Optimizing an Electric Home

Meet the team!

Nicholas Rui

Janelle Domantay

Alvaro Carbonero

Rebecca McCabe

PROBLEM:

Design a control strategy for a fully electric home on a 100A electrical service

THE CHALLENGE:

MODEL OF THE HOME

- How much will power appliances turn on?
- When will they turn on?
- How to measure the impact of shifting load?

CONTROL ALGORITHM

How should an ideal energy management controller shift power to keep demand with 100A with minimal impact?

SYSTEM DESIGN

What sensors, actuators, communication flows, and appliance integrations would you implement?

THE SOLUTION:

MODEL OF THE HOME

- Determine appliance usage on an hourly basis
- Determine appliance usage based on user inputted values

CONTROL ALGORITHM SYSTEM DESIGN

 Turn Shiftable
 Temperature Load (SL) appliances on/off based on **priority** ranking and appliance Unshiftable Load (UL) usage

- - <u> Water Heater</u>
 - Internal
 - External
- Power Draw
 - Unshiftable Loads

RELEVANT BACKGROUND:

- Trajectory Optimization [3][4]
 - Online Trajectory Optimization
 - Direct Shooting Method
- Adaptive Control for improving home thermal model
- Machine Learning for predicting energy consumption [1][2]

HOUSE TOY MODEL:

- Realistic, data-informed model with dominant power-demand contributions from:
 - HVAC
 - Water heating
 - Level 2: Electric vehicle charging
 - Other appliances
- Name of the game: minimize user "unhappiness" under maximum load constraint
- Training on fiducial model parameters, with plans for robustness testing on perturbed model parameters with real-time control

Initial Conditions:

Predicted Unshiftable Loads:

Planner

Planned Shiftable loads

Realtime Controller

Actual Shiftable Loads

How should the controller shift power?

If pred UL < actual UL:

- Using more energy than expected
- Turn Down/ Off lowest priority SL
- Priority = impact and expected future impact

Else If pred UL > actual UL: (unexpected energy use)

- Using less energy than expected
- Turn Up/On highest priority SL

RESULTS

REFERENCES:

- [1] Bourhnane, S., Abid, M.R., Lghoul, R. et al. Machine learning for energy consumption prediction and scheduling in smart buildings. SN Appl. Sci. 2, 297 (2020). https://doi.org/10.1007/s42452-020-2024-9
- [2] Kaustav Basu, Lamis Hawarah, Nicoleta Arghira, Hussein Joumaa, Stephane Ploix, A prediction system for home appliance usage, Energy and Buildings, Volume 67, 2013, Pages 668-679, ISSN
- 0378-7788, https://doi.org/10.1016/j.enbuild.2013.02.008.
- [3] Tedrake, R., Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation. Course Notes for MIT 6.832, (2022)
 [4] John T. Betts, "Survey of numerical methods for trajectory optimization", Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193-207, 1998.