Лекция 4.

Случайные величины. Часть I

Интуитивное понятие случайной величины. Случайная величина как измеримая функция. Понятие закона распределения случайной величины. Функция распределения случайной величины и ее свойства. Теорема Лебега о разложении функции распределения. Дискретные, сингулярные и абсолютно непрерывные случайные величины. Пример случайной величины смешанного типа.

1. Общие сведения о случайной величине

Далее испытание заключается в измерении (наблюдении) некоторого числового показателя, имеющего случайную природу; (Ω,\mathfrak{A},P) — заданное вероятностное пространство, а $(\mathbb{R},\mathfrak{B}(\mathbb{R}))$ — вещественная прямая с борелевской σ -алгеброй $\mathfrak{B}(\mathbb{R})$.

Определение (содержательное). Числовая величина $\xi = \xi(\omega), \omega \in \Omega$, определенная на множестве элементарных событий, значение которой зависит от случая и непредсказуемо до завершения испытания, называется случайной величиной.

Примеры с.в. Величина выигрыша в зависимости от выпавшего числа очков на кубике. Стоимость акций в определенный день,

Случайные величины обозначают X, Y, Z, ... или ξ , η , ζ ,.... Конкретное (возможное) значение с.в. ξ будем обозначать x, множество всех возможных ее значений — \mathcal{X} .

Определение (формальное). Действительная функция $\xi = \xi(\omega)$, определенная на измеримом пространстве (Ω, \mathfrak{A}) называется \mathfrak{A} -измеримой или *случайной величиной*, если для любого $B \in \mathfrak{B}(\mathbb{R})$ $\{\omega \colon \xi(\omega) \in B\} \in \mathfrak{A}$, т.е. прообраз $\xi^{-1}(B)$ борелевского множества B является измеримым множеством в Ω .

Замечание. Если $\mathfrak{B}_{\xi}, \mathfrak{B}_{\eta}$ — две системы подмножеств, $A \in \mathfrak{B}_{1} \Rightarrow f^{-1}(A) \in \mathfrak{B}_{2}$, то функция $y = f(x) - (\mathfrak{B}_{\xi}, \mathfrak{B}_{\eta})$ -измерима.

Примечание 1. Вероятностную меру P_{ξ} , определенную на $(\mathbb{R},\mathfrak{B}(\mathbb{R}))$ с помощью соотношения

$$P_{\xi}(B) = \mathbf{P}(\xi^{-1}(B)) = \mathbf{P}\{\omega : \xi(\omega) \in B\},$$

называют распределением вероятностей случайной величины ξ.

Пример. Пусть ξ — величина выигрыша определяется по следующему правилу: ξ = 5, если выпало четное число, и ξ = -1 — в противном случае. В данном случае элементарными исходами являются события ω_j = {при бросании кубика выпадет число j}, j = 1,2,...,6. При этом распределение вероятностей на исходном пространстве элементарных исходов $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$ задается набором вероятностей

$$\mathbf{P}(\omega_j) = \frac{1}{6}, \quad j = 1, 2, ..., 6.$$

Определим теперь распределение на множестве значений случайной величины, используя правило $P_{\xi}(B) = \mathbf{P}\{\omega : \xi(\omega) \in B\}$:

$$\mathbf{P}(\xi = 5) = \mathbf{P}(\omega \in \Omega : \xi(\omega) = 5) =$$

$$= \mathbf{P}(\omega = \omega_2) + \mathbf{P}(\omega = \omega_4) + \mathbf{P}(\omega = \omega_6) = \frac{3}{6}$$

$$\mathbf{P}(\xi = -1) = \mathbf{P}(\omega \in \Omega : \xi(\omega) = -1) =$$

$$= \mathbf{P}(\omega = \omega_1) + \mathbf{P}(\omega = \omega_3) + \mathbf{P}(\omega = \omega_5) = \frac{3}{6}.$$

Часто вместо того, чтобы задавать вероятностную меру сначала на (Ω, \mathfrak{A}) , ее сразу определяют на $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$.

Случайная величина исчерпывающим образом описывается посредством (закона) распределения вероятностей.

Закон распределения случайной величины — это множество возможных значений случайной величины и распределение вероятностей на этом множестве. Распределение вероятностей может быть задано с помощью функции распределения (ф.р.), таблицы распределения или формулы, плотности, редко графически.

Опр. Если \mathcal{X} — дискретное множество, то ξ — дискретная случайная величина (ДСВ).

Примеры ДСВ. Количество произошедших за день правонарушений; количество обращений на станцию скорой помощи за определенный промежуток времени.

