

ELEMENTI DI MECCANICA

CORSO DI GAME PROGRAMMING 1º ANNO

Docente **Davide Caio**

VETTORI

Un Vettore <u>V</u> N-Dimensionale è una tupla del tipo:

$$V = [V1, V2, V3, ..., Vn]$$

Dove gli elementi Vi sono numeri Reali detti COMPONENTI del vettore.

In generale utilizzeremo vettori di dimensione 2 (Vettori nel piano) e di dimensione 3 (vettori nello spazio):

$$\underline{\vee} = [x,y]$$

$$\underline{\vee} = [x,y,z]$$

SISTEMI DI RIFERIMENTO

Un sistema di Riferimento è uno strumento che ci permetti di individuare in maniera univoca la posizione degli elementi del problema in esame. Per definire un sistema di riferimento dobbiamo:

- Definire la Posizione dell'origine O;
- Determinare gli assi cartesiani: il numero di assi dipenderà dal numero di dimensioni del problema in esame (monodimensionale, bidimensionale, tridimensionale).

SISTEMI DI RIFERIMENTO

Definito un sistema di riferimento, è possibile individuare in maniera univoca un punto materiale nello spazio attraverso le coordinate del rispettivo **Vettore Posizione**

N.B: Il sistema di Riferimento è **ARBITRARIO**: possiamo scegliere l'origine e le coordinate in modo che siano più "comode" per il particolare problema.

LA CIRCONFERENZA GONIOMETRICA

Circonferenza di Raggio Unitario e centrata nell' origine degli assi Cartesiani.

SENO E COSENO

Per ogni angolo α sulla circonferenza, possiamo determinare due quantità:

- $sin(\alpha)$
- $cos(\alpha)$

SENO E COSENO

Notiamo che:

- Sin(0)=0
- Sin(90)=1
- Sin(180)=0
- Sin(270)=-1
- Cos(0)=1
- Cos(90)=0
- Cos(180)=-1
- Cos(270)=0

SENO E COSENO: RELAZIONE FONDAMENTALE

Dato un qualsiasi angolo α abbiamo che:

• $sin(\alpha) \wedge 2 + cos(\alpha) \wedge 2 = 1$

In generale data una circonferenza di Raggio R, le quantità individuate per ogni α varranno:

- R*sin(α)
- $R^*cos(\alpha)$

NORMA O MAGNITUDO

Dato un vettore (per semplicità bidimensionale) V=[Vx, Vy] Si dice NORMA o Magnitudo la quantità

$$||V|| = \sqrt{((x \wedge 2) + (y \wedge 2))}$$

La Norma è sostanzialmente la LUNGHEZZA del vettore.

Un vettore con norma pari ad 1 è detto UNITARIO (o VERSORE).

L'operazione con cui da un vettore con una LUNGHEZZA qualsiasi si ottiene un vettore con un LUNGHEZZA unitaria si chiama NORMALIZZAZIONE.

RELAZIONE TRA NORMA E COMPONENTI

Dato un vettore V=[x,y] e detta ||V|| la sua norma, si ha:

$$x=||V|| * cos(\alpha)$$

 $y=||V|| * sin(\alpha)$

SOMMA VETTORIALE

La somma di due vettori \underline{a} e \underline{b} è un vettore \underline{c} = \underline{a} + \underline{b} la cui direzione e verso si ottengono nel modo seguente:

si fissa il vettore <u>a</u> e, <u>a</u> partire dal suo punto estremo, si traccia il vettore <u>b</u>. Il vettore che unisce l'origine di <u>a</u> con l'estremo di <u>b</u> fornisce la somma <u>c</u> = <u>a</u> + <u>b</u>.

DIFFERENZA VETTORIALE

Il vettore opposto ad \underline{a} = AB è - \underline{a} = BA (stesso modulo, direzione, ma verso opposto).

La differenza <u>a-b</u> di due vettori è la somma del vettore <u>a</u> con l'opposto del vettore <u>b</u>.

MOLTIPLICAZIONE PER UNO SCALARE

Se il vettore \underline{V} viene moltiplicato per uno scalare, si ottiene un secondo vettore che ha la stessa direzione di \underline{V} e il modulo e il verso dipendono dallo scalare.

