Problem 3.6 and 4.1

Problem 3.6:

 ΔT is likely to reach 1.5 in the year 2056

The parameter a represents the amount of temperature the Earth will change by without the effects of time

The parameter b represents the increased amount of temperature the Earth will change by due to the human influences that year

Problem 4.1:

$$rac{dN}{dt} = R_0 N \exp\left(-R_1 N
ight) - rac{Y}{2}igg(1 + anh\left(rac{N-N_h}{K}
ight)igg)$$

Require $R_0N=\hat{N}$ and $-R_1N=-\hat{R}_1\hat{N}$. This implies $N=\frac{1}{R_0}\hat{N}$ and $R_1=\frac{\hat{R}_1\hat{N}}{N}=\frac{\hat{R}_1\hat{N}}{\frac{1}{R_0}\hat{N}}=R_0\hat{R}_1$. So we have the first two changes of variables, $N=\frac{1}{R_0}\hat{N}$ and $R_1=R_0\hat{R}_1$.

Now $\frac{d}{dt}(N) = \frac{d}{dt}(\frac{1}{R_0}\hat{N}) = \frac{1}{R_0}\frac{d\hat{N}}{dt}$. We require that this is equal to $\frac{d\hat{N}}{d\hat{t}}$ so let $t = \frac{1}{R_0}\hat{t}$ to make these equal.

Require $N-N_h=\hat{N}-1$. Using the substitution from before, $\frac{1}{R_0}\hat{N}-N_h=\hat{N}-1$. Rearranging for N_h gives $N_h=(\frac{1}{R_0}-1)\hat{N}+1$. Finally let $Y=\hat{Y}$ and $K=\hat{K}$.