Mixing and Matching

Recall the following game from the previous lectures: Matching Pennies.

	H	T
H	<u>1</u>	-1
11	-1	<u>1</u>
T	-1	<u>1</u>
1	<u>1</u>	-1

There is no "pure-strategy" Nash equilibrium. How might a prediction be made? Neither rationalisability nor iteratively eliminating strictly dominated strategies helps.

Suppose row player tossed their (fair) coin...

Column player (equipped with vNM utility) would receive $\frac{1}{2} \times 1 + \frac{1}{2} \times (-1) = 0$ upon playing H. Column receives $\frac{1}{2} \times (-1) + \frac{1}{2} \times 1 = 0$ upon playing T. Column is indifferent!

...and might decide by tossing a (fair) coin...

Mixed Strategies

This is referred to as mixing, or playing *mixed strategies*. Extend Definition 1 to incorporate this:

Definition 10. The *mixed extension* of a game $\mathcal{G} = \langle N, \{S_i\}_{i \in \mathbb{N}}, \{u_i\}_{i \in \mathbb{N}} \rangle$ is the game Γ , where:

- 1. $\Gamma = \langle N, \{\Delta(S_i)\}_{i \in N}, \{U_i\}_{i \in N} \rangle$.
- 2. $\Delta(S_i)$ is the set of probability distributions over S_i , and $\Delta(S) = \times_{i \in N} \Delta(S_i)$.
- 3. $U_i : \Delta(S) \mapsto \mathcal{R}$ is a vNM expected utility function that assigns to each $\sigma \in \Delta(S)$ the expected value under u_i of the lottery over S induced by σ .

Consider part (3) for finite games. Suppose player i plays mixed strategy $\sigma_i \in \Delta(S_i)$. Denote the probability that this places on pure strategy $s_i \in S_i$ as $\sigma_i(s_i)$. Then,

$$U_i(\sigma) = \sum_{s \in S} u_i(s) \prod_{j \in N} \sigma_j(s_j).$$

Notation. Define $\sigma_{-i} \in \Delta(S_{-i}) = \times_{j \neq i} \Delta(S_j)$ analogously to the pure strategy case.

Nash Equilibrium

Definition 7a can be immediately brought to bear: A mixed-strategy Nash equilibrium of a game G is a Nash equilibrium of its mixed extension Γ . Formally...

Definition 11a. A mixed-strategy Nash equilibrium is a strategy profile $\sigma^* \in \Delta(S)$ such that,

$$U_i(\sigma_i^*, \sigma_{-i}^*) \ge U_i(\sigma_i, \sigma_{-i}^*) \quad \forall \sigma_i \in \Delta(S_i) \text{ and } \forall i \in N.$$

Definition 11b. $\sigma^* \in \Delta(S)$ is a Nash equilibrium if and only if $\sigma_i^* \in B_i(\sigma_{-i}^*)$ for all $i \in N$.

Definitions for rationalisability and dominance can be extended to mixed strategies similarly.

Definition 11b gives a useful insight into the properties of mixed-strategy Nash equilibria. For a mixed strategy σ_i to be a best response to a given combination of opponents' strategies σ_{-i} , every pure strategy in its support must also be a best response to σ_{-i} . Therefore all pure strategies in the support of the equilibrium strategy for a given player must yield the same payoff to that player...

Use this indifference property to find equilibria.

Equilibrium in Matching Pennies

Consider, once again, the matching pennies game:

	H	T
H	<u>1</u>	-1
1.1	-1	<u>1</u>
T	-1	<u>1</u>
1	<u>1</u>	-1

Now suppose row mixes with probability x and 1 - x on H and T respectively. Abusing notation,

$$U_C(H) = x \times 1 + (1 - x) \times (-1) = 2x - 1,$$

$$U_C(T) = x \times (-1) + (1 - x) \times 1 = 1 - 2x.$$

Column is indifferent only when $2x - 1 = 1 - 2x \Leftrightarrow x = \frac{1}{2}$. Similarly for row. The mixed-strategy Nash equilibrium involves both players mixing with probability $\frac{1}{2}$.

Notice row player's equilibrium strategy is determined by column's payoffs and vice versa!

Battle of the Sexes Revisited

Players. The players are M.Phil. student 1 (row) and 2 (column).

Pure Strategies. The strategies available to both players are Cafe and Pub.

Mixed Strategies. Row chooses Cafe w.p. $x \in [0, 1]$, column chooses Cafe w.p. $y \in [0, 1]$.