- Se k > 1 allora il secondo vettore ha stesso verso e modulo = ||V|| * k
- Se k < -1 allora il secondo vettore ha verso opposto e modulo = ||V|| * |k|

PRODOTTO SCALARE

Si tratta di un'operazione che associa ad una coppia di vettori uno scalare.

 $\underline{A} \cdot \underline{B} = ||A|| * ||B|| * \cos \theta$ dove θ è l'angolo compreso tra \underline{A} e \underline{B} .

Nota: se due vettori sono perpendicolari allora il prodotto scalare è NULLO.

Perché θ sarebbe 90° e il cos (90°) è 0.

PRODOTTO VETTORIALE

Dati due vettori \underline{a} e \underline{b} si definisce prodotto vettoriale \underline{c} = \underline{a} x \underline{b} il vettore avente le seguenti proprietà:

- direzione: perpendicolare al piano individuato dai primi due.
- modulo: prodotto dei moduli dei due vettori moltiplicato per il seno dell'angolo compreso θ da questi formato = $||c|| = ||a|| ||b|| sen<math>\theta$
- verso: quello secondo il quale si deve disporre un osservatore con i
 piedi nel punto O di applicazione dei due vettori affinché possa veder
 ruotare il vettore <u>a</u> in senso antiorario perché si sovrapponga al vettore
 <u>b</u>
 - o regola della mano destra

NOTA: se due vettori sono paralleli allora il prodotto vettoriale è il vettore nullo perché θ = 0° e sin(0°) = 0.

CINEMATICA DEL PUNTO MATERIALE

La Cinematica è l'analisi del movimento del punto materiale (corpo privo di massa) senza considerare le cause (forze) che provocano tale movimento;

Grandezze che prenderemo in esame:

- **Posizione**: Grandezza Vettoriale che definisce la posizione di un punto in un dato sistema di riferimento; si misura in **m**
- **Velocità**: Grandezza vettoriale che rappresenta quanto rapidamente varia la posizione di un punto nello spazio; si misura in **m/s**
- Accelerazione: Grandezza vettoriale che rappresenta quanto rapidamente varia la velocità di un punto nello spazio; si misura in m/s²
- **Tempo**: si misura in **s**

LEGGE ORARIA

Le grandezze fisiche che abbiamo descritto(Posizione, Velocità e Accelerazione), sono **FUNZIONI DEL TEMPO** ovvero il loro valore in generale cambia con all'aumentare del tempo trascorso: in ogni istante T assumeranno quindi un valore diverso;

Le funzioni matematiche che definiscono il valore di tali grandezze all'aumentare del tempo, sono dette **LEGGI ORARIE**

Moto Rettilineo Uniforme(caso monodimensionale)

In un moto rettilineo uniforme, consideriamo il movimento di un punto materiale lungo un'unica direzione con accelerazione nulla e velocità costante(non varia al variare del tempo):

Nel caso monodimensionale il nostro sistema di riferimento sarà semplicemente una retta e le grandezze vettoriali(spazio e velocità) hanno un'unica coordinata.

In questo caso avremo la seguente Legge Oraria:

s(t)=s0+v*(t-t0)

Dove:

- V è la velocità costante;
- t0 è l'istante iniziale
- s0 è la posizione iniziale

Moto Rettilineo Uniforme: Esempi

Un automobile si muove a velocità costante di 60 km/h (16,7 m/s) a partire dal km 227 dell'autostrada; dopo 2 min a che km si troverà?

S=227000 m + 16.7 m/s *(120 s)=229.004 m = 229 km

Moto Rettilineo Uniforme: Esempi

Due automobili partono a X=10 km di distanza l'una dall'altra e si muovono di moto rettilineo uniforme in direzioni opposte, una con v1=60 km/h l'altra con v2=100 km/h: in che punto si incontreranno e a quale istante?

$$s1=v1*(t);$$

 $s2=X-v2*(t)$

$$\sqrt{1}t = X - \sqrt{2}t$$

Da cui l'istante in cui si incontrano è:

Moto Rettilineo Uniforme: Esercizio per casa

Un'automobile viaggia da Milano a Roma a velocità costante di 120 km/h (33,3 m/s).Sapendo che Milano e Roma distano 600 km:

- Quanto impiega per arrivare a Roma?
- Dove si trova dopo 3h e mezza di viaggio?

