Assignment 10 - Solutions

1. We know that $\frac{1}{z^4-1} = \frac{1}{4}(\frac{1}{z-1} - \frac{1}{z+1} + \frac{i}{z-i} - \frac{i}{z+i})$, which allows us to write $\int_C \frac{dz}{z^4-1} = \int_C \frac{dz}{z-1} - \int_C \frac{dz}{z+1} + i \int_C \frac{dz}{z-i} - i \int_C \frac{dz}{z+i}$.

For each of these four integrals, the function has only one point of non-analyticity, namely 1, -1, i and -i, so we can use our contour deformation theorem to get:

$$\begin{split} \int_{C} \frac{dz}{z^{4} - 1} &= \int_{C} \frac{dz}{z - 1} - \int_{C} \frac{dz}{z + 1} + i \int_{C} \frac{dz}{z - i} - i \int_{C} \frac{dz}{z + i} \\ &= \int_{C_{1}} \frac{dz}{z - 1} - \int_{C_{2}} \frac{dz}{z + 1} + i \int_{C_{3}} \frac{dz}{z - i} - i \int_{C_{4}} \frac{dz}{z + i} \end{split}$$

where C_1 is the positively oriented circle of radius 1 around 1, C_2 the positively oriented circle of radius 1 around -1, C_3 the positively oriented circle of radius 1 around i and C_4 the positively oriented circle of radius 1 around -i.

Defining $z_1(t) = e^{it} + 1$, $z_2(t) = e^{it} - 1$, $z_3(t) = e^{it} + i$ and $z_4(t) = e^{it} - i$, with $t \in [0, 2\pi]$, gives us parametrizations of C_1 , C_2 , C_3 and C_4 respectively, with $z_i'(t) = ie^{it}$ for all i.

Using these parametrizations we get:

$$\int_{C_1} \frac{dz}{z-1} = \int_{C_2} \frac{dz}{z+1} = \int_{C_3} \frac{dz}{z-i} = \int_{C_4} \frac{dz}{z+i} = \int_0^{2\pi} i \, dt = 2\pi i$$

which allows us to conclude $\int_C \frac{dz}{z^4-1} = 2\pi i - 2\pi i - 2\pi + 2\pi = 0$.

- 2. a) C has as initial point 0 and as final point -3π , and our function is entire and has the anti-derivative $\sin z$. The fundamental theorem of calculus allows us to compute that $\int_C \cos z \, dz = \sin(-3\pi) \sin(0) = 0$
 - b) C has as initial point 1+i and as final point -i, and our function is entire and has the anti-derivative e^z . The fundamental theorem of calculus allows us to compute that $\int_C e^z dz = e^{-i} e^{1+i} = (\cos -1 + i \sin -1) e(\cos 1 + i \sin 1) = (1-e)\cos 1 i(1+e)\sin 1$
- 3. Let $f(z) = \sin^6 z$, we know f is entire and C contains the point $z = \frac{\pi}{6}$ in its interior, so the Cauchy integral formula tells us that $f(\frac{\pi}{6}) = \frac{1}{2\pi i} \int_C \frac{\sin^6 z}{z \frac{\pi}{6}} dz$.

1

 $f(\frac{\pi}{6})=(\frac{1}{2})^6=\frac{1}{64}$ so using our previous formula we have $\int_C \frac{\sin^6 z}{z-\frac{\pi}{6}} \, dz = \frac{2\pi i}{64} = \frac{\pi i}{32}.$