Опр. Если \mathcal{X} — некоторая непрерывная область, то обычно ξ — непрерывная случайная величина (НСВ). Строгое определение НСВ будет дано позже через понятие плотности распределения.

Примеры НСВ. Доходы, расходы сырья, концентрация вещества, отклонение размера детали от номинала, температура воздуха в определенный день года; темп инфляции за месяц; масса мешка с сыпучим грузом.

ДСВ каждое из возможных значений принимает с положительной вероятностью. НСВ каждое конкретное значение принимает с нулевой вероятностью.

Если случайная величина обладает обоими свойствами, то это случайная величина *смешанного типа*.

Пример из страховой математики. Существует следующий вид страхования автомобиля. В случае наступления страхового случая застрахованный владелец имеет право отказаться от выплаты по этому случаю, рассчитывая сохранить действие договора на случай аварии с большой величиной ущерба. В таком случае владелец либо с ненулевой вероятностью ничего не получит (0 – величина выплат), либо достаточно большую сумму.

Примечание 2 (некоторые свойства измеримых функций).

1. Измеримая функция от измеримой функции есть измеримая функция.

Следствие. Борелевская функция от μ -измеримой числовой функции μ -измерима. Непрерывная функция от μ -измеримой числовой функции μ -измерима.

- 2. Действительная функция f(x) измерима тогда и только тогда, когда $\{x\colon f(x)\!<\!c\}$ для любого $c\in\mathbb{R}$.
- 3. Сумма, разность, произведение двух измеримых функций измеримы.
- 4. Предел сходящейся при каждом $x \in X$ последовательности измеримых функций измерим.

Пример 1. Показать, что индикатор случайного события

$$I(A) \equiv I(A;\omega) \equiv I(\omega \in A) = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \notin A, \end{cases}$$

является случайной величиной.

Решение. Для любого
$$x \le 0$$
 $\{\omega : I(A; \omega) < x\} = \emptyset \in \mathfrak{A}$, при любом $0 < x \le 1$ $\{\omega : I(A; \omega) < x\} = \overline{A} \in \mathfrak{A}$, при любом $1 < x$ $\{\omega : I(A; \omega) < x\} = \Omega \in \mathfrak{A}$.

При этом $\{I(A;\omega)=1\}$, $\{I(A;\omega)=0\}$ — события на \mathbb{R} :

$$\left\{I\left(A\right)=1\right\}=\bigcap_{n=1}^{\infty}\left\{1\leq I\left(A\right)<1+\frac{1}{n}\right\}.$$

Пример 2. Определим $\xi(\omega) = \omega$, $\omega \in [0;1] = \Omega$; $\mathfrak{B} = \mathfrak{B}_{[0;1]}$. Тогда

$$\{\omega : \xi(\omega) < x\} = \{\omega : \omega < x\} = \begin{cases} \emptyset, & x \le 0, \\ [0, x), & 0 < x \le 1, \\ \Omega, & x > 1. \end{cases}$$

Вывод. Случайную величину можно сразу определять на числовой прямой.

2. Функция распределения случайной величины (ф.р.)

Ф.р. позволяет задать закон распределения любой с.в.

Опр. Функцией распределения с.в. ξ называется числовая функция $F(x) \equiv F_{\xi}(x), x \in \mathbb{R}$, заданная выражением $F(x) = \mathbf{P}(\xi < x)$.

Ф.р. F(x) определяет вероятность попадания с.в. левее точки x.

Основные свойства ф.р.

- **1**. $0 \le F(x) \le 1 \quad \forall x \in \mathbb{R}$.
- **2.** $F(-\infty) = 0, F(+\infty) = 1.$
- 3. Непрерывна слева.

Пусть $\{x_n\} \uparrow$. Тогда $A_n = (-\infty, x_n) \uparrow (-\infty, x) = A$ и по теореме непрерывности вероятностной меры

$$\lim_{n\to\infty} F(x_n) = \lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(A) = F(x).$$

4. Неубывающая.

Действительно

$$(-\infty, x_1) \subset (-\infty, x_2) \Longrightarrow F(x_1) = P(X < x_1) \le \mathbf{P}(X < x_2) = F(x_2).$$

5.
$$P(x_1 \le \xi < x_2) = F(x_2) - F(x_1)$$
, $P(x_1 \le \xi \le x_2) = F(x_2 + 0) - F(x_1)$.

