

GBI Tutorium Nr. 41

Foliensatz 3

Vincent Hahn - vincent.hahn@student.kit.edu | 8. November 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

1 Formale Sprachen

2 Aufgaben

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

- 1 Formale Sprachen
- 2 Aufgaben

Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Definition: formale Sprache

Eine *formale Sprache* (über einem Alphabet *A*) ist eine Teilmenge $L \subseteq A*$.

4/14

Erklärung

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Erklärung

L ist also eine Menge. Darin sind alle syntaktisch korrekten Gebilde enthalten.

5/14

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- ① Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- ② Die Sprache L sind alle Dezimalzahlen

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- ① Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- ② Die Sprache L sind alle Dezimalzahlen
- 3 ⇒ -22 ∈ L

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- ① Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- ② Die Sprache *L* sind alle Dezimalzahlen
- 3 ⇒ -22 ∈ L

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Definition: Produkt

Seien L_1 und L_2 zwei formale Sprachen. Dann bezeichnet

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_1 \in L_1 \text{ und } w_2 \in L_2 \}$$

das Produkt der Sprachen L_1 und L_2 .

Potenzen

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Definition: Potenzen

L sei eine formale Sprache. Rekursiv lässt sich auch die Potenz davon definieren.

$$L^{0} = \{\epsilon\}$$
$$L^{i+1} = L^{i} \cdot L$$

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Definition: Konkatenationsabschluss

L sei eine formale Sprache. Dann ist der Konkatenationsabschluss:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Der ϵ -freie Konkatenationsabschluss ist:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

ϵ -freier Konkatenationsabschluss

Falls $\epsilon \in L$, so enthält der ϵ -freie Konkatenationsabschluss auch ϵ .

Beispiele

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiele

- IP4-Adressen
- Programmiersprache C
- 4 HTML
- E-Mail (RFC 5322)

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten

- ② Was ist $L^i \{b\}^*$?

12/14

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^* \text{ oder }$

- 1 Was ist L^3 ?
- **2** Was ist $L^{i} \{b\}^{*}$?

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- 1 Was ist L^3 ?
- ② Was ist $L^{i} \{b\}^{*}$?

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- Was ist L^3 ?
- ② Was ist $L^i \{b\}^*$?

Wie es geht

Vincent Hahn – vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- Was ist L^3 ?
- ② Was ist $L^i \{b\}^*$?

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

- 1 Formale Sprachen
- 2 Aufgaben

Übungsaufgabe

Vincent Hahn – vincent.hahn@student.kit.edu

Formale Sprachen

Aufgaben

Winter 2010/2011

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}$, a, b, ϵ , \bigcup , *, Komma,), (und +:

- 1 die Menge aller Wörter über A, die das Teilwort "ab" enthalten
- die Menge aller W\u00f6rter \u00fcber A, deren vorletztes Zeichen ein \u00e4b\u00e4 ist
- die Menge aller W\u00f6rter \u00fcber A, in denen nirgends zwei \u00e4b\u00e4s hintereinander vorkommen