

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

1. Inference Methods

- Bayesian Inference
- Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Probabilistic Machine Learning: Ingredients

1. Training Data: $D \in (\mathcal{X} \times \mathcal{Y})^n$ of n (labelled) examples from the input space \mathcal{X} and output space \mathcal{Y}

Training Data $D \subset \mathbb{R}^2$

- 2. Prior belief over functions from X to Y: p(f), $f \in \mathcal{F}$
 - Space of functions, \mathcal{F} , is also called *hypothesis space*.

 $p(f_{\mathbf{w}}) = \mathcal{N}(w_1; 0, 1) \cdot \mathcal{N}(w_2; 0, 1)$

3. Likelihood of function:

$$p(D|f) =: \ell(f)$$

- Link between data and functions
- Models all assumptions how data/labels are generated from

Likelihood
$$\ell(f_{\mathbf{w}}) = \prod_{i} \mathcal{N}(y_{i}; w_{1}x_{i} + w_{2}x_{i}^{2}, \sigma^{2})$$

- **Predictive Distribution**. Given a training set $D \in (\mathcal{X} \times \mathcal{Y})^n$ and a new input point $x \in \mathcal{X}$, the distribution $p(y|x,D) = \int p(y|x,f) \cdot p(f|D) \, df$ of target values $y \in \mathcal{Y}$ at the input point x is called the predictive distribution.
 - Observation 1: For any function $f \in \mathcal{F}$ from the hypothesis space, the likelihood is already the distribution p(y|x, f)!
 - Observation 2: Each function $f \in \mathcal{F}$ from the hypothesis space has a posterior belief p(f|D) after we have observed the training data using Bayes' rule!

Total probability rule

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

- Two computational difficulties:
 - 1. **Posterior** p(f|D) requires the *multiplication* of likelihood with prior which often results in a distribution which is no longer in a family with very few parameters.

$$p(f|D) = \frac{p(D|f) \cdot p(f)}{p(D)} \propto \ell(f) \cdot p(f)$$

2. Predictive distribution p(y|x,D) requires the *summation* of the data distribution over all prediction functions. This is only feasible for a small number of parametric distributions.

$$p(y|x,D) = \int p(y|x,f) \cdot p(f|D) df$$

Introduction to Probabilistic Machine Learning

Probability Distributions: Conjugacy

■ Bayes Rule for Random Variables. For any probability distribution p over two random variables X and Θ , it holds

■ Conjugacy. A family $\{p(x,\theta)\}_{x,\theta}$ is conjugate if the posterior $p(\theta|x)$ is part of the same family as the prior $p(\theta)$ for any value of x.

Likelihood $p(x \theta)$	Prior $p(\theta)$	Posterior $p(\theta x)$
$Ber(x; \theta)$	Beta $(\theta; \alpha, \beta)$	$Beta(\theta; \alpha + x, \beta + (1 - x))$
$Bin(x; n, \theta)$	Beta $(\theta; \alpha, \beta)$	$Beta(\theta; \alpha + x, \beta + (n - x))$
$\mathcal{N}(x;\theta,\sigma^2)$	$\mathcal{N}(\theta; m, s^2)$	$\mathcal{N}\left(\theta; x \cdot \frac{s^2}{s^2 + \sigma^2} + m \cdot \frac{\sigma^2}{s^2 + \sigma^2}, s^2 \cdot \frac{\sigma^2}{s^2 + \sigma^2}\right)$

Howard Raiffa (1924 – 2016)

Robert Osher Schlaifer (1914 – 1994)

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Big Advantage: Computing the exact posterior is computationally efficient!