Так как
$$\{a \le \xi \le b\} = \bigcap_{n=1}^{\infty} \{a \le \xi < b + \frac{1}{n}\}$$
, то с использованием

теоремы непрерывности вероятностной меры

$$\mathbf{P}\left(x_{1} \leq \xi \leq x_{2}\right) = \mathbf{P}\left(\bigcap_{n=1}^{\infty} \left\{x_{1} \leq \xi < x_{2} + \frac{1}{n}\right\}\right) = \lim_{n \to \infty} \mathbf{P}\left(x_{1} \leq \xi < x_{2} + \frac{1}{n}\right) = F\left(x_{2} + 0\right) - F\left(x_{1}\right).$$

6.
$$P(\xi \ge x) = 1 - F(x)$$
.

Возможный вид ф.р. определяет

Теорема Лебега. Ф.р. произвольной с.в. ξ может быть представлена в виде смеси трех компонент:

$$F_{\xi}(x) = w_1 F_{II}(x) + w_2 F_{II}(x) + w_3 F_{C}(x),$$

 $F_{II}(x)$ – ф.р. дискретного типа,

 $F_{H}(x)$ – ф.р. абсолютно непрерывного типа,

 $F_{C}(x)$ – ф.р. сингулярного типа,

где $w_1 \ge 0, w_2 \ge 0, w_3 \ge 0, w_1 + w_2 + w_3 = 1$ – весовые коэффициенты.

Примечание. Если ф.р. с.в. ξ имеет конечное или счетное число скачков, то ξ – ДСВ.

Опр. С.в. ξ имеет *абсолютно непрерывное распределение* (ф.р. абсолютно непрерывного типа), если существует функция $f_{\xi}(x) \equiv f(x)$, называемая плотностью распределения вероятностей, такая что

$$F_{\xi}(x) = \int_{-\infty}^{x} f(x) dx, \quad \forall x \in \mathbb{R}.$$

Опр. Если ф.р. непрерывна, а множество точек ее роста имеет нулевую меру Лебега, то ξ имеет сингулярное распределение.

Анализ распределения случайной величины дискретного типа

Содержание. Основные способы описания распределения дискретной случайной величины. Таблица распределения вероятностей. Нахождение функции распределения и вероятности попадания в интервал дискретной случайной величины. Основные числовые характеристики: математическое ожидание и дисперсия, мода, начальные и центральные моменты. Содержательная интерпретация числовых характеристик, возможная применения. Постановка и решение задачи нахождения распределения функции от дискретной случайной величины. Моделирование дискретной случайной величины с заданным распределением.

Таблица распределения ДСВ

Имеется с.в. ξ с множеством возможных значений $\{x_1, \dots, x_n\}$ и соответствующих им вероятностей $\{p_1, \dots, p_n\}$, $p_i = \mathbf{P}(\xi = x_i)$. Множество пар $\{(x_i, p_i), i = \overline{1, n}\}$ с.в. ξ удобно представить в виде таблицы из двух строк:

ξ	x_1	X_2	• • •	X_n
P_{ξ}	p_1	p_2	• • •	p_n

где $\{p_1, \dots, p_n\}$ – ряд распределения вероятностей с.в. ξ : $\sum_{i=1}^n p_i = 1$.

Примечание. Возможно описание дискретного распределения с помощью функции вероятностей, если найдется единая формула, с помощью которой можно задать все элементы ряда распределения.

Основные типы задач, связанные с анализом ДСВ.

Тип 1. Нахождение закона распределения ДСВ.

Пример. 1-й магазин откроется в течение месяца с вероятностью $p_1 = 0,4$; 2-й магазин — с вероятностью $p_2 = 0,3$. Пусть открытие магазинов — независимые события. Обозначим X — число магазинов, открывшихся за указанный период.

Решение. Покажем, что таблица распределения имеет вид

X	0	1	2
P_X	0,42	0,46	0,12

Пусть $A_i = \{i$ -й магазин откроется $\}$. Тогда

$$\mathbf{P}(X=0) = \mathbf{P}(\overline{A}_1 \overline{A}_2) = 0, 6 \cdot 0, 7 = 0, 42;$$

$$\mathbf{P}(X=1) = \mathbf{P}(\overline{A_1}A_2 + A_1\overline{A_2}) = 0,6 \cdot 0,3 + 0,4 \cdot 0,7 = 0,46;$$

$$\mathbf{P}(X=2) = \mathbf{P}(A_1A_2) = 0, 4 \cdot 0, 3 = 0, 12.$$

Тип 2. Вычисление вероятности попадания ДСВ в заданное множество G:

$$\mathbf{P}(\xi \in G) = \mathbf{P}\left(\sum_{\{i: x_i \in G\}} (\xi = x_i)\right) = \sum_{\{i: x_i \in G\}} p_i.$$

