MAE5009: Continuum Mechanics B

Assignment 03: Stress Strain Relations

Due October 21, 2020

12032829 Fu Linrui

1. Derive the relations between the normal stresses and normal strains by adding the normal stresses on the cube in the following consecutive order: σ_z , σ_y and σ_x .

Solution:

Let the initial length of each sides are l_{x0} , l_{y0} and l_{z0} .

Apply σ_z

$$\begin{split} \varepsilon_z &= \frac{\sigma_z}{E}, \ l_{z1} = l_{z0}(1+\varepsilon_z) = l_{z0}\left(1+\frac{\sigma_z}{E}\right) \\ \varepsilon_x &= \varepsilon_y = -\nu\varepsilon_z = -\frac{\nu\sigma_z}{E} \ , \quad l_{x1} = l_{x0}(1+\varepsilon_x) = l_{x0}(1-\frac{\nu\sigma_z}{E}) \ , \quad l_{y1} = l_{y0}\left(1+\varepsilon_y\right) = l_{y0}\left(1-\frac{\nu\sigma_z}{E}\right) \end{split}$$

Apply σ_{v} :

$$\begin{split} \varepsilon_y &= \frac{\sigma_y}{E}, \ l_{y2} = l_{y1} \Big(1 + \varepsilon_y \Big) = l_{y1} \left(1 + \frac{\sigma_y}{E} \right) = l_{y0} \big(1 - \frac{v\sigma_z}{E} \big) \left(1 + \frac{\sigma_y}{E} \right) \\ \varepsilon_x &= \varepsilon_z = -v\varepsilon_y = -\frac{v\sigma_y}{E} \quad , \quad l_{x2} = l_{x1} \big(1 + \varepsilon_x \big) = l_{x1} \left(1 - \frac{v\sigma_y}{E} \right) = l_{x0} \big(1 - \frac{v\sigma_z}{E} \big) \left(1 - \frac{v\sigma_z}{E} \right) \left(1 - \frac{v\sigma_z}{E} \right) \\ \frac{v\sigma_y}{E} \Big), \ l_{z2} &= l_{z1} \big(1 + \varepsilon_z \big) = l_{z1} \left(1 - \frac{v\sigma_y}{E} \right) = l_{z0} \left(1 + \frac{\sigma_z}{E} \right) \left(1 - \frac{v\sigma_y}{E} \right) \\ \text{Apply } \sigma_x : \end{split}$$

$$\begin{split} \varepsilon_x &= \frac{\sigma_x}{E}, \ l_{x3} = l_{x2}(1+\varepsilon_x) = l_{x2}\left(1+\frac{\sigma_x}{E}\right) = l_{x0}(1-\frac{v\sigma_z}{E})\left(1-\frac{v\sigma_y}{E}\right)\left(1+\frac{\sigma_x}{E}\right) \\ \varepsilon_y &= \varepsilon_z = -v\varepsilon_x = -\frac{v\sigma_x}{E} \ , \quad l_{y3} = l_{y2}\left(1+\varepsilon_y\right) = l_{y2}\left(1-\frac{v\sigma_x}{E}\right) = l_{y0}(1-\frac{v\sigma_z}{E})\left(1+\frac{\sigma_z}{E}\right) \\ \left(1-\frac{v\sigma_z}{E}\right)\left(1-\frac{v\sigma_z}{E}\right), \ l_{z3} &= l_{z2}(1+\varepsilon_z) = l_{z2}\left(1-\frac{v\sigma_z}{E}\right) = l_{z0}\left(1+\frac{\sigma_z}{E}\right)\left(1-\frac{v\sigma_z}{E}\right) \\ \end{split}$$

Neglect the negligible items:

$$\varepsilon_x = \frac{L_{x3} - L_{x0}}{L_{x0}} = \frac{1}{E} \left(\sigma_x - \nu (\sigma_y + \sigma_z) \right)$$

$$\varepsilon_y = \frac{L_{y3} - L_{y0}}{L_{y0}} = \frac{1}{E} \left(\sigma_y - \nu (\sigma_x + \sigma_z) \right)$$

$$\varepsilon_z = \frac{L_{z3} - L_{z0}}{L_{z0}} = \frac{1}{E} \left(\sigma_z - \nu (\sigma_x + \sigma_y) \right)$$

2. For a given x-y plane, the normal strains at point O in the O-1, O-2 and O-3 directions are respectively $\varepsilon_{o-1} = 10^{-4}$, $\varepsilon_{o-2} = 4 \times 10^{-4}$ and $\varepsilon_{o-3} = 6 \times 10^{-4}$. Given the material properties E=30 GPa, $\nu=0.25$, determine the principal stresses and maximum shear stress at point O and their directions (only consider the stresses and strains in the x-y plane, i.e., a pure 2D problem)

Solution:

Let
$$\varepsilon_{o-1} = \varepsilon_{x1}$$
, $\varepsilon_{o-2} = \varepsilon_{x2}$, $\varepsilon_{o-3} = \varepsilon_{x3}$.

$$\varepsilon_{x\prime} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\alpha + \varepsilon_{xy} \sin 2\alpha$$

