ЛАБОРАТОРНАЯ РАБОТА №4

РЕШЕНИЕ ЗАДАЧИ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ МЕТОДОМ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ

Цель работы: получить практические навыки решения задачи распределения ресурсов методом динамического программирования.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Задача распределения ресурсов имеет вид:

$$\sum_{i=1}^{n} f_i(x_i) \to \max$$

$$\sum_{i=1}^{n} x_i = C$$

$$x_i \ge 0, i = \overline{1, n}$$

где n - число технологических процессов, между которыми нужно распределить сырье в объеме C, с целью получения максимальной прибыли;

 x_i — количество сырья, выделяемое на i-й процесс;

 $f_i(x_i)$ — прибыль получаемая в i-ом процессе при использовании в нем сырья в объеме x_i , $i=\overline{1,n}$.

Так как целевая функция и ограничения в задаче сепарабельны, то к ней применим метод динамического программирования.

Пусть C — целое число и X_i , i=1,n — могут принимать лишь целые неотрицательные значения. В этом случае для задачи удобно использовать следующую табличную реализацию метода динамического программирования.

Табличая реализация метода динамического программирования

		, L '	A A	1	
	y 1	2	•••	k	 C
B(y)					
$B_I(y)$	$B_{I}(1)$	$B_{I}(2)$		$B_{I}(k)$	 $B_{I}(C)$
$B_2(y)$	$B_2(1)$	$B_2(2)$		$B_2(k)$	 $B_2(C)$
-	$[x_2(1)]$	$[x_2(2)]$		$[x_2(k)]$	$[x_2(C)]$
•••			• • •	•••	
$B_n(y)$	$B_n(1)$	$B_n(2)$		$B_n(k)$	 $B_n(C)$
	$[x_n(1)]$	$[x_n(2)]$		$[x_n(k)]$	$ \begin{array}{c} B_n(C) \\ [x_n(C)] \end{array} $

Рассчитываем функцию Беллмана $B_k(y)$ путем последовательного решения уравнения Беллмана

$$B_k(y) = \max_{0 \le z \le y} [f_k(z) + B_{k-1}(y-z)]$$

0 \le y \le C

с начальным условием

$$B_1(y) = f_1(y), 0 \le y \le C$$

Данные заносим в таблицу, имеющую c+1 столбцов и n+1 строк.

При заполнении таблицы в ее клетке вместе со значениями $B_k(y)$, $1 \le k \le n, 1 \le y \le n$ записывается также (в квадратных скобках) и величину $x_k(y)$, определяемое как то число z, $0 \le z \le y$, на котором в уравнении Беллмана достигается максимум (если таких чисел несколько, записываем все).

- **1.** Определяем оптимальное значение целевой функции задачи. Максимальная прибыль равна величине $B_n(C)$.
- 2. Определяем оптимальное распределение сырья между процессами x_i , $i=\overline{1,n}$

Из таблицы последовательно находим

$$x_n^0 = x_n(C),$$

 $x_n^0 = x_i \left(C - \sum_{j=n}^1 x_j^0 \right), i = n-1, ..., 2; x_i^0 = C - \sum_{j=n}^2 x_0^0$

Решений $x_i^0 = \left\{ x_i^0, i = \overline{1, n} \right\}$ может оказаться несколько.

Замечание: Описанную выше табличную реализацию удобно применять в случае изменения условий задачи: при сокращении или при упрощении либо количества сырья C, либо чисел n технологических процессов. При сокращении чисел C или n для подсчета решения новой задачи рассматривается соответствующая часть таблицы, получаемая путем вычеркивания ненулевых столбцов или строк. При увеличении C или n для получения решения новой задачи таблицу следует нарастить.

Задание

Записать задачу в виде задачи распределения ресурсов.

- 1. Решить задачу распределения ресурсов при C=6, n=3
- 2. Найти по таблице решение в случае сокращения ресурсов на одну единицу, C=5.
- 3. Эффективно ли введение еще одного дополнительного технологического процесса f_4 ?

Номер варианта выбирается по таблице ниже.

Варианты к заданию

Номер по	f_1	f_2	f_3	f_4
порядку і				
1-10	A_i	\mathcal{E}_{i}	B_i	$E_{i}+1$
11-17	A_i -10	E_i -9	B_i -8	<i>E</i> _i -8
18-24	A_i -17	Бі -15	B_i -16	Бі -14
25-28	A_i -24	Бі -21	B_i -20	Бі -20

i — порядковый номер студента по журналу.

