

Sequence Encoding Transformer

國立臺灣大學資訊工程學系 陳縕儂助理教授 http://vivianchen.idv.tw

Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush
 http://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush
 http://nlp.seas.harvard.edu/2018/04/03/attention.html

Multi-Head Attention

- Idea: allow words to interact with one another
- Model
 - Map V, K, Q to lower dimensional spaces
 - Apply attention, concatenate outputs
 - Linear transformation

MultiHead(Q, K, V)

= Concat(head₁, · · · , head_h) W^O

 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Scaled Dot-Product Attention

- Problem: when d_k gets large, the variance of $q^T k$ increases
 - > some values inside softmax get large
 - > the softmax gets very peaked
 - hence its gradient gets smaller
- Solution: scale by length of query/key vectors

$$A(Q, K, V) = \operatorname{softmax}(\frac{QK^{I}}{\sqrt{d_k}})V$$

Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush
 http://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformer Encoder Block

- Each block has
 - multi-head attention
 - 2-layer feed-forward NN (w/ ReLU)
- Both parts contain
 - Residual connection
 - Layer normalization (LayerNorm)

Batch normalization

H(x) = g(x) = x + F(x)

Change input to have 0 mean and 1 variance per layer & per training point

→ LayerNorm(x + sublayer(x))

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}} \qquad h_{i} = f(\frac{g_{i}}{\sigma_{i}} (a_{i} - \mu_{i}) + b_{i})$$

Encoder Input

- Problem: temporal information is missing
- Solution: positional encoding allows words at different locations to have different embeddings with fixed dimensions

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

MIULAB ** 台灣人工智慧學校

Multi-Head Attention Details

encoder self attention

- 1. Multi-head Attention
- 2. Query=Key=Value

decoder self attention

- 1. Masked Multi-head Attention
- 2. Query=Key=Value

encoder-decoder attention

- 1. Multi-head Attention
- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query

Training Tips

- Byte-pair encodings (BPE)
- Checkpoint averaging
- ADAM optimizer with learning rate changes
- Dropout during training at every layer just before adding residual
- Label smoothing
- Auto-regressive decoding with beam search and length penalties

MT Experiments

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$\boldsymbol{3.3\cdot 10^{18}}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$	

Parsing Experiments

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

Concluding Remarks

- Non-recurrence model is easy to parallelize
- Multi-head attention captures different aspects by interacting between words
- Positional encoding captures location information
- Each transformer block can be applied to diverse tasks

