Part 8: Policy Evaluation- Marginal Treatment Effects

Chris Conlon March 31, 2020

Applied Econometrics

Marginal Treatment Effects

One quantity to rule them all: MTE

- Consider a treatment effect $\beta_i = Y_i(1) Y_i(0)$.
- Think about a single-index such that $T_i = 1(v_i \leq Z_i'\gamma)$.
- ullet Think about the person for whom $v_i=Z_i'\gamma$ (just barely untreated).

$$\Delta^{MTE}(X_i, v_i) = E[\beta_i | X_i, v_i = Z_i' \gamma]$$

- ullet MTE is average impact of receiving a treatment for everyone with the same $Z'\gamma$.
- For any single index model we can rewrite

$$T_i = 1(v_i \le Z_i'\gamma) = 1(u_{is} \le F(Z_i'\gamma)) \text{ for } u_s \in [0, 1]$$

- ullet F is just the cdf of v_i
- Now we can write $P(Z) = Pr(T = 1|Z) = F(Z'\gamma)$.

MTE: Derivation

Now we can write,

$$Y_0 = \gamma_0' X + U_0$$

$$Y_1 = \gamma_1' X + U_1$$

P(T=1|Z)=P(Z) works as our instrument with two assumptions:

- 1. $(U_0, U_1, u_s) \perp P(Z)|X$. (Exogeneity)
- 2. Conditional on X there is enough variation in Z for P(Z) to take on all values $\in (0,1)$.
 - This is much stronger than typical relevance condition. Much more like the special regressor method we will discus next time.

MTE: Derivation

Now we can write,

$$Y = \gamma'_0 X + T(\gamma_1 - \gamma_0)' X + U_0 + T(U_1 - U_0)$$

$$E[Y|X, P(Z) = p] = \gamma'_0 X + p(\gamma_1 - \gamma_0)' X + E[T(U_1 - U_0)|X, P(Z) = p]$$

Observe T=1 over the interval $u_s=[0,p]$ and zero for higher values of u_s . Let $U_1-U_0\equiv\eta$.

$$E[T(U_1 - U_0)|P(Z) = p, X] = \int_{-\infty}^{\infty} \int_{0}^{p} (U_1 - U_0)f((U_1 - U_0)|U_s = u_s)du_s d(U_1 - U_0)$$

$$E[T(\eta)|P(Z) = p, X] = \int_{-\infty}^{\infty} \int_{0}^{p} \eta f(\eta|U_s = u_s)d\eta du_s$$

$$\Delta^{MTE}(p) = \frac{\partial E[Y|X, P(Z) = p]}{\partial p} = (\gamma_1 - \gamma_0)'X + \int_{-\infty}^{\infty} \eta f(\eta|U_s = p) d\eta$$
$$= (\gamma_1 - \gamma_0)'X + E[\eta|u_s = p]$$

What is $E[\eta|u_s=p]$? The expected unobserved gain from treatment of those people who are on the treatment margin P(Z)=n.

How to Estimate an MTE

Easy

- 1. Estimate P(Z) = Pr(T=1|Z) nonparametrically (include exogenous part of X in Z).
- 2. Nonparametric regression of Y on X and P(Z) (polynomials?)
- 3. Differentiate w.r.t. P(Z)
- 4. plot it for all values of P(Z) = p.

So long as P(Z) covers (0,1) then we can trace out the full distribution of $\Delta^{MTE}(p)$.

Everything is an MTE

Calculate the outcome given (X, Z) (actually X and P(Z) = p).

• ATE : This one is obvious. We treat everyone!

$$\int_{-\infty}^{\infty} \Delta^{MTE}(p) = (\gamma_1 - \gamma_0)' X + \underbrace{\int_{-\infty}^{\infty} E(\eta | u_s) d u_s}_{0}$$

• LATE: Fix an X and P(Z) varies from b(X) to a(X) and we integrated over the area between (compliers).

$$LATE(X) = \int_{-\infty}^{\infty} \Delta^{MTE}(p) = (\gamma_1 - \gamma_0)'X + \frac{1}{a(X) - b(X)} \int_{b(X)}^{a(X)} E(\eta | u_s) du_s$$

ATT

$$TT(X) = \int_{-\infty}^{\infty} \Delta^{MTE}(p) \frac{Pr(P(Z|X) > p)}{E[P(Z|X)]} dp$$

• Weights for IV and OLS are a bit more complicated. See the Heckman and Vytlacil paper(s).

Carneiro, Heckman and Vytlacil (AER 2010)

- Estimate returns to college (including heterogeneity of returns).
- NLSY 1979
- $Y = \log(wage)$
- Covariates X: Experience (years), Ability (AFQT Score), Mother's Education, Cohort Dummies, State Unemployment, MSA level average wage.
- Instruments Z: College in MSA at age 14, average earnings in MSA at 17 (opportunity cost), avg unemployment rate in state.

