Problem

$$_{\scriptscriptstyle{\mathsf{Let}}} R \subseteq \mathcal{N}^k$$

^A**a.**
$$R_0 = \{0\}$$

b.
$$R_1 = \{1\}$$

c.
$$R_{=} = \{(a, a) | a \in \mathcal{N}\}$$

d.
$$R_{<} = \{(a,b) | a, b \in \mathcal{N} \text{ and } a < b\}$$

Step-by-step solution

Step 1 of 5

The k-ary relation $R \subseteq N^k$ is *definable* in Th(N,+), if a formula ϕ can be given with k free variables $x_1,...,x_k$, such that for all $a_1,...,a_k \in N$, the formula $\phi(a_1,...,a_k)$ is true only when $a_1,...,a_k \in R$.

- The theory ${}^{Thig(Mig)}$ of a model M is the collection of true sentences in the language of M .
- The theory for this problem is Th(N,+), so the model will be (N,+). Thus, only need to find formulas that are true for the given relations over the (N,+) model.

Comment

Step 2 of 5

a)

$$R_0 = \{0\}$$

- There is only one value 0 to be considered. Adding this value to the variable $y \in N$ will produce no change in the value of y as y + 0 = y.
- $\bullet \text{ So, in the formula } \phi_0 \text{ to make } R_0 \text{ definable in } Th\big(N,+\big) \text{ for all } y \text{, it has; } \forall x \in R_0 \forall y \big[x+y \to 0+y\big].$

From this, the formula can be expressed as:

$$\phi_0(x) = \forall y[x+y=y]$$

Comment

Step 3 of 5

b)

$$R_1 = \{1\}$$

• Similarly, in this case only one value is to be considered. So adding any value from $R_1 = \{1\}$ to the variable $y \in N$ will increment the value of y by one as:

$$\forall x \in R_1 \forall y [x + y \rightarrow 1 + y]$$

Therefore, the formula $\phi_{\rm l}$ to make $R_{\rm l}$ definable in Th(N,+) will be:

