Implémentez un modèle de scoring

Sommaire

- I. Problématique
- II. Présentation du jeu de données
- III. Approche de la modélisation
- IV. Résultats
- V. Présentation du dashboard

I. Problématique

Contexte :

• **« Prêt à dépenser »** : société de crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt

Missions:

- Construction d'un modèle de scoring :
 - Traitement de données, algorithmes de classification binaire, évaluation des modèles
- Construction d'un dashboard interactif :
 - API, visualisation du score, graphiques pour interpréter et comprendre les résultats

II. Présentation du jeu de données

II. Présentation du jeu de données

Problème de jeu de données déséquilibrées

Feature engineering :

- application_{train|test}:
 - Colonnes indiquant les valeurs manquantes s'il y a une différence dans le pourcentage de valeurs manquantes dans le cas TARGET = 0 et TARGET = 1
 - Polynomiale / plus technique (pourcentage du montant du crédit par rapport aux revenus du client, pourcentage des jours de travail par rapport à l'âge du client etc.)
- Tous les autres datasets :
 - Somme, moyenne, min, max

Prétraitement des données :

- Imputation des valeurs manquantes (numériques et catégorielles)
- Ordinal Encoding et OneHotEncoding (catégorielles)
- MinMaxScaler (numériques)

Données déséquilibrées :

- Under Sampling
- Over Sampling
- SMOTE

Différents algorithmes :

- Logistic Regression
- Random Forest Classifier
- LGBM Classifier
- XGB Classifier

Séparation du jeu de données :

- 80 % train
- 20 % test

• Validation croisée et hyperparamètres :

- GridSearchCV
- Fold = 3
- n_estimators, num_leaves pour LGBM Classifier

- Métrique d'évaluation :
 - AUC, precision, recall et biais

IV. Résultats

Sans validation croisée

	AUC	AUC_Training	Precision	Recall
Logistic Regression - RUS	0.773394	0.778354	0.17248	0.707416
Logistic Regression - ROS	0.772485	0.776872	0.172354	0.701152
Logistic Regression - SMOTE	0.739308	0.782576	0.161791	0.646999
Random Forest Classifier - RUS	0.746818	1	0.161973	0.662356
Random Forest Classifier - ROS	0.738833	1	0.455696	0.0145484
Random Forest Classifier - SMOTE	0.599058	1	0.106948	0.495454
LGBM Classifier - RUS	0.779714	0.859721	0.175535	0.709234
LGBM Classifier - ROS	0.781999	0.832697	0.185091	0.692867
LGBM Classifier - SMOTE	0.694866	0.980817	0.13348	0.663973
XGB Classifier - RUS	0.764261	0.949709	0.167664	0.696706
XGB Classifier - ROS	0.765924	0.904821	0.197585	0.604971
XGB Classifier - SMOTE	0.634323	0.985832	0.0944157	0.874924

Avec validation croisée + RUS + LGBM Classifier

		AUC	AUC_Training	Precision	Recall
	First	0.780591	0.854256	0.176963	0.709638
S	econd	0.780007	0.82656	0.176728	0.709234

ROS + LGBM Classifier

		AUC	AUC_Training	Precision	Recall
	First	0.782731	0.829656	0.185141	0.691857
S	econd	0.781137	0.811557	0.182729	0.699939

First:

- n estimators = 150
- num leaves = 20

Second:

- n_estimators = 200
- num leaves = 10

IV. Résultats

Le biais du modèle

V. Présentation du dashboard

- API
- Dashboard