Payoffs. Represent the payoffs in the strategic form matrix:

	Cafe (y)	Pub (1 - y)	Expected
Cafe (x)	3	1 1	4y + (1-y)
Pub $(1 - x)$	0	3	3(1-y)

Expected 3x x + 4(1-x)

Column chooses y=1 whenever 3x>x+4(1-x) \Leftrightarrow 6x>4 \Leftrightarrow x>2/3. Row chooses x=1 whenever 4y+(1-y)>3(1-y) \Leftrightarrow 6y>2 \Leftrightarrow y>1/3.

Plotting Best-Response Functions

Best-responses are now: $B_i(\sigma_{-i}) = \{ \sigma_i \in \Delta(S_i) \mid U_i(\sigma_i, \sigma_{-i}) \geq U_i(\sigma'_i, \sigma_{-i}), \ \forall \sigma'_i \in \Delta(S_i) \}.$

- Plot functions for Battle of the Sexes.
- Equilibria occur where $\sigma_i \in B_i(\sigma_{-i}), \ \forall i$.
- Two pure equilibria: x=y=1 and x=y=0.
- One mixed equilibrium: $x = \frac{2}{3}$ and $y = \frac{1}{3}$.
- Three equilibria: An odd number...
- Generically, odd numbers of equilibria.

Note that, in mixed extensions of finite games, the best-response functions will be continuous. Hence they must always intersect: a "fixed point" theorem yields existence of Nash equilibrium.

Dominance and Mixed Strategies

In the following game, no strategy is strictly dominated by another pure strategy:

	L	M	R
T	4 10	3 0	1 3
B	0 0	2 10	10 3

Suppose column plays L with probability $\frac{1}{2}$ and M with probability $\frac{1}{2}$, so that $\sigma_C = (\frac{1}{2}, \frac{1}{2}, 0)$.

 $U_C(\sigma_C, \sigma_R) = 5$, whatever row plays (for all σ_R). This is better than a payoff of 3 from playing R.

R is strictly dominated by a mixed strategy placing probability $\frac{1}{2}$ on L and M, and therefore:

A single strategy profile survives iterated deletion of strictly dominated strategies: $\{T, L\}$.

Never-Best-Responses

 $T \quad (x)$ $B \quad (1-x)$ Column's Payoff

L	M	R
4 10	3 0	1 3
0 0	2 10	10 3
10x	10(1-x)	3

- Plot column's payoffs to each strategy.
- Irrespective of the value of the belief x, R is never-a-best-response.
- In fact, a strategy is strictly dominated if and only if it is never-a-best-response.
- Rational players would always play a best response given some beliefs.
- The equilibrium is at $\{T, L\}$.

Dominated Mixed Strategies

A mixed strategy with positive weight on a strictly dominated pure strategy is strictly dominated. But a mixed can be dominated by a pure even if all strategies in its support are undominated.

	$L \hspace{1cm} M$		R	
T	3 10	0 0	1 7	
B	0 0	3 10	1 7	

- Plot column's payoffs to each strategy. x is the weight attached to T by row.
- Note that neither the pure strategy L nor M is strictly dominated by R.
- The strategy which places probability $\frac{1}{2}$ on each of L and M earns 5.
- This *is* strictly dominated by *R*.
- Nash: $\{T, L\}$, $\{B, M\}$, $\{x \in [\frac{3}{10}, \frac{7}{10}], R\}$.

A Return to Rationalisability

	L	M	R
T	4 10	3 0	1 3
B	0 0	2 10	10 3

Only T and L are rationalisable. Consider R: Not rationalisable as there is no belief such that R would be a best response. Thus B is not rationalisable, row would need to believe R is to be played by column. Thus M is not rationalisable, as this requires column to believe that row will play B.

Restricting to pure strategies for a moment — no strategies are strictly dominated:

Rationalisable strategies ⊂ Iterated deletion of dominated strategies survivors.

Allowing for mixed strategies again, R is strictly dominated by a 50:50 mix over L and M. Then B is strictly dominated by T, and then M is strictly dominated by L. So now:

• Rationalisable strategies = Iterated deletion of dominated strategies survivors.

Rationalisability and Dominance

Recall $R = \times_{i \in N} R_i$ where R_i is the set of rationalisable strategies for player i, and A is the set that survives iterated deletion of dominated strategies. In textbooks, one often sees:

$$R \subseteq A$$
 and $R = A$ if $n = 2$.

However, under the definition of rationalisability from the last lecture, R = A generally. Why?

The classic definition (and the one most textbooks follow) restricts the kinds of beliefs players can have about their opponents' play. In particular, opponents must mix *independently*.

Here, a player can rationalise a strategy based on a belief which requires opponents to *correlate* their strategies. An example (might) help to enlighten. Row, column, and matrix player...