Варианты функций прибыли см. в таблице ниже f(x)=0, x=0:

Таблица 4.3

Варианты к заданию для А

	варианты к заданию для А						
Bap-	Задание	Bap-	Задание				
T		T					
1	(2	2	(2				
1	$\begin{cases} x^2 - 1, x = 1, 2, 3 \\ 2x + 1, x = 4, 5, 6 \end{cases}$	2	$ \begin{vmatrix} 4 + x^2 - 2x, & x = 1, 2, 3 \\ 2x + 3, & x = 4, 5, 6 \end{vmatrix} $				
	(2x+1, x=4,5,6)		(2x+3, x=4,5,6)				
3		4	$\begin{cases} \frac{x^2}{2} + 2x, & x = 1, 2, 3\\ x + 6, & x = 4, 5, 6 \end{cases}$				
			2 2 1.7.6				
			(x+6, x=4,5,6)				
	(-						
5	$\begin{cases} 3^{x-2}, & x = 1, 2, 3 \\ 2^x - 2, & x = 4, 5, 6 \end{cases}$	6	$\begin{cases} 2x-2, x=1,2,3\\ 2^{x-3}+3, x=4,5,6 \end{cases}$				
	$2^x - 2, x = 4,5,6$		$2^{x-3}+3, x=4,5,6$				
			·				
7		8	$\begin{cases} x^3 & 1 & x = 1, 2, 3 \end{cases}$				
	$\int x^2, x = 1, 2, 3$		$\begin{cases} \frac{x^3}{3} + 1, & x = 1, 2, 3\\ x + 2, & x = 4, 5, 6 \end{cases}$				
	$\begin{cases} x^2, x = 1, 2, 3 \\ 9, x = 4, 5, 6 \end{cases}$		(x+2, x=4,5,6)				
9	[2x+1, x=1,2,3]	10	(3x x - 1.2.3)				
			$\begin{cases} 3x, x = 1, 2, 3 \\ 10, x = 4, 5, 6 \end{cases}$				
	$\begin{cases} \frac{x^2}{4} + 3, x = 4,5,6 \end{cases}$		[10, x = 4, 5, 6]				
11	('	12	(2				
11	$\begin{cases} 4+x^2-2x, x=1,2,3\\ 2x+3, x=4,5,6 \end{cases}$	12	$\int \frac{x^2}{2} + 2x, x = 1, 2, 3$				
	(2x+3, x=4,5,6)		$\begin{cases} \frac{x^2}{2} + 2x, x = 1, 2, 3\\ 2x - 6, x = 4, 5, 6 \end{cases}$				

13	$\begin{cases} \frac{x^3}{3} + 1, & x = 1, 2, 3\\ 3x + 8, & x = 4, 5, 6 \end{cases}$	14	$\begin{cases} x^2, x = 1, 2, 3 \\ x - 1, x = 4, 5, 6 \end{cases}$
15	$\begin{cases} \frac{x^2}{4} + x, & x = 1, 2, 3\\ x + 2, & x = 4, 5, 6 \end{cases}$	16	$\begin{cases} 3^{x-2}, x = 1, 2, 3 \\ 2^x + 1, x = 4, 5, 6 \end{cases}$

Таблица 4.4

Варианты к заданию для Б

_	дарианты к заданию для о						
Bap-	Задание	Bap-	Задание				
T		T					
		_					
1	$1_{(x^2-2x)}$	2	$1_{(r^3-r^2)}$				
	$\frac{1}{2}(x^2-3x)$		$\frac{1}{18}(x^3-x^2)$				
	<u> </u>		10				
3	$0,3(2^x-(x-1)^2)$	4	$2(7x-x^2)$				
	- , - ((
5	2x	6	. 2				
)	$\angle X$	6	$\frac{x^2}{4} + \frac{x}{2}$				
			4 2				
7	1	8	$0,2(x^2+3x)$				
/	$\frac{1}{2}x$	0	0,2(x+3x)				
	$\lfloor 2 \rfloor$						
9	$(x - 1)^2$	10	$0,3(x^2+2x)$				
)	$0,05(3^{x-1}-\frac{(x-1)^2}{3})$	10	0,3(x+2x)				
	3						
11	x^2+3x	12	$2^{x}-(x-1)^{2}$				
			` '				
4.5	1						
13	$\frac{1}{18}(x^3-x^2)$	14					
	$\frac{18}{18}$						
	_						
15	$x^2 + 2x$	16	$(r-1)^2$				
13	$X^- + 2X$	10	$3^{x-1} - \frac{(x-1)^2}{3}$				
			3				

Варианты	к	заланию	пля	В
----------	---	---------	-----	---

Вирнинты к заданию для В							
X	1	2	3	4	5	6	
№							
1	0	0	1	2	4	8	
2	2	3	4	5	8	11	
3	2	2	4	5	6	9	
4	2	4	6	8	8	8	
5	0	4	5	5	9	10	
6	1	1	4	6	8	11	
7	2	3	5	7	9	10	
8	1	3	5	7	9	10	
9	0	2	4	6	8	12	
10	0	0	3	5	7	9	
11	0	0	1	2	4	8	
12	2	3	4	5	8	11	
13	2	2	4	5	6	9	
14	2	4	6	8	8	8	
15	0	4	5	5	9	10	
16	1	1	4	6	8	11	

Требования к отчету

Отчет по лабораторной работе должен содержать:

- цель работы;
- номер варианта;
- исходные данные варианта;
- \cdot подробное описание выполнения задания 1-3, включая таблицы с исходными данными задач, математические модели, копии экранов документов с подробными комментариями по выполняемым действиям (листинг кода, полученные результаты);
 - выводы.

Контрольные вопросы

- 1. Понятие динамическое программирование.
- 2. Основные этапы решения задачи.
- 3. Идея метода динамического программирования.
- 4. Принцип оптимальности Беллмана.