Группы и алгебры Ли II

Лекция 13. Характеры представлений

Формула Вейля для характеров

Вспомним определение характера представления V.

Определение.

$$ch(V) = \sum_{\lambda \in P(V)} \dim V[\lambda] e^{\lambda} \tag{1}$$

Характеры конечномерных представлений, как мы знаем, живут в полиномиальной алгебре $\mathbb{C}[P].$

Замечание. $\mathbb{C}[P]$ - это групповая алгебра решетки весов P.

В дальнейшем нас будут интересовать характеры модулей Верма, которые не лежат в $\mathbb{C}[P]$, но лежат в $\widehat{\mathbb{C}[P]} = \{f = \sum_{\lambda \in P} c_{\lambda} e^{\lambda} | suppf \subset \bigcup_{i \in I} (\lambda_i - Q_+), |I| < \infty\} \supset \mathbb{C}[P]$, где $suppf = \{\lambda \in P | c_{\lambda} \neq 0\}$.

Лемма 1.

$$ch(M_{\mu}) = \frac{e^{\mu}}{\prod_{\alpha \in R_{+}} (1 - e^{-\alpha})} = e^{\mu} \prod_{\alpha \in R_{+}} (1 + e^{-\alpha} + e^{-2\alpha} + \dots)$$
 (2)

Доказательство. По теореме PBW базис в M_{μ} - это $\{\prod_{\alpha \in R_{+}} f_{\alpha}^{l_{\alpha}} v_{\mu} | l_{\alpha} \in \mathbb{Z}_{+} \}$, где на множестве $\{f_{\alpha} | \alpha \in R_{+} \}$ мы выбрали какой-то порядок.

Найдем вес вектора $\prod_{\alpha \in R_+} f_{\alpha}^{l_{\alpha}} v_{\mu}$.

$$h.\prod_{\alpha\in R_+}f_\alpha^{l_\alpha}v_\mu=\sum_{\alpha\in R_+}-l_\alpha\langle h,\alpha\rangle\prod_{\alpha\in R_+}f_\alpha^{l_\alpha}v_\mu+\prod_{\alpha\in R_+}f_\alpha^{l_\alpha}h.v_\mu=\langle \mu-\sum_{\alpha\in R_+}l_\alpha\alpha,h\rangle\prod_{\alpha\in R_+}f_\alpha^{l_\alpha}v_\mu$$

Поэтому, чтобы найти размерность весового подпространства с весом $\mu - \lambda$, нужно посчитать число наборов $\{l_{\alpha} | \alpha \in R_+\}$ таких, что $\sum_{\alpha \in R_+} l_{\alpha} \alpha = \lambda$. Но с другой стороны, таким же способом мы находим коэффициент при $e^{-\lambda}$ в произведении $\prod_{\alpha \in R_+} (1 + e^{-\alpha} + e^{-2\alpha} + \ldots)$.

Лемма 2. Пусть

$$0 \xrightarrow{\phi_0} V_1 \xrightarrow{\phi_1} \dots \xrightarrow{\phi_{n-1}} V_n \xrightarrow{\phi_n} 0 \tag{3}$$

точная последовательность д-модулей. Тогда

$$\sum_{i=0}^{n} (-1)^{i} ch(V_{i}) = 0 \tag{4}$$

Доказательство. Каждая из стрелок является морфизмом, значит переводит весовые подпространства веса λ в весовые подпространства веса λ . Значит для кажого λ имеется точная последовательность

$$0 \xrightarrow{\phi_0} V_1[\lambda] \xrightarrow{\phi_1} \dots \xrightarrow{\phi_{n-1}} V_n[\lambda] \xrightarrow{\phi_n} 0$$
 (5)

 $\dim V_i[\lambda] = \dim Im\phi_i + \dim Ker\phi_i$. Но $Im\phi_i = Ker\phi_{i+1}$, откуда $\sum_{i=0}^n (-1)^i \dim(V_i[\lambda]) = 0$. Таким образом, коэффициент при каждом e^{λ} в $\sum_{i=0}^n (-1)^i ch(V_i) = 0$ равен 0.