	L						L	_
U	0	2	ig U	3	0	ig U	2	0
D	0	3	$egin{array}{c} U \ D \end{array}$	2	0	D	0	2
		<u> </u>		Y	7			

Rationalisability and Correlation

Is *Z* dominated? Is it rationalisable when beliefs are "independent"? When they can "correlate"?

Suppose row plays U with probability p, column plays L with probability q. For Z to be strictly dominated there must exist a (mixed) strategy σ_M which does strictly better for all p and q.

In particular, σ_M would have to do better than Z for p=q=1 and for p=q=0. Then:

$$3\sigma_M(X) + 2\left[1 - \sigma_M(X) - \sigma_M(Y)\right] > 2,$$

$$3\sigma_M(Y) + 2\left[1 - \sigma_M(X) - \sigma_M(Y)\right] > 2.$$

Which immediately yields a contradiction. Can Z be rationalised?

Independence and Correlation

So *Z* survives iterated deletion of strictly dominated strategies. Is it rationalisable?

To what pair of *independent* mixed strategies is it a best response? None! Suppose it were a best response to the mixed strategy pair p (row plays U: $\sigma_R(U) = p$) and q (i.e. $\sigma_C(L) = q$). Then

$$2pq + 2(1-p)(1-q) > 3pq + 2(1-p)q$$
, and $2pq + 2(1-p)(1-q) > 2p(1-q) + 3(1-p)(1-q)$.

Some elementary algebra confirms that these inequalities are mutually inconsistent.

But Z is a best response to a belief that assigns probability $\frac{1}{2}$ to $\{U, L\}$ and probability $\frac{1}{2}$ to $\{D, R\}$. Is such a belief *rational*? Some say no...some say yes...why should correlated play be ruled out?

Information Partitions

A mixed strategy might be interpreted as a pure strategy of an extended game in which a player receives a private, independently distributed signal, and conditions behaviour upon this signal. e.g. in matching pennies, toss a coin and play H if it comes up heads and T if it comes up tails.

What if these signals were not independent, but rather (possibly imperfectly) correlated?

A "state of nature" is $\omega \in \Omega$. The probability of ω occurring is $\pi(\omega)$. Hence $\sum_{\omega \in \Omega} \pi(\omega) = 1$.

An information partition \mathcal{P}_i for player $i \in N$ is a partition of Ω . It has typical element $P_i \in \mathcal{P}_i$.

e.g.
$$\Omega = \{x, y, z\}, \quad \mathcal{P}_1 = \{\{x, y\}, z\}, \quad \mathcal{P}_2 = \{x, \{y, z\}\}.$$

So, for example, if the state is z player 1 knows this, but player 2 only knows it is either y or z. If the state is y player 1 knows it is either x or y and player 2 knows it is either y or z, etc.

So this would allow players to correlate their actions. A strategy tells each player what to do given their signal. e.g. if the coin-toss was publicly seen, both players might choose to play H if heads and T if tails (although this would be very bad for row player!)

Raising Payoffs by Correlating Actions

Suppose
$$\Omega = \{x, y, z\}$$
, $\mathcal{P}_1 = \{\{x, y\}, z\}$, $\mathcal{P}_2 = \{x, \{y, z\}\}$, and $\pi(x) = \pi(y) = \pi(z) = \frac{1}{3}$.

Assign strategies for player 1 (row) as T if $\{x, y\}$ is observed, and B if z is observed. Player 2 (column) plays L if $\{y, z\}$ is observed and R if x is observed. Can player 1 do any better? No:

By playing T if $\{x, y\}$ gets 4, playing B would yield 3.5 (the state is x with probability $\frac{1}{2}$ and player 2 plays L, the state is y with probability $\frac{1}{2}$ and 2 plays R). By playing B if z, gets 7, T yields 6.

Symmetrically, player 2 can do no better—this is a correlated equilibrium.

The second matrix illustrates what happens in each state. Each player gets 5 in equilibrium!

Note the symmetric mixed-strategy equilibrium, play T (and L) with probability $\frac{2}{3}$, yields $4\frac{2}{3}$ to each player, whilst pure strategy equilibria yield 7 and 2 respectively.

Correlated Equilibrium

Putting these ideas together yields the following formal definition.

Definition 12. A correlated equilibrium of a game $\mathcal{G} = \langle N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N} \rangle$ consists of:

- 1. Probability Space. (Ω, π) . State space Ω with probability measure π ,
- 2. Information Partition. Partition of Ω , \mathcal{P}_i for each player $i \in N$,
- 3. Strategy. $\beta_i : \Omega \mapsto S_i$ where $\beta_i(\omega) = \beta_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$, some $P_i \in \mathcal{P}_i$, such that, for all $i \in N$, and each strategy for $i, \beta_i' : \Omega \mapsto S_i$,

$$\sum_{\omega \in \Omega} \pi(\omega) u_i(\beta_i(\omega), \beta_{-i}(\omega)) \ge \sum_{\omega \in \Omega} \pi(\omega) u_i(\beta_i'(\omega), \beta_{-i}(\omega)).$$

- Notice that the probability distribution, and the state space itself are endogenous.
- It is apparent that the set of correlated equilibria contains the set of Nash equilibria.