Продолжение примера. В условиях примера

X	0	1	2
P_X	0,42	0,46	0,12

вычислим

$$\mathbf{P}(0 < X \le 2) = \mathbf{P}((X = 1) + (X = 2)) = \mathbf{P}(X = 1) + \mathbf{P}(X = 2) = 0,46 + 0,12 = 0,58;$$

$$\mathbf{P}(X>3)=\mathbf{P}(\varnothing)=0.$$

Тип 3. Нахождение функции распределения ДСВ:

$$F(x) = \mathbf{P}(\xi < x) = \sum_{\{i: \xi < x_i\}} p_i.$$

Особые свойства функции распределения ДСВ. Ф.р. F(x) является ступенчатой функцией с точками разрыва $x_1, ..., x_n$.

1) Между соседними точками разрыва ф.р. сохраняет свое значение.

Действительно, пусть $x_1 < \ldots < x_n$; выберем $x_{j-1} < x < x_j$. Тогда левее точки x находятся только точки x_1, \ldots, x_{j-1} . Поэтому

$$F(x) = \mathbf{P}(\xi < x) = \sum_{i=1}^{j-1} p_i.$$

2) В точке разрыва x_i ф.р. получает приращение, равное p_i . Вычислим

$$F(x_j) = \mathbf{P}(\xi < x_j) = \sum_{i=1}^{j-1} p_i; \quad F(x_j + 0) = \mathbf{P}(\xi < x_j + 0) = \sum_{i=1}^{j} p_i.$$

Продолжение примера. В условиях примера

X	0	1	2
P_X	0,42	0,46	0,12

вычислим с использованием установленных свойств:

$$F(x) = \begin{cases} \dots, & x \le 0, \\ \dots, & 0 < x \le 1, \\ \dots, & 1 < x \le 2, \\ \dots, & x > 2. \end{cases}$$

$$F(x) = \begin{cases} 0, & x \le 0, \\ \dots, & 0 < x \le 1, \\ \dots, & 1 < x \le 2, \\ \dots, & x > 2. \end{cases}$$

$$F(x) = \begin{cases} 0, & x \le 0, \\ 0 + 0.42, & 0 < x \le 1, \\ 0 + 0.42 + 0.46, & 1 < x \le 2, \\ 0 + 0.42 + 0.46 + 0.12, & x > 2 \end{cases}$$

$$\begin{cases} 0, & x \le 0, \\ 0.42, & 0 < x \le 1, \\ 0.88, & 1 < x \le 2, \\ 1, & x > 2. \end{cases}$$

Тип 4. Вычисление числовых характеристик распределения. Числовая характеристика распределения с.в. – это число, несущее в себе некоторую обобщенную информацию о распределении с.в.

Основные числовые характеристики с.в.

1) Математическое ожидание $\mathbf{M}[\xi] = \mathbf{M}\xi$ ($\mathbf{E}\xi$) (expectation, mean value, expected value).

Опр. Если ξ — с.в., задаваемая таблицей распределения $\{(x_i, p_i), i = \overline{1, n}\}$, то математическое ожидание (м.о.) — число, определяемое выражением

$$\mathbf{M}\boldsymbol{\xi} = \sum_{i=1}^{n} x_i p_i.$$

Характеризует среднее значение с.в., определяющее центр распределения. В экономических приложениях м.о. используется в качестве меры эффективности совершаемой экономической операции.

<u>Примечание</u>. Для произвольной функции h(x) математическое ожидание определяется по формуле:

$$\mathbf{M} \Big[h \big(\xi \big) \Big] = \sum_{i=1}^{n} h(x_i) p_i.$$

Пример («лукавые цифры – средняя зарплата»).

ξ	12000	150000
\overline{P}	0,8	0,2

$$\mathbf{M}\xi = \sum_{i=1}^{n} x_i p_i = 12000 \cdot 0, 8 + 150000 \cdot 0, 2 = 39, 6.$$

2) Начальный момент k-го порядка — m_k , k = 0,1,...

Onp.
$$m_k = \mathbf{M} \lceil \xi^k \rceil$$
.

Формула для вычислений: $m_k = \sum_{i=1}^n x_i^k p_i$...

3) *Центральный момент k-го порядка* – v_k , k = 0,1,...; при этом $\xi - \mathbf{M}\xi$ – центрированная с.в.