Теорема 1. (Формула Вейля) Пусть L_{μ} неприводимое конечномерное представление старшего веса. Тогда

$$ch(L_{\mu}) = \frac{\sum_{w \in W} (-1)^{l(w)} e^{w \cdot \mu}}{\prod_{\alpha \in R_{+}} (1 - e^{-\alpha})} = \frac{\sum_{w \in W} (-1)^{l(w)} e^{w(\mu + \rho)}}{\prod_{\alpha \in R_{+}} (e^{\alpha/2} - e^{-\alpha/2})}$$
(6)

Доказательство. Воспользуемся БГГ-резольвентой и применим предыдущую лемму:

$$ch(L_{\mu}) = \sum_{w \in W} (-1)^{l(w)} ch(M_{w.\mu}).$$

По первой лемме получаем требуемое. Чтобы привести выражение ко второму виду, заметим, что $\prod_{\alpha \in R_+} (1-e^{-\alpha}) = \prod_{\alpha \in R_+} e^{-\alpha/2} (e^{\alpha/2}-e^{-\alpha/2}) = e^{-\rho} \prod_{\alpha \in R_+} (e^{\alpha/2}-e^{-\alpha/2}),$ а $e^{w.\mu} = e^{-\rho} e^{w(\mu+\rho)}$. \square

Замечание. Если характеры модулей Верма лежали в $\widehat{\mathbb{C}[P]}$, то характеры L_{μ} как мы знаем лежит в $\mathbb{C}[P]$, откуда следует, что в формуле Вейля знаменатель делит числитель.

Следствие.

$$\prod_{\alpha \in R_{+}} (e^{\alpha/2} - e^{-\alpha/2}) = \sum_{w \in W} (-1)^{l(w)} e^{w(\rho)}$$
(7)

Доказательство. Применим формулу Вейля для $\mu = 0$.

Размерности неприводимых представлений

Мы хотим найти размерности конечномерных неприводимых представлений. Для этого вспомним, что элементы $\mathbb{C}[P]$ можно мыслить как функции на торе $T=\mathfrak{h}/2\pi i Q^\vee$ с учетом $e^\lambda(h)=$ $e^{\langle \lambda, h \rangle}$. Тогла

$$\dim L_{\mu} = ch(L_{\mu})(0) \tag{8}$$

Заметим однако, что $\sum_{w\in W} (-1)^{l(w)} e^{w(\mu+\rho)}(0) = \sum_{w\in W} (-1)^{l(w)} = 0$. Это слегка усложняет задачу нахождения $ch(L_{\mu})(0)$, но мы это сейчас исправим.

Определение. Введем гомоморфизм $\pi_{\nu}: \mathbb{C}[P] \to \mathbb{C}[q^{\pm 1}]$ по формуле $e^{\lambda} \mapsto q^{2(\lambda,\nu)}$. Тогда $\dim_q V =$

Замечание. $\dim_q V = \pi_\rho(ch(V)) = \sum_{\lambda \in P(V)} \dim V[\lambda] q^{2(\lambda,\rho)}, \ omky \partial a \ \dim_{q=1} V = \dim V.$

Теорема 2.

$$\dim_q L_{\mu} = \prod_{\alpha \in R_+} \frac{q^{(\mu+\rho,\alpha)} - q^{-(\mu+\rho,\alpha)}}{q^{(\rho,\alpha)} - q^{-(\rho,\alpha)}} \tag{9}$$