FIGURE 1. MTE ESTIMATED FROM A NORMAL SELECTION MODEL

Notes: To estimate the function plotted here, we estimate a parametric normal selection model by maximum likelihood. The figure is computed using the following formula:

Panel A. Test of linearity of	$f E(Y \mathbf{X}, P = p)$	using model	s with differen	t orders of poly	nomials in P^a		
Degree of polynomial for model	2	3	4	5			
p-value of joint test of nonlinear terms	0.035	0.049	0.086	0.122			
Adjusted critical value 0.057							
Outcome of test		Rej	ject				
Panel B. Test of equality of LATEs $(H_0: LATE^j(U_{S'}^L, U_{S'}^{H_j}) - LATE^{j+1}(U_{S'^{j+1}}^L, U_{S'^{j+1}}^{H_{j+1}}) = 0)^b$							
Ranges of U_S for LATE ^j Ranges of U_S for LATE ^{j+1}	(0,0.04) (0.08,0.12)	(0.08, 0.12) (0.16, 0.20)	(0.16, 0.20) (0.24, 0.28)	(0.24, 0.28) (0.32, 0.36)	(0.32, 0.36) (0.40, 0.44)	(0.40, 0.44) (0.48, 0.52)	
Difference in LATEs <i>p</i> -value	0.0689 0.0240	0.0629 0.0280	0.0577 0.0280	0.0531 0.0320	0.0492 0.0320	0.0459 0.0520	
Ranges of U_S for LATE ^j Ranges of U_S for LATE ^{j+1}	(0.48, 0.52) (0.56, 0.60)	(0.56, 0.60) (0.64, 0.68)	(0.64, 0.68) (0.72, 0.76)	(0.72, 0.76) (0.80, 0.84)	(0.80, 0.84) (0.88, 0.92)	(0.88, 0.92) (0.96, 1)	
Difference in LATEs p-value	0.0431 0.0520	0.0408 0.0760	0.0385 0.0960	0.0364 0.1320	0.0339 0.1800	0.0311 0.2400	
Joint p-value	0.0520						

TABLE 5—RETURNS TO A YEAR OF COLLEGE

Model		Normal	Semiparametric
$\overline{ATE = E(\beta)}$		0.0670 (0.0378)	Not identified
$TT = E(\beta S = 1)$		0.1433 (0.0346)	Not identified
$TUT = E(\beta S = 0)$		-0.0066 (0.0707)	Not identified
MPRTE			
Policy perturbation	Metric		
$Z_{\alpha}^{k} = Z^{k} + \alpha$	$ \mathbf{Z}\gamma - V < e$	0.0662 (0.0373)	0.0802 (0.0424)
$P_{\alpha} = P + \alpha$	P-U < e	0.0637 (0.0379)	0.0865 (0.0455)
$P_{\alpha}=(1+\alpha)P$	$ \frac{P}{U} - 1 < e$	0.0363 (0.0569)	0.0148 (0.0589)
Linear IV (Using $P(\mathbf{Z})$ as the i	` (0.0951	
	,	((0.0386)
OLS			0.0836

Notes: This table presents estimates of various returns to college, for the semiparametric and the normal selection models: average treatment effect (ATE), treatment on the treated (TT),

Figure 4. $E(Y_1 - Y_0 | \mathbf{X}, U_S)$ with 90 Percent Confidence Interval— Locally Quadratic Regression Estimates

FIGURE 6. WEIGHTS FOR IV AND MPRTE

Diversion Example

I have done some work trying to bring these methods into merger analysis.

 Key quantity: Diversion Ratio as I raise my price, how much do people switch to a particular competitor's product

$$D_{jk}(p_j, p_{-j}) = \left| \frac{\partial q_k}{\partial p_j}(p_j, p_{-j}) / \frac{\partial q_j}{\partial p_j}(p_j, p_{-j}) \right|$$

- We hold p_{-j} fixed and trace out $D_{jk}(p_j)$.
- The treatment is leaving good j.
- The Y_i is increased sales of good k.
- The Z_i is the price of good j.
- The key is that all changes in sales of k come through people leaving good j (no direct effects).

Diversion for Prius (FAKE!)

Diversion Example

$$\widehat{D_{jk}^{LATE}} = \frac{1}{\Delta q_j} \int_{p_j^0}^{p_j^0 + \Delta p_j} \underbrace{\frac{\partial q_k(p_j, p_{-j}^0)}{\partial q_j}}_{\equiv D_{ik}(p_j, p_{-j}^0)} \left| \frac{\partial q_j(p_j, p_{-j}^0)}{\partial p_j} \right| dp_j$$

- $D_{jk}(p_j, p_{-j}^0)$ is the MTE.
- Weights $w(p_j) = \frac{1}{\Delta q_j} \frac{\partial q_j(p_j, p_{-j}^0)}{\partial p_j}$ correspond to the lost sales of j at a particular p_j as a fraction of all lost sales.
- When is $LATE \approx ATE$?
 - Demand for Prius is steep: everyone leaves right away
 - $D_{j,k}(p_j)$ is relatively flat.
 - We might want to think about raising the price to choke price (or eliminating the product from the consumers choice set) same as treating everyone!