QUIZ 6: ABSTRACT ALGEBRA

Problem 1: The Quaternion group Q_8 is given by the presentation on three generators i, j, and k with $i^2 = j^2 = k^2 = ijk$ where ijk is a flip (element of order 2). If we refer to the element ijk by -1, we can write the presentation as

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1, (-1)^2 = 1 \rangle$$

Use the identities above, to show the following (<u>Hint:</u> In both Part B and Part C below, take ijk = -1 and multiply on right by the correct elements.)

Part A. For any x in Q_8 , $-1 \cdot x = x \cdot -1$. For this it is enough to argue for the element i as the proof will be the same for all other elements. Then, note

$$ijk = -1$$

(1)
$$-jk = i \cdot (-1) \qquad \text{(multiply on the left by i)}$$
$$-1(i) = i \cdot (-1) \qquad \text{(You will essentially prove this step below)}$$

Important Note: Strictly speaking the direction of these proofs are circular. We should first develop the Cayley table below and then argue that -1 commutes with every element. But, I want you to use this fact first to make the proofs below easy.

Part B.
$$ij = k$$

Part C.
$$kji = -1$$

Part D.
$$jij = i$$

Part E.
$$ij = -ji$$

Problem 2: Fill in the remaining entries of the Cayley table for the Quaternion group Q_8 below

*	1	-1	i	-i	j	-j	k	-k
1	$1 \mid$	-1	i	-i	j	-j	k	$\left -k \right $
-1	$\begin{bmatrix} -1 \end{bmatrix}$	1	-i	i^-i^-	-j	$j^{-}j^{-}$	$\left[-k\right]$	k
i^{-}	$\stackrel{-}{i}$	-i	-1	$1 \overline{1}$	$\begin{bmatrix} \\ k \end{bmatrix}$		 	
-i	-i	\bar{i}	1	-1	 	 	 	' — — — -
j	$\begin{bmatrix} j \end{bmatrix}$	-j	-k		$\begin{bmatrix} -1 \end{bmatrix}$		i	
	-j							
\bar{k}	$\begin{bmatrix} k \end{bmatrix}$	-k			-i	 	$\begin{bmatrix} -1 \end{bmatrix}$	
-k	-k	\bar{k}		 	 		 	$\begin{vmatrix} -1 \end{vmatrix}$

Problem 3. Find all the cyclic subgroups of Q_8 . Hint: There are exactly five of them.