Доказательство. $\dim_q L_\mu = \pi_\rho(\frac{\sum_{w\in W}(-1)^{l(w)}e^{w(\mu+\rho)}}{\prod_{\alpha\in R_+}(e^{\alpha/2}-e^{-\alpha/2})}) = \frac{\sum_{w\in W}(-1)^{l(w)}q^{2(w(\mu+\rho),\rho)}}{\prod_{\alpha\in R_+}(q^{(\alpha,\rho)}-q^{-(\alpha,\rho)})} = \frac{\sum_{w\in W}(-1)^{l(w)}q^{2(w(\mu+\rho),\rho)}}{\prod_{\alpha\in R_+}(q^{(\alpha,\rho)}-q^{-(\alpha,\rho)})} = \frac{\pi_{\mu+\rho}(\sum_{w\in W}(-1)^{l(w)}e^{w(\rho)})}{\prod_{\alpha\in R_+}(q^{(\alpha,\rho)}-q^{-(\alpha,\rho)})},$ где мы использовали W-инвариантность скалярного произведения. Теперь в числителе используем формулу Вейля: $\prod_{\alpha \in R_+} (e^{\alpha/2} - e^{-\alpha/2}) =$ $\sum_{w \in W} (-1)^{l(w)} e^{w(\rho)}$. Тогда $\pi_{\mu+\rho}(\sum_{w \in W} (-1)^{l(w)} e^{w(\rho)}) = \prod_{\alpha \in R_+} (q^{(\mu+\rho,\alpha)} - q^{-(\mu+\rho,\alpha)})$. Собирая все вместе, получим требуемое.

Следствие.

$$\dim L_{\mu} = \prod_{\alpha \in R_{+}} \frac{(\mu + \rho, \alpha)}{(\rho, \alpha)} \tag{10}$$

Кратности

Характеры, как и в случае конечных групп, позволяют восстановить разложение представления в прямую сумму неприводимых:

$$V = \bigoplus_{\mu \in P_+} n_{\mu} V_{\mu}.$$

Мы уже выяснили, что характер произвольного конечномерного представления лежит в $\mathbb{C}[P]^W$, то есть является W-инвариантом. Оказывается верна и такая

Теорема 3. Характеры неприводимых конечномерных представлений $ch(L_{\mu})$ образуют базис в $\mathbb{C}[P]^W$.

Доказательство. Сперва заметим, что выражения $o_{\mu} = \sum_{w \in W} e^{w(\mu)}$, $\mu \in P_+$, являются базисом в $\mathbb{C}[P]^W$. В самом деле, рассмотрим $f = \sum c_{\lambda} e^{\lambda} \in \mathbb{C}[P]^W$. Пусть $\lambda' \in supp f$. Тогда найдется единственное $w \in W$ такое, что $w.\lambda' \in P_+$. Но из W-инвариантности тогда следует, что $f = c_{\lambda'} o_{w.\lambda'} + \sum_{\lambda \neq \lambda'} c_{\lambda} e^{\lambda}$. Повторяя рассуждения и используя конечность суммы, заключаем, что f раскладывается по элементам o_{μ} . Линейная независимость o_{μ} следует из того, что каждая орбита W содержит единственный элемент из P_+ .

Таким образом, $ch(L_{\mu}) = \sum_{\lambda=\mu-Q_{\geq 0}} c_{\lambda}e^{\lambda} = o_{\mu} + \sum_{\lambda=\mu-Q_{>0}} c_{\lambda}e^{\lambda} = o_{\mu} + \sum_{\lambda\in P_{+}\cap(\mu-Q_{>0})} c_{\lambda}o_{\lambda}$, где мы использовали то, что $\dim L_{\mu}[\mu] = 1$ и то, что o_{μ} образуют базис в $\mathbb{C}[P]^{W}$. Так что мы видим, что матрица перехода от o_{μ} к $ch(L_{\mu})$ верхнетреугольная с единицами на диагонали, значит, обратимая, и $ch(L_{\mu})$ в самом деле образуют базис.

Запишем $ch(V) = \sum_{\lambda \in P(V)} \dim V[\lambda] e^{\lambda}$ в базисе $ch(L_{\mu})$:

$$ch(V) = \sum_{\mu \in P_+} n_{\mu} ch(L_{\mu}) \tag{11}$$

Для этого заметим, что $n_{\mu_{max}} = \dim V[\mu_{max}]$, где μ_{max} - старший вес. Вычтем соответствующее слагаемое и применим то же наблюдение к $ch(V) - n_{\mu_{max}} ch(L_{\mu_{max}})$ и $P(V - n_{\mu_{max}} L_{\mu_{max}}) = P(V) \setminus \{\mu_{max}\}$.