PC Rappels : Équations différentielles linéaires

I. Équations différentielles linéaires d'ordre 1

<u>définition</u>: Une équation différentielle linéaire d'ordre 1 est du type a(x)y'(x) + b(x)y(x) = c(x) (E) on appelle équation homogène associée a(x)y'(x) + b(x)y(x) = 0 (H)

On suppose $a, b, c : \mathcal{I} \longrightarrow \mathbb{K}$ continues sur \mathcal{I} (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

Sur un intervalle où a ne s'annule pas , l'ensemble des solutions de (H) est un espace vectoriel de dimension 1 dont une base est $x \longmapsto e^{\int -\frac{b}{a}(x)dx}$

Sur un intervalle où a ne s'annule pas , toute solution de (E) s'écrit y_0+y_H où y_0 solution particulière de (E) et y_H une solution de (H)

Résolution de (E): méthode de variation de la constante

Pour trouver une solution particulière de (E), on résout (H) on trouve $y_H: x \longmapsto \lambda e^{\int -\frac{b}{a}(x)dx}$, puis on fait varier la constante en posant $y(x) = \lambda(x)e^{\int -\frac{b}{a}(x)dx}$

Remarques : 1/ Il se peut que (E) admette une solution évidente y_0 , les solutions sont alors $y_0 + y_H$

2/ principe de superposition : si $c = \sum_{i=1}^{k} \lambda_i c_i$. On détermine une solution particulière y_i de chaque

équation $a(x)y'(x) + b(x)y(x) = c_i(x)$ alors $y_0 = \sum_{i=1}^k \lambda_i y_i$ est solution particulière de (E).

II. Équations différentielles linéaires d'ordre 2 à coefficients constants

<u>définition</u>: Une équation différentielle linéaire d'ordre 2 à coefficients constants est du type ay''(x) + by'(x) + cy(x) = d(x) (E) $a \neq 0$ $d: \mathcal{I} \longrightarrow \mathbb{K}$ continue sur \mathcal{I} d'équation homogène associée ay''(x) + by'(x) + cy(x) = 0 (H)

Résolution de (H): L'équation caractéristique associée est : (**) $ar^2 + br + c = 0$

On se place sur $\mathbb K$

Si (**) a deux racines distinctes r_1 et r_2 alors toute solution de (H) est $x \longmapsto \alpha e^{r_1 x} + \beta e^{r_2 x}$ $(\alpha, \beta) \in \mathbb{K}^2$ avec comme cas particulier si $\mathbb{K} = \mathbb{R}$ et $r_1 = \bar{r_2} = u + iv$ $(\Delta < 0)$ une solution de (H) est $x \longmapsto e^{ux}(\alpha \cos(vx) + \beta \sin(vx))$ $(\alpha, \beta) \in \mathbb{R}^2$

Si (**) a une racine double r_0 alors toute solution de (H) s'écrit $x \mapsto e^{r_0 x} (\alpha x + \beta)$ $(\alpha, \beta) \in \mathbb{K}^2$

Sur un intervalle où a ne s'annule pas , toute solution de (E) s'écrit y_0+y_H où y_0 solution particulière de (E) et y_H une solution de (H)

Résolution de (E): si d est de la forme $x \longmapsto P(x)e^{\varphi x}$ P polynôme et $\varphi \in \mathbb{C}$ on cherche une solution particulière de (E) sous la forme $x \longmapsto Q(x)e^{\varphi x}$ avec Q polynôme de degré $d^{\circ}P$ +ordre de multiplicité de φ dans (**)

Le principe de superposition peut aussi s'appliquer.