Then

$$\varepsilon_{o-2} = \varepsilon_{x2} = \frac{\varepsilon_{x1} + \varepsilon_{y1}}{2} + \frac{\varepsilon_{x1} - \varepsilon_{y1}}{2} \cos(60^{\circ}) + \varepsilon_{xy1} \sin(60^{\circ})$$

$$\varepsilon_{o-3} = \varepsilon_{x3} = \frac{\varepsilon_{x1} + \varepsilon_{y1}}{2} + \frac{\varepsilon_{x1} - \varepsilon_{y1}}{2} \cos(120^{\circ}) + \varepsilon_{xy1} \sin(120^{\circ})$$

So, we can get: $\varepsilon_{y1} = 5 \times 10^{-4}$, $\varepsilon_{xy1} = \frac{4\sqrt{3}}{3} \times 10^{-4}$.

$$G = \frac{E}{2(1+\nu)} = 12GPa, \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} = 12GPa$$

$$\sigma_x = 2G\varepsilon_{x1} + \lambda(\varepsilon_{x1} + \varepsilon_{y1}) = 96 \times 10^{-4}GPa$$

$$\sigma_y = 2G\varepsilon_{y1} + \lambda(\varepsilon_{x1} + \varepsilon_{y1}) = 192 \times 10^{-4}GPa$$

$$\tau_{xy} = G\gamma_{xy} = 2G\varepsilon_{xy1} = 32\sqrt{3} \times 10^{-4}GPa$$

The principle stress:

$$\sigma_{max} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \left(144 + 16\sqrt{21}\right) \times 10^{-4} GPa = 21.73 MPa$$

$$\sigma_{min} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \left(144 - 16\sqrt{21}\right) \times 10^{-4} GPa = 7.07 MPa$$

The direction of principle stress: $tan2\alpha = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = -\frac{2\sqrt{3}}{3}, \quad \alpha = -24.55^{\circ}$

The maximum shear stress: $\tau_{xymax} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 7.33MPa$

The direction of maximum shear stress: $tan2\alpha = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} = \frac{\sqrt{3}}{2}$, $\alpha = -20.45^{\circ}$

3. A homogeneous and isotropic square plate is loaded as shown, where $\sigma_x = \sigma_y = \tau_{xy} = 15 \, MPa$. If $E = 10 \, GPa$, v = 0.3, determine the change in length of the diagonal AB.

Solution:

$$\varepsilon_{x} = \frac{1}{E} \left(\sigma_{x} - \nu \sigma_{y} \right) = 1.05 \times 10^{-3}, \\ \varepsilon_{y} = \frac{1}{E} \left(\sigma_{y} - \nu \sigma_{x} \right) = 1.05 \times 10^{-3} \\ G = \frac{E}{2(1+\nu)}, \\ \gamma_{xy} = \frac{1}{G} \tau_{xy} = \frac{2(1+\nu)}{E} \tau_{xy} = 3.9 \times 10^{-3}$$

Along AB direction:

$$\varepsilon_{x'} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} cos2\alpha + \varepsilon_{xy} sin2\alpha = \frac{\varepsilon_x + \varepsilon_y}{2} + \varepsilon_{xy} = \frac{\varepsilon_x + \varepsilon_y + \gamma_{xy}}{2}$$
$$\varepsilon_{xy} = 3 \times 10^{-3}$$

 $\varepsilon_{x\prime}=3\times 10^{-3}$ The change in length of AB is $\Delta AB=\varepsilon_{x\prime}AB=3\times 10^{-3}AB$.

4. Prove the following relations among various elastic constants:

$$v = \frac{3K - E}{6K}$$

$$\lambda = \frac{3K - 2G}{3}$$

$$E = \frac{9K(K - \lambda)}{3K - \lambda}$$

$$G = \frac{3KE}{9K - E}$$

$$K = \frac{EG}{3(3G - E)}$$

Solution:

We already know that:
$$G = \frac{E}{2(1+\nu)}$$
, $\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$ and $K = \frac{E}{3(1-2\nu)}$.

Since
$$K = \frac{E}{3(1-2\nu)}$$
, then $1 - 2\nu = \frac{E}{3K}$, $-2\nu = \frac{-3K+E}{3K}$, we can get $\nu = \frac{3K-E}{6K}$.

Since
$$G = \frac{E}{2(1+\nu)}$$
 and $K = \frac{E}{3(1-2\nu)}$, then $2G = \frac{E}{(1+\nu)}$ and $3K = \frac{E}{(1-2\nu)}$, $3K - 2G = \frac{E}{(1-2\nu)}$

$$\frac{3vE}{(1+v)(1-2v)} = 3\lambda, \text{ we can get } \lambda = \frac{3K-2G}{3}.$$

Since
$$K = \frac{E}{3(1-2\nu)}$$
, then $3K = \frac{E}{(1-2\nu)}$, $\lambda = \frac{3K\nu}{1+\nu}$. Due to $\nu = \frac{3K-E}{6K}$, then $\lambda = 3K\frac{3K-E}{9K-E}$,

we can get
$$E = \frac{9K(K-\lambda)}{3K-\lambda}$$
.

Since
$$G = \frac{E}{2(1+\nu)}$$
 and $\nu = \frac{3K-E}{6K}$, then $G = \frac{3KE}{9K-E}$.

$$9KG - GE = 3KE$$
, $K(9G - 3E) = GE$, then we can get $K = \frac{GE}{9G - 3E} = \frac{EG}{3(3G - E)}$.