Onp.
$$v_k = \mathbf{M} \left[\left(\xi - \mathbf{M} \xi \right)^k \right].$$

Формула для вычислений: $v_k = \sum_{i=1}^n (x_i - \mathbf{M}\xi)^k p_i$.

Примечание (связь центральных и начальных моментов).

Воспользуемся биномом Ньютона: $(a+b)^n = \sum_{j=0}^n C_n^j a^j b^{n-j}$.

Последовательно получим

$$\mathbf{v}_{k} = \mathbf{M} \left[\left(\boldsymbol{\xi} - \mathbf{M} \boldsymbol{\xi} \right)^{k} \right] = M \left[\sum_{j=0}^{k} C_{k}^{j} \boldsymbol{\xi}^{j} \left(- \mathbf{M} \boldsymbol{\xi} \right)^{k-j} \right] = \sum_{j=0}^{k} C_{k}^{j} m_{j} \left(- \mathbf{M} \boldsymbol{\xi} \right)^{k-j}.$$

Примечание. При выводе использован ряд линейных свойств математического ожидания:

- математическое ожидание суммы случайных величин равно сумме математических ожиданий от отдельных слагаемых,
- постоянный множитель выносится за знак математического ожидания,
- математическое ожидание равно константе.

На формальном языке (a, b - константы):

1.
$$\mathbf{M}[a+b\xi] = a+b\mathbf{M}[\xi]$$
.

1.1.
$$\mathbf{M}[const] = const.$$
 1.2. $\mathbf{M}[b\xi] = b\mathbf{M}[\xi].$

2.
$$\mathbf{M}\left[\xi_1 + \ldots + \xi_n\right] = \mathbf{M}\left[\xi_1\right] + \ldots + \mathbf{M}\left[\xi_n\right].$$

4) Дисперсия (рассеяние) $\mathbf{D}[\xi] = \mathbf{D}\xi (\mathbf{V}\xi)$ (variance).

Onp.
$$\mathbf{D}[\xi] = v_2 = \mathbf{M}[\xi - \mathbf{M}\xi]^2$$
.

Характеризует изменчивость с.в., рассеяние ее значений. В экономических приложениях дисперсия используется в качестве меры риска совершаемой экономической операции. Считается, что риск операции обусловлен неопределенностью ее результата. Формулы для вычислений:

$$\mathbf{D}[\xi] = \sum_{i=1}^{n} (x_i - \mathbf{M}\xi)^2 p_i, \quad \mathbf{D}[\xi] = m_2 - m_1^2 = \sum_{i=1}^{n} x_i^2 p_i - \mathbf{M}^2 \xi.$$

Простейшие свойства дисперсии.

- Дисперсия суммы независимых с.в. равно сумме дисперсий отдельных слагаемых.
- Постоянный множитель выносится за знак дисперсии в квадрате.
- Дисперсия константы равна нулю.
- Постоянное слагаемое не влияет на значение дисперсии.

5) Среднеквадратичное (стандартное) отклонение $\sigma_{\xi} = \sqrt{\mathbf{D}}[\xi]$. Имеет то же назначение, что и дисперсия. Преимущество по сравнению с дисперсией – имеет ту же размерность, что и с.в.

6) Мода распределения $d_{\xi} = Mo(\xi)$.

Опр. Мода дискретной с.в. – ее наиболее вероятное значение. Если мода одна, то распределение называется *унимодальным*.

7) Медиана распределения $x_{0,5}$.

Опр. Число $x_{0,5}$ называется медианой распределения с.в. ξ , если оно удовлетворяет соотношениям

$$\mathbf{P}(\xi \ge x_{0,5}) \ge \frac{1}{2}, \quad \mathbf{P}(\xi \le x_{0,5}) \ge \frac{1}{2}.$$

Примечание. Определяет середину (центр) распределения. Применяется в качестве альтернативы математическому ожиданию в том случае, когда то малоинформативно.

Продолжение примера. В условиях примера

X	0	1	2
P_X	0,42	0,46	0,12

$$x_{0,5} = 1$$
, $\mathbf{M}[X] = 0 + 1 \cdot 0,42 + 2 \cdot 0,46 = 1,34$,

Для

ξ	12000	150000
P	0,8	0,2

$$x_{0.5} = 12000$$
, $\mathbf{M}\xi = 39, 6$.

Тип 5. Нахождение распределения функции от ДСВ.

Примеры таких задач. Распределение выигрыша в зависимости от числа на выпавшей грани кубика; распределение дохода кафе в зависимости от числа обслуженных клиентов. Распределение разности между числами появления и не появления события в схеме испытаний Бернулли, и т.д.

