル基、uは3又は4を意味する。) で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 21. 前記一般式 ( I ) において、R⁶が式-NHCH₂- で示される基である

請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

22. 前記一般式 ( I ) において、R⁶が式-NHCH₂ で示される基である OCH₃

請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

23. 前記一般式 (I) において、R¹、R³及びR⁴が水素原子であり、R²が塩素原子で

で示される基である請求項 3 記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

24. 前記一般式 ( I ) において、 $R^1$ 、 $R^3$ 及び $R^4$ が水素原子であり、 $R^2$ がシアノ基で

で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

25. 前記一般式 ( I ) において、 $R^1$ 、 $R^3$ 及び $R^4$ が水素原子であり、 $R^2$ がシアノ基で

CH₃ の CH₃ の CH₂ の CH₂ の R⁶¹ (式中、R⁶¹ は保護されていてもよいカルボキシルを意味する。)で示される基であり、R⁶が式 - NHCH₂ の で示される

基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

- 26. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とするホスホジエステラーゼ阻害作用が有効な疾患の予防・治療 剤。
- 27. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とするサイクリック-GMPホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤。
- 28. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容でき

る塩を有効成分とする虚血性心疾患予防・治療剤。

- 29. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする狭心症予防・治療剤。
- 30. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする高血圧予防・治療剤。
- 31. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする心不全予防・治療剤。
- 32. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする喘息予防・治療剤。
- 33. 治療有効な量の請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩と、薬理学的に許容される賦形剤とからなる医薬組成物。
- 34. ホスホジエステラーゼ阻害作用が有効な疾患の治療薬を製造するという請求項 1 又は3 記載の含窒素複素環化合物又はその薬理学的に許容できる塩の用途。
- 35. ホスホジエステラーゼ阻害作用が有効な疾患に罹患している患者に、請求項1 又は3記載の含窒素復素環化合物及び/又はその薬理学的に許容できる塩を、治療に有効な量投与することからなる疾患の治療方法。

## INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/01258

			International Application No PCT	/0792/01236
I. CLASSIFIC	CATIO	N OF SUBJECT MATTER (if several class	ification symbols apply, indicate all)	
According to	Internati 5	onal Patent Classification (IPC) or to both Na C07D215/00, 215/00,		9/84 239/94
Int.	CI	239/95, A61K31/47,	235, 70 <b>,</b> 235 <b>, 72, 2</b> 3. 81/505	J/01/ 25J/J1/
			31/303	
II. FIELDS S	EARCE		ntation Searched 7	
Classification S	vetam		Classification Symbols	
Classification	,,3.0			
TDG		C07D215/00, C07D235/	/00, 239/72-95,	
IPC		A61K31/47, 31/505		
<u></u>		Documentation Searched other to the Extent that such Document	than Minimum Documentation s are included in the Fleids Searched ⁸	
				**
				•
III. DOCUME		ONSIDERED TO BE RELEVANT 9	12	Relevant to Claim No. 13
ategory • \	Citati	ion of Document, 11 with indication, where app	propriate, of the relevant passages	11, 4, 33, 34
X J	P, A	, 57-171973 (Rhone-Poper 22, 1982 (22. 10.	gal	1, 4, 55, 54
00	CEOD	A, 56766 & US, A, 44	121920	
α,	EP,	A, 50700 & 05, A, 4	22720	
х јл	Р. А	, 59-33264 (Pfizer Co	orp.),	1, 4, 26-31,
F	ebru	ary 23, 1984 (23. 02.	. 84),	33, 34
		ly: none)		
X J	P, A	, 53-71088 (Abbot Lat	poratory),	1, 5, 30, 33
Jī	une	24, 1978 (24. 06. 78)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	34
&	US,	A, 4093726 & GB, A,	1583357	
V T1	D 7	, 58-79983 (Kanebo, I	(.td.)	1, 5, 33, 34
X J	e, s 2011	3, 1983 (13. 05. 83)		
£	EP.	A, 79545 & US, A, 44	430343	
	/	11, 750.00 1 01, 11,		
X J	P, A	, 63-96174 (Beringer	Mannheim GmbH.),	1, 5, 26-31,
Aı	pril	. 27, 1988 (27. 04. 88	3),	33, 34
&	DE,	A, 3634066 & EP, A,	266558	
<b>&amp;</b>	US,	A, 4882342		· ·
		C4 74 (Objects Photos		1, 5, 26-34
		, 64-74 (Otsuka Pharr	Hacentical	1, 3, 20-34
		ory, Inc.),	"T" later document published after th	n international filling data a
•	-	of cited documents: 10 ing the general state of the art which is not	priority date and not in conflict will	In the application but cited to
consider	red to be	e of particular relevance	understand the principle or theory "X" document of particular relevance;	the claimed invention canno
"E" earlier d		t but published on or after the international-	be considered novel or cannot t	pe considered to involve a
"L" documer	nt which	n may throw doubts on priority claim(s) or o establish the publication date of another	"Y" document of particular relevance;	the claimed invention canno
citation	or other	special reason (as specified)	be considered to involve an inventis combined with one or more of	ther such documents, suci
other me	ens	ing to an oral disclosure, use, exhibition or	combination being obvious to a position document member of the same page.	
"P" documer	nt publis	shed prior to the international filing date but lority date claimed		· •
IV. CERTIFIC				
		mpletion of the International Search	Date of Mailing of this International Se	earch Report
		6, 1992 (16. 11. 92)	December 8, 1992	(08. 12. 92)
International S	earchin	Authority	Signature of Authorized Officer	
Japane	ese	Patent Office		
- Jupani			-	* *

URTHER INFORMATION CONTINUED FROM THE SECOND SHEET	
	1
January 5, 1989 (05. 01. 89), (Family: none)	
<pre>X JP, A, 55-160776 (Warnar-Lambert Co.), December 13, 1980 (13. 12. 80), &amp; EP, A, 18151 &amp; US, A, 4271164</pre>	1, 6, 30, 33 34
X JP, A, 61-167688 (Bayer AG.), July 29, 1986 (29. 07. 86), & EP, A, 189045 & US, A, 4621082	1, 6, 26-31, 33, 34
<pre>X JP, A, 63-216884 (The Wellcome Foundation Ltd.), September 9, 1988 (09. 09. 88),</pre>	1, 6, 33, 34
/ 🗵 OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1	
his international search report has not been established in respect of certain claims under Article    I Claim numbers 35 . because they relate to subject matter not required to be sear    Claim 35 pertains to a medical treatme   body by curing.	•
. Claim numbers , because they are dependent claims and are not drafted in ac	cordance with the second and third
sentences of PCT Rule 6.4(a).	
VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2	
his International Searching Authority found multiple inventions in this international applicat	tion as follows:
As all required additional search fees were timely paid by the applicant, this international claims of the international application.  As only some of the required additional search fees were timely paid by the applicant, this is	nternational search report covers only
those claims of the international application to the special consequently, this international state of the special control of the special	
the invention first mentioned in the claims, it is detected by standard the inventional fee, the late invite payment of any additional fee.	
Remark on Protest  The additional search fees were accompanied by applicant's protest.	
No protest accompanied the payment of additional search fees.	

FURTHER	INFORMATION CONTINUED FROM THE SECOND SHEET	
	& EP, A, 279565 & US, A, 4618759	·
x	JP, A, 61-33185 (Pfizer Corp.), February 17, 1986 (17. 02. 86), & EP, A, 168151 & US, A, 4647565	1-3, 7-31, 33, 34
х	JP, A, 61-140568 (Mitsui Petrochemical Industries, Ltd. and another), June 27, 1986 (27. 06. 86),	1-3, 7-25, 30, 33, 34
x	& EP, A, 188094 & US, A, 4734418  JP, A, 3-17068 (Smithkline Beecham  Intercredit B.V.),  January 25, 1991 (25. 01. 91),	1-3, 7-25, 33, 34
		1
	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1	
1	ational search report has not been established in respect of certain claims under Article 17(2) (a) f n numbers . because they relate to subject matter not required to be searched by th	or the following reasons: is Authority, namely:
2. Clair requ	n numbers , because they relate to parts of the international application that do not co irements to such an extent that no meaningful international search can be carried out, speci	mply with the prescribed fically:
		••
3. Clair sent	n numbers, because they are dependent claims and are not drafted in accordance wences of PCT Rule 6.4(a).	rith the second and third
VI. OB	SERVATIONS WHERE UNITY OF INVENTION IS LACKING 2	
This Intern	national Searching Authority found multiple inventions in this international application as follows:	ows:
1.∐ As a clain	Il required additional search fees were timely paid by the applicant, this international search repairs of the international application.	port covers all searchable
]	nly some of the required additional search fees were timely paid by the applicant, this international e claims of the international application for which fees were paid, specifically claims:	search report covers only
3. No r	equired additional search fees were timely paid by the applicant. Consequently, this international se invention first mentioned in the claims; it is covered by claim numbers:	earch report is restricted to
invit	I searchable claims could be searched without effort justifying an additional fee, the International Sepayment of any additional fee.	earching Authority did not
Remark or	n Protest additional search fees were accompanied by applicant's protest.	•
	protest accompanied the payment of additional search fees.	

