CSL253 - Theory of Computation

Tutorial 7

Team Members

- 1. S.S.V.Rahul 12341980
- 2. Shanmukha siva venkata sai 12340700
- 3. Katari Venu 12341110

Question 6

Let INFINITEDFA = $\{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is an infinite language}\}$. Show that INFINITEDFA is decidable.

Problem 6: Decidability of INFINITEDERA

Show that $INFINITE_{DFA}$ is decidable.

On input $\langle A \rangle$, where A is a DFA:

- 1. Let k be the number of states of A.
- 2. Construct a DFA D that accepts all strings of length $\geq k$.
- 3. Construct a DFA M such that

$$L(M) = L(A) \cap L(D)$$

where:

- L(A): the original language accepted by DFA A,
- L(D): the set of all strings of length $\geq k$, where k is the number of states in A.

So, L(M) means the set of all strings that:

- \bullet Are accepted by A, and
- Have length $\geq k$.

- This implies: if the intersection is not \emptyset , then there exists a string of length $\geq k$. But since A has k states, according to the Pumping Lemma, there must be a loop in the DFA.
- Therefore, we can pump (i.e., repeat) that loop any number of times to generate strings of arbitrary length, meaning A accepts an infinite number of strings.
- 4. Test whether $L(M) = \emptyset$ using the EDFA decider T:
 - If T says $L(M) = \emptyset$ (i.e., no string of length $\geq k$ is accepted), then A is finite, so reject.
 - Otherwise, A accepts infinitely many strings (since some strings of length $\geq k$ are accepted), so **accept**.

 \Rightarrow If T accepts, reject; if T rejects, accept.

EDFA is a decidable language

Decider T:

On input $\langle A \rangle$, where A is a DFA:

- 1. Mark the start state q_0 .
- 2. Repeat until no new states get marked:
 - Explore all states that can be reached from the start state.
- 3. Mark any state that has an incoming transition from an already marked state:
 - If a state is reachable from a marked state, we also mark it.
- 4. Final check:
 - If no accept state is marked, it means no accepting state is reachable. So $L(A) = \emptyset$ \Rightarrow accept.
 - Otherwise, if at least one accept state is marked, then A accepts some strings. So $L(A) \neq \emptyset \Rightarrow \mathbf{reject}$.