Постановка задачи. Пусть $\xi \sim \{(x_i, p_i), i = \overline{1, n}\}$ (ξ имеет таблицу распределения указанного вида) и задано ее преобразование $\eta = h(\xi)$. Требуется найти закон распределения с.в. η .

Решение задачи. Поскольку с.в. η может принимать только одно из значений $h(x_i)$, i = 1, ..., n, то она также является ДСВ. Ее закон распределения находится по схеме.

1) Определяем множество возможных значений η : $y_1, ..., y_m$, выбирая их из множества $h(x_i)$, i = 1, ..., n.

2) Вычисляем
$$\mathbf{P}(\eta = y_j) = \mathbf{P}(h(\xi) = y_j) = \mathbf{P}\left(\sum_{\{i: h(x_i) = y_j\}} \{\xi = x_i\}\right)$$
.

Продолжение примера. В условиях примера

X	0	1	2
P_X	0,42	0,46	0,12

Найти распределения с.в. $Y = 2X - 1, Z = |X - 1|, U = e^X$

Сначала определяем возможные значения

X	0	1	2
Y = 2X - 1	-1	1	3
Z = X - 1	1	0	1
$U = e^X$	1	e	e^2

Затем составляем их таблицы распределения вероятностей

Y	-1	1	3
P_{Y}			

Z	7	0	1
P	Z		

U	1	e	e^2
P_U			

Наиболее известные дискретные распределения и их числовые характеристики

Производящая функция моментов дискретной случайной величины. Биномиальное и отрицательное биномиальное распределения. Гипергеометрическое и пуассоновское распределения.

Нахождение моментов с помощью производящей функции

Опр. Производящая функция начальных моментов с.в. $\xi \sim \{(x_i, p_i), i = \overline{1, n}\}$ определяется формулой

$$\psi_{\xi}(z) = \mathbf{M} \left[e^{z\xi} \right] = \sum_{i=1}^{n} e^{zx_i} p_i,$$

действительное значение z принадлежит некоторой окрестности нуля.

Вычисление начальных моментов с.в. можно осуществлять с помощью следующего свойства производящей функции:

$$m_k = \frac{d^k}{dz^k} \left[\psi_{\xi} \left(z \right) \right] \bigg|_{z=0}.$$

1. Биномиальное распределение B(n, p).

Пусть проводится n независимых испытаний с противоположными исходами (успех, неудача), p — вероятность успешного исхода отдельного испытания. Тогда ξ — число успешных среди n испытаний имеет биномиальное распределение B(n,p).

Биномиальное распределение определяется формулой Бернулли:

$$\mathbf{P}(\xi = m) = P_n(m) = C_n^m p^m q^{n-m}, \quad m = 0, 1, ..., n.$$

Его основные числовые характеристики: $\mathbf{M}[\xi] = np$, $\mathbf{D}[\xi] = npq$.

Мода $m_0 = Mo(\xi)$ (наивероятнейшее число успехов) является решением неравенства: $np - q \le m_0 \le np + p$. Неравенство получается в результате последовательного решения задач:

1) вычисляем отношение двух последовательных биномиальных вероятностей

$$\Upsilon(m) = \frac{P_n(m)}{P_n(\xi = m - 1)} = \frac{C_n^m p^m q^{n - m}}{C_n^{m - 1} p^{m - 1} q^{n - (m - 1)}} = \frac{(n - m + 1) p}{mq}$$

- невозрастающая функция от m;
- 2) решаем систему

$$\begin{cases} \Upsilon(m) \ge 1 \\ \Upsilon(m+1) \le 1 \end{cases} \Leftrightarrow \begin{cases} (n-m+1) p \ge mq \\ (n-m) p \ge (m+1)q \end{cases}.$$

Производящая функция начальных моментов биномиального распределения имеет вид

$$\psi_{B(n,p)}(z) = \mathbf{M} \Big[e^{z\xi} \Big] = \sum_{m=0}^{n} e^{zm} \mathbf{P}(\xi = m) = \sum_{m=0}^{n} e^{zm} C_n^m p^m q^{n-m} =$$

$$= \sum_{m=0}^{n} C_n^m (pe^z)^m q^{n-m} = (pe^z + q)^n.$$

Отсюда последовательно найдем

$$\psi'_{B(n,p)}(z) = n(pe^{z} + q)^{n-1} pe^{z} \Rightarrow \mathbf{M}\xi = n(pe^{0} + q)^{n-1} pe^{0} = np;$$

$$\psi''_{B(n,p)}(z) = n(n-1)(pe^{z} + q)^{n-2}(pe^{z})^{2} + \psi'_{B(n,p)}(z) \Rightarrow \mathbf{M}\xi^{2} = n(n-1)^{2} + np;$$

$$\mathbf{D}\xi = \mathbf{M}\xi^2 - \mathbf{M}^2\xi = n(n-1)p^2 + np - (np)^2 = npq.$$

