Esercizio 1	Pare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \ge 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A) = 2$, tutte le altre $rk(A) = 3$;
Esercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0 Sia A è una matrice simmetrica, allora A² è simmetrica se M = M^T ⇒ M^T · M^T = (M · M)^T ⇒ M = M^T, sositiusici M con A² Sia A è M3,2(R) di rango 2, allora il sistema lineare AX = B ammetre soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c **κ(AlB) = 3 allora il sistema è impossible (non ammetre soluzioni) per Rocché-Capelli (∞2-3) A³ - A = I₂ → A(A² - I) = I ⇒ (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile) A³ - A = 0 → A(A² - I) = 0 ⇒ A = 0, A² - I = 0 ⇒ A = 0, A² - I = I quindi A è invertibile se A² = I altrimenti se A = 0 non è invertibile A³ - A = (1/2) → A(A² - I) = (1/2) ⇒ A = (1/2) ⇒ A
Bsercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁, v_n) (M matrice composta dai vettori) Base ortogonale di v,w: (det(R₂R₃) / det(R₁R₃)), R_i sono le righe dei vettori Dipendenza lineare: αv₁ + βv₂ = 0 oppure la matrice composta dai vettori non ha rango N Indipendenza lineare: αv₁ + βv₂ = 0 → α = β = 0 oppure la matrice composta dai vettori ha rango N v₃ = (v₃/2) / (x₃) è multiplo scalare di v₁ = (v₁/2) / (x₁) se (x₁/2) = (x₂/2) / (x₁) se (x₂/2) = (x₃/2) / (x₁/2) se (x₂/2) = (x₃/2) / (x₃/2) se (x₃/2) se
	$ullet$ Gauss: $R_i = R_i + \left(rac{-a_{ij}}{a_{jj}} ight) \cdot R_j$

 $\sqrt{9} = 3$ $\sqrt{64} = 8$ $\sqrt{169} = 13$ $\sqrt{324} = 18$ $\sqrt{529} = 23$ $\sqrt{784} = 28$

 $\sqrt{4} = 2$ $\sqrt{49} = 7$ $\sqrt{144} = 12$ $\sqrt{289} = 17$ $\sqrt{484} = 22$ $\sqrt{729} = 27$

 $\sqrt{1} = 1$ $\sqrt{36} = 6$ $\sqrt{121} = 11$ $\sqrt{256} = 16$ $\sqrt{441} = 21$ $\sqrt{676} = 26$

• Calcolo matrice inversa: scriviamo (M|I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo $(I|M^{-1})$

• AX = B ammette soluzioni se rk(A|B) = rk(A)

 $\bullet \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = x_1 x_2 + y_1 y_2 + z_1 z_2$

• Il prodotto di due matrici diagonali è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica

• A invertibile se det $A \neq 0$, $det(A^{-1}) = \frac{1}{\det A}$

• A non invertibile se $A^N = 0$

• Rouché-Capelli: ∞ #incognite-rk(A)

• Teorema di Binét: $det(AB) = det A \cdot det B$