PURTUER	Information continued from the second sheet	
FUKINEN	& US, A, 5064833 & EP, A, 404322	
X	J. Med. Chem., 28(1), 12-17 (1985)	1-3, 7-34
;		•
		:
	ERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1	
This intern	ational search report has not been established in respect of certain claims under Article 17(2) (a	for the following reasons:
	numbers . because they relate to subject matter not required to be searched by	uns Addionity, nomery.
a Consider	numbers , because they relate to parts of the international application that do not on the carried out, specific the control of the international sparch can be carried out, specific the carried out, s	comply with the prescribed
2. Clair requ	numbers , because they relate to parts of the international application that do not remember to such an extent that no meaningful international search can be carried out, speciments to such an extent that no meaningful international search can be carried out, speciments to such an extent that no meaningful international search can be carried out.	incany.
3. Clair	n numbers . , because they are dependent claims and are not drafted in accordance inces of PCT Rule 6.4(a).	with the second and third
VI. TI OBS	ERVATIONS WHERE UNITY OF INVENTION IS LACKING ²	
	ational Searching Authority found multiple inventions in this international application as fo	llo <del>ws:</del>
		onnet covere all coarchable
	Il required additional search fees were timely paid by the applicant, this international search (	
	is of the international application.  The same of the required additional search fees were timely paid by the applicant, this internation to the content of the international application for which fees were paid, specifically claims:	al search report covers only
thos	s craims of the internocourt approximation	
3. Nor	equired additional search fees were timely paid by the applicant. Consequently, this international	search report is restricted to
the	equired additional search rees were timely purely by claim numbers:	
_	I searchable claims could be searched without effort justifying an additional fee, the International	Searching Authority did not
invit	payment of any additional fee.	
Remark of	additional search fees were accompanied by applicant's protest	
☐ No	protest accompanied the payment of additional search fees.	

						国际印制	18. A'T	Q 1 / .	)1 <del>3</del>	<i>Z</i> / \	<i>J</i> 1	2 3	<u> </u>
I. 発明	月の属する	分野の分類											
国際特許分類 (IPC) Int. C. C 07D215/00, 215/00, 235/00,							•						
239/72, 239/84, 239/94, 239/95,													
				<b>47</b> ,									
77 FEI 18	関本な行				·			<del> </del>			<del></del>		
山. 四馬	際調査を行っ		四 査	を行	- t	と最小限	答	料					
分類	体系					質記号	=	<del></del>					
							_					_	
ΙP						7 D 2 3 5/	0 0,	2 3	39/	72	- 9	5,	*
11		A 6 1	K 3 1/	<b>47</b> ,	31/	505							
			- H 1 772	Me del INI Al	~ ~ *	せる理念と気	<u> </u>						
·			最小限	資料以外	の資本	斗で調査を行っ	72 6 6			··			
^									•	-			
Ⅲ. 関連	直する技術の	2関する文	献										
引用文献の カテゴリー ※	引用ス	文献名 及	び一部の食	箇所が関連	すると	きは、その関連で	する箇	所の表	示	請求	の範	囲の	番号
								-4- >	\	1	4	9 9	2.4
X	JP,	57	-171	973(	10	-ン・プーラ 991	•	· 75- 2	, L )	1,	4,	<b>3 3</b> ,	34
	22 & PD	ι υ <i>γ</i> ι	1902 6761	(	. A.	. 82) 442192	2 0	•					
x	JP.	, 59-	- 3 3 2	64(	ファイ	ザー・コー	ポレ・	ーショ	ェン),	1,	4,	26-	-3 1,
	23.	2月。1	984(	23. (	2.	84), (7	アミ	リーな	:し)	33,	. 3	4	
				006	12 .	<b></b>	L 11 .	_ z´`	,	1 1	5	3 /	3 3,
X	JP, A	1, 53.	-710 078(	-88() -24 (	/	・ト・ラボラ 78)	יא		, ,	34	-	U U,	0 5
	& II S.	A. 4	月、1978(24.06.78) A, 4093726&GB, A, 1583357										
	W 0 2,			. –									
Х	JP.	4. 58-	-799	83(1	造紡්	朱式会社),				1,	5,	3 3,	34
	13.	5月。1	月. 1983(13. 05. 83)										
	&EP.	A. 7	9545	3 & U S	. А.	443034	4 3						
X	T 10	. 63-	-961	74(-	<b>-</b>	リンガー・マ	ンヘ・	14	10	1,	5,	2 6-	-31
	<del></del>									<u> </u>			
	献のカテゴ	-				「丁」国際出願日							
	関連のあるダ 文献ではある					顧と矛盾する のために引用			、発明(	の原理)	义は思	農論の現	望鮮
「L」優先	権主張に疑急	を提起する	文献又は他	也の文献の発	行日	「X」特に関連の	ある文献	けであっ			ひみて	発明4	の新
-	くは他の特別 由を付す)	りな理由を確	江するため	>に引用する	文献	規性又は進力 「Y」特に関連のは				_	と他の	1月	LΦ
「0」口頭	による関示、				. n== -	文献との、論	当業者的	ことって	自明で	,		_	
	出願日前で、 後に公表され		の王張の墓	5億となる出	観の	歩性がない { 「&」同一パテン		-					į
IV. 22	ii.												
国際調査を			<del></del>			国際調査報告の発	送日	-	<del></del>				
四水闸具飞;		-11.	9 2				<u>-</u>	0	8. 1	2.9	2		
国際調査機	————— 関	·				権限のある職員				4 C	7	0	1 9
pp.	本国特計	+庁 (IS	A/IP)	· .		特許庁審査官	쿹				<u> </u>		
, ц.	77 17 17	. /	-~/ J* /	~	. [	IAHIVA JELUSTI	<b>-</b>	佐	野	整	. 1	專	<b>®</b>
	•				1								1