Примечание (для сравнения). Прямое вычисление математического ожидания проводится по схеме с помощью комбинаторных преобразований:

$$\mathbf{M}[\xi] = \sum_{m=0}^{n} m C_{n}^{m} p^{m} q^{n-m} = \sum_{m=1}^{n} m \cdot \frac{n!}{m!(n-m)!} p^{m} q^{n-m} =$$

$$= \sum_{m=1}^{n} \frac{n!}{(m-1)!(n-m)!} p^{m} q^{n-m} = \begin{cases} k = m-1, \\ m = k+1 \end{cases} =$$

$$= \sum_{k=0}^{n-1} \frac{n!}{k!(n-k-1)!} p^{k+1} q^{n-k-1} = np \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-k-1)!} p^{k} q^{n-1-k} = np,$$

с учетом условия нормировки биномиального распределения B(N,p):

$$\sum_{m=0}^{N} C_{N}^{m} p^{m} q^{N-m} = \sum_{m=0}^{N} \frac{N!}{m!(N-m)!} p^{m} q^{N-m} = 1.$$

2. Пуассоновское распределение $\Pi(\lambda)$.

С.в. ξ имеет распределение Пуассона $\Pi(\lambda)$ с параметром интенсивности λ , если ее ряд распределения задается формулой:

$$\mathbf{P}(\xi=m) = \frac{\lambda^m}{m!} e^{-\lambda}, \quad m=0,1,\ldots$$

Обычно это распределение имеет число редких событий, происходящих за время T. При этом λ — среднее число редких событий, происходящих за это время.

Его основные числовые характеристики:

 $\mathbf{M}[\xi] = \lambda$, $\mathbf{D}[\xi] = \lambda$; мода $Mo(\xi)$ является решением некоторого неравенства (какого?), определяемого по той же схеме, что и в случае биномиального распределения.

Производящая функция начальных моментов:

$$\psi_{\Pi(\lambda)}(z) = \mathbf{M} \left[e^{z\xi} \right] = \sum_{m=0}^{\infty} e^{zm} \mathbf{P}(\xi = m) = \sum_{m=0}^{\infty} e^{zm} \frac{\lambda^m}{m!} e^{-\lambda} =$$

$$=\sum_{m=0}^{\infty}\frac{\left(\lambda e^{z}\right)^{m}}{m!}e^{-\lambda}=e^{\lambda\left(e^{z}-1\right)}.$$

Отсюда последовательно найдем

$$\psi'_{\Pi(\lambda)}(z) = e^{\lambda(e^{z}-1)}\lambda e^{z} \Rightarrow \mathbf{M}\xi = e^{\lambda(e^{0}-1)}\lambda e^{0} = \lambda;$$

$$\psi''_{\Pi(\lambda)}(z) = e^{\lambda(e^{z}-1)}(\lambda e^{z})^{2} + \psi'_{\Pi(\lambda)}(z) \Rightarrow \mathbf{M}\xi^{2} = \lambda^{2} + \lambda;$$

$$\mathbf{D}\xi = \mathbf{M}\xi^{2} - \mathbf{M}^{2}\xi = \lambda^{2} + \lambda - \lambda^{2} = \lambda.$$

Примечание. Вычисление начальных моментов возможно с использованием факториальных моментов

$$\mathbf{M}\left[\xi^{[k]}\right] \equiv \mathbf{M}\left[\xi(\xi-1)\cdot\ldots\cdot(\xi-k+1)\right] = \sum_{m=0}^{\infty} m^{[k]} \frac{\lambda^m}{m!} e^{-\lambda} = \lambda^k.$$

3. Отрицательное биномиальное распределение NB(k,p).

Независимые испытания с противоположными исходами (успех, неудача) и вероятностью успешного исхода отдельного испытания, равной p, проводятся до k-го успеха. Тогда ξ — число неудачных испытаний до k-го успеха имеет отрицательное биномиальное распределение NB(k,p). Отрицательное биномиальное распределение определяется формулой:

$$\mathbf{P}(\xi = m) = P_{m+k-1}(m) \cdot p = C_{m+k-1}^m q^m p^k, \quad m = 0,1,....$$

Его основные числовые характеристики:

$$\mathbf{M}[\xi] = \frac{kq}{p}, \mathbf{D}[\xi] = \frac{kq}{p^2}; \quad \mathbf{M}[\xi + k] = \frac{k}{p}.$$

Примечание. При k = 1 геометрическое распределение.