Normal Distribution: Representations

Scale-Location Parameters

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Conversions

$$\mathcal{N}(x; \mu, \sigma^2) = \mathcal{G}\left(x; \frac{\mu}{\sigma^2}, \frac{1}{\sigma^2}\right)$$

Posterior Inference

Natural Parameters

$$G(x; \tau, \rho) = \sqrt{\frac{\rho}{2\pi}} \cdot \exp\left(-\frac{\tau^2}{2\rho}\right) \cdot \exp\left(\tau \cdot x - \rho \cdot \frac{x^2}{2}\right)$$

Conversions

Two divisions only!

$$G(x; \tau, \rho) = \mathcal{N}\left(x; \frac{\tau}{\rho}, \frac{1}{\rho}\right)$$

Posterior Inference

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Normal Distributions: Efficient Products & Divisions

Theorem (Multiplication). Given two one-dimensional Gaussian distributions $G(x; \tau_1, \rho_1)$ and $G(x; \tau_2, \rho_2)$ we have

Gaussian density

$$\mathcal{G}(x;\tau_1,\rho_1)\cdot\mathcal{G}(x;\tau_2,\rho_2)=\mathcal{G}(x;\tau_1+\tau_2,\rho_1+\rho_2)\cdot\mathcal{N}(\mu_1;\mu_2,\sigma_1^2+\sigma_2^2)$$
 Additive updates!

■ **Theorem (Division)**. Given two one-dimensional Gaussian distributions $\mathcal{G}(x; \tau_1, \rho_1)$ and $\mathcal{G}(x; \tau_2, \rho_2)$ where $\rho_1 \geq \rho_2$ we have

Introduction to

Learning

Correction factor

Unit 2 - Inference & Decision Making

Probabilistic Machine

 $\frac{\mathcal{G}(x;\tau_1,\rho_1)}{\mathcal{G}(x;\tau_2,\rho_2)} = \frac{\mathcal{G}(x;\tau_1-\tau_2,\rho_1-\rho_2)}{\mathcal{N}(\mu_1;\mu_2,\sigma_2^2-\sigma_1^2)} \cdot \frac{\sigma_2^2}{\sigma_2^2-\sigma_1^2}$ Subtractive updates!

Gaussian density

Limit Normal Distributions: Dirac Delta and Uniform

■ **Dirac Delta**. The Dirac delta function $\delta(\cdot)$ is defined as the limit $\sigma^2 \to 0$

$$\delta(x) = \lim_{\sigma^2 \to 0} \mathcal{N}(x; 0, \sigma^2)$$

■ Gaussian Uniform. The Gaussian uniform $\mathcal{U}(\cdot)$ is defined as the limit $\sigma^2 \to \infty$

$$\mathcal{U}(x) = \lim_{\sigma^2 \to +\infty} \mathcal{N}(x; 0, \sigma^2)$$

■ Theorem (Convolution of Normal with Dirac). For any $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$

$$\int_{-\infty}^{+\infty} \delta(x) \cdot \mathcal{N}(x; \mu, \sigma^2) \, \mathrm{d}x = \mathcal{N}(0; \mu, \sigma^2)$$
Gaussian density at $x = 0$

■ Theorem (Product of Normal with Uniform). For any $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$

$$\frac{\mathcal{U}(x)\cdot\mathcal{N}(x;\mu,\sigma^2)}{\int_{-\infty}^{+\infty}\mathcal{U}(\tilde{x})\cdot\mathcal{N}(\tilde{x};\mu,\sigma^2)\,\mathrm{d}\tilde{x}} = \mathcal{N}(x;\mu,\sigma^2) \longleftarrow \text{ Equivalent to multiplying with 1}$$

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Probability Distributions: Exponential Family

Exponential Family. A family of distributions is said to belong to the exponential family if the probability density/mass function in terms of the parameterisation θ is

$$p(x) = \exp\left(\sum_{i} \eta_{i}(\boldsymbol{\theta}) \cdot T_{i}(x) - A(\boldsymbol{\theta})\right)$$

The η_i 's are called canonical parameters and the T_i 's are called sufficient statistics.

Distribution $p(x)$	Canonical Parameters $\eta(heta)$	Sufficient Statistic $T(x)$
$Bin(x; n, \pi)$	$\log\left(\frac{\pi}{1-\pi}\right)$	x
Beta $(\pi; \alpha, \beta)$	[lpha,eta]	$[\log(\pi),\log(1-\pi)]$
$\mathcal{N}(x;\mu,\sigma^2)$	$\left[\frac{\mu}{\sigma^2}, \frac{1}{\sigma^2}\right]$	$\left[x,-\frac{x^2}{2}\right]$

Big Advantage: Closed and efficient under multiplication (Bayes' rule!)