Evolutionary Games and Hawk-Dove

Recall Hawk-Dove from the first lecture. It has a mixed equilibrium with $\sigma_i(\text{Hawk}) = y = \frac{2}{3}$.

	Hawk(y)	Dove $(1-y)$
Hawk	-1 -1	4 0
Dove	0 4	2 2

Row's Payoff
$$4(1-y)-y$$
 $2(1-y)$

- Think of a population of players, each playing the game against the rest.
- e.g. if half the population are Hawks, Hawk yields $1\frac{1}{2}$, playing Dove yields 1.
- As before, plot payoffs against *y* (now the population proportion playing Hawk).
- If y is small, higher payoff from Hawk. Dove better when y is large.

Move in direction of higher payoff—mixed equilibrium is "evolutionarily stable".

Evolutionarily Stable Strategies

To formalise this notion, consider a single population of agents playing a *symmetric* game $\mathcal{G} = \langle \{1,2\}, \{\Delta(S), \Delta(S)\}, \{U_1, U_2\} \rangle$, where $U_1(\sigma, \sigma') = U_2(\sigma', \sigma) = U(\sigma, \sigma')$ for $\sigma, \sigma' \in \Delta(S)$.

A strategy is evolutionarily stable if a "small move away" from it (called a *mutation*) within the population results in pressure to "move back toward" it. That is, σ^* is evolutionarily stable if

$$(1 - \varepsilon)U(\sigma, \sigma^*) + \varepsilon U(\sigma, \sigma) < (1 - \varepsilon)U(\sigma^*, \sigma^*) + \varepsilon U(\sigma^*, \sigma).$$

In words: the payoff the "mutant" strategy σ gets in the mutated population is lower than the payoff the original strategy σ^* gets in the mutated population. Or equivalently:

Definition 13. An evolutionarily stable strategy (ESS) of \mathcal{G} is a $\sigma^* \in \Delta(S)$ where

- 1. (σ^*, σ^*) is a Nash equilibrium and,
- 2. $U(\sigma, \sigma) < U(\sigma^*, \sigma)$ for all $\sigma \neq \sigma^*$ such that $\sigma \in B(\sigma^*)$.

Note that an ESS is always Nash, but the reverse is not true...

ESS in Hawk-Dove

In particular, only symmetric Nash-equilibrium strategies are candidates to be ESSs. It is straightforward to check that the symmetric mixed in Hawk Dove is an ESS.

	$\operatorname{Hawk}(y)$	Dove $(1-y)$
Hawk	-1 -1	4 0
Dove	0 4	2 2

Notice that $U(\frac{2}{3},\frac{2}{3})=\frac{2}{3}$, and that $\sigma(\text{Hawk})=\frac{2}{3}$ constitutes a Nash equilibrium strategy. Now consider a mutation to Hawk. Checking condition 2, $U(1,1)=-1<-\frac{2}{3}=U(\frac{2}{3},1)$.

What about a mutation to Dove? Checking condition 2, $U(0,0) = 2 < \frac{10}{3} = U(\frac{2}{3},0)$. It is easy to check other mutations and conclude that $\sigma(\text{Hawk}) = \frac{2}{3}$ is indeed an ESS.

- Does this provide a neat justification for mixed-strategy Nash equilibria?
- Note this definition is the *single* population version of ESS...
- Under the multiple-population definition, the Hawk-Dove mixed equilibrium is not stable.
- Also note that an ESS may not exist—consider Rock-Scissors-Paper...

Rock-Scissors-Paper Revisited

The unique mixed-strategy Nash equilibrium involves $\sigma(R) = \sigma(S) = \sigma(P) = \frac{1}{3}$. Is this an ESS?

	R	S	P
R	0	-1	<u>1</u>
1ι	0	<u>1</u>	-1
S	<u>1</u>	0	-1
D	-1	0	<u>1</u>
P	-1	<u>1</u>	0
1	<u>1</u>	-1	0

No! Playing R against R yields 0. Playing $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ against R yields 0. Condition 2 fails.

To summarise: call E the set of equilibria with evolutionarily stable strategies. Then...

$$E \subseteq Z \subseteq R = A \subseteq \Delta(S)$$
.

If C is the set of correlated equilibria, $Z \subseteq C$. "=" is replaced by " \subseteq " when the more common notion of rationalisability is used (the one here is sometimes called *correlated rationalisability*).