Производящая функция начальных моментов:

$$\psi_{NB(k,q)}(z) = \mathbf{M} \Big[e^{z\xi} \Big] = \sum_{m=0}^{\infty} e^{zm} \mathbf{P}(\xi = m) = \sum_{m=0}^{\infty} e^{zm} C_{m+k-1}^{m} q^{m} p^{k} =$$

$$= p^{k} \sum_{m=0}^{\infty} C_{m+k-1}^{m} (qe^{z})^{m} \frac{(1-qe^{z})^{k}}{(1-qe^{z})^{k}} = \left(\frac{p}{1-qe^{z}}\right)^{k}.$$

Отсюда последовательно

$$\psi'_{NB(k,q)}(z) = k \left(\frac{p}{1 - qe^{z}}\right)^{k-1} \frac{pqe^{z}}{\left(1 - qe^{z}\right)^{2}} = k \left(\frac{p}{1 - qe^{z}}\right)^{k} \frac{qe^{z}}{1 - qe^{z}} \Rightarrow \mathbf{M}\xi = \frac{kq}{p};$$

$$\psi''_{NB(k,q)}(z) = k^{2} \left(\frac{p}{1 - qe^{z}}\right)^{k} \left(\frac{qe^{z}}{1 - qe^{z}}\right)^{2} + k \left(\frac{p}{1 - qe^{z}}\right)^{k} \frac{q\left[e^{z}\left(1 - qe^{z}\right) + qe^{2z}\right]}{\left(1 - qe^{z}\right)^{2}} \Rightarrow$$

$$\mathbf{M}\xi^{2} = \left(\frac{kq}{p}\right)^{2} + \frac{kq}{p^{2}}; \quad \mathbf{D}\xi = \mathbf{M}\xi^{2} - \mathbf{M}^{2}\xi = \left(\frac{kq}{p}\right)^{2} + \frac{kq}{p^{2}} - \left(\frac{kq}{p}\right)^{2} = \frac{kq}{p^{2}}.$$

Примечание. Вычисление характеристик с.в. возможно путем дифференцирования основного вероятностного тождества по переменной p. Для данного распределения вычисления состоят в следующем:

$$\sum_{m=0}^{\infty} C_{m+k-1}^{m} q^{m} p^{k} = 1 \Rightarrow \sum_{m=0}^{\infty} C_{m+k-1}^{m} q^{m} p^{k} \left(\frac{m}{q} - \frac{k}{p} \right) = 0 \Rightarrow \frac{\mathbf{M} \left[\xi \right]}{q} = \frac{k}{p},$$

$$\sum_{m=0}^{\infty} m C_{m+k-1}^{m} q^{m} p^{k} = \frac{kq}{p} \Rightarrow \sum_{m=0}^{\infty} m C_{m+k-1}^{m} q^{m} p^{k} \left(-\frac{m}{q} + \frac{k}{p} \right) = -\frac{k}{p^{2}} \Rightarrow$$

$$\mathbf{M} \left[\frac{\xi^{2}}{q} \right] - \mathbf{M} \left[\xi \right] \cdot \frac{k}{p} = \frac{k}{p^{2}} \Rightarrow \mathbf{M} \left[\xi^{2} \right] = q \left[\frac{k}{p^{2}} + \frac{kq}{p} \cdot \frac{k}{p} \right].$$

4. Гипергеометрическое распределение H(N,D;n,d).

Имеется совокупность из N элементов, среди которых D элементов 1-го типа и N-D элементов 2-го типа. Из нее извлекается случайная выборка объема n. Тогда ξ — число элементов 1-го типа в выборке имеет гипергеометрическое распределение H(N,D;n,d). Гипергеометрическое распределение определяется формулой:

$$\mathbf{P}(\xi = m) = \frac{C_D^m \cdot C_{N-D}^{n-m}}{C_N^n}, \quad m = 0, 1, ..., \min(n, D).$$

Его основные числовые характеристики:

$$\mathbf{M}[\xi] = \frac{nD}{N}, \mathbf{D}[\xi] = \frac{nD}{N} \left(1 - \frac{D}{N}\right) \frac{N - n}{N - 1}.$$