Examen scris Structuri Algebrice în Informatică 04/02/2022

 $a = \dots,$ $b = \dots,$

unde

- (1) a este egal cu maximul dintre numerele de litere ale cuvintelor care compun numele vostru de familie. (de exemplu, dacă numele de familie este Popescu-Simion atunci a=7, maximul dintre 7 (nr. de litere al cuvântului Popescu) și 6 (nr. de litere al cuvântului Simion); dacă numele de familie este Moisescu atunci a=8)
- (2) b este egal cu maximul dintre numerele de litere ale cuvintelor care compun prenumele vostru. (de exemplu, dacă prenumele este Andreea-Beatrice-Luminița atunci b=8, maximul dintre 7 (nr. de litere al cuvântului Andreea) și 8 (nr. de litere atât al cuvântului Beatrice cât și al cuvântului Luminița).)

Problema	Punctaj	Total
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
10	1	
Total	10	

Justificați toate răspunsurile!

- 1. Determinați a și b.
- 2. Determinați numărul de permutări de ordin a din grupul de permutări S_{a+b} .
- 3. Se consideră permutarea $\sigma = (1, \ldots, a)(a+1, \ldots, a+b)(a+b+1, \ldots, 2a+2b)$, un produs de 3 cicli disjuncți de lungime a, b, respectiv a+b, din S_{2a+2b} . Determinați toate permutările $\tau \in S_{2a+2b}$ astfel încât $\tau^3 = \sigma$.
- 4. Calculați $a^{a+b^{b^{a+b}}} \pmod{41}$.
- 5. Se consideră mulțimea de numere naturale $A = \{x, \dots, a+b\}$, unde x este numărul natural egal cu minimul dintre a și b. Determinați o relație de echivalență ρ pe mulțimea A astfel încât mulțimea factor A/ρ să aibă exact 4 clase de echivalență diferite iar clasa de echivalență a lui a să conțină doar numerele a și b. (Precizare: dacă a=b atunci clasa de echivalență a lui a va fi formată doar din elementul a, iar dacă $a \neq b$ atunci clasa de echivalență a lui a va fi $\{a,b\}$.)
- 6. Determinați numărul elementelor de ordin 9 din grupul produs direct $(\mathbb{Z}_{3^a}, +) \times (\mathbb{Z}_{3^b}, +)$.
- 7. Dați câte un exemplu, dacă există, sau justificați de ce nu există în caz contrar, de:
 - Funcție injectivă, care nu este surjectivă, $f_{a,b}:(-\infty,\frac{a}{b}]\mapsto [\frac{b}{a},+\infty).$
 - Funcție surjectivă, care nu este injectivă, $g_{a,b}: \left[\frac{a}{b}, +\infty\right) \mapsto \left(-\infty, \frac{b}{a}\right]$.
 - Funcție bijectivă $h_{a,b}:(a,a+b]\mapsto \mathbb{N}.$
- 8. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$ definită astfel:

$$f(x) = \begin{cases} ax + b(1+a), & \text{dacă } x < -b, \\ ax^2 + 2a(a-1)x + a^3 - 2a^2 + a + b, & \text{dacă } x \ge -b. \end{cases}$$

Decideți dacă funcția f este injectivă, surjectivă, respectiv bijectivă. Calculați $f^{-1}([-b-a,b+a])$.

- 9. Considerăm inelele produs direct $R = \mathbb{Z}[X] \times \mathbb{Z}[X]$ și $S = \mathbb{Z} \times \mathbb{Z}$. Definim funcția $\phi : R \mapsto S$ astfel $\phi(P(X), Q(X)) = (P(a), Q(b))$. Să se arate că ϕ este un morfism de inele. Determinați $\ker(\phi)$, nucleul morfismului ϕ .
- 10. Determinați toate numerele întregi x care au proprietatea că $x \equiv a \pmod{2b+1}, x \equiv a+1 \pmod{2b+2}$ și $x \equiv a+2 \pmod{2b+3}$.