	والمرابع والم	
第2个	ニージから続く情報	
	(Ⅲ棚の続き)	
		33, 34
	ゼルシャフト・ミット・ベシュレンクテル・ヘフツング),	33, 34
1	97 4B 1988(27, 04, 88).	
	&DE, A, 3634066&EP, A, 266558	
ł	&US, A, 4882342	
	JP, A, 64-74(株式会社 大塚製薬工場).	1, 5, 26-34
X	5. 1月. 1989(05. 01. 89), (ファミリーなし)	
	JP, A, 55-160776(ワーナー・ランバート・コンパ	1, 6, 30, 33,
X	=),	34
V. V.	一部の請求の範囲について国際調査を行わないときの意見	
		定によりこの国際
調査報告	を作成しない。その理由は、次のとおりである。	
1. 7	請求の範囲 35 は、国際調査をすることを要しない事項を内容とするもので	ある。
1		
	人の身体の治療による処置方法である。	
Ī		5かも送たしていた
2.	請求の範囲は、有効な国際調査をすることができる程度にまで所定の要	2十を倒たし、これが
_		
1	い国際出願の部分に係るものである。	
1		
3. 🗔	請求の範囲は、従属請求の範囲でありかつ PCT 規則 6.4(a)第 2 文の規定	Eに従って正早で40
" "		
	ていない。	
VI.	発明の単一性の要件を満たしていないときの意見	
次に対	でなるようにこの国際出願には二以上の発明が含まれている。	
1		
1		
, _	追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告に	は、国際出願のすべ
_		
	での調査可能な請求の報告について「FXO FC F	の国際調査報告は、
2.	追加して納付すべき手数科が指定した期間打に、	
	請求の範囲 追加して納付すべき手数料が指定した期間内に納付されなかったので、この国際調理	<b>査報告は、請求の範</b>
3. 🗀	追加して納付すべき子数科が何定した期間がに明けている。	
	囲に最初に記載された発明に係る次の請求の範囲について作成した。	
	the same of the sa	
	請求の範囲	とついて、調査すると
4. 🗆	追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲に	とついて。混査すると
-	追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲に とができたので、追加して納付すべき手数料の納付を命じなかった。	とついて調査すると
-	追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲に とができたので、追加して納付すべき手数料の納付を命じなかった。 F数料異築の由立てに関する注意	とついて調査すると
-	追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲に とができたので、追加して納付すべき手数料の納付を命じなかった。	

用文献の※	する技術に関する文献(第2ページからの続き) 引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
, , , , , , ,	13. 12月. 1980(13. 12. 80) & EP. A. 18151 & US. A. 4271164	
<b>X</b>	JP, A, 61-167688(バイエル・アクチェンゲゼルシャフト), 29.7月、1986(29.07.86) & EP, A, 189045 & US, A, 4621082	1, 6, 26-3 33, 34
X	JP, A, 63-216884(ザ ウエルカム ファウンデーション リミテッド)。 9. 9月、1988(09. 09. 88) & EP, A, 279565 & US, A, 4618759	1, 6, 33, 3
X	JP, A, 61-33185(ファイザー・コーポレーション), 17. 2月. 1986(17. 02. 86) & EP, A, 168151 & US, A, 4647565	1-3, 7-31 33, 34
	JP. A. 61-140568(三井石油化学工業株式会社外1名), 27. 6月. 1986(27. 06. 86) & EP. A. 188094&US, A. 4734418	1-3, 7-25 30, 33, 34
	JP, A, 3-17068(スミスクライン・ピーチャム・インタークレディット・ピー・ペー), 25, 1月, 1991(25, 01, 91) &US, A, 5064833&EP, A, 404322	1-3, 7-25 33, 34
x	J. Med. Chem., 28(1), 12-17(1985)	1-3, 7-34
•		
		·
		٠.