$$p(x; \boldsymbol{\eta}_1) \cdot p(x; \boldsymbol{\eta}_2) = p(x; \boldsymbol{\eta}_1 + \boldsymbol{\eta}_2)$$

Georges Darmois (1888 - 1960)

Bernhard Koopman (1900 - 1991) Introduction to Probabilistic Machine Learning

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Maximum Likelihood/Maximum A-Posteriori Inference

Maximum Likelihood. Find the most *likely* function $f_{ML}(D)$ given the data D and approximate p(f|D) by a single point distribution around

$$f_{\mathrm{ML}}(D) = \operatorname*{argmax}_{f} p(D|f)$$

Maximum A Posterior. Find the most *probable* function $f_{MAP}(D)$ given the data D and prior p(f) and approximate p(f|D) by a single point distribution around

$$f_{\text{MAP}}(D) = \underset{f}{\operatorname{argmax}} p(D|f) \cdot p(f)$$

- Learning = optimization in the hypothesis space ("gradient descent")
- 2. Storing the model = storing the function parameters

Cons:

- 1. The posterior/likelihood is "peaked" around a single best predictor (convergence)
- 2. No model uncertainty after learning from data

Sir Ronald Fisher (1890 – 1962)

Introduction to Probabilistic Machine Learning

Newton-Raphson Algorithm

- **Problem**: Find the local extrema of a function $f: \mathbb{R} \to \mathbb{R}$
- Idea: Find the zeros of the first derivative f' of the function!
- Newton-Raphson Algorithm: Approximate f' at a point x_t with a linear function g(x) = ax + b and find update x_{t+1} such that $g(x_{t+1}) = 0$

$$a = f''(x_t)$$
$$b = f'(x_t) - f''(x_t) \cdot x_t$$

Sir Isaac Newton (1643 – 1727)

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

 $x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$

Maximum A-Posteriori Inference: Polynomial Regression

$$f(x) = w_1 x + w_2 x^2$$

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5 + w_6 x^6$$

$$f(x) = \sum_{i=0}^{10} w_i \cdot x^i$$

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Relation to Deep Learning

- Deep Learning is maximum likelihood inference on a layered function model
 - **Neural Networks**: $f(x) = h(W_L \cdots h(W_2 h(W_1 x)))$ where h is a sigmoid
 - Number of layers: L
 - Each element of each vector is called a "neuron"
 - Each product of the inner products is called a "synapse"
- Maximum Likelihood optimization via gradient descent (w.r.t. $W_1, W_2, ..., W_L$)
 - Application of the chain rule of differentiation = back propagation
 - Predicting and gradient computations are matrix multiplications; today, they are sped up using GPUs (which parallelize matrix multiplication)
- **Regularization** for the Deep Learning algorithms are equivalent to prior assumptions on $p(W_1, W_2, ..., W_L)$!

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Key Question II: Decision Making and Prediction

- HPI Hasso Plattner Institut
- **Decision Making**. Given a training set $D \in (\mathcal{X} \times \mathcal{Y})^n$, a new input point $x \in \mathcal{X}$ and an action space \mathcal{A} , what action $\hat{a} \in \mathcal{A}$ shall be made at x based on D?
 - **Example**: Deciding which of n advertisement to show on a search result page
 - x_i contains all information of all advertisements i, the search query, the user, ...
 - $y_i \in \{0,1\}$ indicates, whether or not the advertisement is clicked by the user
 - D is the dataset of all displayed advertisements and whether or not they got clicked
 - $a \in \{1, ..., n\}$ indicates, which one of the advertisements got chosen
 - Decision theory is concerned with the theory of making decisions based on uncertain outcomes and assigning numerical consequences to the outcome
- **Prediction**. Given a training set $D \in (\mathcal{X} \times \mathcal{Y})^n$ and a new input point $x \in \mathcal{X}$, what prediction $\hat{y} \in \mathcal{Y}$ shall be made for the example x based on D?
 - \Box **Observation 1**: Special case of decision making when $\mathcal{A} = \mathcal{Y}$
 - Observation 2: In contrast to the *predictive distribution* p(y|x,D) over **all** possible outcomes $y \in \mathcal{Y}$, we are committing to a **specific** outcome $\hat{y}(x,D) \in \mathcal{Y}$ in *prediction*!