Moto Rettilineo Uniforme: Caso Bidimensionale

Nel caso di moto in due dimensioni avremo che velocità e posizione sono definite da due componenti (nel caso della velocità saranno due costanti):

- S(t)=[Sx(t),Sy(t)]
- V=[Vx,Vy]

Dal punto di vista matematico non cambia nulla! Avremo infatti due leggi orari piuttosto che una (una per ogni componente), che possiamo trattare separatamente:

$$Sx(t)=SOx+Vx*(t-tO)$$

 $Sy(t)=SOy+Vy*(t-tO)$

Moto Uniformemente accelerato

Se durante lo spostamento, un corpo **non mantiene una velocità costante**, si parla di moto Accelerato, dove **l'ACCELERAZIONE** descrive quanto rapidamente cambia nel tempo la velocità. In un moto uniformemente Accelerato l'Accelerazione è costante ed è legata alla velocità dalla seguente legge oraria (per semplicità consideriamo il caso monodimensionale):

$$v(t) = v0 + a^*(t-t0)$$

Dove:

- v0 è la velocità iniziale;
- t0 è l'istante iniziale;
- a (costante) è l'accelerazione;

Questa legge descrive come la velocità varia nel tempo a fronte di un accelerazione costante;

Moto Uniformemente accelerato

Vediamo ora La legge oraria che definisce il valore della posizione di un corpo in un moto uniformemente accelerato:

$$s(t)=sO+vO*(t-tO)+(1/2)*a*(t-tO) ^2$$

Come vediamo il caso del **moto uniforme è un caso particolare** del moto uniformemente accelerato con a=0.

N.B. Come per il moto uniforme, l'accelerazione può assumere un valore negativo: in tal caso la velocità non aumenta nel tempo ma diminuisce e si parla di moto UNIFORMEMENTE DECELERATO

Moto Uniformemente accelerato: Esempio

Un'auto parte da ferma con un'accelerazione di 10/ms^2

Quanto impiega ad arrivare a 100 km/h? Quanto ha percorso dopo 20s e a che velocità è arrivata?

Nel caso in esame abbiamo semplicemente: v=a*t;

Quindi t=v/a = 2,77 s

Inoltre dopo 20 s:

 $s=1/2*a(t)^2= 2 km$

v=a*t=720 km/h (!!!)

Grave in caduta libera

Un chiaro esempio di moto uniformemente accelerato è quello di un grave in caduta libera: l'accelerazione gravitazionale sulla Terra è infatti costante:

G=9.81 m/s ^2

Moto in caduta libera: Esempi

Un corpo viene fatto cadere da un'altezza H dal suolo, dopo quanto tempo arriva a terra e a che velocità?

Applichiamo le leggi orarie del moto uniformemente accelerato semplificate per il caso in esame:

 $H - 1/2*G*(t)^2=0$ Ovvero imponiamo che h sia =0 (ovvero al suolo) con t incognita

Da cui: t=sqrt(2*H/G) è il tempo che impiega per arrivare a terra

Per calcolare la velocità basta applicare la legge oraria conoscendo il valore di t appena calcolato:

v=-G*(t) è la velocità con cui arriva al suolo;

Moto in caduta libera: Esempi

Un corpo gettato in un pozzo impiega T secondi ad arrivare al fondo. Quanto è profondo il pozzo? In questo caso l'incognita è l'altezza iniziale h quindi:

 $h-(1/2)*G(T) ^2=0$

da cui $h=(1/2)*G*(T) ^2 e l'altezza del pozzo$

Moto in caduta libera: Esercizio

Se lanciamo un sasso da terra in verticale verso l'alto, con velocità VO, a che altezza riuscirà ad arrivare?

