Programmation linéaire, cours, terminale TSTMG

1 Régionnement du plan

1.1 Propriétés graphiques des inéquations linéaires à deux variables Propriété :

- l'un est l'ensemble des points dont les coordonnées sont les solutions de l'inéquation linéaire;
- l'autre est l'ensemble des points dont les coordonnées sont les solutions de l'inéquation linéaire

Propriété:

Soit $(O; \vec{i}; \vec{j})$ un repère et \mathcal{D} une droite d'équation y = mx + p. Les solutions de l'inéquation $y \leq mx + p$ (resp. $y \geq mx + p$)sont les coordonnées des points du demi-plan situé (resp. de la droite \mathcal{D} .

1.2 Méthode de résolution graphique des inéquations linéaires à deux inconnues

Méthode:

On considère une inéquation de la forme $ax+by+c \leq 0$ ou $ax+by+c \geq 0$ avec $(a;b) \neq (0;0)$

Pour représenter graphiquement les solutions d'une telle inéquation dans un repère $(O; \vec{i}; \vec{j})$:

- on écrit l'inéquation sous la forme ou ou ou m, p et k sont des réels ;
- on trace dans le repère la droite d'équation ou;
- on garde le demi-plan contenant les solutions d'après la propriété précédente.

Exemple:

Résolution graphique de l'inéquation $3x + 2y \le 4$.

- On met l'inéquation sous la forme réduite :
- on trace la droite d'équation

x	
y	

• on hachure le demi-plan qui ne convient pas.

1.3 Résolution graphique de systèmes d'inéquations linéaires à deux variables

Propriété:

Soit $(O; \vec{i}; \vec{j})$ un repère du plan. Soit le système d'inéquations linéaires à deux variables S:

$$\begin{cases}
(E_1) \\
(E_2) \\
\dots \\
(E_n)
\end{cases}$$

où (E_1) , (E_2) , ..., (E_n) sont des inéquations de la forme $ax + by \le c$ ou $ax + by \ge c$.

Les solutions de ce système sont les points du repère dont les coordonnées vérifient toutes les équations $(E_1, (E_2), ..., (E_n)$. Il se trouvent à l'intersection de chacun des demi-plans définis par ces inéquations.

Exemple:

On considère le système d'inéquations suivant :

$$\begin{cases} 0 & \leq x \leq 4 \\ y & \geq 0 \\ x + 2y - 4 & \leq 0 \end{cases}$$

- On trace les droites d'équation $y = -\frac{x}{2} + 2$, x = ..., x = ... et y = ...
- On hachure les parties du plan qui ne conviennent pas.

2 Programmation linéaire

Propriété:

Soit $(O; \vec{i}; \vec{j})$ un repère du plan.

- Les droites qui ont une équation de la forme ax + by = k où a et b sont deux réels et k est un réel que l'on fait varier, sont des droites parallèles de coefficient directeur $\frac{-a}{b}$;
- pour des droites \mathcal{D}_1 et \mathcal{D}_2 d'équations $ax + by = k_1$ et $ax + by = k_2$ où k_1 et k_2 sont deux réels tels que $k_1 < k_2$, \mathcal{D}_1 coupe l'axe des ordonnées de \mathcal{D}_2 .