Introduction to Probabilistic Machine Learning

Loss Functions

- **Problem**: What is the consequence of each action $\hat{a} \in \mathcal{A}$ or $\hat{y} \in \mathcal{Y}$ given that the truth was $y \in \mathcal{Y}$?
- **Loss Function**. A loss function $l: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$ is a function mapping the outcome space \mathcal{Y} and an action space \mathcal{A} to a real number representing the "cost" associated with taking the action $a \in \mathcal{A}$ when the true state of the world is $y \in \mathcal{Y}$.
 - Losses are given by the domain problem; there are no "true" losses!
 - Decision Making Example 1: Deciding which of n advertisement to show
 - When advertisement $a \in \{1, ..., n\}$ is chosen and the click happens $(y_a = 1)$, then the utility is the bid amount b_a being paid; all other advertisers do not pay

$$l(y,a) = -y_a \cdot b_a$$

Decision Making Example 2: Giving a treatment after a cancer test

$$l(y,a)=C_{y,a}$$

- Prediction Example: Predicting the temperature in Potsdam
 - If we predict too high is as bad as too low and losses grow faster than the difference

$$l(y, \hat{y}) = (y - \hat{y})^2$$

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Optimal Decisions: Expected Loss Minimization Principle

Expected Loss Minimization. Given a predictive model p(y|x,D) and a loss function $l: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$, the optimal action $a_{\text{opt}}(x)$ is minimizing the expected loss

$$a_{\text{opt}}(x) \coloneqq \operatorname{argmin}_{a \in \mathcal{A}} E_{y \sim p(y|x,D)}[l(y,a)]$$

- Optimal decisions require (yet again) solving an optimization problem!
- **Decision Making Example**: Deciding which of n advertisement to show
 - Each expected loss is equal to $E_{y_a \sim p(y_a|x_a,D)}[-b_a \cdot y_a] = -P(y_a = 1|x,D) \cdot b_a$
 - The add with the largest expected bid $P(y_a = 1|x, D) \cdot b_a$ should be shown!
- Prediction Example: For squared loss $y_{opt} = E_{y \sim p(y|x,D)}[y]$
 - **Proof**: Taking the first derivative of $E_{\gamma \sim p(\gamma|x,D)}[l(y,\hat{y})]$ and setting it to zero gives

$$\frac{\mathrm{d}}{\mathrm{d}\hat{y}} E_{y \sim p(y|x,D)}[l(y,\hat{y})] = \sum_{y} p(y|x,D) \cdot \frac{\mathrm{d}}{\mathrm{d}\hat{y}} (y - \hat{y})^{2}$$

$$0 = \sum_{y} p(y|x,D) \cdot \left(2 \cdot (y - y_{\mathrm{opt}})\right)$$

$$0 = 2 \cdot \left(\sum_{y} p(y|x,D) \cdot y - \sum_{y} p(y|x,D) \cdot y_{\mathrm{opt}}\right)$$

$$0 = E_{y \sim p(y|x)}[y] - y_{\mathrm{opt}}$$

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

- **Problem**: In practice, we rarely have predictive distributions p(y|x,D) which are concentrated on a single outcome $\hat{y} \in \mathcal{Y}$.
- Idea: Introduce the action "to abstain" from making a prediction (and use human intelligence!)
 - Example: Automatically deciding on a treatment (health) or job application (business)

Optimal Binary Prediction (without abstaining)

Optimal Binary Prediction (with abstaining)

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Summary

1. Inference Methods

- Inference is the task of inferring what we know about the plausibility of a prediction function in light of training data
- Bayesian Inference is the only consistent inference technique, but it requires huge summations which is (usually) computationally too hard
- Maximum Likelihood Estimation is often easier and reduces machine learning to parameter optimization – but we are losing model uncertainty

2. Decision Making

- Decision making solves the second big problem: making automated decisions based on future predictions
- We always require domain-specific loss functions
- Except in a few special cases (e.g., squared loss), automated decision making requires heavy optimization (again!)
- We will not dive deeper into decision making methods in the rest of the lecture

Introduction to Probabilistic Machine Learning

See you next week!