Moto in caduta libera: Soluzione

Applicando La legge oraria v=v0+a(t-t0), semplificando per il caso in esame avremo:

v=V0-G*t

Dobbiamo trovare anzitutto quanto tempo T è impiegato per annullare la velocità, avremo:

0=V0-G*t da cui T= V0/G

A questo punto avremo che l'altezza a cui arriverà il sasso è: $h=V0 *T-(1/2)*G*(T)^2$

Consideriamo una pistola che spari un proiettile con un angolo α e una velocità iniziale di Vo m/s:

In tale moto dovremo considerare separatamente le componenti x ed y del moto, dove y varia con un moto uniformemente accelerato mentre x varia con moto uniforme

Calcoliamo le seguenti quantità:

- Altezza massima a cui arriva il proiettile;
- Gittata (quanto spazio percorre prima di toccare terra)

Consideriamo assente l'attrito dell'aria (altrimenti il moto lungo l'asse X non sarebbe un moto uniforme)

Il moto va suddiviso nelle due componenti spaziali x ed y, dove esso si muoverà lungo x di moto rettilineo uniforme e lungo y di moto uniformemente accelerato:

Le componenti della velocità iniziale saranno:

- $VOx=VO*cos\alpha$
- VOy=V0*sinα

A questo punto possiamo applicare la legge oraria del moto uniformemente accelerato lungo y per sapere dopo quanto tempo tmax si annulla la velocità verticale:

0=V0y-Gtmax da cui: tmax=V0y/G

A questo punto possiamo calcolare l'altezza massima come: hmax= v0y*tmax-(1/2)*G*tmax^2

Possiamo ora calcolare il tempo Tf impiegato dal proiettile per ricadere a terra:

0=hmax-(1/2)*G*(Tf)^2 da cui: Tf=sqrt(2*hmax/G)

Il tempo totale di volo del proiettile sarà Ttot=Tmax+Tf, quindi la Gittata sarà:

Gittata=V0x*Ttot

DINAMICA

Studio del perché avviene un movimento.

L'equazione base è F = ma (dove ovviamente sia F che a sono misure vettoriali). Si misura in Newton (N) → kg * m / s^2

In particolare, la sommatoria delle forze applicate a un corpo rigido in un determinato momento, se divisa per la sua massa, può darci il vettore accelerazione.

Il vettore accelerazione ci da il vettore velocità che ne definisce lo spostamento.

DINAMICA NEGLI ENGINE MODERNI

Gli engine moderni mettono a disposizione un motore fisico dinamico. Questo motore utilizza la dinamica per arrivare a calcolare lo spostamento dell'oggetto di gioco frame by frame.

Il motore fisico segue un suo frame rate indipendente dal motore grafico e DEVE essere costante. (FixedDeltaTime). Perché? Perché alcuni calcoli fisici per funzionare richiedono un frame rate costante. Tutti i calcoli che non riescono ad essere calcolati entro quel tempo, vengono IGNORATI.

Il componente in Unity che permette a un oggetto di entrare nella simulazione fisica è il Rigidbody. Questo Rigidbody permette al programmatore di applicare forze al corpo di vario tipo e si occupa di trovare la velocità finale del corpo a ogni frame.

DINAMICA NEGLI ENGINE MODERNI

Gli engine moderni mettono a disposizione un motore fisico dinamico. Questo motore utilizza la dinamica per arrivare a calcolare lo spostamento dell'oggetto di gioco frame by frame.

Il motore fisico segue un suo frame rate indipendente dal motore grafico e DEVE essere costante. (FixedDeltaTime). Perché? Perché alcuni calcoli fisici per funzionare richiedono un frame rate costante. Tutti i calcoli che non riescono ad essere calcolati entro quel tempo, vengono IGNORATI.

Il componente in Unity che permette a un oggetto di entrare nella simulazione fisica è il Rigidbody. Questo Rigidbody permette al programmatore di applicare forze al corpo di vario tipo e si occupa di trovare la velocità finale del corpo a ogni frame.

FORZA DI GRAVITÀ

- 1) $F = G (m1 * m2) / D^2$
- → due corpi dotati di massa si attraggono con una forza che è direttamente proporzionale al prodotto delle masse e inversamente proporzionale al quadrato della distanza che li separa. (Grazie Sir Isaac Newton)

Allora perché tutti i corpi cadono con la stessa accelerazione indipendentemente dal peso?

2) Perché F = ma → a = F/m Sostituiamo 2) nella 1) chiamando m2 quella della terra M

a/m1 = m1 GM/D^2 -- la massa del corpo si semplifica, la D è la distanza del grave dal centro della terra e viene approssimata al raggio terrestre. CVD