

Dynamic Hybrid Search Optimization:

A Practical
Framework for Query
Understanding

BASED Meetup March 20, 2025 Daniel Wrigley

Lexical Search

id: 1 Text: ... a **fruit** basket that contained apples

and oranges ...

id: 2 Text: ... she took the apple thereof, and did eat, ...

Fast and efficient retrieval with inverted index structure

Works well for structured & high-precision queries

Needs careful configuration of text analysis (tokenizers, stemmers, synonyms etc.) to handle advanced matching

Struggles with long-tail or ambiguous queries

Vector Search

Captures semantic meaning, handling synonyms & related concepts

More effective for long, natural language queries

Computationally expensive

Can retrieve non-relevant documents: **always** shows the *k* nearest neighbours - no matter how far away

Why Hybrid Search?

Lexical Search + Vector Search = 💙

Hybrid search combines lexical and vector search to improve relevance:

- Lexical search ensures precision for term-based matches.
- Vector search enhances recall by capturing semantic meaning.

Example Query: "How to improve neural networks?"

- Lexical search finds exact keyword matches, but might miss semantically related terms like "deep learning optimization".
- Vector search captures related terms but might lack specificity.

Hybrid search balances both.

Hybrid Search - An Illustration

Inverted Index and Vector Index can be part of the same search platform

Basic Hybrid Search Techniques

How to best combine the results of the sub-queries? 🤔

1 Linear Combination

- $(w_1 \times normalized BM25 score) + (w_2 \times normalized dense vector similarity)$
- **Pros:** Simple, tunable weight parameters
- Cons: Needs score normalization & hyperparameter tuning (w₁ & w₂)

experimentation focus

2 Reciprocal Rank Fusion (RRF)

- Ranks from BM25 & vector search are merged: $RRFscore(d\epsilon D) = \sum_{r \in P} rac{1}{k+r(d)}$ **Pros:** No score normalization required
- **Cons:** Less flexibility compared to linear combination

Why Tune Hybrid Search?

How do you combine different search techniques (ingredients) effectively for improved **findability** (tastier recipe)? How do you know which parameters are the best parameters for hybrid search?

Search Result Quality Improvement Cycle

www.opensourceconnections.com

Identify weaknesses in ranking, retrieval, or query understanding.

Experiment Hypotheses

- 1) By identifying the best parameter set for hybrid search we can outperform the baseline search quality metrics → global hybrid search optimization
- 2) By dynamically predicting the best parameter set per query we can outperform the search quality metrics for identified best global hybrid search parameter set → dynamic hybrid search optimization

Experiment setting:

- ESCI dataset
- 5,000 randomly sampled queries with judgments
- Lexical search baseline
- OpenSearch hybrid search query: arithmetic combination of lexical and neural search

Global Optimization Strategy – Grid Search

Systematically test different parameter values

® Best Setting: ?

Parameters	DCG@10	NDCG@10	Precision@10
vector query weight $w_1 = 0.0$, lexical query weight $w_2 = 1.0$?	?	?
vector query weight $w_1 = 0.1$, lexical query weight $w_2 = 0.9$?	?	?
vector query weight $w_1 = 0.2$, lexical query weight $w_2 = 0.8$?	?	?
	?	?	?
vector query weight $w_1 = 1.0$, lexical query weight $w_2 = 0.0$?	?	?

Search Result Quality

www.opensourceconnections.com

Feature Engineering for ML-Based Search Optimization

Feature groups and features

We divide the features into **three groups**: query features, lexical search result features, and neural search result features:

- Query features: These features describe the user query string.
- **Lexical search result features**: These features describe the results that the user query retrieves when executed as a lexical search.
- **Neural search result features**: These features describe the results that the user query retrieves when executed as a neural search.
- Additional feature: the weight of the vector search query (w₁) in our hybrid search setup

ML Model Training Data

Per query: the vector search weight $\mathbf{w}_{\scriptscriptstyle 1}$ that maximizes NDCG together with its features

NDCG	Vector search weight w ₁	Number of query terms	Query length	Contains numbers	Contains special chars	Number of keyword search results	Max title score	Sum of title scores	Max vector search score	Avg vector search score
0.54	0.0	4	22	1	1	14	0.19	1.42	0.48	0.47
0.23	1.0	5	26	1	1	3	0.22	0.41	0.60	0.59

Target What we really want to predict

Query Features

Keyword Search Result Features Vector Search Result Features

ML Model Evaluation

Evaluation Approach

- Linear Regression & Random Forest Regression Model
- Cross-Validation (5 splits, 80/20 train/test size)
- All Feature Combinations
- Regularization

Evaluation Results

- Best RMSE Linear Regression: 0.23
- Best RMSE Random Forest: 0.18
- Best feature combinations were always features from all groups (query, keyword search result & vector search result)

Search Result Quality

Experiment Results

Metrics improved when applying the static approach of the global hybrid search optimizer and yet again moving to the dynamic approach:

- DCG improved by 8.9% (from 9.3 at the global HSO to 10.13 at the dynamic HSO).
- NDCG improved by 8.0% (from 0.25 at the global HSO to 0.27 at the dynamic HSO).
- Precision improved by 7.4% (from 0.27 to 0.29 at the dynamic HSO)

Production Considerations

- Do thorough offline testing to identify the best candidates for online experimentation
- Run online experiments (A/B tests)
- Explore different feature options for your scenario
 - Presented features may not be suitable for your search platform
 - Engineering search result features may not be feasible in low-latency search platforms
- Identify low-hanging fruit opportunities first
 - Come up with heuristics that let you confidently bypass any complex queries. Examples:
 - Queries for IDs should always be keyword queries
 - Queries like return policy in an online-shop should be redirects to customer support pages
 - Your head queries most likely benefit from manually curated rules rather than ML-driven processes
 - Experiment on baseline optimization: there are a lot of parameters to tune even without hybrid search!

Resources

- OpenSearch Blog "Optimizing Hybrid Search"
- OpenSearch Issues Enabling Native Usage Within OpenSearch:
 - https://github.com/opensearch-project/neural-search/issues/1172
 - https://github.com/opensearch-project/neural-search/issues/1005
- Hybrid Search Optimizer Repository
- Optimizing Hybrid Search OpenSearch Blog Post
- Search Quality Evaluation App Repository

