Logic & Set Theory

3.AB PrelB Maths – Resit exam

Unless specified otherwise, you are to **always** (at least briefly) explain your reasoning. Even in closed questions.

Logic - propositions and conjunctions.

a) Complete the truth table below.

[15 %]

ľ)	q	$p \land \neg q$
_	Ĺ	1	
	L	0	
()	1	0
()	0	0

In other words: evaluate the proposition $p \land \neg q$, for the truth values of p and q corresponding for the omitted lines in the truth table.

b) Complete the blank square in proposition $\ \ \,$

$$[10 \%]$$

$$p -q$$

with some logical conjunction $(\land, \lor, \Rightarrow, \Leftrightarrow)$ so it equivalent $\neg(p \Rightarrow q)$. Two statements are equivalent if their truth tables are the same.

For convenience the truth table of implication is stated below.

p	q	$p \Rightarrow q$			
1	1	1			
1	0	0			
0	1	1			
0	0	1			

Explain your choice.

Basic set operations.

a) Given sets $A=\{c,c,c,b,b,a\}$ and $B=\{a,b,c\}$, determine the statements $A\subseteq B \text{ and } B\subseteq A.$

Explain your method.

Bonus (+10%): if both the statements are true there is something to be concluded about A and B. **Explain** what it is.

b) Write an expression (using set operations) for the shaded are on the diagram $[10\ \%]$ below.

Cartesian product and relations.

a) On the diagram below draw the relation R from A to B for

[15 %]

$$A = \{1, 3, 5, 7\}, B = \{0, 2, 4, 6\} \text{ and } R = \{(1, 2), (3, 6), (5, 0)\}.$$

Page 3 of 4

7 • 6
5 • 4
3 • 2
1 • 0
A
B

b) Draw again the relation R from the previous exercise together with the relation $S = \{(0, a), (2, c), (4, d)\}$ between sets R and $C = \{a, b, c, d, \}$.

		6		
7	•	•	•	d
		4		
5	•	•	•	\boldsymbol{c}
		2		
3	•	•	•	b
		0		
1	•	•	•	\boldsymbol{a}
	\boldsymbol{A}	B	$oldsymbol{C}$	

Now is your task to compose the relations R and S into one relation T that goes from A to C. This means that T firstly applies R to get from A to B. Then on all of the results of R (end of an every arrow from a)) applies S which gets it from B to C. At the end T forgets the element from B and ends up only with the beginning and the ending of the journey. **Write down** T.

Equivalence.

- a) One of the examples of a equivalence is 'what flavor of ice cream' each person likes the most. Verify that it is truly equivalence. In other words: it has to satisfy [15%]
 - **reflexivity**: every element is equivalent to itself;
 - **symmetry**: if a is equivalent to b, then b is equivalent to a;
 - **transitivity**: if a is eq. to b and b is eq. to c, then a is eq. to c.

b) Come up with at **least three** other equivalences on the set of all people. Try to estimate the number of equivalence classes they create. For the maximum credit there should be one that creates **over 100** of partitions and also one that creates fewer than two.

[10 %]

You **can not** use the equivalence from part a).